Object Detection YOLO model

CONTENTS

- Object Detection
- YOLO model
- YOLO 실습

Object Detection이란?

카메라나 센서를 이용해 자동차, 사람, 동물, 물건 등을 검출

Object Detection이란?

Object Detection 활용

1. 자율주행

카메라를 통해 보이는 객체가 무엇인지 분별 자동차의 '눈'

2. 군사목적

군사적 목적(공격/방어) 시스템 구축을 위한 연구

3. 스포츠분야

경기가 지속될수록 선수 컨디션 / 기술에 대한 전술패턴 분석에 용이

Object Detection 활용

4. 제조업 품질 관리

정품 / 비품 학습 → 비품 관리 컨베이어벨트 → 물품 추적, 계수

5. 지능형CCTV 이상행동 감지

사람 인식 → 이상행동 감지 (폭행, 침입, 화재 등)

Object Detection 알고리즘

2-Stage 방식

- * Localization과 Classification 문제를 순차적으로 해결
- * Input Image ▶ 물체가 있을법한 위치 탐색 ▶ 각 위치에 대해 Feature 추출, Class 분류
- * R-CNN, Fast R-CNN, Faster R-CNN

1-Stage 방식

Input Image (예시)

- Feature Extractor
- Classification
 - Regression
- * Localization과 Classification 문제를 한번에 해결
- * 2-Stage 보다 속도▲, 정확도▼
- * YOLO (최근 나온 v4, v5는 정확도도 많이 개선)

Object Detection History

```
MR-CNN → DeepBox → AttentionNet →
 R-CNN → OverFeat → MultiBox →
                                       SPP-Net
                                                       ICCV 15
                          CVPR' 14
                                         ECCV 14
                                                                     ICCV 15
                                                                                     ICCV 15
             ICLR: 14
  2013.11
Fast R-CNN → DeepProposal → Faster R-CNN → OHEM → YOLO v1 → G-CNN → AZNet →
                                                                                       CVPR: 16
                                                                CVPR' 16
                                                     CVPR' 16
   ICCV" 15
                     ICCV 15
                            HyperNet → CRAFT → MultiPathNet(MPN) →
                                                                                     GBDNet →
Inside-OutsideNet(ION) →
                                                                           ECCV 16
                                                                                       ECCV 16
                                                          BMVC" 16
         CVPR 16
                              CVPR' 16
     → MS-CNN → R-FCN → PVANET → DeepID-Net → NoC → DSSD →
                                                                          TDM →
                                                                                     YOLO v2 -
                                                                           CVPR 17
                                                                                       CVPR' 17
         ECCV 16
                                         DCN → DeNet → CoupleNet → RetinaNet → DSOD →
Feature Pyramid Net(FPN) -
                                                                             ICCV 17
                                                                                         ICCV" 17
                                                               ECCV 17
                                        KCV 17
                                                   ICCV' 17
                               CVPR' 17
          CVPR: 17
                                                 STDN → RefineDet → MLKP → Relation-Net →
                 SMN - YOLO v3
                                                                                     CVPR' 18
                                       CVPR: 15
                                                  CVPR' 18
                                                             CVPR' 18
                                                                         CVPR 18
   ICCV 17
                 HCCV 17
                             arXiv 18
                                                       Pelee → HKRM → R-DAD →
                                                                                     M2Det ···
Cascade R-CNN → RFBNet → CornerNet → PFPNet →
                                                                                       AAAI' 19
                                                                           AAAF 19
                                                                 NIPS' 18
                    ECCV 18
                                ECCV: 1B
                                              ECCV 18
     CVPR 1#
```

https://www.gopichandrakesan.com/day-89-consolidated-list-or-one-stop-shop-for-research-papers-on-deep-learning-object-detection/

Object Detection 관련 용어

Bounding Box

이미지에서 하나의 객체 전체를 포함하는 가장 작은 직사각형

IoU

Intersection Over Union 실측값과 예측값이 얼마나 겹치는지

Object Detection 관련 용어

Bounding Box 하나의 객체 전체를 포함하는 가장 작은 직사각형

loU가 높을수록 잘 예측 동일하게 검출했다면 loU = 1

loU

NMS

동일한 객체를 가르키는 여러개의 bBox를 제거

모델 성능 평가 AP(Average Precision) & mAP(mean Average Precision)

Precision (정밀도): 모든 검출 결과 중 옳게 검출한 것

Recall (재현율): 검출해내야 하는 물체들 중 제대로 검출한 것

$$\frac{TP}{TP + FP} = \frac{TP}{TP + FN}$$

모델 성능이 좋으려면 Precision과 Recall 모두 높아야 한다.

Dataset

Pascal VOS Data

COCO Dataset

인공 신경망 모델 추이

자율주행 자동차 등에 활용되면서 정확도(mAP) + 신속성(FPS)도 중요

RCNN 계열은 2-stage로 정확성은 있으나 신속성이 떨어짐

최근에는 일정 수준 mAP를 유지하면서 FPS를 높이는 신경망 개발

► YOLO, SSD

YOLO

You Only Look Once 한 번보고 처리

가장 빠른 객체 검출 알고리즘 중 하나

Bounding Box Coordinate과 Classification을 동시에 실행하는 통합인식(Unified Detection) 구현

YOLO

- 1. 이미지를 S*S개 Grid로 분할
- 2. 이미지 전체를 신경망에 넣고 특징 추출을 통해 Prediction Tensor 생성
- 3. Grid 별 예측 정보를 바탕으로 Bounding Box Coodinate, Classification 수행

YOLO

 5×5 grid on input

Bounding boxes + confidence

Class probability map

Grid 별 Bounding Box 정보, Confidence Score, Classification Class 확률 포함

Final detections

Prediction Tensor 파라미터 개수 = (S*S*(B*5+C))

*S: grid 개수

* B: bounding box 개수

Darknet pjreddie.com/darknet/

▶ YOLO의 원코드(PyTorch model)

Darknet은 신경망 프레임워크 오픈소스

C 언어와 CUDA로 작성됨

설치가 쉽고, CPU와 GPU를 지원

실습

REF

모두의 딥러닝

케라스 창시자에게 배우는 딥러닝

YOLO(You Only Look Once) Object Detection 모델

https://techblog-history-younghunjo1.tistory.com/186

object detection with yolo

https://uiandwe.tistory.com/1337

객체 탐지 Object Detection - YOLO의 모든것

https://youtu.be/fdWx3QV5n44

Thank You