

Ontapgiuaky - sdgsdfgdfgd

Applied Big Data in Management (Đại học Tôn Đức Thắng)

Scan to open on Studocu

Ôn tập giữa kỳ

Môn: nhập môn mạng máy tính

Chuong 1: Computer Networks and the Internet

- 1. Các khái niệm/định nghĩa về end systems, end devices, hosts, network edge, network core:
 - End systems (hay còn gọi là hosts): là các thiết bị đầu cuối trong mạng, như máy tính, điện thoại, máy chủ, điều khiển truy cập, vv. End systems được kết nối với mạng để truyền tải và nhận thông tin.
 - End devices: là các thiết bị đầu cuối trong mạng, như máy tính, điện thoại, máy chủ, điều khiển truy cập, vv. End devices được kết nối với mạng để truyền tải và nhận thông tin
 - Hosts (hay còn gọi là end systems): là các thiết bị đầu cuối trong mạng, như máy tính, điện thoại, máy chủ, điều khiển truy cập, vv. Hosts được kết nối với mạng để truyền tải và nhận thông tin..
 - Network edge: là vùng giới hạn của mạng, nơi các end systems (hosts hoặc end devices) được kết nối với mạng. Nó bao gồm các thiết bị như địa chỉ IP, thiết bị định tuyến và firewall.
 - Network core: là phần trung tâm của mạng, nơi các tín hiệu dữ liệu được truyền tải từ nút này sang nút khác thông qua các đường truyền. Nó bao gồm các thiết bị như bộ định tuyến và switch.

2. Các thuật ngữ viết tắt:

- MTU (Maximum Transmission Unit): kích thước lớn nhất của gói tin.
- API (Application Programming Interface): tập hợp các quy tắc giao thức công nghệ...
- PDU (Protocol Data Unit): truyền thông tin giữa các thiết bị mạng thông qua 1 giao thức cụ thể.
- Mô hình OSI (Open System Interconnection): có 7 lớp đó là Physical, Datalink, Network, Transport, Session, Presentation và Application.
- Mô hình TCP/IP (Transmission Control Protocol/Internet Protocol): có 4 lóp đó là Network Interface(tương đương Physical và Datalink), Internet(tương đương Network), Transport và Application (tương đương Session, Presentation và Application).
- OUI (Organizationally Unique Identifier): Mã nhà sản xuất
- ADSL (Asymmetric Digital Subscriber Line): công nghệ truyền tải dữ liệu trên điện thoại bàn.
- 3G (Third Generation): mạng không dây
- LTE (Long-Term Evolution): mạng không dây tốc độ cao

Chương 2: Tầng Application

1. Các ứng dụng thuộc tầng Application và các giao thức tương ứng.

- HTTP (HyperText Transfer Protocol): là giao thức truyền tải siêu văn bản sử dụng trên web, cho phép truy cập và truyền tải các trang web và các tài nguyên liên quan. Ví dụ: Google Chrome, Mozilla Firefox, Microsoft Edge, Safari,...
- SMTP (Simple Mail Transfer Protocol): là giao thức truyền tải thư điện tử. Ví dụ: Gmail, Outlook, Yahoo Mail,...
- FTP (File Transfer Protocol): là giao thức truyền tải tập tin giữa các máy tính trên mạng. Ví dụ: FileZilla, WinSCP, CuteFTP,...
- DNS (Domain Name System): là hệ thống định danh các tên miền, phân giải địa chỉ IP của các trang web. Ví dụ: Google Public DNS, Cloudflare DNS,...
- DHCP (Dynamic Host Configuration Protocol): là giao thức cấp địa chỉ IP cho các thiết bị trên mạng. Ví dụ: Windows Server DHCP, ISC DHCP,...
- Telnet và SSH (Secure Shell): là các giao thức cho phép kết nối và điều khiển từ xa các thiết bị trên mạng. Ví dụ: PuTTY, SecureCRT,...
- VoIP (Voice over IP): là công nghệ truyền tải giọng nói qua mạng IP. Ví dụ: Skype, Zoom, Microsoft Teams,...
- SNMP (Simple Network Management Protocol): là giao thức quản lý mạng, cho phép theo dõi và quản lý các thiết bị mạng từ xa. Ví dụ: Nagios, Cacti, Zabbix,...
- NTP (Network Time Protocol): là giao thức đồng bộ thời gian giữa các thiết bị trên mạng. Ví dụ: Windows Time, NTP.org,...

2. Các giao thức thư điện tử Email (SMTP, POP, POP3, IMAP, HTTP)

- SMTP (Simple Mail Transfer Protocol): Là giao thức truyền tải thư điện tử từ máy chủ nguồn đến máy chủ đích. SMTP sử dụng cổng 25 để truyền tải dữ liệu, bao gồm cả nội dung thư và thông tin liên quan đến email như địa chỉ email người gửi và người nhận.
- POP (Post Office Protocol): Là giao thức lấy thư điện tử từ máy chủ và tải về trên thiết bị của người dùng. POP sử dụng cổng 110 để truyền tải dữ liệu. Điểm yếu của POP là khi tải về thư từ máy chủ, thư sẽ bị xóa trên máy chủ, nếu không cấu hình cho phép giữ bản sao trên máy chủ.
- POP3 (Post Office Protocol version 3): Là một phiên bản nâng cấp của giao thức POP. POP3 cũng sử dụng cổng 110 để truyền tải dữ liệu. Tuy nhiên, POP3 cho phép người dùng tải về thư điện tử từ máy chủ và giữ lại bản sao trên máy chủ, giúp người dùng quản lý email tốt hơn.
- IMAP (Internet Message Access Protocol): Là giao thức lấy thư điện tử từ máy chủ và giữ lại bản sao trên máy chủ. IMAP sử dụng cổng

- 143 để truyền tải dữ liệu. Người dùng có thể truy cập thư điện tử của mình từ nhiều thiết bị khác nhau và thay đổi trên bất kỳ thiết bị nào mà không làm thay đổi trên máy chủ.
- HTTP (HyperText Transfer Protocol): Là giao thức được sử dụng để truy cập các trang web. Tuy nhiên, nó cũng có thể được sử dụng để truy cập hộp thư đến và hộp thư đi thông qua các giao thức khác như IMAP hoặc POP. Khi sử dụng HTTP để truy cập thư điện tử, người dùng sẽ được định hướng đến trang web đăng nhập của nhà cung cấp email, sau đó sử dụng giao thức HTTP để truy cập hộp thư đến và hộp thư đi.
- FTP (File Transfer Protocol) là một giao thức được sử dụng để truyền tải tệp tin giữa máy tính cá nhân và máy chủ. FTP sử dụng hai kênh truyền thông khác nhau: TCP Control và TCP data.
 - TCP Control: Sử dụng cổng 21 để truyền tải các lệnh kiểm soát kết nối giữa client và server, như xác thực, tạo và đóng kết nối.
 - TCP Data: Sử dụng cổng 20 để truyền tải các tệp tin giữa client và server.

3. Hệ thống tên miền (Domain Name System) và các chức năng của nó.

- DNS (Domain Name System): là một hệ thống phân giải tên miền thành đia chỉ IP.
- Chức năng:
 - Phân giải tên miền: có 2 loại phân giải
 - Phân giải tương tác: Khi có 1 yêu cầu được gửi đến một máy chủ DNS, nó có thể không biết địa chỉ IP tương ứng với tên miền đó. Máy chủ DNS sẽ thực hiện phân giải tên miền này bằng cách thực hiện một chuỗi yêu cầu tới các máy chủ DNS khác, bắt đầu từ các máy chủ DNS ở cấp cao nhất Root servers đến TLD Server và cuối cùng là Authoritative DNS server.
 - Phân giải đệ quy: Khi một trình duyệt hoặc một ứng dụng cần phân giải một tên miền thành địa chỉ IP, nó sẽ gửi yêu cầu đến máy chủ DNS gần nhất.
 - Cung cấp tên miền phân cấp: cao nhất là TLD (Top Level Domain) như .com .org....
 - Lưu trữ bản ghi DNS.
 - Cải thiện hiệu suất truy cập.
 - Quản lý và duy trì các máy chủ DNS.
- 4. Thời gian phân phối tệp tin (File Distribution) giữa client-server P2P

- Thời gian phân phối tệp tin giữa client-server và P2P (Peer-to-Peer) phụ thuộc vào nhiều yếu tố khác nhau và có thể khác nhau tùy thuộc vào cách thức triển khai và kích thước của tệp tin
- Những yếu tố ảnh hưởng
 - Tốc độ kết nối: Tốc độ kết nối giữa client và server hoặc giữa các nút trong mạng P2P ảnh hưởng trực tiếp đến thời gian phân phối. Tốc độ kết nối càng cao thì thời gian phân phối sẽ càng nhanh.
 - Kích thước của tệp tin: Kích thước của tệp tin cũng ảnh hưởng đến thời gian phân phối. Một tệp tin lớn hơn sẽ mất nhiều thời gian hơn để tải xuống và phân phối so với một tệp tin nhỏ hơn.
 - Độ phân tán: Trong mạng P2P, độ phân tán của các nút được liên kết với nhau có thể ảnh hưởng đến thời gian phân phối. Nếu có nhiều nút trong mạng và chúng liên kết với nhau tốt, thì thời gian phân phối sẽ nhanh hơn.
 - Độ tin cậy của kết nối: Độ tin cậy của kết nối giữa client và server hoặc giữa các nút trong mạng P2P cũng ảnh hưởng đến thời gian phân phối. Nếu kết nối không ổn định hoặc bị gián đoạn thì thời gian phân phối sẽ tăng lên.
 - Sức chứa của máy chủ: Nếu máy chủ bị quá tải hoặc không đủ dung lượng để lưu trữ tệp tin, thời gian phân phối sẽ tăng lên.
 - Độ trễ: Độ trễ giữa client và server hoặc giữa các nút trong mạng P2P cũng ảnh hưởng đến thời gian phân phối. Nếu độ trễ cao, thì thời gian phân phối sẽ tăng lên.
 - Số lượng người sử dụng: Số lượng người sử dụng cũng ảnh hưởng đến thời gian phân phối. Nếu có quá nhiều người cùng yêu cầu tải xuống tệp tin, thì thời gian phân phối sẽ tăng lên.
 - Vị trí địa lý: Vị trí địa lý của client và server hoặc các nút trong mạng P2P cũng ảnh hưởng đến thời gian phân phối. Nếu khoảng cách giữa client và server quá xa, thì thời gian phân phối sẽ tăng lên.

=> Tóm lại: Có nhiều yếu tố gây ảnh hưởng đến thời gian phân phối. Tuy
nhiên phân phối tệp tin giữa client-server thường nhanh hơn so với phân phối trong
mạng P2P, bởi vì trong mạng P2P thời gian phân phối phụ thuộc vào sự đóng góp
của các nút khác nhau và việc đạt được tốc độ phân phối tối đa có thể gặp nhiều trỏ
ngại.

Downloaded by Ngô Chí Thu?n (523h0102@student.tdtu.edu.vn)

Chương 3: TẦNG TRANSPORT - edit by Mạnh Cường

So sánh đặc điểm giữa mô hình OSI và TCP/IP

Giống nhau

- Đều có kiến trúc phân lớp, đơn giản hoá quá trình khắc phục sự cố (nếu có)
- Đều có các tầng: network, transport và application
- Đều sử dũng kỹ thuật chuyển packet

Khác nhau

Tiêu chí	OSI	TCP/IP
Số tầng	7	5Không có 2 tầng:- Tầng trình diễn: Presentation- Tầng phiên: Session
Ý nghĩa	Là mô hình lí thuyết hay mô hình tham chiếu chức năng	Mô hình internet, Client - Server
Ứng dụng	Không được sử dụng trong thực tế	Sử dụng toàn cầu
Phương pháp tiếp cận	Chiều dọc	Chiều ngang
Sự kết hợp giữa các tầng	Mỗi tầng 1 chức năng riêng	Application chứa cả chức năng của Presentation và Session
Tính phụ thuộc	Giao thức độc lập	Phụ thuộc giao thức
Đơn vị phát triển	ISO (Tổ chức tiêu chuẩn quốc tế)	DoD (Bộ quốc phòng)
Truyền thông	Hỗ trợ kết nối định tuyến và không dây	Hỗ trợ truyền thông không kết nối từ tầng mạng
Thiết kế	Phát triển mô hình trước, giao thức sau	Phát triển giao thức trước, mô hình sau
Giao thức Connection - Oriented Connection-less		HTTP, HTTPS, FTP
Độ tin cậy	Chỉ mang tính chất tham khảo	Được định chuẩn

Đơn vị dữ liệu tải mỗi tầng là gì?

Tầng	Đơn vị
Application	Data
Presentation	Data
Session	Data
Transport	Segment/datagram
Network	Packet
Datalink	Frame
Physical	Bit

Nhiệm vụ mỗi tầng trong mô hình OSI và TCP/IP là gì?

Tầng	OSI	TCP/IP	
Application	Cung cấp các ứng dụng trên mạng (web, email, truyền file)	HO TRY CAC ITING GIING TREN	
Presentation	Biểu diễn dữ liệu của ứng dụng, e.g., mã hoá, nén, chuyển đổi		
Session	Quản lí phiên làm việc, đồng bộ hoá phiên, khôi phục quá trình trao đổi dữ liệu	None	
Transport	Xử lí việc truyền-nhận dữ liệu cho các ứng dụng chạy trên nút mạng đầu- cuối	Điều khiển truyền dữ liệu giữa các tiến trình của tầng Application	
Network	Chọn đường (định tuyến), chuyển tiếp gói tin từ nguồn đến đích	Chọn đường và chuyển tiếp gói tin giữa các máy, các mạng	
Datalink	Truyền dữ liệu trên các liên kết vật lý giữa các nút mạng kế tiếp nhau	Hỗ trợ truyền thông cho các thành phần kế tiếp trên cùng 1 mạng	
Physical	Chuyển dữ liệu (bit) thành tín hiệu và truyền	Truyền và nhận dòng bit trên đường truyền vật lý	

Chức năng, đặc điểm, nguyên lí hoạt động của TCP và UDP

	TCD	LIDD
TCP		UDP
	Transmission Control Protocol	User Datagram Protocol
	- Dồn kênh - Phát hiện lỗi bằng checksum	- Dồn kênh, phân kênh - Phát hiện lỗi bit bằng
	- Filat Ilien for parig checksum	checksum
	- Truyền dữ liệu qua một mạng	- Giao thức giao tiếp dữ liệu
Chức năng	khác, mọi nơi, mọi lúc, mọi nền	người dùng, cho phép tuỳ
	tảng/phần mềm	chỉnh, cài đặt những kết nối với
		độ trễ thấp, có khả năng chịu
		lỗi
	- Cài đặt trên các hệ thống	- Cài đặt trên các hệ thống cuối,
	cuối, không cài trên routers,	không cài trên routers,
	switches,	switches,
	- Tin cậy	- Không tin cậy, phát triển ứng
		dụng phức tạp hơn do các ứng
		dụng phải tự đặt cơ chế kiểm soát độ tin cậy
	- Hướng liên kết	- Hướng không liên kết
	riderig hen ket	riderig krierig herr ket
	- Giữa trạng thái liên kết	- Phi kết nối/không cần thiết
		lập liên kết
	- Chậm hơn	- Nhanh
	- Đ.vị: segment	- Đ.vị: datagram
Đặc điểm	- Truyền dữ liệu theo dòng	- Không
	(byte stream)/ theo pipeline	
	- Phát lại gói tin	- Gửi 1 lần, không phát lại
	- Kiểm soát luồng - Kiểm soát tắt nghẽn	- Không - Không: dễ gây quá tải mạng
	- Sử dụng báo nhận (ACK, NAK)	- Không sử dụng báo nhận, gửi
		nhiều, nhanh nhất có thể
	- Truyền dữ liệu tuần tự (tự sắp	- Không có khả năng sắp xếp
	xếp nếu sai thứ tự)	0 1 1
	- Bắt tay 3 bước thiết lập cổng	- Không giữ trạng thái liên kết
	- Mỗi socket - Mỗi tiền trình	- 1 socket - Nhiều tiến trình
	- Kiểu giao thứ IP: 6	- Kiểu giao thứ IP: 17
	- RFC: 793	- RFC: 768
Nguyên lý hoat	• Thiết lập liên kết	Thiết lập liên kết:
Nguyên lý hoạt động	- Bắt tay 3 bước	- Phi kết nối/không cần liên kết
——————————————————————————————————————	 Truyền/nhận dữ liệu, có thể 	 Truyền/nhận dữ liệu: Không

thực hiện đồng thời (duplex)	xác minh lỗi
trên liên kết: Xác minh lỗi	
- Chờ phản hồi của bên nhận	- Không chờ phản hồi bên nhận
(ACK, NAK), nếu:	
+ ACK: Gửi tiếp gói packet kế	
+ NAK/Time-out: Gửi lại bản	
sao của gói packet	
- Kiểm soát luồng, kiểm soát	- Không kiểm soát luồng, không
tắc nghẽn trong quá trình	kiểm soát tắt nghẽn
truyền/nhận	
 Đóng liên kết 	 Đóng liên kết

So sánh sự khác nhau cơ bản của TCP và UDP

ТСР	UDP
- Tin cậy, hướng liên kết	- Không tin cậy, hướng không liên kết
- Bắt tay 3 bước, giữ liên kết	- Phi kết nối, không giữ liên kết
- Chậm hơn	- Nhanh hơn
- Truyền theo dòng	- Truyền càng nhiều, càng nhanh càng tốt
- Kiểm soát tắt nghẽn	- Không kiểm soát tắt nghẽn
- Phát lại packet	- Không phát lại packet
- Mỗi socket dùng cho 1 tiến trình	- Dùng cùng 1 socket cho các tiến trình
- IP kiểu 6	- IP kiểu 17
- RFC 793	- RFC 768
- Đơn vị truyền: segment	- Đơn vị truyền: Datagram

Số port number trên máy chạy các dịch vụ ứng dụng

Giao thức	Lớp vận chuyển	Cổng	RFC
Telnet	TCP	23	318
FTP	TCP	20,21	959
TFTP	UDP	69	1350
SMTP	TCP	25	2821
POP3	TCP	110	1939
IMAP	TCP	143	3501

TLS/SSL	TCP	443	2246
LDAP	TCP	389	2251
НТТР	TCP	80	2616
DNS	TCP/UDP	53	1034,1035
NETBIOS NAME SERVICES	UDP	137	1002
NETBIOS DATAGRAM	UDP	138	1002
NETBIOS SESSION SERVICES	TCP	139	1002
SNMP	UDP	161,162	Nhiều
BGP	TCP	179	Nhiều
RIP	UDP	520	Nhiều

Khuôn dạng đoạn tin TCP - Segment

+	Bit 0-3	4-9	10- 15	16-31
0	Source	port		Dest port
32		Seque	ence nu	mber
64		ackno	wledge	ment
96	Data Offset	Not uesed	Flags	Receive indow
128	Check	sum		Urgent data Pointer
160	Options(variable length)			
160/192+	Application data (variable length)			
Ghi chú:	Application data (variable length) - Sequence number & acknowledgement: truyền dữ liệu tin cậy tính theo bytes - Mỗi field 3 bits Flags gồm 6 cờ: [U]: URG: Cờ cho trường Urgent pointer/dữ liệu khẩn [A]: ACK: Cờ cho trường Acknowledgement [P]: PSH: Hàm push chuyển dữ liệu ngay [R]: RST: Thiết lập lại đường truyền (đặc biệt) [S]: SYN: Đồng bộ lại số thứ tự (đặc biệt) [F]: FIN: Không gửi thêm số liệu (đặc biệt)			

Khuôn dạng gói tin UDP - Datagram

+	Bits 0-15	16-31	
0	Source port	Dest port	
32	Length	Checksum	
64	Application data (message)		

Chương 4: Tầng Network

1. Vai trò, chức năng, nguyên lý hoạt động của Router?

- -Khái niệm:
 - +Router là thiết bị(hay là phần mềm trên một máy tính)kết nối giữa các mạng.
 - +Mỗi Router sẽ được gán một IP khác nhau và duy nhất trong mạng nội bộ.
 - +Router kết nối các mạng cục bộ(LANs), mạng diện rộng(WANs).
 - *LANs gồm có : Router, Bridge, ATM Switch, Hubs.
 - *WANs gồm có:Router,Modem (CSU/DSU,TA/NT1),WANs Bandwidth Switch,Comm.Server

-Chức năng:

- +Tạo mạng cục bộ LANs.
- +Cho phép bạn chia sẽ các kết nối internet của mình cho tất cả các thiết bị.
- +Kết nối các thiết bị/phương tiện khác nhau với nhau.
- +Chạy tường lửa
- +Xác định nơi gửi thông tin và lọc thông tin.
- +Kết nối với VPN.

Tóm lại: Router có vai tró là giúp cho gói dữ liệu có thể giúp chuyển đi đúng nơi, đến đúng địa chỉ.

- 2. So sánh sự khác nhau giữa Ipv4 vs Ipv6 (VD: độ dài Ipv4, Ipv6 là bao nhiều bits?,).
 - -Ipv4(internet protocol version 4)
 - -ipv6(internet protocol version 6)

*IPV4

- -Nằm trong tầng layer thứ 3 trong mô hình OSI.
- -Dùng để xác định thiết bị trong hệ thống mạng
- -Mô Hình OSI:

-Là dãy số nhị phân dài 32 bit, được chia làm 4 Octet, phân cách bằng dấu chấm, mỗi octet gồm 8 bit, có giá trị từ 0-255.

VD: 192.168.1.1

- -Mỗi địa chỉ IP sẽ có 2 phần 1 phần network và phần host.
- -Hai máy ở hai mạng khác nhau thì phần mạng khác nhau.
- Hai máy ở hai mạng giống nhau thì phần mạng giống nhau.
- -Nhưng buộc phải giống nhau về phần Host.
- -IPV4 được chia làm 4 lớp: A,B,C,D.

*LÓP A:

Network	Host	Host	Host
1-127			
0			

EX:1.0.1.10

LÓP B:

Network	Network	Host	Host
128-191			
10			

EX:150.16.3.2

LÓP C:

Network	Network	Network	Host
192-223			
110			

EX:192.168.3.2

Subnet Mask

- -Tương tự địa chỉ IP, gồm 32 bits được biểu diễn với 4 octet, cách nhau bởi dấu chấm
- -Phần mạng của địa chỉ IP sẽ đc biểu diễn bằng bit số 1 trong Subnet Mask
- -Octet nào của địa chỉ IP thuộc phần mạng thì trong Subnet Mask viết octet đó là 255.

VD: IP: 25.1.3.2

Subnet mask: 255.0.0.0

-Người ta có thể thêm prefic length vào để cho biết độ dài của phần mạng

VD: IP: 192.168.3.2/24

Subnet mask: 255.255.255.0

*Lưu ý:

-Địa chỉ <mark>IP đầu tiên</mark> và <mark>cuối cùng</mark> của <mark>mạng</mark> là một <mark>địa chỉ đặc biệt</mark> , không thể sd đc để đặt cho các mạng khác hệ thống mạng.

VD: 192.168.10.0/24

- IP đầu: 192.168.10.0 → Địa chỉ mạng

- IP cuối:192.168.10.255 → Địa chỉ Broadcast

IP chỉ đc đặt từ : $192.168.10.1 \rightarrow 192.168.10.254$.

-Phân loai IP:

+IP Loopback: 127.0.0.1 (dùng để test chức năng)

+IP Public:dùng để giao tiếp trong mt mạng

+IP Private:dùng trong nội bộ và có thể tái sd và không dùng trên mt internet

Bao gồm:

+Lóp A: 10.0.0.0 → 10.255.255.255

+Lóp B: 172.16.0.0→172.31.255.255

+Lóp C: 192.168.100.0→192.168.100.255

IPV4	IPV6	
	Có 128 bit, số lượng địa chỉ khổng	
chỉ (biểu diễn bằng hệ 8, chia làm	lo (biểu diễn bằng hệ 16, chia làm	
4 khối)	8 khối)	

*IPV6

- -Gồm 128 bits, không còn địa chỉ Broadcast và thay vào đó là địa chỉ Anycast.
- -Stateless auto address cofiguration tự tìm địa chỉ IP gần nhất để gửi dữ liêu.
- -Không cần thiết NAT/PAT.
- -IPSec để bảo vệ và mã hoá gói tin.

-Header sẽ đơn giản và ngắn gọn hơn IPV4.

3. Đơn vị dữ liệu tầng network?

NAT: Network Address Translation

ARP: Address Resolution Protocol RIP: Routing Information Protocol

DNS: Domain Name System IPS: Intrusion prevention system

4. Phải chia thành thạo subnet, biết cách chia Subnet, cách tính SubnetMask, cách chia VLSM,(nhiều câu hỏi liên quan phần này)

*Chia subnet:

Bước 1: Chuyển đội sang hệ nhị phân

Bước 2: Tính địa chỉ Subnet

Sau khi chuyển sang hệ nhị phân, bạn có thể dễ dàng tính được địa chỉ IP Subnet bằng cách thực hiện theo tác AND theo quy tắc:

Bước 3: Tìm phạm vi của Host

Bước 4: Tính tổng số subnet và host trên mỗi subnet

Chẳng hạn, địa chỉ IP có bạn có dạng: 192.168.10.44. Vậy khi đổi sang hệ nhị phân sẽ có dạng:

192	168	10	14
IP 11000000	10101000	00001010	00101100
SM 11111111	11111111	11111111	00000000
11000000	10101000	0000101 0	00000000
	Net		HOSTS

*Lốp A: -Cố 2⁷ net

-Host/net= 2^{24}

*Lớp B: -Có 2¹⁴ net

-Host/net= 2^{16}

*Lớp C: -Có 2²¹ net

-Host/net=28

Custom Subnet Mask

VD: Lớp C mượn nhiều nhất bao nhiều bit để chia subnet.

De tính bằng Công thức: 2^m-2

-Lớp C có 8 bit làm host

Nếu mượn 1 bit thì ta có 2^{1} -2=0(vô lí)

2 bit thi ta có 2²-2=2(được)

Ta sẽ có số host khả dung là: host=8-2=6

*Cách chia địa chỉ mạng

192.168.10.0/26 mượn 2 bit \rightarrow 2⁶=64

-Địa chỉ mạng: 192.168.10.0 - ID Broadcast: 192.168.10.63

-ID mạng: 192.168.10.1→192.168.10.62