Gating cells as an emergent property of artificial neural networks

Ken Wang

Advisor: Kevin Crisp

Neuroethology

- Study of neural circuits that have evolved to solve problems in an animal's natural environment
- Fixed action pattern
 - swimming in a leech
 - egg-rolling in geese
- Motor pattern generator

Idealized Gating Cells

- Neuronal switches
 - Controls motor pattern generator (on / off)
 - continues to fire during motor pattern
- Necessary
- Sufficient

Cell 204, a real world gating cell

- activated by mechanoreceptors
- continues to fire after sensory event has ceased
- excites a central pattern generator
- produce swimming in the leech

Conceptual model

Linear Hierarchical

Problem with the model

- Efficacy of cell 204 is 50 100% depending on the firing of other neurons in the network
- Cell 204 also fires rhythmically during crawling
 - a distinct behavior from swimming
 - governed by a separate motor pattern generator

Randomly-Connected ANNs

• ANN: artificial neural network

Resemble real neural networks

- produce spontaneous patterns of behavior
- generate distinct patterns of activity based on starting conditions

Our Research

- Can we find cells with gating characteristics in ANN?
- Can we show that such a cell is necessary and sufficient for particular patterns of activity?
- Could gating cells be an emergent property of recurrent, densely-connected networks?

Model Setup

• 25 neurons

- Excitatory or Inhibitory
- Firing threshold = 0
- Random-directed edges (synapses) between neurons
 - Excitatory or Inhibitory

One run with a random starting condition

End up in stable cycles

Force neuron 4 on at time step 12 - 27

Is Neuron 4 a Gating Cell

- When Neuron 4 bursting, blue/green pattern
 - 57.3% of starting conditions end up in blue/green pattern
 - 0% of starting conditions end up in red pattern (Necessary)
- When Neuron 4 forced on, red pattern (Necessary)
 - 95.7% of starting conditions end up in red pattern (Sufficient)
 - Firing the whole time during the red pattern

Tonic: always firing

Ex: Neuron 21

Bursting: sometimes firing

Ex: Neuron 19

Quiescent: no firing

Ex: Neuron 20

At time step 12, inhibit all tonic neurons
At time step 20, force
neuron 4 on

- Network "crashes"
- Neuron 4 does not cause pattern change

From time step 12 to 27, remove the connections from neuron 6 to 4 and from neuron 21 to 4

Neuron 6 and 21
Both tonic and inhibitory
Both inhibits Neuron 4

The exact same effect as forcing neuron 4 on

Cell Duty Cycle:

of times a cell fired in one cycle / cycle length

Neuron 21: 6/6 = 1

Neuron 19: 2/6 = 1/3

Neuron 20: 0/6 = 0

Corrected net input: sum of all inputs weighted by cell duty cycle

Conclusion

- Identified cells with gating like characteristics in ANN
 - tend to fire phasically rather than tonically.
 - tend to be targets of more inhibitory than excitatory synapses
- Feedback from the oscillators onto gating cells; wiring not linear
- The efficacy of gating cells and the activity of the oscillatory subnetwork is highly dependent on the activity of tonically active neurons
 - set the threshold for firing on a neuron-by-neuron basis

Future Work

- More simulations and networks
 - better methods for analyzing networks
 - eigenvectors?
- Being able to identify gating cells based on network connections
 - o input connections?
 - output?
 - cell type?
- Noise in the network

Questions?