(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年2 月21 日 (21.02.2002)

PCT

(10) 国際公開番号 WO 02/14513 A1

(51) 国際特許分類7: C12N 15/12, C07K 14/47, G01N 33/50, 33/15, A61K 31/711, 38/00, 45/00, 48/00, A61P 25/00, 25/18, 25/20, 25/22, 25/24, 43/00, A61K 31/4745, C07D 471/04, A61K 31/4375, 31/55, C07D 223/16, A61K 31/4025, C07D 207/32

(21) 国際出願番号: PCT/JP01/06899

(22) 国際出願日: 2001年8月10日(10.08.2001)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2000-247968 2000年8月10日(10.08.2000) JP

(71) 出願人 (米国を除く全ての指定国について): 武田薬品 工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒541-0045 大阪府大阪市中央区道修町四丁目1番1号 Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 *(*米国についてのみ): 松本芳男 (MAT-SUMOTO, Yoshio) [JP/JP]; 〒305-0035 茨城県つくば市松代3丁目12番地1-511 Ibaraki (JP). 渡辺卓也 (WATAN-ABE, Takuya) [JP/JP]; 〒532-0033 大阪府大阪市淀川区新高6丁目14番9-B904号 Osaka (JP). 高橋秀樹 (TAKA-HASHI, Hideki) [JP/JP]; 〒565-0836 大阪府吹田市佐井寺3-11-12-302 Osaka (JP). 森 正明 (MORI, Masaaki) [JP/JP]; 〒305-0821 茨城県つくば市春日3丁目8番地5 Ibaraki (JP).
- (74) 代理人: 青山 葆、外(AOYAMA, Tamotsu et al.); 〒 540-0001 大阪府大阪市中央区城見1丁目3番7号 IMP ビル 青山特許事務所 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,

/続葉有/

(54) Title: USE OF POLYPEPTIDE

(54) 発明の名称: ポリペプチドの用途

(57) Abstract: Use of a polypeptide having a ligand activity to sensory epithelium neuropeptide-like receptor (SENR) which is a G protein-coupled receptor protein and DNA encoding the same. Drugs against attention deficit disorder or narcolepsy containing the polypeptide having a ligand activity to SENR or its salt; and a method of screening a compound having an activity against attention deficit disorder or narcolepsy, a compound having an activity against anxiety, depression, insomnia, schizophrenia or fear or salts thereof characterized by using the above-described polypeptide, its precursor protein or its salt.

(57) 要約:

G蛋白質共役型レセプター蛋白質であるSENR(sensory epithe lium neuropeptide-like receptor)に対するリガンド活性を有するポリペプチドおよびこれをコードするDNAの用途を提供する。さらにSENRに対するリガンド活性を有するポリペプチドまたはその塩を含有する抗注意欠陥障害または抗ナルコレプシー剤、上記ポリペプチド、またはその前駆体タンパク質もしくはその塩を用いることを特徴とする抗注意欠陥障害もしくは抗ナルコレプシー活性を有する化合物または抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖活性を有する化合物、またはそれらの塩のスクリーニング方法などを提供する。

WO 02/14513 A1

DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, のガイダンスノート」を参照。

LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2 文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語

明 細 書

ポリペプチドの用途

5 技術分野

本発明は、G蛋白質共役型レセプター蛋白質であるGPR14[SENR (sensory epithelium neuropeptide-like receptor)]に対するリガンド活性を有するポリペプチドおよびこれをコードするDNAの用途などに関する。

10 背景技術

15

20

25

多くのホルモンや神経伝達物質は細胞膜に存在する特異的なレセプターを通じて生体の機能を調節している。これらのレセプターの多くは共役しているguanine nucleotide-binding protein(以下、G蛋白質と略称する場合がある)の活性化を通じて細胞内のシグナル伝達を行い、また7個の膜貫通領域を有する共通した構造をもっていることから、G蛋白質共役型レセプターあるいは7回膜貫通型レセプターと総称される。

オーファンG蛋白質共役型レセプターとして報告されているものの一つにSENRがある(Tal, M. et al., Biochem. Biophys. Res. Commun., 209, 752-759, 1995)。SENRはソマトスタチンレセプター(SSTR4)と低いホモロジーがあるが、そのリガンドが何であるのかはこれまで不明であった。なお、Marchese, A.らによって報告されたGPR14(Marchese, A., Genomics, 29, 335-344, 1995)はSENRと同一のレセプターである。最近、この受容体のリガンドがウロテンシンII(urotensin II)であることが複数のグループから報告された(Davenport, A.P. and Maguire, J.J., Trends Pharmacol Sci. 21, 80-82, 2000)。

発明の開示

(発明が解決しようとする技術的課題)

中枢神経系、循環器系、生殖器系、免疫系、消化器、泌尿器系器官、感覚器官

等で発現しているG蛋白質共役型レセプターであるGPR14 (SENR) に対するリガンドは、医薬として有用であると考えられる。その機能については循環器系に関しての報告 (Ames, R.S., et al., Nature, 401, 282-286, 1999) があるが、それ以外の作用に関する報告はない。

5

10

20

(解決手段)

本発明者らは、GPR14(SENR)に対するリガンドをラットの脳室内に 投与し、自発的行動量および立ち上がり行動量、高架式十字迷路等の測定を指標 に、該レセプター蛋白質(GPR14(SENR))がリガンドとして認識する ポリペプチドの作用、機能を明らかにすることに成功した。

さらに、本発明者らは、該活性因子であるリガンドを用いて抗注意欠陥障害も しくは抗ナルコレプシー活性を有する化合物または抗不安、抗うつ、抗不眠、抗 精神分裂症もしくは抗恐怖活性を有する化合物のスクリーニングを行なうことが できることを見いだした。

15 すなわち、本発明は、

- (1)配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩を含有する抗注意欠陥障害または抗ナルコレプシー剤、
- (2) 実質的に同一のアミノ酸配列が配列番号: 2、配列番号: 9、配列番号: 10、配列番号: 18、配列番号: 19、配列番号: 24、配列番号: 26、配列番号: 27、配列番号: 28または配列番号: 29で表されるアミノ酸配列である上記(1)記載の抗注意欠陥障害または抗ナルコレプシー剤、
- (3) 上記 (1) 記載のポリペプチドをコードする塩基配列を含有するDNAを含有する抗注意欠陥障害または抗ナルコレプシー剤、
- 25 (4) DNAが配列番号:12、配列番号:13、配列番号:34、配列番号: 20、配列番号:21、配列番号:25、配列番号:30、配列番号:31、配 列番号:32または配列番号:33で表される塩基配列を含有するDNAである 上記(3)記載の抗注意欠陥障害または抗ナルコレプシー剤、
 - (5) 上記(1) 記載のポリペプチドの前駆体タンパク質もしくはそのアミドも

10

15

20

しくはそのエステルまたはその塩を含有する抗注意欠陥障害または抗ナルコレプ シー剤、

- (6)配列番号:7、配列番号:8、配列番号:14、配列番号:17または配列番号:23で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する上記(5)記載の抗注意欠陥障害または抗ナルコレプシー剤、
- (7)配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩、またはその前駆体タンパク質もしくはその塩を用いることを特徴とする抗注意欠陥障害もしくは抗ナルコレプシー活性を有する化合物または抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖活性を有する化合物、またはそれらの塩のスクリーニング方法、
- (8)配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩、またはその前駆体タンパク質もしくはその塩を含有してなる抗注意欠陥障害もしくは抗ナルコレプシー活性を有する化合物または抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖活性を有する化合物、またはそれらの塩のスクリーニング用キット、
- (9)上記(7)記載のスクリーニング方法または上記(8)記載のスクリーニング用キットを用いて得られる抗注意欠陥障害もしくは抗ナルコレプシー活性を有する化合物または抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖活性を有する化合物、またはそれらの塩、
- (10)上記(9)記載の化合物またはその塩を含有することを特徴とする抗注 意欠陥障害もしくは抗ナルコレプシー剤または抗不安、抗うつ、抗不眠、抗精神 分裂症もしくは抗恐怖剤、
- 25 (11)上記(1)記載のポリペプチドをコードする塩基配列を含有するDNA と相補的な塩基配列またはその一部を含有してなるポリヌクレオチドを用いるこ とを特徴とする、注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、 精神分裂症もしくは恐怖診断方法、
 - (12)上記(1)記載のポリペプチドまたは上記(5)記載の前駆体タンパク

10

15

質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する 抗体を含有することを特徴とする抗不安、抗うつ、抗不眠、抗精神分裂症もしく は抗恐怖剤、

- (13)配列番号:3または配列番号:11で表されるアミノ酸配列を含有する タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩 に対する抗体を含有することを特徴とする抗注意欠陥障害もしくは抗ナルコレプ シーまたは抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤、
- (14)上記(1)記載のポリペプチドまたは上記(5)記載の前駆体タンパク 質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する 抗体を含有することを特徴とする不安、うつ、不眠、精神分裂症もしくは恐怖症 診断剤、
- (15)配列番号:3または配列番号:11で表されるアミノ酸配列を含有する タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩 に対する抗体を含有することを特徴とする注意欠陥障害もしくはナルコレプシー または不安、うつ、不眠、精神分裂症もしくは恐怖症診断剤、
- (16) 配列番号:34で表される塩基配列を含有するDNAの一塩基多型(SNPs)を含有してなる診断剤、
- (17)注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分 裂症もしくは恐怖症の診断剤である上記(16)記載の診断剤、
- 20 (18)配列番号:34で表される塩基配列を含有するDNAの一塩基多型(SNPs)を解析することを特徴とする注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症もしくは恐怖症診断方法、
 - (19) GPR14アゴニストからなる抗注意欠陥障害もしくは抗ナルコレプシー剤、
- 25 (20) GPR 14アンタゴニストからなる抗不安、抗うつ、抗不眠、抗精神分 裂症もしくは抗恐怖剤、
 - (21) GPR14アンタゴニストが、式(Ia):

10

15

$$\begin{array}{c|c}
R^{1a} \\
\hline
 & B^{a} \\
\hline
 & X^{\underline{a}} - R^{2a}
\end{array}$$
(Ia)

[式中、 A^a は置換されていてもよいベンゼン環を、 B^a は置換されていてもよい $5\sim8$ 員環を、 X^a は直鎖部分の原子数が $1\sim4$ の 2 価の基を、 R^{1a} は置換されていてもよいアミノ基を、 R^{2a} は置換されていてもよい環状基を示す]で表される化合物またはその塩である上記(20)記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤、

(22) GPR14アンタゴニストが、式(IIa):

$$R^{3a}$$
 $A^{a'}$
 N
 B^{a}
 X^{a}
 R^{2a}
 X^{a}

[式中、 A^a 'は置換基 R^3 a以外にさらに置換基を有していてもよいベンゼン環を、 B^a は置換されていてもよい $5\sim8$ 員環を、 X^a は直鎖部分の原子数が $1\sim4$ の2価の基を、 $R^{1a'}$ は置換されたアミノ基を、 R^{2a} は置換されていてもよい環状基を、 R^{3a} は置換されていてもよい炭化水素基、置換されていてもよい複素環基、-1中基、-1中基、-1中華、大田が大原子、置換されていてもよいアミノ基または式 -1中華、-1中華、大田が大原子、置換されていてもよいアミノ基または式 -1中華、

(23) GPR14アンタゴニストが、式(Ib):

$$\begin{array}{c|c}
R \\
| \\
Ar - X - (CH) - Y
\end{array} (1b)$$

[式中、Arは置換されていてもよいアリール基を示し、Xは直鎖部分を構成する原子の数が1ないし4のスペーサーを示し、nは1ないし10の整数を示し、Rは水素原子または置換されていてもよい炭化水素基であって、nの繰り返しにおいて、同一でも異なっていてもよく、またRはArまたはArの置換基と結合して環を形成していてもよく、Yは置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示す〕で表される化合物またはその塩である上記(20)記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤、

(24) GPR14アンタゴニストが、式(IIb):

$$\begin{array}{c|c}
R & & \\
\downarrow & & \\
R^{1} - N & & \\
\end{array}$$
(11b)

10

15

20

5

[式中、R¹は水素原子、置換されていてもよい炭化水素基または置換されていてもよいアシル基を示し、A環はさらに置換基を有していてもよいベンゼン環を示し、Xは直鎖部分を構成する原子の数が1ないし4のスペーサーを示し、nは1ないし10の整数を示し、Rは水素原子または置換されていてもよい炭化水素基であって、nの繰り返しにおいて、同一でも異なっていてもよく、またRはA環またはA環の置換基と結合して環を形成していてもよく、Yは置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示す〕で表される化合物またはその塩である上記(20)記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤、

(25) GPR14アンタゴニストが、式(Ic):

10

15

$$R^{2c} \xrightarrow{N} \qquad Q \qquad R^{1c} \qquad Q \qquad R^{1c} \qquad Q \qquad N - X^{c} - A^{c} \qquad Q \qquad (1c)$$

[式中、 R^1 。は水素原子または置換されていてもよい炭化水素基を示し、 X° は直鎖部分を構成する原子の数が $1\sim 12$ のスペーサーを示し、 R^1 。および X° は結合して環を形成していてもよく、 A° は置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示し、 R^2 。は置換されていてもよい炭化水素基または置換されていてもよいアミノ基を示し、 R^3 。は置換されていてもよい炭化水素基を示し、 R^3 。は置換されていてもよい炭化水素基を示し、 R^3 。は置換されていてもよい炭化水素基を示し、 R^3 。は置換されていてもよいベンゼン環を示す」で表される化合物またはその塩である上記(20)記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤、

- (26) 哺乳動物に対して、GRP14アゴニストの有効量を投与することを特 徴とする注意欠陥障害もしくはナルコレプシー予防・治療方法、
 - (27) 注意欠陥障害もしくはナルコレプシー予防・治療剤を製造するためのG PR14アゴニストの使用、
- (28) 哺乳動物に対して、GPR14アンタゴニストの有効量を投与することを特徴とする不安、うつ、不眠、精神分裂症もしくは恐怖症の予防・治療方法、(29) 不安、うつ、不眠、精神分裂症もしくは恐怖症の予防・治療剤を製造するためのGPR14アンタゴニストの使用などに関する。

図面の簡単な説明

20 図 1 は、実施例 1 における、10 nmo1 配列番号:9で表わされるポリペプチドの側脳室内投与による自発的行動量の変化を示す。A)図は自発的行動量変化を、B)図は立ち上がり行動回数の変化を示す(PBS:n=10、配列番号:9で表わされるポリペプチド:n=10)。

WO 02/14513 PCT/JP01/06899

図2は、実施例2におけるポリペプチド(配列番号:9) (1 nmol)の側脳室内投与による自発的行動量の変化を示す。A)図は自発的行動量変化を、B)図は立ち上がり行動回数の変化を示す。各値は平均値±SEMを示す(PBS:n=17、配列番号:9で表わされるポリペプチド:n=10)。

図 3 は、実施例 3 におけるポリペプチド(配列番号:9) (1 nmolまたは10 nmol) の側脳室内投与による自発的行動の変化を示す。A)図は自発的行動量変化を、B)図は立ち上がり行動回数の変化を示す。各値は平均値±SEMを示す (PBS:n=27、配列番号:9で表わされるポリペプチド(1 nmol):n=9、配列番号:9で表わされるポリペプチド(10 nmol):n=10)。

5

10

15

25

図4は、実施例4におけるポリペプチド(配列番号:9) (10 nmol) および PACAP38 (3 nmol) の側脳室内投与に対するジアゼパム(1 mg/kg)の効果を示す。A)図はポリペプチド(配列番号:9) (10 nmol) の側脳室内投与による自発的行動量変化におけるジアゼパム(1 mg/kg)の効果を示す。B)図はポリペプチド(配列番号:9) (10 nmol) およびPACAP38 (3 nmol) の側脳室内投与による累積行動量におけるジアゼパム(1 mg/kg)の効果を示す。各値は平均値± SEMを示す(ポリペプチド(配列番号:9):n=10、ジアゼパム+ポリペプチド(配列番号:9):n=10、アゼパム+ポリペプチド(配列番号:9):n=10、アゼパム+アACAP38:n=8)。*p<0.05, Dunnett

図5は、実施例5の試験で用いた高架式十字迷路の概略図を示す。

20 図 6 は、実施例 5 における10nmol ポリペプチド(配列番号:9)の側脳室内 投与による高架式十字迷路試験の結果(A)図はClosed armへの進入回数、B) 図はOpen armへの進入回数、およびC)図はOpen armでの滞在時間)を示す。各 値は平均値±SEM(n=9-10)を示す。*p<0.05, Dunnett

図7は、実施例7におけるポリペプチド(配列番号:9) (0.1 nmol、0.3 nmolまたは3 nmol) の側脳室内投与によるホールボード試験の結果を示す。A) 図は累積自発的行動量(5分間)を示す。B)図はのぞき込み回数(5分間)を示す。各値は平均値±SEMを示す(PBS:n=18、ポリペプチド(配列番号:9) 0.1 nmol:n=10、ポリペプチド(配列番号:9) 0.3 nmol:n=17、ポリペプチド(配列番号:9) 3 nmol:n=8)。*p<0.05,**p<0.01. Dunnett

15

20

25

図8は、実施例8におけるポリペプチド(配列番号:9) (10 nmol) および CRF(1 nmol)の血漿中ACTH量に対する影響を示す (PBS:n=8、ポリペプチド (配列番号:9) 10 nmol:n=7、CRF 1 nmol:n=8)。**p<0.01, Dunnett

5 発明の好ましい実施の形態

本明細書において、「実質的に同一」とはポリペプチドまたはタンパク質の活性、例えば、リガンドと受容体(GPR14(SENR))の結合活性、生理的な特性などが、実質的に同じことを意味する。アミノ酸の置換、欠失、付加あるいは挿入はしばしばポリペプチドまたはタンパク質の生理的な特性や化学的な特性に大きな変化をもたらさないが、こうした場合その置換、欠失、付加あるいは挿入を施されたポリペプチドは、そうした置換、欠失、付加あるいは挿入のされていないものと実質的に同一であるとされるであろう。該アミノ酸配列中のアミノ酸の実質的に同一な置換物としては、例えばそのアミノ酸が属するところのクラスのうち他のアミノ酸類から選ぶことができうる。非極性(疎水性)アミノ酸としては、アラニン、ロイシン、イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン、メチオニンなどが挙げられる。極性(中性)アミノ酸としてはグリシン、セリン、スレオニン、システイン、チロシン、アスパラギン、グルタミンなどが挙げられる。傷電荷をもつ(塩基性)アミノ酸としてはアルギニン、リジン、ヒスチジンなどが挙げられる。負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。

本発明のポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩は、GRP14 (SENR) に対するリガンドであり、具体的には、配列番号: 1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩などが挙げられる。以下本明細書中において、本発明のポリペプチドとは、GRP14 (SENR) に対するリガンドであるポリペプチドを意味する。

本発明のポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩 (以下、単に本発明のポリペプチドと称する場合がある。)、その製造法および 用途を以下にさらに詳細に説明する。

10

15

20

25

本発明のポリペプチドとしては、温血動物(例えば、ヒト、モルモット、ラット、マウス、ブタ、ヒツジ、ウシ、サルなど)のあらゆる組織(例えば、下垂体、膵臓、脳、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管、血管、心臓など)または細胞などに由来するポリペプチドであって、配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドであれば如何なるものであってもよい。例えば、本発明のポリペプチドとしては、配列番号:1で表されるアミノ酸配列を含有するポリペプチドなどの他に、配列番号:1で表されるアミノ酸配列を含有するポリペプチドなどの他に、配列番号:1で表されるアミノ酸配列を含有するポリペプチドと実質的に同質の活性を有するポリペプチド(例えば、配列番号:2、9、10、18、19、24、26、27、28または29で表されるアミノ酸配列を含有するポリペプチドなど)などが挙げられる。実質的に同質の活性としては、例えばレセプター結合活性、シグナル伝達活性などが挙げられる。実質的に同質とは、レセプター結合活性などが性質的に同質であることを示す。したがって、レセプター結合活性などが強質的に同質であることを示す。したがって、レセプター結合活性などが強弱、ポリペプチドの分子量などの量的要素は異なっていてもよい。

配列番号:1で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号:1で表わされるアミノ酸配列と約50%以上、好ましくは約60%以上、より好ましくは約70%以上、さらに好ましくは約80%以上、なかでも好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。

また、配列番号:1で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、①配列番号:1で表わされるアミノ酸配列中の1または2個以上(好ましくは、 $1\sim5$ 個程度、より好ましくは $1\sim3$ 個程度、さらに好ましくは $1\sim2$ 個)のアミノ酸が欠失したアミノ酸配列、②配列番号:1で表わされるアミノ酸配列に1または2個以上(好ましくは、 $1\sim2$ 0個程度、より好ましくは $1\sim1$ 2個程度、さらに好ましくは数個($1\sim5$ 個))のアミノ酸が付加したアミノ酸配列、③配列番号:1で表わされるアミノ酸配列中の1または2個以上(好ましくは、 $1\sim5$ 個程度、より好ましくは $1\sim3$ 個程度、さらに好ましくは $1\sim2$ 個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または0それらを組

10

15

20

25

み合わせたアミノ酸配列を含有する蛋白質なども用いられる。

配列番号:1で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含有するポリペプチドとして具体的には、配列番号:1で表されるアミノ酸配列を含有するポリペプチドのN末端から3番目のアミノ酸(Thr)が他のアミノ酸(例、Ala, Leu, Ile, Val, Pro, Phe, Trp, Met, Gly, Ser, Cys, Tyr, Asn, Gln, Arg, Lys, His, Asp, Glu)に置換されているアミノ酸配列を含有するポリペプチドなどが挙げられる。なかでも、配列番号:1で表されるアミノ酸配列を含有するポリペプチドなどがプチドのN末端から3番目のアミノ酸(Thr)がProに置換されているアミノ酸配列(配列番号:2)を含有するポリペプチドおよび配列番号:1で表されるアミノ酸配列を含有するポリペプチドのN末端から3番目のアミノ酸(Thr)がSerに置換されているアミノ酸配列(配列番号:9)などが好ましい例として挙げられる。

別の態様として、配列番号:1で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含有するポリペプチドとして(1)①N末端にグルタミン残基またはピログルタミン酸残基を有し、②配列番号:18で表されるアミノ酸配列のN末端から第8番目(Ala)から第17番目(Ile)までのアミノ酸配列を含有し、③14~17個のアミノ酸残基からなるポリペプチドや(2)①N末端にグルタミン残基またはピログルタミン酸残基を有し、②配列番号:18で表されるアミノ酸配列のN末端から第8番目(Ala)から第17番目(Ile)までのアミノ酸配列を含有し、③14~17個のアミノ酸残基からなるポリペプチドのN末端にさらに④3~10個のアミノ酸残基が付加されたポリペプチドなどが好ましい例として挙げられる。

本明細書におけるポリペプチドはペプチド標記の慣例に従って左端がN末端 (アミノ末端)、右端がC末端(カルボキシル末端)である。(1)配列番号: 1で表されるアミノ酸配列、(2)配列番号:2で表されるアミノ酸配列、

(3) 配列番号:9で表されるアミノ酸配列、(4) 配列番号:10で表されるアミノ酸配列、(5) 配列番号:18で表されるアミノ酸配列、(6) 配列番号:19で表されるアミノ酸配列、(7) 配列番号:24で表されるアミノ酸配列、(8) 配列番号:26で表されるアミノ酸配列、(9) 配列番号:27で表

10

15

20

25

されるアミノ酸配列、(10)配列番号:28で表されるアミノ酸配列、(1 1)配列番号:29で表されるアミノ酸配列などを含有するポリペプチドはC末端がカルボキシル基(-COOH)、カルボキシレート(-COO $^-$)、アミド(-CONH $^-$ 2)またはエステル(-COOR)の何れであってもよい。エステルのRとしては、例えばメチル、エチル、 $^-$ 2の一プロピル、イソプロピルもしくは $^-$ 3であるどの $^-$ 4ので、シクロペンチル、シクロペキシルなどの $^-$ 3・シクロアルキル基、フェニル、 $^-$ 4の一プチルなどの $^-$ 5の $^-$ 7リール基、ベンジル、フェネチル、ベンズヒドリルなどのフェニルー $^-$ 7に、カレくは $^-$ 7のように、経口用されるピバロイルオキシメチル基などが挙げられる。

本発明のポリペプチドの塩としては、生理学的に許容される塩基(例えばアルカリ金属など)や酸(有機酸、無機酸)との塩が用いられるが、とりわけ生理学的に許容される酸付加塩が好ましい。このような塩としては、例えば無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、シュウ酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩などが用いられる。

本発明のポリペプチドは、WO 00/32627、WO 00/31265、WO 99/35266または特願2000-211996号などに記載の方法に準じて製造できる。

具体的には、本発明のポリペプチドは、温血動物の組織または細胞からポリペプチドを精製する方法によって製造することもできるし、後に記載するのポリペプチド合成法に準じて製造することもできる。また、後に記載するポリペプチドをコードするDNAを含有する形質転換体を培養することによっても製造することができる。

温血動物の組織または細胞から製造する場合、温血動物の組織または細胞をホモジナイズした後、酸、有機溶媒などで抽出を行い、該抽出液を、塩析、透析、ゲル濾過、逆相クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

上記したように本発明のポリペプチドは、自体公知のポリペプチドの合成法に従って、あるいは本発明のポリペプチドを含有するポリペプチドを適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば固相合成法、液相合成法のいずれによっても良い。すなわち、本発明のポリペプチドを構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保護基の脱離としては例えば、以下の①~⑤に記載された方法が挙げられる。

- ①M. Bodanszky および M.A. Ondetti、ペプチド シンセシス (Peptide
- 10 Synthesis), Interscience Publishers, New York (1966年)
 - ②SchroederおよびLuebke、ザ ペプチド(The Peptide), Academic Press, New York (1965年)
 - ③泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)
 - ④矢島治明 および榊原俊平、生化学実験講座 1、 タンパク質の化学IV、205、
- 15 (1977年)

20

25

5

⑤矢島治明監修、続医薬品の開発 第14巻 ペプチド合成 広川書店

また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせて本発明のポリペプチドを精製単離することができる。上記方法で得られるポリペプチドが遊離体である場合は、公知の方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によって遊離体に変換することができる。

ポリペプチドのアミド体は、アミド形成に適した市販のペプチド合成用樹脂を 用いることができる。そのような樹脂としては例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4ーベンジルオキシベンジルアルコール樹脂、4ーメチルベンズヒドリルアミン樹脂、

PAM樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2',4'-ジメトキシフェニルーヒドロキシメチル)フェノキシ樹脂、4-(2',4'-ジメトキシフェニルーFmocアミノエチル)フェノキシ樹脂などを挙げることができる。このような樹脂を用い、 α ーアミノ

基と側鎖官能基を適当に保護したアミノ酸を、目的とするペプチドの配列通りに、 自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂からペ プチドを切り出すと同時に各種保護基を除去し、必要に応じて高希釈溶液中で分 子内ジスルフィド結合形成反応を実施し、目的のポリペプチドを取得する。

5

10

15

上記した保護されたアミノ酸の縮合に関しては、ペプチド合成に使用できる各 種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボ ジイミド類としてはDCC、N.N'-ジイソプロピルカルボジイミド、N-エチル-N'-(3-ジメチルアミノプロピル) カルボジイミドなどが挙げられる。これらによる 活性化にはラセミ化抑制添加剤(例えば、HOBt、HOOBtなど)とともに保護さ れたアミノ酸を直接樹脂に添加するかまたは、対称酸無水物またはHOBtエステ ルあるいはHOOBtエステルとしてあらかじめ保護されたアミノ酸の活性化を行 ったのちに樹脂に添加することができる。保護されたアミノ酸の活性化や樹脂と の縮合に用いられる溶媒としては、ペプチド縮合反応に使用しうることが知られ ている溶媒から適宜選択されうる。例えばN,Nージメチルホルムアミド、N, N-ジメチルアセトアミド、N-メチルピロリドンなどの酸アミド類、塩化メチ レン、クロロホルムなどのハロゲン化炭化水素類、トリフルオロエタノールなど のアルコール類、ジメチルスルホキシドなどのスルホキシド類、ピリジンなどの 三級アミン類、ジオキサン、テトラヒドロフランなどのエーテル類、アセトニト リル、プロピオニトリルなどのニトリル類、酢酸メチル、酢酸エチルなどのエス テル類あるいはこれらの適宜の混合物などが用いられる。反応温度はペプチド結 合形成反応に使用され得ることが知られている範囲から適宜選択され、通常約一 20℃~50℃の範囲から適宜選択される。活性化されたアミノ酸誘導体は通常 1. 5ないし4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、 縮合が不十分な場合には保護基の脱離を行うことなく縮合反応を繰り返すことに

25

20

原料アミノ酸のアミノ基の保護基としては、例えば、Z、Boc、ターシャリーペンチルオキシカルボニル、イソボルニルオキシカルボニル、4ーメトキシベン

より十分な縮合を行うことができる。反応を繰り返しても十分な縮合が得られな

いときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をア

セチル化して、後の反応に影響を及ぼさないようにすることができる。

10

15

20

25

セリンおよびスレオニンの水酸基は、例えばエステル化またはエーテル化によって保護することができる。このエステル化に適する基としては例えばアセチル基などの低級アルカノイル基、ベンゾイル基などのアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基などの炭素から誘導される基などが挙げられる。また、エーテル化に適する基としては、例えばベンジル基、テトラヒドロピラニル基、ターシャリーブチル基などである。

チロシンのフェノール性水酸基の保護基としては、例えばBzl、 Cl_2 -Bzl、2 ー ニトロベンジル、Br-Z、ターシャリーブチルなどが挙げられる。

ヒスチジンのイミダゾールの保護基としては、Tos、4-メトキシ-2,3,6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmocなどが挙げられる。

原料のカルボキシル基の活性化されたものとしては、例えば対応する酸無水物、アジド、活性エステル [アルコール (例えば、ペンタクロロフェノール、2,4,5-トリクロロフェノール、2,4-ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、N-ヒドロキシスクシミド、N-ヒドロキシフタルイミド、HOBt) とのエステル] などが挙げられる。原料のアミノ基の活性化されたものとしては、例えば対応するリン酸アミドが挙げられる。

保護基の除去(脱離)方法としては、例えばPd黒あるいはPd炭素などの触媒 の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタンスルホ ン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合 液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペ

10

15

20

25

リジン、ピペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども挙げられる。上記酸処理による脱離反応は一般に一20℃~40℃の温度で行われるが、酸処理においてはアニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1,4-ブタンジチオール、1,2-エタンジチオールのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2,4-ジニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2-エタンジチオール、1,4-ブタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム、希アンモニアなどによるアルカリ処理によっても除去される。

原料の反応に関与すべきでない官能基の保護および保護基、ならびにその保護 基の脱離、反応に関与する官能基の活性化などは公知の基あるいは公知の手段か ら適宜選択しうる。

ポリペプチドのアミド体を得る別の方法としては、まず、カルボキシル末端アミノ酸のαーカルボキシル基をアミド化した後、アミノ基側にペプチド鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のαーアミノ基の保護基のみを除いたペプチドとC末端のカルボキシル基の保護基のみを除いたペプチド(またはアミノ酸)とを製造し、この両ペプチドを上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護ペプチドを精製した後、上記方法によりすべての保護基を除去し、所望の粗ポリペプチドを得ることができる。この粗ポリペプチドは既知の各種精製手段を用いて精製し、主要画分を凍結乾燥することで所望のポリペプチドのアミド体を得ることができる。

ポリペプチドのエステル体を得るにはカルボキシ末端アミノ酸のα-カルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、ポリペプチドのアミド体と同様にして所望のポリペプチドのエステル体を得ることができる。

本発明のポリペプチドとしては、上記した配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有し、該ポリペプチドと同様の作用、例えば抗注意欠陥障害、抗ナルコレプシー作用などを有しているもので

10

15

20

25

あれば、どのようなポリペプチドであってもよい。このようなポリペプチドとしては例えば、上記した配列番号:2、9、10、18、19、24、26、27、28または29で表されるアミノ酸配列を有するペプチドを挙げることができる。本発明のポリペプチドをコードするDNAとしては、配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードするDNAを含有するDNAであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、上記した組織・細胞由来のcDNA、上記した組織・細胞由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターはバクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した組織・細胞よりRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する)によって増幅することもできる。

ここで、配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一の アミノ酸配列を含有するポリペプチドとしては、上記のとおり、配列番号:2、 9、10、18、19、24、26、27、28または29で表されるアミノ酸 配列などが挙げられるが、配列番号:2で表されるアミノ酸配列を含有するポリ ペプチドをコードするDNAを含有するDNAとしては、例えば、配列番号:1 2で表される塩基配列を含有するDNAなどが挙げられ、配列番号:9で表され るアミノ酸配列を含有するポリペプチドをコードするDNAを含有するDNAと しては、例えば、配列番号:13で表される塩基配列を含有するDNAなどが挙 げられ、配列番号:10で表されるアミノ酸配列を含有するポリペプチドをコー ドするDNAを含有するDNAとしては、例えば、配列番号:34で表される塩 基配列を含有するDNAなどが挙げられ、配列番号:18で表されるアミノ酸配 列を含有するポリペプチドをコードするDNAを含有するDNAとしては、例え ば、配列番号:20で表される塩基配列を含有するDNAなどが挙げられ、配列 番号:19で表されるアミノ酸配列を含有するポリペプチドをコードするDNA を含有するDNAとしては、例えば、配列番号:21で表される塩基配列を含有 するDNAなどが挙げられ、配列番号:24で表されるアミノ酸配列を含有する

10

15

20

25

ポリペプチドをコードするDNAを含有するDNAとしては、例えば、配列番号:25で表される塩基配列を含有するDNAなどが挙げられ、配列番号:26で表されるアミノ酸配列を含有するポリペプチドをコードするDNAを含有するDNAとしては、例えば、配列番号:30で表される塩基配列を含有するDNAなどが挙げられ、配列番号:27で表されるアミノ酸配列を含有するポリペプチドをコードするDNAを含有するDNAとしては、例えば、配列番号:31で表される塩基配列を含有するDNAなどが挙げられ、配列番号:28で表されるアミノ酸配列を含有するDNAなどが挙げられ、配列番号:28で表されるアミノ酸配列を含有するプNAとしては、例えば、配列番号:32で表される塩基配列を含有するDNAなどが挙げられ、配列番号:29で表されるアミノ酸配列を含有するプリペプチドをコードするDNAを含有するプNAなどが挙げられる。

配列番号: 1 で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含有するポリペプチドをコードするDNAを含有するDNAとしては、例えば、配列番号: 12、13、34、20、21、25、30、31、32または33で表される塩基配列と約80%以上、好ましくは約90%以上、さらに好ましくは約95%以上、より好ましくは約98%以上の相同性を有する塩基配列を含有するDNAなどが挙げられる。

また、配列番号:1で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含有するポリペプチドをコードするDNAを含有するDNAとしては、例えば、①配列番号:12、13、34、20、21、25、30、31、32または33で表される塩基配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)の塩基が欠失した塩基配列、②配列番号:12、13、34、20、21、25、30、31、32または33で表される塩基配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)の塩基が付加した塩基配列、③配列番号:12、13、34、20、21、25、30、31、32または33で表される塩基配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは13または2個)の

10

15

20

25

塩基が挿入された塩基配列、④配列番号:12、13、34、20、21、25、 30、31、32または33で表される塩基配列中の1または2個以上(好まし くは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または 2個)の塩基が他の塩基で置換された塩基配列、または⑤それらを組み合わせた 塩基配列を含有するDNAなども含まれる。より具体的には、 (1)ストリンジェ ントな条件下で配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同 一のアミノ酸配列を含有するポリペプチドをコードするDNAに対する結合能を 有するDNAを含有するDNAとハイブリダイズする哺乳動物由来のDNA、 (2)遺伝コードの縮重のため配列番号:1で表されるアミノ酸配列と同一もしく は実質的に同一のアミノ酸配列を含有するポリペプチドをコードするDNAに対 する結合能を有するDNAを含有するDNAおよび(1)に定められているDNA とハイブリッド形成しないが、同一アミノ酸配列をもつポリペプチドをコードす るDNAなどが用いられる。ハイブリダイゼーションは、自体公知の方法あるい はそれに準じた方法に従って行うことができる。上記ストリンジェントな条件と しては、例えば42℃、50%ホルムアミド、4×SSPE(1×SSPE= 150mM NaCl, 10mM NaH 2PO4・H2O, 1mM EDTA pH7.4)、 5×デンハート 溶液、0.1%SDSである。

配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードするDNAを含有するDNAとハイブリダイズするDNAとしては、例えば、配列番号:12、13、34、20、21、25、30、31、32または33で表される塩基配列と約70%以上、好ましくは約80%以上、さらに好ましくは約90%以上、最も好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

本発明のポリペプチドをコードするDNAは以下の遺伝子工学的手法によって も製造することができる。

本発明のポリペプチドを完全にコードするDNAのクローニングの手段としては、本発明のポリペプチドをコードするDNAの塩基配列の部分塩基配列を有する合成DNAプライマーを用いて自体公知のPCR法によって上記DNAライブラリー等から目的とするDNAを増幅するか、または適当なベクターに組み込ん

10

15

20

25

だDNAを例えば本発明のポリペプチドの一部あるいは全領域を有するDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。ハイブリダイゼーションの方法は、例えば

Molecular Cloning (2 nd ed.; J. Sambrook et al., Cold Spring Harbor Lab.

Press, 1989) に記載の方法などに従って行われる。また、市販のライブラリー を使用する場合、添付の使用説明書に記載の方法に従って行う。

クローン化された本発明のポリペプチドをコードするDNAは目的によりそのまま、または所望により制限酵素で消化したり、リンカーを付加したりして使用することができる。該DNAはその5、末端側に翻訳開始コドンとしてのATGを有し、また3、末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。

本発明のポリペプチドの発現ベクターは、例えば、(イ)本発明のポリペプチドをコードするDNAから目的とするDNA断片を切り出し、(ロ)該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。

本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。

形質転換する際の宿主が動物細胞である場合には、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、サイトメガロウイルスプロモーター、SR αプロモーターなどが利用できる。宿主がエシェリヒア属菌である場合は、trpプロモーター、T7プロモーター、1 a c プロモーター、r e c A プロモーター、 λ P L プロモーター、 1 p p プロモーターなどが、宿主がバチルス属菌である場合は、SPO

WO 02/14513 PCT/JP01/06899

1プロモーター、SPO2プロモーター、penPプロモーターなど、宿主が酵母である場合は、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADH1プロモーター、GALプロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。

5

10

15

20

発現ベクターには、以上の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン(以下、SV40 oriと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子 [メソトレキセート(MTX)耐性〕、アンピシリン耐性遺伝子(以下、Amprと略称する場合がある)、ネオマイシン耐性遺伝子(以下、Neoと略称する場合がある、G418 耐性)等が挙げられる。特に、CHO(dhfr)細胞を用いてDHFR遺伝子を選択マーカーとして使用する場合、チミジンを含まない培地によっても選択できる。

また、必要に応じて、宿主に合ったシグナル配列を、ポリペプチドまたはその部分ペプチドのN端末側に付加する。宿主がエシェリヒア属菌である場合は、phoA・シグナル配列、OmpA・シグナル配列などが、宿主がバチルス属菌である場合は、 α -アミラーゼ・シグナル配列、サブチリシン・シグナル配列などが、宿主が酵母である場合は、メイテイングファクター α (MF α)・シグナル配列、インベルターゼ・シグナル配列など、宿主が動物細胞である場合には、例えばインシュリン・シグナル配列、 α -インターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ利用できる。

このようにして構築されたポリペプチドをコードするDNAを含有するベクターを用いて、形質転換体を製造することができる。

25 宿主としては、例えばエシェリヒア属菌、バチルス属菌、酵母、昆虫または昆虫細胞、動物細胞などが用いられる。

エシェリヒア属菌としては、エシェリヒア・コリ (Escherichia coli) K1 2・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 6

WO 02/14513 PCT/JP01/06899

0巻, 160(1968)], JM103 [ヌクイレック・アシッズ・リサーチ (Nucleic Acids Research), 9巻, 309(1981)], JA221 [ジャーナル・オブ・モレキュラー・バイオロジー (Journal of Molecular Biology)], 120巻, 517(1978)], HB101 [ジャーナル・オブ・モレキュラー・バイオロジー, 41巻, 459(1969)], C600 [ジェネティックス (Genetics), 39巻, 440(1954)] などが用いられる。

5

10

15

20

25

バチルス属菌としては、例えばバチルス・サチルス (Bacillus subtilis) M I 1 1 4 [ジーン, 2 4 巻, 2 5 5 (1 9 8 3)] , 2 0 7 - 2 1 [ジャーナル・オブ・バイオケミストリー (Journal of Biochemistry) , 9 5 巻, 8 7 (1 9 8 4)] などが用いられる。

酵母としては、例えばサッカロマイセス セレビシエ (Saccharomyces cerevisiae) A H 2 2 R $^-$, N A 8 7 $^-$ 1 1 A , D K D $^-$ 5 D , 2 0 B $^-$ 1 2 などが用いられる。

昆虫としては、例えばカイコの幼虫などが用いられる〔前田ら、ネイチャー (Nature), 315巻, 592(1985)〕。

昆虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell; Sf細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh FiveTM細胞、Mamestra brassicae由来の細胞またはEstigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞(Bombyx mori N; BmN細胞)などが用いられる。該Sf細胞としては、例えば、Sf 9細胞(ATCC CRL1711)、Sf 2 1細胞〔以上、Vaughn, J.L.ら、イン・ヴィトロ(in Vitro),13巻,213-217頁(1977年)〕などが用いられる。

動物細胞としては、例えばサルCOS-7細胞、Vero細胞、チャイニーズハムスター細胞CHO、DHFR遺伝子欠損チャイニーズハムスター細胞CHO(dhfrCHO細胞)、マウスL細胞、マウス3T3細胞、マウスミエローマ細胞、ヒトHEK293細胞、ヒトFL細胞、293細胞、C127細胞、BALB3T3細胞、Sp-2/O細胞などが用いられる。

エシェリヒア属菌を形質転換するには、例えばプロシージングズ・オブ・ザ・

10

15

20

25

ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA) , 69巻, 2110(1972)やジーン (Gene) , 17巻, 107(1982)などに記載の方法に従って行なわれる。 バチルス属菌を形質転換するには、例えばモレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics) , 168巻, 111 (1979)などに記載の方法に従って行われる。

酵母を形質転換するには、例えばプロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 75巻, 1929(1978)に記載の方法に従って行なわれる。

昆虫細胞または昆虫を形質転換するには、例えばバイオ/テクノロジー (Bio/Technology),6巻,47-55頁(1988年)などに記載の方法に従って行なわれる。

動物細胞を形質転換するには、例えばヴィロロジー (Virology), 52巻, 4 56(1973)に記載の方法に従って行なわれる。

発現ベクターの細胞への導入方法としては、例えば、リポフェクション法 [Felgner, P.L. et al. プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proceedings of the National Academy of Sciences of the United States of America), 8 4巻, 7 4 1 3 頁(1987年)〕、リン酸カルシウム法 [Graham, F. L. and van der Eb, A. J.ヴィロロジー(Virology), 5 2巻, 4 5 6 - 4 6 7 頁(1973年)〕、電気穿孔法 [Nuemann, E. et al. エンボ・ジャーナル(EMBO J.), 1巻, 8 4 1 - 8 4 5 頁(1982年)〕等が挙げられる。

このようにして、本発明のポリペプチドをコードするDNAを含有する発現ベクターで形質転換された形質転換体が得られる。

なお、動物細胞を用いて、本発明のポリペプチドを安定に発現させる方法としては、上記の動物細胞に導入された発現ベクターが染色体に組み込まれた細胞をクローン選択によって選択する方法がある。具体的には、上記の選択マーカーを指標にして形質転換体を選択する。さらに、このように選択マーカーを用いて得

10

15

20

25

られた動物細胞に対して、繰り返しクローン選択を行なうことにより本発明のポリペプチドの高発現能を有する安定な動物細胞株を得ることができる。また、dhfr遺伝子を選択マーカーとして用いた場合、MTX濃度を徐々に上げて培養し、耐性株を選択することにより、dhfr遺伝子とともに、本発明のポリペプチドまたはその部分ペプチド等をコードするDNAを細胞内で増幅させて、さらに高発現の動物細胞株を得ることもできる。

上記の形質転換体を本発明のポリペプチドをコードするDNAが発現可能な条件下で培養し、本発明のポリペプチドを生成、蓄積せしめることによって、本発明のポリペプチドを製造することができる。

宿主がエシェリヒア属菌、バチルス属菌である形質転換体を培養する際、培養に使用される培地としては液体培地が適当であり、その中には該形質転換体の生育に必要な炭素源、窒素源、無機物その他が含有せしめられる。炭素源としては、例えばグルコース、デキストリン、可溶性澱粉、ショ糖など、窒素源としては、例えばアンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質、無機物としては例えば塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどが挙げられる。また、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは約5~8が望ましい。

エシェリヒア属菌を培養する際の培地としては、例えばグルコース、カザミノ酸を含むM9培地〔ミラー(Miller),ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス(Journal of Experiments in Molecular Genetics),431-433,Cold Spring Harbor Laboratory,New York 1972〕が好ましい。ここに必要によりプロモーターを効率よく働かせるために、例えば 3β -インドリルアクリル酸のような薬剤を加えることができる。

宿主がエシェリヒア属菌の場合、培養は通常約15~43℃で約3~24時間 行い、必要により、通気や撹拌を加えることもできる。

宿主がバチルス属菌の場合、培養は通常約30~40℃で約6~24時間行ない、必要により通気や撹拌を加えることもできる。

WO 02/14513 PCT/JP01/06899

宿主が酵母である形質転換体を培養する際、培地としては、例えばバークホールダー (Burkholder) 最小培地 [Bostian, K. L. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA) ,77巻,4505(1980)] や0. 5%カザミノ酸を含有するSD培地 [Bitter, G. A. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA) ,81巻,5330 (1984)] が挙げられる。培地のpHは約5~8に調整するのが好ましい。培養は通常約20℃~35℃で約24~72時間行い、必要に応じて通気や撹拌を加える。

5

10

15

25

宿主が昆虫細胞である形質転換体を培養する際、培地としては、Grace's Insect Medium(Grace, T.C.C.,ネイチャー(Nature),195,788(1962))に非動化した10%ウシ血清等の添加物を適宜加えたものなどが用いられる。培地のp Hは約 $6.2\sim6.4$ に調整するのが好ましい。培養は通常約27%で約 $3\sim5$ 日間行い、必要に応じて通気や撹拌を加える。

宿主が動物細胞である形質転換体を培養する際、培地としては、例えば約5~20%の胎児牛血清を含むMEM培地〔サイエンス(Science), 122巻, 5 01(1952)], DMEM培地〔ヴィロロジー(Virology), 8巻, 396(1959)], RPMI 1640培地〔ジャーナル・オブ・ザ・アメリカン・メディカル・アソシエーション(The Journal of the American Medical

20 Association) 199巻, 519(1967)], 199培地〔プロシージング・オ ブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディスン

(Proceeding of the Society for the Biological Medicine) , 7 3 巻 , 1 (1 9 5 0)] などが用いられる。 p H は約 6 \sim 8 であるのが好ましい。培養は通常約 3 0 \sim 4 0 \sim で約 1 5 \sim 6 0 時間行い、必要に応じて通気や撹拌を加える。

特にCHO (dhfr⁻) 細胞およびdhfr遺伝子を選択マーカーとして用いる場合には、チミジンをほとんど含まない透析ウシ胎児血清を含むDMEM培地を用いるのが好ましい。

上記培養物から本発明のポリペプチドを分離精製するには、例えば下記の方法 により行なうことができる。

10

15

20

25

本発明のポリペプチドを培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過によりポリペプチドの粗抽出液を得る方法などが適宜用い得る。緩衝液の中に尿素や塩酸グアニジンなどのタンパク変性剤や、トリトンX-100(登録商標。以下、TMと省略することがある。)などの界面活性剤が含まれていてもよい。

培養液中にポリペプチドが分泌される場合には、培養終了後、自体公知の方法 で菌体あるいは細胞と上清とを分離し、上清を集める。

このようにして得られた培養上清、あるいは抽出液中に含まれる本発明のポリペプチドの精製は、自体公知の分離・精製法を適切に組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDSーポリアクリルアミドゲル電気泳動法などの主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法やクロマトフォーカシングなどの等電点の差を利用する方法などが用いられる。

かくして得られる本発明のポリペプチドが遊離体で得られた場合には、自体公 知の方法あるいはそれに準じる方法によって塩に変換することができ、逆に塩で 得られた場合には自体公知の方法あるいはそれに準じる方法により、遊離体また は他の塩に変換することができる。

なお、組換え体が産生する本発明のポリペプチドを、精製前または精製後に適 当な蛋白修飾酵素を作用させることにより、任意に修飾を加えたり、ポリペプチ ドを部分的に除去することもできる。蛋白修飾酵素としては、例えば、トリプシ ン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グ リコシダーゼなどが用いられる。

かくして生成する本発明のポリペプチドの存在は特異抗体を用いたエンザイム イムノアッセイなどにより測定することができる。

10

15

20

25

本発明のポリペプチドをコードするDNAまたは本発明のポリペプチドは、抗 注意欠陥障害もしくは抗ナルコレプシー剤または抗不安、抗うつ、抗不眠、抗精 神分裂症もしくは抗恐怖剤などの医薬の開発、組換え型レセプタータンパク質の 発現系を用いたレセプター結合アッセイ系の開発と医薬品候補化合物のスクリー ニング、遺伝子治療等に用いることができる。

特に、後に記載する組換え型GPR14(SENR)の発現系を用いたレセプター結合アッセイ系によって、ヒトなどの温血動物に特異的なGPR14(SENR)アゴニストまたはアンタゴニストをスクリーニングすることができ、該アゴニストまたはアンタゴニストを各種疾病の予防・治療剤などとして使用することができる。

さらに、本発明のポリペプチドまたはそれをコードするDNAは中枢神経系、循環器系、心臓、腎臓、泌尿器系または感覚器官系などで発現しているGPR14(SENR)がリガンドとして認識するものであるので、安全で低毒性な医薬として有用である。本発明のポリペプチドまたはそれをコードするDNAは、例えば注意欠陥障害もしくはナルコレプシーなどの疾病の治療・予防剤として用いることができる。

本発明のポリペプチドまたはそれをコードするDNAを上記の医薬として使用する場合、常套手段に従って製剤化することができる。例えば、必要に応じて糖衣や腸溶性被膜を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物またはその塩を生理学的に認められる担体、香味剤、賦形剤、ベヒクル防腐剤、安定剤、結合剤などとともに一般に認められた製薬実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な用量が得られるようにするものである。

本発明のDNAを用いる場合は、該DNAを単独またはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。 錠剤、カプセル剤などに混和することができる添加剤としては、例えばゼラチ

10

15

20

25

ン、コーンスターチ、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施にしたがって処方することができる。

注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど)などが挙げられ、適当な溶解補助剤、例えばアルコール(例えばエタノール)、ポリアルコール(例えばプロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例えばポリソルベート80(TM)、HCO-5

0) などと併用してもよい。油性液としてはゴマ油、大豆油などが挙げられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤 (例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された 注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば哺乳動物 (例えば、ヒト、マウス、ラット、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) に対して投与することができる。

本発明のポリペプチドをコードするDNAまたは本発明のポリペプチドは中枢神経系、循環器系、心臓、腎臓、泌尿器系または感覚器官系などで発現しているGPR14(SENR)がリガンドとして認識するものであるので、安全で低毒性な医薬として有用である。本発明のポリペプチドをコードするDNAまたは本発明のポリペプチドは注意欠陥障害もしくはナルコレプシーなどの疾病の治療・

10

15

20

25

予防剤として用いることができる。

本発明のポリペプチドまたはそれをコードするDNAの投与量は、症状などにより差異はあるが、経口投与の場合、一般的に成人の注意欠陥障害患者(体重60kgとして)においては、一日につき約0.1から100mg、好ましくは約1.0から50mg、より好ましくは約1.0から20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば注射剤の形では成人の注意欠陥障害患者(体重60kgとして)への投与においては、一日につき約0.01から30mg程度、好ましくは約0.1から20mg程度、より好ましくは約0.1から10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

本発明のポリペプチドの前駆体タンパク質またはその塩、その製造法および用途を以下にさらに詳細に説明する。

本発明のポリペプチドの前駆体タンパク質またはその塩(以下、本発明の前駆体タンパク質と称する場合がある)としては、例えば、上記した本発明のポリペプチドのN末端または(および)C末端に1個または2個以上、好ましくは1~200個程度、より好ましくは1~120個程度、さらに好ましくは50~120個程度のアミノ酸が結合したタンパク質またはその塩である。

具体的には、本発明の前駆体タンパク質は、配列番号:7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有するタンパク質などが用いられる。

また、本発明の前駆体タンパク質は、温血動物(例えば、ヒト、モルモット、ラット、マウス、ブタ、ヒツジ、ウシ、サルなど)のあらゆる組織(例えば、下垂体、膵臓、脳、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管、血管、心臓など)または細胞などに由来するタンパク質であって、配列番号: 7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質であれば如何なるものであってもよい。実質的に同質の活性としては、例えばレセプター結合活性、シグナル伝達活性などが挙げられる。実質的に同質とは、レセプター結合活性など

WO 02/14513 PCT/JP01/06899

が性質的に同質であることを示す。したがって、レセプター結合活性の強さなど の強弱、タンパク質の分子量などの量的要素は異なっていてもよい。

配列番号: 7、8、14、17または23で表されるアミノ酸配列と実質的に同一のアミノ酸配列として具体的には、配列番号: 7、8、14、17または23で表されるアミノ酸配列と約50%以上、好ましくは約60%以上、さらに好ましくは約70%以上、より好ましくは約80%以上、特に好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列を示す。

5

10

15

20

25

また、本発明の前駆体タンパク質としては、例えば、①配列番号:7、8、14、17または23で表されるアミノ酸配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)のアミノ酸が欠失したアミノ酸配列、②配列番号:7、8、14、17または23で表されるアミノ酸配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)のアミノ酸が付加したアミノ酸配列、③配列番号:7、8、14、17または23で表されるアミノ酸配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)のアミノ酸が挿入されたアミノ酸配列、④配列番号:7、8、14、17または23で表されるアミノ酸配列、Φ配列番号:7、8、14、17または23で表されるアミノ酸配列中の1または2個以上(好ましくは1または2個)のアミノ酸が極のアミノ酸配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または⑤それらを組み合わせたアミノ酸配列を含有するタンパク質なども含まれる。

配列番号:2で表されるアミノ酸配列を含有する本発明のポリペプチドの前駆体タンパク質として、具体的には、配列番号:7または配列番号:8で表されるアミノ酸配列を含有するタンパク質などが挙げられ、配列番号:9で表されるアミノ酸配列を含有する本発明のポリペプチドの前駆体タンパク質として、具体的には、配列番号:14で表されるアミノ酸配列を含有するタンパク質などが挙げられる。

配列番号:10で表されるアミノ酸配列を含有する本発明のポリペプチドの前駆体タンパク質として、具体的には、WO 99/35266に記載された前駆体タンパ

10

15

20

25

ク質などが挙げられる。

配列番号:18、配列番号:19、配列番号:26または配列番号:27で表 されるアミノ酸配列を含有する本発明のポリペプチドの前駆体タンパク質として、 具体的には、配列番号:17で表されるアミノ酸配列を含有するタンパク質など が挙げられる。

配列番号:24、配列番号:28または配列番号:29で表されるアミノ酸配列を含有する本発明のポリペプチドの前駆体タンパク質として、具体的には、配列番号:23で表されるアミノ酸配列を含有するタンパク質などが挙げられる。

本明細書における前駆体タンパク質はペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。例えば、配列番号: 7、8、14、17または23で表されるアミノ酸配列で表されるアミノ酸配列などを含有する本発明の前駆体タンパク質はC末端がカルボキシル基(COOH)、カルボキシレート(-COOT)、アミド(-CONH $_2$)またはエステル(-COOR)の何れであってもよい。エステルのRとしては、例えばメチル、エチル、n-プロピル、イソプロピルもしくはn-ブチルなどの C_{1-6} アルキル基、シクロペンチル、シクロペキシルなどの C_{3-8} シクロアルキル基、フェニル、 α -ナフチルなどの C_{6-12} アリール基、ベンジル、フェネチル、ベンズヒドリルなどのフェニルー C_{1-2} アルキル、もしくは α -ナフチルメチルなどの α -ナフチル ー C_{1-2} アルキルなどの C_{7-14} アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基などが挙げられる。

本発明の前駆体タンパク質の塩としては、例えば、上記の本発明のポリペプチドの塩として例示したものと同様のものなどが挙げられる。

本発明の前駆体タンパク質は、WO 00/32627、WO 00/31265、WO 99/35266 または特願2000-211996号などに記載の方法に準じて製造できる。また、上記の本発明のポリペプチドの製造法に準じて、温血動物の組織または細胞からタンパク質を精製する方法によって製造することもできるし、タンパク質合成法に準じて製造することもできる。また、上記の本発明のポリペプチドの製造法に準じて、本発明の前駆体タンパク質をコードするDNAを含有する形質転換体を培養することによっても製造することができる。

10

15

20

25

温血動物の組織または細胞から製造する場合、温血動物の組織または細胞をホモジナイズした後、酸、有機溶媒などで抽出を行い、該抽出液を、塩析、透析、ゲル濾過、逆相クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

本発明の前駆体タンパク質のアミド体は、アミド形成に適した市販のペプチド合成用樹脂を用いることができる。そのような樹脂としては例えば、上記のペプチド合成用樹脂などが用いられる。このような樹脂を用い、αーアミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とするペプチドの配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂からペプチドを切り出すと同時に各種保護基を除去し、必要に応じて高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の本発明の前駆体タンパク質を取得する。

本発明の前駆体タンパク質としては、上記した配列番号: 7、8、14、17 または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列 を含有し、該本発明のポリペプチドと同様の作用、例えば抗注意欠陥障害、抗ナ ルコレプシー作用などを前駆体タンパク質自身が有しているものであってもよい。

本発明の前駆体タンパク質をコードするDNAとしては、配列番号:7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をコードするDNAを含有するDNAであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、上記した組織・細胞由来のcDNA、上記した組織・細胞由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターはバクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した組織・細胞よりRNA画分を調製したものを用いて直接

Reverse Transcriptase Polymerase Chain Reaction (以下、RT-PCR法と略称する)によって増幅することもできる。

ここで、配列番号: 7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をコードするDNAを含有するDNAとしては、例えば、配列番号: 4、5、6、15、16ま

10

15

20

25

たは22で表される塩基配列を含有するDNAなどが挙げられる他、配列番号:4、5、6、1 5、1 6 または22で表される塩基配列と約50%以上、好ましくは約60%以上、さらに好ましくは約70%以上、より好ましくは約80%以上、特に好ましくは約90%以上、最も好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが挙げられる。

また、配列番号:7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をコードするDN Aを含有するDNAとしては、例えば、①配列番号:4、5、6、15、16または22で表される塩基配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)の塩基が欠失した塩基配列、②配列番号:4、5、6、15、16または22で表される塩基配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)の塩基が付加した塩基配列、③配列番号:4、5、6、15、16または22で表される塩基配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)の塩基が挿入された塩基配列、④配列番号:4、5、6、15、16または22で表される塩基配列中の1または2個以上(好ましくは1~30個程度、好ましくは、1~10個程度、さらに好ましくは1または2個)の塩基が他の塩基で置換されたアミノ酸配列、または⑤それらを組み合わせた塩基配列を含有するDNAなども含まれる。

より具体的には、(1)ストリンジェントな条件下で配列番号:7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をコードするDNAを含有するDNAとハイブリダイズする哺乳動物由来のDNA、(2)遺伝コードの縮重のため配列番号:7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をコードするDNAを含有するDNAおよび(1)に定められているDNAとハイブリッド形成しないが、同一アミノ酸配列をもつタンパク質をコードするDNAなどが用いられる。ハイブリダイゼーションは、自体公知の方法あるいはそれに準じた方法に従って行うことができる。上記

15

20

25

ストリンジェントな条件としては、例えば 42° 、50%ホルムアミド、 $4\times$ SSPE($1\times$ SSPE=150mM NaCl, 10mM NaH $_2$ PO $_4\cdot$ H $_2$ O, 1mM EDTA pH7.4)、 $5\times$ デンハート溶液、0.1%SDSである。

配列番号:7、8、14、17または23で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をコードするDNAを含有するDNAとハイブリダイズするDNAとしては、例えば、配列番号:4、5、6、15、16または22で表される塩基配列と約70%以上、好ましくは約80%以上、さらに好ましくは約90%以上、最も好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

10 本発明の前駆体タンパク質をコードするDNAは上記した本発明のポリペプチ ドと同様にして遺伝子工学的手法によっても製造することができる。

本発明の前駆体タンパク質をコードするDNAまたは本発明の前駆体タンパク質は、抗注意欠陥障害もしくは抗ナルコレプシー剤または抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤などの医薬の開発、組換え型レセプタータンパク質の発現系を用いたレセプター結合アッセイ系の開発と医薬品候補化合物のスクリーニング、遺伝子治療等に用いることができる。

特に、後に記載する組換え型GPR14(SENR)の発現系を用いたレセプター結合アッセイ系によって、ヒトなどの温血動物に特異的なGPR14(SENR)アゴニストまたはアンタゴニストをスクリーニングすることができ、該アゴニストまたはアンタゴニストを各種疾病の予防・治療剤などとして使用することができる。

さらに、本発明の前駆体タンパク質またはそれをコードするDNAは中枢神経系、循環器系、心臓、腎臓、泌尿器系または感覚器官系などで発現しているGPR14(SENR)がリガンドとして認識するものであるので、安全で低毒性な医薬として有用である。本発明の前駆体タンパク質またはそれをコードするDNAは注意欠陥障害もしくはナルコレプシーなどの疾病の治療・予防剤として用いることができる。

本発明の前駆体タンパク質またはそれをコードするDNAを上記の医薬として 使用する場合、常套手段に従って製剤化することができる。例えば、必要に応じ

10

15

20

25

て糖衣や腸溶性被膜を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物またはその塩を生理学的に認められる担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な用量が得られるようにするものである。錠剤、カプセル剤などに混和することができる添加剤としては、上記の添加剤と同様のものなどを用いることができる。

注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、Dーソルビトール、Dーマンニトール、塩化ナトリウムなど)などが挙げられ、適当な溶解補助剤、例えばアルコール(例えばエタノール)、ポリアルコール(例えばプロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例えばポリソルベート80 (™)、HCO-5

0) などと併用してもよい。油性液としてはゴマ油、大豆油などが挙げられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤 (例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された 注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば哺乳動物(例 えば、ヒト、マウス、ラット、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、 イヌ、サルなど)に対して投与することができる。

本発明の前駆体タンパク質またはそれをコードするDNAの投与量は、症状などにより差異はあるが、経口投与の場合、一般的に成人の注意欠陥障害患者(体重60kgとして)においては、一日につき約0.1から100mg、好ましくは約1.0から50mg、より好ましくは約1.0から20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法な

10

15

20

25

どによっても異なるが、例えば注射剤の形では成人の注意欠陥障害患者(体重60kgとして)への投与においては、一日につき約0.01から30mg程度、好ましくは約0.1から20mg程度、より好ましくは約0.1から10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

本発明におけるGPR14 (SENR) としては、上記のとおり、Tal, M. et al., Biochem. Biophys. Res. Commun., 209, 752-759, 1995に記載のもの、Marchese, A., Genomics, 29, 335-344, 1995に記載のもの、EP 859052号に記載のものなどが挙げられるのみならず、配列番号:3または配列番号:11で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするGPR14 (SENR) またはその塩、または、配列番号:3または配列番号:11で表されるアミノ酸配列中の1個以上30個以下、好ましくは1個以上10個以下のアミノ酸が欠失したアミノ酸配列、配列番号:3または配列番号:11で表されるアミノ酸配列に1個以上30個以下、好ましくは1個以上10個以下のアミノ酸が付加した(または挿入された)アミノ酸配列、あるいは配列番号:3または配列番号:11で表されるアミノ酸配列中の1個以上30個以下、好ましくは1個以上10個以下のアミノ酸が他のアミノ酸配列中の1個以上30個以下、好ましくは1個以上30個以下、好ましくは1個以上10個以下のアミノ酸配列中の1個以上30個以下、好ましくは1個以上10個以下のアミノ酸が他のアミノ酸で置換されたアミノ酸配列を含有する蛋白質であるGPR14 (SENR) またはその塩などが挙げられる。

また、本発明で用いられるGPR14 (SENR) の部分ペプチドは上記した本発明のGPR14 (SENR) の部分ペプチドであれば何れのものであってもよいが、例えば、本発明のGPR14 (SENR) 蛋白質分子のうち、細胞膜の外に露出している部位であって、本発明のポリペプチドとの結合活性を有するものなどが用いられる。

これら本発明で用いられるGPR14 (SENR) またはその部分ペプチドは Tal, M. et al., Biochem. Biophys. Res. Commun., 209, 752-759, 1995に記載の 方法、Marchese, A., Genomics, 29, 335-344, 1995に記載の方法、EP 859052号 に記載の方法と同一またはそれらに準じた方法によって製造することができるし上記の本発明のポリペプチドと同様の方法によっても製造することができる。

WO 02/14513 PCT/JP01/06899

5

10

15

20

25

また、本発明で用いられるGPR14(SENR)またはその部分ペプチドの 塩としては、上記の本発明のポリペプチドの塩と同様のものなどが挙げられる。

本発明で用いられるGPR14(SENR)またはその部分ペプチドをコードするDNAとしては、上記のGPR14(SENR)またはその部分ペプチドをコードするDNAを含有するDNAであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、上記した組織・細胞由来のcDNA、上記した組織・細胞由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターはバクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した組織・細胞よりRNA画分を調整したものを用いて直接RT-PCR法によって増幅することもできる。本発明で用いられるGPR14(SENR)またはその部分ペプチドをコードするDNAは、Tal, M.et al., Biochem. Biophys. Res. Commun., 209, 752-759, 1995に記載の方法、Marchese, A., Genomics, 29, 335-344, 1995に記載の方法、EP 859052号に記載の方法と同一またはそれらに準じた方法によって得ることもできる。

本発明のポリペプチドをコードする塩基配列を含有するDNAと相補的な塩基配列またはその一部を含有してなるポリヌクレオチドとは、本発明のDNAを包含するだけではなく、RNAをも包含する意味で用いられる。

該ポリヌクレオチド(核酸)は、本発明のポリペプチド遺伝子のRNAとハイブリダイズすることができ、該RNAの合成または機能を阻害することができるか、あるいは本発明のポリペプチド関連RNAとの相互作用を介して本発明のポリペプチド遺伝子の発現を調節・制御することができる。本発明のポリペプチド関連RNAの選択された配列に相補的なポリヌクレオチド、および本発明のポリペプチド関連RNAと特異的にハイブリダイズすることができるポリヌクレオチドは、生体内および生体外で本発明のポリペプチド遺伝子の発現を調節・制御するのに有用であり、例えば注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症もしくは恐怖症等の病気などの治療または診断に有用である。

目的核酸と、対象領域の少なくとも一部に相補的なポリヌクレオチドとの関係

10

15

20

25

において、対象物とハイブリダイズすることができるポリヌクレオチドとの関係 は「アンチセンス」であるということができる。アンチセンス・ポリヌクレオチ ドは、2ーデオキシーDーリボースを含有しているポリデオキシヌクレオチド、 Dーリボースを含有しているポリデオキシヌクレオチド、プリンまたはピリミジ ン塩基のNーグリコシドであるその他のタイプのポリヌクレオチド、あるいは非 ヌクレオチド骨格を有するその他のポリマー(例えば、市販の蛋白質核酸および 合成配列特異的な核酸ポリマー)または特殊な結合を含有するその他のポリマー (但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや 塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。 それらは、2本鎖DNA、1本鎖DNA、2本鎖RNA、1本鎖RNA、さらに DNA: RNAハイブリッドであることができ、さらに非修飾ポリヌクレオチド (または非修飾オリゴヌクレオチド)、さらには公知の修飾の付加されたもの、 例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化さ れたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌク レオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、 ホスホトリエステル、ホスホルアミデート、カルバメートなど)を持つもの、電 荷を有する結合または硫黄含有結合(例えば、ホスホロチオエート、ホスホロジ チオエートなど)を持つもの、例えば蛋白質(ヌクレアーゼ、ヌクレアーゼ・イ ンヒビター、トキシン、抗体、シグナルペプチド、ポリーL-リジンなど)や糖 (例えば、モノサッカライドなど)などの側鎖基を有しているもの、インターカ レント化合物(例えば、アクリジン、プソラレンなど)を持つもの、キレート化 合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有 するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、 α アノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレ オチド」および「核酸」とは、プリンおよびピリミジン塩基を含有するのみでな く、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。こう した修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリン およびピリミジン、あるいはその他の複素環を含むものであってよい。修飾され たヌクレオチドおよび修飾されたヌクレオチドはまた糖部分が修飾されていてよ

10

15

20

25

く、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、あるいはエーテル、アミンなどの官能基に変換されていてよい。

該アンチセンス・ポリヌクレオチド(核酸)は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。該アンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチセンス核酸の毒性をより小さなものにする。

こうした修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp.247, 1992; Vol. 8, pp.395, 1992; S. T. Crooke et al. ed., Antisense Research and Applications, CRC Press, 1993 などに開示がある。

該アンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有していて良く、リポゾーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療により適用されたり、付加された形態で与えられることができうる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例えば、ホスホリピド、コレステロールなど)といった疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例えば、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3、端あるいは5、端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3、端あるいは5、端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコール

10

15

20

25

をはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定 されるものではない。

本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはエステルまたはそれらの塩に対する抗体の作製について以下に説明する。

本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドも しくはエステルまたはそれらの塩に対する抗体は、本発明のポリペプチドまたは その前駆体タンパク質もしくはそれらのアミドもしくはエステルまたはそれらの 塩を認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れ であってもよい。

本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドも しくはエステルまたはそれらの塩(以下、本発明のポリペプチド等と略記する場 合がある)に対する抗体は、本発明のポリペプチド等を抗原として用い、自体公 知の抗体または抗血清の製造法に従って製造することができる。

[モノクローナル抗体の作製]

(a) モノクロナール抗体産生細胞の作製

本発明のポリペプチド等は、哺乳動物に対して投与により抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は通常2~6週毎に1回ずつ、計2~10回程度行なわれる。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ましく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された温血動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2~5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識化ポリペプチド等と抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方

10

15

20

25

法 [ネイチャー (Nature)、256巻、495頁 (1975年)] に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール (PEG) やセンダイウィルスなどが挙げられるが、好ましくはPEGが用いられる。

骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0などが挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は $1:1\sim20:1$ 程度であり、PEG(好ましくは、PEG1000 \sim PEG6000)が $10\sim80\%$ 程度の濃度で添加され、約 $20\sim40\%$ 、好ましくは約 $30\sim37\%$ で約 $1\sim10$ 分間インキュベートすることにより効率よく細胞融合を実施できる。

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、ポリペプチド等の抗原を直接あるいは担体とともに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したポリペプチド等を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができるが、通常はHAT(ヒポキサンチン、アミノプテリン、チミジン)を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、 $1\sim20\%$ 、好ましくは $10\sim20\%$ の牛胎児血清を含むRPM I 1640培地、 $1\sim10\%$ の牛胎児血清を含むGIT培地(和光純薬工業

養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

10

15

20

25

(b) モノクロナール抗体の精製

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体(例、DEAE)による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法〕に従って行なうことができる。

〔ポリクローナル抗体の作製〕

本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(本発明のポリペプチド等の抗原)とキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から本発明のレセプター蛋白質等に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。

哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンペット・ヘモシアニン等を重量比でハプテン1に対し、約0.1~20、好ましくは約1~5の割合でカプルさせる方法が用いられる。

また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは 担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全 フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投 与は、通常約2~6週毎に1回ずつ、計約3~10回程度行なうことができる。

ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、

10

15

20

25

好ましくは血液から採取することができる。

抗血清中のポリクローナル抗体価の測定は、上記の血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。

GPR14(SENR)(例えば、本発明の配列番号:3または配列番号:1 1で表されるアミノ酸配列)を含有するタンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体の作製について以下に説明する。

GPR14(SENR)(例えば、本発明の配列番号:3または配列番号:1 1で表されるアミノ酸配列)を含有するタンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体は、GPR14(SENR)(例えば、本発明の配列番号:3または配列番号:11で表されるアミノ酸配列)を含有するタンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩を認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。

GPR14(SENR)(例えば、本発明の配列番号:3または配列番号:1 1で表されるアミノ酸配列)を含有するタンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩(以下、GPR14(SENR)等と略記する場合がある)に対する抗体は、GPR14(SENR)等を抗原として用い、自体公知の抗体または抗血清の製造法に従って製造することができる。

〔モノクローナル抗体の作製〕

(a) モノクロナール抗体産生細胞の作製

GPR14 (SENR) 等は、哺乳動物に対して投与により抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は通常2~6週毎に1回ずつ、計2~10回程度行なわれる。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ま

10

15

20

25

しく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された温血動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2~5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、標識化GPR14(SENR)等と抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法〔ネイチャー(Nature)、256巻、495頁(1975年)〕に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール(PEG)やセンダイウィルスなどが挙げられるが、好ましくはPEGが用いられる。

骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0などが挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は $1:1\sim20:1$ 程度であり、PEG(好ましくは、PEG1000 \sim PEG6000)が $10\sim80\%$ 程度の濃度で添加され、約 $20\sim40\%$ 、好ましくは約 $30\sim37\%$ で約 $1\sim10$ 分間インキュベートすることにより効率よく細胞融合を実施できる。

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、GPR14 (SENR)等の抗原を直接あるいは担体とともに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したポリペプチド等を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができるが、通常はHAT (ヒポキサンチン、アミノプテリン、チミジ

10

15

20

25

ン)を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、 $1\sim20\%$ 、好ましくは $10\sim20\%$ の牛胎児血清を含むRPM I 1640培地、 $1\sim10\%$ の牛胎児血清を含むGIT培地(和光純薬工業

(株)) またはハイブリドーマ培養用無血清培地(SFM-101、日水製薬 (株)) などを用いることができる。培養温度は、通常20~40℃、好ましく

は約37℃である。培養時間は、通常5日~3週間、好ましくは1週間~2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

(b) モノクロナール抗体の精製

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換体(例、DEAE)による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法〕に従って行なうことができる。

[ポリクローナル抗体の作製]

本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原(本発明のポリペプチド等の抗原)とキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から本発明のレセプター蛋白質等に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。

哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンペット・ヘモシアニン等を重量比でハプテン1に対し、約0.1~20、好ましくは約1~5の割合でカプルさせる方

10

15

20

25

法が用いられる。

また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは 担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全 フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投 与は、通常約2~6週毎に1回ずつ、計約3~10回程度行なうことができる。

ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、 好ましくは血液から採取することができる。

抗血清中のポリクローナル抗体価の測定は、上記の血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。

以下に(1)本発明のポリペプチド、その前駆体タンパク質、該ポリペプチドまたは前駆体タンパク質をコードするDNAなどを用いたGPR14(SENR)と、本発明のポリペプチドまたはその前駆体タンパク質との結合性を変化させる化合物(アゴニスト、アンタゴニスト)のスクリーニング方法、(2)本発明のポリペプチドをコードする塩基配列を含有するDNAと相補的な塩基配列またはその一部を含有してなるポリヌクレオチドを用いる診断方法、(3)本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体を用いる診断方法、(4)GPR14(SENR)またはその塩に対する抗体を用いる診断方法、(5)本発明のポリペプチドに関連した遺伝子診断法および(6)GPR14(SENR)に関連した遺伝子診断法について具体的に説明する。

(1) 本発明のポリペプチド、その前駆体タンパク質、該ポリペプチドまたは 前駆体タンパク質をコードするDNAなどを用いたGPR14(SENR)と、 本発明のポリペプチドまたはその前駆体タンパク質との結合性を変化させる化合物(アゴニスト、アンタゴニスト)のスクリーニング方法 - 5

10

15

20

25

GPR14(SENR)またはその塩やその部分ペプチドもしくはその塩を用いるか、または組換之型GPR14(SENR)の発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによって、ポリペプチドまたはその前駆体タンパク質とGPR14(SENR)との結合性を変化させる化合物(例えば、ペプチド、タンパク質、非ペプチド性化合物、合成化合物、発酵生産物など)またはその塩をスクリーニングすることができる。このような化合物には、GPR14(SENR)を介して細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内タンパク質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など)を有する化合物(即ちGPR14(SENR)アゴニスト)と該細胞刺激活性を有しない化合物(即ちGPR14(SENR)アンタゴニスト)などが含まれる。「リガンドとの結合を促進する場合の両方を包含するものである。

本発明は、(i)GPR14(SENR)もしくはその塩または該GPR14(SENR)の部分ペプチドもしくはその塩に、本発明のポリペプチドまたはその前駆体タンパク質を接触させた場合と(ii)上記したGPR14(SENR)もしくはその塩または該GPR14(SENR)の部分ペプチドもしくはその塩に、本発明のポリペプチドまたはその前駆体タンパク質および試験化合物を接触させた場合との比較を行なうことを特徴とする本発明のポリペプチドまたはその前駆体タンパク質と上記したGPR14(SENR)との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、(i)上記したGPR14(SENR)または該GPR14(SENR)の部分ペプチドに、本発明のポリペプチドまたはその前駆体タンパク質を接触させた場合と(ii)上記したGPR14(SENR)または該GPR14(SENR)の部分ペプチドに、本発明のポリペプチドまたはその前駆体タンパク質および試験化合物を接触させた場合における、例えば該GPR14(SENR)または該GPR14(SENR)の部分ペプチドに対するリガンドの結合量、細胞刺激活性などを測定して比較する。

10

15

20

25

本発明のスクリーニング方法は具体的には、

①標識した本発明のポリペプチドまたはその前駆体タンパク質を、上記したGPR14(SENR)もしくはその塩またはGPR14(SENR)の部分ペプチドまたはその塩に接触させた場合と、標識した本発明のポリペプチドまたはその前駆体タンパク質および試験化合物をGPR14(SENR)もしくはその塩またはGPR14(SENR)の部分ペプチドもしくはその塩に接触させた場合における、標識した本発明のポリペプチドまたはその前駆体タンパク質の該GRP14(SENR)もしくはその塩、または該部分ペプチドもしくはその塩に対する結合量を測定し、比較することを特徴とする本発明のポリペプチドまたはその前駆体タンパク質とGPR14(SENR)との結合性を変化させる化合物またはその塩のスクリーニング方法、

②標識した本発明のポリペプチドまたはその前駆体タンパク質を、GPR14 (SENR)を含有する細胞または該細胞の膜画分に接触させた場合と、標識した本発明のポリペプチドまたはその前駆体タンパク質および試験化合物をGPR 14 (SENR)を含有する細胞または該細胞の膜画分に接触させた場合における、標識した本発明のポリペプチドまたはその前駆体タンパク質の該細胞または該膜画分に対する結合量を測定し、比較することを特徴とする本発明のポリペプチドまたはその前駆体タンパク質とGPR14 (SENR)との結合性を変化させる化合物またはその塩のスクリーニング方法、

③標識した本発明のポリペプチドまたはその前駆体タンパク質を、GPR14 (SENR)をコードするDNAを含有する形質転換体を培養することによって 細胞膜上に発現したGPR14 (SENR)に接触させた場合と、標識した本発 明のポリペプチドまたはその前駆体タンパク質および試験化合物をGPR14 (SENR)をコードするDNAを含有する形質転換体を培養することによって 細胞膜上に発現したGPR14 (SENR)に接触させた場合における、標識した本発明のポリペプチドまたはその前駆体タンパク質のGPR14 (SENR)に対する結合量を測定し、比較することを特徴とする本発明のポリペプチドまた はその前駆体タンパク質とGPR14 (SENR)との結合性を変化させる化合物またはその塩のスクリーニング方法、

WO 02/14513

5

10

15

20

25

④GPR14(SENR)を活性化する化合物(例えば、本発明のポリペプチドまたはその前駆体タンパク質)をGPR14(SENR)を含有する細胞に接触させた場合と、GPR14(SENR)を活性化する化合物および試験化合物をGPR14(SENR)を含有する細胞に接触させた場合における、GPR14(SENR)を介した細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内タンパク質のリン酸化、cーfosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とする本発明のポリペプチドまたはその前駆体タンパク質とGPR14(SENR)との結合性を変化させる化合物またはその塩のスクリーニング方法、および

⑤GPR14(SENR)を活性化する化合物(例えば、本発明のポリペプチドまたはその前駆体タンパク質など)をGPR14(SENR)をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したGPR14(SENR)に接触させた場合と、GPR14(SENR)を活性化する化合物および試験化合物を、GPR14(SENR)をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現したGPR14(SENR)に接触させた場合における、GPR14(SENR)を介する細胞刺激活性(例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²+遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内タンパク質のリン酸化、cーfosの活性化、pHの低下などを促進する活性または抑制する活性など)を測定し、比較することを特徴とする本発明のポリペプチドまたはその前駆体タンパク質とGPR14(SENR)との結合性を変化させる化合物またはその塩のスクリーニング方法などである。

本発明のスクリーニング方法の具体的な説明を以下にする。

まず、本発明のスクリーニング方法に用いるGPR14(SENR)としては、 上記のGPR14(SENR)またはGPR14(SENR)の部分ペプチドを 含有するものであれば何れのものであってもよいが、温血動物の臓器の膜画分な どが好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、

10

15

20

25

スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたG PR14 (SENR) などが適している。

GPR14 (SENR) を製造するには、上記の方法などが用いられる。

本発明のスクリーニング方法において、GPR14 (SENR)を含有する細胞あるいは該細胞膜画分などを用いる場合、後に記載する調製法に従えばよい。

GPR14 (SENR) を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法はそれ自体公知の方法に従って行うことができる。

GPR14 (SENR) を含有する細胞としては、 GPR14 (SENR) を発現した宿主細胞をいうが、該宿主細胞としては、上記の大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが挙げられる。

膜画分としては、細胞を破砕した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破砕方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン

(Kinematica社製)による破砕、超音波による破砕、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破砕などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破砕液を低速(500rpm~3000rpm)で短時間(通常、約1分~10分)遠心し、上清をさらに高速(15000rpm~3000rpm)で通常30分~2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現したGPR14(SENR)と細胞由来のリン脂質や膜タンパク質などの膜成分が多く含まれる。

該GPR14 (SENR) を含有する細胞や膜画分中のGPR14 (SENR) の量は、1細胞当たり $10^3 \sim 10^8$ 分子であるのが好ましく、 $10^5 \sim 10^8$ 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性(比活性)が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

本発明のポリペプチドまたはその前駆体タンパク質とGPR14(SENR) との結合性を変化させる化合物をスクリーニングする上記の①~③を実施するた

10

15

20

25

めには、適当なGPR14(SENR)画分と、標識した本発明のポリペプチドまたはその前駆体タンパク質が用いられる。GPR14(SENR)画分としては、天然型のGPR14(SENR)画分か、またはそれと同等の活性を有する組換え型GPR14(SENR)画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性などを示す。標識したリガンドとしては、標識したリガンド、標識したリガンドアナログ化合物などが用いられる。例えば[3H]、[^{125}I]、[^{14}C]、[^{35}S] などで標識されたリガンドなどを利用することができる。

具体的には、本発明のポリペプチドまたはその前駆体タンパク質とGPR14 (SENR) との結合性を変化させる化合物のスクリーニングを行うには、まず GPR14 (SENR) を含有する細胞または細胞の膜画分を、スクリーニング に適したバッファーに懸濁することによりレセプター標品を調製する。バッファ ーには、pH4~10(望ましくはpH6~8)のリン酸バッファー、トリスー 塩酸バッファーなどのリガンドとレセプターとの結合を阻害しないバッファーで あればいずれでもよい。また、非特異的結合を低減させる目的で、СНАРS、 $Tween-80^{TM}$ (花王ーアトラス社)、ジギトニン、デオキシコレートな どの界面活性剤をバッファーに加えることもできる。さらに、プロテアーゼによ るレセプターや本発明のポリペプチドの分解を抑える目的でPMSF、ロイペプ チン、E-64 (ペプチド研究所製)、ペプスタチンなどのプロテアーゼ阻害剤・ を添加することもできる。0.01ml~10mlの該レセプター溶液に、一定量 (5000cpm~50000cpm) の標識した本発明のポリペプチドを添 加し、同時に10⁻¹⁰~10⁻⁷Mの試験化合物を共存させる。非特異的結合量 (NSB) を知るために大過剰の未標識の本発明のポリペプチドを加えた反応チ ューブも用意する。反応は0 \mathbb{C} から5 0 \mathbb{C} 、望ましくは4 \mathbb{C} から3 7 \mathbb{C} \mathbb{C} 2 0 \mathcal{G} から24時間、望ましくは30分から3時間行う。反応後、ガラス繊維濾紙等で 濾過し、適量の同バッファーで洗浄した後、ガラス繊維濾紙に残存する放射活性 を液体シンチレーションカウンターまたはγーカウンターで計測する。拮抗する 物質がない場合のカウント(B。)から非特異的結合量(NSB)を引いたカウン ト(B₀-NSB)を100%とした時、特異的結合量(B-NSB)が例えば

WO 02/14513 PCT/JP01/06899

5

10

15

20

25

50%以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。

本発明のポリペプチドまたはその前駆体タンパク質とGPR14(SENR) との結合性を変化させる化合物をスクリーニングする上記の④~⑤の方法を実施 するためには、 GPR14 (SENR) を介する細胞刺激活性(例えば、アラ キドン酸遊離、アセチルコリン遊離、細胞内 Ca²⁺遊離、細胞内 cAMP生成、 細胞内 c GMP 生成、イノシトールリン酸産生、細胞膜電位変動、細胞内タンパ ク質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑 制する活性など)を公知の方法または市販の測定用キットを用いて測定すること ができる。具体的には、まず、GPR14(SENR)を含有する細胞をマルチ ウェルプレート等に培養する。スクリーニングを行うにあたっては前もって新鮮 な蟯地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物な **どを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収** して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標と する物質(例えば、アラキドン酸など)の生成が、細胞が含有する分解酵素によ って検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なっ てもよい。また、cAMP産生抑制などの活性については、フォルスコリンなど で細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出 することができる。

細胞刺激活性を測定してスクリーニングを行なうには、適当なGPR14(SENR)を発現した細胞が必要である。本発明のGPR14(SENR)を発現した細胞としては、前述の組換之型GPR14(SENR)発現細胞株などが望ましい。

試験化合物としては、例えばペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが挙げられる。

本発明のポリペプチドまたはその前駆体タンパク質とGPR14 (SENR) との結合性を変化させる化合物またはその塩のスクリーニング用キットは、GP R14 (SENR) またはその塩、GPR14 (SENR) の部分ペプチドまた はその塩、GPR14 (SENR) を含有する細胞、あるいはGPR14 (SENR) を含有する細胞の膜画分、および本発明のポリペプチドまたはその前駆体 タンパク質を含有するものである。

本発明のスクリーニング用キットの例としては、次のものが挙げられる。

5 1. スクリーニング用試薬

①測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

孔径0.45μmのフィルターで濾過滅菌し、4℃で保存するか、あるいは用 時調製しても良い。

②GPR14 (SENR) 標品

GPR14 (SENR) を発現させたCHO細胞を、12穴プレートに 5×10^5 個/穴で継代し、37%、5%CO $_2$ 、95%airで2日間培養したもの。

15 ③標識リガンド

10

[3 H]、[125 I]、[14 C]、[35 S]などで標識した本発明のポリペプチドまたはその前駆体タンパク質

適当な溶媒または緩衝液に溶解したものを 4 $\mathbb C$ あるいは-2 0 $\mathbb C$ にて保存し、用時に測定用緩衝液にて 1 μ M に希釈する。

20 ④リガンド標準液

本発明のポリペプチドまたはその前駆体タンパク質を0.1%ウシ血清アルブミン(シグマ社製)を含む PBSで1 mMとなるように溶解し、-20 Cで保存する。

- 2. 測定法
- ①12穴組織培養用プレートにて培養したGPR14(SENR)を発現させた 細胞を、測定用緩衝液1m1で2回洗浄した後、490μ1の測定用緩衝液を各 穴に加える。
 - ② 10^{-3} ~ 10^{-10} Mの試験化合物溶液を 5μ 1加えた後、標識した本発明のポリペプチドまたはその前駆体タンパク質を 5μ 1加え、室温にて1時間反応させ

10

15

20

る。非特異的結合量を知るためには試験化合物のかわりに 10^{-3} Mの本発明のポリペプチドまたはその前駆体タンパク質を $5\mu1$ 加えておく。

③反応液を除去し、1m1の洗浄用緩衝液で3回洗浄する。細胞に結合した標識リガンドを0.2N NaOH-1%SDSで溶解し、4m1の液体シンチレーターA(和光純薬製)と混合する。

④液体シンチレーションカウンター(ベックマン社製)を用いて放射活性を測定し、Percent Maximum Binding (PMB) を次の式で求める。 式

 $PMB = [(B-NSB) / (B_0-NSB)] \times 100$

PMB: Percent Maximum Binding

B:検体を加えた時の値

NSB: Non-specific Binding (非特異的結合量)

B。:最大結合量

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる 化合物またはその塩は、本発明のポリペプチドまたはその前駆体タンパク質とG PR14 (SENR) との結合を変化させる(結合を阻害あるいは促進する)化 合物であり、具体的にはGPR14 (SENR) を介して細胞刺激活性を有する 化合物またはその塩(いわゆるGPR14 (SENR) アゴニスト)、あるいは 該刺激活性を有しない化合物(いわゆるGPR14 (SENR) アンタゴニス

ト)である。該化合物としては、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

上記GPR14(SENR)アゴニストであるかアンタゴニストであるかの具体的な評価方法は以下の(i)または(ii)に従えばよい。

25 (i)上記①~③のスクリーニング方法で示されるバインディング・アッセイを 行い、本発明のポリペプチドまたはその前駆体タンパク質とGPR14(SEN R)との結合性を変化させる(特に、結合を阻害する)化合物を得た後、該化合 物が上記したGPR14(SENR)を介する細胞刺激活性を有しているか否か を測定する。細胞刺激活性を有する化合物またはその塩はGPR14(SEN

10

15

20

25

- R) アゴニストであり、該活性を有しない化合物またはその塩はGPR14 (SENR) アンタゴニストである。
- (ii) (a)試験化合物をGPR14(SENR)を含有する細胞に接触させ、上記GPR14 (SENR)を介した細胞刺激活性を測定する。細胞刺激活性を有する化合物またはその塩はGPR14 (SENR)アゴニストである。
- (b)GPR14 (SENR)を活性化する化合物 (例えば、本発明のポリペプチド、その前駆体タンパク質またはSENRアゴニストなど)をGPR14 (SENR)を含有する細胞に接触させた場合と、GPR14 (SENR)を活性化する化合物および試験化合物をGPR14 (SENR)を含有する細胞に接触させた場合における、GPR14 (SENR)を介した細胞刺激活性を測定し、比較する。GPR14 (SENR)を活性化する化合物による細胞刺激活性を減少させ得る化合物またはその塩はGPR14 (SENR)アンタゴニストである。

該GPR14 (SENR) アゴニストは、GPR14 (SENR) に対する本発明のポリペプチドまたはその前駆体タンパク質が有する生理活性と同様の作用を有しているので、本発明のポリペプチドまたはその前駆体タンパク質と同様に安全で低毒性な医薬として有用である。

逆に、GPR14 (SENR) アンタゴニストは、GPR14 (SENR) に対する本発明のポリペプチドが有する生理活性を抑制することができるので、該レセプター活性を抑制する安全で低毒性な医薬として有用である。

本発明のポリペプチドまたはその前駆体タンパク質は不安の昂進様作用に関与していることから、GPR14 (SENR) アゴニストは、例えば注意欠陥障害、ナルコレプシーなどの疾病の治療・予防剤として用いることができ、GPR14 (SENR) アンタゴニストは、例えば不安、うつ病、不眠症、精神分裂症、恐怖症などの疾病の治療・予防剤として用いることができる。

本発明のスクリーニング法またはスクリーニング用キットで得られるGPR14 (SENR) アンタゴニストとして有用な化合物として、例えば、式(Ia):

10

15

20

$$\begin{array}{c|c}
R^{1a} \\
\hline
 & B^{a} \\
\hline
 & X^{\underline{a}} - R^{2a}
\end{array}$$
(1a)

[式中、 A^a は置換されていてもよいベンゼン環を、 B^a は置換されていてもよい $5\sim8$ 員環を、 X^a は直鎖部分の原子数が $1\sim4$ の 2 価の基を、 R^{1a} は置換されていてもよいアミノ基を、 R^{2a} は置換されていてもよい環状基を示す]で表される化合物またはその塩が挙げられる。

上記式中、A°で示される「置換されていてもよいベンゼン環」において、ベンゼン環が有していてもよい置換基としては、例えば、置換されていてもよい炭化水素基、置換されていてもよい複素環基、ニトロ基、ハロゲン原子、置換されていてもよいアミノ基、式 R⁴a-Y³- で表される基(式中、Y³は酸素原子または酸化されていてもよい硫黄原子を、R⁴aは置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)、シアノ基、置換されていてもよいアシル基、エステル化またはアミド化されていてもよいカルボキシル基などが用いられる。

A°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」およびR⁴°で示される「置換されていてもよい炭化水素基」における「炭化水素基」としては、例えば、

- (1) アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (2) シクロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-8} シクロアルキルなどが挙げられる): また、該シクロアルキルは、ベンゼン環と縮合し、インダン(例、イン

WO 02/14513 PCT/JP01/06899

ダンー1ーイル、インダンー2ーイルなど)、テトラヒドロナフタレン(例、テトラヒドロナフタレンー5ーイル、テトラヒドロナフタレンー6ーイルなど)など (好ましくは、インダンなど)を形成していてもよく;さらに、該シクロアルキルは、炭素数1~2の直鎖状の原子鎖を介して架橋し、ビシクロ[2.2.

- 5 1] ヘプチル、ビシクロ [2.2.2] オクチル、ビシクロ [3.2.1] オクチル、ビシクロ [3.2.2] ノニルなど (好ましくは、炭素数 1~2の直鎖状の原子鎖を介した架橋を有するシクロヘキシルなど、さらに好ましくは、ビシクロ [2.2.1] ヘプチルなど) の架橋環式炭化水素残基を形成していてもよい;
- 10 (3) アルケニル(例えば、ビニル、アリル(allyl)、クロチル、2-ペンテニル、 3-ヘキセニルなどの C_{2-10} アルケニル、好ましくは低級(C_{2-6})アルケニ ルなどが挙げられる);

15

20

25

- (4) シクロアルケニル(例えば、 $2-シクロペンテニル、<math>2-シクロヘキセニル、2-シクロペンテニルメチル、<math>2-シクロペンテニルメチルなどのC_{3-8}シクロアルケニルなどが挙げられる);$
- (5) アルキニル(例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ペンチニル、3-ヘキシニルなどの C_{2-10} アルキニル、好ましくは低級(C_{2-6})アルキニルなどが挙げられる);
- (6) アリール(例えば、フェニル、ナフチルなどの C_{6-14} アリール、好ましくは C_{6-10} アリール、さらに好ましくはフェニルなどが挙げられる);
 - (7)アラルキル(例えば、 $1\sim3$ 個の C_{6-14} アリールを有する C_{1-6} アルキル、好ましくは、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);などが挙げられ、なかでも、アルキルが好ましく、メチル、エチルなどの C_{1-4} アルキルがさらに好ましく、とりわけ、メチルが好ましく用いられる。

該炭化水素基は置換基を有していてもよく、かかる置換基としては、例えば、 ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、 置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、 置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4}

10

15

20

25

 $_{1-4}$ アルキルアミノ、モノ C_{2-5} アルカノイルアミノ、テトラヒドロピロール、 ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾー ルなどの 5~6 員の環状アミノなど)、フェニルー低級(C₁₋₄)アルキル、C 。」、シクロアルキル、エステル化またはアミド化されていてもよいカルボキシル 基(例、カルボキシル、 C_{1-4} アルコキシーカルボニル、低級(C_{7-10})アラ ルキルオキシーカルボニル、カルバモイル、モノC1-4アルキルカルバモイル、 置換されていてもよいC₁₋₄アルキル(例、トリフルオロメチル、メチル、エチ ルなど)、ハロゲン原子またはC₁₋₄アルコキシで置換されていてもよいC₁₋₄ アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエ トキシなど)、C₁₋₄アルキレンジオキシ(例、-O-CH₂-O-、-O-C $H_{\circ}-CH_{\circ}-O-$ など)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロ ピオニルなど)、C₁₋₄アルキルスルホニル(例、メタンスルホニル、エタンス ルホニルなど)、C₁₋₄アルキルスルフィニル(例、メタンスルフィニル、エタ ンスルフィニルなど)などが挙げられ、置換基の数としては、1~3個が好まし W

A°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」およびR⁴aで示される「置換されていてもよい複素環基」における「複素環基」としては、例えば、酸素原子、硫黄原子、窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5~8員の芳香族複素環、飽和または不飽和の非芳香族複素環(脂肪族複素環)等から水素原子1個を除いて形成される基などが挙げられる。

ここで「芳香族複素環」としては、5~8員(好ましくは5~6員)の芳香族 単環式複素環(例えばフラン、チオフェン、ピロール、オキサゾール、イソオキ サゾール、チアゾール、イソチアゾール、イミダゾール、ピラゾール、1,2,3 ーオキサジアゾール、1,2,4ーオキサジアゾール、1,3,4ーオキサジアゾー ル、1,2,3ーチアジアゾール、1,2,4ーチアジアゾール、1,3,4ーチアジア

10

15

20

25

ゾール、1,2,3ートリアゾール、1,2,4ートリアゾール、テトラゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン等)などが挙げられ、「非芳香族複素環」としては、例えば、ピロリジン、テトラヒドロフラン、テトラヒドロチオフェン、チオラン、ジチオラン、オキサチオラン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、オキサジアジン、チアジアジン、ピペリジン、モルホリン、チオモルホリン、テトラヒドロピラン、ピペラジン、ピラン、オキセピン、チエピン、アゼピンなどの5~8員(好ましくは5~6員)の飽和または不飽和の単環式非芳香族複素環(脂肪族複素環)など、あるいは上記した芳香族単環式複素環の一部または全部の二重結合が飽和した5~8員の非芳香族複素環などが挙げられる。

また、 A^a で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」および R^{4a} で示される「置換されていてもよい複素環基」における「複素環基」としては、上記した単環式複素環(単環式芳香族複素環および単環式非芳香族複素環)および $5\sim 8$ 員の環状炭化水素(C_{5-8} シクロアルカン、 C_{5-8} シクロアルカン、 C_{5-8} シクロアルカジエンなどの $5\sim 8$ 員(好ましくは $5\sim 6$ 員)の飽和または不飽和の脂環式炭化水素;ベンゼンなどの6 員の芳香族炭化水素;など)から選ばれる $2\sim 3$ 個(好ましくは、2 個)の環が縮合して形成する縮合環から水素原子1 個を除いて形成される基などであってもよく、これらの縮合環は飽和の縮合環、部分的に不飽和結合を有する縮合環、芳香縮合環の何れであってもよい。

かかる縮合環の好ましい例としては、同一または異なった2個の複素環(好ましくは、1個の複素環と1個の芳香族複素環、さらに好ましくは、同一または異なった2個の芳香族複素環)が縮合した環;1個の複素環と1個の同素環(好ましくは、1個の複素環と1個のベンゼン環、さらに好ましくは、1個の芳香族複素環と1個のベンゼン環)が縮合した環;などが挙げられ、このような縮合環の具体例としては、例えば、インドール、ベンゾチオフェン、ベンゾフラン、ベンズイミダゾール、イミダゾ[1,2-a]ピリジン、キノリン、イソキノリン、シンノリンなどが挙げられる。

10

15

20

25

Aªで示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」およびR⁴ªで示される「置換されていてもよい複素環基」における「複素環基」は置換基を有していてもよく、かかる置換基としては、例えば、上記したAªで示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」が有していてもよい置換基と同様な基が挙げられる。

A°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「ハロゲン原子」の例としては、フッ素、塩素、臭素、ヨウ素などが挙げられる。

Aªで示される「置換されていてもよいベンゼン環」におけるベンゼン環が有 していてもよい置換基としての「置換されていてもよいアミノ基」としては、下 記のR¹で示される「置換されていてもよいアミノ基」と同様なものが挙げら れるが、なかでも、「置換されていてもよい炭化水素基」(上記したA°で示さ れる「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよ い置換基としての「置換されていてもよい炭化水素基」と同様な基など)、「置 換されていてもよい複素環基」(上記したA ª で示される「置換されていてもよ いベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換さ れていてもよい複素環基」と同様な基など)および「置換されていてもよいアシ ル基」(下記のAªで示される「置換されていてもよいベンゼン環」におけるべ ンゼン環が有していてもよい置換基としての「置換されていてもよいアシル基」 と同様な基など)から選ばれる置換基を1~2個有していてもよいアミノ基が好 ましく、とりわけ、置換されていてもよいアルキル〔例えば、ハロゲン(例、フ ッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていても よいチオール基(例、チオール、C1-4アルキルチオなど)、置換されていても よいアミノ基(例、アミノ、モノC₁₋₄アルキルアミノ、ジC₁₋₄アルキルアミ ノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホ リン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、フェニルー 低級 (C_{1-4}) アルキル、 C_{3-7} シクロアルキル、エステル化またはアミド化さ

10

15

20

25

れていてもよいカルボキシル基(例、カルボキシル、C1-4アルコキシカルボニ ル、低級 (C_{7-10}) アラルキルオキシーカルボニル、カルバモイル、モノ C_{1-10} $_4$ アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン原子 またはC₁₋₄アルコキシで置換されていてもよいC₁₋₄アルキル (例、トリフル オロメチル、メチル、エチルなど)、ハロゲン原子またはC₁₋₄アルコキシで置 換されていてもよいC₁₋₄アルコキシ(例、メトキシ、エトキシ、トリフルオロ メトキシ、トリフルオロエトキシなど)、C₁₋₄アルキレンジオキシ(例、-O $-CH_2-O-$ 、 $-O-CH_2-CH_2-O-$ など)、ホルミル、 C_{2-4} アルカノ イル (例、アセチル、プロピオニルなど)、C₁₋₄アルキルスルホニル (例、メ タンスルホニル、エタンスルホニルなど)、C₁₋₄アルキルスルフィニル(例、 メタンスルフィニル、エタンスルフィニルなど)などから選ばれる置換基1~3 個をそれぞれ有していてもよいメチル、エチル、プロピル、イソプロピル、ブチ ル、イソブチル、secーブチル、tert-ブチル、ペンチル、イソペンチル、 ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの С 1-10 アルキル、好ましくは低級 (C_{1-6}) アルキルなど」を $1\sim 2$ 個有していてもよ いアミノ基が好ましい。

また、 A^a で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいアミノ基」は、アミノ基の置換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim 6$ 員環の環構成窒素原子から水素原子1 個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換基を有していてもよく、かかる置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、チオール基、アミノ基、カルボキシル基、ハロゲン化されていてもよい C_{1-4} アルキル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、

エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1 \sim 3$ 個が好ましい。

A°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいアシル基」としては、水素、「置換されていてもよい炭化水素基」(上記したA°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様な基など)、「置換されていてもよい複素環基」(上記したA°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」と同様な基など)などがカルボニル基またはスルホニル基と結合したものなどが挙げられるが、好適な例として、

(1) 水素、

5

10

15

20

- (2)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (3) 置換されていてもよいシクロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのC₃₋₇シクロアルキルなどが挙げられる);
- (4) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなどの C_{2-10} アルケニル、好ましくは低級(C_{2-10} アルケニルなどが挙げられる);
- (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロペンテニルメチル、2-シクロペキセニルメチル、2-シクロペンテニルメチル、2-シクロペキセニルメチルなどのC3-7シクロアルケニルなどが挙げられる);
 - (6) 置換されていてもよい5~6員の単環の芳香族基(例えば、フェニル、ピリジルなどが挙げられる)などがカルボニル基またはスルホニル基と結合したもの(例、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバ

10

15

20

25

レリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル、シクロブタ ンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、シクロ ヘプタンカルボニル、クロトニル、2-シクロヘキセンカルボニル、ベンゾイル、 ニコチノイル、メタンスルホニル、エタンスルホニル等)が挙げられ、上記した (2) 置換されていてもよいアルキル、(3) 置換されていてもよいシクロアル キル、(4) 置換されていてもよいアルケニル、(5) 置換されていてもよいシ クロアルケニル、および(6)置換されていてもよい5~6員の単環の芳香族基 が有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ 素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チ オール、C₁₋₄アルキルチオなど)、置換されていてもよいアミノ基(例、アミ ノ、モノC₁₋₄アルキルアミノ、ジC₁₋₄アルキルアミノ、テトラヒドロピロー ル、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダ ゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されてい てもよいカルボキシル基(例、カルボキシル、C1-4アルコキシカルボニル、カ ルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイル など)、ハロゲン原子またはC₁₋₄アルコキシで置換されていてもよいC₁₋₄ア ルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子または C₁₋₄アルコキシで置換されていてもよいC₁₋₄アルコキシ(例、メトキシ、エ トキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、C。 -₄アルカノイル(例、アセチル、プロピオニルなど)、C₁₋₄アルキルスルホニ ル (例、メタンスルホニル、エタンスルホニルなど) 、 C₁₋₄アルキルスルフィ ・ニル(例、メタンスルフィニル、エタンスルフィニルなど)などが挙げられ、置 換基の数としては、1~3個が好ましい。

Aªで示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「エステル化されていてもよいカルボキシル基」としては、水素、「置換されていてもよい炭化水素基」(上記したAªで示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様な基など)などがカルボニルオキシ基と結合したものなどが挙げられるが、好適な例として、

15

20

25

- (1) 水素、
- (2) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる):
- (3) 置換されていてもよいシクロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- 10 (4) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、 2 -ペンテニル、 3-ヘキセニルなどの C_{2-10} アルケニル、好ましくは低級(C_{2-10} アルケニルなどが挙げられる);
 - (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、 2-シクロペキセニル、<math>2-シクロペンテニルメチル、 2-シクロペキセニルメチル (3-シクロアルケニルなどが挙げられる) ;
 - (6) 置換されていてもよいアリール(例えば、フェニル、ナフチルなど)などがカルボニルオキシ基と結合したもの、より好ましくはカルボキシル、低級(C $_{1-6}$)アルコキシカルボニル、アリールオキシカルボニル(例、メトキシカルボニル、ナール、エトキシカルボニル、プロポキシカルボニル、フェノキシカルボニル、ナフトキシカルボニルなど)などが挙げられ、上記した(2)置換されていてもよいアルキル、(3)置換されていてもよいシクロアルキル、(4)置換されていてもよいアルケニル、および
 - (6) 置換されていてもよいアリールが有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、

15

20

25

 C_{1-4} アルコキシカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、 C_{1-4} アルキルスルフィニル(例、メタンスルフィニル、エタンスルフィニルなど)などが挙げられ、置換基の数としては、 $1\sim3$ 個が好ましい。

10 A *で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有 していてもよい置換基としての「アミド化されていてもよいカルボキシル基」と しては、

(1) 水酸基;

(2)「置換されていてもよいアミノ基」(上記したA°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいアミノ基」と同様なものなど);などがカルボニル基と結合したものなどが挙げられる。

 A^a で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基は、 $1\sim 4$ 個(好ましくは、 $1\sim 2$ 個)同一または異なって環のいずれの位置に置換していてもよい。また、 A^a で示される「置換されていてもよいベンゼン環」におけるベンゼン環が 2 個以上の置換基を有する場合、これらのうち、2 個の置換基が互いに結合して、例えば、低級(C_{1-6})アルキレン(例、トリメチレン、テトラメチレンなど)、低級(C_{1-6})アルキレンオキシ(例、 $-CH_2-O-CH_2-CH_2-CH_2-$ など)、低級(C_{1-6})アルキレンジオキシ(例、 $-CH_2-CH_2-CH_2-$ 0ーなど)、低級(C_{2-6})アルケニレン(例、 $-CH_2-CH_2-CH_2-$ 0ーなど)、低級(C_{2-6})アルケニレン(例、 $-CH_2-CH_2-$ 0ーなど)、低級(C_{4-6})アルカジエニレン(例、 $-CH_2-$ 0ーとHーCHーなど)などを形成していてもよい。

10

20

 A^a で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としては、置換されていてもよい炭化水素基、置換されていてもよい複素環基、ニトロ基、ハロゲン原子、置換されていてもよいアミノ基、式 $R^{4a}-Y^a-$ で表される基(式中、 Y^a は酸素原子または酸化されていてもよい硫黄原子を、 R^{4a} は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)などが好ましく、置換されていてもよい炭化水素基、置換されていてもよい複素環基、ハロゲン原子、置換されていてもよいアミノ基、式 $R^{4a}-Y^a-$ で表される基(式中、 Y^a は酸素原子または酸化されていてもよい硫黄原子を、 R^{4a} は置換されていてもよい炭化水素基または置換されていてもよい硫黄原子を、 R^{4a} は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)などがさらに好ましく、とりわけ、低級(C_{1-4})アルキル、ハロゲン原子などが好ましい。

また、A°で示される「置換されていてもよいベンゼン環」としては、式:

で示されるベンゼン環上の「a」の位置に少なくとも一つの置換基を有するベン 15 ゼン環が好ましく、なかでも、式:

[式中、 A^a 'は置換基 R^{3a} 以外にさらに置換基を有していてもよいベンゼン環を、 R^{3a} は置換されていてもよい炭化水素基、置換されていてもよい複素環基、ニトロ基、ハロゲン原子、置換されていてもよいアミノ基または式 $R^{4a}-Y^a$ 一で表される基(式中、 Y^a は酸素原子または酸化されていてもよい硫黄原子を、 R^{4a} は置換されていてもよい炭化水素基または置換されていてもよい複素

環基を示す)を示す]で表されるベンゼン環が好ましく、とりわけ、式:

5

10

15

20

[式中、R³aは上記と同意義を示す]で表されるベンゼン環が好ましい。上記式中、R³aとしては、置換されていてもよい炭化水素基、置換されていてもよい複素環基、ハロゲン原子、置換されていてもよいアミノ基または式 R⁴aーY aー で表される基(式中、Yaは酸素原子または酸化されていてもよい硫黄原子を、R⁴aは置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)が好ましく、なかでも、置換されていてもよい炭化水素基、置換されていてもよい複素環基、ハロゲン原子などが好ましく、とりわけ、置換されていてもよい低級アルキル基またはハロゲン原子が好ましい。

上記式中、B°で示される「置換されていてもよい5~8員環」としては、例 えば、式:

[式中、Z*は、環B*が置換されていてもよい飽和の5~8員環を形成しうる 飽和の2価の基を示す]で表される、置換可能な任意の位置に置換基を有してい てもよい飽和の5~8員環などが挙げられるが、かかる飽和の5~8員環は、部 分的に不飽和結合を有していてもよく、さらに芳香環を形成していてもよい。環 B*としては、置換されていてもよい飽和の5~8員環が好ましい。

なお、ここで、環 B^a としての「置換されていてもよい飽和の $5\sim8$ 員環」における「飽和の $5\sim8$ 員環」とは、「環 B^a とキノリン環とが縮合環を形成する部位における二重結合以外の環 B^a を構成する結合が全て飽和の一重結合(単結合)である $5\sim8$ 員環」を意味し、環 B^a としての「置換されていてもよい不飽

WO 02/14513 PCT/JP01/06899

和の $5\sim8$ 員環」における「不飽和の $5\sim8$ 員環」とは、「環 B^* とキノリン環とが縮合環を形成する部位における二重結合以外の環 B^* を構成する結合の少なくとも一つが不飽和結合である $5\sim8$ 員環」を意味する。

上記式中、 Z^* で示される飽和の2価の基は、環 B^* が置換されていてもよい 飽和の $5\sim8$ 員環を形成しうるものであれば何れでもよい。すなわち、 Z^* とし ては、直鎖部分の原子数が $2\sim5$ の飽和の2価の基(好ましくは、直鎖部分の原 子数が $2\sim5$ の飽和の2価の炭化水素基)であれば何れでもよいが、その具体例 としては、例えば、

(1) $-(CH_2)_{a1}$ - (a1は2~5の整数を示す。)、

5

15

20

- 10 (2) $-(CH_2)_{b_1}-Z^{a_1}-(CH_2)_{b_2}-$ (b1およびb2は同一または異なって $0\sim 4$ の整数を示す。但し、b1とb2との和は $1\sim 4$ である。 Z^1 はNH,O,S,SOまたはSO。を示す)、
 - (3) $-(CH_2)_{d1}-Z^{a1}-(CH_2)_{d2}-Z^{a2}-(CH_2)_{d3}-(d1, d2およびd3は同一または$ $異なって<math>0\sim3$ の整数を示す。但し、d1, d2およびd3の和は $0\sim3$ である。 Z^{a1} および Z^{a2} はそれぞれNH, O, S, SOまたはSO。を示す)、
- 上記式中、B°で示される「置換されていてもよい5~8員環」としては、このように例示される「置換されていてもよい飽和の5~8員環」のみならず、部分的に不飽和結合を有する「置換されていてもよい不飽和の5~8員環」、あるいは「置換されていてもよい5~8員の芳香環」であってもよく、このような場合、式:

10

15

25

で表される環において、Z*は、上記の如く例示した「直鎖部分の原子数が2~ 5の飽和の2価の基」における結合の一部が不飽和結合に変換された2価の基を 示していてもよい。

また、該 2 価の基は、置換基を有していてもよく、該置換基としては、該 2 価の基に結合可能であればいずれでもよく、例えば、上記 A^a で示される「置換されていてもよいベンゼン環」が有していてもよい「置換基」と同様な基およびオキソ基などが挙げられる。かかる置換基は、 $1\sim4$ 個(好ましくは、 $1\sim2$ 個)同一または異なって、該 2 価の基のいずれの位置に置換していてもよい。また、該 2 価の基が 2 個以上の置換基を有する場合、これらのうち、 2 個の置換基が互いに結合して、例えば、低級(C_{1-6})アルキレン(例、トリメチレン、テトラメチレンなど)、低級(C_{1-6})アルキレンオキシ(例、 $-CH_2-O-CH_2-$ 、 $-O-CH_2-CH_2-$ など)、低級(C_{1-6})アルキレンジオキシ(例、 $-O-CH_2-CH_2-$ など)、低級($-CH_2-CH_2-$ 0、低級($-CH_2-CH_2-$ 0、 $-CH_2-$ 0 、 $-CH_2-$ 0 $-CH_2-$ 0 -C

上記式中、X°で示される「直鎖部分の原子数が $1\sim4$ の2価の基」としては、 (1) $-(CH_2)_{fl}-(f1$ は $1\sim4$ の整数を示す。)、

- 20 (2) $-(CH_2)_{g1}-X^{a1}-(CH_2)_{g2}-(g1およびg2は同一または異なって0~3の整数を示す。但し、<math>g1$ とg2との和は $1\sim3$ である。 X^{a1} はNH,O,S,SOまたはSO,を示す)、
 - (3) $-(CH_2)_{h1}-X^{a1}-(CH_2)_{h2}-X^{a2}-(CH_2)_{h3}-$ (h1, h2およびh3は同一または異なって $0\sim2$ の整数を示す。但し、h1, h2およびh3の和は $0\sim2$ である。 X^a ¹および X^{a2} はそれぞれNH, O, S, SOまたは SO_2 を示す。但し、h2が0のとき、 X^{a1} および X^{a2} の少なくとも一つは好ましくはNHを示す。)などの飽和02価の

10

15

20

25

 X^a としては、 $-CO-O-CH_2-を除く2価の基が好ましく、直鎖部分を構成する炭素原子数が1ないし4個である2価の基がさらに好ましく、なかでも、 <math>C_{1-4}$ アルキレン、 C_{2-4} アルケニレンなどが好ましく、 C_{1-4} アルキレン、とりわけメチレンが好ましく用いられる。

Xªで示される2価の基は、任意の位置(好ましくは炭素原子上)に置換基を 有していてもよく、かかる置換基としては、直鎖部分を構成する2価の鎖に結合 可能なものであればいずれでもよく、例えば、上記Aªで示される「置換されて いてもよいベンゼン環」が有していてもよい「置換基」と同様な基およびオキソ 基などが挙げられる。かかる置換基は、1~4個(好ましくは、1~2個)同一 または異なって、該2価の基のいずれの位置に置換していてもよい。

 X^a で示される2価の基が有していてもよい好ましい置換基の例としては、低級(C_{1-6})アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソプチル、S e C e C i C f C

上記式中、R¹°で示される「置換されていてもよいアミノ基」としては、 「置換されていてもよい炭化水素基」(上記したA°で示される「置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての 「置換されていてもよい炭化水素基」と同様な基など)、「置換されていてもよい複素環基」(上記したA°で示される「置換されていてもよいベンゼン環」に

10

15

25

おけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複 素環基」と同様な基など)および「置換されていてもよいアシル基」(上記した Aºで示される「置換されていてもよいベンゼン環」におけるベンゼン環が有し ていてもよい置換基としての「置換されていてもよいアシル基」と同様な基な ど)から選ばれる置換基を1~2個有していてもよいアミノ基などが挙げられる が、R^{1a}で示される「置換されていてもよいアミノ基」は、アミノ基の置換基 同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、 ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~ 6員環の環構成窒素原子から水素原子1個を除いて形成され、窒素原子上に結合 手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換 基を有していてもよく、かかる置換基としては、ハロゲン(例、フッ素、塩素、 臭素、ヨウ素など)、ニトロ、シアノ、水酸基、チオール基、アミノ基、カルボ キシル基、ハロゲン化されていてもよいC1-4アルキル(例、トリフルオロメチ ル、メチル、エチルなど)、ハロゲン化されていてもよいC₁₋₄アルコキシ(例、 メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフル・ オロエトキシなど)、ホルミル、Conaアルカノイル(例、アセチル、プロピオ ニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホ ニルなど) などが挙げられ、置換基の数としては、1~3個が好ましい。

R¹^aで示される「置換されていてもよいアミノ基」におけるアミノ基の置換 20 基としては、

- (1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);

20

テトラヒドロナフタレン(例、テトラヒドロナフタレン-5ーイル、テトラヒドロナフタレン-6ーイルなど)など(好ましくは、インダンなど)を形成していてもよく;さらに、該シクロアルキルは、炭素数1~2の直鎖状の原子鎖を介して架橋し、ビシクロ[2.2.1] ヘプチル、ビシクロ[2.2.2] オクチル、ビシクロ[3.2.1] オクチル、ビシクロ[3.2.2] ノニルなど(好ましくは、炭素数1~2の直鎖状の原子鎖を介した架橋を有するシクロヘキシルなど、さらに好ましくは、ビシクロ[2.2.1] ヘプチルなど)の架橋環式炭化水素残基を形成していてもよい;

- (3) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、2 -ペンテニル、3-ヘキセニルなどの C_{2-10} アルケニル、好ましくは低級(C_{2-10} アルケニルなどが挙げられる);
 - (4) 置換されていてもよいシクロアルケニル(例えば、 $2-シクロペンテニル、 2-シクロペキセニル、<math>2-シクロペンテニルメチル、 2-シクロペキセニルメチルなどの<math>C_{3-7}$ シクロアルケニルなどが挙げられる);
- 15 (5) 置換されていてもよいアラルキル (例えば、フェニルー C_{1-4} アルキル (例、ベンジル、フェネチルなど) などが挙げられる);
 - (6) ホルミルまたは置換されていてもよいアシル(例えば、 C_{2-4} アルカノイル (例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられる):
 - (7) 置換されていてもよいアリール (例えば、フェニル、ナフチルなど);
- (8) 置換されていてもよい複素環基(例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソキサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた1~2種のヘテロ原子1~4個を含有する5~6員の芳香族複素環から水素原子1個を除いて形成される基、テトラヒドロフラン、テトラヒドロチオフェン、ジチオラン、オキサチオラン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラブリジン、ピラブリン、ピラブリン、ピラブリン、ピラブリン、ピラブリン、ピラブリン、ピーラブリン、ピーラブリン、

10

15

20

25

73

チアジン、チアジアジン、モルホリン、チオモルホリン、ピラン、テトラヒドロピランなどの窒素原子、硫黄原子および酸素原子から選ばれた $1\sim2$ 種のヘテロ原子 $1\sim4$ 個を含有する $5\sim6$ 員の非芳香族複素環から水素原子1個を除いて形成される基など);などが好ましい。

上記した(1) 置換されていてもよいアルキル、(2) 置換されていてもよいシクロアルキル、(3) 置換されていてもよいアルケニル、(4) 置換されていてもよいシクロアルケニル、(5) 置換されていてもよいアラルキル、(6) 置換されていてもよいアシル、および

(8) 置換されていてもよい複素環基が有していてもよい置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルキル、ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、 C_{1-4} アルキレンジオキシ(例、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2-O-$ など)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、

 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、フェニルー低級(C_{1-4})アルキル、 C_{3-7} シクロアルキル、シアノ、ニトロ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、

モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim 6$ 員の環状アミノなど)、カルボキシル基、低級(C_{1-4})アルコキシーカルボニル、低級(C_{7-10})アラルキルオキシーカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイル(好ましくは、ハロゲン、ハロゲン化されていてもよい低級(C_{1-4})アルキル、ハロゲン化されていてもよい

低級(C_{1-4})アルコキシ、フェニルー低級(C_{1-4})アルキル、 C_{3-7} シクロアルキル、シアノ、水酸基など)などが挙げられ、置換基の数としては、 $1\sim3$ 個が好ましい。

R¹*で示される「置換されていてもよいアミノ基」としては、とりわけ、置

10

15

20

25

換されていてもよいアルキル〔例えば、ハロゲン(例、フッ素、塩素、臭素、ヨ ウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、 チオール、C₁₋₄アルキルチオなど)、置換されていてもよいアミノ基(例、ア ミノ、モノC₁₋₄アルキルアミノ、ジC₁₋₄アルキルアミノ、テトラヒドロピロ ール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミ ダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されて いてもよいカルボキシル基(例、カルボキシル、C1-4アルコキシカルボニル、 低級 (C_{7-10}) アラルキルオキシーカルボニル、カルバモイル、モノ C_{1-4} ア はC₁₋₄アルコキシで置換されていてもよいC₁₋₄アルキル(例、トリフルオロ メチル、メチル、エチルなど)、ハロゲン原子またはC₁₋₄アルコキシで置換さ れていてもよいC₁₋₄アルコキシ(例、メトキシ、エトキシ、トリフルオロメト キシ、トリフルオロエトキシなど)、C₁₋₄アルキレンジオキシ(例、-O-C H_2-O- 、 $-O-CH_2-CH_2-O-$ など)、フェニルー低級(C_{1-4})アル キル、C₃₋₇シクロアルキル、ホルミル、C₂₋₄アルカノイル(例、アセチル、 プロピオニルなど)、C₁₋₄アルキルスルホニル(例、メタンスルホニル、エタ ンスルホニルなど)、C₁₋₄アルキルスルフィニル(例、メタンスルフィニル、 エタンスルフィニルなど)などから選ばれる置換基1~3個をそれぞれ有してい てもよいメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、se cーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキ シル、ヘプチル、オクチル、ノニル、デシルなどのC₁₋₁₀アルキル、好ましく は低級 (C_{1-6}) アルキルなど] を1~2個有していてもよいアミノ基が好まし い。

上記式中、 R^{2*} で示される「置換されていてもよい環状基」の「環状基」としては、 C_{5-8} シクロアルカン(例、シクロペンタン、シクロペキサン、シクロペプタン等)、 C_{5-8} シクロアルケン(例、1-シクロペンテン、2-シクロペンテン、2-シクロペンテン、3-シクロペンテン、2-シクロペナセン等)、 C_{5-8} シクロアルカジエン(例、2,4-シクロペンタジエン、2,4-シクロペキサジエン、2,5-シクロペキサジエン等)などの5-8員(好ましくは5-2、キサジエン、2,5-シクロペキサジエン等)などの5-8員(好ましくは5-2)。

10

15

20

25

6員)の飽和または不飽和の脂環式単環式炭化水素;ベンゼンなどの6員の芳香族単環式炭化水素;酸素原子、硫黄原子、窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5~8員の芳香族単環式複素環、飽和あるいは不飽和の非芳香族単環式複素環(脂肪族複素環)等;およびこれらの単環から選ばれる同一または異なった2~3個の環が縮合した環等から水素原子1個を除いて形成される基などが挙げられる。

ここで「芳香族単環式複素環」としては、5~8員(好ましくは5~6員)の 芳香族単環式複素環(例えばフラン、チオフェン、ピロール、オキサゾール、イ ソオキサゾール、チアゾール、イソチアゾール、イミダゾール、ピラゾール、1,2,3ーオキサジアゾール、1,2,4ーオキサジアゾール、1,3,4ーオキサジアゾール、1,2,3ーチアジアゾール、1,2,4ーチアジアゾール、1,3,4ーチアジアゾール、1,2,3ートリアゾール、1,2,4ートリアゾール、テトラゾール、ピリジン、ピリダジン、ピリミジン、トリアジン等)などが挙げられ、「非芳香族単環式複素環」としては、例えば、ピロリジン、テトラヒドロフラン、テトラヒドロチオフェン、チオラン、ジチオラン、オキサチオラン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、オキサジン、オキサジアジン、チアジン、チアジアジン、ピーリジン、モルホリン、チオモルホリン、テトラヒドロピラン、ピペラジン、ピラン、オキセピン、チエピン、アゼピンなどの5~8員(好ましくは5~6員)の飽和あるいは不飽和の単環式非芳香族複素環(脂肪族複素環)など、あるいは上記した芳香族単環式複素環の一部または全部の二重結合が飽和した5~8員の非芳香族複素環などが挙げられる。

また、R²aで示される「置換されていてもよい環状基」の「環状基」は、上記の如く例示した単環の同素または複素環から選ばれる2~3個(好ましくは、2個)の同一または異なった環が縮合して形成する縮合環から水素原子1個を除いて形成される基などであってもよく、これらの縮合環は飽和の縮合環、部分的に不飽和結合を有する縮合環、芳香縮合環の何れであってもよい。

かかる縮合環の好ましい例としては、同一または異なった2個の複素環(好ましくは、1個の複素環と1個の芳香族複素環、さらに好ましくは、同一または異

10

15

20

なった2個の芳香族複素環)が縮合した環;1個の複素環と1個の同素環(好ましくは、1個の複素環と1個のベンゼン環、さらに好ましくは、1個の芳香族複素環と1個のベンゼン環)が縮合した環;などが挙げられ、このような縮合環の具体例としては、例えば、インドール、ベンゾチオフェン、ベンゾフラン、ベンズイミダゾール、イミダゾ[1,2-a]ピリジン、キノリン、イソキノリン、シンノリンなどが挙げられる。

R² で示される「置換されていてもよい環状基」の「環状基」が有していてもよい置換基としては、例えば、上記したA で示される「置換されていてもよいべンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」が有していてもよい置換基と同様な基が挙げられる。

R²*で示される「置換されていてもよい環状基」の「環状基」としては、 5~6員の環状基が好ましく、5~6員の芳香環基が好ましく、さらにフェニル、 フリル、チエニル、ピロリル、ピリジル(好ましくは、6員環)などが好ましく、 とりわけフェニルが好ましい。

式 (Ia) で表される化合物またはその塩のなかでも、式 (IIa):

$$R^{3a}$$
 $A^{a'}$
 N
 $A^{a'}$
 $A^{a'}$

[式中、 A^a 'は置換基 R^3 。以外にさらに置換基を有していてもよいベンゼン環を、 B^a は置換されていてもよい $5\sim8$ 員環を、 X^a は直鎖部分の原子数が $1\sim4$ の2価の基を、 $R^{1a'}$ は $1\sim2$ 個の置換されていてもよい低級アルキル基で置換されたアミノ基を、 R^{2a} は置換されていてもよい環状基を、 R^{3a} は置換されていてもよい炭化水素基、置換されていてもよい複素環基、=1 トロ基、ハロゲン原子、置換されていてもよいアミノ基または式 $R^{4a}-Y^a-$ で表される基(式中、 Y^a は酸素原子または酸化されていてもよい硫黄原子を、 R^{4a} は置換されていてもよい炭化水素基または置換されていてもよい硫黄原子を、 R^{4a} は置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を示す]で

10

15

20

表される化合物またはその塩;および 式(IIa[']):

$$R^{3a}$$
 $A^{a'}$
 A

[式中、Aª"は置換基R³a' 以外にさらに置換基を有していてもよいベンゼン環を、B°は置換されていてもよい5~8員環を、X°は直鎖部分の原子数が1~4の2価の基を、R¹aは置換されていてもよいアミノ基を、R²aは置換されていてもよい環状基を、R³a' は置換されていてもよい炭化水素基、置換されていてもよい複素環基、ハロゲン原子、置換されていてもよいアミノ基または式 R⁴a-Y²- で表される基(式中、Y²は酸素原子または酸化されていてもよい硫黄原子を、R⁴aは置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を示す]で表される化合物またはその塩が好ましく用いられる。

上記式中、Aª'で示される「置換基R³ª以外にさらに置換基を有していてもよいベンゼン環」およびAª"で示される「置換基R³ª'以外にさらに置換基を有していてもよいベンゼン環」における「ベンゼン環」が、置換基R³ª以外に有していてもよい「置換基」としては、上記Aªで示される「置換されていてもよいベンゼン環」における「ベンゼン環」が有していてもよい「置換基」と同様なものが挙げられる。

上記式中、R¹a′で示される「置換されたアミノ基」としては、上記R¹aで示される「置換されていてもよいアミノ基」から無置換のアミノ基を除いた基、すなわち、上記R¹aで示される「置換されていてもよいアミノ基」における「アミノ基」が有していてもよい置換基と同様な置換基を同一または異なって1~2個有するアミノ基などが挙げられるが、なかでも、「1~2個の置換されていてもよい低級アルキル基で置換されたアミノ基」が好ましい。

かかる「1~2個の置換されていてもよい低級アルキル基で置換されたアミノ 基」としては、

- (1) ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、
- (2) ニトロ、
- 5 (3)シアノ、

15

- (4) 水酸基、
- (5) 置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、
- (6) 置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、 ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim6$ 員の環状アミノなど)、
 - (7) エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、低級(C_{7-10})アラルキルオキシーカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、
 - (8) ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルキル (例、トリフルオロメチル、メチル、エチルなど)、
- (9) ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アル コキシ (例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、
 - (10) C_{1-4} アルキレンジオキシ(例、 $-O-CH_2-O-$ 、 $-O-CH_2-C$ H_2-O- など)、
 - (11) フェニルー低級(C_{1-4})アルキル、
- - (13) C_{1-4} アルキルスルホニル (例、メタンスルホニル、エタンスルホニル など)、
 - (14) C1-4アルキルスルフィニル (例、メタンスルフィニル、エタンスルフ

10

15

20

25

ィニルなど)などから選ばれる置換基 $1\sim3$ 個を有していてもよい低級(C_{1-} 6)アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、 secーブチル、 tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなど)を $1\sim2$ 個で置換されたアミノ基が挙げられ、アミノ基の置換基が2個である場合、同一でも異なっていてもよい。

上記式中、R³aおよびR³a′で示される「置換されていてもよい炭化水素基」としては、上記Aaで示される「置換されていてもよいベンゼン環」における「ベンゼン環」が置換基として有していてもよい「置換されていてもよい炭化水素基」と同様なものが挙げられる。

上記式中、R³aおよびR³a'で示される「置換されていてもよい複素環基」としては、上記Aaで示される「置換されていてもよいベンゼン環」における「ベンゼン環」が置換基として有していてもよい「置換されていてもよい複素環基」と同様なものが挙げられる。

上記式中、R³aおよびR³a'で示される「置換されていてもよいアミノ基」としては、上記Aで示される「置換されていてもよいベンゼン環」における「ベンゼン環」が置換基として有していてもよい「置換されていてもよいアミノ基」と同様なものが挙げられる。

上記式中、式 R⁴^a-Y^a- で表される基において、R⁴^aで示される「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」としては、上記A^aで示される「置換されていてもよいベンゼン環」における「ベンゼン環」が置換基として有していてもよい「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」と同様なものが挙げられる。

上記式中、式 R^{4} ー Y^{4} ー で表される基において、 Y^{4} で示される「酸化されていてもよい硫黄原子」としては、例えば、S, S(O), $S(O)_{2}$ などが挙げられる。

式 (I a) で表される化合物またはその塩は自体公知の方法によって製造できる。また、式 (I a) で表される化合物またはその塩は、例えば下記の方法、あるいはテトラヘドロンレターズ,40巻,5643~5646頁、特開平3-220189号公報、特公昭48-30280号公報などに記載の方法またはそれ

10

15

20

25

に準じた方法によって製造できる。

下記の各製造法で用いられる化合物は、反応に支障を来たさない限り、化合物 (Ia) と同様な塩を形成していてもよい。

また、下記各反応において、原料化合物は、置換基としてアミノ基、カルボキシル基、ヒドロキシル基を有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されたものであってもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。

アミノ基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニルなど)、ホルミル、フェニルカルボニル、 C_{1-6} アルキルオキシカルボニル(例えば、メトキシカルボニル、エトキシカルボニル、tーブトキシカルボニルなど)、フェニルオキシカルボニル (例えば、ベンズオキシカルボニルなど)、 C_{7-10} アラルキルオキシカルボニルル (例えば、ベンジルオキシカルボニルなど)、トリチル、フタロイルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニル、ブチリルなど)、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

カルボキシル基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tertーブチルなど)、フェニル、トリチル、シリルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニル、ブチリルなど)、ホルミル、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

ヒドロキシ基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tertーブチルなど)、フェニル、 C_{7-10} アラルキル(例えば、ベンジルなど)、 C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニルなど)、ホルミル、フェニルオキシカルボニル、 C_{7-10} アラルキルオキシカルボニル(例えば、ベンジルオキシカルボニルなど)、ピラニル、フラニル、シリルなどが用いられる。これ

らの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキル、フェニル、 C_{7-10} アラルキル、ニトロ基などが用いられ、置換基の数は1ないし4個程度である。

また、保護基の導入および除去方法としては、それ自体公知またはそれに準じる方法 [例えば、プロテクティブ・グループス・イン・オーガニック・ケミストリー (J.F.W.McOmieら、プレナムプレス社) に記載の方法〕が用いられるが、除去方法としては、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなどで処理する方法が用いられる。

10 製造法

5

式 (I a) で表される化合物またはその塩のうち、 R^{1a} が無置換のアミノ基である式 (I a a) で表される化合物またはその塩は、例えば、以下のスキームによって製造することができる。

[式中、各記号は上記と同意義を示す]

特開平3-220189号公報、特公昭48-30280号公報などに記載の方法またはそれに準じた方法に従って、式(IIIa)で表される化合物またはその塩と式(IVa)で表される化合物またはその塩とを反応させて得られる式(Va)で表される化合物またはその塩を環化反応に付すことにより、式(Iaa)で表される化合物またはその塩を得ることができる。

式 (Ia) で表される化合物またはその塩は、例えば、以下のスキームによっても製造することができる。

10

「式中、Z^{al}はアルカリ金属を示し、その他の記号は上記と同意義を示す〕

テトラヘドロンレターズ、40巻、5643~5646 頁などに記載の方法またはそれに準じた方法に従って、式(VIa)で表される化合物またはその塩と式(VIa)で表される化合物またはその塩とを反応させて得られる式(VIIa)で表される化合物またはその塩を式 $R^{1a}Z^{a1}$ で表される化合物と反応させることにより、式(Ia)で表される化合物またはその塩を得ることができる。

Z^a¹で示されるアルカリ金属としては、例えば、リチウム、ナトリウム等が 挙げられる。

反応は、無溶媒あるいは溶媒中で行ってもよい。溶媒としては、反応に影響を 与えなければ特に制限はないが、例えばエーテル系溶媒(例えば、ジエチルエー WO 02/14513 PCT/JP01/06899

5

10

15

テル、テトラヒドロフラン、ジオキサン等)、ハロゲン系溶媒(例えばジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等)、炭化水素系溶媒(例えばベンゼン、トルエン、ヘキサン、ヘプタン等)、アミド系溶媒(ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等)、エステル系溶媒(酢酸エチル、酢酸メチル等)、アセトニトリル、ジメチルスルホキシド等が用いられ、また、これらを2つ以上混合して用いてもよい。

式(VIIIa)で表される化合物またはその塩に対して使用する式 $R^{1a}Z^{a}$ で表される化合物の量は、約0.5ないし20モル当量、好ましくは約0.8 ないし10モル当量であり、この時の反応温度は約-80 でないし200 で、好ましくは約-80 でないし80 であり、反応時間は約0.1ないし96時間、好ましくは約0.5ないし72時間である。

また、式 (I a) で表される化合物またはその塩のうち、R ^{1 a}が無置換のアミノ基でない化合物またはその塩は、公知の方法に準じて製造することができるが、例えば、上記スキームで合成される式 (I a a) で表される化合物またはその塩を原料として用い、以下の反応に従って、種々変換することによって、製造することもできる。

〔式中、 $R^{1a'}$ および $R^{1a'}$ はそれぞれアミノ基の置換基(好ましくは、置換されていてもよい低級アルキル基)を示し、 L^a は脱離基を示す。〕

Lªで示される脱離基としては、例えば、塩素原子、臭素原子、ヨード原子な

10

15

20

25

どのハロゲン原子あるいはメタンスルホニル基、トルエンスルホニル基等のスル ホン酸エステルなどが挙げられる。

反応は、無溶媒あるいは溶媒中で行ってもよい。溶媒としては、反応に影響を与えなければ特に制限はないが、例えばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等)、ハロゲン系溶媒(例えばジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等)、炭化水素系溶媒(例えばベンゼン、トルエン、ヘキサン、ヘプタン等)、アミド系溶媒(ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等)、エステル系溶媒(酢酸エチル、酢酸メチル等)、アセトニトリル、ジメチルスルホキシド等が用いられ、また、これらを2つ以上混合して用いてもよい。また、場合によっては、塩基(例えば、トリエチルアミン、4-(ジメチルアミノ)ピリジン、2-tertーブチルイミノー2ージエチルアミノー1,3ージメチルパーヒドロー1,3,2ージアザホスホリン、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、水素化カリウム等)、あるいは、相間移動触媒(例えば、臭化テトラブチルアンモニウム、塩化ベンジルトリエチルアンモニウム等の四級アンモニウム塩類および18ークラヴンー6等のクラウンエーテル類等)または、塩基および相間移動触媒の存在下に行ってもよい。

式(I a a)で表される化合物またはその塩に対して使用する式 $R^{1a'}$, L^a で表される化合物の量および式(I a b)で表される化合物またはその塩に対して使用する式 $R^{1a'}$, L^a で表される化合物の量は、約0.5ないし20モル当量、好ましくは約0.8ないし10モル当量であり、この時の反応温度は約 -20° ないし200 $^{\circ}$ 、好ましくは約20 $^{\circ}$ ないし150 $^{\circ}$ であり、反応時間は約0.1ないし96時間、好ましくは約0.5ないし72時間である。用いられる塩基の量は、通常、式(I a a)または式(I a b)で表される化合物に対して、約0.5ないし10モル当量、好ましくは約1ないし5モル当量である。

さらに、式(I a a)~(I a d)で表される化合物またはその塩において、 環 A^a における置換基が塩素、臭素、ヨウ素等のハロゲン原子である場合には、 公知の置換反応(鈴木カップリング反応、Still反応、ヘック反応等)により、容 易に種々の官能基(環 A^a で示されるベンゼン環が有していてもよい置換基な

10

15

20

25

ど)に変換することができる。

このようにして得られる化合物 (Ia) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

また、本発明のスクリーニング法またはスクリーニング用キットで得られるGPR14(SENR)アンタゴニストとして有用な化合物として、例えば式(Ib):

$$\begin{array}{c|c}
R \\
| \\
Ar - X - (CH) - Y \\
\end{array} (1b)$$

[式中、Arは置換されていてもよいアリール基を示し、Xは直鎖部分を構成する原子の数が1ないし4のスペーサーを示し、nは1ないし10の整数を示し、Rは水素原子または置換されていてもよい炭化水素基であって、nの繰り返しにおいて、同一でも異なっていてもよく、またRはArまたはArの置換基と結合して環を形成していてもよく、Yは置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示す〕で表される化合物またはその塩も挙げられる。

上記式中、Arは「置換されていてもよいアリール基」を示す。 該「置換されていてもよいアリール基」の「置換基」としては、例えば、

(i) ハロゲン化されていてもよい低級アルキル基、(ii) ハロゲン原子(例えば、フルオロ、クロル、ブロム、ヨードなど)、(iii)低級アルキレンジオキシ基(例えば、メチレンジオキシ、エチレンジオキシなどの C_{1-3} アルキレンジオキシ基など)、(iv)ニトロ基、(v)シアノ基、(vi)ヒドロキシ基、(vii)ハロゲン化されていてもよい低級アルコキシ基、(viii)低級シクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどの C_{3-6} シクロアルキル基など)、(ix)ハロゲン化されていてもよい低級アルキルチオ基、(x)アミノ基、(xi)モノー低級アルキルアミノ基(例えば、メチルアミノ、エチルアミノ、プロピルアミノなどのモノー C_{1-6} アルキルアミノ、

10

15

20

25

ジエチルアミノなどのジー C_{1-6} アルキルアミノ基など)、(xiii)例えば1個の窒素原子以外に窒素原子、酸素原子および硫黄原子などから選ばれるヘテロ原子を1ないし3個有していてもよい5ないし7員環状アミノ基(例えば、ピロリジノ、ピペリジノ、ピペラジノ、モルホリノ、チオモルホリノなど)、

(xiv) 低級アルキルーカルボニルアミノ基(例えば、アセチルアミノ、プロピ

オニルアミノ、ブチリルアミノなどの C_{1-6} アルキルーカルボニルアミノ基など)、(xv)アミノカルボニルオキシ基、(xvi)モノー低級アルキルアミノーカルボニルオキシ基(例えば、メチルアミノカルボニルオキシ、エチルアミノカルボニルオキシなどのモノー C_{1-6} アルキルアミノーカルボニルオキシ基など)、(xvii)ジー低級アルキルアミノーカルボニルオキシなどのジー C_{1-6} アルキルアミノカルボニルオキシなどのジー C_{1-6} アルキルアミノーカルボニルオキシなどのジー C_{1-6} アルキルアミノーカルボニルオキシ基など)、(xviii)低級アルキルスルホニルアミノ基(例えば、メチルスルホニルアミノ、エチルスルホニルアミノ、プロピルスルホニルアミノなどの C_{1-6} アルキルスルホニルアミノ基など)、

(xix)低級アルコキシーカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソブトキシカルボニルなどの C_{1-6} アルコキシーカルボニル基など)、(xxx)カルボキシル基、(xxi)低級アルキルーカルボニル基(例えば、メチルカルボニル、エチルカルボニル、ブチルカルボニル、ブチルカルボニル、フェーカルボニル、ブチルカルボニル、シクロアルキルーカルボニル(例えば、シクロプロピルカルボニル、シクロブチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニル、シクロペンチルカルボニルル、シクロペンチルカルボニルル、シクロペンチルカルボニル、シクロペシテルカルボニルをど)、(xxiii)カルバモイル基、(xxiv)モノー低級アルキルーカルバモイル基(例えば、メチルカルバモイル、エチルカルバモイル、ブロピルカルバモイル、ブチルカルバモイルなどのモノー C_{1-6} アルキルーカルバモイル基など)(xxv)ジー低級アルキルーカルバモイル基(例えば、ジエチルカルバモイル、ジブチルカルバモイルなどのジー C_{1-6} アルキルーカ

ルバモイル基など)、(xxvi)低級アルキルスルホニル基(例えば、メチルスル

ホニル、エチルスルホニル、プロピルスルホニルなどの \mathbb{C}_{1-6} アルキルスルホ

ニル基など)、(xxvii)低級シクロアルキルスルホニル(例えば、シクロペン

10

15

20

25

チルスルホニル、シクロへキシルスルホニルなどの C_{3-6} シクロアルキルスルホニルなど)、(xxviii)フェニル基、(xxix)ナフチル基、(xxx)モノーフェニルー低級アルキル基(例えばベンジル、フェニルエチルなどのモノーフェニルー C_{1-6} アルキル基など)、(xxxi)ジーフェニルー低級アルキル基(例えば、ジフェニルメチル、ジフェニルエチルなどのジーフェニルー C_{1-6} アルキル基など)、(xxxii)モノーフェニルー低級アルキルーカルボニルオキシ基(例えばフェニルメチルカルボニルオキシ、フェニルエチルカルボニルオキシなどのモノーフェニルー C_{1-6} アルキルーカルボニルオキシ基など)、

(xxxiii)ジーフェニルー低級アルキルーカルボニルオキシ基(例えば、ジフェニルメチルカルボニルオキシ、ジフェニルエチルカルボニルオキシなどのジーフェニルー C_{1-6} アルキルーカルボニルオキシ基など)、(xxxiv)フェノキシ基、(xxxv)モノーフェニルー低級アルキルーカルボニル基(例えばフェニルメチルカルボニル、フェニルエチルカルボニルなどのモノーフェニルー C_{1-6} アルキルーカルボニル基など)、(xxxvi)ジーフェニルー低級アルキルーカルボニル基など)、(xxxvi)ジーフェニルー低級アルキルーカルボニル などのジーフェニルー C_{1-6} アルキルーカルボニル基など)、(xxxvii)ベンゾイル基、(xxxviii)フェノキシカルボニル基、(xxxix)フェニルー低級アルキルーカルバモイル基(例えば、フェニルーメチルカルバモイル、フェニルーエチルカルバモイルなどのフェニルー C_{1-6} アルキルーカルバモイル基など)、(xxxxi)フェニルカルバモイル基など)、(xxxxi)フェニルーカルバモイル基など)、(xxxxxi)フェニルーカルバモイル基など)、

ニルアミノ基(例えば、フェニルーメチルカルボニルアミノ、フェニルーエチルカルボニルアミノなどのフェニルー C_{1-6} アルキルーカルボニルアミノなど)、(xxxxii)フェニルー低級アルキルアミノ(例えば、フェニルーメチルアミノ、フェニルーエチルアミノなどのフェニルー C_{1-6} アルキルアミノなど)、

(xxxxiii)フェニルー低級アルキルスルホニル基(例えば、フェニルーメチルスルホニル、フェニルーエチルスルホニルなどのフェニルー C_{1-6} アルキルスルホニル基など)、(xxxxiv)フェニルスルホニル基、(xxxxv)フェニルー低級アルキルスルフィニル基(例えば、フェニルーメチルスルフィニル、フェニルーエチルスルフィニルなどのフェニルー C_{1-6} アルキルスルフィニル基など)、

10

15

20

25

(xxxxvi) フェニルー低級アルキルスルホニルアミノ基(例えば、フェニルーメ チルスルホニルアミノ、フェニルーエチルスルホニルアミノなどのフェニルーC 1-6 アルキルスルホニルアミノ基など)および(xxxxvii)フェニルスルホニ ルアミノ基 [該 (xxviii) フェニル基、 (xxix) ナフチル基、 (xxx) モノーフ ェニルー低級アルキル基、(xxxi) ジーフェニルー低級アルキル基、(xxxii) モノーフェニルー低級アルキルーカルボニルオキシ基、(xxxiii) ジーフェニル -低級アルキルーカルボニルオキシ基、(xxxiv)フェノキシ基、(xxxv)モノ -フェニルー低級アルキルーカルボニル基、(xxxvi) ジーフェニルー低級アル キルーカルボニル基、(xxxvii)ベンゾイル基、(xxxviii)フェノキシカルボニ ル基、(xxxix)フェニルー低級アルキルーカルバモイル基、(xxxx)フェニル カルバモイル基、(xxxxi)フェニルー低級アルキルーカルボニルアミノ基、 (xxxxii) フェニルー低級アルキルアミノ、(xxxxiii) フェニルー低級アルキル スルホニル基、(xxxxiv)フェニルスルホニル基、(xxxxv)フェニルー低級ア ルキルスルフィニル基、(xxxxvi)フェニルー低級アルキルスルホニルアミノ基 および(xxxxvii)フェニルスルホニルアミノ基は、更に、例えば、低級アルキ ル (例えば、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、 tert-ブチル、ペンチル、ヘキシルなどのC,_。アルキルなど)、低級アルコ キシ(例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、n-ブトキ シ、イソブトキシ、sec-ブトキシ、tert-ブトキシなどのC₁₋₆アルコキシな ど)、ハロゲン原子(例えば、クロル、ブロム、ヨードなど)、ヒドロキシ、ベ ンジルオキシ、アミノ、モノー低級アルキルアミノ(例えば、メチルアミノ、エ チルアミノ、プロピルアミノなどのモノーC₁₋₆アルキルアミノなど)、ジー 低級アルキルアミノ(例えば、ジメチルアミノ、ジエチルアミノなどのジーC、 _ 6 アルキルアミノなど)、ニトロ、低級アルキルーカルボニル(例えば、メチ ルカルボニル、エチルカルボニル、ブチルカルボニルなどのC₁₋₆アルキルー カルボニルなど)、ベンゾイルなどから選ばれた1ないし4個の置換基を有して いてもよい〕などが挙げられる。

上記の「ハロゲン化されていてもよい低級アルキル基」としては、例えば、1 ないし3個のハロゲン原子(例えば、クロル、ブロム、ヨードなど)を有してい

10

15

20

25

てもよい低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシルなどの C_{1-6} アルキル基など)などが挙げられ、具体例としては、メチル、クロロメチル、ジフルオロメチル、トリクロロメチル、トリフルオロメチル、エチル、2 ーブロモエチル、2 、2 、2 ートリフルオロエチル、プロピル、3 、3 、3 ートリフルオロプロピル、ブチル、4 、4 、4 ートリフルオロブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、5 、5 ートリフルオロペンチル、ヘキシル、6 、6 、6 ートリフルオロペンチルなどが挙げられる。

上記の「ハロゲン化されていてもよい低級アルコキシ基」としては、例えば、1ないし3個のハロゲン原子(例えば、クロル、ブロム、ヨードなど)を有していてもよい低級アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシなどの C_{1-6} アルコキシ基など)などが挙げられ、具体例としては、例えばメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、エトキシ、2, 2, 2-トリフルオロエトキシ、10ープロポキシ、イソプロポキシ、11ーである。12ートリフルオロブトキシ、イソプトキシ、13ーである。

上記の「ハロゲン化されていてもよい低級アルキルチオ基」としては、例えば、1ないし3個のハロゲン原子(例えば、0ロル,ブロム,ヨードなど)を有していてもよい低級アルキルチオ基(例えば、メチルチオ、エチルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プナルチオ、0-プナルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プロピルチオ、0-プチルチオ、0-プナルチオ、0-プチルチオなどが挙げられる。

「置換されていてもよいアリール基」の「置換基」として好ましくは、(i) アミノ基、(ii) モノー低級アルキルアミノ基(例えば、メチルアミノ、エチル

10

15

20

25

アミノ、プロピルアミノなどのモノーC₁₋₆アルキルアミノ基など)、(iii) ジー低級アルキルアミノ基(例えば、ジメチルアミノ、ジエチルアミノなどのジ $-C_{1-6}$ アルキルアミノ基など)、(iv)例えば1個の窒素原子以外に窒素原 「子、酸素原子および硫黄原子などから選ばれるヘテロ原子を1ないし3個有して いてもよい5ないし7員環状アミノ基(例えば、ピロリジノ、ピペリジノ、ピペ ラジノ、モルホリノ、チオモルホリノなど)、(v)低級アルキルーカルボニル アミノ基(例えば、アセチルアミノ、プロピオニルアミノ、ブチリルアミノなど のC₁₋₆アルキルーカルボニルアミノ基など)、(vi)アミノカルボニルオキ シ基、(vii)モノー低級アルキルアミノーカルボニルオキシ基(例えば、メチ ルアミノカルボニルオキシ、エチルアミノカルボニルオキシなどのモノーC1-₆ アルキルアミノーカルボニルオキシ基など)、(viii)ジー低級アルキルアミ ノーカルボニルオキシ基(例えば、ジメチルアミノカルボニルオキシ、ジエチル アミノカルボニルオキシなどのジーC1-6アルキルアミノーカルボニルオキシ 基など)、(ix) 低級アルキルスルホニルアミノ基(例えば、メチルスルホニル アミノ、エチルスルホニルアミノ、プロピルスルホニルアミノなどの C_{1-6} ア ルキルスルホニルアミノ基など)、(x)フェニルー低級アルキルアミノ(例え ば、フェニルーメチルアミノ、フェニルーエチルアミノなどのフェニルーC,_-₆ アルキルアミノなど)、(xi)フェニルー低級アルキルスルホニルアミノ基 (例えば、フェニルーメチルスルホニルアミノ、フェニルーエチルスルホニルア ミノなどのフェニルーC₁₋₆アルキルースルホニルアミノ基など)、(xii) フェニルスルホニルアミノ基、(xiii)ハロゲン原子(例えば、フルオロ、クロ ルなど)、(xiv) ハロゲン化されていてもよい低級(例、C₁₋₆) アルキル 基(例えば、メチル、エチル、イソプロピル、tertーブチル、トリフルオロメチ ルなど) および (xv) ハロゲン化されていてもよい低級(例、 C_{1-6})アル コキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、tert-ブトキシ、ト リフルオロメトキシなど)などが挙げられ、特に1個の窒素原子以外に窒素原子、 酸素原子および硫黄原子などから選ばれるヘテロ原子を1ないし3個有していて もよい5ないし7員環状アミノ基(例えば、ピロリジノ、ピペリジノ、ピペラジ ノ、モルホリノ、チオモルホリノなど)などが好ましい。

10

15

20

25

上記式中、Arで示される「置換されていてもよいアリール基」における「アリール基」としては、例えば、フェニル、ナフチルなどの C_{6-14} アリール、好ましくは C_{6-10} アリール、さらに好ましくはフェニルなどが挙げられる。ここで、「置換されていてもよいアリール基」は、「アリール基」における置換基同士が結合して縮合環を形成していてもよく、Arとしてのアリール基(好ましくは、フェニル基)が縮合環を形成する例としては、例えば、

- (1) 置換基を有していてもよい単環式複素環と縮合する場合、
- (2) 置換基を有していてもよい2環式複素環と縮合する、あるいは2つの同一 または異なった単環(但し、少なくとも一方の環が単環式複素環である)と縮合 する場合、および
- (3) 置換基を有していてもよい3環式複素環と縮合する場合などが挙げられる。 「置換されていてもよいアリール基」における「アリール基」が置換基を有していてもよい単環式複素環と縮合する場合の具体例としては、例えば、式:

[式中、B環は置換基を有していてもよい複素環を示し、A環は置換基を有していてもよいベンゼン環を示す]で表される基などが挙げられる。

A環の置換基としては、上記の「置換されていてもよいアリール基」と同様な 置換基などが挙げられる。

B環で表される「置換基を有していてもよい複素環」の「複素環」としては、例えば4ないし14員環、好ましくは5ないし9員環などが用いられ、芳香族、非芳香族のどちらであってもよい。ヘテロ原子としては、例えば窒素原子、酸素原子または硫黄原子などから選ばれる1ないし3個あるいは4個が用いられる。具体的には例えば、ピリジン、ピラジン、ピリミジン、イミダゾール、フラン、チオフェン、ジヒドロピリジン、アゼピン、ジアゼピン、オキサゼピン、ピロリジン、ピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、テトラヒドロフラン、ピペラジン、ホモピペラジン、テトラヒドロオキサゼピン、モルホリン、チオモルホリン、ピロール、ピラゾール、1,2,3ートリアゾール、オキ

10

15

20

25

サゾール、オキサゾリジン、チアゾール、チアゾリジン、イソオキサゾール、イミダゾリンなどが用いられる。特に、1個のヘテロ原子あるいは同一または異なる2個のヘテロ原子を含有する5ないし9員環の非芳香族複素環(例えば、ピロリジン、ピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、テトラヒドロフラン、ピペラジン、ホモピペラジン、テトラヒドロオキサゼピン、モルホリン、チオモルホリンなど)などが好ましい。特に、例えば窒素原子、酸素原子および硫黄原子から選ばれる1個のヘテロ原子を含有する非芳香族複素環や、1個の窒素原子と窒素原子、酸素原子および硫黄原子から選ばれる1個のヘテロ原子を含有する非芳香族複素環などが繁用される。

B環で表される「置換基を有していてもよい複素環」の「置換基」はB環の任 意の炭素原子上に置換していてもよい。B環の任意の炭素原子上への置換基とし ては、例えば(i) ハロゲン原子(例えば、フルオロ、クロル、ブロム、ヨード - など)、(ii) ニトロ基、(iii) シアノ基、(iv) オキソ基、(v) ヒドロキシ基、 (vi) 低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブ チル、イソブチル、tert-ブチル、sec-ブチルなどのC₁₋₆アルキル基など) (vii) 低級アルコキシ基(例えば、メトキシ、エトキシ、n-プロピルオキシ、 iープロピルオキシ、nーブチルオキシなどのC,_。アルコキシ基など)、 (viii) 低級アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ などのC₁₋₆アルキルチオ基など)、(ix)アミノ基、(x)モノー低級アル キルアミノ基(例えば、メチルアミノ、エチルアミノ、プロピルアミノなどのモ ノー C_{1-6} アルキルアミノ基など)、(xi) ジー低級アルキルアミノ基(例 えば、ジメチルアミノ、ジエチルアミノなどのジー C_{1-6} アルキルアミノ基な ど)、(xii)例えば炭素原子と1個の窒素原子以外に窒素原子、酸素原子およ び硫黄原子などから選ばれるヘテロ原子を1ないし3個有していてもよい5ない し7員環状アミノ基(例えば、ピロリジノ、ピペリジノ、ピペラジノ、モルホリ ノ、チオモルホリノなど)、(xiii)低級アルキルーカルボニルアミノ基(例え ば、アセチルアミノ、プロピオニルアミノ、ブチリルアミノなどのC₁₋₆アル キルーカルボニルアミノ基など)、(xiv)低級アルキルスルホニルアミノ基

(例えば、メチルスルホニルアミノ、エチルスルホニルアミノなどの C_{1-6} ア

WO 02/14513 PCT/JP01/06899

ルキルーカルボニルアミノ基など)、(xv)低級アルコキシーカルボニル基 (例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニルな どの C_{1-6} アルコキシーカルボニル基など)、(xvi)カルボキシル基、

95

(xvii) 低級アルキルーカルボニル基 (例えば、メチルカルボニル、エチルカルボニル、プロピルカルボニルなどのC₁₋₆ アルキルーカルボニル基など)、

(xviii)カルバモイル基、(xix)モノー低級アルキルカルバモイル基(例えば、メチルカルバモイル、エチルカルバモイルなどのモノー C_{1-6} アルキルカルバモイル基など)、(xx)ジー低級アルキルカルバモイル基(例えば、ジメチルカルバモイル、ジエチルカルバモイルなどのジー C_{1-6} アルキルカルバモイル基など)、(xxi)低級アルキルスルホニル基(例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニルなどの C_{1-6} アルキルスルホニル基など)などから選ばれた1ないし5個が用いられる。

なかでも、オキソ基、低級アルキル基(例えば、メチル、エチル、プロピル、 イソプロピル、ブチル、イソブチル、tert-ブチル、sec-ブチルなどの C_{1-6} アルキル基など)などが好ましく、オキソ基などが汎用される。

さらに、B環が環中に窒素原子を有する時、その窒素原子上に置換基を有していてもよい。すなわち、B環は環中に、

> N - R¹

5

10

15

20

25

[R¹ は水素原子、置換されていてもよい炭化水素基、置換されていてもよいアシル基または置換されていてもよい複素環基を示す]を有していてもよい。

上記 R^1 で表わされる「置換されていてもよい炭化水素基」の「炭化水素基」は、炭化水素化合物から水素原子を1個除いた基を示し、その例としては、例えばアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基などの鎖状または環状炭化水素基が挙げられる。このうち、鎖状または環状あるいはそれらの組み合わせからなる C_{1-16} 炭化水素基などが好ましく用いられる。

鎖状または環状の炭化水素基としては、

(1) 直鎖状もしくは分枝状の低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、sec-ブチル、ペンチル、

へキシルなどのC₁₋₆アルキル基など)、

- (2) 直鎖状もしくは分枝状の低級アルケニル基(例えば、ビニル、アリル、イソプロペニル、ブテニル、イソブテニル、 \sec -ブテニルなどの C_{2-6} アルケニル基など)、
- 5 (3) 直鎖状もしくは分枝状の低級アルキニル基(例えば、プロパルギル、エチニル、ブチニル、1-ヘキシニルなどのC₂₋₆ アルキニル基など)、
 - (4) 単環式低級シクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどの単環式 C₃₋₆シクロアルキル基など)、
- (5) 架橋環式低級飽和炭化水素基(例えば、ビシクロ〔3.2.1〕オクトー2
 10 ーイル、ビシクロ〔3.3.1〕ノンー2ーイル、アダマンタンー1ーイルなどの 架橋環式C₈₋₁₄飽和炭化水素基など)、または
 - (6) アリール基(例えば、フェニル、1-ナフチル、2-ナフチル、ビフェニル、2-インデニル、2-アンスリルなどの C_{6-14} アリール基など、好ましくはフェニル基など)、
- 15 また、鎖状と環状の組み合わせからなる炭化水素基としては、
 - (1) 低級アラルキル基(例えば、フェニルー C_{1-1} 。アルキル(例えば、ベンジル、フェニルエチル、フェニルプロピル、フェニルブチル、フェニルペンチル、フェニルへキシルなど)、ナフチルー C_{1-6} アルキル(例えば、 α ーナフチルメチルなど)またはジフェニルー C_{1-3} アルキル(例えばジフェニルメチル、ジフェニルエチルなど)などの C_{7-16} アラルキル基)など、
 - (2) アリールーアルケニル基(例えば、スチリル、シンナミル、4-フェニル $-2-ブテニル、<math>4-フェニル-3- ブテニルなどのフェニル-C_{2-12}$ アルケニルなどの C_{6-14} アリールー C_{2-12} アルケニル基など)、
- - (4) 低級シクロアルキルー低級アルキル基(例えば、シクロプロピルメチル、 シクロブチルメチル、シクロペンチルメチル、シクロヘキシルメチル、シクロヘ プチルメチル、シクロプロピルエチル、シクロブチルエチル、シクロペンチルエ

5 .

10

15

20

25

チル、シクロヘキシルエチル、シクロヘプチルエチル、シクロプロピルプロピル、シクロブチルプロピル、シクロペンチルプロピル、シクロヘキシルプロピル、シクロペンチルプロピル、シクロペンチルブチル、シクロペンチルブチル、シクロペンチルブチル、シクロペンチルブチル、シクロペンチル、シクロペンチルペンチル、シクロベンチルペンチル、シクロペンチルペンチル、シクロペンチルペンチル、シクロペンチルペンチル、シクロペンチルペンチル、シクロペンチルペンチル、シクロペンチルペンチル、シクロペンチルペンチル、シクロペンチルペキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロペンチルへキシル、シクロへキシルなどの C_3-7 シクロアルキルー C_1-6 アルキル基),

- (5) Pリールー C_{1-10} Pルキル基(例えばビフェニルメチル、ビフェニル エチルなどのビフェニルー C_{1-10} Pルキル)などが好ましく用いられる。
- R¹で表わされる「置換されていてもよい炭化水素基」の「炭化水素基」の好ましいものとしては、例えば、
- (1) 直鎖状、分枝状あるいは環状のアルキル基、好ましくは直鎖状もしくは分枝状 C_{1-6} アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、sec-ブチル、ペンチル、ヘキシルなどの C_1 -6 アルキル基など)、環状 C_{3-8} アルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなど)、または直鎖状、分枝状あるいは環状の組み合わせからなる C_{4-12} アルキル基(例えば、シクロプロピルメチル、シクロペンチルメチル、シクロヘキシルメチル、シクロヘキシルエチル、
 - (2) C_{7-16} アラルキル基(例えばフェニルー C_{1-10} アルキル(例えば、ベンジル、フェニルエチル、フェニルプロピル、フェニルブチル、フェニルペンチル、フェニルへキシルなど)、ナフチルー C_{1-6} アルキル(例えば、 α ーナフチルメチルなど)またはジフェニルー C_{1-3} アルキル(例えばジフェニルメチル、ジフェニルエチルなど)など)、より好ましくは C_{7-10} アラルキル基(例えば、ベンジル、フェニルエチル、フェニルプロピルなどのフェニルー C_{1-4} アルキルなど)などが繁用される。

R¹ で表わされる「炭化水素基」は置換基を有していてもよく、この様な置換 基としては炭化水素基の置換基として一般に用いられるものなどを適宜用いるこ

10

15

20

25

とができる。具体的には、(i) ハロゲン原子(例えば、フルオロ、クロル、ブ ロム、ヨードなど)、(ii) ニトロ基、(iii) シアノ基、(iv) オキソ基、(v) ヒドロキシ基、(vi)ハロゲンまたはフェニルで置換されていてもよい低級アル キル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチ ル、tert-ブチル、sec-ブチルなどのC₁₋₆アルキル基など)(vii)ハロゲンま たはフェニルで置換されていてもよい低級アルコキシ基(例えば、メトキシ、エ トキシ、nープロピルオキシ、iープロピルオキシ、nーブチルオキシなどのC 1-6 アルコキシ基など)、(viii)ハロゲンまたはフェニルで置換されていて もよい低級アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオな どのC₁₋₆アルキルチオ基など)、(ix)アミノ基、(x)モノー低級アルキ ルアミノ基(例えば、メチルアミノ、エチルアミノ、プロピルアミノなどのモノ -C₁₋₆ アルキルアミノ基など)、(xi) ジー低級アルキルアミノ基(例え ば、ジメチルアミノ、ジエチルアミノなどのジー C_{1-6} アルキルアミノ基な ど)、(xii)例えば炭素原子と1個の窒素原子以外に窒素原子、酸素原子およ び硫黄原子などから選ばれるヘテロ原子を1ないし3個有していてもよい5ない し7員環状アミノ基(例えば、ピロリジノ、ピペリジノ、ピペラジノ、モルホリ ノ、チオモルホリノなど)、(xiii)低級アルキルーカルボニルアミノ基(例え ば、アセチルアミノ、プロピオニルアミノ、ブチリルアミノなどのC₁₋₆アル キルーカルボニルアミノ基など)、(xiy)低級アルキルスルホニルアミノ基 (例えば、メチルスルホニルアミノ、エチルスルホニルアミノなどのC₁₋₆ア ルキルースルホニルアミノ基など)、(xv)低級アルコキシーカルボニル基 (例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニルな どのC、compania アルコキシーカルボニル基など)、(xvi)カルボキシル基、 (xvii)ホルミル、低級アルキルーカルボニル基(例えば、メチルカルボニル、 エチルカルボニル、プロピルカルボニルなどのC1-6アルキルーカルボニル基 など)、(xviii)カルバモイル基、(xix)モノー低級アルキルーカルバモイル 基(例えば、メチルカルバモイル、エチルカルバモイルなどのモノーC, _ 6 ア ルキルーカルバモイル基など)、(xx)ジー低級アルキルーカルバモイル基 (例えば、ジメチルカルバモイル、ジエチルカルバモイルなどのジーC₁₋₆ア

10

15

20

25

ルキルーカルバモイル基など)、(xxi)低級アルキルスルホニル基(例えば、 メチルスルホニル、エチルスルホニル、プロピルスルホニルなどの C_{1-6} アル キルスルホニル基など)、(xxii)低級アルコキシーカルボニルー低級アルキル 基(例えば、メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブ トキシカルボニルメチル、メトキシカルボニルエチル、メトキシカルボニルメチ ル、メトキシカルボニル(ジメチル)メチル、エトキシカルボニル(ジメチル) メチル、tert-ブトキシカルボニル(ジメチル)メチルなどのC₁₋₆アルコキ シーカルボニルーC₁₋₆アルキル基など)、(xxiii)カルボキシルー低級ア ルキル基(例えば、カルボキシルメチル、カルボキシルエチル、カルボキシル (ジメチル) メチルなどのカルボキシルーC₁ 。アルキル基など)、(xxiv) 置換基を有していてもよい複素環基、(xxv)置換基を有していてもよいアルキ ル基、(xxvi)置換基を有していてもよいアルコキシ基、(xxvii)置換基を有 していてもよいウレイド基(例えば、ウレイド、3-メチルウレイド、3-エチルウ レイド、3-フェニルウレイド、3-(4-フルオロフェニル)ウレイド、3-(2-メチルフ ェニル)ウレイド、3-(4-メトキシフェニル)ウレイド、3-(2,4-ジフルオロフェニ ル)ウレイド、3-[3,5-ビス(トリフルオロメチル)フェニル]ウレイド、3-ベンジル ウレイド、3-(1-ナフチル)ウレイド、3-(2-ビフェニリル)ウレイドなど)、 (xxviii) 置換基を有していてもよいチオウレイド基(例えば、チオウレイド、 3-メチルチオウレイド、3-エチルチオウレイド、3-フェニルチオウレイド、3-(4-フルオロフェニル)チオウレイド、3-(4-メチルフェニル)チオウレイド、3-(4-メト キシフェニル)チオウレイド、3-(2,4-ジクロロフェニル)チオウレイド、3-ベンジ ルチオウレイド、3-(1-ナフチル)チオウレイドなど)、(xxix)置換基を有して いてもよいアミジノ基(例えば、アミジノ、 N^1 -メチルアミジノ、 N^1 -エチルア ミジノ、 N^1 -フェニルアミジノ、 N^1 , N^1 -ジメチルアミジノ、 N^1 , N^2 -ジメチルア ミジノ、 N^1 -メチル- N^1 -エチルアミジノ、 N^1 , N^1 -ジエチルアミジノ、 N^1 -メチル $-N^1$ -フェニルアミジノ、 N^1 , N^1 -ジ(4-ニトロフェニル)アミジノなど)、(xxx) 置換基を有していてもよいグアニジノ基(例えば、グアニジノ、3-メチルグアニ ジノ、3,3-ジメチルグアニジノ、3,3-ジエチルグアニジノなど)、(xxxi)置換 基を有していてもよい環状アミノカルボニル基(例えば、ピロリジノカルボニル、

10

15

20

25

ピペリジノカルボニル、(4-メチルピペリジノ)カルボニル、(4-フェニルピペリジ ノ)カルボニル、(4-ベンジルピペリジノ)カルボニル、(4-ベンゾイルピペリジノ) カルボニル、[4-(4-フルオロベンゾイル)ピペリジノ]カルボニル、(4-メチルピペ ラジノ)カルボニル、(4-フェニルピペラジノ)カルボニル、[4-(4-ニトロフェニル) ピペラジノ]カルボニル、(4-ベンジルピペラジノ)カルボニル、モルホリノカルボ ニル、チオモルホリノカルボニルなど)、(xxxii)置換基を有していてもよい アミノチオカルボニル基(例えば、アミノチオカルボニル、メチルアミノチオカ ルボニル、ジメチルアミノチオカルボニルなど)、(xxxiii)置換基を有してい てもよいアミノスルホニル(例えば、アミノスルホニル、メチルアミノスルホニ ル、ジメチルアミノスルホニルなど)、(xxxiv)置換基を有していてもよいフ ェニルスルホニルアミノ (例えば、フェニルスルホニルアミノ、(4-メチルフェ ニル)スルホニルアミノ、(4-クロロフェニル)スルホニルアミノ、(2,5-ジクロロフ ェニル)スルホニルアミノ、(4-メトキシフェニル)スルホニルアミノ、(4-アセチ ルアミノフェニル)スルホニルアミノ、(4-ニトロフェニル)フェニルスルホニルア ミノなど)、(xxxv)スルホ基、(xxxvi)スルフィノ基、(xxxvii)スルフェ ノ基、(xxxviii)C₁₋₆アルキルスルホ基(例えば、メチルスルホ、エチル スルホ、プロピルスルホなど)、(xxxix)C₁₋₆アルキルスルフィノ基(例 えば、メチルスルフィノ、エチルスルフィノ、プロピルスルフィノなど)、 (xxxx) C_{1 - 6} アルキルスルフェノ基(例えば、メチルスルフェノ、エチル スルフェノ、プロピルスルフェノなど)、(xxxxi)ホスホノ基、(xxxxii)ジ-C, _ g アルコキシホスホリル基(例えば、ジメトキシホスホリル、ジエトキシ ホスホリル、ジプロポキシホスホリルなど)、(xxxxiii)C₁₋₄アルキレン ジオキシ(例、一〇一CH。一〇一、一〇一CH。一CH。一〇一など)、 (xxxxiv) ハロゲンで置換されていてもよいフェニルチオ、 (xxxxv) ハロゲン で置換されていてもよいフェノキシなどから選ばれた1ないし5個(好ましくは 1ないし3個)が用いられる。

R¹ で示される「置換されていてもよい炭化水素基」の「置換基」として、好ましくは、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、ヒドロキシ基、ニトロ基、シアノ基、カルボキシル

10

15

20

25

基、 C_{1-6} アルコキシカルボニル基、カルバモイル基、アミノチオカルボニル基、モノー低級アルキルーカルバモイル基、ジー低級アルキルーカルバモイル基、置換基を有していてもよい環状アミノカルボニル基、アミノ基、モノー低級アルキルアミノ基、ジー低級アルキルアミノ基、ジー低級アルキルアミノ基、炭素原子と1個の窒素原子以外に窒素原子、酸素原子および硫黄原子などから選ばれるヘテロ原子を1ないし3個有していてもよい5ないし7員環状アミノ基、 C_{1-6} アルキルカルボニルアミノ基、置換基を有していてもよいフェニルスルホニルアミノ基、 C_{1-6} アルキルスルホニルアミノ基、置換基を有していてもよいアミジノ基、置換基を有していてもよいウレイド基、あるいは置換基を有していてもよい複素環基などが用いられる。

該「置換基を有していてもよい複素環基」の「複素環基」としては、単環式複 素環、2環式複素環、および、3環式または4環式などの多環式複素環から水素 原子を1個除去してできる基などが用いられる。該複素環としては、芳香族、非 芳香族のどちらであってもよい。ヘテロ原子としては、例えば、窒素原子、酸素 原子または硫黄原子などから選ばれる1ないし6個が用いられる。具体的には、 単環式複素環基としては、上記B環で表される「置換基を有していてもよい複素 環」の「複素環」から水素原子を1個除去してできる基などが用いられる。また、 それらに加えて、例えば、トリアゾール、チアジアゾール、オキサジアゾール、 オキサチアジアゾール、トリアジン、テトラゾールなどの単環式複素環から水素 原子を1個除去してできる基なども用いられる。2環式複素環基としては、例え ば、インドール、ジヒドロインドール、イソインドール、ジヒドロイソインドー ル、ベンゾフラン、ジヒドロベンゾフラン、ベンズイミダゾール、ベンズオキサ ゾール、ベンズイソオキサゾール、ベンゾチアゾール、インダゾール、キノリン、 テトラヒドロキノリン、イソキノリン、テトラヒドロイソキノリン、テトラヒド ロ-1H-1-ベンズアゼピン、テトラヒドロ-1H-2-ベンズアゼピン、テトラヒドロ-1H-3-ベンズアゼピン、テトラヒドロベンズオキサゼピン、キナゾリン、テトラ ヒドロキナゾリン、キノキサリン、テトラヒドロキノキサリン、ベンゾジオキサ ン、ベンゾジオキソール、ベンゾチアジン、イミダゾピリジンなどの2環式複素 環から水素原子を1個除去してできる基などが用いられる。3環式または4環式

15

20

25

などの多環式複素環基としては、アクリジン、テトラヒドロアクリジン、ピロロキノリン、ピロロインドール、シクロペントインドール、イソインドロベンズアゼピンなどの多環式複素環から水素原子を1個除去してできる基などが用いられる。

5 該「置換基を有していてもよい複素環基」の「複素環基」としては、特に、上 記単環式複素環あるいは2環式複素環から水素原子を1個除去してできる基など が頻用される。

また、「置換基を有していてもよい複素環基」の「置換基」としては上記B環で表される「置換基を有していてもよい複素環」の「置換基(但し、「置換基を有していてもよい複素環基」を除く)」などが用いられる。

「置換基を有していてもよいアルキル(好ましくは置換基を有していてもよい C_{1-6} アルキル)」あるいは「置換基を有していてもよいアルコキシ(好ましくは置換基を有していてもよい C_{1-6} アルコキシ)」の「置換基」としては、 例えば、上記 R^1 で表される「置換されていてもよい炭化水素基」の「置換基」として挙げられる(i)から(xxiv)または(xxvii)から(xxxxii)に示した「置換基」などが用いられる。

「置換基を有していてもよいウレイド基」、「置換基を有していてもよいチオウレイド基」、「置換基を有していてもよいアミジノ基」、「置換基を有していてもよい環状アミノカルボニル 基」、「置換基を有していてもよいアミノカルボニル基」、「置換基を有していてもよいアミノカルボニル基」、「置換基を有していてもよいフェニル スルホニルアミノスルホニル」、あるいは「置換基を有していてもよいフェニル スルホニルアミノ」の「置換基」としては、例えば、上記 \mathbb{R}^1 で表される「置換されていてもよい炭化水素基」の「置換基」として挙げられる(\mathbb{I})~(xxvi)もしくは(xxxv)~(xxxxii)に示した「置換基」、 \mathbb{C}_{6-14} アリール基(この \mathbb{C}_{6-14} アリール基は、ハロゲン、 \mathbb{C}_{1-6} アルキル基、ハロ \mathbb{C}_{1-6} アルキル基、 \mathbb{C}_{1-6} アルコキシ基およびニトロ基などから選択される置換基を有していてもよい)または \mathbb{C}_{7-16} アラルキル基などが用いられる。

 R^1 で表わされる「置換されていてもよい炭化水素基」として好ましくは、 (i) C_{1-6} アルキル基または (ii) ハロゲン原子、ニトロ、 C_{1-6} アルキル、

10

15

20

25

 C_{1-6} アルコキシなどの置換基で置換されていてもよいフェニルー C_{1-6} アルキル基などが挙げられ、さらに好ましくは、 C_{1-4} アルキル(メチルなど)、トリハロゲノ C_{1-4} アルキル(メチルなど)、ハロゲン原子(フルオロ、クロロなど)、ニトロ、シアノ、 C_{1-4} アルコキシ(メトキシなど)、トリハロゲノ C_{1-4} アルコキシ(メトキシなど)、ヒドロキシ、カルバモイル、(4- C_{1-4} アルコキシ(メチルなど)・1-ピペラジニル)カルボニル、アミノチオカルボニル、モルホリノカルボニル、カルボキシル、 C_{1-4} アルコキシ(メトキシなど)カルボニル、 C_{1-4} アルコキシ(メトキシなど)カルボニル、 C_{1-4} アルコキシ(メトキシなど)カルボニルで(イソプロピルなど)、カルボキシル C_{1-6} アルキル(イソプロピルなど)、カルボキシル C_{1-6} アルキル(イソプロピルなど)、カルボキシル C_{1-6} アルキル(イソプロピルなど)、カルボキシル C_{1-6} アルキル(イソプロピルなど)、アミノ、アセチルアミノ、 C_{1-4} アルキル(メチルなど)フェニル)スルホニルアミノ、ウレイド、 $(4-C_{1-4}$ アルキル(メチルなど)ウレイド、アミジノ、ジヒドロチアゾリルまたはジヒドロイミダゾリルで置換されていてもよいベンジル基などが挙げられる。

なかでも、 R^1 が C_{1-4} アルキル(メチルなど)、トリハロゲノ(フルオロなど) C_{1-4} アルキル(メチルなど)、ハロゲン原子(フルオロ、クロロなど)、ニトロ、シアノ、カルバモイル、 C_{1-4} アルコキシ(メトキシなど)カルボニル、 C_{1-4} アルコキシ(エトキシなど)カルボニル C_{1-4} アルコキシ(メトキシなど)、アミノ、アセチルアミノ、 C_{1-4} アルキル(メチルなど)スルホニルアミノ、3- C_{1-4} アルキル(メチルなど)ウレイド、アミジノ、ジヒドロイミダゾリルで置換されていてもよいベンジル基が好ましく、とりわけ C_{1-4} アルキルで置換されていてもよいベンジル基が好ましい。

上記 R^1 で表される「置換されていてもよいアシル基」としては、例えば、 $-(C=O) - R^2$ b、 $-SO_2 - R^2$ b、 $-SO_2 - R^2$ b、-(C=O) N R^3 b R^2 b、-(C=O) O $-R^2$ b、-(C=S) O $-R^2$ b または-(C=S) N R^3 b R^2 b [R^2 b および R^3 b はそれぞれ同一または異なって、

(i) 水素原子、(ii) 置換基を有していてもよい炭化水素基または(iii) 置換基

10

15

20

25

を有していてもよい複素環基を示すか、R² ° とR³ ° は互いに結合して隣接する窒素原子と共に置換基を有していてもよい含窒素飽和複素環基を形成してもよい。などが挙げられる。

このうち好ましくは、 $-(C=O) - R^{2b}$ 、 $-SO_2 - R^{2b}$ 、 $-SO-R^{2b}$ 、-(C=O) NR^{3b} R^{2b} または-(C=O) O -(C=O) O -(C=O) NR^{3b} R^{2b} であり、なかでも-(C=O) -(C=O) であり、なかでも-(C=O) NR^{3b} R^{2b} (R^{2b} およびR^{3b} は上記と同意義)が汎用される。

 R^2 。および R^3 。で示される「置換基を有していてもよい炭化水素基」の「炭化水素基」は、炭化水素化合物から水素原子を1個取り除いた基を示し、その例としては、例えばアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基などの鎖状または環状炭化水素基が挙げられる。具体的には、上記の R^1 で示された「置換されていてもよい炭化水素基」の「炭化水素基」と同様な基が挙げられ、なかでも鎖状または環状 C_{1-16} 炭化水素基などが好ましく、特に、低級(C_{1-6})アルキル基、低級(C_{2-6})アルケニル基、 C_{7-16} アラルキル基または C_{6-14} アリール基が好ましい。なかでも低級(C_{1-6})アルキル基、 C_{7-16} アラルキル基または C_{6-14} アリール基が汎用される。

R² ^b およびR³ ^b で示される「置換基を有していてもよい複素環基」の「複素環基」としては、単環式複素環、2環式複素環、および、3環式または4環式などの多環式複素環から水素原子を1個除去してできる基などが用いられる。該複素環としては、芳香族、非芳香族のどちらであってもよい。ヘテロ原子としては、例えば、窒素原子、酸素原子または硫黄原子などから選ばれる1ないし6個が用いられる。具体的には、単環式複素環基としては、上記B環で表される「置換基を有していてもよい複素環」の「複素環」から水素原子を1個除去してできる基などが用いられる。また、それらに加えて、例えば、トリアゾール、チアジアゾール、オキサジアゾール、オキサチアジアゾール、トリアジン、テトラゾールなどの単環式複素環から水素原子を1個除去してできる基なども用いられる。2環式複素環基としては、例えば、インドール、ジヒドロインドール、イソインドール、ジヒドロイソインドール、ベンブフラン、ジヒドロベンブフラン、ベン

10

15

20

25

ズイミダゾール、ベンズオキサゾール、ベンズイソオキサゾール、ベンゾチアゾール、インダゾール、キノリン、テトラヒドロキノリン、イソキノリン、テトラヒドロ-1H-1・ベンズアゼピン、テトラヒドロ-1H-2・ベンズアゼピン、テトラヒドロ-1H-3・ベンズアゼピン、テトラヒドロ・オーカーン、テトラヒドロキナゾリン、キノキサリン、テトラヒドロキノリン、オーサゼピン、キナゾリン、テトラヒドロキナゾリン、キノキサリン、イミダゾピリジンなどの2環式複素環から水素原子を1個除去してできる基などが用いられる。3環式または4環式などの多環式複素環基としては、アクリジン、テトラヒドロアクリジン、ピロロキノリン、ピロロインドール、シクロペントインドール、イソインドロベンズアゼピンなどの多環式複素環から水素原子を1個除去してできる基などが用いられる。

該「置換基を有していてもよい複素環基」の「複素環基」としては、特に、上 記単環式複素環あるいは2環式複素環から水素原子を1個除去してできる基など が頻用される。

R² b とR³ b が隣接する窒素原子と共に形成してもよい「置換基を有していてもよい含窒素飽和複素環基」としては、炭素原子および1個の窒素原子以外に、例えば窒素原子,酸素原子および硫黄原子などのヘテロ原子を1ないし3個を含有していてもよい5ないし9員の含窒素飽和複素環基などが用いられる。これらの含窒素飽和複素環基としては環構成窒素原子に結合手を有する基などが好ましい。環構成窒素原子に結合手を有する基としては、例えば、式:

[式中、Q¹ 環は炭素原子と1個の窒素原子以外に窒素原子、酸素原子および硫 黄原子などから選ばれるヘテロ原子を1ないし2個含有していてもよい5ないし 9員の含窒素飽和複素環基を示す]で表わされる基などが用いられる。より具体 的には、例えば、

などが繁用される。

5

10

15

20

R² b およびR³ b で示される「炭化水素基」または「複素環基」、NR³ b R² b で示される「含窒素飽和複素環基」が有していてもよい好ましい置換基に は、例えば、(i) ハロゲン原子(例えば、フルオロ、クロル、ブロム、ヨード など)、(ii) ニトロ基、(iii) シアノ基、(iv) オキソ基、(v) ヒドロキシ基、 (vi) 置換基を有していてもよい炭化水素基、(vii) フェニル基で置換されて いてもよい低級アルコキシ基(例えば、メトキシ、エトキシ、nープロピルオキ シ、iープロピルオキシ、nーブチルオキシなどのC, _ g アルコキシ基など)、 (viii) フェニル基で置換されていてもよい低級アルキルチオ基(例えば、メチ ルチオ、エチルチオ、プロピルチオなどのC₁₋₆アルキルチオ基など)、 (ix) アミノ基、(x) モノー低級アルキルアミノ基(例えば、メチルアミノ、 エチルアミノ、プロピルアミノなどのモノーC1-6アルキルアミノ基など)、 (xi) ジー低級アルキルアミノ基(例えば、ジメチルアミノ、ジエチルアミノ などのジーC₁₋₆アルキルアミノ基など)、(xii)例えば炭素原子と1個の 窒素原子以外に窒素原子、酸素原子および硫黄原子などから選ばれるヘテロ原子 を1ないし3個有していてもよい5ないし7員環状アミノ基(例えば、ピロリジ ノ、ピペリジノ、ピペラジノ、モルホリノ、チオモルホリノなど)、(xiii) 低 級アルキルーカルボニルアミノ基(例えば、アセチルアミノ、プロピオニルアミ ノ、ブチリルアミノなどのC₁₋₆アルキルーカルボニルアミノ基など)、 (xiv) 低級アルキルースルホニルアミノ基(例えば、メチルスルホニルアミノ、

エチルスルホニルアミノなどのC₁₋₆ アルキルースルホニルアミノ基など)、

WO 02/14513 PCT/JP01/06899

5

10

15

20

25

(xv) 低級アルコキシーカルボニル基(例えば、メトキシカルボニル、エトキ シカルボニル、プロポキシカルボニルなどのC1-6アルコキシーカルボニル基 など)、(xvi)カルボキシル基、(xvii)低級アルキルーカルボニル基(例え ば、メチルカルボニル、エチルカルボニル、プロピルカルボニルなどの C1-6 アルキル-カルボニル基など)、(xviii)カルバモイル基、(xix)モノー低級 アルキルーカルバモイル基(例えば、メチルカルバモイル、エチルカルバモイル などのモノー C_{1-6} アルキルーカルバモイル基など)、(xx)ジー低級アル キルーカルバモイル基(例えば、ジメチルカルバモイル、ジエチルカルバモイル などのジーC₁₋₆アルキルーカルバモイル基など)、(xxi)低級アルキルス ルホニル基(例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニ ルなどのC₁₋₆アルキルスルホニル基など)(xxii)低級アルコキシーカルボ ニルー低級アルキル基(例えば、メトキシカルボニルメチル、エトキシカルボニ ルメチル、tert-ブトキシカルボニルメチル、メトキシカルボニルエチル、メト キシカルボニルメチル、メトキシカルボニル(ジメチル)メチル、エトキシカル ボニル (ジメチル) メチル、tert-ブトキシカルボニル (ジメチル) メチルなど の C_{1-6} アルコキシーカルボニルー C_{1-6} アルキル基など)、(xxiii)カ ルボキシルー低級アルキル基(例えば、カルボキシルメチル、カルボキシルエチ ル、カルボキシル (ジメチル) メチルなどのカルボキシルー С 1 - 6 アルキル基 など)、(xxiv)置換基を有していてもよい複素環基、(xxv)ハロゲンで置換 されていてもよいフェニルチオ、(xxvi)ハロゲンで置換されていてもよいフェ ノキシなどから選ばれた1ないし5個(好ましくは1ないし3個)が用いられる。 該「低級アルコキシ基」、「低級アルキルチオ基」は更にフェニル基を置換基 として有していてもよい。

該「置換基を有していてもよい炭化水素基」の「置換基」および「炭化水素 基」としては、上記R¹で表わされる「置換されていてもよい炭化水素基」の 「置換基」および「炭化水素基」等が用いられる。

該「置換基を有していてもよい複素環基」の「複素環基」としては、上記B環で表される「置換基を有していてもよい複素環」の「複素環」から水素原子を1個除去してできる基などが用いられる。

WO 02/14513

5

10

15

20

25

また、「置換基を有していてもよい複素環基」の「置換基」としては上記B環で表される「置換基を有していてもよい複素環」の「置換基(但し、「置換基を有していてもよい複素環基」を除く)」などが用いられる。

 R^{2} b、 R^{3} b として、好ましくは、 C_{1-4} アルキル(メチル、エチルなど)または C_{1-4} アルコキシ(メトキシ、エトキシなど)で置換されていてもよいフェニル、 C_{1-4} アルキル(メチル、エチルなど)、 ハロゲノ(フルオロ、クロロなど) C_{1-4} アルキル(メチル、エチルなど)、ベンジル、ナフチル、ピリジル、チエニル、フリルまたは水素原子などが挙げられる。

上記 R^1 で表される「置換されていてもよいアシル基」として、好ましくは、ホルミル、アセチル、トリハロゲノ(フルオロなど)アセチル、ピリジルカルボニル、チェニルカルボニル、フリルカルボニル、フェナシル、ベンゾイル、 C_1 4 アルキル(メチルなど)ベンゾイル、 C_{1-4} 7 アルコキシ(メトキシなど)ベンゾイル、ベンゼンスルホニル、ナフチルスルホニル、チェニルスルホニルなどが挙げられ、より好ましくは、 $-(C=O)-R^2$ 6 [式中、 R^2 6 は C_1 6 アルキル基、 C_{1-6} 7 アルコキシ基で置換されていてもよいフェニル基またはフェニル $-C_{1-6}$ 7 アルキル基を示す]などが挙げられる。

R¹で表わされる「置換されていてもよい複素環基」の「複素環基」としては、 単環式複素環、2環式複素環、および、3環式または4環式などの多環式複素環 から水素原子を1個除去してできる基などが用いられる。該複素環としては、芳 香族、非芳香族のどちらであってもよい。ヘテロ原子としては、例えば、窒素原 子、酸素原子または硫黄原子などから選ばれる1ないし6個が用いられる。具体 的には、単環式複素環基としては、上記B環で表される「置換基を有していても よい複素環」の「複素環」から水素原子を1個除去してできる基などが用いられ る。また、それらに加えて、例えば、トリアゾール、チアジアゾール、オキサジ アゾール、オキサチアジアゾール、トリアジン、テトラゾールなどの単環式複素 環から水素原子を1個除去してできる基なども用いられる。 2環式複素環基とし ては、例えば、インドール、ジヒドロインドール、イソインドール、ジヒドロイ ソインドール、ベンゾフラン、ジヒドロベンゾフラン、ベンズイミダゾール、ベ ンズオキサゾール、ベンズイソオキサゾール、ベンゾチアゾール、インダゾール、ベ WO 02/14513 PCT/JP01/06899

キノリン、テトラヒドロキノリン、イソキノリン、テトラヒドロイソキノリン、テトラヒドロ-1H-1-ベンズアゼピン、テトラヒドロ-1H-2-ベンズアゼピン、テトラヒドロ-1H-3-ベンズアゼピン、テトラヒドロベンズオキサゼピン、キナゾリン、テトラヒドロキナゾリン、キノキサリン、テトラヒドロキノキサリン、ベンゾジオキサン、ベンゾジオキソール、ベンゾチアジン、イミダゾピリジンなどの2環式複素環から水素原子を1個除去してできる基などが用いられる。3環式または4環式などの多環式複素環基としては、アクリジン、テトラヒドロアクリジン、ピロロキノリン、ピロロインドール、シクロペントインドール、イソインドロベンズアゼピンなどの多環式複素環から水素原子を1個除去してできる基などが用いられる。

該「置換基を有していてもよい複素環基」の「複素環基」としては、特に、上 記単環式複素環あるいは2環式複素環から水素原子を1個除去してできる基など が頻用され、なかでもピリジル基が好ましい。

また、「置換基を有していてもよい複素環基」の「置換基」としては上記B環で表される「置換基を有していてもよい複素環」の「置換基(但し、「置換基を有していてもよい複素環基」を除く)」および上記R¹で表される「置換されていてもよい炭化水素基」の「置換基」などが用いられる。

 R^1 として好ましくは、例えば、(i)水素原子、(ii) C_{1-6} アルキル基、(iii)ハロゲン原子、ニトロ、 C_{1-6} アルキルまたは C_{1-6} アルコキシで置換されていてもよいフェニルー C_{1-6} アルキル基または(iv)-(C=O)- R^2 b [式中、 R^2 b は C_{1-6} アルキル基、 C_{1-6} アルコキシ基で置換されていてもよいフェニル基またはフェニルー C_{1-6} アルキル基を示す]などが挙げられる。

「置換されていてもよいアリール基」の「アリール基」が置換基を有していて もよい単環式複素環と縮合する場合のより具体的な例としては、式:

5

10

15

20

25

で表される単環式複素環と縮合したフェニル基として、例えば、2,3ージヒド

uベンゾフラン:3,4-ジヒド<math>u-2H-1-ベンゾチオピラン:2,3-ジ ヒドロー1Hーインドール; 1,2,3,4ーテトラヒドロキノリン; 2,3ージヒ ドロー1Hーイソインドール; 1,2,3,4ーテトラヒドロイソキノリン; 2,3,4.5-テトラヒドロー1H-1-ベンズアゼピン、2.3.4.5-テトラヒドロ -1H-2-ベンズアゼピン、2,3,4,5-テトラヒドロ-1H-3-ベンズア5 ゼピン等のベンズアゼピン: 1,2,3,4,5,6 - 0シン、1,2,3,4,5,6 - へキサヒドロ -2 - ベンズアゾシン、1,2,3,4,5,6ーヘキサヒドロー3ーベンズアゾシンなどのベンズアゾシン:2.3.4.5.6.7 -ヘキサヒドロ-1H-1-ベンズアゾニン、2,3,4,5,6,7-ヘキサヒドロ -1H-2-4ンズアゾニン、2,3,4,5,6,7--4+サヒドロ-1H-3-410 ンズアゾニン、2.3.4.5.6.7 ーヘキサヒドロー1H-4 ーベンズアゾニンな どのベンズアゾニン:2、3-ジヒドロベンズオキサゾール等のベンズオキサゾ ール; 2, 3-ジヒドロベンゾチアゾール等のベンゾチアゾール; 2, 3-ジヒ ドロー1H-ベンズイミダゾール等のベンズイミダゾール:3,4-ジヒドロー 1H-2, 1-415 キサジン、3,4-ジヒドロ-2H-1,2-ベンズオキサジン、3,4-ジヒ ドロー2H-1、4ーベンズオキサジン、3、4ージヒドロー2H-1、3ーベ ンズオキサジン、3,4-ジヒドロ-2H-3,1-ベンズオキサジン等のベン ズオキサジン: 3, 4-ジヒドロ-1H-2, 1-ベンゾチアジン、3, 4-ジ ヒドロー1H-2, 3-ベンゾチアジン、3, 4-ジヒドロー2H-1, 2-ベ 20 ンゾチアジン、3, 4-ジヒドロ-2H-1, 4-ベンゾチアジン、3, 4-ジ ヒドロ-2H-1, 3-ベンゾチアジン、3, 4-ジヒドロ-2H-3. 1-ベ ンゾチアジン等のベンゾチアジン;1,2,3,4-テトラヒドロシンノリン、 1, 2, 3, 4ーテトラヒドロフタラジン、1, 2, 3, 4ーテトラヒドロキナ ゾリン、1,2,3,4-テトラヒドロキノキサリン等のベンゾジアジン;3, 25 4-ジヒドロー1、2ーベンズオキサチイン、3、4ージヒドロー2、1ーベン ズオキサチイン、2, 3-ジヒドロ-1, 4-ベンズオキサチイン、1, 4-ジ ヒドロー2, 3-ベンズオキサチイン、4H-1, 3-ベンズオキサチイン、4 H-3.1-ベンズオキサチイン等のベンズオキサチイン;3,4-ジヒドロー

1. 2 - ベンゾジオキシン、2. 3 - ジヒドロー1. 4 - ベンゾジオキシン、1, 4-ジヒドロ-2, 3-ベンゾジオキシン、4H-1, 3-ベンゾジオキシン等 のベンゾジオキシン;3,4ージヒドロー1,2ーベンズジチイン、2,3ージ ヒドロー1、4ーベンズジチイン、1、4ージヒドロー2、3ーベンズジチイン、 4H-1, 3-ベンズジチイン等のベンズジチイン; 2, 3, 4, 5-テトラヒ5 ドロ-1, 2-ベンズオキサゼピン、2, 3, 4, 5-テトラヒドロ-1, 3-ベンズオキサゼピン、2,3,4,5-テトラヒドロ-1,4-ベンズオキサゼ ピン、2, 3, 4, 5-テトラヒドロー1, 5-ベンズオキサゼピン、1, 3, 4.5- 7ヒドロ-2、3-ベンズオキサゼピン、1、3、4、5-テトラヒドロ-2、4 10 ーベンズオキサゼピン、1,2,4,5ーテトラヒドロー3,1ーベンズオキサ ゼピン、1,2,4,5ーテトラヒドロー3,2ーベンズオキサゼピン、1,2, 3. 5ーテトラヒドロー4. 1ーベンズオキサゼピン等のベンズオキサゼピン; 2、3、4、5-テトラヒドロ-1、2-ベンゾチアゼピン、2、3、4、5-15 テトラヒドロー1, 4 -ベンゾチアゼピン、2, 3, 4, 5 - テトラヒドロー1, 5ーベンゾチアゼピン、1,3,4,5ーテトラヒドロー2,1ーベンゾチアゼ ピン、1, 3, 4, 5-テトラヒドロ-2, 4-ベンゾチアゼピン、1, 2, 4, 5-テトラヒドロ-3, 1-ベンゾチアゼピン、1, 2, 4, 5-テトラヒドロ -3, 2-4チアゼピン等のベンゾチアゼピン; 2, 3, 4, 5-テトラヒドロー1H-1, 20 2-ベンゾジアゼピン、2, 3, 4, 5-テトラヒドロー<math>1H-1, 3-ベンゾジアゼピン、2,3,4,5ーテトラヒドロー1H-1,4ーベンゾジアゼピン、 2, 3, 4, 5-テトラヒドロ-1H-1, 5-ベンゾジアゼピン、2, 3, 4, 5-テトラヒドロー1H-2, 3-ベンゾジアゼピン、2, 3, 4, 5-テトラ 25 ヒドロー1H-2, 4-ベンゾジアゼピン等のベンゾジアゼピン;4,5-ジヒ ドロー1、3-ベンゾジオキセピン、4、5-ジヒドロー3H-1、2-ベンゾ ジオキセピン、2,3-ジヒドロ-5H-1,4-ベンゾジオキセピン、3,4 -ジヒドロ-2H-1. 5 -ベングジオキセピン、4, 5 -ジヒドロ-1H-2, 3-ベンゾジオキセピン、1,5-ジヒドロ-2,4-ベンゾジオキセピン等の

10

15

20

25

ベンゾジオキセピン; 4, 5 - ジヒドロー1 H - 2, 3 - ベンゾチエピン、1, 5-ジヒドロ-2, 4-ベンゾジチエピン、3, 4-ジヒドロ-2H-1.5-ベンゾジチエピン、2,3ージヒドロー5H-1,4-ベンゾジチエピン等のベ ンゾジチエピン;3,4,5,6ーテトラヒドロー2H-1,5ーベンズオキサ ゾシン、3、4、5、6ーテトラヒドロー2H-1, 6ーベンズオキサゾシン等 のベンズオキサゾシン; 3, 4, 5, 6-テトラヒドロー2H-1, 5-ベンゾ チアゾシン、3、4、5、6ーテトラヒドロー2H-1、6ーベンゾチアゾシン 等のベンゾチアゾシン;1,2,3,4,5,6-ヘキサヒドロ-1,6-ベン ゾジアゾシン等のベンゾジアゾシン;2,3,4,5ーテトラヒドロー1,6-ベンズオキサチオシン等のベンズオキサチオシン:2,3,4,5ーテトラヒド u-1, 6-ベンゾジオキソシン等のベンゾジオキソシン; 1, 3, <math>5-ベンゾトリオキセピン、5H-1,3,4-ベンゾトリオキセピン等のベンゾトリオキ セピン: 3、4-ジヒドロ-1H-5、2、1-ベンズオキサチアゼピン、3、 $4-\mathcal{Y}$ ヒドロ-2H-5, 1, $2-\mathcal{Y}$ ズオキサチアゼピン、4, $5-\mathcal{Y}$ ヒドロ -3, 1, 4-4ーベンズオキサチアゼピン等のベンズオキサチアゼピン:2,3,4,5ーテト ラヒドロー1.3.4ーベンズオキサジアゼピン等のベンズオキサジアゼピン; 2. 3. 4. 5ーテトラヒドロー1, 3, 5ーベンズチアジアゼピン等のベンズ チアジアゼピン: 2, 3, 4, 5ーテトラヒドロー1H-1, 2, 5ーベンゾト リアゼピン等のベンゾトリアゼピン;4、5-ジヒドロー1、3、2-ベンゾオ キサチエピン、4,5-ジヒドロ-1H-2,3-ベンズオキサチエピン、3, 4-ジヒドロ-2H-1, 5-ベンズオキサチエピン、4, 5-ジヒドロ-3H -1, 2-ベンズオキサチエピン、4, 5-ジヒドロ-3H-2, 1-ベンズオ キサチエピン、2,3-ジヒドロ-5H-1,4-ベンズオキサチエピン、2, 3-ジヒドロ-5H-4, 1-ベンズオキサチエピンなど、とりわけ 2, 3, 4, 5ーテトラヒドロー1H-3-ベンズアゼピン、2,3,4,5-テトラヒドロー1H-2 ーベンズアゼピン、2,3 ージヒドロ-1 Hーインドール、2,3,4,5 ーテ トラヒドロー1.4ーベンズオキサゼピンなどの2環式縮合ベンゼン環から水素 原子を1個除去してできる基などが挙げられる。

10

15

「置換されていてもよいアリール基」の「アリール基」が置換基を有していて もよい単環式複素環と縮合する場合の好ましい例としては、例えば、式:

[式中、B'環はR¹以外にオキソ基で置換されていてもよい5ないし9員の含窒素複素環を示し、A環およびR¹は上記と同意義を示す〕で表される基などが挙げられる。

該「オキソ基で置換されていてもよい5ないし9員の含窒素複素環」の「5ないし9員の含窒素複素環」としては、炭素原子および1個の窒素原子以外に、例えば窒素原子、酸素原子および硫黄原子などのヘテロ原子を1ないし3個を含有していてもよい5ないし9員の含窒素複素環基などが挙げられ、5ないし9員の非芳香族含窒素複素環(例えば、ピロリジン、ピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ピペラジン、ホモピペラジン、テトラヒドロオキサゼピン、モルホリン、チオモルホリンなど)などが好ましく用いられる。「置換されていてもよいアリール基」の「アリール基」が置換基を有していてもよい単環式複素環と縮合する場合のより好ましい例としては、

[式中、A環および R^1 は上記と同意義を示し、k およびmはそれぞれ独立して、 $0\sim5$ の整数を示し、1< k+m<5 である。] で表される基の他に、

[式中、R¹ は上記と同意義を示す。] で表される基などが挙げられ、特に好ましい例としては、

$$R^1$$

10

5 [式中、A環およびR¹ は上記と同意義を示す。] で表される基の他に、

$$R^1$$

[式中、R¹ は上記と同意義を示す。] で表される基などが挙げられる。

Arで示される「置換されていてもよいアリール基」の「アリール基」が置換基を有していてもよい2環式複素環と縮合する場合あるいは2つの同一または異なった単環(但し、少なくとも一方の環が単環式複素環である)と縮合する場合の具体例としては、例えば、式:

[式中、A環は上記と同意義を示し、C環およびD環は一方が置換基を有していてもよい複素環で、他方が置換基を有していてもよく、ヘテロ原子を含んでいて

10

15 -

20

25

もよい5ないし9員環を示す]で表される基などが挙げられる。

C環およびD環で表される「置換基を有していてもよい複素環」の「複素環」としては、例えば4ないし14員の複素環、好ましくは5ないし9員複素環などが用いられ、ヘテロ原子としては、例えば窒素原子、酸素原子または硫黄原子などから選ばれる1ないし3個が用いられる。また、芳香族、非芳香族どちらでもよい。具体的には例えば、ピリジン、ピラジン、ピリミジン、イミダゾール、フラン、チオフェン、ジヒドロピリジン、ジアゼピン、オキサゼピン、ピロリジン、ピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、テトラヒドロフラン、ピペラジン、ホモピペラジン、テトラヒドロオキサゼピン、モルホリン、チオモルホリンなどが用いられる。

「置換基を有していてもよい複素環」の「置換基」は上記B環で表される「置換基を有していてもよい複素環」の「置換基」と同意義を示す。

C環およびD環で表される「置換基を有していてもよく、ヘテロ原子を含んでいてもよい5ないし9員環」の「ヘテロ原子を含んでいてもよい5ないし9員環」としては5ないし9員複素環(例えば、ピリジン、ピラジン、ピリミジン、イミダゾール、フラン、チオフェン、ジヒドロピリジン、ジアゼピン、オキサゼピン、ピロリジン、ピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、テトラヒドロフラン、ピペラジン、ホモピペラジン、テトラヒドロオキサゼピン、モルホリン、チオモルホリンなどの飽和または不飽和の5ないし9員複素環)または5ないし9員炭素環が用いられる。該「5ないし9員炭素環」は飽和または不飽和の環であってもよく、例えば、ベンゼン、シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン、シクロヘキサジエン、シクロヘプタン、シクロヘプテン、シクロヘプタジエンなどが用いられる。なかでも、ベンゼンまたはシクロヘキサンなどが好ましい。

「置換基を有していてもよく、ヘテロ原子を含んでいてもよい5ないし9員環」の「置換基」としては上記B環で表される「置換基を有していてもよい複素環」の「B環の任意の炭素原子上への置換基」と同意義を示す。

Arで示される「置換されていてもよいアリール基」の「アリール基」が置換 基を有していてもよい2環式複素環と縮合する場合のより具体的な例としては、

(1) 式:

5

10

15

20

で表される2環式複素環と縮合したフェニル基として、例えばカルバゾール、1. 2,3,4,4a,9a - ヘキサヒドロカルバゾール、9,10 - ジヒドロアクリジン、 1,2,3,4-テトラヒドロアクリジン、10,11-ジヒドロ-5H-ジベンズ [b,f] $P \neq f = 0$, [b,g] $P \neq 0$, [b,g] $P \neq 0$, [b,g] [b,g] [b,g] [b,g] [b,g]1-ジヒドロ-5H-ジベンズ [b,e] アゼピン、<math>6,7-ジヒドロ-5H-ジベンズ [c,e] アゼピン、5,6,11,12-テトラヒドロジベンズ [b,f] アゾシン、 ジベンゾフラン、9Hーキサンテン、10,11ージヒドロジベンズ [b,f] オキ セピン、6,11 ージヒドロジベンズ [b,e] オキセピン、6,7 ージヒドロー5 H ージベンズ [b.g] オキソシン、ジベンゾチオフェン、9Hーチオキサンテン、 10,11-ジヒドロジベング〔b,f〕チエピン、6,11-ジヒドロジベング [b,e] チエピン、6,7-ジヒドロ-5H-ジベンゾ [b,g] チオシン、10H-フェノチアジン、10H-フェノキサジン、5,10-ジヒドロフェナジン、1 0,11-ジベング [b,f] [1,4] チアゼピン、<math>10,11-ジヒドロジベンズ [b,f] [1,4] $\forall x + y \neq y \neq y = 0$, 2,3,5,6,11,11a $- x + y \neq y \neq y = 0$ ピロロ[2,1-b] [3] ベンズアゼピン、10,11-ジヒドロ-5H-ジベ ンゾ [b,e] [1,4] ジアゼピン、[5,1] [1,4]オキサゼピン、5,11-ジヒドロジベンゾ [b,f] [1,4] チアゼピン、10,11ージヒドロー5Hージベング [b,e] [1,4] ジアゼピン、1,2,3,3 a,8,8 a - ヘキサヒドロピロロ [2,3-b] インドールなどの 3 環式縮合ベンゼン環 から水素原子を1個除去してできる基、

(2) 式:

10

15

20

25

で表される 2 環式複素環と縮合したフェニル基として、例えば 1 H, 3 Hーナフト [1,8 - cd] [1,2] オキサジン、ナフト [1,8 - de] -1,3 - オキサジン、ナフト [1,8 - de] -1,2 - オキサジン、1,2,2 a,3,4,5 - ヘキサヒドロベンズ [cd] インドール、2,3,3 a,4,5,6 - ヘキサヒドロー1 Hーベング [de] キノリン、4 Hーピロロ [3,2,1 - ij] キノリン、1,2,5,6 - テトラヒドロー4 Hーピロロ [3,2,1 - ij] キノリン、5,6 - ジヒドロー4 Hーピロロ [3,2,1 - ij] キノリン、5,6 - ジヒドロー4 Hーピロロ [3,2,1 - ii] キノリン、1 H,5 Hーベング [ij] キノリジン、アゼピノ [3,2,1 - hi] インドール、1,2,4,5,6,7 - ヘキサヒドロアゼピノ [3,2,1 - hi] インドール、1 Hーピリド [3,2,1 - jk] [1] ベンズアゼピン、5,6,7,8 - テトラヒドロー1 Hーピリド [3,2,1 - jk] [1] ベンズアゼピン、1,2,5,6,7,8 - ヘキサヒドロー1 Hーピリド [3,2,1 - jk] [1] ベンズアゼピン、2,3 - ジヒドロー1 Hーベンズ [de] イソキノリン、1,2,3,4,4 a,5,6,7 - オクタヒドロナフト [1,8 - bc] アゼピン、2,3,5,6,7,8 - ヘキサヒドロー1 Hーピリド [3,2,1 - jk] [1] ベンズアゼピンなどの3環式縮合ベンゼン環から水素原子を1 個除去してできる基、

(3) 式:

で表わされる2つの同一または異なった単環(但し、少なくとも一方の環が単環式複素環である)と縮合したフェニル基として、例えば1,2,3,5,6,7-へキサヒドロベング [1,2-b:4,5-b'] ジピロール、1,2,3,5,6,7-へキサヒドロシクロペント [f] インドールなどの3環式縮合ベンゼン環から水素原子を1個除去してできる基、または

(4) 式:

で表される2つの同一または異なった環(但し、少なくとも一方の環が単環式複

10

15

素環である)と縮合したフェニル基として、例えば1,2,3,6,7,8-ヘキサヒドロシクロペント [e] インドール、2,3,4,7,8,9-ヘキサヒドロー1H-シクロペンタ [f] キノリンなどの3環式縮合ベンゼン環から水素原子を1個除去してできる基などが挙げられる。

Arで示される「置換されていてもよいアリール基」の「アリール基」が置換 基を有していてもよい2環式複素環と縮合する場合の好ましい例としては、例え ば、式:

[式中、C'環およびD'環はそれぞれR¹ 以外にオキソ基で置換されていてもよい5ないし9員含窒素複素環を示し、A環、D環およびR¹ は上記と同意義を示す]で表される基などが挙げられる。

該「オキソ基で置換されていてもよい5ないし9員の含窒素複素環」の「5ないし9員の含窒素複素環」としては、炭素原子および1個の窒素原子以外に、例えば窒素原子、酸素原子および硫黄原子などのヘテロ原子を1ないし3個を含有していてもよい5ないし9員の含窒素複素環基などが挙げられ、5ないし9員の非芳香族含窒素複素環 (例えば、ピロリジン、ピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ピペラジン、ホモピペラジン、テトラヒドロオキサゼピン、モルホリン、チオモルホリンなど)などが好ましく用いられる。

Arで示される「置換されていてもよいアリール基」の「アリール基」が置換 20 基を有していてもよい2環式複素環と縮合する場合のより好ましい例としては、 式:

10

15

20

[式中、R¹ は上記と同意義を示す]で表される基などが挙げられる。

「置換基を有していてもよく、縮合していてもよいフェニル基」の「フェニル 基」が置換基を有していてもよい3環式複素環と縮合する場合の具体例としては、 例えば、式:

[式中、A環は上記と同意義を示し、E環、F環およびG環のうち少なくとも一つの環が置換基を有していてもよい複素環であって、その他の環が置換基を有していてもよく、ヘテロ原子を含んでいてもよい5ないし9員環を示す]で表される基などが挙げられる。

E環、F環およびG環で表される「置換基を有していてもよい複素環」の「複素環」および「置換基」としては、上記C環、D環で表される「置換基を有していてもよい複素環」の「複素環」および「置換基」などが用いられる。

E環、F環およびG環で表される「置換基を有していてもよく、ヘテロ原子を含んでいてもよい5ないし9員環」の「ヘテロ原子を含んでいてもよい5ないし9員環」および「置換基」としては、上記C環、D環で表される「置換基を有していてもよく、ヘテロ原子を含んでいてもよい5ないし9員環」の「ヘテロ原子を含んでいてもよい5ないし9員環」などが用いられる。

「置換基を有していてもよく、縮合していてもよいフェニル基」の「フェニル 基」が置換基を有していてもよい3環式複素環と縮合する場合のより具体的な例 としては、(1)式:

WO 02/14513

5

10

15

20

25

で表される3環式複素環と縮合したフェニル基 [E'環、F'環の定義は後述] と しては、例えば、2H-イソインドロ[2,1-e]プリン、1H-ピラゾロ[4',3': 3, 4] $\forall \forall \forall i [2,1-a] \ \forall \forall \forall i \forall i \in [2,1-a]$ 5] イミダゾ [2.1-a] イソインドール, 2H, 6H-ピリド [1', 2': 3,4] イミダゾ [5.1-a] イソインドール, 1H-イソインドロ [2.1-a] ベ ンズイミダゾール, 1H-ピリド[3', 4': 4, 5]ピロロ[2,1-a]イソ インドール, 2Hーピリド [4', 3': 4, 5] ピロロ [2,1-a] イソインド ール、 $1 \, \text{H} - 4 \, \text{Y} \, \text{4} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{4} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{Y} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{Y} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{Y} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{Y} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{Y} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{Y} \, \text{Y} \, \text{Y} \, \text{F} \, \text{D} \, \left[2, 1 - \mathbf{a} \right] \, \text{Y} \, \text{Y$ 2-a] イソインドール、1H-シクロペンタ [4, 5] ピリミド [2,1-a]イソインドール、2H, 4H-ピラノ [4', 3': 4, 5] [1,3] オキサジノ [2.3-a] イソインドール、2H-イソインドロ[2,1-a][3,1]ベンズ オキサジン, 7H-イソインドロ<math>[1,2-b] [1,3] ベンズオキサジン, 2H-ピリド [2', 1': 3, 4] ピラジノ [2,1-a] イソインドール、ピリド [2', 3': 4, 5] ピリミド [2,1-a] イソインドール, ピリド [3', 2': 5. 6) $\forall y \in F[2,1-a] \ \forall y \forall y \in F[1,2]$ ン, イソインドロ[2,1-a]キノキサリン, イソインドロ[1,2-a]イソキ ノリン, イソインドロ[2,1-b] イソキノリン, イソインドロ[2,1-a] キ ノリン、6H-オキサジノ〔3', 4': 3, 4〕〔1,4〕ジアゼピノ〔2,1ンドール, 2H, 6Hーピリド [2', 1': 3, 4] [1,4] ジアゼピノ [2,1 -a] イソインドール,1 H - イソインドロ[1,2-b] [1,3,4] ベンゾトリ アゼピン, 2H-イソインドロ[2,1-a][1,3,4]ベンゾトリアゼピン,イソインドロ[2,1-d][1,4]ベンズオキサゼピン, 1H-1インドロ 3] ベンゾジアゼピン, 2H-イソインドロ [1,2-a] [2,4] ベンゾジアゼピン, 2H-イソインドロ [2,1-d] [1,4] ベンゾジアゼピン, 5H- インドロ [2,1-b] [3] ベンズアゼピン, 2H-イソインドロ [1,2-a] [2] ベンズアゼピン, 2H-イソインドロ [1,2-b] [3] ベンズアゼピン, 2H-イソインドロ [1,2-b] [3] ベンズアゼピン, 2H-イソインドロ [1,2-b] [1,3,4] ベンブオキサジアゾシン, 4Y4ンドロ [2,1-b] [1,2,6] ベンブトリアゾシン, 4Y4ンドロ [2,1-b] [1,2,6] ベンブトリアゾシン, 4Y42ドロ [2,1-b] ボシクロウンデシノ [1,11-a] インドールなどの4環式縮合ベンゼン環から 水素原子を1個除去してできる基、

10 (2) 式:

5

15

20

25

で表される3環式複素環と縮合したフェニル基[--- は単結合または二重結合を示す。E'環、G'環の定義は後述]としては、例えば、1 H, 4 Hーピロロ [3', 2': 4,5] ピロロ [3,2,1-ij] キノリン, ピロロ [3,2,1-jk] カルバゾール, 1 Hーフロ [2', 3': 4,5] ピロロ [3,2,1-ij] キノリン, 1 H, 4 Hーシクロペンタ [4,5] ピロロ [1,2,3-de] キノキサリン, 1 H, 4 Hーシクロペンタ [4,5] ピロロ [3,2,1-ij] キノリン, ピリド [3', 4': 4, 5] ピロロ [1,2,3-de] ベンズオキサジン, [1,4] オキサジノ [2,3,4-jk] カルバゾール, 1 H, 3 Hー [1,3] オキサジノ [5,4,3-jk] カルバゾール, ピリド [3', 4': 4,5] ピロロ [1,2,3-de] [1,4] ベンゾチアジン, 4 Hーピロロ [3,2,1-de] フェナンスリジン, 4 H, 5 Hーピリド [3,2,1-de] フェナンスリジン, 1 H, 4 Hー3a, 6aージアザフルオロアンテン, 1ーオキサー4,6aージアザフルオロアンテン, 4ーオキサー2, 1 0 bージアザフルオロアンテン, 1ーチアー4, 6aージアザフルオロアンテン, 1 Hーピラジノ [3,2,1-jk] カルバゾール, 1 Hーインドロ [3,2,1-de] [1,5] ナフチリジン, ベンゾ [b] ピラノ [2,3,4-hi] インドリジン,

10

15 ·

25

1H, 3H-ベンゾ (b) ピラノ [3,4,5-hi] インドリジン, 1H, 4H-ピラノ〔2', 3': 4,5〕ピロロ〔3,2,1-ij〕キノリン, 1H, 3H-ベンゾ カルバゾール, 4H-3ーオキサー11bーアザシクロヘプタ〔ik〕フルオレン, 2H-アゼピノ [1', 2':1,2] ピリミジノ [4,5-b] インドール, 1H,4H-シクロヘプタ [4,5] ピロロ [1,2,3-de] キノキサリン, <math>5H-ピリド〔3'、4':4,5〕ピロロ〔1,2,3-ef〕〔1,5〕ベンズオキサゼピン、4 Hーピリド [3', 4': 4,5] ピロロ [3,2,1-jk] [4,1] ベンゾチアゼピ ン, 5H-ピリド〔3', 4': 4,5〕ピロロ〔1,2,3-ef〕〔1,5〕ベンゾチ アゼピン, 5H-ピリド〔4', 3': 4,5〕ピロロ〔1,2,3-ef〕〔1,5〕ベ ンゾチアゼピン, [1,2,4] トリアゼピノ [6,5,4-ik] カルバゾール, [1,4][2,4] トリアゼピノ [6,7,1-jk] カルバゾール, [1,2,5] トリアゼピノ [3,4,5-ik] カルバゾール,5H-[1,4] オキサゼピノ [2,3,4-ik]カルバゾール, 5H-[1,4] チアゼピノ [2,3,4-jk] カルバゾール, [1,-ik] カルバゾール, アゼピノ [3,2,1-ik] カルバゾール, 1H-シクロオクタ [4,5] ピロロ [1,2,3-de] キノキサリン, 1H-シクロオクタ [4,5]5] ピロロ [3,2,1-ii] キノリンなどの4環式縮合ベンゼン環から水素原子 を1個除去してできる基、

20 (3) 式:

で表される 3 環式複素環と縮合したフェニル基[--- は単結合または二重結合を示す。 E'環、 F'環の定義は後述] としては、例えば、 1 H - インドロ [1,2 - a] ベンズイミダゾール, 1 H - インドロ [1,2 - b] インダゾール,ピロロ [2', 1': 3,4] ピラジノ [1,2 - a] インドール, 1 H, 5 H - ピロロ [1', 2': 4.5] ピラジノ [1,2 - a] インドール, 2 H - ピリド [2', 3': 3,4]

WO 02/14513 PCT/JP01/06899

ピロロ [1,2-a] インドール、1H-ピロロ [2', 3':3,4] ピリド [1,2]-a] インドール、1Hーインドロ [1,2-a] インドール、6Hーイソインド ロ [2,1-a] インドール, 6H-インドロ [1,2-c] [1,3] ベンズオキサ ジン、 $1 \, \text{H} - \text{H} - \text{H} - \text{H} - \text{H} = [1, 2 - b] = [1, 2] ベンゾチアジン、ピリミド [4', 4']$ 5': 4,5] ピリミド [1,6-a] インドール, ピラジノ [2', 3': 3,4] ピリ ド [1.2-a] インドール、6H-ピリド [1', 2': 3,4] ピリミド [1,6a] 1/2 1ゾリン、インドロ[1,2-c]キナゾリン、インドロ[2,1-b]キナゾリン、 インドロ [1,2-a] キノキサリン,インドロ [1,2-a] [1,8] ナフチリジ ν , 4ν [1,2-b] - 2,6-t [2,4] + [1,2-b] = [2,4] + [2,4]7] ナフチリジン, インドロ[1,2-h]-1,7-ナフチリジン, インドロ [1,2-b] $\frac{1}{2}$ $\frac{1}{2}$ 2-a] キノリン,2H,6H-ピリド〔2',1':3,4〕〔1,4〕ジアゼピノ [1,2-a] $\forall x \in [1,4]$ $\forall x \in [1,4]$ ン、2H-1ンドロ[1,2-d] [1,4] ベンゾジアゼピン、2H-1ンドロ 3] ベンゾジアゼピン,1H-インドロ[1,2-b] [2] ベンズアゼピン,2H- 1 (1,2-a) [1] ベンズアゼピン, 2H- 1 (2,1-a) [2] (1,5) (2)ンドロ [2,1-b] [3] ベンズアゾシンなどの4環式縮合ベンゼン環から水素 原子を1個除去してできる基、

(4) 式:

5

10

15

20

25

b] インドール, 1Hーイミダゾ〔1', 5': 1,6] ピリド〔4,3-b] インド ール, 1H-ピリド〔2', 1': 2,3〕イミダゾ〔4,5-b〕インドール, イミ ダゾ [4.5-a] カルバゾール、イミダゾ [4.5-c] カルバゾール、ピラゾロ [3,4-c] カルバゾール, 2H-ピラジノ[1', 2':1,5] ピロロ[2,3b] インドール, 1Hーピロロ [1', 2':1,2] ピリミド [4,5-b] インド 5 ール、 $1 \, \text{H} - \text{H} - \text{H} - \text{H} \cdot \text{H} \cdot$ [7-b] インドール、インドロ [2,3-b] インドール、インドロ [3,2-b]インドール, ピロロ [2,3-a] カルバゾール, ピロロ [2,3-b] カルバゾー ル、ピロロ [2,3-c] カルバゾール、ピロロ [3,2-a] カルバゾール、ピロ ロ [3.2-b] カルバゾール、ピロロ [3.2-c] カルバゾール、ピロロ [3.410 -a] カルバゾール、ピロロ [3,4-b] カルバゾール、ピロロ [3,4-c] カ ルバゾール, 1 H - ピリド[3', 4': 4,5] フロ[3,2-b] インドール, 1H-フロ [3,4-a] カルバゾール,1H-フロ [3,4-b] カルバゾール,1H-フロ [3,4-c] カルバゾール, 2H-フロ [2,3-a] カルバゾール, 2H-フロ [2,3-c] カルバゾール, 2H-フロ [3,2-a] カルバゾール, 215 H-フロ[3,2-c] カルバゾール, 1H-ピリド[3', 4':4,5] チエノ [2,3-b] (2,3-b) (2,3-b) (3,3-b) (3,3-b)ンドール, チエノ [3', 4': 5,6] チオピラノ [4,3 -b] インドール, 1 H (1) ベンゾチエノ〔2,3-b〕インドール、1H-〔1〕ベンゾチエノ〔3、 2-b] インドール, 1H-チェノ [3,4-a] カルバゾール, 2H-チェノ20 [2.3-b] カルバゾール,2H-チェノ[3,2-a] カルバゾール,2H-チ エノ [3,2-b] カルバゾール、シクロペンタ [4,5] ピロロ [2,3-f] キノ キサリン,シクロペンタ〔5,6〕ピリド〔2,3-b〕インドール,ピリド〔2', 3': 3,4] シクロペンタ〔1,2-b] インドール, ピリド〔2', 3': 4,5〕シ クロペンタ [1,2-b] インドール, ピリド [3', 4':3,4] シクロペンタ 25 [1,2-b] インドール、ピリド [3', 4': 4,5] シクロペンタ [1,2-b]インドール, ピリド [4', 3': 4,5] シクロペンタ [1,2-b] インドール, 1H-シクロペンタ [5,6] ピラノ [2,3-b] インドール,<math>1H-シクロペンタ [5,6] チオピラノ [4,3-b] インドール,シクロペンタ [a] カルバゾ

ール、シクロペンタ [c] カルバゾール、インデノ [1,2-b] インドール、イ ンデノ [2,1-b] インドール, [1,2,4] トリアジノ [4', 3':1,2] ピ リド[3.4-b] インドール、1.3.5-トリアジノ[1', 2':1,1] ピリド [3.4-b] (3.4-b) (3.4-b) (3.4-b) (3.4-b)[3,4-b] インドール、1H-[1,4] オキサジノ[4', 3':1,6] ピリド 5 [3,4-b] (3,4-b) (3,4) (3,4) (3,4) (3,4) (3,4)3-オキサジノ [6,5-b] カルバゾール, 2H-ピリミド [2', 1': 2,3][1.3] frile = [1.3] frile = [1.3] frile = [3] [3]': 1,2] ピリド [3,4-b] インドール, 4H- [1,3] チアジノ [3', 4': 10 1.2] ピリド [3.4-b] インドール、インドロ [2,3-b] [1,4] ベンゾ - チアジン、インドロ〔 $3,2-\mathbf{b}$ 〕〔1,4〕ベンゾチアジン、インドロ〔 $3,2-\mathbf{b}$ c] [2.1] (2.1) (2.3-a) (2.3-a) (2.3-a)4] チアジノ [2,3-b] カルバゾール, [1,4] チアジノ [2,3-c] カルバ ゾール, 1,4 - チアジノ [3,2-b] カルバゾール, 1,4 - チアジノ [3,2-b]15 [c] カルバゾール、[1H-1] [2,3-g] プテリジン、[1H-1] [2,3-g][3,2-g] プテリジン, ピラジノ[1', 2':1,2] ピリド[3,4-b] イン ドール, ピラジノ〔1', 2':1,2〕ピリド〔4,3-b〕インドール, 1Hーピ リド [2', 3': 5,6] ピラジノ [2,3-b] インドール, 1H-ピリド [3', 2': 5.6] ピラジノ [2,3-b] インドール, 1H-ピリド [3', 4': 5,6] 20 ピラジノ[2.3-b]インドール、ピリド[1', 2': 1, 2]ピリミド[4, 5b] インドール, ピリド [1', 2': 1,2] ピリミド [5,4-b] インドール, ピリド [2', 1': 2,3] ピリミド [4,5-b] インドール, ピリミド [1', 2]- ': 1,2] ピリド [3,4-b] インドール, ピリミド [1', 2': 1,6] ピリド [3,4-b] $\forall x \in [3,4-b]$ $\forall x \in [3,4-b]$ $\forall x \in [3,4-b]$ 25 ドール、ピリダジノ〔4', 5': 5,6〕 チオピラノ〔4,5-b〕 インドール、1H-1/2 [3,2-c] [3,2-c] [2,3-b]ン、1H-ピラジノ[2,3-a] カルバゾール、1H-ピラジノ[2,3-b] カ ルバゾール. $1 \, \text{H} - \text{ピラジノ} \, [\, 2.3 \, - \text{c}\,] \,$ カルバゾール, $1 \, \text{H} - \text{ピリダジノ} \, [\, 3\,]$

4-c] カルバゾール、1 H-ピリダジノ [4,5-b] カルバゾール、1 H-ピリミド [4.5-a] カルバゾール、1H-ピリミド [4.5-c] カルバゾール、 $1 \, \text{H} - \text{ピリミド} [5, 4 - a] カルバゾール, <math>1 \, \text{H} - \text{ピリミド} [5, 4 - b] カルバ$ ゾール、1H-ピリミド [5,4-c] カルバゾール、<math>7H-1,4-ジオキシノ[2', 3': 5,6] [1,2] ジオキシノ [3,4-b] インドール, 6H-[1, 5 4] ベンゾジオキシノ [2.3-b] インドール, 6H- [1,4] ベンゾジチイ ノ [2,3-b] インドール,1H-インドロ[2,3-b]-1,5-ナフチリジン, $1 \, \mathrm{H}$ - H - H 10 b) [1.7] +71H-4ンドロ[3,2-c] [1,8] ナフチリジン,4ンドロ[2,3-a] キノ リジン、インドロ[2,3-b]キノリジン、インドロ[3,2-a]キノリジン、 15 インドロ [3,2-b] キノリジン, ピラノ〔4', 3':5,6〕ピリド〔3,4ー b] インドール, ピリド [4', 3': 4,5] ピラノ [3,2-b] インドール, ピ リド [4', 3': 5,6] ピラノ [2,3-b] インドール, ピリド [4', 3': 5, 6) $l^2 = 1$ [3,4-b] $l^2 = 1$ [2,3-c] $l^2 = 1$ [2,3-c] $l^2 = 1$ [3,4-b] $l^2 = 1$ [3,4-c] $l^2 = 1$ [3,4-c] $l^2 = 1$ [3,4-c] $l^2 = 1$ [4,5-c] $l^2 = 1$ [5,5-c] $l^2 = 1$ [5,5-c] $l^2 = 1$ [5,5-c] $l^2 = 1$ [6] $l^2 = 1$ [6] $l^2 = 1$ [7] $l^2 = 1$ [7] $l^2 = 1$ [8] l^2 $1 \, \mathrm{H}$ - H - H 20 ン、 $1 \, \text{H} - \text{インドロ} \left[3, 2 - \text{c} \right]$ キノリン、 $1 \, \text{H} - \text{ピリド} \left[2, 3 - \text{a} \right]$ カルバゾ ール, $1 \, \text{H} - \text{ピリド} \left[2, 3 - \text{b} \right]$ カルバゾール, $1 \, \text{H} - \text{ピリド} \left[2, 3 - \text{c} \right]$ カルバ ゾール、1H-ピリド[3,2-a] カルバゾール、1H-ピリド[3,2-b] カ ルバゾール, 1H-ピリド〔3,2-c〕カルバゾール, 1H-ピリド〔3,4a] カルバゾール, 1H-ピリド [3,4-b] カルバゾール, 1H-ピリド [3, 25 4-c] カルバゾール、1H-ピリド [4,3-a] カルバゾール、1H-ピリド[4.3-b] カルバゾール,1H-2JF[4.3-c] カルバゾール,1H-5ンドリン, 1Hーキニンドリン, 1Hーピラノ〔3', 4': 5,6〕ピラノ〔4,3 -b] 1 - b] 1 -

ピラノ [3,2-b] インドール, [1] ベンゾピラノ [3,4-b] インドール, [1] $\langle x \rangle \vee | x \rangle = (4,3-b) | x \rangle \vee | x \rangle = (2) | x \rangle \vee | x \rangle = (4,3-b) | x$ インドール, ピラノ [2,3-a] カルバゾール, ピラノ [2,3-b] カルバゾー ル、ピラノ[2,3-c] カルバゾール、ピラノ[3,2-a] カルバゾール、ピラ ノ [3,2-c] カルバゾール, ピラノ [3,4-a] カルバゾール, 1Hーホスフ 5 ィノリノ [4,3-b] インドール, [1] ベンゾチオピラノ [2,3-b] インド ール、[1] ベンゾチオピラノ[3,2-b] インドール,[1] ベンゾチオピラ ノ [3,4-b] インドール, [1] ベンゾチオピラノ [4,3-b] インドール, [2] ベンゾチオピラノ [4,3-b] インドール, 1 Hーベンゾ [a] カルバゾ ール、1H-ベンゾ [b] カルバゾール、1H-ベンゾ [c] カルバゾール、 [1, 10 [6.2]]]]]]]] [2],] [3],] [3],] [4]] [4]] [4]] [4]] [4]] [5] [5]] [6.2]]] [7]H-アゼピノ [1', 2':1,2] ピリド [3,4-b] インドール, 1H-ピリド [1', 2':1,2] アゼピノ [4,5-b] インドール, 2H-ピリド [1', 2': 1.2] アゼピノ〔3,4-b〕インドール, 1H-ピリド〔3', 2': 5,6〕オキ セピノ[3,2-b]インドール,1H-ピリド[4',3':5,6]オキセピノ 15 [3,2-b] インドール, 2Hーピリド [2', 3': 5,6] オキセピノ [2,3b] インドール, 2Hーピリド [2', 3': 5,6] オキセピノ [3,2-b] イン ドール, 2H-ピリド[3', 4': 5,6] オキセピノ[3,2-b] インドール, ピリド $\{2', 3'; 4.5\}$ シクロヘプタ $\{1, 2-b\}$ インドール, ピリド $\{3', 2'\}$ 2': 3,4] シクロヘプタ [1,2-b] インドール, ピリド [3', 4': 4,5] シ 20 クロヘプタ [1,2-b] インドール, ピリド [3', 4':5,6] シクロヘプタ [1,2-b] インドール,2H-ピラノ[3', 2':2,3] アゼピノ[4,5b] インドール、1H-インドロ[3,2-b] [1,5] ベンズオキサゼピン、1H-インドロ [3,2-d] [1,2] ベンズオキサゼピン, 1H-インドロ [2,[3-c] [1,5] ベンゾチアゼピン, [1,4] ジアゼピノ [2,3-a] カルバゾ 25 ール、インドロ[2,3-b][1,5]ベンゾジアゼピン、インドロ[2,3-d][1.3] ベンゾジアゼピン,インドロ[3.2-b] [1.4] ベンゾジアゼピン, インドロ [3,2-b] [1,5] ベンゾジアゼピン、インドロ [3,2-d] [1. 3] ベンゾジアゼピン, インドロ[3,2-d] [2,3] ベンゾジアゼピン, イ

ンドロ[2,3-a] [3] ベンズアゼピン, インドロ[2,3-c] [1] ベンズ アゼピン、インドロ[2,3-d] [1] ベンズアゼピン、インドロ[2,3-d][2] ベンズアゼピン, インドロ [3,2-b] [1] ベンズアゼピン, インドロ [3,2-c] [1] ベンズアゼピン, インドロ [3,2-d] [1] ベンズアゼピ ン、1H-インドロ〔2,1-b〕〔3〕ベンズアゼピン、1H-〔1〕ベンズオ 5 キセピノ [5,4-b] インドール, 1H-[2] ベンズオキセピノ [4,3-b]インドール, 1H-[1] ベンゾチエピノ [4,5-b] インドール, 1H-[1] $\langle v \rangle / (3,4) = (5,4-b) / (4-b) / (4-b)$ ベンゾ [5,6] シクロヘプタ [1,2-b] インドール、ベンゾ [6,7] シクロ 10 $^{\text{-}}$ $^{-$ 5] オキサゾシノ〔5', 4':1,6] ピリド〔3,4-b] インドール, アゾシノ [1', 2': 1,2] ピリド [3,4-b] インドール, 2,6-メタノー 2Hーアゼ シノ〔4,3ーb〕インドール,3,7ーメタノー3Hーアゼシノ〔5,4ーb〕イン ドール, ピリド [1', 2': 1,8] アゾシノ [5,4-b] インドール, ピリド 15 7] オキソシノ[4.3-b] インドール,1.5-メタノ-1H-アゼシノ[3,[4-b] [4-b] [4-b] [4-b] [4-b] [4-b] [4-b] $1 \, \text{H} - \text{ピリド} [3', 4': 5, 6] シクロオクタ [1, 2-b] インドール, 1, 4-$ 20 エタノオキソシノ[3,4-b]インドール,ピラノ[3', 4':5,6]シクロオ クタ [1,2-b] インドール、1 Hーインドロ [2,3-c] [1,2,5,6] ベン 13b-yタノ-13bH-アゼシノ〔5,4-b〕インドール,オキソシノ〔3,2-a] カルバゾール, 1 Hーベンゾ [g] シクロオクタ [b] インドール, 6,325 3H-[1,4] オキサゾニノ [4', 3':1,2] ピリド [3,4-b] インドール, ザシクロウンデシノ [5,4-b] インドール、1H-6,12bーエタノアゾニノ [5,4-b] インドール、インドロ[3,2-e] [2] ベンズアゾニン、5,9-e

10

15

20

25

メタノアザシクロウンデシノ [5,4-b] インドール,3,6-エタノ-3 H-アゼシノ [5,4-b] インドール,3,7-メタノ-3 H-アザシクロウンデシ ノ [5,4-b] インドール,ピラノ [4',3':8,9] アゼシノ [5,4-b] インドール,1 H-インドロ [2,3-c] [1,7] ベンゾジアゼシン,1 H-インドロ [3,2-e] [2] ベンズアゼシンなどが用いられる。

さらに、ベンゾ [e] ピロロ [3,2-b] インドール、ベンゾ [e] ピロロ [3. 2-g] インドール、ベンゾ [e] ピロロ [3,2,1-hi] インドール、ベンゾ [e] ピロロ [3,4-b] インドール, ベンゾ [g] ピロロ [3,4-b] インドー ル, 1H-ベンゾ (f) ピロロ [1,2-a] インドール, 1H-ベンゾ (g) ピロ ロ [1.2-a] インドール、2Hーベング [e] ピロロ [1,2-a] インドール、 1 H - ベンゾ [f] ピロロ [2,1-a] イソインドール, 1 H - ベンゾ [g] ピロ ロ [2,1-a] イソインドール、2Hーベング [e] ピロロ [2,1-a] イソイ ンドール, イソインドロ [6,7,1-cde] インドール, スピロ [シクロヘキサ ン-1.5'-[5H] ピロロ[2.1-a] イソインドール], イソインドロ[7, 1,2-hij] キノリン, 7,11-メタノアゾシノ [1,2-a] インドール, 7,11-メタノアゾシノ [2,1-a] イソインドール, ジベンズ [cd,f] インドール, ジベンズ [cd,g] インドール, ジベンズ [d,f] インドール, 1 Hージベンズ [e,g] $1 \vee F = V$, $1 \vee F =$ -cd] $\forall x \in [1, 8-ef]$ $\forall x \in [1, 8-fg]$ ドール、ナフト [3,2,1-cd] インドール、1H-ナフト [1,2-e] インド ール、1Hーナフト [1,2-f] インドール、1Hーナフト [1,2-g] インド ール, 1H-ナフト [2,1-e] インドール, 1H-ナフト [2,3-e] インド ール, 1H-ナフト[1,2-f] イソインドール, 1H-ナフト[2,3-e] イ ソインドール,スピロ〔1H-カルバゾール-1,1'-シクロヘキサン〕,スピ ロ「2H-カルバゾール-2,1'-シクロヘキサン」,スピロ〔3H-カルバゾ $-\mu - 3.1'$ -シクロヘキサン],シクロヘプタ [4,5] ピロロ [3,2-f] キ ノリン、シクロヘプタ [4,5] ピロロ [3,2-h] キノリン、アゼピノ [4,5]-b] \checkmark \lor \checkmark \checkmark \land [e] \checkmark \lor \checkmark \lor \land [f] \checkmark \lor \lor [l] \checkmark \lor \lor \land [f] \checkmark \lor \lor [f] \checkmark \lor [f] \checkmark \lor [f] \checkmark \lor [f] \checkmark [f] \lor [f]

WO 02/14513

クロヘプタ [b] インドール、ベンゾ [g] シクロヘプタ [b] インドールなどの 4 環式縮合ベンゼン環から水素原子を 1 個除去してできる基、または (5) 式:

で表される3環式複素環と縮合したフェニル基[--- は単結合または二重結合を 5 示す。E'環、F'環の定義は後述]としては、例えば、1H-ジピロロ〔2,3 -b:3',2',1'-hi] インドール,スピロ[シクロペンタン-1,2'(1' H) -ピロロ [3, 2, 1-h i] インドール] , スピロ [イミダゾリジン-4 , 1'(2'H) - [4H] C^{\Box} $C^$ 3-b] ピロロ [3, 2, 1-hi] インドール, ピリド [4, 3-b] ピロロ 10 [3, 2, 1-hi] インドール, ベンゾ [de] ピロロ [3, 2, 1-ij] キノリン, 3H-ピロロ〔3, 2, 1-de〕アクリジン, 1H-ピロロ〔3, 2. 1-de] フェナントリジン, スピロ[シクロヘキサン-1, 6'-[6 H) ピロロ [3, 2, 1-i j] キノリン[3, 4, 9-y] ピロロ [3, 2, 1-i j]1-1m [1] ベンゾアゾシン, スピロ [シクロヘプタン-1, 6'- [6] 15 H] ピロロ [3, 2, 1-ij] キノリン], 1H-ピラノ [3, 4-d] ピロ ロ [3, 2, 1-jk] [1] ベンズアゼピン, 3H-ベンゾ [b] ピロロ [3,2, 1-ik] [4, 1] ベンズオキサゼピン, 7H-インドロ[1, 7-a b) [4.1] ベンズオキサゼピン, ベンゾ [b] ピロロ [3, 2, 1-ik] [1, 4] ベンゾジアゼピン, インドロ[1, 7-ab] [1, 4] ベンゾジア 20 ゼピン、インドロ[1, 7-ab][1]ベンズアゼピン、インドロ[7, 1a b] [3] ベンズアゼピン, 1 H - シクロヘプタ [d] [3, 2, 1 - j k] [1] ベンズアゼピン, スピロ〔アゼピノ〔3, 2, 1-h i〕インドールー7 1-no [1] ベンズアザシクロウンデシン、スピロ〔アゼピノ〔3、2、1 25

WO 02/14513 PCT/JP01/06899

-hi] インドール-7(4H), 1'ーシクロオクタン] などの4環式縮合ベンゼン環から水素原子を1個除去してできる基などが挙げられる。

また、「3環式複素環と縮合したフェニル基」としては、上記の水素化されていてもよいインドール環またはイソインドール環を含む3環式複素環と縮合したフェニル基の他に、以下に例示する3環式複素環と縮合したフェニル基およびそのジヒドロ体、テトラヒドロ体、ヘキサヒドロ体、オクタヒドロ体、デカヒドロ体が用いられる。具体的には、例えば、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、ナフタセン、プレイアデン、ベンゾ [a] アントラセン、インデノ [1, 2-a] インデン、シクロペンタ [a] フェナントレン、ピリド [1', 2':1, 2] イミダゾ [4, 5-b] キノキサリン、1H-2-オキサピレン、スピロ [ピペリジン-4.9'-キサンテン] などが挙げられる。

「置換基を有していてもよく、縮合していてもよいフェニル基」の「フェニル 基」が置換基を有していてもよい3環式複素環と縮合する場合の好ましい例とし ては、例えば、式:

[式中、E'環、F'環およびG'環はそれぞれR¹ 以外にオキソ基で置換されていてもよい5ないし9員含窒素複素環を示し、A環、F環、G環およびR¹ は上記と同意義を示す。]で表される基などが挙げられる。

20 なかでも、式:

5

10

15

で表される基などが特に好ましい。

該「オキソ基で置換されていてもよい5ないし9員含窒素複素環」の「5ない し9員含窒素複素環」としては、上記C'環およびD'環で表わされる「5ないし 9員含窒素複素環」などが用いられる。

Arで示される「置換されていてもよいアリール基」が (2) 置換基を有していてもよい 2 環式複素環と縮合する,あるいは 2 つの同一または異なった単環 (但し、少なくとも一方の環が単環式複素環である)と縮合する場合,および (3) 置換基を有していてもよい 3 環式複素環と縮合する場合の好ましい例としては、Arが式:

10 [式中、各記号は上記と同意義を示す。]で表される基などが挙げられる。 Arで示される「置換されていてもよいアリール基」として特に好ましくは 式:

[式中、 R^1 は上記と同意義を示す。]で表される基などが挙げられ、とりわけ、式:

5 [式中、R¹ は上記と同意義を示す。]で表わされる基が好ましい。

上記式中、nは1ないし10の整数を示す。好ましいnは1ないし6の整数であり、特に好ましくは1ないし5、さらに好ましくは2ないし5、とりわけ好ましくは3、4または5である。

上記式中、Rは水素原子または置換されてもよい炭化水素基を示し、nの繰り返しにおいて異なっていてもよい。

Rで示される「置換されてもよい炭化水素基」の「炭化水素基」および「置換基」としては、上記R¹で示される「置換されていてもよい炭化水素基」の「炭化水素基」および「置換基」と同意義を示す。

また、RはArまたはArの置換基と結合していてもよい。

15 RがArまたはArの置換基と結合した式(Ib)で表わされる化合物の例と しては、例えば式:

[式中、 R^1 , n , X , Y は上記と同意義を示す。]で表わされる化合物または式:

5 [式中、n, X, Yは上記と同意義を示す。]で表わされる化合物、式:

[式中、n, X, Yは上記と同意義を示す。] で表わされる化合物などが挙げられる。

Rとしては水素原子が好ましい。

上記式中、Yは置換されていてもよいアミノ基または置換されていてもよい含 窒素複素環基 (好ましくは含窒素飽和複素環基) [Yとして、好ましくは置換されていてもよいアミノ基] を示す。

Yで示される「置換されていてもよいアミノ基」としては、例えば式:

$$---$$
 N $\stackrel{\mathsf{R}^4}{\underset{\mathsf{R}^5}{}}$

10

15

20

[式中、R⁴ およびR⁵ は同一または異なって水素原子、置換されていてもよい 炭化水素基または置換されていてもよいアシル基を示し、R⁴ およびR⁵ は結合 して環を形成していてもよい] で表わされる基などが用いられる。

R⁴ およびR⁵ で表わされる「置換されていてもよい炭化水素基」の「置換 基」および「炭化水素基」としては、例えば上記R¹ で述べた「置換されていて もよい炭化水素基」の「置換基」および「炭化水素基」などが用いられる。

 R^4 および R^5 で表わされる置換されていてもよい炭化水素基の好ましい例としては、例えば ① (i) ハロゲン原子 (例えば、フルオロ、クロル、ブロム、ヨードなど)、 (ii) 低級アルコキシ基 (例えば、メトキシ, エトキシ, n-プロ

WO 02/14513

5

10

15

20

25

ピルオキシ,iープロピルオキシ,nーブチルオキシなどの C_{1-6} アルコキシ基など)、(iii)ヒドロキシ基などから選ばれる置換基を1ないし3個有していてもよい直鎖状もしくは分枝状低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、sec-ブチル、ペンチル、ヘキシルなどの C_{1-6} アルキル基など)または ②(i)ハロゲン原子(例えば、フルオロ、クロル、ブロム、ヨードなど)、(ii)低級アルコキシ基(例えば、メトキシ、エトキシ、nープロピルオキシ、iープロピルオキシ、nーブチルオキシなどの C_{1-6} アルコキシ基など)、(iii)ヒドロキシ基などから選ばれる置換基を1ないし3個有していてもよい低級アラルキル基(例えば、フェニルー C_{1-10} アルキル(例えば、ベンジル、フェニルエチル、フェニルプロピル、フェニルブチル、フェニルプシチル、フェニルスシチル、フェニルなど)、ナフチルー C_{1-6} アルキル(例えば、 α ーナフチルメチルなど)またはジフェニルー C_{1-3} アルキル(例えば、ジフェニルメチル、ジフェニルエチルなど)などの C_{7-1} 6 アラルキル基などが挙げられる。

より好ましくは ① 無置換の直鎖状もしくは分枝状低級アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、sec-ブチル、ペンチル、ヘキシルなどの C_{1-6} アルキル基など)または ② 無置換の低級アラルキル基(例えば、フェニルー C_{1-10} アルキル(例えば、ベンジル、フェニルエチル、フェニルプロピル、フェニルブチル、フェニルペンチル、フェニルへキシルなど)、ナフチルー C_{1-6} アルキル(例えば、 α ーナフチルメチルなど)またはジフェニルー C_{1-3} アルキル(例えば、ジフェニルメチル、ジフェニルエチルなど)などの C_{7-16} アラルキル基などが挙げられる。 R^4 および R^5 で表わされる「置換されていてもよいアシル基」としては、例えば上記 R^1 で述べた「置換されていてもよいアシル基」などが用いられる。

また、Yで表わされる「置換されていてもよいアミノ基」において、R⁴ およびR⁵ が結合して環を形成する場合、すなわち、Yで表わされる「置換されていてもよいアミノ基」が「置換されていてもよい環状アミノ基」を示す場合の具体的な例としては、式:

10

15

20

[式中、Q¹ 環は炭素原子と1個の窒素原子以外に窒素原子、酸素原子および硫 黄原子などから選ばれるヘテロ原子を1ないし2個含有していてもよい5ないし 9員の含窒素複素環基(好ましくは含窒素飽和複素環基)を示す]で表わされる 基などが用いられる。より具体的には、例えば、

などが繁用される。

Yで表わされる「置換されていてもよいアミノ基」としての「置換されていてもよい環状アミノ基」の「置換基」としては、例えば上記R² b とR³ b が隣接する窒素原子と共に形成していてもよい「置換基を有していてもよい含窒素複素環」の「置換基」、上記R¹ で表される「置換されていてもよい炭化水素基、置換されていてもよいアシル基または置換されていてもよい複素環基」などが用いられる。

Yで表わされる「置換されていてもよいアミノ基」としては、(1)式:

[式中、 R^2 は水素原子、置換されていてもよいアシル基、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、p は $1 \sim 3$ の整数を示し、R'およびR''はそれぞれ水素原子または置換されていてもよいアルキル基を示し、またR'およびR''は結合して環を形成していてもよい]で表される基;

10

15

20

25

(2) 置換されていてもよいピペリジノ基;などが好ましく、なかでも、(1 a) 式:

$$\begin{array}{c} R' & R'' \\ --N - (CH_2) & --N - R^2 \end{array}$$

[式中、R² は水素原子、置換されていてもよいアシル基、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、R'およびR"はそれぞれ水素原子または置換されていてもよいアルキル基を示す]で表される基; (1 b) 式:

$$-N$$
 $N-R^2$

[式中、R² は水素原子、置換されていてもよいアシル基、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す]で表される基;などが好ましく用いられる。

ここで、R²で示される「置換されていてもよいアシル基」、「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」としては、上記したR¹で示される「置換されていてもよいアシル基」、「置換されていてもよい炭化水素基」および「置換されていてもよい複素環基」と同様なものが挙げられる。

R'およびR''で示される「置換されていてもよいアルキル基」における「アルキル基」としては、 C_{1-6} アルキル基などが挙げられ、該「アルキル基」の「置換基」としては、上記した R^1 で示される「置換されていてもよい炭化水素基」の「置換基」と同様なものが挙げられる。

また、R'およびR"は結合して環を形成する場合、上記したQ¹ 環として例示された「含窒素複素環基」の中で、炭素原子と2個の窒素原子以外に窒素原子、酸素原子および硫黄原子などから選ばれるヘテロ原子を1個含有していてもよい5ないし9員の含窒素複素環基(好ましくは含窒素飽和複素環基)が好ましい例として挙げられるが、かかる環としては、炭素原子および2個の窒素原子から構

10

15

成される5ないし9員の含窒素複素環(好ましくは含窒素飽和複素環)が好ましく、これらの環は上記したQ¹環と同様な置換基をさらに有していてもよい。

Yとしての置換されていてもよいピペリジノ基は、上記したR¹で示される「置換されていてもよいアシル基」、「置換されていてもよい炭化水素基」、「置換されていてもよい複素環基」などを置換基として有していてもよい。

Yで表わされる「置換されていてもよい含窒素複素環基」の「含窒素複素環基」としては、炭素原子および1個の窒素原子以外に、例えば窒素原子、酸素原子および硫黄原子などのヘテロ原子を1ないし3個を含有していてもよい5ないし9員の含窒素複素環基(好ましくは含窒素飽和複素環基)などが用いられる。これらの含窒素複素環基は環構成窒素原子に結合手を有する基であってもよいし、あるいは環構成炭素原子に結合手を有する基であってもよい。環構成窒素原子に結合手を有する基としては、例えば、式:

$$-NQ^{1}$$

[式中、Q¹ 環は炭素原子と1個の窒素原子以外に窒素原子、酸素原子および硫 黄原子などから選ばれるヘテロ原子を1ないし2個含有していてもよい5ないし 9員の含窒素複素環基(好ましくは含窒素飽和複素環基)を示す]で表わされる 基などが用いられる。より具体的には、例えば、

$$-N \longrightarrow -N \longrightarrow -N \longrightarrow NH$$

$$-N \longrightarrow NH \longrightarrow -N \longrightarrow S$$

$$\sharp t: \text{it}$$

20 などが繁用される。

また、環構成炭素原子に結合手を有する基としては、例えば、式:

[式中、Q² 環は炭素原子と1個の窒素原子以外に窒素原子、酸素原子および硫 黄原子などから選ばれるヘテロ原子を1ないし2個含有していてもよい5ないし 9員の含窒素複素環基(好ましくは含窒素飽和複素環基)を示す]で表わされる 基などが用いられる。より具体的には、例えば、

5

10

15

などが繁用される。

Yで表わされる「置換されていてもよい含窒素複素環基(好ましくは含窒素飽和複素環基)」の「置換基」としては、例えば上記R² b とR³ b が隣接する窒素原子と共に形成していてもよい「置換基を有していてもよい含窒素複素環」の「置換基」、上記R¹ で表される「置換されていてもよい炭化水素基、置換されていてもよいアシル基または置換されていてもよい複素環基」などが用いられるまた、Yで表わされる「置換されていてもよいアミノ基」としての「置換されていてもよい環状アミノ基」;ならびにYで表わされる「置換されていてもよい含窒素複素環基」が2個以上の置換基を有する場合、該置換基同士が結合して環を形成していてもよく、かかる環の具体例としては、ベンゼン環、5~8員(好ましくは5~6員)の芳香族単環式複素環(例えばピロール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、ピラゾール、12、3ーオキサジアゾール、1、2、4ーオキサジアゾール、1、3、4ーオキサジアゾール、1、2、3ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ーチアジアゾール、1、3、4ー

チアジアゾール、1,2,3ートリアゾール、1,2,4ートリアゾール、テトラゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン等)、およびこれらの環の一部または全部の不飽和結合が飽和結合に変換された環などが挙げられる。

さらに、Yで表わされる「置換されていてもよいアミノ基」としての「置換されていてもよい環状アミノ基」;ならびにYで表わされる「置換されていてもよい含窒素複素環基」が1つの炭素原子上に2個以上の置換基を有する場合、該置換基同士が結合してスピロ環を形成していてもよく、かかるスピロ環を形成する場合の具体例としては、例えば、スピロ(1H-インデン-1,4'-ピペリジニル)環などが挙げられる。

Yで表わされる「置換されていてもよい含窒素複素環基」の「含窒素複素環基」として好ましくは、4ーピペリジニル基、1ーピペリジニル基または1ーピペラジニル基などが挙げられる。

すなわち、Yとしては式:

15

10

5

[式中、 R^6 は R^1 と同意義を表す] で表される基などが好ましい。 Yとしてより好ましくは、例えば、式:

[式中、 R^6 は(i) C_{1-6} アルキル、 C_{1-6} アルコキシ、ハロゲン原子、 20 ニトロ、モノーまたはジー C_{1-6} アルキルーカルバモイルオキシ、ヒドロキシ、 シアノ、カルボキシル、 C_{1-6} アルコキシカルボニル、カルバモイル、環状ア ミノカルボニル、アミノ、 C_{1-6} アルキルカルボニルアミノ、フェニルスルホ ニルアミノ、 C_{1-6} アルキルスルホニルアミノ、アミジノ、ウレイドあるいは

10

15

20

25

複素環で置換されていてもよいフェニルー C_{1-6} アルキル(上記 C_{1-6} アル キルおよびC₁₋₆アルコキシ、カルバモイル、環状アミノカルボニル、アミノ、 フェニルスルホニルアミノ、アミジノ、ウレイド、複素環はさらに置換基を有し ていてもよく、該「置換基」としては、例えばR¹で表される「置換されていて もよい炭化水素基」の「置換基」などが用いられる)、(ii)水素原子、(iii) ハロゲン原子、ヒドロキシ、C₁₋₆アルコキシ、アミノ、モノ-またはジーC $_{1-6}$ アルキルアミノ、カルボキシル、シアノまたは C_{1-6} アルコキシーカル ボニルで置換されていてもよいC₁₋₆アルキル基あるいは(iv)モノまたはジ -C₁₋₆ アルキルアミノまたはC₁₋₆ アルコキシ-カルボニルで置換されてい てもよいC₁₋₆アルキルカルボニル基を示し、好ましくは、C₁₋₄アルキル (メチルなど)、トリハロゲノC₁₋₄アルキル(メチルなど)、ハロゲン原子 (フルオロ、クロロなど)、ニトロ、シアノ、 C_{1-4} アルコキシ(メトキシな ど)、ヒドロキシ、カルバモイル、(4-C, _ a アルキル (メチルなど) -1-ピペ ラジニル)カルボニル、アミノチオカルボニル、モルホリノカルボニル、カルボ キシル、C₁₋₄アルコキシ(メトキシなど)カルボニル、C₁₋₄アルコキシ (エトキシなど) カルボニルC₁₋₄ アルコキシ (メトキシなど) 、カルボキシ νC_{1-4} アルコキシ (メトキシなど)、 C_{1-4} アルコキシ (エトキシなど) カルボニルC₁₋₆アルキル(イソプロピルなど)、カルボキシルC₁₋₆アルキ ル(イソプロピルなど)、アミノ、アセチルアミノ、C₁₋₄アルキル(メチル など)スルホニルアミノ、(4-C₁₋₄アルキル(メチルなど)フェニル)スルホ ニルアミノ、ウレイド、3-C₁₋₄アルキル(メチルなど)ウレイド、アミジノ、 ジヒドロチアゾリルまたはジヒドロイミダゾリルで置換されていてもよいベンジ ル基を示す〕で表される基などが挙げられ、

なかでも、 R^6 が C_{1-4} アルキル(メチルなど)、トリハロゲノ(フルオロなど) C_{1-4} アルキル(メチルなど)、ハロゲン原子(フルオロ、クロロなど)、ニトロ、ヒドロキシ、カルバモイル、アミノ、アミジノ、ジヒドロイミダゾリルで置換されていてもよいベンジル基のものが好ましい。

Yとして、特に、1ーベンジルー4ーピペリジニル基、4ーベンジルー1ーピペリジニル基または4ーベンジルー1ーピペラジニル基、1ーアセチルー4ーピ

10

20

25

ペリジニル基、1-[(2-メチルフェニル)メチル] -4-ピペリジニル基、1-[(3-クロロフェニル)メチル] -4-ピペリジニル基、1-[(2-クロロフェニル)メチル] -4-ピペリジニル基、1-[(3-トロフェニル)メチル] -4-ピペリジニル基、1-[(3-トロフェニル)メチル] -4-ピペリジニル基、1-[(3-(トリフルオロメチル)フェニル] メチル] -4-ピペリジニル基、などが好ましく、1-ベンジル-4-ピペリジニル基、1-[(2-メチルフェニル)メチル] -4-ピペリジニル基、1-[(3-クロロフェニル)メチル] -4-ピペリジニル基、1-[(3-クロロフェニル)メチル] -4-ピペリジニル基、1-[(3-2-クロロフェニル)メチル] -4-ピペリジニル基、1-[(3-2-トロフェニル)メチル] -4-ピペリジニル基、1-[(3-2-トロフェニル)メチル] -4-ピペリジニル基、1-[(3-2-トロフェニル)メチル] -4-ピペリジニル基、などが汎用される。

上記式中、Xで示される「直鎖部分を構成する原子数が1~4のスペーサー」 としては、

- (1) -(CH₂)₀₁ (q1は1~4の整数を示す。)、
- 15 (2) $-(CH_2)_{r1} X^1 (CH_2)_{r2} (r1およびr2は同一または異なって<math>0 \sim 3$ の整数を示す。但し、r1とr2との和は $1 \sim 3$ である。 X^1 はNH,0,S,S0または $S0_2$ を示す)、
 - $(3) (CH_2)_{s1} X^1 (CH_2)_{s2} X^2 (CH_2)_{s3} (s1, s2およびs3は同一または異なって0~2の整数を示す。但し、s1, s2およびs3の和は0~2である。<math>X^1$ および X^2 はそれぞれNH, O, S, S0またはSO $_2$ を示す。但し、s2が0のとき、 X^1 および X^2 の少なくとも一つは好ましくはNHを示す。)などの飽和の2価の基および一部の結合が不飽和結合に変換された2価の基など;あるいは、-CO-、-O-、 $-NR^3$ b a a a b b

10

15

20

25

Xとしては、-CO-、-O-、 $-NR^3$ b a -、-S-、-SO-、-SO $_2$ -、 $-SO_2$ NR^3 b a -、 $-SO_2$ $NHCONR^3$ b a -、 $-SO_2$ NHC (=NH) NR^3 b a -、-CS-、 $-CR^3$ b a (R^3 b b) -、-C ($=CR^3$ b a (R^3 b b)) -、-C ($=RR^3$ b a) -、 $-CONR^3$ b a - ($=R^3$ b a) -、 $-CONR^3$ b a - ($=R^3$ b b) か はそれぞれ独立して、水素原子、シアノ基、ヒドロキシ基、アミノ基、 $+C_1$ a b b

Xで示される 2価の基は、任意の位置(好ましくは炭素原子上)に置換基を有していてもよく、かかる置換基としては、例えば、低級(C_{1-6})アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなど)、低級(C_{3-7})シクロアルキル(例、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなど)、ホルミル、低級(C_{2-7})アルカノイル(例、アセチル、プロピオニル、ブチリルなど)、低級(C_{1-6})アルコキシーカルボニル、低級(C_{1-6})アルコキシ、水酸基オキソなどが挙げられる。

式(Ib)で表される化合物またはその塩のなかでも、式(IIb):

[式中、R¹ は水素原子、置換されていてもよい炭化水素基または置換されていてもよいアシル基を示し、A環はさらに置換基を有していてもよいベンゼン環を示し、Xは直鎖部分を構成する原子の数が1~4のスペーサーを示し、nは1~10の整数を示し、Rは水素原子または置換されていてもよい炭化水素基であっ

10

15

20

25

て、nの繰り返しにおいて、同一でも異なっていてもよく、またRはA環または A環の置換基と結合して環を形成していてもよく、Yは置換されていてもよいア ミノ基または置換されていてもよい含窒素複素環基を示す。]で表される化合物 またはその塩が好ましく用いられる。

式 (Ib) および (IIb) で表される化合物またはその塩は、例えば以下に 記載する合成法により製造することができる。また、特開平6-166676、 特開平11-310532、EP-A-487071、EP-A-560235、 WO 98/46590、WO 00/23437などに記載の方法またはそれに準 じた方法によっても製造できる。

式(Ib) および(IIb) で表される化合物およびその製造における各工程での化合物(原料化合物あるいは合成中間体)が遊離体の場合、常法に従って塩にすることができ、また塩を形成している場合、常法に従って遊離体あるいは他の塩に変換することもできる。

また、式(Ib) および(IIb) で表される化合物および各原料化合物あるいは合成中間体は、光学異性体、立体異性体、位置異性体もしくは回転異性体、またはそれらの混合物であってもよく、これらも本発明の式(Ib) および(IIb) で表される化合物および原料化合物あるいは合成中間体に含まれる。例えば、化合物(Ib) はラセミ体であってもよく、ラセミ体から分割された光学異性体であってもよい。また、これらは、自体公知の分離方法に従って、単離、精製することができる。

光学異性体は自体公知の手段に準じて製造することができる。具体的には、光学活性な原料化合物あるいは合成中間体を用いるか、または、最終化合物のラセミ体を常法に従って光学分割することにより、光学異性体を製造することができる。光学分割法としては、自体公知の方法、例えば分別再結晶法、光学活性カラム法、ジアステレオマー法等を適用することができる。立体異性体、位置異性体回転異性体も自体公知の方法を適用することより製造することができる。

以下の各反応は溶媒を用いずに、または必要に応じて適当な溶媒を用いて行う ことができる。該溶媒としては反応を妨げない限り、一般に化学反応に用いるこ とができるものであれば何れのものでも用いることができ、例えば炭化水素系溶 WO 02/14513 PCT/JP01/06899

5

10

15

20

25

媒(例えば、ヘキサン、トルエン等)、エーテル系溶媒(例えば、エチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン)、アミド系溶媒(例えば、ホルムアミド、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ヘキサメチルホスホリックトリアミド等)、ウレア系溶媒(例えば、1,3ージメチルー2ーイミダゾリジノン等)、スルホキシド系溶媒(例えば、ジメチルスルホキシド等)、アルコール系溶媒(例えば、メタノール、エタノール、イソプロパノール、tーブタノール等)、ニトリル系溶媒(例えば、アセトニトリル、プロピオニトリル等)、ピリジン等の有機溶媒、または水等が用いられる。該溶媒の使用量は、化合物1ミリモルに対して通常約0.5 mlないし約100ml、好ましくは約3 mlないし約30 mlである。反応温度は、用いる溶媒の種類により異なるが、通常約一30℃ないし約180℃程度であり、好ましくは約0℃ないし約120℃程度である。反応時間は、反応温度により異なるが、通常約0.5時間ないし約72時間、好ましくは約1時間ないし約24時間である。反応は、通常常圧で行われるが、必要に応じて約1気圧ないし約100気圧程度の加圧条件下で行ってもよい。

以下の各工程で得られる化合物は、公知の手段、例えば濃縮、液性変換、転溶、溶媒抽出、分留、蒸留、結晶化、再結晶、クロマトグラフィー、分取高速液体クロマトグラフィー等で単離、精製し、次の反応の原料として供されるが、単離あるいは精製することなく反応混合物のまま原料として用いてもよい。

以下の説明において、「縮合反応」は必要に応じて塩基の存在下で行うことができる。該塩基としては、例えば炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水素化カリウム、水素化ナトリウム、ナトリウムメトキシド、カリウム t ーブトキシド等の無機塩基やピリジン、ルチジン、コリジン、トリエチルアミン等の有機塩基が用いられる。該塩基の使用量は、化合物に対して、通常等モル量から過剰量、好ましくは約1モル当量ないし約5倍モル当量である。さらに本反応は、必要に応じて触媒量のヨウ化化合物、例えばヨウ化ナトリウム、ヨウ化カリウム、あるいは4ージメチルアミノピリジン等の存在下に反応を促進させてもよい。

化合物(IIb)のうち、一Xーが一Oーである化合物(IIba)またはそ

の塩は、以下の反応式1-1により製造することができる。 反応式1-1

5

工程(a a)において、式(IIIba) [式中、各記号は上記と同意義を示す]で表される化合物(以下、化合物(IIIba)と略称することもある)と式(IVba) [式中、Z¹は脱離基を、その他の記号は上記と同意義を示す]で表される化合物(以下、化合物(IVba)と略称することもある)の縮合反応により、化合物(IIba)を製造することができる。

10

15

 Z^1 で示される脱離基としては、例えばハロゲン原子(例えばクロル、ブロム、ヨード等)、 C_{1-6} アルキルスルホニルオキシ基(例えば、メタンスルホニルオキシ、エタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等)、 C_{6-10} アリールスルホニルオキシ基(例えばベンゼンスルホニルオキシ、pートルエンスルホニルオキシ等)等が用いられる。特に、例えばハロゲン原子(例えば、ブロム、ヨード等)等が好ましく用いられる。

20

25

化合物(IIIba)と化合物(IVba)の縮合反応は、溶媒としては、例えばエタノール等のアルコール系溶媒、あるいはアセトニトリル等のニトリル系溶媒が好ましく用いられる。反応温度は、用いる溶媒の種類により異なるが、好ましくは約0℃ないし約120℃程度である。反応時間は、反応温度により異なるが、好ましくは約1時間ないし約24時間である。塩基としては、例えば炭酸ナトリウム、炭酸カリウム、トリエチルアミン等が好ましく用いられる。該塩基の使用量としては、化合物(IVba)に対して、約1当量ないし約3当量が好ましい。さらに、必要に応じて化合物(IVba)に対して触媒量のヨウ化化合物(例えばヨウ化ナトリウム、ヨウ化カリウム等)、あるいは4ージメチルアミノピリジン等の存

15

20

25

在下に本反応を促進させてもよい。具体的には、例えばN, Nージメチルホルムアミド等の溶媒中、塩基として、例えば炭酸カリウム、水素化ナトリウム等の存在下に行うことができる。該塩基の使用量としては、化合物(IVba)に対して、約1当量ないし約3当量が好ましい。

化合物(IVba)は、それ自体公知の方法あるいはそれに準じた方法により製造することができる。

また、工程 (a a) の原料化合物 (IIIba) またはその塩は、例えば、WO 0 0 / 2 3 4 3 7 に記載の方法に準じて製造することができる。

化合物(I I b)のうち、 $-X-が-NR^3$ b a -である化合物(I I b b) 10 またはその塩は、以下の反応式 2-1 により製造することができる。 反応式 2-1

$$R^{1}-N \qquad \qquad A \qquad + \qquad Z^{1}-(CH)_{n}-Y \qquad (ba) \qquad \qquad R^{1}-N \qquad A \qquad R^{3ba} \qquad R \qquad N-(CH)_{n}-Y \qquad (11bb)$$

工程(ba)において、式(IIIbb) [式中、各記号は上記と同意義を示す]で表される化合物(以下、化合物(IIIbb)と略称することもある)と化合物(IVba)の縮合反応により、化合物(IIbb)を製造することができる。

化合物 (IIIbb) と化合物 (IVba) の縮合反応は、例えばN, Nージメチルホルムアミド等の溶媒中、塩基として、例えば炭酸カリウム、水素化ナトリウム等の存在下に行うことができる。該塩基の使用量としては、化合物 (IVba) に対して、約1当量ないし約3当量が好ましい。

また、工程(ba)の原料化合物(IIIbb)またはその塩は、以下の反応式2一 2により製造することができる。すなわち、

工程 (bb) :式 (Vbb) [式中、各記号は上記と同意義を示す] で表される化合物 (以下、化合物 (Vbb) と略称することもある) のニトロ化反応、

工程 (bc) :式 (VIbb) [式中、各記号は上記と同意義を示す] で表される化合

物(以下、化合物(VIbb)と略称することもある)の還元反応、および 工程(bd):式(VIIbb) [式中、各記号は上記と同意義を示す]で表される化 合物(以下、化合物(VIIbb)と略称することもある)と式(IXbb) [式中、各 記号は上記と同意義を示す]で表される化合物(以下、化合物(IXbb)と略称す ることもある)の縮合反応を、順次行うことにより、化合物(IIIbb)を製造す ることができる。

反応式 2-2

5

15

20

$$R^{1} \longrightarrow R^{1} \longrightarrow R^{1$$

10 工程 (bb) において化合物 (Vbb) をニトロ化することにより、化合物 (VIbb) を製造することができる。

本反応は、適当なニトロ化試薬(例えば、硝酸、硝酸—硫酸、ニトロニウムトリフルオロボレート等)を用いて、公知の方法(例えば、シンセシス(Synthesis), 217-238 (1977), ケミストリー オブ ザ ニトロ アンド ニトロソ グループス(Chemistry of the Nitro and Nitroso Groups), p. 1-48 Wiley (1970) 等に記載の方法)あるいはそれに準じた方法で行うことができる。 化合物 (Vbb) は、それ自体公知あるいはそれに準じた方法により製造することができる。例えば、ジャーナル オブ ジ オーガニック ケミストリー (J. Org. Chem.), 34, 2235(1969), ジャーナル オブ ジ オーガニック ケミストリー (J. Org. Chem.), 54, 5574(1989), テトラヘドロン レターズ (Tetrahedron Lett.), 35, 3023(1977), ブリティン オブ ザ ケミカル ソサイティー オブ ジャパン (Bull. Chem. Soc. Jpn.), 56, 2300(1983)、インディアン ジャーナル オブ ケミス

10

15

20

25

WO 02/14513 PCT/JP01/06899

149

トリー (Indian. J. Chem.) , 2, 211 (1964)、インディアン ジャーナル オブ ケミストリー (Indian. J. Chem.) , 12, 247 (1974)、ブレティン オブ ザ ケミカル ソサイエティー オブ ジャパン (Bull. Chem. Soc., Jpn.) , 43, 1824 (1970)、ケミカル ファマシューティカル ブレティン (Chem. Pharm. Bull.) , 20, 1328 (1972)、ケミカル ファマシューティカル ブレティン (Chem. Pharm. Bull.) , 27, 1982 (1979)、ヘルベチカ ヒミカ アクタ (Helv. Chem. Acta) , 46, 1696 (1963)、シンセシス (Synthesis) , 541 (1979)、U.S. 3,682,962、U.S. 3,911,126.,Ger. Offen. 2,314,392、Ger. 1,545,805、ジャーナル オブ ケミカル ソサイエティー (J. Chem. Soc.) , 1381 (1949) , カナディアン ジャーナル オブ ケミストリー (Can. J. Chem.) , 42, 2904 (1964) , ジャーナル オブ オーガニック ケミストリー (J. Org. Chem.) , 28, 3058 (1963) , ジャーナル オブ アメリカン ケミカル ソサイエティー (J. Am. Chem. Soc.) , 76, 3194 (1954) , 87, 1397 (1965) , 88,

工程(bc)において、化合物(VIbb)の還元反応により、化合物(VIIbb)を 製造することができる。

4061 (1966), 特開昭49-41539等に記載の方法あるいはそれに準じた方法

に従って製造することができる。

本反応は、適当な還元反応(例えば、遷移金属触媒を用いた接触還元反応、酸性溶媒中スズ等の金属をもちいた還元反応等)を用いて行うことができる。具体的には、公知の方法、例えば、オーガニック シンセシス(Organic Synthesis), Coll. Vol. 5, 829-833 (1973)、オーガニック シンセシス(Organic Synthesis), Coll. Vol. 1, 455 (1941)、ジャーナル オブ ジ アメリカンケミカル ソサイエティー (J. Am. Chem. Soc.), 66, 1781 (1944) に記載された方法あるいはそれに準じた方法等で行うことができる。

工程 (bd) において、化合物 (VIIbb) と、化合物 (IXbb) の縮合反応により、 化合物 (IIIbb) を製造することができる。

化合物 (VIIbb) と化合物 (IXbb) の縮合反応は、例えば化合物 (IIIba) と化合物 (IVba) の縮合反応と同様に行うことができる。

さらに、化合物 (IIIbb) は、化合物 (VIIbb) を原料として用いて、例えば還

10

15

20

25

元アルキル化による方法 (例えば、ジャーナル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.), 87, 2767 (1965)、オーガニック シンセシス (Organic Synthesis), Coll. Vol. 4, 283-285 (1963) に記載の方法等) またはマイケル付加反応による方法 (例えば、ヘルベチカ ヒミカ アクタ (Helv. Chem. Acta), 43, 1898 (1960)、ジャーナル オブ オーガニック ケミストリー(J. Org. Chem.), 39, 2044 (1974)、シンセシス (Synthesis), 5, 375 (1981) に記載の方法等) あるいはそれらに準じた方法等によっても製造することができる。

化合物(IIb)のうち、-X-が-NR³baCO-である化合物(IIbc)またはその塩は、以下の反応式3により製造することができる。 反応式3

工程 (ca) において、化合物 (IIIbb) と式 (IVbc) [式中、 Z^2 は脱離基を、その他の記号は上記と同意義を示す] で表される化合物 (以下、化合物 (IVbc) と略称することもある) のアミド化反応により、化合物 (IIbc) を製造することができる。

 Z^2 で示される脱離基としては、例えばハロゲン原子(例えばクロル、ブロム、ヨード)、 C_{1-6} アルキルオキシ基(例えば、メトキシ、エトキシ、ベンジルオキシ)、 C_{6-10} アリールオキシ基(例えばフェノキシ、p-=トロフェノキシ)、ヒドロキシル基等が用いられる。特に、例えばハロゲン原子(例えば、クロル等)、ヒドロキシル基等が好ましく用いられる。

化合物(IIIbb)と化合物(IVbc)のアミド化反応は、適当な縮合剤や塩基を 用いても行うことができる。例えば、Z² がヒドロキシル基の場合、適当な縮合 剤、例えばペプチド化学の分野で一般的に用いられる縮合剤、特に、ジシクロへ キシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カル

10

15

20

25

る。

ボジイミド等のカルボジイミド類、ジフェニルホスホリルアジド、シアノホスホン酸ジエチル等のホスホン酸類、1-1'-カルボニルビス-1H-イミダゾール等のホスゲン等価体等を用いて、本アミド化反応を行うことができる。該縮合剤の使用量は、化合物(IIIbb)1ミリモルに対して通常約1当量ないし約5当量、好ましくは約1当量ないし約1.5当量である。

また、例えば、Z² がハロゲン原子の場合、適当な塩基、例えば炭酸ナトリウム、炭酸カリウム、トリエチルアミン等を用いて、反応を行うのが好ましい。該塩基の使用量は、化合物(IIIbb)に対して通常約1当量ないし約10当量、好ましくは約1当量ないし約2当量である。

化合物(IIb)のうち、-X-が-S-、-SO-または $-SO_2-$ である化合物(IIbd)またはその塩は、以下の反応式4-1により製造することができる。 反応式4-1

$$R^{1}-N \qquad \qquad A \qquad + \qquad Z^{1}-(CH)_{n}-Y \qquad \qquad R^{1}-N \qquad \qquad A \qquad X^{\frac{d}{d}}(CH)_{n}-Y \qquad \qquad (11bd)$$

工程 (da) において、化合物 (IIIbd) と化合物 (IVba) の縮合反応を行い、必要に応じて、引き続き酸化反応を行うことによって、化合物 (IIbd) を製造することができる。 [式中、 X^d は-S-、-SO-または $-SO_2-$ を、その他の記号は上記と同意義を示す]

化合物 (IIIbd) と化合物 (IVba) の縮合反応は、例えばN, Nージメチルホルムアミド等の溶媒中、塩基として、例えば炭酸カリウム、水素化ナトリウム等の存在下に行うことができる。該塩基の使用量としては、化合物 (IVba) に対して、約1当量ないし約3当量が好ましい。

 X^d が-S-である化合物(IIbd)は、必要に応じて酸化反応を行うことによって、 X^d が-SO-または $-SO_2$ -である化合物(IIbd)に導くこともでき

10

20

25

酸化剤としては、スルフィドの酸化剤として用いられるものであればいずれでも用いることができるが、好ましくは、例えばメタクロロ過安息香酸、過酢酸、過酸化水素、アルカリ金属過ヨウ素酸塩等が用いられる。特に好ましくは、メタクロロ過安息香酸および過酸化水素等が用いられる。該酸化剤の使用量は、SのSOへの酸化の場合、化合物(IIbd)に対して、約1当量ないし約1.1当量が特に好ましい。また、SのSO₂への酸化の場合、化合物(IVbd)に対して、約2当量ないし2.5当量が特に好ましい。本反応の溶媒としては、例えばジクロロメタン、クロロホルム、酢酸、酢酸エチル等が好ましい。

工程(da)の原料化合物(IIIbd)またはその塩は、以下の反応式4-2により製造することができる。すなわち、

工程(db):化合物(Vbb)のクロロスルホニル化反応、および

工程(dc):式(VIbd) [式中、各記号は上記と同意義を示す。]で表される化合物(以下、化合物(VIbd)と略称することもある)の還元反応によって、化合物(IIIbd)を製造することができる。

15 反応式4-2

$$R^{1} \longrightarrow R^{1} \longrightarrow R^{1$$

工程(db)において、化合物(Vbb)をクロロスルホニル化することで化合物(VIbd)を製造することができる。

本クロロスルホニル化反応の試薬としては、例えばクロロスルホン酸、スルフリルクロリド、二酸化硫黄-塩化銅等を用いることができる。特にクロロスルホン酸等が好ましい。該クロロスルホニル化試薬の使用量としては、約1当量ないし大過剰量である。本反応は、無溶媒でも溶媒を用いても行うことができる。溶媒を用いて行う場合に用いる溶媒としては、例えばジクロロメタン、1,2ージクロロエタン、二硫化炭素等が好ましい。無溶媒での反応が特に好ましい。反応温度としては、約-20℃ないし約100℃が好ましい。

また、クロロスルホニル基は、反応可能な位置のいずれにも導入されるが、例

10

15

20

えば、A環が無置換の場合、7位が主にクロロスルホニル化される。しかし、6 位がクロロスルホニル化された化合物も生成、分離することができる。

工程 (dc) において、化合物 (VIbd) を還元することで化合物 (IIIbd) を製造することができる。

本還元反応は、適当な還元条件、例えば亜鉛一酢酸、スズ—塩酸等金属と酸の 組み合わせ、遷移金属触媒を用いた接触還元反応、あるいは水素化リチウムアル ミニウム等金属水素化物等により行うことができる。特に好ましくは、亜鉛一酢 酸を用いた還元反応である。

化合物 (IIb) のうち、 $-X-が-SO_2NR^3$ b a -である化合物 (IIbe) またはその塩は、以下の反応式 5 により製造することができる。 反応式 5

$$R^{1} - N \longrightarrow A \qquad + \qquad R^{3ba} - R \longrightarrow R^{1} - N \longrightarrow R^{1} \longrightarrow R^{3ba} \longrightarrow$$

工程 (ea) において、化合物 (VIbd) と式 (IVbe) [式中、各記号は上記と同意義を示す] で表される化合物 (以下、化合物 (IVbe) と略称することもある) の縮合反応によって、化合物 (IIbe) を製造することができる。

化合物 (VIbd) と化合物 (IVbe) の縮合反応は、例えば化合物 (IIIbb) と化合物 (IVbc) のアミド化反応と同様に行うことができる。

化合物 (IVbe) またはその塩は、それ自体公知の方法あるいはそれに準じた方法により製造することができる。例えば、ジャーナル オブ ジ メディシナルケミストリー (J. Med. Chem.), 33, 1880(1990)等に記載またはそれに準じた方法により製造することができる。

化合物 (IIb) のうち、-X-が-SO₂ NHCONR^{3 b a} -である化合物 (IIbf) またはその塩は、以下の反応式 6 により製造することができる。

25 反応式 6

10

15

20

$$R^{1}-N \longrightarrow A \longrightarrow R^{3ba} \longrightarrow R \longrightarrow R^{1}-N \longrightarrow R^{1}-N \longrightarrow R^{3ba} \longrightarrow R^{1}-N \longrightarrow R^{3ba} \longrightarrow R^{3ba} \longrightarrow R^{1}-N \longrightarrow R^{3ba} \longrightarrow R^{1}-N \longrightarrow R^{3ba} \longrightarrow R^{1}-N \longrightarrow R^{1}-$$

工程(fa)において、化合物(VIbd)に、アルカリ金属イソシアン酸塩(MOCN;ここでMはアルカリ金属を示す)を作用させた後、化合物(IVbe)を反応させることによって、化合物(IIbf)を製造することができる。本反応は、例えば欧州特許(EP-759431)、特開平7-118267等に記載またはそれに準じた方法で製造することができる。

化合物(VIbd)とアルカリ金属イソシアン酸塩の反応は、必要に応じて塩基の存在下で行われる。用いられる塩基としては、特にピリジン、トリエチルアミン等が好ましい。該塩基の使用量は、化合物(VIbd)に対して、約1当量ないし約5当量が好ましい。反応溶媒としては、特にアセトニトリル等が好ましく用いられる。アルカリ金属としては、例えば、カリウム等が好ましく用いられる。

化合物 (IIb) のうち、 $-X-が-SO_2$ NHC (=NH) NR 3 b a -である 化合物 (IIbg) またはその塩は,以下の反応式 7 により製造することができる。 反応式 7

$$R^{1} - N \longrightarrow A \longrightarrow SO_{2}CI \qquad R^{3ba} \qquad R \longrightarrow R^{1} - N \longrightarrow R^{1} \longrightarrow$$

工程(ga)において、化合物(VIbd)と式(IVbg) [式中、各記号は上記と同意義を示す] で表される化合物(以下、化合物(IVbg)と略称することもある)の縮合反応によって、化合物(IIbg)を製造することができる。

化合物 (VIbd) と化合物 (IVbg) の縮合反応は、例えば化合物 (IIIbb) と化合物 (IVbc) のアミド化反応と同様に行うことができる。

化合物 (IVbg) は、化合物 (IVbe) を用いて、自体公知またはそれに準じた方

法により、製造することができる。例えば、化合物(IVbe)にS-メチルイソチオウレアを作用させる方法(例えば、ジャーナル オブ ジ オーガニック ケミストリー(J. Org. Chem.)13,924(1948)に記載の方法等)、シアナミドを作用させる方法(例えば、ヘルベチカ ヒミカ アクタ(Helv. Chem. Acta),29,324(1946)に記載の方法等)、および1,3-ビス(t-ブトキシカルボニル)-2-メチルー2-チオプソイドウレア(1,3-Bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea)を作用させる方法(例えば、テトラヘドロン レターズ(Tetrahedron Lett.),33,6541-6542(1992)、ジャーナル オブ ジオーガニック ケミストリー(J. Org. Chem.),52,1700-1703(1987)に記載の方法等)等によって化合物(IVbg)を製造することができる。

化合物(IIb)のうち、 $-X-が-CR^{3b}$ (R^{3bb}) -である化合物 (IIbh) またはその塩は,以下の反応式8により製造することができる。 反応式8

15

5

10

工程(ha)において、式(IIIbh) [式中、各記号は上記と同意義を示す。] で表される化合物(以下、化合物(IIIbh)と略称することもある)を適当な試薬と反応させることにより、カルボニル基を変換して、化合物(IIbh)を製造することができる。

20

カルボニル基の変換反応に使用される試薬としては、例えば、水素化ホウ素ナトリウム、水素化リチウムアルミニウム、トリエチルシラン等の還元剤、例えばアルキルリチウム、アルキルマグネシウムハライド等の有機金属試薬、その他、例えばシアン化水素等の求核反応剤等が用いられる。

25

具体的には、カルボニル基の-CH(OH)-や-CH₂-への変換は、例えば水素化ホウ素ナトリウム、水素化リチウムアルミニウム、トリエチルシラン等の環元剤を用いて、適当な還元条件下(例えば、トリエチルシラン-トリフルオ

10

15

20

25

ロ酢酸、水素化リチウムアルミニウム-塩化アルミニウム、亜鉛-塩酸等の組み合わせ等)、行うことができる。

本反応は、例えば、リダクション ウィズ コンプレックス メタル ヒドリドズ (Reduction with Complex Metal Hydrides) Interscience, New York (1956)、ケミカル ソサイエティー レビューズ (Chem. Soc. Rev.), 5, 23 (1976)、シンセシス(Synthesis), 633 (1974)、ジャーナル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.) 91, 2967 (1969)、ジャーナル オブ オーガニック ケミストリー(J. Org. Chem.), 29, 121 (1964)、オーガニック リアクションズ(Org. Reactions), 1, 155 (1942)、アンゲバンテ ヘミー(Angew. Chem.), 71, 726 (1956)、シンセシス(Synthesis), 633 (1974)、ジャーナル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.), 80, 2896 (1958)、オーガニック リアクションズ(Org. Reactions), 4, 378 (1948)、ジャーナル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.), 108, 3385 (1986)等に記載あるいはそれに準じた方法等で行うことができる。

また、カルボニル基の $-CR^3$ b c (OH) - (ここで R^3 b c は、 C_{1-6} アルキル基を示す。)への変換は、例えばアルキルリチウム、アルキルマグネシウムハライド等の有機金属試薬を用いて、例えばグリニャール リアクションズオブ ノンメタリック サブスタンセズ(Grignard Reactions of Nonmetallic Substances),Prentice-Hall: Englewood Cliffs,NJ,1954,pp. 138-528、オルガノリチウム メソッズ(Organolithium Methods),Academic Press: New York,1988,pp. 67-75等に記載あるいはそれに準じた方法等で行うことができる。

また、その他に、アドバンスト オーガニック ケミストリー (Advanced Organic Chemistry), 5th ed. Wiley-Interscience: New York, 1992, pp. 879-981等に記載あるいはそれに準じた方法等で、カルボニル基の変換を行うことができる。

化合物 (IIIbh) は、自体公知あるいはそれに準じた方法、例えば特開平5-140149、特開平6-206875、ジャーナル オブ メディシナル ケ

10

15

20

ミストリー(J. Med. Chem.), 37, 2292 (1994)等に記載あるいはそれに準じた方法等で製造することができる。

化合物 (IIb) のうち、-X-が-C ($=CR^3$ b a (R^3 b b)) -である 化合物 (IIbi) またはその塩は,以下の反応式 9 により製造することができる。 反応式 9

$$R^{1} = N$$

$$(IIIbh)$$

$$R^{3bb} = R^{3ba}$$

$$R^{1} = N$$

$$R^{1} = N$$

$$(IIIbi)$$

$$(IIbi)$$

工程(ia)において、化合物(IIIbh)を適当な試薬と反応させることにより、 カルボニル基を変換して、化合物(IIbi)を製造することができる。

カルボニル基の変換反応としては、例えば、ウイティッヒ(Wittig)反応、ホーナーーワズワースーエモンズ(Horner-Wadsworth-Emmons)反応、ピーターソン (Peterson)オレフィン化反応、クネーベナーゲル(Knoevenagel)反応等が挙げられ、試薬としてはそれら反応に用いられる一般的な試薬が用いられる。

本反応は、例えば、アドバンスト オーガニック ケミストリー (Advanced Organic Chemistry), 5th ed. Wiley-Interscience: New York, 1992, pp. 879-981、オーガニック シンセシス (Organic Synthesis), coll. vol. 5, 751 (1973)、オーガニック シンセシス (Organic Synthesis), coll. vol. 5, 509 (1973)、シンセシス (Synthesis), 384 (1984)、オーガニック リアクションズ (Org. Reactions), 15, 204 (1967)等に記載あるいはそれに準じた方法等で行うことができる。

化合物 (IIb) のうち、-X-が-C ($=NR^3$ a) -である化合物 (IIbj) またはその塩は,以下の反応式10により製造することができる。 反応式10

10

反応式11

工程(ja)において、化合物(IIIbh)を適当な試薬と反応させることにより、 カルボニル基を変換して、化合物(IIbj)を製造することができる。

カルボニル基の変換反応に用いられる試薬としては、例えば、置換されていてもよいヒドラジンや置換されていてもよいヒドロキシルアミン等が挙げられる。 該置換基としては、C₁₋₆アルキル基等が用いられる。

本反応は、例えば、アドバンスト オーガニック ケミストリー (Advanced Organic Chemistry), 5th ed. Wiley-Interscience: New York, 1992, pp. 904-907、オーガニック ファンクショナル グループ プレパレーションズ (Organic Functional Group Preparations), vol. III, Academic (1983)、ロッド ケミストリー オブ カーボン カンパウンドズ (Rodd's Chemistry of Carbon Compounds), vol. 1, part C, Elsevier Publishing co. (1965) 等に記載あるいはそれに準じた方法等で行うことができる。

15 化合物 (IIb) のうち、-X-が-CS-である化合物 (IIbk) またはその塩は、以下の反応式11により製造することができる。

$$R^{1}-N$$

$$(IIIbh)$$

$$R^{1}-N$$

$$(IIbk)$$

$$(IIbk)$$

20 工程(ka)において、化合物(IIIbh)を適当な試薬と反応させることにより、 カルボニル基をチオカルボニル基に変換して、(IIbk)を製造することができる。 カルボニル基のチオカルボニル基への変換に用いられる試薬としては、例えば、 ローソン(Lawesson)試薬、五硫化二リン、硫化水素-塩酸等の一般的な硫化試薬が挙げられる。

159

本反応は、シンセシス(Synthesis), 7, 543 (1991)、ジャーナル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.), 106, 934 (1984)、ジャーナル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.) 68, 769 (1946)等に記載あるいはそれに準じた方法等で行うことができる。

化合物 (IIb) のうち、 $-X-が-CONR^3$ b a -である化合物 (IIbm) またはその塩は、以下の反応式 12-1 により製造することができる。

10 反応式12-1

5

15

20

$$R^{1} \longrightarrow R^{3ba} \longrightarrow R^{3ba} \longrightarrow R^{1} \longrightarrow$$

工程(ma) において、式(IIIbm) [式中、各記号は上記と同意義を示す]で表される化合物(以下、化合物(IIIbm)と略称することもある)と化合物(IVbe)の縮合反応によって、化合物(IIbm)を製造することができる。

化合物 (IIIbm) と化合物 (IVbe) の反応は、例えば化合物 (IIIbb) と化合物 (IVbc) のアミド化反応と同様に行うことができる。

また、工程 (ma) の原料化合物 (IIIbm) は、以下の反応式12-2により製造することができる。すなわち、工程 (mb) : 化合物 (Vbb) のアセチル化反応、および工程 (mc) :式 (VIbm) [式中、各記号は上記と同意義を示す。] で表される化合物 (以下、化合物 (VIbm) と略称することもある) の酸化反応および必要に応じた官能基変換を、順次行うことにより、化合物 (IIIbm) を製造することができる。

反応式12-2

10

15

20

25

PCT/JP01/06899

$$R^{1} \longrightarrow R^{1} \longrightarrow R^{1$$

工程 (mb) において、化合物 (Vbb) をアセチル化することにより、化合物 (VIbm) を製造することができる。

本反応は、一般的なフリーデルークラフツ(Friedel-Crafts)反応の条件によって行うことができる。アセチル化の試薬としては、塩化アセチルや無水酢酸等が用いられる。具体的には、例えば特開平5-140149、特開平6-206875、ジャーナルオブ メディシナル ケミストリー(J. Med. Chem.), 37, 2292 (1994)等に記載あるいはそれに準じた方法等で製造することができる。

工程 (mc) において、化合物 (VIbm) を酸化することにより、化合物 (IIIbm) 、特に Z^2 がヒドロキシル基である化合物を製造することができる。

本反応に用いられる酸化剤としては、例えば、次亜塩素酸塩、次亜臭素酸塩、 あるいは適当な塩基(例えば、水酸化ナトリウム等)の共存下でのハロゲン単体 (例えば、臭素、ヨウ素等)等が挙げられる。本反応は具体的には、例えばオー ガニック シンセシス(Org. Synthesis), Coll. Vol. 2, 428 (1943)、ジャーナ ル オブ ジ アメリカン ケミカル ソサイエティー(J. Am. Chem. Soc.), 66,894 (1944)等に記載あるいはそれに準じた方法等で行うことができる。

また、必要に応じて、 Z^2 がヒドロキシル基である化合物(IIIbm)のヒドロキシル基を官能基変換することにより、 Z^2 がハロゲン原子(例えばクロル、ブロム、ヨード)、 C_{1-6} アルキルオキシ基(例えば、メトキシ、エトキシ、ベンジルオキシ等)、または C_{6-10} アリールオキシ基(例えばフェノキシ、pーニトロフェノキシ等)である化合物(IIIbm)に変換することができる。

官能基変換の方法は、例えば、アドバンスト オーガニック ケミストリー (Advanced Organic Chemistry), 5th ed. Wiley-Interscience: New York, 1992, pp. 393-396, 437-438、コンプリヘンシブ オーガニック トランスフォーメーションズ (Comprehensive Organic Transformations), VCH Publishers Inc. (1989) 等に記載あるいはそれに準じた方法等で行うことができる。

10

15

20

このようにして得られる化合物 (IIb) は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより 単離精製することができる。

また、本発明のスクリーニング法またはスクリーニングキットで得られるGP R14 (SENR) アンタゴニストとして有用な化合物としては、例えば式(I c):

$$R^{2c} \xrightarrow{N} \qquad Q \qquad R^{1c} \qquad Q \qquad R^{1c} \qquad Q \qquad N - X^{c} - A^{c} \qquad Q \qquad (1c)$$

[式中、 R^1 ° は水素原子または置換されていてもよい炭化水素基を示し、 X° は直鎖部分を構成する原子の数が $1\sim12$ のスペーサーを示し、 R^1 ° および X° では結合して環を形成していてもよく、 A° は置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示し、 R^2 ° は置換されていてもよい炭化水素基または置換されていてもよいアミノ基を示し、 R^3 ° は置換されていてもよい炭化水素基を示し、 R^3 ° は置換されていてもよいベンゼン環を示す〕で表される化合物またはその塩も挙げられる。

はアミド化されていてもよいカルボキシル基などが用いられる。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」およびR⁶°で示される「置換されていてもよい炭化水素基」における「炭化水素基」としては、例えば、

- (1)アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- 10 (2)シクロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどのC₃₋₈シクロアルキルなどが挙げられる);また、該シクロアルキルは、ベンゼン環と縮合し、インダン(例、インダン-1-イル、インダン-2-イルなど)、テトラヒドロナフタレン(例、テトラヒドロナフタレン-5-イル、テトラヒドロナフタレン-6-イルなど)など(好ましくは、インダンなど)を形成していてもよく;さらに、該シクロアルキルは、炭素数1~2の直鎖状の原子鎖を介して架橋し、ビシクロ[2.2.1] ヘプチル、ビシクロ[2.2.2] オクチル、ビシクロ[3.2.1] オクチル、ビシクロ[3.2.2] ノニルなど(好ましくは、炭素数1~2の直鎖状の原子鎖を介した架橋を有するシクロヘキシルなど、さらに好ましくは、ビシクロ[2.2.1] ヘプチルなど)の架橋環式炭化水素残基を形成していてもよい;
 - (3) アルケニル (例えば、ビニル、アリル (allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなどの炭素数2~10のアルケニル、好ましくは低級(<math>C_2$ - $_6$) アルケニルなどが挙げられる);
- 25 (4)シクロアルケニル(例えば、2ーシクロペンテニル、2ーシクロヘキセニル、2ーシクロペンテニルメチル、2ーシクロヘキセニルメチルなど炭素数3~8のシクロアルケニルなどが挙げられる);
 - (5) アルキニル(例えば、エチニル、1ープロピニル、2ープロピニル、1ーブチニル、2ーペンチニル、3ーヘキシニルなどの炭素数2~10のアルキニル、

WO 02/14513 PCT/JP01/06899

好ましくは低級 (C₂₋₆) アルキニルなどが挙げられる);

5

10

15

20

25

(6) アリール(例えば、フェニル、ナフチルなどの $C_{6-1/4}$ アリール、好ましくは $C_{6-1/6}$ アリール、さらに好ましくはフェニルなどが挙げられる);

(7) アラルキル(例えば、 $1\sim3$ 個の C_{6-1} 4 アリールを有する C_{1-6} アルキル、好ましくは、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);などが挙げられ、なかでも、アルキルが好ましく、メチル、エチルなどの C_{1-4} アルキルがさらに好ましく、とりわけ、メチルが好ましく用いられる。

該炭化水素基は置換基を有していてもよく、かかる置換基としては、例えば、 ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、オキソ、 水酸基、置換されていてもよいチオール基(例、チオール、C₁₋₄ アルキルチ オなど)、置換されていてもよいアミノ基(例、アミノ、モノC1-4アルキル アミノ、ジC₁₋₄アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペ リジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員 の環状アミノなど)、フェニルー低級(C_{1-4})アルキル、 C_{3-7} シクロア ルキル、エステル化またはアミド化されていてもよいカルボキシル基(例、カル ボキシル、 C_{1-4} アルコキシーカルボニル、低級(C_{7-10})アラルキルオ キシーカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1} _ 4 アルキルカルバモイルなど)、ハロゲン原子またはC1 - 4 アルコキシで置 換されていてもよいC₁₋₄ アルキル(例、トリフルオロメチル、メチル、エチ ルなど)、ハロゲン原子またはC₁₋₄アルコキシで置換されていてもよいC₁ _ 4 アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオ ロエトキシなど)、C₁₋₄ アルキレンジオキシ(例、-O-CH₂ -O-、- $O-CH_2-CH_2-O-$ など)、ホルミル、 C_{2-4} アルカノイル(例、アセ チル、プロピオニルなど)、C₁₋₄アルキルスルホニル(例、メタンスルホニ ル、エタンスルホニルなど)、C₁₋₄アルキルスルフィニル(例、メタンスル フィニル、エタンスルフィニルなど)などが挙げられ、置換基の数としては、1 ~3個が好ましい。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけ

10

15

20

25

るベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」およびR⁶。で示される「置換されていてもよい複素環基」における「複素環基」としては、例えば、酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を少なくとも1個(好ましくは1ないし4個、さらに好ましくは1ないし2個)含む5~8員の芳香族複素環、飽和または不飽和の非芳香族複素環(脂肪族複素環)等から水素原子1個を除いて形成される基などが挙げられる。

ここで「芳香族複素環」としては、5~8員(好ましくは5~6員)の芳香族 単環式複素環(例えばフラン、チオフェン、ピロール、オキサゾール、イソオキ サゾール、チアゾール、イソチアゾール、イミダゾール、ピラゾール、1,2,3 ーオキサジアゾール、1,2,4ーオキサジアゾール、1,3,4ーオキサジアゾール、1,2,3ーチアジアゾール、1,2,4ーチアジアゾール、1,3,4ーチアジ アゾール、1,2,3ートリアゾール、1,2,4ートリアゾール、テトラゾール、 ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン等)などが挙げられ、 「非芳香族複素環」としては、例えば、ピロリジン、テトラヒドロフラン、テト ラヒドロチオフェン、チオラン、ジチオラン、オキサチオラン、ピロリン、イミ ダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、オキサジン、オキサジ アジン、チアジン、ゲペラジン、ピランリン、チエピン、アゼピンな どの5~8員(好ましくは5~6員)の飽和または不飽和の単環式非芳香族複素 環(脂肪族複素環)など、あるいは上記した芳香族単環式複素環の一部または全 部の二重結合が飽和した5~8員の非芳香族複素環などが挙げられる。

また、B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」およびR6°で示される「置換されていてもよい複素環基」における「複素環基」としては、上記した単環式複素環(単環式芳香族複素環および単環式非芳香族複素環)および $5\sim8$ 員の環状炭化水素(C_{5-8} シクロアルカン、 C_{5-8} シクロアルケン、 C_{5-8} シクロアルカジエンなどの $5\sim8$ 員(好ましくは $5\sim6$ 員)の飽和又は不飽和の脂環式炭化水素;ベンゼンなどの6員の芳香

10

15

20

25

族炭化水素;など)から選ばれる2~3個(好ましくは、2個)の環が縮合して 形成する縮合環から水素原子1個を除いて形成される基などであってもよく、こ れらの縮合環は飽和の縮合環、部分的に不飽和結合を有する縮合環、芳香縮合環 の何れであってもよい。

かかる縮合環の好ましい例としては、同一または異なった2個の複素環(好ましくは、1個の複素環と1個の芳香族複素環、さらに好ましくは、同一または異なった2個の芳香族複素環)が縮合した環;1個の複素環と1個の同素環(好ましくは、1個の複素環と1個のベンゼン環、さらに好ましくは、1個の芳香族複素環と1個のベンゼン環)が縮合した環;などが挙げられ、このような縮合環の具体例としては、例えば、インドール、ベンゾチオフェン、ベンゾフラン、ベンズイミダゾール、イミダゾ[1,2-a]ピリジン、キノリン、イソキノリン、シンノリンなどが挙げられる。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」およびR°°で示される「置換されていてもよい複素環基」における「複素環基」は置換基を有していてもよく、かかる置換基としては、例えば、上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」が有していてもよい置換基と同様な基が挙げられる。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「ハロゲン原子」の例としては、フッ素、塩素、臭素、ヨウ素などが挙げられる。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいアミノ基」としては、後に記載するA°で示される「置換されていてもよいアミノ基」と同様なものが挙げられるが、なかでも、「置換されていてもよい炭化水素基」(上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい後未表」と同様な基など)、「置換されていてもよい複素環基」(上記

10

15

20

25

したB°またはC°で示される「さらに置換されていてもよいベンゼン環」にお けるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素 環基」と同様な基など)および「置換されていてもよいアシル基」(後に記載す るB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけ るベンゼン環が有していてもよい置換基としての「置換されていてもよいアシル 基」と同様な基など)から選ばれる置換基を1~2個有していてもよいアミノ基 が好ましく、とりわけ、置換されていてもよいアルキル〔例えば、ハロゲン(例、 フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていて もよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置換されてい てもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アル キルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チ オモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、フ ェニルー低級 (C_{1-4}) アルキル、 C_{3-7} シクロアルキル、エステル化また はアミド化されていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アル コキシカルボニル、低級(C_{7-10})アラルキルオキシーカルボニル、カルバ モイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイル など)、ハロゲン原子またはC₁₋₄アルコキシで置換されていてもよいC₁₋ 4 アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子ま たはC₁₋₄ アルコキシで置換されていてもよいC₁₋₄ アルコキシ (例、メト キシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、C₁- $_4$ アルキレンジオキシ(例、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2-O-$ など)、ホルミル、C2-4アルカノイル(例、アセチル、プロピオニルなど)、 C₁₋₄ アルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど)、 C₁₋₄ アルキルスルフィニル(例、メタンスルフィニル、エタンスルフィニル など)などから選ばれる置換基1~3個をそれぞれ有していてもよいメチル、エ チル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、ter t-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オ クチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-10} 。) アルキルなど〕を1~2個有していてもよいアミノ基が好ましい。

10

15

20

25

また、B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいアミノ基」は、アミノ基の置換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim 6$ 員環の環構成窒素原子から水素原子1 個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換基を有していてもよく、かかる置換基としては、ハロゲン(例、フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、チオール基、アミノ基、カルボキシル基、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1\sim 3$ 個が好ましい。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいアシル基」としては、水素、「置換されていてもよい炭化水素基」(上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様な基など)、「置換されていてもよい複素環基」(上記したB°またはC°で示される「さらに置換されていてもよい複素環基」(上記したB°またはC°で示される「さらに置換されていてもよい複素環基」と同様な基など)などがカルボニル基またはスルホニル基と結合したものなどが挙げられるが、好適な例として、

(1) 水素、

(2) 置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イ ソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチ ル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デ

15

20

25

シルなどの C_{1-1} 。 アルキル、好ましくは低級(C_{1-6}) アルキルなどが挙 げられる) ;

- (3) 置換されていてもよいシクロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロペキシル、シクロペプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- (4) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2~10のアルケニル、好ましくは 低級(<math>C_{2-6}$)アルケニルなどが挙げられる);
- (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、2-シクロペンテニルメチル、2-シクロペキセニルメチル、2-シクロペンテニルメチル、2-シクロペキセニルメチルなど炭素数3~7のシクロアルケニルなどが挙げられる);
 - (6) 置換されていてもよい5~6員の単環の芳香族基(例えば、フェニル、ピリジルなどが挙げられる)などがカルボニル基またはスルホニル基と結合したもの (例、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル、シクロブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、シクロヘプタンカルボニル、クロトニル、2ーシクロヘキセンカルボニル、ベンゾイル、ニコチノイル、メタンスルホニル、エタンスルホニル等)が挙げられ、上記した
 - (2) 置換されていてもよいアルキル、(3)置換されていてもよいシクロアルキル、(4)置換されていてもよいアルケニル、(5)置換されていてもよいシクロアルケニル、および(6)置換されていてもよい $5\sim6$ 員の単環の芳香族基が有していてもよい置換基としては、ハロゲン(例、フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim6$ 員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボ

ニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキル

10

15

20

カルバモイルなど)、ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルコキシ(例、メトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、 C_{1-4} アルキルスルフィニル(例、メタンスルフィニル、エタンスルフィニルなど)などが挙げられ、置換基の数としては、 $1\sim3$ 個が好ましい。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「エステル化されていてもよいカルボキシル基」としては、水素、「置換されていてもよい炭化水素基」(上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様な基など)などがカルボニルオキシ基に結合したものなどが挙げられるが、好適な例として、

(1) 水素、

- (2)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-1} 0 アルキル、好ましくは低級(C_{1-6} 0 アルキルなどが挙げられる);
- (3) 置換されていてもよいシクロアルキル (例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-7} シクロアルキルなどが挙げられる);
- 25 (4) 置換されていてもよいアルケニル (例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数2~10のアルケニル、好ましくは 低級 (<math>C_{2-6}$) アルケニルなどが挙げられる);
 - (5) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、 2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメ

チルなど炭素数3~7のシクロアルケニルなどが挙げられる);

(6) 置換されていてもよいアリール(例えば、フェニル、ナフチルなど)など がカルボニルオキシ基に結合したもの、より好ましくはカルボキシル、低級(C 1 - 6) アルコキシカルボニル、アリールオキシカルボニル(例、メトキシカル ボニル、エトキシカルボニル、プロポキシカルボニル、フェノキシカルボニル、 5 ナフトキシカルボニルなど)などが挙げられ、上記した(2)置換されていても よいアルキル、(3)置換されていてもよいシクロアルキル、(4)置換されて いてもよいアルケニル、(5) 置換されていてもよいシクロアルケニル、および (6) 置換されていてもよいアリールが有していてもよい置換基としては、ハロ ゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換 10 されていてもよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置 換されていてもよいアミノ基(例、アミノ、モノC₁₋₄アルキルアミノ、ジC 1-4 アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モル ホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノ など)、エステル化またはアミド化されていてもよいカルボキシル基(例、カル 15 ボキシル、C, _ 4 アルコキシカルボニル、カルバモイル、モノC, _ 4 アルキ ルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハロゲン原子または C₁₋₄ アルコキシで置換されていてもよいC₁₋₄ アルキル (例、トリフルオ ロメチル、メチル、エチルなど)、ハロゲン原子またはC₁₋₄アルコキシで置 換されていてもよいC₁₋₄ アルコキシ(例、メトキシ、エトキシ、トリフルオ 20 ロメトキシ、トリフルオロエトキシなど)、ホルミル、C224アルカノイル (例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル (例、メタ ンスルホニル、エタンスルホニルなど)、 С, _ 4 アルキルスルフィニル (例、 メタンスルフィニル、エタンスルフィニルなど)などが挙げられ、置換基の数と しては、1~3個が好ましい。 25

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「アミド化されていてもよいカルボキシル基」としては、

(1) 水酸基:

10

15

20

25

171

(2)「置換されていてもよいアミノ基」(上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいアミノ基」と同様なものなど);などがカルボニル基と結合したものなどが挙げられる。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基は、 $1\sim4$ 個(好ましくは、 $1\sim2$ 個)同一または異なって環のいずれの位置に置換していてもよい。また、B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が2個以上の置換基を有する場合、これらのうち、2個の置換基が互いに結合して、例えば、低級(C_{1-6})アルキレン(例、トリメチレン、テトラメチレンなど)、低級(C_{1-6})アルキレンオキシ(例、 $-CH_2-O-CH_2-$ 、 $-O-CH_2-CH_2-$ など)、低級(C_{1-6})アルキレンジオキシ(例、 $-CH_2-$ 0、 $-CH_2-$ 0 、(例、 $-CH_2-$ 0)などを形成していてもよい。

B°またはC°で示される「さらに置換されていてもよいベンゼン環」としては、それぞれ明示された置換基以外の置換基を有していないベンゼン環が好まし

V /°

5

25

上記式(Ic)中、 R^1 °、 R^2 ° および R^3 ° で示される「置換されていてもよい炭化水素基」における「炭化水素基」としては、例えば、

- (1) アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-1} のアルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (2) シクロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-8} シクロアルキルなどが挙げられる);また、該シクロアルキルは、ベンゼン環と縮合し、インダン(例、インダン-1-イル、インダン-2-イルなど)、テトラヒドロナフタレン(例、テトラヒドロナフタレン-5-イル、テトラヒドロナフタレン-6-イルなど)など(好ましくは、インダンなど)を形成していてもよく;さらに、該シクロアルキルは、炭素数 $1\sim 2$ の直鎖状の原子鎖を介して架橋し、ビシクロ [2.2]
- 1] ヘプチル、ビシクロ [2.2.2] オクチル、ビシクロ [3.2.1] オクチル、ビシクロ [3.2.2] ノニルなど (好ましくは、炭素数 1~2の直鎖状の原子鎖を介した架橋を有するシクロヘキシルなど、さらに好ましくは、ビシクロ [2.2.1] ヘプチルなど) の架橋環式炭化水素残基を形成していてもよい;
- 20 (3) アルケニル (例えば、ビニル、アリル (allyl)、クロチル、2-ペンテニル、 $3-ヘキセニルなどの炭素数 <math>2\sim1$ 0のアルケニル、好ましくは低級(C_2 6)アルケニルなどが挙げられる);
 - (4) シクロアルケニル(例えば、2ーシクロペンテニル、2ーシクロヘキセニル、2ーシクロペンテニルメチル、2ーシクロヘキセニルメチルなど炭素数3~8のシクロアルケニルなどが挙げられる);
 - (5) アルキニル(例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ペンチニル、3-ヘキシニルなどの炭素数 $2\sim10$ のアルキニル、好ましくは低級(C_{2-6})アルキニルなどが挙げられる);
 - (6) アリール (例えば、フェニル、ナフチルなどのC₆₋₁₄ アリール、好ま

15

20

25

挙げられる。

しくは C_{6-10} アリール、さらに好ましくはフェニルなどが挙げられる);

(7) アラルキル(例えば、 $1\sim3$ 個の C_{6-14} アリールを有する C_{1-6} アルキル、好ましくは、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);

(8) 式 -X°'''-G°-(CH₂)_n-J°

[式中、 X° ''は C_{1-4} アルキレン基または C_{2-4} アルケニレン基を示し、 G° は結合手、-0-、-S-、-C0-NH-または-NH-C0-を示し、nは0 \sim 3 $の整数を示し、<math>J^{\circ}$ は置換されていてもよい芳香環基を示す〕で表される基または

(9) 式 -X^c'',''-L^c-(CH₂)_n-M^c

> 上記式中、J°およびL°で示される置換されていてもよい芳香環基としては、 置換されていてもよいアリール基、置換されていてもよい芳香族複素環基などが

> J°およびL°で示される「置換されていてもよいアリール基」における「アリール基」としては、例えば、フェニル、ナフチルなどの $C_{6-1/4}$ アリール、好ましくは $C_{6-1/6}$ アリール、さらに好ましくはフェニルなどが挙げられる。

J°およびL°で示される「置換されていてもよい芳香族複素環基」における「芳香族複素環基」としては、例えば、R°°で例示された「置換されていてもよい複素環基」と同様なものなどが挙げられるが、なかでも、置換基を有していてもよい5~6員の芳香族単環式複素環基が好ましく、ここで、5~6員の芳香族単環式複素環基としては、例えばフラン、チオフェン、ピロール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、ピラゾール、1,2,3ーオキサジアゾール、1,2,4ーオキサジアゾール、1,3,4ーオキサジアゾール、1,2,3ーチアジアゾール、1,2,4ーチアジアゾール、1,3,4ーチアジアゾール、1,2,3ーチアジアゾール、1,2,4ーチアジアゾール、1,3,4ーチアジアゾール、1,2,3ートリアゾール、1,2,4ートリアゾール、テトラゾール、ピリジン、ピ

10

15

20

25

リダジン、ピリミジン、ピラジン、トリアジンなどが挙げられる。

J°およびL°で示される「置換されていてもよい芳香環基」における「芳香環 基」は置換基を有していてもよく、かかる置換基としては、例えば、ハロゲン (例、フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換され ていてもよいチオール基(例、チオール、C₁₋₄アルキルチオなど)、置換さ れていてもよいアミノ基(例、アミノ、モノC₁₋₄アルキルアミノ、ジC₁₋ 4 アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリ ン、チオモルホリン、ピロール、イミダゾール、2-オキソ-1-ピロリジニル、2-オキソ-1-ピペリジニルなどの5~6員の環状アミノなど)、フェニルー低級 (C_{1-4})アルキル、 C_{3-7} シクロアルキル、エステル化またはアミド化さ れていてもよいカルボキシル基(例、カルボキシル、C, _ _ アルコキシーカル ボニル、低級(C_{7-10})アラルキルオキシーカルボニル、カルバモイル、モ JC_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイルなど)、ハ ロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子またはC_{.-} ₄ アルコキシで置換されていてもよいC₁₋₄ アルコキシ(例、メトキシ、エト キシ、トリフルオロメトキシ、トリフルオロエトキシなど)、C₁₋₄アルキレ ンジオキシ(例、-O-CH2-O-、-O-CH2-CH2-O-など)、ホ ルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、C₁₋ ₄ アルキルスルフィニル(例、メタンスルフィニル、エタンスルフィニルなど)、 置換されていてもよいスルファモイル基(例、スルファモイル、モノC1-4ア ルキルスルファモイル、ジC₁₋₄アルキルスルファモイルなど)、置換されて いてもよいアリール基、置換されていてもよい複素環基などが挙げられ、置換基 の数としては、1~3個が好ましい。

 R^1 。、 R^2 。および R^3 。で示される「置換されていてもよい炭化水素基」における「炭化水素基」は置換基を有していてもよく、かかる置換基としては、例えば、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、オキソ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} ア

10

15

20

25

ルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノC1-4 アルキルアミノ、ジC₁₋₄ アルキルアミノ、テトラヒドロピロール、ピペラジ ン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾール、2-オ キソ-1-ピロリジニル、2-オキソ-1-ピペリジニルなどの5~6員の環状アミノな ど)、フェニルー低級(C₁ _ 4) アルキル、C₃ _ 7 シクロアルキル、エステ ル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、C₁ - 4 アルコキシーカルボニル、低級 (C₇₋₁₀) アラルキルオキシーカルボニ ル、カルバモイル、モノC1-4アルキルカルバモイル、ジC1-4アルキルカ ルバモイルなど)、ハロゲン原子またはC₁₋₄アルコキシで置換されていても よい C_{1-4} アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロ ゲン原子またはC₁₋₄アルコキシで置換されていてもよいC₁₋₄アルコキシ (例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシな ど)、C₁₋₄アルキレンジオキシ(例、-O-CH₂-O-、-O-CH₂- $CH_2 - O - など)$ 、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピ オニルなど)、C₁₋₄アルキルスルホニル(例、メタンスルホニル、エタンス ルホニルなど)、C₁₋₄アルキルスルフィニル(例、メタンスルフィニル、エ タンスルフィニルなど)、置換されていてもよいスルファモイル基(例、スルフ ァモイル、モノC, _ ₄ アルキルスルファモイル、ジC, _ ₄ アルキルスルファ モイルなど)、置換されていてもよいアリール基、置換されていてもよい複素環 基などが挙げられ、置換基の数としては、1~3個が好ましい。

 R^1 °、 R^2 ° および R^3 ° で示される「置換されていてもよい炭化水素基」の置換基としての「置換されていてもよいアリール基」における「アリール基」としては、例えば、フェニル、ナフチルなどの $C_{6-1/4}$ アリール、好ましくは $C_{6-1/6}$ アリール、さらに好ましくはフェニルなどが挙げられる。

該「アリール基」が有していてもよい置換基としては、例えば、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チ

10

15

20

25

オモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、フ ェニルー低級 (C_{1-4}) アルキル、 C_{3-7} シクロアルキル、エステル化また はアミド化されていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アル - コキシーカルボニル、低級(C₇₋₁₀)アラルキルオキシーカルボニル、カル バモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイ ルなど)、ハロゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1} - ^ アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子 またはC₁₋₄アルコキシで置換されていてもよいC₁₋₄アルコキシ(例、メ トキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、C1 - $_{4}$ アルキレンジオキシ(例、 $-O-CH_{2}-O-$ 、 $-O-CH_{2}-CH_{2}-O$ ーなど)、ホルミル、C2-4アルカノイル(例、アセチル、プロピオニルな ど)、C₁₋₄アルキルスルホニル(例、メタンスルホニル、エタンスルホニル など)、C1-4アルキルスルフィニル(例、メタンスルフィニル、エタンスル フィニルなど)、置換されていてもよいスルファモイル基(例、スルファモイル、 モノC₁₋₄ アルキルスルファモイル、ジC₁₋₄ アルキルスルファモイルな ど)、5~6員の芳香族単環式複素環(例えばフラン、チオフェン、ピロール、 オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、 ピラゾール、1, 2, 3 - オキサジアゾール、1, 2, 4 - オキサジアゾール、1, 2, 43, 4 -オキサジアゾール、1, 2, 3 -チアジアゾール、1, 2, 4 -チアジアゾ ール、1, 3, 4 ーチアジアゾール、1, 2, 3 ートリアゾール、1, 2, 4 ートリア ゾール、テトラゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、トリア ジン等)などが挙げられ、置換基の数としては、1~3個が好ましい。

R¹。、R²。およびR³。で示される「置換されていてもよい炭化水素基」の置換基としての「置換されていてもよい複素環基」としては、例えば、上記したR6。で示される「置換されていてもよい複素環基」と同様なものなどが挙げられる。

上記式(Ic)中、R²°で示される「置換されていてもよいアミノ基」における「アミノ基」の置換基としては、例えば、それぞれ置換されていてもよい炭化水素基、複素環基、アシル基などが好ましい。該「アミノ基」が置換されてい

25

る場合の置換基の数は、1ないし2個である。

 ${f i}$ ${f R}^2$ 。 で示される「置換されていてもよいアミノ基」の置換基としての炭化水素基としては、例えば、

- (1) アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-10} アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (2) シクロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどの C_{3-8} シクロアルキルなどが挙げられる);また、該シクロアルキルは、ベンゼン環と縮合し、インダン(例、インダン-1-イル、インダン-2-イルなど)、テトラヒドロナフタレン(例、テトラヒドロナフタレン-5-イル、テトラヒドロナフタレン-6-イルなど)など(好ましくは、インダンなど)を形成していてもよく;さらに、該シクロアルキルは、炭素数 $1\sim2$ の直鎖状の原子鎖を介して架橋し、ビシクロ[2.2.
- 1] ヘプチル、ビシクロ [2.2.2] オクチル、ビシクロ [3.2.1] オクチル、ビシクロ [3.2.2] ノニルなど (好ましくは、炭素数1~2の直鎖状の原子鎖を介した架橋を有するシクロヘキシルなど、さらに好ましくは、ビシクロ [2.2.1] ヘプチルなど) の架橋環式炭化水素残基を形成していてもよい;
- 20 (3) アルケニル (例えば、ビニル、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなどの炭素数 <math>2\sim1$ 0のアルケニル、好ましくは低級(C_2 - $_6$) アルケニルなどが挙げられる);
 - (4) シクロアルケニル (例えば、2ーシクロペンテニル、2ーシクロヘキセニル、2ーシクロペンテニルメチル、2ーシクロヘキセニルメチルなど炭素数3~8のシクロアルケニルなどが挙げられる);
 - (5) アルキニル(例えば、エチニル、1-プロピニル、2-プロピニル、1- ブチニル、2-ペンチニル、3-ヘキシニルなどの炭素数 $2\sim10$ のアルキニル、好ましくは低級(C_{2-6})アルキニルなどが挙げられる);
 - (6) アリール (例えば、フェニル、ナフチルなどのC₆₋₁₄ アリール、好ま

10

15

20

25

しくは C_{6-10} アリール、さらに好ましくはフェニルなどが挙げられる); (7) アラルキル(例えば、 $1\sim3$ 個の C_{6-14} アリールを有する C_{1-6} アルキル、好ましくは、フェニルー C_{1-4} アルキル(例、ベンジル、フェネチルなど)などが挙げられる);などが挙げられる。

該R²。で示される「置換されていてもよいアミノ基」の置換基としての複素 環基としては、例えば、上記したB°またはC°で示される「さらに置換されて いてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての 「置換されていてもよい複素環基」およびR⁶。で示される「置換されていても よい複素環基」における「複素環基」と同様の基などが挙げられる。

該R²。で示される「置換されていてもよいアミノ基」の置換基としてのアシル基としては、例えば、(1)水素または炭化水素基(上記したR²。で示される「置換されていてもよいアミノ基」の置換基としての炭化水素基と同様の基など)が、カルボニル基またはスルホニル基に結合したもの、(2)複素環基(上記したR²。で示される「置換されていてもよい複素環基」の置換基としての複素環基と同様の基など)が、カルボニル基またはスルホニル基に結合したもの、などが好ましい。

該「置換されていてもよいアミノ基」の置換基としての「置換されていてもよい炭化水素基」、「置換されていてもよい複素環基」および「置換されていてもよいアシル基」の置換基としては、例えば、上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」およびR°°で示される「置換されていてもよい炭化水素基」およびR°°で示される「置換されていてもよい炭化水素基」における「炭化水素基」の置換基と同様のものなどが挙げられる。該置換基の数としては、1~3個が好ましい。

上記式(Ic)中、 R^1 。としては、水素原子または置換されていてもよい C_{1-6} アルキルが好ましく、水素原子または C_{1-4} アルキルがさらに好ましく、とりわけ、水素原子が好ましく用いられる。

上記式(Ic)中、 R^2 °で示される「置換されていてもよい炭化水素基」としては、式 $-X^{\circ}$ "' $-G^{\circ}$ (CH_2) $_n$ $-J^{\circ}$ [式中、 X° "'は C_{1-4} アルキレン基または C_{2-4} アルケニレン基を示し、 G° は結合手、-0-、-S-、-CO-NH-または-NH-CO-

WO 02/14513 PCT/JP01/06899

上記式(Ic)中、 R^3 。で示される「置換されていてもよい炭化水素基」としては、置換されていてもよい C_{1-6} アルキルが好ましく、なかでも、式 $-(CH_2)_p$ - T° [式中、pは $1\sim6$ の整数を示し、 T° は置換されていてもよい芳香環基を示す]で表される基が好ましい。

ここで、 T° で示される「置換されていてもよい芳香環基」としては、上記した J° で示される「置換されていてもよい芳香環基」と同様な基が挙げられるが、 T° で示される「置換されていてもよい芳香環基」における「芳香環基」としては、 D° で示される「置換されていてもよい芳香環基」における「芳香環基」が有していてもよい置換基としては、水酸基、置換されていてもよいスルファモイル基(例、スルファモイル、モノ D° 0、モノ D° 1、デルキルスルファモイル、ボール、ジ D° 2、 D° 3、などが好ましい。

また、上記式(Ic)中、 R^1 。およびX。が結合して環を形成する場合における「環」としては、含窒素複素環であれば、飽和の環および不飽和の環の何れでもよく、環の大きさに制限はないが、なかでも、 $3\sim8$ 員の含窒素複素環が好ましく、とりわけ、飽和の $3\sim8$ 員の含窒素複素環、すなわち、式:

$$-ND^{c}$$

5

10

15

20

25

[式中、D°環は飽和の3~8員含窒素複素環を示す]で表されるものが好ましい

かかる「3~8員の含窒素複素環」としては、例えば、窒素原子を1個含み、 さらに酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3

10

15

20

25

種(好ましくは1ないし2種)を1ないし4個(好ましくは1ないし2個)含んでいてもよい3~8員の含窒素複素環などが挙げられ、より具体的には、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、オキサジン、オキサジアジン、チアジアジン、ピペリジン、モルホリン、チオモルホリン、ピペラジン、アゼピンなどの3~8員(好ましくは5~6員)の飽和または不飽和(好ましくは飽和)の単環式非芳香族複素環(脂肪族複素環)などが挙げられる。

また、該「3~8員の含窒素複素環」は置換基を有していてもよく、かかる置換基としては、例えば、上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」が有していてもよい置換基と同様な基が挙げられる。

さらに、上記式(Ic)中、 R^1 。はA°で示される「置換されていてもよいアミノ基」と結合して環を形成していてもよく、かかる「環」としては、少なくとも2個の窒素原子を含有する複素環であれば、飽和の環および不飽和の環の何れでもよく、環の大きさに制限はないが、なかでも、 $3\sim8$ 員の含窒素複素環が好ましく、とりわけ、飽和の $3\sim8$ 員の含窒素複素環、すなわち、式:

[式中、 A° ' は置換されていてもよい窒素原子を示し、 F° 環は飽和の $3\sim8$ 員含窒素複素環を示す] で表されるものが好ましい。

上記式中、A°'で示される「置換されていてもよい窒素原子」における「窒素原子」が有していてもよい置換基としては、後に記載するA°で示される「置換されていてもよいアミノ基」における「アミノ基」が有していてもよい置換基と同様なものが挙げられる。

かかる「3~8員の含窒素複素環」としては、例えば、窒素原子を2個含み、 さらに酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3 種(好ましくは1ないし2種)を1ないし4個(好ましくは1ないし2個)含ん WO 02/14513 PCT/JP01/06899

でいてもよい3~8員の含窒素複素環などが挙げられ、より具体的には、イミダ ゾリジン、イミダゾリン、ピラゾリジン、ピラゾリン、オキサジアジン、チアジ アジン、ピペラジン、ジアゼピンなどの3~8員(好ましくは5~6員)の飽和 または不飽和(好ましくは飽和)の単環式非芳香族複素環(脂肪族複素環)など が挙げられる。

5

10

15

また、該「3~8員の含窒素複素環」は置換基を有していてもよく、かかる置換基としては、例えば、上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」が有していてもよい置換基と同様な基が挙げられる。

上記式中、X°で示される「直鎖部分を構成する原子の数が $1\sim12$ のスペーサー」としては、「直鎖部分の原子数が $1\sim12$ である2価の基」であれば何れでもよく、例えば、

- (1) (CH₂)_{t1} (t1は1~12の整数、好ましくは1~8の整数、さらに好ましくは1~6の整数、特に好ましくは1~4の整数を示す。)、
 - (2) $-(CH_2)_{u1}-X^{c1}-(CH_2)_{u2}-(u1およびu2は同一または異なって<math>0\sim1~1$ の整数を示す。但し、u1とu2との和は $0\sim1~1$ である。 X^{c1} はNH, 0, S, S0またはS0, を示す)、
- (3) (CH₂)_{v1} X^{c1} (CH₂)_{v2} X^{c2} (CH₂)_{v3} (v1, v2およびv3は同一または 異なって0~10の整数を示す。但し、v1, v2およびv3の和は0~10である。 X^{c1} およびX^{c2} はそれぞれNH, 0, S, S0またはS0₂を示す。但し、v2が0のとき、 X¹ およびX² の少なくとも一つは好ましくはNHを示す。)などの飽和の2価の基お よび一部の結合が不飽和結合に変換された2価の基などが挙げられ、具体的には、 例えば、-0-(CH₂)_{w3} - (w3は0~11の整数)、-(CH₂)_{w3}-0- (w3は0~11の整 数)、-S-(CH₂)_{w3}- (w3は0~11の整数)、-(CH₂)_{w3}-S- (w3は0~11の整 数)、-NH-(CH₂)_{w3}- (w3は0~11の整数)、-(CH₂)_{w3}-NH- (w3は0~11の整 数)、-(CH₂)_{w4}- (w4は1~12の整数)、-CH=CH-、-C≡C-、-C O-NH-、-SO₂-NH-などの2価の基などが挙げられる。

X°としては、直鎖部分を構成する炭素原子数が1ないし4個である2価の基

10

15

20

25

がさらに好ましく、なかでも、 C_{1-4} アルキレン、 C_{2-4} アルケニレンなどが好ましく、とりわけ C_{1-4} アルキレンが好ましく用いられる。

X°としての2価の基は、任意の位置(好ましくは炭素原子上)に置換基を有していてもよく、かかる置換基としては、直鎖部分を構成する2価の鎖に結合可能なものであればいずれでもよく、例えば、上記B°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基と同様な基およびオキソ基などが挙げられる。かかる置換基は、 $1\sim4$ 個(好ましくは、 $1\sim2$ 個)同一または異なって、該2価の基のいずれの位置に置換していてもよい。また、X°としての2価の基の置換基同士が結合して環を形成していてもよく、かかる「環」としては、シクロペンタン、シクロヘキサン、シクロペプタンなどの C_5 -7シクロアルカン;ベンゼンなどが挙げられる。

X°としての2価の基が有していてもよい好ましい置換基の例としては、低級 (C_{1-6}) アルキル(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなど)、低級(C_{3-7})シクロアルキル(例、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなど)、ホルミル、低級(C_{2-7})アルカノイル(例、アセチル、プロピオニル、ブチリルなど)、低級(C_{1-6})アルコキシーカルボニル、低級(C_{1-6})アルコキシ、水酸基、オキソなどが挙げられる。

上記式中、A°で示される「置換されていてもよいアミノ基」としては、「置換されていてもよい炭化水素基」(上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」と同様な基など)、「置換されていてもよい複素環基」(上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい複素環基」と同様な基など)および「置換されていてもよいアシル基」(上記したB°またはC°で示される「さらに置換されていてもよいアシル基」(上記したB°またはC°で示される「さらに置換されていてもよいアシル基」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよいでもよいアシル基」と同様な基など)から選ばれる置換基を1~2個

10

15

20

25

有していてもよいアミノ基などが挙げられるが、 A^c で示される「置換されていてもよいアミノ基」は、アミノ基の置換基同士が結合して、環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim6$ 員環の環構成窒素原子から水素原子 1個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など)を形成していてもよい。該環状アミノ基は、置換基を有していてもよく、かかる置換基としては、ハロゲン(例、フッ素、塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、チオール基、アミノ基、カルボキシル基、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよいでもよいていてもよいで、カリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、でフトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、のストキシ、トリフルオロメトキシ、トリフルオロストキシ、アロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1\sim3$ 個が好ましい。

A°で示される「置換されていてもよいアミノ基」におけるアミノ基の置換基 としては、

- (1)置換されていてもよいアルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどの C_{1-1} 。アルキル、好ましくは低級(C_{1-6})アルキルなどが挙げられる);
- (2) 置換されていてもよいシクロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロペキシル、シクロペプチル、シアノオクチルなどの C_{3-8} シクロアルキルなどが挙げられる);該シクロアルキルは、ベンゼン環と縮合し、インダン(例、インダンー1ーイル、インダンー2ーイルなど)、テトラヒドロナフタレン(例、テトラヒドロナフタレンー5ーイル、テトラヒドロナフタレンー6ーイルなど)など(好ましくは、インダンなど)を形成していてもよく;さらに、該シクロアルキルは、炭素数 $1 \sim 2$ の直鎖状の原子鎖を介して架橋し、ビシクロ [2.2.1] ペプチル、ビシクロ [2.2.2] オクチル、

15

ビシクロ [3. 2. 1] オクチル、ビシクロ [3. 2. 2] ノニルなど(好ましくは、炭素数 $1 \sim 2$ の直鎖状の原子鎖を介した架橋を有するシクロヘキシルなど、さらに好ましくは、ビシクロ [2. 2. 1] ヘプチルなど)の架橋環式炭化水素残基を形成していてもよい;

- 5 (3) 置換されていてもよいアルケニル(例えば、アリル(allyl)、クロチル、 $2-ペンテニル、3-ヘキセニルなど炭素数 <math>2\sim10$ のアルケニル、好ましくは 低級(C_{2-6})アルケニルなどが挙げられる);
 - (4) 置換されていてもよいシクロアルケニル(例えば、2-シクロペンテニル、 2-シクロヘキセニル、2-シクロペンテニルメチル、2-シクロヘキセニルメ チルなど炭素数3~7のシクロアルケニルなどが挙げられる);
 - (5) 置換されていてもよいアラルキル (例えば、フェニルー C_{1-4} アルキル (例、ベンジル、フェネチルなど) などが挙げられる);
 - (6) ホルミルまたは置換されていてもよいアシル (例えば、炭素数2~4のアルカノイル (例、アセチル、プロピオニル、ブチリル、イソブチリルなど)、炭素数1~4のアルキルスルホニル (例、メタンスルホニル、エタンスルホニルなど) などが挙げられる);
 - (7) 置換されていてもよいアリール (例えば、フェニル、ナフチルなど);
- (8) 置換されていてもよい複素環基(例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、チアゾール、オキサゾール、イソチアゾール、イソ キサゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾールなどの窒素原子、硫黄原子および酸素原子から選ばれた1~2種のヘテロ原子1~4個を含有する5~6員の芳香族複素環から水素原子1個を除いて形成される基、テトラヒドロフラン、テトラヒドロチオフェン、ジチオラン、オキサチオラン、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリン、ピラゾリン、ピラゾリン、ピラゾリン、ピラゾリン、ピラゾリン、ナアジアジン、モルホリン、チオモルホリン、ピラン、テトラヒドロピランなどの窒素原子、硫黄原子および酸素原子から選ばれた1~2種のヘテロ原子1~4個を含有する5~6員の非芳香族複素環から水素原子1個を除いて形成される基など):などが好ましい。

WO 02/14513 PCT/JP01/06899

上記した(1)置換されていてもよいアルキル、(2)置換されていてもよい シクロアルキル、(3)置換されていてもよいアルケニル、(4)置換されてい てもよいシクロアルケニル、(5)置換されていてもよいアラルキル、(6)置 換されていてもよいアシル、(7)置換されていてもよいアリール、および (8)置換されていてもよい複素環基が有していてもよい置換基としては、ハロ 5 ゲン(例、フッ素,塩素、臭素、ヨウ素など)、ハロゲン原子またはC₁₋₄ア ルコキシで置換されていてもよいC, _ 4 アルキル、ハロゲン原子またはC, _ 4 アルコキシで置換されていてもよいC₁₋₄ アルコキシ(例、メトキシ、エト キシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシな ど)、C₁₋₄アルキレンジオキシ(例、-O-CH₂-O-、-O-CH₂-10 CH₂ -O-など)、ホルミル、C₂₋₄ アルカノイル(例、アセチル、プロピ オニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンス ルホニルなど)、フェニルー低級(C_{1-4})アルキル、 C_{3-7} シクロアルキ ル、シアノ、ニトロ、水酸基、置換されていてもよいチオール基(例、チオール、 C₁₋₄ アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モ 15 ノC₁₋₄ アルキルアミノ、ジC₁₋₄ アルキルアミノ、テトラヒドロピロール、 ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾー ルなどの5~6員の環状アミノなど)、カルボキシル基、低級(C₁₋₄)アル コキシーカルボニル、低級(C_{7-10})アラルキルオキシーカルボニル、カル バモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイ 20 \mathcal{N} (好ましくは、ハロゲン、ハロゲン化されていてもよい低級(C_{1-4})アル キル、ハロゲン化されていてもよい低級(C₁₋₄)アルコキシ、フェニルー低 級(C_{1-4})アルキル、 C_{3-7} シクロアルキル、シアノ、水酸基など)など

 A° で示される「置換されていてもよいアミノ基」としては、とりわけ、置換されていてもよいアルキル〔例えば、ハロゲン(例、フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノ、モノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロ

が挙げられ、置換基の数としては、1~3個が好ましい。

25

10

15

20

25

ピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、 イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化さ れていてもよいカルボキシル基(例、カルボキシル、C₁₋₄アルコキシカルボ ニル、低級(C_{ィー 10})アラルキルオキシーカルボニル、カルバモイル、モノ ゲン原子または C_{1-4} アルコキシで置換されていてもよい C_{1-4} アルキル (例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子またはC₁₋ 4 アルコキシで置換されていてもよいC1-4 アルコキシ(例、メトキシ、エト キシ、トリフルオロメトキシ、トリフルオロエトキシなど)、 C_{1-4} アルキレ ンジオキシ(例、-O-CH₂-O-、-O-CH₂-CH₂-O-など)、フ ェニルー低級 (C_1_4) アルキル、 C_3_7 シクロアルキル、ホルミル、 C_2 $_{-4}$ アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスル ホニル (例、メタンスルホニル、エタンスルホニルなど)、 С1-4 アルキルス ルフィニル(例、メタンスルフィニル、エタンスルフィニルなど)などから選ば れる置換基1~3個をそれぞれ有していてもよいメチル、エチル、プロピル、イ ソプロピル、ブチル、イソブチル、sec‐ブチル、tert‐ブチル、ペンチ ル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デ シルなどの $C_{1\,-\,1\,\,0}$ アルキル、好ましくは低級($C_{1\,-\,6}$)アルキルなど〕を 1~2個有していてもよいアミノ基が好ましい。

上記式中、A°で示される「置換されていてもよい含窒素複素環基」の「含窒素複素環基」としては、窒素原子を1個含み、さらに酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を1ないし4個(好ましくは1ないし2個)含んでいてもよい5~8員の芳香族単環式複素環、飽和あるいは不飽和の非芳香族単環式複素環(脂肪族複素環)等;およびこれらの単環から選ばれる同一または異なった2~3個の環が縮合した環等から水素原子1個を除いて形成される基などが挙げられる。また、A°で示される「置換されていてもよい含窒素複素環基」は、窒素原子または炭素原子の何れを介してX°と結合していてもよいが、炭素原子を介してX°と結合するのが好ましい。

10

15

20

25

ここで「芳香族単環式複素環」としては、5~8員(好ましくは5~6員)の 芳香族単環式複素環(例えばピロール、オキサゾール、イソオキサゾール、チア ゾール、イソチアゾール、イミダゾール、ピラゾール、1,2,3ーオキサジアゾール、1,2,3ーオキサジアゾール、1,2,4ーオキサジアゾール、1,3,4ーオキサジアゾール、1,2,3ーチアジアゾール、1,2,4ーチアジアゾール、テトラゾール、ピリジン、ピリダジン、ピリミジン、トリアジン等)などが挙げられ、「非芳香族単環式複素環」としては、例えば、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラブリン、オキサジン、オキサジアジン、チアジン、チアジアジン、ピペリジン、モルホリン、チオモルホリン、ピペラジン、アゼピンなどの5~8員(好ましくは5~6員)の飽和あるいは不飽和の単環式非芳香族複素環(脂肪族複素環)など、あるいは上記した芳香族単環式複素環の一部又は全部の二重結合が飽和した5~8員の非芳香族複素環などが挙げられる。

A°で示される「置換されていてもよい含窒素複素環基」の「含窒素複素環基」が有していてもよい置換基としては、例えば、上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」が有していてもよい置換基と同様な基が挙げられる。

A°で示される「置換されていてもよい含窒素複素環基」の「含窒素複素環基」としては、 $5\sim6$ 員の含窒素複素環基が好ましく、飽和の $5\sim6$ 員の含窒素複素環基がおちに好ましく、なかでもピロリジン、ピペリジン、ピペラジン(好ましくは、1 個の窒素原子を含有する飽和の $5\sim6$ 員の含窒素複素環基)などが好ましい。

上記式中、式:

$$\begin{array}{c}
R^{1c} \\
--N-X^{c}-A^{c}
\end{array}$$

で表される基としては、式:

10

15

20

25

[式中、 R^1 。は上記と同意義を示し、X 。 は置換されていてもよい C_{1-6} アルキレン基を示し、 R^4 。 および R^5 。 はそれぞれ水素原子または置換されていてもよい C_{1-6} アルキル基を示し、 R^4 。 と R^5 。 は結合して環を形成してもよい〕で表される基;式:

$$-ND^{c}$$
 $X^{c''}$ E^{c} NH

[式中、X°''は結合手または置換されていてもよい C_{1-4} アルキレン基を、D°環およびE°環はそれぞれ飽和の $3\sim8$ 員含窒素複素環を示す〕で表される基:などが好ましく用いられる。

上記式中、 X° 'で示される「置換されていてもよい C_{1-6} アルキレン基」における「 C_{1-6} アルキレン基(好ましくは、 C_{1-4} アルキレン基)」が有していてもよい置換基としては、 X° としての 2 価の基が有していてもよい置換基と同様なものが挙げられる。

上記式中、 R^4 。および R^5 。で示される「置換されていてもよい C_{1-6} アルキル基」としては、例えば、ハロゲン(例、フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、置換されていてもよいチオール基(例、チオール、 C_{1-4} アルキルチオなど)、置換されていてもよいアミノ基(例、アミノモノ C_{1-4} アルキルアミノ、ジ C_{1-4} アルキルアミノ、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの5~6員の環状アミノなど)、エステル化またはアミド化されていてもよいカルボキシル基(例、カルボキシル、 C_{1-4} アルコキシカルボニル、低級(C_{7-10})アラルキルオキシーカルボニル、カルバモイル、モノ C_{1-4} アルキルカルバモイル、ジ C_{1-4} アルキルカルバモイル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン原子または C_{1-4} アルコ

10

15

20

25

キシで置換されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、 C_{1-4} アルキレンジオキシ(例、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2-O-$ など)、フェニルー低級(C_{1-4})アルキル、 C_{3-7} シクロアルキル、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)、 C_{1-4} アルキルスルフィニル(例、メタンスルフィニル、エタンスルフィニルなど)などから選ばれる置換基 $1\sim3$ 個をそれぞれ有していてもよいメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなどの低級(C_{1-6})アルキルなどが挙げられる。

上記式中、R 4 。 とR 5 。 が結合して環を形成し、隣接する窒素原子と共に環状アミノ基(例えば、テトラヒドロピロール、ピペラジン、ピペリジン、モルホリン、チオモルホリン、ピロール、イミダゾールなどの $5\sim 6$ 員環の環構成窒素原子から水素原子1 個を除いて形成され、窒素原子上に結合手を有する環状アミノ基など;好ましくは、ピロリジノ、ピペラジノ、ピペリジノなどの飽和の $5\sim 6$ 員環状アミノ基など;さらに好ましくは、ピロリジノなど)を形成していてもよい。該環状アミノ基は、置換基を有していてもよく、かかる置換基としては、ハロゲン(例、フッ素,塩素、臭素、ヨウ素など)、ニトロ、シアノ、水酸基、チオール基、アミノ基、カルボキシル基、ハロゲン化されていてもよい C_{1-4} アルキル(例、トリフルオロメチル、メチル、エチルなど)、ハロゲン化されていてもよい C_{1-4} アルコキシ(例、メトキシ、エトキシ、プロポキシ、ブトキシ、トリフルオロメトキシ、トリフルオロエトキシなど)、ホルミル、 C_{2-4} アルカノイル(例、アセチル、プロピオニルなど)、 C_{1-4} アルキルスルホニル(例、メタンスルホニル、エタンスルホニルなど)などが挙げられ、置換基の数としては、 $1\sim 3$ 個が好ましい。

上記式中、X°''で示される「置換されていてもよい C_{1-4} アルキレン基」における「 C_{1-4} アルキレン基」が有していてもよい置換基としては、X°としての 2 価の基が有していてもよい置換基と同様なものが挙げられる。

10

15

20

上記式中、D°環およびE°環で示される「飽和の3~8員含窒素複素環」としては、例えば、窒素原子を1個含み、さらに酸素原子、硫黄原子および窒素原子等から選ばれたヘテロ原子1ないし3種(好ましくは1ないし2種)を1ないし4個(好ましくは1ないし2個)含んでいてもよい3~8員の含窒素複素環などが挙げられ、より具体的には、ピロリジン、ピロリン、イミダゾリジン、イミダゾリン、ピラゾリン、ピラゾリン、オキサジアジン、チアジン、チアジアジン、ピペリジン、モルホリン、チオモルホリン、ピペラジン、アゼピンなどの3~8員(好ましくは5~6員)の飽和または不飽和(好ましくは飽和)の単環式非芳香族複素環(脂肪族複素環)などが挙げられる。

また、該「3~8員の含窒素複素環」は置換基を有していてもよく、かかる置換基としては、例えば、上記したB°またはC°で示される「さらに置換されていてもよいベンゼン環」におけるベンゼン環が有していてもよい置換基としての「置換されていてもよい炭化水素基」が有していてもよい置換基と同様な基が挙げられる。

また、D°環およびE°環で示される「 $3\sim8$ 員の含窒素複素環基」は、窒素原子または炭素原子の何れを介してX°''と結合していてもよいが、炭素原子を介してX°''と結合するのが好ましい。

上記式(Ic)中、B°環およびC°環の置換基として明示されている基は、 置換可能な何れの位置に置換していてもよいが、式(Ic)で表される化合物ま たはその塩は、式:

[式中、各記号は上記と同意義を示す。] の何れかの構造を有することが好ましい。

5 なかでも、式:

$$R^{2c}$$
 R^{3c}
 R^{3c}

で表される構造を有することが好ましい。

式(Ic)で表される化合物またはその塩は、例えばスキーム1cによって製造することができる。

5 スキーム1 c

10

15

$$R^{3c} \stackrel{\text{H}}{\stackrel{\text{N}}{\longrightarrow}} 0$$

$$N = X^{c} = A^{c}$$

$$R^{2c} = 0$$

$$R^{3c} \stackrel{\text{N}}{\longrightarrow} 0$$

[式中、各記号は上記と同意義を示す]

式 (I c) で表される化合物またはその塩は、式(I I c)で表される化合物と式 R²°COOH で表されるカルボン酸、その反応性誘導体またはこれらの塩とを溶媒中、必要であれば塩基の存在下、縮合剤を用いることにより製造することができる。カルボン酸の反応性誘導体としては、酸無水物、活性エステル(例えば、pーニトロフェニルエステル、N-ヒドロキシスクシンイミドエステル、ペンタフルオロフェニルエステル、1ーヒドロキシベンゾトリアゾールエステルなど)、酸ハライド(例えば、酸クロリド、酸ブロミドなど)、イミダゾリドあるいは混

10

15

20

25

合酸無水物(例えば、メチル炭酸との無水物、エチル炭酸との無水物など)等が 挙げられる。その具体例としては、例えば、式 -COOH で表される基が式 -COQ® 「式中、Q°は脱離基〔例、ハロゲン原子(フッ素、塩素、臭素、ヨウ素など)、 メタンスルホニルキシ、ベンゼンスルホニルオキシ、p-トルエンスルホニルオキ シなど]を示す]で表される基となっている化合物などが挙げられる。用いる溶 媒としては、例えばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロ フラン、ジオキサン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキ サン、ヘプタン等)、ハロゲン系溶媒(例えば、ジクロロメタン、ジクロロエタ ン、クロロホルム、四塩化炭素等)、アセトニトリル、N,N-ジメチルホルムアミ ド等が挙げられる。用いる塩基としては、トリエチルアミン、4-ジメチルアミ ノピリジン、N, N-ジイソプロピルエチルアミン、トリエチレンジアミン、4ーメ チルモルホリン等の有機塩基あるいはアルカリ金属またはアルカリ土類金属炭酸 塩(例えば、炭酸ナトリウム、炭酸カリウム等)、アルカリ金属またはアルカリ 十類金属炭酸水素塩(例えば、炭酸水素ナトリウム、炭酸水素カリウム等)、ア ルカリ金属またはアルカリ土類金属の水酸化物(例えば、水酸化ナトリウム、水 酸化カリウム等)等が挙げられる。用いる縮合剤としては、例えばペプチド合成 に用いる縮合剤等が挙げられ、具体的には、例えばジシクロヘキシルカルボジイ ミド、ジイソプロピルカルボジイミド、N-エチルーN-3-ジメチルアミノプロ ピルカルボジイミドおよびその塩酸塩、ベンゾトリアゾールー1ーイルートリス (ジメチルアミノ) ホスホニウムヘキサフルオロリン化物塩、ベンゾトリアゾー ルー1-イルートリスピロリジノホスホニウムヘキサフルオロリン化物塩、シア ノリン酸ジエチル、ジフェニルフォスホリルアジド、N-ヒドロキシー5ーノルボ ルネン-2,3-カルボキシイミド等が挙げられる。これらは単独あるいは、1 ーヒドロキシベンゾトリアゾール、1ーヒドロキシー7ーアザベンゾトリアゾー ル等との組み合わせで用いてもよい。このとき式(IIc)で表される化合物また はその塩1モルに対して、式 R²°COOH で表されるカルボン酸またはその塩は0. 5ないし10モル当量、好ましくは1ないし5モル当量用いられ、縮合剤は0. 5ないし10モル当量、好ましくは1ないし6モル当量用いられる。このとき反 応温度は、-50ないし200 $^{\circ}$ 、好ましくは-20ないし100 $^{\circ}$ であり、反 応時間は0.5ないし96時間好ましくは0.5ないし72時間で、より好ましくは1ないし24時間である。

式(Ic)で表される化合物またはその塩は、例えばスキーム2cによっても製造することができる。

5 スキーム2 c

10

15

20

25

[式中、各記号は上記と同意義を示す]

式(Ic)で表される化合物またはその塩は、式(IIIc)で表される化合物、 その反応性誘導体またはこれらの塩と、式(IVc)で表される化合物またはそ の塩とを溶媒中、必要であれば塩基の存在下、縮合剤を用いることにより製造す ることができる。式(IIIc)で表される化合物の反応性誘導体としては、酸 無水物、活性エステル(例えば、p-ニトロフェニルエステル、N-ヒドロキシス クシンイミドエステル、ペンタフルオロフェニルエステル、1-ヒドロキシベン ゾトリアゾールエステルなど)、酸ハライド(例えば、酸クロリド、酸ブロミド など)、イミダゾリドあるいは混合酸無水物(例、メチル炭酸との無水物、エチ ル炭酸との無水物など)等が挙げられる。その具体例としては、例えば、式 (III)で表される化合物の式 -COOH で表される基が式 -COQ° [式中、Q°は脱離 基〔例、ハロゲン原子(フッ素、塩素、臭素、ヨウ素など)、メタンスルホニル キシ、ベンゼンスルホニルオキシ、p-トルエンスルホニルオキシなど〕を示す] で表される基となっている化合物などが挙げられる。用いる溶媒としては、例え ばエーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサ ン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン 等)、ハロゲン系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホル ム、四塩化炭素等)、アセトニトリル、N.N-ジメチルホルムアミド等が挙げられ

る。用いる塩基としては、トリエチルアミン、4-ジメチルアミノピリジン、 N.N-ジイソプロピルエチルアミン、トリエチレンジアミン、4-メチルモルホリ ン等の有機塩基あるいはアルカリ金属またはアルカリ土類金属炭酸塩(例えば、 炭酸ナトリウム、炭酸カリウム等)、アルカリ金属またはアルカリ土類金属炭酸 水素塩(例えば、炭酸水素ナトリウム、炭酸水素カリウム等)、アルカリ金属ま 5 たはアルカリ土類金属の水酸化物(例えば、水酸化ナトリウム、水酸化カリウム 等) 等が挙げられる。用いる縮合剤としては、例えばペプチド合成に用いる縮合 **剤等が挙げられ、具体的には、例えばジシクロヘキシルカルボジイミド、ジイソ** プロピルカルボジイミド、N-エチルーN-3-ジメチルアミノプロピルカルボジ イミドおよびその塩酸塩、ベンゾトリアゾールー1ーイルートリス(ジメチルア 10 ミノ) ホスホニウムヘキサフルオロリン化物塩、ベンゾトリアゾールー1ーイル ートリスピロリジノホスホニウムヘキサフルオロリン化物塩、シアノリン酸ジエ チル、ジフェニルフォスホリルアジド等が挙げられる。これらは単独あるいは、 1-ヒドロキシベンゾトリアゾール、1-ヒドロキシ-7-アザベンゾトリアゾ ール等との組み合わせで用いてもよい。このとき式(IIIc)で表される化合 15 物またはその塩1モルに対して、式(IVc)で表される化合物またはその塩は 0.5ないし10モル当量、好ましくは1ないし5モル当量用いられ、縮合剤は 0. 5ないし10モル当量、好ましくは1ないし6モル当量用いられる。このと き反応温度は、-50ないし200 $^{\circ}$ 、好ましくは-20ないし100 $^{\circ}$ であり、 反応時間は0.5ないし96時間好ましくは0.5ないし72時間で、より好ま 20 しくは1ないし24時間である。

> 式(IIc)で表される化合物またはその塩は、例えばスキーム3cによって 製造することができる。

スキーム3c

10

15

20

[式中、W°はハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)またはトリフルオロメタンスルホニルオキシ基を示し、その他の各記号は上記と同意義を示す]

式 (VIc) で表される化合物またはその塩は、式 (Vc) で表される化合物、その 反応性誘導体またはこれらの塩と、式 (IVc) で表される化合物またはその塩と を反応させることにより製造することができる。この反応は上記スキーム2cに 例示した縮合反応と同様の条件等を用いる。

式 (VIIc) で表される化合物またはその塩は、式(VIc)で表される化合物またはその塩を、ホルミルベンゼンボロン酸またはそのエステル体もしくは無水物と、溶媒中塩基性条件下において遷移金属触媒の存在下で反応させて製造することができる。用いる溶媒としては例えば水、アルコール系溶媒(例えば、メタノール、エタノール、n-プロパノール、イソプロパノール等)、エーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、1,2ージメトキシエタン等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、N,N-ジメチルホルムアミドが挙げられる。これらの溶媒は単独または必要に応じて二種またはそれ以上多種類を適当割合混合して用いてもよい。用いる塩基としては例えば、アルカリ金属またはアルカリ土類金属炭酸塩(例えば、炭酸ナトリウム、炭酸カリウム等)、アルカリ金属またはアルカリ土類金属炭酸塩(例えば、炭酸オトリウム、炭酸水素カリウム等)、アルカリ金属またはアルカリ土類金属炭酸水素塩(例えば、炭酸水素ナトリウム、炭酸水素カリウム等)、アルカリ金属またはアルカリ土類金属の水酸化物(例えば、水酸化ナトリウム、水酸化カリウム等)、トリエチルア

10

15

20

25

ミン、4-ジメチルアミノピリジン、N,N-ジイソプロピルエチルアミン、トリエチレンジアミン、4-メチルモルホリン等が挙げられる。用いる遷移金属触媒としては例えばパラジウム触媒[例えば、テトラキス(トリフェニルホスフィン)パラジウム、1, 1-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等]などが挙げられる。このとき式(VIc)で表される化合物またはその塩1モルに対して、ホルミルベンゼンボロン酸またはそのエステル体もしくは無水物は0. 5ないし10 モル当量、好ましくは1ないし5モル当量用いられ、遷移金属触媒はは0. 01ないし1モル当量、好ましくは0. 05ないし0. 2モル当量用いられる。このとき反応温度は、0ないし00 ℃、好ましくは10 ないし10 0 ℃であり、反応時間は0. 10 ないし12 4 時間である。

式 (IIc) で表される化合物またはその塩は、式(VIIc)で表される化合物また はその塩と、式 R³°NH。で表されるアミンまたはその塩とを用いて、還元的アミ ノ化反応の条件により製造することができる。還元的アミノ化反応は、例えばエ ーテル系溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン 等)、炭化水素系溶媒(例えば、ベンゼン、トルエン、ヘキサン、ヘプタン等)、 ハロゲン系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホルム、四 塩化炭素等)、アルコール系溶媒(例えば、メタノール、エタノール、n-プロパ ノール、イソプロパノール等)アセトニトリル、N,N-ジメチルホルムアミド、酢 酸等の溶媒中またはこれらの混合溶媒中、式(VIIc)で表される化合物またはその 塩と、式 R³°NH。で表されるアミンまたはその塩とを、金属水素錯化合物(例え ば、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ 水素化ホウ素ナトリウム等)の存在下反応することにより製造することができる。 このとき式(VIIc)で表される化合物またはその塩1モルに対して、式 R³°NH。で 表されるアミンまたはその塩を0.5ないし10モル当量、好ましくは1ないし 5モル当量用いられ、金属水素錯化合物は0.5ないし10モル当量、好ましく は1ないし5モル当量用いられる。このとき反応温度は、0ないし200℃、好 ましくは20ないし100℃であり、反応時間は0.5ないし96時間好ましく は1ないし24時間である。

式(IIc)で表される化合物またはその塩は、例えばスキーム4cによっても製造することができる。

スキーム4c

5

[式中、R⁵。は置換基を有してもよいC₁₋₆アルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル等)、フェニル、トリチル、シリル等を示す、その他の各記号は上記と同意義を示す]

10

式(IXc)で表される化合物またはその塩は、式(VIIIc)で表される化合物またはその塩を、ホルミルベンゼンボロン酸またはそのエステル体もしくは無水物と、溶媒中塩基性条件下において遷移金属触媒の存在下で反応させて製造することができる。この反応は上記スキーム3cの式(VIc)で表される化合物またはその塩から式(VIIc)で表される化合物またはその塩から式(VIIc)で表される化合物またはその塩の条件等を用いる。

15

式(Xc)で表される化合物またはその塩は、式(IXc)で表される化合物またはその塩と、式 R³°NH₂で表されるアミンまたはその塩とを還元的アミノ化反応の条件により製造することができる。この反応は上記スキーム3cの式(VIIc)で表される化合物またはその塩から式(IIc)で表される化合物またはその塩への反応について例示したものと同様の条件等を用いる。

20

式 (XIc) で表される化合物またはその塩は、式(Xc)で表される化合物またはその塩を酸あるいは塩基で処理することにより製造することができる。すなわち、式(Xc)で表される化合物またはその塩を、例えば水、エーテル系溶媒 (例えば、

10

20

25

ジエチルエーテル、テトラヒドロフラン、ジオキサン等)、アルコール系溶媒 (例えば、メタノール、エタノール、n-プロパノール、イソプロパノール等)等 の溶媒中またはこれらの混合溶媒中、鉱酸 (例えば、硝酸、塩酸、臭化水素酸、ヨウ素酸、硫酸等)またはアルカリ金属の水酸化物 (例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等)を用いて0ないし150℃、好ましくは20ないし50℃で反応することにより製造することができる。このときの酸および塩基の強さとしては、0.1ないし10規定前後がよく、反応時間は1ないし72時間である。

式(IIc)で表される化合物またはその塩は、式(XIc)で表される化合物、その 反応性誘導体またはこれらの塩と、式(IVc)で表される化合物またはその塩と を反応させることにより製造することができる。この反応は上記スキーム2cに 例示した縮合反応と同様の条件等を用いる。

式(IIIc)で表される化合物またはその塩は、例えばスキーム5cによって製造することができる。

15 スキーム5 c

[式中、各記号は上記と同意義を示す。]

式(XIIc)で表される化合物またはその塩は、上記のスキーム4 c で製造法を例示した式(Xc)で表される化合物と、式 R^2 ° COOH で表されるカルボン酸、その反応性誘導体またはこれらの塩とを溶媒中、必要であれば塩基の存在下、縮合剤を用いることにより製造することができる。この反応は上記スキーム1 c に例示した縮合反応と同様の条件等を用いる。

式 (IIIc) で表される化合物またはその塩は、式(XIIc)で表される化合物またはその塩を酸あるいは塩基で処理することにより製造することができる。この反

10

15

20

25

応は上記スキーム4 c の式(Xc)で表される化合物またはその塩から式(XIc)で表される化合物またはその塩への反応について例示したものと同様の条件等を用いる。

このようにして得られる化合物(Ic)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

上記の各製造法で用いられる化合物は、反応に支障を来たさない限り、化合物 (Ic) と同様な塩を形成していてもよい。

また、上記各反応において、原料化合物は、置換基としてアミノ基、カルボキシル基、ヒドロキシル基を有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されたものであってもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。

アミノ基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニルなど)、ホルミル、フェニルカルボニル、 C_{1-6} アルキルオキシカルボニル(例えば、メトキシカルボニル、エトキシカルボニル、t ーブトキシカルボニルなど)、フェニルオキシカルボニル (例えば、ベンズオキシカルボニルなど)、 C_{7-10} アラルキルオキシカルボニル(例えば、ベンジルオキシカルボニルなど)、トリチル、フタロイルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニル、ブチリルなど)、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

カルボキシル基の保護基としては、例えば置換基を有していてもよい C_{1-6} アルキル (例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tertーブチルなど)、フェニル、トリチル、シリルなどが用いられる。これらの置換基としては、ハロゲン原子 (例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキルカルボニル (例えば、アセチル、プロピオニル、ブチリルなど)、ホルミル、ニトロ基などが用いられ、置換基の数は1ないし3個程度である。

ヒドロキシ基の保護基としては、例えば置換基を有していてもよいC₁₋₆ア

10

15

20

25

ルキル(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチルなど)、フェニル、 C_{7-10} アラルキル(例えば、ベンジルなど)、 C_{1-6} アルキルカルボニル(例えば、アセチル、プロピオニルなど)、ホルミル、フェニルオキシカルボニル、 C_{7-10} アラルキルオキシカルボニル(例えば、ベンジルオキシカルボニルなど)、ピラニル、フラニル、シリルなどが用いられる。これらの置換基としては、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素など)、 C_{1-6} アルキル、フェニル、 C_{7-10} アラルキル、ニトロ基などが用いられ、置換基の数は1ないし4個程度である。

また、保護基の導入および除去方法としては、それ自体公知またはそれに準じる方法 [例えば、プロテクティブ・グループス・イン・オーガニック・ケミストリー (J. F. W. McOmieら、プレナムプレス社) に記載の方法] が用いられるが、除去方法としては、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなどで処理する方法が用いられる。

上記のスクリーニング方法またはスクリーニング用キットを用いて得られる化 合物の塩としては、例えば、薬学的に許容可能な塩などが用いられる。例えば、 無機塩基との塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性または 酸性アミノ酸との塩などが挙げられる。

無機塩基との塩の好適な例としては、例えばナトリウム塩、カリウム塩などの アルカリ金属塩、カルシウム塩、マグネシウム塩などのアルカリ土類金属塩、な らびにアルミニウム塩、アンモニウム塩などが挙げられる。

有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6ールチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N'ージベンジルエチレンジアミンなどとの塩が挙げられる。

無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硫酸、リン酸などとの塩が挙げられる。

有機酸との塩の好適な例としては、例えばギ酸、酢酸、プロピオン酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンス

10

15

20

25

ルホン酸、ベンゼンスルホン酸、安息香酸などとの塩が挙げられる。

塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルチニンなどとの塩が挙げられ、酸性アミノ酸との好適な例としては、例えばアスパラギン酸、グルタミン酸などとの塩が挙げられる。

上記のGPR14 (SENR) アンタゴニストを抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤として使用する場合、常套手段に従って製剤化することができる。例えば、必要に応じて糖衣や腸溶性被膜を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物またはその塩を生理学的に認められる担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製薬実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な用量が得られるようにするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えばゼラチン、コーンスターチ、トラガントガム、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などのような天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施にしたがって処方することができる。

注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、Dーソルビトール、Dーマンニトール、塩化ナトリウムなど)などが挙げられ、適当な溶解補助剤、たとえばアルコール(たとえばエタノール)、ポリアルコール(たとえばプロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(たとえばポリソルベート80(TM)、HCO

10

15

20

25

-50) などと併用してもよい。油性液としてはゴマ油、大豆油などが挙げられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。また、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば哺乳動物 (例えば、ヒト、マウス、ラット、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど) に対して投与することができる。

本発明のGPR14 (SENR) アンタゴニストの投与量は、症状などにより 差異はあるが、経口投与の場合、一般的に成人(体重60kgとして)においては、一日につき約0.1から100mg、好ましくは約1.0から50mg、より好ましくは約1.0から20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、たとえば注射剤の形では成人(体重60kgとして)への投与においては、一日につき約0.01から30mg程度、好ましくは約0.1から20mg程度、より好ましくは約0.1から10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

(2) 本発明のポリペプチドをコードする塩基配列を含有するDNAと相補的 な塩基配列またはその一部を含有してなるポリヌクレオチドを用いる診断方法

本発明のポリペプチドをコードする塩基配列を含有するDNAと相補的な塩基配列またはその一部を含有してなるポリヌクレオチドは、生体内における本発明のポリペプチドをコードする塩基配列を含有するDNAまたはそれにコードされるタンパク質の機能を抑制することができるので、例えば、注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症もしくは恐怖症の治療・予防剤として使用することができる。

例えば、該ポリヌクレオチドを単独あるいはレトロウイルスベクター、アデノ ウイルスベクター、アデノウイルスアソシエーテッドウイルスベクター等の適当

10

15

20

25

なべクターに挿入した後、常套手段に従って投与することができる。該アンチセンスDNAは、そのままで、あるいは摂取促進のために補助剤等の生理学的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。あるいは、エアロゾル化して吸入剤として気管内に投与することもできる。

さらに、該アンチセンスDNAは、組織や細胞における本発明のDNAの存在 やその発現状況を調べるための診断用オリゴヌクレオチドプローブとして、すな わち注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症 の診断剤として使用することもできる。

(3) 本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体を用いる診断方法本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体は、生体内における本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩の機能を抑制することができるので、例えば、不安、うつ、不眠、精神分裂症もしくは恐怖症の治療・予防剤として使用することができる。

また、本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体は、疾病、例えば、注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症の診断に用いることができる。また、それらの抗体を用いて、本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩を定量できるほか、組織染色等による検出を行うこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子のF(ab')2、Fab'、あるいはFab画分を用いてもよい。抗体はモノクローナル抗体、ポリクローナル抗体、ヒト・マウスキメラ抗体、ヒト抗体、遺伝子工学的に作製されたヒト抗体でも構わない。ヒト抗体は、ヒトミエローマ細胞を用いた細胞融合法やヒトイムログロブリン遺伝子を導入されたマウスに免疫し、そのマウスの免疫担当細胞をミエローマ細胞と細胞融合することにより作製できる(K.

10

15

20

25

Tomizuka et. Al. Proc. Natl. Acad. Sci. 97, 722-727, 2000)。遺伝子工学的に作製されたヒト抗体には、Vェ領域とVェ領域を架橋した単鎖抗体も含まれる。

本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体を用いる本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩の定量法は、特に制限されるべきものではなく、被測定液中の抗原量(例えば、本発明のポリペプチドまたはその前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩の量)に対応した抗体、抗原もしくは抗体一抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられる。これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明のポリペプチドの測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書等を参照することができる。

例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、 入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川栄治 ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免疫 渡測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫 測定法」(第3版)(医学書院、昭和62年発行)、「Methods in ENZYMOLOGY」 Vol. 70(Immunochemical Techniques(Part A))、同書 Vol. 73(Immunochemical Techniques(Part B))、同書 Vol. 74(Immunochemical Techniques(Part C))、同書 Vol. 84(Immunochemical Techniques(Part D:Selected Immunoassays))、同書 Vol. 92(Immunochemical Techniques(Part E:Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121(Immunochemical Techniques(Part I:Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)等を参照することができる。

10

15

20

25

(4) GPR14 (SENR) またはそのアミドもしくはそのエステルまたは その塩に対する抗体を用いる診断方法

GPR14 (SENR) またはそのアミドもしくはそのエステルまたはその塩に対する抗体は、生体内におけるGPR14 (SENR) またはそのアミドもしくはそのエステルまたはその塩の機能を抑制することができるので、例えば、例えば、注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症もしくは恐怖症の治療・予防剤として使用することができる。

GPR14 (SENR) またはそのアミドもしくはそのエステルまたはその塩に対する抗体は、疾病、例えば、注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症の診断に用いることができる。また、その抗体を用いて、GPR14 (SENR) またはそのアミドもしくはそのエステルまたはその塩を定量できるほか、組織染色等による検出を行うこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子のF(ab')2、Fab'、あるいはFab画分を用いてもよい。抗体はモノクローナル抗体、ポリクローナル抗体、ヒトーマウスキメラ抗体、ヒト抗体、遺伝子工学的に作製されたヒト抗体でも構わない。ヒト抗体は、ヒトミエローマ細胞を用いた細胞融合法やヒトイムログロブリン遺伝子を導入されたマウスに免疫し、そのマウスの免疫担当細胞をミエローマ細胞と細胞融合することにより作製できる(K. Tomizukaet. Al. Proc. Natl. Acad. Sci. 97, 722-727, 2000)。遺伝子工学的に作製されたヒト抗体には、Va領域とVa領域を架橋した単鎖抗体も含まれる。

GPR14 (SENR) またはそのアミドもしくはそのエステルまたはその塩に対する抗体を用いるGPR14 (SENR) またはそのアミドもしくはそのエステルまたはその塩の定量法は、特に制限されるべきものではなく、被測定液中の抗原量 (例えば、GPR14 (SENR) またはそのアミドもしくはそのエステルまたはその塩の量) に対応した抗体、抗原もしくは抗体一抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられる。これら個々の免疫学的測定法を本発明の定量方法に適用

10

15

20

25

するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明のポリペプチドの測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書等を参照することができる。

例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、 入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川栄治 ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免疫 疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫 測定法」(第3版)(医学書院、昭和62年発行)、「Methods in ENZYMOLOGY」 Vol. 70(Immunochemical Techniques(Part A))、 同書 Vol. 73(Immunochemical Techniques(Part B))、 同書 Vol. 74(Immunochemical Techniques(Part C))、 同書 Vol. 84(Immunochemical Techniques(Part D:Selected Immunoassays))、同書 Vol. 92(Immunochemical Techniques(Part E:Monoclonal Antibodies and General Immunoassay Methods))、 同書 Vol. 121(Immunochemical Techniques(Part I:Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)等を参照することができる。

(5) 本発明のポリペプチドに関連した遺伝子診断方法

本発明のポリペプチドをコードするDNA(プロモーター領域、エキソン、イントロンを含む)またはmRNAの性状に関する情報は、それらの異常(遺伝子異常)が見出された場合、例えば注意欠陥障害、ナルコレプシー、不安、うつ、不眠、精神分裂症もしくは恐怖に関連した該DNAまたは該mRNAの損傷、突然変異、発現低下、コピー数の増加、発現過多等の異常を検出することを具現化することになるので、遺伝子診断を行う際に有用である。mRNAに関してはスプライスバリアントの発現増加や低下、或いはmRNAエディティング(C. M. Niswender et. Al. Ann. N. Y. Acad. Sci. 861, 38-48, 1998)による変異導入も考慮される。また染色体上の座位に関する情報は本発明のDNAが関与する遺伝病の研究にも利用できる。本発明のポリペプチドをコードするDNAを用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法(ゲノミックス(Genomics),第5巻,874~879頁(1

10

15

20

25

989年)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユーエスエー(Proceedings of the National Academy of Sciences of the United States of America),第86巻,2766~2770頁(1989年)、DNAマイクロアレイ(サイエンス(Science),第270巻,467~470頁(1995年)、或いはその他の方法(実験医学18巻14号、1894-1906頁、2000年)等により実施することができる。上記のいずれかの手法により該遺伝子の発現増加或いは低下、DNAの突然変異が検出された場合は、各種疾病、とりわけ注意欠陥障害、ナルコレプシー、不安、うつ、不眠、精神分裂症もしくは恐怖症に関して罹り易いとか、注意欠陥障害、ナルコレプシー、不安、うつ、不眠、精神分裂症もしくは恐怖症である可能性が高い、等の診断を行うことができる。

特に近年、疾患関連遺伝子を探索する上で非常に重要なツールとしてSNPs (single nucleotide polymorphisms、一塩基多型)と呼ばれる多型マーカーが登場し、疾患へのなり易さ(なり難さ)を規定していたり、薬剤に対する応答性の違い・副作用の違いにも影響するものとしてにわかに注目を集めている。SNPsのタイピング法としては、その具体的な目的に応じて、直接塩基配列決定法、Invader法、Sniper法、MALDI-TOF/MS法、オリゴSNPチップ法などが挙げられる(実験医学18巻12号、2000年)。

こうした手法により見出された本発明のタンパク質をコードするDNA(プロモーター領域、エキソン、イントロンを含む)に存在するSNPsは、それ自体単独で、或いは他の遺伝子上のSNPsや本発明のDNAと併せて解析することにより、注意欠陥障害、ナルコレプシー、不安、うつ、不眠、精神分裂症もしくは恐怖症に対する罹りやすさの判定や発症時期の予測、或いは注意欠陥障害、ナルコレプシー、不安、うつ、不眠、精神分裂症もしくは恐怖症の診断に有用である。

(6) GPR14 (SENR) に関連した遺伝子診断法

GPR14 (SENR) (例えば、本発明の配列番号:3または配列番号:1 1で表されるアミノ酸配列) を含有するタンパク質をコードするDNA (プロモ

10

25

ーター領域、エキソン、イントロンを含む)またはmRNAの性状に関する情報 は、それらの異常(遺伝子異常)が見出された場合、例えば注意欠陥障害、ナル コレプシー、不安、うつ、不眠、精神分裂症もしくは恐怖に関連した該DNAま たは該mRNAの損傷、突然変異、発現低下、コピー数の増加、発現過多等の異 常を検出することを具現化することになるので、遺伝子診断を行う際に有用であ る。mRNAに関してはスプライスバリアントの発現増加や低下、或いはmRN Aエディティング (C. M. Niswender et. Al. Ann. N. Y. Acad. Sci. 861, 38-48、1998) による変異導入も考慮される。また染色体上の座位に関する情報は本 発明のDNAが関与する遺伝病の研究にも利用できる。GPR14(SENR) (例えば、本発明の配列番号:3または配列番号:11で表されるアミノ酸配 列) を含有するタンパク質をコードするDNAを用いる上記の遺伝子診断は、例 えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法(ゲノ ミックス (Genomics), 第5巻, 874~879頁 (1989年)、プロシージ ングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユ 15 ーエスエー (Proceedings of the National Academy of Sciences of the United States of America), 第86巻, 2766~2770頁(1989年)、 DNAマイクロアレイ(サイエンス(Science), 第270巻, 467~470 頁(1995年)、或いはその他の方法(実験医学18巻14号、1894-1 906頁、2000年)等により実施することができる。上記のいずれかの手法 20 により該遺伝子の発現増加或いは低下、DNAの突然変異が検出された場合は、 各種疾病、とりわけ注意欠陥障害、ナルコレプシー、不安、うつ、不眠、精神分 裂症もしくは恐怖症に関して罹り易いとか、注意欠陥障害、ナルコレプシー、不 安、うつ、不眠、精神分裂症もしくは恐怖症である可能性が高い、等の診断を行 うことができる。

また、GPR14(SENR)(例えば、本発明の配列番号:3または配列番 号:11で表されるアミノ酸配列)を含有するタンパク質をコードするDNA (プロモーター領域、エキソン、イントロンを含む) に存在するSNP s は、そ れ自体単独で、或いは他の遺伝子上のSNPsや本発明のDNAと併せて解析す ることにより、注意欠陥障害、ナルコレプシー、不安、うつ、不眠、精神分裂症 もしくは恐怖症に対する罹りやすさの判定や発症時期の予測、或いは注意欠陥障 害、ナルコレプシー、不安、うつ、不眠、精神分裂症もしくは恐怖症の診断に有 用である。

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclature による略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

10 DNA : デオキシリボ核酸

c DNA : 相補的デオキシリボ核酸

A: アデニン

T: チミン

G:グアニン

15 C : シトシン

Y: チミンまたはシトシン

N : チミン、シトシン、アデニンまたはグアニン

R : アデニンまたはグアニン

M : シトシンまたはアデニン

20 W: チミンまたはアデニン

S:シトシンまたはグアニン

RNA :リボ核酸

mRNA :メッセンジャーリボ核酸

dATP : デオキシアデノシン三リン酸

25 d T T P : デオキシチミジン三リン酸

d G T P : デオキシグアノシン三リン酸

d C T P : デオキシシチジン三リン酸

ATP : アデノシン三リン酸

EDTA :エチレンジアミン四酢酸

SDS :ドデシル硫酸ナトリウム

TFA :トリフルオロ酢酸

EIA : エンザイムイムノアッセイ

GlyまたはG:グリシン

5 Alaskta : アラニン

ValまたはV:バリン

LeuまたはL:ロイシン

IleまたはI:イソロイシン

SerまたはS:セリン

10 ThrまたはT:スレオニン

CysまたはC:システイン

MetまたはM:メチオニン

GluまたはE:グルタミン酸

AspまたはD:アスパラギン酸

15 LysまたはK : リジン

ArgまたはR:アルギニン

HisまたはH:ヒスチジン

PheまたはF:フェニルアラニン

TvrまたはY:チロシン

20 TrpまたはW: トリプトファン

ProまたはP :プロリン

AsnまたはN:アスパラギン

GlnまたはQ:グルタミン

pGlu:ピログルタミン酸

25 Me :メチル基

E t : エチル基

Bu :ブチル基

Ph:フェニル基

TC : チアゾリジン-4(R) -カルボキサミド基

WO 02/14513 PCT/JP01/06899

212

Bom

:ベンジルオキシメチル

NMP

: Nーメチルピロリドン

PAM

5

:フェニルアセトアミドメチル

また、本明細書中で繁用される置換基、保護基および試薬を下記の記号で表記する。

Tos:pートルエンスルフォニル

HONB: N-ヒドロキシー5-ノルボルネンー2, 3-ジカルボキシイミド

Bz1:ベンジル

Z:ベンジルオキシカルボニル

10 $Br-Z:2-\overline{y}$ D=1

C1-Z:2-クロルベンジルオキシカルボニル

Boc: tーブチルオキシカルボニル

HOBt:1-ヒドロキシベンズトリアゾール

DCC:N, N'ージシクロヘキシルカルボジイミド

15 TFA: トリフルオロ酢酸

Fmoc: N-9-フルオレニルメトキシカルボニル

DNP: ジニトロフェニル

Bum: ターシャリーブトキシメチル

Trt: トリチル

20 MeBz1:4-メチルベンジル

CHO:ホルミル

NMP: Nーメチルピロリドン

OcHex:シクロヘキシルエステル

本願明細書の配列表の配列番号は、以下の配列を示す。

25 〔配列番号:1〕

ブタSENRリガンドペプチド(ブタリガンド1)のアミノ酸配列を示す。

[配列番号:2]

ブタSENRリガンドペプチド(ブタリガンド2)のアミノ酸配列を示す。

〔配列番号:3〕

ラットSENRタンパク質のアミノ酸配列を示す。

[配列番号:4]

ブタSENRリガンド前駆体タンパク質cDNAの全塩基配列を示す。

[配列番号:5]

5 ブタSENRリガンド前駆体タンパク質cDNAの全塩基配列を示す。

〔配列番号:6〕

ブタSENRリガンド前駆体タンパク質cDNAの全塩基配列を示す。

[配列番号:7]

ブタSENRリガンド前駆体タンパク質の全アミノ酸配列を示す。

10 〔配列番号:8〕

ブタSENRリガンド前駆体タンパク質の全アミノ酸配列を示す。

[配列番号:9]

ウシSENRリガンドペプチドのアミノ酸配列を示す。

[配列番号:10]

15 ヒトSENRリガンドポリペプチド(ヒトurotensin II)のアミノ酸配列を示す。

[配列番号:11]

ヒトSENRタンパク質の全アミノ酸配列を示す。

[配列番号:12]

配列番号:2(ブタリガンド2)のDNA配列を示す。

20 [配列番号:13]

配列番号:9 (ウシリガンド)のDNA配列を示す。

[配列番号:14]

ウシSENRリガンド前駆体タンパク質の全アミノ酸配列を示す。

[配列番号:15]

25 ウシSENRリガンド前駆体タンパク質cDNAの全塩基配列を示す。

[配列番号:16]

ラットurotensin II like peptide前駆体蛋白質cDNAの全塩基配列を示す。

[配列番号:17]

ラットurotensin II like peptide前駆体蛋白質の全アミノ酸配列を示す。

[配列番号:18]

ラットurotensin II like peptide-1のアミノ酸配列を示す。

[配列番号:19]

ラットurotensin II like peptide-2のアミノ酸配列を示す。

5 [配列番号:20]

配列番号:18 (ラットurotensin II like peptide-1) のDNA配列を示す。

[配列番号:21]

配列番号:19 (ラットurotensin II like peptide-2) のDNA配列を示す。

[配列番号:22]

10 マウスurotensin II like peptide前駆体蛋白質cDNAの全塩基配列を示す。

[配列番号:23]

マウスurotensin II like peptide前駆体蛋白質の全アミノ酸配列を示す。

[配列番号:24]

マウスurotensin II like peptideのアミノ酸配列を示す。

15 〔配列番号:25〕

配列番号:2 4 (マウスurotensin II like peptide)のDNA配列を示す。

[配列番号:26]

前駆体蛋白質のアミノ酸配列から推定されるラットurotensin II like peptide の成熟ペプチドのアミノ酸配列を示す。

20 [配列番号:27]

25

前駆体蛋白質のアミノ酸配列から推定されるラットurotensin II like peptide の成熟ペプチドのアミノ酸配列を示す。

[配列番号:28]

前駆体蛋白質のアミノ酸配列から推定されるマウス**urotensin II like peptide** の成熟ペプチドのアミノ酸配列を示す。

[配列番号:29]

前駆体蛋白質のアミノ酸配列から推定されるマウス $\mathbf{urotensin}\ \mathbf{II}\ \mathbf{like}\ \mathbf{peptide}$ の成熟ペプチドのアミノ酸配列を示す。

[配列番号:30]

配列番号: 26 (ラットurotensin II like peptideの成熟ペプチド) のDNA配列を示す。

215

[配列番号:31]

配列番号: 27 (ラットurotensin II like peptideの成熟ペプチド) のDNA配列を示す。

[配列番号:32]

5

配列番号: 28 (マウスurotensin II like peptideの成熟ペプチド) のDNA配列を示す。

[配列番号:33]

10 配列番号: 2 9 (マウスurotensin II like peptideの成熟ペプチド) のDNA配列を示す。

[配列番号:34]

ヒトSENRリガンド(配列番号:10)のDNA配列を示す。

15 以下に、参考例および実施例を挙げて本発明をさらに具体的に説明するが、本 発明はこれらに限定されるものではない。

下記参考例においてマススペクトル (MS) は以下の条件により測定した。

測定機器:マイクロマス社 プラットホーム II

イオン化法: 大気圧化学イオン化法 (Atmospheric Pressure Chemical

20 Ionization: APCI) または電子衝撃イオン化法 (Electron Spray Ionization: ESI) 参考例 1

1-ベンジル-6-プロモ-2, 3-ジヒドロ-1H-ピロロ[2, 3-b]キノリン-4-イルアミン

N-ベンジルピロリドン(1.8g, 10.4mmol)をクロロホルム4mlに溶解し、オキシ 塩化リン(1.8g, 11.7mmol)を加えて室温で30分撹拌した。4ーブロモー2ーシ アノアニリン(2.0g, 10mmol)を加えて3時間加熱還流した。反応液を氷水にあけ、 20%水酸化ナトリウム水溶液にて中和した。クロロホルムにて抽出後、有機層 を無水硫酸ナトリウムで乾燥した。減圧濃縮後、残留物をニトロベンゼン10 mlに溶かし、塩化亜鉛2gを加えて160℃で3時間加熱した。反応液に2

0%水酸化ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル50g, 酢酸エチル/ヘキサン=1/2)に付した。目的画分を減圧濃縮し残留物にエタノールを加えて沈殿物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物(1.2g, 3.4mmol)を得た。

¹H-NMR (DMSO-d₆) δ: 2.86 (2H, t, J=8.0Hz), 3.41 (2H, t, J=8.0Hz), 4.59 (2H, s), 7.24-7.33 (6H, m), 7.42 (1H, dd, J=9.2, 2.2Hz), 8.12 (1H, d, J=2.2Hz).

Mass (ESI+); 354 (M+H), 356

参考例 2

10 1 - ベンジル - 6 - (4 - メチルフェニル) - 2,3 - ジヒドロ - 1 H - ピロロ

1-ベンジル-6-ブロモー2, 3-ジヒドロー1 H-ピロロ[2, 3-b]キノリンー4-イルアミン(70 mg, 0.2 mmol)をトルエン0.5 mlに懸濁し、 $Pd(Ph_3P)_4$ (6mg)と 2 M炭酸ナトリウム水溶液0.2 ml、4-メチルフェニルボロン酸(30 mg)のエタノール(0.25 ml)溶液を加え 9 O C で 1 6 時間反応した。反応液に水と酢酸エチルを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2 mlg,酢酸エチル/へキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加えて沈殿物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物(15 ml)を得た。

¹H-NMR (CDCl₃) δ : 2.41(3H, s), 2.92 (2H, t, J=8.0Hz), 3.50 (2H, t, J=8.0Hz), 4.75 (2H, s), 7.24-7.38 (7H, m), 7.57 (2H, d), 7.69 (3H, m).

Mass (ESI+); 366 (M+H)

[2.3-b]キノリンー4ーイルアミン

参考例3

5

15

25

1-ベンジル-6-(3-チェニル) -2,3-ジヒドロ-1H-ピロロ[2,3-b]キ ノリン-4-イルアミン 塩酸塩

1-ベンジル-6-ブロモ-2、3-ジヒドロ-1 H-ピロロ[2, 3-b]キ ノリン-4-イルアミン(140mg, 0.4mmol)をトルエン1mlに懸濁し、 $Pd(Ph_3P)_4$ (12mg)と2M炭酸ナトリウム水溶液0.4ml、3-チオフェンボロン酸(56mg)の エタノール(0.5ml)溶液を加え90 Cで16時間反応した。反応液に水と酢酸エ チルを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2g, 酢酸エチル/ヘキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加えて沈殿物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物(52mg)を得た。

5 ¹H-NMR (DMSO-d₆) δ: 3.01(2H, t, J=8.0Hz), 3.73 (2H, t, J=8.0Hz), 4.92 (2H, s), 7.40 (5H, bs), 7.70-7.88 (3H, m), 8.02-8.09 (2H, m), 8.54 (1H, s).

Mass (ESI+); 358 (M+H)

参考例4

10

15

20

WO 02/14513

N-ベンジル-1 ーベンジルー6 ープロモー2,3ージヒドロー1 Hーピロロ[2,3-b]キ ノリンー4 ーイルアミン

1 ーベンジルー6 ーブロモー2, 3 ージヒドロー1 Hーピロロ[2, 3 ーb]キノリンー4 ーイルアミン(70mg, 0.2mmol)をジメチルホルムアミド1mlに溶解し、2 ーtert-ブチルイミノー2 ージエチルアミノー1,3 ージメチルパーヒドロー1,3,2 ージアザホスホリン0.24mlおよびベンジルブロミド0.095mlを加え80℃で1時間反応した。反応液に水と酢酸エチルを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物を分取HPLC(YMC CombiPrep ODS, 20x50mm)にて精製した。目的画分を減圧乾燥して表題化合物(44mg)を得た。
¹H-NMR (CDCl₃) δ: 3.13(2H, t, J=8.0Hz), 3.54 (2H, t, J=8.0Hz), 4.72 (2H, s), 4.82 (2H, s), 7.22-7.37 (10H, m), 7.50 (1H, dd, J=9.0, 2.0Hz), 7.69 (1H, d, J=9.0Hz), 8.00 (1H, d, J=2.0Hz).

Mass (ESI+); 444 (M+H), 446

参考例5

N,N-ジベンジル-1-ベンジル-6-ブロモ-2,3-ジヒドロ-1 H-ピロロ 12.3- b1 キノリン-4-イルアミン

トリウムで乾燥後、減圧濃縮し残留物を分取HPLC(YMC CombiPrep ODS, 20x50mm)にて精製した。目的画分を減圧乾燥して表題化合物(32mg)を得た。 1 H-NMR(CDCl₃) δ :2.61(2H, t, J=8.0Hz), 3.49 (2H, t, J=8.0Hz), 4.27 (4H, s), 4.99 (2H, s), 7.17-7.38 (15H, m), 7.74 (1H, dd, J=8.8, 2.0Hz), 7.97 (1H, d, J=8.8Hz), 8.16 (1H, d, J=2.0Hz).

Mass (ESI+); 534 (M+H), 536

参考例6

5

N-アリル(allyl)-1-ベンジルー6-ブロモー2,3-ジヒドロー1 H-ピロロ[2,3-b]キノリンー4-イルアミン

1 ーベンジルー6ーブロモー2, 3ージヒドロー1 Hーピロロ[2, 3ーb]キ ノリンー4ーイルアミン(70mg, 0.2mmol)をジメチルホルムアミド1mlに溶解し、 2 ーtert-ブチルイミノー2ージエチルアミノー1,3ージメチルパーヒドロー1,3,2 ージアザホスホリン0.24mlおよびアリルブロミド0.07mlを加え80℃で1時間 反応した。反応液に水と酢酸エチルを加え、分液後有機層を水洗し無水硫酸ナト リウムで乾燥後、減圧濃縮し残留物を分取HPLC(YMC CombiPrep ODS, 20x50mm)にて精製した。目的画分を減圧乾燥して表題化合物(26mg)を得た。 ¹H-NMR (CDCl₃) δ: 3.23(2H, t, J=8.0Hz), 3.62 (2H, t, J=8.0Hz), 4.07 (2H, bs), 4.83 (2H, s), 5.12-5.24 (2H, m), 5.91-6.00 (1H, m), 7.35 (5H, bs), 7.44 (1H, dd, J=8.8, 2.0Hz), 7.61 (1H, d, J=8.8Hz), 8.03 (1H, d, J=2.0Hz).

20 Mass (ESI+); 394 (M+H), 396

参考例7

N,N-ジアリル(diallyl)-1ーベンジルー6ーブロモー2,3ージヒドロー1 Hーピロロ 2,3-b]キノリンー4ーイルアミン

1 ーベンジルー6ーブロモー2, 3ージヒドロー1 Hーピロロ[2, 3ーb]キ

ノリンー4ーイルアミン(70mg, 0.2mmol)をジメチルホルムアミド1mlに溶解し、
2 ーtert-ブチルイミノー2ージエチルアミノー1,3ージメチルパーヒドロー1,3,2
ージアザホスホリン0.24mlおよびアリルブロミド0.07mlを加え80℃で1時間
反応した。反応液に水と酢酸エチルを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物を分取HPLC(YMC CombiPrep ODS,

20x50mm)にて精製した。目的画分を滅圧乾燥して表題化合物(12mg)を得た。 1 H-NMR (CDCl₃) δ : 3.20 (2H, t, J=8.0Hz), 3.70 (2H, t, J=8.0Hz), 3.88 (4H, d), 5.01 (2H, s), 5.20-5.29 (4H, m), 5.68-5.89 (2H, m), 7.36 (5H, bs), 7.67 (1H, dd, J=9.0, 2.0Hz), 7.90 (1H, d, J=9.0Hz), 7.97 (1H, d, J=2.0Hz).

5 Mass (ESI+); 434 (M+H), 436

参考例8

1 ーベンジルー6ーブロモー2, 3ージヒドロー1 Hーピロロ[2, 3ーb]キ

10 ノリンー4ーイルアミン(50mg)をジメチルホルムアミド0.5mlに溶解し、ジイソ
プロピルエチルアミン0.05mlおよびョウ化メチル0.5mlを加え室温で40時間反応
した。反応液を減圧濃縮し残留物を分取HPLC(YMC CombiPrep ODS,

20x50mm)にて精製した。目的画分を減圧乾燥して表題化合物(8mg)を得た。

¹H-NMR (CDCl₃) δ: 3.19 (3H, s), 3.39 (2H, t, J=8.0Hz), 3.66 (2H, t, J=8.0Hz),

4.81 (2H, s), 7.28-7.57 (7H, m), 7.97 (1H, s).

Mass (ESI+); 368 (M+H), 370

参考例9

 $N, N- \vec{y} \times \vec{y} + N - 1 - \vec{v} \times \vec{y} = 0$ $- \vec{y} =$

1 ーベンジルー6ーブロモー2, 3ージヒドロー1 Hーピロロ[2, 3ーb]キ ノリンー4ーイルアミン(50mg)をジメチルホルムアミド0.5mlに溶解し、ジイソ プロピルエチルアミン0.05mlおよびヨウ化メチル0.5mlを加え室温で40時間反応 した。反応液を減圧濃縮し残留物を分取HPLC(YMC CombiPrep ODS, 20x50mm)にて精製した。目的画分を減圧乾燥して表題化合物(5mg)を得た。 ¹H-NMR (CDCl₃) δ: 3.14 (6H, s), 3.37 (2H, t, J=8.0Hz), 3.74 (2H, t, J=8.0Hz), 4.94 (2H, s), 7.38 (5H, bs), 7.67 (1H, dd, J=9.0, 2.0Hz), 7.77 (1H, d, J=9.0Hz), 7.95 (1H, d, J=2.0Hz).

Mass (ESI+); 382 (M+H), 384

参考例10

10

15

20

25

6-プロモー1-(4-フルオロベンジル)-2, 3-ジヒドロ-1H-ピロロ [2, 3-b]キノリン-4-イルアミン

水素化ナトリウム(60%ミネラルオイル懸濁液)(440mg)のN,N-ジメチルホルムアミド(10ml)懸濁液に2-ピロリドン(0.76ml)を加え、室温で15分撹拌後、4-フルオロベンジルブロミド(1.37ml)を加えた。反応混合物を室温で15時間撹拌後、水を加えジエチルエーテルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ(n-ヘキサン/酢酸エチル=1/2)で精製し1-(4-フルオロベンジル)-2-ピロリドン(1.28g)を得た。

1-(4-フルオロベンジル) -2-ピロリドン (600mg) のクロロホルム (3 ml) 溶液にオキシ塩化リン (0.30 ml) を加え室温で30分撹拌後、 2-アミノ-5-ブロモベンゾニトリル(583mg)を加えた。反応混合物を 3時間加熱還流後、氷水を加えた。更に20%水酸化ナトリウム水溶液を加え中 和し、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネ シウムで乾燥後、減圧下濃縮して5ーブロモー2ー((1ー(4ーフルオロベン ·ジル) -2-ピロリジニリデン) アミノ} ベンゾニトリル(1.01g) を得た。 窒素雰囲気下、5-ブロモー2ー { (1-(4-フルオロベンジル) -2-ピ ロリジニリデン) アミノ ベンゾニトリル (1.01g) のテトラヒドロフラン (8 ml)溶液を-40℃に冷却した。同温で撹拌下、リチウムジイソプルピル アミド(2.0Mへプタン/テトラヒドロフラン/エチルベンゼン溶液;1.63 ml)を滴下した。反応液を徐々に室温まで昇温し、1時間撹拌した。反応液に 氷水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マ グネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラ フィ(n-ヘキサン/酢酸エチル= 2/1)で精製し表題化合物(347 mg)を得 た。

¹H-NMR (DMSO-d_e) δ: 2.86 (2H, t, J=8.0Hz), 3.42 (2H, t, J=8.0Hz), 4.58 (2H, s), 7.14 (2H, d, J=8.8Hz), 7.29-7.46 (4H, m), 8.13 (1H, d, J=2.2Hz)

Mass (APCI+): 372 (M+H), 374

参考例11

5

10

15

20

25

6-ブロモー1-(2-フェネチル)-2, 3-ジヒドロー1 H-ピロロ[2, 3-b]キノリンー4-イルアミン塩酸塩

水素化ナトリウム(60%ミネラルオイル懸濁液)(440mg)のN,N-ジメチルホルムアミド(10ml)懸濁液に2-ピロリドン(0.76ml)を加え、室温で15分撹拌後、(2-ブロモエチル)ベンゼン(1.50ml)を加えた。 反応混合物を室温で15時間撹拌後、水を加えジエチルエーテルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。 得られた残渣をシリカゲルクロマトグラフィ(n-ヘキサン/酢酸エチル=1/

窒素雰囲気下、5-プロモー2-{ (1-(2-フェネチル) -2-ピロリジェリデン) アミノ} ベンゾニトリル($736\,\mathrm{mg}$)のテトラヒドロフラン($6\,\mathrm{ml}$)溶液を $-40\,^{\circ}$ Cに冷却した。同温で撹拌下、リチウムジイソプルピルアミド($2.0\,\mathrm{M}$ へプタン/テトラヒドロフラン/エチルベンゼン溶液; $1.20\,\mathrm{ml}$)を滴下した。反応液を徐々に室温まで昇温し、1時間撹拌した。反応液に氷水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ(n-ヘキサン/酢酸エチル=2/1)で精製し、更に4規定塩酸酢酸エチル溶液で処理して表題化合物($254\,\mathrm{mg}$)を得た。

 $^1\text{H-NMR (DMSO-d}_6)\ \delta: 2.80\text{-}3.00\ (2\text{H, m}),\ 3.15\text{-}3.30\ (2\text{H, m}),\ 3.83\ (2\text{H, t},$ $J=8.0\text{Hz}),\ 3.93\ (2\text{H, t},\ J=8.0\text{Hz}),\ 7.15\text{-}7.45\ (5\text{H, m}),\ 7.75\text{-}7.90\ (2\text{H, m}),\ 8.39\ (1\text{H, m}),$

参考例12

5

10

15

20

25

6-ブロモー1-(3-ピリジニルメチル) -2, 3-ジヒドロー1H-ピロロ [2, 3-b]キノリンー4-イルアミン2塩酸塩

水素化ナトリウム(60%ミネラルオイル懸濁液)(880mg)のN,N-ジメチルホルムアミド(10ml)懸濁液に2-ピロリドン(0.76 ml)を加え、室温で15分撹拌後、3-(クロロメチル)ピリジン塩酸塩(1.80g)を加えた。反応混合物を室温で15時間撹拌後、水を加え、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣を4規定塩酸酢酸エチル溶液で処理して1-(3-ピリジニルメチル)-2-ピロリドン塩酸塩(2.02g)を得た。

1-(3-ピリジニルメチル) -2-ピロリドン塩酸塩(600 mg)のクロロホルム(3 ml)溶液にオキシ塩化リン(0.31 ml)を加え室温で30分撹拌後、<math>2-アミノ-5-ブロモベンゾニトリル(530 mg)を加えた。反応混合物を3時間加熱還流後、氷水を加えた。更に20%水酸化ナトリウム水溶液を加え中和し、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮して5-ブロモー2-{ $(1-(3-ピリジニルメチル)-2-ピロリジニリデン)アミノ}ベンゾニトリル(<math>736 mg$)を得た。

窒素雰囲気下、5-ブロモー2- { (1-(3-)) ジニルメチル)-2-ピロリジニリデン)アミノ } ベンゾニトリル(940 mg)のテトラヒドロフラン(10 ml)溶液を-40 $^{\circ}$ に冷却した。同温で撹拌下、リチウムジイソプルピルアミド(2.0 M $^{\circ}$ の $^{\circ}$ クラヒドロフラン/エチルベンゼン溶液;1.9 $^{\circ}$ ml)を滴下した。反応液を徐々に室温まで昇温し、1 時間撹拌した。反応液に氷水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ(n- $^{\circ}$ キサン/酢酸エチル=2/1)で精製し、更に4 規定塩酸酢酸エチル溶液で処理して表題化合物(198 mg)を得た。

¹H-NMR (DMSO-d_e) δ: 3.00 (2H, t, J=8.0Hz), 3.79 (2H, t, J=8.0Hz), 5.28 (2H,s), 7.56 (2H, m), 7.83 (1H, d, J=8.0Hz), 7.90-8.10 (2H, m), 8.46 (1H, s),

8.54 (1H, d, J=8.0Hz), 8.85 (1H, d, J=5.8Hz), 9.05 (1H, s)

Mass (APCI+); 355 (M+H), 357

参考例13

5

10

1-ベンジル-6-フルオロ-2, 3-ジヒドロ-1H-ピロロ[2, 3-b]キノリン-4-イルアミン塩酸塩

1ーベンジルー2ーピロリドン(0.84ml)のクロロホルム(3ml)溶液にオキシ塩化リン(0.51ml)を加え室温で30分撹拌後、2ーアミノー5ーフルオロベンゾニトリル(0.65ml)を加えた。反応混合物を3時間加熱還流後、氷水を加えた。更に20%水酸化ナトリウム水溶液を加え中和し、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮して5ーフルオロー2ー{(1ーベンジルー2ーピロリジニリデン)アミノ}ベンゾニトリル(1.68g)を得た。

5-フルオロ-2- { (1-ベンジル-2-ピロリジニリデン) アミノ} ベン ブニトリル

(500mg)のテトラヒドロフラン(2ml)溶液を、-78℃に冷却したへキサメチルジシラザンナトリウム塩(3.91ml)のテトラヒドロフラン(3ml)溶液に加えた。同温で15分撹拌後、反応液を徐々に-20℃まで昇温し2時間撹拌した。更に40℃まで昇温して15時間撹拌後、飽和食塩水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ(n-ヘキサン)酢酸エチル=2/1)で精製し、更に4規定塩酸酢酸エチル溶液で処理して表題化合物(60mg)を得た。

¹H-NMR (DMSO-d_s) δ : 2.99 (2H, t, J=8.0Hz), 3.72 (2H, t, J=8.0Hz), 4.95 (2H,s), 7.25-7.65 (6H, m), 7.95-8.15 (2H, m)

25 Mass (APCI+); 294 (M+H)

参考例14

1-ベンジルー7-ブロモー1, 2, 3, 4-テトラヒドロベンゾ[b][1, 8]ナフチリジンー5-イルアミン塩酸塩

水素化ナトリウム (60%ミネラルオイル懸濁液) (440mg) のN,N-ジメ

チルホルムアミド(10ml)懸濁液に2ーピペリドン(991mg)を加え、室温で15分撹拌後、ベンジルブロミド(1.31ml)を加えた。反応混合物を室温で4時間撹拌後、水を加えジエチルエーテルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ(nーヘキサン/酢酸エチル=1/1)で精製し1ーベンジル-2ーピペリドン(1.30g)を得た。

 $1-ベンジル-2-ピペリドン(567mg)のクロロホルム(3ml)溶液にオキシ塩化リン(0.29ml)加えた。反応混合物を3時間加熱還流後、氷水を加えた。更に20%水酸化ナトリウム水溶液を加え中和し、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮して5-ブロモー2-{(<math>1-ベンジル-2-ピペリジニリデン$)アミノ〉ベンゾニトリル(1.05g)を得た。

5-プロモー2- { (1-ベンジルー2-ピペリジニリデン) アミノ} ベンゾニトリル (1.01g) をニトロベンゼン (5ml) に溶解し、塩化亜鉛 (466mg) を加えた後、155℃で1時間撹拌した。冷却後 20%水酸化ナトリウム水溶液を加えて pH=10とした後、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ (n-ヘキサン/酢酸エチル=9/1→3/2) で精製し、更に4規定塩酸酢酸エチル溶液で処理して表題化合物 (551mg) を得た。

¹H-NMR (DMSO-d₈) δ: 1.85-2.00 (2H, m), 2.59 (2H, t, J=6.0Hz), 3.10-3.50 (2H, m), 5.12 (2H,s), 7.25-7.45 (5H, m), 7.80 (1H, dd, J=1.8Hz, 8.8Hz), 8.03 (1H, d, J=8.8Hz), 8.54 (1H, d, J=1.8Hz)

Mass (APCI+); 368 (M+H), 370

25 参考例 1 5

5

10

15

20

1-ベンジル-7-ブロモー2, 2, 4, 5-テトラヒドロー1H-アゼピノ [2, 3-b]キノリンー6-イルアミン塩酸塩

水素化ナトリウム(60%ミネラルオイル懸濁液)(440mg)のN,N-ジメチルホルムアミド(10ml)懸濁液に ϵ -カプロラクタム(1.13g)を加え、

室温で15分撹拌後、ベンジルブロミド(1.31 ml)を加えた。反応混合物を室温で4時間撹拌後、水を加えジエチルエーテルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ(n-ヘキサン/酢酸エチル=1/1)で精製しN-ベンジル- ϵ -カプロラクタム(1.72g)を得た。

Nーベンジルー ε ーカプロラクタム(607mg)のクロロホルム(3ml)溶液にオキシ塩化リン(0.29ml)加えた。反応混合物を3時間加熱還流後、氷水を加えた。更に20%水酸化ナトリウム水溶液を加え中和し、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮して1ーベンジルー2ー { (4ープロモー2ーシアノフェニル) イミノ} ヘキサヒドロー1Hーアゼピン(1.08g)を得た。

 $1-ベンジル-2-\{(4-ブロモ-2-シアノフェニル)$ イミノ $\}$ へキサヒドロー1Hーアゼピン(1.08g)をニトロベンゼン(5 ml)に溶解し、塩化 亜鉛(463 mg)を加えた後、155 $\mathbb C$ で1時間撹拌した。冷却後アンモニア 水を加えて pH=10とした後、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィ(n-ヘキサン/酢酸エチル= $9/1 \rightarrow 3/2$)で精製し、更に4規定塩酸酢酸エチル溶液で処理して表題化合物(475 mg)を得た。

¹H-NMR (DMSO-d_c) δ: 1.55-1.85 (4H, m), 2.71 (2H, m), 3.51 (2H, m),4.94 (2H,s), 7.30-7.50 (5H, m), 7.84 (1H, dd, J=2.0Hz, 8.8Hz), 8.07 (1H, d, J=8.8Hz), 8.60 (1H, d, J=2.0Hz)

 $Mass\,(APCI+);\ \ 382\,(M+H),\,384$

参考例16

5

10

15

20

25

1-ベンジル-6-(ベンゾフラン-2-イル)-2,3-ジヒドロ-1H-ピロロ[2,3-b]キノリン-4-イルアミン 塩酸塩

1-ベンジル-6-ブロモ-2、3-ジヒドロ-1 H-ピロロ[2, 3-b]キ ノリン-4-イルアミン(140mg, 0.4mmol)をトルエン1mlに懸濁し、 $Pd(Ph_3P)_4$ (12mg)と2M炭酸ナトリウム水溶液0.4ml、ベンゾフラン-2-イルボロン酸 (72mg)のエタノール(0.5ml)溶液を加え90°Cで16時間反応した。反応液に水

と酢酸エチルを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減圧 濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2g, 酢酸エチ ル/ヘキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加えて沈殿物 を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物(63mg)を 得た。

¹H-NMR (DMSO-d₆) δ : 3.01(2H, t, J=8.0Hz), 3.74 (2H, t, J=8.0Hz), 4.95 (2H, s), 7.26-7.74 (12H, m), 7.97 (1H, d, J=8.4Hz), 8.19 (1H, d, J=8.4Hz), 8.75 (1H, s).

Mass (ESI+); 392 (M+H)

10 参考例17

5

15

20

1-ベンジル-6-(3-アセトアミノフェニル)-2,3-ジヒドロ-1H-ピロロ[2,3-b]キノリン-4-イルアミン 塩酸塩

1-ベンジルー6-ブロモー2, 3-ジヒドロー1 H-ピロロ[2, 3-b]キ ノリンー4-イルアミン(140mg, 0.4mmol)をトルエン1mlに懸濁し、 $Pd(Ph_3P)_4$ (12mg)と 2 M炭酸ナトリウム水溶液0.4ml、3-アセトアミノフェニルボロン酸 (79mg)のエタノール(0.5ml)溶液を加え 9 0 $\mathbb C$ で 1 6 時間反応した。反応液に水と酢酸エチルを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2g,酢酸エチル/ヘキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加えて沈殿物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物(17mg)を得た。

¹H-NMR (DMSO-d₆) δ: 2.09 (3H, s), 3.00 (2H, t, J=8.0Hz), 3.73 (2H, t, J=8.0Hz), 4.98 (2H, s), 7.35-7.64 (9H, m), 7.88 (1H, d, J=8.4Hz), 7.99 (2H, bs), 8.01 (1H, d, J=8.4Hz), 8.44 (1H, s).

25 Mass (ESI+); 409 (M+H)

参考例18

1-(4-tert-ブチルベンジル)-6-ブロモー2,3-ジヒドロー<math>1H-ピロロ[2,3-b]キノリンー4-イルアミン 塩酸塩

1-ベンジル-6-ブロモー2, 3-ジヒドロ-1H-ピロロ[2, 3-b]キ

10

15

20

25

ノリンー4ーイルアミン(350mg, 1mmol)をジクロロメタン2mlに懸濁し、BBr₃ (1.4ml)を滴下した。室温で8時間撹拌した後、氷水を加え、30%水酸化ナトリウム水溶液にてアルカリ性にし、エタノールを含むジクロロメタンにて抽出した。減圧濃縮し残留物をジクロロメタンから結晶化して、6ーブロモー2,3ージヒドロー1Hーピロロ[2,3-b]キノリンー4ーイルアミン50mgを得た。これをN,N-ジメチルホルムアミド1mlに溶解し、2ーtert-ブチルイミノー2ージエチルアミノー1,3ージメチルパーヒドロー1,3,2ージアザホスホリン 0.088ml,4ーtertーブチルベンジルブロミド 0.060mlを加え、室温で40時間反応した。氷水とジクロロメタンを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2g,酢酸エチル/ヘキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加えて沈殿物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物(20mg)を得た。

¹H-NMR (DMSO-d₆) δ: 1.27 (9H, s), 2.98 (2H, t, J=8.0Hz), 3.73 (2H, t, J=8.0Hz), 4.87 (2H, s), 7.29 (1H, d, J=8.2Hz), 7.42 (1H, d, J=8.2Hz), 7.48 (2H, bs), 7.81 (2H, s), 8.43 (1H, s).

Mass (ESI+); 410 (M+H)

参考例19

1-(4-シアノベンジル) -6-ブロモ-2,3-ジヒドロ-1H-ピロロ[2,3-b]キノリン-4-イルアミン 塩酸塩

1-ベンジルー6-ブロモー2, 3-ジヒドロー1 Hーピロロ[2, 3-b]キ ノリンー4-イルアミン(350mg, 1mmol)をジクロロメタン2 mlに懸濁し、 BBr_3 (1.4ml)を滴下した。室温で8時間撹拌した後、氷水を加え、30%水酸化ナト リウム水溶液にてアルカリ性にし、エタノールを含むジクロロメタンにて抽出した。減圧濃縮し残留物をジクロロメタンから結晶化して、6-ブロモー2, 3-ジヒドロー1 Hーピロロ[2, 3-b]キノリンー4-イルアミン50mgを得た。これをN,N-ジメチルホルムアミド1mlに溶解し、2-tert-ブチルイミノー2-ジェチルアミノー1,3-ジメチルパーヒドロー1,3,2-ジアザホスホリン 0.088ml,4-シアノベンジルブロミド 66mgを加え、室温で40時間反応した。氷水と

228

ジクロロメタンを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、減 圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2g, 酢酸エ チル/ヘキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加えて沈殿 物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物(20mg) を得た。

¹H-NMR (DMSO-d₆) δ: 3.00 (2H, t, J=8.0Hz), 3.74 (2H, t, J=8.0Hz), 5.06 (2H, s), 7.50-7.62 (4H, m), 7.82-7.90 (6H, m), 8.45 (1H, s).

Mass (ESI+); 379 (M+H)

参考例20

5

15

20

10 1-(3,5-i)メトキシベンジル)-6-iフロモ-2,3-iジヒドロ-1 H-ピロロ[2,3-b]キノリン-4-iイルアミン 塩酸塩

1-ベンジルー6-ブロモー2、3-ジヒドロー1 Hーピロロ[2, 3-b]キ ノリンー4-イルアミン(350mg, 1mmol)をジクロロメタン2mlに懸濁し、 BBr_3 (1.4ml)を滴下した。室温で8時間撹拌した後、氷水を加え、30 %水酸化ナト リウム水溶液にてアルカリ性にし、エタノールを含むジクロロメタンにて抽出した。減圧濃縮し残留物をジクロロメタンから結晶化して、6-ブロモー2, 3-ジヒドロー1 Hーピロロ[2, 3-b]キノリンー4-イルアミン50mgを得た。これをN,N-ジメチルホルムアミド1mlに溶解し、2-tert-ブチルイミノー2-ジェチルアミノー1,3-ジメチルパーヒドロー1,3,2-ジアザホスホリン 0.088ml,

3,5-ジメトキシベンジルブロミド 75mgを加え、室温で40時間反応した。 氷水とジクロロメタンを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥 後、減圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2g, 酢酸エチル/ヘキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加え て沈殿物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物

25 **(17mg)**を得た。

¹H-NMR (DMSO-d₆) δ: 2.98 (2H, t, J=8.0Hz), 3.70-3.74 (8H, m), 6.42-6.54 (3H, m), 7.48 (2H, bs), 7.80 (2H, s), 8.43 (1H, s).

Mass (ESI+); 414 (M+H)

参考例21

1-(4-)トキシベンジル)-6-ブロモ-2,3-ジヒドロ-1 H-ピロロ [2,3-b]キノリン-4-イルアミン 塩酸塩

1 -ベンジルー6 -ブロモー2, 3 -ジヒドロー1 Hーピロロ[2, 3 -b]キ ノリンー4ーイルアミン(350mg, 1mmol)をジクロロメタン 2 mlに懸濁し、BBr。 (1.4ml)を滴下した。室温で8時間撹拌した後、氷水を加え、30%水酸化ナト 5 リウム水溶液にてアルカリ性にし、エタノールを含むジクロロメタンにて抽出し た。減圧濃縮し残留物をジクロロメタンから結晶化して、6-ブロモー2、3-ジヒドロ-1H-ピロロ[2, 3-b]キノリン-4-イルアミン50mgを得た。こ れをN.N-ジメチルホルムアミド1mlに溶解し、2-tert-ブチルイミノー2-ジ エチルアミノー1.3-ジメチルパーヒドロー1.3.2-ジアザホスホリン 0.088ml. 10 4-メトキシベンジルブロミド 0.045mlを加え、室温で40時間反応した。氷 水とジクロロメタンを加え、分液後有機層を水洗し無水硫酸ナトリウムで乾燥後、 減圧濃縮し残留物をシリカゲルカラムクロマトグラフィー(シリカゲル2g. 酢酸 エチル/ヘキサン=1/2)に付した。目的画分を濃縮後エタノール中塩酸を加えて沈 殿物を濾取した。沈殿物をエタノールで洗浄後、減圧乾燥して表題化合物 15 (17mg)を得た。

¹H-NMR (DMSO-d₆) δ : 2.95 (2H, t, J=8.0Hz), 3.69 (2H, t, J=8.0Hz), 3.75 (3H, s), 4.85 (2H, s), 6.95 (2H, d, J=8.8Hz), 7.33 (2H, d, J=8.8Hz), 7.45 (2H, bs), 7.84 (2H, bs), 8.43 (1H, s).

20 参考例 2 2

4-(4-フェニル-1-ピペラジニル)-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)-1-ブタノン 3塩酸塩

- 1) 2,2,2-トリフルオロ-1-(1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-イル)-1-エタノン
- 25 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン (15 g) とトリエチルアミン (51 ml) のテトラヒドロフラン (THF; 100 ml) 溶液にトリフルオロ酢酸無水物 (31 g) を氷冷下添加した。反応混合物を室温で15時間撹拌後、1規定塩酸を加えて反応を停止し、酢酸エチルで抽出した。抽出液を水洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフ

10

15

ィー (ノルマルヘキサン/酢酸エチル=4/1)で精製して表題化合物 (25 g)を得た。

¹ H-NMR (CDCl₃) δ: 2.95-3.05 (4H, m), 3.65-3.85 (4H, m), 7.10-7.30 (4H, m)

2) 4-ブロモ-1-[3-(2,2,2-トリフルオロアセチル)-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル]-1-ブタノン

2,2,2-トリフルオロ-1-(1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-イル)-1-エタノン (10 g) のジクロロメタン (70 ml) 溶液に 4-ブロモブチリルクロリド (4.8 ml)、塩化アルミニウム (8.2 g) を加え、室温で 3 時間撹拌した。反応液を 氷水に注ぎ、ジクロロメタンで抽出した。 抽出液を飽和食塩水で洗浄後、無水 硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー (ノルマルヘキサン/酢酸エチル=4/1)で精製して表題化合物 (5.9 g)を得た。

¹H-NMR (CDCl₃) δ: 2.20-2.40 (2H, m), 2.95-3.10 (4H, m), 3.17 (2H, t, J=7.0 Hz), 3.56 (2H, t, J=6.4 Hz), 3.65-3.85 (4H, m), 7.20-7.30 (1H, m), 7.75-7.85 (2H, m)

3) 4-(4-フェニル-1-ピペラジニル)-1-[3-(2,2,2-トリフルオロアセチル)-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル]-1-ブタノン

4-ブロモ-1-[3-(2,2,2-トリフルオロアセチル)-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル]-1-ブタノン (100 mg)、1-フェニルピペラジン (0.043 ml)、

- ¹ H-NMR (CDCl₃) δ: 1.91-2.05 (2H, m), 2.47 (2H, t, J=6.8 Hz), 2.55-2.65 (4H, m), 2.95-3.05 (6H, m), 3.10-3.20 (4H, m), 3.60-3.80 (4H, m), 6.80-6.95 (3H, m), 7.20-7.30 (3H, m), 7.75-7.85 (2H, m)

MS (APCI+): 474 (M+H)

4) 4-(4-フェニル-1-ピペラジニル)-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピ

ン-7-イル)-1-ブタノン 3塩酸塩

4-(4-フェニル-1-ピペラジニル)-1-[3-(2,2,2-トリフルオロアセチル)-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル]-1-ブタノン (58 mg) のメタノール (1 ml) 溶液に 1M 炭酸カリウム水溶液 (0.24 ml) を加え室温で1.5時間撹拌した。メタノールを減圧下で留去した後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去し、4-(4-フェニル-1-ピペラジニル)-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)-1-ブタノンを得た。このものを1規定塩化水素酢酸エチル溶液で処理して目的化合物 (22 mg) を得た。

MS (APCI+): 3 7 8 (M+H)

参考例22と同様にして以下の化合物を製造した。

15 参考例 2 3

20

4-[4-(1,3-ベンゾジオキオール-5-イルメチル)-1-ピペラジニル]-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)-1-ブタノン 3 塩酸塩

 1 H-NMR (DMSO-d₆) δ : 2.00-2.15 (2H, m), 3.00-3.20 (12H, m), 3.25-3.80 (10H, m), 6.07 (2H, s), 6.98 (1H,d, J=8.0 Hz), 7.05-7.15 (1H, m), 7.27 (1H, m),

7.37 (1H, d, J=8.0 Hz), 7.75-7.85 (2H, m)

MS (ESI+): 436 (M+H)

参考例24

4-(4-ベンズヒドリル-1-ピペラジニル)-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼ ピン-7-イル)-1-ブタノン

¹ H-NMR (CDCl₃) δ : 1.55 (4H, m), 2.20-2.60 (12H, m), 2.80-2.30 (8H, m), 4.21 (1H, s), 6.85-7.60 (13H, m)

MS (ESI+): 454 (M+H)

参考例25

4-(4-ベンズヒドリル-1-ピペラジニル)-1-(2.3.4.5-テトラヒドロ-1H-3-ベンズアゼ

ピン-7-イル)-1-ブタノン 3塩酸塩

¹ H-NMR (DMSO-d₆) δ: 1.40-1.80 (4H, m), 3.00-3.40 (12H, m), 3.50-4.00 (9H, m), 7.00-7.80 (13H, m)

MS (ESI+): 454 (M+H)

5 参考例26

4-{4-[ビス(4-フルオロフェニル)メチル]-1-ピペラジニル}-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)-1-ブタノン

¹ H-NMR (CDCl₃) δ: 1.80-2.00 (2H, m), 2.25-2.55 (10H, m), 3.90-4.00 (10H, m), 4.18 (1H, s), 6.90-7.00 (4H, m), 7.15 (1H, d, J=8.2 Hz), 7.25-7.50 (4H, m),

10 7.50-7.80 (2H, m)

MS (ESI+): 504 (M+H)

参考例27

4-{4-[ビス(4-フルオロフェニル)メチル]-1-ピペラジニル}-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)-1-ブタノン 3 塩酸塩

¹ H-NMR (DMSO-d₆) δ: 1.90-2.15 (2H, m), 2.60-3.80 (21H, m), 7.10-7.30 (4H, m), 7.37 (1H, d, J=8.4 z), 7.40-7.95 (6H, m)

MS (ESI+): 504 (M+H)

参考例28

4-{4-(4-クロロベンジル)-1-ピペラジニル}-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズ

20 アゼピン-7-イル)-1-ブタノン

 1 H-NMR (DMSO-d₆) δ : 1.80-2.00 (2H, m), 2.30-2.55 (10H, m), 2.85-3.00 (10H, m), 3.45 (2H, s), 7.10-7.30 (5H, m), 7.65-7.75 (2H, m)

MS (ESI+): 426 (M+H)

参考例29

25 **4-{4-(4-**クロロベンジル**)**-1-ピペラジニル**}-1-(2,3,4,5-**テトラヒドロ-**1H-3-**ベンズ アゼピン-**7-**イル**)**-1-ブタノン 3 塩酸塩

 1 H-NMR (DMSO-d₆) δ : 1.95-2.10 (2H, m), 3.00-3.95 (20H, m), 4.20-4.40 (2H, m), 7.38 (1H, d, J=8.4Hz), 7.53 (2H, d, J=8.4 Hz), 7.68 (2H, d, J=8.4 Hz), 7.75-7.85 (2H, m)

MS (APCI+): 426 (M+H)

参考例30

4-{4-(1-ナフチルメチル)-1-ピペラジニル}-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズ アゼピン-7-イル)-1-ブタノン

¹ H-NMR (DMSO-d₆) δ: 1.85-2.00 (2H, m), 2.21 (2H, m), 2.35-2.60 (8H, m), 2.80-3.00 (10H, m), 3.88 (2H, s), 7.14-7.19 (1H, m), 7.40-7.55 (4H, m), 7.65-7.90 (4H, m), 8.25-8.35 (1H, m)

MS (APCI+): 442 (M+H)

参考例31

10 4-{4-(1-ナフチルメチル)-1-ピペラジニル}-1-(2,3,4,5-テトラヒドロ-1H-3-ベンズ アゼピン-7-イル)-1-ブタノン 3 塩酸塩

 1 H-NMR (DMSO-d $_{6}$) δ : 1.90-2.10 (2H, m), 3.00-4.00 (22H, m), 7.30-7.40 (1H, m), 7.50-7.70 (2H, m), 7.75-8.15 (6H, m), 8.35-8.45 (1H, m)

MS (APCI+): 442 (M+H)

15 参考例32

20

N-[2-(4-ベンジルピペラジン-1-イル)エチル]-2,3,4,5-テトラヒドロ-1H-3-ベンズ アゼピン-7-カルボキサミド 3 塩酸塩

1) 1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-カルボアルデヒド

無水酢酸 (18m1) をギ酸 (54m1) に添加し、室温で1時間攪拌した。この混合物に 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン (9.5g) の酢酸エチル (5m1) を氷冷下滴下注入した。室温で30分攪拌後,溶媒を減圧下濃縮した。 残渣に酢酸エチルと飽和重曹水を加えた後,酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮して表題 化合物 (9.37g) を得た。

- ¹ H-NMR (CDCl₃) δ : 2.85-3.00 (4H, m), 3.45-3.50 (2H, m), 3.64-3.70 (2H, m), 7.10-7.20 (4H, m), 8.15 (1H, s)
 - 2) 7-アセチル-1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-カルボアルデヒド 1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-カルボアルデヒド(4.50 g) と アセチルクロリド(2.01m1)のジクロロエタン(2.5 m 1)溶液に塩化アルミ

15

20

ニウム(12.0g)を加えた。反応混合物を室温で15時間攪拌後、氷水に注加し、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製して表題化合物 (3.26 g)を得た。

- ¹ H-NMR (CDCl₃) δ:2.60 (3H, s), 2.90-3.05 (4H, m), 3.45-3.55 (2H, m), 3.65-3.75 (2H, m), 7.20-7.30 (1H, m), 7.50-7.80 (2H, m), 8.16 (1H, s)
 - 3) 3-ホルミル-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-カルボン酸 水酸化ナトリウム (4.78 g) の水溶液 (70 m 1) を7-アセチル-1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-カルボアルデヒド (3.24g) のジオキサン (50 m 1) 溶液を加えた後、臭素 (2.31 m 1) を氷冷下滴下した。反応混合物を氷冷下30分攪拌後、アセトンを加えて反応を停止した。溶媒を減圧下濃縮後、水層を酢酸エチルで抽出し、抽出液に5規定塩酸を加えた。析出した結晶をろ取し、水、エーテルで順次洗浄して表題化合物 (2.11 g)を得た。
 - ¹H-NMR (DMSO-d₆) δ: 2.85-3.00 (4H, m), 3.45-3.60 (4H, m), 7.32 (1H, dd, J=2.2, 7.6Hz), 7.72-7.80 (2H, m), 8.12 (1H, s)
 - 4) 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-カルボン酸 3-ホルミル-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-カルボン酸(1.0
 - g)の濃塩酸(50m1)溶液を100℃で12時間攪拌した。溶媒を減圧下濃縮後、得られた固体を5取し、水、エーテルで順次洗浄して表題化合物 (990mg)を得た。
 - ¹ H-NMR (CDCl₃) δ: 3.18 (4H, m), 3.46 (4H, m), 7.33 (1H, d, J=7.8Hz), 7.76 (1H, d, J=7.8Hz), 7.78 (1H, s)
 - 5) **3-(tert-**ブトキシカルボニル**)-2,3,4,5-**テトラヒドロ-**1H-3-**ベンズアゼピン-**7-**カルボン酸

無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮して表題化合物 (344mg)を 得た。

¹ H-NMR (CDCl₃) δ: 1.49 (9H, s), 2.95-3.00 (4H, m), 3.55-3.60 (4H, m), 7.23 (1H, d, J=8.4Hz), 7.86 (1H, s), 7.89 (1H, d, J=8.4Hz)

5 6) tert-ブチル 7-({[2-(4-ベンジルピペラジン-1-イル)エチル]アミノ}カルボニル)-1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-カルボキシレート

10 DMF (5m1) 溶液に加えた。反応混合物を室温で15時間攪拌後、水で希釈した。酢酸エチルで抽出後、抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル=1/2)で精製して表題化合物 (199mg)を得た。

¹ H-NMR (CDCl₃) δ : 1.49 (9H, s), 2.50-2.65 (8H, m), 2.59 (2H, t, J=6.0Hz),

2.90-3.00 (4H, m), 3.53 (2H, s), 3.45-3.60 (6H, m), 6.81 (1H, m), 7.15-7.35 (6H, m), 7.45-7.60 (2H, m)

MS (ESI+): 493 (M+H)

15

25

7) N-[2-(4-ベンジルピペラジン-1-イル)エチル]-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-カルボキサミド 3 塩酸塩

tert-ブチル 7-({[2-(4-ベンジルピペラジン-1-イル)エチル]アミノ}カルボニル)-1,2,4,5-テトラヒドロ-3H-3-ベンズアゼピン-3-カルボキシレート(199mg)を 1 規定塩化水素酢酸エチル溶液で処理して目的化合物(126 mg)を得た。

¹ H-NMR (DMSO-d_e) δ: 3.00-4.00 (20H, m), 4.35 (2H, m), 7.30 (1H, d, J=7.8Hz), 7.40-7.50 (3H, m), 7.60-7.70 (2H, m), 7.70-7.80 (2H, m), 8.84 (1H,

MS (ESI+): 3 9 3 (M+H)

参考例32と同様にして参考例33~39の化合物を製造した。

参考例33

m)

N-[2-(4-ベンズヒドリルピペラジン-1-イル)エチル]-2,3,4,5-テトラヒドロ-1H-3-

ベンズアゼピン-7-カルボキサミド 3塩酸塩

収量: 238mg

 $^1 \, H\text{-NMR}$ (DMSO-d $_{\! 6}$) $\, \delta$: 3.00-4.00 (21H, m), 7.25-7.40 (8H, m), 7.60-7.90 (5H, m), 8.89 (1H, m)

5 MS (APCI +): 4 6 9 (M+H)

参考例34

N-[2-[4-(4-クロロベンジル)ピペラジン-1-イル]エチル]-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-カルボキサミド 3 塩酸塩

収量:198mg

¹ H-NMR (DMSO-d₆) δ : 3.00-4.00 (20H, m), 4.31 (2H, m), 7.30 (1H, d,

J=7.8Hz), 7.45-7.80 (6H, m), 8.85 (1H, m)

MS (APCII+): 4 2 7 (M+H)

参考例35

N-(2-{4-[ビス(4-フルオロフェニル)メチル]ピペラジン-1-イル}エチル)-2,3,4,5-テ

15 トラヒドロ-1H-3-ベンズアゼピン-7-カルボキサミド 3 塩酸塩

収量:148mg

¹ H-NMR (DMSO-d₆) δ: 3.00-3.45 (16H, m), 3.50-3.80 (5H, m), 7.15-7.40 (5H, m), 7.50-8.00 (6H, m), 8.90 (1H, m)

MS (APCI+): 5 0 5 (M+H)

20 参考例36

N-[2-(4-ベンジルピペラジン-1-イル)エチル]-2,3,4,5-テトラヒドロ-1H-2-ベンズ アゼピン-8-カルボキサミド 3 塩酸塩

収量:139mg

 1 H-NMR (DMSO-d₆) δ : 1.80-2.00 (2H, m), 3.00-4.20 (18H, m), 4.37 (2H, m),

25 7.30-7.80 (6H, m), 7.80-8.05 (2H, m), 8.95 (1H, m)

MS (ESI+): 3 9 3 (M+H)

参考例37

N-[2-(4-ベンズヒドリルピペラジン-1-イル)エチル]-2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン-8-カルボキサミド 3 塩酸塩

収量:201mg

¹ H-NMR (DMSO-d₆) δ: 1.75-1.95 (2H, m), 2.95-4.20 (18H, m), 4.35 (1H, s), 7.30-7.45 (7H, m), 7.60-8.00 (6H, m), 8.97 (1H, m)

MS (ESI +): 4 6 9 (M+H)

5 参考例38

N-[2-[4-(4-クロロベンジル)ピペラジン-1-イル]エチル]-2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン-8-カルボキサミド 3 塩酸塩

収量:205mg

¹ H-NMR (DMSO-d_s) δ: 1.80-2.00 (2H, m), 3.00-4.00 (18H, m), 4.36 (2H, s),

7.36 (1H, d, J=8.0Hz), 7.52 (1H, d, J=8.4Hz), 7.69 (1H, d, J=8.4Hz), 7.89 (1H, d, J=8.0Hz), 8.00 (1H, s), 8.94 (1H, m)

MS (ESI+): 4 2 7 (M+H)

参考例39

N-(2-{4-[ビス(4-フルオロフェニル)メチル]ピペラジン-1-イル}エチル)-2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン-8-カルボキサミド 3 塩酸塩

収量: 325mg

¹ H-NMR (DMSO-d₆) δ: 1.80-2.00 (2H, m), 3.00-4.50 (19H, m), 7.20-7.40 (5H, m), 7.60-8.10 (5H, m), 8.97 (1H, m)

MS (ESI+): 5 0 5 (M+H)

20 参考例40

15

25

2-ベンジル-N-(2-{4-[ビス(4-フルオロフェニル)メチル]ピペラジン-1-イル}エチル)-2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン-8-カルボキサミド 3塩酸塩参考例32の1)~4)に記載した方法と同様にして合成した2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン-8-カルボン酸(200mg)とベンジルブロミド(0.23ml),炭酸カリウム(267mg)、DMF(10ml)の混合物を室温で24時間攪拌後、水で希釈した。水層を酢酸エチルで洗浄して、1規定塩酸で酸性にした後、ジクロロメタンで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮すると2-ベンジル-2,3,4,5-テトラヒドロ-1H-2-ベンズアゼピン-8-カルボン酸(89mg)が得られた。このものから、

参考例3206) ~ 7) に記載した方法と同様にして表題化合物(104mg)を合成した。

 1 H-NMR (DMSO-d₆) δ : 1.85-2.05 (2H, m), 3.00-4.70 (21H, m), 7.23 (4H, m), 7.35-7.50 (4H, m), 7.60-7.80 (6H, m), 7.90-8.00 (2H, m), 8.97 (1H, m)

5 MS (ESI+): 5 9 5 (M+H)

参考例41

10

15

20

N-[2-(4-ベンズヒドリルピペラジン-1-イル)エチル]-N-ベンジル-2,3,4,5-テトラヒ ドロ-1H-3-ベンズアゼピン-7-カルボキサミド 3 塩酸塩

2-(4-ベンズヒドリルピペラジン-1-イル)エチルアミン(275mg)、ベンズアルデヒド(0.15ml)、モレキュラーシーブ(1g)およびメタノール(5ml)の混合物を室温で2時間攪拌した。モレキュラーシーブをろ去後、ろ液を減圧下濃縮した。得られた残渣のメタノール-THF(3:2;5ml)溶液に、テトラヒドロほう酸ナトリウム(56mg)を加え、室温で17時間攪拌した。溶媒を減圧下濃縮後、残渣に食塩水を加えた。酢酸エチルで抽出し、抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下濃縮するとN-[2-(4-ベンズヒドリルピペラジン-1-イル)エチル]-N-ベンジルアミン(245mg)が得られた。このものから、参考例32の6)~7)に記載した方法と同様にして表題化合物(154mg)を合成した。

¹ H-NMR (DMSO-d₆) δ : 2.90-4.00 (21H, m), 4.58 (2H, m), 7.10-7.50 (12H, m), 7.50-7.90 (3H, m),

MS (ESI+): 5 5 9 (M+H)

参考例42

N-ベンジル-N-{2-[4-(4-クロロベンジル)ピペラジン-1-イル]エチル}-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-カルボキサミド 3 塩酸塩

25 参考例41と同様にして製造した。

¹ H-NMR (DMSO-d₆) δ: 3.00-3.80 (20H, m), 4.37 (2H, m), 4.59(2H, m), 7.10-7.50 (5H, m), 7.53 (2H, d, J=8.0Hz), 7.70 (2H, d, J=8.0Hz)

MS (ESI+): 5 1 7 (M+H)

参考例43

3-(4-ベンジルピペラジン-1-イル)-N-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン -7-イル)プロピオナミド 3 塩酸塩

1) 7-ニトロ-3-(トリフルオロアセチル)- 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン

3-(トリフルオロアセチル)- 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン(500 mg)の硫酸(3m1)溶液に氷冷下硝酸カリウム(229mg)を加えた。氷冷下3時間攪拌後、氷水に注加し、酢酸エチルで抽出した。抽出液を飽和重曹水および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル=4/1)で精製して表題化合物 (295 mg)を得た。

 1 H-NMR (CDCl₃) δ : 3.05-3.15 (4H, m), 3.70-3.86 (4H, m), 7.30-7.38 (1H, m), 8.02-8.10 (2H, m)

MS (APCI-): 287 (M-H)

5

10

15

20

25

2) 3-(トリフルオロアセチル)- 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-ア ミン

7-ニトロ-3-(トリフルオロアセチル)- 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン (100mg)、塩化スズ(II) 2 水和物(3 9 1 mg)およびDMF (2m1) の混合物を室温で 5 時間攪拌した。水で希釈後、酢酸エチルで抽出した。抽出液を飽和重曹水および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮すると表題化合物 (85mg) が得られた。

 $^1\,\text{H-NMR}$ (CDCl₃) δ : 2.80-3.00 (4H, m), 3.60-3.80 (6H, m), 6.45-6.52 (2H, m), 6.85-6.98 (1H, m)

MS (APCI+): 2 5 9 (M+H)

3) 3-(4-ベンジルピペラジン-1-イル)-N-[3-(トリフルオロアセチル)-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル]プロピオナミド

シアノリン酸ジエチル $(0.050 \,\mathrm{m}\,1)$ を3-(トリフルオロアセチル)- 2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-アミン(77 $\mathrm{m}\,\mathrm{g}$)、3-(4-ベンジルピペラジン-1-イル)プロピオン酸($105\,\mathrm{m}\,\mathrm{g}$)、トリエチルアミン($0.137\,\mathrm{m}\,1$)の DMF($3\,\mathrm{m}\,1$)溶液に加えた。反応混合物を室温で $1.5\,\mathrm{e}$ 間攪拌後、水で希釈した。

酢酸エチルで抽出後、抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル=2/3)で精製して表題化合物 (71mg)を得た。

¹ H-NMR (CDCl₃) δ: 2.40-2.80 (12H, m), 2.90-3.00 (4H, m), 3.95 (2H, s), 3.65-3.85 (4H, m), 7.00-7.50 (8H, m)

MS (APCI+): 4 8 9 (M+H)

5

4) 3-(4-ベンジルピペラジン-1-イル)-N-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)プロピオナミド

3-(4-ベンジルピペラジン-1-イル)-N-[3-(トリフルオロアセチル)-2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル]プロピオナミド (64 mg)のメタノール (1 ml) 溶液に 1M 炭酸カリウム水溶液 (0.39 ml) を加え室温で1.5時間撹拌した。メタノールを減圧下で留去した後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去し表題化合物 (31 m g) を得た。

¹ H-NMR (CDCl₃) δ: 2.35-2.80 (12H, m), 2.85-3.00 (8H, m), 3.51 (2H, s), 7.03 (1H, d, J=8.0Hz), 7.15-7.35 (7H, m)

MS (APCI+): 3 9 3 (M+H)

- 5) 3-(4-ベンジルピペラジン-1-イル)-N-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)プロピオナミド 3 塩酸塩
- 20 **3-(4-ベンジルピペラジン-1-イル)-N-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)プロピオナミド(27mg)を1**規定塩化水素酢酸エチル溶液で処理して目的化合物 (4.0 mg) を得た。

MS (APCI+): 3 9 3 (M+H)

参考例43と同様にして参考例44および45の化合物を製造した。

25 参考例 4 4

3-(4-ベンズヒドリルピペラジン-1-イル)-N-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)プロピオナミド 3 塩酸塩

収量: 24mg

¹ H-NMR (DMSO-d₆) δ : 2.80-3.80 (21H, m), 7.10-7.70 (13H, m), 10.30 (1H,

m)

5

15

MS (ESI+): 4 6 9 (M+H)

参考例45

3-[4-(4-クロロベンジル)ピペラジン-1-イル]-N-(2,3,4,5-テトラヒドロ-1H-3-ベンズアゼピン-7-イル)プロピオナミド 3 塩酸塩

収量: 73mg

 1 H-NMR (DMSO-d₆) δ : 2.80-4.00 (20H, m), 4.33 (2H, m), 7.12 (1H, d, J=8.0Hz), 7.35-7.60 (4H, m), 7.60-7.75 (2H, m), 10.36 (1H, m) MS (ESI+): 4 2 7 (M+H)

10 参考例46

3'-{({2-[4-(アミノスルホニル)フェニル]エチル}[(E)-3-フェニル-2-プロペノイル]アミノ)メチル}-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド

1) 3-ブロモ-N-[2-(1-ピロリジニル)エチル]フェニルカルボキサミド

3-ブロモ安息香酸 (5.00 g) の N,N-ジメチルホルムアミド (DMF; 60 ml) 溶 液に、1-(2-アミノエチル)ピロリジン (4.34 g) 、シアノリン酸ジエチル (5.57 ml) およびトリエチルアミン (10.4 ml) を加え室温で 16 時間撹拌した。反応混合物を水で希釈後、ジエチルエーテルで抽出した。抽出液を無水硫酸マグネシウムで乾燥後減圧下溶媒を留去した。残渣にヘキサンを加えて結晶化し、表題化合物 (6.31 g) を得た。

- ¹ H-NMR (CDCl₃) δ: 1.70-1.90 (4H, m), 2.50-2.60 (4H, m), 2.70 (2H, t, J=6.0 Hz), 3.45-3.60 (2H, m), 6.86 (1H, s), 7.30 (1H, t, J=8.0 Hz), 7.60 (1H, dm, J=8.0 Hz), 7.70 (1H, dm, 8.0 Hz), 7.93 (1H, t, J=1.6 Hz).
 - 2) **3**'-ホルミル-N-[**2**-(**1**-ピロリジニル)エチル][**1**,**1**'-ビフェニル]-**3**-カルボキサミド
- 3-ブロモ-N-[2-(1-ピロリジニル)エチル]フェニルカルボキサミド (6.31 g) のトルエン (50 ml) 溶液にパラジウムテトラキストリフェニルホスフィン (735 mg) および2M 炭酸ナトリウム水溶液 (21.2 ml) を加え、さらに 3-ホルミルボロン酸 (3.49 g) のエタノール (15 ml) 溶液を加えて90℃ で 15 時間撹拌した。 反応混合物を水で希釈後、ジエチルエーテルで抽出した。抽出液を飽和食塩水で

10

15

20

25

洗浄後無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して表題化合物 (6.83 g) を得た。

¹ H-NMR (CDCl₃) δ: 1.95-2.35 (4H, m), 2.95 (2H, m), 3.30-3.50 (2H, m), 3.80-3.40 (4H, m), 7.40-7.60 (2H, m), 7.76 (1H, dm, J=8.0Hz), 7.85 (1H, dm, J=8.0Hz), 8.00 (1H, dm, 8.0Hz), 8.09 (1H, dm, J=8.0Hz), 8.25 (1H, bs), 8.41 (1H, m), 10.10 (1H, s).

3) 3'-[{2-[4-(アミノスルホニル)フェニル]エチル}アミノメチル]-N-[2-(1-ピロリジニル)エチル]-[1,1'-ビフェニル]-3-カルボキサミド

3'-ホルミル-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド (3.81 g) のメタノール (50 ml) 溶液に 4-(2-アミノエチル)ベンゼンスルホンアミド (2.37 g) および モレキュラーシーブス 3 A (4.0 g) を加えた後、室温で 1.5 時間撹拌した。反応混合物をテトラヒドロフラン (THF) で希釈した後、モレキュラーシーブスをろ去し、ろ液を減圧下で濃縮した。残渣をメタノールーTHF (1:1) の混合溶媒 (100 ml)に溶解し、水素化ホウ素ナトリウム (0.89 g) を加えた。反応混合物を室温で 5 時間撹拌後、減圧下溶媒を留去した。残渣を水で希釈後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣にヘキサンを加えて結晶化し、目的化合物 (3.71 g) を得た。

¹H-NMR (CDCl₃) δ : 1.75-1.85 (4H, m), 2.55-2.65 (4H, m), 2.78 (2H, t, J=6.0Hz), 2.85-3.00 (4H, m), 3.60-3.65 (2H, m), 3.87 (2H, s), 7.05-7.15 (1H, m), 7.20-7.60 (6H, m), 7.65-7.85 3H, m), 7.84 (2H, d, J=8.4Hz), 8.05 (1H, s). 4) 3'-{({2-[4-(アミノスルホニル)フェニル]エチル}[(E)-3-フェニル-2-プロペノイル]アミノ)メチル}-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド

3'-[{2-[4-(アミノスルホニル)フェニル]エチル}アミノメチル]-N-[2-(1-ピロリジニル)エチル]-[1,1'-ビフェニル]-3-カルボキサミド (506 mg)、trans-けい皮酸 (163 mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 (EDCI・HCl; 211 mg)、1-ヒドロキシベンゾトリアゾール (HOBT; 149 mg) を ジクロロメタン (15 ml) と DMF (7 ml) の混合溶媒に溶解し、室温で18時間

撹拌した。減圧下溶媒を留去後、残渣に水を加え酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。 残渣をシリカゲルカラムクロマトグラフィー (ジクロロメタン/メタノール=98/2)で精製して目的化合物 (284 mg)を得た。

5 ¹H-NMR (CDCl₃) δ: 1.73 (4H, m), 2.52 (4H, m), 2.69 (2H, t, J=6.0Hz), 2.85-3.00 (2H, m), 3.50-3.60 (2H, m), 3.66 (2H, t, J=7.0Hz), 4.60 (2H,s), 6.57 (1H, d, J=15.6Hz), 6.85 (1H, d, J=15.6Hz), 7.10-7.90 (16H, m), 8.05 (1H, s).

MS (APCI+): 637 (M+H)

参考例 4.7

10 **3'-{({2-[4-(アミノスルホニル)</mark>フェニル]エチル}[(E)-3-フェニル-2-プロペノイル]**アミノ)メチル**}-N-[2-(1-**ピロリジニル)エチル][1,1'-ビフェニル**]-3-**カルボキサミド 塩酸塩

3'-{({2-[4-(アミノスルホニル)フェニル]エチル}[(E)-3-フェニル-2-プロペノイル] アミノ)メチル}-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド (200 mg) を 4 規定塩化水素酢酸エチル溶液で処理して目的化合物 (198 mg) を得た。

¹ H-NMR (DMSO-d₆) δ : 1.80-2.10 (4H, m), 2.90-3.10 (4H, m), 3.30-3.50 (2H, m), 3.55-3.90 (6H, m), 4.73 (2H,s), 7.05-8.00 (18H, m), 8.25 (1H, s), 9.03 (1H, m).

20 元素分析(分子式 C_{3.7} H_{4.0} N₄ O₄ S·HCl·1.5H₂ O): 計算值、C: 63.46; H: 6.33; N: 8.00; Cl: 5.08 実験値、C: 63.65; H: 6.51; N: 7.86; Cl: 5.25 参考例 4.8

15

25

3'-{({2-[4-(アミノスルホニル)フェニル]エチル}[4-フェニルブタノイル]アミノ)メ チル}-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド 参考例46と同様にして目的化合物 (277 mg) を得た。

¹ H-NMR (DMSO-d₆) δ : 1.75-1.85 (8H, m), 2.20-2.40 (2H, m), 2.45-2.60 (2H, m), 2.60-2.95 (4H, m), 3.20-3.60 (6H, m), 4.62 (2H,s), 7.05-7.95 (18H, m), 8.13 (1H, s), 8.71 (1H, m).

MS (ESI+): 653 (M+H)

参考例49

5

15

20

3'-{({2-[4-(アミノスルホニル)フェニル]エチル}[4-フェニルブタノイル]アミノ)メチル}-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド塩酸塩参考例47と同様にして目的化合物 (185 mg) を得た。

 $^{1}\text{H-NMR (DMSO-d}_{6}) \quad \delta: 1.75\text{-}2.10 \text{ (8H, m)}, \ 2.25\text{-}2.45 \text{ (2H, m)}, \ 2.45\text{-}2.60 \text{ (2H, m)}, \ 2.80\text{-}2.90 \text{ (2H, m)}, \ 2.95\text{-}3.10 \text{ (2H, m)}, \ 3.20\text{-}3.50 \text{ (2H, m)}, \ 3.50\text{-}3.75 \text{ (4H, m)}, \ 4.61 \text{ (2H,s)}, \ 7.05\text{-}8.00 \text{ (18H, m)}, \ 8.23 \text{ (1H, s)}, \ 9.02 \text{ (1H, m)}.$

元素分析(分子式 $C_{38}H_{44}N_4O_4S \cdot HCl \cdot H_2O$):

 $\nu = 98/2$)で精製して目的化合物 (257 mg)を得た。

10 計算値、C: 64.53; H: 6.70; N: 7.92; Cl: 5.01

実験値、C: 64.39; H: 6.82; N: 7.86; Cl: 5.20

参考例50

ノ)メチル}-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド 3'-[{2-[4-(アミノスルホニル)フェニル]エチル}アミノメチル]-N-[2-(1-ピロリジニル)エチル]-[1,1'-ビフェニル]-3-カルボキサミド (506 mg) のDMF (10 ml) 溶 液にピリジン (0.16 ml) およびベンジルオキシアセチルクロリド (0.16 ml) を 加えた。反応混合物を室温で16時間撹拌後、水で希釈し酢酸エチルで抽出した。 抽出液を飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー (ジクロロメタン/メタノー

3'-{({2-[4-(アミノスルホニル)フェニル]エチル}[(ベンジルオキシ)アセチル]アミ

 1 H-NMR (CDCl₃) δ : 1.74 (4H, m), 2.60-2.80 (4H, m), 2.88 (2H, m), 3.20-3.40 (8H, m), 4.17 (2H,s), 4.47 (2H, s), 4.62 (2H, s), 6.57 (1H, d, J=15.6Hz), 7.20-7.90 (18H, m), 8.11 (1H, s), 8.65 (1H, m).

25 MS (ESI+): 655 (M+H)

参考例51

3'-{({2-[4-(アミノスルホニル)フェニル]エチル}[(ベンジルオキシ)アセチル]アミノ)メチル}-N-[2-(1-ピロリジニル)エチル][1,1'-ビフェニル]-3-カルボキサミド塩酸塩

15

20

25

参考例47と同様にして目的化合物 (155 mg) を得た。

¹ H-NMR (DMSO-d₆) δ: 1.80-2.10 (4H, m), 2.80-3.15 (6H, m), 3.20-3.50 (2H, m), 3.60-3.75 (4H, m), 4.19 (2H, s), 4.48 (2H, s), 4.62 (2H, s), 7.20-7.90 (18H, m), 8.11 (1H, s), 8.65 (1H, m).

元素分析(分子式 C_{3.7}H_{4.2}N₄O₅S・HCl・1.5H₂O): 計算値、C: 61.87; H: 6.45; N: 7.80; Cl: 4.94 実験値、C: 61.76; H: 6.31; N: 7.73; Cl: 5.25 実施例 1

行動量の測定

10 Wistar雄性ラット (9週令)をペントバルビタール麻酔下で側脳室 (AP: +8.1 mm, L: 1.8 mm, H: +7.1 mm) にガイドカニューレ (AG-8、エイコム社) を挿入した。その後、1週間以上回復させてから実験を行った。回復期間中は、毎日ハンドリングを行い、脳室内投与時のストレスを軽減させた。

実験前日からラットを行動量測定装置に入れ、馴化させた。無麻酔、無拘束下でガイドカニューレにマイクロインジェクションカニューレを取り付け、リン酸緩衝生理食塩水(PBS)に溶解させたポリペプチド(配列番号:9)(10 nmol)またはPBSのみを 5μ l/minで2分間投与した。その直後に行動量測定装置(Supermex、室町機械)にラットを戻し、自発的行動量および立ち上がり行動回数を測定した(図1)。

ラットを行動量測定装置に馴化させた後に脳室内投与を行うと、投与に伴うハンドリングが刺激になり、一過的に自発的行動量が増加し、その後急速に減少する。この条件下で配列番号:9で表わされるポリペプチド(10 nmol)を投与すると、その直後にコントロールに比して自発的行動量の減少傾向が認められ、その後に行動量の増加が認められた。立ち上がり行動回数についても自発的行動量と同様な作用が認められた。

実施例2

行動量の測定

Wistar雄性ラット (9週令) の側脳室 (AP:8.1 mm, L:1.8 mm, H:7.1 mm) にペントバルビタール麻酔下でガイドカニューレ (AG-8、エイコム社)

10

15

20

25

を挿入した。その後、1週間以上回復させてから実験を行った。回復期間中、毎日ハンドリングを行い、脳室内投与時のストレスを軽減させた。

実験前日からラットを運動量測定装置に入れ、馴化させた。無麻酔、無拘束下でガイドカニューレにマイクロインジェクションカニューレを取り付け、PBSに溶解させたポリペプチド(配列番号:9)(1 nmol)またはPBSのみを $10 \mu \text{l}$ ($5 \mu \text{l/min}$ で2 分間)投与した。その直後にラットを行動量測定装置(Supermex、室町機械)に戻し、自発的行動量および立ち上がり行動回数を測定した(図 2)。

配列番号:9で表わされるポリペプチド(1 nmol)を投与すると、投与直後から行動量の増加が認められた。しかし10 nmol投与時に認められた一過性の行動量の抑制は認められなかった。このことから、配列番号:9で表わされるポリペプチドは高用量で行動量抑制作用を示すことがわかった。

実施例3

行動量の測定

Wistar雄性ラット (8 週令)をペントバルビタールで麻酔し、脳定位固定装置に固定した。ガイドカニューレ (AG-8、エイコム社)を側脳室 (AP: +8.1 mm, L: 1.8 mm, H: +7.1 mm) に挿入した。1週間以上回復させてから実験に供した。回復期間中は毎日ハンドリングを行い、脳室内投与時のストレスを軽減させた。

カニューレが挿入されたラットを行動量測定装置(Supermex、室町機械)に入れ、一晩馴化させた。行動量測定装置よりラットを出し、リン酸緩衝生理食塩水(PBS)に溶解させたポリペプチド(配列番号:9)(1 nmolまたは10 nmol)またはPBSのみを 2.5μ l/minの流速で4分間、側脳室に投与した。投与直後に測定装置にラットを戻し、自発的行動量および立ち上がり行動回数を測定した。

ポリペプチド(配列番号: 9)10nmolをラットの側脳室に投与すると投与直後に行動量および立ち上がり行動回数の低下が認められた(図3)。これらの行動変化は10分程度持続した。また、この一過的な行動量の低下に引き続き、行動量の増加が認められた(図3)。行動量の増加は1時間程度持続した。投与から90分までの累積的な行動量は有意に増加した(PBS: 1612.7 ± 130.4 counts/90

min, n=27; ポリペプチド(配列番号:9) 10 nmol:2759.3 *± 422.5 counts/90 min, n=10, *p < 0.05, Dunnett)。立ち上がり行動の回数は有意ではないものの増加傾向が認められた(PBS: 35.1 ± 3.8 times/90 min, ポリペプチド(配列番号:9) 10 nmol:51.0 ± 13.4 times/90 min)。

5

ポリペプチド(配列番号: 9) 1 nmolを投与したときには10 nmol投与直後に認められた行動量の低下は消失し、投与直後より行動量および立ち上がり行動の増加が認められた(図3)。投与直後から90分後までの累積的な行動量は有意な増加を示した(PBS: 1612.7±130.4 counts/90 min, ポリペプチド(配列番号: 9) 1 nmol: 3741.0** ± 378.5 counts/90 min, n=9, **p < 0.01, Dunnett)。立ち上がり行動の回数も有意な増加を示した(PBS: 35.1 ± 3.8 times/90 min, ポリペプチド(配列番号: 9) 1 nmol: 75.3** ± 12.5 times/90 min, **p < 0.01, Dunnett)。

実施例4

行動量の測定

15

10

Wistar雄性ラット(8週令)をペントバルビタールで麻酔し、脳定位固定装置に固定した。ガイドカニューレ(AG-8、エイコム社)を側脳室(AP: +8.1 mm, L: 1.8 mm, H: +7.1 mm)に挿入した。 1 週間以上回復させてから実験に供した。回復期間中は毎日ハンドリングを行い、脳室内投与時のストレスを軽減させた。

20

カニューレが挿入されたラットを行動量測定装置(Supermex、室町機械)に入れ、一晩馴化させた。行動量測定装置よりラットを出し、ジアゼパム(1 mg/kg)を皮下投与した。1時間後にリン酸緩衝生理食塩水(PBS)に溶解させたポリペプチド(配列番号:9)(10 nmol)またはPACAP38 (3 nmol)を2.5 μ l/minの流速で4分間、側脳室に投与した。投与直後に測定装置にラットを戻し、自発的行動量およびを測定した(図4)。

25

ポリペプチド(配列番号:9)による行動量の増加はジアゼパムにより有意に 抑制されるが、行動増加作用を有することが知られているPACAP38による行動 量の増加はジアゼパムの影響を受けない(図4)。これらの結果より、ポリペプチド(配列番号:9)によりストレスの増強がもたらされている可能性が示唆さ

れる。

5

10

15

20

実施例5

高架式十字迷路試験

Wistar雄性ラット(9週令)をペントバルビタール麻酔下で側脳室にガイドカニューレを挿入した。その後、1週間以上回復させてから実験を行った。ラットに10 nmolの配列番号:9で表わされるポリペプチドまたはPBSを投与(側脳室内投与)した30分後に高架式十字迷路(長さが25cm、幅8cmの4本のアームが十字型に配置されたアクリル製の迷路、十字迷路の対向する2本のアームには壁を設置した(クローズドアーム)。残りの2本には壁を設置しなかった(オープンアーム))(図5)に乗せ、5分間のopenおよびclosed armへの進入回数、open armの滞在時間を測定した。結果を図6に示す。

実施例6

高架式十字迷路試験

長さが25cm、幅8cmの4本のアームが十字型に配置されたアクリル製の迷路(高架式十字迷路)を低照明(0.5 lux)の防音室に設置した。高架式十字迷路の対向する2本のアームには壁を設置した(クローズドアーム)。残りの2本には壁を設置しなかった(オープンアーム)。迷路は床より25cm高く設置した(図 5)。

C57BL/6Nマウスを測定室に馴化させた後にエーテル麻酔下で2段針(松本製作所)を用いて、側脳室内にポリペプチド(配列番号:9)(1 nmolまたは3 nmol)を含むPBSまたはPBSのみを 5μ l投与した。投与30分後に高架式十時迷路にマウスを乗せ、5分間の各アームへの進入回数およびオープンアームでの滞在時間を測定した。結果を表1に示す。

表 1

25

ポリペプチド(配 列番号: 9) (nmol)	(オープンアームへの進入回数) / (オープンアームへの進入回数+ク ローズドアームへの進入回数)	n (個体数)
0	0.134 ± 0.021	20
1	0.131 ± 0.009	20

ļ	3	0.065±0.018*	20

*p<0.05, Dunnett

ポリペプチド(配列番号:9)の投与により、オープンアームの選択率は減少 した。

5 実施例7

10

15

25

ホールボード試験

底部に直径3.8cmの穴を4個開けた塩化ビニール製の箱をホールボードとして用いた。ホールボード上での行動量はスーパーメックスセンサー(室町機械)で測定した。のぞき込み回数の測定には穴の直下に設置したMRS-110RX infrared-scanning sensors(室町機械)を用いた。

C57BL/6Nマウスを測定室に馴化させた後にエーテル麻酔下で2段針(松本製作所)を用いて、側脳室内にポリペプチド(配列番号:9)(0.1 nmol、0.3 nmolまたは3 nmol)を含むPBSまたはPBSのみを 5μ l投与した。投与30分後にマウスをホールボードの中央に置き、5 分間の行動量、およびのぞき込み回数を測定した。結果を図<math>7に示す。

ポリペプチド(配列番号:9)の投与による行動量の変化は認められないが、 のぞき込み回数は有意に減少した。これらの結果よりポリペプチド(配列番号: 9)が脳内において不安に関与している可能性が示唆される。

実施例8

20 行動量の測定

Wistar雄性ラット(8週令)をペントバルビタールで麻酔し、脳定位固定装置に固定した。ガイドカニューレ(AG-8、エイコム社)を側脳室(AP: +8.1 mm, L: 1.8 mm, H: +7.1 mm)に挿入した。1週間以上回復させてから実験に供した。回復期間中は毎日ハンドリングを行い、脳室内投与時のストレスを軽減させた。リン酸緩衝生理食塩水(PBS)に溶解させたポリペプチド(配列番号: 9)(10 nmol)または不安・ストレス惹起作用があることが知られているCRF(1 nmol)、あるいはPBSのみを $2.5\,\mu$ l/minの流速で4分間、側脳室に投与した。投与15分後に断頭し、血液を採取した。血漿中のACTHをradioimmunoassay system(ユ

10

15

20

カ・メディアス社)で測定した。結果を図8に示す。

産業上の利用可能性

本発明のポリペプチドをコードするDNA、本発明のポリペプチドまたはその 前駆体タンパク質は、抗注意欠陥障害もしくは抗ナルコレプシー剤または抗不安、 抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤などの医薬の開発、組換え型レ セプタータンパク質の発現系を用いたレセプター結合アッセイ系の開発と医薬品 候補化合物のスクリーニング、遺伝子治療等に用いることができる。

本発明のポリペプチドまたはその前駆体タンパク質は不安の昂進様作用に関与していることから、本発明のポリペプチドを用いるスクリーニング方法により得られる、該ポリペプチドとSENRとの結合性を変化させる化合物は、医薬として有用であり、SENRアゴニストは、たとえば注意欠陥障害、ナルコレプシーなどの疾病の治療・予防剤として用いることができ、SENRアンタゴニストは、たとえば不安、うつ病、不眠症、精神分裂症、恐怖症などの疾病の治療・予防剤として用いることができる。

配列表フリーテキスト

配列番号:1

配列に関する他の情報:第6番目および第11番目の2つのCys残基は分子内ジ スルフィド結合を形成している。

配列番号: 2

配列に関する他の情報:第6番目および第11番目の2つのCys残基は分子内ジ スルフィド結合を形成している。

配列番号:9

25 配列に関する他の情報:第6番目および第11番目の2つのCys残基は分子内ジ スルフィド結合を形成している。

配列番号:10

配列に関する他の情報:第5番目および第10番目の2つのCys残基は分子内ジ スルフィド結合を形成している。

配列番号:18

配列に関する他の情報:第11番目および第16番目の2つのCys残基は分子内ジスルフィド結合を形成している。

配列番号:19

5 配列に関する他の情報:第8番目および第13番目の2つのCys残基は分子内ジスルフィド結合を形成している。

配列番号:24

配列に関する他の情報:第11番目および第16番目の2つのCys残基は分子内ジスルフィド結合を形成している。

10 配列番号:26

15

配列に関する他の情報:第14番目および第19番目の2つのCys残基は分子内ジスルフィド結合を形成している。

配列番号:27

配列に関する他の情報:第18番目および第23番目の2つのCys残基は分子内ジスルフィド結合を形成している。

配列番号:28

配列に関する他の情報:第14番目および第19番目の2つのCys残基は分子内ジスルフィド結合を形成している。

配列番号: 29

20 配列に関する他の情報:第18番目および第23番目の2つのCys残基は分子内ジスルフィド結合を形成している。

15

20

25

請求の範囲

- 1. 配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩を含有する抗注意欠陥障害または抗ナルコレプシー剤。
- 2. 実質的に同一のアミノ酸配列が配列番号:2、配列番号:9、配列番号: 10、配列番号:18、配列番号:19、配列番号:24、配列番号:26、配 列番号:27、配列番号:28または配列番号:29で表されるアミノ酸配列で ある請求項1記載の抗注意欠陥障害または抗ナルコレプシー剤。
- 10 3. 請求項1記載のポリペプチドをコードする塩基配列を含有するDNAを含 有する抗注意欠陥障害または抗ナルコレプシー剤。
 - 4. DNAが配列番号:12、配列番号:13、配列番号:34、配列番号:20、配列番号:21、配列番号:25、配列番号:30、配列番号:31、配列番号:32または配列番号:33で表される塩基配列を含有するDNAである請求項3記載の抗注意欠陥障害または抗ナルコレプシー剤。
 - 5. 請求項1記載のポリペプチドの前駆体タンパク質もしくはそのアミドもしくはそのエステルまたはその塩を含有する抗注意欠陥障害または抗ナルコレプシー剤。
 - 6.配列番号:7、配列番号:8、配列番号:14、配列番号:17または配列番号:23で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有する請求項5記載の抗注意欠陥障害または抗ナルコレプシー剤。
 - 7. 配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドもしくはそのアミドもしくはそのエステルまたはその塩、またはその前駆体タンパク質もしくはその塩を用いることを特徴とする抗注意欠陥障害もしくは抗ナルコレプシー活性を有する化合物または抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖活性を有する化合物、またはそれらの塩のスクリーニング方法。
 - 8. 配列番号:1で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドもしくはそのアミドもしくはそのエステルまた

はその塩、またはその前駆体タンパク質もしくはその塩を含有してなる抗注意欠 陥障害もしくは抗ナルコレプシー活性を有する化合物または抗不安、抗うつ、抗 不眠、抗精神分裂症もしくは抗恐怖活性を有する化合物、またはそれらの塩のス クリーニング用キット。

- 5
- 9. 請求項7記載のスクリーニング方法または請求項8記載のスクリーニング 用キットを用いて得られる抗注意欠陥障害もしくは抗ナルコレプシー活性を有す る化合物または抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖活性を有する化合物、またはそれらの塩。
- 10. 請求項9記載の化合物またはその塩を含有することを特徴とする抗注意 欠陥障害もしくは抗ナルコレプシー剤または抗不安、抗うつ、抗不眠、抗精神分 裂症もしくは抗恐怖剤。
 - 11. 請求項1記載のポリペプチドをコードする塩基配列を含有するDNAと相補的な塩基配列またはその一部を含有してなるポリヌクレオチドを用いることを特徴とする、注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症もしくは恐怖診断方法。
 - 12. 請求項1記載のポリペプチドまたは請求項5記載の前駆体タンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体を含有することを特徴とする抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。
- 20

15

- 13. 配列番号:3または配列番号:11で表されるアミノ酸配列を含有するタンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体を含有することを特徴とする抗注意欠陥障害もしくは抗ナルコレプシーまたは抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。
- 25
- 14. 請求項1記載のポリペプチドまたは請求項5記載の前駆体タンパク質も しくはそれらのアミドもしくはそれらのエステルまたはそれらの塩に対する抗体 を含有することを特徴とする不安、うつ、不眠、精神分裂症もしくは恐怖症診断 剤。
- 15. 配列番号:3または配列番号:11で表されるアミノ酸配列を含有するタンパク質もしくはそれらのアミドもしくはそれらのエステルまたはそれらの塩

に対する抗体を含有することを特徴とする注意欠陥障害もしくはナルコレプシー または不安、うつ、不眠、精神分裂症もしくは恐怖症診断剤。

- 16. 配列番号:34で表される塩基配列を含有するDNAの一塩基多型(SNPs)を含有してなる診断剤。
- 5 17. 注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分 裂症もしくは恐怖症の診断剤である請求項16記載の診断剤。
 - 18. 配列番号:34で表される塩基配列を含有するDNAの一塩基多型(SNPs)を解析することを特徴とする注意欠陥障害もしくはナルコレプシーまたは不安、うつ、不眠、精神分裂症もしくは恐怖症診断方法。
- 19. GPR14アゴニストからなる抗注意欠陥障害もしくは抗ナルコレプシー剤。
 - 20. GPR14アンタゴニストからなる抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。
 - 21. GPR14アンタゴニストが、式(Ia):

15

20

[式中、 A^a は置換されていてもよいベンゼン環を、 B^a は置換されていてもよい $5\sim8$ 員環を、 X^a は直鎖部分の原子数が $1\sim4$ の 2 価の基を、 R^{1a} は置換されていてもよいアミノ基を、 R^{2a} は置換されていてもよい環状基を示す〕で表される化合物またはその塩である請求項 2 0 記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。

22. GPR14アンタゴニストが、式(IIa):

10

15

20

$$R^{3a}$$
 $A^{a'}$
 N
 $A^{a'}$
 X^{a}
 A^{2a}
 X^{a}
 A^{2a}

[式中、A^a'は置換基R³a以外にさらに置換基を有していてもよいベンゼン環を、B^aは置換されていてもよい5~8員環を、X^aは直鎖部分の原子数が1~4の2価の基を、R¹a'は置換されたアミノ基を、R²aは置換されていてもよい環状基を、R³aは置換されていてもよい炭化水素基、置換されていてもよい複素環基、ニトロ基、ハロゲン原子、置換されていてもよいアミノ基または式 R⁴a-Y^a- で表される基(式中、Y^aは酸素原子または酸化されていてもよい硫黄原子を、R⁴aは置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す)を示す]で表される化合物またはその塩である請求項20記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。

23. GPR 14 アンタゴニストが、式(Ib):

$$\begin{array}{c|c}
R \\
| \\
Ar - X - (CH) - Y \quad (Ib)
\end{array}$$

[式中、Arは置換されていてもよいアリール基を示し、Xは直鎖部分を構成する原子の数が1ないし4のスペーサーを示し、nは1ないし10の整数を示し、Rは水素原子または置換されていてもよい炭化水素基であって、nの繰り返しにおいて、同一でも異なっていてもよく、またRはArまたはArの置換基と結合して環を形成していてもよく、Yは置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示す。]で表される化合物またはその塩である請求項20記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。

24. GPR 14 アンタゴニストが、式(IIb):

10

15

[式中、R¹ は水素原子、置換されていてもよい炭化水素基または置換されていてもよいアシル基を示し、A環はさらに置換基を有していてもよいベンゼン環を示し、Xは直鎖部分を構成する原子の数が1ないし4のスペーサーを示し、nは1ないし10の整数を示し、Rは水素原子または置換されていてもよい炭化水素基であって、nの繰り返しにおいて、同一でも異なっていてもよく、またRはA環またはA環の置換基と結合して環を形成していてもよく、Yは置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示す〕で表される化合物またはその塩である請求項20記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。

25. GPR14アンタゴニストが、式(Ic):

$$\begin{array}{c|c}
R^{2c} & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & \\
R^{3c} & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & &$$

[式中、 R^1 。は水素原子または置換されていてもよい炭化水素基を示し、 X° は直鎖部分を構成する原子の数が $1\sim 12$ のスペーサーを示し、 R^1 。および X° とは結合して環を形成していてもよく、 A° は置換されていてもよいアミノ基または置換されていてもよい含窒素複素環基を示し、 R^2 。は置換されていてもよい炭化水素基または置換されていてもよいアミノ基を示し、 R^3 。は置換されていてもよい炭化水素基を示し、 R^3 。は置換されていてもよい炭化水素基を示し、 R^3 。は置換されていてもよい炭化水素基を示し、 R^3 。は置換されていてもよい炭化水素基を示し、 R^3 。は置換されていてもよいベンゼン環を示す〕で表される化合物またはその塩である請求項20

記載の抗不安、抗うつ、抗不眠、抗精神分裂症もしくは抗恐怖剤。

- 26. 哺乳動物に対して、GRP14アゴニストの有効量を投与することを特徴とする注意欠陥障害もしくはナルコレプシー予防・治療方法。
- 27. 注意欠陥障害もしくはナルコレプシー予防・治療剤を製造するためのG PR14アゴニストの使用。
- 28. 哺乳動物に対して、GPR14アンタゴニストの有効量を投与すること を特徴とする不安、うつ、不眠、精神分裂症もしくは恐怖症の予防・治療方法。
- 29. 不安、うつ、不眠、精神分裂症もしくは恐怖症の予防・治療剤を製造するためのGPR14アンタゴニストの使用。

1/8

3/8

4/8

5/8

Open arm

6/8

図 6

c) Open armへの進入回数

7/8

8/8

1/19

Sequence Listing

<110> Takeda Chemical Industries, Ltd.

<120> Polypeptide and Its Use

5

<130> 662731

<150> JP 2000-247968

<151> 2000-08-10

10

<160> 34

⟨210⟩ 1

<211> 12

15 <212> PRT

<213> Pig

<223> The 6th cystein residue binds with the 11th cystein residue to form a intra-molecular disulfide-bond.

20

<400> 1

Gly Pro Thr Ser Glu Cys Phe Trp Lys Tyr Cys Val

1

5

10

12

25 <210> 2

⟨211⟩ 12

<212> PRT

<213> Pig

2/19

<223> The 6th cystein residue binds with the 11th cystein residue to form a intra-molecular disulfide-bond.

<400> 2

5 Gly Pro Pro Ser Glu Cys Phe Trp Lys Tyr Cys Val

1 5 10 12

<210> 3

<211> 386

10 <212> PRT

<213> Rat

<400> 3

Met Ala Leu Ser Leu Glu Ser Thr Thr Ser Phe His Met Leu Thr Val

15 1 5 10 15

Ser Gly Ser Thr Val Thr Glu Leu Pro Glu Asp Ser Asn Val Ser Leu

20 25 3

Asn Ser Ser Trp Ser Gly Pro Thr Asp Pro Ser Ser Leu Lys Asp Leu

35 40 45

20 Val Ala Thr Gly Val Ile Gly Ala Val Leu Ser Ala Met Gly Val Val

50 55 60

Gly Met Val Gly Asn Val Tyr Thr Leu Val Val Met Cys Arg Phe Leu

65 70 75 80

Arg Ala Ser Ala Ser Met Tyr Val Tyr Val Val Asn Leu Ala Leu Ala

25 85 90 95

Asp Leu Leu Tyr Leu Leu Ser Ile Pro Phe Ile Ile Ala Thr Tyr Val

100 105 110

Thr Lys Asp Trp His Phe Gly Asp Val Gly Cys Arg Val Leu Phe Ser

115 120 125

3/19

	Leu	Asp	Phe	Leu	Thr	Met	Hls	Ala	Ser	TTE	Pne	Inr	Leu	Ihr	11e	Met
		130		•			135					140				
	Ser	Ser	Glu	Arg	Tyr	Ala	Ala	Va1	Leu	Arg	Pro	Leu	Asp	Thr	Val	G1n
	145					150					155					160
5	Arg	Ser	Lys	Gly	Tyr	Arg	Lys	Leu	Leu	Val	Leu	G1y	Thr	Trp	Leu	Leu
					165					170					175	
4	Ala	Leu	Leu	Leu	Thr	Leu	Pro	Met	Met	Leu	Ala	Ile	Gln	Leu	Val	Arg
				180					185					190		
	Arg	G1y	Ser	Lys	Ser	Leu	Cys	Leu	Pro	Ala	Trp	G1y	Pro	Arg	Ala	His
10			195					200					205			
	Arg	Thr	Tyr	Leu	Thr	Leu	Leu	Phe	Gly	Thr	Ser	Ile	Val	Gly	Pro	Gly
		210					215					220				
	Leu	Val	Ile	Gly	Leu	Leu	Tyr	Val	Arg	Leu	Ala	Arg	Ala	Tyr	Trp	Leu
	225					230					235					240
15	Ser	Gln	Gln	Ala	Ser	Phe	Lys	G1n	Thr	Arg	Arg	Leu	Pro	Asn	.Pro	Arg
					245					250					255	
	Val	Leu	Tyr	Leu	Ile	Leu	G1y	Ile	Val	Leu	Leu	Phe	Trp	Ala	Cys	Phe
				260					265					270		
	Leu	Pro	Phe	Trp	Leu	Trp	G1n	Leu	Leu	Ala	G1n	Tyr	His	Glu	Ala	Met
20		*	275					280					285			
	Pro	Leu	Thr	Pro	G1u	Thr	Ala	Arg	Ile	Val	Asn	Tyr	Leu	Thr	Thr	Cys
		290					295			•		300			•	
	Leu	Thr	Tyr	Gly	Asn	Ser	Cys	Ile	Asn	Pro	Leu	Leu	Tyr	Thr	Leu	Let
	305					310					315					320
25	Thr	Lys	Asn	Tyr	Arg	Glu	Tyr	Leu	Arg	Gly	Arg	G1n	Arg	Ser	Leu	G13
					325					330					335	
	Ser	Ser	Cys	His	Ser	Pro	G1y	Ser	Pro	G1y	Ser	Phe	Leu	Pro	Ser	Are
				340					345	1				350		
	Val	His	Leu	G1n	Gln	Asp	Ser	Gly	Arg	Ser	Leu	Ser	Ser	Ser	Ser	Glr

4/19

355 360 365

Gln Ala Thr Glu Thr Leu Met Leu Ser Pro Val Pro Arg Asn Gly Ala

370 375 380

Leu Leu

5 385

<210> 4

<211> 638

<212> DNA

10 <213> Pig

<220>

<223>

15 <400> 4

20

25

cggaccaaca gaagccagga aggaagtgtc ctgcctcctg ccagtcatgt ccaagctggt 60 120 cccctgcttg ctcctcctag gatgcttagg tctcctcttc gctcttcccg tccctgactc caggaaagag cccctgccct tctcagcacc tgaagatgtc agatcagctt gggatgagct 180 ggaaagagcc tcccttcttc agatgctgcc agagacgcca ggtgcagagg caggaggga 240 tctcagggaa gcagatgccg gaatggacat tttttaccca agaggagaaa tgagaaaggc 300 tttctctgga caagatccta acatttttct gagtcacctt ttggccagaa tcaagaaacc 360 atacaagaaa cgtgggcccc cctctgaatg cttctggaaa tactgtgtct gaagtcacct 420 caacaacaac catcttagaa aatgtaaaaa aagtgcttga cttgacagca gtgcagatga 480 aaaaccaggc aaaccctact ctgttcacta ttatctggaa aataaaccct ttgtgtttgg 540 600 638

⟨210⟩ 5

<211> 583

5/19

<212> DNA

<213> Pig

<400> 5

5 gaccaacaga agccaggaag gaagtgteet geeteetgee agteatgtee aagetggtee 60 120 cctgcttgct cctcctagga tgcttaggtc tcctcttcgc tcttcccgtc cctgactcca ggaaagagcc cctgcccttc tcagcacctg aagatgtcag atcagcttgg gacgagctgg 180 240 aaagagcctc ccttcttcag atgctgccag agacgccagg tgcagaggca ggagaggatc 300 tcagggaagc agatgccgga atggacattt tttacccaag aggagaaatg agaaaggctt 10 360 tctctggaca agatectaac atttttctga gtcacctttt ggccagaatc aagaaaccat 420 acaagaaacg tgggccccc tctgaatgct tctggaaata ctgtgtctga agtcacctca 480 acaacaacca tottagaaaa tgtaaaaaaa gtgottgact tgacagcagt gcagatgaaa aaccaggcaa accetactet gtteactatt atetggaaaa taaaccettt gtgtttggea 540 583 agttaaaaaa aaaaaaaaaa aaaaaaaaaa aaa

15

<210> 6

<211> 522

<212> DNA

<213> Pig

20

25

<400> 6

60 agttgaggct tcggaccaac agaagccagg aaggaagtgt cctgcctcct gccagtcatg 120 tecaagetgg teceetgett geteeteeta ggatgettag gteteetett egetetteee 180 gtccctgact ccaggaaaga gcccctgccc ttctcagatg ccggaatgga catttttac 240 ccaagaggag aaatgagaaa ggctttctct ggacaagatc ctaacatttt tctgagtcac 300 cttttggcca gaatcaagaa accatacaag aaacgtgggc ccccctctga atgcttctgg 360 aaatactgtg tctgaagtca cctcaacaac aaccatctta gaaaatgtaa aaaaagtgct tgacttgaca gcagtgcaga tgaaaaacca ggcaaaccct actctgttca ctattatctg 420 480

6/19

522

	aaaaaaaa	aaa a	aaaa	aaaa	ia aa	aaaa	aaaa	aaa	aaaa	aaa	aa				
	<210> 7														
	<211> 1	21													. '
5	<212> P	RT													
	<213> P	ig													
	<400> 7														
	Met Ser	Lys	Leu	Val	Pro	Cys	Leu	Leu	Leu	Leu	G1y	Cys	Leu	Gly	Leu
10	1			5					10	•				15	
	Leu Phe	Ala		Pro	Val	Pro	Asp		Arg	Lys	Glu	Pro	Leu	Pro	Phe
			20					25					30		
	Ser Ala		Glu	Asp	Val	Arg		Ala	Trp	Asp	Glu		Glu	Arg	Ala
		35	61	M .	т	D	40	Ti	D	01	4 7	45	4.7	01	01
15	Ser Leu		GIn	Met	Leu		Glu	Thr	Pro	Gly		Glu	Ala	Gly	Glu
	50		C1	۸1_	۸	55	C1	Wa+	A 020	T1.	60	Т	Dana	A	C1
	Asp Leu 65	Arg	GIU	AIA	70	на	оту	Met	ASP	75	rne	IYI	rro	Arg	80
	Glu Met	Δησ	Ive	Δ1a		Sor	G1v	G1n	Aen	_	Aen	م11	Pho	ا ما آ	
20	Old Mer	MT &	Буз	85	1116	061	GLY	OIII	90	110	Non	116	1116	95	961
	His Leu	Len	Ala		Ile	Lvs	Lvs	Pro		Lvs	Lvs	Arg	G1 v		Pro
			100	,		_,_	_, _	105	- y	- ,	-,-	0	110		
	Ser Glu	Cys		Trp	Lys	Tyr	Cys								
		115		-		•	120								
25									٠						
	<210> 8														
	⟨211⟩ 8	5													
	<212> P	RT													

<213> Pig

7/19

<400> 8 Met Ser Lys Leu Val Pro Cys Leu Leu Leu Leu Gly Cys Leu Gly Leu 10 5 15 1 5 Leu Phe Ala Leu Pro Val Pro Asp Ser Arg Lys Glu Pro Leu Pro Phe 25 30 20 Ser Asp Ala Gly Met Asp Ile Phe Tyr Pro Arg Gly Glu Met Arg Lys 35 40 45 Ala Phe Ser Gly Gln Asp Pro Asn Ile Phe Leu Ser His Leu Leu Ala 10 60 55 50 Arg Ile Lys Lys Pro Tyr Lys Lys Arg Gly Pro Pro Ser Glu Cys Phe 70 80 75 65 Trp Lys Tyr Cys Val 85 15 <210> 9 ⟨211⟩ 12 <212> PRT <213> Bovine 20 <223> The 6th cystein residue binds with the 11th cystein residue to form a intra-molecular disulfide-bond. <400> 9

Gly Pro Ser Ser Glu Cys Phe Trp Lys Tyr Cys Val

10

12

5

⟨210⟩ 10

1

25

<211> 11

<212> PRT

8/19

<213> Human

<223> The 5th cystein residue binds with the 10th cystein residue to form a intra-molecular disulfide-bond.

5

<400> 10

Glu Thr Pro Asp Cys Phe Trp Lys Tyr Cys Val

1

5

10 11

10 〈210〉 11

<211> 389

<212> PRT

<213> Human

15 <400> 11

1

Met Ala Leu Thr Pro Glu Ser Pro Ser Ser Phe Pro Gly Leu Ala Ala

5

10

15

Thr Gly Ser Ser Val Pro Glu Pro Pro Gly Gly Pro Asn Ala Thr Leu

20

25

30

20 Asn Ser Ser Trp Ala Ser Pro Thr Glu Pro Ser Ser Leu Glu Asp Leu

35

40

45

Val Ala Thr Gly Thr Ile Gly Thr Leu Leu Ser Ala Met Gly Val Val

50

65

55

70

60

Gly Val Val Gly Asn Ala Tyr Thr Leu Val Val Thr Cys Arg Ser Leu

25

75

80

Arg Ala Val Ala Ser Met Tyr Val Tyr Val Val Asn Leu Ala Leu Ala

85

90

95

Asp Leu Leu Tyr Leu Leu Ser Ile Pro Phe Ile Val Ala Thr Tyr Val

100

105

110

9/19

	Thr	Lys	Glu	Trp	His	Phe	G1y	Asp	Val	Gly	Cys	Arg	Val	Leu	Phe	Gly
			115					120					125			
	Leu	Asp	Phe	Leu	Thr	Met	His	Ala	Ser	Ile	Phe	Thr	Leu	Thr	Val	Met
		130					135					140				
5	Ser	Ser	Glu	Arg	Tyr	Ala	Ala	Val	Leu	Arg	Pro	Leu	Asp	Thr	Val	G1n
	145					150					155					160
	Arg	Pro	Lys	Gly	Tyr	Arg	Lys	Leu	Leu	Ala	Leu	Gly	Thr	Trp	Leu	Leu
					165					170					175	
	Ala	Leu	Leu	Leu	Thr	Leu	Pro	Val	Met	Leu	Ala	Met	Arg	Leu	Va1	Arg
10				180					185					190		
	Arg	G1y	Pro	Lys	Ser	Leu	Cys	Leu	Pro	Ala	Trp	Gly	Pro	Arg	Ala	His
			195					200					205			
	Arg	Ala	Tyr	Leu	Thr	Leu	Leu	Phe	Ala	Thr	Ser	Ile	Ala	Gly	Pro	G1y
•		210					215	٠		s.		220				
15	Leu	Leu	Ile	G1y	Leu	Leu	Tyr	Ala	Arg	Leu	Ala	Arg	Ala	Tyr	Arg	Arg
	225				i.	230					235					240
	Ser	Gln	Arg	Ala	Ser	Phe	Lys	Arg	Ala	Arg	Arg	Pro	G1y	Ala	Arg	.Ala
					245					250					255	
	Leu	Arg	Leu	Val	Leu	G1y	Ile	Va1	Leu	Leu	Phe	Trp	Ala	Cys	Phe	Leu
20				260					265					270		
	Pro	Phe	Trp	Leu	Trp	Gln	Leu	Leu	Ala	Gln	Tyr	His	Gln	Ala	Pro	Leu
			275					280					285			
	Ala	Pro	Arg	Thr	Ala	Arg	Ile	Val	Asn	Tyr	Leu	Thr	Thr	Cys	Leu	Thr
		290	Ì				295					300				
25	Tyr	G1y	Asn	Ser	Cys	Ala	Asn	Pro	Phe	Leu	Tyr	Thr	Leu	Leu	Thr	Arg
	305					310					315					320
	Asn	Tyr	Arg	Asp	His	Leu	Arg	G1y	Arg	Val	Arg	G1y	Pro	G1y	Ser	G1y
					325					330					335	
	G1 y	G1v	Arg	Gly	Pro	Val	Pro	Ser	Leu	G1n	Pro	Arg	Ala	Arg	Phe	G1r

10/19

340 345 350

Arg Cys Ser Gly Arg Ser Leu Ser Ser Cys Ser Pro Gln Pro Thr Asp
355 360 365

Ser Leu Val Leu Ala Pro Ala Ala Pro Ala Arg Pro Ala Pro Glu Gly

5 370 375 380

Pro Arg Ala Pro Ala

385

<210> 12

10 <211> 36

<212> DNA

<213> Pig

· <400> 12

gggccccct ctgaatgctt ctggaaatac tgtgtc 36

⟨210⟩ 13

<211> 36

<212> DNA

20 <213> Bovine

<400> 13

ggaccttcct ctgaatgctt ctggaaatac tgtgtc 36

25 〈210〉 14

<211> 122

<212> PRT

<213> Bovine

11/19

<400> 14

Met Tyr Lys Leu Val Ser Cys Cys Leu Leu Phe Ile Gly Ser Leu Asn

1 5 10 15

Pro Leu Leu Ser Leu Pro Val Leu Asp Ser Arg Gln Glu Ser Leu Gln

5 20 25 30

Leu Leu Ala Pro Glu Asp Val Arg Ser Thr Leu Asp Glu Leu Glu Arg

35 40 45

Ala Ser Leu Leu Gln Met Leu Pro Glu Met Ser Gly Ala Glu Thr Gly

50 55 60

Glu Gly Leu Arg Asn Thr Asp Pro Ile Thr Asn Ile Phe Tyr Pro Arg

65 70 75 80

Gly Asn Met Arg Lys Ala Phe Ser Gly Gln Asp Pro Lys Leu Phe Leu

85 90 95

Ser Asp Leu Leu Ser Arg Ile Arg Lys Gln Ser Lys Lys Arg Gly Pro

15 100 105 110

Ser Ser Glu Cys Phe Trp Lys Tyr Cys Val

115 120

⟨210⟩ 15

20 <211> 431

<212> DNA

<213> Bovine

<400> 15

25 atgtataage tggteteetg etgtttgett tteataggat eettaaatee geteetgtet 60 etteetgtee ttgaeteeag geaagagtee etgeagetet tageacetga agatgteaga 120 teaaetetgg atgagetgga aagagegtet ettetgeaga tgetgeeaga gatgteagge 180 geagagacag gagaggtet taggaacaca gateecatta eeaacatttt ttaeceaaga 240

ggaaacatga gaaaggcett ctctgggcaa gatcctaage ttttcctgag tgaccttttg

300

12/19

	tccagaatta	ggaaacaatc	taagaaacgt	ggaccttcct	ctgaatgctt	ctggaaatac	360
	tgtgtctgaa	gcaaaatgac	cctctactag	ttacctccaa	gacgaccatc	tgagaaaatg	420
	taaaataaag	a					431
5	<210> 16						
	<211> 405						
	<212> DNA						
	<213> Rat						
	•						
10	<400> 16						
	tcttcccgtc	gtcatggaca	a gggtgccctt	ctgctgcctg	ctcttcgtag	gactcctgaa	60
	tccactcctg	tcttttcccg	g tcacggacac	tggtgaaatg	tctcttcagc	ttccagtgct	120
	tgaggaaaat	gctcttcggg	g ctctggagga	gctggagagg	actgccctcc	tgcagacgct	180
	gcgccagacc	gtgggcacag	g aagcagaggg	aagccttggc	caggcagatc	ccagtgccga	240
15	gactcccact	ccaaggggaa	a gcttgaggaa	ggctctcact	gggcaagatt	ctaacactgt	300
	actgagccgt	cttttggcga	a gaaccaggaa	acaacgtaag	caacacggga	ctgccccaga	360
	atgcttctgg	aagtactgca	a tttgaagaga	gacgtctcct	cagaa		405
	<210> 17						
20	⟨211⟩ 123						
	<212> PRT						
	<213> Rat	•					
						•	
	<400≻ 17				•		
25	Met Asp Ar	g Val Pro I	Phe Cys Cys	Leu Leu Phe	Val Gly Le	u Leu Asn	
	1	5		10		15.	
	Pro Leu Le	u Ser Phe l	Pro Val Thr	Asp Thr Gly	Glu Met Se	r Leu Gln	
		20		25	30		

Leu Pro Val Leu Glu Glu Asn Ala Leu Arg Ala Leu Glu Glu Leu Glu

13/19

35 40 45

Arg Thr Ala Leu Leu Gln Thr Leu Arg Gln Thr Val Gly Thr Glu Ala

50 55 60

Glu Gly Ser Leu Gly Gln Ala Asp Pro Ser Ala Glu Thr Pro Thr Pro

5 65 70 75 80

Arg Gly Ser Leu Arg Lys Ala Leu Thr Gly Gln Asp Ser Asn Thr Val

85 90 95

Leu Ser Arg Leu Leu Ala Arg Thr Arg Lys Gln Arg Lys Gln His Gly

100 105 110

10 Thr Ala Pro Glu Cys Phe Trp Lys Tyr Cys Ile

115 120

<210> 18

<211> 17

15 <212> PRT

<213> Rat

<223> Xaa shows pyroglutamic acid or glutamine

20 <400> 18

Xaa Arg Lys Gln His Gly Thr Ala Pro Glu Cys Phe Trp Lys Tyr Cys Ile

1 5 10 15 17

<210> 19

25 <211> 14

<212> PRT

<213> Rat

<223> Xaa shows pyroglutamic acid or glutamine

14/19

<400> 19

Xaa His Gly Thr Ala Pro Glu Cys Phe Trp Lys Tyr Cys Ile

1

5

10

14

5

⟨210⟩ 20

⟨211⟩ 51

<212> DNA

<213> Rat

10

<400> 20

caacgtaagc aacacgggact gccccagaa tgcttctgga agtactgcat t 51

<210> 21

<211> 42

15 <212> DNA

<213> Rat

<400> 21

caacacggga ctgccccaga atgcttctgg aagtactgca tt 42

20

<210> 22

<211> 403

<212> DNA

<213> Mouse

25

<400> 22

atggacaggg tgcccttctg ctgcctgctc ttcataggac ttctgaatcc actgctgtcc 60 cttcccgtca cggacactgg tgagaggact cttcagcttc cagtgcttga ggaagacgct 120

180

cttcgggctc tggaggagct ggaggaggatg gccctcctgc agaccctgcg tcagaccatg

15/19

	ggcacgga	ag c	aggg	gaga	g co	ctgg	gagaa	gca	aggto	ecca	gcad	etgag	gac	tecca	actcca	a	240
	cggggaag	gca t	gagg	gaagg	c tt	tcgc	etggg	g caa	aatt	cta	acad	etgta	act (gagto	egtete	c	300
	ttggcaag	gaa c	cage	gaaac	a ac	cataa	agcas	cac	gggg	gctg	ccc	agag	gtg	cttct	tggaaa	a	360
	tactgcat	ctt g	gagga	ıgaca	ic aa	agcgo	ccgt	tgg	gtete	etca	gaa						403
5																	
	<210> 23	3															
	⟨211⟩ 12	23															
	<212> PF	RT															
	<213> Mc	ouse															
10																	
	<400> 23	3															
	Met Asp	Arg	Val	Pro	Phe	Cys	Cys	Leu	Leu	Phe	Ile	Gly	Leu	Leu	Asn		
	1			5					10					15			
•	Pro Leu	Leu	Ser	Leu	Pro	Val	Thr	Asp	Thr	Gly	Glu	Arg	Thr	Leu	Gln	,	
15			20					25					30				
	Leu Pro	Val	Leu	Glu	Glu	Asp	Ala	Leu	Arg	Ala	Leu	Glu	Glu	Leu	G1u		
		35					40					45					
	Arg Met	Ala	Leu	Leu	G1n	Thr	Leu	Arg	Gln	Thr	Met	Gly	Thr	G1u	Ala		
	50	-				55					60						
20	Gly Glu	Ser	Pro	Gly	Glu	Ala	G1y	Pro	Ser		Glu	Thr	Pro	Thr	Pro		
	65				70					75					80		
	Arg Gly	Ser	Met	Arg	Lys	Ala	Phe	Ala	Gly	Gln	Asn	Ser	Asn	Thr	Val		
				85					90					95			
	Leu Ser	Arg	Leu	Leu	Ala	Arg	Thr	Arg	Lys	G1n	His	Lys	G1n	His	Gly		
25			100					105					110				
	Ala Ala	Pro	Glu	Cys	Phe	Trp	Lys	Tyr	Cys	Ile							
		115					120										

<210> 24

16/19

<211> 17

<212> PRT

<213> Mouse

5 <223> Xaa shows pyroglutamic acid or glutamine

<400> 24

Xaa His Lys Gln His Gly Ala Ala Pro Glu Cys Phe Trp Lys Tyr Cys Ile

5 10 15 17

10

<210> 25

<211> 51

<212> DNA

<213> Mouse

<400> 25

15

caacataagc aacacggggc tgccccagag tgcttctgga aatactgcat t 51

<210> 26

20 <211> 20

<212> PRT

<213> Rat

<400> 26

25 Thr Arg Lys Gln Arg Lys Gln His Gly Thr Ala Pro Glu Cys Phe Trp

1 5 10 15

Lys Tyr Cys Ile

17/19

⟨210⟩ 27

<211> 24

<212> PRT

<213> Rat

5

<400> 27

Leu Leu Ala Arg Thr Arg Lys Gln Arg Lys Gln His Gly Thr Ala Pro

1 5 10

Glu Cys Phe Trp Lys Tyr Cys Ile

10 20 24

<210> 28

<211> 20

<212> PRT

<213> Mouse

15

<400> 28

Thr Arg Lys Gln His Lys Gln His Gly Ala Ala Pro Glu Cys Phe Trp

1 5 10 15

Lys Tyr Cys Ile

20 20

<210> 29

<211> 24

<212> PRT

25 <213> Mouse

<400> 29

Leu Leu Ala Arg Thr Arg Lys Gln His Lys Gln His Gly Ala Ala Pro

1

5

10

15

15

18/19

Glu Cys Phe Trp Lys Tyr Cys Ile

20 24

<210> 30

5 <211> 60

<212> DNA

<213> Rat

<400> 30

10 accaggaaac aacgtaagca acacgggact gccccagaat gcttctggaa gtactgcatt 60

<210> 31

<211> 72

<212> DNA

15 <213> Rat

<400> 31

cttttggcga gaaccaggaa acaacgtaag caacacggga ctgccccaga atgcttctgg 60

aagtactgca tt 72

20

<210> 32

⟨211⟩ 60

<212> DNA

<213> Mouse

25

⟨400⟩ 32

accaggaaac aacataagca acacggggct gccccagagt gcttctggaa atactgcatt 60

<210> 33

19/19

⟨211⟩ 72

<212> DNA

 $\langle 213 \rangle$ Mouse

5 <400> 33

ctettggeaa gaaceaggaa acaacataag caacaeggg etgeeecaga gtgettetgg 60 aaataetgea tt 72

⟨210⟩ 34

10 〈211〉 33

<212> DNA

<213> Human

<400> 34

gagactectg attgettetg gaaatactgt gtc 33

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/06899

Int.	IFICATION OF SUBJECT MATTER 17 C12N15/12, C07K14/47, G01N33/50, A61K48/00, A61P25/00, A61P25/18 A61K31/4745, C07D471/04, A61K3 C07D207/32 International Patent Classification (IPC) or to both na	, A61P25/20, A61P25/22, A61P 1/4375, A61K31/55, C07D223,	25/24, A61P43/00,			
	SEARCHED					
Minimum do Int.(ocumentation searched (classification system followed Cl ² C12N15/12, C07K14/47, G01N33/50, A61K48/00, A61K31/4745, C07D4 A61K31/4025, C07D207/32	, G01N33/15, A61K31/711, A61K 71/04, A61K31/4375, A61K31	/55, C07D223/16,			
	on searched other than minimum documentation to the		:			
JICS	ata base consulted during the international search (nam. T FILE (JOIS), WPI (DIALOG), BIOUS (STN), REGISTRY (STN), EMBL/	OSIS (DIALOG), MEDLINE (STN),			
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT		-			
Category*	Citation of document, with indication, where ap		Relevant to claim No.			
X	WO 99/40192 A1 (SmithKline Beed 12 August, 1999 (12.08.99), & US 6159700 A & EP 105684 & US 6133420 A Claims; pages 30 to 32	-	1-10,12-17, 19-20,27,29			
Х	EP 859052 A1 (SmithKline Beecha 19 August, 1998 (19.08.98), & US 5851798 A & US 60050 & JP 10-295376 A Claims; page 9, lines 28 to 40	-	1-10,12-17, 19-20,27,29			
Х	EP 430485 A2 (Ube Ind. Ltd.), 05 June, 1991 (05.06.91), & JP 3-220189 A page 2, lines 4 to 6	-	21-22			
Further	documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "C" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 25 October, 2001 (25.10.01) See patent family annex. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive and invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve a						
	ailing address of the ISA/ nese Patent Office	Authorized officer				
Facsimile No		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/06899

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	EP 487071 A1 (Takeda Chem. Ind., Ltd.), 27 May, 1992 (27.05.92), & US 5273974 A & JP 5-140149 A & AU 9188045 A & CA 2055947 A & CN 1062143 A & RU 2095361 B page 50, lines 50 to 57	23-24
х	EP 560235 A1 (Takeda Chem. Ind., Ltd.), 15 September, 1993 (15.09.93), & US 5462934 A & JP 6-166676 A & AU 9333803 A & CA 2091216 A & CN 1078969 A page 54, lines 19 to 23	23-24
Х	EP 607864 A2 (Takeda Chem. Ind., Ltd.), 27 July, 1994 (27.07.94), & US 5527800 A	23
х	EP 533266 A1 (Glaxo Group Ltd.), 24 March, 1993 (24.03.93), & US 5356893 A & JP 6-107649 A & AU 9224529 A & CA 2078506 A & CN 1071922 A page 5, lines 23 to 30	25
P,A	WO 00/32627 A1 (Takeda Chem. Ind., Ltd.), 08 June, 2000 (08.06.00), & AU 200014112 A & EP 1136503 A & JP 2001-128688 A	1-10,12-17, 19-20,27,29
P,A	WO 01/04298 A1 (Takeda Chem. Ind., Ltd.), 18 January, 2001 (18.01.01), & AU 200058484 A & JP 2001-69996 A	1-10,12-17, 19-20,27,29
P,A	WO 01/66143 A1 (Takeda Chem. Ind., Ltd.), 13 September, 2001 (13.09.01), (Family: none)	1-10,12-17, 19-20,27,29
	en e	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/06899

Box	κI	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
Thi	s inte	emational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	\boxtimes	Claims Nos.: 11,18,26,28 because they relate to subject matter not required to be searched by this Authority, namely:
	ma t]	The inventions as set forth in claims 11, 18, 26 and 28 pertain to ethods for treatment and diagnosis of diseases and thus relate to a subject atter which this International Searching Authority is not required, under ne provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the egulations under the PCT, to search.
2.		Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.		Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
		Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
Thi	is Int	ernational Searching Authority found multiple inventions in this international application, as follows:
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3,		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.		No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
		The state of the s
Re	marl	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

国際調査報告

A. 発明の属する分野の分類 (国際特許分類 (IPC))

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ C12N15/12, C07K14/47, G01N33/50, G01N33/15, A61K31/711, A61K38/00, A61K45/00, A61K48/00, A61K31/4745, C07D471/04, A61K31/4375, A61K31/55, C07D223/16, A61K31/4025, C07D207/32

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) JICSTファイル(JOIS), WPI(DIALOG), BIOSIS(DIALOG), MEDLINE (STN), CAPLUS (STN), REGISTRY (STN) EMBL/DDBJ/Genebank/PIR/Swissprot/Geneseq

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 99/40192 A1 (SMITHKLINE BEECHAM CORPORATION) 12.8月.1999 (12.08.99) &US 6159700 A &EP 1056844 A &US 6133420 A (請求項,第30~32頁参照)	1–10, 12–17, 19–20, 27, 29
X	EP 859052 A1 (SMITHKLINE BEECHAM CORPORATION) 19. 8月. 1998 (19. 08. 98) &US 5851798 A &US 6005074 A &JP 10-295376 A (請求項,第9頁28~40行参照)	1-10, 12-17, 19-20, 27, 29

▼ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

25.10.01

国際調査報告の発送日

06.11.01

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 上條 肇

1B | 9453

電話番号 03-3581-1101 内線 3448

国際調査報告

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	EP 430485 A2 (UBE IND LTD) 5.6月.1991 (05.06.91) &JP 3-220189 A (第2頁4~6行参照)	21-22
X	EP 487071 A1 (TAKEDA CHEM IND LTD) 27.5月.1992 (27.05.92) &US 5273974 A & JP 5-140149 A &AU 9188045 A &CA 2055947 A &CN 1062143 A &RU 2095361 B (第50頁50~57行参照)	23-24
X	EP 560235 A1 (TAKEDA CHEM IND LTD) 15.9月.1993 (15.09.93) &US 5462934 A &JP 6-166676 A &AU 9333803 A &CA 2091216 A &CN 1078969 A (第54頁19~23行参照)	23-24
X	EP 607864 A2 (TAKEDA CHEM IND LTD) 27.7月.1994 (27.07.94) &US 5527800 A & JP 7-206854 A &AU 9453861 A &CA 2113603 A &CN 1104211 A &US 5686466 A (第71頁23~30行参照)	23
X	EP 533266 A1 (GRAXO GROUP LTD) 24. 3月. 1993 (24. 03. 93) &US 5356893 A &JP 6-107649 A &AU 9224529 A &CA 2078506 A &CN 1071922 A (第5頁23~30行参照)	25
ŖA	WO 00/32627 A1 (TAKEDA CHEM IND LTD) 8.6月.2000(08.06.00) &AU 200014112 A &EP 1136503 A &JP 2001-128688 A	1-10, 12-17, 19-20, 27, 29
PA	WO 01/04298 A1 (TAKEDA CHEM IND LTD) 18. 1月. 2001 (18. 01. 01) &AU 200058484 A &JP 2001-69996 A	1-10, 12-17, 19-20, 27, 29
P,A	WO 01/66143 A1 (TAKEDA CHEM IND LTD) 13.9月.2001 (13.09.01) (ファミリーなし)	1-10, 12-17, 19-20, 27, 29
	·	

第 I 欄 法第8条 成しなか	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き) 会第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。
1. 🛚	請求の範囲 11,18,26,28 は、この国際調査機関が調査をすることを要しない対象に係るものである。
	つまり、 請求の範囲11,18,26,28に係る発明は疾患の治療・診断方法に該当するから、特許協力条約第17条(2)(a)(i)及び特許協力条約に基づく規則39.1(iv)の規 定によりこの国際調査機関が調査をすることを要しない対象に係るものである。
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に过	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
á. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. [出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調え	₹手数料の異議の申立てに関する注意
	追加調査手数料の納付と共に出願人から異議申立てがあった。
	追加調本手数料の納付と共に出願しから異議由立てがたかった