Teoria dei Polinomi

Argomenti trattati: polinomi in una o più variabili, polinomi simmetrici, polinomi omogenei, teoria del risultante.

NOTAZIONE E CONVENZIONI

All'interno della presente trattazione adottiamo le seguenti convenzioni:

- Quando non diversamente specificato assumiamo che R sia un anello commutativo unitario ed anche dominio d'integrità. In particolare il fatto che R sia ID, ci permette di dire che, se $f,g \in R[x]$ allora deg $(fg) = \deg(f) + \deg(g)$, cosa che useremo abbastanza spesso.
- Tutte le sommatorie che compaiono si intendono finite
- Con $a \mid_S b$ intendiamo che $\exists s \in S$ t.c. b = as

Ed useremo la seguente notazione:

- ullet Indichiamo con Q_R il campo delle frazioni su R
- f'(x) indica la derivata formale di f(x), ovvero se $f(x) = \sum_i a_i x^i$ definiamo $f'(x) = \sum_i (i \star a_i) x^{i-1}$, dove $\star : \mathbb{N} \times R \to R$ è tale che $\star (n,r) = \underbrace{r+r+\ldots+r}_n n$ volte.
- Con \mathbb{P}_R indichiamo l'insieme dei primi in R

POLINOMI IN UNA VARIABILE

TEOREMA DI RUFFINI

Enunciato

Sia $f(x) \in R[x]$. Allora $f(\alpha) = 0 \Leftrightarrow (x - \alpha) \mid_R f(x)$

Dimostrazione

Notiamo che possiamo effettuare la solita divisione euclidea tra f(x) e $(x-\alpha)$ restando ad ogni passaggio in R[x] in quanto $x-\alpha$ è monico. Allora si ha $\exists q(x), r(x) \in R[x]$ t.c. $f(x) = q(x)(x-\alpha) + r(x)$, con deg r < 1 oppure r = 0. Valutando in α si ha $0 = f(\alpha) = r(\alpha) \implies r = 0$ perché r ha al più grado r. Scriviamo r0. Scriviamo r1 si ha la tesi.

LEMMA DELLA DERIVATA E MOLTEPLICITÀ DELLE RADICI

Enunciato

 $f(x) \in R[x]$. Allora $(x - \alpha)^2 \mid_R f(x) \Leftrightarrow f(\alpha) = 0$ e $f'(\alpha) = 0$.

Dimostrazione

MASSIMO NUMERO DI RADICI DEL POLINOMIO

Enunciato

 $f(x) \neq 0 \in R[x]$, deg f = n. Allora f(x) ha al più n radici in R.

Dimostrazione

Ogni volta che troviamo una radice α di f, possiamo dire f(x)=(x-a)g(x) e abbiamo che deg $g=\deg f-1$, da cui la tesi.

Teorema delle Radici in Q_R

Enunciato

Sia R GCD, $f(x) \in R[x]$, $\deg f = n$, $f(x) = \sum_i a_i x^i$, $\alpha \in Q_R$ una sua radice. Allora, $\det p, q \in R$ t.c. $\alpha = \frac{p}{q}$, si ha che $p \mid a_0$ e $q \mid a_n$.

Dimostrazione

Sappiamo che $0 = f(\frac{p}{q}) = a_n(\frac{p}{q})^n + \ldots + a_1\frac{p}{q} + a_0$ e possiamo supporre $\frac{p}{q}$ ridotta ai minimi termini, ovvero con (p,q) = 1. Moltiplicando da ambo i lati per q^n si ottiene $0 = a_np^n + a_{n-1}p^{n-1}q + \ldots + a_1pq^{n-1} + a_0q^n$ e notiamo che q divide tutti i termini tranne a_np^n e p divide tutti i termini tranne a_0q^n , quindi si ha, poiché q e p sono coprimi, $p \mid a_0 \in q \mid a_n$.

Principio di identità dei Polinomi

Enunciato

 $f(x) \in R[x]$, deg f = n, $f(x) = \sum_i a_i x^i$. Supponiamo $\exists \alpha_1, \dots, \alpha_{n+1} \ n+1$ radici con molteplicità di f(x). Allora $f(x) \equiv 0$.

Dimostrazione

Ovvia, segue dal "Massimo numero di radici del polinomio".

STRANA DIVISIBILITÀ

Enunciato

 $f(x) \in R[x], a, b \in R$. Allora $(b - a) \mid_{R} (f(b) - f(a))$.

Dimostrazione

Effettuiamo la divisione di f(x) per (x-a). Si ha $\exists q(x), r(x) \in R[x]$ tali che f(x) = (x-a)q(x) + r(x). Ora valutando in a si ottiene f(a) = r(a) = r(x) (perché deg $r \le 0$) e, valutando in b si ha f(b) = (b-a)q(b) + r(b) = (b-a)q(b) + f(a), e sottraendo f(b) - f(a) = (b-a)q(b), quindi $(b-a)|_R (f(b) - f(a))$.

CRITERIO DI IRRIDUCIBILITÀ DI EISENSTEIN

Enunciato

 $f(x) = \sum_i a_i x^i \in R[x]$, deg f = n. Se $\exists p \in \mathbb{P}_R$ t.c. $p \nmid a_n, p \mid a_0, a_1, \dots, a_{n-1}, p^2 \nmid a_0$ allora f(x) si può ridurre solo come $\beta \cdot h(x)$ con $\beta \in R$.

Dimostrazione

Supponiamo $\exists g(x), h(x) \in R[x]$ t.c. $f(x) = g(x) \cdot h(x)$. Sia A = R/(p) il dominio d'integrità quoziente (perché (p) è un ideale primo). Allora abbiamo $\bar{f}(x) = \bar{a_n}x^n$. Quindi la fattorizzazione di $\bar{f} = \bar{g} \cdot \bar{h}$ implica \bar{g}, \bar{h} sono monomi (perché altrimenti il prodotto ha più termini di uno siccome A è ID). Allora abbiamo $\bar{g} = \bar{g_s}x^s$, $\bar{h} = \bar{h_r}x^r$, con $\bar{g_s}, \bar{h_r} \neq_A 0$. Quindi s+r=n e se s oppure $r \geq 1$ si ha $p^2 \mid a_0$. Assurdo. Allora WLOG deg g=0. Ovvero $f(x)=g_0 \cdot h(x)$.

Irriducibilità per Traslazioni

Enunciato

Se f(x) si fattorizza come g(x)h(x), allora anche f(x+a) si fattorizza

Dimostrazione

Ovvia: g(x+a)h(x+a) = f(x+a) e notiamo che deg $g(x+a) = \deg g(x)$ e deg $h(x+a) = \deg h(x)$. Può essere usato con profitto per poi usare Eisenstein sul polinomio traslato.

HENSEL LIFTING LEMMA

Enunciato

 $f(x) \in R[x]$

Dimostrazione

Polinomi in più variabili

Principio di Identità dei Polinomi

Enunciato

R di cardinalità infinita. Se $f \in R[x_1, \dots, x_n]$ è tale che $\forall a = (a_1, \dots, a_n) \in R^n$ f(a) = 0 allora si ha $f \equiv 0$, ovvero f è il polinomio identicamente nullo.

Dimostrazione

Mostriamo per induzione sul numero di incognite n che se $f \neq 0$ allora esiste un punto dove f non ha valore nullo. Per n=1 l'abbiamo già fatto con l'analogo teorema in una variabile. Mostriamo ora il passo induttivo: supponiamo che $f \in R[x_1,\ldots,x_n][x_{n+1}]$ e chiamiamo $y=x_{n+1}$ per comodità. Allora, ordinando i termini per il loro grado in y si ha $f=y^s(a_0+a_1y+\ldots+a_ry^r)$. Prendiamo il punto $\bar{x}\in R^n$ t.c. $a_0(\bar{x})\neq 0$ e valutiamo tutti i polinomi a_k in \bar{x} , ottenendo $f(\bar{x},y)=y^s(u_0+u_1y+\ldots+u_ry^r)$ dove $u_j=a_j(\bar{x})\in R$. Sapendo che ora $g(y):=f(\bar{x},y)\in R[y]$ è non nullo e che R ha cardinalità infinita so che $\exists q\in R$ t.c. $g(q)\neq 0$ allora so che il punto (\bar{x},q) è tale che $f(\bar{x},q)\neq 0$. Abbiamo così dimostrato ciò che volevamo.

NULLSTELLENSATZ

POLINOMI SIMMETRICI

POLINOMI OMOGENEI

I FATTORI DI POLINOMI OMOGENEI SONO OMOGENEI

IL RISULTANTE