Série TD 4

Classification - Les réseaux de neurones artificiels et les SVM.

Exercice 1:

Soit le réseau de neurones artificiels suivant avec des poids initialisés comme sur la figure :

- 1. Expliquer l'architecture du réseau de neurones ci-dessus.
- **2.** Soit l'exemple de données X suivant : (x1, x2, Y) = (0.5, 0.10, 0.01).
 - a) Réaliser une itération du Forward Propagation sur l'exemple X afin de calculer l'input et l'output de chaque neurone du réseau. On considère Sigmoïde comme fonction d'activation.
 - **b)** Calculer les erreurs des neurones o1 et h2, puis remplir ce tableau :

Err_o1	Err_o2	Err_h1	Err_h2
	0.03809823651655623		-0.009954254705217202

- c) Comment un réseau de neurones apprend?
- **d**) Calculer et ajuster les nouveaux poids de w5, w6, et b2_o1 au bout d'une seule itération en utilisant l'algorithme de Backpropagation et la règle Delta Rule. On pose le learning rate = 0.9.
- e) Que faut-il faire afin de prédire les outputs d'un nouvel l'exemple Z = (0.25, 0.02)?

Exercice 2:

Soit la base de données d'entrainement suivante :

x1	x2	Y
3	4	-1
1	4	-1
2	3	-1
5	-3	1
7	-1	1
6	-1	1

- 1. Représenter ces points de données (coordonnées (x1, x2)) sur un plan 2D.
- 2. Par inspection, extraire deux vecteurs supports (un pour chaque classe).
- **3.** Soit les hyperplans H(X) définis par les valeurs suivantes :

a)
$$H(X): W = [1, 0] \text{ et } b = -4$$

b)
$$H(X): W = [0.25, -0.25]$$
 et $b = -0.75$

c)
$$H(X)$$
: $W = [-1.5, -1.25]$ et $b = -0.75$

Selon l'algorithme SVM, quel est l'hyperplan optimal parmi les trois permettant de mieux séparer linéairement l'espace de données ? Justifier.

- 4. Dessiner sur le plan précédent l'hyperplan optimal déduit.
- **5.** Prédire la classe des points [x1, x2] suivants en utilisant la fonction de décision représentée par les valeurs du meilleur hyperplan trouvé précédemment :

$$[5, -3]$$
, et $[2, 5]$.

6. Soit la table de test suivante :

x1	x2	Y
2	5	-1
3	4	-1
5	-3	1
3	1	1

- Evaluer le modèle SVM en calculer son accuracy sur la table de test ci-dessus.