APPENDIX

Assembly language codes for whole project

;adc address and control pins are defined

ADC_A BIT P2. 2

ADC_B BIT P2. 3

ADC_C BIT P2. 5

ADC_SC BIT P2. 0

ADC_ALE BIT P2. 4

ADC_EOC BIT P2. 1

TRIP_SIGNAL BIT P3. 7

FAULT_IND BIT P3. 6

UP BIT P3. 5

DOWN BIT P3. 3

LEFT BIT P3. 4

RIGHT BIT P3. 2

LED_RESET BIT P3. 1

;lcd control pins are defined

RS BIT P2. 7

EN BIT P2.6

;program starts from this address

ORG 0000H

SETB PSW. 4

MOV R3,#2D

MOV R5,#0D

SETB PSW. 3

MOV R2,#2D

MOV R5,#0D ;definite time setting

MOV R3,#0D ;value for displaying relay char

MOV R4,#5D; CLR PSW. 4 CLR PSW. 3 CLR FAULT_IND CLR TRIP_SIGNAL LJMP MAIN :lcd initialization sub-routine INITIALIZE_LCD: MOV A, #38H LCALL WRITE_CMD MOV A, #0CH LCALL WRITE_CMD MOV A, #06H LCALL WRITE_CMD **RET** WRITE_CMD: ;sub-routine to write a command to lcd's instruction register CLR RS ;rs=0 for selecting command register MOV PO, A SETB EN CLR EN LCALL LCD_DELAY **RET** WRITE_CHAR: ;sub-routine to write a data to lcd's data register SETB RS ;rs=1 for selecting data register MOV PO, A SETB EN CLR EN LCALL LCD_DELAY **RET**

WRITE STRING: CLR A MOVC A,@A+DPTR JZ EXIT MOV PO, A **SETB RS** SETB EN ACALL LCD_DELAY **CLR EN INC DPTR** SJMP WRITE_STRING EXIT: **RET** LCD_DELAY: ;to generate a delay between consequent lcd write operations MOV R0, #5H L2: MOV R1, #0FFH L1: DJNZ R1, L1 DJNZ R0, L2 **RET DISPLAY_CURRENT:** ;subroutine to display 'Current:' on lcd MOV A, #80H LCALL WRITE_CMD ACALL LCD_DELAY MOV DPTR, #DISPLAY_MAIN_SCREEN ACALL WRITE_STRING ACALL LCD_DELAY **RET** ******************** DISPLAY: subroutine to display the digits of the measured voltage MOV A, R6 ; display the digit before decimal point ADD A, #30H

LCALL WRITE_CHAR

MOV A, #2EH ;display the decimal point

LCALL WRITE_CHAR

MOV A, R5 ; display the digit after the decimal point

ADD A, #30H

LCALL WRITE_CHAR

MOV A, R2 ; display the 2ND digit after the decimal point

ADD A, #30H

LCALL WRITE_CHAR

MOV A, #'A'

ACALL WRITE_CHAR

ACALL LCD_DELAY

RET

READ_ADC: ;sub-routine to read from adc

SETB ADC_EOC

CLR ADC_ALE

CLR ADC_SC

CLR ADC_A ;channel 0 is selected

CLR ADC_B

CLR ADC_C

SETB ADC_ALE ; latch the address of the channel to adc

SETB ADC_SC ; start the conversion

CLR ADC_ALE

CLR ADC_SC

WAIT: JNB ADC_EOC, WAIT ;conversion complete

NOP

MOV A,P1

NOP

SETB ADC_EOC

RET

FIND_MAX_AMPLITUDE: ;subroutine to find the max amplitude

MOV R7, #0FFH

REPEAT: DEC R7

LCALL READ_ADC

;find the maximum sampled current amplitude

NEXT: MOV R2, A ;store the present current amplitude in R2

MOV A, R3 ;load accumulator with previous value

SUBB A, R2 ; subtract current from previous value

; JC MAXIMUM_AMPLITUDE

AJMP CHECK

MAXIMUM_AMPLITUDE:

MOV A, R2

MOV R3, A

CHECK: MOV A, R7

JNZ REPEAT

RET

RMS_FIND:

;scale down the input adc value by 5 for DC or by 7 for AC

MOV A, R3

MOV B, #7D

DIV AB

MOV R4, A

MOV R2, B

;convert the hex to two separate decimal digits to be displayed

HEX_TO_DECIMAL:

MOV A, R4

MOV B, #10D ;divide by 10

DIV AB

MOV R5, B ;r5 contains the value after decimal

MOV R6, A ;r6 contains the value before decimal point

RET

COMPARE_WITH_SET_VALUE:

MOV A,R6

ADD A,R5

MOV R4,A

ADD A,R4

ADD A,R4

ADD A,R4

ADD A,R4

ADD A,R4

ADD A,R4

ADD A,R2

MOV R4,A

SETB PSW. 4

MOV A,R3

ADD A,R5

SETB PSW. 3

MOV RO,A

ADD A,R0

ADD A,R0

ADD A,R0

ADD A,R0

ADD A,R0

ADD A,R0

ADD A,R5

CLR PSW. 3

SETB PSW. 3

MOV R0,A

CLR PSW. 3

CLR PSW. 4

SETB PSW. 4

SETB PSW. 3

MOV A,R0

CLR PSW. 4

CLR PSW. 3

SUBB A,R4

JC CROSSED_SETPOINT

MOV A,#3CH

; activate second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#0C0H ;jump to second line

ACALL WRITE_CMD ACALL LCD_DELAY

MOV DPTR, #NOT_CROSSED_SP

ACALL WRITE_STRING

ACALL LCD_DELAY

CLR TRIP_SIGNAL

RET

CROSSED_SETPOINT:

SETB PSW. 4

SETB PSW. 3

COM_CHAR1: CJNE R2,#1D,COM_CHAR2

CLR PSW. 4

CLR PSW. 3

LCALL TRIP_DELAY_FOR_2SEC

LCALL TRIP_COMMAND

RET

COM_CHAR2: CJNE R2,#2D,COM_CHAR3

CLR PSW. 4

CLR PSW. 3

LCALL TRIP_DELAY_FOR_2SEC

LCALL TRIP_DELAY_FOR_2SEC

LCALL TRIP_COMMAND

RET

COM_CHAR3: CJNE R2,#3D,COM_CHAR4

CLR PSW. 4

CLR PSW. 3

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_COMMAND

RET

COM_CHAR4: CJNE R2,#4D,COM_CHAR5

CLR PSW. 4

CLR PSW. 3

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_COMMAND

RET

COM_CHAR5: CJNE R2,#5D,COM_CHAR6

CLR PSW. 4

CLR PSW. 3

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_COMMAND

RET

COM_CHAR6: CJNE R2,#6D,COM_CHAR1

CLR PSW. 4

CLR PSW. 3

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_DELAY_FOR_5SEC

LCALL TRIP_COMMAND

RET

TRIP_COMMAND:

SETB TRIP_SIGNAL

MOV A, #01H

LCALL WRITE_CMD

ROTATE:

MOV A, #81H

LCALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#CROSSED_SP

ACALL WRITE_STRING

ACALL LCD_DELAY

;second line display

MOV A,#3CH ; activate second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#0C0H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#CROSSED_SP2

ACALL WRITE_STRING

ACALL LCD DELAY

ACALL DISPLAY

JNB LED_RESET, OUT

AJMP ROTATE

OUT: MOV A, #01H

LCALL WRITE_CMD

ACALL LCD_DELAY

RET

RELAY_SETTING:

MOV A, #01H

LCALL WRITE_CMD

MOV A, #81H

LCALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#RSTG

ACALL WRITE_STRING

ACALL LCD_DELAY

MOV DPTR,#RSTG2

ACALL WRITE_STRING

ACALL LCD_DELAY

LCALL DISPLAY_R0

LCALL DISPLAY_2E

LCALL DISPLAY_R5

LCALL DISPLAY_R10

MOV A,#3CH; ACTIVATE SECOND LINE

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#0C1H

;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#RSTS

ACALL WRITE STRING

ACALL LCD_DELAY

SETB PSW. 3

SETB PSW. 4

MOV R3,#1D

CLR PSW. 3

CLR PSW. 4

ACALL DI CHAR

SETB PSW. 3

SETB PSW. 4

MOV R3,#0D

CLR PSW. 3

CLR PSW. 4

LCALL DELAY_FOR_10SEC

LCALL DELAY_FOR_10SEC

JNB RIGHT, NEXT_PAGE

RET

NEXT PAGE: MOV A, #01H

LCALL WRITE_CMD

MOV A, #81H

LCALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#RSTGNEXTPAGE

ACALL WRITE_STRING

ACALL LCD_DELAY

NEXT_PAGEUC: MOV A,#3CH ; activate second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#0C4H ;jump to second line

ACALL WRITE_CMD

ACALL LCD DELAY

MOV A,#0EH

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#06H

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A, #'I'

ACALL WRITE_CHAR

ACALL LCD_DELAY

MOV A, #':'

ACALL WRITE_CHAR

ACALL LCD_DELAY

LCALL DISPLAY_R0

LCALL DISPLAY_2E

LCALL DISPLAY_R5

LCALL DISPLAY_R10

MOV A, #'A'

ACALL WRITE_CHAR

ACALL LCD_DELAY

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

CHECK_LEFT_R1:JB LEFT,OP_R1

;left if not pressed

CHECK_LONG_LEFT_R1: LCALL DELAY_FOR_10SEC

;call for wait

JB LEFT, LEFT_MOVE_R5

;left not pressed

MOV A, #01H

LCALL WRITE_CMD

RET

OP_R1:

CHECK_UP_R1: JB UP,CHECK_DOWN_R1

;checking increment port

SETB PSW. 4

SETB PSW. 3

INC_{R5}

MOV A,#0C9H

;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

ACALL DISPLAY_R10

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

CLR PSW. 4

CLR PSW. 3

LCALL DELAY_FOR_10SEC

CHECK_DOWN_R1: JB DOWN ,CHECK_RIGHT_R1

SETB PSW. 4

SETB PSW. 3

DEC R5

MOV A,#0C9H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

ACALL DISPLAY_R10

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

CLR PSW. 4

CLR PSW. 3

CHECK_RIGHT_R1: LCALL DELAY_FOR_10SEC

JB RIGHT, CHECK_LEFT

LJMP SET_CHAR

CHECK_LEFT: AJMP CHECK_LEFT_R1

RET

LEFT_MOVE_R5: MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

CHECK_LEFT_R5: JB LEFT,OP_R5

CHECK_LONG_LEFT_R2: LCALL DELAY_FOR_10SEC ;call for wait

JB LEFT,LEFT_MOVE_R0 ;left not pressed

MOV A, #01H

LCALL WRITE_CMD

RET

OP_R5:

CHECK_UP_R5: JB UP,CHECK_DOWN_R5 ;checking increment port

SETB PSW. 4

INC R5

MOV A,#0C8H ;jump to second line

ACALL WRITE_CMD
ACALL LCD_DELAY
ACALL DISPLAY_R5

MOV A,#10H

ACALL WRITE_CMD ACALL LCD_DELAY

CLR PSW. 4

LCALL DELAY_FOR_10SEC

CHECK_DOWN_R5: JB DOWN ,CHECK_LEFT_R5

SETB PSW. 4

DEC R5

MOV A,#0C8H ;jump to second line

ACALL WRITE_CMD
ACALL LCD_DELAY

ACALL DISPLAY_R5

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

CLR PSW. 4

LCALL DELAY_FOR_10SEC

AJMP CHECK_LEFT_R5

RET

LEFT_MOVE_R0: MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD DELAY

CHECK_LEFT_R0: JNB RIGHT,JUMP_RIGHT

JB LEFT, OP_R0

CHECK_LONG_LEFT_R0: LCALL DELAY_FOR_10SEC ;ca

;call for wait

JB LEFT,OP_R0

;left not pressed

MOV A, #01H

LCALL WRITE_CMD

RET

OP_R0:

CHECK_UP_R0: JB UP,CHECK_DOWN_R0

;checking increment port

SETB PSW. 4

INC R3

MOV A,#0C6H

;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

ACALL DISPLAY_R0

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

CLR PSW. 4

LCALL DELAY_FOR_10SEC

CHECK_DOWN_R0: JB DOWN ,CHECK_LEFT_R0

SETB PSW. 4

DEC R3

MOV A,#0C6H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

ACALL DISPLAY_R0

MOV A,#10H

ACALL WRITE_CMD

ACALL LCD_DELAY

CLR PSW. 4

LCALL DELAY_FOR_10SEC

AJMP CHECK_LEFT_R0

RET

JUMP_RIGHT: MOV A,#14H

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#14H

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#14H

ACALL WRITE_CMD

ACALL LCD_DELAY

LJMP CHECK_LEFT_R1

NEXT_PAGEUCC: AJMP NEXT_PAGEUCC

RET

SET_CHAR: MOV A, #01H

LCALL WRITE_CMD

MOV A, #81H

LCALL WRITE_CMD

MOV DPTR,#CHAR1

ACALL WRITE_STRING

ACALL LCD_DELAY

MOV A,#3CH ; activate second line

ACALL WRITE_CMD

ACALL LCD_DELAY

SET_DEF: MOV A,#0C4H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#CHAR_TYPE_DEF

ACALL WRITE_STRING

ACALL LCD_DELAY

CHECK_LEFT0: JB LEFT,CHECK_UP0

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK_UP0

RET

CHECK_UP0: JB UP,CHECK_DOWN0

MOV A,#0C4H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

SET_INV: MOV DPTR,#CHAR_TYPE_INV

ACALL WRITE_STRING

ACALL LCD DELAY

CHECK_DOWN0: JB DOWN,CHECK_LEFT0

MOV A,#0C4H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#CHAR_TYPE_DEF

ACALL WRITE_STRING

ACALL LCD_DELAY

CHECK_RIGHT0: JB RIGHT,CHECK_UP2

AJMP SET_TIME_DEF_CHAR

CHECK_UP2: JB UP,CHECK_LEFT2

AJMP SET_INV

CHECK_LEFT2: JB LEFT,CHECK_RIGHT0

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK_RIGHT0

MOV A, #01H

LCALL WRITE_CMD

RET

SET_TIME_DEF_CHAR:

MOV A, #01H

LCALL WRITE_CMD

MOV A, #81H

LCALL WRITE_CMD

MOV DPTR,#CHAR_TIME

ACALL WRITE_STRING

ACALL LCD_DELAY

MOV A,#3CH ; activate second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV A,#0C7H ;JUMP TO SECOND LINE

ACALL WRITE CMD

ACALL LCD_DELAY

DI_CHAR:

SETB PSW. 4

SETB PSW. 3

COM1: CJNE R2,#1D,COM2

CLR PSW. 3

CLR PSW. 4

COM11:

MOV A,#0C7H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#D2

ACALL WRITE_STRING

ACALL LCD_DELAY

SETB PSW. 4

SETB PSW. 3

MOV R2,#1D

CJNE R3,#0D,DWN1

CLR PSW. 3

CLR PSW. 4

CHECK_LEFT31: JB LEFT,CHECK_UP31

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK_UP31

MOV A, #01H

LCALL WRITE_CMD

DWN1: RET

CHECK_UP31: JB UP,CHECK_LEFT31

LCALL DELAY_FOR_10SEC

AJMP COM22

COM2: CJNE R2,#2D,COM3

CLR PSW. 3

CLR PSW. 4

COM22: MOV A,#0C7H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#D4

ACALL WRITE_STRING

ACALL LCD_DELAY

SETB PSW. 4

SETB PSW. 3

MOV R2,#2D

CJNE R3,#0D,DWN2

CLR PSW. 3

CLR PSW. 4

CHECK_LEFT32:JB LEFT,CHECK_UP32

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK_UP32

MOV A, #01H

LCALL WRITE_CMD

DWN2: RET

CHECK_UP32: JB UP,CHECK_DOWN32

LCALL DELAY_FOR_10SEC

AJMP COM33

CHECK_DOWN32: JB DOWN,CHECK_LEFT32

LCALL DELAY_FOR_10SEC

AJMP COM11

COM3: CJNE R2,#3D,COM4

CLR PSW. 3

CLR PSW. 4

COM33: MOV A,#0C7H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#D5

ACALL WRITE_STRING

ACALL LCD_DELAY

SETB PSW. 4

SETB PSW. 3

MOV R2,#3D

CJNE R3,#0D,DWN3

CLR PSW. 3

CLR PSW. 4

CHECK_LEFT33: JB LEFT,CHECK_UP33

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK_UP33

MOV A, #01H

LCALL WRITE_CMD

DWN3: RET

CHECK_UP33: JB UP,CHECK_DOWN33

LCALL DELAY_FOR_10SEC

AJMP COM44

CHECK_DOWN33: JB DOWN,CHECK_LEFT33

LCALL DELAY_FOR_10SEC

AJMP COM22

COM4: CJNE R2,#4D,COM5

CLR PSW. 3

CLR PSW. 4

COM44: MOV A,#0C7H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#D10

ACALL WRITE_STRING

ACALL LCD_DELAY

SETB PSW. 4

SETB PSW. 3

MOV R2,#4D

CJNE R3,#0D,DWN4

CLR PSW. 3

CLR PSW. 4

CHECK_LEFT34: JB LEFT,CHECK_UP34

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK_UP34

MOV A, #01H

LCALL WRITE_CMD

DWN4: RET

CHECK_UP34: JB UP,CHECK_DOWN34

LCALL DELAY_FOR_10SEC

AJMP COM55

CHECK_DOWN34: JB DOWN,CHECK_LEFT34

LCALL DELAY_FOR_10SEC

AJMP COM33

COM5: CJNE R2,#5D,COM6

CLR PSW. 3

CLR PSW. 4

COM55: MOV A,#0C7H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#D15

ACALL WRITE_STRING

ACALL LCD_DELAY

SETB PSW. 4

SETB PSW. 3

MOV R2,#5D

CJNE R3,#0D,DWN5

CLR PSW. 3

CLR PSW. 4

CHECK_LEFT35: JB LEFT,CHECK_UP35

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK_UP35

MOV A, #01H

LCALL WRITE_CMD

DWN5: RET

CHECK_UP35: JB UP,CHECK_DOWN35

LCALL DELAY_FOR_10SEC

AJMP COM66

CHECK_DOWN35: JB DOWN,CHECK_LEFT35

LCALL DELAY_FOR_10SEC

AJMP COM44

COM6: CJNE R2,#6D,COM111

CLR PSW. 3

CLR PSW. 4

COM66: MOV A,#0C7H ;jump to second line

ACALL WRITE_CMD

ACALL LCD_DELAY

MOV DPTR,#D20

LCALL WRITE_STRING

LCALL LCD_DELAY

SETB PSW. 4

SETB PSW. 3

MOV R2,#6D

CJNE R3,#0D,DWN6

CLR PSW. 3

CLR PSW. 4

CHECK_LEFT36: JB LEFT,CHECK_DOWN36

LCALL DELAY_FOR_10SEC

JB LEFT, CHECK DOWN36

MOV A, #01H

LCALL WRITE_CMD

DWN6: RET

CHECK_DOWN36: JB DOWN,CHECK_LEFT36

LCALL DELAY_FOR_10SEC

LJMP COM55

COM111: LJMP COM1

RET

SET_VALUE_REGISTER_DISPLAY:

SETB PSW. 4

MOV A, RO ; display the digit before decimal point

ADD A, #30H

LCALL WRITE_CHAR

ACALL LCD_DELAY

MOV A, #2EH

ACALL WRITE_CHAR

ACALL LCD_DELAY

MOV A, R5 ;display the digit before decimal point

ADD A, #30H

LCALL WRITE_CHAR

ACALL LCD_DELAY

SETB PSW. 3

MOV A, R5 ; display the digit before decimal point

ADD A, #30H

LCALL WRITE_CHAR

ACALL LCD_DELAY

CLR PSW. 4

CLR PSW. 3

RET

DISPLAY_R10:

SETB PSW. 4

SETB PSW. 3

MOV A, R5 ;display the 2ND digit after decimal point

ADD A, #30H

LCALL WRITE_CHAR

ACALL LCD_DELAY

CLR PSW. 4

CLR PSW. 3

RET

DISPLAY_R5: SETB PSW. 4

MOV A, R5 ; display the digit after decimal point

ADD A, #30H

LCALL WRITE_CHAR

ACALL LCD_DELAY

CLR PSW. 4

RET

DISPLAY_R0: SETB PSW. 4

MOV A, R3 ;display the digit before decimal point

ADD A, #30H

LCALL WRITE_CHAR

ACALL LCD_DELAY

CLR PSW. 4

RET

DISPLAY_2E: MOV A, #2EH ;display the decimal point

ACALL WRITE_CHAR

ACALL LCD_DELAY

RET

DELAY_FOR_10SEC: MOV R4,#50D

LL3: MOV R0, #50H

LL2: MOV R1, #55H

LL1: DJNZ R1, LL1

DJNZ R0, LL2

DJNZ R4,LL3

MOV R4,#0D

RET

TRIP DELAY FOR 2SEC: MOV R4,#25D

LL32: MOV R0, #100H

LL22: MOV R1, #183H

LL12: DJNZ R1, LL12

SETB FAULT_IND

DJNZ R0, LL22

CLR FAULT_IND

DJNZ R4,LL32

MOV R4,#0D

MOV R0,#0D

MOV R1,#0D

RET

TRIP_DELAY_FOR_5SEC:

MOV R4,#100D

LL35: MOV R0, #199H

LL25: MOV R1, #184H

LL15: DJNZ R1, LL15

DJNZ R0, LL25

SETB FAULT IND

DJNZ R4,LL35

MOV R4,#0D

MOV R0,#0D

MOV R1,#0D

RET

RSTG: DB "CSET.:",0

RSTG2: DB "I:",0

RSTS: DB "TSET.:",0

RSTS2: DB "T:",0

RSTGNEXTPAGE: DB "OVER CURRENT:",0

CROSSED SP: DB "Fault in Line ",0

CROSSED_SP2: DB "Current I:",0

NOT_CROSSED_SP: DB "No Fault in Line ",0

DISPLAY_MAIN_SCREEN:DB "Current:",0

CHAR1: DB "SET RELAR CHAR. ",0

CHAR_TYPE_INV: DB "Inverse",0

CHAR_TYPE_DEF: DB "Definite",0

CHAR_TIME: DB "SET DEF. TIME",0

D2: DB "2 Sec",0

D4: DB "4 Sec",0

D5: DB "5 Sec",0

D10: DB "10 Sec",0

D15: DB "15 Sec",0

D20: DB "20 Sec",0

MAIN: MOV R3, #0H ;default max amplitude

MOV P1, #0FFH ;set p1 input port

MOV P0, #0H ;set p0 output port

LCALL INITIALIZE_LCD

LCALL DISPLAY_CURRENT

LCALL FIND_MAX_AMPLITUDE

LCALL RMS_FIND

LCALL DISPLAY

LCALL COMPARE_WITH_SET_VALUE

JB RIGHT, NEXT_LINE ;right key not pressed

LCALL RELAY_SETTING

NEXT_LINE: MOV A,#80H

LCALL WRITE_CMD

AJMP MAIN

END