CSE428: Image Processing

Lecture 13

Convolutional Neural Networks: Part 2

Convolution Layer

Convolution layer input: a single image

Batch Convolution

Convolution layer input: a batch of images

Batched Training

```
fit(
    x=None, y=None, batch_size=None, epochs=1, verbose='auto',
    callbacks=None, validation_split=0.0, validation_data=None, shuffle=True,
    class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None,
    validation_steps=None, validation_batch_size=None, validation_freq=1,
    max_queue_size=10, workers=1, use_multiprocessing=False
)
```

Number of training samples per batch, usually in powers of 2 for hardware efficiency: 2, 4, 8, 16, 32, 64, ...

Idea: "Normalize" the output batch of a layer so they have zero mean and unit variance

Batch Normalization makes the distribution more stable and reduces the internal covariate shift


```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
             Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                  // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                             // mini-batch variance
                                                                              // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                      // scale and shift
```

https://arxiv.org/abs/1502.03167

Problem: depends on the batch or the distribution statistics (mean, variance) which is neither suitable nor obtainable at test time

Result: different behavior at train time and test time

Train: use the batch mean and variance

Test: use the running average of mean and variance seen at training phase

During training: for each channel being normalized, the layer returns gamma * (batch - mean(batch)) / sqrt(var(batch) + epsilon) + beta, where:

- epsilon is small constant
- gamma is a learned scaling factor (initialized as 1)
- beta is a learned offset factor (initialized as 0)

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                       // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                  // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
                                                                                    // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                            // scale and shift
```

https://arxiv.org/abs/1502.03167

During inference: for each channel, the layer returns gamma * (batch - self.moving_mean) / sqrt(self.moving_var + epsilon) + beta.

self.moving_mean and self.moving_var are non-trainable variables that are updated each time the layer in called in training mode

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                       // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                  // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
                                                                                    // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                            // scale and shift
```

Batch Normalization Layer

- Output has the same shape as the input
- Only the distribution of the input changes
- Usually stacked after convolution layer/fully connected layer, before non linearity
- Learnable params: γ, β

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                       // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                  // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
                                                                                    // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                            // scale and shift
```

tf.keras.layers.BatchNormalization

```
tf.keras.layers.BatchNormalization(
    axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True,
    beta_initializer='zeros', gamma_initializer='ones',
    moving_mean_initializer='zeros',
    moving_variance_initializer='ones', beta_regularizer=None,
    gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs
)
```

ImageNet Large Scale Visual Recognition Challenge

The ImageNet Large Scale Visual Recognition Challenge or ILSVRC for short is an annual competition helped between 2010 and 2017 in which challenge tasks use subsets of the ImageNet *dataset*.

- ImageNet dataset: 1,000 classes, 1,281,167 training images, 50,000 validation images and 100,000 test images
- ILSVRC challenge: Image classification, Object localization (classification+bounding box)

ImageNet Large Scale Visual Recognition Challenge

In this task, given an image an algorithm will produce 5 class labels c_i , $i=1,\ldots 5$ in decreasing order of confidence and 5 bounding boxes b_i , $i=1,\ldots 5$, one for each class label. The quality of a labeling will be evaluated based on the label that best matches the ground truth label for the image. The idea is to allow an algorithm to identify multiple objects in an image and not be penalized if one of the objects identified was in fact present, but not included in the ground truth.

The ground truth labels for the image are $C_k, k=1, \ldots n$ with n class labels. For each ground truth class label C_k , the ground truth bounding boxes are $B_{km}, m=1\ldots M_k$, where M_k is the number of instances of the k^{th} object in the current image.

Let $d(c_i, C_k) = 0$ if $c_i = C_k$ and 1 otherwise. Let $f(b_i, B_k) = 0$ if b_i and B_k have more than 50% overlap, and 1 otherwise. The error of the algorithm on an individual image will be computed using two metrics:

Classification-only:

$$e = rac{1}{n} \cdot \sum_k \min_i d(c_i, C_k)$$

· Classification-with-localization:

$$e = rac{1}{n} \cdot \sum_{k} min_{i}min_{m}max\{d(c_{i}, C_{k}), f(b_{i}, B_{km})\}$$

The classification-only and classification-with-localization errors of the algorithm is the average corresponding error across all test images.

ImageNet Classification Challenge Results (2010-2017)

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598 FA2020 lecture08.pdf

ImageNet Classification Challenge Results (2010-2017)

https://paperswithcode.com/sota/image-classification-on-imagenet

Architecture

- Input 224x224x3 cropped images
- 5 convolution (conv) layer
- 3 max-pooling layer
- 3 fully connected (FC) layer
- ReLU nonlinearity
- Total number of layers: 8
- ILSVRC 2012 Top-5 accuracy: 84.6%

[PDF] Imagenet classification with deep convolutional neural networks

<u>A Krizhevsky</u>, <u>I Sutskever</u>... - Advances in **neural** ..., 2012 - proceedings.neurips.cc We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is ...

☆ ワワ Cited by 85837 Related articles All 121 versions ≫

25 Aug, 2021

Architecture

Laver	Inp	out Volur	ne	Hyperparameters				Output Volume			Mamany (KB)	Learnable	FLOPs	
Layer	Hin	Win	Cin	Filters	Size	Stride	Pad	Hout	Wout	Cou	Memory (KB)	parameters (K)	(M)	
conv1	227	227	3	64	11	4	2	56	56	64	784	23	73	
pool1						_					•			
conv2	Output size Hout (= Wout) =(Hin-F+2*P)/S +1 =(227-11+2*2)/4 +1					Conv layer parameters =Cout*F*F*Cin + Cout =(64*11*11*3)/1000 K FC layer parameters =Cout*Cin + Cin					Floating Point Operations FLOPs (Mul+Add) =output volume * filter volume FLOPS =(56*56*64)*(11*11*3)/10^6 M			
pool2														
conv3														
conv4														
conv5					J									
pool3	·					=Cou	t°Cin +	Cin			FLOPS		Ι'	
flatten	Memory (Byte) =output volume storage =(Hout*Wout*Cout*4Bytes)					POOL layer parameters							1	
fc1														
fc2)									
fc3 (output)	=(5	6*56*64	*4)/102	4 KByte										
Total			1				1		ı				,	

Architecture details

- Spatial size reduces & depth increases
- FC layers have far more parameters than the conv layers
- Conv layers require more FLOPs

Layer	Input Volume			Hyperparameters				Output Volume			Mamani (KB)	Learnable	FLOPs
	Hin	Win	Cin	Filters	Size	Stride	Pad	Hout	Wout	Cout	Memory (KB)	parameters (K)	(M)
conv1	227	227	3	64	11	4	2	56	56	64	784	23	73
pool1	56	56	64		3	2	0	27	27	64	182	0	0
conv2	27	27	64	192	5	1	2	27	27	192	547	307	224
pool2	27	27	192		3	2	0	13	13	192	127	0	0
conv3	13	13	192	384	3	1	1	13	13	384	254	664	112
conv4	13	13	384	256	3	1	1	13	13	256	169	885	150
conv5	13	13	256	256	3	1	_1_	13	13	256	169	590	100
pool3	13	13	256		3	2	0	6	6	256	36	0	0
flatten	6	6	256							256	36	0	0
fc1			9216	4096						4096	/	37758	38
fc2			4096	4096						4096	-	16781	17
fc3 (output)			4096	1000						1000		4100	4
													Ť
Total											2304	61108	718

https://docs.google.com/spreadsheets/d/1ZVbWQYhqk5SDhPXMj-uvqKeNp7tH00I0MJHCTXPhAk0/edit?

Impact

- First CNN based winner!
- First use of ReLU in practice
- Trained on 2 GTX 580 GPUs
 - o (3GB memory/gpu)
- Dropout
- Data augmentation, L2 regularization
- Highly cited paper in the field
- Top 5 error reduction 25.8% -> 16.4%

[PDF] Imagenet classification with deep convolutional neural networks

A Krizhevsky, I Sutskever... - Advances in **neural** ..., 2012 - proceedings.neurips.cc We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is ...

T 99 Cited by 85837 Related articles All 121 versions ≫

25 Aug, 2021

ZF Net

Architecture

- Modified AlexNet
- Improved AlexNet by tweaking hyperparameters
- Smaller filter size (11x11 -> 7x7) in the earlier layers

image size 224

Input Image

stride 2

3x3 max

Layer 3

Layer 1

filter size 7

- Total number of layers: 8
- ILSVRC **2013** Top-5 accuracy: **85.3**%
- Top 5 error reduction 16.4% -> 11.7%

3x3 max pool

Layer 5

Layer 6 Layer 7

Output

VGG

Architecture

- Regular design
 - o F=3, S=1, P=1 conv layers
 - F=2, S=2 max-pooling lakers
 - Double # of filters after every pooling layer
- Can be broken into stages
 - [conv layer] x 2/3/4 [pooling layer] -
- Total number of layers: 16, 19 (VGG16, VGG19)
- ILSVRC 2014 Top-5 accuracy: 92.0% (runner-up)

Softmax								
FC 1000								
FC 4096								
FC 4096								
Pool								
3×3 conv, 512								
3×3 conv, 512								
3×3 conv, 512								
Pool								
3×3 conv, 512								
3×3 conv, 512								
3×3 conv, 512								
Pool								
3×3 conv, 256								
3×3 conv, 256								
Pool								
3×3 conv, 128								
3×3 conv, 128								
Pool								
$3 \times 3 conv, 64$								
$3 \times 3 conv, 64$								
Input								
1/00/10								

Softmax						
FC 1000						
FC 4096						
FC 4096						
Pool						
3×3 conv, 512						
$3 \times 3 conv, 512$						
3×3 conv, 512						
3×3 conv, 512						
Pool						
$3 \times 3 conv, 512$						
$3 \times 3 conv, 512$						
$3 \times 3 conv, 512$						
$3 \times 3 conv, 512$						
Pool						
$3 \times 3 conv, 256$						
3×3 conv, 256						
Pool						
3×3 conv, 128						
3×3 conv, 128						
Pool						
$3 \times 3 conv, 64$						
3 × 3 conv, 64						
Input						

VGG16

VGG19

VGG

Architecture

- Smaller convolutions
 - The receptive field of 2 stacked 3x3 conv layers is the same as 1 single 5x5 conv layer, but has fewer parameters
 - For C_{in}=C_{out}=C number of channels, 2 stacked 3x3 conv layers have 2*(C*3*3*C)=18C² whereas 1 single 5x5 conv layer has C*5*5*C=25C²
- Spatial resolution is preserved after every convolution layer and downsampling only occurs at max-pooling stages

Softmax							
FC 1000							
FC 4096							
FC 4096							
Pool							
3×3 conv, 512							
3×3 conv, 512							
3×3 conv, 512							
Pool							
3×3 conv, 512							
3×3 conv, 512							
3×3 conv, 512							
Pool							
3×3 conv, 256							
3×3 conv, 256							
Pool							
3×3 conv, 128							
3×3 conv, 128							
Pool							
3 × 3 conv, 64							
3 × 3 conv, 64							
Input							
1/0040							

Softmax
FC 1000
FC 4096
FC 4096
Pool
3×3 conv, 512
Pool
$3 \times 3 conv, 512$
$3 \times 3 conv, 512$
$3 \times 3 \ conv, 512$
$3 \times 3 \ conv, 512$
Pool
$3 \times 3 conv, 256$
3 × 3 conv, 256
Pool
3×3 conv, 128
3 × 3 conv, 128
Pool
3 × 3 conv, 64
3 × 3 conv, 64
Input

VGG16

VGG19

GoogLeNet

Architecture

Inception module

- Local structure repeated many times
- Starts with a "stem" network
- Utilizes 1x1 convolution layers
- No large FC layers, more efficient
- Only 1 FC layer at the end to classify
- Total number of layers: 22 (Inception V2)
- ILSVRC 2014 Top-5 accuracy: 92.2% (winner)

https://arxiv.org/abs/1409.4842

GoogLeNet

Architecture

- Parallel branches
 - Parallel convolutions of 1x1, 3x3, 5x5
 - 1x1 "bottleneck" layers used to reduce number of channels 0
 - Concatenate output of each branch depth wise
 - Repeat this structure throughout the network! 0

https://arxiv.org/abs/1409.4842

GoogLeNet

Architecture

- First one to break out of the large FC layers
- Uses Global Average Pooling to collapse spatial size
- A GAP layer is placed after the final inception module
- GAP layer outputs 7x7x1024 volume
- One dense layer to produce class predictions
- No huge FC layers hence total number of parameters sharply reduces

	LeNet	AlexNet	VGG-16	VGG-19	GoogLeNet
Parameters	~30 x 10 ³	~60 x 10 ⁶	~138 x 10 ⁶	~144 x 10 ⁶	~7 x 10 ⁶
Layers	5	8	16	19	22

https://arxiv.org/abs/1409.4842

Are Deeper Networks Better?

At this point researcher started to think: deeper network ⇒ better accuracy?

 Since there is a very obvious trend in the graph shown!

Are Deeper Networks Better?

Problems with deeper network

- Training: Very hard to train (optimize) because gradients get smaller and smaller as they back propagate (vanishing gradient)
- Performance: Worse than shallow models! Why?

https://arxiv.org/abs/1512.03385

Residual Networks Motivation

Performance: Worse than shallow models! Why?

- Initially it people thought because of overfitting! (test)
- But the training profile shows it is actually underfitting!
- A larger model should easily be able to emulate shallower models, by adding extra layers and learning the identity function
- Maybe deeper models are suffering from not being able to learn the *identity* function
- Solution: a layer that can learn identity function easily!

ResNet

7x7 conv, 64, /2 pool, /2 pool, /2 ax3 conv, 64 ax3 conv, 64 ax3 conv, 64 ax3 conv, 64 ax3 conv, 128 ax3 conv, 256 ax3 conv, 512 ax3 conv, 512

Architecture

- Skip connections: residual block
- Structure is like VGG, with residual blocks
- Network is divided into stages
- No pooling, only strided downsampling
- GAP+Linear layer for final classification
- Able to train very, very deep networks
- Total number of layers: 152 (ResNet-152)
- ILSVRC 2015 Top-5 accuracy: 94.29% (winner across 5 major competitions)

Model Complexity Comparison

Other Popular Architectures

Network in Network

ResNeXt

DenseNet

SqueezeNet

MobileNet

Summary

AlexNet and VGG started showing the power of CNNs in computer vision tasks over very large datasets

Inception and ResNet enabled to build even deeper CNNs and helped them train efficiently

ILSVRC has now moved on to Kaggle

For starters, most common problems can be solved by using any of the off-the-shelf architectures, no need to build a new one

Later we will see how to modify these networks for different tasks!

Resources

- 1. https://cs231n.github.io/convolutional-networks/
- 2. https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/
- 3. https://www.tensorflow.org/api_docs/python/tf/keras
- 4. Deep Learning with Python Book by François Chollet
- 5. https://www.deeplearningbook.org/
- 6. Hands-on Computer Vision with TensorFlow 2 by Eliot Andres & Benjamin Planche (Packt Pub.)

Colab Notebook

1. A simple toy ResNet model using keras functional API

https://colab.research.google.com/drive/1oh5HYjFoi4WVnlbyme3rdCknVQZ36ob6?usp=sharing