Série thêta

F. Cléry

Résumé

Nous démontrons les formules d'inversion de séries thêta avec ou sans caractère. Cela nous permet d'obtenir la modularité de la fonction η de Dedekind. La référence principale de cette note est l'ouvrage de N. Koblitz Introduction to Ellipitic Curves and Modular Forms. ([Ko]).

1 Rappels

1.1 Transformée de Fourier

Notons \mathcal{S} le \mathbb{C} -espace vectoriel des fonctions réelles à valeurs complexes indéfiniment dérivables à décroissance rapide au voisinage de l'infini :

$$\mathcal{S} = \left\{ f \in \mathcal{C}^{\infty}(\mathbb{R}) \text{ telle que } \forall N \in \mathbb{N} \lim_{x \to \pm \infty} |x|^N f(x) = 0 \right\}.$$

La fonction $f(x) = e^{-x^2}$ est un élément de cet espace.

La transformée de Fourier est l'opérateur suivant :

$$\left(\begin{array}{ccc} \mathcal{S} & \longrightarrow & \mathcal{S} \\ f & \longmapsto & \hat{f} \end{array}\right)$$

οù

$$\hat{f}: \left(\begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ y & \mapsto & \int_{-\infty}^{+\infty} f(x)e^{-2i\pi xy} \mathrm{d}x \end{array}\right).$$

Proposition 1.1 Soit $f \in S$.

- 1) Si $a \in \mathbb{R}$ et g(x) = f(x+a) alors $\hat{g}(y) = e^{2i\pi ay} \hat{f}(y)$.
- 2) Si $a \in \mathbb{R}$ et $g(x) = e^{2i\pi ax} f(x)$ alors $\hat{g}(y) = \hat{f}(y-a)$.
- 3) Si $a \in \mathbb{R}^{+*}$ et g(x) = f(ax) alors $\hat{g}(y) = \frac{1}{a}\hat{f}(\frac{y}{a})$.

Lemme 1.2 Si
$$f(x) = e^{-\pi x^2}$$
 alors $f = \hat{f}$.

Preuve.

Par définition de la transformée de Fourier, on a $\hat{f}(y) = \int_{-\infty}^{+\infty} f(x)e^{-2i\pi xy} dx$ donc $\hat{f}(y)' = -2i\pi \int_{-\infty}^{+\infty} xe^{-\pi x(2iy+x)} dx$. On intègre alors par parties et on obtient $\hat{f}(y)' = -2\pi y \hat{f}(y)$ donc $\hat{f}(y) = \hat{f}(0)e^{-\pi y^2}$ et $\hat{f}(0) = \int_{-\infty}^{+\infty} e^{-\pi x^2} dx = 1$ (pour obtenir cette égalité, on considère le carré et on passe en coordonnées polaires).

1.2 Formule de sommation de Poisson

Théorème 1.3
$$Si \ f \in \mathcal{S} \ alors \sum_{n \in \mathbb{Z}} \hat{f}(n) = \sum_{n \in \mathbb{Z}} f(n).$$

Preuve. Soit $h(x) = \sum_{x \in \mathbb{Z}} f(x+n)$.

Cette fonction est 1-périodique et possède donc un développement en série de Fourier de la forme :

$$h(x) = \sum_{m \in \mathbb{Z}} c(m)e^{2i\pi mx} \quad \text{où} \quad c(m) = \int_0^1 h(x)e^{-2i\pi mx} \mathrm{d}x.$$

On a donc

$$c(m) = \int_0^1 \sum_{n \in \mathbb{Z}} f(x+n)e^{-2i\pi mx} dx$$
$$= \sum_{n \in \mathbb{Z}} \int_0^1 f(x+n)e^{-2i\pi mx} dx$$
$$= \int_{-\infty}^{+\infty} f(x)e^{-2i\pi mx} dx$$
$$= \hat{f}(m).$$

On se place alors en x=0 pour obtenir le résultat :

$$h(0) = \sum_{n \in \mathbb{Z}} f(n) = \sum_{m \in \mathbb{Z}} c(m) = \sum_{m \in \mathbb{Z}} \hat{f}(m).$$

2 Séries thêta

2.1 La plus simple...

Pour tout t > 0, on note

$$\theta(t) = \sum_{n \in \mathbb{Z}} e^{-\pi t n^2}.$$

C'est une fonction analytique réelle dans \mathbb{R}^{+*} .

Proposition 2.1 On a

$$\theta(t) = \frac{1}{\sqrt{t}}\theta(\frac{1}{t}).$$

Preuve. Soit $g(x) = e^{-\pi tx^2} = f(\sqrt{t}x)$ où $f(x) = e^{-\pi x^2}$. En utilisant le troisième point de la proposition 1.1 et $f = \hat{f}$, on obtient

$$\hat{g}(y) = \frac{1}{\sqrt{t}}\hat{f}(\frac{y}{\sqrt{t}}) = \frac{1}{\sqrt{t}}f(\frac{y}{\sqrt{t}}) = \frac{1}{\sqrt{t}}e^{-\pi\frac{y^2}{t}}.$$

La formule de sommation de Poisson permet alors de conclure.

2.2 Les tordues

Soit χ un caractère de Dirichlet modulo N, primitif, non trivial et pair $(\chi(-1) = 1)$. Pour tout t > 0, on note

$$\theta(\chi, t) = \sum_{n \in \mathbb{N}^*} \chi(n) e^{-\pi t n^2} = \frac{1}{2} \sum_{n \in \mathbb{Z}} \chi(n) e^{-\pi t n^2}.$$

On peut réécrire cette somme de la manière suivante :

$$\theta(\chi, t) = \frac{1}{2} \left(\sum_{\substack{n \equiv 1 \bmod N \\ n \in \mathbb{Z}}} \chi(n) e^{-\pi t n^2} + \dots + \sum_{\substack{n \equiv N \bmod N \\ n \in \mathbb{Z}}} \chi(n) e^{-\pi t n^2} \right). \tag{1}$$

La dernière somme de cette expression est nulle puisque, par définition du caractère χ , on a $\chi(n)=0$ si $(n,N)\neq 1$. Pour $1\leqslant a\leqslant N$, on a

$$\sum_{\substack{n \equiv a \bmod N \\ n \in \mathbb{Z}}} \chi(n) e^{-\pi t n^2} = \sum_{\substack{n = a + kN \\ k \in \mathbb{Z}}} \chi(a) e^{-\pi t (a + kN)^2} = \chi(a) \sum_{k \in \mathbb{Z}} e^{-\pi N^2 t (k + \frac{a}{N})^2}.$$

Notons, pour t > 0 et $a \in [0; 1]$,

$$\theta_a(t) = \sum_{k \in \mathbb{Z}} e^{-\pi t(k+a)^2}.$$

Remarque 2.2 $\theta_0 = \theta_1 = \theta$

La somme (1) se réécrit alors

$$\theta(\chi, t) = \frac{1}{2} \sum_{a=1}^{N} \chi(a) \theta_{\frac{a}{N}}(N^2 t). \tag{2}$$

Pour t > 0 et $a \in [0, 1]$, notons $\theta^a(t)$ la série suivante

$$\theta^a(t) = \sum_{k \in \mathbb{Z}} e^{2i\pi ka} e^{-\pi t k^2}.$$

Remarque 2.3 $\theta^0 = \theta^1 = \theta$

Proposition 2.4 On a $\theta_a(t) = \frac{1}{\sqrt{t}} \theta^a(\frac{1}{t})$.

Preuve. Pour $a \in \mathbb{R}$ et t > 0, la transformée de Fourier de la fonction $h(x) = e^{-\pi t(x+a)^2}$ est donnée par (on utilise les points 1 et 3 de la proposition 1.1) :

$$\hat{h}(y) = e^{2i\pi ay} \frac{1}{\sqrt{t}} e^{-\pi \frac{y^2}{t}}.$$

On applique alors la formule de sommation de Poisson :

$$\theta_a(t) = \sum_{n \in \mathbb{Z}} h(n) = \sum_{n \in \mathbb{Z}} \hat{h}(n) = \frac{1}{\sqrt{t}} \sum_{n \in \mathbb{Z}} e^{2i\pi an} e^{-\pi \frac{n^2}{t}} = \frac{1}{\sqrt{t}} \theta^a(\frac{1}{t}).$$

Nous aurons besoin du résultat suivant sur les sommes de Gauss, dont une preuve se trouve dans [Mi] pp.80-81 :

Lemme 2.5 Soit $g(\chi) = \sum_{n=1}^{N} \chi(a) e^{2i\pi \frac{a}{N}}$. Alors, pour tout entier k, on a

$$\sum_{a=1}^{N} \chi(a) e^{2i\pi \frac{ak}{N}} = \bar{\chi}(k) g(\chi).$$

Proposition 2.6 On a

$$g(\chi)\theta(\bar{\chi},t) = \frac{1}{2} \sum_{a=1}^{N} \chi(a)\theta^{\frac{a}{N}}(N^2t).$$

Preuve. On a

$$\begin{split} \frac{1}{2} \sum_{a=1}^{N} \chi(a) \theta^{\frac{a}{N}}(N^2 t) &= \frac{1}{2} \sum_{a=1}^{N} \chi(a) \sum_{k \in \mathbb{Z}} e^{2i\pi k \frac{a}{N}} e^{-\pi t k^2} \\ &= \frac{1}{2} \sum_{k \in \mathbb{Z}} \left(\sum_{a=1}^{N} \chi(a) e^{2i\pi k \frac{a}{N}} \right) e^{-\pi t k^2}. \end{split}$$

Or
$$\sum_{a=1}^{N} \chi(a) e^{2i\pi k \frac{a}{N}} = \bar{\chi}(k) g(\chi)$$
, la proposition est donc démontrée.

Proposition 2.7 On a

$$\theta(\chi, t) = \frac{g(\chi)}{\sqrt{N^2 t}} \theta(\bar{\chi}, \frac{1}{N^2 t}).$$

Preuve. On a

$$\begin{split} \theta(\chi,t) &= \frac{1}{2} \sum_{a=1}^N \chi(a) \theta_{\frac{a}{N}}(N^2 t) \\ &= \frac{1}{\sqrt{N^2 t}} \left(\frac{1}{2} \sum_{a=1}^N \chi(a) \theta^{\frac{a}{N}}(\frac{1}{N^2 t}) \right) \\ &= \frac{1}{\sqrt{N^2 t}} g(\chi) \theta(\bar{\chi}, \frac{1}{N^2 t}). \end{split}$$

La première égalité est due à la formule (2), la deuxième à la proposition 2.4 et la dernière à la proposition 2.6.

2.3 Application à la fonction η de Dedekind

La fonction η de Dedekind est définie pour tout $\tau \in \mathbb{H} = \{\tau \in \mathbb{C}, \text{Im}(\tau) > 0\}$ par

$$\eta(\tau) = q^{\frac{1}{24}} \prod_{n \ge 1} (1 - q^n) \quad \text{où} \quad q = e^{2i\pi\tau}.$$
(3)

En utilisant l'identité d'Euler $(\prod_{n\geqslant 1}(1-q^n)=\sum_{n\in\mathbb{Z}}(-1)^nq^{\frac{3n^2-n}{2}}),$ on obtient la

fonction êta comme une série infinie :

$$\eta(\tau) = q^{\frac{1}{24}} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{3n^2 - n}{2}} \tag{4}$$

Soit χ l'application de \mathbb{N}^* dans $\{\pm 1\}$ définie par

$$\chi(n) = \begin{cases} 1 & \text{si } n \equiv \pm 1 \bmod 12 \\ -1 & \text{si } n \equiv \pm 5 \bmod 12 \\ 0 & \text{si } (n, 12) \neq 1 \end{cases}.$$

Cette application est un caractère de Dirichlet modulo 12, il est primitif, non trivial, pair et quadratique. On notera, pour tout $n \in \mathbb{N}^*$,

$$\chi(n) = \left(\frac{12}{n}\right).$$

Proposition 2.8 Pour tout $\tau \in \mathbb{H}$, on a

$$\theta(\chi, -i\frac{\tau}{12}) = \sum_{n \ge 1} \left(\frac{12}{n}\right) q^{\frac{n^2}{24}} = \eta(\tau).$$

Pour démontrer cette proposition, il suffit d'utiliser l'écriture de η sous forme de série (voir (3)) et la définition du caractère χ . Les propriétés de caractère χ nous permettent d'appliquer la proposition 2.7 à la fonction η . On obtient ainsi la célèbre formule d'inversion :

$$\eta(-\frac{1}{\tau}) = \sqrt{\frac{\tau}{i}}\eta(\tau) \tag{5}$$

(on choisit la branche de la racine carrée ayant un argument appartenant à] $-\frac{\pi}{2};\frac{\pi}{2}$]). En effet, la proposition 2.7 implique que

$$\eta(\tau) = \theta(\chi, -i\frac{\tau}{12}) = \frac{g(\chi)}{\sqrt{12^2(-i\frac{\tau}{12})}} \theta(\bar{\chi}, \frac{1}{12^2(-i\frac{\tau}{12})})$$

or $\bar{\chi} = \chi$ (χ est réel) et $g(\chi) = 2(\cos(\frac{\pi}{6}) - \cos(\frac{5\pi}{6})) = \sqrt{12}$. L'écriture de η sous forme de produit implique que

$$\eta(\tau+1) = e^{\frac{i\pi}{12}}\eta(\tau). \tag{6}$$

Les formules (5) et (6) font de η une forme modulaire de poids $\frac{1}{2}$ pour le groupe $SL(2,\mathbb{Z})$ avec un système de multiplicateur traditionellement noté v_{η} .

Références

- [Ko] N. Koblitz, Introduction to Elliptic Curves and Modular Forms Graduate Texts in Mathematics, Second Edition, Springer, 97 (1993).
- [Mi] T. Miyake, Modular forms. Springer, 1976.