Finite Volume Method Practical Assignment

Doan Tran Nguyen Tung Student ID: 1411352

March 25, 2017

Contents

1	Dir	ichlet boundary condition	3	
	1.1	Test cases	3	
	1.2 Homogeneous Dirichlet boundary condition, regular grid, each control poin			
		midpoint of corresponding control volume, integration using midpoint rule	4	
		1.2.1 Figures of results	4	
		1.2.2 Errors	14	
		1.2.3 Convergence rate	15	
	1.3	Homogeneous Dirichlet boundary condition, regular grid, each control point is 1/3		
		from the left of corresponding control volume, integration using midpoint rule	17	
		1.3.1 Errors	17	
		1.3.2 Convergence rate	18	
	1.4	Ways to approximate the mean value of the function f over control volumes	20	
		1.4.1 Somes way to approximate integral	20	
		1.4.2 Effects in the Finite Volume Method	20	
	1.5	Homogeneous Dirichlet boundary condition, singular grid, each control point is the		
		midpoint of corresponding control volume	24	
		1.5.1 Errors	24	
		1.5.2 Convergence rate	25	
2	Neı	ımann boundary condition	27	
	2.1	Main idea	27	
	2.2	Test cases	27	
	2.3	Homogeneous Neumann boundary condition, regular grid, each control point is the		
		midpoint of corresponding control volume, integration using midpoint rule	28	
		2.3.1 Figures of results	28	
		2.3.2 Errors	35	
		2.3.3 Convergence rate	36	
	2.4	Homogeneous Neumann boundary condition, singular grid, each control point is the		
		midpoint of corresponding control volume, integration using midpoint rule	37	
		2.4.1 Errors	37	
		2.4.2 Convergence rate	38	

Practical Assignment

Given a 1D Poisson problem on $\Omega = (0, 1)$

$$-u''(x) = f(x), x \in \Omega \tag{1}$$

1. Dirichlet boundary condition

a) Solve the equation (1) subjected to homogeneous Dirichlet boundary condition

$$u(0) = a, u(1) = b (2)$$

by finite volume method on a regular grid and the control points are the midpoints of the control volumes $\left(x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}\right)$.

- b) Solve the equation (1) with regular grid and each control point is $\frac{1}{3}$ from the left of each control volume $\left(x_i = \frac{2}{3}x_{i-\frac{1}{2}} + \frac{1}{3}x_{i+\frac{1}{2}}\right)$
- c) How to approximate the mean value of f over the control volumes T_i and compare some ways of approximation.
- d) Solve the equation (1) with a singular grid.
- 2. Neumann boundary condition

Solve the equation (1) subjected to Neumann boundary condition

$$u'(0) = 0, u'(1) = 0 \text{ with } \int_0^1 f(x)dx = 0 \text{ and } \int_0^1 u(x)dx = 0$$
 (3)

by finite volume method on a regular grid and a singular grid and the control points are the midpoints of the control volumes $\left(x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}\right)$.

1 Dirichlet boundary condition

In this section, we are going to test the Finite Volume Method for the 1-dimensional Poisson equation subjected to Dirichlet boundary condition with several test cases using uniform grid and singular grid, varying positions of control points, ways of integration approximation.

1.1 Test cases

• <u>Case 1:</u>

$$f(x) = \frac{1}{2} - x$$

$$u(0) = \frac{1}{24}$$

$$u(1) = -\frac{1}{24}$$

$$u(x) = \frac{x^2 (2x - 3)}{12} + \frac{1}{24}$$

• <u>Case 2:</u>

$$\begin{split} f(x) &= -20000 \, x^3 + \frac{957200 \, x^2}{33} - \frac{1240655 \, x}{99} + \frac{916835}{594} \\ u(0) &= -\frac{175}{44} \\ u(1) &= \frac{2660}{297} \\ u(x) &= (1000 \, x - 50) \, \left(x - \frac{3}{11} \right) \, \left(x - \frac{7}{9} \right) \, \left(x - \frac{5}{12} \right) \, \left(x - \frac{9}{10} \right) \end{split}$$

• Case 3:

$$f(x) = 3\cos\left(x + \frac{1}{2}\right)^{3}\sin\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{3} + 12500\pi^{2}\cos\left(x + \frac{1}{2}\right)^{3}\sin\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{3}\left(x + \frac{1}{2}\right)^{8}$$

$$- 6\cos\left(x + \frac{1}{2}\right)\sin\left(x + \frac{1}{2}\right)^{2}\sin\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{5}$$

$$- 50000\pi^{2}, \cos\left(x + \frac{1}{2}\right)^{3}\cos\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{2}\sin\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{3}\left(x + \frac{1}{2}\right)^{8}$$

$$- 1000\pi\cos\left(x + \frac{1}{2}\right)^{3}\cos\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)\sin\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{4}\left(x + \frac{1}{2}\right)^{3}$$

$$+ 1500\pi\cos\left(x + \frac{1}{2}\right)^{2}\cos\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)\sin\left(x + \frac{1}{2}\right)\sin\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{4}\left(x + \frac{1}{2}\right)^{4}$$

$$u(0) = \sin\left(\frac{5\pi}{16}\right)^{5}\cos\left(\frac{1}{2}\right)^{3}$$

$$u(1) = \sin\left(\frac{\pi}{16}\right)^{5}\cos\left(\frac{3}{2}\right)^{3}$$

$$u(2) = \sin\left(10\pi\left(x + \frac{1}{2}\right)^{5}\right)^{5}\cos\left(x + \frac{1}{2}\right)^{3}$$

- 1.2 Homogeneous Dirichlet boundary condition, regular grid, each control point is the midpoint of corresponding control volume, integration using midpoint rule
- 1.2.1 Figures of results
- <u>Case 1:</u>

1.2.2 Errors

• <u>Case 1:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	2.183660e-03	1.353165e-02
8	5.593964e-04	5.167483e-03
16	1.406791e-04	1.891105e-03
32	3.522145e-05	6.796587e-04
64	8.808591e-06	2.422258e-04
128	2.202349e-06	8.597891e-05

• <u>Case 2:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	3.414525e+00	1.723527e-02
8	1.224066e+00	1.429127e + 01
16	3.297560e-01	6.028506e+00
32	8.393195e-02	2.295482e+00
64	2.107644e-02	8.397813e-01
128	5.274953e-03	3.018207e-01

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
100	1.372029e+02	4.718806e + 02
200	6.795356e + 01	2.432018e+02
300	2.068556e + 01	8.656798e + 01
400	8.220398e+00	3.814539e + 01
500	9.637916e-01	7.476626e + 00
600	1.613099e-01	2.708167e+00
700	1.691419e-03	1.378369e+00
800	1.035571e-03	1.034955e+00

1.2.3 Convergence rate

\bullet Case 1:

• Case 2:

Remark: We can see that in case 1 and 2, the finite volume method has convergence rate of order 2 in L^2 norm and order $\frac{3}{2}$ in energy norm. But in case 3, finite volume method has convergence rate of order 2 in both L^2 and energy norm. More ever, the convergence rate in case 3 only become consistent after the grid refinement reached a certain degree.

1.3 Homogeneous Dirichlet boundary condition, regular grid, each control point is 1/3 from the left of corresponding control volume, integration using midpoint rule

1.3.1 Errors

• <u>Case 1:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	4.337732e-03	1.723527e-02
8	1.976011e-03	7.696433e-03
16	9.604458e-04	3.489791e-03
32	4.766545e-04	1.633552e-03
64	2.378772e-04	7.855739e-04
128	1.188822e-04	3.845069e-04

• <u>Case 2:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	6.063755e + 00	2.989757e + 01
8	3.072003e+00	1.824323e+01
16	1.453481e+00	8.493182e+00
32	7.060401e-01	3.804418e+00
64	3.484227e-01	1.738566e + 00
128	1.731597e-01	8.193746e-01

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
100	1.374387e + 02	4.724692e + 02
200	6.805998e + 01	2.434741e + 02
300	2.074894e + 01	8.685629e + 01
400	8.237658e + 00	3.826618e + 01
500	9.680948e-01	7.883261e+00
600	1.628207e-01	3.371928e+00
700	4.196379e-03	2.193966e+00
800	3.381889e-03	1.786729e+00

1.3.2 Convergence rate

$\underline{\text{Case 1:}}$

• Case 2:

Remark: Unlike the results in previous section, in all 3 cases, the finite volume method has convergence rate of order 1 in both L^p and energy norm. However, in case 3, similar to before, the convergence rate in case 3 only become consistent after the grid refinement reached a certain degree.

1.4 Ways to approximate the mean value of the function f over control volumes

1.4.1 Somes way to approximate integral

There are many ways to approximate integrals, both with equally spaced integration points and unequally spaced integration points. However, we are going to test only a few way of approximation with equally spaced integration points.

We need to approximate $\frac{1}{x_{i+\frac{1}{2}}-x_{i-\frac{1}{2}}}\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}f(x)$, with $T_i=\left[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}\right]$ being the control volume on which we need to approximate the mean value of f. For the sake of convenience, let $a=x_{i-\frac{1}{2}}$ and $b=x_{i+\frac{1}{2}}$.

Midpoint rule

$$\begin{split} \frac{1}{b-a} \int_a^b f(x) &= \frac{1}{b-a} (b-a) f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \frac{(b-a)^3}{24} f^{(2)}(\xi) \\ &= f\left(\frac{a+b}{2}\right) - \frac{(b-a)^2}{24} f^{(2)}(\xi) \end{split}$$

For some ξ in [a, b].

Trapezoidal rule

$$\frac{1}{b-a} \int_{a}^{b} f(x) = \frac{1}{b-a} \frac{b-a}{2} (f(a) + f(b)) - \frac{1}{b-a} \frac{1}{12} (b-a)^{3} f^{(2)}(\xi)$$
$$= \frac{f(a) + f(b)}{2} - \frac{1}{12} (b-a)^{2} f^{(2)}(\xi)$$

For some ξ in [a, b].

Simpson's rule

Let
$$h = \frac{b-a}{2}$$
, $t_1 = a$, $t_2 = a + h = \frac{b-a}{2}$, $t_3 = a + 2h = b$.

$$\frac{1}{b-a} \int_{a}^{b} f(x) = \frac{1}{2h} \frac{1}{3} \left(f(t_1) + 4f(t_2) + f(t_3) \right) + \frac{1}{2h} \frac{1}{90} h^5 f^{(4)}(\xi)$$
$$= \frac{1}{6h} \left(f(t_1) + 4f(t_2) + f(t_3) \right) + \frac{1}{180} h^4 f^{(4)}(\xi)$$

For some ξ in [a, b].

Boole's rule

Let
$$h = \frac{b-a}{4}$$
, $t_1 = a$, $t_2 = a + h$, $t_3 = a + 2h$, $t_4 = a + 3h$, $t_5 = a + 4h = b$.

$$\frac{1}{b-a} \int_{a}^{b} f(x) = \frac{1}{4h} \frac{2}{45} h \left(7f(t_1) + 32f(t_2) + 12f(t_3) + 32f(t_4) + 7f(t_5) \right) - \frac{8}{945} h^7 f^{(6)}(\xi)$$
$$= \frac{1}{90} h \left(7f(t_1) + 32f(t_2) + 12f(t_3) + 32f(t_4) + 7f(t_5) \right) - \frac{8}{945} h^7 f^{(6)}(\xi)$$

For some ξ in [a, b].

1.4.2 Effects in the Finite Volume Method

In this section, we will test case 3 with various methods of integration. Errors

• Case 3:

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
100	1.372029e+02	4.718806e + 02
200	6.795356e + 01	2.432018e+02
300	2.068556e + 01	8.656798e + 01
400	8.220398e+00	3.814539e + 01
500	9.637916e-01	7.476626e + 00
600	1.613099e-01	2.708167e+00
700	1.691419e-03	1.378369e+00
800	1.035571e-03	1.034955e+00

Error table - Midpoint rule

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
100	3.773644e + 01	2.412211e+02
200	8.391778e + 01	3.030967e + 02
300	2.038450e + 01	8.486880e + 01
400	8.220498e+00	3.799774e+01
500	9.637879e-01	7.212178e + 00
600	1.612986e-01	2.251598e+00
700	1.234248e-03	8.617033e-01
800	5.799255e-04	6.097104e-01

 Error table - Trepozoidal rule

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
100	1.014161e + 02	3.530643e+02
200	1.742818e + 01	6.491145e+01
300	6.995754e + 00	2.947754e + 01
400	2.740099e+00	1.278054e + 01
500	3.212656e-01	2.611736e+00
600	5.377526e-02	1.087361e+00
700	7.420314e-04	6.371791e-01
800	4.998059e-04	4.889503e-01

 ${\bf Error\ table}$ - Simpson's rule

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
100	2.543855e + 01	9.312152e+01
200	1.936562e+00	1.267931e+01
300	5.423098e-01	3.614971e+00
400	1.670127e-01	1.894852e+00
500	3.154194e-02	1.063986e+00
600	1.971232e-03	8.160713e-01
700	6.508166e-04	5.954282e-01
800	4.865046e-04	4.672134e-01

Error table - Boole's rule

Remark: We can see that there are some variation in the accuracy when using different integration methods.

Convergence rate • Case 3: M = 100

1.5 Homogeneous Dirichlet boundary condition, singular grid, each control point is the midpoint of corresponding control volume

In this section, we will consider the grid $x_i = 1 - \cos\left(\frac{\pi i}{2(N+1)}\right)$

1.5.1 Errors

• <u>Case 1:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	2.572594e-03	1.408303e-02
8	8.312800e-04	6.052092 e-03
16	2.366590e-04	2.399498e-03
32	6.309364e-05	9.021918e-04
64	1.628265e-05	3.291959e-04
128	4.135350e-06	1.182551e-04

• <u>Case 2:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	5.147535e+00	2.212485e+01
8	2.426569e+00	1.848306e + 01
16	7.617805e-01	9.789540e+00
32	2.084740e-01	4.495505e+00
64	5.417277e-02	2.011451e+00
128	1.378284e-02	9.183423e-01

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
100	2.382533e+02	7.816445e + 02
200	1.021832e+02	3.524253e + 02
300	6.461806e + 01	2.324792e + 02
400	3.011621e+01	1.225957e + 02
500	2.319667e+01	9.540720e + 01
600	1.878345e+00	1.109190e+01
700	2.656605e+00	1.539149e + 01
800	2.128635e+00	1.401007e+01
900	2.328867e-01	3.282076e+00
1000	1.798795e-02	1.705853e+00
1100	1.554054e-03	1.344722e+00
1200	1.011087e-03	1.052726e+00

1.5.2 Convergence rate

\bullet Case 1:

• Case 2:

Remark:

In case 1, the method appears to have convergence rate of order 2 in L^2 norm and order $\frac{3}{2}$ in energy norm.

In case 2, the method appears to have convergence rate of order 2 in L^2 norm and order 1 in energy norm.

In case 3, the method appears to have convergence rate of order 2 in both L^2 energy norm and there are some "irregularities" in the convergence rate before the grid refinement reach a certain degree.

2 Neumann boundary condition

In this section, we are going to test the Finite Volume Method for the 1-dimensional Poisson equation subjected to Neumann boundary condition with several test cases using uniform grid and singular grid.

2.1 Main idea

We now review the problem we need to solve

$$-u''(x) = f(x), x \in \Omega \tag{4}$$

$$u'(0) = 0 (5)$$

$$u'(1) = 0 ag{6}$$

$$\int_0^1 f(x)dx = 0 \tag{7}$$

$$\int_0^1 u(x)dx = 0 \tag{8}$$

We note that if we omit the condition (8), this problem will have infinitely many solutions of the form $u_1(x) + c$, with $u_1(0)$ being a solution of the problem.

Let $[U_0, U_1, U_2, \dots, U_N, U_{N+1}]^{\mathsf{T}}$ be the discrete solution of the problem.

When using derivative approximation with first order convergence rate, the boundary condition can be "discretized" as $U_0 = U_1$ and $U_N = U_{N+1}$. Then, we need to use the linear system to solve for $U = [U_1, U_2, \dots, U_N]^{\mathsf{T}}$

We also note that the discretized linear system has 1 independent variable. Therefore, we can choose to solve for one solution \bar{U} such that $U_K = 0$ for some K and then use the condition $\int_0^1 u(x)dx = 0$ to find the constant C such that $U = \bar{U} + C$ satisfies the condition.

2.2 Test cases

• <u>Case 1:</u>

$$f(x) = \frac{1}{2} - x$$

$$\int_0^1 f(x) = 0$$

$$u'(0) = 0$$

$$u'(1) = 0$$

$$u(x) = \frac{x^2 (2x - 3)}{12} + \frac{1}{24}$$

$$\int_0^1 u(x) = 0$$

• Case 2:

$$f(x) = 400\pi^2 \cos(20\pi x)$$

$$\int_0^1 f(x) = 0$$

$$u'(0) = 0$$

$$u'(1) = 0$$

$$u(x) = \sin\left(20\pi x + \frac{\pi}{2}\right)$$

$$\int_0^1 u(x) = 0$$

2.3 Homogeneous Neumann boundary condition, regular grid, each control point is the midpoint of corresponding control volume, integration using midpoint rule

2.3.1 Figures of results

\bullet Case 1:

2.3.2 Errors

• Case 1:

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	7.278867e-04	1.449939e-02
8	1.864655e-04	5.329006e-03
16	4.689303 e-05	1.918917e-03
32	1.174048e-05	6.845135e-04
64	2.936197e-06	2.430787e-04
128	7.341164e-07	8.612922e-05

• <u>Case 2:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	3.446145e-13	4.000000e+00
8	2.110184e+01	2.389353e+02
16	2.486740e+00	7.434583e + 01
32	2.787005e-01	1.565996e + 01
64	5.963946e-02	4.064360e+00
128	1.437125e-02	1.122033e+00
256	3.560351e-03	3.281879e-01
512	8.880771e-04	1.017972e-01
1024	2.218939e-04	3.318688e-02

Remark:

2.3.3 Convergence rate

\bullet Case 1:

\bullet Case 2:

Remark: In both case 1 and 2, the method appears to have convergence rate of order 2 in L^2 norm and order $\frac{3}{2}$ in energy norm.

2.4 Homogeneous Neumann boundary condition, singular grid, each control point is the midpoint of corresponding control volume, integration using midpoint rule

Again, we will consider the grid $x_i = 1 - \cos\left(\frac{\pi i}{2(N+1)}\right)$ in this section.

2.4.1 Errors

• <u>Case 1:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	4.300279e-03	2.361702e-02
8	4.473365e-04	7.452580e-03
16	7.886546e-05	2.530245e-03
32	1.995312e-05	9.154423e-04
64	5.129577e-06	3.310069e-0
128	1.302358e-06	1.185516e-04

• <u>Case 2:</u>

N	$ u_{discrete} - u_{exact} _{L^2}$	$ u_{discrete} - u_{exact} _{H^1}$
4	2.518759e + 02	8.229286e+02
8	2.924364e+01	2.378888e+02
16	9.888043e+01	3.764880e + 02
32	5.525841e-01	2.551420e+01
64	1.099226e-01	6.825063e+00
128	2.584269e-02	1.840590e+00
256	6.388832e-03	5.196868e-01
512	1.595856e-03	1.549021e-01
1024	3.992680e-04	4.880113e-02

Remark:

2.4.2 Convergence rate

\bullet Case 1:

\bullet Case 2:

Remark: In both case 1 and 2, the method appears to have convergence rate of order 2 in L^2 norm and order $\frac{3}{2}$ in energy norm.