Rank-76355 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 76355

General information

Number of lines	5
Number of points	11
Number of singular points	0
Number of Eckardt points	1
Number of double points	3
Number of single points	6
Number of points off lines	1
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{5}
Type of lines on points	$3, 2^3, 1^6, 0$

Singular Points

The surface has 0 singular points:

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_4 = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\begin{split} &\ell_2 = \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_7 = \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_7 = \mathbf{Pl}(1,0,0,0,0,1)_{20} \\ &\ell_3 = \left[\begin{array}{ccccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{34} = \left[\begin{array}{ccccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{34} = \mathbf{Pl}(0,1,0,0,0,0)_1 \\ &\ell_4 = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right]_{18} = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right]_{18} = \mathbf{Pl}(0,1,1,0,0,0)_4 \end{split}$$

Rank of lines: (0, 4, 7, 34, 18)

Rank of points on Klein quadric: (0, 2, 20, 1, 4)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0). T = 6$$

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

 $P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$

$$P_6 = (1,0,1,0) = \ell_1 \cap \ell_2$$

Single Points

The surface has 6 single points:

The single points on the surface are:

$$0: P_3 = (0,0,0,1)$$
 lies on line ℓ_3

1: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

2: $P_8 = (1, 1, 1, 0)$ lies on line ℓ_2

3: $P_9 = (1, 0, 0, 1)$ lies on line ℓ_4

The single points on the surface are:

4: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_3 5: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_4

Points on surface but on no line

The surface has 1 points not on any line:

The points on the surface but not on lines are:

$$0: P_{14} = (0, 1, 1, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} 01234 \\ \hline 001100 \\ 110111 \\ 211000 \\ 301001 \\ 401010 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_6	P_2	P_2

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1
in point	P_1	P_6

Line 3 intersects

Line	ℓ_1	ℓ_4
in point	P_2	P_2

Line 4 intersects

Line	ℓ_1	ℓ_3
in point	P_2	P_2

The surface has 11 points:

The points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$

 $4: P_5 = (1, 1, 0, 0)$

 $8: P_{12} = (0, 0, 1, 1)$

 $1: P_1 = (0, 1, 0, 0)$ $2: P_2 = (0, 0, 1, 0)$ $3: P_3 = (0, 0, 0, 1)$

 $5: P_6 = (1, 0, 1, 0)$ $6: P_8 = (1, 1, 1, 0)$ $7: P_9 = (1, 0, 0, 1)$

9: $P_{13} = (1, 0, 1, 1)$ 10: $P_{14} = (0, 1, 1, 1)$