Dérivation et Intégration A1 Semestre 2

JAD DABAGHI

Enseignant-Chercheur en Mathématiques DVRC jad.dabaghi@devinci.fr

Table des matières

- Analyse réelle
- Relations de comparaison
- Oéveloppements limités
- 4 Calcul d'intégrales

2/110

Analyse réelle Relations de comparaison Développements limités Calcul d'intégrales

Objectifs

- ① Comprendre les comportements locaux et asymptotiques des fonctions
- Savoir manipuler les développements limités
- 3 Savoir calculer plusieurs familles d'intégrales
- 4 Savoir résoudre les équations différentielles linéaires du 1er et 2nd ordre.

Contenu du module

- ① Chapitre 1 : Analyse réelle (CMO 1)
 - Un peu de topologie, continuité d'une fonction en un point.
- Chapitre 2 : Relations de comparaison (CMO 1)
 - Fonctions dominées, fonctions négligeables, fonctions équivalentes.
- Chapitre 3 : Développements limités (CMO 2)
 - Formules de Taylor, opérations sur les développements limités, applications.
 - Contrôle continu 45 minutes 11 Mars 2023
- 4 Chapitre 4 : Calcul d'intégrales (CMO 3)
- G Chapitre 5 : Équations différentielles (CMO 4)

Analyse réelle

Analyse réelle

Definition (distance)

Soit *E* un ensemble non vide. Une **distance** sur *E* est une application $d: E \times E \to \mathbb{R}^+$ qui vérifie $\forall (x, y, z) \in E \times E \times E$

$$d(x,y)=0 \iff x=y$$
 (homogénéité)
 $d(x,y)=d(y,x)$ (symétrie)
 $d(x,z)\leq d(x,y)+d(y,z)$ (inégalité triangulaire).

 $x = \frac{d(x, z)}{d(x, z)} z$

Le couple (E, d) est appelé **espace métrique**.

Exemple:

- Sur \mathbb{R} , la métrique usuelle est d(x,y) = |x-y|
- Sur \mathbb{C} , la métrique usuelle est $d(z_1, z_2) = |z_2 z_1|$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣魚@

Definition (Ouvert)

Soit (E, d) un espace métrique. On dit que $A \in \mathcal{P}(E)$ est un ouvert de E si A contient une boule ouverte. Autrement dit, si

$$\forall x \in \mathcal{A}, \ \exists r > 0 \ \text{tel que } B(x,r) \subset \mathcal{A}$$

$$B(x,r) = \{ y \in E \mid d(x,y) < r \}$$

Exemples ouverts:

-]
- R2
-]*a*, *b*[
- B(x,r)

Definition (Voisinage)

• (E, d) espace métrique et $a \in E$.

On dit que $\mathcal{V} \subset E$ est un voisinage de a si, et seulement si, il existe un ouvert $O \subset \mathcal{V}$ contenant a. Autrement dit s'il existe $B(a,r) \subset \mathcal{V}$.

Remarque:

• En dimension 1,

$$\mathcal{V}_a =]a - \eta, a + \eta[$$

• En dimension 2,

$$\mathcal{V}_a = B(a, \eta)$$

Continuité

Definition (Caractérisation de Weierstrass)

Une fonction f est dite continue en $a \in I$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, |x - \alpha| \le \eta \Rightarrow |f(x) - f(\alpha)| \le \varepsilon \quad (\lim_{x \to \alpha} f(x) = f(\alpha)).$$

nalyse réelle Relations de comparaison Développements limités Calcul d'intégrales

Fonctions dominées

Definition

Soit $f:I\to\mathbb{R}$ et $\varphi:I\to\mathbb{R}$ et $a\in I$. Alors f est **dominée** par φ au voisinage de a, s'il existe une fonction $u:I\to\mathbb{R}$ bornée au voisinage de a et telle que $f=\varphi u$ au voisinage de a. On note

$$f = \mathcal{O}(\varphi)$$

Fonctions dominées

Definition

Soit $f:I\to\mathbb{R}$ et $\varphi:I\to\mathbb{R}$ et $a\in I$. Alors f est **dominée** par φ au voisinage de a, s'il existe une fonction $u:I\to\mathbb{R}$ bornée au voisinage de a et telle que $f=\varphi u$ au voisinage de a. On note

$$f = \mathcal{O}(\varphi)$$

Exemple: $f(x) = x^2 \sin\left(\frac{1}{x}\right) \text{ sur } \mathbb{R} \text{ et } \varphi(x) = x^2. \text{ Alors}$

$$f(x) = \varphi(x) \frac{u}{u}(x)$$
 avec $\frac{u}{u}(x) = \sin\left(\frac{1}{x}\right)$.

Or u est bornée donc $f = \mathcal{O}(\varphi)$.

Analyse réelle Relations de comparaison Développements limités Calcul d'intégrales

Fonctions négligeables

Definition

on dit que f est **négligeable** devant φ au voisinage de a, s'il existe une fonction ε définie sur I tel que $f = \varphi \varepsilon$ au voisinage de a et $\lim_a \varepsilon = 0$. On note $f = o(\varphi)$.

Fonctions négligeables

Definition

on dit que f est **négligeable** devant φ au voisinage de a, s'il existe une fonction ε définie sur f tel que $f = \varphi \varepsilon$ au voisinage de a et $\lim_{\alpha} \varepsilon = 0$. On note $f = o(\varphi)$.

Exemple: $x^3 = o(x^2)$ au voisinage de 0 car $x^3 = x \times x^2$ avec $\varepsilon(x) = x$ et $\lim_{x \to 0} \varepsilon(x) = 0$.

Quelques résultats

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$.

- **1** La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

Quelques résultats

Propriété

Soit $f: I \to \mathbb{R}$ une fonction et $a \in I$.

- **1** La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

Démonstration:

① (\Rightarrow) On suppose f bornée au voisinage de a. $\forall x \in \mathcal{V}_a$, $|f(x)| = f(x) \times \underbrace{1}_{\mathsf{bornée}}$. Donc

$$f = \mathcal{O}(1)$$
.

Propriété

Soit $f: I \to \mathbb{R}$ *une fonction et* $a \in I$.

- **1** La fonction f est bornée au voisinage de a si, et seulement si $f = \mathcal{O}(1)$.
- 2 La fonction f tend vers 0 en a si, et seulement si f = o(1).

Démonstration:

① (\Rightarrow) On suppose f bornée au voisinage de a. $\forall x \in \mathcal{V}_a$, $|f(x)| = f(x) \times \underbrace{1}_{\mathsf{bornée}}$. Donc

$$f = O(1)$$
.

 $(\Leftarrow) f = \mathcal{O}(1)$. Alors $\exists \varphi$ bornée sur \mathcal{V}_a tel que $f = \varphi \times 1$ sur \mathcal{V}_a . Donc f bornée sur \mathcal{V}_a .

 (\Rightarrow) f tend vers 0 en a:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in]a - \eta_1, a + \eta_1[, |f(x)| \le \varepsilon.$$

On pose

$$\varphi : \mathcal{D}_f \to \mathbb{R}$$
 $x \mapsto f(x) \qquad \lim_{x \to a} \varphi(x) = 0$

Alors f = o(1).

 (\Rightarrow) f tend vers 0 en a:

$$\forall \varepsilon > 0 \ \exists \eta_1 > 0 \ \forall x \in]a - \eta_1, a + \eta_1[, |f(x)| \le \varepsilon.$$

On pose

$$\varphi: \mathcal{D}_f \to \mathbb{R}$$
 $x \mapsto f(x)$
 $\lim_{x \to a} \varphi(x) = 0$

Alors f = o(1).

 $(\Leftarrow) f = o(1)$ au voisinage de a. Alors $\exists \varphi$ définie au voisinage de a tel que $f = \varphi 1$ au voisinage de a avec $\lim_a \varphi = 0$. Or $\lim_a \varphi \in \mathcal{V}_a$ donc $\lim_a f = \lim_a \varphi = 0$.

40 - 40 - 40 - 40 - 50 - 60 - 60

Quelques remarques

1 Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_a \varepsilon = 0$. Mais, $\lim_a \varepsilon \not\to 0$ sur I tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

Quelques remarques

1 Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_a \varepsilon = 0$. Mais, $\lim_a \varepsilon \not\to 0$ sur I tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

2 Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

Contre exemple:

$$f: x \mapsto x^3$$
 $g: x \mapsto x^4$ $h: x \mapsto x^2$.

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais $f \neq g$.

14/110

Quelques remarques

1 Lorsque f = o(g) au voisinage de $a \in I$, $f = g \times \varepsilon$ au voisinage de a et $\lim_a \varepsilon = 0$. Mais, $\lim_a \varepsilon \not\to 0$ sur I tout entier.

Contre exemple:

$$f: x \mapsto x^3$$
 et $g: x \mapsto x^2$ sur \mathbb{R} .

On a f = o(g) au voisinage de 0 ($\varepsilon(x) = x$) mais $\varepsilon(x) \neq 0 \ \forall x \in \mathbb{R}^*$.

2 Si f = o(h) et g = o(h) au voisinage de a alors f n'est pas forcément égal à g.

Contre exemple:

$$f: x \mapsto x^3$$
 $g: x \mapsto x^4$ $h: x \mapsto x^2$.

On a f = o(h) au voisinage de 0 et g = o(h) au voisinage de 0 mais $f \neq g$.

 $oldsymbol{3}$ Le même phénomène s'observe pour la notation \mathcal{O} .

◆ロ > ◆昼 > ◆ 差 > を り へ ②

Règles de calcul

Propriété

- **1** $f = o(\varphi) \Rightarrow f = O(\varphi)$ (négligeable \Rightarrow bornée)
- 2 $f_1 = \mathcal{O}(\varphi)$ et $f_2 = \mathcal{O}(\varphi) \Rightarrow f_1 + f_2 = \mathcal{O}(\varphi)$ (somme de fonctions bornée est bornée)
- 3 $f_1 = \mathcal{O}(\varphi_1)$ et $f_2 = \mathcal{O}(\varphi_2) \Rightarrow f_1 f_2 = \mathcal{O}(\varphi_1 \varphi_2)$
- $ext{ 4) } f_1 = ext{o}(arphi) ext{ et } f_2 = ext{o}(arphi) \Rightarrow f_1 + f_2 = ext{o}(arphi) \quad ext{ (somme de termes négligeable est négligeable)}$
- **6** $f = \mathcal{O}(\varphi_1)$ et $\varphi_1 = \mathcal{O}(\varphi_2) \Rightarrow f = \mathcal{O}(\varphi_2)$ (transitivité de la domination)
- $f = o(\varphi_1)$ et $\varphi_1 = o(\varphi_2) \Rightarrow f = o(\varphi_2)$ (transitivité de la négligence)

1 $f = o(\varphi)$ au voisinage d'un point $a \Rightarrow f = g\varphi$ au voisinage de a et $\lim_a g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in]a - \eta, a + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors $f = \mathcal{O}(\varphi)$.

1 $f = o(\varphi)$ au voisinage d'un point $\alpha \Rightarrow f = g\varphi$ au voisinage de α et $\lim_{\alpha} g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in]a - \eta, a + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors $f = \mathcal{O}(\varphi)$.

2 $f_1 = \mathcal{O}(\varphi)$ alors $f_1 = \varphi u$ au voisinage de a où u est bornée au voisinage de a.

$$\exists \eta_1 > 0 \ \forall x \in]a - \eta_1, a + \eta_1[, f_1(x) = \varphi(x)u(x).$$

1 $f = o(\varphi)$ au voisinage d'un point $\alpha \Rightarrow f = g\varphi$ au voisinage de α et $\lim_{\alpha} g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in]a - \eta, a + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors $f=\mathcal{O}(\varphi)$.

2 $f_1 = \mathcal{O}(\varphi)$ alors $f_1 = \varphi u$ au voisinage de a où u est bornée au voisinage de a.

$$\exists \eta_1 > 0 \ \forall x \in]a - \eta_1, a + \eta_1[, f_1(x) = \varphi(x)u(x).$$

 $f_2 = \mathcal{O}(\varphi)$ donc $f_2 = \varphi v$ au voisinage de a.

$$\exists \eta_2 > 0 \ \forall x \in]a - \eta_2, a + \eta_2[, f_2(x) = \varphi(x)v(x).$$

16/110

Démonstration

(1) $f = o(\varphi)$ au voisinage d'un point $\alpha \Rightarrow f = g\varphi$ au voisinage de α et $\lim_{\alpha} g = 0$.

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \forall x \in]a - \eta, a + \eta[, \ |g(x)| \le \varepsilon.$$

La fonction g est donc bornée au voisinage de a. Alors $f = \mathcal{O}(\varphi)$.

 \bigcirc $f_1 = \mathcal{O}(\varphi)$ alors $f_1 = \varphi u$ au voisinage de α où u est bornée au voisinage de α .

$$\exists \eta_1 > 0 \ \forall x \in]\alpha - \eta_1, \alpha + \eta_1[, f_1(x) = \varphi(x)u(x).$$

 $f_2 = \mathcal{O}(\varphi)$ donc $f_2 = \varphi v$ au voisinage de a.

$$\exists \eta_2 > 0 \ \forall x \in]\alpha - \eta_2, \alpha + \eta_2[, f_2(x) = \varphi(x)v(x).$$

Pour $\eta = \min(\eta_1, \eta_2)$ on a $\forall x \in]\alpha - \eta, \alpha + \eta[(f_1 + f_2)(x) = \varphi(x)(u + v)(x)]$. Comme u + v bornée au voisinage de a on a $f_1 + f_2 = \mathcal{O}(\varphi)$.

• $f_1 = o(\varphi)$ au voisinage de α alors il existe une fonction ε_1 définie au voisinage de α tel que

$$\lim_{x\to a}\varepsilon_1(x)=0$$

et vérifiant $f_1=arepsilon_1arphi$ au voisinage de a

• $f_2 = o(\varphi)$ au voisinage de α alors il existe une fonction ε_2 définie au voisinage de α tel que

$$\lim_{x\to a}\varepsilon_2(x)=0$$

vérifiant $f_2 = \varepsilon_2 \varphi$ au voisinage de a.

Ainsi, la fonction $\varepsilon = \varepsilon_1 + \varepsilon_2$ est bien définie au voisinage de a et $\lim_{x\to a} \varepsilon(x) = 0$. Alors, $f_1 + f_2 = o(\varphi)$.

Règle pratique

Propriété

Soit I un intervalle de $\mathbb R$ et $a\in I$. Supposons que φ ne s'annule pas sur I \setminus a. Alors au voisinage de a

- **1** f est dominée par φ si, et seulement si, $\frac{f}{\varphi}$ est bornée au voisinage de a.
- 2 f est négligeable devant φ si, et seulement si, $\lim_{x\to a} \frac{f(x)}{\varphi(x)} = 0$.

nalyse réelle Relations de comparaison Développements limités Calcul d'intégrales

Fonctions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f=gh au voisinage de a et $\lim_{x\to a}h(x)=1$. On note $f\sim g$.

Fonctions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et $\lim_{x\to a}h(x)=1$. On note $f\sim g$.

Exercice : Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x. Montrer que f et g sont équivalentes en 0.

19/110

Fonctions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et $\lim_{x\to a}h(x)=1$. On note $f\underset{a}{\sim}g$.

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x.

Montrer que f et g sont équivalentes en 0.

Correction : On a $f \sim g$. En effet

$$\forall x \in \mathbb{R}^*$$
 $f(x) = h(x) \times g(x)$ avec $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$.

Fonctions équivalentes

Definition

Soient f et g définies sur un intervalle I. On dit que f est équivalente à g au voisinage de a, s'il existe une fonction h définie sur I telle que f = gh au voisinage de a et $\lim_{x\to a}h(x)=1$. On note $f\underset{a}{\sim}g$.

Exercice: Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = \sin(x)$ et g(x) = x.

Montrer que f et g sont équivalentes en 0.

Correction : On a $f \sim g$. En effet

$$\forall x \in \mathbb{R}^*$$
 $f(x) = h(x) \times g(x)$ avec $h(x) = \frac{\sin(x)}{x} \xrightarrow{0} 1$.

Remarque : $x \mapsto x$ est un DL à l'ordre 1 de la fonction $x \mapsto \sin(x)$ au voisinage de 0.

Équivalent pour les polynômes

$$f(x) = \sum_{k=n}^{n} a_k x^k$$
 avec $a_p \neq 0$ et $a_n \neq 0$.

1 Étude en 0 : Pour $x \in \mathbb{R}$, on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\Rightarrow 1}$$

Donc $f(x) \sim a_p x^p$.

Équivalent pour les polynômes

$$f(x) = \sum_{k=n}^{n} a_k x^k$$
 avec $a_p \neq 0$ et $a_n \neq 0$.

1 Étude en 0 : Pour $x \in \mathbb{R}$, on a

$$f(x) = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n = a_p x^p \underbrace{\left(1 + \frac{a_{p+1}}{a_p} x + \dots + \frac{a_n}{a_p} x^{n-p}\right)}_{\to 1}$$

Donc $f(x) \sim a_p x^p$.

2 Étude en $+\infty$: Pour $x \in \mathbb{R}$ on a

$$f(x) = a_n x^n \underbrace{\left(1 + \frac{a_{n-1}}{a_n} x^{-1} + \frac{a_{n-2}}{a_n} x^{-2} + \dots + \frac{a_p}{a_n} x^{p-n}\right)}_{n}$$

Donc $f(x) \sim a_n x^n$.

Analyse réelle Relations de comparaison Développements limités Calcul d'intégrales

Cas pratique

Comment montrer que deux fonctions sont équivalentes au voisinage d'un point?

Propriété

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

Résultats fondamentaux

Propriété

Soient f et g deux fonctions équivalentes en $a \in I$.

- 1 Si g a une limite finie ou infinie en a alors $\lim_a f = \lim_a g$.
- 2 Si g est positive sur I alors f est positive au voisinage de a.
- 3 Si g ne s'annule pas sur l alors f ne s'annule pas au voisinage de a.

Obtention d'équivalents : Si f est dérivable en $a \in I$ et si $f'(a) \neq 0$, alors au voisinage de a :

$$f(x) - f(a) \sim f'(a)(x - a)$$

Exercices

- **1** Montrer que $e^x 1 \sim x$ au voisinage de 0
- 2 Montrer que $ln(1 + x) \sim x$ au voisinage de 0
- **3** Montrer que $\sin(x) \sim x$ au voisinage de 0

Corrigé:

1 Comme $x \mapsto e^x$ est dérivable en 0 et que $e^0 = 1$ on a

$$e^{x} - e^{0} \underset{0}{\sim} e'(0)(x - 0) \Rightarrow e^{x} - 1 \underset{0}{\sim} x.$$

23/110

 \bigcirc $x \mapsto \sin(x)$ est dérivable en 0 et et possède une dérivée non nulle

$$\sin(x) - \sin(0) \sim \sin'(0)(x-0) \Rightarrow \sin(x) \sim x.$$

 $2 \times \operatorname{In}(1+x)$ est dérivable en 0 et possède une dérivée non nulle

$$\ln(1+x) - \ln(1+0) \sim \frac{1}{1+0}(x-0) \Rightarrow \ln(1+x) \sim x.$$

24/110

nalyse réelle Relations de comparaison Développements limités Calcul d'intégrales

Substitution dans un équivalent

Propriété

Soient f et g définies sur I et équivalentes en a. Si $u: \Delta \to I$ et telle que $\lim_{t \to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

nalyse réelle Relations de comparaison Développements limités Calcul d'intégrales

Substitution dans un équivalent

Propriété

Soient f et g définies sur I et équivalentes en a. Si $u: \Delta \to I$ et telle que $\lim_{t\to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

Substitution dans un équivalent

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u: \Delta \to l$ et telle que $\lim_{t\to \infty} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

 $e^{\sin t} - 1$

Substitution dans un équivalent

Propriété

Soient f et g définies sur I et équivalentes en a. Si $u: \Delta \to I$ et telle que $\lim_{t \to \alpha} u(t) = a$, alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

1 $e^{\sin t} - 1$

Correction : $u(t) = \sin t$, $f(x) = e^x - 1$ et g(x) = x. On a $f \underset{t \to 0}{\sim} g$ et $\lim_{t \to 0} u(t) = 0$ donc $f(u(t)) \underset{0}{\sim} g(u(t))$. Finalement, $e^{\sin t} - 1 \underset{0}{\sim} \sin t$.

 \bigcirc In(cos(t))

Substitution dans un équivalent

Propriété

Soient f et g définies sur l et équivalentes en a. Si $u:\Delta\to l$ et telle que $\lim_{t\to\infty}u(t)=a_t$ alors f(u(t)) et g(u(t)) sont équivalentes en α .

Application : Déterminer les équivalents des fonctions suivantes en 0 :

- $e^{\sin t} 1$
 - **Correction :** $u(t) = \sin t$, $f(x) = e^x 1$ et g(x) = x. On a $f \sim g$ et $\lim_{t \to 0} u(t) = 0$ donc $f(u(t)) \sim g(u(t))$. Finalement, $e^{\sin t} - 1 \sim \sin t$.
- \bigcirc In(cos(t))

Correction : On a $\ln(\cos(t)) = \ln(1 + \cos(t) - 1)$. Posons $u(t) = \cos(t) - 1$. Alors, $\lim_{t\to 0} u(t) = 0$. De plus, $\ln(1+y) \sim y$. Donc, $\ln(1+u(t)) \sim u(t)$. Ainsi,

$$\ln(\cos(t)) \sim \cos(t) - 1.$$

Propriété

Si au voisinage de a on a

- 1) $f_1 \sim g_1$ et $g_1 \sim g_2$ alors $f_1 \sim g_2$ en a (transitivité).
- 2 Si $f_1 \sim g_1$ et $f_2 \sim g_2$ alors $f_1 f_2 \sim g_1 g_2$ en a (produit).
- 3 Si $f_1 \sim g_1$ et $f_2 \sim g_2$ et si aucune de ces fonctions ne s'annule sur $I \setminus a$ alors $\frac{f_1}{f_2} \sim \frac{g_1}{g_2}$.

Propriété

- 1 Si g = o(f) au voisinage d'un point $a \in I$, alors $f + g \sim_a f$.
- 2 Soient f et g deux fonctions définies sur un intervalle I et $a \in I$. Si $f \sim g$ alors $f = \mathcal{O}(g)$ au voisinage de a.

Déterminer un équivalent de f au voisinage de $+\infty$ définie sur \mathbb{R}_+^* par

$$f(x) = e^{\frac{1}{x^2}} - e^{\frac{1}{(x+1)^2}}.$$

Déterminer un équivalent de f au voisinage de $+\infty$ définie sur \mathbb{R}_+^* par

$$f(x) = e^{\frac{1}{X^2}} - e^{\frac{1}{(X+1)^2}}$$

Correction: On a

$$\forall x \in \mathbb{R}_+^*, f(x) = e^{\frac{1}{X^2}} \left(1 - e^{\frac{1}{(x+1)^2}} - \frac{1}{x^2} \right) = e^{\frac{1}{X^2}} \left(1 - e^{\frac{-2x-1}{x^2(x+1)^2}} \right).$$

Or
$$1 - e^y \sim y$$
 et $\lim_{x \to +\infty} \frac{-2x - 1}{x^2(x+1)^2} = 0$. Donc, $1 - e^{\frac{-2x - 1}{x^2(x+1)^2}} \sim \frac{-2x - 1}{x^2(x+1)^2} \sim \frac{-2}{x^2(x+1)^2} \sim \frac{-2}{x^3}$. De

plus,
$$e^{\frac{1}{X^2}} \sim_{+\infty} 1$$
. Ainsi, $f(x) \sim_{+\infty} -\frac{2}{x^3}$.

Déterminer un équivalent en 0 de ln(sin(x))

Correction:

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

28/110

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)} \ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

Déterminer un équivalent en 0 de ln(sin(x))

Correction: On a

$$\ln(\sin(x)) = \ln\left(x\frac{\sin(x)}{x}\right) = \ln(x) + \ln\left(\frac{\sin(x)}{x}\right).$$

Or

$$\ln\left(\frac{\sin(x)}{x}\right) = o(\ln(x)) \quad \text{car} \quad \lim_{x \to 0} \left(\frac{1}{\ln(x)}\ln\left(\frac{\sin(x)}{x}\right)\right) = 0.$$

Donc

$$\ln\left(\frac{\sin(x)}{x}\right) + \ln(x) \sim \ln(x).$$

Ainsi

$$ln(\sin(x)) \sim \ln(x).$$

Remarques importantes

1 Composition d'équivalents : Si $f \sim g$ on ne peut rien dire à priori de $u \circ f$ et $u \circ g$. **Exemple :** Soient $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = x$$
 et $g(x) = x + \sqrt{x} \Rightarrow f(x) \underset{+\infty}{\sim} g(x)$ mais $e^{f(x)} = o(e^{g(x)})$

Remarques importantes

Composition d'équivalents : Si $f \sim g$ on ne peut rien dire à priori de $u \circ f$ et $u \circ g$. **Exemple:** Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = x$$
 et $g(x) = x + \sqrt{x} \Rightarrow f(x) \underset{+ \infty}{\sim} g(x)$ mais $e^{f(x)} = o(e^{g(x)})$

Somme d'équivalents : Si $u_1 \sim u_2$ et $v_1 \sim v_2$ alors $u_1 + v_2 \nsim u_2 + v_2$. **Exemple:**

$$u(x) = \sin(2x) + \cos(x) - 1.$$

On a

$$\sin(y) \sim y$$
 et $\lim_{x \to 0} 2x = 0 \Rightarrow \sin(2x) \sim 2x$ $\cos(x) - 1 = -2\sin^2(\frac{x}{2}) \sim -\frac{x^2}{2}$

Or

$$\lim_{x\to 0}\frac{u(x)}{2x}=\left(\frac{\sin(2x)}{2x}+\frac{\cos(x)-1}{2x}\right)=1\ \Rightarrow u(x)\underset{0}{\sim}\ 2x$$

29/110

nalyse réelle Relations de comparaison **Développements limités** Calcul d'intégrales

Introduction

Les formules de Taylor constituent des outils très intéressants dans l'étude de fonctions. Elles permettent

- 🕦 d'approcher une fonction localement par des polynômes (Taylor–Young)
- d'approcher une fonction globalement par des polynômes et de déduire une expression sur le reste (Taylor reste-intégral)

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$. Supposons que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \underbrace{\sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a)}_{polynôme} + \underbrace{\int_{a}^{b} \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt}_{reste}.$$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$. Supposons que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \underbrace{\sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a)}_{polynôme} + \underbrace{\int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt}_{reste}.$$

Application : Montrez que $\forall x \in [-\pi, \pi]$, $\cos(x) \ge 1 - \frac{x^2}{2}$

Theorem (Formule de Taylor avec reste intégral)

Soient I un intervalle et $a, b \in I$. Supposons que a < b. Si $f \in C^{n+1}(I)$ alors :

$$f(b) = \underbrace{\sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a)}_{polynôme} + \underbrace{\int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt}_{reste}.$$

Développements limités

Application : Montrez que $\forall x \in [-\pi, \pi]$, $\cos(x) \ge 1 - \frac{x^2}{2}$

Correction : Formule de Taylor avec reste intégral à la fonction cos à l'ordre 2 :

$$\cos(x) = \sum_{k=0}^{2} \frac{x^{k}}{k!} \cos^{(k)}(0) + \int_{0}^{x} \frac{(x-t)^{2}}{2} \cos^{(3)}(t) dt = 1 - \frac{x^{2}}{2} + \int_{0}^{x} \frac{(x-t)^{2}}{2} \sin(t) dt \ge 0.$$

IAD DABAGHI

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a,b], on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

formule donne des informations sur l'erreur d'approximation polynomiale!

Theorem (Inégalité de Taylor Lagrange)

Soit f une fonction de classe C^{n+1} sur I. Si M majore $|f^{(n+1)}|$ sur le segment [a,b], on a :

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \leq M \frac{|b-a|^{n+1}}{(n+1)!}.$$

formule donne des informations sur l'erreur d'approximation polynomiale!

Exercice : Montrer que
$$\forall x \in \mathbb{R}$$
, $\left| \sin(x) - x + \frac{x^3}{6} \right| \leq \frac{x^4}{24}$.

Correction : On applique l'inégalité de Taylor-Lagrange à l'ordre 3 à la fonction sinus de classe C^{∞} sur \mathbb{R} et vérifiant $\forall n \in \mathbb{N}$, $\sup_{x \in \mathbb{R}} |f^{(n)}(x)| \leq 1$.

$$\left| \sin(x) - \sum_{k=0}^{3} \frac{x^{k}}{k!} f^{(k)}(0) \right| = \left| \sin(x) - x - \frac{x^{3}}{6} \right| \le \frac{|x|^{4}}{4!} = \frac{x^{4}}{24}.$$

Theorem (Formule de Taylor-Young)

Si f est une fonction de classe C^n sur I, il existe une fonction ε définie sur I telle que :

$$\forall x \in I, f(x) = \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) + (x-a)^{n} \varepsilon(x) \quad avec \quad \lim_{x \to a} \varepsilon(x) = 0.$$

$$\iff f(x) = \sum_{k=0}^{n} \frac{(x-a)^{k}}{k!} f^{(k)}(a) + o((x-a)^{n})$$

Formule très importante! Elle permet de déterminer le développement limité de f à l'ordre n.

Mais... peu commode en pratique...

① Développement limité de $x\mapsto e^x$ au voisinage de 0. **Correction :** La fonction $x\mapsto e^x$ est de classe \mathcal{C}^∞ . La formule de Taylor-Young donne

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

① Développement limité de $x\mapsto e^x$ au voisinage de 0. **Correction :** La fonction $x\mapsto e^x$ est de classe \mathcal{C}^∞ . La formule de Taylor-Young donne

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

② Développement limité de $x \mapsto \cos(x)$ au voisinage de 0. **Correction :** La fonction $x \mapsto \cos(x)$ est de classe \mathcal{C}^{∞} . La formule de Taylor-Young donne

$$cos(x) = 1 + \frac{x}{1!}\cos'(0) + \frac{x^2}{2!}\cos^{(2)}(0) + \frac{x^3}{3!}\cos^{(3)}(0) + \frac{x^4}{4!}\cos^{(4)}(0) + \dots + o(x^n)$$
$$= 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{2n!} + o(x^{2n})$$

Solution Développement limité de $x \mapsto \sin(x)$ au voisinage de 0. Correction: La fonction $x \mapsto \sin(x) \in \mathcal{C}^{\infty}$. La formule de Taylor-Young donne

$$\sin(x) = \frac{x}{1!}\sin'(0) + \frac{x^2}{2!}\sin^{(2)}(0) + \frac{x^3}{3!}\sin^{(3)}(0) + \dots + \frac{x^n}{n!}\sin^{(n)}(0) + o(x^n)$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n o(x^{2n+1})$$

3 Développement limité de $x \mapsto \sin(x)$ au voisinage de 0. **Correction :** La fonction $x \mapsto \sin(x) \in \mathcal{C}^{\infty}$. La formule de Taylor-Young donne

$$\sin(x) = \frac{x}{1!}\sin'(0) + \frac{x^2}{2!}\sin^{(2)}(0) + \frac{x^3}{3!}\sin^{(3)}(0) + \dots + \frac{x^n}{n!}\sin^{(n)}(0) + o(x^n)$$
$$= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n o(x^{2n+1})$$

① Développement limité de $(1+x)^{\alpha}$ où x>-1 et $\alpha\in\mathbb{R}$. **Correction :** La fonction $x\mapsto (1+x)^{\alpha}$ est \mathcal{C}^{∞} sur $]-1,+\infty[$. La formule de Taylor-Young donne

$$(1+x)^{\alpha}=1+\alpha x+\alpha(\alpha-1)\frac{x^2}{2}+\cdots+\alpha(\alpha-1)\cdots(\alpha-n+1)\frac{x^n}{n!}+o(x^n)$$

Développements limités

Développements limités

Definition

Une fonction f admet un développement limité l'ordre n au voisinage de 0 s'il existe des réels a_0, a_1, \dots, a_n et une fonction ε définie sur \mathcal{D}_f tels que :

$$\forall x \in \mathcal{D}_f, f(x) = \sum_{\substack{k=0 \ \text{Partie régulière}}}^n a_k x^k + \underbrace{x^n \varepsilon(x)}_{\text{Reste}} \quad \text{avec} \quad \lim_{x \to 0} \varepsilon(x) = 0.$$

Remarque : Écriture équivalente :

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n).$$

Quelques exemples

(1) $f:]-1,1[\rightarrow \mathbb{R}$ définie par

$$f(x) = x - x^2 + 2x^3 + x^3 \ln(1+x)$$

admet un DL à l'ordre 3 en 0 car

$$\forall x \in]-1,1[, f(x) = x - x^2 + 2x^3 + x^3 \varepsilon(x) \text{ avec } \varepsilon(x) = \ln(1+x) \xrightarrow{0} 0$$

Quelques exemples

 $f:]-1,1[\rightarrow \mathbb{R}$ définie par

$$f(x) = x - x^2 + 2x^3 + x^3 \ln(1+x)$$

admet un DL à l'ordre 3 en 0 car

$$\forall x \in]-1,1[, f(x) = x - x^2 + 2x^3 + x^3 \varepsilon(x) \text{ avec } \varepsilon(x) = \ln(1+x) \xrightarrow{0} 0$$

2 Si une fonction f est de classe \mathcal{C}^n sur un intervalle contenant 0, alors la formule de Taylor-Young prouve qu'elle admet un développement limité à l'ordre n en 0 qui s'écrit :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n}).$$

Propriété (Unicité du DL)

Si f est une fonction pour laquelle il existe deux (n+1)-listes de réels (a_0, a_1, \dots, a_n) et (b_0, b_1, \dots, b_n) vérifiant :

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$
 et $f(x) = \sum_{k=0}^{n} b_k x^k + o(x^n)$,

alors

$$(a_0, a_1, \cdots, a_n) = (b_0, b_1, \cdots, b_n).$$

Parité et développements limités

Propriété

Si f admet en 0 un DL à l'ordre n dont la partie régulière est $P(x) = \sum_{k=0}^{n} a_k x^k$.

- Si f est paire, alors P(x) ne contient que des puissances paires de x.
- Si f est impaire, alors P(x) ne contient que des puissances impaires de x.

Parité et développements limités

Propriété

Si f admet en 0 un DL à l'ordre n dont la partie régulière est $P(x) = \sum_{k=0}^{n} a_k x^k$.

- Si f est paire, alors P(x) ne contient que des puissances paires de x.
- Si f est impaire, alors P(x) ne contient que des puissances impaires de x.

Démonstration: f admet un **DL** à l'ordre n en 0 donc $f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$

$$f$$
 est paire: $\forall x \in \mathcal{V}_0, f(x) = f(-x) = \sum_{k=0}^{n} a_k (-1)^k x^k + o((-x)^n).$

Unicité du DL : $\forall 1 \le k \le n, \ a_k(-1)^k = a_k.$

le polynôme P ne contient que des puissances paires de x.

Développements limités en 0 des fonctions élémentaires

Fonction exponentielle:
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + o(x^n)$$

La fonction hyperbolique ch : ch(x) =
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

La fonction hyperbolique sh : sh(x) =
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

La fonction sinus :
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

La fonction cosinus :
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+2})$$

La fonction $x \mapsto \ln(1+x)$:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

Pour α un réel quelconque, la fonction $x \mapsto (1+x)^{\alpha}$:

$$(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+o(x^n)$$

La fonction $x \mapsto \frac{1}{1-x}$:

$$\frac{1}{1-x}=\sum_{k=0}^n x^k+o(x^n)$$

Déterminer le DL à l'ordre 3 au voisinage de 2 de f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$. **Correction :**

Déterminer le DL à l'ordre 3 au voisinage de 2 de f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

1 Transformation de l'expression

$$f(x) = \frac{1}{2+x-2} = \frac{1}{2} \frac{1}{\left(1 + \frac{x-2}{2}\right)}.$$

Déterminer le DL à l'ordre 3 au voisinage de 2 de f définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$. Correction:

Transformation de l'expression

$$f(x) = \frac{1}{2+x-2} = \frac{1}{2} \frac{1}{\left(1+\frac{x-2}{2}\right)}.$$

Changement de variable. On pose h = x - 2. Alors h tend vers 0 au voisinage de 2.

$$f(x) = \frac{1}{2} \frac{1}{1 + \frac{h}{2}}$$
 DL de $\frac{1}{1 + u}$ en 0!

3 DL en 0 de
$$u \mapsto \frac{1}{1+u}$$

$$\frac{1}{1+u}=1-u+u^2-u^3+o(u^3).$$

3 DL en 0 de $u \mapsto \frac{1}{1+u}$

$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + o(u^3).$$

4 On remplace u par $\frac{h}{2} \rightarrow 0$:

$$\frac{1}{2}\left(\frac{1}{1+\frac{h}{2}}\right) = \frac{1}{2}\left(1-\frac{h}{2}+\frac{h^2}{4}-\frac{h^3}{8}+o\left(\frac{h^3}{8}\right)\right).$$

3 DL en 0 de $u \mapsto \frac{1}{1+u}$

$$\frac{1}{1+u}=1-u+u^2-u^3+o(u^3).$$

4 On remplace u par $\frac{h}{2} \rightarrow 0$:

$$\frac{1}{2}\left(\frac{1}{1+\frac{h}{2}}\right) = \frac{1}{2}\left(1-\frac{h}{2}+\frac{h^2}{4}-\frac{h^3}{8}+o\left(\frac{h^3}{8}\right)\right).$$

5 DL de f au voisinage de x = 2 ($h = x - 2 \rightarrow 0$):

$$f(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3 + \frac{1}{2}o\left(\left(\frac{x-2}{2}\right)^3\right).$$

6 Simplification des termes négligeables :

$$o\left(\left(\frac{x-2}{2}\right)^3\right)=o((x-2)^3)$$

car

$$o\left(\left(\frac{x-2}{2}\right)^3\right) = \left(\frac{x-2}{2}\right)^3 \varepsilon\left(\frac{x-2}{2}\right) \quad \text{avec} \quad \lim_{x \to 2} \varepsilon\left(\frac{x-2}{2}\right) = 0$$
$$= (x-2)^3 \varepsilon_1(x) \quad \text{avec} \quad \varepsilon_1(x) = \frac{1}{8}\varepsilon\left(\frac{x-2}{2}\right) \quad \text{où} \quad \lim_{x \to 2} \varepsilon_1(x) = 0$$
$$= o((x-2)^3)$$

6 Simplification des termes négligeables :

$$o\left(\left(\frac{x-2}{2}\right)^3\right) = o((x-2)^3)$$

car

$$o\left(\left(\frac{x-2}{2}\right)^3\right) = \left(\frac{x-2}{2}\right)^3 \varepsilon\left(\frac{x-2}{2}\right) \quad \text{avec} \quad \lim_{x \to 2} \varepsilon\left(\frac{x-2}{2}\right) = 0$$
$$= (x-2)^3 \varepsilon_1(x) \quad \text{avec} \quad \varepsilon_1(x) = \frac{1}{8}\varepsilon\left(\frac{x-2}{2}\right) \quad \text{où} \quad \lim_{x \to 2} \varepsilon_1(x) = 0$$
$$= o((x-2)^3)$$

Conclusion :

$$f(x) = \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3 + o\left((x-2)^3\right).$$

Dérivabilité et développement limité

Propriété

Soit f une fonction définie sur \mathcal{D}_f . Alors f est continue en x_0 si, et seulement si, f admet un DL à l'ordre 0 en x_0 . Précisément, dans ce cas, au voisinage de x_0

$$f(x) = f(x_0) + o(1).$$

Dérivabilité et développement limité

Propriété

Soit f une fonction définie sur \mathcal{D}_f . Alors f est continue en x_0 si, et seulement si, f admet un DL à l'ordre 0 en x_0 . Précisément, dans ce cas, au voisinage de x_0

$$f(x) = f(x_0) + o(1).$$

Démonstration: (\Rightarrow) Si f est continue en x_0 : $\lim_{x\to x_0} f(x) = f(x_0)$.

On définit ε par $\varepsilon(x) = f(x) - f(x_0)$. Alors $\lim_{x \to 0} \varepsilon(x) = 0$. Ainsi, au voisinage de x_0

$$f(x) = f(x_0) + x^0 \times \varepsilon(x)$$
 avec $\lim_{x \to x_0} \varepsilon(x) = 0 \Rightarrow f(x) = f(x_0) + o(1)$.

Dérivabilité et développement limité

Propriété

Soit f une fonction définie sur \mathcal{D}_f . Alors f est continue en x_0 si, et seulement si, f admet un DL à l'ordre 0 en x_0 . Précisément, dans ce cas, au voisinage de x_0

$$f(x) = f(x_0) + o(1).$$

Démonstration: (\Rightarrow) Si f est continue en x_0 : $\lim_{x\to x_0} f(x) = f(x_0)$.

On définit ε par $\varepsilon(x)=f(x)-f(x_0)$. Alors $\lim_{x\to 0}\varepsilon(x)=0$. Ainsi, au voisinage de x_0

$$f(x) = f(x_0) + x^0 \times \varepsilon(x)$$
 avec $\lim_{x \to x_0} \varepsilon(x) = 0 \Rightarrow f(x) = f(x_0) + o(1)$.

(\Leftarrow) si f admet un DL à l'ordre 0 en x_0 : $f(x) = a_0 + \varepsilon(x)$ où $\lim_{x \to x_0} = \varepsilon(x) = 0$. Alors

$$\lim_{x \to x_0} f(x) = a_0 \quad \Rightarrow \quad \text{f continue en } x_0$$

Propriété

f est dérivable en x_0 si, et seulement si, f possède un DL à l'ordre 1 en x_0 . Dans ce cas :

$$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

53/110

Propriété

f est dérivable en x_0 si, et seulement si, f possède un DL à l'ordre 1 en x_0 . Dans ce cas :

$$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

Démonstration: (\Rightarrow) Si f est dérivable en x_0 alors $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$. On pose :

$$\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0)$$
 si $x \in \mathcal{D}_f \setminus \{x_0\}$ et $\lim_{x \to x_0} \varepsilon(x) = 0$.

On a $f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varepsilon(x)$. Alors, f admet un DL à l'ordre 1 en x_0 .

Propriété

f est dérivable en x_0 si, et seulement si, f possède un DL à l'ordre 1 en x_0 . Dans ce cas :

$$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

Démonstration: (\Rightarrow) Si f est dérivable en x_0 alors $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$. On pose :

$$\varepsilon(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \quad \text{si} \quad x \in \mathcal{D}_f \setminus \{x_0\} \quad \text{et} \quad \lim_{x \to x_0} \varepsilon(x) = 0.$$

On a $f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)\varepsilon(x)$. Alors, f admet un DL à l'ordre 1 en x_0 . \Leftarrow Si f admet un DL à l'ordre 1 en x_0 :

$$f(x) = a_0 + a_1(x - x_0) + o(x - x_0) \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a_1.$$

alors f est dérivable en x_0 et $f'(x_0) = a_1$.

<ロ > ∢回 > ∢昼 > ∢差 > ~差 > ~9 < ?>

Opérations sur les développements limités

Remarque:

La formule de Taylor-Young permet de calculer le DL d'une fonction en un point.

Pas toujours le bon choix!

Exemple: DL à l'ordre 5 au voisinage de 0 de

$$f(x) = \sin(x)e^x \frac{1}{\sqrt{1+x}}$$

Calcul des dérivées successives très coûteux!

Alternative: Opérations élémentaires pour calculer des DL

- somme
- produit, quotient
- composition

Somme de Développement limités

Propriété

Soient f et g deux applications de \mathcal{D} dans \mathbb{R} admettant en 0 des DL à l'ordre n:

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$.

Alors, le **DL de** f + g en 0 est : $f(x) + g(x) = P(x) + Q(x) + o(x^n)$.

55/110

Somme de Développement limités

Propriété

Soient f et g deux applications de \mathcal{D} dans \mathbb{R} admettant en 0 des DL à l'ordre n :

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$.

Alors, le **DL de**
$$f + g$$
 en 0 est : $f(x) + g(x) = P(x) + Q(x) + o(x^n)$.

Démonstration : Il existe des fonctions ε_1 et ε_2 définies sur \mathcal{D} telles que :

$$\forall x \in \mathcal{V}_0, f(x) = P(x) + x^n \varepsilon_1(x) \text{ avec } \lim_{x \to 0} \varepsilon_1(x) = 0$$

 $\forall x \in \mathcal{V}_0, g(x) = Q(x) + x^n \varepsilon_2(x) \text{ avec } \lim_{x \to 0} \varepsilon_2(x) = 0.$

$$\Rightarrow \forall x \in \mathcal{V}_0, f(x) + g(x) = P(x) + Q(x) + x^n \varepsilon(x)$$
 où $\varepsilon(x) = \varepsilon_1(x) + \varepsilon_2(x) \to 0$.

IAD DABAGHI Dérivation et Intégration 22 lanvier 2024

Déterminer le développement limité à l'ordre 3 au voisinage de 0 de la fonction f définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{1}{1-x}-e^x$.

56/110

Déterminer le développement limité à l'ordre 3 au voisinage de 0 de la fonction f définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{1}{1-x}-e^x$.

Correction: Au voisinage de 0

$$\frac{1}{1-x}=1+x+x^2+x^3+o(x^3)$$

et

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3}).$$

Par somme de développements limités on obtient au voisinage de 0

$$f(x) = -\frac{1}{2}x^2 + \frac{5}{6}x^3 + o(x^3).$$

Produit de Développements limités

Propriété

Soient f et g deux applications de $\mathcal D$ dans $\mathbb R$ admettant en 0 des DL à l'ordre n:

$$f(x) = P(x) + o(x^n)$$
 et $g(x) = Q(x) + o(x^n)$.

Alors, la fonction fg admet au voisinage de 0 un DL à l'ordre n qui s'écrit :

$$f(x)g(x) = R(x) + o(x^n)$$

où R est le polynôme obtenu en ne gardant, dans le produit PQ, que les termes de degré inférieur ou égal à n.

$f(x)g(x) = (P(x) + x^n \varepsilon_1(x)) (Q(x) + x^n \varepsilon_2(x))$

$$= P(x)Q(x) + x^{n} \left(\varepsilon_{1}(x)Q(x) + \varepsilon_{2}(x)P(x) + x^{n}\varepsilon_{1}(x)\varepsilon_{2}(x)\right).$$

Soit R le polynôme obtenu en ne gardant dans le produit PQ que les termes de degré inférieur ou égal à n. Alors

$$\forall x \in \mathcal{V}_0, \ P(x)Q(x) = R(x) + x^{n+1}T(x) \quad \text{où} \quad \deg(T) \leq n-1.$$

Donc

$$\forall x \in \mathcal{V}_0, f(x)g(x) = R(x) + x^{n+1}T(x) + x^n \underbrace{\left(\varepsilon_1(x)Q(x) + \varepsilon_2(x)P(x) + x^n\varepsilon_1(x)\varepsilon_2(x)\right)}_{=\varepsilon(x)\to 0}$$

Ainsi, fg admet R comme DL à l'ordre n au voisinage de 0.

4日 > 4 日 > 4 目 > 4 目 > 9 Q (*)

Déterminer le DL à l'ordre 3 en 0 de g définie sur $]-1,+\infty[$ par $g(x)=\frac{\cos(x)}{\sqrt{1+x}}.$

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ **à l'ordre** 3

Déterminer le DL à l'ordre 3 en 0 de g définie sur $]-1,+\infty[$ par $g(x)=\frac{\cos(x)}{\sqrt{1+x}}.$

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ **à l'ordre** 3

$$cos(x) = 1 - \frac{x^2}{2} + o(x^3) = P(x) + o(x^3)$$

Déterminer le DL à l'ordre 3 en 0 de g définie sur] $-1, +\infty$ [par $g(x) = \frac{\cos(x)}{\sqrt{1+x}}$.

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ **à l'ordre** 3

$$cos(x) = 1 - \frac{x^2}{2} + o(x^3) = P(x) + o(x^3)$$

2 DL en 0 de $x \mapsto \frac{1}{1+x}$

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3) = Q(x) + o(x^3)$$

Déterminer le DL à l'ordre 3 en 0 de g définie sur] $-1, +\infty$ [par $g(x) = \frac{\cos(x)}{\sqrt{1-x}}$.

Correction:

1 DL en 0 de $x \mapsto \cos(x)$ à l'ordre 3

$$cos(x) = 1 - \frac{x^2}{2} + o(x^3) = P(x) + o(x^3)$$

2 DL en 0 de $x \mapsto \frac{1}{1+x}$

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + o(x^3) = Q(x) + o(x^3)$$

DL de g obtenu en ne gardant dans le produit que les termes de degré \leq 3.

$$g(x) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + o(x^3).$$

Déterminer le DL à l'ordre 4 en 0 de la fonction g définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ par $g(x)=\frac{1}{\cos(x)}$

Correction: On a

$$g(x) = \frac{1}{\cos(x)} = \frac{1}{1 - u(x)}$$
 où $u(x) = 1 - \cos(x) \underset{x \to 1}{\to} 0$.

Déterminer le DL à l'ordre 4 en 0 de la fonction g définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ par $g(x)=\frac{1}{\cos(x)}$

Correction: On a

$$g(x) = \frac{1}{\cos(x)} = \frac{1}{1 - u(x)}$$
 où $u(x) = 1 - \cos(x) \underset{x \to 1}{\to} 0$.

① $u \in \mathcal{C}^{\infty}(]-\frac{\pi}{2},\frac{\pi}{2}[)$ donc par Taylor–Young, u admet un DL à l'ordre 4 en 0.

Application

Déterminer le DL à l'ordre 4 en 0 de la fonction g définie sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ par $g(x)=\frac{1}{\cos(x)}$

Correction: On a

$$g(x) = \frac{1}{\cos(x)} = \frac{1}{1 - u(x)}$$
 où $u(x) = 1 - \cos(x) \underset{x \to 1}{\to} 0$.

- 1 $u \in \mathcal{C}^{\infty}(]-\frac{\pi}{2},\frac{\pi}{2}[)$ donc par Taylor–Young, u admet un DL à l'ordre 4 en 0.
- 2 La fonction $x \mapsto \cos(x)$ admet en 0 le DL à l'ordre 4 :

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

Donc

$$1 - \cos(x) = \frac{x^2}{2} - \frac{x^4}{24} - o(x^4)$$

3 la fonction $u \mapsto \frac{1}{1-u}$ admet le DL à l'ordre 4 en 0 :

$$\frac{1}{1-u}=1+u+u^2+u^3+u^4+o(u^4).$$

61/110

3 la fonction $u \mapsto \frac{1}{1-u}$ admet le DL à l'ordre 4 en 0 :

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + u^4 + o(u^4).$$

🗿 On utilise la règle du produit de DL :

$$(1-\cos(x))^2 = \frac{x^4}{4} + o(x^4)$$

D'où

$$g(x) = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4).$$

61/110

Intégration des développements limités

Propriété

Soit I un intervalle contenant 0 et $f: I \to \mathbb{R}$ une fonction continue possédant en 0 un DL à l'ordre n qui vaut $\sum_{k=0}^{n} a_k x^k$. Si F est une primitive de f, alors elle admet un DL à l'ordre n+1 en 0 qui est :

$$F(0) + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1}$$
.

Remarque : Très pratique pour retrouver le DL d'une fonction dont on connait la primitive ($x \mapsto \arctan(x), x \mapsto \ln(1+x)$, etc...).

Applications

Ecrivons le DL à l'ordre n de $\frac{1}{1+x}$:

Correction:

$$\frac{1}{1+x}=1-x+x^2+\cdots+(-1)^nx^n+o(x^n).$$

Or $x \mapsto \ln(1+x)$ est une primitive de $x \mapsto \frac{1}{1+x}$.

Donc, le DL de $x \mapsto \ln(1+x)$ est

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1}.$$

Application

Ecrivons le développement limité à l'ordre n de $\frac{1}{1+v^2}$:

Correction:

$$\frac{1}{1+x^2}=1-x^2+x^4+(-1)^nx^{2n}+o(x^{2n}).$$

Or $x \mapsto \frac{1}{1+x^2}$ est une primitive de $x \mapsto \arctan(x)$. Ainsi, le développement limité de $x \mapsto \arctan(x)$ est donné par

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^{2n+1} \frac{x^{2n+1}}{(2n+1)!}.$$

Recherche d'équivalents

Propriété

Si f admet en x_0 un DL d'ordre n dont la partie régulière est : $\sum_{k=p}^{n} a_k (x-x_0)^k$ avec $a_p \neq 0$.

$$f(x) \sim_{x_0} a_p (x - x_0)^p$$
.

Recherche d'équivalents

Propriété

Sif admet en x_0 un DL d'ordre n dont la partie régulière est : $\sum_{k=p}^{n} a_k (x - x_0)^k$ avec $a_p \neq 0$. alors :

$$f(x) \underset{x_0}{\sim} a_p (x - x_0)^p.$$

Démonstration:

$$f(x) = \sum_{k=p}^{n} a_k (x - x_0)^k + o((x - x_0)^p)$$

et

$$\frac{f(x)}{a_n(x-x_0)^p}=1+\frac{a_{p+1}}{a_n}(x-x_0)+\frac{a_{p+2}}{a_n}(x-x_0)^2+\cdots+\frac{a_{n+p}}{a_n}(x-x_0)^n\xrightarrow[x_0]{}1.$$

4 ロ ト 4 昼 ト 4 昼 ト 4 昼 ト 9 へ 0 つ

Exercice

Déterminer un équivalent au voisinage de 0 de la fonction f définie sur $\mathbb R$ par

$$f(x) = x(1 + \cos(x)) - 2\tan(x).$$

Correction::

Exercice

Déterminer un équivalent au voisinage de 0 de la fonction f définie sur $\mathbb R$ par

$$f(x) = x (1 + \cos(x)) - 2\tan(x).$$

Correction::

① f(-x) = -f(x) ⇒ f est impaire. La partie régulière du DL de f ne contient que des puissances impaires de x.

Exercice

Déterminer un équivalent au voisinage de 0 de la fonction f définie sur \mathbb{R} par

$$f(x) = x \left(1 + \cos(x)\right) - 2\tan(x).$$

Correction::

- $(1) f(-x) = -f(x) \Rightarrow f$ est impaire. La partie régulière du DL de f ne contient que des puissances impaires de x.
- 2 DL en 0 à l'ordre 3 de $x \mapsto \cos(x)$

$$\cos(x) = 1 - \frac{x^2}{2} + o(x^3)$$
$$\Rightarrow x (1 + \cos(x)) = 2x - \frac{x^3}{2} + xo(x^3).$$

66 / 110

3 Simplification des termes négligeables :

$$xo(x^3) = xx^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $x^4 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $o(x^4)$.

Simplification des termes négligeables :

$$xo(x^3) = xx^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.
 $= x^4 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.
 $= o(x^4)$.

4 DL en 0 **à l'ordre** 3 **de** $x \mapsto x(1 + \cos(x))$

$$x(1 + \cos(x)) = 2x - \frac{x^3}{2} + o(x^4).$$

3 Simplification des termes négligeables :

$$xo(x^3) = xx^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $x^4 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.
= $o(x^4)$.

4 DL en 0 **à l'ordre** 3 **de** $x \mapsto x(1 + \cos(x))$

$$x(1 + \cos(x)) = 2x - \frac{x^3}{2} + o(x^4).$$

5 $tan(x) = sin(x) \times \frac{1}{cos(x)}$. Le DL de $x \mapsto sin(x)$ à l'ordre 4 est :

$$\sin(x) = x - \frac{x^3}{31} + o(x^4).$$

67/110

6 Transformation
$$\frac{1}{u} \rightarrow \frac{1}{1-u}$$

$$\frac{1}{\cos(x)} = \frac{1}{1 - (1 - \cos(x))} = \frac{1}{1 - u(x)} \quad \text{avec} \quad u(x) = 1 - \cos(x)$$

6 Transformation $\frac{1}{u} \rightarrow \frac{1}{1-u}$

$$\frac{1}{\cos(x)} = \frac{1}{1 - (1 - \cos(x))} = \frac{1}{1 - u(x)} \quad \text{avec} \quad u(x) = 1 - \cos(x)$$

7 Or le DL à l'ordre 3 au voisinage de 0 de $\frac{1}{1-u}$ est : $\frac{1}{1-u} = 1 + u + u^2 + u^3 + o(u^3)$.

6 Transformation $\frac{1}{u} \rightarrow \frac{1}{1-u}$

$$\frac{1}{\cos(x)} = \frac{1}{1 - (1 - \cos(x))} = \frac{1}{1 - u(x)} \quad \text{avec} \quad u(x) = 1 - \cos(x)$$

- 7 Or le DL à l'ordre 3 au voisinage de 0 de $\frac{1}{1-u}$ est : $\frac{1}{1-u} = 1 + u + u^2 + u^3 + o(u^3)$.
- 3 Ainsi, le DL de $x \mapsto \frac{1}{\cos(x)}$ est donné par

$$\frac{1}{\cos(x)} = 1 + (1 - \cos(x)) + (1 - \cos(x))^2 + (1 - \cos(x))^3 + o((1 - \cos(x))^3)$$

$$= \frac{x^2}{2} - o(x^4) + \left(\frac{x^2}{2} - o(x^4)\right)^2 + \left(\frac{x^2}{2} - o(x^4)\right)^3 + o\left(\left(\frac{x^2}{2} - o(x^4)\right)^3\right).$$

DL d'un produit : on ne garde que les termes de degré < 3.

$$(1 - \cos(x))^2 = -x^2 o(x^3) + (o(x^3))^2 = -o(x^5) + o(x^6) = o(x^5).$$

$$(1-\cos(x))^3 = o(x^7).$$

ODL d'un produit : on ne garde que les termes de degré < 3.

$$(1-\cos(x))^2 = -x^2o(x^3) + (o(x^3))^2 = -o(x^5) + o(x^6) = o(x^5).$$

$$(1 - \cos(x))^3 = o(x^7).$$

n Simplification des termes négligeables,

$$o\left(\left(\frac{x^2}{2}-o(x^3)\right)^3\right)=o(x^7).$$

1 DL de
$$x \mapsto \frac{1}{\cos(x)}$$
 à l'ordre 3

$$\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + o(x^4).$$

1 DL de $x \mapsto \frac{1}{\cos(x)}$ à l'ordre 3

$$\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + o(x^4).$$

10 On obtient alors le DL à l'ordre 3 de $x \mapsto \tan(x)$

$$\tan(x) = \underbrace{\left(x - \frac{x^3}{3!} + o(x^4)\right)}_{\text{DL sin}} \underbrace{\left(1 + \frac{x^2}{2} + o(x^4)\right)}_{\text{DL 1/cos}}$$

$$tan(x) = x - \frac{x^3}{3} + o(x^4).$$

 $oldsymbol{6}$ DL au voisinage de $oldsymbol{0}$ de f :

DL
$$f(x) = DL \{x(1 + \cos(x))\} + DL \{-2\tan(x)\}$$

$$= \left(2x - \frac{x^3}{2} + o(x^4)\right) - 2\left(x - \frac{x^3}{3} + o(x^4)\right)$$

$$= -\frac{7x^3}{6} + o(x^4)$$

DL au voisinage de 0 de f:

$$DL f(x) = DL \{x(1 + \cos(x))\} + DL \{-2\tan(x)\}$$

$$= \left(2x - \frac{x^3}{2} + o(x^4)\right) - 2\left(x - \frac{x^3}{3} + o(x^4)\right)$$

$$= -\frac{7x^3}{6} + o(x^4)$$

Equivalent de f en 0:

$$f(x) \sim -\frac{7}{6}x^3$$
.

Etude de tangentes

DL d'ordre 1 : f est dérivable en x_0 ssi f admet un DL à l'ordre 1 en x_0 . Alors f possède une tangente T en x_0 . La position de \mathcal{C}_f par rapport à T est donnée par le signe de

$$f(x) - f(x_0) - (x - x_0)f'(x_0)$$

Etude de tangentes

DL d'ordre 1 : f est dérivable en x_0 ssi f admet un DL à l'ordre 1 en x_0 . Alors f possède une tangente T en x_0 . La position de \mathcal{C}_f par rapport à T est donnée par le signe de

$$f(x) - f(x_0) - (x - x_0)f'(x_0)$$

DL d'ordre 2 : Si f possède en x_0 un DL d'ordre 2. Alors

$$f(x) = a_0 + (x - x_0)a_1 + (x - x_0)^2a_2 + o((x - x_0)^2)$$
 avec $a_2 \neq 0$.

Alors la tangente est la droite d'équation $T_y = a_0 + a_1(x - x_0)$ et, au voisinage de x_0 , la position de C_f par rapport à T_y est donnée par le signe de a_2 , car :

$$f(x) - (a_0 + a_1(x - x_0)) = (x - x_0)^2 a_2 + o((x - x_0)^2)$$

$$\underset{x_0}{\sim} a_2(x - x_0)^2.$$

DL d'ordre p : Si f possède en x_0 un DL à un ordre $p \ge 2$:

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_p(x - x_0)^p + o((x - x_0)^p)$$
 avec $a_p \neq 0$

On note k le degré du premier coefficient non nul dans le DL à partir du degré 2 et on note a_k son coefficient.

- Si k est pair et $a_k > 0$ alors la courbe est au dessus de sa tangente.
- Si k est pair et $a_k < 0$ alors la courbe est en dessous de sa tangente.
- Si k est impair et $a_k > 0$ alors la courbe traverse sa tangente en passant au dessus.
- Si k est impair et $a_k > 0$ alors la courbe traverse sa tangente en passant en dessous.

Application

 $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{1}{1+e^x}$. Déterminer la position de la tangente à \mathcal{C}_f en 0.

Correction:

1 Transformation en DL usuel

$$f(x) = \frac{1}{2 + (e^x - 1)} = \frac{1}{2} \frac{1}{(1 + u(x))}$$
 avec $u(x) = \frac{e^x - 1}{2}$.

2 DL de $u \mapsto (1 + u)^{-1}$ en **0** à l'ordre 3 en 0

$$(1+u)^{-1} = 1 - u + u^2 - u^3 + o(u^3).$$

3 DL de $x \mapsto e^x$ en 0 à l'ordre 3 en 0

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3}).$$

Alors,
$$u(x) = \frac{e^x - 1}{2} = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{12} + o(x^3)$$
.

4 Règle du DL d'un produit :

$$u^{2}(x) = \frac{x^{2}}{4} + \frac{x^{3}}{4} + o(x^{3})$$
 et $u^{3}(x) = \frac{x^{3}}{8} + o(x^{3})$

6 DL de *f* **en** 0 :

$$f(x) = \frac{1}{2} - \frac{1}{4}x + \frac{1}{48}x^3 + o(x^3)$$

6 Equation de la tangente à f au point 0:

$$g(x)=-\frac{1}{4}x+\frac{1}{2}$$

 \bigcirc Signe de f-g:

$$f(x) - g(x) = \frac{1}{48}x^3 + o(x^3) \sim \frac{1}{48}x^3 > 0$$
 pour x > 0

nalyse réelle Relations de comparaison **Développements limités** Calcul d'intégrales

Illustration graphique

Calcul d'intégrales

Definition

Soit $f \in C^0(I, \mathbb{R})$. On appelle primitive de f sur I toute fonction de I dans \mathbb{R} , dérivable sur I et dont la dérivée est égale à f.

Exemples:

Definition

Soit $f \in C^0(I, \mathbb{R})$. On appelle primitive de f sur I toute fonction de I dans \mathbb{R} , dérivable sur I et dont la dérivée est égale à f.

Exemples:

• $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \frac{1}{3}x^3$ est dérivable sur \mathbb{R} et g'(x) = f(x).

Definition

Soit $f \in C^0(I, \mathbb{R})$. On appelle primitive de f sur I toute fonction de I dans \mathbb{R} , dérivable sur I et dont la dérivée est égale à f.

Exemples:

- $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \frac{1}{3}x^3$ est dérivable sur \mathbb{R} et g'(x) = f(x).
- $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^x$. Alors $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = e^x$ est dérivable sur \mathbb{R} et g'(x) = f(x).

78 / 110

Calcul d'intégrales

Definition

Soit $f \in C^0(I, \mathbb{R})$. On appelle primitive de f sur I toute fonction de I dans \mathbb{R} , dérivable sur I et dont la dérivée est égale à f.

Exemples:

- $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \frac{1}{3}x^3$ est dérivable sur \mathbb{R} et g'(x) = f(x).
- $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^x$. Alors $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = e^x$ est dérivable sur \mathbb{R} et g'(x) = f(x).
- $f: \mathbb{R}^+_* \to \mathbb{R}^+_*$ définie par $f(x) = \sqrt{x}$. Alors $g: \mathbb{R}^+_+ \to \mathbb{R}^+_+$ définie par $g(x) = \frac{1}{2\sqrt{x}}$ est dérivable sur \mathbb{R}^+_+ et g'(x) = f(x).

□ ▶ ◀♬ ▶ ◀ 볼 ▶ ○ 볼 · ૾ ૾ 의 Q (C)

Analyse réelle Relations de comparaison Développements limités **Calcul d'intégrales**

Propriété

Soit $f \in C^0(I)$. Si F est une primitive de f, alors l'ensemble des primitives de f sur I sont les fonctions $F + \lambda$ avec $\lambda \in \mathbb{R}$.

Propriété

Soit $f \in C^0(I)$. Si F est une primitive de f, alors l'ensemble des primitives de f sur I sont les fonctions $F + \lambda$ avec $\lambda \in \mathbb{R}$.

Démonstration : Soit *G* la fonction définie sur *I* par

$$G(x) = F(x) + \lambda \quad \forall x \in I.$$

Alors, la fonction G est dérivable sur I et G'(x) = F'(x) = f(x).

Propriété

Soit $f \in C^0(I)$. Si F est une primitive de f, alors l'ensemble des primitives de f sur I sont les fonctions $F + \lambda$ avec $\lambda \in \mathbb{R}$.

Démonstration : Soit *G* la fonction définie sur *I* par

$$G(x) = F(x) + \lambda \quad \forall x \in I.$$

Alors, la fonction G est dérivable sur I et G'(x) = F'(x) = f(x).

Théorème (Fondamental)

Soient f une fonction continue de I dans $\mathbb R$ et a un point de I. La fonction F_a définie par :

$$F_a(x) = \int_a^x f(t) dt$$

est une primitive de f sur I. C'est l'unique primitive de f qui s'annule en a.

Démonstration : On prouve que F_a est dérivable sur I et $F'_a = f$ sur I. Soit $x_0 \in I$.

$$\left| \frac{F_a(x) - F_a(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \left(\int_a^x f(t) \, \mathrm{d}t - \int_a^{x_0} f(t) \, \mathrm{d}t \right) - f(x_0) \right| \le \sup_{t \in [x_0, x]} |f(t) - f(x_0)|.$$

Soit $\varepsilon > 0$. Comme f est continue en x_0

$$\exists \eta > 0 \ \forall t \in]x_0 - \eta, x_0 + \eta[\cap[x_0, x], \ |f(t) - f(x_0)| < \varepsilon \ \Rightarrow \sup_{t \in [x_0, x]} |f(t) - f(x_0)| < \varepsilon.$$

Alors,

$$\left|\frac{F_a(x)-F_a(x_0)}{x-x_0}-f(x_0)\right|\leq \varepsilon$$

Donc F_a est dérivable en $x_0 \in I$ et $F'_a(x_0) = f(x_0)$.

Théorème

Soit $f \in C^0(I, \mathbb{R})$ et a et b deux points de I. Si F est une primitive de f sur I, on a :

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Exercices : Calculer les intégrales suivantes :

$$\int_{a}^{b} e^{2x} dx = \left[\frac{1}{2} e^{2x} \right]_{a}^{b} = \frac{1}{2} \left(e^{2b} - e^{2a} \right)$$

$$\int_0^{\pi} \sin(x) \, \mathrm{d}x = [-\cos(x)]_0^{\pi} = 2$$

Calcul d'intégrales

Théorème (Intégration par parties)

Soit $(a,b) \in \mathbb{R}^2$. *Soient u et v deux fonctions de classe* \mathcal{C}^1 *sur* [a,b]. *Alors*

$$\int_{a}^{b} u(t)v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t) dt.$$

Théorème (Intégration par parties)

Soit $(a,b) \in \mathbb{R}^2$. Soient u et v deux fonctions de classe \mathcal{C}^1 sur [a,b]. Alors

$$\int_{a}^{b} u(t)v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t) dt.$$

Exercice: Calculer l'intégrale suivante : $\int_{1}^{2} \ln(x) dx$.

Théorème (Intégration par parties)

Soit $(a,b) \in \mathbb{R}^2$. *Soient u et v deux fonctions de classe* \mathcal{C}^1 *sur* [a,b]. *Alors*

$$\int_{a}^{b} u(t)v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t) dt.$$

Exercice: Calculer l'intégrale suivante : $\int_{1}^{2} \ln(x) dx$.

Correction : $u: x \mapsto \ln(x)$ et $v: x \mapsto x$. Alors u et v sont $\mathcal{C}^1([1,2])$. Par la formule d'IPP

$$\int_{1}^{2} u(x)v'(x) dx = [u(x)v(x)]_{1}^{2} - \int_{1}^{2} u'(x)v(x) dx = [x \ln(x)]_{1}^{2} - \int_{1}^{2} 1 dx = 2 \ln(2) - 1.$$

Soient I et J deux intervalles de \mathbb{R} et $f \in \mathcal{C}^0(I,\mathbb{R})$ et $\varphi \in \mathcal{C}^1(J,I)$. Si α et $\beta \in J$ on a :

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du.$$

Soient I et J deux intervalles de \mathbb{R} et $f \in \mathcal{C}^0(I,\mathbb{R})$ et $\varphi \in \mathcal{C}^1(J,I)$. Si α et $\beta \in J$ on a :

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du.$$

Démonstration : $f \in C^0(I, \mathbb{R})$ donc admet une primitive F d'après le Théorème fondamental.

Soient I et J deux intervalles de \mathbb{R} et $f \in \mathcal{C}^0(I,\mathbb{R})$ et $\varphi \in \mathcal{C}^1(J,I)$. Si α et $\beta \in J$ on a :

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du.$$

Démonstration: $f \in \mathcal{C}^0(I, \mathbb{R})$ donc admet une primitive F d'après le Théorème fondamental. De plus, $\varphi(\alpha) \in I$ et $\varphi(\beta) \in I$. Donc

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) \, \mathrm{d}t = F(\varphi(\beta)) - F(\varphi(\alpha)) = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha).$$

Soient I et J deux intervalles de \mathbb{R} et $f \in \mathcal{C}^0(I,\mathbb{R})$ et $\varphi \in \mathcal{C}^1(J,I)$. Si α et $\beta \in J$ on a :

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du.$$

Démonstration: $f \in \mathcal{C}^0(I, \mathbb{R})$ donc admet une primitive F d'après le Théorème fondamental. De plus, $\varphi(\alpha) \in I$ et $\varphi(\beta) \in I$. Donc

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha).$$

Or F est dérivable sur I et φ est de classe \mathcal{C}^1 sur I. Ainsi,

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} (F \circ \varphi)'(u) du = \int_{\alpha}^{\beta} F'(\varphi(u)) \varphi'(u) du = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$$

nalyse réelle Relations de comparaison Développements limités **Calcul d'intégrales**

Remarques

On a le choix:

- 1 Trouver la fonction φ de classe \mathcal{C}^1 sous-jacente au changement de variable. **Avantage**: On voit tous les détails lors de la tranformation via la fonction φ et c'est plus rigoureux. **Inconvénients**: Parfois un peu long.
- On pose u en fonction de la variable primale x (par exemple) et on calcul du en fonction de dx et on adapte les bornes. Avantage: Plus rapide. Inconvénients: moins rigoureux.

Calculer l'intégrale suivante :

$$A = \int_0^{\frac{\pi}{2}} \sin^2(u) \cos(u) \, \mathrm{d}u$$

Calculer l'intégrale suivante :

$$A = \int_0^{\frac{\pi}{2}} \sin^2(u) \cos(u) \, \mathrm{d}u$$

Correction : Soit $\varphi \in \mathcal{C}^{\infty}([0, \frac{\pi}{2}])$ définie par $\varphi(u) = \sin(u)$ et $f \in \mathcal{C}^{\infty}([0, \frac{\pi}{2}])$ définie par $f(u) = u^2$. Par la formule du changement de variable, on obtient

$$A = \int_0^{\frac{\pi}{2}} f(\varphi(u)) \varphi'(u) \, \mathrm{d}u = \int_{\varphi(0)}^{\varphi(\frac{\pi}{2})} t^2 \, \mathrm{d}t = \int_0^1 t^2 \, \mathrm{d}t = \left[\frac{1}{3}t^3\right]_0^1 = \frac{1}{3}.$$

Calculer l'intégrale suivante :

$$A = \int_0^{\frac{\pi}{2}} \sin^2(u) \cos(u) \, \mathrm{d}u$$

Correction : Soit $\varphi \in \mathcal{C}^{\infty}([0, \frac{\pi}{2}])$ définie par $\varphi(u) = \sin(u)$ et $f \in \mathcal{C}^{\infty}([0, \frac{\pi}{2}])$ définie par $f(u) = u^2$. Par la formule du changement de variable, on obtient

$$A = \int_0^{\frac{\pi}{2}} f(\varphi(u)) \varphi'(u) \, \mathrm{d}u = \int_{\varphi(0)}^{\varphi(\frac{\pi}{2})} t^2 \, \mathrm{d}t = \int_0^1 t^2 \, \mathrm{d}t = \left[\frac{1}{3}t^3\right]_0^1 = \frac{1}{3}.$$

Autre rédaction possible : on pose $v(u) = \sin(u)$. Alors $dv = \cos(u) du$. Pour u = 0 $\rightarrow v = 0$ et pour $u = \frac{\pi}{2} \rightarrow v = 1$. Donc

$$A = \int_0^1 v^2 dt = \frac{1}{3}.$$

Calculer
$$B = \int_{-1}^{2} \sqrt{4 - u^2} u \, du$$
.

Calcul d'intégrales

Calculer
$$B = \int_{-1}^{2} \sqrt{4 - u^2} u \, du$$
.

Correction : Soit $\varphi \in \mathcal{C}^1([-1,2])$ définie par $\varphi(u) = u^2$ et $f \in \mathcal{C}^0([-1,2])$ définie par $f(v) = \sqrt{4-v}$. Alors, on a

$$B = \frac{1}{2} \int_{-1}^{2} f(\varphi(u)) \varphi'(u) \, du = \frac{1}{2} \int_{\varphi(-1)}^{\varphi(2)} f(t) \, dt = \frac{1}{2} \int_{1}^{4} \sqrt{4 - t} \, dt = -\frac{1}{2} \left[\frac{2}{3} (4 - t)^{\frac{3}{2}} \right]_{1}^{4} = \sqrt{3}.$$

Calculer
$$B = \int_{-1}^{2} \sqrt{4 - u^2} u \, du$$
.

Correction : Soit $\varphi \in \mathcal{C}^1([-1,2])$ définie par $\varphi(u) = u^2$ et $f \in \mathcal{C}^0([-1,2])$ définie par $f(v) = \sqrt{4-v}$. Alors, on a

$$B = \frac{1}{2} \int_{-1}^{2} f(\varphi(u)) \varphi'(u) \, du = \frac{1}{2} \int_{\varphi(-1)}^{\varphi(2)} f(t) \, dt = \frac{1}{2} \int_{1}^{4} \sqrt{4 - t} \, dt = -\frac{1}{2} \left[\frac{2}{3} (4 - t)^{\frac{3}{2}} \right]_{1}^{4} = \sqrt{3}.$$

Autre rédaction possible : Posons $t = u^2$ de sorte que dt = 2udu. La formule du changement de variable donne

$$B = \frac{1}{2} \int_{1}^{4} \sqrt{4 - t} \, dt = -\frac{1}{2} \left[\frac{2}{3} (4 - t)^{\frac{3}{2}} \right]_{1}^{4} = \sqrt{3}.$$

4日 → 4 団 → 4 豆 → 4 豆 → 9 0 ○

Calculer
$$C = \int_{-1}^{\frac{1}{2}} \sqrt{1-t^2} dt$$
.

Correction:

Calculer
$$C = \int_{-1}^{\frac{1}{2}} \sqrt{1-t^2} dt$$
.

Correction : Soient f et φ les fonctions définies sur $[-1, \frac{1}{2}]$ par $f: t \mapsto \sqrt{1-t^2}$ et $\varphi: u \mapsto \sin(u)$. Alors $f \in \mathcal{C}^0([-1, \frac{1}{2}])$, et $\varphi \in \mathcal{C}^1([-1, \frac{1}{2}])$.

Calculer
$$C = \int_{-1}^{\frac{1}{2}} \sqrt{1-t^2} dt$$
.

Correction : Soient f et φ les fonctions définies sur $[-1, \frac{1}{2}]$ par $f: t \mapsto \sqrt{1-t^2}$ et $\varphi: u \mapsto \sin(u)$. Alors $f \in \mathcal{C}^0([-1, \frac{1}{2}])$, et $\varphi \in \mathcal{C}^1([-1, \frac{1}{2}])$.

Formule du changement de variable

$$\int_{-1}^{\frac{1}{2}} \sqrt{1 - t^2} \, dt = \int_{\varphi(-\frac{\pi}{2})}^{\varphi(\frac{\pi}{6})} f(t) \, dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} f(\varphi(u)) \varphi'(u) \, du$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \sqrt{1 - \sin^2(u)} \cos(u) \, du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} |\cos(u)| \cos(u) \, du$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \cos^2(u) \, du$$

Ainsi,

$$\int_{-1}^{\frac{1}{2}} \sqrt{1 - t^2} \, dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \frac{1}{2} (\cos(2u) + 1) \, du \, (Formule \, de \, Moivre)$$

$$= \frac{1}{2} \left[\frac{1}{2} \sin(2u) + u \right]_{-\frac{\pi}{2}}^{\frac{\pi}{6}}$$

$$= \frac{1}{2} \left(\frac{\sqrt{3}}{4} + \frac{2\pi}{3} \right) = \frac{\sqrt{3}}{8} + \frac{\pi}{3}.$$

Calcul d'intégrales

fonction périodique

fonction périodique

Propriété

Soit f une fonction définie sur un intervalle [a,b] et périodique de période T>0. Alors

$$\int_{a}^{b} f(u) du = \int_{a+T}^{b+T} f(v) dv$$

fonction périodique

Propriété

Soit f une fonction définie sur un intervalle [a, b] et périodique de période T > 0. Alors

$$\int_{a}^{b} f(u) du = \int_{a+T}^{b+T} f(v) dv$$

Démonstration : Si f est T-périodique alors $\forall x \in [a,b], f(x+T) = f(x)$.

Posons $\varphi(v) = v + T$. Alors, $\varphi \in \mathcal{C}^1([a,b])$. D'après le théorème du changement de variable

$$\int_{\varphi(a)}^{\varphi(b)} f(v) \, \mathrm{d} v = \int_a^b f(\varphi(u)) \varphi'(u) \, \mathrm{d} u = \int_a^b f(u+T) \, \mathrm{d} u = \int_a^b f(u) \, \mathrm{d} u.$$

fonction paire

fonction paire

Propriété

Soit f une fonction continue sur un intervalle I contenant 0 et soit $a \in I$. Si f est paire alors

$$\int_{-a}^{a} f(u) du = 2 \int_{0}^{a} f(u) du$$

fonction paire

Propriété

Soit f une fonction continue sur un intervalle I contenant 0 et soit $a \in I$. Si f est paire alors

$$\int_{-a}^{a} f(u) du = 2 \int_{0}^{a} f(u) du$$

Démonstration:

fonction paire

Propriété

Soit f une fonction continue sur un intervalle I contenant 0 et soit $a \in I$. Si f est paire alors

$$\int_{-a}^{a} f(u) du = 2 \int_{0}^{a} f(u) du$$

Démonstration :

$$\int_{-a}^{a} f(u) du = \int_{-a}^{0} f(u) du + \int_{0}^{a} f(u) du$$
$$= -\int_{0}^{-a} f(u) du + \int_{0}^{a} f(u) du$$

90/110

fonction paire

Propriété

Soit f une fonction continue sur un intervalle I contenant 0 et soit $a \in I$. Si f est paire alors

$$\int_{-a}^{a} f(u) du = 2 \int_{0}^{a} f(u) du$$

Démonstration:

$$\int_{-a}^{a} f(u) du = \int_{-a}^{0} f(u) du + \int_{0}^{a} f(u) du$$
$$= -\int_{0}^{-a} f(u) du + \int_{0}^{a} f(u) du$$

Soit $\varphi \in \mathcal{C}^1([-a,0])$ définie par $\varphi(v) = -v$.

4D > 4A > 4E > 4E > 4 A

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, \mathrm{d} u = \int_{-a}^{0} f(\varphi(u)) \varphi'(u) \, \mathrm{d} u = -\int_{-a}^{0} f(-u) \, \mathrm{d} u = -\int_{-a}^{0} f(u) \, \mathrm{d} u = \int_{0}^{-a} f(u) \, \mathrm{d} u.$$

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, \mathrm{d} u = \int_{-a}^{0} f(\varphi(u)) \varphi'(u) \, \mathrm{d} u = -\int_{-a}^{0} f(-u) \, \mathrm{d} u = -\int_{-a}^{0} f(u) \, \mathrm{d} u = \int_{0}^{-a} f(u) \, \mathrm{d} u.$$

Or

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, du = \int_{a}^{0} f(u) \, du = -\int_{0}^{a} f(u) \, du = \int_{0}^{-a} f(u) \, du$$

91/110

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, \mathrm{d} u = \int_{-a}^{0} f(\varphi(u)) \varphi'(u) \, \mathrm{d} u = -\int_{-a}^{0} f(-u) \, \mathrm{d} u = -\int_{-a}^{0} f(u) \, \mathrm{d} u = \int_{0}^{-a} f(u) \, \mathrm{d} u.$$

Or

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, \mathrm{d} u = \int_{a}^{0} f(u) \, \mathrm{d} u = - \int_{0}^{a} f(u) \, \mathrm{d} u = \int_{0}^{-a} f(u) \, \mathrm{d} u$$

Donc

$$-\int_0^{-a} f(u) du = \int_0^a f(u) du.$$

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, \mathrm{d} u = \int_{-a}^{0} f(\varphi(u)) \varphi'(u) \, \mathrm{d} u = -\int_{-a}^{0} f(-u) \, \mathrm{d} u = -\int_{-a}^{0} f(u) \, \mathrm{d} u = \int_{0}^{-a} f(u) \, \mathrm{d} u.$$

Or

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, du = \int_{a}^{0} f(u) \, du = -\int_{0}^{a} f(u) \, du = \int_{0}^{-a} f(u) \, du$$

Donc

$$-\int_0^{-a} f(u) du = \int_0^a f(u) du.$$

Ainsi

$$\int_{-a}^{a} f(u) du = 2 \int_{0}^{a} f(u) du.$$

91/110

fonction impaire

fonction impaire

Propriété

Soit f une fonction continue sur un intervalle I contenant 0 et $a \in I$. Si f est impaire alors

$$\int_{-a}^{a} f(u) \, \mathrm{d} u = 0$$

fonction impaire

Propriété

Soit f une fonction continue sur un intervalle I contenant 0 et $a \in I$. Si f est impaire alors

$$\int_{-a}^{a} f(u) \, \mathrm{d} u = 0$$

Le changement de variable précédent donne

$$\int_{\varphi(-a)}^{\varphi(0)} f(u) \, \mathrm{d} u = \int_{a}^{0} f(u) \, \mathrm{d} u = \int_{-a}^{0} -f(-u) \, \mathrm{d} u = \int_{-a}^{0} f(u) \, \mathrm{d} u.$$

Ainsi,

$$-\int_0^a f(u) du = \int_a^0 f(u) du = \int_{-a}^0 f(u) du.$$

$$\Rightarrow \int_a^a f(u) du = 0.$$

nalyse réelle Relations de comparaison Développements limités **Calcul d'intégrales**

Transformation affine sur l'élément de référence

Transformation affine sur l'élément de référence

Propriété

Soit f une fonction continue sur un intervalle I et a et b deux points de I. Alors,

$$\int_{a}^{b} f(t) dt = (b - a) \int_{0}^{1} f(a + (b - a)v) dv$$

Transformation affine sur l'élément de référence

Propriété

Soit f une fonction continue sur un intervalle I et a et b deux points de I. Alors,

$$\int_{a}^{b} f(t) dt = (b - a) \int_{0}^{1} f(a + (b - a)v) dv$$

Démonstration : Soit $\varphi \in C^1([0,1])$ définie par

$$\varphi(\mathbf{v}) = \mathbf{a} + (\mathbf{b} - \mathbf{a})\mathbf{v}.$$

D'après la formule du changement de variable

$$\int_{\varphi(0)}^{\varphi(1)} f(t) dt = \int_0^1 f(\varphi(v)) \varphi'(v) dv = (b-a) \int_0^1 f(a+(b-a)v) dv.$$

nalyse réelle Relations de comparaison Développements limités **Calcul d'intégrales**

Primitives des fonctions polynômes-exponentielles

Propriété

Soit $a \in \mathbb{C}^*$ et P une fonction polynomiale. Alors la fonction $x \mapsto P(x)e^{ax}$ a une primitive de la forme $x \mapsto Q(x)e^{ax}$ où Q est une fonction polynomiale de même degré que P.

94/110

Primitives des fonctions polynômes-exponentielles

Propriété

Soit $a \in \mathbb{C}^*$ et P une fonction polynomiale. Alors la fonction $x \mapsto P(x)e^{ax}$ a une primitive de la forme $x \mapsto Q(x)e^{ax}$ où Q est une fonction polynomiale de même degré que P.

Exercice: Déterminer une primitive de la fonction f définie sur $\mathbb R$ par

$$f(x) = e^x (2x^3 + 3x^2 - x + 1)$$

Primitives des fonctions polynômes-exponentielles

Propriété

Soit $a \in \mathbb{C}^*$ et P une fonction polynomiale. Alors la fonction $x \mapsto P(x)e^{ax}$ a une primitive de la forme $x \mapsto Q(x)e^{ax}$ où Q est une fonction polynomiale de même degré que P.

Exercice : Déterminer une primitive de la fonction f définie sur $\mathbb R$ par

$$f(x) = e^x (2x^3 + 3x^2 - x + 1)$$

Correction : f est le produit d'un polynôme de degré 3 et d'une exponentielle. On cherche donc une primitive s'écrivant sous la forme

$$F(x) = e^{x}Q(x)$$
 où $Q \in \mathbb{R}_{3}[X]$ i.e. $Q(x) = ax^{3} + bx^{2} + cx + d$

On a

$$F'(x) = e^{x}(ax^{3} + bx^{2} + cx + d) + e^{x}(3ax^{2} + 2bx + c) = f(x).$$

Alors on a

$$F'(x) = x^{3}(ae^{x}) + x^{2}(be^{x} + 3ae^{x}) + x(ce^{x} + 2be^{x}) + (d+c)e^{x}$$
$$= 2e^{x}x^{3} + 3x^{2}e^{x} - xe^{x} + e^{x}$$

95/110

Alors on a

$$F'(x) = x^{3}(ae^{x}) + x^{2}(be^{x} + 3ae^{x}) + x(ce^{x} + 2be^{x}) + (d+c)e^{x}$$
$$= 2e^{x}x^{3} + 3x^{2}e^{x} - xe^{x} + e^{x}$$

Par identification,

$$a = 2$$
 $3a + b = 3$
 $c + 2b = -1$
 $d + c = 1$.

D'où,

$$a = 2$$
, $b = -3$, $c = 5$, $d = -4$.

Alors on a

$$F'(x) = x^{3}(ae^{x}) + x^{2}(be^{x} + 3ae^{x}) + x(ce^{x} + 2be^{x}) + (d+c)e^{x}$$
$$= 2e^{x}x^{3} + 3x^{2}e^{x} - xe^{x} + e^{x}$$

Par identification,

$$a = 2$$

 $3a + b = 3$
 $c + 2b = -1$
 $d + c = 1$.

D'où,

$$a = 2$$
, $b = -3$, $c = 5$, $d = -4$.

Finalement

$$\int f(x) \, dx = e^x (2x^3 - 3x^2 + 5x - 4) + k \quad k \in \mathbb{R}.$$

Primitives d'une fraction rationnelle

Propriété

Soit I un intervalle de \mathbb{R} *et soit a* \in \mathbb{R} .

Si a ∉ I alors

$$\int \frac{1}{x-a} \, \mathrm{d}x = \ln|x-a| + k \quad k \in \mathbb{R}$$

2 Si $a \in \mathbb{C}$ tel que $a = \alpha + i\beta$, $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^*$, alors sur tout intervalle I de \mathbb{R} on a

$$\int \frac{1}{x-a} \, \mathrm{d} x = \frac{1}{2} \ln((x-\alpha)^2 + \beta^2) + i \arctan\left(\frac{x-\alpha}{\beta}\right) + k, \quad k \in \mathbb{R}.$$

Démonstration:

🕦 Trivial. Il suffit de dériver le membre de droite de l'équation.

2 Soit $a \in \mathbb{C}$ tel que $a = \alpha + i\beta$, $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}^*$. On a

$$\frac{1}{x-a} = \frac{x-\overline{a}}{(x-a)(x-\overline{a})} = \frac{x-(\alpha-i\beta)}{(x-(\alpha+i\beta))(x-(\alpha-i\beta))} = \frac{x-\alpha+i\beta}{(x-\alpha)^2+\beta^2}$$
$$= \frac{x-\alpha}{(x-\alpha)^2+\beta^2} + i\frac{1}{\beta}\frac{1}{1+\frac{(x-\alpha)^2}{\beta^2}}$$

En intégrant la dernière équation on obtient

$$\int \frac{1}{x-a} \, \mathrm{d}x = \frac{1}{2} \ln((x-\alpha)^2 + \beta^2) + i \arctan\left(\frac{x-\alpha}{\beta}\right) + k, \quad k \in \mathbb{R}$$

Calculer une primitive de la fonction f définie par $f(x) = \frac{1}{(x^2 - 1)(x - 2)^2}$ Correction :

Calculer une primitive de la fonction f définie par $f(x) = \frac{1}{(x^2 - 1)(x - 2)^2}$

$$\mathcal{D}_f =]-\infty, -1[\cup]-1, 1[\cup]1, 2[\cup]2, +\infty[$$

Calculer une primitive de la fonction f définie par $f(x) = \frac{1}{(x^2 - 1)(x - 2)^2}$

$$\mathcal{D}_f =]-\infty, -1[\ \cup\]-1, 1[\ \cup\]1, 2[\ \cup\]2, +\infty[$$

f admet -1 et 1 comme pôles d'ordre 1, et 2 comme pôle d'ordre 2. Par le théorème de la décomposition en éléments simples,

$$f(x) = \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{18} \left(\frac{1}{x+2} \right) - \frac{4}{9} \left(\frac{1}{x-2} \right) + \frac{1}{3} \left(\frac{1}{(x-2)^2} \right)$$

Calculer une primitive de la fonction f définie par $f(x) = \frac{1}{(x^2-1)(x-2)^2}$ **Correction:**

$$\mathcal{D}_f =]-\infty, -1[\cup]-1, 1[\cup]1, 2[\cup]2, +\infty[$$

f admet -1 et 1 comme pôles d'ordre 1, et 2 comme pôle d'ordre 2. Par le théorème de la décomposition en éléments simples,

$$f(x) = \frac{1}{2} \left(\frac{1}{x-1} \right) - \frac{1}{18} \left(\frac{1}{x+2} \right) - \frac{4}{9} \left(\frac{1}{x-2} \right) + \frac{1}{3} \left(\frac{1}{(x-2)^2} \right)$$

Une primitive de la fonction f est donc

$$F(x) = \frac{1}{2} \ln|x - 1| - \frac{1}{18} \ln|x + 2| - \frac{4}{9} \ln|x - 2| - \frac{1}{3} \frac{1}{x - 2} + k, \quad k \in \mathbb{R}$$

Calculer une primitive de la fonction f définie par $f(x) = \frac{5}{x^2 + x + 1 + i}$

Calculer une primitive de la fonction f définie par $f(x) = \frac{5}{x^2 + x + 1 + i}$ **Correction :** -i et -i + 1 sont pôles d'ordre 1 de f. Par le théorème de la décomposition en éléments simples

$$f(x) = \frac{1+2i}{x+1} - \frac{1+2i}{x+1-i}$$

Calculer une primitive de la fonction f définie par $f(x) = \frac{5}{x^2 + x + 1 + i}$ **Correction :** -i et -i + 1 sont pôles d'ordre 1 de f. Par le théorème de la décomposition en éléments simples

$$f(x) = \frac{1+2i}{x+1} - \frac{1+2i}{x+1-i}$$

Une primitive de f est donnée par

$$F(x) = -(1+2i)\left(\frac{1}{2}\ln((x+1)^2+1) + i\arctan(x+1) + k\right) \quad k \in \mathbb{R}$$
$$= -\frac{(1+2i)}{2}\ln(x^2+2x+2) + (2-i)\arctan(x+1) - k(1+2i).$$

Propriété

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{\lambda x + \mu}{x^2 + bx + c}$ où $(\lambda, \mu, b, c) \in \mathbb{R}^4$ tel que $b^2 - 4c < 0$. Alors une primitive de f est une combinaison linéaire des fonctions $g: x \mapsto \ln(x^2 + bx + c)$ et $h: x \mapsto \arctan\left(\frac{2x + b}{\sqrt{4c - b^2}}\right)$

Propriété

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{\lambda x + \mu}{x^2 + bx + c}$ où $(\lambda, \mu, b, c) \in \mathbb{R}^4$ tel que $b^2 - 4c < 0$. Alors une primitive de f est une combinaison linéaire des fonctions $g: x \mapsto \ln(x^2 + bx + c)$ et $h: x \mapsto \arctan\left(\frac{2x + b}{\sqrt{4c - b^2}}\right)$

Démonstration:

Propriété

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{\lambda x + \mu}{x^2 + bx + c}$ où $(\lambda, \mu, b, c) \in \mathbb{R}^4$ tel que $b^2 - 4c < 0$. Alors une primitive de f est une combinaison linéaire des fonctions $g: x \mapsto \ln(x^2 + bx + c)$ et $h: x \mapsto \arctan\left(\frac{2x + b}{\sqrt{4c - b^2}}\right)$

Démonstration : On commence par faire apparaître au numérateur la dérivée du dénominateur.

Propriété

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{\lambda x + \mu}{x^2 + bx + c}$ où $(\lambda, \mu, b, c) \in \mathbb{R}^4$ tel que $b^2 - 4c < 0$. Alors une primitive de f est une combinaison linéaire des fonctions $g: x \mapsto \ln(x^2 + bx + c)$ et $h: x \mapsto \arctan\left(\frac{2x + b}{\sqrt{4c - b^2}}\right)$

Démonstration : On commence par faire apparaître au numérateur la dérivée du dénominateur.

$$\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} \frac{\lambda x}{x^2 + bx + c} dx + \int_{\mathbb{R}} \frac{\mu}{x^2 + bx + c} dx$$
$$= \frac{\lambda}{2} \int_{\mathbb{R}} \frac{2x + b}{x^2 + bx + c} dx + \int_{\mathbb{R}} \frac{\mu - b\frac{\lambda}{2}}{x^2 + bx + c} dx$$

$$\int_{\mathbb{D}} f(x) dx = \frac{\lambda}{2} \int_{\mathbb{D}} \frac{2x+b}{x^2+bx+c} dx + (\mu - b\frac{\lambda}{2}) \int \frac{1}{x^2+bx+c} dx.$$

Alors

$$\int_{\mathbb{R}} f(x) dx = \frac{\lambda}{2} \int_{\mathbb{R}} \frac{2x+b}{x^2+bx+c} dx + (\mu - b\frac{\lambda}{2}) \int \frac{1}{x^2+bx+c} dx.$$

Or

$$\int_{\mathbb{R}} \frac{2x+b}{x^2+bx+c} dx = \ln \left| x^2+bx+c \right| + k = \ln (x^2+bx+c) + k \quad k \in \mathbb{R}.$$

Alors

$$\int_{\mathbb{R}} f(x) dx = \frac{\lambda}{2} \int_{\mathbb{R}} \frac{2x+b}{x^2+bx+c} dx + (\mu - b\frac{\lambda}{2}) \int \frac{1}{x^2+bx+c} dx.$$

Or

$$\int_{\mathbb{R}} \frac{2x+b}{x^2+bx+c} dx = \ln \left| x^2+bx+c \right| + k = \ln (x^2+bx+c) + k \quad k \in \mathbb{R}.$$

Par ailleurs,

$$\int_{\mathbb{R}} \frac{1}{x^2 + bx + c} \, \mathrm{d}x = \int_{\mathbb{R}} \frac{1}{(x + \frac{b}{2})^2 + \omega^2} = \frac{1}{\omega^2} \int_{\mathbb{R}} \frac{1}{1 + \left(\frac{x + \frac{b}{2}}{\omega}\right)^2} \, \mathrm{d}x \quad \text{avec} \quad \omega = \sqrt{c - \left(\frac{b}{2}\right)^2}$$

Changement de variable : $\varphi \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ tq $\varphi(u) = \omega u - \frac{b}{2} (u = \frac{x + \frac{b}{2}}{\omega}, du = \frac{1}{\omega} dx)$.

$$\int_{\mathbb{R}} \frac{1}{x^2 + bx + c} \, \mathrm{d}x = \frac{1}{\omega} \int_{\mathbb{R}} \frac{1}{1 + u^2} \, \mathrm{d}u = \frac{1}{\omega} \arctan(u) + k_1.$$

Alors,

$$\int \frac{1}{x^2 + bx + c} \, \mathrm{d}x = \omega \arctan(\frac{2x + b}{2\omega}).$$

Changement de variable : $\varphi \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ tq $\varphi(u) = \omega u - \frac{b}{2} (u = \frac{x + \frac{b}{2}}{\omega}, du = \frac{1}{\omega} dx)$.

$$\int_{\mathbb{R}} \frac{1}{x^2 + bx + c} \, \mathrm{d}x = \frac{1}{\omega} \int_{\mathbb{R}} \frac{1}{1 + u^2} \, \mathrm{d}u = \frac{1}{\omega} \arctan(u) + k_1.$$

Alors,

$$\int \frac{1}{x^2 + bx + c} \, \mathrm{d}x = \omega \arctan(\frac{2x + b}{2\omega}).$$

Finalement

$$\int \frac{\lambda x + \mu}{x^2 + bx + c} \, \mathrm{d}x = \frac{\lambda}{2} \ln(x^2 + bx + c) + \left(\mu - \frac{b\lambda}{2}\right) \sqrt{c - \frac{b^2}{a^2}} \arctan\left(\frac{2x + b}{2\sqrt{c - \frac{b^2}{a^2}}}\right) + k'.$$

Calculer
$$\int_{\mathbb{R}} \frac{\mathrm{d}x}{x^3 - 1}$$
.

Correction:

Recherche des pôles

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

Alors 1 est pôle d'ordre 1 mais on ne peut pas trouver d'autres pôles car le polynôme $x^2 + x + 1$ est irréductible.

Décomposition en éléments simples Il existe $(\lambda_1, a, b) \in \mathbb{R}^3$ tel que

$$\frac{1}{x^3-1} = \frac{\lambda_1}{x-1} + \frac{ax+b}{x^2+x+1}.$$

Par identification on trouve $a = -\frac{1}{2}$ et $b = \frac{2}{3}$.

Alors,

$$\frac{1}{x^3-1} = \frac{1}{3} \frac{1}{x-1} + \frac{-\frac{1}{3}x + \frac{2}{3}}{x^2 + x + 1} = \frac{1}{3} \underbrace{\frac{1}{x-1}}_{A_1} - \underbrace{\frac{2x+1}{(x^2 + x + 1)}}_{A_2} - 5 \underbrace{\frac{1}{x^2 + x + 1}}_{A_3}.$$

On calcul séparément chaque terme

$$A_{1} = \int_{\mathbb{R}} \frac{1}{x - 1} dx = \ln|x - 1| + k_{1} \quad k_{1} \in \mathbb{R}$$

$$A_{2} = \int_{\mathbb{R}} \frac{2x + 1}{x^{2} + x + 1} dx = \ln|x^{2} + x + 1| + k_{2} \quad k_{2} \in \mathbb{R}.$$

De plus

$$A_3 = \int \frac{1}{(x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, \mathrm{d}x = \frac{4}{3} \int_{\mathbb{R}} \frac{1}{1 + \left(\frac{2x + 1}{\sqrt{3}}\right)^2} \, \mathrm{d}x$$

1 Changement de variable : Soit φ définie par $\varphi(u) = \frac{\sqrt{3}}{2}u - \frac{1}{2}$. Alors

$$A_3 = \frac{\sqrt{3}}{2} \int_{\mathbb{R}} \frac{1}{1+u^2} \, \mathrm{d} u = \frac{\sqrt{3}}{2} \arctan(u) + k_3 = \frac{\sqrt{3}}{2} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + k_3$$

2 Conclusion

$$\int \frac{\mathrm{d}x}{x^3 - 1} = \frac{1}{3}A_1 - \frac{1}{6}A_2 - 5A_3$$

$$= \frac{1}{3}\ln|x - 1| - \frac{1}{6}\ln|x^2 + x + 1| - 5\frac{\sqrt{3}}{2}\arctan\left(\frac{2x + 1}{\sqrt{3}}\right) + k \quad k \in \mathbb{R}.$$

Règles de Bioche

But : Trouver le changement de variable optimal pour calculer des intégrales de fractions rationnelles en sinus et cosinus.

But : Trouver le changement de variable optimal pour calculer des intégrales de fractions rationnelles en sinus et cosinus.

① Si
$$w(x) = w(-x)$$
 on définit la fonction $\varphi : [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur $]-1,1[$ par $\varphi(u) = \arccos(u)$

Règles de Bioche

But: Trouver le changement de variable optimal pour calculer des intégrales de fractions rationnelles en sinus et cosinus.

- 1 Si w(x) = w(-x) on définit la fonction $\varphi : [-1, 1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1, 1[par $\varphi(u) = \arccos(u)$
- 2 Si $w(\pi x) = w(x)$ on définit la fonction $\varphi : [-1, 1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1, 1[$\varphi(u) = \arcsin(u)$.

Règles de Bioche

But : Trouver le changement de variable optimal pour calculer des intégrales de fractions rationnelles en sinus et cosinus.

- ① Si w(x) = w(-x) on définit la fonction $\varphi : [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1,1[par $\varphi(u) = \arccos(u)$
- 2 Si $w(\pi x) = w(x)$ on définit la fonction $\varphi : [-1, 1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1, 1[$\varphi(u) = \arcsin(u)$.
- 3 Si $w(\pi + x) = w(x)$ on définit la fonction $\varphi : \mathbb{R} \to \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$ de classe \mathcal{C}^1 par $\varphi(u) = \arctan(u)$.

Si deux des trois propriétés précédentes sont vérifiées on définit la fonction $\varphi: [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1,1[par

$$\varphi(u) = \frac{1}{2}\arccos(u)$$

4 Si deux des trois propriétés précédentes sont vérifiées on définit la fonction $\varphi: [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1,1[par

$$\varphi(u) = \frac{1}{2}\arccos(u)$$

Si aucune des propriétés n'est vérifiée, on utilise le changement de variable "brutal" $\varphi: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ de classe \mathcal{C}^1 par

$$\varphi(u) = 2 \arctan(u)$$
.

Calculer l'intégrale suivante

$$F(x) = \int \frac{\mathrm{d}x}{\sin\left(x\right)}$$

Calculer l'intégrale suivante

$$F(x) = \int \frac{\mathrm{d}x}{\sin(x)}$$

① Soit f définie sur $\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$ par $f(x)=rac{1}{\sin(x)}$ alors $w(x)=rac{\mathrm{d}x}{\sin(x)}=w(-x)$.

Calculer l'intégrale suivante

$$F(x) = \int \frac{\mathrm{d}x}{\sin\left(x\right)}$$

- 1) Soit f définie sur $\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$ par $f(x)=rac{1}{\sin(x)}$ alors $w(x)=rac{\mathrm{d}x}{\sin(x)}=w(-x)$.
- **2 Règles de Bioche** suggèrent de poser $\varphi: [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1,1[par $\varphi(u) = \arccos(u)$.

Calcul d'intégrales

Calculer l'intégrale suivante

$$F(x) = \int \frac{\mathrm{d}x}{\sin\left(x\right)}$$

- Soit f définie sur $\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}$ par $f(x)=\frac{1}{\sin(x)}$ alors $w(x)=\frac{\mathrm{d}x}{\sin(x)}=w(-x)$.
- **Règles de Bioche** suggèrent de poser $\varphi : [-1,1] \to \mathbb{R}$ de classe \mathcal{C}^1 sur]-1,1[par $\varphi(u) = \arccos(u)$.
- Formule du changement de variable :

$$\int \frac{\mathrm{d}x}{\sin(x)} = \int f(\varphi(u))\varphi'(u)\,\mathrm{d}u = -\int \frac{1}{\sin(\arccos(u))} \frac{1}{\sqrt{1-u^2}}\,\mathrm{d}u.$$

4 Comme $\sin^2(x) + \cos^2(x) = 1$ alors $\sin(\arccos(u)) = \sqrt{1 - u^2}$. D'où

$$\int \frac{dx}{\sin(x)} = -\int \frac{1}{1-u^2} du = -\int \frac{1}{(1-u)(1+u)} du.$$

5 Décomposition en éléments simples : $\exists ! (\lambda_1, \lambda_2) \in \mathbb{R} \times \mathbb{R}$ tel que

$$\frac{1}{(1-u)(1+u)} = \frac{\lambda_1}{1-u} + \frac{\lambda_2}{1+u}.$$

Après identification on trouve $\lambda_1 = \frac{1}{2}$ et $\lambda_2 = \frac{1}{2}$.

6 Conclusion:

$$\int \frac{\mathrm{d}x}{\sin(x)} = -\frac{1}{2} \int \left(\frac{1}{1-u} + \frac{1}{1+u} \right) \, \mathrm{d}u = \frac{1}{2} \ln \left| \frac{1-u}{1+u} \right| + \lambda = \frac{1}{2} \ln \left(\frac{1-\cos(x)}{1+\cos(x)} \right) + \lambda$$

4 D > 4 A > 4 B > 4 B > B = 900

Autre méthode équivalente :

- 1 Règles de Bioche : on pose $u = \cos(x)$ alors $du = -\sin(x) dx$.
- 2 Alors

$$\int \frac{\mathrm{d}x}{\sin(x)} = \int \frac{\sin(x)}{\sin^2(x)} \, \mathrm{d}x = \frac{\sin(x)\mathrm{d}x}{1 - \cos^2(x)} = \int -\frac{\mathrm{d}u}{1 - u^2} = \frac{1}{2} \ln\left|\frac{1 - u}{1 + u}\right| + \lambda$$
$$= \frac{1}{2} \ln\left(\frac{1 - \cos(x)}{1 + \cos(x)}\right) + \lambda$$