Languages

Symbol~ anything used to represent something

Alphabet Σ ~ a collection of symbols

String: a sequence of symbols from some alphabet

Language: a set of strings

Example:

Symbol: a,b,c,0,1,2,3

Strings: cat, dog, house

Language: {cat, dog, house}

Alphabet: $\Sigma = \{a, b, c, \dots, z\}$

Languages are used to describe computation problems:

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

$$EVEN = \{0, 2, 4, 6, \ldots\}$$

Alphabet:
$$\Sigma = \{0, 1, 2, ..., 9\}$$

Computation is translated to set membership

Example computation problem:

Is number x prime?

Equivalent set membership problem:

$$x \in PRIMES = \{2,3,5,7,11,13,17,...\}$$
?

Alphabets and Strings

An alphabet is a set of symbols

Example Alphabet:
$$\Sigma = \{a, b\}$$

A string is a sequence of symbols from the alphabet

Example Strings

 \mathcal{I}

ab

abba

aaabbbaaba

String variables

u = ab

v = bbbaaa

w = abba

Decimal numbers alphabet $\Sigma = \{0,1,2,\ldots,9\}$

Binary numbers alphabet

$$\Sigma = \{0,1\}$$

Unary numbers alphabet
$$\Sigma = \{1\}$$

Decimal number: 1 2 3 4 5

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa| = 2$$

$$|a| = 1$$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

A string with no letters is denoted: ε or λ

Acts as a neutral element

Observations:
$$|\varepsilon| = 0$$

$$\varepsilon w = w \varepsilon = w$$

 $\varepsilon abba = abba\varepsilon = ab\varepsilon ba = abba$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
a <u>bbab</u>	bbab

Prefix and Suffix

string abbab

Prefixes

Suffixes

 ${\cal E}$

abbab

 \boldsymbol{a}

bbab

ab

bab

abb

ab

abba

b

abbab

 ${\cal E}$

Exponent Operation

$$w^n = \underbrace{ww \cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \varepsilon$$

$$(abba)^0 = \varepsilon$$

The * Operation

 Σ^* : the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except ${\mathcal E}$

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\varepsilon,a,b,aa,ab,ba,bb,aaa,aab,\ldots\}$$

$$\Sigma^{+} = \Sigma^{*} - \{\varepsilon\}$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Languages

A language over alphabet Σ is any subset of Σ^*

```
Example: \Sigma = \{a,b\} \Sigma^* = \{\varepsilon,a,b,aa,ab,ba,bb,aaa,\ldots\}
```

```
Languages: \{\}
\{\varepsilon\}
\{a,aa,aab\}
\{\varepsilon,abba,baba,aa,ab,aaaaaa\}
```

More Language Examples

Alphabet
$$\Sigma = \{a, b\}$$

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\begin{array}{c} \varepsilon \\ ab \\ aabb \\ aaaaabbbbb \end{array} \in L \qquad \begin{array}{c} bbabb \not\in L \\ abb \not\in L \\ \end{array}$$

Prime numbers

Numbers divisible by 1 and itself

Alphabet
$$\Sigma = \{0, 1, 2, ..., 9\}$$

Language:

$$PRIMES = \{x : x \in \Sigma^* \text{ and } x \text{ is prime } \}$$

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

Even and odd numbers

Alphabet
$$\Sigma = \{0,1,2,\ldots,9\}$$

Languages:

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even} \}$$

 $EVEN = \{0, 2, 4, 6, ...\}$

$$ODD = \{x : x \in \Sigma^* \text{ and } x \text{ is odd}\}\$$

 $ODD = \{1,3,5,7,...\}$

Addition (of unary numbers)

Alphabet:
$$\Sigma = \{1,+,=\}$$

Language:

$$ADDITION = \{x + y = z : x = 1^{n}, y = 1^{m}, z = 1^{k}, \\ n + m = k, n \ge 1, m \ge 1\}$$

$$11 + 111 = 111111 \in ADDITION$$

$$111 + 111 = 1111 \notin ADDITION$$

 $ADDITION = \{1+1=11, 1+11=111, 11+1=111, 11+11=1111, ...\}$

Two special languages

```
Empty language \{\} or \emptyset
```

Language with empty string $\{\mathcal{E}\}$

Size of a language (number of elements):

$$|\{\}|=0$$

 $|\{\varepsilon\}|=1$
 $|\{a,aa,ab\}|=3$
 $|\{\varepsilon,aa,bb,abba,baba\}|=5$

Note that:

$$\emptyset = \{ \} \neq \{ \mathcal{E} \}$$

$$|\{\}| = |\varnothing| = 0$$

$$|\{\varepsilon\}| = 1$$

String length
$$|\varepsilon| = 0$$

Operations on Languages

The usual set operations:

$$\{a,ab,aaaa\} \cup \{bb,ab\} = \{a,ab,bb,aaaa\}$$
 union $\{a,ab,aaaa\} \cap \{bb,ab\} = \{ab\}$ intersection $\{a,ab,aaaa\} - \{bb,ab\} = \{a,aaaa\}$ difference

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example: $\{a,ab,ba\}\{b,aa\}$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = \underbrace{LL \cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

$${aaa,aab,aba,abb,baa,bab,bba,bbb}$$

Special case:
$$L^0 = \{ \mathcal{E} \}$$

$$\{ a, bba, aaa \}^0 = \{ \mathcal{E} \}$$

Example

$$L = \{a^n b^n : n \ge 0\}$$

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m} : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

Star-Closure (Kleene *)

All strings that can be constructed from L

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$$

Example:
$$\{a,bb\}^* = \begin{cases} \varepsilon, \\ a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases} L^0$$

$$L^1$$

$$L^2$$

$$L^2$$

$$L^3$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup L^3 \cup \cdots$$

Note that: $L^* = L^0 \cup L^+$

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases} L^{1}$$

