决策树

- 1、ID3【信息增益】
- 2、C4.5【信息增益率】
- 3、CART【基尼指数】

λ ~/机器学习算法/decisionTree/ head -100 data.txt				
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rain	mild	high	false	yes
rain	cool	normal	false	yes
rain	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rain	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	ves
rain	mild	high	tru <u>e</u>	no <mark>%</mark>

其中第一列表示天气情况: 晴天、阴天和雨天; 第二列比表示温度: 炎热和凉爽; 第三列表示湿度: 高和正常; 第四列表示风速: 弱和强; 最后一列表示是否出行: no占5/14, yes占9/14属性集合{天气,温度,湿度,风速},类别标签{出行,取消}

1、计算类别信息熵

类别信息熵表示的是在所有样本中各类别出现的不确定性之和。熵越大,不确定性越大,那么其所附带的信息量越大。

$$I(D) = -9/14 * log(9/14) - 5/14 * log(5/14) = 0.940$$

2、计算每个属性的信息熵

每个属性的信息熵即条件熵: 即表示在某种属性条件下, 各类被出现的不确定性之和。属性的信

息熵越大,就表示该属性的信息量越大,其包含的样本类别就越不纯。

对于天气,存在3种状态: {sunny: 5, overcast: 4, rain: 5}

sunny中对应3个no, 2个yes

overcast对应4个yes

rain对应3个yes, 2个no

$$I(Weather) = 5/14 * [-2/5log(2/5) - 3/5log(3/5)] + 4/14 * [-4/4log(4/4)] + 5/14 * [-3/5log(3/5) - 2/5log(2/5)]] = 0.694$$

$$I(Temperature) = 4/14 * [-2/4log(2/4) - 2/4log(2/4)] + 6/14 * [-4/6log(4/6) - 2/6log(2/6)] + 4/14 * [-3/4log(3/4) - 1/4log(1/4)]] = 0.911$$

$$I(Humidity) = 4/14 * [-2/4log(2/4) - 2/4log(2/4)] + 6/14 * [-4/6log(4/6) - 2/6log(2/6)] + 4/14 * [-3/4log(3/4) - 1/4log(1/4)]] = 0.789$$

$$I(WindSpeed) = 6/14 * [-3/6log(3/6) - 3/6log(3/6)] + 8/14 * [-6/8log(6/8) - 2/8log(2/8)] = 0.892$$

3、计算信息增益

信息增益 = 熵 - 条件熵

此处即为:类别熵减去属性熵;信息增益即表示不确定性减少的程度。如果一个属性的信息增益 越大,就表示采用这个属性进行划分就会减少更多样本的不确定性,也就能更快的完成分类的目标。

$$Gain(Weather) = I(D) - I(Weather) = 0.940 - 0.694 = 0.246$$

$$Gain(Temperature) = I(D) - I(Temperature) = 0.940 - 0.911 = 0.029$$

$$Gain(Humidity) = I(D) - I(Humidity) = 0.940 - 0.789 = 0.15$$

$$Gain(WindSpeed) = I(D) - I(WindSpeed) = 0.940 - 0.892 = 0.048$$

到这里如果直接采用信息增益作为子节点的划分依据、该算法就称之为

4、计算属性分裂信息度量

本质上是对信息增益的补偿机制。简单来说就是,假设一种情况:每个属性中每种类别都只包含一个样本,那么该属性的信息熵就为零,根据信息增益就无法选择出有效的分类特征。而C4.5算法采用信息增益率来进行改进:具体就是加入了对于属性分裂时分支的数量和尺寸信息考量,这些信息是属性的内在信息,而信息增益率 = 信息增益 / 分裂信息度量,如果内在信息越多,也即属性本身的不确定性就越大,那么就会越不倾向于选择它,那么这样就可以对信息增益做一定的补偿。

$$H(Weather) = -5/14 * log(5/14) - 5/14 * log(5/14) - 4/14 * log(4/14) = 1.577$$

$$H(Temperature) = -4/14 * log(4/14) - 6/14 * log(6/14) - 4/14 * log(4/14) = 1.556$$

$$H(Humidity) = -7/14 * log(7/14) - 7/14 * log(7/14) = 1.0$$

$$H(WindSpeed) = -6/14 * log(6/14) - 8/14 * log(8/14) = 0.985$$

5、计算信息增益率

$$IGR(Weather) = Gain(Weather)/H(Weather) = 0.246/1.577 = 0.155$$

IGR(Temperature) = Gain(Temperature)/H(Temperature) = 0.029/1.556 = 0.0186

$$IGR(Humidity) = Gain(Humidity)/H(Humidity) = 0.151/1.0 = 0.151$$

IGR(WindSpeed) = Gain(WindSpeed)/H(WindSpeed) = 0.048/0.985 = 0.048 这样根据信息增益率就找到了最优的子节点Weather,然后分别根据Weather对应的几个子节点分别执行上述1~5的过程。最终就构建出了决策树。