

Systematic Trading Strategy Design (feat. Momentum)

Paragon Global Investments

Harrison Wang and Nick Klatsky

What is Momentum?

"An object in motion stays in motion"

- Fundamental Human Instincts
- Claim: market trends persist
- Buy stocks which historically outperform
- Sell stocks which historically underperform
- Is this strategy profitable?

- How do we assign a value to momentum?
 - o For asset i and time t, let P_{i t} be the price of the asset at time t
 - Then, define momentum to be the returns over some lookback window

$$Mom_{i,t} = \frac{P_{i,t}}{P_{i,t-n}} - 1$$

- Modified signals
 - o Short term vs. long-term momentum
 - We backtest long-term momentum (t represents time in months)
 - Lookback window
 - Test n = 3, 6, 9, 12 (months)
 - o Remove reversal effect of previous month
 - Returns excluding past month

$$R_{i,t}^{t-12:t-1} = \frac{P_{i,t-1}}{P_{i,t-12}} - 1$$

Preliminary Signal Strength Testing

Each month, sort stocks into 10 deciles depending on momentum value, calculate average returns

			Pa	nel B:	Value-	Weight	ed Port	tfolio R	eturns				
Sort Variable	1	2	3	4	5	6	7	8	9	10	10-1	САРМ а	FF α
Mom	-0.76	-0.12	0.04	0.35	0.39	0.37	0.53	0.67	0.75	1.18	1.95	2.13	2.37
											(5.39)	(6.48)	(7.54)
R^{12M}	-0.36	0.01	0.26	0.39	0.37	0.43	0.54	0.62	0.73	1.05	1.42	1.66	1.93
											(3.64)	(4.81)	(5.82)
R^{9M}	0.02	0.40	0.40	0.40	0.43	0.44	0.44	0.58	0.65	0.97	0.95	1.24	1.45
											(2.51)	(3.67)	(4.48)
R^{6M}	0.21	0.48	0.48	0.50	0.53	0.47	0.51	0.47	0.53	0.78	0.58	0.85	0.98
											(1.71)	(2.76)	(3.30)
R^{3M}	0.33	0.54	0.60	0.60	0.61	0.51	0.46	0.48	0.47	0.63	0.31	0.57	0.69
											(1.07)	(2.08)	(2.40)
$R^{t-12:t-1}$	-0.71	-0.12	0.19	0.31	0.42	0.40	0.48	0.66	0.74	1.08	1.79	1.96	2.23
											(5.12)	(6.21)	(7.33)
$R^{t-6:t-1}$	-0.52	0.22	0.38	0.40	0.51	0.48	0.52	0.51	0.54	0.97	1.50	1.71	1.86
											(4.11)	(5.14)	(5.91)

(4.11)

(5.14)

(5.91)

Takeaways

 $Mom = R^{t-11:t-1}$

- Sorting by longer-term momentum signal generates profitable portfolios
- Excluding the previous month increases signal strength
- Best signal outperforms market by2.13% on average

Backtesting Trading Strategy

Momentum-specific parameters:

- Signal characteristics: lookback window, exclusion of past month, frequency
- Relative (Cross-sectional) vs. Absolute (Time Series) Momentum
 - Compare stocks to each other or to risk-free rate?

General algorithmic design parameters:

- Asset class
- Long-only vs. long-short
- Rebalancing frequency
 - Balance t-costs with signal capture
- Allocation of portfolio
 - Equal-weighted, rank-weighted, value-weighted, mean-variance optimal, risk-parity
- Other add-ons
 - Hedging, signal overlay, discussed later...

Example: Asset Class

Figure 1: Performance of Prototype Momentum Risk Factors by Asset Class

Source: J.P. Morgan Quantitative and Derivatives Strategy.

Table 1: Performance and Risk Statistics for Prototype Momentum Factors

	Equity	Bond	Curncy	Comdty	EMV
Excess Ret (%)	4.6	3.5	1.7	7.3	4.1
STDev (%)	17.7	6.2	9.0	15.1	5.3
MaxDD (%)	-37.5	-19.1	-27.9	-33.3	-13.2
MaxDDur (yrs)	16.4	6.0	15.2	5.7	6.0
t-Statistic	2.2	3.9	1.5	3.6	5.2
Sharpe Ratio	0.26	0.57	0.18	0.49	0.78
Hit Rate (%)	51.7	63.4	56.8	56.2	63.8
Skewness	0.51	-0.10	-0.33	0.01	-0.32
Kurtosis	6.17	3.67	1.87	1.45	1.13

Source: J.P. Morgan Quantitative and Derivatives Strategy.

^{*} For comparison purpose, Equity, Bond, Currency and Commodity prototype Momentum strategies are scaled to have an ex-post volatility of 10% per annum in the chart.

Performance Evaluation

Return Characteristics

- Excess returns (over benchmark)
- Factor return contribution
- Leftover alpha

Other metrics

- Sharpe ratio = excess return / risk
- Information ratio = alpha / stdev(e_{i,t})
- Turnover/transaction costs
- Stress-testing (2008, 2020)

Risk Characteristics

- Volatility (downside vol)
- Factor betas
- Idiosyncratic risk
- Max drawdown
- Max monthly loss
- VaR
- Skewness, Kurtosis

$$R_{i,t} - R_{ft} = \alpha_{(5-\text{factor})} + \beta_{i,MKT}(R_{m,t} - R_{ft}) + \beta_{i,SMB}SMB + \beta_{i,HML}HML + \beta_{i,RMW}RMW + \beta_{i,CMA}CMA + \varepsilon_{i,t}$$

Improving the Strategy (Signal Overlay)

Figure 42: Enhanced Carhart Momentum strategy with VIX signal during 1991-2014

Source: J.P. Morgan Quantitative and Derivatives Strategy.

When does momentum fail?

- Reversals
 - Due to the persistence of beta, highest outperformers become worst underperformers
 - Large market reversal in 2009 leads to huge losses (~550 → ~200)

How do we address this?

- Signal Overlay
 - Exit all positions when VIX high
- Hedging
 - Purchase options to hedge downside risk

Momentum Losing Momentum

Efficient Market Hypothesis

- Every profitable signal loses profitability as information becomes more widely accessible
- Simple momentum loses profitability around 2015

- 1. Identify some hypothesis about market motivated by experience
- 2. Construct signal from data sources
 - a. Use alternative/non-public data sources
 - b. Can use ML/Deep Learning in this step to generate signal
 - i. Ex: Sentiment signals from Reddit post data using NLP
- 3. Conduct a grid-search through various parameters
 - a. Asset universe, type of signal, portfolio allocation, etc.
- 4. Evaluate each strategy backtest using quantitative metrics
- 5. Implement strategy (with transaction cost modeling)

Execution

Buy 100 AAPL

Using Momentum + other signals, we predict AAPL will rise by 15% this week

Portfolio Optimization

In general, we might not be interested in a signal solely for the purpose of directly using it to predict asset prices – we can also use our signals to enrich other models

Examples:

- Use momentum as an input to a factor model, then use the factor returns:
 - For dimensionality reduction
 - As covariates to condition on
 - Something else ... be creative!

Example 1: Portfolio Optimization + Covariance Matrix Forecasting

Mean-Variance Optimization Problem at Time t

Given a portfolio of n assets with expected returns $\mathbf{E}[r_t]$ and a covariance matrix of returns Σ_t at time t, the mean-variance optimization aims to find the portfolio weights \mathbf{w} that minimize the portfolio variance subject to a target expected return, or maximize the expected return for a given level of risk.

$$\min_{\mathbf{w}} \mathbf{w}^T \Sigma_t \mathbf{w}$$

Subject to:

1. The portfolio weights sum to one:

$$\sum_{i=1}^n w_i = 1$$

2. The expected return of the portfolio equals the target return:

Objective: Minimize the portfolio variance for a given expected return R_{target} ,

$$\mathbf{w}^T\mathbf{E}[r_t] = R_{target}$$

Example 1: Portfolio Optimization + Covariance Matrix Forecasting

We need the conditional covariance matrix in order to find the optimal portfolio however, forecasting it via a time series regression (ex: AR(p), M-GARCH) can be difficult because the covariance matrix is high-dimensional (d(d+1)/2 unique features for d assets). Luckily, we can shrink the dimensionality!

Factor Model

$$r_{i,t} = eta_0 + eta_{i1,t} f_{1,t} + eta_{i2,t} f_{2,t} + \dots + eta_{iK,t} f_{K,t} + \epsilon_{i,t}$$

$$\Sigma_t = B_t \Sigma_{f,t} B_t' + \Sigma_{\epsilon,t}$$

$$\Sigma_{f,t}$$

Then, forecast $\sum_{f,t}$ via an autoregressive (or other) method (with k(k+1)/2 features!)

Model the return of currency y with an AR-GARCH error process:

$$y_t = x_t \gamma + u_t, \quad t = 1, \dots, T;$$

where x_t is a kx1 vector of factor returns (or other covariates) at time t, γ is a vector of regression coefficients (factor loadings), and u_t is an error term:

$$u_t = \sum_{j=1}^{p} \phi_j u_{t-j} + \varepsilon_t, \quad \varepsilon_t | \mathcal{F}_{t-1} \sim N(0, \sigma_t^2);$$

and σ_t^2 follows a GARCH process:

$$\sigma_t^2 = \omega + \sum_{j=1}^r \alpha_j \varepsilon_{t-j}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2;$$

Define:

$$\Phi = (\phi_1, \dots, \phi_p)^\top,$$

$$\Omega = (\omega, \alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s)^\top,$$

Example 2: Bayesian Linear Regression with AR-GARCH Errors

$$\delta = (\gamma, \Phi, \Omega)$$

The joint posterior density of unknown parameters δ is proportional to the likelihood of observing δ given data times the prior distribution on δ :

$$p(\delta \mid Y, X) \propto \ell(\delta \mid Y, X) p(\delta)$$

where $\ell(\cdot)$ is the likelihood function given by:

$$\ell(\delta \mid Y, X) = \prod_{t=1}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(-\frac{(y_t - x_t\gamma - \Phi(L)(y_t - x_t\gamma))^2}{2\sigma_t^2}\right);$$

Then simulate from the posterior distribution via MCMC to estimate the model parameters!

