

Global United Technology Services Co., Ltd.

Report No.: GTSE15020018901

FCC REPORT

Applicant: **Zound Industries**

Address of Applicant: Torsgatan 2 111 23 Stockholm Sweden

Equipment Under Test (EUT)

Product Name: ACTIVE STEREO LOUDSPEAKER

Model No.: **KILBURN**

Marshall Trade Mark:

FCC ID: 2AAGF-KILBURN

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.249:2014

Date of sample receipt: April 03, 2015

Date of Test: April 03-10, 2015

Date of report issued: April 10, 2015

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	April 10, 2015	Original

Prepared By:	Edward.Par	Date:	April 10, 2015	
	Project Engineer			
Check By:	hank. yan	Date:	April 10, 2015	
	Reviewer			

3 Contents

			Page
1	COV	ER PAGE	1
2	VFR	SION	2
_	V		
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	
	5.7	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	RADIATED EMISSION METHOD	
	7.3.		
	7.3.2	- F	
	7.3.		
	7.4	20DB OCCUPY BANDWIDTH	21
8	TES	T SETUP PHOTO	23
9	EUT	CONSTRUCTIONAL DETAILS	25

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 Client Information

Applicant:	Zound Industries
Address of Applicant:	Torsgatan 2 111 23 Stockholm Sweden
Factory:	DONGGUAN TRISTAR ELECTRONIC CO., LTD.
Address of Factory:	No.24A Dongxing Ave. South, Zhenxingwei, Tangxia Town,
	Dongguan City, Guangdong Province P.R. China

5.2 General Description of EUT

Product Name:	ACTIVE STEREO LOUDSPEAKER
Model No.:	KILBURN
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation type:	GFSK
Antenna Type:	Integral Antenna
Antenna gain:	0dBi (declare by Applicant)
Power supply:	AC 120V/60Hz
	Or DC 14.8V(LI-ION POLYMER BATTERY)

Operation F	Operation Frequency each of channel						
Channel	nannel Frequency Cha		Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
•	. !	. :	. !	. !	. !	·	. !
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	X	Υ	Z
Field Strength(dBuV/m)	91.56	93.49	92.38

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

5.7 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2015	Mar. 27 2016	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jul. 01 2014	Jun 30 2015	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 01 2014	Jun 30 2015	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jul. 01 2014	Jun 30 2015	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 27 2014	June 26 2015	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 01 2014	Jun. 30, 2015	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 01 2014	Jun. 30, 2015	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 27 2014	June 26 2015	
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016	
Con	ducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date	
iteiii	rest Equipment	Wallalacturei	Model No.	No.	(mm-dd-yy)	(mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	July 01 2014	June 30 2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015	
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015	
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date	
	root =qaipiiiont	manadataro	iniouoi itoi	No.	(mm-dd-yy)	(mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integral antenna, the best case gain of the antenna is 0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013 & ANSI C6	3.4:2014						
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto						
Limit:	- 441	Limit (c	dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm of the frequency.							
Test setup:	Reference Plane		_					
	AUX Equipment E.U.T EMI Receiver Remark E.U.T Equipment Under Test L/SN: Line Impedence Stabilization Network Test table height=0.8m							
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 							
	according to ANSI C63.10:2		easurement.					
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Pass							

Measurement data:

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

: 0189RF

Job No. Test mode : Bluetooth mode (V4.0)

Test Engineer: Frank

	Freq		LISN Factor			Limit Line		Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	dB	
1 2 3 4 5 6 7	0. 444 0. 974 2. 273	37. 31 32. 75 28. 91		0.12 0.10 0.11 0.13 0.15	37. 52 32. 98	55. 87 58. 78 56. 98 56. 00 56. 00	-21. 26 -24. 00 -26. 82 -30. 30	Average QP QP QP QP

Neutral:

: FCC PART15 CLASSB QP LISN-2013 NEUTRAL Condition

: 0189RF

Job No. Test mode : Bluetooth mode (V4.0)

Test Engineer: Frank

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBuV	d₿	dB	dBuV	dBuV	dB	
1	0.152	56.84	0.07	0.12	57.03	65.87	-8.84	QP
2	0.152	38.40	0.07	0.12	38.59	55.87	-17.28	Average
3	0.360	38.17	0.06	0.10	38.33	58.74	-20.41	QP
4	0.651	31.98	0.07	0.13	32.18	56.00	-23.82	QP
5	0.974	27.53	0.07	0.13	27.73	56.00	-28.27	QP
6	1.628	25.74	0.09	0.14	25.97	56.00	-30.03	QP
7	4.549	30.31	0.15	0.15	30.61	56.00	-25.39	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

7.5 Radiated Emission Method									
FCC Part15 C S	Section 15.20	9							
ANSI C63.10:20	013 & ANSI C	63.4:2014							
30MHz to 25GH	ŀz								
Measurement D	Distance: 3m								
Frequency	Detector	RBW	VBW	Remark					
30MHz- 1GHz			300KHz	Quasi-peak Value					
Above 1CHz	Peak	1MHz	3MHz	Peak Value					
Above IGHZ	Peak	1MHz	10Hz	Average Value					
Freque	ency	Limit (dBuV	/m @3m)	Remark					
2400MHz-24	183.5MHz	94.0	00	Average Value					
Freque	ency	Limit (dBuV	/m @3m)	Remark					
				Quasi-peak Value					
				Quasi-peak Value					
				Quasi-peak Value					
960MHz-	-1GHz			Quasi-peak Value					
Above 1	IGHz			Average Value Peak Value					
harmonics, sha fundamental or	ll be attenuate to the genera	ed by at least al radiated em	50 dB belov	w the level of the					
Tum Table Ground Plane	4m		Sea	na Tower arch enna					
	FCC Part15 C S ANSI C63.10:20 30MHz to 25GH Measurement E Frequency 30MHz- 1GHz Above 1GHz Freque 2400MHz-24 Freque 30MHz-8 88MHz-2 216MHz-9 960MHz- Above 1 Emissions radia harmonics, sha fundamental or whichever is the Below 1GHz	FCC Part15 C Section 15.20 ANSI C63.10:2013 & ANSI C 30MHz to 25GHz Measurement Distance: 3m Frequency Detector 30MHz- 1GHz Above 1GHz Peak Frequency 2400MHz-2483.5MHz Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz Emissions radiated outside of harmonics, shall be attenuate fundamental or to the general whichever is the lesser attental manual fundamental or to the general whichever is the lesser attental manual fundamental or to the general whichever is the lesser attental manual fundamental or to the general fundamental fundamental or to the general fundamental fundam	FCC Part15 C Section 15.209 ANSI C63.10:2013 & ANSI C63.4:2014 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 30MHz- Quasi-peak 120KHz 1GHz Above 1GHz Peak 1MHz Peak 1MHz Frequency Limit (dBuV) 2400MHz-2483.5MHz 94.0 Frequency Limit (dBuV) 30MHz-88MHz 40.0 88MHz-216MHz 43.9 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Above 1GHz 74.0 Emissions radiated outside of the specified harmonics, shall be attenuated by at least fundamental or to the general radiated em whichever is the lesser attenuation. Below 1GHz	ANSI C63.10:2013 & ANSI C63.4:2014 30MHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 30MHz- Quasi-peak 120KHz 300KHz 1GHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Limit (dBuV/m @3m) 2400MHz-2483.5MHz 94.00 Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.00 88MHz-216MHz 43.50 216MHz-960MHz 46.00 960MHz-1GHz 54.00 Above 1GHz 74.00 Emissions radiated outside of the specified frequency harmonics, shall be attenuated by at least 50 dB belof fundamental or to the general radiated emission limits whichever is the lesser attenuation. Below 1GHz Anten Ground Plane Anten Ground Plane					

	Report No.: GTSE15020018901
	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table V Im A Amplifier
Test Procedure:	 The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
Test Instruments:	average method as specified and then reported in a data sheet. Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	90.70	27.58	5.39	30.18	93.49	114.00	-20.51	Vertical
2402.00	87.49	27.58	5.39	30.18	90.28	114.00	-23.72	Horizontal
2440.00	89.52	27.55	5.43	30.06	92.44	114.00	-21.56	Vertical
2440.00	86.61	27.55	5.43	30.06	89.53	114.00	-24.47	Horizontal
2480.00	88.37	27.52	5.47	29.93	91.43	114.00	-22.57	Vertical
2480.00	85.42	27.52	5.47	29.93	88.48	114.00	-25.52	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	79.16	27.58	5.39	30.18	81.95	94.00	-12.05	Vertical
2402.00	76.89	27.58	5.39	30.18	79.68	94.00	-14.32	Horizontal
2440.00	77.59	27.55	5.43	30.06	80.51	94.00	-13.49	Vertical
2440.00	74.58	27.55	5.43	30.06	77.50	94.00	-16.50	Horizontal
2480.00	80.01	27.52	5.47	29.93	83.07	94.00	-10.93	Vertical
2480.00	76.98	27.52	5.47	29.93	80.04	94.00	-13.96	Horizontal

Remark: RBW 3MHz, VBW 10MHz, peak detector for PK value, RBW 3MHz, VBW 10MHz AV detector for AV value

7.3.2 Spurious emissions

■ Below 1GHz

	= Bolow Total										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
31.51	44.45	14.32	0.57	30.09	29.25	40.00	-10.75	Vertical			
85.90	45.81	12.60	1.08	29.77	29.72	40.00	-10.28	Vertical			
121.98	50.88	12.19	1.38	29.56	34.89	43.50	-8.61	Vertical			
188.41	49.05	12.40	1.78	29.24	33.99	43.50	-9.51	Vertical			
470.52	31.51	17.83	3.18	29.36	23.16	46.00	-22.84	Vertical			
787.85	28.90	21.92	4.41	29.20	26.03	46.00	-19.97	Vertical			
55.22	31.34	15.00	0.82	29.96	17.20	40.00	-22.80	Horizontal			
101.29	40.41	15.02	1.20	29.69	26.94	43.50	-16.56	Horizontal			
120.70	45.12	12.38	1.37	29.56	29.31	43.50	-14.19	Horizontal			
181.28	48.36	11.76	1.75	29.27	32.60	43.50	-10.90	Horizontal			
296.18	40.30	14.98	2.34	29.98	27.64	46.00	-18.36	Horizontal			
893.86	33.69	23.05	4.83	29.10	32.47	46.00	-13.53	Horizontal			

Above 1GHz

Test cha	nnel:	Lowest channel
----------	-------	----------------

Peak value:

I cak value.		ı		ı				1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	33.75	31.78	8.60	32.09	42.04	74.00	-31.96	Vertical
7206.00	29.48	36.15	11.65	32.00	45.28	74.00	-28.72	Vertical
9608.00	29.37	37.95	14.14	31.62	49.84	74.00	-24.16	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	37.32	31.78	8.60	32.09	45.61	74.00	-28.39	Horizontal
7206.00	30.92	36.15	11.65	32.00	46.72	74.00	-27.28	Horizontal
9608.00	28.46	37.95	14.14	31.62	48.93	74.00	-25.07	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Average var	Average value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
4804.00	23.24	31.78	8.60	32.09	31.53	54.00	-22.47	Vertical			
7206.00	18.56	36.15	11.65	32.00	34.36	54.00	-19.64	Vertical			
9608.00	17.86	37.95	14.14	31.62	38.33	54.00	-15.67	Vertical			
12010.00	*					54.00		Vertical			
14412.00	*					54.00		Vertical			
4804.00	27.08	31.78	8.60	32.09	35.37	54.00	-18.63	Horizontal			
7206.00	20.50	36.15	11.65	32.00	36.30	54.00	-17.70	Horizontal			
9608.00	17.30	37.95	14.14	31.62	37.77	54.00	-16.23	Horizontal			
12010.00	*					54.00		Horizontal			
14412.00	*					54.00		Horizontal			

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	Test channel: Middle								
Peak value:				,					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	35.41	31.85	8.67	32.12	2	43.81	74.00	-30.19	Vertical
7320.00	30.57	36.37	11.72	31.89	9	46.77	74.00	-27.23	Vertical
9760.00	30.35	38.35	14.25	31.6	2	51.33	74.00	-22.67	Vertical
12200.00	*						74.00		Vertical
14640.00	*						74.00		Vertical
4880.00	39.31	31.85	8.67	32.12	2	47.71	74.00	-26.29	Horizontal
7320.00	32.16	36.37	11.72	31.89	9	48.36	74.00	-25.64	Horizontal
9760.00	29.59	38.35	14.25	31.6	2	50.57	74.00	-23.43	Horizontal
12200.00	*						74.00		Horizontal
14640.00	*						74.00		Horizontal
Average val									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	24.59	31.85	8.67	32.12	2	32.99	54.00	-21.01	Vertical
7320.00	19.48	36.37	11.72	31.89	9	35.68	54.00	-18.32	Vertical
9760.00	18.67	38.35	14.25	31.6	2	39.65	54.00	-14.35	Vertical
12200.00	*						54.00		Vertical
14640.00	*						54.00		Vertical
4880.00	28.60	31.85	8.67	32.12	2	37.00	54.00	-17.00	Horizontal
7320.00	21.52	36.37	11.72	31.89	9	37.72	54.00	-16.28	Horizontal
9760.00	18.24	38.35	14.25	31.6	2	39.22	54.00	-14.78	Horizontal
12200.00	*						54.00		Horizontal
14640.00	*						54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel:			Highest						
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	36.45	31.93	8.73	32.1	6	44.95	74.00	-29.05	Vertical
7440.00	31.26	36.59	11.79	31.7	'8	47.86	74.00	-26.14	Vertical
9920.00	30.96	38.81	14.38	31.8	8	52.27	74.00	-21.73	Vertical
12400.00	*						74.00		Vertical
14880.00	*						74.00		Vertical
4960.00	40.56	31.93	8.73	32.1	6	49.06	74.00	-24.94	Horizontal
7440.00	32.94	36.59	11.79	31.7	'8	49.54	74.00	-24.46	Horizontal
9920.00	30.31	38.81	14.38	31.8	8	51.62	74.00	-22.38	Horizontal
12400.00	*						74.00		Horizontal
14880.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.49	31.93	8.73	32.1	6	33.99	54.00	-20.01	Vertical
7440.00	20.09	36.59	11.79	31.7	'8	36.69	54.00	-17.31	Vertical
9920.00	19.21	38.81	14.38	31.8	8	40.52	54.00	-13.48	Vertical
12400.00	*						54.00		Vertical
14880.00	*						54.00		Vertical
4960.00	29.63	31.93	8.73	32.1	6	38.13	54.00	-15.87	Horizontal
7440.00	22.21	36.59	11.79	31.7	'8	38.81	54.00	-15.19	Horizontal
9920.00	18.88	38.81	14.38	31.8	8	40.19	54.00	-13.81	Horizontal
12400.00	*						54.00		Horizontal
1	1	I .	1	1		1		1	1

Remark:

14880.00

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: GTSE150200189RF

54.00

Horizontal

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channel:	Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	44.02	27.59	5.38	30.18	46.81	74.00	-27.19	Horizontal
2400.00	60.97	27.58	5.39	30.18	63.76	74.00	-10.24	Horizontal
2390.00	44.67	27.59	5.38	30.18	47.46	74.00	-26.54	Vertical
2400.00	63.12	27.58	5.39	30.18	65.91	74.00	-8.09	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	34.31	27.59	5.38	30.18	37.10	54.00	-16.90	Horizontal
2400.00	36.34	27.58	5.39	30.18	39.13	54.00	-14.87	Horizontal
2390.00	34.33	27.59	5.38	30.18	37.12	54.00	-16.88	Vertical
2400.00	38.26	27.58	5.39	30.18	41.05	54.00	-12.95	Vertical

T	est channel:	Highest channel
	001 01101111011	1 11311001 0110111101

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	46.25	27.53	5.47	29.93	49.32	74.00	-24.68	Horizontal
2500.00	45.21	27.55	5.49	29.93	48.32	74.00	-25.68	Horizontal
2483.50	47.29	27.53	5.47	29.93	50.36	74.00	-23.64	Vertical
2500.00	46.32	27.55	5.49	29.93	49.43	74.00	-24.57	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.15	27.53	5.47	29.93	40.22	54.00	-13.78	Horizontal
2500.00	34.99	27.55	5.49	29.93	38.10	54.00	-15.90	Horizontal
2483.50	38.46	27.53	5.47	29.93	41.53	54.00	-12.47	Vertical
2500.00	35.00	27.55	5.49	29.93	38.11	54.00	-15.89	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215		
Test Method:	ANSI C63.10:2013		
Limit:	Operation Frequency range 2400MHz~2483.5MHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	1.128	Pass
Middle	1.129	Pass
Highest	1.130	Pass

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----