Sheet 1 13. (ii)

01 December 2020 22:33

13. (ii) Discuss the continuity of the following function:

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

For $x \neq 0$, f is continuous at x because it product/composition of continuous functions.

For 0, we show that

$$\lim_{x\to 2} f(x) = f(0) = 0.$$

Let $\epsilon > 0$ be given. If $0 \le |x - 0| \le \epsilon$, then:

$$|f(n) - f(0)| = |x \sin(\frac{1}{n}) - 0|$$

$$= |x \sin(\frac{1}{n})| = |\sin(\frac{1}{n})| \le |x + 1|$$

$$\leq |x|$$

$$= |x - 0| < \epsilon$$

Thu,

$$0 < |x-o| < \epsilon \Rightarrow |f(x)-f(o)| < \epsilon$$

Henry 8 = 6 works.

Thus,
$$\lim_{x\to 0} f(x) = f(0)$$
. If is continuous at 0.

Hence, f is continuous on R

In general: $\lim_{x\to c} f(x) = L$ means ∀επ, 75 % st. 0< 12- c1 < 5 => 1fm-4<6

Sheet 1 15

01 December 2020 2

15. Let $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Show that f is differentiable on \mathbb{R} . Is f' a continuous function?

6 hape!

Again, 22 ≠0 argument is similar as earlier.

For 0: For h +0, we note

$$\frac{f(0+h)-f(0)}{h}=\frac{h^2\sin(h^2)-0}{h}$$

= $h sin \left(\frac{1}{h}\right)$

As seen earlier, $\lim_{h\to 0} h \sin(\frac{1}{h}) = 0$.

Thus, f'(0) exists and is equal to a

Hence, f' is diff. on R.

$$\int_{1}^{1}(x) = \begin{cases} 0 & \text{if } x = 0 \\ 2\pi \sin\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n}\right) & \text{if } x \neq 0 \end{cases}$$

We show that f' is not cont. at 0 using the seque criterion.

Consider $2n := \frac{1}{2n\pi}$ for $n \in \mathbb{N}$.

(1/1/2) - 2 (in(2nt)) - cos(2nt))

Clearly,
$$\chi_n \rightarrow 0$$
. $\left\{f'(\chi_n) = \frac{2}{2n\pi}\sin(2n\pi) - \cos(2n\pi)\right\}$

However, $f'(\chi_n) = -1$ $\forall n \in \mathbb{N}$.

Thus, $\lim_{n \to \infty} f'(\chi_n) = -1 \neq f'(6)$.

Thus, f' is not continuous at 0 .

g is discontinuous at a

There exists a sequence
$$(\gamma_{in})$$
 s.t.

 $\gamma_{in} \rightarrow \alpha$ and $\gamma_{in} \rightarrow \gamma_{in} \rightarrow \gamma_{in}$

Sheet 1 18

01 December 2020 22:33

If f is differentiable at 0, then show that f is differentiable at $c \in \mathbb{R}$ and f'(c) = f'(0)f(c).

Put
$$x=y=0$$
 to get $\left[f(0)=\left(f(0)\right)^2,\right](*)$

Case 1
$$f(0) = 0$$

In this case, $f(x + 0) = f(x) f(0) = 0$
 $\Rightarrow f(x) = 0$ $\Rightarrow f(x) = 0$

$$f'(0) = 0 = f'(0) f(0)$$

Case 2.
$$f(0) \neq 0$$
.

Thus, $f(0) = 1$. [By (*)]

Now, for
$$c \in \mathbb{R}$$
, note that

wins the eq. given

$$\lim_{h \to 0} f(c + h) - f(c) = \lim_{h \to 0} f(c) f(h) - f(c)$$

$$= \lim_{h \to 0} f(c) \left\{ \frac{f(h) - 1}{h} \right\}$$

$$= \lim_{h \to 0} f(c) \left\{ \frac{f(h) - f(h)}{h} \right\}$$

Sheet 1 Optional 7

01 December 2020 22:36

7. Let $f:(a,b)\to\mathbb{R}$ be differentiable and $c\in(a,b)$. Show that the following are equivalent: (Fit)

 $(i) \Leftrightarrow (ii)$

(i) f is differentiable at c.

(i) (a) (ii)

(ii) There exists $\delta>0,\ \alpha\in\mathbb{R}$, and a function $\epsilon_1:(-\delta,\delta)\to\mathbb{R}$ such that $\lim_{h\to 0} \epsilon_1(h) = 0$ and

 $f(c+h) = f(c) + \alpha h + h\underline{\epsilon_1(h)} \quad \text{for } h \in (-\delta, \delta).$ $\xi_1(h) = f(c+h) - f(c)$

(iii) There exists $\alpha \in \mathbb{R}$ such that

 $\lim_{h \to 0} \frac{|f(c+h) - f(c) - \alpha h|}{|h|} = 0.$

 $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (ij)$

(ii) (;) ⇒ Let $\alpha := f'(c)$. [Exists since f is given to be diff at c, by (i).]

 $\delta := \min \left\{ \begin{array}{c} c - \alpha \\ \frac{a}{2} \end{array}, \begin{array}{c} b - c \end{array} \right\}.$ Let

Note 870. Moreover, (c-5, (+8) c (a, b).

Let $E_1: (-\delta, \delta) \rightarrow \mathbb{R}$ be defined as

 $\mathcal{E}_{1}(h) = \begin{cases} f(\underline{c+h}) - f(c) - A & ; & h \neq 0 \\ h & ; & h = 0 \end{cases}$

Claim 1: $\lim_{n \to \infty} \mathcal{E}_{n}(n) = 0$

Proof. By definition: $\lim_{h\to 0} \frac{f(c+h) - f(c)}{h} = \infty$

(i halking limit) => lim (f(c+h) - f(c) - x) =0

(m E.(h) = n **→**

$$\Rightarrow (m \in C(N) = 0)$$

包

$$\frac{\left(\frac{\text{laim}2^{\frac{1}{2}}}{f(c+h)}\right)}{f(c+h)} = f(c) + dh + h \in (-\delta, \delta)$$

$$\lim_{h\to 0} \frac{f(c+h) - f(c) - dh}{h} = f(c) + dh + hei(h)$$

$$=\lim_{h\to 0} |\mathcal{E}_{1}(h)| = 0$$

$$\left(\begin{array}{ccc} & \lim_{h \to 0} E_{i}(h) & = 0 & \text{is given} \end{array}\right)$$

$$(\hat{\mathbf{u}}) \Rightarrow (i)$$

Given:
$$\lim_{h\to 0} \frac{f(c+h)-f(c)-\alpha h}{h} = 0$$

Tutorial 2 Page 8

$$\Rightarrow \lim_{\lambda \to 0} \left(\frac{f(c+\lambda) - f(c)}{\lambda} - \alpha \right) = 0$$

$$\frac{1}{\lambda^{2}} \frac{\int_{C_1(k)}^{\infty} -f(c)}{h} = 0$$

Sheet 1 Optional 10

01 December 2020 22:37

 γ_{0} is a fixed pto $f(K_{0}) = X_{0}$

Q: Is this tree if [01] is replaced by

1 that any continue

(0, 1) or (0, 1)? 10. Show that any continuous function $f:[0,1] \to [0,1]$ has a fixed point.

Define
$$g: [o, i] \longrightarrow \mathbb{R}$$
 as

$$g(n) := f(n) - \alpha.$$

Note that
$$g(0) = f(0) - 0$$

= $f(0) > 0$,

(Since fin) ([OI])

and
$$g(i) = f(i) - 1$$
 ≤ 0

Thus, by IVP, $\exists z_0 \in [0, 1]$ s.t.

Thus, so is a fixed point of f.

Sheet 2 2

01 December 2020

2 Let f be continuous on [a,b] and differentiable on (a,b). If f(a) and f(b) are of different signs and $f'(x) \neq 0$ for all $x \in (a,b)$, show that there is a unique $x_0 \in (a,b)$ such that $f(x_0) = 0$.

Idea: Existence. IVP (since 0 lies 6/w fla)2f16).)

Uniqueness. Suppose $x_0 < x_1$ me pts sit. $f(x_0) = f(x_1) = 0$.

Then, -] 22 E (20, 21.) s.t.

 $(B_y \text{ Rolle's})$ $f'(x_z) = 0$

Contradiction

Sheet 2 5

01 December 2020

5. Use the MVT to prove that $|\sin a - \sin b| \le |a - b|$, for all $a, b \in \mathbb{R}$.

$$Sin'(c) = Sin a - sin b$$

$$\left|\begin{array}{c} \sin a - \sin b \\ \hline a - b \end{array}\right| = \left|\begin{array}{c} \cos \left(c\right)\right| \leq 1$$

$$\Rightarrow |\sin \alpha - \sin b| \leq |\alpha - b| \Rightarrow |\cos \alpha - \sin b| \leq |\alpha - b|$$