ELECTION GAMES WITH VERIFIABLE INFORMATION

BY

MARIA (MASHA) TITOVA

UC SAN DIEGO

August 7, 2020

INTRODUCTION

- ▶ election games with verifiable information
 - privately informed sender
 - wants his proposal approved by a collective vote
 - sends verifiable messages to receivers
 - group of uninformed receivers, each choosing between
 - · rejecting sender's proposal
 - · approving it
- wide variety of applications
 - politician challenges status quo, wants to get elected by voters
 - prosecutor convinces jury to convict defendant
 - CEO convinces board of directors to approve bonuses to executives
 - ♦ job market candidate convinces committee members to offer him a job

OUTLINE AND PREVIEW OF RESULTS

- election games with verifiable information
 - ♦ recommendation principle: can restrict attention to direct equilibria
 - sender recommends action
 - ranking of equilibrium outcomes (for sender / for receivers):
 - (worst / best): equivalent to full disclosure
 - (best / worst): equivalent to Bayesian Persuasion

APPLICATION

- ▶ targeted advertising in (a spatial model of) elections
 - targeting allows politician to swing elections that he would lose otherwise

MODEL SETUP

$$\Omega = [0, 1]^K - \underline{\text{state space}}$$

$$\mathbb{V} - \text{finite set of receivers}$$

▶ sender

- \diamond privately observes state of the world $\omega \in \Omega$
 - ω drawn from common prior p > 0 over Ω
- ♦ receives 1 if his proposal is approved, 0 otherwise (state-independent)
- \diamond sends verifiable message $m_v \in \mathbb{M}$ to each receiver $v \in \mathbb{V}$:
 - message space $\mathbb{M} := 2^{|\Omega|}$
 - $\omega \in m_v$ no lies of commission

MODEL SETUP: RECEIVERS

 $\text{consider receiver } v \in \mathbb{V}$ $\delta(v,\omega) \text{ is her } \underline{\text{net payoff of approval}}$

- ightharpoonup under complete information (receiver knows ω)
 - \diamond receiver v approves in state ω only if $\delta(v,\omega) \geq 0$
 - approval set

$$\mathcal{A}_v := \left\{ \omega \in \Omega \mid \delta(v, \omega) \ge 0 \right\}$$

- \blacktriangleright under incomplete information (receiver has belief q about ω)
 - \diamond receiver v approves under belief q only if $\mathbb{E}_q[\delta(v,\omega)] \geq 0$
 - set of approval beliefs

$$\mathcal{B}_{v} := \left\{ q \in \Delta\Omega \mid \mathbb{E}_{q} \left[\delta(v, \omega) \right] \ge 0 \right\}$$

SOCIAL CHOICE FUNCTION

 \triangleright outcome of election game is decided by social choice function $f(\cdot)$:

satisfying unanimous agreement:

$$f(\varnothing) = 0$$
 $f(V) = 1$

- examples include
 - \diamond dictatorship: $f(V) = 1 \iff v^{dict} \in V$
 - \diamond simple majority: $f(V) = 1 \iff |V|/|V| > \frac{1}{2}$
 - \diamond unanimity: $f(V) = 1 \iff V = \mathbb{V}$

EQUILIBRIUM

- ▶ Perfect Bayesian Equilibrium (σ, α, q)
 - $\diamond \ \sigma(\{m_v\} \mid \omega)$ prob. sender sends message collection $\{m_v\}, \ \forall \omega \in \Omega$
 - maximizes chances of approval under $f(\cdot)$ in every state ω
 - $\diamond \alpha := \{\alpha_v\}_{v \in \mathbb{V}}$ receivers' voting rules
 - approve $(\alpha_v(m_v) = 1)$ if and only if $q_v(\cdot \mid m_v) \in \mathcal{B}_v, \forall m_v \in \mathbb{M}$
 - $\diamond\ q := \{q_v\}_{v \in \mathbb{V}}$ receivers' posterior beliefs
 - $q_v(\cdot \mid m_v)$ Bayes-rational on equilibrium path

ONE RECEIVER: DIRECT IMPLEMENTATION

▶ direct implementation with

- \diamond set of winning states $\mathcal{W} \subseteq \Omega$
- \diamond set of losing states $\mathcal{L} = \Omega \setminus \mathcal{W}$

state	sender's message	receiver's belief	receiver's vote
$\omega \in \mathcal{W}$	\mathcal{W}	$p(\cdot \mid \mathcal{W})$	approve
$\omega \in \mathcal{L}$	\mathcal{L}	$p(\cdot \mid \mathcal{L})$	reject

where $p(\omega \mid W) := \frac{p(\omega)}{\int\limits_{W}^{D} p(\omega')d\omega'}$, $\forall W \subseteq \Omega$ is conditional probability

ONE RECEIVER: RECOMMENDATION PRINCIPLE

direct equilibrium:

- ▶ sender recommends action
 - \diamond (approval): winning message \mathcal{W} in winning states $\omega \in \mathcal{W}$
 - \diamond (rejection): losing message \mathcal{L} in losing states $\omega \in \mathcal{L}$
- receiver obediently follows recommendation

Theorem: Recommendation Principle

- ▶ direct implementation with set of winning states $W \subseteq \Omega$ constitutes <u>direct</u> equilibrium if and only if
 - $\diamond A \subseteq \mathcal{W}$, and
 - \diamond (obedience) constraint holds: $p(\cdot \mid \mathcal{W}) \in \mathcal{B}$
- every equilibrium is outcome-equivalent to *some* direct equilibrium

ONE RECEIVER: FULL EQUILIBRIUM SET

- ▶ recommendation principle allows to restrict attention to direct equilibria
 - \diamond characterized by set of winning states $\mathcal{W} \supset \mathcal{A}$ satisfying (obedience)
- ▶ rank equilibria by sender's ex-ante utility
 - same as his ex-ante odds of approval
 - \diamond equals P(W)

where
$$P(W) := \int\limits_{W} p(\omega) d\omega$$
, $\forall W \subseteq \Omega$ is prior measure

ONE RECEIVER: SENDER-WORST EQUILIBRIUM

▶ sender's odds of approval are lowest across all equilibria

$$\diamond \mathcal{W} = \mathcal{A}$$

- ▶ receiver makes fully informed choice
- ▶ outcome-equivalent to full disclosure
 - (Grossman, 1981), (Milgrom, 1981), (Milgrom and Roberts, 1986), reviewed by (Milgrom, 2008)

ONE RECEIVER: SENDER-PREFERRED EQUILIBRIUM

▶ maximize sender's odds of approval across all equilibria

$$\max_{\mathcal{W}} P(\mathcal{W}) \ \text{ subject to } \ p(\cdot \mid \mathcal{W}) \in \mathcal{B}$$

- \diamond largest (in terms of ex-ante utility) set of winning states \mathcal{W}^*
- \diamond (obedience) binds: $\mathbb{E}_{p(\cdot \mid \mathcal{W}^*)}[\delta(v,\omega)] = 0$
 - receiver is indifferent when she approves

Theorem

Solutions to problems of

- ▶ finding sender-preferred equilibrium in verifiable information game
- \blacktriangleright solving sender's problem in bayesian-persuasion (BP) game

are equivalent

VERIFIABLE INFORMATION VS. BAYESIAN PERSUASION

- ▶ verifiable information (this paper):
 - sender learns $\omega \to {\rm sender}$ chooses message $\to~{\rm receiver}$ observes message
- ▶ Bayesian Persuasion (Kamenica and Gentzkow, 2011):

sender chooses and commits to experiment
$$\{\pi(\cdot \mid \omega)\}_{\omega \in \Omega}$$
 over S

 $\rightarrow \omega$ is realized

 \rightarrow receiver observes signal $\pi(\cdot \mid \omega)$ and realization $s \in S$

same outcome \Longrightarrow

SENDER DOES NOT BENEFIT FROM HAVING EX-ANTE COMMITMENT POWER!

MULTIPLE RECEIVERS

- \blacktriangleright direct implementation: collection of convincing messages $\{W_v\}$ such that
 - \diamond message \mathcal{W}_v is recommendation to approve (sent to receiver v)
- ▶ recommendation principle: $\{W_v\}$ constitutes <u>direct equilibrium</u> if and only if for every receiver
 - $\diamond \mathcal{A}_v \subseteq \mathcal{W}_v$
 - \diamond (obedience) constraint holds: $p(\cdot \mid \mathcal{W}_v) \in \mathcal{B}_v$

every equilibrium is outcome-equivalent to some direct equilibrium

- ▶ ranking of equilibrium outcomes (for sender / for receivers):
 - ♦ (worst / best): equivalent to full disclosure
 - ♦ (best / worst): equivalent to Bayesian Persuasion

MOTIVATION

- ► Targeted Advertising was an important part of winning campaigns in recent U.S. Presidential Elections:
 - ♦ 2016 Trump: used voter data from Cambridge Analytica
 - ♦ 2008, 2012 Obama: the first social media campaign
 - ♦ 2000, 2004 Bush: targeting voters by mail

can targeted advertising swing elections? \rightarrow Yes

PUBLIC DISCLOSURE VS. TARGETED ADVERTISING

- ▶ assume spatial model (Downs, 1957):
 - \diamond policy space $\Omega = [0, 1]$
 - $\diamond \omega^0 \in (0,1)$ is status quo policy (fixed)
 - $\diamond \ \mathbb{V} \subset \Omega, \ v \in \mathbb{V}$ is voter's ideal policy
 - approval set becomes $A_v = \{ \omega \in \Omega \text{ s.t. } |v \omega| \le |v \omega^0| \}$
- ▶ compare Public Disclosure (**PD**) to Targeted Advertising (**TA**)
 - ♦ **PD**: public message (e.g. debate, tweeting)
 - $common\ prior\ +\ common\ message\ o\ common\ posterior$
 - ♦ **TA**: private messages (e.g. through Facebook)

PUBLIC DISCLOSURE

▶ observation #1: some voters are incompatible

if
$$v_L < \omega_0 < v_R$$
, then $\mathcal{A}_L \cap \mathcal{A}_R = \emptyset$ and $\mathcal{B}_L \cap \mathcal{B}_R = \emptyset$

- ▶ observation #2: some elections are unwinnable
 - ♦ if incompatible voters are pivotal then sender loses almost surely
 - \diamond example: $\mathbb{V} = \{v_L, v_R\}$, unanimity rule

TARGETED ADVERTISING

▶ observation #3: every unwinnable election has two incompatible voters $v_L < \omega^0$ (left pivot) and $\omega^0 < v_R$ (right pivot), convincing whom is sufficient to win under any $f(\cdot)$

Theorem: Targeting in Unwinnable Elections

In sender-preferred equilibrium of unwinnable election with left pivot $v_L < \omega^0$ and right pivot $\omega^0 < v_R$

▶ set of winning states is [a, b] with $a < \omega^0 < b$

TARGETED ADVERTISING: ILLUSTRATION

- $ightharpoonup \mathbb{V} = \{v_L, v_R\}$, unanimity rule
 - \diamond must convince v_L and v_R who are incompatible \Longrightarrow unwinnable under PD

CONCLUSION

- ▶ equilibrium outcome set of election games with verifiable information
 - sender-worst: full disclosure / full unraveling
 - sender-preferred: Bayesian Persuasion
 - sender does not benefit from ex-ante commitment
 - need not assume commitment, may assumer verifiable messaging
- ▶ application: targeted advertising in (a spatial model of) elections
 - ♦ targeting allows politician to swing elections that he would lose otherwise
 - only if his policy is sufficiently close to the status quo
 - policy implications: targeting leads to outcomes different from complete information

