

FRAUDULENT CREDIT CARD TRANSACTION DETECTION

UNSUPERVISED USING KNN

Presented by: TEAM FBV

OUR MEMBERS

NAME	REGISTRATION NUMBER
Shivansh Kumar	20BCE11084
Karan Jadhav	20BCE10499
Aman Patel	20BCE10327
Deepak Kumar	20BAI10372

Classification – Unsupervised – KNN – Fraudulent credit card transactions

The dataset we will use contains transactions made by credit cards in September 2013 by European cardholders. The dataset has been collected and analyzed during a research collaboration of Worldline and the Machine Learning Group of ULB (Université Libre de Bruxelles) on big data mining and fraud detection.

The dataset contains 31 columns, only 3 columns make sense which are Time, Amount and Class (fraud or not fraud). If required use PCA to reduce unnecessary dimensions.

WHAT IS FRAUD?

Fraud is an act of deception used to illegally deprive another person or entity of money, property or legal rights.

"A typical organization loses 5% of their yearly revenues to frauds"

TYPES OF FRAUDS:

- 1. Online Fraud
- 2. Credit card Fraud
- 3. Threat
- 4. Theft of Inventory

Data Science Approaches for Fraud Detection

CHALLENGES OF FRAUD DETECTION MODEL

Unbalanced Data

Less than 0.5% credit card transactions are fraud

Operational Efficiency

Less than 8 sec to flag a transaction

Incorrect Flagging

Avoid harassing real customers

Dataset Analysis

Non-Fraud: 284315

Fraud: 492

The ratio of non-fraud to fraud is very high, that is our data is highly imbalanced.

So how to deal with imbalanced data?

DEALING WITH UNBALANCED DATA

01 RANDOM OVER-SAMPLING

- **02** RANDOM UNDER-SAMPLING
- **03 OVER SAMPLING MINORITY CLASS USING SMOTE**
- **04 ENSEMBLING**

05 FOCAL LOSS

RANDOM UNDER

RANDOM OVER SAMPLING

Generate a new sample from the current sample by simply duplicating them

99000

1000

OVER SAMPLING MINORITY CLASS USING SMOTE

99000

99000

1. Generate synthetic examples k nearest neighbors algorithm

2.SMOTE: Synthetic
Minority Over-sampling
Techinques

Ensemble Method

Majority Vote

OUR APPROCH TO WORK

Understanding _____ Dataset

Imbalanced Data

Data Wrangling

Removed Unnecessary features → Data — Visualization

Understanding data with graphs

Data Modeling → Evaluation

Sampling data and implementation using KNN

Testing data for best accuracy (recall sccore)

Data Visualization

Data Models

01 Under Sampling

[[96 52]

[60 88]]

```
y_undersampling_test.value_counts()
     148
    148
Name: Class, dtype: int64
knn=KNeighborsClassifier(n_neighbors=3,metric='minkowski',p=2)
knn=knn.fit(x_undersampling_train,np.ravel(y_undersampling_train))
y_pred=knn.predict(x_undersampling_test)
print("kNearest Neighbour")
print("Accuracy")
print(accuracy_score(y_undersampling_test, y_pred))
print(accuracy_score(y_undersampling_test, y_pred,normalize=False))
print("Confusion matrix")
conf_matrix=confusion_matrix(y_undersampling_test,y_pred)
print(conf_matrix)
kNearest Neighbour
Accuracy
0.6216216216216216
184
Confusion matrix
```

Recall score is important not precision!

	nnocicion			
	precision	Lecall	f1-score	support
9	0.62	0.65	0.63	148
1	0.63	0.59	0.61	148
accuracy			0.62	296
macro avg	0.62	0.62	0.62	296
weighted avg	0.62	0.62	0.62	296

Data Models

Over Sampling - SMOTE

```
In [44]: sm = SMOTE(sampling_strategy=1, random_state=2)
         X_train_large, y_train_large = sm.fit_resample(x_train, y_train)
         X_train_large.size
Out[44]: 279996
In [45]: knn=KNeighborsClassifier(n_neighbors=3,metric='minkowski',p=2)
         knn=knn.fit(X_train_large,y_train_large)
         y pred=knn.predict(x test)
         print("kNearest Neighbour")
         print("Accuracy")
         print(accuracy_score(y_test, y_pred))
         print(accuracy_score(y_test, y_pred,normalize=False))
         print("Confusion matrix")
         conf matrix=confusion matrix(y test,y pred)
         print(conf matrix)
         kNearest Neighbour
         Accuracy
         0.8308013798593605
         25047
         Confusion matrix
         [[24978 5023]
              78
                    69]]
```

Recall score is important not precision!

. ...

<pre>print(classification_report(y_test, y_pred))</pre>					
	precision	recall	f1-score	support	
0	1.00	0.83	0.91	30001	
1	0.01	0.47	0.03	147	
accuracy			0.83	30148	
macro avg	0.51	0.65	0.47	30148	
weighted avg	0.99	0.83	0.90	30148	

Thank you!

ML SPRINT FOR THIS GREAT OPPORTUNITY!