Scilab Textbook Companion for Principles Of Geotechnical Engineering by B. M. Das¹

Created by
Madhusudhan Reddy
C++
Civil Engineering
IIT BOMBAY
College Teacher
D. B. Phatak
Cross-Checked by
Chaitanya

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles Of Geotechnical Engineering

Author: B. M. Das

Publisher: Cenage & learning, New Delhi

Edition: 7

Year: 2013

ISBN: 978-1133108665

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	weight volume relationships	5
3	weight volume relationships	6
4	plasticity and structure of soil	9
6	soil compaction	10
7	permiability	12
8	seepage	18
9	in situ stresses	22
10	stress in a soil mass	25
11	Compressibility of Soil	27
12	Shear Strength of Soil	34
13	Lateral Earth Pressure	38
14	Lateral Earth Pressure Curved Failure Surface	45
15	Slope Stability	47
16	Soil Bearing Capacity for Shallow Foundations	53

List of Scilab Codes

Exa 2.2	solved	5
Exa 3.2	solved	6
Exa 3.3	solved	7
Exa 3.4	solved	7
Exa 3.5	solved	8
Exa 4.1	solved	9
Exa 6.2	solved	10
Exa 6.3	solved	10
Exa 6.4	solved	11
Exa 7.1	solved	12
Exa 7.2	solved	12
Exa 7.3	solved	13
Exa 7.4	solved	13
Exa 7.5	solved	14
Exa 7.6	solved	14
Exa 7.8	solved	15
Exa 7.9	solved	15
Exa 7.10	solved	15
Exa 7.11	solved	16
Exa 7.12	solved	16
Exa 8.1	solved	18
Exa 8.2	solved	18
Exa 8.3	solved	19
Exa 8.4	solved	20
Exa 8.5	solved	20
Exa 9.1	solved	22
Exa 9.2	solved	23
Eva 9.3	solved	23

Exa 9.4	solved				 						24
Exa 10.1	solved				 						25
Exa 10.3	solved				 						25
Exa 11.1	solved				 						27
Exa 11.2	solved				 						28
Exa 11.3	solved				 						28
Exa 11.4	solved				 						29
Exa 11.5	solved				 						29
Exa 11.6	solved				 						30
Exa 11.7	solved				 						30
Exa 11.8	solved				 						31
Exa 11.9	solved				 						31
Exa 11.10	solved				 						31
Exa 11.11	solved				 						32
Exa 11.12	solved				 						32
Exa 11.13	solved				 						33
Exa 12.1	solved										34
Exa 12.2	solved										34
Exa 12.3	solved				 						35
Exa 12.4	solved				 						35
Exa 12.5	solved				 						36
Exa 12.6	solved										36
Exa 12.7	solved				 						37
Exa 12.8	solved				 						37
Exa 13.1	solved				 						38
Exa 13.2	solved										39
Exa 13.3	solved				 						40
Exa 13.4	solved				 						40
Exa 13.5	solved				 						41
Exa 13.6	solved				 						42
Exa 13.7	solved				 						42
Exa 13.9	solved				 						43
Exa 13.10	solved				 						43
Exa 14.1	solved										45
Exa 14.2	solved				 						46
Exa 15.1	solved										47
Exa 15.2	solved										47
Exa 15.3	solved										48

Exa 15.4 solved	}
Exa 15.5 solved)
Exa 15.6 solved)
Exa 15.7 solved)
Exa 15.8 solved)
Exa 15.9 solved	
Exa 15.11 solved	
Exa 16.1 solved	3
Exa 16.2 solved	Į.
Exa 16.3 solved	Ł
Exa 16.4 solved	ó
Exa 16.5 solved	j
Exa 16.6 solved	j
Exa 16.7 solved	7
Exa 18.1 solved	3
Exa 18.2 solved	3
Exa 18.3 solved)

weight volume relationships

Scilab code Exa 2.2 solved

```
1 clc
2 //initialisation of variables
3 //from graph
4 d= 0.15 //mm
5 w= 0.17 //mm
6 a= 0.27 //mm
7 //calculations
8 C= a/d
9 c= w^2/(a*d)
10 //results
11 printf ('uniformity coefficient = % f ',C)
12 printf ('coefficient of gradation = % 2f ',c)
```

weight volume relationships

Scilab code Exa 3.2 solved

```
1 clc
2 //initialisation of variables
3 \text{ V} = 1.2 / \text{m}^3
4 M = 2350 / Kg
5 \text{ w} = 0.086
6 G = 2.71
7 \text{ W} = 1000 // \text{kg/m}^3
8 //calculations
9 R = M/V
10 D= M/((1+w)*V)
11 e = (G*W/D) - 1
12 n = e/(e+1)
13 S = (w*G/e)*100
14 v = (M - (M/(1+w)))/W
15 //results
16 printf ('moist density = \% f kg/m<sup>3</sup> ',R)
17 printf ('dry density = \% f kg/m<sup>3</sup> ',D)
18 printf ('void ratio = \% 3f',e)
19 printf ('porosity = \% 3f',n)
20 printf ('Degree of saturation = \% 3f',S)
21 printf ('volume of water in soil sample = % 3f m^3 '
```

Scilab code Exa 3.3 solved

```
1 clc
2 //initialisation of variables
3 n= 0.4
4 G= 2.68
5 w= 0.12
6 R= 1000 //kg/m^3
7 V= 10 //m^3
8 //calculations
9 d= G*R*(1-n)*(1+w)
10 s= ((1-n)*G+n)*R
11 M= s-d
12 m= M*V
13 //results
14 printf ('mass of water to be added for full saturation = % f kg ',m)
```

Scilab code Exa 3.4 solved

```
1 clc
2 //initialisation of variables
3 d= 16.19 //kN/m^3
4 w= 0.23
5 W= 9.81 //kN/m^3
6 //calculations
7 R= d*(1+w)
8 G= d/(W-d*w)
9 e= w*G
10 //results
11 printf ('satuarated unit weight = % 2f kN/m^3 ',R)
```

```
12 printf ('specific gravity = % 2f ',G)
13 printf ('void ratio = % 2f ',e)
```

Scilab code Exa 3.5 solved

```
1 clc
2 //initialisation of variables
3 G= 2.68
4 w= 0.12
5 d= 1794.4 //kg/m^3
6 W= 1000 //kg/m^3
7 emax= 0.75
8 emin= 0.4
9 //calculation
10 e= (G*W*(1+w)/d)-1
11 D= ((emax-e)/(emax-emin))*100
12 //results
13 printf ('relative density of compaction in percentage = % f ',D)
```

plasticity and structure of soil

Scilab code Exa 4.1 solved

```
1 clc
2 //initialisation of variables
3 V1= 24.6 //cm^3
4 V2= 15.9 //cm^3
5 M1= 44 //g
6 M2= 30.1 //g
7 W= 1 //g/cm^3
8 //calculations
9 SL= (((M1-M2)/M2)*100)-(((V1-V2)/M2)*W*100)
10 //results
11 printf ('shrinkage limit of the soil = % 2f ',SL)
```

soil compaction

Scilab code Exa 6.2 solved

Scilab code Exa 6.3 solved

```
1 clc
2 //initialisation of variables
```

```
3 do= 1570 // kg/m^3
4 mo = 0.545 / kg
5 \text{ M1} = 7.59 //\text{kg}
6 \text{ M2} = 4.78 //\text{kg}
7 \text{ M3} = 3.007 //\text{kg}
8 \text{ w} = 0.102 //
9 dmax = 19 //KN/m^3
10 //calculations
11 Ms = M1 - M2
12 \text{ Mc= Ms-mo}
13 Vh= Mc/do
14 \text{ Dc} = M3/Vh
15 Du = Dc * 9.81/1000
16 f = Du/(1+w)
17 \text{ Rc} = f*100/dmax
18 //results
19 printf ('dry unit weight of compaction in the field
      = \% 2 f kN/m^3, f)
20 printf ('relative compaction in the field =\% f ',Rc
       )
```

Scilab code Exa 6.4 solved

```
1 clc
2 //initialisation of variables
3 D1= 0.36 //mm
4 D2= 0.52 //mm
5 D5= 1.42 //mm
6 //calculations
7 Sn= 1.7*(sqrt((3/(D5)^2)+(1/(D2)^2)+(1/(D1)^2)))
8 //results
9 printf ('sustainabilty number = % f ',Sn)
```

Chapter 7 permiability

Scilab code Exa 7.1 solved

```
1 clc
2 //initialisation of variables
3 L= 30 //cm
4 A= 177 //cm^2
5 h= 50 //cm
6 Q= 350 //cm^3
7 t= 300 //sec
8 //claculations
9 k=Q*L/(A*h*t)
10 //results
11 printf ('hydraulic conductivity = % 3f cm/sec ',k)
```

Scilab code Exa 7.2 solved

```
1 clc
2 //initialisation of variables
3 L= 203 //mm
4 A= 10.3 //cm<sup>2</sup>
```

```
5 a= 0.39 //cm^2
6 h0= 508 //mm
7 h180= 305 //mm
8 t= 180 //sec
9 //calculations
10 k= 2.303*a*L*log10(h0/h180)/(A*t)
11 //results
12 printf ('hydraulic conductivity of sand = % 2f in/sec ',k)
```

Scilab code Exa 7.3 solved

```
1 clc
2 //initialisation of varilables
3 k= 3e-7 //cm/sec
4 n= 0.0911e-4 //g*sec/cm^2
5 dw= 1 //g/cc
6 //calculations
7 K= k*n/dw
8 //results
9 printf ('absolute premeability = % 4f cm^2 ',K)
```

Scilab code Exa 7.4 solved

```
1 clc
2 //initialisation of variables
3 k= 5.3e-5 //m/sec
4 H= 3 //m
5 a= 0.139 //radians
6 //calculations
7 A= H*cos(a)
8 i= sin(a)
9 q= k*i*A*3600
```

```
10 // results
11 printf ('rate of seepage = \% 4f m^3/hr/m ',q)
```

Scilab code Exa 7.5 solved

```
1 clc
2 //initialisation of variables
3 L= 50 //m
4 k= 0.08e-2//m/sec
5 h= 4 //m
6 H1= 3 //m
7 H= 8 //m
8 a= 0.139 //radians
9 //calculations
10 i= h*cos(a)/L
11 A= H1*cos(a)
12 q= k*i*A
13 //results
14 printf ('flow rate = % 2f m^3/sec/m ',q)
```

Scilab code Exa 7.6 solved

```
1 clc
2 //initialisation of variables
3 k1= 0.02 //cm/sec
4 e1= 0.5
5 e2= 0.65
6 //calculations
7 k2= k1*(e2^3/(1+e2))/(e1^3/(1+e1))
8 //results
9 printf ('hydraulic conductivity at void ratio of 0.65 = % 2f cm/sec ',k2)
```

Scilab code Exa 7.8 solved

```
1 clc
2 //initialisation of variables
3 e= 0.6
4 D10= 0.09 //mm
5 //calculations
6 k= 2.4622*(D10^2*(e^3/(1+e)))^0.7825
7 //results
8 printf ('hydraulic conductivity = % 4f cm/sec ',k)
```

Scilab code Exa 7.9 solved

```
1 clc
2 //initialisation of variables
3 e= 0.6
4 D10= 0.09 //mm
5 D60= 0.16 //mm
6 //calculations
7 Cu=D60/D10
8 k= 35*(e^3/(1+e))*(Cu^0.6)*(D10^2.32)
9 //results
10 printf ('hydraulic conductivity = % 3f cm/sec ',k)
```

Scilab code Exa 7.10 solved

```
1 clc
2 //initialisation of variables
3 k1= 0.302e-7 //cm/sec
```

```
4 k2= 0.12e-7 //cm/sec
5 e1= 1.1
6 e2= 0.9
7 e= 0.75
8 //calcualtions
9 n= (log10((k1/k2)*((1+e1)/(1+e2))))/log10(e1/e2)
10 C= k1/(e1^n/(1+e1))
11 k= C*(e^n/(1+e))
12 //results
13 printf ('hydraulic conductivity = %e cm/sec ',k')
```

Scilab code Exa 7.11 solved

```
1 clc
2 //initialisation of variables
3 \text{ H1} = 2 / \text{m}
4 \text{ H2} = 3 / \text{m}
5 \text{ H3} = 4 / \text{m}
6 \text{ k1} = 1 \text{ e-4} //\text{cm/sec}
7 \text{ k2} = 3.2 \text{ e} - 2 //\text{cm/sec}
8 \text{ k3} = 4.1 \text{e} - 5 //\text{cm/sec}
9 //calculations
10 H= H1+H2+H3
11 Kh= (1/H)*((k1*H1)+(k2*H2)+(k3*H3))
12 Kv = H/((H1/k1) + (H2/k2) + (H3/k3))
13 P = Kh/Kv
14 // results
15 printf ('ration of equivalent hydraulic conductivity
        = \% 2 f ',P)
```

Scilab code Exa 7.12 solved

```
1 clc
```

```
2 //initialisation of variables
3 H= 450 //mm
4 h= 150 //mm
5 k1= 1e-2 //cm/sec
6 k2= 3e-3 //cm/sec
7 k3= 4.9e-4 //cm/sec
8 h1= 300 //mm
9 //calculations
10 Kv= H/(h*(1/k1+1/k2+1/k3))
11 i= h1/H
12 q= Kv*i*100*3600
13 //results
14 printf ('rate of water supply = % 2f cm/hr ',q)
```

seepage

Scilab code Exa 8.1 solved

```
1 clc
2 //initialisation of variables
3 H1= 12 //in
4 \text{ H2} = 20 // in
5 z = 8 //in
6 \text{ h1} = 24 // \text{in}
7 h = 20 //in
8 \text{ k1} = 0.026 // \text{in/sec}
9 D = 3 //in
10 //calculations
11 k2 = H2*k1/((z/(1-h/h1))-H1)
12 i = h1/(H1+H2)
13 A = \%pi/4*D^2
14 keq= (H1+H2)/((H1/k1)+(H2/k2))
15 q = keq *A * i * 3600
16 //results
17 printf ('rate of water flow = \% 2f in ^3/hr ',q)
```

Scilab code Exa 8.2 solved

```
1 clc
2 //initialisation of variables
3 \text{ Nd} = 6
4 H1= 5.6 //m
5 \text{ H2} = 2.2 / \text{m}
6 \text{ k= } 5\text{e-}5 \text{ }/\text{cm/sec}
7 dL= 4.1 / m
8 //calculations
9 \text{ H} = (H1 - H2) / Nd
10 h1= 5.61-H
11 h2 = 5.61 - 5 * H
12 q = 2.38*(H1-H2)*k/Nd
13 i = H/dL
14 // results
15 printf ('at point a, water will rise to height of =\%
       3 f m ', h1)
16 printf ('at point b, water will rise to height of =\%
       3f m ',h2)
17 printf ('total rate of seepage per unit lenghth = \%e
       m^3/sec/m',q)
18 printf ('average hydraulic gradient at c = \% 3f ',i)
```

Scilab code Exa 8.3 solved

```
1 clc
2 //initialisation of variables
3 k1= 5.67 //ft/day
4 k2= 11.34 //ft/day
5 //from graph
6 Nd= 8
7 Nf= 2.5
8 H= 20
9 //calculations
10 q= sqrt(k1*k2)*H*Nf/Nd
11 //results
```

```
12 printf ('average rate of flow = \% 2f ft^3/day/ft ',q )
```

Scilab code Exa 8.4 solved

```
1 clc
 2 //initialisation of variables
3 B = 6 / m
4 L = 120 / m
5 s = 3 / m
6 \text{ T= } 6 \text{ } //\text{m}
7 x = 2.4 / m
8 \text{ H} = 5 / \text{m}
9 \text{ k= } 0.008 //\text{cm/sec}
10 //calculations
11 b=B/2
12 a1= b/T
13 a2= s/T
14 \ a3 = x/b
15 \ Q= 0.378*k*H*L*36*24
16 // results
17 printf ('seepage under the dam = \% 2f m<sup>3</sup>/day ',Q)
```

Scilab code Exa 8.5 solved

```
1 clc
2 //initialisation of variables
3 b= %pi/4 //degrees
4 a= %pi/6.//degrees
5 B= 10 //ft
6 H= 20 //ft
7 h= 25 //ft
8 k= 2e-4 //ft/min
```

```
9 // calculations
10 r= H/tan(b)
11 d= 0.3*r+(h-H)/tan(b)+B+h/tan(a)
12 L= d/cos(a)-sqrt((d/cos(a))^2-(H/sin(a))^2)
13 q= k*L*tan(a)*sin(a)*24*60
14 // results
15 printf ('seepage rate = % 4f ft^3/day/ft ',q)
```

in situ stresses

Scilab code Exa 9.1 solved

```
1 clc
2 //initialisation of variables
3 Ds= 16.5 //kN/m^3
4 S = 19.25 / kN/m^3
5 \text{ g= } 9.8 \text{ } //\text{kN/m}^3
6 \text{ h1} = 6 / \text{m}
7 \text{ h2} = 13 \text{ //m}
8 //at point A
9 \text{ Sa} = 0
10 Ua= 0
11 \text{ Sa1} = 0
12 //at point B
13 Sb= h1*Ds
14 \text{ Ub} = 0
15 Sb1= Sb-Ub
16 //at point C
17 \text{ Sc= } h1*Ds+h2*S
18 Uc= h2*g
19 Sc1= Sc-Uc
20 // results
21 printf ('total pressure at C=\% 2f kN/m^3 ',Sc)
```

```
22 printf ('pore water pressure at C=\% 2f kN/m^3 ',Uc ) 
23 printf ('effective stress at point C\!\!=\% 2f kN/m^3 ', Sc1)
```

Scilab code Exa 9.2 solved

```
1 clc
2 //initialisation of variables
3 h= 20 //ft
4 g= 120 //kg/ft^3
5 h1= 12 //ft
6 w= 62.4 //kg/ft^3
7 //calculations
8 H= h-(h1*w/g)
9 //results
10 printf ('maximu depth that can be made in clay = % 2 f ft ',H)
```

Scilab code Exa 9.3 solved

```
1 clc
2 //initialisation of variables
3 G= 2.68
4 e= 0.52
5 g= 9.81 //kN/m^3
6 h1= 0.7 //m
7 h2= 1 //m
8 h3= 1.5 //m
9 h4= 2 //m
10 //calculations
11 //for soil A
12 sa= (G+e)*g/(1+e)
```

```
13 // point a
14 Sa= h1*g+h2*sa
15 u = (h2+h1+h3/2)*g
16 Es= Sa-u
17 //point b
18 \text{ sb= } h1*g+h4*sa
19 ub= (h4+h1+h3)*g
20 Eb= sb-ub
21 i = h3/2
22 s = i * g
23 // results
24 printf ('effective stress at point a = \% 2 f \text{ kN/m}^2',
25 printf ('effective stress at point b=\%~2\,\mathrm{f~kN/m^2}',
      Eb)
26 printf ('seepage force per unit voume = \% 2f kN/m<sup>3</sup>
      ',s)
```

Scilab code Exa 9.4 solved

```
1 clc
2 //initialisation of variables
3 C0= 0.357
4 H1= 30.5 //ft
5 H2= 5 //ft
6 w= 62.4 // lb/ft^3
7 D= 20
8 g= 112 // lb/ft^3
9 //calculations
10 G= g-w
11 FS= D*G/(C0*w*(H1-H2))
12 //results
13 printf ('safety factor = % 2f ',FS)
```

stress in a soil mass

Scilab code Exa 10.1 solved

```
1 clc
2 //initialisation of variables
3 \text{ sx} = 2000 // \text{lb/ft}^3
4 \text{ sy} = 2500 // lb / ft^3
5 T = 800 //lb/ft^3
6 t = 0.348 / / radians
7 //calculations
8 s1= (sx+sy)/2+sqrt(((sy-sx)/2)^2+T^2)
9 s2= (sx+sy)/2-sqrt(((sy-sx)/2)^2+T^2)
10 sn= (sx+sy)/2+(sy-sx)*cos(2*t)/2-T*sin(2*t)
11 Tn= (sy-sx)*sin(2*t)/2+T*cos(2*t)
12 //results
13 printf ('principle stress s1 = \% 2f lb/ft^3',s1)
14 printf ('principle stress s2 = \% 2f lb/ft^3',s2)
15 printf ('normal stress = \% 2f lb/ft<sup>3</sup>',sn)
16 printf ('shear stress = \% 2f lb/ft<sup>3</sup> ',Tn)
```

Scilab code Exa 10.3 solved

```
1 clc
2 //initialisation of variables
3 x= 3 //m
4 y= 4 //m
5 P= 5 //kN
6 z= 2 //m
7 //calculations
8 r= sqrt(x^2+y^2)
9 k= r/z
10 I= 3/(2*%pi*((r/z)^2+1)^2.5)
11 s= P*I/z^2
12 //results
13 printf ('verticle stress increase at 2m = % 4f kN/m ^3 ',s)
```

Compressibility of Soil

Scilab code Exa 11.1 solved

```
1 clc
 2 \text{ Tz} = 150
3 b=1
4 1=2
 5 z = 5*b
 6 Es= (10000*2 + 8000*1 + 12000*2)/5
7 a = 4
8 \text{ H=z}
9 m=1/b
10 n = 2 * H/b
11 F1=0.641 // from tables 11.1 and 11.2
12 F2=0.031
13 u = 0.3
14 Is= F1 + ((2-u)/(1-u))*F2
15 If = 0.71 / \text{from} table 11.3
16 \text{ Sef} = \text{Tz } *a*b/l *(1-u^2)*Is*If/Es
17 \text{ Ser} = 0.93 * \text{Sef}
18 printf('The elastic settlement at the centre of
       foundation = %f m', Ser)
```

Scilab code Exa 11.2 solved

```
1 clc
2 // one value of e is done
3 Gs=2.75
4 A=30.68
5 Ms=128
6 p=1
7 Hs=Ms/(A*Gs*p)
8 H=2.540
9 Hv=H-Hs
10 e=Hv/Hs
11 printf('the value of e for give values = %f',e)
```

Scilab code Exa 11.3 solved

```
1 clc
2 e11=0.9
3 e21=0.8
4 T2=4
5 T1=2
6 Cc= (e11-e21)/log10(T2/T1) // from loading branch
7 e1=0.67
8 e2=0.655
9 Cs=(e1-e2)/log10(T2/T1)
10 k=Cs/Cc
11 T3=12
12 e3=e11-Cc*log10(T3/T1)
13 printf('Compression index Cc= %f\n',Cc)
14 printf(' Cs/Cc = %f\n',k)
15 printf(' e3 = %f',e3)
```

Scilab code Exa 11.4 solved

```
1 clc
2 \text{ Gd} = 14
3 \text{ Gss} = 18
4 \, \text{Gsc} = 19
5 \text{ Gw} = 9.81
6 To= 2*Gd+4*(Gss-Gw)+2*(Gsc-Gw)
7 LL=40
8 Cc=0.009*(LL-10)
9 H=4
10 T = 100
11 e=0.8
12 Sc= Cc*H*log10((To+T)/To)/(1+e)
13 printf('a) Primary Consolidation Sc = %f m\n', Sc)
14
15 \text{ Tc} = 190
16 \text{ Cs=Cc/6}
17 Sc= Cs*H*log10((To+T)/To)/(1+e)
18 printf('b) Primary Consolidation Sc = \%f m n', Sc)
19
20 \text{ Tc} = 170
21 Sc= Cc*H*log10((To+T)/Tc)/(1+e)+ Cs*H*log10(Tc/To)
      /(1+e)
22 printf(' c) Primary Consolidation Sc = \%f m n', Sc)
```

Scilab code Exa 11.5 solved

```
1 clc
2 Gs=18
3 Gw=9.81
4 H=10
```

```
5 eo=1.1
6 To=5*(Gs-Gw)
7 T1=48
8 T=To+T1
9 e1=1.045 // void ratio corresponding to T
10 e=eo-e1
11 Sc=H*e/(1+eo)
12 printf('The settlement in the field Sc = %f m',Sc)
```

Scilab code Exa 11.6 solved

```
1 clc
2 T=8.5
3 \text{ eo} = 0.8
4 \text{ Cc} = 0.28
5 \text{ To} = 2650
6 T1=970
7 C1 = 0.02
8 t2=5
9 t1=1.5
10 H=8.5*12
11 epr=Cc*log10((To+T1)/To)
12 ep=eo-epr
13 C2 = C1/(1 + ep)
14 Sc=epr*H/(1+eo)
15 Ss=C2*H*log10(t2/t1)
16 \text{ TS=Sc+Ss}
17 printf('Total consolidation settlement of the clay =
        %f in ',TS)
```

Scilab code Exa 11.7 solved

```
1 clc
```

```
2 //T50 = Cvtlab /H^2 lab = Cvtfield?H^2 fiels
3 tl=140
4 Hf=3
5 Hd=0.025/2
6 tf=tl*Hf^2/Hd^2
7 k=tf/(3600*24)
8 printf('t field = %f days',k)
```

Scilab code Exa 11.8 solved

```
1 clc
2 //Tv is directly proportional to U^2
3 t1=93.333
4 U2=30
5 U1=50
6 t2=t1*U2^2/U1^2
7 printf('t2 = %f days',t2)
```

Scilab code Exa 11.9 solved

```
1 clc
2 t90=75*24*60*60 // time in sec
3 T90=0.848
4 Hd=1.5*100 //in cm
5 Cv=T90*Hd^2/t90
6 printf('Cv = %f cm^2/sec',Cv)
```

Scilab code Exa 11.10 solved

1 clc

```
2 \text{ To} = 3000 // lb/ft^2
3 \text{ eo} = 1.1
4 e1=0.9
5 e = eo - e1
6 ea=(eo+e1)/2
7 T1 = 3000 // lb/ft^2
8 T=1 // in
9 t = 2 // \min
10 m = (e/T1)/(1+ea)
11 U=50
12 \text{ Tv} = 0.197
13 Gw = 62.4 / lb / ft^3
14 \text{ Cv=Tv*(T/(2*12)^2)/t}
15 \text{ k=Cv*m*Gw *10^7}
16 printf('a)k = \%f x10^-7 ft/min\n',k)
17
18
19 U=60
20 \text{ Tv} = 0.286
21 H=6
22 t60 = Tv * H^2/(Cv * 60 * 24)
23 printf(' b) t60 = \% f \text{ days'}, t60)
```

Scilab code Exa 11.11 solved

```
1 clc
2 t50=19
3 Hd=2.24/2
4 Cv=0.197*Hd^2/t50
5 printf('Cv = %f cm^2/min',Cv)
```

Scilab code Exa 11.12 solved

```
1 clc
2 LL=40
3 \text{ Cc=0.009*(LL-10)}
4 H = 10 * 12
5 eo=1.0
6 \text{ Gss} = 120
7 \, \text{Gsc} = 110
8 \text{ Gd} = 100
9 To=10*Gd +10*(Gss-62.4)+10*(Gsc-62.4)/2
10
11 Tt=0.408
12 \text{ Tm} = 0.232
13 \text{ Tb} = 0.019
14 Tav= (Tt+4*Tm+Tb)/6
15 Sc=Cc*H*log10((To+Tav*1000)/To)/(1+eo)
16 printf('Sc = \%f in',Sc)
```

Scilab code Exa 11.13 solved

```
1 clc
2 H = 6
3 Cc = 0.28
4 eo = 0.9
5 Cv = 0.36
6 To=210
7 Tp=115
8 Sc= Cc*H*log10((To+Tp)/To)/(1+eo)
9 t2=9
10 Hd=3
11 Tv=Cv*t2/Hd^2
12 U=0.67
13 Tf=0.677*Tp
14 printf('Tf = %f kN/m^2',Tf)
```

Shear Strength of Soil

Scilab code Exa 12.1 solved

```
1 clc
2 D=50 // in mm
3 A= %pi/4 *(D/1000)^2
4 // solving for test 1
5 N=150
6 Sp=157.5
7 Sr=44.2
8 Tf=Sp/A
9 Tr=Sr/A
10 // from graph
11 k=tand(27)
12 k1=tand(14.6)
13
14 printf('Peak strength Tf = 40+ t*%f\n',k')
15 printf(' Residual strength Tr = t*%f',k1)
```

Scilab code Exa 12.2 solved

```
1 clc
2 T3=16 // lb/in^2
3 Tf=25 // lb/in^2
4 T1=T3+Tf
5 a= asind((T1-T3)/(T1+T3)) // Mohr's circle
6 printf('a) Angle of friction, a = %f\n',a)
7 b= 45+ a/2
8 printf('b) Angle b that the failure plane makes with the major principal plane = %f',b)
```

Scilab code Exa 12.3 solved

```
1 clc
2 T1=41
3 T3=16
4 a=58
5 T=(T1+T3)/2 + (T1-T3)*cosd(2*a)/2
6 tf=(T1-T3)*sind(2*a)/2
7 printf('a) the normal stress T = %f lb/in^2',T)
8 printf(' and the shear stress tf = %f lb/in^2',tf)
```

Scilab code Exa 12.4 solved

```
1 clc
2 //For normally consolidated clay, c' = 0.
3 a=30
4 T3=10
5 T1=T3*(tand(45+a/2))^2
6 Tf=T1-T3
7 printf('The deviator stress at failure = %f lb/in^2', Tf)
```

Scilab code Exa 12.5 solved

```
1 clc
2 T13=70
3 T1f=130
4 T11=T13+T1f
5
6 T23=160
7 T2f=223.5
8 T21=T23+T2f
9
10 a= 2*(atand(((T11-T21)/(T13-T23))^0.5)-45)
11 c= (T11-T13*(tand(45+a/2))^2)/(2*tand(45+a/2))
12 printf('the shear strength parameter c = %f kN/m^2', c)
```

Scilab code Exa 12.6 solved

```
1 clc
2 T3=12
3 Tf=9.1
4 T1=T3+Tf
5 u=6.8
6 a= asind((T1-T3)/(T1+T3))
7
8 a1= asind((T1-T3)/(T1+T3-2*u))
9
10 printf('a) Consolidated-undrained angle of shearing resistance = %f degrees\n',a)
11 printf('b) Drained friction angle = %f degrees',a1)
```

Scilab code Exa 12.7 solved

Scilab code Exa 12.8 solved

```
1  clc
2  PI=28
3  OCR=3.2
4  To=160
5  Kn=0.11+0.0037*PI
6  Ko=OCR^0.8 * Kn
7  Cu=Ko*To
8  printf('the average undrained shear strength of the clay = %f kN/m^2', Cu)
```

Lateral Earth Pressure

Scilab code Exa 13.1 solved

```
1 clc
2 OCR=2
3 a = 30
4 Ko=(1-sind(a))*(OCR)^sind(a)
5 / at z=0
6 To1=0
7 Th1=0
8 u1=0
9 / at z = 10
10 \text{ To} 2 = 10 * 100
11 \quad Th2 = Ko * To2
12 u2=0
13 / at z = 15
14 \text{ To3} = 10*100+5*(122.4-62.4)
15 Th3=Ko*To3
16 \quad u3=5*62.4
17 // Lateral force Po = Area 1 + Area 2+ Area 3+ Area 4
18 Po = (1/2)*10*707+5*707+(1/2)*5*212.1+(1/2)*5*312
19 z = ((3535)*(5+10/3)+3535*(5/2)+530.3*(5/3)+780*(5/3))
20 printf('z = \%f ft',z)
```

Scilab code Exa 13.2 solved

```
1 clc
2 / c = 0
3 a = 36
4 G = 16
5 \text{ Ka} = (1-\sin d(a))/(1+\sin d(a))
6 / at z=0 Tp=0
7 z = 6
8 \text{ To} = G * z
9 \text{ Ta=Ka*To}
10 Pa=z*Ta/2
11
12 printf('a) Rankine active force per unit length of
      the wall = \%f kN/m', Pa)
13 printf(' and the location of the resultant is z = 2m
      \n')
14
15
16 p = 36
17 G=16
18 Kp = (1 + sind(a))/(1 - sind(a))
19 / at z=0 Tp=0
20 z = 6
21 \text{ To=G*z}
22 \text{ Tp=Kp*To}
23 \text{ Pp=z*Tp/2}
25 printf('b) Rankine passive force per unit length of
      the wall = \%f kN/m', Pp)
26 printf(' and the location of the resultant is z = 2m
       ')
```

Scilab code Exa 13.3 solved

```
1 clc
2 H=12
3 a = 20
4 b = 20
5 G=115
6 c = 30
7 Oa= asind(sind(a)/sind(c))-a+2*b
8 Ka = (cosd(a-b)*sqrt(1+(sind(c))^2-2*sind(c)*cosd(0a)
      ))/((\cos d(b))^2*(\cos d(a)+sqrt((\sin d(c))^2-(\sin d(a)))))
      ))^2)))
9 Pa=G*H^2*Ka/2
10 B= atand((sind(c)*sind(Oa))/(1-(sind(c)*cosd(Oa))))
11 printf ('The active force Pa per unit length of the
      wall = \%f lb/ft n', Pa)
12 printf (' The resultant will act a distance of 12/3
     = 4 ft above the bottom of the wall with B = \%f
      degree',B)
```

Scilab code Exa 13.4 solved

```
1 clc
2 a=30
3 Ka1=(1-sind(a))/(1+sind(a))
4 a=35
5 Ka2=(1-sind(a))/(1+sind(a))
6 //at z=0 so T0=0
7 //atz=3
8 To=3*16
9 Ta1=Ka1*To
10 Ta2=Ka2*To
```

```
11
12 // At z=6
13 To=3*16+3*(18-9.81)
14 Ta2=Ka2*To
15
16 Pa =(1/2)*3*16+3*13.0+ (1/2)*3*36.1
17 z= (24 *(3+3/3)+39.0*(3/2)+54.15*(3/3))/Pa
18 printf('The force per unit length of the wall = %f kN/m\n', Pa)
19 printf ('The location of the resultant = %f m',z)
```

Scilab code Exa 13.5 solved

```
1 clc
2 Ka= (tand(1))^2
3 G=16.5
4 cu = 10
5 \text{ H=} 6
6 / at z=0
7 z = 0
8 Ta=G*z-2*cu
9 / zt z=6
10 z = 6
11 Ta=G*z-2*cu
12
13 \text{ zo=} 2*\text{cu/G}
14 // Before the tensile crack occurs
15 Pa= G*H^2/2 - 2*cu*H
16 printf ('Pa before the tensile crack occurs = %f kN/m
      n', Pa)
17 // After the tensile crack occurs
18 Pa=(H-zo)*Ta/2
19 printf ('Pa after the tensile crack occurs = %f kN/m
      ',Pa)
```

Scilab code Exa 13.6 solved

```
1 clc
2 H = 15
3 a = 10
4 G=118
5 b = 20
6 C=250
7 Zo=2*C*sqrt((1+sind(b))/(1-sind(b)))/G
8 / at z=0 Ta=0
9 / at z=15
10 z = 15
11 \quad K = 0.3
12 Ta=G*z*K*cosd(a)
13 Pa=(H - Zo)*Ta/2
14 printf ('The Rankine active force Pa on the retaining
       wall after the tensile crack occurs = \%f lb/ft',
      Pa)
```

Scilab code Exa 13.7 solved

```
1 clc
2 c=30
3 b=15
4 a=10
5 Ka=0.3872 // from table 13.8
6 H=4
7 G=15
8 Pa=G*H^2*Ka/2
9 printf('The active force per unit length Pa = %f kN/m\n', Pa)
```

10 printf(' The resultant will act at a vertical distance equal to H/3=4/3=1.33 m above \n the bottom of the wall and will be inclined at an angle of 15 to the back face of the wall.')

Scilab code Exa 13.9 solved

```
1 clc
 2 \text{ kh} = 0.2
 3 \text{ kv} = 0
4 H=4
5 a = 0
6 b = 0
7 c = 15
8 d = 30
9 G=15.5
10 B= atand(kh/(1-kv))
11 b1=b+B
12 a1=a+B
13 \text{ Ka} = 0.452
14 \text{ Pa=G*H}^2 \text{Ka}/2
15 Pae=Pa*(1-kv)*((cosd(b1))^2/((cosd(b))^2*(cosd(B)))
       ^2))
16 \text{ Ka} = 0.3014
17 Pa=G*H^2*Ka/2
18 P1=Pae-Pa
19 z= ((Pa*H/3)+P1*0.6*H)/Pae
20 printf ('Pae = \%f kN/m\n', Pae)
21 printf(' Z = \%f m',z)
```

Scilab code Exa 13.10 solved

1 clc

```
2 H=28
3 C=210
4 b=10
5 G=118
6 c=20
7 kh=0.1
8 Ka=tand(45-c/2)
9 zo=2*C/(G*(Ka))
10 n=zo/(H-zo)
11 Nac=1.60
12 Nav=0.375
13 L=1.17
14 Pae= G*(H-zo)^2*(L*Nav)-C*(H-zo)*Nac
15 printf('The magnitude of the active force, Pae = %f lb/ft',Pae)
```

Lateral Earth Pressure Curved Failure Surface

Scilab code Exa 14.1 solved

```
1 clc
2 G = 15.7
3 a = 0
4 b = 15
5 c = 30
6 \text{ H=3}
7 Kp=4.977 // from table 13.9
8 Pp = Kp * G * H^2/2
9 printf('a) the passive force = \%f kN/m\n', Pp)
10 // for part b
11 \text{ Kp} = 4.53
12 Pp = Kp * G * H^2/2
13 printf('b) the passive force = \%f kN/m\n', Pp)
14 // for part c
15 \text{ Kp} = 4.13
16 \text{ Pp=Kp*G*H}^2/2
17 printf(' c) the passive force = \%f kN/m\n', Pp)
18 //for part d
19 \text{ Kp} = 4.56
```

```
20 Pp=Kp*G*H^2/2
21 printf('d) the passive force = %f kN/m n', Pp)
```

Scilab code Exa 14.2 solved

```
1 clc
2 G=16
3 H=7
4 c = 30
5 Ta=0.65*G*H*(tand(45-c/2))^2
6 A = Ta * 3 * 3/4
7 B1=Ta*3-54.61
8 C=Ta*4*4/4
9 B2=Ta*4-97.08
10 s = 2
11 As=A*s
12 Bs = (B1 + B2) *s
13 \text{ Cs=C*s}
14 printf ('The strut loads at level A = \%f kN n', As)
15 printf( 'The strut loads at level B = \%f \ kN\n',Bs)
16 printf( 'The strut loads at level C = \%f \ kN',Cs)
```

Chapter 15 Slope Stability

Scilab code Exa 15.1 solved

```
1 clc
2 Gs=17.8
3 Gw=9.81
4 C=10
5 c=20
6 b=15
7 H=6
8 G=Gs-Gw
9 Fs= C/(Gs*H*cosd(b)*cosd(b)*tand(b))+G*tand(c)/(Gs*tand(b))
10 printf('a)The factor of safety = %f \n',Fs)
11 Fs=2
12 H=2.247/(Fs-0.61)
13 printf('b)H= %f m',H)
```

Scilab code Exa 15.2 solved

1 clc

```
2 G=105
3 c=15
4 C=600
5 b=45
6 Fs=3
7 Cd=C/Fs
8 c1= atand(tand(c)/Fs)
9
10 H= 4*Cd*(sind(b)*cosd(c1)/(1-cosd(b-c1)))/G
11 printf('The depth of the cut slope = %f ft', H)
```

Scilab code Exa 15.3 solved

```
1 clc
2 Cu=40
3 G=17.5
4 b=60
5 a=35
6 c=72.5
7 m=0.195
8 Hc=Cu/(G*m)
9 r=Hc/(2*sind(a)*sind(c/2))
10 BC=Hc*((1/tand(a))-(1/tand(b)))
11 printf('a)The maximum depth Hc = %f m\n', Hc)
12 printf('b)The radius, r = %f m\n',r)
13 printf('c)The distance BC.= %f m', BC)
```

Scilab code Exa 15.4 solved

```
1 clc
2 Gs=17.29
3 d=9.15
4 d1=6.1
```

```
5  D=d/d1
6  a=40
7  m=0.175
8  b=40
9  H=6.1
10  Cu=H*Gs*m
11  printf('a)The undrained cohesion of the clay Cu = %f kN/m^2\n',Cu)
12  printf('b)The nature of the critical circle is midpointcircle\n')
13  d=1.5
14  b=40
15  n=0.9
16  D1=n*H
17  printf('c) Distance = %f m',D1)
```

Scilab code Exa 15.5 solved

```
1 clc
2 Fs=1
3 b=56
4 Kh=0.25
5 M=3.66
6 Cu=500
7 G=100
8 Hc=Cu*M/G
9 printf('a)The maximum depth = %f ft\n', Hc)
10 Fs=2
11 H=Cu*M/(G*Fs)
12 printf(' b)H= %f ft', H)
```

Scilab code Exa 15.6 solved

```
1 clc
2 b=45
3 c=20
4 C=24
5 G=18.9
6 m=0.06
7 Hc=C/(G*m)
8 Cd=G*Hc*m
9 Fc=C/Cd
10 printf('a) Critical height of slope = %f \n', Hc)
```

Scilab code Exa 15.7 solved

```
1 clc
2 FSs=1
3 c=20
4 G=18.9
5 C=24
6 Hcr=C/(G*tand(c)*0.17)
7 printf('a) Critical height Hc = %f m\n', Hcr)
8 H=10
9 k=C/(G*H*tand(c))
10 Fs=4*tand(c)
11 printf('b) Fs = %f', Fs)
```

Scilab code Exa 15.8 solved

```
1 clc

2 W=22.4

3 C=20

4 a=70

5 s=sind(a)

6 c=cosd(a)
```

```
7 l=2.924
8 Wn=W*s
9 Wn1=W*c
10 //doing this to all values
11 F1=30.501
12 F2=776.75
13 F3=1638
14 Fs=(F1*C+F3*tand(C))/F2
15 printf('Fs = %f',Fs)
```

Scilab code Exa 15.9 solved

```
1 clc
2 C=20
3 G=18.5
4 r=0.25
5 H=21.62
6 C=25
7 b= atand(0.5)
8 //from table 15.3
9 m=1.624
10 n=1.338
11 Fs=m-n*r
12 printf(' The value of Fs for D= 1 is %f',Fs)
```

Scilab code Exa 15.11 solved

```
1 clc
2 C=20
3 G=18.5
4 H=21.62
5 c=25
6 r=0.25
```

```
7 Fs=3.1*tand(c)
8 printf('Fs = %f',Fs)
```

Soil Bearing Capacity for Shallow Foundations

Scilab code Exa 16.1 solved

```
1 clc
 2 c = 20
 3 // from table 16.1
 4 \text{ Nc} = 17.69
 5 \text{ Nq} = 7.44
 6 \text{ Ng} = 3.64
 8 \text{ Df} = 3
9 G=110
10 q = G * Df
11
12 C=200
13 B = 4
14
15 Qu = C*Nc+q*Nq+G*B*Ng/2
16
17 \text{ Fs} = 3
18 Qall=Qu/Fs
19 printf('Qa = \%f lb/ft^2',Qall)
```

Scilab code Exa 16.2 solved

```
1 clc
2 G=18.15
3 qa=30000*9.81/1000
4
5 Nc=57.75
6 Nq=41.44
7 Ng=45.41
8 C=0
9 q=G*1
10 B=1
11 (1.3*C*Nc+q*Nq+0.4*G*B*Ng)*B^2/3 == qa
12 B= sqrt(294.3/(250.7+109.9))
13 printf(' B = %f m',B)
```

Scilab code Exa 16.3 solved

```
1 clc
2 B=1.2
3 L=1.2
4 c=32
5 C=0
6 Df=1
7 G=16
8 Nq=23.18
9 Ng=22.02
10 Nc=1
11 Lqs=1+0.1*B*(tand(45+c/2))^2/L
12 Lgs=Lqs
13 Lqd=1+0.1*Df*tand(45+c/2)/B
```

Scilab code Exa 16.4 solved

```
1 clc
2 e=0.1
3 B = 1
4 X = B - 2 * e
5 Y = 1.5
6 B1 = 0.8
7 L1=1.5
8 c = 30
9 \text{ Df} = 1
10 \text{ Nq} = 18.4
11 Ng=15.668
12 q = 1 * 18
13 G=18
14 Lqs=1+e*(B1/L1)*(tand(45+c/2))^2
15 Lgs=Lqs
16 \text{ Lqd=1+e*(Df/B1)*tand(45+c/2)}
17 Lgd=Lqd
18 qu=q*Lqs*Lqd*Nq+Lgs*Lgd*G*B1*Ng/2
19 Qu=qu*B1*L1
20 printf('The magnitude of the gross ultimate load =
      %f kN', Qu)
```

Scilab code Exa 16.5 solved

```
1 clc
 2 B = 1.5
3 \text{ Df} = 0.75
4 e = 0.1 * B
 5 G = 17.5
6 c = 30
7 C = 0
8 q = G * Df
9 \text{ Nq} = 18.4
10 \text{ Ng} = 15.668
11 Lqd=1+0.1*(Df/B)*tand(45+c/2)
12 Lgd=Lqd
13 Quc=q*Nq*Lqd+Lgd*B*Ng/2
14 k = 0.8
15 a=1.754
16 Qua=Quc*(1-a*(e/B)^k)
17 printf('The gross ultimate load per unit length = \%f
       kN',Qua)
```

Scilab code Exa 16.6 solved

Scilab code Exa 16.7 solved

```
1 clc
2 a=2500
3 //doing for the first values only
4 Bf=4
5 Bp=0.305
6 q=a/Bf^2
7 Sep=4
8 Sef=Sep*(2*Bf/(Bf+Bp))^2
9 printf('Sef = %f mm',Sef)
```

Subsoil Exploration

Scilab code Exa 18.1 solved

```
1 clc
2 //solving for z=5 only
3 To=0.275
4 Cn=To^(-0.5)
5 N60=8
6 N160=Cn*N60
7 printf('(N1)60 = %f', N160)
```

Scilab code Exa 18.2 solved

```
1 clc
2 z=5
3 To=0.275
4 Cn=2/(1+To)
5 N60=8
6 N160=Cn*N60
7 printf('(N1)60 = %f',N160)
```

Scilab code Exa 18.3 solved

```
1 clc
2 pa=1 // 14.7 lb/in^2 = 1ton/ft^2
3 To=0.275 // ton/ ft^2
4 N60=8
5 c= atand((N60/(12.2+20.3*(To/pa)))^0.34)
6 printf('The average soil friction angle = %f',c)
```