CSC236 Assignment1

Tianyi Long

#1002902889

Kewei Qiu

#1003798116

Question 1

To proof this question by simple induction, we need to use one already-known claim.

Claim 1: For any arbitrary graph G = (V, E), I can always choose a vertex with $\leq \left\lfloor \frac{|V|}{2} \right\rfloor$ edges incident with it.

(a)

Answer: Yes.

Proof: Assume P(234)

That is, for any arbitrary bipartite graph G = (V, E) with |V| = 234, G has no more than $\frac{234^2}{4}$ edges.

WTS P(235) follows.

Let $G_1 = (V_1, E_1)$ be an arbitrary bipartite graph with $|V_1|$ = 235.

By Claim 1, I can always choose a vertex in $\ G_1$ with $\le \left\lfloor \frac{235}{2} \right\rfloor = 117$ edges incident with it.

Without losing generality, choose this vertex, call it v_1 .

Let $\,G_2=(V_2,E_2)\,$ be a bipartite graph s.t. $\,V_2=\,V_1\backslash\{v_1\}\,$

and $E_2 = E_1 \setminus \{\text{all edges incident with } v_1\}$

Hence $|V_2| = |V_1| - 1 = 234$

By hypothesis P(234), we know that G_2 has no more than $\frac{234^2}{4}$ edges.

Hence $|E_1| = |E_2| + \#edges$ incident with v_1

$$\leq \frac{234^2}{4} + 117$$

$$\leq \frac{235^2}{4} = \frac{|V_1|^2}{4}$$

We have proved that P(235) follows.

Answer: No.

Reason: Assume P(235)

That is, for any arbitrary bipartite graph G = (V, E) with |V| = 235, G has no more than $\frac{235^2}{4}$ edges.

If we want to show P(236) follows:

Let $G_1 = (V_1, E_1)$ be an arbitrary bipartite graph with $|V_1|$ = 236.

By Claim 1, I can always choose a vertex in $\ G_1$ with $\le \left\lfloor \frac{236}{2} \right\rfloor = 118$ edges incident with it.

Without losing generality, choose this vertex, call it $\,v_1.\,$

Let $\, {\rm G}_2 = ({\rm V}_2, {\rm E}_2) \,$ be a bipartite graph s.t. $\, {\rm V}_2 = \, {\rm V}_1 \backslash \{ {\rm v}_1 \} \,$

and $E_2 = E_1 \setminus \{all \text{ edges incident with } v_1\}$

Hence $|V_2| = |V_1| - 1 = 235$

By hypothesis P(235), we know that G_2 has no more than $\frac{235^2}{4}$ edges.

Hence $|E_1| = |E_2| + \text{\#edges}$ incident with v_1

$$\leq \frac{235^2}{4} + 118$$

However, we CANNOT get $\frac{235^2}{4} + 118 \le \frac{236^2}{4} = \frac{|V_1|^2}{4}$

Hence we cannot prove P(236) follows by assuming P(235) holds.

(c)

Strengthen P(n), call it R(n): Every bipartite graph on n vertices has no more than $\left\lfloor \frac{n^2}{4} \right\rfloor$ edges Proof of R(n): (Simple Induction)

Base case: n = 0

Graph with o vertex has 0 edges

$$0 \le 0 = \left| \frac{0^2}{4} \right|$$

P(0) holds.

it.

Inductive step: Let $n \in \mathbb{N}$

Assume R(n) holds, i.e. for any arbitrary bipartite graph G = (V, E) with

|V| = n, G has no more than $\left| \frac{n^2}{4} \right|$ edges.

WTS that R(n+1) also holds

Let $G_1 = (V_1, E_1)$ be an arbitrary bipartite graph with $|V_1| = n+1$.

By Claim 1, I can always choose a vertex in G_1 with $\leq \left\lfloor \frac{n+1}{2} \right\rfloor$ edges incident with

Without losing generality, choose one of this vertex, call it v_1 .

Let
$$G_2=(V_2,E_2)$$
 be a bipartite graph s.t. $V_2=V_1\backslash\{v_1\}$

and $E_2 = E_1 \setminus \{\text{all edges incident with } v_1\}$

Hence
$$|V_2| = |V_1| - 1 = n$$

By hypothesis P(n), we know that G_2 has no more than $\left|\frac{n^2}{4}\right|$ edges.

Then we need to show:
$$\left\lfloor \frac{n^2}{4} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor \le \left\lfloor \frac{n+1^2}{4} \right\rfloor$$

Let $k \in \mathbb{N}$, we have two cases to consider: n = 2k and n = 2k+1, namely n is even Or n is odd.

$$\begin{aligned} &\text{Case n = 2k: } \left\lfloor \frac{(2k)^2}{4} \right\rfloor + \left\lfloor \frac{2k+1}{2} \right\rfloor = k^2 + k \le k^2 + k = \left\lfloor \frac{(2k+1)^2}{4} \right\rfloor \\ &\text{Case n = 2k+1: } \left\lfloor \frac{(2k+1)^2}{4} \right\rfloor + \left\lfloor \frac{2k+2}{2} \right\rfloor = k^2 + 2k + 1 \le k^2 + 2k + 1 = \left\lfloor \frac{(2k+2)^2}{4} \right\rfloor \end{aligned}$$

In both cases we have proved that $\left\lfloor \frac{n^2}{4} \right\rfloor + \left\lfloor \frac{n+1}{2} \right\rfloor \leq \left\lfloor \frac{n+1^2}{4} \right\rfloor$, Hence R(n+1) follows.

We use simple induction proved R(n), since $\left\lfloor \frac{n^2}{4} \right\rfloor \leq \frac{n^2}{4}$, we know that R(n) implies P(n).

Hence P(n) is also True for all natural number n.

Question 2

(a)

Answer: Yes.

Proof: Assume P(3), that means f(3) is a multiple of 4 i.e. f(3) = 4k for some $k \in \mathbb{Z}$.

Let k be this number.

We want to show that P(29) follows.

$$f(29) = (f([\log_3 29]))^2 + f([\log_3 29])$$

$$= (f(3))^2 + f(3) \qquad \text{(since } [\log_3 29] = 3)$$

$$= (4k)^2 + 4k \qquad \text{(since P(3) and for some } k \in \mathbb{Z} \text{ , f(3)} = 4k)$$

$$= 16k^2 + 4$$

$$= 4(4k^2 + k)$$

$$= 4m \qquad \text{(namely, } m = 4k^2 + k, m \in \mathbb{Z})$$

Hence f(29) is a multiple of 4 and P(29) follows.

(b)

Answer: No.

Reason: Assume P(4) holds, i.e. f(4) is a multiple of 4

For P(29)

$$f(29) = (f(\lfloor \log_3 29 \rfloor))^2 + f(\lfloor \log_3 29 \rfloor)$$

= $(f(3))^2 + f(3)$ (since $\lfloor \log_3 29 \rfloor = 3$)

There is no direct connection between f(29) and f(4), so we cannot prove P(29) follows by assuming P(4) holds.

(c)

Proof: (Complete induction)

Base Case: (1) n = 1

$$f(1) = (f(0))^2 + f(0) = 12$$
 (since f(0) = 3 and $\lfloor \log_3 1 \rfloor = 0$)

 $12 = 4 \times 3$

P(1) holds.

$$f(2) = (f(0))^2 + f(0) = 12$$
 (since $f(0) = 3$ and $\lfloor \log_3 2 \rfloor = 0$)
12 = 4 × 3

P(2) holds.

Inductive Step: Assume P(i) holds for $\forall i \in \mathbb{N}, 2 < i \leq n-1$.

We want to show: P(n) holds for $n \ge 3$.

Since $n \ge 3$, $\lfloor \log_3 n \rfloor \ge 1$.

Also, since $3^n > n$ for all natural number n, $\lfloor \log_3 n \rfloor < n$

$$\begin{split} f(\mathbf{n}) &= \left(f(\lfloor \log_3 \mathbf{n} \rfloor) \right)^2 + f(\lfloor \log_3 \mathbf{n} \rfloor) \\ &= \left(f(\mathbf{s}) \right)^2 + f(\mathbf{s}) \quad (\mathbf{s} = \lfloor \log_3 \mathbf{n} \rfloor) \\ &= (4\mathbf{m})^2 + 4\mathbf{m} \quad (\mathbf{m} \in \mathbb{Z}, \text{ since } 1 \leq \mathbf{s} < n \text{ and by induction hypothesis)} \\ &= 4(4\mathbf{m}^2 + \mathbf{m}) \end{split}$$

Hence f(n) is a multiple of 4

P(n) follows

Question 3

To prove this question, we need to use an already-known claim.

Claim: if a prime number p divides a perfect cube n^3 , then p also decides n.

Proof: (Contradiction)

Assume (for the sake of contradiction) $\exists x, y, z \in \mathbb{N}^+$ s. t. $5x^3 + 50y^3 = 3z^3$

Let set
$$S = \{ z \in \mathbb{Z}^+ \mid 3z^3 = 5x^3 + 50y^3 \}$$
, then $S \subset \mathbb{N}$,

and S is non-empty (by assumption).

By Well-Ordering Principle, S has a smallest element, call it z_0 .

By the definition of S, $\exists x_0, y_0 \in \mathbb{Z}^+$ such that $3z_0^3 = 5x_0^3 + 50y_0^3$

Notice that $5|5x_0^3 + 50y_0^3|$

$$\Rightarrow 5|3z_0^3 \qquad \text{(since } 3z_0^3 = 5x_0^3 + 50y_0^3\text{)}$$

$$\Rightarrow 5|z_0^3$$
 (since $5 \nmid 3$)

$$\Rightarrow 5|z_0$$
 (by hint)

$$\Rightarrow \exists z_1 \in \mathbb{Z}^+$$
 s. t. $z_0 = 5z_1, z_1 < z_0$

Take $5z_1$ back to the original equation, we get $3(5z_1)^3 = 5x_0^3 + 50y_0^3$

$$\Rightarrow 5x_0^3 = 3(5z_1)^3 - 50y_0^3$$

$$\Rightarrow x_0^3 = 75z_1^3 - 50y_0^3$$

Notice that $5|75z_1^3 - 50y_0^3$

$$\Rightarrow 5|x_0^3 \qquad (\text{since } x_0^3 = 75z_1^3 - 50y_0^3)$$

$$\Rightarrow 5|x_0$$
 (by hint)

$$\Rightarrow \exists x_1 \in \mathbb{Z}^+ \text{s.t.} x_0 = 5x_1, x_1 < x_0$$

Take $5x_1$ back to the original equation, we get $3(5z_1)^3 = 5(5x_1)^3 + 50y_0^3$

$$\Rightarrow 50y_0^3 = 5(5x_1)^3 - 3(5z_1)^3$$

$$\Rightarrow 2y_0^3 = 25x_1^3 - 15z_1^3$$

Notice that $5|25x_1^3 - 15z_1^3$

$$\Rightarrow 5|2y_0^3 \qquad \text{(since } 2y_0^3 = 25x_1^3 - 15z_1^3\text{)}$$

$$\Rightarrow 5|y_0^3 \qquad (since 5 \nmid 2)$$

$$\Rightarrow 5|y_0$$
 (by hint)

$$\Rightarrow \exists y_1 \in \mathbb{Z}^+ \text{s.t.} y_0 = 5y_1, y_1 < y_0$$

Take $5y_1$ back to the original equation, we get $3(5z_1)^3 = 5(5x_1)^3 + 50(5y_1)^3$

$$\Rightarrow 3z_1^3 = 5x_1^3 + 50y_1^3$$

It is obvious that z_1 should be in set S, and $z_1 < z_0$, which gives us a contradiction

Conclusion: no such integers x, y, z satisfy $3z^3 = 5x^3 + 50y^3$.

```
Question 4
(a)
Define P(t): left_count(t) \leq 2^{\max_{l} = \frac{\text{left_surplus}(t)}{l}} - 1
Claim: \forall t \in \mathcal{T}, P(t)
Proof: (Structural Induction)
Base Case: t = " * "
               left_count(t) = 0
                \max_{left\_surplus(t)} = 0
                0 \le 0 = 2^0 - 1
                So base case P(" * ") holds.
Induction step: Let t_1, t_2 \in \mathcal{T}
                         Assume P(t_1), P(t_2) holds, i.e. left\_count(t_1) \le 2^{max} \_left\_surplus(t_1) - 1
                                                                          left_count(t_2) \le 2^{max_left_surplus(t_2)} - 1
                        Then \operatorname{left}_{\operatorname{count}((t_1,t_2))} = \operatorname{left}_{\operatorname{count}(t_1)} + \operatorname{left}_{\operatorname{count}(t_2)} + 1
                                                         \leq 2^{\max_{left\_surplus(t_1)}} - 1 + 2^{\max_{left\_surplus(t_2)}} - 1 + 1
                                                             (by induction hypothesis)
                                                          = 2^{\max_{left\_surplus(t_1)}} + 2^{\max_{left\_surplus(t_2)}} - 1
                                                          \leq 2 \cdot 2^{\max(\max_{l \in t_surplus(t_1), \max_{l \in t_surplus(t_2)})} - 1
                                                          = 2^{\max(\max_{l} \text{left\_surplus}(t_1), \max_{l} \text{left\_surplus}(t_2)) + 1} - 1
                                                         = 2^{\max_{} _{} - \operatorname{left\_surplus}((t_{1,}t_{2}))} - 1
                                                                                                                       (by Hint)
                                                         Hence P((t_1, t_2)) holds.
```

Then by Structural Induction we get the conclusion.

Induction Step: Let $t_1, t_2 \in \mathcal{T}$ Assume $P(t_1), P(t_2)$ holds, i. e. double_count $(t_1) = \begin{cases} 0 & \text{, } t_1 = "*" \\ \text{left_count}(t_1) - 1, \text{ otherwise} \end{cases}$ double_count(t_2) = $\begin{cases} 0 & , t_2 = "*" \\ left_count(t_2) - 1, otherwise \end{cases}$ Want to show that $P((t_1, t_2))$ holds, and we have three cases to discuss. Case 1: $t_1 = t_2 = "*"$ Then $(t_1, t_2) = "(**)"$ double_count((t_1, t_2)) = 0 = 0 = 1 - 1 = left_count((t_1, t_2)) - 1 Case 1 holds. Case 2: one of t_1 , $t_2 = "*"$ with another $\neq "*"$ $double_count((t_1, t_2)) = double_count(t_1) + double_count(t_2) + 1$ (the added 2 represents left-most '((' OR right-most '))') (it depends on which of t_1, t_2 is not " * ") $= 0 + \text{left_count}(t_1) (OR \, \text{left_count}(t_2)) - 1 + 1$ (by induction hypothesis) = $left_count(t_1)$ (OR $left_count(t_2)$) $= left_count((t_1, t_2)) - 1$ (the reduced 1 represents the left-most '(') Case 2 holds. Case 3: both $t_1, t_2 \neq " * "$ Then double_count((t_1, t_2)) = double_count((t_1) + double_count((t_2) + 2

Then double_count(
$$(t_1, t_2)$$
) = double_count((t_1)) + double_count((t_2)) + 2

(the added 2 represents left-most '((' and right-most '))')

= left_count((t_1)) - 1 + left_count((t_2)) - 1 + 2

(by induction hypothesis)

= left_count((t_1)) + left_count((t_2))

= left_count($((t_1, t_2))$) - 1

(the reduced 1 represents the left-most '('))

Case 3 holds.

In all cases $P((t_1, t_2))$ holds, then by Structural Induction, we conclude:

$$\forall t \in T, double_count(t) = \begin{cases} 0 & ,t = "*" \\ left_count(t) - 1, otherwise \end{cases}$$