SELF-DRIVING **CARS**. Markov Vladislav 417

The process

Sensing

Lidar, camera, Radar, GPS, IMU

2

Perception

Classification, Detection, Segmentation

7

Mapping

Create 2D, 3D environment maps

The process

Localization

Where am I?

Planning

Motion planning, Route planning

Control

Path tracking, Light control, Doors control

Hardware

Sensors

Lidar

Light reflection method

Camera

Photoelectric method

Stereo camera

Camera with two or more lenses

Sensors

GPS

Localization

1MU

Stabilization

Radar

Radio wave method

Velodyne lidar 16(100m range)

3D map based on Lidar

Localization based on Lidar

Sensors

02 Software

Modular system

V2X

Modular system

End-to-end system

End-to-end system

Learning/training strategy

Direct supervised deep learning

Deep reinforcement learning

Neuroevolution

Imitates the target data: usually a human driver. Can be trained offline. Poor generalization performance.

Learns the optimum way of driving. Requires online interaction.

No backpropagation. Requires online interaction.

2-D detection Spatial CNN

2-D detection Tesla

2-D detection Spatial CNN

3-D detection

3-D detection VoxelNet

3-D detection VoxelNet

Distance

Radar

Self-supervision

