Contrale PSI 2018

Q1. *til= 2 ty + 2 tz + 2 tz + t4 1 tiz= 2t1 + 2t2 + (6x3x2/65 +5x2xt6 +t6

* Ati 2t3+t4-(6x3x2)t5

AN: * Ein = 1170min = 19130 min. *tiz= 685 min =1/1 h 25 min

* 1ti = 485 = 8h05 min.

(Hz) RSG en I, et Iz Pus RSG en I, et Iz.

Mc = 1 Is= 3x5 +2x(2+4) = 2 19

Es= 3x6=18

h= Is-Es+mc= X

Is= 3x5 + 2x8= 19 E= 18

h= Is-Es+mc=+

Même raison nement pour i=1002. $V(T_i \in rei/0) = 0$

(=) $\vec{V}(I_i \in rei/o) = \vec{V}(I_i \in 3/o)$

 $\begin{bmatrix}
 3i \\
 \hline
 \end{bmatrix}$ (a) $I_i O_i \wedge W_{rei} y_0 = I_i O_3 \wedge W_3 y_0$ (b) $I_i O_i \wedge W_{rei} y_0 = I_i O_3 \wedge W_3 y_0$

(-Rre 3i + * yo) / Wrei yo = (R 3i + * yo) / NW3 yo

& Krewrei zi= - Kwzzi

$\begin{cases} Rre w_{re1} = -Rw_3 \\ Rre w_{re2} = -Rw_3 \end{cases} = 5 $	$m_{c} = 1.1$ {3 perametra 2 eyochors $h = 4/32$
Q4. Les deux vitasses Wron et Wren sont à R56, Dans le cus Crai sont à De plus: h=4 imposent 4 Conditions géome hyperitaliques à Pixer. Il fait ici p du problème.	er agains ont lieos Volars le cus du oyaux etriques et cles incornuss
25. Hypothise: tous les axes de robations de en robation per rapport à des axes lixe / ho $T(E_1/h_0) = \frac{1}{2} \left(\int_{-\infty}^{\infty} w_m^2 + \int_{-\infty}^{\infty} w_r e^2 \right)$ avec where e^2 avec where e^2 here.	+ Tred Wre2
$T(E_1/R_0) = \frac{1}{2} \left(\int_{m} + \left(\int_{re} + \int_{red} \right) R^2 \right)$ $\left[\int_{eq} = \int_{m} + \left(\int_{e} + \int_{red} \right) R^2 \right]$	Wm ² A roir Q45 XP
dT(E1/Ro) = 3 (xt = E1/Ro) + 3 int (E) dt dt Sint (E1/Ro) = 0 cat liaisons parlaites. * dT(E1/Ro) = Dey Wn Wm. dt	

(d)(1	(soile)	(2)
<u>uo (</u>	Slext = E1/Rd = Slmoleur = E1/Rd) + Sla = E1/Rd) + Sla = 6	=1/Ro
	* S(moteur - E1/Ro) = Cm Wm	
4	* Blo=E1/Rol = O CUT livisors parfoites.	
	* S(3-> E1/Rd= S(3->1/Rd) = [63->1/8) [01/Ro)	
	= {-F3131 - F2121 & Wre yo II	
	= - Fry Rre Wre = - Fry Rre l Wm	
C=	Dey who win = who (Cm - Fx1 Rre R)	
	Fai = Cm - Jey wm Rre h	
97	. En appliquent le TEC à Ez, on oblient:	
	Jey wm = Cm - Faz Rre R. = Faz	, Transfer Australian

Q8. Dapois Q3:
$$|Wre = -\frac{k}{Rre}|W_3|$$

=\[
\begin{align*}
& \omega_3 = -\frac{kRe}{R}|W_m| & = \sim |W_3 = -\frac{kRre}{R}|W_m| \\
& \omega_3 = -\frac{kRe}{R}|W_m| & = \sim |W_3 = -\frac{kRre}{R}|W_m| \\
& \omega_3 = -\frac{kRe}{R}|W_m| & = \sim |W_3 = -\frac{kRre}{R}|W_m| \\
& \omega_3 \left(\frac{5}{3}/k\right) \cdot \overline{g}_0 = \frac{M_0}{R}|V_0 \\
& \omega_3 \left(\frac{5}{3}/k\right) \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \omega_3 \left(\frac{5}{3}/k\right) \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{M_0}_3 \cdot \overline{g}_0 = \frac{1}{3} \cdot \overline{g}_0 \\
& \overline{g}_0 = \frac{1}

=) J3 W3 = -2RFx1 + Rcfcx

QO (suite) En combinant uvec les resultats des quations précédentes:

$$- \frac{1}{3} \frac{k \operatorname{Re} \tilde{w}_{m}}{R} = - \frac{2R}{2R} \left(\frac{\operatorname{Cm} - \operatorname{Jay} \tilde{w}_{m}}{\operatorname{Re} \times k} \right) + \operatorname{Re} f_{cx}$$

$$= \int C_{m} = \frac{R_{re} k}{2R} \left[\int_{3}^{\infty} \frac{k k_{re} \dot{w}_{m}}{R} + k_{c} f_{cx} \right] + \int_{a}^{\infty} \dot{w}_{m}$$

QUI.
$$\vec{V}(C \in \text{out}/3) = \vec{V}(C \in \text{out}/6) - \vec{V}(C \in 36)$$

$$V(C \in 30) = V(C \in 30)$$

$$= V(C \in 30)$$

$$= V(C \in 30) = V(C \in 30)$$

$$= V(C \in 30)$$

$$=-RcW_3x_0$$

$$W_{CO} = -\frac{V_C}{R_M}$$

$$W_{CI} = -\frac{V_C}{R_M}$$

lineur de signe Xuvian.

$$\begin{array}{lll} & u_{3}(t) = u_{10} & -u_{10} - u_{11} \\ & u_{10}(t) \end{array} \qquad \begin{array}{ll} & & & \\ & &$$

CQ16 Puissance maximale: $P_{max} = C_m W_m^{max} = C_m \times \frac{RV_c}{4Rre\,Rm}$ Or $W_m^{max} = \frac{R}{4Rre} W_3^{max} = -\frac{R}{4Rre} \times \frac{V_c}{Rm}$ AN: $W_m^{max} = \frac{447,6 \text{ rad/s}}{4Rre}$

= 4274 tr/min

AN: Prax = 9848 W. Los deux moteurs ME_10_10 et M_10_15 conviennent mais on prend ME_5_15 cut ME_10_10 est trop joste en Vitosse et Puissance.

* En compression: Dul = D32 = 5 NA. * En Plexion: $\Delta u_z = \sqrt{R^2 + \Delta xz^2} - R = 2,7 \times 10^{-7} \text{ m}$ = 0,27 pm. aini / Duz < Dux. | Pucheur 10. Q18 On isole Sz dors Rol gulilien). On applyee le TRD selon 30: $m_2 \ddot{3}_2(\xi) = f_c(\xi) - h_{32}(\xi) - \lambda \ddot{3}_2(\xi)$ Dans le domaine de Laplus aux les C.I. nulles: $m_2 p^2 22(p) = Fc(q) - k 22(p) - \lambda p 22(p)$ $= 5 S(p) = \frac{2z(p)}{Fc(p)} = \frac{1}{h + \lambda p + m_2 p^2} = \frac{1/h}{4 + \frac{\lambda}{h} p + \frac{m_2}{b} p^2}$ Gain statique: 16 = 1/h = 3,57 x 10-8 m/N $W_0 = \sqrt{\frac{k}{m_0}} = 188,5 \text{ rad/s}$ ξ= Wo x 1/2 = 0,05 = Xavar 9/1 => Diagramme de Bodo: * gain: 2 branches asymptolique: W-0: [Odbfelec. pussion t pur 20log Rs
= -149dB

W > + > : -40 clb/dec coupont la première branche en Wo

Résonance: $W_r = W_0 / 1 - 2\xi^2 = 188 \text{ rolls} \simeq W_0$.

Gain de surtension: $Odb = 20 \log \frac{1}{2\xi/1-\xi^2} = 20 db$. W - 0: branche horizontale pussant per 00 * Phose: -180° GdB(w) ondB Wor Wr 1129 - 149 00°

$$32m$$
 est obtaine en $W = W_{T}$.

 $\frac{32m}{f_{CA}} = 10$
 $\frac{6dB_{max}}{20} = 10$
 $\frac{129}{20}$
 $\frac{32m}{f_{CA}} = 10$
 $\frac{129}{20} = 3,55 \times 1$

=>
$$32m = l_{cf} \times 10^{-129}$$

Résultat non conforme au cuhier des charge.

Q105 On passe les equations clans le domaine de laplace:

$$\frac{210p[m_1p^2]}{22(p)[m_2p^2+\lambda_p+K]} = (\lambda_p+K)\frac{22(p)}{21(p)} + f_m(p) \quad (1)$$

$$\frac{22(p)[m_2p^2+\lambda_p+K]}{22(p)[m_2p^2+\lambda_p+K]} = (\lambda_p+K)\frac{21(p)}{21(p)} + f_c(p) \quad (2)$$

$$(1) \Rightarrow |H_1(p)| = \lambda_p + K$$

$$|H_2(p)| = \frac{1}{K + \lambda_p + m_1 p^2}$$

(2) =>
$$(H_3(p) = \lambda p + K = H_1(p)$$

 $(H_4(p) = \frac{\lambda}{K + \lambda p + m_2 p^2}$

$$\begin{array}{lll}
\text{(20)} & & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

$$\frac{\langle z \rangle}{21(p)} = \frac{\left(m_1 p^2 + \lambda p + \kappa\right) \left(m_2 p^2 + \lambda p + \kappa\right) - \left(\lambda p + \kappa\right)^2}{\left(m_1 p^2 + \lambda p + \kappa\right) \left(m_2 p^2 + \lambda p + \kappa\right) \left(m_2 p^2 + \lambda p + \kappa\right) + \frac{Fm(p)}{m_1 p^2 + \lambda p + \kappa}}$$

$$|N_{2}(p)| = \frac{\sqrt{p+1}}{m_{2}p^{2} + \lambda p + K}$$

$$|N_{2}(p)| = \frac{m_{2}p^{2} + \lambda p + K}{m_{2}p^{2} + \lambda (m_{1} + m_{2})p + K(m_{1} + m_{2})} \frac{p^{2}(p^{2} + \frac{\lambda (m_{1} + m_{2})}{m_{1} m_{2}}p + \frac{k(m_{1} + m_{2})}{m_{1} m_{2}}p^{2}}{p^{2}(m_{1} m_{2}p^{2} + \lambda (m_{1} + m_{2})p + K(m_{1} + m_{2})p^{2})}$$

$$A = \frac{1}{m_1}; \quad w_1 = \sqrt{\frac{K}{m_2}}; \quad \xi_1 = \frac{\lambda}{2w_1 m_2} = \frac{\lambda}{2Km_2}$$

$$w_2 = \sqrt{\frac{Klm_1+m_2}{m_1 m_2}}; \quad \xi_2 = \frac{\lambda(m_1+m_2)}{2w_2 m_1 m_2} = \frac{\lambda}{2}; \quad \frac{m_1+m_2}{m_1 m_2}; \quad \frac{\lambda}{m_1 m_2}; m_2};$$

Q23 (Wy et Wz sort très rapproctées dins, $N_2(p)$ 2 $N_2app = \frac{A}{p^2}$ Calal du gin on W= 100: GdBup = 20 lay A - 20 lay w² Q24. D'après la figure 8, on vent 19=60° or ici la FTBO est de classe? Le système est donc marginalement inslable : s l'este =-190° On ne peut pres rondre ce système stubb cenec un corrocheur proportionnel. Q25. Hoo(p)= \frac{KpAKv}{Tip3} (1+Tip)(1+\frac{P}{Kp}) $arg(HB(jw)) = -270^{\circ} + arctan(Tiw) + arctan(\frac{w}{Kp})$ le cahier des churges impose: MY=60° 65 Y(Wodb) + 180° = 60° (=) -2700 + archen (TiWall) + archen (Wodb) = -1200 $\frac{1 - \frac{WadB}{Kp} + \frac{WadB}{Kp}}{Lp} = ton(150^\circ).$ (ur tanluxb)-tuna itab 1-tunabap

ES Ti = Kpxtun 150° - WodB

Kp WodB + tan(150°) WodB²

Q26 | Heoljus = \frac{K\text{\$\text{\$\phi} AK\text{\$\exititt{\$\text{\$\exitit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ La polsation de coopore à OdB impose; | H80 (j Wodb) /= 1 $K_{V} = \frac{Wodb}{AKp\left[(1+T_{i}^{2}w_{odb}^{2})\left(1+\frac{dbab}{K_{o}^{2}}\right)\right]}$ 5 est une function revoxunt S(ju) pour kp et w donné. Smax = a hs(S(0,0)) Pour i allent de 0 à Vres Kp=ix DKp... Ti = (Kp x tor 1500 - World) (Kp Walls + tan 1500 Worlds) KV = (WOUB 2 Ti)/(AKp/(1+ Ti 2 WOUB)/ 1+ WOUB Pour l'allunt de 0 à Mum W= kx1W si abs(s(Kp, w)) > smax $S_{max} = abs(S(kp, w))$ Q28. En admellent me (Sipor) admet un soul maxi Pour i allunt de O à Kp. abs(S(Kp, hx Dw)) > abs(S(Kp, (h-1)Dw))

test que (----)

le= le+1. Q28(sule) Isi abs(S(Kp) (k-1)DW) < Smin Smin = abs(S(Kp/(1/J)Ow)) Kopt= Kp Tiopt = Ta Kropt = Kr. 029 Q(p/= Qc(p) - 22(p) + Z(22(6-3)) Over le théoreme du returd $2(f(t-3))=2^{-3p}f(p)$ => $Q(p) = Qc(p) - 2z(p)[1 - e^{-3p}]$. $= \int H_{r}(\rho) = \left(1 - e^{-C\rho}\right).$ Q30 HBO (P)= BKA S(P) (1-e-3P) = BKA x/1-e-2P) = Hz(p) X Hr(p). 6do(w) = 6dB2(w) + 6dB1(w) où *6dB2(w) ot le guin du deuxième ordre. o Gdb (w) est le gair ressore à Hr(p). $GdB_{r}(w) = 20 \log \left| 1 - e^{-j3\omega} \right| = 20 \log \left| (1 - (05/-5\omega))^{2} + \sin (-3\omega) \right|$ $= 20 \log \left| 2 - 2\cos(3\omega) \right|$

 \Rightarrow * Pour $W = \frac{kz\pi}{5}$ aveck $\in \mathbb{Z}^+ \Rightarrow 0$ GdB, $(w) \Rightarrow -\infty$ * Pour $w = \frac{\pi + har}{5}$ a $h \in \mathbb{Z}^+ \Rightarrow GaB_r(w) = 2olag2$. Le diegranne en gain montre alors l'addition d'un gain du deviseme ordre avec un gain periodique avec des possuleus de pulsation donnant GaB -> 901 correspondent aux "geros detreismission" 4(w) = 42(w) + ary (1-cost-2w)-jsin(-2w)) & Pour la phase: $= 4 \pm \omega | + \arctan \left(\frac{\sin(3\omega)}{1 - \cos(3\omega)} \right) \qquad \text{cut} \qquad 1 - \cos(3\omega) > 0$ Im ardan (sintow)) = lim ardan (sintow))

Windows (1-cos(800)) Windows (1-cos(800)) => forme indetermined Party et 211 periodique. Q31. Pour garante la slabilité on BF et uve l'allure du diagramme de Bab, I pur drait que GABLW/ soit luvjours CO la valeur limite correspondroit à une translation vas le haut de la courbe on join de 45 dB. Or b est proportionnel au join statique => $20 \log \left(\frac{b \lim}{b}\right) = 45$ => $\left|\frac{b \lim}{b}\right| = b \times 10^{\frac{45}{20}} = 2,83 \text{ mm. cad}^{-1}$

l'amortissement de l'asservissement?

Q32 Ava l'approximation qui consiste à négliger la fexions Du $\simeq 232(t)$ Du = 0,17 - 0,1 = (70,0m) (Au permenent: 1 = 0,14 - 0,1 = (40,0m) lim. An. >> Fig 10: Du ~ O,03 mm = 30mm. CdC. OK. le lour est TB.! Bravo la SNCF/, pernunent OK.

Profil simplifié de la roue

L'axe (O_3, \tilde{y}_0) étant un axe de symétrie de révolution de la roue, seule la moitié du profil est schématisé en figure B. L'outil décrit une trajectoire correspondant à une génératrice du profil à obtenir.

Figure B Paramétrage du profil simplifié de la roue (3)

Caractéristiques de l'opération [OP2]

- Le contact entre l'outil et la roue est supposé ponctuel au point G;
 - Le porte-outil se déplace dans le plan $(O_3, \vec{y}_0, \vec{z}_0)$;
- Les points C₀ et C₁ correspondent respectivement au premier et dernier point de contact de l'outil avec la
- L'opérateur impose la valeur de la composante de la vitesse $V(C\in \text{outil}/3)$ selon \vec{x}_0 . Cette composante est
- La vitesse du point C de l'outil par rapport au bâti du tour en fosse est : $V(C \in \text{outil}/0) = V_f(t)\vec{u} = -b\omega_3\vec{u}$ avec $\vec{u} = \frac{C_0C_1}{\|C_0C_1\|}$ et $\omega_3 < 0$ la vitesse de rotation de la roue par rapport au bâti du tour en fosse autour de l'axe $(\tilde{\mathcal{O}}_3,\tilde{g}_0)$ ". Le paramètre b est une constante définie par l'opérateur, elle correspond à la distance parcourue par l'outil dans la direction \tilde{u} lorsque la roue tourne d'un radian. constante et est appelée vitesse de coupe $V_c = -\vec{V}(C \in \text{outil}/3) \cdot \vec{x}_0$;

Figure C Diagramme des exígences des conditions de coupe

Å,

Pot			CONCOURS CENTRALE-SUPÉLEC	(8	દુ			
Pour i allant de 0 à N_{K_p} Calcul de $K_p=i\times \Delta K_p$	Qu	e rien porter sur cett	LE-SUPÉLEC	Prénom	Nom	Numéro d'inscription	Numéro de place	
N_{K_p} $p = i \times \Delta K_p$	Questions 27 et 28 : Algorithme d'optimisation de K_p	Ne tien porter sur cette feville avant d'avoir complètement rempli l'entête	Épreuve : 521 PS1					
	Algorithme d'op	nplêtement rempli l'entêt				Signature		
i i	timisation de K_p	Feuille						
	¢						أرمم مراث	, room
				Ш	Ш	ممرمو	,	

Fin pour

Annexe: Modélisation et caractérisation du système de positionnement des roues

Figure A Configuration normale de travail

Les liaisons entre les différents solides supposés indéformables sont modélisées par les liaisons parfaites suivantes : une liaison pivot d'axe (O_3, \vec{y}_0) entre la roue (3) et le bâti (0);

une liaison pivot d'axe (O_0, \tilde{x}_0) entre le support des rouleaux d'entrainement (sre) et le bâti (0);

Algorithme 1

- une liaison pivot d'axe (O_1, \vec{y}_0) entre le rouleau (re_1) et le support des rouleaux d'entrainement (sre);
- une liaison pivot d'axe $(O_2; \vec{y}_0)$ entre le rouleau (re_2) et le support des rouleaux d'entrainement (sre);
- une liaison sphérique de centre A entre le corps de vérin (1) et le bâti (0);
- une liaison sphérique de centre B entre la tige (2) et le support des rouleaux d'entrainement (sre);
- une liaison pivot-glissant d'axe (A, \vec{z}_0) entre le corps de vérin (1) et la tige (2);
- une liaison sphère-plan de normale (I_1, \bar{z}_1) entre le rouleau (re_1) et la roue (3) une liaison sphère-plan de normale (I_2, \bar{z}_2) entre le rouleau (re_2) et la roue (3).

Paramétrage et hypothèses

- chaque motoréducteur $(MR_i), i \in [1;2]$ est composé d'une machine électrique (M_i) et d'un réducteur (R_i) ;
- bâti (0); lors du reprofilage de la roue, le support des rouleaux d'entrainement (sre) est supposé fixe par rapport au
- $\overline{BO_0} \cdot \vec{y}_0 = L_1 = 0.3 \text{ m et } \overline{I_1O_0} \cdot \overline{y_0} = \overline{I_2O_0} \cdot \overline{y_0} = L_2 = 1 \text{ m};$
- $\overline{I_1O_3} \cdot \overline{z_1} = \overline{I_2O_3} \cdot \overline{z_2} = R = 0.47 \text{ m};$
- $\overline{O_1I_1}\cdot \tilde{z}_1 = \overline{O_2I_2}\cdot \overline{z_2} = R_{re} = 175 \,\mathrm{mm}$;
- vecteurs vitesse de rotation:
- $\overline{\Omega}_{3/0} = \omega_3 \overline{y}_0$ avec $\omega_3 < 0$; • $\vec{\Omega}_{re_i/sre} = \omega_{re_i} \vec{y}_0, i \in [1; 2]$;
- $\widetilde{\Omega}_{M_i/sre} = \omega_{m_i} \vec{y}_0, i \in [1; 2]$

Modélisation des actions mécaniques transmissibles

Actions mécaniques exercées par le rotor de la machine électrique (M_i) sur l'entrée du réducteur (R_i) :

$$\left\{\mathcal{T}_{M_{i}\rightarrow R_{i}}\right\} = \left\{\begin{matrix} \vec{0} \\ \mathcal{C}_{mi}\vec{y}_{0} \end{matrix}\right\}_{O_{i}}, i \in \llbracket 1; 2 \rrbracket;$$

- Les deux chaines d'énergie sont identiques donc $\mathcal{C}_{m1}=\mathcal{C}_{m2}=\mathcal{C}_m$;
- Actions mécaniques exercées par la roue sur l'outil : $\{\mathcal{T}_{3 o ext{outil}}\} = \left\{ egin{array}{c} \overline{R}_{3 o ext{outil}} \\ \overline{0} \end{array} \right\}$ $\overline{R}_{0\rightarrow00111}\cdot\overline{z}_0=f_{cv}$. Le paramétrage de la position du point de contact C entre la roue et l'outil est précisé sur la figure B. avec $R_{3 o \text{outil}} \cdot \vec{x}_0 = f_{cx}$ et