Robustness in NLP

-- A short survey

Presenter: Shilin HE

2018-11-27

Motivation

Robustness of Neural Networks in Computer Vision is a hot topic!

People from AI/Security/SE all rush into this area, e.g., NIPS, ICML, ICLR, CVPR, CCS, IEEE S&P, NDSS, SOSP, ICSE, FSE

Robustness are not well studied in NLP

♦ Motivating Example

Palestinian man is arrested by police after posting 'Good morning' in Arabic on Facebook which was wrongly translated as 'attack them'

- · Man uploaded the picture of himself leaning against the bulldozer in West Bank
- . In the caption on Facebook, he wrote an Arabic term meaning 'good morning'
- . A malfunction translated it to 'attack them' in Hebrew or 'hurt them' in English
- · Police believed he was plotting an attack, so they swooped in and arrested him

By GARETH DAVIES FOR MAILONLINE

PUBLISHED: 11:03 GMT, 22 October 2017 | UPDATED: 11:35 GMT, 25 October 2017

Israeli police mistakenly arrested a **Palestinian** who posted 'good morning' in Arabic online which **Facebook** wrongly translated as 'attack them'.

The man uploaded a picture of himself leaning against a bulldozer at the **Israeli** settlement of Beitar Ilit, where he works, in the occupied West Bank.

Facebook 翻譯錯誤導致一名建築工人被抓,機器翻譯到底有多脆弱?

2017/11/20 - 【合作媒體】雷鋒網 - 機器翻譯

Motivation

Robustness of Neural Networks in NLP is not well-studied

- > Semantic Preserving is **not clear**, i.e., paraphrase?
- > Discrete Representation fails gradient based methods
- Difficulty of Generation Task

Attack

Modify a given input or **Generate** from noise i.e., Optimisation Methods, Sensitive Features, Geometric Transformations

Non-targeted random, miss-classification or **Targeted** miss-classification

white-box, grey-box and black-box attacks

Defense

Reactive defences

Detection of adversarial examples and input transformations (domain-specific)

Obfuscation defences

e.g., Obfuscate sensitive features

Proactive defences

Build natively robust models, e.g., adversarial training

Napers so far

[EMNLP17] Adversarial examples for evaluating reading comprehension systems [Arxiv18] Robust Neural Machine Translation with Joint Textual and Phonetic Embedding [Arxiv18] Improving the Robustness of Speech Translation [ICLR18] Synthetic and natural noise both break neural machine translation [EMNLP18] Generating natural language adversarial examples [ICLR18 Reject] Adversarial Examples for Natural Language Classification Problems [ACL18] Towards Robust Neural Machine Translation [NAACL18] Adversarial Example Generation with Syntactically Controlled Paraphrase Networks [ACL18] HotFlip: White-Box Adversarial Examples for Text Classification [Short] [Arxiv18] Detecting egregious responses in neural sequence-to-sequence models [ACL18] Did the model understand the question [ACL18] Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates [ACL18] Trick Me If You Can: Adversarial Writing of Trivia Challenge Questions [Student Research Workshop] [IJCAI18] Interpretable Adversarial Perturbation in Input Embedding Space for Text [COLING18] On Adversarial Examples for Character-Level Neural Machine Translation [EMNLP18] SwitchOut: an Efficient Data Augmentation Algorithm for Neural Machine Translation [ACL18] Know what you don't know: understanding questions for SQuAD [CONLL18] Adversarial Over-Sensitivity and Over-Stability Strategies for Dialogue Models [ACL17] adversarial learning for neural dialogue generation [ICLR17] Adversarial Training Methods for Semi-Supervised Text Classification [Arxiv17] Towards Crafting Text Adversarial Samples

[MILCOM16] Crafting adversarial input sequences for recurrent neural networks

Summary

- ➤ Most methods are black-box
- > Heuristic-based rules dominate this area, very simple
- > Attack and Defences are half-half, I think defence is more
- > Most defence methods are adversarial training
- Most methods show that adversarial training does not help on clean test data
- More difficulties in NLP than CV due to DISCRETE

↑Translation Related

[ICLR18] Synthetic and natural noise both break neural machine translation

[Arxiv18] Robust Neural Machine Translation with Joint Textual and Phonetic Embedding

[Arxiv18] Improving the Robustness of Speech Translation

[ACL18] Towards Robust Neural Machine Translation

[COLING18] On Adversarial Examples for Character-Level Neural Machine Translation

[EMNLP18] SwitchOut: an Efficient Data Augmentation Algorithm for Neural Machine Translation

Approach

[ICLR18] Synthetic and natural noise both break neural machine translation

Yonatan Belinkov*

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology belinkov@mit.edu

Yonatan Bisk*

Paul G. Allen School of Computer Science & Engineering, University of Washington ybisk@cs.washington.edu

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae."

Google Translate (German -> English)

"After being stubbornly defiant, it is clear to kenie Rlloe in which Reiehnfogle is advancing the boulders in a Wrot that is integral to Sahce, as the utterance and the lukewarm boorstbaen stmimt."

ICLR18

Figure 1: Degradation of Nematus (Sennrich et al., 2017) and char2char (Lee et al., 2017) performance as noise increases.

Char-based NMT, propose two types of black-box attack methods:

- 1. Natural Noise
- 2. Synthetic Noise

♦ICLR18

Natural Noise --- naturally occurring errors (typos, misspellings, etc.)

Wiki edit history, replace words in source sentences

- Synthetic Noise ---- Swap, Middle Random, Fully Random, and Keyboard Typo
 - 1. Swap

Swap two letters except the first and last letters (noise -> nosie)

2. Middle Random

Randomize all the letters in a word except for the first and last (noise→nisoe)

3. Fully Random

Completely randomized words, does not consider first/last letter ($noise \rightarrow iones$)

4. Keyboard Typo

Replace one letter in each word with an adjacent key ($noise \rightarrow noide$).

Table 3: The effect of Natural (Nat) and synthetic noise (Swap swap, Middle Random Mid, Fully Random Rand, and Keyboard Typo Key) on models trained on clean (Vanilla) texts.

		Synthetic					
		Vanilla	Swap	Mid	Rand	Key	Nat
French	charCNN	42.54	10.52	9.71	1.71	8.26	17.42
German	charCNN char2char Nematus	34.79 29.97 34.22	5.68	8.37 5.46 5.16		6.40 2.96 0.61	14.02 12.68 10.68
Czech	charCNN char2char Nematus	25.99 25.71 29.65	6.56 3.90 2.94	6.67 4.24 4.09		7.13 2.88 1.41	10.20 11.42 11.88

Can we use spell checkers to fix the problem?

Table 5: Google Translate's performance with natural errors and the gains from using spell checking.

	French			German	l		Czech	
Vanilla	Nat	Spelling	Vanilla	Nat	Spelling	Vanilla	Nat	Spelling
43.3	16.7	21.4	38.7	18.6	25.0	26.5	12.3	11.2

natural noise cannot be easily addressed by existing tools

****ICLR18

Structure Invariant Representation

take the average character embedding as a word representation for character scrambling (Swap, Mid, and Rand)

meanChar:

- 1. generate a word representation by averaging character embeddings
- 2. proceeds with a word-level encoder similar to the charCNN model.

Black-box Adversarial Training

replace the original training set with a noisy training set, exactly same size

Table 6: Results of meanChar models trained and tested on different noise conditions: Scrambled (Scr), Keyboard Typo (Key), and Natural (Nat).

	French			German			Czech		
Test	Scr	Key	Nat	Scr	Key	Nat	Scr	Key	Nat
Vanilla	34.26	4.27	12.58	27.53	3.34	9.41	3.73	2.06	3.25
Key	31.88	29.75	13.16	10.04	8.84	4.45	2.03	1.9	1.42
Nat	26.94	5.30	27.49	15.65	3.06	26.26	1.66	1.52	1.58
Rand + Key	13.60	11.09	6.12	26.59	22.41	11.07	9.97	7.48	4.21
Rand + Nat	28.28	5.10	20.40	13.87	3.73	12.74	4.89	2.82	3.42
Key + Nat	31.30	26.94	24.24	6.62	5.41	5.75	1.62	1.68	1.58
Rand + Key + Nat	3.10	3.28	2.76	8.02	5.79	6.36	1.73	1.74	1.66

Table	e 7: Results of charCN Test Train	N models Vanilla	Swap	nd tested Mid	on differ Rand	ent noise Key	condition Nat	Ave
II.	Swap	39.01	42.56	33.64	2.72	4.85	16.43	23.20
	Mid	42.46	42.19	42.17	3.36	6.20	18.22	25.77
French	Rand	39.53	39.46	39.13	39.73	3.11	16.63	29.60
Fielicii	Key	38.49	10.56	8.69	1.08	38.88	16.86	19.10
	Nat	28.77	12.45	8.39	1.03	6.61	36.00	15.54
	Rand + Key	39.23	38.85	38.89	39.13	38.22	18.71	35.51
	Rand + Nat	36.86	38.95	38.44	38.63	6.67	33.89	32.24
	Key + Nat	38.47	17.33	10.54	1.52	38.62	34.66	23.52
	Rand + Key + Nat	36.97	36.92	36.65	36.64	35.25	31.77	35.70

♦ICLR18

One important conclusion:

Training on noisy data does not necessarily improve the accuracy on clean test data

One Question:

Why not append noisy training data to the original training set?

Robust Neural Machine Translation with Joint Textual and Phonetic Embedding

Hairong Liu¹ Mingbo Ma^{1,3} Liang Huang^{1,3} Hao Xiong² Zhongjun He²

¹Baidu Research, Sunnyvale, CA, USA ²Baidu, Inc., Beijing, China ³Oregon State University, Corvallis, OR, USA

{liuhairong, mingboma, lianghuang, xionghao05, hezhongjun}@baidu.com

Oct 15, 2018

Improving the Robustness of Speech Translation

Xiang Li^{1,2*}, Haiyang Xue^{1,2,*†}, Wei Chen³, Yang Liu⁴, Yang Feng^{1,2}, Qun Liu⁵

¹Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences

³Voice Interaction Technology Center, Sogou Inc., Beijing

⁴Department of Computer Science and Technology, Tsinghua University, Beijing ⁵Huawei Noah's Ark Lab, Huawei Technologies, Hong Kong

lixiang@ict.ac.cn, xuehaiyang@ict.ac.cn, chenweibj8871@sogou-inc.com, liuyang2011@tsinghua.edu.cn, fengyang@ict.ac.cn, qun.liu@huawei.com

Nov 2, 2018

Clean Input Output of Transformer	目前已发现 <u>有</u> 109人死亡, 另有57人获救 at present, 109 people have been found dead and 57 have been rescued
Noisy Input	目前已发现又109人死亡,另有57人获救
Output of Transformer	the hpv has been found dead so far and 57 have been saved
Output of Our Method	so far, 109 people have been found dead and 57 others have been rescued

Speech	这份礼物饱含一份深情
ASR	这份礼物饱含一份申请
Reference	This gift is full of affection
NMT	This gift contains an application

Baidu's work:

- 1. Embedding both words and pronunciation units
- 2. Average all I pronunciation units
- 3. Weighted sum both textual Phonetic

Data Augmentation:

Replace words in source sentences by homophones

Models	NIST06 (Dev Set)	NIST02	NIST03	NIST04	NIST08
Transformer-base	45.97	47.40	46.01	47.25	41.71
$\beta = 0.2$	47.14	48.63	47.82	48.63	43.77
$\beta = 0.4$	48.56	49.41	48.73	50.53	45.16
$\beta = 0.6$	48.32	48.83	48.82	49.86	44.17
$\beta = 0.8$	48.15	49.42	49.44	49.98	44.86
$\beta = 0.95$	48.91	49.33	50.46	50.57	44.83
$\beta = 1.0$	45.6	47.04	46.42	47.65	40.27

Table 2: Translation results on NIST Mandarin-English test sets

Do not need so many textual words?

Models	Before Augmentation			After Augmentation		
	NIST06	NoisySet1	NoisySet2	NIST06	NoisySet1	NoisySet2
Transformer-base	45.97	41.33	37.11	43.94	42.61	41.33
$\beta = 0.95$	48.91	45.71	42.66	48.06	47.37	46.47

Sogou's work: 4 types of noises

- 1. Placeholder-based Substitution
- 2. Uniform Distribution-based Substitution
- 3. Frequency-based Substitution
- 4. Homophone-based Substitution

Similar conclusions

Methods	Noise Example						
Placeholder	语		翻	译			
Uniform	语	饕	翻	译			
Frequency	语	好	翻	译			
Homophone	语	yin 因	翻	译			

****Insights

Hard code: too many manual efforts, very heuristic

Recall the challenges:

- > Semantic Preserving is **not clear,** i.e., paraphrase?
- Discrete Representation fails gradient based methods
- Difficulty of Generation Task

More model-based methods will be introduced next week!

