Character Tables for Representations of Finite Groups

Jared Stewart

April 3, 2016

Table of contents

- Basics of Representation Theory
 - Motivation
 - Group Actions
 - The Definition of a Representation
 - Subrepresentations
- 2 Complete Reducibility

Motivation

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- **1** The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- ② The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

In these two examples, S_n acts on the set $\{1,\ldots,n\}$ and D_n acts on the regular n-gon in a natural manner. One may wonder more generally: Given an abstract group G, which objects X does G act on? This is the basic question of representation theory, which attempts to classify all such X up to isomorphism.

Group Actions

Definition

A **group** action of a group G on a set X is a map $\rho \colon G \times X \to X$ (written as $g \cdot x$, for all $g \in G$ and $x \in X$) that satisfies the following two axoims:

$$1 \cdot x = x \qquad \forall x \in X \tag{1}$$

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 $\forall g, h \in G, x \in X$ (2)

The Definition of a Representation

Definition

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is an action of G on V that preserves the linear structure of V, i.e. an action of G on V such that

$$g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2 \qquad \forall g \in G, v_1, v_2 \in V$$
 (3)

$$g \cdot (kv) = k(g \cdot v)$$
 $\forall g \in G, v \in V, k \in F$ (4)

Definition (Alternative definition)

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is any group homomorphism

$$\rho \colon G \to GL(V)$$
.

Proposition

The two definitions we have given of a linear representation are equivalent.

Proof.

- (
 ightarrow) Suppose that we have a homomorphism $\rho\colon G o GL(V)$. We can obtain a linear action of G on V by defining $g\cdot v=\rho(g)(v)$.
- (\leftarrow) Suppose that we have a linear action of G on V. We obtain a homomorphism $\rho\colon G\to GL(V)$ by defining $\rho(g)(v)=g\cdot v$.

The Dimension of a Representation

Definition

Let $\rho\colon G\to GL(V)$ be a representation of G. The **dimension** of the representation is the dimension of the vector space V.

Example

Let V be an n-dimensional vector space. The map $\rho \colon G \to GL(V)$ defined by $\rho(g) = \operatorname{Id}_V$ for all $g \in G$ is a representation of G called the **trival representation** of dimension n.

Example

If G is a finite group that acts on a finite set X, and F is any field, then there is an associated **permutation representation** on the vector space V over F with basis $\{e_x\colon x\in X\}$. We let G act on the basis elements by the permutation $g\cdot e_x=e_{gx}$ for all $x\in X$ and $g\in G$. This representation has dimension |X|.

Example

A special case of a permutation representation is that when a finite group acts on itself by left multiplication. We take the vector space V_{reg} which has a basis given by the formal symbols $\{e_g|g\in G\}$, and let $h\in G$ act by

$$\rho_{\mathsf{reg}}(h)(e_g) = e_{hg}.$$

This representation is called the **regular representation** of G, and has dimension |G|.

Example

For any symmetric group S_n , the **alternating representation** on $\mathbb C$ is given by the map

$$\rho \colon S_n \to GL(\mathbb{C}) = \mathbb{C}^{\times}$$
$$\sigma \mapsto \operatorname{sgn}(\sigma).$$

More generally, for any group G with a subgroup H of index 2, we can define an **alternating representation** $\rho\colon G\to GL(\mathbb{C})$ by letting $\rho(g)=1$ if $g\in H$ and $\rho(g)=-1$ if $g\notin H$. (We recover our original example by taking $G=S_n$ and $H=A_n$.)

G-linear maps

Definition

A **homomorphism** between two representations $\rho_1 \colon G \to GL(V)$ and $\rho_2 \colon G \to GL(W)$ is a linear map $\psi \colon V \to W$ that interwines with the action of G, i.e. such that

$$\psi \circ \rho_1(g) = \rho_2(g) \circ \psi \quad \forall g \in G.$$

In this case, we also refer to ψ as a **G-linear map**.

Definition

An **isomorphism** of representations is a G-linear map that is also invertible.

Representations as matrices

Example

Given any representation (ρ,V) , where V is a vector space of dimension n over the field K, we can fix a basis for V to obtain an isomorphism of vector spaces $\psi\colon V\to K^n$. This yields a representation ϕ of G on K^n by defining

$$\phi(g) = \psi \circ \rho(g) \circ \psi^{-1}$$

for all $g \in G$. This representation is isomorphic to our original representation (ρ,V) . In particular, we can always choose to view complex n-dimensional representations of G as representations on \mathbb{C}^n , where each $\phi(g)$ is given by an $n \times n$ matrix with entries in \mathbb{C} .

Representations as matrices

Example

Let $G = \{(1), (123), (132)\} \subset S_3$. Let $V = \mathbb{C}^3$. Then G acts on the standard basis by $g \cdot e_i = e_{gi}$. Thus, the permutation representation of G (with respect to the standard basis) is given by:

$$\rho((1)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\rho((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\rho((132)) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Let $G = C_2 \times C_2 = \langle \sigma, \tau | \sigma^2 = \tau^2 = e, \sigma\tau = \tau\sigma \rangle$ be the Klein four-group. Let V be the vector space with basis $\{b_e, b_\sigma, b_\tau, b_{\sigma\tau}\}$. Left multiplication by σ gives a permutation

$$b_{e} \mapsto b_{\sigma}$$

$$b_{\sigma} \mapsto b_{e}$$

$$b_{\tau} \mapsto b_{\sigma\tau}$$

$$b_{\sigma\tau} \mapsto b_{\tau}.$$

We can similarly compute $\rho_{\rm reg}(\tau)$. Thus, in our basis, the regular representation $\rho_{\rm reg}\colon G\to GL(V)$ is given by the matrices

$$\rho_{\mathsf{reg}}(\sigma) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \rho_{\mathsf{reg}}(\tau) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Let $G=D_4=\langle\sigma,\tau|\sigma^4=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the symmetry group of the square.

Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1), (1,-1), (-1,-1), and (-1,1).

Let $G=D_4=\langle \sigma,\tau|\sigma^4=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1),(1,-1),(-1,-1), and (-1,1). We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x-axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 .

Let $G=D_4=\langle \sigma,\tau|\sigma^4=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1),(1,-1),(-1,-1), and (-1,1). We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x-axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 . Under the standard basis, we get the matrices:

$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\rho(\sigma) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \rho(\sigma\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\rho(\sigma^2) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \qquad \rho(\sigma^2\tau) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\rho(\sigma^3) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \qquad \rho(\sigma^3\tau) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Subrepresentations

Definition

A subrepresentation of V is a G-invariant subspace $W\subseteq V$; that is, a subspace $W\subseteq V$ with the property that $\rho(g)(w)\in W$ for all $g\in G$ and $w\in W$. Note that W itself is a representation of G under the action $\rho(g)\upharpoonright_W$.

Representations of C^2

Example

Let $G=C_2=\langle \tau|\tau^2=e\rangle$ be the cyclic group of order 2. The regular representation of G written in the standard basis is given by

$$\rho_{\mathsf{reg}}(\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

and $\rho_{\rm reg}(e)={\rm Id}_2.$ Let $\rho_{\rm sgn}$ be the alternating representation of G on $\mathbb C$, i.e.

$$\rho_{sgn} \colon G \to GL_1(\mathbb{C}) = \mathbb{C}^{\times}$$
$$\tau \mapsto -1$$
$$e \mapsto 1.$$

Representations of C^2

Example (Cont.)

Let $f \colon \mathbb{C}^2 \to \mathbb{C}$ be the linear map represented by the matrix

$$\begin{bmatrix} 1 & -1 \end{bmatrix}$$
. Then for any $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{C}^2$, we have

$$f \circ \rho_{\mathsf{reg}}(\tau)(x) = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \rho_{\mathsf{sgn}}(\tau) \circ f(x).$$

Also note that $f\circ \rho_{\rm reg}(e)=\rho_{\rm sgn}(e)\circ f$. Thus f is a G-linear map from $\rho_{\rm reg}$ to $\rho_{\rm sgn}$ (i.e. a homomorphism of representations).

Representations of C^2

Example (Cont.)

Now let W be the subspace of \mathbb{C}^2 spanned by the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Then

$$\rho_{\mathsf{reg}}(\tau) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and $\rho_{\text{reg}}(e) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so W is a G-invariant subpace, i.e. W is a subrepresentation of ρ_{reg} . Note that W is precisely equal to the kernel of the map f, and that W is isomorphic to the 1-dimensional trivial representation of G.

We can generalize the G-invariant subspace from the previous example. Suppose we have a representation $\rho\colon G\to GL_n(\mathbb{C})$. If we can find a vector $x\in\mathbb{C}^n$ which is an eigenvector for every matrix $\rho(g),g\in G$, i.e. an $x\in\mathbb{C}^n$ such that

$$\rho(g)(x) = \lambda_g(x) \quad \forall g \in G$$

for some eigenvalues $\lambda_g \in \mathbb{C}$, then the span of x is a 1-dimensional G-invariant subspace of \mathbb{C}^n . It is isomorphic to the 1-dimensional representation

$$\rho_2 \colon G \to GL_1(\mathbb{C})$$
$$g \mapsto \lambda_q.$$

Proposition

Let $f\colon V\to W$ be a homomorphism of representations of G. Then $\operatorname{Ker}(f)$ is a subrepresentation of V and $\operatorname{Im}(f)$ is a subrepresentation of W.

Proof.

- Let $x \in \text{Ker}(f)$. Then 0 = g0 = gf(x) = f(gx) for every $g \in G$. So $gx \in \text{Ker}(f)$ and Ker(f) is G-invariant.
- Now let $w \in \operatorname{Im}(f)$. There exists $v \in V$ such that w = f(v), so gw = gf(v) = f(gv) for every $g \in G$. Thus $gw \in \operatorname{Im}(f)$, and $\operatorname{Im}(f)$ is G-invariant.

The direct sum of representations

Note

We know from linear algebra that given two vector spaces V and W, we can form the **direct sum** $V \oplus W$ consisting of ordered pairs (v,w) where $v \in V, w \in W$.

The direct sum of representations

Note

We know from linear algebra that given two vector spaces V and W, we can form the **direct sum** $V \oplus W$ consisting of ordered pairs (v,w) where $v \in V, w \in W$.

Definition

Let V and W be representations of G. Then $V\oplus W$ admits a natural representation of G, called the **direct sum representation** of V and W, which we define by

$$\rho_{V \oplus W} \colon G \to GL(V \oplus W)$$
$$\rho_{V \oplus W}(g) \colon (x, y) \mapsto (\rho_V(g)(x), \rho_W(g)(y)).$$

Irreducible representations and complete reducibility

Definition

A representation is said to be **irreducible** if it has no subrepresentations other than the trivial subrepresentations $0 \subset V$ and $V \subset V$. A representation is called **completely reducible** if it decomposes into a direct sum of irreducible representations.

Note

- Any 1-dimensional representation V has no subspaces other than 0 and V itself, and is thus irreducible.
- ② Any irreducible representation is, in particular, completely reducible.

Example (A 2-dimensional irreducible representation)

Let $G=D_3=\langle \sigma,\tau|\sigma^3=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$. (Note that $D_3\cong S_3$). Consider the regular triangle centered at the origin with vertices

$$(1,0), (-\frac{1}{2}, \frac{\sqrt{3}}{2}), (-\frac{1}{2}, -\frac{\sqrt{3}}{2}).$$

We can let σ act as rotation by $\frac{2\pi}{3}$ and let τ act as reflection over the x-axis to obtain an action of G on \mathbb{C}^2 given (under the standard basis) by the matrices

$$\rho(\sigma) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
$$\rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Example (A 2-dimensional irreducible representation cont.)

Suppose ρ has a non-trivial subrepresentation W. We must have dim W=1. Since W is invariant under the action of both $\rho(\sigma)$ and $\rho(\tau)$, there must be some mutual eigenvector for $\rho(\sigma)$ and $\rho(\tau)$ that spans W. The eigenvectors of $\rho(\sigma)$ are

$$\begin{bmatrix} 1 \\ -i \end{bmatrix} \quad (\lambda_1 = e^{\frac{2\pi i}{3}}) \quad \text{and} \quad \begin{bmatrix} 1 \\ i \end{bmatrix} \quad (\lambda_2 = e^{-\frac{2\pi i}{3}}).$$

The eigenvectors of $\rho(\tau)$ are

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (\lambda_1 = 1) \quad \text{and} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (\lambda_2 = -1).$$

Thus we see that there is no such ${\cal W}$, and our representation is irreducible.

Representations of finite abelian groups

Theorem

If A_1,A_2,\ldots,A_r are linear operators on V and each A_i is diagonalizable, then $\{A_i\}$ are simultaneously diagonalizable if and only if they commute.

Representations of finite abelian groups

Theorem

Every complex representation of a finite abelian group is completely reducible into irreducible representations of dimension 1.

Proof.

Take an arbitrary element $q \in G$. Since G is finite, we can find an integer n such that $q^n = 1$ and $\rho(q)^n = Id$. The minimal polynomial of $\rho(g)$ divides x^n-1 , which has n distinct roots over \mathbb{C} . So the minimal polynomial of $\rho(g)$ factors into linear factors only over \mathbb{C} , i.e. $\rho(q)$ is diagonalizable. We conclude that each $\rho(q)$ is (separately) diagonalizable since $q \in G$ was arbitrary. Now, given any two elements $g_1, g_2 \in G$ we have $\rho(q_1)\rho(q_2)=\rho(q_2)\rho(q_1)$. Since the matrices $\{\rho(q)\}$ commute, $\{\rho(q)\}\$ are simultaneously diagonalizable, say with basis $\{e_1,...,e_k\}$. Then we have $V=\mathbb{C}e_1\oplus\mathbb{C}e_2\oplus\ldots\oplus\mathbb{C}e_n$, with each subspace $\mathbb{C}e_1$ invariant under the action of G.

Definition

Let W be a subspace of V. A **linear projection** V onto W is a linear map $f\colon V\to W$ such that $f\restriction_W=\operatorname{Id}_W$. If W is a subrepresentation of V and the map f is G-invariant, then we say that f is a G-linear projection.

Lemma

Let $\rho\colon G\to GL(V)$ be a representation, and $W\subset V$ be a subrepresentation. Suppose we have a G-linear projection

$$f\colon V\to W$$
.

Then Ker(f) is a complementary subrepresentation to W, i.e. Ker(f) is a G-invariant subspace of V such that

$$V = \mathit{Ker}(f) \oplus W$$

Theorem (Maschke's Theorem)

Let G be a finite group and let F be a field such that $\operatorname{char}(F) \nmid |G|$. If V is any finite dimensional representation of G over F, and $W \subset V$ is a subrepresentation of V, then there exists a complementary subrepresentation $U \subset V$ to W, i.e. there is a G-invariant subspace $U \subset V$ such that

$$V = W \oplus U$$
.

Proof.

It will suffice to find a G-linear projection from V onto W. Fix a basis $\{b_1,\ldots,b_m\}$ for W and extend it to a basis $\{b_1,\ldots,b_m,b_{m+1},\ldots,b_n\}$ for V. Let $U=\langle b_{m+1},\ldots,b_n\rangle$. Then U is certainly a complementary subspace to W, and we have a natural projection $f\colon W\oplus U\to W$ of V onto W with kernel U. There is no reason to think that f should be G-linear, but we can fix this by averaging over G. Define $\widetilde{f}\colon V\to V$ by

$$\widetilde{f}(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}))(x).$$

We claim that \widetilde{f} is a G-linear projection from V onto W.

Proof.

First we check that $\operatorname{Im}(\tilde{f}) \subset W$. If $x \in V$ and $g \in G$, then

$$f(\rho(g^{-1})(x)) \in W$$

and so

$$\rho(g)(f(\rho(g^{-1})(x))) \in W$$

since W is G-invariant. Thus

$$\widetilde{f}(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}))(x) \in W.$$

Proof.

Next we check that $\widetilde{f}\upharpoonright_W=\operatorname{Id}_W$. Let $y\in W$. For any $g\in G$, we know that $\rho(g^{-1})(y)$ is also in W, so $f(\rho(g^{-1})(y))=\rho(g^{-1})(y)$. Then

$$\widetilde{f}(y) = \frac{1}{|G|} \sum_{g \in G} \rho(g) (f(\rho(g^{-1})(y)))$$

$$= \frac{1}{|G|} \sum_{g \in G} \rho(g) (\rho(g^{-1})(y))$$

$$= \frac{1}{|G|} \sum_{g \in G} (y) = \frac{|G|y}{|G|} = y$$

so indeed \widetilde{f} is a linear projection of V onto W.

Proof.

Finally, we check that \widetilde{f} is G-linear. If $x \in V$ and $h \in G$, then

$$(\widetilde{f} \circ \rho(h))(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}) \circ \rho(h))(x)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}h))(x)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\rho(hg) \circ f \circ \rho(g^{-1}))(x) \quad (g \mapsto hg)$$

$$= (\rho(h) \circ \widetilde{f})(x).$$