Part II Numerical solution of ODE

Chap 5

Initial-Value Problems for Ordinary Differential Equations

Exercise 5.4

- 1. Mid Point formula
- 2. Modify Euler method
- 3. Runge Kutta methods
 - a) 2 RK b) 4 RK

Runge-Kutta Methods of Order Two

$$y_{n+1} = y_n + \frac{1}{2}(K_1 + K_2)$$
 where
$$K_1 = h f(x_n, y_n)$$
$$K_2 = h + (x_{n+1}, y_n + K_1)$$

Midpoint Method

$$w_0 = \alpha$$
,

$$w_{i+1} = w_i + hf\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i)\right), \text{ for } i = 0, 1, \dots, N-1.$$

Modified Euler Method

$$w_0 = \alpha$$
,

$$w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_{i+1}, w_i + h f(t_i, w_i))], \text{ for } i = 0, 1, \dots, N-1.$$

Modified Euler Method

$$w_0 = \alpha$$
,

$$w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_{i+1}, w_i + h f(t_i, w_i))], \text{ for } i = 0, 1, \dots, N-1.$$

$$y_{m+1} = y_m + h \left[\frac{f(t_m, y_m) + f(t_{m+1}, y_{m+1}^{(1)})}{2} \right]$$

$$y_{n+1} = y_n + \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1}^m)}{2}h$$

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(0)})]$$

where $y_1^{(0)} = y_0 + h f(x_0, y_0)$ obtained using Euler's formula.

Similarly, we obtain

$$y_1^{(2)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(1)})]$$

$$y_1^{(3)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(2)})]$$

$$y_1^{(n+1)} = y_0 + \frac{h}{2} \left[f(x_0, y_0) + f(x_1, y_1^{(n)}) \right], \quad n = 0, 1, 2, 3, ...$$

Example

Using modified Euler's method, obtain the solution of the differential equation

$$\frac{dy}{dt} = t + \sqrt{y} = f(t, y)$$

with the initial condition

$$y_0 = 1$$
 at $t_0 = 0$ for the range $0 \le t \le 0.6$ in steps of 0.2

we use Euler's method to get

$$y_1^{(1)} = y_0 + hf(t_0, y_0) = 1 + 0.2(0 + 1) = 1.2$$

$$y_{m+1} = y_m + h \left[\frac{f(t_m, y_m) + f(t_{m+1}, y_{m+1}^{(1)})}{2} \right]$$
so modified Fuler's method to find

Then, we use modified Euler's method to find

$$y(0.2) = y_1 = y_0 + h \frac{f(t_0, y_0) + f(t_1, y_1^{(1)})}{2}$$
$$= 1.0 + 0.2 \frac{1 + (0.2 + \sqrt{1.2})}{2} = 1.2295$$

Assis.Prof: Jamilusmani

$$y_{m+1} = y_m + h \left[\frac{f(t_m, y_m) + f(t_{m+1}, y_{m+1}^{(1)})}{2} \right]$$

Similarly proceeding, we have from Euler's method

$$y_2^{(1)} = y_1 + hf(t_1, y_1) = 1.2295 + 0.2(0.2 + \sqrt{1.2295})$$

= 1.4913

Using modified Euler's method, we get

$$y_2 = y_1 + h \frac{f(t_1, y_1) + f(t_2, y_2^{(1)})}{2}$$

$$= 1.2295 + 0.2 \frac{\left(0.2 + \sqrt{1.2295}\right) + \left(0.4 + \sqrt{1.4913}\right)}{2}$$

$$= 1.5225$$

$$y_{m+1} = y_m + h \left[\frac{f(t_m, y_m) + f(t_{m+1}, y_{m+1}^{(1)})}{2} \right]$$

Finally,

$$y_3^{(1)} = y_2 + hf(t_2, y_2) = 1.5225 + 0.2(0.4 + \sqrt{1.5225})$$

= 1.8493

Modified Euler's method gives

$$y(0.6) = y_3 = y_2 + h \frac{f(t_2, y_2) + f(t_3, y_3^{(1)})}{2}$$

= 1.5225 + 0.1 \[(0.4 + \sqrt{1.5225}) + (0.6 + \sqrt{1.8493}) \]
= 1.8819

Hence, the solution to the given problem is given by

t	0.2	0.4	0.6
у	1.2295	1.5225	1.8819

Use the improved Euler's method to obtain the approximate value of y(1.5) for the solution of the initial-value problem y' = 2xy, y(1) = 1. Compare the results for h = 0.1 and h = 0.05.

$$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*)}{2},$$

$$y_{n+1}^* = y_n + h f(x_n, y_n),$$

$$y_{m+1} = y_m + h \left[\frac{f(t_m, y_m) + f(t_{m+1}, y_{m+1}^{(1)})}{2} \right]$$

SOLUTION With
$$x_0 = 1$$
, $y_0 = 1$, $f(x_n, y_n) = 2x_n y_n$, $n = 0$, and $h = 0.1$,

$$y_1^* = y_0 + (0.1)(2x_0y_0) = 1 + (0.1)2(1)(1) = 1.2.$$

$$y_1 = y_0 + (0.1) \frac{2x_0y_0 + 2x_1y_1^*}{2}$$

$$2(1)(1) + 2(1.1)(1.2)$$

$$= 1 + (0.1) \frac{2(1)(1) + 2(1.1)(1.2)}{2} = 1.232.$$

the solution $y = e^{x^2-1}$

Improved Euler's Method with h=0.1

	% Rel. error	Abs. error	Actual value	y _n	X_n	•
Verify now	0.00	0.0000	1.0000	1.0000	1.00	•
, , , , , , , , , , , , , , , , , , , ,	0.14	0.0017	1.2337	1.2320	1.10	
	0.31	0.0048	1.5527	1.5479	1.20	
	0.53	0.0106	1.9937	1.9832	1.30	
	0.80	0.0209	2.6117	2.5908	1.40	
	1.13	0.0394	3.4904	3.4509	1.50	
	0.80	0.0209	2.6117	2.5908	1.40	

Use the modified Euler's method to obtain an approximate solution of $\frac{dy}{dt} = -2ty^2$, y(0) = 1, in the interval $0 \le t \le 0.5$ using h = 0.1. Compute the error and the percentage error. Given the exact solution is given by $y = \frac{1}{(1+t^2)}$.

Solution:

For
$$n = 0$$
:
$$y_1^{(1)} = y_0 - 2h \ t_0 \ y_0^2 = 1 - 2(0.1) \ (0) \ (1)^2 = 1$$
$$y_1^{(1)} = y_0 + \frac{h}{2} \left[-2t_0 \ y_0^2 - 2t_1 \ y_1^{(1)2} \right] = 1 - (0.1)[(0) \ (1)^2 + (0.1) \ (1)^2] = 0.99$$

n	t _n	Euler	Modified	Exact	Error	Percentage
		Уn	Euler y _n	value		Error
0	0	1	1	1	0	0
1	0.1	1	0.9900	0.9901	0.0001	0.0101
2	0.2	0.9800	0.9614	0.9615	0.0001	0.0104
3	0.3	0.9416	0.9173	0.9174	0.0001	0.0109
4	0.4	0.8884	0.8620	0.8621	0.0001	0.0116
5	0.5	0.8253	0.8001	0.8000	0.0001	0.0125

$$y_{m+1} = y_m + h \left[\frac{f(t_m, y_m) + f(t_{m+1}, y_{m+1}^{(1)})}{2} \right]$$

Use the modified Euler's method to find the approximate value of y(1.5) for the solution of the initial value problem $\frac{dy}{dx} = 2xy$, y(1) = 1. Take h = 0.1. The exact solution is given by $y = e^{x^2-1}$. Determine the relative error and the percentage error.

$$x_0 = 1$$
, $y_0 = 1$, $f(x_n, y_n) = 2x_ny_n$, $n = 0$ and $h = 0.1$,

first compute
$$y_1^{(0)} = y_0 + h f(x_0, y_0)$$

$$y_1^{(0)} = y_0 + (0.1) \ 2(x_0, y_0) = 1 + (0.1) \ 2(1)(1) = 1.2$$

$$y_1^1 = y_0 + \left(\frac{0.1}{2}\right) 2x_0y_0 + 2x_1y_1 = 1 + \left(\frac{0.1}{2}\right) 2(1)(1) + 2(1.1)(1.2) = 1.232$$

Exact value is calculated from $y = e^{x^2 - 1}$.

n	Xn	Уn	Exact	Absolute	Percentage
			value	error	Relative error
0	1	1	1	0	0
1	1.1	1.2320	1.2337	0.0017	0.14
2	1.2	1.5479	1.5527	0.0048	0.31
3	1.3	1.9832	1.9937	0.0106	0.53
4	1.4	1.5908	2.6117	0.0209	0.80
5	1.5	3.4509	3.4904	0.0394	1.13

Example 2 Use the Midpoint method and the Modified Euler method with N = 10, h = 0.2, $t_i = 0.2i$, and $w_0 = 0.5$ to approximate the solution to our usual example,

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Solution The difference equations produced from the various formulas are

Midpoint method:
$$w_{i+1} = 1.22w_i - 0.0088i^2 - 0.008i + 0.218;$$

Modified Euler method:
$$w_{i+1} = 1.22w_i - 0.0088i^2 - 0.008i + 0.216$$
,

$$w_{i+1} = w_i + hf\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i)\right)$$

$$w_{i+1} = w_i + hf\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i)\right)$$

$$w_{i+1} = w_i + \frac{h}{2}[f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))],$$

for each $i = 0, 1, \dots, 9$. The first two steps of these methods give

Midpoint method:
$$w_1 = 1.22(0.5) - 0.0088(0)^2 - 0.008(0) + 0.218 = 0.828;$$

Modified Euler method:
$$w_1 = 1.22(0.5) - 0.0088(0)^2 - 0.008(0) + 0.216 = 0.826$$
,

MP

ME

Midpoint method:
$$w_2 = 1.22(0.828) - 0.0088(0.2)^2 - 0.008(0.2) + 0.218$$

= 1.21136;
Modified Euler method: $w_2 = 1.22(0.826) - 0.0088(0.2)^2 - 0.008(0.2) + 0.216$

= 1.20692, exact values give

exact values given by $y(t) = (t+1)^2 - 0.5e^t$.

t_i	$y(t_i)$	Midpoint Method	Error	Modified Euler Method	Error
0.0	0.5000000	0.5000000	0	0.5000000	0
0.2	0.8292986	0.8280000	0.0012986	0.8260000	0.0032986
0.4	1.2140877	1.2113600	0.0027277	1.2069200	0.0071677
0.6	1.6489406	1.6446592	0.0042814	1.6372424	0.0116982
0.8	2.1272295	2.1212842	0.0059453	2.1102357	0.0169938
1.0	2.6408591	2.6331668	0.0076923	2.6176876	0.0231715
1.2	3.1799415	3.1704634	0.0094781	3.1495789	0.0303627
1.4	3.7324000	3.7211654	0.0112346	3.6936862	0.0387138
1.6	4.2834838	4.2706218	0.0128620	4.2350972	0.0483866
1.8	4.8151763	4.8009586	0.0142177	4.7556185	0.0595577
2.0	5.3054720	5.2903695	0.0151025	5.2330546	0.0724173

$$y_{n+1} = y_n + \frac{1}{2}(K_1 + K_2)$$
 where
$$K_1 = h f(x_n, y_n)$$

$$K_2 = h + (x_{n+1}, y_n + K_1)$$

solve the following differential equation $\frac{dy}{dx} = \frac{1}{2}y$, y(0) = 1 and $0 \le x \le 1$. Use h = 0.1.

$$K_1 = h f(x_0, y_0) = h\left(\frac{1}{2}y_0\right) = 0.1\left(\frac{1}{2}\right) = 0.05$$

$$K_2 = h f(x_1, y_0 + K_1) = h\left[\frac{y_0 + K_1}{2}\right] = 0.1\left[\frac{1 + 0.05}{2}\right] = 0.0525$$

$$y_1 = y_0 + \frac{1}{2}(K_1 + K_2) = 1 + \frac{1}{2}(0.05 + 0.0525) = 1.05125 \approx 1.0513$$

$$y_{n+1} = y_n + \frac{1}{2}(K_1 + K_2)$$
 where

$$K_1 = h f(x_n, y_n)$$

 $K_2 = h + (x_{n+1}, y_n + K_1)$

at $x_2 = 0.2$, we have

$$K_1 = 0.1 \left[\frac{0.05125}{2} \right] = 0.0526$$

$$K_2 = 0.1 \left[\frac{1.0513 + 0.0526}{2} \right] = 0.0552$$

$$y_2 = 1.0513 + \frac{1}{2}(0.0526 + 0.0552) = 1.1051$$

n	Xn	Уn	K ₁	K_2	y _{n+1}	y _{n+1}
					(modified Euler)	(exact)
0	0	1	0.05	0.0525	1.0513	1.0513
1	0.1	1.0513	0.0526	0.0552	1.1051	1.1052
2	0.2	1.1051	0.0526	0.0581	1.1618	1.1619
3	0.3	1.1618	0.0581	0.0699	1.2213	1.2214
4	0.4	1.2213	0.0611	0.0641	1.2839	1.2840
5	0.5	1.2839	0.0642	0.0674	1.3513	1.3499

Heun Method

$$w_{i+1} = w_i + \left(\frac{1}{2} \mathbf{K_1} + \frac{1}{2} \mathbf{K_2}\right) h$$

$$w_0 = \alpha$$

$$\mathbf{K_1} = f(t_i, w_i)$$

$$\mathbf{K_2} = f(t_i + h, w_i + \mathbf{K_1}h)$$

RUNGE-KUTTA'S METHOD

Second order

$$y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = hf(x_n, y_n)$
 $k_2 = hf(x_n + h, y_n + k_1)$

2. Fourth order

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
where $k_1 = hf(x_n, y_n)$

$$k_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

Example

Use the following second order Runge-Kutta method described by

$$y_{n+1} = y_n + \frac{1}{3}(2k_1 + k_2)$$

where $k_1 = hf(x_n, y_n)$ and $k_2 = hf(x_n + \frac{3}{2}h, y_n + \frac{3}{2}k_1)$

and find the numerical solution of the initial value problem described as

$$\frac{dy}{dx} = \frac{y+x}{y-x}, \qquad y(0) = 1$$

at x = 0.4 and taking h = 0.2.

Solution

Here

$$f(x,y) = \frac{y+x}{y-x}$$
, $h = 0.2$, $x_0 = 0$, $y_0 = 1$

$$k_1 = hf(x_0, y_0) = 0.2 \frac{1+0}{1-0} = 0.2$$

$$k_2 = hf[x_0 + 0.3, y_0 + (1.5)(0.2)]$$

$$= hf(0.3, 1.3) = 0.2 \frac{1.3 + 0.3}{1.3 - 0.3} = 0.32$$

--- -

using the given R-K method, we get

$$y(0.2) = y_1 = 1 + \frac{1}{3}(0.4 + 0.32) = 1.24$$

Now, taking $x_1 = 0.2$, $y_1 = 1.24$, we calculate

$$k_1 = hf(x_1, y_1) = 0.2 \frac{1.24 + 0.2}{1.24 - 0.2} = 0.2769$$

$$k_2 = hf\left(x_1 + \frac{3}{2}h, y_1 + \frac{3}{2}k_1\right) = hf(0.5, 1.6554)$$
$$= 0.2 \frac{1.6554 + 0.5}{1.6554 - 0.5} = 0.3731$$

using the given R-K method, we obtain

$$y(0.4) = y_2 = 1.24 + \frac{1}{3} [2(0.2769) + 0.3731]$$

= 1.54897

Runge-Kutta (Order Four)

To approximate the solution of the initial-value problem

$$y' = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha,$$

at (N + 1) equally spaced numbers in the interval [a, b]:

INPUT endpoints a, b; integer N; initial condition α .

OUTPUT approximation w to y at the (N + 1) values of t.

Step 1 Set
$$h = (b - a)/N$$
;
 $t = a$;
 $w = \alpha$;
OUTPUT (t, w) .

Step 2 For
$$i = 1, 2, ..., N$$
 do Steps 3–5.

Step 3 Set
$$K_1 = hf(t, w)$$
;
 $K_2 = hf(t + h/2, w + K_1/2)$;
 $K_3 = hf(t + h/2, w + K_2/2)$;
 $K_4 = hf(t + h, w + K_3)$.

Step 4 Set
$$w = w + (K_1 + 2K_2 + 2K_3 + K_4)/6$$
; (Compute w_i .) $t = a + ih$. (Compute t_i .)

Step 5 OUTPUT
$$(t, w)$$
.

Step 6 STOP.

RUNGE – KUTTA METHOD

These are computationally, most efficient methods in terms of accuracy. They were developed by two German mathematicians, Runge and Kutta.

They are distinguished by their orders in the sense that they agree with Taylor's series

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 where

$$k_1 = hf(t_n, y_n)$$

$$k_2 = hf\left(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)$$

$$k_4 = hf(t_n + h, y_n + k_3)$$

4-RK method

Example

Solve the following differential equation

 $\frac{dy}{dt} = t + y$ with the initial condition y(0) = 1, using fourth- order Runge-Kutta method from t = 0

to t = 0.4 taking h = 0.1

In this problem,

$$f(t,y) = t + y, h = 0.1, t_0 = 0, y_0 = 1.$$

$$k_1 = hf(t_0, y_0) = 0.1(1) = 0.1$$

$$k_2 = hf(t_0 + 0.05, y_0 + 0.05)$$

$$= hf(0.05, 1.05) = 0.1[0.05 + 1.05] = 0.11$$

$$k_3 = hf(t_0 + 0.05, y_0 + 0.055)$$

$$= 0.1(0.05 + 1.055) = 0.1105$$

$$\begin{aligned} y_1 &= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \\ &= 1 + \frac{1}{6}(0.1 + 0.22 + 0.2210 + 0.12105) \\ &= 1.11034 \end{aligned}$$
 Therefore y(0.1) = y1=1.1103

$$k_4 = 0.1(0.1 + 1.1105) = 0.12105$$

In the second step, we have to find y2 = y(0.2)We compute

$$k_1 = hf(t_1, y_1) = 0.1(0.1+1.11034) = 0.121034$$

$$k_2 = hf\left(t_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}\right)$$

$$= 0.1[0.15 + (1.11034 + 0.060517)] = 0.13208$$

$$k_3 = hf\left(t_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$$

$$= 0.1[0.15 + (1.11034 + 0.06604)] = 0.132638$$

$$k_4 = hf(t_1 + h, y_1 + k_3)$$

$$= 0.1[0.2 + (1.11034 + 0.132638)] = 0.1442978$$

$$y_2 = 1.11034 + \frac{1}{6}[0.121034 + 2(0.13208)]$$

$$+2(0.132638) + 0.1442978$$
] = 1.2428

Similarly we calculate,

$$k_1 = hf(t_2, y_2) = 0.1[0.2 + 1.2428] = 0.14428$$

$$k_2 = hf\left(t_2 + \frac{h}{2}, y_2 + \frac{k_1}{2}\right) = 0.1[0.25 + (1.2428 + 0.07214)] = 0.156494$$

$$k_3 = hf\left(t_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right) = 0.1[0.3 + (1.2428 + 0.078247)] = 0.1571047$$

$$k_4 = hf(t_2 + h, y_2 + k_3) = 0.1[0.3 + (1.2428 + 0.1571047)] = 0.16999047$$

$$y(0.3) = y_3 = y_2 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.399711$$

Finally, we calculate

$$k_1 = hf(t_3, y_3) = 0.1[0.3 + 1.3997] = 0.16997$$

$$k_2 = hf\left(t_3 + \frac{h}{2}, y_3 + \frac{k_1}{2}\right) = 0.1[0.35 + (1.3997 + 0.084985)] = 0.1834685$$

$$k_3 = hf\left(t_3 + \frac{h}{2}, y_3 + \frac{k_2}{2}\right) = 0.1[0.35 + (1.3997 + 0.091734)] = 0.1841434$$

$$k_4 = hf(t_3 + h, y_3 + k_3) = 0.1[0.4 + (1.3997 + 0.1841434)] = 0.19838434$$

$$y(0.4) = y_4$$

$$= y_3 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 1.58363$$

Example 3 Use the Runge-Kutta method of order four with h = 0.2, N = 10, and $t_i = 0.2i$ to obtain approximations to the solution of the initial-value problem

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Solution The approximation to y(0.2) is obtained by

$$w_0 = 0.5$$

 $k_1 = 0.2 f(0, 0.5) = 0.2(1.5) = 0.3$
 $k_2 = 0.2 f(0.1, 0.65) = 0.328$
 $k_3 = 0.2 f(0.1, 0.664) = 0.3308$
 $k_4 = 0.2 f(0.2, 0.8308) = 0.35816$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$
 $y_{n+1} = y_n + \frac{1}{6}[K_1 + 2K_2 + 2K_3 + K_4]$

$$0.5 + \frac{1}{6}(0.3 + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933.$$

the exact solution is $y(t) = (t+1)^2 - 0.5e^t$,

Table 5.8

t_i	$\begin{aligned} & \text{Exact} \\ y_i &= y(t_i) \end{aligned}$	Runge-Kutta Order Four w_i	Error $ y_i - w_i $
0.0	0.5000000	0.5000000	0
0.2	0.8292986	0.8292933	0.0000053
0.4	1.2140877	1.2140762	0.0000114
0.6	1.6489406	1.6489220	0.0000186
0.8	2.1272295	2.1272027	0.0000269
1.0	2.6408591	2.6408227	0.0000364
1.2	3.1799415	3.1798942	0.0000474
1.4	3.7324000	3.7323401	0.0000599
1.6	4.2834838	4.2834095	0.0000743
1.8	4.8151763	4.8150857	0.0000906
2.0	5.3054720	5.3053630	0.0001089

Verify now?

Find an approximate solution to the initial value problem $\frac{dy}{dt} = 1 - t + 4y$, y(0) = 1, in the initial $0 \le t \le 1$ using -9 1 19 4t

Runge-Kutta method of order four with h = 0.1. Compute the exact value given by $y = \frac{-9}{16} + \frac{1}{4}t + \frac{19}{16}e^{4t}$.

Compute the absolute error and the percentage relative error.

For n	= 0,
-------	------

$$K_1 = f(x_0, y_0) = 5$$

 $K_2 = f(0 + 0.05, 1 + 0.25) = 5.95$
 $K_3 = f(0 + 0.05, 1 + 0.2975) = 6.14$
 $K_4 = f(0.1, 1 + 0.614) = 7.356$

n	t _n	Runge-Kutta	Exact	Absolute	Percentage
		y_n	value	error	relative error
0	0	1	1		
1	0.1	1.6089	1.6090	0.0001	0.0062
2	0.2	2.5050	2.5053	0.0002	0.0119
3	0.3	3.8294	3.8301	0.0007	0.07
4	0.4	5.7928	5.7942	0.0014	0.14
5	0.5	8.7093	8.7120	0.0027	0.27

$$y_{n+1} = y_n + \frac{1}{6} [K_1 + 2K_2 + 2K_3 + K_4]$$

$$y_1 = 1 + \frac{0.1}{6} [5 + 2(5.95) + 2(6.14) + 7.356] = 1.6089$$

Use the RK4 method with h = 0.1 to obtain an approximation to y(1.5) for the solution of y' = 2xy, y(1) = 1.

$$k_1 = f(x_0, y_0) = 2x_0y_0 = 2$$

$$k_2 = f\left(x_0 + \frac{1}{2}(0.1), y_0 + \frac{1}{2}(0.1)2\right)$$

$$= 2\left(x_0 + \frac{1}{2}(0.1)\right)\left(y_0 + \frac{1}{2}(0.2)\right) = 2.31$$

$$k_3 = f\left(x_0 + \frac{1}{2}(0.1), y_0 + \frac{1}{2}(0.1)2.31\right)$$

$$= 2\left(x_0 + \frac{1}{2}(0.1)\right)\left(y_0 + \frac{1}{2}(0.231)\right) = 2.34255$$

$$k_4 = f(x_0 + (0.1), y_0 + (0.1)2.34255)$$

$$= 2(x_0 + 0.1)(y_0 + 0.234255) = 2.715361$$

and therefore

$$y_1 = y_0 + \frac{0.1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

= 1 + $\frac{0.1}{6}(2 + 2(2.31) + 2(2.34255) + 2.715361) = 1.23367435.$

known solution $y(x) = e^{x^2-1}$,

	% Rel. error	Abs. error		Уn	χ_{R}
	0.00		1.0000		1.00
Can you Varify 2	0.00		1.2337		
Can you Verify?	0.00		1.9937		
	0.00	0.0001		2.6116	
	0.00	0.0001	3.4904	3.4902	1.50

Quick Assignement

- Use the Modified Euler method to approximate the solutions to each of the following initial-value problems, and compare the results to the actual values.
 - a. $y' = te^{3t} 2y$, $0 \le t \le 1$, y(0) = 0, with h = 0.5; actual solution $y(t) = \frac{1}{5}te^{3t} \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}$.
 - **b.** $y' = 1 + (t y)^2$, $2 \le t \le 3$, y(2) = 1, with h = 0.5; actual solution $y(t) = t + \frac{1}{1 t}$.
 - c. y' = 1 + y/t, $1 \le t \le 2$, y(1) = 2, with h = 0.25; actual solution $y(t) = t \ln t + 2t$.
- Repeat Exercise 1 using the Midpoint method.
- Repeat Exercise 1 using Heun's method.
- Repeat Exercise 1 using the Runge-Kutta method of order four.