Comparison of Several Volatility Forecasting Models

Equator Quant

Zheng Hao Xiao Chao Zheng Pin Liu Yonghao Shan Changhan

Contents

- 1 Introduction
- Introduction
- Data SelectionRealized measures
- 2 Models
- GARCH models
- EW, RW and MA
- 3 Forecasts
- Forecast Method
- Forecast Results
- 4 Evaluation
- 6 Empirical Results
- 6 Conclusion

Introduction

Volatility forecasting of financial assets has important implications for option pricing, portfolio selection, risk-management and volatility trading strategies.

Data Selection

We select the stock indexes from markets all over the world.

Realized measures

1) realized variance (RV)

$$RV_t = \sum_{j=1}^M (r_{t,j})^2,$$

where $r_{t,j}$ is the *j*th intraday return of the day and M is the total number of intraday returns for the day.

- 2) subsampled RV measure (RVS)
- 3) realized bipower variance (BV)

$$BV_t = \frac{\pi}{2} \sum_{j=2}^{M} |r_{t,j}| |r_{t,j-1}|.$$

- 4) subsampled BV measure(BVS)
- 5) realized kernel estimator (RK)

$$RK_t = \sum_{h=-H}^{H} \kappa(\frac{h}{H+1})\gamma_h,$$

where $\gamma_h = \sum_{j=|h|+1}^{M} r_{t,j} r_{t,j-|h|}$ and $\kappa(x)$ is a kernel weight function.

Realized measures

Volatility Forecasting Models

- 1. Standard GARCH models
- 2. Other time series models
- 3. Realized GARCH model

GARCH effect

Specification for modeling the conditional mean

AR1:
$$r_t = c + \phi_1 r_{t-1} + \varepsilon_t$$
.

ACF of Squared Observations

GARCH models

Conditional variance equations for the various GARCH models

GARCH(1,1):
$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

EGARCH(1,1): $\log \sigma_t^2 = \omega + \beta \log \sigma_{t-1}^2 + \tau_1 z_{t-1} + \tau_2 (|z_{t-1}| - E|z_{t-1}|)$
Realized GARCH(1,1): $\log \sigma_t^2 = \omega + \beta \log \sigma_{t-1}^2 + \gamma \log x_{t-1}$,
 $\log x_t = \xi + \varphi \log \sigma_t^2 + \delta(z_t) + u_t$,
 $\delta(z_t) = \delta_1 z_t + \delta_2 (z_t^2 - 1)$,
where $u_t \sim i.i.d. N(0, \sigma_u^2)$ and x_t is realized volatility.

Realized GARCH

We estimate GARCH models with the Student's t-distribution.

$$\varepsilon_t = \sigma_t z_t, \quad z_t \sim i.i.d.t(d)$$

(a) Empirical Density of Standardized Residuals

(b) QQ Plot

Scaling Factor

The close-to-close variance for day t is estimated as $\sigma_t^2 = \eta x_t$, where η is the scaling factor and $x_t = RVS_t$, BVS_t or RK_t . The scaling factor η is calculated as

$$\eta = \frac{T^{-1} \sum_{t=1}^{T} (r_t - \mu_{cc})^2}{T^{-1} \sum_{t=1}^{T} (r_{oc,t} - \mu_{oc})^2},$$

where T is the total number of days in the sample period, $r_{\text{oc,t}}$ is the open-to-close log return for day t, $\mu_{\text{cc}} = T^{-1} \sum_{t=1}^{T} r_t$ and $\mu_{\text{cc}} = T^{-1} \sum_{t=1}^{T} r_{\text{cc,t}}$.

The random walk model (RW), the moving average model (MA), and the exponentially weighted moving average model (EW)

RW:
$$\hat{\sigma}_{t+1}^2 = \sigma_t^2$$

Under a random walk model, the observed scaled close-to-close variance at the end of day *t* is used as the best one-step ahead variance forecast for day t+1.

EW:
$$\hat{\sigma}_{t+1}^2 = \frac{\lambda}{\lambda} \sigma_t^2 + (1 - \frac{\lambda}{\lambda}) \hat{\sigma}_t^2$$

where λ , the smoothing parameter, is constrained to lie between zero and one and estimated from the data.

MA:
$$\hat{\sigma}_{t+1}^2 = \mathbf{p}^{-1} \sum_{i=1}^{\mathbf{p}} \sigma_{t+1-i}^2$$

The moving average model (MA) predicts the variance by calculating the arithmetic mean of close-to-close variances over past p days.

Forecast Method

Implementing rolling forecast method, we set the previous 2000 data points as obervations to estimate the parameters.

```
regarchroll = ugarchroll(spec = realgarch,data = logret,n.ahead=1,realizedvol = realize_vol,
refit.every = 100,n.start = 2000,refit.window = "moving",window.size = 1000)
```

We maintain our window length to 1000, and only predict one next point at a time. Every time we generate 100 outputs, we re-estimate the parameters according to our window length.

Forecast Results

Evaluation

Loss Functions: evaluating the accuracy of volatility forecasts

MSE =
$$E(L_{1,k,t})$$
, where $L_{1,k,t} = (\sigma_t^2 - \hat{\sigma}_t^2)^2$ penalizes the forecasting errors in a symmetrical manner

QLIKE =
$$E(L_{2,k,t})$$
, where $L_{2,k,t} = (\log(\hat{\sigma}_t^2) + \sigma_t^2 \hat{\sigma}_t^{-2})$

It is an asymmetric loss function that penalizes the under-prediction more heavily than the over-prediction. It is **more suitable** for the applications like risk management and VaR forecasting, where an under-prediction of volatility can be more costly than an over-prediction.

Empirical Results

The performance of models under MSE measures.

Model	FTSE	N225	GDAXI	DJI	FCHI	KS11	AEX	SSMI	IBEX	NSEI	MXX	STOXX50E	Mean
Garch	9	8	8	12	7	5	1	10	13	5	6	6	8
EGarch	1	6	13	2	8	14	5	1	7	1	1	10	5
RGarch_rvs	3	7	4	8	3	2	6	5	2	7	5	3	3
RGarch_bvs	2	3	8	6	6	3	9	8	1	4	2	4	3
RGarch_rk	4	12	6	11	4	7	10	4	5	8	3	1	7
RW_rvs	13	2	12	14	14	11	12	13	11	14	14	13	13
RW_bvs	12	1	2	9	12	10	13	12	4	2	11	8	10
RW_rk	14	14	10	13	13	9	14	14	14	13	13	14	14
MA_rvs	10	9	11	10	11	13	7	7	10	12	12	12	11
MA_bvs	7	10	9	4	9	12	8	6	8	6	10	7	10
MA_rk	11	13	14	5	10	8	11	11	12	11	8	11	12
EW_rvs	8	5	5	7	5	4	2	3	6	10	9	9	6
EW_bvs	5	4	1	1	2	6	3	2	3	3	7	2	1
EW_rk	6	11	3	3	1	1	4	9	9	9	4	5	4

Table: MSE rank

Empirical Results

The performance of models under QLIKE measures.

Model	FTSE	N225	GDAXI	DJI	FCHI	KS11	AEX	SSMI	IBEX	NSEI	MXX	STOXX50E	Mean
Garch	8	10	10	9	10	7	10	13	11	11	8	9	10
EGarch	9	11	11	8	11	12	11	12	10	10	6	11	11
RGarch_rvs	3	4	3	4	2	2	2	2	2	1	7	7	3
RGarch_bvs	1	3	2	1	3	1	3	5	1	3	4	10	2
RGarch_rk	2	8	5	5	4	4	4	6	4	4	2	4	4
RW_rvs	11	12	12	11	12	11	12	7	12	12	12	12	12
RW_bvs	14	13	13	13	13	13	13	11	13	13	14	14	13
RW_rk	13	14	14	14	14	14	14	14	14	14	13	13	14
MA_rvs	7	2	6	6	5	5	6	8	6	7	9	2	6
MA_bvs	12	9	9	12	8	9	8	9	9	9	11	8	9
MA_rk	6	6	8	7	9	10	9	10	8	8	5	5	8
EW_rvs	5	1	1	2	1	3	1	1	3	2	3	1	1
EW_bvs	10	7	7	10	6	6	5	3	7	6	10	6	7
EW_rk	4	5	4	3	7	8	7	4	5	5	1	3	5

Table: QLIKE rank

Heatmaps : The performance of models under BIC measure

Heatmap of BIC

Conclusion

- 1. Loss Function Sensitivity
- 2. Realized GARCH, EGARCH, GARCH
- 3. Model Fit and Forecast
- 4. Analysis of EW model: parameters, conditional long run mean variance, noise-logreturn

References

- [1] P. R. Hansen, Z. Huang, and H. H. Shek. Realized garch: a joint model for returns and realized measures of volatility. Journal of Applied Econometrics, 27(6):877–906, 2012.
- [2] S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, and R. Winkler. The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of forecasting, 1(2):111–153, 1982.
- [3] P. Sharma et al. Forecasting stock market volatility using realized garch model: International evidence. The Quarterly Review of Economics and Finance, 59:222–230, 2016.

