МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

23.05.2014 г. – ВАРИАНТ 1

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

1. Кой от изразите приема стойност, която е естествено число?

A)
$$\frac{17}{21} + \frac{12}{42}$$

b)
$$\frac{\sqrt{64}}{\sqrt{8}}$$

B)
$$\frac{\sqrt{75}}{\sqrt{3}}$$

$$\Gamma$$
) $-\frac{11}{12} - \frac{1}{12}$

2. При $x \neq \pm y$ изразът $\frac{x-y}{x+y} + \frac{x+y}{x-y} - 2$ е тъждествено равен на:

A)
$$\frac{4x^2}{x^2 - y^2}$$

b)
$$\frac{4y^2}{x^2-y^2}$$

B)
$$\frac{4y^2}{x^2 - y^2}$$
 B) $\frac{2(x^2 + y^2)}{x^2 - y^2}$

3. Всички допустими стойности на израза $\sqrt{\frac{1}{4-x}} + \sqrt{x+2}$ са:

A)
$$x \in (-2;4)$$

b)
$$x \in [-2; 4]$$

B)
$$x \in [-2; 4]$$

B)
$$x \in [-2;4]$$
 B) $x \in [-2;4]$ Γ) $x \in (-2;4]$

4. Кое от посочените числа НЕ е решение на неравенството $x^2 - 2x - 3 \ge 0$?

A)
$$-\sqrt{2}$$

Б)
$$\sqrt{2}$$

5. Ако $\log_{81} a = -\frac{1}{4}$, то стойността на числото a е:

A)
$$\frac{1}{81^4}$$

Б)
$$\frac{1}{3}$$

 Γ) 81⁴

6. Решенията на системата уравнения $\begin{vmatrix} x + y = 2 \\ 2x^2 + 6y = 8 \end{vmatrix}$ са:

B)
$$(-1;3), (2;0)$$

$$\Gamma$$
) $(-1;3), (-2;4)$

7. Кое от квадратните уравнения има два реални положителни корена?

A)
$$-2x^2 + 7x - 4 = 0$$

b)
$$2x^2 - 7x - 4 = 0$$

B)
$$2x^2 + 7x + 4 = 0$$

$$\Gamma) -2x^2 - 7x + 4 = 0$$

- 8. Отношението $\frac{\sin 60^{\circ}}{\sin 30^{\circ}}$ е равно на:
- **A)** sin 30°
- **Б)** cos 30°
- **B)** tg 30°
- Γ) cotg 30°
- 9. Върху раменете на ъгъл $O \ p \rightarrow q \rightarrow$ са разположени точките A, B, C и D, такива че AC//BD, OC = 6 cm, CD = 10 cm и OB = 12 cm. Дължината на отсечката AB е равна на:

A) 4,5 cm

Б) 7,5 cm

B) 8 cm

- Γ) 8,5 cm
- 10. На чертежа е даден правоъгълният $\triangle ABC$ с катет $BC = 2\sqrt{6}\,$ сm и височина CH към хипотенузата AB. Ако $AH = 5\,$ сm, то дължината на отсечката BH е:

A) 2 cm

Б) 3 cm

B) 4,8 cm

- Γ) 8 cm
- 11. Дефиниционното множество на функцията, зададена с графиката си, е:

b)
$$x \in [0;3]$$

B)
$$x \in [-2; -1] \cup [1; 2]$$

$$\Gamma) \ x \in (-\infty; -2) \cup (2; +\infty)$$

- 12. Общият член на числова редица е $a_n = \frac{\left(-1\right)^{n+1} 2^{n+1} 2^n}{\left(-2\right)^{n-1}}, n \in \mathbb{N}$. Намерете a_{2014} .
- **A)** -6

- **Б**) −2
- **B)** 2

- **Γ**) 6
- **13.** Числата 2, 6, 18, ..., 1458 образуват крайна геометрична прогресия. Броят на членовете на тази прогресия е:
- **A)** 4

Б) 6

B) 7

Γ) 8

- **14.** Ако $\cos 31^{\circ} = a$, то вярно е, че:
- **A)** $\sin 31^{\circ} = \frac{1}{1}$
- **B)** $\sin 59^{\circ} = a$ **B)** $\cos 59^{\circ} = 1 a^2$
- Γ) $\sin 31^{\circ} = 1 a$
- 15. Към реда 1, 2, 6, 8, 11, 21 е добавено ново число. Намерете средноаритметичното на данните от новия ред, ако е известно, че двата реда имат една и съща медиана.
- **A)** 9

Б) $\frac{49}{6}$

B) 8

- **Г**) 7
- 16. От група от 8 специалисти трябва да бъде образувана комисия от председател и четирима членове. По колко начина може да стане това?
- **A)** 43

Б) 280

- **B**) 560
- **Γ)** 6 720
- 17. В $\triangle ABC$ AC = 5 cm и BC = 7 cm. Ако медианата $CM = \sqrt{21}$ cm $(M \in AB)$, то
- периметърът на $\triangle ABC$ е равен на:
- **A)** 76 cm

- **Б)** 22 cm
- **B)** 20 cm
- **Γ**) 18 cm
- 18. В $\triangle ABC$ $AC = 14\sqrt{2}$, BC = 14, AB < BC и $\angle BAC = 30^{\circ}$. Мярката на $\angle ABC$ е:
- **A)** 45°

Б) 75°

- **B)** 105°
- Γ) 135°
- 19. Върху страната AB на квадрата ABCD е избрана точка M така, че $S_{AMCD}: S_{MBC} = 5:3$. Отношението AM: MB е:

Б) 1:3

B) 2:3

Γ) 3:4

20. На чережа върхът A на успоредника ABCD съвпада с началото на правоъгълна координатна система.

Срещуположният му връх $C(8; 2\sqrt{3})$ е зададен с

координати си и $\angle BAD = 60^{\circ}$. Лицето на успоредника е:

- **A)** 32
- **Б**) $16\sqrt{3}$
- **B)** $12\sqrt{3}$
- **Γ**) 12

60°

<u>Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!</u>

- 21. Намерете стойността на израза $A = \frac{1 + \cos\left(180^{\circ} \alpha\right)}{\cos\left(90^{\circ} \alpha\right)} \cdot \frac{1 + \sin\left(90^{\circ} + \alpha\right)}{\sin^{2}\left(180^{\circ} \alpha\right)}$ за $\alpha = -30^{\circ}$.
- **22.** Намерете корените на уравнението $\sqrt{3x+1} \sqrt{2x-1} = 1$
- 23. На диаграмата са представени данни за годишните разходи на едно семейство, което за храна е изразходвало 5760 лв. Колко лева повече е изразходвало семейството за поддръжка на жилището си, отколкото за транспорт?

24. Даден е правоъгълник ABCD със страни AB = 9 ст и AD = 6 ст. През върха A е построена права, перпендикулярна на BD, която пресича CD в точка M. Намерете дължината на отсечката CM.

25. Четириъгълникът ABCD е вписан в окръжност и AB = BC = 5 сm, CD = 8 cm и $<\!\!\!\!< BAD = 120^\circ$. Намерете дължината на страната AD.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

- **26. Решете уравнението** $(x^2 3x + 1)^2 4(x^2 3x) = 9$.
- 27. В един кашон са поставени еднакви по големина и маса жълти, сини и червени топчета. Вероятността да се извади жълто топче е $\frac{1}{3}$, а синьо съответно $\frac{2}{5}$. Ако броят на червените топчета е 12, то пресметнете броя на всички топчета в кашона и намерете вероятността при едновременното изваждане на три топчета те да са от трите цвята.
- 28. Четириъгълникът ABCD е вписан в окръжност и описан около окръжност. Ако $\angle DAC = \angle DBA = 30^\circ$ и $AC = 4\,\mathrm{cm}$, намерете радиусите на вписаните окръжности в триъгълниците ABC и ACD.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left|a\right| & \sqrt[2k+1]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \ \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \ \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \ \text{и} \quad m, n, k \in \mathbb{N} \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \ \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	-α	90°-α	90°+α	180° – α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \sin\beta &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \\ 1-\cos\alpha &= 2\sin^2\frac{\alpha}{2} & 1+\cos\alpha &= 2\cos^2\frac{\alpha}{2} \\ \sin\alpha\sin\beta &= \frac{1}{2}(\cos(\alpha-\beta) - \cos(\alpha+\beta)) & \cos\alpha\cos\beta &= \frac{1}{2}(\cos(\alpha-\beta) + \cos(\alpha+\beta)) \\ \sin^2\alpha &= \cos^2\alpha - \sin^2\alpha - \cos^2\alpha -$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Математика – 23 май 2014 г.

ВАРИАНТ 1

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос № Верен отговор		Брой
		точки
1	В	2
2	Б	2 2
3	В	
4	Б	2
5	Б	2
6	Б	2
7	A	2 2 2 2
8	Γ	2
9	Б	2
10	Б	2
11	В	2 3 3 3
12	Γ	3
13	В	
14	Б	3
15	В	3
16	Б	3
17	В	3
18	Γ	3
19	Б	3
20	В	3
21	-2	4
22	$x_1 = 1, x_2 = 5$	4
23	1280 лв.	4
24	$CM = 5 \mathrm{cm}$	4
25	$AD = 3 \mathrm{cm}$	4
26	$x_1 = 1$, $x_2 = 2$, $x_3 = -1$ и $x_4 = 4$	10
27		10
	$P = \frac{108}{473}$	
28	$r_{ACD} = 4 - 2\sqrt{3} \text{ cm и } r_{ABC} = \frac{2\sqrt{3}}{3} \text{ cm}$	10

Въпроси с решения

26. Критерии за оценяване:

1. Полагане
$$x^2 - 3x + 1 = t$$
 или $(x^2 - 3x = u)$. (2 т.)

2. Получаване на уравнението
$$t^2 - 4t - 5 = 0$$
 или $(u^2 - 2u - 8 = 0)$. (2 т.)

3. Намиране на корените
$$t_1 = -1$$
 и $t_2 = 5$ или ($u_1 = -2$ и $u_2 = 4$). (2 т.)

4. Намиране на корените
$$x_1 = 1$$
 и $x_2 = 2$ на уравнението $x^2 - 3x + 2 = 0$. (2 т.)

5. Намиране на корените
$$x_3 = -1$$
 и $x_4 = 4$ на уравнението $x^2 - 3x - 4 = 0$. (2 т.)

27. Критерии за оценяване:

1. Пресмятане вероятността да се извади червено топче

$$1 - \left(\frac{1}{3} + \frac{2}{5}\right) = 1 - \frac{11}{15} = \frac{4}{15} \tag{1 t.}$$

2. От
$$\frac{4}{15}$$
 $n = 12$ намиране на броя n на всички топчета $n = \frac{15.12}{4} = 45$. (1 т.)

3. Броят на жълтите топчета е
$$\frac{1}{3}.45 = 15$$
, а броят на сините $-\frac{2}{5}.45 = 18$. (2 т.)

4. Извод, че броят на възможностите за изваждане по1 топче от трите цвята е
$$Bl = 12.15.18$$
. (2 т.)

5. Преброяване на възможностите за изваждане на

3 от 45 топчета
$$C_{45}^3 = \frac{45.44.43}{1.2.3} = 15.22.43$$
. (2 т.)

6. Намиране на търсената вероятност
$$P = \frac{Bl}{P_{45}^3}$$
, $P = \frac{15.18.12}{15.22.43} = \frac{18.6}{11.43} = \frac{108}{473}$. (2 т.)

28. Критерии за оценяване:

- 1. ABCD е вписан в окръжност, следователно $∢DBC = ∢DAC = 30^\circ$ и $∢DCA = ⟨DBA = 30^\circ$. (1 т.)
- 2. Извод, че $\triangle ACD$ е равнобедрен, като AD = DC = c. (1 т.)
- 3. ABCD е описан около окръжност, следователно AD + BC = AB + CD. Тогава BC = AB = a. (1т.) 4. $\triangle ABC$ е равностранен (BC = AB = a и $\angle ABC = 60^{\circ}$), следователно

$$BC = AB = AC = 4 \text{ cm}. \tag{1 T.}$$

- 5. За намиране на $AD = DC = \frac{4\sqrt{3}}{3}$. (от косинусова теорема в $\triangle ADC$ или чрез синусова теорема или чрез решаване на равнобедрен триъгълник). (1 т.)
- 6. Изразяване на $S_{ADC}=\frac{AD^2.\sin 120^\circ}{2}=\frac{4\sqrt{3}}{3}\,\mathrm{cm}^2$ и $p_{ACD}=AD+\frac{AC}{2}=2+\frac{4\sqrt{3}}{3}\,\mathrm{cm}$. (2 т.)
- 7. Приравняване на полученото лице с S=p.r и намиране на $r_{ACD}=4-2\sqrt{3}\,\mathrm{cm}$. (1 т.)
- 8. Намиране на $r_{ABC} = \frac{2\sqrt{3}}{3}$ cm равностранния $\triangle ABC$. (2 т.)