Name:	

SEMIFINAL

Math 237 – Linear Algebra

Version 2

Choose up to 6 problems to work. Work each problem on one of the attached pages; write the standard in the upper left corner. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x_1 + 4x_3 = 1$$
$$x_2 - x_3 = 7$$
$$x_1 - x_2 + 3x_3 = -1$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & 2 & 1 & 2 & -1 \\ 1 & 1 & 2 & 4 & 5 \\ 3 & 3 & -1 & -2 & 1 \end{bmatrix}$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1, y_1) \oplus c \odot (x_2, y_2).$
- (b) Determine if V is a vector space or not. Justify your answer.

V2. Determine if
$$\begin{bmatrix} 0 \\ -1 \\ 6 \\ -7 \end{bmatrix}$$
 belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

- **V3.** Determine if the vectors $\begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}$ span \mathbb{R}^4 .
- **V4.** Determine if $\left\{ \begin{bmatrix} x \\ y \\ 0 \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^4 .

S1. Determine if the set of vectors
$$\left\{ \begin{bmatrix} -3\\8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3 \end{bmatrix} \right\}$$
 is linearly dependent or linearly independent

S2. Determine if the set
$$\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$$
 is a basis of \mathcal{P}^3 .

S3. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right\}$$
. Find a basis for this vector space.

S4. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

A1. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 7x + 2y + 3z \\ 0 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

A2. Determine if
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is a linear transformation.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$S: \mathbb{R}^2 \to \mathbb{R}^2$$
 given by the standard matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

(b)
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 given by the standard matrix
$$\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}$$

A4. Let
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 be the linear map given by $T\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{bmatrix} 8x - 3y - z + 4w \\ y + 3z - 4w \\ -7x + 3y + 2z - 5w \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T .

for the kerner and a basis for the imag

M1. Let

$$A = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -1 & 3 & -3 \\ 2 & 1 & -1 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 2 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

M2. Determine if the matrix
$$\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix}$$
 is invertible.

M3. Find the inverse of the matrix
$$\begin{bmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
.

G1. Compute the determinant of the matrix
$$\begin{bmatrix} 3 & -1 & 0 & 7 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- **G2.** Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & -1 \\ 21 & -8 & -3 \\ -7 & 3 & 2 \end{bmatrix}$.
- **G3.** Find the eigenspace associated to the eigenvalue 1 in the matrix $A = \begin{bmatrix} 8 & -3 & -1 \\ 21 & -8 & -3 \\ -7 & 3 & 2 \end{bmatrix}$
- **G4.** Compute the geometric multiplicity of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Standard:	

Standard:	