MAT 226B Large Scale Matrix Computation Homework 1

Ahmed Mahmoud

January, 30th 2020

Problem 1:

Let $A=[a_{j,k}]\in\mathbb{R}^{n\times n}\succ 0$ and $L=[l_{j,k}]$ be its Cholesky factor.

Algorithm 1: Cholesky Factorization

```
Input: A = [a_{j,k}] \in \mathbb{R}^{n \times n} \succ 0
   Output: L = [l_{j,k}] such that A = LL^T
1 l_{j,k} = a_{j,k}, \forall j \geq k, j, k = 1, 2, \dots, n;
2 for k = 1, 2, ..., n do
        l_{k,k} = \sqrt{l_{k,k}};

l_{k+1:n,k} = \frac{1}{l_{k,k}} l_{k+1:n,k};
        if condition then
 5
              instructions1;
 6
              instructions2;
 7
        else
8
            instructions3;
         end
11 end
```

Problem 2:

Problem 3:

Problem 4:

Figure 1 shows the associated graph G(A) of matrix A along with the steps of the minimum degree algorithm. From these steps, the reordering of the nodes will be 2,4,5,3,6,7,1,8,9

Figure 1: Graph G(A) along with the 8 steps of the minimum degree algorithm applied on it.

From the reordering above, the permutation matrix can be constructed such that

From which, we can compute P^TAP to be

Applying Cholesky factorization to P^TAP we get the following lower triangular matrix where the fill-in elements are shown with +

Problem 5: