# Problem N. div4.4

**Time limit** 2000 ms **Mem limit** 262144 kB

Satyam 被给定了 n 个不同的点在二维坐标平面上。**保证对于所有给定的点**  $0 \le y_i \le 1$ 。 从选择三个不同的点作为其顶点,可以形成多少个不同的非退化直角三角形\*?

如果存在一个点 v 使得 v 是 a 的一个顶点,但不是 b 的一个顶点,则两个三角形 a 和 b 是不同的。

\*一个非退化直角三角形具有正面积和一个内部  $90^{\circ}$  角。

## 输入

第一行包含一个整数 t ( $1 \le t \le 10^4$ ) — 测试用例的数量。

每个测试用例的第一行包含一个整数 n ( $3 \le n \le 2 \cdot 10^5$ ) — 点的数量。

接下来的 n 行包含两个整数  $x_i$  和  $y_i$  ( $0 \le x_i \le n$ ,  $0 \le y_i \le 1$ ) — Satyam 可以选择的第 i 个点。保证所有  $(x_i, y_i)$  是成对不同的。

保证所有测试用例中 n 的总和不超过  $2 \cdot 10^5$ 。

### 输出

对于每个测试用例输出一个整数,表示可以从选择三个点中形成的不同非退化直角三角形的数量。

#### 示例

| Input  | Output |
|--------|--------|
| 3      | 4      |
| 3<br>5 | Θ      |
| 1 0    | 8      |
| 1 1    |        |
| 3 0    |        |
| 5 0    |        |
| 2 1    |        |
| 3      |        |
| 0 0    |        |
| 1 0    |        |
| 3 0    |        |
| 9      |        |
| 1 0    |        |
| 2 0    |        |
| 3 0    |        |
| 4 0    |        |
| 5 0    |        |
| 2 1    |        |
| 7 1    |        |
| 8 1    |        |
| 9 1    |        |

# 注意

第一个测试用例中涉及的四个三角形:



(3, 0)

• (5, 0)