Linguaggi di programmazione Appunti

GioLaPalma

Contents

Chapter 1

Introduzione ai linguaggi normali: grammatiche

1.1 Linguaggi (naturali o artificiali)

La descrizione di un linguaggio avviene su 3 dimensioni:

- Sintassi: regole di formazione, ovvero la relazione tra segni
- Semantica: attribuzione di significato
- Pragmatica: in quale modo frasi corrette e sensate sono usate
- Implementazione: come eseguire una frase corretta rispettandone la semantica

Partiamo con il descrivere questi elementi

1.1.1 Sintassi

Definition 1.1.1: sintassi

La **sintassi** è la parte della grammatica che studia la struttura delle frasi e il modo in cui le parole si combinano per formare enunciati corretti e significativi

Si dirama in diversi aspetti:

- Aspetto lessicale che riguarda le parole che si possono usare, quindi:
 - descrizione del lessico, intuitivamente i dizionari per i linguaggi naturali assolvono a questo compito
 - errori dovuti a vocaboli inesistenti
- Aspetto grammaticale che si riferisce nel modo in cui è possibile costruire frasi corrette è possibile cotruire con il lessico. Le frasi grammaticalmente corrette possono essere costruite grazie all'uso delle regole grammaticali, che sono in numero finito, mentre il numero di frasi generabili è infinito.

Un errore grammaticale è una frase scorretta, anche se il lessico utilizzato è corretto. Es. "La cane abbaiano"

1.1.2 Semantica

Definition 1.1.2: Semantica

La semantica è la branca della linguistica che studia il significato delle parole, delle frasi e degli enunciati

- Per il lessico (quindi lo studio e il significato delle parole) bastano i dizionari
- Per le frasi è più complicato, devo sapere infatti:

- 1. a quale linguaggio appartiene la frase
- 2. su quale linguaggio basarmi per dare significato

1.1.3 Pragmatica

Definition 1.1.3: Pregmatica

La **pragramtica** è un insieme di regole che guidano l'uso e come i contesti influiscono sull'interpretazione di frasi sensate e corrette

Ad esempio quando e a chi dare del "tu" o del "lei" quando ci rivolgiamo a delle persone

1.1.4 Implementazione

L'implementazione è l'esecuzione di una frase sintatticamente corretta rispettandone la semantica

La semantica di P, è la funzione f che è pure la semantica del programma compilato Q, quindi l'implementazione Q di P preseva la semantica di P!

1.2 Lessico e frasi di un linguaggio

Innanzi tutto diamo tre definizioni

Definition 1.2.1: alfabeto

Un alfabeto è un insieme (tipicamente) finito i cui elementi sono detti simboli

Definire l'alfabeto ci porta alla definizione di lessico:

Definition 1.2.2: Lessico

Il lessico è un insieme di sequenze finite costituite con caratteri o simboli dell'alfabeto

Il quale ci porta alla fenizione di frase:

Definition 1.2.3: frase

Una frase è un insieme sequenze finite contruite con parole del lessico.

È, quindi, facile notare che il lessico è un alfabeto per le frasi

Si ci si può ora astrarre e definire un linguaggio formale:

Definition 1.2.4: linguaggio formale

Un linguaggio formale L su alfabeto A è un sottoinsieme di A^* ($L \subseteq A^*$), dove:

$$A^* = \bigcup_{n \ge 0} A^n$$
 dove $A^0 = \{\epsilon\}$

е

$$A^{n+1} = A \cdot A^n \quad n \ge 0$$

 $\operatorname{con}\, A\cdot A^n=\left\{aw\big|a\in A\wedge w\in A^n\right\}$

Si osservi che A^* è un insieme infinito contabile dato un ordinamento < sui simboli di A, possiamo elencare tutt le parole come segue:

- 1. elenco la parola vuota ϵ (A^0)
- 2. poi elenco le parole di lunghezza 1 (A^1) secondo l'ordinamento < Es. a,b,c,\ldots
- 3. poi elenco le parole in A^2 secondo < Es. aa, ab, ac, ..., ba, bb, bc, ...
- 4. così via

Anche se l'alfabeto A fosse infinito (quindi $A = \{a_0, a_1, \dots\}$) A^* sarebbe ancora contabile, ovvero esisterebbe la possibilità di elencare tutte le possibili parole in A^* . Infatti, esiste una biezione tra A e $\mathbb N$ e riguardo ai numeri naturali si sa che:

• $\mathbb{N} \times \mathbb{N}$ (prodotto cartesiano) è numerabile. La dimostrazione viene fatta attraverso il dove-tailing, una tecnica comune per dimostrare la numerabilità di coppie di numeri naturali. Questa dimostrazione introduce la cosìdetta funzione di decodifica

$$f^2(x_1,x_2) = \frac{(x_1+x_2)(x_1+x_2+1)}{2} + x_2$$

che presi due numeri in N completa la seguente tabella ordinando i numeri naturali in "diagonale"

		X1						
	1	01	1	2	3	4	5	-
X2	0	0	X	3	6	10	15	
	1	2	4	A	M	16		
	2	3	8	12	17			
	3	9	13	18				
	4	14	19					
	5	26						
	,							

è pertanto vero, quindi, che

$$f^2: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

è biunivoca

 \bullet \mathbb{N}^k è numerabile. Infatti si può dimostrare attraverso questo algoritmo:

$$f^{k}(x_{1}, x_{2}, ..., x_{k}) = \text{ if } (k = 2) \text{ then } f^{2}(x_{1}, x_{2}) = \text{ else } f^{2}(x_{1}, f^{k-1}(x_{2}, ..., x_{k}))$$

Ovvero riduce una funzione con k variabili nel dominio ad una serie di funzioni matrioska per ricondurla alla forma $f^2: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

• $\mathbb{N}^* = \bigcup_{k \geqslant 0} \mathbb{N}^k$ è numerabile. Infatti:

$$f(x_1,...,x_k) = f^2(k, f^k(x_1,...,x_k))$$

1.3 Notazioni e definizioni ausiliarie

Vengono riportate qui alcune definizioni/notazioni

1.3.1 Lunghezza

Definition 1.3.1: lunghezza

La lunghezza di una parola o stringa è definita per induzione così:

- Caso $|\epsilon|$: 0
- Caso |aw|: 1 + |w|

Es: |abc| = 2

1.3.2 Concatenazione

Definition 1.3.2: Concatenazione

La concatenazione xy tra una stringa x e y, è la parola ottenuta giustapponendo x e y. Formalmente:

$$w = xy \iff \begin{cases} |w| = |x| + |y| \\ w(j) = x(j) & \text{per } 1 \le j \le |x| \\ w(|x| + j) = x(j) & \text{per } 1 \le j \le |y| \end{cases}$$

Dove w(j) indica il j-esimo simbolo di w

Questi sono le leggi della concatenazione

- Associatività: x(yz) = (xy)z
- Elemento neutro (ϵ): $x\epsilon = x = \epsilon x$

1.3.3 Sottostringa

Definition 1.3.3: Sottostringa

La stringa v si dive **sottostringa** di $w \iff \exists x,y \in A^*$ t.c. w = xvy dove x e y possono essere ϵ

Si osservi, quindi, che:

- Ogni stringa è sottostringa di se stessa
- \bullet ϵ è sottostringa di ogni stringa

1.3.4 Suffisso

Definition 1.3.4: suffisso

v si dice **suffisso** di $w \iff \exists x \in A^x. w = xv$

1.3.5 Prefisso

Definition 1.3.5: prefisso

v si dice **prefisso** di $w \iff \exists x \in A^x. w = vx$

1.3.6 Potenza n-esima

Definition 1.3.6: potenza n-esima

Si dice **potenza n-esima** di una stringa w il valore $n \ge 0$ il cui significato è definito per induzione:

- Caso 0: $w^0 = \epsilon$
- Caso n + 1: $w^{n+1} = ww^n$

1.3.7 Linguaggio

Definition 1.3.7: linguaggio

Si dice **linguaggio** L su alfabeto A un sottoinsieme $L \subseteq A^*$

Vengono riportati qui alcuni esempi

Example 1.3.1

Se $A = \{a\}$, si possono avere:

- \emptyset , $\{\epsilon\}$, $\{a,aaa\}$ sono linguaggi finiti
- $L_1 = \{a^n | \ge 1\} = \{a, aa, aaa, \dots\} = A^* \setminus \{\epsilon\}$
- $L_2 = \{a^{2n} | n \ge 0\} = \{\epsilon, aa, aaaa\}$

1.4 Operazione sui linguaggi

Qui sono elencati le varie operazioni

1.4.1 Complemento

Definition 1.4.1: complemento

È definito **complemento** il linguaggio completare ad un linguaggio L, ovvero:

$$\overline{L} = \{ w \in A^* | w \notin L \} = A^* \setminus L$$

1.4.2 Unione e intersezione

Definition 1.4.2: unione e intersezione

Ovvi:

$$L_1 \cup L_2\{w | w \in L_1 \lor w \in L_2\}$$

 $L_1 \cap L_2\{w | w \in L_1 \land w \in L_2\}$

1.4.3 Concatenazione

Definition 1.4.3: concatenazione

È definita **concatenazione** tale operazione:

$$L_1 \cdot L_2 = \{ w_1 w_2 | w_{\in} L_1 \wedge w_2 \in L_2 \}$$

Ecco alcuni esempi:

Example 1.4.1

- $L_1 = \{a^n \mid n > 0\}$ $L_2 = \{b\}$ $L_1 \cdot L_2 = \{a^n b \mid n > 0\}$
- $L_1 = \{a^{2n} \mid n > 0\}$ $L_2 = \{b^m \mid m > 0\}$ $L_1 \cdot L_2 = \{a^{2n}b^m \mid n, m > 0\}$
- $L_1 = \{a^m b^n \mid n > 0\}$ $L_2 = \{b^m \mid n > 0\}$ $L_1 \cdot L_2 = \{a^m b^{n+m} \mid n, m > 0\}$ $= \{a^m b^n \mid m \ge n > 0\}$
- $L_1 = \{a^m \mid m > 1\}$ $L_2 = \{a^m b^m \mid n > 0\}$ $L_1 \cdot L_2 = \{a^{m+n} b^m \mid m > 1, m > 0\}$ $= \{a^m b^m \mid m > m > 0\}$

•
$$L_1 = \{ab^m \mid n \ge 1\}$$
 $L_2 = \{a, c\} \cup \{b^n \mid n \ge 1\}$
 $L_1 \cdot L_2 = \{ab^m a \mid m \ge 1\} \cup \{ab^m c \mid n \ge 1\}$
 $\cup \{ab^n \mid n \ge 2\}$

• $A = \{0, 1\}$

 $L_1 = \{ w \in A^* \mid w \text{ contiene un numero pari di "0"} \}$

 $L_2 = \{ w \in A^* \mid w = 0y \in y \in \{1^*\} \}$

 $L_1 \cdot L_2 = \{ w \in A^* \mid w \text{ ha un numero dispari di "0"} \}$

1.4.4 Potenza di un linguaggio

Definition 1.4.4: Potenza di un linguaggio

La potenza di un linguaggio viene definita per induzione:

- Caso 0: $L^0 = \{\epsilon\}$
- Caso n + 1: $L \cdot L^n \quad \forall n \ge 0$

1.4.5 Stella di kleene

Definition 1.4.5: stella di kleene

Si dice stella di kleene:

$$L^* \bigcup_{n \ge 0} L^n$$

Oppure

$$L^+ = \bigcup_{n \ge 1} L^n$$

Quest'ultima detta chiusura positiva

1.5 Definire finitamente un linguaggio

1.5.1 esempio 1: frasi palindrome

Una frase palindroma è una parola che letta da sx a dx è uguale a se stessa letta da dx a sx Es. "I topi non avevano nipoti"

- $A = \{a, b\}$ $L = \{\epsilon, a, b, aa, bb, aba, bab, \dots\}$. Come si nota è piuttosto scomodo
- Una palindroma può essere:
 - -o è la stringa ϵ
 - oppure a
 - oppure b
 - oppure a "palindroma" a
 - oppure b "palindroma" b
- rappresentazione tramite Backus-naur form (BNF).

$$\langle P \rangle := \epsilon \mid a \mid b \mid a \langle P \rangle a \mid b \langle P \rangle b$$

• Come **grammatica**:

$$P \rightarrow \epsilon \mid a \mid b \mid aPa \mid bPb$$

- definizione ricorsiva in cui:
 - P è detto $simbolo\ non\ terminale$
 - a, b sono "simboli terminali"

1.5.2 Esempio 2

espressioni aritmetiche formate a partire dalle variabili a e b con gli operatori \times , + e le parantesi (,) Una expr può essere:

- – la variabile *a*
 - la variabile b
 - $-expr \times expr$
 - -expr + expr
 - -(expr)
- bnf:

$$\langle E \rangle ::= a \mid b \mid \langle E \rangle \times \langle E \rangle \mid \langle E \rangle + \langle E \rangle \mid (\langle E \rangle)$$

• Grammatica:

$$E \rightarrow a \mid b \mid E \times E \mid E + E \mid (E)$$

1.6 Grammatiche

Una grammatica è un insieme di regole che descrivono come le parole e le frasi possono essere combinate per formare espressioni valide. Queste regole determinano la struttura sintattica di un linguaggio, specificando come le unità di base (come le parole o i simboli) si connettono per formare frasi o espressioni più complesse. Ogni grammatica segue lo stesso pattern definito differenziandosi solo per come sono caratterizzate le produzioni. Quelle più utili sono le cosiddette grammatiche libere dal contesto (in rapporto tra facilità di analisi ed espressività)

Definition 1.6.1: grammatiche libere (dal contesto)

Una grammatica libera da contesto è una quadrupla (NT, T, R, S) dove:

- NT è un insieme finito di simboli non terminali
- ullet T è un insieme finito di simboli terminali
- $S \in NT$ è detto simbolo iniziale
- R è un insieme finito di produzione (o regole) della forma:

$$V \to w \text{ dove } V \in NT \land w \in (T \cup NT)^*$$

Alcuni esempi:

Example 1.6.1

$$G = (\{S\}, \{a, b, +, \times\}, S, R)$$

Con

$$R = \{S \rightarrow a, S \rightarrow b, S \rightarrow S + S, S \rightarrow S \times S\}$$

1.7 Derivazioni

Definition 1.7.1: derivazione immediata

Data G = (NT, T, R, S) libera dal contesto, diciamo che da v si **deriva immediatamente** w, e lo denotiamo con $v \Rightarrow w$, se:

$$\frac{v = xAy \quad (A \to z) \in R \quad w = xzy}{v \Rightarrow w}$$

Definition 1.7.2: derivazione

Diciamo che da v si **deriva** w (o anche "v si riscrive in w"), e lo deontiamo con $v \Rightarrow^* w$, se esiste una sequenza finita (evenutalmente vuota) di derivazione immediate

$$v \Rightarrow w_0 \Rightarrow w_1 \Rightarrow \cdots \Rightarrow w$$

Cioè:

$$\frac{v \Rightarrow^* v}{v \Rightarrow^* z} \quad \frac{v \Rightarrow^* w \quad w \Rightarrow z}{v \Rightarrow^* z}$$

Dove \Rightarrow^* è la chiusa riflessiva e transitiva della relazione \Rightarrow

1.8 Linguaggio Generato

Definition 1.8.1: Linguaggio Generato

Il **linguaggio generato** da una grammatica < G = (NT, T, R, S) è l'insieme

$$L(G) = \{w \in T^* | S \implies {}^*w\}$$

1.8.1 Algoritmo di Naif

Data una grammatica G è opportuno chiedersi come si fa a determinare un linguaggio L(G) e a verificare se $w \in L(G)$. La domanda può essere complessa, tuttavia in casi semplici ci viene in aiuto l'algoritmo di Naif che consiste nel partire da S e provare ad applicare in tutti i modi possibili le produzione (regole) per trovare una derivazione che generi w

In certi casi questa verifica è semplice

Example 1.8.1

• Sia G_3 con $S \to aSb|ab$

In questo esempio è facile determinare che $L(G_3) = \{a^n b^n | n \ge 1\}$

• Sia $G_1 \to aAb \in A \to aAb \mid \epsilon$

Quindi
$$L(G_1) = \{a^n b^n \mid n \ge 1\}$$

Si può notare che G_1 e G_3 sono grammatiche equivalenti perché $L(G_1) = L(G_3)$ In generale esistono grammatiche diverse che generano lo stesso linguaggio

1.9 Alberi di derivazione

Per rappresentare graficamente e semplicemente una certa grammatica esiste uno strumento utilissimo, ovvero l'albero di derivazione

Definition 1.9.1: albero di derivazione

Data una grammatica libera G = (NT, T, S, R), un albero di derivazione (o di parsing) è un albero ordinato in cui:

- Ogni nodo è etichettato con un simbolo in $NT \cup \{\epsilon\} \cup T$
- $\bullet\,$ la radice è etichettata con S
- ullet ogni nodo interno è etichettato con un simbolo in NT
- \bullet se il nodo n
 - -ha etichetta $A \in NT$
 - i suoi figli sono nell'ordine m_1, \ldots, m_k con etichetta x_1, \ldots, x_k (in $NT \cup T$), allora

$$A \to x_1, \dots, x_k$$
 è una produzione in R

- \bullet se il nodo nha etichetta $\epsilon,$ allora n è una foglia, è figlio unico e, dato Asuo padre, $A\to\epsilon$ è una produzione di R
- se inoltre ogni nodo foglia è etichettato su $T \cup \{\epsilon\}$ è una produzione di R
- se inoltre ogni nodo foglia è etichettato su $T \cup \{\epsilon\}$, allora l'alberello di derivazione corrisponde ad una derivazione completa

Un albero di derivazione, quindi, riassume tante derivazioni diverse ma tutte equivalenti (ovvero generano lo stesso albero)

Example 1.9.1

Consideriamo la grammatica

$$s \rightarrow a|b|c|S + S|S \times S$$

Inoltre si consideri la derivazione

$$S \Rightarrow \underline{\mathbf{S}} + S \Rightarrow \underline{\mathbf{S}} \times S + S \Rightarrow a \times \underline{\mathbf{S}} + S \Rightarrow a \times b + \underline{\mathbf{S}} \Rightarrow a \times b + c$$

Allora il suo albero di derivazione è:

Si osservi inoltre che l'albero di derivazione fornisce informazioni semantiche: "quali operandi per quali operatori" e possono essere riassunti nei cosiddetti alberi sintattici, tipo

Theorem 1.9.1

Una stringa $w \in T^*$ appartiene a L(G) sse ammette un albero di derivazione completo (le cui foglie, lette da sx a dx diano la stringa w) cioè visita in ordine anticipato tralasciando i nonterminali

1.9.1 Ambiguità

Per generare una stringa w, una grammatica libera G puo' avere diversi alberi di derivazione, che quindi attribuiscono un significato diverso allo stesso input, vediamo un esempio:

Example 1.9.2

Si consideri la seguente grammatica

$$S \to a|b|c|S + S|S \times S$$

Si hanno due diverse derivazioni per $a \times b + c$:

1. $S \Rightarrow \underline{S} + S \Rightarrow \underline{S} \times S + S \Rightarrow a \times \underline{S} + S \Rightarrow a \times b + \underline{S} \Rightarrow a \times b + c$ con l'albero:

2. $S \Rightarrow \underline{S} \times S \Rightarrow a \times \underline{S} \Rightarrow a \times \underline{S} + s \Rightarrow a \times b + \underline{S} \Rightarrow a \times b + c$ Con l'albero:

Nella grammatica dell'esempio ??, la stringa $a \times b + c$ ha più di un albero di derivazione. In questi casi si dice che la grammatica è quindi inutilizzabile per dare semantica a $a \times b + c$ e viene definita **ambigua**. Bisogna utilizzare grammatiche non ambigue, o manipolare grammatiche ambigue per disambiguarle.

Definition 1.9.2: Grammatica ambigua

Una grammatica libera G è **ambigua** se $\exists w \in L(G)$ che ammette più alberi di derivazione.

E di conseguenza:

Definition 1.9.3: Linguaggio ambiguo

Un linguaggio L è **ambiguo** se tutte le grammatiche G, tali che L(G) = L, sono ambigue

Attenzione! Abbiamo detto che una grammatica e' ambigua se, per lo stesso input, ha *alberi* di derivazione diversi, **NON** derivazioni diverse. Questa distinzione e' necessaria perche' due derivazioni possono differire semplicemente nell'ordine in cui sostituisono i nonterminali, generando pero' lo stesso albero di derivazione e quindi attribuendo lo stesso significato all'input.

Derivazioni rightmost e leftmost

Per poter studiare l'ambiguita' di una grammatica guardando le sue derivazioni, ci e' utile fissare un'unica strategia per decidere quale nonterminale sostitiure ad ogni passaggio di derivazione. Una convenzione semplice e' quella di prendere il nonterminale piu' a sinistra (o a destra) della stringa intermedia di derivazione. Queste due strategie si chiamano derivazioni leftmost e rightmost:

Definition 1.9.4: Derivazione leftmost (e rightmost)

Sia G=(NT,T,R,S) una grammatica libera. Diciamo che $u\Rightarrow_l v$ se u=xXy,v=xzy, dove $x\in T^*,y\in (T\cup NT)^*$ e $X\to z\in R.$ Se, invece, $x\in (T\cup NT)^*$ e $y\in T^*,$ allora $u\Rightarrow_r v.$

Quindi, scriviamo $u \Rightarrow_l v$ quando sostituiamo il nonterminale di u che si trova piu' a sinistra, e $u \Rightarrow_r v$ quando sostituiamo quello piu' a destra. Detto cio', una **derivazione leftmost** e' una derivazione $u_1 \Rightarrow_l^* u_n$ tale che:

$$u_1 \Rightarrow_l u_2 \Rightarrow_l \dots \Rightarrow_l u_n$$

Quindi ad ogni passo sostituiamo il nonterminale piu' a sx (in modo analogo per rightmost).

Si puo' dimostrare che, se per una stringa w esiste un'albero di derivazione per una grammatica G, allora esistono sicuramente derivazioni leftmost e rightmost di w. In piu', possiamo dimostrare che i seguenti numeri sono uguali:

- $\bullet\,$ Il numero di derivazioni leftmost di w
- \bullet Il numero di derivazioni rightmost di w
- $\bullet\,$ Il numero di alberi di derivazione distinti di w

Detto cio', possiamo utilizzare la definizione di grammatica ambigua per arrivare alla seguente proposizione:

Proposition 1.9.1 Derivazioni leftmost/rightmost e ambiguita'

Data una grammatica libera G, questa' e **ambigua** sse $\exists w \in L(G)$ tale che:

w ha piu' di una derivazione leftmost/rightmost

1.9.2 Rimuovere l'ambiguità

Alcune grammatiche possono essere manipolate di modo da

- rimuovere l'ambiguità
- generare lo stesso linguaggio

In altre, invece, ti tieni l'ambiguità (non è possibile rimuoverla (cazzo)). Questa CAZZATA viene spiegata con solo degli esempi:

Example 1.9.3

Sia S la grammatica

$$S \rightarrow a \mid b \mid c \mid S + S \mid S \times S$$
 è ambigua!

Problemi:

• Precedenza del * rispetto al + in modo che $a \times b + c$ sia interpretato come:

 \bullet associatività del + e del ×

a+b+c ovvero bisogna scegliere l'associatività a dx o sx

Un modo per eliminare questa ambiguità è definire la grammatica così:

$$e \rightarrow E + T \mid T \quad T \rightarrow A \times T \mid A \quad A \rightarrow a \mid b \mid c \mid (E)$$

Chapter 2

Struttura di un compilatore, semantica statica, semantica dinamica

2.1 Vincoli contestuali

Definition 2.1.1: vincoli sintattici contestuali

I vincoli sintattici contestuali sono termini o parole riservate non esprimibili per mezzo di grammatiche libere (perché non possono descrivere vincoli vincoli che dipendono dal contesto) che bisogna evitare di considerare quando si esegue il codice

Tradizionalmente i vincoli sintattici contestuali appartengono alla sintassi, ma nel gergo dei LP, si intende:

- Sintassi: quello che si scrive per mezzo di Grammatiche Libere
- semantica tutto il resto ...

Pertanto i vincoli contestuali sono dunque vincoli semantici, detti di semantica statica cioè vincoli che possono essere verificati ispezionando il codice senza mandare il programma in esecuzioni Il compilatore delega questi controlli di semantica statica alla cosiddetta analisi semantica

2.2 Semantica statica

Definition 2.2.1: Semantica statica

Per **semantica statica** si intende l'insieme di quei controlli che possono essere fatti sul testo del programma senza eseguirlo

Example 2.2.1 int A;

bool B

A := B (errore di tipo)

2.3 semantica dinamica

Per **semantica dinamica** si intende una rappresentazione formale dell'esecuzione del programma, la quale può mostrare errori durante l'esecuzione

Example 2.3.1

```
read(A);
B := \frac{10}{A} (Se A = 0 si da un errore in esecuzione. F)
```

Staticamente non si può sapere l'errore perché la sua occorrenza dipende dall'input dell'utente che fornirà durante l'esecuzione del programma

Per implementare una semantica dinamica occorre fornire un modello matematico che descriva indipendentemente dall'architettura su cui il programma viene eseguito, il "comportamento del programma"

```
Example 2.3.2

Example 2.3.2

P: x:=x+1

Store

S= insième di associasioni

tra nomi e valori

modello "grafo"

X:=x+1,5>

Valuto il comando

utilistando uno stores

store "agpiornato" in

cu ad x e anscriato

il valore 5(x)+1

(Astrattor e indipendente dall'archi

tettura
```

2.3.1 Utilità della semantica dinamica

A chi serve la semantica dinamica?

- Al programmatore: ANALISI DEL PROGRAMMA
 - deve sapere esattamente cosa debba fare il suo programma
 - deve poter dimostrare proprietà del suo programma (ad es.: "termina sempre per ogni possibile input?")
- Al progettista del linguaggio:
 - strumento di specifica del linguaggio
 - deve poter dimostrare proprietà del linguaggio (ad es.: "è Turing-completo?")
- All'implementatore del linguaggio:
 - riferimento per dimostrare la correttezza dell'implementazione
 Infatti un compilatore è corretto quando preserva la semantica dinamica, quindi per dimostrare che un compilatore è corretto serve avere una semantica per il linguaggio sorgente e per il linguaggio oggetto

2.3.2 definire la semantica

Per definire la semantica si utilizzano due tecniche principali:

- operazionale: (macchina astratta a stati e transizioni)

 Ovvero si costruisce una specie di automa che, passo a passo, mostra l'effetto dell'esecuzione delle varie istruzioni. vi è una maggiore enfasi su COME si calcola
- Denotazionale: si associa ad ogni programma sequenziale una funzione da input ad output (incluse strutture ausiliarie e memoria). vi è una maggiore enfasi su COSA si calcola

2.4 Pragmatica nella descrizione di un linguaggio

Definition 2.4.1: Pragmatica nella descrizione di un linguaggio

si definisce **pragmatica nella descrizione di un linguaggio** insieme di regole sul modo in cui è meglio usare le istruzioni a disposizione

Esempietti:

Example 2.4.1

- evitare le istruzioni di salto quando possibile
- usare le variabili di controllo del for solo a quello scopo
- scelta della modalità più appropriata di passaggio di paramatri ad una funzione
- scelta tra iterazione determinata (for) e indeterminata (while)

2.5 implementazione

Definition 2.5.1: implementazione

Per **implementazione** si intende la scrittura di un compilatore per una macchina ospite già realizzata, costruendo così una macchina astratta per il linguaggio

2.5.1 Correttezza dell'implementazione

Per far sì che un compilatore sia corretto occorre dimostrare che il programma preservi la semantica, ovvero il programma sorgente e quello oggetto calcolino la stessa funzione

2.5.2 Struttura di un compilatore

2.6 fasi principali della compilazione

2.6.1 analisi lessicale (scanner)

L'analisi lessicale spezza il programma sorgente nei componenti sintattici primitivi chiamati "tokens" (identificatori, numeri, operatori, parametri, parole riservate)

- controlla solo che il lessico sia ammissibile
- riempie parzialmente la tabello dei simboli per gli identificatori di variabili, procedure funzioni ...

Per realizzare uno scanner avremo bisogno di studiare:

- grammatiche regolari
- espressioni regolari: un formalismo usato per descrivere i linguaggi generati da grammatiche regolari
- automi a stati finiti: uno strumento che permette di riconoscere i linguaggi regolari

2.6.2 analisi sintattica (parser)

A partire dalla lista di tokens, generata dallo scanne, il parser produce l'albero di derivazione del programma, riconoscendo se le frasi sono sintatticamente corrette Ad esempio controlla che:

- le parentesi siano bilanciate: ((a)+b)))
- che i comandi siano composti secondo le regole grammaticali if(x=5) then then x:=3

Per realizzare un Parser, avremo bisogno di:

- grammatiche libere dal contesto
- automi a pila

2.6.3 Analisi semantica

l'analisi semantica esegue dei controlli di semantica statica (ovvero sintattici contestuali) per rilevare eventuali errori semantici

Arricchisce l'albero di derivazione generato dal Parser con informazioni sui tipi, verifica i tipi negli assegnamenti, parametri attuali vs. formali, dichiarazione e uso di variabili e genera eventuali errori

2.6.4 Generazione della forma intermedia

Genera codice scritto in un **linguaggio intermedio** indipendente dall'architettura, facilmente traducibile nel linguaggio macchina di varie macchine diverse. Nel generare questo codice intermedio si esegue la struttura dell'albero sintattico, ricavato dall'albero di derivazione

2.6.5 Ottimizzazione

Si effettuano ottimizzazioni nel codice intermedio per renderlo più efficiente

- rimozione di codice inutile (dead code)
- espansione in linea di chiamate di funzioni
- fattorizzazione di sottoespressioni
- mettere fuori dai cicli sottoespressioni che non variano

Alla fine si ottiene un codice intermedio ottimizzato

2.6.6 Generazione del codice

Viene generato codice per una specifica architettura (include anche l'assegnazione dei registri e ottimizzazioni specifiche macchine)

2.6.7 Tabella dei simboli

Memorizza le informazioni sui nomi presenti nel programma (identificatori di variabili, funzioni, procedure) Es: per le matrice mette, come attributo la dimensione e il tipo dei suoi elementi

2.7 semantica operazionale strutturata

2.7.1 Definizione di un linguaggio a cui dare semantica

lA semantica operazionale strutturata È utilizzata per descrivere come ogni singola istruzione o espressione in un linguaggio modifica lo stato di un sistema in termini di transizioni di stato

Il suo **linguaggio** viene definito tramite sintassi atratta semplice ed intuitiva, ma ambigua ed una stringa viene sempre accoppiata ad un albero sintattico (non ambiguo)

Alcuni elementi fondamentali del linguaggio vengono definiti attraverso insiemi di base:

- Booleani: l'insieme dei valori booleani è composto da due valori: $\{tt,ff\}$. Le metavariabili sono $t,t_1,t'\in\mathbb{T}$
- numeri naturali: $\{0, 1, 2, ...\}$ $n, m, p \in \mathbb{N}$
- variabili: a, b, c, \ldots, z $v \in Var$

Per descrivere espressioni più complesse, vengono definiti alcuni **insiemi derivati** utilizzando la notazione BNF (Backus-Naur Form)

• espressioni aritmetiche (exp):

$$e ::= m|v|e + e|e - e|e * e$$

• espressioni booleane (Bexp):

$$b := t | e = e | b \text{ or } b | \neg b$$

• Comandi Com:

$$c ::= \text{skip}|v := e|c;c|$$
 while b do c|if b then c else c

Questo tipo di sintassi è piuttosto semplice ma è ambigua, per una sintassi non ambigua ne dovrei costruire una completa, ma molto più complicata (dovrei gestire le precedenze, le parentesi ecc...) ma non serve nel dare una semantica in un linguaggio di programmazione perché un parser (analizzatore sintattico) prende in input un programma scritto in sintassi concreta (non ambigua) e restituisce un albero sintattico di sintassi astratta (quella che stiamo appena definendo), pertanto, nel dare semantica possiamo partite dagli alberi di sintassi astratta (ambigua) e ignorare la parte di anali del parser

Example 2.7.1

Riportiamo qui un esempio di sintassi astratta.

Che tipo di albero sintattico vogliamo intendere con la seguente espressione?

while
$$b$$
 do $c_1; c_2$

2.8 Dare semantica ad un linguaggio

Entriamo nel vivo del discorso, ma prima definiamo, per ogni categoria sintattica (cioè Exp, Bexp, Com)un modello detto sistema di transizione che è fondamentalmente un "grafo" di stati

Definition 2.8.1: sistema di transizione

Un sistema di transizione è una tripla $\langle \Gamma, T, \rightarrow \rangle$ dove

- Γ è l'insieme di stati (o configurazione)
- $T \subseteq \Gamma$ è l'insieme degli stati terminali (ovvero tutti quegli stati in cui il calcolo è stato terminato con successo)
- $\rightarrow \subseteq \Gamma \times \Gamma$ è la relazione di transazione che prende in input uno stato $\in \Gamma$ e restituisce un'altro stato $\in \Gamma$

Una computazione a partire dallo stato γ_0 è una sequenza $\gamma_0 \to \gamma_1 \to \gamma_2 \to \dots$ che può essere finita o infinita, invece con \to^* si indica la chiusura riflessiva e transitiva di \to , ovvero:

$$\frac{\gamma \to^* \gamma}{\gamma \to^* \gamma} \quad \frac{\gamma \to^* \gamma' \quad \gamma' \to \gamma''}{\gamma \to^* \gamma''}$$

ovvero si può raggiungere da uno stato γ uno stato γ'' in più passi

Example 2.8.1

Questa è una rappresentazione grafica di un grafo in cui i nodi sono gli stati e gli archi le transizioni

Se voglio definire la semantica (se voglio usare questo tipo di struttura) del linguaggio con la sintassi definita prima occorre definire uno stato di transazione specifico per Exp, per Bexp e per Com Vi sono tuttavia diversi problemucci, del tipo:

 Γ è di solito un insieme infinito contabile, allora vi è la necessità di trovare una rappresentazione finita ed implicita attraverso grammatiche. Questo vuol dire che Γ coincide con uno dei linguaggi delle 3 categorie sintattiche (ovvero Exp, Bexp, Com)

Example 2.8.2

$$\Gamma_e = \{\langle e, \sigma \rangle | e \in Exp, \sigma \in Store\}$$

Dove σ è una funzione che associa ad ogni variabile un numero naturale, perché lo stato del mio sistema è una coppia in cui la prima parte indica l'espressione che devo valutare, la seconda componente è lo store che indica il valore dell'espressione

- 2. $\rightarrow \subseteq \Gamma \times \Gamma$ è una relazione costituita da infinite coppie $\gamma \to \gamma'$, anche qui vi è la necessità di trovare una rappresentazione finita ed implicita come minima relazione che soddisfa un certo insieme finito di assiomi e regole di inferenza, quindi la semantica non è che un insieme di regole di inferenza che mi indicano in modo calcolare le transizioni che mi portano ad eseguire un certo comando
- 3. per dare significato alle variabili (che posono solo assumere valore su \mathbb{N}) è necessario introdurre uno **store** $\sigma: Var \to \mathbb{N}$, come funzione che associa ad ogni variabile un valore

$$\sigma = \{x_1/n_1, x_2/n_2, \dots, x_k/n_k\}$$

Se supponiamo che $var = \{x_1, x_2, \dots, x_k\}$

2.8.1 Semantica delle espressioni artimetiche

Adesso introduciamo la **Semantica delle espressioni aritmetiche**, un tipo di semantica operazionale. Deve ovviamente avere un sistema di transizione $\langle \Gamma_e, T_e, \rightarrow_e \rangle$ dove:

- $\Gamma_e = \{\langle e, \sigma \rangle | e \in Exp, \sigma \in Store\}$
- $T_e = \{\langle n, \sigma \rangle | n \in \mathbb{N}, \sigma \in Store \}$
- La relazione \rightarrow_e è definita come la minima relazione che soddisfa gli assiomi e le regole di inferenza qui sotto:
 - 1. Variabile:

$$\overline{\langle v, \sigma \rangle \to_e \langle \sigma(v), \sigma \rangle}$$

Ovvero il tuo stato terminale sarà il numero della variabile v indicato dallo Store (inoltre σ rimane inalterato). Quindi valuto ciò che v vale in σ

2. **Somma 1**:

$$\frac{\langle e_0, \sigma \rangle \to_e \langle e'_0, \sigma' \rangle}{\langle e_0 + e_1, \sigma \rangle \to_e \langle e'_0 + e_1, \sigma' \rangle}$$

Nel momento in cui riesco a fare un passo di valutazione da e_0 a e_0' alterando anche lo stato dello store da σ a σ' questa trasformazione si anche applicare durante una somma, in altre parole l'espressione si semplifica o riduce (ad esempio, una variabile viene sostituita con il suo valore), e nel contempo lo stato della memoria potrebbe essere aggiornato se l'espressione stessa comporta una modifica ai valori delle variabili

3. **Somma 2**:

$$\frac{\langle e_1, \sigma \rangle \rightarrow_e \langle e_1', \sigma' \rangle}{\langle m + e_1, \sigma \rangle \rightarrow_e \langle m + e_1', \sigma' \rangle}$$

Stessa roba ma con un numero m

4. **Somma 3**:

$$\frac{1}{\langle m+m',\sigma\rangle \to_e \langle P,\sigma\rangle} \quad \text{dove } P=m+m'$$

5. Sottrazione 1:

$$\frac{\langle e_0,\sigma\rangle \rightarrow_e \langle e'_0,\sigma'\rangle}{\langle e_0-e_1,\sigma\rangle \rightarrow_e \langle e'_0-e_1,\sigma'\rangle}$$

6. Sottrazione 2:

$$\frac{\langle e_1, \sigma \rangle \to_e \langle e_1', \sigma' \rangle}{\langle m - e_1, \sigma \rangle \to_e \langle m - e_1', \sigma' \rangle}$$

7. Sottrazione 3:

$$\overline{\langle m-m',\sigma\rangle \to_e \langle p,\sigma\rangle}$$

Si noti come la somma e la sottrazione prima valutano la sottoespressione di sinistra (e_0) con somma/sottrazione 1 poi, se questa s'è mutata in numero, valutano la sottoespressione di destra (e_1) con somma/sottrazione 2 ed infine, se questa s'è mutata in un numero, viene fatta la somma/sottrazione finale con somma/sottrazione 3

Example 2.8.3

Esempietto per valutare $\langle (x+2) - y, \{x/5, y/3\} \rangle$:

$$(Van) = \frac{\langle x, \{ \frac{x}{5}, \frac{y}{3} \} \rangle \longrightarrow \langle 5, \frac{1}{5}, \frac{y}{3} \} \rangle}{\langle x+2, \{\frac{x}{5}, \frac{y}{3} \} \rangle \longrightarrow \langle 5+2 \frac{x}{5}, \frac{y}{3} \} \rangle}$$

$$(Sub_1) = \frac{\langle (x+2)-\frac{y}{5}, \frac{1}{5}, \frac{y}{3} \rangle \longrightarrow \langle (5+2)-\frac{y}{5}, \frac{1}{5}, \frac{y}{5} \rangle}{\langle (x+2)-\frac{y}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle} \longrightarrow \langle 7+\frac{y}{5}, \frac{y}{5}, \frac{y}{5} \rangle}$$

$$(Sub_1) = \frac{\langle (5+2)-\frac{y}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle \longrightarrow \langle 7-\frac{y}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{5} \rangle}{\langle 1 \longrightarrow \langle \frac{y}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle} \longrightarrow \langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}$$

$$(Sub_2) = \frac{\langle \frac{y}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}{\langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle} \longrightarrow \langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}{\langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle} \longrightarrow \langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}{\langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle} \longrightarrow \langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}{\langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle} \longrightarrow \langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}{\langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle} \longrightarrow \langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}{\langle \frac{7}{5}, \frac{1}{5}, \frac{y}{5}, \frac{y}{3} \rangle}$$

Si ha, quindi, che $\gamma_0 \to \gamma_1 \to \gamma_2 \to \gamma_3 \to \gamma_4 \in T_e$ cioè $\langle (x+2) - y, \{x/5, y/3\} \rangle \to^* \langle 4, \{x/5, y/3\} \rangle$

Theorem 2.8.1

Vogliamo dimostrare che \rightarrow_e è deterministico, ovvero:

$$\gamma \to_e \gamma'$$
 e $\gamma \to_e \gamma''$, allora $\gamma' = \gamma'' \quad \forall \gamma, \gamma', \gamma''$

In altre parole significa che da ogni transizione esce al più una transizione, mai più di una

dimostrazione: mi riduco a dimostrare che $(\langle e, \sigma \rangle \to_e \gamma' \land \langle e, \sigma \rangle \to_e \gamma'') \Rightarrow \gamma' = \gamma''$ Procedo per induzione strutturale, con HP $(\langle e, \sigma \rangle \to_e \gamma' \land \langle e, \sigma \rangle \to_e \gamma'') \Rightarrow \gamma' = \gamma''$.

- 1. $e = m \in \mathbb{N}$: se $\langle e, \sigma \rangle \rightarrow_e e$ allora la conclusione è vera perché la premessa è falsa
- 2. $e = v \in Var$: Per la regola (Var), l'unica transizione derivabile per $\langle v, \sigma \rangle$ è $\langle v, \sigma \rangle \rightarrow_e \langle \sigma(v), \sigma \rangle$ poiché σ è una funzione (cioè $\sigma(v)$ è univoco) e la sola regola (Var) è applicabile allora per forza $\langle \sigma(v), \sigma \rangle = \sigma'$ e $\langle \sigma(v), \sigma \rangle = \sigma''$ quindi $\gamma' = \gamma''$
- 3. $e = e_0 + e_1$: Supponiamo che $\langle e_0 + e_1, \sigma \rangle \to \gamma'$ e $\langle e_0 + e_1, \sigma \rangle \to \gamma''$ Ci sono 3 sottocasi da esaminare in accordo nel modo in cui derivo $\langle e_0 + e_1, \sigma \rangle \to \gamma'$:
 - (a) $\langle e_0, \sigma \rangle \to \langle e'_0, \sigma' \rangle$ e $\gamma' = \langle e'_0 + e_1, \sigma' \rangle$ in questo caso ho che $e_0 \notin \mathbb{N}$ e la regola che ho applicato è Somma 1. Allora se $\langle e_0 + e_1, \sigma \rangle \to \gamma''$ è necessario che $\langle e_0, \sigma \rangle \to \langle e''_0, \sigma'' \rangle$ e che $\gamma'' = \langle e''_0 + e_1, \sigma'' \rangle$. Tuttavia per (HP) si ha che $\langle e'_0, \sigma' \rangle = \langle e''_0, \sigma'' \rangle$ pertanto deve essere che $e'_0 = e''_0$ e $\sigma' = \sigma''$, da cui discende $\gamma' = \gamma''$

- (b) $e_0 = m \in \mathbb{N}$ ed $\langle e_1, \sigma \rangle \to \langle e_1', \sigma' \rangle$ Caso analogo al precedente, dato che ho che $e_1 \notin \mathbb{N}$ e la regola che ho applicato è Somma 2. Allora se $\langle e_0 + e_1, \sigma \rangle \to \gamma''$, è necessario che $\langle e_1, \sigma \rangle \to \langle e_1'', \sigma'' \rangle$ e $\gamma'' = \langle e_0 + e_1'', \sigma'' \rangle$. Tuttavia per (HP) si ha che $\langle e_1', \sigma' \rangle = \langle e_1'', \sigma'' \rangle$ pertanto deve essere che $e_1' = e_1''$ e $\sigma' = \sigma''$, da cui discende $\gamma' = \gamma''$
- (c) $e_0 \in \mathbb{N}$ ed $e_1 \in \mathbb{N}$ In questo caso, solo Somma 3 è applicabile, ottenendo una sola passibile transizione:

$$\langle e_0 + e_1, \sigma \rangle \rightarrow \langle P, \sigma \rangle$$
 dove $P = e_0 + e_1$

Quindi la tesi segue:

$$\langle e_0 + e_1, \sigma \rangle \rightarrow \gamma' \wedge \langle e_0 + e_1, \sigma \rangle \rightarrow \gamma'' \implies \gamma' = \gamma''$$

4. $e = e_1 - e_2$: DEL TUTTO ANALOGO AL CASO PRECEDETE

Q.e.d.

Questo teorema ci porta ad un dio boia di corollario:

Corollary 2.8.1

poiché \rightarrow_e è determinisca, a partire da $\langle e, \sigma \rangle$ arriveremo su una sola configurazione terminale $\langle n, \sigma \rangle$: "n è il valore di e in σ "

È possibile perciò definire una funzione

$$eval: Expr \times Store \dashrightarrow \mathbb{N}$$

che da semantica alle espressione

$$eval(e,\sigma) = \begin{cases} m & \text{se } \langle e,\sigma \rangle \to^* \langle m,\sigma \rangle \\ \text{indefinita} & \text{altrimenti} \end{cases}$$

Esempi:

Example 2.8.4

• $eval((x + 2) - y, \{x/5, y/3\}) = 4$ dato che

$$\langle (x+2) - y, \{x/5, y/3\} \rangle \rightarrow^* \langle 4, \{x/5, y/3\} \rangle$$

• $eval((x+2) - y, \{x/2, y/7\}) = indefinito$ dato che

$$\langle (x+2) - y, \{x/2, y/7\} \rangle \rightarrow^* \langle 4-7, \{x/2, y/7\} \rangle \rightarrow$$

Inoltre sia introdotta la definizione di equivalenza:

Definition 2.8.2: Equivalenza tra espressioni

Siano e ed e' due espressioni, allora si dicono **equivalenti** sse $\forall \sigma \in Store \quad eval(e, \sigma) = eval(e', \sigma)$ E si denota con $e \equiv e'$

Esempietto:

Example 2.8.5

$$v_1 + (v_2 + v_3) \equiv (v_1 + v_2) + v_3$$

Si osservi come Eval è definita rispetto alla disciplina di valutazione IS (interno destro), pertanto, rigorosamente, Eval è denotato come $Eval_{is}$. Si può, inoltre, dimostrare che anche per ID (interno destro), il risultato della valutazione è lo stesso:

$$Eval_{is} = Eval_{id}$$

Dove
$$Eval_{id}(e,\sigma) = \begin{cases} m & \text{se } \langle e,\sigma \rangle \longrightarrow_{id}^* \langle m,\sigma \rangle \\ \text{indefinita} & \text{altrimenti} \end{cases}$$

Come vedremo, è possibile definire anche altre siscipline di valutazione come Esterna Sinistra, Esterne Destra, Esterna parallela.

2.8.2 Semantica delle espressioni booleane

Arriviamo alle espressioni booleane con la seguente grammatica:

$$b := t | e = e | b \text{ or } b | \neg b$$

(ricordo che t è una metavariabile con un valore di verità true o false) E il seguente sistema di transazione:

$$\langle \Gamma_b, T_b, \rightarrow_b \rangle$$
 dove $\Gamma_b = \{\langle b, \sigma \rangle | b \in Bexp, \sigma \in Store\} \in T_b = \{\langle tt, \sigma \rangle, \langle ff, \sigma \rangle | \sigma \in Store\}$

 $e \rightarrow_b$ è la minima relazione generata dai seguenti assiomi e regole di inferenza:

• Eq1

$$\frac{\langle e_0 = e_1, \sigma \rangle \to_b \langle e_1', \sigma' \rangle}{\langle m = e_1, \sigma \rangle \to_b \langle m = e_1', \sigma' \rangle}$$

• Eq2

$$\frac{\langle e_1, \sigma \rangle \to_e \langle e'_1, \sigma' \rangle}{\langle m = e_1, \sigma \rangle \to_b \langle m = e'_1, \sigma' \rangle}$$

• Eq3

$$\frac{1}{\langle m=m,\sigma\rangle \to_b \langle t,\sigma\rangle} \text{ dove } t = \begin{cases} \text{tt} & \text{se } m=n\\ \text{ff} & \text{se } m\neq n \end{cases}$$

• Or1

$$\frac{\langle b_0, \sigma \rangle \to_b \langle b'_0, \sigma' \rangle}{\langle b_0 \text{ or } b_1, \sigma \rangle \to_b \langle b'_0 \text{ or } b_1, \sigma' \rangle}$$

• Or2

$$\overline{\langle tt \text{ or } b_1, \sigma \rangle \to_b \langle tt, \sigma \rangle}$$

• Or3

$$\overline{\langle ff \text{ or } b_1, \sigma \rangle \to_b \langle b_1, \sigma \rangle}$$

• Neg1

$$\frac{\langle b, \sigma \rangle \to_b \langle b', \sigma' \rangle}{\langle \neg b, \sigma \rangle \to_b \langle \neg b', \sigma' \rangle}$$

• Neg2

$$\overline{\langle \neg b,\sigma\rangle \to_b \langle t',\sigma\rangle} \text{ dove } t' = \Big\{ tt \text{ se } t = ffff \text{ se } t = tt$$

Si tenga presente che Eq1, Eq2 e Eq3 sono cosiddette **interne sinistre** perché inizio a valutare la sottoespressione di sinistra per poi restituire un valore di verità t sse ho ottenuto numeri in tutte e due le sottoespressioni mentre $\tt Or1$, $\tt Or2$ e $\tt Or3$ sono **esterne sinistre** perché inizio a valutare la sottoespressione di sinistra per poi restituire un valore di verità t sse ho ottenuto numeri almeno in una sottoespressione. Quindi se nelle interne dovevo avere dei numeri in tutte le sottoespressioni per poi eseguire la valutazione finale nelle esterne per eseguire la valutazione finale mi basta avere una quantità sufficiente

Anche per i booleani si ha questo teorema:

Theorem 2.8.2

 \rightarrow_b è deterministica, ovvero

$$(\gamma \to_b \gamma' \land \gamma \to_b \gamma'') \implies \gamma' = \gamma''$$

Che porta al seguente corollario:

Corollary 2.8.2

si può, quindi, definire:

$$eval_b(b,\sigma) = \begin{cases} t & \text{se } \langle b,\sigma \rangle \to^* \langle t,\sigma \rangle \\ \text{indefinita} & \text{altrimenti} \end{cases}$$

E si ha anche la seguente definizione:

Definition 2.8.3: Equivalenza booleani

Siano b ed b' due booleani, allora si dicono **equivalenti** sse $\forall \sigma \in Store \quad eval_b(b,\sigma) = eval_b(b',\sigma)$ E si denota con $b \equiv b'$

Example 2.8.6

$$\neg((3=v) \lor (3=4)) = \neg(v=3)$$

Si possono definire per b_0 or b_1 regole di valutazioni diverse da ES. Ad esempio ED o IS, ma non sono tutte equivalenti, si provi, ad esempio, con ED:

• Or1':

$$\frac{\langle b_1, \sigma \rangle \to_b \langle b_1', \sigma' \rangle}{\langle b_0 \text{ or } b_1, \sigma \rangle \to_b \langle b_0 \text{ or } b_1', \sigma' \rangle}$$

• Or2':

$$\overline{\langle b_0 \text{ or } tt, \sigma \rangle \to_b \langle tt, \sigma \rangle}$$

• Or3':

$$\overline{\langle b_0 \text{ or } ff, \sigma \rangle \to_b \langle b_0, \sigma \rangle}$$

Example 2.8.7

$$\gamma = \langle \rangle$$

Chapter 3

Analisi lessicale: espressioni regolari, DFA, NFA

3.1 analisi lessicale

partiamo dalla definizione

Definition 3.1.1: Analisi lessicale

Riconoscere nella stringa in ingresso gruppi/sequenze di simboli che corrispondono a specifiche categorie sintattiche

La stringa in input,poi, è trasformata in una sequenza di simboli astratti, detti token, si analizzi la figura:

3.1.1 token

Definition 3.1.2: Token

un token è una coppia (nome, valore), dove:

- $\bullet\,$ nome: simbolo astratto che rappresenta una categoria semantica
- Valore: una sequenza di simboli del testo in ingresso

Esempietto:

Example 3.1.1

Un esempio di token è $\langle Ide, x1 \rangle$, dove:

• Ide: è l'informazione che identifica una classe di token

- \bullet x1: è l'informazione che identifica lo specifico token
- •

Siano inoltre tali definizioni

Definition 3.1.3: Pattern

è la descrizione generale della forma dei valori di una classe di token

Example 3.1.2

Sia $(x \mid y)(x \mid y \mid 0 \mid 1)^*$ un'espressione regolare per rappresentare un Pattern, un esempio di stringa è

Definition 3.1.4: lessema

si definisce lessema una stringa istanza di un pattern

Example 3.1.3

nel nostro esempio x1 è un'istanza di un pattern

vedremo che ad ogni nome di categoria sintattica è associato un pattern che specifica i possibili valori che possono essere presi per quel nome, come lessemi

Example 3.1.4

dalla strinfa C si ha:

$$if(x == 0) printf("zero")$$

un analizzatore lessicale potrebbe produrre la seguente sequenza di token:

- (if)
- (()
- $\langle ide, x \rangle$
- ⟨*Operel*,==⟩
- $\langle const num, 0 \rangle$
- ())
- (*Ide*, printf)
- (()
- ⟨const string, zero⟩
- ())

In realtà, normalmente lo scanner associa agli identificatori un indirizzo della tabella dei simboli, quindi $\langle ide, x \rangle$ è in realta $\langle ide, puntatore alla tabello dei simboli <math>\rangle$

3.1.2 espressioni regolari

Nello stesso modo in cui possiamo scrivere espressioni matematiche utilizzando operatori matematici (+, ×, ...) e' possibile, utilizzando appositi operatori regolari, definire **espressioni regolari** che descrivono un linguaggio. Ad

esempio:

$$(a \mid b)c^*$$

dove 'a', 'b' e 'c' vengono intesi come i linguaggi $\{a\}$, $\{b\}$ e $\{c\}$, '|' e' l'operazione di unione, quindi $\{a\} \cup \{b\} = \{a,b\}$. Fra le parentesi e la 'c' e' sottintesa l'operazione di congiunzione '·', ma ha priorita' l'operatore * che ha lo stesso effetto della stella di Kleene. Quindi diventa:

$$\{a,b\} \cdot \{c\}^* = \{a,b,ac,bc,acc,bcc,...\}$$

Definiamo formalmente questo tipo di espressioni e i linguaggi che definiscono:

Definition 3.1.5: espressioni regolari

fissato un alfabeto $A = \{a_1, a_2, \dots, a_n\}$, definiamo le espressioni regolari su A con la seguente BNF

$$r ::= \emptyset \mid \epsilon \mid a \mid r \cdot r \mid r \mid r \mid r^*$$

Note:

La definizione non e' ciclica perche' le espressioni sono definite da altre espressioni piu' piccole.

Note:

Non confondere le ER \emptyset e ϵ : la prima identifica il linguaggio vuoto, che non accetta nessuna stringa, mentre il linguaggio associato alla seconda accetta la stringa vuota.

Note:

Si tenga presente che questa è una sintassi astratta ambigua, ci vorrebbero le parentesi per disanbiguare, tuttavia noi assumiamo che:

- la concatenazione, disgiunzione e ripetizione associano a sx
- \bullet la precedenza tra gli operatori sia: * > · > |
- la concatenazione \cdot è di solito omessa

Per cui, ad esempio, b * a | c corrisponde all'albero sintattico:

Quindi secondo una sintassi non ambigua: $(((b)^*) \cdot (a))|(c)$

linguaggio denotato da una espressione regolare

Definition 3.1.6

dato l'alfabeto A, definiamo la funzione:

$$\mathcal{L}: \mathtt{Exp-Reg} \to \mathcal{P}(A^*)$$

Come segue:

 $\mathcal{L}[\emptyset] = \emptyset$ linguaggio vuoto

 $\mathcal{L}[\epsilon] = {\epsilon}$ linguaggio che contiene solo la stringa vuota

 $\mathcal{L}[a] = \{a\}$

 $\mathcal{L}[r_1 \cdot r_2] = \mathcal{L}[r_1] \cdot \mathcal{L}[r_2]$

 $\mathcal{L}[r_1|r_2] = \mathcal{L}[r_1] \cup \mathcal{L}[r_2]$

 $\mathcal{L}[r^*] = (\mathcal{L}[r])^*$

Note:

Si ricordi che:

 $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$

 $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$

 $L^{\circ} = \{\epsilon\}$

 $L^{n+1} = L \cdot L^n$

 $L^* = \bigcup_{n \geqslant 0} L^n$

linguaggio regolare

Definition 3.1.7: Linguaggio regolare

un linguaggio $L \subseteq A^*$ è definito regolare sse \exists una espressione regolare r tale che:

$$L = \mathcal{L}[r]$$

Proposition 3.1.1

ogni linguaggio finito è regolare

Example 3.1.5

Sia $L = \{a, bc\}$ con $r = a \mid bc$ si ha che:

$$\mathcal{L}[a \mid bc] = \mathcal{L}[a] \cup \mathcal{L}[bc] = \{a\} \cup \mathcal{L}[b] \cdot \mathcal{L}[c] = \{a\} \cup \{b\} \cdot \{c\} = \{a,bc\} = L$$

Si osservi che esistono anche linguaggi regolari infiniti:

$$\mathcal{L}[a^*b] = \mathcal{L}[a^*] \cdot \mathcal{L}[b] = (\mathcal{L}[a])^* \cdot \mathcal{L}[b]$$

$$= \{a\}^* \cdot \{b\} = \bigcup_{m \ge 0} \{a^m\} \cdot \{b\}$$

$$= \{\epsilon, a, aa, \ldots\} \cdot \{b\} = \{a^mb \mid n \ge 0\}.$$

$$\mathcal{L}[a\mid a^*b] = \mathcal{L}[a] \cup \mathcal{L}[a^*b] = \{a\} \cup \{a^mb\mid n\geqslant 0\}.$$

$$\mathcal{L}[(a \mid b) \cdot b^*] = \mathcal{L}[a \mid b] \cdot \mathcal{L}[b^*] = (\mathcal{L}[a] \cup \mathcal{L}[b]) \cdot (\mathcal{L}[b])^*$$
$$= \{a, b\} \cdot \{b\}^* = \{ab^m \mid n \ge 0\} \cup \{b^n \mid n \ge 1\}.$$

Example 3.1.6 (espressioni regolari)

 $A = \{0, 1\}$

• 0*10*

Con $L_2\{w \in A^* \mid A^* \mid w \text{ contiene un solo } 1\}$

• $(0 \mid 1)^*001(0 \mid 1)^*$

Con $L_1\{w \in A^* \mid A^* \mid w \text{ contiene un solo } 1\}$

• 1*(011*)*

Con $L_3 = \{ w \in A^* \mid w \text{ contiene } 001 \text{ come sottostringa} \}$

altri operatori ausiliari

Definition 3.1.8

• Ripetizione positiva: $r^+ = rr^*$

• Possibilita': $r? = r \mid \epsilon$

3.1.3 equivalenza tra espressioni regolari

Definition 3.1.9: equivalenza

Due espressioni regolari r ed s sono **equivalenti** sse $\mathcal{L}[r] = \mathcal{L}[s]$ (cioè demotano lo stesso linguaggio) e lo denotiamo con $r \equiv s$

Esistono molte leggi per ≡, alcune sono le seguenti

$$r|s \simeq s|r$$
 (1 è commutativa)
$$r|(s|t) \simeq (r|s)|t \quad \text{(1 è associativa)}$$

$$z|z \simeq z \quad \text{(1 è idempotente)}$$

$$z \cdot (s \cdot t) \simeq (z \cdot s) \cdot t \quad \text{(· è associativa)}$$

$$\varepsilon \cdot z \simeq z \cdot \varepsilon \simeq z \quad (\varepsilon \text{ è l'elemento neutro per ·)}$$

$$(r^*)^* \simeq r^* \quad \text{(* è idempotente)}$$

$$r(s|t) \simeq rs|rt \quad \text{(distribuisce a sinistra su } -)$$

$$(r|s)t \simeq rt|st \quad \text{(distribuisce a destra su } -)$$

In alcuni casi è facile dimostrare queste leggi:

$$\mathcal{L}[r|s] = \mathcal{L}[r] \cup \mathcal{L}[s] = \mathcal{L}[s] \cup \mathcal{L}[r] = \mathcal{L}[s|r]$$

$$\mathcal{L}[r|r] = \mathcal{L}[r] \cup \mathcal{L}[r] = \mathcal{L}[r]$$

$$\mathcal{L}[r\epsilon] = \mathcal{L}[r] \cdot \{\epsilon\} = \mathcal{L}[r]$$

$$\mathcal{L}[\varnothing^*] = (\mathcal{L}[\varnothing]) = \varnothing^* = \varnothing^0 \cup \varnothing^1 \cup \varnothing^2 \dots = \{\epsilon\} \cup \varnothing \cup \varnothing = \{\epsilon\} = \mathcal{L}[\epsilon]$$

$$\mathcal{L}[r\dot{\varnothing}] = \mathcal{L}[r] \cdot \mathcal{L}[\varnothing] = \mathcal{L}[r] \cdot \varnothing = \varnothing = \mathcal{L}[\varnothing]$$

Le espressioni regolari servono per specificare il pattern di una categoria sintattica, ovvero la forma dei possibili lessemi, tuttavia occorre riconoscere se una certa sequenza in ingresso è un lessema per una certa categoria sintattica. A questo ci vengono in aiuto gli automi a stati finiti

3.2 Automi a stati finiti

Un automa a stati finiti (o DFA, deterministic finite automaton, per la versione deterministica) è un modello computazionale utilizzato per rappresentare e analizzare linguaggi regolari. È un dispositivo astratto che processa stringhe di simboli e decide se appartengono o meno a un linguaggio

Si può immaginare il DFA come una automa ideale dotato di una testina di lettura, una sequenza di simboli in input da leggere e un sistema di stati, del tipo

Dove inizialmente

- la testina di lettura è posizionata sul primo carattere dell'input
- \bullet e vi è un controllo su sullo stato iniziale q_0

E funziona ciclicamente nel modo seguente:

- leggi il carattere in input e in baso allo stato in cui si trova decide:
 - di cambiare di stato
 - di spostare la testina sull'input successivo

FINO A CHE:

- ha finito di leggere l'input (e riconosce la stringa)
- non ha riconosciuto la stringa

3.2.1 diagrammi di transazione

il funzionamento di un automa finito è ben descritto dai cosiddetti diagrammi di transizione

$$start \rightarrow q_0$$
 a q_1

Riconoscere una stringa w significa trovare un cammino etichettato w sul grafo a partire dallo stato iniziale che finisce su uno stato finale

$$L = \{a^{2n+1} \mid n \geq 0\} = \{a^n \mid n \text{ è dispari}\} = \mathcal{L}[a(aa)^*]$$

Example 3.2.1

• Primo esempio: Sia $L = \{w \in \{0,1\}^* \mid \text{ in } w \text{ il numero di } 0 \text{ e } 1 \text{ è sempre pari} \}$ Il suo automa è:

• secondo esempio Sia $L = \mathcal{L}[(a|b)^*ba]$ il suo automa è:

Si noti che $ba \in L[M]$ (ovvero ba appartiene al linguaggio riconosciuto dall'automa M) perché esiste un cammino da q_0 a q_2 etichettato ba

Questo linguaggio è non deterministico:

- $-(q_0,b)$ offre 2 mosse o su q_0 o su q_1
- $-(q_1,b)$ non offre mosse
- $-(q_2,a/b)$ non offre mosse
- terzo esempio:

Sia
$$L[M] = \mathcal{L}[a^*b^*]$$

Riconosciuto dal seguente automa:

Che nondeterministico perché è possibile spostarsi dallo stato q_0 allo stato q_1 senza leggere l'input. Se vogliamo un automa deterministico:

Dove q_2 è uno stato pozzo d'errore. Inoltre da ogni stato per ognuno dei due simboli (a e b), esce una e una sola transizione e non vi sono transizioni ϵ

3.2.2 Automi a stati finiti non deterministico

Adesso formalizziamo la definizione

Definition 3.2.1: Automi a stati finiti non deterministici

Si defisnisce NFA o automa a stati finiti non deterministico una quintupla $(\Sigma, Q, \delta, q_0, F)$ dove:

- $\bullet~\Sigma$ è un alfabeto finito di simboli in input
- $\bullet~Q$ è un insieme finito di stati
- $q_0 \in Q$ è lo stato iniziale
- $\bullet \ F \subseteq Q$ è l'insieme degli stati finali
- δ è la funzione di transizione con tipo

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(q)$$

Esempietto:

Example 3.2.2

$$\Sigma = \{a, b\}$$
 $Q = \{q_0, q_1, q_2\}$ $q_0 \text{ iniziale } F = \{q_2\}$

$$\delta = \begin{array}{c|c|c} & a & b & \varepsilon \\ \hline q_0 & \{q_0\} & \{q_0, q_1\} & \varnothing \\ q_1 & \{q_2\} & \varnothing & \varnothing \\ q_2 & \varnothing & \varnothing & \varnothing \end{array}$$

Si può vedere la seguente tabella mutarsi in automa

3.2.3 Linguaggio riconosciuto/accettato

Fornisco prima, formalmente, prima alcune definzioni:

Definition 3.2.2: mossa

Si definisce **mossa** da uno stato q ad uno stato q' leggendo un simbolo σ dall'input e la si denota con \vdash_n tale derivazione (attraverso regole di inferenza logica):

$$\frac{q' \in \delta(q,\sigma)}{(q,\sigma w) \vdash_n (q',w)} \text{ con } \begin{array}{l} \sigma \in \Sigma \cup \{\epsilon\} \\ w \in \Sigma^* \end{array}$$

Da cui discende la definizione di cammino

Definition 3.2.3: cammino (chiusura riflessiva e transitiva di \vdash_n)

Si definisce cammino da uno stato q ad uno stato q'' tale derivazione:

$$\frac{(q,w) \vdash_n^* (q',w') \quad (q',w') \vdash_n (q'',w'')}{(q,w) \vdash_n^* (q'',w'')}$$

Inoltre si ha:

$$\overline{(q,w)\vdash_N^*(q,w)}$$

da cui discenda la definizione di riconoscimento

Definition 3.2.4: riconoscimento

Una stringa w si definisce **riconosciuta** se è vera tale proposizione:

$$w \in L[N] \iff \exists q \in F.(q_0, w) \vdash_n^* (q, \epsilon)$$

e da cui discende la definizione di linguaggio accettato

Definition 3.2.5: linguaggio accettato

Un lingaggio L si definisce accettto da un automa N, indicato con L[N], è

$$L[N] = \{ w \in \Sigma^* \mid \exists q \in F.(q_0, w) \vdash_n^* (q, \epsilon) \}$$

Note:

due NFA N_1 e N_2 si dicono **equivalenti** sse accettano lo stesso linguaggio, cioè se $L[N_1] = L[N_2]$

Gli NFA sono comodi, ovvero facili da costruire, tuttavia sono inefficienti, infatti accettare w significa cercare un cammino su un grafo nondeterministico, il che porta a tante potenziali strade alternative. In alternativa si possono costruire dei DFA ovvero automi deterministici a stati finiti

3.2.4 Automi a stati finiti deterministici

Un DFA a differenza degli NFA ha le seguenti caratteristiche:

- $\delta(q, \sigma)$ è sempre un singoletto (solo una mossa possibile)
- non ci sono mosse ϵ

E questo implica

- una scansione completa dell'input garantita
- \bullet in un tempo O(|w|) sappiamo se w è accettata o meno
- difficile da definire

Introduciamo la definizione formalmente

Definition 3.2.6: Automi deterministici a stati finiti

Un automa deterministico a stati finiti (DFA) è una quintupla $(\Sigma, Q, \delta, q_0, F)$ dove:

- $\bullet~\Sigma$ è un alfabeto finito di simboli in input
- \bullet Q è un insieme finito di stati
- $q_0 \in Q$ è lo stato iniziale
- $F\subseteq Q$ è l'insieme degli stati finali
- δ è la funzione di transazione con tipo

$$\delta: Q \times \Sigma \to Q$$

e si ha che $(q, \sigma) = q'$

Si osservi che

Claim 3.2.1

Un DFA è un particolare tipo di NFA tale che:

• $\forall q \in Q. \ \delta(q, \epsilon) = \emptyset$

Ovvero non ci sono transizioni ϵ

• $\forall \sigma \in \Sigma$. $\forall q \in Q$. $\exists q' \in Q$. $\delta(q, \sigma) = \{q'\}$

Ovvero l'insieme delle mosse possibile è sempre un singoletto

Si vuole ora dimostrare che i DFA sono tanto espressivi quanto gli NFA, sebbene siano un loro sottoinsieme proprio

Proposition 3.2.1

Per ogni NFA, è prossibile costruire un DFA ad esso equivalente

Dimostrazione: Occorre seguire contemporaneamente tutti i possibili cammini alternativi dell'NFA di modo che gli stati del DFA che andranno a costruire sono costituiti sa insiemi di stati dell'NFA ⊜

Per dimostrare questa cosa occorre prima introdurre diversi concetti

ϵ -closure

Definition 3.2.7: ϵ -closure

L' ϵ -closure di uno stato $q \in Q$, denotata come ϵ -closure(q), è definita come l'insieme degli stati q' tali che esiste un cammino da q a q' usando solo transizioni ϵ , inclusivamente q stesso. In simboli:

$$\epsilon$$
-closure $(q) = \{ q' \in Q \mid q \xrightarrow{\epsilon^*} q' \},$

In altre parole si puo defnire come il minimo insieme che rispetta le seguenti regole:

$$\frac{p \in \epsilon\text{-closure}(q)}{\{q\} \subseteq \epsilon\text{-closure}(q)} \quad \frac{p \in \epsilon\text{-closure}(q)}{\delta(p,\epsilon) \subseteq \epsilon\text{-closure}(q)}$$

nel caso abbiamo un insieme P di nodi allarghiamo la definizione di ϵ -closure a quella di:

$$\epsilon$$
-closure(P) = $\bigcup_{p \in P} \epsilon$ -closure(p)

Example 3.2.3

Considera il seguente NFA:

- Stati: $Q = \{q_0, q_1, q_2\}$
- Transizioni:
 - $\delta(q_0, \epsilon) = \{q_1\}$
 - $\delta(q_1, \epsilon) = \{q_2\}$
 - $-\delta(q_2,a) = \{q_2\}$

Il calcolo dell' ϵ -closure è presto fatto:

- ϵ -closure(q_0):
 - Da q_0 , puoi raggiungere q_1 attraverso una transizione ϵ
 - Da $q_1,$ puoi raggiungere q_2 attraverso un'altra ϵ

Quindi: ϵ -closure $(q_0) = \{q_0, q_1, q_2\}$

- ϵ -closure(q_1):
 - Da q_1 , puoi raggiungere q_2 attraverso una transizione ϵ

Quindi: ϵ -closure $(q_1) = \{q_1, q_2\}$

- ϵ -closure (q_2) :
 - $-q_2$ non ha transizioni ϵ in uscita

Quindi: ϵ -closure(q_2) = { q_2 }

Qui è presentato l'algoritmo per calcolare la ϵ -closure:

Claim 3.2.2

usando le ϵ -closure. si può definire il linguaggio riconosciuto da un NFA in modo elegante. Definiamo la seguente funzione

$$\hat{\delta}: Q \times \Sigma^* Q(P)$$

per in induzione

$$\hat{\delta}(q, \epsilon) = \epsilon$$
-closure (q)

Algorithm 1: ϵ -closure

```
Input: Stato p
Output: insieme di stati raggiungibili da p con mosse \epsilon

1 T \leftarrow P;

2 \epsilon-closure(p) = P;

3 while T \neq \emptyset do

4 | scegli un r \in T e rimuovilo da T;

5 | foreach s \in \delta(r, \epsilon) do

6 | if s \neq \epsilon-closure(p) then

7 | add s to \epsilon-closure(p);

8 | add s to T;
```

$$\hat{\delta}(q,xa) = \epsilon\text{-closure}(q) \text{ dove } P = \{p \in Q \mid \exists r \in \hat{\delta}(q,x) \land p \in (r,a)\}$$

Pertanto si può dimostrare (dimostrazione difficile) che:

$$w \in L[N] \iff \exists p \in Ft.c.p \in \hat{\delta}(q_0, w)$$

funzione mossa

Definition 3.2.8: funzione mossa

Si definisce la funzione mossa come estensione della funzione di transizione δ di un NFA come:

$$mossa: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$$

 $mossa(P, a) = \bigcup_{p \in P} \delta(p, a)$

Cioe l'insieme delle mosse a da un insieme di nodi P e l'unione di tutte le mosse a di ogni nodo dell'insieme.

funzione transazione

Definition 3.2.9: funzione transizione

Si definisce **transizione** e la si denota con Δ tale funzione:

$$\Delta(A, b) = \epsilon$$
-closure $(mossa(A, b))$

Con A un insieme di stati e b una transizione

costruzione per sottoinsiemi del DFA

Qua di seguito l'algoritmo per la costruzione di sottoinsiemi, che serve per passare da un NFA a un DFA equivalente Definiamo quindi il DFA equivalente:

Definition 3.2.10: DFA quivalente

Si definisce il DFA equivalente tale automa:

$$M_n = (\Sigma, T, \Delta, \epsilon\text{-closure}(q_0), \mathcal{F})$$

dove $R \in \mathcal{F} \iff \exists q \in R \text{ con } q \in F$

Si può notare come l'algoritmo che definisce la funzione di transizione (vista poch'anzi) rispetta le limitazioni dei DFA: non ci sono mosse epsilon e per ogni caraere dell'alfabeto esiste una ed una sola mossa in qualunque stato

Algorithm 2: costruzionePerSottoinsiemi()

```
Input: NFA N = (\Sigma, Q, \delta, q_0, F)
  Output: DFA M_N = (\Sigma, T, \Delta, \epsilon\text{-closure}(q_0), \mathcal{F})
1 S \leftarrow \epsilon-closure(q_0);
                                                                                                          // stato iniziale del DFA
2 T = \{S\};
                                                                                        // T è il l'insieme degli stati del DFA
з while c'è un P \in T non marcato do
       marca P:
       foreach a \in \Sigma do
5
           R \leftarrow \epsilon-closure(mossa(P, a));
6
           if R \notin T then
7
                add R to T;
                                                                                                                   // R non ha marca
                definisci \Delta(P, a) = R;
```

Example 3.2.4

Consideriamo l'NFA seguente (relativo all'espressione regolare $((a|b)^*ab)$:

Vogliamo ora trovare un DFA equivalente ad esso, applichiamo l'algoritmo di costruzioni per sottoinsiemi:

- calcoliamo lo stato iniziale $S = \epsilon$ -closure (q_0) , che è $S = q_0$.
- \bullet Creiamo T e gli inseriamo S marcandolo
- Per ogni simbolo dobbiamo calcolare ϵ -closure(mossa(P,a)), ma visto che l'alfabeto è $\{a,b\}$ lo facciamo 2 volte:
 - per il carattere a calcoliamo con $P = S = \{q_0\}$:

$$\begin{split} R &= \epsilon\text{-closure}(mossa(P, a)) = \epsilon\text{-closure}\left(\bigcup_{p \in \{q_0\}} \delta(p, a)\right) \\ &= \epsilon\text{-closure}(\delta(q_0, a)) = \epsilon\text{-closure}(\{q_0\}) = \{q_0\} \end{split}$$

Si definisca $\delta(S,a)=\{q_0\}$ e visto che $\{q_0\}\in T$ non lo andiamo a ri-aggiungere

– per il carattere a calcoliamo con $P = S = \{q_0\}$:

$$\begin{split} R &= \epsilon\text{-closure}(mossa(P,b)) = \epsilon\text{-closure}\left(\bigcup_{p \in \{q_0\}} \delta(p,b)\right) \\ &= \epsilon\text{-closure}(\delta(q_0,b)) = \epsilon\text{-closure}(\{q_0,q_1\}) = \{q_0,q_1\} \end{split}$$

visto che $\{q_0, q_1\} \notin T$ lo andiamo ad aggiungere

- si calcoli ora con $P = \{q_0, q_1\}$ and
ando a calcolare la stessa cosa:
 - per a si ha:

$$\begin{split} R &= \epsilon\text{-closure}(mossa(P, a)) = \epsilon\text{-closure}\left(\bigcup_{p \in \{q_0, q_1\}} \delta(p, a)\right) \\ &= \epsilon\text{-closure}(\{q_0\} \cup \{q_2\}) = \{q_0, q_2\} \end{split}$$

quindi $\Delta(\{q_0,q_1\},a)=\{q_0,q_2\}.$ Visto $\{q_0,q_2\}\notin T$ lo aggiungiamo

– per b si ha $R=\{q_0,q_1\}$. Quindi $\Delta(\{q_0,q_1\},b)=\{q_0,q_1\}$ e non lo si raggiunge

 \bullet ripetiamo per $P=\{q_0,q_2\}$ (salto i calcoli)

alla fine di sto ambaradam si ottiene DFA $N'=(\Sigma,\{\{q_0\},\{q_0,q_1\},\{q_0,q_2\}\},\Delta,\{q_0\},\{q_0,q_2\})$ che in forma di diagramma di transizione e:

esempio bello corposo:

Example 3.2.5

si noti i seguenti calcoli

 $A = \epsilon\text{-closure}(q_0) = \{q_0, q_1, q_2, q_3\}$ $\Delta(A, a) = \epsilon\text{-closure}(\text{move}(A, a)) = \epsilon\text{-closure}(\{q_0, q_4\}) = \{q_0, q_1, q_2, q_3, q_4\} = B$ $\Delta(A, b) = \epsilon\text{-closure}(\text{move}(A, b)) = \epsilon\text{-closure}(\{q_2, q_3, q_4\}) = \{q_2, q_3, q_4\} = C$ $\Delta(B, a) = \epsilon\text{-closure}(\text{move}(B, a)) = \epsilon\text{-closure}(\{q_0, q_4\}) = B$ $\Delta(B, b) = \epsilon\text{-closure}(\text{move}(B, b)) = \epsilon\text{-closure}(\{q_2, q_4\}) = C$ $\Delta(C, a) = \epsilon\text{-closure}(\text{move}(C, a)) = \epsilon\text{-closure}(\{q_4\}) = \{q_3, q_4\} = D$ $\Delta(C, b) = \epsilon\text{-closure}(\text{move}(C, b)) = \epsilon\text{-closure}(\{q_4\}) = D$ $\Delta(D, a) = \epsilon\text{-closure}(\text{move}(D, a)) = \epsilon\text{-closure}(\{q_4\}) = \emptyset = D$ $\Delta(D, b) = \epsilon\text{-closure}(\text{move}(D, b)) = \epsilon\text{-closure}(\emptyset) = \emptyset = E$ $\Delta(E, a) = \epsilon\text{-closure}(\text{move}(E, a)) = \epsilon\text{-closure}(\emptyset) = \emptyset = E$ $\Delta(E, b) = \epsilon\text{-closure}(\text{move}(E, b)) = \epsilon\text{-closure}(\emptyset) = \emptyset = E$

il cui DFA M_N è:

casi pessimi

Claim 3.2.3

Example 3.2.6

Sia N il seguente NFA con 2 stati:

per costruire il suo ${\cal M}_N$ si hanno i seguenti nodi

- $A = \{q_0\}$
- $B = \{q_0, q_1\}$
- $A = \{q_1\}$
- $D = \emptyset$

in diagramma di transazione diventa:

Adesso si può dimostrare il teorema dell'equivalenza

teorema d'equivalenza tra NFA e DFA

Theorem 3.2.1 Bonzo-GioLaPalma

Sia $N=(\Sigma,Q,\delta,q_0,F)$ un NFA e sia M_n l'automa ottenuto con la costruzione per sottoinsiemi. allora M_n è un DFA e si ha che

$$L[N] = L[M_n]$$

In altre parole, N e M_n sono equivalenti.

Dimostrazione: Sia $N=(Z,\Sigma,\delta,q_0,F)$ un NFA e sia $M_N=(\Gamma,\Sigma,\Delta,A,F')$ l'automa ottenuto con l'algoritmo.

- M_N è deterministico: Infatti $\Delta(A,a)$ con $A \in T \land a \in \Sigma$ è definita in modo univoco
- \bullet Quindi mi riduco a dimostrare che $L[N]=L[M_n]$
 - -si osservi che per un DFA, $\epsilon\text{-closure}(R)=R$
 - chiamiamo $i_m = \epsilon$ -closure (q_0) lo stato iniziale di M_n

Vogliamo dimostrare che $\forall w \in \Sigma^*$

$$\delta(q_0, w) = \Delta(A, w)$$

per induzione sulla lunghezza di w

• Caso base: |w| = 0 cioè $w = \epsilon$:

$$\hat{\delta}(A, \epsilon) = \epsilon$$
-closure (q_0)

$$\hat{\Delta}(i_m, \epsilon) = \epsilon$$
-closure $(i_m) = i_M = < \epsilon$ -closure (q_0)

• Caso induttivo: $w = xa \text{ con } x \in \Sigma^*, a \in \Sigma$ Per ipotesi induttiva, sappiamo che:

$$\hat{\delta}(q_0, x) = \Delta(\{q_0\}, x) = \{p_1, \dots, p_k\}$$

Per definizione di $\hat{\delta}$:

$$\hat{\delta}(q_0, xa) = \Delta \big(\varepsilon\text{-closure}\big(\bigcup_{i=1}^k \delta(p_i, a)\big)\big)$$

Similmente:

$$\Delta(\lbrace q_0 \rbrace, xa) = \Delta(\lbrace p_1, \dots, p_k \rbrace, a)$$

In base all'algoritmo, la definizione di Δ ci dice che:

$$\Delta(\{p_1,\ldots,p_k\},a) = \varepsilon\text{-closure}(\operatorname{mossa}(\{p_1,\ldots,p_k\},a)) = \varepsilon\text{-closure}(\bigcup_{i=1}^k \delta(p_i,a)) = \hat{\delta}(q_0,xa)$$

OK.

Infine, abbiamo che:

$$w \in L[N] \iff \exists p \in \hat{\delta}(q_0, w) \text{ con } p \in F$$

$$\iff \exists p \in \Delta(i_H, w) \text{ con } p \in F$$

$$\iff w \in L[M_N] \quad \forall w \in \Sigma^*$$

Quindi:

$$L[N] = L[M_N]$$
 c.v.d.

Theorem 3.2.2 Basta - Dario è sVenuto

Data un'espressione regolare S, possiamo costruire un NFA N[s] tale che:

$$\mathcal{L}[s] = L[N[s]]$$

ovvero un linguaggio individuato da un linguaggio regolare è equivalente ad un linguaggio riconosciuto da un automa non deterministico a stati finiti costruito a partire da S, questo significa che gli NFA riconoscono TUTTI i linguaggi regolari, vedremo poi che riconoscono solo i linguaggi regolari

Dimostrazione: Dimostreremo il teorema per induzione sulla sintassi astratta della espressione regolare S. Si costruisca un possibile NFA associato all'espressione regolare S, in modo da mantenere i seguente due invarianti:

- lo stato iniziale non ha archi entranti
- N[s] ha un solo stato finale senza archi uscenti

Procedo ad esaminare i vari casi

• Sia $s = \emptyset$

In questo caso sarà possibile costruire un NFA con due stati (iniziale e finale) non connessi, quindi N[s]:

Si osservi che $\mathcal{L}[\varnothing] = \varnothing = L[N[s]]$

• Sia $s = \epsilon$

In questo caso sarà possibile costruire un NFA con due stati (iniziale e finale) connessi da un ϵ , quindi N[s]:

$$\epsilon$$

Si osservi che, in questo caso, $\mathcal{L}[\epsilon] = \{\epsilon\} = L[N[s]]$

• Sia S = a

In questo caso sarà possibile costruire un NFA con due stati (iniziale e finale) connessi da una transizione a, quindi N[s]:

Si osservi che, in questo caso, $\mathcal{L}[a] = \{a\} = L[N[s]]$

• caso s = r|t

Ipotizziamo di avere già costruito gli automi N[t] ed N[r], per costruire "l'or" è possibile partire da uno stato iniziale i e collegarlo con transizioni ϵ ai due automi, da entrambi si confluisce in uno stato finale f con transazioni ϵ

Algebricamente si può dimostrare che $\mathcal{L}[r|t] = \mathcal{L}[t] \cup \mathcal{L}[r]$ e per ipotesi induttiva si ha:

$$\mathcal{L}[t] \cup \mathcal{L}[r] = L[N[r]] \cup L[N[t]] = L[N[r|t]]$$

• Sia $s = r \cdot t$

Ipotizziamo di avere già costruito gli automi N[t] ed N[r], per costruire la concatenazione è possibile fondere lo stato finale del primo automa con quello del secondo automa, si ha, quindi, che N[s]:

• Sia $s = r^*$

Ipotizzando di aver già costruito N[r] è possibile costruire l'automa creando un ciclo ϵ dalla fine di N[r] al suo inizio

Si osservi che:

$$\mathcal{L}[r^*] = (\mathcal{L}[r])^*$$

per ipotesi induttiva

$$(\mathcal{L}[r])^* = (L[N[r]])^* = L[N[r^*]]$$

⊜

Example 3.2.7

Sia $S = (a|b^*)ba$ un'espressione regoalre e costruiamnone l'albero sintattico

Partiamo dalle foglie e risaliamo alla radice (bottom-up) Si ha:

• *N*[*a*]:

• *N*[*b*]:

• N[a|b]:

• $N[(a|b)^*]$:

• *N*[*ba*]:

• *N*[*s*]:

Altro esempietto:

Example 3.2.8

TODO da fare l'automa diretto qui

```
Costruiamo il DFA associato a N[s]:
A = \varepsilon\text{-closure}(0) = \{0\}
\Delta(A, a) = \varepsilon\text{-closure}(\{1\}) = \{1, 2, 3\} = B
\Delta(A, b) = \varepsilon\text{-closure}(\emptyset) = \emptyset = C
\Delta(B, a) = \varepsilon\text{-closure}(\{5\}) = \{5\} = D
\Delta(B, b) = \varepsilon\text{-closure}(\{3\}) = \{3, 4, 2\} = E
\Delta(D, a) = \emptyset = C, \quad \Delta(D, b) = \emptyset = C
\Delta(E, a) = \varepsilon\text{-closure}(\{5\}) = D, \quad \Delta(E, b) = \varepsilon\text{-closure}(\{3\}) = E
\Delta(C, a) = \emptyset = C, \quad \Delta(C, b) = \emptyset = C
start \longrightarrow B
a, b
DFA associato a N[a \ b^* \ a]
```

3.2.6 Da NFA a espressione regolare

Aggiungo una dimostrazione presa dal libro di Michael Sipser, "Introduction to the Theory of Computation", che descrive come creare un'espressione regolare partendo direttamente da un NFA. Nella sezione successiva introdurremo le grammatiche regolari con le quali e' possibile dimostrare lo stesso teorema, quindi questa parte non e' necessaria ma solo un'idea interessante e piu' diretta.

Come anticipato precedentemente, e' possibile anche dimostrare la direzione inversa del teorema, ovvero che dato un NFA che riconosce un linguaggio L[N], e' sempre possibile generare un'espressione regolare che riconosca lo stesso linguaggio. Quindi vale il teorema generale:

Theorem 3.2.3 Teoremone Piccolomini

Un linguaggio e regolare sse esiste un automa a stati finiti che lo riconosce.

Sopra abbiamo gia dimostrato che preso un linguaggio regolare (ovvero descritto da un'espressione regolare) possiamo sempre costruire un NFA equivalente. Ci tocca dimostrare la direzione inversa, ovvero che preso un qualsiasi NFA, il linguaggio che riconosce e' regolare e quindi esiste un'espressione regolare che lo descrive. Dato che abbiamo dimostrato col teorema Bonzo-GiolaPalma che un NFA e' sempre convertibile a un DFA, possiamo partire proprio da un DFA e definire un procedimento per ottenere un'espressione regolare equivalente. Dividiamo in due parti questo processo: prima convertiamo il DFA in un GNFA (General Nondeterministic Finite Automata), che ora defineremo, poi convertiamo il GNFA in un'ER.

Automi finiti nondeterministici generali

I GNFA sono praticamente dei NFA con funzione di transizione che funziona utilizzando le ER. Possono leggere blocchi alla volta dall'input, non solo caratteri, e se tale blocco soddisfa l' ER di una transizione che parte dallo stato corrente, allora si puo' seguire l'arco e cambiare stato. Ovviamente e' fortemente nondeterministico e possono esserci molti modi per elaborare la stessa sequenza di caratteri.

TODO: esempio di GNFA

Formalmente:

Definition 3.2.11: GNFA

Un automa finito nondeterministico generale e' una quintupla $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$ tale che:

- ullet Q e' un insieme finito di stati
- $\bullet~\Sigma$ e' l'alfabeto dell'input
- $\delta: (Q q_{\text{accept}}) \times (Q q_{\text{start}}) \to \mathcal{R}_{\Sigma}$ e' la funzione di transizione

Dove \mathcal{R}_{Σ} e' l'insieme di tutte le ER sull'alfabeto Σ .

Un GNFA riconosce una stringa $w \in \Sigma^*$ se esitono una suddivisione $w = w_1 w_2 ... w_k$ con $w_i \in \Sigma^*$ e una serie di stati $q_0, q_1, ..., q_k$ tali che:

- 1. $q_0 = q_{\text{start}}$
- 2. $q_k = q_{\text{accept}}$
- 3. $\forall i > 0. w_i \in [R_i]$, dove $R_i = \delta(q_{i-1}, q_i)$

Per i fini della dimostrazione, ci interessiamo solo di GNFA specifici che rispettano le seguenti condizioni:

- Lo stato iniziale ha archi che vanno verso tutti gli altri stati, ma nessuno entrante.
- Lo stato finale e' unico e ha archi entranti da tutti gli altri stati, ma nessuno uscente. Inoltre e' distinto dallo stato iniziale.
- Senza contare lo stato iniziale e lo stato finale, gli stati hanno archi che vanno verso tutti gli altri stati e anche verso loro stessi.

Da DFA a GNFA

Convertire un DFA in un GNFA in forma speciale e' semplice: basta aggiungere uno stato iniziale con arco ϵ verso lo stato iniziale vecchio, aggiungere uno stato finale con archi ϵ entranti da tutti i vecchi stati finali e se ce piu' di un arco nella stessa direzione fra due nodi, fonderli insieme creando un unico arco la cui ER corrispondente e' l'unione delle ER dei vecchi archi. Infine, se mancano degli archi, aggiungere transizioni segnati dall'ER \emptyset , che non puo' essere mai usata.

Da GNFA a ER

Per ottenere l'ER a partire dal GNFA, l'idea principale e' la seguente:

Diciamo che il GNFA ha k stati. Sappiamo che $k \ge 2$ perche ci devono essere uno stato finale e uno iniziale distinti. Se riusciamo a rimuovere uno stato alla volta, che non sia finale o iniziale, mantenendo il nuovo GNFA appena ottenuto equivalente a quello prima, arriviamo ad un punto dove k=2 e l'automa e' costituito semplicemente da un arco che applica l'ER che ci porta dallo stato iniziale direttamente a quello finale, e che descrive quindi il linguaggio riconosciuto dal DFA iniziale.

Dobbiamo fare in modo che quando uno stato q_{rip} viene rimosso, le ER sugli archi vengano modificate in modo da simulare tutti i percorsi che sono stati rimossi. Quindi le nuove ER devono considerare sia le stringhe che portano direttamente dallo stato q_i allo stato q_j , che le stringhe che portavano da q_i a q_j passando da q_{rip} .

TODO: copia figure 1.63 del libro

Quindi, se nel vecchio GNFA:

- 1. q_i va da $q_{\rm rip}$ per l'ER R_1
- 2. $q_{\rm rip}$ va a se stesso per R_2
- 3. $q_{\rm rip}$ va a q_j per R_3
- 4. q_i va a q_j per R_4

allora nel nuovo GNFA dobbiamo etichettare l'arco da q_i a q_i con l'ER:

$$(R_1)(R_2)^*(R_3) \cup (R_4)$$

Ad ogni iterazione applichiamo questa trasformazione per ogni arco fra una coppia q_iq_j (anche quando i=j). Formalizziamo tutto cio' (zio perone):

Dimostrazione formale: Sia M il DFA equivalente all'NFA del teorema. Usando la procedura descritta sopra trasformiamo M in un GNFA G. Usiamo la procedura ricorsiva CONVERT(G) per ottenere l'ER equivalente:

- 1. Sia k il numero di stati di G
- 2. Se k = 2, ritorna l'espressione regolare associata ai due nodi
- 3. Se k > 2, seleziona uno stato $q_{\text{rip}} \in Q$ che sia diverso dallo stato iniziale e finale e sia $G' = (Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$ tale che:
 - $Q' = Q \setminus \{q_{\text{rip}}\}$
 - $\forall q_i \in Q' \setminus \{q_{\text{start}}\}, \forall q_j \in Q' \setminus \{q_{\text{accept}}\}:$

$$\delta'(q_i, q_i) = (R_1)(R_2)^*(R_3) \cup (R_4)$$

con
$$R_1 = \delta(q_i, q_{\text{rip}}), R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}), R_3 = \delta(q_{\text{rip}}, q_i), R_4 = \delta(q_i, q_i)$$

Ora dimostriamo che CONVERT(G) ritorni il valore corretto. Dimostriamo per induzione su k, il numero di stati del GNFA G:

• Caso base:

Se k = 2, per la definizione di GNFA specifico abbiamo uno stato iniziale e un arco che lo collega allo stato finale. L'ER dell'arco descrive tutte le stringhe che portano G allo stato finale, quindi e' equivalente a G.

• Caso induttivo su k:

Assumiamo che CONVERT(G') equivale a G', dove G' e' il caso con k-1 stati. Dimostriamo che G' e G sono equivalenti. Prendiamo una parola $w \in \Sigma^*$ accettata da G. Quindi siano

$$q_{\text{start}}, q_1, q_2, q_3, ..., q_{\text{accept}}$$

la sequenza di stati di G di un percorso che accetta w. Se $q_{\rm rip}$ (lo stato rimosso da G per creare G') non appartiene a questa sequenza, allora chiaramente w e' riconosciuto anche da G'. Questo e' perche' i nuovi archi fra tutti gli stati mantengono l'ER originale tramite un'unione. Altrimenti, se $q_{\rm rip}$ fa parte del percorso, basta rimuovere tutte le evenienze dalla sequenza per trovare un percorso per cui G' accetta w. Questo e' perche' nella definizione di CONVERT, facciamo in modo che le nuove ER fra due nodi considerino descrivino anche tutte le stringhe che portavano fra i due stati passando da $q_{\rm rip}$.

Al contrario, se G' riconosce w, ad ogni arco e' associata un'ER che riconosce stringhe che in G fanno passare da q_i a q_i sia direttamente che tramite q_{rip} . Quindi ovviamente anche G riconosce w. Avendo dimostrato che G e G' sono equivalenti, possiamo usare l'ipotesi induttiva per dire che CONVERT(G) equivale a G.

3.2.7 Chiusura dei linguaggi regolari rispetto alle operazioni regolari

Per aiutarci ad architettare automi finiti o per distinguere linguaggi regolari da altri tipi di linguaggi che vedremo piu' avanti, puo' tornare utile sapere se sono chiusi rispetto alle operazioni regolari (concatenazione, unione, stella di Kleene). Generalmente, diciamo che un'insieme di oggetti e' chiusa rispetto a un'operazione se applicando quest'ultima a qualunque elemento dell'insieme, il risultato appartiene sempre allo stesso insieme. Quindi se consideriamo come macro-insieme l'insieme di tutti i linguaggi regolari e dimostriamo la chiusura rispetto a una certa operazione, allora siamo sicuri che il risultato di questa operazione applicata a linguaggi regolari sara' sempre un linguaggio regolare. Partiamo con l'operazione di unione:

Theorem 3.2.4 Chiusura di linguaggi regolari rispetto all'unione

La classe dei linguaggi regolari e' chiusa sotto l'unione.

In altre parole, se A_1 e A_2 sono linguaggi regolari, lo e' anche $A_1 \cup A_2$.

Dato che abbiamo gia' dimostrato l'equivalenza fra DFA e NFA, possiamo usare il nondeterminismo per dimostrare il teorema sopra (e' possibile anche usare solo DFA, ma e' piu' lunga). L'idea della dimostrazione e' quella di creare due NFA, N_1 , N_2 che riconoscono rispettivamente i linguaggi A_1 , A_2 , e poi di unirli per creare un nuovo NFA N che riconosca $A_1 \cup A_2$. Quindi, N deve riconoscere sia le stringhe di A_1 che di A_2 . Creando un nuovo stato iniziale e collegandolo ai due stati iniziali di N_1 e N_2 con mosse ϵ , quindi usando il nondeterminismo per accettare sia i casi in cui l'input appartiene ad A_1 , sia quando appartiene ad A_2 .

Dimostrazione formale: Siano $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$ e $N_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$ NFA che riconoscono rispettivamente A_1 e A_2 .

Costruisco un nuovo NFA $N = \{Q, \Sigma, \delta, q_0, F\}$ per riconoscere $A_1 \cup A_2$ in tale modo:

1.
$$Q = \{q_0\} \cup Q_1 \cup Q_2$$

2.
$$F = F_1 \cup F_2$$

3.
$$\forall q \in Q. \forall a \in \Sigma. \delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \land a = \epsilon \\ \emptyset & q = q_0 \land a \neq \epsilon \end{cases}$$

Quindi per il teorema Basta-Dario e' s Venuto, $A_1 \cup A_2$ e' un linguaggio regolare.

Ora passiamo alla concatenazione:

Theorem 3.2.5 Chiusura dei linguaggi regolari rispetto alla concatenazione

I linguaggi regolari sono chiusi sotto la concatenzazione.

In altre parole, se A_1 e A_2 sono linguaggi regolari, anche $A_1 \cdot A_2$ e' regolare.

Il punto chiave di questa dimostrazione e' come sapere quando finisce la parola di A_1 e inizia una stringa di A_2 . Infatti, con i DFA risulta molto piu' complicato, ma dato che possiamo usare i NFA risulta abbastanza banale. Come prima, vogliamo costruire un NFA N utilizzando altri due NFA N_1 e N_2 che riconoscono A_1 e A_2 . Possiamo fare cio' collegando tutti gli stati finali di N_1 allo stato iniziale di N_2 , usando transizioni ϵ per accettare tutti i possibili casi. E' possibile, infatti, che una sotto-strina di una parola in A_1 appartenga anch'essa ad A_1 , quindi senza il nondeterminismo sarebbe impossibile sapere quando passare a N_2 . Se alla fine dell'input N_2 e' su uno stato finale, allora la parola appartiene a $A_1 \cdot A_2$.

(2)

☺

Dimostrazione formale: Siano $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}, N_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$ NFA che riconoscono rispettivamente A_1, A_2 .

Costruisco il NFA $N = \{Q, \Sigma, \delta, q_1, F_2\}$ che riconosce $A_1 \cdot A_2$ in tale modo:

1.
$$O = O_1 \cup O_2$$

2.
$$\forall q \in Q. \forall a \in \Sigma : \delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \setminus F_1 \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \land a = \epsilon \\ \delta_1(q, a) & q \in F_1 \land a \neq \epsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

Sempre per il teorema Basta-Dario e' sVenuto, $A_1 \cdot A_2$ e' regolare.

Finiamo con la stella di Kleene:

Theorem 3.2.6 Chiusura dei linguaggi regolari rispetto alla stella di Kleene

I linguaggi regolari sono chiusi rispetto alla stella di Kleene.

In altre parole, se A_1 e' un linguaggio regolare, allora lo e' anche A_1^* .

Come nei primi due casi, vogliamo dimostrare per costruzione che esiste un NFA N che riconosce A_1^* . Considero l' automa N_1 che riconosce A_1 . Noi vogliamo che N riconosca una concatenazione di qualunque lunghezza di parole in A_1 , quindi possiamo usare l'idea della dimostrazione precedente e collegare tutti gli stati finali di N_1 questa volta al proprio stato iniziale, sempre con transizioni ϵ . Non possiamo dimenticarci pero' che anche $\epsilon \in A_1^*$, quindi basta aggiungere un nuovo stato iniziale che sia pure finale e collegarlo al vecchio stato iniziale con un'altra transizione ϵ .

Dimostrazione formale: Sia $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$ un NFA che riconosce il linguaggio regolare A_1 . Costruisco $N = \{Q, \Sigma, \delta, q_0, F\}$ che riconosce A_1^* nel seguente modo:

1.
$$Q = \{q_0\} \cup Q_1$$

2.
$$F = \{q_0\} \cup F_1$$

$$3. \ \forall q \in Q, \forall a \in \Sigma : \delta(q,a) = \begin{cases} \delta(q,a) & q \in Q_1 \setminus F_1 \\ \delta(q,a) & q \in F_1 \land a \neq \epsilon \\ \delta(q,a) \cup \{q_1\} & q \in F_1 \land a = \epsilon \\ \{q_1\} & q = q_0 \land a = \epsilon \\ \emptyset & q = q_0 \land a \neq \epsilon \end{cases}$$

Gia lo sapete cosa ci dicono il Basta e il Darione, A_1^* e' regolare.

TODO: intersezione

3.3 Grammatiche regolari

Definition 3.3.1: grammatiche regoalre

Una grammatica libero si definisce **regoalre** sse ogni produzione è della forma $V \to aW$ oppure $V \to a$ dove $V, W \in NT \land a \in T$. Per il simbolo iniziale S è ammessa anche la produzione $S \to \epsilon$

Note:

A volte si userà la definizione più lasca che permette produzione $V \to \epsilon$ anche per nonterminali diversi da S

Di seguito riportati degli esempi

Example 3.3.1

Sia G la seguente grammatica regolare:

$$A \rightarrow aA \mid bB \mid bA$$
$$B \rightarrow a$$

Si ha che $L(G) = (A|b)^*ba!!$

Adesso si costruisca un NFA a G:

si ha che:

• abbiamo associato a ogni nonterminale uno stato dell'NFA

☺

• abbiamo aggiunto stato finale ϵ

Esempio 2:

Example 3.3.2

Sia G la seguente grammatica regolare:

$$A \rightarrow aA \mid bB$$

$$B \rightarrow bB \mid aC \mid a$$

$$c \rightarrow aA \mid bB$$

l'NFA è:

3.3.1 da grammatiche regolari a NFA equivalenti

Theorem 3.3.1

Data una grammatica regoalre G si può costruire un NFA N_G equivalente

 $\textbf{\textit{Dimostrazione:}} \quad \text{Sia } G = (NT, T, R, S), \text{ definiamo in oltre } N_G = (T, Q, \delta, S, \{\epsilon\}) \text{ come segue:}$

- $Q = NT \cup \{\epsilon\}$
- δ definita come segue:

$$-(V \rightarrow aZ \in R) \implies (Z \in \delta(V, a))$$

$$-(V \to a \in R) \implies (\epsilon \in \delta(V, a))$$

$$-(V \to \epsilon \in R) \implies (\epsilon \in \delta(V, \epsilon))$$

Si può dimostrare che

$$S \implies {}^*_G w$$
 con la grammatica
 $G \iff (S,w) \vdash_{N_G}^*$ con l'automa N_G

(2)

non verrà dimostrata quest'ultima parte cazzo

3.3.2 Da DFA a grammatiche regolari

Theorem 3.3.2

Da un DFA M possiamo definire una grammatica regolare \mathcal{G}_M tale che:

$$L[M] = L(G_M)$$

Dimostrazione: Sia $\mathcal{M}=(\Sigma,Q,\delta,q_0,F)$ il DFA. La grammatica $G_{\mathcal{M}}=(Q,\Sigma,R,q_0)$ ha:

• Per non terminali: gli stati di \mathcal{M} .

• Per terminali: l'alfabeto di M.

• Per simbolo iniziale: lo stato iniziale di \mathcal{M} .

• Per produzioni R:

– Per ogni $\delta(q_i,a)=q_j,$ la produzione $q_i\to aq_j\in R.$

– Inoltre, se $q_i \in F$, anche $q_i \rightarrow a \in R$.

– Se $q_0 \in F$, allora $q_0 \to \varepsilon \in R$.

Versione alternativa che usa la definizione di grammatica regolare più lasca:

• Per ogni $\delta(q_i,a)=q_i,$ la produzione $q_i\to aq_i\in R.$

• Se $q \in F$, allora $q \to \varepsilon \in R$.

Si può dimostrare che:

$$w \in L[\mathcal{M}] \iff w \in L(G_{\mathcal{M}})$$

☺

Example 3.3.3

Sia M:

Si ha che aa^* è l'espressione regolare che descrive L[M] Secondo la costruzione appena descritta G_M è:

$$A \to aB \mid a$$
$$B \to aB \mid a$$

secondo la variante, invece:

$$A \to aB B \to aB \mid \epsilon$$

Example 3.3.4

sia il seguente automa M:

secondo il metodo descritto si ha che G_M è:

$$A \rightarrow aB \mid bC$$

$$B \rightarrow aB \mid bC$$

$$C \rightarrow bC \mid aD \mid a$$

$$D \rightarrow aB \mid bC$$

alternativamente:

$$A \rightarrow aB \mid bCB \rightarrow aBmidbCC \rightarrow bC \mid aDD \rightarrow aB \mid bC \mid \epsilon$$

3.3.3 Grammatiche regolari ed espressioni regolari

Theorem 3.3.3

Il linguagio definito da una grammatica regolare G è un linguaggio regolare, cioè è possibile costruire una espressione regolare S_G tale che:

$$L(G) = \mathcal{L}[S_G]$$

sketch della dimostrazione: idea della prova:

• caso semplice: un solo non terminale:

$$A \rightarrow aA \mid b \mid \epsilon$$

è intuitivo vedere che $a^*(b|\epsilon)$ è la espressione regolare associata

• caso medio: due non terminali

$$A \rightarrow aA \mid bB \mid c$$

 $B \rightarrow cA \mid aB \mid d$

ricaviamo B dalla seconda equzione

 $B \approx a^*(cA|d)$ dove A compare nella espressione regolare

ora sostituiamo B nella prima "equazione"

$$A \approx aA \mid ba^*(cA \mid d) \mid c$$

con opportune manipolazioni su espressioni regolari, usando leggi che abbiamo visto, possiamo scrivere

$$A \approx aA \mid ba^*cA \mid ba^*d \mid c$$

e quindi

$$a \approx (a \mid ba^*c)A \mid ba^*d \mid c$$

ora siamo nella forma "semplice"-

A ha associata la espressione regolare

$$(a | ba^*c)^*(ba^*d | c)$$

• in generale

$$A_{1} \simeq a_{11}A_{1} \mid \cdots \mid a_{1m}A_{m} \mid b_{1} \mid \cdots \mid b_{1p_{1}}$$

$$A_{2} \simeq a_{21}A_{1} \mid \cdots \mid a_{2n}A_{n} \mid b_{21} \mid \cdots \mid b_{2p_{2}}$$

$$\vdots$$

$$A_{m} \simeq a_{m1}A_{1} \mid \cdots \mid a_{mn}A_{n} \mid b_{n1} \mid \cdots \mid b_{np_{n}}$$

$$A_m \simeq a_{m1}A_1 \mid \cdots \mid a_{mn}A_n \mid b_{n1} \mid \cdots \mid b_{np_n}$$

Si parte con:

$$A_m \simeq S_m \left[A_1, \cdots, A_{n-1} \right]$$

cioè si costruisce una espressione regolare per A_m che usa A_1, \ldots, A_{n-1} .

Poi si procede sostituendo A_n (o meglio $S_n[A_1,\ldots,A_{n-1}]$) al posto di A_n nell'equazione per A_{n-1} , cioè:

$$A_{n-1}\simeq S_{n-1}\big[A_1,\ldots,A_{n-2}\big]$$

e così via fino ad arrivare ad A_1 (che è il simbolo iniziale).

Example 3.3.5

Sia G la seguente grammatica

$$A \to aB \mid \epsilon$$
$$B \to bA \mid \epsilon$$

PEr B la espressione regoalre associata è $(bA \mid \epsilon)$, sostituisco questa al posto di B nella prima equazione

$$A \approx a(bA \mid \epsilon) \mid \epsilon$$

manipolo la espressione regoalre

$$A \approx abA \mid a \mid \epsilon$$

siamo ora nel caso semplice

$$A \approx (ab)^*(a \mid \epsilon)_{S_G}$$

Note:

la grammatica regolare G con unica prodizone $A \to aA$ definisce il linguaggio vuoto, non a^* quindi $S_G = \emptyset$

3.3.4 Per riassumere le relazione tra espressioni regolari, linguaggi regolari e automi NFA e DFA

Claim 3.3.1

Si osservi che tutti questi formalismi sono equivalenti

Tutti generano/riconoscono/descrivono la stessa classe di linguaggi, ovvero i linguaggi regolari

Tuttavia vi è un serio problema, infatti, per costruire uno scanner si parte dalla specifica dei pattern associati alle categorie sintattiche del linguaggio, mediante espressioni regolari. Per poi

$$regexp \rightarrow NFA \rightarrow DFA$$

ma se l'NFA ha n stati il DFA potrebbe averne al più 2^n , pertanto serve trovare un DFA equivalente più piccolo possibile

min(DFA) minimizzato

3.3.5 minimizzazione

Alle volte per minimizzare degli automi occorre individuare stati equivalenti nello stesso automa, eliminarli e fonderli insieme costruendo, così, l'automa minimo. Prima della definizione formale occorre definire la seguente notazione:

Definition 3.3.2: notazione $\hat{\delta}$

Per un DFA $N=(\Sigma,Q,\delta,q_0,F)$ si ha che

$$\begin{split} \hat{\delta}:Q\times\Sigma^*&\to Q \text{ è definita come}\\ \hat{\delta}(q,\epsilon)&=q\\ \hat{\delta}(q,xa)&=\delta(\hat{\delta}(q,x)a) \end{split}$$

Si ha quindi

$$w \in L[N] \iff \hat{\delta}(q_0, w) \in F$$

equivalenza/indistinguibilità

Definition 3.3.3: stati equivalenti/indistinguibili

due stati si dicono q_1 e q_2 di un DFA N si definiscono equivalenti (o indistinguibili) se

$$\forall x \in \Sigma^* \ (\hat{\delta}(q_1, x) \in F \iff \hat{\delta}(q_2, x) \in F)$$

Simmetricamente si può definire la non equivalenza

Definition 3.3.4: non equivalenza/indistinguibilità

due stati q_1 e q_2 non sono equivalenti (o indistinguibili) se

$$\exists x \in \Sigma^* \; ((\hat{\delta}(q_1, x) \in F \land \hat{\delta}(q_2, x) \notin F) \lor (\hat{\delta}(q_1, x) \notin F \land \hat{\delta}(q_2, x) \in F))$$

 q_1 e q_2 pertanto sono distinguibili

Note:

Una strategia per individuare la distinguibilità tra due stati è cercare di distinguere due stati a partire da $x \in \Sigma^*$ partendo dalla più corta ϵ

Si noti questo esempio

Example 3.3.6

Sia N il seguente DFA:

Inanzi tutto cerco di vedere quali coppie di stati NON sono equivalenti, a partire dalla stringa ϵ :

• ϵ distingue ogni stato in F da ogni stato in $Q \setminus F$, dato ceh $\hat{\delta}(q,\epsilon) = \epsilon$, sicuramente non sono

equivalenti:

Infatti $A \notin F \land D \in F$, $B \notin F \land D \in F$ e $C \notin F \land D \in F$

- \bullet adesso si consideri le stringhe di lunghezza q, ovvero a e b
 - si parti con la lettera a:
 - * a distingue B e C perché

$$\delta(B, a) = A \in \delta(C, a) = D$$

E(B,D) l'avevo già cancellata del primo punto

* a distingue anche A e C perché

$$\delta(A, a) = B \in \delta(C, a) = D$$

E(B,D) l'avevo già cancellata del primo punto

- b non permette di fare ulteriori distinzioni
- procedo con le stringhe di lunghezza lunghe 2, ma non riesco a fare nessuna ulteriore distinzione. quindi ho finito

Non sono riuscito a distinguere solo A e B, quindi sono equivalenti e li fondo. Il nostro automa finale sarà

Famiglia di relazioni

Definition 3.3.5: famiglia di relazioni

Dato un DFA $M=(\Sigma,Q,delta,q_0,F)$, defininiamo una famiglia relazione $\sim_i\subseteq Q\times Q$ nel seguente modo:

- $\sim_0 = F \times F \cup (Q \setminus F) \times (Q \setminus F)$ ovvero stati che non possono essere distinti da ϵ
- $q_1 \sim_{i+1} q_2 \iff \forall a \in \Sigma \quad \delta(q_1, a) \sim_i \delta(q_2, a)$ ovvero q_1 e q_2 sono in relazione $\sim_{,i+1}$ se $\forall x \in \Sigma^*$ cin $|x| \leq i+1$

$$\hat{\delta}(q_1, x) \in F \iff \hat{\delta}(q_2, x) \in F$$

Note:

Si osservi che:

- La relazione $Id = \{(q,q) \mid q \in Q\}$ è tale che $Id \subseteq \sim_i \forall i$. Si ha in fatti che uno stato è sempre equivalente a se stesso
- $\bullet \ \sim_i$ è una relazione d'equivalenza $\forall i$
- $-\sim_0$ ha solo 2 classi d'equivalenza, ovvero $F \in Q \setminus F$
 - Per $\sim_i,$ riflessività e simmetria sono ovvie, mentre la transitività è meno banale:

$$q_1 \sim_i q_2 \in q_2 \sim_i q_3 \implies q_1 \sim_i q_3$$

• Ad ogni passo, rimuovo qualche coppia! Si verifica che:

$$\sim_0 \supseteq \sim_1 \supseteq \sim_2 \supseteq \sim_3 \supseteq \dots$$

Ossia una catena decrescente (o non crescente) di relazioni di equivalenza.

- Se esiste un K tale che $\sim_K = \sim_{K+1}$, allora per ogni j > K vale che $\sim_j = \sim_K$. In altre parole: Non appena la relazione non viene modificata in un passo, ho trovato la soluzione
- $\bullet\,$ Un tale K esiste sicuramente ed è minore di:

$$|\sim_0| = |F \times F| + |(Q \setminus F) \times (Q \setminus F)| = |F|^2 + |Q \setminus F|^2$$

Questo perché, nella peggiore delle ipotesi, ad ogni passo iterativo si rimuove solo una (o al massimo due) coppia.

In realtà si può dimostrare che K < |Q| - 1, poiché |Q| è la lunghezza del massimo cammino aciclico. Infatti, negli esempi che abbiamo visto, ho considerato solo stringhe che non portavano a cicli.

Theorem 3.3.4

Siano \sim_2 , \sim_1 e \sim_3 le relazioni d'equivalenza mostrate poc'anzi si ha che

$$\sim_2 = \sim_1 \Longrightarrow \sim_3 = \sim_2$$

Dimostrazione con un esempio: Supponiamo, per assurdo, che $r_2=r_1$ ma che $r_3\neq r_2$, cioè esistano A,B tali che:

$$A \sim_2 B$$
 ma $A \nsim_3 B$,

ossia:

$$\sim_3 \subset r_2 = r_1$$
.

Allora, poiché $A \not\sim_3 B$, deve essere:

$$A \xrightarrow{a_1} A_1 \xrightarrow{a_2} A_2 \xrightarrow{a_3} A_3$$

$$B \xrightarrow{a_1} B_1 \xrightarrow{a_2} B_2 \xrightarrow{a_3} B_3$$

con $A_3 \in F$ e $B_3 \notin F$ (ovviamente).

Ma allora $A_1 \not\sim_2 B_1$ e poiché $r_2 = r_1$, deve essere:

$$A_1 \nsim_1 B_1$$
.

Ma allora:

$$A_1 \xrightarrow{b} A_u \quad B_1 \xrightarrow{b} B_u$$

con $A_u \in F \in B_u \notin F$ (ovviamente).

Ma allora $A \not\sim_2 B$ perché:

$$A \xrightarrow{a_1} A_1 \xrightarrow{b} A_u \quad B \xrightarrow{a_1} B_1 \xrightarrow{b} B_u,$$

contraddicendo l'ipotesi iniziale.

 \implies non è possibile che $r_1 = r_2$ e $r_3 \subset r_2$.

Quindi, se $\sim_{K+1} = \sim_K$, allora per ogni j > K vale $\sim_j = \sim_K$

⊜

Example 3.3.7

Proviamo a minimizzare il DFA seguente:

Costruiamo ora l'insieme \sim_0 come per definizione:

$$\sim_0 = \{(A, A), (B, B), (A, F), (B, A), (B, F), (F, F), (F, A), (F, B)\}$$

 $\{(C,C),(C,D),(C,E),(D,C),(D,D),(D,E),(E,C),(E,D),(E,E)\}.$

Procediamo ora per costruire l'insieme \sim_1 . Per velocizzare controlliamo solo le coppie in \sim_0 e ovviamente non quelle identiche (tipo (A,A)). Per ora consideriamo solo stringhe di lunghezza 1 ("0" e "1"). Otteniamo:

$$\sim_1 = \{(A, A), (A, B), (B, B), (A, F), (B, A), (B, F), (F, F)\} \cup \{(C, C), (C, D), (C, E), (D, C), (D, D), (D, E), (E, C), (E, D), (E, E)\}.$$

Si ha che $\sim_2=\sim_1$, quindi possiamo terminare e ridisegnare il DFA. Gli stati equivalenti sono quindi quelli che non compaiono nelle coppie (A,B), (F), (C,D,E). Otteniamo quindi:

È semplice anche dire che la regex associata è 0*10*. Inoltre, lo stato F rappresenta uno stato di errore a cui si arriva con stringhe del tipo 0*10*10*.

tabella d'equivalenza

Le tabella di equivalenza sono un modo per memorizzare l'equivalenza ,di modo, da costruire un algoritmo per la minimizzazione poi, l'idea è la seguente

- Tabella con solo coppie "vere".
- Al round 0 dell'algoritmo iterativo, metto una marca X_0 per indicare che la coppia è distinta: (finale, non finale) oppure (non finale, finale).
- Al round 1, metto la marca X_1 per distinguere le coppie (q_1, q_2) non ancora marcate che, per qualche $a \in \Sigma$, hanno $(\delta(q_1, a), \delta(q_2, a))$ già marcata.
- ullet Al round 2, metto la marca X_2 e così via per le coppie successive.

• Condizione di arresto: se non riesco a mettere nessuna nuova marca in un round, l'algoritmo termina.

Example 3.3.8

Prendiamo in esame il DFA dell'esempio precedente

Prima di tutto costruiamo una tabella con solo delle coppie che non sono identiche per far ciò la costruiamo a scaletta. Si ha che:

	A	В	С	D	Е
В	X_0				
C	X_0	X_0			
D	X_0	X_0	X_0		
Е	X_0	X_0	X_0	X_0	
F	X_1	X_1	X_0	X_0	X_0

Per calcolarla è possibile utilizzare il seguente algoritmo

Algorithm 3: Costruzione di una tabella d'equivalenza

```
Input: DFA N
Output: tabella d'equivalenza

1 Sia T^{n\times n} dove T è il numero di stati in n;

2 marca x_0 ogni coppia (q_1, q_2) tale che q_1 \in F e q_2 \in Q \setminus F o viceversa;

3 b \leftarrow true;

4 i \leftarrow 1;

5 while b do

6 | b \leftarrow false;

7 | foreach (q_1, q_2) non marcata do

8 | if \exists a \in \Sigma con (\delta(q_1, a), \delta(q_2, a)) già marcate then

9 | marca (q_1, q_2) con x_i;

10 | b \leftarrow true;

11 | i \leftarrow i + 1;
```

Theorem 3.3.5

Dato un DFA $M=(\Sigma,Q,\delta,q_0,F)$ l'algoritmo della tabella a scala termina, inoltre due stati p e q sono distinguibili se e solo se la casella (p,q) (o la casella (q,p)) e marcata

Dimostrazione: Procedo a dimostrare le due parti

- Poiché abbiamo visto che $\exists k. \sim_k = \sim_{k+1}$ e quando l'algoritmo iterativo termina entro k iterazioni
- procedo a dimostrare la distinguibilità:
 - − ⇒ Se p e q sono distinguibili, allora $\exists x \in \Sigma^*. \hat{\delta}(p, x) \in F$ e $\hat{\delta}(q, x \notin F)$ (o viceversa). Se prendo k = |x|, allora di sicuro $(p, q) \notin \sim_k$ cioè (p, q) viene marcata entro il round k
 - _ =

Se (p,q) sono marcati, allora sicuramente (p,q) sono distinguibili: occorre prendere la catena di coppie che portano ad una coppia non presente in \sim_0 . ad esempio

$$(p,q) \rightarrow (p',q') \rightarrow (p'',q'')$$

Allora ab è la stringa che distingua p e q

3.3.6 automa minimo

Definition 3.3.6: Automa minimo

Dato un DFA $M=(\Sigma,Q,\delta,q_0,F)$, l'automa minimo equivalente $M_{min}=(\Sigma,Q_{min},\delta_{min},[q_0],F_{min})$ è dato da:

- $Q_{min} = \{[q] \mid q \in Q\}$ con $[q] = [q' \in Q \mid q \sim q']$ Gli stati di M_{min} sono classi di equivalenza di stati di M
- $\delta_{min}([q], a) = [\delta(q, a)]$
- $F_{min} = \{[q] \mid q \in F\}$

Note:

non esistono 2 stati distinti in M_{min} che siano tra loro equivalenti:

$$[q] \neq [q'] \implies q \not\sim q'$$

Adesso estendiamo la notazione di $\hat{\delta}$ per i DFA M_{min}

$$\begin{split} \hat{\delta}_{min} : Q_{min} \times \Sigma^* &\to Q_{min} \\ \hat{\delta}_{min}([q], \epsilon) = [q] \\ \hat{\delta}_{min}([q], xa) &= \hat{\delta}_{min}(\hat{\delta}_{min}([q], x), a) \\ w \in L[M_{min}] &\longleftrightarrow \hat{\delta}_{min}([q_0], w) \in F_{min} \end{split}$$

Theorem 3.3.6 Morbidelli - Morigi (innamorato italiano, innamorata giapponese)

Dato un DFA $M = (\Sigma, Q, \delta, q_0, F)$ l'automa $M_{min} = (\Sigma, Q_{min}, \delta_{min}, [q_0], F_{min})$ riconosce lo stesso linguaggio di M, ed ha il minimo numero di stati tra tutti gli automi deterministici per questo linguaggio

Dimostrazione: Dimostriamo per gradi:

• dimostro che M_{min} è ben definito, cioè δ_{min} non dipende dallo specifico stato scelto per rappresentare la classe di equivalenza.

Si ha se $q \sim q'$, allora:

$$- [q] = [q']$$

$$- \delta_{min}([q], a) = [\delta] = [\delta(q', a)] = \delta_{min}([q', a])$$

Se non fosse vero allora $\delta(q,a)$ e $\delta(q',a)$ sarebbero distinguibili, quindi pure q e q'

 \bullet Per dimostrare che $L[M]=L[M_{min}],$ dimostrare che

$$\hat{\delta}(q_0,w) = r \iff \hat{\delta}([q_0],w) = [r]$$

ovvero che

$$\hat{\delta}([q_0],w)=[\hat{\delta},w]$$

si fa la dimostrazione per induzione su |w|

– Caso base: |w| = 0 cioè $e = \epsilon$

$$\hat{\delta}(q_0, \epsilon) = q_0 \quad \hat{\delta}([q_0], \epsilon) = [q_0] = [\hat{\delta}(q_0, \epsilon)]$$

Dimostrato

Passo induttivo: w = xa $\hat{\delta}(q_0, xa) = \delta(\hat{\delta}(q_0, x), a)$ e, per definizione di $\hat{\delta}_{min}$ $\hat{\delta}([q_0], xa) = \delta_{min}(\hat{\delta}([q_0], x), a)$ Per ipotesi induttiva $\delta_{min}(\hat{\delta}([q_0], x), a) = \delta_{min}([\hat{\delta}(q_0, x)], a)$ per definizione di δ_{min} $\delta_{min}([\hat{\delta}(q_0, x)], a) = [\delta(\hat{\delta}(q_0, x), a)]$ per definizione di $\hat{\delta}$ $[\delta(\hat{\delta}(q_0, x), a)] = [\hat{\delta}(q_0, xa)]$ Quindi

$$w \in L[M] \iff \hat{\delta}(q_0, w) = r \in F \iff \hat{\delta}_{min}([q_0], w) = [r] \in F_{min} \iff w \in L[M_{min}]$$

- rimane da dimostrare che è minimo, ovvero che un qualunque altro automa deterministico N non puà avere meno stati Supponiamo esista un DFA N tale che $L[N] = L[M_{min}]$, ma con un numero di stati inferiore a quelli di M_{min}
 - Gli stati iniziali di N e M_{\min} devono essere equivalenti (nell'automa $N \cup M_{\min}$), poiché $L[N] = L[M_{\min}]$.
 - $\ast\,$ Infatti, si suppone che Ne $M_{\rm min}$ abbiano lo stesso linguaggio.
 - − Se più $q \in M_{\min}$ e $q' \in N$ sono equivalenti, nell'automa $N \cup M_{\min}$, allora sono equivalenti anche i loro successori per ogni $a \in \Sigma$.
 - -N non ha stati inaccessibili dal suo iniziale (altrimenti si potrebbe costruire un automa N' con ancora meno stati).
 - * $M_{\rm min}$ non ha stati inaccessibili per costruzione.

Di conseguenza, ogni stato di M_{\min} è equivalente ad almeno uno stato di N (per il punto precedente).

- Poiché N ha meno stati di M_{\min} , due stati p e p' di M_{\min} devono essere equivalenti ad uno stesso stato q di N.
 - * Ma la relazione di equivalenza ~ è transitiva, quindi $p \sim p'$ e dunque p e p' devono essere equivalenti!
 - * Ma questo è impossibile!

Per costruzione di M_{\min} , non ci sono due stati diversi in M_{\min} equivalenti tra loro.

(2)

3.4 Espressivita' dei linguaggi regolari e pumping lemma

Finora abbiamo parlato solo di linguaggi regolari, senza dimostrare l'esistenza di altri tipi di linguaggi piu' espressivi. In questa sezione, faremo vedere che esistono linguaggi che non possono essere riconosciuti da automi finiti.

Prendiamo come esempio il linguaggio $B = \{0^n 1^n \mid n \ge 0\}$. Per costruire un automa che lo riconosca, dobbiamo ricordarci il numoro di 0 inseriti all'inizio per controllare che il numero di 1 sia uguale. Ma, dato che il valore di n non ha un limite superiore, dobbiamo rappresentare un numero infinito di valori di n con un numero finito di stati, che dimostreremo essere impossibile in questo caso.

Potrebbe sembrare che qualunque linguaggio simile a B con n illimitato sia non regolare, ma questo non e' corretto. Anche se a prima apparenza puo' sembrare che un linguaggio necessiti di memoria infinita, ci possono essere modi intelligenti per circonvenire questa apparente necessita'. Prendiamo, ad esempio, il linguaggio $C = \{w \mid w$ ha un ugual numero di sottostringhe 01 e 10 $\}$, si puo' dimostrare che questo linguaggio sia regolare! Quindi la nostra intuizione puo' spesso sbagliare, vediamo ora un modo per dimostrare per certo che certi linguaggi non sono regolari:

3.4.1 Pumping lemma

Il pumping lemma e' un teorema che attribuisce una proprieta' speciale a tutti i linguaggi regolari. Se un linguaggio non ha questa proprieta', allora sappiamo per certo che non e' regolare. In breve, la proprieta' dice che ogni stringa di un linguaggio regolare puo' essere "pompata" se e' almeno lunga quanto una specifica lunghezza chiamata **lunghezza di pompaggio HHahaHAahaha**. Ovvero, ognuna di queste stringhe ha una sezione che puo' essere concatenata a se stessa un numero illimitato di volte e la stringa risultante fa sempre parte dello stesso linguaggio.

Theorem 3.4.1 Pumping lemma

Sia A un linguaggio regolare, allora $\exists p$ tale che $\forall s \in A.s \ge p$, s puo' essere suddivisa in tre parti s = xyz tali che:

- $1. \ \forall i \geqslant 0.xy^i z \in A$
- 2. |y| > 0
- $3. |xy| \leq p$

In questa formalizzazione, y e' la parte della stringa che puo' essere ripetuta (condizione 1), che deve essere non nulla per non rendere trivialmente vero il teorema (condizione 2). La terza condizione sara' utile per dimostrare che certi linguaggi non sono regolari, e ci dira' che prendiamo la **prima** porzione della stringa che puo' essere ripetuta. Vediamo perche':

Dimostrazione

Prima della dimostrazione formale, proviamo a capire l'idea di base. Sia $M = (Q, \Sigma, \delta, q_1, F)$ un DFA che riconosce A. Poniamo che la lunghezza di pompaggio sia uguale al numero di stati di M (p = |Q|). Se in A non ci sono stringhe di tale lunghezza, allora il teorema e' ovviamente vero perche' vale per tutte le zero stringhe a cui puo' essere applicato.

Altrimenti, $\exists w \in A. |w| = n \ge p$ che viene accettato da M passando da una serie di stati $q_1, q_3, q_{20}, q_9, ..., q_{13}$ (dove q_1 e' lo stato iniziale e $q_{13} \in F$), che avra' lunghezza uguale a n + 1. Dato che $n \ge p$, siamo sicuri che n + 1 > p, quindi ci sono piu' stati nella sequenza di quanti stati distinti esistano. Allora, ci deve essere per forza uno stato che si ripete (per il **pigeonhole principle**):

$$s = |_{q_1} s_1 |_{q_3} s_2 |_{q_{20}} s_3 |_{q_9} s_4 |_{q_{17}} s_5 |_{q_9} s_6 |_{q_6} \dots |_{q_{35}} s_n |_{q_{13}}$$

in questo caso, lo stato q_9 e' il primo che si ripete. Possiamo ora dividere s in tre parti x, y e z: x e' la parte di s prima di di q_9 , y e' la parte fra le due ripetizioni di q_9 e z e' la parte rimanente.

Vediamo perche' questa suddivisione rispetta le tre condizioni. Consideriamo l'input xyyz passato a M: x ci porta da q_1 a q_9 , la prima y ci porta da q_9 a q_9 , anche la seconda ci porta da q_9 a q_9 , infine z ci porta da q_9 a q_{13} (lo stato finale). Quindi xyyz e' accettato da M, ma anche xy^iz per lo stesso motivo. Nel caso xy^0z vediamo che viene riconosciuto anche lui, quidi la prima condizione e' verificata. Dato che y e' la parte della stringa che ci porta da q_9 a q_9 , deve essere per forza non nulla perche M e' deterministico. Infine, la terza condizione e'

rispettata dato che, per la **pigeonhole principle** la prima ripetizione deve avvenire per forza entro i primi p+1 stati, quindi $|xy| \le p$.

Dimostrazione formale: Sia $M = (Q, \Sigma, \delta, q_1, F)$ un DFA che riconosce il linguaggio regolare A e p = |Q|. Sia $s = s_1 s_2 ... s_n$ una stringa in A tale che $|s| = n \ge p$ e siano $r_1, r_2, ..., r_{n+1}$ la sequenza di stati che attraversa M quando viene dato s come input, quindi $r_{i+1} = \delta(r_i, s_i)$. Dato che $n+1 \ge p+1$, per il pigeonhole principle fra i primi p+1 stati ce ne deve essere uno che si ripete. Chimiamo r_j il primo e r_l la ripetizione, quindi abbiamo che $l \le p+1$.

Ora siano $x = s_1...s_{j-1}$, $y = s_j...s_{l-1}$ e $z = s_l...s_n$. Dato che x porta M da r_1 a r_j , y porta da r_l a r_l e z porta da r_l a r_{n+1} e siccome r_j e r_l sono lo stesso stato, M deve accettare $xy^iz \ \forall i \ge 0$. Siccome $j \ne l$, |y| > 0; e $l \le p+1$, quindi $|xy| \le p$. Abbiamo quindi soddisfatto tutte le condizioni del pumping lemma.

Utilizzo ed esempi

Per dimostrare che B non e' un linguaggio regolare, prima assumiamo che B sia regolare e poi dimostriamo che non vale la proprieta' P del pumping lemma:

$$\neg P \implies B$$
 non e' regolare

Dato che porprio per il lemma, B e' regolare $\Longrightarrow P$. Quindi, bisogna assumere che p sia la lunghezza garantita dal pumping lemma e prendere una stringa $s \in B$. $|s| \geqslant p$ tale che noi sappiamo che z non puo' essere pompata. Dimostriamo questo mostrando che per qualunque suddivisione xyz che rispetti le ultime due condizioni, la prima condizione non vale mai. Solitamente possiamo raggruppare i tipi di suddivisione in diverse categorie che possono essere analizzate individualmente, in modo da non dover controllare davvero ogni suddivisione. Trovando s, abbiamo dimostrato $\neg P$ e quindi che B non e' regolare.

Per trovare s, solitamente ci vuole un po' di creativita. Bisogna provare a trovare una stringa che raccolga l'"essenza" dell'irregolarita' del linguaggio, vediamo un paio di esempi per chiarire:

```
Example 3.4.1
B = \{0^n 1^n \mid n \ge 0\}
```

Example 3.4.2

 $C = \{w \mid w \text{ ha lo stesso numero di } 0 \text{ e } 1\}$

```
Example 3.4.3 F = \{ww \mid w \in \{0, 1\}^*\}
```

TODO: fai esercizi (che sono risolti sul libro)

Chapter 4

Linguaggi liberi nondeterministici

Fino ad ora abbiamo studiato due modi equivalenti per descrivere linguaggi: gli **automi finiti** e le **espressioni regolari**. Abbiamo anche visto le limitazioni di questi metodi, che non riescono ad accettare linguaggi, anche alcuni semplici come $\{0^n1^n \mid n \ge 0\}$.

Per espandere la quantita' di linguaggi che possiamo studiare, introduciamo le cosidette **grammatiche libere** (dal contesto), un metodo piu' potente che permette di descrivere certe proprieta' di linguaggi che hanno una struttura ricorsiva. Inizialmente queste grammatiche sono state studiate per analizzare linguaggi umani, ma piu' recentemente hanno visto svariate applicazioni, come nel caso dei **parser**, utilizzati dalla maggior parte di compilatori e interpreti per estrarre il significato dal codice.

L'insieme dei linguaggi che possono essere riconosciute da grammatiche libere sono i **linguaggi liberi (dal contesto)**, che includono propriamente i linguaggi regolari. Per riconoscere tali linguaggi, introdurremo un nuovo tipo di automa: l'automa a pila (PDA - pushdown automata).

4.1 Grammatiche libere

Per qualche motivo, le grammatiche libere le abbiamo viste all'inizio, io le metterei qua ma va beh andate qui per capire cosa sono: ??

4.1.1 Semplificazione e forme normali

Questa roba qua invece e' stata messa nei linguaggi liberi deterministici, secondo me ha piu' senzo metterla qua' o fare proprio un capitolo solo sulle grammatiche: ??

4.2 PDA

In che modo possiamo modificare gli automi visti fin'ora (DFA/NFA) per far si che riescano a riconoscere linguaggi non-regonalari?

Vediamo ad esempio il linguaggio $L = \{ww^R \mid w \in \{a,b\}^*\}$. Si puo' dimostrare (fallo per esercizio) che non e' un linguaggio regolare, dato che per riconoscerlo si dovrebbe **memorizzare** tutta la prima parte della parola palindroma (la cui lunghezza non e' limitata). Quindi serve una forma di memoria ausiliaria, che nei PDA e' imlementata con una **pila** con memoria illimitata.

Essendo una pila (LIFO), ci sono certe restrizioni per come puo' essere gestita la memoria:

- Si puo' leggere solo il primo elemento in cima alla pila (top)
- Si puo' rimuovere solo l'elemento top
- Si puo' aggiungere elementi solo in cima alla pila (in modo che diventino il nuovo top)

I PDA possono essere *nondeterministici*, e come tali hanno una potenza espressiva maggiore rispetto ai PDA deterministici (DPDA). Dimostreremo alla fine della sezione che i PDA (nondeterministici) hanno lo stesso potere espressivo delle grammatiche libere.

4.2.1 Definizione formale

La definizione formale di un PDA e' simile a quella dei NFA, con l'aggiunta della presenza della pila. Questa pila contiene simboli di un alfabeto che puo' essere diverso rispetto a quello di input, quindi dobbiamo definire sia un alfabeto Σ per l'input, sia l'alfabeto Γ per la pila. L'operazione di transizione, che ci dice come si comporta l'automa, ha come dominio $Q \times \Sigma_{\varepsilon} \times \Gamma$ (dove $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$), quindi la mossa del PDA e' determinata dallo stato corrente, dal carattere in input e dal carattere in cima alla pila. Di questi, il secondo puo' essere anche ε , quindi la macchina puo' fare una mossa senza leggere l'input, ma il simbolo in cima alla stack viene sempre letto (e consumato).

Dato un input, l'automa puo' spostarsi su un nuovo stato e aggiungere un numero arbitrario di elementi alla pila (anche nessuno). Inoltre, dato che il nondeterminismo ha come conseguenza la possibilita' di avere diverse transizioni possibili dato lo stesso input, dobbiamo considerare come codominio l'insieme di tutti i possibili insiemi che hanno come elementi coppie del tipo $Q \times \Gamma^*$, ovvero l'insieme potenza $\mathcal{P}(Q \times \Gamma^*)$.

Definition 4.2.1: PDA

Un automa a pila nondeterministico e' una 7-pla $(Q, \Sigma, \Gamma, \delta, q_0, \bot, F)$ dove:

- $\bullet~Q$ e' un insieme finito di stati
- $\bullet~\Sigma$ e' un alfabeto di input finito
- $\bullet~\Gamma$ e' un alfabeto per la pila finito
- $\delta: Q \times \Sigma_\epsilon \times \Gamma \to Q \times \Gamma^*$ e' la funzione di transizione
- q_0 e' lo stato iniziale
- $\bot \in \Gamma$ e' il primo simbolo sulla pila
- $F \subset Q$ e' l'insieme degli stati finali

4.2.2 Transizioni

A ogni passo di computazione, possiamo attribuire a un PDA una **descrizione instantanea** (o configurazione) che ci dice lo stato corrente $q \in Q$, l'input rimasto $w \in \Sigma^*$ e la stringa sulla pila $\beta \in \Gamma^*$ (dove l'elemento top e' il "carattere piu' a sinistra"):

$$(q, w, \beta)$$

Le mosse possono essere definite come una derivazione da una configurazione a quella successiva (indicata col simbolo \vdash_N , come con gli altri automi). Mostriamo, usando l'inferenza logica, i due tipi di mossa:

1. Lettura di un carattere in input $(a \in \Sigma)$:

$$\frac{(q',\alpha) \in \delta(q,a,X)}{(q,aw,X\beta) \vdash_N (q',w,\alpha\beta)}$$

2. Senza lettura dell'input:

$$\frac{(q',\alpha)\in\delta(q,\epsilon,X)}{(q,w,X\beta)\vdash_N(q',w,\alpha\beta)}$$

Come per gli automi finiti, introduciamo anche \vdash_N^* , la chiusura riflessiva e transitiva di \vdash_N :

$$\frac{(q,w,\beta)\vdash_{N}^{*}(q,w,\beta)}{(q,w,\beta)\vdash_{N}^{*}(q,w,\beta)\vdash_{N}(q'',w'',\beta'')} \in \frac{(q,w,\beta)\vdash_{N}(q'',w'',\beta'')\vdash_{N}(q'',w'',\beta'')}{(q,w,\beta)\vdash_{N}(q'',w'',\beta'')}$$

4.2.3 Linguaggio Accettato

Ci sono diversi modi in cui possiamo determinare se una stringa e' accettata o meno da un PDA. Oltre al classico riconoscimento per stato finale, possiamo dire che una stringa e' accettata se alla fine dell'input la pila e' vuota:

- $\bullet \ L[N] = \{ w \in \Sigma^* \mid (q_0, w, \bot) \vdash_N^* (q, \epsilon, \alpha). q \in F \}$
- $P[N] = \{ w \in \Sigma^* \mid (q_0, w, \bot) \vdash_N^* (q, \epsilon, \epsilon) \}$

Osserviamo che non per forza un PDA deve svuotare la pila alla fine di un input accettato, quindi in generale:

$$L[N] \neq P[N]$$

Dimostriamo pero' che questi due metodi di riconoscimento hanno la stessa espressivita':

Theorem 4.2.1

Dato un PDA N si ha che:

- Se L = L[N] e' il linguaggio riconosciuto da N per stato finale, allora $\exists N'$ PDA tale che L = P[N'], dove P[N'] e' il linguaggio riconociuto da N' per pila vuota.
- Viceversa, se L=P[N] allora $\exists N''$ PDA tale che L=L[N''].

Quindi i PDA che riconoscono per stato finale e quelli che riconoscono per pila vuota sono equivalenti.

Vediamo prima un'osservazione che ci servira' per dimostrare questo teorema:

Note:

Si osservi che, se la pila viene completamente svuotata, il PDA che abbiamo definito non puo' avere altre transizioni. Questo e' perche' $\epsilon \notin \Gamma$, e quindi non e' neanche presente nel dominio della funzione di transizione. Quindi se la pila di un PDA e' vuota, allora si blocca.

Detto questo, passiamo a una dimostrazione per costruzione di entrambe gli enunciati: TODO aggiungi figure

Dimostrazione: Dimostriamo (in ordine inverso) i due versi:

- Sia N un PDA che accetta un linguaggio L per pila vuota (L = P[N]). Costruiamo un PDA N' che riconosca lo stesso linguaggio per stato finale. L'idea e' quella di aggiungere un elemento in fondo alla pila, in modo tale da poter riconoscere quando la pila di N si sarebbe svotata, e di aggiungere transizioni da tutti gli stati ad un nuovo stato finale. Per aggiungere l'elemento sulla pila, basta aggiungere un nuovo stato iniziale con una transizione verso il vecchio stato iniziale che non legga l'input e che aggiunga un elemento $Z \notin \Gamma$ sotto a \bot .
 - Le transizioni aggiuntive non leggono caratteri in input (sono nondeterministiche) e guardano se in cima alla pila e' presente l'elemento finale aggiunto inizialmente. In questo modo, se la pila non arriva mai all'ultimo elemento allora e' impossibile arrivare allo stato finale, mentre se la pila viene svuotata e' possibile spostarsi sullo stato finale. Se N' si trova nell'ultimo caso ma non ha finito di leggere la stringa, il PDA si blocca e la parola non viene accettata. Altrimenti viene riconosciuta, sse appartiene al linguaggio L.
- Sia N un PDA che accetta un linguaggio L per stato finale (L = L[N]). Costruiamo un PDA N'' che riconosca lo stesso linguaggio per pila vuota. L' idea e' simile a quella sopra: aggiungiamo un elemento $Z \notin \Gamma$ in fondo alla pila (sempre per evitare che la pila si svuoti, rendendo impossibili ulteriori transizioni), e aggiungiamo delle transizioni nondeterministiche, questa volta solo dagli stati finali di N, che portano a uno stato da cui parte un'unica transizione verso se stesso. Questa transizione non fa altro che rimuovere elementi dalla pila senza leggere input, in modo che se N arriva ad uno stato finale dopo aver conumato tutto l'input, allora N'' ha una possibile strada che svuota completamente la pila. Altrimenti, o la pila non viene mai svuotata, oppure viene svotata ma senza consumare tutto l'input (e quindi non viene riconosciuta). Osservare che in tutte le altre transizioni non si puo' leggere Z dalla pila (dato che non appartiene all'alfabeto della pila), quindi non potra' accadere che la pila si svuoti consumando tutto l'input senza raggiungere lo stato aggiunto, riconoscendo erroneamente l'input.

4.3 Equivalenza fra grammatiche libere e PDA

In questa sezione dimostreremo che i PDA e le grammatiche libere hanno lo stesso potere espressivo, ovvero che riconoscono lo stesso insieme di linguaggi. Quindi sia le grammatiche libere che i PDA riconoscono linguaggi liberi e faremo vedere come costruire un PDA equivalente partendo da una CFG (context free grammar) e viceversa. Dato che per definizione un linguaggio e' libero sse esiste una grammatica libera che lo descrive, ci riduciamo a dimostrare il seguente teorema:

Theorem 4.3.1

Un linguaggio e' libero sse esiste un PDA che lo riconosce

Dobbiamo dimostrare le due direzioni. Dato che sono un po' corpose, separiamole in due lemmi:

4.3.1 Da grammatica libera a PDA

Lenma 4.3.1

Dato un linguaggio libero L, esiste un PDA N tale che

$$L = P[N]$$

Notare che potevamo anche scrivere L = L[N], dato che abbiamo dimostrato che i due metodi di riconoscimento hanno la stessa espressivita'. Per la dimostrazione ci e' piu' utile costruire un PDA che riconosca per pila vuota, andiamo a vedere come costruirlo:

Idea della dimostrazione: Data la grammatica libera G che descrive L, vogliamo costruire un PDA N che accetta un input w se esiste una derivazione di G che porta a w. Ricordiamo che una derivazione e' la serie di sostituzioni che fa una grammatica, partendo dalla variabile iniziale, per generare una stringa. Ad ogni passo viene generata una stringa intermedia formata da terminali e non-terminali. Il compito di N e' quello di decidere se esistono una serie di sostituzioni (prese dalle regole di G) che generano w.

La parte difficile e' sapere quale sostituzione e' quella giusta, dato che possono esserci piu' regole di sostituzione per una sola variabile. Fortunatamente, utilizzando il nondeterminismo possiamo semplicemente considerare tutte le opzioni come percorsi validi.

Allo stato iniziale, quindi, il PDA si ritrova solo il nonterminale S sulla pila. Poi passa per una serie di stringhe intermedie prima di avere solo terminali, che se combaciano con l'input significa che esiste una derivazione di G che genera w e quindi N lo accetta. Se in tutte le possibili diramazioni nondeterministiche l'input non combacia con la stringa nella pila, allora G non puo' generarlo e non viene riconosciuto da N.

L'unico problema e' che un PDA puo' solo accedere al primo elemento della pila. Questo significa che se un non-terminale non e' top, non possiamo sostituirlo senza rimuovere tutti i terminali sopra, quindi non possiamo tenere in memoria l'intera stringa intermedia. Possiamo risolvere questo problema consumando il top ogni volta che appare un terminale che combacia con il carattere in input, passando quindi al carattere successivo. Se non combaciano, il PDA deve fare backtracking e provare una nuova combinazione di sostituzioni. Se per tutte le combinazioni c'e' un terminale in top che non combacia con l'input, la stringa non viene accettata.

Notare che in questo modo, il PDA svolge una derivazione leftmost (??) dal simbolo iniziale all'input.

Dimostrazione formale: Sia L un linguaggio libero. Allora per definizione esiste una grammatica G = (NT, T, R, S) che lo descrive. Vogliamo costruire un PDA N tale che L = P[N]. Sia $N = (\{q\}, T, NT \cup T, \delta, q, S, \emptyset)$. Aggiungiamo le transizioni $\forall a \in T, \forall A \in NT$:

$$\delta(q, a, a) = \{(q, \epsilon)\}\$$

$$\delta(q, \epsilon, A) = \{(q, \beta) \mid A \to \beta \in R\}\$$

Si puo' dimostrare per induzione sulla lunghezza dell'input che:

$$S \Rightarrow_{l}^{*} w \iff (q, w, s) \vdash_{N}^{*} (q, \epsilon, \epsilon)$$

4.3.2 Da PDA a grammatica libera

Lenma 4.3.2

Dato un PDA N tale che L = P[N], possiamo costruire una grammatica libera G tale che:

$$L = L[G]$$

Questa direzione e' molto piu' lunga e complessa rispetto alla prima, dato che "programmare" un automa e' molto piu' semplice rispetto a "programmare" una grammatica. E piu' semplice dimostrare il lemma se consideriamo un PDA con un solo stato, quindi ci torna utile il seguente lemma:

Lenma 4.3.3

Per ogni PDA N, esiste un PDA N' con un solo stato tale che:

$$P[N] = P[N']$$

Questo lemma ci dice che ogni PDA puo' essere trasformato in un PDA equivalente che ha un solo stato. Non lo dimostriamo perche sbattecazz.

Ora ci possiamo ricondurre a dimostrare il lemma con l'ipotesi aggiuntiva che N ha un solo stato:

Idea della dimostrazione: Dato che la dimostrazione formale e' davvero lunghissima, tale da mandare in tilt anche il dio degli audiolibri detto "Il Guerriero", ne parleremo solo schematicamente.

L'idea e' la seguente: dato un PDA $N=(\{q\},\Sigma,\Gamma,\delta,q,\emptyset)$ a uno stato, generiamo una grammatica libera G=(T,NT,R,S) equivalente tale che:

$$\forall a \in \Sigma_{\epsilon}, \forall A \in \Gamma.(q, B_1B_2...B_k) \in \delta(q, a, A) \text{ con } k \geq 0 :$$

$$A \to aB_1B_2...B_k \in R$$

⊜

Si puo' dimostrare che $S \Rightarrow^* w \iff (q, w, s) \vdash_N^* (q, \epsilon, \epsilon).$

4.3.3 Relazione fra linguaggi regolari e linguaggi liberi

Abbiamo quindi dimostrato che gli automi a pila riconoscono la classe di linguaggi liberi. Dato che gli automi finiti riconoscono i linguaggi regolari e possono essere convertiti in PDA che ignorano la pila, possiamo dire che:

Proposition 4.3.1 Relazione fra linguaggi regolari e linguaggi liberi

I linguaggi regolari sono un sottoinsime proprio dei linguaggi liberi.

TODO: figura

4.4 Proprieta'

4.4.1 Chiusura

Come nei linguaggi regolari, anche i linguaggi liberi sono chiusi rispetto alle operazioni regolari:

Theorem 4.4.1

I linguaggi liberi sono chiusi per:

- 1. Unione
- 2. Concatenazione
- 3. Ripetizione (stella di Kleene)

Dimostrazione: Siano L_1, L_2 i linguaggi generati da due grammatiche libere $G_1 = (NT_1, T_1, R_1, S_1), G_2 = (NT_2, T_2, R_2, S_2)$ e assumiamo che $NT_1 \cap NT_2 = \emptyset$, allora:

1. Unione:

Costruisco la grammatica libera $G = (NT_1 \cup NT_2 \cup \{S\}, T_1 \cup T_2, R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}, S)$. Si puo' dimostrare che $L(G) = L_1 \cup L_2$.

2. Concatenazione:

Costruisco la grammatica libera $G = (NT_1 \cup NT_2 \cup \{S\}, T_1 \cup T_2, R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}, S)$. Si puo' dimostrare che $L(G) = L_1 \cdot L_2$.

3. Ripetizione:

Costruisco la grammatica libera $G = (NT_1 \cup \{S\}, T_1, R_1 \cup \{S \to \epsilon \mid S_1S\}, S)$. Si puo' dimostrare che $L(G) = L_1^*$.

Rispetto all'intersezione:

Theorem 4.4.2

Dati un linguaggio libero L_1 e un linguaggio regolare L_2 , la loro intersezione $L_1 \cap L_2$ e' un liguaggio libero.

Notare che questo teorema **NON** dice che i linguaggi liberi sono chiusi rispetto all'intersezione (infatti vedremo dopo che non lo sono). Dimostriamolo:

Idea della dimostrazione: Vogliamo in qualche modo eseguire contemporaneamente sia il PDA che riconosce il linguaggio libero (per stato finale), sia il DFA che riconosce il linguaggio regolare. Se alla fine dell'input sono entrambe in stato di riconoscimento, allora significa che la stringa fa parte sia del linguaggio regolare che di quello libero, quindi appartiene all'intersezione.

Dimostrazione: Dati un PDA $N_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_1, Z, F_1)$ e un DFA $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ che riconoscono rispettivamente il linguaggio libero $L_1 = L[N_1]$ e il linguaggio regolare $L_2 = L[N_2]$, costruiamo un PDA N che riconosca il linguaggio $L_1 \cap L_2$:

- $N = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, \langle q_1, q_2 \rangle, Z, F_1 \times F_2)$
- $\forall q \in Q_1, \forall p \in Q_2, \forall a \in \Sigma, \forall X \in \Gamma$:

$$\delta(\langle q, p \rangle, a, X) = \{(\langle r, s \rangle, \gamma) \mid s = \delta_2(p, a) \land \langle r, \gamma \rangle \in \delta_1(q, a, X)\}$$

Si puo' dimostrare che $\forall w \in \Sigma^*$:

$$\begin{split} (q_1,w,Z) \vdash_{N_1}^* (q,\epsilon,\gamma) \wedge \hat{\delta}_2(q_2,w) &= q' \\ & \text{sse} \\ (\langle q_1,q_2\rangle,w,Z) \vdash_N^* (\langle q,q'\rangle,\epsilon,\gamma) \end{split}$$

Quindi, se $q \in F_1$ e $q' \in F_2$ e quindi $w \in L_1 \cap L_2$, anche N riconosce w dato che $\langle q, q' \rangle \in F_1 \times F_2$. Vale anche la direzione opposta, quindi $L_1 \cap L_2 = L[N]$.

Possiamo usare questa proprieta' per dimostrare che un linguaggio non e' libero. Infatti, dato un linguaggio L_1 che vogliamo analizzare, basta trovare un linguaggio L_2 regolare per cui $L_1 \cap L_2$ non e' libero. Se riusciamo a trovare tale linguaggio, allora siamo sicuri che L_1 non e' regolare:

$$\forall L_1,$$
 $\exists L_2$ regolare $L_1 \cap L_2$ non e' libero $\implies L_1$ non e' libero

I linguaggi liberi, come anticipato, non sono chiusi per intersezione. Per dimostrarlo, basta trovare una controprova:

Controprova: Consideriamo i due linguaggi liberi $L_1 = \{a^n b^n c^m \mid n, m \ge 0\}$ e $L_2 = \{a^n b^m c^m \mid n, m \ge 0\}$. Le uniche stringhe che appartengono sia a L_1 che a L_2 sono quelle che hanno lo stesso numero di tutti e tre i caratteri, ovvero: $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$. Vediamo ora il **pumping thorem** per dimostrare che questo linguaggio non e' libero.

4.4.2 Pumping Theorem

Il **pumping theorem** ci serve per dimostrare qundo linguaggio non fa parte della classe di linguaggi liberi. Si ricordi il pumping lemma (TODO: aggiungi ref), introdotto con i linguaggi regolari. Il pumping theorem e' abbastanza simile, dato che anche questo dimostra l'esistenza di una **lunghezza di pompaggio** per i linguaggi liberi, tale che ogni stringa di lunghezza maggiore o uguale puo' essere pompata. In questo caso, pero', non c'e' una sola sezione che puo' essere ripetuta, ma due. Vediamo in dettaglio:

Theorem 4.4.3

Se L e' un linguaggio libero, allora esiste un numero p tale che, sia $s \in L$ con $|s| \ge p$, allora s puo' essere divisa in cinque sezioni s = uvxyz che soddisfano tali condizioni:

- 1. $\forall i \geq 0, uv^i x y^i z \in L$
- 2. |vy| > 0
- 3. $|vxy| \leq p$

La seconda condizione ci dice che v o y devono essere non nulli, se no il teorema diventa ovviamente vero per ogni linguaggio. La terza condizione ci puo' aiutare in alcune dimostrazioni.

Idea della dimostrazione: Per capire questa dimostrazione, e' necessario avere ben presente le grammatiche libere e i relativi alberi di derivazione (??). Infatti dato che L e' un linguaggio libero, avra' anche una grammatica che lo genera.

Consideriamo una parola $s \in L$ "abbastanza lunga" (defineremo dopo cosa significa): questa avra' almeno un'albero di derivazione che la genera. Avendo scelto s abbastanza lunga, allora la distanza massima dalla radice S a una foglia (ovvero l'altezza dell'albero) e' tale da garantire, per il **pigeonhole principle**, il ripetersi di uno dei nonterminali fra i nodi del percorso.

Chiamiamo A il nonterminale ripetuto. Come si vede dalla figura, possiamo rimpiazzare il sottoalbero radicato nella seconda ripetizione di A con il sottoalbero radicato nella prima ripetizione di A, ottenendo un albero di derivazione valido e quindi una stringa appartenente a L. Possiamo ripetere questa procedura all' infinito, e vale anche se facciamo al contrario.

Quindi, se divido s in cinque sezioni uvxyz come indica la figura, e' possibile ripetere v e y e ottenere sempre parole che appartengono a L.

6

Entriamo ora nei dettagli e proviamo a dimostrare in modo piu' formale tutte e tre le condizioni, oltre a vedere come calcolare la lunghezza di pompaggio p:

Dimostrazione: Sia G = (T, NT, R, S) una grammatica libera che genera L. Sia b il massimo numero di simboli (sia T che NT) che si trovano nella parte destra di una produzione in R ($b = max\{|\alpha| \mid A \to \alpha \in R\}$). Possiamo assumere che $b \ge 2$, dato che altrimenti la grammatica sarebbe banale. In qualsiasi albero di derivazione generato da G, il massimo numero di figli che puo' avere un nodo e' b. In altre parole, ci saranno un massimo di b nodi che distano 1 dalla radice S, al massimo b^2 che distano 2 e in generale un massimo di b^h nodi che distano esattamente b dalla radice. Quindi, se un albero e' alto b la stringa che genera e' lunga al massimo b^h . Viceversa, se una stringa e' lunga almeno $b^h + 1$, allora il suo albero di derivazione sara' alto almeno b + 1.

$$|w| \ge b^h + 1 \implies \text{height(parseTree(w))} \ge h + 1$$

Sia |NT| il numero di nonterminali in G, impostiamo la lunghezza di pompaggio nel seguente modo: $p = b^{|NT|+1}$. Dato che $b \ge 2$, sappiamo che $p > b^{|NT|}$, e quindi $p \ge b^{|NT|} + 1$ (tecnicamente si puo' mettere maggiore stretto, ma per la dimostrazione non serve). Così' facendo, se s e' una stringa di L tale che $|s| \ge p$, sappiamo che il suo albero di derivazione e' alto almeno |NT| + 1:

$$|w| \ge p = b^{|NT|+1} \ge b^{|NT|} + 1 \implies \text{height(parseTree(w))} \ge |NT| + 1$$

Notare che l'implicazione vale anche se poniamo $b^{|NT|} + 1$ come pumping length, ma per garantire la terza condizione dobbiamo scegliere la lunghezza maggiore che puo' generare un albero alto |NT| + 1, vedremo dopo perche'.

Per vedere come pompare una stringa $w \in L, |w| \ge p$, chiamiamo τ il suo albero di derivazione che ha il minor numero di nodi (questa condizione serve per garantire la seconda condizione). Sappiamo che height $(\tau) \ge |NT| + 1$, ovvero che esiste un percorso dalla radice a una foglia lungo almeno |NT| + 1. Contando la radice, ci sono |NT| + 2 nodi lungo questo percorso, di cui uno e' la foglia che e' quindi un terminale. Quindi i restanti |NT| + 1 nodi sono tutti nonterminali, e per il pigeonhole principle almeno uno si deve ripetere. Chiamiamo A il nonterminale che si ripete entro i |NT| + 1 nonterminali "piu' in basso", ovvero piu' vicini alla foglia, lungo il percorso (questa scelta serve per garantire la terza condizione).

Dividiamo w in cinque parti uvxyz come nella figura. L' occorrenza superiore di A ha un sottoalbero piu' grande che genera vxy, mentre quella piu' in basso ha un sottoalbero piu' piccolo e genera solo x. Entrambe le sottostringhe sono generate dalla stessa variabile, quindi possiamo sostituire l'una con l'altra e ottenere un nuovo albero di derivazione valido. Sostituendo il minore con il maggiore ripetutamente ci da tutti gli alberi di derivazione per le stringhe uv^ixy^iz con i > 1. Sostituendo il maggiore con il minore otteniamo la stringa uxz (il caso in cui i = 0), quindi abbiamo stabilito che questa divisione soddisfa la prima condizione, vediamo le altre due:

Per la condizione 2, dobbiamo accertarci che u e y non siano entrambe ϵ . Usando l'eliminazione del not, assumiamo che siano entrambe ϵ e dimostriamo il falso. Se fosse cosi', potremmo sostituire il sottalbero minore a quello maggiore ottenendo comunque la stringa iniziale $(uxz = uv^ixy^iz)$, pero' con un albero piu' piccolo. Ma questo e' assurdo, perche' come ipotesi avevamo stabilito che τ fosse l'albero di derivazione di w con meno nodi.

La terza condizione dice che $|vxy| \le p$. Questa e' la sottostringa generata dalla prima occorrenza di A (dalla radice verso le foglie), il cui sottoalbero e' alto al massimo |NT|+1, dato che le due ripetizioni di A devono essere entro i |NT|+1 nonterminali piu' vicini alla foglia. La stringa piu' lunga che puo' generare un albero di quell'altezza e' $b^{|NT|+1}=p$, quindi $|vxy|\le p$ come volevamo dimostrare.

Chapter 5

linguaggi liberi deterministici

5.1 PDA e linguaggi deterministici

5.1.1 PDA deterministici

Definition 5.1.1: PDA deterministico

Un PDA $N = (\Sigma, Q, \Gamma, \delta, q_0, \bot, F)$ si dice **deterministico** sse:

- 1. $\forall q \in Q, \ \forall z \in \Gamma, \ (\forall a \in \Sigma, \ (\delta(q, \epsilon, z) \neq \emptyset \implies \delta(q, a, z) = \emptyset))$
- 2. $\forall q \in Q, \ \forall z \in \Gamma, \ \forall a \in (\Sigma \cup \{\epsilon\}), \ (|\delta(q, a, z)| \leq 1)$

Ovvero un PDA è libero deterministico sse in ogni configurazione, il PDA ha al massimo una transizione possibile per un dato stato, simbolo di input, e simbolo in cima alla pila e se ha una transizione ϵ disponibile allora non ha altri tipi di transizioni.

Quindi un PDA:

- ha al massimo una transizione
- \bullet non ha conflitti tra transizioni ϵ e transizioni che leggono un simbolo

5.1.2 Definizione di linguaggi liberi deterministici

Definition 5.1.2: Linguaggio libero deterministico

Un linguaggio è libero deterministico se è accettato per stato finale da un DPDA

Theorem 5.1.1

la classe dei linguaggi liberi deterministici è includa propriamente nella classe dei linguaggi liberi:)

Example 5.1.1

- Sia $L_1 = \{ww^R \mid w \in \{a,b\}^*\}$ è libero, am si può dimostrare che non esiste un DPDA che lo riconosca, infatti con un DPDA non esiste un modo deterministico per riconoscere quando finisce w e inizia w^R
- $L_2 = \{wcw^R \mid w \in \{a,b\}^*\}$ è libero deterministico grazie al segnaposto c è possibile riconoscere

Theorem 5.1.2

Se L è regolare, allora $\exists DPDA \ N$ tale che L = L[N] per stato finale

 a^*b^*

 wcw^R

 ww^R

dimostrazione: Se L è regoalre, allora \exists DFA M tale che L = L[M]. A partire da M, posso costruire un DPDA N si compore come M senza mai manipolare lo stack, allora si che L = L[N] per stato finale

Prefix propriety

Si giunge così al seguente fatto:

Claim 5.1.1

Un linguaggio libero deterministico L è riconosciuto da un DPDA per pila vuota sse L gode della "perfix propriety", ovvero

 $\nexists x, y \in L : x$ è prefisso di y

Pertanto si ha che:

- Se L è non gode della prefix propriety non può essere riconosciuto da un PDPA per pila vuota
- $\bullet\,$ Se L è libero deterministico gode della prefix propriety, allora può essere riconosciuto da un PDPA per pila vuota
- Se L è libero deterministico, allora $L\$ = \{w\$ \mid w \in L\}$ gode della prefix propriety, infatti L\$ può essere riconosciuto da un PDPA per pila vuota.

Dove $\$ \notin \Sigma$ ovvero \$ non è un simbolo dell'alfabeto di L, ma grazie ad esso alla fine di ogni linguaggio regolare vale la prefix propriety

Example 5.1.2

Sia $L_1=\{a^nb^n\mid n\geqslant 0\}$ il seguente linguaggio che non gode della prefix propriety, in quanto $\epsilon\in L_1$ e ϵ è prefisso di ab

Si ha quindi che il seguente linguaggio è riconosciuto da un DPDA per stato finale e non per pila vuota. Tuttavia il seguente linguaggio con il $\$ \notin \Sigma$ è riconosciuto da un DPDA per per pila vuota Sia $L_1\$$:

Si verifichi, infatti, come egli venga riconosciuto per pila vuota

Example 5.1.3

Sia $L_3=\{a^nb^m\mid n\geqslant m\geqslant 0\}$ e dato che $\epsilon\in L_3$ tale linguaggio non gode della prefix propriety

e sia L_3 \$:

non ambiguità dei linguaggi liberi deterministici

Proposition 5.1.1

Se L è libero deterministico, ovvero riconosciuto da un DPDA per $stato\ finale$, allora L è generabile da una grammatica libera non ambigua.

Si ha quindi che i linguaggi liberi deterministici non sono ambigui

Proprietà dei linguaggi liberi deterministici

I lunguaggi liberi deterministici presentano le seguenti proprietà:

Proposition 5.1.2 chiusura solo per complementazione

Sia L un linguaggio libero deterministico, allora questo è chiuso per complementazione, ovvero:

$$(\exists \ \mathrm{DPDA} \ N \ : \ L = L(N)) \implies (\exists \ \mathrm{DPDA} \ N' \ : \ \overline{L} = L(N')) \quad \mathrm{dove} \quad \overline{L} = \Sigma^* \setminus L$$

Dimostrazione: Bisogna rendere totale la δ di N, eventualmente aggiungendo stati non finali, e poi N' si ottiene da questo N "aumentato", semplicemente scambiando finali e non finali

Proposition 5.1.3 Non chiusura per intersezione

Un linguaggio libero deterministico non è chiuso per intersezione

Example 5.1.4

 $L_1 = \{a^n b^n c^m \mid n,m \geq 0\}$ è libero deterministico

 $L_2 = \{a^m b^n c^n \mid n, m \geq 0\}$ è libero deterministico

ma

 $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ non è libero!

Proposition 5.1.4 non chiusura per unione

Un linguaggio libero deterministico non è chiuso per unione

Dimostrazione: Assumiamo per assurdo che un linguaggio libero deterministico sia chiuso per unione, allora:

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

☺

Per questo fatto e la proprosizione precedente si è verificato un assurdo

5.1.3 Analizzatori sintattici: parser

I parser possono essere:

- nondeterministici: se, durante la ricerca di una derivazione, si scopre che una scelta è improduttiva e non porta a riconoscere l'input, il parser torna indietro (backtracking), disfa parte della derivazione appena costruita e scegli un'altra produzione, tornando a leggere parte dell'input
- deterministici: leggono l'input una sola volta ed ogni loro decisione è definitiva entrambi cercano di sfruttare informazioni dall'input per guidare la ricerca della derivazione

introduzione al top-down parsing

Definition 5.1.3

Data G = (NT, T, S, R) lebera, costruiamo il $PDAM = (T, \{q\}, T \cup NT, \delta, q, S, \emptyset)$, che riconosce per pila vuota, dove $\delta : Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \beta Q \times \Gamma^*$ è definita:

- **espandi**: $(q, \beta) \in \delta(q, \epsilon, A)$ se $A \to \beta \in R$
- **consuma**: $\forall a \in T((q, \epsilon) \in \delta(q, a, a))$

Tale che L(G) = P[M] (riconoscimento per pila vuota)

Quindi, grazie alla prima regola se il simbolo in cima alla pila è un non terminale A, l'automa può espanderlo sostituendolo con la produzione β , come descritto nelle regole R della grammatica, mentre secondo la regola di consumazione si ha che se il simbolo sulla cima della pila e il simbolo corrente della stringa in input sono entrambi a, allora l'automa può eliminare quel simbolo dalla pila e procedere nella lettura dell'input.

Example 5.1.5

Sia G la seguente grammatica:

$$S \to aSb \mid \epsilon$$

Si ha che $S \implies aSb \implies aaSbb \implies aabb$

Si osservi che il seguente automa che riconosce il linguaggio della grammatica S non è un PDPA Nella maggior parte delle configurazioni standard di un Pushdown Automaton (PDA) utilizzato per il parsing top-down, la pila viene inizializzata con il simbolo iniziale della grammatica, nel nostro caso, quindi, la serie di passaggi che porteranno a riconoscere il linguaggio sarà:

$$(q, aabb, S) \vdash (q, aabb, aSb)$$

 $\vdash (q, abb, Sb) \vdash (q, abb, aSbb)$
 $\vdash (q, bb, Sbb) \vdash (q, bb, bb)$
 $\vdash (q, b, b) \vdash (q, \epsilon, \epsilon)$

che costruisce il seguente albero di derivazione

Si ha, quindi:

- derivazione canonica a sx (leftmost)
- costruzione dell'albero dall'alto in basso

Tuttavia in questo esempio è facile verificare che il parser è nondeterministico, infatti l'automa è un *PDA*, tuttavia questo nondeterminismo può essere risolto scegliendo la produzione in baso al simbolo di lettura nell'input (lookahead), ad esempio:

- $\bullet\,$ se leggoa,espando $S \to aSb$
- se leggo b, espando $S \to \epsilon$

input	stack	azione
<u>a</u> abb\$	S	leggo a e espando in aSb
	<u>a</u> Sb	consumo
<u>a</u> bb\$	Sb	leggo a e espando in aSb
	<u>a</u> Sbb	conumo
<u>b</u> b\$	$\overline{}Sbb$	leggo b e espando in ϵ
	<u>b</u> b	consumo
b\$	b	leggo b e espando in ϵ
\$	ϵ	fin

Note:

Non tutte le grammatiche sono adatte per il top down-parser

Example 5.1.6

Sia G la segnuete grammatica:

$$S \rightarrow Sb \mid a$$

e $L(G) = ab^*$ (linguaggio regolare semplice) L'automa che riconosce il linguaggio è:

Con i seguenti passaggi:

$$(q, ab, S) \vdash (q, ab, Sb) \vdash (q, ab, Sbb) \vdash \dots$$

Qui il determinismo non funziona, infatti se vogliamo espandere quando leggiamo a in input non possiamo anche consumare, pertnato l'automa espanderà all'infinito

Occorre manipolare la grammatica affinche non vi siano ricorsioni sinistre

Introduzione al botto-up parsing

Claim 5.1.2

Data una grammatica libera G = (NT, T, R, S), costruiamo un $PDPA M = (T, \{q\}, T \cup NT \cup \{Z\}, \delta, q, Z, \emptyset)$ che riconosce L(G).\$ dove:

• shift: $\forall a \in T, (\forall X \in T \cup NT \cup Z, ((q, aX) \in \delta(q, a, Z)))$

- reduce: $(A \to \alpha R) \implies (q, A) \in \delta(q, \epsilon, \alpha^R)$ Con α^R una generalizzazione dei PDA in cui si consuma una stringa sulla pila anziché solo il top
- accept: $(q, \epsilon) \in \delta(q, \$, SZ)$ Con S che deve essere alla fine sulla pila e \$ simbolo di fine input

Cominciamo subito con un esempio

Example 5.1.7

Sia G la seguente grammatica:

 $S \rightarrow aSb \mid ab$

stack	input	azione
Z	aabb\$	shift
Za	abb\$	shift
Zaa	bb\$	shift
Zaab	b\$	reduce $S \to ab$
ZaS	b\$	shift
ZaSb	\$	reduce $S \to aSb$
ZS	\$	accept
ϵ	ϵ	

In passaggi, $S \implies aSb \implies aabb$. Viene prodotto il seguente albero di derivazione:

Si può verificare come la costruzione dell'input sia:

- left-to-right (come leggo l'input)
- right-derivatione

•

Tuttavia è facile verificare che c'è molto nondeterminismo:

- Conflitti: Shift-Reduce
 - 1. zaab b\$ (può fare shift)
 - 2. zaabb \$ (ma è un percorso infruttuoso)
- Conflitti: Reduce-Reduce

Più riduzioni possibili (non ci sono in quest'esempio, ma con grammatiche più complesse è possibile)

Per ottenere un DPDA, serve introdurre informazioni aggiuntive per risolvere i conflitti:

- Più stati: (o strutture particolari di supporto alle decisioni, come un DFA dei prefissi validi).
- Look-ahead: (guardare l'input in avanti).

Vediamo un esempio più corposo relativo alle grammatiche delle espressioni aritmetiche:

Example 5.1.8

Sia G tale grammatica:

$$E \to T + E \mid T$$
$$T \to T \times A \mid A$$
$$A \to a \mid b \mid (E)$$

Si ha:

G	M
	$t_0: \delta(q, a, X) = (q, aX) \forall aX \text{SHIFT}$
$(R1) E \to T + E$	$t_1:\delta(q,\epsilon,E+T)=(q,E)$
(R2) $E \to T$	$t_2:\delta(q,\epsilon,T)=(q,E)$
(R3) $T \to T * A$	$t_3:\delta(q,\epsilon,A*T)=(q,T)$ REDUCE
(R4) $T \to A$	$t_4:\delta(q,\epsilon,A)=(q,T)$
$(R5) A \rightarrow (E)$	$t_5:\delta(q,\epsilon,(E))=(q,A)$
$(R6) A \rightarrow a$	$t_6:\delta(q,\epsilon,a)=(q,A)$
$(R7) A \rightarrow b$	$t_7:\delta(q,\epsilon,b)=(q,A)$
	$t_8:\delta(q,\$,EZ)=(q,\epsilon)$ ACCEPT

La cui sequenza è:

$$a*(b) \Leftarrow A*(b) \Leftarrow T*(b) \Leftarrow T*(A) \Leftarrow T*(T) \Leftarrow T*(E) \Leftarrow T*A \Leftarrow T \Leftarrow E$$

La cui pila-stack-input è:

Stack	Input	Action
Z	a*(b)\$	shift
Za	*(b)\$	reduce R_6
ZA	*(b)\$	reduce R_4
ZT	*(b)\$	shift
ZT*	(<i>b</i>)\$	shift
ZT*(b)\$	shift
ZT*(b))\$	shift
ZT*(b)	\$	reduce R_7
ZT*(A)\$	reduce R_4
ZT*(T)\$	reduce R_2
ZT*(E)\$	shift
ZT*(E)	\$	reduce R_5
ZT * A	\$	reduce R_3
ZT	\$	reduce R_2
ZE	\$	accept
ϵ	ϵ	

Il cui albero di derivazione:

L'automa è non deterministico perché:

1. Chi ha precedenza tra shift e reduce?

Ad esempio:

- 1) Za * (b) \$ shift
- 2) Za* (b)\$ non buono! Qui reduce è in conflitto con shift!

Altro esempio:

- (a) ZT * (b)\$ reduce R_2
- (b) ZE * (b) \$ non buono! Qui shift è in conflitto con reduce!
- 2. Chi ha precedenza tra due diverse reduce?

Ad esempio:

- (a) ZT * A \$ reduce R_3
- (b) ZT \$
- (c) ZT * T \$ se faccio, reduce R_4 Qui reduce R_3 è in conflitto con reduce R_4 !

È buona norma scegliere in modo tale che ciò che si trova nella pila sia un prefisso (a rovescio) di una parte destra di una produzione della grammatica.

Ad esempio:

- (a) Za
- (b) ZA con la "norma" produco chi coincide con ciò che è un prefisso di una parte destra che comincia con A.

problema con le pruzioni ϵ

Sia la produzione $S \to \epsilon$ TODO! NON HO CAPITO

5.2 Semplificazione delle grammatiche

Per avere PDA efficienti e con minor non determinismo è necessario semplificare le grammatiche. Ad esempio:

- Eliminare le produzioni ϵ (del tipo $A \to \epsilon$) inadatte al bottom up parsing
- Eliminare le produzione unitarie (del tipo $A \to B$ che possono creare dei cicli $A \Longrightarrow {}^+A$)
- Eliminare simboli inutili, cioè quei terminali e non terminali che non sono raggiungibili/generabili a partire dal simbolo inziale S es. gli stati d'errore
- Eleminare la ricorsione sinistra (del tipo $A \to A\alpha$), perché inadatte al top down parsing
- fattorizzare le grammatiche, per ottenere grammatiche con meno non determinismo nel top-down parsing

5.2.1 Eliminare le produzioni ϵ

Per fare ciò si usi un algoritmo che ha:

- ullet in input: una G libera con produzione ϵ
- in output: una G' libera senza produzione ϵ tale che $L(G') = L(G) \setminus \{\epsilon\}$

Note:

Se $\epsilon \in L(G)$ e si vuole ottenere una G'' t.c. L(G) = L(G''), basta considerare G' = (NT, T, S, R') e definire $G'' = G' \cup \{S' \to \epsilon | S\}$ t.c.

$$G'' = (NT \cup \{S'\}, T, S', R' \cup \{S' \rightarrow \epsilon | S\})$$

simboli annullabili

Per l'algoritmo occorre innanzi tutto definire i simboli annullabili

Definition 5.2.1: simboli annullabili

I simboli annullabili sono quei non terminali tale che possono riscriversi in uno o più passi in ϵ , ovvero:

$$N(G) = \{A \in NT | A \implies {}^+\epsilon \}$$

Dove N(G) è l'insieme dei simboli annullabili e viene calcolato induttivamente come segue:

- $N_0(G) = \{A \in NT | A \to \epsilon\}$, questo è il caso in cui un non terminale A viene riscritto direttamente in ϵ tramite una produzione
- $N_{i+1}(G) = N_i(G) \cup \{B \in NT | B \to c_1, \dots, c_k \in \mathbb{R} \text{ e } c_1, \dots, c_k \in N_i(G)\}$ questo è il caso in cui un non terminale B possa essere ricondotto a a ϵ in più passi

Ovviamente $\exists i_c$ tale che $N_{i_c}(G) = N_{i_c+1}(G)$, cioè che ad un certo punto non aggiungo nessun altro B all'insieme (NT è finito)

Theorem 5.2.1

L'insieme $N(G) = N_{i_c}(G)$ è esattamente l'insieme di tutti i simboli annullabili

algoritmo per il calcolo della grammatica

Una volta calcolato N(G) per G = (N, T, S, R), costruiamo la grammatica G' = (N, T, S, R') dove per ogni produzione $A \to \alpha \in R$ con $\epsilon \notin \alpha$, in cui occorrono simboli annullabili Z_1, \ldots, Z_k , mettiamo in R' tutte le produzioni del tipo $A \to \alpha'$ dove α' si ottiene da α cancellando tutti i possibili sottoinsiemi di Z_1, \ldots, Z_k (incluso \emptyset), ad eccezione del caso in cui α' risulta ϵ , in altre parole si creano tutte le possibili combinazioni di α eliminando uno o più di questi simboli Z_1, \ldots, Z_n :

- in G' non mettiamo produzioni $A \to \epsilon \in R$,
- in G' non introduciamo mai produzioni del tipo $A \to \epsilon$.

Theorem 5.2.2

Data una grammatica libera G, la grammatica G' determinata dall'algoritmo sopra non ha ϵ -produzioni, e $L(G') = L(G) \setminus \{\epsilon\}$

Example 5.2.1

Sia G una grammatica tale che:

$$G = \begin{cases} S \to AB \\ A \to aAA \mid \epsilon \\ B \to bBB \mid \epsilon \end{cases} \qquad N_0(G) = \{A, B\} \in N_1(G) = \{A, B, S\} = N(G)$$

Quindi tutti sono simboli annullabili

Adesso procedo con l'algoritmo, procedo per ogni simbolo annullabili

- $S \to AB$: secondo l'algoritmo devo cancellare in tutti i modi possibili i simboli non terminali che compaiono nella parte destra della produzione. In questo caso dobbiamo considerare 4 casi:
 - $-\emptyset \implies S \rightarrow AB$, rinuncio a cancellare
 - $-\{B\} \implies S \rightarrow A$, se cancello B rimane Anella parte destra
 - $\{A\} \implies S \rightarrow B$
 - $-\{A,B\} \implies S \to \epsilon$ dato che non devo mai introdurre produzioni del tipo $A \to \epsilon$ non posso cancellare $A \in B$

Unisco i vari sottoinsiemi e si ha:

$$S \rightarrow AB|B|A$$

- $A \rightarrow aAA \in R$. dobbiamo considerare 4 casi:
 - $-\emptyset \implies A \rightarrow aAA$
 - $-\{A\} \implies A \rightarrow aA$
 - $-\{A,A\} \implies A \rightarrow a$

Quindi si ha:

$$A \rightarrow aAA|aA|a$$

• si ha la stessa cosa con B, quindi cancellarehe verrà trasformato in

$$B \rightarrow bBB|bB|b$$

Così la nuova grammatica sarà:

$$G' = \begin{cases} S \to AB|A|B \\ A \to aAA|aA|a \\ B \to bBB|bB|b \end{cases}$$

5.2.2 Eliminazione delle produzioni unitarie

Definition 5.2.2: Produzione unitaria

Una produzione si dice **unitaria** quando $A \rightarrow B$ si ha che $A, B \in NT$

coppie unitarie

Per eliminare queste produzioni unitarie si deve però calcolare quelle che sono definite le "coppie unitarie"

Definition 5.2.3: Coppia unitaria

Una coppia (A, B) si dice **unitaria** qunado $A \implies {}^*B$ (quindi quando A può riscriversi in 0 o più passi nel non terminale B) usando solo produzioni unitarie.

Vi è qui ripostata la definizione induttiva:

- $U_0(G) = \{(A,A) | A \in NT\}$, quindi ogni non terminale fa coppia con se stesso
- $U_{i+1}(G) = U_i(G) \cup \{(A,C) | (A,B) \in U_i(G)\}\$ e $B \to C \in R$, quindi è l'insieme delle coppie al passo i unito alle coppie alle coppie (A,C) tali che (A,B) sono coppie presenti nell'insieme dell'iterazione precedente e $B \to C \in R$

Anche in questo caso $\exists i_c$ t.c. $U_{i_c}(G) = U_{i_c+1}(G)$ dato che NT è finito. Pertanto per definizione si ha che $U(G) = U_{i_c}(G)$, detto insieme di tutte le coppie unitarie

algoritmo per il calcolo dell'eliminazione delle produzioni unitarie

Data G = (N, T, R, S) libera, si definisce una G' = (N, T, R', S) dove, per ogni $(A, B) \in U(G)$, R' contiene tutte le produzioni $A \to \alpha$, dove $B \to \alpha \in R$ e non è unitaria

Note:

Poiché, per ogni $A \in N$, la coppia $(A,A) \in U(G)$, R' contiene tutte le produzioni non unitarie di R e in aggiunta un po' di altre.

Theorem 5.2.3

Sia G = (NT, T, R, S) libera e sia U(G) l'insieme selle sue coppie unitarie. Sia G' = (NT, T, R', S) la grammatica ottenuro dall'algoritmo G' non ha produzione unitarie e L(G) = L(G')

Esempietto:

Example 5.2.2

Prediamo con esempio la grammatica non ambigua E delle espressioni aritmetiche:

$$E = \begin{cases} E \to E + T | T \\ T \to T * A | A \\ A \to a | b | (E) \end{cases}$$

Si noti subito che ha 2 produzioni unitarie: $E \to T$ e $T \to A$. Iniziamo a calcolare l'insieme delle coppie unitarie:

- $U_0(G) = \{(E, E), (T, T), (A, A)\}$ e grazie al cuzzo
- $U_1(G) = U_0(G) \cup \{(E,T), (T,A)\}$
- $U_2(G) = U_1(G) \cup \{(E,A)\} = U_3(G) = U(G)$ dato che da Che da E si arriva ad T e si arriva A

Per calcolare la grammatica G' devo prendere tutte le produzioni non unitarie della grammatica originale, ovvero:

$$G' = \begin{cases} E \to E + T \\ T \to T \times A \\ A \to a|b|(E) \end{cases}$$

In aggiunta:

$$\begin{cases} E \to E + T & \text{perch\'e} (E,T) \in U_1(G) \\ T \to a|b|(E) & \text{perch\'e} (T,A) \in U_1(G) \\ E \to a|b|(E) & \text{perch\'e} (E,A) \in U_2(G) \end{cases}$$

Pertanto G' sarà:

$$G' = \begin{cases} E \to E + T|T \times A|a|b|(E) \\ T \to T \times A|a|b|(E) \\ A \to a|b|(E) \end{cases}$$

Sia ha che non contiene produzioni unitarie ed è equivalente a G

5.2.3 Rimuovere i simboli inutili

Definition 5.2.4: Simboli generatori, raggiungibili e utili

Un simbolo $X \in T \cup NT$ è

• Un generatore $\iff \exists w \in T^* \text{ con } x \implies {}^*w$

Quindi un generatore è o un terminale (un simbolo può riscriversi in se stesso) oppure un non terminale che in uno o più passi. è definito induttivamente come segue:

- $-G_0(G) = T$ se $a \in T$, $a \implies {}^*a$ (quindi tutti i terminali sono generatori)
- $-G_{i+1}(G) = G_i(G) \cup \{B \in NT | B \to C_1, \dots C_k \in R \land C_1, \dots, C_k \in G_i(G)\}$
- Un raggiungibile \iff $(\exists \alpha, \beta \in (T \cup NT)^*.(S \implies {}^*\alpha X\beta))$. Sono definiti induttivamente:
 - $R_0(G) = \{S\}$
 - $-R_{i+1}(G) = R_i(G) \cup \{x_1, \dots, x_k\} \forall B \in R_i(G), B \to x_i, \dots, x_k \in R$
- utile sse è sia un generatore e sia raggiungibile, ovvero se $S \implies {}^*\alpha X\beta \implies {}^*x \in L(G)$ cioè X compare in almeno una derivazione di una stringa $z \in L(G)$

algoritmo per l'eliminazione dei simboli inutili

- 1. Prima di tutto elimino tutti i non-generatori (e tutte le produzione che usano almeno uno di questi)
- 2. Poi dalla nuova grammatica, elimino tutti i non raggiungibili (E tutte le produzioni che li usano)

Theorem 5.2.4

Sia G = (NT, T, R, S) una grammatica libera t.c. $L(G) \neq \emptyset$

- Sia G_1 la grammatica che si ottiene da G eliminando tutti i simboli che non a appartengono a G(G) (insieme dei generatori), e tutte le produzioni che fanno uso di algoritmo di tali simboli
- Sia G_2 la grammatica che si ottiene da G_1 eliminando tutti i simboli che non appartengono a R(G), e tutte le produzioni che fanno uso di almeno uno di tali simboli

Allora G_2 non ha simboli inutili e $L(G_2) = L(G)$

Dimostrazione: La dimostrazione si divide nelle due parti dell'enunciato:

- $L(G_2) \subseteq L(G)$ è ovvio, dato che G_2 contiene meno produzioni di G
- $L(G)\subseteq L(G_2)$: dobbiamo dimostrare che $S\implies {}^*_G w$ (ovvero se S deriva W usando le produzioni di w) allora $S\implies {}^*_{G_2} w$

Si ha che ogni simbolo usato in $S \implies {}^*_G w$ è, ovviamente, sia raggiungibile sia generatore

☺

Note:

L'ordine dei due generatori è importante!

- prima elimino i non-generatori
- poi i non raggiungibili

ma se inverto l'ordine, allora può capitare che non elimino tutti i simboli inutili

Esempietto di eliminazione di tutti quei simboli non utili (inutili)

Example 5.2.3

Si parta da questa grammatica:

$$G = \begin{cases} S \to AB | a \\ B \to b \end{cases}$$

Poiché $a \implies {}^*a, b \implies {}^*b, S \implies {}^*a, B \implies {}^*b$ si ha che i generatori saranno $\{S, B, a, b\}$ (dove manca A). Possiamo così eleminare tutte le produzioni che includono A:

$$G' = \begin{cases} S \to a \\ B \to b \end{cases}$$

Adesso posso eliminare tutti i non raggiungibili da S, che in questo caso l'unico è solo B. Si ha che:

$$G'' = S \rightarrow a$$

Si ha che G''è equivalente a G, ma non contiene simboli utili

Esempio secondo:

Example 5.2.4

$$G = \begin{cases} S \to aC \\ A \to a \\ B \to bB \\ C \to b \mid AC \\ D \to a \mid aS \end{cases}$$

Poiché $G(G) = \{S, a, C, b, A, D\}$ e solo B non è generatore, possiamo eliminare tutte le produzioni che includono B. Si ha quindi:

$$G_{1} = \begin{cases} S \to aC \\ A \to a \\ C \to b \mid AC \\ D \to a \mid aS \end{cases}$$

A questo punto, notiamo che solo D non è raggiungibile, quindi possiamo eliminarlo. Si ottiene:

$$G_2 = \begin{cases} S \to aC \\ A \to a \\ C \to b \mid AC \end{cases}$$

 G_2 è la grammatica semplificata, equivalente a G, senza simboli inutili.

In questo esempio si ha che $L(G_2) = \{ab, aab, aaab, \dots\} = a^+b$

Si osservi però che è possibile trovare una grammatica più semplice per il linguaggio a^+b :

$$S \rightarrow aS|ab$$

5.2.4 mettere insieme le cose

Se, nel semplificare la grammatica G, seguiamo questo ordine:

- ullet Eliminare le ϵ -produzioni
- Eliminare le produzioni unitarie (ovvero i cicli)
- eliminare i simboli inutili

allora la grammatica risultante è garantita non avere nè ϵ -produzioni, ne produzioni unitarie, ne simboli inutili ed è equivalente a quella di partenza.

Note:

Si presti attenzione all'ordine poiché alcune delle costruzioni possono interagire tra di loro durante la fase di eliminazione delle ϵ -produzioni, potremmo introdurre produzioni unitarie, pertanto le ϵ -produzioni vanno eliminate prima della fase di eliminazione delle produzioni unitarie

Esempietto:

Example 5.2.5

$$G = \begin{cases} S \to aAa \mid aa \\ A \to C \\ C \to S \mid \varepsilon \end{cases}$$

1. Togliere le ε -produzioni

$$N(G) = \{S, C, A\} \Rightarrow G' = \begin{cases} S \rightarrow aAa \mid aa \\ A \rightarrow C \\ C \rightarrow S \end{cases}$$

2. Togliere le produzioni unitarie

$$U(G') = \{(A,A), (C,C), (S,S), (A,C), (C,S), (A,S)\}$$

$$G'' = \begin{cases} S \to aAa \mid aa & \operatorname{perch\'e}(S,S) \in U(G') \\ C \to aAa \mid aa & \operatorname{perch\'e}(C,S) \in U(G') \\ A \to aAa \mid aa & \operatorname{perch\'e}(A,S) \in U(G') \end{cases}$$

3. Rimuovere i simboli inutili

$$G(G'') = \{S, a, A, C\} \quad \text{tutti i generatori}$$

$$R(G'') = \{S, a, A\} \quad \text{ma non } C$$

$$G''' = \begin{cases} S \to aAa \mid aa \\ A \to aAa \mid aa \end{cases}$$

In questo esempio si ha che $L(G''') = \{aa, aaaa, ...\} = (aa)^+$

Si osservi però che è possibile trovare una grammatica più semplice per il linguaggio $(aa)^+$:

$$S \rightarrow aSa|aa$$

o anche

$$S \rightarrow aaS|aa$$

5.2.5 forme normali

le **forme normali** sono particolari configurazioni di rappresentazione di un linguaggio formale o di un'espressione logica che rispettano determinate regole e strutture. Ne studieremo di due tipi:

- Chomsky: Una grammatica è in forma normale di Chomsky se ogni produzione ha la forma $A \to BC$ o $A \to a$, dove $A, B, C \in NT$ e $a \in T$. Ogni produzione deriva quindi o una coppia di variabili o un singolo terminale. Questa forma è utile, per esempio, negli algoritmi di parsing
- Greibach: Una grammatica è in forma normale di Greibach se ogni produzione ha la forma $A \to a\alpha$, dove $A \in NT$, $a \in T$ e α è (eventualmente) una stringa di variabili. La GNF è usata in particolare per costruire parser discendenti

Forma normale di Chomsky

Definition 5.2.5: Forma normale di Chomsky

Una grammatica si dice in **forma normale di Chomsky** se sono nella forma:

$$A \rightarrow BC$$

 $A \rightarrow a$

Dove ϵ è trattato a parte $S \to \epsilon | BC$ e S non compare mai a destra in una produzione

Note:

se G è libera in forma normale di Chomsky, allora:

- non ha ϵ -produzioni
- non ha produzioni unitarie

ogni grammatica libera G può essere trasformata in una equivalente G' in forma normale di Chomsky

Forma normale di Greibach

Definition 5.2.6: forma normale di Greibach

Una grammatica si dice in **forma normale di Greibach** se sono nella forma:

$$A \to aBC$$

$$A \to aB$$

 $A \rightarrow a$

Dove ϵ è trattato a parte $S \to \epsilon | BC$ e S non compare mai a destra in una produzione

Note:

se G è libera in forma normale di Greibach, allora:

- ullet non ha ϵ -produzioni
- non ha produzioni unitarie

- non è ricorsiva a sinistra
- ogni produzione applicata in una derivazione allunga il prefisso di terminali \implies il parser costruito a partire della forma normale di Greibach sono meno non deterministici

Note:

ogni grammatica libera G può essere trasformata in una equivalente G' in forma normale di Greibach

5.2.6 Eliminare la ricorsione a sinistra

L'eliminazione della ricorsione a sinistra è un problema tipico dei parser top-down

Definition 5.2.7: produzione ricorsiva a sinistra

Si definisce una produzione ricorsiva a sinistra una produzione del tipo

$$A \to A\alpha \in R$$

Definition 5.2.8: grammatica ricorsiva a sinistra

Si definisce una grammatica ricorsiva a sinistra una grammatica G del tipo:

$$A \implies {}^{+}A\alpha$$
 per qualche $A \in NT$, $\alpha \in (T \cup NT)^{*}$

Una tipica ricorsione a sinistra è:

$$A \to A_{\alpha_1} | \dots | A_{\alpha_n} | \beta_1 | \dots | \beta_n$$

Dove le stringhe β_i non cominciano per A. Queste produzioni possono essere rimpiazzate da

$$A \to \beta_1 A' | \dots | \beta_m A'$$

$$A' \to \alpha_1 A' | \dots | \alpha_n A' | \epsilon$$

Se nella grammatica originale avviamo la derivazione

$$A \Longrightarrow A\alpha_{i_1} \Longrightarrow A\alpha_{i_2}\alpha_{i_1} \Longrightarrow \cdots \Longrightarrow A\alpha_{i_k}\ldots\alpha_{i_2}\alpha_{i_1} \Longrightarrow \beta_i\alpha_{i_k}\ldots\alpha_{i_2}\alpha_{i_1}$$

Con la nuova grammatica si ha:

$$A \Longrightarrow \beta_i A' \Longrightarrow \beta_i \alpha_{i_k} A' \Longrightarrow \cdots \Longrightarrow \beta_i \alpha_{i_k} \dots \alpha_{i_n} A' \Longrightarrow \beta_i \alpha_{i_k} \dots \alpha_{i_n} A' \Longrightarrow \beta_i \alpha_{i_k} \dots \alpha_{i_n} A'$$

Esempi concreti:

Example 5.2.6

$$A \to Aa|b$$

$$\Rightarrow$$

$$A \to bA'$$

$$A' \to aA'|\epsilon$$

Poi

$$A \to Ab|Ac|d$$

$$\Rightarrow$$

$$A \to dA'$$

$$A' \to bA'|cA'|\epsilon$$

Note:

Se $G = [A \to Aa]$, non si può applicare l'algoritmo perché mancano le produzione di base da cui partire $(A \to \beta_1 | \dots | \beta_m)$. Infatti, $L(G) = \emptyset$ e la grammatica corrispente non ha produzioni

5.2.7 Ricorsione sx non-immediata

Consideriamo

$$G = \begin{cases} S \to Ba|b \\ B \to Bc|Sc|d \end{cases}$$

In G c'è ricorsione sx immediata $(B \to Bc)$ ma anche non immediata $(S \Longrightarrow Ba \Longrightarrow Sca)$

algoritmo per il calcolo della ricorsione non immediata

Algorithm 4: ricorsione non immediata

Input: una G libera senza ϵ -prod, senza produzioni unitarie, ma con ricorsione sc non immediata Output: una G libera senza ϵ -prod, senza produzioni unitarie e senza alcuna ricorsione a sx 1 Let $NT = \{A_1, A_2, \ldots, A_n\}$ in un ordine fissato; 2 for i = 1to n do 3 | for j = 1to i - 1 do 4 | Sostituisci ogni produzione della forma $A_i \to A_j \alpha$ con le produzioni $A_i \to \beta_1 \alpha | \ldots | \beta_k \alpha$, dove $A_j \to \beta_1 | \ldots | \beta_k$ sono produzioni correnti per A_j ; Elimina la ricorsione immediata su A_i ;

- L'obiettivo dell'algoritmo è che, alla fine, ogni produzione del tipo $A_i \to A_k \alpha$ sia tale che i < k, in modo che sia impossibile avere ricorsione sx non immediata.
- Quando i = 1, l'unica cosa che viene fatta è l'istruzione 2), che rimuove l'eventuale ricorsione sx immediata. Al termine, $A_1 \to A_k \alpha$ avremo i < k.
- Alla *i*-esima iterazione del for esterno, tutti i non-terminali A_m con m < i hanno produzioni con la proprietà desiderata.

Ora il ciclo **for** interno (istruzione 1) aumenta progressivamente l'indice del non-terminali in prima posizione; finché, al termine del ciclo (j = i - 1), avremo che ogni produzione $A_i \rightarrow A_k \alpha$ è tale che i < k.

Ora l'istruzione 2) rimuove l'eventuale ricorsione sx immediata da A_i , sicché ogni produzione $A_i \to A_k \alpha$ è tale che i < k.

• Quindi al termine dell'algoritmo, avremo che ogni produzione $A_i \to A_k \alpha$ è tale che i < k, garantendo l'impossibilità di creare ricorsione sx non immediata.

Example 5.2.7

Come esempio si consideri la grammatica di prima, ovvero

$$G = \begin{cases} S \to Ba|b \\ B \to Bc|Scd \end{cases}$$

Si segua passo-passo l'algoritmo ;3:

- \bullet i=1 (ovvero S): il ciclo interno non viene eseguito e, siccome non c'è ricorsione immediata per S, non viene fatto nulla
- i=2 (cioè $A_i = B$): il ciclo interno (j da 1 a 1) si esegue solo per $A_j = A_1 = S$. Allora la produzione $B \to Sc$ viene rimpiazzata con:

$$B \rightarrow Bac|bc$$

Ora le produzioni complessive per B sono :

$$B \rightarrow Bc|Bac|bc|d$$

Dalla quale dobbiamo eliminare la ricorsione immediata, il risultato è:

$$B \rightarrow bcB'|sB'$$

 $B' \rightarrow cB'|acB'|\epsilon$

Pertanto la gigagrammatica risultante è:

$$S \to Ba|B$$

$$B \to bcB'|sB'$$

$$B' \to cB'|acB'|\epsilon$$

5.2.8 Fattorizzazione a sinistra

Si prendi in esempio la seguente grammatica:

$$A \rightarrow aBbC|aBd$$

Se, in un top-down parsing, sulla pila ha A e leggo in input a, non sono in grado di determinare quale produzione scegliere tipico del nondeterminismo, pertanto occorre raccogliore la parte comune (aB) alle 2 produzioni e introduco un nuovo nonterminale per rappresentare il resto delle produzione, quindi:

$$A \rightarrow aBA'$$

 $A' \rightarrow bC|d$

algortimo per il calcolo della fattorizzazione

```
Algorithm 5: Fattorizzazione LU
  Input: Grammatica G non fattorizzata
  Output: Grammatica G' fattorizzata
1 Let N be a new variable;
2 N \leftarrow NT;
{f 3} while è pssibile modificare a N o all'insieme delle produzione {f do}
       foreach A \in N do
           Sia \alpha il prefissio più lungo comune alle parti destre di alcune produzione di A;
\mathbf{5}
           if \alpha \neq \epsilon then
6
               Sia A un nuovo non terminale;
7
                N \leftarrow N \cup \{A\};
8
                rimpiazza tutte le produzione per A del tipo
                                                           A \to \alpha \beta_1 | \dots | \alpha \beta_k | \gamma_1 | \dots | \gamma_h
                 con le produzioni:
                                                                A \to \alpha A' |\gamma_1| \dots |\gamma_h|
                                                                A' \rightarrow \beta_1 | \dots | \beta_k
```

Example 5.2.8

Riporto una grammatica da fattorizzare:

$$E \to T|T + E|T - E$$

$$T \to A|A * T$$

$$A \to a|b|(E)$$

Dove sia E che T si possono fattorizzare, perciò diventa:

$$E \to TE'$$

$$E' \to \epsilon | + E| - E$$

$$T \to AT' |$$

$$T' \to \epsilon | * T$$

$$A \to a |b|(E)$$

Chapter 6

Parser Top-Down

Un parser Top-Down è un tipo di analizzatore sintattico per analizzare strutture gerarchiche, come le frasi di una lingua o la struttura di un codice. Funziona esplorando e costruendo l'albero sintattico partendo dalla radice e procedendo verso le foglie, quindi "dall'alto verso il basso"

Adesso presentiamo un primo esempio di parser Top-Down **nondeterministico** che usa implicitamente una pila per gestire le chiamate ricorsive

6.1 Parser a discesa ricorsiva

Data una grammatica libera $G = (NT, T, S, R), \forall A \in NT$ con produzioni:

$$A \rightarrow X_1^1 \dots X_{n_1}^1 | \dots | X_k^1 \dots X_{n_k}^k$$

Definisce la funzione

Algorithm 6: A()

Si comincia invocando la funzione per il simbolo iniziale ${\cal S}$

```
Example 6.1.1 Sia G la grammatica: S \to ac|aSb Col linguaggio: L = \{a^{n+1}cb^n|n \geqslant 0\} e sia aacb un input. Si ha
```


input Stack delle chiamate

$$\begin{array}{cccc} \underline{a} \ a \ c \ b & \underline{a} \ c \\ \underline{a} \ c \ b & \underline{c} \ fail \\ \\ \underline{a} \ a \ c \ b & \underline{s} \ b \\ \underline{a} \ c \ b & \underline{c} \ b \\ \underline{b} & \underline{b} & \underline{c} \ b \\ \underline{ok} \end{array}$$

Tuttavia il parser a discesa ricorsiva è parecchio inefficiente a causa della sua natura nondeterminista, vi è infatti la necessita nel peggiore dei casi di esplorare tutte le alternative

Theorem 6.1.1

Sia w la lunghezza della stringa in inout, e sia b il massimo numero di produzioni per uno stesso nonterminale, allora la complessità computazionale di un parser a discesa riscorsiva nel caso peggiore è:

$$O(b^{|w|})$$

Per ovviare ovviare a questo problema di infecenza dobbiamo guidare la scelta della produzione per creare un parser top-down deterministico. Per farlo occorrono delle fuzioni ausiliarie

6.2 Parser predittivo

Il **parser predittivo** è un tipo parser deterministico (sotto alcune specifiche condizione che si vedranno più avanti), molto più efficiente in quanto non ha il backtracking, tuttavia per definirlo occorre prima definire delle funzioni ausiliarie

6.2.1 First

Definition 6.2.1: First

Data una grammatica libera G e $\alpha \in (T \cup NT)^*$, di definisce $\mathbf{First}(\alpha)$ come l'insieme dei terminali che possono stare in prima posizione in una stringa che si deriva da α

- per $a \in T$, $a \in First(\alpha) \iff \alpha \implies {}^*a\beta$ per $\beta \in (T \cup NT)^*$
- inoltre $(\alpha \implies {}^*\epsilon) \implies \epsilon \in First(\alpha)$

Note: 🛉

Sia la grammatica

$$A \rightarrow \alpha_1 | \alpha_2$$

Se $First(\alpha_1) \cap First(\alpha_2) = \emptyset$ la scelta della produzione è deterministica

Qui vi è riportato un esempietto:

Example 6.2.1

$$A \rightarrow aB|bC$$

Si ha che:

$$First(aB) = \{a\}$$

 $First(bC) = \{b\}$

Pertanto abbiamo del determinismo con un solo carattere in lettura

algoritmo per calcolare il first

```
Algorithm 7: First()
   Input: Una grammatica credo
   Output: bho
 1 for x \in T do
 2 | First(x) \leftarrow \{x\};
                                                                     // un terminale è il primo elemento di se stesso
 3 for X \in NT do
 4 | First(X) \leftarrow \emptyset;
                                                       // per ogni x non terminale si inizializza il suo first a "0"
 5 while almeno un First(X) può essere modificato in una iterazione do
       for each x \to Y_1, \ldots, Y_k do
           foreach i = 1to k do
 7
               // se ciascuno di questi simboli y_1,\dots,Y_{i-1} può derivare la stringa vuota \epsilon
               if Y_1, \ldots, Y_{i-1} \in N(G) then
 8
                  First(X) \leftarrow First(X) \cup (First(Y_i) \setminus \{\epsilon\});
                                                                  // allora è possibile aggiungere gli elementi di
                  FIRST(Y_i) a FIRST(X) per la produzione y_1, \ldots, y_k
               // Se invece uno dei simboli da Y_1 a Y_{i-1} non è annullabile, si interrompe la ricerca per quella
                  produzione, perché non possiamo "saltare" i simboli non annullabili per arrivare a Y_i
10 foreach X \in N(G) do
    First(X) = First(X) \cup \{\epsilon\};
```

In generale per una stringa α si ha che:

- Se $\alpha = \varepsilon$, allora $FIRST(\alpha) = \{\varepsilon\}$.
- Se $\alpha = X\beta$ e $X \notin N(G)$, allora $FIRST(X\beta) = FIRST(X)$.
- Se $\alpha = X\beta$ e $X \in N(G)$, allora $FIRST(X\beta) = (FIRST(X) \setminus \{\varepsilon\}) \cup FIRST(\beta)$

In pratica se

$$A \rightarrow \alpha_1 | \dots | \alpha_k$$

si ha che

$$First(A) = First(\alpha_1) \cup \cdots \cup First(\alpha_k)$$

Example 6.2.2

Si ossrvi la seguente grammatica:

$$S \to Ab|c$$

$$A \to aA|\epsilon$$

$$FIRST(S) = FIRST(Ab) \cup FIRST(c)$$

$$= (FIRST(A) \setminus \{\epsilon\}) \cup FIRST(b) \cup \{\epsilon\}$$

$$= \{a\} \cup \{b\} \cup \{c\} = \{a, b, c\}$$

$$FIRST(A) = FIRST(aA) \cup FIRST(\epsilon)$$

= $\{a\} \cup \{\epsilon\} = \{a, \epsilon\}$

6.2.2 Follow

Definition 6.2.2: Follow

Data una grammatica libera G e $A \in NT$, definiamo che Follow(A) è l'insieme dei terminali che possono comparire immediatamente a destra di A in una forma sentenziale.

- Per ogni $a \in T$, $a \in Follow(A)$ se $S \Rightarrow^* \alpha A a \beta$ per qualche $\alpha \in \beta \in (T \cup NT)^*$.
- $\$ \in Follow(A)$ se $S \Rightarrow^* \alpha A$ (Poiché $S \Rightarrow^* S$, allora $\$ \in Follow(S)$!)

Riporto qui un esempio

Example 6.2.3

$$S \to Ab \mid c$$
$$A \to aA \mid \varepsilon$$

$$Follow(S) = \{\$\} \quad Follow(A) = \{b\}$$

- $S \Rightarrow^* S$
- $S \Rightarrow^* Ab$

Algorithm 8: Follow() Input: Una grammatica credo Output: bho 1 foreach $X \in NT$ do **2** | $First(X) \leftarrow \emptyset$; // per ogni X non terminale si inizializza il suo first a "0" **3** $Follow(S) \leftarrow \{\$\};$ 4 while almeno un Follow(X) può essere modificato in una iterazione do foreach $X \to \alpha Y \beta$ do $Follow(Y) \leftarrow Follow(Y) \cup (First(\beta) \setminus \{\epsilon\});$ foreach $X \to \alpha Y$ do 7 foreach $X \to \alpha \beta, \epsilon \in First(\beta)$ do 8 $Follow(Y) \leftarrow Folloe(Y) \cup Follow(X);$ 9

in pratica, occorre cercare tutte le produzioni in cui $Y \in NT$ appare e, per ognuna di esse, applicare la 1 o la 2 sopra

Example 6.2.4

Adesso che abbiamo introdotto i le procedure First e Follow occorre fare un passo in più per definire i parser

6.2.3 Parser per linguaggi LL(1)

tabella di parsing LL(1)

La tabella di parsing LL(1) è una struttura di dati usata nei parser sintattici molto utili per risolvere il non determinismo. Questi parser leggono l'input da sinistra a destra (da qui il primo "L" di "LL"), costruendo una derivazione sinistra, o leftmost (da qui il secondo "L") e usano un solo simbolo di lookahead (da cui il "(1)"). Questa tabella è formata da una **matrice bidimensionale** M che è formata da:

- righe: non-terminali
- colonne: terminali (incluso \$)
- casella (A, a): M[A, a] contiene le produzioni che possono essere scelte dal parser mentre tenta di espandere A e l'input corrente è a.

Se ogni casella contiene al più una produzione, allora il parser è deterministico!

Per riempire la tabella occorre procedere in questo modo:

Per ogni produzione $A \to \alpha$:

- 1. per ogni $a \in T$ e $a \in \text{First}(\alpha)$, inserisci $A \to \alpha$ nella casella M[A, a]
- 2. se $\varepsilon \in \text{First}(\alpha)$, inserisci $A \to \alpha$ in tutte le caselle M[A, x] per $x \in \text{Follow}(A)$ (x può essere \$)

Ogni casella vuota, dopo aver elaborato tutte le produzioni, è un errore (cioè la funzione ricorsiva chiama 'fail')

grammatica LL(1)

Definition 6.2.3: grammatica LL(1)

Una grammatica si definisce LL(1) sse ogni casella della tabella di parsing LL(1) contirne al più una produzione, ovvero non presenta conflitti

Si ha che se G = LL(1) allora il parser è predittivo e deterministico, questo perché il parser ricostruisce l'albero di derivazione per l'input w, in modo top-down, predicendo quale produzione usare (tra le molte possibili) guardando il prossimo carattere dell'input

Theorem 6.2.1

G è LL(1) sse per ogni coppia di produzioni distinte con la stessa testa

$$A \rightarrow \alpha | \beta$$

si ha che

- 1. $First(\alpha) \cap First(\beta) = \emptyset$
- 2. (a) $(\epsilon \in First(\alpha)) \implies (First(\beta) \cap Follow(A) = \emptyset)$
 - (b) $(\epsilon \in First(\beta)) \implies (First(\alpha) \cap Follow(A) = \emptyset)$

Dimostrazione: Se sono soddisfatte le condizione 1 e 2 per ogni coppia di produzioni distinte con medesima testa allora la tabella di parsing LL(1) contiene al più una prodizone in ogni cassella. Ma vale anche viceversa!

Linguaggio LL(1)

Definition 6.2.4: Linguaggio LL(1)

Un linguaggio si definisce $LL(1) \iff \exists G'$ grammatica = LL(1) che lo genera

Example 6.2.5

Sia G la segunete grammatica:

$$S \to A|B$$

$$A \to ab|cd$$

$$B \to ad|cb$$

Si può notare che G non è LL(1) dato che $S \to A|B$ e

$$First(A) = \{a, c\}$$

$$First(B) = \{a, c\}$$

$$First(A) \cap First(B) = \{a, c\}$$

Dal teorema sopra fornito si può dimostrare che non è LL(1)Tuttavia si può manipolarla per farla diventare LL(1), quindi espando S:

$$S \to ab|cd|ad|cb$$

$$S \to aT|cT'$$

$$T \to b|d$$

$$T' \to b|d$$

Poi osservo che T e T' sono identici, sia quindi G' la nuova grammatica:

$$S \to aT|cT$$
$$T \to b|d$$

Si può dimostrare che è LL(1), pertanto, per la definizione di linguaggio LL(1) e nonostante G non sia LL(1), si ha che $L(G) = \{ab, cd, ad, cb\}$ è un linguaggio LL(1) perché G' che lo genera è una grammatica LL(1)

Theorem 6.2.2

Ogni linguaggio regolare è generabile da una grammatica G di classe LL(1)

Dimostrazione: Sia L un linguaggio regolare, allora \exists DFA $M = (Q, \Sigma, \delta, q_0, F) : L = [M]$. A partira da M si può costruire una grammatica regolare G = (NT, T, S, R) basata sul seguente automa M:

- $NT = \{[q] | q \in Q\}$, cioè un non terminale per ogni stato q
- $T = \Sigma$ cioè un terminale per ogni simbolo dell'alfabeto
- \bullet $S=[q_0]$ simbolo iniziale lo stato iniziale
- R (insieme delle produzioni) è definito come:
 - se $\delta(q, a) = q'$, allora $[q] \to a[q'] \in R$ Infatti $\delta(q, a) = q'$ vuol dire che l'automa si trova allo stato q e legge in input a allora arriverà allo stato q', che viene "tradotto" nella grammatica $[q] \to a[q']$ che corrisponde ad una produzione in cui il non terminale [q] produce il terminale a e il non terminale [q'], per passare al non terminale [q'] occorre, infatti, fare match con a
 - se $q \in F$, allora $[q] \rightarrow \epsilon \in R$

Poi che M è deterministico, $\forall q \in Q \forall a \in \Sigma \quad \exists ! q'. q \xrightarrow{a} q'$, cioè [q] avrà una sola produzione $[q] \to a[q']$ che "inizia" per a e dato che se q è finale, allora $[q] \to \epsilon$ è applicabile solo per i Follow([q]) = {\$} \Longrightarrow nessun conflitto, dato che nessuna produzione genera \$, si ha che G è LL(1)

Example 6.2.6

Le produzioni corrispondenti sono:

$$\begin{aligned} [q_0] &\to a[q_1] \mid a[q_0] \\ [q_1] &\to a[q_0] \mid \epsilon \end{aligned}$$

La grammatica G è LL(1), perché:

$$\operatorname{First}(a[q_0]) \cap \operatorname{First}(\epsilon) = \emptyset, \quad \operatorname{First}(a[q_1]) \cap \operatorname{First}(\epsilon) = \emptyset$$

Riporto qui un esempio di tabella di parsing LL(1):

Example 6.2.7

Sia G la seguente grammatica:

$$\begin{split} E &\rightarrow TE' \\ E' &\rightarrow \varepsilon \mid + TE' \mid - TE' \\ T &\rightarrow AT' \\ T' &\rightarrow \varepsilon \mid *T \\ A &\rightarrow a \mid b \mid (E) \end{split}$$

Si può costruire la seguente tabella di First e Follow:

Produzione	First	Follow
Е	a,b,(\$,)
E'	+, -, ε	\$,)
T	a,b,(+,-,\$,)
T'	*, E	+,-,\$,)
A	a,b,(*,+,-,\$,)

Ed ecco a voi la tabella di parsing:

	а	b	(+	*	\$
Ε	$E \rightarrow TE'$	$E \rightarrow TE'$	$E \rightarrow TE'$			
E'				$E' \rightarrow +TE'$	$E' \rightarrow -TE'$	$E' \rightarrow \varepsilon$
T	$T \rightarrow AT'$	$T \rightarrow AT'$	$T \rightarrow AT'$			
T'				$T' \rightarrow \varepsilon$	$T' \to *T$	$T' \to \varepsilon$
A	$A \rightarrow a$	$A \rightarrow b$	$A \rightarrow (E)$			

```
Algorithm 9: Parser LL(1)
   Input: Stringa w
   Output: Niente
 1 Pila \leftarrow S\$;
                                                                                             // cima della pila a sinistra
 \mathbf{2} \ X \leftarrow S \; ;
                                                                                                           // top della pila
   // lettura in input
 sinput \leftarrow w;
 4 i_c = primo carattere dell'input;
   // viene eseguito il ciclo While finché la pila non è vuota o l'input non è stato consumato
 5 while X \neq \$ do
       if X è un terminale then
           // si controlla se X fa "match" con i_{\it c}
           if X = i_c then
 7
               Pop X dalla pila;
                                                                                                   // rimuovo X dalla pila
             avanza i_c sull'input;
 9
           else
10
            Errore();
11
                                                                                                                  // no match
       else
12
           // se nella tabella di Parsing M esiste una regola X \to Y_1, \dots, Y_n
           if M[X, i_c] = X \rightarrow Y_1, \dots, Y_n then
13
               Pop X dalla pila;
14
               Push Y_1, \ldots, Y_n sulla pila;
15
                                                                 // mette sulla pila i simboli Y_1, \ldots, Y_n con Y_1 in cima
               In output la produzione X \to Y_1, \dots, Y_n;
16
           else
17
               Errore ();
                                    // se non esiste una regola in M[X,i_{\scriptscriptstyle \mathbb C}] si genera un errore, viene definito caso
                 "bianco"
           X \leftarrow \text{top della pila};
                                                                   // Aggiorna X con il nuovo simbolo in cima alla pila
19
20 if i_c \neq \$ then
      Errore();
                                                                  // pila svuotata ma vi è ancora dell'input da leggere
\mathbf{21}
```

Un altro esempio:

Example 6.2.8

Sia G la seguente grammatica:

$$S \to aAB \mid bS$$

$$A \to a$$

$$B \to b$$

Che genera il seguente linguaggio

$$L(G) = L(b^*aab)$$

Si ha che questa grammatica G è LL(1), perché:

$$First(aAB) \cap First(bS) = \emptyset$$
, $\{a\} \cap \{b\} = \emptyset$

Si può prosegure con la tabella First e follow:

Simbolo	First	Follow
S	a,b	\$
A	а	b
В	b	\$

Da cui si può costruire la seguente tabella di parsing:

	а	b	\$
S	$S \rightarrow aAB$	$S \rightarrow bS$	
\boldsymbol{A}	$A \rightarrow a$		
В		$B \rightarrow b$	

Viene qui descritto il funzionamento del parser con pila con diversi input:

6.2.4 Parser per linguaggi LL(K)

grammatiche LL(K)

Le grammatiche LL(k) sono "un'estensione" del concetto di grammatiche LL(1), dove il parser ha la capacità di guardare in avanti fino a k simboli per determinare le scelte di parsing

Per questi tipi di grammatica gli insiemi First e Follow assumo significati diversi rispetto a alle grammatiche LL(K)

Definition 6.2.5: First LL(K)

L'insieme $First_k(\alpha)$ contiene tutte le stringhe di lunghezza k o minore derivabili dall'inizio di una produzione con α , in particolare $w \in First_k(\alpha) \iff \alpha \implies {}^*w\beta$ con $|w| = k, w \in T^*, \beta \in (T \cup NT)^*$ oppure $\alpha \Rightarrow {}^*w$ con $|w| \le k$ e $w \in T^*$

Definition 6.2.6: Follow LL(K)

L'insieme Follow_k(A) definisce quali stringhe possono apparire immediatamente dopo un simbolo non terminale A in una derivazione a partire dal simbolo iniziale S. In particolare: $w \in \text{Follow}_k(A)$ se $S \Rightarrow^* \alpha Aw\beta$ con |w| = k, $w \in T^*$, e $\alpha, \beta \in (T \cup NT)^*$, oppure, $S \Rightarrow^* \alpha Aw$ con $|w| \leq k$ e $w \in T^*$.

Tabella di Parsing LL(K)

- Righe: non terminali.
- Colonne: $\{w \in T^* \mid |w| \le k\}$ (solo quelle necessarie).

Per ogni produzione $A \to \alpha$, la tabella M[A, w] contiene:

- $A \to \alpha$, per ogni $w \in \text{First}_k(\alpha)$ $(w \neq \varepsilon)$;
- $w \in \text{Follow}_k(A)$ se $\varepsilon \in \text{First}_k(\alpha)$.

Ogni entrata/casella contiene al più una produzione. Se non esistono w_1 e w_2 tali che w_1 prefisso di w_2 con le due entrate corrispondenti su una riga entrambe riempite, allora G è una grammatica LL(k).

Nota Bene: Le colonne sono tante quante sono le stringhe w che appartengono a $\operatorname{First}_k(\alpha)$ per $A \to \alpha$ o a $\operatorname{Follow}_k(A)$ per $A \to \alpha$. Questo va verificato per tutte le produzioni:

$$w \in \operatorname{First}_k(\alpha)$$
.

Example 6.2.9

Sia G la seguente grammatica

$$S \rightarrow aSb \mid ab \mid c$$

Si ha che $L(G) = \{a^n b^n \mid n \ge 1\} \cup \{a^n c b^n \mid n \ge 0\}$, inoltre:

- $First_2(aSb) = \{aa, ac\}$
- $First_2(ab) = \{ab\}$
- $First_2(c) = \{c\}$

Si può dimostrare che G è LL(2) dato che:

- $First_2(aSb) \cap First_2(ab) = \emptyset$
- $First_2(aSb) \cap First_2(ab) = \emptyset$
- $First_2(aSb) \cap First_2(ab) = \emptyset$

Da cui si può ricavare la tabella di parsing:

Simbolo	aa	ab	ас	С
S	$S \rightarrow aSb$	$S \rightarrow ab$	$S \rightarrow aSb$	$S \rightarrow c$

Theorem 6.2.3

- Una grammatica ricorsiva sinistra non è LL(K) per nessun K
- Una grammatica ambigua non è LL(K)
- Se $G \in LL(K)$ per qualche k, allora G non è ambigua
- \bullet Se G è LL(K), allora L(G) è libero deterministico
- esiste L libero deterministico tale che non esiste G di classe LL(K) per nessun K, tale che L=L(G)

Viene qui riportato il funzionamento del parser con pila:

Linguaggio LL(K)

Definition 6.2.7: Linguaggio LL(K)

un linguaggio L è di classe LL(K) se G di classe LL(K) tale che L=L(G)

Theorem 6.2.4

 $\forall k \geq 0$, la classe dei linguaggi LL(K) contiene strettamente la classe dei linguaggi LL(K)

Note:

 $\forall k \geq 0$, la classe dei linguaggi LL(K+1) contiene strettamente la classe dei linguaggi LL(K)

Si ha che: $(\forall A \in NT, \exists! \alpha \in (T \cup NT)^*, A \rightarrow \alpha \implies G \in LL(0)) \implies L(G) = \{w\}$ ovvero una sola parola al massimo

Nella pratica tuttavia si usano solo LL(1), spesso la si può manipolare trasformandola in LL(1)

Example **6.2.10**

$$S \to Asb \mid ab \mid c$$

Gè un LL(2) ma non LL(1) Si fattorizza

$$S \to aT|c$$

$$T \to Sb|b$$

Ottenuta fattorizzando G è LL(1) infatti:

- $First(aT) \cap First(c) = \emptyset$
- $First(Sb) \cap First(b) = \emptyset$

Si ha che $L = \{a^nb^n \mid n \ge 1\} \cup \{a^ncb^n \mid n \ge 0\}$ è un linguaggio di classe LL(1) perché G' è LL(1)

Casi speciali

Sia

$$L = \{a^i b^j | i \ge j\}$$
 è libero deterministico

Ma non è LL(K) per nessun K!

Adesso, mostriamo una grammatica per L e dimostriamo che non è $\mathrm{LL}(\mathrm{K})$ per nessun K. Sia G la seguente grammatica:

$$S \to aS|B$$

$$B \to aBb|\epsilon$$

Sia G una grammatica libero per L

$$S \rightarrow aS \mid BB \rightarrow aBb \mid \epsilon$$

e poniamo L = L(G)

Per scegliere tra $S \to aS$ e $S \to B$ dovrei leggere fino in fondo l'input per sapere quante b in meno di a ci sono nella stringa! Allora G non può essere LL(k) per nessun k. Infatti quanto possa essere grande il K posso trovare una stringa più lunga che richiede di leggere più di k simboli di lookahead Non è tuttavia possibile alcuna G' e k tali che

$$L(G') = L \in G' \in L(K)$$

La dimostrazione non verrà illustrata

Chapter 7

Bottom up parser

Il **parser bottom up** è un tipo di analizzatore sintattico che che costruisce l'albero di derivazione partendo dalle foglie, viene anche detto **Shift-Reduce** in quanto possiede due operazioni fondamentali:

- Shift: un simbolo terminale viene spostato dall'input alla pila
- Reduce: una serie di simboli (terminali e non terminali) sulla cima della pila corrisponde al "reverse" di una parte destra di una produzione, ovvero:

$$A \to \alpha \in R - \alpha^R$$
 sulla pila

La stringa α^T viene rimossa dalla pila e sostituita con A, quindi α viene ridotta ad A

Possono essere di diversi tipi

7.1 Parser shift-reduce nondeterministico

Algorithm 10: Parser shift-reduce nondeterministico

Input: Una grammatica libera G con simbolo iniziale S e una stringa $w \in T^*$

Output: Una stringa $w \in T^*$

- 1 Inizializziamo la pila a \$;
- 2 Inizializziamo l'input con w\$;
- 3 usaimo il PDA seguente per trovare la derivazione per w\$:

$$M = (T, \{q\}, \underbrace{T \cup NT \cup \{\$\}}_{\Gamma: \text{ovvero i simboli sulla pila}}, \delta, \emptyset)$$

Dove:

- 1. $(q, aX) \in \delta(q, a, X) \forall A \in T \forall X \Gamma$ SHIFT
- 2. $(q, A) \in \delta(q, \epsilon, \alpha^R)$ se $A \in \alpha \in R$ REDUCE
- 3. $(q, \epsilon) \in \delta(q, \$, S\$)$ accept

ogni volta che facciamo "reduce", forniamo in output la produzione usata; alla fine, S\$ sulla pila, con \$ in input \implies accettiamo;

Note:

generalizzazione della def. di PDA dove non si consuma solo il top della pila, ma una serie di caratteri contigui a caminciare dal top

Example 7.1.1

Sia la seguente grammatica

$$E \rightarrow T \mid T + E \mid T - E$$

$$T \rightarrow A \mid A * T$$

$$A \rightarrow a \mid b \mid (E)$$

N.	Pila	Input	Azione	Output
1	\$	a + b * b\$	Shift	
2	\$ <i>a</i>	+ <i>b</i> * <i>b</i> \$	Reduce	$A \rightarrow a$
3	\$ <i>A</i>	+ <i>b</i> * <i>b</i> \$	Reduce	$T \to A$
4	\$T	+ <i>b</i> * <i>b</i> \$	Shift	
5	\$T+	b * b\$	Shift	
6	T + b	*b\$	Reduce	$A \rightarrow b$
7	T + A	*b\$	Shift	
8	T + A*	<i>b</i> \$	Shift	
9	T + A * b	\$	Reduce	$A \rightarrow b$
10	T + A * B	\$	Reduce	$T \to A * T$
11	T + A * T	\$	Reduce	$E \rightarrow T + T$
12	\$E	\$	Reduce	$E \rightarrow T + T$
13	\$E	\$	Accept	

Si ha che:

$$E \implies T + E \implies T + T \implies T + A * T \implies T + A * A \implies T + A * b \implies T + b * b \implies A + b * b \implies a + b * b$$

Il cui albero è:

Le cui proprietà sono:

Costruzione dell'albero di derivazione bottom-up

Derivazione canonica a destra a rovescio

forte non-determinismo:

• conflitti shift-reduce:

$$-\$a + b*b\$$$
 shift

$$- \$a + b * b\$$$

• Conflitti reduce-reduce

$$-$$
 \$T + A * T \$ reduce $E \rightarrow T$

$$- T + A * E$$
\$

Note:

Si noti quindi che questo tipo parser genera moltissimi confilitti, in diverse sistuazioni era appunto possibile scegliere strade che non portano a riconoscere la stringa. F

Per "risolvere" tale nondeterminismo occorre fornire al PDA una tabella parsing (struttura di controllo) che "aiuti" a scegliere l'azione giusta, ed è grazie all'uso di questa che nascono i cosiddetti $parser\ LR$

7.2 Parser LR

Definition 7.2.1: Parser LR

Il **parser LR** è un tipo di analizzatore sintattico che utilizza un approccio bottom-up per analizzare un input e verificare se appartiene al linguaggio generato da una grammatica libera. Il termine LR indica che:

- L: sta per left-to-right: l'analisi dell'input avviene da sinistra a destra
- R: sta per Rightmost derivation: l'analisi ricostruisce una derivazione più a destra in senso inverso

Presento, qui uno schema bellino bellino:

Input:

dove una configurazione di tale parser è:

$$(s_0,\ldots,s_n,x_1\ldots x_m,a_1\ldots a_k\$)$$

Note:

 $x_1 \dots x_m a_1 \dots a_k$ è una stringa intermedia della derivazione canonica destra

7.2.1 Funzionamento del parsing LR

il parser LR funzione nel seguente modo:

- 1. Legge lo stato nel top della pila s_n e il simbolo corrente dell'input a_i
- 2. consulta la tabella di parsing LR $M[s_n, a_i]$
 - Se $M[s_n, a_i] = \text{shift } s$, allora la nuova configurazione è:

$$(s_0 \ldots s_n \underline{s}, x_1 \ldots x_n \underline{a_i}, a_{i+1} \ldots a_k \$)$$

• Se $M[s_n, a_i] = \underline{\text{reduce } A \to B}$, allora la nuova configurazione è

$$(s_0 \ldots s_{n-r}\underline{s}, x_1 \ldots x_{m-r}A, a_i \ldots a_k\$)$$

Dove $r = |\beta| \in M[s_{n-r}, A] = goto \underline{s}$

Cioè fa tre passi:

- (a) faccio "pop" di r elementi dai 2 stack
- (b) metto A in cima alla pila dei simboli
- (c) calcolo il nuovo stato top, guardando

 $M[s_{n-r}, A] = goto s$ e metto s in cima alla pila degli stati

- se $M[s_n, a_i] = accept \implies$ fine!
- se $M[s_n, a_i] = "bianco" \implies$ errore!

Example 7.2.1

Sia G la seguente grammatica:

$$S' \to S$$

 $Senza \to (S)$
 $S \to ()$

Assumendo che siamo già forniti di questa Tabella di Parsing

Stato	Azione			Goto
	()	\$	S
0	S2			<i>g</i> 1
1			Accept	g1 g3
2	S2	S5		
3		S4		
4	r2	r2	r2	
5	r3	r3	r3	

Esecuzione del Parsing

Stato della pila	Stack simboli	Input	Azione	Output
(0	ε	(())\$	S2	_
(0, 2	(())\$	S2	_
(0, 2, 2)	(())\$	S5	_
(0, 2, 2, 5)	(())\$	r3	$S \rightarrow ()$
(0, 2, 3)	(S)\$	S4	_
(0, 2, 3, 4)	(S)	\$	r2	$S \rightarrow (S)$
(0, 1	S	\$	Accept	_

Tuttavia una domanda lecita è come si fa trovare questa tabella di parsing, bhe prima di presentarla occorre definire un automa dei prefissi variabili

7.2.2 DFA a prefissi variabili

Definition 7.2.2: prefisso variabile

un prefisso variabile è una stringa $\in (T \cup NT)^*$ che può apparire sulla pila di un parser bottom-up per una computazione che accetta un input

Definition 7.2.3: prefisso viabile su una grammatica G libera

si definisce prefisso viabile su una grammatica G libera una stringa $\gamma \in (T \cup NT)^*$ sse esiste una derivazione rightmost

$$S \implies {}^*\delta Ay \implies \delta \alpha \beta y = \gamma \beta y$$

Dove:

- $y \in T^*$
- $\delta \in (T \cup NT)^*$
- esiste una produzione $A \to \alpha\beta$

Inoltre S è un prefisso variabile per definizione

Definition 7.2.4: prefisso variabile completo e maniglia

un prefisso viabile si dice completo se $\beta = \epsilon$, in tal caso α è detta maniglia per $\gamma\gamma$

Dopo sta sborodolata di definizioni si possa al teorema che lega i prefissi variabili con i DFA:

Theorem 7.2.1

Data G libera, i prefissi viabili di G costituiscono un linguaggio regolare e può essere descritto con un DFA. detto **DFA a prefissi viabili o automa canonico** LR(0)

Pertanto si ha questo corollario

Corollary 7.1

parser può consultare il DFA dei prefissi viabili (ovvero la tabella di parsing) per decidere cosa fare:

- se la pila contiene un prefisso viabile completo il parser riduce
- $\bullet\,$ se la pila contiene un prefisso viabile incompleto, allora il parser shifta
- se la pila non contiene un prefisso viabile, allora viene dato un errore

In base a come è fatto questo DFA (che eventualmente può usare informazioni di look-ahead e dei follow) il parser può risultare deterministico o meno

Si noti, inoltre la seguente osservazione

Note: |

si può dimostrare che un prefisso di un prefisso viabile è un prefisso viabile pertanto si ha che non è necessario ripartire da capo quando viene modificata la pila (ovvero il parser)

infatti la pila viene modificata in due modi:

- 1. **shift**: la pila passa da y a y. Dato che si trova in uno stato s dopo aver elaborato un y, occorre soltanto far ripartire il DFA da s con input s
- 2. la pila passa da $\$\gamma\alpha$ a $\$\gamma A$. Dato che si trova in uno stato s dopo aver elaborato $\$\gamma\alpha$, non c'è bisogno di far ripartire il DFA dalla base della pila, ma basta ripristinare lo stato in cui si trovava subito prima di elaborare il primo simbolo di α e fornirgli il simbolo A in input

Pertanto occorre lo stack degli stati del DFA!

Adesso introduciamo degli elementi fondamentali per l'automa canonico LR(0)

7.2.3 Item LR(0)

Definition 7.2.5: Item LR(0)

Un item LR(0) è una produzione con indicata, con un punto, una posizione sulla sua parte destra

Example 7.2.2

La produzione $A \to XYZ$ genera 4 item diversi:

$$\begin{array}{l} A \rightarrow .XYZ \\ A \rightarrow X.YZ \\ A \rightarrow XY.Z \\ A \rightarrow XYZ. \end{array}$$

In questo caso l'item $A \rightarrow .XYZ$ è un item iniziale

La posizione del "." indica no a dove abbiamo gia analizzato di questa produzione, per questo abbiamo che:

- Se l'item $A \to \alpha.\beta$ è nello stato attuale del DFA vuol dire che α è in cima sulla pila dei simboli e che stiamo aimo aspettando β
- Se invece abbiamo $A \to \alpha$. Vuol dire che abbiamo letto tutta la produzione e possiamo fare una reduce

7.2.4 Costruire l'NFA dei prefissi variabili

Per costruire il DFA dei prefissi variabili occorre prima costruire il suo corrispettivo NFA. Data G = (NT, T, S, R) libera, l'NFA dei prefissi variabili di G si costruisce partendo con un nuovo simbolo iniziale S' ed una produzione $S' \to S$, inoltre;

- $[S' \rightarrow .S]$ è lo stato iniziale
- dallo stato $[A \to \alpha.X\beta]$ c'è una transizione dello stato $[A \to \alpha X.\beta]$ etichettata X, per $X \in T \cup NT$
- dallo stato $[A \to \alpha X.\beta]$, per $X \in NT$ e per ogni produzione $X \to \gamma$, c'è una ϵ -transazione verso lo stato $[X \to .\gamma]$

Note:

non serve definire degli stati finali, perché l'NFA come ausilio al parser

Example 7.2.3

$$S' \to S$$

$$S \to (S)$$

$$S \to ()$$

Tale grammatica mi diventa

$$S' \to .S \mid S.$$

 $S \to .(S) \mid (.S) \mid (S.) \mid (S).$
 $S \to .() \mid (.) \mid ().$

Ed il corrispettivo automa è:

7.3 Automa canonico LR(0)

l'automa canonico LR(0) è il DFA DFA dei prefissi viabili. Per ottenerlo ci sono due metodi:

- Costruire prima l'NFA e poi con la costruzione di sooinsiemi oenere il DFA
- In un modo diretto usando due funzioni ausiliarle chiamate clos(I) e goto(I, X) dove I è un insieme di item e $X \in T \cup NT$

7.3.1 Costruzione diretta dell'automa canonico LR(0)

Andiamo prima a definire le due funzioni clos(I) e goto(I, X):

Clos()

```
Algorithm 11: Clos()

Input: I
Output: I

1 while I non \hat{e} più modificato do

2 | foreach item A \rightarrow \alpha.X\beta \in I do

3 | foreach produzione X \rightarrow \gamma do

4 | aggiungi X \rightarrow, \gamma ad I;

5 return I;
```

Si può notare come aggiungo ad I tui gli item che sarebbero stati raggiungibili nel NFA con mosse ϵ

Goto()

ciao

Algorithm 12: Goto

```
Input: Insieme di item I \in X \in (T \cup NT)
Output: Insieme J di item completi

1 J \leftarrow \emptyset;
2 foreach item \ A \rightarrow \alpha.X\beta \in I do

3 aggiungi \ A \rightarrow aX.\beta \ a \ J; // scorre tutti i punti, creando un nuovo nodo dove il punto si è mosso

4 return clos(j); // restituisce la closure del j appena creato
```

algoritmo per il lacolo del DFA LR(0)

Date queste due funzioni adesso possiamo costruire l'automa DFA direamente:

Algorithm 13: DFA LR(0)

```
1 S \leftarrow \{clos(\{S' \rightarrow .S\})\};

2 \delta \leftarrow \emptyset;

3 while S o \delta non sono più modificati do

4 | for each I \in S do

5 | for each item\ A \rightarrow \alpha.X\beta \in I do

6 | J \leftarrow Goto(I,X);

7 | Aggiungi J a S;

8 | Aggiungi \delta(I,X) \leftarrow J a \delta;
```

7.4 tabella di parsing LR

Definition 7.4.1: Tabella di parsing LR

Si definisce la tabella di parsign LR una matrice bidimensionale M tale che:

- le righe rappresentantano gli stati dell'automa canoninco LR(0)/LR(1)
- le colonne $T \cup \{\$\} \cup NT$

inoltre si ha che:

- M[s,X] contiene le azioni che può compiere un parser LR con S in cima alla pila degli stati e x simbolo in inpu (o nonterminale)
- Se M[s, X] è "bianca" / vuota, allora ERRORE
- Se M[s,X] contiene più automi, allora CONFLITTO

7.4.1 Riempire la tabella di parsing

La tabella di parsing si riempe in base all'automa canonico LR(0). Per ogni stato s va ripetuta la seguente cosa:

- se $x \in T$ e $S \to t$ nell'automa LR(0), inserisci shift in M[s,x]
- se $A \to \alpha \in S$ e $A \neq S'$, inserisci reduce $A \to alpha$ in M[s,x] per tutti gli $x \in T \cup \{\$\}$
- se $A \in NT$ e S nell'automa LR('), inserisci goto f

Definition 7.4.2: Grammatica di classe LR(0)

una grammatica viene definita di classe LR(0) se ogni casella nella tabella di parsing LR(0) contiene al più un elemento

7.5 Algoritmo del parser

Il parser data la tabella di parsing LR esegue questo algoritmo per calcolare l'albero di derivazione. questo algoritmo e per un generico parser LR (quindi funziona anche per LR(k))

Algorithm 14: Parser LR

```
1 Inizializza la pila con s_0;
2 inizializza i_c con il primo carattere in input;
з while true do
       S \leftarrow Top(pila);
       if M[S, i_c] == shift\ t then
 5
           push t sulla pila;
 6
 7
           avanza i_c sull'input;
       if M[S, i_c] == accept then
 8
        output("accept");
       if M[S, i_c] == reduceA \rightarrow \alpha then
10
           pop |\alpha| stati dalla pila;
11
           s_1 \leftarrow Top(pila);
12
           s_2 = M[s_1, A];
13
           push s_2 sulla pila;
                                                                                             // s_2 è lo stato dato al goto
           \operatorname{output}(A \to \alpha)
15
       if M[S, i_c] == " then
16
          errore();
                                                                                                            // casella vuota
17
```

zio pera