Designing Equitable Risk Models for Lending and Beyond

1/7/21 6:01 PM

Speaker: Sharad Goel (Stanford Computational Policy Lab)

Overview

- Part 1: Many common mathematical definitions of algorithmic fairness are at odd with important understandings of equity
- Part 2: We can often design more equitable systems by explicitly separating prediction from decision making

Part I - Assessing Bias in Risk Models

- An example in criminal justice

Pretrial release decisions

- Shortly after arrest, judges must decide whether to release or detain defendants while they await trial
- Goal is to balance flight risk and public safety

Risk assessment tools:

- Assess the likelihood a defendant will fail to appear at trial or commit future crimes
- Risk is called risk of FTA (failure to appear)

Mathematical definition of fairness

- Classification parity:
 - Def1: Algorithm is fair if error rates are [approx] equal for while and black defendants
 - Def2: Algorithm has been tested, and the rate of error is balanced as between protected classes and those not in protected classes
- False positive rate
 - FPR = (Didn't reoffend & "high risk") / (Didn't reoffend)

The problem of Infra-marginal

- FPR is an infra-marginal statistic it depends not only on a group's threshold but on its distribution of risk
- Using the same threshold, higher risk groups will still have larger FPR, even if the No-Reoffend ratio in No-Release group is the same

Anti-classification

- Intuitively, a fair algorithm shouldn't use protected class

Problem with anti-classification

- Gender-neutral risk models can lead to discrimination
 - Woman are less likely to reoffend

- COMPAS score: risk assessment; Recidivism rate: change of reoffend
- If use a hard threshold, then we end up underestimating the risk of women, and overestimate the risk of men
- Can be fixed by using different models for different genders
- Or can be fixed by including gender in the model
 - Wisconsin uses gender-specific risk assessment tools

If data itself is biased, then there's no reason to trust the fairness of outcome

Measurement error

- Algorithm estimates the probability a defendant will be observed / reported committing a future violent crime
- Since reported crime is only a proxy for actual crime, estimates might be biased Biased labels

Algorithm tries to mimic past admissions decisions make by humans

But past decisions were biased against women and minorities

Part II - Designing equitable algorithmic policies

Algorithms is not equal to policy - Statistical algorithms are often good at synthesizing information to estimate risk. But we

must still set equitable policy

Case Study: Inequities in lending Motivation:

- 20% of U.S. households have no mainstream credit - These households are disproportionately Black & Hispanic
- How can we design a more inclusive lending policy?

Challenge:

- Allocate resources to underserved groups While maintaining relatively efficient (going loans to those who are more likely to repay)
- Solution:

Set different thresholds for different groups separately

- But it requires extra effort for screening (collecting information) for unbanked group

Get more information on some individuals without mainstream credit who may in fact be

Selective screening

- creditworthy E.g. reviewing household bills requires time and money Intuitively, we screen people "close" to the threshold, for whom the added information
- may plausibly make a difference in the lending decision

1000 individuals, 70% are creditworthy

German credit experiment

Two groups: Those who own a residence [28%]

Those who don't [72%]

Greater proportion of homeowners are creditworthy [74% vs. 60%]

We assume the cost of screening is 10% the loan amount

Trade-off between utilities assigned to no-residence group vs. total utility

Pareto Frontier of Targeted Group vs Total Utility

concerns [Traditional fairness definitions are often overly rigid]

2. Important to understand the value of acquiring information and, more broadly, the value of interventions

1. Equitable decision making generally requires examining the trade-off between competing

[Traditional fairness work treats information as static]

- Reference 1.
 - The measure and mismeasure of fairness: A Critical Review of Fair Machine Learning

Fair Allocation through Selective Information Acquisition