## 공학수치해석 기말고사 2012.12.18

문제1 다음 Figure 1과 같이 한쪽 끝은 열려 있으며, 두께를 무시할 수 있는 벽을 갖는 최적의 원통 용기를 설계하라. 용기는  $0.2m^3$ 의 체적을 담으려 한다. 밑면 면적과 옆면 면적이 최소화 되도록 설계하라.



Figure 1: 뚜껑이 없는 원통형의 용기

- (a) 일반적인 최적화 문제의 수식모델을 세워라. [10점]
- (b) Lagrangian법으로 설계하라(각 설계값은 과학적표기법 소숫점 4째 짜리까지 표기). [20점]

solution (a) 밑면의 면적은  $\pi r^2$  옆면의 면적은  $2\pi rh$ 이기 때문에 최소화하려는 면적은  $P=\pi r^2+2\pi rh$ 가 된다. 원기둥의 최대 체적은  $\pi r^2 h$ 이다.

minimize 
$$\pi r^2 + 2\pi rh$$
  
subject to  $\pi r^2 h = 0.2$ 

solution (b) Lagrangian L을 구성하면

$$L(r,h,\lambda) = -\pi r^2 - 2\pi rh + \lambda \left(0.2 - \pi r^2 h\right)$$

각각에 대하여 편미분을 수행하면

$$\frac{\partial L}{\partial r} = -2\pi r - 2\pi h - 2\lambda \pi r h$$

$$= 0$$

$$\frac{\partial L}{\partial h} = -2\pi r - \lambda \pi r^{2}$$

$$= 0$$

$$\pi r^{2} h = 0.2$$

 $r \neq 0$ 이므로 약분하여 정리하면

$$r + h + \lambda rh = 0$$
$$2 + \lambda r = 0$$

즉  $\lambda = -2/r$ 이 되고 r = h가 된다. 따라서  $\pi r^3 = 0.2$ 가 되어,  $r = h = (0.2/\pi)^{1/3} = 3.9929 \times 10^{-1}$ 가 된다.

문제2 일반강도 콘크리트 공시체 20개의 압축강도(MPa)를 측정한 결과 다음과 같은 데이터가 산출되었다. 물음에 답하라.

| 21.867 | 19.672 | 24.612 | 22.785 |
|--------|--------|--------|--------|
| 23.736 | 22.215 | 21.933 | 22.583 |
| 21.430 | 21.375 | 23.320 | 20.069 |
| 21.548 | 22.505 | 21.409 | 19.450 |
| 19.992 | 20.411 | 21.506 | 20.103 |
|        |        |        |        |

- (a) 평균 $(\bar{y})$ , 표준편차 $(s_y)$ , 분산 $(s_y^2)$ , 분산계수(c.v)를 구하여라. (소숫점 3째 자리까지 표기) [10점]
- (b) 데이터의 분포가 정규분포를 따른다고 가정하고 위에서 계산한 표준편차가 유효표준편차라고 가정하여 95%에 포함되는 영역(즉, 하한값과 상한값)을 계산하라. (소숫점 3째 자리까지 표기) [10점]

solution (a)

$$\bar{y} = \frac{\sum y_i}{n} = 21.626$$

$$s_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n - 1}} = 1.403$$

$$s_y^2 = \frac{\sum (y_i - \bar{y})^2}{n - 1} = 1.967$$

$$\mathbf{c.v} = \frac{s_y}{\bar{y}} 100 = 6.486(\%)$$

solution (b) 95%에 포함되는 영역은

$$\bar{y} - 1.96s_y \le$$
측정 개수의  $95\% \le \bar{y} + 1.96s_y$   
 $18.877 \le$ 측정 개수의  $95\% \le 24.375$ 

가 된다.

문제3 다음 Figure 2와 같이 하중을 받고 있는 단순지지된 보가 있다. 이러한 보의 전단력의 함수는 다음 식과 같이 특이함수(singularity function)을 사용하여 나타낼 수 있다.

$$V(x) = 20 \left[ \langle x - 0 \rangle^1 - \langle x - 5 \rangle^1 \right] - 15 \langle x - 8 \rangle^0 - 57$$
$$\langle x - a \rangle^n = \begin{cases} \langle x - a \rangle^n & \text{when } x > a \\ 0 & \text{when } x \le a \end{cases}$$

전단력이 0이 되는 점들을 이분법을 써서 구하라. [30점]



Figure 2: Simple supported beam

solution Figure 2의 아래와 같이 전단력도를 그려서보면 0m5m사이에 근이 존재한다. 따라서  $x_l=0$ 과  $x_u=5$ 로 놓고 이분법을 수행한다.

| Iteration | $x_l$  | $x_u$  | $x_r$  | f(r)    | $\epsilon_a$ |  |
|-----------|--------|--------|--------|---------|--------------|--|
| 1         | 0.0000 | 5.0000 | 2.5000 | -7.0000 | -            |  |
| 2         | 2.5000 | 5.0000 | 3.7500 | 18.0000 | 0.5000       |  |
| 3         | 2.5000 | 3.7500 | 3.1250 | 5.5000  | 0.1667       |  |
| 4         | 2.5000 | 3.1250 | 2.8125 | -0.7500 | 0.1000       |  |
| 5         | 2.8125 | 3.1250 | 2.9688 | 2.3750  | 0.0556       |  |
| 6         | 2.8125 | 2.9688 | 2.8906 | 0.8125  | 0.0263       |  |
| 7         | 2.8125 | 2.8906 | 2.8516 | 0.0313  | 0.0135       |  |
| 8         | 2.8125 | 2.8516 | 2.8320 | -0.3594 | 0.0068       |  |

## 문제4 다음 표로 주어진 데이터에 대하여 다음 문제를 풀어라

| X | 0      | 1     | 2      | 3     | 4    | 5     | 6     | 7     | 8     | 9     | 10    |
|---|--------|-------|--------|-------|------|-------|-------|-------|-------|-------|-------|
| у | -10.41 | -4.03 | -10.00 | -0.17 | 5.12 | 14.05 | 19.36 | 34.01 | 55.10 | 94.54 | 96.47 |

- (a) 직선으로 최소제곱회귀분석을 하여라. [10점]
- (b) 2차 다항식으로 최소제곱회귀분석을 하여라. [10점]

## solution (a)

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} = 10.969$$

$$a_0 = \bar{y} - a_1 \bar{x} = -28.114$$

$$\therefore y = a_0 + a_1 x = -28.114 + 10.969x$$

$$r^2 = \frac{S_t - S_r}{S_t} = 0.859$$

## solution (b)

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{cases} a_0 \\ a_1 \\ a_2 \end{cases} = \begin{cases} \sum y_i \\ \sum x_i y_i \\ \sum x_i^2 y_i \end{cases}$$

$$\begin{bmatrix} 11 & 55 & 385 \\ 55 & 385 & 3025 \\ 385 & 3025 & 25333 \end{bmatrix} \begin{cases} a_0 \\ a_1 \\ a_2 \end{cases} = \begin{cases} 294.04 \\ 2676.78 \\ 23582.2 \end{cases}$$

$$\begin{cases} a_0 \\ a_1 \\ a_2 \end{cases} = \begin{bmatrix} 11 & 55 & 385 \\ 55 & 385 & 3025 \\ 385 & 3025 & 25333 \end{bmatrix}^{-1} \begin{cases} 294.04 \\ 2676.78 \\ 23582.2 \end{cases}$$

$$\therefore y = -6.698 - 3.308x + 1.428x^2$$

$$r^2 = 0.973$$