

Analyse Mathématique

Author: CatMono

Date: July, 2025

Version: 0.1

Contents

Preface		ii
Chapter	1 Preliminaries	1
1.1	Section Title	1
	1.1.1 Subsection Title	1
Chapter	2 Limits of Sequences and Continuity of Real Number System	2
2.1	Limits of Sequences	2
2.2	Criteria for Convergence	2
2.3	Substitution	2
2.4	Continuity of Real Number System	2
Chapter	3 Limits and Continuity of Functions	3
3.1	Limits of Functions	3
3.2	Continuous Functions	3
3.3	Infinitesimal and Infinite Quantities	3
3.4	Continuous Functions on Closed Intervals	3
3.5	Period Three Implies Chaos	3
3.6	Functional Equations	3
Chapter	4 Series of Numbers	4
Chapter	5 Series of Functions	5
Chapter	6 Power Series	6
Chapter	7 Limits and Continuity in Euclidean Spaces	7
Chapter	8 Multivariable Differential Calculus	8
8.1	Directional Derivatives and Total Differential	8
Chapter	9 Multiple Integrals	10

Preface

This is the preface of the book...

Chapter 1 Preliminaries

- 1.1 Section Title
- 1.1.1 Subsection Title

Chapter 2 Limits of Sequences and Continuity of Real Number System

- 2.1 Limits of Sequences
- 2.2 Criteria for Convergence
- 2.3 Substitution
- 2.4 Continuity of Real Number System

Chapter 3 Limits and Continuity of Functions

- 3.1 Limits of Functions
- 3.2 Continuous Functions
- 3.3 Infinitesimal and Infinite Quantities
- **3.4 Continuous Functions on Closed Intervals**
- 3.5 Period Three Implies Chaos
- 3.6 Functional Equations

Chapter 4 Series of Numbers

Chapter 5 Series of Functions

Chapter 6 Power Series

Chapter 7 Limits and Continuity in Euclidean Spaces

Chapter 8 Multivariable Differential Calculus

8.1 Directional Derivatives and Total Differential

Definition 8.1 (Directional Derivative)

Let $U \subseteq \mathbb{R}^n$ be an open set, $f: U \to \mathbb{R}^1$, e is a unit vector in \mathbb{R}^n , $x_0 \in U$. Define

$$u(t) = f(x_0 + t\mathbf{e}).$$

If the derivative of u at t = 0

$$u'(0) = \lim_{t \to 0} \frac{u(t) - u(0)}{t} = \lim_{t \to 0} \frac{f(x_0 + te) - f(x_0)}{t}$$

exists and is finite, it is called the **directional derivative** of f at x_0 in the direction e, denoted by $\frac{\partial f}{\partial e}(x_0)$. It is the rate of change of f at x_0 in the direction e.

Consider the following set of unit coordinate vectors: e_1, e_2, \dots, e_n . For a function f, the directional derivative of f at the point x_0 in the direction of e_i is called the ith first-order **partial derivative** of f at x_0 , denoted by

$$\frac{\partial f}{\partial x_i}(\boldsymbol{x}_0)$$
 or $\mathrm{D}_i f(\boldsymbol{x}_0)$.

 $D_i = \frac{\partial}{\partial x_i}$ is called the *i*th **partial differential operator** $(i=1,2,\cdots,n)$.

If the first-order partial derivative of f, $\frac{\partial f}{\partial x_i}$, itself possesses partial derivatives, then the second-order partial derivative of f is defined, and is denoted as follows:

$$f_{x_i x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right), \quad f_{x_i x_i} = \frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right), \quad i, j = 1, 2, \dots, n.$$

Similarly, higher-order partial derivatives of order $3, 4, \dots m, \dots$ can be defined.

Definition 8.2 (Jacobian Matrix (Gradient))

Let

$$\boldsymbol{J}f(\boldsymbol{x}) = (D_1 f(\boldsymbol{x}), D_2 f(\boldsymbol{x}), \dots, D_n f(\boldsymbol{x})),$$

which is called the **Jacobian matrix** of the function f at the point x, a $1 \times n$ matrix which corresponds to the first-order derivative of a single-variable function.

Henceforth, we represent the point x in \mathbb{R}^n and its increments h as column vectors. In this way, the differential of the function can be expressed using matrix multiplication as follows:

$$df(\boldsymbol{x}_0)(\boldsymbol{h}) = \boldsymbol{J}f(\boldsymbol{x}_0)\boldsymbol{h}.$$

The Jacobian matrix of the function f is also frequently denoted as $\operatorname{\mathbf{grad}} f$ (or ∇f), that is,

$$\operatorname{grad} f(\boldsymbol{x}) = \boldsymbol{J} f(\boldsymbol{x}),$$

which is called the **gradient** of the scalar function f.

Definition 8.3 (Total Differential)

Let $U\subseteq\mathbb{R}^n$ be an open set, $f:U\to\mathbb{R}^1$, $m{x}_0\in U$, $m{h}=(h_1,h_2,\cdots,h_n)\in\mathbb{R}^n$. If

$$f(x_0 + h) - f(x_0) = \sum_{i=1}^{n} \lambda_i h_i + o(\|h\|) \quad (\|h\| \to 0),$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are constants independent of h, then the function f is said to be **differentiable** at the point x_0 , and the linear main part $\sum_{i=1}^n \lambda_i h_i$ is called the **total differential** of f at x_0 , denoted as

$$df(x_0)(h) = \sum_{i=1}^{n} \lambda_i h_i.$$

If f is differentiable at every point in the open set U, then f is called a differentiable function on U.

*

Theorem 8.1 (Conditions of Differentiability)

Necessary Condition If an n-variable function f is differentiable at the point x_0 , then f possesses first-order partial derivatives $\frac{\partial f}{\partial x_i}(x_0)$ at x_0 for $i=1,2,\ldots,n$, and

$$\boldsymbol{A} = \boldsymbol{J} f(\boldsymbol{x}_0) = \left(\mathrm{D}_1 f(\boldsymbol{x}_0), \mathrm{D}_2 f(\boldsymbol{x}_0), \ldots, \mathrm{D}_n f(\boldsymbol{x}_0) \right).$$

However, the converse is not true.

Sufficient Condition Let $U \subset \mathbb{R}^n$ be an open set, and let $f: U \to \mathbb{R}^1$ be an n-variable function. If $\mathbf{J}f = (\mathrm{D}_1 f, \mathrm{D}_2 f, \dots, \mathrm{D}_n f)$ is continuous at \mathbf{x}_0 (i.e., $\frac{\partial f}{\partial x_i}$ is continuous at \mathbf{x}_0 for $i=1,2,\dots,n$), then f is differentiable at \mathbf{x}_0 . However, the converse is not necessarily true.

Chapter 9 Multiple Integrals

Bibliography

- [1] 徐森林, 薛春华. 数学分析. 第一版. 清华大学出版社, 2005.
- [2] 陈纪修,於崇华. 数学分析. 第三版. 高等教育出版社, 2019.
- [3] 常庚哲, 史济怀. 数学分析教程. 第三版. 中国科学技术大学出版社, 2012.
- [4] 裴礼文. 数学分析中的典型问题与方法. 第三版. 高等教育出版社, 2021.
- [5] 汪林. 数学分析中的问题与反例. 第一版. 高等教育出版社, 2015.
- [6] 谢惠民, 恽自求, 易法槐, 钱定边. 数学分析习题课讲义. 第二版. 高等教育出版社, 2019.
- [7] Walter Rudin. Principles of Mathematical Analysis. Third Edition. McGraw-Hill, 1976.
- [8] 菲赫金哥尔茨. 微积分学教程. 第八版. 高等教育出版社, 2006.