Definition 1. A subset $\mathcal{U} \subseteq \mathcal{F}$ is minimal unsatisfiable subset (MUS) if \mathcal{U} unsatisfiable and $\forall \mathcal{U}' \subset \mathcal{U}$, \mathcal{U}' is satisfiable. An MUS of \mathcal{F} with an optimal value w.r.t an objective function f is called an **optimal** MUS (OMUS).

Definition 2. A subset C of F is an **minimal correction subset** (MCS) if $F \setminus C$ is satisfiable and $\forall C' \subseteq C \land C' \neq \emptyset$, $(F \setminus C) \cup C'$ is unsatisfiable.

Definition 3. A satisfiable subset $S \subseteq \mathcal{F}$ is a **Maximal Satisfiable Subset** (MSS) if $\forall S' \subseteq \mathcal{F}'$ s.t $S \subseteq S'$, S' is unsatisfiable.

An MSS can also be defined as the complement of an MCS (and vice versa). If \mathcal{C} is a MCS then $\mathcal{S} = \mathcal{F} \setminus \mathcal{C}$ is a MSS. On the other hand, MUSes and MCSes are related by the concept of minimal hitting set.

Definition 4. A minimal correction subset C of F is an **Optimal Correction Subset** of F, OCS(F) if $\forall C' \in MCSes(F') : f(C) \leq f(C')$.

Definition 5. A maximal satisfiable subset $S \subseteq \mathcal{F}$ is an **Optimal Satisfiable Subset** (OSS) if $\forall S' \in MSSes(\mathcal{F}'): f(S) \leq f(S')$.

Proof. Let \mathcal{C} be the collection of $MCSes(\mathcal{F})$, \mathcal{S} be the collection of $MSSes(\mathcal{F})$, we know that

- $|\mathcal{C}| = |\mathcal{S}|$ and,
- $\forall i \in \{1..|\mathcal{C}|\} : \mathcal{S}_i = \mathcal{F} \setminus \mathcal{C}_i$

Let S* be the OSS,

Let C^* be the OCS,

Lemma 1. Given a CNF formula \mathcal{F} , let $OMUSes(\mathcal{F})$ and $OCSes(\mathcal{F})$ be the set of all OMUSes and OCSes of \mathcal{F} respectively. Then the following holds:

- 1. A subset \mathcal{U} of \mathcal{F} is an OMUS iff \mathcal{U} is an optimal hitting set of $OCSes(\mathcal{F})$
- 2. A subset C of F is an OCS iff U is an optimal hitting set of OMUSes(F)

Definition 6. Let Γ be a collection of sets and MHS(Γ) the set of all minimal hitting sets on Γ and let f be an objective function with input a set of constraints. Then a hitting set $h \in \Gamma$ is said to be an **optimal** hitting set if $\forall h' \in OHS(\Gamma)$ we have that $f(h) \leq f(h')$ [Davies and Bacchus, 2011].

Property 1. The optimal hitting set of a collection of sets Γ is denoted by $OHS(\Gamma)$.

Proposition 1. A set $\mathcal{U} \subseteq \mathcal{F}$ is an OMUS of \mathcal{F} if and only if \mathcal{U} is an optimal hitting set of $MCSes(\mathcal{F})$

Lemma 2. Let $K \subseteq MCSes(\mathcal{F})$. Then a subset \mathcal{U} of \mathcal{F} is an OMUS if \mathcal{U} is a optimal hitting set on K and \mathcal{U} is unsatisfiable

Proof Lemma 2

- Is an OCS obligatory an MCS?
- Does an OCS have to be optimal and minimal?
- How is MSS afected?

Algorithm 1: OMUS($\mathcal{F}, f_o, \mathcal{H}_0$) [Ignative et al., 2015] : \mathcal{F} a CNF formula input input : f a cost function optional input: \mathcal{H}_0 initial set of disjoint Minimum Correction Sets 1 begin $\mathcal{H} \leftarrow \mathcal{H}_0$; $\mathbf{2}$ while true do 3 // cost minimal hitting set w.r.t cost function f $h \leftarrow \mathtt{OHS}(\mathcal{H}, f);$ // set with all clauses from hitting set $\mathcal{F}' \leftarrow \{c_i | e_i \in h\}$; 5 if $not SAT(\mathcal{F}')$ then 6 return $\mathcal{OMUS} \leftarrow \mathcal{F}'$; 7 end // written as $\operatorname{grow}(\mathcal{F}')$ which is Minimum Correction Set of \mathcal{F}' // find the biggest one with the biggest cost $\mathcal{C} \leftarrow \mathcal{F} \setminus grow(\mathcal{F}', \mathcal{F}, f)$; 9 $\mathcal{H} \leftarrow \mathcal{H} \cup \{\mathcal{C}\}$; 10 11 end 12 end

Proof 1.

- use the cost of the constraints
- if $cost \leq ...$ and $cost \geq ...$ then it means cost
- Use the min cost of OCS and OMUS

Proof 1.1 \Rightarrow A subset \mathcal{U} of \mathcal{F} is an OMUS \Rightarrow \mathcal{U} is an optimal hitting set of $OCSes(\mathcal{F})$

Proof 1.2 \Leftarrow A subset \mathcal{U} of \mathcal{F} is an OMUS \Leftarrow \mathcal{U} is an optimal hitting set of OCSes(\mathcal{F})

Proof 2.

Proof 2.1 \Rightarrow A subset C of F is an OCS \Rightarrow U is an optimal hitting set of OMUSes(F)

Proof 2.2 \Leftarrow A subset \mathcal{C} of \mathcal{F} is an $OCS \Leftarrow \mathcal{U}$ is an optimal hitting set of $OMUSes(\mathcal{F})$

For the set of clauses $\{c_1,...c_{|C|}\}$ in the collection of sets \mathcal{H} . For Example:

$$\{c_3\}, \{c_2, c_4\}, \{c_1, c_4\}, \{c_1, c_5, c_7\}$$

The optimal hitting set can be formulated as an integer linear program.

$$\min_{x} \sum_{i \in \{1..|C|\}} c_i \cdot x_i \tag{1}$$

$$\sum_{i \in \{1..|C|\}} x_i \cdot w_{ij} \ge 1, \ \forall j \in \{1..|hs|\}$$
 (2)

$$x_i = \{0, 1\} \tag{3}$$

$$w_{ij} = \{0, 1\} \tag{4}$$

- \bullet c_i is the cost associated with clause i in
- x_i is a boolean decision variable if constraint/clause c_i is chosen or not.
- Equation 2 is a boolean decision variable if constraint/clause i is in hitting set j.

References

[Davies and Bacchus, 2011] Davies, J. and Bacchus, F. (2011). Solving maxsat by solving a sequence of simpler sat instances. In *International conference on principles and practice of constraint programming*, pages 225–239. Springer.

[Ignatiev et al., 2015] Ignatiev, A., Previti, A., Liffiton, M., and Marques-Silva, J. (2015). Smallest mus extraction with minimal hitting set dualization. In *International Conference on Principles and Practice of Constraint Programming*, pages 173–182. Springer.