Package 'fido'

June 5, 2024

Version 1.1.1 Date 2024-05-31 Maintainer Michelle Nixon <pistner@psu.edu> **Description** Provides methods for fitting and inspection of Bayesian Multinomial Logistic Normal Models using MAP estimation and Laplace Approximation as developed in Silverman et. Al. (2022) https://www.jmlr.org/papers/v23/19-882.html. Key functionality is implemented in C++ for scalability. 'fido' replaces the previous package 'stray'. License GPL-3 URL https://jsilve24.github.io/fido/ **Depends** R (>= 4.1.0) **Imports** Rcpp (>= 0.12.17), dplyr, ggplot2, purrr, tidybayes, rlang, LinkingTo Rcpp, RcppEigen, RcppNumerical, RcppZiggurat, BH RoxygenNote 7.3.1 **Suggests** testthat (>= 2.1.0), knitr, rmarkdown, ape, numDeriv, LaplacesDemon, MCMCpack, phyloseq VignetteBuilder knitr LazyData true BugReports https://github.com/jsilve24/fido/issues **Encoding** UTF-8 NeedsCompilation yes Author Justin Silverman [aut], Kim Roche [ctb], Michelle Nixon [ctb, cre] Repository CRAN **Date/Publication** 2024-06-05 21:30:06 UTC

Title Bayesian Multinomial Logistic Normal Regression

Type Package

2 Contents

Contents

alr	3
alrInv	4
alrInv_array	4
alr_array	5
as.list.orthusfit	5
as.list.pibblefit	6
as.orthusfit	6
as.pibblefit	7
basset_fit	7
check_dims	9
clr_array	0
coef.orthusfit	0
coef.pibblefit	1
conjugateLinearModel	1
convert_orthus_covariance	2
create_default_ilr_base	3
fido_package	4
fido_transforms	4
gather_array	6
kernels	7
lambda_to_iqlr	8
lmvgamma	9
lmvgamma_deriv	9
loglikPibbleCollapsed	0
mallard	1
mallard_family	2
metadata	3
miniclo	3
miniclo_array	4
mongrel-deprecated	4
name	5
name.orthusfit	6
name.pibblefit	6
names_covariates.pibblefit	7
ncategories.pibblefit	8
optimPibbleCollapsed	9
orthusfit	2
orthus_fit	4
orthus_lr_transforms	6
orthus_sim	7
orthus_tidy_samples	
pcrbias_mock	
pibblefit	
pibble_fit	
pibble_sim	
nibble tidy samples 4	

alr 3

alr	Compute the ALR of a matrix
Index	67
	Y 66
	verify.pibblefit
	verify.orthusfit
	verify.bassetfit
	verify
	uncollapsePibble_sigmaKnown
	uncollapsePibble
	summary.pibblefit
	summary.orthusfit
	summarise_posterior
	sample_prior.pibblefit
	sample_prior
	RISK_CCFA_tax
	RISK_CCFA_sam
	RISK_CCFA_otu
	RISK_CCFA
	req.pibblefit
	req.orthusfit
	req
	refit
	random_pibble_init
	r2
	print, pibblefit
	print.orthusfit
	predict.bassetfit
	ppc_summary.pibblefit
	ppc.pibblefit
	ppc
	plot.pibblefit

Description

Compute the ALR of a matrix

```
alr(x, d = NULL)
```

4 alrInv_array

Arguments

x A matrix where the rows are the samples

d Index of column used as a reference. Defaults to last column

Value

matrix

alrInv

Compute the inverse ALR of a matrix

Description

Compute the inverse ALR of a matrix

Usage

```
alrInv(y, d = NULL)
```

Arguments

y An ALR transformed matrix

d Index of column used as a reference. Defaults to last column

Value

matrix

alrInv_array

Compute the ALR of an array

Description

Compute the ALR of an array

Usage

```
alrInv_array(y, d = dim(y)[coords] + 1, coords)
```

Arguments

y multidimensional ALR transformed array

d Index of column used as a reference. Defaults to last column

coords index of dimension of 'x' that represents coordinates

Value

array

alr_array 5

alr_array

Compute the ALR of an array

Description

Compute the ALR of an array

Usage

```
alr_array(x, d = dim(x)[parts], parts)
```

Arguments

x multidimensional array in simplex

d Index of column used as a reference. Defaults to last column

parts index of dimension of 'x' that represents parts

Value

array

as.list.orthusfit

Convert object of class orthusfit to a list

Description

Convert object of class orthusfit to a list

Usage

```
## S3 method for class 'orthusfit' as.list(x, ...)
```

Arguments

x an object of class orthusfit

... currently unused

Value

A list of the converted orthusfit object

6 as.orthusfit

as.list.pibblefit

Convert object of class pibblefit to a list

Description

Convert object of class pibblefit to a list

Usage

```
## S3 method for class 'pibblefit' as.list(x, ...)
```

Arguments

x an object of class pibblefit

... currently unused

Value

A list from the converted pibblefit object.

as.orthusfit

convert list to orthusfit

Description

convert list to orthusfit

Usage

```
as.orthusfit(object)
```

Arguments

object

list object

Value

An orthusfit object

as.pibblefit 7

as.pibblefit

convert list to pibblefit

Description

convert list to pibblefit

Usage

```
as.pibblefit(object)
```

Arguments

object

list object

Value

A pibblefit object

basset_fit

Interface to fit basset models

Description

Basset (A Lazy Learner) - non-linear regression models in fido

```
basset(
    Y = NULL,
    X,
    upsilon = NULL,
    Theta = NULL,
    Gamma = NULL,
    Xi = NULL,
    linear = NULL,
    init = NULL,
    init = NULL,
    pars = c("Eta", "Lambda", "Sigma"),
    newdata = NULL,
    ...
)

## S3 method for class 'bassetfit'
refit(m, pars = c("Eta", "Lambda", "Sigma"), ...)
```

8 basset_fit

Arguments

Y D x N matrix of counts (if NULL uses priors only)
X Q x N matrix of covariates (cannot be NULL)

upsilon dof for inverse wishart prior (numeric must be > D) (default: D+3)

Theta A function from dimensions $\dim(X) \rightarrow (D-1)xN$ (prior mean of gaussian process). For an additive GP model, can be a list of functions from dimensions

 $dim(X) \rightarrow (D-1)xN + a$ (optional) matrix of size (D-1)xQ for the prior of a lin-

ear component if desired.

Gamma A function from dimension $dim(X) \rightarrow NxN$ (kernel matrix of gaussian process).

For an additive GP model, can be a list of functions from dimension $dim(X) \rightarrow NxN + a QxQ$ prior covariance matrix if a linear component is specified. It is

assumed that the order matches the order of Theta.

(D-1)x(D-1) prior covariance matrix (default: ALR transform of diag(1)*(upsilon-

D)/2 - this is essentially iid on "base scale" using Aitchison terminology)

linear A vector denoting which rows of X should be used if a linear component is

specified. Default is all rows.

init (D-1) x Q initialization for Eta for optimization pars character vector of posterior parameters to return

newdata Default is NULL. If non-null, newdata is used in the uncollapse sampler in place

of X.

... other arguments passed to pibble (which is used internally to fit the basset

model)

m object of class bassetfit

Details

the full model is given by:

$$Y_{j} \sim Multinomial(\pi_{j})$$

$$\pi_{j} = \Phi^{-1}(\eta_{j})$$

$$\eta \sim MN_{D-1 \times N}(\Lambda, \Sigma, I_{N})$$

$$\Lambda \sim GP_{D-1 \times Q}(\Theta(X), \Sigma, \Gamma(X))$$

$$\Sigma \sim InvWish(v, \Xi)$$

Where $\Gamma(X)$ is short hand for the Gram matrix of the Kernel function.

Alternatively can be used to fit an additive GP of the form:

$$Y_{j} \sim Multinomial(\pi_{j})$$

$$\pi_{j} = \Phi^{-1}(\eta_{j})$$

$$\eta \sim MN_{D-1 \times N}(\Lambda, \Sigma, I_{N})$$

$$\Lambda = \Lambda_{1} + ... + \Lambda_{p} + BX$$

$$\Lambda_{1} \sim GP_{D-1 \times Q}(\Theta_{1}(X), \Sigma, \Gamma_{1}(X))$$

check_dims 9

...

$$\Lambda_p \sim GP_{D-1 \times Q}(\Theta_p(X), \Sigma, \Gamma_p(X))$$

$$B \sim MN(\Theta_B, \Sigma, \Gamma_B)$$

$$\Sigma \sim InvWish(v, \Xi)$$

Where $\Gamma(X)$ is short hand for the Gram matrix of the Kernel function.

Default behavior is to use MAP estimate for uncollaping the LTP model if laplace approximation is not preformed.

Value

an object of class bassetfit

check_dims

Check vector/matrix/data.frame for expected dimensions or throw error

Description

Check vector/matrix/data.frame for expected dimensions or throw error

Usage

```
check_dims(x, d, par)
```

Arguments

x object to check

d expected dimensions

par character name of x (for error message)

Value

nothing if no error, otherwise throws error

Examples

```
y <- c(1,3,4)
check_dims(y, 3, "y")
```

10 coef.orthusfit

clr_array

Compute the CLR of an array

Description

Compute the CLR of an array

Usage

```
clr_array(x, parts)
```

Arguments

x multidimensional array in index

parts index of dimension of 'x' that represents parts

Value

array

coef.orthusfit

Return regression coefficients of orthus object

Description

Orthus: Returned as array of dimension (D-1+P) x Q x iter (if in ALR or ILR) otherwise (D+P) x Q x iter.

Usage

```
## S3 method for class 'orthusfit'
coef(object, ...)
```

Arguments

object an object of class orthusfit

... other options passed to coef.orthusfit (see details)

Details

Other arguments:

• use_names if column and row names were passed for Y and X in call to pibble, should these names be applied to output array.

Value

Array of dimension (D-1) x Q x iter

coef.pibblefit 11

coef.pibblefit

Return regression coefficients of pibblefit object

Description

Pibble: Returned as array of dimension (D-1) x Q x iter (if in ALR or ILR) otherwise DxQxiter (if in proportions or clr).

Usage

```
## S3 method for class 'pibblefit'
coef(object, ...)
```

Arguments

object an object of class pibblefit

... other options passed to coef.pibblefit (see details)

Details

Other arguments:

• 'use_names' if column and row names were passed for Y and X in call to pibble, should these names be applied to output array.

Value

Array of dimension (D-1) x Q x iter

conjugateLinearModel Sol

Solve Bayesian Multivariate Conjugate Linear Model

Description

See details for model. Notation: N is number of samples, D is the dimension of the response, Q is number of covariates.

```
conjugateLinearModel(Y, X, Theta, Gamma, Xi, upsilon, n_samples = 2000L)
```

Arguments

Υ	matrix of dimension D x N
X	matrix of covariates of dimension Q x N
Theta	matrix of prior mean of dimension D x Q
Gamma	covariance matrix of dimension Q x Q
Xi	covariance matrix of dimension D x D
upsilon	scalar (must be > D-1) degrees of freedom for InvWishart prior
n_samples	number of samples to draw (default: 2000)

Details

$$Y \sim MN_{D-1 \times N}(\Lambda \mathbf{X}, \Sigma, I_N)$$
$$\Lambda \sim MN_{D-1 \times Q}(\Theta, \Sigma, \Gamma)$$
$$\Sigma \sim InvWish(v, \Xi)$$

This function provides a means of sampling from the posterior distribution of Lambda and Sigma.

Value

List with components

- 1. Lambda Array of dimension (D-1) x Q x n_samples (posterior samples)
- 2. Sigma Array of dimension (D-1) x (D-1) x n_samples (posterior samples)

Examples

convert_orthus_covariance

Convert orthus covariance matricies between representations

Description

Convert orthus covariance matricies between representations

create_default_ilr_base 13

Usage

```
oilrvar2ilrvar(Sigma, s, V1, V2)
oilrvar2clrvar(Sigma, s, V)
oclrvar2ilrvar(Sigma, s, V)
oalrvar2clrvar(Sigma, s, d1)
oclrvar2alrvar(Sigma, s, d2)
oalrvar2alrvar(Sigma, s, d1, d2)
oalrvar2ilrvar(Sigma, s, d1, V2)
oilrvar2alrvar(Sigma, s, V1, d2)
```

Arguments

Sigma	covariance matrix arrat in specified transformed space (dim(Sigma)[3]=iter)
S	first s rows and colums of Sigma are transformed
V1	ILR contrast matrix of basis Sigma is already in
V2	ILR contrast matrix of basis Sigma is desired in
V	ILR contrast matrix (i.e., transformation matrix of ILR)
d1	alr reference element Sigma is already expressed with respec to
d2	alr reference element Sigma is to be expressed with respect to

Value

matrix

```
create_default_ilr_base
```

Create a default ILR base

Description

Create a default ILR base

Usage

```
{\tt create\_default\_ilr\_base(D)}
```

Arguments

D the number of parts (e.g., number of columns in untransformed data)

14 fido_transforms

Value

A matrix

fido_package

fido: Fitting and Analysis of Multinomial Logistic Normal Models

Description

Provides methods for fitting and inspection of Bayesian Multinomial Logistic Normal Models using MAP estimation and Laplace Approximation. Key functionality is implemented in C++ for scalability.

Author(s)

Maintainer: Michelle Nixon <pistner@psu.edu> [contributor]

Authors:

• Justin Silverman < Justin. Silverman@psu.edu>

Other contributors:

• Kim Roche <kimberly.roche@duke.edu> [contributor]

See Also

Useful links:

- https://jsilve24.github.io/fido/
- Report bugs at https://github.com/jsilve24/fido/issues

fido_transforms

Transform Fit fido Parameters to other representations

Description

These are a collection of convenience functions for transforming fido fit objects to a number of different representations including ILR bases, CLR coordinates, ALR coordinates, and proportions.

fido_transforms 15

Usage

```
to_proportions(m)
to_alr(m, d)
to_ilr(m, V = NULL)
to_clr(m)
## S3 method for class 'pibblefit'
to_proportions(m)
## S3 method for class 'orthusfit'
to_proportions(m)
## S3 method for class 'pibblefit'
to_alr(m, d)
## S3 method for class 'orthusfit'
to_alr(m, d)
## S3 method for class 'pibblefit'
to_ilr(m, V = NULL)
## S3 method for class 'orthusfit'
to_ilr(m, V = NULL)
## S3 method for class 'pibblefit'
to_clr(m)
## S3 method for class 'orthusfit'
to_clr(m)
```

Arguments

```
m object of class pibblefit or orthusfit (e.g., output of pibble or orthus)

d (integer) multinomial category to take as new alr reference

V (matrix) contrast matrix for ILR basis to transform into to (defaults to create_default_ilr_base(D))
```

Details

For orthus, transforms only appleid to log-ratio parameters

Note: that there is a degeneracy of representations for a covariance matrix represented in terms of proportions. As such the function to_proportions does not attempt to transform parameters Sigma or prior Xi and instead just removes them from the pibblefit object returned.

gather_array

Value

object

gather_array

Gather Multidimensional Array to Tidy Tibble

Description

Gather Multidimensional Array to Tidy Tibble

Usage

```
gather_array(a, value, ..., .id = NULL)
```

Arguments

а	multidimensional array
value	unquoted name of column with values (defaults to "var")
	unquoted dimension names (defaults to "dim_1", "dim_2", etc)
.id	if specified, name for column created with name of a captured

Value

data.frame

See Also

spread_array

Examples

```
a <- array(1:100, dim =c(10, 5, 2))
gather_array(a, sequence, A, B, C)</pre>
```

kernels 17

kernels

Multivariate RBF Kernel

Description

Designed to be partially specified. (see examples)

Usage

```
SE(X, sigma = 1, rho = median(as.matrix(dist(t(X)))), jitter = 1e-10)

LINEAR(X, sigma = 1, c = rep(0, nrow(X)))
```

Arguments

Χ	covariate (dimension Q x N; i.e., covariates x samples)
sigma	scalar parameter
rho	scalar bandwidth parameter
jitter	small scalar to add to off-diagonal of gram matrix (for numerical underflow issues)
С	vector parameter defining intercept for linear kernel

Details

Gram matrix G is given by

SE (squared exponential):

$$G = \sigma^2 * exp(-[(X - c)'(X - c)]/(s * \rho^2))$$

LINEAR:

$$G = \sigma^2 * (X - c)'(X - c)$$

Value

Gram Matrix (N x N) (e.g., the Kernel evaluated at each pair of points)

18 lambda_to_iqlr

lambda_to_iqlr

Transform Lambda into IQLR (Inter-Quantile Log-Ratio)

Description

Takes idea from Wu et al. (citation below) and calculates IQLR for Lambda, potentially useful if you believe there is an invariant group of categories (e.g., taxa / genes) that are not changing (in absolute abundance) between samples. IQLR is defined as

$$IQLR_x = log(x_i/g(IQVF))$$

for i in 1,...,D. IQVF are the CLR coordinates whose variance is within the inter-quantile range (defined by probs argument to this function). A different IQVF is fit for each posteior sample as the IQVFs are calculted based on posterior estimates for Lambda. The variance of a CLR coordinate is defined as the norm of each row of Lambda[,focus.cov] (i.e., the covariation in Eta, explained by those covariates). This definition of variance allows uses to exclude variation from technical / trivial sources in calculation of IQVF/IQLR.

Usage

```
lambda_to_iqlr(m, focus.cov = NULL, probs = c(0.25, 0.75))
```

Arguments

m object of class pibblefit (e.g., output of pibble)

focus.cov vector of integers or characters specifying columns (covariates) of Lambda to

include in calculating IQLR (if NULL, default, then uses all covariates)

probs bounds for categories (i.e., features / genes / taxa) to include in calculation of

iqlr (smaller bounds means more stringent inclusion criteria)

Details

Primarily intended for doing differential expression analysis under assumption that only small group of categories (e.g., taxa / genes) are changing

Value

array of dimension (D, Q, iter) where D is number of taxa, Q is number of covariates, and iter is number of posterior samples.

References

Jia R. Wu, Jean M. Macklaim, Briana L. Genge, Gregory B. Gloor (2017) Finding the center: corrections for asymmetry in high-throughput sequencing datasets. arxiv:1704.01841v1

lmvgamma 19

Examples

```
sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)
# Use first two covariates to define iqlr, just show first 5 samples
lambda_to_iqlr(fit, 1:2)[,,1:5]</pre>
```

lmvgamma

Log of Multivarate Gamma Function - Gamma_p(a)

Description

Log of Multivarate Gamma Function - Gamma_p(a)

Usage

```
lmvgamma(a, p)
```

Arguments

a defined by Gamma_p(a)
p defined by Gamma_p(a)

Value

Numeric

References

https://en.wikipedia.org/wiki/Multivariate_gamma_function

lmvgamma_deriv

Derivative of Log of Multivariate Gamma Function - Gamma_p(a)

Description

Derivative of Log of Multivariate Gamma Function - Gamma_p(a)

Usage

```
lmvgamma_deriv(a, p)
```

Arguments

```
a defined by Gamma_p(a)
p defined by Gamma_p(a)
```

Value

Numeric

References

https://en.wikipedia.org/wiki/Multivariate_gamma_function

loglikPibbleCollapsed Calculations for the Collapsed Pibble Model

Description

Functions providing access to the Log Likelihood, Gradient, and Hessian of the collapsed pibble model. Note: These are convenience functions but are not as optimized as direct coding of the PibbleCollapsed C++ class due to a lack of Memoization. By contrast function optimPibbleCollapsed is much more optimized and massively cuts down on repeated calculations. A more efficient Rcpp module based implementation of these functions may following if the future. For model details see optimPibbleCollapsed documentation

Usage

```
loglikPibbleCollapsed(Y, upsilon, ThetaX, KInv, AInv, eta, sylv = FALSE)
gradPibbleCollapsed(Y, upsilon, ThetaX, KInv, AInv, eta, sylv = FALSE)
hessPibbleCollapsed(Y, upsilon, ThetaX, KInv, AInv, eta, sylv = FALSE)
```

Arguments

Υ	D x N matrix of counts
upsilon	(must be > D)
ThetaX	D-1 x N matrix formed by Theta*X (Theta is Prior mean for regression coefficients)
KInv	Inverse of K for LTP (for Pibble defined as $KInv = solve(Xi)$)
AInv	Inverse of A for LTP (for Pibble defined as AInv = $solve(diag(N) + X'GammaX)$)
eta	matrix (D-1)xN of parameter values at which to calculate quantities
sylv	(default:false) if true and if $N < D-1$ will use sylvester determinant identity to speed computation

Value

see below

- loglikPibbleCollapsed double
- gradPibbleCollapsed vector
- hessPibbleCollapsed- matrix

mallard 21

Examples

```
D <- 10
0 <- 2
N <- 30
# Simulate Data
Sigma <- diag(sample(1:8, D-1, replace=TRUE))</pre>
Sigma[2, 3] \leftarrow Sigma[3,2] \leftarrow -1
Gamma <- diag(sqrt(rnorm(Q)^2))</pre>
Theta <- matrix(0, D-1, Q)
Phi <- Theta + t(chol(Sigma))%*%matrix(rnorm(Q*(D-1)), nrow=D-1)%*%chol(Gamma)
X \leftarrow matrix(rnorm(N*(Q-1)), Q-1, N)
X \leftarrow rbind(1, X)
Eta <- Phi%*%X + t(chol(Sigma))%*%matrix(rnorm(N*(D-1)), nrow=D-1)
Pi <- t(alrInv(t(Eta)))
Y \leftarrow matrix(0, D, N)
for (i in 1:N) Y[,i] <- rmultinom(1, sample(5000:10000), prob = Pi[,i])</pre>
# Priors
upsilon <- D+10
Xi <- Sigma*(upsilon-D)</pre>
# Precompute
KInv <- solve(Xi)</pre>
AInv <- solve(diag(N)+ t(X)%*%Gamma%*%X)
ThetaX <- Theta%*%X
loglikPibbleCollapsed(Y, upsilon, ThetaX, KInv, AInv, Eta)
gradPibbleCollapsed(Y, upsilon, ThetaX, KInv, AInv, Eta)[1:5]
hessPibbleCollapsed(Y, upsilon, ThetaX, KInv, AInv, Eta)[1:5,1:5]
```

mallard

Data from Silverman et al. (2018) Microbiome

Description

High Resolution (hourly and daily) sampling of 4 in vitro artificial gut models with many technical replicates to identify technical variation.

Usage

```
data(mallard)
```

Format

```
A list containing "otu_table", "sample_data", "tax_table", and "refseq".
```

22 mallard_family

Details

This data is at the sequence variant level. Data at the family level processed as in Silverman et al. 2018 is given in mallard_family

References

Silverman et al. "Dynamic linear models guide design and analysis of microbiota studies within artificial human guts". Microbiome 2018 6:202

mallard_family

Data from Silverman et al. (2018) Microbiome

Description

High Resolution (hourly and daily) sampling of 4 in vitro artificial gut models with many technical replicates to identify technical variation.

Usage

```
data(mallard_family)
```

Format

A list containing "otu_table", "sample_data", "tax_table", and "refseq".

Details

This data is at the family level and processed as in Silverman et al. 2018. Data at the sequence variant level without preprocessing is given in mallard

References

Silverman et al. "Dynamic linear models guide design and analysis of microbiota studies within artificial human guts". Microbiome 2018 6:202

metadata 23

metadata

Data from Silverman et al. (2019) bioRxiv

Description

Mock communities and calibration samples created for measuring and validating model of PCR bias. This data has been preprocessed as in the original manuscript.

Format

a data.frame metadata associated with the counts matrix 'Y'

References

Justin D. Silverman, Rachael J. Bloom, Sharon Jiang, Heather K. Durand, Sayan Mukherjee, Lawrence A. David. (2019) Measuring and Mitigating PCR Bias in Microbiome Data. bioRxiv 604025; doi: https://doi.org/10.1101/604025

miniclo

Closure operator

Description

Closure operator

Usage

miniclo(x)

Arguments

Х

vector or matrix (rows are samples, parts are columns) of data in simplex

Value

x with row entries divided by sum of row (converts vectors to row matricies)

Examples

```
x <- matrix(runif(30), 10, 3)
x <- miniclo(x)</pre>
```

24 mongrel-deprecated

miniclo_array

Closure Operation applied to array on margin

Description

Array version of miniclo.

Usage

```
miniclo_array(x, parts)
```

Arguments

```
x multidimensional array
parts index of dimension of x that represents parts (e.g., compositional variables)
```

Value

array

Examples

```
x <- array(1:100, dim=c(10, 5, 2))
miniclo_array(x, parts=2)</pre>
```

mongrel-deprecated

mongrel

Description

This function is deprecated, please use pibble instead.

```
mongrel(
    Y = NULL,
    X = NULL,
    upsilon = NULL,
    Theta = NULL,
    Gamma = NULL,
    Xi = NULL,
    init = NULL,
    pars = c("Eta", "Lambda", "Sigma"),
    ...
)
```

name 25

Arguments

Υ	D x N matrix of counts (if NULL uses priors only)
X	Q x N matrix of covariates (design matrix) (if NULL uses priors only, must be present to sample Eta)
upsilon	dof for inverse wishart prior (numeric must be $> D$) (default: D+3)
Theta	(D-1) x Q matrix of prior mean for regression parameters (default: matrix(0, D-1, Q))
Gamma	QxQ prior covariance matrix (default: diag(Q))
Xi	$(D-1)x(D-1)\ prior\ covariance\ matrix\ (default:\ ALR\ transform\ of\ diag(1)*(upsilon-D)/2\ -\ this\ is\ essentially\ iid\ on\ "base\ scale"\ using\ Aitchison\ terminology)$
init	(D-1) x N initialization for Eta for optimization
pars	character vector of posterior parameters to return
	$arguments\ passed\ to\ optimPibbleCollapsed\ and\ uncollapsePibble$

Value

An object of class pibblefit

name Generic method for applying names to an object

Description

Intended to be called internally by package

Usage

```
name(m, ...)
```

Arguments

m object... other arguments to be passed

Value

object of same class but with names applied to dimensions

26 name.pibblefit

name.orthusfit

S3 for orthusfit apply names to orthusfit object

Description

To avoid confusion, assigned default names to multinomial categories (c1 etc...) and zdimensions (z1 etc...)

Usage

```
## S3 method for class 'orthusfit'
name(m, ...)
```

Arguments

```
m object of class orthusfit
... currently ignored
```

Value

object of class orthusfit

name.pibblefit

S3 for pibblefit apply names to pibblefit object

Description

S3 for pibblefit apply names to pibblefit object

Usage

```
## S3 method for class 'pibblefit'
name(m, ...)
```

Arguments

```
m object of class pibblefitcurrently ignored
```

Value

object of class pibblefit

```
names_covariates.pibblefit
```

Generic method for getting and setting dimension names of fit object

Description

Generic method for getting and setting dimension names of fit object

```
## S3 method for class 'pibblefit'
names_covariates(m)
## S3 method for class 'pibblefit'
names_samples(m)
## S3 method for class 'pibblefit'
names_categories(m)
## S3 method for class 'pibblefit'
names_coords(m)
## S3 replacement method for class 'pibblefit'
names_covariates(m) <- value</pre>
## S3 replacement method for class 'pibblefit'
names_samples(m) <- value</pre>
## S3 replacement method for class 'pibblefit'
names_categories(m) <- value</pre>
names_covariates(m)
names_samples(m)
names_categories(m)
names_coords(m)
names_covariates(m) <- value</pre>
names_samples(m) <- value</pre>
names_categories(m) <- value</pre>
```

28 ncategories.pibblefit

Arguments

m object

value character vector (or NULL)

Details

names_coords is different than names_categories. names_categories provides access to the basic names of each multinomial category. In contrast, names_coords provides access to the names of the coordinates in which an object is represented. These coordinate names are based on the category names. For example, category names may be, (OTU1, ..., OTUD) where as coordinate names could be (log(OTU1/OTUD), etc...) if object is in default coordinate system.

Value

A vector of names

ncategories.pibblefit Generic method for accessing model fit dimensions

Description

Generic method for accessing model fit dimensions

```
## S3 method for class 'pibblefit'
ncategories(m)

## S3 method for class 'pibblefit'
nsamples(m)

## S3 method for class 'pibblefit'
ncovariates(m)

## S3 method for class 'pibblefit'
niter(m)

## S3 method for class 'orthusfit'
ncategories(m)

## S3 method for class 'orthusfit'
nsamples(m)

## S3 method for class 'orthusfit'
ncovariates(m)
```

optimPibbleCollapsed 29

```
## S3 method for class 'orthusfit'
niter(m)

ncategories(m)

nsamples(m)

ncovariates(m)
```

Arguments

m

An object of class pibblefit

Details

An alternative approach to accessing these dimensions is to access them directly from the pibblefit object using list indexing. * ncategories is equivalent to m\$D * nsamples is equivalent to m\$N * ncovariates is equivalent to m\$Q

Value

integer

optimPibbleCollapsed Function to Optimize the Collapsed Pibble Model

Description

See details for model. Should likely be followed by function uncollapsePibble. Notation: N is number of samples, D is number of multinomial categories, and Q is number of covariates.

```
optimPibbleCollapsed(
   Y,
   upsilon,
   ThetaX,
   KInv,
   AInv,
   init,
   n_samples = 2000L,
   calcGradHess = TRUE,
   b1 = 0.9,
   b2 = 0.99,
   step_size = 0.003,
   epsilon = 1e-06,
```

```
eps_f = 1e-10,
eps_g = 1e-04,
max_iter = 10000L,
verbose = FALSE,
verbose_rate = 10L,
decomp_method = "cholesky",
optim_method = "lbfgs",
eigvalthresh = 0,
jitter = 0,
multDirichletBoot = -1,
useSylv = TRUE,
ncores = -1L,
seed = -1L
```

D x N matrix of counts

(default:"lbfgs") or "adam"

(should be ≤ 0)

Arguments Y

optim_method eigvalthresh

upsilon (must be > D)ThetaX D-1 x N matrix formed by Theta*X (Theta is Prior mean for regression coefficients) D-1 x D-1 precision matrix (inverse of Xi) KInv N x N precision matrix given by $(I_N + X' * Gamma * X)^{-1}$ AInv D-1 x N matrix of initial guess for eta used for optimization init n_samples number of samples for Laplace Approximation (=0 very fast as no inversion or decomposition of Hessian is required) calcGradHess if n_samples=0 should Gradient and Hessian still be calculated using closed form solutions? (ADAM) 1st moment decay parameter (recommend 0.9) "aka momentum" b1 (ADAM) 2nd moment decay parameter (recommend 0.99 or 0.999) b2 (ADAM) step size for descent (recommend 0.001-0.003) step_size epsilon (ADAM) parameter to avoid divide by zero (ADAM) normalized function improvement stopping criteria eps_f (ADAM) normalized gradient magnitude stopping criteria eps_g (ADAM) maximum number of iterations before stopping max_iter verbose (ADAM) if true will print stats for stopping criteria and iteration number verbose_rate (ADAM) rate to print verbose stats to screen decomp_method decomposition of hessian for Laplace approximation 'eigen' (more stable-slightly, slower) or 'cholesky' (less stable, faster, default)

threshold for negative eigenvalues in decomposition of negative inverse hessian

optimPibbleCollapsed 31

jitter (default: 0) if >=0 then adds that factor to diagonal of Hessian before decomposition (to improve matrix conditioning)

multDirichletBoot

if >0 then it overrides laplace approximation and samples eta efficiently at MAP

estimate from pseudo Multinomial-Dirichlet posterior.

useSylv (default: true) if N<D-1 uses Sylvester Determinant Identity to speed up calcu-

lation of log-likelihood and gradients.

ncores (default:-1) number of cores to use, if ncores==-1 then uses default from OpenMP

typically to use all available cores.

seed (random seed for Laplace approximation – integer)

Details

Notation: Let Z_j denote the J-th row of a matrix Z. Model:

$$Y_j \sim Multinomial(\pi_j)$$

$$\pi_j = \Phi^{-1}(\eta_j)$$

$$\eta \sim T_{D-1,N}(\upsilon,\Theta X,K,A)$$

Where $A = I_N + X\Gamma X'$, K is a (D-1)x(D-1) covariance matrix, Γ is a Q x Q covariance matrix, and Φ^{-1} is ALRInv D transform.

Gradient and Hessian calculations are fast as they are computed using closed form solutions. That said, the Hessian matrix can be quite large $[N*(D-1) \times N*(D-1)]$ and storage may be an issue.

Note: Warnings about large negative eigenvalues can either signal that the optimizer did not reach an optima or (more commonly in my experience) that the prior / degrees of freedom for the covariance (given by parameters upsilon and KInv) were too specific and at odds with the observed data. If you get this warning try the following.

- 1. Try restarting the optimization using a different initial guess for eta
- 2. Try decreasing (or even increasing)step_size (by increments of 0.001 or 0.002) and increasing max_iter parameters in optimizer. Also can try increasing b1 to 0.99 and decreasing eps_f by a few orders of magnitude
- 3. Try relaxing prior assumptions regarding covariance matrix. (e.g., may want to consider decreasing parameter upsilon closer to a minimum value of D)
- 4. Try adding small amount of jitter (e.g., set jitter=1e-5) to address potential floating point errors.

Value

List containing (all with respect to found optima)

- 1. LogLik Log Likelihood of collapsed model (up to proportionality constant)
- 2. Gradient (if calcGradHess=true)
- 3. Hessian (if calcGradHess=true) of the POSITIVE LOG POSTERIOR
- 4. Pars Parameter value of eta at optima

32 orthusfit

5. Samples - (D-1) x N x n_samples array containing posterior samples of eta based on Laplace approximation (if n_samples>0)

- 6. Timer Vector of Execution Times
- 7. logInvNegHessDet the log determinant of the covariacne of the Laplace approximation, useful for calculating marginal likelihood
- 8. logMarginalLikelihood A calculation of the log marginal likelihood based on the laplace approximation

References

S. Ruder (2016) An overview of gradient descent optimization algorithms. arXiv 1609.04747 JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee. *Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes*. 2022, Journal of Machine Learning

See Also

```
uncollapsePibble
```

Examples

orthusfit

Create orthusfit object

Description

Create orthusfit object

```
orthusfit(
  D,
  N,
  Q,
  P,
  coord_system,
  iter = NULL,
  alr_base = NULL,
  ilr_base = NULL,
  Eta = NULL,
  Lambda = NULL,
  Sigma = NULL,
```

orthusfit 33

```
Sigma_default = NULL,
Z = NULL,
Y = NULL,
X = NULL,
upsilon = NULL,
Theta = NULL,
Xi = NULL,
Xi_default = NULL,
Gamma = NULL,
init = NULL,
names_categories = NULL,
names_samples = NULL,
names_Zdimensions = NULL,
names_covariates = NULL)
```

Arguments

D number of multinomial categories

N number of samples
Q number of covariates

P Dimension of second dataset (e.g., nrows(Z))

coord_system coordinate system objects are represented in (options include "alr", "clr", "ilr",

and "proportions")

iter number of posterior samples

alr_base integer category used as reference (required if coord_system=="alr")

ilr_base (D x D-1) contrast matrix (required if coord_system=="ilr")

Eta Array of samples of Eta

Lambda Array of samples of Lambda

Sigma Array of samples of Sigma (null if coord_system=="proportions")

Sigma_default Array of samples of Sigma in alr base D, used if coord_system=="proportions"

Z PxN matrix of real valued observations

Y DxN matrix of observed counts

X QxN design matrix

upsilon scalar prior dof of inverse wishart prior

Theta prior mean of Lambda

Xi Matrix of prior covariance for inverse wishart (null if coord_system=="proportions")

Xi_default Matrix of prior covariance for inverse wishart in alr base D (used if coord_system=="proportions")

Gamma QxQ covariance matrix prior for Lambda

init matrix initial guess for Lambda used for optimization

names_categories

character vector

34 orthus_fit

Value

object of class orthusfit

See Also

pibble

orthus_fit

Interface to fit orthus models

Description

This function is largely a more user friendly wrapper around optimPibbleCollapsed and uncollapsePibble for fitting orthus models. See details for model specification. Notation: N is number of samples, P is the number of dimensions of observations in the second dataset, D is number of multinomial categories, Q is number of covariates, iter is the number of samples of eta (e.g., the parameter n_samples in the function optimPibbleCollapsed)

Usage

```
orthus(
    Y = NULL,
    Z = NULL,
    X = NULL,
    upsilon = NULL,
    Theta = NULL,
    Gamma = NULL,
    Xi = NULL,
    init = NULL,
    init = NULL,
    pars = c("Eta", "Lambda", "Sigma"),
    ...
)
```

Arguments

- Y D x N matrix of counts (if NULL uses priors only)
- Z P x N matrix of counts (if NULL uses priors only must be present/absent if Y is present/absent)
- Q x N matrix of covariates (design matrix) (if NULL uses priors only, must be present to sample Eta)

orthus_fit 35

upsilon	dof for inverse wishart prior (numeric must be > D) (default: D+3)
Theta	(D-1+P) x Q matrix of prior mean for regression parameters (default: matrix(0, D-1+P, Q))
Gamma	QxQ prior covariance matrix (default: diag(Q))
Xi	$(D-1+P)x(D-1+P)\ prior\ covariance\ matrix\ (default:\ ALR\ transform\ of\ diag(1)*(upsilon-D)/2\ -\ this\ is\ essentially\ iid\ on\ "base\ scale"\ using\ Aitchison\ terminology)$
init	(D-1) x Q initialization for Eta for optimization
pars	character vector of posterior parameters to return
	arguments passed to optimPibbleCollapsed and uncollapsePibble

Details

the full model is given by:

$$Y_{j} \sim Multinomial(\pi_{j})$$

$$\pi_{j} = \Phi^{-1}(\eta_{j})$$

$$cbind(\eta, Z) \sim MN_{D-1+P\times N}(\Lambda X, \Sigma, I_{N})$$

$$\Lambda \sim MN_{D-1+P\times Q}(\Theta, \Sigma, \Gamma)$$

$$\Sigma \sim InvWish(v, \Xi)$$

Where Γ is a Q x Q covariance matrix, and Φ^{-1} is ALRInv_D transform. That is, the orthus model models the latent multinomial log-ratios (Eta) and the observations of the second dataset jointly as a linear model. This allows Sigma to also describe the covariation between the two datasets.

Default behavior is to use MAP estimate for uncollaping the LTP model if laplace approximation is not preformed.

Value

an object of class pibblefit

References

JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. 2019, arXiv e-prints, arXiv:1903.11695

See Also

fido_transforms provide convenience methods for transforming the representation of pibblefit objects (e.g., conversion to proportions, alr, clr, or ilr coordinates.)

access_dims provides convenience methods for accessing dimensions of pibblefit object

Examples

```
sim <- orthus_sim()
fit <- orthus(sim$Y, sim$Z, sim$X)</pre>
```

36 orthus_lr_transforms

 $orthus_lr_transforms \quad \textit{Log-Ratio transforms for orthus objects}$

Description

Log-Ratio transforms for orthus objects

Usage

```
oglr(x, s, V)
oglrInv(x, s, V)
oalr(x, s, d = NULL)
oalrInv(y, s, d = NULL)
oilr(x, s, V = NULL)
oilrInv(y, s, V = NULL)
oclr(x, s)
oclrInv(x, s)
```

Arguments

X	orthus data array (e.g., first s rows are multinomial parameters or log-ratios)
S	first s rows of x are transformed
V	transformation matrix (defines transform)
d	for ALR, which component (integer position) to take as reference (default is $ncol(x)$) for alrInv corresponds to column position in untransformed matrix.
у	orthus data array (e.g., first s rows are multinomial parameters or log-ratios)

Value

A matrix

orthus_sim 37

 $orthus_sim$

Simulate simple orthus dataset and priors (for testing)

Description

Simulate simple orthus dataset and priors (for testing)

Usage

```
orthus_sim(
   D = 10,
   P = 10,
   N = 30,
   Q = 2,
   use_names = TRUE,
   true_priors = FALSE
)
```

Arguments

D	number of multinomial categories
Р	number of dimensions of second dataset Z
N	number of samples
Q	number of covariates (first one is an intercept, must be > 1)

t in minor of to turning (mot one to an intercept) must be a

use_names should samples, covariates, and categories be named

true_priors should Xi and upsilon be chosen to have mean at true simulated value

Value

list

Examples

```
sim <- orthus_sim()</pre>
```

orthus_tidy_samples

Convert orthus samples of Eta Lambda and Sigma to tidy format

Description

Combines them all into a single tibble, see example for formatting and column headers. Primarily designed to be used by summary.orthusfit.

38 pcrbias_mock

Usage

```
orthus_tidy_samples(m, use_names = FALSE, as_factor = FALSE)
```

Arguments

m an object of class orthusfit

use_names should dimension indices be replaced by dimension names if provided in data

used to fit pibble model.

as_factor if use_names should names be returned as factor?

Value

tibble

Examples

```
sim <- orthus_sim()
fit <- orthus(sim$Y, sim$Z, sim$X)
fit_tidy <- orthus_tidy_samples(fit, use_names=TRUE)
head(fit_tidy)</pre>
```

pcrbias_mock

Data from Silverman et al. (2019) bioRxiv

Description

Mock communities and calibration samples created for measuring and validating model of PCR bias. This data has been preprocessed as in the original manuscript.

Usage

```
data(pcrbias_mock)
```

Format

an matrix Y (counts for each community member) and a data.frame metadata

References

Justin D. Silverman, Rachael J. Bloom, Sharon Jiang, Heather K. Durand, Sayan Mukherjee, Lawrence A. David. (2019) Measuring and Mitigating PCR Bias in Microbiome Data. bioRxiv 604025; doi: https://doi.org/10.1101/604025

pibblefit 39

pibblefit

Create pibblefit object

Description

Create pibblefit object

Usage

```
pibblefit(
 D,
 Ν,
 Q,
  coord_system,
  iter = NULL,
  alr_base = NULL,
  ilr_base = NULL,
 Eta = NULL,
  Lambda = NULL,
  Sigma = NULL,
  Sigma_default = NULL,
  Y = NULL,
  X = NULL,
  upsilon = NULL,
  Theta = NULL,
 Xi = NULL,
 Xi_default = NULL,
  Gamma = NULL,
  init = NULL,
  names_categories = NULL,
 names_samples = NULL,
  names_covariates = NULL
)
```

Arguments

D	number of multinomial categories
N	number of samples
Q	number of covariates
coord_system	coordinate system objects are represented in (options include "alr", "clr", "ilr", and "proportions")
iter	number of posterior samples
alr_base	integer category used as reference (required if coord_system=="alr")
ilr_base	(D x D-1) contrast matrix (required if coord_system=="ilr")
Eta	Array of samples of Eta

40 pibble_fit

Lambda Array of samples of Lambda

Sigma Array of samples of Sigma (null if coord_system=="proportions")

Sigma_default Array of samples of Sigma in alr base D, used if coord_system=="proportions"

Y DxN matrix of observed counts

X QxN design matrix

upsilon scalar prior dof of inverse wishart prior

Theta prior mean of Lambda

Xi Matrix of prior covariance for inverse wishart (null if coord_system=="proportions")

Xi_default Matrix of prior covariance for inverse wishart in alr base D (used if coord_system=="proportions")

Gamma QxQ covariance matrix prior for Lambda

init matrix initial guess for Lambda used for optimization

names_categories

character vector

names_samples character vector

names_covariates

character vector

Value

object of class pibblefit

See Also

pibble

pibble_fit

Interface to fit pibble models

Description

This function is largely a more user friendly wrapper around optimPibbleCollapsed and uncollapsePibble. See details for model specification. Notation: N is number of samples, D is number of multinomial categories, Q is number of covariates, iter is the number of samples of eta (e.g., the parameter n_samples in the function optimPibbleCollapsed)

```
pibble(
   Y = NULL,
   X = NULL,
   upsilon = NULL,
   Theta = NULL,
   Gamma = NULL,
   Xi = NULL,
```

pibble_fit 41

```
init = NULL,
pars = c("Eta", "Lambda", "Sigma"),
newdata = NULL,
...
)

## S3 method for class 'pibblefit'
refit(m, pars = c("Eta", "Lambda", "Sigma"), ...)
```

Arguments

Υ	D x N matrix of counts (if NULL uses priors only)
X	$Q \ x \ N$ matrix of covariates (design matrix) (if NULL uses priors only, must be present to sample Eta)
upsilon	dof for inverse wishart prior (numeric must be > D) (default: D+3)
Theta	(D-1) x Q matrix of prior mean for regression parameters (default: $matrix(0, D-1, Q)$)
Gamma	QxQ prior covariance matrix (default: diag(Q))
Xi	(D-1)x(D-1) prior covariance matrix (default: ALR transform of diag(1)*(upsilon-D)/2 - this is essentially iid on "base scale" using Aitchison terminology)
init	(D-1) x N initialization for Eta for optimization
pars	character vector of posterior parameters to return
newdata	Default is NULL. If non-null, newdata is used in the uncollapse sampler in place of \boldsymbol{X} .
	arguments passed to optimPibbleCollapsed and uncollapsePibble
m	object of class pibblefit

Details

the full model is given by:

$$Y_{j} \sim Multinomial(\pi_{j})$$

$$\pi_{j} = \Phi^{-1}(\eta_{j})$$

$$\eta \sim MN_{D-1\times N}(\Lambda X, \Sigma, I_{N})$$

$$\Lambda \sim MN_{D-1\times Q}(\Theta, \Sigma, \Gamma)$$

$$\Sigma \sim InvWish(v, \Xi)$$

Where Γ is a Q x Q covariance matrix, and Φ^{-1} is ALRInv_D transform.

Default behavior is to use MAP estimate for uncollaping the LTP model if laplace approximation is not preformed.

Value

an object of class pibblefit

42 pibble_sim

References

JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. 2019, arXiv e-prints, arXiv:1903.11695

See Also

fido_transforms provide convenience methods for transforming the representation of pibblefit objects (e.g., conversion to proportions, alr, clr, or ilr coordinates.)

access_dims provides convenience methods for accessing dimensions of pibblefit object

Generic functions including summary, print, coef, as.list, predict, name, and sample_prior name_dims

Plotting functions provided by plot and ppc (posterior predictive checks)

Examples

```
sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)</pre>
```

pibble_sim

Simulate simple pibble dataset and priors (for testing)

Description

Simulate simple pibble dataset and priors (for testing)

Usage

```
pibble_sim(D = 10, N = 30, Q = 2, use_names = TRUE, true_priors = FALSE)
```

Arguments

D number of multinomial categories

N number of samples

Q number of covariates (first one is an intercept, must be > 1)

use_names should samples, covariates, and categories be named

true_priors should Xi and upsilon be chosen to have mean at true simulated value

Value

list

Examples

```
sim <- pibble_sim()</pre>
```

pibble_tidy_samples 43

pibble_tidy_samples

Convert pibble samples of Eta Lambda and Sigma to tidy format

Description

Combines them all into a single tibble, see example for formatting and column headers. Primarily designed to be used by summary.pibblefit.

Usage

```
pibble_tidy_samples(m, use_names = FALSE, as_factor = FALSE)
```

Arguments

m an object of class pibblefit

use_names should dimension indices be replaced by dimension names if provided in data

used to fit pibble model.

as_factor if use_names should names be returned as factor?

Value

tibble

Examples

```
sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)
fit_tidy <- pibble_tidy_samples(fit, use_names=TRUE)
head(fit_tidy)</pre>
```

plot.pibblefit

Plot Summaries of Posterior Distribution of pibblefit Parameters

Description

Plot Summaries of Posterior Distribution of pibblefit Parameters

Usage

```
## S3 method for class 'pibblefit' plot(x, ...)
```

Arguments

x an object of class pibblefit

... other arguments passed to plot.pibblefit (see details)

ppc ppc

Details

Other arguments:

- 'par' parameter to plot (options: Lambda, Eta, and Sigma) (default="Lambda")
- 'focus.cov' vector of covariates to include in plot (plots all if NULL)
- 'focus.coord' vector of coordinates to include in plot (plots all if NULL)
- 'focus.sample' vector of samples to include in plot (plots all if NULL)
- 'use_names' if TRUE, uses dimension names found in data as plot labels rather than using dimension integer indices.

Value

```
ggplot object
```

Examples

```
sim <- pibble_sim(N=10, D=4, Q=3)
fit <- pibble(sim$Y, sim$X)
plot(fit, par="Lambda")
plot(fit, par="Sigma")</pre>
```

ррс

Generic method for visualizing posterior predictive checks

Description

Generic method for visualizing posterior predictive checks

Usage

```
ppc(m, ...)
```

Arguments

```
m object
```

... other arguments passed that control visualization

Value

A plot

ppc.pibblefit 45

ppc.pibblefit

Visualization of Posterior Predictive Check of fit model

Description

Visualization of Posterior Predictive Check of fit model

Usage

```
## S3 method for class 'pibblefit'
ppc(m, ...)
```

Arguments

```
m an object of class pibblefit... other options passed to ppc (see details)
```

Details

ppc.pibblefit accepts the following additional arguments:

- "type" type of plot (options "lines", "points", "bounds")
- "iter" number of samples from posterior predictive distribution to plot (currently must be <= m\$iter) if type=="lines" default is 50, if type=="ribbon" default is to use all available iterations.
- "from_scratch" should predictions of Y come from fitted Eta or from predictions of Eta from posterior of Lambda? (default: false)

Value

ggplot object

Examples

```
sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)
ppc(fit)</pre>
```

46 predict.bassetfit

ppc_summary.pibblefit Generic Method to Plot Posterior Predictive Summaries

Description

Generic Method to Plot Posterior Predictive Summaries

Usage

```
## $3 method for class 'pibblefit'
ppc_summary(m, from_scratch = FALSE, ...)
ppc_summary(m, ...)
```

Arguments

```
m model object

from_scratch should predictions of Y come from fitted Eta or from predictions of Eta from posterior of Lambda? (default: false)
```

.. other arguments to pass

Value

vector

predict.bassetfit

Predict using basset

Description

Predict using basset

```
## S3 method for class 'bassetfit'
predict(
   object,
   newdata = NULL,
   response = "Lambda",
   size = NULL,
   use_names = TRUE,
   summary = FALSE,
   iter = NULL,
   from_scratch = FALSE,
   ...
)
```

predict.pibblefit 47

Arguments

object An object of class pibblefit An optional matrix for which to evaluate prediction. newdata Options = "Lambda": Mean of regression, "Eta", "Y": counts response the number of counts per sample if response="Y" (as vector or matrix), default size if newdata=NULL and response="Y" is to use colsums of m\$Y. Otherwise uses median colsums of object\$Y as default. If passed as a matrix should have dimensions ncol(newdata) x iter. if TRUE apply names to output use_names if TRUE, posterior summary of predictions are returned rather than samples summary iter number of iterations to return if NULL uses object\$iter from_scratch should predictions of Y come from fitted Eta or from predictions of Eta from

posterior of Lambda? (default: false)

... other arguments passed to summarise_posterior

Details

currently only implemented for pibblefit objects in coord_system "default" "alr", or "ilr".

Value

(if summary==FALSE) array D x N x iter; (if summary==TRUE) tibble with calculated posterior summaries

predict.pibblefit

Predict response from new data

Description

Predict response from new data

```
## S3 method for class 'pibblefit'
predict(
   object,
   newdata = NULL,
   response = "LambdaX",
   size = NULL,
   use_names = TRUE,
   summary = FALSE,
   iter = NULL,
   from_scratch = FALSE,
   ...
)
```

48 print.orthusfit

Arguments

object An object of class pibblefit

newdata An optional matrix for which to evaluate predictions. If NULL (default), the

original data of the model is used.

response Options = "LambdaX":Mean of regression, "Eta", "Y": counts

size the number of counts per sample if response="Y" (as vector or matrix), default

if newdata=NULL and response="Y" is to use colsums of m\$Y. Otherwise uses median colsums of m\$Y as default. If passed as a matrix should have dimensions

ncol(newdata) x iter.

use_names if TRUE apply names to output

summary if TRUE, posterior summary of predictions are returned rather than samples

iter number of iterations to return if NULL uses object\$iter

from_scratch should predictions of Y come from fitted Eta or from predictions of Eta from

posterior of Lambda? (default: false)

. . . other arguments passed to summarise_posterior

Details

currently only implemented for pibblefit objects in coord_system "default" "alr", or "ilr".

Value

(if summary==FALSE) array D x N x iter; (if summary==TRUE) tibble with calculated posterior summaries

Examples

```
sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)
predict(fit)[,,1:2] # just show 2 samples</pre>
```

print.orthusfit

Print dimensions and coordinate system information for orthusfit ob-

ject.

Description

Print dimensions and coordinate system information for orthusfit object.

```
## S3 method for class 'orthusfit'
print(x, summary = FALSE, ...)
```

print.pibblefit 49

Arguments

```
x an object of class orthusfitsummary if true also calculates and prints summaryother arguments to pass to summary function
```

Value

No direct return, prints out summary

See Also

```
summary.orthusfit summarizes posterior intervals
```

Examples

```
sim <- orthus_sim()
fit <- orthus(sim$Y, sim$Z, sim$X)
print(fit)</pre>
```

print.pibblefit

Print dimensions and coordinate system information for pibblefit object.

Description

Print dimensions and coordinate system information for pibblefit object.

Usage

```
## S3 method for class 'pibblefit'
print(x, summary = FALSE, ...)
```

Arguments

```
x an object of class pibblefitsummary if true also calculates and prints summaryother arguments to pass to summary function
```

Value

No direct return, prints out summary

See Also

```
summary.pibblefit summarizes posterior intervals
```

50 r2

Examples

```
sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)
print(fit)</pre>
```

r2

Generic Method to Calculate R2 for Fitted Model

Description

Generic Method to Calculate R2 for Fitted Model

Usage

```
r2(m, ...)
## S3 method for class 'pibblefit'
r2(m, covariates = NULL, ...)
## S3 method for class 'bassetfit'
r2(m, covariates = NULL, components = NULL, ...)
```

Arguments

m model object

... other arguments to pass

covariates vector of indices for covariates to include in calculation of R2 (default:NULL

means include all covariates by default). When non-null, all covariates not spec-

ified are set to zero for prediction.

components vector of indices for components of the GP model to include in the calculation

of R2, i.e. which elements in the list of Theta/Gamma should be used for calculating R2 (default:NULL means to include all components by default). When

non-null, all components not specified are removed for prediction.

Details

Calculates Posterior over Linear Model R2 as:

$$1 - \frac{SS_{res}}{SS_{tot}}$$

where SS is defined in terms of trace of variances

Method of calculating R2 is multivariate version of the Bayesian R2 proposed by Gelman, Goodrich, Gabry, and Vehtari, 2019

random_pibble_init 51

Calculates Posterior over Basset Model R2 as:

$$1 - \frac{SS_{res}}{SS_{tot}}$$

Method of calculating R2 is multivariate version of the Bayesian R2 proposed by Gelman, Goodrich, Gabry, and Vehtari, 2019

Value

vector

random_pibble_init

Provide random initialization for pibble model

Description

Randomly initializes based on ALR transform of counts plus random pseudocounts uniformily distributed between 0 and 1.

Usage

```
random_pibble_init(Y)
```

Arguments

Υ

matrix (D x N) of counts

Details

Notation: N is number of samples and D is number of multinomial categories

Value

(D-1) x N matrix

Examples

```
Y <- matrix(sample(1:100, 100), 10, 10) random_pibble_init(Y)
```

52 req

refit

Generic method for fitting model from passed model fit object

Description

Generic method for fitting model from passed model fit object

Usage

```
refit(m, ...)
```

Arguments

m object

... other arguments passed that control fitting

Value

object of the same class as m

req

Generic method for ensuring object contains required elements

Description

Intended to be called internally by package

Usage

```
req(m, r)
```

Arguments

m object

r vector of elements to test for

Value

throws error if required element is not present

req.orthusfit 53

req.orthusfit

require elements to be non-null in orthusfit or throw error

Description

require elements to be non-null in orthusfit or throw error

Usage

```
## S3 method for class 'orthusfit'
req(m, r)
```

Arguments

m object

r vector of elements to test for

Value

None, throws an error if NULL

req.pibblefit

require elements to be non-null in pibblefit or throw error

Description

require elements to be non-null in pibblefit or throw error

Usage

```
## S3 method for class 'pibblefit'
req(m, r)
```

Arguments

m object

r vector of elements to test for

Value

Nothing, throws an error if NULL

54 RISK_CCFA_otu

RISK_CCFA

Data from Gevers et al. (2014)

Description

OTU data and metadata for 1,359 samples in a Crohn's disease study

Usage

```
data(RISK_CCFA)
```

Format

An otu table, sample data table, and taxonomy table.

Details

Study is described here: https://pubmed.ncbi.nlm.nih.gov/24629344/. Data was obtained from https://github.com/twbattaglia/MicrobeDS.

References

Gevers D, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014 Mar 12;15(3):382-392. doi: 10.1016/j.chom.2014.02.005. PMID: 24629344; PMCID: PMC4059512.

RISK_CCFA_otu

Data from Gevers et al. (2014)

Description

OTU data and metadata for 1,359 samples in a Crohn's disease study

Usage

```
data(RISK_CCFA)
```

Format

A matrix otu table.

Details

Study is described here: https://pubmed.ncbi.nlm.nih.gov/24629344/. Data was obtained from https://github.com/twbattaglia/MicrobeDS.

RISK_CCFA_sam 55

References

Gevers D, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014 Mar 12;15(3):382-392. doi: 10.1016/j.chom.2014.02.005. PMID: 24629344; PMCID: PMC4059512.

RISK_CCFA_sam

Data from Gevers et al. (2014)

Description

OTU data and metadata for 1,359 samples in a Crohn's disease study

Usage

data(RISK_CCFA)

Format

A sample data table.

Details

Study is described here: https://pubmed.ncbi.nlm.nih.gov/24629344/. Data was obtained from https://github.com/twbattaglia/MicrobeDS.

References

Gevers D, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014 Mar 12;15(3):382-392. doi: 10.1016/j.chom.2014.02.005. PMID: 24629344; PMCID: PMC4059512.

RISK_CCFA_tax

Data from Gevers et al. (2014)

Description

OTU data and metadata for 1,359 samples in a Crohn's disease study

Usage

data(RISK_CCFA)

Format

A taxonomy table.

Details

Study is described here: https://pubmed.ncbi.nlm.nih.gov/24629344/. Data was obtained from https://github.com/twbattaglia/MicrobeDS.

References

Gevers D, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014 Mar 12;15(3):382-392. doi: 10.1016/j.chom.2014.02.005. PMID: 24629344; PMCID: PMC4059512.

sample_prior

Generic method for sampling from prior distribution of object

Description

Generic method for sampling from prior distribution of object

Usage

```
sample_prior(m, n_samples = 2000L, ...)
```

Arguments

```
m object
```

n_samples number of samples to produce... other arguments to be passed

Value

object of the same class

```
sample_prior.pibblefit
```

Sample from the prior distribution of pibblefit object

Description

Note this can be used to sample from prior and then predict can be called to get counts or LambdaX (predict.pibblefit)

sample_prior.pibblefit 57

Usage

```
## S3 method for class 'pibblefit'
sample_prior(
    m,
    n_samples = 2000L,
    pars = c("Eta", "Lambda", "Sigma"),
    use_names = TRUE,
    ...
)
```

Arguments

```
m object of class pibblefit

n_samples number of samples to produce

pars parameters to sample

use_names should names be used if available

... currently ignored
```

Details

Could be greatly speed up in the future if needed by sampling directly from cholesky form of inverse wishart (currently implemented as header in this library - see MatDist.h).

Value

A pibblefit object

Examples

58 summarise_posterior

store_coord

Holds information on coordinates system to later be reapplied

Description

store_coord stores coordinate information for pibblefit object and can be reapplied with function reapply_coord. Some coordinate systems are not useful for computation and this makes it simple keep returned object from computations in the same coordinate system as the input. (Likely most useful inside of a package)

Usage

```
store_coord(m)
reapply_coord(m, 1)
```

Arguments

m object of class pibblefit

1 object returned by function store_coord

Value

store_coord list with important information to identify c coordinate system of pibblefit object. reapply_coord pibblefit object in coordinate system previously stored.

summarise_posterior

Shortcut for summarize variable with quantiles and mean

Description

Shortcut for summarize variable with quantiles and mean

Usage

```
summarise_posterior(data, var, ...)
```

Arguments

data tidy data frame

var variable name (unquoted) to be summarised ... other expressions to pass to summarise

Details

Notation: pX refers to the X% quantile

summary.orthusfit 59

Value

data.frame

Examples

summary.orthusfit

Summarise orthusfit object and print posterior quantiles

Description

Default calculates median, mean, 50% and 95% credible interval

Usage

```
## $3 method for class 'orthusfit'
summary(
  object,
  pars = NULL,
  use_names = TRUE,
  as_factor = FALSE,
  gather_prob = FALSE,
  ...
)
```

Arguments

object an object of class orthusfit

pars character vector (default: c("Eta", "Lambda", "Sigma"))

use_names should summary replace dimension indices with orthusfit names if names Y and X were named in call to orthus

as_factor if use_names and as_factor then returns names as factors (useful for maintaining orderings when plotting)

gather_prob if TRUE then prints quantiles in long format rather than wide (useful for some plotting functions)

... other expressions to pass to summarise (using name 'val' unquoted is probably what you want)

Value

A list

60 uncollapsePibble

summary.pibblefit

Summarise pibblefit object and print posterior quantiles

Description

Default calculates median, mean, 50% and 95% credible interval

Usage

```
## S3 method for class 'pibblefit'
summary(
   object,
   pars = NULL,
   use_names = TRUE,
   as_factor = FALSE,
   gather_prob = FALSE,
   ...
)
```

Arguments

object an object of class pibblefit

pars character vector (default: c("Eta", "Lambda", "Sigma"))

use_names should summary replace dimension indices with pibblefit names if names Y and X were named in call to pibble

as_factor if use_names and as_factor then returns names as factors (useful for maintaining orderings when plotting)

gather_prob if TRUE then prints quantiles in long format rather than wide (useful for some plotting functions)

... other expressions to pass to summarise (using name 'val' unquoted is probably what you want)

Value

A list

uncollapsePibble

Uncollapse output from optimPibbleCollapsed to full pibble Model

Description

See details for model. Should likely be called following optimPibbleCollapsed. Notation: N is number of samples, D is number of multinomial categories, Q is number of covariates, iter is the number of samples of eta (e.g., the parameter n_samples in the function optimPibbleCollapsed)

uncollapsePibble 61

Usage

```
uncollapsePibble(
  eta,
  X,
  Theta,
  Gamma,
  Xi,
  upsilon,
  seed,
  ret_mean = FALSE,
  ncores = -1L
)
```

Arguments

eta	array of dimension (D-1) x N x iter (e.g., Pars output of function optimPibbleCollapsed)
X	matrix of covariates of dimension Q x N
Theta	matrix of prior mean of dimension (D-1) x Q
Gamma	covariance matrix of dimension Q x Q
Xi	covariance matrix of dimension (D-1) x (D-1)
upsilon	scalar (must be > D) degrees of freedom for InvWishart prior
seed	seed to use for random number generation
ret_mean	if true then uses posterior mean of Lambda and Sigma corresponding to each sample of eta rather than sampling from posterior of Lambda and Sigma (useful if Laplace approximation is not used (or fails) in optimPibbleCollapsed)
ncores	(default:-1) number of cores to use, if ncores==-1 then uses default from OpenMP typically to use all available cores.

Details

Notation: Let Z_j denote the J-th row of a matrix Z. While the collapsed model is given by:

$$Y_j \sim \mathrm{Multinomial}(\pi_j)$$

$$\pi_j = \Phi^{-1}(\eta_j)$$

$$\eta \sim T_{D-1,N}(\upsilon,\Theta X,K,A)$$

Where $A=I_N+X\Gamma X'$, $K=\Xi$ is a (D-1)x(D-1) covariance matrix, Γ is a Q x Q covariance matrix, and Φ^{-1} is ALRInv_D transform.

The uncollapsed model (Full pibble model) is given by:

$$Y_j \sim \text{Multinomial}(\pi_j)$$

$$\pi_j = \Phi^{-1}(\eta_j)$$

$$\eta \sim MN_{D-1 \times N}(\Lambda X, \Sigma, I_N)$$

$$\Lambda \sim MN_{D-1xQ}(\Theta, \Sigma, \Gamma)$$
$$\Sigma \sim InvWish(v, \Xi)$$

This function provides a means of sampling from the posterior distribution of Lambda and Sigma given posterior samples of Eta from the collapsed model.

Value

List with components

- 1. Lambda Array of dimension (D-1) x Q x iter (posterior samples)
- 2. Sigma Array of dimension (D-1) x (D-1) x iter (posterior samples)
- 3. The number of cores used
- 4. Timer

References

JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. 2019, arXiv e-prints, arXiv:1903.11695

See Also

```
{\tt optimPibbleCollapsed}
```

Examples

uncollapsePibble_sigmaKnown

Uncollapse output from optimPibbleCollapsed to full pibble Model when Sigma is known

Description

See details for model. Should likely be called following optimPibbleCollapsed. Notation: N is number of samples, D is number of multinomial categories, Q is number of covariates, iter is the number of samples of eta (e.g., the parameter n_samples in the function optimPibbleCollapsed)

Usage

```
uncollapsePibble_sigmaKnown(
  eta,
  X,
  Theta,
  Gamma,
  GammaComb,
  Xi,
  sigma,
  upsilon,
  seed,
  ret_mean = FALSE,
  linear = FALSE,
  ncores = -1L
)
```

Arguments

eta	array of dimension (D-1) x N x iter (e.g., Pars output of function optimPibbleCollapsed)
Χ	matrix of covariates of dimension Q x N
Theta	matrix of prior mean of dimension (D-1) x Q
Gamma	covariance matrix of dimension Q x Q
GammaComb	summed covariance matrix across additive components of dimension Q x Q.
Xi	covariance matrix of dimension (D-1) x (D-1)
sigma	known covariance matrix of dimension (D-1) x (D-1) x iter
upsilon	scalar (must be > D) degrees of freedom for InvWishart prior
seed	seed to use for random number generation
ret_mean	if true then uses posterior mean of Lambda and Sigma corresponding to each sample of eta rather than sampling from posterior of Lambda and Sigma (useful if Laplace approximation is not used (or fails) in optimPibbleCollapsed)
linear	Boolean. Is this for a linear parameter?
ncores	(default:-1) number of cores to use, if ncores==-1 then uses default from OpenMP typically to use all available cores.

Details

Notation: Let Z_j denote the J-th row of a matrix Z. While the collapsed model is given by:

$$Y_{j} \sim Multinomial(\pi_{j})$$

$$\pi_{j} = \Phi^{-1}(\eta_{j})$$

$$\eta \sim T_{D-1,N}(v, \Theta X, K, A)$$

Where $A=I_N+X\Gamma X'$, $K=\Xi$ is a (D-1)x(D-1) covariance matrix, Γ is a Q x Q covariance matrix, and Φ^{-1} is ALRInv_D transform.

64 verify

The uncollapsed model (Full pibble model) is given by:

$$Y_{j} \sim Multinomial(\pi_{j})$$

$$\pi_{j} = \Phi^{-1}(\eta_{j})$$

$$\eta \sim MN_{D-1 \times N}(\Lambda X, \Sigma, I_{N})$$

$$\Lambda \sim MN_{D-1 \times Q}(\Theta, \Sigma, \Gamma)$$

$$\Sigma \sim InvWish(v, \Xi)$$

This function provides a means of sampling from the posterior distribution of Lambda and Sigma given posterior samples of Eta from the collapsed model.

Value

List with components

- 1. Lambda Array of dimension (D-1) x Q x iter (posterior samples)
- 2. Sigma Array of dimension (D-1) x (D-1) x iter (posterior samples)
- 3. The number of cores used
- 4. Timer

References

JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. 2019, arXiv e-prints, arXiv:1903.11695

See Also

optimPibbleCollapsed

verify

Generic method for verifying new objects

Description

Intended to be called internally by package or object creator

Usage

```
verify(m, ...)
```

Arguments

m objec

... other arguments to be passed to verify

Value

throws error if verify test fails

verify.bassetfit 65

verify.bassetfit

Simple verification of passed bassetfit object

Description

Simple verification of passed bassetfit object

Usage

```
## S3 method for class 'bassetfit' verify(m, ...)
```

Arguments

m an object of class bassetfit

... not used

Value

throws error if any verification tests fail

verify.orthusfit

Simple verification of passed orthusfit object

Description

Simple verification of passed orthusfit object

Usage

```
## S3 method for class 'orthusfit'
verify(m, ...)
```

Arguments

m an object of class orthusfit

... not used

Value

throws error if any verification tests fail

66 Y

verify.pibblefit

Simple verification of passed pibblefit object

Description

Simple verification of passed pibblefit object

Usage

```
## S3 method for class 'pibblefit'
verify(m, ...)
```

Arguments

m an object of class pibblefit

... not used

Value

throws error if any verification tests fail

Υ

Data from Silverman et al. (2019) bioRxiv

Description

Mock communities and calibration samples created for measuring and validating model of PCR bias. This data has been preprocessed as in the original manuscript.

Format

an matrix Y (counts for each community member)

References

Justin D. Silverman, Rachael J. Bloom, Sharon Jiang, Heather K. Durand, Sayan Mukherjee, Lawrence A. David. (2019) Measuring and Mitigating PCR Bias in Microbiome Data. bioRxiv 604025; doi: https://doi.org/10.1101/604025

Index

access_dims, 35, 42	lmvgamma_deriv, 19
access_dims (ncategories.pibblefit), 28	loglikPibbleCollapsed, 20
alr, 3	
alr_array, 5	mallard, 21, 22
alrInv, 4	mallard_family, 22, 22
alrInv_array,4	metadata, 23
as.list, 42	miniclo, 23, 24
as.list.orthusfit,5	miniclo_array,24
as.list.pibblefit,6	mongrel (mongrel-deprecated), 24
as.orthusfit, 6	mongrel-deprecated, 24
as.pibblefit,7	
	name, $25, 42$
basset (basset_fit), 7	name.orthusfit, 26
basset_fit, 7	name.pibblefit, 26
	name_dims, 42
check_dims, 9	<pre>name_dims (names_covariates.pibblefit)</pre>
clr_array, 10	27
coef, 42	names_categories
coef.orthusfit, 10	<pre>(names_covariates.pibblefit),</pre>
coef.pibblefit, 11	27
conjugateLinearModel, 11	names_categories<-
convert_orthus_covariance, 12	<pre>(names_covariates.pibblefit),</pre>
create_default_ilr_base, 13	27
fide (fide package) 14	names_coords
fido (fido_package), 14	<pre>(names_covariates.pibblefit),</pre>
fido-package (fido_package), 14	27
fido_package, 14	names_covariates
fido_transforms, 14, 35, 42	<pre>(names_covariates.pibblefit),</pre>
gather_array, 16	27
gradPibbleCollapsed	<pre>names_covariates.pibblefit, 27</pre>
(loglikPibbleCollapsed), 20	names_covariates<-
(10g11Ki 10b1ccollap3ca), 20	<pre>(names_covariates.pibblefit),</pre>
hessPibbleCollapsed	27
(loglikPibbleCollapsed), 20	names_samples
, ,	<pre>(names_covariates.pibblefit),</pre>
kernels, 17	27
	names_samples<-
lambda_to_iqlr, 18	<pre>(names_covariates.pibblefit),</pre>
LINEAR (kernels), 17	27
lmvgamma, 19	ncategories (ncategories.pibblefit), 28

68 INDEX

	11.1.7 01 : 4.7
ncategories.pibblefit, 28	ppc.pibblefit,45
ncovariates (ncategories.pibblefit), 28	<pre>ppc_summary(ppc_summary.pibblefit), 46</pre>
niter (ncategories.pibblefit), 28	<pre>ppc_summary.pibblefit, 46</pre>
nsamples (ncategories.pibblefit), 28	predict, 42
	predict.bassetfit,46
oalr (orthus_lr_transforms), 36	predict.pibblefit, 47, 56
oalrInv (orthus_lr_transforms), 36	print, 42
oalrvar2alrvar	print.orthusfit, 48
(convert_orthus_covariance), 12	print.pibblefit, 49
oalrvar2clrvar	principle of the control of the cont
(convert_orthus_covariance), 12	r2, 50
oalrvar2ilrvar	random_pibble_init, 51
(convert_orthus_covariance), 12	reapply_coord (store_coord), 58
	refit, 52
oclr (orthus_lr_transforms), 36	
oclrInv (orthus_lr_transforms), 36	refit.bassetfit(basset_fit),7
oclrvar2alrvar	refit.pibblefit(pibble_fit), 40
(convert_orthus_covariance), 12	req, 52
oclrvar2ilrvar	req.orthusfit,53
(convert_orthus_covariance), 12	req.pibblefit, 53
oglr (orthus_lr_transforms), 36	RISK_CCFA, 54
oglrInv (orthus_lr_transforms), 36	RISK_CCFA_otu, 54
oilr (orthus_lr_transforms), 36	RISK_CCFA_sam, 55
oilrInv (orthus_lr_transforms), 36	RISK_CCFA_tax, 55
oilrvar2alrvar	
(convert_orthus_covariance), 12	sample_prior, 42, 56
oilrvar2clrvar	<pre>sample_prior.pibblefit, 56</pre>
(convert_orthus_covariance), 12	SE (kernels), 17
	store_coord, 58
oilrvar2ilrvar	summarise_posterior, 58
(convert_orthus_covariance), 12	summary, 42
optimPibbleCollapsed, 20, 25, 29, 34, 35,	summary.orthusfit, <i>37</i> , <i>49</i> , 59
40, 41, 60, 62, 64	
orthus, <i>15</i> , <i>59</i>	summary.pibblefit, 43 , 49 , 60
orthus (orthus_fit), 34	to_alr(fido_transforms), 14
orthus_fit, 34	
orthus_lr_transforms, 36	to_clr (fido_transforms), 14
orthus_sim, 37	to_ilr (fido_transforms), 14
orthus_tidy_samples, 37	to_proportions (fido_transforms), 14
orthusfit, 32	
,	uncollapsePibble, 25, 29, 32, 34, 35, 40, 41,
pcrbias_mock, 38	60
pibble, 8, 10, 11, 15, 18, 34, 40, 60	uncollapsePibble_sigmaKnown, 62
pibble (pibble_fit), 40	: 6 . 64
pibble_fit, 40	verify, 64
pibble_sim, 42	verify.bassetfit,65
·	verify.orthusfit, 65
pibble_tidy_samples, 43	verify.pibblefit,66
pibblefit, 39	
plot, 42	Y, 66
plot.pibblefit, 43	
ppc, 42, 44	