Good Afternoon.

Advanced algorithms and data structures

Lecture 1: Max Flow 1

Jacob Holm (jaho@di.ku.dk)

November 20th 2023

Today's Lecture

Introduction

Max flow
Definitions
Ford-Fulkerson Method
Max flow/Min cut Theorem

Summary

This course is mostly about algorithms and how to analyse them.

We want *efficient* solutions when possible, where the meaning of "efficient" may depend on the problem.

In particular, we will focus on Polynomial time algorithms (fast) versus Exponential time algorithms (slow).

This course is mostly about algorithms and how to analyse them.

We want *efficient* solutions when possible, where the meaning of "efficient" may depend on the problem.

In particular, we will focus on Polynomial time algorithms (fast) versus Exponential time algorithms (slow).

This course is mostly about algorithms and how to analyse them.

We want *efficient* solutions when possible, where the meaning of "efficient" may depend on the problem.

In particular, we will focus on Polynomial time algorithms (fast) versus Exponential time algorithms (slow).

This course is mostly about algorithms and how to analyse them.

We want *efficient* solutions when possible, where the meaning of "efficient" may depend on the problem.

In particular, we will focus on Polynomial time algorithms (fast) versus Exponential time algorithms (slow).

Definition

A *flow network* consists of a directed graph G = (V, E), a source $s \in V$, a sink $t \in V \setminus \{s\}$, and a capacity function $c : V \times V \to \mathbb{R}$ such that

- $c(u,v) \geq 0$ for all $u,v \in V$, and
- ightharpoonup if $(u, v) \notin E$ then c(u, v) = 0

We will assume that G has no self-loops and no antiparallel edges

Example of a flow network.

Graph with nodes s and t. Send goods/data/water from s to t. Can not accumulate in intermediate nodes, so what goes in must come out (flow conservation). Capacities, capacity constraint.

Definition

A flow network consists of a directed graph G = (V, E), a source $s \in V$,

- $ightharpoonup c(u,v) \ge 0$ for all $u,v \in V$, and
- ightharpoonup if $(u, v) \notin E$ then c(u, v) = 0

We will assume that G has no self-loops and no antiparallel edges.

Example of a flow network.

Graph with nodes s and t. Send goods/data/water from s to t. Can not accumulate in intermediate nodes, so what goes in must come out (flow conservation). Capacities, capacity constraint.

Definition

A flow network consists of a directed graph G = (V, E), a source $s \in V$, a sink $t \in V \setminus \{s\}$, and a capacity function $c : V \times V \to \mathbb{R}$ such that

- $c(u,v) \ge 0$ for all $u,v \in V$, and
- ightharpoonup if $(u, v) \notin E$ then c(u, v) = 0

We will assume that G has no self-loops and no antiparallel edges.

Example of a flow network.

Graph with nodes s and t. Send goods/data/water from s to t. Can not accumulate in intermediate nodes, so what goes in must come out (flow conservation). Capacities, capacity constraint.

Definition

A flow network consists of a directed graph G = (V, E), a source $s \in V$, a sink $t \in V \setminus \{s\}$, and a capacity function $c : V \times V \to \mathbb{R}$ such that

- $ightharpoonup c(u,v) \ge 0$ for all $u,v \in V$, and
- ▶ if $(u, v) \notin E$ then c(u, v) = 0

We will assume that G has no self-loops and no antiparallel edges

Example of a flow network.

Graph with nodes s and t. Send goods/data/water from s to t. Can not accumulate in intermediate nodes, so what goes in must come out (flow conservation). Capacities, capacity constraint.

Definition

A *flow network* consists of a directed graph G = (V, E), a source $s \in V$, a sink $t \in V \setminus \{s\}$, and a capacity function $c : V \times V \to \mathbb{R}$ such that

- $ightharpoonup c(u,v) \geq 0$ for all $u,v \in V$, and
- ▶ if $(u, v) \notin E$ then c(u, v) = 0

We will assume that G has no self-loops and no antiparallel edges.

Example of a flow network.

Graph with nodes s and t. Send goods/data/water from s to t. Can not accumulate in intermediate nodes, so what goes in must come out (flow conservation).

Capacities, capacity constraint.

Definition

A flow in flow network (G, s, t, c) is a function $f: V \times V \to \mathbb{R}$ such that:

- 1. $\forall u, v \in V : 0 \le f(u, v) \le c(u, v)$ (capacity constraints)
- 2. $\forall v \in V \setminus \{s, t\}$: $\sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w)$ (flow conservation) Equivalently: $\sum_{(u, v) \in E} f(u, v) = \sum_{(v, w) \in E} f(v, w)$. Why?

Definition

The value |f| of a flow f is defined as:

$$|f| := \sum_{v \in V} f(s, v) - \sum_{u \in V} f(u, s) = \sum_{v \in V} (f(s, v) - f(v, s))$$

Definition

A max-flow is a flow of maximum value.

Definition

A flow in flow network (G, s, t, c) is a function $f: V \times V \to \mathbb{R}$ such that:

- 1. $\forall u, v \in V : 0 \le f(u, v) \le c(u, v)$ (capacity constraints)
- 2. $\forall v \in V \setminus \{s, t\}$: $\sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w)$ (flow conservation) Equivalently: $\sum_{(u, v) \in E} f(u, v) = \sum_{(v, w) \in E} f(v, w)$. Why?

Definition

The value |f| of a flow f is defined as

$$|f| := \sum_{v \in V} f(s, v) - \sum_{u \in V} f(u, s) = \sum_{v \in V} (f(s, v) - f(v, s))$$

Definition

A max-flow is a flow of maximum value.

Definition

A flow in flow network (G, s, t, c) is a function $f: V \times V \to \mathbb{R}$ such that:

- 1. $\forall u, v \in V : 0 \le f(u, v) \le c(u, v)$ (capacity constraints)
- 2. $\forall v \in V \setminus \{s, t\}$: $\sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w)$ (flow conservation) Equivalently: $\sum_{(u, v) \in E} f(u, v) = \sum_{(v, w) \in E} f(v, w)$. Why?

Definition

The value |f| of a flow f is defined as:

$$|f| := \sum_{v \in V} f(s, v) - \sum_{u \in V} f(u, s) = \sum_{v \in V} (f(s, v) - f(v, s))$$

Definition

A max-flow is a flow of maximum value.

Definition

A flow in flow network (G, s, t, c) is a function $f: V \times V \to \mathbb{R}$ such that:

- 1. $\forall u, v \in V : 0 \le f(u, v) \le c(u, v)$ (capacity constraints)
- 2. $\forall v \in V \setminus \{s, t\}$: $\sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w)$ (flow conservation) Equivalently: $\sum_{(u, v) \in E} f(u, v) = \sum_{(v, w) \in E} f(v, w)$. Why?

Definition

The value |f| of a flow f is defined as:

$$|f| := \sum_{v \in V} f(s, v) - \sum_{u \in V} f(u, s) = \sum_{v \in V} (f(s, v) - f(v, s))$$

Definition

A max-flow is a flow of maximum value.

Definition

A flow in flow network (G, s, t, c) is a function $f: V \times V \to \mathbb{R}$ such that:

- 1. $\forall u, v \in V$: $0 \le f(u, v) \le c(u, v)$ (capacity constraints)
- 2. $\forall v \in V \setminus \{s, t\}$: $\sum_{u \in V} f(u, v) = \sum_{w \in V} f(v, w)$ (flow conservation) Equivalently: $\sum_{(u, v) \in E} f(u, v) = \sum_{(v, w) \in E} f(v, w)$. Why?

Definition

The value |f| of a flow f is defined as:

$$|f| := \sum_{v \in V} f(s, v) - \sum_{u \in V} f(u, s) = \sum_{v \in V} (f(s, v) - f(v, s))$$

Definition

A max-flow is a flow of maximum value.

Examples: Which of these are flows? What are the values? Flow network (capacities on edges) Candidate flows (flow on edges) 1) 2) ้ร 3) 4) (**s**

Ex 2: No. Flow conservation violation at *d*. Ex 3: Yes. Value 7 Ex 4: Yes. Value 9. Actually a max flow.

Ex 1: No. Capacity violation at (b, t).

```
function Ford-Fulkerson(G = (V, E), s, t, c) f \leftarrow 0 while \exists augmenting path p from s to t do

Send as much flow as possible along p and "add" this to f. return f
```


Example 1:

```
function FORD-FULKERSON(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function Ford-Fulkerson(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function Ford-Fulkerson(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function Ford-Fulkerson(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function FORD-FULKERSON(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function Ford-Fulkerson(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function FORD-FULKERSON(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function FORD-FULKERSON(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

```
function Ford-Fulkerson(G = (V, E), s, t, c)
f \leftarrow 0
while \exists augmenting path p from s to t do
Send as much flow as possible along p and "add" this to f.
return f
```


Example 1:

Recall that G has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Recall that G has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}, \text{ together with } s, t, \text{ and the } t$ capacity function c_f .

Recall that G has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}, \text{ together with } s, t, \text{ and the } t$ capacity function c_f .

Recall that G has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$, together with s, t, and the capacity function c_f .

Recall that ${\it G}$ has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$, together with s, t, and the capacity function c_f .

Recall that G has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$, together with s, t, and the capacity function c_f .

Recall that G has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$, together with s, t, and the capacity function c_f .

Recall that G has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}, \text{ together with } s, t, \text{ and the } t$ capacity function c_f .

Note that (G_f, s, t, c_f) is a flow network (but may have antiparallel edges).

Example: What are the edges and residual capacities.

Residual network

Recall that ${\it G}$ has no self-loops or anti-parallel edges.

Definition

Given a flow f in (G, s, t, c), the residual capacity is the function $c_f: V \times V \to \mathbb{R}$ defined by

$$c_f(u,v) := \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \text{ (i.e. how much more could be sent)} \\ f(v,u) & \text{if } (v,u) \in E \text{ (i.e. how much can be cancelled)} \\ 0 & \text{otherwise} \end{cases}$$

Definition

The residual network consist of the graph $G_f := (V, E_f)$ where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$, together with s, t, and the capacity function c_f .

Note that (G_f, s, t, c_f) is a flow network (but may have antiparallel edges).

Ford-Fulkerson Method

```
function FORD-FULKERSON(G = (V, E), s, t, c)
f \leftarrow 0
while \exists (augmenting) path p from s to t in G_f do
Find a max flow f_p along p in G_f.
f \leftarrow f \uparrow f_p
return f
```

What is the max flow along a path


```
Illustrate "max flow along p". f \uparrow f' defined later. Not an algorithm because we don't specify how to pick the path p.
```

Ford-Fulkerson Method

```
function FORD-FULKERSON(G = (V, E), s, t, c)
f \leftarrow 0
while \exists (augmenting) path p from s to t in G_f do
Find a max flow f_p along p in G_f.
f \leftarrow f \uparrow f_p
return f
```

What is the max flow along a path?

Illustrate "max flow along p". $f \uparrow f'$ defined later. Not an algorithm because we don't specify how to pick the path p.

Ford-Fulkerson Method

```
function FORD-FULKERSON(G = (V, E), s, t, c)
f \leftarrow 0
while \exists (augmenting) path p from s to t in G_f do
Find a max flow f_p along p in G_f.
f \leftarrow f \uparrow f_p
return f
```

What is the max flow along a path?

Illustrate "max flow along p". $f \uparrow f'$ defined later. Not an algorithm because we don't specify how to pick the path p.

Augmented flow, Lemma 1

Definition

Given a flow f in G and a flow f' in G_f , the augmented flow $f \uparrow f' \colon V \times V \to \mathbb{R}$ is

$$(f \uparrow f')(u,v) := egin{cases} f(u,v) + f'(u,v) - f'(v,u) & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Lemma

 $f \uparrow f'$ is a flow in G of value $|f \uparrow f'| = |f| + |f'|$.

Proof.

Maybe later. Need to prove capacity constraints are satisfied and flow conservation holds.

Augmented flow, Lemma 1

Definition

Given a flow f in G and a flow f' in G_f , the augmented flow $f \uparrow f' \colon V \times V \to \mathbb{R}$ is

$$(f \uparrow f')(u,v) := egin{cases} f(u,v) + f'(u,v) - f'(v,u) & ext{if } (u,v) \in E \ 0 & ext{otherwise} \end{cases}$$

Lemma

$$f \uparrow f'$$
 is a flow in G of value $|f \uparrow f'| = |f| + |f'|$.

Proof.

Maybe later. Need to prove capacity constraints are satisfied and flow conservation holds.

Cut, flow across and capacity of

Definition

A cut is a partition of V into subsets $S \ni s$ and $T \ni t$.

Definition

Given a flow f and a cut (S, T) we define the net flow across (S, T) as

$$f(S,T) := \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

Definition

Given a cut (S, T) we define the capacity of (S, T) as

$$c(S,T) := \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Cut, flow across and capacity of

Definition

A cut is a partition of V into subsets $S \ni s$ and $T \ni t$.

Definition

Given a flow f and a cut (S, T) we define the net flow across (S, T) as

$$f(S,T) := \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

Definition

Given a cut (S, T) we define the capacity of (S, T) as

$$c(S,T) := \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Cut, flow across and capacity of

Definition

A cut is a partition of V into subsets $S \ni s$ and $T \ni t$.

Definition

Given a flow f and a cut (S, T) we define the net flow across (S, T) as

$$f(S,T) := \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

Definition

Given a cut (S, T) we define the capacity of (S, T) as

$$c(S,T) := \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Lemma

Given a flow f in G, for all cuts (S, T) we have f(S, T) = |f|.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$\stackrel{?}{=} \sum_{u \in S} \sum_{v \in S} (f(u,v) - f(v,u)) + \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{u \in \{s\}} \sum_{v \in V} (f(u,v) - f(v,u)) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{v \in V} (f(s,v) - f(v,s)) + 0$$

Lemma

Given a flow f in G, for all cuts (S, T) we have f(S, T) = |f|.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$\stackrel{?}{=} \sum_{u \in S} \sum_{v \in S} (f(u,v) - f(v,u)) + \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{u \in \{s\}} \sum_{v \in V} (f(u,v) - f(v,u)) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{v \in V} (f(s,v) - f(v,s)) + 0$$

Lemma

Given a flow f in G, for all cuts (S, T) we have f(S, T) = |f|.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$\stackrel{?}{=} \sum_{u \in S} \sum_{v \in S} (f(u,v) - f(v,u)) + \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{u \in \{s\}} \sum_{v \in V} (f(u,v) - f(v,u)) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{v \in V} (f(s,v) - f(v,s)) + 0$$

Lemma

Given a flow f in G, for all cuts (S, T) we have f(S, T) = |f|.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in S} (f(u,v) - f(v,u)) + \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{u \in \{s\}} \sum_{v \in V} (f(u,v) - f(v,u)) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{v \in V} (f(s,v) - f(v,s)) + 0$$

Lemma

Given a flow f in G, for all cuts (S, T) we have f(S, T) = |f|.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in S} (f(u,v) - f(v,u)) + \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{u \in \{s\}} \sum_{v \in V} (f(u,v) - f(v,u)) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{v \in V} (f(s,v) - f(v,s)) + 0$$

Lemma

Given a flow f in G, for all cuts (S, T) we have f(S, T) = |f|.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in S} (f(u,v) - f(v,u)) + \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{u \in \{s\}} \sum_{v \in V} (f(u,v) - f(v,u)) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{v \in V} (f(s,v) - f(v,s)) + 0$$

Lemma

Given a flow f in G, for all cuts (S, T) we have f(S, T) = |f|.

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in S} (f(u,v) - f(v,u)) + \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u))$$

$$= \sum_{u \in S} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{u \in \{s\}} \sum_{v \in V} (f(u,v) - f(v,u)) + \sum_{u \in S \setminus \{s\}} \sum_{v \in V} (f(u,v) - f(v,u))$$

$$= \sum_{v \in V} (f(s,v) - f(v,s)) + 0$$

$$=: |f|$$

Corollary

For any flow f and any cut (S, T), $|f| \le c(S, T)$.

Proof

$$|f| = f(S, T)$$
 (By Lemma 2)
$$= \sum_{u \in S} \sum_{v \in T} (f(u, v) - f(v, u))$$
 (By definition of $f(S, T)$)
$$\leq \sum_{u \in S} \sum_{v \in T} (c(u, v) - 0)$$
 (Since $f(u, v) \leq c(u, v)$)
$$= c(S, T)$$
 (and $-f(v, u) \leq 0$ by the capacity constraints)

Illustrate on number line, all possible flow values are left of all possible cut capacities.

Corollary

For any flow f and any cut (S, T), $|f| \le c(S, T)$.

Proof.

$$|f| = f(S, T)$$
 (By Lemma 2)
$$= \sum_{u \in S} \sum_{v \in T} (f(u, v) - f(v, u))$$
 (By definition of $f(S, T)$)
$$\leq \sum_{u \in S} \sum_{v \in T} (c(u, v) - 0)$$
 (Since $f(u, v) \leq c(u, v)$ and $-f(v, u) \leq 0$ by the capacity constraints

Illustrate on number line, all possible flow values are left of all possible cut capacities.

Corollary

For any flow f and any cut (S, T), $|f| \le c(S, T)$.

Proof.

$$|f| = f(S, T)$$
 (By Lemma 2)
$$= \sum_{u \in S} \sum_{v \in T} (f(u, v) - f(v, u))$$
 (By definition of $f(S, T)$)
$$\leq \sum_{u \in S} \sum_{v \in T} (c(u, v) - 0)$$
 (Since $f(u, v) \leq c(u, v)$ and $-f(v, u) \leq 0$ by the capacity constraints
$$= c(S, T)$$

Illustrate on number line, all possible flow values are left of all possible cut capacities.

Corollary

For any flow f and any cut (S, T), $|f| \le c(S, T)$.

Proof.

$$|f| = f(S, T)$$
 (By Lemma 2)
$$= \sum_{u \in S} \sum_{v \in T} (f(u, v) - f(v, u))$$
 (By definition of $f(S, T)$)
$$\leq \sum_{u \in S} \sum_{v \in T} (c(u, v) - 0)$$
 (Since $f(u, v) \leq c(u, v)$)
$$= c(S, T)$$
 (and $-f(v, u) \leq 0$ by the capacity constraints

Illustrate on number line, all possible flow values are left of all possible cut capacities.

Corollary

For any flow f and any cut (S, T), $|f| \le c(S, T)$.

Proof.

$$|f| = f(S, T)$$
 (By Lemma 2)
$$= \sum_{u \in S} \sum_{v \in T} (f(u, v) - f(v, u))$$
 (By definition of $f(S, T)$)
$$\leq \sum_{u \in S} \sum_{v \in T} (c(u, v) - 0)$$
 (Since $f(u, v) \leq c(u, v)$ and $-f(v, u) \leq 0$ by the capacity constraints
$$= c(S, T)$$

Illustrate on number line, all possible flow values are left of all possible cut capacities.

 $\ensuremath{\mathsf{Max}}$ flow/Min cut Theorem says they meet in the middle.

Theorem (Max flow/Min cut Theorem)

Let f be a flow in (G, s, t, c). Then the following 3 statements are equivalent:

- 1. f is a max flow.
- 2. There is no augmenting path (in G_f).
- 3. There exists a cut (S, T) such that |f| = c(S, T).

Q: What does this say about Ford-Fulkerson

Theorem (Max flow/Min cut Theorem)

Let f be a flow in (G, s, t, c). Then the following 3 statements are equivalent:

- 1. f is a max flow.
- 2. There is no augmenting path (in G_f)
- 3. There exists a cut (S, T) such that |f| = c(S, T).

Q: What does this say about Ford-Fulkerson?

Theorem (Max flow/Min cut Theorem)

Let f be a flow in (G, s, t, c). Then the following 3 statements are equivalent:

- 1. f is a max flow.
- 2. There is no augmenting path (in G_f).
- 3. There exists a cut (S, T) such that |f| = c(S, T).

Q: What does this say about Ford-Fulkerson`

Theorem (Max flow/Min cut Theorem)

Let f be a flow in (G, s, t, c). Then the following 3 statements are equivalent:

- 1. f is a max flow.
- 2. There is no augmenting path (in G_f).
- 3. There exists a cut (S, T) such that |f| = c(S, T).

Q: What does this say about Ford-Fulkerson

Theorem (Max flow/Min cut Theorem)

Let f be a flow in (G, s, t, c). Then the following 3 statements are equivalent:

- 1. f is a max flow.
- 2. There is no augmenting path (in G_f).
- 3. There exists a cut (S, T) such that |f| = c(S, T).

Q: What does this say about Ford-Fulkerson?

Theorem (Max flow/Min cut Theorem)

Let f be a flow in (G, s, t, c). Then the following 3 statements are equivalent:

- 1. f is a max flow.
- 2. There is no augmenting path (in G_f).
- 3. There exists a cut (S, T) such that |f| = c(S, T).

Q: What does this say about Ford-Fulkerson?

A: If it terminates, it returns the correct result.

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- Edmonds-Karp Algorithm

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- Edmonds-Karp Algorithm

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- Edmonds-Karp Algorithm

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- Edmonds-Karp Algorithm

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- Edmonds-Karp Algorithm

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- Edmonds-Karp Algorithm

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- Edmonds-Karp Algorithm

Todays topic was Max Flow. We have covered

- ▶ Definition of flow network, flow, etc
- ► The Ford-Fulkerson Method
- ► The Max flow/Min cut Theorem

- ► Proof of Max flow/Min cut Theorem
- ► Worst case analysis of Ford-Fulkerson
- ► Edmonds-Karp Algorithm