(a) Let x = 3 or x = 5 or x = 6. Then \sqrt{x} is irrational.

Proof. (Contradiction).

Suppose for the sake of contradiction that \sqrt{x} is rational. Hence $\sqrt{x} = \frac{n}{m}$ for some integers n and m such that they share no common factor. Then $x = \frac{n^2}{m^2} \Longrightarrow m^2 x = n^2$. Since $x|n^2$, and the prime factorization of x (either x = 3 or x = 5 or x = 6 = 2*3) contains no square of a prime, it follows that x|n. Hence n = xk for some integer k. Then $m^2 x = (xk)^2 = x^2k^2 \Longrightarrow m^2 = xk^2$. Thus x|m. Then n and m share a common factor of x, a contradiction.

Note that this proof would not work for if x=4. Since the prime factorization of 4 is 2^2 , then $x|n^2$ does not imply that x|n. For a counterexample, suppose n=2. Then $4|2^2=n^2$, but $4\nmid n$.

(b) Let x = 2 or x = 3. Then $\sqrt[3]{x}$ is irrational.

Proof. (Contradiction).

Suppose for the sake of contradiction that $\sqrt[3]{x}$ is rational. Hence $\sqrt[3]{x} = \frac{n}{m}$ for some integers n and m such that they share no common factor. Then $x = \frac{n^3}{m^3} \Longrightarrow m^3 x = n^3$. Since $x|n^3$, and x is prime (as x = 2 or x = 3), it follows that x|n. Hence n = xk for some integer k. Then $m^3 x = (xk)^3 = x^3k^3 \Longrightarrow m^3 = x^2k^3$. Since $x^2|m^3$, and the prime factorization of x^2 (either $x^2 = 2^2$ or $x^2 = 3^2$) contains no cube of a prime, it follows that x|m. Then n and m share a common factor of x, a contradiction.