Introdução à Análise Sintáctica

Introdução à Análise Sintáctica

Gestão de erros

Para além da construção da árvore sintáctica, é tarefa do compilador:

- Identificar a presença de erros de forma clara e precisa
- Recuperar rapidamente de um erro para detectar potenciais erros seguintes
- Adicionar overhead mínimo no processamento de programas correctos

Introdução à Análise Sintáctica

Gestão de erros

Para além da construção da árvore sintáctica, é tarefa do compilador:

- Identificar a presença de erros de forma clara e precisa
- Recuperar rapidamente de um erro para detectar potenciais erros seguintes
- Adicionar overhead mínimo no processamento de programas correctos

Estratégia simples - reportar a linha (e a posição) no programa onde o erro foi detectado.

Outline

Gramáticas livres de contexto

Conjuntos de análise

Algoritmos de parsing

Motivação

 Gramática serve para produzir/derivar palavras a partir de outras palavras, recursivamente, começando no símbolo inicial:

$$S \rightarrow 0S1$$
 $S \rightarrow \epsilon$

 As gramáticas são uma notação formal para representar definições recursivas de linguagens

Vantagens

Vantagens:

- Descrição precisa e fácil de compreender da sintaxe de uma linguagem
- Extensão e actualização fácil
- Possibilidade de gerar automaticamente um analisador sintáctico eficiente
- Relação directa com a estrutura da linguagem usada
- ...

Gramáticas BNF

Backus-Naur Form (BNF) é uma notação para gramáticas livres de contexto com regras na forma

 $\mathsf{S\'imbolo} \to \mathsf{express\~ao1} \mid \ldots \mid \mathsf{express\~aoN}$

Hierarquia de Chomsky

Hierarquia de Chomsky

• regulares - representam linguagens regulares. Podem ser representada por expressões regulares ou um autómato finito.

forma: $A \rightarrow aB$

Hierarquia de Chomsky

- regulares representam linguagens regulares. Podem ser representada por expressões regulares ou um autómato finito. forma: A → aB
- livres de contexto representam linguagens livres de contexto. Podem ser representadas por um autómato de pilha forma: $A \rightarrow \gamma$

Hierarquia de Chomsky

- regulares representam linguagens regulares. Podem ser representada por expressões regulares ou um autómato finito. forma: A → aB
- livres de contexto representam linguagens livres de contexto. Podem ser representadas por um autómato de pilha forma: $A \rightarrow \gamma$
- outras ...
 - expressividade
 - facilidade fazer parsing

Hierarquia de Chomsky

- regulares representam linguagens regulares. Podem ser representada por expressões regulares ou um autómato finito. forma: A → aB
- livres de contexto representam linguagens livres de contexto. Podem ser representadas por um autómato de pilha forma: $A \to \gamma$
- outras ...
 - expressividade
 - facilidade fazer parsing

Exemplo: $L = \{0^n 1^n | n \ge 0\}$

L não é regular. Porquê?

Hierarquia de Chomsky

- regulares representam linguagens regulares. Podem ser representada por expressões regulares ou um autómato finito. forma: A → aB
- livres de contexto representam linguagens livres de contexto. Podem ser representadas por um autómato de pilha forma: $A \rightarrow \gamma$
- outras ...
 - expressividade
 - facilidade fazer parsing

Exemplo: $L = \{0^n 1^n | n \ge 0\}$

- L não é regular. Porquê?
- DFA não permite memorizar o número de 0's

Definição

Uma gramática livre de contexto $G = (V, \Sigma, R, S)$ é um tuplo onde:

- V é o conjunto de símbolos não terminais
- Σ é o conjunto de símbolos terminais
- R é o conjunto finito de **produções** ou **regras**, com a forma $X \to Y_1 Y_2 \dots Y_n$, onde:
 - X é o símbolo não terminal a ser definido
 - \rightarrow é o símbolo de produção
 - $-Y_1Y_2\cdots Y_n$ é o corpo da produção
- $S \in V$ é o símbolo inicial

Hopcroft and Ullman, 1979

Exemplo

Gramática para a definição de expressões aritméticas. Exemplo:

- $V = \{expr, op\}$
- $\Sigma = \{id, +, -, *, /, (,)\}$
- Regras:

$$\begin{array}{cccc} expr & \rightarrow & expr \ op \ expr \\ expr & \rightarrow & (\ expr \) \\ expr & \rightarrow & -\ expr \\ expr & \rightarrow & id \\ op & \rightarrow & + \mid - \mid * \mid / \end{array}$$

• S = expr

Derivações

- Passo de Derivação:
 - Palavra actual: $\alpha A\beta$
 - Seja $A \rightarrow \gamma$ uma produção de G
 - $\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$ representa um passo de derivação da palavra $\alpha \gamma \beta$ a partir $\alpha A\beta$

Derivações

- Passo de Derivação:
 - Palavra actual: $\alpha A\beta$
 - Seja $A \rightarrow \gamma$ uma produção de G
 - $\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$ representa um passo de derivação da palavra $\alpha \gamma \beta$ a partir $\alpha A\beta$
- Derivações: * representa 0 ou mais passos de derivação:
 - Caso base: Para qualquer palavra α de terminais e não terminais, $\alpha \stackrel{*}{\Rightarrow} \alpha$
 - Indução: Se $\alpha \overset{*}{\underset{G}{\Rightarrow}} \beta$ e $\beta \overset{*}{\underset{G}{\Rightarrow}} \gamma$, então $\alpha \overset{*}{\underset{G}{\Rightarrow}} \gamma$

- Passo de Derivação:
 - Palavra actual: $\alpha A\beta$
 - Seja $A \rightarrow \gamma$ uma produção de G
 - $\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$ representa um passo de derivação da palavra $\alpha \gamma \beta$ a partir $\alpha A\beta$
- Derivações: * representa 0 ou mais passos de derivação:
 - Caso base: Para qualquer palavra α de terminais e não terminais, $\alpha \stackrel{*}{\Rightarrow} \alpha$
 - Indução: Se $\alpha \overset{*}{\underset{G}{\Rightarrow}} \beta$ e $\beta \overset{}{\Rightarrow} \gamma$, então $\alpha \overset{*}{\underset{G}{\Rightarrow}} \gamma$
- Nota: pode utilizar-se \Rightarrow e $\stackrel{*}{\Rightarrow}$ como alternativa a $\stackrel{*}{\Rightarrow}$ e $\stackrel{*}{\stackrel{*}{G}}$, respectivamente

$$S \rightarrow 1S1 \,|\, 0S0 \,|\, 1 \,|\, 0 \,|\, \epsilon$$

Considere a gramática livre de contexto G:

$$S \rightarrow 1S1 \mid 0S0 \mid 1 \mid 0 \mid \epsilon$$

• Quais as palavras que *G* gera?

$$S \to 1S1 \, | \, 0S0 \, | \, 1 \, | \, 0 \, | \, \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$$S \stackrel{*}{\Rightarrow} 11011$$

$$S \rightarrow 1S1 \mid 0S0 \mid 1 \mid 0 \mid \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$$S \stackrel{*}{\Rightarrow} 11011$$
 Sim

$$S \rightarrow 1S1 \mid 0S0 \mid 1 \mid 0 \mid \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$$S \stackrel{*}{\Rightarrow} 11011$$
 Sim $S \stackrel{*}{\Rightarrow} 1001$

Derivações

$$S \to 1S1 \, | \, 0S0 \, | \, 1 \, | \, 0 \, | \, \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$$S \stackrel{*}{\Rightarrow} 11011$$
 Sim $S \stackrel{*}{\Rightarrow} 1001$ Sim

Derivações

$$S \to 1S1 \, | \, 0S0 \, | \, 1 \, | \, 0 \, | \, \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$$S \stackrel{*}{\Rightarrow} 11011$$
 Sim
 $S \stackrel{*}{\Rightarrow} 1001$ Sim
 $S \stackrel{*}{\Rightarrow} 1011$

Derivações

$$S \to 1S1 \, | \, 0S0 \, | \, 1 \, | \, 0 \, | \, \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$S \stackrel{*}{\Rightarrow} 11011$	Sim
$S \stackrel{*}{\Rightarrow} 1001$	Sim
$S \stackrel{*}{\Rightarrow} 1011$	Não

Derivações

$$S \to 1S1 \, | \, 0S0 \, | \, 1 \, | \, 0 \, | \, \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$S \stackrel{*}{\Rightarrow} 11011$	Sim
$S \stackrel{*}{\Rightarrow} 1001$	Sim
$S \stackrel{*}{\Rightarrow} 1011$	Não
$S \stackrel{*}{\Rightarrow} 010010$	

Derivações

$$S \to 1S1 \, | \, 0S0 \, | \, 1 \, | \, 0 \, | \, \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$S \stackrel{*}{\Rightarrow} 11011$	Sim
$S \stackrel{*}{\Rightarrow} 1001$	Sim
$S \stackrel{*}{\Rightarrow} 1011$	Não
$S\stackrel{*}{\Rightarrow} 010010$	Sim

Considere a gramática livre de contexto G:

$$S \to 1S1 \, | \, 0S0 \, | \, 1 \, | \, 0 \, | \, \epsilon$$

- Quais as palavras que G gera?
- Exemplos:

$$S \stackrel{*}{\Rightarrow} 11011$$
 Sim $S \stackrel{*}{\Rightarrow} 1001$ Sim $S \stackrel{*}{\Rightarrow} 1011$ Não $S \stackrel{*}{\Rightarrow} 010010$ Sim

ullet Resposta: G gera palíndromos sobre o alfabeto $\{0,1\}$

Linguagem gerada

Dada uma gramática livre de contexto $G = (N, \Sigma, R, S)$:

 linguagem de G, L(G) é o conjunto de palavras com derivações a partir do símbolo inicial

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\underset{G}{\Rightarrow}} w \}$$

Derivações: à esquerda e à direita

Derivação à esquerda:
 Substituir símbolo não terminal mais à esquerda a cada passo de derivação

Derivações: à esquerda e à direita

Derivação à esquerda:
 Substituir símbolo não terminal mais à esquerda a cada passo de derivação

- Notação: \Rightarrow e \Rightarrow $\stackrel{*}{\underset{lm}{\longrightarrow}}$

Derivações: à esquerda e à direita

- Derivação à esquerda:
 Substituir símbolo não terminal mais à esquerda a cada passo de derivação
 - Notação: \Rightarrow e \Rightarrow $\stackrel{*}{\Longrightarrow}$ $\stackrel{Im}{\bowtie}$
 - Exemplo. Derivação à esquerda da string id * (-id):

$$\begin{array}{ll} \operatorname{expr} & \underset{lm}{\Longrightarrow} \operatorname{expr} \operatorname{op} \operatorname{expr} \underset{lm}{\Longrightarrow} \operatorname{id} \ast \operatorname{expr} \\ & \underset{lm}{\Longrightarrow} \operatorname{id} \ast (\operatorname{expr}) \underset{lm}{\Longrightarrow} \operatorname{id} \ast (-\operatorname{expr}) \underset{lm}{\Longrightarrow} \operatorname{id} \ast (-\operatorname{id}) \end{array}$$

Derivações: à esquerda e à direita

- Derivação à esquerda:
 Substituir símbolo não terminal mais à esquerda a cada passo de derivação
 - Notação: \Rightarrow e \Rightarrow $\stackrel{*}{\underset{lm}{\Rightarrow}}$
 - Exemplo. Derivação à esquerda da string id * (-id):

expr
$$\Rightarrow$$
 expr op expr \Rightarrow id op expr \Rightarrow id * expr
 \Rightarrow id * (expr) \Rightarrow id * (-expr) \Rightarrow id * (-id)

Derivação à direita:
 Substituir símbolo não terminal mais à direita a cada passo de derivação

Derivações: à esquerda e à direita

- Derivação à esquerda:
 Substituir símbolo não terminal mais à esquerda a cada passo de derivação
 - Notação: \Rightarrow e \Rightarrow $\stackrel{*}{\underset{lm}{\Rightarrow}}$
 - Exemplo. Derivação à esquerda da string id * (-id):

$$\begin{array}{ll} \exp r & \Longrightarrow \exp r \text{ op } \exp r \Longrightarrow id \text{ op } \exp r \Longrightarrow id * \exp r \\ & \Longrightarrow id * (expr) \Longrightarrow id * (-expr) \Longrightarrow id * (-id) \end{array}$$

- Derivação à direita:
 Substituir símbolo não terminal mais à direita a cada passo de derivação
 - Notação: \Rightarrow e \Rightarrow

Derivações: à esquerda e à direita

- Derivação à esquerda:
 Substituir símbolo não terminal mais à esquerda a cada passo de derivação
 - Notação: ⇒ e ⇒ lm
 - Exemplo. Derivação à esquerda da *string* id * (-id):

expr
$$\Rightarrow$$
 expr op expr \Rightarrow id op expr \Rightarrow id * expr
 \Rightarrow id * (expr) \Rightarrow id * (-expr) \Rightarrow id * (-id)

- Derivação à direita:
 Substituir símbolo não terminal mais à direita a cada passo de derivação
 - Notação: ⇒ e ⇒ m
 - Exemplo. Derivação à direita da string id * (-id):

expr
$$\Longrightarrow \exp r$$
 op $\exp r \Longrightarrow \exp r$ op $(\exp r) \Longrightarrow \exp r$ op $(-\exp r)$
 $\Longrightarrow \exp r$ op $(-id) \Longrightarrow \exp r * (-id) \Longrightarrow id * (-id)$

Árvore sintáctica Definição

Uma árvore sintáctica (ou de parsing) é uma representação gráfica de uma derivação.

• A ordem em que as produções são aplicadas não é representada

Árvore sintáctica Definição

Uma árvore sintáctica (ou de parsing) é uma representação gráfica de uma derivação.

A ordem em que as produções são aplicadas não é representada

Árvore de sintáctica para $G = (V, \Sigma, R, S)$:

- Cada nó interior etiquetado com um símbolo não terminal de V
- Cada nó folha etiquetado com um símbolo terminal, não terminal, ou ϵ
 - Se um nó folha é etiquetado com ϵ , então é o único filho do nó pai
- Se nó interior é etiquetado com A e os filhos são etiquetados com X_1, X_2, \ldots, X_k (a partir da esquerda), então $A \to X_1 X_2 \ldots X_k$ é uma produção de G

Exemplo

• Derivação de id * (-id) a partir de expr

Exemplo

• Derivação de id * (-id) a partir de expr

Exemplo

• Derivação de id * (-id) a partir de expr

Árvore sintáctica Resultado

Resultado: nós folha da árvore sintáctica concatenados da esquerda para a direita

Resultado

Resultado: nós folha da árvore sintáctica concatenados da esquerda para a direita

Exemplo:

Resultado

Resultado: nós folha da árvore sintáctica concatenados da esquerda para a direita

Exemplo:

Resultado é: id * (- id)

Propriedades

Propriedades:

- Ambiguidade
- Precedência
- Associatividade

Propriedades - Ambiguidade

Uma gramática $G = V, \Sigma, R, S$) diz-se ambígua se existe pelo menos uma palavra em Σ^* que tem duas árvores sintácticas diferentes, ambas com raíz S

Propriedades - Ambiguidade

Uma gramática $G = V, \Sigma, R, S$) diz-se ambígua se existe pelo menos uma palavra em Σ^* que tem duas árvores sintácticas diferentes, ambas com raíz S

Exemplo: id + id * id

Propriedades - Ambiguidade

Uma gramática $G=V,\Sigma,R,S$) diz-se ambígua se existe pelo menos uma palavra em Σ^* que tem duas árvores sintácticas diferentes, ambas com raíz S

Propriedades - Ambiguidade

Uma gramática $G=V,\Sigma,R,S$) diz-se ambígua se existe pelo menos uma palavra em Σ^* que tem duas árvores sintácticas diferentes, ambas com raíz S

Exemplo: id + id * id

Propriedades - Ambiguidade

Uma gramática $G = V, \Sigma, R, S$ diz-se ambígua se existe pelo menos uma palavra em Σ^* que tem duas árvores sintácticas diferentes, ambas com raíz S

Nota: Não é possível processar gramáticas ambíguas de forma eficiente!

Por vezes é necessário transformar a gramática de forma a remover as ambiguidades.

Propriedades - Associatividade

A associatividade é uma propriedade de operadores binários.

$$\forall x, y, z \ (x\Delta y)\Delta z = x\Delta(y\Delta z)$$

Mas nem todos os operadores binários são associativos.

• e.g. subtracção não é associativa $(5-2)-1 \neq 5-(2-1)$

Propriedades - Associatividade

A associatividade é uma propriedade de operadores binários.

$$\forall x, y, z \ (x\Delta y)\Delta z = x\Delta(y\Delta z)$$

Mas nem todos os operadores binários são associativos.

ullet e.g. subtracção não é associativa (5-2)-1
eq 5-(2-1)

Solução: usar um símbolo diferente à esquerda e à direita do operador

Propriedades - Precedência

Muitas linguagens têm regras de precedência entre operadores. Exemplo (árvores sintácticas anteriores):

Propriedades - Precedência

Muitas linguagens têm regras de precedência entre operadores. Exemplo (árvores sintácticas anteriores):

$$E \rightarrow E + T \mid T$$

$$E \rightarrow E - T \mid T$$

$$T \rightarrow T * F \mid F$$

$$T \rightarrow T / F \mid F$$

$$F \rightarrow id$$

 $F \rightarrow (E)$

As precedências podem ser ditadas pela estrutura das regras! afectando a profundidade a que os operadores ficam na árvore.

Quanto maior a precedência, mais profundos ficam!

Recursão à esquerda

Uma gramática diz-se recursiva à esquerda se tem pelo menos um símbolo não terminal A com uma derivação contendo A como o símbolo mais à esquerda.

• e.g.,
$$E \rightarrow E + T$$

Recursão à direita

Uma gramática diz-se recursiva à direita se tem pelo menos um símbolo não terminal A com uma derivação contendo A como o símbolo mais à direita.

• e.g., $E \rightarrow T + E$

Outline

Gramáticas livres de contexto

Conjuntos de análise

Algoritmos de parsing

Os algoritmos de análise sintáctica usam conjuntos de símbolos terminais que ajudam a determinar as regras da gramática.

Os algoritmos de análise sintáctica usam conjuntos de símbolos terminais que ajudam a determinar as regras da gramática.

• FIRST - conjunto de símbolos terminais que iniciam sequências derivadas a partir de \boldsymbol{X}

Os algoritmos de análise sintáctica usam conjuntos de símbolos terminais que ajudam a determinar as regras da gramática.

- FIRST conjunto de símbolos terminais que iniciam sequências derivadas a partir de X
- FOLLOW conjunto de símbolos terminais a que podem aparecer imediatamente a seguir a X

Os algoritmos de análise sintáctica usam conjuntos de símbolos terminais que ajudam a determinar as regras da gramática.

- FIRST conjunto de símbolos terminais que iniciam sequências derivadas a partir de X
- FOLLOW conjunto de símbolos terminais a que podem aparecer imediatamente a seguir a X
- LOOKAHEAD conjunto de antevisão

FIRST(X) - conjunto de símbolos terminais que iniciam sequências derivadas a partir de X

Algoritmo:

- se α é um símbolo terminal, então $FIRST(\alpha) = {\alpha}$
- se X é um símbolo não terminal:
 - se X → ϵ é uma produção, então $\epsilon \in FIRST(X)$
 - se $X \to Y_1 \dots Y_n$ é uma produção, então:
 - ▶ se $\epsilon \notin FIRST(Y_1)$, $FIRST(Y_1) \subseteq FIRST(X)$
 - ▶ se $\epsilon \in FIRST(Y_1)$, $FIRST(Y_1) \setminus \{\epsilon\} \cup FIRST(Y_2 ... Y_n) \subseteq FIRST(X)$
 - ▶ se $\epsilon \in FIRST(Y_1) \land \ldots \land \epsilon \in FIRST(Y_n)$, $\epsilon \in FIRST(X)$

$$\begin{array}{cccc} E & \rightarrow & T \ E' \\ E' & \rightarrow & + T \ E' \ | \ \epsilon \\ T & \rightarrow & F \ T' \\ T' & \rightarrow & * F \ T' \ | \ \epsilon \\ F & \rightarrow & (E) \ | \ \mathrm{id} \end{array}$$

FIRST - Exemplo

• $\forall_{\alpha \in \Sigma}$, FIRST(α) = { α }, Σ = {(,), +, *, id}

- $\forall_{\alpha \in \Sigma}$, FIRST(α) = { α }, Σ = {(,),+,*,id}
- FIRST(F) = {(, id}

- $\forall_{\alpha \in \Sigma}$, FIRST $(\alpha) = {\alpha}$, $\Sigma = {(,),+,*,id}$
- FIRST(F) = {(, id}
- FIRST $(T) = \{(i, id)\}$

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + \, T \, E' \mid \epsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & * \, F \, T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- $\forall_{\alpha \in \Sigma}$, FIRST $(\alpha) = {\alpha}$, $\Sigma = {(,),+,*,id}$
- FIRST(F) = {(, id}
- FIRST $(T) = \{(i, id)\}$
- FIRST(E) = {(, id}

- $\forall_{\alpha \in \Sigma}$, FIRST $(\alpha) = {\alpha}$, $\Sigma = {(,),+,*,id}$
- FIRST(F) = {(, id}
- FIRST $(T) = \{(i, id)\}$
- FIRST(E) = {(, id}
- FIRST(E') = $\{+, \epsilon\}$

- $\forall_{\alpha \in \Sigma}$, FIRST(α) = { α }, Σ = {(,),+,*,id}
- FIRST(F) = {(, id}
- FIRST $(T) = \{(i, id)\}$
- FIRST(E) = {(, id}
- FIRST(E') = $\{+, \epsilon\}$
- FIRST $(T') = \{*, \epsilon\}$

FOLLOW - conjunto de símbolos terminais *a* que podem aparecer imediatamente a seguir a *X*. Calculado apenas para símbolos não terminais.

Algoritmo:

- se X é o símbolo inicial, então $\$ \in FOLLOW(X)$
- se $A \to \alpha X \beta$ é uma produção, então $FIRST(\beta) \setminus \{\epsilon\} \subseteq FOLLOW(X)$
- se $A \to \alpha X$ ou $A \to \alpha X \beta$ ($\beta \stackrel{*}{\Rightarrow} \epsilon$), então $FOLLOW(A) \subseteq FOLLOW(X)$
- Repetir até que os conjuntos FOLLOW não sejam alterados

FOLLOW - Exemplo

FOLLOW - Exemplo

$$\begin{array}{cccc} E & \rightarrow & T \ E' \\ E' & \rightarrow & + T \ E' \ | \ \epsilon \\ T & \rightarrow & F \ T' \\ T' & \rightarrow & * F \ T' \ | \ \epsilon \\ F & \rightarrow & (E) \ | \ \mathrm{id} \end{array}$$

FOLLOW(E) = {\$}

- FOLLOW(E) = {\$}
- $FOLLOW(T) = FIRST(E') \setminus \{\epsilon\} = \{+\}$

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + \, T \, E' \mid \epsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & * \, F \, T' \mid \epsilon \\ F & \rightarrow & \left(\, E \, \right) \mid \mathrm{id} \end{array}$$

- FOLLOW(E) = {\$}
- FOLLOW(T) = FIRST(E') \ $\{\epsilon\}$ = $\{+\}$
- $FOLLOW(E) = FOLLOW(E) \cup FIRST()) = \{), \$\}$

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + \, T \, E' \mid \epsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & * \, F \, T' \mid \epsilon \\ F & \rightarrow & \left(\, E \, \right) \mid \mathrm{id} \end{array}$$

- FOLLOW(E) = {\$}
- FOLLOW(T) = FIRST(E') \ $\{\epsilon\}$ = $\{+\}$
- $FOLLOW(E) = FOLLOW(E) \cup FIRST()) = \{), \$\}$
- $FOLLOW(E') = FOLLOW(E) = \{\}, \}$

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + \, T \, E' \mid \epsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & * \, F \, T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- FOLLOW(E) = {\$}
- FOLLOW(T) = FIRST(E') \ $\{\epsilon\}$ = $\{+\}$
- $FOLLOW(E) = FOLLOW(E) \cup FIRST()) = \{), \$\}$
- FOLLOW(E') = FOLLOW(E) = {),\$}
- $\mathsf{FOLLOW}(T) = \mathsf{FIRST}(E') \setminus \{\epsilon\} \cup \mathsf{FOLLOW}(E) \cup \mathsf{FOLLOW}(E') = \{+, \}$

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + \, T \, E' \mid \epsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & * \, F \, T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- FOLLOW(E) = {\$}
- FOLLOW(T) = FIRST(E') \ $\{\epsilon\}$ = $\{+\}$
- $FOLLOW(E) = FOLLOW(E) \cup FIRST()) = \{), \$\}$
- FOLLOW(E') = FOLLOW(E) = {),\$}
- $FOLLOW(T) = FIRST(E') \setminus \{\epsilon\} \cup FOLLOW(E) \cup FOLLOW(E') = \{+, \}$
- $FOLLOW(T') = FOLLOW(T) = \{+, \}$

$$\begin{array}{cccc} E & \rightarrow & T \, E' \\ E' & \rightarrow & + \, T \, E' \mid \epsilon \\ T & \rightarrow & F \, T' \\ T' & \rightarrow & * \, F \, T' \mid \epsilon \\ F & \rightarrow & (E) \mid \mathrm{id} \end{array}$$

- FOLLOW(E) = {\$}
- FOLLOW(T) = FIRST(E') \ $\{\epsilon\}$ = $\{+\}$
- $FOLLOW(E) = FOLLOW(E) \cup FIRST()) = \{), \$\}$
- FOLLOW(E') = FOLLOW(E) = {),\$}
- $FOLLOW(T) = FIRST(E') \setminus \{\epsilon\} \cup FOLLOW(E) \cup FOLLOW(E') = \{+, \}$
- $FOLLOW(T') = FOLLOW(T) = \{+, \}$
- $FOLLOW(F) = FIRST(T') \setminus \{\epsilon\} \cup FOLLOW(T) \cup FOLLOW(T') = \{*, +,), \$\}$

LOOKAHEAD - conjunto de antevisão

Dada uma regra $A \rightarrow \alpha$, o $LOOKAHEAD(A \rightarrow \alpha)$ é:

- FIRST(α), se $\alpha \not\stackrel{*}{\Rightarrow} \epsilon$
- $FIRST(\alpha) \bigcup FOLLOW(A)$, se $\alpha \stackrel{*}{\Rightarrow} \epsilon$

Outline

Gramáticas livres de contexto

Conjuntos de análise

Algoritmos de parsing

• **Objectivo**: decidir se $w \in L(G)$?

- **Objectivo**: decidir se $w \in L(G)$?
- Universais
 - Algoritmo de Earley
 - Algoritmo de Cocke-Younger-Kasami (CYK)
 - Gramática representada em CNF (Chomsky Normal Form)
 - Ineficientes, n\u00e3o utilizados em compiladores

- **Objectivo**: decidir se $w \in L(G)$?
- Universais
 - Algoritmo de Earley
 - Algoritmo de Cocke-Younger-Kasami (CYK)
 - Gramática representada em CNF (Chomsky Normal Form)
 - Ineficientes, não utilizados em compiladores
- Específicos para gramáticas LL(k)/LR(k)
 - Eficientes

Gramáticas livres de contexto divididas em:

- LL(k) parsing
 - Top-down análise descendente
 - Considera sempre derivações mais à esquerda

Gramáticas livres de contexto divididas em:

- LL(k) parsing
 - Top-down análise descendente
 - Considera sempre derivações mais à esquerda
- LR(k) parsing
 - Bottom-up análise ascendente
 - Considera sempre derivações mais à direita

Gramáticas livres de contexto divididas em:

- LL(k) parsing
 - Top-down análise descendente
 - Considera sempre derivações mais à esquerda
- LR(k) parsing
 - Bottom-up análise ascendente
 - Considera sempre derivações mais à direita
- k indica o número de símbolos de LOOKAHEAD

LL vs LR parsing

• Parsers LL vs. parsers LR:

Questões?

Dúvidas?