MLP for MNIST

by 신경식

MNIST Dataset

00	0	0	0	O	O	0	0	0	0	0	0	0	0	O
1	1	1	1	/	/	(/	1	1	1	1	1	/	1
22	2	2	2	2	2	2	2	2	2	2	2	2	2	ノ
3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4 4	4	4	4	4	4	4	#	4	4	4	4	Ч	4	4
5 5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
6 G	6	6	6	6	6	6	P	6	6	6	6	6	6	b
7	7	7	7	7	7	7	7	77	7	7	7	7	7	7
8 8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
99	9	9	9	9	9	9	9	q	9	9	9	9	9	9

MNIST Dataset

label = 5

label = 0

label = 4

label = 1

label = 9

$$label = 2$$

$$label = 1$$

label = 3

$$label = 1$$

$$label = 4$$

$$label = 3$$

$$label = 5$$

$$label = 3$$

$$label = 6$$

$$label = 1$$

$$label = 7$$

$$label = 2$$

$$label = 8$$

$$label = 6$$

$$label = 9$$

MNIST Dataset

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.0	0.35	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.51	1.0	0.57	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.51	1.0	0.56	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.07	0.81	1.0	0.55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.16	1.0	1.0	0.22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.31	1.0	0.85	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.75	1.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.12	0.96	1.0	0.64	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.15	1.0	1.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.21	1.0	1.0	0.42	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.54	1.0	0.96	0.12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	1.0	0.75	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.12	0.97	1.0	0.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.13	1.0	1.0	0.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.41	1.0	0.9	0.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.78	1.0	0.83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04	0.85	1.0	0.52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.12	1.0	1.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.68	0.84	0.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Handwritten Digit Recognition with MLP

Convolution VS Correlation

$$F \circ I(x) = \sum_{i=-N}^{N} F(i)I(x+i)$$

Convolution VS Correlation

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(c)

$$F \circ I(x,y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i,j)I(x+i,y+j)$$

$$F * I(x, y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i, j) I(x - i, y - j)$$

Convolution VS Correlation

$$W\overrightarrow{x} + \overrightarrow{b} = \begin{pmatrix} \theta_{1,784} & \theta_{1,783} & \dots & \theta_{1,1} \\ \theta_{2,784} & \theta_{2,783} & \dots & \theta_{2,1} \\ \vdots & \vdots & \dots & \vdots \\ \theta_{10,784} & \theta_{10,783} & \dots & \theta_{10,1} \end{pmatrix} \begin{pmatrix} x_{784} \\ x_{783} \\ \vdots \\ x_1 \end{pmatrix} + \begin{pmatrix} \theta_{1,0} \\ \theta_{2,0} \\ \vdots \\ \theta_{10,0} \end{pmatrix}$$

$$= \begin{pmatrix} \theta_{1,784} & \theta_{1,783} & \dots & \theta_{10,1} & \theta_{10,0} \\ \theta_{2,784} & \theta_{2,783} & \dots & \theta_{2,1} & \theta_{2,0} \\ \vdots & \vdots & \dots & \vdots \\ \theta_{10,784} & \theta_{10,783} & \dots & \theta_{10,1} & \theta_{10,0} \end{pmatrix} \begin{pmatrix} x_{784} \\ x_{783} \\ \vdots \\ x_1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \theta_{1,784} & \theta_{1,783} & \dots & \theta_{1,1} \\ \theta_{2,784} & \theta_{2,783} & \dots & \theta_{2,1} \\ \vdots & \vdots & \dots & \vdots \\ \theta_{10,784} & \theta_{10,783} & \dots & \theta_{10,1} \end{pmatrix} \begin{pmatrix} x_{784} \\ x_{783} \\ \vdots \\ x_1 \end{pmatrix} + \begin{pmatrix} \theta_{1,0} \\ \theta_{2,0} \\ \vdots \\ \theta_{10,0} \end{pmatrix} = \begin{pmatrix} l_1 \\ l_2 \\ \vdots \\ l_{10} \end{pmatrix}$$

$$L_{CE} = -\log(p_i)$$

$$\begin{pmatrix} \theta_{1,784} & \theta_{1,783} & \dots & \theta_{1,1} \\ \theta_{2,784} & \theta_{2,783} & \dots & \theta_{2,1} \\ \vdots & \vdots & \dots & \vdots \\ \theta_{10,784} & \theta_{10,783} & \dots & \theta_{10,1} \end{pmatrix} \begin{pmatrix} x_{784} \\ x_{783} \\ \vdots \\ x_1 \end{pmatrix} + \begin{pmatrix} \theta_{1,0} \\ \theta_{2,0} \\ \vdots \\ \theta_{10,0} \end{pmatrix} = \begin{pmatrix} l_1 \\ l_2 \\ \vdots \\ l_{10} \end{pmatrix}$$

$$\frac{\partial l_{\alpha}}{\partial \overrightarrow{\theta_{\alpha}}} = \left(\frac{\partial l_{\alpha}}{\partial \theta_{\alpha,784}} \quad \frac{\partial l_{\alpha}}{\partial \theta_{\alpha,783}} \quad \dots \quad \frac{\partial l_{\alpha}}{\partial \theta_{\alpha,781}} \quad \right) = (x_{784} \quad x_{783} \quad \dots \quad x_{1}) \qquad \frac{\partial l_{\alpha}}{\partial \theta_{\alpha,0}} = 1$$

$$\frac{\partial \overrightarrow{p}}{\partial l_{i}} = \begin{pmatrix} \frac{\partial p_{1}}{\partial l_{i}} \\ \frac{\partial p_{2}}{\partial l_{i}} \\ \vdots \\ \frac{\partial p_{i}}{\partial l_{i}} \\ \vdots \\ \frac{\partial p_{10}}{\partial l_{i}} \end{pmatrix} = \begin{pmatrix} -p_{i}p_{1} \\ -p_{i}p_{2} \\ \vdots \\ p_{i}(1-p_{i}) \\ \vdots \\ -p_{i}p_{10} \end{pmatrix}$$

$$L_{CE} = -\log(p_i)$$

$$\frac{\partial L_{CE}}{\partial p_{\alpha}} = \begin{cases} -\frac{1}{p_i}, & \text{where } \alpha = i\\ 0, & \text{otherwise} \end{cases}$$

$$\frac{\partial L_{CE}}{\partial \overrightarrow{p}} = \begin{pmatrix} \frac{\partial L_{CE}}{\partial p_1} & \frac{\partial L_{CE}}{\partial p_2} & \dots & \frac{\partial L_{CE}}{\partial p_i} & \dots & \frac{\partial L_{CE}}{\partial p_{10}} \end{pmatrix} \\
= \begin{pmatrix} 0 & 0 & \dots & -\frac{1}{p_i} & \dots & 0 \end{pmatrix}$$

$$\frac{\partial L_{CE}}{\partial l_1} = \frac{\partial L_{CE}}{\partial \overrightarrow{p}} \frac{\partial \overrightarrow{p}}{\partial l_1} \\
= \begin{pmatrix} 0 & 0 & \dots & -\frac{1}{p_i} & \dots & 0 \\
= p_1 & & & \vdots \\
-p_1 p_{10} & & \vdots \\
-p_1 p_1 & & \vdots \\$$

$$\frac{\partial L_{CE}}{\partial l_i} = \frac{\partial L_{CE}}{\partial \overrightarrow{p}} \frac{\partial \overrightarrow{p}}{\partial l_i}
= \begin{pmatrix} 0 & 0 & \dots & -\frac{1}{p_i} & \dots & 0 \end{pmatrix} \begin{pmatrix} -p_i p_1 \\ -p_i p_2 \\ \vdots \\ p_i (1 - p_i) \\ \vdots \\ -p_1 p_{10} \end{pmatrix}$$

$$\frac{\partial L_{CE}}{\partial \overrightarrow{p}} = \begin{pmatrix} 0 & 0 & \dots & -\frac{1}{p_i} & \dots & 0 \\ \frac{\partial p_1}{\partial l_i} & \frac{\partial p_2}{\partial l_i} & \vdots & \vdots \\ \frac{\partial p_i}{\partial l_i} & \vdots & \vdots & \vdots \\ \frac{\partial p_{10}}{\partial l_i} & \frac{\partial p_{10}}{\partial l_i} & \frac{\partial p_{10}}{\partial l_i} & \frac{\partial p_{10}}{\partial l_i} \\
\end{pmatrix} = \begin{pmatrix} -p_i p_1 & \dots & 0 \\ -p_i p_2 & \vdots & \vdots \\ p_i (1 - p_i) & \vdots & \vdots \\ -p_i p_{10} & \dots & \frac{\partial p_{10}}{\partial l_i} & \dots & \frac{\partial p_{10}}{\partial l_i} & \dots & 0 \end{pmatrix}$$

$$\frac{\partial L_{CE}}{\partial \overrightarrow{\theta_{1}}} = \frac{\partial L_{CE}}{\partial \overrightarrow{p}} \frac{\partial \overrightarrow{p}}{\partial l_{1}} \frac{\partial l_{1}}{\partial \overrightarrow{\theta_{1}}}$$

$$= p_{1} (x_{784} x_{783} ... x_{1})$$

$$\frac{\partial L_{CE}}{\partial \theta_{1,0}} = \frac{\partial L_{CE}}{\partial \overrightarrow{p}} \frac{\partial \overrightarrow{p}}{\partial l_{1}} \frac{\partial l_{1}}{\partial \theta_{1,0}}$$

$$= p_{1}$$

$$\frac{\partial L_{CE}}{\partial \overrightarrow{\theta_i}} = \frac{\partial L_{CE}}{\partial \overrightarrow{p}} \frac{\partial \overrightarrow{p}}{\partial l_i} \frac{\partial l_i}{\partial \overrightarrow{\theta_i}}$$

$$= (p_i - 1)(x_{784} \quad x_{783} \quad \dots \quad x_1)$$

$$\frac{\partial L_{CE}}{\partial \theta_{i,0}} = \frac{\partial L_{CE}}{\partial \overrightarrow{p}} \frac{\partial \overrightarrow{p}}{\partial l_i} \frac{\partial l_i}{\partial \theta_{i,0}}$$

$$= p_i - 1$$

$$\overrightarrow{\theta_{1}} = \overrightarrow{\theta_{1}} - \alpha * \frac{\partial L_{CE}}{\partial \overrightarrow{\theta_{1}}} \qquad \overrightarrow{\theta_{i}} = \overrightarrow{\theta_{i}} - \alpha * \frac{\partial L_{CE}}{\partial \overrightarrow{\theta_{i}}}$$

$$= \overrightarrow{\theta_{1}} - \alpha * p_{1}(x_{784} \quad x_{783} \quad \dots \quad x_{1}) \qquad = \overrightarrow{\theta_{i}} - \alpha * (p_{i} - 1)(x_{784} \quad x_{783} \quad \dots \quad x_{1})$$

$$\theta_{1,0} = \theta_{1,0} - \alpha * \frac{\partial L_{CE}}{\partial \theta_{1,0}} \qquad \theta_{i,0} = \theta_{i,0} - \alpha * \frac{\partial L_{CE}}{\partial \theta_{i,0}}$$

$$= \theta_{1,0} - \alpha * p_{1} \qquad = \theta_{1,0} - \alpha * (p_{i} - 1)$$

MNIST Filter

