Algebra HW6

段奎元

SID: 201821130049 dkuei@outlook.com

October 26, 2018

1. Page 133,3 If R is a ring and $a \in R$, then $J = \{r \in R \mid ra = 0\}$ is a left ideal and $K = \{r \in R \mid ar = 0\}$ is a right ideal in R.

Solution: For any $r \in R$, $i, j \in J$, $k, l \in K$,

$$(ri)a = r(ia) = r0 = 0,$$

 $(i - j)a = ia - ja = 0 - 0 = 0;$
 $a(kr) = (ak)r = 0r = 0,$
 $a(k - l) = ak - al = 0 - 0 = 0.$

Thus $ri \in J, i - j \in J, J$ is a left ideal; $kr \in K, k - l \in K, K$ is a right ideal.

2. Page 133,8 Let R be a ring with identity and S the ring of all $n \times n$ matrices over R. J is an ideal of S if and only if J is the ring of all $n \times n$ matrices over I for some ideal I in R.

[Hint: Given J, let I be the set of all those elements of R that appear as the row 1-column 1 entry of some matrix in J. Use the matrices $E_{r,s}$, where $1 \le r,s \le n$, and $E_{r,s}$ has 1_R as the row r-column s entry and 0 elsewhere. Observe that for a matrix $A = (a_{ij}), E_{p,r}AE_{s,q}$ is the matrix with a_{rs} the row p-column q entry and 0 elsewhere.]

SOLUTION:

"\(\Rightarrow\)": Consider the set $I_{rs} = \{a \in R \mid aE_{rs} \in J\}$. Since the elementary matrix switching the *i*-th and *j*-th row or column $P_{ij} \in R$, $I_{rs} = \{a \in R \mid aE_{rs} \in J\} = \{a \in R \mid P_{1s}aE_{rs}P_{1r} \in J\} = I_{11}$. Thus denote $I = I_{rs}$ for all $1 \le r, s \le n$. I is an ideal since for any $a, b \in I, x \in R$,

$$(a-b)E_{11} = aE_{11} - bE_{11} \in J,$$

$$(xa)E_{11} = xE_{11}aE_{11} \in J,$$

$$(ax)E_{11} = aE_{11}xE_{11} \in J.$$

In addition, J is the ring of all $n \times n$ matrices over I since for any $1 \le r, s \le n$, $(a_{ij}) \in J$, $a_{rs}E_{rs} = (a_{ij})E_{rs} \in J$ infers $a_{rs} \in I_{rs} = I$.

"\(\epsilon\)": For any $(a_{ij}), (b_{ij}) \in J$ where $a_{ij}, b_{ij} \in I$ for $1 \le i, j \le n$. For any $(x_{ij}) \in R$,

$$(a_{ij}) - (b_{ij}) = ((a - b)_{ij}) \in J,$$

$$(a_{ij})(x_{ij}) = (\sum_{k=1}^{n} a_{ik} x_{kj}) \in J,$$

$$(x_{ij})(a_{ij}) = (\sum_{k=1}^{n} x_{ik} a_{kj}) \in J.$$

Thus J is an ideal of S.

3. Page 133,10

- (a) Show that Z is a principal ideal ring [see **Theorem I.3.1**].
- (b) Every homomorphic image of a principal ideal ring is also a principal ideal ring.
- (c) Z_m is a principal ideal ring for every m > 0.

SOLUTION:

- (a) By **Theorem I.3.1**, every subgroup of Z has the form $\langle m \rangle$ for some $m \in Z$. Since every ideal of Z must be subgroup of Z, it must have the form $\langle m \rangle$ and is a principal ideal. In addition, $\forall n \in Z, \ km \in \langle m \rangle, \ nkm = (nk)m \in \langle m \rangle$. Since Z is communitative, $\langle m \rangle$ is an ideal of Z. Thus every ideal of Z is of the form $\langle m \rangle$.
- (b) Assume P is a principal ideal ring, R is a ring, ϕ is a homomorphism from P to R; then $\phi(P)$ is a ring. For any ideal I in $\phi(P)$, $\forall a, b \in \phi^{-1}(I), x \in P$,

$$\phi(a - b) = \phi(a) - \phi(b) \in I,$$

$$\phi(xa) = \phi(x)\phi(a) \in I,$$

$$\phi(ax) = \phi(a)\phi(x) \in I.$$

Thus $\phi^{-1}(I)$ is an ideal in P. For any ideal J in P, $\forall a, b \in J, x \in P$,

$$\phi(a) - \phi(b) = \phi(a - b) \in \phi(J),$$

$$\phi(x)\phi(a) = \phi(xa) \in \phi(J),$$

$$\phi(a)\phi(x) = \phi(ax) \in \phi(J).$$

Thus $\phi(J)$ is an ideal in $\phi(P)$.

Suppose $\phi^{-1}(I) = \langle m \rangle$ for some $m \in P$, then $\phi^{-1}(\langle \phi(m) \rangle)$ is an ideal in P and $m \in \phi^{-1}(\langle \phi(m) \rangle)$. Since $\phi^{-1}(I)\langle m \rangle = \phi^{-1}(\langle \phi(m) \rangle)$, we get $I = \langle \phi(m) \rangle$ is a principal ideal and $\phi(P)$ is a principal ideal ring.

(c) $Z_m \cong \mathbb{Z}/m\mathbb{Z}$, construct a map

$$\phi: \quad Z \to Z_m$$
$$z \mapsto [z]_m$$

For any $a, b \in \mathbb{Z}$,

$$\phi(a) + \phi(b) = [a]_m + [b]_m = [a+b]_m,$$

$$\phi(a)\phi(b) = [a]_m[b]_m = [ab]_m,$$

thus ϕ is an epimorphism. By conclusions in the above two, $Z_m = \phi(Z)$ is a principal ideal ring.

- 4. Page 133,23 An element e in a ring R is said to be idempotent if $e^2 = e$. An element of the center of the ring R is said to be central. If e is a central idempotent in a ring R with identity, then
 - (a) $1_R e$ is a central idempotent;
 - (b) eR and $(1_R e)R$ are ideals in R such that $R = eR \times (1_R e)R$.

SOLUTION:

(a) For any $a \in R$,

$$a(1_R - e) = a - ae = a - ea = (1_R - e)a;$$

 $(1_R - e)^2 = 1_R - e - e + e^2 = 1_R - e.$

Thus $1_R - e$ is a central idempotent.

(b) For any central idempotent $f \in R$, $fa, fb \in fR$ and $x \in R$,

$$fa - fb = f(a - b) \in fR,$$

$$x(fa) = (xf)a = (fx)a = f(xa) \in fR,$$

$$(fa)x = f(ax) \in fR.$$

Thus fR is an ideal and so do eR, $(1_R - e)R$.

For any $r \in R$, $r = er + (1_R - e)r \in eR + (1_R - e)R$ thus $R = eR + (1_R - e)R$. For $a \in eR \cap (1_R - e)R$, suppose $a = ex = (1_R - e)y$ for some $x, y \in R$.

$$a = ea + (1_R - e)a$$

= $e(1_R - e)y + (1_R - e)ex$
= $(e - e^2)y + (e - e^2)x$
= 0.

Therefore, $R = eR \times (1_R - e)R$.

- 5. Page 133,24 Idempotent elements e_1, \dots, e_n in a ring R [see Exercise 23] are said to be orthogonal if $e_i e_j = 0$ for $i \neq j$. If R, R_1, \dots, R_n are rings with identity, then the following conditions are equivalent:
 - (a) $R \cong R_1 \times \cdots \times R_n$.
 - (b) R contains a set of orthogonal central idempotents [Exercise 23] $\{e_1, \dots, e_n\}$ such that $e_l + e_2 + \dots + e_n = 1_R$ and $e_i R \cong R_i$ for each i.
 - (c) R is the internal direct product $R = A_1 \times \cdots \times A_n$ where each A_i is an ideal of R such that $A_i \cong R_i$.

[Hint: (a) \rightarrow (b): The elements $f_1 = (1_{R_1}, 0, \dots, 0), f_2 = (0, 1_{R_2}, \dots, 0), f_n = (0, \dots, 0, 1_{R_n})$ arf orthogonal cfntral idfmpotfnts in $S = R_1 \times \dots \times R_n$ such that $f_1 + \dots + f_n = 1_s$ and $f_iS \cong R_i$. (b) \rightarrow (c) Note that $A_k = e_kR$ is the principal ideal $\langle e_k \rangle$ in R and that e_kR is itself a ring with identity e_k .]

SOLUTION:

(a) \Rightarrow (b): Let $S = R_1 \times \cdots \times R_n$, the elements $e_1 = (1_{R_1}, 0, \cdots, 0), e_2 = (0, 1_{R_2}, \cdots, 0), \cdots, e_n = (0, \cdots, 0, 1_{R_n})$ are orthogonal since $e_i e_j \in R_i \cap R_j = \{0\}$ for $i \neq j$. $1_S = \sum_{k=1}^n e_k$. For any $1 \leq i \leq n$, $a = \sum_{k=1}^n e_k a_k \in S$,

$$e_i a = e_i a_i = a_i e_i = a e_i,$$

 $e_i^2 = (0, \dots, 1_{R_i}^2, \dots, 0) = e_i.$

Thus e_i is a central idempotent. Since $R \cong S$, R also contains a set of orthogonal central idempotents satisfies the conditions.

- (b) \Rightarrow (c): Let $A_i = e_i R \cong R_i$, then $R = A_1 \times \cdots \times A_n$.
- (c) \Rightarrow (a): It suffices to show $R_1 \times R_2 \cong A_1 \times A_2$ where the products are both external products by **Theorem 2.24**. Suppose the isomorphism $\phi_1 : R_1 \to A_1$ and $\phi_2 : R_2 \to A_2$, and define

$$\phi: R_1 \times R_2 \to A_1 \times A_2$$

 $(r_1, r_2) \mapsto (\phi_1(r_1), \phi_2(r_2)).$

 ϕ is an isomorphism between groups. For any $(r_1, r_2), (s_1, s_2) \in R_1 \times R_2$,

$$\begin{aligned} (\phi_1(r_1), \phi_2(r_2))(\phi_1(s_1), \phi_2(s_2)) &= (\phi_1(r_1)\phi_1(s_1), \phi_2(r_2)\phi_2(s_2)) \\ &= (\phi_1(r_1s_1), \phi_2(r_2s_2)) \\ &= \phi((r_1s_1, r_2s_2)), \end{aligned}$$

so ϕ is an isomorphism between rings. $R = A_1 \times \cdots \times A_n \cong R_1 \times \cdots \times R_n$.