平成30年 電磁気学II 第1回小テスト

大山主朗

- 1 以下の (a) 及び (c) に示す物理定数は電磁気学を修めた者であれば常識的に 覚えていなければならない数値である.それぞれの値を示せ.
- (a) 真空の誘電率 $\varepsilon_0: 8.854 \times 10^{-12} \, \mathrm{F/m}$
- (b) 真空の透磁率 $\mu_0: 1.257 \times 10^{-6}\,\mathrm{H/m}$
- (c) 電子の電荷 $e:-1.602\times10^{-19}\,\mathrm{C}$
- 2 一辺の長さ a の正方形がある. 点 A に -2q[C],点 B に +1q[C],点 C に -4q[C],点 D に +3q[C],が点 O に -q[C] の点電荷が存在するとき,点 O にある電荷にはたらく力 F の大きさを求めよ. ただし,q>0 とする.

$$\begin{split} & \boldsymbol{F}_{A} = \frac{1}{4\pi\varepsilon_{0}} \frac{-2q(-q)}{\left(\left(-\frac{a}{2}\right)^{2} + \left(\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{-\frac{a}{2}\boldsymbol{i} + \frac{a}{2}\boldsymbol{j}\right\} [N] \\ & \boldsymbol{F}_{B} = \frac{1}{4\pi\varepsilon_{0}} \frac{q(-q)}{\left(\left(-\frac{a}{2}\right)^{2} + \left(-\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{-\frac{a}{2}\boldsymbol{i} - \frac{a}{2}\boldsymbol{j}\right\} [N] \\ & \boldsymbol{F}_{C} = \frac{1}{4\pi\varepsilon_{0}} \frac{-4q(-q)}{\left(\left(\frac{a}{2}\right)^{2} + \left(-\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{\frac{a}{2}\boldsymbol{i} - \frac{a}{2}\boldsymbol{j}\right\} [N] \\ & \boldsymbol{F}_{D} = \frac{1}{4\pi\varepsilon_{0}} \frac{3q(-q)}{\left(\left(\frac{a}{2}\right)^{2} + \left(\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{\frac{a}{2}\boldsymbol{i} + \frac{a}{2}\boldsymbol{j}\right\} [N] \\ & \boldsymbol{F} = \boldsymbol{F}_{A} + \boldsymbol{F}_{B} + \boldsymbol{F}_{C} + \boldsymbol{F}_{D} \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{q^{2}}{\left(\left(\frac{a}{2}\right)^{2} + \left(\frac{a}{2}\right)^{2}\right)^{3/2}} \left\{\left(-a + \frac{a}{2} + 2a - \frac{3}{2}a\right)\boldsymbol{i} + \left(a + \frac{a}{2} - 2a - \frac{3}{2}a\right)\boldsymbol{j}\right\} \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{q^{2}}{\left(\frac{a^{2}}{4}\right)^{3/2}} (-2a\boldsymbol{j}) \\ & = \frac{1}{4\pi\varepsilon_{0}} \frac{8q^{2}}{a^{3}} (-2a\boldsymbol{j}) \\ & = -\frac{4q^{2}}{\pi\varepsilon_{0}a^{2}} \boldsymbol{j} [N] \\ & |\boldsymbol{F}| = \frac{4q^{2}}{\pi\varepsilon_{0}a^{2}} [N] \end{split}$$

3 一辺の長さaの正方形がある、点Bに+m[Wb],点Cに-3m[Wb],点Dに+2m[Wb],点Oに+m[Wb]の点磁荷が存在するとき,点Aにできる磁界Hの大きさを求めよ、ただし,m>0とする、

$$\begin{split} & \boldsymbol{H}_{O} = \frac{1}{4\pi\mu_{0}} \frac{m}{\left((-\frac{a}{2})^{2} + (\frac{a}{2})^{2}\right)^{3/2}} \left\{ -\frac{a}{2}\boldsymbol{i} + \frac{a}{2}\boldsymbol{j} \right\} \\ & = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(a^{2}\right)^{3/2}} \left\{ -\frac{a}{2}\boldsymbol{i} + \frac{a}{2}\boldsymbol{j} \right\} \\ & = \frac{m\sqrt{2}}{4\pi\mu_{0}a^{2}} \left\{ -\boldsymbol{i} + \boldsymbol{j} \right\} \left[\mathbf{A}/\mathbf{m} \right] \\ & \boldsymbol{H}_{B} = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(a^{2}\right)^{3/2}} a \boldsymbol{j} \\ & = \frac{m}{4\pi\mu_{0}a^{2}} \boldsymbol{j} \left[\mathbf{A}/\mathbf{m} \right] \\ & \boldsymbol{H}_{C} = \frac{1}{4\pi\mu_{0}} \frac{-3m}{\left((-a)^{2} + a^{2}\right)^{3/2}} \left\{ -a\boldsymbol{i} + a\boldsymbol{j} \right\} \\ & = \frac{1}{4\pi\mu_{0}} \frac{-3m}{\left((-a)^{2} + a^{2}\right)^{3/2}} \left\{ -a\boldsymbol{i} + a\boldsymbol{j} \right\} \\ & = \frac{-3m}{8\sqrt{2}\pi\mu_{0}a^{2}} \left\{ -a\boldsymbol{i} + a\boldsymbol{j} \right\} \\ & = \frac{m}{8\sqrt{2}\pi\mu_{0}a^{2}} \left(-i + \boldsymbol{j} \right) \left[\mathbf{A}/\mathbf{m} \right] \\ & \boldsymbol{H}_{D} = \frac{1}{4\pi\mu_{0}} \frac{2m}{\left((-a)^{2}\right)^{3/2}} \left(-a\boldsymbol{i} \right) \\ & = -\frac{m}{2\pi\mu_{0}a^{2}} \boldsymbol{i} \left[\mathbf{A}/\mathbf{m} \right] \\ & \boldsymbol{H} = \boldsymbol{H}_{O} + \boldsymbol{H}_{B} + \boldsymbol{H}_{C} + \boldsymbol{H}_{D} \\ & = \frac{m}{2\pi\mu_{0}a^{2}} \left\{ \left(-\frac{\sqrt{2}}{2} + \frac{3}{4\sqrt{2}} - 1 \right) \boldsymbol{i} + \left(\frac{\sqrt{2}}{2} + \frac{1}{2} - \frac{3}{4\sqrt{2}} \right) \boldsymbol{j} \right\} \\ & = \frac{m}{16\pi\mu_{0}a^{2}} \left\{ \left(-\frac{8 - \sqrt{2}}{8} \right) \boldsymbol{i} + \left(\frac{4 + \sqrt{2}}{8} \right) \boldsymbol{j} \right\} \\ & = \frac{m}{16\pi\mu_{0}a^{2}} \left\{ -\left(8 + \sqrt{2} \right) \boldsymbol{i} + \left(4 + \sqrt{2} \right) \boldsymbol{j} \right\} \\ & |\boldsymbol{H}| = \frac{m}{16\pi\mu_{0}a^{2}} \sqrt{84 + 24\sqrt{2}} \\ & = \frac{m}{8\pi\mu_{0}a^{2}} \sqrt{21 + 6\sqrt{2}} \left[\mathbf{A}/\mathbf{m} \right] \end{split}$$

- 4 以下の (a) から (c) に示すような電荷分布が存在するとき,それぞれの電荷分布が周囲につくる電界 E をガウスの法則を用いて求めよ.
- (a) q[C] の点電荷

$$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i} Q_{i}$$

$$E_{n} = \frac{q}{4\pi \varepsilon_{0} r^{2}} [V/m]$$

(b) 線電荷密度 λ [C/m] で分布する無限長直線電荷

$$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i} Q_{i}$$

$$E_{n} = \frac{\lambda l}{2\pi \varepsilon_{0} r l}$$

$$= \frac{\lambda}{2\pi \varepsilon_{0} r} [V/m]$$

(c) 面電荷密度 σ [C/m²] の無限長面電荷

$$\oint_{S} E_{n} dS = \frac{1}{\varepsilon_{0}} \sum_{i} Q_{i}$$

$$E_{n} = \frac{\sigma S}{\varepsilon_{0} S}$$

$$= \frac{\sigma}{\varepsilon_{0}} [V/m]$$

5 導体板の面積S,導体板の平行平板キャパシタの内部が比誘電率 ε_r の誘電体で満たされているとき,この平行平板キャパシタの静電容量Cが $C=\varepsilon_0\varepsilon_rrac{S}{d}$ で求められる理由を説明せよ.

電極に $\pm Q$ の電荷を与える. 次に,電極間に発生する電界 E を求め,電極間の電圧 V を求める.それらを, $C=\frac{Q}{V}$ に代入すことにより,与式が導出される.

$$\begin{split} C &= \frac{Q}{V} \\ &= \frac{Q}{Ed} \\ &= \frac{Q}{\frac{Qd}{\varepsilon_0 \varepsilon_r S}} \\ &= \varepsilon_0 \varepsilon_r \frac{S}{d} \left[\mathbf{F} \right] \end{split}$$

- 6 真空中に単磁荷mが存在する.ただしm < 0とする.このとき以下の問いに答えよ.
- (a) 点磁荷mが、距離rの位置に作る磁界Hを求めよ.

$$H = \frac{m}{4\pi\mu_0 r^2} \left[\text{A/m} \right]$$

- (b) 点磁荷 m が作る磁界の様子を磁力線を用いて図示せよ.
- (c) 点磁荷 m から距離 r の位置における磁束密度 B を求めよ.

$$B = \mu_0 H = \frac{m}{4\pi r^2} [T]$$

(d) 点磁荷 m から距離 r の位置を通過する磁束 Φ を磁束密度 B より求めよ.

$$\Phi = BS = m \left[\text{Wb/m} \right]$$

3

- 7 xy 直交座標系において,同量異符号の点磁荷 $\pm m$ が距離 l に固定された磁気双極子が存在する.このとき以下の問いに答えよ.ただし,x 方向の基準ベクトルを j とする
- (a) 点 A に存在する磁荷 -m が点 $P(x_0,y_0)$ に作る磁界 \boldsymbol{H}_1 を求めよ.

$$\boldsymbol{H}_{1} = \frac{1}{4\pi\mu_{0}} \frac{-m}{\left(\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left\{ \left(x_{0} + \frac{l}{2}\right) \boldsymbol{i} + y_{0} \boldsymbol{j} \right\} [A/m]$$

(b) 点 B に存在する磁荷 +m が点 $P(x_0,y_0)$ に作る磁界 \boldsymbol{H}_2 を求めよ.

$$H_2 = \frac{1}{4\pi\mu_0} \frac{m}{\left(\left(x_0 - \frac{l}{2}\right)^2 + y_0^2\right)^{3/2}} \left\{ \left(x_0 - \frac{l}{2}\right) i + y_0 j \right\} [A/m]$$

(c) 点 P での磁界 H を求めよ.

 $\boldsymbol{H} = \boldsymbol{H}_1 + \boldsymbol{H}_2$

$$= \frac{m}{4\pi\mu_0} \left[\frac{-1}{\left(\left(x_0 + \frac{l}{2} \right)^2 + y_0^2 \right)^{3/2}} \left\{ \left(x_0 + \frac{l}{2} \right) \mathbf{i} + y_0 \mathbf{j} \right\} + \frac{1}{\left(\left(x_0 - \frac{l}{2} \right)^2 + y_0^2 \right)^{3/2}} \left\{ \left(x_0 - \frac{l}{2} \right) \mathbf{i} + y_0 \mathbf{j} \right\} \right] [A/m]$$

(d) 磁気双極子モーメント M を求めよ.

$$M = ml$$

= mli [Wb · m]

(e) 点 P が原点 O より十分遠方にあると仮定すると, $\sqrt{(x_0-l/2)^2+y_0^2}\simeq \sqrt{x_0^2-y_0^2}$ 及び $\sqrt{(x_0+l/2)^2+y_0^2}\simeq \sqrt{x_0^2+y_0^2}$ と近似できる.このことを用いて (c) にて得た磁界 ${m H}$ を簡略化せよ.

$$m{H} \simeq -rac{1}{4\pi\mu_0} rac{m}{\left(x_0^2 + y_0^2
ight)^{3/2}} m{i} \left[ext{A/m}
ight]$$

(f) y 方向に一様な磁界 H_0 が存在するとき、磁気双極子にはたらくトルク T を求めよ.

$$T = MH_0 \sin \theta$$

 $= mli \sin \frac{\pi}{2}$
 $= mli$
 $|T| = ml \text{ [Wb · m], x 軸方向}$

8 強磁性体,常磁性体,反磁性体の3つの磁性体の性質を,比透磁率と磁化率を用いて説明せよ.

強磁性体は磁化率が0よりかなり大きく,透磁率が1よりかなり大きい磁性体を指す.そのため,磁界と同じ方向に磁化され,その大きさも大きい.

常磁性体は磁化率が0より大きく,透磁率は1未満の磁性体を指す.そのため,磁界と同じ方向に磁化され,その大きさは大きくない.

反磁性体は磁化率が0よりかなり小さく,透磁率が1よりかなり小さい磁性体を指す.そのため,磁界と逆方向に磁化され,その大きさは小さい.