UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA ELÉTRICA SISTEMAS REALIMENTADOS

ALAF DO NASCIMENTO SANTOS FELIPE ANTONIO MOREIRA SILVA

SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS

VITÓRIA - ES

MARÇO 2022

Alaf do Nascimento Santos Felipe Antonio Moreira Silva

SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS

Parte manuscrita do Segundo Trabalho Computacional de Sistemas Realimentados dos alunos Alaf do Nascimento Santos e Felipe Antonio Moreira Silva, apresentado ao Prof. Dr. Jose Leandro Felix Salles, como requisito parcial para aprovação na disciplina.

Vitória - ES

Março 2022

LISTA DE FIGURAS

Figura 1 –	Diagrama de Bode da FTMA	10
Figura 2 –	Diagrama de Bode da Gma com Controlador PI	11
Figura 3 –	Diagrama de Bode da FTMA com Controladores PID projetados	12
Figura 4 –	Tabela realizada no Matlab para comparar os diferentes projetos de	
	controladores	12
Figura 5 –	Resposta ao Degrau de Malha Fechada com PI gerada pelo comando	
	stepinfo	13
Figura 6 –	Resposta ao Degrau de Malha Fechada com PID gerada pelo comando	
	stepinfo	13
Figura 7 –	Resposta ao Degrau de Malha Fechada com PID2 gerada pelo comando	
	stepinfo	13
Figura 8 –	Resposta ao Degrau de Malha Fechada com os Controladores projetados	14
Figura 9 –	Diagrama de Bode da FTMA com atraso de transporte	15
Figura 10 –	Diagrama de Bode da Gma com atraso de transporte com Controlador PI	16
Figura 11 –	Diagrama de Bode da FTMA com atraso de transporte com Controla-	
	dores PID projetados	17
Figura 12 –	Tabela realizada no Matlab para comparar os diferentes projetos de	
	controladores	17
Figura 13 –	Resposta ao Degrau de Malha Fechada com atraso de transporte e com	
	PI gerada pelo comando stepinfo	18
Figura 14 –	Resposta ao Degrau de Malha Fechada com atraso de transporte e com	
	PID gerada pelo comando stepinfo	18
Figura 15 –	Resposta ao Degrau de Malha Fechada com atraso de transporte e com	
	PID2 gerada pelo comando stepinfo	18
Figura 16 –	Resposta ao Degrau de Malha Fechada com atraso de transporte e com	
	os Controladores projetados	19
Figura 17 –	Diagrama de Fluxo de Sinal	21
Figura 18 –	Resposta com ruído de medição	24
Figura 19 –	Resposta sem ruído de medição	24
Figura 20 –	Comparação das respostas ao degrau	25
Figura 21 –	Diagrama de Bode de K1Gma	27
Figura 22 –	Diagrama de Bode de C_{atraso} Gma	28
Figura 23 –	Tabela realizada no Matlab para comparar os projetos dos controladores	
	na planta de atraso e atraso-avanço	29
Figura 24 –	Resposta ao Degrau de Malha Fechada com os Controladores projetados	30
Figura 25 –	Diagrama de Bode de K1Gma com atraso de transporte	31

Figura 26 – Diagrama de B	Bode de C_{atraso} Gma com atraso de transporte	33
Figura 27 – Tabela realizad	a no Matlab para comparar os projetos dos controladores	
na planta de at	traso e atraso-avanço com atraso de transporte	34
Figura 28 – Resposta ao De	egrau de Malha Fechada com atraso de transporte com	
os Controlador	es projetados	34
Figura 29 – Diagrama de B	Sode de K1Gma com atraso de transporte	35
Figura 30 – Diagrama de B	Sode de C_{atraso} Gma com atraso de transporte	37
Figura 31 – Tabela realizad	a no Matlab para comparar os projetos dos controladores	
na planta de at	traso e atraso-avanço com atraso de transporte	38
Figura 32 – Resposta ao De	egrau de Malha Fechada com atraso de transporte com	
os Controlador	es projetados	38
Figura 33 – Diagrama de F	'luxo de Sinal	40
Figura 34 – Resposta com	ruído de medição	42
Figura 35 – Resposta sem i	ruído de medição	42
Figura 36 – Comparação da	as respostas (Atraso-Avanço)	43
Figura 37 – Comparação da	as respostas ao degrau controladores item $1.1~{\rm e}~1.4~{\rm}$	44
Figura 38 – Resposta da re	alimentação de estados	47
Figura 39 – Resposta da re	alimentação de estados com correção de erro	48
Figura 40 – Simulação da r	resposta em malha fechada com realimentação de estados	48
Figura 41 – Comparação da	as respostas ao degrau controladores item 1.1, 1.4 e 1.6 $$.	49
Figura 42 – Resposta da re	alimentação de estados + Observador (fator 1.5)	50
Figura 43 – Ajuste de erro	- Resposta da realimentação de estados + Observador	
(fator 1.5)		51
Figura 44 – Resposta da re	alimentação de estados + Observador (fator 5)	51
Figura 45 – Ajuste de erro	- Resposta da realimentação de estados + Observador	
$(fator 5) \dots$		52
Figura 46 – Resposta da re	alimentação de estados + Observador	52

SUMÁRIO

1 1.1	ESPECIFICAÇAO
2	ITEM 1.1
2.1	Primeiro caso (sem atraso de transporte)
2.2	Segundo caso (com atraso de transporte)
3	ITEM 1.2
4	ITEM 1.3
5	ITEM 1.4
5.1	Item 1.1 (Atraso-Avanço)
5.2	Item 1.2 (Atraso-Avanço)
5.3	Item 1.3 (Atraso-Avanço)
6	ITEM 1.5
7	ITEM 1.6
7.1	Análise do item 1.5
7.2	Projeto de controlador via realimentação de estados 45
7.3	Simulação do controle via realimentação de estados 48
8	ITEM 1.7
9	ITEM 1.8
	REFERÊNCIAS BIBLIOGRÁFICAS
	ANEXOS 54
.1	Item 1.1
.2	Item 1.2
.3	Item 1.3
.4	Item 1.4
.4.1	1.1 (Atraso-Avanço)
.4.1.1	(i) T $=$ 0s
.4.1.2	(ii) T = $0.1/N$ s

.4.2	1.2 (Atraso-Avanço)
.4.3	1.3 (Atraso-Avanço)
.5	Item 1.5
.6	Item 1.6
.7	Item 1.7
.8	Item 1.8
.9	Funções de Modelo Linear
.9.1	modelo_linear.m
.9.2	modelo_linearVeiculo.m
.9.3	modelo_linear2.m

1 ESPECIFICAÇÃO

1.1 Especificação do Grupo

• Nome: Alaf do Nascimento Santos. Matrícula: 2017100781

• Nome: Felipe Antonio Moreira Silva. Matrícula: 2018205316

• Número do Grupo: 9

Segundo Trabalho Computacional de Sistemas Realimentados

Componentes do Grupo (no máximo 2 alunos): Número do Grupo (N):

Data da entrega do trabalho no Google Classroom: até 25/03

1 - A dinâmica de um veículo lunar (ver Fig. P12.10 pag 571 do livro do Dorf e Bishop) é dada por:

$$G = \frac{100N}{(s + (25 - N))(s + \frac{25}{N})}e^{-(T)s}$$

1.1 Projetar um controlador PID, usando resposta em frequência, para que o sistema tenha as seguintes especificações:

Erro à entrada degrau e ao distúrbio de degrau menores ou iguais a 0,1, largura de banda da função de transferência em malha aberta maior possível e margem de fase maior ou igual a 60 graus.

Faça o projeto para os seguintes casos:

- i) T=0 seg. (sem atraso de transporte), e
- ii) T=0.1/N seg.

Analise os dois casos mencionados acima e discuta as diferenças.

OBS: faça o projeto para o caso (ii) sem usar a aproximação de padé, considerando o comando do matlab g=tf(num,den,'InputDelay', T); onde num e dem são o numerador e o denominador da FT sem atraso de transporte.

- 1.2 Para o caso em que T=0 seg, multiplique o controlador projetado pela FT G do veículo lunar e determine a equação de estados deste sistema em malha aberta. Em seguida, desenvolva um código no matlab, semelhante ao fornecido para simular o avião (programa "simulaviao.m" fornecido em anexo), para simular o sistema de controle de direção do veículo lunar em malha fechada no espaço de estados. Considere nas simulações os seguintes casos:
- i) Existe na saída do sistema de controle um ruído graussiano (comando "rand") no sensor do veículo lunar.
 - ii) Não existe na saída do sistema de controle o ruído de medição.

Analise os dois casos mencionados acima e discuta as diferenças.

1.3 Compare a resposta ao degrau obtida usando o simulador desenvolvido no item 1.2 (sem o ruído de medição), com a resposta ao degrau (sobressinal, tempo de subida) obtida no item 1.1 para T=0 s.

- 1.4 Repita os exercícios 1.1, 1.2, e 1.3 anteriores para o controlador Atraso-Avanço de fase.
- 1.5 Compare as respostas à entrada degrau (sobressinal, tempo de subida) e o erro em regime às entradas degrau para os dois sistemas com os controladores obtidos nos itens 1.1 e 1.4 para T=0.0 s.
- 1.6 Considerando o item 1.5, escolha o melhor controlador obtido e determine os polos da FT em malha fechada. A partir destes polos, projete um controlador usando a realimentação de estados para controlar a dinâmica deste sistema.
- 1.7 Compare as respostas ao degrau e o respectivo erro à entrada degrau dos sistemas realimentados projetados no 1.1 e 1.4 para T=0.0 s com o sistema realimentado projetado no item 1.6. A pontuação até o item 1.7 vale 10.
- 1.8 Desenvolver um projeto do observador de estados para o sistema realimentado projetado no item 1.6. Simule este sistema em malha fechada considerando realimentação de estados, e compare o seu desempenho com as respostas à entrada degrau obtidas no item 1.7. (ponto adicional)

2 Considerações sobre os Projetos

A execução destes projetos deve seguir os seguintes passos:

- Desenvolver o controlador usando a resposta em frequência e realimentação de estados, através do Matlab. Aplicar o controlador desenvolvido ao modelo da planta e simular a resposta em malha fechada, verificando se as especificações são atendidas;
- 2. Caso não satisfaça, refazer os passos 1 e 2.

3 O Relatório final escrito, feito em grupo de até dois alunos, deverá ser entregue até a data especificada e deverá conter

Projeto do Controlador:

- Descrever o passo a passo dos projetos baseados em respostas em frequências e espaço de estados, mostrando as equações utilizadas para a escolha dos parâmetros dos controladores;
- FT do controlador e FT de malha fechada (planta+controlador) utilizadas para a simulação;
- Comandos do Matlab usados para simulação;
- Resultados da simulação no Matlab do controlador+planta, apresentando os gráficos dos sinais de saída no domínio do tempo e da frequência, especificando o sobressinal, o tempo de subida, o erro em regime as margens de ganho e de fase, a largura de banda obtidas com o controlador projetado.

2 ITEM 1.1

Para o primeiro item do trabalho computacional, foi solicitado a realização do projeto de um controlador PID, usando resposta em frequência, para que o sistema tenha as seguintes especificações:

- Erro à entrada degrau e ao distúrbio de degrau menores ou iguais a 0,1;
- Largura de banda da função de transferência em malha aberta maior possível;
- Margem de fase maior ou igual a 60 graus.

Além disso, foi fornecido que a função de transferência que representa a dinâmica de um veículo lunar em malha aberta é:

$$G = \frac{100N}{(s + (25 - N))(s + \frac{25}{N})}e^{-(T)s}$$

Deste modo, foi realizado o projeto para dois casos distintos da função de transferência:

- Sem atraso de transporte, T = 0seg;
- Com atraso de transporte, $T = \frac{0.1}{N} seg;$

2.1 Primeiro caso (sem atraso de transporte)

Para o primeiro caso (sem o atraso), iniciamos o desenvolvimento implementando os dados básicos do sistema, como a função de transferência em malha aberta, e definindo o valor de N=9. Após esta primera implementação, realizamos o diagrama de Bode da FTMA para análises posteriores.

Figura 1 – Diagrama de Bode da FTMA

Fonte: Produção do próprio autor.

Sendo assim, para o projeto do controlador PID, iniciamos com a etapa de determinação da GM, PM, frequências de cruzamento de ganho e de fase e a largura de banda da planta dada pela função de transferência Gma, nos quais obtemos:

- GM = Inf db;
- PM = 35.5531 graus;
- Frequência de cruzamento de ganho = Inf rad/s;
- Frequência de cruzamento de fase = 27.8687 rad/s ;

Após essa etapa, obtivermos que a nova frequência de cruzamento de ganho, dada por ω_{0dB} através da relação $25^{\circ}=180^{\circ}+$ Fase de GP ω_{0dB} , será de 0.6694 rad/s. Deste modo, calculamos o ganho proporcional do PI (KPI) tal que que GMA = GP \times KPI tenha a margem de fase aproximadamente igual a 25° na nova frequência de cruzamento de ganho

 (ω_{0dB}) , ou seja, escolher KPI tal que $20log(K_p) + 20log(Gp_{\omega_{0dB}})$. Portanto, temos que o ganho Kpi será de 1.4938.

Para proxima etapa do projeto, escolhemos a frequência de corte do PI tal que o atraso de fase do PI ocorra um pouco abaixo da nova frequência de cruzamento de ganho, sendo $K_{ii} = 8.3260$. Deste modo, temos o nosso controlador PI e podemos realizar sua simuação com a planta a fim de verificar se o projeto é satisfeito.

Diagrama de Bode para o Controlador Pl 60 40 Magnitude (dB) 20 0 -20 -40 0 Gma Gma+PI -45 Phase (deg) -90 -135-18010¹ 10² 10³ 10⁻¹ 10⁰

Figura 2 – Diagrama de Bode da Gma com Controlador PI

Fonte: Produção do próprio autor.

Após obitido o controlador integrativo, podemos projetar o PD dado por 1 + sKdd considerando a FTMA de GMA = GP × [Kpi × (Kiis)] e que a MF especificada seja maior ou igual a 60° na nova frequência de cruzamento de ganho obtida anteriormente. Isto nos dá uma frequência de corte do PD de $K_{dd} = 0.0285$. Sendo assim, temos ao final, um controlador PID resultante:

Frequency (rad/s)

$$PID = \frac{0.04251s^2 + 1.731s + 8.326}{s}$$

Antes de realizar as simulações e análises da resposta ao degrau em malha fechada, realizamos a repetição do procedimento anterior utilizando como parâmetro no cálculo

de Kdd, o valor da frequência de corte do PID anterior. Deste modo temos um novo controlador PID:

 $PID_2 = \frac{0.09789s^2 + 2.039s + 8.326}{s}$

Sendo assim, temos as simulações de malha aberta e fechada para realizar as análises necessárias para escolher o melhor controlador ou realizar um novo projeto.

Figura 3 – Diagrama de Bode da FTMA com Controladores PID projetados

Fonte: Produção do próprio autor.

Figura 4 – Tabela realizada no Matlab para comparar os diferentes projetos de controladores

ixiU <u>table</u>									
Controladores	Overshoot	SettlingTime	RiseTime	Gms	BWs	MFs	Ess_Degrau	Ess_Disturbio	
'0'	36.377	37.496	4.3955	Inf	27.869	35.553	0.047059	0.95294	
'PI'	58.825	56.334	3.2733	Inf	35.143	19.986	0	0	
'PID'	13.217	16.384	3.193	Inf	45.78	68.284	0	0	
'PID2'	1.9639	4.7675	2.3946	Inf	88.106	88.653	0	0	
	'0' 'PI' 'PID'	'0' 36.377 'PI' 58.825 'PID' 13.217	'0' 36.377 37.496 'PI' 58.825 56.334 'PID' 13.217 16.384	'0' 36.377 37.496 4.3955 'PI' 58.825 56.334 3.2733 'PID' 13.217 16.384 3.193	'0' 36.377 37.496 4.3955 Inf 'PI' 58.825 56.334 3.2733 Inf 'PID' 13.217 16.384 3.193 Inf	'0' 36.377 37.496 4.3955 Inf 27.869 'PI' 58.825 56.334 3.2733 Inf 35.143 'PID' 13.217 16.384 3.193 Inf 45.78	'0' 36.377 37.496 4.3955 Inf 27.869 35.553 'PI' 58.825 56.334 3.2733 Inf 35.143 19.986 'PID' 13.217 16.384 3.193 Inf 45.78 68.284	'0' 36.377 37.496 4.3955 Inf 27.869 35.553 0.047059 'PI' 58.825 56.334 3.2733 Inf 35.143 19.986 0 'PID' 13.217 16.384 3.193 Inf 45.78 68.284 0	

Figura 5 – Resposta ao Degrau de Malha Fechada com PI gerada pelo comando stepinfo

struct with fields:

RiseTime: 3.2733
SettlingTime: 56.3338
SettlingMin: 0.6882
SettlingMax: 1.5881
Overshoot: 58.8246
Undershoot: 0
Peak: 1.5881
PeakTime: 10

Fonte: Produção do próprio autor.

Figura 6 - Resposta ao Degrau de Malha Fechada com PID gerada pelo comando stepinfo

```
ans =

struct with fields:

RiseTime: 3.1930
SettlingTime: 16.3843
SettlingMin: 0.9740
SettlingMax: 1.1322
Overshoot: 13.2170
Undershoot: 0
Peak: 1.1322
PeakTime: 8
```

Fonte: Produção do próprio autor.

Figura 7 – Resposta ao Degrau de Malha Fechada com PID2 gerada pelo comando stepinfo

```
ans =

struct with fields:

RiseTime: 2.3946
SettlingTime: 4.7675
SettlingMin: 0.9460
SettlingMax: 1.0197
Overshoot: 1.9639
Undershoot: 0
Peak: 1.0197
PeakTime: 9
```

Fonte: Produção do próprio autor.

Portanto, ao analisar as Figuras 4, 5, 6, 7 e 8, podemos determinar que o melhor controlador PID foi o segundo (PID_2) , pois possui uma resposta rápida, um sobressinal baixo, erros ao degrau e ao distúrbio nulo e atender às especificações iniciais do projeto.

Figura 8 – Resposta ao Degrau de Malha Fechada com os Controladores projetados

Fonte: Produção do próprio autor.

2.2 Segundo caso (com atraso de transporte)

Já para o segundo caso (com o atraso), iniciamos o desenvolvimento do segundo projeto implementando novamente os dados básicos do sistema, como a nova função de transferência em malha aberta, e definindo o valor de N=9. Após essa primera implementação, realizamos o diagrama de Bode da FTMA com atraso para análises posteriores.

Função de Transferência com Atraso da Dinâmica do Veículo Lunar 20 Magnitude (dB) 0 -20 -40 -60 0 Phase (deg) -360 -720 -108010¹ 10^{-1} 10⁰ 10² 10³ Frequency (rad/s)

Figura 9 – Diagrama de Bode da FTMA com atraso de transporte

Fonte: Produção do próprio autor.

Sendo assim, para o projeto do controlador PID deste segundo caso, iniciamos com a etapa de determinação da GM, PM, frequências de cruzamento de ganho e de fase e a largura de banda da planta dada pela função de transferência Gma com atraso de transporte, nos quais obtivemos:

- GM = 1.9419 db;
- PM = 17.8114 graus;
- Frequência de cruzamento de ganho = 40.2519 rad/s;
- Frequência de cruzamento de fase = 27.8687 rad/s;

Após essa etapa, temos que a nova frequência de cruzamento de ganho ω_{0dB} será de 0.4912 rad/s. Deste modo, calculando o ganho proporcional do PI (KPI) assim como para o Gma sem atraso, obtivemos um ganho Kpi de 2.0360, porém, quando se utiliza tal valor de ganho, a função de transferência em malha fechada apresenta instabilidade e impossibilita

a continuação das análises, portanto, determinamos que o valor de Kpi fosse menor que o calculado, ou seja, Kpi = 0.2036 (10% do Kpi teórico).

Dando continuidade ao projeto, escolhemos a frequência de corte do PI tal que o atraso de fase do PI ocorra um pouco abaixo da nova frequência de cruzamento de ganho, sendo $K_{ii} = 1.1348$. Deste modo, obtivemos o nosso controlador PI e realizamos sua simuação com a planta a fim de verificar se o projeto é satisfeito.

Figura 10 – Diagrama de Bode da G
ma com atraso de transporte com Controlador PI $\,$

Fonte: Produção do próprio autor.

Após obitido o controlador integrativo anteriormente, podemos realizar o projeto do PD de mesmo modo que o caso anterior, o que nos dá uma frequência de corte do PD de $K_{dd} = 0.0954$. Sendo assim, temos ao final, um controlador PID resultante:

$$PID = \frac{0.01942s^2 + 0.3118s + 1.135}{s}$$

Antes de realizar as simulações e análises da resposta ao degrau em malha fechada, realizamos a repetição do procedimento anterior utilizando como parametro do cálculo de Kdd, o valor da frequência de corte do PID anterior. Deste modo temos um novo

controlador PID:

$$PID_2 = \frac{0.03983s^2 + 0.4256s + 1.135}{s}$$

Sendo assim, temos as simulações de Malha Aberta e Fechada de Gma com atraso de transporte para realizar as análises necessárias para escolher o melhor controlador ou realizar um novo projeto.

Figura 11 – Diagrama de Bode da FTMA com atraso de transporte com Controladores PID projetados

Fonte: Produção do próprio autor.

 ${\bf Figura~12-Tabela~realizada~no~Matlab~para~comparar~os~diferentes~projetos~de~controladores}$

Controladores_atraso	Overshoot_atraso	SettlingTime_atraso	RiseTime_atraso	Gms_atraso	BWs_atraso	MFs_atraso	Ess_Degrau_atraso	Ess_Disturbio_atraso
.0.	63.51	89.641	3.9017	1.9419	27.869	17.811	0.047059	0.95294
'PI'	36.392	88.732	10.538	6.5556	10.486	36.929	0	0
'PID'	4.2607	62.528	11.206	8.2107	15.337	82.382	0	0
'PID2'	0.88603	29.535	10.85	4.1015	32.978	81.297	0	0
'PID2'	0.88603	29.535	10.85	4.1015	32.978	81.297	0	0
	,0,	'0' 63.51 'PI' 36.392 'PID' 4.2607	0' 63.51 89.641 'PI' 36.392 88.732 'PID' 4.2607 62.528	'0' 63.51 89.641 3.9017 'PI' 36.392 88.732 10.538 'PID' 4.2607 62.528 11.206	'0' 63.51 89.641 3.9017 1.9419 'PI' 36.392 88.732 10.538 6.5556 'PID' 4.2607 62.528 11.206 8.2107	'0' 63.51 89.641 3.9017 1.9419 27.069 'PI' 36.392 88.732 10.538 6.5556 10.486 'PID' 4.2607 62.528 11.206 8.2107 15.337	'0' 63.51 89.641 3.9017 1.9419 27.869 17.811 'PI' 36.392 88.732 10.538 6.5556 10.486 36.929 'PID' 4.2607 62.528 11.206 8.2107 15.337 82.382	*0* 63.51 89.641 3.9017 1.9419 27.869 17.811 0.047059 *PI* 36.392 88.732 10.538 6.5556 10.486 36.929 0 *PID* 4.2607 62.528 11.206 8.2107 15.337 82.382 0

Figura 13 – Resposta ao Degrau de Malha Fechada com atraso de transporte e com PI gerada pelo comando stepinfo

ans =

struct with fields:

RiseTime: 10.5379
SettlingTime: 88.7323
SettlingMin: 0.9247
SettlingMax: 1.3640
Overshoot: 36.3920
Undershoot: 0
Peak: 1.3640
PeakTime: 29

Fonte: Produção do próprio autor.

Figura 14 – Resposta ao Degrau de Malha Fechada com atraso de transporte e com PID gerada pelo comando stepinfo

```
ans =

struct with fields:

RiseTime: 11.2060
SettlingTime: 62.5275
SettlingMin: 0.9032
SettlingMax: 1.0426
Overshoot: 4.2607
Undershoot: 0
Peak: 1.0426
PeakTime: 37
```

Fonte: Produção do próprio autor.

Figura 15 – Resposta ao Degrau de Malha Fechada com atraso de transporte e com PID2 gerada pelo comando stepinfo

```
ans =

struct with fields:

RiseTime: 10.8496
SettlingTime: 29.5346
SettlingMin: 0.9064
SettlingMax: 1.0089
Overshoot: 0.8860
Undershoot: 0
Peak: 1.0089
PeakTime: 62
```

Fonte: Produção do próprio autor.

Portanto, ao analisar as Figuras 12, 13, 14, 15 e 16, podemos determinar que o melhor controlador PID para Gma com atraso de transporte foi o segundo novamente (PID_2) , pois tem uma resposta rápida, um sobressinal baixo, erros ao degrau e ao distúrbio nulo e atender as especificações iniciais do projeto.

Figura 16 – Resposta ao Degrau de Malha Fechada com atraso de transporte e com os Controladores projetados

Fonte: Produção do próprio autor.

Por fim, observando as Figuras 4 e 12. podemos concluir que o controlador projetado sem atraso de transporte apresentou uma oscilação maior do que o controlador com atraso, pois obteve uma sobreelevação de quase 2% enquanto o projetado com atraso não atingiu 1%. Porém, quando analisamos o tempo de estabelecimento, a resposta do controlador sem atraso foi muito mais rápida, o que torna o sobressinal justificável. Deste modo, fazendo um balanceamento dos dados coletatos, temos que o controlador sem o atraso de transporte é superior.

3 ITEM 1.2

Inicialmente, para o caso em que T=0 segundos do item anterior, multiplicou-se o controlador projetado pela função de transferência do veículo lunar. Tal implementação é descrita no trecho de código a seguir:

```
clear all, close all, clc;
op = 1; % 1 se item (i), 2 se item (ii)
global F A B;
load('PID');
load('Gma');
Gpid = Gma*PID;
```

Na segunda linha de código, a escolha da variável \mathbf{op} deve ser feita de acordo com a característica em relação ao ruído de medição que se deseja. Se $\mathbf{op} = 1$ existe na saída do sistema de controle um ruído graussiano no sensor do veículo lunar. Se $\mathbf{op} = 2$ não há ruído de medição na saída do sistema. A função de malha aberta gerada pela multiplicação do controlador pela Gma é dada por 3.1.

$$Gpid = \frac{88.1s^2 + 1835s + 7493}{s^3 + 18.78s^2 + 44.44s}$$
(3.1)

Para obtenção da equação de estados do sistema em malha aberta apresentado, fez-se necessário o uso da teoria de representação em variáveis de estados, sendo possível descrever um sistema LIT da seguinte forma:

$$\dot{X}(t) = A \cdot X(t) + B \cdot U(t)$$

$$Y(t) = C \cdot X(t) + D \cdot U(t)$$

Onde X é o vetor de estados do sistema, Y é a saída e U a entrada. As matrizes A, B, C e D são definidas como:

• A: matriz do sistema

- B: matriz de entrada
- C: matriz de saída
- D: matriz de transmissão direta

Para se obter tais matrizes, faz-se necessário analisar o diagrama de fluxo de sinal a partir da função Gpid multiplicada por s^{-3}/s^{-3} , ou seja:

$$Gpid = \frac{88.1s^2 + 1835s + 7493}{s^3 + 18.78s^2 + 44.44s} \cdot \frac{s^{-3}}{s^{-3}} = \frac{88.1s^{-1} + 1835s^{-2} + 7493s^{-3}}{1 + 18.78s^{-1} + 44.44s^{-2}}$$

Sendo possível esboçar o seguinte diagrama de fluxo:

Figura 17 – Diagrama de Fluxo de Sinal

Fonte: Produção do próprio autor.

Do diagrama, pode-se obter

$$\dot{x}_1 = -18.78 \cdot x_1 + x_2 + 88.1 \cdot u$$
$$\dot{x}_2 = -44.44 \cdot x_1 + x_3 + 1835 \cdot u$$
$$\dot{x}_3 = 7493 \cdot u$$

e, portanto, para a Gpid dada, as matrizes do espaço de estados são definidas como:

$$A = \begin{pmatrix} -18.78 & 1.00 & 0.00 \\ -44.44 & 0.00 & 1.00 \\ 0.00 & 0.00 & 0.00 \end{pmatrix}, \ B = \begin{pmatrix} 88.1 \\ 1835 \\ 74930 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}, \ D = 0$$

Em código,

```
% Definição das Matrizes A, B, C e D
A = [-18.78 1 0;
    -44.44 0 1;
    0 0 0];
B = [88.1 1835 7493]';
C = [1 0 0];
D = 0;
```

Com a definição das matrizes do espaço de estados dada em código, foi necessário fazer a inicialização das variáveis de simulação e estado inicial, tal como definidas no script simulaviao.m (caso exemplo dado pelo professor).

```
% vetor estados inicial
Xs = [0 0 0];
F = 0;

% Inicialização de variáveis
tfinal = 5; % Tempo total de simulação
ref = 1; % Referência
passo = 0;
tempo = 0;
dT = 0.01; % tempo de amostragem
```

A simulação do sistema de controle de direção em malha fechada é feita por meio de um loop do tipo while com critério de parada dado pelo tempo de simulação, o qual foi de 0 à 5 segundos, com passo de 0.1 segundos dado por cada iteração do laço.

```
while (tempo < tfinal)
   passo = passo + 1;
   ts = passo*dT;

% simulação da equação diferencial
   [T,X] = ode45('modelo_linearVeiculo',[tempo ts], Xs);

% Armazenamento de variaveis
   n = length(T);
   tempo = ts;</pre>
```

```
Xs = X(n,:);
if(op == 2);
    F = ref - Xs(1);
end
if(op == 1);
    F = ref-(Xs(1) + 0.05*randn(1));
end
vetout(passo,:) = X(n,1);
vettime(passo) = T(n,:);
vetvref(passo,:) = ref;
end
```

Ao fim dos 5 segundos de simulação, tem-se a saída da resposta do controle de direção dada pela plotagem do vetor vetout em relação ao tempo (dado pelo vettime), para melhor visualização, areferência também é exibida. Segue o trecho de código para plotagem:

```
figure
plot(vettime, vetvref,'b');
hold on;
plot(vettime,vetout,'r'); %multiplica por p1 para reduzir o erro
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
grid;
```

A Figura 18 é resultado da simulação do sistema de controle de direção em malha fechada no espaço de estados, com ruído gaussiano no sensor do veículo lunar na saída do sistema de controle.

A Figura 19 é resultado da simulação do sistema de controle de direção em malha fechada no espaço de estados, sem ruído de medição na saída do sistema de controle.

Figura 18 – Resposta com ruído de medição

Fonte: Produção do próprio autor.

Figura 19 – Resposta sem ruído de medição

4 ITEM 1.3

Neste item foi solicitado realizar comparação das respostas ao degrau obtidas a partir do controlador PID projetado no item 1.1 para T=0s e a simulação desenvolvida no item 1.2 sem o ruído de medição na saída.

A Figura 20 mostra a comparação entre as curvas obtidas nos itens anteriores como solicitado. Nota-se que a simulação do sistema de controle de direção do veículo lunar obtida se assemelha a resposta ao degrau do item 1.1 em todo o tempo de simulação. A tabela 1 demonstra um comparativo quantitativo dessa semelhança e reforça que a simulação desenvolvida se mostrou satisfatória para a dada planta. O tempo de subida, o sobressinal e o erro foram encontrados através das curvas apresentadas na Figura 20.

Figura 20 – Comparação das respostas ao degrau

Fonte: Produção do próprio autor.

Tabela 1 – Comparação entre as curvas dos itens1.1e1.2

	Item 1.1	Item 1.2
Sobressinal	2.2 %	2.0 %
Tempo de subida	$0.03 \; { m s}$	$0.05 \mathrm{\ s}$
Erro	0	0

5 ITEM 1.4

5.1 Item 1.1 (Atraso-Avanço)

Para a primeira parte do item 1.4, foi solicitado a realização do projeto para os dois casos do item 1.1, porém com um controlador Atraso-Avanço tendo novamente como requisitos o erro à entrada degrau e ao distúrbio menores ou iguais a 0.1, largura de banda da função de transferência em malha aberta maior possível e margem de fase maior ou igual a 60 graus.

Para o primeiro caso (sem o atraso), iniciamos o desenvolvimento do projeto do compensador Atraso. Deste modo, determinamos o ganho K1 que atenda ao erro menor que 0.1. Sendo assim, obtivemos o valor do ganho estático proporcional através do diagrama de bode da Figura 1 de valor de Kp = 26.1db ou, tirando da escala db, Kp = 20.1837.

Através do erro estático, pode-se determinar o valor de K1 realizando a limitação de 0.1 para a entrada degrau e distúrbio, obtendo assim:

$$essDegrau = \lim_{s \to 0} \frac{1}{1 + K1 \cdot G_{ma}} = 0.1$$

$$essDistrubio = \lim_{s \to 0} \frac{G_{ma}}{1 + K1 \cdot G_{ma}} = 0.1$$

$$K1_{degrav} = 0.4444$$

$$K1_{disturbio} = 9.9506$$

Analisando ambos valores de encontrados, definimos um gannho K1=15 pois consegue atender ambas especificações de erro.

Uma vez determinado o ganho, podemos iniciar o projeto do controlador de atraso de fase escolhendo a nova frequência de cruzamento de ganho, sendo determinada pela relação $fase_{cruzGanho} = MFdesejada - 180$, portanto temos que a nova fase será de -120 graus, no qual terá uma frequência de cruzamento de ganho de 14 rad/s e um módulo de 33 db utilizando o diagrama de bode de $K1G_{ma}$.

Figura 21 – Diagrama de Bode de K1Gma

Fonte: Produção do próprio autor.

Sabendo que a relação de alfa para o controlador atraso é $20log_{10}(\alpha) = 20log_{10}(modulo_w0db)$, temos que $\alpha = 0.0303$.

Deste modo, após α determinado, calculamos o τ através das frequências de corte do zero do compensador, utilizando a nova frequência de cruzamento de ganho uma década abaixo, e a frequências de corte do polo do compensador, ou seja:

$$f_c zero = \frac{1}{\alpha \tau} - w0 db_{(-1 dec/abaixo)} \rightarrow \tau = 8.2500$$

$$f_c polo = \frac{1}{\tau} = 0.1212 rad/s$$

Portanto, uma vez determinado os valores de K1, α e τ , podemos definir o controlador de atraso de fase:

$$C_{atraso} = K1 \frac{1 + \alpha \tau j \omega}{1 + \tau j \omega} = 15 \frac{1 + 0.0303 \cdot 8.2500 j \omega}{1 + 8.2500 j \omega}$$

Continuando o projeto, iniciamos o desenvolvimento da parte do controlador em avanço de fase. Deste modo, escolhemos o valor do ganho de avanço como K2=1 e determinamos o valor da nova fase, dada por $\phi_m=75-MF_{C_{atraso}Gma}$ que em nosso caso, obtivemos uma $MF_{C_{atraso}Gma}=35.5531 graus$ e escolhemos uma nova margem de fase de 60 graus com

um adicional de 15 graus (75 graus) para ter uma boa margem de sobra. Após definido a nova fase, utilizamos este valor para determinar a constante α para o controlador avanço, sendo dado por $tg(\phi_m) = \frac{\alpha-1}{2\sqrt{\alpha}}$, o que nos deu $\alpha = 4.4849$

Deste modo, após α calculado, determinamos a frequência onde ocorre o máximo avanço de fase através de seu módulo calculado por $Modulo_{dB} = -10log_{10}(\alpha)$, que neste nosso caso nos deu $Modulo_{dB} = -4.6747$ aproximadamente, e avaliamos este valor no diagrama de bode de $C_{atraso}Gma$.

Figura 22 – Diagrama de Bode de C_{atraso} Gma

Através de bode, temos que a frequência onde irá ocorrer o máximo avanço de fase será em torno de Wm=37.6rad/s. Sendo assim, podemos determinar a constante τ para o avanço pela relação $\tau=\frac{1}{\omega_m\sqrt{\alpha}}$, o que nos dá $\tau=0.0126$

Portanto, uma vez determinado os valores de K2, α e τ , podemos definir o controlador de avanço de fase:

$$C_{avanco} = K2 \frac{1 + \alpha \tau j \omega}{1 + \tau j \omega} = 1 \frac{1 + 4.4849 \cdot 0.0126 j \omega}{1 + 0.0126 j \omega}$$

E, deste modo, determinamos o controlador atraso-avanço desejado.

$$C_{AtrasoAvanco} = \frac{2.742 \cdot 10^{32} s^2 + 2.964 \cdot 10^{33} s + 1.947 \cdot 10^{34}}{6.113 \cdot 10^{31} s^2 + 5.112 \cdot 10^{33} s + 1.947 \cdot 10^{34}}$$

Por fim, em termos de análises e especificações, adicionamos o controlador atraso e atrasoavaço na planta e realizamos simulações de em malha aberta e fecha a fim de analisar suas respostas, gerando a tabela com os dados e a resposta ao degrau.

Figura 23 – Tabela realizada no Matlab para comparar os projetos dos controladores na planta de atraso e atraso-avanço

2×10 <u>table</u>										
FTMAs	Controladores	Overshoot	SettlingTime	RiseTime	Gms	BWs	MFs	Ess_Degrau	Ess_Disturbio	
'GGma'	'Atraso' 'Avanco-Atraso'	36.484 9.7853	365.9 98.392	43.239 28.902	Inf Inf	27.869 44.694	35.553 62.283	0.0032814	0.066448	

Fonte: Produção do próprio autor.

т =

Figura 24 – Resposta ao Degrau de Malha Fechada com os Controladores projetados

Fonte: Produção do próprio autor.

Para o segundo e último caso (com o atraso de transporte), realizamos os mesmo processos de desenvolvimento do projeto do compensador anterior. Deste modo, determinamos o ganho K1 que atenda ao erro menor que 0.1. Sendo assim, determinarmos o valor do ganho estático proporcional através do diagrama de bode da Figura 9, obtendo um valor de Kp = 26.1db ou, tirando da escala db, Kp = 20.1837.

Através da erro estático, pode ser determinar o valor de K1 realizando a limitação de 0.1 para a entrada degrau e distúrbio, obtendo:

$$essDegrau = \lim_{s \to 0} \frac{1}{1 + K1 \cdot G_{ma}} = 0.1$$

$$essDistrubio = \lim_{s \to 0} \frac{G_{ma}}{1 + K1 \cdot G_{ma}} = 0.1$$

$$K1_{degrau} = 0.4444$$

$$K1_{disturbio} = 9.9506$$

Assim, analisando ambos valores de encontrados, definimos um gannho K1=15 pois atende ambas especificações.

Uma vez determinado o ganho, podemos iniciar o projeto do controlador de atraso de fase escolhendo a nova frequência de cruzamento de ganho, sendo determinada pela relação $fase_{cruzGanho} = MFdesejada - 180$, portanto temos que a nova fase será de -120 graus, no qual dará uma frequência de cruzamento de ganho de 11.6 rad/s e um módulo de 25.1 db utilizando o diagrama de bode de $K1G_{ma}$.

Figura 25 – Diagrama de Bode de K1Gma com atraso de transporte

Sabendo que a relação de alfa para o controlador atraso é $20log_{10}(\alpha) = 20log_{10}(modulo_w0db)$, temos que $\alpha = 0.0398$.

Deste modo, após α determinado, calculamos o τ através da frequências de corte do zero do compensador, com nova frequência de cruzamento de ganho uma década abaixo, e a frequências de corte do polo do compensador, ou seja:

$$f_c zero = \frac{1}{\alpha \tau} - w0db_{(-1dec/abaixo)} \rightarrow \tau = 15.6875$$
$$f_c polo = \frac{1}{\tau} = 0.0637 rad/s$$

Portanto, uma vez determinado os valores de K1, α e τ , podemos definir o controlador de atraso de fase:

$$C_{atraso} = K1 \frac{1 + \alpha \tau j \omega}{1 + \tau j \omega} = 15 \frac{1 + 0.0398 \cdot 15.6875 j \omega}{1 + 15.6875 j \omega}$$

Continuando o projeto, iniciamos o desenvolvimento da parte do controlador em avanço de fase. Deste modo, escolhemos o valor do ganho de avanço como K2=1 e determinamos o valor da nova fase, dada por $\phi_m=75-MF_{CatrasoGma}$ que em nosso caso, obtivemos uma $MF_{CatrasoGma}=17.8114 graus$ e escolhemos uma nova MF de 60 graus com um adicional de 15 graus (75 graus) para ter uma boa margem de sobra. Após definido a nova fase, utilizamos este valor para determinar a constante α para o controlador avanço, sendo dado por $tg(\phi_m)=\frac{\alpha-1}{2\sqrt{\alpha}}$, o que nos deu $\alpha=11.5360$

Deste modo, após α calculado, determinamos a frequência onde ocorre o máximo avanço de fase através de seu módulo calculado por $Modulo_{dB} = -10log_{10}(\alpha)$, que neste nosso caso nos deu $Modulo_{dB} = -10.6205$ aproximadamente, e avaliamos este valor no diagrama de bode de $C_{atraso}Gma$.

Figura 26 – Diagrama de Bode de C_{atraso} Gma com atraso de transporte

Fonte: Produção do próprio autor.

Através de bode, temos que a frequência onde irá ocorrer o máximo avanço de fase serpa em torno Wm = 54.5 rad/s. Sendo assim, podemos determinar a constante τ para Avanço pela relação $\tau = \frac{1}{\omega_m \sqrt{\alpha}}$, o que nos dá $\tau = 0.0054$

Portanto, uma vez determinado os valores de K2, α e τ , podemos definir o controlador de avanço de fase:

$$C_{avanco} = K2\frac{1+\alpha\tau j\omega}{1+\tau j\omega} = 1\frac{1+11.5360\cdot 0.0054j\omega}{1+0.0054j\omega}$$

E, deste modo, determinamos o controlador atraso-avanço desejado.

$$C_{AtrasoAvanco} = \frac{9.48 \cdot 10^{31} s^2 + 1.673 \cdot 10^{33} s + 2.434 \cdot 10^{33}}{8.218 \cdot 10^{30} s^2 + 1.534 \cdot 10^{33} s + 2.434 \cdot 10^{33}}$$

Por fim, em termos de análises e especificações, adicionamos o controlador atraso e atrasoavaço na planta e realizamos simulações de em malha aberta e fecha a fim de analisar suas respostas, gerando a tabela com os dados e a resposta ao degrau.

Figura 27 – Tabela realizada no Matlab para comparar os projetos dos controladores na planta de atraso e atraso-avanço com atraso de transporte

ľ	T =									
	2×10 <u>table</u>									
	FTMAs	Controladores	Overshoot	SettlingTime	RiseTime	Gms	BWs	MFs	Ess_Degrau	Ess_Disturbio
	'GGma'	'Atraso'	63.758	887.47	38.236	1.9419	27.869	17.811	0.0032814	0.066448
	'GGGGma'	'Avanco-Atraso'	34.793	151.29	16.48	2.0138	53.796	42.458	0.0032814	0.066448

Fonte: Produção do próprio autor.

Figura 28 – Resposta ao Degrau de Malha Fechada com atraso de transporte com os Controladores projetados

Fonte: Produção do próprio autor.

Como observado pela Tabela 27, não foi atendido ao requisito de margem de fase superior à 60 graus, deste modo, como podemos abaixar ainda mais o ganho K1 para tenha um aumento de margem fase e continue atendendo ao requisito de erro, realizamos outra vez o projeto avanço-atraso definimos um gannho K1 = 10.

Uma vez determinado o ganho, podemos iniciar o projeto do controlador de atraso de fase escolhendo a nova frequência de cruzamento de ganho, sendo determinada pela relação

 $fase_{cruzGanho}=MFdesejada-180$, portanto temos que a nova fase será de -100 graus, no qual dará uma frequência de cruzamento de ganho de 7.65 rad/s e um módulo de 37 db utilizando o diagrama de bode de $K1G_{ma}$.

Figura 29 – Diagrama de Bode de K1Gma com atraso de transporte

Sabendo que a relação de alfa para o controlador atraso é $20log_{10}(\alpha) = 20log_{10}(modulo_w0db)$, temos que $\alpha = 0.0270$.

Deste modo, após α determinado, calculamos o τ através da frequências de corte do zero do compensador, com nova frequência de cruzamento de ganho uma década abaixo, e a frequências de corte do polo do compensador, ou seja:

$$f_c zero = \frac{1}{\alpha \tau} - w0db_{(-1dec/abaixo)} \rightarrow \tau = -15.7447$$
$$f_c polo = \frac{1}{\tau} = -0.0635 rad/s$$

Portanto, uma vez determinado os valores de K1, α e τ , podemos definir o controlador de atraso de fase:

$$C_{atraso} = K1 \frac{1 + \alpha \tau j \omega}{1 + \tau j \omega} = 10 \frac{1 + 0.0270 \cdot -15.7447 j \omega}{1 - 15.7447 j \omega}$$

Continuando o projeto, iniciamos o desenvolvimento da parte do controlador em avanço de fase. Deste modo, escolhemos o valor do ganho de avanço como K2=1 e determinamos o valor da nova fase, dada por $\phi_m=100-MF_{Catraso}Gma$ que em nosso caso, obtivemos uma $MF_{Catraso}Gma=17.8114 graus$ e escolhemos uma nova MF de 60 graus com um adicional de 40 graus (100 graus) para ter uma boa margem de sobra. Após definido a nova fase, utilizamos este valor para determinar a constante α para o controlador avanço, sendo dado por $tg(\phi_m)=\frac{\alpha-1}{2\sqrt{\alpha}}$, o que nos deu $\alpha=214.5370$

Deste modo, após α calculado, determinamos a frequência onde ocorre o máximo avanço de fase através de seu módulo calculado por $Modulo_{dB} = -10log_{10}(\alpha)$, que neste nosso caso nos deu $Modulo_{dB} = -23.3150$ aproximadamente, e avaliamos este valor no diagrama de bode de $C_{atraso}Gma$.

Figura 30 – Diagrama de Bode de C_{atraso} G
ma com atraso de transporte

Fonte: Produção do próprio autor.

Através de bode, temos que a frequência onde irá ocorrer o máximo avanço de fase serpa em torno Wm=250rad/s. Sendo assim, podemos determinar a constante τ para Avanço pela relação $\tau=\frac{1}{\omega_m\sqrt{\alpha}}$, o que nos dá $\tau=2.7309\cdot 10^{-04}$

Portanto, uma vez determinado os valores de K2, α e τ , podemos definir o controlador de avanço de fase:

$$C_{avanco} = K2 \frac{1 + \alpha \tau j \omega}{1 + \tau j \omega} = 1 \frac{1 + 214.5370 \cdot 2.7309 \cdot 10^{-04} j \omega}{1 + 2.7309 \cdot 10^{-04} j \omega}$$

E, deste modo, determinamos o controlador atraso-avanço desejado.

$$C_{AtrasoAvanco} = \frac{3.803 \cdot 10^{33} s^2 + 5.597 \cdot 10^{34} s - 1.525 \cdot 10^{35}}{1.772 \cdot 10^{30} s^2 + 6.486 \cdot 10^{34} s - 1.525 \cdot 10^{33}}$$

Por fim, em termos de análises e especificações, adicionamos o controlador atraso e atrasoavaço na planta e realizamos simulações de em malha aberta e fecha a fim de analisar suas respostas, gerando a tabela com os dados e a resposta ao degrau.

Figura 31 – Tabela realizada no Matlab para comparar os projetos dos controladores na planta de atraso e atraso-avanço com atraso de transporte

2×10 table Ess_Disturbio Controladores SettlingTime Ess_Degrau 'GGma' 63.753 887.35 38.233 1.9419 27.869 17.811 0.004914 0.099509 'Atraso' 'GGGGma 'Avanco-Atraso' 13.411 66.724 15.723 2.6369 52.956 57.408 0.004914 0.099509

Fonte: Produção do próprio autor.

Figura 32 – Resposta ao Degrau de Malha Fechada com atraso de transporte com os Controladores projetados

Fonte: Produção do próprio autor.

Como observado pela Tabela 31, mesmo assim não foi atendido ao requisito de margem de fase superior à 60 graus, porém conseguimos atigir um valor bem próximo fazendo a repetição do projeto mantendo os outros requisitos aceitáveis.

5.2 Item 1.2 (Atraso-Avanço)

Considerando a função de transferência de quarta ordem resultante da multiplicação entre a planta e o controlador atraso-avanço projetado no item anterior, tem-se a função de malha aberta dada por 5.1

$$Gma_c = \frac{2.468 \cdot 10^{35} s^2 + 5.368 \cdot 10^{36} s + 1.752 \cdot 10^{37}}{6.113 \cdot 10^{31} s^4 + 6.26 \cdot 10^{33} s^3 + 1.182 \cdot 10^{35} s^2 + 5.928 \cdot 10^{35} s + 8.654 \cdot 10^{35}}$$
(5.1)

Dividindo o numerador e o denominador por $6.113 \cdot 10^{31}$:

$$Gma_c = \frac{2.468 \cdot 10^{35} s^2 + 5.368 \cdot 10^{36} s + 1.752 \cdot 10^{37}}{6.113 \cdot 10^{31} s^4 + 6.26 \cdot 10^{33} s^3 + 1.182 \cdot 10^{35} s^2 + 5.928 \cdot 10^{35} s + 8.654 \cdot 10^{35}} \cdot \frac{6.113 \cdot 10^{31}}{6.113 \cdot 10^{31}} \cdot \frac{6.113 \cdot$$

$$\implies Gma_c = \frac{4037.30s^2 + 87812.86s + 286602.32}{s^4 + 102.40s^3 + 1933.58s^2 + 9697.37s + 14156.72}$$

Para obter-se as matrizes do espaço de estados, deve-se seguir um procedimento semelhante ao visto anteriormente e portanto, deve-se multiplicar Gma_c por s^{-4}/s^{-4} , como a seguir:

$$Gma_c = \implies Gma_c = \frac{4037.30s^2 + 87812.86s + 286602.32}{s^4 + 102.40s^3 + 1933.58s^2 + 9697.37s + 14156.72} \cdot \frac{s^{-4}}{s^{-4}}$$

$$\implies Gma_c = \frac{4037.30s^{-2} + 87812.86s^{-3} + 286602.32s^{-4}}{1 + 102.40s^{-1} + 1933.58s^{-2} + 9697.37s^{-3} + 14156.72s^{-4}}$$
(5.2)

Da função 5.2 e utilizando-se o modelo *feedfoward* para o diagrama de fluxo de final, é possível se obter a Figura 33, considerando-se a forma 5.3.

$$Gma_c = \frac{b3s^3 + b2s^2 + b1s + b0}{s^4 + a3s^3 + a2s^2 + a1s + a0}$$
(5.3)

Do diagrama de fluxo temos as seguintes equações diferenciais:

Figura 33 – Diagrama de Fluxo de Sinal

Fonte: (DORF; BISHOP, 1998)

$$\dot{x}_1 = -a_3 x_1 + x_2 + b_3 u,$$

$$\dot{x}_2 = -a_2 x_1 + x_3 + b_2 u,$$

$$\dot{x}_3 = -a_1 x_1 + x_4 + b_1 u,$$

$$\dot{x}_4 = -a_0 x_1 + b_0 u$$

Onde,

- a0 = 14156.72;
- a1 = 9697.37;
- a2 = 1933.58;
- a3 = 102.40
- b0 = 286602.32;
- b1 = 87812.86;
- b2 = 4037.30;
- b3 = 0;

Chegando-se a definição das matrizes em código:

```
A = [-a3 1 0 0;

-a2 0 1 0;

-a1 0 0 1;

-a0 0 0 0];

B = [b3 b2 b1 b0]';

C = [1 0 0 0];

D = 0;
```

Por fim, a simulação como no item 1.2:

```
while (tempo < tfinal)</pre>
     passo = passo + 1;
     ts = passo*dT;
     % simulação da equação diferencial
     [T,X] = ode45('modelo_linear',[tempo ts], Xs);
     % Armazenamento de variaveis
     n = length(T);
     tempo = ts;
     Xs = X(n,:);
     if(op == 2);
         F = ref - Xs(1);
     end
     if(op == 1);
         F = ref-(Xs(1) + 0.02*randn(1));
     end
     vetout(passo,:) = X(n,1);
     vettime(passo) = T(n,:);
     vetvref(passo,:) = ref;
end
```

Vale lembrar que para simulação com ruído na medição basta alterar-se a variável op de 2 para 1. As saídas da simulação do controle de direção do veículo lunar para os casos com e sem ruído de medição são dadas, respectivamente, pelas Figuras 34, 35.

Figura 34 – Resposta com ruído de medição

Fonte: Produção do próprio autor.

Figura 35 – Resposta sem ruído de medição

Fonte: Produção do próprio autor.

5.3 Item 1.3 (Atraso-Avanço)

Neste item foi solicitado realizar comparação das respostas ao degrau obtidas a partir do controlador Atraso-Avanço de fase no item 1.1 para T=0s e a simulação desenvolvida no

item 1.2 sem o ruído de medição na saída também para o controlador Atraso-Avanço de fase.

A Figura 36 mostra a comparação entre as curvas obtidas nos itens anteriores como solicitado. Nota-se que a simulação do sistema de controle de direção do veículo lunar obtida se assemelha a resposta ao degrau do item 1.1 em todo o tempo de simulação. A tabela 2 demonstra um comparativo quantitativo dessa semelhança e reforça que a simulação desenvolvida se mostrou satisfatória para a dada planta. O tempo de subida, o sobressinal e o erro foram encontrados através das curvas apresentadas na Figura 36.

Figura 36 – Comparação das respostas (Atraso-Avanço)

Fonte: Produção do próprio autor.

Tabela 2 – Comparação entre as curvas dos itens 1.1 e 1.2 (Atraso-Avanço)

	Item 1.1	Item 1.2
Sobressinal	16 %	5 %
Tempo de subida	0.04 s	0.04 s
Erro	0.05	0.05

Fonte: Produção do próprio autor.

A tabela 2 foi construída a partir da análise da Figura 36 e, a partir dela, pode-se dizer verificar que na simulação do item 1.2 houve uma vantagem no sobressinal em relação a resposta ao degrau do item 1.1, cuja diferença é de mais de 10%. Os outros parâmetros se mostraram iguais, sendo importante destacar a característica mais oscilatória observada na resposta do item 1.1.

6 ITEM 1.5

A Figura 37 mostra a comparação entre as curvas obtidas nos itens anteriores como solicitado. Nota-se que a resposta do sistema com controlador PID escolhido no item 1.1 difere da resposta com controlador Atraso-Avanço do item 1.4, sendo o erro em regime a maior diferença entre esses sinais. Ambos atendem as especificações de projeto, com erros inferiores a 0.1, sendo no caso do PID um erro nulo e no atraso-avanço 0.05 de erro em regime, com tempo de subida de 0.04 segundos em ambos casos e sobressinal de 2% no primeiro caso e 8.8% no segundo. Estas informações são resumidas na Tabela 3.

Figura 37 – Comparação das respostas ao degrau controladores item 1.1 e 1.4

Fonte: Produção do próprio autor.

Tabela 3 – Comparação entre as curvas dos itens 1.1 e 1.4

	Item 1.1	Item 1.4
Sobressinal	2.0 %	8.8 %
Tempo de subida	0.04 s	0.04 s
Erro	0	0.05

7 ITEM 1.6

7.1 Análise do item 1.5

Do item 1.5, fez-se a escolha do controlador PID que foi projetado no item 1.1 para T = 0.0 s. Tal escolha se justifica pelo fato deste controlador ter gerado um menor sobressinal e erro em regime no sistema, quando comparado ao controlador Atraso-Avanço do item 1.4. A tabela 3 exemplifica tais observações e torna evidente que, no caso do tempo de subida, os controladores se mostraram equivalentes e nos outros parâmetros observados o PID se sobressaiu.

Em malha fechada, para o controlador escolhido, tem-se a função de transferência 7.1. Esta função e seus polos foram gerados pelo trecho de código abaixo:

```
load('PID');
load('Gma');
Gpid = Gma*PID2;

GMF=feedback(Gpid,1);
polos mf = pole(GMF);
```

$$Gmf = \frac{88.1s^2 + 1835s + 7493}{s^3 + 106.9s^2 + 1880s + 7493}$$
(7.1)

Para a Gmf encontrada, obteve-se 3 polos, sendo eles: -86.0424, -15.0497 e -5.7868. A partir destes polos, na seção 7.2 fez-se o projeto do controlador usando a realimentação de estados para controlar a dinâmica deste sistema dado.

7.2 Projeto de controlador via realimentação de estados

Como em itens anteriores, definiu-se as matrizes do espaço de estados desejado. Neste caso tem-se a planta

$$G = \frac{900}{s^2 + 18.78s + 44.44}$$

A qual, pela forma canônica feedfoward apresentada no item 1.2, obteve-se as matrizes A, B, C e D, como no trecho de código abaixo:

```
clear all, close all, clc;
global F A B;
load('PID');
load('Gma');
Gpid = Gma*PID2;

GMF=feedback(Gpid,1);
polos_mf = pole(GMF);

A = [18.78 1;
     44.44 0];
B = [0 900]';
C = [1 0];
D = 0;
```

Em seguida, dos polos de malha fechada encontrados a partir da escolha do melhor controlador do item 1.5 e eliminando-se o polo menos dominante, pode-se encontrar a função de transferência de malha fechada da realimentação de estados, como segue:

```
%eliminando o polo menos dominante
polos_mf_ordem2 = [polos_mf(2), polos_mf(3)];

K = place(A, B, polos_mf_ordem2);

Ak = A-B*K;

m = ss(Ak,B,C,D); % FT de MF
```

O polo em -86.0424 foi rejeitado pois era o de menor influência na resposta do sistema. A matriz K posiciona os polos desejados a partir do parâmetro Ak (matriz A da realimentação de estados) do espaço de estados e assim pode-se gerar a função de malha fechada **m** via realimentação de estados. A resposta de **m** é dada pela figura 38 e exibida pelo seguinte trecho de código:

```
figure;
step(m);title('Resposta da realimentação de estados ');
grid
```

Figura 38 – Resposta da realimentação de estados

Fonte: Produção do próprio autor.

Tem-se que a realimentação de estados garante a estabilidade, mas não garante um bom erro em regime, como visto na Figura 38. Contudo, dada a função de transferência de malha fechada do sistema, o **m** calculado anteriormente, pode-se obter a inversa do ganho de regime da mesma e assim ajustar a saída para ser igual à referência na Figura 39, através da multiplicação da FTMF por p1 (inverso do ganho de regime). O p1 calculado foi de 0.0968. A resposta corrigida e o cálculo de p1 são dados pelo seguinte código:

```
k0 = freqresp(m,0);
p1 = 1/k0;

figure
step(p1*m);
title('Resposta da realimentação de estados ajustando erro em regime');
grid
```

Resposta da realimentação de estados ajustando erro em regime

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Time (seconds)

Figura 39 – Resposta da realimentação de estados com correção de erro

Fonte: Produção do próprio autor.

7.3 Simulação do controle via realimentação de estados

Por fim, como feito para o caso da simulação do veículo lunar para os controladores PID e Atraso-Avanço, realizou-se a simulação do sistema em malha fechada com realimentação de estados, obtendo-se uma resposta satisfatória se compararmos as curvas da Figura 40 e 39. O código da simulação está no anexo .6.

Figura 40 – Simulação da resposta em malha fechada com realimentação de estados

8 ITEM 1.7

A Figura 41 mostra a comparação entre as respostas dos sistemas para cada controlador projetado obtidos nos itens 1.1, 1.4 e 1.6. Nota-se que a resposta do sistema com controlador PID escolhido no item 1.1 difere da resposta com controlador Atraso-Avanço do item 1.4, sendo o erro em regime a maior diferença entre esses sinais. Ambos atendem as especificações de projeto, com erros inferiores a 0.1, sendo no caso do PID um erro nulo e no atraso-avanço 0.05 de erro em regime, com tempo de subida de 0.04 segundos em ambos casos e sobressinal de 2% no primeiro caso e 8.8% no segundo. Estas informações são resumidas na Tabela 4. Quanto ao controle por realimentação de estados, pode-se notar que o erro em regime e o sobressinal são nulos, porém há um aumento significativo no tempo de subida da curva, sendo 10 vezes maior que para os outros controladores.

Figura 41 – Comparação das respostas ao degrau controladores item 1.1, 1.4 e 1.6

Fonte: Produção do próprio autor.

Tabela 4 – Comparação entre as curvas dos itens $1.1,\,1.4$ e 1.6

	Item 1.1	Item 1.4	Item 1.6
Sobressinal	2.0 %	8.8 %	0
Tempo de subida	0.04 s	0.04 s	0.42
Erro	0	0.05	0

9 ITEM 1.8

Multiplicou-se os polos de malha fechada do nosso sistema por um fator no intuito de obter-se os polos do observador. Para um fator de 1.5 obteve-se as curvas 42 e 43, onde a primeira representa a resposta da realimentação de estados sem correção de erro em regime e a segunda já com a correção.

Figura 42 – Resposta da realimentação de estados + Observador (fator 1.5)

Fonte: Produção do próprio autor.

Para um fator de 5 obteve-se as curvas 44 e 45, onde a primeira representa a resposta da realimentação de estados sem correção de erro em regime e a segunda já com a correção.

A figura 46 é o comparativo entre as respostas solicitadas para cada método de controle solicitado. Pode-se verificar que o controle com observador não se mostrou satisfatório, sendo necessário revisar o projeto, pois este não deveria afetar a resposta ao degrau do sistema.

Os códigos deste item estão no anexo .8 e foram baseados no laboratório 12 da disciplina de Laboratório de Controle do semestre 2021/2 EARTE.

Figura 43 – Ajuste de erro - Resposta da realimentação de estados + Observador (fator 1.5)

Fonte: Produção do próprio autor.

Figura 44 – Resposta da realimentação de estados + Observador (fator 5)

Figura 45 – Ajuste de erro - Resposta da realimentação de estados + Observador (fator 5)

Fonte: Produção do próprio autor.

Figura 46 – Resposta da realimentação de estados + Observador

REFERÊNCIAS BIBLIOGRÁFICAS

DORF, R. C.; BISHOP, R. H. Sistemas de controle modernos. 8ª edição. <u>Tradução:</u> Bernardo Severo da Silva Filho, LTC–Livros Técnicos e Científicos Editora SA, Rio de Janeiro, RJ, 1998. Citado na página 40.

.1 Item 1.1

```
%
%
       SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
% Definição da FTMA
clear all, close all, clc;
syms s x;
N = 9; % Numero da Dupla
num = 100*N;
           % Implemetação do numerador FTMA
d = (s+(25-N))*(s+25/N);
denom = sym2poly(d); % Implemetação do denominador FTMA
Gma = tf(num, denom); % Definição da FTMA
save('Gma','Gma');
%% Questão 1.1 - (i) T=0 seg. (sem atraso de transporte)
Gma_poly = poly2sym(num,s)/poly2sym(d,s);
% Definição da FTMA
Gma = tf(num, denom); % Definição da FTMA
[Gm,Pm,Wgm,Wpm] = margin(Gma);
BW_Gma = Wpm; % Largura de Banda de Gma
MF Gma = Pm; % Margem de Fase de Gma
GMF = feedback(Gma,1); % Funcao com Malha Fechada
% Calculo de Erros
```

```
Lim_ErrDegrau_y = 1/(1+Gma_poly);
Lim_ErrDist_y = Gma_poly/(1+Gma_poly);
% Erro a entrada a Degrau
ErroDegrau y = double(limit(Lim ErrDegrau y,s,0,'right'));
% Erro a entrada a Disturbio
ErroDist_y = double(limit(Lim_ErrDist_y,s,0,'right'));
% ETAPA 2 e 3 =====
% Nova frequencia de cruzamento de ganho
G_w0 = evalfr(Gma, BW_Gma);
% Calculo do Ganho proporcinal
relacao = 20*log10(x) + 20*log10(G_w0) == 0;
Kpi sym = solve(relacao,x);
Kpi = sym2poly(Kpi_sym);
Gma2 = Gma*Kpi; % Adicao do controlador P
% Frequencia de corte do PI
Kii=Kpi*BW Gma/5;
PI=tf([Kpi Kii],[1 0]); % Implementecao do Controlador PI
PI poly = (Kpi*s + Kii)/s;
GGma = Gma*PI; % Adicao do controlador PI
[Gm_PI,Pm_PI,Wgm_PI,Wpm_PI]=margin(GGma);
BW_GGma = Wpm_PI; % Largura de Banda de GGma
MF_GGma = Pm_PI; % Margem de Fase de GGma
GGMF=feedback(GGma,1); % Funcao com Malha Fechada
% Calculo de Erros
Lim_ErrDegrau_y1 = 1/(1+PI_poly*Gma_poly);
```

```
Lim_ErrDist_y1 = Gma_poly/(1+PI_poly*Gma_poly);
% Erro a entrada a Degrau
ErroDegrau_y1 = double(limit(Lim_ErrDegrau_y1,s,0,'right'));
% Erro a entrada a Disturbio
ErroDist_y1 = double(limit(Lim_ErrDist_y1,s,0,'right'));
% ETAPA 5 =======
Kdd=1/BW_GGma; % Frequencia de corte do PD
npid=conv([Kpi Kii],[Kdd 1]);
dpid=[1 0];
PID=tf(npid,dpid); % Implementecao do Controlador PID
GGGma=Gma*PID; % Adicao do controlador PID
[Gm_PID,Pm_PID,Wgm_PID,Wpm_PID] = margin(GGGma);
BW_GGGma = Wpm_PID; % Largura de Banda de GGGma
MF_GGGma = Pm_PID; % Margem de Fase de GGGma
GGGMF=feedback(GGGma,1); % Funcao com Malha Fechada
% Calculo de Erros
PID_poly = poly2sym(npid,s)/poly2sym(dpid,s);
Lim ErrDegrau y2 = 1/(1+PID poly*Gma poly);
Lim_ErrDist_y2 = Gma_poly/(1+PID_poly*Gma_poly);
% Erro a entrada a Degrau
ErroDegrau_y2 = double(limit(Lim_ErrDegrau_y2,s,0,'right'));
% Erro a entrada a Disturbio
ErroDist_y2 = double(limit(Lim_ErrDist_y2,s,0,'right'));
Kdd2 = 3/Wpm_PID; % Frequencia de corte do PD
npid2 = conv([Kpi Kii],[Kdd2 1]);
dpid2 = [1 \ 0];
```

```
PID2 = tf(npid2,dpid2); % Implementecao do Controlador PID2
GGGma2=Gma*PID2; % Adicao do controlador PID2
[Gm_PID2, Pm_PID2, Wgm_PID2, Wpm_PID2]=margin(GGGma2);
BW GGGma2 = Wpm PID2; % Largura de Banda de GGGma2
MF_GGGma2 = Pm_PID2; % Margem de Fase de GGGma2
GGGMF2=feedback(GGGma2,1); % Funcao com Malha Fechada
% Calculo de Erros
PID2_poly = poly2sym(npid2,s)/poly2sym(dpid2,s);
Lim_ErrDegrau_y3 = 1/(1+PID2_poly*Gma_poly);
Lim_ErrDist_y3 = Gma_poly/(1+PID2_poly*Gma_poly);
% Erro a entrada a Degrau
ErroDegrau y3 = double(limit(Lim ErrDegrau y3,s,0,'right'));
% Erro a entrada a Disturbio
ErroDist_y3 = double(limit(Lim_ErrDist_y3,s,0,'right'));
t=0.0:0.01:1.4;
y0 = step(GMF,t);
q0 = stepinfo(y0)
y1 = step(GGMF,t);
q1 = stepinfo(y1)
y2=step(GGGMF,t);
q2 = stepinfo(y2)
y3 = step(GGGMF2,t);
q3 = stepinfo(y3)
Overshoot = [q0.0vershoot; q1.0vershoot; q2.0vershoot; q3.0vershoot];
SettlingTime = [q0.SettlingTime;
```

```
q1.SettlingTime;
              q2.SettlingTime;
              q3.SettlingTime];
RiseTime = [q0.RiseTime; q1.RiseTime; q2.RiseTime; q3.RiseTime];
FTMAs = {'Gma';'GGma';'GGGma';'GGGma2'};
Controladores = {'0';'PI';'PID';'PID2'};
Gms = [Gm; Gm PI; Gm PID; Gm PID2];
BWs = [BW_Gma; BW_GGGma; BW_GGGma2];
MFs = [MF_Gma; MF_GGma; MF_GGGma; MF_GGGma2];
Ess_Degrau= [ErroDegrau_y; ErroDegrau_y1; ErroDegrau_y2; ErroDegrau_y3];
Ess_Disturbio= [ErroDist_y;ErroDist_y1;ErroDist_y2;ErroDist_y3];
T = table(FTMAs,Controladores,Overshoot,
        SettlingTime, RiseTime, Gms, BWs,
        MFs, Ess_Degrau, Ess_Disturbio)
% Diagrama de Bode da FTMA
figure;
bode(Gma);
title ('Função de Transferência da Dinâmica do Veículo Lunar');
grid on;
% Diagrama de Bode da Gma com PI
figure;
hold on;
bode(Gma);
bode(GGma);
title('Diagrama de Bode para o Controlador PI');
grid on;
legend('Gma','Gma+PI');
hold off;
```

```
% Diagrama de Bode da Gma com PID, PID2 e PID3
figure;
hold on;
bode(Gma);
bode(GGGma);
bode(GGGma2);
title('Diagrama de Bode para os Controladores PID Projetados');
grid on;
legend('Gma','Gma+PID','Gma+PID2');
hold off;
% Diagrama de Bode da Gma com PI, PID, PID2 e PID3
figure;
hold on;
bode(Gma);
bode(GGma);
bode(GGGma);
bode(GGGma2);
title('Diagrama de Bode para os Controladores Projetados');
grid on;
legend('Gma','Gma+PI','Gma+PID','Gma+PID2');
hold off;
figure;
hold on;
plot(t,y1);
plot(t,y2);
plot(t,y3);
title('Resposta ao Degrau para FTMF com Controladores Projetados');
grid on;
legend('Controlador PI', 'Controlador PID', 'Controlador PID2');
hold off;
save('PID','PID2'); %para chamar no item 1.2
```

```
\% Questão 1.1 - (ii) T = 0.1/N seg.
% PROJETO PID COM ATRASO DE TRANSPORTE
T = 0.1/N; % Atraso de transporte [seg]
Gma_atraso_poly = poly2sym(num*exp(-T*s),s)/poly2sym(d,s)
% Definicao da Gma com atraso
Gma_atraso = tf(num, denom, 'InputDelay',T);
[Gm atraso, Pm atraso, Wgm atraso, Wpm atraso] = margin(Gma atraso);
BW Gma atraso = Wpm atraso; % Largura de Banda de Gma
MF_Gma_atraso = Pm_atraso; % Margem de Fase de Gma
GMF_atraso = feedback(Gma_atraso,1); % Funcao com Malha Fechada
% Calculo de Erros
Lim_ErrDegrau_y_atraso = 1/(1+Gma_atraso_poly);
Lim_ErrDist_y_atraso = Gma_atraso_poly/(1+Gma_atraso_poly);
% Erro a entrada a Degrau
ErroDegrau_y_atraso = double(limit(Lim_ErrDegrau_y_atraso, s, 0, 'right'));
% Erro a entrada a Disturbio
ErroDist_y_atraso = double(limit(Lim_ErrDist_y_atraso, s, 0, 'right'));
% ETAPA 2 e 3 ======
% Nova frequencia de cruzamento de ganho
G_w0_atraso = evalfr(Gma_atraso, BW_Gma_atraso);
% Calculo do Ganho proporcinal
relacao_atraso = 20*log10(x) + 20*log10(G_w0_atraso) == 0;
```

```
Kpi_sym_atraso = solve(relacao_atraso,x);
Kpi_atraso = sym2poly(Kpi_sym_atraso);
% Diminuição do Kp para o sistema ser estável em MF
Kpi atraso = 0.1 * Kpi atraso;
Gma2_atraso = Gma_atraso*Kpi_atraso; % Adicao do controlador P
% Frequencia de corte do PI
Kii_atraso=Kpi_atraso * BW_Gma_atraso/5;
% Implementecao do Controlador PI
PI_atraso=tf([Kpi_atraso Kii_atraso],[1 0]);
PI poly atraso = (Kpi atraso*s + Kii atraso)/s;
GGma_atraso = Gma_atraso*PI_atraso; % Adicao do controlador PI
[Gm_PI_atraso,Pm_PI_atraso,Wgm_PI_atraso,Wpm_PI_atraso]=margin(GGma_atraso);
BW_GGma_atraso = Wpm_PI_atraso; % Largura de Banda de GGma
MF_GGma_atraso = Pm_PI_atraso; % Margem de Fase de GGma
GGMF_atraso=feedback(GGma_atraso,1);  % Funcao com Malha Fechada
% Calculo de Erros
Lim_ErrDegrau_y1_atraso = 1/(1+PI_poly_atraso*Gma_atraso_poly);
Lim_ErrDist_y1_atraso = Gma_atraso_poly/(1+PI_poly_atraso*Gma_atraso_poly);
% Erro a entrada a Degrau
ErroDegrau_y1_atraso = double(limit(Lim_ErrDegrau_y1_atraso,s,0,'right'));
% Erro a entrada a Disturbio
ErroDist_y1_atraso = double(limit(Lim_ErrDist_y1_atraso,s,0,'right'));
```

```
Kdd_atraso=1/BW_GGma_atraso; % Frequencia de corte do PD
npid_atraso=conv([Kpi_atraso Kii_atraso],[Kdd_atraso 1]);
dpid atraso=[1 0];
PID atraso = tf(npid atraso, dpid atraso); % Implementecao do Controlador PID
GGGma atraso = Gma atraso*PID atraso; % Adicao do controlador PID
[Gm_PID_atraso,Pm_PID_atraso,Wgm_PID_atraso,Wpm_PID_atraso]=margin(GGGma_atraso);
BW_GGGma_atraso = Wpm_PID_atraso; % Largura de Banda de GGGma
MF_GGGma_atraso = Pm_PID_atraso; % Margem de Fase de GGGma
GGGMF atraso=feedback(GGGma atraso,1); % Funcao com Malha Fechada
% Calculo de Erros
PID poly atraso = poly2sym(npid atraso,s)/poly2sym(dpid atraso,s);
Lim_ErrDegrau_y2_atraso = 1/(1+PID_poly_atraso*Gma_atraso_poly);
Lim ErrDist y2 atraso = Gma atraso poly/(1+PID poly atraso*Gma atraso poly);
% Erro a entrada a Degrau
ErroDegrau_y2_atraso = double(limit(Lim_ErrDegrau_y2_atraso,s,0,'right'));
% Erro a entrada a Disturbio
ErroDist_y2_atraso = double(limit(Lim_ErrDist_y2_atraso,s,0,'right'));
Kdd2_atraso = 3/Wpm_PID_atraso; % Frequencia de corte do PD
npid2_atraso = conv([Kpi_atraso Kii_atraso],[Kdd2_atraso 1]);
dpid2 atraso = [1 0];
PID2 atraso = tf(npid2 atraso,dpid2 atraso); % Implementecao do Controlador PID2
GGGma2_atraso=Gma_atraso*PID2_atraso; % Adicao do controlador PID2
[Gm_PID2_atraso, Pm_PID2_atraso,
 Wgm_PID2_atraso, Wpm_PID2_atraso] = margin(GGGma2_atraso);
BW_GGGma2_atraso = Wpm_PID2_atraso; % Largura de Banda de GGGma2
```

MF_GGGma2_atraso = Pm_PID2_atraso; % Margem de Fase de GGGma2

```
GGGMF2_atraso=feedback(GGGma2_atraso,1); % Funcao com Malha Fechada
% Calculo de Erros
PID2_poly_atraso = poly2sym(npid2_atraso,s)/poly2sym(dpid2_atraso,s);
Lim_ErrDegrau_y3_atraso = 1/(1+PID2_poly_atraso*Gma_atraso_poly);
Lim_ErrDist_y3_atraso = Gma_atraso_poly/(1+PID2_poly_atraso*Gma_atraso_poly);
% Erro a entrada a Degrau
ErroDegrau_y3_atraso = double(limit(Lim_ErrDegrau_y3_atraso,s,0,'right'));
% Erro a entrada a Disturbio
ErroDist_y3_atraso = double(limit(Lim_ErrDist_y3_atraso,s,0,'right'));
t=0.0:0.01:2;
y0 atraso = step(GMF atraso,t);
q0_atraso = stepinfo(y0_atraso)
y1_atraso=step(GGMF_atraso,t);
q1_atraso = stepinfo(y1_atraso)
y2_atraso=step(GGGMF_atraso,t);
q2_atraso = stepinfo(y2_atraso)
y3_atraso=step(GGGMF2_atraso,t);
q3_atraso = stepinfo(y3_atraso)
Overshoot_atraso = [q0_atraso.Overshoot; q1_atraso.Overshoot; q2_atraso.Overshoot;
SettlingTime_atraso = [q0_atraso.SettlingTime;
                      q1 atraso.SettlingTime;
                      q2_atraso.SettlingTime;
                      q3_atraso.SettlingTime];
RiseTime_atraso = [q0_atraso.RiseTime;
                  q1_atraso.RiseTime;
                  q2_atraso.RiseTime;
                  q3_atraso.RiseTime];
```

% Diagrama de Bode da Gma com PI

```
FTMAs_atraso = {'Gma_atraso';'GGma_atraso';'GGGma_atraso';'GGGma2_atraso'};
Controladores_atraso = {'0';'PI';'PID';'PID2'};
Gms_atraso = [Gm_atraso; Gm_PI_atraso; Gm_PID_atraso; Gm_PID2_atraso];
BWs_atraso = [BW_Gma_atraso; BW_GGma_atraso; BW_GGGma_atraso; BW_GGGma2_atraso];
MFs_atraso = [MF_Gma_atraso; MF_GGma_atraso; MF_GGGma_atraso; MF_GGGma2_atraso];
Ess_Degrau_atraso = [ErroDegrau_y_atraso;
                   ErroDegrau_y1_atraso;
                   ErroDegrau_y2_atraso;
                   ErroDegrau_y3_atraso];
Ess_Disturbio_atraso = [ErroDist_y_atraso;
                      ErroDist_y1_atraso;
                      ErroDist_y2_atraso;
                      ErroDist y3 atraso];
T_atraso = table(FTMAs_atraso,
               Controladores atraso,
               Overshoot atraso,
               SettlingTime_atraso,
               RiseTime_atraso,
               Gms_atraso,
               BWs_atraso,
               MFs_atraso,
               Ess_Degrau_atraso,
               Ess Disturbio atraso)
% ***************** DIAGRAMA DE BODE ****************
% Diagrama de Bode da FTMA
figure;
bode(Gma atraso);
title ('Função de Transferência com Atraso da Dinâmica do Veículo Lunar');
grid on;
```

```
figure;
hold on;
bode(Gma atraso);
bode(GGma_atraso);
title('Diagrama de Bode para o Controlador PI');
grid on;
legend('Gma','Gma+PI');
hold off;
% Diagrama de Bode da Gma com PID, PID2 e PID3
figure;
hold on;
bode(Gma_atraso);
bode(GGGma atraso);
bode(GGGma2_atraso);
title('Diagrama de Bode para os Controladores PID Projetados');
grid on;
legend('Gma','Gma+PID','Gma+PID2');
hold off;
% Diagrama de Bode da Gma com PI, PID, PID2 e PID3
figure;
hold on;
bode(Gma atraso);
bode(GGma_atraso);
bode(GGGma atraso);
bode(GGGma2_atraso);
title('Diagrama de Bode para os Controladores Projetados');
grid on;
legend('Gma','Gma+PI','Gma+PID','Gma+PID2');
hold off;
figure;
hold on;
```

```
plot(t,y1_atraso);
plot(t,y2_atraso);
plot(t,y3_atraso);

title('Resposta ao Degrau para FTMF Atraso com Controladores Projetados');
grid on;
legend('Controlador PI', 'Controlador PID', 'Controlador PID2');
hold off;

.2 Item 1.2
```

```
%
%
         SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
% ------
clear all, close all, clc;
op = 2; % 1 se item (i), 2 se item (ii)
global F A B;
load('PID');
load('Gma');
Gpid = Gma*PID2;
GGGMF2=feedback(Gpid,1);
% Definição das Matrizes A, B, C e D
A = [-18.78 \ 1 \ 0;
    -44.44 0 1;
      0 0 0];
B = [88.1 \ 1835 \ 7493]';
C = [1 \ 0 \ 0];
D = 0;
```

```
%%%%% Agora simular o veículo lunar no espaço de estados %%%%%%
% vetor estados inicial
Xs = [0 \ 0 \ 0];
F = 0;
% Inicialização de variáveis
tfinal = 5; % Tempo total de simulação
ref = 1; % Referência
passo = 0;
tempo = 0;
dT = 0.01; % tempo de amostragem
while (tempo < tfinal)</pre>
     passo = passo + 1;
     ts = passo*dT;
     % simulação da equação diferencial
     [T,X] = ode45('modelo_linearVeiculo',[tempo ts], Xs);
     % Armazenamento de variaveis
     n = length(T);
     tempo = ts;
     Xs = X(n,:);
     if(op == 2);
         F = ref - Xs(1);
     end
     if(op == 1);
         F = ref-(Xs(1) + 0.02*randn(1));
     end
     vetout(passo,:) = X(n,1);
     vettime(passo) = T(n,:);
     vetvref(passo,:) = ref;
end
% Plotagem dos gráficos
figure
plot(vettime, vetvref,'b');
hold on;
plot(vettime, vetout, 'r'); %multiplica por p1 para reduzir o erro
```

```
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
grid;
.3 Item 1.3
%
%
         SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
clear all, close all, clc;
global F A B;
load('PID');
load('Gma');
Gpid = Gma*PID2;
GGGMF2=feedback(Gpid,1);
% Definição das Matrizes A, B, C e D
A = [-18.78 \ 1 \ 0;
    -44.44 0 1;
      0 0 0];
B = [88.1 \ 1835 \ 7493]';
C = [1 \ 0 \ 0];
D = 0;
%%%%% Agora simular o veículo lunar no espaço de estados %%%%%%
% vetor estados inicial
```

% vetor estados inicial
Xs = [0 0 0];
F = 0;

% Inicialização de variáveis
tfinal = 5; % Tempo total de simulação

```
ref = 1; % Referência
passo = 0;
tempo = 0;
dT = 0.01; % tempo de amostragem
while (tempo < tfinal)</pre>
     passo = passo + 1;
     ts = passo*dT;
     % simulação da equação diferencial
     [T,X] = ode45('modelo_linearVeiculo',[tempo ts], Xs);
     % Armazenamento de variaveis
     n = length(T);
     tempo = ts;
     Xs = X(n,:);
     F = ref - Xs(1);
     vetout(passo,:) = X(n,1);
     vettime(passo) = T(n,:);
     vetvref(passo,:) = ref;
end
% Plotagem dos gráficos
t=0.0:0.01:5;
y3=step(GGGMF2,t);
figure;
plot(vettime, vetout,'r');
hold on;
plot(t,y3,'g');
plot(vettime, vetvref, 'b');
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
grid;
title('Comparação das respostas dos itens 1.1 e 1.2');
grid on;
legend('Item 1.1','Item 1.2', 'ref');
```

```
hold off;
```

Item 1.4

.4.1 1.1 (Atraso-Avanço)

```
.4.1.1 (i) T = 0s
%
%
        SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
% -----
% Definição da FTMA
clear all, close all, clc;
syms s x;
N = 9; % Numero da Dupla
num = 100*N;
             % Implemetação do numerador FTMA
d = (s+(25-N))*(s+25/N);
denom = sym2poly(d); % Implemetação do denominador FTMA
Gma = tf(num, denom); % Definição da FTMA
GMF = feedback(Gma,1); % Definição da FTMF
Gma_poly = poly2sym(num,s)/poly2sym(d,s); % FTMA Simbolica
save('Gma','Gma');
t=0:.001:1;
%% Questão 1.4 (1.1) - (i) T=0 seg. (sem atraso de transporte)
% Especificações:
% * Erro a entrada degrau e ao disturbio menores ou iguais a 0.1
% * Largura de Banda da FTMA maior possivel
% * Margem de Fase maior ou igual a 60 graus
[Gm1,Pm1,Wgm1,Wpm1] = margin(Gma);
```

```
% Determinação do ganho K1 que atenda ao erro menor que 0.1
% Desempenho em estado estacionário
Eq_Ess_Degrau = 1/(1 + Gma_poly); % Erro a entrada degrau
Eq_Ess_Disturbio = Gma_poly/(1 + Gma_poly); % Erro a entrada disturbio
Ess_Deg = double(limit(Eq_Ess_Degrau,s,0,'right'));
Ess_Dist = double(limit(Eq_Ess_Disturbio,s,0,'right'));
% Determinação do Kp
figure;
bode(Gma);
title ('Função de Transferência da Dinâmica do Veículo Lunar');
grid on;
 % Atraves do diagrama de bode, temos que Kp = 26.1 db
Kp db = 26.1; % Ganho proporcional estático em db
Kp = 10^(Kp_db/20); % Ganho proporcional estático
erro est = 1/1+Kp; % Definição do erro estático utilizando Kp
% Especificaçãode K1 para erro ao degrau e disturbio requisitado
Erro_deg_k1 = 1/(1 + x*Gma_poly);
Erro dist k1 = Gma poly/(1 + x*Gma poly);
Eq_deg_K1 = limit(Erro_deg_k1,s,0,'right')== 0.1;
Eq dist K1 = limit(Erro dist k1,s,0,'right')== 0.1;
K1_Degrau_sym = solve(Eq_deg_K1,x); % K1 para atender erro ao Degrau
K1_Degrau = sym2poly(K1_Degrau_sym); % K1 = 0.4444
K1_Dist_sym = solve(Eq_dist_K1,x); % K1 para atender erro ao Disturbio
K1_Dist = sym2poly(K1_Dist_sym); % K1 = 9.9506
```

% Analisando ambos valores de K1, definimos K1 para atender ambos

```
K1 = 15; % Ganho K1 para Atraso
Eq_Erro_deg = 1/(1 +K1*Gma_poly);
Eq_Erro_dist = Gma_poly/(1 + K1*Gma_poly);
Erro_deg = double(limit(Eq_Erro_deg,s,0,'right')); % Erro a entrada a Degrau
Erro_dist = double(limit(Eq_Erro_dist,s,0,'right'));% Erro a entrada a Disturbio
% Projeto do Controlador de Atraso de Fase
K1Gma = K1*Gma;
[Gm, Pm, Wgm, Wpm] = margin(K1Gma);
BW Gma = Wpm; % Largura de Banda de K1Gma
MF_Gma = Pm; % Margem de Fase de K1Gma
% 3 ETAPA =====
% Determinação da frequência de cruzamento de ganho nova
fase K1Gma = 60 - 180;
% Fase K1Gma = -120
figure;
bode(K1Gma);
title ('Função de Transferência de Gma com K1');
grid on;
% Através do Bode de K1Gma
fase_w0db = 14; % rad/s
md_w0db = 33;
% Determinação da constante alpha
eq_alfa = -20*log10(x) == 20*log10(md_w0db); % Relação de Alfa
```

```
alfa_sym = solve(eq_alfa,x);
alfa = sym2poly(alfa_sym);
% Determinação das a frequência de corte
% Frequencia de corte Zero do Compensador - 1/alfa*tau (-1 dec de md_w0db)
syms tau_eq
w0db_decAbaixo = fase_w0db - 10;
eq_fcorte_zero = 1/(alfa*tau_eq) - w0db_decAbaixo;
tau_sym = solve(eq_fcorte_zero,tau_eq);
tau = sym2poly(tau_sym);
fc_zero = 1/alfa*tau;
% Frequencia de corte Polo do Compensador - 1/tau
fc polo = 1/tau;
% Definição do Controlador Atraso
syms jw
C_atraso_sym = K1*(1+jw*alfa*tau)/(1+jw*tau); % Equação do Controlador Atraso
[num Catraso, deno Catraso] = numden(C atraso sym);
C_atraso = tf(sym2poly(num_Catraso),sym2poly(num_Catraso));
GGma = C_atraso*Gma; % Controlador Atraso + Gma
[Gm_GGma, Pm_GGma, Wgm_GGma, Wpm_GGma] = margin(GGma);
MG_GGma = Gm_GGma; % Margem de Ganho de GGma
BW_GGma = Wpm_GGma; % Largura de Banda de GGma
MF_GGma = Pm_GGma; % Margem de Fase de GGma
GGMF = feedback(GGma,1);
```

```
C_atraso_poly = subs(C_atraso_sym,jw,s);
 % Erro a entrada degrau
Eq Ess Degrau GGma = 1/(1 + C atraso poly*Gma poly);
% Erro a entrada disturbio
Eq Ess Disturbio GGma = Gma poly/(1 + C atraso poly*Gma poly);
Ess_Deg_GGma = double(limit(Eq_Ess_Degrau_GGma,s,0,'right'));
Ess_Dist_GGma = double(limit(Eq_Ess_Disturbio_GGma,s,0,'right'));
% 7 ETAPA =====
% Determinação do ganho K2 para o Avanço
K2 = 1;
% Determinação da nova fase
phi m = 75 - Pm GGma; % Margem de fase especificada 60 com adicional
% Determinação da constante alfa para o controlador Avanço
syms alfa_Avanco_x
Eq_Alfa_Avanco = tand(phi_m) == (alfa_Avanco_x-1)/(2*sqrt(alfa_Avanco_x));
alfa avanco sym = solve(Eq Alfa Avanco, alfa Avanco x);
alfa2 = sym2poly(alfa_avanco_sym); % Alfa do Controlador Avanço
% Determinação da frequência onde ocorre o máximo avanço de fase
relacao_alfa = -10*log10(alfa2); % Parte do alfa da relacao
% relacao alfa = -6.5175 db
% Analisando o diagrama de bode para GGma, temos que Wm = 37.6 rad/s
figure;
bode(GGma);
```

```
title ('Função de Transferência de Gma com Compesador Atraso');
grid on;
wm = 37.6; % Frequência onde ocorre o máximo avanço de fase
% Definição da Constante Tau para Avanço pela relação
tau2 = 1/(wm*sqrt(alfa2));
% Frequencia de corte Zero do Compensador
fc_zero2 = 1/(alfa2*tau2);
% Frequencia de corte Polo do Compensador
fc_{polo2} = 1/(tau2);
% Definição do Controlador Avanco
C_{avanco_{sym}} = K2*(1+jw*alfa2*tau2)/(1+jw*tau2);
[num_Cavanco, deno_Cavanco] = numden(C_avanco_sym);
C_avanco = tf(sym2poly(num_Cavanco),sym2poly(deno_Cavanco));
GGGma = C_avanco*Gma; % Controlador Avanco + Gma
GGGMF = feedback(GGGma,1);
GGGGma = C_avanco*GGma; % Controlador Avanco + Controlador Atraso + Gma
C_avanco_atraso = C_avanco*C_atraso;
[Gm_GGGma, Pm_GGGma, Wgm_GGGma, Wpm_GGGma] = margin(GGGma);
MG_GGGma = Gm_GGGma; % Margem de Ganho de GGGma
BW_GGGma = Wpm_GGGma; % Largura de Banda de GGGma
MF_GGGma = Pm_GGGma; % Margem de Fase de GGGma
```

```
[Gm_GGGGma, Pm_GGGGGma, Wgm_GGGGGma] = margin(GGGGma);
MG_GGGGma = Gm_GGGGma; % Margem de Ganho de GGGGma
BW_GGGGma = Wpm_GGGGma; % Largura de Banda de GGGGma
MF_GGGGma = Pm_GGGGma; % Margem de Fase de GGGGma
GGGGMF = feedback(GGGGma,1);
C_avanco_atraso_sym = C_atraso_sym*C_avanco_sym;
C_avanco_atraso_poly = subs(C_avanco_atraso_sym,jw,s);
% Erro a entrada degrau
Eq_Ess_Degrau_GGGGma = 1/(1 + C_avanco_atraso_poly*Gma_poly);
% Erro a entrada disturbio
Eq_Ess_Disturbio_GGGGma = Gma_poly/(1 + C_avanco_atraso_poly*Gma_poly);
Ess_Deg_GGGGma = double(limit(Eq_Ess_Degrau_GGGGma,s,0,'right'));
Ess_Dist_GGGGma = double(limit(Eq_Ess_Disturbio_GGGGma,s,0,'right'));
% Malha Fechada -----
y0 = step(GMF,t);
q0 = stepinfo(y0);
y1 = step(GGMF,t);
q1 = stepinfo(y1);
y2 = step(GGGMF,t);
q2 = stepinfo(y2);
y3 = step(GGGGMF,t);
q3 = stepinfo(y3);
Overshoot = [q1.0vershoot; q3.0vershoot];
SettlingTime = [q1.SettlingTime;q3.SettlingTime];
```

```
RiseTime = [q1.RiseTime; q3.RiseTime];
FTMAs = {'GGma';'GGGGma'};
Controladores = {'Atraso';'Avanco-Atraso'};
Gms = [MG_GGma; MG_GGGGma];
BWs = [BW GGma; BW GGGGma];
MFs = [MF_GGma; MF_GGGGma];
Ess_Degrau= [Ess_Deg_GGma; Ess_Deg_GGGGma];
Ess_Disturbio= [Ess_Dist_GGma;Ess_Dist_GGGGma];
T = table(FTMAs,Controladores,Overshoot,SettlingTime,
         RiseTime, Gms, BWs, MFs, Ess Degrau, Ess Disturbio)
% ***************** DIAGRAMA DE BODE *****************
% Diagrama de Bode da Gma, com C_Atraso, com C_Avanco, C_Avanco_C_Atraso
figure;
hold on;
bode(Gma);
bode(GGma);
bode(GGGma);
bode(GGGGma);
title('Diagrama de Bode para o Controladores projetados');
grid on;
legend('Gma', 'Gma + Controlador Atraso', 'Gma + Controlador Avanco',
       'Gma + Controlador Avanco-Atraso');
hold off;
% ****************** RESPOSTA AO DEGRAU *****************
figure;
plot(t,y1,'r',t,y2,'g');
title('Resposta ao degrau para FTMF com o Controladores projetados');
legend('FTMF com Atraso','FTMF com Atraso-Avanco');
grid on;
save('C_avanco_atraso','C_avanco_atraso');
```

.4.1.2 (ii) T = 0.1/N s

```
%
%
        SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
% Definição da FTMA
clear all, close all, clc;
syms s x;
N = 9; % Numero da Dupla
num = 100*N;
             % Implemetação do numerador FTMA
d = (s+(25-N))*(s+25/N);
denom = sym2poly(d);
                   % Implemetação do denominador FTMA
Gma = tf(num, denom); % Definição da FTMA
GMF = feedback(Gma,1); % Definição da FTMF
Gma poly = poly2sym(num,s)/poly2sym(d,s); % FTMA Simbolica
save('Gma','Gma');
t=0:.001:5;
\% Questão 1.4 (1.1) - (ii) T = 0.1/N seg.
T = 0.1/N; % Atraso de transporte [seg]
Gma_poly = poly2sym(num*exp(-T*s),s)/poly2sym(d,s);
% Definicao da Gma com atraso
Gma = tf(num, denom, 'InputDelay',T);
[Gm1,Pm1,Wgm1,Wpm1] = margin(Gma);
% Determinação do ganho K1 que atenda ao erro menor que 0.1
% Desempenho em estado estacionário
Eq_Ess_Degrau = 1/(1 + Gma_poly); % Erro a entrada degrau
```

```
Eq_Ess_Disturbio = Gma_poly/(1 + Gma_poly); % Erro a entrada disturbio
Ess Deg = double(limit(Eq Ess Degrau,s,0,'right'));
Ess_Dist = double(limit(Eq_Ess_Disturbio,s,0,'right'));
% Determinação do Kp
figure;
bode(Gma);
title ('FT da Dinâmica do Veículo Lunar com Atraso de Transporte');
grid on;
 % Atraves do diagrama de bode, temos que Kp = 26.1 db
Kp_db = 26.1; % Ganho proporcional estático em db
Kp = 10^(Kp_db/20); % Ganho proporcional estático
erro est = 1/1+Kp; % Definição do erro estático utilizando Kp
% Especificaçãode K1 para erro ao degrau e disturbio requisitado
Erro deg k1 = 1/(1 + x*Gma poly);
Erro_dist_k1 = Gma_poly/(1 + x*Gma_poly);
Eq_deg_K1 = limit(Erro_deg_k1,s,0,'right')== 0.1;
Eq_dist_K1 = limit(Erro_dist_k1,s,0,'right')== 0.1;
K1 Degrau sym = solve(Eq deg K1,x); % K1 para atender erro ao Degrau
K1_Degrau = sym2poly(K1_Degrau_sym); % K1 = 0.4444
K1_Dist_sym = solve(Eq_dist_K1,x); % K1 para atender erro ao Disturbio
K1 Dist = sym2poly(K1 Dist sym); % K1 = 9.9506
% Analisando ambos valores de K1, definimos K1 para atender ambos
K1 = 10; % Ganho K1 para Atraso
Eq_Erro_deg = 1/(1 +K1*Gma_poly);
Eq_Erro_dist = Gma_poly/(1 + K1*Gma_poly);
Erro_deg = double(limit(Eq_Erro_deg,s,0,'right')); % Erro a entrada a Degrau
Erro_dist = double(limit(Eq_Erro_dist,s,0,'right'));% Erro a entrada a Disturbio
```

```
% 2 ETAPA
% Projeto do Controlador de Atraso de Fase
K1Gma = K1*Gma;
[Gm,Pm,Wgm,Wpm] = margin(K1Gma);
BW_Gma = Wpm; % Largura de Banda de K1Gma
MF_Gma = Pm; % Margem de Fase de K1Gma
% Determinação da frequência de cruzamento de ganho nova
fase_K1Gma = 20 - 180;
% Fase K1Gma = -160
figure;
bode(K1Gma);
title('Função de Transferência de Gma com K1');
grid on;
% Através do Bode de K1Gma
fase_w0db = 26.4; \% rad/s
md \ w0db = 20.8;
% 4 ETAPA -----
% Determinação da constante alpha
eq_alfa = -20*log10(x) == 20*log10(md_w0db); % Relação de Alfa
alfa_sym = solve(eq_alfa,x);
alfa = sym2poly(alfa_sym);
% 5 ETAPA
```

% Determinação das a frequência de corte

```
% Frequencia de corte Zero do Compensador - 1/alfa*tau (-1 dec de md_w0db)
syms tau_eq
w0db_decAbaixo = fase_w0db - 10;
eq_fcorte_zero = 1/(alfa*tau_eq) - w0db_decAbaixo;
tau_sym = solve(eq_fcorte_zero,tau_eq);
tau = sym2poly(tau sym);
fc_zero = 1/alfa*tau;
% Frequencia de corte Polo do Compensador - 1/tau
fc_polo = 1/tau;
% Definição do Controlador Atraso
syms jw
C atraso sym = K1*(1+jw*alfa*tau)/(1+jw*tau); % Equação do Controlador Atraso
[num_Catraso, deno_Catraso] = numden(C_atraso_sym);
C_atraso = tf(sym2poly(num_Catraso),sym2poly(num_Catraso));
GGma = C_atraso*Gma; % Controlador Atraso + Gma
[Gm_GGma,Pm_GGma,Wgm_GGma,Wpm_GGma]=margin(GGma);
MG GGma = Gm GGma; % Margem de Ganho de GGma
BW_GGma = Wpm_GGma; % Largura de Banda de GGma
MF GGma = Pm GGma; % Margem de Fase de GGma
GGMF = feedback(GGma,1);
C_atraso_poly = subs(C_atraso_sym,jw,s);
Eq_Ess_Degrau_GGma = 1/(1 + C_atraso_poly*Gma_poly); % Erro a entrada degrau
% Erro a entrada disturbio
Eq_Ess_Disturbio_GGma = Gma_poly/(1 + C_atraso_poly*Gma_poly);
Ess_Deg_GGma = double(limit(Eq_Ess_Degrau_GGma,s,0,'right'));
Ess_Dist_GGma = double(limit(Eq_Ess_Disturbio_GGma,s,0,'right'));
```

```
% 7 ETAPA
% Determinação do ganho K2 para o Avanço
K2 = 1;
% Determinação da nova fase
phi_m = 90 - Pm_GGma; % Margem de fase especificada 60 com adicional
% Determinação da constante alfa para o controlador Avanço
syms alfa Avanco x
Eq_Alfa_Avanco = tand(phi_m) == (alfa_Avanco_x-1)/(2*sqrt(alfa_Avanco_x));
alfa avanco sym = solve(Eq Alfa Avanco,alfa Avanco x);
alfa2 = sym2poly(alfa_avanco_sym); % Alfa do Controlador Avanço
% Determinação da frequência onde ocorre o máximo avanço de fase
relacao_alfa = -10*log10(alfa2); % Parte do alfa da relacao
% relacao alfa = -10.62 db
% Analisando o diagrama de bode para GGma, temos que Wm = 60.6 rad/s
figure;
bode(GGma);
title ('Função de Transferência de Gma com Compesador Atraso');
grid on;
wm = 75.3; % Frequência onde ocorre o máximo avanço de fase
_____
% Definição da Constante Tau para Avanço pela relação
```

```
tau2 = 1/(wm*sqrt(alfa2));
% Frequencia de corte Zero do Compensador
fc_zero2 = 1/(alfa2*tau2);
% Frequencia de corte Polo do Compensador
fc_{polo2} = 1/(tau2);
% 11 ETAPA ======
% Definição do Controlador Avanco
C_{avanco_{sym}} = K2*(1+jw*alfa2*tau2)/(1+jw*tau2);
[num_Cavanco, deno_Cavanco] = numden(C_avanco_sym);
C_avanco = tf(sym2poly(num_Cavanco),sym2poly(deno_Cavanco));
GGGma = C_avanco*Gma; % Controlador Avanco + Gma
GGGMF = feedback(GGGma, 1);
GGGGma = C_avanco*GGma; % Controlador Avanco + Controlador Atraso + Gma
C_avanco_atraso = C_avanco*C_atraso;
[Gm_GGGma, Pm_GGGma, Wgm_GGGma, Wpm_GGGma] = margin(GGGma);
MG GGGma = Gm GGGma; % Margem de Ganho de GGGma
BW_GGGma = Wpm_GGGma; % Largura de Banda de GGGma
MF_GGGma = Pm_GGGma; % Margem de Fase de GGGma
[Gm_GGGGma,Pm_GGGGGma,Wgm_GGGGGma]=margin(GGGGma);
MG_GGGGma = Gm_GGGGma; % Margem de Ganho de GGGGma
BW_GGGGma = Wpm_GGGGma; % Largura de Banda de GGGGma
MF_GGGGma = Pm_GGGGma; % Margem de Fase de GGGGma
GGGGMF = feedback(GGGGma,1);
C_avanco_atraso_sym = C_atraso_sym*C_avanco_sym;
```

```
C_avanco_atraso_poly = subs(C_avanco_atraso_sym,jw,s);
 % Erro a entrada degrau
Eq_Ess_Degrau_GGGGma = 1/(1 + C_avanco_atraso_poly*Gma_poly);
% Erro a entrada disturbio
Eq_Ess_Disturbio_GGGGma = Gma_poly/(1 + C_avanco_atraso_poly*Gma_poly);
Ess_Deg_GGGGma = double(limit(Eq_Ess_Degrau_GGGGma,s,0,'right'));
Ess_Dist_GGGGma = double(limit(Eq_Ess_Disturbio_GGGGma,s,0,'right'));
% Malha Fechada -----
y0 = step(GMF,t);
q0 = stepinfo(y0);
y1 = step(GGMF,t);
q1 = stepinfo(y1);
y2 = step(GGGMF,t);
q2 = stepinfo(y2);
y3 = step(GGGGMF,t);
q3 = stepinfo(y3);
Overshoot = [q1.0vershoot; q3.0vershoot];
SettlingTime = [q1.SettlingTime;q3.SettlingTime];
RiseTime = [q1.RiseTime; q3.RiseTime];
FTMAs = {'GGma';'GGGGma'};
Controladores = {'Atraso';'Avanco-Atraso'};
Gms = [MG_GGma; MG_GGGGma];
BWs = [BW_GGma; BW_GGGGma];
MFs = [MF_GGma; MF_GGGGma];
Ess_Degrau= [Ess_Deg_GGma; Ess_Deg_GGGGma];
Ess_Disturbio= [Ess_Dist_GGma; Ess_Dist_GGGGma];
```

```
T = table(FTMAs,Controladores,Overshoot,
SettlingTime, RiseTime, Gms, BWs, MFs, Ess Degrau, Ess Disturbio)
% ***************** DIAGRAMA DE BODE ****************
% Diagrama de Bode da Gma, com C_Atraso, com C_Avanco, C_Avanco_C_Atraso
figure;
hold on;
bode(Gma);
bode(GGma);
bode(GGGma);
bode(GGGGma);
title('Diagrama de Bode para o Controladores projetados');
legend('Gma','Gma + C Atraso', 'Gma + C Avanco', 'Gma + C Avanco-Atraso');
hold off;
figure;
plot(t,y1,'r',t,y2,'g');
title('Resposta ao degrau para FTMF com o Controladores projetados');
legend('FTMF com Atraso', 'FTMF com Atraso-Avanco');
grid on;
save('C_avanco_atraso','C_avanco_atraso');
%%
\% Questão 1.4 (1.1) - (ii) T = 0.1/N seg.
T = 0.1/N; % Atraso de transporte [seg]
Gma_poly = poly2sym(num*exp(-T*s),s)/poly2sym(d,s);
% Definicao da Gma com atraso
Gma = tf(num, denom, 'InputDelay',T);
```

```
[Gm1,Pm1,Wgm1,Wpm1] = margin(Gma);
% 1 ETAPA -----
% Determinação do ganho K1 que atenda ao erro menor que 0.1
% Desempenho em estado estacionário
Eq_Ess_Degrau = 1/(1 + Gma_poly); % Erro a entrada degrau
Eq_Ess_Disturbio = Gma_poly/(1 + Gma_poly); % Erro a entrada disturbio
Ess_Deg = double(limit(Eq_Ess_Degrau,s,0,'right'));
Ess Dist = double(limit(Eq Ess Disturbio,s,0,'right'));
% Determinação do Kp
figure;
bode(Gma);
title ('Função de Transferência da Dinâmica do Veículo Lunar com
Atraso de Transporte');
grid on;
 % Atraves do diagrama de bode, temos que Kp = 26.1 db
Kp_db = 26.1; % Ganho proporcional estático em db
Kp = 10^(Kp db/20); % Ganho proporcional estático
erro est = 1/1+Kp; % Definição do erro estático utilizando Kp
% Especificaçãode K1 para erro ao degrau e disturbio requisitado
Erro_{deg_k1} = 1/(1 + x*Gma_{poly});
Erro dist k1 = Gma poly/(1 + x*Gma poly);
Eq_deg_K1 = limit(Erro_deg_k1,s,0,'right')== 0.1;
Eq_dist_K1 = limit(Erro_dist_k1,s,0,'right')== 0.1;
K1_Degrau_sym = solve(Eq_deg_K1,x); % K1 para atender erro ao Degrau
K1_Degrau = sym2poly(K1_Degrau_sym); % K1 = 0.4444
K1_Dist_sym = solve(Eq_dist_K1,x); % K1 para atender erro ao Disturbio
K1_Dist = sym2poly(K1_Dist_sym); % K1 = 9.9506
```

```
% Analisando ambos valores de K1, definimos K1 para atender ambos
K1 = 10; % Ganho K1 para Atraso
Eq_Erro_deg = 1/(1 +K1*Gma_poly);
Eq Erro dist = Gma poly/(1 + K1*Gma poly);
Erro_deg = double(limit(Eq_Erro_deg,s,0,'right')); % Erro a entrada a Degrau
Erro_dist = double(limit(Eq_Erro_dist,s,0,'right'));% Erro a entrada a Disturbio
% Projeto do Controlador de Atraso de Fase
K1Gma = K1*Gma;
[Gm, Pm, Wgm, Wpm] = margin(K1Gma);
BW_Gma = Wpm; % Largura de Banda de K1Gma
MF_Gma = Pm; % Margem de Fase de K1Gma
% 3 ETAPA
\% Determinação da frequência de cruzamento de ganho nova
fase_K1Gma = 80 - 180;
% Fase K1Gma = -100
figure;
bode(K1Gma);
title ('Função de Transferência de Gma com K1');
grid on;
% Através do Bode de K1Gma
fase_w0db = 7.65; % rad/s
md_w0db = 37;
% 4 ETAPA
% Determinação da constante alpha
```

```
eq_alfa = -20*log10(x) == 20*log10(md_w0db); % Relação de Alfa
alfa sym = solve(eq alfa,x);
alfa = sym2poly(alfa_sym);
% Determinação das a frequência de corte
% Frequencia de corte Zero do Compensador - 1/alfa*tau (-1 dec de md_w0db)
syms tau_eq
w0db_decAbaixo = fase_w0db - 10;
eq_fcorte_zero = 1/(alfa*tau_eq) - w0db_decAbaixo;
tau_sym = solve(eq_fcorte_zero,tau_eq);
tau = sym2poly(tau sym);
fc_zero = 1/alfa*tau;
% Frequencia de corte Polo do Compensador - 1/tau
fc_polo = 1/tau;
% Definição do Controlador Atraso
syms jw
C atraso sym = K1*(1+jw*alfa*tau)/(1+jw*tau); % Equação do Controlador Atraso
[num_Catraso, deno_Catraso] = numden(C_atraso_sym);
C_atraso = tf(sym2poly(num_Catraso), sym2poly(num_Catraso));
GGma = C_atraso*Gma; % Controlador Atraso + Gma
[Gm_GGma,Pm_GGma,Wgm_GGma,Wpm_GGma]=margin(GGma);
MG_GGma = Gm_GGma; % Margem de Ganho de GGma
BW_GGma = Wpm_GGma; % Largura de Banda de GGma
MF_GGma = Pm_GGma; % Margem de Fase de GGma
```

```
GGMF = feedback(GGma,1);
C atraso poly = subs(C atraso sym, jw,s);
% Erro a entrada degrau
Eq Ess Degrau GGma = 1/(1 + C atraso poly*Gma poly);
 % Erro a entrada disturbio
Eq_Ess_Disturbio_GGma = Gma_poly/(1 + C_atraso_poly*Gma_poly);
Ess_Deg_GGma = double(limit(Eq_Ess_Degrau_GGma,s,0,'right'));
Ess_Dist_GGma = double(limit(Eq_Ess_Disturbio_GGma,s,0,'right'));
% Determinação do ganho K2 para o Avanço
K2 = 1;
% Determinação da nova fase
phi_m = 100 - Pm_GGma; % Margem de fase especificada 60 com adicional
% 8 ETAPA ==========
% Determinação da constante alfa para o controlador Avanço
syms alfa Avanco x
Eq_Alfa_Avanco = tand(phi_m) == (alfa_Avanco_x-1)/(2*sqrt(alfa_Avanco_x));
alfa avanco sym = solve(Eq Alfa Avanco,alfa Avanco x);
alfa2 = sym2poly(alfa_avanco_sym); % Alfa do Controlador Avanço
% Determinação da frequência onde ocorre o máximo avanço de fase
relacao_alfa = -10*log10(alfa2); % Parte do alfa da relacao
% relacao alfa = -23.3150 db
% Analisando o diagrama de bode para GGma, temos que Wm = 59 rad/s
```

```
figure;
bode(GGma);
title ('Função de Transferência de Gma com Compesador Atraso');
grid on;
wm = 250; % Frequência onde ocorre o máximo avanço de fase
% Definição da Constante Tau para Avanço pela relação
tau2 = 1/(wm*sqrt(alfa2));
% Frequencia de corte Zero do Compensador
fc zero2 = 1/(alfa2*tau2);
% Frequencia de corte Polo do Compensador
fc_{polo2} = 1/(tau2);
% Definição do Controlador Avanco
C_{avanco_{sym}} = K2*(1+jw*alfa2*tau2)/(1+jw*tau2);
[num_Cavanco, deno_Cavanco] = numden(C_avanco_sym);
C_avanco = tf(sym2poly(num_Cavanco),sym2poly(deno_Cavanco));
GGGma = C_avanco*Gma; % Controlador Avanco + Gma
GGGMF = feedback(GGGma,1);
GGGGma = C_avanco*GGma; % Controlador Avanco + Controlador Atraso + Gma
C_avanco_atraso = C_avanco*C_atraso;
[Gm_GGGma, Pm_GGGma, Wgm_GGGma, Wpm_GGGma] = margin(GGGma);
MG_GGGma = Gm_GGGma; % Margem de Ganho de GGGma
```

```
BW_GGGma = Wpm_GGGma; % Largura de Banda de GGGma
MF_GGGma = Pm_GGGma; % Margem de Fase de GGGma
[Gm GGGGma, Pm GGGGma, Wgm GGGGma, Wpm GGGGma] = margin(GGGGma);
MG GGGGma = Gm GGGGma; % Margem de Ganho de GGGGma
BW_GGGGma = Wpm_GGGGma; % Largura de Banda de GGGGma
MF_GGGGma = Pm_GGGGma; % Margem de Fase de GGGGma
GGGGMF = feedback(GGGGma,1);
C_avanco_atraso_sym = C_atraso_sym*C_avanco_sym;
C_avanco_atraso_poly = subs(C_avanco_atraso_sym,jw,s);
% Erro a entrada degrau
Eq Ess Degrau GGGGma = 1/(1 + C avanco atraso poly*Gma poly);
% Erro a entrada disturbio
Eq_Ess_Disturbio_GGGGma = Gma_poly/(1 + C_avanco_atraso_poly*Gma_poly);
Ess_Deg_GGGGma = double(limit(Eq_Ess_Degrau_GGGGma,s,0,'right'));
Ess_Dist_GGGGma = double(limit(Eq_Ess_Disturbio_GGGGma,s,0,'right'));
y0 = step(GMF,t);
q0 = stepinfo(y0);
y1 = step(GGMF,t);
q1 = stepinfo(y1);
y2 = step(GGGMF,t);
q2 = stepinfo(y2);
y3 = step(GGGGMF,t);
q3 = stepinfo(y3);
```

```
Overshoot = [q1.0vershoot; q3.0vershoot];
SettlingTime = [q1.SettlingTime;q3.SettlingTime];
RiseTime = [q1.RiseTime; q3.RiseTime];
FTMAs = {'GGma';'GGGGma'};
Controladores = {'Atraso';'Avanco-Atraso'};
Gms = [MG_GGma; MG_GGGGma];
BWs = [BW GGma; BW GGGGma];
MFs = [MF_GGma; MF_GGGGma];
Ess_Degrau= [Ess_Deg_GGma; Ess_Deg_GGGGma];
Ess_Disturbio= [Ess_Dist_GGma; Ess_Dist_GGGGma];
T = table(FTMAs,Controladores,Overshoot,
       SettlingTime,RiseTime,Gms,BWs,MFs,Ess_Degrau,Ess_Disturbio)
% ***************** DIAGRAMA DE BODE *****************
% Diagrama de Bode da Gma, com C_Atraso, com C_Avanco, C_Avanco_C_Atraso
figure;
hold on;
bode(Gma);
bode(GGma);
bode(GGGma);
bode(GGGGma);
title('Diagrama de Bode para o Controladores projetados');
grid on;
legend('Gma','Gma + Controlador Atraso',
      'Gma + Controlador Avanco', 'Gma + Controlador Avanco-Atraso');
hold off;
figure;
plot(t,y1,'r',t,y2,'g');
title('Resposta ao degrau para FTMF com o Controladores projetados');
legend('FTMF com Atraso', 'FTMF com Atraso-Avanco');
```

-a0 0 0 0];

```
grid on;
save('C_avanco_atraso','C_avanco_atraso');
.4.2 1.2 (Atraso-Avanço)
%
%
         SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
clear all, close all, clc;
op = 1; % 1 se item (i), 2 se item (ii)
global F A B;
load('C_avanco_atraso');
load('Gma');
Gma_c = Gma*C_avanco_atraso;
Gmf=feedback(Gma_c,1);
% Definição das Matrizes A, B, C e D
a0 = 14156.72;
a1 = 9697.37;
a2 = 1933.58;
a3 = 102.40;
b0 = 286602.32;
b1 = 87812.86;
b2 = 4037.30;
b3 = 0;
A = [-a3 \ 1 \ 0 \ 0;
    -a2 0 1 0;
    -a1 0 0 1;
```

```
B = [b3 b2 b1 b0]';
C = [1 \ 0 \ 0 \ 0];
D = 0;
%%%%% Agora simular o veículo lunar no espaço de estados %%%%%%
% vetor estados inicial
Xs = [0 \ 0 \ 0 \ 0];
F = 0;
% Inicialização de variáveis
tfinal = 5; % Tempo total de simulação
ref = 1; % Referência
passo = 0;
tempo = 0;
dT = 0.01; % tempo de amostragem
while (tempo < tfinal)</pre>
     passo = passo + 1;
     ts = passo*dT;
     % simulação da equação diferencial
     [T,X] = ode45('modelo_linear',[tempo ts], Xs);
     % Armazenamento de variaveis
     n = length(T);
     tempo = ts;
     Xs = X(n,:);
     if(op == 2);
         F = ref - Xs(1);
     end
     if(op == 1);
         F = ref-(Xs(1) + 0.02*randn(1));
     end
     vetout(passo,:) = X(n,1);
     vettime(passo) = T(n,:);
     vetvref(passo,:) = ref;
```

```
% Plotagem dos gráficos
figure
plot(vettime, vetvref,'b');
hold on;
plot(vettime, vetout, 'r'); %multiplica por p1 para reduzir o erro
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
grid;
.4.3 1.3 (Atraso-Avanço)
%
%
        SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
%
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
clear all, close all, clc;
global F A B;
load('C_avanco_atraso');
load('Gma');
Gma c = Gma*C avanco atraso;
Gmf=feedback(Gma c,1);
% Definição das Matrizes A, B, C e D
a0 = 14156.72;
a1 = 9697.37;
a2 = 1933.58;
a3 = 102.40;
b0 = 286602.32;
b1 = 87812.86;
b2 = 4037.30;
b3 = 0;
A = [-a3 \ 1 \ 0 \ 0;
```

```
-a2 0 1 0;
     -a1 0 0 1;
     -a0 0 0 0];
B = [b3 b2 b1 b0]';
C = [1 \ 0 \ 0 \ 0];
D = 0;
%%%%% Agora simular o veículo lunar no espaço de estados %%%%%%
% vetor estados inicial
Xs = [0 \ 0 \ 0 \ 0];
F = 0;
% Inicialização de variáveis
tfinal = 5; % Tempo total de simulação
ref = 1; % Referência
passo = 0;
tempo = 0;
dT = 0.01; % tempo de amostragem
while (tempo < tfinal)</pre>
     passo = passo + 1;
     ts = passo*dT;
     % simulação da equação diferencial
     [T,X] = ode45('modelo linear',[tempo ts], Xs);
     % Armazenamento de variaveis
     n = length(T);
     tempo = ts;
     Xs = X(n,:);
     F = ref - Xs(1);
     vetout(passo,:) = X(n,1);
     vettime(passo) = T(n,:);
     vetvref(passo,:) = ref;
end
```

% Plotagem dos gráficos

```
t=0.0:0.01:5;
y3=step(Gmf,t);
figure;
plot(vettime, vetout,'r');
hold on;
plot(t,y3,'g');
plot(vettime, vetvref, 'b');
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
grid;
title ('Comparação das respostas dos itens 1.1 e 1.2 para controlador
   Atraso-Avanço');
grid on;
legend('Item 1.1','Item 1.2', 'ref');
hold off;
  Item 1.5
.5
%
%
         SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
clear all, close all, clc;
global F A B;
load('PID');
load('C_avanco_atraso');
load('Gma');
Gpid = Gma*PID2;
Gma_c = Gma*C_avanco_atraso;
GMF1=feedback(Gpid,1);
GMF2=feedback(Gma_c,1);
```

A = [18.78 1;

```
t=0.0:0.01:5;
y1=step(GMF1,t);
y2=step(GMF2,t);
figure;
plot(t,y1,'r');
hold on;
plot(t,y2,'b');
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
title('Comparação das respostas dos itens 1.1 e 1.4');
grid on;
legend('Item 1.1','Item 1.4');
hold off;
  Item 1.6
%
%
         SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
%%
clear all, close all, clc;
global F A B;
load('PID');
load('Gma');
Gpid = Gma*PID2;
GMF=feedback(Gpid,1);
polos_mf = pole(GMF);
%% Projeto do controlador via realimentação de estados
```

```
44.44 0];
B = [0 \ 900]';
C = [1 \ 0];
D = 0;
polos_mf_ordem2 = [polos_mf(2), polos_mf(3)]; %eliminando o polo menos dominante
K = place(A, B, polos_mf_ordem2);
Ak = A-B*K;
m=ss(Ak,B,C,D); % FT de MF
figure;
step(m);title('Resposta da realimentação de estados ');
grid
k0 = freqresp(m,0);
p1 = 1/k0;
Grs = p1*m;
figure
step(Grs);
title ('Resposta da realimentação de estados ajustando erro em regime');
grid
save('Grs','Grs');
%% Simulação da resposta em malha fechada com realimentação de estados
A = [18.78 1;
     44.44 0];
B = [0 \ 900]';
C = [1 \ 0];
D = 0;
polos_mf_ordem2 = [polos_mf(2), polos_mf(3)]; %eliminando o polo menos dominante
K = place(A,B,polos_mf_ordem2);
%%%%% Agora simular o veículo lunar com realimentação de estados %%%%%%
ts = 0.4; qsi = 0.8; %definição de parâmetros
```

```
m = ss(A-B*K,B,C,D); % FT da G esperada representada em espaço de estados
k0 = freqresp(m,0); % calculo do p1 para corrigir o erro em regime
p1 = 1/k0;
% vetor estados inicial
Xs = [0 \ 0];
F = 0;
% Inicialização de variáveis
tfinal = 1.5; % Tempo total de simulação
ref = 1; % Referência
passo = 0;
tempo = 0;
dT = 0.01; % tempo de amostragem
while (tempo < tfinal)</pre>
     passo = passo + 1;
     ts = passo*dT;
     % simulação da equação diferencial
     [T,X] = ode45('modelo_linear2',[tempo ts], Xs);
     % Armazenamento de variaveis
     n = length(T);
     tempo = ts;
     Xs = X(n,:);
     F = ref-K*(Xs)';
     vetout(passo,:) = [X(n,1) X(n,2)];
     vettime(passo) = T(n,:);
     vetvref(passo,:) = ref;
end
dir = vetout*C';
% Plotagem dos gráficos
figure
plot(vettime, vetvref,'b');
```

```
hold on;
plot(vettime,dir*p1,'r'); %multiplica por p1 para reduzir o erro
xlabel('Tempo(s)');
ylabel('Amplitude');
title('Simulação da realimentação de estados');
legend('Referencia');
grid;
```

.7 Item 1.7

hold on;

```
%
%
        SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
clear all, close all, clc;
load('PID');
load('C_avanco_atraso');
load('Grs');
load('Gma');
Gpid = Gma*PID2;
Gma_c = Gma*C_avanco_atraso;
GMF1=feedback(Gpid,1);
GMF2=feedback(Gma c,1);
GMF3 = Grs;
t=0.0:0.01:5;
y1=step(GMF1,t);
y2=step(GMF2,t);
y3=step(GMF3,t);
figure;
plot(t,y1,'r');
```

```
plot(t,y2,'b');
plot(t,y3,'g');
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
title('Comparação das respostas dos itens 1.1, 1.4 e 1.6');
grid on;
legend('Item 1.1','Item 1.4','Item 1.6');
hold off;
   Item 1.8
%
%
         SEGUNDO TRABALHO COMPUTACIONAL DE SISTEMAS REALIMENTADOS
% Alaf do Nascimento Santos - 20171007181
% Felipe Antonio Moreira Silva - 2018205316
%%
clear all, close all, clc;
load('PID');
load('Gma');
Gpid = Gma*PID2;
GMF=feedback(Gpid,1);
polos_mf = pole(GMF);
%% Projeto do controlador via realimentação de estados
A = [18.78 1;
    44.44 0];
B = [0 \ 900]';
C = [1 \ 0];
D = 0;
fator = 5;
```

 $polos_mf_ordem2 = [polos_mf(2), polos_mf(3)]; %eliminando o polo menos dominante$

polos_obs=fator*polos_mf_ordem2;

```
K = place(A, B, polos_mf_ordem2);
% Projeto do observador de estados
L=place(A',C',polos_obs);
L=L';
[numC1, denC1] = ss2tf(A-L*C-B*K, B, -K, 1);
[numC2, denC2] = ss2tf(A-L*C-B*K, L, K, D);
C1 = tf(numC1,denC1)
C2 = tf(numC2, denC2)
m_s = (C1*feedback(Gma,C2))
m=minreal(m_s)
figure;
step(m);title('Resposta da realimentação de estados + observador ');
grid
k0 = freqresp(m,0);
p1 = 1/k0; %inverso do ganho de regime de m
Grs2 = p1*m;
figure
step(Grs2);
title('Ajustando erro em regime - Realimentação de estados + observador');
save('Grs2','Grs2');
%% Compara com 1.7
clear all, close all, clc;
load('PID');
load('C_avanco_atraso');
load('Grs');
load('Grs2');
load('Gma');
Gpid = Gma*PID2;
```

```
Gma_c = Gma*C_avanco_atraso;
GMF1=feedback(Gpid,1);
GMF2=feedback(Gma_c,1);
GMF3 = Grs;
GMF4 = Grs2;
t=0.0:0.01:4;
y1=step(GMF1,t);
y2=step(GMF2,t);
y3=step(GMF3,t);
y4=step(GMF4,t);
figure;
plot(t,y1,'r');
hold on;
plot(t,y2,'b');
plot(t,y3,'g');
plot(t,y4,'black');
xlabel('Tempo(s)');title('Direção');
legend('Referencia');
title('Comparação das respostas dos itens 1.1, 1.4, 1.6 e 1.8');
legend('Item 1.1','Item 1.4','Item 1.6', 'Item 1.8');
hold off;
```

.9 Funções de Modelo Linear

.9.1 modelo_linear.m

```
function d = modelo_linear(t,x); global F A B  d(1) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4) + B(1)*F; \\ d(2) = A(2,1)*x(1) + A(2,2)*x(2) + A(2,3)*x(3) + A(2,4)*x(4) + B(2)*F; \\ d(3) = A(3,1)*x(1) + A(3,2)*x(2) + A(3,3)*x(3) + A(3,4)*x(4) + B(3)*F;; \\ d(4) = A(4,1)*x(1) + A(4,2)*x(2) + A(4,3)*x(3) + A(4,4)*x(4) + B(4)*F;
```

```
d = d';
```

.9.2 modelo_linearVeiculo.m

```
function d = modelo_linearVeiculo(t,x);
global F A B

d(1) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + B(1)*F;
d(2) = A(2,1)*x(1) + A(2,2)*x(2) + A(2,3)*x(3) + B(2)*F;
d(3) = A(3,1)*x(1) + A(3,2)*x(2) + A(3,3)*x(3) + B(3)*F;
d = d';
```

$.9.3 \quad modelo_linear2.m$

```
function d = modelo_linearVeiculo(t,x);
global F A B

d(1) = A(1,1)*x(1) + A(1,2)*x(2) + B(1)*F;
d(2) = A(2,1)*x(1) + A(2,2)*x(2) + B(2)*F;
d = d';
```