# Solution of the Initial Boundary Value Problem with the Wave Equation

REPORT ON RESEARCH LABWORKS

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA PHYSIKALISCH-ASTRONOMISCHE FAKULTÄT

Anne Weber and Johannes Nicklaus

Student's numbers: 162587 and 170099

Contents 0

### Contents

| 1 | The | eoretical Background                                                | 1 |
|---|-----|---------------------------------------------------------------------|---|
|   | 1.1 | General Analytical Solution                                         | 1 |
|   | 1.2 | Rewriting the WE as two differential equations out of one           | 1 |
|   | 1.3 | Rewriting the WE as a fully first order system / eigenvalue problem | 2 |

#### 1 Theoretical Background

#### 1.1 General Analytical Solution

The wave equation (WE) for the scalar field  $\phi(t,x)$  in one spatial and one time dimension is

$$0 = \frac{\partial^2 \phi}{\partial t^2} - c^2 \frac{\partial^2 \phi}{\partial x^2} = \partial_{tt} \phi - c^2 \partial_{xx} \phi \tag{1}$$

with  $c \in \mathbb{R}$ . According to the symmetry of second derivatives this can be divided into two factors

$$0 = (\partial_t - c\partial_x)(\partial_t + c\partial_x)\phi. \tag{2}$$

With introduction of two variables,  $\xi = x - ct$  and  $\nu = x + ct$ , now we can write:

$$0 = \partial_{\xi} \partial_{\nu} \phi . \tag{3}$$

Therefor the wave equation has the general solution

$$\phi(t,x) = f(\xi) + g(\nu) = f(x - ct) + g(x + ct) \tag{4}$$

which is a composition of a forward and a backward propagating elementary wave. As boundary condition we assume the initial time value and its derivative:

$$\phi_0(x) = \phi(0, x) = f(x) + g(x) =: A(x)$$
(5)

$$\left(\partial_t \phi(0, x)\right) = cf'(x) - cg'(x) =: B(x) . \tag{6}$$

Integrating eq. 6 results in

$$f(x) - g(x) = \int_{x_0}^x B(s) \, \mathrm{d}s \tag{7}$$

so that the separated solution is given by (here  $x_0 = x(t=0)$ )

$$f(x) = \frac{1}{2} \left( A(x) + \frac{1}{c} \int_{x_0}^x B(s) \, \mathrm{d}s \right)$$
 (8)

$$g(x) = \frac{1}{2} \left( A(x) - \frac{1}{c} \int_{x_0}^x B(s) \, \mathrm{d}s \right) . \tag{9}$$

Putting these together yields the general solution in dependence of the initial values, the d'Alembert's formula:

$$\phi(t,x) = \frac{1}{2} \left( A(x - ct) + A(x + ct) + \frac{1}{c} \int_{x - ct}^{x + ct} B(s) \, \mathrm{d}s \right) \tag{10}$$

This means, for given initial parameters the wave's evolution in time is clearly defined.

#### 1.2 Rewriting the WE as two differential equations out of one

Now we introduce the time derivative of the field as a new variable:  $\Pi(t,x) = \partial_t \phi$ . Thereby the initial wave equation eq. 1 can be rewritten as a wave equation including the first-order derivative in time and second-order derivative in space:

$$\partial_t \Pi = \partial_{tt} \phi = c^2 \partial_{xx} \phi \ . \tag{11}$$

Now one can, in accordance to the notation we introduced above, regard the field's derivative at the initial time  $\Pi(0,x)$  as B(x). Typical values for this initial velocity  $\Pi(0,x)$  are either 0 or a constant.

**Example 1:**  $\Pi(0,x) = 0$  If we consider the field's initial velocity to be zero,  $\Pi(0,x) = 0$  almost everywhere, this means the wave roughly is a pulse. Furthermore, if we assume no spatial boundaries the pulse will dominate the shape of the wave as time moves forward.

**Example 2:**  $\Pi(0,x) = \mathbf{const.}$  If we consider the initial velocity to be a constant, the wave function is at rest in a suitable inertial frame of reference. Hence, there will be no wave propagation.

## 1.3 Rewriting the WE as a fully first order system / eigenvalue problem

Similar to the definition of the velocity variable  $\Pi(t,x)$  we now introduce the slope variable as the spatial derivative of the field:  $\chi = \partial_x \phi$ .

With the state vector  $\vec{u} = \{\phi, \Pi, \chi\}$  and the source term S we can write the wave equation in as an eigenvalue problem in matrix form:

$$\partial_t \vec{u} + \hat{M} \partial_x \vec{u} = \vec{S} \tag{12}$$

#### Example 1: