Boost your Diploma Exams Preparation

Msbte Diploma Exam Papers

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Data Structure using C Model Answer Subject Code:

22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE of the following:	10 M
	a	Define the term algorithm.	2 M
	Ans	Algorithm is a stepwise set of instructions written to perform a specific task.	Correct definition 2M
	b	List any 4 applications of queue.	2 M
	Ans	 In computer system to maintain waiting list for single shared resources such as printer, disk, etc. It is used as buffers on MP3 players, iPod playlist, etc. Used for CPU scheduling in multiprogramming and time sharing systems. In real life, Call Center phone systems will use Queues, to hold people calling them in an order, until a service representative is free. Handling of interrupts in real-time systems. Simulation 	Any four applications-1/2 M each
	С	Describe following terms w.r.to tree: (i) Leaf node (ii) Level of node	2 M
	Ans	Example:	Description of each term 1M

	A	Level 0 Level 1						
	_	(i) Leaf node: A node without any child node is called as leaf node.						
	Nodes B and C are leaf node as shown in above example. (ii) Level of node: Position of a node in the hierarchy of a tree is called as level of node. Level of node B is 1 as shown in above example.							
d	Differentiate between stack and que	eue.(Any two points)		2 M				
Ans	Stack 1. Stack is a data structure in which insertion and deletion operations are performed at same end.	Queue 1. Queue is a data structure in which insertion and deletion operations are performed at different ends.		Any two correct differences- 1M each				
	2. In stack an element inserted last is deleted first so it is called Last In First Out list.	2. In Queue an element inserted first is deleted first so it is called First In First Out list.						
	3.In stack only one pointer is used called as stack top	3.In Queue two pointers are used called as front and rear						
	4. Example : Stack of books	4. Example : Students standing in a line at fees counter						
	5.Application:	5. Application:						
	RecursionPolish notation	 In computer system for organizing processes. In mobile device for sending receiving messages. 						

	6. Representation: Using array 6. Representation: Using array	
	top 13 A B C D Front Rear	
		2.14
е	Describe undirected graph with suitable example.	2 M
Ans	Undirected graph: A graph in which the edges do not have any direction associated with them is known as undirected graph. In undirected graph, if an edge exists between two nodes A and B then the nodes can traverse from A to B as well as from B to A. Each edge is bidirectional. Example:-	Definition- 1M, example- 1M
	In the above example, each edge is bidirectional.	
f		2 M
	In the above example, each edge is bidirectional.	llar Each term definition 1M
	In the above example, each edge is bidirectional. Define the terms: Linear data structure and non-linear data structure. Linear Data Structure: A data structure in which all data elements are stored in a particular sequence is known as linear data structure. Example: stack, queue Non-Linear data structure: A data structure in which all data elements are not stored in a particular sequence is known as nonlinear data structure.	llar Each term definition 1M
Ans	In the above example, each edge is bidirectional. Define the terms: Linear data structure and non-linear data structure. Linear Data Structure: A data structure in which all data elements are stored in a particular sequence is known as linear data structure. Example: stack, queue Non-Linear data structure: A data structure in which all data elements are not stored in a particular sequence is known as nonlinear data structure. Example: graph and tree. convert infix expression into prefix expression:	llar Each term definition 1M any 2 M Correct prefix
Ans	In the above example, each edge is bidirectional. Define the terms: Linear data structure and non-linear data structure. Linear Data Structure: A data structure in which all data elements are stored in a particular sequence is known as linear data structure. Example: stack, queue Non-Linear data structure: A data structure in which all data elements are not stored in a particular sequence is known as nonlinear data structure. Example: graph and tree. convert infix expression into prefix expression: (A+B)*(C/G)+F Infix expression Read Stack contents Prefix expression	llar Each term definition 1M any 2 M Correct

	(A+B)*(C/G)		+)	F	
)			
	(A+B)*(C/G	G	+)	GF	
	(A+B)*(C/	/	+)/	GF	
	(A+B)*(C	С	+)/	CGF	
	(A+B)*((+	/CGF	
	(A+B)*	*	+*	/CGF	
	(A+B))	+*)	/CGF	
	(A+B	В	+*)	B/CGF	
	(A +	+	+*)+	B/CGF	
	(A	A	+*)+	AB/CGF	
	((+*	+AB/CGF	
				*+AB/CGF	
				+*+AB/CGF	
2	Attempt any THR	EE of the follo	owing:		12 M
a	Describe working	of linear searc	h with example.		4 M
Ans	In linear search, sea	arch element is	compared with each	ch element from the list in a sequence	. Relevant
	Comparison starts comparison reaches			and continues till number is found or	2M, Any
				ne process of searching requires more ere n indicates number of elements in	i examble-
	Linear search on so comparison reaches	•	•	ch takes place till element is found or element.	r
	Example:- Using ar	ray representat	ion		
	Input list 10, 20, 30	, 40, 50 and Se	earch element 30, In	dex =0	
	Iteration 1				
	10 20 30	0 40 50			
	10!=30				

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

0	d	Differentiate	between general tree and binar	ry tree. (any four points)	4 M			
A	Ans	Sr.	General Tree	Binary Tree	Any four relevant			
		1	A general tree is a data structure in which each node can have infinite number of children	A Binary tree is a data structure in which each node has at most two nodes i.e. left and right	differences -1M each			
		2	In general tree, root has indegree 0 and maximum outdegree n.	In binary tree, root has indegree 0 and maximum outdegree 2.				
		3	In general tree, each node have in-degree one and maximum out-degree n .	in-degree one and maximum out-degree 2 .				
		4	Height of a general tree is the length of longest path from root to the leaf of tree. Height(T) = {max(height(child1) , height(child2) , height(child-n))+1}	<pre>Height of a binary tree is : Height(T) = { max (Height(Left Child) , Height(Right Child) + 1}</pre>				
		5	Subtree of general tree are not ordered	Subtree of binary tree is ordered .				
		6	General tree	Binary Tree				
			Root	Root				
3		Attempt any	THREE of the following:		12 M			
a	a	Write a C pr	ogram for deletion of an elemen	nt from an array.	4 M			
A	Ans	printf("F scanf("%		/\ n ");	4M for correct logic & program code			
		for (c = scanf(printf("Y scanf("%)	O; c < n; c++) "%d", &array[c]); Enter the location where you wish 6d", &position); ion >= n+1)	n to delete element\ n ");				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
printf("Deletion not possible.\n");
            else
              for (c = position - 1; c < n - 1; c++)
               array[c] = array[c+1];
             printf("Resultant array:\n");
              for (c = 0; c < n - 1; c++)
               printf("%d\n", array[c]);
            return 0;
      Convert following expression into postfix form. Give stepwise procedure.
                                                                                                  4 M
b
      A+B↑C*(D/E)-F/G.
      Consider input expression as (A+B\uparrow C*(D/E)-F/G)
                                                                                                  Correct
Ans
                                                                                                  Postfix
                       Operation
                                       Postfix Expression
        Scanned
                                                                                                  Expression
        Symbol
                       stack
                                                                                                  4M
                       (
        A
                                        A
                       (+
                                        A
        +
        В
                       (+
                                        AB
                                        AB
        \uparrow
                       (+1
        \mathbf{C}
                                        ABC
                       (+1
        *
                       (+*
                                        ABC↑
                                        ABC↑
                       (+*(
                       (+*(
                                        ABC↑D
        D
                       (+*(/
                                        ABC↑D
                                       ABC↑DE
       Ε
                       (+*(/
                       (+*
                                        ABC↑DE/
                       (-
                                        ABC↑DE/*+
                                        ABC↑DE/*+F
                       (-
```


	TACITY OF THE PROPERTY OF THE	(I	SO/IEC -	27001 -	2013 Cei	rtified)					
	/	(-/		ABC	C↑DE/*	+F					
	G	(-/		ABC	C↑DE/*	+FG					
)	EMPT	Y	ABC	C↑DE/*	+FG/-		_			
								_			
	POSTFIX EX	PRESSIC	N: AB	C↑DE	/*+FG	/-					
c	Find the position below. Show e		nent 29	using	binar	y searc	h meth	od in a	an arra	y 'A' given	4 M
	A={11,5,21,3,	_	3 }								
Ans		n is given .		11,5,21	1,3,29,1	7,2,43	} is not	in sorte	ed man	ner, first we need	1M for taking sorted input
	So an array will The binary sear								e searcl	hed is $VAL = 29$.	& 1M each for every iteration
		A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]		
		2	3	5	11	17	21	29	43		
	Iteration 1:										
	BEG = 0, END	0 = 7, MID	0 = (0 +	7)/2 =	3						
	Now, $VAL = 2$	9 and A[N	MID] = 0	A[3] =	11						
	A[3] is less th array.	ıan VAL, t	therefor	e, we i	now sea	arch foi	the va	lue in tl	he seco	nd half of the	
	So, we change	the values	of BEC	G and I	MID.						
	Iteration 2:										
	Now, BEG = N A [5] = 21	MID + 1 =	4, END	0=7, N	MID = 0	(4 + 7)/	2 =11/2	2 = 5; V	VAL = 2	29 and A [MID] =	
	A[5] is less that segment.	n VAL, th	erefore	, we no	ow sear	ch for t	he valu	ie in the	e secon	d half of the	
	So, again we c	hange the	values	of BE	G and N	MID.					
	Iteration 3:										
	Now, BEG = N A [6]=29	MID + 1 =	6, END	0 = 7, N	MID = 0	(6 + 7)/	2 = 6 N	Jow, V	AL = 2	9 and A [MID] =	
I	1										1

d	give adjacency list and adjacency matrix for g	given graph:	4 M
	A B		
Ans	Adjacency List: (Using Linked List)		2M for Correct L
	Here, we use doubly linked list for storing hear respective adjacent node to it.	nder node list and singly linked list for storing	and 2M for Correct matrix
	PA TO	B Null B Null R	
	Adjacency List		
	Nodes	Adjacent Nodes	
	A	В	
	A B	B D,E	
	В	D,E	

 T		
	Adjacency Matrix: (Using Array)	
	A	
	B 0 0 0 1 1	
	C 1 0 0 0 1 D 0 1 0 0 0	
	D 0 1 0 0 0 E 0 0 0 1 0	
	Attempt any THREE of the following:	12 M
a	Describe working of bubble sort with example.	4 M
	algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order. This algorithm is not suitable for large data sets as its average and worst case complexity is of O (n²) where n is the number of items. Bubble Sort Working:	descrip & 2M f exampl
	We take an unsorted array for our example as A[]= $\{19, 2, 27, 3, 7, 5, 31\}$. Bubble sort takes $O(n^2)$ time so we're keeping it short and precise.	
	{{**Note: Pass 4 onwards optional**}}	
	Pass 1: 2,19,27,3,7,5,31	
	2,19,27,3,7,5,31	
	2,19,3,27,7,5,31	
	2,19,3,7,27,5,31	
	2,19,3,7,5,27,31	
	Pass 1 Completed	
	Pass 2: 2,19,3,7,5,27,31	
	2,3,19,7,5,27,31 2,3,7,19,5,27,31	
	لا بر	

	2,3,7,5,19,27,31	
	2,3,7,5,19,27,31	
	Pass 2 Completed	
	Pass 3: 2,3,7,5,19,27,31	
	2,3,7,5,19,27,31	
	2,3,5,7,19,27,31	
	Pass 3 Completed	
	Pass 4: 2,3,5,7,19,27,31	
	Pass 4 Completed	
	Pass 5: 2,3,5,7,19,27,31	
	Pass 5 Completed	
	Pass 6: 2,3,5,7,19,27,31	
	Pass 6 Completed	
b	Construct a binary search tree for following elements:	4 M
	30,100,90,15,2,25,36,72,78,10 show each step of construction of BST.	
Ans	Stepwise construction of Binary search tree for following elements:	4M for all
	30,100,90,15,2,25,36,72,78,10 is as follows:	correct steps

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
For example, the function should return 5 for linked list 1->3->1->2->1.
       Algorithm: Using Iterative Solution
       1) Initialize count as 0
       2) Initialize a node pointer, current = head.
       3) Do following while current is not NULL
          a) current = current -> next
          b) count++;
       4) Return count
       Write a program in 'C' to insert an element in a linear queue.
                                                                                                      4 M
d
       // C program to insert an element in a linear queue using array
                                                                                                      4M for
Ans
                                                                                                      correct
       #include<stdio.h>
                                                                                                      logic &
       #include<conio.h>
                                                                                                      program
       #define n 5
                                                                                                      code
       void main()
         int queue[n],ch=1,front=0,rear=0,i,j=1,x=n;
         //clrscr();
         printf("Queue using Array");
         printf("\n1.Insertion \n2.Display \n3.Exit");
         while(ch)
            printf("\nEnter the Choice:");
            scanf("%d",&ch);
            switch(ch)
            case 1:
              if(rear = = x)
                 printf("\n Queue is Full");
              else
                 printf("\n Enter no %d:",j++);
                 scanf("%d",&queue[rear++]);
              break;
            case 2:
              printf("\n Queue Elements are:\n ");
              if(front==rear)
                 printf("\n Queue is Empty");
```


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
else
                 for(i=front; i<rear; i++)
                    printf("%d",queue[i]);
                    printf("\n");
                 break;
               case 3:
                 exit(0);
               default:
                 printf("Wrong Choice: please see the options");
         getch();
       Describe circular linked list with suitable diagram. Also state advantage of circular
                                                                                                        4 M
       linked list over linear linked list.
       Circular Linked List
                                                                                                        2M for
Ans
                                                                                                        description
       A circular linked list is a variation of linked list in which the last element is linked to the
                                                                                                        1M for
       first element. This forms a circular loop.
                                                                                                        diagram
                                                                                                        and 1M for
                                                                                                        any one
                                         Data
                                                              Data
                                                 Next
                    Data
                                                                                                        advantage
       A circular linked list can be either singly linked or doubly linked.
               for singly linked list, next pointer of last item points to the first item
              In doubly linked list, prev pointer of first item points to last item as well.
       We declare the structure for the circular linked list in the same way as follows:
       Struct node
       Int data:
       Struct node *next;
       Typedef struct node *Node;
       Node *start = null;
       Node *last = null;
       For example:
```

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

If stack_top is equal to -1 then	
Display output as "Stack Underflow" and return to calling function	
Otherwise	
Go to step 2	
Step 2: [delete element] stack [stack_top] = item;	
Step 3: [Decrement stack_top] Decrement stack top pointer by one.	
stack_top=stack_top -1;	
Step 4: return to calling function.	
b For given binary tree write in-order, pre-order and post-order traversal.	6 M
B C C C P R	
Ans Inorder Traversal: Q,E,F,R,D,H,B,A,I,J,K,C,L,P	2marks for
Preorder Traversal: A,B,D,E,Q,F,R,H,C,I,J,K,L,P	each traversal
Postorder Traversal: Q,R,F,E,H,D,B,K,J,I,P,L,C,A	
c Write an algorithm to insert an element at the beginning and end of linked list.	6 M
Ans Algorithm to insert an element at the beginning of linked list:	3marks for
1. Start	each algorithm
2. Create the node pointer *temp	
Struct node * temp	
3. Allocate address to temp using malloc	
temp = malloc(sizeof(struct node));	
4. Check whether temp is null, if null then	
Dignlay "Overflow"	
Display "Overflow"	

		temp-> info=data	
		temp-> next=start	
		5. Start=temp	
		6. stop	
		Algorithm to insert an element at the end of linked list:	
		1. Start	
		2. Create two node pointers *temp, *q	
		struct node * temp, *q;	
		3. q= start	
		4. Allocate address to temp using malloc	
		temp = malloc(sizeof(struct node));	
		5. Check whether temp is null, if null then	
		Display "Overflow"	
		else	
		temp-> info=data	
		temp-> next=null	
		6. While(q->next!=null)	
		q=q->next	
		7. q->next= temp	
		8. stop	
6		Attempt any TWO of the following:	12 M
	a	Describe working of selection sort method. Also sort given input list in ascending order using selection sort input list:- 55, 25, 5, 15, 35.	6 M
	Ans	Working of Selection sort: Selection Sort algorithm is used to arrange a list of elements in a particular order (Ascending or Descending). In selection sort, the first element in the list is selected and it is compared repeatedly with remaining all the elements in the list. If any element is smaller than the selected element (for ascending order), then both are swapped. Then we select the element at second position in the list and it is compared with remaining all elements in the list. If any element is smaller than the selected element, then both are swapped. This procedure is repeated till the entire list is sorted.	3marks for description, 3marks for correct solution

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	{	
	int n;	
	clrscr();	
	<pre>printf("\nThe factorial of % is = %d",n,fact(n));</pre>	
	getch();	
	}	
	int fact(int n)	
	{	
	if(n==1)	
	return 1;	
	else	
	return(n*fact(n-1));	
	}	
С	Describe procedure to delete an element from singly linked list using diagram.	6 M
Ans	In a linear linked list, a node can be deleted from the beginning of list, from in between positions and from end of the list.	**Note: Correct
	Delete a node from the beginning:-	algorithm or program shall be considered.
	Noder Node 2 Hode 3	Any two deletions shall be considered
	Node to be deleted is node1. Create a temporary node as 'temp'. Set 'temp' node with the address of first node. Store address of node 2 in header pointer 'start' and then delete 'temp' pointer with free function. Deleting temp pointer deletes the first node from the list.	3marks each
	OR	
	Step 1: Create temporary node 'temp'.	
	Step 2: Assign address of first node to 'temp' pointer.	
	Step 3: Store address of second node (temp->next) in header pointer 'start'.	
	Step 4: Free temp.	
	Delete a node from in between position:-	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Node to be deleted is node3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the previous node of node 3 and mark the next node (node3) as 'q'. Store address from node 'q' into address field of 'temp' node. Then delete 'q' pointer with free function. Deleting 'q' pointer deletes the node 3 from the list.

OR

- Step 1: Create temporary node 'temp', 'q'.
- Step 2: Assign address of first node to 'temp' pointer.
- Step 3: Traverse list up to previous node of node to be deleted.
- Step 4: Mark the node to be deleted 'q'.
- Step 5: Store address from node 'q' in address field of 'temp' node (temp->next=q->next).
- Step 6: Free q.

Delete a node from the end:-

Node to be deleted is node 3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the second last node and mark the last node as 'q'. Store NULL value in address field of 'temp' node and then delete 'q' pointer with free function. Deleting q pointer deletes the last node from the list.

OR

- Step 1: Create temporary node 'temp', 'q'.
- Step 2: Assign address of first node to 'temp' pointer.
- Step 3: Traverse list upto second last node.
- Step 4: Mark last node's address in node 'q'.
- Step 5: store NULL value in address field of second last node (temp->next).
- Step 6: Free q

Boost your Diploma Exams Preparation

Msbte Diploma Exam Papers

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q.N.	Answer	Marking Scheme
	(
1.		Attempt any FIVE of the following:	10
	(a)	List any four operations on data structure.	2M
	Ans.	Operations on data structure:	
		Insertion	Any
		Deletion	four
		Searching	operatio
		Sorting	$ns^{1/2}M$
		• Traversing	each
		• Merging	
	(b)	Enlist queue operation condition.	2M
	Ans.		
		1. Queue Full	Two
		2. Queue Empty	operatio
			nal
			conditio
			ns 1M
			each

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(c)	Define:				2M
	•	i) Binary sea			
Ans.	• •			in which each non-leaf	Each
	node can have maxin	num two chil	d nodes as le	ft child ad right child.	correct
					definitio
	(ii)Binary search tro	ee: It is a non	linear data st	tructure in which left	n 1M
	child of root node is l	less than root	and right ch	ild of root node is	
	greater than root.				
(d)	Show the memory	representati	on of stack	using array with the	2M
	help of a diagram.				
Ans.	Consider stack conta	ains five int	eger elemen	ts represented with an	
			-	es memory. Array starts	
	with base address of	2000.			
		Index		Memory	Correct
		position		location	represen
		↓ _		 	tation
	top —→	A[4]	E	2006	2M
		A[3]	D	2005	
		A[2]	С	2004	
		A[1]	В	2002	
		A[0]	A	2000	
			Stack		
(e)	Define given two typ		_	ample.	2M
	(i) Direct graph (i				
Ans.			ch direction	is associated with each	
	edge is known as dire	ected graph.			
	Example:				
	No	.	Edge		Definitio
	No	ae	/		n with
	A	· · · · · ·	- (1	3	example
	<u> </u>				of
			_	L	each1M
	D)			
		-			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

(f) Ans.	Differentiate between line any two parameters. Sr. Linear data structure in w data elements are sto sequence is known a data structure. 2 All elements are st	ear and non-linear data structures on Cture Non-linear data structure which all A data structure in which all data elements are not stored in a sequence is known as non-linear data structure. tored in All elements may stored in memory non-contiguous memory locations inside memory.	2M Any two differen ces 1M each
(g) Ans.	Convert the following infi stack A + B – C * D/E + F	ix expression to its prefix form using	2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		4.										
		Infix Expression	Read Character	Stack contents	Prefix Expression							
		A+B-C*D/E+F	F		F							
		A+B-C*D/E+	+	+	F							
		A+B-C*D/E	Е	+	EF							
		A+B-C*D/	/	/ +	EF							
		A+B-C*D	D	/	DEF		Correct prefix expressi					
		A+B-C*	*	*	/DEF		on2M					
		A+B-C	С	* +	C/DEF							
		A+B-	-	-	+*C/DEF							
		A+B	В	-	B+*C/DEF							
		A+	+	+	-B+*C/DEF							
		A	A	+	A-B+*C/DEF							
					+ A-B+*C/DEF							
2.		Attempt any TI	HREE of the	following:			12					
	(a)	Explain the wor			n an example.		4M					
	Ans.				ray. Search method	d starts						
	11104				ay and compare the							
					a match is found t							
					list into 2 parts. Fi							
		-		-	tion element and	-	Explana					
					aid position elemen		tion 2M					
					element is less or		uon 2111					
			• •	•		_						
			han mid position element and calculate mid position for selected									
		part. Again compare mid position element with search element. The										
		binary search performs comparison and division task the element is										
		Found or division of list gives one element for comparison. Γο calculate mid element perform (lower + upper) / 2.										
			-									
		lower-lower inde										
		upper-upper inde	ex position of	an array(ınıtıa	IIy size-I)							

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	Example: Consider Input list 0, 1, 2, 9, 10, 11, 15, 20, 46, 72 Search element: 11 \rightarrow Iteration 1 Lower = 0 Upper = 9mid = (lower + upper) / 2= (0 + 9/2)= 4.5										
									Index Position	Example 2M	
	0 1	2	3	4	5	6	7	8	9	2171	
	0 1	2	3	10	11	15	20	46	72		
	Lower = 5 5 6 11 1 → Iteration 3 Lower = 5	5 6 7 8 9 11 15 20 46 72 Index Position mid != 11 mid > SE :upper = mid -1 → Iteration 3 Lower = 5 upper = 6 mid = (Lower + Upper) / 2= (5 + 6) / 2= 5.5 5 6 Index									
	mid = 15 Number is fo	und									
(b)	Write a pro	_								4M	
A	(Note: created #include <st< th=""><th></th><th>d adda</th><th>itbeg a</th><th>ire opt</th><th>ional)</th><th></th><th></th><th></th><th>Commant</th></st<>		d adda	itbeg a	ire opt	ional)				Commant	
Ans.	#include <su< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Correct logic 2M</th></su<>									Correct logic 2M	
	#include <m< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></m<>										
	void create_ void addatb void display	eg(int);								Correct syntax 2M	
	struct node										

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

```
int info;
struct node *next;
}*start=NULL;
void main()
int m;
clrscr();
printf("enter data value\n");
scanf("%d",&m);
create_list(m);
printf("enter data value\n");
scanf("%d",&m);
addatbeg(m);
 display();
getch();
void create_list(int data)
struct node *tmp,*q;
tmp=malloc(sizeof(struct node));
tmp->info=data;
tmp->next=NULL;
start=tmp;
void addatbeg(int data)
struct node *tmp;
tmp=malloc(sizeof(struct node));
tmp->info=data;
tmp->next=start;
start=tmp;
void display()
```


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		<u>-</u> _
	<pre>struct node *q; if(start==NULL) { printf("list is empty\n"); } q=start; printf("list is:\n"); while(q!=NULL) { printf("%d\t",q->info); q=q->next; } }</pre>	
(c)	Draw and explain construction of circular queue.	4M
Ans.	A queue, in which the last node is connected back to the first node to	-4141
	form a cycle, is called as circular queue.	
	7 0 Front 10 10 10 1 8	Draw 1M
	The above diagram represents a circular queue using array.	
	It has rear pointer to insert an element and front pointer to delete an element. It works in FIFO manner where first inserted element is deleted first. Initially front and rear both are initialized to -1 to represent queue empty. First element inserted in circular queue is stored at 0 th index position pointed by rear pointer. For the very first element, front pointer is also set to 0 th position. Whenever a new element is inserted in a queue rear pointer is incremented by one. If rear is pointing to max-1 and no element is present at 0 th position then rear is set to 0 th position to continue cycle. Before inserting an element, queue full	Explana tion 3M
	condition is checked. If rear is set to max-1 position and front is set to	
	0 then queue is full. Otherwise if rear =front+1 then also queue is full.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

T T		
(d)	Indegree of node: It is number of edges coming towards a specified	4M
	node i.e. number of edges that have that specified node as the head is known as indegree of a node.	Each term-
	miown as magnet of a node.	explanat
	Outdegree of node: It is number of edged going out from a specified node i.e. number of edges that have that specified node as the tail is known as outdegree of a node	ion 1M
	In undirected graph each edge is bidirectional so each edge coming towards node is also going out of that node. Due to this indegree and outdegree of a node is same number. In indirected graph, each edge is having direction associated with it, so indegree and outdegree depends on the direction.	
	Example:-	
	A C C	Each example 1M
	Indegree of node A= 1 Outdegree of node A=2	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		Indegree of node B= 3 Outdegree of node B=2	
		Indegree of node C= 2 Outdegree of node C=1	
		Indegree of node D= 1 Outdegree of node D=3	
		Indegree of node E= 2 Outdegree of node E=1	
3.		Attempt any THREE of the following:	12
<i>J</i> .	(a)	Write C program for performing following operations on array:	4M
	(a)	insertion, display.	41/1
	Ans.	#include <stdio.h></stdio.h>	
	Alis.	#include <conio.h></conio.h>	
		void main()	
		inta[10],x,i,n,pos;	
		inta[10],x,1,11,pos, clrscr();	
		printf("Enter the number of array element\n");	
		scanf("%d",&n);	
		printf("Enter the array with %d element\n", n);	Correct
		for $(i=0; i< n; i++)$	
		101(1=0,1<11,1++) scanf("%d",&a[i]);	program 4M
		, E 3//	4111
		printf("Enter the key value and its position\n");	
		scanf("%d%d",&x,&pos);	
		$for(i=n; i \ge pos; i)$	
		a[i]=a[i-1];	
		} 13	
		a[pos-1]=x;	
		printf("Array element\n");	
		for(i=0;i <n+1;i++)< th=""><th></th></n+1;i++)<>	
		printf("%d\t",a[i]);	
		getch();	
		}	
	(b)	Evaluate the following postfix expression:	4M
	(-7)	5, 6, 2, +, *, 12, 4, /, - Show diagrammatically each step of	
		evolution using stack.	
	Ans.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

y 222															
	Scanned	On	eranc	1 1	One	rand	2	W ₀	lue	Stac	J _z				
	Symbol	Ор	Cranc	1 1	Ope	ianu		Va	nue		tent				
	5									5	tent				
	6									5,6					Correct
	2									5,6,	2				answer
	+	6			2			8		5,8					<i>4M</i>
	*	5			8			40		40					
	12									40,1	2				
	4									40,1	2,4				
	/	12			4			3		40,3	3				
	-	40			3			37		37					
	Result of a														
(c)	Sort the fe										usiı	ng (quicl	k sort.	4M
		Given numbers 50, 2, 6, 22, 3, 39, 49, 25, 18, 5.													
Ans.	Given arra	Given array													
	Array 50 2 6 22 3 39 49 25 18 5														
	elements														Correct
	indexes	0	1	2	3	4	1	5	6	7		8	9		solve
	Set l=0, h=	-0 n	ivot-	- a[h	1–5										example 4M
	Initialize in	_				nent	i=	= 1-1	=-1						71/1
	Traverse el								_ •						
						J									
	1. j=0 i=-	1 sin	ce a[j] >	pivot	do n	otł	ning	array	y will	rem	ain	sam	e	
	Array elements	50	2		5 2	22	3	39	49	2:	5	18	5		
	indexes	0	1	,	2	3 .	4	5	6	7	,	8	9		
	mackes	U	1	<u> </u>	_ .	<u>, I</u>	т	<u> </u>	1 0			0			
	2. j=1 since a[j]<=pivot, do i++ and swap(a[i], a[j]) i=0														
	Array		5 Λ	(22	2		,	40	25	10		5		
	elements	2	50	6	22	3		39	49	25	18		5		
	indexes	0	1	2	3	4		5	6	7	8		9		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

3.	i=2.i=0	since a[i]	> pivot	do nothing	array will	remain	same
	J	~	P				

Array elements	2	50	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

4. j=3 ,i=0 since a[j] > pivot do nothing array will remain same

Array elements	2	50	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

5. j=4, since $a[j] \le pivot do, i++ and swap(a[i],a[j])$

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

6. j=5 , i=1 since a[j] > pivot do nothing array will remain same

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

7. j=6, i=1 since a[j] > pivot do nothing array will remain same

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

8. j=7, i-1 since a[j] > pivot do nothing array will remain same

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

9. j=8,i-1 since a[j] > pivot do nothing array will remain same	9.	j=8, i-1	since a[j] >	pivot do	nothing	array will	remain	same
---	----	----------	--------------	----------	---------	------------	--------	------

Array elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9

We come out of loop because j is now equal to high-1.

Finally we place pivot at correct position by swapping a[i+1] and a[h] (or pivot)

 $a[] = \{2,3,5,22,50,39,49,25,18,6\} // 6 \text{ and } 5 \text{ Swapped}$

Now, **5**is at its correct place. All elements smaller than 5 are before it and all elements greater than 5 are afterit.

Similarly rest of the passes will be executed and will provide the following output

Output of pass1

Array elements	2	3	5	22	50	39	49	25	18	6
indexes	0	1	2	3	4	5	6	7	8	9

Pass2

 $A = \{2.3\} \text{ pivot} = 3$

LJ (-,-)			
Array elements	2	3	5
indexes	0	1	2

 $a[]={22,50,39,49,25,18,6}$ pivot=6

Array elements	6	50	39	49	25	18	22
indexes	3	4	5	6	7	8	9

 $a[]={50,39,49,25,18,22}$ pivot=22

Array elements	18	22	49	25	50	39
indexes	4	5	6	7	8	9

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	a[]={18}pi	vot=	=18										
	Array		18		22								
	elements indexes		4		5								
	muexes		+										
	a[]={49,25	,50,	39},	pivo	t=39	9							
	Array elements		25		39		50	4	9				
	indexes		6		7		8	9)				
	a[]={25}, p	oivo	t=25										
	Array elements		25		39								
	indexes		6		7								
	a[]={50,49	ig,{	vot=	49									
	Array		49		50								
	elements												
	indexes		8		9								
	Final sorte	d a	rray	usi	ng c	_l uick	sort v	vill be	<u>.</u>				
	Array elements	2	3	5	6	18	22	25	39	49	50		
	indexes	0	1	2	3	4	5	6	7	8	9		
	macxes	U	1		3	-		0	,	0		_	
(d)	From the f	ollo	win	g gr	aph	, com	plete	the a	nswer	'S:			4M
						•	7						
					Land	Corneria I							
		/	/	1					sein				
	bida (<)	-		1	a didea	*				
	(I	9			19)		1		(14)	0.53			
			67				(3)		grow Ta				
	200		9	Agas	g hest								
	(i) Indegr	ee (of no	de 2	21								
	(ii) Adjace												

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	Ans.	(iv) Su (i) Ind (i1) Ad (iii) Pa (iv) Su	egree of node 21: node 1, 7, 19 djacent node of 19: node 1,21 ath of 31: Path1: 1-21-31 Path2: 1-7-21-31 Path3: 1-7-21-31 accessor of node 67: No Successolated node or not connected no		Each correct answer 1M
4.	(a)		· · · · · · · · · · · · · · · · · · ·	ng: h and sequential search (linear	12 4M
	Ans.	Sr.	Binary Search	Sequential search (linear	
		No.		search)	Any
		1	Input data needs to be sorted	Input data need not to be	four
		2	in Binary Search In contrast, binary search	sorted in Linear Search. A linear search scans one	points 1M each
		2	compares key value with the middle element of an array and if comparison is unsuccessful then cuts down search to half.	item at a time, without jumping to any item.	1111 EUCH
		3	Binary search implements divide and conquer approach.	Linear search uses sequential approach.	
		4	In binary search the worst case complexity is O(log n) comparisons.	In linear search, the worst case complexity is O(n), comparisons.	
		5	Binary search is efficient for the larger array.	Linear search is efficient for the smaller array.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code: 22317

(b)	Draw the tree structure of the following expressions:	4M
	(i) $(2a+5b)^3 * (x-7y)^4$ (ii) $(a-3b) * (2x-y)^3$ (i) $(2a+5b)^3 * (x-7y)^4$	
Ans.	$(i) (2a+5b)^3 * (x-7y)^4$	
	2 a 5 b 7 9	Each correct tree structur e 2M
	(ii) $(a-3b)*(2x-y)^3$	
	(a) (b) (y) (3) (b) (x) (y) (x) (x) (x) (x) (x) (x) (x) (x) (x) (x	
(c)	Create a singly linked list using data fields 15, 20, 22, 58, 60. Search a node 22 from the SLL and show procedure step-by-step	4M
Ans.	with the help of diagram from start to end.	
Alls		

(d)

Ans.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

20 22 58

a Initially q=start where q is a pointer of type struct node wed for troversing

a linked list.

Subject: Data Structure Using 'C'

as follows

Stort

Stort

pos-1 7

22317 **Subject Code:** (1) With given data fields, singly linked list is created Create linked list 1M 2 Operation - Search a node 22 from the above SLL

> Searchi ng node procedu re with diagram *3M*

b q = NUL and pos = 1 9→data + key value ie 15 # 22 Start e gl=NULL and pos=2 2 → data + key value ie 20 + 22 i. 9= 9-> next and pos=3 Stort q pos=3 91 = NULL and pos = 3 2 → data = = key value ie 22 node 22 is located at position search is successful. **Evaluate the following prefix expression:** - * + 4 3 2 5 show diagrammatically each step of evaluation using stack.

4M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		Scanned	Operand 1	Operand 2	Value	Stack	
		Symbol	operana i	operana 2	Value	Content	
		5				5	Each
		2				5,2	correct
		3				5,2,3	step 1M
		4				5,2,3,4	~~~ F ==-=
		+	4	3	12	5,2,12	
		*	12	2	24	5,24	
		_	24	5	19	19	
			24		17	17	
		Result of a	bove prefix e	xpression eva	luation -	· 19	
	(e)	Write an	algorithm t	_		m the beginning of	a 4M
		circular li	nked list.				
	Ans.	4.7		1 0			
		_	to delete a	a node from	the bo	eginning of a circula	r
		linked list	C 4: 1	1.4.0			
			ne function de	elatbeg()			
		1. Start		*4 *			Correct
			e struct node	*tmp,*q;			algorith
		3. Set q=1					m 4M
		4. While	q! = last				
		Do tmn = 1	// Idontif	iaa baainnina	node of	Cinavlan Linkad List	
		_	_			Circular Linked List	~
			nk=q->nnk; ed node	// Set the	address	field before deletin	g
				// Doloto the l	oginnin	a nodo	
		free(tm End of	•	// Delete the b	egiiiiiii	g noue	
				loct— NIII I	f only o	ne node is present in th	
			r Linked List		i Omy O	ne noue is present in th	
		6. End of		•			
5.				the following	•		12
J.	(a)					tion on to the stack o	
	(4)				-	9, 45, 50 with 50 bein	
						the effect of:	
		(i) PUSH		ii) PUSH 85	•		
		(iii) POP	,	(iv) POP			
		(v) PUSH		(vi) POP			
		` ′		. ,	k after	performing the abov	e

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

		ı
	said operations.	
Ans.	9 8 7 ← 59 8 7 ← 59 6 50 6 50 6 50 6 50 6 50 6 50 6 50 6	Each correct push/po p operatio n
	9 8 9 8 7 6 59 6 50 5 45 45 4 39 3 86 2 52 1 30 0 40 POP TOP=6 9 8 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 7 7 7 7	diagram maticall y 1M
(b)	Traverse the following tree by the in-order, pre-order and post-	6M
	order methods:	
Ans.	INORDER (LVR) 1,10,15,20,22,25,32,36,43,48,50,56,58,60,75	in-order 2M
	PREORDER (VLR) 36,25,20,10,1,15,22,32,48,43,56,50,60,58,75	pre- order2M
	POST ORDER (LRV) 1,15,10,22,20,32,25,43,50,58,75,60,56,48,36	post- order2M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	(c)	Write an algorithm to count number of nodes in singly linked list.	6M
	Ans.	Let	
		start is pointer variable which always stores address of first node in	
		single linked list. If single linked list is empty then start will point to	
		NULL.	
		q is pointer variable used to store address of nodes in single linked	a .
		list.	Correct
		Step 1: Start	algorith m 6M
		Step 2: [Assign starting address of single linked list to pointer q] q=start	m ow
		Step 3: [Initially set count of nodes in Linked list as zero] count=0	
		Step 4: [Check if Linked list empty or not]	
		if start==NULL	
		Display "Empty Linked List"	
		go to step 6.	
		Step 5: [Count number of nodes in single linked list]	
		while q!=NULL	
		count++ and	
		q=q->next;	
		Step 6: Display count (total number of nodes in single linked list)	
		Step 7: stop	
6.		Attempt any TWO of the following:	12
	(a)	Sort the following numbers in ascending order using Bubble sort.	6M
		Given numbers: 29, 35, 3, 8, 11, 15, 56, 12, 1, 4, 85, 5 & write the	
		output after each interaction.	
	Ans.	Pass 1	
		Enter no of elements :12	
		Enter array elements :29 35 3 8 11 15 56 12 1 4 85 5	
		Unsorted Data: 29 35 3 8 11 15 56 12 1 4 85 5	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

 1												T
After pass 1:	29 : 29 : 29 : 29 : 29 : 29 : 29 : 29 :	5 3 3 <u>35</u> 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	8 35 11 11 11 11 11 11	11 35 15 15 15 15 15 15	15 15 15 15 35 35 35 35 35 35 35 35 35	56	12 12 12 12 12 12 56 1 1	1 1 1 1 1	4 4 4 4	85 85 85 85 85 85 85 85 85 85 85	5	Correct passes 6M (For 4 passes 3M shall be awarded
After pass 2: After pass 3:	3 2 ¹ 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8	29 11 11 11 11 11 11 11	11 29 15 15 15 15 15	15 15 29 29 29 29 29 29	35 35 35 35 12 12 12 12	12 12 12 12 12 12 35 1 1 1	4	4 4 4 4 4 35 35 35	56 56 56 56 56 56 56 56	5 5 5 5 5 5 5 5 5 5	85 85 85 85 85 85 85 85 85 85	
After pass 3:	3 8 8 3 8 8 3 8 8 3 8 8 3 8 8 3 8 8	11 11 11 11 11 11 11	15 15 15 15 15 15 15	29 29 29 12 12 12 12	1 1	4 2	4 4 4 4 29	35 35 35 35 35 35 35 35 5	5 5 5 5 5 5 5 5	56 56 56 56 56 56 56 56	85 85 85 85 85 85 85 85 85	
After pass 4:	3 8	11	15 <u>15</u>	12 12	1 1 1 1	4 2 4 2 4 2 4 2	29 29	5 5	35 35	56 56	85 85	

Subject: Data Structure Using 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

After pass 4: 3 8 11 12 1 <u>15</u>	4 29 5 35 56 85
	<u>5</u> 29 5 35 56 85
After pass 4: 3 8 11 12 1 4 1	5 <u>29</u> 5 35 56 85
After pass 4: 3 8 11 12 1 4 1	5 5 <u>29</u> 35 56 85
Pass 5	
After pass 5: 3 8 11 12 1 4 1	5 5 29 35 56 85
After pass 5: 3 8 11 12 1 4 1	5 5 29 35 56 85
After pass 5: 3 8 11 <u>12</u> 1 4 1	5 5 29 35 56 85
After pass 5: 3 8 11 1 12 4 1	5 5 29 35 56 85
After pass 5: 3 8 11 1 4 <u>12</u> 1	5 5 29 35 56 85
After pass 5: 3 8 11 1 4 12 <u>1</u>	<u>5</u> 5 29 35 56 85
After pass 5: 3 8 11 1 4 12 5	5 <u>15</u> 29 35 56 85
Pass 6	
After pass 6: 3 8 11 1 4 12 5	5 15 29 35 56 85
After pass 6: 3 8 <u>11</u> 1 4 12 5	5 15 29 35 56 85
After pass 6: 3 8 1 11 4 12 3	5 15 29 35 56 85
After pass 6: 3 8 1 4 <u>11</u> 12 3	5 15 29 35 56 85
After pass 6: 3 8 1 4 11 12	5 15 29 35 56 85
After pass 6: 3 8 1 4 11 5 12	2 15 29 35 56 85

After pass 7: 3 8 1 4 11 5 12 15 29 35 56 85 After pass 7: 3 1 8 4 11 5 12 15 29 35 56 85 After pass 7: 3 1 4 8 11 5 12 15 29 35 56 85 After pass 7: 3 1 4 8 11 5 12 15 29 35 56 85 After pass 7: 3 1 4 8 11 5 12 15 29 35 56 85 After pass 7: 3 1 4 8 5 11 12 15 29 35 56 85

Pass 8

Pass 7

After pass 12: <u>1</u> 3 4 8 5 11 12 15 29 35 56 85

Sorted elements are 1 3 4 8 5 11 12 15 29 35 56 85

(b) Evaluate the following postfix expression: 6M
5 7 + 6 2 - *

22317

Subject Code:

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Structure Usii	ig C				Subject Co	de: 22317	
Symbols to be scanned 5 7 + 6 2 - *	4 3	STACE 2	7 6 6 4	0 5 5 12 12 12 12 12 48	Expression Evaluation and Result 7+5=12 6-2=4 12*4	Correc evalua ve 6M	ti
Search a node with the help To Search a dadata field from ORIGINAL I	e 40 from of diagram ta field in a first node LIST: 25 A NODE	the SLin from singly lof sing	L and start tinked I	show to end list, no ed list	procedure step- l. eed to start searchi	by-step	n
	be scanned 5 7 + 6 2 - * Create a sing Search a node with the help To Search a dadata field from ORIGINAL I	be scanned 4 3 5 7 + 6 2 - * Create a singly linked Search a node 40 from with the help of diagram To Search a data field in data field from first node ORIGINAL LIST: start 90 25 SEARCHING A NODE STEP 1: Compare 40 with 90	be scanned 4 3 2 5 7 + 6 2 2 2 * Create a singly linked list us Search a node 40 from the SL with the help of diagram from To Search a data field in singly I data field from first node of sing ORIGINAL LIST: SEARCHING A NODE STEP 1: Compare 40 with 90	be scanned 4 3 2 1 5 7 7 7 + 6 6 6 6 2 2 6 4 * Create a singly linked list using daysearch a node 40 from the SLL and with the help of diagram from start to Search a data field in singly linked data field from first node of singly linked data field from first node of singly linked start to Search a data field in singly linked data field from first node of singly linked start to Search a data field in singly linked data field from first node of singly linked start to Search a data field in singly linked start to Search	be scanned 4 3 2 1 0 5 5 5 7 7 7 5 + 12 6 6 6 12 2 2 6 12 - 4 12 * 48 Create a singly linked list using data fi Search a node 40 from the SLL and show with the help of diagram from start to end To Search a data field in singly linked list, no data field from first node of singly linked list ORIGINAL LIST: Start 90 25 46 39 SEARCHING A NODE STEP 1: Compare 40 with 90	be scanned 4 3 2 1 0 Evaluation and Result 5	be scanned 4 3 2 1 0 Evaluation and Result 5 5 5 7 7 5 4 12 7+5=12 6 6 6 12 2 2 2 6 12 6-2=4 - 4 12 * 12 ** 12*4 Create a singly linked list using data fields 90, 25, 46, 39, 56. Search a node 40 from the SLL and show procedure step-by-step with the help of diagram from start to end. To Search a data field in singly linked list, need to start searching the data field from first node of singly linked list. ORIGINAL LIST: SEARCHING A NODE STEP 1: Compare 40 with 90

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Boost your Diploma Exams Preparation

Msbte Diploma Exam Papers

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Winter - 19 EXAMINATION

Subject Name: Data Structure Using 'C' Model Answer Subject Code: 22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
1.		Attempt any Five of the following:	10M
	а	Write any four operations that can be performed on data structure.	2M
	Ans	1. Data structure operations (Non Primitive)	2 M for any 4
		2. Inserting: Adding a new data in the data structure is referred as insertion.	Operation
		3. Deleting: Removing a data from the data structure is referred as deletion.	
		4. Sorting: Arranging the data in some logical order (ascending or descending, numerically or alphabetically).	
		5. Searching: Finding the location of data within the data structure which satisfy the searching condition.	
		6. Traversing: Accessing each data exactly once in the data structure so that each data item is traversed or visited.	
		7. Merging: Combining the data of two different sorted files into a single sorted file.	
		8. Copying: Copying the contents of one data structure to another.	
		9. Concatenation: Combining the data from two or more data structure.OR	

	Data structure operations (Primitive)	
	Creation: To create new Data Structure	
	2. Destroy: To delete Data Structure	
	3. Selection: To access (select) data from the data structure	
	4. Updating: To edit or change the data within the data structure.	
b	Define the term overflow and underflow with respect to stack.	2M
Ans	Stack overflow: When a stack is full and push operation is performed to insert a new element, stack is said to be in overflow state. Max = 4 B C B C B C B C B C C B C C	1 M for stack overflow and 1M for stack underflow
	Stack underflow: When there is no element in a stack (stack empty) and pop operation is called then stack is said to underflow state. Max = 4 3 Max = 4	
	2 2 0 0 0 0 0 0 0 0	
С	Stack Emply. Stack underflow state:	2M
c Ans	Define the following term w.r.t. tree: (i) In-degree (ii) out-degree. In -degree: Number of edges coming towards node is in-degree of node. For e.g.: In degree of node B is 1	
-	Define the following term w.r.t. tree: (i) In-degree (ii) out-degree. In -degree: Number of edges coming towards node is in-degree of node.	1 M for each correct

d	Evaluate the following notation: P: 4, 2, ^, 3,	g arithm, *,3,-,8	metic expr	ession P wr
	Evaluate the following notation: P: 4, 2, ^, 3,	, *,3,-,8 Sr.	8,4 ,/,+ Symbol	
Ans				STACK
				STACK
		140.	Jeanne	
		1	4	4
		2	2	4, 2
		3	٨	16
		4	3	16, 3
ı		5	*	48
		6	3	48,3
		7	-	45
		8	8	45,8
		9	4	45,8,4
		10	/	45,2
		11	+	47

е	Describe directed and undirected graph.	2M
An	Direct Graph: A directed graph is defined as the set of ordered pair of vertices and edges where each connected edge has assigned a direction. Undirected Graph: An undirected graph G is a graph in which each edge e is not assigned a direction.	1M for each definition with diagram
f	Give classification of data structure.	2M
An	Data Structure Primitive Data Structure Non-Primitive Data Structure Integer Float Character Pointer Arrays Lists Files Linear Lists Non-Linear Lists Stacks Queues Graphs Trees	2 M for diagram
g	Define queue. State any two applications where queue is used.	2M
An		1M for definition, 1M for applications (any two)

	Pass 3	:		00	14,064	1,0348,	3851,0	074				
		0	1	2	3	4	5	6	7	8	9	
	0014	0014										
	0641							0641				
	0348				0348							
	3851	0074								3851		
	0074	0074										
	Pass 4	:			0014,0	0074,03	348,064	1,3851				
		0	1	2	3	4	5	6	7	8	9	
	0014	0014										
	0074	0074										
	0348	0348										
	0641	0641										
	3851					3851						
b		an algo linked	rithm					8, 641, e begin		nd end	of the	4M
Ans	1. Alş	gorithn	Insert	first(st	art, iter	n)	e begir	nning				2M for Algorithm for inserting a node at the
	1. [check the overflow] if Ptr=NULL then print 'Overflow'								beginning 2M for			
				exit else								Algorithm for Inserting A Node at the
				Ptr=(node *)	mallo	c (size	of (node	e))			End
			//crea	te new	node fr	om me	mory a	nd assi	gn its a	ddress	to ptr	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

elements are deleted from the queue, new elements cannot be added in their place in the queue, i.e. the position cannot be reused. After rear reaches the last position, i.e. MAX-1 in order to reuse the vacant positions, we can bring rear back to the 0th position, if it is empty, and continue incrementing rear in same manner as earlier. Thus rear will have to be incremented circularly. For deletion, front will also have to be incremented circularly. Rear can be incremented circularly by the following code. If ((rear == MAX-1) and (front !=0) Rear =0; Else Rear= rear +1; Example: Assuming that the queue contains three elements. Now we insert an element F at the beginning by bringing rear to the first position in the queue, this can be represented circularly as shown. Front 10 20 30 50 40 3 **Need of Circular Queue:** Circular queues overcome the problem of unutilized space in linear queue implemented as an array.

The element can be stored efficiently in an array so as to wrap around so that the end of queue is followed by front of the queue.

	d	Draw a binary search tree for the given number. 50, 33, 44, 22, 77, 35, 60, 40.	4M
ĺ	Ans		4 M for
			correct
			answer

		22	33 44	77						
3.		Attempt any Three of the follo	wing:			12M				
<u> </u>	а	Explain time and space comple		th an example		4M				
	Ans	computer time that it needs complexity of an algorithm we count for key statements. Example: #include <stdio.h> void main () { int i, n, sum, x; sum=0;</stdio.h>	Time Complexity: Time complexity of program or algorithm is amount of computer time that it needs to run to completion. To measure time complexity of an algorithm we concentrate on developing only frequency count for key statements. Example: #include <stdio.h> void main () { int i, n, sum, x; sum=0; printf("\n Enter no of data to be added"); scanf("% d", &n);</stdio.h>							
		Statement		Computational Time						
		sum=0	1 y	t ₁	+					
		printf("\n Enter no of data to be added")	1	t ₂	-					
		scanf("% d", &n)	1	t ₃	1					
		for(i=0; i <n; i++)<="" th=""><th>n+1</th><th>(n+1)t₄</th><th></th><th></th></n;>	n+1	(n+1)t ₄						
		scanf("%d", &x)	n	nt ₅						
		sum=sum+x	n	nt ₆	_					
		printf("\n Sum = %d ", sum)	1	t ₇						
		Total computational ti T=n(t4+t5+t6)+(t1+t6) For large n, T can be T=n(t4+t5+t6)=kn w Thus $T=kn$ or	t2+t3+t4 approx	4+t7) imated to	+nt6+nt5+t7					

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Space Complexity: Total amount of computer memory required by an algorithm to complete its execution is called as space complexity of that algorithm. When a program is under execution it uses the computer memory for THREE reasons. They are as follows...

- Instruction Space: It is the amount of memory used to store compiled version of instructions.
- Environmental Stack: It is the amount of memory used to store information of partially executed functions at the time of function call.
- Data Space: It is the amount of memory used to store all the variables and constants.

If the amount of space required by an algorithm is increased with the increase of input value, then that space complexity is said to be Linear Space Complexity.

Example:

```
int sum(int A[], int n) 
 { 
  int sum = 0, i; 
  for(i = 0; i < n; i++) 
    sum = sum + A[i]; 
  return sum;}
```

In the above piece of code it requires

'n*2' bytes of memory to store array variable 'a[]'

2 bytes of memory for integer parameter 'n'

4 bytes of memory for local integer variables 'sum' and 'i' (2 bytes each)

2 bytes of memory for return value.

That means, totally it requires '2n+8' bytes of memory to complete its execution. Here, the total amount of memory required depends on the value of 'n'. As 'n' value increases the space required also increases proportionately. This type of space complexity is said to be **Linear Space Complexity**.

OR

Time complexity:- Time complexity of a program/algorithm is the amount of computer time that it needs to run to completion. While calculating time complexity, we develop frequency count for all key statements which are important and basic instructions of an algorithm.

Example: Consider three algorithms given below:-

	Algorithm A: - a=a+1	
	Algorithm B: - for $x = 1$ to n step 1 a=a+1	
	Loop	
	Algorithm C:- for x=1 to n step 1	
	for y=1 to n step 1 a=a+1	
	Loop	
	Frequency count for algorithm A is 1 as a=a+1 statement will execute only once. Frequency count for algorithm B is n as a=a+1 is key statement executes n time as the loop runs n times.	
	Frequency count for algorithm C is n as a=a+1 is key statement executes n2 time as the inner loop runs n times, each time the outer loop runs and the outer loop also runs for n times.	
	Space complexity :- Space complexity of a program/algorithm is the amount of memory that it needs to run to completion. The space needed by the program is the sum of the following components:-	
	Fixed space requirements : - It includes space for instructions, for simple variables, fixed size structured variables and constants.	
	Variable time requirements: - It consists of space needed by structured variables whose size depends on particular instance of variables. Example: - additional space required when function uses recursion.	
b	Convert the following infix expression to postfix expression using stack and show the details of stack in each step. $((A+B)*D)^(E-F)$	4M
Ans		Correct
	infix expression:	answer-4M
	$(((\mathbf{A}+\mathbf{B})^*\mathbf{D})^*(\mathbf{E}-\mathbf{F}))$	

	Current Symbol	Operator Stack	Postfix array	
	((Empty	
	(((Empty	
	((((Empty	
	A	(((A	
	+	(((+	A	
	В	(((+	AB	
)	((AB+	
	*	((*	AB+	
	D	((*	AB+D	
)	(AB+D*	
	^	(^	AB+D*	
	((^(AB+D*	
	Е	(^(AB+D*E	
	-	(^(-	AB+D*E	
	F	(^(-	AB+D*EF	
)	(^	AB+D*EF-	
)	EMPTY STACK	AB+D*EF-^	
	Postfix expression	1		
	nent a 'C' program to Ising Linear Search.	o search a particu	lar data from the given	4N
Ans Progra				

	# include <stdio.h></stdio.h>	2M for locio
		2M for logic
	#include <conio.h></conio.h>	And 2 M for
	void main ()	syntax
	{	
	int a[10], n, key,i,c=0;	
	clrscr();	
	printf ("Enter number of array elements\n");	
	scanf ("%d", &n);	
	printf ("Enter array elements\n");	
	for (i=0; i< n; i++)	
	scanf ("%d", &a[i]);	
	prinntf ("Enter key value\n");	
	scanf ("%d", &key);	
	for(i=0;i< n-1;i++)	
	[
	l l	
	if (Irov. — a[i])	
	if (key == a[i])	
	{	
	c=1;	
	printf ("%d is found at location %d\n", key, i+1);	
	break;	
	}	
	J	
	}	
	if (c==0)	
	printf ("%d not present in the list\n",key);	
	getch();	
	}	
d	Draw an expression tree for the following expression:	4M
"	$(a-2b+5e)^2 * (4d=6e)^5$.	7171
	(a-20+3e) * (4u=0e) .	C
Ans		Correct
		Expression
		tree-4M
	1	

	21 > 11	l=mid+1 = 4	4 and 1	u = 7			
	Step 2:			Г -			
		4 5		6	7		
		17 21		29	45		
	l=4 and u ='	7					
	mid= 11/2 =						
	a[mid]=21 e	equal to key elemen	t 21				
	therefore ke	ey element 21 is fou	ınt un	array at	position 6		
b	Difference k	oetween tree and gr	raph(A	Any 4 poi	nts)		4M
Ans					7 7		Any correct
		Tree			Fraph		points- 4M
		Tree is special forr			ere can be		
		of graph i.e. minimally connect		nore than raph can	one path i.e.		
		graph and having		irectional			
		only one path			paths (edges)	
		between any two vertices.		etween no	-		
		Tree is a special ca			have loops,		
		of graph having no	_		well as can		
		loops, no circuits a	ınd h	ave self-l	oops.		
		no self-loops. Tree traversal is a		Franh is tr	aversed by		
		kind of special case		-	th First Search	n	
		of traversal of grap		-	S: Breadth		
		Tree is traversed in		irst Searc	h algorithm		
		Pre-Order, In-Order and Post-Order	er				
		Different types of			nainly two	_]	
		trees are: Binary		•	raphs: Directe	ed	
		Tree, Binary Searc	h a	nd Undire	ected graphs.		
		Tree, AVL tree,					

С	Treed m	Graph applications: Coloring of maps, in OR (PERT & CPM), algorithms, Graph coloring, job scheduling, etc. Tee always has n-1 lges. Tee is a hierarchical odel. Tally linked list using data fields 21 25 96 58 74 and sho	w 4M
Ans	procedure step	-by-step with the help of diagram start to end.	correct
			construction
			3M and
	Step1:	Initially linked is empty Start=NULL	explaination 1M
		Insert node 21	1141
		Start	
		21 NULL	
		insert node 25	
	Start tra	versing linked list from start till last node of linked list and then add a new node	
		Start	
		21 25 NULL	
	Step3:	Insert node 96	
		Start	
		21 25 96 NULL	
	Step 4:	Insert node 58	
		Start	
		21 25 96 58 NULL	
	Step 5:	nsert node 74	
		Start	
		21 25 96 58 74 NULL	

	POP PUSH(30)				
Ans	Initial Stack empty				Each correct
		stack[9] stack[8] stack[7] stack[6]			step-1M
		stack[5] stack[4] stack[3] stack[2] stack[1]			
		stack[0]	top= -1		
	Step 1:	DUCU(O)			
		PUSH(0) top=top+1	1	stack[0]=10	
	10 Step 2:	stack[9] stack[8] stack[7] stack[6] stack[5] stack[4] stack[3] stack[2] stack[1] stack[0]	top=0	Stack[0]=10	
	20 10	PUSH(0) top=top+1 stack[9] stack[8] stack[7] stack[6] stack[5] stack[4] stack[3] stack[2] stack[1] stack[0]	top=1	stack[1]=20	
		POP			

ı						
		top=	top-1	20 is deleted		
		stac	k[9]			
		stac				
		stac				
		stac				
		stac				
		stac				
		stac				
		stac				
		stac				
		10 stac	k[0] top=0			
		Step 4:				
		PUS	H(0)			
		top=	top+1	stack[1]=30		
		stac	k[9]			
		stac	k[8]			
		stac				
		stac	k[6]			
		stac				
		stac				
		stac				
		stac				
		30 stac	-			
		10 stac	k[0]			
е	Compa	re Linked List and Arra	y (any 4 poi	nts).		4M
Ans					-	1M for each
		Linked List		Array		valid difference
		Array is a collection of		ist is an ordered		
		elements of similar data		n of elements of same		
		type.	• •	ch are connected to		
				er using pointers.		
		Array supports Random	Linked L	ist		
		Access, which means	supports	Sequential Access,		
		elements can be accessed	l which me	eans to access any		
		directly using their index		node in a linked list;		
		like arr[0] for 1st	´	to sequentially		
		element, arr[6] for 7th		the complete linked		
		element etc.		that element.		
		Cicinent etc.	nst, up to	mat viemvilt.		
 l						

	-	
Hence, accessing	To access nth element of a	
elements in an array	linked list, time complexity	
is fast with a constant	is O (n).	
time complexity of O (1).		
In array, Insertion and	In case of linked list, a new	
Deletion operation takes	element is stored at the first	
more time, as the memory	free and available memory	
locations are consecutive	location, with only a single	
and fixed.	overhead step of storing the	
	address of memory location in	
	the previous node of linked	
	list. Insertion and Deletion	
	operations are fast in linked	
	list.	
Mamagy is allocated as	Mamany is allocated	
Memory is allocated as soon as the array is	Memory is allocated at runtime, as and when a new	
declared, at compile time.	node is added. It's also known	
It's also known as Static	as Dynamic Memory	
Memory Allocation.	Allocation.	
In array, each element is	In case of a linked list, each	
independent and can be	node/element points to the	
accessed using it's index	-	
value	next, previous, or maybe both	
, 532.53	nodes.	
Arroy con cingle	Linked list can be Linear	
Array can single dimensional, two		
dimensional, two	(Singly), Doubly or Circular li	
nsional	nked list.	
	Cigo of a Linkad list is	
Size of the array must be	Size of a Linked list is	
specified at time of array declaration.	variable. It grows at runtime,	
ucciaration.	as more nodes are added to it.	
A many coto ma since since	W/homass limbrod list sets	
Array gets memory	Whereas, linked list gets	
allocated in	memory allocated	
the Stack section	in Heap section.	


```
break;
    }
    rear=rear+1;
    a[rear]=no;
    if(front==-1)
    front=0;
    break:
    case 2:
    if(front==-1)
    printf ("\n QUEUE IS EMPTY.");
    break;
    no=a[front];
    printf("\n DELETED ELEMENT IS:- %d",no);
    if(front==rear)
    front=rear=-1;
    else
    front=front+1;
    break;
    case 3:
    exit(0);
    printf("\n\n DO YOU WANT TO CONTINUE:(1 FOR YES/2 FOR NO):-");
    scanf("%d",&ch);
    }while(ch==1);
    getch();
b
    Consider the graph given in following figure and answer given
                                                                                   6M
    questions.
    1)All simple path from 1 to 5
    2)In-degree of and out-degree of 4
    3) Give Adjacency matrix for the given graph.
    4) Give Adjacency list representation of the given graph.
```


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Ans i) Nodes: 1-2-5

ii) Nodes: 1-3-2-5

2)

In degree of node 4-1, Out degree of node 4-0

3)Correct adjacency matrix:

$$A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

4) Adjacency list representation

Node	Adjacent nodes
1	2,3
2	5
3	2,4
4	NIL
5	3

Simple path: Each path ½
M
Each degree
½ M

Correct adjacency matrix: 2M Adjacency list representation -2M

	c Ans	Representation: The state of	6M Correct steps
		Write an algorithm to search a particular node in the give linked list.	
	Ans	Assumption: Node contains two fields: info and next pointer start pointer: Header node that stores address of first node step 1: start step 2: Declare variable no, flag and pointer temp step 3: Input search element step 4: Initialize pointer temp with the address from start pointer.(temp=start), flag with 0 step 5: Repeat step 6 till temp!= NULL step 6: compare: temp->info = no then set flag=1 and go to step 7 otherwise increment pointer temp and go to step5 step 7: compare: flag=1 then display "Node found" otherwise display "node not found" step 8: stop	Correct steps of algorithm- 6M
6.	а	Attempt any Three of the following: Elaborate the steps for performing selection sort for given elements of array. A={37,12,4,90,49,23,-19}	12M 6M

Ans		Correct steps:
	Pass 1	each pass-1M
	37 12 4 90 49 23 -19	
	12 37 4 90 49 23 -19	
	4 37 12 90 49 23 -19	
	4 37 12 90 49 23 -19	
	4 37 12 90 49 23 -19	
	-19 37 12 90 49 23 4	
	Pass 2	
	-19 37 12 90 49 23 4	
	-19 12 37 90 49 23 4	
	-19 12 37 90 49 23 4	
	-19 12 37 90 49 23 4	
	19 12 37 90 49 23 4	
	-19 4 37 90 49 23 12	

b	Explain the concept of recursion using stack.	6M
Ans	body contains a function call statement that calls itself repetitively.	Explanation- 4M & 2M fo Example
	Example:	
	function call from main(): fact(n); // consider n=5	
	Function definition:	
	int fact(int n)	
	if(n==1)	
	return 1; else	
	return(n*fact(n-1));	
	In the above recursive function a function call fact (n-1) makes a recursive	
	call to fact function. Each time when a function makes a call to itself, it save	
	its current status in stack and then executes next function call. When fact ()	
	function is called from main function, it initializes n with 5. Return statement inside function body executes a recursive function call. In this call, first	
	value of n is stored using push () operation in stack (n=5) and a function is	
	called again with value 4(n-1). In each call, value of n is push into the stack	
	and then it is reduce by 1 to send it as argument to recursive call. When a	
	function is called with n=1, recursive process stops. At the end all values	
	from stack are retrieved one by one using pop () operation to perform multiplication to calculate factorial of number.	
	multiplication to calculate factorial of number.	
	f(1) POP true return 1;	
	f(2) f(2) f(2) pop false return 2*f(1) return 2*1	
	f(3) f(3) f(3) pop false false	
	return 3*f(2) return 3*f(2) return 3*2	
	f(4)	
	f(5) f(

	recursive call execution. Next columns shows result of pop operation for	
	calculating factorial.	
С	Show with suitable diagrams how to delete a node from singly linked list at the beginning, in between and at the end of the list.	6M
Ans	In a linear linked list, a node can be deleted from the beginning of list, from in between positions and from end of the list. Delete a node from the beginning:-	Diagram for beginning- 2M, end-2M, inbetween-2M
	Start temp 1 A C HULL Mode Node 2 Hode 3	
	Node to be deleted is node1. Create a temporary node as 'temp'. Set 'temp' node with the address of first node. Store address of node 2 in header pointer 'start' and then delete 'temp' pointer with free function. Deleting temp pointer deletes the first node from the list. Delete a node from in between position:-	
	Start Temp, 9 Node 1 Hode 2 Mode 3 Hode 4	
	Node to be deleted is node3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the previous node of node 3 and mark the next node (node3) as 'q'. Store address from node 'q' into address field of 'temp' node. Then delete 'q' pointer with free function. Deleting 'q' pointer deletes the node 3 from the list.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Delete a node from the end:-

Node to be deleted is node 3.Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the second last node and mark the last node as 'q'. Store NULL value in address field of 'temp' node and then delete 'q' pointer with free function. Deleting q pointer deletes the last node from the list.