Projekt pri predmetu Matematično modeliranje

TJAŠA VRHOVNIK Fakulteta za matematiko in fiziko Oddelek za matematiko

19. avgust 2019

Kazalo

1	Naloga	3
2	Izpeljava	3
3	Numerična rešitev 3.1 Program doloci_polinom.m	
4	Primeri 4.1 1. primer	6

1 Naloga

Rešujemo naslednji problem: V ravnini sta dani dve točki, $T_1(x_1, y_1)$ in $T_2(x_2, y_2)$, kjer je $y_1 > y_2$ in $x_1 < x_2$. Med vsemi kubičnimi polinomi, ki potekajo skozi točke T_1 , T_2 in $T_3 = T_1 + \frac{1}{2}(T_2 - T_1)$, iščemo tistega, ki minimizira čas potovanja kroglice po njegovem grafu od T_1 do T_2 .

2 Izpeljava

Naloga se zdi podobna znamenitemu problemu o brahistohroni, ki ga je zastavil Jacob Bernoulli. Označimo iskan polinom z $r(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$. Polinom r bo določen, ko bomo poznali njegove koeficiente a_3 , a_2 , a_1 in a_0 . Za lažje računanje za začetek prestavimo točke tako, da bo T_1 v koordinatnem izhodišču. Označimo nove točke:

$$T'_1 = (0,0),$$

$$T'_2 = T_2 - T_1 = (x_2 - x_1, y_2 - y_1),$$

$$T'_3 = T_3 - T_1 = \frac{1}{2}(T_2 - T_1) = \frac{1}{2}T'_2.$$

S tem bo graf transliranega polinoma $p(x) = ax^3 + bx^2 + cx + d \mod T_1'$ in T_2' ves čas pod abscisno osjo. Če bi graf dosegel nenegativno vrednost med točkama T_1' in T_3' , bi bil vodilni koeficient polinoma p pozitiven. To bi pomenilo, da bi se kroglica iz začetne točke dvigala, kar fizikalno ni mogoče. Predvidevamo tudi, da so vrednosti polinoma med točkama T_3' in T_2' povsod negativne; to bomo kasneje potrdili z numeričnimi primeri.

Izračunajmo koeficiente polinoma p. Vemo, da je kubični polinom enolično določen s štirimi točkami v ravnini. V našem primeru so znane tri točke na polinomu, kar pomeni, da bomo imeli en prost parameter. Vstavimo koordinate točk T_1' , T_2' in T_3' v izraz za polinom p in računajmo:

$$p(0) = d = 0, (1)$$

$$p(x_2 - x_1) = a(x_2 - x_1)^3 + b(x_2 - x_1)^2 + c(x_2 - x_1) = y_2 - y_1,$$
 (2)

$$p\left(\frac{x_2 - x_1}{2}\right) = a\left(\frac{x_2 - x_1}{2}\right)^3 + b\left(\frac{x_2 - x_1}{2}\right)^2 + c\frac{x_2 - x_1}{2} = \frac{y_2 - y_1}{2}.$$
 (3)

Pomnožimo enačbo (3) z 2 in jo odštejmo od enačbe (2). Dobimo

$$\frac{3}{4}a(x_2 - x_1)^3 + \frac{1}{2}b(x_2 - x_1)^2 = 0,$$

$$\frac{3}{2}a(x_2 - x_1) + b = 0,$$

$$b = -\frac{3}{2}a(x_2 - x_1).$$
(4)

Koeficient c izračunamo iz enačbe (2), pri čemer upoštevamo zgornji izraz za b.

Računamo

$$c(x_2 - x_1) = y_2 - y_1 - a(x_2 - x_1)^3 - b(x_2 - x_1)^2$$

$$= y_2 - y_1 - a(x_2 - x_1)^3 + \frac{3}{2}a(x_2 - x_1)^3$$

$$= y_2 - y_1 + \frac{1}{2}a(x_2 - x_1)^3,$$

$$c = \frac{y_2 - y_1}{x_2 - x_1} + \frac{1}{2}a(x_2 - x_1)^2.$$
 (5)

Koeficienti polinoma p se izražajo s parametrom a, katerega ne poznamo. Polinom p je torej funkcija dveh spremenljivk, p = p(x, a). Spremenljivko a bomo določili z minimizacijo časa potovanja po grafu polinoma.

Čas, ki ga kroglica potrebuje za pot med točkama T_1^\prime in T_2^\prime se izraža z integralom

$$t = \int_{T_1'}^{T_2'} \frac{ds}{v}.\tag{6}$$

Upoštevajmo zakon o ohranitvi energije, ki v našem primeru pravi, da se vsota kinetične in potencialne energije kroglice med potovanjem ohranja. Uporabimo razmislek, da je graf polinoma ves čas pod abscisno osjo – enačba se tako glasi

$$\frac{1}{2}mv^2 = mg(-p),$$

od koder izrazimo hitrost potovanja kroglice

$$v = \sqrt{2g(-p)}.$$

Vemo še, da je ločna dolžina enaka $ds^2=dx^2+dp^2$. Označimo parcialni odvod polinoma p po spremenljivki x s $p'=\frac{dp}{dx}$. Enačba (6) tako dobi obliko

$$T(a) = \int_0^{x_2 - x_1} \sqrt{\frac{1 + p'^2}{-2gp}} dx, \tag{7}$$

kjer smo sT označili funkcijo časa, odvisno od spremenljivke a. Naša naloga je poiskati njen minimum. Analitično iskanje minimuma funkcije T je zahtevno; pomagali si bomo z numeriko in s pomočjo programa Matlab poiskali vrednosta, ki ustreza minimalni vrednosti funkcije T.

3 Numerična rešitev

Vrednost spremenljivke a, ki minimizira funkcijo časa T poiščemo numerično.

3.1 Program doloci polinom.m

Oglejmo si program doloci_polinom.m v Matlabu. Program kot argumente sprejme koordinate točk T_1 in T_2 pri čemer velja $x_1, y_1, x_2, y_2 \in \mathbb{R}, y_1 > y_2$ in $x_1 < x_2$. Kot smo razmislili v prejšnjem poglavju, je smiselno točke translirati tako, da točka T_1 leži v koordinatnem izhodišču. Koeficiente transliranega polinoma p definiramo kot funkcije spremenljivke a, ter definiramo polinom

in njegov odvod, ki sta funkciji spremenljivk a in x. Funkcijo T definiramo kot v enačbi (7). Za minimizacijo te funkcije uporabimo vgrajeno funkcijo fminsearch, ki vrne iskano vrednost spremenljivke a, pri kateri je čas potovanja kroglice po grafu polinoma najmanjši. Vrednost označimo z A. Kako smo določili začetni približek za vrednost A, ki je obvezen argument funkcije fminsearch? Že v začetku smo premislili, da bo vodilni koeficient polinoma negativen. Če izberemo a=0, se translirani polinom glasi $p(x)=\frac{y_2-y_1}{x_2-x_1}x$, kar je premica skozi točke T_1' , T_2' in T_3' . Z naraščanjem absolutne vrednosti a postaja graf polinoma čedalje bolj ukrivljen. Tako za a<0 kmalu doseže nenegativne vrednosti med točkama T_3' in T_2' ; izračunan čas je v tem primeru kompleksno število, zato smo v težavah. Vendar na konkretnih primerih ugotovimo, da je za negativne vrednosti a, ki so blizu 0 potreben čas manjši od časa potovanja po premici, z manjšanjem a od neke vrednosti a dalje pa se čas povečuje. Nadalje obstaja še manjša vrednost a, pri kateri graf polinoma preide abscisno os. Od tod sklepamo, da je ustrezen začetni približek A=0.

Program doloci_polinom.m vrne vodilni koeficient polinoma p skozi translirane točke, od koder lahko izračunamo ostale koeficiente polinoma. Našli smo torej polinom, ki minimizira čas potovanja kroglice skozi točke T_1' , T_2' in T_3' . Vendar je naša naloga poiskati polinom r, ki vsebuje točke T_1 , T_2 in T_3 . Časa potovanj po grafih obeh polinomov sta enaka, saj se obliki (ukrivljenosti) polinomov ujemata. Iskani polinom namreč dobimo tako, da polinom skozi premaknjene točke transliramo za krajevni vektor točke T_1 . Polinom skozi prvotne točke, ki nas zanima, ustreza zvezi

$$r(x) = a(x - x_1)^3 + b(x - x_1)^2 + c(x - x_1) + d + y_1.$$
 (8)

Ker poznamo koeficiente a, b, c in d, vrednosti x_1 in y_1 pa sta koordinati točke T_1 , poznamo tudi iskani polinom p.

3.2 Program risi_polinom.m

Za vizualizacijo uporabimo program risi_polinom.m. Ta najprej odpre koordinatno mrežo velikosti $[0,1] \times [0,1]$, na kateri uporabnik s klikom izbere dve točki. Zaradi lažje predstave program koordinate izbranih točk pomnoži s faktorjem 10, tako dobljeni točki pa ustrezata točkama T_1 in T_2 , ki določata polinom. Ko sta točki izbrani, program s pomočjo klica programa doloci_polinom.m izračuna koeficient a, od tod pa še koeficiente b, c in d transliranega polinoma skozi koordinatno izhodišče. Kot v enakosti (8) definira še iskani polinom r skozi točke T_1 , T_2 in T_3 .

Izrišeta se dve sliki. Na prvi je s črtkano črto predstavljen transliran polinom p, ki poteka skozi koordinatno izhodišče, in na njem označene točke T_1' , T_2' in T_3' . Polna črta predstavlja iskani polinom r, oznake \times pa so izbrane točke T_1 , T_2 in T_3 , ki ga določajo. Vemo, da je najhitrejša pot kroglice po grafu med dvema točkama v ravnini, ki ustrezata $y_1 > y_2$ in $x_1 < x_2$, brahistohrona. Zato bomo naredili primerjavo brahistohrone s kubičnim polinomom, ki imata skupni začetno in končno točko T_1 in T_2 , polinom pa vsebuje še točko $T_3 = T_1 + \frac{1}{2}(T_2 - T_1)$. Druga slika predstavlja brahistohrono in kubični polinom, ki minimizira čas potovanja skozi dane točke. S simbolom \times so označene točke T_1 , T_2 in T_3 .

Program izračuna in izpiše še čas potovanja po kubičnem polinomu, brahistohroni in premici skozi dane točke. Programi, ki določijo, narišejo brahisto-

hrono in izračunajo čas potovanja po brahistohroni ter premici (isci_theta.m, risi_brahi.m in cas_brahi.m) so bili napisani na vajah predmeta Matematično modeliranje.

4 Primeri

4.1 1. primer

Oglejmo si primer, kjer smo v programu risi_polinom.m točki $T_1(x_1, y_1)$ in $T_2(x_2, y_2)$ izbrali z grafičnim vmesnikom. Koordinate točk ustrezajo vrednostim

 $x_1 = 0.930018416206262,$

 $y_1 = 8.983644859813083,$

 $x_2 = 9.456721915285449,$

 $y_2 = 2.792056074766355.$

Program izriše naslednji sliki.

Slika 1: Kubični polinom, ki minimizira čas potovanja kroglice skozi točke T_1 , T_2 in T_3 , je predstavljen s polno črto. S črtkano črto je predstavljen transliran polinom skozi koordinatno izhodišče.

Izračunani časi potovanja po kubičnem polinomu, brahistohorni in premici:

 $t_{polinom} = 1.800452978985828,$

 $t_{brahistohrona}=1.657073117759419, \\$

 $t_{premica} = 1.913116876467396. \\$

Opazimo, da se numerični rezultati ujemajo s pričakovanji: čas potovanja po brahistohroni je najmanjši, sledi mu kubični polinom, premica pa da najpočasnejšo pot.

Lahko si ogledamo še vrednost koeficienta a. Ta je enaka a=-0.023312500000000.

Slika 2: Z rdečo barvo je predstavljen kubični polinom, ki minimizira čas potovanja kroglice skozi točke T_1 , T_2 in T_3 , z modro pa brahistohorna skozi točki T_1 in T_2 .

Literatura

[1] Zapiski s predavanj prof. E. Žagarja pri predmetu Matematično modeliranje, Univerza v Ljubljani, Fakulteta za matematiko in fiziko (študijsko leto 2018/2019).