NAME: L	NIF:	

<u>The Power System – T3: Transmission and distribution of electricity</u> <u>Exam 12/01/2018</u> <u>Time: 17:00 – 17:50 h</u>

Part I: TEST A (provide your answers to the questions at the table at the end of this page) One correct answer for each question. Right answer: +1 pt. Wrong answer: -1/3 pt. Blank: = 0 pt. (10 points)

- 1. Power losses in HVDC in comparison to HVAC when transmitting the same power:
- A. Are lower
- B. Are higher
- C. Are equal
- D. Are irrelevant
- 2. Which sentence is true regarding AC power lines?
- A. Undergrounded AC power lines length are limited to transmit power due to the their inductance
- B. Overhead AC power lines length are limited to transmit power due to their capacitance
- C. Undergrounded AC power lines length are limited to transmit power due to the their capacitance
- Undergrounded AC power lines permit to transmit an amount of power longer distances than an overhead power line
- 3. Load flow studies permit to
- A. Determine the electrical parameters of power lines
- B. Determine the value and angle of bus voltages
- C. Determine the power demanded
- D. Determine the network topology
- 4. Which sentence can be applied to AC transmission networks?
- A. They are radial and power lines are at HV level
- B. They are meshed and power lines are at LV level
- C. They are radial and power lines are at MV level
- D. They are meshed and power lines are at HV level
- 5. The equivalent inductance of a power line is a parameter that is given by:
- A. Electric field
- B. Resistivity of the conductor
- C. Magnetic field
- D. Leaking currents

- 6. Which is false? Power flow through AC transmission power lines can be controlled in AC power system:
- A. Modifying the voltage phase shifting between origin and end
- B. Modifying the resistance of the power line
- C. Modifying the reactance of the power line
- D. Modifying the voltage amplitude at origin and end
- 7. Which sentence is true regarding AC power lines?
- A. Two power lines with different voltage frequency can be connected directly
- B. Lightning conductor is used in undergrounded power lines
- C. Each phase can be formed of different conductors
- D. A power line can only consist of one 3-phase circuit
- 8. Power losses in power lines depend on:
- A. Resistance of power line conductor and current through power line
- B. Square of voltage of power line and resistance of power line conductor
- C. Square of current through power line and resistance of power line
- D. Square of resistance of power line conductor and current through power line
- 9. Power system operator is not responsible for
- A. International connections
- B. Daily market
- C. Technical restrictions
- D. Grid codes
- 10. Which sentence is true?
- A. In HVDC substations are cheaper than in HVAC
- B. In HVDC power lines are more expensive than in HVAC
- C. In HVAC power lines are narrower than in HVDC
- D. In HVAC substations are cheaper than in HVDC

Question	1	2	3	4	5	6	7	8	9	10
Answer										

Formulas for exercises:

- Single line:
$$R = R_{cond}$$
 $L = 0.2 \cdot \ln \frac{GMD}{GMR} [mH/km]$ $C = \frac{1000}{18 \ln \frac{GMD}{r_{cond}}} [nF/km]$ $GMD = \sqrt[3]{d_{AB}d_{BC}d_{CA}}$ $GMR = k_g r_{cond}$

- Double line:
$$R = \frac{R_{cond}}{2}$$
 $L = 0.2 \cdot \ln \frac{GMD}{GMR} [mH/km]$ $C = \frac{1000}{18 \ln \frac{GMD}{R_{eq}}} [nF/km]$ $GMD = \sqrt[3]{GMD_{AB}GMD_{BC}GMD_{CA}}$

$$GMD_{ij} = \sqrt[4]{\prod d_{i-j}} \qquad GMR = \sqrt[3]{GMR_AGMR_BGMR_C} \qquad GMR_i = \sqrt[2]{k_g r_{cond} d_{i-i'}} \qquad \qquad R_{eq} = \sqrt[3]{R_{eqA} R_{eqB} R_{eqC}} \qquad \qquad R_{eqi} = \sqrt[2]{r_{cond} d_{i-i'}}$$

- Bundle line:
$$R = \frac{R_{cond}}{n}$$
 $L = 0.2 \cdot \ln \frac{GMD}{GMR} [mH/km]$ $C = \frac{1000}{18 \ln \frac{GMD}{R_{eq}}} [nF/km]$

$$GMD = \sqrt[3]{d_{AB}d_{BC}d_{CA}} \qquad GMR = \sqrt[n]{nk_{g}r_{cond}r_{bundle}^{n-1}} \qquad r_{bundle} = \frac{d_{bundle}}{2\sin\frac{\pi}{n}} \qquad R_{eq} = \sqrt[n]{nr_{cond}r_{bundle}^{n-1}}$$

- Transmission equation:
$$\begin{pmatrix} \underline{V}_{in(s)} \\ \underline{I}_{in} \end{pmatrix} = \begin{pmatrix} \underline{A}_{11} & \underline{A}_{12} \\ \underline{A}_{21} & \underline{A}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{V}_{out(s)} \\ \underline{I}_{out} \end{pmatrix}$$

$$\underline{S}_{out} = 3\underline{V}_{out(s)}\underline{I}_{out}^* = \sqrt{3}\underline{V}_{out(l)}\underline{I}_{out}^* = P_{out} + jQ_{out}$$

$$\underline{S}_{in} = 3\underline{V}_{in(s)}\underline{I}_{in}^* = \sqrt{3}\underline{V}_{in(l)}\underline{I}_{in}^* = P_{in} + jQ_{in}$$

$$\Delta v = \frac{V_o - V_f}{V_{ref}}100$$

$$PF = \frac{P}{S}$$

$$\eta = \frac{P_{out}}{P_{in}}100$$

$$\underline{V} = V \angle \alpha$$

$$\underline{V}_{(l)} = \sqrt{3}\underline{V}_{(s)}$$

ref	S I in		
	Long line	Medium line	Short line
	$\underline{A}_{11} = \underline{A}_{22} = \cosh(\underline{\Theta})$	$\underline{A}_{11} = \underline{A}_{22} = 1 + \frac{\underline{Z}_t \underline{Y}_t}{2}$	$\underline{A}_{11} = \underline{A}_{22} = 1$
	$I_{12} = Z_c \operatorname{SHII}(O)$	$\underline{A}_{11} - \underline{A}_{22} - 1 + \underline{_{22}}$	$\underline{A}_{12} = \underline{Z}_t$
	$\underline{A}_{21} = \frac{\sinh(\underline{\Theta})}{\underline{Z}_c}$	$\underline{A}_{12} = \underline{Z}_t$	$\frac{A_{21}}{A_{21}} = 0$
	\underline{Z}_{21} \underline{Z}_{c}	$Y_{\cdot}^{2}Z_{\cdot}$	$\underline{Z}_{t} = (R + j\omega L)l$
	$Z = \sqrt{\underline{Z}} - \sqrt{R + j\omega L}$	$\underline{A}_{21} = \underline{Y}_t + \frac{\underline{Y}_t^2 \underline{Z}_t}{4}$	$\underline{\underline{Z}}_t = (K + f\omega L)t$
	$\underline{Z}_{c} = \sqrt{\frac{\underline{Z}}{\underline{Y}}} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$	$\underline{Z}_{t} = (R + j\omega L)l$	
	$\underline{\Theta} = \underline{\beta}l = l\sqrt{(R + j\omega L)(G + j\omega C)}$	$\underline{Y}_{t} = (G + j\omega C)l$	
	$\beta = \sqrt{\underline{Z}\underline{Y}} = \sqrt{(R + j\omega L)(G + j\omega C)}$		

]	
NAME:	NIF:	

<u>The Power System – T3: Transmission and distribution of electricity</u> <u>Exam 10/01/2017 Time: 17:00 – 17:55 h</u>

Part II: EXERCISES A (10 points)

The power line of the figure is 200 km long and its rated voltage is 400 kV. Its conductor has the following characteristics: 54 Al + 7 Steel wires (k_g =0,809), outer diameter 30,42 mm, R_{ca} = 0,062 Ω /km. Calculate:

- A. The resistance, inductance and capacitance per length
- B. Its transmission matrix parameters
- C. The phase-to-phase voltage at the origin if the phase-to-phase voltage at the end is 395 kV when it is supplying a load of 200 MW with PF=0,8 (i).

