Санкт-Петербургский государственный политехнический университет Институт Прикладной Математики и Механики Кафедра «Гидроаэродинамики, горения и теплообмена»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

Дисциплина: «Введение в гидрогазодинамику»

Тема: «Измерение коэффициентов сопротивления хорошо и плохо обтекаемых тел»

Студент гр. 3331501/60601			Коновалов А. Ю
Преподаватель			Засимова М. А.
	«	>>	2019

Санкт-Петербург

Задание

- 1. Измерить сопротивление хорошо обтекаемого тела дирижабельной формы и ряда плохообтекаемых тел (шара, пластины, конуса, конуса со сферической головкой) с одинаковыми миделевыми сечениями.
- 2. По данным эксперимента рассчитать коэффициенты сопротивления.
- 3. Составить таблицу коэффициентов сопротивления хорошо и плохо обтекаемых тел.
- 4. Провести анализ полученных результатов.

Рисунок 1 – Схема установки

Порядок выполнения работы на большой аэродинамической трубе

- 1. Собирается схема установки согласно рисунок 1.
- 2. На аэродинамических весах устанавливаются и уравновешиваются по очереди испытываемые модели.
- 3. Записывается начальное показание микроманометра.
- 4. При нескольких скоростях потока производятся измерения силы сопротивления различных моделей R'_{x} (диапазон скоростей дается руководителем).
- 5. Рассчитываются коэффициенты сопротивления моделей по формулам:

$$C_{x} = \frac{R_{x}}{\rho \frac{V^{2}}{2} S},$$

где R_χ — сила сопротивления в Ньютонах, S — площадь миделевого сечения модели, $\rho \frac{V^2}{2}$ — скоростной напор.

Скоростной напор, измеряемый скоростной трубкой, определяется по формуле:

$$\rho \frac{V^2}{2} = \xi^2 \cdot m \cdot \gamma_{\text{спирта}} (A_{ck} - \alpha_{ck}),$$

где α_{ck} — начальное приближение микроманометра, m — масштаб микроманометра, $\gamma_{\text{спирта}}$ — удельный вес спирта в микроманометре, ξ — тарировочный коэффициент скоростной трубки.

Сила лобового сопротивления в Ньютонах определяется по формуле:

$$R_{x} = K_{x}R'_{x}\frac{L_{\text{CT}}}{L_{\text{H}} + \Delta l'}$$

где K_x — поправочный коэффициент, R'_x — измеренная сила сопротивления в футах, $L_{\rm ct}$ — первоначальное расстояние, принятое при тарировке гирь, $L_{\rm H}$ — действительное расстояние центра весов от оси трубы, Δl — смещение центра модели от оси аэродинамической трубы.

$$ho_{
m воздуха}=1$$
,225 кг/м 3 ; $\gamma_{
m спирта}=830$ кгс/м $^3=8140$ Н/м 3 ; $m_{36}=0$,502; $\xi=1$; $K_{\chi}=4$,452 Н/фунт; $L_{
m ct}=1600$ мм; $L_{
m H}=1783$ мм; $\Delta l=0$; $d=0$,2 м;

6. Расчёт чисел Рейнольдса

Расчёт проходит по формуле:

$$Re = \frac{V \cdot L}{\vartheta}.$$

где L — характерный линейный размер модели, ϑ — кинематический коэффициент вязкости.

Примеры расчётов:

$$\begin{split} \rho \frac{V^2}{2} &= \varepsilon^2 \cdot m \cdot \gamma_{\text{спирта}} (A_{ck} - \alpha_{ck}) = \ 1^2 \cdot 0,\!502 \cdot 8140 \cdot (0,\!015 - 0) = 61,\!3 \frac{\text{H}}{\text{M}^2}; \\ R_x &= K_x R'_x \frac{L_{\text{CT}}}{L_{\text{H}} + \Delta l} = 4,\!452 \cdot 0,\!3 \cdot \frac{1,\!6}{1,\!782 + 0} = 1,\!19 \text{ H}; \\ C_x &= \frac{R_x}{\rho \frac{V^2}{2} S} = \frac{1,\!19}{61,\!3 \cdot 0,\!031} = 0,\!622; \end{split}$$

$$Re = \frac{V \cdot L}{\vartheta} = \frac{10 \cdot L}{1,5 \cdot 10^{-5}} = 1,33 \cdot 10^{5}.$$

Таблица 1

Модель	А, мм	R'_{x} , фунт	$\rho \frac{V^2}{2}, \frac{H}{M^2}$	V, M/c	C_x	Re, 10 ⁵
Шар		0,3 0,56 0,95 1,46	61,3 147 249 380	10 15 20 20	0,622 0,484 0,495 0,489	1,22 1,19 1,20 1,12 1,43 1,29 1,31 1,26 2 0,37 0,36 0,36 0,36
Диск		0,59 1,38 2,35 3,57			1,22 1,19 1,20 1,12	
Конус (торцом)	15 36	0,69 1,49 2,57 3,76			1,43 1,29 1,31 1,26	
Конус (острым концом)	61 93	0,18 0,42 0,70 1,06			0,37 0,36 0,36 0,36	
Капля (спереди)		0,08 0,19 0,26 0,45			0,17 0,16 0,13 0,15	
Капля (острым концом)		0,19 0,34 0,54 0,83			0,39 0,29 0,28 0,28	

Рисунок 2 – График коэффициентов сопротивления тел

7. График зависимости $C_x = f(Re)$

По книге «Механика жидкости и газа» Л.Г. Лойцянского и графику зависимости коэффициента трения шара от числа Рейнольдса можно сделать вывод, что вблизи значений чисел Рейнольдса, близких к $1.5 \cdot 10^5$ можно наблюдать резкое уменьшение сопротивления шара (Рисунок 3).

Рисунок 3 – График зависимости $C_x = f(Re)$

Резкое изменение коэффициента трения связано с отрывом ламинарного пограничного слоя, переходящего в турбулентный вне шара. На графике распределения давлений по поверхности шара из учебника Л.Г. Лойцянского, так же можно заметить резкое смещение вниз точек минимума давления и точек отрыва пограничного слоя, это говорит об улучшении обтекания шара

Рисунок 4 – График распределения давлений по поверхности шара.

Вывод:

Значение сил сопротивления и коэффициентов сопротивления тел (таблица 1, рисунок 2), полученные в результате испытаний показывают, что при обтекании диска и торцевой части конуса поток, срывается и образует большую область завихрений. Эти тела имеют наибольшие коэффициенты сопротивления из-за чего они обтекаются хуже остальных исследованных моделей. Наилучшие показатели обтекаемости получены при испытании капли расположенной полусферической стороной к набегающему потоку. Поток воздуха плавно сходит по капле, не образуя завихрений.