

Lista 6. Orientação, Produto Vetorial e Produto Misto – Gabarito

MTM5512 - Geometria Analítica

Exercício 1.....

As bases ordenadas $\mathcal{E} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}\ e\ \mathcal{F} = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}\ têm\ a\ mesma\ orientação?$

(a) $\vec{f_1} = \vec{e_1} + \vec{e_2} + \vec{e_3}, \ \vec{f_2} = \vec{e_2} + \vec{e_3}, \ \vec{f_3} = \vec{e_3}.$

Solução: Sim.

(b) $\vec{f_1} = (0,0,1)_{\mathcal{E}}, \ \vec{f_2} = (0,1,1)_{\mathcal{E}}, \ \vec{f_3} = (1,1,1)_{\mathcal{E}}.$

Solução: Não.

Exercício 2

Fixe uma base ordenada $\mathcal{E} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$. Defina a orientação positiva de V^3 pela base $\mathcal{F} = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ dada por $\vec{f_1} = (0, 0, 1)_{\mathcal{E}}$, $\vec{f_2} = (0, 1, 2)_{\mathcal{E}}$ e $\vec{f_3} = (1, 0, 1)_{\mathcal{E}}$. Diga a orientação de cada uma das bases abaixo:

(a) \mathcal{E} .

Solução: Negativa.

(b) $\mathcal{E}_1 = \{\vec{e}_3, \vec{e}_2, \vec{e}_1\}.$

Solução: Positiva.

(c) $\mathcal{G} = \{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$, onde $\vec{g}_1 = (1, 1, 1)_{\mathcal{E}}, \vec{g}_2 = (2, 1, 0)_{\mathcal{E}} \in \vec{g}_3 = (3, 0, 0)_{\mathcal{E}}$.

Solução: Positiva.

Exercício 3

Sejam \mathcal{E} uma base ortonormal, $\vec{u} = (3, 1, -1)_{\mathcal{E}}$ e $\vec{v} = (a, 0, 2)_{\mathcal{E}}$. Encontre um valor de $a \in \mathbb{R}$, se possível, para que a área do paralelogramo determinado pelos vetores \vec{u} e \vec{v} seja $2\sqrt{6}$ unidades de área.

Solução: Podemos ter a = -2 ou a = -4.

Seja \mathcal{E} uma base ortonormal. Considere os vetores $\vec{u} = (0, 1, -1)_{\mathcal{E}}$, $\vec{v} = (2, -2, -2)_{\mathcal{E}}$ e $\vec{w} = (1, -1, 2)_{\mathcal{E}}$. Determine as coordenadas do vetor \vec{x} , na base \mathcal{E} , que seja paralelo ao vetor \vec{w} e que satisfação $\vec{x} \wedge \vec{u} = \vec{v}$.

Solução: Se $\vec{x} \mid\mid \vec{w}$ então $\vec{x} = \alpha(1, -1, 2)_{\mathcal{E}}$. Assim

$$\vec{x} \wedge \vec{u} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \alpha & -\alpha & 2\alpha \\ 0 & 1 & -1 \end{vmatrix} = (-\alpha, \alpha, \alpha)_{\mathcal{E}}.$$

Fazendo $\vec{v} = \vec{x} \wedge \vec{u}$ chegamos em $\alpha = -2$ e portanto $\vec{x} = (-2, 2, -4)_{\mathcal{E}}$.

Exercício 5

Mostre que se $\vec{u} \wedge \vec{v} = \vec{w} \wedge \vec{t}$ e $\vec{u} \wedge \vec{w} = \vec{v} \wedge \vec{t}$, então os vetores $\vec{u} - \vec{t}$ e $\vec{v} - \vec{w}$ são LD em V^3 .

Solução: Note que

$$\begin{split} (\vec{u} - \vec{t}) \wedge (\vec{v} - \vec{w}) &= \vec{u} \wedge \vec{v} - \vec{u} \wedge \vec{w} - \vec{t} \wedge \vec{v} + \vec{t} \wedge \vec{w} \\ &= \vec{u} \wedge \vec{v} - \vec{w} \wedge \vec{t} - \vec{u} \wedge \vec{w} + \vec{v} \wedge \vec{t} = \vec{0}, \end{split}$$

e portanto $\vec{u} - \vec{t}$ e $\vec{v} - \vec{w}$ são LD.

Exercício 6

Dados uma base ortonormal \mathcal{E} e os vetores $\vec{u} = (2, -3, 2)_{\mathcal{E}}$ e $\vec{v} = (4, -1, 2)_{\mathcal{E}}$, calcule $\vec{u} \wedge \vec{v}$ e também calcule o seno do ângulo formado por \vec{u} e \vec{v} .

Exercício 7.....

Sejam \vec{u} , \vec{v} dois vetores LI em V^3 , e \vec{w} um vetor satisfazendo $\vec{w} \wedge \vec{u} = \vec{w} \wedge \vec{v} = \vec{0}$. Mostre que $\vec{w} = \vec{0}$.

Solução: Como $\vec{w} \wedge \vec{u} = \vec{0}$, sabemos que \vec{w} e \vec{u} são paralelos, e existe $\alpha \in \mathbb{R}$ tal que $\vec{w} = \alpha \vec{u}$. Do mesmo modo, como $\vec{w} \wedge \vec{v} = \vec{0}$ sabemos que \vec{w} e \vec{v} são LD, logo existe $\beta \in \mathbb{R}$ tal que $\vec{w} = \beta \vec{v}$.

Assim $\alpha \vec{u} = \beta \vec{v}$, ou equivalentemente, $\alpha \vec{u} - \beta \vec{v} = \vec{0}$, e como \vec{u} e \vec{v} são LI, devemos ter $\alpha = \beta = 0$, o que implica que $\vec{w} = \vec{0}$.

Exercício 8.....

Mostre que se $\vec{a}, \vec{b}, \vec{c}$ são vetores de V^3 que satisfazem $\vec{a} \wedge \vec{b} + \vec{b} \wedge \vec{c} + \vec{c} \wedge \vec{a} = \vec{0}$, então eles são LD em V^3 .

Dica: Calcule $(\vec{a} \wedge \vec{b}) \bullet \vec{c}$.

Solução: Usando a dica, como $\vec{a} \wedge \vec{b} = -\vec{b} \wedge \vec{c} - \vec{c} \wedge \vec{a}$, temos

$$(\vec{a} \wedge \vec{b}) \bullet \vec{c} = -(\vec{b} \wedge \vec{c}) \bullet \vec{c} - (\vec{c} \wedge \vec{a}) \bullet \vec{c} = \vec{0},$$

já que ambos $\vec{b} \wedge \vec{c}$ e $\vec{c} \wedge \vec{a}$ são ortogonais a \vec{c} .

Assim $\vec{a} \wedge \vec{b}$ é ortogonal a \vec{a} , \vec{b} e \vec{c} , simultaneamente. Se \vec{a} , \vec{b} e \vec{c} fossem LI em V^3 , eles formariam uma base de V^3 , o que nos daria $\vec{a} \wedge \vec{b} = \vec{0}$, e portanto \vec{a} , \vec{b} são LD, e contrariaria o fato de \vec{a} , \vec{b} , \vec{c} serem LI. Portanto, eles são LD.

Exercício 9.....

Demonstre a **Identidade de Jacobi**, dada por

$$(\vec{u} \wedge \vec{v}) \wedge \vec{w} + (\vec{v} \wedge \vec{w}) \wedge \vec{u} + (\vec{w} \wedge \vec{u}) \wedge \vec{v} = \vec{0}.$$

Dica: Use o a fórmula para o duplo produto vetorial.

Exercício 10.....

Se \mathcal{E} é uma base ortonormal, calcule o produto misto dos vetores $\vec{u} = (1, 1, 3)_{\mathcal{E}}$, $\vec{v} = (2, -1, 5)_{\mathcal{E}}$, $\vec{w} = (4, -3, 1)_{\mathcal{E}}$ e responda: eles são paralelos a um mesmo plano?

Exercício 11....

Prove que $[\vec{u}+\vec{v},\vec{v}+\vec{w},\vec{u}+\vec{w}]=2[\vec{u},\vec{v},\vec{w}].$