Stability properties of Relaxed Recentered log-barrier function based Nonlinear MPC

Tudor Oancea

March 2022

1 Introduction

Given a controlled nonlinear dynamical system of the form $x^+ = f(x, u)$ with state and control constraints $x \in \mathcal{X} \subseteq \mathbb{R}^{n_x}$, $u \in \mathcal{U} \subseteq \mathbb{R}^{n_u}$ and a fixed point x^* for these dynamics, i.e. a point such that $f(x^*, 0) = x^*$, the problem of *stabilization* is to find a a feedback control law $\mu : \mathcal{X} \to \mathcal{U}$ such that x^* is asymptoticall stable for the dynamical system $x^+ = f(x, \mu(x))$. Such a problem is usually tackled using *optimal control*, and precisely *model predictive control* (MPC), an algorithm that defines this feedback control as the solution to an optimization problem of the following form:

$$V_{N}(x) = \min_{\mathbf{x}, \mathbf{u}} \quad J_{N}(\mathbf{x}, \mathbf{u})$$
s.t. $x_{0} = x$ and $x_{k+1} = f(x_{k}, u_{k}), k = 0, \dots, N - 1$

$$x_{k} \in \mathcal{X}, k = 0, \dots, N$$

$$u_{k} \in \mathcal{U}, k = 0, \dots, N - 1$$

$$(1)$$

Here N is called the horizon size, J_N is the cost function that is usually described with stage costs $l: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$ and final cost $F: \mathcal{X} \to \mathbb{R}$ by

$$J_N(\mathbf{x}, \mathbf{u}) = \sum_{k=0}^{N-1} l(x_k, u_k) + F(x_N)$$

The system is then controlled by applying the first value of the optimal control sequence to the system.

In our work the following assumptions will be made:

Assumption 1.1.

- The function f describing the dynamics is a general C^2 function, not necessarily linear.
- Without loss of generality, $x^* = 0$. We can always come back to this case by defining new translated states $\tilde{x} := x x^*$ and new dynamics and new constraints accordingly by translation.
- $x^* = 0 \in \operatorname{int} \mathcal{X}$ and $0 \in \operatorname{int} \mathcal{U}$
- The stage costs and the final costs are quadratic: $l(x, u) = x^T Q x + u^T Q u$, $F(x) = x^T P x$ with Q, R and P positive definite matrices. This is very usual in MPC.

• The state and constraints sets are polytopic:

$$X = \left\{ x \in \mathbb{R}^{n_x} \mid C_x x \le d_x \text{ with } C_x \in \mathbb{R}^{q_x \times n_x} \text{ and } d_x \in \mathbb{R}^{q_x} \right\}$$
$$U = \left\{ u \in \mathbb{R}^{n_u} \mid C_u u \le d_u \text{ with } C_u \in \mathbb{R}^{q_u \times n_u} \text{ and } d_u \in \mathbb{R}^{q_u} \right\}$$

Up to defining additional states and/or controls and modifying the dynamics accordingly, this can always be achieved.

The goal is usually to define the terminal cost F(x) in such a way that the optimal value function V_N is a Lyapunov function, which would prove that $x^* = 0$ is asymptotically stable for the system controlled by the MPC. In some cases the authors also include terminal constraints on the last state x_N to ensure this stability, but here we are solely focusing on MPC with terminal costs and without terminal constraints.

Our work presents a new formulation that is based on this classical MPC framework and replaces the inequality constraints in the optimization problem (given by the state and control constraints) by some modified log-barrier functions added to the objective function. To properly introduce this new formulation let's introduce the central notion of relaxed recentered log-barrier function.

2 Statement of the new formulation

Definition 2.1. Given a constraint of the form $c^T x \leq d$, the associated log-barrier function is defined as $-\log(d-c^T x)$. Such a function is defined on the interior of feasible set of the constraint and becomes infinity near its boundary. For a set of polytopic constraints similar to the ones describes above, we can define the log-barrier for the state constraints as the sum of the log-barriers for each constraint:

$$B_x(x) = \sum_{i=1}^{q_x} -\log(d_{x,i} - \text{row}_i(C_x)x)$$

Definition 2.2. A weight recentered log-barrier function for a set of polytopic constraints similar to the ones described above is of the form:

$$B_x(x) = \sum_{i=1}^{q_x} (1 + w_{x,i}) \left[\log(d_{x,i}) - \log(d_{x,i} - \text{row}_i(C_x)x) \right]$$

where the weights $w_{x,i}$ are defined as chosen such that $B_x(0) = 0$ and $\nabla B_x(0) = 0$.

Definition 2.3. A relaxed recentered log-barrier function (RRLB function) is defined by :

$$B_{x}(x) = \sum_{i=1}^{q_{x}} (1 + w_{x,i}) B_{x,i}(x)$$
with $B_{x,i}(x) = \begin{cases} \log(d_{x,1}) - \log(d_{x,1} - \text{row}_{i}(C_{x})x) & \text{if } d_{x,i} - \text{row}_{i}(C_{x})x > \delta \\ \beta(d_{x,1} - \text{row}_{i}(C_{x})x; \delta) & \text{otherwise} \end{cases}$

where $0 < \delta$ is a relaxation parameter and β is a function that twice continuously extends the log-barrier function on $(-\infty, \delta]$. The simplest example of such a function is

$$\beta(z; \delta) = \frac{1}{2} \left[\left(\frac{z - 2\delta}{\delta} \right)^2 - 1 \right] - \log(\delta)$$

Lemma 2.4. The RRLB functions are upper bounded by quadratic functions.

Proof. The proof is similar to the one of the Lemma 3 of

Now we can finally define our new MPC formulation as follows:

$$\tilde{V}_N(x) = \min_{\mathbf{x}, \mathbf{u}} \quad \tilde{J}_N(\mathbf{x}, \mathbf{u})
\text{s.t.} \quad x_0 = x \text{ and } x_{k+1} = f(x_k, u_k), \ k = 0, \dots, N-1$$
(2)

where the new objective function $\tilde{J}_N(\mathbf{x}, \mathbf{u}) = \sum_{k=0}^{N-1} \tilde{l}(x_k, u_k) + \tilde{F}(x_N)$ is defined using the new stage costs $\tilde{l}(x, u) = l(x, u) + \epsilon B_x(x) + \epsilon B_u(u)$ and the new terminal cost $\tilde{F}(x) = x^T P x$ for a certain matrix P that will be determined later. The barrier parameter ϵ has in theory the following interpretation: when it goes to zero, the solution of problem 2 converges to the one of 1.

3 Theoretical properties of RRLB Nonlinear MPC

3.1 Nominal asymptotic stability

Lemma 3.1. Consider the problem 2 and re-write it in a simpler way as

$$\tilde{V}_N(x) = \min_{\mathbf{u}} \quad J(x, \mathbf{u})$$

where $J(x, \mathbf{u}) = \tilde{l}(x_0, u_0) + \tilde{l}(f(x_0, u_0), u_1) + \cdots + \tilde{F}(f(f(\dots), u_{N-1}))$. If for a certain value for the initial state x we denote by $\tilde{\mathbf{u}}(x) = (\tilde{u}_0(x), \dots, \tilde{u}_{N-1}(x))$ the optimal sequence of controls and we suppose that $D_{\mathbf{u}}J(x, \tilde{\mathbf{u}}) = 0$ and $\nabla^2_{\mathbf{u}\mathbf{u}}J(x, \tilde{\mathbf{u}}) \succ 0$ (the matrix is positive definite) then:

•
$$\forall k = 0, \dots, N - 1, \quad ||\tilde{u}_k(x)|| = O(||x||)$$

•
$$\forall k = 1, ..., N$$
, $\|\tilde{x}_k(x)\| = f(f(..., u_{k-2}), u_{k-1}) = O(\|x\|)$

Proof. See appendix
$$\Box$$

Now the main piece:

Theorem 3.2. Let's consider the problem 2 and assume the following:

- 1. When linearizing the system dynamics around the equilibrium and letting $A = D_x f(0,0)$, $B = D_u f(0,0)$, we suppose that the pair (A,B) is stabilizable. This implies in particular that there exists a stabilizing cost K, i.e. a matrix such that $A_K := A + BK$ only has eigenvalues in the unit disk.
- 2. The matrix P defining the terminal costs is the unique positive definite solution to the following Lyapunov equation:

$$P = A_K^T P A_K + \mu Q_K \tag{3}$$

where $\mu > 1$ and $Q_K = Q + \epsilon M_x + K^T (R + \epsilon M_u) K$.

then if we use the same notations for the optimal controls and states as in the previous lemma, the origin is asymptotically stable for the dynamical system $x^+ = f(x, \tilde{u}_0(x))$ for all initial state in a certain neighborhood of the origin.

Remark. The proof of the existence and unicity of such a matrix P is based on results on the Continuous Algebraic Riccati equation and the proof can be found in the appendix.

Proof. Let's define the matrices $\hat{Q} = \nabla^2_{xx}\tilde{l}(0,0) = Q + \epsilon M_x$, $\hat{R} = \nabla^2_{uu}\tilde{l}(0,0) = R + \epsilon M_u$ and $\hat{l}(x,u) = x^T\hat{Q}x + u^T\hat{R}u = \tilde{l}(x,u) + O(\|x\|^3 + \|u\|^3)$. With this definitions we have $\tilde{l}(x,Kx) = x^TQ_Kx + O(\|x\|^3)$.

By the second assumption, we have

$$\tilde{F}(A_K x) + \mu x^T Q_K x - \tilde{F}(x) = 0, \ \forall x \in \mathbb{R}^{n_x}$$

We can use the same reasoning as in the book to show that \tilde{F} is a local Lyapunov function, i.e. there exists a neighborhood V of the origin such that $\forall x \in V$:

$$\tilde{F}(f(x,Kx)) + x^T Q_K x - \tilde{F}(x) \le 0$$

$$\iff \tilde{F}(f(x,Kx)) - \tilde{F}(x) + \tilde{l}(x,Kx) = O(\|x\|^3)$$

Then if the initial state in problem 2 is in V (and this set is forward invariant), every state $\tilde{x}_k(x)$ will be in V too.

Now using the optimal sequence of states and controls of the problem 2 starting at x, we can construct a new feasible sequence for the problem starting at $\tilde{x}_1(x)$ as $\mathbf{x}' = (\tilde{x}_1, \dots, \tilde{x}_N, f(\tilde{x}_N, K\tilde{x}_N))$ and $\mathbf{u}' = (\tilde{u}_1, \dots, \tilde{u}_{N-1}, K\tilde{x}_N)$. Then we have :

$$\tilde{V}_{N}(\tilde{x}_{1}) \leq \tilde{J}_{N}(\mathbf{x}', \mathbf{u}') = \underbrace{\tilde{J}_{N}(\tilde{\mathbf{x}}, \tilde{\mathbf{u}})}_{=\tilde{V}_{N}(x)} \underbrace{\underbrace{-\tilde{l}(x, \tilde{u}_{0})}_{=O(\|x\|^{2})} + \underbrace{\tilde{F}(f(\tilde{x}_{N}, K\tilde{x}_{N})) - \tilde{F}(\tilde{x}_{N}) + \tilde{l}(\tilde{x}_{N}, K\tilde{x}_{N})}_{=O(\|x\|^{3}) = O(\|x\|^{3})} \checkmark$$

$$\underbrace{-c\|x\|^{2} \text{ in a nbh } W \subseteq V}$$

It is easy to show that \tilde{V}_N is lower and upper bounded by coercive quadratic functions (see appendix), so that \tilde{V}_N is a Lyapunov function in W. \checkmark

3.2 Constraints violation guarantees

4 Numerical extensions

- 4.1 Real Time Iteration methods
- 4.1.1 Asymptotic stability of RTI scheme
- 4.1.2 Numerical experiments
- 4.2 Parallelization
- 4.2.1 Numerical experiments

5 Appendix

Proof of lemma 3.1.
$$\Box$$

Lemma 5.1 (Existence an Unicity of solution to the Lyapunov equation).

Lemma 5.2 (Coercive quadratic lower and upper bounds for objective value function).