ИТМО Кафедра Информатики и прикладной математики

Цифровая Схемотехника

Отчет по лабораторной работе №4 "Цифровые автоматы" Вариант 4

Выполнили: студенты группы Р3217

Галеев Денис

Плюхин Дмитрий

Преподаватель: Баевских А. Н.

1. Цели работы

- · Познакомиться с применением конечных автоматов при разработке цифровых схем
- · Получить навыки проектирования и отладки схем с цифровыми автоматами

2. Задание

Автомат	Кодирование состояний	Триггер
Автомат 4	Двоичное	JK
Контроллер светофора	Двоичное	T

График переходов автомата 4

3. Ход работы

1) Реализация конечного автомата по заданному графу переходов

Тип автомата – Мура, поскольку выходное значение зависит только от текущего состояния автомата и не зависит напрямую от входов.

Таблица кодирования состояний

Состояние	Код
S0	000
S1	001
S2	010
S3	011
S4	100
S5	101

Таблица кодирования входных и выходных сигналов

X0		X1		X2		Y0	1	Y	71
Значение	Код								
True	01								
False	10								

Таблица переходов

Состояние	Входной сигнал	Следующее состояние
S0	X1	S2
	/X1*X2	S1
S1	X2	S4
	X1*/X2	S5
S2	/X0*/X2	S1
S3	X0*X1*/X2	S2
	X2	S5
S4	X0	S3
S5	X0*X2	S0
	X1*/X2	S4

Таблица выходов

Состояние	Выход
S0	Y1
S1	Y1
S2	Y0
S3	Y1
S4	Y1
S5	Y0

Схема автомата

Схема тестирования

Результаты тестирования

2) Реализация конечного автомата для заданного цифрового устройства Граф переходов контроллера светофора

Логика работы автомата: после сброса автомата в начальное состояние (S0) в отсутствие активного уровня сигнала force_red на следующем такте происходит переход в состояние S1 (загорается желтый свет). На следующем такте, если появился сигнал force_red, то происходит переход в состояние S0 (загорается красный свет), в противном случае — осуществляется переход в состояние S2 (загорается зеленый свет). До сих пор было не важно наличие или отсутствие активного уровня сигнала force_green, но теперь на следующем такте в случае его появления произойдет переход в то же состояние, если при этом сигнал force_red окажется неактивен, в противном случае произойдет переход в состояние S0 (загорится красный свет). Если же и force_green, и force_red неактивны, то произойдет переход в состояние S3 (загорится желтый свет), из которого на следующем такте вне зависимости от входных сигналов произойдет переход в состояние S0.

Тип автомата – Мура, поскольку выходное значение зависит только от текущего состояния автомата и не зависит напрямую от входов.

Таблица кодирования состояний

Состояние	Код
S0	00
S1	01
S2	11
S3	10

Таблица кодирования входных и выходных сигналов

force_1	red	force_gr	reen	red		yello	W	gr	een
Значение	Код	Значение	Код	Значение	Код	Значение	Код	Значение	Код
True	1	True	1	True	1	True	1	True	1
False	0	False	0	False	0	False	0	False	0

Таблица переходов

Состояние	Входной сигнал	Следующее состояние
S0	/force_red	S1
S1	force_red	S0
	/force_red	S2
S2	force_red	S0
	/force_red*force_green	S2
	/force_red*/force_green	S3
S3	-	S0

Таблица выходов

Состояние	Выход
S0	red
S1	yellow
S2	green
S3	yellow

Схема автомата

Схема тестирования

4. Вывод

В результате лабораторной работы были получены и применены на практике знания о построении простейших конечных автоматов и сделан вывод о том, что конечные автоматы значительно упрощают решение некоторого круга задач в терминах цифровой схемотехники, а также что разработка реализации автомата существенно упрощается в случае предварительного построения графа переходов и соответствующих таблиц.