1 Determinanti e matrici inverse

1. Calcolare il determinante delle seguenti matrici:

(a)
$$\begin{pmatrix} 2 & 6 \\ 4 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 5 & 1 \\ 3 & -2 \end{pmatrix}$, $\begin{pmatrix} a-b & a \\ b & a+b \end{pmatrix}$;
(b) $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -2 \\ 3 & -1 & 4 \end{pmatrix}$, $\begin{pmatrix} 5 & 1 & -2 \\ 1 & 0 & 3 \\ 1 & 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & -1 \\ -2 & 3 & -2 \\ 6 & 5 & -2 \end{pmatrix}$;
(c) $\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & -2 & 1 \\ 2 & -1 & 4 & 3 \\ 0 & 1 & 1 & -1 \end{pmatrix}$, $\begin{pmatrix} 2 & -1 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 0 & -5 & 4 & 3 \\ 1 & -4 & 5 & -1 \end{pmatrix}$.

- 2. Calcolare l'inversa, quando esiste, delle matrici dell'esercizio 1.
- 3. Calcolare l'inversa delle seguenti matrici:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & -4 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 5
\end{pmatrix}, \quad
\begin{pmatrix}
\sqrt{2} & 0 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{5} & 0 \\
0 & 0 & 0 & 0 & 5
\end{pmatrix}.$$

4. Dire per quali valori reali del parametro k le seguenti matrici sono invertibili:

$$\left(\begin{array}{ccc} 2 & k & 0 \\ 0 & 0 & k \\ 1 & 1 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} k & k & 0 \\ 1 & 0 & k \\ 1 & 0 & 1 \end{array}\right), \quad \left(\begin{array}{ccc} k & 0 & 1 \\ 1 & 1 & k \\ 1 & 0 & 2 \end{array}\right).$$

- 5. Calcolare il determinante delle seguenti matrici:
 - (a) $\det(AB^{-1})$, con $A, B \in M_7(\mathbb{R})$, $\det(A) = 2$, $\det(B) = 7$;
 - (b) $\det(AC^TB^{-1})$, con $A, B \in M_3(\mathbb{R})$, $\det(A) = 1$, $\det(B) = -2$, C = 2A;
 - (c) $\det(A(CB)^{-1})$, con $A, B \in M_2(\mathbb{R})$, $\det(A) = 3$, $\det(B) = -4$, C = -3A;
 - (d) $\det(-3(A^TB)^{-1})$, con $A, B \in M_3(\mathbb{R})$, $\det(A) = 2$, $\det(B) = -1$;
 - (e) $\det((A^T B)^{-1}C)$, con $A, B \in M_2(\mathbb{R})$, $\det(A) = \frac{1}{2}$, $\det(B) = -\frac{1}{4}$, C = 2A;

Soluzioni

1. (a)
$$-22$$
, -14 , $a^2 - b^2 - ab$.

(b)
$$-5$$
, -13 , 0 .

(c)
$$-19$$
, -171 .

2. (a)
$$-\frac{1}{22}\begin{pmatrix} 1 & -6 \\ -4 & 2 \end{pmatrix}$$
, $\frac{1}{14}\begin{pmatrix} 2 & 1 \\ 3 & -5 \end{pmatrix}$, $\frac{1}{a^2-b^2-ab}\begin{pmatrix} a+b & -a \\ -b & a-b \end{pmatrix}$
(b) $-\frac{1}{5}\begin{pmatrix} 2 & -5 & -3 \\ -6 & 5 & 4 \\ -3 & 5 & 2 \end{pmatrix}$, $-\frac{1}{13}\begin{pmatrix} -3 & -1 & 3 \\ 4 & -3 & -17 \\ 1 & -4 & -1 \end{pmatrix}$, non esiste.

(c)
$$\frac{1}{19} \begin{pmatrix} 23 & 9 & -2 & 3 \\ -2 & 5 & 1 & 8 \\ -6 & -4 & 3 & 5 \\ -8 & 1 & 4 & -6 \end{pmatrix}$$
, $\frac{1}{171} \begin{pmatrix} 76 & 19 & 0 & 0 \\ -76 & 38 & 0 & 0 \\ -29 & 31 & 9 & 27 \\ 7 & 22 & 45 & -36 \end{pmatrix}$.

3.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{5} \end{pmatrix}, \qquad \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{7} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{5} \end{pmatrix}.$$

4.
$$k \neq 0, 2, k \neq 0, 1, k \neq \frac{1}{2}$$
.

5. (a)
$$\frac{2}{7}$$
, (b) -4 , (c) $-\frac{1}{36}$, (d) $\frac{27}{2}$, (e) -16 .