Generic PDE Model 03 v15.12.15 1

class II, negative feedback, RyR, closed cell, three variables

$$\frac{\partial c}{\partial t} = D_{c} \nabla^{2} c + (J_{IPR} + J_{leak} + k_{RyR} P_{RyR})(c_{e} - c) - J_{serca}$$
(1)

$$\frac{\partial c}{\partial t} = D_{c} \nabla^{2} c + (J_{IPR} + J_{leak} + k_{RyR} P_{RyR}) (c_{e} - c) - J_{serca}$$

$$\frac{\partial p}{\partial t} = D_{p} \nabla^{2} p + V_{PLC}(\vec{x}) - V_{deg} \left(\frac{c^{2}}{K_{3K}^{2} + c^{2}}\right) p$$
(2)

$$\frac{\partial h}{\partial t} = \frac{h_{\infty} - h}{\tau} \tag{3}$$

$$J_{\text{serca}} = V_{\text{s}} \frac{c^2}{K_{\text{s}}^2 + c^2} \tag{4}$$

$$J_{\rm IPR} = k_{\rm IPR}(\vec{x})P_O \tag{5}$$

$$P_{\rm RyR} = \frac{c^2}{K_{\rm RyR}^2 + c^2} \tag{6}$$

$$P_O = \phi_c \phi_p h \tag{7}$$

$$P_O = \phi_c \phi_p h \tag{7}$$

$$\phi_c = \frac{c^3}{K_a^3 + c^3} \tag{8}$$

$$\phi_p = \frac{p^4}{K_p^4 + p^4} \tag{9}$$

$$h_{\infty} = \frac{K_{\rm i}^2}{K_{\rm i}^2 + c^2} \tag{10}$$

$$c_{\rm e} = (c_{\rm t} - c)/\gamma \tag{11}$$

c	0.06(init)	μM	cytosolic Ca ²⁺ concentration
p	0.26(init)	μM	IP ₃ concentration
$\stackrel{r}{h}$	0.334(init)	_	IPR modelling variable
γ	0.185	_	ratio of ER volume to cystolic volume
$c_{ m t}^{'}$	5.0	μM	total Ca^{2+} concentration
$c_{ m e}$		μM	ER Ca ²⁺ concentration
t		S	time
$J_{ m IPR}$		s^{-1}	calcium from ER
$k_{\mathrm{IPR}}(\vec{x})$	7.4(max)	s^{-1}	parameter (highest near apical region)
P_{RyR}	,		calcium from ER
$k_{ m RyR}$	0.01	s^{-1}	parameter
$K_{ m RyR}$	0.42	$\mu \mathrm{M}$	parameter
P_O		_	open probability of IPR (range: 0.0 - 1.0)
ϕ_c		_	function of Ca ²⁺ concentration
$K_{ m a}$	0.3	$\mu\mathrm{M}$	parameter
ϕ_p		_	function of IP ₃ concentration
$ec{K}_{ m p}$	0.5	$\mu \mathrm{M}$	parameter
h_{∞}		-	function of Ca ²⁺ concentration
$K_{ m i}$	0.06	$\mu\mathrm{M}$	parameter
au	0.5	s^{-1}	parameter
$D_{ m c}$	5	$\mu\mathrm{m}^2~\mathrm{s}^{-1}$	Ca ²⁺ diffusion coefficient
$J_{ m serca}$		$\mu { m M~s^{-1}}$	calcium flux into ER
$V_{ m s}$	0.25	$\mu { m M~s^{-1}}$	parameter
$K_{ m s}$	0.1	$\mu \mathrm{M}$	parameter
$J_{ m leak}$	0.00148	s^{-1}	calcium from ER (to balance J_{serca} at rest)
$V_{\mathrm{PLC}}(ec{x})$	0.012(max)	$\mu { m M~s^{-1}}$	parameter (highest near basal membrane)
$V_{ m deg}$	0.16	s^{-1}	parameter
$K_{ m 3K}$	0.4	$\mu { m M}$	parameter
$D_{ m p}$	283	$\mu\mathrm{m}^2~\mathrm{s}^{-1}$	IP ₃ diffusion coefficient