

# Polar3<sup>™</sup> HiPerFET<sup>™</sup> Power MOSFET

## IXFN110N60P3

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier



| Symbol                                          | Test Conditions                                                 | Maximum Ratings             |                      |  |
|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------------|--|
| V <sub>DSS</sub>                                | T <sub></sub> = 25°C to 150°C                                   | 600                         | V                    |  |
| V <sub>DGR</sub>                                | $T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$                     | 600                         | V                    |  |
| V <sub>GSS</sub>                                | Continuous                                                      | ±30                         | V                    |  |
| V <sub>GSM</sub>                                | Transient                                                       | ±40                         | V                    |  |
| I <sub>D25</sub>                                | T <sub>C</sub> = 25°C                                           | 90                          | A                    |  |
| I <sub>DM</sub>                                 | $T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$ | 275                         | Α                    |  |
| I <sub>A</sub><br>E <sub>AS</sub>               | T <sub>c</sub> = 25°C<br>T <sub>c</sub> = 25°C                  | 55<br>3                     | A<br>J               |  |
| dv/dt                                           | $I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150$ °C     | 35                          | V/ns                 |  |
| $\overline{\mathbf{P}_{\mathrm{D}}}$            | T <sub>C</sub> = 25°C                                           | 1500                        | W                    |  |
| T <sub>J</sub> T <sub>JM</sub> T <sub>stg</sub> |                                                                 | -55 +150<br>150<br>-55 +150 | 0°<br>0°<br>0°       |  |
| V <sub>ISOL</sub>                               | 50/60 Hz, RMS, $t = 1$ minute<br>$I_{ISOL} \le 1$ mA, $t = 1$ s | 2500<br>3000                | V~<br>V~             |  |
| $\overline{M_d}$                                | Mounting Torque for Base Plate<br>Terminal Connection Torque    | 1.5/13<br>1.3/11.5          | Nm/lb.in<br>Nm/lb.in |  |
| Weight                                          |                                                                 | 30                          | g                    |  |

| = | 600V                  |
|---|-----------------------|
| = | 90A                   |
| ≤ | $56 \mathrm{m}\Omega$ |
| ≤ | 250ns                 |
|   | _                     |





G = Gate D = DrainS = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

### **Features**

- International Standard Package
- miniBLOC with Aluminum Nitride Isolation
- Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier
- ${}^{\bullet}$  Low  ${\rm R_{\rm DS(on)}}$  and  ${\rm Q_{\rm G}}$

### **Advantages**

- Easy to Mount
- Space Savings

### **Applications**

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- Uninterrupted Power Supplies
- AC Motor Drives
- High Speed Power Switching Applications

|                     |                                              | Chara<br>Min. | racteristic Values<br>  Typ.   Max. |                  |  |
|---------------------|----------------------------------------------|---------------|-------------------------------------|------------------|--|
| BV <sub>DSS</sub>   | $V_{GS} = 0V, I_D = 3mA$                     | 600           |                                     | V                |  |
| V <sub>GS(th)</sub> | $V_{DS} = V_{GS}, I_{D} = 8mA$               | 3.0           |                                     | 5.0 V            |  |
| I <sub>GSS</sub>    | $V_{GS} = \pm 30V, V_{DS} = 0V$              |               |                                     | ±200 nA          |  |
| I <sub>DSS</sub>    | $V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 13$ | 25°C          |                                     | 50 μA<br>2.75 mA |  |
| R <sub>DS(on)</sub> | $V_{GS} = 10V, I_{D} = 55A, Note 1$          |               |                                     | 56 mΩ            |  |





| Symbol                | •    |                                                             |      |      | cteristic Values |  |  |
|-----------------------|------|-------------------------------------------------------------|------|------|------------------|--|--|
| $(1_{J} = 25)$        | °C 0 | nless Otherwise Specified)                                  | Min. | Тур. | Max.             |  |  |
| g <sub>fs</sub>       |      | $V_{DS} = 20V$ , $I_{D} = 55A$ , Note 1                     | 65   | 105  | S                |  |  |
| $\mathbf{C}_{iss}$    | )    |                                                             |      | 18   | nF               |  |  |
| $\mathbf{C}_{oss}$    | }    | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$                       |      | 1550 | pF               |  |  |
| $\mathbf{C}_{rss}$    | J    |                                                             |      | 8    | pF               |  |  |
| R <sub>Gi</sub>       |      | Gate Input Resistance                                       |      | 1.2  | Ω                |  |  |
| t <sub>d(on)</sub>    | )    | Resistive Switching Times                                   |      | 63   | ns               |  |  |
| t <sub>r</sub>        |      | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 55A$     |      | 30   | ns               |  |  |
| $\mathbf{t}_{d(off)}$ |      | 30 20 20 2                                                  |      | 106  | ns               |  |  |
| t <sub>f</sub>        |      | $R_{\rm G} = 1\Omega$ (External)                            |      | 15   | ns               |  |  |
| Q <sub>g(on)</sub>    | )    |                                                             |      | 254  | nC               |  |  |
| $\mathbf{Q}_{gs}$     | }    | $V_{GS} = 10V$ , $V_{DS} = 0.5 \cdot V_{DSS}$ , $I_D = 55A$ |      | 80   | nC               |  |  |
| $\mathbf{Q}_{gd}$     | J    |                                                             |      | 68   | nC               |  |  |
| R <sub>thJC</sub>     |      |                                                             | -    |      | 0.083 °C/W       |  |  |
| R <sub>thCS</sub>     |      |                                                             |      | 0.05 | °C/W             |  |  |

# SOT-227B (IXFN) Outline (M4 screws (4x) supplied) | Variable | V

### Source-Drain Diode

| Symbol                                                | Test Conditions                                                                           | Characteristic Values |             |      |               |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|-------------|------|---------------|
| (T <sub>J</sub> = 25°C Unless Otherwise Specified)    |                                                                                           | Min.                  | Тур.        | Max. |               |
| Is                                                    | $V_{GS} = 0V$                                                                             |                       |             | 110  | Α             |
| I <sub>SM</sub>                                       | Repetitive, Pulse Width Limited by $T_{_{JM}}$                                            |                       |             | 440  | Α             |
| V <sub>SD</sub>                                       | $I_F = 100A, V_{GS} = 0V, Note 1$                                                         |                       |             | 1.5  | V             |
| t <sub>rr</sub><br>Q <sub>RM</sub><br>I <sub>RM</sub> | $\begin{cases} I_{F} = 55A, -di/dt = 100A/\mu s \\ V_{R} = 100V, V_{GS} = 0V \end{cases}$ |                       | 1.6<br>14.0 | 250  | ns<br>μC<br>A |

Note 1. Pulse test,  $t \le 300\mu s$ , duty cycle,  $d \le 2\%$ .







Fig. 2. Extended Output Characteristics @ T<sub>J</sub> = 25°C



Fig. 3. Output Characteristics @ T<sub>J</sub> = 125°C



Fig. 4.  $R_{DS(on)}$  Normalized to  $I_D$  = 55A Value vs. **Junction Temperature** 



Fig. 5.  $R_{DS(on)}$  Normalized to  $I_D$  = 55A Value vs.



Fig. 6. Maximum Drain Current vs.

















IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.



Fig. 13. Maximum Transient Thermal Impedance