Sound Zones with a Cost Function based on Human Hearing

Niels de Koeijer MSc Thesis Defence

Delft University of Technology, The Netherlands

Bang and Olufsen, Denmark

September 16, 2021

Preface: About Me

Niels de Koeijer

Master Student at:

- Delft University of Technology,
- Research Department at Bang & Olufsen.

Preface: The Sound Zone Problem I

"Using an array of loudspeakers to create zones of distinct audio with minimal interference in a room."

Preface: The Sound Zone Problem II

Preface: Introducing Perceptual Sound Zones

Thesis Approach

- Goal of Thesis: Include a model of the human auditory system in sound zone algorithms.
 - **Motivation:**Optimize what matters to humans perceptually.

Preface: Research Questions

RQ1:

"How can perceptual models be included in sound zone algorithms?"

RQ2:

"What are benefits of including perceptual models in sound zone algorithms?"

- 1 Finding a suitable perceptual model
- Proposal of a perceptual sound zone framework
- 3 Proposal of perceptual sound zone algorithms

- Finding a suitable perceptual model
- Proposal of a perceptual sound zone framework
- 3 Proposal of perceptual sound zone algorithms

Finding a Perceptual Model: Par Distortion Detectability Introduction

A perceptual model is found through literature review:

Par distortion detectability¹

- Defines a mathematical function $D(x[n], \varepsilon[n])$.
- Quantifies how easily a **human listener** can **detect disturbance** audio $\varepsilon[n]$ when **also listening to** masking audio $\times[n]$.
- It is used in audio coding to hide compression artifacts.

¹S. van de Par, A. Kohlrausch, R. Heusdens, J. Jensen, and S. H. Jensen (2005). "A perceptual model for sinusoidal audio coding based on spectral integration". In: EURASIP Journal on Advances in Signal Processing 2005.9, pp. 1–13

Finding a Perceptual Model: Par Distortion Detectability Workings

Psycho-Acoustical Principals

- Threshold of Hearing:
 The lowest sound pressure level humans can hear.
- Auditory Masking: The degree to which x[n] "overpowers" disturbance $\varepsilon[n]$.

- Finding a suitable perceptual model
 ✓ The Par distortion detectability perceptual model
- 2 Proposal of a perceptual sound zone framework
- 3 Proposal of perceptual sound zone algorithms

- Finding a suitable perceptual model
 ✓ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
- Oroposal of perceptual sound zone algorithms

Perceptual Sound Zone Framework: Pressure Matching I

A sound zone approach suitable for integration with the Par distortion detectability is found through literature review:

Pressure Matching Sound Zone Algorithm²

- Controls the sound pressure at discrete points in the room.
- Minimizes "sound pressure errors" to create sound zones.

²T. Betlehem, W. Zhang, M. A. Poletti, and T. D. Abhayapala (2015). "Personal sound zones: Delivering interface-free audio to multiple listeners". In: IEEE Signal Processing Magazine 32.2, pp. 81–91

Perceptual Sound Zone Framework: Pressure Matching II

The zones are sampled into *M* "control points" where we attempt to control the sound by controlling the inputs to the *L* loudspeakers in the room.

Perceptual Sound Zone Framework: Pressure Matching III

Pressure Matching Quantities

For each loudspeaker 1:

• Input signal $x_A^{(I)}[n]$ and $x_B^{(I)}[n]$.

For each point m:

- Target sound pressure $t_A^{(m)}[n]$ and $t_B^{(m)}[n]$.
- Resulting sound pressure $p_A^{(m)}[n]$ and $p_B^{(m)}[n]$.

Perceptual Sound Zone Framework: Pressure Matching IV

Pressure Matching Errors

• Reproduction error for point *m* in zone A:

$$\mathsf{RE}^{(m)} = \left| \left| t_A^{(m)} - p_A^{(m)} \right| \right|_2^2 \tag{1}$$

Leakage error for point m in zone A:

$$\mathsf{LE}^{(m)} = \left\| \left| p_B^{(m)} \right| \right\|_2^2 \tag{2}$$

Perceptual Sound Zone Framework: Pressure Matching V

Pressure Matching

Minimize the sum of reproduction and leakage errors:

$$\underset{x_A^{(l)}, x_R^{(l)}}{\operatorname{arg\,min}} \quad \sum_{m} \mathsf{RE}^{(m)} + \mathsf{LE}^{(m)} \tag{3}$$

Perceptual Sound Zone Framework: Perceptual Pressure Matching I

Idea: Error Detectability

- Use of error detectability $D(x[n], \varepsilon[n])$ rather than sound pressure error
- Reproduction error → Reproduction error detectability:
 How well can humans detect deviations from the target sound pressure?
- Leakage error → Leakage error detectability:
 How well can humans detect the leakage/interference?

Perceptual Sound Zone Framework: Perceptual Pressure Matching II

Pressure Matching Errors

• Reproduction error for point *m* in zone A:

$$RED^{(m)} = D\left(t_A^{(m)}, t_A^{(m)} - p_A^{(m)}\right)$$
 (4)

• Leakage error for point *m* in zone A:

$$\mathsf{LED}^{(m)} = D\left(t_A^{(m)}, \, p_B^{(m)}\right) \tag{5}$$

- Finding a suitable perceptual model
 - √ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
 - \checkmark Framework of the detectability of sound pressure errors from pressure matching
- Opening in the state of the

- 1 Finding a suitable perceptual model
 - √ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
 - ✓ Framework of the detectability of sound pressure errors from pressure matching
- Second Proposal of perceptual sound zone algorithms

Algorithms: Unconstrained Perceptual Pressure Matching

Unconstrained Perceptual Pressure Matching

Minimize the sum of error detectabilities:

$$\underset{x_A^{(l)}, x_B^{(l)}}{\operatorname{arg\,min}} \quad \sum_{m} \mathsf{RED}^{(m)} + \mathsf{LED}^{(m)} \tag{6}$$

Algorithms: Unconstrained Perceptual Pressure Matching

Unconstrained Perceptual Pressure Matching

Minimize the leakage error detectability with constraints:

$$\underset{x_A^{(I)}, x_B^{(I)}}{\min} \quad \sum_{m} \mathsf{LED}^{(m)} \\
\mathsf{RED}^{(m)} \leq D_0 \quad \forall m$$
(7)

- Finding a suitable perceptual model
 - √ The Par distortion detectability perceptual model
- Proposal of a perceptual sound zone framework
 - \checkmark Framework of the detectability of sound pressure errors from pressure matching
- Opening Proposal of perceptual sound zone algorithms
 - \checkmark Proposal of unconstrained and constrained perceptual pressure matching

RQ2: What are benefits of including perceptual models in sound zone algorithms?

Simulation of proposed perceptual sound zone algorithms

RQ2: What are benefits of including perceptual models in sound zone algorithms?

Simulation of proposed perceptual sound zone algorithms

RQ2: What are benefits of including perceptual models in sound zone algorithms?

- Simulation of proposed perceptual sound zone algorithms
 - ✓ Unconstrained perceptual approach outperforms and constrained perceptual approach allows for control over the perceived quality of reproduced content