EE340: Communications Laboratory

Prelab Material

Lab 6: Non-linearity and its effects in communication systems

Non-linear Systems

- Linear Systems: Satisfy superposition principle
- However, any practical system is non-linear (amount of non-linearity may vary)
- Non-linearity results in generation of "new frequency components" – i.e. frequency components that are not there at the input of the system.
- Memoryless non-linearity can be modeled as:

$$y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t) + a_4 x^4(t) \dots$$

 Memoryless means present output depends only on the present output (also see Appendix – last slide)

Effects of Non-Linearity

Consider a simplified non-linear system described by

$$y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t)$$
For $x(t) = A\cos(\omega t)$,
$$y(t) = \frac{1}{2} a_2 A^2 + \left(a_1 + \frac{3}{4} a_3 A^2\right) A\cos(\omega t) + \frac{1}{2} a_2 A^2 \cos(2\omega t) + \frac{1}{4} a_3 A^3 \cos(3\omega t)$$

Important observations:

Second order non-linearity (a, coefficient):

Adds DC + 2nd harmonic

$$\frac{1}{2}a_2A^2(1+\cos(2\omega t))$$

Third order non-linearity (a₃ coefficient):

Also, a_3 is generally negative => gain compression with increasing A

Second Order Non-Linearity

Consider a non-linear system described by

$$y(t) = a_1 x(t) + a_2 x^2(t);$$
 \Rightarrow For $x = A(\cos \omega_1 t + \cos \omega_2 t):$

$$y(t) = a_2 A^2 + a_1 A \left(\cos(\omega_1 t) + \cos(\omega_2 t)\right) + a_2 A^2 \left(\frac{\cos(2\omega_1 t) + \cos(2\omega_2 t)}{2} + \cos((\omega_1 - \omega_2)t)\right) + \cos((\omega_1 + \omega_2)t)\right)$$

The undesired spectral components generated due to the second order non-linearity coefficent a_2 at frequencies 0, $2\omega_1$, $2\omega_2$, $2(\omega_1-\omega_2)$ and $2(\omega_1+\omega_2)$ are called IM2 (Inter-Modulation products due to 2^{nd} order non-linearity) components

Observations:

IIP2 = Pin + Δ (dB scale)

OIP2 = Pin + Δ + Gain (dB scale)

Input (dB scale)

Second Order Non-Linearity

More observations:

Sub-octave: $f_H < 2f_L$ (i.e. $BW < f_L$)

- No in-band IM2 distortion –out-ofband IM2 components can easily be filtered out
- DC components can sometimes cause amplifier saturation

Multi-octave: $f_H > 2f_L$ (i.e. BW > f_L)

- In-band IM2 distortion present, can't be filtered out
- DC components may cause amplifier saturation

Third Order Non-Linearity

Consider a non-linear system described by

$$y(t) = a_1 x(t) + a_3 x^3(t); \Rightarrow \text{For } x(t) = A \cos(\omega_1 t) + A \cos(\omega_2 t):$$

$$y(t) = A \left(a_1 + \frac{9a_3 A^2}{4} \right) \left(\cos(\omega_1 t) + \cos(\omega_2 t) \right) + \frac{1}{4} a_3 A^3 \left(\cos(3\omega_1 t) + \cos(3\omega_2 t) \right)$$

$$+ \frac{3}{4} a_3 A^3 \left[\cos((2\omega_1 - \omega_2)t) + \cos((2\omega_1 + \omega_2)t) + \cos((2\omega_2 - \omega_1)t) + \cos((2\omega_2 + \omega_1)t) \right]$$

Observations:

Generates in-band/adjacent band, out-of-band components, but no DC

IIP3 = Pin +
$$\Delta/2$$
 (dB scale)
OIP3 = Pin + $\Delta/2$ + Gain (dB scale)

Third Order Non-linearity

- The figure above shows the undesired spectrum generated by 3^{rd} order non-linearity (i.e. due to non-zero a_3 co-efficient)
- The undesired spectrum generated is called IM3 component, i.e. Inter-Modulation products due to 3rd order non-linearity component.
- Due to 3rd or odd order non-linearities (unlike 2nd or even order non-linearities), part of the spectrum is in-band and hence CANNOT be removed by filtering even for narrow-band inputs.
- Therefore, effects of 3rd (or odd) order non-linearities are more difficult to remove in general (then of even order non-linearities).

Compression Point and Jamming

1-dB compression point: Amplitude (A_{-1dB}) at which gain decreases by 1-dB (without interferer) – because a_3 is "almost always" negative.

$$20\log\left[\frac{\left(a_{1} + \frac{3}{4}a_{3}A_{-1dB}^{2}\right)A_{-1dB}}{a_{1}A_{-1dB}}\right] = -1 \,\mathrm{dB} \quad \Rightarrow A_{-1dB} \approx 0.40\sqrt{\frac{a_{1}}{a_{3}}}$$

Jamming / Blocking / Desensitization

For
$$x(t) = A\cos(\omega t) + B\cos(\omega_1 t)$$
,
$$y(t) = \left(a_1 + \frac{3}{4}a_3A^2 + \frac{3}{2}a_3B^2\right)A\cos(\omega t) + \text{other terms}$$

- Therefore, if interferer amplitude B>>A, the receiver is jammed
- The transmitter can jam the receiver if they are operating concurrently, for example in full duplex systems (and isolation is poor)

APPENDIX: Real Systems are not memory-less or linear: Non-linear dynamical behaviour

Transfer function of a dynamic non-linear system

Very complex, commonly expressed as the Volterra series

$$y(t) = a_0 + \sum_{n=1}^{\infty} \frac{1}{n!} \int_{0}^{\infty} \dots \int_{0}^{\infty} a_n(\tau_1, \tau_2, \dots, \tau_n) x(t - \tau_1) x(t - \tau_2) \dots x(t - \tau_n) d\tau_1 d\tau_1 \dots d\tau_n$$

 a_n is called the nth order Volterra kernel

Therefore, a 2nd order dynamic non-linear system can be modeled as

$$y(t) = a_0 + \int_0^\infty a_1(\tau_1)x(t-\tau_1)d\tau_1 + \frac{1}{2}\int_0^\infty \int_0^\infty a_2(\tau_1,\tau_2)x(t-\tau_1)x(t-\tau_2)d\tau_1d\tau_2$$