DÉRIVATION – Chapitre 2/3

Tout le cours en vidéo : https://youtu.be/uMSNIIPBFhQ

Partie 1 : Dérivées des fonctions usuelles

1) Exemple:

Démonstration au programme : Dérivée de la fonction carré

Vidéo https://youtu.be/-nRmE8yFSSg

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2$. Démontrons que pour tout x réel, on : f'(x) = 2x.

Calculons le nombre dérivé de la fonction f en a (nombre réel quelconque).

Calculons le nombre dérivé de la fonction
$$f$$
 en a (nombre réel quelconque). Pour $h \neq 0$:
$$\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2-a^2}{h} = \frac{a^2+2ah+h^2-a^2}{h} = \frac{h(2a+h)}{h} = 2a+h$$
 Or:
$$\lim_{h \to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h \to 0} 2a+h = 2a$$

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 2a. On a donc défini sur \mathbb{R} une fonction, notée f' dont l'expression est f'(x) = 2x. Cette fonction s'appelle la fonction dérivée de f.

Le mot « dérivé » vient du latin « derivare » qui signifiait « détourner un cours d'eau ».

Le mot a été introduit par le mathématicien franco-italien Joseph Louis Lagrange (1736; 1813) pour signifier que cette nouvelle fonction dérive (au sens de "provenir") d'une autre fonction.

Démonstration au programme : Dérivée de la fonction inverse

Vidéo https://youtu.be/rQ1XfMN5pdk

Soit la fonction f définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=\frac{1}{x}$.

Démontrons que pour tout x de $\mathbb{R}\setminus\{0\}$, on a : $f'(x)=-\frac{1}{x^2}$.

Pour $h \neq 0$ et $h \neq -a$:

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a-a-h}{a(a+h)}}{h} = \frac{\frac{-h}{a(a+h)}}{h} = -\frac{1}{a(a+h)}$$

$$\text{Or}: \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h \to 0} \left(-\frac{1}{a(a+h)} \right) = -\frac{1}{a^2}$$

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à $-\frac{1}{a^2}$.

Ainsi, pour tout x de $\mathbb{R}\setminus\{0\}$, on a : $f'(x)=-\frac{1}{x^2}$.

Définitions:

On dit que la fonction f est **dérivable** sur un intervalle I, si elle est dérivable en tout réel x de I.

Dans ce cas, la fonction qui à tout réel x de I associe le nombre dérivé de f en x est appelée fonction dérivée de f et se note f'.

2) Dérivées des fonctions usuelles :

Fonction	Dérivée
$f(x) = a, a \in \mathbb{R}$	f'(x)=0
$f(x) = ax, a \in \mathbb{R}$	f'(x) = a
$f(x) = x^2$	f'(x) = 2x
$f(x) = x^n$ $n \ge 1 \text{ entier}$	$f'(x) = nx^{n-1}$
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$
$f(x) = \frac{1}{x^n}$ $n \ge 1 \text{ entier}$	$f'(x) = -\frac{n}{x^{n+1}}$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$

Méthode: Dériver les fonctions usuelles

Vidéo https://youtu.be/9Mann4wOGJA

Calculer la dérivée de chacune des fonctions :

$$f(x) = 100$$
; $g(x) = -5x$; $h(x) = x^4$; $k(x) = \frac{1}{x^5}$; $m(x) = \sqrt{x}$

Correction

$$f(x) = 100 \to f'(x) = 0$$

$$g(x) = -5x \to g'(x) = -5$$

$$h(x) = x^4 \to h'(x) = 4x^3$$

$$k(x) = \frac{1}{x^5} \to k'(x) = -\frac{5}{x^6}$$

$$m(x) = \sqrt{x} \to m'(x) = \frac{1}{2\sqrt{x}}$$

3) Cas de la fonction racine carrée

On peut lire dans le tableau plus haut que la fonction racine carrée est définie sur l'intervalle $[0; +\infty[$ mais dérivable sur l'intervalle $]0; +\infty[$.

Démonstration au programme : Non dérivabilité de la fonction racine carrée en 0

Vidéo https://youtu.be/N5wnOoLDrjo

Soit la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

On calcule le taux d'accroissement de f en 0 :

Pour
$$h > 0$$
: $\frac{f(0+h)-f(0)}{h} = \frac{\sqrt{0+h}-\sqrt{0}}{h} = \frac{\sqrt{h}}{h} = \frac{\sqrt{h}\sqrt{h}}{h\sqrt{h}} = \frac{h}{h\sqrt{h}} = \frac{1}{\sqrt{h}}$

Or:
$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{1}{\sqrt{h}} = +\infty$$
.

En effet, lorsque h tend vers 0, $\frac{1}{\sqrt{h}}$ prend des valeurs de plus en plus grandes.

Donc f n'est pas dérivable en 0.

Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en 0.

Partie 2 : Opérations sur les fonctions dérivées

1) Opérations sur les fonctions dérivées :

u et v sont deux fonctions dérivables.

Fonction	Dérivée
f(x) = u(x) + v(x)	f'(x) = u'(x) + v'(x)
$f(x) = ku(x), \ k \in \mathbb{R}$	f'(x) = ku'(x)
f(x) = u(x)v(x)	f'(x) = u'(x)v(x) + u(x)v'(x)
$f(x) = \frac{1}{u(x)}$	$f'(x) = -\frac{u'(x)}{u(x)^2}$
$f(x) = \frac{u(x)}{v(x)}$	$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$

Démonstration au programme pour le produit :

Vidéo https://youtu.be/PI4A8TLGnxE

Soit u et v deux fonctions dérivables sur un intervalle I.

On veut démontrer que pour tout a de I, on a :

$$\lim_{h \to 0} \frac{(uv)(a+h) - (uv)(a)}{h} = u'(a)v(a) + u(a)v'(a)$$

$$\frac{(uv)(a+h)-(uv)(a)}{h} = \frac{u(a+h)v(a+h)-u(a)v(a)}{h}$$

$$= \frac{u(a+h)v(a+h) - u(a)v(a+h) + u(a)v(a+h) - u(a)v(a)}{h}$$

$$= \frac{(u(a+h) - u(a))v(a+h) + u(a)(v(a+h) - v(a))}{h}$$

$$= \frac{u(a+h) - u(a)}{h} v(a+h) + u(a) \frac{v(a+h) - v(a)}{h}$$

En passant à la limite lorsque h tend vers 0, on a :

$$\lim_{h \to 0} \frac{u(a+h) - u(a)}{h} = u'(a) \text{ et } \lim_{h \to 0} \frac{v(a+h) - v(a)}{h} = v'(a)$$

Et, $\lim_{h \to 0} v(a + h) = v(a)$.

Soit, $\lim_{h\to 0} \frac{(uv)(a+h)-(uv)(a)}{h} = u'(a)v(a) + u(a)v'(a)$ Ainsi : (uv)' = u'v + uv'

Méthode: Calculer les dérivées de sommes, produits et quotients de fonctions

Vidéo https://youtu.be/ehHoLK98Ht0

Vidéo https://youtu.be/1f0Guei0_zk

Vidéo https://youtu.be/OMsZNNIIdrw

Vidéo https://youtu.be/jOuC7ag3YkM

Vidéo https://youtu.be/-MfEczGz 6Y

Dans chaque cas, calculer la fonction dérivée de f:

a)
$$f(x) = 3x^2 + 4\sqrt{x}$$

b)
$$f(x) = 5x^3 - 3x^2$$

a)
$$f(x) = 3x^2 + 4\sqrt{x}$$
 b) $f(x) = 5x^3 - 3x^2$ c) $f(x) = (3x^2 + 4x)(5x - 1)$ d) $f(x) = \frac{1}{2x^2 + 5x}$ e) $f(x) = \frac{6x - 5}{x^2 - 2x - 1}$

d)
$$f(x) = \frac{1}{2x^2 + 5x}$$

e)
$$f(x) = \frac{6x-5}{x^2-2x-1}$$

Correction

a)
$$f(x) = u(x) + v(x)$$
 avec $u(x) = 3x^2 \rightarrow u'(x) = 3 \times 2x = 6x$

$$v(x) = 4\sqrt{x} \rightarrow v'(x) = 4\frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}}$$

Donc:
$$f'(x) = u'(x) + v'(x) = 6x + \frac{2}{\sqrt{x}}$$

b)
$$f(x) = u(x) + v(x)$$
 avec $u(x) = 5x^3 \rightarrow u'(x) = 5 \times 3x^2 = 15x^2$
 $v(x) = -3x^2 \rightarrow v'(x) = -3 \times 2x = -6x$

Donc:
$$f'(x) = u'(x) + v'(x) = 15x^2 + (-6x) = 15x^2 - 6x$$

c)
$$f(x) = u(x)v(x)$$
 avec $u(x) = 3x^2 + 4x \rightarrow u'(x) = 6x + 4$
 $v(x) = 5x - 1 \rightarrow v'(x) = 5$

Donc:
$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

= $(6x + 4)(5x - 1) + (3x^2 + 4x) \times 5$
= $30x^2 - 6x + 20x - 4 + 15x^2 + 20x$

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

$$=45x^2+34x-4$$

d)
$$f(x) = \frac{1}{u(x)}$$
 avec $u(x) = 2x^2 + 5x \rightarrow u'(x) = 4x + 5$
Donc: $f'(x) = -\frac{u'(x)}{u(x)^2} = -\frac{4x + 5}{(2x^2 + 5x)^2}$

e)
$$f(x) = \frac{u(x)}{v(x)}$$
 avec $u(x) = 6x - 5 \rightarrow u'(x) = 6$
 $v(x) = x^2 - 2x - 1 \rightarrow v'(x) = 2x - 2$

Donc:
$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$$

$$= \frac{6(x^2 - 2x - 1) - (6x - 5)(2x - 2)}{(x^2 - 2x - 1)^2}$$

$$= \frac{6x^2 - 12x - 6 - 12x^2 + 12x + 10x - 10}{(x^2 - 2x - 1)^2}$$

$$= \frac{-6x^2 + 10x - 16}{(x^2 - 2x - 1)^2}$$

2) Dérivée d'une fonction composée

Fonction	Dérivée
f(ax+b)	af'(ax+b)

Méthode : Dériver une fonction composée f(ax + b)

Vidéo https://youtu.be/aFkPQkg0p-A

Calculer les fonctions dérivées des fonctions g et h définies par :

$$g(x) = (7x + 1)^3$$
 $h(x) = \sqrt{5x - 4}$

Correction

1)
$$g(x) = (7x + 1)^3$$

 $g'(x) = 7 \times 3(7x + 1)^2 = 21(7x + 1)^2$

En effet, la dérivée de la fonction cube est $(x^3)' = 3x^2$

2)
$$h(x) = \sqrt{5x - 4}$$

 $h'(x) = 5 \times \frac{1}{2\sqrt{5x - 4}} = \frac{5}{2\sqrt{5x - 4}}$

En effet, la dérivée de la fonction racine carrée est $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales