形式语言与自动机理论 有穷自动机

王春宇 chunyu@hit.edu.cn

> 计算学部 哈尔滨工业大学

2021年4月

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
- 非确定有穷自动机
- 带有空转移的非确定有穷自动机

有穷状态系统

- 有限状态机: Moore Machine, Mealy Machine
- 数字电路设计
- 电脑游戏的 AI 设计
- 各种通讯协议: TCP, HTTP, Bluetooth, Wifi
- 文本搜索, 词法分析

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
 - 形式定义
 - DFA 的设计举例
 - 扩展转移函数
 - DFA 的语言与正则语言
- 非确定有穷自动机
- 带有空转移的非确定有

确定的有穷自动机

- 一条输入带
- 一个读头
- 一个有穷控制器

确定的有穷自动机

- 一条输入带
- 一个读头
- 一个有穷控制器

例 1. 用有穷自动机识别 $\{w \in \{0,1\}^* \mid w$ 的长度 |w| 是偶数.}

确定的有穷自动机的形式定义

定义

确定的有穷自动机(DFA, Deterministic Finite Automaton) A 为五元组

$$A = (Q, \Sigma, \delta, q_0, F)$$

- **1** Q: 有穷状态集;
- ② Σ: 有穷输入符号集或字母表;
- **3** $\delta: Q \times \Sigma \rightarrow Q$, 状态转移函数;
- **4** q₀∈Q:初始状态;
- ⑤ F⊆Q: 终结状态集或接受状态集.

例 2. 请设计 DFA. 在任何由 0 和 1 构成的串中, 接受含有 01 子串的全部串.

- 例 2. 请设计 DFA. 在任何由 0 和 1 构成的串中, 接受含有 01 子串的全部串. ▲ 未发现 01. 即使 0 都还没出现过:
- 未发现 01. 但刚刚读入字符是 0:

3 已经发现了 01.

例 2. 请设计 DFA, 在任何由 0 和 1 构成的串中, 接受含有 01 子串的全部串.

- 未发现 01, 即使 0 都还没出现过;
- 2 未发现 01, 但刚刚读入字符是 0;
 - 3 已经发现了 01.

因此 DFA A 的可定义为:

$$A = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$$

其中δ为:

$$\delta(q_1,1) = q_1 \qquad \qquad \delta(q_2,1) = q_3 \qquad \qquad \delta(q_3,1) = q_3 \\ \delta(q_1,0) = q_2 \qquad \qquad \delta(q_2,0) = q_2 \qquad \qquad \delta(q_3,0) = q_3$$

状态转移图

定义

- 每个状态 q 对应一个节点, 用圆圈表示;
- ② 状态转移 $\delta(q,a) = p$ 为一条从 q 到 p 且标记为字符 a 的有向边;
- 3 开始状态 q_0 用一个标有 start 的箭头表示;
- 4 接受状态的节点,用双圆圈表示.

状态转移图

定义

- 每个状态 q 对应一个节点, 用圆圈表示;
- ② 状态转移 $\delta(q,a) = p$ 为一条从 q 到 p 且标记为字符 a 的有向边;
- 4 接受状态的节点,用双圆圈表示.

续例 2. 含有 01 子串的全部串的状态转移图

状态转移表

定义

- **①** 每个状态 q 对应一行, 每个字符 a 对应一列;
- ② 若有 $\delta(q,a) = p$, 用第 q 行第 a 列中填入的 p 表示;
- ③ 开始状态 q_0 前, 标记箭头 → 表示;
- 4 接受状态 $q \in F$ 前, 标记星号 * 表示.

状态转移表

定义

- 每个状态 q 对应一行,每个字符 a 对应一列;
- ② 若有 $\delta(q,a) = p$, 用第 q 行第 a 列中填入的 p 表示;
- ③ 开始状态 q_0 前, 标记箭头 → 表示;
- 4 接受状态 $q \in F$ 前, 标记星号 * 表示.

续例2. 含有01子串的全部串的状态转移表

	0	1
$\rightarrow q_1$	q_2	q_1
q_{2}	q_2	q_3
$*q_3$	q_3	q_3

典型问题

设计 DFA 使其<mark>接受</mark>且仅接受给定的语言 L.

例 3. 若 $\Sigma = \{0,1\}$, 给出接受全部含有奇数个 1 的串 DFA.

典型问题

设计 DFA 使其接受且仅接受给定的语言 L.

例 3. 若 $\Sigma = \{0,1\}$, 给出接受全部含有奇数个 1 的串 DFA.

例 4. 若 $\Sigma = \{0,1\}$, 给出接受全部含有偶数个 0 和偶数个 1 的串 DFA.

例 4. 若 $\Sigma = \{0,1\}$, 给出接受全部含有偶数个 0 和偶数个 1 的串 DFA.

思考题

若 $\Sigma = \{0,1\}$, 那么

● 如何设计接受 Ø 的 DFA?

如何设计接受 Σ* 的 DFA?

❸ 如何设计接受 {ε} 的 DFA?

扩展转移函数

定义

扩展 δ 到字符串, 定义扩展转移函数 $\hat{\delta}: Q \times \Sigma^* \to Q$ 为

$$\hat{\delta}(q,w) = \begin{cases} q & w = \varepsilon \\ \delta(\hat{\delta}(q,x),a) & w = xa \end{cases}$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

扩展转移函数

定义

扩展 δ 到字符串, 定义扩展转移函数 $\hat{\delta}: Q \times \Sigma^* \to Q$ 为

$$\hat{\delta}(q,w) = \begin{cases} q & w = \varepsilon \\ \delta(\hat{\delta}(q,x),a) & w = xa \end{cases}$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

那么,当
$$w = a_0 a_1 \cdots a_n$$
,则有
$$\hat{\delta}(q, w) = \delta(\hat{\delta}(q, a_0 a_1 \cdots a_{n-1}), a_n)$$

$$= \delta(\delta(\hat{\delta}(q, a_0 a_1 \cdots a_{n-2}), a_{n-1}), a_n) = \cdots$$

$$= \delta \Big(\delta \big(\cdots \delta \big(\hat{\delta}(q, \varepsilon), a_0 \big) \cdots, a_{n-1} \big), a_n \Big)$$

续例 2. 接受全部含有 01 子串的 DFA. $\hat{\delta}$ 处理串 0101 的过程.

续例 2. 接受全部含有 01 子串的 DFA, $\hat{\delta}$ 处理串 0101 的过程.

$$\begin{split} \hat{\delta}(q_1, 0101) &= \delta(\hat{\delta}(q_1, 010), 1) \\ &= \delta(\delta(\hat{\delta}(q_1, 01), 0), 1) \\ &= \delta(\delta(\delta(\hat{\delta}(q_1, 0), 1), 0), 1) \\ &= \delta(\delta(\delta(\delta(\hat{\delta}(q_1, \varepsilon), 0), 1), 0), 1) \\ &= \delta(\delta(\delta(\delta(q_1, \varepsilon), 0), 1), 0), 1) \\ &= \delta(\delta(\delta(q_2, 1), 0), 1) \\ &= \delta(\delta(q_3, 0), 1) = \delta(q_3, 1) = q_3 \end{split}$$

思考题

从任意状态 q, 对任意的串 w, $\hat{\delta}(q,w)$ 一定会到某个状态吗?

例 5. 对任何状态 q 及字符串 x 和 y, 证明 $\hat{\delta}(q,xy) = \hat{\delta}(\hat{\delta}(q,x),y)$.

例 5. 对任何状态 q 及字符串 x 和 y, 证明 $\hat{\delta}(q,xy) = \hat{\delta}(\hat{\delta}(q,x),y)$. 证明: 对 y 使用归纳法.

当 y = ε 时

$$\hat{\delta}(\hat{\delta}(q,x),\varepsilon) = \hat{\delta}(q,x)$$
 $\hat{\delta}$ 的定义 $= \hat{\delta}(q,x\varepsilon)$

② 假设
$$y = w$$
 $(w \in \Sigma^*)$ 时命题成立, 当 $y = wa$ $(a \in \Sigma)$ 时
$$\hat{\delta}(q, xwa) = \delta(\hat{\delta}(q, xw), a) \qquad \qquad \hat{\delta}$$
和连接的定义
$$= \delta(\hat{\delta}(\hat{\delta}(q, x), w), a) \qquad \qquad$$
归纳假设
$$= \hat{\delta}(\hat{\delta}(q, x), wa) \qquad \qquad \hat{\delta}$$
的定义

课堂练习. Design DFA over $\Sigma = \{0,1\}$ for the language with only one string 000.

DFA 的语言与正则语言

若
$$D = (Q, \Sigma, \delta, q_0, F)$$
 是一个 DFA , 则 D 接受的语言为

$$\mathbf{L}(D) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}.$$

DFA 的语言与正则语言

定义

若
$$D = (Q, \Sigma, \delta, q_0, F)$$
 是一个DFA, 则 D 接受的语言为

$$\mathbf{L}(D) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}.$$

定义

如果语言 L 是某个 DFA D 的语言, 即 $L = \mathbf{L}(D)$, 则称 L 是正则语言.

- ∅, {ε} 都是正则语言
- 若 Σ 是字母表, Σ^* , Σ^n 都是 Σ 上的正则语言

例 6. 设计 DFA 接受 $\{0,1\}$ 上的字符串 w, 且 w 是 3 的倍数的二进制表示.

例 6. 设计 DFA 接受 $\{0,1\}$ 上的字符串 w, 且 w 是 3 的倍数的二进制表示.

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
- 非确定有穷自动机
 - 形式定义
 - 扩展转移函数
 - NFA 的语言
 - DFA 与 NFA 的等价性

例 7. 由 0 和 1 构成的串中,接受全部以 01 结尾的串,如何设计 DFA?

例 7. 由 0 和 1 构成的串中, 接受全部以 01 结尾的串, 如何设计 DFA?

状态的非确定转移

- 同一个状态在相同的输入下, 可以有多个转移状态
- 自动机可以处在多个当前状态
- 使自动机的设计更容易

续例7. 由0和1构成的串中,接受全部以01结尾的串.

思考题

有穷自动机有了非确定性,能否增加它识别语言的能力?

非确定有穷自动机的形式定义

定义

非确定有穷自动机(NFA, Nondeterministic Finite Automaton) A 为五元组

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q:有穷状态集;
- ② Σ:有穷输入符号集或字母表;
- **③** $\delta: Q \times \Sigma \rightarrow 2^Q$ 状态转移函数;
- ⑤ F⊆Q:为终结状态集或接受状态集.

续例 7. 接受全部以 01 结尾的串的 NFA.

$$0,1$$
start $\rightarrow (q_0)$ 0 q_1 1 q_2

五元组为 $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$, 转移函数 δ :

$$egin{aligned} \deltaig(q_0,0ig) = \{q_0,q_1\} & \deltaig(q_1,0ig) = arnothing \ \deltaig(q_0,1ig) = \{q_0\} & \deltaig(q_1,1ig) = \{q_2\} & \deltaig(q_2,1ig) = arnothing \end{aligned}$$

续例 7. 接受全部以 01 结尾的串的 NFA. 识别字符串 00101 的过程.

续例 7. 接受全部以 01 结尾的串的 NFA.

$$0,1$$
start $\longrightarrow q_0$ 0 q_1 1 q_2

状态转移表:

$$egin{array}{c|ccc} &0&1 \ \hline
ightarrow q_0 & \{q_0,q_1\} & \{q_0\} \ q_1 &arnothing & \{q_2\} \ *q_2 &arnothing &arnothing &arnothing \ \end{array}$$

扩展转移函数

扩展 δ 到字符串, 定义扩展转移函数 $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ 为

$$\hat{\delta}(q,w) = \begin{cases} \{q\} & w = \varepsilon \\ \bigcup_{p \in \hat{\delta}(q,x)} \delta(p,a) & w = xa \end{cases}$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

续例 7. 接受 01 结尾的串的 NFA. $\hat{\delta}$ 处理 00101 时每步的状态转移

$$\bullet \hat{\delta}(q_0,\varepsilon) = \{q_0\}$$

$$\hat{\delta}(q_0,0) = \delta(q_0,0) = \{q_0,q_1\}$$

3
$$\hat{\delta}(q_0,00) = \delta(q_0,0) \cup \delta(q_1,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$$

4 $\hat{\delta}(q_0,001) = \delta(q_0,1) \cup \delta(q_1,1) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\}$

$$\delta(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$$

$$\delta(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \varnothing = \{q_0, q_1\}$$

6
$$\hat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$$

因为 q₂ 是接受状态, 所以 NFA 接受 00101.

NFA 的语言

回顾

若
$$D = (Q, \Sigma, \delta, q_0, F)$$
 是一个 DFA, 则 D 接受的语言为

$$\mathbf{L}(D) = \big\{ w \in \Sigma^* \mid \hat{\delta}\big(q_0, w\big) \in F \big\}.$$

若
$$N = (Q, \Sigma, \delta, q_0, F)$$
 是一个 NFA , 则 N 接受的语言为

$$\mathbf{L}(N) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \cap F \neq \varnothing \}.$$

例 8. 设计 $L = \{w \in \{0,1\}^* \mid w$ 的首尾字符相同 $\}$ 的 NFA.

例 8. 设计 $L = \{w \in \{0,1\}^* \mid w$ 的首尾字符相同 $\}$ 的 NFA.

例 9. $L=\left\{w\in\{0,1\}^*\;\middle|\;w\; ext{either begins or ends with }01.\right\}.$

例 9. $L = \{w \in \{0,1\}^* \mid w \text{ either begins or ends with } 01. \}.$

DFA 与 NFA 的等价性

定理1

如果语言 L 被 NFA 接受, 当且仅当 L 被 DFA 接受.

DFA 与 NFA 的等价性

定理 1

如果语言 L 被 NFA 接受, 当且仅当 L 被 DFA 接受.

子集构造法

如果 NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ 构造 DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

- **1** $Q_D = 2^{Q_N};$
- $P_D = \{ S \mid S \subseteq Q_N, S \cap F_N \neq \emptyset \};$
- 3 $\forall S \subseteq Q_N, \forall a \in \Sigma$:

$$\delta_Dig(S,aig) = igcup_{p \in S} \delta_Nig(p,aig).$$

那么有 $\mathbf{L}(D) = \mathbf{L}(N)$.

The set of all strings over $\Sigma = \{0, 1\}$ that contain either 00 or 11 as a substring.

课堂练习.

证明: 为证明 $\mathbf{L}(D) = \mathbf{L}(N)$, 对 |w| 用归纳法, 往证

$$\hat{\delta}_D(\lbrace q_0\rbrace, w) = \hat{\delta}_N(q_0, w).$$

- ① 归纳基础: 当 $w = \varepsilon$ 时, $\hat{\delta}_D(\{q_0\}, \varepsilon) = \{q_0\} = \hat{\delta}_N(q_0, \varepsilon)$;
- ② 归纳递推: 假设 $w = x \ (x \in \Sigma^*)$ 时成立, 当 $w = xa \ (a \in \Sigma)$ 时

$$\hat{\delta}_N(q_0,xa) = \bigcup_{p \in \hat{\delta}_N(q_0,x)} \delta_N(p,a)$$
 NFA 的 $\hat{\delta}$ 定义
$$= \bigcup_{p \in \hat{\delta}_D(\{q_0\},x)} \delta_N(p,a)$$
 归纳假设
$$= \delta_D(\hat{\delta}_D(\{q_0\},x),a)$$
 D的构造
$$= \hat{\delta}_D(\{q_0\},xa).$$
 DFA 的 $\hat{\delta}$ 定义

因此上式成立.

因为

$$\hat{\delta}_D\big(\{q_0\},w\big)=\hat{\delta}_N\big(q_0,w\big)$$

所以, 对 $\forall w \in \Sigma^*$ 有

$$w \in \mathbf{L}(N) \iff \hat{\delta}_N(q_0, w) \cap F_N \neq \emptyset$$
 NFA 的语言
$$\iff \hat{\delta}_D(\{q_0\}, w) \cap F_N \neq \emptyset$$
 刚证明的
$$\iff \hat{\delta}_D(\{q_0\}, w) \in F_D$$
 D的构造
$$\iff w \in \mathbf{L}(D)$$
 DFA 的语言

所以

$$\mathbf{L}(D) = \mathbf{L}(N)$$
.

非确定性没能增加有穷自动机识别语言的能力, 原因是什么呢?

思考题

子集构造法: 构造与 NFA 等价的 DFA

续例 7. 将接受全部以 01 结尾的串的 NFA 转换为 DFA.

		0	
0 0 1	$\rightarrow q_0$	$\{q_0,q_1\}$ \varnothing \varnothing	$\{q_{0}\}$
start $\rightarrow q_0 \xrightarrow{0} q_1 \xrightarrow{1} q_2$	q_{1}	Ø	$\{q_{2}\}$
1 0 0.1	$*q_2$	Ø	Ø

子集构造法: 构造与 NFA 等价的 DFA

续例 7. 将接受全部以 01 结尾的串的 NFA 转换为 DFA.

13	🛚 10. L = { w ∈ {0,1}* w 倒数第 3 个字符是 1 }	

例 10. L = { w ∈ {0,1}* | w 倒数第 3 个字符是 1 }

$$\begin{array}{ccccc}
0,1 \\
0 & 1 & 0.1 & 0.1
\end{array}$$

例 10. $L = \{w \in \{0,1\}^* \mid w$ 倒数第 3 个字符是 1 $\}$ 0.1

$$\begin{array}{cccc}
0,1 \\
& \downarrow \\
\text{start} & \xrightarrow{(q_0)} & 1 & \xrightarrow{(q_1)} & 0,1 & \xrightarrow{(q_2)} & 0,1 \\
\end{array}$$

课堂练习,用子集构造法将其转换为等价的 DFA.

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
- 非确定有穷自动机
- 带有空转移的非确定有穷自动机
 - 形式定义
 - ε-闭包
 - 扩展转移函数
 - ε-NFA 的语言
 - ε-NFA 与 DFA 等价性

例 11. $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1 $\}$

例 11. $L = \{ w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1 $\}$

$$0,1$$
start $\rightarrow a$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

$$0,1$$

例 11. $L = \{ w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1 $\}$

状态的 ε 转移

- 允许状态因空串 ε 而转移,即不消耗输入字符就发生状态的改变
- 使自动机的设计更容易

续例 11. $L = \{ w \in \{0,1\}^* \mid w \text{ 倒数 3 } \land \text{字符至少有一个是 1 } \}$

start
$$\rightarrow Q_0$$
 $\downarrow Q_1$ $\downarrow Q_1$ $\downarrow Q_2$ $\downarrow Q_3$ $\downarrow Q_3$ $\downarrow Q_4$ $\downarrow Q_4$

start
$$\rightarrow q_0$$
 q_1 q_2 $0,1$ q_3 $0,1$ q_4 $0,1$ q_5 q_6 q_7 q_8 $q_$

带空转移非确定有穷自动机的形式定义

定义

带空转移非确定有穷自动机 $(\varepsilon$ -NFA)A 为五元组

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q:有穷状态集;
- ② Σ:有穷输入符号集或字母表;
- **③** $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$, 转移函数;
- **4** q₀∈Q:初始状态;
- ⑤ F⊆Q:终结状态集或接受状态集.

ε -NFA, NFA, DFA 之间的主要区别

● 自动机在某状态, 读入某个字符时, 可能有多个转移;

② 自动机在某状态, 读入某个字符时, 可能没有转移;

3 自动机在某状态,可能不读入字符,就进行转移.

此后, 不再明确区分 ε -NFA 和 NFA, 而认为它们都是 NFA.

注意

续例 11. $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1 $\}$ 的 ε-NFA.

利用
$$\varepsilon$$
 转移设计的有穷自动机:

$$0,1$$

$$0,1,\varepsilon$$

$$0,1,\varepsilon$$

$$0,1,\varepsilon$$

$$0,1,\varepsilon$$

续例 11. $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 $1\}$ 的 ε -NFA. 利用 ε 转移设计的有穷自动机:

$$\begin{array}{ccc}
0,1 \\
0,1 \\
0,1,\varepsilon \\
0,1,\varepsilon
\end{array}$$
start $\xrightarrow{Q_0}$ $\xrightarrow{Q_0}$ $\xrightarrow{Q_0}$ $\xrightarrow{Q_1}$ $\xrightarrow{Q_1}$ $\xrightarrow{Q_2}$ $\xrightarrow{Q_2}$ $\xrightarrow{Q_1}$ $\xrightarrow{Q_2}$ $\xrightarrow{Q_3}$

状态转移表:

续例 11. $L = \{ w \in \{0,1\}^* \mid w \text{ 倒数 3 } \land \text{字符至少有一个是 1 } \}$ 利用 ε 转移设计的有穷自动机:

$$0,1$$

$$0,1$$

$$0,1,\varepsilon$$

$$0,1,\varepsilon$$

$$0,1,\varepsilon$$

当输入字符串是 011 时. ε -NFA 的状态变化.

思考题

 $oldsymbol{0}$ 如果初始状态有 ε 转移, 第 1 个字符该如何处理?

2 如果最后的字符所到的状态有 ε 转移呢?

状态的 ε -闭包

定义

状态 q 的 ε -闭包(ε -Closure), 记为 $\mathrm{ECLOSE}(q)$, 表示从 q 经过 ε 序列可达的全部状态集合. 递归定义为:

- $q \in \text{Eclose}(q)$;
- ② $\forall p \in \text{Eclose}(q)$, 若 $r \in \delta(p, \varepsilon)$, 则 $r \in \text{Eclose}(q)$.

状态的 ε -闭包

定义

状态 q 的 ε -闭包(ε -Closure), 记为 $\mathrm{ECLOSE}(q)$, 表示从 q 经过 ε 序列可达的全部状态集合, 递归定义为:

- $0 q \in \text{Eclose}(q);$
- ② $\forall p \in \text{Eclose}(q)$, 若 $r \in \delta(p, \varepsilon)$, 则 $r \in \text{Eclose}(q)$.

状态集合的 ε -闭包

定义

状态集 S 的 ε -闭包为

$$ECLOSE(S) = \bigcup_{q \in S} ECLOSE(q).$$

续例 11. $L = \{ w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个 1 $\}$

状态转移表及每个状态的闭包:

start $\rightarrow (q_0) \rightarrow (q_1) \rightarrow (q_2) \rightarrow (q_3)$

续例 11. $L = \{ w \in \{0,1\}^* \mid w \text{ 倒数 3 个字符至少有一个 1} \}$

状态转移表及每个状态的闭包:

扩展转移函数

扩展 δ 到字符串, 定义<mark>扩展转移函数</mark> $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ 为

$$\hat{\delta}ig(q,wig) = \left\{egin{array}{ll} \mathrm{ECLOSE}(q) & w = arepsilon \ \mathrm{ECLOSE}ig(igcup_{p \in \hat{\delta}(q,x)}\deltaig(p,aig) \end{pmatrix} & w = xa \end{array}
ight.$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

续例 11. 若 $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个 $1\}$ 的 ε -NFA 如下,

的
$$\varepsilon$$
-NFA 如下,

求
$$\hat{\delta}(q_0,10)$$
.

$$imes \delta(q_0, 10)$$
.

续例 11. 若 $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个 1 $\}$ 的 ε -NFA 如下, 求 $\hat{\delta}(q_0,10)$.

$$\begin{split} \hat{\delta}\big(q_0,\varepsilon\big) &= \operatorname{Eclose}(q_0) = \{q_0\} \\ \hat{\delta}\big(q_0,1\big) &= \operatorname{Eclose}\left(\cup_{p \in \hat{\delta}(q_0,\varepsilon)} \delta(p,1)\right) = \operatorname{Eclose}\left(\cup_{p \in \{q_0\}} \delta(p,1)\right) \\ &= \operatorname{Eclose}(\delta(q_0,1)) = \operatorname{Eclose}(\{q_0,q_1\}) = \{q_0,q_1,q_2,q_3\} \\ \hat{\delta}\big(q_0,10\big) &= \operatorname{Eclose}\left(\cup_{p \in \hat{\delta}(q_0,1)} \delta(p,0)\right) = \operatorname{Eclose}\left(\cup_{p \in \{q_0,q_1,q_2,q_3\}} \delta(p,0)\right) \\ &= \operatorname{Eclose}(\delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0) \cup \delta(q_3,0)) \\ &= \operatorname{Eclose}(\{q_0,q_2,q_3\}) = \{q_0,q_2,q_3\} \end{split}$$

ε -NFA 的语言

回顾

DFA $D = (Q, \Sigma, \delta, q_0, F)$ 和 NFA $N = (Q, \Sigma, \delta, q_0, F)$ 的语言分别为

$$\mathbf{L}(D) = \left\{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \right\},$$

$$\mathbf{L}(N) = \left\{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \cap F \neq \varnothing \right\}.$$

定义

若
$$E = (Q, \Sigma, \delta, q_0, F)$$
是一个 ε -NFA,则 E 接受的语言为

$$\mathbf{L}(E) = \Big\{ w \in \Sigma^* \ \Big| \ \hat{\delta}(q_0, w) \cap F \neq \varnothing \Big\}.$$

消除空转移的子集构造法

构造方法

如果 ε-NFA $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$, 构造 DFA

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

- ① $Q_D = 2^{Q_E}$,或 $Q_D = \{ S \subseteq Q_E \mid S = \text{Eclose}(S) \};$
- $q_D = \text{Eclose}(q_E);$

$$\delta_Dig(S,aig) = ext{Eclose}igg(igcup_{p \in S} \delta_Eig(p,aig)igg).$$

那么有 $\mathbf{L}(D) = \mathbf{L}(E)$.

续例 11. 将下图 L 的 ε -NFA, 转为等价的 DFA.

续例 11. 将下图 L 的 ε -NFA, 转为等价的 DFA.

 $*q_3$

Ø

Ø

Ø

 $\{q_3\}$

续例 11. 将下图 L 的 ε -NFA, 转为等价的 DFA.

ε -NFA 与 DFA 等价性

定理 2

如果语言 L 被 ε -NFA 接受, 当且仅当 L 被 DFA 接受.

ε -NFA 与 DFA 等价性

定理 2

如果语言 L 被 ε-NFA 接受, 当且仅当 L 被 DFA 接受.

证明: 必要性显然成立, 因为任何 DFA 都是 ε -NFA. 为证明充分性, 对 w 归纳, 往证 $\hat{\delta}_E(q_E,w) = \hat{\delta}_D(q_D,w)$.

① 当 $w = \varepsilon$ 时

$$\hat{\delta}_E(q_E,\varepsilon) = \text{Eclose}(q_E) = q_D = \hat{\delta}_D(q_D,\varepsilon).$$

② 当 w = xa 时

$$\hat{\delta}_{E}(q_{E},xa) = \text{Eclose}\left(\bigcup_{p \in \hat{\delta}_{E}(q_{E},x)} \delta_{E}(p,a)\right) = \text{Eclose}\left(\bigcup_{p \in \hat{\delta}_{D}(q_{D},x)} \delta_{E}(p,a)\right)$$
$$= \delta_{D}(\hat{\delta}_{D}(q_{D},x),a) = \hat{\delta}_{D}(q_{D},xa)$$

例 12. Design ε -NFA for $L = \{0^k \mid k \text{ is a multiple of 2 or 3 }\}.$

例 12. Design ε -NFA for $L = \{0^k \mid k \text{ is a multiple of 2 or 3 }\}.$

chunyu@hit.edu.cn
http://nclab.net/~chunyu

