

Física Computacional

Voluntario 2: Estudio del péndulo doble con un algoritmo Runge-Kutta.

Resumen

En este informe tenemos como objetivo ...

Zhuo Zhuo Liu

Grado en Física

Índice

1.	Introducción	1
2.	Planteamiento del problema 2.1. Ecuaciones del movimiento	1 1
Α.	. Tabla de valores	2
B.	Análisis de errores	3

I ZhuoZhuo L.

1. Introducción

2. Planteamiento del problema

Primero debemos de hallar las expresiones de los momentos angulares a partir del Lagrangiano del sistema.

$$\mathcal{L} = \dot{\phi}^2 + \dot{\phi}\dot{\psi}\cos(\psi - \phi) + \frac{1}{2}\dot{\psi}^2 - 2g(1 - \cos\phi) - g(1 - \cos\psi) =$$
 (1)

Recordemos que para simplificar las ecuaciones de movimiento, hemos considerado que $\dot{\psi}=0$

$$\mathcal{L} = \dot{\phi}^2 - 2g(1 - \cos\phi) - g(1 - \cos\psi) \tag{2}$$

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = 2\dot{\phi} + \rightarrow \dot{\phi} = \frac{p_{\phi}}{2} \tag{3}$$

$$p_{\psi} = \frac{\partial L}{\partial \dot{\psi}} = 0 \tag{4}$$

Expresando la Hamiltoniana del sistema en términos de los momentos angulares, obtenemos:

$$H = \frac{p_{\phi}^2}{4} + 2g(1 - \cos\phi) + g(1 - \cos\psi) \tag{5}$$

2.1. Ecuaciones del movimiento

A. Tabla de valores

ZhuoZhuo L.

B. Análisis de errores