Household Power Consumption Dataset

```
Attribute Information:
1.date: Date in format dd/mm/yyyy
2.time: time in format hh:mm:ss
3.global_active_power: household global minute-averaged active power (in kilowatt)
4.global_reactive_power: household global minute-averaged reactive power (in kilowatt)
5.voltage: minute-averaged voltage (in volt)
6.global_intensity: household global minute-averaged current intensity (in ampere)
7.sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It
corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot
plates are not electric but gas powered).
8.sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It
corresponds to the laundry room, containing a washing-machine, a tumble-drier, a
refrigerator and a light.
9.sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It
corresponds to an electric water-heater and an air-conditioner.
In [1]:
import pandas as pd
import numpy as np
import warnings
```

In [2]:

warnings.filterwarnings("ignore")

```
df = pd.read_csv(r"C:\Users\sahil\Documents\ineuron\dataset\household_power_consumption\hou
```

In [3]:

df.shape

Out[3]:

(2075259, 9)

In [4]:

df.head()

Out[4]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	
0	16/12/2006	17:24:00	4.216	0.418	234.840	18.400	
1	16/12/2006	17:25:00	5.360	0.436	233.630	23.000	
2	16/12/2006	17:26:00	5.374	0.498	233.290	23.000	
3	16/12/2006	17:27:00	5.388	0.502	233.740	23.000	
4	16/12/2006	17:28:00	3.666	0.528	235.680	15.800	
4						→	

In [5]:

Selecting random 50000 sample data

In [6]:

data = df.sample(50000)

In [7]:

data.shape

Out[7]:

(50000, 9)

In [8]:

data.head()

Out[8]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_inten
239228	31/5/2007	20:32:00	1.312	0.000	236.290	5.
1623366	17/1/2010	01:30:00	0.244	0.000	244.290	1.
1252711	4/5/2009	15:55:00	0.404	0.204	241.870	1.
1392782	9/8/2009	22:26:00	0.448	0.288	239.460	2
1661227	12/2/2010	08:31:00	1.426	0.000	241.990	5.
4						>

```
In [9]:
data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 50000 entries, 239228 to 1691695
Data columns (total 9 columns):
     Column
 #
                            Non-Null Count Dtype
0
     Date
                            50000 non-null object
 1
     Time
                            50000 non-null object
 2
     Global_active_power
                            50000 non-null object
 3
     Global_reactive_power 50000 non-null object
    Voltage
                            50000 non-null object
 4
 5
     Global_intensity
                            50000 non-null object
 6
                            50000 non-null
     Sub_metering_1
                                            object
 7
     Sub_metering_2
                            50000 non-null
                                            object
 8
     Sub_metering_3
                            49379 non-null
                                           float64
dtypes: float64(1), object(8)
memory usage: 3.8+ MB
In [10]:
import datetime as dt
In [11]:
# Seperating date, month and Year
In [12]:
data['Date'] = pd.to_datetime(data['Date'])
In [13]:
data['date'] = data['Date'].dt.day
In [14]:
data['month'] = data['Date'].dt.month
In [15]:
data['year'] = data['Date'].dt.year
In [16]:
data.year.unique()
Out[16]:
array([2007, 2010, 2009, 2008, 2006], dtype=int64)
In [17]:
# Separating Hours, Minutes and seconds
```

```
In [18]:
data['hour'] = pd.to_datetime(data['Time'], format='%H:%M:%S').dt.hour
In [19]:
data['Minutes']= pd.to_datetime(data['Time'], format='%H:%M:%S').dt.minute
In [20]:
data['Seconds'] = pd.to_datetime(data['Time'], format='%H:%M:%S').dt.second
In [21]:
# Converting data types & replacing special characters
In [22]:
data['Global_active_power'] = data['Global_active_power'].replace("?","")
In [23]:
data['Global_active_power'] = data['Global_active_power'].replace("'",np.nan)
In [24]:
data['Global_active_power'] = data['Global_active_power'].replace(" ",np.nan)
In [25]:
data['Global_active_power'] = data['Global_active_power'].replace("",np.nan)
In [26]:
data['Global_active_power'] = data['Global_active_power'].astype('float64')
In [27]:
data['Global_active_power'] = data['Global_active_power'].fillna(data['Global_active_power']
In [28]:
data['Global_active_power'].isna().sum()
Out[28]:
0
In [29]:
data['Global_reactive_power'] = data['Global_reactive_power'].replace('?',np.nan)
In [30]:
data['Global_reactive_power'] = data['Global_reactive_power'].astype(float)
```

```
In [31]:
data['Global_reactive_power'].isna().sum()
Out[31]:
621
In [32]:
data['Global_reactive_power'] = data['Global_reactive_power'].fillna(data['Global_reactive_
In [33]:
data['Global_reactive_power'].isna().sum()
Out[33]:
0
In [34]:
data['Voltage'] = data['Voltage'].replace('?',np.nan)
In [35]:
data['Voltage'] = data['Voltage'].astype(float)
In [36]:
data['Voltage'].isna().sum()
Out[36]:
621
In [37]:
data['Voltage'] = data['Voltage'].fillna(data['Voltage'].mean())
In [38]:
data['Voltage'].isna().sum()
Out[38]:
0
In [39]:
data['Global_intensity'] = data['Global_intensity'].replace('?',np.nan)
In [40]:
data['Global_intensity'] = data['Global_intensity'].astype('float')
```

```
In [41]:
data['Global_intensity'] = data['Global_intensity'].fillna(data['Global_intensity'].mean())
In [42]:
data['Sub_metering_1'] = data['Sub_metering_1'].replace('?',np.nan)
In [43]:
data['Sub_metering_1'] = data['Sub_metering_1'].astype('float')
In [44]:
data['Sub_metering_1'] = data['Sub_metering_1'].fillna(data['Sub_metering_1'].mean())
In [45]:
data['Sub_metering_2'] = data['Sub_metering_2'].replace('?',np.nan)
In [46]:
data['Sub_metering_3'] = data['Sub_metering_3'].replace('?',np.nan)
In [47]:
data['Sub_metering_2'] = data['Sub_metering_2'].astype('float')
In [48]:
data['Sub_metering_3'] = data['Sub_metering_3'].astype('float')
In [49]:
data['Sub_metering_2'] = data['Sub_metering_2'].fillna(data['Sub_metering_2'].mean())
In [50]:
data['Sub_metering_3'] = data['Sub_metering_3'].fillna(data['Sub_metering_3'].mean())
In [51]:
data['Total_metering'] = data['Sub_metering_1']+data['Sub_metering_2']+data['Sub_metering_3
```

```
In [52]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 50000 entries, 239228 to 1691695
Data columns (total 16 columns):
    Column
                           Non-Null Count Dtype
    ----
                           -----
0
    Date
                           50000 non-null datetime64[ns]
 1
    Time
                           50000 non-null object
 2
    Global active power
                           50000 non-null float64
 3
    Global_reactive_power 50000 non-null float64
 4
    Voltage
                           50000 non-null float64
 5
    Global_intensity
                           50000 non-null float64
 6
    Sub_metering_1
                           50000 non-null float64
 7
                           50000 non-null float64
    Sub_metering_2
 8
    Sub metering 3
                           50000 non-null float64
 9
    date
                           50000 non-null int64
 10 month
                           50000 non-null int64
                           50000 non-null int64
 11 year
 12 hour
                           50000 non-null int64
 13 Minutes
                           50000 non-null int64
 14 Seconds
                           50000 non-null int64
 15 Total metering
                           50000 non-null float64
dtypes: datetime64[ns](1), float64(8), int64(6), object(1)
memory usage: 6.5+ MB
In [53]:
new_data = data.drop(columns=['Date','Time','Sub_metering_1','Sub_metering_2','Sub_metering
In [54]:
new data.columns
Out[54]:
Index(['Global_active_power', 'Global_reactive_power', 'Voltage',
       'Global_intensity', 'date', 'month', 'year', 'hour', 'Minutes',
       'Seconds', 'Total_metering'],
     dtype='object')
```

In [55]:

new_data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 50000 entries, 239228 to 1691695

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Global_active_power	50000 non-null	float64
1	Global_reactive_power	50000 non-null	float64
2	Voltage	50000 non-null	float64
3	<pre>Global_intensity</pre>	50000 non-null	float64
4	date	50000 non-null	int64
5	month	50000 non-null	int64
6	year	50000 non-null	int64
7	hour	50000 non-null	int64
8	Minutes	50000 non-null	int64
9	Seconds	50000 non-null	int64
10	Total_metering	50000 non-null	float64

dtypes: float64(5), int64(6)

memory usage: 4.6 MB

In [56]:

new_data.describe()

Out[56]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	date
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000
mean	1.088157	0.123146	240.849140	4.613492	15.779160
std	1.049785	0.111551	3.237009	4.412993	8.817956
min	0.078000	0.000000	223.200000	0.200000	1.000000
25%	0.310000	0.048000	239.030000	1.400000	8.000000
50%	0.614000	0.102000	240.970000	2.800000	16.000000
75%	1.514500	0.192000	242.870000	6.400000	23.000000
max	9.994000	1.096000	252.970000	43.000000	31.000000
4					•

In [57]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [58]:
```

```
new_data.columns
```

Out[58]:

In [59]:

```
plt.figure(figsize =(15,15))
plt.suptitle('univariate Analysis for numeric features',fontsize = 20, fontweight='bold', a

for i in range (0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.kdeplot(x=new_data[new_data.columns[i]], shade= True, color='r')
    plt.xlabel(new_data.columns[i])
    plt.tight_layout()
```


since seconds doesnot have any information we can drop it
Voltage is showing normal distribution

In [60]:

```
# dropping Seconds columns as it doesnot show any variation
new_data.drop(columns=['Seconds'], axis =1, inplace = True)
```

In [61]:

```
new_data.columns
```

Out[61]:

In [62]:

```
plt.figure(figsize =(15,15))
plt.suptitle('Relation of numeric features with Total metering',fontsize = 20, fontweight='

for i in range (0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.scatterplot(x=new_data['Total_metering'],y=new_data[new_data.columns[i]])
    plt.ylabel(new_data.columns[i])
    plt.xlabel('Total_metering')
    plt.tight_layout()
```


Global Intensity and Global active power is highly related with Total metering

In [63]:

Out[63]:

<AxesSubplot:xlabel='hour', ylabel='Total_metering'>

In [64]:

Peak power consumption is between 9 am to 10 am

In [65]:

```
sns.lineplot(x="month", y="Total_metering",data=new_data, color='red')
```

Out[65]:

<AxesSubplot:xlabel='month', ylabel='Total_metering'>

In July there is least power consumption

In [66]:

```
sns.lineplot(x="date", y="Total_metering",data=new_data, color='red')
```

Out[66]:

<AxesSubplot:xlabel='date', ylabel='Total_metering'>

In [67]:

```
sns.lineplot(x="year", y="Total_metering",data=new_data, color='red')
```

Out[67]:

<AxesSubplot:xlabel='year', ylabel='Total_metering'>

In [68]:

Power consumption has decreased from 2006.

In [69]:

Checking correlation between features new_data.corr()

Out[69]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity
Global_active_power	1.000000	0.247526	-0.405717	0.998912
Global_reactive_power	0.247526	1.000000	-0.117495	0.266897
Voltage	-0.405717	-0.117495	1.000000	-0.417265
Global_intensity	0.998912	0.266897	-0.417265	1.000000
date	-0.013610	0.010332	-0.001232	-0.013326
month	0.002231	0.015479	0.037846	0.001421
year	-0.034249	0.041110	0.255353	-0.038451
hour	0.281613	0.124570	-0.179564	0.282101
Minutes	0.000932	-0.002103	0.004345	0.000769
Total_metering	0.843304	0.181717	-0.350024	0.840450
1				>

In [70]:

sns.pairplot(new_data)

Out[70]:

<seaborn.axisgrid.PairGrid at 0x2334a631490>

In [71]:

```
# Checking the correlation between the features
plt.figure(figsize=(15,15))
sns.heatmap(data=new_data.corr(), annot=True)
plt.show()
```


Global Intensity and global_active_power are highly correlated

In [72]:

 $\textbf{from} \ \ \textbf{statsmodels.stats.outliers_influence} \ \ \textbf{import} \ \ \textbf{variance_inflation_factor}$

```
In [73]:
```

```
vif_data = pd.DataFrame()
```

In [74]:

In [75]:

```
vif_data['features'] = new_data.columns
```

In [76]:

vif_data

Out[76]:

	VIF	features
0	1293.380415	Global_active_power
1	2.968642	Global_reactive_power
2	7539.560937	Voltage
3	1313.775187	Global_intensity
4	4.203920	date
5	4.616676	month
6	7637.321115	year
7	4.160524	hour
8	3.872897	Minutes
9	5.254709	Total_metering

In [77]:

```
# Droping Global active power & year due to multicollinearity
new_data.drop(columns=['Global_active_power','year'], axis=1, inplace= True)
```

In [78]:

```
plt.figure(figsize=(15,15))
sns.heatmap(data=new_data.corr(), annot=True)
plt.show()
```


In [79]:

```
new_data.columns
```

Out[79]:

In [80]:

```
# Checking for outliers
plt.figure(figsize =(15,15))
plt.suptitle('Outlier Analysis',fontsize = 20, fontweight='bold', alpha=0.8 )

for i in range (0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(new_data[new_data.columns[i]])
    plt.tight_layout()
```


In [81]:

Treating outliers

from feature_engine.outliers.winsorizer import Winsorizer

```
In [82]:
```

In [83]:

In [84]:

In [85]:

In [86]:

```
# Checking for outliers after outlier treatment
plt.figure(figsize =(15,15))
plt.suptitle('Outlier Analysis',fontsize = 20, fontweight='bold', alpha=0.8 )

for i in range (0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(new_data[new_data.columns[i]])
    plt.tight_layout()
```


In [87]:

```
# new_data.to_csv("power_consumption_cleaned.csv")
```

In [88]:

```
pip install pymongo
```

Requirement already satisfied: pymongo in c:\users\sahil\anaconda3\lib\site-packages (4.3.2)

Requirement already satisfied: dnspython<3.0.0,>=1.16.0 in c:\users\sahil\an aconda3\lib\site-packages (from pymongo) (2.2.1)

Note: you may need to restart the kernel to use updated packages.

In [89]:

```
# Uploading the data in MongoDB database
import pymongo
```

In [90]:

```
client = pymongo.MongoClient("mongodb+srv://sahil5723:NEWlife123@cluster0.1bbad.mongodb.net
```

```
In [91]:
```

```
# database = client['power_consumption']
# collection = database['household_power_data']
```

In [92]:

```
# data_dict = new_data.to_dict("records")
```

In [93]:

```
# collection.insert_many(data_dict)
```

In [94]:

```
# Loading the data from MongoDB

db = client.power_consumption
collection = db.household_power_data
data_db = pd.DataFrame(list(collection.find()))
```

In [95]:

```
data_db.drop(columns=['_id'], inplace=True)
```

In [96]:

data_db

Out[96]:

	Global_reactive_power	Voltage	Global_intensity	date	month	hour	Minutes	Total_met
0	0.072	238.99	5.2	13	8	12	33	_
1	0.198	240.90	2.8	28	5	19	45	
2	0.082	240.55	1.4	19	5	13	50	
3	0.286	235.68	10.2	11	6	15	23	
4	0.076	241.70	2.6	30	5	16	22	
49995	0.268	240.16	2.6	22	4	1	3	
49996	0.364	244.96	2.4	23	3	14	53	
49997	0.000	244.79	1.2	2	2	0	41	
49998	0.052	241.25	3.6	11	11	11	54	
49999	0.000	239.50	10.8	14	4	7	32	

50000 rows × 8 columns

In [97]:

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```

```
In [98]:
scale = StandardScaler()
In [99]:
x = data_db.iloc[:,:-1]
In [100]:
y = data_db['Total_metering']
In [101]:
x.columns
Out[101]:
Index(['Global_reactive_power', 'Voltage', 'Global_intensity', 'date', 'mont
h',
       'hour', 'Minutes'],
      dtype='object')
In [102]:
# Splitting the data into train and test
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.25, random_state=42)
In [103]:
scale.fit(x_train)
Out[103]:
StandardScaler()
In [104]:
import pickle
In [105]:
# Saving the standard Scaler model
pickle_out = open("scale.pkl","wb")
pickle.dump(scale,pickle_out)
pickle_out.close()
In [106]:
# Loading the standard scaler model
pickle_in = open('scale.pkl','rb')
scaler = pickle.load(pickle_in)
```

```
In [107]:
x_train_tf = scaler.transform(x_train)
In [108]:
x_test_tf = scaler.transform(x_test)
In [109]:
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, Lasso, ElasticNet
from sklearn.svm import SVR
In [110]:
linear = LinearRegression()
In [111]:
linear.fit(x_train_tf, y_train)
Out[111]:
LinearRegression()
In [112]:
# Predicting using linear regression model
linear_pred_test = linear.predict(x_test_tf)
In [113]:
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.metrics import r2_score
In [114]:
mae_linear = mean_absolute_error(y_test, linear_pred_test)
In [115]:
# Mean Absolute Error after applying linear regression
mae_linear
Out[115]:
4.186119972092438
In [116]:
rmse_linear = np.sqrt(mean_squared_error(y_test, linear_pred_test))
```

```
In [117]:
# RMSE obtained after Linear regression
rmse_linear
Out[117]:
6.229779759245607
In [118]:
linear_r2_score = r2_score(y_test, linear_pred_test)
In [119]:
# R-Squared
linear_r2_score
Out[119]:
0.6817080461979973
In [120]:
# adjusted R-squared
adjusted_r2_linear = 1 - ((1-linear_r2_score)*(len(y_test)-1))/(len(y_test)-(x_test.shape[1
In [121]:
adjusted_r2_linear
Out[121]:
0.6815296885549766
In [122]:
linear_residuals = y_test - linear_pred_test
```

```
In [123]:
```

```
sns.scatterplot(y_test, linear_residuals)
```

Out[123]:

<AxesSubplot:xlabel='Total_metering', ylabel='Total_metering'>

Applying Lasso Regression

```
In [124]:
```

```
lasso = Lasso()
```

In [125]:

```
# Fitting the Lasso regression
lasso.fit(x_train_tf, y_train)
```

Out[125]:

Lasso()

In [126]:

```
# Predicting using Lasso regression
lasso_test_pred = lasso.predict(x_test_tf)
```

```
In [127]:
mae_lasso = mean_absolute_error(y_test, lasso_test_pred)
In [128]:
# Mean Absolute error
mae_lasso
Out[128]:
4.360652031923295
In [129]:
rmse_lasso = np.sqrt(mean_squared_error(y_test, lasso_test_pred))
In [130]:
# Root Mean squared
rmse_lasso
Out[130]:
6.337821658596121
In [131]:
lasso_r2_score = r2_score(y_test, lasso_test_pred)
In [132]:
# R-Squared
lasso_r2_score
Out[132]:
0.6705721574804308
In [133]:
len(y_test)
Out[133]:
12500
In [134]:
adjusted_r2\_lasso = 1 - ((1-lasso\_r2\_score) * (len(y\_test)-1))/(len(y\_test) - (x\_test.shape[
```

```
# Adjusted R-Squared
adjusted_r2_lasso
Out[135]:
0.6704403230629025
Applying Ridge Regression
In [136]:
ridge = Ridge()
In [137]:
# Fitting Ridge Regression
ridge.fit(x_train_tf, y_train)
Out[137]:
Ridge()
In [138]:
# Prediction using ridge regression
ridge_test_pred = ridge.predict(x_test_tf)
In [139]:
ridge_mae = mean_absolute_error(y_test, ridge_test_pred)
In [140]:
# Mean Absolute Error
ridge_mae
Out[140]:
4.186126145627163
In [141]:
ridge_rmse = np.sqrt(mean_squared_error(y_test, ridge_test_pred))
```

In [135]:

```
In [142]:
# Root Mean squared Error
ridge_rmse
Out[142]:
6.229769380682283
In [143]:
ridge_r2_score = r2_score(y_test, ridge_test_pred)
In [144]:
# R-squared
ridge_r2_score
Out[144]:
0.6817091067203829
In [145]:
adjusted\_r2\_score\_ridge = 1 - ((1-ridge\_r2\_score)*(len(y\_test)-1))/ (len(y\_test)-(x\_test.sh) + ((1-ridge\_r2\_score)) + ((1-ridge\_r2\_scor
In [146]:
# Adjusted r - squared
adjusted_r2_score_ridge
Out[146]:
0.6815817292218718
Applying ElasticNet
In [147]:
elastic = ElasticNet()
In [148]:
# applying Elastic Net Regression
elastic.fit(x_train_tf, y_train)
Out[148]:
ElasticNet()
```

```
In [149]:
# prediction Using ElasticNet Regression
elastic_test_pred = elastic.predict(x_test_tf)
In [150]:
elastic_mae = mean_absolute_error(y_test, elastic_test_pred)
In [151]:
# Mean Absolute Error
elastic_mae
Out[151]:
5.433588211519576
In [152]:
elastic_rmse = np.sqrt(mean_squared_error(y_test, elastic_test_pred))
In [153]:
# Root Mean Squared error
elastic_rmse
Out[153]:
7.044465331296436
In [154]:
elastic_r2_score = r2_score(y_test, elastic_test_pred)
In [155]:
# R-Squared
elastic_r2_score
Out[155]:
0.5930169279853222
In [156]:
elastic_adjusted_r2_score = 1 - ((1-elastic_r2\_score)*(len(y\_test)-1))/(len(y\_test)-(x\_te)
In [157]:
# Adjusted R-Squared
elastic_adjusted_r2_score
Out[157]:
```

Applying Support Vector Regressor

0.592854056578241

```
In [158]:
svr = SVR()
In [159]:
# Applying Support Vector Regressor
svr.fit(x_train_tf, y_train)
Out[159]:
SVR()
In [160]:
svr_test_pred = svr.predict(x_test_tf)
In [161]:
svr_mae = mean_absolute_error(y_test, svr_test_pred)
In [162]:
# Mean Squared Error
svr_mae
Out[162]:
3.2435580976498413
In [163]:
svr_rmse = np.sqrt(mean_squared_error(y_test, svr_test_pred))
In [164]:
# Root Mean Sqaured Error
svr_rmse
Out[164]:
5.557421363030737
In [165]:
# Accuarcy using SVR
svr_r2_score = r2_score(y_test, svr_test_pred)
In [166]:
svr_r2_score
Out[166]:
```

0.746704819911103

```
In [167]:
adjusted\_r2\_score\_svr = 1- ((1-svr\_r2\_score) * (len(y\_test)-1))/(len(y\_test) - (x\_test.shapt)) + (len(y\_test)-1)/(len(y\_test) - (x\_test.shapt)) + (len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(
In [182]:
# Adjusted R-Squared
adjusted_r2_score_svr
Out[182]:
0.746603453183038
# Apply hyperparameter tuning
In [173]:
params = { 'kernel' : ['linear','poly','sigmoid','rbf']
In [174]:
from sklearn.model_selection import GridSearchCV
In [175]:
grid = GridSearchCV(estimator = svr, param_grid = params,cv=10, n_jobs= -1 )
In [176]:
grid.fit(x_train_tf, y_train)
Out[176]:
GridSearchCV(cv=10, estimator=SVR(), n_jobs=-1,
                                                    param_grid={'kernel': ['linear', 'poly', 'sigmoid', 'rbf']})
 In [177]:
grid.best_score_
Out[177]:
0.7437546829653663
In [179]:
new_svr = grid.best_params_
In [181]:
new_svr
Out[181]:
{'kernel': 'rbf'}
```

```
In [184]:
```

```
results = {'models':['Linear', 'Ridge', 'Lasso', 'ElasticNet', 'SVR'],
'R-Squared':[linear_r2_score, ridge_r2_score, lasso_r2_score, elastic_r2_score, svr_r2_score
'Adjusted_R_squared':[adjusted_r2_linear, adjusted_r2_score_ridge, adjusted_r2_lasso, elast
```

In [185]:

```
results = pd.DataFrame(results)
```

In [186]:

results

Out[186]:

	models	R-Squared	Adjusted_R_squared
0	Linear	0.681708	0.681530
1	Ridge	0.681709	0.681582
2	Lasso	0.670572	0.670440
3	ElasticNet	0.593017	0.592854
4	SVR	0.746705	0.746603

In []: