EGLE-RRD-DetroitEDM

From: Lab <lab@fibertec.us>

Sent: Monday, July 18, 2022 3:31 PM

To: Vens, Beth (EGLE); Noyce, Kyle; doug.saigh@woodplc.com; ian.cisco@woodplc.com

Subject: EGLE - State Overflow: Van Dyke Ave 3650200103; (A09531) Lab Results **Attachments:** A09531 Laboratory Report (Standard with Surrogate).pdf; A09531_COC.pdf

CAUTION: This is an External email. Please send suspicious emails to abuse@michigan.gov

Dear Beth,

Thank you for choosing Fibertec Environmental Services for your analytical needs. Attached is the laboratory report for your recently requested analysis.

Fibertec retains all soil and water samples for 30 days. If you would like your samples returned, please contact us. Please note that Fibertec's hold policy for TO-15: samples will be disposed of 7 calendar days past the report date unless arrangements are made for extended storage.

Due to an increase in demand, Fibertec's TO-15 analysis and bottle order processing capabilities are scaling up. In order to best serve all of our clients, we are implementing the following changes, effective March 1, 2022.

- Standard turnaround time for TO-15 analysis will be 10-14 business days.
- Please note that projects requiring less than a 10-14 day turnaround time will be accepted on a VERY limited basis
- TO-15 bottle orders will require a minimum 2-week notice to fill. (Bottle vacs, summa canisters, flow controllers, etc.)
- Tubing orders will require a minimum two-day notice. (Teflon or Masterflex)
- The fastest rush turnaround time that we can currently accommodate is three business days and increases based on project size.

Thank you for your continued support while we scale up production to match demand.

Kind Regards,

Suzie Ricketts

Client Service Representative

Fibertec Environmental Services

1914 Holloway Drive Holt, MI 48842

sricketts@fibertec.us

The Choice of Environmental Professionals since 1987

Monday, July 18, 2022

Fibertec Project Number: A09531

Project Identification: Van Dyke Ave (3650200103) /3650200103

Submittal Date: 07/01/2022

Ms. Beth Vens

EGLE - State Overflow

Invoice sent to:

525 W. Allegan St., Constitution Hall-3N

Lansing, MI 48909

Dear Ms. Vens,

Thank you for selecting Fibertec Environmental Services as your analytical laboratory. The samples you submitted have been analyzed in accordance with NELAC standards and the results compiled in the attached report. Any exceptions to NELAC compliance are noted in the report. These results apply only to those samples submitted. Please note TO-15 samples will be disposed of 7 calendar days after the reporting date. All other samples will be disposed of 30 days after the reporting date.

In regards to this project Van Dyke Ave 3650200103:

File No.: 761/20138.AGY Contract Order No.: Y20153 Permanent ISD No.: 00869 Location Code is: 7671

If you have any questions regarding these results or if we may be of further assistance to you, please contact me at (517) 699-0345.

Sincerely,

By Sue Ricketts at 3:28 PM, Jul 18, 2022

For Daryl P. Strandbergh Laboratory Director

Enclosures

Page:

Order: A09531 Date: 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-1 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 12:49

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac)

Aliquot ID: A09531-001 Matrix: Air

Method: EPA TO-15

Description: SWP-1

						Prepa	ration	Ana	alysis	
Parameter(s)	Result	Q	Units	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 1. Acrylonitrile	U		μg/m3	11	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
2. Benzene	U		μg/m3	19	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
3. Bromodichloromethane	U		μg/m3	8.0	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
4. Bromoform	U		μg/m3	62	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
5. Bromomethane	U		μg/m3	23	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
6.1,3-Butadiene	U		μg/m3	2.7	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
7.2-Butanone	U		μg/m3	35	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
‡ 8. n-Butylbenzene	U		μg/m3	5.5	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
‡ 9. sec-Butylbenzene	U		μg/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
10. Carbon Tetrachloride	U		μg/m3	7.5	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
11. Chlorobenzene	U		μg/m3	28	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
12. Chloroethane	U		μg/m3	16	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
13. Chloroform	U		μg/m3	5.9	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
14. Chloromethane	U		μg/m3	12	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
15. Cyclohexane	U		μg/m3	41	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
16. Dibromochloromethane	U		μg/m3	4.1	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
17.1,2-Dichlorobenzene	U		μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
18.1,3-Dichlorobenzene	U		μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
19.1,4-Dichlorobenzene	U		μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
20. Dichlorodifluoromethane	U		μg/m3	30	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
21.1,1-Dichloroethane	U		μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
22.1,2-Dichloroethane	U		μg/m3	4.9	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
23. 1,1-Dichloroethene	U		μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
24. cis-1,2-Dichloroethene	U		μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
25. trans-1,2-Dichloroethene	U		μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
26. 1,2-Dichloropropane	U		μg/m3	28	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
27. cis-1,3-Dichloropropene	U		μg/m3	27	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
28. trans-1,3-Dichloropropene	U		μg/m3	27	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
29. Ethylbenzene	U		μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
30. Ethylene Dibromide	U		μg/m3	0.92	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
31. n-Hexane	U		μg/m3	42	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
‡ 32.2-Hexanone	U		μg/m3	49	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
‡ 33. Isopropylbenzene	U		μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
34. Methylene Chloride	U		μg/m3	42	4.0	07/13/22		07/14/22 03:32		
‡ 35.2-Methylnaphthalene	U		μg/m3	140	4.0	07/13/22		07/14/22 03:32		
36.MTBE	U		μg/m3	22	4.0	07/13/22		07/14/22 03:32		-
	U		μg/m3	19	4.0	07/13/22		07/14/22 03:32		

1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601 T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368

Order: A09531 Date: 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-1 Chain of Custody: 202944

 Client Project Name:
 Van Dyke Ave (3650200103)
 Sample No:
 Collect Date:
 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 12:49

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac)

Method: EPA TO-15

Parameter(s)

Aliquot ID: A09531-001 Matrix: Air

Description: SWP-1

Preparation
P. Date P. Batch

					Prepa	ration	Analysis		
Parameter(s)	Result	Q Units	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 38.n-Propylbenzene	U	μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
39. Styrene	U	μg/m3	51	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	CM
40.1,1,2,2-Tetrachloroethane	U	μg/m3	3.3	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
41. Tetrachloroethene	U	μg/m3	41	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
42. Toluene	U	μg/m3	23	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
‡ 43.1,2,3-Trichlorobenzene	U	μg/m3	7.4	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
44.1,2,4-Trichlorobenzene	U	μg/m3	89	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
45.1,1,1-Trichloroethane	U	μg/m3	33	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
46.1,1,2-Trichloroethane	U	μg/m3	6.5	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
47. Trichloroethene	U	μg/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
48. Trichlorofluoromethane	U	μg/m3	34	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
‡ 49.1,2,3-Trimethylbenzene	U	μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
50.1,2,4-Trimethylbenzene	U	μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
51.1,3,5-Trimethylbenzene	U	μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
‡ 52.2,2,4-Trimethylpentane	U	μg/m3	1.4	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
53. Vinyl Chloride	U	μg/m3	15	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
54. m&p-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
55. o-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
‡ 56. Xylenes	U	μg/m3	100	4.0	07/13/22	VN22G13A	07/14/22 03:32	VN22G13A	СМ
Curre mete Cumamanu			0 1 1 1 14	1	D-4-1-	D T	! O-1	1 1.4	

 Surrogate Summary
 Control Limits
 Instrument
 Batch
 Run Time
 Column
 Inst. Method

 4-Bromofluorobenzene(S)
 94
 %
 80-120
 VN
 VN22G13A
 7/14/2022 03:32
 1
 VN400

Order: A09531 Date: 07/18/22

Analysis

A. Batch

Init

A. Date

Preparation

P. Batch

P. Date

Client Identification: EGLE - State Overflow Sample Description: SWP-2 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Reporting Limit

Dilution

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 12:24

Sample Comments:

Parameter(s)

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac)

Aliquot ID: A09531-002 Matrix: Air

Method: EPA TO-15

Description: SWP-2

Units

Result

O

1. Acrylonitrile U µg/m3 11 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM 2 Benzene U ua/m3 19 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM 3. Bromodichloromethane U 8.0 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A $\mu g/m3$ U 4 Bromoform 62 4 0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM µg/m3 5. Bromomethane U 23 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A μg/m3 U VN22G13A 07/14/22 04:26 VN22G13A CM 6.1.3-Butadiene µg/m3 27 40 07/13/22 7.2-Butanone U µg/m3 35 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A 8. n-Butylbenzene U 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM μg/m3 5.5 40 9. sec-Butylbenzene U 1.6 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM ua/m3 7.5 U VN22G13A 07/14/22 04:26 VN22G13A 10. Carbon Tetrachloride μg/m3 4.0 07/13/22 CM 11. Chlorobenzene U 28 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A µg/m3 CM 12. Chloroethane U 16 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A µg/m3 13. Chloroform U 5.9 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM ua/m3 14. Chloromethane U 12 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A μg/m3 15. Cyclohexane u 41 4 0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM µg/m3 U 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A 16. Dibromochloromethane μg/m3 4.1 4.0 17.1.2-Dichlorobenzene U 36 4 0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM µg/m3 U VN22G13A 07/14/22 04:26 VN22G13A 18. 1.3-Dichlorobenzene µg/m3 36 4.0 07/13/22 19.1,4-Dichlorobenzene U 4 0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM μg/m3 36 20. Dichlorodifluoromethane U 30 4 0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A ua/m3 U 21.1,1-Dichloroethane 24 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM μg/m3 22.1,2-Dichloroethane U ug/m3 4.9 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM U 23.1,1-Dichloroethene µg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM 24. cis-1,2-Dichloroethene U μg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM 25. trans-1,2-Dichloroethene U μg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM U 4.0 VN22G13A 07/14/22 04:26 VN22G13A 26. 1.2-Dichloropropane $\mu g/m3$ 28 07/13/22 CM 27. cis-1,3-Dichloropropene U μg/m3 27 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A 28. trans-1,3-Dichloropropene U 27 4.0 VN22G13A 07/14/22 04:26 VN22G13A 07/13/22 CM μg/m3 29. Ethylbenzene U 52 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A µg/m3 30. Ethylene Dibromide U 0.92 4.0 07/13/22 VN22G13A 07/14/22 04:26 VN22G13A CM μg/m3

> 1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail

Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601

μg/m3

μg/m3

ug/m3

µg/m3

иа/т3

ug/m3

μg/m3

U

U

U

U

U

U

U

T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368

4.0

4 0

4.0

4.0

4.0

4.0

4.0

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

F: (517) 699-0388 F: (810) 220-3311 F: (231) 775-8584

VN22G13A 07/14/22 04:26 VN22G13A

VN22G13A 07/14/22 04:26 VN22G13A CM

VN22G13A 07/14/22 04:26 VN22G13A CM

31. n-Hexane

‡ 32.2-Hexanone

36. MTBE

‡ 37. Naphthalene

33. Isopropylbenzene

34. Methylene Chloride

‡ 35. 2-Methylnaphthalene

42

49

29

42

140

22

19

CM

CM

Order: Date: A09531 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-2 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 12:24

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac)			Alic	quot ID:	A09531-002	Matrix: A	ir		
Method: EPA TO-15			Des	scription:	SWP-2				
					Prepar	ation	An	alysis	
Parameter(s)	Result	Q Units	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 38. n-Propylbenzene	1.5	μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	СМ
39. Styrene	U	μg/m3	51	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
40.1,1,2,2-Tetrachloroethane	U	μg/m3	3.3	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	СМ
41. Tetrachloroethene	U	μg/m3	41	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
42. Toluene	U	μg/m3	23	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
‡ 43.1,2,3-Trichlorobenzene	U	μg/m3	7.4	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
44.1,2,4-Trichlorobenzene	U	μg/m3	89	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
45.1,1,1-Trichloroethane	U	μg/m3	33	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
46. 1,1,2-Trichloroethane	U	μg/m3	6.5	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
47. Trichloroethene	U	μg/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
48. Trichlorofluoromethane	U	μg/m3	34	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
‡ 49.1,2,3-Trimethylbenzene	U	μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
50.1,2,4-Trimethylbenzene	U	μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
51.1,3,5-Trimethylbenzene	U	μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
52.2,2,4-Trimethylpentane	8.9	μg/m3	1.4	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
53. Vinyl Chloride	U	μg/m3	15	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
54. m&p-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	СМ
55. o-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	CM
‡ 56. Xylenes	U	μg/m3	100	4.0	07/13/22	VN22G13A	07/14/22 04:26	VN22G13A	. CM
Surrogate Summary			Control Limits	Instrume	ent Batch	Run Tir	me <u>Colum</u>	ın Inst. Me	ethod
4-Bromofluorobenzene(S)	95	%	80-120	VN	VN22G13A	7/14/2022	04:26 1	VN4	00

 1914 Holloway Drive
 Holt, MI 48842
 T: (517) 699-0345

 11766 E. Grand River
 Brighton, MI 48116
 T: (810) 220-3300

 8660 S. Mackinaw Trail
 Cadillac, MI 49601
 T: (231) 775-8368

Order: A09531 Date: 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-4 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 13:19

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac)

Aliquot ID: A09531-003 Matrix: Air

Method: EPA TO-15

Description: SWP-4

Preparation Analysis Parameter(s) Result O Units Reporting Limit Dilution P. Date P. Batch A. Date A. Batch Init 1. Acrylonitrile U µg/m3 11 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM 2 Benzene U ua/m3 19 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM 3. Bromodichloromethane U 8.0 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A $\mu g/m3$ U 4 Bromoform 62 4 0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM µg/m3 5. Bromomethane U 23 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A μg/m3 U VN22G13A 07/14/22 05:20 VN22G13A CM 6.1.3-Butadiene µg/m3 27 40 07/13/22 7.2-Butanone U µg/m3 35 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A 8. n-Butylbenzene U 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM μg/m3 5.5 40 9. sec-Butylbenzene U 1.6 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM ua/m3 7.5 U VN22G13A 07/14/22 05:20 VN22G13A 10. Carbon Tetrachloride μg/m3 4.0 07/13/22 CM 11. Chlorobenzene U 28 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A µg/m3 CM 12. Chloroethane U 16 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A µg/m3 13. Chloroform 16 5.9 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM µg/m3 14. Chloromethane U 12 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A μg/m3 15. Cyclohexane u 41 4 0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM µg/m3 U 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A 16. Dibromochloromethane μg/m3 4.1 4.0 17.1.2-Dichlorobenzene U 36 4 0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM µg/m3 U VN22G13A 07/14/22 05:20 VN22G13A 18. 1.3-Dichlorobenzene µg/m3 36 4.0 07/13/22 19.1,4-Dichlorobenzene U 4 0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM μg/m3 36 20. Dichlorodifluoromethane U 30 4 0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A ua/m3 U 21.1,1-Dichloroethane 24 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM μg/m3 22.1,2-Dichloroethane U ug/m3 4.9 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM U 23.1,1-Dichloroethene µg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM 24. cis-1,2-Dichloroethene U μg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM 25. trans-1,2-Dichloroethene U μg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM U 4.0 VN22G13A 07/14/22 05:20 VN22G13A 26. 1.2-Dichloropropane $\mu g/m3$ 28 07/13/22 CM 27. cis-1,3-Dichloropropene U μg/m3 27 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A 28. trans-1,3-Dichloropropene U 27 4.0 VN22G13A 07/14/22 05:20 VN22G13A 07/13/22 CM μg/m3 29. Ethylbenzene U 52 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A µg/m3 30. Ethylene Dibromide U 0.92 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM μg/m3 U 31. n-Hexane μg/m3 42 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A U ‡ 32.2-Hexanone μg/m3 49 4 0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM 33. Isopropylbenzene U 29 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM ug/m3 U 34. Methylene Chloride µg/m3 42 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A ‡ 35. 2-Methylnaphthalene U 140 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A иа/т3 36. MTBE U 22 4.0 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A ug/m3 ‡ 37. Naphthalene U 19 07/13/22 VN22G13A 07/14/22 05:20 VN22G13A CM μg/m3 4.0

lab@fibertec.us

1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601 T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368 F: (517) 699-0388 F: (810) 220-3311 F: (231) 775-8584

Page:

A09531 Order: Date: 07/18/22

VN22G13A 07/14/22 05:20 VN22G13A CM

VN22G13A 07/14/22 05:20 VN22G13A

Client Identification: **EGLE - State Overflow** Sample Description: SWP-4 Chain of Custody: 202944

06/29/22 Van Dyke Ave (3650200103) Collect Date: Client Project Name: Sample No:

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 13:19

Sample Comments:

50. 1,2,4-Trimethylbenzene

51.1,3,5-Trimethylbenzene

‡ 52.2,2,4-Trimethylpentane

53. Vinyl Chloride

54. m&p-Xylene

55. o-Xylene

‡ 56. Xylenes

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

U

U

U

U

U

U

U

μg/m3

μg/m3

 $\mu g/m3$

μg/m3

μg/m3

µg/m3

 $\mu g/m3$

TO-15 (Bottle-Vac) Method: EPA TO-15				•	uot ID: cription:	A09531-003 SWP-4	Matrix: A	Air		
						Prepa	ration	Ana	alysis	
Parameter(s)	Result	Q	Units	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 38. n-Propylbenzene	U		μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	СМ
39. Styrene	U		μg/m3	51	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
40.1,1,2,2-Tetrachloroethane	U		μg/m3	3.3	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	СМ
41. Tetrachloroethene	U		μg/m3	41	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
42. Toluene	U		μg/m3	23	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
‡ 43.1,2,3-Trichlorobenzene	U		μg/m3	7.4	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
44. 1,2,4-Trichlorobenzene	U		μg/m3	89	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
45. 1,1,1-Trichloroethane	U		μg/m3	33	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
46. 1,1,2-Trichloroethane	U		μg/m3	6.5	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
47. Trichloroethene	U		μg/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM
48. Trichlorofluoromethane	U		μg/m3	34	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	СМ
‡ 49.1,2,3-Trimethylbenzene	U		μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 05:20	VN22G13A	CM

Surrogate Summary			Control Limits	Instrument	<u>Batch</u>	Run Time	Column	Inst. Method
4-Bromofluorobenzene(S)	96	%	80-120	VN	VN22G13A	7/14/2022 05:20	1	VN400

29

29

14

15

52

52

100

4.0

4.0

4.0

4.0

4 0

4.0

4.0

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

Order: A09531 Date: 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-5 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 13:55

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac)

Aliquot ID: A09531-004 Matrix: Air

Method: EPA TO-15

Description: SWP-5

Preparation Analysis Parameter(s) Result O Units Reporting Limit Dilution P. Date P. Batch A. Date A. Batch Init 1. Acrylonitrile U µg/m3 11 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM 2 Benzene U ua/m3 19 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM 3. Bromodichloromethane U 8.0 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A $\mu g/m3$ U 4 Bromoform 62 4 0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM µg/m3 5. Bromomethane U 23 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A μg/m3 U 6.1.3-Butadiene µg/m3 27 40 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM 7.2-Butanone U µg/m3 35 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A 8. n-Butylbenzene U 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM μg/m3 5.5 40 9. sec-Butylbenzene U 1.6 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM ua/m3 U 7.5 VN22G13A 07/14/22 06:14 VN22G13A 10. Carbon Tetrachloride μg/m3 4.0 07/13/22 CM 11. Chlorobenzene U 28 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A µg/m3 CM 12. Chloroethane U 16 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A µg/m3 13. Chloroform 32 5.9 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM ua/m3 14. Chloromethane U 12 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A μg/m3 4.0 15. Cyclohexane u 41 4 0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM µg/m3 U 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A 16. Dibromochloromethane μg/m3 4.1 4.0 17.1.2-Dichlorobenzene U 36 4 0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM µg/m3 U VN22G13A 07/14/22 06:14 VN22G13A 18. 1.3-Dichlorobenzene µg/m3 36 4.0 07/13/22 19.1,4-Dichlorobenzene U 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM μg/m3 36 40 20. Dichlorodifluoromethane U 30 4 0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A ua/m3 U 21.1,1-Dichloroethane 24 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM μg/m3 22.1,2-Dichloroethane U ug/m3 4.9 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM U 23.1,1-Dichloroethene µg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM 24. cis-1,2-Dichloroethene U 24 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A ug/m3 CM 25. trans-1,2-Dichloroethene U μg/m3 24 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM U 4.0 VN22G13A 07/14/22 06:14 VN22G13A 26. 1.2-Dichloropropane $\mu g/m3$ 28 07/13/22 CM 27. cis-1,3-Dichloropropene U μg/m3 27 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A 28. trans-1,3-Dichloropropene U 27 4.0 VN22G13A 07/14/22 06:14 VN22G13A 07/13/22 CM μg/m3 29. Ethylbenzene U 52 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A µg/m3 30. Ethylene Dibromide U 0.92 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM μg/m3 U 31. n-Hexane μg/m3 42 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A U ‡ 32.2-Hexanone μg/m3 49 4 0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM 33. Isopropylbenzene U 29 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM ug/m3 U 34. Methylene Chloride µg/m3 42 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A ‡ 35. 2-Methylnaphthalene U 140 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM иа/т3 36. MTBE U 22 4.0 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A ug/m3 ‡ 37. Naphthalene U 19 07/13/22 VN22G13A 07/14/22 06:14 VN22G13A CM μg/m3 4.0

> 1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail

Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601 T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368

Order: A09531 07/18/22 Date:

EGLE - State Overflow 202944 Client Identification: Sample Description: SWP-5 Chain of Custody:

Van Dyke Ave (3650200103) 06/29/22 Client Project Name: Collect Date: Sample No:

Collect Time: Client Project No: 3650200103 Sample Matrix: Air 13:55

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac) Aliquot ID: A09531-004 Matrix: Air

io io (Bottio rao)			73.11	quotib. At		matrix. A	••		
Method: EPA TO-15			Des	scription: S\	WP-5				
					Prepar	ation	Ana	alysis	
Parameter(s)	Result	Q Units	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 38. n-Propylbenzene	U	μg/m3	3 1.5	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	СМ
39. Styrene	U	μg/m3	3 51	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	СМ
40.1,1,2,2-Tetrachloroethane	U	μg/m3	3.3	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	СМ
41. Tetrachloroethene	U	μg/m3	3 41	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	СМ
42. Toluene	U	μg/m3	3 23	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
‡ 43.1,2,3-Trichlorobenzene	U	μg/m3	7.4	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
44.1,2,4-Trichlorobenzene	U	μg/m3	89	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
45.1,1,1-Trichloroethane	U	μg/m3	33	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
46.1,1,2-Trichloroethane	U	μg/m3	6.5	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
47. Trichloroethene	2.0	μg/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
48. Trichlorofluoromethane	U	μg/m3	34	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
‡ 49.1,2,3-Trimethylbenzene	U	μg/m3	3 1.5	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
50.1,2,4-Trimethylbenzene	U	μg/m3	3 29	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
51.1,3,5-Trimethylbenzene	U	μg/m3	3 29	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
‡ 52.2,2,4-Trimethylpentane	U	μg/m3	3 1.4	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
53. Vinyl Chloride	U	μg/m3	3 15	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
54. m&p-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
55. o-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	CM
‡ 56. Xylenes	U	μg/m3	3 100	4.0	07/13/22	VN22G13A	07/14/22 06:14	VN22G13A	СМ
Surrogate Summary			Control Limits	Instrument	<u>Batch</u>	Run Tir	me <u>Colum</u>	n Inst. Me	ethod
4 Dramafluarahannana(C)	00	0/	00.100	1/1	\/NI00C10A	7/1 4/0000	00.14	1/11/	^^

4-Bromofluorobenzene(S) 98 80-120 VN VN22G13A 7/14/2022 06:14 VN400

Order: A09531 Date: 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-6 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 13:47

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac)	Aliquot ID:	A09531-005	Matrix: Air
Method: EPA TO-15	Description:	SWP-6	

					Prepa	ration	An	alysis	
Parameter(s)	Result	Q Units	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 1. Acrylonitrile	U	μg/m	3 11	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
2. Benzene	U	μg/m	3 19	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
3. Bromodichloromethane	U	μg/m	8.0	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
4. Bromoform	U	μg/m	62	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
5. Bromomethane	U	μg/m	3 23	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
6.1,3-Butadiene	U	μg/m	3 2.7	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
7.2-Butanone	U	μg/m	35	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 8. n-Butylbenzene	U	μg/m	5.5	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 9. sec-Butylbenzene	U	μg/m	3 1.6	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
10. Carbon Tetrachloride	U	μg/m	3 7.5	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
11. Chlorobenzene	U	μg/m	3 28	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
12. Chloroethane	U	μg/m	3 16	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
13. Chloroform	10	μg/m	5.9	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
14. Chloromethane	U	μg/m	3 12	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
15. Cyclohexane	1500	μg/m	3 41	11	07/15/22	VN22G15B	07/15/22 23:12	VN22G15B	CMA
16. Dibromochloromethane	U	μg/m	3 4.1	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
17.1,2-Dichlorobenzene	U	μg/m	36	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
18.1,3-Dichlorobenzene	U	μg/m	3 36	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
19.1,4-Dichlorobenzene	U	μg/m	36	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
20. Dichlorodifluoromethane	U	μg/m	3 30	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
21.1,1-Dichloroethane	U	μg/m	3 24	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
22.1,2-Dichloroethane	U	μg/m	3 4.9	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
23.1,1-Dichloroethene	U	μg/m	3 24	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
24. cis-1,2-Dichloroethene	U	μg/m	3 24	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
25. trans-1,2-Dichloroethene	U	μg/m	3 24	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
26.1,2-Dichloropropane	U	μg/m	3 28	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
27. cis-1,3-Dichloropropene	U	μg/m	3 27	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
28. trans-1,3-Dichloropropene	U	μg/m	3 27	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
29. Ethylbenzene	U	μg/m	3 52	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
30. Ethylene Dibromide	U	μg/m	3 0.92	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
31. n-Hexane	940	μg/m	3 42	11	07/15/22	VN22G15B	07/15/22 23:12	VN22G15B	CMA
‡ 32.2-Hexanone	U	μg/m	3 49	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 33. Isopropylbenzene	U	μg/m	3 29	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
34. Methylene Chloride	U	μg/m		4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
35. 2-Methylnaphthalene	U	μg/m		4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
36. MTBE	U	μg/m		4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 37. Naphthalene	U	μg/m		4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ

lab@fibertec.us

1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601 T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368

Order: A09531 07/18/22 Date:

EGLE - State Overflow SWP-6 202944 Client Identification: Sample Description: Chain of Custody:

Van Dyke Ave (3650200103) Collect Date: 06/29/22 Client Project Name: Sample No:

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 13:47

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable #: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac) Method: EPA TO-15				•	uot ID: cription:	A09531-005 SWP-6	Matrix: Air
5					D.,		aration
Parameter(s)	Result	Q	Units	Reporting Limit	Dilution	P. Date	P. Batch

B ()					Prepa	ration	An	alysis	
Parameter(s)	Result	Q Unit	s Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 38. n-Propylbenzene	3.6	μg/m	3 1.5	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
39. Styrene	U	μg/m	3 51	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
40.1,1,2,2-Tetrachloroethane	U	μg/m	3 3.3	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
41. Tetrachloroethene	U	μg/m	3 41	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
42. Toluene	U	μg/m	3 23	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 43.1,2,3-Trichlorobenzene	U	μg/m	3 7.4	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
44.1,2,4-Trichlorobenzene	U	μg/m	3 89	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
45.1,1,1-Trichloroethane	U	μg/m	3 33	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
46.1,1,2-Trichloroethane	U	μg/m	3 6.5	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
47. Trichloroethene	U	μg/m	3 1.6	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	CM
48. Trichlorofluoromethane	U	μg/m	3 34	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 49.1,2,3-Trimethylbenzene	U	μg/m	3 1.5	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
50.1,2,4-Trimethylbenzene	U	μg/m	3 29	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
51.1,3,5-Trimethylbenzene	U	μg/m	3 29	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 52.2,2,4-Trimethylpentane	U	μg/m	3 1.4	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
53. Vinyl Chloride	U	μg/m	3 15	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
54. m&p-Xylene	U	μg/m	3 52	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
55. o-Xylene	U	μg/m	3 52	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ
‡ 56. Xylenes	U	μg/m	3 100	4.0	07/13/22	VN22G13A	07/14/22 07:08	VN22G13A	СМ

Surrogate Summary			Control Limits	Instrument	Batch	Run Time	Column	Inst. Method
4-Bromofluorobenzene(S)	98	%	80-120	VN	VN22G13A	7/14/2022 07:08	1	VN400
4-Bromofluorobenzene(S)	94	%	80-120	VN	VN22G15B	7/15/2022 23:12	1	VN400

Order: A09531 Date: 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-7 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 13:03

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac) Aliquot ID: A09531-006 Matrix: Air

Method: EPA TO-15 Description: SWP-7

Parameter(s)	Result	Q Units	Reporting Limit	Dilution	Prepai P. Date	ration P. Batch	An A. Date	alysis A. Batch	Init
‡ 1. Acrylonitrile	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
2. Benzene	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
3. Bromodichloromethane	64	μg/m3		4.0	07/13/22		07/14/22 08:03		
4. Bromoform	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
5. Bromomethane	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
6. 1,3-Butadiene	U	μg/m3 μg/m3		4.0	07/13/22		07/14/22 08:03		
7.2-Butanone	U			4.0	07/13/22		07/14/22 08:03		
	U	μg/m3							
‡ 8. n-Butylbenzene		μg/m3		4.0	07/13/22		07/14/22 08:03		
9. sec-Butylbenzene	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
10. Carbon Tetrachloride	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
11. Chlorobenzene	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
12. Chloroethane	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
13. Chloroform	400	μg/m3		4.0	07/13/22		07/14/22 08:03		
14. Chloromethane	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
15. Cyclohexane	U	μg/m3		4.0	07/13/22		07/14/22 08:03		
16. Dibromochloromethane	15	μg/m3		4.0	07/13/22		07/14/22 08:03		
17.1,2-Dichlorobenzene	U	μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
18.1,3-Dichlorobenzene	U	μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	. CN
19.1,4-Dichlorobenzene	U	μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
20. Dichlorodifluoromethane	U	μg/m3	30	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	. CN
21.1,1-Dichloroethane	U	μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
22.1,2-Dichloroethane	U	μg/m3	4.9	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	. CN
23.1,1-Dichloroethene	U	μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
24. cis-1,2-Dichloroethene	43	μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	. CN
25. trans-1,2-Dichloroethene	U	μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
26.1,2-Dichloropropane	U	μg/m3	28	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
27. cis-1,3-Dichloropropene	U	μg/m3	27	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
28. trans-1,3-Dichloropropene	U	μg/m3	27	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	. CN
29. Ethylbenzene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
30. Ethylene Dibromide	U	μg/m3	0.92	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	. CN
31. n-Hexane	U	μg/m3	42	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
‡ 32.2-Hexanone	U	μg/m3	49	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
‡ 33. Isopropylbenzene	U	μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
34. Methylene Chloride	U	μg/m3	42	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CN
35.2-Methylnaphthalene	U	μg/m3	140	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	. CN
36.MTBE	U	μg/m3		4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	C
37. Naphthalene	U	μg/m3		4.0	07/13/22		07/14/22 08:03		

1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601 T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368

EGLE - State Overflow

3650200103

Van Dyke Ave (3650200103)

Analytical Laboratory Report Laboratory Project Number: A09531 Laboratory Sample Number: A09531-006

SWP-7

Air

Order: A0 Date: 07

A09531 07/18/22

Chain of Custody: 202944

Collect Date:

Collect Time:

06/29/22 13:03

Client Project No:
Sample Comments:

Client Identification:

Client Project Name:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

Sample Matrix:

Sample No:

Sample Description:

TO-15 (Bottle-Vac)

Aliquot ID: A09531-006 Matrix: Air

Method: EPA TO-15

Description: SWP-7

Method: EPA 10-15		Description: SWP-7											
						Prepar	ation	tion Ana					
Parameter(s)	Result	Q Units	nits	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	n Init.			
‡ 38. n-Propylbenzene	U	μд	/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
39. Styrene	U	μд	/m3	51	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CM			
40.1,1,2,2-Tetrachloroethane	U	μд	/m3	3.3	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
41. Tetrachloroethene	190	μд	/m3	41	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
42. Toluene	U	μд	/m3	23	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
‡ 43.1,2,3-Trichlorobenzene	U	μд	/m3	7.4	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CM			
44.1,2,4-Trichlorobenzene	U	μд	/m3	89	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
45.1,1,1-Trichloroethane	U	μд	/m3	33	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
46.1,1,2-Trichloroethane	U	μд	/m3	6.5	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
47. Trichloroethene	15	μд	/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CM			
48. Trichlorofluoromethane	U	μд	/m3	34	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
‡ 49.1,2,3-Trimethylbenzene	U	μд	/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	CM			
50.1,2,4-Trimethylbenzene	U	μд	/m3	29	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
51.1,3,5-Trimethylbenzene	U	μд	/m3	29	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
‡ 52.2,2,4-Trimethylpentane	U	μд	/m3	1.4	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
53. Vinyl Chloride	U	μд	/m3	15	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
54. m&p-Xylene	U	μg	/m3	52	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
55. o-Xylene	U	μд	/m3	52	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
‡ 56. Xylenes	U	μд	/m3	100	4.0	07/13/22	VN22G13A	07/14/22 08:03	VN22G13A	СМ			
Surrogato Summary				Control Limits	Instrument	t Ratoh	Dun T	ima Calum	n Inst Mo	لممطد			

 Surrogate Summary
 Control Limits
 Instrument
 Batch
 Run Time
 Column
 Inst. Method

 4-Bromofluorobenzene(S)
 100
 %
 80-120
 VN
 VN22G13A
 7/14/2022 08:03
 1
 VN400

lab@fibertec.us

Order: A09531 Date: 07/18/22

Analysis

A. Batch Init.

A. Date

Client Identification: EGLE - State Overflow Sample Description: SWP-8 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Reporting Limit

Aliquot ID:

Description: SWP-8

Dilution

A09531-007

P. Date

Preparation

Matrix: Air

P. Batch

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 12:35

Sample Comments:

TO-15 (Bottle-Vac)

Method: EPA TO-15

Parameter(s)

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

Units

Result

Q

raiameter(s)	nesuit	Q UIIIS	neporting Limit	Dilution	r. Dale	r. Dalcii	A. Dale	A. Dalcii	IIIIL.
t 1. Acrylonitrile	U	μg/m3	11	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
2. Benzene	U	μg/m3	19	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	CM
3. Bromodichloromethane	U	μg/m3	8.0	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	CM
4. Bromoform	U	μg/m3	62	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
5. Bromomethane	U	μg/m3	23	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
6.1,3-Butadiene	U	μg/m3	2.7	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
7.2-Butanone	U	μg/m3	35	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
8. n-Butylbenzene	U	μg/m3	5.5	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
9. sec-Butylbenzene	U	μg/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
10. Carbon Tetrachloride	U	μg/m3	7.5	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
11. Chlorobenzene	U	μg/m3	28	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
12. Chloroethane	U	μg/m3	16	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
13. Chloroform	U	μg/m3	5.9	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
14. Chloromethane	U	μg/m3	12	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
15. Cyclohexane	U	μg/m3	41	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
16. Dibromochloromethane	U	μg/m3	4.1	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
17.1,2-Dichlorobenzene	U	μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
18.1,3-Dichlorobenzene	U	μg/m3	36	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
19.1,4-Dichlorobenzene	U	μg/m3	36	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
20. Dichlorodifluoromethane	U	μg/m3	30	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
21.1,1-Dichloroethane	U	μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
22.1,2-Dichloroethane	U	μg/m3	4.9	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
23.1,1-Dichloroethene	U	μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
24. cis-1,2-Dichloroethene	U	μg/m3	24	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
25. trans-1,2-Dichloroethene	U	μg/m3	24	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
26.1,2-Dichloropropane	U	μg/m3	28	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
27. cis-1,3-Dichloropropene	U	μg/m3	27	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ
28. trans-1,3-Dichloropropene	U	μg/m3	27	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
29. Ethylbenzene	U	μg/m3	52	4.0	07/13/22	VN22G13A (07/14/22 08:57	VN22G13A	СМ

1914 Holloway Drive 11766 E. Grand River 8660 S. Mackinaw Trail Holt, MI 48842 Brighton, MI 48116 Cadillac, MI 49601

 $\mu g/m3$

μg/m3

 $\mu g/m3$

 $\mu g/m3$

 $\mu g/m3$

μg/m3

μg/m3

 $\mu g/m3$

U

U

U

U

U

U

U

U

T: (517) 699-0345 T: (810) 220-3300 T: (231) 775-8368

4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

07/13/22

F: (517) 699-0388 F: (810) 220-3311 F: (231) 775-8584

VN22G13A 07/14/22 08:57 VN22G13A CM

VN22G13A 07/14/22 08:57 VN22G13A

30. Ethylene Dibromide

31. n-Hexane

‡ 32.2-Hexanone

36. MTBE

‡ 37. Naphthalene

‡ 33. Isopropylbenzene

34. Methylene Chloride

‡ 35.2-Methylnaphthalene

0.92

42

49

29

42

140

22

19

Order: Date: A09531 07/18/22

Client Identification: EGLE - State Overflow Sample Description: SWP-8 Chain of Custody: 202944

Client Project Name: Van Dyke Ave (3650200103) Sample No: Collect Date: 06/29/22

Client Project No: 3650200103 Sample Matrix: Air Collect Time: 12:35

Sample Comments:

Definitions: Q: Qualifier (see definitions at end of report) NA: Not Applicable ‡: Parameter not included in NELAC Scope of Analysis.

TO-15 (Bottle-Vac) Method: EPA TO-15				uot ID:	A09531-007 SWP-8	Matrix: Air			
					Prepar	ation	An	alysis	
Parameter(s)	Result	Q Units	Reporting Limit	Dilution	P. Date	P. Batch	A. Date	A. Batch	Init.
‡ 38. n-Propylbenzene	U	μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
39. Styrene	U	μg/m3	51	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
40.1,1,2,2-Tetrachloroethane	U	μg/m3	3.3	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
41. Tetrachloroethene	U	μg/m3	41	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
42. Toluene	U	μg/m3	23	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
‡ 43.1,2,3-Trichlorobenzene	U	μg/m3	7.4	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
44. 1,2,4-Trichlorobenzene	U	μg/m3	89	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
45.1,1,1-Trichloroethane	U	μg/m3	33	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
46. 1,1,2-Trichloroethane	U	μg/m3	6.5	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
47. Trichloroethene	U	μg/m3	1.6	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	CM
48. Trichlorofluoromethane	U	μg/m3	34	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
‡ 49.1,2,3-Trimethylbenzene	U	μg/m3	1.5	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
50. 1,2,4-Trimethylbenzene	U	μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
51.1,3,5-Trimethylbenzene	U	μg/m3	29	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
52.2,2,4-Trimethylpentane	U	μg/m3	1.4	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
53. Vinyl Chloride	U	μg/m3	15	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
54. m&p-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
55. o-Xylene	U	μg/m3	52	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
‡ 56. Xylenes	U	μg/m3	100	4.0	07/13/22	VN22G13A	07/14/22 08:57	VN22G13A	СМ
Surrogate Summary			Control Limits	Instrume	nt Batch	Run T	ime Colun	n <u>Inst. Me</u>	ethod
4-Bromofluorobenzene(S)	99	%	80-120	VN	VN22G13A	7/14/2022	2 08:57 1	VN4	00

4-Bromofluorobenzene(S) 99 % 80-120 VN VN22G13A //14/2022 08:5/ 1 VN400

Analytical Laboratory Report Laboratory Project Number: A09531

Order: A09531 Date: 07/18/22

Definitions/ Qualifiers:

- A: Spike recovery or precision unusable due to dilution.
- **B:** The analyte was detected in the associated method blank.
- E: The analyte was detected at a concentration greater than the calibration range, therefore the result is estimated.
- J: The concentration is an estimated value.
- M: Modified Method
- **U:** The analyte was not detected at or above the reporting limit.
- X: Matrix Interference has resulted in a raised reporting limit or distorted result.
- W: Results reported on a wet-weight basis.
- *: Value reported is outside QC limits
- **D:** The sample or extract was analyzed at a DF greater than 1.

Exception Summary:

Analysis Locations:

All analyses performed in Holt.

Accreditation Number(s):

T104704518-19-8 (TX)

Fibertec environmental services

Analytical Laboratory

1914 Holloway Drive Holt, MI 48842

8660 S. Mackinaw Trail Cadillac, MI 49601 Phone: 517 699 0345

Fax: 517 699 0388 email: lab@fibertec.us Phone: 231 775 8368

Fax: 231 775 8584

Geoprobe

11766 E. Grand River Rd.

Brighton, MI 48116

Phone: 810 220 3300 Fax: 810 220 3311

Chain of Custody # 202944
PAGE ___ of ___

Client Nam	ne: AME	C En	gneering o Consulting					PARA	METERS			Matrix Code		Deliverables
Contact Po	erson: D	309 5	Saigh									S Soil GW Groun	nd Water	Level 2
Proiect Na	me/ Number:	_		(CODE)								A Air Sw Surface	ce Water	Level 3
Ven Dyke 3650200107 Email distribution list: douglos, Saigh Chood ple com vension michigan gov innecessary workple.com kyle.noyce wordple.com											HOLD SAMPLE	O Oil ww Waste	e Water	Level 4
												P Wipe X Other	r: Specify	EDD
Verisite leyl	e noyue	العديد الم	placon	MATRIX (SEE RICHT CORNER FOR	# OF CONTAINERS	JO					10LD			
Quote#				(SEE RIC	NO	12					-			
Purchase (1		1		OFC.	10								
Date	Time	Sample #			#			-	-	-4		Remarks: Can #		
6/29	1249		SWP-1	A	1	4			-		_	1083		
	1224		SWP-Z	A	1	V_{\perp}						1152		
	1319		SWP-4	·A	1	И						4090	Receive	ed By Lab
	1355		SWP-5	A	/	\mathbb{Z}						2601		a de Marcel
	1347		SWP-6	A	1	1						3603	JUL 3	1 2423
- {	1303		SWP-7	A	1	\square						3714	: Initials:	55
6/29	1235		SUP-8	A	1							3739		
Comment	s: <i>S</i> / 1	DM· ~	Beth Vens Loc# ?	671										
			Hell VVIS		/ 			la.	1			7		
Sampled/	Relinquished	Y:)		Date	12	ne 9		Reg	eiyed By	11	1	11/7/	/22	9110
Relinquish	og/ gl/:		111	Date	Tir	ne	3/ 3= 1	Rec	eived By	1	1	3000 1/1,	166	100
Relinquish	ed for he	1/s	Strage	7/ Dafe	/	22 ne	16:21	Rec	eived By	Laboratory:	_			
Komiliquia														
		<u>Tu</u>	urnaround Time ALL RESULTS WILL BE SENT BY THE I	END OF THE BI	JSIN	ESS DA	·Υ					LAB USI	E ONLY	
1 t	ous, day	2	bus. days3 bus. days		4	bus. d	ays			Fiberte	ec pro	oject number:		
1	bus. days (sta	an dardl	Other Imagify time Idate year in the	·+1•						Tempo	JY:	re upon receipt at lab.		
	bus, adys (sta	indara)	Other (specify time/date requiremen	11]						Tempe	R	re upon receipt at Lab:		
			Р	lease see	e b	ack	for terms a	nd c	onditio					