EVEN SEMESTER EXAMINATION, 2022 – 23 IInd yr B.Tech. – Computer Science & Eng/ Chemical Eng Mathematics -III

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1. Answer any four parts of the following.

- 5x4=20
- a) Find Fourier sine transform of $\frac{e^{-ax}}{x}$, a > 0. Hence find Fourier sine transform of
- $\frac{1}{x}$.
- b) Using Laplace transform find the value of $\int_{0}^{\infty} e^{-3t} t \sin t \, dt$.
- c) Find the real root of the equation $\cos x xe^x = 0$, correct to three decimal places using Newton-Raphson method.
- d) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's one-third rule.
- e) Solve the initial value problem $\frac{du}{dt} = -2tu^2$, u(0) = 1, using Runge-Kutta fourth order method with h = 0.2 on the interval [0, 0.4].
- f) Define Skewness and Kurtosis of a distribution. In a certain distribution the first four moments about the point x = 4 are -1.5, 17, -30 and 108. Find the moments about mean also calculate β_1 and β_2 .

Q 2. Answer any four parts of the following.

- 5x4=20
- a) Using Fourier transform solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, x > 0, t > 0 subject to the

conditions (i) u = 0 when x = 0, t > 0 (ii) $u = \begin{cases} 1, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$ when t = 0 and (iii) u(x, t)

- is bounded.
- b) Solve by Laplace transform: $\frac{d^2y}{dt^2} + y = t\cos 2t$, t > 0 given that $y = \frac{dy}{dt} = 0$, for t = 0.
- c) Prove that: (i) $1 + \left(\frac{\delta^2}{2}\right) = \sqrt{1 + \delta^2 \mu^2}$ (ii) $\Delta + \nabla = \frac{\Delta}{\nabla} \frac{\nabla}{\Delta}$
- d) Using Lagrange's interpolation formula, find y(10) from the following table:

2	X	5	6	9	11
7	Y	12	13	14	16

e) Find the co-efficient of correlation for the following table:

	X	10	14		18	2	22	2	26	30		
	Y	18	12		24	6	<u> </u>	3	0	36		
											_	
	f) Find the moment generating function of the discrete Poisson distribution											
	given by $P(x) = e^{-\lambda} \frac{\lambda^x}{ x }$. Also find the first and second moments about the mean.											
	given by $P(x)$	$e^{-\lambda} = e^{-\lambda} - \frac{1}{1}$	$\frac{y}{x}$. Also	o find the	e first a	and seco	ond m	oment	s about the	he mean.		
Q 3.											10x2 = 20	
Q 3.	a) Find the Fourier transform of e^{-x^2} . Hence find the Fourier transform $F(x) = e^{-ax^2}$, $(a > 0)$ b) Define Unit step function. Also evaluate inverse laplace transform $\frac{p^2}{\left(p^2 + a^2\right)\left(p^2 + b^2\right)}$.											1012-20
											of	
											of	
	c) Given $\frac{dy}{dx} = x - y^2$; $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$ and $y(0.6) = 0.1762$. Compute $y(0.8)$ using Milne's method.											
Q 4.	Answer any tv	vo parts	of the fo	ollowing								10x2 = 20
	a) Estimate th	-		_		ar 1935	from	the fo	llowing c	lata:		
	Year(x)	1931	1932	1933		934	193		1936	1937		
	Production 17.1 13		14	9.	.6	- 12.4		12.4	18.2			
	b) Find $\frac{dy}{dx}$ at $x = 0.1$ from the following table											
	X	0.1		0.2		0.3			0.4			
	У	0.99	75	0.9	0.9900		0.9776		0.90	0.9604		
	c) By the method of least squares, find the curve $y = ax + bx^2$ that best fits the follow data:									he follow	ing	
	X	1		2		3		4		5		
	У	1.8		5.1 8		3.9	14.1			19.8		
Q 5.	. Answer any two parts of the following.											10x2= 20
	a) State and prove convolution theorem of Laplace transform.											
	b) The table gives the distance in nautical miles of the visible horizon for the given heights feet above the earth's surface: x = height 100 150 200 250 300 350 400									s in		
										400		
	x = height	100	150	200			300		350	400		
	y = distance 10.63 13.03 15.04 16.81 18.42 19.90 21.27 Using Newton's forward interpolation formula find the value of y when $x = 160 fit$. c) In a partially destroyed laboratory record of an analysis of a correlation data, the following results only are legible: Variance of $x = 9$; Regression equations:											
	8x-10y+66=0, $40x-18y=214$. What were (i) the mean values of x and y (ii) The											
	standered deviation of y and the co-efficient of correlation between x and y?											
L	I		•							-		
