ИІТМО

НИУ ИТМО

Отчет по лабораторной работе $\mathbb{N}_{2}1$

По дисциплине "Теория автоматического управления"

"Управляемость и наюлюдаемость"

Вариант 30

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2025

Содержание

1.	Исс	ледование управляемости	3
	1.1.	Управляемость системы	3
		1.1.1. Матрица управляемости	3
		1.1.2. Управляемость собственных значений	3
		1.1.3. Диагональная форма системы	4
	1.2.	Грамиан управляемости	5
	1.3.	Управление системой	5
2.	Упр	равляемое подпространство	7
	2.1.	Управляемость системы	7
		2.1.1. Матрица управляемости	7
		2.1.2. Управляемость собственных значений	7
		2.1.3. Диагональная форма системы	8
	2.2.	Грамиан управляемости	8
	2.3.	Управляемое подпространство	9
	2.4	Vправление системой	9

1. Исследование управляемости

Рассмотрим систему $\dot{x} = Ax + Bu$, где

$$A = \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix}. \tag{1}$$

1.1. Управляемость системы

1.1.1. Матрица управляемости

Найдем матрицу управляемости $U = [B, AB, A^2B]$:

$$U = \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix} \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix} \times \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix} \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}^{2} \times \begin{bmatrix} -7 \\ -5 \\ 7 \end{bmatrix}$$
 (2)

$$U = \begin{bmatrix} -7 & 31 & -43 \\ -5 & 15 & -5 \\ 7 & -21 & 23 \end{bmatrix}$$
 (3)

Определим ранг матрицы управляемости:

$$rank(U) = 3 (4)$$

Так как ранг матрицы управляемости равен порядку системы, то система является полностью управляемой согласно критерию Калмана.

1.1.2. Управляемость собственных значений

Найдем спектр матрицы A:

$$\sigma(A) = \{-3, -1 - 2j, -1 + 2j\} \tag{5}$$

Для каждого собственного значения найдем матрицу Хаутуса $H_i = \begin{bmatrix} A - \lambda_i I & B \end{bmatrix}$ и определим ее ранг:

1.
$$\lambda_1=-3$$
: $H_1=\begin{bmatrix} 8 & -2 & 8 & -7 \\ 4 & 0 & 4 & -5 \\ -4 & 0 & -4 & 7 \end{bmatrix}$, $\mathrm{rank}(H_1)=3$, собственное значение управляемо.

2.
$$\lambda_2=-1-2j$$
: $H_2=\begin{bmatrix} 6+2j & -2 & 8 & -7 \\ 4 & -2+2j & 4 & -5 \\ -4 & 0 & -6+2j & 7 \end{bmatrix}$, $\mathrm{rank}(H_2)=3$, собственное значение управляемо.

управляемо.
$$3. \ \lambda_3 = -1 + 2j \colon H_3 = \begin{bmatrix} 6-2j & -2 & 8 & -7 \\ 4 & -2-2j & 4 & -5 \\ -4 & 0 & -6-2j & 7 \end{bmatrix}, \ \mathrm{rank}(H_3) = 3, \ \mathrm{coбcтвенноe} \ \mathrm{значениe}$$
 управляемо.

Так как выше было показано, что система является полностью управляемой, то каждое собственное значение матрицы A является управляемым.

1.1.3. Диагональная форма системы

Найдем диагональную форму системы:

$$\dot{\hat{x}} = P^{-1}AP\hat{x} + P^{-1}Bu \tag{6}$$

Где P — матрица собственных векторов матрицы A. Найдем собственные векторы матрицы A:

$$v_{1} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \quad v_{2} = \begin{bmatrix} -3+j\\-2\\2 \end{bmatrix} \quad v_{3} = \begin{bmatrix} -3-j\\-2\\2 \end{bmatrix}$$
 (7)

Тогда матрица P:

$$P = \begin{bmatrix} -1 & -3+j & -3-j \\ 0 & -2 & -2 \\ 1 & 2 & 2 \end{bmatrix}$$
 (8)

Система преобразуется к виду:

$$\dot{\hat{x}} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -1 - 2j & 0 \\ 0 & 0 & -1 + 2j \end{bmatrix} \hat{x} + \begin{bmatrix} 2 \\ \frac{5 - 5j}{4} \\ \frac{5 + 5j}{4} \end{bmatrix} u \tag{9}$$

Так как все элементы $P^{-1}B$ не равны нулю, то система является полностью управляемой, каждая мода системы управляема.

1.2. Грамиан управляемости

Найдем грамиан управляемости $P(t_1)$:

$$P(t_1) = \int_0^{t_1} e^{At} B B^T e^{A^T t} dt$$
 (10)

Вычислим грамиан управляемости для $t_1 = 3$ с помощью функции gram:

$$P(3) = \begin{bmatrix} 18.12 & 10.97 & -11.64 \\ 10.97 & 7.48 & -8.48 \\ -11.64 & -8.48 & 10.14 \end{bmatrix}$$
(11)

1.3. Управление системой

Найдем управление u(t), которое будет переводить систему из состояния x(0)=0 в состояние $x_1=x(t_1)=\begin{bmatrix} -2 & -3 & 3 \end{bmatrix}^T$.

$$u(t) = B^T e^{A^T(t_1 - t)} P(t_1)^{-1} x_1$$
(12)

Реализуем данное управление в MATLAB и проведем моделирование системы. На рисунке 1 изображено управление системой. На рисунке 2 изображено состояние системы.

Видно, что система управляемая в соответствии с заданным управлением и переходит в заданное состояние.

Рис. 1: Управление системой

Рис. 2: Состояние системы

2. Управляемое подпространство

Рассмотрим систему $\dot{x} = Ax + Bu$, где

$$A = \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}. \tag{13}$$

2.1. Управляемость системы

2.1.1. Матрица управляемости

Найдем матрицу управляемости $U = [B, AB, A^2B]$:

$$U = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix} \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix} \times \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix} \begin{bmatrix} 5 & -2 & 8 \\ 4 & -3 & 4 \\ -4 & 0 & -7 \end{bmatrix}^{2} \times \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$$
(14)

$$U = \begin{bmatrix} -1 & 25 & -45 \\ -3 & 17 & -19 \\ 3 & -17 & 19 \end{bmatrix}$$
 (15)

Определим ранг матрицы управляемости:

$$rank(U) = 2 (16)$$

Так как ранг матрицы управляемости меньше размерности матрицы A, система не является полностью управляемой.

2.1.2. Управляемость собственных значений

Определим управляемость собственных значений матрицы A. Для каждого собственного значения найдем матрицу Хаутуса $H_i = \begin{bmatrix} A - \lambda_i I & B \end{bmatrix}$ и определим ее ранг:

1.
$$\lambda_1=-3$$
: $H_1=\begin{bmatrix} 8 & -2 & 8 & -1 \\ 4 & 0 & 4 & -3 \\ -4 & 0 & -4 & 3 \end{bmatrix}$, $\mathrm{rank}(H_1)=2$, собственное значение не управляемо.

2.
$$\lambda_2=-1-2j$$
: $H_2=\begin{bmatrix} 6+2j & -2 & 8 & -1\\ 4 & -2+2j & 4 & -3\\ -4 & 0 & -6+2j & 3 \end{bmatrix}$, $\mathrm{rank}(H_2)=3$, собственное значение управляемо.

3.
$$\lambda_3=-1+2j$$
: $H_3=\begin{bmatrix} 6-2j & -2 & 8 & -1 \\ 4 & -2-2j & 4 & -3 \\ -4 & 0 & -6-2j & 3 \end{bmatrix}$, $\mathrm{rank}(H_3)=3$, собственное значение управляемо.

2.1.3. Диагональная форма системы

$$\dot{\hat{x}} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -1 - 2j & 0 \\ 0 & 0 & -1 + 2j \end{bmatrix} \hat{x} + \begin{bmatrix} 0 \\ \frac{3 - 7j}{4} \\ \frac{3 + 7j}{4} \end{bmatrix} u \tag{17}$$

Первое число в векторе $P^{-1}B$ равно нулю, значит, что первое состояние системы не является управляемым. Результаты совпали с результатами, полученными при анализе управляемости собственных значений через матрицу Хаутуса.

2.2. Грамиан управляемости

Найдем грамиан управляемости $P(t_1)$:

$$P(t_1) = \int_0^{t_1} e^{At} B B^T e^{A^T t} dt$$
 (18)

Вычислим грамиан управляемости для $t_1 = 3$ с помощью функции gram:

$$P(3) = \begin{bmatrix} 26.65 & 13.37 & -13.37 \\ 13.37 & 8.28 & -8.28 \\ -13.37 & -8.28 & 8.28 \end{bmatrix}$$
 (19)

2.3. Управляемое подпространство

Выясним, принадлежат ли точки x_1' и x_1'' управляемому подпространству:

$$x_1' = \begin{bmatrix} -2 \\ -3 \\ 3 \end{bmatrix}, \quad x_1'' = \begin{bmatrix} -3 \\ -3 \\ 4 \end{bmatrix}$$
 (20)

Для этого можно записать расширенную матрицу управляемости U' и найти ранг этой матрицы:

$$U' = \begin{bmatrix} -1 & 25 & -45 & -2 \\ -3 & 17 & -19 & -3 \\ 3 & -17 & 19 & 3 \end{bmatrix}$$
 (21)

$$rank(U') = 2 (22)$$

$$U'' = \begin{bmatrix} -1 & 25 & -45 & -3 \\ -3 & 17 & -19 & -3 \\ 3 & -17 & 19 & 4 \end{bmatrix}$$
 (23)

$$rank(U'') = 3 (24)$$

Таким образом, можно сделать вывод, что точка x_1' принадлежит управляемому подпространству, а точка x_1'' не принадлежит. В дальнейшем будем обозначать x_1' как x_1 .

2.4. Управление системой

Найдем управление u(t), которое будет переводить систему из состояния x(0)=0 в состояние $x_1=x(t_1)=\begin{bmatrix} -2 & -3 & 3 \end{bmatrix}^T$.

$$u(t) = B^{T} e^{A^{T}(t_1 - t)} P(t_1)^{-1} x_1$$
(25)

Реализуем данное управление в MATLAB и проведем моделирование системы. На рисунке 1 изображено управление системой. На рисунке 2 изображено состояние системы.

Рис. 3: Управление системой

Рис. 4: Состояние системы

Видно, что система управляемая в соответствии с заданным управлением и переходит в заданное состояние.