RLI

Note

Progr Sess

COMPOSITION D'ANALYSE

Sujet (durée : 6 heures)

Préambule

On tient à préciser qu'aucune démonstration faisant intervenir une convergence, une continuité, une dérivabilité sous le signe \int , $\Big(\operatorname{Resp.} \int \int\Big)$ ne sera prise en considération si les théorèmes invoqués ne sont pas énoncés avec précision au moins une fois dans la copie.

NOTATIONS

ullet On désigne respectivement par \mathbb{R} , $\overline{\mathbb{R}}$, \mathbb{C} le corps des réels, la droite réelle achevée, le corps des complexes. On identifie \mathbb{R}^2 à \mathbb{C} de sorte que si (x, y) est élément de \mathbb{R}^2 on pose :

$$z = x + iy = (x, y)$$
$$x = \text{Re } z, \quad y = \text{Im } z.$$

• Dans tout le problème on considère un entier s $(s \ge 1)$; pour tout élément z de \mathbb{C} et tout élément $\lambda = (\lambda_1, \ldots, \lambda_s)$ de \mathbb{C}^s on pose :

$$P_s(z,\lambda) = z^s + \lambda_1 z^{s-1} + \dots + \lambda_s$$

$$P'_s(z,\lambda) = s z^{s-1} + \lambda_1 (s-1) z^{s-2} + \dots + \lambda_{s-1}.$$

Four λ dans \mathbb{C}^s , on note (r_1, \ldots, r_s) la suite des racines du polynôme en . de sorte que :

$$P_{s}(z,\lambda) = \prod_{j=1}^{j=s} (z - r_{j});$$

on note $Z = \{ z_1, ..., z_k \}$ l'ensemble de ses racines distinctes, de sorte que : i = k

$$P_{s}(z, \lambda) = \prod_{j=1}^{j=k} (z - z_{j})^{s_{j}}$$

où l'entier s_j $(s_j \ge 1)$ représente l'ordre de multiplicité de z_j .

• Soient p un entier $(p \ge 1)$ et F une application de \mathbb{C}^p dans \mathbb{C} , on dit que F est de classe C^r si et seulement si F est r fois continûment différentiable en tant qu'application de \mathbb{R}^{2p} dans \mathbb{C} ; on dit que F est de classe C^{∞} si et seulement si elle est de classe C^r pour tout r.

• Les opérateurs différentiels
$$\frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
 et $\frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$ sont notés respectivement $\frac{\partial}{\partial z}$ et $\frac{\partial}{\partial \bar{z}}$.

Pour p et q entiers naturels on pose :

$$\frac{\partial z^p \partial \bar{z}^q}{\partial z^p \partial \bar{z}^q} = \left(\frac{\partial z}{\partial z}\right)^p \circ \left(\frac{\partial}{\partial \bar{z}}\right)^q.$$

DÉFINITIONS

Soit F une application de \mathbb{C}^p dans \mathbb{C} supposée de classe C^{∞} ; soit a un point de \mathbb{C}^p , soit r un entier $(r \ge 0)$; on dit que F est r-plate au point a si et seulement si F s'annule en a ainsi que toutes ses différentielles jusqu'à l'ordre r inclus. On dit que F est plate en a si et seulement si, pour tout entier r, F est r-plate en a.

Soit X une partie de \mathbb{C}^p , on dit que F est r-plate (Resp. plate) sur X si et seulement si F est r-plate (Resp. plate) en chaque point de X.

Dans tout le problème f est une application de classe \mathbb{C}^{∞} de \mathbb{C} dans \mathbb{C} et g une application de classe \mathbb{C}^{∞} de \mathbb{R} dans \mathbb{C} .

L'objet du problème est d'établir une identité de division de f, (Resp. g) par le polynôme $P_s(z, \lambda)$, (Resp. $P_s(x, \lambda)$) et d'étudier comment le quotient et le reste définis à cette occasion dépendent de λ .

On note Δ l'opérateur différentiel $\frac{\partial^{p-1}}{\partial \lambda^{\alpha} \partial \overline{\lambda}^{\beta} \partial \eta^{\gamma}}$

où $\partial \lambda^{\alpha} (\text{Resp} : \partial \bar{\lambda}^{\beta})$ est mis pour

$$\partial \lambda_1^{\alpha_1} \ldots \partial \lambda_s^{\alpha_s} \qquad \left(\text{Resp} : \partial \overline{\lambda}_1^{\beta_1} \ldots \partial \overline{\lambda}_s^{\beta_s} \right)$$

En posant
$$Q(x, \eta, \lambda) = \frac{\left| P'_{s}(x + \eta i, \lambda) \right|^{2}}{\left| P_{s}(x + \eta i, \lambda) \right|^{2}}$$

démontrer que :

RI.I

Note

Proq

Sess

a. On a : pour tout (η, λ) dans Ω et tout x réel :

$$\Delta Q(x, \eta, \lambda) = \frac{A(x, \eta, \lambda)}{|P_s(x + \eta i, \lambda)|^{2p}}$$

où A est un polynôme en x, η , λ_1 , ..., λ_s , $\overline{\lambda}_1$, ..., $\overline{\lambda}_s$ dont le degré en x est au plus 2 ps-2.

- b. L'application σ est de classe C^{∞} sur Ω .
- c. Pour tout compact K de $\mathbb{R}\times\mathbb{C}^s$ et tout triplet $(\alpha,\,\beta,\,\gamma),$ il existe un réel C_K tel que :

$$\forall (\eta, \lambda) \in \Omega \cap K \qquad |\Delta \sigma (\eta, \lambda)| \leq C_K \left(1 + \frac{1}{\delta (\eta, \lambda)^{2p_s}}\right)$$

DEUXIÈME PARTIE

Sauf au 4°, on a fixé λ dans \mathbb{C}^s et on écrit P(z) au lieu de $P_s(z, \lambda)$.

 1° a. Soit s_{\circ} un entier $(s_{\circ} \geq 1)$; en utilisant la formule de Taylor avec reste intégral, démontrer qu'il existe une unique application de classe C^{∞} , notée Q_{\circ} , de $\mathbb R$ dans $\mathbb C$, et un unique polynôme R_{\circ} de degré au plus $s_{\circ}-1$, tels que :

$$\forall t \in \mathbb{R}$$
 $g(t) = \mathbf{R}_{o}(t) + t^{s_{o}} Q_{o}(t)$

h Démontrer qu'il existe une application de classe C^{∞} notée Q, A = 0 dans C, et un polynôme R de degré au plus s=1 tels que :

$$\forall t \in \mathbb{R}$$
 $g(t) = P(t) Q(t) + R(t)$

Démontrer que le couple (Q, R) est unique si et seulement si P a touteuses racines réelles.

Soient m et n deux entiers $(m \ge 1, n \ge 1)$, démontrer que l'application $w : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ définie par :

$$\forall z \in \mathbb{C} \setminus \{0\}$$
 $w(z) = \frac{\overline{z}^{n+m}}{z^n}$

or prolonge de manière unique en une application $w_{\mathfrak{o}}:\mathbb{C}\to\mathbb{C}$ de classe \mathbb{C}^{m-1} .

3° a. En utilisant la formule de Taylor avec reste intégral pour une fonction d'une variable réelle, démontrer l'égalité :

 $\forall z \in \mathbb{C} \quad \forall h \in \mathbb{C}$

$$f(z+h) = f(z) + \sum_{1 \leq p+q \leq r} \frac{h^{p} \overline{h}^{q}}{p! \ q!} \frac{\partial^{p+q} f}{\partial z^{p} \partial \overline{z}^{q}}(z) + (r+1) \sum_{p+q=r+1} \frac{h^{p} \overline{h}^{q}}{p! \ q!} \operatorname{E}_{p,q}(z,h)$$

$$p + q = r + 1$$

$$0^{r+1} f$$

où
$$\mathrm{E}_{p,q}\left(z,h\right) = \int_{0}^{1} \left(1-t\right)^{r} \, \frac{\partial^{r+1} f}{\partial z^{p} \, \partial \bar{z}^{q}} \left(z+th\right) \, dt$$

b. On suppose l'application $\frac{\partial f}{\partial \bar{z}}$ plate sur l'ensemble Z des zéros de P.

Démontrer qu'il existe une unique application de classe \mathbb{C}^{∞} , notée Q, de $\mathbb C$ dans $\mathbb C$, et un unique polynôme R de degré au plus s-1 tels que :

$$\forall z \in \mathbb{C}$$
 $f(z) = P(z) Q(z) + R(z)$

- c. Démontrer que si f est holomorphe, Q l'est aussi.
- d. Démontrer que le résultat de b. subsiste si l'on suppose seulement que $\frac{\partial f}{\partial \bar{z}}$ est, pour tout j $(1 \le j \le k)$ $(s_j 1)$ plate au point z_j .

4° Soit F une application de classe \mathbb{C}^{∞} , de $\mathbb{C} \times \mathbb{C}^{s}$ dans \mathbb{C} ; on suppose F plate sur l'ensemble X des couples (z, λ) vérifiant $P_{s}(z, \lambda) = 0$.

Démontrer que pour tout entier naturel r $(r \ge 1)$ l'application :

$$(z,\lambda) \longmapsto \frac{\mathrm{F}(z,\lambda)}{(\mathrm{P}_s(z,\lambda))^r}$$

de $\mathbb{C} \times \mathbb{C}^s \setminus X$ dans \mathbb{C} se prolonge de façon unique en une application de $\mathbb{C} \times \mathbb{C}^s$ dans \mathbb{C} , de classe \mathbb{C}^{∞} .

Indication : on commencera par démontrer que l'application :

$$\Phi:(z,\lambda_1,\ldots,\lambda_s)\mapsto(z,\lambda_1,\ldots,\lambda_{s-1},P_s(z,\lambda))$$

de $\mathbb{C} \times \mathbb{C}^s$ dans lui-même est un changement de variable \mathbb{C}^{∞} , c'est-à-dire une application bijective de classe \mathbb{C}^{∞} ainsi que sa réciproque.

TROISIÈME PARTIE

Pour tout réel
$$\xi$$
 on note : $I(\xi) = \left[\frac{1}{2} \frac{1}{1+|\xi|}, \frac{1}{1+|\xi|}\right]$

et A la partie de $\mathbb{R} \times \mathbb{C}^s \times \mathbb{R}$ formée par les triplets (ξ, λ, y) tels que y appartienne à $I(\xi)$.

On note ρ_o une application de $\widetilde{\mathbb{R}}$ dans [0, 1], de classe C^∞ sur $\mathbb{R},$ paire, et vérifiant :

$$\forall t \in [8 s^3, + \infty] \qquad \rho_0(t) = 0$$

$$\forall t \in [0, 4s^3] \qquad \qquad \rho_0(t) = 1$$

L'existence de ρ_0 est admise.

RI

Not

Proc

1º a. Démontrer que l'application:

$$(\xi,\lambda,\eta) \mapsto \rho_o\left(\frac{\sigma(\eta,\lambda)}{1+|\xi|}\right)$$

de $\mathbb{R} \times \mathbb{C}^s \times \mathbb{R}$ dans [0, 1] est de classe \mathbb{C}^{∞} en (λ, η) et que ses différentielles sont continues à tout ordre en (ξ, λ, η) .

b. Soit Ψ l'application de A dans R+ définie par :

$$\Psi\left(\xi,\lambda,y\right)\in\mathcal{A}\quad\Psi\left(\xi,\lambda,y\right)=4\left(1+\left|\xi\right|\right)\int_{y}^{\frac{1}{1+\left|\xi\right|}}\rho_{0}\left(\frac{\sigma\left(\eta,\lambda\right)}{1+\left|\xi\right|}\right)d\eta.$$

Démontrer que pour tout λ dans \mathbb{C}^s et tout réel ξ on a :

$$\Psi\left(\xi,\lambda,\frac{1}{2\left(1+\left|\xi\right|\right)}\right)\geqslant\ 1.$$

Prouver que Ψ est continue, qu'elle est de classe C^{∞} sur \mathring{A} en (λ, y) , et que ses différentielles sont continues à tout ordre en (ξ, λ, y) sur \mathring{A} .

 2^o Soit α un réel, $0<\alpha<\frac{1}{2}$; soit ρ_1 une application de \mathbb{R}^+ dans $[0,\ 1]$ de classe C^∞ , vérifiant :

$$\forall t \in [0, \alpha] \qquad \qquad \rho_1(t) = 0$$

$$\forall t \in [1 - \alpha, + \infty[\qquad \rho_1(t) = 1$$

L'existence de ρ_i est admise.

On note ρ l'application de $\mathbb{R} \times \mathbb{C}^s \times \mathbb{R}$ dans [0, 1] définie par : $(\xi, \lambda, y) \longmapsto \rho(\xi, \lambda, y)$ avec :

i. ρ est paire en γ

ii. si
$$0 \le y < \frac{1}{2(1+|\xi|)}$$
 $\rho(\xi, \lambda, y) = 1$

iii. si
$$y \in I(\xi)$$
 $\rho(\xi, \lambda, y) = \rho_1(\Psi(\xi, \lambda, y))$

iv. si
$$y > \frac{1}{1+|\xi|}$$
 $\rho(\xi,\lambda,y) = 0$

a. Prouver que ρ est continue sur $\mathbb{R} \times \mathbb{C}^s \times \mathbb{R}$, de classe \mathbb{C}^{∞} par rapport à (λ, y) , chacune de ses différentielles étant continue par rapport à (ξ, λ, y) sur $\mathbb{R} \times \mathbb{C}^s \times \mathbb{R}$.

b. Prouver l'existence d'un ouvert contenant $\mathbb{R}\times\mathbb{C}^s\times\{\ 0\ \}$ sur lequel ρ est constante égale à 1.

Prouver que $\rho(\xi, \lambda, y)$ est nul dès que $|y \xi| \ge 1$.

R.L.

Note

1400

c. Démontrer l'existence d'un ouvert contenant l'ensemble :

$$\left\{ \begin{array}{ll} (\xi,\lambda,y) & \mid \ \xi \in \mathbb{R}, \ \lambda \in \mathbb{C}^s, \ y \in \mathbb{R} & \text{et} \ \ (y,\lambda) \notin \Omega \end{array} \right\} \\ \text{sur lequel} \ \frac{\partial \, \rho}{\partial \, y} \text{ est nulle.}$$

d. Démontrer que pour tout compact K de $\mathbb{C}^s \times \mathbb{R}$ et tout triplet (α, β, γ) de $\mathbb{N}^s \times \mathbb{N}^s \times \mathbb{N}$, il existe un réel D_K et un entier naturel q tels que :

$$\forall (\xi,\lambda,y) \in \mathbb{R} \times K \quad \left| \frac{\partial^{|\alpha|+|\beta|+\gamma}}{\partial \lambda^{\alpha} \, \partial \overline{\lambda}^{\beta} \, \partial y^{\gamma}} \, (\xi,\lambda,y) \right| \leq D_{K} \, (1+|\xi|^{q})$$

QUATRIÈME PARTIE

On suppose dans cette partie que $g:\mathbb{R}\to\mathbb{C}$ est de classe C^∞ et est intégrable sur \mathbb{R} .

On admet l'existence d'une fonction \hat{g} de $\mathbb R$ dans $\mathbb C$, continue selle

$$\forall n \in \mathbb{N}$$
 $x \mapsto |x^n \hat{g}(x)|$ est bornée sur \mathbb{R}

et
$$\forall x \in \mathbb{R}$$
 $g(x) = \int_{-\infty}^{+\infty} e^{ix\xi} \hat{g}(\xi) d\xi$.

On définit alors F de $\mathbb{C}\,\times\,\mathbb{C}^s$ dans \mathbb{C} par :

$$\forall (z,\lambda) \in \mathbb{C} \times \mathbb{C}^{s} \qquad F(z,\lambda) = \int_{-\infty}^{+\infty} \rho(\xi,\lambda,y) e^{iz\xi} \, \hat{g}(\xi) \, d\xi$$

anton a posé $z=x+i\,y$; et où ho est l'application définie à III, 2°.

Démontrer que F est de classe \mathbb{C}^∞ sur $\mathbb{C} \times \mathbb{C}^s$ et que :

$$\forall x \in \mathbb{R} \quad \forall \lambda \in \mathbb{C}^s \qquad g(x) = \mathbf{F}(x,\lambda).$$

Démontrer que $\frac{\partial \mathbf{F}}{\partial \bar{z}}$ est plate en tout point (z,λ) tel que $z \in \mathbb{R}$ on $\Gamma_z(z,\lambda) = 0$.

;" Soit D le disque fermé dans $\mathbb C$ de centre ω et de rayon R (R > 0); demontrer que :

$$\forall t \in \mathbb{R} \cap \mathring{\mathbf{D}}, \ \forall \ \lambda \in \mathbb{C}^s$$

$$F(t,\lambda) = \frac{R}{2\pi} \int_0^{t^2\pi} \frac{F(\omega + Re^{i\theta}, \lambda)}{\omega + Re^{i\theta} - t} e^{i\theta} d\theta - \frac{1}{\pi} \int_D^{\infty} \frac{\partial F}{\partial \bar{z}} (z,\lambda) \frac{dx dy}{z - t}$$

le Prouver l'existence de polynômes $R_j(u, \lambda)$ tels que l'on ait l'identité de fractions rationnelles :

$$\frac{1}{u-z} = \frac{P_s(z,\lambda)}{P_s(u,\lambda)} \frac{1}{u-z} + \sum_{j=1}^{j=s} \frac{R_{j-1}(u,\lambda)}{P_s(u,\lambda)} z^{s-j}$$

et démontrer l'existence d'une fonction $Q:\mathbb{R}\times\mathbb{C}^s\to\mathbb{C}$ de classe C^∞ , et d'un polynôme en t

$$R(t,\lambda) = a_1(\lambda) t^{s-1} + \ldots + a_s(\lambda)$$

de classe \mathbb{C}^{∞} en (t,λ) sur $\mathbb{R}\times\mathbb{C}^{s}$ tels que :

$$\forall t \in \mathbb{R} \quad \forall \lambda \in \mathbb{C}^s \qquad g(t) = P_s(t,\lambda) Q(t,\lambda) + R(t,\lambda).$$