DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS AU VOISINAGE D'UN POINT

1 Définition

Définition 1 Soient $x_0 \in I$ et $n \in \mathbb{N}$. On dit que f admet un **développement limité (DL)** au point x_0 à l'ordre n, s'il existe des réels $a_0, a_1, ..., a_n$ et une fonction $\varepsilon : I \to \mathbb{R}$ telle que $\lim_{x \to x_0} \varepsilon(x) = 0$ de sorte que pour tout $x \in I$:

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon(x).$$

- 1. L'égalité précédente s'appelle DL de f au voisinage de x_0 à l'ordre n.
- 2. Le terme $a_0+a_1(x-x_0)+a_2(x-x_0)^2+\ldots+a_n(x-x_0)^n$ est appelé partie polynomiale du DL.
- 3. Le terme $(x-x_0)^n \varepsilon(x)$ est appelé reste du DL.

2 Existence et unicité

Proposition 1 Si f est de classe C^n au voisinage d'un point x_0 , alors f admet un DL au point x_0 à l'ordre n, qui provient de la formule de Taylor-Young :

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + (x - x_0)^n \varepsilon(x),$$

$$o\grave{u} \lim_{x \to x_0} \varepsilon(x) = 0.$$

Proposition 2 Si f admet un DL en x_0 alors ce DL est unique.

Remarque 1 1. Si f est paire, alors la partie polynomiale de son DL en 0 ne contient que des monômes de degrés pairs.

2. Si f impaire, alors la partie polynomiale de son DL en 0 ne contient que des monômes de degrés impairs.

3 DL des fonctions usuelles à l'origine à connaître

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + x^{n} \varepsilon(x)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{p} \frac{x^{2p+1}}{(2p+1)!} + x^{2p+1} \varepsilon(x)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{p} \frac{x^{2p}}{(2p)!} + x^{2p} \varepsilon(x)$$

1 IONISX

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS AU VOISINAGE D'UN POINT

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + x^n \varepsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}x^n}{n} + x^n \varepsilon(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \alpha(\alpha - 1)\frac{x^2}{2!} + \dots$$

$$+ \alpha(\alpha - 1)\dots(\alpha - n + 1)\frac{x^n}{n!} + x^n \varepsilon(x)$$

4 DL en un point quelconque

Définition 2 La fonction f admet un DL au voisinage d'un point x_0 si et seulement si la fonction $x \to f(x + x_0)$ admet un DL au voisinage de 0.

2 IONISX