kaviyadevi 20106064

In [1]: #to import libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

In [7]: #to import dataset

data1=pd.read_csv(r"C:\Users\user\Downloads\21_cities - 21_cities.csv")

data1

Out[7]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_r
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghan
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghan
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghan
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghan
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghan
150449	131496	Redcliff	1957	MI	Midlands Province	247	ZW	Zimba
150450	131502	Shangani	1957	MI	Midlands Province	247	ZW	Zimba
150451	131503	Shurugwi	1957	MI	Midlands Province	247	ZW	Zimba
150452	131504	Shurugwi District	1957	MI	Midlands Province	247	ZW	Zimba
150453	131508	Zvishavane District	1957	MI	Midlands Province	247	ZW	Zimbi
150454 rows × 11 columns								
4								

In [9]: #to display top 5 rows
 data=data1.head(100)
 data

Out[9]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_name	
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanistan	3
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanistan	3
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanistan	3
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanistan	3
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanistan	3
95	180	Bashkia Po l içan	629	BR	Berat District	3	AL	Albania	4
96	186	Bashkia Skrapar	629	BR	Berat District	3	AL	Albania	4
97	191	Berat	629	BR	Berat District	3	AL	Albania	4
98	280	Çorovodë	629	BR	Berat District	3	AL	Albania	4
99	219	Kuçovë	629	BR	Berat District	3	AL	Albania	4

100 rows × 11 columns

DATA CLEANING AND PREPROCESSING

```
In [10]:
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 100 entries, 0 to 99
          Data columns (total 11 columns):
                               Non-Null Count
                                                Dtype
                               ______
                _____
                                                ----
           0
               id
                               100 non-null
                                                int64
           1
                               100 non-null
                                                object
               name
           2
                               100 non-null
                                                int64
               state_id
           3
               state_code
                               100 non-null
                                                object
           4
               state_name
                               100 non-null
                                                object
           5
               country_id
                               100 non-null
                                                int64
           6
               country code 100 non-null
                                                object
           7
               country_name 100 non-null
                                                object
           8
               latitude
                               100 non-null
                                                float64
           9
                               100 non-null
                                                float64
               longitude
           10 wikiDataId
                               100 non-null
                                                object
          dtypes: float64(2), int64(3), object(6)
          memory usage: 8.7+ KB
          #to display summary of statistics(here to know min max value)
In [11]:
          data.describe()
Out[11]:
                                                              longitude
                                state_id country_id
                                                     latitude
                         id
           count 100.000000
                             100.000000
                                         100.00000
                                                  100.000000
                                                             100.000000
                 103.190000
                            3626.360000
                                                   35.269691
           mean
                                          1.16000
                                                              63.111251
             std
                  38.269564
                             888.371175
                                          0.54532
                                                    2.385821
                                                              13.109976
             min
                  50.000000
                             629.000000
                                          1.00000
                                                   30.150000
                                                              19.840740
            25%
                  74.750000
                            3876.750000
                                          1.00000
                                                   34.079350
                                                              63.255742
            50%
                  99.500000
                            3886.000000
                                          1.00000
                                                   35.028155
                                                              66.726500
            75%
                 124.250000
                            3895.000000
                                          1.00000
                                                   36.714017
                                                              69.122600
                 280.000000
                            3902.000000
                                          3.00000
                                                   40.824920
                                                              73.349280
          #to display the column heading
In [12]:
          data.columns
Out[12]: Index(['id', 'name', 'state_id', 'state_code', 'state_name', 'country_id',
                  'country_code', 'country_name', 'latitude', 'longitude', 'wikiDataId'],
                dtype='object')
          #here there is no missing values (identified through info() 5000 data are describ
In [13]:
```

EDA and DATA VISUALIZATION

In [14]: sns.pairplot(data)

Out[14]: <seaborn.axisgrid.PairGrid at 0x2b549449fd0>

In [16]: | sns.distplot(data['longitude'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[16]: <AxesSubplot:xlabel='longitude', ylabel='Density'>


```
In [19]: sns.heatmap(df.corr())
```

Out[19]: <AxesSubplot:>

TO TRAIN MODEL

Out[28]:

	Co-efficient
id	0.002659
state_id	0.033507
country_id	28.899066
latitude	0.732341

```
In [29]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[29]: <matplotlib.collections.PathCollection at 0x2b54cd6dd30>


```
In [30]: print(lr.score(x_test,y_test))
```

0.9599527718020827

RIDGE AND LASSO REGRESSION

```
In [31]: from sklearn.linear_model import Ridge,Lasso
In [32]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[32]: Ridge(alpha=10)
```

```
In [33]: |rr.score(x_test,y_test)
Out[33]: 0.9604153086778835
In [34]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[34]: Lasso(alpha=10)
In [35]: |la.score(x_test,y_test)
Out[35]: 0.9540482845272277
In [36]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[36]: ElasticNet()
In [37]: |print(en.coef_)
         [0.
                     0.015276
                                0.
                                            0.50928868]
In [38]: |print(en.predict(x_test))
         [68.20110764 64.93910898 20.08504898 65.25754173 65.89153263 19.95031157
          68.05127226 68.14922375 67.88081776 65.59016791 66.0234085 65.84871363
          66.65504228 66.56768443 66.36611705 68.1795468 66.33423956 66.71794076
          66.95541255 66.00036452 68.21670206 66.85726177 66.87652395 20.02439779
          66.5192296 67.91285911 67.85444679 67.36457729 67.13587855 66.71143205]
In [39]: |print(en.score(x_test,y_test))
```

0.9600554139069357

Evaluation metrics

MODEL SAVING ¶

```
In [44]: import pickle
In [45]: filename='predict5'
  pickle.dump(lr,open(filename,'wb'))
```