MATHEMATIK FÜR PHYSIKER 1 Aufgabenblatt 4

Abgabe: 16.11.2021 bis 15:00 Uhr in der Übungsgruppe. **Bitte in 2-3er Gruppen abgeben**.

Hausaufgaben (20 Punkte)

A4.1 Zeigen Sie direkt mithilfe von Definition 2.24, dass die folgenden Folgen konvergieren

i)
$$a_n := \frac{(-1)^n}{n}$$
. (2)

ii)
$$b_n := \frac{3n+1}{2n-1}$$
. (2)

iii)
$$c_n := \frac{1}{\sqrt{n}}$$
.

A4.2 Sei $M \subset \mathbb{R}$ nichtleer und nach oben beschränkt, und sei $s \in \mathbb{R}$.

- (a) Zeigen Sie: Genau dann ist $s = \sup M$, wenn s eine obere Schranke von M ist und wenn eine Folge $(x_n)_n$ in M existiert mit $\lim_{n \to \infty} x_n = s$. (4)
- (b) (2 Punkte) Wenn die Menge unendlich viele Elemente hat, können Sie dann die Folge aus a) so wählen, dass $x_n < x_{n+1}$ für alle $n \in \mathbb{N}$ gilt? (2) Falls ja: Begründung; falls nein: Beispiel.
- **A4.3** i) Konvergieren die folgenden Folgen. Wenn ja berechnen Sie auch den Grenzwert. (2)

$$a_n := \frac{5n^5 + 4n^3 - n + 5}{10n^5 + n^2 - n + 100}, \quad b_n := \frac{n^2}{2^n}$$

ii) Es sei $(a_n)_n$ die Fibonacci-Folge, also $a_1=a_2:=1$ und für $n\geq 3$ ist $a_n:=a_{n-1}+a_{n-2}$. Wir definieren nun

$$u_n := \frac{a_{n+1}}{a_n}.$$

Die Folge $(u_n)_n$ konvergiert gegen ein $u \in \mathbb{R}$ (dies brauchen Sie nicht zu zeigen). Berechnen Sie u. (2)

Anmerkung: Bei dem Grenzwert den Sie in Aufgabe 4.3 ii) berechnen handelt es sich um den goldenen Schnitt Φ . Sind a>b Einteilungen einer Strecke so gilt für deren Verhältniss $\frac{a}{b}=\frac{a+b}{a}=\Phi$. Neben mathematischem Interesse findet man diesen auch in der Kunst, Architektur oder in manchen Phänomenen der Natur. Ihm wird nachgesagt, dass Streckenteilungen im goldenen Schnitt als besonders schön angesehen werden.

A4.4 Gibt es Folgen $(x_n)_n$, sodass:

i) Für alle
$$x \in \mathbb{R}$$
 gibt es eine Teilfolge (x_{n_k}) , sodass $x_{n_k} \to x$ für $k \to \infty$. (2)

ii) Für alle
$$x \in (0,1)$$
 gibt es eine Teilfolge (x_{n_k}) , sodass $x_{n_k} \to x$ für $k \to \infty$, aber für $y \notin (0,1)$ existiert keine solche Teilfolge. (2)

Hinweis: Sie dürfen benutzen, dass sich jede reelle Zahl beliebig nah durch rationale Zahlen Approximieren lässt. Also

$$\forall \varepsilon > 0, \forall x \in \mathbb{R} \exists q_{\varepsilon,x} \in \mathbb{Q} : |q_{\varepsilon,x} - x| < \varepsilon$$