Neural networks

Perceptron:

Given a set of binary inputs $x_1, ..., x_n$, we want to produce a single binary output y. For each x_i is assigned a weight w_i , and a threshold τ is fixed.

Now for the system to output correct answers, the parameters $w_1, ..., w_n$ and τ need to be learned.

Example - the logical gate AND:

For any binary input x_1 and x_2 , we want the perceptron to output $x_1 \wedge x_2$.

There is an infinite number of tuples (w_1, w_2, τ) such that $w_1 x_1 + w_2 x_2 \ge \tau$ if and only if $x_1 = 1$ and $x_2 = 1$. Finding a solution here, is equivalent to finding a line of the euclidean plane, such that the points (0,0), (0,1), (1,0) are not in the same

half-plane as (1,1). One possible solution is: x_2

$$(w_{1}, w_{2}, \tau) = (0.2, 0.2, 0.3).$$

Exercice: show that the logical gate XOR cannot be learned by a perceptron.

Artificial neuron:

An artificial neuron is an improvement over the perceptron: it uses a continuous function instead of the step function. This function is called activation. Finally, the threshold τ is replaced by a term b called the bias:

A neuron's inputs and output should be between 0 and 1.

Activation functions:

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Improvements:

- Use several neurons in order to be able to answer non-binary questions.
- Use several layers of neurons, in hope that the network will be able to generalize from layers to layers.

Structure of a neural network:

L layers. For any input X, the network outputs a vector A_X for answer. During the learning phase, a given input X will be labelled with a desired answer D_X , which will be compared to A_X . The vector D_X should have the same size as A_X , and be filled with 0 and 1.

The output of each layer is the input of the next one.

Structure of the *I*-th layer:

 X^{l-1} : *l*-th input vector

 W^l : l-th weight matrix

 B^l : *l*-th bias vector

 S^l : l-th sum vector

 G^l : l-th gradient vector

 f_l : *l*-th activation funtion

 X^l : l-th output vector

Sizes: B^l, S^l, G^l, X^l : $1 \times n_l$

 $W^l: n_l \times n_{l-1}$

Where: $X^0 = X$, the network's input.

 $X^{L} = A_{X}$, the network's output.

Feedforward:

For a given input X, one can propagate said input through the network by doing for every layer:

$$S^{l} = X^{l-1}(W^{l})^{t} + B^{l}$$
$$X^{l} = f_{l}(S^{l})$$

Once the learning is done, only this action will be performed on new inputs.

Weights initialization:

For a fast convergence, initial weights should not be too large. For every layer l, it is advised to initialize each weight with a normal distribution of mean 0 and standard deviation $\frac{1}{\sqrt{n_{l-1}}}$. If a normal distribution generator is not available, an uniform distribution on the interval $\left[\frac{-1}{\sqrt{n_{l-1}}}, \frac{1}{\sqrt{n_{l-1}}}\right]$ may also be used.

Finally, biases can either be initialized with the previous distributions, or be set to 0.

Loss function:

The loss function is a map $\mathscr{L}: \mathbb{R}^{n_0} \to \mathbb{R}_+$ which is used for the learning phase.

For any input X it returns a positive value, with: $\mathscr{L}(X) = 0 \Leftrightarrow A_X = D_X$.

The total loss will be the sum of every input's loss from the learning dataset \mathbb{D} :

$$\mathscr{L}_T = \sum_{X \in \mathbb{D}} \mathscr{L}(X)$$

During the learning, we will try to minimize the total loss.

There is several loss functions which can be chosen, for example:

Quadratic loss:
$$\mathscr{L}(X) = \frac{1}{2} ||A_X - D_X||_2^2 = \frac{1}{2} \sum_{i=1}^{n_L} (a_i - d_i)^2$$

Cross entropy loss: $\mathscr{L}(X) = -D_X \odot \ln(A_X) - (1-D_X) \odot \ln(1-A_X)$ where \odot designate the Hadamard product.

Gradient descent:

Gradient descent is a method used to find the minimum of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$. At each step, we apply $\Delta x = -\eta \frac{\partial f}{\partial x}$ for some $\eta > 0$. The smaller η is, the slower but more precise is the convergence.

Backpropagation:

We will use the stochastic gradient descent: for each input X of the dataset, gradient descent is applied on every layer's weights and biases, for the loss $\mathscr{L}(X)$ and a learning rate $\eta > 0$. That is:

$$\Delta W^{l} = -\eta \frac{\partial \mathscr{L}(X)}{\partial W^{l}}$$
 $\Delta B^{l} = -\eta \frac{\partial \mathscr{L}(X)}{\partial B^{l}}$

One can show by computation that this leads to:

$$\Delta W^{l} = -\eta (G^{l})^{t} X^{l-1} \qquad \Delta B^{l} = -\eta G^{l}$$

where $G^l:=\frac{\partial \mathscr{L}(X)}{\partial S^l}$. For every l < L, we can compute G^l recursively: $G^l=f_l^{'}(S^l)\odot(G^{l+1}W^{l+1})$

And G^L depends on the choice of loss funtion:

$$G^{L} = f_{I}(S^{L}) \odot (A_{X} - D_{X})$$
 for the quadratic loss.

$$G^{L} = A_{X} - D_{X}$$
 for the cross entropy loss.