Algorithmic Treatment of Algebraic Modular Forms Diamant Symposium Fall 2015

Sebastian Schönnenbeck November 27, 2015

A Classical Problem

 $V=\mathbb{Q}^n,\,q:V\to\mathbb{Q}$ a positive definite quadratic form. $L,L'\subset V$ lattices (i.e. \mathbb{Z} -submodules in V of rank n)

- $\bullet \ L, L' \ \textit{isometric}, L \cong L', \textit{iff} \ gL = L' \ \textit{for some} \ g \in O(q); \\ \text{class}(L) = \{M \mid M \cong L\}.$
- L, L' in the same genus, iff for all p prime there is $g_p \in O(\mathbb{Q}_p \otimes V, \mathbb{Q}_p \otimes q)$ with $g_p(\mathbb{Z}_p \otimes L) = \mathbb{Z}_p \otimes L'$.
- ullet L,L' isometric implies L,L' in the same genus **but** the converse is false.
- The genus of L decomposes into finitely many isometry classes; $genus(L) = class(L_1) \sqcup ... \sqcup class(L_r), r$ the *class number* of L.

Question: How do we find representatives for the isometry classes in a given genus?

Theorem (Eichler, Kneser)

Assume L even (i.e. $q(L)\subset 2\mathbb{Z}$) of rank greater or equal $3, \det(L)$ squarefree, and $p\nmid\det(L)$ prime. Then every class in the genus of L is represented by a lattice M such that

$$\mathbb{Z}_q \otimes L = \mathbb{Z}_q \otimes M \ \forall \ q \neq p.$$

Strong Approximation and the Kneser Method

Neighbours

L as before. $M,N\in\operatorname{genus}(L)$ are called p-neighbours, $M\stackrel{p}{-}N$ if

$$[M:M\cap N]=[N:M\cap N]=p.$$

Theorem (Kneser)

For $M \in \text{genus}(L)$ there is an $M' \in \text{class}(M)$ and a chain of lattices $L = L_0, L_1, ..., L_k = M'$ such that

$$L_0 \stackrel{p}{-} L_1 \stackrel{p}{-} L_2 \stackrel{p}{-} \dots \stackrel{p}{-} M'.$$

Neighbouring Graph

The p-neighbouring graph of $\operatorname{genus}(L)$ is the directed weighted graph with vertices the isometry classes in $\operatorname{genus}(L)$ and edges $\operatorname{class}(L_i) \to \operatorname{class}(L_j)$ weighted by the number of p-neighbours of L_i isometric to L_j .

Example

Dimension 16

There are two isometry classes in the set of even unimodular lattices of rank 16:

$$\operatorname{class}(E_8 \perp E_8) \sqcup \operatorname{class}(D_{16}^+).$$

The 2-neighbouring graph of this genus is:

- Note that 18225 + 14670 = 12870 + 20025, number of neighbours does not depend on the class.
- Note that $\frac{18225}{12870} = \frac{|\mathrm{Aut}(E_8 \perp E_8)|}{|\mathrm{Aut}(D_{16}^+)|}$.
- The adjacency matrix of the graph acts as a Hecke operator on the space of modular forms generated by the theta series of the two lattices (Eichler, Andrianov, Yoshida).

Algebraic Modular Forms

Notation: \mathbb{G} almost simple algebraic group defined over \mathbb{Q} , $\mathbb{G}(\mathbb{R})$ compact, V a f.d. \mathbb{Q} -rational representation of \mathbb{G} , \mathbb{A}_f the finite adeles of \mathbb{Q} .

Definition [Gross '99]

 $K \leq \mathbb{G}(\mathbb{A}_f)$ open and compact.

$$M(V,K) := \left\{ f: \mathbb{G}(\mathbb{A}_f) \to V \mid f(gxk) = gf(x) \text{ for all } g \in \mathbb{G}(\mathbb{Q}), x \in \mathbb{G}(\mathbb{A}_f), k \in K \right\},$$

the space of algebraic modular forms of level K and weight V.

- $|gKg^{-1} \cap \mathbb{G}(\mathbb{Q})| < \infty$ for all $g \in \mathbb{G}(\mathbb{A}_f)$.
- $|\mathbb{G}(\mathbb{Q})\backslash\mathbb{G}(\mathbb{A}_f)/K| < \infty.$
- Let $\mathbb{G}(\mathbb{A}_f) = \bigsqcup_{i=1}^r \mathbb{G}(\mathbb{Q}) \gamma_i K$ and $\Gamma_i := \gamma_i K \gamma_i^{-1} \cap \mathbb{G}(\mathbb{Q})$ then

$$M(V,K) \cong_{\mathbb{Q}} \bigoplus_{i=1}^r V^{\Gamma_i}.$$

The Hecke Algebra

Definition

 $K \leq \mathbb{G}(\mathbb{A}_f)$ open and compact.

 $H_K := \{f: \mathbb{G}(\mathbb{A}_f) \to \mathbb{Q} \mid f \text{ compactly supported and } K\text{-bi-invariant}\}$

with multiplication by convolution. The *Hecke algebra* of \mathbb{G} with respect to K.

Remark

- H_K has the natural basis $\mathbb{1}_{K\gamma K},\ K\gamma K\in \mathbb{G}(\mathbb{A}_f)/\!\!/K$.
- Let $\gamma_1,\gamma_2\in\mathbb{G}(\mathbb{A}_f)$ with $K\gamma_iK=\bigsqcup_j\gamma_{i,j}K.$ The multiplication in H_K is

$$\mathbbm{1}_{K\gamma_1K}\mathbbm{1}_{K\gamma_2K} = \sum_{j,j'} \mathbbm{1}_{\gamma_{1,j}\gamma_{2,j'}K}.$$

• If $K = \prod_p K_p$ is a product of local factors, the Hecke algebra is the restricted tensor product

$$H_K = \otimes_p' H_{K_p}.$$

The Action of the Hecke Algebra

Definition

For $\gamma \in \mathbb{G}(\mathbb{A}_f)$ we define the linear operator $T(\gamma) \in \operatorname{End}_{\mathbb{Q}}(M(V,K))$ via

$$(T(\gamma)f)(x) = \sum_{i} f(x\gamma_i)$$

where $f \in M(V, K)$ and $K\gamma K = \bigsqcup_i \gamma_i K$.

- The additive extension of $\mathbb{1}_{K\gamma K}\mapsto T(\gamma)$ defines an algebra homomorphism $H_K\to \operatorname{End}_{\mathbb{Q}}(M(V,K)).$
- M(V, K) is a semi-simple H_K -module.

Integral Forms

What would be "interesting" / computationally well-suited open compact subgroups to consider?

Definition

Let $\mathbb{G} \hookrightarrow \mathrm{GL}_n$ be a faithful representation. An *integral form* \mathbb{G}_L of \mathbb{G} is given by a lattice $L \leq_{\mathbb{Z}} \mathbb{Q}^n$ via

$$\mathbb{G}_L(\mathbb{O}_k) = \mathrm{Stab}_{\mathbb{G}(k)}(\mathbb{O}_k \otimes L), \ \mathbb{G}_L(\mathbb{Z}_p) = \mathrm{Stab}_{\mathbb{G}(\mathbb{Q}_p)}(\mathbb{Z}_p \otimes L)$$

for every finite extension k of \mathbb{Q} and every prime p.

- $\mathbb{G}(\mathbb{A}_f)$ acts on the integral forms via $(g_p)_p L = L'$ where $\mathbb{Z}_p \otimes L' = g_p(\mathbb{Z}_p \otimes L)$ for all p.
- $\operatorname{Stab}_{\mathbb{G}(\mathbb{A}_f)}(L) = \prod_p \mathbb{G}_L(\mathbb{Z}_p)$ is an open compact subgroup of $\mathbb{G}(\mathbb{A}_f)$.
- $\mathbb{G}_L(\mathbb{Z}_p)$ is a hyperspecial maximal compact subgroup of $\mathbb{G}(\mathbb{Q}_p)$ for all but finitely many p.
- Call L, L' (\mathbb{G} -)isomorphic if gL = L' for some $g \in \mathbb{G}(\mathbb{Q})$. Say L, L' in the same genus if $\gamma L = L'$ for some $\gamma \in \mathbb{G}(\mathbb{A}_f)$.

Some (very informal) remarks on buildings

Associated to $\mathbb{G}(\mathbb{Q}_p)$ there is a so-called *building* \mathbb{B} , a simplicial complex with a $\mathbb{G}(\mathbb{Q}_p)$ -action and the following properties:

- $\mathcal B$ is a union of apartments A which are in bijection with the maximal $\mathbb Q_p$ -split tori of $\mathbb G$.
- Each apartment is an affine Euclidean space.
- Each apartment A corresponding to T comes with an extended affine Weyl group, $\tilde{W} \cong X^{\vee}(T) \rtimes W_0$, where W_0 is the usual (finite) Weyl group (w.r.t. T).
- The extended affine Weyl group is an extension of an infinite Coxeter group by an abelian group.
- Every compact subgroup fixes a point in B.
- The stabilizers of vertices are always maximal compact subgroups.
- There is a Bruhat decomposition $\mathbb{G}(\mathbb{Q}_p) = \bigsqcup_{w \in \tilde{W}} IwI$ where I is the pointwise stabilizer of a maximal simplex (chamber).
- \sim New concept of p-neighbourship (of certain lattices/ integral forms/ open compact subgroups) via closeness in the affine building.

Example: The affine building of type $ilde{G}_2$

The group G_2 can be realized as the automorphism group of the (8-dim.) octonion algebra $\mathbb O$ (Dickson-double of the Hamilton quaternions).

The affine building for $G_2(\mathbb{Q}_p)$ can be realized as follows:

- There are 3 labels for the vertices, $\mathcal{V} = \mathcal{V}_1 \sqcup \mathcal{V}_2 \sqcup \mathcal{V}_3$, corresponding to 3 $(G_2(\mathbb{Q}_p)$ -)classes of orders in \mathbb{O}_p .
- Hyperspecial vertices correspond to maximal orders.
- Adjacency is given by inclusion $(V_1 \supset V_2 \supset V_3)$.
- An apartment in this building looks as follows:

Algorithmic Questions

Aim: Compute the action of $T(\gamma)$ on M(V,K) (where K comes from an integral form \mathbb{G}_L).

Approach

- Decompose $\mathbb{G}(\mathbb{A}_f) = \bigsqcup_i \mathbb{G}(\mathbb{Q})\mu_i K$, compute $\Gamma_i = \mu_i K \mu_i^{-1} \cap \mathbb{G}(\mathbb{Q})$ and V^{Γ_i} .
- Decompose $K\gamma K = \bigsqcup_{i} \gamma_{j} K$.
- For i, j write $\gamma_j \mu_i$ as $g' \mu_{i'} k$ for some i'.

Aspects to consider

What do we have to know in order to make this work?

- Decide for two integral forms if they are \mathbb{G} -isomorphic / compute the stabilizer of a lattice in $\mathbb{G}(\mathbb{Q})$.
- Be able to compute a system of representatives for genus(\mathbb{G}_L).
- Decompose double cosets into left cosets.

Stabilizers and Isometries

 $\mathbb{G} \hookrightarrow \mathrm{GL}_n$, $L, L' < \mathbb{Q}^n$ lattices.

- $\mathbb{G}(\mathbb{Q}) \subset \mathrm{GL}_n(\mathbb{Q})$ compact $\leadsto \mathbb{G}(\mathbb{Q})$ fixes a definite inner product on \mathbb{Q}^n .
- $\mathbb{G}(\mathbb{Q}) \subset O_n(\mathbb{Q}) \leadsto \mathrm{Stab}_{\mathbb{G}(\mathbb{Q})}(L) \subset \mathrm{Stab}_{O_n(\mathbb{Q})}(L)$.
- $\operatorname{Stab}_{O_n(\mathbb{Q})}(L)$ computable (Plesken-Souvignier-algorithm) and finite \leadsto Finding $\operatorname{Stab}_{\mathbb{G}(\mathbb{Q})}(L)$ reduced to a finite problem.
- Same idea for isometry testing: Find O_n -isometry $g:L\to L'\leadsto {\sf All}$ isometries are given by $g\operatorname{Stab}_{O_n(\mathbb{Q})}(L)\leadsto {\sf Finite}$ problem.

Example: G_2

The group G_2 can be realized as the automorphism group of the (8-dim.) octonion algebra $\mathbb O$ (Dickson-double of the Hamilton quaternions). G_2 fixes the inner product $(x,y)\mapsto x\bar y.$ $L<\mathbb O$ lattice then $\mathrm{Stab}_{G_2}(L)$ is the stabilizer of the multiplication (which can be thought of as an element of $V^*\otimes V^*\otimes V$) in $\mathrm{Stab}_{O_8}(L)$. E.g. L a maximal order then

$$|\operatorname{Stab}_{O_8}(L)| = 696729600, |\operatorname{Stab}_{G_2}(L)| = 12096.$$

Genus Enumeration

Question: How do you compute representatives of genus(L) starting at L?

Almost Strong Approximation

If $\mathbb G$ is simply connected and of certain type then there is a finite set Ω of primes such that for all $p \notin \Omega$ the lattice L_p is hyperspecial and we can find representatives of $\operatorname{genus}(L)$ as p-neighbours of L.

Question: How do you know when to stop?

Mass Formula

Let $genus(L) = class(L_1) \sqcup ... \sqcup class(L_r)$ and set

$$\operatorname{mass}(\operatorname{genus}(L)) := \sum_{i=1}^{r} \frac{1}{|\operatorname{Stab}_{\mathbb{G}}(L_i)|}.$$

Then we can compute $\operatorname{mass}(\operatorname{genus}(L))$ from information only on the local structure of L.

Examples

Some Genera for G_2

Genus	Class Number	Mass Decomposition
max. order	1	$\frac{1}{12096}$
type 2 at 3 , max. else	2	$\frac{1}{192} + \frac{1}{432}$
type 2 at 5 , max. else	3	$\frac{1}{192} + \frac{1}{48} + \frac{1}{36}$
type 3 at 7 , max. else	2	$\frac{1}{216} + \frac{1}{42}$

Some Genera for Sp_4

Compact forms of Sp can be found as unitary groups over (definite) quaternion algebras D, integral forms via O_D -lattices (where O_D is a maximal order).

Genus Representative	Class Number	Mass Decomposition
$ \begin{aligned} \mathfrak{O}_D^2, D &= \left(\frac{-1, -1}{\mathbb{Q}}\right) \\ \mathfrak{O}_D^2, D &= \left(\frac{-2, -5}{\mathbb{Q}}\right) \\ \mathfrak{O}_D^2, D &= \left(\frac{-2, -13}{\mathbb{Q}}\right) \end{aligned} $	1	$\frac{1}{1152}$
\mathcal{O}_D^2 , $D = \left(\frac{-2, -5}{\mathbb{Q}}\right)$	2	$\frac{1}{240} + \frac{1}{72}$
\mathcal{O}_D^2 , $D = \left(\frac{-2, -13}{\mathbb{Q}}\right)$	4	$\frac{1}{48} + \frac{1}{12} + \frac{2}{8}$
$\mathcal{O}_D^2, D = \left\langle \frac{-1, -23}{\mathbb{Q}} \right\rangle$	16	$\frac{5}{4} + \frac{3}{8} + \frac{3}{12} + \frac{2}{24} + \frac{1}{32} + \frac{1}{48} + \frac{1}{72}$

Coset Decomposition

Aim: Decompose a double coset $K\gamma K$ into left cosets.

First observation: Since $H_K = \otimes_p' H_{K_p}$ we only need to do this locally.

For simplicity assume: \mathbb{G} split at p, K_p "nice".

Structure of *p*-adic Groups (Bruhat-Tits)

 $I \leq K_p \leq \mathbb{G}(\mathbb{Q}_p)$ lwahori subgroup, $\tilde{W} (= X^{\vee} \rtimes W_0)$ the extended affine Weyl group.

- $\bullet \ \mathbb{G}(\mathbb{Q}_p) = \bigsqcup_{w \in \tilde{W}} IwI, \, K_p = \bigsqcup_{w \in W_{K_p}} IwI \text{ for some } W_{K_p} \leq \tilde{W}.$
- H_I is an algebra with basis T_w , $w \in W$ and multiplication $T_w T_{w'} = T_{ww'}$ if l(ww') = l(w) + l(w'), $T_s^2 = (p-1)T_s + p$ for the simple reflections s.
- ullet $e:=[K_p:I]^{-1}\sum_{w\in W_{K_p}}T_w\in H_I$ is an idempotent and $H_{K_p}\cong eH_Ie$.

Coset Decomposition

- Bruhat-Tits ('65): Explicit formula to decompose $IwI,\ w\in \tilde{W}$ into I-left cosets.
- Lansky-Pollack (2001): Explicit formula to decompose $K_pwK_p,\ w\in \tilde{W}$ into K_p -left cosets.

Example

G_2

 \mathbb{G} of type G_2 (simply connected and adjoint) with extended Dynkin diagram (at split prime p):

$$\tilde{G}_2:$$
 $\overset{0}{\bigcirc}$ $\overset{1}{\bigcirc}$ $\overset{2}{\bigcirc}$

If K open compact, with K_p hyperspecial maximal compact ($W_{K_p} = \langle s_1, s_2 \rangle$), then the local Hecke algebra H_{K_p} is a polynomial ring in two variables generated by the characteristic functions on the double cosets

$$T_1 := K_p s_0 K_p$$
 and $T_2 := K_p s_0 s_1 s_2 s_1 s_0 K_p$.

 T_1 decomposes into $q(q^5+q^4+q^3+q^2+q+1)$ left cosets.

 T_2 decomposes into $q^5(q^5+q^4+q^3+q^2+q+1)$ left cosets.

Sp_4

In the analogous situation for Sp_4 (simply connected but not adjoint) there are also two generators which decompose into $q(q^3+q^2+q+1)$ and $q^3(q^3+q^2+q+1)$ left cosets, respectively.

Venkov's Method

Aim: Give an alternative method to compute neighbouring operators.

Idea: Use a generalization of the following method attributed to Venkov: L,L^\prime two lattices then

$$\operatorname{mass}(\operatorname{genus}(L))\frac{[\operatorname{Stab}_{\mathbb{G}}(L):\operatorname{Stab}_{\mathbb{G}}(L,L')]}{[\operatorname{Stab}_{\mathbb{G}}(L'):\operatorname{Stab}_{\mathbb{G}}(L,L')]}=\operatorname{mass}(\operatorname{genus}(L')).$$

Now: p prime such that \mathbb{G} is split at p and L_p is hyperspecial, genus $(L) = [L_1] \sqcup ... \sqcup [L_p]$.

Neighbouring Operator

Set $N_p \in \mathbb{Z}^{r \times r}$ the matrix with

$$(N_p)_{i,j} = \{ L' \mid L'p \text{-neighbour of } L_i, L' \cong L_j \}. \tag{1}$$

The neighbouring operator of genus(L) at p (or the Hecke operator $T(s_0)$ where s_0 is the fundamental reflection at p not fixing L) or just the adjacency matrix of the neighbouring graph.

Fix a lattice $M \le L$ such that L, L' are p-neighbours iff $L \cap L' \in \text{genus}(M)$ (very often possible).

The Venkov Transfer

Observation

We can write $genus(M) = [M_1] \sqcup ... \sqcup [M_s]$ where each M_i is a sublattice of L_j for some j.

The Transfer Matrix

Set T_M^L the matrix given by

$$(T_M^L)_{i,j} = \{ M' \mid M' \le L_i, M' \cong M_j \}$$

and define T_L^M the other way around.

- There are often far fewer $M' \in \operatorname{genus}(M), M' \leq L$ than there are p-neighbours of L.
- $\bullet (T_M^L)_{i,j} \cdot |\operatorname{Stab}_{M_i}| = (T_L^M)_{j,i} \cdot |\operatorname{Stab}_{L_i}|.$

The Neighbouring Operator

Theorem

 $T_L^M T_M^L = a \cdot I_r + N_p$ where a is the number of lattices in the genus of M contained in L.

Generalization

We can generalize this method to include other operators and modular forms of arbitrary weight:

Let K_1, K_2 be two open compact subgroups and let $K_2 = \bigsqcup k_i(K_1 \cap K_2)$. Then we get an operator

$$T_2^1: M(V, K_1) \to M(V, K_2), \ f \mapsto f' \ \text{where} \ f'(x) = \sum_i f(xk_i).$$

This is well-defined and generalizes the ${\cal T}_{\cal M}^{\cal L}$ from above.

Some Remarks

Properties of the operators T_2^1

- T_M^L is the matrix of T_2^1 where K_1 is the stabilizer of L, K_2 is the stabilizer of M and V is the trivial representation.
- T_2^1 and T_1^2 are adjoint to each other with respect to certain scalar products. In particular we can compute T_1^2 if we know T_2^1 (and some other easily obtained information).
- $T_1^2T_2^1:M(V,K_1)\to M(V,K_1)$ acts as an element of the Hecke algebra (w.r.t. K_1).
- Under certain conditions we have explicit knowledge of the cosets appearing in $T_1^2T_2^1$ (e.g. if K_1 and K_2 differ only at one (split) prime and $\mathbb G$ is simply connected).
- The local Hecke algebra for simply connected groups of type C_n at hyperspecial primes is generated by n operators of the form $T_1^2T_2^1$.
- In general these operators do not generate the whole Hecke algebra.