CLAIMS

- 1. Anti-sabotage and anti-theft device for inflating valves of the tires, characterised by: a cap with an internally threaded body screwing on an inflating valve of a tire;
- an envelope connected to the internally threaded body through a free tripper allowing the screwing only and not the unscrewing of the cap, the envelope preventing to directly access to the threaded body,
 - the access occurring only in a pre-established zone of the threaded body, while the unscrewing of the threading body occurring through a tool acting on said zone.
- 10 2. Device as in claim 1, wherein the free tripper presents a radial development.
 - 3. Device as in claim 1, wherein the free tripper presents an axial development.
 - 4. Device as in claim 1, wherein an element is provided between the threaded body and the threaded end of the tube of the valve; the element generates an unscrewing couple which is higher than the one due to the clamping of the threaded body on the tube only.
- 5. Device as in claim 1, wherein, in order to obtain the unscrewing of the cap, an undercut tool is used to reach the pre-established zone of the threaded body; the tool engaging teeth found on a lower appendix of the threaded body.
 - 6. Device as in claim 1, wherein the undercut tool is fitted with own teeth shaped to apply an unscrewing couple only and not a screwing one.
- 7. Device as in claim 1, wherein the pre-established accessing zone to the threaded body for the unscrewing, engaged by a tool, is located on the upper part of the threaded body and it is reached through a passage in the envelope.

25

30

- 8. Device as in claim 1, wherein the engaging zone of the external contour of the envelope presents knurls grooved or polygonal profiles for an efficient transmission of the screwing torque.
- 9. Device as in claim 1, wherein a sliding pair is provided, said sliding pair being formed by a radial protuberance and a corresponding groove located in the internal wall of the envelope, the sliding pair allowing the transmission of the torque in both directions between the envelope and a cylindrical member, and allowing the cylindrical member to freely axially translate inside an internal housing located between the threaded body and

the envelope.

5

10

15

- 10. Device as in claim 1, wherein a spring is further provided to keep the frontal teeth of the axial free tripper engaged.
- 11. Device as in claim 1, wherein the axial free tripper comprises teeth integral with the threaded body and teeth integral with the cylindrical member; the shape of the teeth is chosen to allow the transmission of a sufficient screwing couple and a negligible unscrewing couple between the envelope and the threaded body.
- 12. Device as in claim 1, wherein the radial free tripper comprises teeth integral with the threaded body and radially deforming teeth integral with the envelope; the shape of the teeth is chosen to allow the transmission of a sufficient screwing couple and a negligible unscrewing couple between the envelope and the threaded body.
 - 13. Device as in claim 1, wherein the contact between teeth, integral with the threaded body and teeth, integral with the envelope, occurs on contact surfaces inclining of an angle (γ, δ) in order to disengage the contact between teeth and teeth, so that the screwing couple transmitted by the envelope to the body is limited.