Hajee Mohammad Danesh Science and Technology University, Dinajpur

Department of Computer Science and Engineering

B. Sc. (Engineering) in Computer Science and Engineering

Semester Final (Online) Examination 2019(Jul-Dec)

Level 3, Semester II, Course Code: CSE 359, Credit: 3.0

Course Title: Compiler Design

Time: 1 hour 30 Minutes Total Marks: 90

[N.B. The figure in the right margin indicates the marks allocated for the respective question. The split answer of any question is not allowed.]

Section-A

Answer any **03(three)** from the following questions (1-4)

		Answer any $\underline{03(three)}$ from the following questions (1-4)	
1.	a)	Define compiler. Compare between compilation and interpretation.	2+5
1.	b)	Write the principles and qualities of a good compiler.	4+4
2.	a)	Define the terms: prefix, suffix, and substring.	3+4
	/	In a string of length <i>n</i> , how many of the following are there?	
		i. Prefixes ii. Suffixes iii. Proper Suffixes iv. Substrings	
	b)	Let $\Sigma = \{a,b\}$. Then explain the meaning of the following regular expressions:	8
		i. $(a b)^*$ ii. $(a b)(a b)$ iii. $(a b)^+a$ iv. $a^*ba^*ba^*$	
3	a)	Define Context Free Grammar. When do we call grammar is ambiguous? Explain.	3+5
	b)	Construct the DAG for the input string	7
		$\mathbf{w} + \mathbf{w} * (\mathbf{x} - \mathbf{y}) + (\mathbf{x} - \mathbf{y}) * \mathbf{z}$ using value-number method.	
4.	a)	Determine FIRST and FOLLOW sets for the following grammar:	5+5
		$S \rightarrow aBd$	
		$B \to CD$ $C \to b \mid \epsilon$	
		$\mathbf{D} \to \mathbf{c} \mid \mathbf{c}$	
	b)	Make up the predictive parsing table by following any suitable algorithm and considering the	5
		grammar in the above question 4. a).	
		<u>Section-B</u>	
		Answer any <u>03(three)</u> from the following questions (5-8)	
5.	a)	Draw the graphical representation of a computer-language processing system using a compiler.	5
	b)	Show the translation phases of a compiler for the assignment statement:	10
		<pre>salary = basic + basic * forty_percent</pre>	
		where salary and basic are declared as float and sixty_percent is as int.	
6.	a)	Define token, pattern, and lexeme with example.	7
	b)	Determine the costs of the following instruction sequences:	4+4
		i. LD R0, b	
		ADD R0, R0, c	
		ST a, R0	
		ii. LD R0, c	
		LD R1, i	
		MUL R1, R1, 8	
7	`	BLTZ *R3, R0	7
7.	a)	Draw the transition graph and transition table for an NFA recognizing the language of regular expression $(m n)^*mn$.	7
	b)	Show the conversion of an NFA to a DFA with a suitable example.	8
0	-,		5
8.		Consider the following context-free grammar: $G \rightarrow Expr$	
		O / Lapi	

5+5

5

 $\overrightarrow{Expr} \rightarrow \overrightarrow{Expr} \ op \ Expr \ | \ number \ | \ id$

a) Give a left-most and a right-most derivation for the string.

b) Draw the parse tree for the string based on one of the derivations.

op \rightarrow + |-|*|/

and the string x+5/y