Teórica 2

23 de junho de 2024

Funções reais de uma variável real

Uma função real de variável real é um terno D, E e f onde:

- D e E são dois subconjuntos, não vazios, de R e
- f é uma lei de formação que a cada elemento x de D associa um único elemento f(x) de E

 $f:D\subseteq\mathbb{R}\to E\subseteq\mathbb{R}$

Varior indefendente / objeto

D: Donninio / Conjunto de partida E: Conjunto de chegade CDJ = 1 f(x) EIR: x ED}

Sija f: D ⊆ R → IR

 $f(n) = \sqrt{1 - n^2}, \quad D = [-1, 1]$

$$\angle D = [0,1]$$

Classes particulares de funções

 $f: \mathbb{R} \to \mathbb{R}$, $f(n) = a_n x^m + \cdots + a_n n + a_n$ $n \in \mathbb{N}_0, a_n \in \mathbb{R} \setminus \{0\}$

Francis polinomial de gran n gran 0 => CONSTANTE gran 1 => LINEAR

Função nacional: g(x) = p(x)

Função racional: g(x) = h(x) Dy = {x + 12: q (x) + 0} Função Valor Absoluto |x| = -n, m n < 0Função chão: LRJ= max { m EZ: m < n} Função teto: [x]= min { m E Z : x & m} Operações algébricas com funções $(1 \pm g)(n) = f(x) \pm g(x)$ $(f \times g)(x) = f(x) \times g(x)$ $\binom{1}{2}(n) = \frac{f(n)}{2}$ Composição de funções g: Dy → B e g: Dy → C $g \circ f : D \longrightarrow C$ $n \sim (g \circ f)(n) = g(f(n))$ onde D= { n E Dj : f(n) E Dg } Restrição de uma função $f(x) = f(x), \forall n \in X$ Prolongamento de uma função $\frac{1}{(n)} = \frac{1}{2(x)}, \forall n \in X$ g: X→IR, A⊃X 1: A → R

¿: A → IL 1: [0,5] -> R , f(x) = x2 La Restrição : X = [1,2] Prolongamento de fra A = [-5, 5] $g: [-5,5] \rightarrow \mathbb{R}, \quad g(x) = n^{2}$ $l: [-5,5] \rightarrow \mathbb{R}$ $l(x) = \begin{cases} n^{2}, & x \in [0, 5] \end{cases}$ 0, x 6[-5,0[Características geométricas das funções $f \in Par quando \forall n \in D, (-n) \in D e f(-n) = f(n)$ Impar quade $\forall n \in D$, $(-x) \in D$ = f(-x) = -f(x)Periodia quade $\forall n \in D$, $(n+h) \in D$ = f(n+h) = f(x)• $f:[0,5] \longrightarrow \mathbb{R}, \qquad f(x)=x^2 \quad$ não é par • $h: [-1,2] \longrightarrow \mathbb{R}$, $h(x) = x^2$ não é par • $g:[-5,5]\longrightarrow \mathbb{R}, \qquad g(x)=x^2$ é par • ℓ : $[-5,5] \longrightarrow \mathbb{R}$, $\ell(x) = \begin{cases} x^2, & x \in [0,5]; \\ 0, & x \in [-5,0[\end{cases}$ não é par LIMITAÇÃO • majorada ∃MER: f(n) ≤ M, Yn ED • minorada ∃mEIR: f(n) ≥ m, Yn ED • limitada ∃AER+: Yx ED | f(n) | ≤ A · Crescente $\forall x, y \in D : n < y = f(n) < f(y)$ · decremente $\forall x, y \in D : n < y = f(n) > f(y)$ · mormo toma : (presente me decremente

Repesatação gráfica

FUNÇÕES TRIGONOMÉTRICAS

→ SENO

- COSSECANTE

y = rem x

Período = 2TT

Paridade = Imper

(inverso do seno)

y = cosec x := 1/sense

D = { x EN : R = KT, KEZ }

CD = IR \] -1, 1[

2T, Émpar

SECANTE (impresso do conservo)

9 = conx

COSSENO

D=IR

CO = [-1,1]

Período: 20

Paridade: Par

y = sec 1 := tor

DE Jack: n + K = , KGZ?

CD = IR\]-1,1[

Paridade: Par

1					
TANGENTE				(0TA	ANGENTE (inverso da targente)
y = tg n :=	senx			y	= cotg x (:= /tgn)
/ 0	with				0 70
D={nen	: x = I	+ KT. V	(E Z/)	D	= xER: Z + KT, KEZ}
CD = ITL	2				D = 1R
T, Émpor					T, Ímpas
11, 1	_				1, 1 mpub
)				
					\longrightarrow
(((
	<u> </u>	1 0	1 A	1	
Fórmula	funda	mental	l da	trigo	mometria:
	<u>~~</u>	20 +	sen 2 t	= 1	•
• 1 + tg2	7 = sec	20			
1 + cot g 5			}		
· con (A+B)				~B	
sen (AFR					
· sen² 0 =					
$\omega^2 \theta =$		•			
G 3 0					
.) . 1					
· Lui dos c	· ·		,	2	2 0 1 1)
aθ	_b	<i>c</i> '	= 0	<u> </u>	2 - 2ab on t
C	7				
2					
		π	π π	π	
	X	$0 \frac{\pi}{6}$	$\frac{\pi}{4}$ $\frac{\pi}{3}$	$\overline{2}$	
		0 1	$\sqrt{2}$ $\sqrt{3}$	3 1	
	sen x	$0 \frac{1}{2}$	2 2	. 1	
	cos x	$1 \frac{\sqrt{3}}{2}$	$\sqrt{2}$ 1	0	
 		2	2 2		

$x = 0 \frac{\pi}{6} \frac{\pi}{4} \frac{\pi}{3} \frac{\pi}{2}$ $sen x = 0 \frac{1}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} 1$ $cos x = 1 \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} \frac{1}{2} 0$ $\dots \dots \dots$ Sejam f , uma função trigonométrica e a , b , c e d números reais. A função, real de variável real, definida por $y = af(b(x+c)) + d,$ é tal que	+									
Sejam f , uma função trigonométrica e a , b , c e d números reais. A função, real de variável real, definida por $y = af(b(x+c)) + d,$ é tal que • a determina a amplitude: estiramento ou compressão verticais. • b d determina o período: estiramento ou compressão horizontais. • d d		x	$0 \frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$				
Sejam f, uma função trigonométrica e a, b, c e d números reais. A função, real de variável real, definida por $y = af(b(x+c)) + d,$ é tal que • a determina a amplitude: estiramento ou compressão verticais. • b determina o período: estiramento ou compressão horizontais. • c determina um deslocamento horizontal. • d determina um		sen x	$0 \frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1				
Sejam f, uma função trigonométrica e a, b, c e d números reais. A função, real de variável real, definida por $y = a f(b(x+c)) + d,$ é tal que • a determina a amplitude: estiramento ou compressão verticais. • b determina o período: estiramento ou compressão horizontais. • c determina um deslocamento horizontal. • d determina um		cos x	$1 \frac{}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0				
função, real de variável real, definida por $y = a f(b(x+c)) + d,$ é tal que • $ a $ determina a amplitude: estiramento ou compressão verticais. • $ b $ determina o período: estiramento ou compressão horizontais. • c determina um deslocamento horizontal. • d determina um										
	é tal que e a dete estiram verticai b dete estiram horizon c deter desloca d deter	ermina a amplitude: ento ou compressão s. ermina o período: ento ou compressão tais. mina um mento horizontal.	finida por $f(b(x + b))$	(c)) + d,		V	A			