

Description

Features

- 30V, 20A
 - $R_{DS(ON)}$ <6m Ω @ V_{GS} =10V $R_{DS(ON)}$ <8.6m Ω @ V_{GS} =4.5V
- Advanced Trench Technology
- Provide Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM20N03-S8	VSM20N03	TAPING	SOP-8	13inch	4000	48000

Absolute Maximum Ratings (T_A =25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V_{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _A = 25℃	20	Α
		T _A = 100℃	13	Α
I_{DM}	Pulsed Drain Current note1		80	Α
E _{AS}	Single Pulsed Avalanche Energy note2		100	mJ
P _D	Power Dissipation	T _A = 25℃	4	W
R _{θJA}	Thermal Resistance, Junction to Ambient		31.3	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	30	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V,	-	-	1.0	μA		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA		
On Characteristics								
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}, I_{D}=250\mu A$	0.7	1.0	1.5	V		
В	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =20A	-	4.6	6	m O		
R _{DS(on)}	note3	V _{GS} =4.5V, I _D =10A	-	6.1	8.6	mΩ		
Dynamic C	Dynamic Characteristics							
C _{iss}	Input Capacitance	\\ -45\\\\ -0\\	-	1700	-	рF		
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1.0MHz	-	320	-	рF		
C _{rss}	Reverse Transfer Capacitance	I-I.UIVITZ	-	300	-	рF		
Qg	Total Gate Charge	\/ 45\/ L 40A	-	45	-	nC		
Q _{gs}	Gate-Source Charge	V_{DS} =15V, I_{D} =10A, V_{GS} =10V	-	3	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS-10V	-	15	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time	\\ _45\\	-	21	-	ns		
t _r	Turn-on Rise Time	V _{DS} =15V,	-	32	-	ns		
t _{d(off)}	Turn-off Delay Time	I_D =20A, R_{GEN} =3 Ω , V_{GS} =10 V	-	59	-	ns		
t _f	Turn-off Fall Time	VGS-10V	-	34	-	ns		
Drain-Soul	rce Diode Characteristics and Maxim	um Ratings						
	Maximum Continuous Drain to Source Diode Forward				20	۸		
Is	Current			_	20	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	80	Α		
V_{SD}	Drain to Source Diode Forward	V _{GS} =0V, I _S =20A	-	-	1.2	V		
V SD	Voltage	V GS-U V, 15-2UA						
trr	Body Diode Reverse Recovery Time		-	15	-	ns		
Qrr	Body Diode Reverse Recovery Charge	I _F =20A,dI/dt=100A/µs	-	4	-	nC		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\!\!\mathrm{C}$, VGS=15V, RG=25 $\!\Omega$, L=0.5mH, IAS=20A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms