School of Geography and Geology McMaster University

Advanced Topics in Spatial Statistics

Spatially Continuous Data V & VI

This session

- Trend surface analysis
- o Generalized least squares
- Spatial prediction
- Kriging

Modeling Spatially Continuous Data

- Trend Surface Analysis
 - A method to model the first order component of a spatial process
 - Multiple regression analysis using the coordinates of the points as "explanatory" variables

Example

- Wolfcamp aquifer (Texas)
 - High level nuclear waste depository (U.S.)
 - Candidate locations: Texas, Washington state, Nevada
 - 68,000 waste canisters placed underground, surrounded by salt
 - Covering an area of about 2 square miles
 - US Department of Energy stipulates that canisters must be isolated by 10,000 years

Example: Wolfcamp Aquifer

- o Wolfcamp aquifer (Texas)
 - Potential issues
 - o Leaks
 - Tiny quantities of water in the salt could migrate towards the canisters
 - Salt+water → hydrocloric acid could corrode canisters
 - o Contamination of aquifer

Example: Wolfcamp Aquifer

Example: Wolfcamp Aquifer

- o Data
 - Piezometric head at 85 locations in Texas panhandle (h)
- Geostatistical problems
 - Determine sites at risk
 - Interpolate surface
 - Quantify uncertainty (location of monitoring stations)

Example: Wolfcamp Aquifer

Spatial distribution of observations

Trend Surface Analysis

o Quadratic trend surface

$$h_i = b_1 + x_i^2 b_2 + x_i b_3 + x_i y_i b_4 + y_i b_5 + y_i^2 b_6 + e_i$$

- h: head
- ullet b_1 , b_2 ,..., b_6 : regression parameters
- x , y: coordinates of point I
- Higher order polynomials
- o Cubic
 - Quartic
 - ...

Trend Surface Analysis

- o Explanation vs. prediction?
- Potential issues
 - Multicolinearity
 - Trend surfaces tend to "curl" around the edges
- o This example: fairly good fit

Spatial Prediction

O: What are the implications of spatial structure for prediction?

Spatial Prediction

 Error terms are not completely random, i.e., unpredictable

Spatial Independence

Error terms are completely random, i.e., unpredictable

Generalized Least Squares (GSL)

- o OLS
 - Variance is constant
 - Error terms are independent (i.e. random)

Generalized Least Squares

- o More general regression model
 - Relaxes some of the assumptions imposed on the error terms
 - Non-constant variance
 - Spatial dependency (spatial structure)
- o Incorporate residual spatial structure

Regression Analysis

- Error terms (Ordinary Least Squares)
 - Constant variance
 - Independent

$$E[ee'] = \mathbf{C} = \begin{bmatrix} \sigma^2 & 0 & 0 \\ & \sigma^2 & & 0 \\ 0 & & \sigma^2 & \\ 0 & 0 & & \sigma^2 \end{bmatrix} = \sigma^2 \begin{bmatrix} 1 & 0 & 0 \\ & 1 & & 0 \\ 0 & & 1 \\ 0 & 0 & & 1 \end{bmatrix} = \sigma^2 \mathbf{I}$$

Regression Analysis

- Error terms (Generalized Least Squares)
 - Constant variance
 - NOT Independent: covariance between e_i and $e_i \neq 0$

$$E[\boldsymbol{ee'}] = \mathbf{C} = \begin{bmatrix} \sigma^2 & \sigma_{21}^2 & \cdots & \sigma_{1n}^2 \\ \sigma_{21}^2 & \sigma^2 & & \sigma_{2n}^2 \\ \vdots & & \ddots & \vdots \\ \sigma_{n1}^2 & \sigma_{n2}^2 & \cdots & \sigma^2 \end{bmatrix}$$

Regression Analysis: GSL

Parameters

$$\hat{\boldsymbol{b}} = \left(\mathbf{X}^T \mathbf{C}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{C}^{-1} \mathbf{Z}$$

Variance

$$\hat{\sigma}^2 = \frac{1}{n-k} \left(\mathbf{Z} - \mathbf{X}^T \hat{\boldsymbol{b}} \right)^T \left(\mathbf{Z} - \mathbf{X}^T \hat{\boldsymbol{b}} \right)$$

Spatial Prediction

- Kriging
 - So called after South African mining geologist D.G. Krige
 - Method for spatial prediction
 - Makes use of autocorrelation information
 - Optimal spatial prediction!

Simple Kriging

 A method for optimal prediction when there is no trend (first order effects), or when the trend is known

$$Z = \mu + e$$

Model with constant or known trend μ

$$Z_p = \mu + e_p$$

Spatial prediction

o When errors are autocorrelated

Simple Kriging

- \circ \hat{e}_{p} is a random variable
 - Expected (mean) value = 0
 - How close (on average) is it to e?

- o How close (on average) is \hat{e}_p to \pmb{e} ?
 - Expected mean square error (prediction variance):

$$E\left[\left(\hat{e}_{p}-e_{i}\right)^{2}\right]=E\left[\hat{e}_{p}^{2}\right]+E\left[e_{i}^{2}\right]-2E\left[e_{i}e_{p}\right]$$
$$=\lambda_{p}^{T}\mathbf{C}\lambda_{p}+\sigma^{2}-2\lambda_{p}^{T}\boldsymbol{c}_{p}$$

C: covariance matrix

 $oldsymbol{c}_{\scriptscriptstyle p}$: covariance vector between $oldsymbol{e}$ and $\hat{oldsymbol{e}}_{\scriptscriptstyle p}$

Simple Kriging

o Minimizing the expected mean square error gives weight λ :

$$\boldsymbol{\lambda}_p = \mathbf{C}^{-1} \boldsymbol{c}_p$$

C: covariance matrix

 c_p : covariance vector between $m{e}$ and \hat{e}_p

o This leads to:

$$\hat{\boldsymbol{e}}_p = \boldsymbol{\lambda}_p^T \boldsymbol{e} = \boldsymbol{c}_p^T \mathbf{C}^{-1} \boldsymbol{e}$$

 Which can be added to the known mean to give:

$$Z_p = \mu + e_p = \mu + \boldsymbol{c}_p^T \mathbf{C}^{-1} \boldsymbol{e}$$

Simple Kriging

o Prediction variance:

$$\sigma_p^2 = E \left[\left(\hat{\boldsymbol{e}}_p - \boldsymbol{e}_i \right)^2 \right] = \sigma^2 - \boldsymbol{c}_p^T \mathbf{C}^{-1} \boldsymbol{c}_p$$

Interval of confidence for prediction (95% level of confidence):

$$Z_p \pm 1.96\sigma_p$$

- Limitations
 - Trend is not always constant or known
 - Covariance structure is not known

Defining Spatial Structure

- o Variogram ← → Covariance
- Generalized Least Squares
 - Parameter estimation
 - Inference
- Spatial prediction
 - Simple kriging
 - Generalized spatial prediction
 - Ordinary and universal kriging

- o Example: Walker Lake data
 - Very weak trend no trend
 - Linear trend: $R^2=0.063$
 - Quadratic trend: $R^2 = 0.126$
 - Cubic trend: $R^2 = 0.172$
- o Perfect application of simple kriging
 - "Known" trend: mean

Example: Kriging Map (Exponential)

Example: Kriging Variance (Exponential)

General Spatial Prediction

- In simple kriging there is no trend or the trend is known
 - Example: Walker Lake dataset
- In many other cases there is a trend that must be estimated from the data

- o Evidence of a trend
 - Trend surface analysis
 - Empirical variogram (absolute values or deviation from the mean)

General Spatial Prediction

o Evidence of a trend

17

- It becomes necessary to estimate the trend
 - Trend surface analysis
 - Other covariates
 - A combination of trend surface analysis and other covariates

General Spatial Prediction

- Modeler's dilemma!
 - The trend is estimated by OLS (We don't know if there is autocorrelation!)

$$\hat{\boldsymbol{b}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{Z}$$

 However, if there is autocorrelation, the estimators should be:

$$\hat{\boldsymbol{b}} = \left(\mathbf{X}^T \mathbf{C}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{C}^{-1} \mathbf{Z}$$

- o Iterative procedure:
 - Step 1. Fit a trend surface model by OLS and obtain the residuals:

$$\hat{\boldsymbol{e}} = \boldsymbol{Z} - \mathbf{X}\hat{\boldsymbol{b}} = \boldsymbol{Z} - \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\boldsymbol{Z}$$

 Step 2. Describe spatial structure of residuals using a variogram and derive a covariance matrix C

General Spatial Prediction

- o Iterative procedure:
 - Step 3. Fit a trend surface model by GLS and obtain revised residuals:

$$\hat{\boldsymbol{u}} = \boldsymbol{Z} - \mathbf{X}\hat{\boldsymbol{b}} = \boldsymbol{Z} - \mathbf{X}\left(\mathbf{X}^T\hat{\mathbf{C}}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^T\hat{\mathbf{C}}^{-1}\boldsymbol{Z}$$

 Step 4. Iterate steps 2 and 3 until stability of the parameters is achieved

- o Iterative procedure:
 - Step 5. Predict Z_p as:

$$Z_p = X_p \hat{\boldsymbol{b}} + \hat{\boldsymbol{u}}_p = X_p \hat{\boldsymbol{b}} + \hat{\boldsymbol{c}}_p^T \hat{\mathbf{C}}^{-1} \hat{\boldsymbol{u}}$$

Step 6. Calculate the prediction variance:

$$\sigma_{p}^{2} = \left\{ \left(\boldsymbol{X}_{p} - \boldsymbol{\mathbf{X}}^{T} \hat{\boldsymbol{\mathbf{C}}}^{-1} \hat{\boldsymbol{c}}_{p} \right)^{T} \left(\boldsymbol{\mathbf{X}}^{T} \hat{\boldsymbol{\mathbf{C}}}^{-1} \boldsymbol{\mathbf{X}} \right) \left(\boldsymbol{X}_{p} - \boldsymbol{\mathbf{X}}^{T} \hat{\boldsymbol{\mathbf{C}}}^{-1} \hat{\boldsymbol{c}}_{p} \right) \right\}$$

$$+ \left(\hat{\sigma}^{2} - \hat{\boldsymbol{c}}_{p}^{T} \hat{\boldsymbol{\mathbf{C}}}^{-1} \hat{\boldsymbol{c}}_{p} \right)$$

General Spatial Prediction

- o Example: Wolfcamp Aquifer data
 - Strong trend
 - Linear trend: $R^2=0.892$
 - Quadratic trend: $R^2 = 0.913$
 - Cubic trend: $R^2 = 0.923$
- o General spatial prediction
 - Use trend surface

- What is the best variogram for my application?
- Variogram selection

Variogram Selection

- Validation sample
 - Use a sub-sample of data for model estimation
 - Use model to predict those observations not used for estimation

- o Cross-validation
 - Double kriging

Variogram Selection

o Double kriging

- o Cross-validation
 - Leave-one-out

Variogram Selection

o Cross-validation scores

$$CVS = \frac{1}{n} \sum_{i=1}^{n} \frac{Z_{i} - \hat{Z}_{(i)}}{\hat{\sigma}_{(i)}}$$

- ullet Z_i : observed value at location i
- $\hat{Z}_{\scriptscriptstyle (i)}$: predicted value after removing observation at i
- $\hat{\sigma}_{\scriptscriptstyle (i)}$: standard error estimated after removing observation i

- Theoretical soundness
 - What do we know about the generating process?

Variogram Selection

- o Cross-validation
 - Accuracy
- o Prediction (kriging) variance
 - Precision

o Precise...inaccurate

Variogram Selection

o Accurate...imprecise

Accurate...precise

Example

- Variogram Selection: Wolfcamp Aquifer
 - Linear trend

	Cross Validation				
	Double Kriging		Leave-c	Leave-one-out	
Variogram:	CVS	s	CVS	S	
Linear	-6.176 (1)	194.001 (4)	0.782 (1)	201.766 (4)	
Spherical	-25.674 (4)	164.331 (1)	9.050 (4)	176.892 (2)	
Exponential	-22.163 (3)	167.810 (3)	6.083 (3)	176.696 (1)	
Gaussian	-15.499 (2)	166.129 (2)	3.477 (2)	178.466 (3)	

Example

- Variogram Selection: Wolfcamp Aquifer
 - Quadratic trend

Cross Validation

	Double Kriging		Leave-one-out	
Variogram:	CVS	s	CVS	s
Linear	-3.952 (1)	182.683 (4)	3.512 (1)	193.237 (4)
Spherical	-15.648 (2)	175.816 (2)	7.150 (2)	174.749 (2)
Exponential	-22.821 (4)	170.063 (1)	12.064 (4)	174.563 (1)
Gaussian	-16.062 (3)	175.853 (3)	7.359 (3)	176.692 (3)

Example: Kriging Map (Exponential)

Example: Kriging Variance (Exponential)

Example: Kriging Variance (Gaussian)

Ordinary and Universal Kriging

- Mathematically equivalent to simple kriging and general spatial prediction
 - Simple kriging = ordinary kriging
 - Universal kriging = general spatial prediction
- Different emphasis: purely predictive methods

Ordinary and Universal Kriging

- Take a "one-step" approach with the trend implicit in the prediction process
 - Not so relevant in the case of simple kriging
 - May simplify the process in the case of processes with a trend
 - Although it is possible to retrieve the trend, Bailey and Gatrell recommend explicitly modeling it by using general spatial prediction

Next

o Area Data I & II