Name:		
Instructor		

Math 10560, Quiz 10 Tutorial April 18, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- ullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!							
1.	(a)	(b)	(c)	(d)	(e)		
2.	(a)	(b)	(c)	(d)	(e)		
3.	(a)	(b)	(c)	(d)	(e)		
4.	(a)	(b)	(c)	(d)	(e)		
5.	(a)	(b)	(c)	(d)	(e)		

Multiple Choice

1.(2 pts) Find a power series representation for $\ln(1-x)$ centered at 0.

- (a) $\sum_{n=0}^{\infty} \frac{-x^{n+1}}{n+1}$
- (b) $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$
- (c) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$
- (d) $\sum_{n=0}^{\infty} nx^{n-1}$
- (e) $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{n+1}}{n+1}$

2.(2 pts) Which of the following values is equal to $\sum_{n=0}^{\infty} 2 \frac{(-1)^n 3^{2n+1}}{(2n+1)!}$?

(a) $2e^3$

- (b) $2\cos(3)$
- (c) $\cos(6)$

(d) $\sin(6)$

(e) $2\sin(3)$

Name: _______
Instructor: ______

3.(2 pts) Which of the following power series is equal to the indefinite integral $\int e^{-x^2} dx$?

(a)
$$C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)(n!)}$$

(b)
$$C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$$

(c)
$$C + \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$

(d)
$$C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)(n!)}$$

(e)
$$C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)(2n!)}$$

4.(2 pts) Which of the following is the first few terms of the Maclaurin series (Taylor series at a=0) for

$$\int \frac{\cos(x^2) - 1}{x} \, dx ?$$

(a)
$$C - \frac{x^4}{2! \cdot 4} + \frac{x^8}{4! \cdot 8} - \frac{x^{12}}{6! \cdot 12} + \cdots$$

(b)
$$C - \frac{x^5}{2! \cdot 5} + \frac{x^9}{4! \cdot 9} - \frac{x^{13}}{6! \cdot 13} + \cdots$$

(c)
$$C - \frac{x^4}{2!} + \frac{x^8}{4!} - \frac{x^{12}}{6!} + \cdots$$

(d)
$$C - \frac{x^3}{2!} + \frac{x^7}{4!} - \frac{x^{11}}{6!} + \cdots$$

(e)
$$C - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Name: ______
Instructor: _____

5.(2 pts) Find

$$\lim_{x \to 0} \frac{e^{3x^6} - 1 - 3x^6}{x^{12}}.$$

(a) 9

- (b) $\frac{3}{2}$
- (c) The limit does not exist
- (d) $\frac{9}{2}$

(e) 0