Symulacje komputerowe w fizyce

Perkolator

perkolacja – z łac. *percolare* (przeciekać przez coś, filtrować)

Perkolacja

Stochastyczna konstrukcja

- Węzły na sieci kwadratowej.
- Każdy węzeł zostaje zaznaczony z prawdopodobieństwem p.

Stochastyczna konstrukcja

- Węzły na sieci kwadratowej.
- Każdy węzeł zostaje zaznaczony z prawdopodobieństwem p.
- Sąsiadujące zaznaczone węzły tworzą klastry.

Jaki jest oczekiwany rozmiar klastra?

Jakie jest prawdopodobieństwo otrzymania perkolującego klastra?

Historia

Pierwsze prace – Flory & Stockmayer (1941-1943) badali żelowanie

Historia

Model – Broadbent & Hammersley

Jak zbudować skuteczną maskę przeciwgazową?

Zastosowania

pożary lasów

Zastosowania

wydobycie ropy

Zastosowania

analiza infrastruktury krytycznej

Próg perkolacji

Próg perkolacji

odpowiada granicznemu prawdopodobieństwu p_c , takiemu że dla każdego $p > p_c$ (w nieskończonym układzie) pojawia się perkolujący klaster, natomiast dla $p < p_c$ taki klaster nie istnieje.

Przykłady

perkolacja na węzłach, sieć kwadratowa

perkolacja na krawędziach, sieć trójkątna

Przykłady

perkolacja na węzłach, sieć kwadratowa

$$p = p_c = 0.5927$$

perkolacja na krawędziach, sieć trójkątna

$$p = p_c = 0.3473$$

Przykłady

perkolacja na węzłach, sieć kwadratowa

$$p > p_c$$

perkolacja na krawędziach, sieć trójkątna

Parametr krytyczny p_c

Wartość krytyczna p_c zależy od:

- wymiaru sieci,
- typu: na węzłach czy na krawędziach,
- geometrii sieci.

Obliczone wartości p_c – głownie z symulacji numerycznych:

D	sieć	krawędź	węzeł
2	kwadratowa	1/2	0.593
	trójkątna	$2 \sin (\pi / 18)$	1/2
3	prosta kubiczna	0.249	0.312
	bcc	0.180	0.246

Wielkości charakterystyczne

P(p) prawdopodobieństwo, że dany węzeł należy do perkolującego klastra

S(p) średni rozmiar klastra (bez perkolującego)

Nagła zmiana charakterystyk w p_c...

Długość korelacji

- Funkcja korelacji par $g(r) = \langle \rho(r_0) \rho(r_0 + r) \rangle$ prawdopodobieństwo, że w odległości znajduje się węzeł należący do tego samego klastra.
- Zanik wykładniczy $g(r) = \exp(-\frac{r}{\xi})$ definiuje tzw. długość korelacji ξ .
- W praktyce obliczamy $\xi = R\sqrt{2}$, gdzie $R^2 = \frac{1}{N} \sum_{i=1}^{N} (\vec{r}_i \vec{r}_0)^2$, $\vec{r}_0 = \frac{1}{N} \sum_{i=1}^{N} \vec{r}_i$,

N – rozmiar klastra, \vec{r}_i – położenia zajętych węzłów.

Wykładnik krytyczny

Prawo potęgowe

rozbieżność charakterystycznej skali długości

$$\xi \sim (p_c - p)^{-\nu}$$

Koncepcja uniwersalności

w punkcie krytycznym p_c nie istnieje skończona skala długości

ν nie zależy od "mikroskopowych" szczegółów!

D	2	3	4	5	≥6
ν	4/3	0.875	0.69	0.57	1/2

Koncepcje

proste zasady

złożone zachowanie

długozasięgowe korelacje

Mimo prostego modelu, wiele ważnych idei:

- gwałtowna zmiana globalnych wartości (przejście fazowe),
- prawa potęgowe, uniwersalność,
- efekty skończonego rozmiaru symulacji,
- metody grupy renormalizacji.

Metody symulacji

- jednoklastrowy algorytm Leatha Phys. Rev. B 14, 5046 (1976)
- algorytm Hoshena-Kopelmana do identyfikacji klastrów Phys. Rev. B 14, 3438 (1976)
- metoda Newmana-Ziffa dla wielu p jednocześnie Phys. Rev. B 85, 4104 (2000)

Pomysł: konstruujemy tylko jeden klaster (fikcyjna dynamika).

Sieć węzłów o wartościach:

1 - zajęty,

0 - pusty,

-1 – pierwotny (niesprawdzony).

Zaczynamy od zajętego węzła na środku i zaznaczamy jego sąsiadów z prawdopodobieństwem p.

Pomysł: konstruujemy tylko jeden klaster (fikcyjna dynamika).

Sieć węzłów o wartościach:

1 - zajęty,

0 - pusty,

-1 – pierwotny (niesprawdzony).

Dostaliśmy 2 zajęte, 2 puste. W kolejce do sprawdzenia:

Pomysł: konstruujemy tylko jeden klaster (fikcyjna dynamika).

Sieć węzłów o wartościach:

1 - zajęty,

0 - pusty,

Pomysł: konstruujemy tylko jeden klaster (fikcyjna dynamika).

Sieć węzłów o wartościach:

1 - zajęty,

0 - pusty,

Pomysł: konstruujemy tylko jeden klaster (fikcyjna dynamika).

Sieć węzłów o wartościach:

1 - zajęty,

0 - pusty,

Pomysł: konstruujemy tylko jeden klaster (fikcyjna dynamika).

Sieć węzłów o wartościach:

1 - zajęty,

0 - pusty,

Pomysł: konstruujemy tylko jeden klaster (fikcyjna dynamika).

Sieć węzłów o wartościach:

1 - zajęty,

0 - pusty,

Eliminujemy szczegóły mikroskopowe

Renormalizacja jest powiązana z samopodobieństwem.

Idea: układ b x b zastępujemy jednym efektywnym węzłem.

np. wszystkie konfiguracje "perkolujące" w danym miniukładzie (łączące górną i dolną krawędź)

Transformacja renormalizacji

Prawdopodobieństwo uzyskania zapełnionego efektywnego oczka:

Transformacja w punkcie samopodobnym (krytycznym):

$$R(p^*) = p^*$$

Nietrywialny punkt stały $p^* = \sqrt{5} - 2 \approx 0.61$ (bliski wynikowi dokładnemu $p_c = 0.5927$).

Wynik na prawo skalowania

Jeden krok naszej transformacji p' = R(p) oraz $\xi' = \xi/b$.

Skalowanie długości korelacji $\xi \sim (p_c - p)^{-\nu}$ oraz $\xi' \sim (p_c - p')^{-\nu}$, które łączymy: $(p_c - p)^{-\nu}/b = (p_c - p')^{-\nu}$

i możemy wyznaczyć ν:

$$\nu = \frac{\log b}{\log \frac{dR}{dp}|_{p_c}}$$

Oszacowanie dla b = 2 daje v = 1.625...

...dokładne wyniki z obliczeń/symulacji R(p) dla dużych b.