

Accelerating Inference in the Data Center

Dr. Malini Bhandaru & Karol Zalewski Contributors: Santiago Mok, Konrad Kurdej, Sundar Nadathur, Alexander Kanevskiy, Ismo Puustinen Intel

#HWCSAIS11

Autonomous Vehicles – R & D Data Pressure

How a Car Drives Itself

By Guilbert Gates | Source: Google | Note: Car is a Lexus model modified by Google.

Image Credit: https://clepa.eu/mediaroom/autonomous-vehicles-will-drive-change-auto-manufacturing-insurance/https://ia.acs.org.au/article/2017/who-should-the-driverless-car-kill-.html

1-20 TB/car/hour # cameras, resolution, other sensor arrays

Inference Everywhere Faster Please!

- Speed ground truth generation
 - Human improves upon automated
- Speed Privacy transformations
 - Face/license plate obscurring
- Speed simulation
 - Detect (edge-ish), Plan, Act

https://medium.com/@xslittlegrass/self-driving-car-in-a-simulator-with-a-tiny-neural-network-13d33b871234

Compute Continuum

CPUs Flexibile,Slower GPUs FPGAs, Movidius

ASICs Fixed, Faster

Can Spark Leverage? Easily?

FPGA

- Logic blocks, memory, security, variable sizes
- Programmable, OpenCL
- Fast but Expensive
- Applications: Networking, Telecommunication, Research, Machine Learning

Movidus Chip

- Programmable, SDK
- Low Power
- Tuned for image processing
- Fast, Inexpensive
- Applications: Drones,
 Cameras, Augmented Reality

Data Center Platform

Drivers

- Fungible
- Dynamic
- Resilient
- Easy to Use
- Fast

Environment

- Kubernetes resilient, auto scaling, easy to use
- Spark big data in memory processing, possible data locality

Kubernetes Device Plugin

Enables use of new Resources

Experiment

- SqueezeNet 1.1
- gRPC calls 3-4 ms
- Data pre-Processing 16-30 ms

FPGA Inference

- Model Size
- FPGA Size
- Trade-off
 - Model accuracy, speed
 - Compile to target hardware

Supported Deep Learning Topologies

- AlexNet
- GoogleNet v1
- VGG-16 & VCG-19
- SqueezeNet 1.0 & 1.1
- ResNet-18
- SqueezeNet-based variant of SSD
- GoogleNet-based variant of SSD
- VGG-based variant of SSD

Movidius USB Learnings & Workarounds

USB

- Access to host network (isolation loss)
 - `--net=host`
- Visibilibility into Device Manager events in Docker environment
 - `libusb`
- Privilege Escalation (insecure)
 - `--privileged`
- Access to Virtual File System to access USB device from within container `-v /dev:/dev`

- No Python supportloss of data locality
- Model as-a-service

Common
Paradigm:
TensorFlow
Serving

- Movidius NCSDk2 resolves some issues
- Feedback to Movidius team
- Service running on bare metal
- Movidius PCIe device coming soon! USB related issues moot

#HWCSAIS11

Movidius Next

- SDK2 just released
 - Up to 10 models may co-exist on one device,
 - FIFO queue,
 - 32 bit floating point
- Chip-2 Coming soon at least an order of magnitude faster

https://developer.movidius.com/start

https://github.com/movidius/ncsdk

https://github.com/kzzalews/sparkaisummit_movidius

Results

	CPU	FPGA	Movidius
Software Tools		CentOS 7.4 Intel Acceleration StackStack 1.0 Intel OpenVINO Toolkit with FPGA Support	SDK 1
Hardware	CPU: Intel Xeon CPU E5- 1650 v2 @ 3.50GHz	FPGA: Arria 10 GX (1150K Logic elements, 8GB DDR4, PCIe Gen3)	Movidius
Inference Time/image	7.5 ms	3.2 ms	34 ms

Demo

https://videoportal.intel.com/media/0_selfn06l

Future Work

- Kubernetes Device Manager support for Movidius
- Explore native Spark support for Movidius
- Kubernetes/Spark Scheduler Enhancements
 - Wait for HW or launch anywhere?
 - Speed, power, and latency implications
 - Targeted models

Conclusion

- FPGA support more mature
- Give Movidius a try, delightful at its price point!!

https://developer.movidius.com/start

https://github.com/movidius/ncsdk

https://github.com/kzzalews/sparkaisummit_movidius

References

Kubernetes Device Plugin:

- https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
- https://kubernetes.io/docs/concepts/cluster-administration/device-plugins/
- https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md

FPGAs and the Movidius Chip

- https://venturebeat.com/2018/02/27/intel-makes-it-easier-to-bring-movidius-aiaccelerator-chip-into-production/
- https://newsroom.intel.com/editorials/introducing-myriad-x-unleashing-ai-at-the-edge/
- https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
- https://medium.com/@xslittlegrass/self-driving-car-in-a-simulator-with-a-tiny-neural-network-13d33b871234

SparkCL: A Unified Programming Framework for Accelerators on Heterogeneous Clusters:

https://arxiv.org/ftp/arxiv/papers/1505/1505.01120.pdf

#HWCSAIS11

Thank You!

Karol.Zalewski@intel.com

Malini.K.Bhandaru@intel.com