Any revealing of identification, appeal to evaluator and for equations written e.g. 42+8=50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

First/Second Semester B.E. Degree Examination, June/July 2014

Engineering Physics

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet.
- 3. Answer to objective type questions on sheets other than OMR will not be valued.
- 4. Physical constants: Velocity of light, $e = 3 \times 10^8$ m/s

Planck's constant, $h = 6.625 \times 10^{-34} J.S.$ Charge on electron, $e = 1.602 \times 10^{-19} C$ Mass of electron, $m = 9.1 \times 10^{-31} kg$ Avagadro number, $N_4 = 6.02 \times 10^{26} / k$ mole

Permittivity of vacuum, $\epsilon_{\theta} = 8.85 \times 10^{-12} F/m$ Boltzmann constant, $k = 1.38 \times 10^{-23} J/k$.

PART - A

1 a Choose the correct answers for the following:

(04 Marks)

- i) If an electron, proton, neutron and α particle have the same velocity, the particle which has the largest wavelength is
 - A) electron
- B) proton
- C) neutron
- D) α particle
- ii) The Compton shift for the back scattered photon is
 - A) $\frac{h}{m_0 e}$
- B) $\frac{2h}{m_0 e}$
- C) $\frac{h}{2m_0e}$
- D) $\frac{2h}{3m_{tt}}$
- iii) The photoelectric effect is observed only if the wavelength of light is
 - A) above threshold wavelength
- B) below threshold wavelength

C) zero

- D) equal to threshold wavelength
- iv) The law which failed to account for longer wavelength of blackbody radiation spectrum is
 - A) Wein's law

B) Rayleigh-Jean's law

C) Plank's law

- D) Maxwell's law
- b. Describe photoelectric effect along with Einstein's explanation.

(06 Marks)

- c. Describe Davisson and Germer experiment for confirmation of de-Broglie hypothesis.
- ed. Calculate the kinetic energy of an electron of wavelength 18 nm [h = 6.63×10^{-34} , $m_e = 9.11 \times 10^{-31}$ kg]. (03 Marks)
- 2 a. Choose the correct answers for the following:

(04 Marks)

- i) From the Heisenberg's uncertainty relation, $\Delta L.\Delta 0 \ge \frac{h}{4\pi}$, L refers to
 - A) length

B) linear displacement

C) angular displacement

- D) angular momentum
- ii) The first excited state energy of a particle of mass m in a box of width 'a' is given by
 - A) zero
- B) $\frac{h^2}{8ma^2}$
- C) $\frac{2h^2}{8ma^2}$
- D) $\frac{h^2}{2ma^2}$
- iii) Wave function associated with a material particle is
 - A) single valued
- B) finite
- C) continuous
- D) all of these
- iv) If the uncertainty in momentum is large, the uncertainty in energy is
 - A) small
- B) large
- C) zero
- D) independent,

		ii)	The ratio of Einstein's coefficients A and B is			
			A) $\frac{8\pi h \lambda^3}{c^3}$	$B) \frac{8\pi h^2 \lambda^3}{c^3}$	C) $\frac{8\pi h \gamma^3}{e^3}$	(D) $\frac{8\pi h y^3}{c^2}$
		iii)	Holography records A) only amplitude	3	B) only phase	
		N)	C) both amplitude:	and phase and diode laser is by		tude nor phase .
		ŕ	A) optical pumping	•	C) electric disch	arge D) none of these
	b. c. d.	Expl	lain the construction a lain the principle of he the ratio of populati	olography and mention	on its applications.	(07 Marks) (05 Marks) transition between them
			luces light of wave $1.38 \times 10^{-23} \text{ J/K}$].	elength $6493 \mathrm{\mathring{A}}$, ass	suming the ambient	t temperature as 27°C. (04 Marks)
6	a.	Cho	cladding, then the ra	ence of a ray is equal	to the critical angle	(04 Marks) at the interface of core an
			A) in the cladding		B) in the core	
		-4,	C) along the interface		D) in the buffer	1 0 11
		ii)	1.68 and 1.56 is			dex of core and cladding
	de	(iji		B) 0.0714 luctor in the vortex st ner effect and zero el		D) 0.9286
				sner effect and zero o	•	
			C) complete Meissn	er effect and non-zer	o electrical resistivity	<i>Y</i>
					ero electrical resistiv	
		(critical field		100	inductor is increased, the
	b.	Wha	A) increases t is attenuation? Expl	B) decreases ain the various mech		ant D) independent a attenuation takes place. (07 Marks)
	c.	Expl	ain type-I and type-II	superconductors.	,	(05 Marks)
	d.	The of its	numerical aperture o	f an optical fibre is 0 of the cladding is 1.		by air. Determine the RI ceptance angle when the (04 Marks)
47	a.	Cho	ose the correct answe	rs for the following:		(04 Marks)
		i)		nal lattice has unit ce	ll with sides	5.5;
			A) $a \neq b \neq c$, $\alpha \neq \beta$	≠ γ ≠ 90°	B) $a = b = c$, $\alpha =$	$=\beta=\gamma=90^{\circ}$
				$= 120^{\circ}, \ \gamma = 90^{\circ}$	D) $a = b \neq c$, $\alpha =$	$=\beta = 90^{\circ}, \ \gamma = 120^{\circ}$
		ii)	A plane intercepts	at a, $\frac{b}{2}$, 2c in a sum	ple cubic unit cell.	The miller indices of the
			plane are A) (2 1 4)	B) (2 4 1)	C) (421)	D) (1 2 4)
		iii)	The coordination nu A) 2	mber in face centere B) 6	d cubic cell is C) 8	D) 12

	b. с.	 iv) In the Bragg's equation, 2d sin θ = nλ, the angle θ is A) the angle between the incident beam and the diffracted X-ray beam. B) the angle between the incident beam and the normal to the diffraction planes C) the angle between the incident beam and the diffraction planes D) none of these. Define packing factor. Calculate the packing factor for sc, bcc and fcc structures. (07 Markstone the construction and working of a Bragg's X-ray spectrometer. (06 Markstone the following of leaves and leaves in a rabbit soil.)
	d.	Draw the following planes in a cubic unit cell: i) $(2\ 0\ 0)$ ii) $(\overline{2}\ 1\ 0)$ iii) $(1\ \overline{3}\ 2)$ (03 Marks
8	å.	Choose the correct answers for the following: i) Carbon nanotubes are made up of A) graphene B) mica sheet layers C) honey comb D) plastic
		ii) The state of matter around the nano-size is known as A) solid state B) liquid state C) plasma state D) mesoscopic state iii) The elastic behaviour of a liquid is characterized by its
		A) Young's modulus C) Bulk modulus iv) Ultrasonic waves are produced by A) electromagnetic induction B) Rigidity modulus D) Poisson's ratio B) electric tuning fork
	ъ. с.	C) piezo electric effect Write a note on fullerence. What are the applications of fullerences. Explain with principle, how the flaw in a solid can be detected by non-destroic to methor using ultrasonics. (08 Mark
