(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 September 2001 (20.09.2001)

PCT

(10) International Publication Number WO 01/68865 A2

(51)	International Patent Classification7:	C12N 15/31,
	C07K 14/29, A61K 39/02, 48/00, A61P 3	31/04

- (21) International Application Number: PCT/GB01/01055
- (22) International Filing Date: 12 March 2001 (12.03.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 0005838.8
 11 March 2000 (11.03.2000)
 GB

 0016080.4
 1 July 2000 (01.07.2000)
 GB

 0016082.0
 1 July 2000 (01.07.2000)
 GB

 0018599.1
 29 July 2000 (29.07.2000)
 GB

(71) Applicant (for all designated States except US): AQUA HEALTH (EUROPE) LIMITED [GB/GB]; Enterprise House, Springkerse Business Park, Stirling FK7 7UF (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SIMARD, Nathalie [CA/CA]; 921 College Hill Road, Fredericton, New Brunswick E3B 6Z9 (CA). BROUWERS, Huub [NL/CA]; University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3 (CA). JONES, Simon [CA/CA]; Fisheries and Oceans, 555 West Hastings Street, Vancouver, British Columbia V6B 5G3 (CA). GRIFFITHS, Steve [GB/CA]; 921 College

Hill Road, Fredericton, New Brunswick E3B 6Z9 (CA). VALENZUELA, Pablo [CL/CL]; Fundacion Ciencia para la Vida, Avenida Marathon 1943, Santiago (CL). BURZIO, Luis [CL/CL]; BIOS Chile, Avenida Marathon 1943, Santiago (CL).

(74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A C0880/

(54) Title: SEQUENCE

(57) Abstract: The present invention relates to a fish vaccine. More specifically the invention relates to a vaccine to protect salmon against infection by *Piscirickettsia salmonis*. The invention is based on or derived from the nucleic acid or amino acid sequence of at least a part of the surface antigen present on *Piscirickettsia salmonis*. Nucleic acid and/or amino acid sequences may be used in the preparation of a vaccine to protect against infection by *Piscirickettsia salmonis*.

1	"Sequence"
2	
3	The present invention relates to a fish vaccine.
4	More specifically the invention relates to a vaccine
5	to protect salmon against piscirickettsiosis also
6	referred to as salmonid rickettsial septicaemia
7	(SRS).
8	•
9	To date no commercially available vaccine is
10	effective against Piscirickettsia salmonis, the
11	causative agent of SRS. Accordingly there is a need
12	for an effective vaccine against Piscirickettsia
13	salmonis.
14	
15	It is an object of the present invention to provide
16	a vaccine to protect against SRS.
17	and a substitution of the
18	It is an object of the present invention to provide
19	a vaccine to protect against <i>Piscirickettsia</i>
20	salmonis.
21	

WO 01/68865

- 1 clone3/3PST-R, clone3.3APA-F, clone7/original, 2 clone7/XbaR, clone7/7MunR, clone7/7MunF, clone20/original, clone20/20VSPF or clone 15. 3 . 4 5 Typically the amino acid sequence is derived from 6 one of the above-mentioned nucleic acid sequences or 7 is chosen from the sequences of p45 or HSP70 8 antigen. 9 10 Preferably peptide sequences or nucleic acid 11 sequence identified herein as sequence ID numbers 1, 12 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 13 17 and 18 are utilised in a vaccination strategy to 14 induce an immune response to a surface antigen of 15 Piscirickettsia salmonis and thus to Piscirickettsia 16 salmonis itself. 17 18 The invention provides the use of nucleic acid 19 sequences or peptide sequence as defined herein in 20 the preparation of a vaccine for the protection of 21 fish against Piscirickettsia salmonis. 22 23 The invention further provides a vaccine to protect 24 . fish against Piscirickettsia salmonis wherein the vaccine includes nucleic acid or peptide sequences 25 26 as defined herein. 27 28 Sequence ID 1, 2 and 3 29 A detailed description of the invention, listing the
- 30 exact nucleotide sequence of Psclone51A and the 31

17

18 19

20

22 23

24

25 26

27

28 29

30

31

32

÷- 21

2 The present invention relates to a fish vaccine. 1 More specifically the invention relates to a nucleic 2 3 acid vaccine for administration to fish to protect against piscirickettsiosis also referred to as 4 salmonid rickettsial septicaemia (SRS). 5 6 The invention further provides an amino acid 7 sequence for administration to fish to protect 8 9 agsint SRS. 10 In a further aspect the present invention provides 11 at least one nucleic acid sequence and / or an amino 12 13 acid sequence which is derived from Piscirickettsia 14 salmonis or a synthetically prepared analogue thereof or a substantially homologous sequence. 15 16 A substantially homologous nucleic acid sequence is a sequence which can be transcribed and/or translated to provide an amino acid sequence which is substantially homologous to at least a part of a surface antigen present on Piscirickettsia salmonis. A substantially homologous amino acid sequence encodes at least 70% of a part of a surface antigen and induces an immune response. More preferably the homologous amino acid sequence will encode at least 90% of the amino acid sequence. A typical nucleic acid sequence is chosen from the sequences of Psclone51A pl0.6 (also known as immuno-

reactive clone 0110-2-5), IcmE, clone3/original,

WO 01/68865

29

30

31

32

1 impact on the reduction of mortality of farmed 2 Atlantic salmon caused by Piscirickettsia salmonis. 3 Characterisation of the gene product will lead to the identification of key elements in pathogenesis 5 of infection and to the design of more accurate 6 diagnostic tests which will also aid in 7 epidemiological studies documenting the 8 dissemination of different strains of the disease. 10. The nucleotide sequence Psclone51A and associated 11 derivatives thereof when translated into protein 12 sequence being composed of either identical or equivalent amino acids, should induce a response by 13 14 the hosts' immune system. This principle can be 15 further expanded to use these proteins in 16 diagnostics tests and vaccination procedures. 17 18 Sequence ID No 4 and 5 19 20 A detailed description of the invention, listing the 21 exact nucleotide sequence of p10.6 and the amino 22 acid sequence deduced for the open reading frame 23 (ORF), is provided in figure 4 and figure 5 24 respectively. 25 26 The genetic sequence of Piscirickettsia salmonis 27 (Atcc strain VR-1361), grown in CHSE-214 cells using 28 homologous anistera from Piscirickettsia salmonis immunised rabbits, an immuno-reactive clone (0110-2-5) (p10.6) was identified from the expression library. This clone was sequenced and polymerase chain reaction (PCR) primers developed.

	•
	amino acid sequence deduced for the open reading
	frame (ORF), is provided in figures 1, 2 and 3.
:	The genetic sequence has been derived from cloned
4	cDNA wherein the cDNA clones were derived from
9	Piscirickettsia salmonis type strain (LF-89)
ϵ	messenger RNA (mRNA). The cloned material was
7	sequenced in both directions from the 5' and 3'
8	insertion sites using overlapping amplicons.
9	5 Contrapping amplicons.
10	Veracity of the Psclone51A sequence was confirmed by
11	Polymerase Chain Reaction (PCR) and Reverse-
12	Transcriptase PCR (RT-PCR) of appropriate sized
13	amplicons from Piscirickettsia salmonis infected
14	Chinook salmon embryonic (CHSE-214) cell line and
15	not from uninfected control material. Expression of
16	the cloned sequence has yielded a protein of
17	approximately 12 kDa.
. 18	
19	The ORF of Psclone51A described in figure 1 does not
20	have any significant homology at the nucleotide
21	level with previous submissions to databases
22	accessible by BLAST. At the protein level, a border
23	line similarity with a hypothetical 21.5 kDa protein
24	of Escherichia coli was found.
25	
26	The ORF has commercial value for the following
27	reasons:
28	
29	There is sufficient reason to believe that the
30	nucleotide corresponding amino acid sequence is of
31	Fiscirickettsia salmonis origin. As such its
12	incorporation into nucleic acid vaccines may have an

1	and the contract of the contra
2	The Piscirickettsia salmonis origin of the p10.6
3	clone was confirmed through PCR amplification of
4	Piscirickettsia salmonis and Chinook salmon
5	embryonic cell line (CHSE-214) DNA using clone
6	specific primers. Appropriately sized amplicons
7	were amplified from the Piscirickettsia salmonis
8	DNA, but not from the CHSE-214 DNA confirming that
9	the immuno-reactive clone was of Piscirickettsia
10	salmonis origin and not from the host cell DNA.
11	
12	The open reading frame (ORF) for the full gene was
1.3	completed by inverse PCR from genomic
14	Piscirickettsia salmonis DNA.
15	
16	The ORF of pl0.6 described in figure 4 does not have
17	any significant homology at the nucleotide level
18	with previous submissions to databases accessible by
19	BLAST. The derived amino acid sequence, but not the
20	nucleotide sequence, shows significant homology to
21	the 17kDa antigen found in Rickettsia of the Spotted
22	Fever Group, where it is considered a group
23	specific, outer membrane protein.
24	The control of the control of the party of the control of the cont
25	Sequence ID No 6
26	the control of the control of the second of
27	A typical nucleic acid sequence is IcmE (403).
28	
29	Preferably peptide sequences transcribed or
30	translated from the nucleic acid sequences of IcmE
31	(403) are incorporated into a vaccination strategy

WO 01/68865 PCT/GB01/01055

7

to induce an immune response to a surface antigen of 1 2 Piscirickettsia salmonis itself. 3 A detailed description of the invention, listing the 4 exact nucleotide sequence of IcmE (403) and the 5 amino acid sequence deduced for the open reading from (OFR), is provided in figure 6. 7 8 9 The genetic sequence has been derived from an inverse polymerase chain reaction (IPCR) product 10 amplified from Piscirickettsia salmonis type strian 11 12 (LF-89) genomic DNA (gDNA). The IPCR product was sequenced in both direction from the 5' and 3' sides 13 using overlapping amplicons. 14 15 The protein encoded by the ORF of IcmE (403) has a 16 37% significant homology at the protein level to the 17 IcmE protein of Legionella pneumophila when compared 18 to previous submissions to databases accessible by 19 20 BLAST. 21 22 Sequence ID No 7 23 24 A typical amino acid sequenes is p45. 25 26 Preferably a nucleic acid sequence transcribing the amino acid sequence of p45 are incorporated into a 27 vaccination strategy to induce an immune response to 28 a surface antigen against Piscirickettsia salmonis 29 and thus to Piscirickettsia salmonis itself. 30 31

WO 01/68865 PCT/GB01/01055

8

A detailed description of the invention, listing the exact amino acid sequence of a portion of the p45 2 3 major antigen, is provided in figure 7. 4 The amino acid sequence has derived from 5 microsequencing of a protein approximately 45 kDa 6 found to be immunoreactive to rabbit anti-P salmonis 7 antibodies. Moreover, p45 was found uniquely in 8 Chinook salmon embryonic (SHSE-214) cells infected 9 with Piscirickettsia salmonis and not in infected 10 CHSE-214 cells. 11 12 The amino acid sequence of p45 has no significant 13 homology to other bacterial proteins when compared 14 to previous submissions to databases accessible by 15 BLAST. 16 17 Sequence ID No 8, 9 and 10 18 19 A typical nucleic acid sequence is clone3/original, clone3/3PST-R, and clone3.3APA-F. 20 21 22 Preferably peptide sequences transcribed or 23 translated from the nucleic acid sequence of 24 clone3/original, clone3/3PST-R, and clone3.3APA-F 25 are incorporated into a vaccination strategy to 26 induce an immune response to a surface antigen of 27 Piscirickettsia salmonis genomic DNA (gDNA). The proteins encoded by the ORF of clone3/original, clone3/3PST-R and clone3.3APA-F have respectively 40%, 38% and 34% significant homology at the protein level to different portion of the transposase

28 29

30

26

27

- 9 protein of Vibrio anguillarum (gb AAA81776.1) when 1 2 compared to previous submissions to databases accessible by BLAST. 3 Sequence ID No 11, 12, 13 and 14 4 5 A typical nucleic acid sequence is clone7/original, 6 7 clone7/7XbaR, clone7/7MunR, and clone 7/7MunF. 8 Preferably peptide sequences transcribed or 9 translated from the nucleic acid sequence of 10 clone7/original, clone7/7XbaR, clone7/7MunR, and 11 12 clone 7/7MunF are incorporated into a vaccination strategy to induce an immune response to a surface 13 14 antigen of Piscirickettsia salmonis and thus to Piscirickettsia salmonis itself. 15 16 17 A detailed description of the invention, listing the 18 extract nucleotide sequence of clone7/original, 19 clone7/7XbaR, clone7/7MunR, and clone 7/7MunF and the amino acid sequence deduced for their open 20 21 reading frames (ORF), is provided in figures 11, 12, 22 13 and 14 respectively. 23 Some of the genetic sequences have been derived from 24 25 an inverse polymerase chain reaction (IPCR) product amplified from Piscirickettsia salmonis genomic DNA (gDNA). The peptides encoded by the ORF of clone7/original,
- 29 clone7/7XbaR, clone7/7MunR, and clone 7/7MunF have a 30 40% to 44% significant homology at the protein level 31 to different portion of the ABC transporter ATP-32

WO 01/68865 PCT/GB01/01055

1	binding protein of the other bacterial species when
2	compared to previous submissions to databases
3	accessible by BLAST.
4	There is sufficient reason to believe that the
5	nucleotide and corresponding amino acid sequence are
6	of Piscirickettsia salmonis origin. Also, part of
7	the ORFs was found in an immuno-reactive clone of an
8	expression library.
9	
10	Sequence ID No 15 and 16
11	
12	A typical nucleic acid sequence is clone20/original,
13	and clone20/20VSPF.
14	
15	Preferably peptide sequences transcribed or
16	translated from the nucleic acid sequence of
17	clone20/original, and clone20/20VSPF are
18	incorporated into a vaccination strategy to induce
19	an immune response to a surface antigen of
20	Piscirickettsia salmonis and thus to Piscirickettsia
21	salmonis itself.
22	ting the second of the second
23	A detailed description of the invention, listing the
24	exact nucleotide sequence of clone20/original, and
25	clone20/20VSPF and the amino acid sequence deduced
26	for their open reading frames (ORF), is provided in
27	figure 15 and figure 16 respectively.
28	
29	Some of the genetic sequences have been derived from
30	an inverse polymerase chain reaction (IPCR) product
31	amplified from Piscirickettsia salmonis genomic DNA
32	(gDNA).

WO 01/68865 PCT/GB01/01055

1	
2	The peptides encoded by the ORF of clone20/original,
3	and clone20/20VSPF have a 41% and 51% significant
4	homology at the protein level to an amino acid
5	. transporter/permase protein of other organisms when
6	compared to previous submissions to databases
7	accessible by BLAST.
8	
9	Sequence ID No 17
10	
11	A typical nucleic acid sequence is clone15/original.
12	
13	Preferably peptide sequences transcribed or
14	translated from the nucleic acid sequence of
15	clone15/original are incorporated into a vaccination
16	strategy to induce an immune response to a surface
17	antigen of Piscirickettsia salmonis and thus to
18	Piscirickettsia salmonis itself.
19	
20	A detailed description of the invention, listing the
21	exact nucleotide sequence of clone15/original and
22	the amino acid sequence deduced for its open reading
23	frames (ORF), is provided in figure 17.
24	
25	The nucleotide sequence and the peptide encoded by
26	the ORF of clone15/original have no significant
27	homology to proteins of other bacterial species when
28	compared to previous submissions to databases
29	accessible by BLAST.
30	
31	From the previous information there is sufficient
32	reason to believe that the nucleotide and

WO 01/68865 PCT/GB01/01055

10

1 binding protein of the other bacterial species when 2 compared to previous submissions to databases 3 accessible by BLAST. 4 There is sufficient reason to believe that the 5 nucleotide and corresponding amino acid sequence are 6 of Piscirickettsia salmonis origin. Also, part of 7 the ORFs was found in an immuno-reactive clone of an 8 expression library. 9 Sequence ID No 15 and 16 10 11 A typical nucleic acid sequence is clone20/original, 12 13 and clone20/20VSPF. 14 Preferably peptide sequences transcribed or 15 16 translated from the nucleic acid sequence of 17 clone20/original, and clone20/20VSPF are 18 incorporated into a vaccination strategy to induce 19 an immune response to a surface antigen of 20 Piscirickettsia salmonis and thus to Piscirickettsia 21 salmonis itself. 22 A detailed description of the invention, listing the 23 24 exact nucleotide sequence of clone20/original, and 25 clone20/20VSPF and the amino acid sequence deduced 26 for their open reading frames (ORF), is provided in 27 figure 15 and figure 16 respectively. town to the market in the second 29 Some of the genetic sequences have been derived from an inverse polymerase chain reaction (IPCR) product amplified from Piscirickettsia salmonis genomic DNA 32 (qDNA). S. Der Sales and Revenue and Company and A.

28

30

WO 01/68865 PCT/GB01/01055

13

1	immuno-reactive clones of an expression
2	library. Together, this shows the potential of
3	these ORFs to be incorporated into nucleic acid
4	vaccines that may have an impact on the
5	reduction of mortality of farmed salmonids due
6	to Rickettsial Salmonid Septicaemia caused by
7	Piscirickettsia salmonis.
. 8	
9	PCR primers derived from the full ORF, used in
10	touchdown PCR are capable of detecting
11	Piscirickettsia salmonis in tissues from
12	infected fish. This will lead to more accurate
13	diagnostic tests to be used for clinical as
14	well as epidemiological study purposes.
15	
16	The nucleotide sequences associated derivatives
17	thereof when translated into protein sequence being
18	composed of either identical or equivalent amino
19	acids, should induce a response by the hosts' immune
20	system. This principle can be further expanded to
21	use these proteins in diagnostic tests and nucleic
22	acid vaccination procedures.

1	CL	AIMS
2		
. 3	1.	A nucleic acid which can be transcribed to
4		provide an amino acid sequence which is
5		substantially homologous to at least a part of
6		the surface antigen present on Piscirickettsia
7		salmonis.
8		
9	2.	A nucleic acid sequence as claimed in claim 1
10	, .	which encodes a part of a surface antigen of
11		Piscirickettsia salmonis which induces an
12	•	immune response.
13		
14	3.	A nucleic acid sequence as claimed in claim 1
15		or claim 2 wherein the nucleic acid sequence i
16		herein chosen from the sequences described as
17		sequence ID numbers 1, 2, 4, 6, 8, 9, 10, 11,
18		12, 13, 14, 15, 16 or 17.
19		
20	4.	Use of the nucleic acid sequences set out in
[§] 21		any of the preceding claims in the preparation
22	•	of a vaccine to protect against infection by
23		Piscirickettsia salmonis.
24		
25	5.	An amino acid sequence derived from the
26		sequence of any of claims 1 to 4.
27		
28	6.	Use of at least one amino acid sequence chosen
29		from sequence ID numbers 1, 3, 5, 6, 7, 8, 9,
30		10, 11, 12, 13, 14, 15, 16, 17 or 18 in the
31		preparation of a vaccine to protect fish
32		against Piscirickettsia salmonis.

1	7.	A nucleic acid based vaccine comprising at
2		least one sequence chosen form the sequences
3		described herein under
4		described herein under sequence ID numbers 1
5		2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17.
6		17.
•		
7	8.	An amino acid based vaccine against
8		Piscirickettsia salmonis comprising at least
9		one sequence chosen from the amino acid
10		sequences described herein under ID numbers 1
11		3, 5, 6, 7, 8, 9, 10, 11, 10, 11
12		3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18.

DOCID- WO ATERRES

			10									
tga	gtg	gċg	agg	aga	taa	gct	aaa	atg	agt	caa	gca	tta
								M	S	Q	Α	L
		*	50		•							
gtt	gaa	ttt	aaa	acg	gta	gat	cat	gtg	ctg	caa	gcc	tta
·V	. E	·F	K	T	V	D	H 100	V. V	L	· Q	A	L
ggc	gtt	gaa	ggg	atg	agt	gca	gcg	gat	gtg	cat	ggc	ctg
· G	· V	E	G	M·	S	\mathbf{A}	Α	D	V.	H	G	L
					. •					150	•	
ctg	att	ggt	atg	ttg	gcg	agt	caa	agt	aat	tta	acc	tgt
L	Ι.	G	M	L	Α	S	Q	S	N	L	T	С
aaa	tca	tgg	tta	gaa	aaa	gcg	ata	ttt	atg	gga	gct	cac
K	S	W	L	E	K	Α	Ι	F	M	G	Α	H
	200											
ctt	gat	gct	gaa	agt	gat	ctt	ttt	agt	aat	atc	atg	gcc
L	D	Α	E	S	D	L	F	S	N	I	M	A
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		250				, . <u></u>		13.25	
aaa	gag	cag	tta	aag	cag	tta	gag	gca	ttg	ttt	aaa	gta
K	E	Q	L	K	Q	L	E	A 300	L	F	K	V
agt	tgg	gag	cag	ctc	tct	202	aat	gat	itt	act	ttt	gct
Š	W	gag E	Q	L	S	gcg A	ggt G	gai D	F	T	F	A
		•		•		•						350
ctg	ctg	tta	cct	gat	ggt	aat	gct	gcg	tta	act	gag	cgt
L	L	L	Ρ	D	G	N	A	A	L	T	E	R
gcg	agt	tta	tta	tgt	gcc	tgg	act	caa	ggc	ttt	tta	act
A	S	L	L	C	Α	W	T	Q	G	F	L	T
			400									
ggc	ttg	cat	tta	tc								
G	L	H	L			A S						

Figure 1 - SEQ 1 - Partial nucleotide sequence of Psclone 51 A and the deduced protein

atgagtcaag cattagttga atttaaaacg gtagatcatg tgctgcaagc 1 cttaggcgtt gaagggatga gtgcagcgga tgtgcatggc ctgctgattg 51 gtatgttggc gagtcaaagt aatttaacct gtaaatcatg gttagaaaaa 101 gcgatattta tgggagctca ccttgatgct gaaagtgatc tttttagtaa 151 tatcatggcc aaagagcagt taaagcagtt agaggcattg tttaaagtaa 201 gttgggagca gctctctgcg ggtgatttta cttttgctct gctgttacct 251 gatggtaatg ctgcgttaac tgagcgtgcg agtttattat gtgcctggac 301 tcaaggcttt ttaactggct tgcatttatc gggtgttaat attgctaaat 351 ataaagaagg tgaattagcg acgaccttaa aagatttagc tgaagttgcg 401 cagttggatt tagccattga agacagtaat gaaaatgaag cggcatatac 451 tgagattgct gaatatgtac gtatggcggc gctttttgtt catagtgaat 501 tagecggtte tggtcaageg acteagatga etgtteatta a 551

Figure 2 - SEQ ID 2 - Complete coding sequence of Psclone51A

1 MSQALVEFKT VDHVLQALGV EGMSAADVHG LLIGMLASQS NLTCKSWLEK 51 AIFMGAHLDA ESDLFSNIMA KEQLKQLEAL FKVSWEQLSA GDFTFALLLP 101 DGNAALTERA SLLCAWTQGF LTGLHLSGVN IAKYKEGELA TTLKDLAEVA 151 QLDLAIEDSN ENEAAYTEIA EYVRMAALFV HSELAGSGQA TQMTVH*

Figure 3 - SEQ ID 3 - Protein sequence derived from the ORF of the Psclone51A

atgaacagaggatgtttgcaaggtagtctaattattatcagtgtgtt
tttagttggctgtgcccagaactttagtcgtcaagaagtcggagctgcga
ctggggctgttgttggcggtgttgctggccagctgtttggtaaaggtagt
ggtcgagttgcaatggccattggtggtgctgttttgggtggattaattgg
ttctaaaatcggtcaatcgatggatcagcaggataaaataaagctaaacc
agagtttggaaaaggtaaaagcagggcaagtgacacgttggcgtaatcca
gatacaggcaatagttatagtgttgagccagtgcgtacttaccagcgtta
caataagcaagagcgtcgccagcaatattgtcgagaatttcagcaaaagg
cgatgattgcagggcagaagcaagagatttacggcactgcatgccggcaa
ccggatggtcgttggcaagtcatttcaacagaaaaataa

Figure 4 – SEQ ID 4 – Nucleotide sequence of P10.6

MNRGCLQGSSLIIISVFLVGCAQNFSRQEVGAATGAVVGGVAGQLFGKGS GRVAMAIGGAVLGGLIGSKIGQSMDQQDKIKLNQSLEKVKAGQVTRWRNP DTGNSYSVEPVRTYQRYNKQERRQQYCREFQQKAMIAGQKQEIYGTACRQ PDGRWQVISTEK

Figure 5 - SEQ ID 5 - Amino Acid Sequence of 10.6

4/9

1																	
caa	a gga	a ata	a ttg	gca										gtg	atg	gtt	
Q	G	I	L	A	K	W	E	N	V	S	A	Q	K	V	M	V	
52													~~~	tas	aat	222	
_	-	_		aca					gga G	gat D	aat N	ggt	O	S	ggt	K	
A 103	K	V	S	T	V	N	N	A	G	ט	14	G	Q	J	0		
		· ast	. uss	aat	att	att	gaa	aaa	gca	aat.	act	att	σta	ttt	aca	qta	
N	N	N N	. gaa E	N	I	I	E	K	A	G	A	I	v	F	Ā	v	
									V-	na1							
	Xmal Smal																
154																	
ctc				cta													
L	D	T	Q	L	N	S	Ð	Q	P	G	T	P	V	M	A	Т	
205			~~+	aaa			22+	aaa	222	tta	++~	aat	age	+++	aaa	aga	
att I	y U	0	ggt	aaa K	F	K	N		K		L		S	F	K	R	
256		×	•		•	••		••		_			_				
		gaa	aaa	cta	gtc	att	tct	ttt	gat	cgc	ata	tct	ttg	cct	gaa	ctt	
E	Ď	E	K	L	v	I	S	F	D	R	I	s	L	P	E	L	
307																	
gat				tct													
D	н	S	I	s	Ι	K	Α	Y	A	I	N	A	T	Ť	A	Q	
358	~~~	a+~	+	tca	~~+	ar->	ast	aat	cat	tat	tta	tta	cat	tat	gat	ggg	
aac N	gça A	L	S	S	D	V	D	N	H	Y	L	L	R	Y	G	G	
409			-	-	_	•				_							
	ttt	gct	gct	gcg	ttt	ttg	caa	ggc	ttt	ggc	gat	tat	ttc	tcc	caa	aac	
L	F	A	A	A	F	T_	Q	G		G		Y	F	S	Q	N	
•	IJ:.	nd III										•					
460	1111	ilu III															
460	tca	200		tgt	aat	aat	aca .	aca	acc	t.at.	att	att	aca	aac	act	caa	
S	S	S		C		G		T	T	C	I	Ī	Ť	Ğ	T	Q	
-		_		_													
		PsII															
511																	
		-	_	caa													
S	T .	A	E	Q	N	R	T	T	R	K	A	L	Y	S	G	L	
562	an à	~++	aa=	aca	act	++=	act	aat	222	ace	age	act	acs	ttt	gat	cac	
ggr G	Q	V	gga G	T	T T	L	A	gg. G	K	gca A	S	A	A	F	D	R	
~	~	-	_	_	_	_		_			_						

Figure 6 - SEQ ID 6 - DNA sequence of P. salmonis IcmE and encoded protein (5' to 3')

613 cct cca acg gtt act tta aat caa ggt gtt ggt atg ggg att tta ttt atg T G V G M G I. L N 0 K 715 tat aat ttt gat gat gat caa gac att aat gag gat aaa gaa gac ctt gcn 766 get aga taa tga gee age agt taa aag aaa taa tge aga tge tgt ttg gea agg gac ttc act gtg gga taa aat aag gcc gat gtt gca tta tta tat cat. tgc tat tat tgc att cgc tgt agc agg tta tat gat gta taa cgc ata ccg 919 aac ttt ata tcc aaa gca gtc agt gca gca ggc tga ggc taa cca ttt aag ctt tag taa tca ggt tga aac tgg cag taa gtc agc gaa agg ctt ttc tcc 1021 cct ggc tca gtc tca aga aaa taa ggt caa aaa taa aag tgg gnc ttg gaa 1072 aaa aag aag aga taa aac cga atg cta

Figure 6 -(continued) - SEQ ID 6 DNA sequence of P. salmonis IcmE and encoded protein (5' to 3')

ADNGKLQLQI SQLKAQQTQL QQQVANLQGQ

Figure 7 - SEQ ID 7 - Amino acid sequence of P. salmonis p45 antigen (N-terminal to C-terminal)

ga	tct	tta	atc	tca	tta	aaa	ttt	atg	ttt	cta	atc D	gcg R
tgg	gtt	att	ttc	atc	aaa	tac	ggc	att	ttt	agg	agg	agg
P	N	N	B	D	F	v	A	N	K	P	P	P
gat	aac	aac	atc	agc	att	agg	tga	gtg	qtt	taa	aac	gga
I	V	V	D	Ä	N	P	Š	н	N		sII V	S
atc	gta	aac	atc	atg	gct	atc	gta	ggc	tcc	gtc	tgc	agt
D	Y	v	D .	н	ັຣ	D	Y	A	G	D	·A	T
gaa	gcg	atc					_		•		•	•
F	R	D										

Figure 8 - SEQ ID 8- DNA sequence of P. salmonis clone 3/original and encoded protein (3'to 5')

ata I tna X	agc S cag . Q	cta L gcc A	gat D tta L	gat D agc S	gat D gtt V	att I ttg L	gcg A gcc A	gga G gtg V	ata I acg	ncc X atg M	att I tgg W	gat D cac H
caa	gaa	aaa	tac	aag	ata	tca	gca	aag	cgc	agc	tgg	cgt
Q	E	K	Y	K	I	S	A	K	R	S	W	R
aaa	ctt	cat	gtg	gcc	gtt	gat	gat	gat	can	tat	att	caa
K	L	H	V	A	V	D	D	D	X	Y	I	Q
gcc	gca	ctc	atc I	acc	gat	cgc	tat	gaa	gca	gat	gag	gag
A	A	L		T	D	R	Y	E	A	D	E	E

Figure 9 - SEQ ID 9 - DNA sequence of P. salmonis clone 3/3PST-R and encoded protein (5'to 3')

tat	gag	att	aaa	gat	cat	ggt	aga	atg	cac	tgg	caa	aag
Y	E	1	K	D	H	$\widetilde{\mathbf{G}}$	Ř	M	H	w	Q	K
aca	cga	caa	tac	ggc	aag	cgt	aat	tat	tct	gag	ttg	gcg
T	R	Q	Y	G	K	Ř	N	Y	S	E	L	A
att	cag	cgt	tac	aaa	cgc	att	ttg	ggc	aac	acg	atg	cag
I	Q	R	Y	K	Ř	I	Ľ	Ğ	N	T	M	Q
tcc	aga	gac	ata	tcg	cga	cag	aaa	aat	gaa	gga	cta	att
S	R	D	I	รั	Ř	Q	K	N	E	G	L	I
ggc	gcg	ggt	att	tta	aat	aga	gat	gac	can	tct	cgg	cat
G	Α	G	I	L	N	Ř	Ď	D	X	S	R	H
gcc	ggt	gac	aat	aat	gta						~~	
A	G	D	N	N	v							

Figure 10 – SEQ ID 10 – DNA sequence of P. Salmonis clone 3/3APA-F and encoded protein (5' to 3')

7	'n
•	17

g	atc	aan	gcc	cgc	ata	tta	atc	gac	gac	cac	gat	att
	1	\mathbf{X}	Α	R	1	L	I	D	D	Н	D	I
caa	aag	tta	aaa	att	caa	aat	atc	cgc	caa	cat	att	gcc
Q	K	L	K	I	Q	N	I	\mathbf{R}	Q	H	I	Α
tat	tta	cct	cag	cat	ggt	gac	tta	ttt	aat	ggc	acg	atc
Y	L	P	Q	H	G	Ď	L	F	N	Ğ	T	I

Figure 11 - SEQ ID 11 - DNA sequence of P. salmonis clone 7/orginal and encoded protein (5' to 3')

g	cac H	gca A	tat Y	cga R	tac Y	cta L	acg T	ten S	ttt F	caa	gaa E	.caa O
aaa	tat	tat	aaa	caa	gcc	ata	gaa	gtc	agc	caa	tta	ctt
K	Y	Y	K	Q	Α	I	E	v	Š	Q	L	\mathbf{L}^{\cdot}
ggc	ctt	gac	tca	att	att	gag	cgc	ttg	ccc	aaa	ggc	· tat
G	L	D	S	1	I .	E	Ř	Ľ	\mathbf{P}^{\cdot}	K	Ğ	Y
cac	act	cct	gtt	gcc	aat	cat	gcc	gna	tat	taa	ttg	act
Ή	T	P	V ,.	A Hi	N nd III	Н	A	X	Y		J	
acg	cac	gat	ntt	nca	aag	— _{ctt}	ant	.g				

Figure 12 - SEQ ID 12 - DNA sequence of P. salmonis clone 7/Xbar and encoded protein (5' to 3')

tta	ttg	agc	gct	tgc	cca	aag	gct	atc	aca	ctc	ctg	ttg
L	L	S	A	$\tilde{\mathbf{C}}^{:}$	P	ĸ	A	I	T	L	L	L
cca	atc	atg	cca	tgg	nag	tcg	cta	cct	cgc	ggt	atc	att
P	I.	M	P	w	\mathbf{x}^{T}	s	L	P	Ř	Ğ	I	I
cag	cgc	att	gcg	att	gcc	cgt	gcc	ctg	att	cat	aag	cca
Q	R	I	Α	· I	A	Ř	. A	L	I	Н	K	P
cca	atc	gtc	cta	ttc	gat	gag	gcc	aat	acg	gcc	atg	gac
P	I	. V	L	F	Ď	E	Ā	N	T	Ā	M	Ď
atg	caa	ggt	gat	acc	atc	tta	att	aat	gtg	ctt	gaa	caa
M	Q	G	D	T	I	L	1	N	v	L	E	Q
ctt	aaa	ggc	acc	tgc	aca	ctc	atc	ctc	gtc	tct	cat	cgc
$.\mathbf{L}$	K	G	T	Č	T	L	I	L	v	S	H	Ř
						•		• • -			XhoI	
				•	,		•				PaeR	
cca	tca	ttg	ctg	gca	cat	gca	gat	aaa	atc	ttt	atc	ctc
P	S	L	L	A	H	A	D	K	I	F	I	L
* * * * * * * * * * * * * * * * * * *		·. ·.										
gag	aat	aaa	aat	ctg	gtg	gag	aaa	gtc	aca	tga	gct	ctg
E	N	K	N	L	v	E	K	V	. T		B 4,4	
cac	taac	cgc	cca	gga	gca	taa	tat	tcg	cac	tgc	gtt	tat
taa	cag	cct	cga	acc	act	gtt	aac	tgc	att	agg	ctg	gc
			_		1.0	. •		, -0				-

Figure 13 - SEQ ID 13 - DNA sequence of P. salmonis clone 7/MunR and encoded protein (5' to 3')

8/9

ggt cca	tgt att	tgn X ttc	tgg P atc	aat I atc	atc . D ttc	aag L att	gct S tgt	aat I gct	att N tgt	ggt T att	aaa F att	tng X att
W	N	E	D	D	E	N	T	S	T	N	N	N
ttt K gcc G cfc E cag L tng X	atc D atc D tgg P cac V cac	ata Y aat I agg P tac V gat I	acg R atg H gag L caa L taa L	aaa F ggc A ttt K tcg R ttg Q	att N gag L aaa F act S gct S	gac V ttg Q gac V gta Y gtn X	atg H ctt K ttc E agc A nac	ttc E ttg Q	aaa F cgt T tac V tcc Q gcc G	gca C ggg P att N aga S ctg	aat I aac V tat I cgg P aca C	gtg H ata Y ctt K agg P gtn X
acg R	gtg H	·		•								

Figure 14 - SEQ ID 14 - DNA sequence of P. Salmonis clone 7/MunF and encoded protein (3'to 5')

gg cct P cgg R cgt R cgt	atc I tta L atg M ttc F cgt	atg M gga G cta L ttt F tca	ctc L acg T acg T acg t gac D	atc I gct A gcc A cat H atc	ctc L tta L atg M gta V	tac Y gcc A tct S cac H	gtc V tat Y cgc R ccc	gat D acc T gaa E cac H	gcg A ggc G aaa K tat Y	atg M tot S cag Q ggt G	gtc V tct S gtt V gtt V	tca S aca T ccg P tcc S
R	R	S	L	I								

Figure 15 – SEQ ID 15 – DNA sequence of P. Salmonis clone 20/original and encoded protein (5' to 3')

g	atg	agc	atg	atc	ata	tgc	agg	cct	aat	aga	ccg	gct
aac	tgt	acc	atg	ggt	gct	tga	aag	tca	agc	tgg	tgc	cag
cca	ttt	tta	agc A	ata Y	ctt K	ggc · A	ggt T	agt T	gca C	cca W	ata Y	aat I
gac V	act S	tga S	caa L	gag L	caa L	gta Y	aat I	cac	taa L	gca C	gat I	tac V
aat I	cga S	gag L	gac V	cag L	aga S	gag L	cgg P	gat I	att N	gcg R	ttt K	tgg P
gtt N	tga S				·	•						

Figure 16 – SEQ ID 16 DNA sequence of P. salmonis clone 20/20VSPF and encoded protein (3' to 5')

$\overline{}$	1	~7
		20.5

ggt	aaa	nga	gta	tcg	ata	ttg	gcg	ttt	ttt	ggc	tgt	att
G	K	X	V	S	Ĩ	L	Α	F	F	G	С	. I
tta	tgg	ttc	agg	ttg	tgc	gag	tac	ggt	gcc	aac	agg	gcg
L	W	F	R	L	Č	E	Y	G	Α	N	R	Α
cct	tat	tct · ···	gat	tat	cct	cat	gtg	· tat	gca	tgc	·ccg	aat
$\cdot \mathbf{P}$	Y	S	D	Y	P	H	V	. Y	Ā	Č	P	N
aag	tta	agt	act	ttg	tgt	tat	cgt	aca	gcg	att	gca	ccg
K	L	S	T	L	Č	Y	Ř	T	Α	1	Α	P
gtt	gga	cac	tgg	tct	cag	tat	aat	cag	ctg	agc	ttt	cag
V	G	\mathbf{H}_{-}	W	S	Q	Y	· N	Q	\mathbf{L}^{-}	S	F	Q
ttg	ccg	att	gct	ttg	caa	gta	cca	ttg	cgt	caa	gga	caa
L	P	I	A	L	Q	V	P	L	Ř	Q	G	Q
tta	gag	cta	caa	gag	tat	tat	gct	aaa	aat	ccc	gta	ttg
L	E	L	Q	E	Y	Y	Α	K	N	P.	V	$\cdot \mathbf{L}_{\cdot}$
cct	tca	tct .	ttg	cct	tta	tca	ggc	cca	ggc	ccg	tta	acg
P	S	S	\mathbf{L}	P	L	S	G	P	G	\mathbf{P}^{-}	L	T
tct	tat	tta	tat	cca	ttt	gga	ttg	tgt	gca	aca	aaa	ata
S	\mathbf{Y}	L	Y	P	F	Ğ	L	C	A	T	K	I
att	cgc	tta	gag	agt	tta	act	gat					
I	R	L	E	S	L	T	D					•

Figure 17 - SEQ ID 17 - DNA sequence of P. Salmonis clone 15/original and encoded protein (5' to 3')

MAEIIGIDLG	TINSCVAVLD	GDKPRVIESA	EGDRTTPSIV
AYTNDGVTVG	QPAKRQAVTN	PNNTLFAVKR	LIGRKSSDDT
VQRDIERLPY	TIAAADNGDA	WIDVNGEKLA	PPQISAQVLA
KMKKTAEDYL	GEDVKEAVIT	VPAYFNDAQR	QATKDAGRIA
GLDVKRIINE	PTAAALAYGM	DKKRGDGVIA	VYDLGGGTFD
ISIIEIAEVD	GEHQFEVLAT	NGDHTLGGED	FDLRLISYLV
	Missing amir	no acids	
DEFKKEQGID	XXXXXXXXX	XXEASEKAKI	ELSSTQQTDV
NLPYITADAT	GPKHMNIRVT	RAKFESLVED	LVEGTIEPCR
VALKDAGLSV	NDVTDVILVG	GQTRMPKAQA	VVKNFFGKEP
RRDVNPDEAV	AVGAAIQGGV	LAGDVKDVML	LDVTPLSLGI
ETMGGVMTKL	IEKNTTIPTK	SQTFSTAQDN	QNAVTVHVLQ
GEREVATGKK	LTGRFDLADI	PPAPRGMPLI	LRVHFDIDAN
GTLNVSAKDK	GTGKEQSIVI	RRSSGLSDDE	VDAMIKDAED
HADDDKKFQE	LVGARNNAEA	MIHATEKGLK	EADGKVAADD
KTAIEKAISE	LKDVVSGLDK	AVIDEKVEAL	TQASAKMAEV
LYANQGAEAE	AAAAGAEQAQ	SQTDEKKDDD	VVDAEFEEV
•			

Figure 18 – SEQ ID 18 – Amino acid sequence of P. Salmonis HSP70 protein (N-terminal to C-terminal)

THIS PAGE LEFT BLANK

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 September 2001 (20.09.2001)

PCT

(10) International Publication Number WO 01/68865 A3

- (51) International Patent Classification?: C12N 15/31. C07K 14/29, A61K 39/02, 48/00, A61P 31/04
- (21) International Application Number: PCT/GB01/01055
- (22) International Filing Date: 12 March 2001 (12.03.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 0005838.8
 11 March 2000 (11.03.2000)
 GB

 0016080.4
 1 July 2000 (01.07.2000)
 GB

 0016082.0
 1 July 2000 (01.07.2000)
 GB

 0018599.1
 29 July 2000 (29.07.2000)
 GB

- (71) Applicant (for all designated States except US): AQUA HEALTH (EUROPE) LIMITED [GB/GB]; Enterprise House, Springkerse Business Park, Stirling FK7 7UF (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): SIMARD, Nathalie [CA/CA]; 921 College Hill Road, Fredericton, New Brunswick E3B 6Z9 (CA). BROUWERS, Huub [NL/CA]; University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3 (CA). JONES, Simon [CA/CA]; Fisheries and Oceans, 555 West Hastings Street, Vancouver, British Columbia V6B 5G3 (CA). GRIFFITHS, Steve [GB/CA]; 921 College Hill Road, Fredericton, New Brunswick E3B 6Z9 (CA).

VALENZUELA, Pablo [CL/CL]; Fundacion Ciencia para la Vida, Avenida Marathon 1943, Santiago (CL). BURZIO, Luis [CL/CL]; BIOS Chile, Avenida Marathon 1943, Santiago (CL).

- (74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 7 March 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/68865 A

(54) Title: FISH VACCINE AGAINST PISCIRICKETTSIA SALMONIS

INTERNATIONAL SEARCH REPORT

Int dional Application No PCT/GB 01/01055

			,			
A. CLASS IPC 7	FICATION OF SUBJECT MATTER C12N15/31 C07K14/29 A61K39/	02 A61K48/0	0 A61F	231/04		
According to	o International Patent Classification (IPC) or to both national classific	cation and IPC				
	SEARCHED					
IPC 7	ocumentation searched (classification system followed by classification CO7K A61K A61P					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used)						
	E, CHEM ABS Data, BIOSIS, SEQUENCE					
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the re	levant passages		Relevant to claim No.		
A	JONES S R ET AL: "Virulence and antigenic characteristics of a cultured Rickettsiales—like organism isolated from farmed Atlantic salmon Salmo salar in			3–8		
	eastern Canada." DISEASES OF AQUATIC ORGANISMS, (14) 33 (1) 25-31., XP001029879 the whole document					
A	BARNES M N ET AL: "Purification of Piscirickettsia salmonis and partial characterization of antigens." DISEASES OF AQUATIC ORGANISMS, (1998 MAY 14) 33 (1) 33-41., XP001029898 the whole document ——			3-8		
	•	-/				
Further documents are listed in the continuation of box C. Patent family members are listed in annex.						
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *E* earlier document but published on or after the international *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *X* document of particular relevance; the claimed invention						
which is citation	it which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	"Y" document of particular cannot be considered document is combined	step when the do r relevance; the o d to involve an in ed with one or m	ocument is taken alone		
P documer later that	family					
Date of the a	ctual completion of the international search	Date of mailing of the	international se	arch report		
30	October 2001	23/11/2001				
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer Mennessie	er, T			

INTERNATIONAL SEARCH REPORT

Inv. itional Application No PCT/GB 01/01055

C (C*-	Mich POCHMENTS CONCINED TO THE TOTAL TO THE	PCT/GB 01	1/01022		
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.					
yy	or the relevant passages		nelevani to claim No.		
A	MARSHALL S ET AL: "Minimally invasive detection of Piscirickettsia salmonis in cultivated salmonids via the PCR." APPLIED AND ENVIRONMENTAL MICROBIOLOGY, (1998 AUG) 64 (8) 3066-9., XP001029515 the whole document		3-8		
Р,Х	KUZYK M A ET AL: "OspA, a lipoprotein antigen of the obligate intracellular bacterial pathogen Piscirickettsia salmonis." JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, (2001 JAN) 3 (1) 83-93., XP001029507 the whole document		3-8		
	the whole document				

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-2 (each as a whole), 3-5 (each partly)

Due to the indefinite expressions "substantially homologous to at least a part of the surface antigen" used in claim 1 and "a part of the surface antigen" used in claim 2, no meaningful search could be carried out on the subject-matter of said claims.

Whereas the same defect also affects claims 3-5 as being dependent on said claims, a meaningful partial search could be carried out on said claims taking into consideration only the whole nucleic acid and amino acid sequences referred to in claims 3 and 5, i.e., those sequences having the sequence identifiers SEQ ID NO: 1-8 and 10-29, as defined in the listing sequence filed with the letter of 25.06.2001. The whole sequences were searched as well as the use of the whole nucleic acid sequences in the preparation of a vaccine.

With respect to claim 6-8, a complete search was carried out, the SEQ ID of the sequence listing filed with the letter of 25.06.2001 being taken into consideration (SEQ ID NO: 1, 3, 5, 7, 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28 for the nucleic acid sequences; SEQ ID NO: 2, 4, 6, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 and 30 for the amino acid sequences).

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.