Class 14: RNAseq Project

Katie Mostoller A17259578

Table of contents

Background	1
Data import	2
Tidy and verify data	3
Remove 0 count genes	
PCA quality control	4
DESeq analysis	5
Setup the DESeq input object	6
Run the DESeq	6
Extract the results	6
Volcano Plot	6
Add gene annotation	7
Save results	9
Pathway analysis	9
KEGG	10
GO Gene Ontology	
Reactome	

Background

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1

Data import

Reading in the counts and metadata

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
metadata <- read.csv("GSE37704_metadata.csv")</pre>
```

Q. How many genes are in the dataset?

```
nrow(counts)
```

[1] 19808

Q. How any control and knockdown experiment are there?

head(metadata)

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

table(metadata\$condition)

```
control_sirna hoxa1_kd 3 3
```

Tidy and verify data

Q. Does the metadata match the countdata?

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

The length column is a problem

colnames(counts)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

metadata\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

```
newcounts <- counts[,-1]
dim(counts)</pre>
```

[1] 19808 7

Make sure the column names of the countsdata matches the id's listed in the metadata

```
colnames(newcounts) == metadata$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE

Remove 0 count genes

```
#Sum each row and select the rows that don't sum to zero (!= is the opposite of ++)
to.keep <- rowSums(newcounts) != 0

# Keep the gene rows that don't sum to 0
countData <- newcounts[to.keep, ]</pre>
```

PCA quality control

We can use ur prcomp() function

```
pc <- prcomp(t(countData), scale = T)
summary(pc)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 7.387e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00
```

Color by control(blue) or knockdown(red)

```
metadata$condition
```

Plot the pca

```
library(ggplot2)

ggplot(pc$x) +
  aes(PC1, PC2) +
  geom_point(col=mycols)
```


Q. How many genes are left after filtering out the 0's?

nrow(countData)

[1] 15975

DESeq analysis

library(DESeq2)

Setup the DESeq input object

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run the DESeq

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing</pre>
```

Extract the results

```
res <- results(dds)</pre>
```

Volcano Plot

Plot log2 Fold-Change vs -log of adjusted p value with custom colors

```
mycols <- rep("grey", nrow(res))
mycols[res$log2FoldChange >= +2] <- "blue"
mycols[res$log2FoldChange <= -2] <- "blue"
mycols[res$padj >= 0.005] <- "grey"</pre>
```

```
ggplot(res) +
  aes(log2FoldChange, -log(padj)) +
  geom_point(col = mycols) +
  geom_vline(xintercept = c(-2,2), col = "red") +
  geom_hline(yintercept = -log(0.005), col = "red")
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`) .

Add gene annotation

We want to add SYMBOL and ENTREZID values to our results object

library(AnnotationDbi) library(org.Hs.eg.db)

columns(org.Hs.eg.db)

```
[1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                   "IPI"
                                                                  "MAP"
                                                                  "PFAM"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL" "PATH"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
[26] "UNIPROT"
```

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	lj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			
ENSG00000279457	6.86555e-0	01			

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03 ENSG00000188976 1.76549e-35 ENSG00000187961 1.13413e-07 ENSG00000187583 9.19031e-01 ENSG00000187642 4.03379e-01

our res dataset gene names are in ENSEMBL format

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

Save results

```
write.csv(res, file = "myresults.csv")
```

Pathway analysis

```
#|mmessage: false
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

KEGG

```
data(kegg.sets.hs)
```

These are the ENTREZID nammes of genes involved in caffeine metabolism pathway

```
head(kegg.sets.hs,1)
```

```
$`hsa00232 Caffeine metabolism`
[1] "10"  "1544" "1548" "1549" "1553" "7498" "9"
```

Make an input vector for gage() called foldchanges that has names() attribute set to ENTREZIDs

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez</pre>
```

```
keggres <- gage(foldchanges, gsets = kegg.sets.hs)</pre>
```

```
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

head(keggres\$less, 2)

```
p.geomean stat.mean p.val q.val
hsa04110 Cell cycle 8.995727e-06 -4.378644 8.995727e-06 0.001889103
hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05 0.009841047
set.size exp1
hsa04110 Cell cycle 121 8.995727e-06
hsa03030 DNA replication 36 9.424076e-05
```

pathview(foldchanges, pathway.id = "hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/katiemostoller/Desktop/Class 14

Info: Writing image file hsa04110.pathview.png

pathview(foldchanges, pathway.id = "hsa03030")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/katiemostoller/Desktop/Class 14

Info: Writing image file hsa03030.pathview.png

head(keggres\$greater)

p.geomean stat.mean

hsa04060 Cytokine-cytokine receptor interaction 9.131044e-06 4.358967

hsa05323	Rheumatoid arthritis		1.809824e-04	3.666793
hsa05146	Amoebiasis		1.313400e-03	3.052596
hsa05332	Graft-versus-host disease		2.605234e-03	2.948229
hsa04640	Hematopoietic cell lineage		2.822776e-03	2.833362
hsa04630	Jak-STAT signaling pathway		5.202070e-03	2.585673
			p.val	q.val
hsa04060	Cytokine-cytokine receptor	${\tt interaction}$	9.131044e-06	0.001917519
hsa05323	Rheumatoid arthritis		1.809824e-04	0.019003147
hsa05146	Amoebiasis		1.313400e-03	0.091937999
hsa05332	Graft-versus-host disease		2.605234e-03	0.118556573
hsa04640	Hematopoietic cell lineage		2.822776e-03	0.118556573
hsa04630	Jak-STAT signaling pathway		5.202070e-03	0.182072434
			set.size	exp1
hsa04060	Cytokine-cytokine receptor	${\tt interaction}$	177 9.13	31044e-06
hsa05323	Rheumatoid arthritis		72 1.80)9824e-04
hsa05146	Amoebiasis		94 1.31	l3400e-03
hsa05332	Graft-versus-host disease		22 2.60)5234e-03
hsa04640	Hematopoietic cell lineage		55 2.82	22776e-03
hsa04630	Jak-STAT signaling pathway		109 5.20)2070e-03

pathview(foldchanges, pathway.id = "hsa04060")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/katiemostoller/Desktop/Class 14

Info: Writing image file hsa04060.pathview.png

pathview(foldchanges, pathway.id = "hsa05323")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/katiemostoller/Desktop/Class 14

Info: Writing image file hsa05323.pathview.png

GO Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus just on GO biological process (bp)
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets)
```

head(gobpres\$less)

```
G0:0048285 organelle fissionp.geomean stat.meanp.valG0:0000280 nuclear division1.536227e-15-8.0639101.536227e-15G0:0007067 mitosis4.286961e-15-7.9392174.286961e-15G0:0000087 M phase of mitotic cell cycle1.169934e-14-7.7974961.169934e-14G0:0007059 chromosome segregation2.028624e-11-6.8783402.028624e-11G0:0000236 mitotic prometaphase1.729553e-10-6.6959661.729553e-10q.val set.sizeexp1
```

GO:0048285 organelle fission	5.841698e-12	376	1.536227e-15
GO:0000280 nuclear division	5.841698e-12	352	4.286961e-15
GO:0007067 mitosis	5.841698e-12	352	4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.195672e-11	362	1.169934e-14
GO:0007059 chromosome segregation	1.658603e-08	142	2.028624e-11
GO:0000236 mitotic prometaphase	1.178402e-07	84	1.729553e-10

Reactome

We can use reactome via R or via their fancy new website interface. The web interface wants a set of ENTREZID values for your genes of interest that we need to generate.

```
inds <- abs(res$log2FoldChange) >= 2 & res$padj <= 0.05
top.genes <- res$entrez[inds]</pre>
```

```
write.table(top.genes, file="top_genes.txt", row.names=FALSE, col.names=FALSE, quote=FALSE)
```