Relatório do Trabalho 2

CI1068 - Circuitos Lógicos

1. Entendendo os semáforos

Imagem 1 - semáforos

Lendo a descrição do trabalho conseguimos ter as seguintes informações:

- Os semáforos #1 e #3 possuem o mesmo comportamento.
- Os semáforos #4 e #5 possuem o mesmo comportamento.
- Os semáforos irão ficar vermelho quando o pedestre apertar o botão, e logo após isso vão continuar seus ciclos normalmente.

Com essas informações podemos abstrair que os sinaleiros #1 e #3 agoras são o sinaleiro A, que o sinaleiro #2 é o B. Não é necessário abstrair uma letra para o #4 e #5, porque do modo que eles vão ser implementadas não vão necessitar de um circuito próprio.

O sinaleiro A possui o seguinte comportamento:

Imagem 2 - Comportamento do sinaleiro A

E o sinaleiro B possui o seguinte comportamento:

Imagem 3 - Comportamento do sinaleiro B

Sabendo qual vai ser o comportamento dos sinaleiros A e B podemos agora começar a construir as tabelas.

2. Tabelas e mapa de Karnaugh do sinaleiro A

2.1 Básico da tabela

Antes de construir a tabela precisamos construir a **máquina de estado finito**, o que é basicamente os diagramas mostrados nas imagens 2 e 3, a diferença é que vamos definir o estado e a saída. O modelo de **FSM** que vamos utilizar é a **Máquina de Moore**.

Como visto no diagrama da imagem 2, a máquina de moore terá 4 estados com 4 saídas, portanto teremos que usar 2 bits, cada saída representará uma cor no nosso sinaleiro, seguindo essa tabela:

Sai	Cor	
0	0	Verde
0	1	Amarelo
1	0	Vermelho

Tabela 1 - Tabela de cores sinaleiro A

Na tabela abaixo vamos definir para cada estado qual deverá ser a saída para gerar a sequência mostrada na imagem 2.

Estado		Saída	
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	0

Tabela 2 - Básica com Estado e saída

Finalmente no diagrama fica assim:

Imagem 3 - Diagrama FSM-A

Agora temos todo o necessário para terminar de construir a tabela principal do circuito.

2.2 Tabela Base

A primeira tabela que vamos construir servirá como base para construir os mapas de Karnaugh e possui as colunas: Estado Atual, Próximo Estado, Flip Flop e Saídas. Como o flip flop utilizamos é o **FF-D**, a coluna "próximo estado" e "Flip Flop" vão ser iguais.

Estado) Atual	Próximo	Estado	Flip	Flop	Saí	das
0	0	0	1	0	1	0	0
0	1	1	0	1	0	0	1
1	0	1	1	1	1	1	0
1	1	0	0	0	0	1	0

Tabela 3 - Tabela base para construir os mapas

2.3 Mapa de Karnaugh do "Próximo Estado"

Essa tabela tem todas as informações para construir o mapa para o próximo estado.

Estado Atual		F	F
q1	q0	ff1	ff0
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Tabela 4 - Informações para construir o mapa do "Próximo Estado"

2.3.1 Mapa para ff1

q1 \ q0	0	1
0	1	0
1	0	1

Tabela 5 - ff1 do "Próximo Estado"

Temos que ff1 = q1*!q0 + !q1*q0.

2.3.1 Mapa para f0

q1 \ q0	0	1
0	1	0
1	1	0

Tabela 6 - ff0 do "Próximo Estado"

Temos que ff0 = !q0.

2.4 Mapa de Karnaugh das "Saídas"

Informações para construir as saídas do estado A.

Estado Atual		Saída	
q1	q0	s1	s0
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	0

Tabela 7- Informações para construir o mapa da "Saídas"

2.4.1 Mapa do s1

q1 \ q0	0	1
0	0	0
1	1	1

Tabela 8 - s1 da "Saídas"

Temos que s1 = q1

2.4.2 Mapa do s0

q1 \ q0	0	1
0	0	1
1	0	0

Tabela 9 - s0 da "Saídas"

3. Tabelas e mapa de Karnaugh do sinaleiro B

3.1 Básico da tabela

Agora vamos construir todos os mapas para o sinaleiro B, o mesmo processo feito com o A.

As cores serão representadas da seguinte maneira:

Sa	Cor	
0	0	Vermelho
1	1	Amarelo
1	0	Verde

Tabela 10 - Tabela de cores sinaleiro B

A FSM do sinaleiro B ficará dessa forma:

Imagem 4 - Diagrama FSM-B

3.2 Tabela Base

Estado) Atual	Próximo	Estado	Flip	Flop	Saí	das
0	0	0	1	0	1	0	0
0	1	1	0	1	0	0	0
1	0	1	1	1	1	1	0
1	1	0	0	0	0	1	1

Tabela 11 - Tabela base para construir os mapas

3.3 Mapa de Karnaugh do "Próximo Estado"

Estado Atual		F	F
q1	q0	ff1	ff0
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

Tabela 12 - Informações para construir o mapa do "Próximo Estado"

3.3.1 Mapa para ff1

q1 \ q0	0	1
0	0	1
1	1	0

Tabela 13 - ff1 do "Próximo Estado"

Temos que ff1 = q1*!q0 + !q1*q0

3.3.2 Mapa para ff0

q1 \ q0	0	1
0	1	0
1	1	0

Tabela 14 - ff0 do "Próximo Estado"

Temos que ff0 = !q0

3.4 Mapa de Karnaugh das "Saídas"

Informações para construir as saídas do estado B.

Estado	Atual	Sa	ída
q1	q0	s1	s0
0	0	0	0
0	1	0	0
1	0	1	0
1	1	1	1

Tabela 15- Informações para construir o mapa da "Saídas"

3.4.1 Mapa do s1

q1 \ q0	0	1
0	0	0
1	1	1

Tabela 16 - s1 da "Saídas"

Temos que s1 = q1

3.4.2 Mapa do s0

q1 \ q0	0	1
0	0	0
1	0	1

Tabela 17 - s0 da "Saídas"

Temos que s0 = q1*q0

4. Construindo os circuitos

Agora vamos começar a dar vida aos nossos semáforos. Primeiro vamos construir o circuito de cada semáforo A e B, vamos chamá-los de **controlador A** e B.

4.1 Controlador A

O circuito foi construído usando as seguintes informações:

- ff1 = q1*!q0 + !q1*q0
- ff0 = !q0
- s1 = q1
- s0 = !q1*q0

Imagem 5 - Circuito Controlador A

4.2 Controlador B

O circuito foi construído usando as seguintes informações:

- ff1 = q1*!q0 + !q1*q0
- $\mathbf{ff0} = \mathbf{!q0}$
- s1 = q1
- $\bullet \quad s0 = q1*q0$

Imagem 5 - Circuito Controlador B

4.3 Circuito "Detecta Vermelho"

A ideia desse circuito é que ele detecte quando os sinaleiros estiverem em um estado em que no próximo clock todos possam ser vermelhos. Se isso for verdade E o pedestre apertou o botão, então no próximo ciclo os semáforos A e B deverão ser vermelhos e o do pedestre verde, e o clock do controlador A e B ficam "congelados" durante esse ciclo.

Tempo	Semáforo A	Semáforo B
1	Verde	Vermelho
2	Amarelo	Vermelho
3	Vermelho	Verde
4	Vermelho	Amarelo

Tabela 18 - Exemplo do "Detecta Vermelho"

Nesse exemplo acima no tempo 4 o detecta vermelho deve ter a saída lógica alta, caso o contrário aconteça(Semáforo A = Amarelo e Semáforo B = Vermelho) a saída também deve ser alta.

4.3 Tabela do "Detecta Vermelho"

Semát	foro A	Semát	foro B	Saída
a1	a0	b1	b0	s0
1	1	1	1	1
0	1	1	1	0
1	0	1	1	1
0	0	1	1	0
1	1	0	1	0
0	1	0	1	1
1	0	0	1	0
0	0	0	1	0
1	1	1	0	0
0	1	1	0	0
1	0	1	0	0

0	0	1	0	0
1	1	0	0	0
0	1	0	0	1
1	0	0	0	0
0	0	0	0	0

Tabela 19 - Tabela do "Detecta Vermelho"

4.4 Mapa de Karnaugh "Detecta Vermelho"

a1a0 \ b1b0	0 0	0 1	1 1	1 0
0 0	0	0	0	0
0 1	1	1	0	0
1 1	0	0	1	0
10	0	0	1	0

Tabela 20 -Mapa de Karnaugh "Detecta Vermelho"

Temos que nossa saída do "Detecta Vermelho" é igual a: !a1*a0*!b1 + a1*b1*b0

4.5 Circuito implementado "Detecta Vermelho"

Imagem 6 - Circuito implementado "Detecta Vermelho"

4.4 Circuitos "Semáforos"

Esses circuitos são os responsáveis por traduzir a saída do controlador para verde, amarelo ou vermelho. Cada controlador necessita de um "Semáforo" específico.

Eu adicionei uma entrada chamada "S_vermelho" para setar a saída como vermelho, isso porque quando o pedestre aperta o botão e o detecta vermelho tem saída alta o clock dos controladores são "congelados", na verdade bloqueados, portanto ele continuam no mesmo estado, consequentemente o semáforo não muda para vermelho(No caso do controlador em que o estado seja amarelo), por isso quando é o ciclo do pedestre atravessar eu seto o semáforo como vermelho.

4.4.1 Semáforo A

Esse é o semáforo para traduzir as saídas do Controlador A.

S_vermelho	Entr	adas		Saídas	
	a1	a0	verde	amarelo	vermelho
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	0	0	1

4.4.1.1 Mapa para saída "Verde"

a1a0 \ S_vermelho	1	0
0,0	0	1
0,1	0	0
1,1	0	0
1,0	0	0

A partir do mapa temos a seguinte expressão: Verde = !a1*!a0*!S_vermelho

4.4.1.2 Mapa para saída "Amarelo"

a1a0 \ S_vermelho	1	0
0,0	0	0
0,1	0	1
1,1	0	0
1,0	0	0

A partir do mapa temos a seguinte expressão: Amarelo = !a1*a0*!S_vermelho

4.4.1.3 Mapa para saída "Vermelho"

a1a0 \ S_vermelho	1	0
0,0	1	0
0,1	1	0
1,1	1	1
1,0	1	1

A partir do mapa temos a seguinte expressão: **Vermelho = S_vermelho + a1**

4.4.1.4 Circuito do semáforo A

Imagem 7 - Circuito do semáforo A

4.4.2 Semáforo B

Esse é o semáforo para traduzir as saídas do Controlador B.

S_vermelho	Entradas			Saídas	
	b1	b0	verde	amarelo	vermelho
0	0	0	0	0	1
0	0	1	X	Х	х
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	X	X	Х
1	1	0	0	0	1
1	1	1	0	0	1

4.4.2.1 Mapa para saída "Verde"

a1a0 \ S_vermelho	1	0
0,0	0	0
0,1	X	X
1,1	0	0
1,0	0	1

A partir do mapa temos a seguinte expressão: Verde = !S_vermelho*b1*!b0

4.4.2.2 Mapa para saída "Amarelo"

a1a0 \ S_vermelho	1	0
0,0	0	0
0,1	X	х
1,1	0	1
1,0	0	0

A partir do mapa temos a seguinte expressão: Amarelo = !S_vermelho*b0

4.4.2.3 Mapa para saída "Vermelho"

a1a0 \ S_vermelho	1	0
0,0	1	1
0,1	Х	Х
1,1	1	0
1,0	1	0

A partir do mapa temos a seguinte expressão: $Vermelho = S_vermelho + !b1$

4.4.2.4 Circuito do semáforo B

Imagem 8 - Circuito do semáforo B

5. Circuito completo

Imagem 9 - Circuito dos semáforos pronto

5.1 Parte de sincronização

Imagem 10 - Parte responsável pela sincronização

A parte acima é responsável pela sincronização de quando o **botão** é **apertado** e quando o **detecta vermelho** estão **ativos**. O Flip Flop mais à direita na imagem 10 é responsável por resetar o botão. Já o Flip Flop mais acima é responsável por atrasar o sinal que seta os semáforos como vermelho e "congelar" o ciclo dos controladores, e quando esse Flip Flop estiver ativo é a hora do farol de pedestre ficar verde.