COMP90051 Statistical Machine Learning Semester 2, 2015

Probability Inference on Bayesian Network

PGM: Probability Inference

- Three different categories of random variables given the query P(E = T | J = T, M = T) = ?
 - * Query variables: Earthquake
 - * Evidence (observed) variables and their values: JohnCalls, MaryCalls
 - Unobserved (hidden/latent) variables: Burglary, Alarm
- Inference problem: answer questions about the query variables given the evidence variables
- Approaches
 - * Enumeration
 - Elimination Algorithm
 - MCMC (an approximation method)

Example: Probability Inference

Compute the probability that there is an earthquake given both John and Mary call.

$$P(E = T \mid J = T, M = T) = ?$$

Preliminary

- $P(E|j,m) = \alpha P(E,j,m)$
 - * Lower case j, m denote J = Ture and m = Ture
 - * We use P(E|j,m) instead of P(e|j,m) here because we calculate both E = true and E = false together
 - * α denotes normalization constant
- $P(E,j,m) = \sum_{a} \sum_{b} P(E,j,m,b,a)$
 - Lower case a, b denote the marginalisation of all possible values of A and B

Joint Likelihood

 We obtain the joint likelihood of the random variables from our PGM structure:

• $P(E,j,m) = \sum_{a} \sum_{b} P(E,j,m,b,a) = \sum_{a} \sum_{b} P(b)P(E)P(a|b,E)P(j|a)P(m|a)$

• $\sum_{a}\sum_{b}P(b)P(E)P(a|b,E)P(j|a)P(m|a) = P(b)P(E)P(a|b,E)P(j|a)P(m|a) +$

•
$$\sum_{a}\sum_{b}P(b)P(E)P(a|b,E)P(j|a)P(m|a) = P(b)P(E)P(a|b,E)P(j|a)P(m|a) + P(\neg b)P(E)P(a|\neg b,E)P(j|a)P(m|a) +$$

```
• \sum_{a}\sum_{b}P(b)P(E)P(a|b,E)P(j|a)P(m|a) = P(b)P(E)P(a|b,E)P(j|a)P(m|a) + P(\neg b)P(E)P(a|\neg b,E)P(j|a)P(m|a) + P(b)P(E)P(\neg a|b,E)P(j|\neg a)P(m|\neg a) + P(\neg b)P(E)P(\neg a|b,E)P(j|\neg a)P(m|\neg a)
```

•
$$\sum_{a}\sum_{b}P(b)P(E)P(a|b,E)P(j|a)P(m|a) = P(b)P(E)P(a|b,E)P(j|a)P(m|a) + P(\neg b)P(E)P(a|\neg b,E)P(j|a)P(m|a) + P(b)P(E)P(\neg a|b,E)P(j|\neg a)P(m|\neg a) + P(\neg b)P(E)P(\neg a|b,E)P(j|\neg a)P(m|\neg a)$$

Done! Plug in the numbers from the CPTs

•
$$\sum_{a}\sum_{b}P(b)P(E)P(a|b,E)P(j|a)P(m|a) = P(b)P(E)P(a|b,E)P(j|a)P(m|a) + P(\neg b)P(E)P(a|\neg b,E)P(j|a)P(m|a) + P(b)P(E)P(\neg a|b,E)P(j|\neg a)P(m|\neg a) + P(\neg b)P(E)P(\neg a|b,E)P(j|\neg a)P(m|\neg a)$$

Done! Plug in the numbers from the CPTs

Slow, the top-down computation has duplicate subcomputation, e.g. $P(j|a) \times P(m|a)$

Improve it a Little Bit

• Well, as you can see P(E) is just a constant for $\sum_a \sum_b$, we can save a little bit time by reordering the multiplications and pushing the Σ s inward:

```
• \sum_{a}\sum_{b}P(b)P(E)P(a|b,E)P(j|a)P(m|a) = P(E)\sum_{b}P(b)\sum_{a}P(a|b,E)P(j|a)P(m|a)

= P(E)(

P(b)(P(a|b,E)P(j|a)P(m|a) + 

P(\neg a|b,E)P(j|\neg a)P(m|\neg a)) + 

P(\neg b)(P(a|\neg b,E)P(j|a)P(m|a) + 

P(\neg a|\neg b,E)P(j|\neg a)P(m|\neg a))

)
```

Variable Elimination Algorithm

- A form of dynamic programming approach
 - Using factor tables to store the immediate results
- Two key operations:
 - * Multiplication
 - * Marginalisation
- $P(E)\sum_{b}P(b)\sum_{a}P(a|b,E)P(j|a)P(m|a) = f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{I}(A)f_{M}(A)$

Factor Tables

The initial factor tables are the reformatted CPTs:

В	$f_B(B)$
T	0.01
F	0.99

E	$f_E(E)$
T	0.02
F	0.98

A	В	Е	$f_A(A,B,E)$
Т	T	T	0 .95
Т	Т	F	0 .94
Т	F	T	0.29
Т	F	F	0.001
F	Т	T	0 .05
F	Т	F	0.06
F	F	T	0 .71
F	F	F	0 .999

	_
\boldsymbol{A}	$f_{J}(A)$
Т	0.9
F	0.05

A	$f_M(A)$
T	0.7
F	0.01

Factor Tables

The initial factor tables are the reformatted CPTs:

В	$f_B(B)$
T	0.01
F	0.99

E	$f_E(E)$
T	0.02
F	0.98

A	В	Е	$f_A(A,B,E)$
Т	T	T	0 .95
Т	Т	F	0 .94
Т	F	T	0.29
Т	F	F	0.001
F	Т	T	0 .05
F	Т	F	0.06
F	F	T	0 .71
F	F	F	0 .999

	_
\boldsymbol{A}	$f_{J}(A)$
Т	0.9
F	0.05

A	$f_{M}(A)$
T	0.7
F	0.01

We only have one random variable in $f_J(A)$ and $f_M(A)$ because j and m are known values (evidence)

Bottom-up Computation:

$$f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{J}(A)f_{M}(A)$$

$$= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{JM}(A)$$

$$f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{J}(A)f_{M}(A)$$

$$= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{JM}(A)$$

$$= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{AJM}(A,B,E)$$

```
f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{J}(A)f_{M}(A)
= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{JM}(A)
= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{AJM}(A,B,E)
= f_{E}(E)\sum_{b}f_{B}(B)f_{AJM}(A,B,E)
```

```
f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{J}(A)f_{M}(A)
= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{JM}(A)
= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{AJM}(A,B,E)
= f_{E}(E)\sum_{b}f_{B}(B)f_{AJM}(A,B,E)
= f_{E}(E)\sum_{b}f_{BAJM}(B,E)
```

```
f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{J}(A)f_{M}(A)
= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{JM}(A)
= f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{AJM}(A,B,E)
= f_{E}(E)\sum_{b}f_{B}(B)f_{AJM}(A,B,E)
= f_{E}(E)\sum_{b}f_{BAJM}(B,E)
= f_{E}(E)f_{BAJM}(E)
```

```
f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{J}(A)f_{M}(A)
=f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{A}(A,B,E)f_{JM}(A)
=f_{E}(E)\sum_{b}f_{B}(B)\sum_{a}f_{AJM}(A,B,E)
=f_{E}(E)\sum_{b}f_{B}(B)f_{AJM}(A,B,E)
=f_{E}(E)\sum_{b}f_{BAJM}(B,E)
=f_{E}(E)f_{BAJM}(E)
=f_{EBAJM}(E)
```

• A multiplication: $f_{JM}(A) = f_J(A)f_M(A)$: (think about the natural join on database tables)

A	$f_{JM}(A)$	
T		=
F		

A	$f_{J}(A)$
T	0.9
F	0.05

A	$f_M(A)$
T	0.7
F	0.01

=

• A multiplication: $f_{JM}(A) = f_J(A)f_M(A)$: (think about the natural join on database tables)

A	$f_{JM}(A)$
T	.9×.7
F	$.05 \times .01$

	A	$f_{J}(A)$
=	T	0.9
	F	0.05

A	$f_M(A)$
T	0.7
F	0.01

=

• $f_{AJM}(A, B, E) = f_A(A, B, E) f_{JM}(A)$

A	В	Е	$f_{AJM}(A,B,E)$
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

A	В	Е	$f_A(A,B,E)$
T	T	T	0 .95
T	T	F	0 .94
T	F	T	0 .29
T	F	F	0.001
F	T	T	0 .05
F	T	F	0 .06
F	F	T	0 .71
F	F	F	0 .999

A	$f_{JM}(A)$
T	.63
F	.0005

• $f_{AJM}(A, B, E) = f_A(A, B, E) f_{JM}(A)$

A	В	Е	$f_{AJM}(A,B,E)$
T	T	T	.95 × .63
T	T	F	.94 × .63
T	F	T	.29 × .63
T	F	F	.001 × .63
F	T	T	$.05 \times .0005$
F	T	F	.06 × .0005
F	F	T	.71 × .0005
F	F	F	.999 × .0005

A	В	Е	$f_A(A,B,E)$
T	T	T	0 .95
T	T	F	0 .94
T	F	T	0 .29
T	F	F	0.001
F	T	T	0 .05
F	T	F	0 .06
F	F	T	0 .71
F	F	F	0 .999

A	$f_{JM}(A)$
T	.63
F	.0005

=

• A marginalisation on $A: \sum_a f_{AJM}(A,B,E) = f_{AJM}(A,B,E)$ (add up the numbers with same B,E but different A)

A	В	Е	$f_{AJM}(A,B,E)$
T	T	T	.95 × .63
T	T	F	.94 × .63
T	F	T	.29 × .63
T	F	F	.001 × .63
F	T	T	.05 × .0005
F	T	F	.06 × .0005
F	F	T	.71 × .0005
F	F	F	.999 × .0005

• A marginalisation on $A: \sum_a f_{AJM}(A,B,E) = f_{AJM}(A,B,E)$ (add up the numbers with same B,E but different A)

A	В	Е	$f_{AJM}(A,B,E)$
T	T	T	.95 × .63
T	T	F	.94 × .63
T	F	T	.29 × .63
T	F	F	.001 × .63
F	T	T	.05 × .0005
F	T	F	.06 × .0005
F	F	T	.71 × .0005
F	F	F	.999 × .0005

В	Е	$f_{\underline{A}JM}(A,B,E)$
T	T	$.95 \times .63 + .05 \times .0005$
T	F	$.94 \times .63 + .06 \times .0005$
F	T	$.29 \times .63 + .71 \times .0005$
F	F	$.001 \times .63 + .999 \times .0005$

• $f_{BAJM}(B, E)$

В	Е	$f_{BAJM}(B,E)$
T	T	
T	F	
F	T	
F	F	

В	Е	$f_{\underline{A}JM}(A,B,E)$
T	T	.5985
T	F	.5922
F	T	.183
F	F	.001129

• $f_{BAJM}(B, E)$

В	Е	$f_{BAJM}(B,E)$
T	T	.01 × .5985
T	F	.01 × .5922
F	T	.99 × .183
F	F	.99 × .001129

В	Е	$f_{\underline{A}JM}(A,B,E)$
T	T	.5985
T	F	.5922
F	T	.183
F	F	.001129

• $f_{BAJM}(E)$

В	Е	$f_{BAJM}(B,E)$	
T	T	.01 × .5985	
T	F	.01 × .5922	
F	T	.99 × .183	
F	F	.99 × .001129	

• $f_{BAJM}(E)$

В	E	$f_{B\underline{A}JM}(B,E)$
T	T	.01 × .5985
T	F	.01 × .5922
F	T	.99 × .183
F	F	.99 × .001129

Е	$f_{\underline{BAJM}}(B,E)$
T	$.01 \times .5985 + .99 \times .183 = 0.1872$
F	$.01 \times .5922 + .99 \times .001129 = 0.0070$

• $f_{EBAJM}(E)$

Е	$f_{EBAJM}(E)$
T	$.02 \times .1872 = .0037$
F	$.98 \times .0070 = .0069$

\boldsymbol{E}	$f_E(E)$
T	.02
F	.98

E	$f_{BAJM}(B,E)$
T	.1872
F	.0070

• $f_{EBAJM}(E)$

Е	$f_{EBAJM}(E)$
T	$.02 \times .1872 = .0037$
F	$.98 \times .0070 = .0069$

$$\begin{array}{c|c}
E & f_E(E) \\
\hline
T & .02 \\
\hline
F & .98 \\
\end{array}$$

Е	$f_{BAJM}(B,E)$
T	.1872
F	.0070

One more step: normalisation:

$$P(e|j,m) = 0.0037/(0.0037 + 0.0069) = 0.3491$$

Reference

- [1] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach 3rd Edition.
- [2] Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence 2nd Edition
- [3] Some slides were derived from UIUC Artificial Intelligence (CS440/ECE448)