```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.datasets import fetch_california_housing
# Load the dataset
data = fetch_california_housing()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['MedHouseVal'] = data.target
# Display the first few rows
print(df.head())
# Define features and target variable
X = df[['AveRooms']] # Using 'AveRooms' as the feature for simplicity
y = df['MedHouseVal']
\ensuremath{\text{\#}} Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(f'Training data shape: {X_train.shape}')
print(f'Testing data shape: {X_test.shape}')
# Create a linear regression model
model = LinearRegression()
# Train the model on the training data
model.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model.predict(X_test)
# Calculate performance metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')
# Plot the regression line
plt.figure(figsize=(10, 6))
plt.scatter(X_test, y_test, color='blue', label='Actual values')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regression line')
plt.xlabel('Average Rooms per Dwelling')
plt.ylabel('Median House Value')
plt.title('Simple Linear Regression')
plt.legend()
plt.show()
# Plot actual vs. predicted values
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, color='purple')
plt.plot([y\_test.min(), y\_test.max()], [y\_test.min(), y\_test.max()], 'k--', lw=2)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs Predicted Values')
plt.show()
```

$\overline{\Rightarrow}$		MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	\
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	
		Longitu	de MedHou	ıseVal					
	0	-122.	23	4.526					
	1	-122.	22	3.585					
	2	-122.	24	3.521					
	3	-122.	25	3.413					
	4	-122.	25	3.422					
	Tr	aining d	ata shape:	(16512, 1	.)				
	Testing data shape:			(4128, 1)					

Actual