Category Theory Cheat Sheet

Category

A category consists of the following,

- Objects: A,B,C,...
- Arrows/Morphisms: f,g,h,...
- For each f there exists, dom(f), cod(f) called domain and codomain of f. We write $f: A \to B$ to indicate A = dom(f) and B = cod(f).
- Given $f:A\to B$ and $g:B\to C$ there exists, $g\circ f:A\to C$ called the *composite* of f and g.
- For each A, there exists $1_A: A \to A$ called the *identity arrow* of A.
- Arrows should also satisfy the following,
 - Associativity: $h \circ (g \circ f) = (h \circ g) \circ f$, for all $f : A \to B, g : B \to C, h : C \to D$.
 - Unit: $f \circ 1_A = f = 1_B \circ f$, for all $f : A \to B$.

Functor

A functor $F:C\to D$ between C and D is a mapping of objects and arrows to arrows, such that

- $F(f:A \rightarrow B) = F(f):F(A) \rightarrow F(B)$
- $F(1_a) = 1_{F(A)}$
- $F(g \circ f) = F(g) \circ F(f)$.

Isomorphism

In any category \mathbb{C} , an arrow $f:A\to B$ is called an *isomorphism* if there exists an arrow $g:B\to C$ s.t. $g\circ f=1_A$ and $f\circ g=1_B$. We say, $g=f^{-1}$. And that $A\cong B$, i.e., A is isomorphic to B.

Monoid

A set M with binary operation \cdot is called a monoid if it is associative and has an identity $u \in M$, i.e., for $x,y,z \in M$

- $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- $u \cdot x = x = x \cdot u$.

A monoid with an inverse for each element is called a *group*.

• Cayley's theorem: Every group G is isomorphic to a group of permutations.

Constructions on categories

• **Product category:** The product of two categories \mathbf{C} and \mathbf{D} written as $\mathbf{C} \times \mathbf{D}$ has objects of the form (C, D) for $C \in \mathbf{C}$ and $D \in \mathbf{D}$, and arrows of the form $(f,g): (C,D) \to (C',D')$ for $f: C \to C' \in \mathbf{C}$ and $g: D \to D' \in \mathbf{D}$.

Composition and units are defined componentwise, i.e. $(f', g') \circ (f, g) = (f' \circ f, g' \circ g)$ and $1_{(C,D)} = (1_C, 1_D)$.

• Opposite/Dual category: For category C its opposite category \mathbb{C}^{op} has the same objects as C but an arrow $f: C \to D$ in \mathbb{C}^{op} is an arrow $f: D \to C$ in \mathbb{C} .

For notational simplicity we say $f^*: D^* \to C^*$ in \mathbf{C}^{op} for $f: C \to D$ in \mathbf{C} . Composition and units are therefore defined as follows, $f^* \circ g^* = (g \circ f)^*$ and $(1_{C^*} = 1_C)^*$

Constructions on categories contd.

• Arrow category: For category \mathbb{C} its arrow category \mathbb{C}^{\rightarrow} has the arrows of \mathbb{C} as objects and an arrow g from $f:A\to B$ to $f':A'\to B'$ in \mathbb{C}^{\rightarrow} is the following commutative square

$$\begin{array}{ccc}
A & \xrightarrow{g_1} & A' \\
f \downarrow & & \downarrow f' \\
B & \xrightarrow{q_2} & B'
\end{array}$$

where g_1, g_2 are arrows in \mathbb{C} , i.e. an arrow is a pair of arrows $g = (g_1, g_2)$ s.t. $g_2 \circ f = f' \circ g_1$. The identity of an object $f : A \to B$ is the pair $(1_A, 1_B)$ and composition is componentwise.

• Slice category: For category \mathbf{C} its slice category over $C \in \mathbf{C}$ is \mathbf{C}/C where its objects are all arrows $f \in \mathbf{C}$ s.t. $\mathrm{cod}(f) = C$. An arrow a from $f: X \to C$ to $f': X' \to C$ is an arrow $a: X \to X'$ in \mathbf{C} s.t. $f' \circ a = f$, i.e.

If $g: C \to D$ is any arrow then there exists a composition functor $g_*: \mathbf{C}/C \to \mathbf{C}/D$ defined as $g_*(f) = g \circ f$. Therefore the slice category of \mathbf{C} with any of its objects is a functor from $\mathbf{C} \to \mathbf{Cat}$. This is called the *forgetful* functor as the base object is "forgetten".

Free monoid

For a set A a word over A is any finite sequence of its elements. The Kleene closure of A is defined to be the set of all words over A. Define the binary operation of concatenation on A*. Since it is associative, A along with * with the empty word "—" is a monoid called the **free monoid** on the set A.

Universal mapping property (UMP) of free monoid: Let M(A) be the free monoid on a set A. There is a function $i:A\to |M(A)|$, and given any monoid N and any function $f:A\to |N|$, there is a unique monoid homomorphism $\overline{f}:M(A)\to N$ s.t. $|\overline{f}|\circ i=f$.

$$\begin{array}{ccc}
M(A) & |M(A)| \xrightarrow{|\overline{f}|} |N \\
\downarrow^{\overline{f}} & \downarrow^{f} & \downarrow^{f} \\
N & A &
\end{array}$$

A* has the UMP of the free monoid on A.

Free category

A directed graph G "generates" a free category $\mathbf{C}(G)$ whose objects are the vertices of the graph and its arrows are paths. Composition of arrows is defined as concatenation of paths.

UMP of C(G) There is a graphic homomorphism $i: G \to |\mathbf{C}(G)|$, and given any category **D** and any graph homomorphism $h: G \to |\mathbf{D}|$, there is a unique functor $\overline{h}: \mathbf{C}(G) \to \mathbf{D}$ with $\overline{h} \circ i = h$.

$$\mathbf{C}(G) \qquad |\mathbf{C}(G)| \xrightarrow{|\overline{h}|} |\mathbf{D}|$$

$$\downarrow^{\overline{h}} \qquad \downarrow^{h} \qquad \downarrow^{h}$$

$$\mathbf{D} \qquad G$$

Small categories

A category is called small if it has a small set of objects and arrows. (i.e., not classes). It is called large otherwise.

A category **C** is *locally small* if for all objects $X, Y \in \mathbf{C}$, the collection $\operatorname{Hom}_{\mathbf{C}}(X,Y) = \{ f \in \mathbf{C}_1 \mid f : X \to Y \}$ is a small set.

Types of morphisms

Monomoprhism