Revised: 3/24/2020

Digital Logic I

Michael C. Hackett
Assistant Professor, Computer Science

Community College of Philadelphia

Lecture Topics

Boolean Functions

Boolean Expressions

- Simplifying Boolean Expressions
 - Karnaugh Maps

Logic Circuits

 We've become familiar with logical operations (and, or, not...) while working with and assembly language (and high-level languages in other courses)

- With more complex logical expressions, we use special notations to represent Boolean functions.
 - Some of these notations were seen in a previous lecture

x AND y

may be expressed as either:

$$x \cdot y$$

x	у	x AND y
0	0	0
0	1	0
1	0	0
1	1	1

x OR y is expressed as:

$$x + y$$

\boldsymbol{x}	у	x OR y
0	0	0
0	1	1
1	0	1
1	1	1

NOT x

may be expressed as either:

χ'	("v	prime")
へ	(X	prime)

$$\overline{X}$$
 ("x bar" or "not x")

\boldsymbol{x}	NOT x
0	1
1	0

x XOR y is expressed as:

$$\overline{x}y + x\overline{y}$$

 $x \oplus y$

\boldsymbol{x}	y	x XOR y	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

- An **NOR** operation results in true (1) only when **both** of the operands are false (0)
 - It is the negation of the **or** operator

x NOR y is expressed as:

χ	y	x NOR y
0	0	1
0	1	0
1	0	0
1	1	0

$$\overline{x+y}$$

- A NAND operation results in true (1) only when both of the operands are not true (1)
 - It is the negation of the **and** operator

x NAND ymay be expressed as either:

$\boldsymbol{\chi}$	•	y

\boldsymbol{x}	У	x NAND y
0	0	1
0	1	1
1	0	1
1	1	0

- An **XNOR** (exclusive **nor**, "x nor"; "znor") operation results in true (1) only when the operands are either both true (1) or both false (0)
 - It is the negation of the **xor** operator

$$\overline{x} \overline{y} + xy$$

 $x \odot y$

\boldsymbol{x}	у	x XNOR y
0	0	1
0	1	0
1	0	0
1	1	1

- The precedence for Boolean operators is
 - 1. Expressions in parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- x NOR y = NOT(x OR y)
- x NAND y = NOT(x AND y)
- x XNOR y = NOT(x XOR y)
- x XOR y = (NOT(x) AND y) OR (x AND NOT(y))

- Boolean expressions can be evaluated using truth tables
 - Be sure to follow the order of operations

$$\overline{x} + y$$

		-	2
x	у	\bar{x}	$\overline{x} + y$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

Boolean expressions can be evaluated using truth tables

$$x + xy$$

		-	2
X	y	хy	x + xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Boolean expressions can be evaluated using truth tables

$$\overline{x} + xy + \overline{y}$$

		1	2	3	4	5
х	у	\bar{x}	\bar{y}	xy	$\bar{x} + xy$	$\overline{x} + xy + \overline{y}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	0	1
1	1	0	0	1	1	1

 This truth table tells us that, regardless of the value of x or y, the result will always be 1

Boolean expressions can be evaluated using truth tables

$$x + y\overline{z}$$

x	у	Z	$ar{Z}$	$yar{z}$	$x + y\overline{z}$
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1

 We'll take the previous expressions and convert them to sum-ofproducts form (or, disjunctive normal form)

This form can be obtained with a truth table

 We are interested in the scenarios where the output of the function is 1 (true)

Proving their identity

$$\overline{x} + y = \overline{x}\overline{y} + \overline{x}y + xy$$

0,510,01

				Originai				SOP Form
x	у	\bar{x}	\bar{y}	$\bar{x} + y$	$\bar{x}\bar{y}$	$\bar{x}y$	ху	$\bar{x}\bar{y} + \bar{x}y + xy$
0	0	1	1	1	1	0	0	1
0	1	1	0	1	0	1	0	1
1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1

COD Lakes

x	у	Z	$ar{Z}$	$y\bar{z}$	$x + y\bar{z}$
0	0	0	1	0 0	
0	0	1	0 0		0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1

 We are now ready to look at some laws of Boolean algebra that will let us simplify Boolean expressions to the fewest terms and operations needed.

$$\overline{x} + y = \overline{x}\overline{y} + \overline{x}y + xy$$

• Though these expressions are logically equivalent, the first expression uses fewer terms and operations than the second.

Identity Laws

$$x \cdot 1 = x$$

$$x + 0 = x$$

x	$x \cdot 1$	x + 0
0	0	0
1	1	1

Constant Laws

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

x	$x \cdot 0$	x + 1
0	0	1
1	0	1

Negation Laws

$$x \cdot \overline{x} = 0$$

$$x + \overline{x} = 1$$

\boldsymbol{x}	\overline{x}	$x \cdot \overline{x}$	$x + \overline{x}$
0	1	0	1
1	0	0	1

Double Negation Law

$$\overline{\bar{x}} = x$$

\boldsymbol{x}	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Idempotent Laws

$$x \cdot x = x$$

$$x + x = x$$

\boldsymbol{x}	$x \cdot x$	x + x
0	0	0
1	1	1

Commutative Laws

$$x \cdot y = y \cdot x$$

$$x + y = y + x$$

x	у	$x \cdot y$	$y \cdot x$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

x	y	x + y	y + x
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Distributive Laws

$$x \cdot (y+z) = xy + xz$$

x	у	Z	(y+z)	$x \cdot (y+z)$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

\boldsymbol{x}	y	Z	xy	χ_Z	xy + xz
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Distributive Laws

$$x + (yz) = (x + y) \cdot (x + z)$$

χ	у	Z	(yz)	x + (yz)
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	2	1

x	y	Z	(x+y)	(x+z)	$(x+y)\cdot(x+z)$
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Associative Laws

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

x	у	Z	$(y \cdot z)$	$x \cdot (y \cdot z)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

x	y	Z	$(x \cdot y)$	$(x \cdot y) \cdot z$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

Associative Laws

$$x + (y + z) = (x + y) + z$$

x	у	Z	(y+z)	x + (y + z)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

$\boldsymbol{\mathcal{X}}$	y	Z	(x+y)	(x+y)+z
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

DeMorgan's Laws

$$\overline{x+y} = \bar{x} \cdot \bar{y}$$

$\boldsymbol{\mathcal{X}}$	у	x + y	$\overline{x+y}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x	y	\bar{x}	$ar{\mathcal{Y}}$	$\overline{x}\cdot \overline{y}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

DeMorgan's Laws

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

$\boldsymbol{\mathcal{X}}$	у	$x \cdot y$	$\overline{x\cdot y}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

x	y	\bar{x}	\bar{y}	$\overline{x} + \overline{y}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Absorption Laws

$$x + (x \cdot y) = x$$

$$x \cdot (x + y) = x$$

x	у	$x \cdot y$	$x + (x \cdot y)$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

x	у	x + y	$x \cdot (x + y)$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Absorption Laws

$$x + (\bar{x} \cdot y) = x + y$$

$$x \cdot (\bar{x} + y) = x \cdot y$$

x	у	$\bar{\mathcal{X}}$	x + y	$\bar{x} \cdot y$	$x + (\overline{x} \cdot y)$
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	1	0	1
1	1	0	1	0	1

χ	у	\bar{x}	$x \cdot y$	$\bar{x} + y$	$x \cdot (\overline{x} + y)$
0	0	1	0	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	1	0	1	1	1

Consensus Laws

$$xy + \bar{x}z + yz = xy + \bar{x}z$$

x	у	Z	$\bar{\chi}$	xy	$\bar{\chi}Z$	yz	$xy + \overline{x}z$	$xy + \overline{x}z + yz$
0	0	0	1	0	0	0	0	0
0	0	1	1	0	1	0	1	1
0	1	0	1	0	0	0	0	0
0	1	1	1	0	1	1	1	1
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	1	1	0	1	0	1	1	1

Consensus Laws

$$(x+y)\cdot(\bar{x}+z)\cdot(y+z)=(x+y)\cdot(\bar{x}+z)$$

χ	у	Z	$\bar{\mathcal{X}}$	x + y	$\bar{x} + z$	y+z	$(x+y)\cdot(\bar{x}+z)$	$(x+y)\cdot(\bar{x}+z)\cdot(y+z)$
0	0	0	1	0	1	0	0	0
0	0	1	1	0	1	1	0	0
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	1	1	1
1	1	0	0	1	0	1	0	0
1	1	1	0	1	1	1	1	1

• An earlier example:

$$\overline{x} + y = \overline{x}\overline{y} + \overline{x}y + xy$$

• Let's use any applicable laws to the SOP expression:

$$\bar{x}\bar{y} + \bar{x}y + xy$$

To arrive at its equivalent:

$$\overline{x} + y$$

Distributive Law:

$$x \cdot (y + z) = xy + xz$$

Negation Law:

$$x + \overline{x} = 1$$

• Identity Law:

$$x \cdot 1 = x$$

• Absorption Law:

$$x + (\overline{x} \cdot y) = x + y$$

$$\bar{x}\bar{y} + \bar{x}y + xy$$

$$\overline{x}\overline{y} + \overline{x}y + xy$$

$$\bar{x}(\bar{y}+y)+xy$$

$$\bar{x}(\bar{y}+y)+xy$$

$$\bar{x}(1) + xy$$

$$\overline{x}(1) + xy$$

$$\bar{x} + xy$$

$$\overline{x} + xy$$

$$\bar{x} + y$$

• An earlier example:

$$x + xy = x\overline{y} + xy$$

was proven to be true with a truth table

• Let's use any applicable laws to this SOP expression to see if the Boolean expression can be simplified further:

$$x\bar{y} + xy$$

Distributive Law:

$$x \cdot (y + z) = xy + xz$$

• Negation Law:

$$x + \overline{x} = 1$$

• Identity Law:

$$x \cdot 1 = x$$

$$x\bar{y} + xy$$

$$x\overline{y} + xy$$

$$x(\bar{y}+y)$$

$$x(\overline{y} + y)$$

 χ

$$x + xy = x\overline{y} + xy = x$$

x	у	\bar{y}	xy	$x\bar{y}$	x + xy	$x\overline{y} + xy$
0	0	1	0	0	0	0
0	1	0	0	0	0	0
1	0	1	0	1	1	1
1	1	0	1	1	1	1

An earlier example:

$$\overline{x} + xy + \overline{y} = \overline{x}\overline{y} + \overline{x}y + x\overline{y} + xy$$

 We not only proved this to be true with truth tables, but we also saw the result is always 1

X	у	\bar{x}	$ar{\mathcal{Y}}$	xy	$\bar{x} + xy$	$\bar{x} + xy + \bar{y}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	0	1
1	1	0	0	1	1	1

• Let's also prove it true using any applicable laws

• Distributive Law:

$$x \cdot (y + z) = xy + xz$$

Negation Law:

$$x + \overline{x} = 1$$

• Identity Law:

$$x \cdot 1 = x$$

$$\bar{x}\bar{y} + \bar{x}y + x\bar{y} + xy \\
\bar{x}\bar{y} + \bar{x}y + x\bar{y} + xy$$

$$\bar{x}(\bar{y}+y)+x\bar{y}+xy$$

$$\bar{x}(\bar{y}+y) + x\bar{y} + xy$$

$$\bar{x}(1) + x\bar{y} + xy$$

$$\overline{x}(1) + x\overline{y} + xy$$

$$\bar{x} + x\bar{y} + xy$$

• Distributive Law:
$$x \cdot (y + z) = xy + xz$$

• Negation Law:
$$x + \overline{x} = 1$$

• Identity Law:
$$x \cdot 1 = x$$

• Negation Law:
$$x + \overline{x} = 1$$

$$\bar{x} + x\bar{y} + xy$$
$$\bar{x} + x\bar{y} + xy$$

$$\frac{\overline{x} + x(\overline{y} + y)}{\overline{x} + x(\overline{y} + y)}$$

$$\frac{\overline{x} + x(1)}{\overline{x} + x(1)}$$

$$\frac{\overline{x} + x}{\overline{x} + x}$$

1

An earlier example:

$$x+y\overline{z}=\bar{x}y\bar{z}+x\bar{y}\bar{z}+x\bar{y}z+xy\bar{z}+xyz$$
 was proven to be true with a truth table

• Let's use any applicable laws to the SOP expression:

$$\bar{x}y\bar{z} + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z} + xyz$$

To arrive at its equivalent:

$$x + y\overline{z}$$

$$x(\overline{y}\overline{z} + \overline{y}z + y\overline{z} + yz) + \overline{x}y\overline{z}$$

Distributive Law (x2):
$$x(\overline{y}(\overline{z}+z)+y(\overline{z}+z))+\overline{x}y\overline{z}$$

$$x(\bar{y}(\bar{z}+z)+y(\bar{z}+z))+\bar{x}y\bar{z}$$

Negation Law (x2):
$$x(\bar{y}(1) + y(1)) + \bar{x}y\bar{z}$$

• Identity Law (x2):
$$x(\bar{y}+y) + \bar{x}y\bar{z}$$

$$x(\overline{y} + y) + \overline{x}y\overline{z}$$

Negation Law:
$$x(1) + \bar{x}y\bar{z}$$

Identity Law:
$$x + \bar{x}y\bar{z}$$

$$x + \overline{x}y\overline{z}$$

Absorption Law:
$$x + y\bar{z}$$

 $x + (\bar{x} \cdot y) = x + y$

 Those laws are useful for reducing expressions, but it can be cumbersome to reduce very complex expression this way

- A tool used to help with the simplification process is a Karnaugh Map
 - K-Map, for short

 K-Maps are not a total substitute for Boolean algebra, but they are faster

- Below is a two-variable K-Map
 - Notice that only one bit changes between each row and column

• To demonstrate, we'll use the following expression:

$$x + \overline{y}$$

Which yields the following truth table:

X	у	\bar{y}	$x + \overline{y}$
0	0	1	1
0	1	0	0
1	0	1	1
1	1	0	1

x	у	\bar{y}	$x + \overline{y}$
0	0	1	1
0	1	0	0
1	0	1	1
1	1	0	1

x	у	\bar{y}	$x + \overline{y}$
0	0	1	1
0	1	0	0
1	0	1	1
1	1	0	1

x	у	\bar{y}	$x + \overline{y}$
0	0	1	1
0	1	0	0
1	0	1	1
1	1	0	1

χ	y	$\overline{\mathcal{y}}$	$x + \overline{y}$
0	0	1	1
0	1	0	0
1	0	1	1
1	1	0	1

• K-Map for $x + \overline{y}$

	37	$ar{\mathcal{Y}}$	y
X	y	0	1
\bar{x}	0	1	0
		00	01
x	1	1	1
		10	11

• Resulting SOP Expression: $\overline{x} \, \overline{y} + x \overline{y} + x y$

	37	$\overline{\mathcal{Y}}$	\mathcal{Y}
\boldsymbol{x}	y	0	1
\bar{x}	0	1	0
		00	01
x	1	1	1
		10	11

• When using K-Maps, we can group adjacent cells together in order to simply the function

ν	\mathcal{Y}	\mathcal{Y}
\boldsymbol{x}	0	1
\bar{x} 0	1	0
	00	01
<i>x</i> 1		1
	10	11

• This illustrates the output is 1 when y = 0 (it does not depend on x)

- When grouping adjacent cells, you must group them in powers of 2
 - A group of 2, 4, 8, etc.

• The grouped cells must all contain 1s

Cells cannot be grouped diagonally

• We can reuse 1's that were grouped with other adjacent cells

 This second grouping illustrates the output is 1 when x = 1 (it does not depend on y)

- Our original expression was $x + \overline{y}$
 - Already reduced to fewest terms

- Here's an SOP Expression from earlier: $\overline{x}\overline{y} + \overline{x}y + x\overline{y} + xy$
 - The one that always results in 1

	37	$\overline{\mathcal{Y}}$	\mathcal{Y}
\boldsymbol{x}		0	1
	0	1	1
		00	01
x	1	1	1
		10	11

- Here, we've grouped all 4 (2²) cells together
 - Just like we saw earlier, it doesn't matter what the values of x and y are- the function always results in 1

- This is a three-variable K-Map
 - Notice that only one bit changes between each row and column

Here's another SOP Expression from ear	lier:
$\bar{x}y\bar{z} + x\bar{y}\bar{z} + x\bar{y}z + xy\bar{z} + xyz$	2

. 77	_	_
xy	0	1
$\bar{x}\bar{y}$ 00	0	0
	000	001
$\bar{x}y$ 01	1	0
	010	011
xy 11	1	1
	110	111
$x\bar{y}$ 10	1	1
	100	101

 \boldsymbol{Z}

- First grouping (4 cells)
- Result is 1 when x is 1
 - y and z are irrelevant

- Second grouping (2 cells)
- Result is 1 when y is 1 and z is 0
 - x is irrelevant

• Another (new) SOP Expression: $x\bar{y}z + \bar{x}\bar{y}z$

Cell groups can wrap around the map

- Result is 1 when z is 1 and y is 0
 - x is irrelevant

• Result:

$$x\bar{y}z + \bar{x}\bar{y}z = \bar{y}z$$

Another (new) SOP Expression:

$$x\bar{y}z + xyz + \bar{x}yz + \bar{x}\bar{y}z$$

• Cell grouping of 4

- Result is 1 when z is 1
 - x and y are irrelevant

• Result:

$$x\bar{y}z + xyz + \bar{x}yz + \bar{x}\bar{y}z = \bar{z}$$

 Another (new) SOP Expression: \boldsymbol{Z} $x\bar{y}\bar{z} + x\bar{y}z + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z$ x y $\bar{x}\bar{y}$ 00 000 001 $\bar{x}y$ 01 010 011 *xy* 11 111 110 $x\bar{y}$ 10 100 101

Cell groups can wrap around the map

- Result is 1 when y is 0
 - x and z are irrelevant

• Result:

$$x\bar{y}\bar{z} + x\bar{y}z + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z = \bar{y}$$

 The useful of K-Maps for simplifying Boolean expressions should be apparent

- However, K-Maps will not explicitly show:
 - NAND Operations
 - NOR Operations
 - XOR Operations
 - XNOR Operations

No groupings in this K-Map

• Result:

$$\bar{x}\bar{y} + xy$$

• Must recognize as XNOR $x \odot y$

Another ability of K-Maps are that it can ignore certain outputs.

These outputs are called don't cares

• If there are certain inputs that we don't care about, we can still use those inputs in the simplification process

Starting with a truth table...

• F represents the output of this function

- X represents outputs we don't care about
 - We don't what the output is for $x\bar{y}\bar{z}$ or $xy\bar{z}$

X	у	Z	F
0	0 0		0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	Χ
1	0	1	0
1	1	0	Χ
1	1	1	1

Building the K-Map

\boldsymbol{x}	y	Z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	X
1	0	1	0
1	1	0	X
1	1	1	1

Normally, we'd get the result:

$$\bar{x}y + yz$$

But, we can use the don't cares as a 1
if it helps simply further

Z• Now, our result is: y 0 xy $\bar{x}\bar{y}$ 00 000 001 $\bar{x}y$ 01 010 011 *xy* 11 110 111 $x\bar{y}$ 10 101 100

Checking with the truth table...

• Again, this function F doesn't care about the output for the inputs of $x\bar{y}\bar{z}$ or $xy\bar{z}$

\boldsymbol{x}	у	Z	F	$\bar{x}y$	yz	$\bar{x}y + yz$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	X	0	0	0
1	0	1	0	0	0	0
1	1	0	X	0	0	0
1	1	1	1	0	1	1

• The Boolean expressions we have been working with are the basis of constructing logic circuits.

• A logic circuit is a diagram of a Boolean expression.

 Logic circuits are built using logic gates that perform the different logical operations

• The AND Gate

• The OR Gate

• The NOT Gate

• The XOR Gate

• The NOR Gate

• The NAND Gate

• The XNOR Gate

- A logic circuit for the Boolean expression $x + \bar{y}z$
 - Be sure to follow order of operations

• A logic circuit for the Boolean expression $x \oplus y + z$

• A logic circuit for the Boolean expression $(x + y)(y \oplus z)\bar{z}$

• A **bus** is several parallel wires going from one component to another.

• The bus's width is the number of parallel wires

• In a logic circuit, many parallel wires (like, say in a 32-bit bus) may make the diagram large and confusing

• This circuit illustrates bundling three wires into one 3-bit bus

• This circuit illustrates splitting the wires from a 3-bit bus

