

- 1 裁剪的概念
 - 2 编码裁剪法
 - 3 编码裁剪

观察空间不同,裁剪和屏幕映射的方法不同!

规范化投影空间:平行投影

(b) 有限观察空间

1

裁剪的概念

规范化投影空间:透视投影

裁剪问题:

裁剪问题:

裁剪问题:

要解决的问题: 对直线段 $p_1(x_1,y_1)p_2(x_2,y_2)$ 进行裁剪

Cohen-Sutherland方法:基于编码的裁剪方法

- (1) 直线段完全可见 , "简取"之。
- (2) 直线段完全不可见 , "简弃"之。
- (3) 直线段既不满足"简取"的条件,也不满足"简弃"的条件,需要对直线段按交点进行分段,分段后重复上述处理。

Cohen-Sutherland方法:基于编码的裁剪方法

- (1) 直线段完全可见 , "简取"之。
- (2) 直线段完全不可见 , "简弃"之。
- (3) 直线段既不满足"简取"的条件,也不满足"简弃"的条件,需要对直线段按交点进行分段,分段后重复上述处理。

Cohen-Sutherland方法:基于编码的裁剪方法

- (1) 直线段完全可见 , "简取"之。
- (2) 直线段完全不可见 , "简弃"之。
- (3) 直线段既不满足"简取"的条件,也不满足"简弃"的条件,需要对直线段按交点进行分段,分段后重复上述处理。

Cohen-Sutherland方法:基于编码的裁剪方法

- (1) 直线段完全可见 , "简取"之。
- (2) 直线段完全不可见 , "简弃"之。
- (3) 直线段既不满足"简取"的条件,也不满足"简弃"的条件,需要对直线段按交点进行分段,分段后重复上述处理。

2

编码方法

Cohen-Sutherland方法:基于编码的裁剪方法

编码:对于任一端点(x,y),根据其坐标所在的区域,赋予一个4位的二进制码 $D_3D_2D_1D_0$ 。

编码规则如下:

- ◆若x<wxl,则D₀=1,否则D₀=0;
- ◆若x>wxr,则 D_1 =1,否则 D_1 =0;
- ◆若y<wyb,则D₂=1,否则D₂=0;
- ◆若y>wyt ,则D₃=1 , 否则D₃=0。

1001	1000	1010	
0001	000 <mark>0</mark> 窗口	0010	
0101	0100	0110	

$$D_3D_2D_1D_0$$

Cohen-Sutherland方法:基于编码的裁剪方法

裁剪一	-条线段时	, 先求出端,	点p ₁ 和p ₂ 的编码
code1	和code2,	然后:	

(2)若code1&code2≠0,	对直线段可简弃之。
--------------------	-----------

(3)若上述两条件均不成立。则需求出直线段与
窗口边界的交点。在交点处把线段一分为二,
其中必有一段完全在窗口外,可以弃之。再对
另一段重复进行上述处理,直到该线段完全被
舍弃或者找到位于窗口内的一段线段为止。

0001	000 <mark>0</mark> 窗口	0010
0101	0100	0110
	D D D D	

1000

1001

1010

$$D_3D_2D_1D_0$$

Cohen-Sutherland方法:基于编码的裁剪方法

具体做法:按左、下、右、上的顺序求出直线段与窗口边界的交点,分段处理

例:对于直线段P₁P₂

 \rightarrow 求出 P_1P_2 与左边界有实交点 P_3 ,一分

为二,简弃直线段 P_1P_3 ,处理 P_2P_3

▶求出P₂P₃与下边界的实交点P₄,一分

为二,简弃P₂P₄,剩下的P₃P₄可以简取。

中点裁剪法

仍然基于Cohen-Sutherland中的区域编码

基本思想:

当对直线段不能简取也不能简弃时,简单地把线段等分为二段,对两段重复上述测试处理,直至每条线段完全在窗口内或完全在窗口外。

中点裁剪法

具体过程:

终止二分的时机:取到边界点或者在进 度范围内近似逼近到边界点

p1p2	p3p2 p1p3	p1p3	p4p3 p1p4	p1p4	p6p3 p4p6 p1p4
p4p6 p1p4	p7p3 p6p7 p4p6	p6p7 p4p6 p1p4	p4p6	p1p4	p5p4 p1p5

3 中点裁剪法

本质:用二分逼近的方法求线段与窗口边界的交点

