Module 2 – Section 6

Matched Pair Designs – Tests for Marginal Homogeneity

Overview

- 2 x 2 Tables
- Larger Tables

Variables

- Variable 1
 - I = 2 categories
- Variable 2
 - J = 2 categories
- Similar variables with same categories
 - Ex. Success/Failure, Yes/No, Correct/Incorrect, etc.

Variable 1	Variable 2
Success	Failure
Success	Failure
Failure	Success
:	•
:	•
Failure	Success
Success	Success

Summary Data

 Form contingency table by cross classifying observations

> Variable 2 Variable 1 Failure Success Total **Success** $Y_{1.1}$ $Y_{1.}$ Y_{12} **Failure** Y_{21} Y_{22} Y_{2} **Total** $Y_{.1}$ $Y_{.2}$ n

- Two questions presented to all students in an introductory statistics course
- Score both questions as either Correct or Incorrect

A histogram for the sale price of 100 cars is pictured below.

Question A3: Choose the best description of the horizontal axis for the histogram.	Question A4: Choose the best description of the vertical axis for the histogram.		
 a. The number of cars b. The sale prices c. The mean sales price for each bin d. The median sales price for each bin 	 a. The number of cars b. The sale prices c. The mean sales price for each bin d. The median sales price for each bin 		

Ex. Data

Variable 1	Variable 2
Correct	Correct
Correct	Correct
Correct	Correct
:	:
:	:
Incorrect	Incorrect
Incorrect	Incorrect

Ex. Contingency Table

	Quest		
Question A3	Correct	Total	
Correct	469	12	481
Incorrect	30 78		108
Total	499	90	589

Marginal Homogeneity

- Proportion of Success on each Variable
 - Variable 1: p_1
 - Variable 2: p_{.1}
- Is the proportion of success on each variable the same?

	Variable 2				
Variable 1	Correct	Incorrect	Total		
Correct	p_{11}	p_{12}	$p_{1.}$		
Incorrect	p_{21}	p_{22}	$p_{2.}$		
Total	$p_{.1}$	$p_{.2}$	1		

Marginal Homogeneity

Two marginal proportions:

$$p_{1.} = p_{11} + p_{12}$$

$$p_{.1} = p_{11} + p_{21}$$

• If
$$p_{1.} = p_{.1}$$
, then $p_{12} = p_{21}$

	Variable 2
·	

Variable 1	Correct Incorrect		Total	
Correct	p_{11}	p_{12}	$p_{1.}$	
Incorrect	p_{21}	p_{22}	$p_{2.}$	
Total	$p_{.1}$	$p_{.2}$	1	

McNemar's Test of Marginal Homogeneity

- Proportion of success on Variable 1 is same as proportion of success on Variable 2.
 - $H_0: p_{1.} = p_{.1}$
- Proportion of success on Variable 1 is different from proportion of success on Variable 2.
 - $H_a: p_1 \neq p_1$

Data

- Compare Y_{12} to Y_{21}

Variable 1	Success	Failure	Total
Success	<i>Y</i> ₁₁	<i>Y</i> ₁₂	<i>Y</i> ₁ .
Failure	<i>Y</i> ₂₁	<i>Y</i> ₂₂	<i>Y</i> ₂ .
Total	<i>Y</i> .1	<i>Y</i> .2	n

Test Statistic

$$z^2 = \frac{(Y_{12} - Y_{21})^2}{Y_{12} + Y_{21}}$$

■ Large values of z^2 indicate $p_{12} \neq p_{21}$ which implies $p_{1.} \neq p_{.1}$

P-value

• As long as $Y_{12} + Y_{21} \ge 20$, the distribution of z^2 can be well approximated by χ_1^2

$$P(\chi_1^2 > z^2)$$

	Quest		
Question A3	Correct	Total	
Correct	469	12	481
Incorrect	30	78	108
Total	499	90	589

Ex. Null and Alternative Hypotheses

- The proportion of correct responses on Question 1 is the same as the proportion of correct responses on Question 2.
 - $H_0: p_1 = p_1$
- The proportion of correct responses on Question 1 is different from the proportion of correct responses on Question 2.
 - $H_a: p_1 \neq p_1$

Ex. Test Statistic

$$z^{2} = \frac{(Y_{12} - Y_{21})^{2}}{Y_{12} + Y_{21}} = \frac{(12 - 30)^{2}}{12 + 30} = 7.714$$

Ex. P-value and Conclusion

$$P(\chi_1^2 > 7.714) = 0.0055$$

 Conclusion: We have very strong evidence of a significant difference in the proportion of students correctly answering both questions.

Confidence Interval

• Estimate $p_1 - p_1$

$$\hat{p}_{1.} - \hat{p}_{.1} = \frac{Y_{1.}}{n} - \frac{Y_{.1}}{n}$$

$$SE(\hat{p}_{1.} - \hat{p}_{.1}) = \frac{\sqrt{(Y_{12} + Y_{21}) - (Y_{12} - Y_{21})^2/n}}{n}$$

Confidence Interval

$$(\hat{p}_{1.} - \hat{p}_{.1}) \pm z_{1-\frac{\alpha}{2}} SE(\hat{p}_{1.} - \hat{p}_{.1})$$

$$SE(\hat{p}_{1.} - \hat{p}_{.1}) = \frac{\sqrt{(12+30) - (12-30)^2/589}}{589} = 0.0109$$

$$\hat{p}_{1.} - \hat{p}_{.1} = \frac{481}{589} - \frac{499}{589} = \frac{-18}{589} = -0.0306$$

$$(\hat{p}_{1.} - \hat{p}_{.1}) \pm z_{1-\frac{\alpha}{2}} SE(\hat{p}_{1.} - \hat{p}_{.1})$$

$$= -0.0306 \pm 1.96(0.0109) = (-0.0520, -0.0092)$$

• We are 95% confident the proportion of all STAT 101 students who answer correctly when asked to identify the horizontal axis in a histogram is between 0.0092 and 0.0520 lower than the proportion of all STAT 101 students who answer correctly when asked to identify the vertical axis in a histogram.

Extension to Larger Tables

- Variable 1
 - Question with I = J categories
- Variable 2
 - Question with I = J categories
- Similar variables with the same categories.

Population Proportions

	Variable 2				
Variable 1	Cat 1	Cat 2	Cat 3	Cat 4	Total
Cat 1	p_{11}	p_{12}	p_{13}	p_{14}	$p_{1.}$
Cat 2	p_{21}	p_{22}	p_{23}	p_{24}	$p_{2.}$
Cat 3	p_{31}	p_{32}	p_{33}	p_{34}	$p_{3.}$
Cat 4	p_{41}	p_{42}	p_{43}	p_{44}	$p_{4.}$
Total	$p_{.1}$	$p_{.2}$	$p_{.3}$	$p_{.4}$	1

Population Proportions

- Proportion of responses on each Variable
 - Variable 1: p_1 , p_2 , p_3 , p_4 .
 - Variable 2: p_{.1}, p_{.2}, p_{.3}, p_{.4}
- Is the proportion of responses the same for each variable?

Extension of McNemar's Test

- Distribution of Variable 1 is same as distribution of Variable 2.
 - $\blacksquare H_0: p_{j.} = p_{.j} \text{ for all } j = 1, 2, ..., J$
- Distribution of Variable 1 is different than distribution of Variable 2.
 - H_a : $p_{j.} \neq p_{.j}$ for at least one j = 1, 2, ..., J

Test Statistic

•
$$\hat{d}_j = \frac{Y_{j.} - Y_{.j}}{n}$$
 for $j = 1, 2, ..., J - 1$

•
$$\hat{v}_{jj} = \frac{Y_{j.} + Y_{.j} - 2Y_{jj}}{n}$$
 for $j = 1, 2, ..., J - 1$

$$\widehat{v}_{ij} = \frac{-(Y_{ij} + Y_{ji})}{n} \qquad \text{for } i \neq j,$$

$$i \text{ and } j = 1, 2, ..., J - 1$$

Test Statistic

$$W = n\hat{d}'\hat{V}^{-1}\hat{d}$$

where $\hat{d}=(\hat{d}_1,\hat{d}_2,\cdots,\hat{d}_{J-1})$ and \hat{V} is a symmetric J-1 by J-1 matrix with components \hat{v}_{ij} and \hat{v}_{ij}

P-value

P-value

$$P(\chi_{J-1}^2 > W)$$

Ex. Baby Pictures

- Correct Baby Baby B
- Baby B is also wearing a hat
- Are respondents choosing baby B due to the hat instead of resemblance with father?

Ex. Variables

- Question 1 Pick baby when father is not pictured.
 - Baby A, B, C, D
- Question 2 Pick baby when father is pictured.
 - Baby A, B, C, D
- Do respondents choose the babies with the same probabilities for both questions?

Ex. Data

Question 1	Question 2
Α	Α
Α	Α
Α	Α
:	•
:	•
D	D
D	D

Ex. Contingency Table

Father Pictured					
Father Not					
Pictured	Baby A	Baby B	Baby C	Baby D	Total
Baby A	11	6	2	11	30
Baby B	14	14	15	23	66
Baby C	5	11	14	24	54
Baby D	10	3	11	21	45
Total	40	34	42	79	195

Ex. Null and Alternative Hypotheses

- $\blacksquare H_0$: $p_{A.} = p_{.A}$; $p_{B.} = p_{.B}$; $p_{C.} = p_{.C}$; $p_{D.} = p_{.D}$
- H_A : at least one $p_{j.} \neq p_{.j}$ for j = A, B, C, D

Ex. Test Statistic and P-value

- Test Statistic
 - W = 24.2329
- P-value
 - $P(\chi_3^2 > 24.2329) = 0.00002$

Ex. Conclusion

- The distribution of responses on the two questions is not the same.
 - Without father pictured, respondents were drawn to some babies over others. Baby B was one of them.
 - Once father was pictured, respondents were not drawn to baby B.