

Einfluss der Teststrategien auf die Daten für die Pandemiesimulation

Bioinformatik

Sven Sendke

10.03.2025

Duale Hochschule Baden-Württemberg Stuttgart

Gliederung

- 1. Allgemeine Einführung
- 2. Teststrategien
- 3. Bezug zum Paper
- 4. Wissenschaftliche Beispiele
- 5. Implementierung
- 6. Schluss
- 7. Fragen

Allgemeine Einführung

1 Covid-19

- Erstes Covid-19 Jahr → Lockdown
- ullet ABER Langfristig schwer zu halten o wirtschaftliche und psychische Gründe
- Vertrauen sinkt, Fake News, Verweigerung oder Zögern beim Impfen
- → **Lösung**: Simulation verschiedener Strategien zur Ermittlung optimaler Parameter

Diese Präsentation konzentriert sich auf die Teststrategien

Teststrategien

2.1 Testarten

- PCR-Tests
- Serologische Tests (Antikörpertests)
- Antigentests (Schnelltests)
- Selbsttests
- → Alle verschiedene Qualitätslevel

2.2 Qualitätslevel

Quelle: https://iq.opengenus.org

2.3 Sensitivität und Spezifität

- Sensitivität: Wahrscheinlichkeit, dass ein Test bei kranken Personen positiv ist
 - 100% Sensitivität → keine falschen Negativen
 - ullet Negatives Ergebnis o absolute Sicherheit, dass die Person gesund ist
- **Spezifität:** Wahrscheinlichkeit, dass ein Test bei gesunden Personen negativ ist
 - 100% Spezifität \rightarrow keine falschen Positiven
 - ullet Positives Ergebnis o absolute Sicherheit, dass die Person krank ist
- Kein perfekter Test:
 - Hohe Sensitivität → Infizierte werden erkannt und isoliert
 - ullet Hohe Spezifität o Gesunde werden nicht unnötig isoliert

2.4 Teststrategien

- Wer soll priorisiert getestet werden?
- Vergleich von Teststrategien:
 - Zufällige Tests
 - Testen von symptomatischen Personen
 - Testen von Hochrisikogruppen
 - Testen von Personen mit vielen Kontakten

Bezug zum Paper

3.1 Relevanz des Themas

- Paper behandelt die Simulation von (Impf- und) Teststrategien für Pandemien
- Ziel: Analyse der Auswirkungen verschiedener Testmethoden auf die Eindämmung der Pandemie
- Warum relevant?
 - Optimierung von Teststrategien kann Ausbreitung minimieren
 - Hilft politischen Entscheidungsträgern bei der Planung
 - Verbindung zu realen Szenarien (z. B. COVID-19)
- Ziel dieser Präsentation → Simulationsergebnisse und deren Implikationen

3.2 Vorteile von Simulationen

- Vergleich von Strategien unter gleichen Bedingungen
- Exakt gleiche Szenarien mit veränderten Parametern
- Die tatsächliche Infektionskurve kann mit der geschätzten verglichen werden
- Unvorhergesehene Folgen von Maßnahmen können frühzeitig erkannt werden
- Ermöglicht die Optimierung von (Impf- und) Teststrategien, um effektive Maßnahmen abzuleiten

Wissenschaftliche Beispiele

4 Belege aus Forschung und Praxis DHBW Stuttgart

- Die Simulation der Pandemie: Studie über die Rolle von Computersimulationen bei der Bewältigung von Pandemien
- Quantifying the uncertainty of CovidSim: Untersuchung von Covid-Simulationen → Bewertung der Auswirkungen von Unsicherheiten auf die Modellergebnisse
- Praktische Anwendung: COVID-19-Strategien vieler Länder (z.B. Frankreich im Paper mehrfach erwähnt)

Implementierung

5.1 Agentenbasierte Simulation

- Implementierung in NetLogo
- Agentenbasierte Simulation: modelliert das Verhalten autonomer Agenten in einer Umgebung
- Parameter: Testverfügbarkeit,
 Startzeitpunkt, Zielgruppe
- ullet Sensitivität und Spezifität ightarrow 90%

Quelle: https://www.upwork.com

5.2 Praxisbeispiele

Aber nun genug von der Theorie...

https://nausikaa.net/wp-content/uploads/2022/10/virus1-screening-en.html

5.3 Erkenntnisse

- Wahl der Teststrategie beeinflusst die Wahrnehmung der Epidemie erheblich
- Zufällige Tests: liefern genauere Schätzungen, aber "verschwenden" viele Tests an nicht infizierte Personen
- Symptomatischen Personen: führt zu einer Überschätzung der Infektionszahlen
- Hochrisikogruppen oder Personen mit vielen
 Kontakten: kann effektiver sein, erzeugt aber Verzerrungen
- Früher Start der Testkampagne verbessert die Kontrolle der Epidemie erheblich

Schluss

6.1 Überraschenste Erkenntnis

Wenn nur symptomatische Personen getestet werden, wird die Gesamtzahl der Infektionen in der Bevölkerung erheblich überschätzt.

6.2 Zusammenfassung

- **Einführung:** COVID-19-Lockdowns und deren Herausforderungen.
- **Teststrategien:** Verschiedene Testarten und Qualitätslevels (Sensitivität und Spezifität).
- Relevanz: Simulationen unterstützen politische Entscheidungen und Pandemiebewältigung.
- Erkenntnisse: Teststrategie beeinflusst Epidemiewahrnehmung. Früher Teststart verbessert Kontrolle.

Fragen

7.1 Fragen

Gibt es irgendwelche Fragen?

7.2 Frage 1

Was beschreibt die Sensitivität eines Tests?

- A Die Wahrscheinlichkeit, dass ein Test bei gesunden Personen negativ ist
- B Die Wahrscheinlichkeit, dass ein Test bei kranken Personen positiv ist
- C Die Genauigkeit eines Tests in Bezug auf alle getesteten Personen
- D Die Anzahl der durchgeführten Tests pro Tag

7.2 Frage 1

Was beschreibt die Sensitivität eines Tests?

- A Die Wahrscheinlichkeit, dass ein Test bei gesunden Personen negativ ist
- B Die Wahrscheinlichkeit, dass ein Test bei kranken Personen positiv ist
- C Die Genauigkeit eines Tests in Bezug auf alle getesteten Personen
- D Die Anzahl der durchgeführten Tests pro Tag

7.3 Frage 2

Warum ist ein früher Start der Testkampagne vorteilhaft?

- A Weil weniger Tests benötigt werden
- B Weil die Tests dann eine höhere Genauigkeit haben
- C Weil die Epidemie dadurch besser kontrolliert werden kann
- D Weil dadurch keine Verzerrungen mehr auftreten

7.3 Frage 2

Warum ist ein früher Start der Testkampagne vorteilhaft?

- A Weil weniger Tests benötigt werden
- B Weil die Tests dann eine höhere Genauigkeit haben
- C Weil die Epidemie dadurch besser kontrolliert werden kann
- D Weil dadurch keine Verzerrungen mehr auftreten

7.4 Frage 3

Welche Teststrategie liefert genauere Schätzungen, "verschwendet" aber viele Tests an nicht infizierte Personen?

- A Testen von symptomatischen Personen
- B Testen von Hochrisikogruppen
- C Zufällige Tests
- D Testen von Personen mit vielen Kontakten

7.4 Frage 3

Welche Teststrategie liefert genauere Schätzungen, "verschwendet" aber viele Tests an nicht infizierte Personen?

- A Testen von symptomatischen Personen
- B Testen von Hochrisikogruppen
- C Zufällige Tests
- D Testen von Personen mit vielen Kontakten

Vielen Dank für ihre Aufmerksamkeit!