Input: a data set of n variables, i.e., genomic alterations or patterns, and m samples. **Result:** a graphical model representing all the relations of "selective" advantage." Pruning based on the Suppes' criteria 1 Let $G \leftarrow$ a directed graph over the vertices n 2 forall $arcs (a, b) \in G$ do Compute a score $S(\cdot)$ for the nodes a and b in terms of Suppes' criteria. Remove the arc (a, b) if Suppes' criteria are not met. 5 end Likelihood fit on the prima facie directed acyclic graph 6 Let $\mathcal{M} \leftarrow$ the subset of the remaining arcs $\in G$, that maximize the log-likelihood of the model, computed as:

$LL(D \mid \mathcal{M}) - ((\log m)/2) \dim(\mathcal{M})$, where D denotes the input data, m denotes the number of samples, and $dim(\mathcal{M})$ denotes the number of parameters in \mathcal{M} (see Koller and Friedman(2009)). 7 return The resulting graphical model \mathcal{M} .