Review for Fxam 2

- · TW 4:45 ~ 6:15 pm (Zoom)
 · W during dass time (in-person in classroom)

Key Topics to Review

- Exercises leading up to the rational rootstheorem
- Binomial coefficients and binomial theorem
- (recursively defined segmences) Summation formulas_ Complete induction
- Insight vs. induction
- Algebra with set operations

Rational RootsTheorem

(804: 17,18,19,20)

SOAE20 Let NEQ such that $C_{n} \chi^{n} + C_{n-1} \chi^{n-1} + \cdots + C_{1} \chi + C_{0} = 0$ Where me IN and co, co, ..., cn EZ. Prove that I can be written in the form 1 = Yb where a E I that divides Co and bein that divides Con

Rmk 4:50

Let $d \in \mathbb{N}$ and $\alpha_1, \dots, \alpha_n \in \overline{A}$.

If d divides $\chi_1 \chi_2 \cdots \chi_n$, then there exist $d_1, d_2, \cdots, d_n \in \mathbb{N}$ such that

for each $j \in \{1, 2, ..., n\}$, d_j divides d_j

d = d, d2 ... dn.

Rational RootsTheorem

proof Since λ is rational, we can pick $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ such that $\lambda = 2b$ and the fraction a/b is in lowest terms.

Now on Substituting $\chi = \sqrt{b}$ into $C_n \chi^n + C_{n-1} \chi^{n-1} + \cdots + C_1 \chi + C_0 = 0$, we obtain

$$\frac{C_{n}(a/b)^{n} + C_{n-1}(a/b)^{n-1} + \cdots + C_{1}(a/b) + C_{0} = 0}{\frac{C_{n}a^{n}}{b^{n}} + \frac{C_{n-1}a^{n-1}}{b^{n-1}} + \cdots + \frac{c_{1}a}{b} + c_{0} = 0}$$

We multiply both sides by b" to obtain

Rational Root Theorem

Isolating
$$Cn a^n$$
, the egn Cab can be written as product of $Cn a^n = -\left(C_{n-1} a^{n-1} + \cdots + C_1 ab^{n-1} + C_0 b^n\right)$

$$= -\left(C_{n-1} a^{n-1} + \cdots + C_1 ab^{n-2} + C_0 b^n\right)$$
So b divides $Cn a^n$. By the part of Rmk . A.50 written above, we can pick $b_1, b_2, \cdots, b_{n+1} \in \mathbb{N}$ such that $b_1 \mid Cn, b_2 \mid a, b_3 \mid a, \cdots, b_{n+1} \mid a$ and $b = b_1 b_2 \cdots b_{n+1}$.

Rational Root Theorem

Complete the argument by showing that
$$b_2=b_3=\cdots=b_{n+1}=1$$
 and so $b_1=b$.

Now isolating
$$C_0 b^n$$
, we can rewrite (X) as
$$C_0 b^n = -\left(C_0 a^n + C_{n-1} a^{n-1} b + \cdots + C_1 a b^{n-1}\right)$$
$$= -\left(C_0 a^{n-1} + C_{n-1} a^{n-1} b + \cdots + C_1 b^{n-1}\right) a,$$
 so a divides $C_0 b^n$.

Carry out similar arguments as above to show $a \mid C_0$.

3/7

Binomial Coefficients and Binomial Theorem

4/7

Binomial Coefficients and Binomial Theorem

Let
$$a,b \in \mathbb{R}$$
 and $n \in \omega$. Then
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Recursively Defined Sequences and Complete Induction

Let $\overline{F}_0 = 0$, $\overline{F}_1 = 1$, and $\overline{F}_{n+1} = \overline{F}_n + \overline{F}_{n+1}$ for $n \geq 1$. Prove using complete induction that for any $n \in \omega$, $F_{n} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n} - \left(\frac{1-\sqrt{5}}{2} \right)^{n} \right).$

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{2} - \left(\frac{1-\sqrt{5}}{2} \right)^{2}.$$
(Hant: $\frac{1\pm\sqrt{5}}{2}$ are noots of $\chi^{2}-\chi-1=0$.)

Proof Let P(n) he the Sentence

hoof Let
$$\mathcal{V}(n)$$
 be the sentence
$$\mathcal{T}_n = \mathcal{T}_{\overline{5}} \left(\mathcal{G}^n - \widehat{\mathcal{G}}^n \right).$$

WTS for each $n \in \omega$, P(n) is true.

Fine
$$9 = \frac{1+\sqrt{5}}{2}$$
 and $9 = \frac{1-\sqrt{5}}{2}$ are voots of $x^2 - x - 1$,

. $y^2 - y - 1 = 0 \Rightarrow y^2 = y + 1$

These will be useful.

· 9-9-1=0 => 9=9+1.

(Fibonacei Sognence)

Recursively Defined Sequences and Complete Induction

· P(0) is true because

$$F_{\circ} = \frac{1}{\sqrt{5}} (\varphi^{\circ} - \widehat{\varphi}^{\circ}) = \frac{1}{\sqrt{5}} (1 - 1) = 0$$

· P(1) is true because

INDUCTIVE STEP Let nEW such that n>1 and P(0),..., P(n) are all trave. To show P(n+1) is true, We examine

$$\begin{aligned} F_{n+1} &= F_n + F_{n-1} \\ &= \frac{1}{\sqrt{5}} \left(\varphi^n - \hat{\varphi}^n \right) + \frac{1}{\sqrt{5}} \left(\varphi^{n-1} - \hat{\varphi}^{n-1} \right) & \text{(by ind. hyp.)} \\ &= \frac{1}{\sqrt{5}} \left[\left(\varphi^n + \varphi^{n-1} \right) - \left(\hat{\varphi}^n + \hat{\varphi}^{n-1} \right) \right] \end{aligned}$$

Recursively Defined Sequences and Complete Induction

$$= \frac{1}{\sqrt{6}} \left[y^{n-1} \left(y + 1 \right) - \hat{y}^{n-1} \left(\hat{y} + 1 \right) \right]$$

$$= \frac{1}{\sqrt{6}} \left(y^{n+1} - \hat{y}^{n+1} \right)$$

Where we used the fact that 4 and $\hat{\varphi}$ are roots of $\hbar^2 - \hbar^{-1} = 0$ in the second from the last Step.

$$\frac{\text{Conclusion}}{\text{P(n)}}$$
 therefore, by complete induction, for each $m \in \Omega$.