Extremal graph theory Graphons Nonstandard analysis Measure algebras Hyperfinite graphs

Hyperfinite graphs and graphons

Shichang Song

Beijing Jiaotong University

21 October 2022

.

Outline

- Extremal graph theory
 - Turán problem
 - Szemerédi theorem
- ② Graphons
 - Graph homomorphisms
 - Graphons
- Nonstandard analysis
 - Hyperfinite set
 - Loeb measure
- Measure algebras
 - Maharam's Theorem
- 6 Hyperfinite graphs
 - Lebesgue sample
 - Main Theorem

 Extremal graph theory studies graphs that satisfy some extremal problems.

• If a graph with n vertices contains no triangle, then how many edges can it have at most?

Mantel solved this problem in 1907.

 Extremal graph theory studies graphs that satisfy some extremal problems.

• If a graph with n vertices contains no triangle, then how many edges can it have at most?

Mantel solved this problem in 1907.

 Extremal graph theory studies graphs that satisfy some extremal problems.

• If a graph with n vertices contains no triangle, then how many edges can it have at most?

Mantel solved this problem in 1907.

Turán problem

Theorem (Mantel, 1907)

If a graph with n vertices has more than $\frac{n^2}{4}$ edges, then it must contain a triangle.

Theorem (Turán, 1941)

If a graph with n vertices has more than $\frac{(k-2)n^2}{2(k-1)}$ edges, then it must contain a k-clique (a.k.a. k-complete graph).

Remark

Turán problem: Let G and H be two graphs. If G is H-free, then how many edges can G have at most?

Turán problem

Theorem (Mantel, 1907)

If a graph with n vertices has more than $\frac{n^2}{4}$ edges, then it must contain a triangle.

Theorem (Turán, 1941)

If a graph with n vertices has more than $\frac{(k-2)n^2}{2(k-1)}$ edges, then it must contain a k-clique (a.k.a. k-complete graph).

Remark

Turán problem: Let G and H be two graphs. If G is H-free, then how many edges can G have at most?

Turán problem

Theorem (Mantel, 1907)

If a graph with n vertices has more than $\frac{n^2}{4}$ edges, then it must contain a triangle.

Theorem (Turán, 1941)

If a graph with n vertices has more than $\frac{(k-2)n^2}{2(k-1)}$ edges, then it must contain a k-clique (a.k.a. k-complete graph).

Remark

Turán problem: Let G and H be two graphs. If G is H-free, then how many edges can G have at most?

Erdős' work

 Erdős studied extremal graph theory via probabilistic methods; random graphs.

Erdős-Turán Conjecture.

 Solved by Szemerédi in 1975 using pure combinatorial methods.

Erdős' work

 Erdős studied extremal graph theory via probabilistic methods; random graphs.

Erdős-Turán Conjecture.

 Solved by Szemerédi in 1975 using pure combinatorial methods.

Erdős' work

 Erdős studied extremal graph theory via probabilistic methods; random graphs.

Erdős-Turán Conjecture.

 Solved by Szemerédi in 1975 using pure combinatorial methods.

Szemerédi theorem

The upper density of $A \subseteq \mathbb{Z}$ is

$$\limsup_{n\to\infty}\frac{|A\cap\{1,2,3,\dots,n\}|}{n}.$$

Theorem

Every subset of integers with positive upper density contains arbitrarily long arithmetic progressions.

Szemerédi theorem

The upper density of $A \subseteq \mathbb{Z}$ is

$$\limsup_{n\to\infty}\frac{|A\cap\{1,2,3,\ldots,n\}|}{n}.$$

Theorem

Every subset of integers with positive upper density contains arbitrarily long arithmetic progressions.

Szemerédi theorem

The upper density of $A \subseteq \mathbb{Z}$ is

$$\limsup_{n\to\infty}\frac{|A\cap\{1,2,3,\ldots,n\}|}{n}.$$

Theorem

Every subset of integers with positive upper density contains arbitrarily long arithmetic progressions.

Nonstandard methods

- G. Elek and B. Szegedy, A measure-theoretic approach to the theory of dense hypergraphs, Adv. Math. 231 (2012), 1731–1772.
- T. Tao, *Hilbert's fifth problem and related topics*, Graduate Studies in Mathematics 153.

Nonstandard methods

- G. Elek and B. Szegedy, A measure-theoretic approach to the theory of dense hypergraphs, Adv. Math. 231 (2012), 1731–1772.
- T. Tao, Hilbert's fifth problem and related topics, Graduate Studies in Mathematics 153.

- Let G and H be two graphs. Let hom(H, G) denote the number of homomorphisms from H to G.
- The homomorphism density from *H* to *G* is

$$t(H,G) = \frac{\text{hom}(H,G)}{|V(G)|^{|V(H)|}}$$

- $t(K_2, G) \approx$ the edge density of G.
- Let C_4 denote 4-cycles, which is exactly \square .

- Let G and H be two graphs. Let hom(H, G) denote the number of homomorphisms from H to G.
- The homomorphism density from H to G is

$$t(H,G) = \frac{\mathsf{hom}(H,G)}{|V(G)|^{|V(H)|}}.$$

- $t(K_2, G) \approx$ the edge density of G.
- Let C_4 denote 4-cycles, which is exactly \square .

- Let G and H be two graphs. Let hom(H, G) denote the number of homomorphisms from H to G.
- The homomorphism density from H to G is

$$t(H,G) = \frac{\mathsf{hom}(H,G)}{|V(G)|^{|V(H)|}}.$$

- $t(K_2, G) \approx$ the edge density of G.
- Let C_4 denote 4-cycles, which is exactly \square .

- Let G and H be two graphs. Let hom(H, G) denote the number of homomorphisms from H to G.
- The homomorphism density from H to G is

$$t(H,G) = \frac{\mathsf{hom}(H,G)}{|V(G)|^{|V(H)|}}.$$

- $t(K_2, G) \approx$ the edge density of G.
- Let C_4 denote 4-cycles, which is exactly \square .

Problem How many 4-cycles must a graph with edge density at least ½ have?

Theorem (Erdős, 1938)

$$t(C_4,G)\geq t(K_2,G)^4.$$

In particular, if $t(K_2, G) \ge \frac{1}{2}$, then $t(C_4, G) \ge \frac{1}{16}$.

Problem How many 4-cycles must a graph with edge density at least ½ have?

Theorem (Erdős, 1938)

$$t(C_4,G) \geq t(K_2,G)^4.$$

In particular, if $t(K_2, G) \ge \frac{1}{2}$, then $t(C_4, G) \ge \frac{1}{16}$.

- There exist graph sequences $\{G_n\}_{n\in\mathbb{N}}$ such that $t(K_2,G_n)\geq \frac{1}{2}$ and $t(C_4,G_n)\rightarrow \frac{1}{16}$.
- $\inf_G t(C_4, G) = \frac{1}{16}$.
- However, no finite graph with edge density $\geq \frac{1}{2}$ has 4-cycles density exactly $\frac{1}{16}$.
- The minimum will never be achieved.

- There exist graph sequences $\{G_n\}_{n\in\mathbb{N}}$ such that $t(K_2,G_n)\geq \frac{1}{2}$ and $t(C_4,G_n)\rightarrow \frac{1}{16}$.
- $\inf_G t(C_4, G) = \frac{1}{16}$.
- However, no finite graph with edge density $\geq \frac{1}{2}$ has 4-cycles density exactly $\frac{1}{16}$.
- The minimum will never be achieved.

- There exist graph sequences $\{G_n\}_{n\in\mathbb{N}}$ such that $t(K_2,G_n)\geq \frac{1}{2}$ and $t(C_4,G_n)\rightarrow \frac{1}{16}$.
- $\inf_G t(C_4, G) = \frac{1}{16}$.
- However, no finite graph with edge density $\geq \frac{1}{2}$ has 4-cycles density exactly $\frac{1}{16}$.
- The minimum will never be achieved.

- There exist graph sequences $\{G_n\}_{n\in\mathbb{N}}$ such that $t(K_2,G_n)\geq \frac{1}{2}$ and $t(C_4,G_n)\rightarrow \frac{1}{16}$.
- $\inf_G t(C_4, G) = \frac{1}{16}$.
- However, no finite graph with edge density $\geq \frac{1}{2}$ has 4-cycles density exactly $\frac{1}{16}$.
- The minimum will never be achieved

- There exist graph sequences $\{G_n\}_{n\in\mathbb{N}}$ such that $t(K_2,G_n)\geq \frac{1}{2}$ and $t(C_4,G_n)\rightarrow \frac{1}{16}$.
- $\inf_G t(C_4, G) = \frac{1}{16}$.
- However, no finite graph with edge density $\geq \frac{1}{2}$ has 4-cycles density exactly $\frac{1}{16}$.
- The minimum will never be achieved.

- In 2006, Lovász and Szegedy introduced the notion of graphon, short for graph function.
- A graphon is a limit of a sequence of finite graphs as the vertices goes to infinity.
- However, a graphon is not always a graph.
- A graphon is a symmetric Lebesgue measurable function from [0, 1]² to [0, 1].

- In 2006, Lovász and Szegedy introduced the notion of graphon, short for graph function.
- A graphon is a limit of a sequence of finite graphs as the vertices goes to infinity.
- However, a graphon is not always a graph.
- A graphon is a symmetric Lebesgue measurable function from [0, 1]² to [0, 1].

- In 2006, Lovász and Szegedy introduced the notion of graphon, short for graph function.
- A graphon is a limit of a sequence of finite graphs as the vertices goes to infinity.
- However, a graphon is not always a graph.
- A graphon is a symmetric Lebesgue measurable function from [0, 1]² to [0, 1].

- In 2006, Lovász and Szegedy introduced the notion of graphon, short for graph function.
- A graphon is a limit of a sequence of finite graphs as the vertices goes to infinity.
- However, a graphon is not always a graph.
- A graphon is a symmetric Lebesgue measurable function from [0, 1]² to [0, 1].

Why a function from $[0, 1]^2$ to [0, 1]?

Figure: Source: D. Glasscock

FIGURE 1.7. A half-graph, its pixel picture, and the limit function

Figure: Source: L. Lovász

The homomorphism density of a graphon

- Let $W: [0,1]^2 \rightarrow [0,1]$ be a symmetric Lebesgue measurable function, i.e., a graphon.
- The edge density of W is defined as

$$t(K_2, W) = \int_{[0,1]^2} W(x, y) dx dy.$$

The 4-cycles density of W is defined as

$$t(C_4, W) = \int_{[0.1]^4} W(x, y) W(y, z) W(z, w) W(w, x) dxdydzdw.$$

• Similarly, we define the homomorphism density t(H, W) from finite graph H to graphon W.

The homomorphism density of a graphon

- Let $W: [0,1]^2 \rightarrow [0,1]$ be a symmetric Lebesgue measurable function, i.e., a graphon.
- The edge density of W is defined as

$$t(K_2, W) = \int_{[0,1]^2} W(x, y) dx dy.$$

The 4-cycles density of W is defined as

$$t(C_4, W) = \int_{[0.1]^4} W(x, y) W(y, z) W(z, w) W(w, x) dxdydzdw.$$

• Similarly, we define the homomorphism density t(H, W) from finite graph H to graphon W.

The homomorphism density of a graphon

- Let $W: [0,1]^2 \rightarrow [0,1]$ be a symmetric Lebesgue measurable function, i.e., a graphon.
- The edge density of W is defined as

$$t(K_2, W) = \int_{[0,1]^2} W(x, y) dxdy.$$

The 4-cycles density of W is defined as

$$t(C_4, W) = \int_{[0.1]^4} W(x, y)W(y, z)W(z, w)W(w, x)dxdydzdw.$$

• Similarly, we define the homomorphism density t(H, W) from finite graph H to graphon W.

The homomorphism density of a graphon

- Let $W: [0,1]^2 \rightarrow [0,1]$ be a symmetric Lebesgue measurable function, i.e., a graphon.
- The edge density of W is defined as

$$t(K_2, W) = \int_{[0,1]^2} W(x, y) dx dy.$$

• The 4-cycles density of W is defined as

$$t(C_4, W) = \int_{[0,1]^4} W(x,y)W(y,z)W(z,w)W(w,x)dxdydzdw.$$

 Similarly, we define the homomorphism density t(H, W) from finite graph H to graphon W.

Random graphs

Let R_n denote a random graph with edge density $\frac{1}{2}$.

Observation: $R_n \to W \equiv \frac{1}{2}$.

Random graphs

Let R_n denote a random graph with edge density $\frac{1}{2}$.

Observation: $R_n \to W \equiv \frac{1}{2}$.

Random graphs

Let R_n denote a random graph with edge density $\frac{1}{2}$.

Observation: $R_n \to W \equiv \frac{1}{2}$.

• Let $W \equiv \frac{1}{2}$.

$$t(K_2, W) = \int_{[0,1]^2} W(x, y) dx dy = \frac{1}{2}.$$

$$t(C_4, W) = \int_{[0,1]^4} W(x, y)W(y, z)W(z, w)W(w, x)dxdydzdw$$
$$= \frac{1}{16}.$$

• Let $W \equiv \frac{1}{2}$.

$$t(K_2, W) = \int_{[0,1]^2} W(x,y) dx dy = \frac{1}{2}.$$

$$t(C_4, W) = \int_{[0,1]^4} W(x, y)W(y, z)W(z, w)W(w, x)dxdydzdw$$
$$= \frac{1}{16}.$$

• Let $W \equiv \frac{1}{2}$.

$$t(K_2, W) = \int_{[0,1]^2} W(x, y) dx dy = \frac{1}{2}.$$

•

$$t(C_4, W) = \int_{[0,1]^4} W(x, y)W(y, z)W(z, w)W(w, x)dxdydzdw$$
$$= \frac{1}{16}.$$

• Let $W \equiv \frac{1}{2}$.

$$t(K_2, W) = \int_{[0,1]^2} W(x, y) dx dy = \frac{1}{2}.$$

•

$$t(C_4, W) = \int_{[0,1]^4} W(x, y)W(y, z)W(z, w)W(w, x)dxdydzdw$$
$$= \frac{1}{16}.$$

- An object A in the nonstandard universe V(*X) is an internal set if there is B ∈ V(X) such that A ∈ *B.
- A subset of *X is an external set if it's not internal.
- Boolean combinations of internal sets are internal
- Every standard element is internal.
- Let $f: \mathbb{X} \to \mathbb{X}$ be a function and let A be an internal set. Then f(A) and f(A) are internal.

- An object A in the nonstandard universe V(*X) is an internal set if there is B ∈ V(X) such that A ∈ *B.
- A subset of *X is an external set if it's not internal.
- Boolean combinations of internal sets are internal.
- Every standard element is internal.
- Let $f: \mathbb{X} \to \mathbb{X}$ be a function and let A be an internal set. Then f(A) and f(A) are internal.

- An object A in the nonstandard universe V(*X) is an internal set if there is B ∈ V(X) such that A ∈ *B.
- A subset of *X is an external set if it's not internal.
- Boolean combinations of internal sets are internal.
- Every standard element is internal.
- Let $f: \mathbb{X} \to \mathbb{X}$ be a function and let A be an internal set. Then f(A) and f(A) are internal.

- An object A in the nonstandard universe V(*X) is an internal set if there is B ∈ V(X) such that A ∈ *B.
- A subset of *X is an external set if it's not internal.
- Boolean combinations of internal sets are internal.
- Every standard element is internal.
- Let $f: \mathbb{X} \to \mathbb{X}$ be a function and let A be an internal set. Then f(A) and f(A) are internal.

- An object A in the nonstandard universe V(*X) is an internal set if there is B ∈ V(X) such that A ∈ *B.
- A subset of *X is an external set if it's not internal.
- Boolean combinations of internal sets are internal.
- Every standard element is internal.
- Let $f: \mathbb{X} \to \mathbb{X}$ be a function and let A be an internal set. Then f(A) and f(A) are internal.

Figure: Source: N. Cutland

Hyperfinite sets

An internal set A is *hyperfinite* if there is an internal bijection $f: \{1, 2, \cdots, H\} \to A$ for some $H \in {}^*\mathbb{N}$. In fact, this H is unique. We use |A| to denote the internal cardinality H of A.

Hyperfinite sets in nonstandard extensions correspond to finite sets in standard math.

Hyperfinite sets

An internal set A is *hyperfinite* if there is an internal bijection $f: \{1, 2, \cdots, H\} \to A$ for some $H \in {}^*\mathbb{N}$. In fact, this H is unique. We use |A| to denote the internal cardinality H of A.

Hyperfinite sets in nonstandard extensions correspond to finite sets in standard math.

Internal finitely additive measure space

A triple (Ω, \mathcal{A}, P) is an internal finitely additive measure space if it satisfies

- Ω is internal
- $oldsymbol{2}$ \mathcal{A} is an internal subalgebra on Ω
- **③** $P: A \to {}^*\mathbb{R}$ is an internal function that satisfies:
 - (a) $P(\emptyset) = 0$;
 - (b) $P(\Omega) = 1$;
 - (c) P is finitely additive, i.e.,

$$P(A \cap B) = P(A) + P(B) - P(A \cap B).$$

Remark

- zero probability event and infinitesimal probability event are different.
- st ∘ P is not countably additive.

Internal finitely additive measure space

A triple (Ω, \mathcal{A}, P) is an internal finitely additive measure space if it satisfies

- Ω is internal
- 2 \mathcal{A} is an internal subalgebra on Ω
- **③** $P: A \to {}^*\mathbb{R}$ is an internal function that satisfies:
 - (a) $P(\emptyset) = 0$;
 - (b) $P(\Omega) = 1$;
 - (c) P is finitely additive, i.e.,

$$P(A \cap B) = P(A) + P(B) - P(A \cap B).$$

Remark

- zero probability event and infinitesimal probability event are different.
- st ∘ P is not countably additive.

Loeb theorem

Theorem (Loeb, 1975)

Let (Ω, A, P) be an internal finitely additive probability space. Then there is a (standard) countably additive probability space (Ω, A_L, P_L) satisfying

- $A_L \supseteq A$ is a σ -algebra
- $P_I = \operatorname{st} \circ P \text{ in } A$
- for every $A \in A_L$ and positive $\epsilon \in \mathbb{R}$, there are $B, C \in A$ such $B \subseteq A \subseteq C$ and $P(C \setminus B) < \epsilon$
- for every $A \in A_L$, there is $B \in A$ such that $P_L(A \triangle B) = 0$ We call (Ω, A_L, P_L) Loeb probability space.

- Take $H \in {}^*\mathbb{N} \setminus \mathbb{N}$, consider $\Omega = \{0, \frac{1}{H}, \frac{2}{H}, \cdots, \frac{H-1}{H}\}$.
- Ω is a hyperfinite space. Let \mathcal{A} be the collection of internal subsets of Ω . For every $A \in \mathcal{A}$, define $\nu(A) = \frac{|A|}{|H|}$, where $|\cdot|$ is internal cardinality. We call ν the counting measure on Ω .
- (Ω, A, ν) is an internal finitely additive probability space.
- By Loeb Theorem, we get the uniform hyperfinite Loeb probability space (Ω, A_L, ν_L) .
- push-forward measure $\mathrm{st}_*(\nu_L) = \lambda$ (Lebesgue measure).

- Take $H \in {}^*\mathbb{N} \setminus \mathbb{N}$, consider $\Omega = \{0, \frac{1}{H}, \frac{2}{H}, \cdots, \frac{H-1}{H}\}$.
- Ω is a hyperfinite space. Let $\mathcal A$ be the collection of internal subsets of Ω . For every $A \in \mathcal A$, define $\nu(A) = \frac{|A|}{|H|}$, where $|\cdot|$ is internal cardinality. We call ν the counting measure on Ω .
- (Ω, A, ν) is an internal finitely additive probability space.
- By Loeb Theorem, we get the uniform hyperfinite Loeb probability space (Ω, A_L, ν_L) .
- push-forward measure $\mathrm{st}_*(\nu_L) = \lambda$ (Lebesgue measure).

- Take $H \in {}^*\mathbb{N} \setminus \mathbb{N}$, consider $\Omega = \{0, \frac{1}{H}, \frac{2}{H}, \cdots, \frac{H-1}{H}\}$.
- Ω is a hyperfinite space. Let $\mathcal A$ be the collection of internal subsets of Ω . For every $A \in \mathcal A$, define $\nu(A) = \frac{|A|}{|H|}$, where $|\cdot|$ is internal cardinality. We call ν the counting measure on Ω .
- $(\Omega, \mathcal{A}, \nu)$ is an internal finitely additive probability space.
- By Loeb Theorem, we get the uniform hyperfinite Loeb probability space (Ω, A_L, ν_L) .
- push-forward measure $\mathrm{st}_*(\nu_L) = \lambda$ (Lebesgue measure).

- Take $H \in {}^*\mathbb{N} \setminus \mathbb{N}$, consider $\Omega = \{0, \frac{1}{H}, \frac{2}{H}, \cdots, \frac{H-1}{H}\}$.
- Ω is a hyperfinite space. Let \mathcal{A} be the collection of internal subsets of Ω . For every $A \in \mathcal{A}$, define $\nu(A) = \frac{|A|}{|H|}$, where $|\cdot|$ is internal cardinality. We call ν the counting measure on Ω .
- $(\Omega, \mathcal{A}, \nu)$ is an internal finitely additive probability space.
- By Loeb Theorem, we get the uniform hyperfinite Loeb probability space (Ω, A_L, ν_L) .
- push-forward measure $\mathrm{st}_*(\nu_L) = \lambda$ (Lebesgue measure).

- Take $H \in {}^*\mathbb{N} \setminus \mathbb{N}$, consider $\Omega = \{0, \frac{1}{H}, \frac{2}{H}, \cdots, \frac{H-1}{H}\}$.
- Ω is a hyperfinite space. Let \mathcal{A} be the collection of internal subsets of Ω . For every $A \in \mathcal{A}$, define $\nu(A) = \frac{|A|}{|H|}$, where $|\cdot|$ is internal cardinality. We call ν the counting measure on Ω .
- $(\Omega, \mathcal{A}, \nu)$ is an internal finitely additive probability space.
- By Loeb Theorem, we get the uniform hyperfinite Loeb probability space (Ω, A_L, ν_L) .
- push-forward measure $\mathrm{st}_*(\nu_L) = \lambda$ (Lebesgue measure).

Measure algebras

- A measure space is a triple (X, \mathcal{A}, μ) where X is a set, \mathcal{A} is a σ -algebra of subsets of X, and $\mu \colon \mathcal{A} \to [0, \infty)$ is a countably additive finite-valued measure.
- A measured algebra is a pair (\mathcal{A}, μ) where \mathcal{A} is a σ -complete boolean algebra and $\mu \colon \mathcal{A} \to [0, \infty)$ is a finite-valued function such that $\mu(a) = 0$ iff $a = \mathbf{0}$, and μ is countably additive.
- A boolean algebra \mathcal{A} is said to be a measure algebra if there is a finite-valued μ for which (\mathcal{A}, μ) is a measured algebra. A measured algebra (A, μ) is called a probability algebra if $\mu(\mathbf{1}) = 1$.

Measure algebras

- A measure space is a triple (X, \mathcal{A}, μ) where X is a set, \mathcal{A} is a σ -algebra of subsets of X, and $\mu \colon \mathcal{A} \to [0, \infty)$ is a countably additive finite-valued measure.
- A measured algebra is a pair (\mathcal{A}, μ) where \mathcal{A} is a σ -complete boolean algebra and $\mu \colon \mathcal{A} \to [0, \infty)$ is a finite-valued function such that $\mu(a) = 0$ iff $a = \mathbf{0}$, and μ is countably additive.
- A boolean algebra \mathcal{A} is said to be a measure algebra if there is a finite-valued μ for which (\mathcal{A}, μ) is a measured algebra. A measured algebra (A, μ) is called a probability algebra if $\mu(\mathbf{1}) = 1$.

Measure algebras

- A measure space is a triple (X, \mathcal{A}, μ) where X is a set, \mathcal{A} is a σ -algebra of subsets of X, and $\mu \colon \mathcal{A} \to [0, \infty)$ is a countably additive finite-valued measure.
- A measured algebra is a pair (\mathcal{A}, μ) where \mathcal{A} is a σ -complete boolean algebra and $\mu \colon \mathcal{A} \to [0, \infty)$ is a finite-valued function such that $\mu(a) = 0$ iff $a = \mathbf{0}$, and μ is countably additive.
- A boolean algebra \mathcal{A} is said to be a measure algebra if there is a finite-valued μ for which (\mathcal{A}, μ) is a measured algebra. A measured algebra (A, μ) is called a probability algebra if $\mu(\mathbf{1}) = \mathbf{1}$.

Measure algebras as metric spaces

Let (A, μ) be a measured algebra. For all $a, b \in A$, define

$$d(a,b) = \mu(a \triangle b),$$

where \triangle is the symmetric difference of those two sets. It is shown that (A, d) is a complete metric space.

- Let (X, \mathcal{A}, μ) be a measure space. For all $a, b \in \mathcal{A}$, we write $a \equiv_{\mu} b$ if $\mu(a \triangle b) = 0$. Note that \equiv_{μ} defines an equivalence relation, and the equivalence class of a under \equiv_{μ} is denoted by $[a]_{\mu}$.
- Let \widehat{A} denote the set $\{[a]_{\mu} \mid a \in A\}$. Naturally, \widehat{A} is a σ -complete boolean algebra.
- Moreover, μ induces a countably additive, strictly positive measure on \widehat{A} . We call (\widehat{A}, μ) the measured algebra associated to (X, \mathcal{A}, μ) and we call \widehat{A} the measure algebra associated to (X, \mathcal{A}, μ) .
- If the measure μ on \mathcal{A} is a probability measure, then we call (\widehat{A}, μ) the probability algebra associated to (X, \mathcal{A}, μ) .

- Let (X, \mathcal{A}, μ) be a measure space. For all $a, b \in \mathcal{A}$, we write $a \equiv_{\mu} b$ if $\mu(a \triangle b) = 0$. Note that \equiv_{μ} defines an equivalence relation, and the equivalence class of a under \equiv_{μ} is denoted by $[a]_{\mu}$.
- Let \widehat{A} denote the set $\{[a]_{\mu} \mid a \in A\}$. Naturally, \widehat{A} is a σ -complete boolean algebra.
- Moreover, μ induces a countably additive, strictly positive measure on \widehat{A} . We call (\widehat{A}, μ) the measured algebra associated to (X, \mathcal{A}, μ) and we call \widehat{A} the measure algebra associated to (X, \mathcal{A}, μ) .
- If the measure μ on \mathcal{A} is a probability measure, then we call (\widehat{A}, μ) the probability algebra associated to (X, \mathcal{A}, μ) .

- Let (X, \mathcal{A}, μ) be a measure space. For all $a, b \in \mathcal{A}$, we write $a \equiv_{\mu} b$ if $\mu(a \triangle b) = 0$. Note that \equiv_{μ} defines an equivalence relation, and the equivalence class of a under \equiv_{μ} is denoted by $[a]_{\mu}$.
- Let \widehat{A} denote the set $\{[a]_{\mu} \mid a \in A\}$. Naturally, \widehat{A} is a σ -complete boolean algebra.
- Moreover, μ induces a countably additive, strictly positive measure on Â. We call (Â, μ) the measured algebra associated to (X, A, μ) and we call the measure algebra associated to (X, A, μ).
- If the measure μ on \mathcal{A} is a probability measure, then we call (\widehat{A}, μ) the probability algebra associated to (X, \mathcal{A}, μ) .

- Let (X, \mathcal{A}, μ) be a measure space. For all $a, b \in \mathcal{A}$, we write $a \equiv_{\mu} b$ if $\mu(a \triangle b) = 0$. Note that \equiv_{μ} defines an equivalence relation, and the equivalence class of a under \equiv_{μ} is denoted by $[a]_{\mu}$.
- Let \widehat{A} denote the set $\{[a]_{\mu} \mid a \in A\}$. Naturally, \widehat{A} is a σ -complete boolean algebra.
- Moreover, μ induces a countably additive, strictly positive measure on Â. We call (Â, μ) the measured algebra associated to (X, A, μ) and we call the measure algebra associated to (X, A, μ).
- If the measure μ on \mathcal{A} is a probability measure, then we call (\widehat{A}, μ) the probability algebra associated to (X, \mathcal{A}, μ) .

Maharam's Theorem

Theorem (Maharam's Theorem)

For all atomless probability spaces Ω , there is a countable set of distinct infinite cardinals $S = \{\kappa_i \mid i \in I\}$ such that the measure algebra of Ω is isomorphic to a convex combination of the homogeneous probability algebras $[0,1]^{\kappa_i}$. The set S is uniquely determined by Ω and is called the Maharam spectra of Ω .

Remark

The Maharam spectra of $[0,1]^{\kappa}$ is $\{\kappa\}$, where κ is infinite

Maharam's Theorem

Theorem (Maharam's Theorem)

For all atomless probability spaces Ω , there is a countable set of distinct infinite cardinals $S = \{\kappa_i \mid i \in I\}$ such that the measure algebra of Ω is isomorphic to a convex combination of the homogeneous probability algebras $[0,1]^{\kappa_i}$. The set S is uniquely determined by Ω and is called the Maharam spectra of Ω .

Remark

The Maharam spectra of $[0,1]^{\kappa}$ is $\{\kappa\}$, where κ is infinite.

Maharam spectra of hyperfinite Loeb spaces

Theorem (Jin and Keisler)

Let $(\Omega, \mathcal{A}, \mu)$ be a hyperfinite set with the normalized counting probability measure. Then the Maharam spectra of its corresponding Loeb space is $\{\operatorname{Card}(2^{|\Omega|})\}$.

R. Jin and H. J. Keisler, *Maharam spectra of Loeb spaces*, J. Symb. Log. 65 (2000), 550–566.

Atomlessness

- A measure space (X, \mathcal{A}, μ) is atomless if for every $a \in \mathcal{A}$ with $\mu(a) > 0$, there exists $b \in \mathcal{A}$ such that $b \subseteq a$ and $0 < \mu(b) < \mu(a)$.
- Let (X, \mathcal{A}, μ) be a measure space and let \mathcal{B} be a σ -subalgebra of \mathcal{A} . We say that \mathcal{A} is atomless over \mathcal{B} , if for every $a \in \mathcal{A}$ of positive measure, there exists $b \in \mathcal{A}$ such that for all $c \in \mathcal{B}$, we have $a \cap b \neq a \cap c$.

Atomlessness

- A measure space (X, \mathcal{A}, μ) is atomless if for every $a \in \mathcal{A}$ with $\mu(a) > 0$, there exists $b \in \mathcal{A}$ such that $b \subseteq a$ and $0 < \mu(b) < \mu(a)$.
- Let (X, \mathcal{A}, μ) be a measure space and let \mathcal{B} be a σ -subalgebra of \mathcal{A} . We say that \mathcal{A} is atomless over \mathcal{B} , if for every $a \in \mathcal{A}$ of positive measure, there exists $b \in \mathcal{A}$ such that for all $c \in \mathcal{B}$, we have $a \cap b \neq a \cap c$.

Atomlessness

- Let (X, \mathcal{A}, μ) be a measure space and let \mathcal{B} be a σ -subalgebra of \mathcal{A} . Given an infinite cardinal κ , we say that \mathcal{A} is κ -atomless over \mathcal{B} , if for every σ -subalgebra \mathcal{B}' , which is σ -generated by $\mathcal{B} \cup \mathcal{S}$, where \mathcal{S} is a set of cardinality $< \kappa$ in \mathcal{A} , we have that \mathcal{A} is atomless over \mathcal{B}' .
- When \mathcal{B} is trivial and \mathcal{A} is κ -atomless over \mathcal{B} , we say simply that (X, \mathcal{A}, μ) is κ -atomless.

Atomlessness

- Let (X, \mathcal{A}, μ) be a measure space and let \mathcal{B} be a σ -subalgebra of \mathcal{A} . Given an infinite cardinal κ , we say that \mathcal{A} is κ -atomless over \mathcal{B} , if for every σ -subalgebra \mathcal{B}' , which is σ -generated by $\mathcal{B} \cup \mathcal{S}$, where \mathcal{S} is a set of cardinality $< \kappa$ in \mathcal{A} , we have that \mathcal{A} is atomless over \mathcal{B}' .
- When \mathcal{B} is trivial and \mathcal{A} is κ -atomless over \mathcal{B} , we say simply that (X, \mathcal{A}, μ) is κ -atomless.

Maharam's Lemma

Lemma (Maharam's Lemma)

Let $(X, A, \mu) \supseteq (X, \mathcal{B}, \mu)$ be measure spaces. Then the following are equivalent:

- The measure space (X, \mathcal{A}, μ) is atomless over (X, \mathcal{B}, μ) .
- ② For every $a \in \mathcal{A}$ of positive measure and for every \mathcal{B} -measurable function $f \colon X \to \mathbb{R}$ such that $0 \le f \le \mathbb{E}(a \mid \mathcal{B})$, there is a set $b \in \mathcal{A}$ such that $b \subseteq a$ and $\mathbb{E}(b \mid \mathcal{B}) = f$.

Maharam spectra and atomlessness

Theorem (S.)

If Ω is an atomless probability space and κ is an infinite cardinal, then the following are equivalent:

- **1** Ω is κ -saturated.
- ② Every cardinal in the Maharam spectra of Ω is $\geq \kappa$.
- **1** Ω is κ -atomless.

Hyperfinite graphs

- Take a hyperfinite set $N = \{1, 2, \dots, H\}$.
- Consider internal graph G on N, i.e., a graph whose edge set $E(G) \subseteq N \times N$ is an internal subset.
- A hyperfinite (internal) graph is a graph.

Hyperfinite graphs

- Take a hyperfinite set $N = \{1, 2, \dots, H\}$.
- Consider internal graph G on N, i.e., a graph whose edge set $E(G) \subseteq N \times N$ is an internal subset.
- A hyperfinite (internal) graph is a graph.

Hyperfinite graphs

- Take a hyperfinite set $N = \{1, 2, \dots, H\}$.
- Consider internal graph G on N, i.e., a graph whose edge set $E(G) \subseteq N \times N$ is an internal subset.
- A hyperfinite (internal) graph is a graph.

Lebesgue sample

Theorem (Bernstein and Wattenberg)

There is a hyperfinite set S satisfying $[0,1] \subseteq S \subseteq *[0,1]$ such that for every Lebesgue measurable set $B \subseteq [0,1]$,

$$\lambda(B) = \operatorname{st}(\frac{|^*B \cap S|}{|S|}).$$

Such S is called a Lebesgue sample of [0, 1].

A. R. Bernstein and F. Watternberg, *Nonstandard measure theory*, in: Applications of model theory to algebra, analysis and probability (Ed. W. A. J. Luxemburg, Holt, Rinehard and Winston), New York, 1969, 171–185.

Remark

For every Lebesgue measurable set $B \subseteq [0, 1]$,

$$\lambda(B) = \operatorname{st}(\frac{|^*B \cap S|}{|S|}).$$

The Lebesgue measure of Lebesgue measurable $B \subseteq [0,1]$ \approx the density of the set of elements in Lebesgue sample S that is infinitely close to B in S.

Main Theorem

Theorem (S.)

Let S be a Lebesgue sample of [0,1] and $(S,L(S),\nu_L)$ the uniform Loeb probability space on S. Let $(S\times S,L(S\times S),(\nu\times\nu)_L)$ be the product Loeb probability space. Consider the standard part map $\operatorname{st}\times\operatorname{st}\colon S\times S\to [0,1]^2$. Let $\mathcal C$ denote $(\operatorname{st}\times\operatorname{st})^{-1}(\mathcal L([0,1]^2))$. Then, for every graphon $f\colon [0,1]^2\to [0,1]$, there is an internal graph G on S such that $f=\mathbb E(E(G)|\mathcal C)|_{[0,1]\times[0,1]}$.

• Let $L_0(S)=\operatorname{st}^{-1}(\mathcal{L}([0,1]))$. Then, $\operatorname{st}\colon (\mathcal{S},L_0(S),\nu_L)\to ([0,1],\mathcal{L}([0,1]),\lambda)$

- The Maharam spectrum of $(S, L_0(S), \nu_L)$ is $\{\aleph_0\}$.
- By Jin and Keisler's theorem, the Maharam spectrum of $(S, L(S), \nu_L)$ is $\operatorname{Card}(2^{|S|}) \geq 2^{2^{\aleph_0}} > 2^{\aleph_0}$.
- Then $(S, L(S), \nu_L)$ is $2^{2^{\aleph_0}}$ -atomless, and thus L(S) is atomless over $L_0(S)$.

• Let $L_0(S)=\operatorname{st}^{-1}(\mathcal{L}([0,1]))$. Then, $\operatorname{st}\colon (S,L_0(S),\nu_L)\to ([0,1],\mathcal{L}([0,1]),\lambda)$

- The Maharam spectrum of $(S, L_0(S), \nu_L)$ is $\{\aleph_0\}$.
- By Jin and Keisler's theorem, the Maharam spectrum of $(S, L(S), \nu_L)$ is $\operatorname{Card}(2^{|S|}) \geq 2^{2^{\aleph_0}} > 2^{\aleph_0}$.
- Then $(S, L(S), \nu_L)$ is $2^{2^{\aleph_0}}$ -atomless, and thus L(S) is atomless over $L_0(S)$.

• Let $L_0(S) = \operatorname{st}^{-1}(\mathcal{L}([0,1]))$. Then,

$$\operatorname{st} \colon (S, L_0(S), \nu_L) \to ([0, 1], \mathcal{L}([0, 1]), \lambda)$$

- The Maharam spectrum of $(S, L_0(S), \nu_L)$ is $\{\aleph_0\}$.
- By Jin and Keisler's theorem, the Maharam spectrum of $(S, L(S), \nu_L)$ is $Card(2^{|S|}) \ge 2^{2^{\aleph_0}} > 2^{\aleph_0}$.
- Then $(S, L(S), \nu_L)$ is $2^{2^{\aleph_0}}$ -atomless, and thus L(S) is atomless over $L_0(S)$.

• Let $L_0(S) = \operatorname{st}^{-1}(\mathcal{L}([0,1]))$. Then,

$$\operatorname{st} \colon (S, L_0(S), \nu_L) \to ([0, 1], \mathcal{L}([0, 1]), \lambda)$$

- The Maharam spectrum of $(S, L_0(S), \nu_L)$ is $\{\aleph_0\}$.
- By Jin and Keisler's theorem, the Maharam spectrum of $(S, L(S), \nu_L)$ is $Card(2^{|S|}) \ge 2^{2^{\aleph_0}} > 2^{\aleph_0}$.
- Then $(S, L(S), \nu_L)$ is $2^{2^{\aleph_0}}$ -atomless, and thus L(S) is atomless over $L_0(S)$.

- Consider product Loeb space $(S \times S, L(S \times S), (\nu \times \nu)_L)$. Anderson showed that $\overline{L(S) \times L(S)} \subsetneq L(S \times S)$ and $\nu_L \times \nu_L \subseteq (\nu \times \nu)_L$.
- Since L(S) is atomless over $L_0(S)$, it follows that $\overline{L(S) \times L(S)}$ is atomless over $\overline{L_0(S) \times L_0(S)}$, and thus $L(S \times S)$ is atomless over $\overline{L_0(S) \times L_0(S)}$.
- The mapping from $L^1(([0,1]^2,\mathcal{L}([0,1]^2),\lambda\times\lambda),[0,1])$ to $L^1((S\times S,\overline{L_0(S)}\times L_0(S),\nu_L\times\nu_L),[0,1])$ by sending f to $(\operatorname{st}\times\operatorname{st})\circ f$ is isomorphic between random variable structures. Let $\mathcal C$ denote $\overline{L_0(S)\times L_0(S)}$.

- Consider product Loeb space $(S \times S, L(S \times S), (\nu \times \nu)_L)$. Anderson showed that $L(S) \times L(S) \subsetneq L(S \times S)$ and $\nu_L \times \nu_L \subseteq (\nu \times \nu)_L$.
- Since L(S) is atomless over $L_0(S)$, it follows that $\overline{L(S) \times L(S)}$ is atomless over $\overline{L_0(S) \times L_0(S)}$, and thus, $L(S \times S)$ is atomless over $\overline{L_0(S) \times L_0(S)}$.
- The mapping from $L^1(([0,1]^2,\mathcal{L}([0,1]^2),\lambda\times\lambda),[0,1])$ to $L^1((S\times S,\overline{L_0(S)}\times L_0(S),\nu_L\times\nu_L),[0,1])$ by sending f to $(\operatorname{st}\times\operatorname{st})\circ f$ is isomorphic between random variable structures. Let $\mathcal C$ denote $\overline{L_0(S)\times L_0(S)}$.

- Consider product Loeb space $(S \times S, L(S \times S), (\nu \times \nu)_L)$. Anderson showed that $L(S) \times L(S) \subsetneq L(S \times S)$ and $\nu_L \times \nu_L \subseteq (\nu \times \nu)_L$.
- Since L(S) is atomless over $L_0(S)$, it follows that $\overline{L(S) \times L(S)}$ is atomless over $\overline{L_0(S) \times L_0(S)}$, and thus, $L(S \times S)$ is atomless over $\overline{L_0(S) \times L_0(S)}$.
- The mapping from $L^1(([0,1]^2,\mathcal{L}([0,1]^2),\lambda\times\lambda),[0,1])$ to $L^1((S\times S,\overline{L_0(S)}\times L_0(S),\nu_L\times\nu_L),[0,1])$ by sending f to $(\operatorname{st}\times\operatorname{st})\circ f$ is isomorphic between random variable structures. Let $\mathcal C$ denote $\overline{L_0(S)\times L_0(S)}$.

- Since $L(S \times S)$ is atomless over \mathcal{C} , by Maharam's Lemma and Lifting Theorem for every Lebesgue measurable $f \colon [0,1] \times [0,1] \to [0,1]$ there is a Loeb measurable set $A \subseteq S \times S$ such that $\mathbb{E}(A|\mathcal{C}) = (\operatorname{st} \times \operatorname{st}) \circ f$.
- Then by Loeb Theorem, there is an internal set $B \subseteq S \times S$ satisfying $(\nu \times \nu)_L(A \triangle B) = 0$ such that $\mathbb{E}(B|\mathcal{C}) = (\operatorname{st} \times \operatorname{st}) \circ f$.
- If $f: [0,1] \times [0,1] \to [0,1]$ is a graphon, then we get an internal graph G on S such that $\mathbb{E}(E(G) \mid \mathcal{C})_{[0,1] \times [0,1]} = f$.

- Since $L(S \times S)$ is atomless over \mathcal{C} , by Maharam's Lemma and Lifting Theorem for every Lebesgue measurable $f \colon [0,1] \times [0,1] \to [0,1]$ there is a Loeb measurable set $A \subseteq S \times S$ such that $\mathbb{E}(A|\mathcal{C}) = (\operatorname{st} \times \operatorname{st}) \circ f$.
- Then by Loeb Theorem, there is an internal set $B \subseteq S \times S$ satisfying $(\nu \times \nu)_L(A \triangle B) = 0$ such that $\mathbb{E}(B|\mathcal{C}) = (\operatorname{st} \times \operatorname{st}) \circ f$.
- If $f: [0,1] \times [0,1] \to [0,1]$ is a graphon, then we get an internal graph G on S such that $\mathbb{E}(E(G) \mid \mathcal{C})_{[0,1] \times [0,1]} = f$.

- Since $L(S \times S)$ is atomless over \mathcal{C} , by Maharam's Lemma and Lifting Theorem for every Lebesgue measurable $f \colon [0,1] \times [0,1] \to [0,1]$ there is a Loeb measurable set $A \subseteq S \times S$ such that $\mathbb{E}(A|\mathcal{C}) = (\operatorname{st} \times \operatorname{st}) \circ f$.
- Then by Loeb Theorem, there is an internal set B ⊆ S × S satisfying (ν × ν)_L(A△B) = 0 such that E(B|C) = (st × st) ∘ f.
- If $f: [0,1] \times [0,1] \to [0,1]$ is a graphon, then we get an internal graph G on S such that $\mathbb{E}(E(G) \mid \mathcal{C})_{[0,1] \times [0,1]} = f$.

Thanks

Thank you for your attention!