Password Cracking Using Probabilistic Context Free Grammars

Emily Bennett & Henry O'Brien April 17, 2019

COMS4507

Relevant Papers

M. Weir, S. Aggarwal, B. Medeiros and B. Glodek, "Password Cracking Using Probabilistic Context-Free Grammars," in 30th IEEE Symposium on Security and Privacy, Berkeley, CA, 2009, pp. 391-405. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5207658&isnumber=5207632

S. Houshmand, S. Aggarwal and R. Flood. (2015, Aug). "Next Gen PCFG Password Cracking". *IEEE Transactions on Information Forensics and Security. vol. 10, no. 8*, pp. 1776-1791. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7098389&isnumber=7127092

Agenda

- Background
- Password cracking using PCFGs
 - Password preprocessing
 - Computing probabilities
 - Optimisation
- "Next Generation" Password Cracking
 - Keyboard patterns
 - Alpha strings
- Evaluation of techniques

Password Cracking Refresher

• Find an input, x, such that h(x) matches the password hash

Password Cracking Refresher

- Find an input, x, such that h(x) matches the password hash
- Brute force?
 - Slow!

Password Cracking Refresher

- Find an input, x, such that h(x) matches the password hash
- Brute force?
 - Slow!
- Dictionary attacks
 - Mangling rules
 - How can we work out what passwords to try first?

- People are bad at coming up with passwords
 - How do we take advantage of this?

- People are bad at coming up with passwords
 - How do we take advantage of this?
- Obtain existing leaked passwords to use as training data

- People are bad at coming up with passwords
 - How do we take advantage of this?
- Obtain existing leaked passwords to use as training data
- Analyse this training set to discover patterns

- People are bad at coming up with passwords
 - How do we take advantage of this?
- Obtain existing leaked passwords to use as training data
- Analyse this training set to discover patterns
- Assign these patterns probabilities based on how frequently they occur in the data

- People are bad at coming up with passwords
 - How do we take advantage of this?
- Obtain existing leaked passwords to use as training data
- Analyse this training set to discover patterns
- Assign these patterns probabilities based on how frequently they occur in the data
- Allows us to try the most likely passwords first
 - 'password12' vs 'P@\$\$W0rd!23'

Context Free Grammars

 Context Free Grammars (CFGs) are a way of formally representing these patterns

Context Free Grammars

- Context Free Grammars (CFGs) are a way of formally representing these patterns
- Consist of: Terminal symbols, non-terminal symbols, and productions

Context Free Grammars

- Context Free Grammars (CFGs) are a way of formally representing these patterns
- Consist of: Terminal symbols, non-terminal symbols, and productions
- Example: All possible strings of length two containing the letters a or b
 - $S \rightarrow YY$
 - \bullet $Y \rightarrow a$
 - $Y \rightarrow b$

Probabilistic Context Free Grammars

 Probabilistic CFGs assign a probability to each production based on how likely it is to occur

Probabilistic Context Free Grammars

- Probabilistic CFGs assign a probability to each production based on how likely it is to occur
- If a is two times more likely to occur than b, then we have:

Production	Probability
S o YY	1
Y o a	2/3
Y o b	1/3

Representing Passwords as PCFGs

Non-terminals

- L_n Sequence of alphabet symbols (eg. "abc")
- D_n Sequence of digits (eg. "123")
- S_n Sequence of non-alpha/non-digits (eg. "#\$%")

(each sequence of length n)

Representing Passwords as PCFGs

Non-terminals

- L_n Sequence of alphabet symbols (eg. "abc")
- D_n Sequence of digits (eg. "123")
- S_n Sequence of non-alpha/non-digits (eg. "#\$%") (each sequence of length n)

`!!password1`
$$ightarrow$$
 $S_2L_8D_1$

1. Training set \rightarrow all possible base structures

Training set = $\{!4!dog\$\$4, dog5!, cat5?, cat4!\}$

Production	Probability
$S \rightarrow S_1 D_1 S_1 L_3 S_2 D_1$	0.25
$S o L_3 D_1 S_1$	0.75

2. Expand *D* and *S* non-terminals

Production	Probability
$S \rightarrow S_1 D_1 S_1 L_3 S_2 D_1$	0.25
$S \rightarrow L_3D_1S_1$	0.75
$D_1 o 4$	0.6
$D_1 o 5$	0.4
$\mathcal{S}_1 o !$	0.8
$S_1 o ?$	0.2
$\mathcal{S}_2 o \$\$$	1

2. Expand *D* and *S* non-terminals

Production	Probability
$S \rightarrow S_1 D_1 S_1 L_3 S_2 D_1$	0.25
$S \rightarrow L_3 D_1 S_1$	0.75
$D_1 o 4$	0.6
$D_1 o 5$	0.4
$\mathcal{S}_1 o !$	0.8
$S_1 o ?$	0.2
$\mathcal{S}_2 o \$\$$	1

$$S
ightarrow L_3 D_1 S_1
ightarrow L_3 4 S_1
ightarrow L_3 4!$$
 ("pre-terminal")

2. Expand D and S non-terminals

Production	Probability
$S \rightarrow S_1 D_1 S_1 L_3 S_2 D_1$	0.25
$S \rightarrow L_3D_1S_1$	0.75
$D_1 o 4$	0.6
$D_1 o 5$	0.4
$\mathcal{S}_1 o !$	0.8
$S_1 o ?$	0.2
$\mathcal{S}_2 o \$\$$	1

$$S
ightarrow L_3D_1S_1
ightarrow L_34S_1
ightarrow L_34!$$
 ("pre-terminal")
$$P=0.75 imes 0.6 imes 0.8=0.36$$

3. Identify pre-terminal with highest probability and perform dictionary attack

$$D = \{cat, dog, monkey, rat\}$$

3. Identify pre-terminal with highest probability and perform dictionary attack

$$D=\{cat, dog, monkey, rat\}$$
 $S
ightarrow L_3 4!
ightarrow cat 4!$ $S
ightarrow L_3 4!
ightarrow dog 4!$ $S
ightarrow L_3 4!
ightarrow rat 4!$

Optimisation

- Trivial approach
 - 1. Build list of all pre-terminal structures
 - 2. Sort in order of descending probability
 - 3. Perform dictionary attacks in an iterative manner
- This is inefficient in both time and memory!

Optimisation

- Trivial approach
 - 1. Build list of all pre-terminal structures
 - 2. Sort in order of descending probability
 - 3. Perform dictionary attacks in an iterative manner
- This is inefficient in both time and memory!
- Can optimise by running the probability calculations and dictionary attacks in parallel
 - 1. Build up a distributed priority queue of pre-terminals
 - 2. Concurrently pop the best entry from the PQ and perform dictionary attack

"Next Generation" Password Cracking

 The original PCFG technique encounters issues in certain scenarios

- The original PCFG technique encounters issues in certain scenarios
- ullet 'qwertyuiop' would be represented as $S o L_{10}$

- The original PCFG technique encounters issues in certain scenarios
- ullet 'qwertyuiop' would be represented as $S o L_{10}$
- ullet 'hellohello123' becomes $S o L_{10}D_3$

- The original PCFG technique encounters issues in certain scenarios
- ullet 'qwertyuiop' would be represented as $S o L_{10}$
- 'hellohello123' becomes $S o L_{10} D_3$
 - Neither of these are common 10 letter words, but should still be easy to crack

Keyboard Patterns

 A keyboard pattern is a memorable sequence of keystrokes on a physical keyboard

Keyboard Patterns

- A keyboard pattern is a memorable sequence of keystrokes on a physical keyboard
- Modify PCFGs so that they identify these patterns during training

Keyboard Patterns

- A keyboard pattern is a memorable sequence of keystrokes on a physical keyboard
- Modify PCFGs so that they identify these patterns during training
- Introduce new non-terminal K_n
 - ullet 'qwertyuiop' becomes $S o \mathcal{K}_{10}$

Resolving Ambiguity

 A grammar is ambiguous if there are multiple productions which can lead to the same terminal string

Resolving Ambiguity

- A grammar is ambiguous if there are multiple productions which can lead to the same terminal string
- 'qw34!99' would have been $S \to L_2D_2S_1D_2$, but can now also be represented by $S \to K_4S_1D_2$

Resolving Ambiguity

- A grammar is ambiguous if there are multiple productions which can lead to the same terminal string
- 'qw34!99' would have been $S \to L_2D_2S_1D_2$, but can now also be represented by $S \to K_4S_1D_2$
- We introduce rules that deterministically choose one non-terminal over another
 - ullet 'qw34!99' is now always $S
 ightarrow {\it K}_4 {\it S}_1 {\it D}_2$
 - ullet 'tree12' is still $S o L_4 D_2$ (instead of $K_4 D_2$)

Keyboard Patterns Example

Training set $= \{qwerty123, asdfgh123, blocks456\}$

Without keyboard patterns

Production	Probability
$S \rightarrow L_6 D_3$	1
$D_3 ightarrow 123$	2/3
$D_3 o 456$	1/3

Keyboard Patterns Example

 $Training \ set = \{\textit{qwerty} 123, \textit{asdfgh} 123, \textit{blocks} 456\}$

With keyboard patterns

Production	Probability
$S o K_6D_3$	2/3
$S \rightarrow L_6 D_3$	1/3
$D_3 ightarrow 123$	2/3
$D_3 o 456$	1/3

Alpha Strings

- Can break up L non-terminal into:
 - A_n single dictionary word or pattern (eg. cat)
 - R_n word or pattern repeated once (eg. catcat)
 - M_n two or more consecutive A-words, excluding R-words (eg. iloveyou)

Alpha Strings Example

 $\overline{\mathsf{Training}} \ \mathsf{set} = \{ \mathit{catcat} 12\overline{3}, \mathit{passwd} 123, \mathit{iloveyou} 456 \}$

Without alpha strings

Production	Probability
$S o L_6 D_3$	2/3
$S ightarrow L_8 D_3$	1/3
$D_3 ightarrow 123$	2/3
$D_3 o 456$	1/3

Alpha Strings Example

Training set $= \{ catcat123, passwd123, iloveyou456 \}$

With alpha strings

Production	Probability
$S \rightarrow R_6 D_3$	1/3
$S \rightarrow A_6 D_3$	1/3
$S o M_8 D_3$	1/3
$D_3 o 123$	1/2
$D_3 o 456$	1/2

Alpha Strings Cracking Phase

- Each alpha non-terminal requires a different approach during the dictionary attack phase
 - A_n category replace with single words of length n from attack dictionary
 - R_n category replace with two occurrences of each word of length n/2 from attack dictionary
 - M_n category incorporated into grammar

Production	Probability
$S o M_8$	1
$M_8 o iloveyou$	0.35
$M_8 o someword$	0.00004

 PCFG password cracking has been tested against John the Ripper's default mangling rules

- PCFG password cracking has been tested against John the Ripper's default mangling rules
- PCFG cracked between 28% and 129% more passwords given the same number of guesses when it was trained on the same data set as it was cracking

- PCFG password cracking has been tested against John the Ripper's default mangling rules
- PCFG cracked between 28% and 129% more passwords given the same number of guesses when it was trained on the same data set as it was cracking
- Performed better than JTR when trained on a different set to the one it was cracking (except when the sets were of considerably different complexities)

Conclusion

 PCFGs provide a new way to think about password cracking, and a way to formalise the patterns we can observe amongst passwords

Conclusion

- PCFGs provide a new way to think about password cracking, and a way to formalise the patterns we can observe amongst passwords
- This is an area of password cracking which is continuing to grow, and will likely become more and more effective as further work on it is done.

Questions?