1

GATE-2023, EC-35

EE23BTECH11033- JASWANTH KILLANA

Question:

In the circuit shown below, switch S was closed for a long time. If the switch is opened at t=0, the maximum magnitude of the voltage V_R in volts is. (round off to nearest integer).

solution:

Fig. 0.

$$At, t = 0^- \tag{1}$$

inductor acts as wire apply KVL in big loop

$$-2 + 1i(0^{-}) = 0 (2)$$

$$i(0^-) = 2A \tag{3}$$

here after t=0,

parameter	description	value
$i(0^{-})$	current at $t < 0$	2
V_R	voltage across 2Ω	-2i(t)
L	inductance	1
i(t)	current in small loop after $t = 0$	$\frac{V_R}{2}$
I(s)	<i>i</i> (<i>t</i>) in laplace	_
TABLE 0		

INPUT PARAMETERS

KVL,

$$2i(t) + L\frac{di}{dt} \tag{4}$$

apply laplace transform,

$$2I(s) - Li(0^{-}) + LsI(s) = 0$$
 (5)

$$\implies I(s) = \frac{i(0^{-})}{s+2} \tag{6}$$

$$I(s) = \frac{\frac{s+2}{2}}{s+2} \tag{7}$$

applying inverse laplace transform

$$I(t) = 2 \cdot e^{-2t} \tag{8}$$

$$V_R = -2I(t) \tag{9}$$

$$\implies V_R = -4 \cdot e^{-2t} \tag{10}$$

As,

$$t \to 0$$
 (11)

$$e^{-2t} \to 1 \tag{12}$$

$$|V_R(max)| = 4 (13)$$

This is the simulation for Vr vs time

Fig. 0.

The magnitude of graph is max at t = 0 of magnitude 4V and then decreases with t. Which supports the solution by doing laplace transform method.