Consider the vector field $\mathbf{F} = 2x\mathbf{i} + 2y\mathbf{j} - 3\mathbf{k}$.

- (a) Show that **F** is a gradient field.
- (b) Describe the equipotential surfaces of ${\bf F}$ in words and with sketches.

Calculate the divergence of the vector field

$$\mathbf{F} = z\cos\left(e^{y^2}\right)\mathbf{i} + x\sqrt{z^2 + 1}\mathbf{j} + e^{2y}\sin 3x\mathbf{k}$$

HW 3 —	Due May	19,	2016
Problem	3.4.7		

Box #______Math 65

Find the curl of the vector field

$$\mathbf{F} = x^2 \mathbf{i} - xe^y \mathbf{j} + 2xyz \mathbf{k}$$

- (a) Consider the vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and its curl. Sketch the vector field and use your picture to explain geometrically why the curl is as we calculated in class.
- (b) Use geometry to determine $\nabla \times \mathbf{F}$, where

$$\mathbf{F} = \frac{(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})}{\sqrt{x^2 + y^2 + z^2}}$$

(c) For **F** as in part (b), verify your intuition by explicitly computing $\nabla \times \mathbf{F}$.

Can you tell in what portions of \mathbb{R}^2 , the vector fields shown in Figures 3.43-3.46 have positive divergence? Negative divergence?

x

Figure 3.43 Vector field for Exercise 13(a).

Figure 3.44 Vector field for Exercise 13(b).

Figure 3.45 Vector field for Exercise 13(c).

Figure 3.46 Vector field for Exercise 13(d).

HW 3 —	Due May	19,	2016
Problem	3.4.16		

Box #______Math 65

THEOREM 4.4:

Let $\mathbf{F}: X \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field of class C^2 . Then $\operatorname{div}(\operatorname{curl} F) = 0$. That is, $\operatorname{curl} F$ is an incompressible vector field.

Prove Theorem 4.4.

Establish the given identity. (You may assume that any functions and vector fields are appropriately differentiable.)

$$\nabla \cdot (f\mathbf{F}) = f\nabla \cdot \mathbf{F} + \mathbf{F} \cdot \nabla f$$