Project Title:

Predictive Modeling for Breast Cancer Diagnosis Using Machine Learning

Feature Descriptions for Breast Cancer Dataset

- id: Unique identifier for each sample.
- diagnosis: Target variable indicating the diagnosis (M = Malignant, B = Benign).

Mean Features:

- radius_mean: Mean radius of the tumor cells.
- texture_mean: Mean texture (variation in gray levels) of the tumor cells.
- perimeter_mean: Mean perimeter of the tumor cells.
- area_mean: Mean area of the tumor cells.
- smoothness_mean: Mean smoothness (local variation in radius lengths) of the tumor cells.
- compactness_mean: Mean compactness (perimeter² / area 1.0) of the tumor cells.
- concavity_mean: Mean concavity (severity of concave portions of the contour) of the tumor cells.
- concave points mean: Mean number of concave portions of the tumor cell contours.
- symmetry_mean: Mean symmetry of the tumor cells.
- fractal_dimension_mean: Mean fractal dimension ("coastline approximation") of the tumor cells.

Standard Error Features:

- radius_se: Standard error of the radius of the tumor cells.
- texture_se: Standard error of the texture of the tumor cells.
- perimeter_se: Standard error of the perimeter of the tumor cells.
- area_se: Standard error of the area of the tumor cells.
- smoothness_se: Standard error of the smoothness of the tumor cells.
- compactness_se: Standard error of the compactness of the tumor cells.
- concavity_se: Standard error of the concavity of the tumor cells.
- concave points_se: Standard error of the number of concave portions of the tumor cell contours.
- symmetry_se: Standard error of the symmetry of the tumor cells.
- fractal_dimension_se: Standard error of the fractal dimension of the tumor cells.

Worst (Largest) Features:

- radius_worst: Largest (worst) radius of the tumor cells.
- texture_worst: Largest (worst) texture of the tumor cells.
- perimeter_worst: Largest (worst) perimeter of the tumor cells.
- area_worst: Largest (worst) area of the tumor cells.
- smoothness worst: Largest (worst) smoothness of the tumor cells.
- compactness_worst: Largest (worst) compactness of the tumor cells.
- concavity_worst: Largest (worst) concavity of the tumor cells.
- concave points_worst: Largest (worst) number of concave portions of the tumor cell contours.
- symmetry_worst: Largest (worst) symmetry of the tumor cells.
- fractal_dimension_worst: Largest (worst) fractal dimension of the tumor cells.

Import Libraries

```
In [51]: # Libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.model_selection import train_test_split
          from sklearn.preprocessing import StandardScaler
          from sklearn.linear model import LogisticRegression
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.naive_bayes import GaussianNB
          from sklearn.svm import SVC
          from sklearn.preprocessing import StandardScaler
          \textbf{from} \ \text{sklearn.metrics} \ \textbf{import} \ \text{accuracy\_score}, \ \text{f1\_score}, \ \text{classification\_report}, \ \text{confusion\_matrix}
          import warnings
          warnings.filterwarnings("ignore")
```

Load the Cancer Wisconsin dataset

```
In [9]: df = pd.read_csv('Cancer Wisconsin.csv')
In [11]: df.head()
Out[11]:
                    id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavit
               842302
                                         17.99
                                                       10.38
                                                                       122.80
                                                                                  1001.0
                                                                                                    0.11840
                                                                                                                        0.27760
          0
               842517
          1
                               M
                                         20.57
                                                       17.77
                                                                       132.90
                                                                                  1326.0
                                                                                                    0.08474
                                                                                                                        0.07864
          2 84300903
                                                                       130.00
                               М
                                         19.69
                                                       21.25
                                                                                  1203.0
                                                                                                    0.10960
                                                                                                                        0.15990
          3 84348301
                                         11.42
                                                       20.38
                                                                       77.58
                                                                                   386.1
                                                                                                    0.14250
                                                                                                                        0.28390
          4 84358402
                                         20.29
                                                       14.34
                                                                       135.10
                                                                                  1297.0
                                                                                                    0.10030
                                                                                                                        0.13280
          5 rows × 33 columns
```

Information of dataset

```
In [14]:
         df.shape
Out[14]: (569, 33)
In [16]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 569 entries, 0 to 568
        Data columns (total 33 columns):
         #
            Column
                                     Non-Null Count Dtype
        --- -----
        0 id
                                     569 non-null
                                                    int64
            diagnosis
                                     569 non-null
         1
                                                     object
            radius mean
                                     569 non-null
                                                     float64
                                     569 non-null
                                                     float64
         3
           texture mean
         4
           perimeter_mean
                                    569 non-null
                                                     float64
         5
            area mean
                                     569 non-null
                                                     float64
           smoothness_mean
         6
                                     569 non-null
                                                     float64
            compactness mean
                                     569 non-null
                                                     float64
         8 concavity mean
                                     569 non-null
                                                     float64
         9
            concave points mean
                                     569 non-null
                                                     float64
         10 symmetry_mean
                                     569 non-null
                                                     float64
         11 fractal dimension mean
                                     569 non-null
                                                     float64
         12 radius se
                                     569 non-null
                                                     float64
                                                     float64
         13 texture se
                                     569 non-null
         14 perimeter_se
                                     569 non-null
                                                     float64
         15 area se
                                     569 non-null
                                                     float64
         16 smoothness_se
                                     569 non-null
                                                     float64
         17
            compactness se
                                     569 non-null
                                                     float64
                                                     float64
         18 concavity_se
                                     569 non-null
         19 concave points_se
                                     569 non-null
                                                     float64
         20 symmetry_se
                                     569 non-null
                                                     float64
            fractal dimension se
                                     569 non-null
                                                     float64
         21
         22 radius_worst
                                     569 non-null
                                                     float64
                                     569 non-null
         23 texture worst
                                                     float64
                                    569 non-null
                                                     float64
         24 perimeter worst
                                     569 non-null
                                                     float64
         25 area_worst
         26 smoothness_worst
                                    569 non-null
                                                     float64
         26 SMUULINGSS_WORST
27 compactness_worst
                                    569 non-null
                                                     float64
                                     569 non-null
                                                     float64
         28 concavity_worst
            concave points worst
                                     569 non-null
                                                     float64
         29
                                                     float64
                                     569 non-null
         30 symmetry_worst
         31 fractal_dimension_worst 569 non-null
                                                     float64
                                                     float64
         32 Unnamed: 32
                                     0 non-null
        dtypes: float64(31), int64(1), object(1)
        memory usage: 146.8+ KB
```

Check The Column Names

Data Cleaning

```
In [24]: # Check for missing values
         print("\nMissing Values:\n", df.isnull().sum())
        Missing Values:
         id
                                      0
        diagnosis
                                     0
        radius mean
                                     0
        {\tt texture\_mean}
                                     0
        perimeter mean
        area mean
        smoothness mean
        compactness mean
        concavity mean
        concave points_mean
        symmetry_mean
        fractal dimension mean
        radius se
        texture se
        perimeter_se
        area se
                                     0
        smoothness se
        compactness_se
        concavity_se
        concave points_se
        symmetry se
        fractal dimension se
        radius worst
        texture worst
                                     0
        perimeter worst
        area worst
        smoothness worst
        compactness_worst
        concavity worst
        concave points_worst
        symmetry worst
                                     0
        fractal_dimension_worst
                                     0
        Unnamed: 32
        dtype: int64
In [26]: # Drop Unwanted Columns
         df.drop(['id', 'Unnamed: 32'], axis=1, inplace=True)
In [28]: # Check the balance of the target classes
         df['diagnosis'].value_counts()
Out[28]: diagnosis
         В
               357
         Name: count, dtype: int64
In [30]: # Change The Diagnosis in Numeric (M=1, B=0)
         df['diagnosis'] = df['diagnosis'].map({'M':1, 'B':0})
```

Check The Duplicate Values

```
In [33]: # check the duplicate values
df.duplicated().sum()
Out[33]: 0
```

Summary Statistics

```
In [36]: df.describe().T
```

1		count	mean	std	min	25%	50%	75%	max
	diagnosis	569.0	0.372583	0.483918	0.000000	0.000000	0.000000	1.000000	1.00000
	radius_mean	569.0	14.127292	3.524049	6.981000	11.700000	13.370000	15.780000	28.11000
	texture_mean	569.0	19.289649	4.301036	9.710000	16.170000	18.840000	21.800000	39.28000
	perimeter_mean	569.0	91.969033	24.298981	43.790000	75.170000	86.240000	104.100000	188.50000
	area_mean	569.0	654.889104	351.914129	143.500000	420.300000	551.100000	782.700000	2501.00000
	smoothness_mean	569.0	0.096360	0.014064	0.052630	0.086370	0.095870	0.105300	0.16340
	compactness_mean	569.0	0.104341	0.052813	0.019380	0.064920	0.092630	0.130400	0.34540
	concavity_mean	569.0	0.088799	0.079720	0.000000	0.029560	0.061540	0.130700	0.42680
	concave points_mean	569.0	0.048919	0.038803	0.000000	0.020310	0.033500	0.074000	0.20120
	symmetry_mean	569.0	0.181162	0.027414	0.106000	0.161900	0.179200	0.195700	0.30400
	fractal_dimension_mean	569.0	0.062798	0.007060	0.049960	0.057700	0.061540	0.066120	0.09744
	radius_se	569.0	0.405172	0.277313	0.111500	0.232400	0.324200	0.478900	2.87300
	texture_se	569.0	1.216853	0.551648	0.360200	0.833900	1.108000	1.474000	4.88500
	perimeter_se	569.0	2.866059	2.021855	0.757000	1.606000	2.287000	3.357000	21.98000
	area_se	569.0	40.337079	45.491006	6.802000	17.850000	24.530000	45.190000	542.20000
	smoothness_se	569.0	0.007041	0.003003	0.001713	0.005169	0.006380	0.008146	0.03113
	compactness_se	569.0	0.025478	0.017908	0.002252	0.013080	0.020450	0.032450	0.13540
	concavity_se	569.0	0.031894	0.030186	0.000000	0.015090	0.025890	0.042050	0.39600
	concave points_se	569.0	0.011796	0.006170	0.000000	0.007638	0.010930	0.014710	0.05279
	symmetry_se	569.0	0.020542	0.008266	0.007882	0.015160	0.018730	0.023480	0.07895
	fractal_dimension_se	569.0	0.003795	0.002646	0.000895	0.002248	0.003187	0.004558	0.02984
	radius_worst	569.0	16.269190	4.833242	7.930000	13.010000	14.970000	18.790000	36.04000
	texture_worst	569.0	25.677223	6.146258	12.020000	21.080000	25.410000	29.720000	49.54000
	perimeter_worst	569.0	107.261213	33.602542	50.410000	84.110000	97.660000	125.400000	251.20000
	area_worst	569.0	880.583128	569.356993	185.200000	515.300000	686.500000	1084.000000	4254.00000
	smoothness_worst	569.0	0.132369	0.022832	0.071170	0.116600	0.131300	0.146000	0.22260
	compactness_worst	569.0	0.254265	0.157336	0.027290	0.147200	0.211900	0.339100	1.05800
	concavity_worst	569.0	0.272188	0.208624	0.000000	0.114500	0.226700	0.382900	1.25200
	concave points_worst	569.0	0.114606	0.065732	0.000000	0.064930	0.099930	0.161400	0.29100
	symmetry_worst	569.0	0.290076	0.061867	0.156500	0.250400	0.282200	0.317900	0.66380
	fractal_dimension_worst	569.0	0.083946	0.018061	0.055040	0.071460	0.080040	0.092080	0.20750

In []:

Data Exploration

```
In [42]: # 4.1 Diagnosis Count Plot
plt.figure(figsize=(10,8))
sns.countplot(x='diagnosis', data=df)
plt.title("Benign (0) vs Malignant (1) Cases")
plt.show()
```

Benign (0) vs Malignant (1) Cases

Correlation Matrix

```
In [44]: plt.figure(figsize=(10,8))
    sns.heatmap(df.corr(), annot=False, cmap='coolwarm')
    plt.title("Features Correlation")
    plt.show()
```


Data Preprocessing

```
In [46]: # Features (X) and Target (y)
X = df.drop('diagnosis', axis=1)
y = df['diagnosis']

# Feature Scaling
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Train-Test Split (80% Train, 20% Test)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```

Defining & Training All The Model For Choosing the Best Model

```
In [53]: # Test Of Multiple Models
models = {
    "Logistic Regression": LogisticRegression(max_iter=1000),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "Support Vector Machine": SVC(),
    "Naive Bayes": GaussianNB(),
}

In [55]: results = []
for name, model in models.items():
    # Model Training
    model.fit(X_train, y_train)
    # For Predictions
```

```
y_pred = model.predict(X_test)
    # Check Performance
    acc = accuracy_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    print("*"*60)
    results.append([name, acc, f1])
    # Classification Report
    print(f"\nModel: {name} \n")
    print("Accuracy:", round(acc, 4))
print("F1 Score:", round(f1, 4))
    print("*"*60)
    print("Classification Report:\n", classification_report(y_test, y_pred))
******************
Model: Logistic Regression
Accuracy: 0.9737
F1 Score: 0.9647
             **************
Classification Report:
           precision recall f1-score support
              0.97 0.99 0.98
0.98 0.95 0.96
         1
                                          43
                                0.97
                                         114
   accuracy
            0.97 0.97 0.97
0.97 0.97 0.97
  macro avg
                                         114
weighted avg
                                          114
*****************
Model: Decision Tree
Accuracy: 0.9474
F1 Score: 0.9302
                ************
Classification Penort:
```

Classification	precision	recall	f1-score	support	
0	0.96	0.96	0.96	71	
1	0.93	0.93	0.93	43	
accuracy	0.04	0.04	0.95	114	
macro avg weighted avg	0.94 0.95	0.94 0.95	0.94 0.95	114 114	
weighted avg	0.55	0.55	0.55	114	

Model: Random Forest

Accuracy: 0.9561 F1 Score: 0.9412

Classification Report:

0.0001110001	precision	n recall	f1-score	support	
6	0.96	0.97	0.97	71	
1	L 0.95	0.93	0.94	43	
accuracy	/		0.96	114	
macro avo	0.96	0.95	0.95	114	
weighted avo	0.96	0.96	0.96	114	

Model: Support Vector Machine

Accuracy: 0.9737 F1 Score: 0.9647

Classification Report:

Classificati	precision	recall	f1-score	support	
0	0.97	0.99	0.98	71	
1	0.98	0.95	0.96	43	
accuracy macro avg		0.97	0.97 0.97	114 114	
weighted avg	0.97	0.97	0.97	114	

Model: Naive Bayes Accuracy: 0.9649 F1 Score: 0.9524 *********** Classification Report: precision recall f1-score support 0 0.96 0.99 0.97 71 0.98 0.93 0.95 43 0.96 accuracy 114 0.97 0.96 0.96 macro avg 114 weighted avg 0.97 0.96 0.96 114

Results Comparison

```
In [58]: # Summary table
         # Results Comparison
         results_df = pd.DataFrame(results, columns=['Model', 'Accuracy', 'F1 Score'])
         print("\nModels Comparison:")
         results df.sort values('F1 Score', ascending=False)
        Models Comparison:
Out[58]:
                          Model Accuracy F1 Score
                Logistic Regression
                                 0.973684 0.964706
         3 Support Vector Machine
                                 0.973684 0.964706
         4
                     Naive Bayes
                                 0.964912 0.952381
          2
                   Random Forest
                                 0.956140 0.941176
          1
                    Decision Tree 0.947368 0.930233
```

Model Performance

```
import seaborn as sns
# Plot Model Performance
plt.figure(figsize=(10, 5))
ax = sns.barplot(x="F1 Score", y="Model", data=results_df, palette="Blues")

# Add annotations (F1 Score on bars)
for container in ax.containers:
        ax.bar_label(container, fmt="%.3f", fontsize=10, color="black", padding=1)

# Set title and limits
plt.title("Model Performance Comparison", fontsize=14, fontweight="bold")
plt.xlim(0, 1) #F1 Score range

# Show plot
plt.show()
```


Choose The Best Model

• Logistic Regression Model is the best model for batter prediction

Confusion Matrix

```
In [65]: # Best Model ka Confusion Matrix
plt.figure(figsize=(12, 8))
best_model = LogisticRegression(max_iter=1000)
best_model.fit(X_train, y_train)
y_pred = best_model.predict(X_test)

cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix - Logistic Regression")
plt.show()
```


New Patient Per Prediction

```
prediction_proba = best_model.predict_proba(new_patient_scaled)

# Result Display
print("\nNew Patient Prediction:")
print("Predicted Class:", "Malignant (Cancer)" if prediction[0] == 1 else "Benign (No Cancer)")
print("Probability [Benign, Malignant]:", prediction_proba[0])

New Patient Prediction:
Predicted Class: Malignant (Cancer)
Probability [Benign, Malignant]: [5.49004375e-09 9.99999995e-01]
In []:
```

Run The Model in Streamlit Web App

```
In [74]: %writefile app.py
         import streamlit as st
         import pandas as pd
         import numpy as np
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LogisticRegression
         import pickle
         # Load saved model and scaler
         with open('cancer_model.pkl', 'rb') as model_file:
             model = pickle.load(model_file)
         with open('scaler.pkl', 'rb') as scaler_file:
             scaler = pickle.load(scaler_file)
         # App title and description
         st.title(" Breast Cancer Prediction App")
         st.write("
         This app predicts whether a breast tumor is **Malignant (Cancerous)** or **Benign (Non-Cancerous)**
         using machine learning. Enter the patient's details below:
         # Input form
         st.header("Patient Details")
         with st.form("prediction_form"):
             # Create input fields for all 30 features
             col1, col2 = st.columns(2)
             with col1:
                 radius mean = st.number input("Radius Mean", min value=0.0, value=17.99)
                 texture_mean = st.number_input("Texture Mean", min_value=0.0, value=10.38)
                 perimeter_mean = st.number_input("Perimeter Mean", min_value=0.0, value=122.8)
                 area mean = st.number_input("Area Mean", min_value=0.0, value=1001.0)
                 smoothness_mean = st.number_input("Smoothness Mean", min_value=0.0, value=0.1184)
                 compactness_mean = st.number_input("Compactness Mean", min_value=0.0, value=0.2776)
                 concavity mean = st.number input("Concavity Mean", min value=0.0, value=0.3001)
                 concave points mean = st.number input("Concave Points Mean", min value=0.0, value=0.1471)
                 symmetry mean = st.number input("Symmetry Mean", min value=0.0, value=0.2419)
                 fractal_dimension_mean = st.number_input("Fractal Dimension Mean", min_value=0.0, value=0.07871)
             submit_button = st.form_submit_button("Predict Diagnosis")
         # Prediction logic
         if submit button:
             # Create feature array
             features = np.array([[
                 radius mean, texture mean, perimeter mean, area mean, smoothness mean,
                 compactness_mean, concavity_mean, concave_points_mean, symmetry_mean,
                 fractal dimension mean.
                 # Add remaining features with default values
                 1.095, 0.9053, 8.589, 153.4, 0.006399, 0.04904, 0.05373, 0.01587, 0.03003, 0.006193,
                 25.38, 17.33, 184.6, 2019.0, 0.1622, 0.6656, 0.7119, 0.2654, 0.4601, 0.1189
             ]])
             # Scale features
             features scaled = scaler.transform(features)
             # Make prediction
             prediction = model.predict(features_scaled)
             probability = model.predict_proba(features_scaled)
             # Display results
             st.header("Prediction Results")
```

```
if prediction[0] == 1:
        st.error(f" **Prediction:** Malignant (Cancerous) - \{probability[0][1]*100:.2f\}\% \ probability")
    else:
        st.success(f" **Prediction:** Benign (Non-Cancerous) - {probability[0][0]*100:.2f}% probability")
    # Show probability breakdown
    st.write(f"**Probability Breakdown:**")
    st.write(f"- Benign: {probability[0][0]*100:.2f}%")
    st.write(f"- Malignant: {probability[0][1]*100:.2f}%")
# Run instructions
st.sidebar.header("How to Use")
st.sidebar.write(""
1. Enter patient's tumor characteristics
2. Click 'Predict Diagnosis'
3. View results
# Note: For simplicity, I've included only 10 input fields.
# You should add all 30 features for complete functionality.
```

Overwriting app.py

```
In [76]: import subprocess
         import sys
         # Install streamlit if not installed
         subprocess.check_call([sys.executable, "-m", "pip", "install", "streamlit"])
         # Run the streamlit app
         subprocess.Popen([sys.executable, "-m", "streamlit", "run", "app.py"])
Out[76]: <Popen: returncode: None args: ['C:\\ProgramData\\anaconda3\\python.exe', '-...>
```

In []: