Machine Learning for Graphs and Sequential Data

Sequential Data – Hidden Markov Models

Lecturer: Prof. Dr. Stephan Günnemann

cs.cit.tum.de/daml

Roadmap

- Chapter: Temporal Data / Sequential Data
 - 1. Autoregressive Models
 - 2. Markov Chains
 - 3. Hidden Markov Models
 - 4. Neural Network Approaches
 - 5. Temporal Point Processes

Motivation

- Basic autoregressive models and Markov Chains are very restrictive/simple
 - Do not capture complex, real-world data well
- Next: Probabilistic **latent variable models** for sequences of observations $X_1, X_2, ..., X_T$.
 - Enable to capture more complex behavior
 - Again we focus on discrete time-steps; while the observations might be discrete or continuous
- Examples:
 - Object-tracking:
 - $-X_t = \text{location of a moving object at time-step t}$
 - Time-series forecasting:
 - $-X_t = \text{measurement of a sensor at time-step t (weather, stock market, ...)}$
 - Natural language processing:
 - $-X_t = t$ -th word in a sentence

Hidden Markov Models

- Motivation 1: In many applications, the Markov property is not realistic.
 - X_t does not capture all relevant information of $[X_1, ..., X_t] \rightarrow$ need to consider long-range dependencies, while keeping the number of parameters low.
- Motivation 2: In many applications, the state is not known but can only be observed indirectly, e.g., with sensors.
 - Example application: tracking location of an airplane
 - Not observed/latent state Z_t : physical vector quantities (e.g. position, velocity, etc.) at time-step t
 - $-X_t$: observed noisy measurements of airplane location at time-step t
 - Note that the sequence $[Z_1, Z_2, ..., Z_T]$ has the Markov-property. That is, one can use physics laws to approximate Z_{t+1} using Z_t .
 - However, the sequence $[X_1, ..., X_T]$ does not necessarily have the Markov-property \Rightarrow We need to model long-range dependencies in this sequence.

Hidden Markov Models - Definition

- Definition: A **Hidden Markov Model (HMM)** is composed of a sequence of **hidden/latent** variables $[Z_1, ..., Z_T]$ and a sequence of **observed** variables $[X_1, ..., X_T]$ such that:
 - The r.v. Z_1, \dots, Z_T satisfy the Markov property:

$$P(Z_{t+1}|Z_t,Z_{t-1},...,Z_1) = P(Z_{t+1}|Z_t)$$
transition probabilities

- Distribution of X_t depends only on Z_t :

$$P(X_{t+1}|Z_1,...,Z_{T},X_1,...,X_{T}) = P(X_{t+1}|Z_{t+1})$$
emission probabilities

- By convention for HMMs we assume discrete time $t \in \{1,2,...,T\}$ and discrete r.v. $Z_t \in \{1,2,...,K\}$.
- The observed data can be discrete or continuous

Hidden Markov Models – General Case

In the general case, the graphical model of a HMM is:

The joint distribution can be written as:

$$P(Z_{1} = z_{1}, ..., Z_{T} = z_{T}, X_{1} = x_{1}, ..., X_{T} = x_{T})$$

$$= P(Z_{1} = z_{1}; \pi) \prod_{t=1}^{T-1} P(Z_{t+1} = z_{t+1} | Z_{t} = z_{t}; \theta^{(t+1)}) \prod_{t=1}^{T} P(X_{t} = x_{t} | Z_{t} = z_{t}; \phi^{(t)})$$

From /starting [Yawition prob]

Hidden Markov Models – Discrete Case

• We start be discussing the discrete case, i.e. $X_t \in \{1, 2, ..., K'\}$:

$$P(Z_{1} = i) = \pi_{i}$$

$$P(Z_{t+1} = j | Z_{t} = i) = A_{ij}^{(t+1)}$$

$$P(X_{t+1} = j | Z_{t+1} = i) = B_{ij}^{(t+1)}$$

 $\#Parameters = K + (T - 1) K^2 + TKK'$

Hidden Markov Models – Parameter Tying

To reduce the number of parameters, variables can share parameters:

#Parameters = $K + K^2 + KK'$

From now on, we assume parameter tying as in Markov chains. The joint distribution becomes:

$$P(Z_1 = z_1, ..., Z_T = z_T, X_1 = x_1, ..., X_T = x_T) = P(Z_1 = z_1; \pi) \prod_{t=1}^{T-1} A_{z_t z_{t+1}} \prod_{t=1}^{T} B_{z_t x_t}$$

$$P(Z_{1} = z_{1}, ..., Z_{T} = z_{T}, X_{1} = x_{1}, ..., X_{T} = x_{T})$$

$$= P(Z_{1} = z_{1}; \pi) \prod_{t=1}^{T-1} P(Z_{t+1} = z_{t+1} | Z_{t} = z_{t}; \theta^{(t+1)}) \prod_{t=1}^{T} P(X_{t} = x_{t} | Z_{t} = z_{t}; \phi^{(t)})$$
Typical Solution and the probabilities are probabilities.

Hidden Markov Models – Example 1

- Example 1: Part of speech tagging / sequence labeling
 - Z_t : part of speech (noun, verb, adjective, etc.)
 - $-X_t$: a word

JJ: adjective

NN: noun, singular or mass

VBZ: verb, 3rd person singular present

DT: determiner

IN: preposition or subordinating conjunction

Example adapted from: http://www.phontron.com/slides/nlp-programming-en-04-hmm.pdf

Hidden Markov Models – Example 2

- Example 2: A simple model for daily weather condition
 - $-Z_t \in \{rainy, sunny, cloudy\}$: hidden weather condition at day t
 - $-X_t \in \{high, low\}$: measured temperature at day t

$$Pr(Z_{t+1} = j | Z_t = i) = A_{ij}$$

$$Pr(X_t = j | Z_t = i) = B_{ij}$$

$$B = \begin{bmatrix} Righ & Volume{8} \\ rainy & 0.2 & 0.8 \\ sunny & 0.9 & 0.1 \\ cloudy & 0.3 & 0.7 \end{bmatrix}$$

Tasks Concerning HMMs

Inference:

- We let model parameters be fixed (e.g. tuned by an expert).
- We seek to find some information from the posterior distribution $Pr(Z_{1:T}|X_{1:T})$.
- Examples:
 - Filtering / Smoothing (forwards backwards)
 - MAP inference (Viterbi)
- Parameter Learning:
 - We seek to learn model parameters
 - $-X_{1:T}$ is observed
 - $-Z_{1:T}$ is (usually) not observed

Recall:

 π : parametrizes $Pr(Z_1)$

A: parametrizes $Pr(Z_{t+1}|Z_t)$ B: parametrizes $Pr(X_t|Z_t)$

Inference for HMMs

- Filtering: computes the belief state $Pr(Z_t|X_{1:t})$ incrementally as the data streams-in, i.e., online setting.
 - Infers Z_t using the observations up to time-step t.
- Smoothing: computes $Pr(Z_t|X_{1:T})$ offline.
 - Infers Z_t by conditioning on past and future data.
- MAP inference: computes $\underset{Z_{1:T}}{\text{MAP inference: computes}} \operatorname{Computes} \operatorname{arg\,max}_{Z_{1:T}} \Pr(Z_{1:T}|X_{1:T}).$
 - i.e. mode of the posterior distribution.
 - Also known as Viterbi decoding
 - Attention: Most probable sequence might be different from simply using mode of $\Pr(Z_t|X_{1:T})$ for each t individually

The Forwards Algorithm

- Goal: incrementally compute $P(Z_t|X_{1:t})$
 - The Bayes rule gives:

$$P(Z_t = k | X_{1:t}) = \frac{P(Z_t = k, X_{1:t})}{\sum_{j=1}^{K} P(Z_t = j, X_{1:t})} = p(X_{1:t})$$

– For convenience, we denote:

$$\underline{\alpha_t(k)} \stackrel{\text{def}}{=} P(Z_t = k, X_{1:t}) \text{ and } \underline{\alpha_t} = \begin{bmatrix} \alpha_t(1) \\ \vdots \\ \alpha_t(K) \end{bmatrix}$$

- Hence, we have:

$$P(Z_t = k | X_{1:t}) = \frac{\alpha_t(k)}{sum(\alpha_t)}$$

- The Forward algorithm computes recursively the parameters:
 - 1. Compute α_1 (initialisation)
 - 2. Given α_t , compute α_{t+1} (recursion)

The Forwards Algorithm - Initialisation

• Initialisation: The computation of the parameters $lpha_1$ can be done directly

$$\alpha_1(k) = P(Z_1 = k, X_1)$$

$$= P(Z_1 = k)P(X_1|Z_1 = k)$$

$$= \pi_k B_{kx_1}$$

The Forwards Algorithm - Recursion

lacktriangle Recursion: Given $lpha_t$, we can compute $lpha_{t+1}$

$$\alpha_{t+1}(k) = P(Z_{t+1} = k, X_{1:t+1})$$

$$= P(X_{t+1}|Z_{t+1} = k, X_{1:t})P(Z_{t+1} = k, X_{1:t})$$

$$= P(X_{t+1}|Z_{t+1} = k) \sum_{j=1}^{K} P(Z_{t+1} = k, Z_t = j, X_{1:t})$$

$$= P(X_{t+1}|Z_{t+1} = k) \sum_{j=1}^{K} P(Z_{t+1} = k|Z_t = j, X_{1:t}) P(Z_t = j, X_{1:t})$$

$$= B_{k(x_{t+1})} \sum_{j=1}^{K} A_{jk} \alpha_t(j)$$

The Forwards Algorithm (cont.)

Writing the last equation using matrix operators:

$$\alpha_{t+1}(k) = B_{k(x_{t+1})} \sum_{j=1}^{K} \alpha_{t}(j) A_{jk}$$

$$\alpha_{t+1} = B_{:(x_{t+1})} \odot (A'\alpha_{t})$$

$$\begin{bmatrix} \alpha_{t+1}(1) \\ \alpha_{t+1}(2) \\ \vdots \\ \alpha_{t+1}(K) \end{bmatrix} = \begin{bmatrix} B(1, x_{t+1}) \\ B(2, x_{t+1}) \\ \vdots \\ B(K, x_{t+1}) \end{bmatrix} \odot \begin{bmatrix} A' \\ \alpha_{t}(1) \\ \alpha_{t}(2) \\ \vdots \\ \alpha_{t}(K) \end{bmatrix}$$

• Finding $\alpha_{1:T}$ requires $O(TK^2)$ operations, which is linear in T.

The Forward-Backwards Algorithm

- Goal: incrementally compute $P(Z_t|X_{1:T})$
 - The Bayes rule gives:

$$P(Z_t = k | X_{1:T}) = \frac{P(Z_t = k, X_{1:t}) P(X_{t+1:T} | Z_t = k)}{\sum_{j=1}^{K} P(Z_t = j, X_{1:T})}$$

For convenience, we denote also:

$$\beta_t(k) \stackrel{\text{def}}{=} P(X_{t+1:T}|Z_t = k) \text{ and } \boldsymbol{\beta}_t = \begin{bmatrix} \beta_t(1) \\ \vdots \\ \beta(K) \end{bmatrix}$$

– Hence, using $\alpha_t(k)$ and $\beta_t(k)$ we have:

$$P(Z_t = k | X_{1:T}) \propto \alpha_t(k) \beta_t(k)$$

- The Backward algorithm computes recursively the parameters:
 - 1. Compute β_T (initialisation)
 - 2. Given β_{t+1} , compute β_t (recursion)

The Backward Algorithm - Initialisation

• Initialisation: The computation of the parameters β_T can be done directly

$$\beta_T(k) = 1$$

This comes from the fact that $P(Z_t = k | X_{1:T}) \propto \alpha_t(k) \beta_t(k)$ and that for t = T the term is already completely "captured" by $\alpha_t(k)$. Thus $\beta_T(k)$ has to be a constant.

The Backward Algorithm - Recursion

■ Recursion: Given β_{t+1} , we can compute β_t

$$\beta_{t}(j) = P(X_{t+1:T}|Z_{t} = j)$$

$$= \sum_{k=1}^{K} P(X_{t+1:T}, Z_{t+1} = k|Z_{t} = j)$$

$$= \sum_{k=1}^{K} P(X_{t+1}, Z_{t+1} = k|Z_{t} = j) P(X_{t+2:T}|Z_{t} = j, X_{t+1}, Z_{t+1} = k)$$

$$= \sum_{k=1}^{K} P(Z_{t+1} = k|Z_{t} = j) \Pr(X_{t+1}|Z_{t+1} = k, Z_{t} = j) P(X_{t+2:T}|Z_{t+1} = k)$$

$$= \sum_{k=1}^{K} A_{jk} B_{kx_{t+1}} \beta_{t+1}(k)$$

The Backward Algorithm (cont.)

Writing the last equation using matrix operators:

$$\beta_{t}(j) = \sum_{k=1}^{K} A_{jk} B_{kx_{t+1}} \beta_{t+1}(k)$$

$$\beta_{t} = A \left(B_{:(x_{t+1})} \odot \beta_{t+1}\right)$$

$$\begin{bmatrix} \beta_{t}(1) \\ \beta_{t}(2) \\ \vdots \\ \beta_{t}(K) \end{bmatrix} = A \begin{bmatrix} B(1, x_{t+1}) \\ B(2, x_{t+1}) \\ \vdots \\ B(K, x_{t+1}) \end{bmatrix} \odot \begin{bmatrix} \beta_{t+1}(1) \\ \beta_{t+1}(2) \\ \vdots \\ \beta_{t+1}(K) \end{bmatrix}$$

• Computing $\beta_{1:T}$ requires $O(TK^2)$ operations, which is linear in T.

The Forward-Backward Algorithm - Applications I

Compute the probability of being in state k at time t online:

$$P(Z_t = k | X_{1:t}) = \frac{\alpha_t(k)}{\sum_{s} \alpha_t(s)}$$

- via argmax we can simply get the most likely state k
- Compute the probability of being in state k at time t offline:

$$\gamma_t(k) \coloneqq P(Z_t = k | X_{1:T}) = \frac{\alpha_t(k)\beta_t(k)}{\sum_s \alpha_t(s)\beta_t(s)}$$

The Forward-Backward Algorithm – Applications II

Compute the probability that two "adjacent" states have specific realizations:

$$\xi_t(i,j) \coloneqq P(Z_t = i, Z_{t+1} = j | X_{1:T}) = \frac{\alpha_t(i) A_{ij} \beta_{t+1}(j) B_{jx_{t+1}}}{\sum_{u} \sum_{v} \alpha_t(u) A_{uv} \beta_{t+1}(v) B_{vx_{t+1}}}$$

Proof: Observe that $P(X_{1:T})$ is some constant, thus we have $\xi_t(i,j) \propto P(Z_t=i,Z_{t+1}=j,X_{1:T})$. Now, by writing the chain rule as $\{Z_t=i,X_{1:t}\},\{Z_{t+1}=j\},\{X_{t+2:T}\},\{X_{t+1}\}$, we obtain:

MAP Inference in HMMs

- Goal: Given the observed sequence $X_{1:T}$, find the most probable sequence of hidden states z_1, \dots, z_T .
- In other words, find mode of the posterior distribution $Pr(Z_{1:T}|X_{1:T})$

$$\arg \max_{Z} P(Z_{1:T}|X_{1:T}) = \arg \max_{Z} \log[P(Z_{1:T}, X_{1:T})]$$

$$= \arg \max_{Z} \log[P(Z_1) P(X_1|Z_1)] + \sum_{t=2}^{T} \log[P(Z_t|Z_{t-1}) P(X_t|Z_t)]$$

- Each term $log[P(Z_t|Z_{t-1}) P(X_t|Z_t)]$ depends on values of Z_{t-1} and Z_t .
 - Think of it as a bi-partite graph. weight of the edge $(i j) = -\log[P(Z_t = j | Z_{t-1} = i) P(X_t | Z_t = j)]$

MAP Inference in HMMs (cont.)

- We can formulate the MAP inference as a shortest-paths problem.
 - weights of edges connected to the Start node: $-\log[\Pr(Z_1 = j) \Pr(X_1 | Z_1 = j)]$
 - weights of the intermediate layers: $-\log[\Pr(Z_t = j | Z_{t-1} = i) \Pr(X_t | Z_t = j)] = f(i,j)$
 - weights of the edges connected to the End node: 0

Each directed path corresponds to an assignment to variables $Z_{1:T}$. Sum of edge weights $= -logPr(Z_{1:T}, X_{1:T})$

complexity: $O(TK^2)$

Called Viterbi algorithm

Parameter Learning

- Variables $X_{1:T_n}^{(n)}$ are observed, not $Z_{1:T_n}^{(n)}$
- To keep the notation simple, let's assume that we have a single sequence X.

- We seek to learn model parameters $\theta = \{\pi, A, B\}$.
- Goal: Solve $\max_{\boldsymbol{\theta}} \log P(\boldsymbol{X}|\boldsymbol{\theta})$
- Problem: No analytical solution due to marginalization

$$- \log p_{\theta}(X) = \log \sum_{Z} P(X|Z, \theta) \cdot P(Z|\theta)$$

- We encountered this problem before! (Gaussian mixture models)
- You know how to (approximately) solve it! EM algorithm!

Recap: EM algorithm

- Problem: $\max_{\boldsymbol{\theta}} \log P(\boldsymbol{X}|\boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \log \sum_{\boldsymbol{Z}} P(\boldsymbol{X}|\boldsymbol{Z},\boldsymbol{\theta}) \cdot P(\boldsymbol{Z}|\boldsymbol{\theta})$
- We can iterate between two steps to maximize a lower bound on our objective
 - E step evaluate the posterior $P(Z|X, \theta^{old})$
 - Here, $oldsymbol{ heta}^{old}$ is the value of $oldsymbol{ heta}$ from the previous iteration
 - M step maximize the expected joint log-likelihood $\log P(X, Z|\theta)$ under the old posterior w.r.t. θ

$$- \boldsymbol{\theta}^{new} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{P(\boldsymbol{Z}|\boldsymbol{X},\boldsymbol{\theta}^{old})}[\log p(\boldsymbol{X},\boldsymbol{Z}|\boldsymbol{\theta})]$$

- The M step is equivalent to maximizing the evidence lower bound (ELBO), which is a lower bound on $\log P(X|\theta)$
 - For more details, see our lecture on variational inference in "Advanced Machine Learning: Deep Generative Models" (CIT4230003)

Parameter Learning – E step

For HMMs, the posterior is:

$$P(Z_{1:T}|X_{1:T},\boldsymbol{\theta}^{old}) = \frac{P(X_{1:T}|Z_{1:T},\boldsymbol{\theta}^{old})P(Z_{1:T}|\boldsymbol{\theta}^{old})}{\sum_{Z_{1:T}}P(X_{1:T}|Z_{1:T},\boldsymbol{\theta}^{old})P(Z_{1:T}|\boldsymbol{\theta}^{old})}$$
with
$$P(X_{1:T}|Z_{1:T},\boldsymbol{\theta}^{old})P(Z_{1:T}|\boldsymbol{\theta}^{old}) = \prod_{t=1}^{T}P(X_{t}|Z_{t},\boldsymbol{\theta}^{old})P(Z_{t}|Z_{t-1},\boldsymbol{\theta}^{old})$$

- Important fact: The posterior does not factorize
 - i.e. $P(Z_{1:T}|X_{1:T}, \boldsymbol{\theta}^{old})$ does **not** have one factor per Z_t
 - This is different from GMMs, where we had one term per sample
 - still, we do **not** have an exponential blow up $O(K^T)$; only $O(TK^2)$

Parameter Learning – M step

For HMMs, the expected joint log-likelihood is:

$$\begin{split} \mathbb{E}_{\mathrm{P}(Z_{1:T}|X_{1:T},\boldsymbol{\theta}^{old})}[\log P(X_{1:T},Z_{1:T}|\boldsymbol{\theta})] &= \sum_{k} \mathrm{P}(Z_{1} = k|X_{1:T},\boldsymbol{\theta}^{old}) \log(\pi_{k}) \\ &+ \sum_{i,j} \sum_{t} \mathrm{P}(Z_{t} = i,Z_{t+1} = j|X_{1:T},\boldsymbol{\theta}^{old}) \log(A_{ij}) \\ &+ \sum_{i} \sum_{t} \mathrm{P}(Z_{t} = i|X_{1:T},\boldsymbol{\theta}^{old}) \mathbb{I}(x_{t} = j) \log(B_{ij}) \end{split}$$

 Thanks to the Forward-Backward algorithm, the blue terms can be computed efficiently and in closed form

Parameter Learning – M step

For HMMs, the expected joint log-likelihood is:

$$\begin{split} \mathbb{E}_{P(Z_{1:T}|X_{1:T},\boldsymbol{\theta}^{old})}[\log P(X_{1:T},Z_{1:T}|\boldsymbol{\theta})] &= \sum_{k} P(Z_{1} = k|X_{1:T},\boldsymbol{\theta}^{old}) \log(\pi_{k}) \\ &+ \sum_{i,j} \sum_{t} P(Z_{t} = i,Z_{t+1} = j|X_{1:T},\boldsymbol{\theta}^{old}) \log(A_{ij}) \\ &+ \sum_{i} \sum_{t} P(Z_{t} = i|X_{1:T},\boldsymbol{\theta}^{old}) \mathbb{I}(x_{t} = j) \log(B_{ij}) \end{split}$$

- We can now solve $\boldsymbol{\theta}^{new} = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{P(Z_{1:T}|X_{1:T},\boldsymbol{\theta}^{old})}[\log P(X_{1:T},Z_{1:T}|\boldsymbol{\theta})]$
 - you could use projected gradient ascent or (since available here) the closed-form solution for $m{ heta}^{new}$
- This EM algorithm for HMMs is also called the Baum-Welch algorithm

Hidden Markov Models – Continuous Data

■ Before, we assumed discrete time $t \in \{1,2,\ldots,T\}$ and discrete r.v. $Z_t \in \{1,2,\ldots,K\}$, $X_t \in \{1,2,\ldots,K'\}$:

$$P(Z_1 = i) = \pi_i$$

 $P(Z_{t+1} = j | Z_t = i) = A_{ij}$
 $P(X_{t+1} = j | Z_{t+1} = i) = B_{ij}$

Now, we assume discrete time $t \in \{1, 2, ..., T\}$, discrete r.v. $Z_t \in \{1, 2, ..., K\}$, and continuous $X_t \in \mathbb{R}^d$:

$$P(Z_1 = i) = \pi_i$$

$$P(Z_{t+1} = j | Z_t = i) = A_{ij}$$

$$P(X_{t+1} = x | Z_{t+1} = i) = N(x | \mu_i, \sigma_i^2 \cdot I)$$

Hidden Markov Models – Continuous Data

- Example continuous HMM:
 - The r.v. X_t are 2-D Gaussians
 - The r.v. Z_t can take 3 states
 - The probability to stay in the same state $P(Z_{t+}=i|Z_t=i)$ is high
- It can be used for time-series segmentation
 - Compute the probability of the hidden state given the observations $P(Z_t = i | X_{1:T})$; assign the most probable latent state at time t
 - Or use Viterbi

Images from: https://www.frontiersin.org/article/10.3389/fnins.2018.00603

Hidden Markov Models – Continuous Data

■ Inference (i.e. Forward backward algorithm and MAP) stays the same. The probability $Pr(X_t|Z_t)$ is just computed with Normal distribution instead of Categorical distribution, i.e.:

$$P(X_t = x | Z_t = k) = B_{kx} \to P(X_t = x | Z_t = k) = N(x | \mu_k, \sigma_k^2 \cdot I)$$

• Parameter learning is also only slightly different. We learn parameters μ_i, σ_i instead of B_{ij}

Parameter Learning – Continuous Case

The expected joint log-likelihood is:

$$E_{P(Z_{1:T}|X_{1:T}\boldsymbol{\theta}^{old})}[lnP(X_{1:T}, Z_{1:T}|\boldsymbol{\theta})] = \sum_{k} P(Z_{1} = k|X_{1:T}, \boldsymbol{\theta}^{old}) \log(\pi_{k})$$

$$+ \sum_{i,j} \sum_{t} P(Z_{t} = i, Z_{t+1} = j|X_{1:T}, \boldsymbol{\theta}^{old}) \log(A_{ij}) \qquad [N(\mu_{i}, \sigma_{i}^{2} \cdot I)]_{i}$$

$$+ \sum_{i} \sum_{t} P(Z_{t} = i|X_{1:T}, \boldsymbol{\theta}^{old}) \log(N(X_{t}|\mu_{i}, \sigma_{i}^{2} \cdot I))$$

- Again one can solve $\boldsymbol{\theta}^{new} = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{P(Z_{1:T}|X_{1:T},\boldsymbol{\theta}^{old})}[\log P(X_{1:T},Z_{1:T}|\boldsymbol{\theta})]$ easily (e.g. gradient based or closed-form)
- Observation: Estimate for μ_i , σ_i^2 is equivalent to the setting in a GMM, e.g.

$$\mu_i^{new} = \frac{\sum_{t=1}^T \gamma_t(i) X_t}{\sum_{t=1}^T \gamma_t(i)}, \qquad \sigma_i^{new} = \frac{\sum_{t=1}^T \gamma_t(i) (\mu_i^{new} - x_t) (\mu_i^{new} - x_t)^T}{\sum_{t=1}^T \gamma_t(i)} \qquad \text{where } \gamma_t(i) \coloneqq \mathrm{P}(Z_t = i | X_{1:T}, \theta^{old})$$

- GMM: observations X_i are independent
- HMM: observations X_t are conditional independent given Z for the estimate above, we assumed $P(Z_{1:T}|X_{1:T}, \boldsymbol{\theta}^{old})$ is fixed/given

Overview of Tasks concerning HMMs

Problem	Algorithm	Time Complexity
Filtering: Obtaining $\Pr(Z_t X_{1:t})$	Forwards	$O(TK^2)$
Smoothing: Obtaining $\Pr(Z_t X_{1:T})$	Forwards-Backwards	$O(TK^2)$
MAP Estimation: Obtaining $\underset{Z_{1:T}}{\operatorname{obtaining arg max}} \Pr(Z_{1:T} X_{1:T})$	Viterbi Decoding	$O(TK^2)$
Learning: approximately obtaining $\underset{A,B,\pi}{\operatorname{argmax}} \Pr(X_{1:T}; A, B, \pi)$	Variational Inference / Baum-Welch (EM)	$O(TK^2)$

 $T = sequence \ length$

 $K = \#possible states for Z_t$

Questions – HMM

- 1. Does the sequence $[Z_1, ..., Z_T]$ fullfill the Markov property ? Why ?
- 2. Does the sequence $[X_1, ..., X_T]$ fullfill the Markov property? Why?

Discussion

- The **index set**, $t \in \{1,2,...,T\}$, is discrete in all the presented models
 - The observations are only ordered in a sequence (the "actual time" does not play a role)
 - This setting is similar to equidistant time between observations
- All models have observed variables, but not all have latent variables
- The state space of the observed and latent variables can be discrete or continuous

		Latent space		
		No	Discr.	Cont.
Observation Space	Discr.	Markov Chains	HMM-Discr	No default method
	Cont.	AR	HMM-Cont	e.g. linear dynamical system; estimated via. Kalman Filter

Example – Continuous Latent Space

- Example: Tracking
 - $-Z_t$: physical vector quantities (e.g. position, velocity, etc.) at time-step t
 - $-X_t$: observed noisy measurements of airplane location at time-step t

$$\Pr(Z_{t+1}|Z_t) = N(Z_{t+1}|f(Z_t), \sigma_z^2)$$
 f: given Z_t predicts Z_{t+1} , e.g., using laws of motion

$$\Pr(X_t|Z_t) = N(X_t|g(Z_t), \sigma_x^2)$$
 g: sensor measurement based on Z_t

Images from: www.canstockphoto.com, www.kisspng.com

Neural Hidden Markov Models / Deep State Space Models

$$Pr(Z_{t+1}|Z_t) = N(Z_{t+1}|f(Z_t), \sigma_z^2)$$

$$Pr(X_t|Z_t) = N(X_t|g(Z_t), \sigma_x^2)$$

- lacktriangle There are no constraints on f and g
- In particular, they can be neural networks f_{ψ} and g_{ϕ} with parameters ψ,ϕ
- $m{ heta}=\{\psi,\phi\}$ can then be optimized via gradient ascent in the M step of the EM algorithm
- This principle can also be applied to non-Gaussian distributions

Discussion

- We only discussed discrete time i.e. $t \in \{1,2,...,T\}$ so far
 - The observations are only ordered in a sequence (the "actual time" does not play a role)
 - This setting is similar to equidistant time between observations
- In real applications, time is often continuous i.e. $t \in \mathbb{R}$
 - Asynchronous time: Events/Measurements might occur at asynchronous time. The time gaps between events Δt might be different.
 - Example: Speech recognition, alarm prediction
 - Models: Temporal Point Process (later section!)
 - Continuous time: Measurements might be performed almost continuously. The time gaps between events Δt are very (infinitesimal) small
 - Example: Temperature, stock price
 - Models: Continuous Stochastic Process e.g. Brownian Motion

Reading Material

[1] Pattern Recognition and Machine Learning, section 13.2:
 https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Machine Learning for Graphs and Sequential Data

Sequential Data – Hidden Markov Models

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

