

INTRODUCTION TO PORTFOLIO ANALYSIS

Drivers in the Case of Two Assets

Future Returns Are Random In Nature

Optimizing Portfolio requires expectations:

- about average portfolio return (mean)
- about how far off it may be (variance)

Why?

Portfolio Return Is A Random Variable

Past Performance to Predictions

	Mean Portfolio Return
Computed on a sample of T Historical Returns	$\hat{\mu} = \frac{R_1 + R_2 + \dots + R_T}{T}$
When the return is a random variable	$\mu = E[R]$

	Portfolio Return Variance
Computed on a sample of T Historical Returns	$\widehat{\sigma}^2 = \frac{(R_1 - \widehat{\mu})^2 + (R_2 - \widehat{\mu})^2 + \dots + (R_T - \widehat{\mu})^2}{T - 1}$
When the return is a random variable	$\sigma^2 = E[(R-\mu)^2]$

Drivers of Mean & Variance

Assume two assets:

Asset 1	Asset 2
Weight: w₁	Weight: w ₂
Return: R ₁	Return: R ₂

- Portfolio Return: $w_1 * R_1 + w_2 * R_2$
- Thus: $E[Portfolio\ return] = w_1 * E[R_1] + w_2 * E[R_2]$

Portfolio Return Variance

Variance of Portfolio Returns

$$w_1^2 * var(R_1) + w_2^2 * var(R_2) = 2 * w_1 * w_2 * cov(R_1, R_2)$$

Covariance between return 1 and 2 =

 $Cov(R_1, R_2) = StdDev(R_1) * StdDev(R_2) * corr(R_1, R_2)$

Correlations

Take Away Formulas

- $E[Portfolio Return] = w_1 * E[R_1] + w_2 * E[R_2]$
- var(portfolio return) = $w_1^2 * var(R_1) + w_2^2 * var(R_2) + 2 * w_1 * w_2 * cov(R_1, R_2)$]

