Electronic Devices and Analog Circuits

- Lecture 7
 - Inductors
 - **▼** DC motors
 - Inductive power generation
 - Diodes for rectification
 - **▼**DC regulator circuits

© Larry Pileggi, 2/1/2016

Slide

Objectives of this Lecture

- Introduce inductor elements
- Describe inductance, and how it is used to create motors and generators
- Cover the basics regarding DC regulators and rectification
- Describe a DC-DC conversion circuit for use in Lab 2

© Larry Pileggi, 2/1/2016

Toroidal Inductor

CarnegieMello

■ Represented as a lumped circuit element if flux is well contained

Number of turns

■ From Maxwell: Flux Density

Permeability is measure of material's ability to support the formation of a magnetic field within itself. The degree of magnetization that a material obtains in response to an applied magnetic field [Henrys/meter]

 $B(t) = \frac{\mu \cdot N \cdot i(t)}{l(t)}$ Length around core

© Larry Pileggi, 2/1/2016

Slide 5

Flux

CarnegieMello

■ Flux through each turn (loop) is the integral of the flux density through the cross section of the core

$$\phi(t) = \int B \cdot dA = A \cdot B(t)$$

■ Total flux is then:

$$\lambda(t) = N \cdot \phi(t) = N \cdot A \cdot B(t)$$
 Webers [Wb]

$$B(t) = \frac{\mu \cdot N \cdot i(t)}{l}$$

$$\therefore \lambda(t) = \frac{\mu \cdot N^2 \cdot A}{l} \cdot i(t)$$

$$\lambda(t) = L \cdot i(t)$$

$$\therefore L = \frac{\mu \cdot N^2 \cdot A}{I} \quad \text{Wb/A [H]}$$

© Larry Pileggi, 2/1/2016

Inductor Equation

CarnegieMello

■ Results in the simple expression for voltage and current relationship for a linear time-invariant inductor

$$L = \frac{\mu \cdot N^2 \cdot A}{l} \quad \text{Wb/A [H]}$$

$$v(t) = \frac{d\lambda(t)}{dt} = \frac{d[L \cdot i(t)]}{dt} = L \frac{di(t)}{dt}$$

■ For a sine wave voltage there is a phase shift with respect to the magnetic flux (hence the current)

© Larry Pileggi, 2/1/2016

Slide

Stored Energy

CarnegieMello

Ignoring coil resistance, core loss and inter-turn capacitance for our linear time invariant toroidal inductor:

$$E = \frac{L \cdot i(t)^2}{2}$$

© Larry Pileggi, 2/1/2016

Inductance and Electric Motors and Generators

- Faraday showed that a force is produced on a current by a magnetic field
 - ▼ Faraday disk converts electrical energy into mechanical energy
 - Two interacting magnetic fields -- one stationary, and another attached to a part that can move
- Modern DC motors and generators are based on the same principals

© Larry Pileggi, 2/1/2016

Brushless dc Motors and Generators

Carnegie Mellor

- Can put the fixed magnets on the stator, or put them on the rotor and switch the stator electromagnetically
- Apply a dc voltage to a dc motor to form a current in the loop that causes the axis to spin
 - Moves a wheel, or a propeller, etc.
- Or, turn a crank to spin the loop and generate a voltage at the voltage leads
 - Is the voltage AC or DC?
 - Does it have a commutator or is it brushless?

© Larry Pileggi, 2/1/2016

Brushless dc Motors and Generators

■ Depending on the switching method used by the controller, the current will be some time-varying (ac) signal

■ The frequency of this current signal will be related to the RPMs of the motor

© Larry Pileggi, 2/1/2016

Slide 19

Lab 2: Hand Cranked Cellphone Charger

■ You will use a DC motor with a built-in gearbox

■ Turning the crank through the gearbox will generate a time varying output voltage/current

■ The voltage polarity will depend on which way we spin the rotor

 Use a full wave rectifier to extract the DC component for either polarity

© Larry Pileggi, 2/1/2016

Slide 21

© Larry Pileggi, 2/1/2016

More Efficient Regulator We can add a transistor to improve the efficiency R can now be larger without limiting maximum loading current But the DC voltage to the load now depends on the V_{GS} of the MOSFET © Larry Pileggi, 2/1/2016 Siide 26

More Efficient Regulator

- Would probably need more gate voltage for this to work
- But V_{GS} is still a function of the MOSFET (hence load) current
 - We don't want the voltage to change significantly with loading

© Larry Pileggi, 2/1/2016

More Efficient Regulator

■ How could you select a MOSFET to make the load voltage no longer a function of V_{GS} , and approximately a function of V_{TH} ?

parameters you would change, such as MOSFET size, to accomplish this

saturation : $V_{DS} > V_{GS} - V_{TH}$ $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$

© Larry Pileggi, 2/1/2016

More Efficient Regulator

CarnegieMello

■ But for large Vin the voltage drop across the MOSFET will dissipate a lot of unused power

■ There are more efficient ways of doing DC-DC conversion

© Larry Pileggi, 2/1/2016

Slide 29

Low Loss Conversion

- Carnegie Mello
- Switch the large voltage into pulses of voltage
- Based on the duty cycle, D, the average voltage delivered to the load is reduced
 - Still need a low pass filter to convert AC pulses to DC value

If the duty cycle D of the switch is 0.33, then the average voltage to the load is13Vdc

© Larry Pileggi, 2/1/2016

Buck Converter

CarnegieMello

- Buck converter voltage step down, current step up
- An inductor and a capacitor form a lossless low-pass filter
- A MOSFET serves as the switch
- The diode serves as a current flow path when the switch is open

© Larry Pileggi, 2/1/2016

Slide 31

Buck Converter

Switch closed:

$$v_L = V_{in} - V_{out}$$
 Diode is "off"

$$\frac{di_L}{dt} = \frac{V_{in} - V_{ou}}{L}$$

- Inductor current increases which produces a voltage that opposes input voltage
- $lacktriangleq V_{\text{out}}$ is less than V_{in} based on drop across inductor
- D and T are chosen so that switch is opened while the inductor current is still changing, and energy is stored in the inductor of 0.5*L*i²

© Larry Pileggi, 2/1/2016

CarnegieMello

Switch open:

$$v_{L} = -V_{out}$$

$$\frac{di_{L}}{dt} = \frac{-V_{out}}{dt}$$

- Inductor current decreases, which causes its voltage to change sign and now aid in the direction of supplying the load
- Inductor is delivering its stored energy to supply the load while switch is open
- Switch closes again while current is decreasing and inductor voltage is non-zero

Slide 33

Buck Converter

- Capacitor helps to smooth out the voltage ripple
- LC filter effect will be covered in future lectures
- Time domain understanding of inductors should enable you to build a Buck Converter for your cellphone charger

© Larry Pileggi, 2/1/2016

CarnegieMellon

Take Aways from this Video

- Understand the basics of forming an inductor element
- Have some idea of how you would calculate the inductance for a wound toroid
- Some basics regarding the operation of a DC motor
- A good start toward building your own Buck Converter in the lab

© Larry Pileggi, 2/1/2016