

MPC – Lecture 7:

OTTT & BeDoZa against malicious adversary

DR. ADI AKAVIA UNIVERSITY OF HAIFA

High Level Approach

Dr. Adi Akavia

3

Force semi-honest behavior

Discuss: How to secure protocols again a malicious adversary?

Idea: Force adversary to behave semi-honestly

How? 1) Focus on security-with-abort

- 2) Devise protocols that **identify** deviations from protocol's specifications.
- 3) If deviation occurs, abort

Essentially, security is reduced to **identifying** deviation from protocol's specifications

How to identify deviation from protocol?

Approach 1 [GMW]: Prove each step is computed according to protocols specification.

later in this course

Is it possible? Yes, it's an NP statement, can be proved.

Use **ZK-proofs** so that the proof doesn't leak information.

Approach 2 [.....]: Use authenticated messages (**MAC**s)

today

so that deviation from protocol will fail to authenticate

Dr. Adi Akavia

5

OTTT against Malicious Adversary

OTTT for Passive Adversary (Recap)

Offline (Dealer has truth table F[x,y] = f(x,y)):

- 1) Let $F_{s,r}[i,j] = F[i-r,j-s]$ be a rotating F's rows (cols.) by r (s) for random r,s.
- 2) Send to Bob: (M_B, s) for M_B uniformly random matrix.
- 3) Send to Alice: $(M_A$, r) for $M_A \equiv F_{s,r} M_B \mod p$.

Online (Alice has (x, M_A, r) , Bob has (y, M_B, s)):

- 1) Alice sends to Bob u = x+r
- 2) Bob sends to Alice v = y+s and $M_B[u,v]$
- 3) Alice outputs $M_A[u,v]+M_B[u,v]$

Passive OTTT, pictorially

Imgs from Claudio Orlandi

Passive OTTT: What can malicious Bob do?

Claudio Orlandi

Imgs from

Passive OTTT: What can malicious Bob do?

Q: Is this "cheating"?

Passive OTTT: What can malicious Bob do?

Q: Is this "cheating"?

A1:
$$v = y + s + e_1$$

= $(y+e_1) + s = y' + s$

Equiv. to input substitution – **not cheating**, as feasible also in Ideal-World.

A2:
$$M_B[u,v] + e_2$$

Changes the output to $z' = f(x,y) + e_2$

A breach of correctness!

How to force Bob to send right value?

Challenge: Bob can send the wrong shares

Solution approach: Employ **MAC**s to let Alice detect wrong shares.

Message Authentication Codes

Message Authentication Codes (MAC)

Definition: A MAC scheme has three algorithms (Gen, Tag, Ver) where

- \circ K \leftarrow Gen(sec param) produce a MAC key k
- \circ t \leftarrow Tag(k, x), given a key k and message x, outputs a tag t.
- \circ accept/reject \leftarrow Ver(k, t, x), given a key k, a tag t and message x, outputs accept if t is a valid tag for x with key k or reject otherwise.

Definition: MAC Security

The Security Game: Challenger C samples a key k,

Adversary A can (adaptively) send to C a sequence or q messages $x_1, ..., x_q$ of his choice and receive corresponding tags $t_1, ..., t_q$. where $t_i \leftarrow \text{Tag}(k, x_i)$

A outputs (t', x').

A wins if Ver(k, t', x')=accept and $x' \notin \{x_1,...,x_q\}$

Definition [MAC security]: A MAC scheme is (q, ε) -secure if for every adversary A, A wins the security game with probability at most ε .

Construction: One-time MAC

One-Time MAC.

∘ Gen(p): Sample $k = (a,b) \leftarrow Z_p^2$ for a prime p.

 \circ Tag(k=(a,b),x): Output t = ax + b.

 \circ Ver(k=(a,b),t,x): Output accept if t = ax + b, reject o/w.

Exercise. Prove that this is a (1,1/p)-secure MAC scheme (even against unbounded adversary).

17

OTTT with MACs

OTTT with MACs: Offline Phase

Offline (Dealer has truth table F[x,y] = f(x,y) for $x,y \in \{0,1\}^n$):

1) Set
$$F_{s,r}[i,j] = F[i-r,j-s]$$
 for $r,s \leftarrow_R[2^n]$

$$M_B \leftarrow_R \{0,1\}^{2^n \times 2^n}$$
 and $M_A = F_{s,r} - M_B \mod p$

2) Set
$$K[i,j] \leftarrow Gen(p)$$
 $\forall i,j \in [2^n]$ (keys for a $(1,\epsilon)$ -secure MAC)

3) Set
$$T[i,j] \leftarrow tag(K[i,j], M_B[i,j]) \ \forall i,j \in [2^n] \ (tags for all M_B's entries)$$

4) Output
$$(r, M_A, K)$$
 to Alice and (s, M_B, T) to Bob.

OTTT with MACs: Online Phase

Online (Alice has (x, r, M_A, K) , Bob has (y, s, M_B, T)):

1) Alice sends to Bob $u = x + r \mod 2^n$.

2) Bob sends to Alice $v = y+s \mod 2^n$

and $z_B = M_B[u,v]$

and

 $t_{\rm B} = T[u,v]$.

3) Alice computes

 $Ver(K[u,v], t_B, z_B)$

If verification fails, Alice outputs $z = f(x,y_0)$

Else Alice outputs

$$z = M_A[u,v] + z_B$$


```
Simulator S_B(Adv): // Adv real-world adversary controlling Bob // S_B(Adv) ideal-world adversary controlling Bob
```

1) Replacing the trusted dealer: Send to adv. Adv controlling Bob (s, M_B , T) for: uniformly random col. shift s and matrix M_B , freshly generated MAC keys corresponding MAC tags $T = Tag(K, M_B)$ (entry-by-entry).

2) Replacing the honest Alice: Send to adv. Adv random row u.

Simulator $S_B(A)$ – cont'd:

1) Replacing the trusted dealer: Send to adv. Adv controlling Bob (s, M_B, T)

2) Replacing the honest Alice: Send to adv. Adv random row u.

3) Input extraction: If adversary Adv (controlling Bob) sent (v, z_B, t_B)

s.t. $Ver(K[u,v], z_B, t_B) = accept$ and $z_B = M_B[u,v]$

Then S_B sets Bob's input to: y = v - s (& deliver)

Else default input value: y_0 (& abort)

4) Output (as Bob's view): (s, M_B, T, u)

We next show that $REAL_{Adv} \equiv_{1/p} IDEAL_{S(Adv)}$ where:

- $\circ REAL_A = (s, M_B, T, u),$

 $M_A[u,v] \oplus z_B$ or abort)

abort)

- protocol's: Bob's view

Alice's output in protocol

- \circ IDEAL_{S(A)} = ((s, M_B, T, u), ideal world's:
 - Bob's sim. view
- f(x,y)

Alice's output from ${\mathcal F}$

Recall: REAL_{Adv} = ((s, M_B, T, u), M_A[u,v] \oplus z_B)) and IDEAL_{S(Adv)} = ((s, M_B, T, u), f(x,y))

We sketch why REAL_{Adv} $\equiv_{1/p}$ IDEAL_{S(Adv)}:

 \circ (s,M_B): identically distributed in both worlds

o u: identically distributed in both worlds

(uniform in IDEAL, and u=x+r for uniform r in REAL)

Alice's output: identically distributed in both worlds,
<u>except</u> if adv. Adv sent a triple (v', z_B', t_B') such that:

 $z_B' \neq M_B[u,v']$ while $Ver(K[u,v], z_B', t_B') = accept$.

In this case, Alice's output is incorrect in REAL WORLD but correct in IDEAL world.

Recall: REAL_{Adv} = $((s, M_B, T, u), M_A[u,v] \oplus z_B)$ and IDEAL_{S(Adv)} = $((s, M_B, T, u), f(x,y))$

We sketch why REAL_{Adv} $\equiv_{1/p}$ IDEAL_{S(Adv)}:

 \circ (s,M_B): identically distributed in both worlds

o u: identically distributed in both worlds

(uniform in IDEAL, and u=x+r for uniform r in REAL)

Alice's output: identically distributed in both worlds,
 except if adv. Adv sent a triple (v', z_B', t_B') such that:

 $z_B' \neq M_B[u,v']$ while $Ver(K[u,v], z_B', t_B') = accept$.

But this breaks the MAC security \Rightarrow occurs with probability 1/p.

Wrapping up.

Setting $p=2^{\text{secParam}} \Rightarrow 1/p$ is negligible in secParam

 \Rightarrow REAL_{Adv} \equiv_{stat} IDEAL_{S(Adv)}

Conclusion: The OTTT-w-MAC protocol securely computes f against a malicious adversary.

BeDoZa against Malicious Adversary

Wires' values are secret shared between Alice and Bob:

- Secret share input wires
- o Propagates secret sharing layer by layer,
- o Once obtained a secret sharing of the output wire, open.

Dr. Adi Akavia

27

Passive BeDoZa: What can malicious adversary do?

Input wires: Send wrong shares in ShrA (sim. ShrB)

- Allowed: "input substitution".

XOR([x],[y]), AND(c,[y]): Modify local computation

Not allowed ("additive attacks")

AND([x],[y]), Output Wire: Send wrong shares in OpenTo

- Not allowed ("additive attacks").

How to force sending correct value?

Approach: Use MACs to prevent (undetected) attacks.

Challenge: Want linear operations "for free" on shared value.

BEDOZa-w-MAC: Try 1

Try 1 – Use "homomorphic MAC" that

- ° Given tags t_1, t_2 for msgs x_1, x_2 (without key k!),
- \circ Support generating a MAC for any linear combination of x_1,x_2 .

 \circ E.g. $t' = a t_1 + b t_2$ a valid MAC for msg $x' = a x_1 + b x_2$

Problem: "homomorphic MAC" is **insecure**!

allows adversary to **forge** MACs!

Better approach – MACs that support "limited homomorphism"

Homomorphic m-time MAC

Dr. Adi Akavia

31

Definition: m-hom MAC Security

The Security Game for m-hom MAC:

Adversary A can query challenger C on messages $x_1, ..., x_m$ of his choice (adaptively) and receive corresponding tags $t_1, ..., t_m$, where $t_i \leftarrow Tag(k_i, x_i)$

for
$$k_i = (\alpha, \beta_i)$$
 for $\alpha, \beta_1, ..., \beta_m \leftarrow_R Z_p$.

A outputs (i, t', x') and A wins if $Ver(k_i, t', x') = accept$ and $x' \neq x_i$

Definition [m-hom MAC security]: A m-hom MAC scheme is (m, ε) -secure if every adversary A wins the security game with probability at most ε .

Construction: m-hom MAC

m-Time MAC.

° Gen(p): Sample α , β_1 ,..., $\beta_m \leftarrow_R Z_p$ for a prime p, $|p| = \sec Param$. Output k_1 ,..., k_m where $k_i = (\alpha, \beta_i)$

 $\circ \text{Tag}(k_i = (\alpha, \beta_i), x): \text{Output } t = \alpha x + \beta_i.$

• Ver(k_i , t, x): Output accept if $t_i = \alpha x + \beta_i$, reject o/w.

Exercise 1. Prove that this is a (m,1/p)-secure m-hom MAC scheme (even against unbounded adversary).

Homomorphism

m-Time MAC.

Sample α , β_1 ,..., $\beta_m \leftarrow_R Z_p$ for a prime p, $|p| = \sec Param$. Output k_1 ,..., k_m where $k_i = (\alpha, \beta_i)$ • Gen(p):

 $\circ \operatorname{Tag}(k_i = (\alpha, \beta_i), x)$: Output $t = \alpha x + \beta_i$.

Output accept if $t_i = \alpha x + \beta_i$, reject o/w. \circ Ver(k_i, t, x):

Exercise 2. Prove that given two tags t_1, t_2 for msgs x_1, x_2 and keys k_1, k_2 , We can compute a valid tag t' for $msg x' = x_1 + x_2$.

Hint: Use a new key k'.

Authenticated Secret Sharing

Unauthenticated Secret Sharing (Recap) University of Haifa

Recall: (unauthenticated) secret sharing for x (denoted [x]),

 X_{B}

Alice held
$$x_A$$

Bob held x_B

1) (x_A, x_B) are uniformly random

subject to:
$$x_A + x_B = x \mod p$$
.

Authenticated Secret Sharing

Def: *authenticated secret sharing* for value x (denoted [x]),

Alice holds
$$(x_A, k_{A,x}, t_{A,x})$$

Bob holds $(x_B, k_{B,x}, t_{B,x})$

where

- 1) (x_A, x_B) are uniformly random subject to: $x_A + x_B = x \mod p$.
- 2) $k_{A,x}$ and $k_{B,x}$ are fresh **MAC Keys**
- 3) $t_{A,x}$ and $t_{B,x}$ are corresponding **MAC Tags**: $t_{A,x} = Tag(k_{B,x}, x_A)$ $t_{B,x} = Tag(k_{A,x}, x_B)$

BeDoZa with MACs

BeDoZa with MACs: The Idea

Idea: Use <u>authenticated</u> secret sharing for all wire values x.

BeDoZa with MACs: The Invariant

The Invariant: For each wire value $x \in Z_p$,

Alice holds
$$(x_A, k_{A,x}, t_{A,x})$$

Bob holds
$$(x_B, k_{B.x}, t_{B.x})$$

Remarks:

- same α_A , α_B for all wires

- arithmetic circuit mod-p

$$-x \in Z_p$$

where 1) (x_A, x_B) are uniformly random subject to: $x_A + x_B = x \mod p$.

2)
$$k_{A,x}$$
 and $k_{B,x}$ are MAC Keys: $k_{A,x} = (\alpha_A, \beta_{A,x})$

$$k_{B,x} = (\alpha_B, \beta_{B,x})$$

3)
$$t_{A,x}$$
 and $t_{B,x}$ are corresponding Tags: $t_{A,x} = Tag(k_{B,x}, x_A)$
 $t_{B,x} = Tag(k_{A,x}, x_B)$

BeDoZa with MACs: Subprotocols OpenTo

OpenTo(A, [x]): Bob sends x_B and $t_{B,x}$ to Alice

Alice outputs $x = x_A + x_B$ if $Ver(k_{A,x}, t_{B,x}, x_B) = accept (o/w abort)$

OpenTo(B, [x]): Analogous.

Open([x]): Run both OpenTo(B, [x]) and OpenTo(A, [x]).

Denote: $(x,\perp) \leftarrow \text{OpenTo}(A, [x])$

BeDoZa with MACs: Subprotocols Addition Gates

Add([x],[y]): Alice outputs
$$(z_A$$
, $k_{A,z}$, $t_{A,z}$) where $z_A = x_A + y_A$
$$k_{A,z} = (\alpha_A , \beta_{A,x} + \beta_{A,y})$$

$$t_{A,z} = t_{A,x} + t_{A,y}$$
 Bob outputs $(z_B, k_{B,z}, t_{B,z})$ where $z_B = x_B + y_B$
$$k_{B,z} = (\alpha_B, \beta_{B,x} + \beta_{B,y})$$

$$t_{B,z} = t_{B,x} + t_{B,y}$$

Denote: $[z] \leftarrow Add([x],[y])$

BeDoZa with MACs: Subprotocols Addition Gates

Exercise: Write subprotocol for Add([x],c):

BeDoZa with MACs: Subprotocols Addition Gates

Solution:

Add([x],c): Alice outputs $(z_A, k_{A,z}, t_{A,z})$ where $z_A = x_A + c$

 $k_{A,z} = \underline{\hspace{1cm}}$

 $t_{A,z} = \underline{\hspace{1cm}}$

Bob outputs $(z_B, k_{B,z}, t_{B,z})$ where $z_B = x_B$

 $k_{B,z} = \underline{\hspace{1cm}}$

 $t_{B,z} = \underline{\hspace{1cm}}$

BeDoZa with MACs: Subprotocols Input wires sharing Shr(A,x), Shr(B,x)

To share each of Alice's (resp. Bob's) input wires:

- 1) The dealer D outputs a random authenticated secret sharing [r]
- 2) Alice & Bob run $(r,\perp) \leftarrow \text{OpenTo}(A,[r])$
- 3) Alice sends Bob d = x r
- 4) Alice & Bob compute [x] = [r] + d

Discuss: Why dealer chooses r?

BeDoZa with MACs: Subprotocols Multiplication Gates

Similarly to passive BeDOZa,

except for using authenticated Beaver triple ([u],[v],[w]) from dealer.

Exercise: Write subprotocol for Mult([x],c), Mult([x],[y]).

Argue correctness.

BeDoZa with MACs: Comments

Alice & Bob never generate MAC keys or tags in the protocol.

They only compute linear combinations of shares, MACs and keys, and verify correctness of received MACs.

All keys and tags in protocol are generated by trusted dealer:

for input wires in [r],

for multiplication gates in authenticated Beaver triples.

אוניברסיטת חיפה University of Haifa جامعة حيفا

50

BeDoZa with MACs: Security (sketch)

1) Simulator S_A for corrupt Alice (resp. S_B):

• Input wires – Shr(A,x): S_A (plays dealer's role): Chooses random r, sends [r] to Alice

S_A (plays Bob's role): Receives msg d from Alice,

(internally) extracts Alice's input x' = d + r

• **Input wires** – Shr(B,x): S_A (plays Bob's role): Sends random share to Alice.

• Internal gates: Simulated similarly to passive secure case,

but where simulator verifies Bob's msg and aborts if Ver(..) rejects.

2) Real \equiv Ideal

- If there was no undetected forged MAC (similarly to OTTT proof).
- The probability of undetected forged msg is 1/p
- ∘ Take p~2^{secParam}

BeDoZa with MACs: Wrapping up.

Setting $p=2^{\text{secParam}} \Rightarrow 1/p$ is negligible in secParam

 \Rightarrow REAL_A \equiv_{stat} IDEAL_{S(A)}

Conclusion: The BeDoZa-w-MAC protocol securely evaluates C against a malicious adversary.

BeDoZa with MACs: Efficiency

Constant overhead over passive version in #stored values:

- \circ Three values in Z_p for each wire with value
- But how large is p?

BeDoZa with MACs: Efficiency cont'd

Constant overhead over passive version in #stored values:

- Three values in Z_p for each wire with value
- But how large is p?

Problem: Security requires large p (~40-60 bits long)

- Bad for efficiency
- Also, how to securely evaluate circuits with arithmetic mod small p? E.g Boolean circuit?

Extensions: small field arithmetic

TinyOT: Idea: Use k MACs for each value, small p (e.g. p=2).

 $Pr[undetected forged msg] = (1/p)^k$

Efficiency: ×3k bits over cleartext

MiniMAC: Idea: MAC together vectors of bits.

Efficiency: O(1) (amortized) overhead

Extensions: n parties

BeDOZa: Each party has key and MAC for each other party.

O(n) storage overhead for each party.

SPDZ: Instead of putting MACs on shares:

- MACs computed on values, and

- MACs and keys secret shared

Introduces new problems; details in papers.

Efficiency: each party stores only 3 values (x_i, k_i, t_i) s.t.

 Σ_i t_i a valid tag on msg Σ_i x_i with key Σ_i k_i.

Summary of Today's Class

- 1) OTTT secure against malicious adversary
- 2) BeDoZa secure against malicious adversary
- 3) Common approach: force honest behavior
- 4) Common technique: use MAC to detect deviation from honest behavior

Dr. Adi Akavia

57

... Next time: getting rid of the Trusted Dealer