```
0 final = self.activation function(X final)
 ours O_final, O_hidden, I
                                      2N Club
O_final, O_hidden, I = self.feed_forward(inputs)
                        My First Neural Network
```

2NClub #1

Part I

The Math behind a Neural Network

1.1. Modele liniare

Andrei Nicolicioiu

Machine Learning Researcher

@ Bitdefender

Clasificare - Detecție - Segmentare

Semantic Segmentation

Instance Segmentation

Generare Imagini

(Brundage et al, 2018)

Adaptare

CycleGAN

Input sunny image

Al-generated rainy image

Captioning

Generated:

0.650. a group of people are sitting in a line with a tiger

0.599. a man is sitting in a chair with a tiger

0.588. a man and a woman are eating a tiger in a bowl

0.547. a man is talking about a tiger

0.180. a man and a woman are sitting in a table

Analiză text - Traduceri

Vaswani et al - Attention os all you need [2017]

Alpha Go

• Alpha Go - 2016

Reinforcement Learning

V. Mnih et. all - DQN - 2015

```
0000000000000000
22222222222222
565555555555555
66666666666666
ファチョマフフフフフフフフノ
99999999999999
```

De ce Machine Learning?

 Problemă clasică: Recunoașterea cifrelor scrise de mână

De ce Machine Learning?

- Vrem să recunoaștem cifre scrise de mână. Cum procedăm?
- Găsim reguli pentru fiecare cifră. Exemplu:
 - o pentru cifra 8 găsim 2 cercuri de aceeași dimensiune așezate unul peste altul
 - cunoaștem ecuația cercului: x^2 + y^2 = R
 - o găsim toate cercurile, le păstram doar pe cele așezate unul peste altul

Probleme:

- o foarte multe reguli greu de identificat
- varietate foarte mare in date
- o nu pot găsi reguli care să acopere toate posibilitățile

Machine Learning

- Scop:
 - Crearea unui program capabil să învețe automat
- Mijloace:
 - Dataset: perechi input target
 - Procesare input
 - La ieșire vom avea un **rezultat**
- Urmărim 3 lucruri:
 - Ce primeste programul la input: reprezentare
 - Care sunt operațiile de procesare:
 model
 - o Cum învață modelul : **optimizare**

Human vs Computer

- Procesare de date
 - o => reprezentare
- Din date neprelucrate (pixeli) extragem niște reprezentări, caracteristici - features
- Putem folosi direct datele neprelucrate și vom învăța automat reprezentări

Model - Analogie

- Un model are nevoie de:
- Arhitectura (cum sunt conectate roţile)
- Parametrii: (dimensiunea roţilor, cu cât amplifică)

 Pentru o arhitectura aleasa vrem un mode capabil să învețe singur parametrii

- Problemă:
 - Prezicerea prețului de vânzare a unei locuințe în funcție de suprafață
- Set de date despre locuințe:

$$D = \{(x_1, t_1), (x_2, t_2), ..., (x_M, t_M)\}$$

- o **Reprezentare**: suprafața x
- Target: prețul adevărat al apartamentului
- Scop:
 - o Folosirea unui **model** adecvat pentru a putea prezice prețul
 - o **Optimizarea** (învățarea) modelului cu ajutorul setului de date

- Reprezentare: x \in R
- Cel mai simplu model:

$$y = w \cdot x + b$$

- Analogie cu o roată zimțată
- Găsește parametrul (raza roții)
 a.î. prețul prezis pentru orice
 casă sa fie cat mai apropiat de
 cel real

$$x y=w^*x$$

- Reprezentare: x \in R
- Cel mai simplu model:

$$y = w \cdot x + b$$

- Analogie cu o roată zimțată
- Găsește parametrul (raza roții)
 a.î. prețul prezis pentru orice
 casă sa fie cat mai apropiat de
 cel real

- Reprezentare: x \in R
- Cel mai simplu model:

$$y = w \cdot x + b$$

- Analogie cu o roată zimțată
- Găsește parametrul (raza roții)
 a.î. prețul prezis pentru orice
 casă sa fie cat mai apropiat de
 cel real

- Reprezentare: x \in R
- Cel mai simplu model:

$$y = w \cdot x + b$$

- Analogie cu o roată zimțată
- Găsește parametrul (raza roții)
 a.î. prețul prezis pentru orice
 casă sa fie cat mai apropiat de
 cel real

$$x y=w^*x$$

Optimizare

- Ponderi aleatoare
- Funcție de eroare(cost), cât de prost prezice modelul nostru baza de date:

$$E = \sum_{i} |t_i - y_i|$$

- Ajustăm parametrii
- Păstrăm parametrii care minimizează eroarea

$$x y=w^*x$$

Optimizare

Varianta 1:

• Încercăm multe valori pentru parametrii w₀ în jurul valorii curente

Optimizare

Varianta 1:

• Încercăm multe valori pentru parametrii w₀ în jurul valorii curente

Optimizare

Varianta 1:

• Încercăm multe valori pentru parametrii w₀ în jurul valorii curente

Optimizare

Varianta 1:

 Încercăm multe valori pentru parametrii w₀ în jurul valorii curente

Regresie Optimizare

- Încercăm multe valori pentru parametrii w₀ în jurul valorii curente
- Ineficient!
 - Calcule pentru fiecare variantă

Optimizare

- Încercăm multe valori pentru parametrii w₀ în jurul valorii curente
- Ineficient!
 - o Calcule pentru fiecare variantă
- Soluție: urmăm panta funcției

Optimizare

- Încercăm multe valori pentru parametrii
 w₀ în jurul valorii curente
- Ineficient!
 - Calcule pentru fiecare variantă
- Soluție: urmăm panta funcției
 - În punctul curent w₀ calculăm panta funcției de eroare
 - Găsim parametri noi urmând această direcție
 - Necesită câțiva pași

Gradient descent

Scop:

- găsirea minimului unei funcții.

Soluție:

- urmarea "pantei"
- Panta = direcția în care funcția scade cel mai brusc

Gradient descent

• Căutăm direcția în care E scade

$$E(w + \Delta w) - E(w)$$

Panta = Derivată = Gradient

Gradient descent

$$-\lim_{\Delta x \to 0} \frac{E(w + \Delta w) - E(w)}{\Delta w} = \frac{dE}{dw}$$

$$w = w - \alpha \frac{\mathrm{d}E}{\mathrm{d}w}$$
Learning rate

- Alpha mic -> învățare prea lentă
- Alpha mare -> risc să sar peste puncte de minim

Regresie liniară

Avem dat un dataset

$$D = \{(x_1, t_1), (x_2, t_2), ..., (x_M, t_M)\}$$

- Stabilim o funcție de cost / eroare E
- Căutăm parametrii unei funcții f care să aibă eroare cât mai mică

$$y = f(x) = w \cdot x + b$$

Regresie liniară

- 1. Iniţializăm w random
- 2. Calculăm ieșirile:

$$y_i = w \cdot x_1 + b$$

3. Calculăm eroarea pe întreg datasetul:

$$E = \frac{1}{2} \sum_{i}^{M} (t_i - y_i)^2$$

4. Actualizăm parametrii:

$$w = w - \alpha \frac{\mathrm{d}E}{\mathrm{d}w}$$

5. Reluam pașii 2-3 cât timp eroarea scade

Clasificare

- Avem de ales între două variante.
- De exemplu: ştim doar suprafaţa unui apartament. Cum decidem dacă are 2 sau 3 camere?

Clasificare

- Avem de ales între două variante.
- De exemplu: ştim doar suprafaţa unui apartament. Cum decidem dacă are 2 sau 3 camere?

- Colectăm date:
 - a. $y = 0 \Rightarrow două camere$
 - b. $y = 1 \Rightarrow trei camere$
- 2. Aplicăm regresie liniară
 - a. Toate valorile y > 0.5 vor fi clasificate ca exemplu pozitiv (3 camere).

Clasificare - probleme

- Modelul NU e interpretabil (care e diferenta dintre y = 2 si y = 1000)
 - As vrea să pot prezice clasa corectă cu o probabilitate: sunt 90% convins că am o casă cu 3 camere

Pentru valori foarte mari greşelile costă prea mult

Clasificare - Soluție

- Vom folosi funcția sigmoid
- Modelul nostru devine

$$a = sigmoid(w * x + b)$$

Functia

- Toate valorile mari se comportă la fel: sunt apropiate de 1
- Modelul nostru ia valori intre 0 (2 camere) si 1 (3 camere)

Clasificare - Logistic Regression

- Aceeasi pași ca la regresie liniară:
 - Iniţializez parametrii
 - Calculăm ieșirile
 - Calculăm eroarea
 - Updatăm parametrii
 - Repetăm
- Ce funcție de eroare folosim?
 - În cazul regresiei liniare am folosit loss-ul L2:
- Pentru clasificare folosim cross-entropy:

ti = 0

Clasificare - Exemplu

- Ce se întâmplă dacă inputul e caracterizat de mai multe dimensiuni?
- Inputul are dimensiune mai mare: \mathbb{R}^2
- Trebuie să învățăm o funcție cu mai mulți parametrii

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$$
 $W = [w_1 w_2]$

$$y(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + b$$

= $[w_1 w_2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b$
= $W \times + b$

Clasificare - Exemplu

- Ce se întâmplă dacă inputul e caracterizat de mai multe dimensiuni?
- Inputul are dimensiune mai mare: \mathbb{R}^N
- Trebuie să învățăm o funcție cu mai mulți parametri

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N \qquad W = [w_1 w_2 ... w_N]$$

$$y(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_N \cdot x_N + b$$

$$= [w_1 w_2 \dots w_N] \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} + b$$

$$= W \times + b$$

$$= W \times + b$$

Clasificare - Exemplu

Vrem să învățăm W astfel încât

a(x) = sigmoid(y(x)) = 1 pentru brioche

a(x) = sigmoid(y(x)) = 0 pentru baguette

Gradientul în două dimensiuni

• Avem doi parametrii de modificat

- Putem calcula pentru fiecare parametru în parte direcția pentru care Eroarea scade cel mai mult
- Direcția finală e formată din compunerea acestor direcții

Gradientul în două dimensiuni

$$y = \sigma(w_1 * latime + w_2 * lungime)$$

- Calculăm derivatele parțiale
- Formăm **gradientul**

Cum calculăm $\frac{dL}{dw}$ pentru un singur exemplu

Regresie liniară

Clasificare: Regresie logistică

Cum calculăm $\frac{dL}{dw}$ pentru un singur exemplu

Regresie liniară

Clasificare: Regresie logistică

$$y = w \cdot x + b$$
$$E = \frac{1}{2}(t - y)^2$$

$$\frac{\mathrm{d}E}{\mathrm{d}y} = \frac{1}{2} \cdot 2(t-y) \cdot (-1) = y-t$$

$$\frac{\mathrm{d}E}{\mathrm{d}w} = \frac{\mathrm{d}E}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}w} = (y-t)\cdot x$$

Cum calculăm dw pentru un singur exemplu

Regresie liniară

$$y = w \cdot x + b$$

$$E = \frac{1}{2}(t - y)^2$$

$$=\frac{1}{(t-t)^2}$$

$$(t - v)^2$$

$$(x-y)^2$$

$$-y)^2$$

$$\frac{\mathrm{d}E}{\mathrm{d}y} = \frac{1}{2} \cdot 2(t-y) \cdot (-1) = y-t$$

$$\frac{y}{w} = (y-t) \cdot x$$

$$y = w \cdot x + b$$

$$a = sigmoid(y) = rac{1}{1 + e^{-y}}$$
 $E = -t \log a - (1 - t) \log (1 - a)$
 dE
 t
 $1 - t$

$$\frac{dE}{da} = -\frac{t}{a} + \frac{1-t}{1-a}$$

$$\frac{da}{dx} = \dots = a(1-a)$$

$$\frac{dE}{dy} = \frac{dE}{da} \frac{da}{dy} = \left(-\frac{t}{a} + \frac{1-t}{1-a}\right) a(1-a) = a-t$$

$$\frac{dE}{dz} = \frac{dE}{dz} \frac{dz}{dy} = \left(-\frac{t}{a} + \frac{1-t}{1-a}\right) a(1-a) = a-t$$

1.2. Rețele complet conectate - Intro

Andrei Roman

Software Developer

@Teamnet

Neuroni

- Mașini de calcul din natură
- Cum funcționează neuronii?
 - Transmit **semnale electrice** de la un capăt la celălalt
 - (sinapse -> dendrite -> nucleu -> axon -> sinapse)
 - Apoi la următorul neuron, etc.
- Creierul unui animal vs computer:
 - Fuziness vs calcul secvențial
- Creierul uman:
 - 100 de miliarde (10^11) de neuroni
 - Conștiința:
 - un mister so far
 - DAR: știm suficient cât să-i punem la treabă **programatic** în rezolvarea unor probleme.

Neuron

	Î	1
Neuroni	Nume	Imagine
10^4	Furnică	
5*10^7	Liliac	
1.6*10^8	Câine	
3*10^8	Pisică	
2*10^11	Elefant	AST

Neuroni (2)

- Reprezentare
 - Nu putem folosi funcții liniare (out = c1 * in + c2)
- Considerente
 - Nu acționează instantaneu
 - Nu dau mai departe **input-ul** până nu ating un **threshold...**
 - ... apoi produc **outpt-ul**
 - Analogie:
 - Precum o cană care nu se varsă până nu este plină.
 - Altfel spus...
 - ...fără zgomot.

Neuron (2)

Neuroni	Nume	Task
6*10^5	LeNet	MNIST
6*10^7	AlexNet	ImageNet 15.3%
1.3*10^8	VGG-16	ImageNet 7.3%
4*10^6	GoogleNet	ImageNet 6.67%
2.5*10^7	ResNet-50	ImageNet 3.6%

Neuroni (3)

Funcția sigmoidă de activare $\overset{\downarrow}{y}=rac{1}{1\perp e^{-x}}$

Taie axa la y = 1/2: $x = 0 \Rightarrow y = 1/2$

Funcția treaptă

Valori de intrare mici => output = 0

Trecem de prag (threshold)
=> neuronii se activează (fire)

=> avem output

Funcția logistică (sigmoidă)

Funcția de activare utilizată mai departe. De ce?

- Mai smooth decât funcția treaptă
- Simplitate
- Scurtături pentru calcule

Neuron (3)

Neuroni (4)

Neuroni (5) Strat 1 Strat 2 Strat 3 w11 w11 w12 w12 w13 w21 w21 w22 w22 w23 w31 w31 w32 w32 w33 w33 intrări ieşiri conexiuni neuroni

Exemplu de rețea
 neuronală fully connected
 cu 3 straturi a câte 3
 neuroni fiecare strat.

Învățarea:

- Ajustăm weight-urile.
- Weight:
 - Slabe: diminuează semnalul
 - Puternice: amplifică semnalul (au mai mult aport la decizie).

Propagarea semnalelor prin rețea

- Weight-uri aleatorii:
 - w11 = 0.9, w12 = 0.2
 - w21 = 0.3, w22 = 0.8
- Funcția de activare:

$$y = \frac{1}{1+e^{-x}}$$

Propagarea semnalelor prin rețea (2)

Layer 1: Reprezentare intrări **Layer 2:**

- Input-ul moderat al neuronului 1 de pe layer 2:
- $x_1=1.0*0.9+0.5*0.3=1.05$ Output-ul neuronului 1 de pe layer 2:

$$y_1 = \frac{1}{1+0.3499} = 0.7408$$

- Input-ul moderat al neuronului 2 de pe layer 2:

$$x_2 = 1.0 * 0.2 + 0.5 * 0.8 = 0.6$$

- Output-ul neuronului 2 de pe layer 2:

$$y_2 = \frac{1}{1+0.5488} = 0.6457$$

Propagarea semnalelor prin rețea (2)

Folosind calcul matriceal: **W * I = X**

Semnalul moderat combinat care intră în layer 2

Propagarea semnalelor prin rețea (3)

Propagarea semnalelor prin rețea (4)

$$I = \begin{pmatrix} 0.9 \\ 0.1 \\ 0.8 \end{pmatrix}$$

$$W_{input_hidden} = \begin{pmatrix} 0.9 & 0.3 & 0.4 \\ 0.2 & 0.8 & 0.2 \\ 0.1 & 0.5 & 0.6 \end{pmatrix}$$

$$I = \begin{bmatrix} 0.9 \\ 0.1 \\ 0.8 \end{bmatrix} \qquad W_{input_hidden} = \begin{bmatrix} 0.9 & 0.3 & 0.4 \\ 0.2 & 0.8 & 0.2 \\ 0.1 & 0.5 & 0.6 \end{bmatrix} \qquad W_{hidden_output} = \begin{bmatrix} 0.3 & 0.7 & 0.5 \\ 0.6 & 0.5 & 0.2 \\ 0.8 & 0.1 & 0.9 \end{bmatrix}$$

Input-uri din setul de training

Alegem aleatoriu weight-urile conexiunilor dintre neuronii stratului de **intrare** și cei de pe stratul **ascuns**. Alegem aleatoriu weight-urile conexiunilor dintre neuronii stratului **ascuns** și cel de **ieșire**.

Propagarea semnalelor prin rețea (5)

$$X_{hidden} = W_{input_hidden} * I$$

 $O_{hidden} = sigmoid(X_{hidden})$

$$X_{\text{hidden}} = \begin{pmatrix} 0.9 & 0.3 & 0.4 \\ 0.2 & 0.8 & 0.2 \\ 0.1 & 0.5 & 0.6 \end{pmatrix} \begin{pmatrix} 0.9 \\ 0.1 \\ 0.8 \end{pmatrix} = \begin{pmatrix} 0.16 \\ 0.42 \\ 0.62 \end{pmatrix}$$

$$O_{hidden} = sigmoid \begin{pmatrix} 0.16 \\ 0.42 \\ 0.62 \end{pmatrix} = \begin{pmatrix} 0.761 \\ 0.603 \\ 0.650 \end{pmatrix}$$

Propagarea semnalelor prin rețea (6)

$$X_{output} = W_{hidden_output} * O_{hidden}$$

 $O_{output} = sigmoid(X_{output})$

$$X_{\text{output}} = \begin{pmatrix} 0.3 & 0.7 & 0.5 \\ 0.6 & 0.5 & 0.2 \\ 0.8 & 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.761 \\ 0.603 \\ 0.650 \end{pmatrix} = \begin{pmatrix} 0.975 \\ 0.888 \\ 1.254 \end{pmatrix}$$

$$O_{\text{output}} = \text{sigmoid} \begin{pmatrix} 0.975 \\ 0.888 \\ 1.254 \end{pmatrix} = \begin{pmatrix} 0.726 \\ 0.708 \\ 0.778 \end{pmatrix}$$

Eroare

Problema

Sa se scrie ecuatile

Input - vector cu 784 de neuroni

Strat ascuns 1 - cu 100 de neuroni

Strat ascuns 2 - cu 10 neuroni

Eroare

Solutie

```
y1 = I * W1
a1 = sigmoid(y1)
y2 = a1 * W2
a2 = sigmoid(y2)
E = SSE(a2, T)
```

1.3. Rețele Neurale (Backpropagation)

Ruxandra Burtică

Computer Scientist

@Adobe

Backpropagation

- În general, pentru a calcula gradientul fiecărui strat vom avea doua operații
- Forward pass:
 - Calculăm toate rezultatele intermediare, ieșirile și eroarea
- Backward pass:
 - Calculăm pe rând gradienții fiecărui strat, de la ultimul la primul

Backpropagation (2)

Propagarea înapoi a erorilor de la un nod:

- Update proporțional
- Propagare cantitate eroare finală în funcție de cât de puternic este link-ul.

Notă:

 Abia pe stratul de ieşire se poate vorbi despre o eroare!

Calcularea erorii

Ce funcție alegem pentru eroare?

- 1. (target actual)
- 2. |target actual|
- 3. (target actual)²

Calcularea erorii

Ce funcție alegem pentru eroare?

- 1. (target actual) NU! Anulare erori cu + vs erori cu -.
- 2. |target actual | NU! Nu este continuă în punctul de minim.
- 3. (target actual)² DA. De ce?
 - a. Ecuații simple.
 - b. Funcție netedă și continuă
 - i. Fără sărituri abrupte
 - c. Gradientul se micșorează în apropierea minimului
 - i. Fără overshoot dacă micșorăm rata de învățare aici (pasul)

Cum updatăm parametrii rețelei?

- Pentru orice rețea neurală, trebuie să știm ce efect au perturbații mici ale parametrilor în funcția de cost.
- Variem fiecare parametru în parte

$$\left[\begin{smallmatrix} w_1\\w_2\\ \vdots\\ w_N \end{smallmatrix}\right] \to E(W)$$

$$\left| egin{array}{c} w_1 + \Delta w_1 \\ w_2 \\ \vdots \\ w_N \end{array} \right|
ightarrow E(W + \Delta w1)$$

• Perturbăm un singur parametru

- Perturbăm un singur parametru
- Perturbaţiile se propagă prin toţii neuronii influenţaţi de primul parametru

- Perturbăm un singur parametru
- Perturbaţiile se propagă prin toţii neuronii influentaţi de primul parametru

- Perturbăm un singur parametru
- Perturbaţiile se propagă prin toţii neuronii influentaţi de primul parametru

Propagarea erorii

- wih weight-urile link-urilor dintre neuroni input și hidden
- who weight-urile link-urilor dintre neuroni hidden și output

Propagarea erorii (2)

ehidden, $1 = \text{sum}(\text{split errors on links } w_{11} \text{ and } w_{12})$

=
$$e_{output, 1} * W_{11} / (W_{11} + W_{21}) + e_{output, 2} * W_{12} / (W_{12} + W_{22})$$

Gradient

- Ar fi ineficient să calculăm numeric fiecare din aceste perturbații
- Precum și la modelele liniare, putem observa cum se modifică eroarea în funcție de perturbații prin derivatele (parțiale)
- Avem câte o derivată parțială pentru fiecare parametru $\frac{\partial E}{\partial w_i} \in \mathbb{R}$

Vectorul tuturor derivatelor parțiale: gradientul $\nabla E = \begin{bmatrix} \frac{\partial E}{\partial w_1} \\ \vdots \\ \frac{\partial E}{\partial w_N} \end{bmatrix}$

Gradient

• Calculăm gradienti pentru fiecare strat din rețea

- Vom vedea că gradienții din stratul 3 depind de gradienții din stratul 2, cei din stratul 2 depind de cei din stratul 1
- Spunem că gradienții se propagă din ultimele straturi spre primele
- Dupa calcularea gradientilor, putem face update la weight-uri:

$$w_{jk} = w_{jk} - lpha rac{\partial E}{\partial w_{jk}}$$

Chain rule

- Dacă o funcție f(x,y) depinde de de mai multe variabile, putem calcula derivate parțiale pentru fiecare
- Dacă o variabilă a funcției y depinde de altă variabila x, atunci putem calcula derivatele partiale ale lui f fata de x folosind regula lanțului (chain rule) f = f(y), y = y(x)

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \frac{\partial y}{\partial x}$$

Backpropagation

Dacă f depinde de x1 care depinde de x2 care depinde de x3 care depinde

$$\frac{\partial f}{\partial x_N} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial x_2} \frac{\partial x_2}{\partial x_3} \dots \frac{\partial x_{N-1}}{\partial x_N}$$

- Cazul rețelelor neurale, unde avem intrările unor staturi depind de ieșirile straturilor precedente, iar ieșirile straturilor depind de parametrii și intrări
- Vrem sa calculam gradientul fiecărui parametru, trebuie să avem un lanț de la funcția de eroare, prin toate operațiile intermediare

Calcularea gradientului: exemplu simplu E = 0.5

Calcularea gradientului: exemplu simplu (2)

Calcularea gradientului (exercitiu)

y = 1

Calcularea gradientului (exercitiu)

y = 1

Calcularea gradientului (hints)

$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

$$\frac{\partial t}{\partial w} = \frac{\partial t}{\partial q} \cdot \frac{\partial q}{\partial r} \cdot \frac{\partial r}{\partial p} \cdot \frac{\partial p}{\partial w}$$

Actualizarea weight-urilor

(forward propagation)

$$h_1 = xW_1 + b_1$$

$$z_1 = \sigma(h_1)$$

$$z_2 = z_1 W_2 + b_2$$

$$h_1 = xW_1 + b_1$$
 $z_1 = \sigma(h_1)$ $z_2 = z_1W_2 + b_2$ $Loss = (z_2 - y)^2$

(backward propagation)

$$\frac{\partial h_1}{\partial x} = W_1^T$$

$$\frac{\partial z_1}{\partial h_1} = \sigma'(h_1) = z_1 \circ (1 - z_1)$$

$$\frac{\partial z_2}{\partial z_1} = W_2^{\top}$$

$$egin{aligned} rac{\partial h_1}{\partial x} &= W_1^T \ rac{\partial z_1}{\partial h_1} &= \sigma'(h_1) = z_1 \circ (1-z_1) \ rac{\partial z_2}{\partial z_1} &= W_2^\top \ rac{\partial Loss}{\partial z_2} &= 2(z_2-y) \end{aligned}$$

Slide din cursul cs231n Stanford

Actualizarea weight-urilor (2)

$$rac{\partial E}{\partial w_{jk}} = rac{\partial}{\partial w_{jk}} * \sum_n ig(t_n - o_nig)^2 = rac{\partial (t_k - o_k)^2}{\partial w_{jk}}$$
 — Din suma anterioară doar (t_k - o_k treabă w_{jk} . Restul se anulează la derivare.

Din suma anterioară doar $(t_k - o_k)$ are

E - eroarea tuturor nodurilor din output

$$rac{\partial E}{\partial w_{jk}}=rac{\partial E}{\partial o_k}rac{\partial o_k}{\partial w_{jk}}=-2(t_k-o_k)rac{\partial o_k}{\partial w_{jk}}$$
 Chain rule

$$o_k = sigmoid(\sum_j w_{jk}o_j)$$
Output-ul nodului k

Actualizarea weight-urilor (3)

$$\begin{array}{l} \frac{\partial sigmoid(x)}{\partial x} = sigmoid(x)(1 - sigmoid(x)) \\ \\ \\ \frac{\partial E}{\partial w_{jk}} = -2(t_k - o_k)sigmoid(\sum_j w_{jk}o_j)(1 - sigmoid(\sum_j w_{jk}o_j))\frac{\partial}{\partial w_{jk}}(\sum_j w_{jk}o_j) \\ \\ \\ \\ \frac{\partial E}{\partial w_{ik}} = -2(t_k - o_k)sigmoid(\sum_j w_{jk}o_j)(1 - sigmoid(\sum_j w_{jk}o_j))o_j \end{array}$$

Putem scăpa de doi-ul din față. Pe noi oricum ne interesează doar direcția pantei.

Actualizarea weight-urilor (4)

Panta dintre output și hidden layer:

Vom folosi formula asta la actualizarea weight-urilor.

$$rac{\partial E}{\partial w_{ij}} = -e_{j} sigmoid(\sum_{i} w_{ij} o_{i})(1 - sigmoid(\sum_{i} w_{ij} o_{i}))o_{i}$$

Panta dintre hidden și input layer

Actualizarea weight-urilor (5)

Gradient Descent

- Metodă bună de găsit minimul unei funcții.
- Minimizarea lui E, prin rafinarea w_{ii}.
- Derivata lui E în raport cu w_{ij} ne spune cum se schimbă E odată cu modificarea weight-urilor.

Actualizarea weight-urilor (6)

$$w_{jk} = w_{jk} - \widehat{lpha}_{rac{\partial E}{\partial w_{jk}}}$$

Learning rate - moderează dimensiunea salturilor către minim.

Ajustăm vechiul weight cu minus panta erorii.

$$\Delta w_{jk} = lpha E_k o_k (1-o_k) o_j^T$$
 Sigmoidele înlocuite cu output-urile nodurilor o_k

Actualizarea weight-urilor (7)

NOTE

- Rețea neuronală ⇔ funcție liniară de weight-uri
- Îmbunătățirea rețelei ⇔ minimizarea erorii ⇔ rafinare weights
- Îmbunătățim weight-urile iterativ prin descreșterea treptată a erorii folosind Gradient Descent.
- Fiecare pas spre minimul erorii este făcut în direcția în care panta este cea mai abruptă în jos!

Actualizarea weight-urilor (8)

Exemplu

Actualizarea weight-urilor (9)

Exemplu

Vrem să actualizăm $w_{11} = 2$ (dintre hidden și output layer).

$$\frac{\partial E}{\partial w_{jk}} = -(t_k - o_k) sigmoid(\sum_j w_{jk} o_j)(1 - sigmoid(\sum_j w_{jk} o_j))o_j$$

$$= e_1 = 0.8$$

$$= 1 - 0.88$$

$$= 2.0 * 0.4 + 3.0 * 0.4 = 2$$

$$= sigmoid(2) = 0.88$$

$$w_{11}$$
= 2.0 + 0.1 * 0.0675 = 2.00675 \longrightarrow Observăm o schimbare destul de mică, dar pe măsură ce iterăm, ea va crește.

Pregătirea datelor

INPUT

- Valori foarte mari
 - => aplatizare grafic
 - => greu de anticipat încotro ne îndreptăm cu update-urile
 - => saturare
- Ţineţi input-urile mici!
- Recomandare: input în (0.0, 1.0)

OUTPUT

- Grijă la valorile target!
- Funcția de activare trebuie să poată genera outputs în același interval cu target-urile!

Pregătirea datelor (2)

Weight-uri inițiale aleatorii

- Nu setăm toate weight-urile la aceeași valoare constantă. Cu atât mai puţin zero!
 - O să anuleze input-urile.
- Ideal e să facem sample dintr-o distribuţie normală cu media aproape de zero şi deviaţia standard 1/sqrt(incoming links).

```
Part II
```

2NClub #1

0 final - signois(X final) 0 final - self-activation_function(X final) return 0 final, 0 hidden, I

Hands on:

Recunoașterea Cifrelor Scrise de Mână

