Manual del código de MATLAB/Octave de Calculo Matricial de Estructuras Articuladas (CMENA)

Jacob David Rodríguez Bordón Guillermo Manuel Álamo Meneses

Marzo 2022

Este código de MATLAB/Octave permite analizar en régimen estático estructuras de barras de nudos articulados bidimensionales, esto es, cálculo de desplazamientos y esfuerzos axiles. La implementación del mismo tiene un objetivo educativo, y no profesional.

Para la definición del modelo se debe escribir un fichero de entrada de texto plano con el siguiente formato:

```
<número de materiales>
<identificador> <módulo de elasticidad longitudinal>
...
<número de secciones>
<identificador> <área>
...
<número de nodos>
<identificador> <x> <y>
...
<número de elementos>
<identificador> <id. nodo i> <id. nodo j> <id. sección> <id. material>
...
<número de apoyos>
<identificador> <id. nodo> <tipo de apoyo> [valores adicionales]
...
<número de cargas nodales>
<identificador> <id. nodo> <Fx> <Fy>
...
```

donde la selección del tipo de apoyo y los [valores adicionales] están definidos en la Tabla??. Tómense los casos ej1.dat y ej2.dat en la carpeta examples/ como ejemplos.

Para realizar el análisis, basta con situar la carpeta de trabajo en la raíz del programa, y luego ejecutar la función cmena con un único argumento de entrada indicando la ruta hacia el fichero de entrada, por ejemplo (ruta al archivo para sistemas Linux):

```
> modelo_analizado = cmena('examples/ej1.dat');
```

La función devuelve una variable (una estructura de datos), llamada en este caso modelo_analizado, que contiene no sólo los datos del modelo sino los resultados del análisis. Una descripción de

esta variable puede verse en leer_datos.m. Además, se generan tres archivos de salida, en este caso de ejemplo: ej1.dat.u.txt, ej1.dat.N.txt y ej1.dat.R.txt; en donde es escriben los resultados de desplazamientos, axiles en barras, y reacciones sobre los apoyos (no las reacciones de los apoyos sobre la estructura).

Tipo de	Descripción	Representación	Valores
apoyo		gráfica	adicionales
1	Apoyo rígido fijo		>
2	Apoyo rígido carro horizontal	77777	
3	Apoyo rígido carro vertical		
4	Apoyo rígido carro inclinado	α	<a>
5	Apoyo elástico	K _y \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	<kx><ky><bx><by></by></bx></ky></kx>

Cuadro 1: Tipos de apoyo. Notas: $\langle a \rangle$ es el ángulo α de giro de los apoyos inclinados, $\langle b \rangle$ es el ángulo β usado para girar la representación gráfica mostrada, los ángulos han de introducirse en grados)