河海大学常州校区 2010-2011 学年第一学期 《大学物理Ⅱ》期末(课内)考试卷

授课班号		_ 年级专	业	学号_		姓名	
题号	_			三		总分	审核
			1	2	3		
题分							
得分							
\	[전 변포 / 11 - 2	. 25 2- 19				阅卷	得分
一、选	烽	4分, 每题	3分)				
		性媒质中传					
, .		和势能的说》 势 能最大 ;		_		(C)
		势 能最大 ;	, ,				
		以下说法境	••		(D)	
` /		两列相干波位					
(B) †	目邻 两波 节。	之间的距离等	等于 产生驻》	皮的相干波的	内波长的一	半 ;	
(C) 木	目邻两波 节。	之间 的 质点的	勺振 动 步 调	祖同;			
(D) †	目邻 两波腹 点	之间 的 质点的	勺振 动 步 调	11同。			
3. 由两块	平板玻璃构	内成一空气舅	5尖,一平面	T单色光垂直	1入射到劈5		反的夹角增
		生什么变化的			(C)	
		大,并靠近劈					
(C) 条	€ 纹间 距减小	、 并靠近劈	尖;	(D) 条 纹	间距增大,	并远离劈尖。	
4. 如图所	示为一定量	也的理想气体	、, 由平衡状	☆ A 变到平	P衡状态 B($(p_A = p_B)$,	则无论经
过的是什么	么过程,下	列说法中正码	确的是 (B)			
	:统 一定 对 外				↑ <i>p</i>		
` /	系统内能一					A B	
	系统一定从					·	
(D) ¥	系统一定向外	个界放 热。					

5. 如图所示,设 S_1 和 S_2 为两相干光源,发出真空中波长为 λ 的单色光, 分别通过两种介质(折射率分别为 n_1 和 n_2 ,且 $n_1>n_2$)射到分界面上的P点,己知 $S_1P=S_2P=r$,则这两束光的几何路程差 Δr 、光程差 Δ 、和相位差 $\Delta \varphi$ 分别为(C)

(A)
$$\Delta r = 0$$
, $\Delta = 0$, $\Delta \varphi = \frac{r}{\frac{\lambda}{n_1} - \frac{\lambda}{n_2}} \cdot 2\pi$; $\frac{*}{s_1}$ $\frac{*}{n_1}$ $\frac{r}{n_2}$

(B)
$$\Delta r = (n_1 - n_2)r$$
, $\Delta = (n_1 - n_2)r$, $\Delta \varphi = (n_1 - n_2)r \cdot \frac{2\pi}{\frac{\lambda}{n_1}}$;

(C)
$$\Delta r = 0$$
, $\Delta = (n_1 - n_2)r$, $\Delta \varphi = (n_1 - n_2)r \cdot \frac{2\pi}{\lambda}$;

(D)
$$\Delta r = 0$$
, $\Delta = (n_1 - n_2)r$, $\Delta \varphi = (n_1 - n_2)r \cdot \frac{2\pi}{\frac{\lambda}{n_2}}$.

- 6. 在夫琅禾费单缝衍射实验中,若将单缝沿垂直于透镜光轴方向稍作平移,条纹将(A)
 - (A)不动; (B)和单缝同方向运动; (C)和单缝反方向运动; (D)无法确定。
- 7. 已知一定质量的某种理想气体,在温度为 T_1 和 T_2 时,分子的最概然速率分别为 V_{P_1} 和 V_{P_2} ,分子速率分布函数的最大值分别为 $f(V_{P_1})$ 和 $f(V_{P_2})$,已知 $T_1 > T_2$,则(**B**)

(A)
$$V_{P_1} > V_{P_2}$$
, $f(V_{P_1}) > f(V_{P_2})$; (B) $V_{P_1} > V_{P_2}$, $f(V_{P_1}) < f(V_{P_2})$;

(C)
$$V_{P_1} < V_{P_2}$$
, $f(V_{P_1}) > f(V_{P_2})$; (D) $V_{P_1} < V_{P_2}$, $f(V_{P_1}) < f(V_{P_2})$.

- - (A) $S_1 > S_2$;
 - **(B)** $S_1 = S_2$;
 - (C) $S_1 < S_2$

(D) 无法确定。

二、填空题(共24分,每题4分)

阅卷	得分

1. 一卡诺热机低温热源的温度为 $T_{\mathrm{K}}=27^{\circ}\mathrm{C}$,效率 $\eta_{\mathrm{+i}\mathrm{i}}=40\%$,则高温热源的温度为

 $T_{\stackrel{\circ}{=}} = \underline{500} K \circ$

- **2.** 一束自然光和线偏振光的混合光,当它通过一偏振片时,发现光强取决于偏振片的取向,可以变化 5 倍,则入射光总光强是自然光强的 3 倍;线偏振光强是自然光强 2 倍。
- 3. 若图示曲线表示一简谐振动的振动曲线x-t图,则该质点振动的振动初相位

为 $\varphi_0 = -\frac{\pi}{2}$; 若该曲线表示一平面简谐波沿 αx 轴负方向传播, $t = \frac{T}{4}$ 时的波

- **4.** 如图所示①和②分别为两条气体速率分布曲线,若两条曲线分别表示同一种气体处于不同温度下的速率分布,则曲线___②__表示的气体温度较高;若两条曲线分别表示同一温度下的氮气 (N_2) 和氧气 (O_2) 的速率分布,则曲线___②_表示氮气 (N_2) 的速率分布曲线。
- **5.** 如图所示用波长 λ 的单色光垂直照射折射率为 n_2 的劈尖薄膜,图中折射率的关系是 $n_1 < n_2 < n_3$,观察反射光的干涉条纹,从劈尖顶开始向右数第 5 条暗纹中心所对应的厚度 d=______。

填5图

填6图

三、计算题: (共38分)

阅卷	得分

- 1. 有一入射波的波函数为 $y_i(x,t)=1.0\times 10^{-2}\cos 2\pi\left(\frac{t}{4.0}-\frac{x}{8.0}\right)$ (SI单位),在距坐标原点x=20m处发生反射,反射点为一固定端。
 - (1) 写出反射波的波函数 $y_r(x,t)$;

- (2) 写出驻波的波函数 y(x,t);
- (3) 求在坐标原点与反射端之间的波节和波腹的位置。

解:

- 2. 2mol —氧化碳气体的循环过程如图的T-V 图所示,其中C 点的温度为 $T_C=600K$,试求:
 - (1) ab、bc、ca各个过程系统的热量交换情况;
 - (2) 经一循环系统所作的净功;
 - (3) 循环的效率。(注: $\ln 2 = 0.693$)。

解: 单原子分子 i = 3, $C_V = 3R/2$, $C_p = 5R/2$.

ca 等 温: $T_a = T_c = 600$ (K)

ab 等 压: $V_a/T_a = V_b/T_b$

$$T_{\rm b} = (V_{\rm b}/V_{\rm a}) T_{\rm a} = (V_{\rm b}/V_{\rm a}) T_{\rm c} = 300 (K)$$

(1)a b 等压过程系统吸热为 $Q_{ab} = (m/M_{mol}) C_p (T_b - T_a) = (5R/2) (T_b - T_a) = -6232.5$ (J)

bc 等容过程系统吸热为 $Q_{bc} = (m/M_{mol}) C_V (T_c - T_b) = (3R/2) (T_c - T_b) = 3739.5 (J)$

c a 等温过程:
$$pV = vRT = vRT_c$$
 , $\Rightarrow p = \frac{vRT_c}{V}$

c a 等温过程系统吸热为 $Q_{ca} = \Delta E + W = \nu C_{\nu} \Delta T + W = 0 + W = W$

$$Q_{ca} = W = \int_{V_c}^{V_a} p \, dV = \int_{V_c}^{V_a} \frac{vRT_c}{V} \, dV = vRT_c \ln\left(\frac{V_a}{V_c}\right) = RT_c \ln 2 = 3456 \quad (J)$$

(2) 经一循环系统 $Q = \Delta E + W = 0 + A = A$,

所作的净功 $W = Q = Q_{ab} + Q_{bc} + Q_{ca} = 963$ (J)

- (3) 循环的效率 $\eta = W/Q_1 = W/(Q_{bc} + Q_{ca}) = 13.4 \%$
- 3、一双缝, 缝距 d=0.4mm, 两缝宽度都是 b=0.080mm
- ,用波长 $\lambda = 480$ nm 的平行光垂直照射双缝,在缝后放一焦距 f = 2.0m 的透镜,试求:

阅卷	得分

- (1) 在透镜焦平面处的屏上,双缝干涉条纹的间距 $\Delta x = ?$
- (2) 单缝衍射中央明纹的角宽 $\Delta\theta_0$ =?和线宽 Δx_0 =?
- (3) 在单缝衍射中央明纹范围内的双缝干涉明纹数目 N 和相应级次。