6. Übung Statistische Mechanik und Thermodynamik

Bitte laden Sie Ihre Lösungen bis Donnerstag, den 28.11.2024 um 16:00 Uhr auf WueCampus hoch.

Die Blätter dürfen Sie dabei in Zweiergruppen abgeben.

6 P.

Aufgabe 1 Großkanonische Behandlung des idealen Gases

Betrachten Sie ein klassisches ideales Gas in drei Dimensionen mit Hamiltonfunktion

$$\mathcal{H} = \sum_{i=1}^{3N} \frac{p_i^2}{2m} \tag{1}$$

Aus der Vorlesung ist die kanonische Zustandssumme bekannt als

$$Z_{\rm K}(N) = \frac{V^N}{N!} \left(\frac{2m\pi}{\beta h^2}\right)^{\frac{3N}{2}} \tag{2}$$

- a) Bestimmen Sie die großkanonische Zustandssumme $Z_{\rm G}$ und das großkanonische 2 P. Potential J.
- b) Ermitteln Sie die mittlere Teilchenzahl $\langle N \rangle$. 1 P.
- c) Berechnen Sie mit Hilfe der großkanonischen Zustandssumme den Druck p und 1 P. leiten Sie daraus die Zustandsgleichung her.
- d) Bestimmen Sie das chemische Potential μ .
- e) Bestimmen Sie die Entropie S und vergleichen Sie den Ausdruck mit der mikro- 1 P. kanonisch abgeleiteten Sackur-Tetrode Gleichung (s. Vorlesung).

Aufgabe 2 Teilchenschwankung im großkanonischen Ensemble 4 P.

a) Zeigen Sie, dass im großkanonischen Ensemble die Schwankung ΔN der Teilchen -2 P. durch

$$(\Delta N)^2 = k_{\rm B} T \left(\frac{\partial N(T, V, \mu)}{\partial \mu} \right)_{T,V}$$
 (3)

gegeben ist.

b) Zeigen Sie mit Gleichung (3), dass die isotherme Kompressibilität:

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{NT} \tag{4}$$

positiv ist. Schreiben Sie dazu in $N d\mu = V dp - S dT$ das Differential dp für p(T, V, N) aus. Hieraus können Sie $(\partial N/\partial \mu)_{T,V}$ ablesen. Verwenden Sie nun $p = p(T, V/N) = p(T, \nu)$.

Bitte wenden!

2 P.

Aufgabe 3 Kanonische und großkanonischer Verteilung

5 P.

In der Vorlesung wurde die Wahrscheinlichkeitsverteilung $\rho(E)$ der kanonischen und großkanonischen Gesamtheit aus der Gleichgewichtsbedingung eines kleinen Systems angekoppelt an ein Wärmebad (mit Energie- und Teilchenaustausch) hergeleitet. Alternativ kann die Verteilung aus der Forderung bestimmt werden, dass die Entropie $S = -k_{\rm B} \langle \log \rho \rangle = -k_{\rm B} \int d\Gamma \rho(E) \log \rho(E)$ extremal sein soll.

- a) Leiten Sie aus einem entsprechenden Variationsprinzip mit der Nebenbedingung 3 P. der Wahrscheinlichkeitsnormierung (1 = $\int d\Gamma \rho(E)$) und dem Mittelwert der Energie (E = $\int d\Gamma \rho(E)E$) die Wahrscheinlichkeitsverteilung des kanonischen Ensembles her.
- b) Bestimmen Sie außerdem die Wahrscheinlichkeitsverteilung des großkanonischen 2P. Ensembles, indem sie die mittlere Teilchenzahl $(N = \int d\Gamma \rho(E) N(E))$ als zusätzliche Nebenbedingung berücksichtigen.

Hinweis: Addieren Sie die Nebenbedingungen mittels Lagrange-Parametern zur Entropie (als Funktional der Wahrscheinlichkeiten) und variieren Sie $\rho(E_{\rm S})$ mit der Energie $E_{\rm S}$ des (groß)kanonisch an das Wärmebad angekoppelten Systems. Mit welchen physikalischen Größen müssen Sie die Lagrange-Parameter identifizeren, um die aus der Vorlesung bekannten Ausdrücke der Wahrscheinlichkeitsverteilung zu erhalten?