Planche nº 2. Révisions algèbre linéaire. Espaces vectoriels

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice no 1 (** I)

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E.

Montrer que : $[(F \cup G \text{ sous-espace de } E) \Leftrightarrow (F \subset G \text{ ou } G \subset F)].$

Exercice nº 2 (****)

Généralisation. Soient n un entier supérieur ou égal à 2 puis F_1, \ldots, F_n n sous-espaces de E où E est un espace vectoriel

 $\mathrm{sur} \ \mathrm{un} \ \mathrm{sous\text{-}corps} \ \mathbb{K} \ \mathrm{de} \ \mathbb{C}. \ \mathrm{Montrer} \ \mathrm{que} \ \left| (F_1 \cup ... \cup F_n \ \mathrm{sous\text{-}espace} \ \mathrm{de} \ E) \Leftrightarrow (\mathrm{il} \ \mathrm{existe} \ i \in [\![1,n]\!] / \ \bigcup_{j \neq i} F_j \subset F_i) \right|.$

Exercice nº 3 (** I)

 $E = \mathbb{K}^n$ où \mathbb{K} est un sous-corps de \mathbb{C} .

Soient $F = \{(x_1, ..., x_n) \in E / x_1 + ... + x_n = 0\}$ et G = Vect((1, ..., 1)). Montrer que F est un sous-espace vectoriel de E. Montrer que F et G sont supplémentaires dans E. Préciser le projeté d'un vecteur x de E sur F parallèlement à G et sur G parallèlement à F.

Techniques de démonstration d'indépendance (du n° 4 au n° 12).

Exercice nº 4 (**)

Les familles suivantes de \mathbb{R}^4 sont-elles libres ou liées? Fournir des relations de dépendance linéaire quand ces relations existent.

- 1) (e_1, e_2, e_3) où $e_1 = (3, 0, 1, -2), e_2 = (1, 5, 0, -1)$ et $e_3 = (7, 5, 2, 1)$.
- 2) (e_1, e_2, e_3, e_4) où $e_1 = (1, 1, 1, 1), e_2 = (1, 1, 1, -1), e_3 = (1, 1, -1, 1)$ et $e_4 = (1, -1, 1, 1)$.
- 3) (e_1, e_2, e_3, e_4) où $e_1 = (0, 0, 1, 0), e_2 = (0, 0, 0, 1), e_3 = (1, 0, 0, 0)$ et $e_4 = (0, 1, 0, 0)$.
- 4) (e_1, e_2, e_3, e_4) où $e_1 = (2, -1, 3, 1), e_2 = (1, 1, 1, 1), e_3 = (4, 1, 5, 3)$ et $e_4 = (1, -2, 2, 0)$.

Exercice nº 5 (***)

Montrer que $(1, \sqrt{2}, \sqrt{3})$ est une famille libre du \mathbb{Q} -espace vectoriel \mathbb{R} .

Exercice nº 6 (**)

Soit $f(x) = \ln(1+x)$ pour x réel positif. Soient $f_1 = f$, $f_2 = f \circ f$ et $f_3 = f \circ f \circ f$. Etudier la liberté de (f_1, f_2, f_3) dans $[0, +\infty[^{[0, +\infty[}$.

Exercice no 7 (**)

Soit $f_{\alpha}(x) = |x - \alpha|$ pour α et x réels. Etudier la liberté de la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$.

Exercice nº 8 (*** I)

On pose $f_{\alpha}(x) = e^{\alpha x}$ pour α et x réels. Etudier la liberté de la famille de fonctions $(f_{\alpha})_{\alpha \in \mathbb{R}}$.

Exercice nº 9 (**)

Montrer que toute famille de polynômes non nuls de degrés deux à deux distincts est libre.

Montrer que toute famille de polynômes non nuls de valuations deux à deux distinctes est libre.

Exercice no 10 (** I)

 $E = \mathbb{R}_n[X]$. Pour $0 \le k \le n$, on pose $P_k = X^k(1-X)^{n-k}$. Montrer que la famille $(P_k)_{0 \le k \le n}$ est une base de E.

Exercice nº 11 (**I) (Polynômes d'interpolation de LAGRANGE)

Soient $a_0,..., a_n$ n+1 nombres complexes deux à deux distincts et $b_0,..., b_n$ n+1 nombres complexes.

Montrer qu'il existe une unique famille de n+1 polynômes à coefficients complexes de degré n exactement vérifiant $\forall (i,j) \in [0,n]^2$, $L_i(a_i) = 1$ si i = j et 0 sinon.

Montrer que la famille $(L_i)_{0 \le i \le n}$ est une base de $\mathbb{C}_n[X]$.

Montrer qu'il existe un unique polynôme P de degré inférieur ou égal à n vérifiant $\forall i \in [0, n]$, $P(a_i) = b_i$. Expliciter P puis déterminer tous les polynômes vérifiant les égalités précédentes.

Refaire tout l'exercice en utilisant l'application $\varphi: \mathbb{C}_n[X] \to \mathbb{C}^{n+1}$.

P $\mapsto (P(\mathfrak{a}_0), \dots, P(\mathfrak{a}_n))$

Exercice nº 12 (**)

1) Calculer pour p et q entiers naturels donnés les intégrales suivantes :

$$J(p,q) = \int_0^{2\pi} \cos(px) \cos(qx) \ dx, \ K(p,q) = \int_0^{2\pi} \cos(px) \sin(qx) \ dx \ \text{et} \ L(p,q) = \int_0^{2\pi} \sin(px) \sin(qx) \ dx.$$

2) Montrer que la famille de fonctions $(\cos(px))_{p\in\mathbb{N}}\cup(\sin(qx))_{q\in\mathbb{N}^*}$ est libre.

Exercice nº 13 (***I)

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel de dimension finie sur $\mathbb{K}.$

Démontrer la relation de Grassman : $\dim(F + G) = \dim F + \dim G - \dim(F \cap G)$.

Exercice nº 14 (**)

Soient F, G et H trois sous-espaces d'un espace vectoriel E de dimension finie sur K.

 $\text{Montrer que}: \dim(F+G+H) \leqslant \dim F + \dim G + \dim H - \dim(F\cap G) - \dim(G\cap H) - \dim(H\cap F) + \dim(F\cap G\cap H).$ Trouver un exemple où l'inégalité est stricte.

Exercice nº 15 (***)

Soient F_1 , F_2 ,..., F_n n sous-espaces vectoriels d'un espace E de dimension finie sur \mathbb{K} $(n \ge 2)$.

Montrer que $\dim(F_1 + ... + F_n) \leq \dim F_1 + ... + \dim F_n$ avec égalité si et seulement si la somme est directe.

Exercice nº 16 (**I)

Soit E un K-espace vectoriel de dimension $n \ge 3$. Montrer que l'intersection de n-1 hyperplans de E est non nulle.

Exercice nº 17 (**)

Soient $(x_1,...,x_n)$ une famille de n vecteurs de rang r puis $(x_1,...,x_m)$ une sous famille de rang s $(m \le n$ et $s \le r)$. Montrer que $s \ge r + m - n$. Cas d'égalité?

Exercice nº 18 (**)

Soient E et F deux espaces vectoriels de dimension finie et soient f et g deux applications linéaires de E dans F. Montrer que $|\operatorname{rgf} - \operatorname{rgg}| \leq \operatorname{rg}(f+g) \leq \operatorname{rgf} + \operatorname{rgg}$.

Exercice no 19 (**)

Soient E, F et G, trois K-espaces vectoriels, tels que $\dim(E) < +\infty$ et $\dim(F) < +\infty$, puis $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Montrer que $\operatorname{rg}(f) + \operatorname{rg}(g) - \dim F \leqslant \operatorname{rg}(g \circ f) \leqslant \operatorname{Min}\{\operatorname{rg}(f), \operatorname{rg}(g)\}$.

Exercice nº 20 (***)

Soient E un espace de dimension finie et F et G deux sous-espaces de E. Condition nécessaire et suffisante sur F et G pour qu'il existe un endomorphisme f de E tel que F = Kerf et G = Imf.

Exercice nº 21 (***)

Soient E un espace vectoriel de dimension finie non nulle et f un endomorphisme de E.

Montrer que : 1) (f non injective) \Leftrightarrow (f = 0 ou f diviseur de zéro à gauche).

2) (f non surjective) \Leftrightarrow (f = 0 ou f diviseur de zéro à droite).

Exercice nº 22 (*** I)

Soient E un espace de dimension finie $\mathfrak n$ non nulle et f un endomorphisme nilpotent de E. Montrer que $\mathfrak f^{\mathfrak n}=\mathfrak 0$.

Exercice n° 23 (** I):

Soient E un \mathbb{C} -espace vectoriel non nul de dimension finie \mathfrak{n} et \mathfrak{f} un endomorphisme de E tel que $\forall x \in E, \exists p \in \mathbb{N}^*$ tel que $\mathfrak{f}^p(x) = 0$. Montrer que \mathfrak{f} est nilpotent.

Exercice nº 24 (** I) (Noyaux itérés)

Soient E un espace vectoriel et f un endomorphisme de E. Pour $k \in \mathbb{N}$, on pose $N_k = \mathrm{Ker}(f^k)$ et $I_k = \mathrm{Im}(f^k)$ puis $N = \bigcup_{k \in \mathbb{N}} N_k$ et $I = \bigcap_{k \in \mathbb{N}} I_k$. (N est le nilespace de f et I le cœur de f)

- 1) a) Montrer que les suites $(N_k)_{k\in\mathbb{N}}$ et $(I_k)_{k\in\mathbb{N}}$ sont respectivement croissante et décroissante pour l'inclusion.
 - b) Montrer que N et I sont stables par f.
 - c) Montrer que $\forall k \in \mathbb{N}, (N_k = N_{k+1}) \Rightarrow (N_{k+1} = N_{k+2}).$
- 2) On suppose de plus que $\dim(E) = n$, n entier naturel non nul.
 - a) Soit $A = \{k \in \mathbb{N} / N_k = N_{k+1}\}$ et $B = \{k \in \mathbb{N} / I_k = I_{k+1}\}$. Montrer qu'il existe un entier $p \leqslant n$
 - tel que $A = B = \{k \in \mathbb{N} / k \geqslant p\}.$
 - **b)** Montrer que $E = N_p \oplus I_p$.
 - c) Montrer que $f_{/N}$ est nilpotent et que $f_{/I} \in GL(I)$.
- 3) Trouver des exemples où a) A est vide et B est non vide b) A est non vide et B est vide.
- 4) Pour $k \in \mathbb{N}$, on pose $d_k = \dim(I_k)$. Montrer que la suite $(d_k d_{k+1})_{k \in \mathbb{N}}$ est décroissante. En déduire le sens de variation de la suite $(\dim(N_{k+1}) \dim(N_k))_{k \in \mathbb{N}}$.

Exercice nº 25 (*** I)

Soit E un espace vectoriel. Soit f un endomorphisme de E tel que pour tout vecteur x de E la famille (x, f(x)) soit liée. Montrer que f est une homothétie.

Exercice nº 26 (*** I)

Soit E un espace de dimension finie. Trouver les endomorphismes (resp. automorphismes) de E qui commutent avec tous les endomorphismes (resp. automorphismes) de E.

Exercice nº 27 (** I)

Soient p et q deux projecteurs d'un C-espace vectoriel E.

Montrer que $(p + q \text{ projecteur}) \Leftrightarrow (p \circ q = q \circ p = 0) \Leftrightarrow (\operatorname{Im}(p) \subset \operatorname{Ker}(q) \text{ et } \operatorname{Im}(q) \subset \operatorname{Ker}(p)).$

Dans le cas où p + q est un projecteur, déterminer Ker(p + q) et Im(p + q).

Exercice nº 28 (** I)

Soit E un espace de dimension finie. Montrer que la trace d'un projecteur est son rang.

Exercice nº 29 (****)

Soient p_1, \ldots, p_n n projecteurs d'un \mathbb{C} -espace de dimension finie. Montrer que $(p_1 + \ldots + p_n \text{ projecteur}) \Leftrightarrow \forall i \neq j, p_i \circ p_i = 0.$

Exercice nº 30 (***) (On suppose acquis le nº 28).

Soit E un \mathbb{C} -espace de dimension finie $n \in \mathbb{N}^*$. Soient p_1, \ldots, p_n, n projecteurs non nuls de E tels que $\forall i \neq j, p_i \circ p_j = 0$.

- 1) Montrer que tous les p_i sont de rang 1.
- 2) Soient q_1, \ldots, q_n n projecteurs vérifiant les mêmes égalités. Montrer qu'il existe un automorphisme f de E tel que $\forall i \in [1,n], \ q_i = f \circ p_i \circ f^{-1}$.

Exercice nº 31 (***)

Soit E un espace vectoriel. Soit G un sous-groupe fini de GL(E) de cardinal $\mathfrak n.$ Soit F un sous-espace de E stable par tous les éléments de G et $\mathfrak p$ un projecteur d'image F. Montrer que $\frac{1}{\mathfrak n}\sum_{g\in G}g\circ \mathfrak p\circ g^{-1}$ est un projecteur d'image F.

Exercice nº 32 (***)

Soit G un sous-groupe de GL(E) avec $\dim E = n$ et $\operatorname{card} G = p$. Soit $F = \{x \in E \mid \forall g \in G, \ g(x) = x\}$.

Montrer que $\dim(F) = \frac{1}{p} \sum_{\alpha \in G} \operatorname{Trg}$.

Exercice nº 33 (***)

Soient E un \mathbb{C} -espace vectoriel de dimension finie et f un endomorphisme de E. Montrer qu'il existe un projecteur p et un automorphisme g de E tel que $f = g \circ p$.

Exercice nº 34 (***):

Soient E et F deux K-espaces vectoriels de dimension finie et f une application linéaire de E vers F.

- 1) Montrer que $[(\forall q \in \mathcal{L}(F, E), f \circ q \circ f = 0 \Rightarrow q = 0) \Rightarrow f \text{ bijective}].$
- 2) On pose dimE = p, dimF = n et rgf = r. Calculer la dimension de $\{g \in \mathcal{L}(F, E) / f \circ g \circ f = 0\}$.