Report: Analisi Threat Intelligence e Indicatori di Compromissione

1. Obiettivo dell'analisi

L'obiettivo dell'esercitazione è identificare eventuali **Indicatori di Compromissione (IOC)** all'interno di una **cattura di rete** (.pcapng) ottenuta tramite Wireshark, riconducibili ad **attacchi informatici in corso o già avvenuti**.

Successivamente, sarà necessario ipotizzare il **vettore di attacco** e suggerire delle **contromisure** tecniche per limitare gli impatti futuri.

2. Preparazione e set-up

- 2.1 Acquisizione del file

È stato fornito il file Cattura_U3_W1_L5.pcapng contenente la cattura di rete da analizzare.

- 2.2 Importazione su Kali Linux

stato copiato da root o con permessi errati.

Il file è stato spostato nella directory del Desktop dell'utente Kali e sono stati verificati e assegnati correttamente i permessi per consentirne la lettura e l'apertura da parte di Wireshark.

Nota: I permessi del file risultavano già corretti (rw-rw-r--, owner: kali), tuttavia, per sicurezza e in linea con la procedura illustrata nella traccia, sono stati riconfermati manualmente tramite chmod e chown.

Quindi non erano strettamente necessarie né la chmod né la chown, **ma** eseguirle **non ha creato alcun problema**: è stato solo un passaggio **ridondante ma prudente**, utile se ci fossero state incertezze o se il file fosse

- chmod ugo+rw: garantisce che tutti gli utenti (user, group, others) abbiano permessi di lettura e scrittura sul file.
- chown kali: assegna la proprietà del file all'utente kali.

Questi passaggi sono **fondamentali** per evitare errori di accesso durante l'analisi in Wireshark.

- 2.3 Apertura con Wireshark

Il file è stato infine aperto correttamente, pronto per l'analisi.

3. Analisi delle conversazioni, grafici I/O e tracciamento dell'attaccante

Per rafforzare l'analisi e identificare con precisione l'host responsabile dell'attività malevola (attaccante), sono stati effettuati i seguenti approfondimenti su Wireshark:

3.1 Analisi delle conversazioni TCP

Attraverso il menu Statistics > Conversations, scheda **TCP**, è stato possibile osservare che l'indirizzo IP 192.168.200.100 ha instaurato **una sola conversazione TCP molto intensa** con 192.168.200.150, per un totale di **2078 pacchetti** e **139 kB** scambiati. Questo dato è coerente con un comportamento aggressivo e automatizzato, come quello osservabile in un attacco di scansione o forza bruta.

3.2 Analisi del traffico nel tempo (I/O Graphs)

Dal grafico generato in Statistics > I/O Graphs, applicando il filtro ip.addr == 192.168.200.100, si osserva un **picco improvviso di traffico**, concentrato in una finestra temporale ristretta (tra il secondo 36 e 38). Questo comportamento è tipico di un attacco automatizzato, come un TCP scan o un tentativo di brute-force, che genera un numero elevato di connessioni in pochissimo tempo.

3.3 Tracciamento dell'attaccante

Applicando il filtro ip.addr == 192.168.200.100, abbiamo isolato tutto il traffico associato all'host sospetto. I risultati confermano che l'host 192.168.200.100 ha avviato **centinaia di richieste TCP SYN** verso l'host bersaglio 192.168.200.150, su più porte (80, 443, 21, 111, ecc.), ricevendo **pacchetti RST/ACK** in risposta. Questo conferma che l'host bersaglio stava **rifiutando connessioni**, probabilmente a causa di un tentativo di connessione anomala (es. tentativo di scansione porte).

4. Identificazione degli Indicatori di Compromissione (IOC)

Dall'analisi approfondita del traffico catturato, emergono con chiarezza diversi indicatori di compromissione, associati a una fase di ricognizione attiva condotta dall'host 192.168.200.100. Questa attività è stata isolata attraverso filtri specifici su Wireshark, con evidenze tecniche puntuali.

4.1 Filtro SYN - TCP Port Scanning

Filtro utilizzato: tcp.flags.syn == 1 && tcp.flags.ack == 0

Osservazioni:

- L'attaccante ha inviato richieste TCP SYN verso il target 192.168.200.150 su numerose porte (21, 22, 80, 443, 445, 3389...).
- L'assenza di flag ACK indica che l'obiettivo era identificare porte aperte, senza stabilire connessioni complete.

4.2 Filtro RST – Rifiuto sistematico delle connessioni

Filtro utilizzato: tcp.flags.reset == 1

Osservazioni:

- Le risposte del target 192.168.200.150 sono pacchetti RST/ACK, che indicano il rifiuto attivo delle connessioni.
- Questo comportamento è tipico di un sistema che non ha i servizi attivi sulle porte target, o che blocca le connessioni indesiderate.

4.3 TCP Streams - Nessun payload

Procedura:

 Tasto destro su un pacchetto TCP SYN verso porta 80 o 443 > Follow > TCP Stream.

Risultato:

• I flussi risultano **vuoti** (nessun dato HTTP/HTTPS trasmesso), confermando che le connessioni **non sono mai state completate**.

4.4 IO Graph - Picco di traffico

Filtro usato: ip.addr == 192.168.200.100

Osservazioni:

- L'host attaccante ha generato un picco improvviso e concentrato di pacchetti in una finestra temporale molto breve (tra secondo 36 e 38).
- Questo pattern è tipico di uno scan automatizzato (es. Nmap, masscan).

4.5 Tabella riepilogativa degli IOC

Tipo IOC	Dettaglio	Evidenza tecnica
IP attaccante	192.168.200.100	Tutto il traffico malevolo proviene da qui
Port Scanning	SYN verso porte comuni	Filtro: tcp.flags.syn == 1 && tcp.flags.ack == 0
Blocco delle porte	Risposte RST/ACK dal target	Filtro: tcp.flags.reset == 1
Nessun payload	TCP Stream vuoti (no GET, POST, SSL handshake)	Follow TCP Stream
Traffico anomalo	Picco nel grafico I/O	Finestra temporale limitata

5. Ipotesi vettore d'attacco e contromisure

Obiettivo: Fornire una spiegazione plausibile dell'attacco e proporre difese concrete per prevenirlo.

Ipotesi sull'attacco

Dall'analisi delle trame e dei flag TCP risulta evidente un attacco in corso da parte dell'host **192.168.200.100** verso **192.168.200.150**. I pacchetti in sequenza mostrano:

- Numerose richieste TCP SYN verso molte porte.
- Risposte **RST/ACK** che indicano che le porte sono chiuse o bloccate.
- Tentativi su porte 80, 443, 111, 22 ecc. => indica scansione attiva delle porte (port scan).

Tecnica individuata: TCP SYN Scan

Strumento plausibile: Nmap

Vettore d'attacco: Ricognizione per rilevamento servizi attivi, primo passo di

una possibile intrusione.

Contromisure consigliate:

Configurazione firewall

- Bloccare attivamente gli IP sospetti (es. 192.168.200.100).
- Abilitare regole IDS/IPS per identificare scansioni di rete.

Port Knocking / Port Filtering

 Utilizzare tecniche di offuscamento delle porte (nascondere SSH, HTTP non pubblici).

Rate limiting

 Limitare il numero di connessioni TCP al secondo per proteggere i servizi esposti.

Threat Intelligence attiva

 Integrare con strumenti SIEM per correlare eventi e bloccare in tempo reale.

6. Conclusioni finali e osservazioni

L'analisi del file Cattura_U3_W1_L5.pcapng ha permesso di ricostruire con precisione una fase iniziale di attacco, riconducibile a una **ricognizione tecnica tramite TCP SYN Scan**, condotta dall'host 192.168.200.100 contro il target 192.168.200.150.

I dati raccolti sono coerenti con un attacco automatizzato, caratterizzato da:

- Elevato numero di pacchetti SYN inviati in breve tempo;
- Risposte RST/ACK da parte del target, che rifiuta le connessioni;
- Assenza di payload nei flussi TCP (connessioni non completate);
- Picco di traffico nel grafico I/O, compatibile con scansioni rapide (es. Nmap).

Non si rilevano evidenze di accesso riuscito o di esfiltrazione dati, pertanto l'attività è da classificarsi come **tentativo di enumerazione dei servizi esposti** (ricognizione). Tuttavia, trattandosi della **prima fase della cyber kill chain**, l'attività può evolvere rapidamente in un attacco completo se non contenuta.

Valutazione complessiva

L'host attaccante ha agito in modo sistematico, testando porte e protocolli noti per scoprire vulnerabilità sfruttabili. L'assenza di risposta concreta da parte del target (nessun handshake completo, né contenuti HTTP visibili) dimostra che il bersaglio ha respinto i tentativi, ma evidenzia comunque un'esposizione di superficie potenzialmente attaccabile.

L'analisi effettuata ha permesso di identificare:

- L'origine dell'attacco;
- Il metodo e la tecnica impiegata;
- Il comportamento difensivo del sistema;
- Le principali contromisure da implementare per rafforzare la sicurezza.

Sintesi finale

L'analisi del file Cattura_U3_W1_L5.pcapng ha evidenziato un'attività di ricognizione in corso da parte dell'host 192.168.200.100, che ha eseguito un TCP SYN scan sul target 192.168.200.150. I numerosi tentativi di connessione su porte comuni, la risposta sistematica con pacchetti RST/ACK e l'assenza di payload nei flussi TCP confermano che si tratta di una scansione non autorizzata in fase iniziale.

Il picco di traffico concentrato in pochi secondi e il volume elevato di pacchetti generati rafforzano l'ipotesi di un attacco automatizzato, probabilmente con strumenti come Nmap. Sebbene l'attacco non sia andato a segno, rappresenta un chiaro indicatore di compromissione.

La rete ha reagito correttamente bloccando le connessioni, ma il comportamento osservato giustifica l'adozione di contromisure preventive, come firewall, IDS/IPS e segmentazione. L'intervento tempestivo e l'analisi accurata permettono di mitigare il rischio e prevenire escalation future.