MEDIDA DA VISCOSIDADE DA ÁGUA

Davi Maciel Versão: 20 de abril de 2020

1 Apresentação e objetivos

Está prática experimental tem como objetivo analisar a interferência da viscosidade de um fluido no movimento de um corpo. Vamos estudar as consequências e parâmetros relevantes num sistema simples: o viscosímetro de Stokes.

2 Materiais

- 1 Suporte para a lâmpada
- 1 Lâmpada preenchida com água
- 1 Fita métrica
- 1 Cronômetro
- Esferas de raios variados
- 1 Imã

3 Fundamentação teórica

A viscosidade é a resistência que um fluido apresenta ao escoamento. Para ilustrar, pense numa garrafa com água e numa garrafa com mel. Se você virar as duas de cabeça pra baixo, verá que existe uma maior dificuldade de derramar mel do que derramar água. Isso acontece por que o mel é mais viscoso do quê a água. A seguir, vamos analisar como essa viscosidade influência a queda vertical de uma esfera homogênea na água. Para isso, iremos fazer uso da Lei de Stokes, que relaciona a força de fricção sentida pela esfera com seus parâmetros e com o meio, quando o número de Reynolds é menor que 1. Essa lei é descrita pela seguinte fórmula:

$$\vec{F} = -6\pi r \eta \vec{v}$$
,

onde:

 \vec{F} é a forca de fricção, r é o raio da esfera, η é o coeficiente de viscosidade do fluido, e \vec{v} é a velocidade da esfera em relação ao fluido.

Existem 3 forças agindo na esfera enquanto ela cai na água:

Figura 1

onde: \vec{F} é a força de fricção \vec{E} é a força de empuxo, e $m\vec{g}$ é o peso.

A 2ª Lei de Newton fica:

$$m\vec{a} = m\vec{q} + \vec{F} + \vec{E} \rightarrow$$

$$\rightarrow ma = mg - 6\pi r\eta v - \rho_a V g$$

onde m e V são a massa e o volume da esfera, respectivamente, e ρ_a é a densidade da água.

Sabendo a densidade ρ da esfera, temos:

$$m = \rho V = \rho \frac{4}{3}\pi r^3.$$

Daí:

$$ma = (\rho - \rho_a)\frac{4}{3}\pi r^3 g - 6\pi r \eta v.$$

A velocidade vai aumentando até que o lado direito da equação acima tenda a zero, fazendo que a aceleração tenda a zero da mesma forma. No nosso experimento, podemos considerar que isso acontece bem rápido, ou seja, você pode considerar que a esfera começa um movimento uniforme poucos centímetros abaixo da superfície da água. Assim, a velocidade terminal é:

$$v = (\rho - \rho_a) \frac{2g}{9n} r^2.$$

Com essa relação em mãos e utilizando dados experimentais, podemos achar o coeficiente de viscosidade da água. Podemos achar até mesmo o raio de uma esfera, se tivermos o coeficiente de viscosidade da água.

4 Procedimentos experimentais

4.1

Utilizando os equipamentos fornecidos, levante dados de deslocamento por tempo de queda para cada esfera, lembrando de esperar que a esfera tenha entrado alguns centímetros na água antes de iniciar a contagem do cronômetro. Faça isso 3 vezes para cada esfera e depois calcule a média das velocidades terminais encontradas, que chamaremos de v_m . Organize os dados em tabelas, não esquecendo de apresentar todos os erros e os métodos utilizados para os cálculos destes.

4.2

Como estamos lidando com um tubo de raio finito, as paredes do mesmo irão influenciar no movimento das esferas e, consequentemente, devemos corrigir as velocidades obtidas ante de calcular a viscosidade. Essa correção pode ser feita aproximadamente por uma simples multiplicação de cada velocidade obtida pelo fator de correção:

$$K = 1 + 2, 4r/R,$$

onde r é o raio da respectiva esfera e R é o raio do tubo. Sabendo disso, apresente uma tabela com os valores de v_m obtidos experimentalmente, os fatores de correção, e as velocidades corrigidas v_c . Os únicos erros que deverão ser apresentados nessa tabela são os de v_c .

4.3

Construa um gráfico de v_m por r^2 e um de v_c por r^2 , ambos na mesma folha de papel quadriculada. Não esqueça de apresentar as barras de erro.

4.4

Através do coeficiente angular do gráfico de v_c por r^2 , determine o valor da viscosidade da água com sua respectiva incerteza.

4.5

O valor encontrado na literatura para a viscosidade da água é cerca de $1,00\cdot 10^{-3}~Pa\cdot s$. O valor encontrado por você é próximo do esperado? Se não, justifique.

Número de Reynolds: $R_e = \frac{2\rho vr}{\eta}$.