```
In [1]: import matplotlib.pylab as plt
import pandas as pd
```

Google stock data

In [2]: ### 1 Google stock
g_stock=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\GOOG Stock date

\sim		$\Gamma \cap \Gamma$	
()	1117	1 /	
\sim	uu	1 4	

	Date	Open	High	Low	Close	AdjClose	Volume
0	25-02-2013	399.652008	402.695587	393.769043	393.908539	393.908539	4625071
1	26-02-2013	396.015625	396.488861	390.735443	393.589722	393.589722	4421511
2	27-02-2013	395.916016	400.872437	394.077911	398.396698	398.396698	4067389
3	28-02-2013	399.054260	401.988251	399.019379	399.104065	399.104065	4548586
4	01-03-2013	397.410400	402.062958	396.588501	401.589752	401.589752	4367108
995	06-02-2017	799.700012	801.669983	795.250000	801.340027	801.340027	1184500
996	07-02-2017	803.989990	810.500000	801.780029	806.969971	806.969971	1241200
997	08-02-2017	807.000000	811.840027	803.190002	808.380005	808.380005	1155300
998	09-02-2017	809.510010	810.659973	804.539978	809.559998	809.559998	989700
999	10-02-2017	811.700012	815.250000	809.780029	813.669983	813.669983	1135000

1000 rows × 7 columns

```
In [3]: plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    columns = ['Date','Open','High','Low','Close','AdjClose','Volume']
    g_stock.plot()
```

Out[3]: <AxesSubplot:>


```
In [4]: plt.plot(g_stock.Date,g_stock.Open)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("Open")
    plt.title("plot for date and open")
```



```
In [5]: plt.plot(g_stock.Date,g_stock.High)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("High")
    plt.title("plot fot date and high")
```



```
In [5]: plt.plot(g_stock.Date,g_stock.Low)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("Low")
    plt.title("plot for date and low")
```



```
In [6]: plt.plot(g_stock.Date,g_stock.Close)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("Close")
    plt.title("plot for date and close")
```



```
In [7]: plt.plot(g_stock.Date,g_stock.AdjClose)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("AdjClose")
    plt.title("plot for date and adjclose")
```



```
In [8]: plt.plot(g_stock.Date,g_stock.Volume)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("Volume")
    plt.title("plot for date and volume")
```



```
In [42]: rol=g_stock.rolling(window=7).mean()
```

Out[42]: <AxesSubplot:>

stock data

In [10]: s_data=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\Stock_Data.csv"

Out[10]:

	DATE	Cost
0	01-01-1985	72.5052
1	02-01-1985	70.6720

```
DATE
                    Cost
  2 03-01-1985
                  62.4502
    04-01-1985
                  57.4714
     05-01-1985
                  55.3151
392
    09-01-2017
                  98.6154
     10-01-2017
                  93.6137
393
394
     11-01-2017
                  97.3359
395
    12-01-2017 114.7212
396
    01-01-2018 129.4048
```

```
In [11]: plt.plot(s_data.DATE,s_data.Cost)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("Cost")
    plt.title("plot for date and Cost")
```


Out[41]: <AxesSubplot:>

Beer sales

In [13]: Beer=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\beer_sales.csv") Beer

	Date	Beer_Sale
0	01-01-1963	591
1	02-01-1963	464
2	03-01-1963	461
3	04-01-1963	605
4	05-01-1963	586
703	08-01-2021	668
704	09-01-2021	725
705	10-01-2021	649
706	11-01-2021	725
707	12-01-2021	811
	1 2 3 4 703 704 705 706	 0 01-01-1963 1 02-01-1963 2 03-01-1963 3 04-01-1963 4 05-01-1963 703 08-01-2021

708 rows × 2 columns

```
In [14]: plt.plot(Beer.Date, Beer.Beer_Sale)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Date")
    plt.ylabel("Beer_sales")
    plt.title("plot for beer sales in 58 years")
```



```
In [40]: rol=Beer.rolling(window=7).mean()
```

Out[40]: <AxesSubplot:>

Marker yield 1

In [16]: market_1=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\Market_1.csv"

Out[16]:	Month R		Rate
	0	Apr-53	2.83
	1	May-53	3.05

```
Month Rate
2 Jun-53 3.11
3 Jul-53 2.93
4 Aug-53 2.95
... ... ...
151 Aug-96 6.64
152 Sep-96 6.83
153 Oct-96 6.53
154 Nov-96 6.20
155 Dec-96 6.30
```

```
In [17]: plt.plot(market_1.Month,market_1.Rate)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Month")
    plt.ylabel("Rate in percentage")
    plt.title("plot for market_1 yield on US treasury securities at 10 year companies.")
```



```
In [39]: rol=market_1.rolling(window=6).mean()
```

Out[39]: <AxesSubplot:>

• Market yield_2

In [19]: market_2=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\Market_2.csv"

Out[19]:		Month	Rate
	0	Jul-56	3.11
	1	Aug-56	3.33
	2	Sep-56	3.38
	3	Oct-56	3.34
	4	Nov-56	3.49
	159	Jan-00	6.66
	160	Feb-00	6.52
	161	Mar-00	6.26
	162	Apr-00	5.99
	163	May-00	6.44

164 rows × 2 columns

```
In [20]: plt.plot(market_2.Month, market_2.Rate)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Month")
    plt.ylabel("Rate in percentage")
    plt.title("plot for market_2 yield on US treasury securities at 10 year compared.")
```



```
In [38]: rol=market_2.rolling(window=6).mean()
```

Out[38]: <AxesSubplot:>

• chemical Process Viscosity

In [22]: chemical=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\chemical_visc

Out[22]:		Time_period	Reading
	0	1	86.7418
	1	2	85.3195

	Time_period	Reading
2	3	84.7355
3	4	85.1113
4	5	85.1487
95	96	85.7609
96	97	85.2302
97	98	86.7312
98	99	87.0048
99	100	85.0572

```
In [23]: plt.plot(chemical.Time_period, chemical.Reading)
    plt.rcParams["figure.figsize"] = [20,9]
    plt.rcParams["figure.autolayout"] = True
    plt.xlabel("Time_period")
    plt.ylabel("Readings")
    plt.title("plot for chemical reading in particular time period ")
```


Out[35]: <AxesSubplot:>

• pharmaceutical product sales

In [25]: pharma=pd.read_csv("C:\\Users\\Lenovo\\OneDrive\\Desktop\\pharma_sale.csv

0		+	$\Gamma \cap$	F 1	٠.
U	u	l.	ΙZ	.)	

	week	sales
0	1	10618.1
1	2	10537.9
2	3	10209.3
3	4	10553.0
4	5	9934.9
115	116	10650.0
116	117	10741.6
117	118	10246.0
118	119	10354.4
119	120	10155.4

120 rows × 2 columns

2000

In []:

```
In [26]: plt.plot(pharma.week,pharma.sales)
         plt.rcParams["figure.figsize"] = [20,9]
         plt.rcParams["figure.autolayout"] = True
         plt.xlabel("week")
         plt.ylabel("sales")
         plt.title("plot for pharmaceutical products sales in a week")
In [34]: rol=pharma .rolling(window=4).mean()
Out[34]: <AxesSubplot:>
          6000
```

14 of 14