In [103]: import pandas as pd

In [104]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")#read data from file as csv

In [105]: data.describe()#describe data like count, mean, max value

Out[105]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538 000000	77 000000	4658 000000	235000 000000	4 000000	46 795612	18 365520	11100 000000

In [106]: data.tail(10)#shows last 10 rows

Out[106]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
1528	1529	lounge	51	2861	126000	1	43.841980	10.51531	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.36112	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.99450	10800
1531	1532	sport	73	4505	127000	1	45.528511	9.59323	4750
1532	1533	pop	51	1917	52008	1	45.548000	11.54947	9900
1533	1534	sport	51	3712	115280	1	45.069679	7.70492	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.41348	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.56827	7900

In [107]: datal=data.drop(['lat','ID','lon'],axis=1)#remove column of lat,id,lon by using drop function

In [108]: data1

Out[108]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	рор	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	рор	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [109]: data2=pd.get dummies(data1)#where the lounge model it shows"1" other models it shows "0" data2

Out[109]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

In [110]: data2.shape#how many rows and columns in the data frame

Out[110]: (1538, 8)

In [111]: z=data2.loc[(data.previous_owners==1)]#determine only for lounge cars

In [112]: z

Out[112]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1389 rows × 8 columns

In [113]: y=z['price']#removing price from data2 and put in new data frame y
x=z.drop(['price'],axis=1)#remaining data can be put in another data fram

```
In [114]: x# to get data in xmport seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[114]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
0	51	882	25000	1	1	0	0
1	51	1186	32500	1	0	1	0
2	74	4658	142228	1	0	0	1
3	51	2739	160000	1	1	0	0
4	73	3074	106880	1	0	1	0
1533	51	3712	115280	1	0	0	1
1534	74	3835	112000	1	1	0	0
1535	51	2223	60457	1	0	1	0
1536	51	2557	80750	1	1	0	0
1537	51	1766	54276	1	0	1	0

1389 rows × 7 columns

```
In [115]: y# to get data in y
Out[115]: 0
                   8900
                   8800
           2
                   4200
           3
                   6000
                   5700
           4
           1533
                   5200
           1534
                   4600
           1535
                   7500
           1536
                   5990
           1537
                   7900
           Name: price, Length: 1389, dtype: int64
In [116]: from sklearn.model selection import train test split
           x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)#dividing training data and
In [117]: x_test.head(5)#display top 5 data in testing data
Out[117]:
                                          km previous_owners model_lounge model_pop model_sport
                engine_power age_in_days
            625
                         51
                                  3347 148000
                                                          1
                                                                      1
                                                                                0
                                                                                           0
            187
                         51
                                  4322
                                       117000
                                                          1
                                                                      1
                                                                                0
                                                                                           0
            279
                         51
                                  4322
                                      120000
                                                          1
                                                                      0
                                                                                1
                                                                                           0
            734
                         51
                                   974
                                        12500
                                                          1
                                                                      0
                                                                                1
                                                                                           0
            315
                         51
                                  1096
                                        37000
                                                          1
                                                                      1
                                                                                0
                                                                                           0
```

```
In [118]: y test.head(5)#display top 5 data in testing data price dataframe
Out[118]: 625
                   5400
           187
                   5399
           279
                   4900
           734
                  10500
           315
                   9300
           Name: price, dtype: int64
In [119]: x train.head(5)#display top 5 data in training data
Out[119]:
                engine_power age_in_days
                                        km previous_owners model_lounge model_pop model_sport
            915
                        51
                                  397 17081
                                                        1
                                                                    1
                                                                              0
                                                                                         0
                                  456 18450
            12
                        51
                                                        1
                                                                    1
                                                                                         0
                                  397 21276
            638
                        51
                                                        1
                                                                    1
                                                                                         0
            190
                        51
                                  821 19000
                                                        1
                                                                                         0
                                                                    1
                                  701 27100
                                                        1
                                                                                         0
            701
                        51
                                                                    1
                                                                              0
In [120]: y train.head(5)#display top 5 data in training data price dataframe
Out[120]: 915
                  10900
                   9700
           12
           638
                  10850
           190
                   9990
           701
                  10300
           Name: price, dtype: int64
```

```
In [121]: | from sklearn.linear model import ElasticNet#elastic net
          elastic = ElasticNet()
          parameters = { 'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
          elastic regressor = GridSearchCV(elastic, parameters)
          elastic regressor.fit(x train, y train)
Out[121]: GridSearchCV(estimator=ElasticNet(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                             5, 10, 201})
In [128]: elastic regressor.best params #finding alpha value
Out[128]: {'alpha': 0.01}
In [123]: elastic=ElasticNet(alpha=0.01)
          elastic.fit(x train,y train)
          y pred elastic=elastic.predict(x test)
In [124]: from sklearn.metrics import mean squared error
          Elasticnet Error=mean squared error(y pred elastic,y test)
          Elasticnet Error
Out[124]: 515349.978787187
In [125]: from sklearn.metrics import r2 score#accuracy
          r2 score(y test,y pred elastic)
Out[125]: 0.8602162350730707
```

In [126]: Results=pd.DataFrame(columns=['Actual','predicted'])#different data frames for actual predicted
 Results['Actual']=y_test
 Results['predicted']=y_pred_elastic
 Results=Results.reset_index()
 Results['ID']=Results.index
 Results.head(10)

Out[126]:

	index	Actual	predicted	ID
0	625	5400	5482.171479	0
1	187	5399	5127.531740	1
2	279	4900	4803.203231	2
3	734	10500	9662.825235	3
4	315	9300	9408.645424	4
5	652	10850	10350.952605	5
6	1472	9500	9806.127960	6
7	619	7999	8341.142824	7
8	992	6300	5913.786719	8
9	1154	10000	10149.093829	9

```
In [127]: import seaborn as sns#plotting data
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[127]: []


```
In [130]: import seaborn as sns#ploting data
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.tail(50))
sns.lineplot(x='ID',y='predicted',data=Results.tail(50))
plt.plot()
```

Out[130]: []


```
In [ ]:
```