A Bitmapper's Companion

epilys 2021

an introduction
to basic bitmap
mathematics
and algorithms
with code
samples in **Rust**

Table Of Contents	4	toc
Introduction	8	intro
Points And Lines	18	lines
Points and Line Segments	33	segments
Points, Lines and Circles	40	circles
Curves other than circles	48	curves
Points, Lines and Shapes	56	shapes
Vectors, matrices and transformations	65	trans- forma- tions
Addendum	80	adden- dum

https://nessuent.xyz https://github.com/epilys epilys@nessuent.xyz

All non-screenshot figures were generated by hand in Inkscape unless otherwise stated.

The skull in the cover is a transformed bitmap of the skull in the 1533 oil painting by Hans Holbein the Younger, *The Ambassadors*, which features a floating distorted skull rendered in anamorphic perspective.

A Bitmapper's Companion, 2021

Special Topics ▶ Computer Graphics ▶ Programming

006.6'6-dc20

Copyright © 2021 by Emmanouil Pitsidianakis

This work is licensed under the Creative Commons Attribution–NonCommercial–ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The source code for this work is available under the GNU GENERAL PUBLIC LICENSE version 3 or later. You can view it, study it, modify it for your purposes as long as you respect the license if you choose to distribute your modifications.

The source code is available here

https://github.com/epilys/bitmappers-companion

Contents

I	Int	roduction	9
1	Da	ata representation	10
2	Di	splaying pixels to your screen	12
3	Bi	ts to byte pixels	14
4	Lo	ading graphics files in Rust	15
5	Including xbm files in Rust		16
II	Po	ints And Lines	19
6	Di	stance between two points	20
7	M	oving a point to a distance at an angle	21
8	E	uations of a line	22
	8.1	Line through a point $P = (x_p, y_p)$ and a slope m	22
	8.2	Line through two points	23
9	Di	stance from a point to a line	24
	9.1	Using the implicit equation form	24
	9.2	Using an L defined by two points P_1, P_2	25
	9.3	Using an L defined by a point P_l and angle $\hat{\theta}$	25
	9.4	Find perpendicular to line that passes through given point	25
10	Aı	ngle between two lines	26
11	In	tersection of two lines	28
12	Li	ne equidistant from two points	30

5

13	Normal to a line through a point	32
14	Angle Sectioning	33
1	4.1 Bisection	33
1	4.2 Trisection	33
III	Points And Line Segments	34
15	Drawing a line segment from its two endpoints	35
16	Drawing line segments with width	37
17	Intersection of two line segments	39
1	7.1 Fast intersection of two line segments	39
IV	Points, Lines and Circles	41
18	Equations of a circle	43
19	Bounding circle	44
\mathbf{V}	Curves other than circles	49
20	Parametric elliptical arcs	50
21	Squircle	51
22	Bézier curves	52
2	22.1 Quadratic Bézier curves	53
	22.1.1 Drawing the quadratic	53
VI	Points, Lines and Shapes	57
23	Rectangles and parallelograms	58
2	23.1 From a center point	58
2	23.2 From a corner point	58
24	Triangles	59
2	24.1 Making a triangle from a point and given angles	59
25	Union, intersection and difference of polygons	60

26	Ce	ntroid of polygon	61
27	Po	lygon clipping	62
28	Tr	iangle filling	63
29	Flo	ood filling	65
VII	V	ectors, matrices and transformations	66
30	Ro	tation of a bitmap	67
3	30.1	Fast 2D Rotation	71
31	90	° Rotation of a bitmap by parallel recursive subdivision	72
32	Ma	agnification/Scaling	73
3	32.1	Smoothing enlarged bitmaps	74
3	32.2	Stretching lines of bitmaps	74
33	Mi	rroring	76
34	Sh	earing	77
3	34.1	The relationship between shearing factor and angle	79
35	Pr	ojections	80
VII	Ι.	Addendum	81
3	35.1	Faster Drawing a line segment from its two endpoints using Symmetry	82
36	Jo	ining the ends of two wide line segments together	83
37	Co	mposing monochrome bitmaps with separate alpha channel data	84
38	Or	thogonal connection of two points	85
39	Jo	in segments with round corners	86
40	Fa	ster line clipping	90
41	Ti	lings	91
4	41.1	Hexagon Tiling	91
42	Sp	ace-filling Curves	92
4	4 2.1	Hilbert curve	93
4	4 2.2	Sierpiński curve	95

	42.3	Peano curve	95
	42.4	Z-order curve	96
	42.5	Flowsnake curve	99
43	Di	thering	101
	43.1	Floyd-Steinberg	102
	43.2	Atkinson dithering	104
44	Ma	arching squares	106
Inc	lex		107

Part I Introduction

Data representation

The data structures we're going to use is *Point* and *Image*. *Image* represents a bitmap, although we will use full RGB colors for our points therefore the size of a pixel in memory will be u8 instead of 1 bit.

We will work on the cartesian grid representing the framebuffer that will show us the pixels. The *origin* of this grid (i.e. the center) is at (0,0).

We will represent points as pairs of signed integers. When actually drawing them though, negative values and values outside the window's geometry will be

ignored (clipped).

src/lib.rs:

This code file is a PDF attachment

intro

Displaying pixels to your screen

A way to display an *Image* is to use the minifb crate which allows you to create src/bin/introduction.rs: a window and draw pixels directly on it. Here's how you could set it up:

This code file is a PDF attachment

Running this will show you something like this:

intro

Bits to byte pixels

Let's define a way to convert bit information to a byte vector:

```
pub fn bits_to_bytes(bits: &[u8], width: usize) -> Vec<u32> {
    let mut ret = Vec::with_capacity(bits.len() * 8);
    let mut current_row_count = 0;
    for byte in bits {
        for n in 0..8 {
            if byte.rotate_right(n) & 0x01 > 0 {
                ret.push(BLACK);
            } else {
                ret.push(WHITE);
            }
            current_row_count += 1;
            if current_row_count == width {
                     current_row_count = 0;
                break;
            }
        }
    }
    ret
}
```

Loading graphics files in Rust

The book's library includes a method to load xbm files on runtime (see *Including xbm files in Rust* for including them in your binary at compile time). If your system has ImageMagick installed and the commands identify and magick are in your PATH environment variable, you can use the Image::magick_open method:

```
impl Image {
    pub fn magick_open(path: &str, x_offset: usize, y_offset: usize) -> Result<Self,
    Box<dyn Error>>;
}
```

It simply converts the image file you pass to it to raw bytes using the invocation magick convert path RGB: - which prints raw RGB content to stdout.

If you have another way to load pictures such as your own code or a picture format library crate, all you have to do is convert the pixel information to an Image whose definition we repeat here:

```
pub struct Image {
   pub bytes: Vec<u32>,
   pub width: usize,
   pub height: usize,
   pub x_offset: usize,
   pub y_offset: usize,
}
```

Including xbm files in Rust

The end of this chapter includes a short **Rust** program to automatically convert xbm files to equivalent **Rust** code.

xbm files are C source code files that contain the pixel information for an image as macro definitions for the dimensions and a static char array for the pixels, with each bit column representing a pixel. If the width dimension doesn't have 8 as a factor, the remaining bit columns are left blank/ignored.

They used to be a popular way to share user avatars in the old internet and are also good material for us to work with, since they are small and numerous. The following is such an image:

Then, we can convert the xbm file from C to **Rust** with the following transformations:

```
| #define news_width 48
| #define news_height 48
| static char news_bits[] = {
```

to

```
const NEWS_WIDTH: usize = 48;
const NEWS_HEIGHT: usize = 48;
const NEWS_BITS: &[u8] = &[
```

And replace the closing } with].

We can then include the new file in our source code:

```
intro
```

```
include!("news.xbm.rs");
```

load the image:

```
let mut image = Image::new(NEWS_WIDTH, NEWS_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(NEWS_BITS, NEWS_WIDTH);
```

and finally run it:

The following short program uses the regex crate to match on these simple rules and print the equivalent code in stdout. You can use it like so:

cargo run --bin xbmtors -- file.xbm > file.xbm.rs

src/bin/xbmtors.rs:

This code file is a PDF attachment

Part II Points And Lines

Distance between two points

Given two points, K and L, an elementary application of Pythagoras' Theorem gives the distance between them as

$$r = \sqrt{(x_L - x_K)^2 + (y_L - y_K)^2}$$
 (6.1)

which is simply coded:

```
pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
    let (x_k, y_k) = p_k;
    let (x_l, y_l) = p_l;
    let xlk = x_l - x_k;
    let ylk = y_l - y_k;
    f64::sqrt((xlk*xlk + ylk*ylk) as f64)
}
```

Moving a point to a distance at an angle

Moving a point P = (x, y) at distance d at an angle of r radians is solved with simple trigonometry:

$$P' = (x + d \times cosr, y + d \times sinr)$$

Why? The problem is equivalent to calculating the point of a circle with P as the center, d the radius at angle r and as we will later* see this is how the points of a circle are calculated.

^{*}Equations of a circle page 43

Equations of a line

There are several ways to describe a line mathematically. We'll list the convenient ones for drawing pixels.

The equation that describes every possible line on a two dimensional grid is the *implicit* form $ax+by=c, (a,b)\neq (0,0)$. We can generate equivalent equations by adding the equation to itself, i.e. $ax+by=c\equiv 2ax+2by=2c\equiv a'x+b'y=c', a'=2a, b'=2b, c'=2c$ as many times as we want. To "minimize" the constants a,b,c we want to satisfy the relationship $a^2+b^2=1$, and thus can convert the equivalent equations into one representative equation by multiplying the two sides with $\frac{1}{\sqrt{a^2+b^2}}$; this is called the normalized equation.

The *slope intercept form* describes any line that intercepts the y axis at $b \in \mathbb{R}$ with a specific slope a:

$$y = ax + b$$

The *parametric* form...

8.1 Line through a point $P = (x_p, y_p)$ and a slope m

$$y - y_p = m(x - x_p)$$

8.2 Line through two points

It seems sufficient, given the coordinates of two points M, N, to calculate a, b and c to form a line equation:

$$ax + by + c = 0$$

If the two points are not the same, they necessarily form such a line. To get there, we start from expressing the line as parametric over t: at t=0 it's at point M and at t=1 it's at point N:

$$c = c_M + (c_N - c_M)t, t \in R, c \in \{x, y\}$$

$$c = c_M, t \in R, c \in \{x, y\}$$

Substituting *t* in one of the equations we get:

$$(y_M - y_N)x + (x_N - x_M)y + (x_M y_N - x_N y_M) = 0$$

Which is what we were after. We finish by normalising what we found with $\frac{1}{\sqrt{a^2+b^2}}$:

Distance from a point to a line

Add code samples in Distance from a point to a line

9.1 Using the implicit equation form

Let's find the distance from a given point P and a given line L. Let d be the distance between them. Bring L to the implicit form ax + by = c.

$$d = \frac{|ax_p + by_p + c|}{\sqrt{a^2 + b^2}}$$

9.2 Using an L defined by two points P_1, P_2

With $P = (x_0, y_0)$, $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$.

$$d = \frac{\left| (x_2 - x_1) (y_1 - y_0) - (x_1 - x_0) (y_2 - y_1) \right|}{\sqrt{((x_2 - x_1)^2 + (y_2 - y_1)^2}}$$

9.3 Using an L defined by a point P_l and angle $\hat{\theta}$

$$d = \left| cos(\hat{\theta}) \left(P_{ly} - y_p \right) - sin(\hat{\theta}) \left(P_{lx} - P_x \right) \right|$$

9.4 Find perpendicular to line that passes through given point

Now, we wish to find the equation of the line that passes through P and is perpendicular to L. Let's call it L_{\perp} . L in implicit form is ax + by + c = 0. The perpendicular will be:

$$L_{\perp}:bx-ay+(aP_{\gamma}-bP_{x})=0$$

Angle between two lines

By angle we mean the angle formed by the two directions of the lines; and direction vectors start from the origin (in the figure, they are the red arrows). So if we want any of the other three angles, we already know them from basic geometry as shown in the figure above.

If you prefer using the implicit equation, bring the two lines L_1 and L_2 to that form $(a_1x + b_1y + c = 0$ and $a_2x + b_2y + c_2 = 0)$ and you can directly find $\hat{\theta}$ with the formula:

$$\hat{\theta} = arccos \frac{a_1 a_2 + b_1 b_2}{\sqrt{\left(a_1^2 + b_1^2\right) \left(a_2^2 + b_2^2\right)}}$$

For the following parametric equations of L_1, L_2 :

$$L_1 = (\{x = x_1 + f_1 t\}, \{y = y_1 + g_1 t\})$$

$$L_2 = (\{x = x_2 + f_2 s\}, \{y = y_2 + g_2 s\})$$

the formula is:

$$\hat{\theta} = \arccos \frac{f_1 f_2 + g_1 g_2}{\sqrt{\left(f_1^2 + g_1^2\right) \left(f_2^2 + g_2^2\right)}}$$

The code:

```
fn find_angle((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) -> f64 {
   let nom = (a1 * a2 + b1 * b2) as f64;
   let denom = ((a1 * a1 + b1 * b1) * (a2 * a2 + b2 * b2)) as f64;
   f64::acos(nom / f64::sqrt(denom))
}
```

src/bin/anglebe lines

This code file is a PDF

attachment

The src/bin/anglebetweenlines.rs example has two interactive lines and computes their angle with 64bit floating point accuracy.

Intersection of two lines

If the lines L_1 , L_2 are in implicit form $(a_1x + b_1y + c = 0 \text{ and } a_2x + b_2y + c_2 = 0)$, the result comes after checking if the lines are parallel (in which case there's no single point of intersection):

$$a_1b_2 - a_2b_1 \neq 0$$

If they are not parallel, *P* is:

$$P = \left(\frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}, \frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1}\right)$$

lines

The code:

```
fn find_intersection((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) ->
    Option<Point> {
    let denom = a1 * b2 - a2 * b1;
    if denom == 0 {
        return None;
    }
    Some(((b1 * c2 - b2 * c1) / denom, (a2 * c1 - a1 * c2) / denom))
}
src/bin/lineintersection.rs:

### This code file is a PDF attachment
```


The src/bin/lineintersection.rs example has two interactive lines and computes their point of intersection.

Line equidistant from two points

Let's name this line L. From previous chapter* we know how to get the line L that's created by the two points M and N:

$$L: (y_M - y_N)x + (x_N - x_M)y + (x_M y_N - x_N y_M) = 0$$

We need the perpendicular line over the midpoint of L.[†] The midpoint also satisfies L's equation. The midpoint's coordinates are intuitively:

$$P_{mid} = \left(\frac{x_M + x_N}{2}, \frac{y_M + y_N}{2}\right)$$

The perpendicular's L_{\perp} equation is

$$L_{EQ} = L_{\perp} : yx - ay + \left(aP_{mid_y} - bP_{mid_x}\right) = 0$$

^{*}See Line through two points, page 23

[†]See Find perpendicular to line that passes through given point, page 25

lines

The code:

```
fn find_equidistant(point_a: Point, point_b: Point) -> (i64, i64, i64) {
   let (xa, ya) = point_a;
   let (xb, yb) = point_b;
   let midpoint = ((xa + xb) / 2, (ya + yb) / 2);
   let al = ya - yb;
   let bl = xb - xa;
   // If we had subpixel accuracy, we could do:
   //assert_eq!(al*midpoint.0+bl*midpoint.1, -cl);
   let a = bl;
   let b = -1 * al;
   let c = (al * midpoint.1) - (bl * midpoint.0);
   (a, b, c)
}
```


src/bin/equidistant.rs:

The $\operatorname{src/bin/equidistant.rs}$ example has two interactive points and computes their L_{EQ} .

Normal to a line through a point

lines

Chapter 14

Angle Sectioning

14.1 Bisection

14.2 Trisection

If the title startled you, be assured it's not a joke. It's totally possible to trisect an angle... with a ruler. The adage that angle trisection is impossible refers to using only a compass and unmarked straightedge.

segments

Part III Points And Line Segments

segments

Chapter 15

Drawing a line segment from its two endpoints

For any line segment with any slope, pixels must be matched with the infinite amount of points contained in the segment. As shown in the following figure, a segment *touches* some pixels; we could fill them using an algorithm and get a bitmap of the line segment.

The algorithm presented here was first derived by Bresenham. In the *Image* implementation, it is used in the plot_line_width method.

```
pub fn plot_line_width(&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64)) {
    /* Bresenham's line algorithm */
    let mut d;
    let mut x: i64;
    let mut y: i64;
    let ax: i64;
    let ay: i64;
    let sx: i64;
    let sx: i64;
    let t dx: i64;
    let dx: i64;
    let dx: i64;
    let dx: i64;
    let x: i64;
```

```
segments
```

```
dy = y2 - y1;
ay = (dy * 2).abs();
sy = if dy > 0 { 1 } else { -1 };

x = x1;
y = y1;
let b = dx / dy;
let a = 1;
let double_d = (_wd * f64::sqrt((a * a + b * b) as f64)) as i64;
let delta = double_d / 2;
if ax > ay {
    d = ay - ax / 2;
    loop {
        self.plot(x, y);
        if x == x2 {
            return;
        }
        if d >= 0 {
            y = y + sy;
            d = d - ay;
        }
    }
} else {
    d = ax - ay / 2;
    let delta = double_d / 3;
    loop {
        self.plot(x, y);
        if y = y2 {
            return;
        }
        if y = y + sy;
        d = d - ay;
        }
        y = y + sy;
        d = d + ax;
    }
}
```

Add some explanation behind the algorithm in Drawing a line segment from its two endpoints

segments

Chapter 16

Drawing line segments with width

```
segments
```

segments

Chapter 17

Intersection of two line segments

Let points $\mathbf{l} = (x_1, y_1)$, $\mathbf{2} = (x_2, y_2)$, $\mathbf{3} = (x_3, y_3)$ and $\mathbf{4} = (x_4, y_4)$ and $\mathbf{l}, \mathbf{2}, \mathbf{3}, \mathbf{4}$ two line segments they form. We wish to find their intersection:

First, get the equation of line L_{12} and line L_{34} from chapter *Equations of a line*.

Substitute points 3 and 4 in equation L_{12} to compute $r_3 = L_{12}(3)$ and $r_4 = L_{12}(4)$ respectively.

If $r_3 \neq 0$, $r_4 \neq 0$ and $sgn(r_3) == sign(r_4)$ the line segments don't intersect, so stop.

In L_{34} substitute point 1 to compute r_1 , and do the same for point 2.

If $r_1 \neq 0, r_2 \neq 0$ and $sgn(r_1) == sign(r_2)$ the line segments don't intersect, so stop.

At this point, L_{12} and L_{34} either intersect or are equivalent. Find their intersection point. (Refer to *Intersection of two lines*.)

Add code sample in Intersection of two line segments

17.1 Fast intersection of two line segments

segments

circles

Part IV Points, Lines and Circles

Equations of a circle

circles

Bounding circle

circles

A bounding circle is a circle that includes all the points in a given set. Usually we're interested in one of the smallest ones possible.

We can use the following methodology to find the bounding circle: start from two points and the circle they make up, and for each of the rest of the points check if the circle includes them. If not, make a bounding circle that includes every point up to the current one. To do this, we need some primitive operations.

We will need a way to construct a circle out of two points:


```
let p1 = points[0];
let p2 = points[1];
//The circle is determined by two points, P and Q. The center of the circle
is
//at (P + Q)/2.0 and the radius is /(P - Q)/2.0/
let d_2 = (
(((p1.0 + p2.0) / 2), (p1.1 + p2.1) / 2),
(distance_between_two_points(p1, p2) / 2.0),
);
```

And a way to make a circle out of three points:


```
+ (bx * bx + by * by) * (ax - cx)
+ (cx * cx + cy * cy) * (bx - ax))
/ d;
let mut center = (ux as i64, uy as i64);
if center.0 < 0 {
    center.0 = 0;
}
if center.1 < 0 {
    center.1 = 0;
}
let d = distance_between_two_points(center, q1);
(center, d)
}</pre>
```

The algorithm:

```
use bitmappers_companion::*;
use minifb::{Key, Window, WindowOptions};
use rand::seq::SliceRandom;
use rand::thread_rng;
use std::f64::consts::{FRAC_PI_2, PI};
include!("../me.xbm.rs");
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;
pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
      let (x_k, y_k) = p_k;
let (x_l, y_l) = p_l;
let xlk = x_l - x_k;
let ylk = y_l - y_k;
f64::sqrt((xlk * xlk + ylk * ylk) as f64)
fn image_to_points(image: &Image) -> Vec<Point> {
      let mut ret = Vec::with_capacity(image.bytes.len());
for y in 0..(image.height as i64) {
    for x in 0..(image.width as i64) {
        if image.get(x, y) == Some(BLACK) {
            ret.push((x, y));
        }
}
             }
      ret
type Circle = (Point, f64);
fn bc(image: &Image) -> Circle {
  let mut points = image_to_points(image);
  points.shuffle(&mut thread_rng());
       min_circle(&points)
fn min_circle(points: &[Point]) -> Circle {
   let mut points = points.to_vec();
   points.shuffle(&mut thread_rng());
      let p1 = points[0];
let p2 = points[1];
       //The circle is determined by two points, P and Q. The center of the
     let mut d_prev = d_2;
      for i in 2..points.len() {
    let p_i = points[i];
             if distance_between_two_points(p_i, d_prev.0) <= (d_prev.1) {
    // then d_i = d_(i-1)</pre>
```

```
} else {
    let new = min_circle_w_point(&points[..i], p_i);
    if distance_between_two_points(p_i, new.0) <= (new.1) {
        d_prev = new;
}</pre>
             }
      }
      d_prev
fn min_circle_w_point(points: &[Point], q: Point) -> Circle {
   let mut points = points.to_vec();
       points.shuffle(&mut thread_rng());
      let p1 = points[0]; //The circle is determined by two points, P_{-}1 and Q. The center of the
     circle
                    is
      crrcte is //at (P_-1 + Q)/2.0 and the radius is /( let d_-1 = (((p_1.0 + q.0) / 2), (p_1.1 + q.1) / 2), (distance_between_two_points(p_1, q) / 2.0),
                          + Q)/2.0 and the radius is |(P_1 - Q)/2.0|
      let mut d_prev = d_1;
      for j in 1..points.len() {
             let p_j = points[j];
if distance_between_two_points(p_j, d_prev.0) <= (d_prev.1) {</pre>
                    //d_prev = d_prev;
             } else {
                    let new = min_circle_w_points(&points[..j], p_j, q);
if distance_between_two_points(p_j, new.0) <= (new.1) {</pre>
                           d_prev = new;
             }
       d_prev
fn min_circle_w_points(points: &[Point], q1: Point, q2: Point) -> Circle {
   let mut points = points.to_vec();
      let d_0 = (
    (((q1.0 + q2.0) / 2), (q1.1 + q2.1) / 2),
    (distance_between_two_points(q1, q2) / 2.0),
      );
      let mut d_prev = d_0;
for k in 0..points.len() {
    let p_k = points[k];
             if distance_between_two_points(p_k, d_prev.0) <= (d_prev.1) {
             } else {
   let new = min_circle_w_3_points(q1, q2, p_k);
   if distance_between_two_points(p_k, new.0) <= (new.1) {
        d_prev = new;
}</pre>
      }
d_prev
fn min_circle_w_3_points(q1: Point, q2: Point, q3: Point) -> Circle {
   let (ax, ay) = (q1.0 as f64, q1.1 as f64);
   let (bx, by) = (q2.0 as f64, q2.1 as f64);
   let (cx, cy) = (q3.0 as f64, q3.1 as f64);
      let mut d = 2. * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by)); if d == 0.0 {    d = std::cmp::max(
                    std::cmp::max(
                           distance_between_two_points(q1, q2) as i64, distance_between_two_points(q2, q3) as i64,
                    distance_between_two_points(q1, q3) as i64,
             ) as f64 / 2.;
      }
```

```
/ d;
let uy = ((ax * ax + ay * ay) * (cx - bx)
+ (bx * bx + by * by) * (ax - cx)
+ (cx * cx + cy * cy) * (bx - ax))
       / (cx * cx * cy * cy) * (bx - ax) / d;
let mut center = (ux as i64, uy as i64);
       if center.0 < 0 {
    center.0 = 0;</pre>
       if center.1 < 0 {
    center.1 = 0;</pre>
       let d = distance_between_two_points(center, q1);
       (center, d)
fn main() {
      main() {
  let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
  let mut window = Window::new(
    "Test - ESC to exit",
    WINDOW_WIDTH,
    WINDOW_HEIGHT,
    WindowOptions {
        title: true,
        //borderless: true,
        resize: true,
        //transparency: true,
        ..WindowOptions::default()
                      ..WindowOptions::default()
             },
       .unwrap();
       // Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
      let mut full = Image::new(WINDOW_WIDTH, WINDOW_HEIGHT, 0, 0);
let mut image = Image::new(ME_WIDTH, ME_HEIGHT, 45, 45);
image.bytes = bits_to_bytes(ME_BITS, ME_WIDTH);
let (center, r) = bc(&image);
       image.draw_outline();
       full.plot_circle((center.0 + 45, center.1 + 45), r as i64, 0.);
while window.is_open() && !window.is_key_down(Key::Escape) &&
 .update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)
                     .unwrap();
             let millis = std::time::Duration::from_millis(100);
              std::thread::sleep(millis);
      }
}
```

curves

Part V Curves other than circles

Parametric elliptical arcs

curves

Squircle

curves

Bézier curves

Two cubic $B\'{e}zier$ curves joined together as displayed in graphics software.

22.1 Quadratic Bézier curves

22.1.1 Drawing the quadratic

To actually draw a curve, i.e. with points P_1, P_2, P_3 we will use *de Casteljau's algorithm*. The gist behind the algorithm is that the length of the curve is visited at specific percentages (e.g. 0%, 0.2%, 0.4% ... 99.8%, 100%), meaning we will have that many steps, and for each such percentage t we calculate a line starting at the t-nth point of P_1P_2 and ending at the t-nth point of P_2P_3 . The t-eth point of that line also belongs to the curve, so we plot it.

Computing curve points for values of $t \in [0, 1]$ with de Casteljau's algorithm

Let's draw the curve $P_1 = (25, 115), P_2 = (225, 180), P_3 = (250, 25)$

src/bin/bezier.rs:

This code file is a PDF attachment

The result:

The minifb library allows to track user input, so we detect user clicks and the mouse's position; thus we can interactively modify a curve with some modifications in the code:

Interactively modifying a curve with the bezier.rs tool.

We can go one step further and insult type designers * and use the tool to make a font glyph.

src/bin/bezierglyph.rs:

This code file is a PDF attachment

Of course, it requires effort to match the beginning and end of each curve that makes up the glyph. That's why font designing tools have *point snapping* to ensure curve continuation. But for a quick font designer app prototype, it's good enough.

^{*}who use cubic Béziers or other fancier curves (splines)

Left: A font glyph drawn with the interactive bezierglyph.rs tool. Right: the same glyph exported to SVG.

Part VI Points, Lines and Shapes

Rectangles and parallelograms

23.1 From a center point

23.2 From a corner point

shapes

Chapter 24

Triangles

24.1 Making a triangle from a point and given angles

shapes

Chapter 25

Union, intersection and difference of polygons

Centroid of polygon

Polygon clipping

Triangle filling

Add Triangle filling explanation

The book's library methods include a fill_triangle method:

This code is included in the distributed library file in the *Data* representation chapter.

Flood filling

Part VII

Vectors, matrices and transformations

Rotation of a bitmap

$$p' = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x_p \\ y_p \end{bmatrix}$$

$$c=cos\theta, s=sin\theta, x_{p'}=x_pc-y_ps, y_{p'}=x_ps+y_pc.$$

Let's load an xface. We will use bits_to_bytes (See *Bits to byte pixels*, page 14).

src/bin/rotation.rs:

This code file is a PDF attachment

```
include!("dmr.rs");
const WINDOW_WIDTH: usize = 100;
const WINDOW_HEIGHT: usize = 100;
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
```


transformations

This is the xface of dmr. Instead of displaying the bitmap, this time we will rotate it 0.5 radians. Setup our image first:

```
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.draw_outline();
let dmr = bits_to_bytes(DMR_BITS, DMR_WIDTH);
```

And then, loop for each byte in dmr's face and apply the rotation transformation.

```
let angle = 0.5;
let c = f64::cos(angle);
let s = f64::sin(angle);

for y in 0..DMR_HEIGHT {
    for x in 0..DMR_WIDTH {
        if dmr[y * DMR_WIDTH + x] == BLACK {
            let x = x as f64;
            let y = y as f64;
            let xr = x * c - y * s;
            let yr = x * s + y * c;
            image.plot(xr as i64, yr as i64);
        }
}
```

The result:

We didn't mention in the beginning that the rotation has to be relative to a *point* and the given transformation is relative to the *origin*, in this case the upper left corner (0,0). So dmr was rotated relative to the origin:

(the distance to the origin (actually 0 pixels) has been exaggerated for the sake of the example)

Usually, we want to rotate something relative to itself. The right point to choose is the *centroid* of the object.

If we have a list of n points, the centroid is calculated as:

$$x_c = \frac{1}{n} \sum_{i=0}^{n} x_i$$

$$y_c = \frac{1}{n} \sum_{i=0}^{n} y_i$$

Since in this case we have a rectangle, the centroid has coordinates of half the width and half the height.

By subtracting the centroid from each point before we apply the transformation and then adding it back after we get what we want:

Here's it visually: First subtract the center point.

Then, rotate.

And subtract back to the original position.

transformations

In code:

The result:

30.1 Fast 2D Rotation

transformations

90° Rotation of a bitmap by parallel recursive subdivision

transformations

Chapter 32

Magnification/Scaling

We want to magnify a bitmap without any smoothing. We define an Image scaled to the dimensions we want, and loop for every pixel in the scaled Image. Then, for each pixel, calculate its source in the original bitmap: if the coordinates in the scaled bitmap are (x, y) then the source coordinates (sx, sy) are:

$$sx = \frac{x * original.width}{scaled.width}$$

$$sy = \frac{y * original.height}{scaled.height}$$

So, if (sx, sy) are painted, then (x, y) must be painted as well.

src/bin/scale.rs:

This code file is a PDF attachment

```
let mut original = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
original.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
original.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
let mut scaled = Image::new(DMR_WIDTH * 5, DMR_HEIGHT * 5, 100, 100);
let mut sx: i64; //source
let mut sy: i64; //source
let mut dx: i64; //destination
let mut dx: i64; //destination
let og_height = original.height as i64;
let og_width = original.width as i64;
let scaled_height = scaled.height as i64;
let scaled_width = scaled.width as i64;
while dy < scaled_height {
    sy = (dy * og_height) / scaled_height;
    dx = 0;
    while dx < scaled_width {
        sx = (dx * og_width) / scaled_width;
        if original.get(sx, sy) == Some(BLACK) {
            scaled.plot(dx, dy);
        }
        dx += 1;
    }
    dy += 1;
}
scaled.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);</pre>
```

32.1 Smoothing enlarged bitmaps

transformations

32.2 Stretching lines of bitmaps

Add Stretching lines of bitmaps

transformations

Chapter 33

Mirroring

Add screenshots and figure and code in Mirroring

Mirroring to an axis is the transformation of one coordinate to its equidistant value across the axis:

To mirror a pixelacross the x axis, simply multiply its coordinates with the following matrix:

$$M_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

This results in the *y* coordinate's sign being flipped.

For y-mirroring, the transformation follows the same logic:

$$M_y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Shearing

Simple shearing is the transformation of one dimension by a distance proportional to the other dimension, In x-shearing (or horizontal shearing) only the x coordinate is affected, and likewise in y-shearing only y as well.

src/bin/shearing.rs:

This code file is a PDF attachment

With l being equal to the desired tilt away from the y axis, the transformation is described by the following matrix:

Which is as simple as this function:

```
fn shear_x((x_p, y_p): (i64, i64), 1: f64) -> (i64, i64) {
    (x_p+(1*(y_p as f64)) as i64, y_p)
}
```


For *y*-shearing, we have the following:

$$S_{y} = \begin{bmatrix} 1 & 0 \\ l & 1 \end{bmatrix}$$

```
fn shear_y((x_p, y_p): (i64, i64), 1: f64) -> (i64, i64) {
    (x_p, (1*(x_p as f64)) as i64 + y_p)
}
```


A full example:

```
let 1 = -0.5;
let mut sheared = Image::new(DMR_WIDTH*2, DMR_HEIGHT*2, 25, 25);
for x in 0..DMR_WIDTH {
    for y in 0..DMR_HEIGHT {
        if image.bytes[y * DMR_WIDTH + x] == BLACK {
            let p = shear_x((x as i64 ,y as i64 ), 1);
            sheared.plot(p.0+(DMR_WIDTH/2) as i64, p.1+(DMR_HEIGHT/2) as i64);
        }
    }
    sheared.draw_outline();
```

34.1 The relationship between shearing factor and angle

Shearing is a delta movement in one dimension, thus the point before moving and the point after form an angle with the x axis. To move a point (x,0) by 30° forward we will have the new point (x+f,0) where f is the shear factor. These two points and (x,h) where h is the height of the bitmap form a triangle, thus the following are true:

$$\cot \theta = \frac{h}{f}$$

Therefore to find your factor for any angle θ replace its cotangent in the following formula:

$$f = \frac{h}{\cot \theta}$$

For example to shear by -30° (meaning the bitmap will move to the right, since rotations are always clockwise) we need $\cot(-30 deg) = -\sqrt{3}$ and $f = -\frac{h}{\sqrt{3}}$.

Projections

Part VIII Addendum

35.1 Faster Drawing a line segment from its two endpoints using Symmetry

Joining the ends of two wide line segments together

addendum

Composing monochrome bitmaps with separate alpha channel data

Orthogonal connection of two points

Add Orthogonal connection of two points	

addendum

addendum

Chapter 39

Join segments with round corners

Round corners are everywhere around us. It is useful to know at least one method of construction. This specific method constructs a circle that has a common point with each given line segment, and calculates the arc that when added to the line segments they are smoothly joined. The excess length, since those common points will be before the end of the line segments, must be erased. Therefore, it's best to begin with just the points of the two segments before starting to draw anything.

Since the segments intercept, the round corner will end up beneath the intersection. We wish to find a circle that has a common point with each segment and the arc made up from those points and the circle is the round corner we are after.

We are given 4 points, P_1 , P_2 and P_3 , P_4 that make up segments S_1 and S_2 . Begin by finding the midpoints q_1 and q_2 of segments S_1 and S_2 . These will be:

$$q_1 = \frac{P_1 + P_2}{2}$$
$$q_2 = \frac{P_3 + P_4}{2}$$

Calculate perpendicular lines* S_1^\prime and S_2^\prime passing through the midpoints of S_1 and S_2 .

^{*}See Find perpendicular to line that passes through given point, page 25

At their intersection lies the center P_c of the circle, and the radius is the distance of P_c from either of the segments. Now, we have to find the angle the circle's arc starts from. It will be equal to:

$$\begin{split} \hat{s} &= 90^{\circ} + \hat{a} \\ \hat{a} &= arcsin\left(\frac{dist_{x}(P_{c},q_{1})}{r}\right) \end{split}$$

Similarly, the ending angle **(a)** will be equal to:

$$\hat{e} = \arccos\left(\frac{dist_x(P_c, q_2)}{r}\right)$$

It's evident our solution applies to the example and is not general; to cover all cases, we have to find in which quadrants of the circle the wanted arc will reside in and that depends on how the two segments are layed out.

Add Join segments with round corners code

Faster line clipping

Tilings

Add Tilings

41.1 Hexagon Tiling

Space-filling Curves

42.1 Hilbert curve

Add Hilbert curve explanation

The first six iterations of the Hilbert curve by Braindrain0000

Here's a simple algorithm for drawing a Hilbert curve.*

*Griffiths, J. G. (1985). *Table-driven algorithms for generating space-filling curves*. Computer-Aided Design, 17(1), 37–41. doi:10.1016/0010-4485(85)90009-0

src/bin/hilbert.rs:

This code file is a PDF attachment


```
let mut image = Image::new(WINDOW_WIDTH, WINDOW_WIDTH, 0, 0);
curve(&mut image, 0, 7, 0, WINDOW_WIDTH as i64);
```


addendum

42.2 Sierpiński curve

Switching the table from the Hilbert implementation to this:

And switching two lines from the function to

```
- let step = HILBERT[k][j];
- row = (step / 10) - 1;
+ let step = SIERP[k][j];
+ row = (step / 10);
```

You can draw a Sierpinshi curve of order n by calling curve (&mut image, 0,n+1, 0, 0).

42.3 Peano curve

Add Peano curve

addendum

42.4 Z-order curve

addendum

Drawing the Z-order curve is really simple: first, have a counter variable that starts from zero and is incremented by one at each step. Then, you extract the (x,y) coordinates the new step represents from its binary representation. The bits for the x coordinate are located at the odd bits, and for y at the even bits. I.e. the values are interleaved as bits in the value of the step:

Knowing this, implementing the drawing process will consist of computing the next step, drawing a line segment from the current step and the next, set the current step as the next and continue;

```
adden-
dum
```

```
if next & Ob10_000_000_000_000_000 > 0 {
    sx += 256 * STEP_SIZE;
            if next & 0b1_000_000_000_000_000_000 > 0 {
    sx += 512 * STEP_SIZE;
            sy = 0;
if (next & Ob10) as i64 > 0 {
    sy += STEP_SIZE;
            if next & Ob1_000 > O {
    sy += 2 * STEP_SIZE;
            if next & Ob100_000 > 0 {
    sy += 4 * STEP_SIZE;
            if next & Ob10_000_000 > 0 {
    sy += 8 * STEP_SIZE;
            if next & Ob1_000_000_000 > 0 {
   sy += 16 * STEP_SIZE;
            if next & Ob100_000_000_000 > 0 {
    sy += 32 * STEP_SIZE;
            if next & Ob10_000_000_000_000 > 0 {
    sy += 64 * STEP_SIZE;
            if next & Ob1_000_000_000_000_000 > 0 {
    sy += 128 * STEP_SIZE;
            if next & Ob100_000_000_000_000_000 > 0 {
    sy += 256 * STEP_SIZE;
            if next & Ob10_000_000_000_000_000_000 > 0 {
    sy += 512 * STEP_SIZE;
            img.plot_line_width(prev_pos, (sx + x_offset, sy + y_offset), 1.0);
            if next == 0b111_111_111_111_111_111_111 {
                  break:
            if sx as usize > img.width && sy as usize > img.height {
                 break;
            prev_pos = (sx + x_offset, sy + y_offset);
b = next;
     }
}
```


42.5 Flowsnake curve

The first three orders of the Gosper curve.

As a fractal curve, the *flowsnake curve* or *Gosper curve* is defined by a set of recursive rules for drawing it. There are four kind of rules and two of them define rulesets (i.e. they are non-terminal steps).

$$A \mapsto A-B--B+A++AA+B-$$

 $B \mapsto +A-BB--B-A++A+B$

The fourth order Gosper curve consists of a minimum of 2057 distinct line segments (but our algorithm draws 36015)

Dithering

43.1 Floyd-Steinberg

 $detail\ of\ a\ standard\ test\ image, \underline{\textit{Sailboat\ on\ lake}}, with\ Floyd-Steinberg\ dithering$

src/bin/floyddither.rs:

This code file is a PDF attachment

addendum

43.2 Atkinson dithering

detail of a standard test image, \underline{Lenna} , with Atkinson dithering

src/bin/atkinsondither.rs:

This code file is a PDF attachment

addendum The following code implements Atkinson dithering:*

^{*}Algorithm taken from https://beyondloom.com/blog/dither.html

```
adden-
dum
```

```
} else {
     BLACK
     };
}
```


Marching squares

Index

angle between two lines, 26 de Casteljau's algorithm, 53
centroid, 61, 69 midpoint, 30, 87
circle
bounding, 44 perpendicular, 25
equations, 43
out of three points, 45 shearing, 77
out of two points, 45 skewing, see shearing

About this text

The text has been typeset in $X_{\overline{A}} \text{Le} T_{\overline{E}} X$ using the book class and:

- **Redaction** for the main text.
- ${\bf Fira\ Sans}$ for referring to the programming language ${\bf Rust}$.
- **Redaction20** for referring to the words bitmap and pixels as a concept.

Todo list

Add code samples in <i>Distance from a point to a line</i>	24
Add Normal to a line through a point	32
Add some explanation behind the algorithm in <i>Drawing a line segment from its two endpoints</i>	36
Add code sample in <i>Intersection of two line segments</i>	39
Add <i>Equations of a circle</i>	43
Add <i>Parametric elliptical arcs</i>	50
Add <i>Squircle</i>	51
Add Union, intersection and difference of polygons	60
Add Centroid of polygon	61
Add <i>Triangle filling</i> explanation	63
Add <i>Flood filling</i>	65
Add <i>Fast 2D Rotation</i>	71
Add 90° Rotation of a bitmap by parallel recursive subdivision	72
Add Smoothing enlarged bitmaps	74
Add Stretching lines of bitmaps	74
Add screenshots and figure and code in <i>Mirroring</i>	76
Add <i>Projections</i>	80
Add Faster Drawing a line segment from its two endpoints using Symmetry	82
Add Joining the ends of two wide line segments together	83
Add Composing monochrome bitmaps with separate alpha channel data	84
Add Orthogonal connection of two points	85
Add <i>Join segments with round corners</i> code	89

Add Faster line clipping	90
Add <i>Tilings</i>	91
Add Space-filling Curves	92
Add <i>Hilbert curve</i> explanation	93
Add Peano curve	95