Example 5.4: Torsion of a rectangular shaft (p. 342)

Find stresses developed in a $4 \text{ cm} \times 8 \text{ cm}$ rectangular shaft when it is subjected to a torque of 500 N-m. The shaft is 1 m long and G = 76.9 GPa. A quarter of the domain needs to be modeled because of symmetry.

The governing differential equation for the problem is

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + 2 G \theta = 0$$

where G is shear modulus and θ is angle of twist per unit length. The boundary condition is $\phi = 0$ on the boundary. As a result of essential boundary condition $\phi = 0$ at nodes $\{3, 6, 9, 8, 7\}$. There are no nonzero natural boundary conditions.

Since θ is unknown, we start by arbitrarily assuming $G\theta = 1$. After performing the analysis, we compute the total torque T_a . This torque corresponds to the assumed value of $G\theta$. Since the relationship between the torque and the angle of twist is linear, the actual value of θ can then be computed using the given value of torque T as follows.

$$\theta = T/(G T_a)$$

The actual ϕ values are obtained by multiplying the computed values by the actual $G\theta$ value. The complete finite element solution, using N and m units, is as follows.

Global equations at start of the element assembly process

Equations for element 1

Element dimensions: a = 0.01; b = 0.005

Complete element equations

$$\begin{pmatrix} 0.833333 & 0.166667 & -0.416667 & -0.583333 \\ 0.166667 & 0.833333 & -0.583333 & -0.416667 \\ -0.416667 & -0.583333 & 0.833333 & 0.166667 \\ -0.583333 & -0.416667 & 0.166667 & 0.833333 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_5 \\ \phi_4 \end{pmatrix} = \begin{pmatrix} 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{pmatrix}$$

The element contributes to {1, 2, 5, 4} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 2

Element dimensions: a = 0.01; b = 0.005

Complete element equations

$$\begin{pmatrix} 0.833333 & 0.166667 & -0.416667 & -0.583333 \\ 0.166667 & 0.833333 & -0.583333 & -0.416667 \\ -0.416667 & -0.583333 & 0.833333 & 0.166667 \\ -0.583333 & -0.416667 & 0.166667 & 0.833333 \end{pmatrix} \begin{pmatrix} \phi_2 \\ \phi_3 \\ \phi_6 \\ \phi_5 \end{pmatrix} = \begin{pmatrix} 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{pmatrix}$$

The element contributes to {2, 3, 6, 5} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 3

Element dimensions: a = 0.01; b = 0.005

Complete element equations

$$\begin{pmatrix} 0.833333 & 0.166667 & -0.416667 & -0.583333 \\ 0.166667 & 0.833333 & -0.583333 & -0.416667 \\ -0.416667 & -0.583333 & 0.833333 & 0.166667 \\ -0.583333 & -0.416667 & 0.166667 & 0.833333 \end{pmatrix} \begin{pmatrix} \phi_4 \\ \phi_5 \\ \phi_8 \\ \phi_7 \end{pmatrix} = \begin{pmatrix} 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{pmatrix}$$

The element contributes to {4, 5, 8, 7} global degrees of freedom.

Adding element equations into appropriate locations we have

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \phi_4 \\ \phi_5 \\ \phi_6 \\ \phi_7 \\ \phi_8 \\ \phi_9 \end{pmatrix} = \begin{pmatrix} 0.0001 \\ 0.0002 \\ 0.0001 \\ 0.0002 \\ 0.0003 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0 \end{pmatrix}$$

Equations for element 4

Element dimensions: a = 0.01; b = 0.005

Complete element equations

$$\begin{pmatrix} 0.833333 & 0.166667 & -0.416667 & -0.583333 \\ 0.166667 & 0.833333 & -0.583333 & -0.416667 \\ -0.416667 & -0.583333 & 0.833333 & 0.166667 \\ -0.583333 & -0.416667 & 0.166667 & 0.833333 \end{pmatrix} \begin{pmatrix} \phi_5 \\ \phi_6 \\ \phi_9 \\ \phi_8 \end{pmatrix} = \begin{pmatrix} 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{pmatrix}$$

The element contributes to {5, 6, 9, 8} global degrees of freedom.

Adding element equations into appropriate locations we have

0.833333	0.166667	0	-0.583333	-0.416667	0	0	0	0
0.166667	1.66667	0.166667	-0.416667	-1.16667	-0.416667	0	0	0
0	0.166667	0.833333	0	-0.416667	-0.583333	0	0	0
-0.583333	-0.416667	0	1.66667	0.333333	0	-0.583333	-0.416667	0
-0.416667	-1.16667	-0.416667	0.333333	3.33333	0.333333	-0.416667	-1.16667	-0.416667
0	-0.416667	-0.583333	0	0.333333	1.66667	0	-0.416667	-0.583333
0	0	0	-0.583333	-0.416667	0	0.833333	0.166667	0
0	0	0	-0.416667	-1.16667	-0.416667	0.166667	1.66667	0.166667
0	0	0	0	-0.416667	-0.583333	0	0.166667	0.833333

Essential boundary conditions

Node	dof	Value
3	ϕ_3	0
6	ϕ_6	0
7	ϕ_7	0
8	ϕ_8	0
9	ϕ_0	0

Remove {3, 6, 7, 8, 9} rows and columns.

After adjusting for essential boundary conditions we have

$$\begin{pmatrix} 0.833333 & 0.166667 & -0.583333 & -0.416667 \\ 0.166667 & 1.66667 & -0.416667 & -1.16667 \\ -0.583333 & -0.416667 & 1.66667 & 0.333333 \\ -0.416667 & -1.16667 & 0.333333 & 3.33333 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_4 \\ \phi_5 \end{pmatrix} = \begin{pmatrix} 0.0001 \\ 0.0002 \\ 0.0004 \end{pmatrix}$$

Solving the final system of global equations we get

$$\{\phi_1=0.000380919,\ \phi_2=0.000331898,\ \phi_4=0.000285245,\ \phi_5=0.000255255\}$$

Complete table of nodal values

φ

- 1 0.000380919
- 2 0.000331898
- 3 0
- 4 0.000285245
- 5 0.000255255
- 6
- 7 0
- 8 0
- 9 0

Solution for element 1

Coordinates of element center

$$x_c = 0.01;$$
 $y_c = 0.005$

Element dimensions: a = 0.01;

b = 0.005

Interpolation functions in local element coordinates

$$\begin{aligned} \textbf{\textit{N}}^T &= \{5000.\,t\,s - 25.\,s - 50.\,t + 0.25,\\ -5000.\,t\,s + 25.\,s - 50.\,t + 0.25,\, 5000.\,t\,s + 25.\,s + 50.\,t + 0.25,\, -5000.\,t\,s - 25.\,s + 50.\,t + 0.25\} \end{aligned}$$

Shift for global coordinates: s = x - 0.01;

t = y - 0.005

Interpolation functions in global coordinates

$$\textbf{\textit{N}}^T = \{5000. \ y \ x - 50. \ x - 100. \ y + 1., \ 50. \ x - 5000. \ x \ y, \ 5000. \ x \ y, \ 100. \ y - 5000. \ x \ y\}$$

Nodal values, $\mathbf{d}^{T} = \{0.000380919, 0.000331898, 0.000255255, 0.000285245\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = 0.0951558 \,\mathbf{y} \,\mathbf{x} - 0.0024511 \,\mathbf{x} - 0.00956742 \,\mathbf{y} + 0.000380919$$

$$\partial \phi / \partial x = 0.0951558 \, y - 0.0024511; \qquad \qquad \partial \phi / \partial y = 0.0951558 \, x - 0.00956742$$

Solution for element 2

Coordinates of element center

$$x_c = 0.03;$$
 $y_c = 0.005$

Element dimensions: a = 0.01;

b = 0.005

Interpolation functions in local element coordinates

$$N^{T} = \{5000. \text{ t s} - 25. \text{ s} - 50. \text{ t} + 0.25, \\ -5000. \text{ t s} + 25. \text{ s} - 50. \text{ t} + 0.25, \\ 5000. \text{ t s} + 25. \text{ s} - 50. \text{ t} + 0.25, \\ 5000. \text{ t s} + 25. \text{ s} - 50. \text{ t} + 0.25, \\ 5000. \text{ t s} - 25. \text{ s} + 50. \text{ t} + 0.25 \}$$

Shift for global coordinates: s = x - 0.03;

t = y - 0.005

Interpolation functions in global coordinates

$$N^{T} = \{5000. y x - 50. x - 200. y + 2., -5000. y x + 50. x + 100. y - 1., 5000. x y - 100. y, 200. y - 5000. x y\}$$

Nodal values, $\boldsymbol{d}^{\mathrm{T}} = \{0.000331898, 0, 0, 0.000255255\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = 0.383215 \, \mathbf{y} \, \mathbf{x} - 0.0165949 \, \mathbf{x} - 0.0153286 \, \mathbf{y} + 0.000663795$$

$$\partial \phi / \partial \mathbf{x} = 0.383215 \,\mathrm{y} - 0.0165949;$$

$$\partial \phi / \partial y = 0.383215 \, \text{x} - 0.0153286$$

Solution for element 3

Coordinates of element center

$$x_c = 0.01;$$
 $y_c = 0.015$

Element dimensions: a = 0.01;

b = 0.005

Interpolation functions in local element coordinates

$$\begin{aligned} \textbf{N}^{T} &= \{5000.\,t\,s - 25.\,s - 50.\,t + 0.25,\\ -5000.\,t\,s + 25.\,s - 50.\,t + 0.25,\,5000.\,t\,s + 25.\,s + 50.\,t + 0.25,\,-5000.\,t\,s - 25.\,s + 50.\,t + 0.25\} \end{aligned}$$

Shift for global coordinates: s = x - 0.01;

t = y - 0.015

Interpolation functions in global coordinates

$$N^{\text{T}} = \{5000. \text{ y x} - 100. \text{ x} - 100. \text{ y} + 2., 100. \text{ x} - 5000. \text{ x} \text{ y}, 5000. \text{ x} \text{ y} - 50. \text{ x}, -5000. \text{ y} \text{ x} + 50. \text{ x} + 100. \text{ y} - 1.\}$$

Nodal values, $\mathbf{d}^{T} = \{0.000285245, 0.000255255, 0, 0\}$

$$\phi(x, y) = \textbf{\textit{N}}^T \textbf{\textit{d}} = 0.149954 \, y \, x - 0.00299907 \, x - 0.0285245 \, y + 0.000570491$$

$$\partial \phi / \partial x = 0.149954 \text{ y} - 0.00299907; \qquad \qquad \partial \phi / \partial y = 0.149954 \text{ x} - 0.0285245$$

Solution for element 4

Coordinates of element center

$$x_c = 0.03;$$
 $y_c = 0.015$

Element dimensions: a = 0.01;

b = 0.005

Interpolation functions in local element coordinates

$$\begin{split} \textbf{\textit{N}}^T &= \{5000.\,t\,s - 25.\,s - 50.\,t + 0.25,\\ -5000.\,t\,s + 25.\,s - 50.\,t + 0.25,\,5000.\,t\,s + 25.\,s + 50.\,t + 0.25,\,-5000.\,t\,s - 25.\,s + 50.\,t + 0.25\} \end{split}$$

Shift for global coordinates:
$$s = x - 0.03$$
; $t = y - 0.015$

Interpolation functions in global coordinates

$$\begin{aligned} \textbf{\textit{N}}^T &= \{5000.\,y\,x - 100.\,x - 200.\,y + 4., \\ &- 5000.\,y\,x + 100.\,x + 100.\,y - 2., \, 5000.\,y\,x - 50.\,x - 100.\,y + 1., \, -5000.\,y\,x + 50.\,x + 200.\,y - 2. \} \end{aligned}$$

Nodal values, $\mathbf{d}^{T} = \{0.000255255, 0, 0, 0\}$

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = 1.27627 \, \mathbf{y} \, \mathbf{x} - 0.0255255 \, \mathbf{x} - 0.0510509 \, \mathbf{y} + 0.00102102$$

$$\partial \phi / \partial x = 1.27627 \text{ y} - 0.0255255;$$
 $\partial \phi / \partial y = 1.27627 \text{ x} - 0.0510509$

Solution summary

Nodal solution

	x-coord	y-coord	ϕ
1	0.	0.	0.000380919
2	0.02	0.	0.000331898
3	0.04	0.	0
4	0.	0.01	0.000285245
5	0.02	0.01	0.000255255
6	0.04	0.01	0
7	0.	0.02	0
8	0.02	0.02	0
9	0.04	0.02	0

Solution at element centroids

	x-coord	y-coord	ϕ	$\partial \phi / \partial \mathbf{x}$	$\partial \phi/\partial \mathbf{y}$
1	0.01	0.005	0.000313329	-0.00197532	-0.00861586
2	0.03	0.005	0.000146788	-0.0146788	-0.00383215
3	0.01	0.015	0.000135125	-0.000749769	-0.027025
4	0.03	0.015	0.0000638136	-0.00638136	-0.0127627

	ϕ_a	$\int\!\int\!\phi_a\;\mathrm{d}\mathrm{A}$
1	0.0951558yx - 0.0024511x - 0.00956742y + 0.000380919	$6.26658\!\times\!10^{-8}$
2	0.383215yx - 0.0165949x - 0.0153286y + 0.000663795	$2.93576\!\times\!10^{-8}$
3	0.149954yx - 0.00299907x - 0.0285245y + 0.000570491	2.7025×10^{-8}
4	1.27627 y x - 0.0255255 x - 0.0510509 y + 0.00102102	1.27627×10^{-8}

The total torque is given by

$$T = 2 \iint_A \phi \, \mathrm{d} A$$

Summing $\int \int \! \phi \, dA$ contributions from all elements and multiplying by 2 gives the total torque. Since we are modeling a $1/4^{th}$ of the shape, the torque for the entire section is

$$T_a = 4 \times 2 \times \sum (\int \int \phi_a \, dA) = 1.05449 \times 10^{-6} \, \text{N} \cdot \text{m}$$

Since the actual torque is 500 N-m, the actual value of the angle of twist is

$$G\theta = 500/T_a = 4.74163 \times 10^8;$$
 $\theta = 0.00616597 \text{ rad/m}$

The ϕ values are simply scaled by this value of $G\theta$ and thus the solution corresponding to a torque of 500 N-m is as follows.

$$\phi = (500/T_a)\phi_a = 4.74163 \times 10^8 \,\phi_a$$

	$\phi (\times 10^6)$	$\tau_{yz} = -\partial \phi / \partial x \text{ (MPa)}$	$\tau_{xz} = \partial \phi / \partial y \text{ (MPa)}$
1	45.1194yx - 1.16222x - 4.53652y + 0.180618	1.16222 - 45.1194 y	45.1194 x - 4.53652
2	181.706yx - 7.86868x - 7.26826y + 0.314747	7.86868 - 181.706 y	181.706 x - 7.26826
3	71.1025yx - 1.42205x - 13.5253y + 0.270506	1.42205 - 71.1025 y	71.1025 x - 13.5253
4	$605.162 \ y \ x - 12.1032 \ x - 24.2065 \ y + 0.484129$	12.1032 - 605.162 y	605.162 x - 24.2065

Stresses at element centroids

	$ au_{yz}$ (MPa)	τ_{xz} (MPa)
1	0.936622	-4.08532
2	6.96015	-1.81706
3	0.355513	-12.8143
4	3.02581	-6.05162

The maximum shear stress occurs at midpoint of the long side (node 7) which from element 3 is

Stresses at node 7:
$$\tau_{yz}$$
 = 2.22045 × 10⁻¹⁶ MPa; τ_{xz} = -13.5253 MPa; τ_{max} = 13.5253 MPa

An exact solution for the problem is available as follows (Roark's Formulas for Stress and Strain, Seventh Edition, p. 401, McGraw-Hill 2002).

$$\tau_{\max} = \frac{_{3}\mathit{T}}{_{8\mathit{a}}\mathit{b}^{2}} \left(1 + 0.6095\,\mathit{b}\,/\,\mathit{a} + 0.8865\,(\mathit{b}\,/\,\mathit{a})^{2} - 1.8023\,(\mathit{b}\,/\,\mathit{a})^{3} + 0.91\,(\mathit{b}\,/\,\mathit{a})^{4} \right)$$

where 2a is the longer dimension of the section and 2b is the shorter dimension.

Exact solution: $\tau_{\text{max}} = 15.9136 \text{ MPa}$