<u>Definitie</u> O functie $f: \mathbb{R}^2 \to \mathbb{R}^2$ se numeste izometrie dacă pentru orice $x = (x^1, x^2), y =$ $\frac{\overline{(y^1, y^2)} \in \mathbb{R}^2}{d(x, y) = d(f(x), f(y))}$ $[d((x^1, x^2), (y^1, y^2)) \stackrel{def}{=} \sqrt{(x^1 - y^1)^2 + (x^2 - y^2)^2}]$

Ex: 1. Functia identică 2. Functia
$$f: \mathbb{R}^2 \to \mathbb{R}^2, \forall x=(x^1,x^2) \in \mathbb{R}^2$$
 $f(x)=(x^2,x^1)$

Fie
$$x, y \in \mathbb{R}^2$$
 unde $x = (x^1, y^2)$
 $y = (y^1, x^2)$
 $d(f(x), f(y)) = \sqrt{(x^2 - y^2)^2 + (x^1 - y^1)^2}$

$$d(f(x), f(y)) = \sqrt{(x^2 - y^2)^2 + (x^1 - y^1)^2}$$

$$\begin{aligned} d: x^2 - y^1 &= 0 \\ f &= \underset{(simetric)}{Sim} d \end{aligned}$$

3. Functia
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\forall x = (x^1, x^2)$ $f(x) = (x^1 + \alpha, x^2 + \beta)$

$$f = T_{(\alpha,\beta)}$$

$$f(x) = x + (\alpha,\beta)$$

$$\alpha = (1,1)$$

