GateAssignment4

EE24BTECH11048-NITHIN.K

1 O.26 to O.55 carry two marks each

1) The value of definite integral $\int_0^{\pi} x \sin x dx$ is _____. 2) Use Newton-Raphson method to solve the equation: $xe^x = 1$. Begin with the initial

	guess $x_0 = 0.5$. The solution after one step is $x = $
3)	A wall of thickness 5 mm is heated by a hot gas flowing along the wall. The gas is at a temperature of 3000 K, and the convective heat transfer coefficient is 160
	W/m^2K . The wall thermal conductivity is 40 W/mK. If the colder side of the wall
	is held at 500 K, the temperature of the side exposed to the hot gas is K.
4)	A launch vehicle has a main rocket engine with two identical strap-on motors, all
')	of which fire simultaneously during the operation. The main engine delivers a thrus
	of 6300 kN with a specific impulse of 428 s. Each strap-on motor delivers a thrus
	of 12000 kN with specific impulse of 292 s. The acceleration due to gravity is 9.81
	m/s^2 . The effective (combined) specific impulse of the vehicle is s.
5)	A substance experiences an entropy change of $\Delta s > 0$ in a quasi-steady process
υ,	The rise in temperature (corresponding to the entropy change Δs) is highest for the
	following process:
	a) isenthalpic
	b) isobaric
	c) isochoric
	d) isothermal
	In a particular rocket engine, helium propellant is heated to 6000 K and 95% of its
0)	total enthalpy is recovered as kinetic energy of the nozzle exhaust. Consider helium
	to be a calorically perfect gas with specific heat at constant pressure of 5200 J/kgK
	The exhaust velocity for such a rocket for an optimum expansion is
7)	An aircraft is flying level in the North direction at a velocity of 55 m/s under cross
	wind from East to West of 5 m/s. For the given aircraft $C_{n\beta} = 0.012/deg$ and $C_{n\delta r} =$
	$-0.0072/deg$, where δr is the rudder deflection and β is the side slip angle. The
	rudder deflection exerted by pilot is degrees.
8)	An aircraft weighing 10000 N is flying level at 100 m/s and it is powered by a jet
	engine. The thrust required for level flight is 1000 N. The maximum possible thrust
	produced by the jet engine is 5000N. The minimum time required to climb 1000 m
	when flight speed is 100 m/s, is s.
9)	The aircraft velocity (m/s) components in body axes are given as $[u, v, w]$ =
	[100, 10, 10]. The air velocity (m/s), angle of attack (deg) and sideslip angle (deg)
	in that order are
	a) [120, 0.1, 0.1]
	b) [100, 0.1, 0.1]
	c) [100.95, 0.1, 5.73]

- d) [100.995, 5.71, 5.68]
- 10) The Dutch roll motion of the aircraft is described by following relationship

$$\begin{pmatrix} \Delta \beta \\ \Delta r \end{pmatrix} = \begin{pmatrix} -0.26 & -1 \\ 4.49 & -0.76 \end{pmatrix} \begin{pmatrix} \Delta \beta \\ \Delta r \end{pmatrix}$$

The undamped natural frequency (rad/s) and damping ratio for the Dutch roll motion in that order are:

- a) 4.68, 1.02
- b) 4.49, 1.02
- c) 2.165, 0.235
- d) 2.165, 1.02
- 11) A glider weighing 3300 N is flying at 1000 m above sea level. The wing area is 14.1 m^2 and the air density is 1.23 kg/ m^3 . Under zero wind conditions, the velocity for maximum range is _____ m/s.

$\alpha (\mathrm{deg})$	C_L	C_D	C_L/C_D
11	1.46	0.0865	16.9
9	1.36	0.0675	20.1
7	1.23	0.0535	22.9
5	1.08	0.0440	24.5
3	0.90	0.0350	25.7
1	0.70	0.0275	25.4
-1	0.49	0.0220	22.2
-3	0.25	0.0180	13.8

- 12) A rocket, with a total lift-off mass of 10000 kg, moves vertically upward from rest under a constant gravitational acceleration of 9.81 m/s². The propellant mass of 8400 kg burns at a constant rate of 1200 kg/s. If the specific impulse of the rocket engine is 240 s, neglecting drag, the burnout velocity in m/s is
 - a) 3933.7
 - b) 4314.6
 - c) 4245.9
 - d) 4383.3
- 13) A satellite is injected at an altitude of 350 km above the Earths surface, with a velocity of 8.0 km/s parallel to the local horizon. (Earth radius=6378 km, μ_E (GM=Gravitational constant x Earth mass) = $3.986 \times 10^{14} m^3 s^{-2}$. The satellite
 - a) forms a circular orbit.
 - b) forms an elliptic orbit.
 - c) escapes from Earths gravitational field.
 - d) falls back into earth.