

Introduction to Semantic Segmentation

Sergei Belousov Machine learning R&D Engineer

Internet of Things Group

Agenda

- Problem formulation
- Evaluation Metrics
- Datasets
- CNN
- Loss functions

image groundtruth

classification

In recent time

Problem formulation

Input:

$$I \in R^{C*H*W} - input\ image \ L \in [l_0, \dots l_n] - set\ of\ valid\ labels$$

Output:

 $M \in L^{H*W} - labels\ mask$

Evaluation metrics

Evaluation metrics

$$accuracy = rac{TP+TN}{TP+TN+Fp+FN}$$

Evaluation metrics

$$Dice(A,B)=2rac{|A\cap B|}{|A|+|B|}=rac{2TP}{2TP+FN+FP}$$

$$IOU(A,B) = rac{|A \cap B|}{|A \cup B|} = rac{TP}{TP + FN + FP}$$

$$IOU = \frac{Dice}{2-Dice}$$

$$Error_{total} = c_0 FP + c_1 FN$$

Lifecycle

Data is the oil of the 21st century

Dataset	Labeled Images for Training	Classes
KITTI	200	34
VOC PASCAL 2012	2913	21
Cityscapes	3478	34
BDD100K	8000	19
ADE20K	20210	3169
Mapillary Vistas	20000	66
ApolloScape	147000	36
WAYMO	600000	?

Data is the oil of the 21st century

Data is the oil of the 21st century

CNN

CNN

CNN: FCN

CNN: Deconvolution

CNN: Architectures to capture multi-scale context

(b) Encoder-Decoder

(c) Deeper w. Atrous Convolution

(d) Spatial Pyramid Pooling

Convolution with trainable decoder filters

SegNet

CNN: w. Atrous Convolutions

(a) Going deeper without atrous convolution.

CNN: w. Atrous Convolutions

CNN: Spatial pyramid pooling

CNN: Spatial pyramid pooling

CNN: All included

CNN: ICNet

Results

Results

Results

Loss functions

Loss functions

$$egin{aligned} L_{CE}(p,y) &= -\sum_{c=1}^{M} y_{o,c} \log(p_{o,c}) \ L_{Focal}(p,y) &= -\sum_{c=1}^{M} y_{o,c} * (1-p_{o,c})^{\gamma} * \log(p_{o,c}) \end{aligned}$$

Loss functions

$$Dice = rac{2TP}{2TP + FN + FP} = rac{2|A \cap B|}{|A| + |B|}$$

$$Dice(p,y) = rac{2*\sum_i^N p_i y_i}{\sum_i^N p_i + \sum_i^N y_i}$$

$$L_{Dice}(p,y) = 1 - rac{2*\sum_i^N p_i y_i}{\sum_i^N p_i + \sum_i^N y_i}$$

Internet of Things Group 38

- UNet: https://arxiv.org/abs/1505.04597
- DeepLab: https://arxiv.org/abs/1606.00915
- DeepLabV3: https://arxiv.org/abs/1706.05587
- DeepLabV3+: https://arxiv.org/abs/1802.02611
- SegNet: https://arxiv.org/abs/1511.00561
- FCN: https://arxiv.org/abs/1411.4038
- Grad-CAM: https://arxiv.org/abs/1610.02391

- https://github.com/mrgloom/awesome-semantic-segmentation
- Kaggle: https://www.kaggle.com/
- ODS (@bes): https://ods.ai/ https://opendatascience.slack.com
- Deep Learning Book: https://www.deeplearningbook.org/

