A logician is expecting a child. A friend asked: "Is it a boy or a girl?"

The logician replied: "Yes".

# Propositional Logic: Semantics (1/3) CS402, Spring 2017

Shin Yoo

## Overview

- Boolean Operators
- Propositional Formulas
- Interpretations

# Propositions

A proposition is a declarative sentence. That is, it *can* be declared to be true or false. Examples:

- The sum of the numbers 3 and 5 is equal to 8.
- Jane reacted violently to Jack's accusations.
- Every even natural number greater than 2 is the sum of two prime numbers.
- All Martians like pepperoni on their pizza.

Propositionals are atomic and indecomposable. We use distinct symbols, p.q.r...., to represent propositions.

# **Boolean Operators**

Since propositions are of Boolean type, there are  $2^{2^n}$  *n*-ary Boolean operators. Each of the *n* operands can be either true or false, resulting in  $2^n$  Boolean tuples of operands. For each of  $2^n$  tuples, the result of the operation can again be true or false. Hence  $2^{2^n}$ .

For example, the following is the all possible unary Boolean opeartors,  $o_1, \ldots, o_4$ .

| X | 01 | 02 | 03 | 04 |
|---|----|----|----|----|
| T | T  | Т  | F  | F  |
| F | T  | F  | T  | F  |

Operators  $o_1$  and  $o_4$  are constant, and do not operate on the operand;  $o_2$  is the identity operator. Only  $o_3$  is nontrivially interesting, and is called *negation*.

# Binary Boolean Operators

There are 16 binary Boolean operators.

| <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | 01 | <i>o</i> <sub>2</sub> | 03 | 04 | <i>0</i> 5 | 06 | 07 | 08 |
|-----------------------|-----------------------|----|-----------------------|----|----|------------|----|----|----|
| T                     | T                     | T  | T                     | Т  | Т  | Т          | T  | T  | T  |
| T                     | F                     | T  | T                     | T  | T  | F          | F  | F  | F  |
| F                     | T                     | T  | T                     | F  | F  | T          | T  | F  | F  |
| F                     | F                     | T  | T<br>T<br>T<br>F      | T  | F  | T          | F  | T  | F  |

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | 09 | 010 | 011 | 012              | 013 | 014 | 015 | 016 |
|-----------------------|-----------------------|----|-----|-----|------------------|-----|-----|-----|-----|
| T                     | T                     | F  | F   | F   | F                | F   | F   | F   | F   |
| T                     | F                     | T  | T   | T   | T                | F   | F   | F   | F   |
| F                     | Τ                     | T  | Τ   | F   | F                | Τ   | Τ   | F   | F   |
| F                     | F                     | T  | F   | T   | F<br>T<br>F<br>F | T   | F   | T   | F   |

Trivial operators:  $o_1$  and  $o_{16}$  (constant),  $o_4$  and  $o_6$  (projection),  $o_{11}$  and  $o_{13}$  (negated projection).

# **Interesting Operators**

| ор | name                | symbol            | ор         | name         | symbol       |
|----|---------------------|-------------------|------------|--------------|--------------|
| 02 | disjunction         | $\vee$            | 015        | nor          | $\downarrow$ |
| 08 | conjunction         | $\wedge$          | <i>0</i> 9 | nand         | $\uparrow$   |
| 05 | implication         | $\rightarrow$     | 012        |              |              |
| 03 | reverse implication | $\leftarrow$      | 014        |              |              |
| 07 | equivalence         | $\leftrightarrow$ | 010        | exclusive or | $\oplus$     |

| Х | у | ^ | V | $\rightarrow$    | $\leftrightarrow$ | $\oplus$ | <b>↑</b> | <b>↓</b> |
|---|---|---|---|------------------|-------------------|----------|----------|----------|
| T | T | T | T | T                | T                 | F        | F        | F        |
| T | F | F | T | F                | F                 | T        | T        | F        |
| F | Τ | F | T | Τ                | F                 | Τ        | T        | F        |
| F | F | F | F | T<br>F<br>T<br>T | Τ                 | F        | Τ        | Τ        |

# Materialistic Implication

While  $p \to q$  is often read "if p then q", it does not mean causation, i.e. it does not mean that p caused q. It only means "if p then q" such that  $p \to q$  is false only when p is true but q is false (recall the truth table).

But this also means that  $p \to q$  is equivalent to  $\neg p \lor q$ . "2 is an odd number  $\to$  2 is an even number" is true.

The more philosophical branch of logic still has a problem with this. Outside mathematics, it is still easy to accept that when (p,q) is (T,F),  $p \to q$  is also false. For cases (T,T), (F,T) and (F,F), different accounts of the relationship accept that  $p \to q$  is sometimes true, but they deny that the conditional is always true in each of these cases.

# Redundancy

The first five binary operators  $(\vee, \wedge, \rightarrow, \leftarrow, \leftrightarrow)$  can all be defined in terms of any one of them plus negation  $(\neg)$ . For example:

| X | у | $x \wedge y$    | ¬y | $x \to \neg y$ | $\neg(x \rightarrow \neg y)$ |
|---|---|-----------------|----|----------------|------------------------------|
| T | Т | T<br>  F<br>  F | F  | F              | T                            |
| Τ | F | F               | T  | T              | F                            |
| F | T | F               | F  | T              | F                            |
| F | F | F               | T  | T              | F                            |

| X | y | $x \lor y$ | $\neg x$ | $\neg x \rightarrow y$ |
|---|---|------------|----------|------------------------|
| T | Т |            | F        | T                      |
| Τ | F | T          | F        | T                      |
| F | T | T          | T        | T                      |
| F | F | F          | T        | F                      |

# Redundancy

The choice of an interesting set of operators depends on the application.

- In digital circuit design, NAND(↑), NOR(↓), and NOT(¬) are commonly used to represent all Boolean formulas, mainly because these are more straightforward to implement at the physical, transistor level.
- In mathematics, we are generally interested in one-way logical deductions (from axioms to their implications), so we choose implication and negation.

### Definition 1 (2.13)

**Propositional Formula:** a formula  $fml \in \mathcal{F}$  is a word that can be derived from the following grammar, starting from the initial non-terminal fml:

- $fml := p \text{ for any } p \in P$
- 2  $fml := \neg fml$
- **3** *fml* ::= *fml op fml* where  $op \in \{ \lor, \land, \leftarrow, \rightarrow, \leftrightarrow, \downarrow, \uparrow, \oplus \}$

Each derivation of a formula from a grammar can be represented by a derivation tree that displays the application of the grammar rules to the non-terminals.

- Non-terminals: symbols that occur on the left-hand side of a rule
- Terminals: symbols that occur on only the right-hand side of a rule

From the derivation tree we can obtain a formation tree by replacing an fml non-terminal by the child that is an operator or an atom.

Derivation of  $p \to q \leftrightarrow \neg p \to \neg q$  using grammar rules.

- fml
- $\bigcirc$  fml  $\leftrightarrow$  fml

**Derivation Tree:** represents how non-terminals are expanded using which rules.



# **Formation Tree:** shows the structure of the formula $p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$ .





**Removing Ambiguity:** formation trees are unique, linear representation such as  $p \to q \leftrightarrow \neg p \to \neg q$  are not. There are a few ways to resolve this ambiguity.

- Polish Notation: essentially, formulate linear representation by visiting the formation tree depth-first preorder (i.e. starting from the root, visit the current node, visit the left subtree, visit the right subtree, recursively).
  - $\bullet \; \longleftrightarrow \to pq \to \neg p \neg q$
  - $\bullet \to p \leftrightarrow q \neg \to \neg p \neg q$
- Use parentheses: change the grammar slightly so that fml ::= p for any  $p \in P$ ,  $fml ::= (\neg fml)$ , and  $fml ::= (fml \ op \ fml) \dots$ , etc.
  - $((p \rightarrow q) \leftrightarrow ((\neg p) \rightarrow (\neg q)))$
  - $(p \rightarrow (q \leftrightarrow (\neg(p \rightarrow (\neg q)))))$
- Define precedence and associativity: parentheses are needed only when the formula deviates from the precedence.

**Removing Ambiguity:** formation trees are unique, linear representation such as  $p \to q \leftrightarrow \neg p \to \neg q$  are not. There are a few ways to resolve this ambiguity.

- Define **precedence** and **associativity**: parentheses are needed only when the formula deviates from the precedence. We naturally recognize a\*b\*c+d\*e as (((a\*b)\*c)+(d\*e)). Similarly.
  - From high to low precedence:  $\neg, \land, \uparrow, \lor, \downarrow, \rightarrow, \leftrightarrow$
  - Assume right associativity, i.e.  $a \lor b \lor c$  means  $(a \lor (b \lor c))$ .

With minimal use of parentheses, the previous two formulation trees can be represented as:

• 
$$p \rightarrow q \leftrightarrow \neg p \rightarrow \neg q$$

$$\bullet \ \ p \to (q \leftrightarrow \neg (p \to \neg q))$$

### Structural Induction

### Theorem 1 (2.12)

To show property(A) for all formulas  $A \in \mathcal{F}$ , it suffices to show:

- Base case: property(p) holds for all atoms  $p \in \mathcal{P}$
- Induction step:
  - Assuming property(A), the property( $\neg A$ ) holds.
  - Assuming property( $A_1$ ) and property( $A_2$ ), then property( $A_1$  op  $A_2$ ) hold, for each of the binary operators.

**Exercise:** Prove that every propositional formula can be equivalently expressed using only  $\uparrow$ .

# Interpretations

### Definition 2 (2.15)

Let  $A \in \mathscr{F}$  be a formula and let  $\mathscr{P}_A$  be the set of atoms appearing in A. An *interpretation* for A is a total function

 $\mathscr{I}_A:\mathscr{P}_A\to\{T,F\}$  that assigns one of the *truth values* to *every* atom in  $\mathscr{P}_A$ .

### Definition 3 (2.16)

Let  $\mathscr{I}_A$  be an interpretation for  $A \in \mathscr{F}$ .  $\nu_{\mathscr{I}_A}(A)$ , the truth value of A under  $\mathscr{I}_A$ , is defined inductively on the structure of A.

$$v_{\mathscr{J}}(A) = \mathscr{I}_{A}(A) \qquad \text{if $A$ is an atom} \\ v_{\mathscr{J}}(\neg A) = T \qquad \text{if $v_{\mathscr{J}}(A) = F$} \\ v_{\mathscr{J}}(\neg A) = F \qquad \text{if $v_{\mathscr{J}}(A) = F$} \\ v_{\mathscr{J}}(A_{1} \vee A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = F$ and $v_{\mathscr{J}}(A_{2}) = F$} \\ v_{\mathscr{J}}(A_{1} \vee A_{2}) = T \qquad \text{otherwise} \\ v_{\mathscr{J}}(A_{1} \wedge A_{2}) = T \qquad \text{if $v_{\mathscr{J}}(A_{1}) = T$ and $v_{\mathscr{J}}(A_{2}) = T$} \\ v_{\mathscr{J}}(A_{1} \wedge A_{2}) = F \qquad \text{otherwise} \\ v_{\mathscr{J}}(A_{1} \rightarrow A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = T$ and $v_{\mathscr{J}}(A_{2}) = F$} \\ v_{\mathscr{J}}(A_{1} \rightarrow A_{2}) = T \qquad \text{otherwise} \\ v_{\mathscr{J}}(A_{1} \uparrow A_{2}) = T \qquad \text{otherwise} \\ v_{\mathscr{J}}(A_{1} \uparrow A_{2}) = T \qquad \text{otherwise} \\ v_{\mathscr{J}}(A_{1} \downarrow A_{2}) = T \qquad \text{if $v_{\mathscr{J}}(A_{1}) = F$ and $v_{\mathscr{J}}(A_{2}) = F$} \\ v_{\mathscr{J}}(A_{1} \downarrow A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \leftrightarrow A_{2}) = T \qquad \text{if $v_{\mathscr{J}}(A_{1}) \neq v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = T \qquad \text{if $v_{\mathscr{J}}(A_{1}) \neq v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = T \qquad \text{if $v_{\mathscr{J}}(A_{1}) \neq v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) \neq v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) \neq v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v_{\mathscr{J}}(A_{1} \oplus A_{2}) = F \qquad \text{if $v_{\mathscr{J}(A_{1}) = v_{\mathscr{J}}(A_{2})$} \\ v$$

### Truth Tables

### Definition 4 (2.20)

Let  $A \in \mathscr{F}$  and suppose that there are n atoms in  $\mathscr{P}_A$ . A truth table is a table with n+1 columns and  $2^n$  rows. There is a column for each atom in  $\mathscr{P}_A$ , plus a column for the formula A. The first n columns specify the interpretation  $\mathscr{I}$  that maps atoms in  $\mathscr{P}_A$  to  $\{T,F\}$ . The last column shows  $\nu_{\mathscr{I}}(A)$ , the truth value of A for the interpretation  $\mathscr{I}$ .

### Example 1

Let  $A = (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$  and let  $\mathscr{I}$  an interpretation such that  $\mathscr{I}(p) = F$  and  $\mathscr{I}(q) = T$ , and  $\mathscr{I}(p_i) = T$  for all other  $p_i \in \mathcal{P}$ . Extend  $\mathscr{I}$  to  $\nu_{\mathscr{I}}(A)$ , the truth value of A.

- $\nu_{\mathscr{I}}(\neg q) = F$

#### Example 2

 $\nu_{\mathscr{I}}(p \to (q \to p)) = T$ , but  $\nu_{\mathscr{I}}((p \to q) \to p) = F$ . This shows that  $p \to q \to p$  is ambiguous.