Microtecnologias no Silício

4° ano – MEBIOM 3° ano – MEFIS

José Higino Gomes Correia

outubro de 2021

Programa da disciplina 1

1. Microtecnologias no silício

A microelectrónica e a micromaquinagem no silício como tecnologias emergentes, a importância dos materiais semicondutores com destaque para o silício.

2. Física dos semicondutores

A teoria das bandas nos semicondutores, semicondutores do grupo IV, semicondutores do grupo III-V, electrões e lacunas, impurezas dadoras e receptoras, semicondutores íntrinsecos e extrínsecos, dopagem de semicondutores, condutividade e mobilidade eléctrica nos semicondutores, energia de Fermi, electrões quentes, efeito de Gunn, efeito de Hall e semicondutores de gap directo e indirecto.

3.O silício e as suas propriedades físicas

A importância do silício na indústria dos semicondutores, a sua estrutura cristalina, as suas propriedades ópticas, mecânicas e térmicas. A dopagem do silício para obtenção de regiões do tipo p e do tipo n

4.Os materiais utilizados nas microtecnologias no silício

Os materiais usados nos processos tecnológicos da microelectrónica e micromaquinagem. Compostos como: o dióxido de silício, nitrato de silício, metais como o alumínio e o uso do polisilício são apresentados bem como o polímero foto-sensível (*photoresist*) para uso na aplicação das máscaras de fabrico. O uso de wafers de silício previamente dopados e a sua orientação cristalina.

Programa da disciplina 2

5. A micromaquinagem

A tecnologia da micromaquinagem no silício para criar estruturas a 3 dimensões (micro-sensores e microactuadores). Os processos de fabrico: micromaquinagem volúmica (*bulk-micromachining*), micromaquinagem superficial (*surface-micromachining*) e o processo LIGA. Sistemas de deposição e corrosão de filmes finos.

ELEMENTOS DE ESTUDO; BIBLIOGRAFIA

- 1-Introdução às microtecnologias, J.H. Correia, J.P. Carmo, Editora LIDEL
- 2-Slides J.H. Correia, outubro 2021.
- 3-J. Singh, Semiconductor devices an introduction, McGraw-Hill Book Company, 1994.
- 4- S. Sze, Semiconductor Sensors, J. Wiley & Sons, 1994.

Microtecnologias no Silício

- tecnologias para produção de estruturas 3D e dispositivos com dimensões na ordem dos micrómetros
- duas microtecnologias no silício de sucesso
 - -microelectrónica e micromaquinagem
 - Microelectrónica, fabrica circuitos electrónicos em chips de silício, actualmente é uma indústria consolidada destacando-se as tecnologias CMOS, Bipolar, BiCMOS.
 - Micromaquinagem compreende as técnicas usadas para fabricar estruturas com partes que se movem em microdispositivos, permitindo criar micro-sensores e microactuadores.

Microelectrónica+Micromaquinagem

- Objectivos
 - integrar microelectrónica com estruturas 3Dmicromaquinadas (sejam sensores e/ou actuadores)
- vantagens destes chips em silício
 - -baixo custo
 - -fiabilidade
 - -dimensões físicas reduzidas

A maior desvantagem é a complexidade do micro-sistema em termos de fabrico para certas aplicações Multi-Chip-Module (MCM) sistema para análise de gases e micro-sistema óptico integrado baseado em 16 etalons Fabry-Perot, conversor luz-frequência e bus interface para o exterior

Semicondutores

• Semicondutores do grupo IV (Si, Ge, C)

Ligação covalente − 2 electrões () partilhados por 2 átomos

Si $(1s^2 2s^2 2p^6 3s^1 3p^3)$

Cada átomo de Si (ligado a 4 átomos de Si) contribui com um electrão para a ligação dupla

• Semicondutores do grupo III-V (GaP, GaAs)

Contém um elemento do grupo III e outro do grupo V

Semicondutores

As propriedades eléctricas dos semicondutores podem ser alteradas pela presença de impurezas

Semicondutores extrínsecos - as impurezas fornecem a maior parte dos transportadores - **n** diferente de **p**

Semicondutores intrínsecos – n_i=p_i

$$n_{i} = p_{i} = 2 \left(\frac{K_{B}T}{2\pi \left(\frac{h}{2\pi} \right)^{2}} \right)^{\frac{3}{2}} \left(m_{e}m_{h}^{*} \right)^{\frac{3}{4}} \exp \left(\frac{-E_{g}}{2K_{B}T} \right)$$

Energia de Fermi semicondutores intrínsecos

Aumentando a temperatura, um número cada vez maior de electrões é excitado da Banda de Valência (BV) para a Banda de Condução (BC).

n cresce exponencialmente com T.

• Energia de Fermi

$$E_{Fi} = \frac{1}{2} E_g + \frac{3}{4} K_B T \ln \left(\frac{m_h^*}{m_e^*} \right)$$

Para $K_BT \le E_g$, $E_{Fi} = 0.5 E_g$

Impurezas

Impurezas dadoras

O dador é uma impureza localizada num nível de energia próximo da BC do semicondutor.

Se houver impurezas dadoras (Nd) e aceitadoras (Na) a região intrínseca define-se como aquela em em que:

$$n_i >> (N_d - N_a)$$

Impurezas

Impurezas aceitadoras

Um electrão é excitado da BV do Si para o nível da impureza; deixando uma lacuna no topo da BV.

A concentração de impurezas

 $10^{15}\,\mathrm{cm^{\text{-}3}}\,$ é suficiente para alterar significativamente a concentração intrínseca, n_{i} à temperatura ambiente. Se a contribuição das impurezas prevalece, diz-se

que o semicondutor está na região extrínseca.

Semicondutores intrínsecos e extrínsecos

Como n cresce exponencialmente com T podemos afirmar que "a altas temperaturas todos os semicondutores são intrínsecos"

Dopagem de semicondutores

Fósforo – grupo V, dopagem do tipo n

Boro – grupo III, dopagem do tipo p

Boro – grupo III, dopagem do tipo p
Se
$$N_d \gg N_a$$
, prevalecem as impurezas dadoras e $n=N_d$ ou:
$$n = 2 \left(\frac{m_e^* K_B T}{2\pi \left(\frac{h}{2\pi} \right)^2} \right)^{\frac{3}{2}} \exp \left(\frac{E_{Fi} - E_g}{K_B T} \right)$$

Semicondutores extrínsecos

Variando o tipo de dopagem, com T constante de modo a que aumente a concentração de electrões (n) tem de diminuir a de lacunas (p) e viceversa.

Se N_a >> N_d a dopagem predominante é de

aceitadores e p=N_a ou
$$p = 2 \left(\frac{m_h^* K_B T}{2\pi \left(\frac{h}{2\pi} \right)^2} \right)^{\frac{3}{2}} \exp \left(\frac{-E_{Fi}}{K_B T} \right)$$

Condutividade e Mobilidade

•Lei de Ohm

$$J=\sigma E$$

Para eletrões J_e=nev_e vem: σE=nev_e

Condutividade eléctrica num semicondutor

$$\sigma=ne\mu_e$$

Mobilidade num semicondutor

é a razão entre a velocidade dos eletrões, v_e , e a intensidade do campo elétrico aplicado \mathbf{E} . É a medida da facilidade com que o eletrão se move na presença de um \mathbf{E} .

$$\mu_{e}=V_{e}/E$$

Electrões Quentes

Comportamento de um semicondutor na presença de um campo eléctrico:

 $\mathbf{E} < 10^3$: o comportamento segue a Lei de Ohm $\mathbf{J} = \sigma \mathbf{E}$.

E>10³: observam-se desvios em relação à lei de Ohm

E>10⁴: a corrente atinge um valor de saturação e para valores mais elevados atinge o *breakdown* eléctrico.

As equações clássicas são válidas apenas se as amplitudes dos campos aplicados **E** e **B** satisfazem certas condições.

Electrões quentes e efeito de Gunn

Na presença de um campo eléctrico forte, **E**, cada electrão recebe energia ao ser acelerado pelo campo, entre 2 colisões, e cede energia à rede (sob a forma de calor). Admite-se que a temperatura dos electrões é maior que a da rede (daí o termo "electrões quentes"). Os electrões quentes podem estar a uma temperatura superior à da rede em 100 °K ou mais se **E** for maior. Na presença de **E** muito elevados, os electrões dissipam a energia recebida do campo, sob a forma de fonões ópticos cedidos à rede. Em situações normais cedem fonões acústicos de menor energia.

• Efeito de Gunn

Descoberto em 1963 ao medir as correntes devida a electrões quentes no AsGa

Valores típicos para o AsGa, E_o=3KV/cm e uma espessura da amostra de 2.5 mm.

Efeito Gunn

E< **E**_o: variação linear (Lei de Ohm).

 $E > E_0$: flutuações de J, oscilações coerentes no tempo.

v (frequência das oscilações) ~5GHz

J diminui quando E cresce

Este fenómeno é usado para gerar microondas.

Efeito de Hall nos semicondutores

 $\mathbf{E}_{\mathbf{x}}$ -campo aplicado que origina a corrente $\mathbf{J}_{\mathbf{x}}$

B_z-campo magnético aplicado

Efeito de Hall nos semicondutores

- Temos 2 campos eléctricos $\mathbf{E}_{\mathbf{x}}$ e $\mathbf{E}_{\mathbf{H}}$
- Constante de Hall, R_H

Considerando:

$$\begin{split} J_x &= J_e + J_h = ne\mu_e E + pe\mu_h E \\ J_y &= ne\mu_e E_{ex} + pe\mu_h E_{hx} + (ne\mu_e + pe\mu_h) E_H = 0 \\ E_{ex} &= \frac{J_e B_z}{ne} \\ E_{hx} &= -\frac{J_h B_z}{pe} \end{split}$$

$$R_H = \frac{E_H}{J_x B_z}$$

$$R_H = E_H/(J_x B_z) = (p\mu_h^2 - n\mu_e^2)/[e(n\mu_e + p\mu_h)^2]$$

Efeito de Hall nos semicondutores

• Se n=0 (semicondutor do tipo p)

$$R_{H}=1/pe \ (>0)$$

• Se p=0 (semicondutor do tipo n)

$$R_{H} = -1/ne (<0)$$

Os valores de R_H dependem da concentração (n e p) e das mobilidades dos transportadores.

Os valores de R_H são medidos experimentalmente para:

- 1-obter informação sobre as concentrações n e p quando há só um tipo de transportadores.
- 2-obter informação sobre a mobilidade μ_e ou μ_h

Semicondutores de gap directo e indirecto

• A transição de electrões da BV para a BC dá-se por absorção de um ou mais fotões. A frequência, ν, do fotão tem de ser ν>ΔE/h, o processo decorre com conservação da energia e da quantidade de movimento.

Semicondutores de gap directo e indirecto

• Semicondutor de gap directo

As transições são verticais (sem variação de k) entre a BV e a BC (ex: GaAs)

• Semicondutor de gap indirecto

O fundo da BC não se encontra directamente por baixo do topo da BV. A transição ocorre em 2 fases: o electrão absorve um fotão e um fonão; o fotão fornece a energia necessária e o fonão a quantidade de movimento para a mudança de direcção (ex: Si).