線積分

面積分

體積分

$$\iiint_{V} f(x, y, z) \, dV$$

$$w = \vec{F} \cdot \vec{s}$$

$$w = \int_{s}^{s} \vec{F} \cdot d\vec{s}$$

$$(E) = \int_{L}^{d} ds$$

$$(E) = \int_{L}^{d} dx$$

$$(E) = \int_{L}^{d} (dx^{2} + dy^{2})$$

$$(E) = \int_{L}^{d} (dx^{2$$

$$\Phi = F \cdot S$$

$$\Phi = \iint_{S} \vec{F} \cdot d\vec{S}$$
面積 = $\iint_{S} dS$
平面面積 = $\iint_{S} dA$

$$m = DV$$

$$\downarrow D dV$$
 $m = \iiint_V D dV$

體積 = $\iiint_V dV$
空間中的體積 = $\iiint_V dV$

空間中的長度

體積 =
$$\iint_A f(x, y) dA$$

↓ 推廣
體積 = $\iint_S f(x, y, z) dS$

$$= \int_L f(x, y, z) \sqrt{dx^2 + dy^2 + dz^2}$$