SC1015 Mini Project

Z136 Team 4 Chong Choy Jun Chew Di Heng Choh Lit Han Owen

Introduction

Problem Definition

 As COE in Singapore have been rising rapidly, how can one choose the most appropriate car model that will be value for money?

Are we able to predict car price through a subset of the car features alone? Does the engine size affects the price more than model?

Dataset

 Ford car price dataset from kaggle

Before

Setup: Import the Dataset

	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize
0	Fiesta	2017	12000	Automatic	15944	Petrol	150	57.7	1.0
1	Focus	2018	14000	Manual	9083	Petrol	150	57.7	1.0
2	Focus	2017	13000	Manual	12456	Petrol	150	57.7	1.0
3	Fiesta	2019	17500	Manual	10460	Petrol	145	40.3	1.5
4	Fiesta	2019	16500	Automatic	1482	Petrol	145	48.7	1.0
		-							
17961	B-MAX	2017	8999	Manual	16700	Petrol	150	47.1	1.4
17962	B-MAX	2014	7499	Manual	40700	Petrol	30	57.7	1.0
17963	Focus	2015	9999	Manual	7010	Diesel	20	67.3	1.6
17964	KA	2018	8299	Manual	5007	Petrol	145	57.7	1.2
17965	Focus	2015	8299	Manual	5007	Petrol	22	57.7	1.0

Data Cleaning and Preparation

After

Out[15]:		model	year	price	transmission	mileage	fuelType	engineSize
	0	Fiesta	2017	12000	Automatic	15944	Petrol	1.0
	1	Focus	2018	14000	Manual	9083	Petrol	1.0
	2	Focus	2017	13000	Manual	12456	Petrol	1.0
	3	Fiesta	2019	17500	Manual	10460	Petrol	1.5
	4	Fiesta	2019	16500	Automatic	1482	Petrol	1.0
		***				***	***	
	17961	B-MAX	2017	8999	Manual	16700	Petrol	1.4
	17962	B-MAX	2014	7499	Manual	40700	Petrol	1.0
	17963	Focus	2015	9999	Manual	7010	Diesel	1.6
	17964	KA	2018	8299	Manual	5007	Petrol	1.2
	17965	Focus	2015	8299	Manual	5007	Petrol	1.0
	17966 r	ows × 7	colum	nns				

memory usage: 982.6+ KB

cardata_subset['year'].astype('object')

6 engineSize 17966 non-null float64 dtypes: float64(1), int64(2), object(4)

We change "Year" to object type

car_numeric_data = cardata_subset.select_dtypes('number')
car_cat_data = cardata_subset.select_dtypes('object')
print(car_numeric_data.columns)
print(car_cat_data.columns)

Index(['price', 'mileage', 'engineSize'], dtype='object')
Index(['model', 'year', 'transmission', 'fuelType'], dtype='object')

Splitting data set into numerical data and categorical data

Exploratory Data Analysis - Numerical data

Correlation Matrix

Mileage has a stronger correlation with price

Engine Size

Size "5" > 20000

Mileage

Mileage < 25000 attracts high price

Exploratory Data Analysis - Categorical Data

Model "Focus" have outliers reaching > 50000 in price

Year

Newer car model in general have higher selling price

Exploratory Data Analysis - Categorical Data part 2

Transmission

Manual car attracts higher price

Fuel Type

Petrol car attract higher price

Why Random Forest

Focus Puma

Key Learning Points: Random Forest

1 Flexible Model

Applicable to both regression and classification problems

2 Advantage

Avoids overfitting

3 SMOTE

Good for increasing minority class but may decrease performance of model

Model: Decision Tree Classifier

Why K-Fold

Provides a more accurate estimate of the model's performance

Reduces the risk of overfitting

Enables more efficient use of data

Help with model selection

How we applied it?

Results of the model

Key Learning Points: Decision Tree Classifier

Key Learning Points: K-Fold

Model: Gradient Boosting Regressor

How did we applied the model?

OHE One Hot Encoded (OHE) categorical variables **Split Dataset** Split into train and test 3 **Build Model** Fit model on to dataset

Model: Gradient Boosting Regressor

Key Learning Points: Gradient Boosting Regressor

Gradient Boosting Regressor: Importance chart

Accuracy for Engine Size

Goodness of Fit of Model Accuracy for Engine Size

Train Dataset : 0.4116587761551632

Goodness of Fit of Model Accuracy for Engine Size

Test Dataset : 0.40256876108154593

Accuracy for Mileage

Goodness of Fit of Model Train Dataset Accuracy for Mileage : 0.3468246383032435

Goodness of Fit of Model Test Dataset Accuracy for Mileage : 0.3454200921503532

Accuracy for Year

Goodness of Fit of Model Train Dataset Accuracy for year : 0.47408399711409654

Goodness of Fit of Model Test Dataset Accuracy for year : 0.4895054746401831

Accuracy for all variables

Goodness of Fit of Model Train Dataset

Accuracy : 0.9183832541250874

Goodness of Fit of Model Test Dataset

Accuracy : 0.9206849808935842

Conclusion

Outcome of our project

