

FUNCTIONS AND GRAPHS

1.2
BASIC CLASSES OF FUNCTIONS

ALGEBRAIC FUNCTIONS

LINEAR MODELS

When we say that y is a linear function of x, we mean that the graph of the function is a line.

•So, we can use the slope-intercept form of the equation of a line to write a formula for the function as

$$y = f(x) = mx + b$$

where m is the slope of the line and b is the y-intercept.

ALGEBRAIC FUNCTIONS

POWER FUNCTIONS

A function of the form $f(x) = x^a$, where a is constant, is called a power function.

ALGEBRAIC FUNCTIONS POLYNOMIALS

A function P is called a polynomial if

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where n is a nonnegative integer and the numbers a_0 , a_1 , a_2 , ..., a_n are constants called the coefficients of the polynomial.

(b)
$$y = x^4 - 3x^2 + x$$

(c)
$$y = 3x^5 - 25x^3 + 60x$$

ALGEBRAIC FUNCTIONS RATIONAL FUNCTIONS

A rational function f is a ratio of two polynomials

$$f(x) = \frac{P(x)}{Q(x)}$$

where P and Q are polynomials.

• The domain consists of all values of x such that $Q(x) \neq 0$

TRIGONOMETRIC FUNCTIONS

$$f(x) = \sin x$$

$$D=(-\infty,\infty)$$

$$R = [-1, 1]$$

$$g(x) = \cos x$$

$$\sin(x + k2\pi) = \sin x$$

$$\sin(x + k2\pi) = \sin x$$
 $\cos(x + k2\pi) = \cos x$; $k \in \mathbb{Z}$

(a)
$$f(x) = \sin x$$

(b)
$$g(x) = \cos x$$

TRIGONOMETRIC FUNCTIONS

$$\tan x = \frac{\sin x}{\cos x}$$

$$dk: x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \cdots$$

$$R = (-\infty, \infty)$$

$$tan(x + k\pi) = tanx; k \in Z$$

TRIGONOMETRIC FUNCTIONS

The reciprocals of the sine, cosine, and tangent functions are

$$cosecx = \frac{1}{sinx}$$

$$secx = \frac{1}{cosx}$$

$$cotx = \frac{1}{tanx}$$

EXPONENTIAL FUNCTIONS

The exponential functions are the functions of the form $f(x) = a^x$, where the base a is a positive constant.

- The graphs of $y = 2^x$ and $y = (0.5)^x$ are shown.
- In both cases, the domain is $(-\infty, \infty)$ and the range is $(0, \infty)$.

(a) $y = 2^x$

(b) $y = (0.5)^x$

LOGARITHMIC FUNCTIONS

The logarithmic functions $f(x) = \log_a x$, where the base a is a positive constant, are the inverse functions of the exponential functions.

The figure shows the graphs of four logarithmic functions with various bases.

PIECEWISE-DEFINED FUNCTIONS

Example:

$$f(x) = \begin{cases} x+3, & x < 1 \\ (x-2)^2, & x \ge 1 \end{cases}.$$

TRANSFORMATIONS OF FUNCTION

Label the following graph from the graph of the function y=f(x) shown in the part (a)

$$y=f(x)-2$$
, $y=f(x-2)$, $y=-f(x)$, $y=2f(x)$, $y=f(-x)$?

SHIFTING

Phép dời hình

Suppose c > 0.

- To obtain the graph of y = f(x) + c, shift the graph of y = f(x) a distance units upward.
- To obtain the graph of y = f(x) c, shift the graph of y = f(x) a distance c units downward.

Why don't we consider the case c<0?

SHIFTING

Phép dời hình

To obtain the graph of y = f(x - c), shift the graph of y = f(x) a distance c units to the right.

To obtain the graph of y = f(x + c), shift the graph of y = f(x) a distance c units to the left.

NEW FUNCTIONS FROM OLD FUNCTIONS

■ Label the following graph from the graph of he function y=f(x) shown in the part (a)

$$y=f(x)-2$$
, $y=f(x-2)$, $y=-f(x)$, $y=2f(x)$, $y=f(-x)$?

@ Thomson Higher Education

NEW FUNCTIONS FROM OLD FUNCTIONS

Label the following graph from the graph of the function $y = \sqrt{x}$ shown in the part (a):

$$y=f(x)-2$$
, $y=f(x-2)$, $y=-f(x)$, $y=2f(x)$, $y=f(-x)$?

- $y = \sqrt{x} 2$ by shifting 2 units downward.
- $y = \sqrt{x-2}$ by shifting 2 units to the right.

How about the case c<1?

TRANSFORMATIONS

Suppose c > 1.

• To obtain the graph of y = cf(x),

stretch (giãn) the graph of y = f(x)vertically by a factor of c.

• To obtain the graph of y = (1/c)f(x), compress (co) the graph of y = f(x) vertically by a factor of c.

TRANSFORMATIONS

- In order to obtain the graph of y = f(cx), compress the graph of y = f(x) horizontally by a factor of c.
- To obtain the graph of y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of c.

TRANSFORMATIONS

In order to obtain the graph of y = -f(x), reflect the graph of y = f(x) about the x-axis.

To obtain the graph of y = f(-x), reflect the graph of y = f(x) about the y-axis.

© Thomson Higher Education

NEW FUNCTIONS FROM OLD FUNCTIONS

Label the following graph from the graph of the function $y = \sqrt{x}$ shown in the part (a):

$$y=f(x)-2$$
, $y=f(x-2)$, $y=-f(x)$, $y=2f(x)$, $y=f(-x)$?

© Thomson Higher Education

FUNCTIONS FROM OLD FUNCTIONS

Label the following graph from the graph of the function $y=\sqrt{x}$ shown in the part (a):

$$y=f(x)-2$$
, $y=f(x-2)$, $y=-f(x)$, $y=2f(x)$, $y=f(-x)$?

- $y = -\sqrt{x}$ by reflecting about the *x*-axis. $y = 2\sqrt{x}$ by stretching vertically by a factor of 2.
- $y = \sqrt{-x}$ by reflecting about the *y*-axis

TRANSFORMATIONS

The figure illustrates these stretching transformations when applied to the cosine function with c = 2.

Example

Suppose that the graph of f is given. Describe how the graph of the function f(x-2)+2 can be obtained from the graph of f.

Select the correct answer.

- a. Shift the graph 2 units to the left and 2 units down.
- b. Shift the graph 2 units to the right and 2 units down.
- c. Shift the graph 2 units to the right and 2 units up.
- d. Shift the graph 2 units to the left and 2 units up.
- e. none of these

Answer: c

QUIZ QUESTIONS

Label the following graphs: f(x), $\frac{1}{2}f(x)$, $f(\frac{1}{2}x)$.

Answer: $\frac{1}{2} f(x)$, $f(\frac{1}{2} x)$, f(x)

Thanks