Предложения за домашно 2019

Иво Стратев

25 февруари 2019 г.

Задача 1.

Нека (\mathbb{G} , .) е група, която действа на множеството Ω .

а) Да се докаже, че ако $n\in\mathbb{N}$ и n>1, то $(\mathbb{G},.)$ действа на Ω^n

Нека $n \in \mathbb{N}$ и n > 1. (\mathbb{G} , .) действа на множеството Ω следователно

$$\exists \ \phi \in Hom((\mathbb{G},.),(S_{\Omega},\circ))$$

Нека $\phi \in Hom((\mathbb{G},.),(S_{\Omega},\circ))$. Дефинираме

$$\Phi : \mathbb{G} \to (\Omega^n \to \Omega^n)$$
$$g \mapsto [(\omega_1, \dots, \omega_n) \mapsto (\phi(g)(\omega_1), \dots, \phi(g)(\omega_n))]$$

Ще докажем, че $\Phi \in Hom((\mathbb{G},.),(S_{\Omega^n},\circ))$ Нека $g_1,g_2 \in \mathbb{G}$ и $\omega = (\omega_1,\ldots,\omega_n) \in \Omega^n$ тогава

$$\Phi(g_1, g_2)(\omega) = (\phi(g_1, g_2)(\omega_1), \dots, \phi(g_1, g_2)(\omega_n))
= (\phi(g_1)(\phi(g_2)(\omega_1)), \dots, \phi(g_1)(\phi(g_2)(\omega_n)))
= \Phi(g_1)((\phi(g_2)(\omega_1), \dots, \phi(g_2)(\omega_n)))
= \Phi(g_1)(\Phi(g_2)(\omega)) = (\Phi(g_1) \circ \Phi(g_2))(\omega)$$

Следователно е в сила $\Phi(g_1.g_2) = \Phi(g_1) \circ \Phi(g_2)$. Тоест вярно е $\forall g_1 \in \mathbb{G} \ \forall g_2 \in \mathbb{G} \ \Phi(g_1.g_2) = \Phi(g_1) \circ \Phi(g_2)$. Следователно $\Phi \in Hom((\mathbb{G},.),(S_{\Omega^n},\circ))$.

б) Да се докаже, че $St_{\mathbb{G}}((\omega_1,\ldots,\omega_n))=St_{\mathbb{G}}(\omega_1)\cap\cdots\cap St_{\mathbb{G}}(\omega_n)$

Нека $(\omega_1, \ldots, \omega_n) \in \Omega^n$ нека $g \in \mathbb{G}$. Очевидно $(\forall i \in \{1, \ldots, n\} \ \phi(g)(\omega_i) = \omega_i) \iff \Phi(g)((\omega_1, \ldots, \omega_n)) = (\phi(g)(\omega_1), \ldots, \phi(g)(\omega_n)) = (\omega_1, \ldots, \omega_n)$ Тоест $g \in S_{\mathbb{G}}(\omega_1) \cap \cdots \cap S_{\mathbb{G}}(\omega_n) \iff g \in S_{\mathbb{G}}((\omega_1, \ldots, \omega_n))$.

Следователно $St_{\mathbb{G}}((\omega_1,\ldots,\omega_n)) = St_{\mathbb{G}}(\omega_1) \cap \cdots \cap St_{\mathbb{G}}(\omega_n)$.