一、选择题

题号	1	2	3	4	5	6	7	8
答案	С	С	C	C	A	D	Е	В

二、填空题

题号	答案	题号	答案
9	$f{}_{0}$	10	0, 2g
11	$-\frac{m_3}{m_2}g\vec{i}$, 0	12	$mg/\cos\theta$, $\sin\theta\sqrt{\frac{gl}{\cos\theta}}$
13	0.28 N, 1.68 N	14	$\sqrt{g/R}$
15	$1/\cos^2\theta$	16	2 <i>i</i> m/s

三、计算题

17. 解:建立如图所示的 xoy 坐标系. 当系统运动起来时,若 A、D 间无相对滑动,绳不可伸长,则物体 A、B 及小车 D 具有相同的水平加速度. 不考虑绳的质量,则同一段绳内张力处处相等,设绳中张力大小为 T,系统运动起来时连接物体 B 的绳子与竖直方向成 θ 角,各物体受力分析如图所示. 设系统水平方向加速度为 a_x ,根据牛顿第二定律列方程:

对物体 A 有: $T = m_1 a_x$ (1)

対物体 B 有:
$$T\sin\theta = m_2 a_x$$
 (2) $T\cos\theta - m_2 g = 0$ (3)

对小车 D 有:
$$F - T - T\sin\theta = Ma_x$$
 (4)

由式(1), (2), (3)联立可得:

$$a_x = \frac{m_2 g}{\sqrt{m_1^2 - m_2^2}} \tag{5}$$

由式(1),(2),(4)联立可得: $F = (m_1 + m_2 + M)a_x$ (6) 将式 (5) 代入式 (6) 可得:

$$F = \frac{(m_1 + m_2 + M)m_2g}{\sqrt{m_1^2 - m_2^2}}$$

代入数据得: F = 1470 N

注: (5) 式也可由 A、B、D 作为一个整体系统而直接得到

