S R Rupa Krishna

21BIT0275

- 1 import pandas as pd
- 2 import seaborn as sns
- import matplotlib.pyplot as plt
- 4 import numpy as np
- data = pd.read_csv('WA_Fn-UseC_-HR-Employee-Attrition.csv')
- 2 data.head()

8

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educatio
0	41	Yes	Travel_Rarely	1102	Sales	1	
1	49	No	Travel_Frequently	279	Research & Development	8	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	
4	27	No	Travel_Rarely	591	Research & Development	2	

5 rows × 35 columns

1 data.shape

(1470, 35)

1 data.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	J
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	

8 rows × 26 columns

1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

Data	cordinis (corar 32 cordinis) •	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64

17	MaritalStatus	1470	non-null	object
18	MonthlyIncome	1470	non-null	int64
19	MonthlyRate	1470	non-null	int64
20	NumCompaniesWorked	1470	non-null	int64
21	Over18	1470	non-null	object
22	OverTime	1470	non-null	object
23	PercentSalaryHike	1470	non-null	int64
24	PerformanceRating	1470	non-null	int64
25	RelationshipSatisfaction	1470	non-null	int64
26	StandardHours	1470	non-null	int64
27	StockOptionLevel	1470	non-null	int64
28	TotalWorkingYears	1470	non-null	int64
29	TrainingTimesLastYear	1470	non-null	int64
30	WorkLifeBalance	1470	non-null	int64
31	YearsAtCompany	1470	non-null	int64
32	YearsInCurrentRole	1470	non-null	int64
33	YearsSinceLastPromotion	1470	non-null	int64
34	YearsWithCurrManager	1470	non-null	int64

dtypes: int64(26), object(9) memory usage: 402.1+ KB

1 data.isnull().sum()

0 Attrition BusinessTravel 0 DailyRate Department 0 DistanceFromHome Education 0 EducationField 0 EmployeeCount EmployeeNumber 0 EnvironmentSatisfaction Gender HourlyRate JobInvolvement JobLevel JobRole 0 JobSatisfaction 0 MaritalStatus 0 MonthlyIncome 0 MonthlyRate NumCompaniesWorked 0 Over18 OverTime PercentSalaryHike PerformanceRating RelationshipSatisfaction StandardHours 0 StockOptionLevel TotalWorkingYears 0 TrainingTimesLastYear 0 WorkLifeBalance YearsAtCompany 0 YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager dtype: int64

1 data.corr()

C:\Users\Asus\AppData\Local\Temp\ipykernel_8564\2627137660.py:1: FutureWarning: The c data.corr()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCo
Age	1.000000	0.010661	-0.001686	0.208034	1
DailyRate	0.010661	1.000000	-0.004985	-0.016806	1
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	1
Education	0.208034	-0.016806	0.021042	1.000000	1
EmployeeCount	NaN	NaN	NaN	NaN	1
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	I
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	1
HourlyRate	0.024287	0.023381	0.031131	0.016775	1
Jobinvolvement	0.029820	0.046135	0.008783	0.042438	1
JobLevel	0.509604	0.002966	0.005303	0.101589	I
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	1
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	1
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	1
		0 0001=0	0.0000=1		

¹ plt.figure(figsize =(24,24))

² sns.heatmap(data.corr(),annot = True,cmap = "YlGnBu")

³ plt.show()

1 data.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Ger	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	2	Fer	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	3	ı	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	4	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	4	Fer	
4	27	No	Travel_Rarely	591	Research &	2	1	Medical	1	ı	

5 rows × 32 columns

1 attrition_count = pd.DataFrame(data['Attrition'].value_counts())
2 attrition_count

	Attrition
No	1233
Yes	237

1 plt.pie(attrition_count['Attrition'] , labels = ['No' , 'Yes'] , explode = (0.15,0))

1 data.head()

```
1 attrition_dummies = pd.get_dummies(data['Attrition'])
2 data = pd.concat([data, attrition_dummies] , axis = 1)

1 data = data.drop(['Attrition','No'],axis = 1)
```

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Gender	Hourly
0	41	Travel_Rarely	1102	Sales	1	2	Life Sciences	2	Female	
1	49	Travel_Frequently	279	Research & Development	8	1	Life Sciences	3	Male	
2	37	Travel_Rarely	1373	Research & Development	2	2	Other	4	Male	
3	33	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	4	Female	
4	27	Travel_Rarely	591	Research & Development	2	1	Medical	1	Male	

5 rows × 32 columns

Unsupported Cell Type. Double-Click to inspect/edit the content.

```
1 from sklearn.preprocessing import LabelEncoder
2 l = LabelEncoder()
3 for columns in data.columns:
4     if data[columns].dtype == [np.number,np.float64,np.int64]:
5         continue
6     else:
7         data[columns] = l.fit_transform(data[columns])
```

Spliting dependent and independent variables

1	х.	head	()
			•	•

P	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education
0	23	2	624	2	0	1	
1	31	1	113	1	7	0	
2	19	2	805	1	1	1	
3	15	1	820	1	2	3	
4	9	2	312	1	1	0	

5 rows \times 31 columns

▼ Feature Scaling

```
1 from sklearn.preprocessing import MinMaxScaler
2 ms = MinMaxScaler()
3 x_Scaled = pd.DataFrame(ms.fit_transform(x),columns=x.columns)
4 x_Scaled.head()
```

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educ
0	0.547619	1.0	0.705085	1.0	0.000000	0.25	
1	0.738095	0.5	0.127684	0.5	0.250000	0.00	
2	0.452381	1.0	0.909605	0.5	0.035714	0.25	
3	0.357143	0.5	0.926554	0.5	0.071429	0.75	
4	0.214286	1.0	0.352542	0.5	0.035714	0.00	

5 rows x 31 columns

▼ Train and Test data Split

```
1 from sklearn.model_selection import train_test_split
1 xtrain,xtest,ytrain,ytest = train_test_split(x_Scaled,y,test_size = 0.2,random_state = 0)
```

▼ Logistic Regression

```
1 from sklearn.linear_model import LogisticRegression
3 lr = LogisticRegression()
1 lr.fit(xtrain,ytrain)
    ▼ LogisticRegression
    LogisticRegression()
1 lrpred = lr.predict(xtest)
1 from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,roc_auc_score,roc_curve
1 accuracy_score(ytest,lrpred)
    0.8843537414965986
1 confusion_matrix(ytest,lrpred)
    array([[242, 3], [31, 18]], dtype=int64)
1 print(classification_report(ytest,lrpred))
                 precision recall f1-score support
                            0.99
              0
                      0.89
                                         0.93
                                                    245
                      0.86
                               0.37
                                         0.51
                                                     49
                                          0.88
                                                     294
       accuracy
                      0.87
                            0.68
                                          0.72
                                                     294
      macro avg
    weighted avg
                      0.88
                                0.88
                                                     294
```

→ Decision Tree Classification

```
1 from sklearn.tree import DecisionTreeClassifier
2 dtc = DecisionTreeClassifier()

1 dtc.fit(xtrain,ytrain)

* DecisionTreeClassifier
DecisionTreeClassifier()
```

1 dtcpred = dtc.predict(xtest)

- 1 accuracy_score(ytest,dtcpred)
 - 0.7482993197278912
- 1 print(classification_report(ytest,dtcpred))

	precision	recall	f1-score	support
0	0.86	0.83	0.85	245
1	0.28	0.33	0.30	49
accuracy			0.75	294
macro avg	0.57	0.58	0.57	294
weighted avg	0.76	0.75	0.76	294

¹ from sklearn import tree

² plt.figure(figsize=(35,25))

³ tree.plot_tree(dtc,filled=True)

```
[Text(0.31914702868852457, 0.9722222222222, 'x[24] \leftarrow 0.038 
0.269\nsamples = 1176\nvalue = [988, 188]'),
 = 78\nvalue = [39, 39]'),
  Text(0.04262295081967213, 0.861111111111112, 'x[4] <= 0.554\ngini =
0.426\nsamples = 39\nvalue = [27, 12]'),
  Text(0.02622950819672131, 0.8055555555556, 'x[13] <= 0.167\ngini =</pre>
0.312\nsamples = 31\nvalue = [25, 6]'),
  Text(0.013114754098360656, 0.75, 'x[15] <= 0.046 \\ lngini = 0.49 \\ lnsamples = 7 \\ lnvalue \\ lnsamples = 1 \\ lnvalue \\ lnsamples = 2 \\ lnvalue \\ lnsamples = 3 \\ lnvalue \\ lnsamples = 3 \\ lnvalue \\ lnsamples = 3 \\ lnvalue \\ lnsamples = 4 \\
= [3, 4]'),
   Text(0.006557377049180328, 0.6944444444444444, 'gini = 0.0\nsamples = 3\nvalue =
   Text(0.019672131147540985, 0.69444444444444444444, 'x[14] <= 0.25\ngini =
0.375\nsamples = 4\nvalue = [3, 1]'),
  Text(0.013114754098360656, 0.638888888888888, 'gini = 0.0\nsamples = 3\nvalue =
[3, 0]'),
  Text(0.02622950819672131, 0.6388888888888888, 'gini = 0.0 \nsamples = 1 \nvalue = 1 \nva
[0, 1]').
  Text(0.03934426229508197, 0.75, 'x[17] <= 0.056\ngini = 0.153\nsamples =
24\nvalue = [22, 2]'),
  Text(0.03278688524590164, 0.6944444444444444, 'gini = 0.0\nsamples = 1\nvalue =
[0, 1]'),
  Text(0.04590163934426229, 0.694444444444444, 'x[7] <= 0.167\ngini =
0.083\nsamples = 23\nvalue = [22, 1]'),
  Text(0.03934426229508197, 0.6388888888888888, 'x[1] <= 0.75 \setminus \text{ngini} = 0.5 \setminus \text{nsamples}
= 2\nvalue = [1, 1]'),
  Text(0.03278688524590164, 0.583333333333334, 'gini = 0.0\nsamples = 1\nvalue =
[0, 1]'),
  Text(0.04590163934426229, 0.583333333333334, 'gini = 0.0\nsamples = 1\nvalue =
[1, 0]'),
  Text(0.05245901639344262, 0.638888888888888, 'gini = 0.0\nsamples = 21\nvalue =
[21, 0]'),
   Text(0.05901639344262295, 0.80555555555556, 'x[20] \leftarrow 0.679 
0.375\nsamples = 8\nvalue = [2, 6]'),

Text(0.05245901639344262, 0.75, 'gini = 0.0\nsamples = 6\nvalue = [0, 6]'),

Text(0.06557377049180328, 0.75, 'gini = 0.0\nsamples = 2\nvalue = [2, 0]'),
  Text(0.10163934426229508, 0.8611111111111112, 'x[9] <= 0.364\ngini =
0.426\nsamples = 39\nvalue = [12, 27]'),
  Text(0.08524590163934426, 0.80555555555556, 'x[15] <= 0.231\ngini =
0.133\nsamples = 14\nvalue = [1, 13]'),
  Text(0.07868852459016394, 0.75, 'gini = 0.0\nsamples = 13\nvalue = [0, 13]'),
Text(0.09180327868852459, 0.75, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),
  Text(0.1180327868852459, 0.8055555555555556, 'x[19] <= 0.5\ngini = 0.493\nsamples
= 25\nvalue = [11, 14]'),
 Text(0.10491803278688525, 0.75, 'x[2] <= 0.108\ngini = 0.484\nsamples = 17\nvalue
= [10, 7]'),
  Text(0.09836065573770492, 0.69444444444444444, 'gini = 0.0\nsamples = 3\nvalue =
[0, 3]'),
  Text(0.11147540983606558, 0.6944444444444444, 'x[22] <= 0.167\ngini =
0.408 \times = 14 \times = [10, 4]'),
  Text(0.09836065573770492, 0.63888888888888, 'x[24] <= 0.013\ngini =
0.375 \times = 4 \times = [1, 3]'),
  Text(0.09180327868852459, 0.583333333333334, 'gini = 0.0\nsamples = 1\nvalue =
[1, 0]'),
   Text(0.10491803278688525, 0.583333333333334, 'gini = 0.0\nsamples = 3\nvalue =
[0, 3]'),
   Text(0.12459016393442623, 0.638888888888888, 'x[12] <= 0.875\ngini =
```