Al trends in Automotive

Julien Simon Global Evangelist, Al & Machine Learning, AWS @julsimon

AWS for automotive

AWS enables our customers and partners to deliver intelligent, personalized brand experiences across the value chain

Automotive transformation

Every automotive company needs to also be a software company

Automotive transformation

Unprecedented convergence of technology and consumer trends

Transformational technology Consumer trends

Al, Machine Learning, Deep Learning

Artificial Intelligence: design software applications which exhibit human-like behavior, e.g. speech, natural language processing, reasoning or intuition

Machine Learning: using statistical algorithms, teach machines to learn from featurized data (columns) without being explicitly programmed

Deep Learning: using neural networks, teach machines to learn from complex data where features cannot be explicitly expressed

The Advent of Machine Learning

Infrastructure

Machine Learning

Optimizing logistics https://aws.amazon.com/machine-learning/customers/innovators/convoy/

CONVOY

40 percent of the miles truck drivers log each year are done with an empty truck!

Formula 1

https://aws.amazon.com/f1insights/

- 120 sensors per car
- 3GB and 1,500 data points per second
- 65 years of historical data

- Overtake probability
- Car performance
- Pitstop advantage

Deep Learning

Deep Learning is changing the IT landscape

- Image and video analysis
- Natural language understanding
- Machine translation
- Speech processing
- Enterprise data too!

Alexa in the car: BMW Connected Drive

https://www.youtube.com/watch?v=l-uHGOUpLlg

Autonomous driving & ADAS

https://www.mobileye.com

Autonomous trucks

https://www.tusimple.com
https://www.youtube.com/watch?v=VXSIq33WZoo

Level 4 autonomy

Billions of miles simulated on AWS

3 to 5 trips per day along three fixed routes in Arizona, with an average run of 200 miles

Driving data: The trillion-mile challenge

Data gathering from ordinary drivers

environment behavior

Cloud simulator

validation

Test cars with professional drivers

millions of miles

low-res maps

billions of miles

high-res maps

millions of miles

Reinforcement Learning

Types of Machine Learning

Supervised learning

- Run an algorithm on a labeled data set
- The model learns how to correctly predict the right answer
- Regression and classification are examples of supervised learning

Unsupervised learning

- Run an algorithm on an unlabeled data set
- The model learns patterns and organizes samples accordingly
- Clustering and anomaly detection are examples of unsupervised learning

Building a dataset is not always an option

Large, complex problems

Uncertain, chaotic environments

Continuous learning

Supply chain management, HVAC systems, industrial robotics, autonomous vehicles, portfolio management, oil exploration, etc.

Types of Machine Learning

SOPHISTICATION OF ML MODELS Supervised learning Unsupervised learning

AMOUNT OF TRAINING DATA REQUIRED aws

Types of Machine Learning

Reinforcement learning (RL)

Supervised learning

Unsupervised learning

AMOUNT OF TRAINING DATA REQUIRED

Learning without any data: we've all done it!

Reinforcement Learning

An agent interacts with its environment.

The agent receives positive or negative rewards for its actions: rewards are computed by a user-defined function which outputs a numeric representation of the actions that should be incentivized.

By trying to maximize the accumulation of rewards, the agent learns an optimal strategy (aka policy) for decision making.

Robotics

Autonomous driving

AWS DeepRacer

1/18th scale autonomous vehicle

Amazon RoboMaker

Machine Learning at the edge

Computing is increasingly available at the edge

Machine Learning predictions at the edge make devices smarter

Most machine data never reaches the cloud

Train in the cloud, deploy and predict at the edge

Predicting distracted driving

Getting started

https://ml.aws

https://aws.amazon.com/deepracer/

https://aws.amazon.com/automotive/

Thank you!

Julien Simon Global Evangelist, AI & Machine Learning, AWS @julsimon

