6 sigma 水平和3.4 ppm 的关系

精益六西格玛论坛研讨

作者: 肖老师

2011年10月20日

目录

- σ (Sigma) 的含义
- σ (Sigma) 水平的含义
- σ (Sigma) 水平与不良率PPM的关系
- 6 σ (Sigma) 水平与3.4 PPM关系

总体参数与样本统计量 总体 标本 抽样(Sampling) μ = 总体平均值 X = 样本平均值 = 样本标准差 σ=总体标准差 参数 估计 统计量

 σ σ 的含义: 在统计中 σ 为总体的标准差; σ ² 为 方差

- σ的计算公式:
 - 由于σ为总体的标准差,所以通常我们无法知道,除非总体很小的时候可以直接计算。所以我们通常用样本的标准差S来作为σ的替身演员。则S的计算公式如下

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

我们所说的σ就是用样本的标准差S推定的。

- σ的物理理解:
 - 虽然σ是什么很容易让人摸不着头脑,但是我们可粗略的把σ理解为物理 距离。举个例子,我们有一组平均为10的样本数据如下,可以把这组数 据理解成一个产品长度:
 - 11 \ 8 \ 9 \ 12 \ 10 \ 11 \ 9

- σ的物理理解:
 - 经过一翻计算我们得到σ 的的代表值S, 用这段距离的大小来展示流程的 变异(波动)的大小。

- 既然σ可以理解为一个流程所表现出来的波动的大小。那么我们如何 来定义波动大小不同的流程的能力表现呢?
- σ(Sigma)水平是衡量流程能力大小的指标之一
 - σ (Sigma) 水平代表了一个流程的能力。对于正态分布的流程来说 σ (Sigma) 水平的计算公式为:

$$Z = \frac{USL^{-} \quad \mu}{\sigma} \qquad \overline{\mathcal{Z}} = \frac{\mu - LSL}{\sigma}$$

- 正态分布为对称分布,所以 USL- μ = μ LSL
- USL(上规格限) LSL (下规格限)

σ(Sigma)水平即为规格限到平均值之间的距离是流程波动σ所表示 的距离的几倍

O (Sigma) 水平的含义

- σ(Sigma)水平的物理解释
 - 如果USL-μ的距离为红色线段的长度,如果σ 是我们前面提到的蓝色线段的长度,那么如果红色线段的长度是蓝色线段的长度的几倍就是几个σ (Sigma)水平

- 举例:一个产品某尺寸的历史平均值为 100 规格位100±10 通过历史数据得知 S=2 即总体的 σ =2 则 σ (Sigma)水平为 (110-100)/2=5

- PP M (Part per million): 百万分之一
- 正态分布的整体面积视为1
- 超出上下规格限的面积占总面积的百分比即为不良率或缺陷率。这个不良率乘以1000000则得PPM值。
- Sigma水平下与PPM的转换方法:
 - 查表《标准 正态分布函数表》
 - 用统计软件计算,如Minitab Excel

• Sigma水平下与PPM的关系:规格限内侧部分为良率,规格外侧两部分的面积占总面积的比率为不良率。乘以1000000后为PPM值。

Sigma 水平	规格限位置	良率	不良率	PPM
1	规格限在±1σ位置上	68.28%	31.72%	317200
2	规格限在±2σ位置上	95.46%	4.54%	45400
3	规格限在±3σ位置上	99.73%	0.27%	2700
4	规格限在±4σ位置上	99.9937%	0.0063	63
5	规格限在±5σ位置上	99.999943%	0.000057%	0.57
6	规格限在±6σ位置上	99.9999998%	0.0000002%	0.002

- Sigma水平与PPM的转化:
 - 查表转化法: 《标准 正态分布函数表》节选

Х	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
x	0.00	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
3.0	0.9 ² 8650					0.9^37674				
4.0	0.946833					0.956602				
5.0	$0.9^{6}7133$					$0.9^{7}8101$				
6.0	0.9 ⁹ 0136									

- X所对应的纵轴和横轴值相加为sigma水准值,横轴、纵轴交叉点所示的值为正σ位置左侧分布的面积。
- 1-交叉点所示的值=单边不良率
- 单边不良率×2=总不良率(规格限左右两侧的不良率之和)
- 总不良率×1000000=PPM值
- 反之根据良率或不良率可反查sigma水平值

- 举例 3 Sigma 水准对应的不良率:
 - 1-.0.928650=1-0.998650=0.00135(单边)
 - 总不良率=0.00135 ×2=0.0027=0.27%=2700ppm
 - 反之亦可
 - 注:标准所示0.9²8650 其中 9² 的意思是连续2个9 即0.998650, 为了书写节省空间。

- · 己知Sigma水平求不良率,如3 sigma水平对应的PPM是多少?
 - 路径1: 计算→概率分布→正态
 - 输入"均值"与"标准差"默认为(0,1)正态分布
 - 选择"累计概率"→输入常量 3(求3sigma水平)
 - 点击"确定"得+3左侧面积结果
 - 总不良为(1-0.998650)×2=0.0027=2700ppm

累积分布函数

- · 己知Sigma水平求不良率,如3 sigma水平对应的PPM是多少?
 - 路径2:
 - 图形→ 概率分布图

- 选择"查看概率"→确定

- 已知Sigma水平求不良率,如3 sigma水平对应的PPM是多少?
 - 选择[分布]"正态分布","均值"与"标准差"默认为(0,1)
 - 选择"阴影区域"→选择X值(X)
 - 选择"右尾"或"左尾"或"双尾"或"中间"
 - 输入X值点击确定得结果
- 右尾计算:
 - 选择右尾,输入X值 3 (Sigma 水平值)得结果
 - 右尾不良率结果为0.00135
 - 双尾总不良率为 0.00135×2=0.0027

- 已知Sigma水平求不良率,如3 sigma水平对应的PPM是多少?
 - 选择[分布]"正态分布","均值"与"标准差"默认为(0,1)
 - 选择"阴影区域"→选择X值(X)
 - 选择"右尾"或"左尾"或"双尾"或"中间"
 - 输入X值点击确定得结果

左尾计算:

- 选择左尾,输入X值 3 (Sigma 水平值)得结果
- 左尾不良率结果为0.9987
- 右侧不良率为 1-0.9987=0.0013
- 双尾总不良率为 0.0013×2=0.0026

- 已知Sigma水平求不良率,如3 sigma水平对应的PPM是多少?
 - 选择[分布]"正态分布","均值"与"标准差"默认为(0,1)
 - 选择"阴影区域"→选择X值(X)
 - 选择"右尾"或"左尾"或"双尾"或"中间"
 - 输入X值点击确定得结果
- 双尾计算:
 - 选择双尾,输入X值 3 (Sigma 水平值)得结果
 - 左右不良率结果为0.00135
 - 双尾总不良率为 0.0013×2=0.0027

- 已知Sigma水平求不良率,如3 sigma水平对应的PPM是多少?
 - 选择[分布]"正态分布","均值"与"标准差"默认为(0,1)
 - 选择"阴影区域"→选择X值(X)
 - 选择"右尾"或"左尾"或"双尾"或"中间"
 - 输入X值点击确定得结果
- 双尾计算:
 - 选择中间,输入X值-3到+3(Sigma 水平值)得结果
 - 中间良率结果为0.9973
 - 双尾总不良率为 1-0.9973=0.0027

既率分布图 - 查看概率

分布 | 阴影区域 |

0.9973

▶ 用Minitab计算Sigma水平与PPM对照表

http://www.sz-brilliant.com/

博瑞林管理咨询

• Sigma水平与PPM对照表

由右图可见3Sigma水 平对应的不良率为 2700ppm

由右图可见4.5Sigma 水平对应的不良率为 6.8ppm

由右图可见6Sigma水平对应的不良率为 0.002ppm

平 工ル	表 1 ***				
<u> </u>	C1	C2	СЗ	C4	C5
	sigma	左边	右边	单边 ppm	双边PPM
1	0.0	0.50000	0.500000	500000.0000	1000000.000
2	0.5	0.69146	0.308538	308537.5387	617075.077
3	1.0	0.84134	0.158655	158655.2539	317310.508
4	1.5	0.93319	0.066807	66807.2013	133614.403
5	2.0	0.97725	0.822750	22750.1319	45500.264
6	2.5	0.99379	0.006210	6269, 6653	12419.331
7	3.0	0.99865	0.001350	1349.8980	2699.796
8	3.5	0.99977	0.000233	232.6291	465.258
9	4.0	0.99997	0.000032	31.6712	63.342
10	4.5	1.00000	0.000003	3.3977	6.795
11	5.0	1.00000	0.000000	0.2867	0.573
12	5.5	1.00000	0.000000	0.0190	0.038
13	6.0	1.00000	0.000000	0.0010	0.002
14	6.5	1.00000	0.000000	0.00 00	0.000
15	7.0	1.00000	0.000000	0.0000	0.000
16	7.5	1 00000	0.000000	0.0000	0.000
17	8.0	1.00000	0.000000	0.0000	0.000
18					

6σ(Sigma)水平与不良率3.4PPM的关系

- 由上表可见,6Sigma水平对应的流程不良率为0.002ppm
- 那我们常说的六西格玛不良率为3.4ppm 又是怎么回事呢?
 - 先有Motorala 才有六西格玛
 - 有了六西格玛才有了"通过短期抽样推定的总体平均比长期平均最大偏移1.5 σ"的假设。
 - 而这个假设建立的基础为: 抽样数越少, 推定的平均与实际总体平均的偏移越大, 而通过T分布推定总体平均值的置信区间的计算公式可知, 当α=0.05时, 平均值的最大偏移量为:

平均值偏移量为:
$$t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$$

- 当n=2时 t_{0.975, 2-1}为12.706 平均最大偏移量为 8.98 S - 当n=3时 t_{0.975, 3-1} 为4.303 平均最大偏移量为 2.48 S - 当n=4时 t_{0.975, 4-1} 为3.182 平均最大偏移量为 1.59 S - 当n=5时 t_{0.975, 5-1} 为2.776 平均最大偏移量为 1.24 S - 当n=6时 t_{0.975, 6-1} 为2.571 平均最大偏移量为 1.04 S
- 而根据经验Motorala将通过短期抽样推定的 总体平均与长期平均的最大偏移量假设为1.5 σ

6σ(Sigma)水平与不良率3.4PPM的关系

- 而3.4ppm 正是基于Motorola假设计算得来的。
 - 一个六西格玛水平的流程为标准正态分布N(0,1),超出上下规格限的不良率为 0.002ppm。当平均偏移1.5 σ之后得到新的分布
 - 平均值为1.5,下规格线位置为-7.5,上规格线位置为4.5 (σ=1)
 - 通过Minitab计算偏移后的分布超出上下规格限的不良率

6σ(Sigma)水平与不良率3.4PPM的关系

- 平均偏移1.5以后的sigma水平与ppm的关系计算。
 - 计算→概率分布→正态平均值为1.5
 - 通过Minitab计算偏移后的分布超出上下规格限的不良率如下表

的假设的前提下,6Sigma水准的不 良率为3.4ppm