

CLOUD COMPUTING CONCEPTS with Indranil Gupta (Indy)

SNAPSHOTS

Lecture C

CONSISTENT CUTS

CUTS

- Cut = time frontier at each process and at each channel
- Events at the process/channel that happen before the cut are "in the cut"
 - And happening after the cut are "out of the cut"

CONSISTENT CUTS

Consistent Cut: a cut that obeys causality

A cut C is a consistent cut if and only if:

for (each pair of events e, f in the system)

- Such that event e is in the cut C, and if $f \rightarrow e$ (f happens-before e)
 - Then: Event f is also in the cut C

EXAMPLE

D == receive event inconsistent == D in the cut G not. BUT G happens before D

G == send event

still consistent cut

 $G \rightarrow D$, but only D is in cut

OUR GLOBAL SNAPSHOT EXAMPLE ...

Consistent Cut captured by our Global Snapshot Example • $C_{23} = < >$

IN FACT...

• Any run of the Chandy-Lamport Global Snapshot algorithm creates a consistent cut

CHANDY-LAMPORT GLOBAL SNAPSHOT ALGORITHM CREATES A CONSISTENT CUT

Let's quickly look at the proof

- •Let e_i and e_j be events occurring at Pi and Pj, respectively, such that
 - $e_i \rightarrow e_j$ (e_i happens before e_j)
- •The snapshot algorithm ensures that
 - if e_i is in the cut then e_i is also in the cut.
- That is: if $e_i \rightarrow \langle Pj \text{ records its state} \rangle$, then
 - It must be true that $e_i \rightarrow \langle Pi \text{ records its state} \rangle$.

CHANDY-LAMPORT GLOBAL SNAPSHOT ALGORITHM CREATES A CONSISTENT CUT

- If $e_j \rightarrow \langle Pj \text{ records its state} \rangle$, then it must be true that $e_i \rightarrow \langle Pi \text{ records its state} \rangle$.
 - By contradiction, suppose $e_j \rightarrow \langle Pj \text{ records its state} \rangle$ and $\langle Pi \text{ records its state} \rangle \rightarrow e_i$
 - Consider the path of app messages (through other processes) that go from $e_i \rightarrow e_i$
 - Due to FIFO ordering, markers on each link in above path will precede regular app messages
 - Thus, since $\langle Pi \text{ records its state} \rangle \rightarrow e_i$, it must be true that Pj received a marker before e_i
 - Thus e_i is not in the cut => contradiction

NEXT

• What is the Chandy-Lamport algorithm used for?