Written Assignment 7

Your instructor may assign all of these questions, or a subset of these questions. Additional problems may also be assigned. Before you start this assignment, be sure that you are aware of which questions your instructor expects you to complete.

1 Triple Integrals

The following questions are related to Section 3.3 of Vector Calculus by Michael Corral.

1.1. Volume of a Tetrahedron

The textbook points out that the triple integral

$$\iiint\limits_{S} f(x,y,z)dV$$

for the special special case when f(x, y, z) = 1 for all points in S, gives the volume of S

$$V(S) = \iiint\limits_{S} dV.$$

Consider again the tetrahedron that is bounded by the three coordinate planes in \mathbb{R}^3 , and by the plane $z=1-x-\frac{y}{2}$. We derived an expression for the volume of this tetrahedron in a previous question using a double integral. Now set-up and find the volume of the tetrahedron using a triple integral.

1.2. Volume of an Ellipsoid

Solve Question 10 from Section 3.5 of Vector Calculus by Michael Corral.

1.3. Volume of a Solid

Find the volume of the solid enclosed by the planes

$$z = x + y$$
$$y = x$$
$$x = 0$$
$$z = 0$$

y = 2

Hint: it may help to start by plotting the planes in Google or in Wolfram Alpha.

2 Change of Variables in Multiple Integrals

The following questions are related to Section 3.5 of Vector Calculus by Michael Corral.

2.1. Linear Transformations

Under the linear transformation

$$x = c_1 u + c_2 v$$
, $y = d_1 u + d_2 v$, $d_1 c_2 - d_2 c_1 \neq 0$,

straight lines in the uv-plane are mapped to straight lines in the xy-plane.

- (a) $v = v_0$ is a horizontal line in the uv-plane. Determine the equation of this line in the xy-plane.
- (b) $x = x_0$ is a vertical line in the xy-plane. Determine the equation of this line in the uv-plane.
- 2.2. Use an appropriate transformation to evaluate the integral

$$\iint\limits_{R} \left(x^2 - y^2\right) dx dy,$$

where R is the parallelogram bounded by

$$x + y = 0$$
, $x + y = 1$, $x - y = 0$, $x - y = 1$.

2.3.

Solutions

1 Triple Integrals

1.1. Volume of a Tetrahedron

Recall that the volume is the region under the plane z = 1 - x - y/2 and over

$$R = \{(x, y) \mid 0 \le x \le 1 - y/2, \ 0 \le y \le 2\}.$$

Because z lies between 0 and z = 1 - x - y/2, the volume, S, can be described as

$$S = \{(x, y, z) \mid 0 \le x \le 1 - y/2, \ 0 \le y \le 2, \ 0 \le z \le 1 - x - y/2\}.$$

The volume can be calculated with the triple integral

$$\begin{split} \int_0^2 \int_0^{1-y/2} \int_0^{1-x-y/2} dz dx dy &= \int_0^2 \int_0^{1-y/2} (1-x-y/2) dx dy \\ &= \int_0^2 \left(x - \frac{x^2}{2} - \frac{xy}{2} \right) \Big|_0^{1-y/2} dy \\ &= \int_0^2 \left((1-y/2) - \frac{(1-y/2)^2}{2} - \frac{(y-y^2/2)}{2} \right) dy \\ &= \int_0^2 \left(1 - \frac{y}{2} - \frac{1}{2} + \frac{y}{4} - \frac{y^2}{2} - \frac{y}{2} + \frac{y^2}{4} \right) dy \\ &= \int_0^2 \left(\frac{1}{2} - \frac{y}{2} - \frac{y^2}{4} \right) dy \\ &= \frac{2}{2} - \frac{4}{4} - \frac{8}{12} \\ &= -\frac{3}{4} \end{split}$$

Wrong!

1.2. Volume of an Ellipsoid

We are given the transformations

$$x = au$$
, $y = bv$, $z = cw$.

The Jacobian becomes

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix} = abc.$$

2

The solid enclosed by the ellipsoid is the image of the unit sphere $u^2 + v^2 + w^2 \le 1$. Using that a sphere has volume $\frac{4}{3}\pi r^3$, we find that

$$\iiint\limits_V dxdydz = \iiint\limits_{u^2+v^2+w^2 \le 1} abc\ dudvdw$$

$$= abc \iiint\limits_{u^2+v^2+w^2 \le 1} dudvdw$$

$$= abc (\text{volume of a sphere})$$

$$= \frac{4\pi abc}{3}$$

1.3. Volume of a Solid

2 Change of Variables in Multiple Integrals

2.1. Linear Transformations

(a) Substituting $v = v_0$ into the linear transformation yields the two equations

$$x = c_1 u + c_2 v_0$$
$$y = d_1 u + d_2 v_0$$

To find the equation of the line in the xy-plane, we need to eliminate u. There are many ways to do this, but let's multiply the first equation by d_1 and the second by c_1 .

$$d_1 x = c_1 d_1 u + c_2 d_1 v_0$$
$$c_1 y = c_1 d_1 u + d_2 c_1 v_0$$

Subtracting these equations yields

$$d_1x - c_1y = (c_2d_1 - d_2c_1)v_0$$

A simple rearrangement gives us

$$c_1 y = d_1 x - (c_2 d_1 - d_2 c_1) v_0.$$

Provided that c_1 is not zero, we could write this in the form

$$y = \frac{d_1}{c_1}x - \frac{c_2d_1 - d_2c_1}{c_1}v_0.$$

(b) Substituting $x = x_0$ into $x = c_1 u + c_2 v$ gives us

$$x_0 = c_1 u + c_2 v,$$

Provided that c_2 is not zero, This is the is mapped into the uv-plane REWORD

2.2. The integral can be written as

$$\iint\limits_{R} (x^2 - y^2) dx dy = \iint\limits_{R} (x - y)(x + y) dx dy.$$

Recall that R is the region bounded by

$$x + y = 0$$
, $x + y = 1$, $x - y = 0$, $x - y = 1$.

The appearance of the terms (x + y) and (x - y) in the integrand and in the lines that bound R suggests the transformation

$$u = x + y \tag{1}$$

$$v = x - y. (2)$$

In order to compute the Jacobian, we need explicit expressions for u and v. If we add equations 1 and 2 we find that

$$x = \frac{u+v}{2}$$

And if we subtract equations 1 and 2 we find that

$$y = \frac{u - v}{2}$$

The Jacobian becomes

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}.$$

We also need to find the limits of integration in the transformed integral. Using equations 1 and 2 the four lines bounding R in the xy-plane become

$$u = 0, \quad u = 1, \quad v = 0, \quad v = 1.$$

The double integral therefore becomes

$$\iint\limits_R (x^2 - y^2) dx dy = \iint\limits_R (x - y)(x + y) dx dy$$
$$= \int_0^1 \int_0^1 uv \left| -\frac{1}{2} \right| du dv$$
$$= \frac{1}{2} \int_0^1 \int_0^1 (uv) du dv$$
$$= \frac{1}{2} \int_0^1 \frac{v}{2} dv$$
$$= \frac{1}{8}.$$