Capítulo 10 | Testes de hipóteses em uma e duas amostras

10.1 Hipótese estatística: conceitos gerais

Definição 10.1

Uma *hipótese estatística* é uma afirmação ou conjectura sobre uma ou mais populações.

A rejeição da hipótese nula quando ela é verdadeira é chamada de *erro tipo I*.

A não rejeição da hipótese nula quando ela é falsa é chamada de *erro tipo II*.

Tabela 10.1 Situações possíveis ao testar uma hipótese estatística

	$H_{_{\scriptscriptstyle{0}}}$ é verdadeira	$H_{\scriptscriptstyle 0}$ é falsa
Não rejeitar $H_{\scriptscriptstyle 0}$	Decisão correta	Erro tipo II
Rejeitar $H_{_0}$	Erro tipo I	Decisão correta

Importantes propriedades de um teste de hipóteses

- Os erros tipo I e II são relacionados. Uma redução na probabilidade de um geralmente resulta num aumento da probabilidade do outro.
- 2. O tamanho da região crítica, e, portanto, a probabilidade de se cometer um erro tipo I, pode ser sempre reduzido ajustando-se o(s) valor(es) crítico(s).
- 3. Um aumento no tamanho da amostra n reduzirá α e β simultaneamente.
- 4. Se a hipótese nula é falsa, β é máximo quando o valor real de um parâmetro se aproxima do valor hipotético. Quanto maior a distância entre o valor real e o hipotético, menor será o valor de β.

O poder de um teste é a probabilidade de se rejeitar H_0 dado que uma alternativa específica é verdadeira.

10.4 Uso de valores P para tomada de decisão em testes de hipóteses

Figura 10.8 Dados que foram provavelmente gerados de populações com duas médias diferentes.

Um valor P é o nível (de significância) mais baixo para o qual o valor observado da estatística de teste é significante.

Abordagem para teste de hipóteses com probabilidade fixa de erro tipo l

- Estabeleça as hipóteses nula e alternativa.
- 2. Escolha o nível de significância α .
- Escolha uma estatística de teste apropriada e estabeleça a região crítica de α.
- A partir da estatística de teste calculada, rejeite H₀ se o valor de tal estatística estiver na região crítica. Caso contrário, não rejeite.
- 5. Tire conclusões científicas ou de engenharia.

Teste de significância (abordagem do valor P)

- Estabeleça as hipóteses nula e alternativa.
- 2. Escolha uma estatística de teste apropriada.
- Calcule o valor P com base no valor calculado da estatística de teste.
- Use o julgamento baseado no valor P e o conhecimento do sistema científico.

10.5 Amostra única: testes referentes a uma única média (variância conhecida)

Procedimento de teste para uma única média

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha/2}$$
 ou $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} < -z_{\alpha/2}$

Se $-z_{\alpha/2} < z < z_{\alpha/2}$, não rejeite H_0 . A rejeição de H_0 , é claro, implica a aceitação da hipótese alternativa $\mu \neq \mu_0$. Com essa definição da região crítica, deve estar claro que haverá uma probabilidade α de rejeitar H_0 (estar na região crítica) quando, na verdade, $\mu = \mu_0$.

Figura 10.9 Região crítica para as hipóteses alternativas $\mu \neq \mu_0$.

10.7 Amostra única: testes para uma única média (variância desconhecida)

Estatística t para um teste de uma única média (variância desconhecida)

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Teste t combinado para duas amostras

$$t = \frac{(\bar{x_1} - \bar{x_2}) - d_0}{s_p \sqrt{1/n_1 + 1/n_2}},$$

onde

$$s_p^2 = \frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}.$$

Tabela 10.2 Dados para o Exemplo 10.7				
Veado	Tempo de injeção	Andrógeno (ng/l) 30 minutos após injeção	$d_{_i}$	
1	2,76	7,02	4,26	
2	5,18	3,10	2,08	
3	2,68	5,44	2,76	
4	3,05	3,99	0,94	
5	4,10	5,21	1,11	
6	7,05	10,26	3,21	
7	6,60	13,91	7,31	
8	4,79	18,53	13,74	
9	7,39	7,91	0,52	
10	7,30	4,85	-2,45	
11	11,78	11,10	-0,68	
12	3,90	3,74	-0.16	
13	26,00	94,03	68,03	
14	67,48	94,03	26,55	
15	17,04	41,70	24,66	

Tabela 10.3 Testes sobre as médias.

$H_{_{0}}$	Valor da estatística de teste	$H_{_1}$	Região crítica
$\mu = \mu_0$	$z = \frac{\bar{x} - \mu_0}{\sigma l \sqrt{n}}$; σ conhecido	$\mu < \mu_0$	$z < -z_{\alpha}$
		$\mu > \mu_0$	$z > z_{\alpha}$
		$\mu \neq \mu_0$	$z < -z_{\alpha/2}$ ou $z > z_{\alpha/2}$
$\mu = \mu_0$	$t = \frac{\bar{x} - \mu_0}{s / n}$; $\nu = n - 1$,	$\mu < \mu_0$	$t < -t_{\alpha}$
	σ desconhecido	$\mu > \mu_0$	$t > t_{\alpha}$
		$\mu \neq \mu_0$	$t < -t_{\alpha/2}$ ou $t > t_{\alpha/2}$
$\mu_1 - \mu_2 = d_0$	$z = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{\sigma_*^2/n_1 + \sigma_*^2/n_2}};$	$\mu_1 - \mu_2 < d_0$	$z < -z_{\alpha}$
	$\sigma_1 = \sigma_2 \cos \theta$ $\sigma_1 = \sigma_2 \cos \theta$	$\mu_1 - \mu_2 > d_0$	$z > z_{\alpha}$
	O ₁ e O ₂ connecteos	$\mu_1-\mu_2\neq d_0$	$z < -z_{\alpha/2}$ ou $z > z_{\alpha/2}$
$\mu_1 - \mu_2 = d_0$	$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{s_p \sqrt{1/n_1 + 1/n_2}};$	$\mu_1 - \mu_2 < d_0$	$t < -t_{\alpha}$
	$v = n_1 + n_2 - 2,$	$\mu_1 - \mu_2 > d_0$	$t > t_{\alpha}$
	$\sigma_1 = \sigma_2$ mas desconhecidos	$\mu_1 - \mu_2 \neq d_0$	$t < -t_{\alpha/2}$ ou $t > t_{\alpha/2}$
	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$		
$\mu_1 - \mu_2 = d_0$	$t' = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}};$	$\mu_1 - \mu_2 < d_0$	$t' < -t_{\alpha}$
	$\nu = \frac{\frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(c_1^2/n_1)^2}}{\frac{(c_1^2/n_1)^2}{n_1 - 1} + \frac{(c_2^2/n_2)^2}{n_2 - 1}};$	$\mu_1-\mu_2>d_0$	$t' > t_{\alpha}$
	$\sigma_1 \neq \sigma_2$ e desconhecidos	$\mu_1 - \mu_2 \neq d_0$	$t' < -t_{\alpha/2}$ ou $t' > t_{\alpha/2}$
$\mu_D = d_0$	$t = \frac{\bar{d} - d_0}{5J/\sqrt{n}}$; $v = n - 1$	$\mu_D < d_0$	$t < -t_{\alpha}$
observações	-u · 1 10	$\mu_D > d_0$	$t > t_{\alpha}$
,		$\mu_D \neq d_0$	$t < -t_{\alpha/2}$ ou $t > t_{\alpha/2}$

10.9 Escolha do tamanho da amostra para testar médias

Figura 10.14 Teste de $\mu=\mu_{\scriptscriptstyle 0}$ versus $\mu=\mu_{\scriptscriptstyle 0}+\delta$.

O tamanho da amostra é escolhido para atingir um bom poder para α fixo e alternativas específicas fixas.

Suponha que desejamos testar a hipótese

$$H_0: \mu = \mu_0,$$

 $H_1: \mu > \mu_0,$

com nível de significância α quando o desvio-padrão σ é conhecido.

Para uma alternativa específica, digamos, $\mu=\mu_0+\delta$, o poder do teste é

$$1 - \beta = P(\bar{X} > a \mid \mu = \mu_0 + \delta)$$

$$\beta = P(\bar{X} < a \mid \mu = \mu_0 + \delta)$$

$$= P\left[\frac{\bar{X} - (\mu_0 + \delta)}{\sigma / \sqrt{n}} < \frac{a - (\mu_0 + \delta)}{\sigma / \sqrt{n}} \mid \mu = \mu_0 + \delta\right].$$

Sob a hipótese alternativa, temos que $\frac{X-(\mu_0+\delta)}{\sigma_{/\sqrt{n}}}$ tem distribuição normal padrão.

$$\beta = P\left(Z < \frac{\alpha - \mu_0}{\sigma/\sqrt{n}} - \frac{\delta}{\sigma/\sqrt{n}}\right)$$

$$\beta = P\left(Z < z_\alpha - \frac{\delta}{\sigma/\sqrt{n}}\right)$$

$$-z_\beta = z_\alpha - \frac{\delta\sqrt{n}}{\sigma}$$

$$n = \frac{(z_\alpha + z_\beta)^2 \sigma^2}{\delta^2}$$

Figura 10.15 Teste de $\mu_{\rm 1}-\mu_{\rm 2}=d_{\rm 0}$ versus $\mu_{\rm 1}-\mu_{\rm 2}=d_{\rm 0}+\delta$.

10.10 Métodos gráficos para a comparação de médias

Figura 10.16 Dois diagramas de caixa-e-bigodes para o ácido ascórbico no plasma de fumantes e não—fumantes.

Figura 10.17 Dois diagramas de caixa-e-bigode para os dados das mudas.

10.11 Amostra única: teste para uma única proporção

Testando uma proporção: amostras pequenas

- 1. H_0 : $p = p_0$.
- 2. Uma das alternativas H_1 : $p < p_0$, $p > p_0$ ou $p \neq p_0$.
- 3. Escolha um nível de significância igual a α .
- 4. Estatística de teste: variável binomial X com $p = p_0$.
- 5. Cálculos: determine x, o número de sucessos, e calcule o valor P apropriado.
- 6. Decisão: chegue às conclusões apropriadas com base no valor *P*.

A estatística de teste para testarmos uma única proporção é:

$$H_0: p = p_0 \text{ vs } H_1: p < p_0,$$

$$z = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}},$$

$$p_1 - p_2 = 0$$

A estatística de teste para testarmos a diferença de proporções é:

$$H_0: p_1 - p_2 = 0 \ vs \ H_1: p_1 - p_2 \neq 0,$$

$$z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

Para testarmos se a variância populacional σ^2 é igual a um valor específico σ^2_0 contra as alternativas usuais, usamos a estatística

$$H_0$$
: $\sigma^2 = \sigma_0^2 \ vs \ \sigma^2 \neq \sigma_0^2$

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2},$$

n é o tamanho da amostra, s^2 é a variância amostral e σ_0^2 é o valor da variância sob a hipótese nula.

$$\chi^2 \sim \chi^2_{n-1}$$

Para construir um teste de hipótese para diferença de duas variâncias, usamos a distribuição F, que é dada por $H_0: \sigma_1^2 = \sigma_2^2 \ vs \ H_1: \sigma_1^2 \neq \sigma_2^2$

$$F = \frac{s_1^2}{s_2^2}$$

Com n₁ graus de liberdade no numerador e n₂ graus de liberdade no denominador.

As tabelas referentes a distribuição F estão no apêndice A, A.6.