

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classificação	FINAL:

$$\left(4 - \frac{y^2}{x^2}\right) + \frac{2y}{x}y' = 0.$$

Identificação do aluno		
Nome:	N° Mec.:	_ Turma:
Declaro que desisto	Classificação	FINAL:

$$x^3y'=2y.$$

Identificação do aluno		
Nome:	N° Mec.:	_ Turma:
Declaro que desisto	Classificação	FINAL:

$$(2x+1)y' + y = 1.$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classificaçã	ão Final:

$$3x^2e^y + (x^3e^y - 1)y' = 0.$$

Identificação do aluno		
Nome:	N° Mec.:	_ Turma:
Declaro que desisto	Classificação	FINAL:

$$(x^2 + x)y' = 2y + 1.$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classifica	ção Final:

$$y' + y\cos x = \sin(2x).$$

Identificação do aluno		
Nome:	N° Mec.:	_ Turma:
Declaro que desisto	Classificação	FINAL:

$$e^{-y} + (1 - xe^{-y})y' = 0.$$

Identificação do aluno		
Nome:	N° Mec.:	_ Turma:
Declaro que desisto	Classificação	FINAL:

$$\sqrt{4+x^2}y'=y.$$

Identificação do aluno		
Nome:	N° Mec.:	_ Turma:
Declaro que desisto	Classificação	FINAL:

$$y' - y \operatorname{tg} x = \operatorname{cotg} x.$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classificaçã	ão Final:

$$2x\cos^2(y) + (2y - x^2\sin(2y))y' = 0.$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classificaçã	ão Final:

$$(1+x^2)y' + 1 + y^2 = 0.$$

Identificação do aluno	
Nome:	N° Mec.: Turma:
Declaro que desisto	Classificação Final:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$2y' + 3y = -2\sin(x) + 3\cos(x)$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classificaçã	ão Final:

$$(2y\cos(x+y) - y^2\sin(x+y))y' - y^2\sin(x+y) = 0.$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classifica	ção Final:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$y' = 2\sqrt{y}\ln x,$$

com y(e) = 1.

Identificação do aluno	
Nome:	N° Mec.: Turma:
Declaro que desisto	Classificação Final:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$3y' + y = 2x + 3$$

Identificação do aluno	
Nome:	N° Mec.: Turma:
Declaro que desisto	Classificação Final:

$$\frac{x^2 - 4y}{x^2} + \frac{4}{x}y' = 0.$$

Identificação do aluno	
Nome:	N° Mec.: Turma:
Declaro que desisto	Classificação Final:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$(1+x^2)y' + y\sqrt{1+x^2} = xy$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classificação	FINAL:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$3y' - y = -x^2 + 6x - 1$$

Identificação do aluno	
Nome:	N° Mec.: Turma:
Declaro que desisto	Classificação Final:

$$(2xy + 3y) + (x^2 + 3x)y' = 0.$$

Identificação do aluno		
Nome:	N° Mec.:	_ Turma:
Declaro que desisto	Classificação	FINAL:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$y' = \frac{x}{3\sqrt{1+x^2}y^2}$$

Identificação do aluno	
Nome:	N° Mec.: Turma:
Declaro que desisto	Classificação Final:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$y' - 3y = -6e^{-x}$$

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classifica	ção Final:

$$3x^2y^2 + (2x^3y - 3y^2)y' = 0.$$

Identificação do aluno	
Nome:	N° Mec.: Turma:
Declaro que desisto	Classificação Final:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$y' = -\frac{1}{2x} \frac{y^2 - 6y + 5}{y - 3}$$

com y(1) = 2

Identificação do aluno		
Nome:	N° Mec.:	Turma:
Declaro que desisto	Classificação	FINAL:

Determine a solução do problema de valor inicial da seguinte equação com derivadas ordinárias

$$y' + 2y = 3e^x$$