CSC4093 - Programming Assignment 02

Personal Health Mentions Classification Analysis Report

Summary

This report compares the performance between Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (Bi-LSTM) models for classifying tweets into two classes, personal health mentions or non-personal health mentions. The results show that the Bi-LSTM model achieves better performance with 78.78% accuracy compared to 78.11% for the LSTM model, representing a 0.66% higher classification accuracy.

1. Technical Specifications

Model Training Details

- Framework TensorFlow/Keras
- Optimizer Adam
- Loss Function Binary Crossentropy
- Metrics Accuracy, Precision, Recall, F1-Score

Data Statistics

Total Test Samples	3,331
Non-Personal Health	2,364 (71.0%)
Personal Health	967 (29.0%)
Class Imbalance Ratio	2.44:1

2. Model Architecture and Hyperparameters

Both models were implemented with identical hyperparameters for fair comparison:

Shared Configuration

- Embedding Dimension 100
- LSTM Output Units 128
- Batch Size 128
- Training Epochs 10
- Dropout Rate 0.5
- Class Weights {0: 1.0, 1: 2.5} (to address class imbalance)

3. Performance Comparison

Overall Accuracy Metrics

Model	Correct Predictions	Wrong Predictions	Accuracy (%)
LSTM	2,602	729	78.11%
Bi-LSTM	2,624	707	78.78%

Detailed Classification Reports

LSTM Classification Report

Class	Precision	Recall	F1-Score	Support
Non-Personal	0.78	0.97	0.86	2,364
Health				
Personal Health	0.83	0.31	0.45	967
Accuracy			0.78	3,331
Macro Average	0.80	0.64	0.66	3,331
Weighted	0.79	0.78	0.74	3,331
Average				

Bi-LSTM Classification Report

Class	Precision	Recall	F1-Score	Support
Non-Personal	0.79	0.96	0.87	2,364
Health				
Personal Health	0.81	0.35	0.49	967
Accuracy			0.79	3,331
Macro Average	0.80	0.66	0.68	3,331
Weighted	0.79	0.79	0.76	3,331
Average				

Figure 01: Model Accuracy and Loss Curves: Training and validation performance over 10 epochs

Figure 02: Confusion Matrices: Detailed classification performance for both LSTM and Bi-LSTM models

4. Discussion and Analysis

Why Bi-LSTM Outperforms LSTM

Bidirectional Context Processing

The better performance of the Bi-LSTM model can be due to its ability to process sequential information in both forward and backward directions. This bidirectional processing is beneficial for health mention classification because,

- 1. Health-related tweets often contain contextual clues both before and after key medical terms
- 2. Negation Detection require understanding of both forward and backward context
- Health mentions may reference past, present, or future conditions requiring comprehensive context

Enhanced Feature Extraction

The bidirectional architecture effectively doubles the feature representation capacity by combining,

- Forward LSTM output capturing left-to-right dependencies
- Backward LSTM output capturing right-to-left dependencies
- Combined representation providing richer semantic understanding

Class Imbalance Impact

The dataset exhibits significant class imbalance with 2,364 non-personal health mentions versus 967 personal health mentions.

Due to this class imbalance,

High Recall, Low Precision for Majority Class

Both models achieve high recall (>0.96) for non-personal health mentions, indicating they successfully identify most non-health-related tweets but occasionally misclassify personal health mentions.

Low Recall for Minority Class

The recall for personal health mentions remains low (0.31-0.35) despite class weighting, suggesting the models struggle to identify all health-related content.

Hyperparameter Impact Analysis

Dropout Regularization (0.5)

The high dropout rate of 0.5 helps prevent overfitting, particularly important given,

- Limited training data for the minority class
- Complex bidirectional architecture in Bi-LSTM
- Noisy nature of social media text

Class Weights (0:1, 1:2.5)

The 2.5 weight for personal health mentions tries to address class imbalance by,

- Increasing the penalty for misclassifying health mentions
- Encouraging the model to learn minority class patterns

Embedding Dimension (100)

The 100-dimensional embeddings provide sufficient capacity for capturing health-related semantic relationships.

5. Conclusion

Key Findings

- 1. Bi-LSTM achieves higher accuracy (78.78% vs 78.11%) demonstrating the value of bidirectional processing for health mention classification
- 2. Both models identify non-personal health mentions better, but struggle with personal health mentions due to class imbalance
- 3. The bidirectional architecture provides enhanced contextual understanding, which is valuable for health-related language

Recommendations for Improvement

- 1. Data Augmentation Increase training data for personal health mentions through synthetic data generation, and external health dataset integration
- 2. Advanced Architectures Consider implementing attention mechanisms, Transformer-based models (BERT, RoBERTa), and ensemble methods
- 3. Preprocessing Enhancements Improve text processing through medical entity recognition, specialized health vocabulary expansion, and advanced normalization techniques