GigaDevice Semiconductor Inc.

GD32F130xx ARM[®] Cortex[™]-M3 32-bit MCU

Datasheet

Table of Contents

List	of Figures	3
List	of Tables	4
1	General description	5
2	Device overview	6
2.1	1 Device information	6
2.2	2 Block diagram	7
2.3	Pinouts and pin assignment	8
2.4	4 Memory map	10
2.5	5 Clock tree	11
2.6	6 Pin definitions	12
3	Functional description	18
3.1	1 ARM [®] Cortex [™] -M3 core	18
3.2	2 On-chip memory	18
3.3	3 Clock, reset and supply management	19
3.4	4 Boot modes	19
3.5	5 Power saving modes	20
3.6	6 Analog to digital converter (ADC)	20
3.7	7 DMA	21
3.8	8 General-purpose inputs/outputs (GPIOs)	21
3.9	9 Timers and PWM generation	21
3.1	10 Real time clock (RTC)	23
3.1	11 Inter-integrated circuit (I2C)	23
3.1	12 Serial peripheral interface (SPI)	24
3.1	13 Universal synchronous asynchronous receiver transmitter (USART)	24
3.1	14 Debug mode	24
3.1	15 Package and operation temperature	24
4	Electrical characteristics	25
4.1	1 Absolute maximum ratings	25
4.2	2 Recommended DC characteristics	25
4.3	3 Power consumption	26
4.4	4 EMC characteristics	27
4.5	5 Power supply supervisor characteristics	27
4.6	6 Electrical sensitivity	28
4.7	7 External clock characteristics	28
4.8	8 Internal clock characteristics	29
4.9	9 PLL characteristics	30
4.1	10 Memory characteristics	30
4.1	11 GPIO characteristics	30

7		Revision History	38
6		Ordering Information	37
	5.3	LQFP package outline dimensions	35
	5.2	QFN package outline dimensions	
	5.1	TSSOP package outline dimensions	33
5		Package information	33
	4.14	I2C characteristics	32
	4.13	SPI characteristics	31
	4.12	ADC characteristics	

List of Figures

7
8
8
g
g
10
11
33
34
35

List of Tables

Table 1. GD32F130xx devices features and peripheral list	6
Table 2. GD32F130xx pin definitions	12
Table 3. Port A alternate functions summary	16
Table 4. Port B alternate functions summary	17
Table 5. Absolute maximum ratings	25
Table 6. DC operating conditions	25
Table 7. Power consumption characteristics	26
Table 8. EMS characteristics	27
Table 9. EMI characteristics	27
Table 10 Power supply supervisor characteristics	27
Table 11. ESD characteristics	28
Table 12. Static latch-up characteristics	28
Table 13. High speed external clock (HSE) generated from a crystal/ceramic characteristics	28
Table 14. Low speed external clock (LSE) generated from a crystal/ceramic characteristics	29
Table 15. High speed internal clock (HSI) characteristics	29
Table 16. Low speed internal clock (LSI) characteristics	29
Table 17. PLL characteristics	30
Table 18. Flash memory characteristics	30
Table 19. I/O port characteristics	30
Table 20. ADC characteristics	31
Table 23. SPI characteristics	31
Table 22. I2C characteristics	32
Table 24. TSSOP20 package dimensions	33
Table 25. QFN28 package dimensions	34
Table 26. LQFP package dimensions	36
Table 27. Part ordering code for GD32F130xx devices	37
Table 28. Revision history	38

1 General description

The GD32F130xx device belongs to the value line of GD32 MCU family. It is a 32-bit general-purpose microcontroller based on the high performance ARM® CortexTM-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The CortexTM-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.

The GD32F130xx device incorporates the ARM[®] Cortex[™]-M3 32-bit processor core operating at 48 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 64 KB on-chip Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC, up to five general-purpose 16-bit timers, a general-purpose 32-bit timer, a PWM advanced-control timer, as well as standard and advanced communication interfaces: up to two SPIs, two I²Cs and two USARTs.

The device operates from a 2.6 to 3.6 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32F130xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

2 Device overview

2.1 Device information

Table 1. GD32F130xx devices features and peripheral list

Part Number		OXX GCVIC		•		F130xx			
Pa	art Number	F4	G4	G6	G8	C4	C6	C8	R8
Flash (KB)		16	16	32	64	16	32	64	64
S	SRAM (KB)	4	4	4	8	4	4	8	8
	32-bit GP	1	1	1	1	1	1	1	1
	16-bit GP	4	4	4	5	4	4	5	5
Timers	16-bit Adv.	1	1	1	1	1	1	1	1
Tim	SysTick	1	1	1	1	1	1	1	1
	Watchdog	2	2	2	2	2	2	2	2
	RTC	1	1	1	1	1	1	1	1
vity	USART	1	1	2	2	1	2	2	2
Connectivity	I2C	1	1	1	2	1	1	2	2
Col	SPI	1	1	1	2	1	1	2	2
	GPIO	15	23	23	23	39	39	39	55
	EXTI	16	16	16	16	16	16	16	16
4.5	Units	1	1	1	1	1	1	1	1
ADC	Channels (Ext.)	9	10	10	10	10	10	10	16
	Channels (Int.)	3	3	3	3	3	3	3	3
	Package	TSSOP20		QFN28			LQFP48		LQFP64

2.2 Block diagram

Figure 1. GD32F130xx block diagram

2.3 Pinouts and pin assignment

Figure 2. GD32F130Rx LQFP64 pinouts

Figure 3. GD32F130Cx LQFP48 pinouts

Figure 4. GD32F130Gx QFN28 pinouts

Figure 5. GD32F130Fx TSSOP20 pinouts

reserved

2.4 Memory map

0x1FFF FFFF

0x1FFF F80F

0x1FFF F800

0x1FFF EC00

0x0801 FFFF

0x0800 0000

reserved

Option

Bytes

System

memory

reserved

Flash

memory

0x0800 0000 Aliased to Flash or system memory according to BOOT pins configuration

Figure 6. GD32F130xx memory map

0xFFFF FFFF

7

0xE010 0000

0xE000 0000

6

0xC000 0000

5

0xA000 0000

4

0x8000 0000

3

0x6000 0000

0x5000 0000

0x4000 0000

1

0x2000 0000

0

0x0000 0000

reserved

reserved

reserved

reserved

reserved

reserved

reserved

SRAM

reserved

0x5000 0000

2.5 Clock tree

Figure 7. GD32F130xx clock tree

Legend:

HSE = High speed external clock

HSI = High speed internal clock

LSE = Low speed external clock

LSI = Low speed internal clock

2.6 Pin definitions

Table 2. GD32F130xx pin definitions

Pins									
Pin Name	LQFP64	LQFP48	QFN28	TSSOP20	Pin Type ⁽¹⁾	I/O ⁽²⁾ Level	Functions description		
V_{BAT}	1	1	-		Р		Default: V _{BAT}		
PC13-TAMPE R-RTC	2	2	1		I/O		Default: PC13 Additional: RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2		
PC14-OSC32 _IN	3	3	-		I/O		Default: PC14 Additional: OSC32_IN		
PC15- OSC32_OUT	4	4	-		I/O		Default: PC15 Additional: OSC32_OUT		
PF0-OSC_IN	5	5	2	2	I/O	5VT	Default: PF0 Additional: OSC_IN		
PF1-OSC_O UT	6	6	3	3	I/O	Default: PF1			
NRST	7	7	4	4	I/O		Default: NRST		
PC0	8	-	-		I/O		Default: PC0 Alternate: EVENTOUT Additional: ADC_IN10		
PC1	9	-			I/O		Default: PC1 Alternate: EVENTOUT Additional: ADC_IN11		
PC2	10	-			I/O		Default: PC2 Alternate: EVENTOUT Additional: ADC_IN12		
PC3	11	-			I/O		Default: PC3 Alternate: EVENTOUT Additional: ADC_IN13		
V _{SSA}	12	8	-		Р		Default: V _{SSA}		
V_{DDA}	13	9	5	5	Р		Default: V _{DDA}		
PA0-WKUP	14	10	6	6	I/O		Default: PA0 Alternate: USART1_CTS ⁽³⁾ , USART2_CTS ⁽⁴⁾ , TM2_CH1_ETR, I2C2_SCL Additional: ADC_IN0, RTC_TAMP2, WKUP1		
PA1	15	11	7	7	I/O		Default: PA1 Alternate: USART1_RTS ⁽³⁾ , USART2_RTS ⁽⁴⁾ , TM2_CH2, I2C2_SDA, EVENTOUT Additional: ADC_IN1		
PA2	16	12	8	8	I/O		Default: PA2 Alternate: USART1_TX ⁽³⁾ , USART2_TX ⁽⁴⁾ , TM2_CH3, TM15_CH1 , Additional: ADC_IN2		
PA3	17	13	9	9	I/O		Default: PA3		

GigaDevic							GD32FT30XX			
Pin Name	LQFP64	LQFP48 H	QFN28	TSSOP20	Pin Type ⁽¹⁾	I/O ⁽²⁾ Level	Functions description			
							Alternate: USART1_RX ⁽³⁾ , USART2_RX ⁽⁴⁾ , TM2_CH4, TM15_CH2			
							Additional: ADC_IN3			
PF4	18	-			I/O	5VT	Default: PF4 Alternate: SPI2_NSS, EVENTOUT			
PF5	19	1			I/O	5VT	Default: PF5 Alternate: EVENTOUT			
PA4	20	14	10	10	I/O		Default: PA4 Alternate: SPI1_NSS, USART1_RX ⁽³⁾ , USART2_RX ⁽⁴⁾ , TM14_CH1, SPI2_NSS Additional: ADC_IN4			
PA5	21	15	11	11	I/O		Default: PA5 Alternate: SPI1_SCK, TM2_CH1_ETR Additional: ADC_IN5			
PA6	22	16	12	12	I/O		Default: PA6 Alternate: SPI1_MISO, TM3_CH1, TM1_BKIN, TM16_CH1, EVENTOUT Additional: ADC_IN6			
PA7	23	17	13	13	I/O		Default: PA7 Alternate: SPI1_MOSI, TM3_CH2, TM14_CH1, TM1_CH1N, TM17_CH1, EVENTOUT Additional: ADC_IN7			
PC4	24	-			I/O		Default: PC4 Alternate: EVENTOUT Additional: ADC_IN14			
PC5	25	-			I/O		Default: PC5 Additional: ADC_IN15			
PB0	26	18	14		I/O		Default: PB0 Alternate: TM3_CH3, TM1_CH2N, USART2_RX, EVENTOUT Additional: ADC_IN8			
PB1	27	19	15	14	I/O		Default: PB1 Alternate: TM3_CH4, TM14_CH1, TM1_CH3N, SPI2_SCK Additional: ADC_IN9			
PB2	28	20			I/O	5VT	Default: PB2			
PB10	29	21			I/O	5VT	Default: PB10 Alternate: I2C2_SCL, TM2_CH3			
PB11	30	22			I/O	5VT	Default: PB11 Alternate: I2C2_SDA, TM2_CH4, EVENTOUT			
V _{SS}	31	23	16	15	Р		Default: V _{SS}			
V_{DD}	32	24	17	16	Р		Default: V _{DD}			
PB12	33	25			I/O	5VT	Default: PB12 Alternate: SPI1_NSS ⁽³⁾ , SPI2_NSS ⁽⁴⁾ , TM1_BKIN, I2C2_SMBA, EVENTOUT			
PB13	34	26			I/O	5VT	Default: PB13			

Giga Device Pins							GD32F130XX		
Pin Name	LQFP64	LQFP48	QFN28	TSSOP20	Pin Type ⁽¹⁾	I/O ⁽²⁾ Level	Functions description		
							Alternate: SPI1_SCK ⁽³⁾ , SPI2_SCK ⁽⁴⁾ , TM1_CH1N		
PB14	35	27			I/O	5VT	Default: PB14 Alternate: SPI1_MISO ⁽³⁾ , SPI2_MISO ⁽⁴⁾ , TM1_CH2N, TM15_CH1		
PB15	36	28			I/O	5VT	Default: PB15 Alternate: SPI1_MOSI ⁽³⁾ , SPI2_MOSI ⁽⁴⁾ , TIM1_CH3N, TM15_CH1N, TM15_CH2 Additional: RTC_REFIN		
PC6	37	-			I/O	5VT	Default: PC6 Alternate: TM3_CH1		
PC7	38	-			I/O	5VT	Default: PC7 Alternate: TM3_CH2		
PC8	39	-			I/O	5VT	Default: PC8 Alternate: TM3_CH3		
PC9	40	-			I/O	5VT	Default: PC9 Alternate: TM3_CH4		
PA8	41	29	18		I/O	5VT	Default: PA8 Alternate: USART1_CK, TM1_CH1, MCO, USART2_TX, EVENTOUT		
PA9	42	30	19	17	I/O	5VT	Default: PA9 Alternate: USART1_TX, TM1_CH2, TM15_BKIN , I2C1_SCL		
PA10	43	31	20	18	I/O	5VT	Default: PA10 Alternate: USART1_RX, TM1_CH3, TM17_BKIN, I2C1_SDA		
PA11	44	32			I/O	5VT	Default: PA11 Alternate: USART1_CTS, TM1_CH4, EVENTOUT		
PA12	45	33			I/O	5VT	Default: PA12 Alternate: USART1_RTS, TM1_ETR, EVENTOUT		
PA13	46	34	21	19	I/O	5VT	Default: PA13 Alternate: IR_OUT, SWDAT, SPI2_MISO		
PF6	47	35			I/O	5VT	Default: I2C2_SCL		
PF7	48	36			I/O	5VT	Default: I2C2_SDA		
PA14	49	37	22	20	I/O	5VT	Default: PA14 Alternate: USART1_TX ⁽³⁾ , USART2_TX ⁽⁴⁾ , SWCLK, SPI2_MOSI		
PA15	50	38	23		I/O	5VT	Default: JTDI Alternate: SPI1_NSS , USART1_RX ⁽³⁾ , USART2_RX ⁽⁴⁾ , TM2_CH1_ETR, SPI2_NSS, EVENTOUT		
PC10	51	-			I/O	5VT	Default: PC10		
PC11	52	-			I/O	5VT	Default: PC11		
PC12	53	-			I/O	5VT	Default: PC12		
PD2	54				I/O	5VT	Default: PD2 Alternate: TM3_ETR		
PB3	55	39	24		I/O	5VT	Default: PB3 Alternate: SPI1_SCK, TM2_CH2, EVENTOUT		
PB4	56	40	25		I/O	5VT	Default: PB4		

		Pin	s			_				
Pin Name	LQFP64	LQFP48	ØFN28	TSSOP20	Pin Type ⁽¹⁾	I/O ⁽²⁾ Level	Functions description			
							Alternate: SPI1_MISO, TM3_CH1, EVENTOUT			
PB5	57	41	26		I/O	5VT	Default: PB5 Alternate: SPI1_MOSI, I2C1_SMBA, TM16_BKIN, TM3_CH2			
PB6	58	42	27		I/O	5VT	Default: PB6 Alternate: I2C1_SCL, USART1_TX, TM16_CH1N			
PB7	59	43	28		I/O	5VT	Default: PB7 Alternate: I2C1_SDA, USART1_RX, TM17_CH1N			
воото	60	44		1	I		Default: BOOT0			
PB8	61	45			I/O	5VT	Default: PB8 Alternate: I2C1_SCL, TM16_CH1,			
PB9	62	46			I/O	5VT	Default: PB9 Alternate: I2C1_SDA, IR_OUT, TM17_CH1, EVENTOUT			
V _{SS}	63	47			Р		Default: V _{SS}			
V _{DD}	64	48			Р		Default: V _{DD}			

Notes:

- 1. Type: I = input, O = output, P = power.
- 2. I/O Level: 5VT = 5 V tolerant.
- 3. This feature is available on GD32F130x4 devices only.
- 4. This feature is available on GD32F130x8 and GD32F130x6 devices only.

Table 3. Port A alternate functions summary

Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6
Name	_			-			-
PA0		USART1_CTS ⁽¹⁾	TM2_CH1_		I2C2_SCL		
FAU		USART2_CTS ⁽²⁾	ETR		1202_30L		
D.4.4	EVENTOUT	USART1_RTS ⁽¹⁾	TMO CUO		1000 004		
PA1	EVENTOUT	USART2_RTS ⁽²⁾	TM2_CH2		I2C2_SDA		
DAG	TN45 0114	USART1_TX ⁽¹⁾	TN40, 0110				
PA2	TM15_CH1	USART2_TX ⁽²⁾	TM2_CH3				
DAG	TMAE OLIO	USART1_RX ⁽¹⁾	TMO OLIA				
PA3	TM15_CH2	USART2_RX ⁽²⁾	TM2_CH4				
D 4 4	CDI4 NCC	USART1_CK ⁽¹⁾			TM44 CU4		CDIO NICC
PA4	SPI1_NSS	USART2_CK ⁽²⁾			TM14_CH1		SPI2_NSS
PA5	CDI4 CCI/		TM2_CH1_				
PAS	SPI1_SCK		ETR				
PA6	SPI1_MISO	TM3_CH1	TM1_BKIN			TM16_CH1	EVENTOUT
PA7	SPI1_MOSI	TM3_CH2	TM1_CH1N		TM14_CH1	TM17_CH1	EVENTOUT
PA8	MCO	USART1_CK	TM1_CH1	EVENTOUT	USART2_TX		
PA9	TM15_BKIN	USART1_TX	TM1_CH2		I2C1_SCL		
PA10	TM17_BKIN	USART1_RX	TM1_CH3		I2C1_SDA		
PA11	EVENTOUT	USART1_CTS	TM1_CH4				
PA12	EVENTOUT	USART1_RTS	TM1_ETR				
PA13	SWDAT	IR_OUT					SPI2_MISO
DA44	0/4/01/7	USART1_TX ⁽¹⁾					ODIO MOGI
PA14	SWCLK	USART2_TX ⁽²⁾					SPI2_MOSI
DA15	CDI4 NCC	USART1_RX ⁽¹⁾	TM2_CH1_	EVENTOUT			CDIO NICO
PA15	SPI1_NSS	USART2_RX ⁽²⁾	ETR	EVENTOUT			SPI2_NSS

^{1.} This feature is available on GD32F130x4 devices only.

^{2.} This feature is available on GD32F130x8 and GD32F130x6 devices only.

Table 4. Port B alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PB0	EVENTOUT	TM3_CH3	TM1_CH2N		USART2_RX		
PB1	TM14_CH1	TM3_CH4	TM1_CH3N				SPI2_SCK
PB2							
PB3	SPI1_SCK	EVETOUT	TM2_CH2				
PB4	SPI1_MISO	TM3_CH1	EVENTOUT				
PB5	SPI1_MOSI	TM3_CH2	TM16_BKIN	I2C1_SMBA			
PB6	USART1_TX	I2C1_SCL	TM16_CH1N				
PB7	USART1_RX	I2C1_SDA	TM17_CH1N				
PB8		I2C1_SCL	TM16_CH1				
PB9	IR_OUT	I2C1_SDA	TM17_CH1	EVENTOUT			
PB10		I2C2_SCL	TM2_CH3				
PB11	EVENTOUT	I2C2_SDA	TM2_CH4				
PB12	SPI1_NSS ⁽¹⁾ SPI2_NSS ⁽²⁾	EVENTOUT	TM1_BKIN		I2C2_SMBA		
DD40	SPI1_SCK ⁽¹⁾		TMA CUAN				
PB13	SPI2_SCK ⁽²⁾		TM1_CH1N				
PB14	SPI1_MISO ⁽¹⁾	TM15_CH1	TM1_CH2N				
FD14	SPI2_MISO ⁽²⁾	110110_0111	TIVIT_CITZIN				
PB15	SPI1_MOSI ⁽¹⁾	TM15_CH2	TM1_CH3N	TM15_CH1N			
FDIS	SPI2_MOSI ⁽²⁾	TIVITO_CFIZ	TIVIT_CHSIN	TIVITO_CHTIN			

^{1.} This feature is available on GD32F130x4 devices only.

^{2.} This feature is available on GD32F130x8 and GD32F130x6 devices only.

3 Functional description

3.1 ARM[®] Cortex[™]-M3 core

The Cortex[™]-M3 processor is the latest generation of ARM[®] processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

- 32-bit ARM[®] CortexTM-M3 processor core
- Up to 48 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex[™]-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex[™]-M3:

- Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
- Nested Vectored Interrupt Controller (NVIC)
- Flash Patch and Breakpoint (FPB)
- Data Watchpoint and Trace (DWT)
- Instrument Trace Macrocell (ITM)
- Serial Wire JTAG Debug Port (SWJ-DP)
- Trace Port Interface Unit (TPIU)

3.2 On-chip memory

- Up to 64 Kbytes of Flash memory
- Up to 8 Kbytes of SRAM

The ARM[®] Cortex[™]-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with zero wait states. The Figure 7. GD32F130xx memory map shows the memory map of the GD32F130xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3 Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 2.6 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB and two APB domains is 72 MHz. See Figure 9 for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- Arr V_{DD} range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} range: 1.8 to 3.6 V, power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main Flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART1 in device mode.

3.5 Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are Sleep mode, Deep-sleep mode, and Standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In Deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (HSI, HSE) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the Deep-sleep mode including the 16 external lines, the RTC alarm and the LVD output,. When exiting the Deep-sleep mode, the HSI is selected as the system clock.

Standby mode

In Standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of HSI, HSE and PLL are disabled. The contents of SRAM and registers (except Backup Registers) are lost. There are four wakeup sources for the Standby mode, including the external reset from NRST pin, the RTC alarm, the IWDG reset, and the rising edge on WKUP pin.

3.6 Analog to digital converter (ADC)

- 12-bit SAR ADC engine with up to 1 MSPS conversion rate
- Conversion range: V_{SSA} to V_{DDA} (2.6 to 3.6 V)
- Temperature sensor

One 12-bit 1 μ s multi-channel ADC is integrated in the device. It is a total of up to 16 multiplexed external channels and 3 internal channels for temperature sensor, voltage reference, V_{BAT} voltage measurement. The conversion range is between 2.6 V < V_{DDA} < 3.6 V. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages. The ADC can be triggered from the events generated by the general-purpose timers (TMx) and the advanced-control timers (TM1) with internal connection.

The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. Each device is factory-calibrated to improve the accuracy and the calibration data are stored in the system memory area.

3.7 DMA

- 7 channel DMA controller
- Peripherals supported: Timers, ADC, SPIs, I²Cs, USARTs

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.8 General-purpose inputs/outputs (GPIOs)

- Up to 55 fast GPIOs, all mappable on 16 external interrupt vectors (EXTI)
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 55 general purpose I/O pins (GPIO) in GD32F130xx, named PA0 ~ PA15 and PB0 ~ PB15, PC0 ~ PC15, PD2, PF0, PF1, PF4-PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

3.9 Timers and PWM generation

- One 16-bit advanced-control timer (TM1), one 32-bit general-purpose timer (TM2), five 16-bit general-purpose timers (TM3, TM14 ~ TM17)
- Up to 4 independent channels of PWM, output compare or input capture for each general-purpose timer (GPTM) and external trigger input
- 16-bit, motor control PWM advanced-control timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (Independent watchdog and window watchdog)

The advanced-control timer (TM1) can be used as a three-phase PWM multiplexed on 6

channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general-purpose timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center-aligned counting modes) and single pulse mode output. If configured as a general-purpose 16-bit timer, it has the same functions as the TMx timer. It can be synchronized with external signals or to interconnect with other GPTMs together which have the same architecture and features.

The general-purpose timer (GPTM) can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TM14 ~ TM17 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The GPTM also supports an encoder interface with two inputs using quadrature decoder.

The GD32F130xx have two watchdog peripherals, Independent watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.

The independent watchdog timer includes a 12-bit down-counting counter and a 8-bit prescaler, It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in stop and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.10 Real time clock (RTC)

- Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
- Calendar with subsecond, seconds, minutes, hours, week day, date, year and month automatically correction
- Alarm function with wake up from deep-sleep and standby mode capability
- On-the-fly correction for synchronization with master clock. Digital calibration with 1 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz from external crystal oscillator.

3.11 Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 kHz
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides two data transfer rates: 100 kHz of standard mode or 400 kHz of the fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.12 Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 18 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

3.13 Universal synchronous asynchronous receiver transmitter (USART)

- Up to two USARTs with operating frequency up to 9 MHz
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- ISO 7816-3 compliant smart card interface

The USART (USART1, USART2) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

3.14 Debug mode

■ Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

3.15 Package and operation temperature

- LQFP64 (GD32F130Rx), LQFP48 (GD32F130Cx), QFN28 (GD32F130Gx) and TSSOP20 (GD32F130Fx)
- Operation temperature range: -40°C to +85°C (industrial level)

4 Electrical characteristics

4.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 5. Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
V_{DD}	External voltage range	V _{SS} - 0.3	V _{SS} + 3.6	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.6	V
V_{BAT}	External battery supply voltage	V _{SS} - 0.3	V _{SS} + 3.6	V
.,	Input voltage on 5V tolerant pin	V _{SS} - 0.3	V _{SS} + 4.0	V
V _{IN}	Input voltage on other I/O	V _{SS} - 0.3	4.0	V
I _{IO}	Maximum current for GPIO pins	_	25	mA
T _A	Operating temperature range	-40	+85	°C
T _{STG}	Storage temperature range	-55	+150	°C
TJ	Maximum junction temperature	_	125	°C

4.2 Recommended DC characteristics

Table 6. DC operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage		2.6	3.3	3.6	V
V_{DDA}	Analog supply voltage	Same as V _{DD}	2.6	3.3	3.6	V
V _{BAT}	Battery supply voltage		1.8	_	3.6	V

4.3 Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 7. Power consumption characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{DD} =V _{BAT} =3.3V, HSE=8MHz, System clock=72 MHz, All peripherals enabled	_	20.92	_	mA
	Supply current	V _{DD} =V _{BAT} =3.3V, HSE=8MHz, System clock =72 MHz, All peripherals disabled	_	14.07	_	mA
	(Run mode)	V _{DD} =V _{BAT} =3.3V, HSE=8MHz, System clock =48 MHz, All peripherals enabled		29.28	_	mA
		V _{DD} =V _{BAT} =3.3V, HSE=8MHz, System Clock =48 MHz, All peripherals disabled	_	20.15		mA
I _{DD}	Supply current	V _{DD} =V _{BAT} =3.3V, HSE=8MHz, CPU clock off, All peripherals enabled		18.95		mA
	(Sleep mode)	V _{DD} =V _{BAT} =3.3V, HSE=8MHz, CPU clock off, All peripherals disabled		7.94		mA
	Supply current (Deep-Sleep mode)	V _{DD} =V _{BAT} =3.3V, All clock off, LSI on, RTC on, All GPIOs analog mode		0.26		mA
	Supply current (Standby mode)	V_{DD} = V_{BAT} =3.3 V , LDO off, LSE off, LSI on, RTC on	_	10.5	_	μΑ
I _{BAT}	Battery supply	V_{DD} not available, V_{BAT} =3.3V, LDO off, LSE on, LSI off, RTC on	_	7.3	_	μΑ
IBAT	(Standby mode)	V_{DD} not available, $V_{\text{BAT}}{=}3.3~\text{V},$ LDO off, LSE off, LSI on, RTC on	_	4.3	_	μΑ

4.4 EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the following table, based on the EMS levels and classes compliant with IEC 61000 series standard.

Table 8. EMS characteristics

Symbol	Parameter	Conditions	Level/Class	
V	Voltage applied to all device pins to	VDD = 3.3 V, TA = +25 °C	3B	
V _{ESD}	induce a functional disturbance	conforms to IEC 61000-4-2	36	
	Fast transient voltage burst applied to	VDD 22 V TA +25 °C		
V_{FTB}	induce a functional disturbance through	VDD = 3.3 V, TA = +25 °C conforms to IEC 61000-4-4	4A	
	100 pF on V _{DD} and V _{SS} pins	COMOTHS to IEC 61000-4-4		

EMI (Electromagnetic Interference) emission testing result is given in the following table, compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Table 9. EMI characteristics

Table of Emilianatoriones								
Symbol	Parameter	Conditions	Tested	Cond	Unit			
			frequency band	24M	48M			
	Peak level	VDD = 3.3 V, TA = +25 °C, compliant with IEC	0.1 to 2 MHz	<0	<0	dΒμV		
			2 to 30 MHz	-3.9	-2.8			
S _{EMI}			30 to 130 MHz	-7.2	-8			
		61967-2	130 MHz to 1GHz	-7	-7			

4.5 Power supply supervisor characteristics

Table 10 Power supply supervisor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR}	Power on reset threshold	PDR_S=0	2.32	2.40	2.48	V
V_{PDR}	Power down reset threshold		2.27	2.35	2.43	V
V _{HYST}	PDR hysteresis			0.05		V
T _{RSTTEMP}	Reset temporization		_	2		ms
V _{POR}	Power on reset threshold		2.32	2.40	2.48	V
V_{PDR}	Power down reset threshold	DDD C_1	1.72	1.80	1.88	V
V _{HYST}	PDR hysteresis	PDR_S=1	_	0.6		V
T _{RSTTEMP}	Reset temporization			2	_	ms

4.6 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 11. ESD characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ESD(HBM)}	Electrostatic discharge	T _A =25 °C;			5000	V
	voltage (human body model)	JESD22-A114		_		V
V _{ESD(CDM)}	Electrostatic discharge	T _A =25 °C;			500	V
	voltage (charge device model)	JESD22-C101			500	V

Table 12. Static latch-up characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	I-test	T 25 %C, 150DZ0		_	±100	mA
LU	V _{supply} over voltage	T _A =25 °C; JESD78			5.4	V

4.7 External clock characteristics

Table 13. High speed external clock (HSE) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE}	High Speed External oscillator	V _{DD} =3.3V	4	8	32	MHz
IHSE	(HSE) frequency	V _{DD} =3.3 V	4	0	32	IVII IZ
C _{HSE}	Recommended load capacitance			20	30	nE.
	on OSC_IN and OSC_OUT	_		20	30	pF
	Recommended external feedback					
R _{FHSE}	resistor between XTALIN and	_	-	200	_	ΚΩ
	XTALOUT					
D _{HSE}	HSE oscillator duty cycle	_	48	50	52	%
I _{DDHSE}	HSE oscillator operating current	V _{DD} =3.3V, T _A =25°C		1.4		μΑ
tsunse	HSE oscillator startup time	V _{DD} =3.3V, T _A =25°C		2		ms

Table 14. Low speed external clock (LSE) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE}	Low Speed External oscillator (LSE) frequency	V _{DD} =V _{BAT} =3.3V	ı	32.768	1000	KHz
C _{LSE}	Recommended load capacitance on OSC32_IN and OSC32_OUT		-		15	pF
D _{LSE}	LSE oscillator duty cycle	_	48	50	52	%
I _{DDLSE}	LSE oscillator operating current	V _{DD} =V _{BAT} =3.3V		1.4		μΑ
t _{SULSE}	LSE oscillator startup time	V _{DD} =V _{BAT} =3.3V	_	3	_	S

4.8 Internal clock characteristics

Table 15. High speed internal clock (HSI) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	High Speed Internal	V _{DD} =3.3V. T _A =-40°C ~+85°C		8		MHz
f _{HSI}	Oscillator (HSI) frequency	V _{DD} =3.3V, I _A =-40 C ~+63 C		0		IVIHZ
ACC _{HSI}	HSI oscillator Frequency	Factory-trimmed	-1		+1	%
	accuracy	V _{DD} =3.3V, T _A =25°C	-1	_		
D _{HSI}	HSI oscillator duty cycle	V _{DD} =3.3V, f _{HSI} =8MHz	48	50	52	%
1	HSI oscillator operating	V _{DD} =3.3V, f _{HSI} =8MHz		80	100	
I _{DDHSI}	current	V _{DD} =3.3 V, I _{HSI} =OIVII IZ	_ 80		100	μΑ
t _{SUHSI}	HSI oscillator startup time	V_{DD} =3.3V, f_{HSI} =8MHz	1	_	2	us

Table 16. Low speed internal clock (LSI) characteristics

Sy	ymbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Low Speed Internal	$V_{DD}=V_{BAT}=3.3V$,	30	40	60	KHz	
	ILSI	oscillator (LSI) frequency	T _A =-40°C ~ +85°C	30	40	60	KΠZ
	I _{DDLSI}	LSI oscillator operating	V _{DD} =V _{BAT} =3.3V. T _A =25°C		_	0	
'		current	VDD=VBAT=3.3V, 1A=25 C		'	2	μΑ
t	t _{suLSI}	LSI oscillator startup time	V _{DD} =V _{BAT} =3.3V, T _A =25°C	_	_	80	μs

4.9 PLL characteristics

Table 17. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN}	PLL input clock frequency		1	8	25	MHz
f _{PLL}	PLL output clock frequency		16	_	72	MHz
t _{LOCK}	PLL lock time		_		200	μs
Jitter _{PLL}	Cycle to cycle Jitter				300	ps

4.10 Memory characteristics

Table 18. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Number of guaranteed					
PEcyc	program /erase cycles	T _A =-40°C ~ +85°C	100	_	_	kcycles
	before failure (Endurance)					
t _{RET}	Data retention time	T _A =125°C	20		_	years
t _{PROG}	Word programming time	T _A =-40°C ~ +85°C	200		400	us
t _{ERASE}	Page erase time	T _A =-40°C ~ +85°C	60	100	450	ms
t _{MERASE}	Mass erase time	T _A =-40°C ~ +85°C	3.2	_	9.6	S

4.11 **GPIO** characteristics

Table 19. I/O port characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL	Standard IO Low level input voltage	V _{DD} =2.6V	-0.3		0.95	>
VIL	5V-tolerant IO Low level input voltage	V _{DD} =2.6V	-0.3	_	0.9	V
V	Standard IO High level input voltage	V _{DD} =2.6V	1.2	_	4.0	V
V _{IH}	5V-tolerant IO High level input voltage	V _{DD} =2.6V	1.5		5.5	٧
V _{OL}	Low level output voltage	V _{DD} =2.6V	_	_	0.2	V
V _{OH}	High level output voltage	V _{DD} =2.6V	2.3	_	_	V
R _{PU}	Internal pull-up resistor	V _{IN} =V _{SS}	30	40	50	kΩ
R _{PD}	Internal pull-down resistor	V _{IN} =V _{DD}	30	40	50	kΩ

4.12 ADC characteristics

Table 20. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Operating voltage		2.6	3.3	3.6	V
V _{ADCIN}	ADC input voltage range		0	_	V_{REF+}	V
f _{ADC}	ADC clock		0.6	_	14	MHz
fs	Sampling rate		_	_	1	MHz
f _{ADCCONV}	ADC conversion time	f _{ADC} =14MHz	1	_	18	μs
R _{ADC}	Input sampling switch				0.2	kΩ
NADC	resistance				0.2	K22
C_{ADC}	Input sampling capacitance	No pin/pad capacitance		32		pF
CADC	input sampling capacitance	included	_	32		рΓ
t _{SU}	Startup time			_	1	μs

4.13 SPI characteristics

Table 21. SPI characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK}	SCK clock frequency		_	_	18	MHz
t _{SCK(H)}	SCK clock high time		19	_	_	ns
t _{SCK(L)}	SCK clock low time		19	_	_	ns
SPI master	r mode					
$t_{V(MO)}$	Data output valid time		_	_	25	ns
t _{H(MO)}	Data output hold time		2		_	ns
t _{SU(MI)}	Data input setup time		5		_	ns
t _{H(MI)}	Data input hold time		5	_	_	ns
SPI slave r	mode					
t _{SU(NSS)}	NSS enable setup time	f _{PCLK} =54MHz	74		_	ns
t _{H(NSS)}	NSS enable hold time	f _{PCLK} =54MHz	37	_	_	ns
t _{A(SO)}	Data output access time	f _{PCLK} =54MHz	0	_	55	ns
t _{DIS(SO)}	Data output disable time		3	_	10	ns
$t_{V(SO)}$	Data output valid time			_	25	ns
t _{H(SO)}	Data output hold time		15	_	_	ns
t _{SU(SI)}	Data input setup time		5	_	_	ns
t _{H(SI)}	Data input hold time		4	_	_	ns

4.14 I2C characteristics

Table 22. I2C characteristics

Cumbal	Doromotor	Conditions	Standard mode		Fast mode		Unit
Symbol	Parameter		Min	Max	Min	Max	Unit
f _{SCL}	SCL clock frequency		0	100	0	400	KHz
t _{SCL(H)}	SCL clock high time		4.0	_	0.6	_	ns
t _{SCL(L)}	SCL clock low time		4.7	_	1.3	_	ns

5 Package information

5.1 TSSOP package outline dimensions

Figure 8. TSSOP package outline

Table 23. TSSOP20 package dimensions

Cumbal	Dimensions (mm)		Symbol	Dimensions (mm)			
Symbol	Min Typ Max	Symbol	Min	Тур	Max		
А	-	-	1.2	c1	0.09	-	0.16
A1	0.05	-	1.15	D	6.4	6.5	6.6
A2	0.80	1.00	1.05	E1	4.3	4.4	4.5
b	0.19	-	0.30	Е	6.40		
B1	0.19	0.22	0.25	е	0.65		
С	0.09	-	0.20	L	0.45	0.6	0.75

5.2 QFN package outline dimensions

Figure 9. QFN package outline

Table 24. QFN28 package dimensions

Symbol	Dimensions (mm)		Symbol	Dimensions (mm)			
Symbol	Min	Тур	Max	Symbol	Min	Тур	Max
А	0.8	0.85	0.9	D1	2.7	2.8	2.9
A1	0	0.035	0.05	E1	2.7	2.8	2.9
A2	-	0.75	0.80	L	0.25	0.35	0.45
А3	-	0.203	-	е		0.4	
D	-	4.0	-	b	0.15	0.20	0.25
E	-	4.0	-				

5.3 LQFP package outline dimensions

Figure 10. LQFP package outline

Table 25. LQFP package dimensions

C	LQFP48					
Symbol	Min	Тур	Max			
А	-	-	1.20			
A1	0.05	-	0.15			
A2	0.95	1.00	1.05			
D	-	9.00	-			
D1	-	7.00	-			
E		9.00	-			
E1	ı	7.00	-			
R1	0.08	-	-			
R2	0.08	-	0.20			
θ	0°	3.5°	7°			
θ1	0°	-	-			
θ2	11°	12°	13°			
θ3	11°	12°	13°			
С	0.09	-	0.20			
L	0.45	0.60	0.75			
L1	-	1.00	-			
S	0.20	-	-			
b	0.17	0.22	0.27			
е	-	0.50	-			
D2	-	5.50	-			
E2	-	5.50	-			
aaa	0.20					
bbb	0.20					
ccc	0.08					

0		LQFP64		
Symbol	Min	Тур	Max	
А	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
D	-	12.00	-	
D1	-	10.00	-	
Е	-	12.00	-	
E1	-	10.00	-	
R1	0.08	-	-	
R2	0.08	-	0.20	
θ	0°	3.5°	7°	
θ1	0°	-	-	
θ2	11°	12°	13°	
θ3	11°	12°	13°	
С	0.09	-	0.20	
L	0.45	0.60	0.75	
L1	-	1.00	-	
S	0.20	-	-	
b	0.17	0.20	0.27	
е	-	0.50	-	
D2	-	7.50	-	
E2	-	7.50	-	
aaa	0.20			
bbb	0.20			
ccc	0.08			

(Original dimensions are in millmeters)

6 Ordering Information

Table 26. Part ordering code for GD32F130xx devices

Ordering code	Flash (KB)	Package	Package type	Temperature operating range
GD32F130F4P6	16	TSSOP20	Green	Industrial -40°C to +85°C
GD32F130G4U6	16	QFN28	Green	Industrial -40°C to +85°C
GD32F130G6U6	32	QFN28	Green	Industrial -40°C to +85°C
GD32F130G8U6	64	QFN28	Green	Industrial -40°C to +85°C
GD32F130C4T6	16	LQFP48	Green	Industrial -40°C to +85°C
GD32F130C6T6	32	LQFP48	Green	Industrial -40°C to +85°C
GD32F130C8T6	64	LQFP48	Green	Industrial -40°C to +85°C
GD32F130R8T6	64	LQFP64	Green	Industrial -40°C to +85°C

7 Revision History

Table 27. Revision history

Revision No.	Description	Date
1.0	Initial Release	Mar. 8, 2014