I3D

2019/05/25 김민지

Abstract

 How Current Architectures fare on the task of action classification on Kinetics dataset?

 How much performance improves on the smaller benchmark datasets after pre-training on Kinetics.

Abstract

- Two-Stream Inflated 3D ConvNet(I3D)
 - : To learn seamless spatio-temporal feature extractors
 - + leveraging successful ImageNet architecture designs & parameters.

Introduction

 Most popular benchmarks for action recognition are small! (the order of 10k videos)
 Kinetics → HMDB-51, UCF-101. (two orders larger)

Action Classification Architectures

- The Old 1: ConvNet + LSTM
- The Old 2: 3D ConvNet
- The Old 3: Two-Stream Networks
- The new: Two-Stream Inflated 3D ConvNets

Two-Stream Inflated 3D ConvNets

1. Inflating 2D ConvNets into 3D

Convert 2D Classification models into 3D ConvNets.

- Starting with 2D architecture
- → Inflating all the filters and pooling kernels(temporal dimension)

N x N filters becomes N x N x N

2. Bootstrapping 3D filters from 2D filters.

• Bootstrap parameters from the pre-trained ImageNet models.

Boring-video fixed point

- The pooled activations on a boring video
 == on the original single-image input. (by linearity)
- → the overall network response respects the boring-video fixed point.

3. Pacing receptive field growth in space, time and network depth

- How to inflate pooling along the time
- How to set conv/pooling temporal stride?
- Virtually all image models treat the two spatial dimensions equally
- In Time dimension?
- Grows too quickly in time → conflate edges from different objects, breaking early feature detection
- Grows too slowly
 may not capture scene dynamics well

3. Pacing receptive field growth in space, time and network depth

- 2D inception v-1
- 첫번째 conv: stride 2, 4개의 Max-pool: stride 2, 7x7 average-pool

- Not perform temporal pooling in the first two max-pool(1 x 3 x 3), 다른 max-pool에서는 symmetric하게 kernel, strides 이용
- 25fps, 64-frame snippets, testing with whole videos, averaging predictions temporally.

3. Pacing receptive field growth in space, time and network depth

Two 3D Streams(feat. Optical Flow)

- 3D Conv도 RGB에서 motion feature 바로 얻을 수 있지만, 여전히 feedforward computation
- Optical flow algorithm을 이용하면 어느정도 recurrent

	UCF-101		HMDB-51			Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	_	_	36.0	_	_	63.3	_	_
(b) 3D-ConvNet	51.6	_	_	24.3	_	_	56.1	_	_
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	_	_	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

• Trained the two networks separately and averaged their predictions at test time.

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling operators are 1 where not specified, and batch normalization layers, ReLu's and the softmax at the end are not shown. The theoretical sizes of receptive field sizes for a few layers in the network are provided in the format "time,x,y" – the units are frames and pixels. The predictions are obtained convolutionally in time and averaged.

The Kinetics Human Action Video Dataset

Kinetics dataset

- Focused on human actions (not activities or events)
- Person Actions (drawing, drinking ...)
- Person-Person Actions (hugging, kissing, shaking hands, ...)
- Person-Object Actions(opening present, washing dishes, ..)
- → Swimming vs Washing dishes
- → Temporal reasoning vs Emphasis on object
- 400 classes x 400 clips each class x 10s per clips

Experimental Comparison of Architectures

	UCF-101		HMDB-51			Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	_	_	36.0	_	_	63.3	_	_
(b) 3D-ConvNet	51.6	_	_	24.3	_	_	56.1	_	_
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	_	_	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51; (right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31] model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames then averages the predictions.

		Kinetics		ImageNet then Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	
(a) LSTM	53.9	_	_	63.3	_	_	
(b) 3D-ConvNet	56.1	_	_	_	_	_	
(c) Two-Stream	57.9	49.6	62.8	62.2	52.4	65.6	
(d) 3D-Fused	_	_	62.7	_	_	67.2	
(e) Two-Stream I3D	68.4 (88.0)	61.5 (83.4)	71.6 (90.0)	71.1 (89.3)	63.4 (84.9)	74.2 (91.3)	

Table 3. Performance training and testing on Kinetics with and without ImageNet pretraining. Numbers in brackets () are the Top-5 accuracy, all others are Top-1.

		UCF-101		HMDB-51			
Architecture	Original	Fixed	Full-FT	Original	Fixed	Full-FT	
(a) LSTM	81.0 / 54.2	88.1 / 82.6	91.0 / 86.8	36.0 / 18.3	50.8 / 47.1	53.4 / 49.7	
(b) 3D-ConvNet	-/51.6	-/76.0	- / 79.9	-/24.3	- / 47.0	-/49.4	
(c) Two-Stream	91.2 / 83.6	93.9 / 93.3	94.2 / 93.8	58.3 / 47.1	66.6 / 65.9	66.6 / 64.3	
(d) 3D-Fused	89.3 / 69.5	94.3 / 89.8	94.2 / 91.5	56.8 / 37.3	69.9 / 64.6	71.0 / 66.5	
(e) Two-Stream I3D	93.4 / 88.8	97.7 / 97.4	98.0 / 97.6	66.4 / 62.2	79.7 / 78.6	81.2 / 81.3	

Table 4. Performance on the UCF-101 and HMDB-51 test sets (split 1 of both) for architectures starting with / without ImageNet pretrained weights. Original: train on UCF-101 or HMDB-51; Fixed: features from Kinetics, with the last layer trained on UCF-101 or HMDB-51; Full-FT: Kinetics pre-training with end-to-end fine-tuning on UCF-101 or HMDB-51.

Model	UCF-101	HMDB-51
Two-Stream [27]	88.0	59.4
IDT [33]	86.4	61.7
Dynamic Image Networks + IDT [2]	89.1	65.2
TDD + IDT [34]	91.5	65.9
Two-Stream Fusion + IDT [8]	93.5	69.2
Temporal Segment Networks [35]	94.2	69.4
ST-ResNet + IDT [7]	94.6	70.3
Deep Networks [15], Sports 1M pre-training	65.2	-
C3D one network [31], Sports 1M pre-training	82.3	-
C3D ensemble [31], Sports 1M pre-training	85.2	-
C3D ensemble + IDT [31], Sports 1M pre-training	90.1	-
RGB-I3D, Imagenet+Kinetics pre-training	95.6	74.8
Flow-I3D, Imagenet+Kinetics pre-training	96.7	77.1
Two-Stream I3D, Imagenet+Kinetics pre-training	98.0	80.7
RGB-I3D, Kinetics pre-training	95.1	74.3
Flow-I3D, Kinetics pre-training	96.5	77.3
Two-Stream I3D, Kinetics pre-training	97.8	80.9

Table 5. Comparison with state-of-the-art on the UCF-101 and HMDB-51 datasets, averaged over three splits. First set of rows contains results of models trained without labeled external data.