

# CONTENT

INTRODUCTION TO THE DATASET

DATACLEANING

DATA VISUALIZATION AND PLOTS

MACHINE LEARNING MODELS

DEEP LEARNING MODELS

CONCLUSION

## The dataset

Published by: Kelwin Fernandes Pedro Vinagre, Paulo Cortez, Pedro Sernadela on 05/30/15



Gathers 61 features about 37589 articles published by Mashable in a period of two years.

Goal: predict the number of shares in social networks

# Data cleaning



- >> Dataset was already fairly clean : no missing values, no empty nor duplicated rows
- Deleted the space before each column names ('n\_tokens' etc)
- >> Dropped the url and timedelta column (useless columns)
- >>Dropped 'is\_weekend' as specific days columns already existed



## Data Visualization

- count plot: shares per day of the week
- countplot: number of articles per each subject
- barplot: shares per each subject
- barplot: title subjectivity per subject
- barplot: absolute and felt title subj. per subject
- barplot: content subj. and polarity per subject
- histogram: average keywords popularity and shares
- countplot: title length
- heatmap: correlation betw. shares, absolute and felt title subj.
- heatmap: correlation betw. shares, amount of images and videos in articles
- heatmap: correlation betw. shares, global rate of positive and negative words

# Subjectivity plots:



'World' titles are seen as quite objective despite being subjective

Delta between **felt** and **abs**. title subj

'Entertainment' titles are the only stable values



'World' has high title subj but low content subj



'Lifestyle' is the most subjective all aroud



'Tech' is surprisingly subjective

# Shares plots:







More shares the weekend

The highest value is 'Saturday'



A lot of articles with 'No subject'

Predominant subject are 'Lifestyle' and 'Social Media'

# Correlation of images, videos and shares:



Low correlation: proves that written articles still have their place in the era of social media

## Influence of the words in an article:



An article with many words is not necessarily shared more than an article with few words

## Here are the steps to prepare the machine learning part:

- Split the data into two variables:
  - the featured variables
  - the target variable (with a decision threshold of 1400, equal either to 0 or 1)
- Split into two sets:
  - training set
  - o test set
- Revome some correlated columns with a decision boundarie of 0.85 (example: n\_non\_stop\_words/unique\_tokens')
- Scale the data
- Evaluate each model

#### The preview of the heatmap:

```
n_tokens_title - 1 0.018.095.8095.2005

n_tokens_content 0.018 1-0.00250107001

n_unique_tokens-0.005.800251 1 1-0

n_non_stop_words-0.005.2017 1 1 10

n_non_stop_unique_tokens-0.005.90191 1 1-0
```

## LinearRegression and Lasso:

### LinearRegression:

Accuracy: 0.6258692628650904

Mean Squared Error: 0.3741307371349096

R-squared: -0.5020323849169899

Good accuracy

MSE not so high

R<sup>2</sup> very low

#### Lasso:

Accuracy: 0.5302819572638766

Mean Squared Error: 0.4697180427361234

R-squared: -0.8857892226990933

Bad accuracy (compared to

LinearRegression)

MSE not so high

R<sup>2</sup> very low

## SVC:

#### SVC:

```
Accuracy: 0.639903906941459
Precision: 0.6449181739879414
Confusion matrix:
[[2066 1649]
[1199 2995]]
```

#### SVC with GridSearch:

```
Accuracy: 0.6392717157668479
Precision: 0.6479152878888154
Confusion matrix:
[[2119 1596]
[1257 2937]]
```

Good accuracy (0.63)

Good accuracy (0.63)
GridSearch not improved our model

DecisionTreeClassifier and RandomForestClassifier:

DecisionTreeClassifier:

```
Accuracy: 0.5737767100771273
Precision: 0.5976738666033705
Confusion matrix:
[[2020 1695]
[1676 2518]]
```

Bad accuracy (0.57)

RandomForestClassifier:

```
Accuracy: 0.6371222657731698
Precision: 0.6433521004763967
Confusion matrix:
[[2068 1647]
[1223 2971]]
```

Good accuracy (0.63)

RandomForestClassifier with GridSearch:

```
Accuracy: 0.6473637628018712
Precision: 0.6501389185723445
Confusion matrix:
[[2078 1637]
[1152 3042]]
```

Best accuracy (0.64)

GridSearch improved the model

## Deep Learning

## Binary classification with Neural Networks

- Predict the number of shares of a news piece based on a decision boundary of 1400
  - $\circ$  y = 1 if shares > 1400 else 0
- Model inspired by human brain's neural system for learning patterns and relationships in data
- Complex architecture: input layer,
   hidden layers (ReLu activation), output
   layer (sigmoid activation)



# Hyperparameter tuning for model optimization

### Random Search Cross-Validation

- Vast array of parameters to test: units,
   dropout rate, learning rate, epochs, batch
   size
  - Random Search >> Grid Search
- 10 iterations with 3 folds: 30 total fits
- Best iteration provides 66% mean accuracy
- Used RandomizedSearchCV,
   GridSearchCV, and KerasClassifier from sklearn

## Values to test:

- units: [64, 32], [128, 64, 32]
- dropout rate: 0.3, 0.5, 0.7
- learning rate: 0.1, 0.01, 0.001
- epochs: 10, 20, 30
- batch size: 16, 32, 64

## Final Model

#### **Format**

- Neuron count and dropout rate taken from best parameters of Random Search
- Dense layers (ReLu activation) followed by Dropout layers
- Final Dense layer with single neuron and sigmoid activation

#### **Compilation and fitting parameters**

- optimizer: Adam with learnig rate of 0.001
- loss function: Binary Crossentropy
- metrics: Accuracy
- Epochs and batch size taken from best parameters of Random Search

#### **Performance**

## What's the best model?





Our best model: the NeuralNetwork one

