Math 397

Homework 4

Name: Gianluca Crescenzo

Exercise 1. Let X be a metric space. Show that X is second countable if and only if X is separable. Conclude that if X is a separable metric space, then every open set is the union of countably many open balls.

Proof. Let $\{U_n\}_{n=1}^{\infty}$ be a countable base for X. Let $x \in X$ and $\epsilon > 0$. Then $x \in U(x, \epsilon) \subseteq X$. We can find $U_n \in \{U_n\}_{n=1}^{\infty}$ with $x \in U_n \subseteq U(x, \epsilon)$. So for any $a_n \in U_n$, we have $a_n \in U(x, \epsilon)$, giving $d(x, a_n) < \epsilon$. Thus $\{a_n\}_{n=1}^{\infty}$ is dense; i.e., X is separable.

Let $\{a_n\}_{n=1}^{\infty}$ be a countable dense subset. Claim: $\mathcal{B} = \{U(a_n, \frac{1}{m}) \mid n, m \geq 1\}$ is a base. Let $U \in \tau_X$ and $x \in U$. Since U is open, there exists $\epsilon > 0$ such that $U(x, \epsilon) \subseteq U$. Moreover, we can find $m \geq 1$ with $\epsilon > \frac{1}{m}$. Since $\{a_n\}_{n=1}^{\infty}$ is dense, we can find $a_j \in \{a_n\}_{n=1}^{\infty}$ such that $d(x, a_j) < \frac{1}{2m}$. Let $y \in U(a_j, \frac{1}{2m})$. Then:

$$d(x,y) \leqslant d(x,a_j) + d(a_j,y)$$

$$< \frac{1}{2m} + \frac{1}{2m}$$

$$= \frac{1}{m}$$

So $y \in U(x,\epsilon)$. Thus $x \in U(a_j, \frac{1}{2m}) \subseteq U(x,\epsilon) \subseteq U$, establishing \mathcal{B} as a base.x

Exercise 2. Let (X, d) be a metric space, $(x_n)_n$ a sequence in X, and $x \in X$. Show the following are equivalent:

- (1) $(x_n)_n \to x$ in X;
- (2) $(d(x_n, x))_n \to 0 \text{ in } \mathbf{R};$
- (3) $(\forall V \in \mathcal{N}_x)(\exists N \in \mathbf{N}) : (\forall n \in \mathbf{N})(n \geqslant N \implies x_n \in V).$

Proof. (1) \Leftrightarrow (2) Let $\epsilon > 0$. Find N large so for $n \ge N$ we have $d(x_n, x) < \epsilon$. This is equivalent to $|d(x_n, x) - 0| < \epsilon$, whence $(d(x_n, x))_n \to 0$. The other direction is identical.

- $(1) \Rightarrow (3)$ Let $V \in \mathcal{N}_x$. Then there exists $\epsilon > 0$ so $U(x, \epsilon) \subseteq V$. Since $(x_n)_n \to x$, find N large so for $n \geqslant N$ we have $d(x_n, x) < \epsilon$. Thus $x_n \in U(x, \epsilon) \subseteq V$.
- (3) \Rightarrow (1) Let $\epsilon > 0$. Find N large so $n \geq N$ implies $x_n \in U(x, \epsilon) \in \mathcal{N}_x$. Then $d(x_n, x) < \epsilon$, giving $(x_n)_n \to x$.

Exercise 4. Let $\{(X_k, d_k)\}_{k \ge 1}$ be a family of metric spaces. Assume that for every $k \ge 1$ we have $d_k(x, y) \le 1$ for all $x, y \in X_k$. Let:

$$X:=\prod_{k\geqslant 1}X_k$$

$$d(f,g):=\sum_{k=1}^\infty 2^{-k}d_k(f(k),g(k)).$$

Show that a sequence $(f_n)_n$ converges to f in (X,d) if and only if $(f_n(k))_n \xrightarrow{d_k} f(k)$ for every $k \ge 1$.

Proof. Let $(f_n)_n \xrightarrow{d} f$. Fix $k \ge 1$. We have:

$$0\leqslant 2^{-k}d_k(f_n(k),f(k))\leqslant d(f_n,f).$$

Since $(d(f_n, f))_n \to 0$, multiplying 2^{-k} on all sides and applying the squeeze theorem yields $(d_k(f_n(k), f(k)))_n \to 0$. Whence $(f_n(k))_n \xrightarrow{d_k} f(k)$ for every $k \ge 1$.

Now suppose $(f_n(k))_n \xrightarrow{d_k} f(k)$ for every $k \ge 1$. Then $(d_k(f_n(k), f(k)))_n \xrightarrow{d_k} 0$ for every $k \ge 1$. Find K large so that:

$$\sum_{k > K} 2^{-k} < \frac{\epsilon}{2}.$$

Find $N_1, N_2, ..., N_K$ sufficiently large so that for $n \ge N_i$ we have $d_i(f_n(i), f(i)) < \frac{\epsilon}{2}$. For $n \ge \max_{i=1}^K N_i$ observe that:

$$d(f_n, f) = \sum_{k=1}^{\infty} 2^{-k} d_k(f_n(k), f(k))$$

$$= \sum_{k=1}^{K} 2^{-k} d_k(f_n(k), f(k)) + \sum_{k>K} 2^{-k} d_k(f_n(k), f(k))$$

$$\leq \sum_{k=1}^{K} 2^{-k} d_k(f_n(k), f(k)) + \sum_{k>K} 2^{-k}$$

$$< \sum_{k=1}^{K} 2^{-k} \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Since $(d(f_n, f))_n \to 0$, we have $(f_n)_n \stackrel{d}{\to} f$.

Exercise 5. Let V be a normed space. Show that the vector operations:

$$a: V \times V \to V; \quad a(v, w) = v + w;$$

 $\mu: F \times V \to V; \quad \mu(\alpha, w) = \alpha w$

are continuous.

Proof. Let $((v_n, w_n))_n$ be a sequence in $V \times V$ converging to (v_0, w_0) . Then $(v_n)_n \to v_0$ and $(w_n)_n \to w_0$. Observe that:

$$(a(v_n, w_n))_n = (v_n + w_n)_n$$

$$= (v_n)_n + (w_n)_n$$

$$\xrightarrow{n \to \infty} v_0 + w_0$$

$$= a(v_0, w_0).$$

Thus a is continuous at (v_0, w_0) . Since this point was arbitrary, a is continuous.

Now let $((\alpha_n, v_n))_n$ be a sequence in $F \times V$ converging to (α_0, v_0) . Then $(\alpha_n)_n \to \alpha_0$ and $(v_n)_n \to v_0$. Observe that:

$$(\mu(\alpha_n, v_n))_n = (a_n v_n)_n$$

$$= (a_n)_n (v_n)_n$$

$$\xrightarrow{n \to \infty} \alpha_0 v_0$$

$$= \mu(\alpha_0, v_0).$$

Thus μ is continuous at (α_0, v_0) . Since this point was arbitrary, μ is continuous.

Exercise 7. Consider the two metrics on $(0, \infty)$:

$$d(s,t) := |s - t|$$

$$\rho(s,t) := \left| \frac{1}{s} - \frac{1}{t} \right|$$

Show that d and ρ are topologically equivalent. Are they uniformly equivalent?

Proof. Let $x, x_0 \in X$. We will first show that id: $(X, d) \to (X, \rho)$ is continuous. Note that:

$$\begin{split} \rho(\mathrm{id}(x),\mathrm{id}(x_0)) &= \left|\frac{1}{x} - \frac{1}{x_0}\right| \\ &= \frac{1}{x \cdot x_0} \left|x - x_0\right| \\ &= \frac{1}{x \cdot x_0} d(x, x_0). \end{split}$$

Thus id is Lipschitz. We will now show that $\mathrm{id}^{-1}:(X,\rho)\to (X,d)$ is continuous. Let $(x_n)_n$ be a sequence in (X,ρ) such that $(x_n)_n \stackrel{\rho}{\to} x_0$. Then $(\rho(x_n,x_0))_n \to 0$, which is equivalent to $\left(d\left(\frac{1}{x_n},\frac{1}{x_0}\right)\right)_n \to 0$. Since $\left(\frac{1}{x_n}\right)_n$ is a sequence of non-zero numbers converging to a non-zero limit $\frac{1}{x_0}$, the sequence of reciprocals $(x_n)_n$ will converge to x_0 ; i.e, $(\mathrm{id}^{-1}(x_n))_n \stackrel{d}{\to} \mathrm{id}^{-1}(x_0)$. This establishes id^{-1} as continuous, giving that d and ρ are topologically equivalent.

establishes id⁻¹ as continuous, giving that d and ρ are topologically equivalent. Let $\epsilon_0 = 1$. Consider the sequences $\left(\frac{1}{n}\right)_n$ and $\left(\frac{1}{n+1}\right)_n$ in (X,d). We have $\left(d\left(\frac{1}{n},\frac{1}{n+1}\right)\right)_n \to 0$ and $\rho\left(\frac{1}{n},\frac{1}{n+1}\right) \geqslant \epsilon_0$. Whence id: $(X,d) \to (X,\rho)$ is not uniformly continuous; i.e., d and ρ are not uniformly equivalent.

Exercise 8. Let $h: X \to Y$ be a homeomorphism of metric spaces. Show that the map:

$$T_h: (C(Y), \|\cdot\|_u) \to (C(X), \|\cdot\|_u); \quad T_h(f) = f \circ h$$

is an isometric isomorphism of normed spaces, that is, T_h is linear, bijective, and isometric.

Exercise 9.

Proof. Since $\|T\|_{\text{op}} \leqslant 1$, we have $\sup_{v \in B_V} \|T(v)\|_W \leqslant \sup_{v \in B_V} \|v\|_V$. So $\|T(v)\|_W \leqslant \|v\|_V$ for all $v \in V$. Since $\|T^{-1}\|_{\text{op}} \leqslant 1$, we have $\sup_{w \in B_W} \|T^{-1}(w)\|_V \leqslant \sup_{w \in B_W} \|w\|_W$. So $\|T^{-1}(w)\|_V \leqslant \|w\|_W$ for all $w \in W$. Since T is a bijection, given $x \in X$ take w = T(v). Then $\|v\|_V \leqslant \|T(v)\|_W$ for all $v \in V$. By antisymmetry, we have $\|T(v)\|_W = \|v\|_V$. Thus T is an isometry. \square