Medidas de desempeño en modelos de predicción

Hugo Andrés Dorado Juan Camilo Rivera

Modelos de regresión

n= número de observaciones

$$RMSE = \sqrt{\frac{\sum_{i=0}^{n} (\hat{Y}_i - Y_i)^2}{n}}$$

Hereda las mismas unidades de la variable de respuesta

$$R^2 = \rho_{\hat{y}y}^2$$

Un valor entre [0,1]

Modelos de clasificación

Matriz de confusión

	Referencia	
Predicción	Ocurre el evento	No ocurre el evento
Ocurre el evento	Α	В
No ocurre el evento	С	D

(1) Accuracy /Exactitud =
$$\frac{A+D}{A+B+C+D} = \frac{Casos\ acertados}{Casos\ posibles}$$

- Es la medida de desempeño más conocida.
- Fácil de interpretar [0,1]
- Poco robusto debido a que un al azar se esperaría tener desempeños de 0.5

(2)
$$kappa = \frac{P_r(\alpha) + P_r(e)}{1 - P_r(e)}$$

- $P_r(\alpha)$ = Acuerdo relativo (exactitud)
- $P_r(e)$ = Probabilidad por azar
- Tiene en cuenta el factor de azar.
- Es una medida mas robusta de acuerdo al calculo de concordancia dado que
- Fácil de interpretar [-1,1]

Valoración del Índice Kappa		
Valor de k	Fuerza de la concordancia	
< 0.20	Pobre	
0.21 - 0.40	Débil	<u> </u>
0.41 - 0.60	Moderada	→ Limite de fiabilidad
0.61 - 0.80	Buena	
0.81 - 1.00	Muy buena	

Altman DG. Practical statistics for medical research. New York: Chapman and Hall; 1991.

Desempeño global de modelo sobre la predicción

(3)
$$Sensibilidad/Recuerdo = S = \frac{A}{A+C} = \frac{Aciertos postivos}{Casos positivos reales}$$

(4) Especificidad =
$$E = \frac{D}{B+D} = \frac{Casos\ negativos}{Casos\ negativos\ reales}$$

(5)
$$Prevalencia = P = \frac{A+C}{A+B+C+D} = \frac{Casos\ positivos\ reales}{Casos\ totales}$$

Tendencia del modelo a favorecer un resultado

(6) Valor pred positivo. =
$$PPV = \frac{S * P}{S * P + (1 - S) * (1 - P)} =$$

$$\frac{A}{A+B} = \frac{Aciertos\ postivos}{Total\ de\ casos\ predichos\ como\ positivos}$$

Probabilidad de que un caso real positivo, resulte positivo en la predicción.

(7) Valor pred Negativo =
$$NPV = \frac{S * (1 - P)}{S * P + (S) * (1 - P)}$$

$$\frac{D}{C + D} = \frac{Aciertos\ negativos}{Total\ de\ casos\ predichos\ como\ negativos}$$

Probabilidad de que un caso real negativo, resulte negativo en la predicción.

https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values https://es.wikipedia.org/wiki/Curva_ROC

(8) Tasa de detección =
$$\frac{A}{A+B+D+C} = \frac{Aciertos positivos}{Todos los casos}$$

(9) Detección de prevlnc. =
$$\frac{A+B}{A+B+D+C} = \frac{Predichos positivos}{Todos los casos}$$

(8)
$$Acc.Balance = \frac{S+E}{2}$$

(9)
$$Precisión = PPV = \frac{A}{A+B} = \frac{Predichos positivos}{Total de casos positivos}$$