Multi-Asset Equity-Linked Notes

- The par value of this 2-year note is D. It has 12 coupon dates, E_1, E_2, E_{12}, and can be called back, depending on the values of two assets S_j^1 and S_j^2 where j is a point in time
- Each coupon period is 2-month long and begins at B_i , i=1,...,12. Both B_i and E_i are measured in number of trading days with $B_1 = 1$
- The full coupon amount D * F is paid in the first coupon period. F is the coupon rate per period.

Definition

- The note is called (and the contract ended) if, at E_1 or any other day k before maturity, each asset price S_k^j , j=1,2, is greater than or equal to its callable price $C S_0^j$, where C is a given call factor
- For each coupon period x after the first, only a fraction $\frac{n_x}{N_x}$ of the coupon D * F is paid either at the end of the period or at call date, whichever comes first. N_x is the number of business days in the period and n_x is the number of business days when the closing prices of both shares S_k^j , j=1,2, are greater than or equal to their low-range values K S_0^j where K is a given factor

• At call date, the holder receives par value D and the coupon $\frac{n_x}{N_x}$ * D * F where x is the period the call occurs

• At maturity, if each share price $S_{E_{12}}^{j}$ is greater than K S_{0}^{j} , the holder receives D. Otherwise, she receives

$$\min\{\frac{{}^{D}}{\mathrm{K}\,s_{0}^{1}}\,S_{E_{12}}^{1}\,,\frac{{}^{D}}{\mathrm{K}\,s_{0}^{2}}\,S_{E_{12}}^{2}\,\}$$

• At maturity, the holder receives also the coupon

$$\frac{n_{E_{12}}}{N_{E_{12}}} * D * F$$

• Write an application that accepts the inputs shown below and estimates the fair value of the note

Assignment

• To generate the correlated asset paths, use the BS_Cpath function previously provided in the library

Note

Algorithm

- (1) Set Coupon = $e^{-rE_1\Delta t}DF$
- (2) Set $S_{E_1}^* = min\left\{\frac{S_{E_1}^1}{S_0^1}, \frac{S_{E_1}^2}{S_0^2}\right\}$
- (3) If $S_{E_1}^* \ge C$, then set $P = e^{-rE_1\Delta t}D$ and go to step 14, otherwise continue
- (4) Set $i = E_1 + 1$ and x = 2
- (5) Set $S_i^* = min\left\{\frac{S_i^1}{S_0^1}, \frac{S_i^2}{S_0^2}\right\}$
- (6) If $S_i^* \geq K$, then set $n_x = n_x + 1$

- (7) If $S_i^* \ge C$, then set Coupon = Coupon + $e^{-ri\Delta t} \frac{n_x}{E_x E_{x-1}} DF$ and $P = e^{-ri\Delta t} D$ and go to step 14. Otherwise, continue.
- (8) If $i = E_x$, then set Coupon = Coupon + $e^{-rE_x\Delta t} \frac{n_x}{E_x E_{x-1}} DF$ and x = x + 1
- (9) Set i = i + 1 and repeat steps (5) through (8) until $i = E_{12}$. Do not go through these steps if $i = E_{12}$.
- (10) Set $S_{E_1}^* = min\left\{\frac{S_{E_1}^1}{S_0^1}, \frac{S_{E_1}^2}{S_0^2}\right\}$

(11) If $S_{E_{12}}^* \ge K$, then set $n_{12} = n_{12} + 1$

(12) Set Coupon = Coupon +
$$e^{-rE_{12}\Delta t} \frac{n_{12}}{E_{12}-E_{11}} DF$$

(13) Set
$$P = e^{-rE_{12}\Delta t}D \min\left\{\frac{S_{E_{12}}^*}{K}, 1\right\}$$

(14) Price = P + Coupon