MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. INDUSTRIAL E GESTÃO | 2015-16

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos quatro grupos utilizando folhas de capa distintas.

GRUPO I

1) [2,0] Considere o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} \subset \mathbb{R}^4$, tais que $\vec{u}_1 = (1,0,0,k+1)$, $\vec{u}_2 = (0,k,1,k)$, $\vec{u}_3 = (1,0,2,k)$ e $\vec{u}_4 = (1,k,k,k)$. Calcule os valores de k, de modo que U seja um conjunto linearmente dependente.

GRUPO II

- **2.** [6,0] Seja o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^3$, em que $\vec{a} = (1,0,1)$, $\vec{b} = (0,1,1)$, $\vec{c} = (1,1,2)$ e $\vec{d} = (1,2,3)$.
 - a) Sem efetuar quaisquer cálculos, indique, justificando adequadamente, a dimensão máxima admissível para o subespaço, L(S), gerado pelo conjunto S.
 - **b**) Determine o subespaço L(S). Indique uma possível base, T, para L(S) que só inclua elementos de S e conclua em relação à sua dimensão.
 - c) Obtenha uma base ortogonal, W, para o espaço \mathbb{R}^3 que contenha o maior número possível de elementos de L(S).

GRUPO III

- 3. [2,5] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço \mathbb{R}^3 , tais que $\|\vec{a}\| = 2$, $\|\vec{b}\| = 1$, $\vec{a} \cdot \vec{c} = 1/2$, $\|\vec{a} \vec{c}\| = 2$, $\angle(\vec{a}, \vec{b}) = 60^\circ$, $\vec{a} \cdot \vec{b} \times \vec{c} = -1$ e $\vec{d} = \vec{c} \vec{a} \times \vec{b}$. Calcule:
 - a) A norma de \vec{d} .

b) O ângulo entre \vec{d} e $\vec{a} - \vec{c}$.

c) A norma de $\vec{c} \times \vec{d}$.

.....(continua no verso

MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. INDUSTRIAL E GESTÃO | 2015-16

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

GRUPO IV

- **4.** [2,5] Seja o conjunto de vetores não nulos $S = \{\vec{s}_1, \vec{s}_2, ..., \vec{s}_k\}$ do espaço \mathbb{R}^n . Mostre que:
 - a) S é linearmente dependente se um dos seus elementos for combinação linear dos restantes.
 - b) S é linearmente independente se for um conjunto ortogonal.
- **5.** [7,0] Considere o ponto P = (1,1,0), o plano M : 2x + y z = -3 e a reta $t : X(v) = Q + v\vec{a}$, $v \in \mathbb{R}$, com Q = (1,0,0) e $\vec{a} = (-1,0,1)$. Determine:
 - a) A distância de P ao plano M e o ponto, I, deste plano mais próximo de P.
 - **b)** A equação cartesiana de todos os planos que contêm a reta t e fazem um ângulo de 60° com M.
 - c) A equação vetorial da reta, h, que passa em P, é paralela a M e é complanar com
 t. Classifique, justificando, as retas h e t quanto à sua posição relativa.