Statistical modelling of development of executive function in early childhood

Ivonne Solis-Trapala, Peter Diggle, Charlie Lewis

Lancaster University, UK

Introduction

We investigate the development of executive control in young children:

- A group of 87 children were presented with a battery of executive function (Fig. 1) and false-belief tests at three time periods.
- We aim to examine the effects of task modifications (there are at least two different versions of each task) and explore interrelations between executive

Figure 1: Materials for a) the day/night and abstract pattern tasks [these tests are designed to measure inhibitory control]; b) the boxes task [aimed to measure working memory]

Approach

- within each domain, for each child. We represent such unobservable ability We assume the existence of an unobservable underlying cognitive ability,
- 2004) to model, jointly, the series of dependent outcomes within each domain. Conditional on the latent variable we use dynamic path analysis (Foren et al.,
 - We extend the model to include the effect of time between test sessions.

Inhibitory control

First we restrict our attention to the executive function inhibitory control. Two individual paths of 16 binary outcome data (from day/night and abstract pattern tasks) at each time period were observed.

Model

We developed a dynamic logistic regression model with random intercepts. Fig. 2 shows the graphical representation of the fitted model.

Statistical inference

 Statistical inference for the regression parameters based on a conditional likelihood approach is suitable because it does not make distributional assumptions about the subject-specific effects; however

The parameters of primary interest are the regression parameters and the subject-specific effects are regarded as nuisance parameters. The likelihood

Statistical inference

- regression coefficients of covariates that do not change within cluster are non-
- Therefore we adopted a random effects model, but compared results with the conditional approach.

 $L(\alpha_{\!\!\!\boldsymbol{c}}, \boldsymbol{\beta}; \mathbf{Z}_{jk}) = \prod_{ik} \int_{\mathbb{R}^3} \left| \prod_{i, \text{otherwise}} (1 - P_{ijk}) \right| P_{ijk} \right| f(U_i; \boldsymbol{\theta}) \mathrm{d} U_j,$

where $f(U_i; \theta)$ is the density function of the latent variable U_i

Results -working memory data

Results -inhibitory control data

	10 (1-4)						Figure regressic dom inte						
	Model 2	SE		0.016	0.037	0.098	0.19	0.075	0.008	0.23	0.44	0.14	
		Estimate		0.11	0.18	-1.082	0.38	2.05	-0.043	-0.031	-0.23	0.21	rameters
	Model 1	SE	0.016			0.098	0.19	0.075	0.008	0.12	0.21	0.14	ssion pa
		Estimate SE	0.12 0.016			-1.083	0.35	2.05	-0.043	0.34	0.52	0.21	3 of regre
	Parameters		Age β	Age bet $\beta_{\mathbf{B}}$	Age wit $\beta_{\mathbf{w}}$	Test δ_1	$Group\delta_2$	Prob η_1	Trial in η_2	T(2 vs. 1) ½	T(3 vs. 1) ½	$Tst \times gp \delta_{12}$	Table 1: MLE of regression parameters

2: Dynamic logistic on model with ran-

-0.93 -0.75 -1.018

Test*group δ_{12} Time (2 vs. 1)*Test $\gamma_2 \delta_1$ Time (3 vs. 1)*Test $\gamma_3 \delta_1$

0.19 0.25 0.25 0.33 0.22 0.057 0.018

-0.013

Test (Scr vs. Sta) δ_l

Parameters Age β Group (2 vs. 1) δ_2 Time (2 vs. 1) ½ Time (3 vs. 1) ½

0.56 0.27 0.33

Figure 3: Plots of overall logodds

Table 2: MLE of regression parameters

Relationships between executive functions

ures and successes until children retrieved 6 sweets were recorded at three time

We now consider the executive function working memory. Sequences of fail-

Working memory

Figure 4:Inhibitory control and attenskills that form the basis of plantional flexibility are closely related ning and are underpinned by working

Let $\mathbf{Z}_{jk} = (z_{jk}, \dots, z_{njk})$ be fail/succ to retrieve a sweet in n_j trials at time period k. Let $S_{j,k} = 5 - \sum_{j=1}^{j} z_{j,k}$ be the no. of sweets that remain to be retrieved at trial t^{th} and time period k. We model $P_{ijk} = Pr(z_{ijk} = 1|s_{ijk} = s)$, for $s = 1, \dots, 5$ as

 $logit(P_{jk}) = \alpha_s + \boldsymbol{X}'_{ijk}\boldsymbol{\beta}_k + \gamma_k + U_j$

memory.

Acknowledgements: UK Economic and Social Research Council (RES-576-25-5020)

dinate executive skill requiring inhibitory control, attentional flexibility and working memory.