VariablesEffectingPerformance

David A Hughes 27/09/2019

What are the variables that are influencing the performance of our experiments??

- 1. First how do we define and/or measure performance? + the number of reliable reads: reads retained after QC and mapping filtering (secondary alignments and mapping quality score < 30) + enrichment factor (EF): (reliable-on-target reads / production reads) / (target space/genomic space) + library complexity (LC): # reliable reads / total number of mapped reads, including duplicates + capture sensitivity (CS): # of target regions covered by 1 read / total number of target regions + capture specificity (CSp): reliable-on-target / reliable reads
- 2. What are some of the variable that we think may influence performance? + geogrpahic sampling site + % endogenous DNA + DNA fragment size + the sample poolit belongs to + the hybridization + production or sequencing reads acquired for a sample/hybridization + pipeting volume used to make a library + pipeting volume used to make the pool

Read in the data and report the variables available in each table

```
## $`Table S1`
## [1] "Sample"
                                          "Site"
## [3] "Subspecies"
                                          "Common name"
## [5] "Total DNA Concentration (ng/ul)" "Endogenous DNA (qPCR - ng/ul)"
## [7] "% Endogenous DNA"
                                          "Average Fragment Size"
##
## $`Table S2`
## [1] "Sample"
                                          "Site"
## [3] "Subspecies"
                                          "Common name"
## [5] "Total DNA Concentration (ng/ul)" "Endogenous DNA (qPCR - pg/ul)"
  [7] "% Endogenous DNA"
##
## $`Table S3`
## [1] "Sites"
                             "Median Endogenous"
                                                  "Average Endogenous"
## [4] "Min"
                             "Max"
##
## $`Table S4`
   [1] "Extract ID"
##
    [2] "Sequencing Batch"
##
       "Capture Pool"
   [4] "Starting DNA (ug)"
##
##
   [5] "Production Reads"
    [6] "Production Bases"
##
##
    [7]
       "Mapped Reads"
##
    [8] "Percentage Mapped Reads"
   [9] "Unique Reads"
##
## [10] "Percentage Unique Reads"
## [11] "Reliable Reads"
  [12] "Percentage Reliable Reads"
## [13] "OnTarget Reliable Reads"
```

```
## [14] "OnTarget Reliable Bases"
## [15] "Percentage OnTarget Reliable Reads"
## [16] "Percentage OnTarget Reliable Bases"
## [17] "Coverage OnTarget"
## [18] "Enrichment Factor (EF)"
## [19] "Capture Specificity (CSp)"
## [20] "Library Complexity (LC)"
## [21] "Capture Sensitivity (CS) DP1"
## [22] "Capture Sensitivity (CS) DP4"
  [23] "Capture Sensitivity (CS) DP10"
  [24] "Capture Sensitivity (CS) DP50"
##
## $`Table S5`
   [1] "Capture Pool"
##
   [2] "Production Reads"
##
##
    [3] "Mapped Reads"
##
   [4]
       "Percentage Mapped Reads"
##
    [5] "Unique Reads"
##
   [6] "Percentage Unique Reads"
    [7] "Uniq HQ Reads"
##
##
   [8] "Percentage Unique HQ Reads"
   [9] "OnTarget Uniq HQ Reads"
## [10] "Percentage OnTargetUnique HQ Reads"
  [11] "Average Coverage OnTarget"
## [12] "...12"
## $Downsampled
   [1] "Extract ID"
##
##
   [2] "Sequencing Batch"
##
   [3] "Capture Pool"
##
   [4]
       "Starting DNA (ug)"
##
    [5]
       "Production Reads"
##
   [6] "Production Bases"
##
   [7] "Mapped Reads"
##
    [8]
       "Percentage Mapped Reads"
##
   [9]
       "Unique Reads"
## [10] "Percentage Unique Reads"
## [11] "Reliable Reads"
## [12] "Percentage Reliable Reads"
## [13] "OnTarget Reliable Reads"
## [14] "OnTarget Reliable Bases"
## [15] "Percentage OnTarget Reliable Reads"
## [16] "Percentage OnTarget Reliable Bases"
## [17] "Coverage OnTarget"
## [18] "Enrichment"
## [19] "Specificity"
## [20] "LC"
## [21] "DP1"
## [22] "DP4"
## [23] "DP10"
## [24] "DP20"
## [25] "DP50"
```

Add average fragment length from Table S1 to Table S2

Add the data from Table S2 to Table S4

Add the data from Table S2 to Table Downsampled

Using the funtions in the NILC R package, estimate a correlation matrix among all variables in the study

Correlation matrix for the downsampled data

pdf ## 2

Extracting and plotting only the correlations for capture sensitivity @DP1

pdf ## 2

Distribution of summary statistics

Are the distributions normal??

Explicity Univariate Analysis on complete data set:

EF, LC, CS, CSp: as influenced by site, DNA [concentration], %eDNA, fragment size, pool, amount of DNA in hybridaztion, hybridization, Sequencing run, production reads

Explicity Univariate Analysis on Downsampled data including only those samples with 1.5M Production Reads:

EF, LC, CS, CSp: as influenced by site, DNA [concentration], %eDNA, fragment size, pool, amount of DNA in hybridaztion, hybridization, Sequencing run, production reads

pdf

2

pdf

2

some explicit modeling given the results above

```
w = which(downdata Production Reads < 1500000) ## 274 samples left
#####
d = rntransform( unlist( downdata[-w, "DP1"] ) )
## sub setted model
fit0 = lm( d ~ `Subspecies` + `Site` +
             `Total DNA Concentration (ng/ul)` +
             #`Endogenous DNA (qPCR - pg/ul)` +
             `% Endogenous DNA` +
             `Average Fragment Size` +
             `Starting DNA (ug)` +
             `Pool` +
             `Capture Pool` +
             `Sequencing Batch` , data = downdata[-w,])
## full model !!!
fit = lm( d ~ `Subspecies` + `Site` +
             `Total DNA Concentration (ng/ul)` +
             `Endogenous DNA (qPCR - pg/ul)` +
             `% Endogenous DNA` +
             `Average Fragment Size` +
             `Starting DNA (ug)` +
             `Pool` +
             `Capture Pool` +
             `Sequencing Batch`, data = downdata[-w,])
anova(fit0, fit)
```

```
## Analysis of Variance Table
##
## Model 1: d ~ Subspecies + Site + `Total DNA Concentration (ng/ul)` + `% Endogenous DNA` +
       `Average Fragment Size` + `Starting DNA (ug)` + Pool + `Capture Pool` +
##
##
       `Sequencing Batch`
## Model 2: d ~ Subspecies + Site + `Total DNA Concentration (ng/ul)` + `Endogenous DNA (qPCR - pg/ul)`
       '% Endogenous DNA' + 'Average Fragment Size' + 'Starting DNA (ug)' +
       Pool + `Capture Pool` + `Sequencing Batch`
##
     Res.Df
##
                 RSS Df Sum of Sq
        240 102.830
## 1
        239 98.231 1
                           4.5985 11.188 0.0009557 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
###################
a = anova(fit)
eta2 = a[, 2]/sum(a[,2]); names(eta2) = rownames(a)
eta2 = data.frame(labels = rownames(a), eta2 = eta2)
###
par(mar = c(6.5, 5,3,3))
moose_barplot(eta2, "eta2", eta2$labels, 20, pylim = c(0,0.45))
0.1
      Total DNA Concentration (ng/ul)
              Endogenous DNA (qPCR - pg/ull)
                               .% Endogenous DNA
                                     'Average Fragment Size'
                                                                       'Capture Pool'
  Subspecies
                                                                                  Residuals
                                                  'Starting DNA (ug)'
```

Multivariate model of the Full Data Set

Multivariate model of the downsampled data set limited to only those samples with $1.5\mathrm{M}$ production reads

DownSampled Variance Explained

Variance explained in capture sensitivity derived from univariate and type I multivariate ANOVAs

fit0 = CS@DP1 ~ 'Subspecies' + 'Site' + 'Total DNA Concentration' + '% Endogenous DNA' + 'Average Fragment Size' + 'Starting DNA' + 'Pool' + 'Capture Pool' + 'Sequencing Batch'

model 'fit' has the order of explanatory variables reversed

Library Complexity and CS @DP1

Unique Reads by hybridization

- 1. Samples in SeqBatch 3 all had 2ug of in the hybridization, hence the large bump in LC.
- 2. Drowning the data in useless sequencing also appears to have had a negative effect on LC.

What can we learn from these observations? 1. Increase the total DNA concentration in hybridization reactions (Perry paper did this) 2. Do not sequence to deeply.

How are production reads influencing library complexity in the down sampled data ?

Capture Sensitivity

It would be useful to identify a single summary statistic that summarizes what a good "performing" target capture sequencing experiment is. I think what we be most useful is to count the number of (population-wide) variable position that we were able to genotype (at whatever criteria uniformly executed across all samples). In the absence of this data it would seem that the best summary statistic that would predict this number is Capture Sensitivity (# of target regions covered by 1 read / total number of target regions), as having a base covered by a read provides a chance for genotyping.

Now depth in coverage gives us accuracy in genotyping heterozygosity and there is most certainly going to be some bias in capturing specific alleles, but we have some good evidence that just making hemizygous calls is

informative for the gross|macro level population genetics we would like to do. However, this should eventually be quantified.

Below we are asking in a univariate fashion how each of our variables, and sumstat, correlate with CAPTURE SENSITIVITY.

What can we learn from this analysis?

- 1. Want to increase capture sensitivity aquire more unique reads! + kind of obvious but great to observe and demonstrate.
- 2. For technical or methodological choices it would appear that + samples with more Endogenous DNA, (note that this is NOT %DNA), it is higher DNA [concentrations] perform better + captures with more DNA in the hybridization perform better

Below we are asking in a univariate fashion how each of our variables, and sumstat, correlate with CAPTURE SENSITIVITY at a uniform production

Build a network of relationships based on correlation estimates

Remove redundancies in Network

Remove redundancies in Network and construct with down sampled data

How is the concentration of a sample influencing capture sensitivity?

eDNA concentration by capture pool

Univariate ANOVA on Summary Statistics

```
cols2test = c(2:3, 4:23, 25, 30)
UnivarateANOVA = matrix(NA, length(cols2test), 2)
for(i in 1:length(cols2test) ){
 x = unlist(wdata[,cols2test[i] ])
 test = class( x )
  ###
   fit = lm(wdata$`Capture Sensitivity (CS) DP1` ~ x)
  ###
  a = anova(fit)
  eta = a[1,2]/sum(a[,2])
 pval = a[1, 5]
 out = c(eta, pval)
 UnivarateANOVA[i, ] = out
  }
rownames(UnivarateANOVA) = colnames(wdata)[cols2test]
colnames(UnivarateANOVA) = c("eta", "pval")
## order
o = order(UnivarateANOVA[,1], decreasing = TRUE)
UnivarateANOVA = UnivarateANOVA[o,]
```


A multivariate model to explain how sample quality, and methodological choice influences Capture Sensitivity

```
`% Endogenous DNA` +
            `Capture Pool` +
           `Starting DNA (ug)` +
           `Sequencing Batch` +
            `Production Reads` +
            'Unique Reads'
            , data = wdata )
fit = lm( `Capture Sensitivity (CS) DP1` ~ `Total DNA Concentration (ng/ul)` +
           `Endogenous DNA (qPCR - pg/ul)` +
           `% Endogenous DNA` +
           `Starting DNA (ug)` +
            `Production Reads` +
            'Unique Reads'
            , data = wdata )
## are model residuals normal ?
###################################
W = shapiro.test(residuals(fit))
##############################
## estiamte SS and VarExp
## assuming an TypeI hierarchical
## ANOVA
################################
(a = anova(fit) )
## Analysis of Variance Table
## Response: Capture Sensitivity (CS) DP1
                                     Df Sum Sq Mean Sq F value
                                                                  Pr(>F)
## `Total DNA Concentration (ng/ul)`
                                     1 0.2370 0.2370 10.7605 0.0011324
## `Endogenous DNA (qPCR - pg/ul)`
                                    1 4.1996 4.1996 190.6785 < 2.2e-16
                                      1 0.1849 0.1849 8.3952 0.0039795
## `% Endogenous DNA`
## `Starting DNA (ug)`
                                      1 0.2634 0.2634 11.9582 0.0006055
## `Production Reads`
                                      1 2.8046 2.8046 127.3397 < 2.2e-16
## 'Unique Reads'
                                      1 1.3593 1.3593 61.7162 4.089e-14
## Residuals
                                    381 8.3914 0.0220
## `Total DNA Concentration (ng/ul)` **
## `Endogenous DNA (qPCR - pg/ul)`
## '% Endogenous DNA'
## `Starting DNA (ug)`
                                    ***
## `Production Reads`
                                    ***
## `Unique Reads`
                                    ***
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
eta = a[, 2] / sum(a[,2])
names(eta) = rownames(a)
```

summary(fit)

```
##
## Call:
## lm(formula = `Capture Sensitivity (CS) DP1` ~ `Total DNA Concentration (ng/ul)` +
       `Endogenous DNA (qPCR - pg/ul)` + `% Endogenous DNA` + `Starting DNA (ug)` +
##
       `Production Reads` + `Unique Reads`, data = wdata)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
## -0.38579 -0.11332 -0.00564 0.11084 0.41269
##
## Coefficients:
##
                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                    9.648e-03 5.903e-02 0.163 0.87026
## `Total DNA Concentration (ng/ul)` 3.783e-04 2.125e-03 0.178 0.85878
## `Endogenous DNA (qPCR - pg/ul)`
                                    3.103e-05 3.760e-04 0.083
                                                                 0.93427
## `% Endogenous DNA`
                                    2.003e-01 9.798e-02 2.045 0.04158
## `Starting DNA (ug)`
                                    5.956e-02 2.021e-02 2.946 0.00341
## `Production Reads`
                                    7.901e-09 2.693e-09 2.934 0.00355
## 'Unique Reads'
                                    2.037e-07 2.593e-08 7.856 4.09e-14
##
## (Intercept)
## `Total DNA Concentration (ng/ul)`
## `Endogenous DNA (qPCR - pg/ul)`
## '% Endogenous DNA'
## `Starting DNA (ug)`
## `Production Reads`
                                    **
## `Unique Reads`
                                    ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1484 on 381 degrees of freedom
     (12 observations deleted due to missingness)
## Multiple R-squared: 0.5188, Adjusted R-squared: 0.5113
## F-statistic: 68.47 on 6 and 381 DF, p-value: < 2.2e-16
```

