MODELS I SISTEMES DINÀMICS

Llista 1: Aplicacions unidimensionals

B.1. Trobeu els punts fixos i les òrbites de període 2 de les següents funcions. En el cas que apareixin paràmetres, feu-ho en funció d'aquests.

(a) * f(x) = 2x(1-x), on $x \in \mathbb{R}$.

(c) $f(x) = x^2 + 1$, on $x \in \mathbb{R}$.

(b) * $f_c(x) = x^2 + c$, on $x, c \in \mathbb{R}$ (només (d) $f_{a,b}(x) = ax + b$, on $a, b, x \in \mathbb{R}$. punts fixos).

(e) $f(x) = 2x^2 - 5x$, on $x \in \mathbb{R}$.

B.2. Fent servir anàlisi gràfic, dibuixeu el retrat de fases de

(a) $f(x) = x^2, x \in \mathbb{R}$.

(c) $f_a(x) = ax$, $x \in \mathbb{R}$, pels differents valors de $a \in \mathbb{R}$.

(b) $f(x) = x(1-x), x \in \mathbb{R}$.

B.3. * Trobeu els punts fixos atractors i les seves conques d'atracció per a la funció $f(x) = \frac{3x - x^3}{2}$, per $|x| \le \sqrt{3}$.

- **B.4.** Per a la funció logística $f_a(x) = ax(1-x)$, calculeu els punts fixos i els cicles de període 2 en funció del paràmetre, i determineu-ne l'estabilitat.
- 1. Estudieu el comportament asimptòtic de la successió $\{x_n\}_{n\in\mathbb{N}}$, pels diferents valors de x_0 indicats.

(a) * $x_{n+1} = \frac{\sqrt{x_n}}{2}$, $x_0 \ge 0$.

(b) $x_{n+1} = \frac{x_n}{2} + \frac{2}{x_n}, x_0 \ge 2.$

- **2.** Donada la successió $x_{n+1} = \frac{x_n+2}{x_n+1}$,
 - (a) Trobeu el límit $L = \lim_{n \to \infty} x_n$ per a $x_0 \ge 0$.
 - (b) Descriviu el conjunt dels $x_0 < 0$ pels quals el límit $\lim_{n \to \infty} x_n$ existeix i no és igual a L, o bé no existeix. (Per exemple $x_0 = -1$).
- 3. (Examen 2011) Considereu el sistema dinàmic real definit per $x_{n+1} = \frac{x_n}{4} + x_n^3$. Trobeu el comportament asimptòtic de les òrbites per a tota condició inicial $x_0 \in \mathbb{R}$. Justifiqueu rigorosament les vostres afirmacions.
- 4. Demostreu rigurosament que $f(x) = \sin(x)$ té x = 0 com atractor global.
- **5.** Demostreu que si $f: \mathbb{R} \to \mathbb{R}$ és derivable, x_0 és un punt fix i $|f'(x_0)| > 1$ llavors x_0 és un punt fix repulsor.
- **6.** Sigui $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} i sigui x_0 un punt fix tal que $f'(x_0) = 1$. Doneu criteris sobre les derivades d'ordre superior, per determinar el retrat de fase local al voltant de x_0 . Apliqueu-ho a determinar l'estabilitat dels punts fixos de $x^3 - x$.

- 7. (Iteració d'homeomorfismes de \mathbb{R}) Sigui $f : \mathbb{R} \to \mathbb{R}$ una funció estrictament decreixent. Demostreu que per a tot $x \in \mathbb{R}$, l'òrbita de x convergeix a un punt fix, a una òrbita periòdica de període 2, o bé tendeix a infinit. *Indicació: observeu que* f^2 és creixent.
- 8. Sigui $f(x) = \cos(x)$. Demostreu que
 - (a) per a tot $x_0 \in \mathbb{R}$ es té que $x_2 \in [0, 1]$;
 - (b) f té un punt fix p localment atractor;
 - (c) f no té òrbites periòdiques;
 - (d) p és atractor global.
- 9. * Analitzeu el comportament asimptòtic de les òrbites de $x_{n+1} = r \frac{x_n}{1+x_n^2}$, amb r un paràmetre positiu. Trobeu i classifiqueu tots els punts fixos com a funcions de r. Poden haver-hi òrbites periòdiques de període 2?
- **10.** * Sigui $f:[0,\infty) \to [0,\infty)$ una funció \mathcal{C}^{∞} amb f(0)=0, i sigui p>0 un punt fix tal que $f'(p) \geq 0$. Suposeu a més que f'(x) és estrictament decreixent. Demostreu que totes les òrbites amb condició inicial $x_0 > 0$ convergeixen a p.
- **11.** * Considereu la iteració cúbica $x_{n+1} = f(x_n)$ on $f(x) = rx x^3$.
 - (a) Trobeu els punts fixos. Per a quins valors de r existeixen? Per a aquins valors són estables?
 - (b) Suposem que f(p)=q i f(q)=p. Demostreu que p i q són solucions de l'equació $x(x^2-r+1)(x^2-r-1)(x^4-rx^2+1)=0$

i feu servir aquest fet per trobar totes les òrbites periòdiques de període 2.

- (c) Determineu l'estabilitat de les òrbites periòdiques de període 2 en funció de r.
- (d) Dibuixeu un diagrama de bifurcació parcial, basat en la informació obtinguda.
- 12. Sigui $F(x) = x + 2 \arctan x$. Demostreu que totes les òrbites del sistema dinàmic definit per F escapen a l'infinit.

Sol: Veieu que F'(x) > x per a tot $x \in \mathbb{R}$.

- **13.** Sigui $F:[0,1] \to [0,1]$ tal que F'(x) > 0 i F''(x) > 0.
 - (a) Demostreu que F'(0) < 1. (Indicació: Demostreu primer que si $F'(0) \ge 1$ llavors F'(x) > 1 per a tot $x \in (0,1)$.)
 - (b) Si assumim a més que F(0) = 0, demostreu que totes les òrbites amb condició inicial $x_0 \in (0,1)$ convergeixen a 0.
- **14.** Sigui $F_a(x) = ax^3 + \arctan x$ on $a \in \mathbb{R}$. Trobeu els valors d'a pels quals l'origen és repulsor.

15. Sigui

$$F(x) = \begin{cases} -\frac{1}{2}x & \text{si } x \le 0\\ -4x & \text{si } x > 0. \end{cases}$$

Observeu que x=0 és un punt fix i que F no és derivable en 0. Demostreu que 0 és un punt fix repulsor. (*Indicació: estudieu* F^2 .)

- **16.** Considereu la família de funcions $F_a(x) = x^2 ax$.
 - (a) Calculeu els punts fixos i estudieu-ne l'estabilitat.
 - (b) Calculeu les òrbites periòdiques de període 2 i estudieu-ne l'estabilitat.
 - (c) Utilitzeu la informació obtinguda per dibuixar un diagrama de bifurcació parcial de la família F_a .
 - (d) Opcional: Feu un programa per obtenir numèricament la resta del diagrama.
- 17. (Examen 2011) Quin tipus de bifurcació presenta la família $f_a(x) = x + a x^2$ en a = 0? Dibuixeu el diagrama de bifurcació en un entorn de a = 0.
- 18. Estudieu el diagrama de bifurcació de la funció $F_a(x) = (x+a^2-1)(x^2-2x-a)+x$. Determineu quin tipus de bifurcació succeeix en a=-1. Mitjançant l'anàlisi gràfic, dibuixeu el retrat de fase de F_a abans, durant i després de la bifurcació.

Sol: sella-node. Hi ha 3 branques de punts fixos
$$p_1(a) = 1 - a^2$$
; $p_2(a) = 1 + \sqrt{1 + a}$; $p_3(a) = 1 - \sqrt{1 + a}$.

19. * (Examen 2011) Sigui $E_a(x) = ae^x$ amb a > 0. Trobeu el valor de a pel que succeeix una bifurcació sella-node. Mitjançant l'anàlisi gràfic, dibuixeu el retrat de fases de E_a abans, durant i després de la bifurcació.

Sol:
$$a = 1/e$$
.

- **20.** * Sigui $F_a(x) = a x^2$. Proveu que F_a experimenta una bifurcació sella-node quan $a = a_0 = -1/4$. Dibuixeu el diagrama de bifurcació en un entorn de a_0 .
- **22.** (Examen 2011) Donada la família de funcions $f_a(x) = a + x e^x$ amb a > 0 i $x \in \mathbb{R}$, trobeu el valor de a pel qual f_a experimenta una bifurcació. Digueu de quin tipus és i verifiqueu-ne les condicions. Feu un esbós del diagrama de bifurcació.