

Fig. S1. Niche differences (left) and relative fitness differences (right) of plant mixtures in the BIODEPTH experiment. We present in yellow the mixtures without any obligate AM plants and green those that contained obligate AM plants and with or without legumes. We observed higher niche differences and relative fitness differences in mixtures without oblicate AM plants and to those with legumes. Boxes depict the median (thick black line) and the first and third quartiles of the distributions. Overlaied points are bee swarm plots of the raw data. Statistics were robust to a subsampling.

Fig. S2 Relationships between complementarity and (a) weighted mean mycorrhizal responsiveness; (b) weighted variance in mycorrhizal responsiveness, as well as selection effects differences and (c) weighted mean mycorrhizal responsiveness; (b) weighted variance in mycorrhizal responsiveness in the 139 communites we used in our experiment.

Fig S3. Distribution of values of the natural log response ratio between mean competition coefficients and mean competition conversion coefficients in our sensitivity analysis. Note that we had to remove one value from the analysis because all competition coefficients were zero.

Table S1. Standard deviation of pairwise competition coefficients for the eight plant species used in our experiment in our remove one sensitivity analysis. The procedure of the sensitivity analysis was as follows: We iteratively assessed competition coefficients without a single pot. We constraint values in the range 0-1. We then scaled competition coefficients so that they average the median of the permutations. We finally assessed the standard deviation of the 139 values per competition coefficient. These standard deviations accounted on average for 14.90% of the values of the competition coefficients.

	Agrostis	Cynosyrus	Fragaria	Phleum	Plantago	Prunela	Rumex	Stellaria
Agrostis	0.061	0.057	0.06	0.046	0.037	0.063	0.057	0.065
Cynosyrus	0.057	0.101	0.012	0.045	0.041	0.054	0.066	0.121
Fragaria	0.06	0.012	0.093	0.041	0.037	0.074	0.049	0.103
Phleum	0.046	0.045	0.041	0.05	0.036	0.032	0.047	0.061
Plantago	0.037	0.041	0.037	0.036	0.054	0.041	0.041	0.036
Prunela	0.063	0.054	0.074	0.032	0.041	0.035	0.068	0.073
Rumex	0.057	0.066	0.049	0.047	0.041	0.068	0.049	0.055
Stellaria	0.065	0.121	0.103	0.061	0.036	0.073	0.055	0.104

Appendix 1: BIODEPTH – detailed materials and methods

We analyzed data on the BIODEPTH experiment from Ecological Archives M075-001-S1 (Spehn *et al.* 2005). To assess expected biomasses of the species we used information from the monocultures per site and year. We then replicated the estimation of complementarity and selection effects which are presented in the supplement in Spehn *et al.* (2005). We present our estimates in Appendix 4.

The consumer-resource model of MacArthur has been an influential coexistence model which depicts coexistence as an equilibrium condition of n consumers who have measurable pairwise competition coefficients, aij and compete for q resources (MacArthur, 1970). Chesson (1990; 2000) further developed the model and studied equilibrium coexistence conditions when the competition coefficients of any two species are symmetric. Carroll, Cardinale and Nisbet (2011) used Chesson's form of the model to partition net biodiversity effects into a fraction that explains niche differences and a fraction that explains relative fitness differences. Ecological niche space in a model is difficult to describe (Holt 2009), particularly in terms of bionomic (i.e. resource-related) variables which define the Eltonian niche (Soberón, 2007; Letten, Ke & Fukami, 2017). This is because there are several different ways to summarize observations on how well Eltonian ecological niche space is partitioned across species: (i) describe how well the entire community occupies available multidimensional niche space, (ii) characterize the degree to which on average the ecological requirements of a species deviates from those of typically cooccurring plant species, (iii) measure or infer niche differences in pairwise interactions. We carried out our analysis with the BIODEPTH data at a crude level. Unlike our controlled experiment where we tried to address all three methods here we only carried out assays at a community level.

Legumes can influence disproportunioally to their abundance interspecific plant competition (Marquard *et al.*, 2009) and if they are not equally represented across the comparison groups could bias results. To address this concern we further monitored instances where legume were present in the plant communities and controlled for this via a two-way ANOVA (main text; Fig. S1).

Soberón, J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10, 1115-1123.

Spehn, E.M.; Hector, A., Joshi, J., Scherer-Lorenzen, M., Schmid, B., Bazeley-White, E., Beierkuhnlein, C., Caldeira, M.C. et al. 2005. Ecosystem effects of biodiversity manipulations in European grasslands. Ecological Monographs 75:37–63.

Appendix 2: Linear models on niche difference and relative fitness differences

Summaries of four linear models predicting niche difference and complementarity with predictors weighted mean of mycorrhizal responsiveness in the community (wmyc) and weighted variance of mycorrhizal responsiveness (wsd). The exact formula we used for weighted mean mycorrhizal responsiveness was as follows:

$$wmyc_{j} = \frac{\sum_{i} \omega_{i} A_{ij}}{\sum_{i} A_{ij}} \dots s1$$

where i stands for the species present in the community j, ω_i the mycorrhizal responsiveness of the species and A_{ij} for the biomass of the species i in the community j. To calculate weighted variance of mycorrhizal responsiveness we used the command wtd.var from the R package Hmisc with x variable being the product of $\omega_i A_{ij}$ and weight the relative abundance of the species $\left\{=100.Ai_j / \sum_i A_{ij}\right\}$. A high mean mycorrhizal responsiveness (wmyc) expresses that a

plant community benefits on average a lot from mycorrhiza. A high weighted variance of mycorrhizal responsiveness characterizes a balanced community between mycorrhizal depedent and non-mycorrhizal-dependent plants.

Because R by default uses Type I sum of squares we considered both ways of structuring the predictors to formulate the linear models. We first report on the analysis of variance statistics and then present the fitted coefficients. Note that in both models with niche differences as response variable the weighted mean mycorrhizal responsiveness is significant. This is the case in all models with regards to the weighted variance of mycorrhizal responsivess.

```
ANOVA table in Model 1: response variable: niche differences; first predictor
weighted mean mycorrhizal responsiveness; second predictor: weighted variance
of mycorrhizal responsiveness.
> summary(model1<-aov(sqrt(ND)~wmyc*wsd))</pre>
            Df Sum Sq Mean Sq F value Pr(>F)
            1 0.317 0.3173 10.076 0.00186 **
WMVC
             1 0.331 0.3306 10.500 0.00150 **
wsd
           1 0.119 0.1190 3.778 0.05401 .
wmyc:wsd
Residuals 135 4.251 0.0315
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
ANOVA table in Model 2: response variable: relative fitness differences;
first predictor weighted mean mycorrhizal responsiveness; second predictor:
weighted variance of mycorrhizal responsiveness.
> anova (model2<-aov (sqrt (log (RFD)) ~wmyc*wsd))</pre>
Analysis of Variance Table
Response: sqrt(log(RFD))
          Df Sum Sq Mean Sq F value Pr(>F)
          1 2.951 2.95058 9.7131 0.002236 **
WMYC
           1 2.626 2.62643 8.6461 0.003858 **
wsd
         1 0.836 0.83637 2.7533 0.099377 .
wmyc:wsd
Residuals 135 41.009 0.30377
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANOVA table in Model 3: Equivalent to model 1 but with the two predictors in
reversed order.
> summary(model3<-aov(sqrt(ND)~wsd*wmyc))</pre>
            Df Sum Sq Mean Sq F value Pr(>F)
            1 0.490 0.4898 15.557 0.000128 ***
wsd
             1 0.158 0.1580 5.019 0.026708 *
WMYC
            1 0.119 0.1190
                              3.778 0.054011 .
wsd:wmyc
Residuals 135 4.251 0.0315
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
> anova(model2<-aov(sqrt(log(RFD))~wsd*wmyc))</pre>
Analysis of Variance Table
ANOVA table in Model 4: Equivalent to model 2 but with the two predictors in
reversed order.
Response: sqrt(log(RFD))
          Df Sum Sq Mean Sq F value
           1 4.024 4.0238 13.2462 0.0003879 ***
wsd
           1 1.553 1.5532 5.1130 0.0253471 *
WMVC
wsd:wmyc 1 0.836 0.8364 2.7533 0.0993766.
Residuals 135 41.009 0.3038
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Model summary (fitted coefficients) in Model1
> summary.lm(model1<-aov(sqrt(ND)~wmyc*wsd))</pre>
Call:
aov(formula = sqrt(ND) ~ wmyc * wsd)
Residuals:
    Min
            1Q Median
                                3Q
                                       Max
-0.25064 -0.12539 -0.05462 0.07191 0.45019
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.462e-01 2.415e-02 22.615 < 2e-16 ***
       -5.826e-01 1.971e-01 -2.955 0.00369 **
            3.239e-05 9.754e-06 3.321 0.00115 **
wsd
           1.412e-04 7.266e-05 1.944 0.05401.
wmyc:wsd
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.1774 on 135 degrees of freedom
Multiple R-squared: 0.1528, Adjusted R-squared: 0.134
F-statistic: 8.118 on 3 and 135 DF, p-value: 5.203e-05
Model summary (fitted coefficients) in Model2
> summary.lm(model2<-aov(sqrt(log(RFD))~wmyc*wsd))</pre>
Call:
aov(formula = sqrt(log(RFD)) ~ wmyc * wsd)
Residuals:
   Min
           10 Median
                           30
-0.6353 -0.4002 -0.1984 0.1250 1.4486
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.009e-01 7.501e-02 9.344 2.58e-16 ***
wmyc -1.694e+00 6.123e-01 -2.766 0.00647 **
           8.857e-05 3.030e-05 2.924 0.00406 **
           3.745e-04 2.257e-04 1.659 0.09938.
wmyc:wsd
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.5512 on 135 degrees of freedom
Multiple R-squared: 0.1352, Adjusted R-squared: 0.116
F-statistic: 7.037 on 3 and 135 DF, p-value: 0.000197
Model summary (fitted coefficients) in Model3
> summary.lm(model3<-aov(sqrt(ND)~wsd*wmyc))</pre>
Call:
aov(formula = sqrt(ND) ~ wsd * wmyc)
Residuals:
              10
                 Median
                                3Q
-0.25064 -0.12539 -0.05462 0.07191 0.45019
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.462e-01 2.415e-02 22.615 < 2e-16 ***
```

```
3.239e-05 9.754e-06 3.321 0.00115 **
wsd
wmyc
           -5.826e-01 1.971e-01 -2.955 0.00369 **
                                 1.944 0.05401 .
           1.412e-04 7.266e-05
wsd:wmyc
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.1774 on 135 degrees of freedom
Multiple R-squared: 0.1528, Adjusted R-squared: 0.134
F-statistic: 8.118 on 3 and 135 DF, p-value: 5.203e-05
Model summary (fitted coefficients) in Model4
> summary.lm(model4<-aov(sqrt(log(RFD))~wsd*wmyc))</pre>
Call:
aov(formula = sqrt(log(RFD)) ~ wsd * wmyc)
Residuals:
   Min
           1Q Median 3Q
-0.6353 -0.4002 -0.1984 0.1250 1.4486
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.009e-01 7.501e-02 9.344 2.58e-16 ***
       8.857e-05 3.030e-05 2.924 0.00406 **
wsd
wmyc
           -1.694e+00 6.123e-01 -2.766 0.00647 **
wsd:wmyc 3.745e-04 2.257e-04 1.659 0.09938.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.5512 on 135 degrees of freedom
Multiple R-squared: 0.1352, Adjusted R-squared: 0.116
F-statistic: 7.037 on 3 and 135 DF, p-value: 0.000197
We repeated the analyses with the alternative classification of diversity effects into
complementarity and selection effects.
ANOVA table in Model 5: response variable: complementary; first predictor
weighted mean mycorrhizal responsiveness; second predictor: weighted variance
of mycorrhizal responsiveness.
> summary(model5<-aov(compl~wmyc*wsd))</pre>
            Df Sum Sq Mean Sq F value
                                      Pr(>F)
            1 13750 13750 4.247 0.0412 *
wmyc
             1 153028 153028 47.272 2.09e-10 ***
wsd
            1 1494 1494
                              0.461 0.4981
wmyc:wsd
Residuals 135 437022
                         3237
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
ANOVA table in Model 5: response variable: selection effects; first predictor
weighted mean mycorrhizal responsiveness; second predictor: weighted variance
of mycorrhizal responsiveness.
> anova(model6<-aov(selection~wmyc*wsd))</pre>
Analysis of Variance Table
Response: selection
```

Df Sum Sq Mean Sq F value Pr(>F)

```
1 2310.4 2310.40 76.8884 6.855e-15 ***
         1 13.5 13.45 0.4477 0.5046
wsd
wmyc:wsd 1
              74.8 74.84 2.4905
                                    0.1169
Residuals 135 4056.6
                     30.05
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANOVA table in Model 7: Equivalent to model 5 but with the two predictors in
reversed order.
> summary(model7<-aov(compl~wsd*wmyc))</pre>
           Df Sum Sq Mean Sq F value Pr(>F)
           1 166599 166599 51.464 4.36e-11 ***
wsd
           1 178 178 0.055 0.815
wmyc
wsd:wmyc
           1 1494
                      1494 0.461 0.498
Residuals 135 437022
                       3237
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
ANOVA table in Model 8: Equivalent to model 6 but with the two predictors in
reversed order.
> anova(model8<-aov(selection~wsd*wmyc))</pre>
Analysis of Variance Table
Response: selection
          Df Sum Sq Mean Sq F value Pr(>F)
         1 250.8 250.77 8.3455 0.004506 **
wsd
wmyc
         1 2073.1 2073.08 68.9906 9.209e-14 ***
wsd:wmyc 1 74.8 74.84 2.4905 0.116872
Residuals 135 4056.6 30.05
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
```

Appendix 3: Sensitivity analysis – competition coefficients

To assess how robust competition coefficients were to the removal of any single experimental treatment we carried out a remove one sensitivity analysis. We assessed competition coefficients iteratively after removing each time a difference experimental treatment. We truncated any below zero values to zero and any values above one to one.

Variability in competition coefficient can arise either through the relative value of competition coefficients changing or through the relative strength of competition coefficients over the competition conversion coefficients changing. To seggregate between these two we implemented the following procedure:

- 1. We worked with the set of thirty six competition coefficients and we rescaled them so that they average the median expected value. Then we assessed the standard deviation of the 139 values. We present these median standard deviation values in Table S1. Standard deviation on average accounted for less than 15% of the assessed values of competition coefficients (the maximum observed value was 0.37 but the 3rd quartile value was 0.15).
- 2. We assessed in each case the mean value of the competition coefficients and the mean value of the competition conversion coefficients. We use these two estimates to calculate a log response ratio because of better distribution properties. We report on the spread of points at Fig. S3.

In both cases the variance we observed with regards to the estiamtes of competition coefficients was relatively low.

Appendix 4: Community data from the BIODEPTH experiment.

Plot ID	Year	Country	Net Effect	Comple mentarit y	Selectio n	Plant Community*	Niche Differe nces	Relative Fitness Difference s		Oblicates Present	Facultati ves Present	Legum es Presen t
B1P013	1	Germany	110.25	85.37	24.88	G1ALOPRA1;G1DACGLO1;G1HOLLAN1;H1GERPRA1	0.39	1.75	4	TRUE	TRUE	No
B1P031	1	Germany	57.45	-35.62	93.07	G1ALOPRA1;G1ARRELA1;G1FESRUB1;L1TRIREP1	0.33	1.84	4	TRUE	TRUE	Yes
B1P040	1	Germany	29.95	-22.41	52.36	G1ALOPRA1;G1DACGLO1;G1HOLLAN1;H1GERPRA1	0.30	1.61	4	TRUE	TRUE	No
B1P057	1	Germany	276.95	153.60	123.35	G1ALOPRA1;G1ARRELA1;G1FESRUB1;L1TRIREP1	0.91	51.31	4	TRUE	TRUE	Yes
C2P003	1	Portugal	112.46	194.24	-81.77	G2HOLLAN1;H2CONFLO1;H2SILGAL1;L2ORNCOM1	0.92	48.01	4	FALSE	TRUE	Yes
Capooc	1	Doutusal	151 24	FF 40	05.04	G2AVESAT1;G2LOLMUL1;G2PHABRA1;H2PLALAN1;H2RUMPUL1;H2TOR	0.24	1.50	0	TOUT	TRUE	Voc
C2P006 C2P009		Portugal	151.24 264.05	55.40 149.94		ARV1;L2ORNCOM1;L2TRISUB1 G2AVESAT1;H2RUMPUL1;H2TORARV1;L2VICSAT1	0.24 0.99	1.56 92.91	8 4	TRUE TRUE	TRUE	Yes Yes
C2P009		Portugal	256.25	289.92		G2AVESAT1;H2RUMPUL1;H2TORARV1;L2VICSAT1 G2AVESAT1;H2RUMPUL1;H2TORARV1;L2VICSAT1	0.99	45.45	4	TRUE	TRUE	Yes
C2P020		Portugal	-81.26			G2DACGLO1;H2CONFLO1;H2RUMPUL1;L2TRISUB1	0.93	53.93	4	FALSE	TRUE	Yes
C2P027		Portugal	-81.20	-42.19				1.29	4	TRUE	TRUE	Yes
C2P029		Portugal Portugal	-41.34			G2HOLLAN1;H2MISORO1;H2PLALAN1;L2VICSAT1 G2LOLMUL1;H2RUMPUL1;H2SILGAL1;L2TRISUB1	0.21	53.72	4	FALSE	TRUE	Yes
C2P035		Portugal	286.06	405.21		G2HOLLAN1;H2CONFLO1;H2SILGAL1;L2TRISOB1	0.90	41.95	4	FALSE	TRUE	Yes
C2P036		Portugal	216.56	425.29		G2HOLLAN1;H2MISORO1;H2PLALAN1;L2VICSAT1	0.93	83.92	4	TRUE	TRUE	Yes
C2P045		Portugal	-71.06	69.07		G2DACGLO1;H2CONFLO1;H2RUMPUL1;L2TRISUB1	0.99	53.93	4	FALSE	TRUE	Yes
C2P043		Portugal	-37.06			G2LOLMUL1;H2RUMPUL1;H2SILGAL1;L2TRISUB1	0.39	2.32	4	FALSE	TRUE	Yes
C2P054		Portugal	177.83	504.43		G2DACGL01;G2HOLLAN1;G2PHABRA1;H2CONFL01;H2MISOR01;H2RU MPUL1;L2ORNCOM1;L2VICSAT1	0.39	19.07	8	TRUE	TRUE	Yes
C2P055	1	Portugal	104.54	-8.27	112.81	G2AVESAT1;G2LOLMUL1;G2PHABRA1;H2PLALAN1;H2RUMPUL1;H2TOR ARV1;L2ORNCOM1;L2TRISUB1	0.16	1.44	8	TRUE	TRUE	Yes
C2P067	1	Portugal	240.63	531.62	-290.99	G2DACGL01;G2HOLLAN1;G2PHABRA1;H2CONFL01;H2MISOR01;H2RU MPUL1;L2ORNCOM1;L2VICSAT1	0.92	49.08	8	TRUE	TRUE	Yes
R5P006	1	Ireland	119.20	-25.97	145.17	G5HOLLAN1;H5CENNIG1;H5RUMACE1;L5TRIREP1	0.26	1.31	4	TRUE	TRUE	Yes
R5P007	1	Ireland	554.85	306.23	248.62	H5PLALAN1;H5RANREP1;L5LOTPED1;L5TRIREP1	0.91	49.27	4	TRUE	TRUE	Yes
R5P009	1	Ireland	238.63	127.37	111.26	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL AN1;H5RANREP1;H5RUMACE1	0.18	1.22	8	TRUE	TRUE	No
R5P014	1	Ireland	25.20	47.21	-22.01	G5AGRCAP1;G5ALOPRA1;H5PLALAN1;H5RUMACE1	0.30	1.29	4	TRUE	TRUE	No
R5P015	1	Ireland	308.25	159.96	148.29	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.41	1.80	4	TRUE	TRUE	No
R5P019	1	Ireland	274.50	170.72	103.78	G5AGRCAP1;G5ALOPRA1;L5LOTPED1;L5TRIREP1	0.44	1.63	4	TRUE	TRUE	Yes

R5P022	1 Ireland	-98.60	-138.95	40 35	H5CENNIG1;H5PLALAN1;L5LOTPED1;L5TRIREP1	0.13	1.14	4	TRUE	FALSE	Yes
1131 022	Tirciana	30.00	130.33	10.55	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5RU	0.13	1.1.	•	TROL	171232	103
R5P028	1 Ireland	-29.35	-108.88	79.53	MACE1;LSLOTPED1;LSTRIREP1	0.09	1.12	8	TRUE	TRUE	Yes
					G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL						
R5P029	1 Ireland	164.63	63.78	100.85	AN1;H5RANREP1;H5RUMACE1	0.15	1.12	8	TRUE	TRUE	No
DED030	4	04.55	72.60	450.33	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5PLALAN1;H5RAN	0.11	4 4 5		TOLLE	TD. 15	V
R5P030	1 Ireland	84.55	-73.68		REP1;L5LOTPED1;L5TRIREP1	0.11	1.15	8	TRUE	TRUE	Yes
R5P031	1 Ireland	56.35	-78.57		G5AGRCAP1;H5CENNIG1;H5RANREP1;L5LOTPED1	0.23	1.50	4	TRUE	TRUE	Yes
R5P035	1 Ireland	161.05	-17.14	178.19	G5ANTODO1;G5HOLLAN1;L5LOTPED1;L5TRIREP1	0.28	1.37	4	TRUE	TRUE	Yes
R5P036	1 Ireland	69.55	-65.61	135.16	G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLALAN1	0.24	1.28	4	TRUE	TRUE	No
R5P037	1 Ireland	273.40	165.42	107.98	G5AGRCAP1;H5PLALAN1;L5LOTPED1	0.56	1.81	3	TRUE	TRUE	Yes
R5P038	1 Ireland	105.85	23.63	82.22	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.28	1.28	4	TRUE	TRUE	No
R5P042	1 Ireland	-41.75	-160.23	118.48	G5ANTODO1;G5HOLLAN1;L5LOTPED1;L5TRIREP1	0.17	1.20	4	TRUE	TRUE	Yes
					G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL						
R5P045	1 Ireland	-291.78	-311.48	19.71	AN1;H5RANREP1;H5RUMACE1	0.03	1.04	8	TRUE	TRUE	No
R5P046	1 Ireland	271.80	163.29	108.51	H5CENNIG1;H5PLALAN1;L5LOTPED1;L5TRIREP1	0.57	2.72	4	TRUE	FALSE	Yes
R5P047	1 Ireland	266.85	96.91	169.94	H5PLALAN1;H5RANREP1;L5LOTPED1;L5TRIREP1	0.91	51.50	4	TRUE	TRUE	Yes
R5P050	1 Ireland	240.60	146.62	93.98	G5AGRCAP1;H5PLALAN1;L5LOTPED1	0.96	69.97	3	TRUE	TRUE	Yes
					G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5PLALAN1;H5RAN						
R5P051	1 Ireland	117.75	-13.65	131.40	REP1;L5LOTPED1;L5TRIREP1	0.14	1.26	8	TRUE	TRUE	Yes
DEDOES	1 Junion d	10.15	-47.89	24 74	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5RU	0.13	1 21	0	TOLIC		Vas
R5P052	1 Ireland	-16.15			MACE1;LSLOTPED1;LSTRIREP1	0.12	1.21	8	TRUE	TRUE	Yes
R5P055	1 Ireland	-89.65	-187.92		G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLALAN1	0.16	1.16	4	TRUE	TRUE	No
R5P056	1 Ireland	307.60	113.26	194.34	G5HOLLAN1;H5CENNIG1;H5RUMACE1;L5TRIREP1	0.41	1.68	4	TRUE	TRUE	Yes
R5P057	1 Ireland	3.43	-92.31	95 74	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL AN1;H5RANREP1;H5RUMACE1	0.10	1.13	8	TRUE	TRUE	No
R5P059	1 Ireland	-404.00	-404.00		G5AGRCAP1;G5ALOPRA1;H5PLALAN1;H5RUMACE1	0.00	1.00	4	TRUE	TRUE	No
R5P064	1 Ireland	-70.05	-114.61		G5AGRCAP1;H5CENNIG1;H5RANREP1;L5LOTPED1	0.15	1.14	4	TRUE	TRUE	Yes
R5P066	1 Ireland	193.05	92.09		G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.33	1.37	4	TRUE	TRUE	No
R5P069	1 Ireland	-85.35	-133.46		G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.20	1.17	4	TRUE	TRUE	No
R5P075	1 Ireland	-101.90	-144.87		G5AGRCAP1;G5ALOPRA1;L5LOTPED1;L5TRIREP1	0.15	1.19	4	TRUE	TRUE	Yes
R6P001	1 Sweden	-0.91	0.34		G6DACGL01;G6PHAARU1;H6LEUVUL1;L6LOTCOR1	0.29	1.38	4	TRUE	TRUE	Yes
R6P013	1 Sweden	2.19	-2.86		G6DACGL01;G6PHAARU1;H6LEUVUL1;L6LOTCOR1	0.25	1.28	4	TRUE	TRUE	Yes
R6P020	1 Sweden	NaN	Inf	NaN	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1	1.00	36.04	4	FALSE	TRUE	No
R6P027	1 Sweden	-44.30	-44.30		H6LEUVUL1;H6RANACR1;L6TRIHYB1;L6TRIREP1	0.00	1.00	4	TRUE	TRUE	Yes
R6P031	1 Sweden	-43.50	97.46	-140.96	H6LEUVUL1;H6RANACR1;L6TRIHYB1;L6TRIREP1	0.90	53.96	4	TRUE	TRUE	Yes

R6P043	1 Sweden	-11.41	2165 26	#######	G6PHLPRA1;H6RANACR1;H6RUMACE1;L6TRIPRA1	0.94	43.46	4	TRUE	TRUE	Yes
R6P056	1 Sweden	36.59	164.13			0.94	74.40	4	TRUE	TRUE	Yes
					G6PHLPRA1;H6RANACR1;H6RUMACE1;L6TRIPRA1					.	
R6P062	1 Sweden	24.51	-2.70		G6PHAARU1;G6PHLPRA1;L6LOTCOR1;L6TRIPRA1	0.30	1.53	4	TRUE	TRUE	Yes
R6P072	1 Sweden	-11.59	-30.74	19.15	G6PHAARU1;G6PHLPRA1;L6LOTCOR1;L6TRIPRA1 G7ALOPRA1;G7FESOVI1;H7CENNIG1;H7GALVER1;H7LEOHIS1;H7PLALAN	0.13	1.22	4	TRUE	TRUE	Yes
S7P005	1 Sheffield	52.46	36.36	16.09	1;L7LOTCOR1;L7TRIREP1	0.20	1.24	8	TRUE	TRUE	Yes
S7P009	1 Sheffield	66.10	41.13	24.97	G7FESOVI1;H7GALVER1;H7PLALAN1;L7LOTCOR1	0.40	1.31	4	TRUE	TRUE	Yes
S7P011	1 Sheffield	7.41	21.28	-13.87	G7AGRCAP1;H7GALVER1;H7LEOHIS1;L7LOTCOR1	0.34	1.27	4	TRUE	TRUE	Yes
S7P015	1 Sheffield	20.53	218.08	-197.55	G7ANTODO1;H7CENNIG1;H7ORIVUL1;L7TRIREP1	0.93	43.42	4	TRUE	TRUE	Yes
					G7ALOPRA1;G7ANTODO1;H7CENNIG1;H7ORIVUL1;H7PLALAN1;H7SCAC						
S7P019	1 Sheffield	65.36	967.31	-901.96	OL1;L7LOTCOR1;L7TRIREP1	0.91	49.64	8	TRUE	TRUE	Yes
S7P022	1 Sheffield	47.33	579.09	E21 76	G7AGRCAP1;G7FESOVI1;H7GALVER1;H7LEOHIS1;H7ORIVUL1;H7SCACOL 1;L7LOTCOR1;L7TRIREP1	0.92	49.06	8	TRUE	TRUE	Yes
											_
S7P025	1 Sheffield	13.73	963.61	-949.89	G7ALOPRA1;H7PLALAN1;H7SCACOL1;L7TRIREP1 G7AGRCAP1;G7ANTODO1;H7GALVER1;H7LEOHIS1;H7PLALAN1;H7SCAC	0.94	41.40	4	TRUE	FALSE	Yes
S7P026	1 Sheffield	49.19	441.49	-392.31	OL1;L7LOTCOR1;L7TRIREP1	0.75	19.52	8	TRUE	TRUE	Yes
					G7AGRCAP1;G7ANTODO1;H7GALVER1;H7LEOHIS1;H7PLALAN1;H7SCAC						
S7P028	1 Sheffield	29.59	56.81	-27.22	OL1;L7LOTCOR1;L7TRIREP1	0.23	1.24	8	TRUE	TRUE	Yes
S7P031	1 Sheffield	19.73	60.96	-41.23	G7ANTODO1;H7CENNIG1;H7ORIVUL1;L7TRIREP1	0.92	46.08	4	TRUE	TRUE	Yes
S7P036	1 Sheffield	18.71	22.40	-3.68	G7AGRCAP1;H7GALVER1;H7LEOHIS1;L7LOTCOR1	0.34	1.27	4	TRUE	TRUE	Yes
S7P037	1 Sheffield	77.20	51.02	26.18	G7FESOVI1;H7GALVER1;H7PLALAN1;L7LOTCOR1	0.42	1.30	4	TRUE	TRUE	Yes
					G7AGRCAP1;G7FESOVI1;H7GALVER1;H7LEOHIS1;H7ORIVUL1;H7SCACOL			_			
S7P040	1 Sheffield	82.33	108.09		1;L7LOTCOR1;L7TRIREP1	1.00		8	TRUE	TRUE	Yes
S7P042	1 Sheffield	18.33	157.95	-139.62	G7ALOPRA1;H7PLALAN1;H7SCACOL1;L7TRIREP1	0.94	40.45	4	TRUE	FALSE	Yes
S7P044	1 Sheffield	34.66	37.60	-2.95	G7ALOPRA1;G7FESOVI1;H7CENNIG1;H7GALVER1;H7LEOHIS1;H7PLALAN 1;L7LOTCOR1;L7TRIREP1	0.21	1.27	8	TRUE	TRUE	Yes
S7P051	1 Sheffield	72.56	95.32	-22 77	G7ALOPRA1;G7ANTODO1;H7CENNIG1;H7ORIVUL1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.33	1.49	8	TRUE	TRUE	Yes
S8P001	1 Silwood	-18.50	-98.77		G8AGRCAP1;G8HOLLAN1;H8PLALAN1;H8RUMACE1	0.22	1.29	4	TRUE	TRUE	No
S8P008	1 Silwood	319.59	313.86	00.127	G8AGRCAP1;H8ACHMIL1;H8PLALAN1;L8LOTCOR1	0.92	49.24	4	TRUE	TRUE	Yes
S8P011	1 Silwood	67.04	59.47		G8ARRELA1;G8FESRUB1;L8LOTCOR1;L8TRIREP1	0.37	1.54	4	TRUE	TRUE	Yes
S8P013	1 Silwood	-179.85	-162.48		G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1	0.19	1.26	4	FALSE	TRUE	No
										 	
S8P015	1 Silwood	96.96	267.31	-1/0.35	G8ARRELA1;H8HYPRAD1;H8RUMACE1;L8TRIREP1 G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8HYPR	0.93	45.99	4	TRUE	TRUE	Yes
S8P031	1 Silwood	38.90	24.56	14.34	AD1;H8PLALAN1;H8RUMACE1	0.16	1.33	8	TRUE	TRUE	No
S8P033	1 Silwood	8.43	-46.60	55.03	G8AGRCAP1;G8FESRUB1;G8HOLLAN1;H8HYPRAD1;H8PLALAN1;H8RUM ACE1;L8LOTCOR1;L8TRIREP1	0.12	1.19	8	TRUE	TRUE	Yes

					COARDELAA COFFEEDLINA COLLOLLANIA LIOACUNALIA LIODUALANIA LIODUANA			-			
S8P040	1 Silwood	469.14	663.63	-194.49	G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8PLALAN1;H8RUMA CE1;L8LOTCOR1;L8TRIREP1	0.76	19.21	8	TRUE	TRUE	Yes
S8P046	1 Silwood	-181.60	-140.37	-41.23	G8AGRCAP1;G8HOLLAN1;H8PLALAN1;H8RUMACE1	0.18	1.13	4	TRUE	TRUE	No
S8P047	1 Silwood	-46.47	4.44	-50.91	G8AGRCAP1;G8FESRUB1;G8HOLLAN1;H8HYPRAD1;H8PLALAN1;H8RUM ACE1;L8LOTCOR1;L8TRIREP1	0.13	1.09	8	TRUE	TRUE	Yes
S8P050	1 Silwood	-45.80	-45.88	0.08	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8HYPR AD1;H8PLALAN1;H8RUMACE1	0.13	1.28	8	TRUE	TRUE	No
S8P060	1 Silwood	187.14	170.78	16.36	G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8PLALAN1;H8RUMA CE1;L8LOTCOR1;L8TRIREP1	0.28	1.79	8	TRUE	TRUE	Yes
S8P063	1 Silwood	11.65	115.81	-104.16	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1	0.90	53.41	4	FALSE	TRUE	No
S8P071	1 Silwood	253.14	149.18	103.95	G8ARRELA1;G8FESRUB1;L8LOTCOR1;L8TRIREP1	0.91	49.73	4	TRUE	TRUE	Yes
S8P073	1 Silwood	118.39	65.78	52.61	G8AGRCAP1;H8ACHMIL1;H8PLALAN1;L8LOTCOR1	0.32	1.38	4	TRUE	TRUE	Yes
S8P078	1 Silwood	83.06	-38.06	121.12	G8ARRELA1;H8HYPRAD1;H8RUMACE1;L8TRIREP1	0.32	1.90	4	TRUE	TRUE	Yes
B1P013	2 Germany	24.79	23.72	1.06	G1ALOPRA1;G1DACGLO1;G1HOLLAN1;H1GERPRA1	0.35	1.72	4	TRUE	TRUE	No
B1P031	2 Germany	417.11	306.62	110.49	G1ALOPRA1;G1ARRELA1;G1FESRUB1;L1TRIREP1	0.91	51.52	4	TRUE	TRUE	Yes
B1P040	2 Germany	-10.71	-30.73	20.02	G1ALOPRA1;G1DACGLO1;G1HOLLAN1;H1GERPRA1	0.27	1.39	4	TRUE	TRUE	No
B1P057	2 Germany	223.31	146.65	76.66	G1ALOPRA1;G1ARRELA1;G1FESRUB1;L1TRIREP1	0.91	51.38	4	TRUE	TRUE	Yes
C2P003	2 Portugal	153.91	195.75	-41.84	G2HOLLAN1;H2CONFLO1;H2SILGAL1;L2ORNCOM1	0.91	51.95	4	FALSE	TRUE	Yes
C2P027	2 Portugal	137.10	35.67	101.43	G2DACGLO1;H2CONFLO1;H2RUMPUL1;L2TRISUB1	0.56	3.23	4	FALSE	TRUE	Yes
C2P029	2 Portugal	184.25	71.68	112.57	G2HOLLAN1;H2MISORO1;H2PLALAN1;L2VICSAT1	0.91	51.26	4	TRUE	TRUE	Yes
C2P033	2 Portugal	2.46	-33.71	36.17	G2LOLMUL1;H2RUMPUL1;H2SILGAL1;L2TRISUB1	0.16	1.19	4	FALSE	TRUE	Yes
C2P036	2 Portugal	904.51	1043.48	-138.97	G2HOLLAN1;H2CONFLO1;H2SILGAL1;L2ORNCOM1	0.93	46.02	4	FALSE	TRUE	Yes
C2P043	2 Portugal	95.15	14.58	80.57	G2HOLLAN1;H2MISORO1;H2PLALAN1;L2VICSAT1	0.36	1.56	4	TRUE	TRUE	Yes
C2P045	2 Portugal	367.90	114.63	253.27	G2DACGLO1;H2CONFLO1;H2RUMPUL1;L2TRISUB1	0.90	53.96	4	FALSE	TRUE	Yes
C2P053	2 Portugal	-10.84	-37.86	27.02	G2LOLMUL1;H2RUMPUL1;H2SILGAL1;L2TRISUB1	0.14	1.17	4	FALSE	TRUE	Yes
C2P054	2 Portugal	149.41	33.12	116.29	G2DACGLO1;G2HOLLAN1;G2PHABRA1;H2CONFLO1;H2MISORO1;H2RU MPUL1;L2ORNCOM1;L2VICSAT1	0.28	1.99	8	TRUE	TRUE	Yes
C2P067	2 Portugal	166.21	53.78	112.43	G2DACGLO1;G2HOLLAN1;G2PHABRA1;H2CONFLO1;H2MISORO1;H2RU MPUL1;L2ORNCOM1;L2VICSAT1	0.29	1.89	8	TRUE	TRUE	Yes
R5P006	2 Ireland	91.80	-37.51	129.31	G5HOLLAN1;H5CENNIG1;H5RUMACE1;L5TRIREP1	0.25	1.40	4	TRUE	TRUE	Yes
R5P007	2 Ireland	574.60	201.76	372.84	H5PLALAN1;H5RANREP1;L5LOTPED1;L5TRIREP1	0.91	49.85	4	TRUE	TRUE	Yes
R5P009	2 Ireland	184.63	83.38	101.24	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL AN1;H5RANREP1;H5RUMACE1	0.18	1.25	8	TRUE	TRUE	No
R5P014	2 Ireland	-39.15	-55.70	16.55	G5AGRCAP1;G5ALOPRA1;H5PLALAN1;H5RUMACE1	0.23	1.36	4	TRUE	TRUE	No
R5P015	2 Ireland	154.35	48.54	105.81	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.46	2.52	4	TRUE	TRUE	No
R5P019	2 Ireland	153.15	9.95	143.20	G5AGRCAP1;G5ALOPRA1;L5LOTPED1;L5TRIREP1	0.40	2.09	4	TRUE	TRUE	Yes

R5P022	2	Iroland	165.05	26.40	120 57	UECCNNICA JUEDI ALAMA JELOTDEDA JETDIDEDA	0.90	53.05	4	TRUE	FALSE	Voc
KSPUZZ		Ireland	105.05	26.48	138.57	H5CENNIG1;H5PLALAN1;L5LOTPED1;L5TRIREP1 G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5RU	0.90	55.05	4	TRUE	FALSE	Yes
R5P028	2	Ireland	56.18	-56.20	112.37	MACE1;LSLOTPED1;LSTRIREP1	0.11	1.16	8	TRUE	TRUE	Yes
						G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL						
R5P029	2	Ireland	313.03	204.95	108.08	AN1;H5RANREP1;H5RUMACE1	0.24	1.33	8	TRUE	TRUE	No
R5P030	2	Ireland	439.68	123.37	216.20	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5PLALAN1;H5RAN REP1;L5LOTPED1;L5TRIREP1	0.70	20.66	8	TRUE	TRUE	Yes
R5P031		Ireland	74.15	-33.64		G5AGRCAP1;H5CENNIG1;H5RANREP1;L5LOTPED1	0.29	1.70	4	TRUE	TRUE	Yes
R5P035		Ireland	322.90	70.49	252.41	G5ANTODO1;G5HOLLAN1;L5LOTPED1;L5TRIREP1	0.40	1.66	4	TRUE	TRUE	Yes
R5P036	2	Ireland	90.15	3.23	86.92	G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLALAN1	0.29	1.40	4	TRUE	TRUE	No
R5P037	2	Ireland	501.03	324.47	176.56	G5AGRCAP1;H5PLALAN1;L5LOTPED1	0.97	58.23	3	TRUE	TRUE	Yes
R5P038	2	Ireland	94.35	12.51	81.84	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.29	1.37	4	TRUE	TRUE	No
R5P042	2	Ireland	164.10	-18.21	182.31	G5ANTODO1;G5HOLLAN1;L5LOTPED1;L5TRIREP1	0.27	1.36	4	TRUE	TRUE	Yes
						G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL						
R5P045		Ireland	29.83	-63.50	93.32	AN1;H5RANREP1;H5RUMACE1	0.11	1.14	8	TRUE	TRUE	No
R5P046	2	Ireland	314.65	105.80	208.85	H5CENNIG1;H5PLALAN1;L5LOTPED1;L5TRIREP1	0.90	53.31	4	TRUE	FALSE	Yes
R5P047	2	Ireland	720.20	216.90	503.30	H5PLALAN1;H5RANREP1;L5LOTPED1;L5TRIREP1	0.90	53.37	4	TRUE	TRUE	Yes
R5P050	2	Ireland	414.53	250.15	164.38	G5AGRCAP1;H5PLALAN1;L5LOTPED1	0.98	51.29	3	TRUE	TRUE	Yes
						G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5PLALAN1;H5RAN						
R5P051	2	Ireland	40.08	-85.76	125.83	REP1;L5LOTPED1;L5TRIREP1	0.09	1.15	8	TRUE	TRUE	Yes
R5P052	2	Ireland	153.48	25.91	127 56	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5RU MACE1;L5LOTPED1;L5TRIREP1	0.16	1.24	8	TRUE	TRUE	Yes
		Ireland	4.05	-67.13			0.10	1.29	4	TRUE	TRUE	No
R5P055						G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLALAN1						1
R5P056		Ireland	166.60	45.29	121.31	G5HOLLAN1;H5CENNIG1;H5RUMACE1;L5TRIREP1 G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL	0.35	1.54	4	TRUE	TRUE	Yes
R5P057	2	Ireland	156.23	23.96	132.26	AN1;H5RANREP1;H5RUMACE1	0.15	1.24	8	TRUE	TRUE	No
R5P059	2	Ireland	108.95	83.74	25.21	G5AGRCAP1;G5ALOPRA1;H5PLALAN1;H5RUMACE1	0.34	1.26	4	TRUE	TRUE	No
R5P064	2	Ireland	256.35	73.60	182.75	G5AGRCAP1;H5CENNIG1;H5RANREP1;L5LOTPED1	0.90	52.42	4	TRUE	TRUE	Yes
R5P066	2	Ireland	199.05	114.99	84.06	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.37	1.46	4	TRUE	TRUE	No
R5P069	2	Ireland	112.45	28.29	84.16	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.30	1.36	4	TRUE	TRUE	No
R6P001	2	Sweden	-61.73	-108.56	46.83	G6DACGLO1;G6PHAARU1;H6LEUVUL1;L6LOTCOR1	0.05	1.09	4	TRUE	TRUE	Yes
R6P013		Sweden	-45.83	24.99	-70.82	G6DACGLO1;G6PHAARU1;H6LEUVUL1;L6LOTCOR1	0.46	2.37	4	TRUE	TRUE	Yes
						G6PHAARU1;G6PHLPRA1;H6ACHMIL1;H6LEUVUL1;H6RANACR1;H6RUM						
R6P017	2	Sweden	-181.94	-212.45	30.51	ACE1;L6LOTCOR1;L6TRIPRA1	0.01	1.03	8	TRUE	TRUE	Yes
R6P018	ว	Sweden	-101.64	-121.53	10 20	G6DACGLO1;G6FESOVI1;G6PHAARU1;G6PHLPRA1;H6LEUVUL1;H6RANA CR1;L6TRIHYB1;L6TRIREP1	0.06	1.11	8	TRUE	TRUE	Yes
												-
R6P020	2	Sweden	-17.45	-12.81	-4.64	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1	0.34	2.02	4	FALSE	TRUE	No

										1	
R6P024	2 Sweden	-213.74	-214.99	1 26	G6PHAARU1;G6PHLPRA1;H6ACHMIL1;H6LEUVUL1;H6RANACR1;H6RUM ACE1;L6LOTCOR1;L6TRIPRA1	0.01	1.01	8	TRUE	TRUE	Yes
1101 024	2 Sweden	-213.74	-214.33	1.20	G6DACGL01;G6FESOVI1;G6PHAARU1;G6PHLPRA1;H6LEUVUL1;H6RANA	0.01	1.01	- 8	TIVOL	TINOL	163
R6P025	2 Sweden	-213.84	-218.69	4.85	CR1;L6TRIHYB1;L6TRIREP1	0.00	1.01	8	TRUE	TRUE	Yes
R6P026	2 Sweden	2.81	-18.97	21.78	G6FESOVI1;H6ACHMIL1;L6TRIHYB1;L6TRIREP1	0.23	1.06	4	TRUE	TRUE	Yes
R6P027	2 Sweden	-135.50	-59.26	-76.24	H6LEUVUL1;H6RANACR1;L6TRIHYB1;L6TRIREP1	0.24	1.56	4	TRUE	TRUE	Yes
R6P031	2 Sweden	-20.30	-77.56	57.26	H6LEUVUL1;H6RANACR1;L6TRIHYB1;L6TRIREP1	0.16	1.17	4	TRUE	TRUE	Yes
R6P037	2 Sweden	53.11	141.64	-88.53	G6FESOVI1;H6ACHMIL1;L6TRIHYB1;L6TRIREP1	0.90	52.62	4	TRUE	TRUE	Yes
R6P038	2 Sweden	57.35	62.09	-4.74	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1	0.91	51.35	4	FALSE	TRUE	No
R6P043	2 Sweden	4.21	-112.70	116.91	G6PHLPRA1;H6RANACR1;H6RUMACE1;L6TRIPRA1	0.22	1.48	4	TRUE	TRUE	Yes
DCD04F	2 Cyundan	50.48	141.50	01.02	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1;L6LOTCOR1;L6TRIHY	0.26	1 42	8	TRUE	TRUE	Voc
R6P045	2 Sweden				B1;L6TRIPRA1;L6TRIREP1		1.43				Yes
R6P056	2 Sweden	338.51	106.31		G6PHLPRA1;H6RANACR1;H6RUMACE1;L6TRIPRA1	0.90	52.49	4	TRUE	TRUE	Yes
R6P062	2 Sweden	269.05	51.94	217.11	G6PHAARU1;G6PHLPRA1;L6LOTCOR1;L6TRIPRA1	0.90	52.90	4	TRUE	TRUE	Yes
R6P066	2 Sweden	215.78	240.74	-24.96	G6DACGL01;G6FESOVI1;H6ACHMIL1;H6RUMACE1;L6LOTCOR1;L6TRIHY B1;L6TRIPRA1;L6TRIREP1	0.72	20.24	8	TRUE	TRUE	Yes
R6P072	2 Sweden	-300.05	-324.77	24.72	G6PHAARU1;G6PHLPRA1;L6LOTCOR1;L6TRIPRA1	0.03	1.06	4	TRUE	TRUE	Yes
					G7ALOPRA1;G7FESOVI1;H7CENNIG1;H7GALVER1;H7LEOHIS1;H7PLALAN						
S7P005	2 Sheffield	421.13	204.98	216.15	1;L7LOTCOR1;L7TRIREP1	0.20	1.24	8	TRUE	TRUE	Yes
S7P009	2 Sheffield	227.04	58.97	168.07	G7FESOVI1;H7GALVER1;H7PLALAN1;L7LOTCOR1	0.31	1.37	4	TRUE	TRUE	Yes
S7P011	2 Sheffield	375.40	156.65	218.75	G7AGRCAP1;H7GALVER1;H7LEOHIS1;L7LOTCOR1	0.48	2.29	4	TRUE	TRUE	Yes
S7P015	2 Sheffield	-76.49	-64.37	-12.12	G7ANTODO1;H7CENNIG1;H7ORIVUL1;L7TRIREP1	0.24	1.37	4	TRUE	TRUE	Yes
S7P019	2 Sheffield	466.34	257.45	208.88	G7ALOPRA1;G7ANTODO1;H7CENNIG1;H7ORIVUL1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.23	1.28	8	TRUE	TRUE	Yes
S7P022	2 Sheffield	455.63	246.35	209.28	G7AGRCAP1;G7FESOVI1;H7GALVER1;H7LEOHIS1;H7ORIVUL1;H7SCACOL 1;L7LOTCOR1;L7TRIREP1	0.25	1.49	8	TRUE	TRUE	Yes
S7P025	2 Sheffield	247.90	164.21	83.69	G7ALOPRA1;H7PLALAN1;H7SCACOL1;L7TRIREP1	0.43	1.62	4	TRUE	FALSE	Yes
S7P026	2 Sheffield	450.89	275.72	175.16	G7AGRCAP1;G7ANTODO1;H7GALVER1;H7LEOHIS1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.22	1.24	8	TRUE	TRUE	Yes
S7P028	2 Sheffield	419.89	279.60	140.29	G7AGRCAP1;G7ANTODO1;H7GALVER1;H7LEOHIS1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.22	1.23	8	TRUE	TRUE	Yes
S7P031	2 Sheffield	-83.09	-72.95	-10.14	G7ANTODO1;H7CENNIG1;H7ORIVUL1;L7TRIREP1	0.22	1.32	4	TRUE	TRUE	Yes
S7P036	2 Sheffield	409.70	158.08	251.62	G7AGRCAP1;H7GALVER1;H7LEOHIS1;L7LOTCOR1	0.57	3.33	4	TRUE	TRUE	Yes
S7P037	2 Sheffield	263.14	109.85	153.29	G7FESOVI1;H7GALVER1;H7PLALAN1;L7LOTCOR1	0.32	1.29	4	TRUE	TRUE	Yes
S7P040	2 Sheffield	442.53	261.92	180.61	G7AGRCAP1;G7FESOVI1;H7GALVER1;H7LEOHIS1;H7ORIVUL1;H7SCACOL 1;L7LOTCOR1;L7TRIREP1	0.25	1.40	8	TRUE	TRUE	Yes
S7P042	2 Sheffield	236.20	192.32		G7ALOPRA1;H7PLALAN1;H7SCACOL1;L7TRIREP1	0.47	1.81	4	TRUE	FALSE	Yes
	=				·		_:	•			

					LOTAL ODDAA CZEECOVIA LIZOCENNICA LIZOCALVEDA LIZI FOLIICA LIZDI ALANI			-		1	
S7P044	2 Sheffield	438.43	235.52	202 91	G7ALOPRA1;G7FESOVI1;H7CENNIG1;H7GALVER1;H7LEOHIS1;H7PLALAN 1;L7LOTCOR1;L7TRIREP1	0.21	1.25	8	TRUE	TRUE	Yes
371 044	Zisticiticia	730.73	233.32	202.51	G7ALOPRA1;G7ANTODO1;H7CENNIG1;H7ORIVUL1;H7PLALAN1;H7SCAC	0.21	1.25		TINOL	TROL	103
S7P051	2 Sheffield	382.94	262.51	120.42	OL1;L7LOTCOR1;L7TRIREP1	0.22	1.21	8	TRUE	TRUE	Yes
S8P001	2 Silwood	139.18	181.26	-42.08	G8AGRCAP1;G8HOLLAN1;H8PLALAN1;H8RUMACE1	0.56	3.08	4	TRUE	TRUE	No
S8P008	2 Silwood	321.96	420.51	-98.55	G8AGRCAP1;H8ACHMIL1;H8PLALAN1;L8LOTCOR1	0.91	49.96	4	TRUE	TRUE	Yes
S8P011	2 Silwood	151.16	85.86	65.30	G8ARRELA1;G8FESRUB1;L8LOTCOR1;L8TRIREP1	0.47	2.49	4	TRUE	TRUE	Yes
S8P013	2 Silwood	-126.11	0.59	-126.71	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1	0.36	1.94	4	FALSE	TRUE	No
S8P015	2 Silwood	163.30	-10.30	173.60	G8ARRELA1;H8HYPRAD1;H8RUMACE1;L8TRIREP1	0.42	2.44	4	TRUE	TRUE	Yes
S8P031	2 Silwood	703.19	711.12	-7.92	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8HYPR AD1;H8PLALAN1;H8RUMACE1	0.77	20.60	8	TRUE	TRUE	No
S8P033	2 Silwood	243.13	315.14	-72.01	G8AGRCAP1;G8FESRUB1;G8HOLLAN1;H8HYPRAD1;H8PLALAN1;H8RUM ACE1;L8LOTCOR1;L8TRIREP1	0.29	1.66	8	TRUE	TRUE	Yes
S8P040	2 Silwood	899.26	647.34	251.92	G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8PLALAN1;H8RUMA CE1;L8LOTCOR1;L8TRIREP1	0.90	53.17	8	TRUE	TRUE	Yes
S8P046	2 Silwood	-72.73	56.11	-128.83	G8AGRCAP1;G8HOLLAN1;H8PLALAN1;H8RUMACE1	0.31	1.33	4	TRUE	TRUE	No
S8P047	2 Silwood	-78.27	-95.87	17.60	G8AGRCAP1;G8FESRUB1;G8HOLLAN1;H8HYPRAD1;H8PLALAN1;H8RUM ACE1;L8LOTCOR1;L8TRIREP1	0.10	1.09	8	TRUE	TRUE	Yes
S8P050	2 Silwood	126.09	224.91	-98.81	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8HYPR AD1;H8PLALAN1;H8RUMACE1	0.20	1.23	8	TRUE	TRUE	No
S8P060	2 Silwood	283.26	154.36	128.90	G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8PLALAN1;H8RUMA CE1;L8LOTCOR1;L8TRIREP1	0.26	1.77	8	TRUE	TRUE	Yes
S8P063	2 Silwood	-116.21	32.68	-148.89	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1	0.38	2.00	4	FALSE	TRUE	No
S8P071	2 Silwood	34.06	-22.27	56.33	G8ARRELA1;G8FESRUB1;L8LOTCOR1;L8TRIREP1	0.40	2.30	4	TRUE	TRUE	Yes
S8P073	2 Silwood	78.56	86.58	-8.02	G8AGRCAP1;H8ACHMIL1;H8PLALAN1;L8LOTCOR1	0.30	1.19	4	TRUE	TRUE	Yes
S8P078	2 Silwood	492.30	177.79	314.51	G8ARRELA1;H8HYPRAD1;H8RUMACE1;L8TRIREP1	0.90	53.95	4	TRUE	TRUE	Yes
B1P013	3 Germany	33.00	5.17	27.83	G1ALOPRA1;G1DACGLO1;G1HOLLAN1;H1GERPRA1	0.28	1.32	4	TRUE	TRUE	No
B1P031	3 Germany	372.00	321.69	50.31	G1ALOPRA1;G1ARRELA1;G1FESRUB1;L1TRIREP1	0.91	51.70	4	TRUE	TRUE	Yes
B1P040	3 Germany	-93.80	-101.04	7.24	G1ALOPRA1;G1DACGLO1;G1HOLLAN1;H1GERPRA1	0.18	1.15	4	TRUE	TRUE	No
B1P057	3 Germany	277.80	237.25	40.55	G1ALOPRA1;G1ARRELA1;G1FESRUB1;L1TRIREP1	0.91	51.25	4	TRUE	TRUE	Yes
C2P003	3 Portugal	25.65	51.88	-26.23	G2HOLLAN1;H2CONFLO1;H2SILGAL1;L2ORNCOM1	0.93	46.25	4	FALSE	TRUE	Yes
C2P036	3 Portugal	46.25	67.93	-21.68	G2HOLLAN1;H2CONFLO1;H2SILGAL1;L2ORNCOM1	0.99	100.00	4	FALSE	TRUE	Yes
R5P006	3 Ireland	353.80	221.17	132.63	G5HOLLAN1;H5CENNIG1;H5RUMACE1;L5TRIREP1	0.58	3.09	4	TRUE	TRUE	Yes
R5P007	3 Ireland	546.55	240.51	306.04	H5PLALAN1;H5RANREP1;L5LOTPED1;L5TRIREP1	0.90	53.26	4	TRUE	TRUE	Yes
R5P009	3 Ireland	248.25	189.28	58.97	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL AN1;H5RANREP1;H5RUMACE1	0.42	3.59	8	TRUE	TRUE	No
R5P014	3 Ireland	179.75	41.17	138.58	G5AGRCAP1;G5ALOPRA1;H5PLALAN1;H5RUMACE1	0.30	1.34	4	TRUE	TRUE	No

R5P015	3 Ireland	1.25	24.36	-23.11	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.26	1.09	4	TRUE	TRUE	No
R5P019	3 Ireland	331.40	105.64	225.76	G5AGRCAP1;G5ALOPRA1;L5LOTPED1;L5TRIREP1	0.52	2.85	4	TRUE	TRUE	Yes
R5P022	3 Ireland	427.30	195.06	232.24	H5CENNIG1;H5PLALAN1;L5LOTPED1;L5TRIREP1	0.90	53.22	4	TRUE	FALSE	Yes
R5P028	3 Ireland	168.73	-26.40	195.13	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5RU MACE1;L5LOTPED1;L5TRIREP1	0.13	1.15	8	TRUE	TRUE	Yes
R5P029	3 Ireland	341.05	274.45	66.60	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL AN1;H5RANREP1;H5RUMACE1	0.21	1.29	8	TRUE	TRUE	No
R5P030	3 Ireland	301.40	155.08	146.32	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5PLALAN1;H5RAN REP1;L5LOTPED1;L5TRIREP1	0.21	1.45	8	TRUE	TRUE	Yes
R5P031	3 Ireland	66.10	-94.35	160.45	G5AGRCAP1;H5CENNIG1;H5RANREP1;L5LOTPED1	0.30	1.77	4	TRUE	TRUE	Yes
R5P035	3 Ireland	266.15	-44.09	310.24	G5ANTODO1;G5HOLLAN1;L5LOTPED1;L5TRIREP1	0.28	1.48	4	TRUE	TRUE	Yes
R5P036	3 Ireland	-108.85	-163.14	54.29	G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLALAN1	0.20	1.14	4	TRUE	TRUE	No
R5P037	3 Ireland	378.20	342.98	35.22	G5AGRCAP1;H5PLALAN1;L5LOTPED1	0.74	3.53	3	TRUE	TRUE	Yes
R5P038	3 Ireland	189.65	47.72	141.93	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.29	1.32	4	TRUE	TRUE	No
R5P042	3 Ireland	180.15	-85.73	265.88	G5ANTODO1;G5HOLLAN1;L5LOTPED1;L5TRIREP1	0.25	1.36	4	TRUE	TRUE	Yes
R5P045	3 Ireland	84.25	-38.86	123.11	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL AN1;H5RANREP1;H5RUMACE1	0.14	1.29	8	TRUE	TRUE	No
R5P046	3 Ireland	570.70	296.36	274.34	H5CENNIG1;H5PLALAN1;L5LOTPED1;L5TRIREP1	0.90	53.72	4	TRUE	FALSE	Yes
R5P047	3 Ireland	447.35	168.98	278.37	H5PLALAN1;H5RANREP1;L5LOTPED1;L5TRIREP1	0.90	52.94	4	TRUE	TRUE	Yes
R5P050	3 Ireland	329.00	294.59	34.41	G5AGRCAP1;H5PLALAN1;L5LOTPED1	0.65	2.52	3	TRUE	TRUE	Yes
R5P051	3 Ireland	160.50	-33.17	193.67	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5PLALAN1;H5RAN REP1;L5LOTPED1;L5TRIREP1	0.13	1.16	8	TRUE	TRUE	Yes
R5P052	3 Ireland	181.93	-61.68	243.61	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5RU MACE1;L5LOTPED1;L5TRIREP1	0.12	1.17	8	TRUE	TRUE	Yes
R5P055	3 Ireland	142.35	190.88	-48.53	G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLALAN1	0.45	2.16	4	TRUE	TRUE	No
R5P056	3 Ireland	183.00	-0.55	183.55	G5HOLLAN1;H5CENNIG1;H5RUMACE1;L5TRIREP1	0.29	1.41	4	TRUE	TRUE	Yes
R5P057	3 Ireland	296.25	64.82	231.43	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1;H5CENNIG1;H5PLAL AN1;H5RANREP1;H5RUMACE1	0.16	1.22	8	TRUE	TRUE	No
R5P059	3 Ireland	280.15	167.05	113.10	G5AGRCAP1;G5ALOPRA1;H5PLALAN1;H5RUMACE1	0.38	1.38	4	TRUE	TRUE	No
R5P064	3 Ireland	381.70	124.43	257.27	G5AGRCAP1;H5CENNIG1;H5RANREP1;L5LOTPED1	0.90	53.29	4	TRUE	TRUE	Yes
R5P066	3 Ireland	88.45	-9.67	98.12	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.25	1.13	4	TRUE	TRUE	No
R5P069	3 Ireland	-46.35	-130.85	84.50	G5AGRCAP1;G5ALOPRA1;G5ANTODO1;G5HOLLAN1	0.21	1.16	4	TRUE	TRUE	No
R5P075	3 Ireland	243.40	115.60	127.80	G5AGRCAP1;G5ALOPRA1;L5LOTPED1;L5TRIREP1	0.41	1.73	4	TRUE	TRUE	Yes
R6P001	3 Sweden	182.50	38.84	143.66	G6DACGLO1;G6PHAARU1;H6LEUVUL1;L6LOTCOR1	0.90	53.30	4	TRUE	TRUE	Yes
R6P013	3 Sweden	60.50	47.58	12.92	G6DACGLO1;G6PHAARU1;H6LEUVUL1;L6LOTCOR1	0.57	1.76	4	TRUE	TRUE	Yes
R6P017	3 Sweden	365.45	210.92	154.53	G6PHAARU1;G6PHLPRA1;H6ACHMIL1;H6LEUVUL1;H6RANACR1;H6RUM ACE1;L6LOTCOR1;L6TRIPRA1	0.70	20.70	8	TRUE	TRUE	Yes

						CCDACCLOA CCEECOVIA CCDUAADUA CCDUBDDAA UCLEUNIUA UCDANA						
R6P018	3	Sweden	356.54	273.59	82.95	G6DACGLO1;G6FESOVI1;G6PHAARU1;G6PHLPRA1;H6LEUVUL1;H6RANA CR1;L6TRIHYB1;L6TRIREP1	0.73	20.05	8	TRUE	TRUE	Yes
R6P020	3	Sweden	13.46	18.78	-5.32	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1	0.42	1.63	4	FALSE	TRUE	No
R6P024	3	Sweden	221.25	92.86	128.39	G6PHAARU1;G6PHLPRA1;H6ACHMIL1;H6LEUVUL1;H6RANACR1;H6RUM ACE1;L6LOTCOR1;L6TRIPRA1	0.69	20.97	8	TRUE	TRUE	Yes
R6P025	3	Sweden	114.04	81.27	32.77	G6DACGL01;G6FESOVI1;G6PHAARU1;G6PHLPRA1;H6LEUVUL1;H6RANA CR1;L6TRIHYB1;L6TRIREP1	0.69	20.84	8	TRUE	TRUE	Yes
R6P026	3	Sweden	379.86	954.44	-574.58	G6FESOVI1;H6ACHMIL1;L6TRIHYB1;L6TRIREP1	0.93	45.72	4	TRUE	TRUE	Yes
R6P027	3	Sweden	-108.71	70.65	-179.36	H6LEUVUL1;H6RANACR1;L6TRIHYB1;L6TRIREP1	0.90	53.63	4	TRUE	TRUE	Yes
R6P031	3	Sweden	98.39	60.11	38.28	H6LEUVUL1;H6RANACR1;L6TRIHYB1;L6TRIREP1	0.38	1.41	4	TRUE	TRUE	Yes
R6P037	3	Sweden	75.06	456.55	-381.49	G6FESOVI1;H6ACHMIL1;L6TRIHYB1;L6TRIREP1	0.91	51.77	4	TRUE	TRUE	Yes
R6P038	3	Sweden	-19.54	-11.44	-8.09	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1	0.23	1.46	4	FALSE	TRUE	No
R6P043	3	Sweden	247.40	193.77	53.63	G6PHLPRA1;H6RANACR1;H6RUMACE1;L6TRIPRA1	0.90	53.96	4	TRUE	TRUE	Yes
R6P045	3	Sweden	-47.23	-33.06	-14.17	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1;L6LOTCOR1;L6TRIHY B1;L6TRIPRA1;L6TRIREP1	0.12	1.41	8	TRUE	TRUE	Yes
R6P056	3	Sweden	787.00	656.44	130.56	G6PHLPRA1;H6RANACR1;H6RUMACE1;L6TRIPRA1	0.99	95.82	4	TRUE	TRUE	Yes
R6P062	3	Sweden	414.71	300.47	114.24	G6PHAARU1;G6PHLPRA1;L6LOTCOR1;L6TRIPRA1	0.99	82.01	4	TRUE	TRUE	Yes
R6P066	3	Sweden	136.17	188.49	-52.32	G6DACGLO1;G6FESOVI1;H6ACHMIL1;H6RUMACE1;L6LOTCOR1;L6TRIHY B1;L6TRIPRA1;L6TRIREP1	0.72	20.29	8	TRUE	TRUE	Yes
R6P072	3	Sweden	122.21	77.26	44.95	G6PHAARU1;G6PHLPRA1;L6LOTCOR1;L6TRIPRA1	0.92	49.10	4	TRUE	TRUE	Yes
S7P005		Sheffield	430.94	337.76	93.18	G7ALOPRA1;G7FESOVI1;H7CENNIG1;H7GALVER1;H7LEOHIS1;H7PLALAN 1;L7LOTCOR1;L7TRIREP1	0.21	1.22	8	TRUE	TRUE	Yes
S7P009	3	Sheffield	277.41	265.09	12.32	G7FESOVI1;H7GALVER1;H7PLALAN1;L7LOTCOR1	0.40	1.59	4	TRUE	TRUE	Yes
S7P011	3	Sheffield	345.54	236.99	108.54	G7AGRCAP1;H7GALVER1;H7LEOHIS1;L7LOTCOR1	0.52	2.54	4	TRUE	TRUE	Yes
S7P015	3	Sheffield	119.28	154.82	-35.55	G7ANTODO1;H7CENNIG1;H7ORIVUL1;L7TRIREP1	0.34	1.24	4	TRUE	TRUE	Yes
S7P019	3	Sheffield	429.86	405.97	23.88	G7ALOPRA1;G7ANTODO1;H7CENNIG1;H7ORIVUL1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.23	1.27	8	TRUE	TRUE	Yes
S7P022	3	Sheffield	433.74	397.23	36.51	G7AGRCAP1;G7FESOVI1;H7GALVER1;H7LEOHIS1;H7ORIVUL1;H7SCACOL 1;L7LOTCOR1;L7TRIREP1	0.26	1.50	8	TRUE	TRUE	Yes
S7P025	3	Sheffield	231.05	105.69	125.36	G7ALOPRA1;H7PLALAN1;H7SCACOL1;L7TRIREP1	0.36	1.60	4	TRUE	FALSE	Yes
S7P026	3	Sheffield	374.78	283.02	91.76	G7AGRCAP1;G7ANTODO1;H7GALVER1;H7LEOHIS1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.20	1.19	8	TRUE	TRUE	Yes
S7P028	3	Sheffield	328.78	263.42	65.36	G7AGRCAP1;G7ANTODO1;H7GALVER1;H7LEOHIS1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.19	1.15	8	TRUE	TRUE	Yes
S7P031	3	Sheffield	156.78	202.12	-45.34	G7ANTODO1;H7CENNIG1;H7ORIVUL1;L7TRIREP1	0.39	1.46	4	TRUE	TRUE	Yes
S7P036	3	Sheffield	213.74	139.15	74.59	G7AGRCAP1;H7GALVER1;H7LEOHIS1;L7LOTCOR1	0.37	1.53	4	TRUE	TRUE	Yes
S7P037	3	Sheffield	443.41	351.15	92.26	G7FESOVI1;H7GALVER1;H7PLALAN1;L7LOTCOR1	0.43	1.54	4	TRUE	TRUE	Yes

					G7AGRCAP1;G7FESOVI1;H7GALVER1;H7LEOHIS1;H7ORIVUL1;H7SCACOL	1	-	- 1		·	1
S7P040	3 Sheffield	509.74	487.64		1;L7LOTCOR1;L7TRIREP1	0.29	1.54	8	TRUE	TRUE	Yes
S7P042	3 Sheffield	346.25	235.64	110.61	G7ALOPRA1;H7PLALAN1;H7SCACOL1;L7TRIREP1	0.40	1.59	4	TRUE	FALSE	Yes
S7P044	3 Sheffield	389.54	265.83	123.71	G7ALOPRA1;G7FESOVI1;H7CENNIG1;H7GALVER1;H7LEOHIS1;H7PLALAN 1;L7LOTCOR1;L7TRIREP1	0.20	1.23	8	TRUE	TRUE	Yes
S7P051	3 Sheffield	529.56	506.00		G7ALOPRA1;G7ANTODO1;H7CENNIG1;H7ORIVUL1;H7PLALAN1;H7SCAC OL1;L7LOTCOR1;L7TRIREP1	0.25	1.31	8	TRUE	TRUE	Yes
S8P001	3 Silwood	285.51	342.21	-56.70	G8AGRCAP1;G8HOLLAN1;H8PLALAN1;H8RUMACE1	0.93	46.72	4	TRUE	TRUE	No
S8P008	3 Silwood	28.64	163.05	-134.41	G8AGRCAP1;H8ACHMIL1;H8PLALAN1;L8LOTCOR1	0.45	1.88	4	TRUE	TRUE	Yes
S8P011	3 Silwood	220.66	131.67	88.99	G8ARRELA1;G8FESRUB1;L8LOTCOR1;L8TRIREP1	0.91	51.44	4	TRUE	TRUE	Yes
S8P013	3 Silwood	208.71	340.58	-131.86	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1	0.90	53.47	4	FALSE	TRUE	No
S8P015	3 Silwood	272.05	94.81	177.24	G8ARRELA1;H8HYPRAD1;H8RUMACE1;L8TRIREP1	0.90	52.75	4	TRUE	TRUE	Yes
S8P031	3 Silwood	337.14	306.78	30.36	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8HYPR AD1;H8PLALAN1;H8RUMACE1	0.70	20.74	8	TRUE	TRUE	No
S8P033	3 Silwood	681.42	744.35		G8AGRCAP1;G8FESRUB1;G8HOLLAN1;H8HYPRAD1;H8PLALAN1;H8RUM ACE1;L8LOTCOR1;L8TRIREP1	0.82	21.68	8	TRUE	TRUE	Yes
S8P040	3 Silwood	526.09	338.98		G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8PLALAN1;H8RUMA CE1;L8LOTCOR1;L8TRIREP1	0.70	20.57	8	TRUE	TRUE	Yes
S8P046	3 Silwood	-180.09	-68.71	-111.38	G8AGRCAP1;G8HOLLAN1;H8PLALAN1;H8RUMACE1	0.22	1.22	4	TRUE	TRUE	No
S8P047	3 Silwood	232.82	200.84	0 = .0 0	G8AGRCAP1;G8FESRUB1;G8HOLLAN1;H8HYPRAD1;H8PLALAN1;H8RUM ACE1;L8LOTCOR1;L8TRIREP1	0.22	1.29	8	TRUE	TRUE	Yes
S8P050	3 Silwood	312.14	457.84		G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8HYPR AD1;H8PLALAN1;H8RUMACE1	0.44	2.43	8	TRUE	TRUE	No
S8P060	3 Silwood	234.89	176.30	58.59	G8ARRELA1;G8FESRUB1;G8HOLLAN1;H8ACHMIL1;H8PLALAN1;H8RUMA CE1;L8LOTCOR1;L8TRIREP1	0.32	2.00	8	TRUE	TRUE	Yes
S8P063	3 Silwood	130.31	249.89	-119.58	G8AGRCAP1;G8ARRELA1;G8FESRUB1;G8HOLLAN1	0.90	53.92	4	FALSE	TRUE	No
S8P071	3 Silwood	120.56	39.73	80.83	G8ARRELA1;G8FESRUB1;L8LOTCOR1;L8TRIREP1	0.90	53.84	4	TRUE	TRUE	Yes
S8P073	3 Silwood	340.34	300.89	39.44	G8AGRCAP1;H8ACHMIL1;H8PLALAN1;L8LOTCOR1	0.48	1.39	4	TRUE	TRUE	Yes
S8P078	3 Silwood	193.55	29.47	164.08	G8ARRELA1;H8HYPRAD1;H8RUMACE1;L8TRIREP1	0.90	53.92	4	TRUE	TRUE	Yes

^{*} We maintain the codes for plant species that the authors used in the BIODEPTH experiment. For more information kindly consult Ecological Archives M075-001-S1.

Appendix 5: Community data from the controlled experiment

						Relative	
			Complement	Selection	Niche	Fitness	Expected
ID	Plants in the Community	Net Effect	arity Effect	Effect	differences	Differences	Biomass
1	Phleum;Plantago;Prunela;Rumex	180.49	30.68	149.82	0.34	1.73	1132.31
2	Phleum;Plantago;Prunela;Rumex	125.79	20.63	105.17	0.29	1.35	1132.31
3	Agrostis;Plantago;Prunela;Rumex	-212.03	-275.09	63.06	0.20	1.23	1022.93
4	Agrostis;Plantago;Prunela;Rumex	-175.43	-208.88	33.45	0.22	1.29	1022.93
5	Cynosyrus;Plantago;Prunela;Rumex	-94.74	-177.95	83.21	0.25	1.45	1036.34
6	Cynosyrus;Plantago;Prunela;Rumex	-86.34	-188.40	102.06	0.29	1.68	1036.34
7	Plantago;Prunela;Rumex;Stellaria	1017.38	489.99	527.39	0.90	53.46	839.32
8	Plantago;Prunela;Rumex;Stellaria	118.58	-140.77	259.35	0.27	1.56	839.32
9	Fragaria;Plantago;Prunela;Rumex	81.57	-113.07	194.64	0.28	1.59	871.63
10	Fragaria;Plantago;Prunela;Rumex	89.37	-154.25	243.62	0.33	1.95	871.63
11	Agrostis;Phleum;Plantago;Rumex	273.67	14.17	259.50	0.45	2.59	1042.83
12	Agrostis;Phleum;Plantago;Rumex	317.57	112.77	204.80	0.33	1.47	1042.83
13	Cynosyrus;Phleum;Plantago;Rumex	722.07	422.80	299.27	0.91	51.26	1056.23
14	Cynosyrus;Phleum;Plantago;Rumex	219.47	77.78	141.69	0.29	1.29	1056.23
15	Phleum;Plantago;Rumex;Stellaria	203.09	-136.50	339.59	0.24	1.33	859.21
16	Phleum;Plantago;Rumex;Stellaria	127.49	-190.74	318.23	0.23	1.40	859.21
17	Fragaria;Phleum;Plantago;Rumex	419.18	43.03	376.15	0.33	1.59	891.52
18	Fragaria;Phleum;Plantago;Rumex	611.98	209.39	402.59	0.38	1.64	891.52
19	Agrostis;Cynosyrus;Plantago;Rumex	91.34	-56.86	148.20	0.30	1.62	946.86
20	Agrostis;Cynosyrus;Plantago;Rumex	1224.64	851.44	373.21	0.91	52.11	946.86
21	Agrostis;Plantago;Rumex;Stellaria	105.46	40.92	64.54	0.30	1.36	749.84
22	Agrostis;Plantago;Rumex;Stellaria	1675.16	891.61	783.55	0.91	50.06	749.84
23	Agrostis;Fragaria;Plantago;Rumex	178.45	153.73	24.72	0.30	1.11	782.15
24	Agrostis;Fragaria;Plantago;Rumex	-43.05	-137.68	94.63	0.22	1.23	782.15
25	Cynosyrus;Plantago;Rumex;Stellaria	-272.64	-373.95	101.31	0.13	1.13	763.24
26	Cynosyrus;Plantago;Rumex;Stellaria	332.26	-47.40	379.66	0.43	2.60	763.24
27	Cynosyrus;Fragaria;Plantago;Rumex	711.45	240.74	470.70	0.90	53.43	795.55
28	Cynosyrus;Fragaria;Plantago;Rumex	918.05	457.83	460.22	0.91	50.69	795.55

							-
29	Fragaria;Plantago;Rumex;Stellaria	523.37	92.78	430.59	0.37	1.77	598.53
	Fragaria;Plantago;Rumex;Stellaria	313.07	47.49	265.58	0.30	1.31	598.53
31	Agrostis;Phleum;Plantago;Prunela	-13.09	-135.30	122.21	0.35	2.02	1161.99
32	Agrostis;Phleum;Plantago;Prunela	2396.41	2141.18	255.24	0.94	42.55	1161.99
33	Cynosyrus;Phleum;Plantago;Prunela	373.81	239.07	134.74	0.44	2.18	1175.39
34	Cynosyrus;Phleum;Plantago;Prunela	33.71	-73.91	107.62	0.33	1.76	1175.39
35	Phleum;Plantago;Prunela;Stellaria	234.73	-31.80	266.53	0.27	1.32	978.37
36	Phleum;Plantago;Prunela;Stellaria	159.03	-87.85	246.88	0.26	1.37	978.37
37	Fragaria;Phleum;Plantago;Prunela	57.72	-68.83	126.54	0.33	1.83	1010.68
38	Fragaria;Phleum;Plantago;Prunela	1163.42	858.00	305.42	0.92	48.58	1010.68
39	Agrostis;Cynosyrus;Plantago;Prunela	186.08	87.33	98.75	0.36	1.76	1066.02
40	Agrostis;Cynosyrus;Plantago;Prunela	-101.62	-169.30	67.68	0.30	1.72	1066.02
41	Agrostis;Plantago;Prunela;Stellaria	302.00	3.85	298.15	0.32	1.61	869.00
42	Agrostis;Plantago;Prunela;Stellaria	413.40	76.95	336.46	0.40	2.03	869.00
43	Agrostis;Fragaria;Plantago;Prunela	449.19	121.96	327.23	0.90	53.55	901.31
44	Agrostis;Fragaria;Plantago;Prunela	-241.31	-406.83	165.52	0.15	1.18	901.31
45	Cynosyrus;Plantago;Prunela;Stellaria	134.70	-135.37	270.07	0.28	1.56	882.40
46	Cynosyrus;Plantago;Prunela;Stellaria	351.20	54.19	297.01	0.40	2.09	882.40
47	Cynosyrus;Fragaria;Plantago;Prunela	1627.09	1057.35	569.74	0.90	53.27	914.71
48	Cynosyrus;Fragaria;Plantago;Prunela	227.49	-5.70	233.19	0.37	1.97	914.71
49	Fragaria;Plantago;Prunela;Stellaria	614.81	305.82	308.99	0.66	4.76	717.69
50	Fragaria;Plantago;Prunela;Stellaria	1129.81	471.21	658.60	0.91	52.07	717.69
51	Agrostis;Cynosyrus;Phleum;Plantago	-108.21	-253.38	145.17	0.22	1.32	1085.91
52	Agrostis;Cynosyrus;Phleum;Plantago	-15.41	-166.12	150.71	0.24	1.32	1085.91
53	Agrostis;Phleum;Plantago;Stellaria	245.01	-87.62	332.63	0.26	1.35	888.89
54	Agrostis;Phleum;Plantago;Stellaria	542.51	94.77	447.74	0.42	2.19	888.89
55	Agrostis;Fragaria;Phleum;Plantago	379.40	25.04	354.36	0.33	1.66	921.20
56	Agrostis;Fragaria;Phleum;Plantago	355.50	5.52	349.98	0.32	1.59	921.20
57	Cynosyrus;Phleum;Plantago;Stellaria	434.21	29.70	404.51	0.37	1.93	902.29
58	Cynosyrus;Phleum;Plantago;Stellaria	232.91	-77.41	310.31	0.26	1.35	902.29
59	Cynosyrus;Fragaria;Phleum;Plantago	88.00	-154.21	242.21	0.23	1.29	934.60
60	Cynosyrus;Fragaria;Phleum;Plantago	291.40	72.27	219.13	0.35	1.72	934.60
61	Fragaria;Phleum;Plantago;Stellaria	120.12	-183.21	303.33	0.20	1.21	737.58

62	Fragaria;Phleum;Plantago;Stellaria	811.32	173.45	637.86	0.47	2.39	737.58
63	Agrostis;Cynosyrus;Plantago;Stellaria	969.08	479.62	489.46	0.90	52.58	792.92
64	Agrostis; Cynosyrus; Plantago; Stellaria	396.58	43.95	352.63	0.37	1.91	792.92
65	Agrostis;Cynosyrus;Fragaria;Plantago	763.07	426.91	336.16	0.91	51.51	825.23
66	Agrostis;Cynosyrus;Fragaria;Plantago	238.97	-1.55	240.52	0.35	1.84	825.23
67	Agrostis;Fragaria;Plantago;Stellaria	723.89	208.25	515.64	0.91	51.93	628.21
68	Agrostis;Fragaria;Plantago;Stellaria	1490.19	533.09	957.10	0.90	53.26	628.21
69	Cynosyrus;Fragaria;Plantago;Stellaria	490.39	129.75	360.63	0.36	1.61	641.61
70	Cynosyrus;Fragaria;Plantago;Stellaria	641.49	84.92	556.57	0.90	53.05	641.61
71	Agrostis;Phleum;Prunela;Rumex	-370.44	-467.27	96.83	0.16	1.25	1057.04
72	Agrostis;Phleum;Prunela;Rumex	461.26	156.59	304.67	0.90	53.90	1057.04
73	Cynosyrus;Phleum;Prunela;Rumex	257.85	112.07	145.78	0.36	1.77	1070.45
74	Cynosyrus;Phleum;Prunela;Rumex	-314.35	-345.31	30.96	0.19	1.23	1070.45
75	Phleum;Prunela;Rumex;Stellaria	138.57	-123.41	261.98	0.26	1.43	873.43
76	Phleum;Prunela;Rumex;Stellaria	269.47	-72.43	341.90	0.31	1.69	873.43
77	Fragaria;Phleum;Prunela;Rumex	2122.16	1210.37	911.79	0.90	53.03	905.74
78	Fragaria;Phleum;Prunela;Rumex	105.16	-49.36	154.52	0.26	1.28	905.74
79	Agrostis;Cynosyrus;Prunela;Rumex	203.33	182.93	20.40	0.30	1.12	961.07
80	Agrostis;Cynosyrus;Prunela;Rumex	72.83	-49.88	122.70	0.27	1.35	961.07
81	Agrostis;Prunela;Rumex;Stellaria	43.95	-209.86	253.81	0.21	1.29	764.05
82	Agrostis;Prunela;Rumex;Stellaria	-220.35	-342.65	122.30	0.15	1.18	764.05
83	Agrostis;Fragaria;Prunela;Rumex	3.93	-77.39	81.33	0.26	1.35	796.37
84	Agrostis;Fragaria;Prunela;Rumex	7.83	-104.47	112.31	0.24	1.25	796.37
85	Cynosyrus;Prunela;Rumex;Stellaria	-210.26	-411.55	201.29	0.14	1.24	777.46
86	Cynosyrus;Prunela;Rumex;Stellaria	-41.66	-60.51	18.85	0.37	2.12	777.46
87	Cynosyrus;Fragaria;Prunela;Rumex	-14.97	33.72	-48.69	0.27	1.19	809.77
88	Cynosyrus;Fragaria;Prunela;Rumex	-223.67	-325.52	101.86	0.16	1.20	809.77
89	Fragaria;Prunela;Rumex;Stellaria	-247.95	-308.79	60.84	0.13	1.15	612.75
90	Fragaria;Prunela;Rumex;Stellaria	144.75	-142.18	286.93	0.21	1.25	612.75
91	Agrostis;Cynosyrus;Phleum;Rumex	-283.56	-302.25	18.69	0.18	1.16	980.96
92	Agrostis;Cynosyrus;Phleum;Rumex	62.04	-136.48	198.52	0.28	1.55	980.96
93	Agrostis;Phleum;Rumex;Stellaria	364.05	7.83	356.23	0.31	1.56	783.95
94	Agrostis;Phleum;Rumex;Stellaria	280.25	-47.74	328.00	0.32	1.72	783.95

		I	1			1	
	Agrostis;Fragaria;Phleum;Rumex	570.14	80.13	490.01	0.90		816.26
	Agrostis;Fragaria;Phleum;Rumex	189.24	-95.03	284.27	0.28		816.26
	Cynosyrus;Phleum;Rumex;Stellaria	195.45	-119.37	314.82	0.26		797.35
98	Cynosyrus;Phleum;Rumex;Stellaria	551.05	27.65	523.40	0.67	6.59	797.35
99	Cynosyrus;Fragaria;Phleum;Rumex	379.94	-35.03	414.97	0.39	2.20	829.66
100	Cynosyrus;Fragaria;Phleum;Rumex	296.44	380.09	-83.65	0.90	53.75	829.66
101	Fragaria;Phleum;Rumex;Stellaria	-530.31	-541.22	10.91	0.04	1.05	632.64
102	Fragaria;Phleum;Rumex;Stellaria	741.46	33.48	707.98	0.90	53.80	632.64
103	Agrostis;Cynosyrus;Rumex;Stellaria	-83.08	-125.91	42.84	0.25	1.42	687.98
104	Agrostis;Cynosyrus;Rumex;Stellaria	735.42	529.93	205.50	0.91	50.13	687.98
105	Agrostis;Cynosyrus;Fragaria;Rumex	-43.79	1.77	-45.55	0.28	1.35	720.29
106	Agrostis;Cynosyrus;Fragaria;Rumex	-30.49	33.63	-64.11	0.29	1.36	720.29
107	Agrostis;Fragaria;Rumex;Stellaria	295.73	139.07	156.67	0.57	3.44	523.27
108	Agrostis;Fragaria;Rumex;Stellaria	379.63	200.48	179.15	0.91	50.85	523.27
109	Cynosyrus;Fragaria;Rumex;Stellaria	54.73	-57.05	111.78	0.23	1.13	536.67
110	Cynosyrus;Fragaria;Rumex;Stellaria	881.43	700.54	180.88	0.83	6.42	536.67
111	Agrostis;Cynosyrus;Phleum;Prunela	-2.23	-174.44	172.21	0.30	1.74	1100.13
112	Agrostis;Cynosyrus;Phleum;Prunela	-192.93	-336.43	143.51	0.22	1.43	1100.13
113	Agrostis;Phleum;Prunela;Stellaria	176.79	-95.32	272.12	0.28	1.52	903.11
114	Agrostis;Phleum;Prunela;Stellaria	454.99	76.84	378.15	0.38	1.96	903.11
115	Agrostis;Fragaria;Phleum;Prunela	822.08	344.04	478.04	0.91	51.83	935.42
116	Agrostis;Fragaria;Phleum;Prunela	795.08	332.47	462.61	0.90	52.61	935.42
117	Cynosyrus;Phleum;Prunela;Stellaria	480.79	163.20	317.59	0.37	1.70	916.51
118	Cynosyrus;Phleum;Prunela;Stellaria	786.99	362.32	424.67	0.91	52.32	916.51
119	Cynosyrus;Fragaria;Phleum;Prunela	1195.48	638.31	557.17	0.90	52.56	948.82
120	Cynosyrus;Fragaria;Phleum;Prunela	216.28	-25.47	241.75	0.29	1.44	948.82
121	Fragaria;Phleum;Prunela;Stellaria	238.70	-119.65	358.35	0.27	1.57	751.80
122	Fragaria;Phleum;Prunela;Stellaria	320.50	-52.42	372.92	0.28	1.46	751.80
123	Agrostis;Cynosyrus;Prunela;Stellaria	229.96	-55.82	285.79	0.27	1.36	807.14
124	Agrostis;Cynosyrus;Prunela;Stellaria	135.16	-101.74	236.91	0.25	1.34	807.14
125	Agrostis;Cynosyrus;Fragaria;Prunela	-13.15	-111.15	98.01	0.25	1.35	839.45
126	Agrostis;Cynosyrus;Fragaria;Prunela	349.15	95.04	254.12	0.34	1.58	839.45
127	Agrostis;Fragaria;Prunela;Stellaria	153.57	-83.53	237.10	0.24	1.27	642.43

Appendices and supplementary figures – Veresoglou SD, Rillig MC, Johnson D. Responsiveness of plants to mycorrhiza regulates coexistence.

128 Agrostis;Fragaria;Prunela;Stellaria	-45.33	-78.67	33.34	0.24	1.28	642.43
129 Cynosyrus;Fragaria;Prunela;Stellaria	419.47	143.07	276.39	0.37	1.64	655.83
130 Cynosyrus;Fragaria;Prunela;Stellaria	328.27	94.54	233.73	0.36	1.62	655.83
131 Agrostis;Cynosyrus;Phleum;Stellaria	5.87	-252.18	258.06	0.21	1.36	827.03
132 Agrostis;Cynosyrus;Phleum;Stellaria	347.97	-67.16	415.13	0.36	2.01	827.03
133 Agrostis;Cynosyrus;Fragaria;Phleum	684.26	205.59	478.67	0.90	52.41	859.34
134 Agrostis; Cynosyrus; Fragaria; Phleum	408.36	10.47	397.89	0.46	2.74	859.34
135 Agrostis;Fragaria;Phleum;Stellaria	824.68	165.17	659.51	0.90	52.43	662.32
136 Agrostis; Fragaria; Phleum; Stellaria	376.88	-112.75	489.64	0.32	1.87	662.32
137 Agrostis;Fragaria;Phleum;Stellaria	1035.48	197.43	838.05	0.90	53.71	662.32
138 Agrostis;Fragaria;Phleum;Stellaria	734.38	94.04	640.34	0.90	52.95	662.32
139 Agrostis;Cynosyrus;Fragaria;Stellaria	-566.35	-566.35	0.00	0.00	1.00	566.35
140 Agrostis; Cynosyrus; Fragaria; Stellaria	31.45	-160.04	191.49	0.19	1.19	566.35