MAKE WITH MATLAB

TTU Library Makerspace Workshop how to use MATLAB for your calculations and 3D magic

2025

■ Who am I?

Sean W Scully

Lead Administrator - TTU Libraries - Emerging Technology

Rhino3D, TinkerCAD, AutoCAD Inventor, Fusion360, Blender, Solidworks MakeCode, Python, Scratch, C++, C, MATLAB, Arduino, p5.js, JavaScript, Assembly, Verilog, Xilinx

GSB, General Studies – Math/Engineering/Renewable Energy, TTU MFA, Studio Art – Metals/Jewelry/Enameling, Kent State Univ BFA, Studio Art – Metalsmithing/Jewelry Design, TTU AA, Fine Arts, South Plains College

linkedin.com/in/seanwscully

Find me on the First Friday Art Trail, ffat.org, CASP Work Studio H

Emerging Technology Department

- Makerspace: Main Library, 2nd floor, room 210
- VR Lab: Main Library, 2nd floor, room 201A

make@ttu.edu

https://www.depts.ttu.edu/library/make/

Cricut | Maker

- Glowforge Lasercutter
- Makyu Formbox
- Matter&Form 3D Scanner
- PolyPrinters 229 & 508
- Ultimaker 3, S7
- Sewing machines

TTU Library's Makerspace *Electro* and *Robo* Kits

Robo Kits (15)

- Adafruit's Circuit Playground Express (CPX)
- Adafruit's Crickit robotic control board
- geared motors (2), micro servo

ElectroSoldering Kits (5)

TTU Library's Makerspace CuteBot and Micro:Bit v2 Kits

Images of our CuteBot kit and Micro:Bit v2 kit

TTU Library's Makerspace *Pi-400* and *Pi-ZeroW* Kits

6 kits of each is available: recommend supplying your own microSD card (minimum size: 8Gb)

TTU Library's Makerspace *Pi – Interface* Kits

6 kits of each is available, one for every Pi-400

- Pi T-Cobbler Plus
 - GPIO Breakout Pi A+, B+, Pi 2/3/4, Zero
- Full Sized Premium Breadboard
 - 830 Tie Points

TTU Library's Makerspace iFixit Kits

6 kits of each is available, one for every Pi-400

- all kinds of screwdriver tips, 64 total
- larger kit has spudgers and plastic pryers

what you can make in the Makerspace

- anything...except:
 - NO weapons please
 - N0 trademarked objects

- we reserve the right to refuse objects that we suspect may violate the Student Code of Conduct
 - https://tinyurl.com/ttustudentcode
- questions: make@ttu.edu

intro to code

what is coding?

why are there so many computer languages?

what is Python?

what is coding?

computer programming

directly asking the computer to do something in a language it understands

language => code

Speech => Text

Text => Numbers

- text commands specific to computer's language

- hexadecimal or binary numbers, e.g. ASCII

Numbers => Machine Codes - "microcode" encoded on the silicon chips

ASCII control characters				ASCII printable characters							Extended ASCII characters													
DEC	HEX	Si	mbolo ASCII	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbol
00		NULL	(carácter nulo)	32		espacio	64		മ	96	-	*	128		Ç	160	=ON	á	192		L	224	- Opt	Ó
01	3.71	SOH	(inicio encabezado)	33	LINE	1	65		@ A	97	100	a	129	TTO:	ú	161	0.00	- 1	193		1	225	10	8
02		STX	(inicio texto)	34			66		В	98		b	130		é	162	AZII	ó	194		-	226	830	Ó
63		ETX	(fin de texto)	35	oth		67		C	99	0.00	c	131		ā	163	6.00	0	195	Cim	-	227	- 71	Ò
04	00049	EOT	(fin transmisión)	36		5	68		D	100		d	132		ä	164		n.	196		-	228	TAIL	ŏ
05		ENQ	(enquiry)	37	7.30	%	69		E	101		e	133		à	165	1000	Ñ	197	100	+	229	6.50	Õ
06		ACK	(acknowledgement)	38		8	70		F	102		1	134		â	166			198		ä	230		μ
07		BEL	(timbre)	39	-IT		71		G	103	DO: TO	9	135	170	C	167	871		199		Ã	231	TID	b
80	080	BS	(retroceso)	40		- (72	-	H	104		h	136		é	168		1	200		li.	232	6.00	Þ
09		HT	(tab horizontal)	41	1.0379)	73		1	105		1	137		e	169		100	201		p	233	11.1975	Ú
10		LF	(sate de inea)	42	ZAD		74		J	106		i	138	SAC	ė	170	-1001	7	202	CAC	7	234		Û
11		VT	(tab vertical)	43			75	18	K	107		k	139		- 1	171	20	1/2	203		-	235		Ü
12		FF	(form feed)	44			76	10	L	108		1	140	000	1	172	HC1	1/4	204			236		Ý
13		CR	(retorno de carro)	45		1.0	77	101	M	109	HON.	m	141	#Cn	1	173			205	COM	-	237		Ŷ
14	OKLY	50	(shift Out)	46		-	78	18	N	110		n	142		Ä	174			205		- 6	238		-
15		SI	(shift in)	47		1	79		0	111		0	143		A	175			207			239		
16	700	DLE	(data link escape)	48	2000	0	80		P	112		D	144	100	É	176	FOR	10	208		ð	240	LID	
17		DC1	(device control 1)	49	3.49	1	81		Q	113	Tee	q	145		80	177		82	209		Ð	241	1 1197	*
18		DC2	(device control 2)	50	1237	2	82		R	114	Tor		146		Æ	178		-	210		E	242	# 2n	1
19		DC3	(device control 3)	51	11/4	3	83		S	115	130		147		ő	179	-1	T	211	()3h	E	243	120	%
20	AME	DC4	(device control 4)	52	4.47	4	84		T	116	187	T.	148	100	ò	180	- 67	4	212	DATE	Ė	244	1.00	1
21	ABITE	NAK	(negative acknowle.)	53	1.00	5	85	100	U	117		u	149		ò	181	100	A	213		1	245	880	6
22		SYN	(synchronous idle)	54		6	86		V	118		v	150		ù	182		Ā	214		1	246		+
23	UTTE	ETB	(end of trans. block)	55		7	87		W	119		w	151		ù	183		A	215		I.	247		
24		CAN	(cancel)	56		8	88	200	X	120	Est	×	152	100	y	184	500	0	216		T.	248		

coding overview

http://www.toves.org/books/java/ch01-overview/process.png

https://bioebootcamp.sites.stanford.edu/system/files/product developementprocess_1.png

essence of code

- any language understood by the computer
 - Commands vocabulary/keywords that initiate an action
 - run, print, for, while
 - Syntax order of words and uses of punctuation
 - print ("hello world")
 - Uses data as an "input" to produce an "output"
- most languages have similar keywords and syntax

fprintf ("A\n")	MATLAB	Output: A
print ("A")	Python	Output: A
cout <<"A";	C++	Output: A
print "(a10)", str	Fortran	Output: A

why so many tongues?

The History of Computer Tongues

https://www.thesoftwareguild.com/blog/history-of-programming-languages/

Secret Life of Machines Series

• Word Processors - https://tinyurl.com/e8av8scx

which language is most efficient

- depends on task/hardware
- depends on the programmer
 - https://www.researchgate.net/publication/320436353_Energy_efficiency_across_programming_languages_how_do_energy_time_and_memory_relate

fun "Brief History of Computers"

<u>https://www.lesswrong.com/posts/vfRpzyGsikujm9ujj/a-brief-history-of-computers</u>

Hardware differences - Structure, Purpose

FORTRAN - IBM 700 Series (1950-60s) - room-size, vacuum tubes

Hardware differences – Structure, Purpose

FORTRAN - IBM 1401 Series (1960s) - room-size, used vacuum tubes, punch cards, magnetic tape reels

IRM 1403	A and H Print	Arrangment

PRINT ARRANGEMENT		DEFINED CHARACTER	CARD	BCD CODE	ARRANG		DEFINED CHARACTER	CARD	BCD CODE	
A	Н		CODE		A H			CODE		
		Blank		С	G	G	G	12-7	BA 42	
			12-3-8	BA8 21	H	Н	Н	12-8	BA8	
н)	н	12-4-8	CBA84	1	1	1	12-9	CBA8	
		[Left Bracket (Special Character)	12-5-8	BA84 1	-	-	! (Minus Zero)	11-0	8 8 2	
		< Less Than (Special Character)	12-6-8	BA842	J	J	J	11-1	CB	
		Group Mark	12-7-8	C8A8421	K	K	K	11-2	CB 2	
&	+	&	12	CBA	L	L	L	11-3	B 2	
5	5	5	11-3-8	CB 8 21	M	M	M	11-4	CB 4	
		•	11-4-8	B 84	N	N	N	11-5	8 4	
		Right Bracket (Special Character)	11-5-8	CB 84 1	0	0	0	11-6	B 42	
		; Semicolon (Special Character)	11-6-8	CB 842	P	P	P	11-7	CB 42	
		△ Delta (Mode Change)	11-7-8	B 8421	Q	Q	Q	11-8	CB B	
-		-	11	В	R	R	R	11-9	B 8	
/	/	/	0-1	CA I			* Record Mark	0-2-8	A 8 2	
,	,	,	0-3-8	C A8 21	S	S	S	0-2	CA 2	
%	(%	0-4-8	A 8 4	T	T	T	0-3	A 2	
-		∨ Word Separator	0-5-8	C A84 1	U	U	U	0-4	C A 4	
-		\ (Special Character)	0-6-8	C A842	V	V	V	0-5	A 4	
-		* Tape Segment Mark	0-7-8	A 8 4 2 1	W	W	W	0-6	A 42	
+	+	& (Special Character)		A	X	X	X	0-7	C A 42	
	21	, ,	3-8	8 21	Y	Y	Y	0-8	C A8	
a		á	4-8	C 84	Z	Z	Z	0-9	A 8	
		: Colon (Special Character)	5-8	8 4 1	0	0	0	0	C 8 2	
		> Greater Than (Special Character)	6-8	8 4 2	1	1	1	1		
		√ Tape Mark	7-8	C 8421	2	2	2	2	2	
8.	&	? (Plus Zero)	12-0	CBA8 2	3	3	3	3	C 2	
A	A	A	12-1	BA 1	4	4	4	4	4	
В	В	В	12-2	BA 2 CBA 21	5	5	5	5	C 4	
C	C	C	12-3	CBA 21	6	6	6	6	C 42	
D	D	D	12-4	BA 4	7	7	7	7	42	
E	E	E	12-5	CBA 4 1	8	8	8	8	8	
F	F	F	12-6	CBA 42	9	9	9	9	C 8	

Hardware differences – Structure, Purpose

BASIC - Commodore (a.k.a. C-64, 1980s) - table-top machines, used microchips

Hardware differences – Structure, Purpose

BASIC - Tandy 100 (a.k.a. TRS-80, mid-1980s) - table-top or portable machines, used microchips

"levels" of languages

- "levels" of abstraction
 - complex metaphors
- Compiled vs. Interpreted

Control, efficiency, or ease-of-use

F

three traditional styles of language

Math-based

• Fortran oldest, least-intuitive, designed for to perform math (Formula Translation)

• MATLAB good for complexity, matrices

Object-based

• Go (Golang) similar to C, but uses safety features like "garbage collection"

• Python high-level language, being used for building games and hardware programming

• C++ general purpose with low-level memory manipulation, in the C family

• C# general purpose, used in Unity and robotics, in the C family

Specialized – Web, Data

• COBOL business-centered language, recently object-oriented

• Javascript smaller version of Java, used for web widgets like TinkerCAD

• HTML webpage coding usually in conjunction with XML, PHP and CSS

• Ruby on Rails webpage/app coding aimed at server-side platforms

SQL database management, used in loT applications (internet of things)

• Hadoop "big data" management language

what matlab can do

Data visualization, GUIs, Deep learning, 3D models for printing

using: loops, variables, matrices, add-ons, i/o

F

applications

PyTorch

Deep learning

3D models for printing

F

math-based language: MATLAB

- Common uses for MATLAB:
 - Math
 - Various processes from algebra and calculus to statistics
 - Matrices
 - Data in matrix-format can be processed
 - Plotting data
 - 2D graphs and charts, meshes (3D graphs)
 - Building an interface (GUI: graphic user interface)
 - Creating more intuitive methods of interaction to process the data

IDE

Integrated Development Environment

- what is it? an "all-inclusive resort" for your coding experience
 - Write/Edit
 - text editing
 - Compile/Run
 - translate into machine language and run your program
 - Troubleshoot/Debug
 - walk through your code line-by-line to make sure it will work
 - Integrations and plugins
 - add specific functionality for your project

IDE - offline = power

offline - free, complex install, harness computer power, plug-in option

Create a MATLAB account: https://www.mathworks.com/mwaccount/register

Student/Educator accounts should be free and/or tied to your institution.

Install MATLAB

https://www.mathworks.com/downloads/web_downloads

Installation Manual

https://www.mathworks.com/help/install/

IDE - online = convenience

online - free, easy, limited processing power

AND/OR - Work with MATLAB online

https://www.mathworks.com/products/matlab-online/limitations.html https://matlab.mathworks.com/

getting started - vocabulary

- Most common terms/extensions you might deal with are:
 - *IDE*
 - Integrated Development Environment
 - Software application for editing source code, running/testing the code (compiling), and debugging (fixing errors)
 - .m
 - MATLAB-specific text file that can be executed
 - Can be modified by a text-editor outside of the MATLAB IDE
 - .mlx
 - MATLAB-specific file that easily displays inline outputs and exports well for presentation formats
 - Optimized for the "Live Editor" found in the MATLAB IDE
 - .txt
 - A standard text document with unformatted plain text
 - Ideal for storing information that will be universal to most systems
 - .CSV
 - MS Excel file format for comma-separated or tab-separated data points
 - Easily read by MATLAB when importing data for plots and graphs
 - .png
 - Simplest file format for picture files
 - Used by MATLAB when saving images of plots and graphs

vocabulary

- Know this: "all writing is re-writing"
- REPL (read-evaluate-print loop) interactive language environment
- Function/Command print vs 'print' vs PRINT
- Constants fixed values
- Variables values that can change
 - Strings single or double quotation marks: >>> print('Howdy world')
 - Numbers
 - Letters
- Loops repeat this action "_" many times
 - when forever loop, keep doing this when this is true
 - for repeat this "_" many times, then move on
- if/elif/else
 - if if this is true, do this
 - elif otherwise, do this
 - else otherwise, do this and move on

La Trahison des images René Magritte, 1929

F

let's explore MATLAB

- Search in your Start menu for "MATLAB"
- Entering simple commands in the live code editor
- Searching for functions and help
- Start a new code file (.m) and "run" it
- Make a sample Excel file of data to import (.csv)
- Read file data and begin graphing

MATLAB - interface

IDE – Integrated Development Environment

• IDE - User interface for utilizing and editing in the language.

- Basic text editor
 - All elements are separate: graphs, code, etc.

- Live Editor
 - All outputs and graphs can be inline and exported as a pdf, LaTeX, word file, etc.

MATLAB – walkthrough topics

- Help! "lookfor"
- Variables
- Formatting output
- Array/Matrices
- Diary recording activities in the Command window into a file
- File creation/deletion, i/o
- Commenting %, %{, %}
- Simple data manipulation (.*, .+)
- Graphs! (2D, 3D, Labeling)

today's spiffy code

```
%{
% 2D graph of function
x=0:.1:4:
y=-2:.1:1;
[X,Y]=meshgrid(x,y);
Z=sin(X).*cos(Y);
contour(x,y,Z);
mesh(X,Y,Z);
% 3D graph of function
%}
%{
% Vertical 3D spiral
t=0:.1:5*pi;
r=exp(t/10);
x=r.*cos(t);
y=r.*sin(t);
z=t:
plot3(x,y,z);
%}
```

```
%{
% 2D Mandelbrot set plot
[X,Y]=meshgrid(-2:.015:.5,-1.25:.015:1.25);
C=X+j*Y;
                                                                  figure
W=100*ones(size(C));
Z=zeros(size(C));
for n=1:50,
                                                                  axis equal
  Z=Z.*Z+C:
                                                                  set(gca, 'xdir', 'reverse', 'ydir', 'reverse')
  h=find(abs(Z)<2):
  if ~isempty(h),
     W(h)=n*ones(size(h)):
  else
     break
  end:
end:
                                 x = \cos(\theta)^2 \sin(\theta) \cos(\phi), y = \cos(\theta)^2 \sin(\theta) \sin(\phi), z = \cos(\theta)^2 \cos(\theta)
clear CZ
pcolor(X,Y,W)
                                              -0.5
```

-0.2

```
% "ezmesh" for graphing 3D radiation intensity for 'U(theta)=cos(theta)^2'
fx = inline('cos(theta)^2*sin(theta)*cos(phi)');
fy = inline('cos(theta)^2*sin(theta)*sin(phi)');
fz = inline('cos(theta)^2*cos(theta)')
ezmesh(fx,fy,fz,[0 2*pi 0 pi],100)
colormap([0 0 0])
```


today's spiffy code - sources

Example 1. Quadratic Equation with loops and conditional functions-

- Chapra, Steven C. <u>Applied Numerical Methods with MATLAB for Engineers and Scientists</u> (2005). Print.
- Pages 47-49
- https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/1nr4jhr/01TTU_ALMA21141188370002611

Example 2. Mandelbrot set with "meshgrid"-

- Cavallo, Alberto., Roberto. Setola, and Francesco. Vasca. <u>Using MATLAB, Simulink, and Control System Toolbox : A Practical Approach</u> (1996). Print.
- Pages 79-83
- https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/f2u3nh/01TTU_ALMA21141319770002611

Example 3. "ezmesh" for 3D graphing of radiation intensity-

- Gross, Frank B. <u>Smart Antennas for Wireless Communications</u>: <u>With MATLAB</u> (2005). Print.
- Pages 45-46
- https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/1boli6j/01TTU_ALMA21180212890002611

Sample code - file i/o

Composed by combining deepai.org/chat and MATLAB's documentation

- Generate random number data set in different file formats
- Modify and output a comparison

```
% Generate random data
data = randi([0, 100], 10, 5);
data1 = randi([0, 255], 100, 500);
```

% Write data to .txt file - not recommended, use "writematrix" instead dlmwrite('random_data.txt', data)

% Write data to .txt file using 'writematrix' writematrix(data, 'random_data.txt')

% Write data to .csv file writematrix(data, 'random_data.csv')

% Write data to .png file imagesc(data1) saveas(gcf,'random_data.png')

% Write data to excel file writematrix(data, 'random_data.xlsx', 'Sheet', 1) data_txt = load('random_data.txt');
% Scalar multiplication
new_data_txt = data_txt .* 5;
% Dot product
dot_prod_txt = dot(data_txt(:,1), data_txt(:,2));
% Triangle matrix
L_txt = tril(data_txt);
% Identity matrix
L_txt = eye(size(data_txt));

% Load .txt file

% Plot original file
subplot(221)
imagesc(data_txt)
title('Original - txt file')
colorbar
% Plot result file
subplot(222)
imagesc(new_data_txt)
title('Scalar Multiplication - txt file')
colorbar

% Load .csv file data_csv = readmatrix('random_data.csv'); % Scalar multiplication new_data_csv = data_csv .* 10; % Dot product dot_prod_csv = dot(data_csv(:,1), data_csv(:,2)); % Triangle matrix L_csv = tril(data_csv); % Identity matrix l_csv = eye(size(data_csv));

% Plot original file subplot(223) imagesc(data_csv) title('Original - csv file') colorbar % Plot result file subplot(224) imagesc(new_data_csv) title('Scalar Multiplication - csv file') colorbar % Load .png file as grayscale
data_png = imread('random_data.png');
data_png = rgb2gray(data_png);
% Scalar multiplication
new_data_png = data_png .* 2;
% Dot product - bad code error
%dot_prod_png = dot(data_png(:,1), data_png(:,2));
% Triangle matrix
L_png = tril(double(data_png));
% Identity matrix
l_png = eye(size(data_png));

% Plot original file figure subplot(221) imshow(data_png) title('Original - png file') colorbar % Plot result file subplot(222) imshow(new_data_png) title('Scalar Multiplication - png file') colorbar

% Load .xlsx file
data_xlsx = readmatrix('random_data.xlsx', 'Sheet', 1);
% Scalar multiplication
new_data_xlsx = data_xlsx .* 3;
% Dot product
dot_prod_xlsx = dot(data_xlsx(:,1), data_xlsx(:,2));
% Triangle matrix
L_xlsx = tril(data_xlsx);
% Identity matrix
L_xlsx = eye(size(data_xlsx));

% Plot original file subplot(223) imagesc(data_xlsx) title('Original - xlsx file') colorbar % Plot result file subplot(224) imagesc(new_data_xlsx) title('Scalar Multiplication - xlsx file') colorbar

webinars - MATLAB

Webinars and Online Resources

Website hub for MATLAB: documentation, videos, examples, answers, downloads, etc. https://www.mathworks.com/support.html

Sample Webinars hosted by MATLAB

Explore a full tour that touches on a recent version of MATLAB (webinar: 5/30/2019) https://www.mathworks.com/videos/what_s-new-in-matlab-1509980095981.html

Sensor Fusion and Tracking for Automated Driving (webinar: 6/25/2019)

https://www.mathworks.com/videos/sensor-fusion-and-tracking-for-automated-driving-1562165146757.html

Data Science with MATLAB (webinar: 6/27/2019)

https://www.mathworks.com/videos/data-science-with-matlab-1562616258299.html

Image Processing

https://www.mathworks.com/help/images/

app-specific texts - MATLAB

Problem-based textbooks

MATLAB Recipes: A Problem-Solution Approach, Paluszek, Michael; Thomas, Stephanie; 2021

https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/1j33bpi/TN_cdi_safari_books_9781484261248

Practical MATLAB: With Modeling, Simulation, and Processing Projects, Turk, Irfan; 2019

https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/1j33bpi/TN_cdi_askewsholts_vlebooks_9781484252819

MATLAB and Simulink

Beginning MATLAB and Simulink: From Novice to Professional, Eshkabilov, Sulaymon; 2019

https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/1j33bpi/TN_cdi_askewsholts_vlebooks_9781484250617

MATLAB and R

R and MATLAB, Hiebeler, David E; 2015

https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/1j33bpi/TN_cdi_askewsholts_vlebooks_9781466568396

MATLAB and Machine Learning

MATLAB Machine Learning Recipes: A Problem-Solution Approach, Paluszek, Michael; Thomas, Stephanie; 2019

https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/1j33bpi/TN_cdi_askewsholts_vlebooks_9781484239162

resources - MATLAB

Forums/Listicles:

- https://stackoverflow.com
- https://www.tutorialspoint.com/matlab
- https://medium.com/quick-code/top-tutorials-to-learn-matlab-for-beginners-d19549ecb7b7
- https://www.analyticsvidhya.com/resources-learn-matlab-programming/

Various Application Walkthroughs

https://getreuer.info/posts/index.html

Youtube Channels/Video Tutorial/Course series:

- https://www.mathworks.com/learn/tutorials/matlab-onramp.html
- https://www.youtube.com/user/MATLAB
- https://blogs.mathworks.com/videos/
- https://www.youtube.com/watch?v=qGiKv3-02vw
- https://www.youtube.com/watch?v=6iN56l7dEMY&list=PLcKDPP0F93EvvBrgR852MU13zvS2ih
 <u>TpR</u>
- https://www.youtube.com/watch?v=B-SAMofba-o

more resources - MATLAB

Youtube Channels/Video Tutorial/Course series (contin):

- https://www.youtube.com/watch?v=fjSGtiPb-YY
- Simulink
 - https://www.youtube.com/watch?v=i0mqgewj5Xl
- Robotics
 - https://www.youtube.com/watch?v=BwNw_-KXjbM
- Analysis
 - https://www.youtube.com/watch?v=ehh7pnbTnYo
- GUI (Graphic User Interface)
 - https://www.youtube.com/watch?v=Ta1uhGEJFBE

AI + MATLAB

https://www.mathworks.com/solutions/artificial-intelligence.html

Not Free (TTU may have free access to "udemy"):

- https://www.udemy.com/topic/matlab/
- https://hackr.io/tutorials/learn-matlab

forum-style resources - MATLAB

Mathworks blog:

https://blogs.mathworks.com/community/

Mathworks' MATLAB Central - Answers:

https://www.mathworks.com/matlabcentral/answers/index

Discord app - MATLAB server (free for desktop/mobile platforms):

https://discord.gg/bBMbNCT

Reddit (as reliable as reddit can be):

https://www.reddit.com/r/matlab/

WholsHostingThis (MATLAB blog entry):

https://www.whoishostingthis.com/resources/math-languages/

events - MATLAB

"MATLAB & Simulink Academic Events and Resources" Newsletter

Opt-in and opt-out by modifying your Communication Preferences in your MathWorks Profile

https://www.mathworks.com/company/events.html

MATLAB EXPO, November 13-14, 2024 – online proceedings MATLAB EXPO, May 10-11, 2023 – online proceedings

https://www.matlabexpo.com/

https://www.matlabexpo.com/online/2024.html

https://www.matlabexpo.com/online/2023.html

https://eventsonline.mathworks.com/series/matlab-expo-2021/overview

3D printing your data

- MATLAB script to create 3D-printable objects from 2D functions https://web.mst.edu/~dawesr/assets/3d_printing_tutorial.pdf
- 3D mesh plot and exporting it into an STL file (3D printable file) https://community.wolfram.com/groups/-/m/t/139463

surf2solid add-on

- Anamorphic 3D Printing using MATLAB
 https://blogs.mathworks.com/community/2013/07/09/anamorphic-3d-printing/
- "surf2solid" function is now an add-on for MATLAB (as of R2013a)
 thicken with offset
 block a surface with a flat base
 https://www.mathworks.com/matlabcentral/fileexchange/42876-surf2solid-make-a-solid-volume-from-a-surface-for-3d-printing

moving forward

- The Staff and Student Assistants in the Makerspace are here to help!
- There are O'Reilly video and text tutorials available to help learn the more advanced software (Python, MATLAB, Arduino, etc.) through Library

Databases: Search for "oreilly":

O'Reilly for Higher Education

Online access [2]

• Click "Online access" @

https://ttu-primo.hosted.exlibrisgroup.com/permalink/f/19r5ufk/01TTU_ALMA61293358880002611

Additional Resources:

- https://www.youtube.com/watch?v=jTS5ZmrrzMs
- https://www.mathworks.com/academia/educators.html?s_tid=hp_teach_educator

LabView/MATLAB:

- https://www.mathworks.com/products/connections/product_detail/labview.html
- https://zone.ni.com/reference/en-XX/help/371361R-01/lvhowto/creating_a_matlab_script/

projects galore

project-sharing websites (some require membership)

https://learn.adafruit.com/

https://adafruit-playground.com

https://projecthub.arduino.cc/

https://www.hackster.io/

https://www.instructables.com/

https://hackaday.io/

https://make.co/

https://github.com/adafruit/circuitpython-weekly-newsletter-archive

https://magpi.raspberrypi.com/issues/128/

Support/Forums/Discord

- MATLAB discord server
 - https://discord.com/invite/matlab

thank you!

please share your projects and progress!
'Make with MATLAB' with Instructor Sean Scully review this workshop here:

https://ttu.libwizard.com/f/workshop-eval-24-25_emerging_tech

F

thank you!

please share your projects and progress!

'Make with MATLAB' with Instructor Sean Scully review this workshop here:

https://ttu.libwizard.com/f/workshop-eval-24-25_emerging_tech

Lead Administrator - sean.scully@ttu.edu

Assoc. Librarian - jake.syma@ttu.edu

Makerspace - make@ttu.edu

Director/Librarian - ryan.cassidy@ttu.edu

Workshops - https://guides.library.ttu.edu/make

