Stiefel-Whitney Classes of Representations

Steven Spallone, IISER Pune

September 17, 2021

IISc-IISER Pune Symposium

Questions in Representation Theory

G a group, say all its irreducible complex representations (π, V) are classified. (Typically some parametrization, e.g., partitions for S_n , weights of a maximal torus for Lie groups.)

What next?

Question: How do you take duals (π^{\vee}, V^{\vee}) ?

Question: Which π are self-dual? $(\pi \cong \pi^{\vee})$

Frobenius-Schur Indicator Question

Suppose (π, V) is self-dual, irreducible.

Then there is a nondegenerate G-invariant bilinear form $(\ ,)$ on V which is either symmetric or antisymmetric.

So
$$\pi: G \to \mathsf{Isom}(V, (,))$$
.

Question: Which one is it?

Spinoriality and Chirality

Suppose (π, V) is self-dual, orthogonal. May regard $\pi: G \to \mathrm{O}(V)$.

There is a nontrivial double cover $\rho : Pin(V) \rightarrow O(V)$.

Question: Does π lift to Pin(V)?

Related **Question**: What is det π ?

$$G \stackrel{\pi}{\to} O(V) \stackrel{\mathsf{det}}{\to} \{\pm 1\}$$

Cohomological Interpretation

The representation $\pi: G \to O(V)$ induces a pullback extension

$$1 \to \mathbb{Z}/2\mathbb{Z} \to E_{\pi} \to G \to 1$$
,

where

$$E_{\pi} = \operatorname{Pin}(V) \times_{\operatorname{O}(V)} G$$

= $\{(p, g) \in \operatorname{Pin}(V) \times G \mid \rho(p) = \pi(g)\}.$

Associated to E_{π} is an "extension class" $w_2(\pi) \in H^2(G, \mathbb{Z}/2\mathbb{Z})$.

Say $\det \pi = 1$.

Then, π is spinorial iff E_{π} is a trivial extension iff $w_2(\pi) = 0$.

First Cohomology

We are considering $\mathbb{Z}/2\mathbb{Z}$ as a trivial $\emph{G}\text{-module},$ so there is an isomorphism

$$w_1: \mathsf{Hom}(G,\mathbb{Z}/2\mathbb{Z}) \stackrel{\sim}{ o} H^1(G,\mathbb{Z}/2\mathbb{Z})$$

When π is orthogonal, $\det \pi: G \to \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$.

Define $w_1(\pi) = w_1(\det \pi)$.

Stiefel-Whitney Classes

For every orthogonal representation of G, there are Stiefel-Whitney Classes (SWCs)

$$w_k(\pi) \in H^k(G, \mathbb{Z}/2\mathbb{Z})$$

for each nonnegative integer k, satisfying the following properties:

- $w_k(\pi) = 0 \text{ if } k > \deg \pi.$
- $w_0(\pi) = 1.$
- w_1, w_2 are as defined above.
- $w(\pi_1 \oplus \pi_2) = w(\pi_1) \cup w(\pi_2).$

Here $f^*: H^k(G, \mathbb{Z}/2\mathbb{Z}) \to H^k(G', \mathbb{Z}/2\mathbb{Z})$.

Symmetric Groups I

Let $G = S_n$. Irreducible reps indexed by $\lambda \vdash n$.

Have "Specht modules" π_{λ} .

Two linear characters 1, sgn.

Theorem (A.Ayyer, A.Prasad, Sp. 2017)

100% of Specht modules have trivial determinant.

(Actually gave explicit formula.) More precisely,

$$\lim_{n\to\infty}\frac{\#\{\lambda\vdash n\mid \det\pi_\lambda=1\}}{p(n)}=1,$$

where p(n) is the number of partitions of n.

Symmetric Groups II

In fact, all representations of symmetric groups are orthogonal.

Theorem (J. Ganguly, Sp. 2020)

100% of Specht modules are spinorial.

We computed:

$$w_2(\pi) = \frac{1}{2} (\deg \pi - \chi_{\pi}((12)(34))) w_2(\pi_n) + \left[\frac{1}{2} (\deg \pi - \chi_{\pi}((12))) \right] e_{\text{cup}},$$

with π_n the standard representation, and

$$e_{\mathsf{cup}} = w_1(\mathsf{sgn}) \cup w_1(\mathsf{sgn}).$$

Symmetric Groups III

Character values of representations of S_n are integers. Fix a permutatation $\sigma \in S_k$, consider it in S_n for $n \ge k$. Also fix $d \in \mathbb{N}$.

Theorem (J. Ganguly, A. Prasad, Sp. 2020)

For 100% of $\lambda \vdash n$, the character $\chi_{\lambda}(\sigma)$ is a multiple of d.

Note: The spinoriality statement follows from the case k = 2, d = 8, together with the formula for $w_2(\pi)$.

Theorem (S. Bhalerao, J. Ganguly, Sp., in preparation)

Fix a positive integer k. For 100% of $\lambda \vdash n$, we have $w_k(\pi_{\lambda}) = 0$.

(On the other hand, if $w(\pi) = 1$, then π is trivial.)

Lie Groups I

G connected reductive Lie group, e.g. $G = SL_n$.

Irreducible representations of G correspond to highest weights λ , which ranges over a cone in a certain lattice. Write " π_{λ} ".

- π_{λ} is self-dual iff $w_0\lambda = -\lambda$, where w_0 is the longest Weyl group element.
- π_{λ} is orthogonal iff $\langle \lambda, 2\delta^{\vee} \rangle$ is even, where $\delta^{\vee} = \sum_{\alpha > 0} \alpha^{\vee}$.
- ullet If π is orthogonal, then $\det \pi = 1$ by connectedness.

Spinoriality and a Question of Dipendra

Question: (D. Prasad) Does every two-fold cover of G arise as the pullback of an orthogonal representation?

R. Joshi and I give a spinoriality criterion for π_{λ} (2020). In particular, we enumerated the (simple) G with the property that every orthogonal representation is spinorial.

Some of these, e.g., $G = PSO_8$ have fundamental group with even order. These give a negative answer to the Question.

Lie Groups III

J. Ganguly and R. Joshi (2021) extend the spinoriality criterion to $G = O_n(\mathbb{R})$.

Recently we have been looking at Chern classes $c_k(\pi_\lambda) \in H^{2k}(BG,\mathbb{Z})$, defined for any representation. (BG is the classifying space for G)

Theorem (R. Joshi, Sp., in preparation)

The function $\lambda \mapsto c_k(\pi_\lambda)$ is polynomial. Moreover $c_2(\pi) = 0$ iff π is trivial.

Finite General Linear Group

How about G = GL(n, q)? Exclude some small cases:

$$(n,q) \in \{(2,2),(2,3),(2,4),(3,2),(3,4),(4,2)\}$$

Let $a_1 = \mathsf{diag}(-1,1,\ldots,1)$, and put

$$m_{\pi}=\frac{1}{2}(\deg\pi-\chi_{\pi}(a_1)).$$

Theorem (R. Joshi, Sp., 2021)

Let π be an orthogonal representation of G.

- If $q \equiv 1 \mod 4$, then π is spinorial iff m_{π} is divisible by 4.
- If $q \equiv 3 \mod 4$, then π is spinorial iff $m_{\pi} \equiv 0$ or $3 \mod 4$.

SWCs for Finite Groups of Lie Type

N. Malik has already presented our work on SWCs for G = SL(n, q), when n = 2 or n odd.

Note that $w_1(\pi) = w_2(\pi) = 0$, since G is perfect and every double cover is trivial. First nonvanishing is $w_4(\pi)$.

J. Ganguly and R. Joshi are computing the total SWC for G = GL(n, q).

Goal: Compute all $w_k(\pi)$ in terms of character values of π .

For your attention:

Thank You!