Solution

1. As long as the inflation rate for all of the cash flows are the same, then use of the real interest rate makes it unnecessary to adjust future cash flows to reflect any price changes due to inflation.

2.

Common										
Cost of Capital	(i)	5%	5%							
Economic Life	(N, yr)	5	5							
Annual Demand	(q/yr)	12,000	12,000							
Project		Toyota	Dodge							
Investment Cost	(IV, \$)	28,000	18,000			A	В	С	D	
Salvage Percentage		40%	20%		1	Common				
	(C)(f)				2	Cost of Capital	(i)	0.05	=C2	
Salvage Value	(SV, \$)	11,200	3,600		3	Economic Life	(N, yr)	5	=C3	
Eff. Investment Cost	(IV ^{eff} , \$)	19,225	15,179		4	Annual Demand	(q/yr)	12000	=C4	
Cost Cap Recovery	(CCR, \$/yr)	4,440	3,506		5	Project		Toyota	Dode	00
					7	Investment Cost	(/V, \$)	28000	18000	,,,
	(41.)	0.44	0.47		8	Salvage Percentage	(, -,	0.4	0.2	
Oper Cost per Unit	(\$/q)	0.11	0.17		9	Salvage Value	(SV, \$)	=C7*C8	=D7*D8	
Operating Cost	(OC, \$/yr)	1,313	2,000		10	Eff. Investment Cost	(IVeff, \$)	=C7-C9*(1+C2)^(-C3)	=D7-D9*(1+D2)^(-D3)	
					11	Cost Cap Recovery	(CCR, \$/yr)	=C10*(C2/(1-(1+C2)^(-C3)))	=D10*(D2/(1-(1+D2)^(-D3)))	
A					12					
Analysis					13	Oper Cost per Unit	(\$/q)	=3.5/32	=3.5/21	
PV of OC	(\$)	5,682	8,659		14	Operating Cost	(OC, \$/yr)	=C13*C4	=D13*D4	
NPV (PV of OC + IV^{eff})	(\$)	24,906.95	23,838.26	(a)	15 16	Analysis				
NAV (OC + CCR)	(\$/yr)	5,753	5,506	(a)	17	PV of OC	(\$)	=C14*((1 - (1 + C2)^(-C3))/C2)=D14*((1 - (1 + D2)^(-D3))/D3	2)
14AV (00+0)	(7/ y ·)	3,733	3,300	(u)	18	NPV (PV of OC + IVeff)	(\$)	=C10+C17	=D10+D17	(
					19	NAV (OC + CCR)	(\$/yr)	=C11+C14	=D11+D14	(8
Fixed Cost	(F, \$/yr)	4,440	3,506		20					
Variable Cost	(V, \$/q)	0.11	0.17		21	Fixed Cost	(F, \$/yr)	=C11	=D11	
		0.11		(1-)	22	Variable Cost	(V, \$/q)	=C13	=D13	
Indiff Point	(q/yr)		16,308	(a)	23	Indiff Point	(q/yr)		=(D21 - C21)/(C22 - D22)	(k

Cost of Capital	(r)	12%	12%		
Economic Life	(N, yr)	15	15		
Annual Demand	(q/yr)	7,500	7,500		
Labor Rate	(<i>L</i> , \$/hr)	\$8.00	\$8.00		
Project		MM	AM	Net	
Investment Cost	(IV,\$)	\$4,000	\$15,000	(\$11,000)	
Salvage Value	(SV, \$)	\$0	\$7,500		
Eff. Investment Cost	(IV ^{eff} , \$)	4,000	13,630	(9,630)	
Cost Cap Recovery	(CCR, \$/yr)	587.30	2,001.18	(1,413.88)	
Process Time	(min/q)	5.00	2.00	3.00	
Labor Cost per Unit	(\$/q)	0.67	0.27	0.40	
Material Cost per Unit	(\$/q)	0.50	0.50	0.00	
Oper Cost per Unit	(\$/q)	1.17	0.77	0.40	
Operating Cost	(OC, \$/yr)	8,750.00	5,750.00	3,000.00	
PV of OC	(\$)	59,595.06	39,162.47	20,432.59	
Analysis					
Payback Period (Net IV / Net OC)	(yr)			3.67	(a)
Total One-Time Cost (IV^{eff} + PV of OC)	(\$)	63,595.06	52,792.25	10,802.82	(b)
Total Per-Period Cost (CCR + OC)	(\$/yr)	9,337.30	7,751.18	1,586.12	
Average Cost	(AC, \$/q)	1.24	1.03		(c)
Cost Indifference Point	(q)			3534.7121	(d)

Δ	Α	В	С	D	E	
1						
2	Cost of Capital	(r)	0.12	=C2		
3	Economic Life	(N, yr)	15	=C3		
4	Annual Demand	(q/yr)	7500	=C4		
5	Labor Rate	(L, \$/hr)	8	=C5		
6						
7	Project		MM	AM	Net	
8	Investment Cost	(IV,\$)	4000	15000	=C8-D8	
9	Salvage Value	(SV, \$)	0	7500		
10	Eff. Investment Cost	(/V ^{eff} , \$)	=C8-C9*(1+C2)^(-C3)	=D8-D9*(1+D2)^(-D3)	=C10-D10	
11	Cost Cap Recovery	(CCR, \$/yr)	=C10*(C2/(1-(1+C2)^(-C3)))	=D10*(D2/(1-(1+D2)^(-D3)))	=C11-D11	
12						
13	Process Time	(min/q)	5	2	=C13-D13	
14	Labor Cost per Unit	(\$/q)	=C13*C5/60	=D13*D5/60	=C14-D14	
15	Material Cost per Unit	(\$/q)	0.5	0.5	=C15-D15	
16	Oper Cost per Unit	(\$/q)	=C15+C14	=D15+D14	=C16-D16	
17	Operating Cost	(OC, \$/yr)	=C16*C4	=D16*D4	=C17-D17	
18	PV of OC	(\$)	=C17*((1-(1+C2)^(-C3))/C2)	=D17*((1-(1+D2)^(-D3))/D2)	=C18-D18	
19						
20	Analysis					
21	Payback Period (Net /V / Net OC)	(yr)			=ABS(E8/E17)	(a)
22	Total One-Time Cost (IV ^{eff} + PV of OC)	(\$)	=C18+C10	=D18+D10	=E18+E10	(b)
23	Total Per-Period Cost (CCR + OC)	(\$/yr)	=C11+C17	=D11+D17	=E11+E17	
24	Average Cost	(AC, \$/q)	=C23/C4	=D23/D4		(c)
25						
26	Cost Indifference Point	(q)			=(D11-C11)/(C16-D16)	(d)

6. Long, infrequent ones are more disruptive since additional WIP needs to be carried in order to cover the disruption (i.e., keep from shutting down the line), which increases the CT needed for a given TH; more specifically, a higher MTTR increases c_e^2 , which increases tCT, which increases WIP.

7.
$$\left[\frac{\left(\frac{21,809}{112} \right) 42}{3200} \right] = \left[2.55574 \right] = 3 \text{ levels}$$

8.
$$r_d = 12 \text{ q/hr}, \quad p = \$100/\text{q}, \quad t_g = 1 \text{ hr}, \quad x_g = 0.1$$

$$k_{\text{man}} = \$2/\text{q}, \quad c_{\text{man}} = \$50/\text{q}, \quad g_{\text{man}} = \frac{px_g}{\left(p - c_{\text{man}}\right)t_g} = \frac{100(0.1)}{\left(100 - 50\right)1} = 0.2$$

$$r_{e,\text{man}}^* = r_d + \sqrt{\frac{\left(p - c_{\text{man}}\right)g_{\text{man}}r_d}{k_{\text{man}}}} = 19.75 \text{ q/hr}$$

$$TP_{\text{man}} = \left(p - c_{\text{man}}\right)\left[1 - g_{\text{man}}t_{CT}(r_{e,\text{man}}^*)\right]r_d - k_{\text{man}}r_{e,\text{man}}^* = \$545.02/\text{hr}$$

$$k_{\text{auto}} = \$8/\text{q}, \quad c_{\text{auto}} = \$45/\text{q}, \quad g_{\text{auto}} = 0.1818, \quad r_{e,\text{auto}}^* = 15.87 \text{ q/hr}, \quad TP_{\text{auto}} = \$502.03/\text{hr}$$

$$m = 1, \quad t_e = \frac{30}{60} = 0.5 \text{ hr/q} \Rightarrow r_e = \frac{m}{t_e} = \frac{1}{0.5} = 2 \text{ q/hr}$$

$$K = \$850,000/\text{yr}, \quad u = 0.85, \quad H = 4000 \text{ hr/yr}, \quad q_{FG}^{\text{max}} = 7.$$

$$k = \frac{(K/H)}{r_e} = \$106.25/\text{q}, \quad c = \$250/\text{q}, \quad p = \$450/\text{q}$$

$$t_h = \frac{H}{12} = 333.33 \text{ hr}, \quad x_h = 0.8 \Rightarrow h = \frac{x_h}{t_h} = 0.0024$$

$$t_g = 48 \text{ hr}, \quad x_g = 0.2$$

$$\Rightarrow g = \frac{px_g}{(p-c)t_g} = \frac{450(0.2)}{(450-250)48} = 0.0094$$

$$r_d = u \cdot r_e = (0.85)2 = 1.70 \text{ q/hr}$$

$$\pi_0 = \frac{1 - \frac{r_e}{r_d}}{1 - \left(\frac{r_e}{r_d}\right)^d} = \frac{1 - \frac{2}{1.7}}{1 - \left(\frac{2}{1.7}\right)^{2+1}} = 0.28086$$

$$t_{CT} = \left(\frac{r_a}{r_e - r_a}\right) \left(\frac{1}{r_e}\right) + \left(\frac{1}{r_e}\right)$$

$$= \left(\frac{1.7}{2-1.7}\right) \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) = 3.3333$$

$$q_{FG} = \pi_0 \sum_{i=1}^{q_{RG}} i \left(\frac{r_e}{r_d}\right)^i = 0.28086 \left[\frac{2}{1.7} + 2\left(\frac{2}{1.7}\right)^2\right] = 1.10787$$

$$TP = (p-c) \left[1 - \pi_0 + \pi_0 \left(1 - gt_{CT}\right)\right] r_d - (k+c)hq_{FG} - kr_e$$

$$= (450 - 250)$$

$$\times \left[1 - 0.28086 + 0.28086 \left(1 - 0.0094(3.3333)\right)\right] 1.7$$

$$- (106.25 + 250) 0.0024(1.10787) - 106.25(2)$$

$$= \$123.57/\text{hr}$$

 $TP_{UB} = (p - c - k)r_d = (450 - 250 - 106.25)1.70 = 159.38 /hı

Sale Price	(p,\$/q)	450	
Cost Cap Recovery	(K, \$/yr)	850,000	
Annual Operating Hours	(H, hr/yr)	4,000	
Eff. Process time	(t _e , hr/q)	0.50	
Capacity	(r _e , q/hr)	2.00	
Known Utilization	(u)	0.85	
Capital Cost per Unit	(k, \$/q)	106.25	
Oper Cost per Unit	(c,\$/q)	250	
Unit Sales Price	(p, \$/q)	450	
Unit Operating Cost	(c, \$/q)	250	
Unit Capital Cost	(k, \$/q)	106.25	
Delay Time	(t _g , hr)	48.00	
Percent Price Reduction	(x_g)	0.2	
Discount Factor	(g)	0.0094	
Obsolescence time	(t _h , hr)	333.33	
Percent Value Reduction	(x_h)	0.8	
Inventory Carrying Rate	(h)	0.0024	
Demand Rate	(r _d , q/hr)	1.70	
Effective Production Rate	(r _e , q/hr)	2.00	
Maximum FGI	(q^{max}_{FG})	2	
Probability Out of FGI	(π_0)	0.280855	
Cycle Time	(t _{CT})	3.333333	
Average FGI Level	(q _{FG})	1.107872	
Total Profit	(TP, \$)	123.57	(a)
Upper Bound on TP	(<i>TP</i> _{UB} , \$)	159.375	(b)
Utilization	(u)	0.85	

		MTTR = 5	MTTR = 4	Net
Arrival Rate	(<i>r_a</i> , q/hr)	25	25	
Natural Process Time	$(t_0, hr/q)$	0.0833333	0.0833333	
MTTF	(hr)	20	20	
MTTR	(hr)	5	4	
Availability	(A)	0.8	0.8333333	
Effective Process Time	(t_e, hr)	0.1041667	0.1	
Number of M/C	(m)	3	3	
Utilization	(u)	0.8680556	0.8333333	
Yield	(y)	0.8	0.8	
Departure Rate (r _a *y)	(r _d , q/hr)	20	20	
M/C Cost	(\$)	2000	2000	
W/S Cost	(\$)	6000	6000	
Annual Hours of Operation (H)	(hr/yr)	2000	2000	
Repair Hours $(r_a^*(t_e - t_0)^*H)$	(m-hr/yr)	1041.6667	833.33333	208.333
Hourly Repair Cost	(\$/hr)	18	18	18
Annual Repair Cost	(\$/yr)	18750	15000	3750
Hours to Reconfigure	(hr)			35
Investment Cost	(\$)			630
Payback Period	(yr)			0.168
	(month)			2.016

W/S		1						
Arrival Rate	(r a/hr)							
		11.70471						
Arrival SCV	(C ² a)	1						
Natural Process Time	$(t_0, hr/q)$	0.2						
Natural Process SCV	(c^{2}_{0})	0						
MTTF	(hr)	15		1	А	В	C	
MTTR	(hr)	2		1	W/S		1	
Repair Time SCV	`	0		2	Arrival Rate		=C15/C14	
·	, .,	U		3	Arrival SCV		1	
Availability	(A)	0.882353		4	Natural Process Time		=12/60	
Effective Process Time	$(t_e, hr/q)$	0.226667		5	Natural Process SCV MTTF		0 15	
Eff Process Time SCV	(c ² _e)	1.038062		7	MTTR		2	
Number of M/C	(m)	3		8	Repair Time SCV		0	
		0.00000		9	Availability		=IF(ISBLANK(C6), 1, C6/(C6 + C7))	
Utilization	(u)	0.888889		10	Effective Process Time			
Yield	(y)	0.85		11	Eff Process Time SCV	,	=C5+(1+C8)*C9*(1-C9)*C7/C4	
Departure Rate $(r_a * y)$	(r . a/hr)	10		12	Number of M/C		=FLOOR(C2*C10 + 1,1)	
				13	Utilization		=C2*C10/C12	
Departure SCV	(c ² _d)	1.017363		14	Yield	07	0.85	
Cycle Time in Queue	(CT_q, hr)	0.558686		15 16	Departure Rate (r _a *y) Departure SCV		10 =1 + (1 - C13^2)*(C3 - 1) + (C13^2/SQRT(C12))*(C11 - 1)	
Cycle Time at W/S	(CT, hr)	0.785353		17			=((C3 + C11)/2)*((C13^(SQRT(2*(C12 + 1)) - 1))/(C12*(1 - C13)))*C10	
		6.572775		18	Cycle Time at W/S			a)
WIP in Queue $(r_a * CT_q)$				19	WIP in Queue (r_a*CT_q)		=C2*C17	Ť
WIP at W/S	(q)	9.239442	(b)	20	WIP at W/S	(q)	=C2*C18 (b)

			Ва	se	
W/S		1	2	3	Total
Arrival Rate	(<i>r_a</i> , q/hr)	19.8142	16.8421	16	
Natural Process Time	$(t_0, hr/q)$	0.3	0.11667	0.18333	
Natural Process SCV	(c^{2}_{0})	1	1	1	
MTTF	(hr)				
MTTR	(hr)				
Availability	(A)	1	1	1	
Effective Process Time	$(t_e, hr/q)$	0.3	0.11667	0.18333	
Number of M/C	(<i>m</i>)	6	2	3	
Utilization	(u)	0.99071	0.98246	0.97778	
Yield	(y)	0.85	0.95	0.75	
Departure Rate $(r_a * y)$	$(r_d, q/hr)$	16.8421	16	12	
M/C Cost	(\$000)	65	250	120	
W/S Cost	(\$000)	390	500	360	1,250

A	Α	В	С	D	E	F
1				Base		
2	W/S		1	2	3	Total
3	Arrival Rate	$(r_a, q/hr)$	=C13/C12	=D13/D12	=E13/E12	
4	Natural Process Time	$(t_0, hr/q)$	=18/60	=7/60	=11/60	
5	Natural Process SCV	(c ² ₀)	1	1	1	
6	MTTF	(hr)				
7	MTTR	(hr)				
8	Availability	(A)	=IF(ISBLANK(C6), 1, C6/(C6 + C7))	=IF(ISBLANK(D6), 1	=IF(ISBLANK(E6), 1,	
9	Effective Process Time	$(t_e, hr/q)$	=C4/C8	=D4/D8	=E4/E8	
10	Number of M/C	(m)	=FLOOR(C3*C9 + 1,1)	=FLOOR(D3*D9 + 1,	=FLOOR(E3*E9 + 1,	
11	Utilization	(u)	=C3*C9/C10	=D3*D9/D10	=E3*E9/E10	
12	Yield	(y)	0.85	0.95	0.75	
13	Departure Rate (r _a *y)	$(r_d, q/hr)$	=D3	=E3	12	
14	M/C Cost	(\$000)	65	250	120	
15	W/S Cost	(\$000)	=C14*C10	=D14*D10	=E14*E10	=SUM(C15:E15)

W/S			
Arrival Rate	$(r_a, q/hr)$	30	
Arrival STD	(σ ^a , hr)	0.05	
Arrival SCV	(c ² _a)	2.25	
Natural Process Time	$(t_0, hr/q)$	0.133333333	
Natural Process SCV	(c_0^2)	0	
MTTF	(hr)	20	
MTTR	(hr)	4	
Repair Time SCV	(c^2_r)	1	
Availability	(A)	0.833333333	
Effective Process Time	$(t_e, hr/q)$	0.16	
Eff Process Time SCV	(c ² _e)	8.333333333	
Number of M/C	(m)	5	
Utilization	(u)	0.96	
Yield	(y)	0.8	
Departure Rate $(r_a * y)$	$(r_d, q/hr)$	24	
Departure SCV	(c^2_d)	4.120448364	
Cycle Time in Queue	(CT_q, hr)	3.828220838	
WIP in Queue (r_a*CT_q)	(q)	114.8466251	
Conveyor Length per Unit	(ft)	2.5	
Min Conveyor Length	(ft)	287.1165629	(a)
Cube per Unit	(ft ³)	10	
Scrap per Hour	(q)	6	
Scrap per Shift	(q)	48	
Min Bin Volume	(ft ³)	480	(d)

	А	В	C	
1				
2	W/S			
3	Arrival Rate	$(r_a, q/hr)$	=C17/C16	
4	Arrival STD	(σ ^a , hr)	=3/60	
5	Arrival SCV	(c ² a)	=C4^2*C3^2	
6	Natural Process Time	$(t_0, hr/q)$	=8/60	
7	Natural Process SCV	(c^{2}_{0})	0	
8	MTTF	(hr)	20	
9	MTTR	(hr)	4	
10	Repair Time SCV	(c^2_r)	1	
11	Availability	(A)	=IF(ISBLANK(C8), 1, C8/(C8 + C9))	
12	Effective Process Time	$(t_e, hr/q)$	=C6/C11	
13	Eff Process Time SCV	(c ² _e)	=C7+(1+C10)*C11*(1-C11)*C9/C6	
14	Number of M/C	(m)	=FLOOR(C3*C12 + 1,1)	
15	Utilization	(u)	=C3*C12/C14	
16	Yield	(y)	0.8	_
17	Departure Rate (r _a *y)	(r _d , q/hr)	24	
18	Departure SCV	(c ² _d)	=1 + (1 - C15^2)*(C5 - 1) + (C15^2/SQRT(C14))*(C13 - 1)	
19	Cycle Time in Queue	(CT_q, hr)	=((C5 + C13)/2)*((C15^(SQRT(2*(C14 + 1)) - 1))/(C14*(1 - C15)))*C12	
20	WIP in Queue (r_a*CT_q)	(q)	=C3*C19	
21	Conveyor Length per Unit	(ft)	2.5	
22	Min Conveyor Length	(ft)	=C20*C21	(a)
23	Cube per Unit	(ft ³)	10	
24	Scrap per Hour	(q)	=C3-C17	
25	Scrap per Shift	(q)	=C24*8	
26	Min Bin Volume	(ft ³)	=C23*C25	(d)