Análise do Classificador Ingênuo de Bayes para Detecção de Fake News

Eliezer Martins de Oliveira
Erick Vinicius Rebouças Cruz
Joana D'arc Oliveira do
Nascimento
Paulo Vitor Barbosa Santana

Introdução

A proliferação de fake news nas plataformas digitais representa um desafio global para a integridade da informação. Este trabalho avalia o classificador Naive Bayes, método probabilístico eficiente em problemas de alta dimensionalidade típicos de processamento de linguagem natural.

Objetivo

- Avaliar a performance do Naive Bayes na classificação de textos como fake news
- Comparar variantes do algoritmo (MultinomialNB, ComplementNB) em diferentes representações textuais
- Analisar métricas de desempenho como precisão, recall e F1-score

Metodologia

- Abordar a detecção de fake news utilizando técnicas de aprendizado de máquina e análise exploratória de dados textuais.
- Realizar uma análise para compreender a distribuição de termos linguísticos, frequência de palavras-chave e padrões lexicais característicos em notícias falsas.
- Código será desenvolvido em Python, empregando as bibliotecas
 - Scikit-learn para modelagem e vetorização textual
 - Pandas para manipulação de dados
 - NLTK para pré-processamento linguístico
 - Matplotlib e Seaborn para visualização dos padrões textuais e resultados de classificação

cin.ufpe.b

r

Datase

- O dataset Fake and Real News contém:
 - 44,898 artigos
 - 23,481 fake
 - 21,417 reais
 - Estrutura típica:
 - Título, conteúdo textual, assunto e rótulo
 - Desafios:
 - Variabilidade linguística
 - o desbalanceamento de classes

Teorema de Bayes

- Desenvolvido pelo matemático britânico Thomas Bayes (1702–1761)
- É uma das ferramentas da probabilidade, ele oferece um caminho preciso para estimar a chance de ocorrência de fenômenos a partir de conhecimento pré-existente.
- Amplamente reconhecido devido à simplicidade conceitual, aliada a um potencial de uso que atravessa fronteiras disciplinares.
- No aprendizado de máquina e na inteligência artificial, é frequentemente utilizado para desenvolver classificadores probabilísticos

Teorema de Bayes

Matematicamente, o Teorema de Bayes é expresso pela seguinte fórmula:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

- P(A|B) é a probabilidade do evento A ocorrer, dado o evento B ocorreu.
- P(B|A) é a probabilidade de evento B ocorrer, dado o evento A ocorreu.
- P(A) e P(B) são as probabilidades a priori de A e B, respectivamente.

Classificador Naive Bayes & Centro de Informática

- Eficaz para processamento de linguagem natural devido à sua capacidade de lidar com alta dimensionalidade de dados textuais.
- Calcula a probabilidade de uma instância pertencer a uma classe específica do conjunto de dados com base em suas características.
- Implementação fácil e resultados precisos em cenários variados
- Aplicações em diversas áreas, como: análise de crédito, análise de texto, campo médico e na engenharia.

Classificador Multinomial & Centro de Informática

Naive Bayes

- Modelo probabilístico amplamente utilizado para a classificação de dados discretos, especialmente em tarefas de processamento de linguagem natural (PLN) e mineração de texto.
- Amplamente empregado em tarefas como classificação documentos, filtragem de spam e detecção de fake news.
- Apresenta bons resultados, especialmente quando os dados possuem uma distribuição multinomial e as características representam contagens discretas.

Classificador Multinomial Centro de Informática

Naive Bayes

 Matematicamente, a probabilidade de uma classe dado um vetor de características é calculada como:

$$P(C_k|x) = \frac{P(x|C_k)P(C_k)}{P(x)}.$$

• P(x|Ck) pode ser expressa como o produto das probabilidades individuais.

$$P(x|C_k) = \prod_{i=1}^n P(x_i|C_k).$$

Classificador Multinomial & Centro de Informática

Naive Bayes

 A probabilidade condicional de uma característica dada a classe pode ser estimada por:

$$P(x_i|C_k) = \frac{count(x_i, C_k) + \alpha}{\sum_j count(x_j, C_k) + \alpha N},$$

 Na fase de inferência, um novo exemplo é classificado calculando a pontuação para cada classe e escolhendo aquela com maior valor:

$$\hat{C} = \arg\max_{C_k} \left(\log P(C_k) + \sum_{i=1}^n \log P(x_i|C_k) \right)$$

Classificador Complement & Centro de Informática

Naive Bayes

- Projetada para lidar com conjuntos de dados desbalanceados, onde certas classes possuem significativamente menos exemplos que outras.
- Eficaz em tarefas como identificação de documentos raros, diagnóstico de anomalias ou categorização hierárquica de textos, onde a abordagem complementar reduz a influência de classes dominantes e melhora a sensibilidade a padrões minoritários.
- O CNB mantém a suposição de independência condicional entre características, mas calcula as probabilidades de forma complementar.

Classificador Complement & Centro de Informática UFPE **Naive Bayes**

 Matematicamente, a probabilidade de uma classe Ck dado um vetor de características x segue o Teorema de Bayes:

$$P(C_k|x) = \frac{P(x|C_k)P(C_k)}{P(x)}.$$

• Não estima P(x|Ck) diretamente, o CNB calcula a probabilidade das características no complemento de Ck.

$$P(x|\tilde{C}_k) = \prod_{i=1}^n P(x_i|\tilde{C}_k),$$

Classificador Complement & Centro de Informática LINFORMATICA LINFORMATICA DE PER DE PER COMPLEMENTA DE PER CENTRO DE PER CENTRO

Naive Bayes

A estimativa da probabilidade condicional complementar para uma característica xi é suavizada com Laplace e definida como:

$$P(x_i|\tilde{C}_k) = \frac{\sum_{j \neq k} count(x_i, C_j) + \alpha}{\sum_{j \neq k} \sum_{m} count(x_m, C_j) + \alpha N}$$

Na fase de classificação, um novo exemplo é atribuído à classe que minimiza a evidência das caracteristicas nas classes complementares:

$$\hat{C} = \arg\min_{C_k} \left(\log P(C_k) - \sum_{i=1}^n \log P(x_i | \tilde{C}_k) \right)$$

Protocolo Experimental

- Divisão 80-20 para treino-teste
 - 80% dos dados são utilizados para treino
 - 20% são utilizados para teste
- Validação cruzada estratificada (k = 5)
 - Técnica usada para avaliar modelos de aprendizado de máquina, garantindo que cada divisão dos dados preserve a mesma proporção das classes da variável-alvo.
- Matriz de confusão;
- AUC-ROC

Matriz de confusão

• Tabela usada para avaliar o desempenho de um modelo de classificação. Ela compara os valores previstos pelo modelo com os valores reais do conjunto de dados de teste.

	Previsto Positivo	Previsto Negativo
Real Positivo	VP	FN
Real Negativo	FP	VN

- A partir dela calculamos diversas métricas importantes:
 - Acurácia
 - Precisão
 - Recall (sensibilidade)
 - F1-Score

Matriz de confusão

Acurácia

$$rac{VP+VN}{VP+VN+FP+FN}$$

Recall (sensibilidade)

$$rac{VP}{VP+FN}$$

Precisão

$$rac{VP}{VP+FP}$$

• F1-Score

$$2 imes rac{Precisao imes Recall}{Precisao+Recall}$$

AUC-ROC

- A curva ROC é um gráfico que mostra a relação entre:
 - Recall
 - Taxa de Falsos Positivos: Mede a proporção de exemplos negativos que foram classificados incorretamente como positivos.

$$Taxa = rac{FP}{FP + VN}$$

• A AUC-ROC é um número entre 0 e 1 que representa a área sob a curva ROC. Ela indica a capacidade do modelo em distinguir entre as classes.

Análise Exploratória de

Dados

- Garante uma maior qualidade e confiabilidade para o modelo assim sintetizado.
- Permite extrair informações cruciais, tais como a media, a mediana, o desvio padrão, os valores mínimo e máximo, bem como a frequência dos valores associados a uma variável específica.
- Dados Analisados:
 - Tamanho dos Artigos
 - Top 20 Palavras Mais Frequentes
 - Frequência Relativa das Palavras
 - Tamanho das Notícias separado por veracidade

Tamanho dos Artigos

- Maioria dos artigos são curtos, com menos de 300 palavras
- Alguns artigos extensos, na faixa de 4000-5000 palavras

cin.ufpe.b

r

Palavras mais frequentes

- Convergências: Palavras como "trump", "said" e "president"
- Diferenças: "reuters", "government" e "house" são mais proeminente em notícias reais, enquanto em notícias falsas surgem nomes de políticos ("obama", "clinton", "donald", "hillary")

cin.ufpe.b

r

Frequência Relativa das

Palavras

Ajuda identificar padrões característicos em diferentes tipos de dessa forma textos, conseguimos capturar padrões е estruturar dados textuais de forma que algoritmos possam classificá-los de maneira eficiente.

Tamanho das Notícias separado por veracidade

- Fake news mais frequentemente tem menos que 100 palavras
- Real news mais frequentemente tem 200 palavras

Resultado

Multinomial Naive Bayes

Relatório de	Classificação):					
	precision	recall	f1-score	support			
0	0.95	0.96	0.96	4228			
1	0.97	0.95	0.96	4752			
accuracy			0.96	8980			
macro avg	0.96	0.96	0.96	8980			
weighted avg	0.96	0.96	0.96	8980			
Acurácia: 0.9589086859688196							
Precision (MultinomialNB): 0.9673704414587332 AUC-ROC: 0.9836283642161127							
AUC-RUC: 0.9830283042101127 AUC-PR: 0.9860810878125684							

Resultado

Complement Naive Bayes

Relatório de Classificação:									
	preci	.sion	recall	f1-score	support				
	0	0.95	0.96	0.96	4228				
	1	0.97	0.95	0.96	4752				
accura	cv			0.96	8980				
macro a	-	0.96	0.96	0.96	8980				
weighted a	vg	0.96	0.96	0.96	8980				
Acurácia: 0.9586859688195991									
Precision (ComplementNB): 0.9673565180285897									
AUC-ROC: 0.9836275180852996									
AUC-PR: 0.9860801940006345									

cin.ufpe.b

r

Resultado

- Ambos modelos altamente eficazes, com valores parecidos
- Acurácia está em torno de 95.9%
- Quando o modelo prevê uma notícia falsa, ele está certo em aproximadamente 96.7% das vezes
- A AUC-ROC é apoximadamente 98%
- Os modelos conseguem distiguir bem entre notícias falsas e verdadeiras

Conclusão

- Os resultados mostram que ambos os modelos se mostraram altamente eficazes na classificação de Fake News, com desempenho quase idêntico em todas as métricas avaliadas.
- Os resultados indicam que o Naive Bayes continua sendo uma excelente abordagem para classificação automática de Fake News, devido à sua simplicidade, eficiência e alto desempenho.
- Para aprimorar ainda mais os resultados, podem ser exploradas técnicas como engenharia de características, TF-IDF para vetorização de texto, ou até mesmo a combinação com outros classificadores mais complexos.

Fim

