## Mikołaj Korobczak

# Pracownia z analizy numerycznej

## Pracownia P0

Wrocław, 19 października 2019

## Spis treści

### 1. Funkcja kwadratowa

Przykładowa funkcja kwadratowa

#### 1.1. Wzór

Wzór omawianej funkcji:

$$f(x) = \frac{1}{e}(x + \frac{3x}{17})^2 \tag{1}$$

#### 1.2. Tabela

Poniższa tabela zawiera kilka wartości omawianej funkcji (??)

| X  | f(x)                                    |
|----|-----------------------------------------|
| -8 | 32.58724461587863174827361945062876     |
| -7 | 24.94960915903206810639858304057270     |
| -6 | 18.33032509643172858204707154072821     |
| -5 | 12.72939242807759185893701214808971     |
| -4 | 8.14681115396965793706840486265719      |
| -3 | 4.58258127410793214551176788518205      |
| -2 | 2.03670278849241448426710121566430      |
| -1 | 0.50917569712310362106677530391607      |
| 0  | 0.0000000000000000000000000000000000000 |
| 1  | 0.50917569712310362106677530391607      |
| 2  | 2.03670278849241448426710121566430      |
| 3  | 4.58258127410793214551176788518205      |
| 4  | 8.14681115396965793706840486265719      |
| 5  | 12.72939242807759185893701214808971     |
| 6  | 18.33032509643172858204707154072821     |
| 7  | 24.94960915903206810639858304057270     |
| 8  | 32.58724461587863174827361945062876     |

#### 1.3. Wykres

Wykres funckji (??):



Rysunek 1. Wykres z jupytera

## 2. Twierdzenie Taylora (o szeregu)

Wzór

$$f(x) = f(a) + \frac{x-a}{1!}f^{(1)}(a) + \frac{(x-a)^2}{2!}f^{(2)}(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + R_n(x,a) = \sum_{k=0}^n (\frac{(x-a)^k}{k!}f^{(k)}(a)) + R_n(x,a)$$

Gdzie  $f^{(k)}(a)$  jest pochodną k-tego rzędu, a  $R_n(x,a)$  spełnia warunek:

$$\lim_{n \to \infty} \frac{R_n(x, a)}{(x - a)^n} = 0$$