

Advanced Algorithms and Complexity - CSE245

G3/S5

Introduction

This part explores the feasibility of completing a closed knight's tour—a sequence of legal knight moves that visits every square on an n x n chessboard exactly once and ends on a square one move away from the starting point. The problem, rooted in recreational mathematics, is a classic example in algorithm design and graph theory.

We investigate three approaches to solving the problem:

- 1. A greedy heuristic based on Warnsdorff's Rule,
- 2. A brute-force backtracking method, and
- 3. A hybrid algorithm that combines Warnsdorff's heuristic with recursive backtracking.

Each method is evaluated for its performance and reliability across different board sizes, with special focus on how board dimensions affect the success and efficiency of the algorithms.

Figure 1

Problem Description

This study addresses the following core questions:

• Can a knight complete a *closed* tour on a standard 8 × 8 board?

- Can the problem be generalized to n × n boards? If so, which values of n allow for a closed tour?
- Can a greedy algorithm based on Warnsdorff's Rule efficiently find such a tour?
- What is the performance of this approach across different board sizes and starting positions?

Theoretical Solution

Allen J. Schwenk's seminal 1991 paper, "Which Rectangular Chessboards Have a Knight's Tour?" [1], provides a comprehensive characterization of rectangular boards that admit a closed knight's tour. The core result of the mathematical paper is often paraphrased as follows:

A closed knight's tour exists on an $m \times n$ chessboard if and only if:

- m and n are not both odd,
- m ≠ 1, 2, or 4,
- and if m = 3, then $n \ne 4$, 6, or 8.

Therefore, we can conclude that for:

• General n × n Boards

- No closed tour exists for n = 1, 2, 3, 4, or 5.
- A closed tour exists if n ≥ 6 and n is even.
- No closed tour exists on odd-sized boards with $n \ge 5$, due to the knight's coloralternating nature (requiring an even number of squares for a loop).

• An 8 × 8 Chessboard

A closed knight's tour is known to exist on the 8×8 board, as established by Schwenk's Theorem.

Assumptions

- The knight moves according to standard chess rules: in an L-shape two squares in one direction and one square in a perpendicular direction.
- The board is a square of size $\mathbf{n} \times \mathbf{n}$.
- Each square must be visited **exactly once** no repetitions are allowed.
- A closed tour ends on a square that is one legal knight's move away from the starting square.
- A tour may not exist for all n, and success depends on the board size and the knight's movement constraints.
- The algorithm attempts all possible starting positions to increase the likelihood of finding a valid closed tour.
- The greedy algorithm is based on Warnsdorff's Rule, selecting the next move that leads to the fewest onward moves from the candidate position.
- Ties between moves with equal onward degrees are broken deterministically by evaluating knight moves in a fixed, pre-defined order.
- No randomness or backtracking is used the algorithm strictly follows local optimality at each step.
- A knight's tour is considered valid if all n² squares are visited exactly once. For a closed tour, the final square must be one knight move from the starting square.

Algorithm Design

Base Greedy (Warnsdorff's Rule)

In 1823, H. C. von Warnsdorff introduced a heuristic for solving the knight's tour problem, stating: "Always move the knight to an adjacent, unvisited square with the fewest onward moves. This strategy aims to minimize the risk of the knight becoming trapped by prioritizing moves that lead to squares with limited future options. By doing so, it helps in constructing a complete tour without revisiting any square. While Warnsdorff's rule doesn't guarantee a solution in every case, it significantly improves the chances of finding a complete tour, especially on standard 8×8 chessboards.

Algorithm Steps:

- Start from each possible square (x, y) on the board002E
- At each step, among all legal knight moves from the current square:
 - o Choose the one that leads to the **fewest onward valid moves**.
 - If multiple moves have the same onward count, pick the first in the fixed order (no random tie-breaking).
- Continue until:
 - Either all squares are visited (success), or

- No legal move is possible (failure).
- After visiting all squares, check if the final position is a knight move away from the starting point (for closed tours).

Pseudocode:

function findClosedTourFrom(startX, startY):

Initialize board with -1 (unvisited)

Set current position = (startX, startY), mark it as visited

for i = 1 to $n^2 - 1$:

Choose next move with minimum onward moves (Warnsdorff)

If no such move exists: return failure

Mark next move as visited

Check if final square is a knight move from (startX, startY)

If so, return success

Complexity Analysis

- Number of knight moves per square: There are at most 8 possible knight moves (in general). This is a constant factor.
- At each step: For each of the 8 possible moves, we need to count the onward moves from the new position. Counting the onward moves involves checking up to 8 possible moves again, which is constant in time.
- Total steps in the tour: In the worst case, there are n^2 steps (one for each square on the board).

Thus, the **time complexity** for the greedy approach is:

$$O(n^2 \cdot 8) = O(n^2)$$

For space complexity, we need to store a 2D board of size $n \times n$ to track visited squares, which requires $O(n \wedge 2)$ space.

C++ Implementation:

```
#include <iostream>
#include <vector>
#include <iomanip>
using namespace std;
vector<int> cx = {1, 1, 2, 2, -1, -1, -2, -2};
vector<int> cy = {2, -2, 1, -1, 2, -2, 1, -1};
int N;
bool limits(int x, int y) {
    return x >= 0 \&\& y >= 0 \&\& x < N \&\& y < N;
bool isempty(const vector<int>& board, int x, int y) {
    return limits(x, y) && board[y * N + x] < 0;
int getDegree(const vector<int>& board, int x, int y) {
    int count = 0;
    for (int i = 0; i < 8; ++i) {
        if (isempty(board, x + cx[i], y + cy[i])) {
            count++;
    return count;
bool nextMove(vector<int>& board, int& x, int& y) {
    int minDeg = 9;
    int minIdx = -1;
    int nx, ny;
    for (int i = 0; i < 8; ++i) {
        nx = x + cx[i];
        ny = y + cy[i];
        if (isempty(board, nx, ny)) {
            int deg = getDegree(board, nx, ny);
            if (deg < minDeg) {</pre>
                minDeg = deg;
                minIdx = i;
```

```
if (minIdx == -1) return false;
    nx = x + cx[minIdx];
    ny = y + cy[minIdx];
    board[ny * N + nx] = board[y * N + x] + 1;
    x = nx;
    y = ny;
    return true;
void printBoard(const vector<int>& board) {
    const int cellWidth = 4;
    auto printLine = [](int N, int width, char left, char middle, char right,
char fill) {
        cout << left;</pre>
        for (int i = 0; i < N - 1; ++i) {
            cout << string(width, fill) << middle;</pre>
        cout << string(width, fill) << right << "\n";</pre>
    };
    printLine(N, cellWidth, '+', '+', '+', '-');
    for (int i = 0; i < N; ++i) {
        cout << "|";
        for (int j = 0; j < N; ++j) {
            cout << setw(cellWidth) << board[i * N + j] << "|";</pre>
        cout << "\n";</pre>
        printLine(N, cellWidth, '+', '+', '+', '-');
bool isNeighbour(int x, int y, int sx, int sy) {
    for (int i = 0; i < 8; ++i) {
        if ((x + cx[i] == sx) && (y + cy[i] == sy)) {
            return true;
    return false;
bool findClosedTourFrom(int sx, int sy) {
```

```
vector<int> board(N * N, -1);
    int x = sx, y = sy;
    board[y * N + x] = 1;
    for (int i = 0; i < N * N - 1; ++i) {
        if (!nextMove(board, x, y))
            return false;
    if (!isNeighbour(x, y, sx, sy)) {
        return false;
    cout << "Closed knight's tour found starting at (" << sx << ", " << sy <<</pre>
"):\n";
    printBoard(board);
    return true;
int main() {
    cout << "Enter board size n (n x n): ";</pre>
    cin >> N;
    if (N < 1) {
        cout << "Invalid board size.\n";</pre>
        return 1;
    for (int sx = 0; sx < N; ++sx) {
        for (int sy = 0; sy < N; ++sy)
            if (findClosedTourFrom(sx, sy)) {
                return 0;
    cout << "No closed knight's tour found for this board size.\n";</pre>
    return 0;
```

Alternative Approach: Backtracking

The backtracking method systematically explores all possible knight moves from the current position, marking visited squares and backtracking upon reaching dead ends. This exhaustive search ensures that all potential paths are considered.

Pseudocode:

```
function solveKT():
  Initialize board[N][N] with -1
  Set board[0][0] = 0 // Start from top-left corner
  Define moveX[8] = \{2, 1, -1, -2, -2, -1, 1, 2\}
  Define moveY[8] = \{1, 2, 2, 1, -1, -2, -2, -1\}
  if solveKTUtil(0, 0, 1, 0, 0, board, moveX, moveY) is true:
     print board
  else:
     print "No solution"
function solveKTUtil(x, y, movei, startX, startY, board, moveX, moveY):
  if movei == N * N:
     if isNeighbor(x, y, startX, startY):
       return true
     else:
       return false
  for k = 0 to 7:
     next_x = x + moveX[k]
     next_y = y + moveY[k]
     if isSafe(next_x, next_y, board):
       board[next_x][next_y] = movei
       if solveKTUtil(next_x, next_y, movei + 1, startX, startY, board, moveX,
moveY):
         return true
       board[next_x][next_y] = -1 // Backtrack
  return false
```

Explanation:

- Starts from a given cell (usually top-left).
- Explores all 8 knight moves recursively.
- If a move leads to a dead-end, it backtracks.
- Base case: All squares are visited.

Time Complexity

Worst-case time complexity: O(8 ^ (n ^ 2)); at each of the n^2 squares, the knight can make up to 8 moves, leading to an exponential number of possible paths.

Space Complexity

Auxiliary space: $O(n^2)$; uses a 2D array to track visited squares and a recursion stack.

Pros

- Guaranteed to find a solution if one exists.
- Straightforward to implement.

Cons

• Highly inefficient for larger boards due to exponential time complexity.

Final Enhancement: Hybrid Approach (Warnsdorff's Heuristic + Backtracking)

This approach combines Warnsdorff's heuristic with backtracking. Initially, it selects the next move based on the square with the fewest onward moves (Warnsdorff's Rule). If a dead end is encountered, the algorithm backtracks to explore alternative paths.

Pseudocode:

```
function solveHybridKT():
  Initialize board[N][N] with -1
  Set startX = sx, startY = sy // Starting position (random or fixed)
  Set board[startX][startY] = 0
  Define moveX[8] = \{2, 1, -1, -2, -2, -1, 1, 2\}
  Define moveY[8] = \{1, 2, 2, 1, -1, -2, -2, -1\}
  if hybridKTUtil(startX, startY, 1, startX, startY, board, moveX, moveY):
    print board
  else:
    print "No solution"
function hybridKTUtil(x, y, movei, startX, startY, board, moveX, moveY):
  if movei == N * N:
    if isNeighbor(x, y, startX, startY):
       return true
    else:
       return false
  next_moves = getSortedMoves(x, y, board, moveX, moveY)
  for each (nx, ny) in next_moves:
    board[nx][ny] = movei
    if hybridKTUtil(nx, ny, movei + 1, startX, startY, board, moveX, moveY):
       return true
    board[nx][ny] = -1 // Backtrack
  return false
```

Explanation

- Like backtracking, but it orders the knight's possible next moves using Warnsdorff's heuristic.
- Warnsdorff's rule: Choose the next square with the fewest onward moves.
- This greatly reduces unnecessary exploration.
- Still backtracks when stuck but often avoids deep recursion.

Time Complexity

Average-case time complexity: O(n ^ 3); Warnsdorff's heuristic significantly reduces the number of paths to explore, leading to a polynomial time complexity in practice.

Worst-case time complexity: Still O(8 $^{\circ}$ (n $^{\circ}$ 2)) In the worst case, the algorithm may need to explore all possible paths, similar to the pure backtracking approach.

Space Complexity

Auxiliary space: O(n ^ 2) Similar to the backtracking approach, it uses a 2D array to track visited squares and a recursion stack.

Pros:

- Much more robust
- Fast due to greedy bias
- Recovers from dead-ends using backtracking

Cons:

- More complex implementation
- Still costly on very large boards

Sample Output for Different Cases of n

In this section, we will display the outputs of the Greedy Approach (Warnsdorff's Rule) for different values of n. These outputs illustrate the behaviour of the algorithm for various scenarios:

Case 1: n < 6 (No closed knight's tour possible)

For board sizes n = 1, 2, 3, 4, and 5, no valid closed knight's tour exists.

```
Enter board size n (n x n): 3
No closed knight's tour found for this board size.
```

Case 2: Odd n > 6 (Closed knight's tour does not exist)

For odd-sized boards greater than 6 (e.g., n = 7, 9, 11), closed knight's tours are not possible due to the knight's alternating color constraint.

```
Enter board size n (n x n): 7
No closed knight's tour found for this board size.
```

Case 3: Even n > 6 (Closed knight's tour exists)

For even-sized boards greater than 6 (e.g., n = 8, 10, 12), closed knight's tours are theoretically possible, and the algorithm should succeed in finding them.

```
Enter board size n (n x n): 8
Closed knight's tour found starting at (1, 0):
        1
           30 l
               63
                   16
                       11
  14
                             34
                                 61 l
           15
               12
                    59
                         62
       13
           64
                31
                    56
                         33
                             60 l
                58
  41
           43
                    49
                55
               48
           46
               39
                     6
                         21
       26
            5 22
                   47
                        38
                                  20
```

Case 4: Large even n (e.g., n = 70 or larger)

For large even-sized boards, the algorithm can start to show slow performance due to the large search space.

Enter board size n (n x n): 70 Closed knight's tour found starting at (1, 6):	
124 211 3714 297 132 299 1698 1737 136 1791 1696 1793 128 1795 1694 1793 128 1795 1694 1793 126 1793 1696 1793 126 1793 1696 1799 122 1799 1688 1741 128 1794 1686 1899 118 1795 1684 1895 116 1675	P)
1713 286 133 218 1715 4786 131 1708 1697 4628 129 1706 1695 4618 127 1722 1693 4578 125 1728 1691 4468 123 1738 1689 3844 121 1744 1687 3692 119 1754 1685 1808 117 1756 1683 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 117 1756 1808 1808 1808 1808 1808 1808 1808 1808 1808 180	1
212 135 1712 4789 288 1699 1716 4785 1718 1707 1702 4621 1704 1721 1732 4609 1734 1729 1724 4575 1726 1737 1748 4467 1750 1745 1740 3841 1742 1753 1810 3691 2104 1813 1806 1861 1816 1757 1740	7
285 4744 213 1710 4787 4790 4883 1708 4793 4784 4619 1720 4611 4626 4687 1730 4577 4602 4579 1736 4471 4510 4469 1746 3843 4446 3845 1752 3707 3700 3693 1812 1807 3448 2103 1814 1803 1864 1805 1806	e i
136 1711 4788 4745 4886 1789 4792 4859 4882 1719 4794 4783 4622 1731 4612 4625 4688 1735 4576 4511 4574 1747 4466 4447 4330 1751 3842 4123 3840 1811 3786 3697 3690 2185 1862 1859 2182 1811 1878	5
4743 284 137 214 4791 4894 4889 4889 4889 4888 4779 4618 4627 4782 4623 4686 4683 4588 4691 4472 4513 4470 4589 4288 4445 4286 4331 3846 3699 3788 3781 3694 3447 3696 3449 2186 1863 1853	3 .
138 1 4746 4899 4748 4885 4866 4895 4856 4891 4810 4795 4780 4617 4628 4613 4624 4695 4512 4573 4588 4465 4448 4329 4370 4289 4124 3839 4122 3837 3698 3795 3660 3689 3446 3653 2822 2185	ı İ
283 4742 215 4759 4893 4898 4891 4888 4861 4812 4857 4778 4799 4634 4781 4694 4581 4694 4581 4694 4587 4584 4473 4514 4475 4444 4287 4332 4285 4296 3847 3764 3769 3762 3695 3654 3661 3459 2167 3444 4287 4332 4285 4296 3847 3764 3769 3762 3695 3654 3661 3459 2167 3444 4287 4332 4285 4296 3847 3764 3769 3762 3695 3654 3661 3459 2167 3444 4287 4332 4285 4296 3847 3764 3769 3762 3695 3654 3661 3459	
2 139 4998 4747 4886 4749 4896 4873 4899 4855 4898 4811 4796 4631 4636 4629 4614 4583 4572 4515 4476 4449 4464 4371 4328 4369 4202 4125 3838 4121 3836 3655 3688 3659 3652 3445 3592 2023	
4741 282 4751 216 4897 4892 4887 4878 4813 4862 4777 4854 4635 4798 4633 4582 4599 4516 4585 4596 4555 4474 4643 4459 4333 4284 4291 4264 4625 3848 3763 3710 3589 3662 3591 3658 3451 2166	8
140 3 4846 4885 4876 4883 4874 4889 4872 4879 4814 4797 4632 4647 4630 4615 4586 4571 4556 4477 4584 4463 4372 4327 4368 4203 4126 4201 4120 3835 3764 3687 3656 3651 3554 3593 3442 2095	
201 4740 217 4752 4847 4888 4877 4882 4863 4776 4853 4776 4815 4636 4569 4598 4517 4588 4595 4554 4479 4442 4451 4334 4283 4292 4285 4026 3849 4024 3711 3588 3663 3590 3657 3454 3555 3453	
4 141 4754 4845 4884 4875 4864 4871 4889 4867 4816 4775 4648 4597 4646 4587 4576 4557 4478 4589 4462 4373 4449 4367 4326 4127 4200 4119 3834 3765 3686 3763 3650 3587 3594 3553 3456 3465 3	L)
4735 288 4739 218 4753 4848 4881 4866 4773 4852 4771 4818 4769 4659 4637 4568 4589 4518 4553 4488 4441 4452 4335 4282 4293 4206 4827 3852 4823 3850 3649 3712 3551 3664 3455 3556 3453 3458 3459	
142 5 4734 4755 4844 4865 4879 4849 4868 4817 4774 4649 4638 4645 4596 4641 4558 4493 4502 4461 4374 4439 4366 4325 4128 4199 4118 3859 3766 3833 3762 3685 3596 3595 3552 3457 3438 3397	i
199 4736 219 4738 4733 4838 4843 4852 4851 4772 4819 4768 4651 4640 4567 4590 4519 4552 4481 4492 4453 4336 4281 4287 4828 3853 4022 3853 3858 3713 3648 3665 3550 3557 3396 3459 227	•
6 143 4732 4839 4756 4833 4856 4869 4842 4823 4762 4639 4644 4595 4642 4559 4494 4591 4469 4375 4438 4365 4324 4129 4198 4117 3868 3767 3832 3761 3684 3715 3596 3585 3492 3437 3398 3399	
4731 198 4737 228 4837 4840 4831 4822 4765 4820 4767 4652 4681 4566 4591 4520 4551 4482 4491 4454 4337 4280 4295 4288 4829 3854 4821 3760 3857 3714 3647 3666 3549 3558 3393 3460 3387 3490	
144 7 4836 4729 4828 4757 4834 4841 4824 4763 4682 4761 4634 4643 4560 4495 4580 4495 4	

:

Case 5: Too Large n (e.g., n = 1000)

For very large boards, like n = 1000, the greedy approach becomes computationally expensive and impractical due to the growing number of possibilities. It becomes too slow to complete in a reasonable time.

Conclusion

The greedy algorithm based on Warnsdorff's Rule demonstrates its effectiveness for relatively small and even-sized boards (e.g., n = 8), where it can quickly find a closed knight's tour. However, for smaller boards where no tour is possible (n < 6), or for large odd-sized boards (n > 6), it fails to find a valid tour due to the inherent constraints of knight movement. Furthermore, when the board size increases significantly (e.g., n = 70 or larger), the greedy approach becomes slower and struggles with larger search spaces.

In such cases, using a **hybrid approach** that combines the greedy Warnsdorff's heuristic with backtracking **would vastly improve performance**. Backtracking allows the algorithm to explore alternative paths when a dead-end is encountered, recovering from failed attempts.

This enhancement ensures that the knight can find a valid closed tour even on larger and more complex boards (like n = 1000), which would otherwise be impractical using the pure greedy method.

Thus, for larger values of n, incorporating backtracking into the approach is essential to ensure that the algorithm completes successfully within a reasonable time and finds a valid closed knight's tour for all possible board sizes.

References:

- [1] Schwenk, Allen. (1991). Schwenk, A.J.: Which rectangular chessboards have a knight's tour? Math. Mag. 64, 325-332. Mathematics Magazine. 64. 10.2307/2690649.
- [2] https://www.geeksforgeeks.org/the-knights-tour-problem/
- [3] https://en.wikipedia.org/wiki/Knight%27s_tour
- [4] https://www.chess.com/blog/Lord Hammer/the-knights-tour-problem-chess-and-mathcombined