1. Verificar la ley del paralelogramo para los vectores $u, v \in \mathbb{R}^n$:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

Solucion

- $u + v = (u_1, \dots, u_n) + (v_1, \dots, v_n) = (u_1 + v_1, \dots, u_n + v_n).$
- $\|u+v\|^2 = u_1+v_1,\ldots,u_n+v_n = (u_1+v_1)^2 + \dots + (u_n+v_n)^2 = \underbrace{(u_1^2+2u_1v_1+v_1^2)+\ldots+(u_n^2+2u_nv_n+v_n^2)}_{...}.$
- $\|u-v\|^2 = u_1-v_1,\ldots,u_n-v_n = (u_1-v_1)^2 + \dots + (u_n-v_n)^2 = \underbrace{(u_1^2-2u_1v_1+v_1^2)+\ldots+(u_n^2-2u_nv_n+v_n^2)}_{**}.$
- $*+** = 2(u_1^2 + v_1^2) + \ldots + 2(u_n^2 + v_n^2) = 2[(u_1^2 + v_1^2) + \ldots + (u_n^2 + v_n^2)] = 2[(u_1^2 + \ldots + u_n^2) + (v_1^2 + \ldots + v_n^2)] = 2(||u||^2 + ||v||^2).$
- 2. Sea v = (a, b). Describir el conjunto H de vectores (x, y) que son ortogonales a v.

Solucion
$$H = \{(x,y) / [x,y] \cdot (a,b) = 0\} = \{(x,y) / xa + yb = 0\}.$$

3. Sea $W = \langle \{v_1, \dots, v_p\} \rangle$. Mostrar que si x es ortogonal a todo v_j , para $1 \leq j \leq p$, luego x es ortogonal a todo vector en W.

Solution Sea
$$v \in W/v = \alpha_1 v_1 + \ldots + \alpha_p v_p$$
. Luego $v \cdot x = (\alpha_1 v_1) \cdot x + \ldots + (\alpha_p v_p) \cdot x = \alpha_1 \underbrace{(v_1 \cdot x)}_{0} + \ldots + \alpha_p \underbrace{(v_p \cdot x)}_{0} = 0$.

4. Mostrar que si $x \in W \cap W^{\perp}$, entonces x = 0.

Soluciones COMPLETAR.

5. En cada caso, mostrar que $\{u_1, u_2\}$ o $\{u_1, u_2, u_3\}$ es una base ortogonal para \mathbb{R}^2 o \mathbb{R}^3 respectivamente, y luego expresar a x como combinacion lineal de la base correspondiente:

a)
$$u_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, $x = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$.
b) $u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$, $u_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $x = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}$.

Soluciones

a)
$$u_1 \cdot u_2 = 12 - 12 = 0$$
. $x = 3u_1 + \frac{1}{2}u_2$.

b)
$$u_1 \cdot u_2 = -1 + 1 = 0$$
, $u_1 \cdot u_3 = 2 + (-2) = 0$, $u_2 \cdot u_3 = -2 + 4 - 2 = 0$.
 $x = \frac{5}{2}u_1 - \frac{3}{2}u_2 + 2u_3$.

6. Suponer que W es un subespacio de \mathbb{R}^n generado por n vectores ortogonales distintos de 0. Explicar por que $W = \mathbb{R}^n$.

Solucion Debemos ver que los n vectores generan \mathbb{R}^n . Ya sabemos que son n, nos resta ver que son linealmente independientes. Supongamos que no lo sean, luego uno de ellos puede expresarse como combinacion lineal de los demas: $v_1 = \alpha v_2 + \beta v_3$. Ahora:

$$(\alpha v_2 + \beta v_3) \cdot v_1 = (\alpha v_2) \cdot v_1 + (\beta v_2) \cdot v_1 = \alpha (v_2 \cdot v_1) + \beta (v_2 \cdot v_1) = 0$$
es decir $v_1 \cdot v_1 = 0 \iff v_1 = 0$. Contradiccion.

7. Sean U, V matrices ortogonales. Explicar por que UV es una matriz ortogonal.

Solucion Sabemos que $U^{-1} = U^t$ y $V^{-1} = V^t$, luego $(UV)^t = V^tU^t = V^{-1}U^{-1}$; es decir, $(UV)^t = (UV)^{-1}$.

8. Sea $\{u_1, u_2\}$ un conjunto ortogonal de vectores distintos de cero y c_1, c_2 escalares no nulos. Mostrar que $\{c_1u_1, c_2u_2\}$ tambien es ortogonal.

Solucion COMPLETAR.

9. Dado $0 \neq u \in \mathbb{R}^n$ y sea $L = \langle \{u\} \rangle$. Para $y \in \mathbb{R}^n$, la reflexion de y en L se define como:

$$ref_L y = 2proy_L y - y$$

- a) Graficar en \mathbb{R}^2 para observar que la $ref_L y$ es la suma de $\hat{y} = proy_L y$ con $\hat{y} y$.
- b) Mostrar que la aplicación $y \mapsto ref_L y$ es una transformación lineal.

Soluciones COMPLETAR.

10. Sean

$$u_{1} = \begin{bmatrix} 0 \\ 1 \\ -4 \\ -1 \end{bmatrix}, u_{2} = \begin{bmatrix} 3 \\ 5 \\ 1 \\ 1 \end{bmatrix}, u_{3} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}, u_{4} = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}, x = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix}$$

Escribir x como suma de dos vectores, uno en $\langle \{u_1, u_2, u_3\} \rangle$ y otro en $\langle \{u_4\} \rangle$.

Solution $x = \left(-\frac{8}{9}u_1 - \frac{2}{9}u_2 + \frac{2}{3}u_3\right) + 2u_4.$

- 11. Sea W el subespacio generado por $v_1=\begin{bmatrix}3\\1\\-1\\1\end{bmatrix}, v_2=\begin{bmatrix}1\\-1\\1\\-1\end{bmatrix}.$
 - a) Si y = (3, 1, 5, 1), escribirlo como la suma de un vector en W y uno en W^{\perp} .
 - b) Si y = (3, -1, 1, 13), encontrar el punto mas cercano a y en W.
 - c) Si y = (2, 4, 0, 1), encontrar la mejor aproximacion a y mediante vectores de la forma $c_1v_1 + c_2v_2$. Hallar la distancia de y a W.

Soluciones

a) Sean $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ y $v_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, veamos que ambos pertenecen

a W^{\perp} . Sea $x \in W/x = \alpha v_1 + \beta v_2$, luego $x \cdot v_3 = \alpha v_1 \cdot v_3 + \beta v_2 \cdot v_3 = \alpha 0 + \beta 0 = 0$ y analogamente para v_4 . Finalmente $y = \left(\frac{1}{2}v_1 + \frac{3}{2}v_2\right) + (2v_3 + 2v_4)$.

- b) Observemos que $y = (\frac{5}{3}v_1 \frac{14}{3}v_2) + (\frac{28}{3}v_3 \frac{14}{3}v_4)$, luego el «punto» mas cercano es $(\frac{1}{3}, \frac{19}{3}, -\frac{19}{3}, \frac{19}{3})$.
- c) Observemos que $y=\left(\frac{11}{2}v_1-\frac{3}{4}v_2\right)+\left(-\frac{2}{3}v_3\frac{7}{3}v_4\right)$, luego la mejor aproximación es $\frac{11}{2}v_1-\frac{3}{4}v_2$.
- 12. Sean $y = \begin{bmatrix} 4, 8, 1 \end{bmatrix}^t$, $u_1 = \begin{bmatrix} \frac{2}{3}, \frac{1}{3}, \frac{2}{3} \end{bmatrix}^t$, $u_2 = \begin{bmatrix} -\frac{2}{3}, \frac{2}{3}, \frac{1}{3} \end{bmatrix}^t$ y $W = \langle \{u_1, u_2\} \rangle$.
 - a) Sea $U = [u_1 u_2]$. Calcular $U^t U$ y $U U^t$.
 - b) Calcular $proy_W y \in (UU^t) y$.

Soluciones

a)
$$U^tU = I$$
. $UU^t = \begin{bmatrix} \frac{8}{9} & -\frac{2}{9} & \frac{2}{9} \\ -\frac{2}{9} & \frac{5}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{5}{9} \end{bmatrix}$.

- b) COMPLETAR. $UU^ty = (2, 4, 5)$.
- 13. Sea A una matriz $m \times n$. Demostrar que todo vector $x \in \mathbb{R}^n$ puede escribirse en la forma x = p + u, donde p esta en $\mathcal{F}(A)$ y $u \in \mathcal{N}(A)$. Mostrar que si la ecuacion Ax = b es consistente, entonces hay una unica p en $\mathcal{F}(A)$ tal que Ap = b.

Solucion COMPLETAR.

- 14. Sea W un subespacio de \mathbb{R}^n con una base ortogonal $\{w_1, \ldots, w_p\}$ y sea $\{v_1, \ldots, v_q\}$ una base ortogonal de W^{\perp} .
 - a) Explicar por que $\{w_1, \ldots, w_p, v_1, \ldots, v_q\}$ es un conjunto ortogonal.
 - b) Explicar por que el conjunto definido en el item anterior genera \mathbb{R}^n .
 - c) Demostrar que $dim(W) + dim(W^{\perp}) = n$.

Soluciones

- a) Para w_i y w_j sabemos que $w_i \cdot w_j = 0$ por ser $\{w_1, \ldots, w_p\}$ un conjunto ortogonal y analogamente para v_i, v_j . Para w_i y v_j , como $v_j \in W^{\perp}$ significa que $v_j \cdot w = 0$ para cualquier $w \in W$, en particular para cualquier w_i .
- b) COMPLETAR.
- c) COMPLETAR.
- 15. Siendo $u = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$ y $v = \begin{bmatrix} 8 \\ 5 \\ -6 \end{bmatrix}$, utilizar el proceso de Gram-Schmidt para producir una base ortogonal de $\langle \{u, v\} \rangle$.

16. Sea

$$A = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & 4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}$$

Encontrar una base ortogonal para el espacio columna de A.

Solucion Sean v_i las columnas de A, definimos $u_1 = v_1$, $u_2 = v_2 - v_3$

$$\frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 = \begin{bmatrix} 2 \\ 1 \\ 4 \\ -4 \\ 2 \end{bmatrix} - \frac{-5}{5} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 3 \\ -3 \end{bmatrix} \quad y \quad u_3 = v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \begin{bmatrix} 5 \\ 4 \\ -3 \\ 7 \end{bmatrix} - \frac{12}{5} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} - \frac{-12}{36} \begin{bmatrix} 3 \\ 0 \\ 3 \\ -3 \end{bmatrix} = \begin{bmatrix} \frac{18}{5} \\ \frac{32}{5} \\ \frac{18}{5} \end{bmatrix}, \text{ luego } \mathcal{C}(A) = \langle \{u_1, u_2, u_3\} \rangle.$$

17.

- a) Verificar que $A \times B = \sum_{i,j} A_{ij} B_{ij}$ es un producto interno en $\mathbb{R}^{n \times n}$ (conocido como producto de Frobenius).
- b) Probar que $A \times B = tr(AB^t)$.
- c) Probar que $AB \times C = B \times A^tC$.

Soluciones

a)

•
$$(A+B) \times C = \sum_{i,j} (A_{ij} + B_{ij}) C_{ij} = \sum_{i,j} (A_{ij}C_{ij} + B_{ij}C_{ij}) =$$

= $\sum_{i,j} A_{ij}C_{ij} + \sum_{i,j} B_{ij}C_{ij} = A \times C + B \times C.$

$$A \times B = \sum_{i,j} A_{ij} B_{ij} = \sum_{i,j} B_{ij} A_{ij} = B \times A.$$

•
$$A \times A = \sum_{i,j} A_{ij} A_{ij} = \sum_{i,j} \underbrace{A_{ij}^2}_{>0} \ge 0$$
 y claramente $A \times A = 0 \iff A = 0$.

- b) COMPLETAR.
- c) COMPLETAR.

18. Verificar que $f \times g = \int_{1}^{e} log(x) f(x) g(x) dx$ es un producto interno en $\mathcal{C}([1, e])$.

Solucion COMPLETAR.

19. Dados $u, v \in V$ espacio vectorial con producto interno, probar que u = v si y solo si $u \times w = v \times w$ para todo $w \in V$.

Solucion

- \blacksquare \Rightarrow : Trivial.
- [⇐]: COMPLETAR.
- 20. Sea V un espacio vectorial con producto interno y W un subespacio de V. Probar que $(W^{\perp})^{\perp} = W$.

Solucion

- \subseteq : Sea $x \in (W^{\perp})^{\perp}$, como $x \in V$ sabemos que podemos escribirlo como x = p + u con $p \in W$ y $u \in W^{\perp}$. Ademas $x \cdot u = 0$ es decir $(p + u) \cdot u = \underbrace{p \cdot u}_{0} + u \cdot u = u \cdot u = 0 \iff u = 0$, por lo que $x = p \in W$.
- \supseteq : Sea $x \in W$, como $x \in V$ sabemos que podemos escribirlo como x = p + u con $p \in W^{\perp}$ y $u \in (W^{\perp})^{\perp}$. Ademas $x \cdot p = 0$ es decir $(p + u) \cdot p = p \cdot p + \underbrace{p \cdot u}_{0} = p \cdot p = 0 \iff p = 0$, por lo que $x = u \in (W^{\perp})^{\perp}$.

- 21. Sea $\mathbb{R}^{n\times n}$ con el producto interno definido en el ejercicio 17.
 - a) Hallar una base ortogonal para $\mathbb{R}^{n\times n}$ para dicho producto interno.

b) Hallar
$$W^{\perp}$$
, si $W = \left\langle \left\{ \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\} \right\rangle \subset \mathbb{R}^{2 \times 2}$.

c) Idem para
$$W = \left\{ \begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in \mathbb{R} \right\}.$$

Soluciones

- a) Sean $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ y $B = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$, recordemos que $\langle A, B \rangle = aw + bx + cy + dz$; luego la base estandard es una base ortogonal.
- b) Observemos que $W = \left\{ \begin{bmatrix} x & 2y \\ 0 & -y \end{bmatrix} : x, y \in \mathbb{R} \right\}$. Buscamos $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} / ax + 2by dy = ax + (2b d)y = 0$ para cualequiera x e y, es decir: $W^{\perp} = \left\langle \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \right\} \right\rangle$. Corroboramos:

$$\left\langle a \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} + b \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} a+b & 2a \\ 0 & -a \end{bmatrix}, \begin{bmatrix} 0 & d \\ c & 2d \end{bmatrix} \right\rangle = 0 + 2ad + 0 - 2ad = 0$$

- c) COMPLETAR.
- 22. Sea $\mathcal{C}[(1,e)]$, con el producto interno definido en el ejercicio 18.
 - a) Calcular ||f|| para $f(x) = \sqrt{2}$.
 - b) Hallar un polinomio de grado uno que sea ortogonal a g(x) = 1.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.