

ESRF | The European Synchrotron

Modelling synchrotron radiation beamlines with OASYS

NSRL Seminar

Juan Reyes Herrera juan.reyes-herrera@esrf.fr

Advanced Analysis & Precision Unit, MEG/ISDD, ESRF

July 28, 2023

Outline

- 1. Brief introduction:
 - What is OASYS? What is its structure?
 - What kind of simulations can be performed with it?
- 2. Power management: OASYS-XOPPY
 - Heat-load on slits, filters/windows and mirrors
- 3. Photon transport: OASYS-SHADOWOUI
 - Using a mirror surface errors
 - Modelling mirror misalignments
- 4. Coherence propagation: OASYS-WOFRY1D
 - Few examples on undulator wavefront propagation

Some material for this seminar: https://github.com/jureyherrera/OASYS_NSRL_seminar

Introduction to OASYS

Computer simulation of light sources and optical components is a mandatory step in the design and optimization of synchrotron and FEL radiation beamlines

different codes for numerical simulations are available, implementing different physical approaches

EMISSION SPECTRA

XOPPY

Spectra

XOPPY has tools to calculate absorbed and transmitted power

RAY-TRACING

Shadow

McXtrace

ART

RAY

XRT

Incoherent X-ray beams

WAVEFRONT PROPAGATION

SRW

PHASE

WISE

WOFRY

Fully coherent X-ray beams

WOFRY1D

COMSYL

Partially coherent X-ray beams

Quick note: OASYS

WOFRY

Luca Rebuffi (ANL) & Manuel Sánchez del Río (ESRF)

L. Rebuffi, M. Sanchez del Rio, "OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments", Proc. SPIE 10388, 103880S (2017). DOI: 10.1117/12.2274263.

[1] Demšar et al. "Orange: Data Mining Toolbox in Python," Journal of Machine Learning Research 14, 2349–2353 (2013).

https://orange.biolab.si

[2] ESRF Add-Ons: https://github.com/oasys-esrf-kit/OASYS1-ESRF-Extensions

What is OASYS?

OASYS (Orange Synchrotron Suite) is graphical environment for modelling synchrotron beamlines.

In OASYS, we can perform visual programing: using "boxes and arrows" to recreate a photon beamline

OASYS integrates different simulation strategies via the implementation of adequate simulation tools for X-ray Optics

https://www.aps.anl.gov/Science/Scientific-Software/OASYS

Modelling a beamline with OASYS

Main components of the beamline:

Optics

Experimental station

Source

Bending magnet, wiggler or undulator

Slits, mirrors, crystals, filters, refractive lens, Fresnel lens, multilayers, etc.

Sample, detectors, etc.

Modelling a beamline with OASYS

The visual programing boxes, in OASYS, are called *Widgets* and they represent optical components, including a wide variability of tools, example:

Sources:

Optics:

Allowing to get at the Sample:

Energy
distribution,
intensity
(photon flux),
beam size
and
divergence,
coherence,
etc.

Modelling a beamline with OASYS

The *Widgets* are connected as a workflow (or dataflow) in the OASYS canvas:

OASYS interoperability

Ellipti... Toroidal Spher...

Other OASYS features

 Python has been chosen as the main programming language, and code can be included in the workflow

Other OASYS features

Open Source, many synchrotron facilities are developing their own customized widgets, Add-ons, for example:

https://github.com/oasys-elettra-kit

https://github.com/oasys-Inls-kit

https://github.com/oasys-als-kit

https://github.com/oasys-esrf-kit *

Shadow Elettra Extension

load dat.

Grating .

Wavefro.

Shadow ALS Extension

Shadow LNLS Utility

ThinObj.

 (\mathbf{i})

^{*} Add-ons installation example

Reminder: Synchrotron radiation

Synchrotron radiation depends on spatial (x, y) and energy (E)

Example: Undulator radiation

Power management with OASYS/XOPPY

XOPPY (X-ray Optics for Python) is a software package designed for X-ray optics simulations and calculations

Power transport on a beamline

Optical components that could be present in a beamline:

Undulator power density (*Power* vs x, y)

For example, this tool is very useful to get the heat load on a slit:

Water cooled beamline slit

Undulator power density (Power vs x, y)

In most of the beamlines at the ESRF the are horizontal slits at 16 m from the source:

Undulator Power Density

Power transport on a beamline

Optical components that could be present in a beamline:

Power absorbed by a filter

Heat load on filters @ 23 m with a projection of 2 mm x 1 mm:

Be (300 μm)

Diamond (300 µm)

Power transport on a beamline

Optical components that could be present in a beamline:

Absorption power by mirror

Power absorbed by a mirror

Heat load on mirrors @ 30 m:

SRCALC-IDPOWER

Si (7 mrad)

Diamond (100 μ m) + Rh (3 mrad)

ESRF-I vs EBS: absorbed power by FE diamond window

Horizontal deflection optics:

High heat-load crystal monochromator [1].

Negligible effects on vertical plane due thermal load over the crystal, will be implemented in the refurbish nuclear resonant ID14 beamline.

 Optimization of high heat-load multilayer monochromator for the new hard X-ray microscope at ID03 [2].

Absorbed power by a multilayer mirror

[1] P. Brumund et al., J. Synchrotron Rad. (2021) 28 91 . https://doi.org/10.1107/S1600577520014009

[2] P. Brumund et al., J. Synchrotron Rad. (2021) 28 1423. https://doi.org/10.1107/S160057752100758X

Multilayer X-ray optics: absorbed power

Finite element analysis

Photon transport

Photon transport

0.050 0.025 0.000 -0.025 -0.075-0.100 -0.4 -0.2 0.2 X [μm] Height profile Mirror metrology 4000 3000 2 2000 1000 Slope errors LTP measurements -0.10 0.10 -0.2 Y [m] -0.3 -0.50 -0.25 0.00 0.25 0.50 0.75 4000 2000

2000

A.U.

Ideal surfaces

Photon transport

Measurements

DABAM Prepare Profile

Profile file:

Metrology

DABAM: Height profiles database

[1] M. Sanchez del Rio et al. *DABAM: an open-source database of X-ray mirrors metrology* J. Synchrotron Rad. (2016) **23** 665 http://dx.doi.org/10.1107/S1600577516005014

Measurements similar mirrors

DABAM Height Profile

Simulation

Tangential slope error	<1.0 µrad RMS over active length
Sagittal slope error	<5 µrad RMS

Height Profile Simulator

Power management & Photon transport

Power management & Photon transport

Photon transport: Misalignments

Photon transport: Misalignments

1. Using the GUI

Photon transport: Misalignments

2. Using a Python script

[1] M. Sanchez del Rio et al., A fast and lightweight tool for partially coherent beamline simulations in fourth-generation storage rings based on coherent mode decomposition, J. Synchrotron Rad. (2022) **29** 1354 https://doi.org/10.1107/S1600577522008736

Source CSD

Horizontal
Coherence Fraction = 0.12

Sample position CSD

Horizontal
Coherence Fraction = 0.93

Summarizing

Modelling tools:

Power management

Photon transport

Coherence propagation

Thank you for your attention

Extra slides

Extra slides

Photon transport with OASYS/SHADOWOUI

Ray tracing (schematic)

References and continuation planes

Note that (VERY IMPORTANT!):

- The y (column 2) coordinate is along the beam direction
- The position (Source Plane Distance), orientation (O.E. Orientation Angle) of any O.E. is always referred to the previous one
- Source Plane and Image Plane for each optical element are the "Continuation Planes"
- The frame is rotated if one O.E. is rotated

