Mini course GSSI

Felix Otto, MPI-MiS Leipzig

A variational regularity theory for optimal transportation, and applications to the matching problem

version June 25th 2025

I. Approximating optimal transportation by electrostatics

Kantorowicz' formulation of Monge's optimal transportation; direct method of calculus of variations

Kantorowicz potential and Brenier's map; convex duality

Eulerian perspective: trajectories X and flux q

Entering and exiting times σ, au and measures f, g for a ball \bar{B}

Electrostatics: the Helmholtz projection ∇u of q on B; some regularity theory

Relating the Eulerian flux q to the Lagrangian displacement $(y-x)d\pi$, locally

The flux q is close to its Helmholtz projection ∇u ; almost in total variation norm

Kantorowicz' formulation of Monge's optimal transp., direct method of calculus of variations

Given: (locally finite Borel) measures

 $\lambda \geq 0$ on $\mathbb{R}^d \ni x$ and $\mu \geq 0$ on $\mathbb{R}^d \ni y$.

A measure $\pi \geq 0$ on $\mathbb{R}^d \times \mathbb{R}^d \ni (x,y)$ is "admissible" iff it has marginals λ and μ :

$$\int \zeta(x)d\pi = \int \zeta d\lambda \quad \text{and} \quad \int \zeta(y)d\pi = \int \zeta d\mu.$$

Provided mass is finite and equal

$$\lambda(\mathbb{R}^d) = \mu(\mathbb{R}^d) \in (0, \infty),$$

the product measure $\pi=\frac{1}{\lambda(\mathbb{R}^d)}\lambda\otimes\mu=\frac{1}{\mu(\mathbb{R}^d)}\lambda\otimes\mu$ is admissible. Note that for any admissible π

$$\pi(\mathbb{R}^d \times \mathbb{R}^d) = \lambda(\mathbb{R}^d) = \mu(\mathbb{R}^d) < \infty.$$

Consider squared transport distance and

minimize
$$\int |y-x|^2 d\pi$$
 among all π admissible.

Provided λ, μ have finite second moments,

$$\int |x|^2 d\lambda < \infty \quad \text{and} \quad \int |y|^2 d\mu < \infty,$$

any admissible π satisfies (monotone convergence)

$$\frac{1}{2} \int |x - y|^2 d\pi \le \int |x|^2 + |y|^2 d\pi = \int |x|^2 d\lambda + \int |y|^2 d\mu < \infty.$$

In particular, infimum $\in [0, \infty)$, and any minimizing sequence of π 's is tight, so that marginals are preserved in the limit. Since functional is lower semi-continuous (Fatou), get minimizer by direct method. We fix a minimizer π .

Kantorowicz potential and Brenier's map; convex duality

By convex duality \exists convex function $\psi \colon \mathbb{R}^d \to (-\infty, +\infty]$ (not $\equiv +\infty$) such that

$$\mathsf{supp}\pi \subset \partial \psi,$$

where the subgradient $\partial \psi \subset \mathbb{R}^d \times \mathbb{R}^d$ is defined by

$$(x,y) \in \partial \psi \iff \forall x' \in \mathbb{R}^d \psi(x') \ge \psi(x) + (x'-x) \cdot y.$$

Informally $supp \pi$ is d-dimensional, as opposed to 2d-dimensional for product measure. In particular, we have

$$\operatorname{supp} \lambda \subset \{ x \mid \exists y \ (x,y) \in \partial \psi \} =: \mathcal{D}(\psi).$$

Suppose \exists an (open) ball $B \subset \mathbb{R}^d$ such that

$$B \subset \operatorname{supp} \lambda$$
.

Then have $B \subset \mathcal{D}(\psi) \subset \{x \,|\, \psi(x) < \infty\}$. As convex function, ψ is locally bounded and locally Lipschitz on B. As locally Lipschitz function, ψ is Lebesgue-almost everywhere differentiable on B. If ψ is differentiable in $x \in B$, then by definition $\{y \,|\, (x,y) \in \partial \psi\}$ = $\{\nabla \psi(x)\}$. Hence there exists a Lebesgue null set $N \subset B$ such that

$$(x,y) \in \partial \psi \text{ and } x \in B - N \implies y = \nabla \psi(x).$$

If we suppose in addition

$$\lambda \ll dx$$
 on B

then we obtain

$$\int_{B\times\mathbb{R}^d} \zeta(x,y)d\pi = \int_B \zeta(x,\nabla\psi(x))d\lambda.$$

Eulerian perspective: trajectories X and flux q

We identify pairs $(x,y) \in \mathbb{R}^d \times \mathbb{R}^d$ with straight trajectories $X \colon [0,1] \to \mathbb{R}^d$ via (the Borel map)

$$X_t = ty + (1-t)x$$
 so that $\dot{X} = y - x$.

Let the vectorial Borel measure q be defined through

$$\int \xi \cdot dq = \int \int_0^1 \xi(X_t) \cdot \dot{X} dt d\pi,$$

where ξ is a bounded smooth vector field on \mathbb{R}^d . Note q has finite total variation since integrand $\leq \sup |\xi|$ times $|y-x| \leq |x| + |y| \leq 1 + \frac{1}{2}|x|^2 + \frac{1}{2}|y|^2$.

Applying definition to gradient fields $\xi = \nabla \zeta$, appealing to the chain rule $\nabla \zeta(X_t) \cdot \dot{X} = \frac{d}{dt} \zeta(X_t)$, and to $\int_0^1 \nabla \zeta(X_t) \cdot \dot{X} dt = \zeta(y) - \zeta(x)$, we obtain by the admissibility of π

$$\int \nabla \zeta \cdot dq = \int \zeta (d\mu - d\lambda).$$

Incidentally, this means

$$-\nabla \cdot dq = d\mu - d\lambda$$
 distributionally.

In view of this we think of q as a flux.

Entering and exiting times σ, τ and measures f, g for a ball

Given a closed ball $\bar{B} \subset \mathbb{R}^d$, define $\Omega_{\bar{B}}$ to be the set of trajectories that spend time in \bar{B} :

$$\Omega_{\bar{B}} \stackrel{\mathsf{short}}{=} \Omega := \{ X = (x, y) \mid \exists t \in [0, 1] \ X_t \in \bar{B} \}.$$

Define the two Borel functions $\sigma_{\bar{B}}, \tau_{\bar{B}}$ or short $\sigma, \tau \colon \Omega \to [0, 1]$ to be the times X enters/exits \bar{B} :

$$\sigma(X) := \min\{t \in [0,1] | X_t \in \bar{B}\}\$$

 $\leq \max\{t \in [0,1] | X_t \in \bar{B}\} =: \tau(X).$

Define the two Borel measures $f_{\bar{B}}, g_{\bar{B}} \geq 0$, or short f, g, where the trajectories enter or exit:

$$\int \zeta df = \int_{\Omega \cap \{\sigma > 0\}} \zeta(X_{\sigma}) d\pi \quad \text{and} \quad \int \zeta dg = \int_{\Omega \cap \{\tau < 1\}} \zeta(X_{\tau}) d\pi;$$

well-defined because of $\pi(\mathbb{R}^d \times \mathbb{R}^d) < \infty$.

Since by definition,

$$\begin{cases}
\sigma(X) > 0 \iff X_{\sigma(X)} \in \partial B \\
\tau(X) < 1 \iff X_{\tau(X)} \in \partial B
\end{cases}$$

we have

f,g are supported on ∂B .

Claim

$$\int_{\bar{B}} \nabla \zeta \cdot dq = \int_{\bar{B}} \zeta (d\mu - d\lambda) + \int_{\partial B} \zeta (dg - df).$$

Apply definition of q to $\xi = I(\bar{B})\nabla \zeta$,

use
$$\int_0^1 \xi(X_t) \cdot \dot{X} dt = \int_\sigma^\tau \nabla \zeta(X_t) \cdot \dot{X} dt = \zeta(X_{\tau(X)}) - \zeta(X_{\sigma(X)})$$
. Since

$$\sigma(X) = 0 \iff x \in \bar{B} \quad \text{and} \quad \tau(X) = 1 \iff y \in \bar{B},$$

we get

$$\int_0^1 \xi(X_t) \cdot \dot{X}dt = I(y \in \bar{B})\zeta(y) - I(x \in \bar{B})\zeta(x) + I(\tau(X) < 1)\zeta(X_{\tau(X)}) - I(\sigma(X) > 0)\zeta(X_{\sigma(X)}).$$

Integrate against π , use admissibility of π and definition of f,g.

Incidentally,

normal trace of
$$q$$
 on $\partial B = g - f$
provided $|q|(\partial B) = \lambda(\partial B) = \mu(\partial B) = 0.$

Electrostatics: the Helmholtz projection ∇u of q on B; some regularity theory

Helmholtz projection $\mathcal{H}_B=\mathcal{H}$ on B is $L^2(B,\mathbb{R}^d)$ -orthogonal projection onto closed subspace of gradient fields. By singular integral theory, if ξ is smooth on \bar{B} , then $\mathcal{H}\xi$ is smooth on \bar{B} , and the $C^k(\bar{B})$ -norm of $\mathcal{H}\xi$ is controlled by the $C^{k+1}(\bar{B})$ -norm of ξ . Moreover, \mathcal{H} is characterized by how it acts on smooth fields, namely

 $\mathcal{H}\nabla\zeta=\nabla\zeta$ for smooth ζ on \bar{B} ,

 $\mathcal{H}\xi = 0$ for smooth divergence-free ξ supported in B.

Hence to every distribution f on \bar{B} , we can associate its Helmholtz projection $\mathcal{H}f$ by duality via $\mathcal{H}f.\xi = f.\mathcal{H}\xi$. It is characterized by

 $\begin{cases} \mathcal{H}f.\nabla\zeta=f.\nabla\zeta & \text{for smooth }\zeta \text{ on }\bar{B},\\ \mathcal{H}f.\xi=0 & \text{for smooth divergence-free }\xi \text{ supported in }B. \end{cases}$

As finite measure, $f = q | \bar{B}$ is a distribution.

Claim: $\mathcal{H}f$ is absolutely continuous w. r. t. Lebesgue:

$$\mathcal{H}q|\bar{B} \ll dx|B.$$

Enough to construct a $u_B = u \in H^{1,1}(B)$ such that

$$\int_{B} \nabla \zeta \cdot \nabla u dx = \int_{\bar{B}} \nabla \zeta \cdot dq;$$

then we have $\mathcal{H}q\lfloor \bar{B} = \nabla u dx \lfloor B$. Enough to establish

$$\int_{B} \nabla \zeta \cdot \nabla u dx = \int_{\bar{B}} \zeta (d\mu - d\lambda) + \int_{\partial B} \zeta (dg - df).$$

Consider $\int_{\bar{B}} \zeta(d\mu - d\lambda) + \int_{\partial B} \zeta(dg - df)$ as a linear form in ζ . It is bounded w. r. t. $\sup_{\bar{B}} |\zeta|$; it vanishes for constant ζ . By Sobolev embedding

$$\sup_{x,y\in \bar{B}} \frac{|\zeta(y)-\zeta(x)|}{|y-x|^{\alpha}} \lesssim \Big(\int_{B} |\nabla \zeta|^{p} dx\Big)^{\frac{1}{p}}$$

form is bounded w. r. t. $\nabla \zeta \in L^p(B,\mathbb{R}^d)$ for $p \in (d,\infty)$. By duality it can be represented by $\int_B \nabla \zeta \cdot \tilde{q} dx$ for some $\tilde{q} \in L^{p'}(B,\mathbb{R}^d)$ with $p' \in (1,\frac{d}{d-1})$. Then ∇u is the Helmholtz projection of \tilde{q} , which by singular integral theory is bounded in $L^{p'}(B,\mathbb{R}^d)$. In particular $u \in H^{1,p'}(B) \subset H^{1,1}(B)$.

Incidentally, u satisfies the Poisson equation with Neumann b. c.:

$$-\triangle u = \mu - \lambda \text{ in } B$$
 and $\nu \cdot \nabla u = \nu \cdot q \text{ on } \partial B$ in a weak sense.

Relating the Eulerian flux q to the Lagrangian displacement $(y-x)d\pi$, locally

From definition of q

$$\int \xi(x) \cdot (dq - (y - x)d\pi)$$

$$= \int_0^1 dt \int (\xi(ty + (1 - t)x) - \xi(x)) \cdot (y - x)d\pi,$$

we obtain the inequality

$$\left| \int \xi(x) \cdot (dq - (y - x)d\pi) \right| \le \sup |\nabla \xi| \int_0^1 dt \int t|y - x|^2 d\pi,$$

which entails

$$\left| \int \xi(x) \cdot (dq - (y - x)d\pi) \right| \le \frac{1}{2} \sup |\nabla \xi| \int |y - x|^2 d\pi.$$

Seek version with transportation cost localized to a ball B;

$$E(B) := \int_{\Omega(B)} |y - x|^2 d\pi.$$

Replace ξ by $I(\bar{B})\xi$ in definition of q, split difference into

$$I(X_t \in \bar{B})\xi(X_t) - I(x \in \bar{B})\xi(x) = I(X_t \in \bar{B})I(x \in \bar{B})(\xi(X_t) - \xi(x))$$
$$+ I(X_t \in \bar{B}, x \notin \bar{B})\xi(X_t) - I(X_t \notin \bar{B}, x \in \bar{B})\xi(x).$$

First contribution as before:

$$\left| \int_0^1 dt \int I(X_t \in \bar{B}) I(x \in \bar{B}) (\xi(X_t) - \xi(x)) \cdot (y - x) d\pi \right|$$

$$\leq \sup_{\bar{B}} |\nabla \xi| \int_0^1 dt \int I(X_t \in \bar{B}) |X_t - x| |y - x| d\pi \leq \sup_{\bar{B}} |\nabla \xi| \frac{1}{2} E(\bar{B}).$$

Second contribution:

$$\left| \int_{0}^{1} dt \int \left(I(X_{t} \in \bar{B}, x \notin \bar{B}) \xi(X_{t}) - I(X_{t} \notin \bar{B}, x \in \bar{B}) \xi(x) \right) \cdot (y - x) d\pi \right|$$

$$\leq \sup_{B} |\xi| \int_{0}^{1} dt \int |I(X_{t} \in \bar{B}) - I(x \in \bar{B})||y - x| d\pi.$$

Specify to a ball $\bar{B}=\bar{B}_R$ with radius R and write $|I(X_t\in\bar{B})-I(x\in\bar{B})|=|I(R\geq |X_t|)-I(R\geq |x|)|$. Hence integral in R is estimated by $||X_t|-|x||\leq |X_t-x|$ to the effect of

$$\int_{0}^{\bar{R}} dR \sup_{\xi} \frac{1}{\sup_{\bar{B}_{R}} |\xi|} \Big| \int_{0}^{1} dt \int \Big(I(X_{t} \in \bar{B}_{R}, x \notin \bar{B}_{R}) \xi(X_{t}) \Big) - I(X_{t} \notin \bar{B}_{R}, x \in \bar{B}_{R}) \xi(x) \Big) \cdot (y - x) d\pi \Big| \leq \frac{1}{2} E(B_{\bar{R}}).$$

We summarize these findings on the average-in-R estimate of a dual norm of $dq-(y-x)d\pi$ in

Lemma 1.

$$\int_0^{\bar{R}} dR \sup_{\xi} \frac{\left| \int_{\bar{B}_R} \xi(x) \cdot (dq - (y - x) d\pi) \right|}{\max\{\sup_{\bar{B}_R} |\xi|, \bar{R} \sup_{\bar{B}_R} |\nabla \xi|\}} \leq E(B_{\bar{R}}).$$

We now comment on the regime in which Lemma 1 is not vacuous. Note that the I. h. s. compares $dq\lfloor \bar{B}_R$ to the marginal in x of $(y-x)d\pi\lfloor(\bar{B}_R\times\mathbb{R}^d)$, in a norm that scales like the total variation (but is weaker more like the flat norm). Hence Lemma 1 is meaningful if and only if $\int_0^{\bar{R}} dR \int_{\bar{B}_R\times\mathbb{R}^d} |y-x| d\pi$ is small compared to the r. h. s. that by definition dominates $\int_{B_{\bar{R}}\times\mathbb{R}^d} |y-x|^2 d\pi$. This is the case if

$$|y-x|\ll ar{R}$$
 on average w. r. t. $\pi\lfloor (B_{ar{R}} imes \mathbb{R}^d)$.

Loosely speaking, this means

transportation distance \ll localization scale.

The flux q is close to its Helmholtz projection ∇u ; almost in total variation norm

From now on we need

$$\lambda = dx$$
 in $B_{\bar{R}}$.

In this case

$$\int_{\bar{B}\times\mathbb{R}^d} \zeta(x,y)d\pi = \int_B \zeta(x,\nabla\psi(x))dx.$$

Hence expression in Lemma 1 turns into

$$\int_{\bar{B}\times\mathbb{R}^d} \xi(x) \cdot (dq - (y - x)d\pi) = \int_{\bar{B}} \xi(x) \cdot (dq - (\nabla \psi(x) - x)dx).$$

Note that by definition of Helmholtz projection on B (on $L^2(B, \mathbb{R}^d)$) we have $\mathcal{H}(\nabla \psi - \mathrm{id}) = \nabla \psi - \mathrm{id}$. Together with $\nabla u dx \lfloor B = \mathcal{H}q \lfloor \bar{B} \rfloor$ we have in terms of the Helmholtz projection (on distributions)

$$dq\lfloor \bar{B} - \nabla u dx \rfloor B = (id - \mathcal{H})(dq \lfloor \bar{B} - (\nabla \psi - id) dx \rfloor B).$$

Note that like \mathcal{H} , the "Leray projection" id $-\mathcal{H}$ is bounded in the Hölder space $C^{1,\alpha}(\bar{B},\mathbb{R}^d)$ for $\alpha\in(0,1)$; more precisely, it is uniformly in B bounded w. r. t. the norm

$$\sup_{\bar{B}} |\xi| + R^{1+\alpha} \sup_{x,y \in \bar{B}} \frac{|\nabla \xi(x) - \nabla \xi(y)|}{|x - y|^{\alpha}},$$

where R is the radius of B. We appeal to the embeddings

$$\sup_{\bar{B}_R} |\xi| + R\sup_{\bar{B}_R} |\nabla \xi| \lesssim \text{above norm on } B_R \lesssim \sup_{\bar{B}_R} |\xi| + R^2\sup_{\bar{B}_R} |\nabla^2 \xi|.$$

Corollary 1. of Lemma 1

$$\int_{\bar{\underline{R}}}^{\bar{R}} dR \sup_{\xi} \frac{\left| \int_{\bar{B}_R} \xi \cdot (dq - \nabla u_R dx) \right|}{\sup_{\bar{B}_R} |\xi| + R^2 \sup_{\bar{B}_R} |\nabla^2 \xi|} \lesssim E(B_{\bar{R}}).$$

Corollary 1 expresses closeness in a norm that is weaker than the total variation norm; it is even weaker than the flat norm.

In particular, we cannot take $\xi = I(\hat{B})e$ some some unit vector $e \in \mathbb{R}^d$ and some ball \hat{B} . However, we will obtain an estimate as if we had control in the total variation norm, provided we average in the radius r of such a ball \hat{B}_r . This follows from a more subtle statement on the boundedness of the Leray projection:

$$\xi_{rR} := \text{Leray projection of } I(\hat{B}_r)e \text{ in } B_R$$

can be (not quite uniquely) written in form of

$$\xi_{rR} = I(\hat{B}_r)\xi_{rR}^{in} + I(B_R)\xi_{rR}^{out},$$

where both $\xi_{rR}^{in/out}$ are smooth provided \hat{B}_r is compactly contained in B_R . This allows us to apply Lemma 1 to

$$\int_{\widehat{B}_r} e \cdot (dq - \nabla u_R dx) = \int_{B_R} \xi_{rR} \cdot (dq - (\nabla \psi(x) - x) dx)$$

$$= \int_{B_r} \xi_{rR}^{in} \cdot (dq - (\nabla \psi(x) - x) dx) + \int_{B_R} \xi_{rR}^{out} \cdot (dq - (\nabla \psi(x) - x) dx).$$

In order to quantify smoothness, fix center of $\widehat{B}_r \in B_{\overline{R}}$; then

$$\operatorname{dist}(\widehat{B}_r, B_R^c) \geq \frac{R}{4}$$
 as $r \leq \frac{\overline{R}}{8}$ and $\frac{\overline{R}}{2} \leq R \leq \overline{R}$.

By translation invariance, center of \hat{B}_r fixed; by scaling invariance, r=1. Then $\xi_{R,r=1}^{in/out}$ converge as $R\uparrow\infty$; hence smoothness is uniform in R. This (informally) establishes the estimates

$$\left. \begin{array}{l} \max\{\sup_{B_r} |\xi_{rR}^{in}|, r\sup_{B_r} |\nabla \xi_{rR}^{in}|\} \\ \max\{\sup_{B_R} |\xi_{rR}^{out}|, r\sup_{B_R} |\nabla \xi_{rR}^{out}|\} \end{array} \right\} \lesssim 1.$$

Proposition 1.

$$\int_{\bar{R}}^{\bar{R}} dR \int_{0}^{\frac{\bar{R}}{8}} dr |\int_{\widehat{B}_{r}} (dq - \nabla u_{R} dx)| \lesssim \bar{R} E(B_{\bar{R}}).$$

Optimal semidiscrete matching, heuristics, main result

Matching a law λ to its empirical measure μ

Scaling of mean-square Wasserstein distance $W(\lambda,\mu)$ by Ajtai-Komlòs-Tusnàdy

Approximation by Helmholtz projection, small-scale divergence.

A cut-off on scales ≪ particle distance

Implementation by Ambrosio-Stra-Trevisan, on macroscopic scales

Heuristics by Carraciolo-Lucibello-Parisi-Sicuro, on mesoscopic scales

Comparison of the Parisi-et-al. heuristics to ours

Heuristics made rigorous by Goldman-Huesmann-O., on mesoscopic scales

Matching a law λ to its empirical measure μ

Specify to $\lambda(\mathbb{R}^d)=1$, i. e. to a probability measure.

Given $N \in \mathbb{N}$, draw $Y_1, \dots, Y_N \in \mathbb{R}^d$ be N independent samples distributed according to λ .

Consider $\mu := \frac{1}{N} \sum_{n=1}^{N} \delta_{Y_n}$, "empirical measure".

The probability measure μ on \mathbb{R}^d is random.

As $N \uparrow \infty$, μ weakly converges to λ , almost surely. Monitor the (squared) Wasserstein distance

 $W^2(\lambda,\mu) := \inf\{ \int |y-x|^2 d\pi \mid \pi \text{ admissible for } \lambda,\mu \}.$

"Semi-discrete matching".

Scaling of mean-square Wasserstein distance $W(\lambda, \mu)$ by Ajtai-Komlòs-Tusnàdy

Simplest case:

 $\lambda=$ uniform distribution on a cube Q_L of side length L. Ignore probability normalization: $\lambda=dx\lfloor Q_L;$ use number density normalization: $N=L^d\in\mathbb{N}$ and $\mu=\sum_{n=1}^N\delta_{Y_n}.$

Monitor $\sqrt{\mathbb{E}\frac{1}{N}W^2(\lambda,\mu)}$

= (mean-square) expected transportation distance per point.

Theorem 1 (Ajtai, Komlós, Tusnády '84).

$$\sqrt{\mathbb{E}\frac{1}{N}W^2(\lambda,\mu)} \sim \left\{ egin{array}{ll} 1 & \textit{for } d > 2, \\ \sqrt{\ln N} & \textit{for } d = 2, \\ \sqrt{N} & \textit{for } d = 1 \end{array}
ight\}$$

Hence transportation distance \ll system size (=L) for all d, but transportation distance \sim particle distance (=1) iff d>2. Hence d=2 is the critical dimension.

Approximation by Helmholtz projection

Consider the distributional Helmholtz projection on Q_L of $\mu-dx$; given by $\nabla u dx | Q_L$ characterized through

$$\int_{Q_L} \nabla \zeta \cdot \nabla u dx = \int_{Q_L} \zeta (d\mu - dx).$$

Informally, ∇u is solution of Neumann-Poisson problem

$$-\triangle u = \mu - dx \text{ in } Q_L \quad \text{ and } \quad \nu \cdot \nabla u = 0 \text{ in } \partial Q_L.$$

By Section 1 $\int_{B imes \mathbb{R}^d} (y-x) d\pi \approx \int_B \nabla u dx$ for most balls $B\subset Q_L$ of (localization) radius $R\gg$ transportation distance $\sim \sqrt{\ln N}$. Ignoring contribution of scales $\lesssim \sqrt{\ln N}$ to macroscopic output naively expect $W^2(\lambda,\mu)=\int |y-x|^2 d\pi \approx \int_{Q_L} |\nabla u|^2 dx$; use in averaged form of $\frac{1}{N}W^2(\lambda,\mu)\approx \frac{1}{|Q_L|}\int_{Q_L} |\nabla u|^2 dx$.

Small scale divergence in $d \ge 2$

However, since points have capacity zero in $d \geq 2$, meaning that Dirac $\delta \notin H^{-1}(Q_L)$, we have $\int_{Q_L} |\nabla u|^2 dx =: \int_{Q_L} ||\nabla|^{-1} (\mu - dx)|^2 dx = +\infty$.

Need to cut off scales $\lesssim \sqrt{\ln N}$; via spectral implementation: $L^2(Q_L)$ -normalized eigenfunctions/-values of Neumann-Laplacian: $e_m(x) := (\frac{2}{L})^{\frac{d}{2}} \prod_{i=1}^d \cos(\frac{\pi m_i x_i}{L}), \ \lambda_m = (\frac{\pi |m|}{L})^2 \ \text{for} \ m \in \mathbb{N}_0^d - \{0\}.$ Plancherel: $\int_{Q_L} |\nabla u|^2 = \sum_{m \neq 0} \frac{1}{\lambda_m} \Big(\int_{Q_L} e_m (d\mu - dx) \Big)^2.$ Second moments of shot noise $\mu - dx$ as if it were white noise: $\mathbb{E}(\int_{Q_L} e_m (d\mu - dx))^2 = \int_{Q_L} e_m^2 dx = 1.$ We recover $\mathbb{E}\int_{Q_L} |\nabla u|^2 = \sum_{m \neq 0} (\frac{L}{\pi |m|})^2 = +\infty \ \text{iff} \ d \geq 2.$

Implementation by Ambrosio-Stra-Trevisan, on macroscopic scale

Define the cut-off version $\nabla \bar{u}$ of ∇u by removing the wavelengths $\frac{\pi |m|}{L} > \sqrt{\ln N}$,

i. e. by projecting on the wave numbers $|m| \leq \frac{L\sqrt{\ln N}}{\pi}$.

$$\begin{array}{ll} \mathrm{Get} & \mathbb{E} \frac{1}{|Q_L|} \int_{Q_L} |\nabla \bar{u}|^2 dx = \sum_{m \in \mathbb{N}_0^2, \; 0 < |m| \leq \frac{L\sqrt{\ln N}}{\pi}} (\frac{1}{\pi |m|})^2 \\ & \approx \frac{1}{4} \frac{2\pi}{\pi^2} \ln \frac{L\sqrt{\ln N}}{\pi} \approx \frac{1}{4\pi} \ln N \; \; \mathrm{since} \; \; L = \sqrt{N}. \end{array}$$

Theorem 2 (Ambrosio, Stra, Trevisan '19). For d = 2

$$\mathbb{E}\frac{1}{N}W^2(\lambda,\mu) \approx \frac{1}{4\pi} \ln N \quad \text{for } N \gg 1.$$

Heuristics by Carraciolo-Lucibello-Parisi-Sicuro '14, on mesoscopic level

Recall convex duality from Section 1:

 \exists convex $\phi \colon \mathbb{R}^d \to (-\infty, \infty]$ such that $\operatorname{supp} \phi \subset \partial \phi$.

Assume momentarily that $supp \mu = [0, L]^d$ and $\mu \ll dy$.

Then $\int_{\mathbb{R}^d \times [0,L]^d} \zeta(x,y) d\pi = \int_{[0,L]^d} \zeta(\nabla \phi(y),y) d\mu$, by admissibility of π $\int_{[0,L]^d} \zeta(x) dx = \int_{[0,L]^d} \zeta(\nabla \phi(y)) d\mu$.

Assume momentarily $\nabla \phi$ is diffeomorphism of $[0, L]^d$.

Then $\int_{[0,L]^d} \zeta(\nabla \phi(y)) \det D^2 \phi(y) dy = \int_{[0,L]^d} \zeta(\nabla \phi(y)) \frac{d\mu}{dy} dy$.

Get Monge-Ampère equation $\det D^2 \phi = \frac{d\mu}{dy}$.

Expect Section 1: $\nabla \phi \approx \mathrm{id}$

when averaged over scales \gg transportation distance.

Writing $\nabla v := \nabla \phi - \mathrm{id}$, naively expect $\det D^2 \phi \approx 1 + \mathrm{tr} D^2 v$

when averaged over scales \gg transportation distance.

To leading order, ∇v would be characterized by ${\rm tr} D^2 v = \frac{d\mu}{dy} - 1$.

Comparison of the Parisi-et-al. heuristics to ours

Parisi et al.'s heuristics predicts $(x-y)d\pi \approx \nabla v$ when averaged on scales \gg transportation distance where $\triangle vdy = \mu - dy$.

Our heuristics predicts $(y-x)d\pi \approx q \approx \nabla u$ when averaged on scales \gg transportation distance where $-\triangle u dx = \mu - dx$.

The two predictions are identical.

The two heuristics reflect the two faces of the Laplace operator: divergence-form $-\nabla \cdot \nabla u$ vs. non-divergence form $\mathrm{tr} D^2 v$.

Also reflect the two faces of the Monge-Ampère equation: Euler-Lagrange equation of $\inf\{\int |y-x|^2 d\pi \,|\, \pi \text{admissible}\}$ vs. fully non-linear equation $\det D^2 \phi = \frac{d\mu}{dy}$ (Caffarelli, Figalli).

Heuristics made rigorous by Goldman-Huesmann-O.

Mesoscopic vs. macroscopic closeness of $(y-x)d\pi$ to ∇u .

"Mesoscopic" means >> particle distance,

"macroscopic" means ≪ system size.

As before, $\lambda = dx \lfloor Q_L$. More generally as before: (deterministic) μ with $\operatorname{supp} \mu \subset Q_L$ and $\mu(Q_L) = |Q_L|$

Monitor closeness of μ to Lebesgue measure dy on set $B \subset \mathbb{R}^d$:

$$D(B) := W^{2}(\mu \lfloor B, \frac{\mu(B)}{|B|} dy \lfloor B) + |B|R^{2}(\frac{\mu(B)}{|B|} - 1)^{2}.$$

Back to $\mu=\sum_{n=1}^N \delta_{Y_n}$ with $N=L^d$ and Y_n 's indep. and uniform in Q_L . Consider all concentric balls $B=B_R\subset Q_L$, center = origin. Have for d=2 by Ajtai et al. with overwhelming probability

$$D(Q_L) \sim |Q_L| \ln L$$
 and $D(B_R) \sim |B_R| \ln R$ for $1 \ll R$.

Convenient to introduce a rate functional $T: [0, \infty) \to [0, \infty)$, called sublinear iff $\forall 0 < \theta \ll 1 \ \forall R \ \theta T(R) \ll T(\theta R)$.

Recall: π is the minimizer of $\{\int |y-x|^2 d\pi \mid \pi \text{ admissible for } \lambda, \mu \}$, $\nabla u dx \lfloor Q_L$ is distributional Helmholtz projection on Q_L of $\mu - dx \lfloor Q_L$.

Theorem 3 (Goldman, Huesmann, O. '21). If μ is such that there exists a sublinear rate function T and a radius $\bar{r} \leq \frac{L}{4}$ with

$$D(Q_L) \le |Q_L|T^2(L)$$
 and $D(B) \le |B_R|T^2(R)$ for $\overline{r} \le R \le \frac{L}{4}$

then π and ∇u are related by

$$\frac{1}{\bar{r}} \int_{\frac{\bar{r}}{2}}^{\bar{r}} dr \Big| \frac{1}{\pi(\mathbb{R}^d \times B_r)} \int_{\mathbb{R}^d \times B_r} (y-x) d\pi - \frac{1}{|B_r|} \int_{B_r} \nabla u dx \Big| \lesssim \int_{\bar{r}}^L \frac{dr}{r} \frac{T^2(r)}{r}.$$

Theorem 4 (Goldman, Huesmann, O. '21). If μ is such that there exists a sublinear rate function T and a radius $\bar{r} \leq \frac{L}{4}$ with

$$D(Q_L) \le |Q_L|T^2(L)$$
 and $D(B) \le |B_R|T^2(R)$ for $\bar{r} \le R \le \frac{L}{4}$

then π and ∇u are related by

$$rac{1}{ar{r}}\int_{rac{ar{r}}{2}}^{ar{r}}dr ig|rac{1}{\pi(\mathbb{R}^d imes B_r)}\int_{\mathbb{R}^d imes B_r}(y-x)d\pi -rac{1}{|B_r|}\int_{B_r}
abla udxig|\lesssim \int_{ar{r}}^Lrac{dr}{r}rac{T^2(r)}{r}.$$

Displacement y-x π -averaged over $\mathbb{R}^d \times B_r$

 \approx electrostatic field ∇u dx-averaged over $x \in B_r$.

R. h. s. is average over radii $r \sim \bar{r}$, cf. Proposition 1.

For empirical measure in d = 2:

 $\bar{r}\sim 1$ and $T(r)\sim \sqrt{\ln r}$ (which clearly is sublinear), so that I. h. s. $\lesssim 1=$ particle distance.

Hence on scales \sim particle distance, have displacement = electrostatic field + O(particle distance). Best possible closeness.