Assignment #4 MOGA Assignment

- 1. You can refer to the paper: NSGA-II (A Fast and Elitist Multiobjective Genetic Algorithm) for more details of the MOGA by Deb.
- 2. Table I lists the benchmark functions.
- 3. Solve three problems of your choice from Table I, including at least one with dimension 10 (i.e., ZDT4, ZDT6) and one with dimension 30 (i.e., ZDT1, ZDT2, ZDT3). A maximum of 25000 function evaluations (FEs) can only be used. (每人可任選3個problem進行最佳化,但至少需要包含dimension為10 (i.e., ZDT4, ZDT6)及dimension為30 (i.e., ZDT1, ZDT2, ZDT3)之問題各一個,並討論其執行結果)
- 4. Submit a report of no less than 6 pages, including experimental results, analysis, and discussions together with your source code before the deadline. Submitting late work will be penalized by a deduction of 10% per day of the total mark awarded for each assignment. (作業繳交包含程式碼與書面報告,逾時成績逐日扣-10%)

TABLE I
TEST PROBLEMS USED IN THIS STUDY

Problem	n	Variable	Objective	Optimal	Comments
		bounds	functions	solutions	
SCH	1	$[-10^3, 10^3]$	$f_1(x) = x^2$ $f_2(x) = (x-2)^2$	$x \in [0, 2]$	convex
FON	3	[-4, 4]	$f_1(\mathbf{x}) = 1 - \exp\left(-\sum_{i=1}^3 \left(x_i - \frac{1}{\sqrt{3}}\right)^2\right)$	$x_1 = x_2 = x_3$	nonconvex
			$f_2(\mathbf{x}) = 1 - \exp\left(-\sum_{i=1}^3 \left(x_i + \frac{1}{\sqrt{3}}\right)^2\right)$	$\in [-1/\sqrt{3}, 1/\sqrt{3}]$	
POL	2	$[-\pi,\pi]$	$f_1(\mathbf{x}) = \begin{bmatrix} 1 + (A_1 - B_1)^2 + (A_2 - B_2)^2 \end{bmatrix}$ $f_2(\mathbf{x}) = \begin{bmatrix} (x_1 + 3)^2 + (x_2 + 1)^2 \end{bmatrix}$ $A_1 = 0.5 \sin 1 - 2 \cos 1 + \sin 2 - 1.5 \cos 2$ $A_2 = 1.5 \sin 1 - \cos 1 + 2 \sin 2 - 0.5 \cos 2$ $B_1 = 0.5 \sin x_1 - 2 \cos x_1 + \sin x_2 - 1.5 \cos x_2$ $B_2 = 1.5 \sin x_1 - \cos x_1 + 2 \sin x_2 - 0.5 \cos x_2$	(refer [1])	nonconvex, disconnected
KUR	3	[-5, 5]	$ f_1(\mathbf{x}) = \sum_{i=1}^{n-1} \left(-10 \exp\left(-0.2 \sqrt{x_i^2 + x_{i+1}^2} \right) \right) $ $ f_2(\mathbf{x}) = \sum_{i=1}^{n} \left(x_i ^{0.8} + 5 \sin x_i^3 \right) $	(refer [1])	nonconvex
ZDT1	30	[0, 1]	$f_1(\mathbf{x}) = x_1$	$x_1 \in [0, 1]$	convex
			$\begin{cases} f_2(\mathbf{x}) = g(\mathbf{x}) \left[1 - \sqrt{x_1/g(\mathbf{x})} \right] \\ g(\mathbf{x}) = 1 + 9 \left(\sum_{i=2}^n x_i \right) / (n-1) \end{cases}$	$x_i = 0,$ $i = 2, \dots, n$	
ZDT2	30	[0, 1]	$f_1(\mathbf{x}) = x_1 f_2(\mathbf{x}) = g(\mathbf{x}) \left[1 - (x_1/g(\mathbf{x}))^2 \right] g(\mathbf{x}) = 1 + 9 \left(\sum_{i=2}^n x_i \right) / (n-1)$	$x_1 \in [0, 1]$ $x_i = 0,$ $i = 2, \dots, n$	nonconvex
ZDT3	30	[0, 1]	$\begin{cases} f_1(\mathbf{x}) = x_1 \\ f_2(\mathbf{x}) = g(\mathbf{x}) \left[1 - \sqrt{x_1/g(\mathbf{x})} - \frac{x_1}{g(\mathbf{x})} \sin(10\pi x_1) \right] \\ g(\mathbf{x}) = 1 + 9\left(\sum_{i=2}^n x_i \right) / (n-1) \end{cases}$	$x_1 \in [0, 1]$ $x_i = 0,$ $i = 2, \dots, n$	convex, disconnected
ZDT4	10		$f_1(\mathbf{x}) = x_1 f_2(\mathbf{x}) = g(\mathbf{x}) \left[1 - \sqrt{x_1/g(\mathbf{x})} \right] g(\mathbf{x}) = 1 + 10(n-1) + \sum_{i=2}^n \left[x_i^2 - 10\cos(4\pi x_i) \right]$	$x_1 \in [0, 1]$ $x_i = 0,$ $i = 2, \dots, n$	nonconvex
ZDT6	10	[0, 1]		$x_1 \in [0, 1]$ $x_i = 0,$	nonconvex, nonuniformly
			$g(\mathbf{x}) = 1 + 9 \left[\left(\sum_{i=2}^{n} x_i \right) / (n-1) \right]^{0.25}$	$i=2,\ldots,n$	spaced

All objective functions are to be minimized.

Reference:

https://pymoo.org/problems/multi/zdt.html