

Show Me Your Face!:)

Metis Project 3: McNulty

Kevin Du Sarick Shah Nicholas Thomas Jennifer M. Wang

Introduction

 Most humans can recognize others' emotions easily, but what about computers and machines?

Miscellaneous uses:

Security, privacy protection, digital personalization, entertainment, and even mental health benefits!

Goals

- Build a model that will automatically recognize an emotion associated with a given image.
- Integrate model with a webcam application that displays a timeline of emotions.

Method

1) FER2013 dataset - Facial Emotion Recognition (Kaggle)

Over 30,000 images, 48 x 48 pixels grayscale

2) Cohn-Kanade dataset (CK)

- ~ 700 images, 350 x 350 pixels grayscale
- Across both data sets, emotions include: neutral, angry, disgust, fear, happy, sad, surprise

Pipeline

Face Recognition

 Template matching to detect features in faces (nose, mouth, eyes, etc.)

- Eigenfaces and Fisherfaces
- Find low dimension representation of a face which comes from a higher dimension
- A way to describe the most dominant features of the training set as a whole.

Results- Model Accuracy:

	Cohn-Kanade (CK)	Kaggle FER2013
SVM	84%	44%
Fisher Face Recognizer	82%	32%
Multilayer Perceptron	77%	37%
RandomForest Classifier	54%	42%

MLP Image Misclassification

Classified as Anger--Actual label Neutral

Convolutional Neural Network

- State of the art method for image classification
 - Automatically learns features
- Requires huge amount of data
 - Only trained on Kaggle FER2013 dataset
- Network from Tensorflow tutorial
 - Uses ReLU for activation functions

Convolutional Neural Network - Results

Peaked after 6 minutes of GPU training 20x slower on CPU

- Training accuracy: ~ 0.999
- Test accuracy: ~ 0.57
 - Winning model: 0.711
- Extreme overfitting
- "Dropout" regularization by randomly dropping nodes from the neural net

Conclusion and Implications

- Ultimately, machines and computers are still not as good at detecting emotions compared with humans
 - Facial expressions are much more complex than the label of a single emotion.
 - Advances in machine facial recognition will yield tremendous societal benefits.

Potential uses for facial recognition data:

- Security, privacy, personalization of digital devices...etc.
- We are often unaware of how we *really* feel given how subtle our emotions may be. Facial recognition can help us better understand ourselves and attend to our needs.

Machine facial recognition for improving mental health

- Mood monitoring (e.g., for depression)
- Efficacy of psychiatric drugs
- Advances in facial recognition may help improve compliance and the accuracy of these records

Emotions are universal and cross-cultural. Advances in machine facial recognition will help us better understand ourselves, each other, and our complex world.

Resources

- http://eyalarubas.com/face-detection-and-recognition.html
- http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
- http://www.paulvangent.com/2016/04/01/emotion-recognition-with-python-opency-and-a-face-dataset/
- https://realpython.com/blog/python/face-recognition-with-python/
- http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

Fisherface/ Eigenface SUPPL.

Fisherfaces:

- Imagine a situation where the variance is generated from external sources, let it be light The axes with maximum variance do not necessarily contain any discriminative information at all, hence a classification becomes impossible.
 So a class-specific projection with a Linear Discriminant Analysis was applied to face recognition
- Minimize the variance within a class, while maximizing the variance between the classes at the same time.

Eigenfaces:

- Lower-dimensional subspace is found with Principal Component Analysis, which identifies the axes with maximum variance.
- Performance degrades with different lighting conditions