Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Ex4 - Classification of Email spam and MNIST data

GitHub Link:

GitHub Link

Colab Links:

4.1 and 4.3

4.2

Aim:

To develop a python program

- (i) To classify Emails as Spam or Ham
- (ii) To recognize the digits of the MNIST dataset

Using Support Vector Machine (SVM) Model

4.1, 4.3 Classification of Email Spam or Ham using Support Vector Machine (SVM) and Naïve Bayes Algorithm

Clone GitHub Repo For Data

!git clone https://github.com/Ojus999/Machine-Learning-Sem-6.git

Import Dependencies

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import metrics from sklearn import svm

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Read Data

df = pd.read_csv("/content/Machine-Learning-Sem-6/Ex 4/spambase_csv.csv")

Read First Few Rows

df.head()

DataFrame Info

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4601 entries, 0 to 4600
Data columns (total 58 columns):
                                     Non-Null Count Dtype
# Column
                                  4601 non-null float64
4601 non-null float64
4601 non-null float64
4601 non-null float64
 0 word freq make
1 word_freq_make
1 word_freq_address
2 word_freq_all
3 word_freq_3d
                                                      float64
                                   4601 non-null
4601 non-null
4601 non-null
                                                      float64
   word_freq_our
   word_freq_over
    word_freq_over
                                                        float64
                                                       float64
    word_freq_internet
word_freq_order
                                   4601 non-null
                                                      float64
                                    4601 non-null
4601 non-null
 8
                                                        float64
                                                       float64
 9 word_freq_mail
10 word_freq_receive
     word_freq_mail
                                   4601 non-null
                                                        float64
                                                       float64
 11 word_freq_will
                                    4601 non-null
12 word_freq_people
13 word_freq_report
14 word_freq_addresses
                                     4601 non-null
                                   4601 non-null
4601 non-null
                                                       float64
                                                       float64
                                   4601 non-null
4601 non-null
 15 word_freq_free
                                                        float64
 15 word_freq_free
16 word_freq_business
                                                       float64
                                    4601 non-null
 17 word_freq_email
                                                       float64
                                     4601 non-null
                                                       float64
 18 word_freq_you
                                    4601 non-null
 19 word_freq_credit
                                                        float64
 20 word_freq_your
                                    4601 non-null
                                                       float64
 21 word_freq_font
                                     4601 non-null
                                                       float64
     word_freq_000
                                     4601 non-null
                                                        float64
 23 word_freq_money
                                     4601 non-null
                                                        float64
 24 word_freq_hp
                                    4601 non-null float64
```


Ex. No: 4 4-3-24

Y.V.Ojus 3122 21 5001 125

Data Visualization

Data Distribution

```
class_counts = df['class'].value_counts()
plt.bar(class_counts.index, class_counts.values)
plt.xlabel('Class')
plt.ylabel('Count')
plt.title('Distribution of Email Classes')
plt.xticks(class_counts.index, ['Non-Spam', 'Spam'])
plt.show()
```


Correlation Heatmap

```
correlation_matrix = df.corr()
```

```
# Create a heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.show()
```


Machine Learning Lab UCS2612 ation of Email snam and MNIST da

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Histograms & Boxplot

```
word_freq_columns = df.loc[:, 'word_freq_make':'word_freq_conference'].columns
index = 1
```

```
# Plot boxplots for word frequency features
plt.figure(figsize=(12, 8))
sns.boxplot(data=df[word_freq_columns[index]])
plt.xlabel('Word Frequency Features')
plt.ylabel('Frequency')
plt.title(f'Boxplot of {word_freq_columns[index]} Features')
plt.xticks(rotation=45)
plt.show()
```


Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

word_freq_columns = df.loc[:, 'word_freq_make':'word_freq_conference'].columns index = 0

Plot histogram for the selected word frequency feature plt.figure(figsize=(12, 8)) sns.histplot(data=df[word_freq_columns[index]], bins=20) # Adjust bins and kde as needed plt.xlabel('Word Frequency') plt.ylabel('Frequency') plt.ylabel('Frequency') plt.title(f'Histogram of {word_freq_columns[index]} Features') plt.xticks(rotation=45) plt.show()

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Null Values

df.isnull().sum()

Statistics of Data

df.describe().transpose()

	count	mean	std	min	25%	50%	75%	max
word_freq_make	4601.0	0.104553	0.305358	0.0	0.000	0.000	0.000	4.540
word_freq_address	4601.0	0.213015	1.290575	0.0	0.000	0.000	0.000	14.280
word_freq_all	4601.0	0.280656	0.504143	0.0	0.000	0.000	0.420	5.100
word_freq_3d	4601.0	0.065425	1.395151	0.0	0.000	0.000	0.000	42.810
word_freq_our	4601.0	0.312223	0.672513	0.0	0.000	0.000	0.380	10.000
word_freq_over	4601.0	0.095901	0.273824	0.0	0.000	0.000	0.000	5.880
word_freq_remove	4601.0	0.114208	0.391441	0.0	0.000	0.000	0.000	7.270
word_freq_internet	4601.0	0.105295	0.401071	0.0	0.000	0.000	0.000	11.110
word_freq_order	4601.0	0.090067	0.278616	0.0	0.000	0.000	0.000	5.260
word_freq_mail	4601.0	0.239413	0.644755	0.0	0.000	0.000	0.160	18.180
word_freq_receive	4601.0	0.059824	0.201545	0.0	0.000	0.000	0.000	2.610
word_freq_will	4601.0	0.541702	0.861698	0.0	0.000	0.100	0.800	9.670
word_freq_people	4601.0	0.093930	0.301036	0.0	0.000	0.000	0.000	5.550
word_freq_report	4601.0	0.058626	0.335184	0.0	0.000	0.000	0.000	10.000
word_freq_addresses	4601.0	0.049205	0.258843	0.0	0.000	0.000	0.000	4.410
word_freq_free	4601.0	0.248848	0.825792	0.0	0.000	0.000	0.100	20.000
word_freq_business	4601.0	0.142586	0.444055	0.0	0.000	0.000	0.000	7.140
word_freq_email	4601.0	0.184745	0.531122	0.0	0.000	0.000	0.000	9.090
word_freq_you	4601.0	1.662100	1.775481	0.0	0.000	1.310	2.640	18.750

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus

3122 21 5001 125

Building Model – SVM

Define Train And Target Columns

X = df.loc[:,'word_freq_make':'capital_run_length_total']
X

y = df['class']

Train Test Split

Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3,random_state=109)

<u>Perform Feature Scaling – Standardization</u>

Feature Scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Fit And Predict

```
kernels = ['linear','poly','rbf','sigmoid']
for ker in kernels:
 #Create a svm Classifier
 clf = svm.SVC(kernel=ker) # Linear Kernel
 #Train the model using the training sets
 clf.fit(X_train, y_train)
 #Predict the response for test dataset
 y_pred = clf.predict(X_test)
 # Model Accuracy: how often is the classifier correct?
 accuracy = metrics.accuracy_score(y_test, y_pred)
 print(f"Kernel: {ker}")
 print("Accuracy:", accuracy)
 # Model Precision: what percentage of positive tuples are labeled as such?
 precision = metrics.precision_score(y_test, y_pred)
 print("Precision:", precision)
 # Model Recall: what percentage of positive tuples are labelled as such?
 recall = metrics.recall_score(y_test, y_pred)
 print("Recall:", recall)
 print()
```


Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Kernel: linear

Accuracy: 0.9203475742215785 Precision: 0.9023508137432188 Recall: 0.8990990990990991

Kernel: poly

Accuracy: 0.7863866763215062 Precision: 0.9513888888888888 Recall: 0.4936936936937

Kernel: rbf

Accuracy: 0.9217958001448225 Precision: 0.9146567717996289 Recall: 0.8882882882882883

Kernel: sigmoid

Accuracy: 0.8776249094858798 Precision: 0.8547794117647058 Recall: 0.8378378378378378

#Create a svm Classifier clf = svm.SVC(kernel='linear') # Linear Kernel

#Train the model using the training sets clf.fit(X_train, y_train)

#Predict the response for test dataset
y_pred = clf.predict(X_test)

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Visualize Output

Classification Report

	precision	recall	f1-score	support
ø 1	0.93 0.90	0.93 0.90	0.93 0.90	826 555
accuracy macro avg weighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	1381 1381 1381

Confusion Matrix

Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test,y_pred) cm_display = metrics.ConfusionMatrixDisplay(cm) cm_display.plot()

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Building Model - Naive Bayes

Train Test Split

Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3,random_state=109)

Feature Scaling

Feature Scaling sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)

Initialize Model

from sklearn.naive_bayes import GaussianNB gnb = GaussianNB()

Fit And Predict

y_pred = gnb.fit(X_train, y_train).predict(X_test)

Accuracy

Model Accuracy: how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.8037653874004345

Machine Learning Lab UCS2612 If instance of Empilement and MNIST d

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24

Y.V.Ojus 3122 21 5001 125

Precision & Recall

Model Precision: what percentage of positive tuples are labeled as such? print("Precision:",metrics.precision_score(y_test, y_pred))

Model Recall: what percentage of positive tuples are labelled as such? print("Recall:",metrics.recall_score(y_test, y_pred))

Precision: 0.6815856777493606 Recall: 0.9603603603603603

Visualizing Output

Classification Report

Classification Report from sklearn.metrics import classification_report print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
9	0.96	0.70	0.81	826
1	0.68	0.96	0.80	555
accuracy			0.80	1381
macro avg	0.82	0.83	0.80	1381
weighted avg	0.85	0.80	0.80	1381

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Confusion Matrix

Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test,y_pred) cm_display = metrics.ConfusionMatrixDisplay(cm) cm_display.plot()

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

4.2 Classification of MNIST dataset using Support Vector Machine (SVM)

Clone Repo

!git clone https://github.com/Ojus999/Machine-Learning-Sem-6.git

Import Dependencies

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm, metrics from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

Loading the Dataset

```
def load_mnist_images(path):
    with open(path, 'rb') as f:
        data = np.frombuffer(f.read(), dtype=np.uint8, offset=16)
    return data.reshape(-1, 28*28)

def load_mnist_labels(path):
    with open(path, 'rb') as f:
        data = np.frombuffer(f.read(), dtype=np.uint8, offset=8)
    return data
```

X_train = load_mnist_images('/content/Machine-Learning-Sem-6/Ex 4/mnist/train-images-idx3-ubyte/train-images.idx3-ubyte')

y_train = load_mnist_labels('/content/Machine-Learning-Sem-6/Ex 4/mnist/train-labels-idx1-ubyte/train-labels.idx1-ubyte')

X_test = load_mnist_images('/content/Machine-Learning-Sem-6/Ex 4/mnist/t10k-images-idx3-ubyte/t10k-images.idx3-ubyte')

y_test = load_mnist_labels('/content/Machine-Learning-Sem-6/Ex 4/mnist/t10k-labels-idx1-ubyte/t10k-labels.idx1-ubyte')

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24

Y.V.Ojus 3122 21 5001 125

Pre-Processing the Data

```
X_train = X_train / 255.0
X_test = X_test / 255.0
```

Exploratory Data Analysis:

```
# Visualization of some samples from the dataset plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i+1) plt.imshow(X_train[i].reshape(28, 28), cmap='gray') plt.axis('off') plt.show()
```


Classification of Email spam and MNIST data Ex. No: 4

Y.V.Ojus 3122 21 5001 125

Train Test Split

4-3-24

#Split the data into training, testing, and validation sets

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42)

Train the Model

Train the model
svm_model = svm.SVC(kernel='rbf', C=10, gamma='scale')
svm_model.fit(X_train, y_train)

Test the Model

#Test the model
y_pred = svm_model.predict(X_test)

Classification of Email spam and MNIST data

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Measure Performance

#Measure the performance of the trained model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)

print("Accuracy:", accuracy)
print("Confusion Matrix:\n", conf_matrix)
print("Classification Report:\n", classification_rep)

Accui	racy:	0.98	41							
Conf	usion	Matr	ix:							
[[!	974	0	1	0	0	2	0	1	2	9]
[0 11	29	3	0	0	1	0	1	1	0]
[5	1 10	13	1	1	0	2	5	4	0]
[0	0	3	995	0	2	0	4	3	3]
[1	0	3	0	965	0	2	0	0	11]
[2	0	0	9	1	873	3	0	2	2]
[3	2	0	0	2	3	946	0	2	0]
[0	3	8	2	1	0	0	1007	0	7]
[1	0	2	3	1	2	1	2	959	3]
[1	3	0	7	7	3	1	6	1	980]]
Class	sific	ation	Rep	ort:						
			pre	cisio	on	reca	11 f	1-scor	re	support
		0		0.99	9	0.9	9	0.99	•	980
		1		0.99	•	0.9	9	0.99	•	1135
		2		0.98	3	0.9	8	0.98	3	1032
		3		0.98	3	0.9	9	0.98	3	1010
		4		0.99	9	0.9	8	0.98	3	982
		5		0.99	9	0.9	8	0.98	3	892
		6		0.99	9	0.9	9	0.99	9	958
		7		0.98	3	0.9	8	0.98	3	1028
		8		0.98	3	0.9	8	0.98	3	974
		9		0.97	7	0.9	7	0.97	7	1009
	accur	асу						0.98	3	10000
ma	acro	avg		0.98	3	0.9	8	0.98	3	10000
weig	hted	avg		0.98	3	0.9	8	0.98	3	10000
_										

Ex. No: 4 4-3-24 Y.V.Ojus 3122 21 5001 125

Visualize Confusion Matrix

Visualize confusion matrix plt.figure(figsize=(8, 6)) plt.imshow(conf_matrix, cmap='Blues') plt.colorbar() plt.title('Confusion Matrix') plt.xlabel('Predicted Label') plt.ylabel('True Label') plt.show()

