

www.nagpurstudents.org

B.E. (Computer Science Engineering) Fourth Semester (C.B.S.)

Theoretical Foundations of Computer Science

P. Pages: 3
Time: Three Hours

NIR/KW/18/3381

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Assume suitable data whenever necessary.
- 1. a) Explain closure of a Relation. Find R^* for $R = \{(1,1), (1,2), (2,1), (2,3), (3,2)\}$.
 - b) Prove the following relation using principle of Induction:
 - i) $1.2.3 + 2.3.4 + + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$
 - ii) $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
 - c) What is countability? Explain.

OR

- 2. a) Describe the concept of Pigeon hole principle with example.
 - b) Define the following **any four.**
 - i) Transitive Closure.
 - ii) Reflexive Transitive Closure.
 - iii) Prefix of String.
 - iv) Suffix of String.
 - v) Substring.
 - vi) Subsequence
- **3.** a) Design a DFA to accept all the natural numbers divisible by 3.
 - b) Construct a Mealy machine to find 2's complement of a given binary number. Assume that given binary number is presented from LSB to MSB. Also, convert the resultant Mealy machine into its equivalent Moore machine.

OR

1

2

4. a) Convert the following NFA into its equivalent DFA.

Q/Σ	0	1
\rightarrow p	р	p, q
* q	r	r
r	ı	s
*S	S	S

b) Construct a minimum state automaton equivalent to a given automaton M whose transition table is given by,

State / Σ	a	b
\rightarrow q ₀	q_0	q_3
\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_{5}
Q 2	\mathbf{q}_3	q_4
q_3	\mathbf{q}_0	q_5
${ m q}_4$	\mathbf{q}_0	\mathbf{q}_6
q_5	\mathbf{q}_1	q_4
q_6	\mathbf{q}_1	q_3

5. a) Reduce the following grammar.

$$S \rightarrow aA / aBB$$

$$A \rightarrow aaA/ \in$$

$$B \rightarrow bB/bbC$$

$$C \rightarrow B$$

b) Obtain deterministic finite automata for the following Regular expression,

$$(0+1)*10(0+1)*+(0+1)*11(0+1)*$$

c) Check whether the given grammar is ambiguous or not.

$$S \rightarrow a/Sa/bSS/SbS$$

OR

6. a) Convert the following Right linear grammar into left linear grammar.

$$S \rightarrow 01A/10$$

$$A \rightarrow 10A/10$$

b) Construct a Regular expression from the following finite automata.

7

6

5

Nagpußtudents

7. a) Convert the CFG into PDA.

$$E \rightarrow aAB/d$$

$$A \rightarrow BA/a$$

$$B \rightarrow Ead/c$$

b) Design a PDA for

$$L = \{ww^{R} / w \in \{a, b\} * \}$$

OR

8. a) Convert the given PDA to CFG.

$$\delta(q_0, a, z_0) \rightarrow (q_0, x z_0)$$

$$\delta(q_0, a, x) \rightarrow (q_0, x x)$$

$$\delta(q_0, b, x) \rightarrow (q_1, \in)$$

$$\delta(q_1, b, x) \rightarrow (q_1, \in)$$

$$\delta(q_1, \in, z_0) \rightarrow (q_1, \in)$$

b) Using pumping lema, prove that language

$$L = \left\{ a^{i^3} / i \ge 1 \right\}$$

is not regular.

9. a) Design a Turing machine for the language

$$L = \left\{ a^n b^m c^n / n, m \ge 1 \right\}$$

b) Design a TM to perform multiplication of two unary numbers.

OR

- **10.** a) Explain various types of Turing machines.
 - b) Design a Turing machine to copy a string over $\Sigma = \{a, b\}^*$.
- 11. a) Explain post correspondence problem. Consider the post correspondence system described by the following lists.

$$A = \{10, 01, 0, 100, 1\}$$

$$B = \{101, 100, 10, 0, 010\}$$

Does this PCP have a resolution?

b) Compute A(1, 1), A(1, 2), A(2, 1) using Ackermann function.

OR

- **12.** Write a short note on :
 - i) Halting problem of Turing Machine
 - ii) Linear bounded Automata
 - iii) Primitive Recursive Function.

3

6

7

6

13

All our dreams can come true if we have the courage to pursue them.

~ Walt Disney

