Polypharmacology: Drug promiscuity and its trends

Presented by Arunabh Sharma

Introduction

Polypharmacology

 property of bioactive compounds to act on multiple physiological targets

Promiscuity

- ability of small molecules to specifically bind to multiple targets

Promiscuity progression

- Statistically significant trends can be deduced from large activity datasets
- Trends can be detected by observing promiscuity over time

Data sets

High confidence

- Assay confidence score 9
- Assay relationship type "D"
- Compounds with explicitly defined
 K_i and/or IC₅₀ values

Low confidence

Promiscuity over time

Promiscuity degrees

ΔPromiscuity	#Compounds	
	High-confidence	Low-confidence
0	151,786	352,466
1	1239	4099
2	469	1721
3	220	816
4	102	398
5	65	305
6-10	130	698
11-20	40	283
21-50	9	137
> 50	2	236

Constant degree of promiscuity

- 98.5% of high-confidence set
- 97.6% of low-confidence set

Molecular weight and promiscuity

Lipophilicity and promiscuity

high-confidence set low-confidence set

Conclusions

- Generally low degree of promiscuity for bioactive compounds over time
- Promiscuity was constant for most compounds in ChEMBL
- Small influence of data confidence levels on promiscuity progression

Such a PAIN(S)!

Further reading

Article

pubs.acs.org/jmc

Rules for Identifying Potentially Reactive or Promiscuous Compounds

Robert F. Bruns* and Ian A. Watson

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States

Supporting Information

ABSTRACT: This article describes a set of 275 rules, developed over an 18-year period, used to identify compounds that may interfere with biological assays, allowing their removal from screening sets. Reasons for rejection include reactivity (e.g., acyl halides), interference with assay measurements (fluorescence, absorbance, quenching), activities that damage proteins (oxidizers, detergents), instability (e.g., latent aldehydes), and lack of druggability (e.g., compounds lacking both oxygen and nitrogen). The structural queries were profiled for frequency of occurrence in druglike and nondruglike compound sets and were extensively reviewed by a panel of experienced medicinal chemists. As a means of profiling the rules and as a filter in its own

right, an index of biological promiscuity was developed. The 584 gene targets with screening data at Lilly were assigned to 17 subfamilies, and the number of subfamilies at which a compound was active was used as a promiscuity index. For certain compounds, promiscuous activity disappeared after sample repurification, indicating interference from occult contaminants. Because this type of interference is not amenable to substructure search, a "nuisance list" was developed to flag interfering compounds that passed the substructure rules.

References

- Hu Y, Jasial S & Bajorath J. Promiscuity progression of bioactive compounds over time [v2; ref status: indexed, f1000r.es/5h4] F1000Research 4(Chem Inf Sci):118 (doi: 10.12688/f1000research.6473.1), 2015.
- Anighoro, Andrew, Jurgen Bajorath, and Giulio Rastelli. "Polypharmacology: Challenges and Opportunities in Drug Discovery: Miniperspective." Journal of medicinal chemistry 57.19 (2014): 7874-7887.
- Baell, Jonathan, and Michael A. Walters. "Chemical con artists foil drug discovery." Nature 513.7519 (2014): 481-483.