Problemas de integración. Aplicaciones de la integral.

1. Hallar el área limitada por la curva $y^2 = \frac{1-x}{1+x}$ y su asíntota.

Solución

2. Hallar el área limitada por la curva y = x(x-1)(x-2) y el eje x.

3. Hallar el área limitada por la cura $f(x) = x \cdot e^{-x}$ y $g(x) = x^2 \cdot e^{-x}$.

- 4. Hallar los volúmenes engendrados al girar alrededor del eje x por los recintos de ordenadas de las functions siguientes: a) $f(x) = x^2$, x = -1, x = 2. b) $f(x) = \sin x$, x = 0, $x = \pi$.

5. Hallar la longitud del arco de curva $y^2=x^3$ desde el origen al punto (4,8).

7.	Un segmento parabólico recto, de base igual a $2a$ y volumen del cuerpo de revolución que se engendra	de altura h ($lim\acute{o}n$ de	gira alrededor de su base Cavalieri).	. Determinar el