Mais Exemplos:

1.DNA

$$A \quad C \quad G \quad T$$

$$P_A = \frac{1}{2}, \quad P_C = \frac{1}{4}, \quad P_G = \frac{1}{8}, \quad P_T = \frac{1}{8},$$

$$u_A = 1$$
 bit, $u_C = 2$ bits, $u_G = 3$ bits, $u_T = 3$ bits,

$$H = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

$$A = 1$$
 $C = 01$
 $G = 000$
 $T = 001$

$$ACATGAAC \longrightarrow$$

10110010001101.

$$P_A = \frac{1}{2}, \quad P_C = \frac{1}{6}, \quad P_G = \frac{1}{6}, \quad P_T = \frac{1}{6},$$

2. alafabeto {A a H }

$$p_A = 1/2$$

 $p_B = 1/4$
 $p_C = 1/8$
 $p_D = 1/16$
 $p_E = 1/32$
 $p_F = 1/64$
 $p_G = 1/128$
 $p_H = 1/128$

Evento	Representação
Α	0
В	10
С	110
D	1110
Е	11110
F	111110
G	1111110
Н	1111111

$$\sum_{n=4}^{H} p_n \times$$
 número de bits na representação

$$= \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + \frac{1}{32} \times 5 + \frac{1}{64} \times 16 + \frac{1}{128} \times 7 + \frac{1}{128} \times 7 = \boxed{2,14 \text{ bits}}$$

3. com 5 símbolos não-equiprováveis:

Resultado	Probab.	Repres. A	Repres. B	Repres. C
Α	1/8	1111	11	110
В	1/8	1110	10	111
С	1/4	110	011	10
D	1/4	10	010	01
E	1/4	0	001	00

Representação A

$$\frac{1}{8} \times 4 + \frac{1}{8} \times 4 + \frac{1}{4} \times 3 + \frac{1}{4} \times 2 + \frac{1}{4} \times 1 = 2,5$$
 bits

Representação B

$$\frac{1}{8} \times 2 + \frac{1}{8} \times 2 + \frac{1}{4} \times 3 + \frac{1}{4} \times 3 + \frac{1}{4} \times 3 = 2,75$$
 bits

Representação C

$$\frac{1}{8} \times 3 + \frac{1}{8} \times 3 + \frac{1}{4} \times 2 + \frac{1}{4} \times 2 + \frac{1}{4} \times 2 = 2,25$$
 bits

Entropia Conjunta e Entropia Condicional

2 fontes A e B, estatísticamente independentes

entropia total
$$\rightarrow$$
 H(A,B)= H(A) + H(B)

Pi,j: probabilidade conjunta de que A envia ai e B envie bj

$$P i,j = Pr (ai,bj)$$

Sendo estatísticamente independentes: Pi, j = Pr(ai) * Pr(bj) = pi*pj

A emissão combinada dos símbolos ai e bj considerada como um símbolo composto C i,j = <ai,bj>

$$H(C) = \sum_{c_{i,j} \in C} p_{i,j} \log_2(1/p_{i,j}) = \sum_{i=0}^{M_A - 1} \sum_{j=0}^{M_B - 1} p_{i,j} \log_2(1/p_{i,j}).$$

(Wells)

$$H(C) = H(A,B) = H(A) + H(B|A)$$
 entropia condicional
= $H(B) + H(A|B)$

se estatísticamente independente:

$$H(B|A) = \sum_{i} p_{i} \sum_{j} p_{j|i} \log_{2}(1/p_{j|i}) = \sum_{i} p_{i} \sum_{j} p_{j} \log_{2}(1/p_{j}) = H(B).$$

$$H(C) = H(A,B) = H(A) + H(B|A).$$

Mas se B é dependente de A

então
$$H(B|A) < H(B)$$
 \rightarrow $H(A,B) \le H(A) + H(B)$

Many computer backplanes and memory systems employ a parity bit as a simple means of error detection. Let A be an information source with alphabet $A = \{0, 1, 2, 3\}$. Let each symbol a be equally probable and let $B = \{0, 1\}$ be a parity generator with

$$b_j = \begin{cases} 0 & if & a = 0 \text{ or } a = 3 \\ 1 & if & a = 1 \text{ or } a = 2 \end{cases}.$$

What are H(A), H(B), and H(A, B)?

Solution: From the definition of entropy, $H(A) = 4 \cdot \frac{1}{4} \cdot \log_2(4) = 2$. Likewise, the two symbols in B each have probability 0.5, so H(B) = 1. However, the conditional probabilities Pr(b|a)

$$Pr(0|0) = 1$$
, $Pr(1|0) = 0$,
 $Pr(0|1) = 0$, $Pr(1|1) = 1$,
 $Pr(0|2) = 0$, $Pr(1|2) = 1$,
 $Pr(0|3) = 1$, $Pr(1|3) = 0$.

Therefore,

$$H(B|A) = \sum_{i=0}^{3} p_{i} \sum_{j=0}^{1} p_{j|i} \log_{2}(1/p_{j|i}).$$

Since $\lim_{x\to 0} x \log(x) = 0$, this expression evaluates to $H(B|A) = 4 \cdot 0.25 \cdot (1 \cdot \log_2(1) - 0 \cdot \log_2(0)) = 0$ which simply says that *B* is *completely determined* by *A*. Therefore,

$$H(A,B) = H(A) + H(B|A) = 2 + 0 = 2.$$

Source B contributes no information to the compound signal. (Source B is said to be "redundant.")