Revisão Prova 1 de Circuitos Digitais

Erickson Giesel Müller

16 de Maio de 2024

1 Conteúdos

- 1. Algebra de Boole
- 2. Circuitos, Tabela-Verdade e Expressões
- 3. Conversão de Expressões Booleanas (Soma de Produtos e Produtos de Soma)
- 4. Simplificação Algébrica
- 5. Mapas de Karnaugh

2 Algebra de Boole

Algebra de Boole é a matemática dos circuitos digitais, calculada usando variáveis e seus valores, é através dela que podemos demonstrar o que acontece nas portas lógicas. Uma variável pode assumir o valor 0 ou 1. Se a Variável A for 1, o complemento dessa variável será 0, denominado A negado ou \overline{A} .

2.1 Adição Booleana

É o equivalente à porta lógica OR. Se um dos dois termos à serem somados for 1, o resultado será 1.

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

2.2 Diferença entre $\overline{A} + \overline{B}$ e $\overline{A+B}$

A	В	$\overline{A} + \overline{B}$
0	0	1
0	1	1
1	0	1
1	1	0

A	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

2.3 Multiplicação Booleana

A multiplicação é equivalente à porta AND e o resultado será 1 quando todas as variáveis da multiplicação forem 1. A diferença entre $\overline{A}.\overline{B}$ e $\overline{A}.\overline{B}$ é que $\overline{A}.\overline{B}$ será 1 quando A e B forem 0, já $\overline{A}.\overline{B}$ será 1 quando A e B forem diferentes de 1.

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

A	В	$\overline{A}.\overline{B}$
0	0	1
0	1	0
1	0	0
1	1	0

A	В	$\overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

Podemos perceber que $\overline{A} + \overline{B}$ é igual a $\overline{A}.\overline{B}$; e $\overline{A} + \overline{B}$ é igual a $\overline{A}.\overline{B}$. Teorema de DeMorgan.