

Data Sheet

Bring the full power of your Agilent logic analyzer to your project with high quality probing solutions

- · Wide range of solutions to meet your measurement needs
- · Soft Touch Connectorless probing
- · High-density, high-performance probing solutions
- · General-purpose probing

Table of Contents

Reliable Connections Ensure Accuracy	3
Which Logic Analyzer?	3
Probe Selection Guide for All Agilent Logic Analyzers	4
Selecting the Optimum Probing Strategy	7
Probing Solutions for 40-pin Logic Analyzers	9
General-Purpose Probing	9
Designing for Logic Analysis Probing	11
Soft Touch Connectorless Probing	12
Mictor and Samtec Probing	23
Custom Probing	31
Probing Solutions for 90-pin Logic Analyzers	36
General-Purpose Probing	36
Soft Touch Connectorless Probing	42
Mictor and Samtec Probing	59
High-Speed Timing Probing	62
General-Purpose Probing Flying Lead Probing Accessories	63
40-pin and 90-pin Logic Analyzers Probe Cables	64
Related Information	65
Agilent Advantage Services	Back cover
Contact Agilent	Back cover

Reliable Connections Ensure Accuracy

Impedance

High input impedance ensures minimum intrusion on your circuit. Although many probes might be acceptable for lower frequencies, capacitive loading becomes significant at higher frequencies. The Agilent probing products perform over a wide frequency spectrum.

Ruggedness

Probes with quality mechanical design provide solid electrical connections. Intermittent open circuits would only add one more variable to your debugging equation. Agilent probes are mechanically designed to relieve strain and ensure rugged, reliable connection.

Immunity to Noise

Electromagnetic noise can corrupt data captured by the logic analyzer. Agilent probing solutions are designed for a high immunity to transient noise.

Performance

Agilent logic analyzers have front-end circuitry that supports the state and timing specifications of the analyzer. This circuitry, together with the Agilent probing solutions described in this document, will accurately capture the target signals at the specified clock rates.

Other Considerations

Physical connection compatibility between various Agilent probes may allow you to mix and match a variety of probes and accessories. However, a probe accessory designed for slower clock speeds will not deliver high-speed target performance simply because it is used with a higher speed analyzer module. Also, the serial connection of multiple probe leads and/or accessories will degrade signal integrity.

Signal Frequency Content Drives Probing Solutions

Faster clock rates demand tighter timing tolerances, such as setup and hold specifications. Systems with faster clock rates usually have shorter rise and fall times. Signals with shorter transition times have more high frequency content and are more susceptible to high frequency analog problems such as cross talk, reflections, ground bounce, noise and emissions. Susceptibility of a system to analog problems relates to the transition times of the signals, not the clock rate. A system with slow transition times cannot have high clock rates. However, it is possible for a system with slower clock rates to have signals with very fast transition times.

General-purpose probing solutions provide the analog bandwidth required to run each logic analyzer module at its maximum clock rate. The high input impedance of these probes, especially at high frequencies, presents a minimal load to most systems. Systems that are operating with little margin should be designed with consideration for both the system components and the input impedance of the probing solution being used during debug. Input impedance specifications or equivalent load diagrams can be found for each of the probing solutions described in this document.

Which Logic Analyzer?

Agilent logic analyzers have two methods of connection to the probes. One uses a 3M-style connector with two rows of 20 pins on 0.1-inch centers, as illustrated in Figure 1.1. Probes for these analyzers are identified in this document as "for analyzers with 40-pin pod connectors."

The other style uses a 90-pin, high-density connector, as illustrated in Figure 1.2. Probes for these analyzers are identified in this document as "for analyzers with 90-pin pod connectors."

Currently available Agilent logic analyze	rs in these two groups are as follows:
40-pin pod connector (pages 9 – 35)	90-pin pod connector (pages 36 – 62)
16911A	16950B, 16951B
16910A	16962A and U4154A

Figure 1.1. 40-pin pod connector

Figure 1.2. 90-pin pod connector

Probe Selection Guide for All Agilent Logic Analyzers

Compatible with Agilent models 16910A/11A, 16800 Series, 16750/51/52A/B, 1674X Series, 1671x Series, 165xx Series modules, 1690 Series, 1680 Series, 1670 Series, 1660 Series, 1650 Series, and E9340 logic analyzers

		onnectorless p h five retentio		Samtec probe	Mictor probe	General purpose flying lead set
Model number	E5396A	E5404A	E5394A	E5385A	E5346A	E5383A
Application		n to many channels : a header designed		Quick connection to many signals in a small footprint	Quick connection to many signals in a small footprint	Flexible connection to individual signals
Number of channels	17 16 data, 1 clock	34 32 data, 2 clock	34 32 data, 2 clock	34 32 data, 2 clock	34 32 data, 2 clock	17 16 data, 1 clock
Supported signal types	All probes: single	e-ended clock, sing	le-ended data			
Maximum data rate	> 2.5 Gb/s	> 2.5 Gb/s	> 2.5 Gb/s	1.5 Gb/s	Equivalent to the logic analyzer data rate the probe is attached to	Equivalent to the logic analyzer data rate the probe is attached to
Minimum signal amplitude	500 mV p-p	500 mV p-p	500 mV p-p	500 mV p-p	500 mV p-p ¹	600 mV p-p
Connection to target system	Requires half-size soft touch footprint designed into the target	Requires Pro Series soft touch footprint designed into the target	Requires original soft touch footprint designed into the target	Requires 100-pin Samtec connector designed into the target system	Requires 38-pin Mictor connector designed into the target system ²	Compatible with a wide assortment of accessories to connect to individual leads
Input capacitance	< 0.7 pF	< 0.7 pF	< 0.7 pF	1.5 pF	3.0 pF	1.5 pF
Additional supplies	Additional five retention modules	Additional five retention modules	Additional five retention modules	See Table 1 page 29 for pc board connectors and shrouds	See Table 1 page 29 for pc board connectors and shrouds	See Figure 2.3 page 9 for additional leads and grabbers
Orderable as	Order kit E5396-68702	Order kit E5403A	Order kit E5387-68701			

^{1.} Model E5339A low voltage Mictor probe = 250 mV p-p

^{2.} Model E5351A Unterminated Mictor probe requires isolation networks to be provided on the target system. See page 27 for details.

Probe Selection Guide for All Agilent Logic Analyzers

Compatible with Agilent logic analyzers U4154A, 16962A, 16951B, 16950A/B, 16760A, 16756A, 16755A, 16754A, and 16753A

	Soft touch connectorless probes All soft touch probes are supplied with 5 retention modules					
		E5406A				
Model number	E5398A	E5402A *	E5390A	E5405A	E5387A	
Application	Quick connection to r	nany channels in a sma	III footprint without a he	eader designed into the	target	
Number of channels	17 16 data, 1 clock	34 32 data, 2 clocks	34 32 data, 2 clocks	17 16 data, 1 clock	17 16 data, 1 clock	
Supported signal types	Differential or single-	ended clock single-ende	ed data	Differential or single- data	ended clock and or	
Maximum data rate	> 2.5 Gb/s	> 2.5 Gb/s	> 2.5 Gb/s	> 2.5 Gb/s	> 2.5 Gb/s	
Minimum signal amplitude	250 mV _{p-p}	250 mV _{p-p}	250 mV _{p-p}	V_{max} - V_{min} 200 mV	V_{max} - V_{min} 200 mV	
Connection to target system	Requires half-size soft touch footprint designed into the target	Requires Pro Series soft touch footprint designed into the target	Requires original soft touch footprint designed into the target	Requires Pro Series soft touch footprint designed into the target system	Requires original soft touch footprint designed into the target system	
Input capacitance	< 0.7 pF	< 0.7 pF	< 0.7 pF	< 0.7 pF	< 0.7 pF	
Kit of 5 additional retention modules	E5396-68702	E5403A	E5387-68701	E5403A	E5387-68701	

^{*} The E5402A Soft Touch Pro probe is a low profile right angle version of the E5406A above

Probe Selection Guide for All Agilent Logic Analyzers

Compatible with Agilent logic analyzers U4154A, 16962A, 16951B, 16950A/B, 16760A, 16756A, 16755A, 16754A, and 16753A

	Samtec probes		Mictor probes	General purpose	flying lead sets
Model number	E5378A	E5379A	E5380A	E5382A	E5381A
Application	Quick connection to r	nany channels in a sma	II footprint	Flexible connection to	many signals
Number of channels	34 32 data, 2 clocks	17 16 data, 1 clock	34 32 data, 2 clocks	17 16 data, 1 clock	17 16 data, 1 clock
Supported signal types	Differential or single-ended clock single-ended data	Differential or single-ended clock and or data	Single-ended clock single-ended data	Differential or single-ended clock single-ended data	Differential or single-ended clock and or data
Maximum data rate	1.5 Gb/s	1.5 Gb/s	600 Mb/s	1.5 Gb/s	1.5 Gb/s
Minimum signal amplitude	250 mV _{p-p}	V _{max} - V _{min} 200 mV	300 mV _{p-p}	250 mV _{p-p}	V _{max} - V _{min} 200 mV
Connection to target system	Requires 100-pin Samtec connector designed into the target system	Requires 100-pin Samtec connector designed into the target system	Requires 38-pin Mictor connector designed into the target system	Compatible with a wide assortment of accessories to connect to individual leads	Compatible with a wide assortment of accessories to connect to individual leads
Input capacitance	1.5 pF	1.5 pF	3.0 pf	1.3 pF	0.9 pF
Additional supplies	See Table 8 page 60 for shrouds and pc board connectors			See Table 5 page 36	See Figure 5.4 page 39

Note: E5386A half-channel transition adapter provides transition between probes and 16760A logic analyzer cables. Use to reduce the number of probes and connectors required to run in half channel mode. Adapter maps to even channels to all pins of an E5387A, E5379A, E5387A, E5390A, E5405A, or E5406A.

Selecting the Optimum Probing Strategy

What is the best way to probe your signals, given their unique characteristics?

Available probin	ng options for all Agilent logic analyzers	
	Connectorless	Connector Samtec
	Agilent	
Connection to the target system	Requires appropriate pro series soft touch or original soft touch footprint designed into the target system. Retention module is used for alignment and mechanical retention only.	Requires 100-pin Samtec connector designed into the target system
Advantages	 Reduces cost and shortens the design cycle by eliminating a connector Eliminates the capacitive loading of a connector, which gives you the lowest-loading (less than 0.7 pF), highest-performance (> 2.5 Gbits/s rate) logic analyzer probing option available Pliable micro spring-pin design with four-point crown tip allows you to easily attach and get a reliable, repeatable contact even for contaminated or uneven board surfaces Flow through signal routing streamlines design flow and maintains differential pair spacing to ensure constant differential-mode impedance and virtually eliminate stubs Acquire high-speed single-ended or differential signals without impacting the performance of your circuit, while providing an accurate representation to the logic analyzer Provides ability to attach retention module to probe and browse multiple signals by pressing the probe against the target device Compatible with all board finishes, including lead free 	 High-performance connector solution (1.5 pF loading, 1.5 Gb/s data rate) Supports single-ended and differential signals 3 times the performance and half the loading of Mictor solution
Disadvantages	Requires up-front design of probe footprint on PCB	Added cost to include connector Requires up-front design of connector on PCB

Selecting the Optimum Probing Strategy

What is the best way to probe your signals, given their unique characteristics?

Available probin	Available probing options for all Agilent logic analyzers							
	Connector Mictor	Flying leads						
Connection to the target system	Requires 38-pin Mictor connector designed into the target system	Connects to individual, widely dispersed signals at IC pins, traces, pads, vias						
Advantages	 Reliable and cost-effective solution for lower data rates (600 Mb/s) Supports single-ended signaling 3.0 pF capacitive loading 	 High-performance accessories are based on award winning, InfiniiMax scope probes Compatible with a wide variety of accessories to connect to IC pins, traces, pads, vias Maintains a one-to-one signal-to-ground ratio Doesn't require up-front design effort 						
Disadvantages	 Added cost to include connector Combination of through-hole and surface-mount technology can make signal routing and board component loading difficult Requires up-front design of connector on PCB 	More time-consuming to connect						

General-Purpose Probing

E5383A 17-channel single-ended flying lead probe

Ideal when only a few lines may need to be probed or probe points are distributed across a target. The E5383A includes a set of 20 IC test clips and five ground leads.

Logic analysis general-purpose probes

General-purpose probing requires connecting probe leads to individual signal lines. This method is most convenient for a small to moderate number of signals, very flexible, and can be used in conjunction with other probing methods.

Note: Any probed signal line must be able to supply a minimum of 600 mV to the probe with the specified loading.

Figure 2.2. E5383A 17-channel probe lead set

Figure 2.1. Probe tip Isolation network and equivalent load

The standard probing system

The standard probing system consists of IC clips, probe leads, probe housing and probe cable. Because it is passive, the standard probing system is smaller, lighter, and much easier to use than active probing systems. This passive probing system is similar to a probing system used on a high frequency oscilloscope. It consists of an isolation network (as shown in Figure 2.1) at the probe tip and a shielded resistive transmission line. The advantages of this system are:

- High input impedance. See Figure 2.1.
- Signal ground at the probe tip for high-speed signals.
- Inexpensive, removable probe tip assemblies.

Probe leads and lead sets

Probe leads are configured into lead sets, which can probe 16 data channels with ground, one clock channel, and a common ground. A 17-channel probe lead set (E5383A) is shown in Figure 2.2, along with the replacement part numbers for individual components in Figure 2.3.

Each probe lead is a 12-inch, twistedpair cable connected to the probe cable at the probe housing (see Figure 2.3). The probe tip includes a signal lead, a connector for a ground lead, and the isolation network.

The signal and ground leads can be connected directly to the target system. This requires installing 0.63 mm (0.025 inch) square pins, or round pins with a diameter of between 0.66 mm (0.026 inch) and 0.84 mm (0.033 inch) directly on the board. An IC test clip can also be used. The same specifications apply for the pin dimensions of the test clip. (See Figure 2.6 for IC test clips available from commercial sources.)

Figure 2.3. E5383A 17-channel probe lead set replacement parts

General-Purpose Probing

IC clips

The surface-mount device IC clip with twin hooks (part number 5090-4833, containing 20 IC clips) is designed for fine surface-mounted component leads. The twin hook 0.5 mm IC clip (part number 10467-68701, containing four 0.5 mm IC clips), is very useful for 0.5 mm pitch components. See Figure 2.5.

Grounding

There are three methods of grounding the probe system. First, the entire probe lead set can be grounded through the common ground. This requires only one connection, but is not recommended because it will cause poor signal fidelity in systems with fast transition times. The recommended method is to individually ground each probe lead. This yields optimal signal fidelity and is required for signals with faster transition times (< 4 - 5 ns).

For moderate rise times (greater than 2 ns), it may be acceptable to ground every other (or every fourth) ground connection to the target.

Figure 2.4. Connecting IC clips and ground leads to probes

Figure 2.5. SMD IC clip and 0.5 mm IC clip

Figure 2.6. Typical IC test clips available from commercial test clip vendors

Designing for Logic Analysis Probing

Agilent recommends that targets with probing constraints have connectors designed into the prototype versions of the product for effective hardware and software debug. The following should be considered when designing with connectors:

- Select the appropriate connector technology for your target speed and target density.
- Carefully select all lines for routing to the connectors that may be needed for debug.
- Group the lines at each connector for your probing convenience. For example, Agilent may have written an inverse assembler for your device that has a preconfigured signal order. Before designing, refer to the documentation for this inverse assembler for essential signal lines and order.
- Keep the routing to connectors as short as possible to minimize target impact and provide accurate data.
- Examine the impact of probing isolation networks designed into the target versus the isolation network products offered by Agilent Technologies.

An isolation network must be located between the target and the logic analyzer. It can be located on the target board in through-hole or SMT parts; or it can be attached to the logic analyzer cable with the probe leads (the isolation network is molded into the end of the probe); or the Agilent 01650-63203 isolation adapter with self contained isolation networks can be used. Probe leads can be used with connectors but are not the most convenient method. Direct connection of the connectors with the analyzer cable (isolation network parts on the target) or with a probe or isolation adapter is the faster, more convenient method.

Soft Touch Connectorless Probing

High-density, high-performance probes

Agilent Pro Series soft touch connectorless logic analyzer probes

Agilent has developed connectorless logic analyzer probes based on soft touch probing technology. Connectorless logic analyzer probing removes the connector that is traditionally attached to the target board and replaces it with an array of probe pads. This reduces the probe load on the target by eliminating the loading associated with the physical body of the connector. Additionally, this streamlines the design flow by eliminating the need to assign a logic analyzer connector to the bill of material of your board, procuring those connectors and then having them loaded onto your board.

Agilent's soft touch connectorless probes use micro spring-pin technology to provide reliable contact which is not dependent on the planarity of

the PC board or the plating processes used to fabricate the board. No special cleaning processes are required when using Agilent's soft touch probes.

The new Agilent Technologies Pro Series soft touch connectorless probes offer a 30% smaller footprint than the original soft touch probes and are the basis for the industry standard connectorless probing footprint.

The probes use a retention module that ensures soft touch pin-to-PC board pad alignment and holds the probe in place while in use. The Pro Series soft touch uses a "top-side" mountable retention module. The retention module is mounted on the same side of the board as the probing footprint so there is no need to access the back-side of the board. Because there is no requirement for the retention module pins to extend beyond the back-side of the board, the retention module is compatible with virtually any board thickness.

E5404A Pro Series soft touch connectorless probe

The E5404A is a 34-channel single-ended Pro Series soft touch connectorless probe compatible with all Agilent logic analyzers that have a 40-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to.

Features

- · No connector on the target board
- Top-side mount retention module
- Industry-standard connectorless footprint
- 34 channels, single-ended clock and data
- Extremely low, < 0.7 pF, equivalent load capacitance
- Capable of data rates > 2.5 Gb/s (maximum rate dependent on analyzer used)
- 500 mV p-p minimum signal amplitude
- Robust and reliable soft touch technology

Unused clock inputs can be used as data inputs.

The E5404A (used with logic analyzers with a 40-pin cable connector) uses the same footprint, pinout, and retention module as the E5406A Pro Series soft touch connectorless probe (used with logic analyzers with a 90-pin cable connector).

A kit of five retention modules is shipped with each Pro Series soft touch probe. Additional kits can be ordered using Agilent part number E5403A.

Figure 3.1. "Top-side" mountable retention module

Soft Touch Connectorless Probing

E5394A soft touch connectorless probe

The E5394A is a 34-channel singleended soft touch connectorless probe compatible with all Agilent logic analyzers that have a 40-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:

- · 32 single-ended data inputs
- · two single-ended clock inputs
- < 0.7 pf input capacitance
- 500 mV p-p minimum signal amplitude

Unused clock inputs can be used as data inputs.

The E5394A (used with logic analyzers with a 40-pin pod connector) uses the same footprint, pinout and retention module as the E5390A single-ended soft touch connectorless probe (used with logic analyzers with a 90-pin pod connector).

A kit of five retention modules is shipped with each soft touch probe. Additional kits can be ordered using Agilent part number E5387-68701.

E5396A half-size soft touch connectorless probe

The E5396A is a small space saving probe compatible with all Agilent logic analyzers that have a 40-pin cable connector. It is a 17-channel, single-ended probe capable of capturing data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:

- · 16 single-ended data inputs
- · one single-ended clock input
- < 0.7 pf equivalent load capacitance
- 500 mV p-p minimum signal amplitude

The unused clock input can be used as a data input.

The E5396A (used with logic analyzers with a 40-pin cable connector) uses the same footprint, pinout, and retention module as the E5398A single-ended soft touch connectorless probe (used with logic analyzers with a 90-pin cable connector).

More information about soft touch connectorless probes is available on the web at www.agilent.com/find/softtouch.

Figure 3.2. Agilent E5394A soft touch probe connection

Soft Touch Connectorless Probing

Probe dimensions

The following figures show dimensions, footprint, and pinout information you will need to design your target system board for use with the Agilent Pro Series soft touch probes.

Figure 3.3. E5404A probe dimensions

Figure 3.4. Pro Series soft touch retention module dimensions

Probe and retention module dimensions

The following dimensions show the Pro Series soft touch probe attached to the retention module. The retention module is mounted on the PC board.

Figure 3.5. Pro Series soft touch side-by-side dimensions

Soft Touch Connectorless Probing

Top view E5394A

Top view E5396A

Figure 3.6. E5394A and E5396A soft touch probe dimensions

Soft Touch Connectorless Probing

Retention module dimensions

The soft touch probes are attached to the PC board using a retention module which ensures pin-to-pad alignment and holds the probe in place. A board thickness of up to 2.54 mm (0.100 inch) is recommended. Insert the retention module into the board, noting the keying pin, and solder the four alignment pins to the backside of the board.

34-channel retention module dimensions

17-channel retention module dimensions

Figure 3.7. Retention module dimensions

Probe and retention module dimensions

The following dimensions show the soft touch probe attached to the retention module. The retention module is mounted on the PC board.

34-channel probe and retention module dimensions

17-channel probe and retention module dimensions

Figure 3.8. Side-by-side dimensions

Soft Touch Connectorless Probing

Figure 3.9. Pro Series soft touch footprint dimensions (see drawing notes)

Drawing notes:

1 Maintain a solder mask web between pads when traces are routed between the pads on the same layer. The solder mask may not encroach onto the pads within the pad dimension shown.

VIA

Pad

- 2 VIAs not allowed on these pads. VIA edges may be tangent to pad edges as long as a solder mask web between VIAs and pads is maintained.
- 3 Surface finishes on pads should be HASL immersion silver, or gold over nickel.
- 4 This footprint is compatible with retention module Agilent part number E5405-68702.
- 5 This through hole is not used with the Agilent retention module.
- 6 Plated through hole should not be tied to ground plane for thermal relief.

Figure 3.10. Pad numbers for E5404/06A 34-channel single-ended probes

Probing Solutions for 40-pin Logic Analyzers Soft Touch Connectorless Probing

E5404/06A 34-channel						
single-ended pr		Logic analyzer				
Signal name	Pad #	#	Channel	Pod		
D0	A1	\rightarrow	0	Whichever pod		
D1	A2	\rightarrow	1	is connected		
Ground	A3			to "Odd" on the E5404/06A		
D4	Α4	\rightarrow	4	probe		
D5	A5	\rightarrow	5	_		
Ground	A6					
Clock 1+	Α7	\rightarrow	Clock			
GND/NC/Clock 1-	A8					
Ground	A9					
D10	A10	\rightarrow	10			
D11	A11	\rightarrow	11			
Ground	A12					
D14	A13	\rightarrow	14			
D15	A14	\rightarrow	15			
Ground	A15			Whichever pod		
D2	A16	\rightarrow	2	is connected to "Even" on		
D3	A17	\rightarrow	3	to Even on the E5404/06A		
Ground	A18			probe		
D6	A19	\rightarrow	6			
D7	A20	\rightarrow	7			
Ground	A21					
D8	A22	\rightarrow	8			
D9	A23	\rightarrow	9			
Ground	A24			_		
D12	A25	\rightarrow	12	_		
D13	A26	\rightarrow	13			
Ground	A27					

single-ended pr	obe	Logic ar	nalyzer	
Signal name	Pad a	#	Channel	Pod
Ground	B1			Whichever pod
D2	B2	\rightarrow	2	is connected
D3	В3	\rightarrow	3	to "Odd" on the E5404/06A
Ground	B4			probe
D6	B5	\rightarrow	6	
D7	B6	\rightarrow	7	_
Ground	В7			_
D8	B8	\rightarrow	8	_
D9	В9	\rightarrow	9	_
Ground	B10			_
D12	B11	\rightarrow	12	_
D13	B12	\rightarrow	13	_
Ground	B13			_
D0	B14	\rightarrow	0	Whichever pod
D1	B15	\rightarrow	1	is connected
Ground	B16			to "Even" on the E5404/06A
D4	B17	\rightarrow	4	probe
D5	B18	\rightarrow	5	_
Ground	B19			_
GND/NC/Clock 2–	B20			_
Clock 2+	B21	\rightarrow	Clock	_
Ground	B22			_
D10	B23	\rightarrow	10	_
D11	B24	\rightarrow	11	_
Ground	B25			_
D14	B26	\rightarrow	14	_
D15	B27	\rightarrow	15	_

Soft Touch Connectorless Probing

Probe footprint dimensions

Use these probe footprint dimensions for the PC board pads and holes for attaching the retention module.

Soft touch

NOTES:

- [1] MUST MAINTAIN A SOLDER MASK WEB BETWEEN PADS WHEN TRACES ARE ROUTED BETWEEN THE PADS ON THE SAME LAYER. SOLDERMASK MAY NOT ENCROACH ONTO THE PADS WITHIN THE PAD DIMENSION SHOWN.
- 2. VIA IN PAD NOT ALLOWED ON THESE PADS. VIA EDGES MAY BE TANGENT TO PAD EDGES AS LONG AS A SOLDER MASK WEB BETWEEN VIAS AND PADS IS MAINTAINED.
- PERMISSABLE SURFACE FINISHES ON PADS ARE HASL, IMMERSION SILVER. OR GOLD OVER NICKEL.
- FOOTPRINT IS COMPATIBLE WITH RETENTION MODULE. AGILENT PART ¤E5387-68702.
 - RETENTION MODULE DIMENSIONS ARE 34,04 mm × 7,01 mm × 4,98 mm TALL RELATIVE TO THE TOP SURFACE OF THE POB. RETENTION PINS EXTEND 4.32 mm BEYOND THE BOTTOM SURFACE OF THE RM THROUGH THE PCB.
 - . ASSUME NORMAL ARTWORK TOLERANCES FOR PAD SIZE DIMENSIONS

Half-size soft touch 22.05 m 17.98 mm Ø0,79 mm ±0,08PTH 4X 2.03 mm 12.00 mm Ø0.81 mm ±0.03NPTH 4 Ø 528 1.00 mm TYP 2,41 mm 00000000000 1.83 mm 2.54 1.27 mm 0000000000000 12 0.71 mm PAD HEIGHT 26X 12 0.58 mm PAD WIDTH 26X A #1,35 mm RETENTION HOLE PADS (BOTH SIDES) NOTES:

- MUST MAINTAIN A SOLDER MASK WEB BETWEEN PADS WHEN TRACES ARE ROUTED BETWEEN THE PADS ON THE SAME LAYER. SOLDERMASK MAY NOT ENCROACH ONTO THE PADS WITHIN THE PADD SWIFFINE LEADS WITHIN
- 2 YIA IN PAD NOT ALLOWED ON THESE PADS. YIA EDGES MAY BE TANGENT TO PAD EDGES AS LONG AS A SOLDER MASK WEB BETWEEN YIAS AND PADS IS MAINTAINED.
- PERMISSABLE SURFACE FINISHES ON PADS ARE HASL. IMMERSION SILVER. OR GOLD OVER NICKEL.
- 4. FOOTPRINT IS COMPATIBLE WITH RETENTION MODULE. AGILENT PART NUMBER E5396-68702.
- 5. RETENTION MODULE DIMENSIONS ARE 020.04 mm x 6.99 mm x 4.95 mm TALL RELATIVE TO THE TOP TOP SURFACE OF THE PCB. RETENTION PINS EXTEND 27.18 mm BEYOND THE BOTTOM SURFACE OF THE RM THROUGH THE PCB.

Figure 3.11. Footprint dimensions

Soft Touch Connectorless Probing

Pinout for the E5394A singleended soft touch probe

The following graphic and table show the E5394A single-ended soft touch probe pad numbers and logic analyzer pod inputs.

Figure 3.12. Pinout

E5394A single-ended probe			Logic analyzer		
Signal name	Pad a	#	Channel	Pod	
D1	A1	\rightarrow	1	Whichever pod	
D3	A2	\rightarrow	3	is connected to	
Ground	А3			Odd" on the E5394A probe	
D5	A4	\rightarrow	5		
D7	A5	\rightarrow	7	_	
Ground	A6			_	
D9	A7	\rightarrow	9		
D11	A8	\rightarrow	11	_	
Ground	A9				
D13	A10	\rightarrow	13		
D15	A11	\rightarrow	15		
Ground	A12				
NC	A13	\rightarrow	NC		
Ground	A14			Whichever pod	
D1	A15	\rightarrow	1	is connected to	
D3	A16	\rightarrow	3	E5394A probe	
Ground	A17				
D5	A18	\rightarrow	5		
D7	A19	\rightarrow	7		
Ground	A20				
D9	A21	\rightarrow	9		
D11	A22	\rightarrow	11		
Ground	A23			_	
D13	A24	\rightarrow	13	_	
D15	A25	\rightarrow	15	_	
Ground	A26				
NC	A27	\rightarrow	NC		

E5394A single-e	nded				
probe			Logic analyzer		
Signal name	Pad #	‡	Channel	Pod	
D0	B1	\rightarrow	0	Whichever pod	
D2	B2	\rightarrow	2	is connected to	
Ground	В3			Odd" on the E5394A probe	
D4	B4	\rightarrow	4	_ Lood in t probe	
D6	B5	\rightarrow	6	_	
Ground	B6			_	
D8	В7	\rightarrow	8	_	
D10	B8	\rightarrow	10	_	
Ground	В9			_	
D12	B10	\rightarrow	12	_	
D14	B11	\rightarrow	14	_	
Ground	B12			_	
Clock	B13	\rightarrow	Clock	_	
Ground	B14			Whichever pod	
D0	B15	\rightarrow	0	is connected to	
D2	B16	\rightarrow	2	E5394A probe	
Ground	B17			_ 2000 ii (proso	
D4	B18	\rightarrow	4	_	
D6	B19	\rightarrow	6	_	
Ground	B20			_	
D8	B21	\rightarrow	8	_	
D10	B22	\rightarrow	10	_	
Ground	B23			_	
D12	B24	\rightarrow	12	_	
D14	B25	\rightarrow	14	_	
Ground	B26			_	
Clock	B27	\rightarrow	Clock		

Soft Touch Connectorless Probing

Pinout for the E5396A 17-channel single-ended soft touch probe

The following graphic and table show the E5396A single-ended soft touch probe pad numbers and logic analyzer pod inputs.

Figure 3.13. Pinout

E5396A 17-ch single-ended		Logic an	nalyzer	
Signal name	Pad a	#	Channel	Pod
D1	A1	\rightarrow	1	Whichever pod
D3	A2	\rightarrow	3	is plugged into the E5396A
Ground	A3			_ probe
D5	A4	\rightarrow	5	
D7	A5	\rightarrow	7	
Ground	A6			
D9	A7	\rightarrow	9	
D11	A8	\rightarrow	11	
Ground	A9			_
D13	A10	\rightarrow	13	
D15	A11	\rightarrow	15	
Ground	A12			_
NC	A13	\rightarrow	n/a	_

nel			
single-ended probe			alyzer
Pad #	‡	Channel	Pod
B1	\rightarrow	0	Whichever pod
B2	\rightarrow	2	is plugged into
В3			the E5396A probe
B4	\rightarrow	4	_
B5	\rightarrow	6	
B6			
В7	\rightarrow	8	_
B8	\rightarrow	10	
B9			
B10	\rightarrow	12	_
B11	\rightarrow	14	
B12			
B13	\rightarrow	Clock	
	B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12	Pad # B1 → B2 → B3 B4 → B5 → B6 B7 → B8 → B9 B10 → B11 →	bbe Logic and plants Pad # Channel B1 \rightarrow 0 B2 \rightarrow 2 B3 \rightarrow 4 B5 \rightarrow 6 B6 \rightarrow 8 B7 \rightarrow 8 B8 \rightarrow 10 B9 \rightarrow 12 B10 \rightarrow 12 B11 \rightarrow 14 B12

Soft Touch Connectorless Probing

Equivalent probe loads

The following probe load models are based on in-circuit measurements made with an Agilent 8753E 6 GHz network analyzer and an Agilent 54750A TDR/TDT using a 50 Ω test fixture. The following schematic accurately models the probe load out to 6 GHz.

Figure 3.14. Simple (does not include capacitive coupling between channels or inductance of the spring pins)

Figure 3.15. Complex (includes capacitive coupling between channels and inductance of spring pins)

Mictor and Samtec Probing

High-Density, High-Performance

Agilent has developed high-density probing solutions based on the 100-pin Samtec and AMP Mictor 38-pin connectors. The Agilent probes and adapter cables, E5346A, E5339A, E5351A, and E5385A provide a connection strategy to route your important signals to the Agilent logic analyzer. Simply design the connectors onto the board for the critical signals

such as address, data, and status bits. The connectors consume a minimal amount of board space. Each connector provides 32 channels of logic analysis per connector and two clocks (unused clocks can be used as data). Connectors for use with the E5385A, E5346A, E5339A, and E5351A can be purchased directly from AMP, Samtec, or Agilent Technologies. See the "Related Information" at the end of this document.

Figure 3.16. E5385A Samtec 100-pin probe mechanical dimensions

Figure 3.17. E5346A, E5351A, E5339A Mictor probes mechanical dimensions

Mictor and Samtec Probing

Agilent Technologies E5346A, E5339A, and E5385A probes

The E5346A, E5339A, and E5385A probes include the required isolation networks for the logic analyzer right at the probe tip, close to the target. The E5346A and E5385A are designed to acquire signals with peak-to-peak amplitude as low as 500 mV. The E5339A is designed to acquire signals as small as 250 mV peak-to-peak. Figure 3.18 shows the equivalent load for the E5339A, and Figure 3.19 shows the equivalent load for the E5346A. Figure 3.20 shows the equivalent load for the E5385A.

To use the E5346A, E5339A, or E5385A at high clock speeds, the following design guidelines should be observed:

- Calculate the electrical length of the probe hookup stub.
- For PC board material with E_r=4.9, use a propagation delay of 160 ps/inch.
- Check that the propagation delay of the probe hookup stub is less than 20% of the bus signal rise time (T_r). If it is, the E5346A, E5339A, or E5385A can be used for connection.

For example, if E_r=4.9, a 2.5 inch probe hookup stub generates a propagation delay of 400 ps. If T_r is > 2 ns, the E5346A, E5339A, or E5385A is a viable probing choice.

The E5346A and E5339A use the AMP Mictor 38-pin connector. The E5385A uses a 100-pin connector manufactured by Samtec. Agilent recommends the E5394A or E5385A for new applications, due to the reduced input capacitive loading and improved isolation between adjacent channels.

Figure 3.18. E5339A Low Voltage Mictor probe input equivalent load

Figure 3.19. E5346A Mictor probe input equivalent load

Figure 3.20. E5385A Samtec probe input equivalent load

For additional information on designing connectors into a target system, refer to the following documents:

Agilent Technologies E5346A/E5351A Probe/Adapter Cable	Installation Note E5346-92014	http://literature.agilent.com/litweb/pdf/E5346-92014.pdf
Agilent Technologies E5339A Low Voltage Probe	Installation Note E5339-92002	http://literature.agilent.com/litweb/pdf/E5339-92002.pdf
Agilent Technologies E5385A Probe	Installation Note E5385-92001	http://literature.agilent.com/litweb/pdf/E5385-92001.pdf

Mictor and Samtec Probing

Figure 3.21. Agilent E5339A, E5346A, and E5351A connection and pinout

Figure 3.22. Agilent E5339A, E5346A, and E5385A design rules

Mictor and Samtec Probing

Figure 3.23. Agilent E5385A connection and pinout

E5385A 100-pin probe pin assignments

Signal	Pin ı	number	Signal
Ground	1	2	Ground
Do Not	3	4	Do Not
Connect			Connect
Ground	5	6	Ground
Odd D0	7	8	Even D0
Ground	9	10	Ground
Odd D1	11	12	Even D1
Ground	13	14	Ground
Odd D2	15	16	Even D2
Ground	17	18	Ground
Odd D3	19	20	Even D3
Ground	21	22	Ground
Odd D4	23	24	Even D4
Ground	25	26	Ground
Odd D5	27	28	Even D5
Ground	29	30	Ground
Odd D6	31	32	Even D6
Ground	33	34	Ground
Odd D7	35	36	Even D7
Ground	37	38	Ground
Odd D8	39	40	Even D8
Ground	41	42	Ground
Odd D9	43	44	Even D9
Ground	45	46	Ground
Odd D10	47	48	Even D10
Ground	49	50	Ground
Odd D11	51	52	Even D11
	53	54	
Ground			Ground From D12
Odd D12	55	56	Even D12
Ground	57	58	Ground
Odd D13	59	60	Even D13
Ground	61	62	Ground
Odd D14	63	64	Even D14
Ground	65	66	Ground
Odd D15	67	68	Even D15
Ground	69	70	Ground
NC	71	72	NC
Ground	73	74	Ground
NC	75	76	NC
Ground	77	78	Ground
Odd D16P/ Odd CLK	79	80	Even D16P/ Even CLK
Ground	81	82	Ground
NC	83	84	NC
Ground	85	86	Ground
NC	87	88	NC
Ground	89	90	Ground
NC	91	92	NC
Ground	93	94	Ground
Ground	95	96	Ground
+5V	97	98	+5V
+5V	99	100	+5V
	00	100	

Mictor and Samtec Probing

Agilent E5351A 38-pin adapter cable

If the calculated electrical length of the required routing stub prohibits the use of the Agilent E5339A, E5346A, or E5385A, the Agilent E5351A can be used with the required isolation networks installed on the target.

The E5351A does not have its own internal isolation networks. When using the E5351A, place the SIP isolation networks, surface mount isolation network 5062-7396, or equivalent discrete components very near the target component for mea-

surement. Ensure that the stub length between the target component and the isolation network is short. The stub propagation delay should be less than 20% of the bus signal rise time, as mentioned before. The transmission line from the on-board isolation network to the Mictor connector should be designed for an impedance in the range of 80 to 100 ohms (closer to 100 ohms is better). This length should not exceed 3 to 4 inches, and all signal line lengths should be equal. Signal line length variation should not cause propagation delay variation to exceed 20 ps between signal lines.

Notes on using discrete components

Discrete components can be used in the design of the RC network. Agilent recommends the circuit shown in Figure 3.25. To achieve the equivalent load shown in the figure, trace lengths should be minimized by locating the RC network very near the measured node. Actual load will be the stub length load added to the equivalent load in the figure.

Figure 3.24. Agilent E5351A design rules

Mictor and Samtec Probing

Options for on-board terminations for the E5351A

There are two options for isolating the E5351A on the target PC board:

- Use the surface mount isolation network, Agilent part number 5062-7396. Refer to Figure 3.26 for schematic and pinout.
- Use discrete components. Refer to Figure 3.25 for recommended components and equivalent load.

If you are operating at state speeds above 200 MHz, you should use discrete components for best results. Due to the added electrical length of the E5351A probe cable, the divider compensating capacitors in the SIP, and surface-mount isolation networks are not optimum for the E5351A, but they are usable up to 200 MHz clock rates.

Notes on using the 5062-7396 SMT part

Agilent currently recommends a two-step process in soldering the SMT part to the board. The first pass places solder paste on those pads with vias. Application of heat allows the via to fill with solder. (If only one solder step is used, the solder wicks away from the part into the via and a solid connection will not be made with the part.) The next pass places solder paste on all of the pads.

Includes on board RC network and logic analyzer

Figure 3.25. Suggested on-board isolation network and equivalent load when using discrete components to terminate the E5351A

- Note 1. The effective input capacitance for on-board isolation networks is purely a function of geometry 0.3 pF is about as low as can be achieved.
- Note 2. The equivalent load is the same when using the surface-mount isolation network, 5062-7396.

Logic analyzer pod pad dimension = 0.030" x 0.040"

Note 1. Resistances: R1 through R6: 250 Ω R7 through R12: 90.9 $k\Omega$

Note 2. Capacitance 8.2 pF

Figure 3.26. Recommended PC board pattern for 5062-7396 surface mount isolation network

As shown in Figure 3.26, the 5062-7396 SMT isolation network supports six logic analysis channels. The size of the part allows you to repeat the pattern in Figure 3.26 to accommodate multiple parts stacked end-to-end for the number of channels needed in your application. Three of these SMTs are required for each

probe cable. The process for using the ceramic hybrid isolation network is similar to the process for an LCC package. Due to the small part size, thermal expansion mismatch during solder reflow should not be a problem. Capacitance also remains stable with temperature changes.

Mictor and Samtec Probing

Support shrouds

A support shroud is recommended to provide additional strain relief between the probe and the connector, as shown in Figures 3.21 and 3.23. Two plated through-holes are required on the target board. The shroud is mounted directly to the target board using the through-holes. This places the shroud around the connector, providing solid mechanical strain relief. Connector kits are available; Table 1 shows the Agilent part numbers for shrouds and connector kits for various PC board thicknesses.

Table 1. Mating connectors, shrouds, and kits for Agilent E5339A, E5346A, E5351A, and E5385A probes

For probe model numbers	Description	Agilent part number
E5339A, E5346A, E5351A	Kit of five support shrouds and five 38-pin Mictor connectors for PC board thickness up to 1.57 mm (0.062")	E5346-68701
	Kit of five support shrouds and five 38-pin Mictor connectors for PC board thickness up to 3.175 mm (0.125")	E5346-68700
	One 38-pin Mictor connector (also available from AMP as part number 2-767004-2)	1252-7431
	One support shroud for PC board thickness up to 1.57 mm (0.062")	E5346-44701
	One support shroud for PC board thickness up to 3.175 mm (0.125")	E5346-44704
	One support shroud for PC board thickness up to 4.318 mm (0.700")	E5346-44703
E5385A	Kit of five support shrouds and five 100-pin Samtec connectors for PC board thickness up to 1.57 mm (0.062")	16760-68702
	Kit of five support shrouds and five 100-pin Samtec connectors for PC board thickness up to 3.05 mm (0.120")	16760-68703
	One 100-pin Samtec connector (also available from Samtec as part number ASP-65067-01)	1253-3620
	One support shroud for PC board thickness up to 1.57 mm (0.062")	16760-02302
	One support shroud for PC board thickness up to 3.05 mm (0.120")	16760-02303

Figure 3.27. Mechanical information for E5346-44701, E5346-44703, E5346-44704 support shrouds for 38-pin Mictor connectors

Mictor and Samtec Probing

Right-angle Mictor adapter

For systems with space constraints above the 38-pin connector, Agilent offers a right-angle adapter, as shown in Figure 4.1. With the E5346-63201 right-angle adapter inserted in the 38-pin connector, the adapter cable is connected parallel to the target board surface. When using the right-angle adapters, the 38-pin connectors must be placed end-to-end on the target board, as shown in Figure 4.2. Support shrouds cannot be used with the right-angle adapter.

1.00 in 25.40 mm

Figure 4.1. E5346-63201 right-angle 38-pin adapter

Figure 4.2. 38-pin connectors placed for use of right-angle adapter

Note. The right-angle adapter adds significant capacitance and inductance in series with the probe. It is not recommended for state speeds above 100 MHz or for signals with rise times < 4 to 5 ns.

Custom Probing

Low density, moderate performance

Solutions shown in the "High-Density, High-Performance" (page 23) section of this document can be used in place of the solutions described here. Agilent recommends standard 0.1 inch center connectors for normal density applications if the loading/speed is not a significant issue. Many of these items are available from 3M or Agilent (see Table 2). See the "Related Information" section at the end of this document for 3M address information.

Direct connection through isolation adapter

Isolation adapters (Agilent part number 01650-63203) that connect to the end of the probe cable are designed to perform two functions. The first is to reduce the number of pins required for the header on the target board from 40 pins to 20 pins. This process reduces the board area dedicated to the probing connection. The second function is to provide the proper RC networks in a very convenient package. Figure 4.3 illustrates how the isolation adapter physically connects to the target system and the equivalent load of the isolation adapter connected to an Agilent logic analyzer. Figures 4.4 and 4.5 show the pinout diagrams for the probe cable and the isolation adapter, respectively. There are two 20-pin connectors, along with their Agilent and 3M part numbers, listed in Table 2.

Note. The Agilent 01650-63203 saves space by using a common ground (see Figure 4.5). This will impact signal fidelity, especially faster transition times (< 4 to 5 ns).

Table 2. Twenty-pin connectors for fixed configuration probing. (Requires isolation adapter)

Agilent part number	3M part number	Connector description
1251-8106	2520-6002	20-pin, low-profile (straight)
1251-8473	2520-5002	20-pin, low-profile (right-angle)

Figure 4.3. Isolation adapter (01650-63203) and equivalent load

Custom Probing

Figure 4.4. Pinout for probe cable

Figure 4.5. Pinout for 100 k Ω isolation adapter (Agilent part number 01650-63203)

Note. +5 V is supplied from the logic analyzer to provide power for analysis probes and demo boards. **DO NOT connect** these pins to a +5 V supply in the target system!

Custom Probing

Direct connection through 40-pin connectors

The probe cable also can be plugged directly into the various 40-pin connectors shown in Table 3, but proper isolation networks must be installed directly onto the target system board (see Figure 4.6 for the 40-pin connector pinout).

Agilent offers a 12-pin SMT (Agilent part number 5062-7396), which provides six isolation networks, as shown in Figure 4.7. Three of these SMTs are required for each probe cable.

Discrete components can also be used for the proper isolation network. See Figure 4.9 for an equivalent load diagram for the isolation networks.

Note that the effective input capacitive lead of an isolation network using discrete components is a function of the layout geometry and the parasitic capacitance of the input series damping resistor.

Table 3. Forty-pin connectors for fixed configuration probing. (Requires isolation network installed on target board)

Agilent part number	3M part number	Connector description
1251-8158	2540-5002	40-Pin, low-profile (right-angle)
1251-8831	3432-6302	40-Pin, with long latches (straight)
1251-8931	3432-5302	40-Pin, with long latches (right-angle)

Table 4. Available isolation networks

Package type
SMT, 12-pin, provides 6 isolation networks (3 SMTs required for each probe cable)

Figure 4.6. Forty-pin connector pinout

Note. +5 V is supplied from the logic analyzer to provide power for analysis probes and demo boards. **DO NOT connect** these pins to a +5 V supply in the target system!

Custom Probing

Logic analyzer pod pad dimension = 0.030" x 0.040"

Note 1. Resistances: R1 through R6: 250 Ω R7 through R12: 90.9 $k\Omega$

Note 2. Capacitance 8.2 pF

Figure 4.7. Recommended PC board pattern for 5062-7396 surface mount isolation network

Figure 4.8. Connecting probe cable to 40-pin connector with isolation networks

Custom Probing

Notes on using discrete components

Discrete components can be used to design the isolation network. Agilent recommends the circuit shown in Figure 4.9. To achieve the equivalent load shown in the figure, trace lengths should be minimized by locating the RC network very near the measured node. Actual load will be the stub length load added to the equivalent load in the figure. Trace length from the suggested on-board RC network to the target connector must be 3 to 4 inches or less. This transmission line should be designed for an impedance in the range of 80 to 100 ohms (closer to 100 ohms is better).

Includes on board isolation network and logic analyzer

Figure 4.9. Equivalent load for on-target discrete components. Also applies to SMT (5062-7396) RC networks.

General-Purpose Probing

E5382A single-ended flying lead probe set

The E5382A is a 17-channel single-ended flying lead probe compatible with logic analyzers with a 90-pin pod connection. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The E5382A is useful for acquiring signals from dispersed locations or when a mass connection scheme is not available. The E5382A has the following:

- 16 single-ended data inputs
- One differential or single-ended clock input
- · Variety of supplied accessories

Unused clock inputs can be used as data inputs.

Table 5. Accessories

	Part number	Description
	E5382-82102	Probe pin kit, 2 resistive pins per kit
	E5382-82101	High-frequency probing kit, 2 resistive signal wires and 4 ground wires per kit
A soul	16517-82109	Grabber clip kit, 20 grabbers per kit
	16517-82105	Ground extender kit, 20 ground extenders per kit
	16517-82106	Right-angle ground lead kit, 20 ground leads per kit

Figure 5.1. E5382A flying lead set

General-Purpose Probing

Suggested configurations and characteristics

Table 6. E5382A suggested configurations and characteristics

Configuration	Description	Total lumped input C	Maximum recommended state speed
	130 Ω resistive signal pin (orange) and solder-down ground lead	1.3 pF	1.5 Gb/s
	5 cm resistive signal lead (can be soldered-down) and solder-down ground lead	1.6 pF	1.5 Gb/s
	Flying lead and ground extender	1.4 pF	1.5 Gb/s
	Grabber clip and right-angle 2.0 pf ground lead	2.0 pF	600 Mb/s

General-Purpose Probing

Available accessories

Ground connector

It is essential to ground every tip that is in use. For best performance at high speeds, every tip should be grounded individually to ground in the system under test.

Adapting to coaxial connectors

The Agilent E9638A probe tip to BNC adapter can be used to connect one of the flying lead probes of the E5382A to a BNC connector. To probe other coaxial connectors, use the E9638A adapter, a BNC termination, and an adapter to the other type of coaxial connector. Refer to Figure 5.3.

NOTE: Examples of convenient connection which may result in degraded performance

Figure 5.2. 5063-2174 BNC to probe tip adapter

Figure 5.3. Recommended configurations to probe RF coaxial connectors with the E5382A flying lead probes

General-Purpose Probing

E5381A differential flying-lead probe set

The E5381A is a 17-channel differential flying-lead probe compatible with logic analyzers with a 90-pin pod connection. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The E5381A is useful for acquiring signals from dispersed locations or when a mass connection scheme is not available. The E5381A has the following:

- 16 differential or single-ended data inputs
- One differential or single-ended clock input
- · Variety of supplied accessories

Unused clock inputs can be used as data inputs.

Figure 5.4. E5381A differential flying-lead probe set accessories

Replaceable parts and additional accessories

Description	Quantity	Agilent part number
82 Ω resistor trimming template	1	01131-94309
Accessory kit - coaxial tip resistors (82 Ω)	34	E5381-82101
Accessory kit - socket adapter	34	E5381-82102
Accessory kit - damped wire (160 Ω)	34	E5381-82103
Accessory kit - 3-pin header	34	E5381-82104
Cable - main	1	E5381-61601

Figure 5.5. E5381A differential flying-lead probe set

General-Purpose Probing

Suggested configurations and characteristics

Table 7. E5381A suggested configurations and characteristics

	omigarations and onarastoriotics	Total lumped	Maximum recommended
Configuration	Description	input C	state speed
	Coaxial tip Resistor (82 Ω blue) Solder attach to components, traces, pads, or VIAs.	0.9 pF	1.5 Gb/s
	3-pin header	1.0 pF	1.5 Gb/s
	Socket adapter	1.1 pF	1.5 Gb/s
	Damped wire Solder attach to components, traces, pads, or VIAs.	1.3 pF	1.5 Gb/s

General-Purpose Probing

Recommended probe configurations

For the best performance, use the following configurations. The configurations are listed in the recommended order.

Figure 5.6. Probing configurations that give the best signal fidelity

Soft Touch Connectorless Probing

Seven options are available for connecting Agilent logic analyzers with 90-pin pod connectors to a target system using mass connections.

Agilent Pro Series soft touch connectorless logic analyzer probes

Agilent has developed connectorless logic analyzer probes based on soft touch probing technology. Connectorless logic analyzer probing removes the connector that is traditionally attached to the target board and replaces it with an array of probe pads. This reduces the probe load on the target by eliminating the loading associated with the physical body of the connector. Additionally, this streamlines the design flow by eliminating the need to assign a logic analyzer connector to the bill of material of your board, procuring those connectors and then having them loaded onto your board.

Agilent's soft touch connectorless probes use micro spring-pin technology to provide reliable contact which is not dependent on the planarity of the PC board or the plating processes used to fabricate the board. No special cleaning processes are required when using Agilent's soft touch probes.

The new Agilent Pro Series soft touch connectorless probes offer a 30% smaller footprint than the original soft

touch probes and are the basis for the industry standard connectorless probing footprint.

The probes use a retention module that ensures soft touch pin-to-PC board pad alignment and holds the probe in place while in use. The Pro Series soft touch uses a "top-side" mountable retention module. The retention module is mounted on the same side of the board as the probing footprint so there is no need to access the back-side of the board. Because there is no requirement for the retention module pins to extend beyond the back-side of the board, the retention module is compatible with virtually any board thickness.

Figure 6.1. "Top-side" mountable retention module

Soft Touch Connectorless Probing

E5405A Differential Pro series soft touch connectorless probe

The E5405A is a 17-channel differential Pro Series soft touch connectorless probe compatible with all Agilent logic analyzers that have a 90-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to.

Features

- · No connector on the target board
- Top-side retention module
- Industry-standard connectorless footprint
- 17 channels, differential or singleended clock and data
- Extremely low, < 0.7 pF, equivalent load capacitance
- Capable of data rates > 2.5 Gb/s (maximum rate dependent on analyzer used)
- 200 mV Vmax–Vmin minimum signal amplitude
- Robust and reliable soft touch technology

Unused clock inputs can be used as data inputs.

The E5405A uses the same retention module as the E5404A and E5406A Pro Series soft touch connectorless probe.

A kit of five retention modules is shipped with each Pro Series soft touch probe. Additional kits can be ordered using Agilent part number E5403A.

E5406A/E5402A Pro Series soft touch connectorless probes

The E53406A/E5402A are 34-channel single-ended Pro Series soft touch connectorless probe compatible with all Agilent logic analyzers that have a 90-pin pod connector. The E5402A is a low profile right angle version of the E5406A probe.

Features

- · No connector on the target board
- · Top-side mount retention module
- Industry-standard connectorless footprint
- 34 channels, single-ended or differential clock and single-ended data
- Extremely low, < 0.7 pF, equivalent load capacitance
- Capable of data rates > 2.5 Gb/s (maximum rate dependent on analyzer used)
- 250 mV p-p minimum signal amplitude
- Robust and reliable soft touch technology

Unused clock inputs can be used as data inputs.

The E5406A (used with logic analyzers with a 90-pin cable connector) uses the same footprint, pinout, and retention module as the E5404A and E5402A Pro Series soft touch connectorless probes (used with logic analyzers with a 40-pin cable connector).

A kit of five retention modules is shipped with each Pro Series soft touch probe. Additional kits can be ordered using Agilent part number E5403A. The low profile E5402A probe uses retention module Agilent part number E5412A.

E5387A Differential soft touch connectorless probe

The E5387A is a 17-channel differential soft touch connectorless probe compatible with all Agilent logic analyzers that have a 90-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:

- 16 differential or single-ended data inputs
- One differential or single-ended clock input
- < 0.7 pf input capacitance
- * 200 mV $V_{max} V_{min}$ minimum signal amplitude

Unused clock inputs can be used as data inputs.

The E5387A uses the same retention module as the E5390A and E5394A soft touch probes.

A kit of five retention modules is shipped with each soft touch probe. Additional kits can be ordered using Agilent part number E5387-68701.

Soft Touch Connectorless Probing

E5390A single-ended soft touch connectorless probe

The E5390A is a 34-channel singleended soft touch connectorless probe compatible with all Agilent logic analyzers that have a 90-pin pod connector. It is capable of acquiring data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:

- · 32 single-ended data inputs
- Two differential or single-ended clock inputs
- < 0.7 pf input capacitance
- 250 mV p-p minimum signal amplitude

Unused clock inputs can be used as data inputs.

The E5390A (used with logic analyzers with a 90-pin pod connector) uses the same footprint, pinout and retention module as the E5394A single-ended soft touch connectorless probe (used with logic analyzers with a 40-pin pod connector).

A kit of five retention modules is shipped with each soft touch probe. Additional kits can be ordered using Agilent part number E5387-68701.

E5398A half-size soft touch connectorless probe

The E5398A is a small space saving probe compatible with all Agilent logic analyzers that have a 90-pin cable connector. It is a 17-channel, single-ended probe capable of capturing data at the maximum rates of the logic analyzer it is connected to. The probe has the following inputs:

- · 16 single-ended data inputs
- One differential or single-ended clock input
- < 0.7 pf equivalent load capacitance
- 250 mV p-p minimum signal amplitude

Unused clock inputs can be used as data inputs.

The E5398A (used with logic analyzers with a 90-pin cable connector) uses the same footprint, pinout, and retention module as the E5396A single-ended soft touch connectorless probe (used with logic analyzers with a 40-pin cable connector).

More information about soft touch connectorless probes is available on the web at www.agilent.com/find/softtouch

Figure 6.2. Soft touch probes

Soft Touch Connectorless Probing

Probe dimensions

The following figures show dimensions, footprint, and pinout information you will need to design your target system board for use with the Agilent soft touch probes.

Figure 6.3. E5405A probe dimensions

Figure 6.4. E5406A probe dimensions

Soft Touch Connectorless Probing

Figure 6.5. Pro Series soft touch retention module dimensions, part number E5403A

Pro Series soft touch retention module dimensions

The following dimensions show the soft touch probe attached to the retention module. The retention module is mounted on the PC board.

Figure 6.6. Pro Series soft touch side-by-side dimensions with retention module, part number E5403A

Soft Touch Connectorless Probing

Figure 6.7. E5402A probe dimensions

Figure 6.8. E5412A retention module dimensions

Figure 6.9. E5412A side-by-side dimensions

Soft Touch Connectorless Probing

Figure 6.10. Pro Series soft touch footprint dimensions (see drawing notes)

Drawing notes:

- 1 Maintain a solder mask web between pads when traces are routed between the pads on the same layer. The solder mask may not encroach onto the pads within the pad dimension shown.
- 2 VIAs not allowed on these pads. VIA edges may be tangent to pad edges as long as a solder mask web between VIAs and pads is maintained.

- 3 Surface finishes on pads should be HASL immersion silver, or gold over nickel.
- 4 This footprint is compatible with retention module Agilent part number E5405-68702.
- 5 This through hole is not used with the Agilent retention module.
- 6 Plated through hole should not be tied to ground plane for thermal relief.

Figure 6.11. Pad numbers for E5404/06A 34-channel single-ended probes

Probing Solutions for 90-pin Logic Analyzers Soft Touch Connectorless Probing

E5404/06A 34-channel						
single-ended pr		Logic an	alyzer			
Signal name	Pad #	#	Channel	Pod		
D0	A1	\rightarrow	0	Whichever pod		
D1	A2	\rightarrow	1	is connected		
Ground	A3			to "Odd" on the E5404/06A		
D4	Α4	\rightarrow	4	probe		
D5	A5	\rightarrow	5	_		
Ground	A6					
Clock 1+	Α7	\rightarrow	Clock			
GND/NC/Clock 1-	A8					
Ground	A9					
D10	A10	\rightarrow	10			
D11	A11	\rightarrow	11			
Ground	A12					
D14	A13	\rightarrow	14			
D15	A14	\rightarrow	15			
Ground	A15			Whichever pod		
D2	A16	\rightarrow	2	is connected to "Even" on		
D3	A17	\rightarrow	3	to Even on the E5404/06A		
Ground	A18			probe		
D6	A19	\rightarrow	6			
D7	A20	\rightarrow	7			
Ground	A21					
D8	A22	\rightarrow	8			
D9	A23	\rightarrow	9			
Ground	A24			_		
D12	A25	\rightarrow	12	_		
D13	A26	\rightarrow	13			
Ground	A27					

E5404/06A 34-0		el		
single-ended probe			Logic ar	nalyzer
Signal name	Pad a	#	Channel	Pod
Ground	B1			Whichever pod
D2	B2	\rightarrow	2	is connected
D3	В3	\rightarrow	3	to "Odd" on the E5404/06A
Ground	B4			probe
D6	B5	\rightarrow	6	
D7	B6	\rightarrow	7	_
Ground	В7			_
D8	B8	\rightarrow	8	_
D9	B9	\rightarrow	9	_
Ground	B10			_
D12	B11	\rightarrow	12	_
D13	B12	\rightarrow	13	_
Ground	B13			_
D0	B14	\rightarrow	0	Whichever pod
D1	B15	\rightarrow	1	is connected
Ground	B16			to "Even" on the E5404/06A
D4	B17	\rightarrow	4	probe
D5	B18	\rightarrow	5	_
Ground	B19			_
GND/NC/Clock 2-	B20			_
Clock 2+	B21	\rightarrow	Clock	_
Ground	B22			_
D10	B23	\rightarrow	10	
D11	B24	\rightarrow	11	_
Ground	B25			_
D14	B26	\rightarrow	14	_
D15	B27	\rightarrow	15	_

Probing Solutions for 90-pin Logic Analyzers Soft Touch Connectorless Probing

GND A15 O O B15 CLK D8+ A16 O O B16 GND D8- A17 O O B17 D9- GND A18 O O B18 G9+ D10+ A19 O O B20 D11- GND A21 O O B21 D11+ D12+ A22 O O B22 GND D12- A23 O O B23 D13- GND A24 O O B24 E13+ D14+ A25 O O B26 D15-	D8+ D8- GND D10+ D10- GND D12+ D12- GND D14+ D14-	A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26	000000000000000000000000000000000000000	B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26	G9+ GND D11-
--	---	---	---	---	--------------------

Figure 6.12. Pad numbers for E5405A 17-bit differential probe

Probing Solutions for 90-pin Logic Analyzers Soft Touch Connectorless Probing

E5405A differer	tial			
probe			Logic an	alyzer
Signal name	Pad #		Channel	Pod
D0 (+)	A1	\rightarrow	0	Whichever pod
D0 (-)	A2			is plugged into
Ground	А3			the E5405A probe
D2 (+)	Α4	\rightarrow	2	рговс
D2 (-)	A5			
Ground	A6			-
D4 (+)	Α7	\rightarrow	4	-
D4 (-)	A8			-
Ground	A9			
D6 (+)	A10	\rightarrow	6	
D6 (-)	A11			_
Ground	A12			
NC	A13			
NC	A14			_
Ground	A15			
D8 (+)	A16	\rightarrow	8	
D8 (–)	A17			_
Ground	A18			
D10 (+)	A19	\rightarrow	10	_
D10 (-)	A20			_
Ground	A21			_
D12 (+)	A22	\rightarrow	12	-
D12 (–)	A23			
Ground	A24			
D14 (+)	A25	\rightarrow	14	
D14 (-)	A26			
Ground	A27			

E5405A differe	ntial			
probe	muai		Logic ar	nalyzer
Signal name	Pad a	#	Channel	Pod
Ground	B1			Whichever pod
D1 (–)	B2			is plugged into
D1 (+)	B3	\rightarrow	1	the E5405A
Ground	B4			_ probe
D3 (–)	B5			_
D3 (+)	B6	→	3	_
Ground	B7			_
D5 (–)	B8			_
D5 (+)	B9	\rightarrow	5	_
Ground	B10			_
D7 (–)	B11			_
D7 (+)	B12	\rightarrow	7	_
Ground	B13			_
Clock-	B14			_
Clock+	B15	\rightarrow	Clock	_
Ground	B16			_
D9 (–)	B17			_
D9 (+)	B18	\rightarrow	9	_
Ground	B19			_
D11 (–)	B20			_
D11 (+)	B21	\rightarrow	11	_
Ground	B22			_
D13 (–)	B23			_
D13 (+)	B24	\rightarrow	13	_
Ground	B25		<u> </u>	_
D15 (–)	B26			_
D15 (+)	B27	\rightarrow	15	_

Soft Touch Connectorless Probing

Probe dimensions

The following figures show dimensions, footprint, and pinout information you will need to design your target system board for use with the Agilent soft touch probes.

Top view E5387A, E5390A

Top view E5398A

Figure 6.13. Probe dimensions

Soft Touch Connectorless Probing

Retention module dimensions

The soft touch probes are attached to the PC board using a retention module which ensures pin-to-pad alignment and holds the probe in place. A board thickness of up to 2.54 mm (0.100 inch) is recommended. Insert the retention module into the board, noting the keying pin, and solder the four alignment pins to the backside of the board.

34-channel retention module dimensions

17-channel retention module dimensions

Figure 6.14. Retention module dimensions

Probe and retention module dimensions

The following dimensions show the soft touch probe attached to the retention module. The retention module is mounted on the PC board.

34-channel probe and retention module dimensions

17-channel probe and retention module dimensions

Figure 6.15. Probe and retention module dimensions

Soft Touch Connectorless Probing

Probe footprint dimensions

Use these probe footprint dimensions for the PC board pads and holes for attaching the retention module.

- Must maintain a solder mask web between pads when traces are routed between the pads on the same layer. Soldermask may not encroach onto the pads within the pad dimension shown.
- Via in pad not allowed on these pads. Via edges may be tangent to pad edges as long as a solder mask web between vias and pads is maintained.
- Permissible surface finishes on pads are HASL, immersion silver, or gold over nickel.
- 4. Footprint is compatible with retention module, Agilent part # E5387-68702.
- Retention module dimensions are 34.04 mm x 7.01 mm x 4.98 mm tall relative to the top surface of the PDB. Retention pins extend 4.32 mm beyond the bottom surface of the RM through the PCB.
- 6. Assume normal artwork tolerances for pad size dimensions.

Figure 6.16. Footprint dimensions

Soft Touch Connectorless Probing

Pinout for the E5387A differential soft touch probe

The following graphic and table show the E5387A differential soft touch probe pad numbers and logic analyzer pod inputs.

B1	O O O O O O O O O O O O O O O O O O O	© B27
A1	\bigcirc	A27
	Footprint keep out boundary	

Figure 6.17. Pinout

E5387A diff	erential p	robe			Logic ana	lyzer
Negative signa	als	Positive signal	S			
Signal name	Pad #	Signal name	Pad #		Channel	Pod
D0 (-)	A1	D0 (+)	B1	\rightarrow	0	Whichever pod is plugged into the
D1 (–)	A2	D1 (+)	B2	\rightarrow	1	E5387A probe
Ground	A3	Ground	В3			
D2 (–)	A4	D2 (+)	B4	\rightarrow	2	
D3 (–)	A5	D3 (+)	B5	\rightarrow	3	
Ground	A6	Ground	B6			
D4 (-)	A7	D4 (+)	В7	\rightarrow	4	
D5 (–)	A8	D5 (+)	B8	\rightarrow	5	
Ground	A9	Ground	В9			
D6 (-)	A10	D6 (+)	B10	\rightarrow	6	
D7 (-)	A11	D7 (+)	B11	\rightarrow	7	
Ground	A12	Ground	B12			
Clock (–)	A13	Clock (+)	B13	\rightarrow	Clock	
Ground	A14	Ground	B14			
D8 (–)	A15	D8 (+)	B15	\rightarrow	8	
D9 (–)	A16	D9 (+)	B16	\rightarrow	9	
Ground	A17	Ground	B17			
D10 (-)	A18	D10 (+)	B18	\rightarrow	10	
D11 (–)	A19	D11 (+)	B19	\rightarrow	11	
Ground	A20	Ground	B20			
D12 (–)	A21	D12 (+)	B21	\rightarrow	12	
D13 (-)	A22	D13 (+)	B22	\rightarrow	13	
Ground	A23	Ground	B23			
D14 (-)	A24	D14 (+)	B24	\rightarrow	14	
D15 (–)	A25	D15 (+)	B25	\rightarrow	15	
Ground	A26	Ground	B26			
N/C	A27	N/C	B27			

Soft Touch Connectorless Probing

Figure 6.18. Pinout

E5398A 17-cha single-ended p			Logic an	ıalyzer
Signal name	Pad a	#	Channel	Pod
D1	A1	\rightarrow	1	Whichever pod
D3	A2	\rightarrow	3	is plugged into
Ground	A3			the E5398A probe
D5	A4	\rightarrow	5	рговс
D7	A5	\rightarrow	7	_
Ground	A6			_
D9	Α7	\rightarrow	9	_
D11	A8	\rightarrow	11	_
Ground	A9			_
D13	A10	\rightarrow	13	_
D15	A11	\rightarrow	15	_
Ground	A12			_
Clock (–)	A13	\rightarrow	n/a	_

E5398A 17-char single-ended pro			Logic an	alyzer
Signal name	Pad #	‡	Channel	Pod
D0	B1	\rightarrow	0	Whichever pod
D2	B2	\rightarrow	2	is plugged into
Ground	В3			the E5398A probe
D4	B4	\rightarrow	4	- p. 656
D6	B5	\rightarrow	6	-
Ground	B6			-
D8	В7	\rightarrow	8	
D10	B8	\rightarrow	10	
Ground	В9			-
D12	B10	\rightarrow	12	-
D14	B11	\rightarrow	14	-
Ground	B12			_
Clock (+)	B13	\rightarrow	n/a	_

Soft Touch Connectorless Probing

Pinout for the E5390A singleended soft touch probe

The following graphic and table show the E5390A single-ended soft touch probe pad numbers and logic analyzer pod inputs.

Figure 6.19. Pinout

Signal name Pad # Channel Pod D1 A1 \rightarrow 1 Whichever pod is connected to "Odd" on the E5390A probe Ground A3 \rightarrow 5 D5 A4 \rightarrow 5 D7 A5 \rightarrow 7 Ground A6 \rightarrow 9 D11 A8 \rightarrow 11 Ground A9 \rightarrow 13 D13 A10 \rightarrow 13 D15 A11 \rightarrow 15 Ground A12 Clock (-) A13 \rightarrow Clock D0 B1 \rightarrow 0 D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12 \rightarrow Clock	E5390A single-	ended			
D1 A1 → 1 Whichever pod is connected to "Odd" on the E5390A probe Ground A3 — 5 D5 A4 → 5 D7 A5 → 7 Ground A6 — 9 D11 A8 → 11 Ground A9 — 13 D13 A10 → 13 D15 A11 → 15 Ground A12 Clock Clock (-) A13 → Clock D0 B1 → 0 D2 B2 → 2 Ground B3 D4 B4 → 4 D6 B5 → 6 Ground B6 — 8 D10 B8 → 10 Ground B9 — 12 D14 B11 → 14 Ground B12 — 14				Logic an	alyzer
D3 A2 → 3 is connected to "Odd" on the E5390A probe D5 A4 → 5 E5390A probe D7 A5 → 7 Ground A6 D9 A7 → 9 D11 A8 → 11 Ground A9 D13 A10 → 13 D15 A11 → 15 Ground A12 Clock Clock D0 B1 → 0 D2 B2 → 2 Ground B3 D4 B4 → 4 D6 B5 → 6 Ground B6 B8 → 8 D10 B8 → 10 Ground B9 D12 B10 → 12 D14 B11 → 14 Ground B12 H1 → 14 Ground B12 — 14 — 14 Ground B12 — 14 — 14 <t< td=""><td>Signal name</td><td>Pad #</td><td>#</td><td>Channel</td><td>Pod</td></t<>	Signal name	Pad #	#	Channel	Pod
Ground A3 "Odd" on the E5390A probe D5 A4 \rightarrow 5 D7 A5 \rightarrow 7 Ground A6 D9 A7 \rightarrow 9 D11 A8 \rightarrow 11 Ground A9 D13 A10 \rightarrow 13 D15 A11 \rightarrow 15 Ground A12 Clock Clock (-) A13 \rightarrow Clock D0 B1 \rightarrow 0 D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	D1	A1	\rightarrow	1	Whichever pod
Ground A3 E5390A probe D5 A4 \rightarrow 5 D7 A5 \rightarrow 7 Ground A6 D9 A7 \rightarrow 9 D11 A8 \rightarrow 11 Ground A9 D13 A10 \rightarrow 13 D15 A11 \rightarrow 15 Ground A12 Clock D0 B1 \rightarrow 0 D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	D3	A2	\rightarrow	3	
D5 A4 \rightarrow 5 D7 A5 \rightarrow 7 Ground A6 D9 A7 \rightarrow 9 D11 A8 \rightarrow 11 Ground A9 D13 A10 \rightarrow 13 D15 A11 \rightarrow 15 Ground A12 Clock (-) A13 \rightarrow Clock D0 B1 \rightarrow 0 D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	Ground	A3			
Ground A6 D9 A7 → 9 D11 A8 → 11 Ground A9 D13 A10 → 13 D15 A11 → 15 Ground A12 Clock (-) A13 → Clock D0 B1 → 0 D2 B2 → 2 Ground B3 D4 B4 → 4 D6 B5 → 6 Ground B6 D8 B7 → 8 D10 B8 → 10 Ground B9 D12 B10 → 12 D14 B11 → 14 Ground B12	D5	A4	\rightarrow	5	_ 200007 (proso
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D7	A5	\rightarrow	7	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ground	A6			
Ground A9 D13 A10 → 13 D15 A11 → 15 Ground A12 Clock (-) A13 → Clock D0 B1 → 0 D2 B2 → 2 Ground B3 D4 B4 → 4 D6 B5 → 6 Ground B6 D8 B7 → 8 D10 B8 → 10 Ground B9 D12 B10 → 12 D14 B11 → 14 Ground B12	D9	Α7	\rightarrow	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D11	A8	\rightarrow	11	_
D15 A11 \rightarrow 15 Ground A12 Clock (-) A13 \rightarrow Clock D0 B1 \rightarrow 0 D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	Ground	A9			_
Ground A12 Clock (−) A13 \rightarrow Clock D0 B1 \rightarrow 0 D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	D13	A10	\rightarrow	13	_
Clock (-) A13 \rightarrow Clock D0 B1 \rightarrow 0 D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	D15	A11	\rightarrow	15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ground	A12			_
D2 B2 \rightarrow 2 Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	Clock (–)	A13	\rightarrow	Clock	_
Ground B3 D4 B4 \rightarrow 4 D6 B5 \rightarrow 6 Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	D0	B1	\rightarrow	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D2	B2	\rightarrow	2	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ground	В3			_
Ground B6 D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	D4	B4	\rightarrow	4	_
D8 B7 \rightarrow 8 D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	D6	B5	\rightarrow	6	_
D10 B8 \rightarrow 10 Ground B9 D12 B10 \rightarrow 12 D14 B11 \rightarrow 14 Ground B12	Ground	B6			_
$\begin{array}{cccc} \textbf{Ground} & \textbf{B9} \\ \textbf{D12} & \textbf{B10} & \rightarrow & 12 \\ \textbf{D14} & \textbf{B11} & \rightarrow & 14 \\ \textbf{Ground} & \textbf{B12} \end{array}$	D8	B7	\rightarrow	8	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D10	B8	\rightarrow	10	_
D14 B11 → 14 Ground B12	Ground	B9			_
Ground B12	D12	B10	\rightarrow	12	_
	D14	B11	\rightarrow	14	_
Clock (+) B13 → Clock	Ground	B12			_
	Clock (+)	B13	\rightarrow	Clock	

E5390A single-6	ended			
probe			Logic ar	ialyzer
Signal name	Pad #	‡	Channel	Pod
Ground	A14			Whichever pod
D1	A15	\rightarrow	1	is connected to "Even" on the
D3	A16	\rightarrow	3	E5390A probe
Ground	A17			_
D5	A18	\rightarrow	5	
D7	A19	\rightarrow	7	
Ground	A20			_
D9	A21	\rightarrow	9	_
D11	A22	\rightarrow	11	_
Ground	A23			
D13	A24	\rightarrow	13	
D15	A25	\rightarrow	15	
Ground	A26			_
Clock (–)	A27	\rightarrow	Clock	
Ground	B14			
D0	B15	\rightarrow	0	
D2	B16	\rightarrow	2	
Ground	B17			
D4	B18	\rightarrow	4	
D6	B19	\rightarrow	6	_
Ground	B20			
D8	B21	\rightarrow	8	_
D10	B22	\rightarrow	10	_
Ground	B23			_
D12	B24	\rightarrow	12	_
D14	B25	\rightarrow	14	_
Ground	B26			_
Clock (+)	B27	\rightarrow	Clock	_

Soft Touch Connectorless Probing

Equivalent probe loads

The following probe load models are based on in-circuit measurements made with an Agilent 8753E 6 GHz network analyzer and an Agilent 54750A TDR/TDT using a 50 Ω test fixture. The following schematic accurately models the probe load out to 6 GHz. PC board pads are not included.

Figure 6.20. Equivalent probe load model

Mictor and Samtec Probing

E5378A 100-pin single-ended probe

The E5378A is a 34-channel singleended Samtec probe capable of capturing data up to 1.5 Gbits/sec (see Figures 7.3 and 7.5 for probe dimensions and equivalent load). The probe has the following inputs:

- 32 single-ended data inputs, in two groups (pods) of 16.
- Two differential clock inputs.
 Either or both clock inputs can be acquired as data inputs if not used as a clock.
- Two data threshold reference inputs, one for each pod (group of 16 data inputs).

E5379A 100-pin differential probe

The E5379A is a 17-channel differential Samtec probe capable of capturing data up to 1.5 Gbits/sec (see Figures 7.5 and 7.6 for probe dimensions and equivalent load). The probe has the following inputs:

- 16 differential data inputs.
- · One differential clock input.
- The clock input can be acquired as a data input if it is not used as a clock.

Refer to Table 8 on page 60 for part numbers for mating connectors and shrouds.

Figure 6.21. Agilent E5378A probe

Figure 6.22. Agilent E5379A probe

Mictor and Samtec Probing

E5380A 38-pin probe

The E5380A is designed to be compatible with the Mictor connector. If you have a target system designed for connection to the E5346A high-density probe adapter, the E5380A probe will connect directly to this same Mictor connector. (For information on the E5346A, refer to pages 24 - 25). The maximum state speed when used with the E5380A probe is 600 Mbits/second. The minimum input signal amplitude required by the E5380A is 300 mV.

The E5380A probe combines two 17-channel cables into a single-ended 38-pin Mictor connector.

Refer to Table 8 for connector, shroud, and kit part numbers.

Table 8. Mating connectors, shrouds, and kits for Agilent E5378A, E5379A, and E5380A probes

•		
For probe model numbers	Description	Agilent part number
E5378A, E5379A	Kit of 5 support shrouds and 5 100-pin Samtec connectors for PC board thickness up to 1.57 mm (0.062")	16760-68702
	Kit of 5 support shrouds and 5 100-pin Samtec connectors for PC board thickness up to 3.05 mm (0.120")	16760-68703
	One 100-pin Samtec connector (also available from Samtec as part number ASP-65067-01)	1253-3620
	One support shroud for PC board thickness up to 1.57 mm (0.062")	16760-02302
	One support shroud for PC board thickness up to 3.05 mm (0.120")	16760-02303
E5380A	Kit of 5 support shrouds and 5 38-pin Mictor connectors for PC board thickness up to 1.57 mm (0.062")	E5346-68701
	Kit of 5 support shrouds and 5 38-pin Mictor connectors for PC board thickness up to 3.175 mm (0.125")	E5346-68700
	One 38-pin Mictor connector (also available from AMP as part number 2-767004-2)	1252-7431
	One support shroud for PC board thickness up to 1.57 mm (0.062")	E5346-44701
	One support shroud for PC board thickness up to 3.175 mm (0.125")	E5346-44704
	One support shroud for PC board thickness up to 4.318 mm (0.700")	E5346-44703

Figure 7.1. Agilent E5380A probe

For further information on designing the E5378A, E5379A, or E5380A probe connectors into your system, refer to the following documents:

Agilent Technologies Logic Analyzer Probes (E5378A, E5379A, E5380A, and E5386A) User's Guide	Mechanical drawings, electrical models, general information on probes for logic analyzers with 90-pin connectors	16760-97016 http://cp.literature.agilent.com/litweb/pdf/16760-97016.pdf
Designing High-Speed Digital Systems for Logic Analyzer Probing	Design recommendations, examples, and analysis for layout of target systems	5988-2989EN http://www.agilent.com/find/probeguide

Mictor and Samtec Probing

Figure 7.2. Dimensions of the 100-Pin Samtec connector used in the 16760-68702 and 16760-68703 connector kits

Figure 7.3. E5378A 100-pin single-ended probe dimensions

Figure 7.4. E5379A 100-pin differential probe dimensions

Figure 7.5. E5378A and E5379A input equivalent load, including 100-pin connector

Figure 7.6. E5380A 38-Pin probe dimensions

Figure 7.7. E5380A input equivalent load, including 38-pin connector

High-Speed Timing Probing

E5386A half-channel adapter

When the Agilent high-speed timing analyzers are operating at their maximum speed, only the even numbered channels are used. To reduce the number of probes and connectors required, the E5386A adapter maps the even channels to all of the pins of an E5378A and E5379A Samtec probes, E5387A and E5390A Soft Touch Connectorless probes, and Soft Touch Pro Series connectorless probes E5404A, E5405A, and E5406A. The following diagrams show how the E5386A is connected.

Figure 8.1. E5386A half-channel probe adapter

Figure 8.2. E5386A with E5378A, E5390A, or E5406A single-ended probe

Figure 8.3. E5386A with E5379A, E5387A, or E5405A differential probe

For further information on the application of the E5386A Half-channel adaptor refer to Agilent Technologies E5400-Pro Series Soft Touch Connectorless Probes User's Guide, publication number E5404-97006.pdf

General-Purpose Probing Flying Lead Probing Accessories

Wedge adapters

The Agilent Technologies Wedge technology provides very reliable probing of a few channels on 0.5 mm and 0.65 mm pitch QFPs. No clear area is required around the device. Each Wedge of the probe slides between the legs of the QFP. The side of each Wedge probe contacts the package legs. An insulation core electrically isolates the sides of each Wedge (see Figures 9.1 and 9.2). Various 3-signal, 8-signal, and 16-signal probes are available (see Table 9).

Table 9. Wedge probe adapter

IC leg spacing	Number of signals	Number of Wedges in pack	Model number
0.5 mm	3	1	E2613A
0.5 mm	3	2	E2613B
0.5 mm	8	1	E2614A
0.5 mm	16	1	E2643A
0.65 mm	3	1	E2615A
0.65 mm	3	2	E2615B
0.65 mm	8	1	E2616A
0.65 mm	16	1	E2644A

Figure 9.1. Three-signal Wedge electrical connection

Top view of 16 signal pins

Figure 9.2. Eight-signal and 16-signal Wedge (16-signal Wedge has a common ground plane)

Miscellaneous probing accessories

The ferrite core assembly can be added to the probe cable to suppress EMI and RFI noise that can corrupt the measurement.

Figure 9.3. Ferrite core assembly, 16555-60001

40-pin and 90-pin Logic Analyzers Probe Cables

Signal line loading

Any probed signal line must be able to supply a minimum of 600 mV (unless noted otherwise — see probe of interest) to the probe tip while the probe is connected to the system. The maximum input voltage of each probe is ±40 volts peak (unless noted otherwise — see probe of interest).

Probe cables

The probe cable (see Figure 10.1 and Table 10) contains 16 signal lines and two clk lines, two +5 volt power lines, and ground lines for each of

the signal/clock and power lines. All of these lines are contained in a 4.5-foot cable. The probe cable is included with the logic analyzer. The cable grounds are chassis (earth) grounds, not "floating" grounds. The two +5 volt power lines can be used to power active probing systems. Consult the specifications for the individual logic analyzers or logic analyzer cards for the maximum allowable current through each +5 volt power supply.

Caution: These +5 volt power lines MUST NOT be connected to the target's power supply.

Caution: Be careful when using straight wire probe leads, one common ground, or RC networks located far from the target. These circumstances increase the impact of analog effects such as crosstalk and EMT susceptibility, which contribute to measurement errors.

Figure 10.1. Typical logic analyzer probe cable

Table 10. Probe cables supplied with Agilent logic analyzers

	40-pin cable part number					90-pin (cable part	number	
	01550-	16550-	01660-	16555-	16710-	16715-	16760-	16962-	
Logic analyzer	61607	61601	61605	61606	61603	61601	61605	61601	U4201A
U4154A									•
16962A								•	
16951B							•		
16950A/B							•		
16911A						•			
16910A						•			
16800 Series						•			
16760A							•		
16753/54/55/56A							•		
16752A/B						•			
16751A/B						•			
16750A/B						•			
16740 Series						•			
16719A						•			
16718A						•			
16717A						•			
16716A						•			
16715A						•			
16712A					•				
16711A					•				
16710A					•				
16557D					•				
16556A/D				•					
16555A/D				•					
16554A				•					
16550A			•						
1690 Series						•			
1680 Series						•			
1670 Series					•				
1660 Series		•							
1650 Series	•								

Related Information

Agilent Technologies logic analysis third-party partners:

For a complete list of partners, see document 5966-4365EUS *Processor and Bus Support for Agilent Technologies Logic Analyzers*

3M

http://www.mmm.com/interconnects

AMP, Inc.

Phone: 1-717-986-7777 Fax: 1-717-986-7575

Phone (USA only): 1-800-522-6752 E-mail: product.info@amp.com Web site: http://www.amp.com

Agilent Technologies Test and Measurement Organization support line phone number: 1-800-452-4844

Agilent Technologies Test and Measurement Organization web site: http://www.agilent.com

Agilent Technologies Test and Measurement Logic Analyzers web site: http://www.agilent.com/find/logic

Agilent Technologies Test and Measurements Accessories web site: http://www.agilent.com/find/la_probing

This document does not cover the following topics:

- Pattern generator probing and accessories
 See: Agilent 16800 Series Portable Logic Analyzers, Data Sheet, publication number 5989-5063EN and Agilent Technologies Measurement Modules for the 16900 Series, Data Sheet, publication number 5989-0422EN
- Analysis probes for processors and buses
 See: Processor and Bus Support for Agilent Technologies Logic Analyzers, Configuration Guide, publication number 5966-4365E

www.agilent.com

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.axiestandard.org

AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based highperformance measurement and automation system.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equipment and services more effectively. By sharing our measurement and service expertise, we help you create the products that change our world.

www.agilent.com/find/advantageservices

www.agilent.com/quality

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3500
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
Israel	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 131 452 0200

For other unlisted countries:

www.agilent.com/find/contactus

Revised: June 8, 2011

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2005, 2011 Published in USA, November 1, 2011 5968-4632E

