

- Decade + Experience Designing & Testing Rotorcraft
 Fly-by-Wire Flight Controls @ Boeing Philadelphia
- Dynamics, Controls & Aerodynamics Specialties
- Wife & 2 Kids

BDK: 2014-01-15

ESE 505 & MEAM 513: Introduction

My Professional Controls Design Experience

BDK: 2014-01-15

ESE 505 & MEAM 513: Introduction

How & Why to Contact Me

HOW

- Please Use PIAZZA
- bruce.d.kothmann@gmail.com
- Office = Towne 320
- MEAM Labs (GM Lab & M81): Very Frequent Lab Sections
- Cell Phone (Discretion Please) 610-529-9527
- Don't E-Mail Homework Unless Assignment Says You Should

WHY

- Get Help with Lecture / Homework
- Comments on Course
- Share Fun Stories / Questions About Controls

ESE 505 & MEAM 513: Introduction

Goals of Class

- Familiarity with Key Ideas & Results of "Classical Control"
 - Time Domain
 - Frequency Domain
 - What Do I Want My New Boeing Colleagues to Know?
- Ability to Design & Analyze Typical Student Projects
 - Mechatronics
 - Senior Design
- Development of Good Engineering Skills & Habits
- Have Fun Studying Really Interesting Stuff

Syllabus (Details on Blackboard)

- Part I = Modeling & Mathematics
- Part II = Time-Domain Dynamics & Control
 - Time Response
 - PID Control
 - Root Locus
- Part III = Frequency-Domain Dynamics & Control
 - Frequency Response
 - System Requirements & Design
 - Stability Margins
- Part IV = Brief Intro to "Modern Control"

Course Elements

- Lectures (Mon & Wed)
 - Some Demonstrations
 - Mostly Theory with Examples
 - Please Ask Questions!
- Reading Assignments
 - Textbook (Franklin) ~ Continuous
 - Technical Papers ~ Sometimes
- Homework (Weekly)
 - Lots of MATLAB / SIMULINK
 - Mostly "Textbook" Problems; Some "Discussion" Problems
- Projects (2) (Details TBA)
- Weekly Quizzes (Wednesday)
 - Not Intended to be Difficult (5 Multiple Choice Questions)
 - Cover Previous Week's Lectures & Reading
- Exams = Midterm & Final

Approximate Course Grading

- 30% = Final Exam
- 15% = Midterm
- 10% = In-Class Quizzes
- 25% = Homework
 - Assigned Wednesday & Due Following Wednesday (Beg of Class)
 - 2 "Late Passes" Per Student (Worth One Class Extension)
 - "Rogue" Homework Accepted for 50% Credit (Not Graded)
- 15% = Projects
- 5% = Participation (Class & Piazza)
- Final Grades Based on "Floating Curve"
 - $\sim 45\% A$
 - ~45% B (Note: B- is a flavor of B)
 - ~10% C

ESE 505 & MEAM 513: Introduction

Academic Integrity

- Homework & Projects
 - Work Together (You Learn More That Way)
 - You MUST Understand What You Submit!
 - Don't Use Past Student's HW or Book Solution Manuals
- Exams & Quizzes
 - MUST Work Completely Independently
- My Experience
 - University of Virginia Honor Code
 - Penn's Office of Student Conduct
- Giving or Receiving Aid of Any Kind on Exam or Quiz
 - → F in Course & Referral to OSC

ESE 505 & MEAM 513: Introduction

Some Example Systems

Let's Talk Briefly About What We Think

Are Important Design Goals & Potential

Challenges in Achieving Them

Ping Pong Poise

ESE 505 & MEAM 513 : Introduction

System = Collection of Elements ("Blocks")

- "Input" and "Output" = Real-Valued Continuous Functions of Time
 - Attitude of a Satellite
 - Temperature in an Oven
 - Position of a Car's Accelerator Pedal
 - Voltage in a Circuit
- Element Defines Dynamic Relationship Between Input & Output
 - Algebraic
 - Differential Equation (Ordinary / Partial)
 - Other Dynamics Relationship

We Need Good Mathematical Tools Here

BDK: 2014-01-15

ESE 505 & MEAM 513: Introduction

Typical System Elements : Plant

ESE 505 & MEAM 513 : Introduction BDK : 2014-01-15 Page 13

Ping Pong Poise Elements: Plant

Other Example Plants

- Industrial Process
- Computer Disk Drives
- CD & DVD Players
- Missiles / Bombs
- Autonomous Vehicles
 - Unmanned Aerial Vehicles (UAVs)
 - Urban Grand Challenge
- Temperature (Oven / Refridgerator / Home)

ESE 505 & MEAM 513: Introduction

Typical System Elements : Actuator

ESE 505 & MEAM 513 : Introduction BDK : 2014-01-15 Page 16

Ping Pong Poise Elements : Actuator

ESE 505 & MEAM 513 : Introduction

Actuator: Hubble Reaction Wheel

ESE 505 & MEAM 513: Introduction

Actuator: MD-83 Elevator "Jackscrew"

Alaska Airlines Flight 261 31 January 2000

BDK: 2014-01-15

ESE 505 & MEAM 513 : Introduction

Typical System Elements : Sensor

ESE 505 & MEAM 513 : Introduction

Ping Pong Poise Elements : Sensor

ESE 505 & MEAM 513 : Introduction

Details of Optical Voltage Divider

Sensor: Angular Rate Gyro

ESE 505 & MEAM 513 : Introduction BDK : 2014-01-15 Page 23

Sensor : Attitude Gyro

BDK: 2014-01-15

Apollo Flight Director Attitude Indicator Assembly

ESE 505 & MEAM 513: Introduction

Typical System Elements: Inceptor

ESE 505 & MEAM 513 : Introduction

Ping Pong Poise Elements: No Inceptor

ESE 505 & MEAM 513: Introduction

Inceptor: Sidearm Controller

ESE 505 & MEAM 513: Introduction

Typical System Elements: Controller

ESE 505 & MEAM 513 : Introduction

Ping Pong Poise Elements : Controller

ESE 505 & MEAM 513 : Introduction

Important External Signals

Disturbance Affects Output P-P-P Example = Tilting the Disturbance Table or Blowing on Ball CONTROLLER ACTUATOR **PLANT INCEPTOR** Output **SENSOR** Noise Affects Measurement P-P-P Example = Shadows **Noise** Causing Spurious Voltage Changes

ESE 505 & MEAM 513 : Introduction

Analog Controllers

Op-Amp Circuit

Analog Filter Board

http://www.siliconbreakdown.com/msl/SSM1.html

ESE 505 & MEAM 513 : Introduction BDK : 2014-01-15 Page 31

Digital Controllers

NOTE: D/A & A/D Introduce <u>Time Delay</u> Critical Element of Control System Design & Analysis

ESE 505 & MEAM 513: Introduction

Typical Digital Controller Architecture

ESE 505 & MEAM 513 : Introduction

Automobile Speed Controller

ESE 505 & MEAM 513: Introduction

Space Telescope Pointing Controller

ESE 505 & MEAM 513: Introduction

Robotic Arm Controller

ESE 505 & MEAM 513: Introduction

Fly-By-Wire Aircraft Control System

ESE 505 & MEAM 513 : Introduction BDK : 2014-01-15

Page 41

Comanche 4-Axis Control Task

ESE 505 & MEAM 513: Introduction

Summary: Control Objectives & Requirements

- Performance Requirements
 - Command Response = Make Output Respond Properly to Inputs
 - Disturbance Rejection = Prevent Output from Responding to Disturbances
 - Noise Suppression = Prevent Output from Responding to Noise in Measurement
- Stability = Tendency to Remain in Steady Condition After Brief Excitation (Input / Disturbance / Noise)
- Robustness = Ability to Maintain Performance &
 Stability When System Elements (Plant / Actuator /
 Sensor) Change (or Are Different Than Model Used for Design)

ESE 505 & MEAM 513: Introduction