ECON 672

Week 3: Brief Regression Review

Overview

- Conditional Expectation Function
- Variance Operator
- Covariance Operator
- Correlation Operator
- Ordinary Least Squares
- Algebraic Properties of OLS
- Goodness of Fit

Overview

- Expected Value of OLS
- Bias of Expected Value of OLS
- Variance of OLS Estimators
- Robust Standard Errors
- Cluster Robust Standard Errors

- You have two population variables x and y
 - We want to see how much y varies with a change in x
- Three Questions
 - 1) Is y affected another factor besides x
 - 2) What is the functional form connecting y and x?
 - 3) How do we disentangle causal effects from a correlation between x and y

- Assume a population model
 - $y = \beta_0 + \beta_1 x + u$
 - We want to see the causal effects of x (RHS) on y (LHS)
- The population model allows for additional factors to influence y due to the error term u
 - β_0 is the coefficient of the intercept
 - β_1 is the slope parameter and coefficient of interest for causal effects
- We need data and assumptions

- Normalization Assumption
 - E(u) = 0
 - Anything leftover gets put in β_0 (Wooldridge, 2009)
- Mean Independence Assumption
 - $E(u \mid x) = E(u) \ \forall \ x$
 - The expected value of the error term is the same across all slices of the population
- Zero Conditional Mean Assumption
 - Put assumptions 1 and 2 together
 - $E(u \mid x) = 0 \ \forall \ x$

- Conditional Expectation Function (CEF) implies (Angrist & Pischke, 2009)
 - $E(y | x) = \beta_0 + \beta_1 x$
 - For a specific value, we write $E(y \mid X_i = x)$
- CEF is a population model and we rarely have a population in our data set

Variance Operator

- Variance Operator V(.)
 - The variance operator shows the variance of population
- Consider the variance of a random variable W

•
$$V(W) = \sigma^2 = E[(W - E(W))^2]$$

When we have a sample

$$S^{2} = (n-1)^{-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Variance Operator

- Variance Operator Properties
- Variance of a line

•
$$V(aX + b) = a^2V(X) + V(b) = a^2V(X)$$

- Variance of a constant b
 - V(b) = 0
- Variance of the sum of two random variables

•
$$V(X + Y) = V(X) + V(Y) + 2(E(XY) - E(X)E(Y))$$

Covariance Operator

 The Covariance Operator is represented by the last part of the variance of the sum of two random variables

•
$$C(X, Y) = E(XY) - E(X)E(Y)$$

- It represents the linear dependence between two random variables X and Y
 - If two random variables move in the same direction
 - C(X, Y) > 0
 - If two random variables move in the opposite direction
 - C(X, Y) < 0
 - If two random variables are independent
 - C(X, Y) = 0

Correlation Operator

- Covariance operator measures if two random variables move together
- Correlation operator measures the magnitude of the covariance of two random variables move together
 - How much do X and Y move together

•
$$Corr(X, Y) = \frac{C(X, Y)}{\sqrt{V(X)V(Y)}} = \frac{E(XY) - E(X)E(Y)}{\sqrt{(E[(X - E(X))^2])(E[(Y - E(Y))^2]}}$$

- The correlation coefficient is bounded between -1 and 1
 - The closer to -1 or 1 means a stronger correlation
 - A correlation near zero means no correlation

Ordinary Least Squares (OLS)

- OLS estimates of the parameters of interest from the population model by minimizing the sum of squared residuals (Wooldridge, 2009)
- If we have data on x and y and a population model of $E[y | x] = \beta_0 + \beta_1 x$
 - We can plug in x and y into our population model $y_i = \beta_0 + \beta_1 x_i + u_i$
 - We don't observe u_i even though we know it's there

Ordinary Least Squares (OLS)

- We have two assumptions after we plug in x and y (Wooldridge, 2009)
- E[u] = 0
 - Our expected value of residual is 0
 - $E[u \mid x] = 0$
- C(x, u) = E[xu] = 0
 - This means the error term is independent of x

Ordinary Least Squares (OLS)

- We plug in u to the population model (Wooldridge, 2009) and use first-order conditions
 - 1) $E[u] = E[y \beta_0 \beta_1 x] = 0$
 - 2) $C(x, u) = E[ux] = E[x(y \beta_0 \beta_1 x)] = 0$
- We will use these assumptions and sample averages to get \hat{eta}_0 and \hat{eta}_1

$$\sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right) = 0$$

$$\sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

Intercept Coefficient (OLS)

 We will use sample data since we do not have access to population data assumption 1

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})=\frac{1}{n}\sum_{i=1}^{n}(y_{i})-\frac{1}{n}\sum_{i=1}^{n}(\hat{\beta}_{0})-\frac{1}{n}\sum_{i=1}^{n}(\hat{\beta}_{1}x_{i})=\dots$$

• ... =
$$\bar{y} - \hat{\beta}_0 - \hat{\beta}_1 \bar{x} = 0$$

- Where \bar{y} and \bar{x} are sample averages
- The intercept coefficient

$$\bullet \ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Slope Coefficient (OLS)

- ullet We plug sample averages into assumption 2 to get our slope coefficient \hat{eta}_1
- . We'll drop $\frac{1}{n}$ since it doesn't affect the solution

$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

- Plug in $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
- $\sum_{i=1}^{n} x_i (y_i (\bar{y} \hat{\beta}_1 \bar{x}) \hat{\beta}_1 x_i) = 0$

Slope Coefficient (OLS)

$$\sum_{i=1}^{n} x_i (y_i - (\bar{y} - \hat{\beta}_1 \bar{x}) - \hat{\beta}_1 x_i) = 0$$

$$\sum_{i=1}^{n} x_i(y_i - \bar{y}) = \hat{\beta}_1 \sum_{i=1}^{n} x_i(x_i - \bar{x})$$

Given
$$\sum_{i=1}^{n} x_i(x_i - \bar{x}) = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 and $\sum_{i=1}^{n} x_i(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$

Assuming
$$\sum_{i=1}^{\infty} (x_i - \bar{x}) > 0$$

Slope Coefficient (OLS)

Our slope coefficient is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

This will pop up a lot for our estimators

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{Sample\ Covariance}{Sample\ Variance}$$

- The Takeway
 - Variation in x helps us understand and identify its impact on y

Residuals

- We are able to get fitted values and residuals, \hat{u}_i , from our sample model
 - $\bullet \ \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- \hat{u}_i is a sample term and not a population one, since u is not observed

•
$$\hat{u}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

Sum of Squared Residuals

$$\sum_{i=1}^{n} \hat{u}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

OLS gets its name from the first order condition that minimizes sum of squared residuals

Algebraic Properties of OLS

OLS residuals always sum to zero

$$\sum_{i=1}^{n} \hat{u}_i = \sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

Covariance of x and u always sums to zero and y-hat is a linear function of x

$$\sum_{i=1}^{n} x_i \hat{u}_i = \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0 \text{ and } \sum_{i=1}^{n} \hat{y}_i \hat{u}_i = 0$$

• The point (\bar{x}, \bar{y})

•
$$\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

Goodness of Fit

- For each observation, $y_i = \hat{y}_i + \hat{u}_i$
- Total Sum of Squares (SST)

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Residual Sum of Squares (SSR)

$$SSR = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \hat{u}_i^2$$

Explained Sum of Squares (SSE)

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Goodness of Fit

With algebraic properties

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} \left[\hat{u}_i - (\hat{y}_i - \bar{y}) \right]^2$$

- SST = SSE + SSR
- Assuming the Total Sum of Squares is greater than 0

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- How much variation in x explains the variation in y is calculated by R^2
- R^2 is helpful for functional form, but it won't tell us anything about bias of our causal estimate

Expected Value of OLS

- \hat{eta}_0 and \hat{eta}_1 are estimators for population model eta_0 and eta_1
 - How are $\hat{\beta}_0$ and $\hat{\beta}_1$ distributed?
 - \hat{eta}_0 and \hat{eta}_1 will differ across different sampling distributions
- $\hat{\beta}$ is unbiased under a set of assumption so that
 - $E[\hat{\beta}] = \beta$

Assumptions and Expected Value of OLS

- 1) Linear in Parameters Assumption
 - $y = \beta_0 + \beta_1 x + u$
- 2) Random Sampling Assumption
 - We have a random sample of size n with a set of numbers
 - $\{(x_i, y_i) : i = 1, 2, ..., n\}$
 - Where i is a random sampling draw from the population so that
 - $y_i = \beta_0 + \beta_1 x_i + u_i$, i = 1, 2, ..., n

Assumptions and Expected Value of OLS

- 3) Sample Variation in Explanatory Variables Assumption
 - The sample outcomes on x, $\{x, i = 1, 2, ..., n\}$ are not the same value
 - If there is no variation in x then this assumption fails
- 4) Zero Conditional Mean Assumption
 - $E[u \mid x] = 0$
 - The most crucial assumption, but the one most likely to fail
 - We can still calculate $\hat{\beta}$ if this assumption fails

Assumptions and Expected Value of OLS

- When all four assumptions hold
 - $E[\hat{\beta}] = \beta$
- If any of these assumptions fail, then \hat{eta} is no longer unbiased
- Stata Example

Omitted Variable Bias in OLS

- The 4th assumption is least likely to hold due to omitted variable bias (or confounders)
- Suppose a model: $Y = \alpha + \beta_1 X + \beta_2 U + \varepsilon$
 - ullet U is unobserved
 - We estimate $Y = \alpha + \beta_1 X + \eta$
 - Where $\eta = \beta_2 U + \varepsilon$

Omitted Variable Bias in OLS

ullet We we estimate our model without unobserved U

$$\hat{\beta}_1 = \frac{C(Y,X)}{V(X)} = \beta_1 + \beta_2 \frac{C(U,X)}{V(X)} = \beta_1 + \frac{C(Y,U)}{V(U)} \frac{C(U,X)}{V(X)}$$

Direction of Bias	C(X,U)>0	C(X,U)<0
C(Y,U)>0	Upward Bias	Downward Bias
C(Y,U)<0	Downward Bias	Upward Bias

Variance of the OLS Estimator

- The four assumptions of OLS estimator say nothing about the variance of the estimator
 - We need a measure of dispersion in the sampling distribution of the estimator
 - We need an estimator of the population variance
- We will add a fifth assumption to our OLS estimator
 - $V(u \mid x) = \sigma^2$

Variance of the OLS Estimator

- $V(u \mid x) = \sigma^2$
 - The variance of the population error term is constant (Homoskedasticity)
 - This assumption says that the variance of the population error term u is constant across any value of the explanatory variable
- With assumptions 4 and 5 in terms of conditional means and variance of y for population models
 - $E[y | x] = \beta_0 + \beta_1 x$
 - $V(y \mid x) = \sigma^2$

Variance of the OLS Esimator

Sample Variance Under the 1st through 5th assumptions

$$V(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{SST_x}$$

$$V(\hat{\beta}_0) = \frac{\sigma^2 \frac{1}{n} \sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

- Takeaways
 - As variation in x (SST_x) increases, the variance in \hat{eta}_1 and \hat{eta}_0 decreases
 - As σ^2 increases, the variance in \hat{eta}_1 and \hat{eta}_0 increases

Variance of the OLS Estimator

- Under assumptions 1-5
 - $E[\hat{\sigma}^2] = \sigma^2$
- Where the unbiased estimator of the population variance is

$$\hat{\sigma}^2 = \frac{1}{(n-2)} \sum_{i=1}^n \hat{u}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y})^2}{(n-2)} = \frac{SSR}{(n-2)}$$

• Where (n-2) is a degrees of freedom adjustment for two first order conditions

$$\sum_{i=1}^{n} \hat{u}_i = 0 \text{ and } \sum_{i=1}^{n} x_i \hat{u}_i = 0$$

Variance of the OLS Estimator

• The estimator for the standard error for β is $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$

$$se(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SST_x}} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

Stata or R will estimate the standard error

Robust Standard Errors

- What is the likelihood that the fifth assumption of homoskedasticity holds?
 - It is possible to assume that residuals are never homoskedastic
- When residuals are heteroskedastic (or not constant over x)
 - The standard errors of the estimator are biased
- Eicker, Huber, and White created a solution for a valid estimator of the variance of $\hat{\beta}$ called robust standard errors
 - Easy to implement in Stata (use the option robust after reg)

$$V(\hat{\beta}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \hat{u}_i^2}{SST_x^2}$$

Cluster Robust Standard Errors

- In addition to heteroskedastic residuals, we need to be concerned if the residuals are correlated within groups
- For example, residuals were correlated within schools for the Tennessee STAR experiment
 - We have a situation were we need to cluster the standard errors at the school level
- Easy to implement in Stata with the cluster(group) option