Rotations and the Spin 1/2 Particle in a Magnetic Field

Emmanuel Flores

October 17, 2024

Advanced Mathematical Methods, Tufts University

Spinor Representation

Some Motivation

- The existence of spin 1/2 particles shows that is Spin (3) rather than SO (3) that is the symmetry group of corresponding of rotations of fundamental quantum systems.
- The idea is to study $\mathcal{H} = \mathbb{C}^2$ with the group action given by rotations in 3D.

Definition

The spinor representation of Spin(3) = SU(2) is the representation on \mathbb{C}^2 given by

$$g \in SU(2) \rightarrow \pi_{spinor}(g) = g$$
,

and elements of the representation space \mathbb{C}^2 are called spinors.

Spin $\frac{1}{2}$ in a Magnetic Field

Elements of the Lie algebra

- We will consider only the SU(2) subgroup of U(2).
- "When it occurs in its role as double cover of the rotational group, the quantum system is said to carry "spin", in particular "spin 1/2" for the two dimensional irreducible representation."
- · Elements of the Lie algebra

$$X_j=-i\frac{\sigma_j}{2},$$

with commutation relations

$$[X_1, X_2] = X_3, \quad [X_2, X_3] = X_1, [X_3, X_1] = X_2.$$

Physics Connection

Making contact with physics

$$S_j = i \hbar X_j$$

we like this as observables because the eigenvalues are real $\pm 1/2$ (experimental measures).

· Elements of the group are given by

$$\Omega\left(\theta,\mathbf{w}\right)=\exp\left(-rac{i}{\hbar}\mathbf{w}\cdot\mathbf{S}\right)\in\mathit{SU}\left(2\right).$$

• States in \mathcal{H} that have a well-defined value of the observable S_j will be eigenvectors of S_j with eigenvalues $\pm 1/2$.

4

Action of Ω

· Let $|\psi\rangle\in\mathcal{H}$, thus we have

$$|\psi\rangle o \Omega |\psi\rangle$$
 .

· Baker-Hausdorff lemma

$$\exp(iG\lambda) A \exp(-iG\lambda) = A + i\lambda [G, A] + \left(\frac{i^2\lambda^2}{2!}\right) [G, [G, A]] + \dots$$

The Hamiltonian

• The spin degree of freedom that we are describing by ${\cal H}$ has a dynamics given by

$$H = -\mu \cdot B$$
,

where

$$\mu = -\frac{ge}{2mc}S,$$

is the magnetic moment operator.

With Schrödinger Equation

The Schrödinger equation is given by

$$\frac{d}{dt}\left|\psi\right\rangle = -i\left(-\mu \cdot B\right)\left|\psi\right\rangle$$

and solution

$$\left|\psi\left(t\right)\right\rangle =U\left(t\right)\left|\psi\left(0\right)\right\rangle$$
 ,

where

$$U(t) = \exp(it\mu \cdot B).$$

Explicitly

 Assuming B with just a component in the z-direction, we have

$$H = \omega S_z$$
,

thus

$$U(t) = \exp\left(-\frac{iS_z\omega t}{\hbar}\right),\,$$

we see that this Hamiltonian causes spin precession.

Physical Systems

- · The Zeeman effect,
- · Stern Gerlach experiment,
- · Nuclear magnetic resonance spectroscopy,
- Quantum computing.

Heisenberg Picture

Schrödinger and Heisenberg Pictures

	Heisenberg Picture	Schrödinger Picture
State Ket	No Change	Evolution Given by H
Observable	Evolution Given by H	No Change

Complex Projective Space

Trying Another Characterization

- Multiplication on \mathcal{H} by non-zero complex number do not change eigenvectors \implies no physical effect.
- The relevant part is the quotient space $(\mathbb{C}^2 \{0\}) / \mathbb{C}^*$, and constructed by: taking all non-zero elements of \mathbb{C}^2 and identifying those related by multiplication by a non-zero complex number.
- In some sense the space CP^1 is the complex plane, but with a "point at infinity" added.

Riemann Sphere

• *CP*¹: "Riemann sphere" with the relation to the plane and the point at infinity given by stereographic projection.

Coordinates relationship

• Relation between coordinates on the sphere (x_1, x_2, x_3) and complex coordinates $z_1/z_2 = z = x + iy$ is given by

$$x = \frac{x_1}{1 - x_3}, y = \frac{x_2}{1 - x_3},$$

and

$$x_1 = \frac{2x}{x^2 + y^2 + 1}, x_2 = \frac{2y}{x^2 + y^2 + 1}, x_3 = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}$$

The Bloch Sphere

Another Characterization

• The unit sphere $S^2 \subset \mathbb{R}^3$ can be mapped to operators by

$$\mathbf{x} \to \mathbf{\sigma} \cdot \mathbf{x}$$
,

and for each point $\mathbf{x} \in S^2$, $\sigma \cdot \mathbf{x}$ has eigenvalues ± 1 . Eigenvectors with eigenvalue +1 are solutions to

$$\sigma \cdot \mathbf{x} \ket{\psi} = \ket{\psi}$$
.

Interpretation in terms of spin operators

• One can characterize the $\mathbb{C}\subset\mathcal{H}$ corresponding to $\mathbf{x}\in S^2$ as the solutions to

$$\mathbf{S}\cdot\mathbf{x}\ket{\psi}=rac{1}{2}\ket{\psi}$$
 ,

thus, the North pole of the sphere is a "spin-up" state and the South pole is a "spin down" state.

• Along the equator one finds two points corresponding to states with definite values for S_1 , as well as two for states that have definite values for S_2 .