Departamento de Ingeniería Matemática MA3402-1 Estadística 14 de agosto de 2019

Auxiliar 3: Estadísticos y Suficiencia

Profesor: Diego Marchant, Francisco Vásquez **Auxiliares:**

P1. Estadísticos y suficiencia

- (i) ¿Qué es un estadístico?, ¿Qué es un estadístico suficiente?
- (ii) Ejemplos
- (iii) Estudiemos el problema de estimación del área de un rectángulo. Consideremos un rectángulo de lados a,b desconocidos. Sea $X=(X_1,...,X_n)$ una MAS que representa el lado a) del rectángulo con $X_i \sim \mathcal{N}(a,\sigma^2)$ e $Y=(Y_1,...,Y_n)$ otra MAS que representa el lado b) del rectángulo con $Y_i \sim \mathcal{N}(b,\sigma^2)$, σ conocido y X e Y independientes. Plantee el modelo paramétrico asociado y encuentre un estadístico suficiente.
- **P2.** Sea $X = (X_1, ..., X_n)$ una MAS con $X_i \sim U(\alpha, \beta)$ donde α, β son desconocidos. Demuestre que $T(X) = \left(\min_{i=1,...,n} X_i, \max_{i=1,...,n} X_i\right)$ es un estadístico suficiente para (α, β) .
- **P3.** Sea $X = (X_1, ..., X_n)$ una MAS con $X_i \sim \Gamma(\alpha, \beta)$ la distribución Gamma dada por:

$$\Gamma(\alpha, \beta) \sim \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{1}{\beta}x}$$

Demuestre que $T(X) = \left(\prod_{i=1}^n x_i, \sum_{i=1}^n x_i\right)$ es un estadistico suficiente para (α, β)

P4. Sea $X = (X_1, ..., X_n)$ una MAS con función de densidad dada por:

$$f(x \mid \theta) = \frac{\theta}{(1+x)^{1+\theta}}, 0 < x < \infty, \theta > 0$$

Con θ desconocido. Encuentre un estadístico suficiente.