PARADIGMES DE PROGRAMMATION

DIPLÔME DE FORMATION D'INGÉNIEURS EN INFORMATIQUE (FI-A1)

Module 2

Mondher Bouden

2024-2025

Programmation procédurale

Caractéristiques

- La programmation procédurale est basée sur le concept d'appel procédural.
- Une procédure contient une série d'étapes à réaliser.

- Elle peut être appelée à n'importe quelle étape de l'exécution du programme:
 - À l'intérieur d'autres procédures.
 - Dans la procédure elle-même (récursivité).

Caractéristiques

- Par opposition à la programmation séquentielle, la programmation procédurale permet de réutiliser le même code à différents endroits dans le programme
 - Réduction de la taille du code source.
 - Amélioration de la maintenabilité.
- Elle permet de se passer d'instructions telles que « *goto* », évitant ainsi bien souvent de se retrouver avec un programme compliqué qui part dans toutes les directions.
 - Appelé souvent « programmation spaghetti.»

Caractéristiques

- La programmation procédurale permet les « effets de bord »,
 - La possibilité pour une procédure qui prend des arguments de modifier des variables extérieures à la procédure auxquelles elle a accès.
 - Variables de contexte plus global que la procédure.
 - La programmation impérative permet l'emploi des effets de bord dans le fonctionnement de ses programmes contrairement à la programmation fonctionnelle pure.

Exemples

- Algol
- C
- COBOL
- Fortran
- Pascal
- Perl
- PL/SQL
- VBScript
- Python
- Etc.

Le langage Python

- Langage interprété (facilite le prototypage);
- Typage dynamique (simplifie la programmation);
- Interactif;
- Librairie standard très complète, grande quantité de librairies third-party;
- Syntaxe concise, plus simple pour commencer

D'accord, mais est-ce utilisé dans l'industrie?

- Utilisé par :
 - Google
 - Youtube
 - BitTorrent
 - Intel, Cisco, HP, IBM
 - Pixar
 - NASA
 - Etc.

Et on peut faire quoi avec?

- Analyser des données (pandas, matplotlib)
- Faire du calcul scientifique (numpy, scipy)
- Faire de l'apprentissage automatique (scikit-learn)
- Construire des sites Web (flask, cherrypy)
- Maintenir des serveurs
- Programmer des jeux vidéos (pygame)
- Faire de la robotique avec un Raspberry Pi!
- Et beaucoup plus!

Manuel et logiciels du cours

- "Apprendre à programmer avec Python 3" de Gérard Swinnen.
 - La version numérique de cet ouvrage est disponible en téléchargement libre via le lien suivant:
 - http://inforef.be/swi/download/apprendre_python3_5.pdf
 - Version arabe:
 - http://inforef.be/swi/download/apprendre_python3_arab.pdf
- Pour réaliser les laboratoires du cours, vous auriez, essentiellement, besoin des logiciels suivant:
 - Python 3 (https://www.python.org/)
 - PyCharm Community Edition (conseillé, mais pas obligatoire):
 - http://www.jetbrains.com/pycharm/download/
 - Il faut installer (si ce n'est pas déjà fait) Java:
 - www.java.com/fr

Installation

https://www.python.org/downloads/release/python-3115/

Version	Operating System	Description	MD5 Sum	File Size	GPG	Sigstore
Gzipped source tarball	Source release		b628f21aae5e2c3006a12380905bb640	26571003	SIG	sigstore
XZ compressed source tarball	Source release		393856f1b7713aa8bba4b642ab9985d3	20053580	SIG	sigstore
macOS 64-bit universal2 installer	macOS	for macOS 10.9 and later	7a24f8b4eeca34899b7d75caaec3bc73	44239554	SIG	sigstore
Windows embeddable package (32-bit)	Windows		add17856887d34c04a9cfd6c051c4bea	10053367	SIG	sigstore
Windows embeddable package (64-bit)	Windows		c5e83dc45630df2236720a18170bf941	11170359	SIG	sigstore
Windows embeddable package (ARM64)	Windows		8fc7d74daf27882f2a32a1b10c3a3a2c	10428395	SIG	sigstore
Windows installer (32 -bit)	Windows		ac8e48a759a6222ce9332691568fe67a	24662424	SIG	.sigstore
Windows installer (64-bit)	Windows	Recommended	3afd5b0ba1549f5b9a90c1e3aa8f041e	25932664	SIG	sigstore
Windows installer (ARM64)	Windows	Experimental	cd2bfd6bb39a6c84dbf9d1615b9f53b5	25197192	SIG	.sigstore

Premiers pas avec Python

- Vous allez commencer à utiliser le mode interactif de Python.
 - Dialoguer avec l'interpréteur directement depuis le clavier.
 - Découvrir très vite un grand nombre de fonctionnalités du langage.
- Par la suite, vous allez apprendre comment créer vos premiers programmes (scripts) et les sauvegarder sur disque.

Premiers pas avec Python

• Il est conseillé de commencer par utiliser l'environnement de développement fourni par Python (IDLE):

```
Python 3.7.0 Shell
File Edit Shell Debug Options Window Help
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6
4) 1 on win32
Type "copyright", "credits" or "license()" for more information.
>>>
                                                                                Ln: 3 Col: 4
```

• Les trois caractères >>> constituent le signal d'invité, ou *prompt principal*, lequel vous indique que Python est prêt a exécuter une commande.

Premiers pas avec Python

• Commençons par faire des opérations simples:

```
X
                                                                                  Python 3.7.0 Shell
<u>File Edit Shell Debug Options Window Help</u>
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6
4)1 on win32
Type "copyright", "credits" or "license()" for more information.
>>> 2+6
>>> 3-5
-2
>>> 9+3*2
15
>>> (9+3)*2
24
>>> 30/4
7.5
>>> 30//4
>>>
                                                                                Ln: 15 Col: 4
```

Les types de données de base

- Entier : int, sans partie décimale.
- Réel : float, avec partie décimale.
- La représentation interne varie, l'interprétation (l'utilisation) aussi.
- Opérateurs arithmétiques : +, -, *, /, //, %, **
- Fonctions mathématiques : abs(arg), int(arg), float(arg), etc.

Nom	Adresse	Contenu	Туре
age_retraite	1002	65	int
age_embauche	1003	60.0	float
	1004		

Les opérateurs arithmétiques

Opérateur	Exemple	x=9 et y=4
+	x + y	13
_	х - у	5
*	x * y	36
/	х / у	2.25
//	x // y	2
%	х % у	1
**	x ** y	6561

Priorité d'évaluation

- Les parenthèses d'abord : ()
- Les fonctions : abs(arg), etc.
- L'exposant: **
- Les opérateurs unaires : -, +
- Les opérateurs binaires : *, /, //, %
- Les opérateurs binaires : +, -
- Si deux opérateurs ont la même priorité, l'évaluation est effectuée de gauche à droite.

- Opérateurs de comparaison : <, >, <=, >=, !=
- Moins prioritaires que les opérateurs arithmétiques
- False correspond à la valeur 0
- True correspond à toute valeur différente de 0, généralement 1
- erreur_emb = age_embauche > age_retraite

Nom	Adresse	Contenu	Туре
age_retraite	1002	65	int
age_embauche	1003	60.0	float
	1004		

- Opérateurs de comparaison : <, >, <=, >=, !=
- Moins prioritaires que les opérateurs arithmétiques
- False correspond à la valeur 0
- True correspond à toute valeur différente de 0, généralement 1
- erreur_emb = age_embauche > age_retraite

Nom	Adresse	Contenu	Туре
age_retraite	1002	65	int
age_embauche	1003	60.0	float
erreur_emb	1004		

- Opérateurs de comparaison : <, >, <=, >=, !=
- Moins prioritaires que les opérateurs arithmétiques
- False correspond à la valeur 0
- True correspond à toute valeur différente de 0, généralement 1
- erreur_emb = age_embauche > age_retraite

Nom	Adresse	Contenu	Туре
age_retraite	1002	65	int
age_embauche	1003	60.0	float
erreur_emb	1004	False	

- Opérateurs de comparaison : <, >, <=, >=, !=
- Moins prioritaires que les opérateurs arithmétiques
- False correspond à la valeur 0
- True correspond à toute valeur différente de 0, généralement 1
- erreur_emb = age_embauche > age_retraite

Nom	Adresse	Contenu	Туре
age_retraite	1002	65	int
age_embauche	1003	60.0	float
erreur_emb	1004	False	int

Les opérateurs de comparaison

Opérateur	Exemple	x=9 et y=4
==	x == y	False
!=	x != y	True
>	x > y	True
>=	x >= y	True
<	x < y	False
<=	x <= y	False

Les opérateurs logiques

Opérateur	Exemple	cond1 = True cond2 = False
not	not cond1	False
not	not cond2	True
and	cond1 and cond2	False
or	cond1 or cond2	True

Table de vérité : not

Opérateur	Valeur	Résultat
not	True	False
not	False	True

Table de vérité : and

valeur1	valeur2	Résultat
True	True	True
True	False	False
False	True	False
False	False	False

Table de vérité : or

valeur1	valeur2	Résultat
True	True	True
True	False	True
False	True	True
False	False	False

Priorité d'évaluation

- Les parenthèses : ()
- Les fonctions : abs(arg), etc.
- L'exposant: **
- Les opérateurs unaires : -, +
- Les opérateurs binaires : *, /, //, %
- Les opérateurs binaires : +, -
- Les opérateurs de comparaison : <, <=, >, >=
- Les opérateurs de comparaison : ==, !=
- L'opérateur logique : not
- L'opérateur logique : and
- L'opérateur logique : or

Opérateurs de gestion d'information

- Les variables : pour mémoriser l'information.
- · L'affectation : pour déplacer de l'information.

• L'input : pour acquérir des données provenant de l'extérieur.

• L'output : pour communiquer des données vers l'extérieur.

Une variable en Python

- · Représente une donnée.
- Porte un nom, idéalement significatif (qui désigne le contenu d'une case mémoire à une adresse donnée);
- Est associée à une case de la mémoire (statique);
- A donc une adresse mémoire (statique);
- Est du type de la dernière donnée qu'on lui a affectée (dynamique);
- Ce type est nécessaire pour **interpréter** le contenu de la variable.

Un nom de variable en Python

- Séquence de lettres (a-z, A-Z) et de chiffres (0-9), qui doit toujours débuter par une lettre ;
- Seul le caractère spécial _ (souligné) est permis ;
- Nous éviterons les noms débutant ou se terminant par un _ (ceux-ci ont une signification particulière en Python);
- Les majuscules et minuscules représentent différentes lettres ;
- Il faut éviter les 33 mots réservés qui ont une signification prédéfinie;
- Par convention, les variables en Python utilisent le format suivant :

ma_variable.

Les mots réservés en Python

• Les mots suivants sont réservés par le langage, et ne peuvent donc pas être utilisés comme nom de variable.

False	class	finally	is	return
None	continue	for	lambda	try
True	def	from	nonlocal	while
and	del	global	not	with
as	elif	if	or	yield
assert	else	import	pass	
break	except	in	raise	

Typage des variables

- Le typage des variables sous Python est dynamique.
 - Par opposition au typage statique (ex. C++ ou Java) où il faut d'abord déclarer le nom et le type des variables, et ensuite seulement leur assigner un contenu.
- Sous Python, il suffit d'assigner une valeur à un nom de variable pour que celle-ci soit automatiquement créée avec le type qui correspond au mieux à la valeur fournie.
- Le typage statique est préférable dans le cas des langages compilés
 - Permet d'optimiser l'opération de compilation.
- Le typage dynamique permet d'écrire plus aisément des constructions logiques de niveau élevé.

L'opération d'affectation

- Évalue l'expression à droite du symbole =.
- Mémorise le résultat de l'évaluation de cette expression dans la variable identifiée à gauche du symbole =.

- Ce que vous placez a la gauche du signe égale doit toujours être une variable.
 - L'instruction m + 1 = b est illégale.

L'opération d'affectation

 Sous Python, on peut assigner une valeur à plusieurs variables simultanément. Exemple :

 On peut aussi effectuer des affectations parallèles à l'aide d'un seul opérateur :

- *variable* = ... : mémoriser une information, age_retraite = 65
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	<u>Contenu</u>	Type
	1000		
	1001		
	1002		
	1003		
	1004		

- *variable* = ... : mémoriser une information, age_retraite = 65
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002		
	1003		
	1004		

- *variable* = ... : mémoriser une information, age_retraite = 65
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65	
	1003		
	1004		

- *variable* = ... : mémoriser une information, age_retraite = 65
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65	entier
	1003		
	1004		

- *variable* = ... : mémoriser une information, age_embauche = 60.0
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65	entier
	1003		
	1004		

- *variable* = ... : mémoriser une information, age_embauche = 60.0
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65	entier
age_embauche	1003		
	1004		

- *variable* = ... : mémoriser une information, age_embauche = 60.0
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65	entier
age_embauche	1003	60.0	
	1004		

- *variable* = ... : mémoriser une information, age_embauche = 60.0
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65	entier
age_embauche	1003	60.0	réel
	1004		

- *variable* = ... : mémoriser une information, age_retraite = 65.0
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65	entier
age_embauche	1003	60.0	réel
	1004		

- *variable* = ... : mémoriser une information, age_retraite = 65.0
- 1. Trouver ou créer la variable nommée à gauche de =.
- 2. Évaluer la valeur de l'expression à droite de =.
- 3. Mettre cette valeur dans la variable nommée à gauche de =.
- 4. Mémoriser le type de cette valeur comme type de la variable.

<u>Nom</u>	<u>Adresse</u>	Contenu	Type
	1000		
	1001		
age_retraite	1002	65.0	réel
age_embauche	1003	60.0	réel
	1004		

Les entrées-sorties

- input()
 - Du clavier
 - Avec mémorisation temporaire
 - Convertit la chaîne de caractères selon le type requis : p.ex. les 2 caractères consécutifs « 6 » et « 5 » sont convertis en valeur numérique 65
- output() (La fonction print() permet d'afficher le contenu des variables).
 - À l'écran
 - Convertit la donnée en une chaîne de caractères correspondants ; p.ex. la valeur numérique 60.0 est convertie en 4 caractères affichés consécutivement : « 6 » « 0 » « . » « 0 »

Exemple

Calcul de la moyenne de 2 nombres

```
Python 3.7.0 Shell
File Edit Shell Debug Options Window
                                    Help
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6
4)1 on win32
Type "copyright", "credits" or "license()" for more information.
>>>
 RESTART: C:/Mondher/Cours/ISSAT/A2018/ParadProg/Exemples/Module2/CalculerMovenn
e.py
Entrer deux nombres:
La movenne est:
4.5
>>>
                                                                               Ln: 10 Col: 4
File Edit Format Run Options Window Help
print ("Entrer deux nombres: ")
nb1=int(input())
nb2=int(input())
somme= nb1+nb2
movenne=somme/2
print("La moyenne est: ")
print (movenne)
                                                                               Ln: 7 Col: 14
```