Computational Communication Science 2 Week 3 - Lecture » (Soft) cosine and recommender systems«

Anne Kroon

a.c.kroon@uva.nl, @annekroon

April 14, 2025

Digital Society Minor, University of Amsterdam

Today

Recap: Week 1+2
Cosine similarity
RecSys
Knowledge-based Recommender Systems
Content-based Recommender Systems
Wrap up

Everything clear from last weeks?

Recap: Week 1+2

What We Covered in the Last Weeks

Text Preprocessing

- **Tokenization**: Splitting text into words or phrases.
- Stopword Removal: Filtering out common, low-information words.
- N-grams: Creating combinations of words (e.g., unigrams, bigrams, trigrams, collocations).
- **Stemming/Lemmatization**: Reducing words to their root or base form.

Text representations (Numerical form)

- Count Vectorization: Representing text as word occurrence counts.
- TF-IDF Vectorization: Weighs word importance relative to the document and corpus.
- Embeddings: Vector representations capturing semantic meaning (spaCy).

What We Covered in the Last Weeks

Top down and bottom up approaches

- We have discussed top-down and bottom-up approaches....
- ...today we'll talk about a *bottom-up* approach:
 - cosine similiarity
- ...second half of the course will focus on top-down
 - machine learning (vectorizers + pre-processing remain important!)

The Bigger Picture

Comparing CCS-1 and CCS-2

- CCS-1 focused on the *basics of programming* like learning how to drive.
- CCS-2 focuses on applying computational techniques to analyze textual data — more like learning how the engine works.
- This course emphasizes conceptual understanding and methodological application.
 - You'll be tested on your ability to apply concepts not on writing complex code from scratch.

The Bigger Picture

Comparing CCS-1 and CCS-2

- CCS-2 introduces more abstract concepts. Yes, it can be challenging — but you can do hard things! Mastering these ideas is empowering.
- Topics like vectorization, cosine similarity, and machine learning aren't just for this course — they're valuable, in-demand skills that look great on your resume.
- If you're having trouble, please reach out we're here to support you!
- Have feedback or want a consultation? Tell us how we can support you better:
 - https://forms.office.com/e/7fzzTvKGyT?origin=lprLink

Recap: Test Your Understanding of Vectors

Did You Get It?

Participate here:
 https://app.wooclap.com/JGMBTB?from=event-page

Join this Wooclap event

You can participate

1 Go to wooclap.com 2 Enter the event code in the top banner		Event code JGMBTB					
1	Send @JGMBTB to 0970 1420 2908						

Document-Term Matrix Comparison (Count, TF-IDF, Embedding)

Count Vectorizer						
Doc	cat	sat	dog			
D1	1	1	0			
D2	1	0	1			
D3	0	1	1			

TF-IDF Vectorizer							
Doc	cat	sat	dog				
D1	0.58	0.58	0.00				
D2	0.48	0.00	0.66				
D3	0.00	0.48	0.66				

Embedding (spaCy avg.)							
Doc	dim1	dim2	dim3				
D1	0.31	-0.04	0.88				
D2	0.27	-0.12	0.95				
D3	0.26	-0.01	0.83				

Raw word frequencies

Weights rare/important words

Dense semantic vectors (truncated)

Cosine similarity

Why Should We Care?

Cosine Similarity in Action

- Ever wonder how Spotify knows your next favorite song?
- Or why Netflix keeps recommending crime thrillers?
- Behind the scenes, they're comparing items as vectors.
- Cosine similarity tells us how "close" two items are in meaning or content.

Key Idea

Two documents (or songs, users, products) are similar if their vector directions are close — even if their values (lengths) differ.

Applications of Cosine Similarity

Where It's Used

- In industry:
 - Search engines (e.g., ranking relevant results)
 - Recommendation systems (e.g., suggesting similar content)
- In academia:
 - Linguistic alignment in communication (Brinberg & Ram, 2021)
 - Overlap between political speech and public opinion (Hager & Hilbig, 2020)

From Vectorization to Similarity

Good news: You already know (almost) everything!

- You've worked with vectors
- You already know how to vectorize your data using CountVectorizer and TfidfVectorizer
- Now, you can use those vectors to calculate cosine similarity
 - it's just one more step!

What This Means

Once your text is in vector form, you can compare:

- How similar two documents are
- Whether two users talk alike
- Which sentences match a query best

Mathematical Representation

similarity =
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

- Measures cosine of the angle between vectors.
- 0 (orthogonal, dissimilar), 1 (identical, similar).

Interpreting Cosine Similarity Values

What the Numbers Tell You

Cosine similarity values range from **0** to **1**:

- 1.0 \rightarrow Texts are *identical in direction* (highly similar).
- $0.8 1.0 \rightarrow \text{Very similar content or style.}$
- $0.5 0.8 \rightarrow$ Some overlap in meaning, but not identical.
- $0.0 0.5 \rightarrow \text{Low similarity}$; texts likely on different topics.
- 0.0 o No overlap in direction (completely dissimilar).

Tip

Cosine similarity is all about the *direction* of vectors — so it's great when document length doesn't matter, but shared emphasis (on certain words or ideas) does.

Cosine Similarity in Python

You've already seen how to vectorize text — now let's add one more line to compute similarity!

```
from sklearn.feature_extraction.text import CountVectorizer
       from sklearn.metrics.pairwise import cosine similarity
 3
       import pandas as pd
       # Sample documents
 5
       documents = \Gamma
           "When I eat breakfast, I usually drink some tea",
           "I like my tea with my breakfast",
 8
           "She likes cereal and coffee"
 9
10
       # Vectorize the text (bag-of-words)
       vec = CountVectorizer(stop_words='english') # OR use TfidfVectorizer()
11
12
       count matrix = vec.fit transform(documents)
13
       # Compute cosine similarity
14
       cos sim = cosine similarity(count matrix) --> Only this line is new :-)
15
       # Display as DataFrame for better readability
16
       print(pd.DataFrame(cos_sim))
```

Beyond Cosine: Introducing Soft Cosine Similarity

Limitations of Cosine using CountVectorizer and TfidfVectorizer.

- Only works with exact word matches (e.g. "car" \approx "automobile").
- Doesn't capture deeper semantic relationships.

Soft Cosine Similarity

- Uses word embeddings (spaCy) to measure similarity even with different words.
- Captures synonyms, related terms, and contextual meaning (Sidorov et al., 2014).

Cosine vs Soft Cosine: Side-by-Side Comparison

Comparing Two Sentences

Sentence A: "I drove my car to work."

Sentence B: "I drove my automobile to work."

Regular Cosine Similarity

- Method: CountVectorizer or TfidfVectorizer
- · Only exact word matches
- Score: 0.67
- Misses that "car" and "automobile" are related

Soft Cosine Similarity (Embeddings)

- Method: Word Embeddings (spaCy)
- Captures semantic relationships
- Score: 0.95
- Understands that "car" ≈
 "automobile"

Key Takeaway

Soft cosine captures **meaning**, not just word overlap — more powerful for nuanced language tasks.

Let's put this into practice!

Check out the walkthrough here:

https://github.com/uva-cw-ccs2/2425s2/blob/main/week03/exercise-lecture/cosine_similarity_WALKTHROUGH.ipynb

RecSys

Congratulations! You now have everything you need to build a recommender system.

Recommender Systems in Communication Science

New Research Questions

- 1. Political communication and journalism. E.g., crafting personalized news diets. However, this may impact the diversity of news diets and democracy (Locherbach & Trilling, 2018; Möller et al., 2018)
- 2. Organizational and corporate communication. E.g., applications in hiring and recruitment.
- 3. Persuasive communication. E.g., recommendation algorithms for tailored health interventions (Kim et al., 2019)
- 4. Entertainment communication. E.g., movie recommenders.

Recommender Systems

Types of recommender systems (Locherbach & Trilling, 2018; Möller et al., 2018; Wieland et al., 2021)

- 1. 'Basic' knowledge-base recommender systems
- 2. Content-based recommender systems
- 3. Collaborative recommenders (not part of this course)

Knowledge-based RecSys

Knowledge-based recommender system

When to use?

- To overcome the cold start problem; when we do not have ratings of individual users.
- Simple model. It does not rely on user's explicit or implicit ratings, but on specific queries.
- Typical use case: Real-estate. Buying a house is, for most families, a rare/ single event.

Use case: ImDb database

	genres	title	tagline	release_date	vote_average	vote_count
0	[action, adventure, fantasy, science fiction]	Avatar	Enter the World of Pandora.	2009-12-10	7.2	11800
1	[adventure, fantasy, action]	Pirates of the Caribbean: At World's End	At the end of the world, the adventure begins.	2007-05-19	6.9	4500
2	[action, adventure, crime]	Spectre	A Plan No One Escapes	2015-10-26	6.3	4466
3	[action, crime, drama, thriller]	The Dark Knight Rises	The Legend Ends	2012-07-16	7.6	9106
4	[action, adventure, science fiction]	John Carter	Lost in our world, found in another.	2012-03-07	6.1	2124

What are relevant variables to use in a knowledge-based recommender system?

Knowledge-based recommender system

How can we work with user input without a front-end (such as the website of funda? \rightarrow enter python's native input() function.

```
print("What is your favorite movie genre?")
genre = input()
```

```
what is your favorite movie genre?
[...]
```

Improving knowledge-based recommender system

When to use?

- It is important to think about ways to make the recommendation relevant for individuals
- Do you have more information in your db that make your top-listed recommendations as relevant as possible?

```
recommend_movies = movies.sort_values('vote_average',

→ ascending=False)
```

Content-based RecSys

Content-based systems

- Recommends items based on user's profiles.
- Profiles are based on e.g., ratings, and represents user's tasts/ preferences.
 - For example, how often a user has clicked on, or liked, a movie.
- Recommendation is based on similarity beween items in the content.
 - Content is here: e.g., genre, tags, plot, authors, directors, location, etc.

Example of a content-based recsys

Example of a content-based recsys

More like this

† 7.5 Harry Potter and the Chamber of Secrets

Watch options

† 7.9

Harry Potter and the Prisoner of Azkaban

Watch options

†7.7

Harry Potter and the Goblet of Fire

Watch options

† 7.5

Harry Potter and the Order of the Phoenix

Watch options

1

Content-based RecSys

Building blocks of content-based RecSys

Feature selection and preprocessing

- Feature engineering is essential. What attributes or qualities
 do we want to include? In other words, which columns will you
 select and combine? (more on this tomorrow)
- Preprocessing your data (e.g., removing stop words, stemming) is important for improving cosine similarity with CountVectorizer and TF-IDF. However, for soft cosine (using embeddings), preprocessing is not required.

Now how can we identify similar items?

- 1. Cosine similarity using text transformed with a CountVectorizer
- 2. Cosine similarity using text transformed with a TfidfVectorizer
- Soft cosine similarity using word embeddings from an embedding model

Benefits

- Content-based recommender systems are efficient and can provide highly personalized recommendations based on individual preferences.
- They are often integral to more complex recommender systems that combine deep learning and supervised learning techniques.

You now know how to implement these!

- You've learned how to vectorize text and compute similarities
 - the foundation of content-based recommendations.
- With this knowledge, you can easily build effective, data-driven recommendation systems!

Build your own recommender system

Practice with the materials!

- To be able to do this correctly, it is essential that you understand the code of this week's lab session.
- Carefully walk through this week's assignment, and to whether questions arise.
- It's up to you to decide whether you want to build a simple knowledge-based or content-based recommender system. Base your selection on the available data columns.

Wrap up

What We Covered in Part 1 – CCS 2: All ingredients of Content-based RecSys

What's Next?

Thank You!

Questions or feedback?

a.c.kroon@uva.nl

References i

References

Brinberg, M., & Ram, N. (2021). Do new romantic couples use more similar language over time? Evidence from intensive longitudinal text messages. Journal of Communication, 71(3), 454-477.

https://doi.org/10.1093/joc/jqab012

Hager, A., & Hilbig, H. (2020). Does public opinion affect political speech? American Journal of Political Science, 64(4), 921–937. https://doi.org/10.1111/ajps.12516

References ii

Kim, H. S., Yang, S., Kim, M., Hemenway, B., Ungar, L., & Cappella, J. N. (2019). An experimental study of recommendation algorithms for tailored health communication. *Computational Communication Research*, 1(1), 103–129. https://doi.org/10.5117/ccr2019.1.005.sukk

Locherbach, F., & Trilling, D. (2018).3bij3: A framework for testing effects of recommender systems on news exposure. Proceedings - IEEE 14th International Conference on eScience, e-Science 2018, 350–351. https://doi.org/10.1109/eScience.2018.00093

References iii

Möller, J., Trilling, D., Helberger, N., & van Es, B. (2018). Do not blame it on the algorithm: an empirical assessment of multiple recommender systems and their impact on content diversity. Information Communication and Society, 21(7), 959–977.

https://doi.org/10.1080/1369118X.2018.1444076

Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft similarity and soft cosine measure: Similarity of features in vector space model. *Computacion y Sistemas*, 18(3), 491–504. https://doi.org/10.13053/CyS-18-3-2043

References iv

Wieland, M., Von Nordheim, G., & Kleinen-Von Königslöw, K. (2021). One recommender fits all? An exploration of user satisfaction with text-based news recommender systems. Media and Communication, 9(4), 208–221. https://doi.org/10.17645/mac.v9i4.4241