CWI Autumn School 2024: Numerical Methods for Bayesian Inverse Problems

Exercise Sheet 1

Exercise 1: Deconvolution. Let us consider a deconvolution problem and solve it numerically.

Fix $N \in \mathbb{N}$ and let X be the space of periodic sequences in \mathbb{C} , i.e.

$$X = \{(x_i)_{i \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}} : x_i = x_{i+N} \ \forall j \in \mathbb{Z}\}.$$

(This could arise, e.g., after discretising a continuous deconvolution problem on a uniform grid.) For $K \in X$ introduce the discrete convolution operator $T_K : X \to X$

$$(T_K f)_k = \sum_{j=0}^{N-1} K_{k-j} f_j \qquad \forall k \in \mathbb{Z}.$$

Furthermore denote by $\mathcal{F}_N: X \to X$ the discrete Fourier transform, i.e. for $f \in X$

$$(\mathcal{F}_N f)_k = \sum_{j=0}^{N-1} \exp\left(-2\pi i \frac{j \cdot k}{N}\right) f_j \quad \forall k \in \mathbb{Z}.$$

(a) Show that $\mathcal{F}_N^{-1}:X\to X$ is given through

$$(\mathcal{F}_N^{-1}f)_k = \frac{1}{N} \sum_{j=0}^{N-1} \exp\left(2\pi i \frac{j \cdot k}{N}\right) f_j.$$

(b) Show that

$$(\mathcal{F}_N T_K f)_k = (\mathcal{F}_N K)_k (\mathcal{F}_N f)_k \qquad \forall k \in \mathbb{Z}.$$

(c) Show that if $(\mathcal{F}_N K)_k \neq 0$ for all $k \in \{0, \dots, N-1\}$ then T_K is invertible and

$$(T_K^{-1}f)_k = \sum_{j=0}^{N-1} L_{k-j}f_j \qquad \forall k \in \mathbb{Z},$$

where $L \in X$ satisfies $(\mathcal{F}_N L)_k = 1/(\mathcal{F}_N K)_k$ for $k \in \{0, \dots, N-1\}$.

HINT: Consider $e_n := \sqrt{N} \mathcal{F}_N^{-1} b_n$, where $b_n = (\delta_{jn})_{j=0}^{N-1}$ and find a spectral decomposition of T_K (with a suitable inner product on X).

- (d) Implement a function convolution (K, f) that takes $(f_k)_{k=0}^{N-1}$ and returns $((T_k f)_k)_{k=0}^{N-1}$. Use the fast Fourier transform (FFT), e.g. the function numpy.fft.fft and its inverse numpy.fft.ifft in Python (or similar functions available in Matlab).
- (e) To regularise the deconvolution problem we use truncation (or hard-thresholding), i.e. we cut off the high frequencies by replacing L with L^{α} such that $(\mathcal{F}_N L^{\alpha})_k = g_{\alpha}((\mathcal{F}_N K)_k)$ with $g_{\alpha}(x) = 1/x$ if $|x| > \alpha$ and $g_{\alpha}(x) = 0$ otherwise.

The regularised inverse operator $T_{K,\alpha}^{\dagger}$ (replacing the ill-posed T_K^{-1}) is then defined as

$$(T_{K,\alpha}^{\dagger}f)_k = \sum_{j=0}^{N-1} L_{k-j}^{\alpha} f_j \qquad \forall k \in \mathbb{Z},$$

Implement a function deconvolution (K, g, a) that takes $(K_k)_{k=0}^{N-1}$, $(g_k)_{k=0}^{N-1}$ and α and returns $T_{\alpha}^{\dagger}g$.

(g) Test your code with the data $(f_k)_{k=0}^{N-1}$ provided in signal.txt (on Moodle) and use the following Gaussian kernel K:

```
import numpy as np
s = 100
gaussian = lambda x, s: np.exp(-s*x**2.)
K = gaussian(np.linspace(-1./2,1./2,N),s)
K = N*np.fft.ifftshift(K)/np.sum(K)
```

Plot f, $g=T_k f$ and the reconstructed signal $T_{\alpha}^{\dagger}g$ for $\alpha=10^{-11}$. Signal:

(h) Add noise to the signal via $g^\delta=g+\delta W$ with W being Gaussian noise, for example in Python W=np.random.randn (N). Plot $T_\alpha^\dagger g^\delta$ for $\delta\in\{10^{-10},10^{-12}\}$. Explain what you observe.