Homework 2

```
模式识别基础
```

第二次作业

陈翰墨 自65 2016010302

2019.3.22

Homework 2

```
Problem 1
   (1)
    (2)
    (3)
Problem 2
    Logistic Regression
       Code
        Result
    Fisher's Linear Discriminant
        Code
        Result
Problem 3
   (1)
    (2)
       Code
        n = 2
        n = 5
        n = 7
        n = 10
```

Problem 1

References

Fisher 准则的最小二乘法推导

总结

(1)

$$\frac{\partial E}{\partial \omega_0} = \sum_{i=1}^n (\omega_0 + \omega^T x_i - t_i) = 0 \tag{1}$$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} \sum_{i=1}^n t_i = n_1 imes rac{n}{n_1} - n_2 imes rac{n}{n_2} = 0 \end{aligned}$$

故 $n\omega_0 + \omega^T \sum_{i=1}^n x_i = 0$,亦即

$$\omega_0 = -\omega^T m, \text{ where } m = \frac{1}{n} \sum_{i=1}^n x_i$$
 (2)

(2)

代入 $\omega_0 = -\omega^T m$

$$E = \frac{1}{2} \left[\sum_{i \in C_1} (\omega^T (x_i - m) - \frac{n}{n_1})^2 + \sum_{i \in C_2} (\omega^T (x_i - m) + \frac{n}{n_2})^2 \right]$$
(3)

令

$$\frac{\partial E}{\partial \omega} = 0 \tag{4}$$

得到

$$\sum_{i \in C_1} (x_i - m)[(x_i - m)^T \omega - \frac{n}{n_1}] + \sum_{i \in C_2} (x_i - m)[(x_i - m)^T \omega + \frac{n}{n_2}] = 0 \quad (5)$$

$$\left[\sum_{i=1}^n (x_i - m)(x_i - m)^T \right] \omega = \frac{n}{n_1} \sum_{i \in C_1} (x_i - m) - \frac{n}{n_2} \sum_{i \in C_2} (x_i - m)$$

$$= n(m_1 - m) - n(m_2 - m) = n(m_1 - m_2)$$

其中 $S_T = \sum_{i=1}^n (x_i - m)(x_i - m)^T$ 为总方差矩阵

即要证明

$$S_T = S_w + \frac{n_1 n_2}{n} S_B (6)$$

而

$$S_{T} = \sum_{i=1}^{n} (x_{i} - m)(x_{i} - m)^{T} = \sum_{i=1}^{n} (xx^{T} - mm^{T})$$

$$S_{w} + \frac{n_{1}n_{2}}{n}S_{B} = \sum_{i=1}^{n} xx^{T} - n_{1}m_{1}m_{1}^{T} - n_{2}m_{2}m_{2}^{T} + \frac{n_{1}n_{2}}{n}(m_{2} - m_{1})(m_{2} - m_{1})^{T}$$

$$(7)$$

转化为证明

$$nmm^{T} = n_{1}m_{1}m_{1}^{T} + n_{2}m_{2}m_{2}^{T} - \frac{n_{1}n_{2}}{n}(m_{2} - m_{1})(m_{2} - m_{1})^{T}$$
 (8)

代入 $m=rac{n_1}{n}m_1+rac{n_2}{n}m_2$ 即得到上式。

(3)

由

$$(S_{\omega} + \frac{n_1 n_2}{n_1} S_B) \omega = n(m_1 - m_2)$$
 (9)

得到

$$S_{\omega}\omega = (rac{n_1 n_2}{n_1} (m_1 - m_2)^T \omega + n)(m_1 - m_2)$$
 (10)

其中 $rac{n_1n_2}{n}(m_1-m_2)^T\omega+n$ 是标量不影响 ω 的方向

从而得到

$$\omega \propto S_w^{-1}(m_1 - m_2) \tag{11}$$

Problem 2

Logistic Regression

Code

```
import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import classification_report
7
    # Data Cleaning
    df = pd.read_csv("breast-cancer-wisconsin.txt", header=None, sep="\t")
   df = df[df[6] != '?']
   df[6]=df[6].astype('int64')
10
    df.to_csv("data.txt", sep="\t", index=False, header=False)
11
    df=df.values;
13
14
   # Spilt train set and test set
15
   X=df[:,range(1,10)]
    y=df[:,10]
16
17
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
    random state=42)
19
   # Standardization
   sc = StandardScaler()
20
21
   sc.fit(X_train)
    X_train_std = sc.transform(X_train)
22
```

```
X_test_std = sc.transform(X_test)

# Logistic Regression

Ir = LogisticRegression()

Ir.fit(X_train_std, y_train)

y_pred = Ir.predict(X_test_std)

# Model Checking

print(classification_report(y_test, y_pred))
```

Result

```
precision
                         recall f1-score
                                           support
                  0.94
                           0.99
                                    0.96
                                               103
                 0.98
                           0.90
                                    0.94
                                               68
  micro avg
                 0.95
                           0.95
                                    0.95
                                               171
  macro avg
                 0.96
                           0.94
                                    0.95
                                               171
weighted avg
                 0.95
                           0.95
                                    0.95
                                               171
```

Fisher's Linear Discriminant

Code

```
import numpy as np
    import pandas as pd
    from sklearn.model_selection import train_test_split
3
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import classification_report
7
   # Data Cleaning
   df = pd.read_csv("breast-cancer-wisconsin.txt", header=None, sep="\t")
8
9
    df = df[df[6] != '?']
10
   df[6]=df[6].astype('int64')
    df.to_csv("data.txt", sep="\t", index=False, header=False)
11
12
    df=df.values;
13
```

```
14 | # Spilt train set and test set
15
    X=df[:,range(1,10)]
    y=df[:,10]
16
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
    random state=42)
18
19
20
    # Standardization
21
    sc = StandardScaler()
22
    sc.fit(X_train)
    X_train_std = sc.transform(X_train)
23
24
    X_test_std = sc.transform(X_test)
25
26
    # Sort
    X_train_good = X_train_std[y_train==1]
27
28
    X_train_bad = X_train_std[y_train==0]
29
    # Calculate the mean vector
30
31
    mean1 = np.mean(X_train_good, axis=0)
32
    mean0 = np.mean(X_train_bad,axis=0)
33
    # Calculate SS within classes
34
35
36
    SS_1=0
37
38
    for i in range(X_train_good.shape[0]):
39
        x=X_train_good[i,:]-mean1
40
        SS_1 += np.dot(x.reshape(9,1),x.reshape(1,9))
41
42
43
    SS_2=0
44
45
    for i in range(X train bad.shape[0]):
        x = X_train_bad[i, :] - mean0
46
47
        SS 1 += np.dot(x.reshape(9, 1), x.reshape(1, 9))
48
49
    SS_within=SS_1+SS_2
50
51
    w= np.linalg.inv(SS_within).dot(mean1-mean0)
52
53
54
    w0 = w.dot(mean0+mean1)/2
55
    #w0 =
    w.dot(X_train_bad.shape[0]*mean0+X_train_good.shape[0]*mean1)/(X_train_bad.shape[
    0]+X_train_good.shape[0])
56
57
    y_pred=np.zeros(X_test_std.shape[0])
58
    for i in range(X_test_std.shape[0]):
```

```
60     x = X_test_std[i,:]
61     if ( np.dot(x,w) > w0 ):
62         y_pred[i] = 1
63     else:y_pred[i] = 0
64
65     print(classification_report(y_test, y_pred))
```

Result

Problem 3

(1)

非线性分类器。

原因:不同分类的边界不是线性的超平面,而是由 Sigmoid 函数定义的空间曲面。

(2)

Code

```
from skimage import io
import numpy as np
import glob
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
```

```
9
10
    n=2
    imgCnt=0
11
    data=np.zeros([3000,2305])
12
13
14
    nums = np.random.choice(10,n)
15
    for i in nums:
        imglist=glob.glob("./Pictures/"+i.astype('str')+"/*.png")
16
17
        for imgpath in imglist:
18
            img = io.imread(imgpath, as_gray=True)
19
            data[imgCnt,range(2304)] =img.reshape(2304);
20
            data[imgCnt,2304] = i;
            imgCnt +=1
21
22
    data=data[range(imgCnt),:]
23
24
25
    X=data[:,range(2304)]
    y=data[:,2304]
26
27
    X_train, X_test, y_train, y_test = train_test_split(X, y,
28
    test_size=0.25,random_state=42)
29
30
   # Standardization
31 | sc = StandardScaler()
32 sc.fit(X train)
33
    X_train_std = sc.transform(X_train)
34
    X_test_std = sc.transform(X_test)
35
   # Softmax Regression
36
    lr = LogisticRegression(solver='newton-cg', multi_class='multinomial')
37
38
    lr.fit(X_train_std, y_train)
39
    y_pred = lr.predict(X_test_std)
40
41 # Model Checking
42 | print(classification report(y test, y pred))
```

• • •							
	precision	recall	f1-score	support			
4.0	0.99	0.93	0.96	82			
6.0	0.92	0.99	0.95	68			
micro avg	0.95	0.95	0.95	150			
macro avg	0.95	0.96	0.95	150			
weighted avg	0.96	0.95	0.95	150			

n = 5

		precision	recall	fl-score	support
	3.0	0.79	0.80	0.79	65
	4.0	0.73	0.84	0.78	73
	5.0	0.73	0.73	0.73	77
	6.0	0.73	0.73	0.73	90
	8.0	0.64	0.54	0.59	70
micro	avg	0.73	0.73	0.73	375
macro	avg	0.73	0.73	0.73	375
veighted	avg	0.73	0.73	0.73	375

n = 7

		precision	recall	f1-score	support
	0.0	0.76	0.80	0.78	69
	1.0	0.82	0.70	0.76	94
	2.0	0.59	0.61	0.60	66
	4.0	0.70	0.73	0.72	78
	6.0	0.65	0.64	0.64	75
	7.0	0.59	0.66	0.62	76
	8.0	0.63	0.61	0.62	67
nicro	avg	0.68	0.68	0.68	525
acro	avg	0.68	0.68	0.68	525
hted	avg	0.68	0.68	0.68	525

n = 10

总结

可以发现,随着需要分类的类别数量的增加,分类的准确率逐渐下滑。

猜测可能是随着类别数增加,虽然读取的图像数量增加,但是有效信息(即每个人的特征)并没有增加,而分类的难度增加,因此导致准确率下滑

References

- 1. <u>sklearn.linear_model.LogisticRegression scikit-learn 0.20.3 documentation</u>
- 2. <u>sklearn.metrics.classification_report scikit-learn 0.20.3 documentation</u>
- 3. fisher判别分析原理+python实现 PJZero CSDN博客