Bayesian Adaptive Regression Kernels

December 1, 2022

Problem Setting

Regression problem

$$E[Y \mid x] = f(x), \quad x \in \mathcal{X}$$

with unknown function f(x)

Write

$$f(x_i) = \beta_0 + \sum_{j=1}^n \beta_j k(x_i, x_j)$$

where $k(x_i, x_i)$ is a kernel function

► Linear Kernel

$$k(x_i, x_j) = x_i^T x_j$$

► Radial or Gaussian Kernel

$$k(x_i, x_j) = \exp(-\frac{\lambda}{2}((x_i - x_j)^T(x_i - x_j))$$

[&]quot;support vectors"

Problem Setting

Regression problem

$$E[Y \mid x] = f(x), \quad x \in \mathcal{X}$$

with unknown function f(x) Write

$$f(x_i) = \beta_0 + \sum_{j=1}^n \beta_j k(x_i, x_j)$$

where $k(x_i, x_i)$ is a kernel function

► Linear Kernel

$$k(x_i, x_j) = x_i^T x_j$$

Radial or Gaussian Kernel

$$k(x_i, x_j) = \exp(-\frac{\lambda}{2}((x_i - x_j)^T(x_i - x_j))$$

[&]quot;support vectors"

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \triangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x}, \pmb{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)_+^3$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\chi}_j)^T \mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(x_i) = \sum_{j=0}^{J} \psi(x_i, \omega_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x},oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \mathbf{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(x_i) = \sum_{j=0}^{J} \psi(x_i, \omega_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)_+^3$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\chi}_j)^T \mathbf{\Lambda}_j(\mathbf{x} - \mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(x_i) = \sum_{j=0}^{J} \psi(x_i, \omega_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathbf{x}_i, \omega_j) = g(\mathbf{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \mathbf{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(x_i) = \sum_{j=0}^{J} \psi(x_i, \omega_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)_+^3$$

$$\psi(\mathbf{x}_i, \boldsymbol{\omega}_j) = g(\boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)) = \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\chi}_j)^T \boldsymbol{\Lambda}_j(\mathbf{x} - \boldsymbol{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x},oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)_+^3$$

$$\psi(\mathsf{x}_i,\omega_j) = g(\mathbf{\Lambda}_j(\mathsf{x}-\mathbf{\chi}_j)) = \exp\left\{-rac{1}{2}(\mathsf{x}-\mathbf{\chi}_j)^T\mathbf{\Lambda}_j(\mathsf{x}-\mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x}, oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)_+^3$$

$$\psi(\mathsf{x}_i,\omega_j) = g(\mathbf{\Lambda}_j(\mathsf{x}-\mathbf{\chi}_j)) = \exp\left\{-rac{1}{2}(\mathsf{x}-\mathbf{\chi}_j)^T\mathbf{\Lambda}_j(\mathsf{x}-\mathbf{\chi}_j)\right\}$$

- translation and scaling wavelet families
- Need not be symmetric!

Write function as

$$f(\mathbf{x}_i) = \sum_{j=0}^{J} \psi(\mathbf{x}_i, \boldsymbol{\omega}_j) \beta_j$$

in terms of an (over-complete) dictionary where

- \blacktriangleright { β_i }: unknown coefficients
- ► J: number of terms in expansion (finite or infinite)
- lacksquare $\psi(\mathsf{x},oldsymbol{\omega}_j)$ Dictionary elements from a "generator function" g
 - cubic splines

$$\psi(x_i,\omega_j)=(x_i-\omega_j)^3_+$$

$$\psi(\mathsf{x}_i,\omega_j) = g(\pmb{\Lambda}_j(\mathsf{x}-\pmb{\chi}_j)) = \exp\left\{-rac{1}{2}(\mathsf{x}-\pmb{\chi}_j)^{\mathsf{T}}\pmb{\Lambda}_j(\mathsf{x}-\pmb{\chi}_j)
ight\}$$

- translation and scaling wavelet families
- ► Need not be symmetric!

Kernel Convolution

Easy to generate non-stationarity processes

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- ▶ Poisson prior on J (could be infinite!)
- $\Rightarrow J \sim P(\nu_+), \qquad \nu_+ \equiv \nu(\mathbb{R} \times \mathbf{\Omega}) = \iint v(\beta, \boldsymbol{\omega}) d\beta d\boldsymbol{\omega}$
- $\Rightarrow \ eta_j, oldsymbol{\omega}_j \mid J \stackrel{\mathit{iid}}{\sim} \pi(eta, oldsymbol{\omega}) \propto
 u(eta, oldsymbol{\omega}).$
- ightharpoonup Finite number of "big" coefficients $|eta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_i|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- ▶ Poisson prior on J (could be infinite!)
- $\Rightarrow J \sim P(\nu_+), \qquad \nu_+ \equiv \nu(\mathbb{R} \times \mathbf{\Omega}) = \iint v(\beta, \boldsymbol{\omega}) d\beta d\boldsymbol{\omega}$
- $\Rightarrow \ eta_j, oldsymbol{\omega}_j \mid J \stackrel{\mathit{iid}}{\sim} \pi(eta, oldsymbol{\omega}) \propto
 u(eta, oldsymbol{\omega}).$
- ightharpoonup Finite number of "big" coefficients $|eta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_i|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- Poisson prior on J (could be infinite!)
- \Rightarrow $J \sim P(\nu_+)$, $\nu_+ \equiv \nu(\mathbb{R} \times \Omega) = \iint v(\beta, \omega) d\beta d\omega$
- $\Rightarrow \beta_j, \boldsymbol{\omega}_j \mid J \stackrel{\text{iid}}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega}).$
- Finite number of "big" coefficients $|\beta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- \triangleright Coefficients $|\beta_i|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- Poisson prior on J (could be infinite!)
- \Rightarrow $J \sim P(\nu_+)$, $\nu_+ \equiv \nu(\mathbb{R} \times \Omega) = \iint v(\beta, \omega) d\beta d\omega$
- $\Rightarrow \beta_j, \boldsymbol{\omega}_j \mid J \stackrel{\textit{iid}}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega}).$
- ▶ Finite number of "big" coefficients $|\beta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- Poisson prior on J (could be infinite!)
- \Rightarrow $J \sim P(\nu_+)$, $\nu_+ \equiv \nu(\mathbb{R} \times \Omega) = \iint v(\beta, \omega) d\beta d\omega$
- $\Rightarrow \beta_j, \boldsymbol{\omega}_j \mid J \stackrel{iid}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega}).$
- lacksquare Finite number of "big" coefficients $|eta_j|$
- Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- Poisson prior on J (could be infinite!)
- \Rightarrow $J \sim P(\nu_+)$, $\nu_+ \equiv \nu(\mathbb{R} \times \Omega) = \iint v(\beta, \omega) d\beta d\omega$
- $\Rightarrow \beta_j, \boldsymbol{\omega}_j \mid J \stackrel{iid}{\sim} \pi(\beta, \boldsymbol{\omega}) \propto \nu(\beta, \boldsymbol{\omega}).$
- ightharpoonup Finite number of "big" coefficients $|eta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- Poisson prior on J (could be infinite!)
- \Rightarrow $J \sim P(\nu_+)$, $\nu_+ \equiv \nu(\mathbb{R} \times \Omega) = \iint v(\beta, \omega) d\beta d\omega$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{\textit{iid}}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- ▶ Finite number of "big" coefficients $|\beta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

$$f(x) = \sum_{j=0}^{J} \psi(x, \omega_j) \beta_j$$

- Poisson prior on J (could be infinite!)
- \Rightarrow $J \sim P(\nu_+)$, $\nu_+ \equiv \nu(\mathbb{R} \times \Omega) = \iint v(\beta, \omega) d\beta d\omega$
- $\Rightarrow \beta_j, \omega_j \mid J \stackrel{\textit{iid}}{\sim} \pi(\beta, \omega) \propto \nu(\beta, \omega).$
- Finite number of "big" coefficients $|\beta_j|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ightharpoonup Coefficients $|\beta_j|$ are absolutely summable
- ightharpoonup Conditions on ν

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- ightharpoonup Fix ϵ (for given prior approximation error)
- lacksquare Use approximate Lévy measure $u_\epsilon(eta,oldsymbol{\omega}) \equiv
 u(eta,oldsymbol{\omega}) \mathbb{1}(|eta|>\epsilon)$
- $\Rightarrow J \sim \mathsf{P}(\nu_{\epsilon}^{+}) \text{ where } \nu_{\epsilon}^{+} = \nu([-\epsilon, \epsilon]^{c}, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$
For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$
Fine in theory, but not in practice for MCMC!

- Finite number of support points ω with β in $[-\epsilon, \epsilon]^c$
- ightharpoonup Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(eta,\omega) \equiv \nu(eta,\omega) \mathbb{1}(|eta|>\epsilon)$
- $\Rightarrow J \sim \mathsf{P}(\nu_{\epsilon}^{+}) \text{ where } \nu_{\epsilon}^{+} = \nu([-\epsilon, \epsilon]^{c}, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \ \text{distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- ightharpoonup Finite number of support points ω with β in $[-\epsilon,\epsilon]^c$
- ightharpoonup Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \omega) \equiv \nu(\beta, \omega) \mathbb{1}(|\beta| > \epsilon)$
- $\Rightarrow J \sim \mathsf{P}(\nu_{\epsilon}^+) \text{ where } \nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \mathbf{\Omega})$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_\epsilon(d\beta, d\omega)/\nu_\epsilon^+ \ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- lacktriangle Finite number of support points $oldsymbol{\omega}$ with eta in $[-\epsilon,\epsilon]^c$
- ightharpoonup Fix ϵ (for given prior approximation error)
- lackbox Use approximate Lévy measure $u_{\epsilon}(eta, oldsymbol{\omega}) \equiv
 u(eta, oldsymbol{\omega}) \mathbb{1}(|eta| > \epsilon)$
- $\Rightarrow J \sim \mathsf{P}(\nu_{\epsilon}^+) \text{ where } \nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \mathbf{\Omega})$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \ \text{distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- lacksquare Finite number of support points $oldsymbol{\omega}$ with eta in $[-\epsilon,\epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $\nu_{\epsilon}(\beta, \boldsymbol{\omega}) \equiv \nu(\beta, \boldsymbol{\omega}) \mathbb{1}(|\beta| > \epsilon)$
- \Rightarrow $J \sim P(\nu_{\epsilon}^+)$ where $\nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \mathbf{\Omega})$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- lacktriangle Finite number of support points $oldsymbol{\omega}$ with eta in $[-\epsilon,\epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $u_{\epsilon}(eta, m{\omega}) \equiv
 u(eta, m{\omega}) \mathbb{1}(|eta| > \epsilon)$
- $\Rightarrow J \sim \mathsf{P}(\nu_{\epsilon}^{+}) \text{ where } \nu_{\epsilon}^{+} = \nu([-\epsilon, \epsilon]^{c}, \Omega)$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ \ (\beta_j \ \text{distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- ightharpoonup Finite number of support points ω with β in $[-\epsilon,\epsilon]^c$
- Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $u_{\epsilon}(eta, m{\omega}) \equiv
 u(eta, m{\omega}) \mathbb{1}(|eta| > \epsilon)$
- \Rightarrow $J \sim \mathsf{P}(
 u_{\epsilon}^{+})$ where $u_{\epsilon}^{+} =
 u([-\epsilon, \epsilon]^{\mathtt{c}}, \mathbf{\Omega})$
- $\Rightarrow \beta_j, \omega_j \stackrel{\text{\tiny II}a}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+ (\beta_j \text{ distributed as Pareto})$

Lévy measure:
$$\nu(\beta, \omega) = c_{\alpha} |\beta|^{-(\alpha+1)} \pi(\omega)$$
 $0 < \alpha < 2$ For α - Stable $\nu^+(\mathbb{R}, \Omega) = \infty$ Fine in theory, but not in practice for MCMC!

- ightharpoonup Finite number of support points ω with β in $[-\epsilon,\epsilon]^c$
- ightharpoonup Fix ϵ (for given prior approximation error)
- Use approximate Lévy measure $u_{\epsilon}(eta, m{\omega}) \equiv
 u(eta, m{\omega}) \mathbb{1}(|eta| > \epsilon)$
- \Rightarrow $J \sim \mathsf{P}(
 u_{\epsilon}^{+})$ where $u_{\epsilon}^{+} =
 u([-\epsilon, \epsilon]^{\mathtt{c}}, \mathbf{\Omega})$
- $\Rightarrow \beta_j, \omega_j \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_\epsilon(d\beta, d\omega)/\nu_\epsilon^+ \ (\beta_j \ \text{distributed as Pareto})$

Truncated Cauchy Process

Restriction $|\beta| > \epsilon$

Contours of Log Prior (in \mathbb{R}^2) – Penalties

Normal DE Cauchy

Penalized Likelihood:

$$-\frac{1}{2\sigma^2}\sum_i \left(Y_i - f(\mathsf{x}_i)\right)^2 - (\alpha+1)\sum_i \log(|\beta_i|) - \nu_\epsilon^+ \dots$$

Higher Dimensional ${\mathcal X}$

MCMC is (currently) too slow in higher dimensional space to allow

- $ightharpoonup \chi$ to be completely arbitrary; restrict support to observed $\{x_i\}$ like in SVM
- ightharpoonup use diagonal Λ

Kernels take form:

$$\psi(x, \omega_j) = \prod_d \exp\{-\frac{1}{2}\lambda_d(x_d - \chi_d)^2\}$$

$$f(x) = \sum_j \psi(x, \omega_j)\beta_j$$

Higher Dimensional ${\mathcal X}$

MCMC is (currently) too slow in higher dimensional space to allow

- $ightharpoonup \chi$ to be completely arbitrary; restrict support to observed $\{x_i\}$ like in SVM
- ightharpoonup use diagonal Λ

Kernels take form:

$$\psi(x, \omega_j) = \prod_{d} \exp\{-\frac{1}{2}\lambda_d(x_d - \chi_d)^2\}$$
$$f(x) = \sum_{i} \psi(x, \omega_j)\beta_j$$

Higher Dimensional ${\mathcal X}$

MCMC is (currently) too slow in higher dimensional space to allow

- $ightharpoonup \chi$ to be completely arbitrary; restrict support to observed $\{x_i\}$ like in SVM
- use diagonal Λ

Kernels take form:

$$\psi(\mathbf{x}, \boldsymbol{\omega}_j) = \prod_{d} \exp\{-\frac{1}{2}\lambda_d(x_d - \chi_d)^2\}$$
$$f(\mathbf{x}) = \sum_{j} \psi(\mathbf{x}, \boldsymbol{\omega}_j)\beta_j$$

Approximate Lévy Prior II

Continuous Approximation Student $t(lpha,0,\epsilon)$ approximation:

$$\nu_{\epsilon}(d\beta, d\omega) = c_{\alpha}(\beta^2 + \alpha \epsilon^2)^{-(\alpha+1)/2} d\beta \ \gamma(d\omega)$$

Based on the following hierarchical prior

$$eta_j \mid \phi_j \quad \stackrel{ind}{\sim} \quad \mathrm{N}(0, \varphi_j^{-1})$$
 $\phi_j \quad \stackrel{ind}{\sim} \quad \mathrm{G}\left(\frac{\alpha}{2}, \frac{\alpha\epsilon^2}{2}\right)$
 $J \quad \sim \quad \mathrm{P}(\nu_\epsilon^+)$

where
$$u_{\epsilon}^+ =
u_{\epsilon}(\mathbb{R}, \mathbf{\Omega}) = \frac{\alpha^{1-\alpha/2} \Gamma(\alpha) \Gamma(\alpha/2)}{\epsilon^{\alpha} \pi^{1/2} \Gamma(\frac{\alpha+1}{2})} \sin(\frac{\pi \alpha}{2}) \gamma(\mathbf{\Omega})$$

Key: need to have variance of coefficients decrease as J increases

Approximate Lévy Prior II

Continuous Approximation Student $t(\alpha,0,\epsilon)$ approximation:

$$\nu_{\epsilon}(d\beta, d\omega) = c_{\alpha}(\beta^2 + \alpha \epsilon^2)^{-(\alpha+1)/2} d\beta \ \gamma(d\omega)$$

Based on the following hierarchical prior

$$eta_j \mid \phi_j \quad \stackrel{ind}{\sim} \quad \mathsf{N}(0, arphi_j^{-1}) \ \phi_j \quad \stackrel{ind}{\sim} \quad \mathsf{G}\left(rac{lpha}{2}, rac{lpha\epsilon^2}{2}
ight) \ \mathcal{J} \quad \sim \quad \mathsf{P}(
u_\epsilon^+)$$

where
$$\nu_{\epsilon}^+ = \nu_{\epsilon}(\mathbb{R}, \Omega) = \frac{\alpha^{1-\alpha/2}\Gamma(\alpha)\Gamma(\alpha/2)}{\epsilon^{\alpha}\pi^{1/2}\Gamma(\frac{\alpha+1}{2})}\sin(\frac{\pi\alpha}{2})\gamma(\Omega)$$

Key: need to have variance of coefficients decrease as J increases

Limiting Case

$$eta_j \mid \varphi_j \stackrel{\textit{ind}}{\sim} \operatorname{N}(0, 1/\varphi_j)$$
 $\varphi_j \stackrel{\textit{iid}}{\sim} \operatorname{G}(\alpha/2, 0)$

Notes

- ightharpoonup Require 0 < lpha < 2 Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- Tipping's "Relevance Vector Machine" corresponds to $\alpha=0$ (improper posterior!)
- ► Provides an extension of **Generalized Ridge Priors** to infinite dimensional case
- ► Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{\textit{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j)$$
 $egin{array}{c} arphi_j \ \stackrel{\textit{iid}}{\sim} \ \mathrm{G}(lpha/2, "0") \end{array}$

- lacktriangle Require 0 < lpha < 2 Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- Tipping's "Relevance Vector Machine" corresponds to $\alpha=0$ (improper posterior!)
- ▶ Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{ ext{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{ ext{iid}}{\sim} \ \mathrm{G}(lpha/2, "0")$$

- lacktriangle Require 0 < lpha < 2 Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- Tipping's "Relevance Vector Machine" corresponds to $\alpha=0$ (improper posterior!)
- ▶ Provides an extension of Generalized Ridge Priors to infinite dimensional case
- ► Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{ ext{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{ ext{iid}}{\sim} \ \mathrm{G}(lpha/2, "0")$$

- lacktriangle Require 0 < lpha < 2 Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- ▶ Tipping's "Relevance Vector Machine" corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- ► Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{ ext{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{ ext{iid}}{\sim} \ \mathrm{G}(lpha/2, "0")$$

- lacktriangle Require 0 < lpha < 2 Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- ▶ Tipping's "Relevance Vector Machine" corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- ► Infinite dimensional analog of Cauchy priors

$$eta_j \mid arphi_j \ \stackrel{ ext{ind}}{\sim} \ \mathrm{N}(0, 1/arphi_j) \ arphi_j \ \stackrel{ ext{iid}}{\sim} \ \mathrm{G}(lpha/2, "0")$$

- lacktriangle Require 0 < lpha < 2 Additional restrictions on ω
- lacktriangle Cauchy process corresponds to lpha=1
- ▶ Tipping's "Relevance Vector Machine" corresponds to $\alpha = 0$ (improper posterior!)
- Provides an extension of Generalized Ridge Priors to infinite dimensional case
- Infinite dimensional analog of Cauchy priors

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha}\epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_i

The regression mean function can be rewritten as

$$f(x) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(x, \omega_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \chi_{j} = x_{i}\}} \beta_{j}.$$

In particular, if lpha=1, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} G(1/2, \epsilon^2/2)$$

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(x) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(x, \omega_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \chi_{j} = x_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} G(1/2, \epsilon^2/2)$$

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(x) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(x, \omega_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \chi_{j} = x_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \overset{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \overset{iid}{\sim} G(1/2, \epsilon^2/2)$$

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given J, $[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(x) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(x, \omega_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \chi_{j} = x_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} N(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} G(1/2, \epsilon^2/2)$$

- Poisson number of points $J_{\epsilon} \sim P(\nu_{\epsilon}^{+}(\alpha, \gamma))$ with $\nu_{\epsilon}^{+}(\alpha, \gamma) = \frac{\gamma \alpha^{1-\alpha/2}}{2^{1-\alpha} \epsilon^{\alpha}} \frac{\Gamma(\alpha/2)}{\Gamma(1-\alpha/2)}$
- ▶ Given $J_n[n_1:n_n] \sim MN(J,1/(n+1))$ points supported at each kernel located at x_j

The regression mean function can be rewritten as

$$f(x) = \sum_{i=0}^{n} \tilde{\beta}_{i} \psi(x, \omega_{i}), \quad \tilde{\beta}_{i} = \sum_{\{j \mid \chi_{j} = x_{i}\}} \beta_{j}.$$

In particular, if $\alpha=1$, not only the Cauchy process is infinitely divisible, the approximated Cauchy prior distributions on the regression coefficients are also infinitely divisible:

$$\tilde{\beta}_i \stackrel{ind}{\sim} \mathsf{N}(0, n_i^2 \tilde{\varphi}_i^{-1}), \qquad \tilde{\varphi}_i \stackrel{iid}{\sim} \mathsf{G}(1/2, \epsilon^2/2)$$

BARK: Bayesian Additive Regression Kernels

```
> #library(devtools)
> #suppressMessages(install_github("merliseclyde/bark"))
> library(bark)
> set.seed(42)
> n = 500
> circle2 = as.data.frame(sim circle(n, dim = 2))
```

Circle

Circle Example

```
> set.seed(42)
> train = sample(1:n, size = floor(n/2), rep=FALSE)
> circle2.bark = bark(as.matrix(circle2[train, 1:2]),
                      circle2[train, 3],
+
                      x.test = as.matrix(circle2[-train, 1:
+
                      classification = TRUE,
                      printevery = 10000,
+
                      tvpe="se")
+
[1] "Starting BARK-se for this classification problem"
   "burning iteration 10000, J=5, max(nj)=2"
[1] "posterior mcmc iteration 10000, J=4, max(nj)=1"
```

Missclassification

Missclassification Rate 0.02

SVM

BART

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ▶ Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ightharpoonup D Different λD parameters in each dimension
- \triangleright S + D Different λ_d parameters + Selection
- \triangleright S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- Product structure allows interactions between variables
- ► Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ightharpoonup D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ightharpoonup S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ightharpoonup D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ▶ S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ightharpoonup D Different λD parameters in each dimension
- \triangleright S+D Different λ_d parameters + Selection
- \triangleright S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ightharpoonup D Different λD parameters in each dimension
- \triangleright S+D Different λ_d parameters + Selection
- \triangleright S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ightharpoonup D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- \triangleright S + E Selection + Equal for Remaining $\lambda_d = \lambda$

- Product structure allows interactions between variables
- Many input variables may be irrelevant
- ► Feature selection; if $\lambda_d = 0$ variable x_d is removed from all kernels
- Allow point mass on $\lambda_h=0$ with probability $p_\lambda\sim B(a,b)$ (in practice have used a=b=1

- ▶ D Different λD parameters in each dimension
- ▶ S + D Different λ_d parameters + Selection
- ▶ S + E Selection + Equal for Remaining $\lambda_d = \lambda$

Regression Out of Sample Prediction

Average Relative MSE to best procedure

Data Sets		BARK	SVM	BART	
	D	S + E	S + D	3 V IVI	DANT
Friedman1	1.22	2.26	1.93	5.36	1.97
Friedman2	1.07	1.09	1.04	4.36	3.64
Friedman3	1.46	2.30	1.44	2.70	1.00
Boston Housing	1.09	1.23	1.20	1.56	1.01
Body Fat	1.81	1.01	2.19	4.04	1.68
Basketball	1.01	1.01	1.02	1.16	1.10

D: dimension specific scale λ_d

E: equal scales $\lambda_d = \lambda \, \forall \, d$

S: selection $\lambda_d = 0$ with probability ρ

Feature Selection in Boston Housing Data

Posterior Distribution of λ_d

Boston Housing in BARK with different weights

Classification Examples

Name	d	data type	n (train/test)
Circle	2	simulation	200/1000
Circle (3 null)	5	simulation	200/1000
Circle (18 null)	20	simulation	200/1000
Swiss Bank Notes	6	real data	200 (5 cv)
Breast Cancer	30	real data	569 (5 <i>cv</i>)
Ionosphere	33	real data	351 (5 <i>cv</i>)

- ▶ Add latent Gaussian Z_i for probit regression (as in Albert & Chib)
- Same model as before conditional on Z
- lacktriangle Advantage: Draw $oldsymbol{eta}$ in a block from full conditional
- ► Can extend to Logistic

Predictive Error Rate for Classification

Data Sets		BARK	SVM	BART	
Data Sets	D	S + E	S + D	2 4 141	אווים
Circle 2	4.91%	1.88%	1.93%	5.03%	3.97%
Circle 5	4.70%	1.47%	1.65%	10.99%	6.51%
Circle 20	4.84%	2.09%	3.69%	44.10%	15.10%
Bank	1.25%	0.55%	0.88%	1.12%	0.50%
BC	4.02%	2.49%	6.09%	2.70%	3.36%
lonosphere	8.59%	5.78%	10.87%	5.17%	7.34%

D: dimension specific scale λ_d

E: equal scales $\lambda_d = \lambda \forall d$

S: selection $\lambda_d=0$ with probability ho

- ▶ NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- ▶ With availability of code what are caveats for users?

- ► NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- ▶ With availability of code what are caveats for users?

- ► NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- ▶ With availability of code what are caveats for users?

- ▶ NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- ► Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- With availability of code what are caveats for users?

- ► NP Bayes of many flavors often does better than frequentist methods (BARK, BART, Treed GP, more)
- Hyper-parameter specification theory & computational approximation
- need faster code for BARK that is easier for users (BART & TGP are great!) (library(bark) or github
- Can these models be added to JAGS, STAN, etc instead of stand-alone R packages
- With availability of code what are caveats for users?

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- ► Allow flexible generating functions
- ▶ Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- ▶ Hierarchical Extensions
- ► Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- ► Hierarchical Extensions
- ► Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- ► Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- ► Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- ▶ Hierarchical Extensions
- ► Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- ► Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- ► Hierarchical Extensions
- ► Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- ► Hierarchical Extensions
- ► Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- ► Hierarchical Extensions
- ► Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

- Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions
- Provide sparser representations compared to SVM & RVM, with coherent Bayesian interpretation
- Incorporation of prior knowledge if available
- Relax assumptions of equally spaced data and Gaussian likelihood
- ► Hierarchical Extensions
- Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds)

