		SRM Institute of Science and Technology Kattankulathur	
		DEPARTMENT OF MEATHEMATICS	
		18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS	
		UNIT - V: Residue and Cauchy's residue theorem Tutorial Sheet 15	
	Sl.No.	Questions	Answer
Part – A			
1	Find the residues of $f(z) = \frac{z}{(z-1)^2}$ at the poles Find the residues of $f(z) = \frac{e^z}{z^2 + a^2}$ at $z = ai$ $2aie^{ai}$		
2	Find the residues	s of $f(z) = \frac{e^z}{z^2 + a^2}$ at $z = ai$	2aie ^{ai}
3	Find the residue of $f(z) = \frac{1 - e^z}{z^2}$.		-1
4	Find the residues of $f(z) = \frac{1}{(z^2 + 1)^2}$. Find the residue of $f(z) = \frac{1}{(z^2 + a^2)^2}$ at $z = ai$		$-\frac{i}{4}, -\frac{i}{4}$
5	Find the residue of $f(z) = \frac{1}{(z^2 + a^2)^2}$ at $z = ai$		$-\frac{i}{4a^3}$
Part – B			
6	Evaluate $\oint_C \frac{z}{z^2 + 1}$	$\left \frac{z-3}{-2z+5} dz \right $ where C is the circle $\left z+1-i \right = 2$	$\pi(i-2)$
7		residue theorem evaluate $\oint_C \frac{z \sec z}{1-z^2} dz$ where C is the	$-2\pi i \sec 1$
8	Show that $\int_0^{2\pi} \frac{1}{1+}$	$\frac{d\theta}{da\cos\theta} = \frac{2\pi}{\sqrt{1-a^2}}, (a^2 < 1).$	
9	Evaluate $\int_0^{2\pi} \frac{1}{13}$	$\frac{d\theta}{+5\sin\theta}$	$\frac{\pi}{6}$
10	Evaluate $\int_0^{2\pi} -$	$\frac{d\theta}{1 - 2a\cos\theta + a^2}, a^2 < 1$	$\frac{2\pi}{1-a^2}$