

PROGETTO STREAMING DATA MANAGMENT & TIME SERIES ANALYSIS

SERIE STORICA DEL CO

Francesco Fustini, 830697 Corso di Laurea Magistrale in Data Science - UniMiB

Data: 7 febbraio 2022

Abstract: L'elaborato espone diversi approcci utilizzati per fare previsioni su una serie storica rappresentate le rilevazioni di monossido di carbonio (CO). I dati coprono a livello orario il periodo che parte dalle ore 18:00 del 10 marzo 2004 alle ore 23:00 del 28 febbraio 2005. Le previsioni effettuate sono su tutto il mese successivo. Per lo scopo sono stati provati diversi modelli sia lineari (ARIMA, UCM) che di machine learning (k-NN, LSTM, GRU), per la scelta del modello la metrica utilizzata è il Mean Absolute Percentage Error.

Key-words: Serie storica, previsioni, modelli lineari, machine learning

1. Analisi Esplorativa

Il file analizzato si compone come una serie storica univariata con 8526 osservazioni, ogni osservazione è caratterizzata dalle variabili: Date, Hour e CO. I dati sono rilevati a livello orario a partire dal 10 marzo 2004 alle ore 18:00 fino al 28 febbraio 2005 alle ore 23:00. Non sono presenti cambi di ora legale/solare.

Figura 1: Grafico serie storica.

La variabile CO assume valori compresi tra 647 e 2040 con media 1097 e mediana 2059. Inoltre sono presenti 365 valori mancanti.

1.1. Stagionalità

Figura 2: Grafici della stagionalità.

L'analisi grafica della stagionalità (Figura 2) diagnostica una stagionalità giornaliera mentre esclude quella settimanale, bisettimanale e di 4 settimane.

Figura 3: grafici ACF e PACF.

Il grafico dell'autocorrelazione parziale (Figura 3) invece sembra segnalare una presenza di stagionalità settimanale, verrà tenuta di conto nelle prossime analisi.

1.2. Stazionarietà

La stazionarietà in media è stata verificata tramite il test di Dickey-Fuller aumentato per le radici unitarie.

La diagnostica grafica (Figura 1) rileva presenza di non stazionarietà in varianza. Per risolvere potrebbe servire una trasformazione.

2. Pre-Processing

2.1. Valori Mancanti

Come già anticipato dall'analisi esplorativa sono presenti 365 valori mancanti sulla variabile CO pari al 4.28% delle osservazioni totali. La tecnica scelta per trattarli è l'imputazione della media settimanale a livello orario. Quindi ad esempio il valore imputato alla variabile CO del giorno 1 aprile 2004 alle ore 14 è la media dei valori alle ore 14 dei 3 giorni prima: 29 marzo, 30 marzo e 31 marzo e 3 giorni dopo: 2 aprile, 3 aprile e 4 aprile. La media settimanale serve per catturare i trend locali, i 7 giorni sono anche condizionati dalla presenza (anche se non elevata) della stagionalità settimanale. Inoltre la scelta di non fare la media tra valori contigui ma tra osservazioni con stesso orario è stata fatta dopo la diagnostica di stagionalità giornaliera.

Dopo il trattamento

1500

1000

2000

4000

Tempo

6000

8000

(a) Distribuzione NA pre trattamento.

(b) Serie storica post trattamento.

2.2. Trasformazioni

Per quanto riguarda i modelli lineari per risolvere la non stazionarietà in varianza viene applicata una trasformazione **Box-Cox** ai dati:

$$f(x,\lambda) = sign(x) \frac{|x|^{\lambda} - 1}{\lambda}$$

Il λ trovato è -0.89.

Alle le reti neurali alla serie viene applicata una normalizzazione:

$$\hat{x} = \frac{x - min(x)}{max(x) - min(x)}$$

3. Modelli

Al fine di verificare le bontà dei modelli è stato diviso il dataset in Train e Validation set con di percentuale 80% e 20%.

Il parametro su cui ottimizzare i modelli è il **Mean Absolute Percentage Error (MAPE)**, calcolato nel seguente modo:

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} |\frac{x_i - \hat{x}_i}{x_i}|$$

dove:

- \bullet n è il numero di osservazioni
- \bullet x sono i valori reali

• \hat{x} sono i valori previsti

Per ogni famiglia di modelli (**ARIMA**, **UCM** e **ML**) viene scelto quello con **MAPE** minore e viene addestrato su tutto il dataset per prevedere tutto il mese di marzo 2005.

3.1. ARIMA

La prima famiglia di modelli lineari usata è quella degli **ARIMA**. Nel particolare sono stati testati i seguenti modelli:

- $ARIMA(2,0,0)(0,1,0)_{24}$
- ARIMA $(5,0,1)(2,1,0)_{24}$
- ARIMA $(1,0,0)(4,1,0)_{24}$

I valori dei parametri per il primo modello sono ottenuti osservando il grafico ACF e PACF (Figura 3), invece il secondo e il terzo modello sono ottenuti tramite un test con su più parametri.

Modello	MAPE
ARIMA $(2,0,0)(0,1,0)_{24}$	15.91%
ARIMA $(5,0,1)(2,1,0)_{24}$	13.52%
ARIMA $(1,0,0)(4,1,0)_{24}$	13.61%

Tabella 1: Confronto MAPE per modelli ARIMA.

Il modello scelto della famiglia **ARIMA** per prevedere il mese di marzo 2005 è l'ARIMA $(5,0,1)(2,1,0)_{24}$ Inoltre possiamo affermare l'incorrelazione dei residui dopo aver effettuato i test di **Ljung-Box** e **Box-Pierce**.

3.2. UCM

L'altra famiglia di modelli lineari presa in considerazione è quella degli **UCM**. I modelli presi in considerazione sono i seguenti:

- Local Linear Trend
- $\bullet\,$ Local Linear Trend con stagionalità trigonometrica
- Local Linear Trend con stagionalità dummy
- Local Linear Trend con stagionalità dummy e ciclo settimanale
- Local Linear Trend con stagionalità dummy e ciclo di 4 settimane
- Random Walk con stagionalità dummy

Le componenti degli **UCM** nel formato state space sono la componente $Trend(\mu)$, la componente $ciclo(\psi)$ e la componente stagionale(γ) giornaliera.

μ	ψ	γ	MAPE
LLT			15.96%
LLT		dummy	12.62%
LLT		trigonometrica	12.54%
LLT	settimanale	dummy	15.08%
LLT	4 settimane	dummy	13.53%
RW		dummy	12.67%

Tabella 2: Confronto MAPE per modelli UCM.

In questo caso il modello scelto è il Local Linear Trend con stagionalità trigonometrica.

3.3. Machine Learning

Sono state testate due tipologie di modelli di machine learning (ML): il k-Nearest Neighbors (k-NN) e la Recurrent Neural Network (RNN). Della famiglia RNN nel particolare sono stati testati il Long Short-Term Memory (LSTM) e il Gated Recurrent Unit (GRU).

L'algoritmo \mathbf{k} - $\mathbf{N}\mathbf{N}$ applicato alla previsione nelle serie storiche è parametrizzato da k e p. Il parametro p indica quante osservazioni passate usare per fare la previsione e k quanti gruppi di osservazioni uguali alle p passate considerare.

Sono stati provati diversi valori di k e p. Di seguito i migliori risultati.

p	k	MAPE
24	25	31.91%
168	2	13.44%
168	7	13.12%
168	8	17.43%
672	3	13.52%
672	6	13.58%

Tabella 3: Confronto MAPE per modelli kNN.

Il miglior risultato è dato dal modello con p = 168 (settimanale) e k = 7.

Gli algoritmi **RNN** invece richiedono una scelta sui *neuroni* e *look back*. Il numero di *neuroni* ottimale è quello di 512 mentre per il *look back* ne sono stati trovati in particolare due buoni: 24 e 168.

Modello	look back	MAPE
LSTM	24	14.36%
LOTW	168	12.02%
GRU	24	14.86%
	168	17.43%

Tabella 4: Confronto MAPE per modelli RNN.

Il modello con MAPE minore è l'LSTM con $look\ back = 168$

4. Limit

Le previsioni effettuate hanno un problema, infatti la presenza di quasi il 5% di valori mancanti potrebbe compromettere la stima dei modelli.

Inoltre una serie storica più lunga e la presenza di altre covariate significative migliorerebbero ulteriormente le performance.

5. Conclusione

I modelli scelti per effettuare la previsione a livello orario sul mese di marzo 2005 sono: ARIMA $(5,0,1)(2,1,0)_{24}$, Local Linear Trend con stagionalità trigonometrica e LSTM con 512 neuroni e 168 (24x7) di look back. Di questi sul validation set il migliore sembra essere il modello di **ML** con **MAPE** al 12.02% contro il 13.52% dell'**ARIMA** e il 12.54% dell'**UCM**.