Structure d'espace vectoriel

On appelle **espace vectoriel** sur K (ou K-espace vectoriel) un ensemble E muni de deux lois :

- une loi interne, notée +, telle que (E, +) soit un groupe commutatif. L'élément nul est noté 0_E .
- une loi externe, notée \cdot , qui est une application de $K \times E$ dans E vérifiant :

$$\forall (\alpha, \beta) \in K^2, \forall x \in E, \quad (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x.$$

$$\forall \alpha \in K, \forall (x, y) \in E^2, \quad \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y.$$

$$\forall (\alpha, \beta) \in K^2, \forall x \in E, \quad \alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x.$$

$$\forall x \in E, \quad 1 \cdot x = x.$$

Les éléments de E sont appelés des vecteurs et les éléments de K sont appelés des scalaires.

Exemples

 K^n , K[X], $M_{n,p}(K)$ sont des espaces vectoriels. Si A est un ensemble, l'ensemble F(A,K) des fonctions de A dans K est lui aussi un espace vectoriel. En particulier, l'ensemble des suites à valeurs réelles (resp. à valeurs complexes) est un \mathbb{R} -espace vectoriel (resp. un \mathbb{C} -espace vectoriel).

Proposition

Soit E_1, \ldots, E_n des K-espaces vectoriels. Alors le produit cartésien $E_1 \times \cdots \times E_n$, muni de l'addition et de la multiplication externe définies par :

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n),$$

 $\lambda \cdot (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n),$

est un K-espace vectoriel.

Famille de vecteurs

Dans cette partie, E désigne un espace vectoriel sur K.

Une **combinaison linéaire** de la famille finie de vecteurs (x_1, \ldots, x_n) de E est un vecteur $x \in E$ s'écrivant :

$$x = \sum_{i=1}^{n} \alpha_i x_i, \quad \text{où } \alpha_i \in K.$$

Cours de mathématiques Espaces vectoriels et applications linéaires

2024/2025

Une famille finie de vecteurs (x_1, \ldots, x_n) est **libre** si :

$$\sum_{i=1}^{n} \alpha_i x_i = 0 \Rightarrow \forall i \in \{1, \dots, n\}, \quad \alpha_i = 0.$$

Une famille qui n'est pas libre est une famille liée.

Exemple

Soit (P_1, \ldots, P_n) une famille de K[X] avec $\deg(P_1) < \deg(P_2) < \cdots < \deg(P_n)$. Alors (P_1, \ldots, P_n) est une famille libre.

2024/2025

Espaces Vectoriels et Bases

Proposition Soit E un espace vectoriel de dimension finie n, et soit (v_1, \ldots, v_n) une famille de n vecteurs. On a équivalence entre :

- (i) (v_1, \ldots, v_n) est une base de E.
- (ii) (v_1, \ldots, v_n) est une famille libre.
- (iii) (v_1, \ldots, v_n) est une famille génératrice.

Théorème (Base incomplète) Soit G une famille génératrice finie de E, et soit $L \subset G$ une sous-famille libre. Il existe une base B de E telle que $L \subset B \subset G$.

Corollaire Soient e_1, \ldots, e_k une famille libre de vecteurs de E d'un espace de dimension n. Il existe des vecteurs e_{k+1}, \ldots, e_n tels que e_1, \ldots, e_n est une base de E.

Corollaire Dans un espace vectoriel de dimension n, toute famille de strictement plus de n vecteurs est liée (et toute famille libre a au plus n vecteurs).

Corollaire Soit (v_1, \ldots, v_n) une famille de vecteurs, et soit (w_1, \ldots, w_{n+1}) une famille de vecteurs combinaison linéaire des v_i . Alors la seconde famille est liée.

Définition On appelle rang d'un système de vecteurs d'un espace E la dimension du sous-espace vectoriel engendré par ce système.

Sous-espaces et Sommes Directes

Proposition Soient F et G deux sous-espaces vectoriels de E. On a :

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

Définition Si F et G sont des sous-espaces de E, si ils sont en somme directe et si $F \oplus G = E$, on dit que G est un *supplémentaire* de F et réciproquement.

Proposition La réunion d'une base quelconque de F et d'une base quelconque de G est une base de E. Autrement dit, si (v_1, \ldots, v_k) est une base de F, (w_1, \ldots, w_l) une base de G, alors $(v_1, \ldots, v_k, w_1, \ldots, w_l)$ est une base de E.

Applications Linéaires et Projecteurs

Définition Soit $f: E \to F$ une application, on dit que c'est une application linéaire si, pour tout $\lambda \in \mathbb{R}$ (resp. \mathbb{C}), $v, w \in E$:

$$-f(\lambda v) = \lambda f(v),$$

$$- f(v + w) = f(v) + f(w).$$

Définition On appelle rang de f la dimension de l'image de f.

Théorème (Théorème du rang)

$$rang(f) = dim(E) - dim(ker f).$$

Définition Le rang d'un système de vecteurs (v_1, \ldots, v_n) est la dimension du sous-espace qu'il engendre.

Théorème Une application linéaire p est un projecteur si et seulement si $p^2 = p$. Dans ce cas, c'est le projecteur parallèlement à $\ker(p)$ sur $\operatorname{Im}(p)$.

A savoir par coeur

— Pour montrer que l'application linéaire $f:E\to F$ est injective, il faut et il suffit de montrer que

$$\ker(f) = \{0_E\},\,$$

c'est-à-dire montrer que :

$$\forall x \in E, (f(x) = 0 \Rightarrow x = 0).$$

En général, on va soit prendre $x \neq 0$ et montrer que $f(x) \neq 0$, soit utiliser la méthode précédente pour calculer $\ker(f)$, et obtenir $\ker(f) = \{0\}$.

Soit $g \in \mathcal{L}(\mathbb{R}^2)$, telle que pour tout $(x, y) \in \mathbb{R}^2$, on a :

$$g(x,y) = (x - y, x + y).$$

Montrer que l'application linéaire g est injective.

- Soient E et F deux espaces vectoriels et $f: E \to F$ une application linéaire injective. Alors, pour toute famille libre (e_1, \ldots, e_n) , son image $(f(e_1), \ldots, f(e_n))$ est encore une famille libre.
- D'après la définition de surjectivité, une fonction $f:E\to F$ est surjective si et seulement si

$$f(E) = F$$
.

— **Definition**: Soit f L(E, F). On dit que f est un isomorphisme si f est bijective. Si E = F et si f est bijective, on dit que f est un automorphisme. L'ensemble des automorphismes de E est appel e le groupe lin eaire de E. On le note GL(E).

Hyperplans et Formes Linéaires

Définition Soit E un espace de dimension n. Un hyperplan de E est tout sous-espace vectoriel H de dimension n-1.

Proposition Si H est un hyperplan de E, il existe une forme linéaire non nulle φ sur E telle que $H = \ker(\varphi)$. On dit que φ est une équation de H.

Exemple important

Considérons l'espace vectoriel \mathbb{R}^3 . Tout hyperplan de \mathbb{R}^3 est un plan vectoriel, c'est-à-dire un sous-espace de dimension 2. Une équation cartésienne d'un tel hyperplan est de la forme :

$$ax + by + cz = 0$$

où $(a, b, c) \neq (0, 0, 0)$.

Matrices et Applications Linéaires

Définition Soit $f: E \to F$ une application linéaire entre deux espaces vectoriels de dimensions finies. Soient $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E et $\mathcal{C} = (f_1, \ldots, f_m)$ une base de F. La matrice de f relativement aux bases \mathcal{B} et \mathcal{C} est la matrice $A = (a_{ij})$ où :

$$f(e_j) = \sum_{i=1}^{m} a_{ij} f_i \quad \text{pour } j = 1, \dots, n$$

Proposition L'application qui à une application linéaire associe sa matrice dans des bases fixées est un isomorphisme d'espaces vectoriels.

Changement de base

Soit $f: E \to E$ un endomorphisme, \mathcal{B} et \mathcal{B}' deux bases de E, A la matrice de f dans \mathcal{B} et A' la matrice de f dans \mathcal{B}' . Alors :

$$A' = P^{-1}AP$$

où P est la matrice de passage de \mathcal{B} à \mathcal{B}' .

Restrictions:

Soit E et F deux espaces vectoriels sur un corps K, et $f:E\to F$ une application linéaire. La **restriction** de f à un sous-espace $U\subseteq E$ est une nouvelle application linéaire $f|_U:U\to F$ définie par :

$$f|_{U}(u) = f(u)$$
 pour tout $u \in U$.

Autrement dit, $f|_U$ est simplement l'application f restreinte au sous-espace U.

Propriétés de la Restriction

1. **Linéarité** : Si f est linéaire, alors sa restriction $f|_U$ est également linéaire. En effet, pour tous $u_1, u_2 \in U$ et $\alpha \in K$, on a :

$$f|_{U}(u_1 + u_2) = f(u_1 + u_2) = f(u_1) + f(u_2) = f|_{U}(u_1) + f|_{U}(u_2),$$

et

$$f|_U(\alpha u_1) = f(\alpha u_1) = \alpha f(u_1) = \alpha f|_U(u_1).$$

2024/2025

2. **Noyau de la Restriction** : Le noyau de la restriction $f|_U$ est donné par :

$$\ker(f|_U) = \{u \in U \mid f(u) = 0\} = U \cap \ker(f).$$

Cela signifie que le noyau de la restriction est l'intersection du sous-espace U et du noyau de f.

3. **Image de la Restriction** : L'image de la restriction $f|_U$ est un sous-espace de F, donné par :

$$\operatorname{Im}(f|_{U}) = \{ f(u) \mid u \in U \} \subseteq \operatorname{Im}(f).$$

En d'autres termes, l'image de la restriction est l'image de f "restreinte" au sous-espace U.

Exemple

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire définie par f(x,y,z) = (x+y,y+z), et soit $U = \text{Vect}\{(1,0,0),(0,1,0)\} \subseteq \mathbb{R}^3$. La restriction de f à U, notée $f|_U$, est une application linéaire de U dans \mathbb{R}^2 , donnée par :

$$f|_U((1,0,0)) = (1,0), \quad f|_U((0,1,0)) = (1,1).$$

L'image de $f|_U$ est donc un sous-espace de \mathbb{R}^2 , et son noyau est l'intersection de U et du noyau de f.

Exercices

Exercice 1 : Les familles suivantes sont-elles libres?

- 1. $e_1 = (1,0,1), e_2 = (0,2,2), e_3 = (3,7,1) \text{ dans } \mathbb{R}^3.$
- 2. $e_1 = (1,0,0), e_2 = (0,1,1), e_3 = (1,1,1) \text{ dans } \mathbb{R}^3.$
- 3. $e_1 = (1, 1, 1), e_2 = (1, 2, 3), e_3 = (5, 2, 3), e_4 = (6, 4, 5) \text{ dans } \mathbb{R}^3.$
- 4. $e_1 = (1, 2, 1, 2, 1), e_2 = (2, 1, 2, 1, 2), e_3 = (1, 0, 1, 1, 0), e_4 = (0, 1, 0, 0, 1)$ dans \mathbb{R}^5 .

Exercice 2 : Déterminer pour quelles valeurs de $t \in \mathbb{R}$ les polynômes $X^2 + \frac{t}{2}, X - t, (X+t+1)^2$ forment une base de l'espace $\mathbb{R}[X]_2$ des polynômes à coefficients dans \mathbb{R} de degré inférieur ou égal à 2.

Corrigés des exercices

Exercice 1:

- 1. On résout le système $\alpha e_1 + \beta e_2 + \gamma e_3 = 0$. On trouve que la seule solution est $\alpha = \beta = \gamma = 0$, donc la famille est libre.
- 2. La famille est liée car $e_3 = e_1 + e_2$.
- 3. La famille est liée car on a 4 vecteurs dans \mathbb{R}^3 qui est de dimension 3.
- 4. On vérifie que le rang de la matrice formée par ces vecteurs est 4, donc la famille est libre.

Exercice 2 : On étudie le déterminant de la famille dans la base canonique $(1, X, X^2)$. Le déterminant vaut :

$$\det = \begin{vmatrix} t/2 & -t & (t+1)^2 \\ 0 & 1 & 2(t+1) \\ 1 & 0 & 1 \end{vmatrix} = \frac{t}{2} + t(t+1) - (t+1)^2$$

En étudiant quand ce déterminant est non nul, on trouve que la famille est une base pour $t \neq -1$ et $t \neq 2$.

Annexe: Rappels d'algèbre linéaire

Définition Un endomorphisme $u \in \mathcal{L}(E)$ est dit diagonalisable s'il existe une base de E formée de vecteurs propres de u.

Théorème Un endomorphisme est diagonalisable si et seulement si la somme des dimensions de ses sous-espaces propres est égale à $\dim(E)$.

Proposition Soit $A \in M_n(K)$. Le polynôme caractéristique de A est :

$$\chi_A(X) = \det(XI_n - A)$$

Les racines de χ_A sont les valeurs propres de A.