

Please write clearly ir	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		
	I declare this is my own work.	

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Tuesday 3 January 2023 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
TOTAL			

Answer all questions in the spaces provided.

1 The graph of a function with equation y = f(x) is shown in **Figure 1**

Figure 1

1 (a) (i) State the equation of the graph of the function shown in Figure 2

Circle your answer.

[1 mark]

Figure 2

$$y = f\left(\frac{1}{2}x\right)$$

$$y = f(2x)$$

$$y = \frac{1}{2}f(x)$$

$$y = 2f(x)$$

1 (a) (ii) State the equation of the graph of the function shown in Figure 3 Circle your answer.

[1 mark]

Figure 3

$$y = f(x-4)-1$$

$$y = f(x-4) + 1$$

$$y = f(x+4) - 1$$

$$y = f(x-4)-1$$
 $y = f(x-4)+1$ $y = f(x+4)-1$ $y = f(x+4)+1$

The graph of the function with equation y = f(x) is shown again below. 1 (b) By drawing a suitable straight line find the roots of the equation f(x) = x - 3

[2 marks]

2 The points A, B, C and D, and the lines l_1 , l_2 and l_3 are shown in the diagram.

The lines l_1 and l_3 intersect at A(15, 3)

2 (a) The line l_1 has gradient $\frac{3}{5}$

Show that l_1 has the equation 3x - 5y - 30 = 0

[1 mark]

2 (b) l_1 intersects the *x*-axis at *B* and the *y*-axis at *C*

 l_2 passes through the mid-point of the line segment BC

 $\it l_1$ and $\it l_2$ are perpendicular.

Find the equation of l_2 giving your answer in the form ax + by + c = 0 where a, b and c are integers.

[5 marks]

	Answer	
2 (c)	l_3 has the equation $x+4y-27=0$	
	l_{2} and l_{3} intersect at D	
	Find the coordinates of D	[1 mark]
	Answer	
2 (d)		
_ (~)	Give your answer in the form $n\sqrt{p}$ where p is a prime number.	
		[2 marks]
	Answer	

9

3 The diagram shows the plan of a garden.

The angle at each corner of the garden is a right-angle.

The lengths of the sides in metres are

$$PQ = x + 3$$
, $QR = 2x - 10$, $RS = x - 1$ and $PU = x - 4$

3 (a) The perimeter of the garden is greater than 31 metres.

Show	that	x > 7	.5
CHOW	uiai	$\lambda - 1$	·

[1 mark]

		_
3	(b)	The area of the garden is less than 58 m ²

Show that
$$x^2 - 4x - 32 < 0$$

[3 marks]

	-	
3 (c)	Solve the inequality $x^2 - 4x - 32 < 0$	
	Show clearly each step of your working.	[2 marks]
	Answer	
3 (d)	The length of the side ST is y metres.	
	Using your answers to parts (a) and (c) find the possible values of y	[2 marks]
		[2 marks]
		_
	Answer	

4		The polynomial $p(x)$ is given by	
		$p(x) = x^2(2x-5)-48$	
4	(a)	Use the Factor Theorem to show that $(x-4)$ is a factor of $p(x)$ [2 m	arks]
4	(b)	Show that $p(x)$ can be written in the form	
		$p(x) = (x-4)(ax^2 + bx + c)$	
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]
		where a , b and c are integers to be found.	arks]

4 (c)	Show that $p(x) = 0$ has exactly one real root and state its value.	[3 marks]	(
	Answer		L
	Turn over for the next question		

5		The n th term of the sequence A is u_n and the sequence is defined by	
		$u_{n+1}=u_n+8\left(1+3^n\right)$	
		The second, third and fourth terms of this sequence are	
		$u_2 = 61$ $u_3 = 141$ and $u_4 = 365$	
5	(a) (i)	Find the first term u_1 of sequence A	[1 mark]
		Answer	
5	(a) (ii)	Find the fifth term u_5 of sequence A	[1 mark]
		Answer	
5	(b)	The sequence A can be found using the formula	
		nth term of sequence A = n th term of sequence B + n th term of sequence C	
		where sequence \boldsymbol{B} and sequence \boldsymbol{C} are two different sequences.	
5	(b) (i)	Sequence B is a geometric sequence with first term $a = 12$ and common ratio	<i>r</i> = 3
		Find the first five terms of sequence B	[1 mark]
		Answer	

Do not write outside the box

5	(b) (ii)	Hence find the first five terms of sequence C [2 marks]	
		Answer	
		Allowel	
5	(c) (i)	Sequence C is an arithmetic sequence.	
		Using your answer to part (b)(ii) write down the common difference for sequence <i>C</i> [1 mark]	
		Answer	
5	(c) (ii)	Find an expression in terms of $\it n$ for the $\it n$ th term of sequence $\it C$ [1 mark]	
			ſ
		Answer	

6 The curve *C* has the equation

$$y = 3x^3 + 14x^2 + 17x + 11$$

The point P(-2, 9) lies on C

The line l is the normal to C at the point P

6 (a) (i) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$

[2 marks]

Answer ____

6 (a) (ii) Show that the equation of l is $y = \frac{1}{3}x + \frac{29}{3}$

[3 marks]

6 (b) The line *l* intersects *C* at three distinct points.

Show that the *x*-coordinates of these points of intersection satisfy the equation

$$9x^3 + 42x^2 + 50x + 4 = 0$$

[2 marks]

6	(c)	The equation $9x^3 + 42x^2 + 50x + 4 = 0$ can be written in the form
		$(x+2)(9x^2+24x+2)=0$
		(x+2)(9x+24x+2)=0
_	() (!)	$=$ $2 \cdot 2 $
6	(c) (ı)	Express $9x^2 + 24x + 2$ in the form $a(x+b)^2 + c$ where a , b and c are constants.
		[3 marks]
		Answer
_		
6	(c) (ii)	The points of intersection of l and C are $P(-2, 9)$, Q and R
		Hoiner your engineer to most (a)(i) find the exect is equalizated of O and D
		Using your answer to part (c)(i) find the exact x -coordinates of Q and R
		Show clearly each step of your working.
		[3 marks]
		Answer

13

7		A curve has equation $y = f(x)$ where $x > 0$	
		It is given that $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{\frac{3}{2}} - 9x^{\frac{3}{4}} - 56$	
7 ((a)	Find $\frac{d^2y}{dx^2}$	[2 marks]
		Answer	
7 ((b)	By substituting $t = x^{\frac{3}{4}}$ into the given expression for $\frac{dy}{dx}$ show that	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = (at+b)(t-c)$	
		where $a,\ b$ and c are positive integers.	[2 marks]

7	(c)	The curve has one stationary point for $x > 0$		Do not outsid bo
7	(c) (i)	By writing x as a power of t and then using part (b) find the x -coordinate of this stationary point.	[3 marks]	
		Answer		
7	(c) (ii)	Using part (a) show that this stationary point is a minimum.	[1 mark]	
7	(d)	State the values of x for which f is a decreasing function.	[1 mark]	
				_
		Answer		9

8 (a)	Show that for any positive real number a			
		$(2+\sqrt{3}-\sqrt{a})(2+\sqrt{3}+\sqrt{a})=7+b\sqrt{3}-a$		

Show that for any	positive real number <i>a</i>	
	$(2+\sqrt{3}-\sqrt{a})(2+\sqrt{3}+\sqrt{a})=7+b$	$\sqrt{3}-a$
where b is a con	stant to be found.	[2 ma
		Įž ilie
-		
-		

8 (b) Hence show the

$$\frac{12}{2+\sqrt{3}-\sqrt{7}}$$

can be w	ritten in the	form $p+q$	$\sqrt{r} + \sqrt{s}$	where p ,	q, r and	s are integ	ers and $q > 1$

Turn over for the next question

9	(a)	The expression $(3-2\sqrt{x})^3$ can be written in the form	
		$27 - p\sqrt{x} + qx - 8x\sqrt{x}$	
		where p and q are positive integers.	
		Show that $p = 54$ and find the value of q	
			[3 marks]
		a –	
		$q = \underline{\hspace{1cm}}$	
9	(b)	It is given that $x > 0$	
9	(b) (i)	Find $\int \left(\frac{\left(3 - 2\sqrt{x}\right)^3}{\sqrt{x}} + 12 \right) dx$	
			[4 marks]
		Answer	

9 (b) (ii) Hence find the value of	9	$\left(\frac{\left(3 - 2\sqrt{x}\right)^3}{\sqrt{x}} + 12 \right)$	dx
------------------------------------	---	---	----

[2 marks]

Answer ____

9 (c) A curve with equation $y = \frac{\left(3 - 2\sqrt{x}\right)^3}{2\sqrt{x}} + 6$ is drawn below.

The points A(4, 5.75) and B(9, 1.5) lie on the curve.

Answer

Using your answer to **part** (b)(ii) find the area of the shaded region bounded by the curve and the line segment *AB*

[2 marks]

Turn over ▶

11

A finite arithmetic sequence has k terms and common difference d	
The first term is $a = 12$	
The sum of the first 10 terms is 480	
The sum of the last 10 terms is 3360	
Show that $d = 8$ and hence find the sum of all of the terms in the sequence.	[7 ma

	Do not write
	outside the box
-	
	—
	_
	—
Answer	7
Allower	
END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

