数値解析 第1回 レポート

学籍番号: ■■■■■■■■

氏名: 佐藤 瞭 学科: 計数工学科

連絡先: ■■■■■■■■■■

2018/12/14 提出

計算機の環境

Microsoft Azureの仮想マシン上で計算を行った.

OS

Linux Ubuntu 16.04.4 LTS (GNU/Linux 4.15.0-1032-azure x86_64)

CPU

Standard E4s v3 (4 vcpu 数、32 GB メモリ)

ライブラリなどのversion

Python Oversion

In [1]:

import sys
print(sys.version)

3.6.5 (default, Jul 9 2018, 08:51:33) [GCC 5.4.0 20160609]

Numpy Oversion

In [2]:

import numpy as np
print(np.__version__)

1.14.5

マシンイプシロン

In [3]:

```
sys.float_info.epsilon
```

Out[3]:

2,220446049250313e-16

In [4]:

```
import numerical_analysis_01 as na_1
```

なお、ここでimportしているnumerical_analysis_01.pyはレポートの最後に添付してある.

In [5]:

```
import pandas as pd
np.random.seed(114514)
```

問1

絶対値が最大の固有値の推定値 λ は、べき乗法で $\lambda=(x_k,Ax_k)$ とすることで求まる $^{[1]}$. 以下では λ の挙動についての考察をしていく.

In [6]:

```
A_1_1 = np.array([[1, 0, 0], [0, 5, -1], [0, 3, 0]])

A_1_2 = np.array([[1, 0, 0], [0, 0, -1], [0, 3, 0]])

init_vec = np.array([[1], [1]])
```

A_1 について

In [7]:

```
res_1_1 = na_1.power_method(A_1_1, init_vec, 10)
```

In [8]:

```
eigs_1 = np.sort(
np.linalg.eigvals(np.array([[1, 0, 0], [0, 5, -1], [0, 3, 0]])))[ : : -1]
```

In [9]:

 A_1 の推定最大固有値と絶対誤差の挙動を以下に示す.

In [10]:

df_1_1

Out[10]:

推定最大固有值	(絶対)誤差
2.666667	1.636109e+00
4.038462	2.643141e-01
4.271889	3.088624e-02
4.298575	4.200427e-03
4.302140	6.358705e-04
4.302675	1.006060e-04
4.302759	1.617081e-05
4.302773	2.613225e-06
4.302775	4.230649e-07
4.302776	6.853296e-08
	2.666667 4.038462 4.271889 4.298575 4.302140 4.302675 4.302759 4.302773

1反復ごとに誤差がほぼ 10^{-1} 倍になっていくようすが観察できる. 推定最大固有値は, 正しい値に向かって収束しているように考えられる.

ここで, A_1 の固有値を絶対値が大きい順に λ_1 , λ_2 , λ_3 , 対応する固有ベクトルを z_1 , z_2 , z_3 として, $\frac{\lambda_2}{\lambda_1}$, $\frac{\lambda_3}{\lambda_1}$ の値をみて みる.

In [11]:

[eigs_1[1], eigs_1[2]] / eigs_1[0]

Out[11]:

array([0.23240812, 0.1620406])

べき乗法の反復について、初期ベクトル $x_0 = (1,1,1)^T$ について

$$A^{k}x_{0} = \lambda_{1}^{k} \left[z_{1} + \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} z_{2} + \left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} z_{3} \right]$$

が成り立つ. $\frac{\lambda_2}{\lambda_1}$, $\frac{\lambda_3}{\lambda_1}$ の値が小さければ括弧の中の第2項, 第3項が速く収束するので, 最大固有値は速く求まる. A_1 では $\frac{\lambda_2}{\lambda_1}$, $\frac{\lambda_3}{\lambda_1} \simeq (0.23, 0.16)$ であった.

A_2 について

In [12]:

res_1_2 = na_1 .power_method(A_1_2, init_vec, 10)

In [13]:

```
eigs_2 = np.sort(
    np.linalg.eigvals(np.array([[1, 0, 0], [0, 0, -1], [0, 3, 0]])))

df_1_2 = pd.DataFrame(
    {'推定最大固有値(?)': res_1_2, '(絶対)誤差': abs(res_1_2 - eigs_2[0])})

df_1_2.index += 1

df_1_2.index.name = 'k'
```

 A_2 に対するべき乗法の結果は以下のようになった.

In [14]:

```
df 1 2
```

Out[14]:

推定最大固有值(?) (絶対)誤差

k		
1	1.000000	2.000000
2	-0.454545	1.790701
3	1.000000	2.000000
4	-0.582418	1.827351
5	1.000000	2.000000
6	-0.598027	1.832385
7	1.000000	2.000000
8	-0.599781	1.832958
9	1.000000	2.000000
10	-0.599976	1.833022

偶数回と奇数回の反復で解が振動してしまっている.この原因を考察してみる.

 A_2 の固有値は以下のとおりである.

In [15]:

```
eigs_2
```

Out[15]:

```
array([0.-1.73205081j, 0.+1.73205081j, 1.+0.j])
```

絶対値最大の固有値は虚部が非零の複素数で, 共役な複素数も固有値になっているため, 絶対値最大の固有値が2つ存在する. $\frac{\lambda_2}{\lambda_1}$, $\frac{\lambda_3}{\lambda_1}$ は以下のとおり.

In [16]:

```
[eigs_2[1], eigs_2[2]] / eigs_2[0]
```

Out[16]:

```
array([-1.+0.j , -0.+0.57735027j])
```

 $\frac{\lambda_2}{\lambda_1} = -1$ となっている. べき乗法の反復に関する式

$$A^{k}x_{0} = \lambda_{1}^{k} \left[z_{1} + \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} z_{2} + \left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} z_{3} \right]$$

を思い出すと, $\left(\frac{\lambda_2}{\lambda_1}\right)^k = (-1)^k$ は収束も発散もせず,1反復ごとに符号を変えながら振動することがわかる.そのため, A_2 に対してべき乗法がうまくいかなかった原因は,絶対値最大の固有値が(虚部が非零の)複素数であることと解釈される.(ある複素数が固有値なら共役な複素数も固有値となるため,虚部が非零ならば $\frac{\lambda_2}{\lambda_1} = -1$ となる.)

問2

解答の作成の都合上、以下のような流れになっている:

- CG法
 - c=2のときの観察・考察
 - c=20のときの観察・考察
- SOR法
 - c=2, 20をまとめた観察・考察

In [17]:

```
def set_equation(c, n):
    A = na_1.generate_matrix(c, n)
    b = np.random.rand(n, 1)
    init_x = np.zeros_like(b)
    true_x = np.linalg.solve(A, b)
    return A, b, init_x, true_x
```

(i) CG法

In [18]:

```
A_2_1, b_1, init_x_1, true_x_1 = set_equation(2, 500)
A_2_2, b_2, init_x_2, true_x_2 = set_equation(20, 500)
```

c=2のとき

観察

N=200として、右辺ベクトルを乱数、初期ベクトルを零ベクトルとし、50個の異なる方程式に対してCG法を適用した、以下のグラフはそのときの相対残差の挙動である。(縦軸は対数軸にしてある。)

In [19]:

```
c = 2
n = 200
na_1.experiment(c, n, 'cg', 50, log_scale=True)
```


75

50

In [20]:

 10^{-16}

```
_, obj_2_1 = na_1.conjugate_gradient(
    A_2_1, b_1, init_x_1, true_x_1, abs_err=False, print_norm_p=True)
```

100

反復回数

125

150

175

200

25

考察

【定理】目的関数

$$\phi(x) = \frac{1}{2}(x - x_{true}, A(x - x_{true}))$$

および係数行列の条件数 $\kappa = cond_2(A)$ について、CG法の数値解は

$$\phi(x_{k+1}) = 4\left(\frac{\sqrt{\kappa - 1}}{\sqrt{\kappa + 1}}\right)^{2k}\phi(x_0)$$

を満たす. $(k = 0, 1, 2, \ldots)$

を検証してみる.この検証ではN=500として、1つの方程式を解いたときの結果のみを利用している.

最初と最後の20反復づつをみてみる.

In [21]:

Out[21]:

目的関数値(c = 2) 目的関数値の(理論的)上限

k		
1	2.447340e+06	9.790592e+06
2	2.445776e+06	9.668571e+06
3	2.441925e+06	9.548072e+06
4	2.435483e+06	9.429073e+06
5	2.424871e+06	9.311558e+06
6	2.411083e+06	9.195508e+06
7	2.397821e+06	9.080904e+06
8	2.381368e+06	8.967728e+06
9	2.362947e+06	8.855963e+06
10	2.341619e+06	8.745590e+06
11	2.318041e+06	8.636594e+06
12	2.291107e+06	8.528955e+06
13	2.257698e+06	8.422658e+06
14	2.226494e+06	8.317686e+06
15	2.200926e+06	8.214023e+06
16	2.178201e+06	8.111651e+06
17	2.150185e+06	8.010555e+06
18	2.122483e+06	7.910719e+06
19	2.093115e+06	7.812127e+06
20	2.067339e+06	7.714764e+06

In [22]:

```
df_2_1_tail = pd.DataFrame({
    '目的関数値(c = 2)': obj_2_1[-20:],
    '目的関数値の(理論的)上限': [
        na_1.cg_objective_sup(A_2_1, k, init_x_1, true_x_1) for k in range(480, 500)]})
df_2_1_tail.index += 482
df_2_1_tail.index.name = 'k'
df_2_1_tail
```

Out[22]:

目的関数値(c = 2) 目的関数値の(理論的)上限

k		
482	8.497167e-03	23791.289128
483	6.318941e-03	23494.776984
484	4.767927e-03	23201.960287
485	3.407669e-03	22912.792980
486	2.447309e-03	22627.229581
487	1.863617e-03	22345.225175
488	1.449225e-03	22066.735405
489	1.176346e-03	21791.716468
490	8.812928e-04	21520.125108
491	4.986414e-04	21251.918606
492	3.576517e-04	20987.054775
493	1.386847e-04	20725.491958
494	4.061901e-05	20467.189012
495	2.222739e-05	20212.105310
496	1.366854e-05	19960.200730
497	9.950370e-06	19711.435651
498	1.208840e-06	19465.770945
499	1.159200e-07	19223.167972
500	1.002417e-19	18983.588572
501	1.002417e-19	18746.995064

たしかに,目的関数は(理論的)上限以下の値をとりつづけていることがわかる.

また、上の表のk=500、501の部分をみると目的関数値が動かなくなっている。これは、CG法が500回の反復で収束し切ったことを意味していると解釈できる。したがって、「CG法は任意の初期ベクトルに対して(丸め誤差がなければ)高々 n回で真の解に到達する」という定理と矛盾していないように考えられる。(目的関数値の 10^{-19} は丸め誤差によるものと考えられる)

観察

c=2のときと同様に, N=200として, 右辺ベクトルを乱数, 初期ベクトルを零ベクトルとし, 50個の異なる方程式に対してCG法を適用した. 以下のグラフはそのときの相対残差の挙動である. (縦軸は対数軸にしてある.)

In [23]:

```
c = 20
na_1.experiment(c, n, 'cg', 50, log_scale=True)
```

/home/mewcket/00_reports/2A/numerical_analysis/numerical_analysis_01.py:43: RuntimeW arning: invalid value encountered in true_divide alpha = (np.dot(r.T, p) / np.dot(p.T, A_p))[0, 0] /home/mewcket/.pyenv/versions/3.6.5/lib/python3.6/site-packages/numpy/lib/function_b ase.py:4291: RuntimeWarning: Invalid value encountered in percentile interpolation=interpolation)

途中で相対残差が小さくなりすぎたせいか、nanになってしまいグラフには最後まで表示されていない.200回反復する前に計算機での計算の限界を迎えたと思われる.

考察

先ほどと同様に,目的関数

$$\phi(x) = \frac{1}{2}(x - x_{true}, A(x - x_{true}))$$

の値を理論的な上限値と比較してみる.先ほどと同様に,N=500として,1つの方程式を解いたときの結果のみを利用している.

In [24]:

丸め誤差によるものなのか、途中で要素が小さくなりすぎてnanになってしまったベクトルがある。 先ほどの N=200のときに途中で残差がnanになってしまったのはこのためと考えられる。

最初の20反復をみてみる.

In [25]:

Out[25]:

目的関数値(c = 20) 目的関数値の(理論的)上限

k		
1	2.757406e-02	3.651199e+01
2	4.733995e-05	9.173562e-02
3	9.015426e-08	2.304838e-04
4	2.368880e-10	5.790859e-07
5	5.218642e-13	1.454941e-09
6	1.455258e-15	3.655510e-12
7	3.444351e-18	9.184394e-15
8	8.171552e-21	2.307560e-17
9	1.912463e-23	5.797697e-20
10	5.045678e-26	1.456659e-22
11	1.255666e-28	3.659827e-25
12	7.893812e-31	9.195239e-28
13	4.896263e-31	2.310285e-30
14	4.896893e-31	5.804543e-33
15	4.896893e-31	1.458380e-35
16	4.896893e-31	3.664149e-38
17	4.896893e-31	9.206098e-41
18	4.896893e-31	2.313013e-43
19	4.896893e-31	5.811398e-46
20	4.896893e-31	1.460102e-48

たしかに,目的関数値は理論的な上限以下で挙動している.

また, 先ほどの相対残差のグラフをみると, c=2のときに比べて早い段階で収束している。ここで, c=2,20それぞれでの, N=500での係数行列の条件数をみてみる。

c = 2のとき

In [26]:

np.linalg.cond(A_2_1)

Out[26]:

101726, 20699537714

c=20のとき

In [27]:

np.linalg.cond(A 2 2)

Out[27]:

1,2222173678072006

条件数に 10^5 倍ほどの開きがあることがわかる. 条件数 κ が1に近ければ $\left(\frac{\sqrt{\kappa-1}}{\sqrt{\kappa+1}}\right)$ も小さくなるため,目的関数値の理論的な上限も小さくなる. 条件数が小さくなることで実際の目的関数値も小さくなり,収束が早くなったという説明が考えられる.

条件数が大きい場合は,不完全Choleskey分解を行ったりすることで条件数を減らせる可能性がある.

(ii) SOR法

つぎに、SOR法を適用する。CG法と同様に、N=200として、右辺ベクトルを乱数、初期ベクトルを零ベクトルとし、50個の異なる方程式に対して適用した。以下のグラフはそのときの相対残差の挙動である。

また,加速パラメータ ω を決めるにあたり,c=2のときは

$$\omega = \frac{2}{1 + \sin\left(\frac{1}{n+1}\right)\pi}$$

が最適である、という情報を得た[2]ので、これを用いた、資料を追いきれず、c=20のときでも最適かどうかわからなかったが、収束速度はそれなりに速かったのでc=20のときもこのパラメータを用いることにした。

観察(c = 2, 20をまとめて行った)

In [28]:

```
c = 2
n = 200
omega = 2 / (1 + np.sin(np.pi / (n + 1)))
na_1.experiment(
    c, n, 'sor', 50, omega=omega, max_iter=200)
```

SOR法の反復回数と相対残差

In [29]:

```
c = 20
na_1.experiment(
    c, n, 'sor', 50, omega=omega, max_iter=200)
```

SOR法の反復回数と相対残差

どちらの場合にも相対誤差が単調に収束しているように見える。また, c = 20のほうが収束が速いように見える。

考察

【定理】収束の必要条件は $0<\omega<2$

【定理】 反復行列Hのスペクトル半径が $\rho(H) < 1 \Rightarrow$ 反復法は収束する

という2つの定理がここでも成り立っているか実験してみる.

In [30]:

```
c = 2
n = 20
omega = 1.99
na_1.experiment(c, n, 'sor', 50, omega=omega, max_iter=100)
```

SOR法の反復回数と相対残差

ho(H) < 1を満たしており、収束することが予想される、実際、相対残差は減衰する振動をしながらゆるやかに0へ向かって収束している.

In [31]:

```
omega = 2
na_1.experiment(c, n, 'sor', 50, omega=omega, max_iter=100)
```


 $\omega=2$, $\rho(H)=1$ となり, 収束の必要条件から外れる. 相対残差は周期的な, 減衰しない振動を繰りかえして収束しない.

In [32]:

```
omega = 2.01
na_1.experiment(c, n, 'sor', 50, omega=omega, max_iter=100, set_ylim=False)
```

SOR法の反復回数と相対残差

(実験回数: 50, c = 2, N = 20, ω = 2.01, 反復行列のスペクトル半径: 1.01)

 $\omega > 2$, $\rho(H) > 1$ となる場合. 見やすくするために縦軸のスケールを変えてある. 収束の必要条件から外れている. 相対残差は増幅する振動をしながら無限大に向かって発散する.

In [33]:

```
omega = 0.01
na_1.experiment(c, n, 'sor', 50, omega=omega, max_iter=100, set_ylim=False)
```

SOR法の反復回数と相対残差

 $0<\omega<2$ となる場合(ho(H)は丸められた値が表示されている). 見やすくするために縦軸のスケールを変えてある. 収束の必要条件を満たしている. 相対残差はゆるやかに0に向かって収束している.

In [34]:

```
omega = 0
na_1.experiment(c, n, 'sor', 50, omega=omega, max_iter=100, set_ylim=False)
```

SOR法の反復回数と相対残差 (実験回数: 50, c = 2, N = 20, ω = 0, 反復行列のスペクトル半径: 1.0)

 $\omega=0,\, \rho(H)=1$ となる場合. 見やすくするために縦軸のスケールを変えてある. 収束の必要条件から外れている. 相対残差は初期の値のまま一定で収束しない.

In [35]:

```
omega = -0.01
na_1.experiment(c, n, 'sor', 50, omega=omega, max_iter=100, set_ylim=False)
```

SOR法の反復回数と相対残差

 $\omega < 0$, $\rho(H) > 1$ となる場合. 見やすくするために縦軸のスケールを変えてある. 収束の必要条件から外れている. 相対残差は無限大に向かって発散している.

以上の結果から,今回の結果は

【定理】収束の必要条件は $0 < \omega < 2$

【定理】 反復行列Hのスペクトル半径が $\rho(H) < 1 \Rightarrow$ 反復法は収束する

のふたつの定理に、たしかに従っていることが確認できた.

参考文献

[1] http://nkl.cc.u-tokyo.ac.jp/13n/Eigen.pdf p.12 2018/12/13 閲覧

[2] David S. Watkins (2004) "Fundamentals of Matrix Computation Second Edition" p.540