в интервале (a, b) найдется по меньшей мере одна точка c такая, что

$$|f'(c)| > \left| \frac{f(b) - f(a)}{b - a} \right|.$$

Дать геометрическую иллюстрацию этого факта.

1266. Длказать, что если: 1) функция f(x) имеет вторую производную f''(x) на сегменте [a, b] и 2) f'(a) = f'(b) = 0, то в интервале (a, b) существует по меньшей мере одна точка c такая, что

$$|f''(c)| \geqslant \frac{4}{(b-a)^2} |f(b)-f(a)|.$$

1267. Автомобиль, начав двигаться из некоторого начального пункта, закончил свой путь в t с, пройдя при этом расстояние s м. Доказать, что в некоторый момент времени абсолютная величина ускорения движения автомобиля была не меньше

$$\frac{4s}{t^2} \frac{M}{C^2}$$
.

§ 7. Возрастание и убывание функции. Неравенства

 1° . Возрастание и убывание функции. Функция f(x) называется возрастающей (убывающей) на сегменте $[a,\ b]$, если

$$f(x_2) > f(x_1)$$
 при $a \le x_1 < x_2 \le b$

(или соответственно $f(x_2) < f(x_1)$ при $a \le x_1 < x_2 \le b$).

Если дифференцируемая функция f(x) возрастает (убывает) на сегменте [a, b], то

$$\mathbf{f}'(x)\geqslant 0$$
 при $a\leqslant x\leqslant b$ (или $\mathbf{f}'(x)\leqslant 0$ при $a\leqslant x\leqslant b$).

 2° . Достаточный признак возрастания (убывания функции). Если функция $f_i(x)$ непрерывна на сегменте [a, b] и внутри него имеет положительную (отрицательную) производную $f_i'(x)$, то функция $f_i(x)$ возрастает (убывает) на [a, b].

Определить промежутки монотонности в строгом смысле (возрастания или убывания) следующих функтий:

1268.
$$y = 2 + x - x^2$$
. 1269. $y = 3x - x^3$.

1270.
$$y = \frac{2x}{1+x^2}$$
. 1271. $y = \frac{\sqrt{x}}{x+100}$ $(x \geqslant 0)$.