LaTeX grammer

Operators

1. Binary Operator

LaTeX grammer	Symbol	Explanation
\cdot	•	inner product
\times	×	cross product
\pm	土	plus minus
\circ	0	circle
\circledast	*	convolution
\odot	•	
\oplus	0	direct sum
\otimes	\otimes	tensor, product measure spaces

2. Calculus

LaTeX grammer	Symbol	Explanation
\partial	∂	partial derivative
\nabla	∇	nabla
\Delta	Δ	capital delta
\int	\int	integral

Relation Symbols

LaTeX grammer	Symbol	Explanation
\neq	#	not equal
\geq	<u>></u>	greater than or equal to
\leq	<u> </u>	less than or equal to
\sim	~	similiar
\simeq	\simeq	asymptotic
\approx	\approx	approximate
\propto	\propto	proportional

Arrows

LaTeX grammer	Symbol	Explanation
\rightarrow	\rightarrow	right arrow
\leftarrow		left arrow
\uparrow	↑	up arrow
\downarrow	+	down arrow
\leftrightarrow	\leftrightarrow	bidirectional arrow
\Leftrightarrow	\Leftrightarrow	bidirectional thick arrow

Set Operations

LaTeX grammer	Symbol	Explanation
\cup	U	union
\cap	\cap	intersection
\in	€	element
\notin	∉	not element
\ni	∋	element
\subset	_	subset
\subseteq	\subseteq	subset
\supset)	subset
\supseteq	⊇	subset

Complements

LaTeX grammer	Symbol	Explanation
{}	$\frac{a}{b}$	always shows fraction in display mode
{}	$\frac{a}{b}$	always shows fraction in type mode

Spacing

```
$local minimum$ (no spacing)
$local\, minimum$ (one spacing)
$local\; minimum$ (two spacing)
$local\quad minimum$ (four spacing)
```

localminimum (no spacing)
local minimum (one spacing)

```
local minimum (two spacing)
local minimum (four spacing)
```

Fractions

\over

Things at the left of **\over** will be the numerator, and right will be the denominator.

```
s^2+2s+s over s+\sqrt s+1$ s^2+2s+s s+\sqrt{s}+1
```

\frac

Things at the first braket will be the numerator, and second will be the denominator.

```
\frac{1+s}{s(s+2)}
```

Matrices

We use matrix symbol, using & for columns and \\ for rows.

```
$$
\begin{gather}
\begin{matrix}1&2\\3&4\\ \end{matrix}\\
\begin{pmatrix}1&2\\3&4\\ \end{pmatrix}\\
\begin{bmatrix}1&2\\3&4\\ \end{bmatrix}\\
\begin{Bmatrix}1&2\\3&4\\ \end{Bmatrix}\\
\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}\\
\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}\\
\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}\\
\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}\\
\end{gather}
$$
```

 $\begin{array}{ccc}
3 & 4 \\
\begin{pmatrix} 1 & 2 \\
3 & 4 \end{pmatrix} \\
\begin{bmatrix} 1 & 2 \\
3 & 4 \end{bmatrix} \\
\begin{cases} 1 & 2 \\
3 & 4 \end{bmatrix} \\
\begin{vmatrix} 1 & 2 \\
3 & 4 \end{vmatrix} \\
\begin{vmatrix} 1 & 2 \\
3 & 4 \end{vmatrix} \\
\begin{vmatrix} 1 & 2 \\
3 & 4 \end{vmatrix}$

1 2

Norms

We use \vert and \left\lvert, \right\rvert for norm characters.

\$\$\vert x \vert\$\$
\$\$\left\lvert \frac{s^2+1}{s^3+2s^2+3s+1} \right\rvert\$\$

$$|x|$$
 $\left|rac{s^2+1}{s^3+2s^2+3s+1}
ight|$

Cases (piecewise functions)

We use cases symbol.

\$\$\vert x\vert=
\begin{cases}
-x,\;if\;x<0\\
+x,\;if\;x\geq0
\end{cases}\$\$</pre>

$$|x| = egin{cases} -x, \ if \ x < 0 \ +x, \ if \ x \geq 0 \end{cases}$$

Font Type

\$\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\$
ABCDEFGHIJKLMNOPQRSTUVWXYZ}\$
ABCDEFGHIJKLMNOPQRSTUVWXYZ}\$

How to align about certain character

We use aligned symbol for it. Things will be aligned about &character.

\$\$
\begin{aligned}
f(x)&=ax^2 + bx + c\\
g(x)&=ax^4
\end{aligned}
\$\$

$$f(x) = ax^2 + bx + c$$

 $g(x) = ax^4$

How to use Roman font

We use $\text{textrm}\{\}$. We can use $\{\text{rm}\}$, too.

 $\$ \displaystyle\int f\, d\mu =\sup\{\mathcal L(f, P) : P\textrm{ is an }\mathcal S \textrm{-partition of X}\}.\$\$

$$\int f\,d\mu=\sup\{\mathcal{L}(f,P):P\text{ is an }\mathcal{S}\text{-partition of X}\}.$$

\$\$
\dfrac{{\rm d}y}{{\rm d}x}
\$\$

 $\frac{\mathrm{d}y}{\mathrm{d}x}$