# Relazione esperienza di laboratorio

Gruppo BI: Federica Maria Surace, Marco Cilibrasi

20 novembre 2014

Esercitazione N. 4: Misure DC su transistor e NOT TTL

### 1 Misure in DC sul transistor

#### 1.1 Strumentazione

La strumentazione utilizzata per l'esperienza comprende:

- Stabilizzatore di tensione 7805: abbiamo verificato che tra 6 e 15 V la tensione erogata è  $5.05\pm0.03V$ .
- Trimmer: la resitenza totale misurata è  $105.7 \pm 0.8 k\Omega$ .
- Transistor NPN 2N1711: le polarità delle giunzioni sono  $V_{BC}=0.695\pm0.003V$  e  $V_{BE}=0.695\pm0.003V$ .

## 1.2 Misure e grafici

Abbiamo montato il circuito richiesto, usando  $R_B = 46.4 \pm 0.4 k\Omega$ ,  $R_L = 0.987 \pm 0.008 k\Omega$ ,  $C_1 = 10.2 \pm 0.4 nF$ ,  $V_{in} = 10.01 \pm 0.08 V$ . Dall'analisi della maglia del generatore otteniamo l'equazione della retta di carico:

$$R_L I_C = V_{in} - V_{CE}$$

Facendo variare la posizione del potenziometro abbiamo misurato  $V_{BE}$ ,  $V_{CE}$  (da cui si ricava  $I_C$  dalla retta di carico) e  $V_{RB}$  (da cui si ricava  $I_B = \frac{V_{RB}}{R_B}$ ). Di seguito (tabella 1) riportiamo la tabella con i dati ottenuti e i grafici di  $I_C$  in funzione di  $I_B$  (figura 1) e in funzione di  $V_{BE}$  (figura 2).

Osserviamo che quando  $I_B$  è compreso fra 0 e circa  $70\mu A$   $I_C$  cresce linearmente con  $I_B$  e siamo in zona attiva. Per valori di  $I_B$  più alti  $I_C$  si mantiene costante, questo vuol dire che siamo in zona di saturazione. Questo corrisponde a quello che si può osservare spostandosi nel grafico di  $I_C$  vs  $V_{CE}$  sulla retta di carico. Dal secondo grafico possiamo notare che fino al valore di circa  $V_{BE}=600mV$   $I_C$  è nulla (all'interno dell'errore). Questo vuol dire che siamo in zona di interdizione. Dopo i 600mV si nota l'andamento esponenziale atteso in zona attiva ( $I_C=I_Se^{V_{BE}/V_T}$ ). Dal fit dei dati in zona attiva ( $I_B<60\mu A$ ) si ottiene  $h_{FE}=148.8\pm0.9$  ( $\chi^2_{red}=0.09$ ). Dai dati si nota che  $V_{CE}$  di saturazione è circa 160 mV perchè al di sotto di questa tensione  $I_C$  si mantiene costante. La massima corrente erogata dal transistor  $I_{CMAX}$  si ha quando  $V_{CE}=0$  e la caduta di potenziale ai capi di  $R_L$  è massima, quindi  $I_{CMAX}=\frac{V_{in}}{R_L}=10.1\pm0.1mA$ .

Tabella 1: Misure al variare della posizione del potenziometro

| Tabella 1: Misure al variare della posizione dei potenziometro |                      |           |                  |          |                 |              |                     |           |                  |
|----------------------------------------------------------------|----------------------|-----------|------------------|----------|-----------------|--------------|---------------------|-----------|------------------|
| $V_{R_B}[mV]$                                                  | $\Delta V_{R_B}[mV]$ | $V_B[mV]$ | $\Delta V_B[mV]$ | $V_C[V]$ | $\Delta V_C[V]$ | $I_B[\mu A]$ | $\Delta I_B[\mu A]$ | $I_C[mA]$ | $\Delta I_C[mA]$ |
| 6.5                                                            | 0.2                  | 136       | 8                | 10.1     | 0.2             | 0.1          | 0.0                 | 0.0       | 0.3              |
| 10.1                                                           | 0.2                  | 212       | 8                | 10.1     | 0.2             | 0.2          | 0.0                 | 0.0       | 0.3              |
| 14.7                                                           | 0.2                  | 316       | 8                | 10.1     | 0.2             | 0.3          | 0.0                 | 0.0       | 0.3              |
| 22.5                                                           | 0.3                  | 440       | 8                | 10.1     | 0.2             | 0.5          | 0.0                 | 0.0       | 0.3              |
| 50.0                                                           | 0.4                  | 524       | 8                | 10.0     | 0.2             | 1.08         | 0.01                | 0.1       | 0.3              |
| 100.4                                                          | 0.8                  | 556       | 8                | 9.8      | 0.2             | 2.16         | 0.03                | 0.3       | 0.3              |
| 153                                                            | 1                    | 568       | 8                | 9.7      | 0.2             | 3.29         | 0.04                | 0.4       | 0.3              |
| 207                                                            | 2                    | 580       | 8                | 9.6      | 0.2             | 4.46         | 0.06                | 0.5       | 0.3              |
| 251                                                            | 3                    | 588       | 8                | 9.4      | 0.2             | 5.41         | 0.08                | 0.7       | 0.3              |
| 314                                                            | 3                    | 592       | 8                | 9.3      | 0.2             | 6.77         | 0.09                | 0.8       | 0.3              |
| 342                                                            | 3                    | 596       | 8                | 9.2      | 0.2             | 7.37         | 0.09                | 0.9       | 0.3              |
| 384                                                            | 3                    | 596       | 8                | 9.0      | 0.2             | 8.3          | 0.1                 | 1.1       | 0.3              |
| 440                                                            | 4                    | 600       | 8                | 8.8      | 0.2             | 9.5          | 0.1                 | 1.3       | 0.3              |
| 491                                                            | 4                    | 604       | 8                | 8.7      | 0.2             | 10.6         | 0.1                 | 1.4       | 0.3              |
| 542                                                            | 4                    | 608       | 8                | 8.6      | 0.2             | 11.7         | 0.1                 | 1.6       | 0.3              |
| 612                                                            | 5                    | 612       | 8                | 8.3      | 0.2             | 13.2         | 0.2                 | 1.8       | 0.3              |
| 708                                                            | 6                    | 612       | 8                | 8.0      | 0.2             | 15.3         | 0.2                 | 2.1       | 0.3              |
| 786                                                            | 6                    | 616       | 8                | 7.8      | 0.2             | 16.9         | 0.2                 | 2.4       | 0.3              |
| 850                                                            | 7                    | 620       | 8                | 7.5      | 0.2             | 18.3         | 0.2                 | 2.6       | 0.3              |
| 1021                                                           | 8                    | 624       | 8                | 7.0      | 0.2             | 22.0         | 0.3                 | 3.2       | 0.3              |
| 1484                                                           | 10                   | 640       | 8                | 5.64     | 0.08            | 32.0         | 0.3                 | 4.5       | 0.2              |
| 1999                                                           | 20                   | 648       | 8                | 3.96     | 0.08            | 43.1         | 0.6                 | 6.2       | 0.2              |
| 2260                                                           | 20                   | 652       | 8                | 3.00     | 0.04            | 48.7         | 0.6                 | 7.2       | 0.2              |
| 2490                                                           | 30                   | 656       | 8                | 2.24     | 0.04            | 53.7         | 0.8                 | 8.0       | 0.2              |
| 2800                                                           | 30                   | 664       | 8                | 1.44     | 0.04            | 60.3         | 0.8                 | 8.8       | 0.2              |
| 2990                                                           | 30                   | 664       | 8                | 0.80     | 0.02            | 64.4         | 0.9                 | 9.4       | 0.1              |
| 3210                                                           | 30                   | 668       | 8                | 0.316    | 0.004           | 69.2         | 0.9                 | 9.9       | 0.1              |
| 3550                                                           | 30                   | 668       | 8                | 0.164    | 0.004           | 76.5         | 0.9                 | 10.1      | 0.1              |
| 3760                                                           | 30                   | 672       | 8                | 0.148    | 0.004           | 81.0         | 1.0                 | 10.1      | 0.1              |
| 4090                                                           | 30                   | 668       | 8                | 0.135    | 0.002           | 88.1         | 1.0                 | 10.1      | 0.1              |
| 4380                                                           | 40                   | 672       | 8                | 0.126    | 0.002           | 94.4         | 1.2                 | 10.1      | 0.1              |



Figura 1:  $I_C(I_B)$  al variare della posizione del potenziometro



Figura 2:  $I_C(V_{BE})$  al variare della posizione del potenziometro

Fissata la corrente  $I_B$  in modo che  $V_{CE}=5.00\pm0.08V$ , abbiamo variato la tensione di alimentazione fra circa 6 e 15V. Abbiamo misurato  $V_{CE}$  e la caduta di potenziale su  $R_L$  ( $V_{RL}$ ) da cui abbiamo ricavato  $I_C$ . Seguono i dati ottenuti in tabella 2 e il grafico in figura 3. Variando la tensione di alimentazione la retta di carico non varia la sua pendenza ( $\frac{1}{R_L}$ ) mentre varia la sua intercetta linearmente ( $\frac{V_{in}}{R_L}$ ).

| <u>Tabella 2: Misure al variare della tensione di alimentazione</u> |                     |           |                  |          |                 |  |  |
|---------------------------------------------------------------------|---------------------|-----------|------------------|----------|-----------------|--|--|
| $V_{R_L}[V]$                                                        | $\Delta V_{R_L}[V]$ | $I_C[mA]$ | $\Delta I_C[mA]$ | $V_C[V]$ | $\Delta V_C[V]$ |  |  |
| 5.53                                                                | 0.04                | 5.60      | 0.06             | 9.52     | 0.16            |  |  |
| 5.52                                                                | 0.04                | 5.59      | 0.06             | 8.96     | 0.16            |  |  |
| 5.49                                                                | 0.04                | 5.56      | 0.06             | 8.56     | 0.16            |  |  |
| 5.47                                                                | 0.04                | 5.54      | 0.06             | 8.08     | 0.16            |  |  |
| 5.45                                                                | 0.04                | 5.52      | 0.06             | 7.68     | 0.16            |  |  |
| 5.42                                                                | 0.04                | 5.49      | 0.06             | 7.12     | 0.16            |  |  |
| 5.39                                                                | 0.04                | 5.46      | 0.06             | 6.76     | 0.08            |  |  |
| 5.35                                                                | 0.04                | 5.42      | 0.06             | 6.28     | 0.08            |  |  |
| 5.32                                                                | 0.04                | 5.39      | 0.06             | 5.72     | 0.08            |  |  |
| 5.26                                                                | 0.04                | 5.33      | 0.06             | 5.36     | 0.08            |  |  |
| 5.22                                                                | 0.04                | 5.29      | 0.06             | 4.84     | 0.08            |  |  |
| 5.19                                                                | 0.04                | 5.26      | 0.06             | 4.28     | 0.08            |  |  |
| 5.16                                                                | 0.04                | 5.23      | 0.06             | 3.96     | 0.08            |  |  |
| 5.13                                                                | 0.04                | 5.20      | 0.06             | 3.48     | 0.08            |  |  |
| 5.10                                                                | 0.04                | 5.17      | 0.06             | 3.08     | 0.08            |  |  |

5.13

5.09

5.03

4.99

0.06

0.06

0.06

0.06

2.52

2.08

1.60

1.29

0.04

0.04

0.04

0.02

5.06

5.02

4.96

4.93

0.04

0.04

0.04

0.04



Figura 3:  $I_C(V_{CE})$  al variare della tensione di alimentazione

## 2 Uso del transistor in un circuito logico NOT

Abbiamo montato il circuito come richiesto usando  $R_L = 2.16 \pm 0.02 k\Omega$ ,  $R_1 = 15.1 \pm 0.1 k\Omega$ ,  $R_2 = 98.1 \pm 0.8 k\Omega$ . L'uscita output-pulse manda un'onda quadra tra  $0.00 \pm 0.08 V$  e  $5.12 \pm 0.08 V$  a  $f \simeq 1 kHz$ . Il circuito NOT funziona come ci aspettavamo (figura 4).



TDS 1012C-EDU - 17:45:43 06/11/2014

Figura 4: Funzionamento circuito NOT: in CH1 abbiamo  $V_{out} = V_C$ , in CH2 abbiamo  $V_{in}$ 

Abbiamo misurato la tensione di base e collettore calcolando  $I_B$  e  $I_C$  a partire dalle equazioni delle maglie. Si ottiene:

$$I_B = \frac{V_{in} - V_B}{R_1} - \frac{V_B}{R_2}$$
 
$$I_C = \frac{V_0 - V_C}{R_I}$$

Riportiamo in tabella 3 i valori misurati.

Tabella 3: Misure circuito NOT

| $V_{in}$ | $V_B[V]$ | $\Delta V_B[V]$ | $I_B[mA]$ | $\Delta I_B[mA]$ | $V_C[V]$ | $\Delta V_C[V]$ | $I_C[mA]$ | $\Delta I_C[mA]$ |
|----------|----------|-----------------|-----------|------------------|----------|-----------------|-----------|------------------|
| True     | 0.656    | 0.008           | 0.30      | 0.03             | 0.00     | 0.08            | 2.3       | 0.2              |
| False    | 0.000    | 0.008           | 0.34      | 0.03             | 5.04     | 0.08            | 0.0       | 0.2              |

La propagazione degli errori è stata fatta tenendo conto anche della correlazione nell'equazione per  $I_B$ . Si osservano dai valori di  $I_C$  e  $I_B$  le condizioni di saturazione e interdizione: quando l'onda in ingresso è TRUE siamo in deep saturation in quanto le giunzioni sono entrambe polarizzate direttamente e  $V_{CE} \simeq 0$  mentre  $I_C < h_{FE}I_B$ ; invece, quando l'onda in ingresso è FALSE siamo in interdizione perchè le giunzioni sono entrambe polarizzate inversamente e  $I_C \simeq 0$ .



Figura 5: Tempo di salita: in CH1 abbiamo  $V_{out} = V_C$ , in CH2 abbiamo  $V_{in}$ 



Figura 6: Tempo di discesa: in CH1 abbiamo  $V_{out} = V_C$ , in CH2 abbiamo  $V_{in}$ 

Abbiamo misurato i tempi di transizione di  $V_{out}$  con l'oscilloscopio (figure 5 e 6) ottenendo  $T_s = 1.68 \pm 0.08 \mu s$ ,  $T_d = 236 \pm 8 n s$ ,  $T_{rs} = 6.04 \pm 0.08 \mu s$  e  $T_{rd} = 200 \pm 10 n s$ . Si può notare che  $T_{rs} \gg T_{rd}$ : questo è dovuto al fatto che quando forniamo 5V in ingresso siamo in deep saturation e il circuito impiega più tempo a uscire dalla zona di saturazione rispetto a quando è in interdizione. I tempi di salita, invece, sono legati alle capacità delle giunzioni del transistor. Infatti  $T_d \ll T_s$  perchè  $C_{inv} \ll C_{dir}$ . Se riduciamo  $R_2$  cambiamo il partitore in entrata, riducendo  $V_{BE}$  (e quindi l'intensità della saturazione). Di conseguenza diminuirà  $T_{rs}$ . Inoltre  $T_s$  diminuisce al diminuire della resistenza perchè è il tempo caratteristico della carica di un condensatore. Osserviamo inoltre che  $T_d$  diminuisce leggermente all'aumentare della resistenza e  $T_{rd}$  resta approssimativamente costante. Abbiamo verificato l'andamento dei tempi con delle resistenze da  $10k\Omega$  e  $560k\Omega$ . Il circuito NOT funziona quando il periodo dell'onda quadra è molto maggiore della somma dei transienti  $f \ll \frac{1}{T_s + T_{rs} + T_{rd} + T_d} \simeq 120kHz$ . Si osserva che fino a circa 10kHz il risultato è accettabile (figura 7), mentre aumentando la frequenza, l'onda viene deformata notevolmente e dopo i 60kHz non raggiunge più il livello massimo (figure 8 e 9).



TDS 1012C-EDU - 17:46:20 06/11/2014

Figura 7: Circuito NOT a 10 kHz: in CH1 abbiamo  $V_{out} = V_C$ , in CH2 abbiamo  $V_{in}$ 



Figura 8: Circuito NOT a 60 kHz: in CH1 abbiamo  $V_{out} = V_C$ , in CH2 abbiamo  $V_{in}$ 



Figura 9: Circuito NOT a 120 kHz: in CH1 abbiamo  $V_{out} = V_C$ , in CH2 abbiamo  $V_{in}$