Vetores linearmente independentes e base

MAP 2110 - Diurno

IME USP

24 de março

Introdução

Uma família de vetores $\{\vec{v}_1,\ldots,\vec{v}_n\}$ é linearmente independente se, e somente se a única forma de se escrever o vetor nulo $\vec{0}$ como combinação linear é a trivial. Isto também significa que nenhum vetor \vec{v}_i deste conjunto pode se escrever como combinação linear dos vetores restantes.

Se \vec{v} é um vetor do sub-espaço gerado por $\{\vec{v}_1 \dots \vec{v}_n\}$ de quantas formas diferentes ele pode ser escrito como combinação linear desses vetores?

Exercicio 1:

Considerem os vetores

$$\vec{v}_1=i$$
 $\vec{v}_2=i+j$ e $\vec{v}_3=i+j+3k$

- ▶ Prove que $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ é LI
- Escreva os vetores i e j como combinação linear de $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$
- ► Escreva o vetor $2\mathbf{i} 3\mathbf{i} + 5\mathbf{k}$ como combinação linear de $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$
- ▶ Prove que $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ é uma base.

Exercicio 2

- ► Mostre que os vetores $(\sqrt{3}, 1, 0)$, $(1, \sqrt{3}, 1)$ e $(0, 1, \sqrt{3})$ são LI.
- ▶ Mostre que os vetores $(\sqrt{2},1,0)$, $(1,\sqrt{2},1)$ e $(0,1,\sqrt{3})$ são LD.
- ▶ Encontre todos os valores reais possíveis de t para que os vetores (t,1,0), (1,t,1) e (0,1,t) sejam LD.

Exercício 3

Se três vetores de V_n , \vec{a} , \vec{b} e \vec{c} são LI. Verifique se cada uma das afirmações abaixo é verdadeira ou falsa.

- $ightharpoonup \vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ e $\vec{c} + \vec{a}$ formam um conjunto LI.
- $\vec{a} \vec{b}$, $\vec{b} + \vec{c}$ e $\vec{c} + \vec{a}$ formam um conjunto LI.