Пловдивски Университет "Паисий Хилендарски" Факултет по Математика и Информатика Катедра Софтуерни технологии

Дипломна Работа на тема: "Статична С библиотека за Arduino"

Дипломант: Веселин Станчев

ФН: 1801321012

спец. СИ

Научен Ръководител: гл. ас. д-р инж. Стоян Черешаров

Пловдив 2022 г.

Съдържание

Увод	3
Бързина на паметта	6
I - Изследване на съществуващите С библиотеки и анализ на datasheet-овете на	
микроконтролерите за които е предназначена асемблерската част част	8
Примери за С библиотеки:	
Кратък анализ на datasheet-а на Atmega 328Р	10
Кратък	
анализ на datasheet-а на RP2040	15
II - Анализ на целевите процесорни архитектури за които е предназначена библиотеката	20
Анализ на ARM архитектурата	20
Пример за аритметична операция на GNU Assembler:	
Пример за разклоняване на потока на програма на GNU Assembler:	21
Пример за аритметична операция на GNU Assembler:	
Пример за побитова операция на GNU Assembler:	
Поддържани типове данни	
Всеки ARM-базиран процесор поддържа следните типове данни:	
Регистри за запис и зареждане	24
Регистрите за запис и зареждане (LDR) могат да послужат за запис на определена	
стойност (Byte,Halfword,Word) в даден регистър или регистри	
20	
III - Дефиниране на изискванията към библиотеката	
Логика на кода на библиотеката	26
Както стана ясно в началото на тази глава, статичната библиотека ще поддържа	
микроконтролерите:	
Схема на компилацията на библиотеката	
Тестване на отделните функции на библиотеката	
Примерно компилиране на файловете за библиотеката и създаване на библиотеката	
IV - Използвани софтуерни инструменти	30
Gcc- GNU C Compiler е компилатор който може да се използва за C, C++, Assembler.	
Използва се за компилация на source кода до обектен файл и до краен изпълним файл.	
Подават се допълнителни параметри за компилацията	31
Make- GNU Make e build система за автоматизация. Използва се за автоматизиране на	
компилацията за C, C++ и Assembler програми. В Makefile се пишат целите и файловете,	,
нужни за тяхното изпълнение. След това се пише командата която се изпълнява при	
дадената цел.Изключително полезна е при големи проекти	31
GDB- GNU GDB е дебъгер за С и Assembler. Използва се след като програмата е	
компилирана със дебъг символи чрез параметъра -g. За да се проследи изпълнението на	
програмата е нужно да се използват breakpoints. Чрез командата run започва изпълнение	
на програмата в дебъгера. Чрез командата next дебъгера преминава към следващия ред н	
	32
AVR-GCC е модифициран GCC компилатор, който компилира source файла до .hex файл	
който да се качи на целевия микроконтролер	32
AVRDUDE е програмата, чрез която .hex файла се качи на целевия микроконтролер	32

BINUTILS съдържа свободния асемблер, който ще бъде използван за основната част	на
библиотеката, която е цел на настоящата дипломна работа	32
Vim е терминален текстов редактор който може да се използва за всички програмни ез	вици.
Поддържа възможност за редактиране на огромни файлове. Поддържа функциите Und	0,
Redo с пълната история на файла. Разполага с различни режими на работа:	33
ar представлява архиватор, чрез който се създават статичните библиотеки	33
V - Кодиране на библиотеката	35
Изходен код на асемблерския файл arrayfunc.s	35
Изходен код на асемблерския файл pointerfunc.s	
Автоматизиране на тестването на библиотеката чрез Makefile	39
Тестване на arrayfunc	
Тестване на pointerfunc	39
Автоматизиране на построяването на библиотеката чрез Makefile	40
VI - Постигнати резултати. Бъдещо Развитие	41
Постигнати резултати	
За свободните асемблери	42
Участия с темата на дипломната работа	43
Възможности за бъдещо развитие	
Заключение	
Използвани източници:	

Увол

Със развитието на IoT все повече стават популярни едноплатковите development boards като Arduino Uno и Raspberry Pi Pico които могат да послужат за учебни/университетски проекти или домашна автоматизация. Съществуват няколко вида instruction sets:

- CISC -> Complex Instruction Set Computer
- RISC -> Redused Instruction Set Computer
- MISC -> Minimal Instruction Set Computer

CISC се използва при x86 64 базираните настолни компютри и лаптопи.

RISC се използва при микроконтролерите Atmega 328р и RP2040.

Arduino Uno e базиран на Atmega 328p a Raspberry Pi Pico e базиран на RP2040.

Redused Instruction Set означава че по-сложните инструкции се свеждат до изпълнение на основните инструкции. Архитектурата на Atmega 328р и RP2040 е System on Chip (SoC).

SoC означава, че най-важните компоненти за една компютърна система - процесора и паметта, според фон Ньоймановата архитектура са обединени в един чип.

Фиг. 1

Фиг. 1 показва разделението на процесора и паметта.

Начините за програмирането на Arduino ca:

- чрез използването на С++ базирания диалект
- чрез използването на С
- чрез използването на Assembler

Езикът С е език от ниско ниво и затова гарантира бързина на изпълнение на програмата. Много по-добре е да се използва С отколкото официалния С++ диалект.

Ако се цели още по-голяма бързина, тогава се използва Assembler. Съществуват няколко вида архитектура на instruction set-a:

- х86 64 -> за настолни компютри и лаптопи.
- ARM -> за мобилни устройства, микроконтролери и едноплаткови компютри (Advanced RISC Machine).
- RISC-V -> open-source RISC базирана архитектура.

За различните архитектури на instruction set-а има различни асемблери.

Instruction Set Architecture

X86_64

ARM

ARM

GNU Assembler

GNU Assembler; AVR Assembler

За X86_64 архитектурата на instruction set-а разполагаме със:

- → Microsoft Assembler който може да се пише в директива __asm{...} в C/C++ source файл
- → Netwide Assembler свободен асемблер

За ARM архитектурата на instruction set-а разполагаме със:

- → GNU Assembler свободен асемблер за RISC базирани микроконтролери и процесори.
- → AVR Assembler свободен асемблер за широк спектър от Atmel базирани микроконтролери и процесори.

Примери за едноплаткови компютри:

- Raspberry Pi
- Olinuxino A20

Raspberry Pi е едноплатков компютър, базиран на ARM процесора Broadcom.

Той е RISC-базиран. Платката не е с отворен код, но операционната система по подразбиране е Debian-базирана с отворен код. Като харддиск се използва SD карта.

Бързина на паметта

Memory type Register Cache RAM HDD Speed Fastest Lower than Register Lower than Cache Lower than RAM Едноплатковите компютри помагат за по-лесния достъп на ученици и студенти до изучаването на компютърните науки. Те са с ниска крайна цена но достатъчно мощни за разработването на различни проекти.

Библиотеките съдържат предефинирани функции в езика.

Съществуват 2 типа библиотечни файлове – статични и динамични.

Цел на дипломната работа:

Да бъде създадена статична библиотека на С за Ардуино заедно със Асемблерска част която да бъде включена в библиотеката. Целта на библиотеката е да покаже взаимодействието между С и Assembler.

От тази цел произтичат следните задачи:

- Изследване на съществуващите С библиотеки и анализ на datasheetовете на микроконтролерите за които е предназначена асемблерската част
- Анализ на целевите процесорни архитектури за които е предназначена библиотеката.
- > Дефиниране на изискванията към библиотеката
- > Използвани софтуерни инструменти
- > Кодиране на библиотеката
- > Постигнати резултати. Бъдещо Развитие

Глави:

Увод

- Глава I Изследване на съществуващите С библиотеки и анализ на datasheet-овете на микроконтролерите за които е предназначена асемблерската част
- > Глава II Анализ на целевите процесорни архитектури за които е предназначена библиотеката.
- > Глава III Дефиниране на изискванията към библиотеката
- > Глава IV Използвани софтуерни инструменти
- ▶ Глава V Кодиране на библиотеката
- > Глава VI Постигнати резултати. Бъдещо Развитие

Заключение

I - Изследване на съществуващите С библиотеки и анализ на datasheet-овете на микроконтролерите за които е предназначена асемблерската част

Както стана ясно в увода, съществуват 2 типа библиотечни файлове (библиотеки) – статични и динамични. Статичната библиотека представлява архив с разширение .а , който се състои от обектни файлове с разширение .о . Динамичната библиотека от своя страна представлява файл с разширение .so (shared object) . Когато се работи под управление на GNU/Linux OS има основна директория, която съдържа динамичните библиотеки -> /usr/lib. По отношение на header файла той представлява файл с декларирани функции които ще бъдат налични в основната С програма или както е в този случай -> в библиотеката.

Когато се напише #include <mylib.h> -> header файла се търси в основната директория ->/usr/lib. Когато се напише #include "mylib.h" -> header файла се търси в конкретната директория, в която потребителят се намира в момента.

Примери за С библиотеки:

- stdlib.h
- stdio
- math.h

Нека разгледаме библиотеката libc и нейния header файл stdlib.h. Библиотеката libc съдържа основни функции на езика които могат да бъдат използвани в различни С програми. Header файлът stdlib.h съдържа различни функции като например:

- atoi
- atol
- malloc
- free

Функцията atoi получава като аргумент символ или символен низ- string и го преобразува в цяло число от тип int.

Функцията atol получава като аргумент символ или символен низ- string и го преобразува в число от тип long.

Чрез функцията malloc се запазват байтове в паметта. Например: malloc(sizeof(int)).

Чрез функцията free се освобождават вече заети байтове в паметта. Например:

int a=5;

free(a);

Нека разгледаме библиотеката stdio и нейния header файл stdio.h . Библиотеката stdio съдържа основни функции на езика които могат да бъдат използвани за стандартни входно-изходни операции (I/O). Header файлът stdio.h съдържа различни функции като например:

- fopen
- printf

Чрез функцията fopen отваря stream от байтове в паметта. Получава като аргументи името на stream-а който трябва да отвори и различен режим за отваряне Например:

```
fopen("example","r");
```

Нека разгледаме библиотеката math и нейния header файл math.h . Библиотеката math.h съдържа математически функции и дефинирани константи чрез препроцесорната директива #define . Header файлът stdio.h съдържа различни константи като например:

```
#define PI=3.14;
```

За разлика от разгледаните вече съществуващи библиотеки, статичната библиотека, която е цел на настоящата дипломна работа, ще съдържа асемблерска част, за да може действието й да бъде най-бързо.

За да се запознаем със микроконтролерите за които е предназначена библиотеката -> Atmega 328P и RP2040 е необходимо да анализираме тяхната документация – datasheet-овете им.

Следва кратък анализ на datasheet-а на Atmega 328P, след това и на RP2040.

Кратък анализ на datasheet-а на Atmega 328P

Според datasheet-a Atmega 328P e 8-bit RISC базиран микроконтролер. Може да бъде използван GNU Assembler-a, който е съвместим с RISC-базирани устройства.

Фигура 2 показва достъпните пинове за използване на Atmega 328P.

Фиг. 3 Фигура 3 показва процесора, паметите и адресната шина на Atmega 328P

Всеки един процесор изпълнява следните задачи върху процесорна инструкция:

- прихващане на инструкцията
- декодиране на инструкцията
- изпълнение на инструкцията

Figure 6-4. The Parallel Instruction Fetches and Instruction Executions

Фигура 6.4 от datasheet-а показва как на всеки 1 clock-cycle на clock сигнала последователно се прихващат, декодират и изпълняват инструкциите.

За да можем да програмираме на Assembler е нужно да знаем какви регистри на процесора на микроконтролера са достъпни за използване. Фигура 6.2 показва достъпните регистри.

Figure 6-2. AVR CPU General Purpose Working Registers

R0 0x00 0x01 R1 0x02 R2 R13 0x0D General R14 0x0E 0x0F Purpose R15 Working R16 0x10 Registers R17 0x11 0x1A R26 X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte

R31

Addr.

0x1F

Z-register High Byte

Кратък

анализ на datasheet-а на RP2040

Фиг. 4 Фигура 4 показва достъпните пинове за използване на RP2040

 Φ иг. 5 Φ игура 5 показва процесора на RP2040.

RP2040 е базиран на процесор Cortex MO+. Той е 32 битов RISC-базиран процесор. Поддържа защита на паметта.

Използвани източници [1] и [2]

II - Анализ на целевите процесорни архитектури за които е предназначена библиотеката.

Както стана ясно от I -ва глава, библиотеката е предназначена за микроконтролерите Atmega 328P и RP2040. RP2040 е ARM RISC -базиран. Atmega 328P е Atmel-RISC базиран. С развитието на едноплатковите компютри RISC-базирани устройства ще увеличават своя дял.

Анализ на ARM архитектурата

ARM архитектурата разполага с общо 32 регистъра. Има регистри с общо и специално предназначение.

Примери за регистри със общо предназначение са:

- r0
- r1
- r2

Примери за регистри със специално предназначение са:

- r13 -> Stack pointer
- r14 -> Link Register
- r15 -> Program Counter

r14 съдържа адреса на следващата инструкция след branch инструкцията.

r15 може да се използва като указател към следващата процесорна инструкция която трябва да бъде изпълнена.

ARM-базираният процесор поддържа следните видове инструкции:

- аритметично-логически операции
- операции за разклоняване на потока branch
- multiply операции

Пример за аритметична операция на GNU Assembler:

```
.text
.global main
.func main
main:
mov r0, #7
mov r1, #4
sub r2,r0,r1
bx lr
```

Пример за разклоняване на потока на програма на GNU Assembler:

```
.text
.global main
.func main
main:
mov r0, #7
mov r1, #4
cmp r0, r1
beq eql
bne noteq1
eql:
mov r0,#1
b end
noteq1:
mov r0,#0
b end
end:
bx lr
```

Пример за аритметична операция на GNU Assembler:

```
.text
.global main
.func main
main:
mov r0,#5
mov r1, #6
mul r2,r0,r1
bx lr
```

Пример за побитова операция на GNU Assembler:

```
.text
.global main
.func main
main:
mov r0, #1
mov r1, #0
mov r2, r0 & r1
bx lr
```

Поддържани типове данни

Всеки ARM-базиран процесор поддържа следните типове данни:

- Byte -> 8 bit
- Halfword -> 16 bit
- Word -> 32 bit

Регистри за запис и зареждане

Регистрите за запис и зареждане (LDR) могат да послужат за запис на определена стойност (Byte, Halfword, Word) в даден регистър или регистри.

Използване на ldr

```
.data // секция за данните
.balign 4 // заделяне на байтове
myvar1: .word 4 // променлива от тип word
.text // секция за кода
.global main
.func main
main: // започване на main функцията
ldr r0, ptr // зареждане на адреса на ptr в регистър r0
ldr r0,[r0] // регистъра r0 сочи към адреса на r0
bx lr //изпълнение на резултата от main функцията
ptr: .word myvar // лейбъл за адреса на myvar
```

III - Дефиниране на изискванията към библиотеката

В резултат от анализа на ARM архитектурата направен във втора глава, и от развитието на едноплатковите компютри в момента, може да се каже, че статичната библиотека трябва да бъде налична за RISC-базирани устройства. Статичната библиотека трябва да поддържа микроконтролерите:

- Atmega 328P
- RP2040

За основната асемблерска част на библиотеката е необходимо да се използва асемблер който е съвместим с ARM RISC процесорната архитектура. Такъв асемблер е GNU Assembler-а. За него съм споменал още в Увода. Заради това, че процесорът на Raspberry Pi е ARM RISC-базиран, библиотеката може да бъде използвана и на този едноплатков компютър.

Асемблерът е част от GNU проекта, свободен за използване. Нужно е използването на свободен асемблер заради независимостта при разработване. Използването на свободен софтуер и свободния асемблер улеснява работата в екип при разрастване на проекта.

Библиотеката трябва да се състои от следните функции:

- функция за обработка на масив
- функция за обработка на указател

Причината функциите да са такива е, че масивите са най-близко до разбирането за памет а указателите са връзката между С и Assembler.

Логика на кода на библиотеката

Както стана ясно в началото на тази глава, статичната библиотека ще поддържа микроконтролерите:

- Atmega 328P
- RP2040

Ще се състои от 2 асемблер-ски функции:

- за работа с масив
- за работа с указател

Следва описание на логиката на библиотеката.

- 1. Функцията за работа с масив трябва да бъде изнесена в отделен файл -> arrayfunc.s. Функцията за работа с указател трябва да бъде изнесена в отделен файл -> pointerfunc.s.
- 2. Асемблерските файлове с разширение .s трябва да се компилират до обектни файлове с разширение .o чрез аs командата.
- 3. След това чрез аг командата се архивират вече получените обектни файлове в новата библиотека.
- 4. За визуално разбиране на логиката е нужно да се изготви схема.

Схема на компилацията на библиотеката

Фиг. 6 Фигура 6 показва схема на логиката на компилацията

Тестване на отделните функции на библиотеката

Компилиране на обектен файл за arrayfunc асемблерската функция чрез as as -g -mfpu=vfpv2 -o arrayfunc.o arrayfunc.s
Компилирания обектен файл се свежда до изпълним чрез gcc gcc arrayfunc.o -o arrayfunc
Изпълнение на крайния изпълним файл
./arrayfunc; echo \$?

Компилиране на обектен файл за pointerfunc асемблерската функция чрез as as -g -mfpu=vfpv2 -o pointerfunc.o pointerfunc.s Компилирания обектен файл се свежда до изпълним чрез gcc gcc pointerfunc.o -o pointerfunc Изпълнение на крайния изпълним файл ./pointerfunc ; echo \$?

Примерно компилиране на файловете за библиотеката и създаване на библиотеката

Компилиране на обектен файл за arrayfunc асемблерската функция as -g -mfpu=vfpv2 -o arrayfunc.o arrayfunc.s
Компилиране на обектен файл за pointerfunc асемблерската функция as -g -mfpu=vfpv2 -o pointerfunc.o pointerfunc.s

Създадени са обектните файлове които ще бъдат архивирани в статичната библиотеката

IV - Използвани софтуерни инструменти

За реализацията на проекта е избран сетът от инструменти GNU Tools. Причината за избора е, че всички инструменти са или с отворен лиценз като редактора Vim или са част от GNU Project.

Те са свободни мултиплатформени софтуери със терминален (не графичен) интерфейс, което позволява по-бърза работа. Налични са за повечето GNU/Linux дистрибуции както и за mac OS и MS Windows.

GCC (GNU Compiler Collection) е колекция от компилатори за Fortran, Ada, C,C++.

Използваните инструменти са:

- gcc
- make
- gdb
- avr-gcc
- avrdude
- binutils
- Vim
- ar

Gcc- GNU C Compiler е компилатор който може да се използва за C, C++, Assembler. Използва се за компилация на source кода до обектен файл и до краен изпълним файл. Подават се допълнителни параметри за компилацията.

Пример:

gcc -c -o example.o example.c //Компилиране до обектен файл

gcc example.o -o example //Компилиране до краен изпълним файл

./example //Изпълнение на изпълнимия файл

Make- GNU Make e build система за автоматизация. Използва се за автоматизиране на компилацията за C, C++ и Assembler програми. В Makefile се пишат целите и файловете, нужни за тяхното изпълнение. След това се пише командата която се изпълнява при дадената цел. Изключително полезна е при големи проекти.

Пример:

example.o: example.c

gcc -c -o example.o example.c //Компилиране до обектен файл без дебъг символи

example: example.o

gcc example.o -o example //Компилиране до краен изпълним файл

run: example

./example //Изпълнение на изпълнимия файл

GDB- GNU GDB е дебъгер за С и Assembler. Използва се след като програмата е компилирана със дебъг символи чрез параметъра -g. За да се проследи изпълнението на програмата е нужно да се използват breakpoints. Чрез командата гип започва изпълнението на програмата в дебъгера. Чрез командата пехt дебъгера преминава към следващия ред на програмата.

Пример:

gcc -c -g -o example.o example.c
gcc example.o -o example

След като е компилиран крайния файл се дебъгва чрез:

gdb ./example

breakpoint main

run

next

AVR-GCC е модифициран GCC компилатор, който компилира source файла до .hex файл, който да се качи на целевия микроконтролер.

AVRDUDE е програмата, чрез която .hex файла се качи на целевия микроконтролер.

BINUTILS съдържа свободния асемблер, който ще бъде използван за основната част на библиотеката, която е цел на настоящата дипломна работа.

Vim е терминален текстов редактор който може да се използва за всички програмни езици. Поддържа възможност за редактиране на огромни файлове. Поддържа функциите Undo, Redo с пълната история на файла. Разполага с различни режими на работа:

- Normal -> за навигация в текста
- Visual -> за операции върху текста (Cut,Copy,Paste)
- Insert -> за въвеждане
- Visual Block -> за операции върху множество редове
- Replace -> за замяна в текста

ar представлява архиватор, чрез който се създават статичните библиотеки

V - Кодиране на библиотеката

Целта на тази глава е да се изпълнят изискванията, описани в глава трета, като се използват софтуерните инструменти, описани в глава четвърта.

Функциите за библиотеката ще бъдат реализирани чрез GNU Assembler.

Изходен код на асемблерския файл arrayfunc.s

Изходен код на асемблерския файл pointerfunc.s

Автоматизиране на тестването на библиотеката чрез Makefile Тестване на arrayfunc

```
arrayfunc.o: arrayfunc.s

as -g -mfpu=vfpv2 -o arrayfunc.o arrayfunc.s

//Компилиране от асемблер до обектен файл

arrayfunc: arrayfunc.o

gcc arrayfunc.o -o arrayfunc //Компилиране до

краен изпълним файл

run: arrayfunc

./arrayfunc //Изпълнение на изпълнимия файл
```

Тестване на pointerfunc

Автоматизиране на построяването на библиотеката чрез Makefile

arrayfunc.o: arrayfunc.s

as -g -mfpu=vfpv2 -o arrayfunc.o arrayfunc.s

//Компилиране от асемблер на arrayfunc до обектен файл

pointerfunc.o: pointerfunc.s

as -g -mfpu=vfpv2 -o pointerfunc.o pointerfunc.s

//Компилиране от асемблер на pointerfunc до обектен файл

lib: arrayfunc.o pointerfunc.o

VI - Постигнати резултати. Бъдещо Развитие

Постигнати резултати

В темата на настоящата дипломна работа централно място заемат С и Асемблер и връзката между тях. Във Въведението бяха поставени 6 цели. Всяка глава представлява изпълнение на поставена преди това цел.

В първа глава бяха разгледани микроконтролерите за които е предназначена библиотеката и сравнение между тях, с цел по-доброто разбиране на Асемблера за тях. Във втора глава беше разгледана ARM архитектурата. В трета глава бяха поставени изискванията към библиотеката. В четвърта глава бяха разгледани софтуерните инструменти, използвани за реализацията на проекта. Свободните софтуерни инструменти гарантират по-голяма независимост за разработването на проекта и позволява бъдещо взаимодействие в екип. В пета глава беше разгледано кодирането на статична библиотека, включваща в себе си С част и основна асемблерска част.

Асемблерската част е представена в отделен файл. Той е компилиран до обектен файл и обектния файл заедно със С обектния файл са архивирани в статична библиотека чрез аг. При компилация на програма в която се използва библиотеката е необходимо да се посочи, че библиотеката която се използва не се намира в стандартната директория за библиотеките /usr/lib а в конкретната директория в която се прави компилацията.

Проектът е изцяло open-source заради по-доброто бъдещо развитие. С развитието на микроконтролерите за обучение като RP2040 паралелно се развиват и асемблерните езици на които могат да бъдат програмирани. Развиват се нови асемблери които могат да покрият множество устройства.

Hапример AVR Assembler, с който се покриват множество AVR- базирани устройства.

За свободните асемблери

Съвсем естествено е да се каже, че е най-естествено микроконтролерите да се програмират на С и Assembler. В момента open-source разработката става все попопулярна.

Заедно със развитието на open-source-а се развиват и възможностите за програмирането на микроконтролерите.

Проектът, цел на дипломната работа беше осъществен на GNU Assembler, който може да се използва на RISC-базирани устройства. Съществуват и други свободни асемблери като например AVR Assembler и асемблера предназначен за RISC-V процесорната архитектура.

Както стана ясно по-рано, ползата от използването на AVR Assembler e, че се покриват множество Atmel-базирани устройства като например:

- Atmega 328 P
- Attiny 85
- Attiny 13

Използването на AVR Assembler ще бъде една от възможностите за бъдещото развитие на проекта.

Участия с темата на дипломната работа

Използваните свободни асемблери в настоящата дипломна работа, станаха обект на участия в 2 технически събития.

Във връзка със събитие на Клуба по роботика на ТУ-Пловдив, подготвих и представих материал за алтернативните начини за програмирането на Atmega 328Р-Използването на свободните асемблери GNU Assembler и AVR Assembler. Направих демонстрация с използването на GNU Assembler на ARM RISC-базирания Raspberry Pi 4.

Във връзка с PlovdivConf представих същата тема в рамките на ограничено време

Възможности за бъдещо развитие

Съществуват няколко различни възможности за развитието на библиотеката и проекта:

- Адаптиране на библиотеката към AVR Assembler за използване на голям брой Atmel-базирани микроконтролери
- Адаптиране на библиотеката към RISC-V архитектурата за RISC-V базирани микроконтролери
- Добавяне на нови функции към библиотеката
- Проектиране на печатна платка (PCB) със RISC-V базиран микроконтролер и използване на библиотеката за тази платка

Използвани източници:

- Arduino Atmega 328P Datasheet
 RP2040 Datasheet
- 3.
- 4. Linux Man Pages