Formal Lab Measuring g

Physics 4A

Connor Darling

Lab Partner: Yoon Lee

October 2022

Contents

1	Purpose	2
	1.1 What is the purpose of this lab	2
	1.2 What are you trying to measure	2
2	Theory	3
	2.1 Give a description of the theory involved for this particular lab	3
3	Procedure	4
	3.1 Describe the procedure of this lab with detail for duplication	4
4	Data	5
	4.1 This section should incluse all of the measured values. (no calculations)	_
	lations)	5 5
5	Analysis	6
	5.1 Include Values	6
6	Error Analysis and Procedural Errors	7
7	Conclusion	8
8	Suggestions for Improvement	9
9	Equations	10

Purpose

- 1.1 What is the purpose of this lab
- 1.2 What are you trying to measure

Theory

2.1 Give a description of the theory involved for this particular lab.

Procedure

3.1 Describe the procedure of this lab with detail for duplication

Data

- 4.1 This section should incluse all of the measured values. (no calculations)
- 4.2 Include error associated with measurements

Analysis

5.1 Include Values

calculated fron data, graphs, answers to Qs

Error Analysis and Procedural Errors

Conclusion

Suggestions for Improvement

Equations

In this case, percent error should be used because this is an experimental result being compared to the accepted known value of $g=9.8\frac{m}{s^2}$

$$3/8" \ ball: \ \%error = \frac{|E-K|}{K} * 100\%$$
 (9.1)

$$= \% \text{error for } 0.200 m = \frac{|9.819 \frac{m}{s^2} - 9.755 \frac{m}{s^2}|}{9.755 \frac{m}{s^2}} * 100\% = 0.71\% (0.707\%) \quad (9.2)$$

$$= \% \text{error for } 0.400 m = \frac{|9.819 \frac{m}{s^2} - 9.726 \frac{m}{s^2}|}{9.726 \frac{m}{s^2}} * 100\% = 0.96\% (0.956\%)$$
(9.3)

$$=\% \text{error for } 0.600 \\ m = \frac{|9.819 \frac{m}{s^2} - 9.841 \frac{m}{s^2}|}{9.841 \frac{m}{s^2}} * 100\% = 0.22\% \; (0.223\%) \quad (9.45) \\ m = \% \text{error for } 0.600 \\ m = \frac{|9.819 \frac{m}{s^2} - 9.841 \frac{m}{s^2}|}{9.841 \frac{m}{s^2}} * 100\% = 0.22\% \; (0.223\%)$$

= %error for
$$0.800m = \frac{|9.819\frac{m}{s^2} - 9.803\frac{m}{s^2}|}{9.803\frac{m}{c^2}} * 100\% = 0.16\% (0.163\%)$$
 (9.5)

$$=\% \text{error for } 1.000 m = \frac{|9.819 \frac{m}{s^2} - 9.794 \frac{m}{s^2}|}{9.794 \frac{m}{s^2}} * 100\% = 0.26\% (0.255\%) \quad (9.6)$$

1/2"
$$ball:$$
 $\%error = \frac{|E - K|}{K} * 100\%$ (9.7)

= %error for
$$0.200m = \frac{|9.824\frac{m}{s^2} - 9.824\frac{m}{s^2}|}{9.824\frac{m}{s^2}} * 100\% = 0.38\% (0.375\%)$$
 (9.8)

$$= \% \text{error for } 0.400 m = \frac{|9.824 \frac{m}{s^2} - 9.877 \frac{m}{s^2}|}{9.877 \frac{m}{s^2}|} * 100\% = 0.54\% (0.537\%) \quad (9.9)$$

$$=\% \text{error for } 0.600 \\ m = \frac{|9.824 \frac{m}{s^2} - 9.880 \frac{m}{s^2}|}{9.880 \frac{m}{s^2}} * 100\% = 0.57\% \; (0.567\%) \quad (9.10)$$

$$=\% \text{error for } 0.800 \\ m = \frac{|9.824 \frac{m}{s^2} - 9.837 \frac{m}{s^2}|}{9.837 \frac{m}{s^2}} * 100\% = 0.13\% \; (0.132\%) \quad (9.11)$$

$$= \% \text{error for } 1.000 m = \frac{|9.824 \frac{m}{s^2} - 9.837 \frac{m}{s^2}|}{9.837 \frac{m}{s^2}} * 100\% = 0.13\% (0.132\%) \quad (9.12)$$