

Nome do componente curricular em português:	Código:
FUNDAMENTOS DE FISICA EXPERIMENTAL	FIS105

Nome do componente curricular em inglês:

FUNDAMENTALS OF EXPERIMENTAL PHYSICS

Modalidade de oferta:	[X] presencial	[]] semipresencial [] a distância			
Carga horária semestral		Carga horária semestral				
Total	Extensionista		Teórica		Prática	
30 horas	0 horas		0 horas/aula	а	2 horas/aula	

Ementa:

Introdução às técnicas de obtenção, tratamento e análise de dados em experimentos de Física. Manuseio de instrumentos de medição. Expressão de resultados e elaboração de relatórios científicos

Conteúdo programático:

- 1. Introdução ao Laboratório de Física: normas de segurança, divisão de grupos, descrição e cuidados para o uso de equipamentos, revisão do Sistema Internacional de Unidades internacionais, e algarismos significativos
- 1. Conceitos básicos de medição:
- 1.1 Cálculo de densidade
- 1.2 Equilíbrio estático
- 1.3 Colisão em uma dimensão
- 1.4 Associação de Resistores
- 1.5 1a. Lei da Termodinâmica
- 1.6 Radiação Térmica
- 1.7 Associação de capacitores
- 1.8 Difração
- 1.9 Espectros moleculares
- 1.10 Microscópio composto
- Sistematização de resultados por meio de tabelas
- Expressão gráfica de resultados (histograma)
- Expressão e tratamento de dados numéricos (arredondamento e algarismos significativos);
- Cálculos de incerteza Tipos A e B;
- Propagação de incertezas
- Elaboração de folha de síntese por grupo, contendo: dados coletados, cálculos efetuados, tabelas e gráficos, resultados.
- 2. Cálculo de grandezas e estimativa de incertezas: funções lineares:
- 2.1 Calibração de dinamômetro (sistema massa mola)
- 2.2 Ondas estacionárias

- 2.3 Lei de Ohm
- 2.4 Refração e Dispersão
- Sistematização de resultados por meio de tabelas;
- Cálculos de incerteza Tipos A e B para medidas diretas;
- Elaboração de gráficos lineares com barras de incerteza, elementos gráficos, legenda, observando tamanho, escalas e unidades adequados;
- Estimar incertezas dos parâmetros a partir de métodos gráficos
- Elaboração de folha de síntese por grupo, contendo: dados coletados, cálculos efetuados, tabelas e gráficos, resultados.
- 3. Cálculo de grandezas e estimativa de incertezas: funções não lineares linearizáveis:
- 3.1 Queda livre
- 3.2 Movimento em uma dimensão
- 3.3 Campo magnético da terra
- 3.4 Circuito RC
- 3.5 Indução magnética
- 3.6 A Lei de Radiação de Stefan-Boltzmann
- Sistematização de resultados por meio de tabelas;
- Cálculos de incerteza Tipos A e B para medidas diretas;
- Linearização de funções e elaboração de gráficos lineares, elementos gráficos, legenda, observando tamanho, escalas e unidades adequados;
- Uso de softwares para ajuste de retas, com estimativa de incertezas para os parâmetros de ajuste;
- Elaboração de folha de síntese por grupo, contendo: dados coletados, cálculos efetuados, tabelas e gráficos, resultados.
- 2.2 Ondas estacionárias
- 2.3 Lei de Ohm
- 2.4 Refração e Dispersão
- Sistematização de resultados por meio de tabelas;
- Cálculos de incerteza Tipos A e B para medidas diretas;
- Elaboração de gráficos lineares com barras de incerteza, elementos gráficos, legenda, observando tamanho, escalas e unidades adequados;
- Estimar incertezas dos parâmetros a partir de métodos gráficos
- Elaboração de folha de síntese por grupo, contendo: dados coletados, cálculos efetuados, tabelas e gráficos, resultados.
- 3. Cálculo de grandezas e estimativa de incertezas: funções não lineares linearizáveis:
- 3.1 Queda livre
- 3.2 Movimento em uma dimensão
- 3.3 Campo magnético da terra
- 3.4 Circuito RC
- 3.5 Indução magnética
- 3.6 A Lei de Radiação de Stefan-Boltzmann

- Sistematização de resultados por meio de tabelas;
- Cálculos de incerteza Tipos A e B para medidas diretas;
- Linearização de funções e elaboração de gráficos lineares, elementos gráficos, legenda, observando tamanho, escalas e unidades adequados;
- Uso de softwares para ajuste de retas, com estimativa de incertezas para os parâmetros de ajuste;
- Elaboração de folha de síntese por grupo, contendo: dados coletados, cálculos efetuados, tabelas e gráficos, resultados.
- 2.2 Ondas estacionárias
- 2.3 Lei de Ohm
- 2.4 Refração e Dispersão
- Sistematização de resultados por meio de tabelas;
- Cálculos de incerteza Tipos A e B para medidas diretas;
- Elaboração de gráficos lineares com barras de incerteza, elementos gráficos, legenda, observando tamanho, escalas e unidades adequados;
- Estimar incertezas dos parâmetros a partir de métodos gráficos
- Elaboração de folha de síntese por grupo, contendo: dados coletados, cálculos efetuados, tabelas e gráficos, resultados.
- 3. Cálculo de grandezas e estimativa de incertezas: funções não lineares linearizáveis:
- 3.1 Queda livre
- 3.2 Movimento em uma dimensão
- 3.3 Campo magnético da terra
- 3.4 Circuito RC
- 3.5 Indução magnética
- 3.6 A Lei de Radiação de Stefan-Boltzmann
- Sistematização de resultados por meio de tabelas;
- Cálculos de incerteza Tipos A e B para medidas diretas;
- Linearização de funções e elaboração de gráficos lineares, elementos gráficos, legenda, observando tamanho, escalas e unidades adequados;
- Uso de softwares para ajuste de retas, com estimativa de incertezas para os parâmetros de ajuste;
- Elaboração de folha de síntese por grupo, contendo: dados coletados, cálculos efetuados, tabelas e gráficos, resultados.

Bibliografia básica:

- 1. CAMPOS, A.G., ALVES, E.S., SPEZIALI, N.L., Física Experimental Básica na Universidade, Editora da UFMG. Disponível em https://sites.google.com/view/febu/home
- 2. LIMA JUNIOR, P, et al. O laboratório de mecânica: Subsídios para o ensino de Física Experimental. Porto Alegre: UFRGS, Instituto de Física, 2013. Disponível em: http://www.if.ufrgs.br/cref/labmecanica/Lima Jr et al 2013.pdf.
- 3. Vocabulário Internacional de Metrologia: Conceitos fundamentais e gerais e termos associados (VIM 2012). Duque de Caxias, RJ: INMETRO, 2012. 94 p. Disponível em http://www.inmetro.gov.br/inovacao/publicacoes/vim 2012.pdf

- 4. Avaliação de dados de medição: uma introdução ao "Guia para a expressão de incerteza de medição" e a documentos correlatos INTROGUM 2009. Duque de Caxias, RJ: INMETRO/CICMA/SEPIN, 2014. 43 p. Disponível em: http://www.inmetro.gov.br/inovacao/publicacoes/INTROGUM_2009.pdf
- 5. Sistema Internacional de Unidades: SI. Duque de Caxias, RJ : INMETRO/CICMA/SEPIN, 2012. 94 p. Disponível em < https://www.inmetro.gov.br/inovacao/publicacoes/si versao final.pdf >

Bibliografia complementar:

- 1. CHAVES, Alaor Silvério. Física: curso básico para estudantes de ciências físicas e engenharias volume 1 mecânica. Rio de Janeiro: Reichmann & Affonso, 2001. v.1
- 2. CHAVES, Alaor Silvério. Física: curso básico para estudantes de ciências físicas e engenharias: volume 2 eletromagnetismo. Rio de Janeiro: Reichmann & Affonso, 2001. v.2
- 3. HALLIDAY, David; RESNICK, Robert; KRANE, Kenneth S. Física 1[2004]. 5.ed. Rio de Janeiro: LTC c2004. v.1
- 4. HALLIDAY, David; RESNICK, Robert; KRANE, Kenneth S. Física 2[2004]. 5.ed. Rio de Janeiro: LTC c2004. v.2
- 5. HALLIDAY, David; RESNICK, Robert; KRANE, Kenneth S. Física 3[2004]. 5.ed. Rio de Janeiro: LTC c2004. v.3
- 6. TIPLER, Paul Allen; MOSCA, Gene. Física para cientistas e engenheiros: volume 1 eletricidade e magnetismo, óptica . 6. ed. Rio de Janeiro: LTC 2009.
- 7. TIPLER, Paul Allen; MOSCA, Gene. Física para cientistas e engenheiros: volume 2 eletricidade e magnetismo, óptica . 6. ed. Rio de Janeiro: LTC 2009.