Ayudantía 9

Decrecer y Conquistar

Universidad Técnico Federico Santa Maria

Carlos Lagos carlos.lagosc@usm.cl Nangel Coello nangel.coello@usm.cl

22 de junio de 2024

Contenidos

Ejercicios

Fibonacci

Enunciado

La sucesión de Fibonacci se puede representar de manera matricial de la siguiente forma:

$$\begin{pmatrix} f_{n-1} & f_n \\ f_n & f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

Ejemplo, si queremos representar el cálculo de f_5 :

$$\begin{pmatrix} f_4 & f_5 \\ f_5 & f_6 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^5 = \begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}$$

Entonces, $f_5 = 5$.

Comparado con la programación dinámica, no muestra una ventaja clara. Puede ser un poco más costoso, ya que implica elevar una matriz 2×2 . Por eso, se solicita diseñar un algoritmo de decrecer y conquistar que resuelva este problema en $O(\log(n))$.

GCD y LCM

Enunciado

Dado dos arreglos A[1...n] y B[1...n], ambos de tamaño n, queremos calcular $\sum_{i=1}^n \operatorname{lcm}(A_i, B_i) - \gcd(A_i, B_i)$ para i desde 1 hasta n. Diseña un algoritmo que resuelva lo anterior en $O(n \log(\min(A_{\max}, B_{\max})))$.

Definiciones

gcd(a,b) es el máximo común divisor entre a y b, mientras que lcm(a,b) es el mínimo común múltiplo entre a y b.

GCD y LCM

Enunciado

Dado dos arreglos A[1...n] y B[1...n], ambos de tamaño n, queremos calcular $\sum_{i=1}^n \operatorname{lcm}(A_i, B_i) - \gcd(A_i, B_i)$ para i desde 1 hasta n. Diseña un algoritmo que resuelva lo anterior en $O(n \log(\min(A_{\max}, B_{\max})))$.

Definiciones

 $\gcd(a,b)$ es el máximo común divisor entre a y b, mientras que lcm(a,b) es el mínimo común múltiplo entre a y b.

Pistas

GCD y LCM

Enunciado

Dado dos arreglos A[1...n] y B[1...n], ambos de tamaño n, queremos calcular $\sum_{i=1}^n \operatorname{lcm}(A_i, B_i) - \gcd(A_i, B_i)$ para i desde 1 hasta n. Diseña un algoritmo que resuelva lo anterior en $O(n \log(\min(A_{\max}, B_{\max})))$.

Definiciones

 $\gcd(a,b)$ es el máximo común divisor entre a y b, mientras que lcm(a,b) es el mínimo común múltiplo entre a y b.

Pistas

- Si a = bd + r, entonces gcd(a, b) = gcd(b, r).
- $lcm(a,b) = \frac{ab}{gcd(a,b)}$

Arreglo shifteado

Enuncia<u>do</u>

Suponga que se tiene un arreglo ordenado A[0..n-1] de enteros, en donde los elementos han sido movidos ("shifteados") k posiciones a la derecha, de manera circular. Por ejemplo, $A=\langle 35,42,5,15,27,29\rangle$ es un arreglo ordenado que ha sido shifteado circularmente k=2 posiciones, mientras que $A=\langle 27,29,35,42,5,15\rangle$ ha sido shifteado k=4 posiciones.

Ejercicios

- a) Suponga que se conoce k. Dar un algoritmo de tiempo $\Theta(1)$ que permita encontrar el mayor valor almacenado en A.
- b) Suponga que no se conoce el valor de k. Dar un algoritmo que permita encontrar el mayor elemento almacenado en A en tiempo $O(\log n)$.
- c) Suponga que no se conoce el valor de k. Dar un algoritmo que permita encontrar cualquier elemento almacenado en A en tiempo $O(\log n)$.

5/5