Ph20 Assignment 1

[CDW: needs correction]

Ung Shu Fay

January 23, 2018

[CDW: comment] Good plots—legible labels, etc. Thank you. I suggest using pdf instead of png for the plots themselves; that tends to be much clearer when you put them in a pdf.

[CDW: needs correction] You don't use numpy to its full advantage.

1 Lissajous Figures

$$X(t) = A_x \cos(2\pi f_x t) \tag{1}$$

$$Y(t) = A_y \sin(2\pi f_y t + \phi) \tag{2}$$

$$Z(t) = X(t) + Y(t) \tag{3}$$

If f_x/f_y is a rational number, the graph of X(t) against Y(t) is a closed curve.

Figure 1: Plots of X(t) against Y(t) for rational f_x/f_y . The values of f_x and f_y were selected randomly. Graphs were generated with $A_x = A_y = 1$, $\phi = 0.1$, $\Delta t = 0.001$ and N = 1000.

1.1 f_x/f_y and the Shape of the Curve

For $f_x/f_y < 1$, as the ratio increases, the number of points where the curve intersects itself increase. [CDW: needs correction] There's something more specific you can say. What about f_x/f_y an irreducible fraction?

Figure 2: Plots of X(t) against Y(t) for $f_x/f_y < 1$. Graphs were generated with $f_y = 5$, $A_x = A_y = 1$, $\phi = 0.1$, $\Delta t = 0.001$ and N = 1000 for $f_x/f_y = 0.2, 0.4, 0.6, 0.8$.

For $f_x/f_y > 1$, the curves resemble overlapping sinusoids with the endpoints connected together. As the ratio increases, the number of peaks and the number of points of intersection increase.

Figure 3: Plots of X(t) against Y(t) for $f_x/f_y>1$. Graphs were generated with $f_y=5,\ A_x=A_y=1,\ \phi=1,\ \Delta t=0.0001$ and N=2000 for $f_x/f_y=3,\ 6,\ 9,\ 12.$

[CDW: needs correction] What about irrational f_x/f_y ?

1.2 ϕ and the Shape of the Curve

Setting $f_x = f_y$, the shape of the curve was observed while the phase ϕ was varied. The plots trace out ellipses for $n \neq k/2$ where k is odd, and straight lines when n = k/2. This is due to the fact that the graphs of sin and cos are shifted by a phase of $\pi/2$.

Figure 4: Plots of X(t) against Y(t) for different values of phase ϕ . Graphs were generated with $f_x=f_y=1$, $A_x=A_y=1,\ \phi=1,\ \Delta t=0.001$ and N=1000 for $\phi=n\pi$ where $n=0,\ \frac{1}{4},\ \frac{1}{2},\ 1,\ \frac{5}{4},\ \frac{3}{2}.$

In electronic circuits, if two alternative currents are out of phase by ϕ , plotting the currents against each other and adjusting them until a horizontal ellipse is seen on the oscilloscope means they are in phase or in antiphase with each other.

2 Beats

Figure 5: Plots of Z(t) against t. Beats produced by setting similar values for f_x and f_y . Graphs were generated with $A_x = A_y = 1$, $\phi = 0$, $\Delta t = 0.01$ and N = 2000 for $f_x = 1$ and $f_y = 0.1$, 0.3, 0.7, 0.9, 1.1, 1.2. [CDW: needs correction] What frequency does one naïvely expect? Did you see it? Why not?

3 Thoughts

The programming was rather fun to do, especially in investigating the properties of the graphs. The assignments were not too difficult.

I havn't really programmed in other languages other than Python, but taking CS2 this term in C++ made me appreciate the simplicity and level of abstraction Python provides for the user. I do agree with Guido Van Rossum - Python is incredibly powerful and is pleasurable work with (no segmentation faults!).