Non-linear Models-I

CS771: Introduction to Machine Learning
Purushottam Kar

Outline of discussion coming up

- Introduction to Kernels
 - Why/when are kernels used?
 - What are kernels?
 - How are kernels used?
- Using kernels to perform
 - Supervised learning tasks: classification
- Next lecture:
 - Supervised learning tasks: regression
 - Data Modelling tasks: clustering, dimensionality reduction
- How PML and FA techniques change in order to use kernels

Whenever linear models poorly fit your data

CS771: Intro to ML

Whenever linear models poorly fit your data

CS771: Intro to ML

Whenever linear models poorly fit your data

CS771: Intro to ML

Whenever linear models poorly fit your data

CS771: Intro to ML

Why/when are kernel

Data does lie close to a lowdim hyperplane

PCA would do very well

Why/when are kernel

Data does lie close to a lowdim hyperplane

PCA would do very well

Why/when are kernel

Data does lie close to a low-

PCA would do very well

Why/when are kernel

Data does lie close to a lowdim hyperplane

PCA would do very well

• Whenever linear models poorly nt your a

No low-dim hyperplane approximates data

Why/when are kernel

Data does lie close to a lowdim hyperplane

PCA would do very well

• Whenever linear models poorly nt your ac

No low-dim hyperplane approximates data

Data actually close to a smooth low-dim surface

Why/when are kernel

Data does lie close to a lowdim hyperplane

PCA would do very well

• Whenever linear models poorly it your a

PCA would do a very bad reconstruction

No low-dim hyperplane approximates data

Data actually close to a smooth low-dim surface

How to learn non-linear functions

- The reductionist mind: I already know how to learn
 - Linear classifiers: perceptron, SVM, logistic regression
 - Linear regressors: least squares, ridge regression
 - Linear dimensionality reducers: PCA, PPCA
- Why waste all that effort?
- Can I have an easy way so that my algorithms for learning linear models continue to work but end up learning non-linear funcs?
- Yes, through magical objects called kernels!
- Before going into the math (yes there is a bit of it I'm afraid ⊗) let us see what is really going on

No linear classfier can separate them 🖰

No linear classfier can separate them \otimes

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them \otimes

No linear classfier can separate them \otimes

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 🖰

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 🖰

Points on the real line

 $\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$ $\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$

No linear classfier can separate them 🖰

$$\phi_2(x) = c$$

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 😊

 $\phi_2(x) = c$

But $\phi_2(x) = |x|$ so it is really doing |x| = c

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 😊

 $\phi_2(x) = c$

But $\phi_2(x) = |x|$ so it is really doing |x| = c

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 😊

 $\phi_2(x) = c$

But $\phi_2(x) = |x|$ so it is really doing |x| = c

In the original space this looks like a non-linear classifier!

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 😊

 $\phi_2(x) = c$

But $\phi_2(x) = |x|$ so it is really doing |x| = c

How did a linear classifier in \mathbb{R}^2 impose non-linear classification in ${\mathbb R}$

In the original space this looks like a non-linear classifier!

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 😊

A toy example populing Where did non-

How did a linear classifier in \mathbb{R}^2 impose non-linear classification in \mathbb{R}

Where did nonlinearity come from?

In the original space this looks like a non-linear classifier!

This classifier is $\phi_2(x) = c$

But $\phi_2(x) = |x|$ so it is really doing |x| = c

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) = [x, |x|] \in \mathbb{R}^2$$
$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them 🖰

A toy example populing Where did non-

How did a linear classifier in \mathbb{R}^2 impose non-linear classification in \mathbb{R}

Where did nonlinearity come from?

In the original space this looks like a non-linear classifier!

But $\phi_2(x) = |x|$ so it is really doing |x| = c

Points on the real line

$$\mathbb{R} \ni x \mapsto \phi(x) \neq [x, |x|] \in \mathbb{R}^2$$

$$\phi(x) = [\phi_1(x), \phi_2(x)], \phi_1(x) = x, \phi_2(x) = |x|$$

No linear classfier can separate them \otimes

The mapping ϕ is non-linear! Not of the form $\phi(x) = Wx$ for some $W \in \mathbb{R}^{2 \times 1}$

$$\mathbb{R}^2 \ni (x,y) \mapsto \phi(x,y) = [x,x^2,y^2] \in \mathbb{R}^3$$

A linear function on this 3-D vector looks like $\langle \mathbf{w}, \phi(x, y) \rangle$ $\mathbf{w}_1 \cdot x + \mathbf{w}_2 \cdot x^2 + \mathbf{w}_3 \cdot y^2$

$$\mathbb{R}^2 \ni (x,y) \mapsto \phi(x,y) = [x, x^2, y^2] \in \mathbb{R}^3$$

A toy example: non-

Hmm ... so a linear function in the 3D space can learn the decision boundary

$$-2x + x^2 + y^2$$

= $(x-1)^2 + y^2 - 1$

A linear function on this
3-D vector looks like

$$\langle \mathbf{w}, \phi(x, y) \rangle$$

 $\mathbf{w}_1 \cdot x + \mathbf{w}_2 \cdot x^2 + \mathbf{w}_3 \cdot y^2$

$$\mathbb{R}^2 \ni (x,y) \mapsto \phi(x,y) = [x,x^2,y^2] \in \mathbb{R}^3$$

A toy example: non-

Hmm ... so a linear function in the 3D space can learn the decision boundary

$$-2x + x^2 + y^2$$

= $(x-1)^2 + y^2 - 1$

A linear function on this 3-D vector looks like $\langle \mathbf{w}, \phi(x, y) \rangle$ $\mathbf{w}_1 \cdot x + \mathbf{w}_2 \cdot x^2 + \mathbf{w}_3 \cdot y^2$

$$\mathbb{R}^2 \ni (x,y) \mapsto \phi(x,y) = [x,x^2,y^2] \in \mathbb{R}^3$$

A function of the form $(x-a)^2+c$ can be written as $\langle \mathbf{w}, \phi(x) \rangle$ for some vector w

$$= [1, x, x^2] \in \mathbb{R}^3$$

A function of the form $(x-a)^2 + c$ can be written as $\langle \mathbf{w}, \phi(x) \rangle$ for some vector w

$$= [1, x, x^2] \in \mathbb{R}^3$$

The non-linear regressor $y = (x - 2)^2 + 1$ closely fits data

A function of the form $(x-a)^2+c$ can be written as $\langle \mathbf{w}, \phi(x) \rangle$ for some vector \mathbf{w}

$$\mathbb{R} \ni x \mapsto \phi(x) = [1, x, x^2] \in \mathbb{R}^3$$

Linear learning but non-linear effects

- Okay, so you are telling me that if I project data to a higher dimensional space in a non-linear manner, two things happen
 - There is a good chance a linear model will fit the data nicely in the higher dimensional space
 - If I learn a linear model up there, it may still induce non-linear effects down here since the projection was non-linear
 - And that non-linear model will obviously fit data well too
- However, calculating $\phi(x)$ for all data points is too much work
- If I really wanted to work all that hard why would I have wanted to reuse linear learning algorithms in the first place!!
- Maybe now I really need to learn about kernels

What are kernels?

Kernels vs Distances

$K(\mathbf{x}, \mathbf{y})$

Kernels

- Give measures of similarity
- High value ⇒ Similar points
- Example: wait a bit
- Nice similarity functions satisfy the Mercer's theorem
- Can be used for kNN (define neigh. using K instead of d) and much, much more ... wait a bit

$d(\mathbf{x}, \mathbf{y})$

Distances

- Give measures of dissimilarity
- High value ⇒ Different points
- Example: Euclidean norm
- Nice distance functions satisfy metric or norm properties
- Can be used for classfn, regressn, multi-label via kNN, clustering via k-means

The *nice* Mercer Kernel

- For starters, let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ be unit real norm valued vectors
- An intuitive notion of similarity between them is dot product $\langle x, y \rangle$
- Dot product is highest when $\mathbf{x} = \mathbf{y}$. Then we have $\langle \mathbf{x}, \mathbf{y} \rangle = 1$
- Dot product is smallest when $\mathbf{x} = -\mathbf{y}$. Then we have $\langle \mathbf{x}, \mathbf{y} \rangle = -1$
- Mercer kernels are* nice kernels that extend this intuition

The *nice* Mercer kernel

- Given any object set \mathcal{X} (need not be vectors, may be set of images, video, strings, genome sequences), a similarity function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - is called a Mercer kernel if there exists a projection $\phi: \mathcal{X} \to \mathcal{H}$ such that for all $x,y \in \mathcal{X}$ we have $K(x,y) = \langle \phi(x), \phi(y) \rangle$
- $oldsymbol{\cdot}$ ϕ often called feature map, embedding as well
- ${\mathcal H}$ can be ${\mathbb R}^D$ for some large/moderate D
- ullet ${\cal H}$ can even be infinite dimensional
- ullet In general ${\mathcal H}$ has to be a ${\it Hilbert space}$
- Technical details aside, Hilbert spaces are real vector spaces (possibly infinite dimensional) which have an inner (dot) product defined on them.

76

Examples of Kernels

- Can define kernels whenever have a sound notion of similarity
- All the following are Mercer kernels
- When $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ are vectors
 - Linear kernel $K_{lin}(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$
 - Quadratic kernel $K_{\text{quad}}(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + 1)^2$
 - Polynomial kernel $K_{\text{poly}}(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + c)^p, c \geq 0, p \in \mathbb{N}$
 - Gaussian kernel $K_{\text{gauss}}(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \cdot ||\mathbf{x} \mathbf{y}||_2^2)$
 - Laplacian kernel $K_{\text{lap}}(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \cdot ||\mathbf{x} \mathbf{y}||_1)$
- p, γ need to be tuned. Large p, γ can cause overfitting
- Notice all are notions of similarity (assume $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$)
 - $K(\mathbf{x}, \mathbf{y})$ is largest when $\mathbf{x} = \mathbf{y}$ and smallest when $\mathbf{x} = -\mathbf{y}$

EXercion 777

Oct 11, 2017

- Yup. It is trivial for the linear kernel. Just use $\phi(\mathbf{x}) = \mathbf{x}$
- For the quadratic kernel, note that

$$(\langle \mathbf{x}, \mathbf{y} \rangle + 1)^2 = 1 + 2 \cdot \langle \mathbf{x}, \mathbf{y} \rangle + \sum_{i,j}^d \mathbf{x}_i \mathbf{x}_j \mathbf{y}_i \mathbf{y}_j$$
$$= \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle, \text{ where } \phi(\mathbf{x}) = [\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \phi_2(\mathbf{x})] \in \mathbb{R}^{d^2 + d + 1}$$

- $\phi_0(\mathbf{x}) = [1] \in \mathbb{R}^1$
- $\phi_1(\mathbf{x}) = \sqrt{2} \cdot \mathbf{x} \in \mathbb{R}^d$
- $\phi_2(\mathbf{x}) = [\mathbf{x}_1 \mathbf{x}_1, \mathbf{x}_1 \mathbf{x}_2, \mathbf{x}_1 \mathbf{x}_3, \dots, \mathbf{x}_1 \mathbf{x}_d, \mathbf{x}_2 \mathbf{x}_1, \mathbf{x}_2 \mathbf{x}_2, \dots, \mathbf{x}_d \mathbf{x}_d] \in \mathbb{R}^{d^2}$
- For the polynomial kernel, the construction is similar.

- The quadratic kernel is named so for a reason.
- Notice the feature map corresponding to K_{quad} $\phi(\mathbf{x}) = [\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), \phi_2(\mathbf{x})]$
- A linear function over this map for some $\mathbf{w} \in \mathbb{R}^{d^2+d+1}$ $\langle \mathbf{w}, \phi(\mathbf{x}) \rangle$ corresponds to a quadratic function over \mathbf{x}
- Verify this yourself when $\mathbf{x} \in \mathbb{R}$ (d=1) for sake of simplicity
- If we use the quadratic kernel, using just a linear model learning algorithm in the space \mathbb{R}^{d^2+d+1} , we can learn any quadratic function over the data in the original space \mathbb{R}^d
- A polynomial kernel of degree p similarly allows learning of degree p polynomial functions over original data

CS771: Intro to M

- For Gaussian/Laplacian kernels, situation more intense
- The only feature maps ϕ that give rise to these kernels as $K_{\text{gauss/lap}}(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$ are infinite dimensional!

$$K_{\text{gauss}}(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \cdot ||\mathbf{x} - \mathbf{y}||_{2}^{2})$$

$$= \exp(-\gamma \cdot ||\mathbf{x}||_{2}^{2}) \exp(-\gamma \cdot ||\mathbf{y}||_{2}^{2}) \exp(2\gamma \cdot \langle \mathbf{x}, \mathbf{y} \rangle)$$

$$= \exp(-\gamma \cdot ||\mathbf{x}||_{2}^{2}) \exp(-\gamma \cdot ||\mathbf{y}||_{2}^{2}) \sum_{i=0}^{\infty} \frac{(2\gamma)^{i}}{i!} \cdot \langle \mathbf{x}, \mathbf{y} \rangle^{i}$$

 Wow, Gaussian kernel is an infinite linear combination of polynomial kernels of all orders!!

- $K_{\text{gauss}}(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \cdot ||\mathbf{x}||_2^2) \exp(-\gamma \cdot ||\mathbf{y}||_2^2) \sum_{i=0}^{\infty} \frac{(2\gamma)^i}{i!} \cdot \langle \mathbf{x}, \mathbf{y} \rangle^i$
- If ϕ_i is the feature map corresponding to the poly kernel $\langle \mathbf{x}, \mathbf{y} \rangle^i$, then a possible feature map for Gaussian kernel is

$$\phi_{\text{gauss}}(\mathbf{x}) = \exp(-\gamma \cdot ||\mathbf{x}||_2^2) \cdot \left[\frac{\sqrt{(2\gamma)^i}}{\sqrt{i!}} \cdot \phi_i(\mathbf{x}) \right]_{i=1,2,\dots,\infty} \in \mathcal{H}$$

- Learning a linear function over ${\cal H}$ amounts to learning an infinite-degree polynomial over \boldsymbol{x}
- These are very powerful kernels, often called universal kernels
- Using these kernels, theoretically speaking, one can learn any function over data*

- $K_{\text{gauss}}(\mathbf{x}, \mathbf{y}) = \exp(-\gamma \cdot ||\mathbf{x}||_2^2) \exp(-\gamma \cdot ||\mathbf{y}||_2^2) \sum_{i=0}^{\infty} \frac{(2\gamma)^i}{i!} \cdot \langle \mathbf{x}, \mathbf{y} \rangle^i$
- If ϕ_i is the feature map corresponding to the poly kernel $\langle \mathbf{x}, \mathbf{y} \rangle^i$, then a possible feature map for Gaussian kernel is

$$\phi_{\text{gauss}}(\mathbf{x}) = \exp(\|\mathbf{x} \cdot \|\mathbf{x}\|_2^2) \cdot \left[\frac{\sqrt{(2\gamma)^i}}{\sqrt{i!}} \cdot \phi_i(\mathbf{x}) \right]_{i=1,2,\dots,\infty} \in \mathcal{H}$$

- Learning a linear function over ${\cal H}$ and degree polynomial over ${\bf x}$
- These are very powerful kernels, often
- Using these kernels, theoretically speak function over data*

"possible"? You mean there can be more feature maps for the same kernel? Yes!

ts to learning an infinite-

Examples of Kernels contd ...

- When $X,Y\subseteq \mathcal{U}$ are sets
 - Intersection kernel $K_{\text{int}}(X,Y) = |X \cap Y|$
 - Norm. Int. kernel $K_{\text{int-n}}(X,Y) = \frac{|X \cap Y|}{\sqrt{|X| \cdot |Y|}}$ (notice that $K_{\text{int-n}} \in (0,1)$)
 - This is just the linear kernel in disguise and hence Mercer
- When $\boldsymbol{x},\boldsymbol{y}$ are strings/documents of words from a dictionary Σ
 - Let dictionary $\Sigma = \{w_1, w_2, ..., w_d\}$ have d words in it
 - Let $c_i(x)$ be the count of word i in string \mathbf{x}
 - Intersection kernel $K_{\text{int}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{d} \min\{c_i(\mathbf{x}), c_i(\mathbf{y})\}$
 - Norm. Int. kernel $K_{\text{int-n}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^d \frac{\min\{c_i(\mathbf{x}), c_i(\mathbf{y})\}}{\sqrt{c_i(\mathbf{x}) \cdot c_i(\mathbf{y})}}$ (define $\frac{0}{0} = 0$)
- All of the above are Mercer kernels! Notice all encode similarity

Exercise

Examples of Kernels

- Many, many other possibilities
- N-gram, substring, Fisher kernels between two strings
- Random walk kernels between two graphs
- Subtree, convolutional kernels between two trees
- ...
- But what if I need to construct a kernel over images/videos/FB?

How to construct new Mercer kernels

- Method 1: operations on existing kernels
- If K_1, K_2 are existing Mercer kernels then
 - $K_3 = c_1 \cdot K_1 + c_2 \cdot K_2$ is also a Mercer kernel if $c_1, c_2 \ge 0$ $K_3(\mathbf{x}, \mathbf{y}) = c_1 \cdot K_1(\mathbf{x}, \mathbf{y}) + c_2 \cdot K_2(\mathbf{x}, \mathbf{y})$
 - $K_4 = K_1 \cdot K_2$ is also a nice kernel $K_4(\mathbf{x}, \mathbf{y}) = K_1(\mathbf{x}, \mathbf{y}) \cdot K_2(\mathbf{x}, \mathbf{y})$
- Method 2: find a new feature construction for the data
- Find a way to represent data x as a vector $\phi_{\text{new}}(x) \in \mathbb{R}^d$ $K_{\text{new}}(x,y) = \langle \phi_{\text{new}}(x), \phi_{\text{new}}(y) \rangle$
- Method 3: mix and match
- Take new data representation $\phi_{\text{new}}(x) \in \mathbb{R}^d$ and an old kernel K_{old} $K_{\text{newer}}(x,y) = K_{\text{old}}\big(\phi_{\text{new}}(x),\phi_{\text{new}}(y)\big)$

CS771. Intro to N

Examples of Kernels

- Many, many other possibilities
- N-gram, substring, Fisher kernels between two strings
- Random walk kernels between two graphs
- Subtree, convolutional kernels between two trees

- ...
- But what if I need to construct a kernel over images/videos/FB?
- Pyramid kernel used in vision ... combination of Int kernels
- Okay, but what is so special or nice about Mercer kernels?

Linear learning but non-linear effects

- Okay, so you are telling me that if I project data to a higher dimensional space in a non-linear manner, two things happen
 - There is a good chance a linear model will fit the data nicely in the higher dimensional space
 - If I learn a linear model up there, it may still induce non-linear effects down here since the projection was non-linear
- However, calculating $\phi(x)$ for all data points is too much work
- If I really wanted to work all that hard why would I have wanted to reuse linear learning algorithms in the first place!!
- Need to learn about kernels first

"ANPUR • EX

Kernel SVMs

Executing an SVM in original space \mathbb{R}^d

Primal Formulation

- $\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \cdot \|\mathbf{w}\|_2^2$ s.t. $1 - y^i \langle \mathbf{w}, \mathbf{x}^i \rangle \le 0$
- Have seen GD/SGD methods to solve this ©

Dual Formulation

- $\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^i y^j \langle \mathbf{x}^i, \mathbf{x}^j \rangle$ s.t. $\alpha_i \ge 0$
- Have seen SCD methods to solve this ©
- Can recover $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^i x^i$

Executing an SVM in original space \mathbb{R}^d

Primal Formulation

- $\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \cdot \|\mathbf{w}\|_2^2$ s.t. $1 - y^i \langle \mathbf{w}, \mathbf{x}^i \rangle \le 0$
- Have seen GD/SGD methods to solve this ©

Dual Formulation

- $\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^i y^j \langle \mathbf{x}^i, \mathbf{x}^j \rangle$ s.t. $\alpha_i \ge 0$
- Have seen SCD methods to solve this ©
- Can recover $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^i x^i$

Hmm ... okay. Choose a nice feature map/projection $\phi(\cdot)$: $\mathbb{R}^d \to \mathcal{H}$ and solve the SVM in the space of \mathcal{H}

But my problem does horribly with linear classifiers. I really need non-linearity

Executing an SVM in ${\mathcal H}$

Primal Formulation

- $\min_{\mathbf{w} \in \mathcal{H}} \frac{1}{2} \cdot ||\mathbf{w}||_2^2$ s.t. $1 - y^i \langle \mathbf{w}, \phi(\mathbf{x}^i) \rangle \le 0$
- ullet But I chose ${\mathcal H}$ to be really large dimensional
- A single step of GD/SGD will take enormous time to run ☺

Executing an SVM in ${\mathcal H}$

Primal Formulation

- $\min_{\mathbf{w} \in \mathcal{H}} \frac{1}{2} \cdot ||\mathbf{w}||_2^2$ s.t. $1 - y^i \langle \mathbf{w}, \phi(\mathbf{x}^i) \rangle \le 0$
- ullet But I chose ${\mathcal H}$ to be really large dimensional
- A single step of GD/SGD will take enormous time to run ⁽³⁾

Dual Formulation

- $\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^i y^j \langle \phi(\mathbf{x}^i), \phi(\mathbf{x}^j) \rangle$ s.t. $\alpha_i \ge 0$
- ullet Wow ... this still has only n variables
- But what about $\langle \phi(\mathbf{x}^i), \phi(\mathbf{x}^j) \rangle$?
- If only I had a way to compute this fast ⊕
- Kernels !!!
- Choose a kernel K and take $\phi = \phi_K$ to be its feature map
- We will get $\langle \phi(\mathbf{x}^i), \phi(\mathbf{x}^j) \rangle = K(\mathbf{x}^i, \mathbf{x}^j)$

Executing an SVM in ${\mathcal H}$

Primal Formulation

- $\min_{\mathbf{w} \in \mathcal{H}} \frac{1}{2} \cdot ||\mathbf{w}||_2^2$ s.t. $1 - y^i \langle \mathbf{w}, \phi(\mathbf{x}^i) \rangle \le 0$
- \bullet But I chose ${\mathcal H}$ to be really large dimensional
- A single step of GD/SGD will take enormous time to run ⁽³⁾
- Can now choose ${\mathcal H}$ to be infinite-dim as well ©
- How do I recover \mathbf{w} from α ? Uh oh ...

Dual Formulation

- $\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^i y^j \langle \phi(\mathbf{x}^i), \phi(\mathbf{x}^j) \rangle$ s.t. $\alpha_i \ge 0$
- ullet Wow ... this still has only n variables
- But what about $\langle \phi(\mathbf{x}^i), \phi(\mathbf{x}^j) \rangle$?
- If only I had a way to compute this fast ⊕
- Kernels !!!
- Choose a kernel K and take $\phi = \phi_K$ to be its feature map
- We will get $\langle \phi(\mathbf{x}^i), \phi(\mathbf{x}^j) \rangle = K(\mathbf{x}^i, \mathbf{x}^j)$

Using an SVM learnt in ${\mathcal H}$

- Exercise: take the Gaussian kernel and show how a single step of SCD on the dual can be executed in $\mathcal{O}(nd)$ time
- Note: d is not the dimensionality of ${\mathcal H}$ which may be infinite dim
- So we can argue that SCD is really still taking $\mathcal{O}(n)$ time \odot
- But once we get a dual solution lpha how do we get a classifier?
- Getting $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^i \phi(x^i)$ pointless since \mathbf{w} is infinite/large dim.
- Instead, exploit the fact the we will only need to calculate $\langle \mathbf{w}, \phi(\mathbf{x}) \rangle$

to classify a test point **x**

•
$$\langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \langle \sum_{i=1}^{n} \alpha_i y^i \phi(\mathbf{x}^i), \phi(\mathbf{x}) \rangle = \sum_{i=1}^{n} \alpha_i y^i \langle \phi(\mathbf{x}^i), \phi(\mathbf{x}) \rangle$$

= $\sum_{i=1}^{n} \alpha_i y^i K(\mathbf{x}^i, \mathbf{x})$

Using an SVM learnt in ${\cal H}$

Outliers, redundant points should have $\alpha_i \approx 0$

- Note: d is not the dime
- uccian karnal and chaw α_i indicates how useful the data point (\mathbf{x}^i, y^i) is while voting
- If \mathbf{x}^i "similar" to \mathbf{x} i.e. $K(\mathbf{x}^i, \mathbf{x})$ is large, y^i influences predicted label more - nice!!

wet a classifier?

- But once we get a c
- Getting $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^{\mathbf{v}}$
- Instead, exploit the f
 - to classify a test point x

Note that this looks like soft weighted k-NN

the we v

- \mathbf{w} is infinite/large dim.
 - Need to perform \tilde{n} kernel evaluations to predict on a test point
 - late
- $\langle \mathbf{w}, \phi(\mathbf{x}) \rangle = \langle \sum_{i=1}^{n} \alpha_i y^i \phi(\mathbf{x}) \rangle = \sum_{i=1}^{n} \alpha_i y^i \langle \phi(\mathbf{x}) \rangle$ $=\sum_{i=1}^n \alpha_i y^i K(\mathbf{x}^i, \mathbf{x})$

So we can argue that SC is really still taking

 \tilde{n} is the number of support vectors which have $\alpha_i \neq 0$

Some Pros and Cons

- Kernels allow us to learn powerful non-linear functions
- Use the libsym library (even scikit-learn uses it internally)
- But they are more expensive to work with
- More expensive at training time -- $\mathcal{O}(nd)$ time for one SCD step
- More expensive to store learnt model need to store all support vectors $\mathcal{O}(\tilde{n}d)$ storage
- More expensive at prediction time -- $\mathcal{O}(\tilde{n}d)$ time to predict
- Linear SVMs took $\mathcal{O}(n)$ time for one SCD step, $\mathcal{O}(d)$ storage (simply store **w**), $\mathcal{O}(d)$ time to predict (simply calculate $\langle \mathbf{w}, \mathbf{x} \rangle$)
- But ... they are powerful and beautiful ... !!!

http://openclassroom.stanford.edu

http://openclassroom.stanford.edu

Gaussian kernel with $\gamma = 100$, 850 points, 150 SVs

Gaussian kernel with $\gamma = 100$, 850 points, 150 SVs

Most SVs close to the decision boundary

Please give your Feedback

http://tinyurl.com/ml17-18afb

