AMSC 714

NUMERICAL METHODS FOR STATIONARY PDEs

HOMEWORK # 3 (Pbs 1-2 due Th March 27, Pbs 3-5 due Th April 3)

1 (20 pts). Approximation with smooth functions: Let $u \in W_p^1(\Omega)$ with $1 \le p \le \infty$ and dimension $d \ge 1$. Let $\rho \in C_0^{\infty}(\mathbb{R}^d)$ be a mollifier with properties:

supp
$$\rho = B_1$$
, $\rho \ge 0$, $\int_{B_1} \rho = 1$,

where $B_1 = B_1(0)$ is the unit ball centered at the origin. Let $\rho_{\varepsilon}(x) = \varepsilon^{-d} \rho(\varepsilon^{-1}x)$ and u_{ε} be defined as

$$u_{\varepsilon}(x) = \int_{\Omega} u(x-y)\rho_{\varepsilon}(y)dy \quad \forall x \in K,$$

where K is a compact set of Ω and ε is sufficiently small so that $B_{\varepsilon}(x) \subset \Omega$ for all $x \in K$. Show the error estimate

$$||u - u_{\varepsilon}||_{L^{p}(K)} \leq C\varepsilon |u|_{W_{n}^{1}(\Omega)}.$$

2 (25 pts). Equivalent norms (Deni-Lions): Consider the Sobolev space $W_p^{k+1}(\Omega)$ with $k \geq 0, 1 \leq p \leq \infty$ and a Lipschitz domain Ω in $\mathbf{R}^{\mathbf{d}}$. Let $\{f_i\}_{i=1}^N$ be linear continuous functionals in $W_p^{k+1}(\Omega)$ such that for any polynomial $v \in \mathbb{P}_k$ of degree $\leq k$:

$$f_i(v) = 0 \quad \forall 1 \le i \le N = \dim \mathbb{P}_k \qquad \Longleftrightarrow \qquad v = 0$$

(a) Show that $||v||_{W_n^{k+1}(\Omega)}$ is equivalent to the seminorm

$$|v|_{W_p^{k+1}(\Omega)} + \sum_{i=1}^N |f_i(v)|.$$

Hint: Proceed by contradiction assuming that there is a sequence $\{v_n\} \subset W_p^{k+1}(\Omega)$ such that $\|v_n\|_{W_p^{k+1}(\Omega)} = 1$ but the latter seminorm tends to 0. Use that $W_p^{k+1}(\Omega)$ is compactly imbedded in $W_p^k(\Omega)$ (Rellich Theorem), namely that each bounded sequence in $W_p^{k+1}(\Omega)$ admits a convergence subsequence in $W_p^k(\Omega)$.

(b) Use (a) to deduce the polynomial interpolation bound

$$\inf_{q \in \mathbb{P}_{+}} \|v - q\|_{W_{p}^{k+1}(\Omega)} \le C(\Omega) |v|_{W_{p}^{k+1}(\Omega)} \quad \forall v \in W_{p}^{k+1}(\Omega).$$

3 (15 pts). Nonhomogeneous Dirichlet Problem: Given a bounded Lipschitz domain Ω in $\mathbf{R}^{\mathbf{n}}$, and $g \in H^1(\Omega), f \in H^{-1}(\Omega)$, set

$$L(v) = \langle f, v \rangle - \int_{\Omega} \nabla g \nabla v \qquad \forall \ v \in H^1(\Omega).$$

(a) Prove that there exists a unique solution to the variational problem

$$z \in H_0^1(\Omega): \qquad \int_{\Omega} \nabla z \nabla v = L(v) \qquad \forall \ v \in H_0^1(\Omega).$$

- (b) Show that such a problem is equivalent to the minimization of $J(v) = \int_{\Omega} \frac{1}{2} |\nabla v|^2 \langle f, v \rangle$ over the subspace $V = \{v \in H^1(\Omega) : v g \in H^1_0(\Omega)\}$.
- (c) Prove that u=z+g formally solves $-\Delta u=f$ in Ω with boundary condition u=g on $\partial\Omega$.

4 (25 pts). Third boundary value problem: Given $f \in L^2(\Omega), g \in H^2(\Omega)$ and $0 < P_1 \le p \le P_2$ on $\partial\Omega$, consider the Robin problem

$$-\Delta u = f$$
 in Ω , $\partial_{\nu} u + p(u - g) = 0$ on $\partial \Omega$,

1

- (a) Find a variational formulation which amounts to solving this problem.
- (b) Show that Lax-Milgram theorem applies and conclude that there exists a unique solution $u \in H^1(\Omega)$. To this end, show that the bilinear form is coercive in $H^1(\Omega)$.
- (c) Suppose that $p = \epsilon^{-1} \to \infty$ and denote the corresponding solution by u_{ϵ} . Determine the boundary value problem satisfied by $u_0 = \lim_{\epsilon \to 0} u_{\epsilon}$.
- (d) Derive an error estimate for $||u_{\epsilon} u_0||_{H^1(\Omega)}$.

5 (15 pts). Darcy's flow. Let u be the pressure and $\sigma = -K\nabla u$ be the flux of the model problem for flow in porous media, which can be written as

$$K^{-1}\sigma + \nabla u = 0$$
, div $\sigma = f$.

- (a) Let $\mathbb{V} = H_0(\operatorname{div};\Omega) := \{\tau \in [L^2(\Omega)]^d : \operatorname{div} \tau \in L^2(\Omega), \tau \cdot \nu = 0 \text{ on } \partial\Omega\}$ and $Q = L_0^2(\Omega) := \{v \in L^2(\Omega) : \int_{\Omega} v = 0\}$. Write a variational formulation for this problem, and show that the inf-sup condition is satisfied.
- (b) Deduce existence, uniqueness, and stability of the solution pair (u, σ) . Hint: Apply Brezzi's Theory for saddle point problems.