Universidade Federal da Fronteira Sul Curso de Ciência da Computação Campus Chapecó

Circuitos Contadores

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

Introdução

Circuitos contadores

- √ São circuitos sequenciais que variam de estado de acordo com o comando do clock;
- ✓ Utilizados principalmente para contagens, geradores de palavras, divisores de frequência, etc;
- ✓ Constituem-se de arranjos de flip-flops que avançam de estado em resposta a um evento.
- ✓ Módulo do contador: é o número de estados que o contador passa antes de retornar a um estado inicial
 - Assim, para um circuito formado por *n* flip-flops teremos um contador com módulo máximo 2ⁿ

Introdução

► Contadores síncronos e assíncronos

- ✓ Todos os contadores possuem um sinal de clock. A forma como o clock é submetido ao circuito.
- ✓ Contador Assíncrono: São caracterizados por NÃO terem a entrada de clock comum a todos os FF, ou seja, o sinal de clock não é aplicado a todos os FF.

✓ Contador Síncrono: O sinal de clock é comum a todos os FF do circuito.

Introdução

Contadores Assíncronos

- ✓ Possuem a vantagem de economizar circuito, por outro lado possuem limitações de velocidade
- ✓ Os principais contadores assíncronos são: contadores de pulso, contadores de década e contadores sequenciais de 0 a n.

Contador de Pulsos (Ripple Counter)

Realiza a contagem crescente ou decrescente dos pulsos de clock presentes na entrada. O circuito funciona também como um divisor de frequência.

Contador de Pulso Crescente

Contador de Pulso Crescente

Existem outras configurações possíveis

Os dois exemplos anteriores são contadores de módulo 8 ($2^3 = 8$)

E se quisermos implementar um contador que conte de 0 até 6?

Contador de Pulso Crescente

✓ Contador crescente módulo 6

Utiliza NAND pois o clear é ativo em nível baixo

Contador de Pulso Crescente

✓ Contador crescente módulo 6

Contador de Pulso Decrescente

Os circuitos abaixo realizam a contagem assíncrona decrescente

Contador de Década (ou contador BCDFS

São contadores com 10 estados (módulo 10). Eles são usados em contadores cotidianos como medidores, odômetros, etc...)

Contador de Década (ou contador BCDFS

- Características
- ✓ Possuem a entrada de clock comum a todos os FF
- ✓ Os principais contadores síncronos são: contador em anel, contador com módulo arbitrário, contador crescente-descrescente (up-down), gerador gray...

✓ Os contadores podem ser construídos com FF tipo JK ou com FF tipo D ou com FF tipo T

Contador Gray

J	K	Q
0	0	Qa
0	1	0
1	0	1
1	1	~Qa

Atual	Próx.	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

	stad Atua			óxin Stad					adas Flop		
Q_2	Q_1	Q_0	Q_2^{\dagger}	Q_1^{\dagger}	Q_0^{\dagger}	JQ ₂	KQ ₂	JQ_1	KQ ₁	JQ_0	KQ ₀
0	0	0	0	0	1	0	X	0	Х	1	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	0	1	X	X	0	0	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	1	0	0	X	0	0	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	X	0	X	1	X	0

Contador Gray

Contador Gray

Equações e Circuito

$$JQ_2 = Q_1.Q_0'$$
 $JQ_1 = Q_2'.Q_0$ $JQ_0 = (Q_2 \oplus Q_1)'$
 $KQ_2 = Q_1'.Q_0'$ $KQ_1 = Q_2.Q_0$ $KQ_0 = Q_2 \oplus Q_1$

Contador Crescente

Contagem de 0 a 3 usando FF tipo T

J	K	Q
0	0	Qa
0	1	0
1	0	1
1	1	~Qa

T	Q
0	Qa
1	~Qa

Atual	Próx.	Т
0	0	0
0	1	1
1	0	1
1	1	0

	Present state		Next state		flop uts
A ₁	A_0	A_1^+	$A_1^+ A_0^+$		TA ₀
0	0	0	1	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1

Contador Crescente

Contagem de 0 a 3 usando FF tipo T

	Present state		Next state		flop uts
A_1	A_0	A_1^+	$A_1^+ A_0^+$		TA_0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1

$$TA_1 = A_0$$

 $TA_0 = 1$


```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity contador_sincrono is -- reset sincrono
   port(
       clk : in std_logic;
       reset: in std_logic;
             : out std_logic_vector(3 downto 0)
        );
end entity;
architecture rtl of contador_sincrono is
begin
   process (clk)
       variable cnt : integer range 0 to 15;
   begin
       if (rising_edge(clk)) then
             if reset = '1' then
                  cnt := 0;
             else
                  if cnt = 15 then
                        cnt := 0;
                  else
                        cnt := cnt + 1;
                  end if;
             end if;
       end if;
       q <= std_logic_vector(to_unsigned(cnt, q'length));</pre>
   end process;
```

end rtl;

UFFS - Universidade Federal da Fronteira Sul - Sistemas Digitais

Cuidados Básicos (seção NÃO)

- Usar somente a fonte fornecida com o Kit
- -Não usar outras fontes existentes no Laboratório
- Não conectar e desconectar fios, conectores (JTAG, ...) com a placa ligada
- Não colocar a placa sobre superfície metálica
- Segurar a placa pelas bordas
- Não colocar a mão nos componentes (problemas com eletricidade estática)
- Não retirar o kit do Laboratório (sala 409)
- Terminado o uso guardar o Kit no armário com todo o material acondicionado na respectiva caixa.