Supplemental tables

Table S1: Description of variables

symbol	description
σ	translational activity
χ_{Rb}	regulation function of ribosomal protein allocation
Хс	regulation function of catabolic protein allocation
ϕ_{Rb}	fraction of ribosomal protein over total protein
$\phi_{\it C}$	fraction of catabolic protein over total protein
v_{aa}	protein synthesis flux
$\nu_{\it C}$	carbon uptake rate
λ	cell growth rate

Table S2: Description of parameters. Default values were used unless otherwise stated.

symbol	description	value	source
γ	Inverse slope of growth laws	13.52 h ⁻¹	[2]
λ_C	Strain specific constant of growth laws	1.17 h ⁻¹	[2]
$\phi_{Rb,0}$	A growth rate-independent offset of R sector	0.049	[2]
ϕ_Q	Fraction of house-keeping protein	0.45	[14]
$\phi_{C,max}$	Maximum of proteome attainable to C, E and R sectors	0.44	[15]
β	conversion factor between moles and gram	0.1968 g/mmol	
$h_{1,2}$	carbon-specific allocation		
ω_E	enzyme cost per unit metabolic influx	8.3×10^{-4} gh/mmol	[31]
$\omega_{\mathcal{C}}$	enzyme cost per unit carbon influx	See Table S3	

Table S3: The constants of the substrates used in the simulation of dCAFBA.

Substrate1	Substrate2	$\lambda_1(h^{\text{-}1})$	$\lambda_2 (h^{-1})$	$\lambda_{12} (h^{\text{-}1})$	ω_{c_1}	ω_{C2}	h_1	h_2
succinate	glucose	0.45	0.91	0.92	1.96×10 ⁻²	4.3×10 ⁻³	0.64	1
	gluconate	0.45	0.91	0.94	1.96×10 ⁻²	2.29×10 ⁻³	0.63	1
pyruvate	gluconate	0.60	0.91	0.97	5.17×10 ⁻³	2.39×10 ⁻³	0.77	1

Table S4: The parameters used in the dCAFBA simulations with the *E.coli i*ML1515 metabolic model.

	Substrate1	Substrate2	$\omega_{C1}(\mathrm{gh/mmol})$	$\omega_{\it C2}({\it gh/mmol})$	$\omega_E(\mathrm{gh/mmol})$	$\beta(\text{g/mmol})$	h_1	h_2
Up-shift	succinate	gluconate	1.96×10 ⁻²	2.1×10 ⁻³	3.3×10^{-4}	0.1870	0.63	1
Down-shift	succinate	glucose	1.6×10 ⁻²	2.9×10 ⁻³	5.15×10 ⁻⁴	0.1870	0.6	1

Table S5: The parameters used in the simulations of lycopene production by dCAFBA.

Substrate	$\lambda_1 (h^{-1})$	$\omega_{\it C}({ m gh/mmol})$	$\omega_E({ m gh/mmol})$	ϕ_{Cmax}	k_{eff}	$t_{\mathcal{C}}\left(\mathbf{h}\right)$
glucose	0.85	1.0×10 ⁻³	4.1×10 ⁻⁴	0.24	0.05	0.6