*Home work sheet #1

Domain & Range

1. Sketch the following functions and find the domain and range:

$$i. \quad f(x) = \frac{1}{x - 2}$$

ii.
$$g(x) = \frac{|x|}{x}$$

iii.
$$h(x) = x^2 - 2$$

iii.
$$h(x) = x^2 - 2$$

iv.
$$k(x) = \sqrt{4 - x^2}$$

Find out the domain and range of the following functions:

1.
$$f(x) = \frac{1}{x-3}$$

10.
$$f(x) = \sqrt{2x+4}$$

2.
$$f(x) = \sqrt{x^2 - 9}$$

11.
$$f(x) = \frac{1}{5x+7}$$

3.
$$f(x) = \sqrt{9 - x^2}$$

12.
$$f(x) = -\sqrt{x^2 - 7x + 10}$$

4.
$$f(x) = \begin{cases} 2x+6 & ,-3 \le x \le 0 \\ 6 & ,0 < x < 2 \\ 2x-6 & ,2 \le x \le 5 \end{cases}$$

13.
$$f(x) = \begin{cases} x^2, & x < 0 \\ x, & 0 \le x \le 1 \\ \frac{1}{x}, & x > 1 \end{cases}$$

$$5. \ f(x) = \frac{x}{|x|}$$

14.
$$f(x) = \sqrt{x^2 - 5x + 6}$$

6.
$$f(x) = x^3 + 2$$

$$15. \quad f(x) = Sin^2 x$$

7.
$$f(x) = \begin{cases} x+2 & , x \le -1 \\ x^3 & , |x| < 1 \\ -x+3 & , x \ge 1 \end{cases}$$

16.
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

8.
$$f(x) = e^x$$

$$17. \ f(x) = \log x$$

$$9. \ f(x) = 3Sinx$$

18.
$$f(x) = \ln(x^2 + 1)$$

Sketch the above functions except 16 and 18.

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet #2 Limit

Find the limit of the following functions:

1.
$$\lim_{x \to 0} \frac{x}{\sqrt{x+1} - 1}$$

3.
$$f(x) = \begin{cases} x^2 + 1 & , x > 0 \\ 1 & , x = 0 \\ 1 + x & , x < 0 \end{cases}$$

Find
$$\lim_{x\to 0} f(x)$$

$$5. \lim_{x \to 0} \frac{x}{|x|}$$

7.
$$f(x) = \begin{cases} 2-x, & x < 1 \\ x^2 + 1, & x > 1 \end{cases}$$

Find
$$\lim_{x\to 1} f(x)$$

$$9. \ f(x) = \begin{cases} \frac{1}{x+2} & , x < -2\\ x^2 - 5 & , -2 < x < 3\\ \sqrt{x+13} & , x > 3 \end{cases}$$

$$10. \ f(x) = \begin{cases} x^2 & , x < 1\\ 2.4 & , x = 1\\ x^2 + 1 & , x > 1 \end{cases}$$

Find
$$\lim_{x\to -2} f(x)$$
 and $\lim_{x\to 3} f(x)$

11.
$$\lim_{x \to \infty} \left(\sqrt{x^6 + 5x^3} - x^3 \right)$$

13.
$$\lim_{x \to \infty} \sqrt[3]{\frac{3x+5}{6x-8}}$$

2.
$$\lim_{x \to 2} \frac{2x^2 - 5x + 2}{5x^2 - 7x - 6}$$

4.
$$f(x) = \begin{cases} 3x - 1, & x < 1 \\ 3 - x, & x > 1 \end{cases}$$

Find
$$\lim_{x\to 1} f(x)$$

$$6. \lim_{x\to\infty} \frac{3x+5}{6x-8}$$

8.
$$f(x) = \begin{cases} e^{\frac{-|x|}{2}}, & -1 < x < 0 \\ x^2, & 0 < x < 2 \end{cases}$$

Find
$$\lim_{x\to 0} f(x)$$

10.
$$f(x) = \begin{cases} x^2 & , x < 1 \\ 2.4 & , x = 1 \\ x^2 + 1 & , x > 1 \end{cases}$$

Does
$$\lim_{x \to 1} f(x)$$
 exist?

12. Prove that
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

14.
$$\lim_{x \to -\infty} \frac{4x^2 - x}{2x^3 - 5}$$

15. Let
$$f(x) = \begin{cases} 2x+1, & x < 1 \\ 3-x, & x > 1 \end{cases}$$
, find $\lim_{x \to 1} f(x)$.

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet #3

Continuity and Differentiability

a) Test the continuity of the following functions:

$$1. f(x) = \begin{cases} \cos x, & x \ge 0 \\ -\cos x, & x < 0 \end{cases} \text{ at } x = 0.$$

2.
$$f(x) = \begin{cases} x\cos(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 at $x = 0$.

3.
$$f(x) = \begin{cases} e^{1/x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 at $x = 0$.

4.
$$f(x) = \begin{cases} e^{\frac{-|x|}{2}}, -1 < x < 0 \\ x^2, 0 \le x < 2 \end{cases}$$
 at $x = 0$.

$$5. f(x) = \begin{cases} (x-a)\sin\left(\frac{1}{x-a}\right), & x \neq a \\ 0, & x = a \end{cases} \text{ at } x = a.$$

6.
$$f(x) = \begin{cases} 1, & x < 0 \\ 1 + \sin x, & 0 \le x < \pi/2 \\ 2 + (x - \pi/2)^2, & x \ge \pi/2 \end{cases}$$
 at $x = 0$ and $x = \pi/2$.

7.
$$f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 at $x = 0$.

$$8. f(x) = \begin{cases} \frac{|x-3|}{x-3}, & x \neq 3 \\ 0, & x = 3 \end{cases} \text{ at } x = 3.$$

9.
$$f(x) = |x| + |x-1|$$
 at $x = 0$ and $x = 1$.

10.
$$f(x) = \begin{cases} (1+x)^{1/x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 at $x = 0$.

b) Test the differentiability of the following functions:

$$2.f(x) = \begin{cases} x^2 \cos(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases} \text{ at } x = 0.$$
 3. $f(x) = |x|$ at $x = 0$.

$$3.f(x) = |x|$$
 at $x = 0$.

$$2.f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases} \text{ at } x = 0.$$

- (c) Let $f(x) = \begin{cases} x^2 16x, & x < 9 \\ 12\sqrt{x}, & x > 9 \end{cases}$. Is f(x) continuous at x = 9? Determine whether f(x) is differentiable at x = 9
- (d) Let $f(x) = \begin{cases} x^2, x \le 1 \\ \sqrt{x}, x > 1 \end{cases}$. Is f(x) continuous at x = 1? Determine whether f(x) is differentiable at x = 1.
- (e) Show that $f(x) = \begin{cases} x^2 + 1, x \le 1 \\ x, x > 1 \end{cases}$ is not continuous and differentiable at x = 1. Sketch the

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet #4

Techniques of Differentiation

- 1. Find the differential coefficients of the following functions with respect to x. (i.e. $\frac{dy}{dx}$).
- $(i)y = \sin x \sin 2x \sin 3x$, $(ii)y = \cos ec^3 x$, $(iii)y = \cos 2x \cos 3x$, $(iv)y = \sin^{-1}(x^2)$,

$$(v)y = \tan(\sin^{-1} x), \quad (vi)\cot^{-1}\left(\frac{1+x}{1-x}\right), \quad (vii)\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), \quad (viii)\sin^{-1}\left(\frac{2x}{1+x^2}\right),$$

$$(ix) \tan^{-1} \left(\frac{2x}{1-x^2}\right), \quad (x) \tan^{-1} \left(\frac{x}{\sqrt{1-x^2}}\right), \quad (xi) \sin \left(2 \tan^{-1} \sqrt{\frac{1-x}{1+x}}\right), \quad (xii) \ln \sqrt{\frac{1-\cos x}{1+\cos x}}.$$

2. Find the differential coefficients of:

$$(i)(\sin x)^{\ln x}$$
, $(ii)(\sin x)^{\cos x} + (\cos x)^{\sin x}$.

3. Find $\frac{dy}{dx}$ in the following cases:

$$(i) 3x^4 - x^2y + 2y^3 = 0$$
, $(ii) x^3 + y^3 + 4x^2y - 25 = 0$, $(iii) x^y = y^x$.

4. Find $\frac{dy}{dx}$ when

$$(i)x = a\cos^3\theta, \ y = a\sin^3\theta, \quad (ii)x = \sin^2\theta, \ y = \tan\theta, \quad (iii)x = a\sec^2\theta, \ y = a\tan^2\theta.$$

5. Differentiate the left-side functions with respect to the right-side ones:

$$(i)\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 with respect to $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ $(ii)x^{\sin^{-1}(x)}$ with respect to $\sin^{-1}x$.

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet #5

Maxima and minima

1. Find (a) the open intervals on which f is increasing, (b) the open intervals on which fis decreasing, (c) the open intervals on which f is concave up, (d) the open intervals on which f is concave down and (e) the x-coordinate of all inflection points.

(i)
$$f(x) = x^2 - 5x + 6$$

(i)
$$f(x) = x^2 - 5x + 6$$
 (ii) $f(x) = 5 + 12x - x^3$

(iii)
$$f(x) = x^4 - 8x^2 + 16$$
 (iv) $f(x) = \frac{x^2}{x^2 + 2}$ (v) $f(x) = \sqrt[3]{x + 2}$.

$$(iv) f(x) = \frac{x^2}{x^2 + 2}$$

$$(v) f(x) = \sqrt[3]{x+2}.$$

2. Locate the critical numbers and identify which critical numbers correspond to stationary points.

(i)
$$f(x) = x^3 + 3x^2 - 9x + 1$$
 (ii) $f(x) = x^4 - 6x^2 - 3$

$$(ii) f(x) = x^4 - 6x^2 - 3$$

(iii)
$$f(x) = \frac{x}{x^2 + 2}$$
 (iv) $f(x) = x^{2/3}$

$$(iv) f(x) = x^{2/3}$$

$$(v) f(x) = x^{1/3}(x+4)$$
 $(vi) f(x) = \cos 3x.$

$$(vi) f(x) = \cos 3x.$$

3. Find the relative extrema (maxima/ minima) using both the first and second derivative tests.

$$(i) f(x) = 2x^3 - 9x^2 + 12x$$
 $(ii) f(x) = \frac{x}{2} - \sin x$, $0 < x < 2\pi$.

4. Use the given derivative to find all critical numbers of f and determine whether a relative maximum, relative minimum, or neither occurs there.

(i)
$$f'(x) = x^3(x^2 - 5)$$
 (ii) $f'(x) = \frac{x^2 - 1}{x^2 + 1}$.

(ii)
$$f'(x) = \frac{x^2 - 1}{x^2 + 1}$$

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet # 6

Successive Differentiation

a. Find the n th derivative of the following functions:

$$1.v = x^n$$

$$2.y = (ax + b)^n$$

$$3.y = \ln(ax + b)$$

$$4.y = \frac{1}{x+a}$$

$$5.v = e^{ax}$$

$$6.y = \sin(ax + b)$$

$$7.y = \cos(ax + b)$$

b. If $y = e^{ax} \sin bx$, then show that $y_2 - 2ay_1 + (a^2 + b^2)y = 0$.

c. If $y = e^x \sin x$, then show that $y_4 + 4y = 0$.

Rolle's and Mean Value Theorem

a. Verify the hypothesis of Rolle's Theorem for the following functions:

1.
$$f(x) = x^2 - 6x + 8$$
; [2,4]

$$2. f(x) = \cos x; \quad [\pi/2, 3\pi/2]$$

3.
$$f(x) = \frac{x}{2} - \sqrt{x}$$
; [0, 4].

b. Verify the hypothesis of Mean Value Theorem for the following functions:

1.
$$f(x) = x^3 + x - 4$$
; [-1,2]

2.
$$f(x) = \sqrt{x+1}$$
; [0,3]

$$3.f(x) = \sqrt{25 - x^2};$$
 [0,5].

Maclaurin and Taylor Series

1. Find the Taylor series for the following functions:

(i)
$$\sin x$$
, at $x_0 = \frac{\pi}{2}$. (ii) $\ln x$, at $x_0 = 2$.

- 2. Expand $y = \ln x$ in the power of x 2 and $y = e^{ax}$ in the power of x 1.
- 3. Find the Maclaurin series for the function e^{ax} and $\cos x$.
- 4. Find the Maclaurin polynomial p_0 , p_1 , p_2 , p_3 for $e^x \cos x$.
- 5. Expand $y = \ln(x+1)$, $y = \sin x$, $y = \cos x$ in the power of x.

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet #7

Leibnitz's Theorem

1. If
$$y = \tan^{-1} x$$
, then show that $(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$.

2. If
$$y = \cot^{-1} x$$
, then show that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$.

3. If
$$y\sqrt{1-x^2} = \sin^{-1} x$$
, then show that $(1-x^2)y_{n+1} - (2n+1)xy_n - n^2y_{n-1} = 0$.

4. If
$$y = e^{\tan^{-1}x}$$
, then show that $(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + n(n+1)y_n = 0$.

5. If
$$y = e^{m \sin^{-1} x}$$
, then show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$.

6. If
$$y = (\sin^{-1} x)^2$$
, then show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.

7. If
$$\log_e y = a \sin^{-1} x$$
 then show that $(1 - x^2) y_{n+2} - (2n+1) x y_{n+1} - (n^2 + a^2) y_n = 0$.

8. If
$$y = e^{m\cos^{-1}x}$$
 then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$.

9. If
$$\log_e y = \tan^{-1} x$$
 then show that $(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + n(n+1)y_n = 0$.

10. If
$$y = (\cos^{-1} x)^2$$
, then show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.

11. If
$$\ln y = m \cos^{-1} x$$
, then show that $(1 - x^2) y_{n+2} - (2n+1) x y_{n+1} - (n^2 + m^2) y_n = 0$.

12. If
$$x = \tan(\ln y)$$
, then show that $(1 + x^2)y_{n+2} + (2nx + 2x - 1)y_{n+1} + n(n+1)y_n = 0$.

Indeterminate Forms

Find the limit using L' Hospital's rule:

1.
$$\lim_{x \to 1} \frac{\ln x}{x - 1}$$
, 2. $\lim_{x \to 3} \frac{x - 3}{3x^2 - 13x + 12}$, 3. $\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{\cos 3x}{x^2}\right)$, 4. $\lim_{x \to \pi} \frac{\sin x}{x - \pi}$
5. $\lim_{x \to 0} \frac{x - \tan^{-1} x}{x^3}$, 6. $\lim_{x \to +\infty} \frac{e^{3x}}{x^2}$, 7. $\lim_{x \to 0} \frac{a^x - 1 - x \log a}{x^2}$, 8. $\lim_{x \to 0} (e^x + x)^{\frac{1}{x}}$
9. $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$, 10. $\lim_{x \to \pi} (x - \pi) \cot x$, 11. $\lim_{x \to 0} \frac{\ln(\sin x)}{\ln(\tan x)}$, 12. $\lim_{x \to \infty} xe^{-x}$
13. $\lim_{x \to 0} \frac{\sin 2x}{x}$, 14. $\lim_{x \to 0} \frac{\sin x}{x^2}$, 15. $\lim_{x \to \infty} \frac{x}{e^x}$, 16. $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{xe^x}\right)$, 17. $\lim_{x \to 0} \frac{\sin 2x}{\sin 5x}$.

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet # 8

Partial derivative

- 1. Let $f(x, y) = 3x^3y^2$. Find
 - (a) $f_x(x,y)$ (b) $f_y(x,y)$ (c) $f_x(x,1)$ (d) $f_y(1,y)$ (f) $f_x(1,2)$ (g) $f_y(1,2)$.
- 2. Let $f(x, y) = xe^{-y} + 5y$ or $f(x, y) = \sqrt{3x + 2y}$
 - (a) Find the Slope of the surface z = f(x, y) in the x-direction at the point (3,0)/(4,2)
 - (b) Find the slope of the surface z = f(x, y) in the y direction of the point (3,0)/(4,2)
- 3. Let $f(x,y) = 4x^2 2y + 7x^4y^5$, Find (a) f_{xx} (b) f_{yy} (c) f_{xy} (d) f_{yx} .

- 4. Let $Z = Sin(y^2 4x)orZ = (x + y)^{-1}$
 - (a) Find the rate of Change of z w. r. to x at the point (2,1)/(-2,4) with y kept fixed.
 - (b) Find the rate of Change of z w. r. to y at the point (2,1)/(-2,4) with x kept fixed.
- 5. Let $f(x, y, z) = x^3 y^5 z^7 + xy^2 + y^3 z$, find
 - (a) f_{xy} (b) f_{yz} (c) f_{xz} (d) f_{zz} (e) f_{zyy} (f) f_{zxy} (g) f_{zyx} (h) f_{xxyz} .
- 6. Let $f(x, y, z) = \sqrt{xy} + \ln(x^2 z^3) x \tan(z)$. Compute f_x , f_z , f_{xy} , f_{xyz}

Maxima Minima of

function of several variable

Lagrange Multiplier

986 Chapter 13 / Partial Derivatives

- 9-20 Locate all relative maxima, relative minima, and saddle points, if any.
- 9. $f(x, y) = y^2 + xy + 3y + 2x + 3$
- 10. $f(x, y) = x^2 + xy 2y 2x + 1$
- 11. $f(x, y) = x^2 + xy + y^2 3x$
- 12. $f(x, y) = xy x^3 y^2$ 13. $f(x, y) = x^2 + y^2 + \frac{2}{xy}$
- **14.** $f(x, y) = xe^y$
- 15. $f(x, y) = x^2 + y e^y$
- **16.** $f(x, y) = xy + \frac{2}{x} + \frac{4}{y}$ **17.** $f(x, y) = e^x \sin y$
- **18.** $f(x, y) = y \sin x$ **19.** $f(x, y) = e^{-(x^2 + y^2 + 2x)}$
- **20.** $f(x, y) = xy + \frac{a^3}{x} + \frac{b^3}{y}$ $(a \neq 0, b \neq 0)$

- 5-12 Use Lagrange multipliers to find the maximum and minimum values of f subject to the given constraint. Also, find the points at which these extreme values occur.
- 5. f(x, y) = xy; $4x^2 + 8y^2 = 16$
- 6. $f(x, y) = x^2 y^2$; $x^2 + y^2 = 25$
- 7. $f(x, y) = 4x^3 + y^2$; $2x^2 + y^2 = 1$
- 8. f(x, y) = x 3y 1; $x^2 + 3y^2 = 16$
- 9. f(x, y, z) = 2x + y 2z; $x^2 + y^2 + z^2 = 4$
- 10. f(x, y, z) = 3x + 6y + 2z; $2x^2 + 4y^2 + z^2 = 70$
- 11. f(x, y, z) = xyz; $x^2 + y^2 + z^2 = 1$
- 12. $f(x, y, z) = x^4 + y^4 + z^4$; $x^2 + y^2 + z^2 = 1$

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet #9

Transformation of Co-ordinates

- 1. Find the polar co-ordinates of the points $(2\sqrt{3},-2)$, (0,-2), (1,1).
- 2. Find the rectangular co-ordinates of the points $(7, 2\pi/3)$, $(8, 9\pi/4)$, $(0, \pi)$.
- 3. Change to Cartesian coordinates the equations (i) $r = a \sin \theta$, (ii) $\sqrt{r} = \sqrt{a} \cos \left(\frac{\theta}{2}\right)$.
- 4. Transform to polar coordinates the equations $(i)9x^2 + 4y^2 = 36$, $(ii)x^3 = y^2(2a x)$.
- 5. Transform to parallel axes through the new origin (1,-2) of the equation $2x^2 + y^2 4x + 4y = 0.$
- 6. Transform the equation $x^2 + y^2 8x + 14y + 5 = 0$ to parallel axes through (4,-7).
- 7. Transform the equation $7x^2 2xy + y^2 + 1 = 0$ to axes turned through the angle $\tan^{-1}(\frac{1}{2})$.
- 8. Transform the equation $11x^2 + 24xy + 4y^2 20x 40y 5 = 0$ to rectangular axes through the point (2,-1) and inclined at an angle $\tan^{-1}(\frac{4}{3})$.
- 9. Transform the equation $9x^2 + 15xy + y^2 + 12x 11y 5 = 0$, so as to remove the terms x and y.
- 10. Transform the equation $11x^2 + 3xy + 7y^2 + 19 = 0$, so as to remove the term xy.
- 11. Determine the equation of the curve $2x^2 + 4xy + 5y^2 4x 22y + 7 = 0$ when the origin is transferred to the point (-2,3).
- 12. Remove the xy term from the equation $9x^2 + 24xy + 2y^2 + 54 = 0$.
- 13. Determine the equation $x^2 + 2\sqrt{3}xy y^2 = 2a^2$ after rotating of axes through 30°.
- 14. Transform the equation $9x^2 + 24xy + 2y^2 6x + 20y + 41 = 0$ so as to remove the terms in x and y.

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet # 10

Pair of straight lines

1. Show that the following equations represents a pair of straight lines; find also their point of intersection and the angle between them:

(i)
$$2y^2 - xy - x^2 + y + 2x - 1 = 0$$
, (ii) $2x^2 - 2xy + x + 2y - 3 = 0$,
(iii) $x^2 + 3xy + 2y^2 + \frac{1}{8}x - \frac{1}{32} = 0$, (iv) $21x^2 + 40xy - 21y^2 + 44x + 122y - 17 = 0$.

2. Find the value of λ or k so that the following equations may represent pairs of straight lines:

(i)
$$2\lambda xy - y^2 + 4x + 2y + 8 = 0$$
,
 (ii) $2x^2 + xy - y^2 - 2x - 5y + k = 0$
(iii) $x^2 - \lambda xy + 2y^2 + 3x - 5y + 2 = 0$,
 (iv) $12x^2 - 10xy + 2y^2 + 11x - 5y + \lambda = 0$.

3. Find the equations of the bisectors of the angles between the following pairs of straight lines:

$$(i)x^{2} + xy - 6y^{2} - x - 8y - 2 = 0, \quad (ii)8x^{2} - 14xy + 6y^{2} + 2x - y - 1 = 0,$$
$$(iii)2x^{2} + xy - y^{2} - 3x + 6y - 9 = 0, \quad (iv)2x^{2} + 7xy + 6y^{2} + 13x + 22y + 20 = 0$$

<u>Circle</u>

- 1. Find the equation of the circle with
 - (i) centre (-2, -1) and radius 4, (ii) centre (9, 0) and radius 1,
 - (iii) centre (0, 0) and radius 5.
- 2. Find the centre and radius of the following circles:

$$(i)5x^2 + 5y^2 - 11x - 9y - 12 = 0$$
, $(ii)x^2 + y^2 + 2x + 2y + 1 = 0$
 $(iii)x^2 + y^2 + 2x - 4y - 8 = 0$.

3. Find the equation of the circle passing through the points:

$$(i)$$
 $(1, 3), (2,-1), (-1,1), (ii)$ $(-4,-3), (-1,-7), (0,0), (iii)$ $(3,1), (4,-3), (1,-1).$

^{*}These problems are for the students only as home work. Search the reference books for more examples.

*Home work sheet # 11

Tangent and Normal of Circle

- 1. Show that the circles $x^2 + y^2 2x + 4y + 3 = 0$ and $x^2 + y^2 8x 2y + 9 = 0$ touch one another at (2, -1).
- 2. Find the equation of the circle through the intersection of the circles $x^2 + y^2 9x + 14y 7 = 0$ and $x^2 + y^2 + 15x + 14 = 0$ and passes through the point (2, 5).
- 3. Find the equation of the circle through the intersection of the circles $x^2 + y^2 = 1$ and $x^2 + y^2 + 2x + 4y + 1 = 0$ which touches the straight line x + 2y + 5 = 0.
- 4. Find the radical centre of the three circles $x^2 + y^2 + x + 2y + 3 = 0$, $x^2 + y^2 + 2x + 4y + 5 = 0$ and $x^2 + y^2 7x 8y 9 = 0$.

Conic Section

1. Reduce the following equations to their standard forms:

(i)
$$x^2 - 6xy + 9y^2 - 2x - 3y + 1 = 0$$

(ii)
$$x^2 - 4xy + y^2 + 8x + 2y - 5 = 0$$

(iii)
$$4x^2 - 24xy - 6y^2 + 4x - 12y + 1 = 0$$

$$(iv) 9x^2 - 4xy + 6y^2 - 10x - 7 = 0$$

(v)
$$x^2 - 4xy - 2y^2 + 10x + 4y = 0$$

(vi)
$$x^2 + 4y^2 - 2x - 16y + 1 = 0$$

$$(vii) 9x^2 + 24xy + 16y^2 + 22x + 46y + 9 = 0$$

(viii)
$$3x^2 + 2xy + 3y^2 + 2x - 6y + \frac{25}{2} = 0.$$

2. Find the centre of the following conics:

(i)
$$x^2 - 4xy + y^2 + 8x + 2y - 5 = 0$$

(ii)
$$x^2 - 2xy + 2y^2 - 3x + 7y - 1 = 0$$

(iii)
$$3x^2 - 7xy - 6y^2 + 3x - 9y + 5 = 0$$
.

^{*}These problems are for the students only as home work. Search the reference books for more examples.