# Cross-Regional Malware Detection via Model Distilling and Federated Learning

Marcus Botacin<sup>1</sup>

<sup>1</sup>Assistant Professor Texas A&M University (TAMU), USA botacin@tamu.edu @MarcusBotacin

### Agenda

- Regional Malware
  - The Differences
- 2 FL and Distillation
  - New Architecture

- Case Study
- Conclusion
  - Generalization
  - Final Remarks

Agenda

- Regional Malware
  - The Differences
- 2 FL and Distillation
  - New Architecture

- Case Study
- Conclusion
  - Generalization
  - Final Remarks

### Previously



Figure: Link: https://dl.acm.org/doi/10.1145/3429741



Figure: Source: https://www.us enix.org/confe rence/enigma20 21/presentatio n/botacin REMARCH-MINIST
The Internet Banking [in]Security Spiral: Past, Present, and Future of Online Banking Protection Mechanisms

Authors: 

Microx Bedach, 
Antal Kalasch, 
Andel Grégie Authors Info & Affiliations

Publications ARIS 19; Proceedings of the Lyth International Conference on Availability, Reliability and Security • Augus

#### Figure: Source:

based on a Brazilian case study

2019 \* Article No.: 49 \* Pages 1-10 \* https://doi.org/10.1145/3339252.3340103

https://dl.acm.org/doi/1 0.1145/3339252.3340103

# Impact on AV Detection



Computers & Security
Volume 95, August 2020, 101859



We need to talk about antiviruses: challenges & pitfalls of AV evaluations

Marcus Botacin 🌣 ™, Fabricio Ceschin ™ ™, Paulo de Geus 🖟 ™, André Grégio ™

#### Figure: Source:

https://www.sciencedirect.com/science/article/pii/S0167404820301310



Figure: **Detection Rate:** BR samples are consistently less detected.

### The Current Dataset

Table: Dataset Differences. Dynamic analysis events for the US, Brazil, and Japan datasets.

| Behavior                | US    | BR    | JP    |
|-------------------------|-------|-------|-------|
| Hosts file modification | 0.04% | 1.09% | 0.92% |
| File creation           | 64%   | 24%   | 70%   |
| File deletion           | 34%   | 12%   | 34%   |
| File modification       | 63%   | 16%   | 46%   |
| Browser modification    | 0%    | 1.03% | 0.59% |
| Network traffic         | 53%   | 96%   | 52%   |

The Differences

### The Traditional Architecture



Figure: Single Model Distillation.

# Is it enough to have global models?

# US Features: Accuracy



Figure: Accuracy rates for the US dataset. Accuracy variation with the increase of the feature set until reaching the 99% value.



Figure: **Model size for the US dataset.** Number of nodes for an increased number of ensemble trees of increasing feature set sizes.

### BR Features: Accuracy



Figure: Accuracy rates for the BR dataset. Accuracy variation with the increase of the feature set until reaching the 99% value.

### BR Features: Size



Figure: Model size for the BR dataset. Number of nodes for an increased number of ensemble trees of increasing feature set sizes.

# JP Features: Accuracy



Figure: Accuracy rates for the JP dataset. Accuracy variation with the increase of the feature set until reaching the 99% value.

# JP Features: Size



Figure: Model size for the JP dataset. Number of nodes for an increased number of ensemble trees of increasing feature set sizes.

### Global Features: Accuracy



Figure: Accuracy rates for the combined dataset. Accuracy variation with the increase of the feature set until reaching the 99% value.

### Global Features: Size



Figure: **Model size for the combined dataset.** Number of nodes for an increased number of ensemble trees of increasing feature set sizes.

# Overview: Accuracy





Figure: Accuracy rates for the US dataset. Figure: Accuracy rates for the BR dataset.





Figure: Accuracy rates for the JP dataset.

Figure: Accuracy for the global dataset.

# Replicated Architecture



Figure: Single Model Distillation.



Figure: Multiple Regional Model Distillation.

Agenda

- Regional Malware
- The Differences
- PL and Distillation
  - New Architecture

- Case Study
- Conclusion
  - Generalization
  - Final Remarks

# Does a global model help?

### US predicting the world



Figure: Cross-dataset accuracy rate. Trained US model classifying the samples from the other datasets.

### BR predicting the world



Figure: Cross-dataset accuracy rate. Trained BR model classifying the samples from the other datasets.

### JP predicting the world



Figure: Cross-dataset accuracy rate. Trained JP model classifying the samples from the other datasets.

### Three-Layer Architecture



Figure: Single Model Distillation.



Figure: Multiple Regional Model Distillation.

Figure: Regional Model Distillation from Global.

How to best build local-to-global models?

### Enriching the Global Model



Figure: **Building a global model.** Accuracy rate for building a global model from different portions of the source datasets.

### Enriching the US Model: Random Sampling



Figure: **Extending the existing US model.** Accuracy rates on the different datasets for different portions of the source datasets using random sample selection.

# Enriching the BR model¿ Random Sampling



Figure: **Extending the existing BR model.** Accuracy rates on the different datasets for different portions of the source datasets using confidence-based sample selection.

### Enriching the JP model: Random Sampling



Figure: **Extending the existing JP model.** Accuracy rates on the different datasets for different portions of the source datasets using random sample selection.

### Enriching the US model: Confidence-based Sampling



Figure: **Extending the existing US model.** Accuracy rates on the different datasets for different portions of the source datasets using confidence-based sample selection.

### Enriching the BR model: Confidence-based Sampling



Figure: **Extending the existing BR model.** Accuracy rates on the different datasets for different portions of the source datasets using confidence-based sample selection.

### Enriching the JP model: Confidence-based Sampling



Figure: Extending the existing JP model. Accuracy rates on the different datasets for different portions of the source datasets using confidence-based sample selection.

Are real models trained from scratch?

### Self-Distillation



Figure: **Self-Model Distilling.** Number of features required to achieve the maximum accuracy rate for the different datasets

### Global-to-Local Distillation



Figure: Global to Local Model Distilling. Number of features required to achieve the maximum accuracy rate for the different datasets.

### Heterogeneous Distillation



Figure: RF's ensemble of different features set sizes.

#### Heterogeneous Distillation



Figure: **Global to Local Model Distilling.** Variation on the number of features required to achieve the maximum accuracy rate for different portions of the source datasets.

What is the real impact of ML on AVs?

```
import "pe"

rule rule_from_ml_0 {
  condition:
  pe.imports(/(.).dll/i, /closehandle/i)
  and
  pe.characteristics & pe.EXECUTABLE_IMAGE
  and
  pe.exports(/dllunregisterserver/i)
}
```

Code 1: Yara rule generated from the ML model.

# Matching Time

Table: **Matching performance.** Wall time (s) for matching Yara rules derived from ML models of different feature sets sizes against a real, infected filesystem.

| Features | 1100         | 1200                                 | 1300               |               |
|----------|--------------|--------------------------------------|--------------------|---------------|
| Time     | 13m57s       | $14 \text{m} 00 \text{s} \ (+0.3\%)$ | $14m05s\ (+1\%)$   |               |
| Features | 1400         | 1500                                 | 1600               | 1700          |
| Time     | 14m50s (+6%) | 15m57s $(+14\%)$                     | $17 m58 \ (+29\%)$ | 19m33s (+40%) |

## Explaining Rule's Performance



33 32 31 ∰ 30 Depth 28 Sel 27 25 24 -- Malware 23 L 1200 1300 1400 1500 1600 1700 Features (#)

Rules Depth vs. Number of Features (Global-Distilled)

Figure: Number of rules vs. feature size. The number of generated rules moderately increases with the number of features.

Figure: Rules depth vs. feature size. The average depth of the rules increases with the number of features.

# Agenda

- Regional Malware
- The Differences
- PL and Distillation
  - New Architecture

- Case Study
- Conclusion
  - Generalization
  - Final Remarks

## The Original Scenario



Figure: Detection rate as a time-series for the individual static models. Previously trained classifiers attempt to detect new threats. Performance degradation due to concept drift is observed.

#### Drift Detection Scenario



Figure: Detection rate as a time-series for the individual, drift-aware models. The retraining of models when concept drift is detected takes the detection rate back to its original level.

# Drift Detection + Federated Learning Scenario



Figure: Detection rate as a time-series for the globally-distilled models. The use of data from a global model not only mitigated the drift effects but also increased the detection rate for all datasets.

#### Overview



Figure: Original

Figure: **Drift Detection** 

Figure: Drift Detection + FL

## Agenda

- Regional Malware
  - The Differences
- 2 FL and Distillation
  - New Architecture

- Case Study
- Conclusion
  - Generalization
  - Final Remarks

### Extending to other feature selectors

Table: Feature Selection Method. Ideal feature set size for the multiple regional malware datasets.

|             | US  | BR  | JP  |
|-------------|-----|-----|-----|
| F-Score     | 290 | 340 | 800 |
| Chi2        | 292 | 342 | 803 |
| Mutual Info | 294 | 345 | 812 |
|             |     |     |     |

## Extending to other classifiers

Table: Classifier Influence on the detection of different regional malware datasets. Feature set sizes.

|          | 95% |    | 99% |     |     |     |
|----------|-----|----|-----|-----|-----|-----|
|          | US  | BR | JP  | US  | BR  | JP  |
| RF       | 35  | 40 | 45  | 290 | 340 | 800 |
| SGD      | 35  | 40 | 45  | 292 | 342 | 805 |
| AdaBoost | 35  | 40 | 45  | 292 | 342 | 805 |
| SVM      | 36  | 41 | 46  | 295 | 345 | 813 |

## Extending to other distillation techniques

Table: **Distillation Technique Influence** on the detection of different regional malware datasets. Feature set sizes.

|     | US        | BR         | JP           |
|-----|-----------|------------|--------------|
| TS  | 300 (+3%) | 400 (+17%) | 900 (+12.5%) |
| FMF | 299 (+3%) | 402 (+18%) | 902 (+12.5%) |

Final Remarks

## Agenda

- Regional Malware
  - The Differences
- 2 FL and Distillation
  - New Architecture

- Case Study
- Conclusion
  - Generalization
  - Final Remarks

# Thanks!

Questions? Comments?

botacin@tamu.edu

@MarcusBotacin