8.2 Similarity and Diagonalizability

Definition

If A and C are square matrices with the same size, then we say that C is similar to A if there is an invertible matrix P such that $C = P^{-1}AP$.

Theorem

Two square matrices are similar if and only if there exist bases with respect to which the matrices represent the same linear operator.

Similarity invariants

Theorem

- (a) Similar matrices have the same determinant.
- (b) Similar matrices have the same rank.
- (c) Similar matrices have the same nullity.
- (d) Similar matrices have the same trace.
- (e) Similar matrices have the same characteristic equation and hence have the same eigenvalues with the same algebraic multiplicities.

Definition

Let *A* be an $n \times n$ matrix and λ_0 is an eigenvalue of *A*.

- (a) The solution space of $(\lambda_0 I A)\mathbf{x} = \mathbf{0}$ is called the eigenspace of A corresponding to λ_0 .
- (b) The dimension of this eigenspace is called the geometric multiplicity of λ_0 .

Algebraic multiplicities

The algebraic multiplicity of λ_0 is the number of repetitions of the factor $\lambda - \lambda_0$ in the complete factorization of the characteristic polynomial of A.

Example

Find the algebraic and geometric multiplicities of the eigenvalues of

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -3 & 5 & 3 \end{bmatrix}$$

Example

Find the algebraic and geometric multiplicities of the eigenvalues of

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Theorem

Similar matrices have the same eigenvalues and those eigenvalues have the same algebraic and geometric multiplicities for both matrices.

Theorem

Suppose $C = P^{-1}AP$ and that λ is an eigenvalue of A and C.

- (a) If \mathbf{x} is an eigenvector of C corresponding to λ , then $P\mathbf{x}$ is an eigenvector of A corresponding to λ .
- (b) If **x** is an eigenvector of A corresponding to λ , then P^{-1} **x** is an eigenvector of C corresponding to λ .

Definition (The diagonalization problem)

Given a square matrix A, does there exist an invertible matrix P for which $P^{-1}AP$ is a diagonal matrix, and if so, how does one find such a P? If such a matrix P exists, then A is said to be diagonalizable, and P is said to diagonalize A.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Diagonalizing an $n \times n$ matrix with n linearly independent eigenvectors

- Step 1. Find *n* linearly independent eigenvectors of *A*, say $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$.
- Step 2. Form the matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$.
- Step 3. The matrix $P^{-1}AP$ will be diagonal and will have eigenvalues corresponding to $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$, respectively, as its successive diagonal entries.

Determine whether A is diagonalizable. If so, find a matrix P that diagonalizes A and determine $P^{-1}AP$.

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Determine whether A is diagonalizable. If so, find a matrix P that diagonalizes A and determine $P^{-1}AP$.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -3 & 5 & 3 \end{bmatrix}$$

Theorem

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a matrix A that correspond to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent.

Theorem

An $n \times n$ matrix with n distinct real eigenvalues is diagonalizable.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if the sum of the geometric multiplicities of its eigenvalues is n.

Theorem

If A is a square matrix, then:

- (a) The geometric multiplicity of an eigenvalue of A is less than or equal to its algebraic multiplicity.
- (b) A is diagonalizable if and only if the geometric multiplicity of each eigenvalue of A is the same as its algebraic multiplicity.

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent:

- (a) A is diagonalizable.
- (b) A has n linearly independent eigenvectors.
- (c) \mathbb{R}^n has a basis consisting of eigenvectors of A.
- (d) The sum of geometric multiplicities of the eigenvalues of A is n.
- (e) The geometric multiplicity of each eigenvalue of A is the same as the algebraic multiplicity.