Lab Machine Learning for Data Science

Sommer Semester 2023 Freie Universität Berlin

Project 1: Unsupervised Machine Learning

Authors:
Jan Jascha Jestel
Mustafa Suman
Gabriele Inciuraite

Presenter: Gabriele Inciuraite 14.7.2023, Berlin

Project Goals

- UCI Wholesale customers dataset: annual spending on different product categories by wholesale customers located in Portugal
- → Identify instances with anomalous spending behaviour
- → Identify clusters of similarly behaving wholesale customers. In particular, we would like to leverage unsupervised ML techniques to identify anomalies and clusters.

1. Initial Data Analysis and Preprocessing

 The distributions are heavy tailed → apply the log function, so that the distribution gets compressed for large values and expanded for small values

- → More normally distributed attributes
- Few high spendings possess extreme values

2. Detecting Anomalies

2.1. Hard-Min Score

Creating Artificial Ground Truth

- Hard-Min: nearest neighbour distance per instance as outlier score
- For a more robust outlier score → apply bootstrapping with replacement, compute Hard-Min Scores for each sample.
- Average over the scores per sample → 440 x 10000 measurements
- Hyperparameters:
 - OUTLIERS_FRAC = 0.1 → based on the elbow of the Hard-Min score plot
 - N_BOOTSTRAP = 100000 → as many as computationally reasonable

2.1. Hard-Min Score

Outliers' Fraction Determination

 44 outliers with Hard-Min score above 3

51 extreme values in the Boxplot

2.1. Hard-Min Score

Evaluation: Biasedness

- → Spearman's ranking correlation
- → Accuracy of classifying the same set of outliers

```
Accuracy: 0.95%

Spearman corr.: 0.97

Spearman corr. on the fraction of outliers: 0.31

Spearman corr. on the top five outliers: 0.9
```

Measure outlierness based on multiple neighbours

- Soft-Min = related to log-likelihood predicted by a kernel density estimator of the rest of the data
- γ: the inverse of the bandwidth or variance of the used Gaussian distributions
 → small γ leads to more robust estimates, but with the cost of introducing bias
- The Hard-Min and Soft-Min score distributions are similar, but they "operate" on different scales. For the Soft-Min score these scale change with change tue to the 1/gamma factor
- → makes the comparison challenging

Gamma tuning

- Apply **bootstrapping** with replacement and compute Soft-Min Scores of 20 γ values in the range [0.1, 20) for each sample.
- Average over the Soft-Min scores per sample → 440 x 10000 x 20 measurements

Evaluation: Between Instance Variance

- Soft-Min scores reduce with increasing γ values
- The ranking appears to not change much
- Not a good measure for discriminating ability

Evaluation: Spread/Within Instance Variance

 The variance of the model increases with increasing γ values

 Average over the variance of the outliers to use as evaluation metric

Gamma choice: $\gamma = 0.8$

Accuracy: 0.91%

Spearman corr.: 0.88

Spearman corr. on the fraction of outliers: 0.41

Spearman corr. on the top five outliers: 0.9

2.5. Outlier Selection

5 outliers above 20 8 outliers above 15 35 outliers above 9.71

3. Explaining Anomalies

3.1. Layer-wise relevance propagation

3.2. Robustness of the explanations

- Bootstrapping with replacement
- \rightarrow 440 x 1000 x 20 x 6 measurements

Detergents_Paper: all data: 0.96

outliers: 0.9

Delicatessen: all data: 0.98

outliers: 0.9

4. Cluster Analysis

4.1. K parameter for K-means

Intro

- The data does not appear to have natural cluster formations, DBSCAN algorithm was not fitting
- → Apply K-means clustering algorithm with greedy k-means++ algorithm over 100 initialisations
- Goal: partition customers into groups of relatively similar size that share tendencies in their purchases

4.1. K parameter for K-means Identify the Optimal Inflection Point for K in [2, 15]

- Elbow (distortion score): the sum of squared distances from each point to its assigned center
- Silhouette score: the mean Silhouette Coefficient of all samples
- Calinski-Harabasz score: the ratio of dispersion between and within clusters

4.1. K parameter for K-means Silhouette Plots for K in range [5, 6]

4.2. Clustering

4.3. Interpretation of the Clustering

Statistics of individual features for the clusters: Mean and Standard Deviation

4.3. Interpretation of the Clustering

