Домашняя работа № 5

Автор: Минеева Екатерина

Задача 1 (е)

Допустим данный язык регулярный. Пусть:

 L_1 — язык двоичных слов, в любом префиксе которых нулей строго больше, чем единиц. По предположению он регуляерн.

 L_2 – язык слов, удовлетворяющих регулярному выражению 0^*1^* . Естественно, он регулярен.

Поскольку мы знаем, что регулярые языки замкнуты относительно теоретико множественных операций (было доказано на лекции), то язык $L=L_1\cap L_2$ тоже является регулярным. Таким образом, $L=\{0^n1^k|n,k\in\mathbb{N},n\geq k\}$ - регулярный язык, и для него верна лемма о накачке. То есть $\exists p\in\mathbb{N} \ \forall w\in L, |w|>p \ \exists x,y,z$:

```
\begin{aligned} 0)xyz &= w \\ 1)y &\neq \epsilon \\ 2)|xy| &\leq p \\ 3) \forall i \in \mathbb{N} : xy^iz \in L \end{aligned}
```

Рассмотрим строчку $0^p 1^{p-1}$. Так как $|xy| \le p$, $xy = 0^t$, $t \le p$. Но при этом $y \ne \epsilon \Rightarrow y = 0^s$, $s \ge 1$. Но тогда с одной стороны, $xy^0z = xz = 0^m 1^{p-1}$, $m \le p-1$, с другой – по лемме $xz \in L$. Противоречие \Rightarrow предположение неверно и язык L_1 не является регулярным.