Анализ тональности русскоязычных текстов при помощи рекуррентных нейронных сетей с механизмом внимания

Илья Сергеевич Иванов Научный руководитель к.ф.-м.н. Михаил Бурцев

Московский физико-технический институт Факультет Инноваций и Высоких Технологий Кафедра Анализа Данных

2017

Цель исследования

Исследовать новые методы анализа тональности коротких текстов на русском языке с применением рекуррентных нейронных сетей и механизма внимания.

Проблемы

Сложная морфология русского языка.

Особенности лексикона пользователей соц. сети.

Малый объём данных для обучения.

Предположения

Зависимость класса от порядка слов в тексте.

Разная значимость слов в тексте при классификации.

Литература

- Arkhipenko K., Kozlov I., Trofimovich J., Skorniakov K., Gomzin A., Turdakov D.. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets. Computational Linguistics and Intellectual Technologies. Dialog, 2016.
- Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, Eduard H. Hovy. Hierarchical Attention Networks for Document Classification. HLT-NAACL, 2016.
- Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR, 2014.

Постановка задачи классификации

Дано множество коротких сообщений $\mathfrak{D} = \{\mathbf{d}_j\}_{j=1}^K$, относящихся к компании(-ям).

Необходимо классифицировать сообщения из $\mathfrak D$ на три класса:

- положительной тональности (положительные);
- отрицательной тональности (отрицательные);
- не имеющие тональности (нейтральные).

Функционалы качества

Макро-усредненная F-мера относительно классов положительных и отрицательных сообщений.

В качестве классификатора предлагается использовать двунаправленную рекуррентную нейронную сеть с механизмом внимания.

И. С. Иванов 4 / 16

Векторное представление слов

- $oldsymbol{\bullet}$ Сообщение $oldsymbol{d} \in \mathfrak{D}$ является последовательностью слов $oldsymbol{d} = oldsymbol{w}_1..oldsymbol{w}_T$ из словаря $\mathfrak{W}.$
- ullet Слово $oldsymbol{w} \in \mathfrak{W}$ представляется вектором в D-мерном пространстве.
- Векторное представление для всех слов из словаря получается при помощи алгоритма Word2Vec, применённом на большом наборе неразмеченных данных.

(Mikolov et al., NAACL HLT, 2013)

И.С. Иванов 5 / 16

Рекуррентная нейронная сеть

- В качестве классификатора используется двунаправленная рекуррентная нейронная сеть типа GRU (Gated Recurrent Unit) с механизмом внимания.
- Функцией ошибки является перекрёстная энтропия для трёх классов.

$$J(W) = -\sum_{i=1}^{n} \sum_{k=1}^{3} y_i^{(k)} \log \hat{y}_i^{(k)},$$
$$\hat{y}_i^{(k)} = \frac{\exp s_i^{(k)}}{\sum_{j=1}^{3} \exp s_i^{(j)}}$$

Двунаправленный GRU

Уравнения GRU

$$z_t = \sigma_g(W_z x_t + U_z h_{t-1}) \tag{1}$$

$$r_t = \sigma_g(W_r x_t + U_r h_{t-1}) \tag{2}$$

$$\tilde{h}_t = \tanh(Wx_t + r_t \circ Uh_{t-1}) \tag{3}$$

$$h_t = (1 - z_t) \circ \tilde{h}_t + z_t \circ h_{t-1}$$
 (4)

И. С. Иванов 7 / 16

Уравнения механизма внимания

$$v_t = \tanh\left(W_\omega\left[\overrightarrow{h_t}, \overleftarrow{h_t}\right] + b_\omega\right)$$
 (5)

$$\alpha_t = \frac{\exp\left(v_t^T u_\omega\right)}{\sum_{j=1}^T \exp\left(v_j^T u_\omega\right)}$$
 (6)

$$v = \sum_{t=1}^{T} \alpha_t h_t \tag{7}$$

Набор данных

В качестве коллекции документов $\mathfrak D$ используется набор сообщений пользователей соц. сети Twitter с упоминанием некоторых банков и телекоммуникационных компаний, собираемые с 2013-го года. Особенностями данной коллекции являются:

- Размер сообщения не более 140 символов
- Лексикон:
 - сленг
 - сокращения
 - эмотиконы
- Спец. символы:
 - # (хэштег)
 - 0 (ссылка на пользователя)
- Ссылки на внешние ресурсы

Цели эксперимента

- Реализовать архитектуру двунаправленной рекуррентной сети с механизмом внимания (Python + TensorFlow)
- Провести подбор оптимальных гиперпараметров (GridSearch)
- Сравнить результаты с предложенными ранее алгоритмами.

Вычислительный эксперимент

В ходе эксперимента сравниваются результаты предложенного алгоритма классификации с такими алгоритмами как двунаправленная рекуррентная нейронная сеть (без механизма внимания) и метод опорных векторов.

План эксперимента

- Предобработать набор текстов
- Обучить Word2Vec
- Реализовать двунаправленный GRU
- Реализовать механизм внимания
- Подобрать оптимальные параметры модели на обучающей выборке
- Протестировать модель на отложенной выборке
- Сравнить результаты с другими алгоритмами

И.С. Иванов 11 / 16

Предобработка данных

- Отабрания (№ 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м) № 10 м (№ 10 м) № 10 м (№ 10 м) № 10 м
- ② Лемматизация (PyMorphy2)
- Векторизация слов (Word2Vec, обученный на русскоязычном корпусе из социальных медиа)
- Дополнение последовательностей нулями до максимальной длины (zero-padding)

Предобработка данных

Рис.: Распределение кол-ва слов в сообщении

Сравнение качества полученных моделей

Таблица: Результаты моделей на 5-фолд кросс-валидации

	Banks	Telecommunication
		companies
	F1-score	F1-score
Bi-GRU	0.740	0.625
Bi-GRU + Attention	0.737	0.609
2-layer GRU,		
reversed sequences	0.621	0.660
(Arhipenko)		
Bi-GRU (Arhipenko)	0.621	0.652
LSTM (Arhipenko)	0.603	0.641

Сравнение качества полученных моделей

Таблица: Результаты моделей на тестовой выборке

	Banks	Telecommunication
		companies
	F1-score	F1-score
Bi-GRU	0.48	0.52
Bi-GRU + Attention	0.51	0.49
2-layer GRU,		
reversed sequences	0.55	0.56
(Arhipenko)		
CNN (Arhipenko)	0.48	0.47
SVM baseline	0.46	0.46
Majority baseline	0.31	0.19

Заключение

- Реализован алгоритм двунаправленной рекуррентной нейронной сети с механизмом внимания для классификации тональности коротких русскоязычных текстов. Код отлажен и выложен в открытый доступ
- Проведён поиск оптимальных гиперпараметров алгоритма
- Проведено сравнение результатов с предложенными ранее алгоритмами
- Подготовлен отчет по результатам работы

Дальнейшее исследование

Исследование применимости данной модели в качестве модуля для нейронной сети, генерирующей сообщения с заданной тональностью.