What is claimed is:

3

1	1. A cryogenic medical system comprising:
2	a medical device;
3	a console including accessories, the console connectable to the medical device at a
4	connection point, the console controlling temperature of the medical device, and the
5	console including
6	a first cooling system directing coolant to the medical device at a first
7	temperature along a coolant supply line; and
8	a second cooling system chilling the coolant within the coolant supply line
9	to a temperature below the first temperature before the coolant reaches the connection
10	point.
1	2. The system of claim 1, wherein the medical device includes a catheter.
1	3. The system of claim 2, wherein the first cooling system includes a coolant return
2	line leading from the medical device, and wherein the first cooling system and the
3	medical device comprise a substantially closed-loop.
1	4. The system of claim 3, wherein the first cooling system includes:
2	a first compressor in fluid communication with a first condenser outputting
3	coolant into the coolant supply line; and
4	a vacuum pump in fluid communication with the first compressor that establishes
5	a pressure within the coolant return line that is below ambient atmospheric pressure.
1	5. The system of claim 3, wherein the second cooling system includes an enclosure
2	having an inlet and an outlet; the enclosure defining a fluid path from the inlet to the

outlet, and the enclosure enveloping a portion of the coolant supply line.

1	6.	The system of claim 5, further comprising a second compressor in fluid
2	commu	inication with a second condenser outputting coolant to the inlet of the enclosure
3	and red	ceiving coolant from the outlet of the enclosure.
1	7.	The system of claim 2, wherein the first cooling system includes a coolant return
2	line lea	ading from the catheter to a coolant scavenging system, and wherein the first
3	cooling	g system and the catheter comprise a substantially open-loop.
1	8.	The system of claim 7, wherein the first cooling system includes:
2		a coolant reservoir in fluid communication with the fluid supply line; and
3		a vacuum pump interposed between the catheter and the coolant collection tank.
1	9.	The system of claim 8, wherein the vacuum pump creates a pressure within the
2	cathete	er that is below ambient atmospheric pressure.
1	10.	The system of claim 7, wherein the second cooling system includes an enclosure
2	having	an inlet and an outlet; the enclosure defining a fluid path from the inlet to the
3	outlet,	and the enclosure enveloping a portion of the coolant supply line.
1	11.	The system of claim 10, further comprising a compressor in fluid communication
2	with a	condenser outputting coolant to the inlet of the enclosure and receiving coolant
3	from t	he outlet of the enclosure

1		12.	The system of claim 10, further comprising:
2			a coolant reservoir in fluid communication with the fluid supply line;
3			a second fluid supply line in fluid communication with the coolant reservoir and
4 the inlet of the enclosure.		the in	let of the enclosure.
1		13.	The system of claim 12, further comprising:
2			a temperature sensor for measuring the temperature within the enclosure; and
3			a coolant flow regulator responsive to the temperature sensor for controlling fluid
4		flow	from the second fluid supply line into the enclosure.
1		14.	The system of claim 12, further comprising a temperature sensor for measuring
2		the te	mperature within the fluid supply line; and
3			a coolant flow regulator responsive to the temperature sensor for controlling fluid
4		flow	from the second fluid supply line into the enclosure.

1 .	15.	A cryogenic medical system comprising:
2		a catheter;
3		a console including accessories, the console connectable to the catheter at a
4	conne	ection point, the console controlling temperature of the catheter, and the console
5	includ	ling
6		a first cooling system including
7		a coolant supply line leading to the catheter,
8		a coolant return line leading from the catheter,
9		a first compressor in fluid communication with a first condenser
.0	outpu	tting coolant into the coolant supply line, and
.1		a vacuum pump in fluid communication with the first compressor
.2	that e	stablishes a pressure within the coolant return line that is below ambient
.3	atmos	spheric pressure; and
4		a second cooling system including
5 .		an enclosure having an inlet and an outlet, wherein the enclosure
16	defin	es a fluid path from the inlet to the outlet, and the enclosure envelops a portion of
17	the co	polant supply line of the first cooling system; and
18		a second compressor in fluid communication with a second
19	conde	enser outputting coolant to the inlet of the enclosure and receiving coolant from the
20	outle	t of the enclosure.

1	16. A cryogenic medical system comprising:	
2	a catheter;	
3	a console including accessories, the console connectable to the catheter at a	ì
4	connection point, the console controlling temperature of the catheter, and the cons	ole
5	including	
6	a first cooling system including	
7	a coolant supply line leading to the catheter,	
8	a coolant return line leading from the catheter,	
9	a coolant reservoir in fluid communication with the fluid sup	pply
0	line,	
1	a coolant collection tank in fluid communication with the co	olant
2	return line, and	
13	a vacuum pump interposed between the catheter and the coo	lant
14	collection tank that establishes a pressure within the coolant return line below amb	oient
15	atmospheric pressure; and	-
16	a second cooling system including	
17	an enclosure having an inlet and an outlet, wherein the enclosure	osute
18	defines a fluid path from the inlet to the outlet, and the enclosure envelops a porti	on of
19	the coolant supply line of the first cooling system; and	
20	a second fluid supply line in fluid communication with the c	oolant:
21	reservoir and the inlet of the enclosure.	

1	17.	A cryogenic medical system comprising:
2	٠.	a medical device;
3		a console including accessories, the connectable to the medical device at a
4	conne	ction point, the console controlling temperature of the medical device, and the
5	conso	le including
6		a first system directing coolant in a mixed gas and liquid state to the
7	medic	al device along a coolant supply line; and
8		a second system decreasing the percentage of gas in the coolant before the
9 -	coola	nt reaches the connection point.
1	18.	The system of claim 17, wherein the second system decreases the percentage of
2		the coolant by reducing the temperature of the coolant, and wherein the system
3	_	er comprises
4		an chamber having an inlet and an outlet, wherein the enclosure defines a fluid
5	path 1	from the inlet to the outlet, and the enclosure envelops a portion of the coolant
6	suppl	y line; and
7		a controller for controlling coolant flow into the chamber.
1	19.	The system of claim 18, wherein the controller establishes a duty cycle for
2	cyclic	cally allowing and denying entry of coolant into the chamber at a rate responsive to
3	sense	d temperature within the chamber to selectively raise, lower, and maintain
4	tempe	erature of coolant within the coolant supply line.