AAT

2024-12-30

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr
                                  2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.1 v tibble 3.2.1
                     v tidyr
## v lubridate 1.9.4
                                  1.3.1
## v purrr
             1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(lubridate)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##
##
    as.zoo.data.frame zoo
library(forecast)
data <- read.csv("C:\\Users\\sathw\\Downloads\\Thaitourism.csv")</pre>
cat("Dataset Overview:\n")
## Dataset Overview:
cat("Number of Rows:", nrow(data), "\n")
## Number of Rows: 4452
cat("Number of Columns:", ncol(data), "\n")
## Number of Columns: 5
cat("Column Names:\n")
## Column Names:
```

```
print(names(data))
## [1] "region"
                     "nationality" "year"
                                                 "month"
                                                               "tourists"
cat("\nSummary of the dataset:\n")
##
## Summary of the dataset:
summary(data)
##
      region
                       nationality
                                               year
                                                             month
                       Length: 4452
##
   Length:4452
                                          Min.
                                                 :2010
                                                         Min.
                                                               : 1.00
  Class :character
                       Class : character
                                          1st Qu.:2011
                                                         1st Qu.: 3.75
## Mode :character
                       Mode :character
                                          Median :2013
                                                         Median: 6.50
##
                                                               : 6.50
                                          Mean
                                                :2013
                                                         Mean
                                          3rd Qu.:2015
                                                         3rd Qu.: 9.25
##
##
                                          Max.
                                                 :2016
                                                        Max.
                                                                :12.00
##
       tourists
##
         : 104
  Min.
  1st Qu.: 5500
## Median : 14216
## Mean : 38545
## 3rd Qu.: 49871
          :958204
## Max.
# Assuming 'year' and 'month' are separate columns and the data is in "yyyy" and "mm" format
# Combine 'year' and 'month' into a date column, using the first day of the month
data$date <- as.Date(paste(data$year, data$month, "01", sep = "-"), format = "%Y-%m-%d")
cat("\nChecking for missing values:\n")
##
## Checking for missing values:
print(sapply(data, function(x) sum(is.na(x))))
##
        region nationality
                                  year
                                             month
                                                      tourists
                                                                      date
            0
                         0
                                     0
                                                             0
data$tourist[is.na(data$tourist)] <- 0 # Assuming the column 'tourist' needs to be filled
# Group by 'date' and summarize 'tourist' (total tourists per month)
time_series_data <- data %>%
  group_by(date) %>%
  summarise(tourist = sum(tourist))
# Create time series object for 'tourist' data, starting from the first available date
tourist_ts <- ts(time_series_data$tourist, start = c(year(min(time_series_data$date)), month(min(time_s
                 frequency = 12) # Monthly frequency
cat("\nDickey-Fuller Test:\n")
```

```
##
## Dickey-Fuller Test:
adf_test <- adf.test(tourist_ts)</pre>
## Warning in adf.test(tourist_ts): p-value smaller than printed p-value
print(adf_test)
##
##
   Augmented Dickey-Fuller Test
## data: tourist_ts
## Dickey-Fuller = -4.1114, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
cat("\nKPSS Test:\n")
##
## KPSS Test:
kpss_test <- kpss.test(tourist_ts)</pre>
## Warning in kpss.test(tourist_ts): p-value smaller than printed p-value
print(kpss_test)
##
## KPSS Test for Level Stationarity
## data: tourist_ts
## KPSS Level = 1.7931, Truncation lag parameter = 3, p-value = 0.01
# Differencing the series to make it stationary
differenced_tourist_ts <- diff(tourist_ts)</pre>
# Plot the differenced time series
plot(differenced_tourist_ts, main = "Differenced Time Series", ylab = "Differenced Tourists", xlab = "T
```

Differenced Time Series


```
# Fit an ARIMA model to the differenced data
auto_model <- auto.arima(differenced_tourist_ts)</pre>
cat("\nSelected ARIMA Model:\n")
##
## Selected ARIMA Model:
print(auto_model)
## Series: differenced_tourist_ts
## ARIMA(0,0,0)(0,1,1)[12]
##
## Coefficients:
##
            sma1
         -0.6193
##
## s.e.
          0.1905
## sigma^2 = 2.07e+10: log likelihood = -946.39
## AIC=1896.77
                 AICc=1896.95
                                 BIC=1901.3
# Check residuals of the model
checkresiduals(auto_model)
```

Residuals from ARIMA(0,0,0)(0,1,1)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,0,0)(0,1,1)[12]
## Q* = 9.8275, df = 16, p-value = 0.8755
##
## Model df: 1. Total lags used: 17
```

```
# Forecast the next 12 months
forecast_values <- forecast(auto_model, h = 12)
plot(forecast_values, main = "Forecasted Tourists", ylab = "Tourists", xlab = "Time")</pre>
```

Forecasted Tourists

cat("\nConclusions:\n")

##

Conclusions:

cat("1. The dataset was preprocessed to handle missing values and converted into a time series object.

1. The dataset was preprocessed to handle missing values and converted into a time series object.

cat("2. Stationarity tests indicated (non-)stationarity, and differencing was applied to make the serie

2. Stationarity tests indicated (non-)stationarity, and differencing was applied to make the series

cat("3. An ARIMA model was fitted, and the residuals were validated to behave like white noise.\n")

3. An ARIMA model was fitted, and the residuals were validated to behave like white noise.

cat("4. Future tourist numbers were forecasted for the next 12 months.\n")

4. Future tourist numbers were forecasted for the next 12 months.