Übungen zur Mathematik I für Studierende der Informatik (Diskrete Mathematik) im Wintersemester 2022/2023, Blatt 2

Fachbereich Mathematik, Nathan Bowler und Stefan Geschke

A: Präsenzaufgaben am 27. Oktober 2022

- 1. Seien $A = \{2, 3, 4, 5\}$, $B = \{1, 2\}$ und $C = \{a, b, c\}$. Berechnen Sie die folgenden Mengen.
 - (a) $(A \cap B) \times C$,
 - (b) $(A \times C) \cup (B \times C)$,
 - (c) $(A \setminus B) \times C$ und
 - (d) $(A \times C) \setminus B$.
- 2. Seien A, B und C Mengen mit $B \subseteq C$. Zeigen Sie $A \times B \subseteq A \times C$.
- 3. Berechnen Sie $\mathcal{P}(\{1,2,3\})$.
- 4. In der Vorlesung wurde benutzt, dass für alle natürlichen Zahlen b folgendes gilt: Wenn b^2 durch zwei teilbar ist, dann auch b selbst. Beweisen Sie diese Aussage.

Hinweis: Gerade Zahlen haben die Form 2a für ein $a \in \mathbb{Z}$. Ungerade Zahlen sind von der Form 2a + 1 für ein $a \in \mathbb{Z}$. Diese Information dürfen Sie benutzen.

B: Hausaufgaben zum 3. November 2022

Formaler Teil

- 1. Zeigen Sie:
 - (a) Für alle Mengen A, B und C gilt

$$(A \cap B) \times C = (A \times C) \cap (B \times C).$$

- (b) Seien A und B Mengen mit $A \subseteq B$. Zeigen Sie $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- 2. (a) Zeigen Sie, dass für jede natürliche Zahl b folgendes gilt: Ist b^2 durch 3 teilbar, so auch b selbst. Hinweis: Jede ganze Zahl b lässt sich für ein $a \in \mathbb{Z}$ entweder als 3a schreiben, oder als 3a+1, oder als 3a+2.
 - (b) Zeigen Sie, dass $\sqrt{3}$ irrational ist. Folgen Sie dabei dem Beweis der Irrationalität von 2 und benutzen Sie Teil (a) dieser Aufgabe.

Allgemeiner Teil

- 3. Seien A und B beliebige Mengen. Berechnen Sie $(A \times \{0\}) \cap (B \times \{1\})$.
- 4. (a) Berechnen Sie $\mathcal{O}(\mathcal{O}(\mathcal{O}(\emptyset)))$.
 - (b) Berechnen Sie $\mathcal{P}(\{1\}) \times \mathcal{P}(\{\emptyset\})$.

5. Es sei M eine Menge und A,B,C Teilmengen von M. Komplemente werden bezüglich M berechnet. Vereinfachen Sie den Ausdruck

$$(\overline{(A \cup B)} \cap C) \cup ((\overline{A} \cap \overline{B}) \cap \overline{C}).$$

Hinweis: Sie sind fertig, wenn sich der von Ihnen gefunden Ausdruck nicht mehr verkürzen lässt.