Workshop Trees

The idea behind a decision tree

Components

An excel example

		bought_las	
gender	Location	t_30_days	buy
M	Metro	Υ	buy
M	Non-Metro	N	no_buy
F	Non-Metro	N	no_buy
F	Metro	N	buy
M	Metro	Υ	no_buy
M	Metro	N	no_buy

Dep.
Variable

Independent Variables

Quick concept

- We need to split the dataset one variable at a time
- 2. Keep doing this recursively
- Identify a stopping condition

Splitting Criteria – Gini Index

Gini Impurity = $1 - \sum p(x_i)^2$

Google Sheet for workings

Splitting Criteria – Information Gain

Google Sheet for workings

From Excel – Example (Entropy)

COUNTA of buy	buy							
Location	buy	no_buy	Grand Total	prob1	prob2	Entropy	Weights	Weighted Entropy
Metro	2	2	4	0.5	0.5	1	0.666666 667	0.6666666 667
Non-Metro		2	2	0	1	0	0.3333333 333	
Grand Total	2	4	6			1		0.6666666 667

Variable	Entropy	Info gain
gender	0.874	0.126
location	0.667	0.333
bought_la st_30_day		
S	0.874	0.126

Regression Trees

- 1. Take a feature and split
- 2. Get Variance of left node
- 3. Get Variance of right node
- 4. Weighted average of variance across all nodes

Variance = $(X-mu)^2/N$

Pruning:

Cost Complexity alpha:

Tree score = (Sum of Error)^2 + alpha * number of terminal nodes

Different sub trees— Find the best alpha based on cross validation results

Google Sheet for workings

Ref: https://www.youtube.com/watch?v=D0efHEJsfHo

Case Study 1

Credit card company wants to pre-approve its customers. It has many relevant details about the customers, we need to decide whether they should approve or not

Rows: Customers

Columns: CIBIL score, user location, age, income, gender, income, device etc

Labels: 'Good', 'Bad'

Problem - Dataset

	Unnamed: 0	income	age	experience	bureau_score	married	house_ownership	car_ownership	risk_flag	profession	
0	19607	2514921	31.00000	4.00000	651.00000	single	rented	no	0	Psychologist	
1	75516	7047674	28.00000	4.00000	526.00000	single	rented	yes	0	Economist	R
2	63804	2749317	30.00000	2.00000	526.00000	single	rented	no	0	Secretary	R
3	63676	7378274	24.00000	0.00000	764.00000	single	rented	no	0	Flight attendant	
4	50914	9574585	27.00000	5.00000	739.00000	single	rented	yes	0	Technician	

Independent Variables:

Index(['income', 'age', 'experience', 'bureau_score', 'married', 'house_ownership', 'car_ownership', 'profession', 'city', 'state', 'current_job_years', 'current_house_years', 'device'], dtype='object')

Dependent Variable

0 236567 1 43433

Name: risk_flag, dtype: int64

Lets look at the data

income aç	ge (experience	bureau_score	married	house_ownership	car_ownersl	hip	risk_flag	protess	ion		\longrightarrow	La	abel
2514921 31	.0	4.0	651.0	single	rented		no	0	Psycholo	gist				
7047674 28	3.0	4.0	526.0	single	rented	7	/es	0	Econor	mist				
2749317 30	0.0	2.0	526.0	single	rented		no	0	Secre	tary				
7378274 24	1.0	0.0	764.0	single	rented		no	0	FI attend	light dant				
9574585 27	7.0	5.0	739.0	single	rented	7	/es	0	Technic	cian				
c	ity	state	current_job_	years cu	ırrent_house_years	device								
Chandra	our	Maharashtra		4.0	14.0	Орро		0		236	5567			
Ramagundam[2	27]	Telangana		3.0	13.0	Xiaomi		1		43	3433			
Ramagundam[2	27]	Telangana		2.0	14.0	samsung		N	ame:	ri	isk_flag,	dtyp	e:	int64
Add	oni	Andhra Pradesh		0.0	11.0	samsung			9	a	844882			
Impl	hal	Manipur		5.0	10.0	Vivo			l		155118			
											isk_flag,	, dtyp	oe:	float64

Basic Decision Tree (With KNIME)

Configure Dependent Variable

Over to Python

Decision Tree with Sklearn

Algorithm	Test	Training
Decision Tree - Default	0.527	0.527

Hyper Parameters for decision trees

Over to Python

Need for Ensembles

Trees have low bias and high variance

Depth	Test	Training	
5	0.527	0.527	
50	0.818	0.877	
100	0.882	0.995	← Over
			Over Fitting

Solution: Build many 'simple trees' and take the final vote of the those predictions

Little drops of water
Little grains of sand,
Make the mighty ocean,
And the pleasant land – Julia Carney

Bagging

Boosting

Reduce Variance = Bagging Reduce Bias = Boosting

Bagging and Random Forests

- Random Forest is a special case of Bagging Algorithm
- Bagging is more generic, can take any estimator
- Bagging has subset of features in each training
- RF takes a subset of features in each split

Random Forest Sklearn (Key Parameters)

Handles higher dimensionality better

BootStrap (Sample or No Sample)
max_samples
N_estimators

Min samples split

Min samples Leaf

Max leaf nodes

Over to Python

Tuning Random Forest

```
params = {
    'n_estimators': [40,50,100],
    'criterion': ["gini", "entropy"],
    'max_samples': [0.1,0.2,0.5,1],
    'max_features':[0.1,0.2,0.3]
```

Algorith m	Test	Training	CV
Bagging	0.942	0.982	0.938
RF	0.96	0.982	0.956

Summary

- Gini, Entropy, Variance
- Pruning
- Decision Trees in Python
- Ensembles
- Bagging & Boosting
- Bagging & Random Forest in scikit learn