БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

Протокол №	OT	_Председатель
Протокол №	от	_Председатель
Протокол №	от	_Председатель
Протокол №	от	_Председатель
Протокол №	ОТ	Председатель

Дисциплина

«Теория вероятностей и математическая статистика»

Задания для проведения практической работы №7

НАИМЕНОВАНИЕ РАБОТЫ: Нахождение плотности распределения и функции распределения непрерывных случайных величин. Вычисление числовых характеристик непрерывных случайных величин.

ЦЕЛЬ РАБОТЫ: сформировать умения и навыки по нахождению плотности распределения и функции распределения непрерывных случайных величин, вычислению числовых характеристик непрерывных случайных величин.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1.1. Понятия и виды случайных величин.
- 1.2. Функции распределения непрерывных случайных величин.
- 1.3. Плотность распределения непрерывной случайной величины.
- 1.4. Числовые характеристики непрерывных случайных величин.

2. Работа в аудитории

2.1. Решение типовых заданий

Задание №1. Случайная величина *X* задана функцией распределения

$$F(x) = \begin{cases} 0, & npu \ x \le 0; \\ \frac{x^2}{4}, & npu \ 0 < x \le 2; \\ 1, & npu \ x > 2. \end{cases}$$

Требуется:

- 1) найти вероятность того, что в результате испытания СВ примет значение X, заключенное в интервале (0,2;5);
- 2) найти плотность распределения, вычислить числовые характеристики;
- 3) построить графики функций p(x) и F(x).

Решение:

1) Воспользуемся формулой $P(\alpha < X < \beta) = F(\beta) - F(\alpha)$.

$$P(0,2 < x < 5) = F(5) - F(0,2) = 1 - \frac{(0,2)^2}{4} = 1 - 0.01 = 0.99.$$

2) Так как, p(x) = F'(x), то

$$p(x) = \begin{cases} 0, & npu \ x \le 0; \\ \frac{x}{2}, & npu \ 0 < x \le 2; \\ 0, & npu \ x > 2. \end{cases}$$

Математическое ожидание непрерывной случайной величины вычислим по формуле:

$$M(X) = \int_{-\infty}^{\infty} x \rho(x) dx.$$

$$M(X) = \int_{0}^{2} x \cdot \frac{x}{2} dx = \int_{0}^{2} \frac{x^{2}}{2} dx = \frac{x^{3}}{6} \Big|_{0}^{2} = \frac{2^{3}}{6} - 0 = \frac{8}{6} = \frac{4}{3}.$$

Дисперсия непрерывной случайной величины определим по формуле:

$$D(X) = \int_{-\infty}^{\infty} x^2 \rho(x) dx - (M(X))^2.$$

$$D(X) = \int_{0}^{2} x^{2} \cdot \frac{x}{2} dx - \left(\frac{4}{3}\right)^{2} = \int_{0}^{2} \frac{x^{3}}{2} dx - \frac{16}{9} = \frac{x^{4}}{8} \Big|_{0}^{2} - \frac{16}{9} = \frac{16}{8} - \frac{16}{9} = 2 - \frac{16}{9} = \frac{2}{9}.$$

Среднее квадратическое отклонение равно

$$\sigma(X) = \sqrt{D(X)} = \sqrt{\frac{2}{9}} \approx 0.47.$$

Рисунок – график функции распределения

Рисунок – график плотности распределения

Задание №2. Дана плотность распределения p(x) непрерывной случайной величины. Найти параметр c.

$$p(x) = \begin{cases} 0, & npu \ x \le 1; \\ c\sqrt{x}, & npu \ 1 < x \le 4; \\ 0, & npu \ x > 4. \end{cases}$$

Решение

Найдем параметр c из условия: $\int_{-\infty}^{\infty} \rho(x) dx = 1$.

$$\int_{1}^{4} c\sqrt{x} dx = \frac{2}{3} cx^{\frac{3}{2}} \bigg|_{1}^{4} = \frac{2}{3} c(4^{\frac{3}{2}} - 1) = \frac{14}{3} c = 1.$$
 Следовательно, $c = \frac{3}{14}$.

2.2. Выполните задания (при выполнении заданий значение N соответствует номеру варианта).

Уровень І

Задание №1. Случайная величина X задана функцией распределения

$$F(x) = \begin{cases} 0, & npu \ x \le 0; \\ \frac{x}{N+1}, & npu \ 0 < x \le 1; \\ 1, & npu \ x > 1. \end{cases}$$

Найти вероятность того, что в результате испытания СВ примет значение X, заключенное в интервале: а) $(0; 0,8); \delta$) (0,1;0,5); B) $(1;\infty)$?

Уровень II

Задание №2. Дана функция распределения непрерывной случайной величины X:

$$F(x) = \begin{cases} 0, & npu \, x \le 0; \\ \frac{x}{N+3}, & npu \, 0 < x \le N+3; \\ 1, & npu \, x > N+3. \end{cases}$$

Найти плотность распределения, вычислить числовые характеристики.

Построить графики функций p(x) и F(x).

Уровень III

Задание №3. Дана плотность распределения p(x) непрерывной случайной величины. Найти параметр с, функцию распределения F(x), вычислить числовые характеристики.

$$p(x) = \begin{cases} 0, & npu \ x < a, \quad x > b; \\ \varphi(x,c) & npu \ a \le x \le b. \end{cases}$$

Ŋoౖ	$\varphi(x,c)$	а	b
1	$c \cdot x$	1	2
2	cx^2	-1	1
3	$\frac{cx^2}{cx^3}$	0	2
4	cx^4	0	1
5	$c\sin x$	0	π
6	$c\sin 2x$	0	$\pi/2$
7	$c\sin 3x$	0	$\pi/3$
8	$c \cdot \cos x$	-π/2	$\pi/2$
9	$c \cdot \cos 2x$	0	$\pi/4$
10	$c e^{-x}$	0	4
11	$c e^{-2x}$	0	∞
12	$c e^x$	0	1
13	$c x^5$	0	1
14	$c x^6$	0	2
15	$c x^7$	0	1

Уровень IV. Составьте и решите задачу, в которой необходимо определить вероятность непрерывной случайной величины.

Контрольные вопросы:

- 1. Что называют случайной величиной?
- 2. Какую величину называют непрерывной случайной величиной?
- 3. Что называют функцией распределения случайной величины?
- 4. Какими свойствами обладает функция распределения?
- 5. Какие числовые характеристики случайной величины вы знаете? Дайте им определения, укажите методы их нахождения.

Литература

Гмурман, В. Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов/В. Е. Гмурман. — 9-е изд., стер. — М.: Высш. шк., 2003. — с.116 – 124.

Преподаватель В.П. Кошелева