빅데이터 처리

-Big Data Processing

10주차

진로 특강

- 10월 31일 , 16:15 ~ (1시간 or 1시간 30분)
- 강사 : ㈜ 포스로직 , 송종현 대표
- 주제 : 성공 적인 커리어를 쌓기 위한 준비
- 7호관 522호

빅데이터 처리

■ 프로젝트

- 주제 변경 될 경우 새로운 ppt 첨부 후 메일 (기 존 ppt 삭제 x)

■계획

- 9주차 : 머신 러닝 분석

- 10주차 : 데이터 시각화

- 11주차 : 데이터 시각화

- 12주차 : 지리 정보 분석

- 13주차 : 텍스트 분석

- 14주차 : 시계열 데이터 분석

- 15주차

수정

```
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
# 피마 인디언 당뇨병 데이터셋을 불러옵니다.
df = pd.read_csv('/content/pima-indians-diabetes3.csv')
# 세부 정보를 X로 지정합니다.
X = df.iloc[:,0:8]
# 당뇨병 여부를 Y로 지정합니다.
y = df.iloc[:,8]
<u>al</u> = RandomForestClassifier(n_estimators=10)
al.fit(X, y) => 필요 없음
cscore=cross_val_score(al,X,y,cv=5) # 교차 검증 k=5
print('accuracy',cscore.mean())
X.shape
```

오늘 수업 내용

seaborn

- lineplot
- barplot
- scatterplot
- countplot
- violinplot, swarmplot
- boxplot

matplotlib

- Pie chart
- Area chart

Pandas stacked plot

데이터 시각화 (Data Visualization)

- 데이터 분석 결과를 쉽게 이해할 수 있도록 시각적으로 표현하고 전달하는 과정
- 중요성
 - 직관적인 이해를 제공
 - 데이터의 구조와 패턴을 파악 하기 용이하다.
 - 다양한 관점에서 데이터에 관한 통찰력을 제공한다.

- 동영상 조회 수를 비교 했을 때 series물의 비율은 27%였다. 그 외에 영화는 35%, animation은 23%, documentary는 15%였다.

동영상 조회	비율
movie	35%
series	27%
animation	23%
documentary	15%

파이썬 표준 시각과 도구. pandas와 연동

https://matplotlib.org/

matplotlib 기반으로 한 시각화 도구, matplotlib 보다 다양한 함수 제공. pandas와 연동 https://seaborn.pydata.org/

Cheat Sheet: Seaborn Charts | Kaggle

비즈니스 인텔리전스 (Business Intelligence) 대시보드로의 역할을 하기 위해 개발 된 도구. 의사 결정 자들이 빠르고 정확한 의사 결정을 할 수 있도록 도와주는 도구의 모음. 인터랙션 그래프 지원.

Matplotlib의 기능 일부를 내장 하고 있음.

Seaborn, matplotlib

Import seaborn as sns

- lineplot
- barplot
- scatterplot
- countplot
- violinplot, swarmplot
- boxplot

import matplotlib.pyplot as plt

- Pie chart
- Area chart

Import pandas as pd

Pandas

stacked plot

Seaborn – lineplot

• 데이터의 변화를 line으로 표현

```
import pandas as pd
import seaborn as sns

df=pd.read_csv('/content/temperature.csv')
print(df)
sns.lineplot(data=df,x='month',y='seoul')
```

```
month seoul busan
         15
             20
         18
              23
         25
             27
             28
         26
         28
             34
             26
         24
         23
               25
10
               20
     12
11
               10
```


Seaborn – lineplot

import pandas as pd import seaborn as sns

df=pd.read_csv('/content/temperature.csv')
sns.set_style('darkgrid') # option: whitegrid, white, dark
sns.lineplot(data=df,x='month',y='seoul',marker='o',color
='r',linestyle='--')

Matplotlib cheatsheet

Seaborn – lineplot

sns.set_style('darkgrid') # option: whitegrid, white, dark ax=sns.lineplot(data=df,x='month',y='seoul',marker='o',color='r',linestyle='--',label='seoul') sns.lineplot(data=df,x='month',y='busan',marker='o',color='b',linestyle='--',label='busan') ax.set(xlabel='month', ylabel='temperature',title='temperatures for cities')

moi	nth	seoul	busan
0	1	0	5
1	2	3	8
2	3	6	9
3	4	15	20
4	5	18	23
5	6	25	27
6	7	26	28
7	8	28	34
8	9	24	26
9	10	23	25
10	11	15	20
11	12	7	10

Tip 데이터

import pandas as pd import seaborn as sns

tips=sns.load_dataset("tips")
tips

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
			•••				
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

Seaborn – barplot

• 데이터의 개수를 표현하거나 연속 값을 경우는 해당 값들의 평균값을 나타내줌

tips=sns.load_dataset("tips")

sns.barplot(data=tips,x='day',y='total_bill')

요일 별 계산 금액

Seaborn – barplot

tips=sns.load_dataset("tips")

sns.barplot(data=tips,x='day',y='total_bill',hue='sex')

Hue : 하위 분류

요일 별 계산 금액, 하위 분류: 성별

Seaborn – barplot

tips=sns.load_dataset("tips")

sns.barplot(data=tips,x='day',y='total_bill',hue='sex',dodge=False)

dodge=False : 겹치게

요일 별 계산 금액, 하위 분류: 성별

Seaborn – scatterplot

• 데이터의 분포를 2차원 평면에 표현

tips=sns.load_dataset("tips")
sns.scatterplot(data=tips,x='total_bill',y='tip')

전체 금액과 팁과의 관계 분포

Seaborn – scatterplot

• 데이터의 분포를 2차원 평면에 표현

tips=sns.load_dataset("tips")

sns.scatterplot(data=tips,x='total_bill',y='tip', hue='time')

Hue : 하위 분류

전체 금액과 팁과의 관계 분포, 하위 분류 time

Seaborn – scatterplot

• 데이터의 분포를 2차원 평면에 표현

tips=sns.load_dataset("tips")

sns.scatterplot(data=tips,x='total_bill',y='tip',
hue='smoker')

hue : 하위 분류

전체 금액과 팁과의 관계 분포, 하위 분류 흡연 여부

Seaborn – histplot

- 히스토그램은 데이터의 분포를 표현하는 그래프.
- 구간별 해당 count를 표현

```
tips=sns.load_dataset("tips")
```

sns.histplot(data=tips,x='total_bill')

Seaborn – countplot

• 범주형 데이터의 항목별 개수를 그래프로 표현

tips=sns.load_dataset("tips")

sns.countplot(data=tips,x='smoker')

흡연 유무의 따른 수

Seaborn – countplot

• 범주형 데이터의 항목별 개수를 그래프로 표현

tips=sns.load_dataset("tips")

sns.countplot(data=tips,x='smoker',hue='sex')

흡연 유무의 따른 수: 하위 분류 : 성별

Seaborn – boxplot

- 데이터의 분포를 나타내면서 밀접 정도 표현
- 25%~75%까지의 데이터를 박스 형태에 위치

tips=sns.load_dataset("tips")

sns.boxplot(data=tips, x='day',y='total_bill')

요일별 전체 금액의 분포

Seaborn – violinplot

• 데이터의 분포를 바이올린과 비슷한 형태로 보여주는 그래프

tips=sns.load_dataset("tips")

sns.violinplot(data=tips, x='day',y='total_bill')

요일별 전체 금액의 분포

Seaborn – swarmplot

• 데이터의 분포를 산점도를 이용해 나타냄

tips=sns.load_dataset("tips")

 $sns.swarmplot(data=tips, x='day',y='total_bill')$

요일별 전체 금액의 분포

■ 비율 비교에 효과 적임

```
import matplotlib.pyplot as plt
ratio = [35, 27, 15, 23]
labels = ['movie', 'series', 'documentary', 'animation']
plt.pie(ratio, labels=labels, autopct='%.1f%%')
plt.show()
```


plt.show()

```
import matplotlib.pyplot as plt

ratio = [35, 27, 15, 23]

labels = ['movie', 'series', 'documentary', 'animation']

explode = [0, 0.1, 0, 0.0]

plt.pie(ratio, labels=labels,

explode=explode,autopct='%.1f%%')
```



```
import matplotlib.pyplot as plt
ratio = [35, 27, 15, 23]
labels = ['movie', 'series', 'documentary', 'animation']
explode = [0, 0.15, 0, 0.0]
plt.pie(ratio, labels=labels,
shadow=True,explode=explode,autopct='%.1f%%',textprops={'fontsize': 15})
```

plt.show()


```
import matplotlib.pyplot as plt
ratio = [35, 27, 15, 23]
labels = ['movie', 'series', 'documentary', 'animation']
explode = [0, 0.1, 0, 0.0]
colors=['silver', 'gold', 'navy', 'lightsteelblue']
plt.pie(ratio, labels=labels,
shadow=True,explode=explode,colors=colors,autopct='%.1f%%',textprops={'fontsize': 15})
```

plt.show()


```
import matplotlib.pyplot as plt
ratio = [35, 27, 15, 23]
labels = ['movie', 'series', 'documentary', 'animation']
explode = [0, 0.1, 0, 0.0]
colors=['silver', 'gold', 'navy', 'lightsteelblue']
wedgeprops={'width': 0.7, 'edgecolor': 'w', 'linewidth': 5}
plt.pie(ratio, labels=labels, colors=colors,autopct='%.1f%%',
wedgeprops=wedgeprops,textprops={'fontsize': 15})
plt.title('contents streaming ')
```

plt.show()

Matplitlib ,seaborn 한글 폰트 for colab

```
# 폰트 설치
import matplotlib.font manager as fm
!apt-get -qq -y install fonts-nanum > /dev/null
fontpath = '/usr/share/fonts/truetype/nanum/NanumBarunGothic.ttf'
font = fm.FontProperties(fname=fontpath, size=9)
fm. rebuild()
#런타임 재시작
import os
os.kill(os.getpid(), 9)
# 폰트 설정
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.font_manager as fm
# 마이너스 표시 문제
mpl.rcParams['axes.unicode_minus'] = False
# 하글 폰트 설정
path = '/usr/share/fonts/truetype/nanum/NanumGothicBold.ttf'
font_name = fm.FontProperties(fname=path, size=18).get_name()
plt.rc('font', family=font_name)
fm. rebuild()
```

pandas area plot (면적 그래프)

■ 데이터의 합계와 비율이 전체적으로 어떻게 변하는지 파악 할 수 있다.

%reset -f import pandas as pd import matplotlib.pyplot as plt

df=pd.read_csv('/content/contents.csv')
print(df)

동영상 장르별 조회 비율

컨텐츠 조회수

	영화	뮤직비	디오	음악
0	30	10	6	
1	20	23	7	
2	30	34	8	
3	35	23	13	
4	45	20	14	
5	40	21	15	
6	48	15	16	
7	50	14	20	
8	43	13	18	
9	33	12	16	
10	21	16	14	
11	15	18	12	

■ 데이터의 합계와 비율이 전체적으로 어떻게 변하는지 파악 할 수 있다.

df.plot(kind='area',stacked=False) plt.title('동영상 조회수') plt.show()


```
df=pd.read_csv('/content/contents.csv')
print(df)
df.plot(kind='area',stacked=True)
plt.title('동영상 조회수')
plt.show()
```


Pandas (matplotlib) bar (누적 막대)

```
df=pd.read_csv('/content/contents.csv')
df.plot(kind='bar',stacked=True)
plt.title('동영상 조회수')
plt.xlabel('month')
plt.ylabel('조회수')
plt.show()
```


Pandas (matplotlib) bar (누적 막대-가로)

```
df=pd.read_csv('/content/contents.csv')
df.plot(kind='barh',stacked=True)
plt.title('동영상 조회수')
plt.xlabel('month')
plt.ylabel('조회수')
plt.show()
```


과제

- 1~10. (8,9,10은 선택 과제)
- *.ipynb, *.py 제출

1.class 별로 승객 수를 나타내는 countplot을 구하시오(image 참조)

인하공전 컴퓨터 정보 과

과제

import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import matplotlib.pyplot as plt import seaborn as sns

filename = '/content/welfareClean.csv'

4											
•		성별	생일	결혼 뮤무	종교 유무	직업 코드	소득	지역구	나이	직업	연령대
	0	남성	1948	무응답	없슴	942.0	120.000000	서울	73	경비원 및 검표원	노년
	1	남성	1945	이혼	없슴	942.0	220.200000	서울	76	경비원 및 검표원	노년
	2	남성	1946	결혼	없슴	942.0	139.000000	서울	75	경비원 및 검표원	노년
	3	남성	1953	결혼	없슴	942.0	150.000000	서울	68	경비원 및 검표원	노년
	4	남성	1960	결혼	있슴	942.0	166.000000	서울	61	경비원 및 검표원	노년

	7524	여성	1950	결혼	있슴	819.0	241.619016	강원/충북	71	기타 식품가공관련 기계조작원	노년
	7525	남성	1960	결혼	있슴	111.0	250.000000	광주/전남/전북/제주도	61	의회의원 고위공무원 및 공공단체임원	노년
	7526	남성	1960	결혼	없슴	111.0	1250.000000	서울	61	의회의원 고위공무원 및 공공단체임원	노년
	7527	남성	1992	무응답	있슴	876.0	280.000000	부산/경남/울산	29	선박 갑판승무원 및 관련 종사원	청년
	7528	남성	1935	결혼	있슴	876.0	156.000000	부산/경남/울산	86	선박 갑판승무원 및 관련 종사원	노년

7529 rows × 10 columns

과제

```
df=pd.read_csv('/content/입국자.csv')
print(df)
```

```
month 미국 중국 일본
       20 10 15
     2 34 15 14
       40
          15 15
          16 17
       50
       55
     6 45
          18 13
     7 43
          22 12
       39
          14
8
       45
          13
       51
10
        53
           12 20
11
        57
           9 22
```


수고하셨습니다

jhmin@inhatc.ac.kr