This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

報 (B2) ⑫ 特 許 公

昭58-18249

⑤ Int.Cl.3 B 60 C 11/04 11/12 識別記号

庁内整理番号 6948-3D 6948-3D

网 公告 昭和58年(1983) 4 月₁₂日

発明の数 1

(全5頁)

ᡚウェット・スキッド抵抗性の高い乗用車用空気 入りタイヤ

21)特 顖 昭54-25391

29出 昭54(1979)3月5日 顋

63公 開 昭55-119507

④昭55(1980)9月13日

②発 明 者 小畑和男 東村山市恩多町 2-29-1

72)発 明 者 滝口栄二 東村山市恩多町 2 -29-1

72)発 明 日下部昇 者 青梅市長渕7-349-18

田中徹二 ⑫発 明 者 小平市小川東町2800-1

⑦出 願 人 プリデストンタイヤ株式会社 東京都中央区京橋1丁目10番1号

個代 理 人 弁理士 杉村暁秀 外1名

の特許請求の範囲

1 トレッドをその幅方向にほぼ等分区画する少 くとも 3本の周方向直溝と、これら周方向直溝相 互間ならびに、トレッド端との間にわたつて該ト レッドをその周方向にほぼ等分に斜め区画する傾 分し、とのプロックが上記両溝の鋭角交差域に面 した隅切りと切込みをもつた平行四辺形基調のパ ターン単位を形成する乗用車用空気入りタイヤに おいて、少くともトレッドの中央寄りの配列プロ ことによりトレッドの周方向にプロックを二分し との切込みに区分されたプロック半部の表面中央 域から傾斜溝まで達する分岐溝とを有することを 特徴とするウェット・スキッド抵抗性の高い乗用 車用空気入りタイヤ。

2 プロックの隅切り部分が周方向直帯に面し、 その部分が該隣の部分拡幅域を形成する特許請求 の範囲1記載のタイヤ。

3 プロックにおける分岐溝をはさむ位置に一対 の切込みを深く具える特許請求の範囲1または2 記載のタイヤ。

2

5 4 トレット端寄りの配列プロックが、トレット の中央寄りの配列プロックを区画する傾斜溝と交 差する向きの傾斜溝で区画された特許請求の範囲 1,2または3記載のタイヤ。

トレッド端寄りの配列プロックが、そのプロ 10 ックを区画する傾斜溝に向う複数の切込みを深く 具える特許請求の範囲 4 記載のタイヤ。

発明の詳細な説明

との発明は、乗用車用空気入りタイヤ、とくに ウエット・スキッド抵抗性の高い乗用車用タイヤ 15 に関するものである。

この発明は、高速域、なかでも広い速度域を通 じて耐スキッド性、とくにウエット・スキッド抵 抗性に優れる上記した種類の空気入りタイヤを提 案することを目的とするものである。

20 乗用車用空気入りタイヤ(以下単にタイヤとい う)は、区街地走行の際のように、比較的低い速 度域での供用状態のま 1自動車専用道路に入つて、 100km/h、ときにはそれ以上の速度にわたる 広い速度域で使用されることが多いが、トラック・ 斜溝とにより、該トレッドを多数のプロックに区 ²⁵ パス用などの重荷重用タイヤ類と比べてはるかに 低い内圧が、主として乗心地性能の重視と、車重 との関連で適用されるので、接地圧が甚だ低く、 そのため降雨で湿濡したり、溜水のある路上を走 行するとき、水切り不良を起して路面との間の摩 ックは、傾斜溝に沿つて上記切込みを深く設ける 30 擦力の低下を生じ易く、その結果、プレーキ性能 を始めその他の運動性能の大幅な低下を来す傾向 がある。

> すなわち降雨中の走行においては、路面上の水 膜厚みにもよるが大体80km/hの付近から水膜 35 を破壊しきれなくなり、タイヤの接地面がその前 方で楔状をなす水膜に乗り上げる形でいわゆるハ イドロ(アクア)プレーニング現象の初期徴候が

3

あらわれはじめ、走行速度がさらに高くなると、 接地面内に占める乗上げ面積の拡大とともに、よ り肥厚化する水膜による揚力が加わつてタイヤの 路面に対する摩擦係数は、極度に低下し、このよ うな状況の下ではもはや、自動車の操縦制御が不 5 可能となる。

とのアクアプレーニング現象に至るよりも低い 速度域においても、湿偽路面では乾燥路面と比べ て著しくすべり易いことはよく知られるとおりで

濡れた路面におけるすべりの防止、すなわちウ エット・スキッド抵抗性を向上させることを目的 とするトレッドのゴム組成に関しては、室温附近 の損失弾性率を向上させることが従来既知であり、 たとえば A. C. Bassi ;Rubber Chem Tech— 15 4. トレッド端寄りの配列プロックは、トレッド nol., 38112(1965). ⇔D. Bulgin G. D. Hubbrad, M. H. Walters:

Proc. 4 th Rubber Technol. Conf., London, 1 7 3 (1 9 6 2), あるいは特公昭 44-14581号公報などには、高スチレン含 20 有率のプタジエンースチレン共重合体ゴムやプチ ルゴムをトレッドに用いることが報告されている。

しかしながらこのようなゴム組成によりウエツ ト・スキッド抵抗性を改善できるのは限られた低 速度においてかなりに有効であるがタイヤの上記 25 した走行速度域全般についての効果は期待できた いことがわかつた。そこでこの発明は、上記ゴム 組成をトレッドに適用するをとくに好適とするが それにもまして、トレッドの構造自体を、とくに 高速走行時での接地面における水はけを向上し、30 然ゴム、ポリイソプレンゴム、ポリプタジエンゴ アクアプレーニング現象の発生を根元的に抑制す ることの有効性に着目して、これによりとくに高 いウェット・スキット抵抗性を高速域まで効果的 ・ に発揮し得るように改良した新しいタイプのタイ ヤを提案するものである。

との発明はトレッドをその幅方向にほゞ等分区 画する少くとも 3本の周方向直溝と、これら周方 向直溝相互間ならびに、トレッド端との間にわた つて該トレッドをその周方向にほゞ等分に斜め区 画する傾斜溝とにより、該トレッドを多数のプロ 40 ックに区分し、とのプロックが上記両溝の鋭角交 差域に面した隅切りをもつた平行四辺形基調のパ ターン単位を形成する乗用車用空気入りタイヤに おいて、少くともトレッドの中央寄りの配列プロ

ックには、傾斜溝に沿つてトレッドの周方向にプ ロックをさらに二分する深い切込みと、この切込 みに区分されたプロック半部の表面中央域から傾 斜溝まで達する分岐溝とを有することを特徴とす るウエット・スキット抵抗性の高い乗用車用空気 入りタイヤである。

との発明では上記のプロックにつき次のような 実洲形態がとくに適合する。

- 1. プロックが、トレッドの幅方向に隣接したプ ロックの隅切りに面する切欠きを有する。
- 2. 切込みが切欠き相互間にわたる屛風状の折線 状である。
- 3. プロックが分岐溝をはさむ一対の深い切込み を有する。
- の中央寄りの配列プロックを区画する傾斜溝と 交差する向きで、後者の配列プロックの切込み に向け開口する傾斜溝で区画する。
- 5. トレット端寄りの配列プロックが、そのプロ ックを区画する傾斜帯に向う複数の深い切込み を有する。

またとの発明は上記何れの実施形態にあつても、 上記したトレッド構造を次のトレッドゴム組成と 組合わせることがとくにのぞましい。

スチレン含有率少くとも30重量多のプタジエ ンースチレン共重合体ゴム、プチルゴム、および ハロゲン化プチルゴムから選ばれる 1種のゴム 50~95重量あと、スチレン含有率18~28 重量%のブタジエンースチレン共重合体ゴム、天 ムおよびエチレンープロピレンージエン三元重合 体ゴムから選ばれる少くとも 1種類のゴム5~ 50重量多との混合物100重量部、カーポンプ ラック 60~100重量部、および粘度比恒数 35 0.84以上のアロマチック系プロセスオイル20 ~60重量部の主要組成に成り、加硫酸の反撥弾 性が20~40%であるプレンドゴム。

さて図面にとの発明の好適実施例をトレッド要 部の平面展開で図示した。

との発明のタイヤは図に要部で示したトレッド の両端肩部から半径方向内側に一対のサイドウォ ール、そして同じくビード部分を具えるトロイダ ル形状を呈しているととは図にあらわしてはいな いが従来どおりである。

図示例においてトレッド1は、タイヤの周方向、 即ち赤道0-0に沿つて真直ぐに延びるセンター 溝 2 と一対のサイド溝 3とであらわした周方向直 溝、そしてこれらの溝2と3間及びサイド溝3と トレッド緑 e との間で斜めに延びる傾斜溝 4 及び 5 部 6 a , 6 b の表面中央域から傾斜溝 4 まで達す 5を夫々具える。

これら周方向直溝 2,3と傾斜溝 4とによりト レッドの中央寄り配列プロック 6、また周方向直 溝3と、トレッド緑 e および傾斜溝5とによりト ッド1の幅方向および周方向にわたりほぼ等分の 区画として区分形成される。

この実施例では、トレッド緑の両限界線 E-E 間隔W t をほぶ4等分する位置に周方向溝2及び 3を配置しているか、タイヤサイズ或はトレッド 15 幅次第でほゞ5等分更には6等分する位置で複数 の周方向直溝を配置することができる。

傾斜溝 4,5は周方向直溝と同様展開図示で直 線をなして真直ぐ、斜めに走ることが排水効果の 面で望ましい。図示例でサイド溝 3,3間にわた20 斜溝 4から周方向直溝 2,3へ駆逐するのに役立 る傾斜溝 4の溝幅中心線 JーJのタイヤ周方向と なす角度αは30°~60°の範囲、サイド溝3 とトレッド端Eとの間にわたる傾斜溝5の溝幅中 心線kーkがタイヤの周方向となす角度βは60° ~90°の範囲で適宜選択することができる。各構 25 2.3.4および5は、慣用に従いV形またはU形の 断面形(図示略)を有し、とくに同等の溝深さで、 その開口溝幅はトレッド幅Wtに対して溝2およ び溝3は3.0~6.0%、また溝4はおよび5は、 2.0~5.0%に当る寸法とすることが好ましい。 30 トレッド1の中央寄りの配列プロック6の区分は、 周方向直溝2と3の各溝幅中心線(赤道)0-0 とm-m間距離をWbとし、傾斜溝4の各溝幅中 心線 J – J間のタイヤ周方向距離を 1とすると とができ、トレッド端寄りの配列プロックの周方 向区分間隔もそれに揃えるを可とするが傾斜溝5 は傾斜溝 4とくいちがいをなしてサイド溝 3に交 互に開口するよう同数ほど等間隔に設けることが

両プロック6,7は周方向直溝2,3と、傾斜 帯 4 および 5 とのそれぞれの鋭角傾斜域に面した 隅切りCをもつ平行四辺形基調のパターン単位を 形成するものとする。

との発明においてトレッド 1の中央寄りの配列 プロック6は、傾斜溝4に沿つてトレッド1の周 方向にプロック6をさらに実質上二分する深い切 込み 8 と、この切込み 8 に区分されたプロック半 る分岐溝10とを具える。深い切込み8は、傾斜 溝 4 とほど同等の深さを有し接地面内でプロック 半部をそれぞれ傾斜溝4の方へ動き易くし、その 動きによつて傾斜溝4に溜つた水を周方向直溝2, レッデ端寄りの配列プロック了がそれぞれ、トレ 10 3へ向けて排出するように作用する。との意味に おいて図に示す実施例のように切込み 8はプロツ ク半部 6a. 6bを二等分して、周方向溝 2 およ びるに達する折線部分を両端に配置することが望 ましい。

> 一方切込み 8 によつて二分されたプロック半部 6 a , 6 b はその表面中央域から傾斜溝 4まで達 する分岐溝10が図のように最短距離にわたり傾 斜溝4とほご同等の幅をもちこれにより、トレツ ド 1 の接地域が乗り上げた水膜を適切に破壊し傾 たせるのである。そして分岐溝10を挟んで設け た一対の切込み11は分岐溝内の溜水を上記した と同様なプロック動きにより促深するために設け たものである。

> トレッド端E寄りの配列プロック7についても 上記したところに準じて切込み9を設けるが、図 のようにトレッド端Eの付近で緑へ開口する排水 溝12を設け、さらに切込み13を付加してもよ

- 周方向直溝2,3には、傾斜溝4,5との鋭角 交差域で、プロックの隅切りCにより合流拡大部 S,TぉよびTが形成され、これらの拡大部は、 高速走行の際やとくに路表水膜が比較的厚いとき など、接地面外へ排水しきれないような場合に、 1 / $_{Wh}$ が、 $^{1.2}$ \sim $^{2.5}$ となる範囲で配置すると 35 一時的な集水に役立つて接地プロック表面の水膜 除去に寄与する。との意味で図示例のように隅切 りCに面してプロック6に切欠き14を設け、さ らにはこの切欠き14の底に切込み8の端をつな ぐことがより好ましい。

> このようにして成るタイヤのウエット・スキツ ド抵抗性の効果を確めるため、サイズ 1 6 5 S R 13で、ポリエステルコード層のラジアルカーカ スとスチールコード層に成るベルトによる補強の ポディを共通とする従来タイヤとともに走行速度

7

~ウェット摩擦係数の比較テストを行つた。

ことで各供試タイヤに用いたトレッドゴムの配 合は第1表のとおりである。

表 1

配合剤	a	b	
プタジエンースチレン共重 合体ゴム(23.5%)	20	100	
プタジエンゴム	10		
プタジエンースチレン共重合体ゴム(35.0%)	70	_	
カーポンプラツク	90	55	
アロマチツク系プロセスオ イル	4 0	18	
ステアリン酸	1	1	
亜 鉛 華	3	3	
1.3 ジフエニルゲアニジン	0.7 5	0.5	
ジベンプチアプリルジスル フイド	0.85	1.0	
硫 黄	1.8	1.7 5	
反 撥 弾 性	31	4 4	

注) 単位は重量部を示し()内の数値は スチレン含有率を示す。

ッドパターンでとくにこの場合角度αを45°, 8 を 6 5° とし、等間隔に配分した 3 本の周方向 直溝とタイヤの周方向に対し45°に傾いた単方 向傾斜溝によつて区分される平行四辺形を呈する プロツク配列より成るものとして上記a, b各ト 30 レッドゴムを用いた二種 Aーa, Aーb と従来タ イヤRについてはタイヤAと同様な周方向直溝と 傾斜溝とからなる平行四辺形のプロック配列のみ になりとのプロックを二分する深い切込みや分岐

溝は有しないパターンとしこれに上記a, b各ト レッドゴムを用いた二種 Bーa, Bーbとを比較

テストとして実施したのは実車によるプレーキ 5 テストである。テスト条件は、車両 1台分として 供試タイヤを4本ずつ準備し一律に1.7 kg/cmの 内圧を適用した。テスト方法は、散水装置を用い 水深2㎜を目標に設定した溜水アスフアルト路面 において、車両にプレーキを加え、車両が止るま 10 での滑つた距離を測定するものである。各車両侵 入速度に対する測定結果を第2表に示す。

		第	2 🔻	<u> </u>	
15	· E (km/h)	A—a	A-b	В-а	Въ
	4 0	7.83 ^m	8.8 3 ^m	7.9 ^m	9.01 ^m
	6 0	2 0.8	2 1.5	2 2.7 5	24.57
20	8 0	3 8.6	4 0.4 5	4 4.3 9	4 7.5
	1 0 0	6 6.1	7 1.6 6	8 1.0 8	8 5.9 5

以上のべたようにしてこの発明によれば、高速 走行域、なかでもとくに広い速度域において、従 またとの発明に従うタイヤAには図に示すトレ 25 来比類がなくウエット・スキッド抵抗性の飛躍向 上が実現される。

図面の簡単な説明

図はこの発明の実施例に示すトレッドの要部平 面展開図である。

1 …トレッド、 2, 3…周方向直溝、 4, 5… 傾針溝、6,7…プロツク、8,9…深い切込み、 10…分岐溝、11.13…切欠み、14…切欠き、 C…隅切り。

