Introduction: We know that An anithmatic morrows Verification is used to penterm anithmatic such as addition, substraction, multiplication, division and Logic operations such as AND, or etc. It nepresents the Aundamental building block of the central processing unit (CPU) of a computer. The central processing unit (CPU) of a computer. The this experiment, we have made a 4 bit Anithmatic Logic Unit (ALV). Thus, for selection matic Logic Unit (ALV). Thus, for selection arithmatic and Logical operation, we need 32 three selector bit were needed in total 30 three selector bit were needed in total

Problem statements

51			
21	50	output	Function
1	1	Ai+1	Irenement A
1		Ai-Bi	oubtract
1	0	Ai+BI	Add
1	0	A1+1+1	Transfer Awith canny
0	Υ	Ai & Bi	OR
0	X	Ai'	Complement A
	1 1 1 0 0	1	1

Function	Greneration:

	\mathcal{M}	$\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}\mathcal{M}$	V ~ ~				-	1
	30	ک ا	50	2	X	4	Output	Function
	1	1	1	1	Ai	0	Ai+1	Increment A
1	0	1	1	1	Ai	Bi	Ai-Bi	subtract
		1	0	0	Ai	Bi	Ai+Bi	Add Transter A with
	0	1	0	1	Ai	All 1	Ai+1+1	canny
	1	0	×	×	AilBi	0	Ai IBi	OR Isomet A
	0	6	X	×	A;I	0	Ai'	complement A

Function simplification Using K-map:

For X:

= 52 31 50 AiBi+ 52 51 50 AiBi+ 32 51 50 AiBi+

52 51 50 AiBi + 52 51 50 AiBi+ 32 51 50 AiBi+

52 51 50 AiBi + 52 51 50 AiBi+ 52 51 50 AiBi+

52 51 50 AiBi + 52 51 50 AiBi+ 52 51 50 AiBi+

52 51 50 AiBi + 52 51 50 AiBi+ 52 51 50 AiBi+

52 51 50 AiBi + 52 51 50 AiBi+ 52 51 50 AiBi+

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi+ 52 51 50 AiBi

52 51 50 AiBi+ 52 51 50

= ½(0,1, 50AiBi	4,5,10.	5/AiBi	3. Aibi	S'AiBi	5. Aibi'	S.ATBi	so Ai Bi	s.Aibi
3251	1	1)	0	0	0	0	1	1
3251	0	0	<u>[1</u>	1	1	1	6	0
5251	0	0	1	1	1	1	O	0
525,1	0	1	1	1	1	1)	1	D
								1

A = 6, Ai + 32 Ai + 32/30' Ai'Bi + 31'50 Ai'Bi

$$Y = 52^{1} 5_{1} 5_{0} Bi^{1} + 5_{2} 5_{1} 5_{0}^{1} Bi + 5_{2}^{1} 5_{1} 5_{0}^{1}$$

$$= 52^{1} 5_{1} 5_{0} Bi^{1} + 5_{2} 5_{1} 5_{0}^{1} Bi + 52^{1} 5_{1} 5_{0}^{1} (Bi + Bi^{1})$$

$$= 52^{1} 5_{1} 5_{0} Bi^{1} + 52^{1} 5_{1} 5_{0}^{1} Bi + 52^{1} 5_{1}^{1} 5_{0}^$$

$\frac{3251}{32'51'}$ 0 0 0 0 0 0 $\frac{3651}{3651}$	0
52'51 1 0	1
5251 0 2 0	70
5251 0 0 0	0

For 2 : Z= 523130 + 52 5130 + 52 5150

32 350	51501	5130	5,50	3,56
32'	σ	0	(71)	1
52	σ	O	2	0
		-		

$$7 = 3.50 + 3.52' = 3.(30 + 32')$$

Equipment and Budget:

William	1111			(C MACTK)
Giate name	IC	Amount	Price Per Ic(tk)	Price(TK)
NOT Grate	7404	1	25 Tk	25 1k
OR Grate	7432	3	28 Tk	84tk
AND Grate	7408	5	32 Tk	160 TK
XOR GIATE	7486	1	257k	25 7k
4 bit Full Adden	741389	1	40tk	40 TK
Haare.		<u></u>		Total - 334+

Total - 334+

simulation &

Result : γ

	Input													output				
32	51	30	Az	A ₂	A	Ao	Be	B2	Bi	Bo	operation Name	Cout	FB	F2_	Fı	Fo		
			0	1	1	O	0	0	0	1	Increment A	0	0	1	1	1		
1	1	1	6	0	1	0	0	6	0	1		0	0	0	1	1		
a			0	1	1	0	0	6	1	1	subtract	1	0	0	1	1		
-0	1	1	0	1	1	a	Ó	O	0	1	2001	1	0	1	0	6		
	_	0	0	1	1	0	σ	O	O	1	Add	0	Ó	1	1	1		
1 2	1		0	1	1	1	٥	6	6	1		٥	1	0	0	0		
0		•	O	1	1	0	O	Ø	0	1	Transfer A with Canny	1	0	1	1	0		
	l	0	0	0	٥	1	0	O	0	1		1	0	0	0	1		
			σ	1	1	0	0	O	0	1		0	0	2	1	1		
- t	0	×	0	0	1	0	0	0	1	1	OR-	0	0	0	1	1		
0	0	×	Ó	1	1	0	O	0	O	Ó	complement	6	1	σ	0	1		
U	U		1	1	1	0	0	σ	0	6	A.	O	0	0	б	1		

conclusion? In this above experiment we have emplement an ALV which can operate an Anithmatic and Logical operations. At first, the equations of Z, X and Y were made by using the given table. while we usimplified it using K-map. Though we faced some problem while implementing on prodeus as we made 1 bit adden for our own ALU design. After that the ALU were tosted by different combination of bits and of provided the connect roesult.