almost always do better than GDA. For this reason, in practice logistic regression is used more often than GDA. (Some related considerations about discriminative vs. generative models also apply for the Naive Bayes algorithm that we discuss next, but the Naive Bayes algorithm is still considered a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Let's now talk about a different learning algorithm in which the x_j 's are discrete-valued.

For our motivating example, consider building an email spam filter using machine learning. Here, we wish to classify messages according to whether they are unsolicited commercial (spam) email, or non-spam email. After learning to do this, we can then have our mail reader automatically filter out the spam messages and perhaps place them in a separate mail folder. Classifying emails is one example of a broader set of problems called **text classification**.

Let's say we have a training set (a set of emails labeled as spam or non-spam). We'll begin our construction of our spam filter by specifying the features x_i used to represent an email.

We will represent an email via a feature vector whose length is equal to the number of words in the dictionary. Specifically, if an email contains the j-th word of the dictionary, then we will set $x_j = 1$; otherwise, we let $x_j = 0$. For instance, the vector

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
 a aardvark aardwolf it buy it buy it buy it buy it buy it buy a zygmurgy

is used to represent an email that contains the words "a" and "buy," but not "aardvark," "aardwolf" or "zygmurgy." The set of words encoded into the

²Actually, rather than looking through an English dictionary for the list of all English words, in practice it is more common to look through our training set and encode in our feature vector only the words that occur at least once there. Apart from reducing the

feature vector is called the **vocabulary**, so the dimension of x is equal to the size of the vocabulary.

Having chosen our feature vector, we now want to build a generative model. So, we have to model p(x|y). But if we have, say, a vocabulary of 50000 words, then $x \in \{0,1\}^{50000}$ (x is a 50000-dimensional vector of 0's and 1's), and if we were to model x explicitly with a multinomial distribution over the 2^{50000} possible outcomes, then we'd end up with a $(2^{50000}-1)$ -dimensional parameter vector. This is clearly too many parameters.

To model p(x|y), we will therefore make a very strong assumption. We will assume that the x_i 's are conditionally independent given y. This assumption is called the **Naive Bayes (NB) assumption**, and the resulting algorithm is called the **Naive Bayes classifier**. For instance, if y=1 means spam email; "buy" is word 2087 and "price" is word 39831; then we are assuming that if I tell you y=1 (that a particular piece of email is spam), then knowledge of x_{2087} (knowledge of whether "buy" appears in the message) will have no effect on your beliefs about the value of x_{39831} (whether "price" appears). More formally, this can be written $p(x_{2087}|y) = p(x_{2087}|y, x_{39831})$. (Note that this is not the same as saying that x_{2087} and x_{39831} are independent, which would have been written " $p(x_{2087}) = p(x_{2087}|x_{39831})$ "; rather, we are only assuming that x_{2087} and x_{39831} are conditionally independent given y.)

We now have:

$$p(x_1, \dots, x_{50000}|y)$$

$$= p(x_1|y)p(x_2|y, x_1)p(x_3|y, x_1, x_2) \cdots p(x_{50000}|y, x_1, \dots, x_{49999})$$

$$= p(x_1|y)p(x_2|y)p(x_3|y) \cdots p(x_{50000}|y)$$

$$= \prod_{j=1}^{n} p(x_j|y)$$

The first equality simply follows from the usual properties of probabilities, and the second equality used the NB assumption. We note that even though the Naive Bayes assumption is an extremely strong assumptions, the resulting algorithm works well on many problems.

number of words modeled and hence reducing our computational and space requirements, this also has the advantage of allowing us to model/include as a feature many words that may appear in your email (such as "cs229") but that you won't find in a dictionary. Sometimes (as in the homework), we also exclude the very high frequency words (which will be words like "the," "of," "and"; these high frequency, "content free" words are called **stop words**) since they occur in so many documents and do little to indicate whether an email is spam or non-spam.

Our model is parameterized by $\phi_{j|y=1} = p(x_j = 1|y=1)$, $\phi_{j|y=0} = p(x_j = 1|y=0)$, and $\phi_y = p(y=1)$. As usual, given a training set $\{(x^{(i)}, y^{(i)}); i=1,\ldots,m\}$, we can write down the joint likelihood of the data:

$$\mathcal{L}(\phi_y, \phi_{j|y=0}, \phi_{j|y=1}) = \prod_{i=1}^m p(x^{(i)}, y^{(i)}).$$

Maximizing this with respect to $\phi_y, \phi_{j|y=0}$ and $\phi_{j|y=1}$ gives the maximum likelihood estimates:

$$\phi_{j|y=1} = \frac{\sum_{i=1}^{m} 1\{x_j^{(i)} = 1 \land y^{(i)} = 1\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}}$$

$$\phi_{j|y=0} = \frac{\sum_{i=1}^{m} 1\{x_j^{(i)} = 1 \land y^{(i)} = 0\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}}$$

$$\phi_y = \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}}{m}$$

In the equations above, the " \land " symbol means "and." The parameters have a very natural interpretation. For instance, $\phi_{j|y=1}$ is just the fraction of the spam (y=1) emails in which word j does appear.

Having fit all these parameters, to make a prediction on a new example with features x, we then simply calculate

$$p(y=1|x) = \frac{p(x|y=1)p(y=1)}{p(x)}$$

$$= \frac{\left(\prod_{j=1}^{n} p(x_j|y=1)\right)p(y=1)}{\left(\prod_{j=1}^{n} p(x_j|y=1)\right)p(y=1) + \left(\prod_{j=1}^{n} p(x_j|y=0)\right)p(y=0)},$$

and pick whichever class has the higher posterior probability.

Lastly, we note that while we have developed the Naive Bayes algorithm mainly for the case of problems where the features x_j are binary-valued, the generalization to where x_j can take values in $\{1,2,\ldots,k_j\}$ is straightforward. Here, we would simply model $p(x_j|y)$ as multinomial rather than as Bernoulli. Indeed, even if some original input attribute (say, the living area of a house, as in our earlier example) were continuous valued, it is quite common to **discretize** it—that is, turn it into a small set of discrete values—and apply Naive Bayes. For instance, if we use some feature x_j to represent living area, we might discretize the continuous values as follows:

Living area (sq. feet)	< 400	400-800	800-1200	1200-1600	>1600
$\overline{x_i}$	1	2	3	4	5

Thus, for a house with living area 890 square feet, we would set the value of the corresponding feature x_j to 3. We can then apply the Naive Bayes algorithm, and model $p(x_j|y)$ with a multinomial distribution, as described previously. When the original, continuous-valued attributes are not well-modeled by a multivariate normal distribution, discretizing the features and using Naive Bayes (instead of GDA) will often result in a better classifier.

2.1 Laplace smoothing

The Naive Bayes algorithm as we have described it will work fairly well for many problems, but there is a simple change that makes it work much better, especially for text classification. Let's briefly discuss a problem with the algorithm in its current form, and then talk about how we can fix it.

Consider spam/email classification, and let's suppose that, after completing CS229 and having done excellent work on the project, you decide around June 2003 to submit the work you did to the NIPS conference for publication. (NIPS is one of the top machine learning conferences, and the deadline for submitting a paper is typically in late June or early July.) Because you end up discussing the conference in your emails, you also start getting messages with the word "nips" in it. But this is your first NIPS paper, and until this time, you had not previously seen any emails containing the word "nips"; in particular "nips" did not ever appear in your training set of spam/non-spam emails. Assuming that "nips" was the 35000th word in the dictionary, your Naive Bayes spam filter therefore had picked its maximum likelihood estimates of the parameters $\phi_{35000|y}$ to be

$$\phi_{35000|y=1} = \frac{\sum_{i=1}^{m} 1\{x_{35000}^{(i)} = 1 \land y^{(i)} = 1\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}} = 0$$

$$\phi_{35000|y=0} = \frac{\sum_{i=1}^{m} 1\{x_{35000}^{(i)} = 1 \land y^{(i)} = 0\}}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}} = 0$$

I.e., because it has never seen "nips" before in either spam or non-spam training examples, it thinks the probability of seeing it in either type of email is zero. Hence, when trying to decide if one of these messages containing "nips" is spam, it calculates the class posterior probabilities, and obtains

$$p(y=1|x) = \frac{\prod_{j=1}^{n} p(x_j|y=1)p(y=1)}{\prod_{j=1}^{n} p(x_j|y=1)p(y=1) + \prod_{j=1}^{n} p(x_j|y=0)p(y=0)}$$
$$= \frac{0}{0}.$$

This is because each of the terms " $\prod_{j=1}^{n} p(x_j|y)$ " includes a term $p(x_{35000}|y) = 0$ that is multiplied into it. Hence, our algorithm obtains 0/0, and doesn't know how to make a prediction.

Stating the problem more broadly, it is statistically a bad idea to estimate the probability of some event to be zero just because you haven't seen it before in your finite training set. Take the problem of estimating the mean of a multinomial random variable z taking values in $\{1, \ldots, k\}$. We can parameterize our multinomial with $\phi_j = p(z = j)$. Given a set of m independent observations $\{z^{(1)}, \ldots, z^{(m)}\}$, the maximum likelihood estimates are given by

$$\phi_j = \frac{\sum_{i=1}^m 1\{z^{(i)} = j\}}{m}.$$

As we saw previously, if we were to use these maximum likelihood estimates, then some of the ϕ_j 's might end up as zero, which was a problem. To avoid this, we can use **Laplace smoothing**, which replaces the above estimate with

$$\phi_j = \frac{\sum_{i=1}^m 1\{z^{(i)} = j\} + 1}{m+k}.$$

Here, we've added 1 to the numerator, and k to the denominator. Note that $\sum_{j=1}^k \phi_j = 1$ still holds (check this yourself!), which is a desirable property since the ϕ_j 's are estimates for probabilities that we know must sum to 1. Also, $\phi_j \neq 0$ for all values of j, solving our problem of probabilities being estimated as zero. Under certain (arguably quite strong) conditions, it can be shown that the Laplace smoothing actually gives the optimal estimator of the ϕ_j 's.

Returning to our Naive Bayes classifier, with Laplace smoothing, we therefore obtain the following estimates of the parameters:

$$\phi_{j|y=1} = \frac{\sum_{i=1}^{m} 1\{x_j^{(i)} = 1 \land y^{(i)} = 1\} + 1}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\} + 2}$$

$$\phi_{j|y=0} = \frac{\sum_{i=1}^{m} 1\{x_j^{(i)} = 1 \land y^{(i)} = 0\} + 1}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\} + 2}$$

(In practice, it usually doesn't matter much whether we apply Laplace s-moothing to ϕ_y or not, since we will typically have a fair fraction each of spam and non-spam messages, so ϕ_y will be a reasonable estimate of p(y=1) and will be quite far from 0 anyway.)