Caesar Cipher

Mathematically, map letters to numbers:

• Then the general Caesar cipher is:

$$c = E_k(p) = (p + k) \mod 26$$

 $p = D_k(c) = (c - k) \mod 26$

Can be generalized with any alphabet.

Cryptanalysis of Caesar Cipher

- Key space: {0, 1, ..., 25}
- Vulnerable to brute-force attacks.
- E.g., break ciphertext "UNOU YZGZK"
- Need to recognize it when have the plaintext
- What if the plaintext is written in Swahili?

Playfair Cipher

- Not even the large number of keys in a monoalphabetic cipher provides security.
- One approach to improving security is to encrypt Two letters at a time.
- The **Playfair Cipher** is the best known such cipher.
- Invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair.

Playfair Key Matrix

- Use a 5 x 5 matrix.
- Fill in letters of the key (w/o duplicates).
- Fill the rest of matrix with other letters.
- E.g., key = MONARCHY.

M	0	N	A	R		
С	Η	Y	В	D		
E	F	G	I/J	K		
L	Р	Q	S	Т		
U	V	W	Х	Z		
CRYPTOGRAPHY						

2/3/2022 9:54 AM

Encrypting and Decrypting

Plaintext is encrypted two letters at a time.

- 1. If a pair is a repeated letter, insert filler like 'X'.
- 2. After inserting the bogus letter the size of plain text must be otherwise add bogus (same or other) letter to make it even.
- 3. If both letters fall in the same row, replace each with the letter to its right (circularly).
- 4. If both letters fall in the same column, replace each with the the letter below it (circularly).
- 5. Otherwise, each letter is replaced by the letter in the same row but in the column of the other letter of the pair.

Hill cipher

- Key K is square matrix of size m × m (inverse must exists)
- Plain text of size I × m, where I is no. of blocks
- Example: "code is ready"
 Plain text is 3 × 4 matrix
- Cipher text $C = (P \times K) \mod 26$
- Plain text P= $(C \times K^{-1}) \mod 26$

Cryptanalysis

 Objective: to recover the plaintext of a ciphertext or, more typically, to recover the secret key.

•

Cryptanalytic Attacks

- May be classified by how much information needed by the attacker:
 - Ciphertext-only attack
 - Known-plaintext attack
 - Chosen-plaintext attack
 - Chosen-ciphertext attack

Brute-Force Attack

- Try every key to decipher the ciphertext.
- On average, need to try half of all possible keys
- Time needed proportional to size of key space

Key Size (bits)	Number of Alternative Keys		required at 1 cryption/μs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ μs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ μs	$= 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$	$= 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years

Frequency of occurrence of letters in English text:

E-12.7 T-9.1 A-8.2.....J-0.02 Q-0.01 X-0.01 Z-0.01

Digram:

TH,HE,IN,ER,AN,RE,ED,ON,ES,ST,EN,AT,TO,NT,HA,ND,OD,EA,NG,AS,OR,TL,IS,ET,IT,AR,TE,SE,HL,OF

Trigram: THE ,ING,AND,HER,ERE,ENT,THA,NTHWAS,ETH,POR,DTH

Ciphertext-only attack

- Given: a ciphertext c
- Q: what is the plaintext m?
- An encryption scheme is completely insecure if it cannot resist ciphertext-only attacks.

2/3/2022 9:54 AM CRYPTOGRAPHY

Known-plaintext attack

• Given: (m_1,c_1) , (m_2,c_2) , ..., (m_k,c_k) and a new ciphertext c.

Q: what is the plaintext of c?

Q: what is the secret key in use?

Chosen-plaintext attack

Given: (m₁,c₁), (m₂,c₂), ..., (m_k,c_k), where m₁, m₂, ..., m_k are chosen by the adversary; and a new ciphertext c.

 Q: what is the plaintext of c, or what is the secret key?

Example: chosen-plaintext attack

- In 1942, US Navy cryptanalysts discovered that Japan was planning an attack on "AF".
- They believed that "AF" means Midway island.
- Pentagon didn't think so.
- US forces in Midway sent a plain message that their freshwater supplies were low.
- Shortly, US intercepted a Japanese ciphertext saying that "AF" was low on water.
- This proved that "AF" is Midway.

Chosen-ciphertext attack

• Given: (m_1,c_1) , (m_2,c_2) , ..., (m_k,c_k) , where $c_1,c_2,...,c_k$ are chosen by the adversary; and a new ciphertext c.

Q: what is the plaintext of c, or what is the secret key?

2/3/2022 9:54 AM