IN THE CLAIMS:

1

1	1. (Previously presented) A method for preventing passive release of interrupts
2	within a computer system, the computer system having at least one processor for servic-
3	ing the interrupts, one or more input/output (I/O) devices configured to issue interrupts,
4	and an I/O bridge having a plurality of ports to which I/O devices are coupled and con-
5	figured to interface between the I/O devices and the processor, the method comprising the
6	steps of:
7	asserting an interrupt signal by a subject I/O device coupled to a given port of the
8	I/O bridge;
9	forwarding an interrupt message corresponding to the interrupt signal to the proc-
10	essor for servicing;
11	setting an interrupt pending flag in response to assertion of the interrupt signal;
12	in response to the interrupt being serviced, generating a first ordered message, the
13	first ordered message notifying the subject I/O device that the interrupt has been serviced;
14	generating a second ordered message for clearing the interrupt pending flag;
15	sending the first ordered message to the given port of the I/O bridge;
16	sending the second ordered message to the given port of the I/O bridge after the
17	first message has been sent;
18	deasserting the interrupt signal in response to the first message; and
19	clearing the interrupt pending flag in response to the second ordered message.

first ordered message from the given I/O bridge port to the subject I/O device.

2. (Original) The method of claim 1 further comprising the step of forwarding the

1	3. (Original) The method of claim 2 wherein the step of deasserting the interrupt
2	signal is performed by the subject I/O device following its receipt of the first ordered
3	message.
	•
1	4. (Previously presented) The method of claim 3 wherein one of the ports of the
2	I/O bridge is an interrupt port and the interrupt pending flag is disposed at the interrupt
3	port, the method further comprising the step of forwarding the second ordered message
4	from the given I/O bridge port to the interrupt port.
1	5. (Original) The method of claim 4 wherein
2	the interrupt pending flag is implemented through a register of the interrupt port;
3	and
4	the second ordered message is a write transaction to the register for clearing the
5	interrupt pending flag.
1	6. (Original) The method of claim 5 further comprising the steps of:
2	periodically collecting a set of information regarding the assertion of interrupt
3	signals by I/O devices; and
4	after the step of clearing the interrupt pending flag, waiting a predetermined time
5	before collecting a next set of information regarding the assertion of interrupt signals.
1	7. (Original) The method of claim 6 wherein the step of periodically collecting is
2	performed through one or more serial data transfer operations.
	9 (Original) The method of claim 1 wherein the stans of generating the first and
1	8. (Original) The method of claim 1 wherein the steps of generating the first and
2	second ordered messages are performed by the processor.

plurality of processors at least one of which is designated to service interrupts from the

1

2

9. (Original) The method of claim 8 wherein the computer system includes (1) a

- subject I/O device, and (2) a plurality of I/O bridges each I/O bridge coupled to a plural-
- 4 ity of I/O devices configured to assert respective interrupt signals.
 - 10. (Not entered)

1

1

7

9

10

11

12

13

14

15

1

- 1 11. (Original) The method of claim 1 wherein the interrupt signals are level sensitive interrupts (LSIs).
 - 12. (Previously presented) A computer system comprising:
- a plurality of input/output (I/O) devices configured to assert and deassert respective interrupt signals;
- at least one processor for servicing interrupts from the I/O devices; and
- an I/O bridge configured to interface between the I/O devices and the at least one
- 6 processor, the I/O bridge having a plurality of ports to which the I/O devices are coupled
 - and an interrupt controller configured to detect the assertion and deassertion of the inter-
- 8 rupt signals, wherein
 - the interrupt controller, in response to assertion of an interrupt signal by a subject I/O device coupled to a given port of the I/O bridge, issues an interrupt message to the at least one processor and sets an interrupt pending flag;
 - the at least one processor, upon servicing the interrupt, sends first and second ordered messages to the given port of the I/O bridge, the first ordered message notifying the subject I/O device that the interrupt has been serviced, and the second ordered message clearing the interrupt pending flag;
- the subject I/O device deasserts the interrupt signal in response to the first message; and
- the interrupt pending flag is cleared in response to the second ordered message.
 - 13. (Previously presented) The computer system of claim 12 wherein

2	one of the ports of the I/O bridge is an interrupt port at which the interrupt con-
3	troller is disposed, and
4	the given port of the I/O bridge forwards the second ordered message to the inter-
5	rupt port after forwarding the first ordered message to the subject I/O device.
1	14. (Original) The computer system of claim 13 wherein the interrupt port of the
2	I/O bridge includes at least one register at which the interrupt pending flag is imple-
3	mented.
1	15. (Original) The computer system of claim 12 wherein
2	the I/O bridge port includes a read cache for buffering messages received from the
3	at least one processor, and an ordering engine operatively coupled to a read cache, and
4	the ordering engine is configured to release ordered messages buffered in the read
5	cache in the same order as which they were received.
	16. (Previously presented) The computer system of claim 12 further comprising
1	an interrupt collector having a parallel-load shift register for receiving the interrupt sig-
2	nals from the I/O devices, the parallel-load shift register configured to transfer informa-
3	
4	tion indicating the assertion or deassertion of interrupt signals to the interrupt controller
5	through one or more serial shift operations.
1	17. (Original) The computer system of claim 16 wherein
2	the interrupt collector transfers the information in response to a request from the
3	interrupt controller, and
4	the interrupt controller is configured to limit the number of serial shift operations
5	performed by the interrupt collector so as to receive only information associated with in-
6	terrupt signals that have been enabled.

- 18. (Original) The computer system of claim 12 wherein the interrupt signals are
- 2 level sensitive interrupts (LSIs).