3.1.6 אפיון היינה לקיום גבול של פונקציה בנקודה

 $(f(x_n))_{n=1}^\infty$ הסדרה x_0 ב בסביבה מנוקבת של x_0 אז יש ל x_0 גבול ב x_0 אם שם לכל x_0 סדרת היינה עבור x_0 בסביבה מנוקבת של x_0 אז יש ל x_0 גבול ב x_0 אז יש ל x_0 הסדרה x_0 ה

הוכחה נראה שקילות לאפיון היינה:

- היא $(\tilde{x}_1,\hat{x}_1,\tilde{x}_2,\hat{x}_2,\dots,\tilde{x}_n,\hat{x}_n,\hat{x}_n,\dots)$ אזי מאינפי 1 הסדרה השזורה . $\lim_{n\to\infty}\tilde{x}_n=L_1$, $\lim_{n\to\infty}\hat{x}_n=L_2$ נסמן, \tilde{x}_n,\hat{x}_n , נסמן \tilde{x}_n,\hat{x}_n , נסמן \tilde{x}_n , נסמן \tilde{x}_n , \tilde{x}_n בסדרת היינה, ולפי ההנחה הסדרה הנ"ל מתכנסת (נסמן) ולכן קבוצת הגבולות החלקיים שלה היא בדיוק $\lim_{x\to x_0}f(x)=L$ כנדרש