解析学及び演習 A 定期試験

2023年8月1日第3時限施行 担当水野将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 次の各問いに答えよ.

(1)	集合 Ω に対し	$\Sigma \subset 2^{\Omega}$ が Ω	上の σ-加法族であ	ることの定義を書け、
-----	----------	--	------------	------------

(2) 可測空間 (Ω, Σ) に対し, $\mu: \Sigma \to [0, \infty]$ が Ω 上の測度であることの定義を書け.

(3) 測度空間 (Ω, Σ, μ) が σ -有限であることの定義を書け.

(4) 測度空間 (Ω, Σ, μ) の測度 μ が完備であることの定義を書け.

(5) $\mu^*: 2^\Omega \to [0,\infty]$ が集合 Ω 上の (Carathèodory の) 外測度であることの定義を書け.

(6) 集合 Ω 上の外測度 μ^* が与えられたとき, $A \subset \Omega$ が外測度 μ^* について可測集合 であることの定義を書け.

(7) \mathbb{R} の部分集合 $A \subset \mathbb{R}$ に対して、(1 次元)Lebesgue 外測度 $m_1^*(A)$ の定義を書け.

(8) 測度空間 (Ω, Σ, μ) 上の関数 $f: \Omega \to \mathbb{R}$ が可測関数であることの定義を書け.

(9) 測度空間 (Ω, Σ, μ) 上の非負値可測関数 $f: \Omega \to \mathbb{R}$ の測度 μ に関する (Lebesgue) 積分の定義を書け.

(15) 測度空間 $(\Omega_1, \Sigma_1, \mu_1)$ と $(\Omega_2, \Sigma_2, \mu_2)$ に対して, 直積外測度 $(\mu_1 \times \mu_2)^*$ の定義を述べよ.

- (16) 可測空間 $(\mathbb{R}, 2^{\mathbb{R}})$ 上の計数測度 μ に対し, $\mu(\{x \in \mathbb{Z} : 1 \le x \le 8\})$ はいくつか.
- (17) 可測空間 $(\mathbb{R}, 2^{\mathbb{R}})$ 上の $\sqrt{3} \in \mathbb{R}$ を台にもつ Dirac のデルタ測度 $\delta_{\sqrt{3}}$ に対し、次が正しいか正しくないかをそれぞれ答えよ.

$$\delta_{\sqrt{3}}(\mathbb{Q}) = 0, \qquad \delta_{\sqrt{3}}(\mathbb{R} \setminus \mathbb{Q}) = 1, \qquad \delta_{\sqrt{3}}([0,2]) = 2.$$

- (18) m_1 を 1 次元 Lebesgue 測度とするとき, $m_1^*\left(\bigcup_{k=1}^{\infty}\left(k,k+\frac{1}{3^k}\right)\right)$. を求めよ.
- (19) $D := \left(\mathbb{Q} \cap \left[0, \frac{1}{2}\right]\right) \cup \left(\frac{1}{2}, 1\right)$ の特性関数 χ_D に対して、Lebesgue 積分 $\int_0^1 \chi_D(x) \, dx$ を求めよ.
- (20) $\lim_{n\to\infty}\int_{-\infty}^{\infty} \left(e^{-(1+\frac{1}{n})|x|} + \cos(nx)e^{-nx^2}\right) dx$ を求めよ.