Table of Laplace Transforms

f(t)	$\mathcal{L}(f(t))$	f(t)	$\mathcal{L}(f(t))$
1	$\frac{1}{s}$		
t	$\frac{1}{s^2}$		Derivatives
t^2	$\frac{2}{s^3}$	y	$\mathcal{L}(y)$
t^n	$\frac{n!}{s^{n+1}}$	y'	$s\mathcal{L}(y) - y(o)$
e^{at}	$\frac{1}{s-a}$	y''	$s^2 \mathcal{L}(y) - sy(o) - y'(0)$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$		
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$		t-Shift
$\cosh(at)$	$\frac{s}{s^2 - a^2}$	f(t)	F(s)
$\sinh(at)$	$\frac{a}{s^2 - a^2}$	h(t-a)f(t-a)	$e^{-as}F(s)$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2 + \omega^2}$		
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2 + \omega^2}$		s-Shift
$\delta(t-a)$	e^{-as}	f(t)	F(s)
h(t-a)	$\frac{e^{-as}}{s}$	$e^{at}f(t)$	F(s-a)