

@ GROUND FLOOR

@ 2ND & 3RD FLOOR

@ 4TH FLOOR

1. The program will compute the required quantity of @rest lateral ties, lateral ties below NGL (if there is), and joint ties for each

column.

LEGEND

 $CC_F = Footing\ Concrete\ Cover\ (based\ on\ parameters)$

 $d_{bLF} = diameter\ of\ longitudinal\ bars$ $d_{bTF} = diameter\ of\ transverse\ bars$

 $Qty_{TE(x)} = Quantity \ of \ Lateral \ Ties \ below \ NGL$ $S_{E(x)} = Spacing \ of \ Lateral \ Ties \ below \ NGL$

 $Qty_{T(@rest)} = Quantity \ of \ @rest \ Lateral \ Ties$ $S_{(@rest)} = Spacing \ of \ @rest \ Lateral \ Ties$

 $Qty_{Tx} = Quantity \ of \ Lateral \ Ties \ @ \ floor \ {m n}$ $S_{(x)} = Spacing \ of \ Lateral \ Ties \ @ \ floor \ {m n}$

- For Ground Floor
 - a) If there are lateral ties (Below NGL)

$$Qty_{TE(1)} = \frac{D_F - \left(\sum_{2}^{3} Qty_{TE(x)} S_{E(x)}\right) - CC_F - d_{bLF} - d_{bTF} - d_{bMR}}{S_{E(1)}}$$

Then,

$$Qty_{T(@rest)} = \frac{H_C + D_F - \left(\sum_{1}^{3} Qty_{TE(x)} S_{E(x)}\right) - \left(\sum_{1}^{x} Qty_{T(x)} S_{(x)}\right) - CC_F - d_{bLF} - d_{bTF} - d_{bMR}}{S_{(@rest)}} + 1$$

And,

$$Qty_{TQ} = \frac{D_{B(n+1)}or \ D_{RB}}{S_{TI}} - 1$$

b) If there are NO lateral ties (Below NGL)

$$Qty_{T(@rest)} = \frac{H_C - 2\left(\sum_{1}^{x}Qty_{T(x)}S_{(x)}\right) - CC_F - d_{bTF} - d_{bTF} - d_{bMR}}{S_{(@rest)}} + 1$$

And,

$$Qty_{TQ} = \frac{H - H_C}{S_{TI}} - 1$$

• For the upper floors

$$Qty_{T(@rest)} = \frac{H_{Cn} - 2\left(\sum_{1}^{x} Qty_{T(x)}S_{(x)}\right)}{S_{(@rest)}} + 1$$

And

$$Qty_{TQ} = \frac{H - H_C}{S_{TI}} - 1$$

Note:

If the $Answer \ge 0$, then Round Up to whole number

If the Answer < 0, then Round Down to whole number

Example:

Г	- CONCRETE COVER -		
<	FOOTINGS	75	\supset
	SUSPENDED SLAB	20	
	SLAB ON GRADE	40	
	BEAMS EXPOSED ON EARTH	40	
	BEAMS EXPOSED ON WEATHER	40	
	COLUMNS EXPOSED ON EARTH	75	
	COLUMNS EXPOSED ON WEATHER	40	

$$CC_F = 75$$

 $H_C = 2650 \ and \ d_{bMR} = 32$

$$D_F = 1500, d_{bLF} = 25, and d_{bTF} = 25$$

Since there are Lateral Ties (Below NGL)

$$\begin{split} Qty_{TE(1)} &= \frac{D_F - \left(\sum_2^3 Qty_{TE(x)} S_{E(x)}\right) - CC_F - d_{bLF} - d_{bTF} - d_{bMR}}{S_{E(1)}} \\ Qty_{TE(1)} &= \frac{1500 - \left[1(50) + 0(0)\right] - 75 - 25 - 25 - 32}{100} = 12.93 \rightarrow 13 \end{split}$$

Then,

$$\begin{split} Qty_{T(@rest)} &= \frac{H_C + D_F - \left(\sum_1^3 Qty_{TE(x)} S_{E(x)}\right) - \left(\sum_1^2 Qty_{T(x)} S_{(x)}\right) - CC_F - d_{bLF} - d_{bTF} - d_{bMR}}{S_{(@rest)}} + 1 \\ &= \frac{2650 + 1500 - \left[13(100) + 1(50) + 0(0)\right] - \left[1(50) + 14(100)\right] - 75 - 25 - 25 - 32}{150} + 1 \\ Qty_{T(@rest)} &= 8.95 \rightarrow 9 \end{split}$$

And

$$Qty_{TQ} = \frac{H - H_C}{S_{TI}} = \frac{3350 - 2650}{100} - 1 = 6$$

@ 2nd - 3rd Floor

$$Qty_{T(@rest)} = \frac{H_{C2} - 2(\sum_{1}^{2} Qty_{T(x)}S_{(x)})}{S_{(@rest)}} + 1$$

$$Qty_{T(@rest)} = \frac{2450 - 2[1(50) + 14(100)]}{150} + 1 = -2$$

And,

$$Qty_{TQ} = \frac{H - H_C}{S_{TI}} - 1 = \frac{3150 - 2450}{100} - 1 = 6$$

@ 4th Floor

$$Qty_{T(@rest)} = \frac{H_{C4} - 2(\sum_{1}^{2} Qty_{T(x)} S_{(x)})}{S_{(@rest)}} + 1$$

$$Qty_{T(@rest)} = \frac{3900 - 2[1(50) + 14(100)]}{150} + 1 = 7.667 \rightarrow 8$$

And,

$$Qty_{TQ} = \frac{H - H_C}{S_{TJ}} - 1 = \frac{4500 - 3900}{100} - 1 = 5$$

2. The program will compute the length of the lateral ties. Depending on what Lateral Ties configuration.

LEGEND:

 $CC_C = Concrete\ Cover\ of\ the\ column(exposed\ to\ weather)$

 $d_T = diameter of the lateral ties of the columns current floor$

 $d_{\rm M}={\rm diameter}~of~{\rm the}~{\rm main}~{\rm reinforcement}~of~{\rm the}~{\rm columns}~{\rm current}~{\rm floor}$

 $H_{L(135)} = Hook\ length\ (depends\ on\ the\ table\ of\ 135\ degree\ hook\ in\ parameters)$

 $S_W = Spacing @ the width of the column$

 $S_L = Spacing @ the length of the column$

Note: (For R_L

Case 1:
$$d_{Mb} = 10 \ mm \to 16 \ mm$$

$$R_L = 2d_T$$

Case 2: $d_{Mb} = 20 \ mm \rightarrow 25 \ mm$

For Lateral Ties Configuration 1

$$L_B = 2(B+D) - 8(CC_C) + 2H_{L(d)} - 3R_L$$

• For Lateral Ties Configuration 2

$$L_{B(a)} = 2(B+D) - 8(CC_C + d_T) + 2H_{L(135)} - 3R_L$$

$$L_{B(b)} = 4\sqrt{\left(\frac{B}{2} - CC_C\right)^2 + \left(\frac{D}{2} - CC_C\right)^2} + 2H_{L(135)} - 3R_L$$

• For Lateral Ties Configuration 3

$$S_B = \frac{B - 2(CC_C + d_T) - d_M(Qty_{BLUE} + 2Qty_{ORANGE})}{Qty_{BLUE} + 2Qty_{ORANGE} - 1}$$

$$S_D = \frac{D - 2(CC_C + d_T) - d_M(Qty_{RED} + 2Qty_{GREEN})}{Qty_{RED} + 2Qty_{GREEN} - 1}$$

$$L_{B(q)} = 2(B+D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(b)} = 2D + 2[d_M Qty_{BLUE} + S_B (Qty_{BLUE} - 1) + 2d_T] - 4(CC_C) + 2H_{L(135)} - 3R_L + 2(CC_C) + 2H_{L(135)} - 2(CC_C) + 2(CC_$$

$$L_{D(c)} = 2B + 2[d_M Qty_{RED} + S_D(Qty_{RED} - 1) + 2d_T] - 4(CC_C) + 2H_{L(135)} - 3R_L$$

For Lateral Ties Configuration 4

$$S_B = \frac{B - 2(CC_C + d_T) - d_M(Qty_{BLUE} + 2Qty_{ORANGE})}{Qty_{BLUE} + 2Qty_{ORANGE} - 1}$$

$$S_D = \frac{D - 2(CC_C + d_T) - d_M(Qty_{RED} + 2Qty_{GREEN})}{Qty_{RED} + 2Qty_{GREEN} - 1}$$

$$L_{B(a)} = 2(W + L) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(b)} = 4\sqrt{\left(\frac{W}{2} - CC_C\right)^2 + \left(\frac{L}{2} - CC_C\right)^2} + 2H_{L(135)} - 3R_L$$

$$L_{B(c)} = 2D + 2[d_M Qty_{BLUE} + S_B (Qty_{BLUE} - 1) + 2d_T] - 4(\mathcal{CC}_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(d)} = 2B + 2[(d_M Qty_{RED} + S_D (Qty_{RED} - 1) + 2d_T] - 4(CC_C) + 2H_{L(135)} - 3R_L$$

For Lateral Ties Configuration 5

$$L_{B(a)} = 2(B+D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(b)} = B - 2(CC_C) + H_{L(135)} + H_{L(90)}$$

$$L_{B(c)} = D - 2(CC_C) + H_{L(135)} + H_{L(90)}$$

For Lateral Ties Configuration 6

$$L_{B(a)} = 2(B+D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$

$$L_{B(b)} = B - 2(CC_C) + 2H_{L(180)}$$

$$L_{B(c)} = D - 2(CC_C) + 2H_{L(180)}$$

Example:

@ Ground Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

$$\begin{split} S_D &= \frac{B - 2(CC_C + d_T) - d_M(Qty_{BLUE} + 2Qty_{ORANGE})}{Qty_{BLUE} + 2Qty_{ORANGE} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(2)]}{3 + 2(2) - 1} \\ S_D &= 45.33333 \\ S_D &= \frac{D - 2(CC_C + d_T) - d_M(Qty_{RED} + 2Qty_{GREEN})}{Qty_{RED} + 2Qty_{GREEN} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(2)]}{3 + 2(2) - 1} \\ S_D &= 45.33333 \\ \text{Since } d_T &= 12 \ mm \ \text{thus}, \ H_{L(135)} = 125 \ mm \ \& \ R_L = 2d_T = 2(12) = 24 \\ L_{B(a)} &= 2(B + D) - 8(CC_C) + 2H_{L(135)} - 3R_L \end{split}$$

$$= 2(600 + 600) - 8(40) + 2(125) - 3(24)$$

 $L_{B(a)} = 2258 \, mm$

$$L_{B(b)} = 2D + 2[d_M Qty_{BLUE} + S_B (Qty_{BLUE} - 1) + 2d_T] - 4(CC_C) + 2H_{L(135)} - 3R_L$$

= 2(600) + 2[32(3) + 45.3333(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)

 $L_{B(b)} = 1639.333 \rightarrow round \ up \ to \ whole \ number \rightarrow 1640 \ mm$

$$L_{B(c)} = 2B + 2[d_M Qty_{RED} + S_D (Qty_{RED} - 1) + 2d_T] - 4(CC_C) + 2H_{L(135)} - 3R_L$$

= 2(600) + 2[32(3) + 45.3333(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)

 $L_{B(c)} = 1639.333 \rightarrow round \ up \ to \ whole \ number \rightarrow 1640 \ mm$

@ 2nd - 3rd Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

$$S_B = \frac{W - 2(CC_C + d_T) - d_M(Qty_{BLUE} + 2Qty_{ORANGE})}{Qty_{BLUE} + 2Qty_{ORANGE} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(1)]}{3 + 2(1) - 1}$$

 $S_B = 84$

$$S_D = \frac{D - 2(CC_C + d_T) - d_M(Qty_{RED} + 2Qty_{GREEN})}{Qty_{RED} + 2Qty_{GREEN} - 1} = \frac{600 - 2(40 + 12) - 32[3 + 2(1)]}{3 + 2(1) - 1}$$

$$S_D = 84$$

Since $db_T = 12 \text{ mm}$ thus, $H_{L(135)} = 125 \text{ mm}$, $R_L = 2d_T = 2(12) = 24$

$$L_{B(a)} = 2(B+D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$
$$= 2(600 + 600) - 8(40) + 2(125) - 3(24)$$

 $L_{B(a)} = 2258 mm$

$$L_{B(b)} = 2D + 2[d_M Qty_{BLUE} + S_B (Qty_{BLUE} - 1) + 2d_T] - 4(CC_C) + 2H_{L(135)} - 3R_L$$
$$= 2(600) + 2[32(3) + 84(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)$$

 $L_{B(b)} = 1794 \, mm$

$$L_{B(c)} = 2B + 2[d_M Qty_{RED} + S_D (Qty_{RED} - 1) + 2d_T] - 4(CC_C) + 2H_{L(135)} - 3R_L$$

= 2(600) + 2[32(3) + 84(3 - 1) + 2(12)] - 4(40) + 2(125) - 3(24)

$$L_{B(c)} = 1794 mm$$

@ 4th Floor

Since the Lateral Tie Configuration 2 is chosen. Thus,

$$db_T = 12 \text{ mm} \text{ thus}, H_{L(135)} = 125 \text{ mm}, R_L = 2d_T = 2(12) = 24$$

$$L_{B(a)} = 2(B+D) - 8(CC_C) + 2H_{L(135)} - 3R_L$$
$$= 2(600 + 600) - 8(40) + 2(125) - 3(24)$$

 $L_{B(a)} = 2258 \, mm$

$$L_{B(b)} = 4\sqrt{\left(\frac{B}{2} - CC_C\right)^2 + \left(\frac{D}{2} - CC_C\right)^2} + 2H_{L(135)} - 3R_L$$

$$= 4\sqrt{\left(\frac{600}{2} - 40\right)^2 + \left(\frac{600}{2} - 40\right)^2} + 2(125) - 3(24)$$

 $L_{B(b)} = 1648.78 \rightarrow round\ up\ to\ whole\ number \rightarrow 1649\ mm$

- 3. The program will compute the length of the joint ties. Depending on what Lateral Ties configuration.
 - For Lateral Tie Configurations 1 4

$$L_{B(x)}$$
 of $Qty_{TO} = L_{B(x)}$ of $Qty_T - 2(H_{L(135)})$ of $Qty_T - H_{L(135)}$ of $Qty_{TO} - 3R_V + 3R_L$

For Lateral Tie Configuration 5

$$L_{B(a)} \ of \ Qty_{TQ} = L_{B(a)} \ of \ Qty_{T} - 2 \big(H_{L(135)} \ of \ Qty_{T} - H_{L(135)} \ of \ Qty_{TQ} \big) - 3R_{V} + 3R_{L}$$

$$L_{B(b)}$$
 of $Qty_{TO} = L_{B(b)}$ of $Qty_T - (H_{L(135)} \text{ of } Qty_T - H_{L(135)} \text{ of } Qty_{TO}) - (H_{L(90)} \text{ of } Qty_T - H_{L(90)} \text{ of } Qty_{TO})$

$$L_{B(c)} \ of \ Qty_{TQ} = L_{B(c)} \ of \ Qty_{T} - \left(H_{L(135)} \ of \ Qty_{T} - H_{L(135)} \ of \ Qty_{TQ}\right) - \left(H_{L(90)} \ of \ Qty_{T} - H_{L(90)} \ of \ Qty_{TQ}\right)$$

• For Lateral Tie Configuration 6

$$\begin{split} L_{B(a)} \ of \ Qty_{TQ} &= L_{B(a)} \ of \ Qty_{T} - 2 \big(H_{L(135)} \ of \ Qty_{T} - H_{L(135)} \ of \ Qty_{TQ} \big) - 3R_{V} + 3R_{L} \\ L_{B(b)} \ of \ Qty_{TQ} &= L_{B(b)} \ of \ Qty_{T} - 2 \big(H_{L(180)} \ of \ Qty_{T} - H_{L(180)} \ of \ Qty_{TQ} \big) \\ L_{B(c)} \ of \ Qty_{TQ} &= L_{B(c)} \ of \ Qty_{T} - 2 \big(H_{L(180)} \ of \ Qty_{T} - H_{L(180)} \ of \ Qty_{TQ} \big) \end{split}$$

Where: For R_V

Case 1:
$$d_{TQ} = 10 \ mm \rightarrow 16 \ mm$$

$$R_V = 2d_{TQ}$$

Case 2: $d_{TO} = 20 \ mm \rightarrow 25 \ mm$

$$R_V = 2.5 d_{TO}$$

Example:

@ Ground Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

Since $d_{TQ} = 10 \ mm$ thus, $H_{L(135)} \ of \ Qty_{TQ} = 115 \ mm$, $R_V = 2 d_{TQ} = 2(10) = 20$

$$L_{B(a)} \text{ of } Qty_{TQ} = L_{B(a)} \text{ of } Qty_T - 2(H_{L(135)} \text{ of } Qty_T - H_{L(135)} \text{ of } Qty_{TQ}) - 3R_V + 3R_L$$
$$= 2258 - 2(125 - 115) - 3(20) + 3(24)$$

$$L_{B(a)} \ of \ Qty_{TQ} = 2250 \ mm$$

$$L_{B(b)} of Qty_{TQ} = L_{B(b)} of Qty_T - 2(H_{L(135)} of Qty_T - H_{L(135)} of Qty_{TQ}) - 3R_V + 3R_L$$
$$= 1640 - 2(125 - 115) - 3(20) + 3(24)$$

$$L_{B(b)}$$
 of $Qty_{TQ} = 1632 mm$

$$L_{B(c)}$$
 of $Qty_{TQ} = L_{B(b)}$ of $Qty_T - 2(H_{L(135)})$ of $Qty_T - H_{L(135)}$ of $Qty_{TQ} - 3R_V + 3R_L$
= $1640 - 2(125 - 115) - 3(20) + 3(24)$

$$L_{B(c)}$$
 of $Qty_{TQ} = 1632 mm$

@ 2nd - 3rd Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

Since
$$db_{TQ} = 10 \ mm$$
 thus, $H_{L(135)} \ of \ Qty_{TQ} = 115 \ mm$, $R_V = 2d_{TQ} = 2(10) = 20$

$$L_{B(a)} \text{ of } Qty_{TQ} = L_{B(a)} \text{ of } Qty_T - 2(H_{L(135)} \text{ of } Qty_T - H_{L(135)} \text{ of } Qty_{TQ}) - 3R_V + 3R_L$$
$$= 2258 - 2(125 - 115) - 3(20) + 3(24)$$

$$L_{B(a)} \ of \ Qty_{TQ} = 2250 \ mm$$

$$L_{B(b)}$$
 of $Qty_{TQ} = L_{B(b)}$ of $Qty_T - 2(H_{L(135)})$ of $Qty_T - H_{L(135)}$ of $Qty_{TQ} - 3R_V + 3R_L$

$$= 1794 - 2(125 - 115) - 3(20) + 3(24)$$

 $L_{B(b)}$ of $Qty_{TQ} = 1786 mm$

$$L_{B(c)} \text{ of } Qty_{TQ} = L_{B(c)} \text{ of } Qty_{T} - 2(H_{L(135)} \text{ of } Qty_{T} - H_{L(135)} \text{ of } Qty_{TQ}) - 3R_{V} + 3R_{L}$$
$$= 1794 - 2(125 - 115) - 3(20) + 3(24)$$

$$L_{B(c)} \ of \ Qty_{TQ} = 1786 \ mm$$

@ 4th Floor

Since the Lateral Tie Configuration 3 is chosen. Thus,

Since
$$db_{TQ}=10\ mm$$
 thus, $H_{L(135)}$ of $Qty_{TQ}=115\ mm$, $R_V=2d_{TQ}=2(10)=20$

$$L_{B(a)} \text{ of } Qty_{TQ} = L_{B(a)} \text{ of } Qty_T - 2(H_{L(135)} \text{ of } Qty_T - H_{L(135)} \text{ of } Qty_{TQ}) - 3R_V + 3R_L$$
$$= 2258 - 2(125 - 115) - 3(20) + 3(24)$$

$$L_{B(a)} \ of \ Qty_{TQ} = 2250 \ mm$$

$$\begin{split} L_{B(b)} & of \ Qty_{TQ} = L_{B(a)} \ of \ Qty_T - 2 \big(H_{L(135)} \ of \ Qty_T - H_{L(135)} \ of \ Qty_{TQ} \big) - 3R_V + 3R_L \\ &= 1649 - 2(125 - 115) - 3(20) + 3(24) \end{split}$$

$$L_{B(b)}$$
 of $Qty_{TQ} = 1641 mm$

4. The program will determine the respective manufactured bars and no. of manufactured pcs.

LEGEND:

 $Qty_{Pn} = no. of pcs. produced$

 $Qty_{Mn} = no. of manufactured pcs.$

 $L_{\rm M} = Available \, Manufactured \, Reinforcement \, Length$

 $L_W = Wastage\ Length$

 $L_E = Excess manufactured$ bar length

 $L_{CBn} = Chosen\ Manufactured\ Bar\ Length$

$$Qty_{Pn} = \frac{L_M}{(L_B \text{ of } Qty_T) \text{ or } (L_B \text{ of } Qty_{TO})}$$

• For Ground Floor

Note: If $\sum Qty_{TE(x)} = 0$ thus, $\sum Qty_{Tx}$ will replace $\sum Qty_{TE(x)}$.

If the Lateral Ties Configuration 1-4

$$Qty_{Mn} = \frac{\left(\sum Qty_{TE(x)} + \sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}}{Qty_{Pn}} \cdot Qty_{Column}$$

If the Lateral Ties Configuration 5 & 6

$$Qty_{Mn} = \frac{\left(\sum Qty_{TE(x)} + \sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}}{Qty_{Pn}} \cdot Qty_{Column} \quad \vdots \ for \ L_{B(a)}$$

$$Qty_{Mn} = \frac{\left[\left(\sum Qty_{TE(x)} + \sum Qty_{Tx} + Qty_{T(@rest)}\right) \text{ or } Qty_{TQ}\right]Qty_{GREEN}}{Qty_{Pn}} \cdot Qty_{Column} \quad \text{: } for \ L_{B(b)}$$

$$Qty_{Mn} = \frac{\left[\left(\sum Qty_{TE(x)} + \sum Qty_{Tx} + Qty_{T(@rest)}\right) \text{ or } Qty_{TQ}\right]Qty_{RED}}{Qty_{Pn}} \cdot Qty_{Column} \quad \text{: } for \ L_{B(c)}$$

For Upper Floors

If the Lateral Ties Configuration 1-4

$$Qty_{Mn} = \frac{\left(2\sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}}{Qty_{Pn}} \cdot Qty_{Column}$$

If the Lateral Ties Configuration 5-6

$$Qty_{Mn} = \frac{\left(2\sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}}{Qty_{Pn}} \cdot Qty_{Column} \quad : for \ L_{B(a)}$$

$$Qty_{Mn} = \frac{\left[\left(2\sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}\right]Qty_{GREEN}}{Qty_{Pn}} \cdot Qty_{Column} \quad \vdots \ for \ L_{B(b)}$$

$$Qty_{Mn} = \frac{\left[\left(2\sum Qty_{Tx} + Qty_{T(@rest)}\right) or \ Qty_{TQ}\right]Qty_{RED}}{Qty_{Pn}} \cdot Qty_{Column} \quad \vdots for \ L_{B(c)}$$

Then,

$$L_W = [Qty_{Pn} - Qty_{Pn} \ (round\ down\ into\ whole\ number)] \times L_B$$

$$L_E\ (m) = [Qty_{Mn} (round\ up) - Qty_{Mn}] \times L_M$$

And

Total Wasage = $L_E + L_W[Qty_{Mn} \text{ (round down into whole number)}]$

Example:

@ Ground Floor

For Lateral Ties

$$\sum_{1}^{3} Qty_{TE(x)} = (13 + 1 + 0) = 14 \& \sum_{1}^{2} Qty_{T(x)} + Qty_{T(@rest)} = (1 + 14) + 9 = 24$$

a)
$$L_{B(a)}$$

L [M]	Qty [T]	Qty [TE]	Total	L [B(a)]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6						2.66	2	240.5	241	1.484	3.00	359.160
7.5	0.4	4.4	20	0.050	40	3.32	3	160.3	161	0.726	5.00	121.160
10.5	24	14	38	2.258	13	4.65	4	120.3	121	1.468	7.88	184.035
12						5.31	5	96.2	97	0.710	9.60	77.760

Thus
$$L_{CM(a)} = 12$$
 and $Qty_{M(a)} = 97$

b)
$$L_{B(b)}$$

L [M]	Qty [T]	Qty [TE]	Total	L [B(b)]	Qty (Column)	Qty [[P]	Qty [M]	L [W]	L [E]	Total Wastage
6						3.66	3	164.67	165	1.080	2.00	179.12
7.5	0.4	4.4	20	4.04	40	4.57	4	123.50	124	0.940	3.75	119.37
10.5	24	14	38	1.64	13	6.40	6	82.33	83	0.660	7.00	61.12
12						7.32	7	70.57	71	0.520	5.14	41.54

Thus
$$L_{CM(b)} = 12$$
 and $Qty_{M(b)} = 71$

c) $L_{B(c)}$

L [M]	Qty [T]	Qty [TE]	Total	L [B(a)]	Qty (Column)	Qty	[P]	Qty [N	M]	L [W]	L [E]	Total Wastage
6						3.66	3	164.67	165	1.080	2.00	179.12
7.5	0.4	4.4	20	4.04	40	4.57	4	123.50	124	0.940	3.75	119.37
10.5	24	14	38	1.64	13	6.40	6	82.33	83	0.660	7.00	61.12
12						7.32	7	70.57	71	0.520	5.14	41.54

Thus $L_{CM(c)} = 12$ and $Qty_{M(c)} = 71$

For Joint Ties

$$Qty_{TQ} = 6$$

a) $L_{B(a)}$ of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				2.67	2	39	39	1.500	0	58.500
7.5]	2.25	12	3.33	3	26	26	0.750	0	19.500
10.5	6	2.25	13	4.67	4	19.5	20	1.500	5.25	33.750
12	1			5.33	5	15.6	16	0.750	4.8	16.050

Thus $L_{\mathit{CM}(a)} = 12$ and $\mathit{Qty}_{\mathit{M}(a)} = 16$

b) $L_{B(b)}$ of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.68	3	26	26	1.104	0	28.704
7.5		4 000	40	4.60	4	19.5	20	0.972	3.75	22.218
10.5	6	1.632	13	6.43	6	13	13	0.708	0	9.204
12			,	7.35	7	11.14	12	0.576	10.2857	16.622

Thus $L_{CM(b)} = 10.5$ and $Qty_{M(b)} = 13$

c) $L_{B(c)}$ of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[,] [P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.68	3	26	26	1.104	0	28.704
7.5		4 000	40	4.60	4	19.5	20	0.972	3.75	22.218
10.5	6	1.632	13	6.43	6	13	13	0.708	0	9.204
12			,	7.35	7	11.14	12	0.576	10.2857	16.622

Thus $L_{\mathit{CM}(c)} = 10.5$ and $\mathit{Qty}_{\mathit{M}(c)} = 13$

@ 2nd Floor

For Lateral Ties

Since there is no $Qty_{TE(x)}$ thus, $\sum Qty_{T(x)}$ will be multiply in 2

$$2\sum Qty_{T(x)} + Qty_{T(@rest)} = 2(1+14) + (-2) = 28$$

a) $L_{B(a)}$

L [M]	Qty [T]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				2.66	2	182	182	1.484	0	270.09
7.5	20	0.050	40	3.32	3	121.3	122	0.726	5	92.85
10.5	28	2.258	13	4.65	4	91	91	1.468	0	133.59
12				5.31	5	72.8	73	0.710	2.4	53.52

Thus $L_{CM(a)} = 12$ and $Qty_{M(c)} = 73$

b) $L_{B(b)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.34	3	121.3	122	0.618	4	78.78
7.5	28	1.794	13	4.18	4	91	91	0.324	0	29.48
10.5	20	1.794	13	5.85	5	72.8	73	1.530	2.1	112.26
12				6.69	6	60.67	61	1.236	4	78.16

Thus $L_{\mathit{CM}(b)} = 7.5$ and $\mathit{Qty}_{\mathit{M}(b)} = 91$

c) $L_{B(c)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.34	3	121.3	122	0.618	4	78.78
7.5	28	1.794	13	4.18	4	91	91	0.324	0	29.48
10.5	20	1.794	13	5.85	5	72.8	73	1.530	2.1	112.26
12			·	6.69	6	60.67	61	1.236	4	78.16

Thus $L_{\mathit{CM}(c)} = 7.5$ and $\mathit{Qty}_{\mathit{M}(c)} = 91$

• For Joint Ties

$$Qty_{TQ}=6$$

a) $L_{B(a)}$ of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	· [P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				2.67	2	39	39	1.500	0	58.500
7.5	6	0.05	40	3.33	3	26	26	0.750	0	19.500
10.5	6	2.25	13	4.67	4	19.5	20	1.500	5.25	33.750
12				5.33	5	15.6	16	0.750	4.8	16.050

Thus $L_{\mathit{CM}(a)} = 12$ and $\mathit{Qty}_{\mathit{M}(a)} = 16$

b) $L_{B(b)}$ of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty	· [P]	Qty	[M]	L [W]	L [E]	Total Wastage
6				3.36	3	26	26	0.642	0	16.692
7.5	6	1.786	13	4.20	4	19.5	20	0.356	3.75	10.514
10.5	U	1.700	13	5.88	5	15.6	16	1.570	4.2	27.750
12				6.72	6	13	13	1.284	0	16.692

Thus $L_{\mathit{CM}(b)} = 7.5$ and $\mathit{Qty}_{\mathit{M}(b)} = 20$

c) $L_{B(c)}$ of Qty_{TQ}

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty [P]		Qty [M]		L [W]	L [E]	Total Wastage
6			13	3.36	3	26	26	0.642	0	16.692
7.5	6	1.786		4.20	4	19.5	20	0.356	3.75	10.514
10.5] °	1.700		5.88	5	15.6	16	1.570	4.2	27.750
12				6.72	6	13	13	1.284	0	16.692

Thus $L_{\mathit{CM}(c)} = 7.5$ and $\mathit{Qty}_{\mathit{M}(c)} = 20$

@ 4th Floor

For Lateral Ties

Since there is no $Qty_{TE(x)}$ thus, $\sum Qty_{T(x)}$ will be multiply in 2

$$2\sum Qty_{T(x)} + Qty_{T(@rest)} = 2(1+14) + 8 = 38$$

a) $L_{B(a)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty [P]		Qty [M]		L [W]	L [E]	Total Wastage
6			13	2.66	2	247	247	1.484	0	366.55
7.5	20	0.050		3.32	3	164.7	165	0.726	2.5	121.56
10.5	38	2.258		4.65	4	123.5	124	1.468	5.25	185.81
12				5.31	5	98.8	99	0.710	2.40	71.98

Thus $L_{\mathit{CM}(a)} = 12$ and $\mathit{Qty}_{\mathit{M}(a)} = 99$

b) $L_{B(b)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty [P]		Qty [M]		L [W]	L [E]	Total Wastage
6			1.649 13	3.64	3	164.7	165	1.053	2	174.692
7.5]	4 640		4.55	4	123.5	124	0.904	3.75	114.942
10.5	38	1.649		6.37	6	82.33	83	0.606	7	56.692
12				7.28	7	70.57	71	0.457	5.14	37.133

Thus $L_{\mathit{CM}(b)} = 12$ and $\mathit{Qty}_{\mathit{M}(b)} = 71$

• For Joint Ties

$$Qty_{TQ} = 5$$

a) $L_{B(a)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty [P]		Qty [M]		L [W]	L [E]	Total Wastage
6				2.67	2	32.5	33	1.500	3	51.000
7.5	_	0.05	13	3.33	3	21.67	22	0.750	2.5	18.250
10.5	5	2.25		4.67	4	16.25	17	1.500	7.875	31.875
12				5.33	5	13	13	0.750	0	9.750

Thus $L_{CM(4a)} = 12$ and $Qty_{M(4a)} = 13$

b) $L_{B(a)}$

L [M]	Qty [TQ]	L [B]	Qty (Column)	Qty [P]		Qty [M]		L [W]	L [E]	Total Wastage										
6				3.66	3	21.67	22	1.077	2	24.617										
7.5	_	4 644	1 13	4.57	4	16.25	17	0.936	5.625	20.601										
10.5	5	1.641		13	13	13	13	13	13	13	13	13	13	6.40	6	10.83	11	0.654	1.75	8.290
12				7.31	7	9.286	10	0.513	8.57	13.188										

Thus
$$L_{CM(4b)} = 10.5$$
 and $Qty_{M(4b)} = 11$

5. The program will compute the price of the Lateral Ties.

$$Price_{Total} = \sum Qty_{M(Lateral\ Ties)} Price_{M(Lateral\ Ties)} + \sum Qty_{M(Joint\ Ties)} Price_{M(Joint\ Ties)}$$

Where:

 $Price_{M} = Price \ of \ the \ steel \ reinforcement \ based \ on \ Pricing$

= Sorted through Reinforcement Grade, diameter, and Manufactured Length

Example

@ Ground Floor

Lateral Ties

$$d_{LT} = 12 \ mm$$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43 Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04 Rebar GRADE 40 (Ø12mm) [9m]- P 351.65 Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26 Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

$$Qty_{M(a)} = 97 \& L_{CM(a)} = 12 \ m : Price_{M(a)} = \mathbf{P} 468.86 $Qty_{M(b)} = 71 \& L_{CM(b)} = 12 \ m : Price_{M(b)} = \mathbf{P} 468.86 $Qty_{M(c)} = 71 \& L_{CM(c)} = 12 \ m : Price_{M(c)} = \mathbf{P} 468.86$$$$

$$\sum_{L} Qty_{M(LT)} Price_{M(LT)} = 97(468.86) + 71(468.86) + 71(468.86) = 71(468.8$$

• Joint Ties

$$d_{IT} = 10 \ mm$$

Rebar GRADE 40 (Ø10mm) [6m]- P 162.62
Rebar GRADE 40 (Ø10mm) [7.5m]- P 203.28
Rebar GRADE 40 (Ø10mm) [9m]- P 243.94
Rebar GRADE 40 (Ø10mm) [10.5m]- P 284.59
Rebar GRADE 40 (Ø10mm) [12m]- P 325.25

$$Qty_{M(a)} = 16 \& L_{CM(a)} = 12 \ m : Price_{M(a)} =$$
 325.25

$$Qty_{M(b)} = 13 \& L_{CM(b)} = 10.5 \, m : Price_{M(b)} = 284.59$$

$$Qty_{M(c)} = 13 \& L_{CM(c)} = 10.5 \, m : Price_{M(c)} = 284.59$$

$$\sum Qty_{M(JT)}Price_{M(JT)} = 16(325.25) + 13(284.59) + 13(284.59) = 12,603.34$$

Total

$$Price_{Total} = 112,058.54 + 12,603.34 =$$
7 124,**660**.**88**

@ 2nd - 3rd Floor

Lateral Ties

$$d_{LT} = 12 \ mm$$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43 Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04 Rebar GRADE 40 (Ø12mm) [9m]- P 351.65 Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26 Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

$$Qty_{M(a)} = 73 \& L_{CM(a)} = 12 \ m : Price_{M(a)} = 468.86$$

 $Qty_{M(b)} = 91 \& L_{CM(b)} = 7.5 \ m : Price_{M(b)} = 293.04$
 $Qty_{M(c)} = 91 \& L_{CM(c)} = 7.5 \ m : Price_{M(c)} = 293.04$

$$\sum_{L} Qty_{M(LT)} Price_{M(LT)} = 73(468.86) + 91(293.04) + 91(293.04) = \$87,560.06$$

Joint Ties

$$d_{IT} = 10 mm$$

Rebar GRADE 40 (Ø10mm) [6m]- P 162.62 Rebar GRADE 40 (Ø10mm) [7.5m]- P 203.28 Rebar GRADE 40 (Ø10mm) [9m]- P 243.94 Rebar GRADE 40 (Ø10mm) [10.5m]- P 284.59 Rebar GRADE 40 (Ø10mm) [12m]- P 325.25

$$\sum Qty_{M(JT)}Price_{M(JT)} = 16(325.25) + 20(203.28) + 20(203.28) = \text{?}13,335.2$$

Total

$$Price_{Total} = 87,560.06 + 13,335.2 =$$
 100,895.26

@ 4th Floor

Lateral Ties

$$d_{LT} = 12 mm$$

$$Qty_{M(a)} = 99 \& L_{CM(a)} = 12 \ m : Price_{M(a)} = 468.86$$

 $Qty_{M(b)} = 71 \& L_{CM(b)} = 12 \ m : Price_{M(b)} = 468.86$

$$\sum Qty_{M(LT)} Price_{M(LT)} = 99(468.86) + 71(468.86) = 79,706.2$$

Joint Ties

$$d_{JT}=10\;mm$$

Rebar GRADE 40 (@10mm) [6m]- P 162.62 Rebar GRADE 40 (Ø10mm) [7.5m]- P 203.28 Rebar GRADE 40 (Ø10mm) [9m]- P 243.94 Rebar GRADE 40 (Ø10mm) [10.5m]- P 284.59 Rebar GRADE 40 (Ø10mm) [12m]- P 325.25

$$Qty_{M(a)} = 13 \& L_{CM(a)} = 12 \ m \ \therefore \ Price_{M(a)} = \ \ 325.25$$

$$Qty_{M(b)} = 11 \& L_{CM(b)} = 10.5 \ m \ \therefore \ Price_{M(b)} = \ \ 284.59$$

$$\sum Qty_{M(JT)} Price_{M(JT)} = 13(325.25) + 11(284.59) = \ \ \ 7,358.74$$

Total

$$Price_{Total} = 79,706.2 + 7,358.74 =$$
87,064.94

6. The program will compute the weight of the reinforcement.

$$W = \omega \left[\sum L_{CM} Q t y_M \right] W_D$$

Where:

$$\omega = 1.0$$
 (for the mean time)

Example:

_ WEIGHT —	
BAR SIZE (Diameter)	kg/m
6 mm	0.222
8 mm	0.395
10 mm	0.616
12 mm	0.888
16 mm	1.597
20 mm	2.466
25 mm	3.854
28 mm	4.833
32 mm	6.313
36 mm	7.991
40 mm	9.864
44 mm	11.926
50 mm	15.413
56 mm	19.318

@Ground Floor

Lateral Ties

Since the diameter for lateral ties is 12 mm. Thus, the $W_D=0.888\,kg/m$

$$W_{LT} = \omega \left[\sum_{CM} L_{CM} Q t y_M \right] W_D = \omega \left[\sum_{a}^{c} L_{CM} Q t y_M \right] W_D$$

$$W_{LT} = 1.0 \cdot [12(97) + 12(71) + 12(71)] \cdot 0.888 = 2546.78 \, kg$$

Joint Ties

Since the diameter for lateral ties is **10 mm**. Thus, the $W_D = 0.616 \, kg/m$

$$\begin{split} W_{JT} &= \omega \left[\sum_{CM} Qty_M \right] W_D = \omega \left[\sum_{a}^{c} L_{CM} Qty_M \right] W_D \\ W_{JT} &= 1.0 \cdot \left[12(16) + 10.5(13) + 10.5(13) \right] \cdot 0.616 = 286.44 \ kg \end{split}$$

@ 2nd - 3rd Floor

Lateral Ties

Since the diameter for lateral ties is 12 mm. Thus, the $W_D = 0.888 \, kg/m$

$$W_{LT} = \omega \left[\sum_{CM} L_{CM} Q t y_M \right] W_D = \omega \left[\sum_{a}^{c} L_{CM} Q t y_M \right] W_D$$

$$W_{LT} = 1.0 \cdot [12(73) + 7.5(91) + 7.5(91)] \cdot 0.888 = 1990.008 \, kg$$

Joint Ties

Since the diameter for lateral ties is 10 mm. Thus, the $W_D=0.616\,kg/m$

$$W_{JT} = \omega \left[\sum_{CM} L_{CM} Q t y_M \right] W_D = \omega \left[\sum_{a}^{c} L_{CM} Q t y_M \right] W_D$$

$$W_{JT} = 1.0 \cdot \left[12(16) + 7.5(20) + 7.5(20) \right] \cdot 0.616 = 303.072 \ kg$$

@ 4th Floor

Lateral Ties

Since the diameter for lateral ties is **12 mm**. Thus, the $W_D = 0.888 \, kg/m$

$$W_{LT} = \omega \left[\sum_{c} L_{cM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{cM} Q t y_{M} \right] W_{D}$$

$$W_{D} = 1.0 \cdot [12(99) + 12(71)] \cdot 0.888 = 1811.52 \text{ k}$$

$$W_{LT} = 1.0 \cdot [12(99) + 12(71)] \cdot 0.888 = 1811.52 \, kg$$

Joint Ties

Since the diameter for lateral ties is **10 mm**. Thus, the $W_D = 0.616 \, kg/m$

$$W_{JT} = \omega \left[\sum_{CM} L_{CM} Q t y_{M} \right] W_{D} = \omega \left[\sum_{a}^{c} L_{CM} Q t y_{M} \right] W_{D}$$

$$W_{JT} = 1.0 \cdot [12(13) + 10.5(11)] \cdot 0.616 = 167.244 \, kg$$

7. The program will compute the total weight of the ties in the column.

$$W_{Total} = W_{LT} + W_{JT}$$

Example:

@ Ground Floor

$$W_{Total} = W_{LT} + W_{JT}$$

$$W_{Total} = 2546.78 + 286.44$$

$$W_{Total} = 2,833.22 \ kg$$

@ 2nd – 3rd Floor

$$W_{Total} = W_{LT} + W_{JT}$$

$$W_{Total} = 1990.008 + 303.072$$

$$W_{Total} = 2,293.08 \ kg$$

@ 4th Floor

$$W_{Total} = W_{LT} + W_{JT}$$

$$W_{Total} = 1811.52 + 167.244$$

$$W_{Total} = 1,978.764 \ kg$$

8. The program will determine the Labor Price for the Lateral Ties of Columns

TEGORY: LABOR RATE (REBAR PER KG) - 9 items

FOOTING [KG]- P 17

WALL FOOTING [KG]- P 17

COLUMN [KG]- P 15

STAIRS [KG]- P 15

BEAM [KG]- P 16

FOOTING TIE BEAM [KG]- P 16

SLAB ON GRADE [KG]- P 17

SUSPENDED SLAB [KG]- P 18

WALLS [KG]- P 16

$$Price_{Labor} = W \cdot L_R$$

Example:

$$L_R = \mathbb{P} 15$$

@ Ground Floor

$$Price_{Labor} = W \cdot L_R$$

$$Price_{Labor} = 2,833.22(15)$$

$$Price_{Labor} =$$
 42, **498**. **30**

@ 2nd – 3rd Floor

$$Price_{Labor} = W \cdot L_R$$

$$Price_{Labor} = 2,293.08(15)$$

$$Price_{Labor} = \mathbb{P} 34,396.20$$

@ 4th Floor

$$Price_{Labor} = W \cdot L_R$$

$$Price_{Labor} = 1,978.764(15)$$

$$Price_{Labor} = \mathbb{P} 29,681.46$$