Laboratorium 4 — kołysząca się maszyna Atwooda

Zadanie 1 (4 pkt)

Zbuduj model reprezentujący uproszczoną kołysząca się maszynę Atwooda na podstawie poniższego układu równań różniczkowych, oraz zbadaj wpływ parametrów na jego działanie.

Uwaga! Należy wykorzystać metodę wyznaczników do rozwiązania podanego układu równań.

$$\begin{cases} \left(m_1 + m_2 + \frac{1}{2}M\right)\ddot{r} - \left(m_1 + m_2 + \frac{1}{2}M\right)R\ddot{\theta} = m_1r\dot{\theta}^2 + g\left(m_1\cos\theta - m_2\right) \\ - \left(m_1 + m_2 + \frac{1}{2}M\right)R\ddot{r} + \left(\left(m_1 + m_2 + \frac{1}{2}M\right)R^2 + m_1r^2\right)\ddot{\theta} = \\ = gR\left(m_2 - m_1\cos\theta\right) - m_1r\left(2\dot{r}\dot{\theta} + g\sin\theta\right) \end{cases}$$

gdzie:

g – przyśpieszenie ziemskie \Rightarrow 9.81,

 m_1 – masa wahadła $\Rightarrow 1$,

 m_2 – masa ciężarka $\Rightarrow 1.4$,

M – masa bloczków $\Rightarrow 1$,

R – promień bloczków $\Rightarrow 0.001$,

r(0) – początkowa długość linki $\Rightarrow 2$,

 $\theta(0)$ – początkowy kąt $[°] \Rightarrow 90$.

Przyjmij:

Czas symulacji = 50,

Metoda: Ode45, maks. krok = 0.04.

Zadanie 2 (3 pkt)

Utwórz wykresy przedstawiające:

- zmianę długości linki w czasie (Scope)
- zmianę kata w czasie (Scope)
- trajektorie wahadła (XY Graph)

Zadanie wykonaj dla parametrów podanych w zadaniu 1, oraz dla: g = 9.81, $m_1 = 1$, $m_2 = 3$, M = 1, R = 0.001, r(0) = 1, $\theta(0) = 90^{\circ}$.

Zadanie 3 (3 pkt)

Przy użyciu jednej z poznanych wcześniej metod utwórz wizualizację kołyszącej się maszyny Atwooda. Przyjmij początkową długość linki z ciężarkiem taką samą jak długość początkową linki z wahadłem

W przypadku wizualizacji offline, rozpoczęcie symulacji oraz pobranie niezbędnych parametrów powinno odbyć się z poziomu kodu. Np.:

```
1 | sim('kAtwood') % uruchomienie modelu zapisanego jako kAtwood | g = str2num(get_param('kAtwood/Subsystem', 'g')); % pobranie wartosci g z podsystemu
```