# Project 2.1: Brake Disc Design

MAE 598: Design Optimization

By: Anney Romo Herrera

# **CAD Model**

For the CAD model in this project, the same geometry was used as the one given in the tutorial. In the geometry, the rotor thickness, outer rotor diameter, and inner rotor diameter were set as parameters. The brake disk was solid and was later assigned gray cast iron as its material. The frozen parts were the brake pads and were assigned structural steel as their material.



Figure 1: Solid Geometry



Figure 2: Frozen Parts Geometry

# CAE Analysis (Structural, Modal, and Thermal)

The initial analysis shown in figures 3 - 5 below was performed in order to set the parameters: volume, maximum equivalent stress, frequency, and maximum temperature.



Figure 3: Initial Equivalent Stress From Static Structural Analysis



Figure 4: Initial Total Deformation From Modal Analysis



Figure 5: Initial Temperature From Transient Thermal Analysis

# **Design of Experiments**

For the design of experiments, the Latin hypercube sampling design was used. Many samples were gathered with different bounds in order to reach a point were there were no errors in the samples. Additionally, many iterations were run to later narrow the bounds for each parameter. One of the final iterations that led to the last one was a sample of 50 with bounds of [5 27], [124 150], and [66 90] for thickness, outer diameter, and inner diameter respectively. Based on the optimization results from that sample, the final bounds were chosen. In the end, the final design points used were 20. The bounds were [12 15], [123 125], and [75 82] for thickness, outer diameter, and inner diameter respectively.



Figure 6: General Design Of Experiments Set Up

|    | A    |       | В                            | С                  | D                  | E                                      | F                                                 | G                               | Н                       |  |
|----|------|-------|------------------------------|--------------------|--------------------|----------------------------------------|---------------------------------------------------|---------------------------------|-------------------------|--|
| 1  | Name | •     | P1 -<br>rotor_thickness (mm) | P2 - rotor_OD (mm) | P3 - rotor_ID (mm) | P4 - Equivalent Stress<br>Maximum (Pa) | P5 - Total Deformation<br>Reported Frequency (Hz) | P6 - Temperature<br>Maximum (C) | P7 - Solid Volume (m^3) |  |
| 2  | 1 [  | DP 82 | 13.575                       | 123.45             | 79.725             | 1.2218E+07                             | 1786.8                                            | 405.58                          | 0.00060682              |  |
| 3  | 2 [  | DP 86 | 14.175                       | 124.35             | 75.875             | 1.1582E+07                             | 1662                                              | 391.01                          | 0.00064653              |  |
| 4  | 3 [  | DP 72 | 12.075                       | 124.45             | 76.925             | 1.1684E+07                             | 1647.3                                            | 432.89                          | 0.00058103              |  |
| 5  | 4 [  | DP 84 | 13.875                       | 123.05             | 76.575             | 1.2381E+07                             | 1719.3                                            | 402.8                           | 0.00062116              |  |
| 6  | 5 [  | DP 74 | 12.375                       | 123.75             | 81.125             | 1.1576E+07                             | 1786.4                                            | 428.99                          | 0.00057253              |  |
| 7  | 6    | DP 91 | 14.925                       | 123.85             | 80.075             | 1.1 <del>444</del> E+07                | 1792.2                                            | 381.13                          | 0.00064778              |  |
| 8  | 7 [  | DP 83 | 13.725                       | 124.25             | 81.475             | 1.1438E+07                             | 1787.7                                            | 399.03                          | 0.00061374              |  |
| 9  | 8    | DP 90 | 14.775                       | 124.05             | 77.975             | 1.1761E+07                             | 1739.5                                            | 382.64                          | 0.00065376              |  |
| 10 | 9 (  | DP 78 | 12.975                       | 124.85             | 75.175             | 1.1664E+07                             | 1597.1                                            | 411.39                          | 0.0006169               |  |
| 11 | 10   | DP 77 | 12.825                       | 123.15             | 76.225             | 1.3711E+07                             | 1683.9                                            | 422.87                          | 0.00059248              |  |
| 12 | 11 [ | DP 80 | 13.275                       | 123.95             | 75.525             | 1.1973E+07                             | 1646.8                                            | 408.79                          | 0.00061594              |  |
| 13 | 12 ( | DP 76 | 12.675                       | 124.15             | 80.425             | 1.1671E+07                             | 1761.7                                            | 420.34                          | 0.00058667              |  |
| 14 | 13 ( | DP 81 | 13.425                       | 123.65             | 81.825             | 1.2033E+07                             | 1811.5                                            | 407.24                          | 0.00059805              |  |
| 15 | 14 [ | DP 87 | 14.325                       | 124.55             | 78.325             | 1.1554E+07                             | 1724.9                                            | 387.86                          | 0.00064497              |  |
| 16 | 15 [ | DP 79 | 13.125                       | 123.25             | 77.275             | 1.1939E+07                             | 1719.5                                            | 415.77                          | 0.00059935              |  |
| 17 | 16   | DP 89 | 14.625                       | 123.35             | 79.025             | 1.2233E+07                             | 1785.4                                            | 388.18                          | 0.00063758              |  |
| 18 | 17 [ | DP 88 | 14.475                       | 124.95             | 79.375             | 1.1804E+07                             | 1738.4                                            | 384.2                           | 0.00065016              |  |
| 19 | 18 ( | DP 85 | 14.025                       | 124.65             | 78.675             | 1.1696E+07                             | 1726.4                                            | 392.37                          | 0.00063606              |  |
| 20 | 19   | DP 75 | 12.525                       | 123.55             | 77.625             | 1.1769E+07                             | 1706.3                                            | 426.75                          | 0.00058399              |  |
| 21 | 20 [ | DP 73 | 12.225                       | 124.75             | 80.775             | 1.162E+07                              | 1740.1                                            | 428.2                           | 0.00057886              |  |

Figure 7: Final Design Points

| Table of | Schematic ( | D2: Design | of Experiments (Latir      | n Hypercube Samp       | oling Design : Use                | er-Defined Samples : Rando                | m Generator Seed = 0 : N                       | umber of Samples = 50)          |                         |  |
|----------|-------------|------------|----------------------------|------------------------|-----------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------|-------------------------|--|
|          |             | Α          | В                          | С                      | D                                 | E                                         | F                                              | G                               | Н                       |  |
| 1        | Name        | • 💌        | P1 -<br>rotor_thic<br>(mm) | P2 -<br>rotor_OD  (mm) | P3 -<br>rotor_ID <b>~</b><br>(mm) | P4 - Equivalent<br>Stress Maximum<br>(Pa) | P5 - Total Deformation Reported Frequency (Hz) | P6 - Temperature<br>Maximum (C) | P7 - Solid Volume (m^3) |  |
| 2        | 1           | DP 16      | 13.14                      | 125.82                 | 89.28                             | 1.7148E+07                                | 1790.3                                         | 405.98                          | 0.00058828              |  |
| 3        | 2           | DP 16      | 17.1                       | 140.9                  | 75.84                             | 1.1983E+07                                | 1271.8                                         | 346.53                          | 0.00097171              |  |
| 4        | 3           | DP 14      | 5.66                       | 146.1                  | 68.16                             | 1.1569E+07                                | 691.93                                         | 779.59                          | 0.00048531              |  |
| 5        | 4           | DP 16      | 14.9                       | 139.34                 | 88.8                              | 2.0614E+07                                | 1403.5                                         | 372.65                          | 0.00080168              |  |
| 6        | 5           | DP 14      | 6.54                       | 129.98                 | 70.08                             | 1.1402E+07                                | 1038.3                                         | 687.82                          | 0.00044087              |  |
| 7        | 6           | DP 18      | 25.46                      | 132.06                 | 80.64                             | 1.2795E+07                                | 1489.1                                         | 302.91                          | 0.0011061               |  |
| 8        | 7           | DP 16      | 14.46                      | 142.98                 | 87.84                             | 2.064E+07                                 | 1322.4                                         | 378.88                          | 0.00083641              |  |
| 9        | 8           | DP 18      | 25.02                      | 139.86                 | 66.24                             | 2.0515E+07                                | 1357.8                                         | 304.28                          | 0.0013748               |  |
| 10       | 9           | DP 15      | 9.18                       | 133.62                 | 73.44                             | 1.1659E+07                                | 1163.1                                         | 518.55                          | 0.00056529              |  |
| 11       | 10          | DP 14      | 7.86                       | 149.74                 | 68.64                             | 1.1774E+07                                | 753.02                                         | 587.39                          | 0.00062726              |  |
| 12       | 11          | DP 15      | 10.94                      | 124.26                 | 69.6                              | 2.2092E+07                                | 1383.9                                         | 464.85                          | 0.00055726              |  |
| 13       | 12          | DP 14      | 7.42                       | 136.74                 | 76.8                              | 1.4231E+07                                | 1085.5                                         | 616.25                          | 0.00051591              |  |
| 14       | 13          | DP 15      | 12.7                       | 135.7                  | 72.48                             | 1.1618E+07                                | 1214.8                                         | 410.22                          | 0.00072777              |  |
| 15       | 14          | DP 17      | 18.42                      | 148.18                 | 74.88                             | 1.6478E+07                                | 1144.3                                         | 334.91                          | 0.001157                |  |
| 16       | 15          | DP 15      | 10.5                       | 128.94                 | 89.76                             | 2.6338E+07                                | 1711.7                                         | 469.58                          | 0.00054835              |  |
| 17       | 16          | DP 18      | 22.38                      | 144.54                 | 85.92                             | 1.8307E+07                                | 1269.1                                         | 312.25                          | 0.0012007               |  |
| 18       | 17          | DP 17      | 21.5                       | 137.26                 | 70.56                             | 4.4757E+07                                | 1341.1                                         | 316.14                          | 0.0011325               |  |
| 19       | 18          | DP 16      | 16.66                      | 148.7                  | 84.96                             | 1.7502E+07                                | 1205.2                                         | 350.83                          | 0.0010268               |  |
| 20       | 19          | DP 14      | 6.98                       | 134.66                 | 79.68                             | 1.1175E+07                                | 1183                                           | 649.1                           | 0.0004862               |  |
| 21       | 20          | DP 14      | 6.1                        | 149.22                 | 81.6                              | 1.1583E+07                                | 852.16                                         | 729.44                          | 0.00053387              |  |
| 22       | 21          | DP 15      | 12.26                      | 140.38                 | 77.76                             | 1.2021E+07                                | 1206.6                                         | 419.9                           | 0.00074705              |  |
| 23       | 22          | DP 18      | 22.82                      | 128.42                 | 85.44                             | 1.743E+07                                 | 1583.1                                         | 311.32                          | 0.00090803              |  |
| 24       | 23          | DP 18      | 25.9                       | 146.62                 | 83.04                             | 1.8052E+07                                | 1217.5                                         | 301.49                          | 0.0014282               |  |
| 25       | 24          | DP 14      | 8.3                        | 127.38                 | 75.36                             | 1.1357E+07                                | 1358                                           | 565.21                          | 0.00048752              |  |
| 26       | 25          | DP 17      | 19.74                      | 137.78                 | 69.12                             | 2.2113E+07                                | 1273.8                                         | 325.81                          | 0.0010725               |  |
| 27       | 26          | DP 16      | 16.22                      | 134.14                 | 79.2                              | 1.7834E+07                                | 1473.3                                         | 355.68                          | 0.00082332              |  |
| 28       | 27          | DP 17      | 21.06                      | 133.1                  | 83.52                             | 1.335E+07                                 | 1510.8                                         | 318.34                          | 0.00095244              |  |
| 29       | 28          | DP 17      | 17.98                      | 127.9                  | 72.96                             | 1.2877E+07                                | 1534.7                                         | 339.72                          | 0.00082762              |  |

Figure 8: Semi-final Design Points

# Response Surface

For the response surface, Kringing type was chosen to compensate for the small number of samples at the end. Additionally, about ¼ of the sample size was used as verification points on every set of samples run. The figures below show the response surface configuration and final response point.



Figure 9: General Response Surface Setup

Table 1: Response Points

| Name                            | P1<br>(mm) | P2<br>(mm) | P3<br>(mm) | P4 (Pa)     | P5 (Hz)     | P6 (C)      | P7 (m^3)        |
|---------------------------------|------------|------------|------------|-------------|-------------|-------------|-----------------|
| Semi-final<br>Response<br>Point | 16         | 137        | 78         | 16336176.1  | 1379.139738 | 357.0146723 | 0.0008594019427 |
| Final<br>Response<br>Point      | 13.5       | 124        | 78.5       | 11624249.07 | 1735.973582 | 404.2538199 | 0.0006143285002 |

# Sensitivity

In the final sample, the sensitivities were most monotonic. All but one parameter were mostly monotonic, which was equivalent stress. The sensitivities are shown in figures 10-14. From these figures, thickness seems to have the highest impact. For both temperature and volume, thickness has the steepest curve.



Figure 10: Local Sensitivity



Figure 11: Frequency Sensitivity



Figure 12: Temperature Sensitivity



Figure 13: Equivalent Stress Sensitivity



Figure 14: Volume Sensitivity

# Optimization (MOGA)

For optimization, the MOGA method was used. In this method, volume was chosen as the main objective to minimize. Then, stress, frequency, and temperature were set as constraints. Their bounds were determined based on the average of the corresponding set of samples.



Figure 15: General Optimization Setup

| Reference | Name 🔻                             | P1 -<br>r ( | P2 -   | P3 -     | P4 - Equivalent S<br>Maximum (Pa |                                | P5 - Total Deformation<br>Reported Frequency<br>(Hz) |                                | P6 - Temperature<br>Maximum (C) |                                | P7 - Solid Volume (m^3) |                                |        |              |        |        |        |        |            |       |        |       |          |       |              |       |
|-----------|------------------------------------|-------------|--------|----------|----------------------------------|--------------------------------|------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------|-------------------------|--------------------------------|--------|--------------|--------|--------|--------|--------|------------|-------|--------|-------|----------|-------|--------------|-------|
| Reference | Name                               |             | (      | r 💌<br>( | Parameter Value                  | Variation<br>from<br>Reference | Parameter<br>Value                                   | Variation<br>from<br>Reference | Parameter Value                 | Variation<br>from<br>Reference | Parameter Value         | Variation<br>from<br>Reference |        |              |        |        |        |        |            |       |        |       |          |       |              |       |
| 0         | Candidate<br>Point 1               |             |        | 83.511   | 1.6033E+07                       | 14.56%                         | 1783.9                                               | 1.28%                          | 416.23                          | -0.88%                         | <b>★</b> 0.00058516     | -0.49%                         |        |              |        |        |        |        |            |       |        |       |          |       |              |       |
| 0         | Candidate<br>Point 1<br>(verified) | 12.653      | 124.95 |          | 1.2585E+07                       | -10.08%                        | 1793.3                                               | 1.82%                          | × 417.95                        | -0.47%                         | ★ 0.00058516            | -0.49%                         |        |              |        |        |        |        |            |       |        |       |          |       |              |       |
| 0         | Candidate<br>Point 2               |             |        |          |                                  | 1.5521E+07                     | 10.90%                                               | 1745                           | -0.93%                          | <b>415.69</b>                  | -1.01%                  | ★ 0.00058806                   | 0.00%  |              |        |        |        |        |            |       |        |       |          |       |              |       |
| •         | Candidate<br>Point 2<br>(verified) | 12.692      | 12.692 | 12.692   | 12.692                           | 12.692                         | 12.692                                               | 12.692                         | 12.692                          | 12.692                         | 12.692                  | 12.692                         | 12.692 | 12.692       | 12.692 | 12.692 | 124.13 | 80.011 | 1.3996E+07 | 0.00% | 1761.3 | 0.00% | × 419.94 | 0.00% | ★ 0.00058805 | 0.00% |
| 0         | Candidate<br>Point 3               |             | 125.58 |          |                                  |                                |                                                      | 1.5834E+07                     | 13.13%                          | 1751.2                         | -0.57%                  | 415.25                         | -1.12% | ★ 0.00059398 | 1.01%  |        |        |        |            |       |        |       |          |       |              |       |
| 0         | Candidate<br>Point 3<br>(verified) | 12.676      |        | 82.874   | 1.1223E+07                       | -19.81%                        | <b>1757.3</b>                                        | -0.23%                         | 415.69                          | -1.01%                         | ★ 0.00059399            | 1.01%                          |        |              |        |        |        |        |            |       |        |       |          |       |              |       |

Figure 16: Candidate Points From Semi-final Optimization

|                        |                                              | Object       | ive  |         | Constraint            |                |                |           |  |
|------------------------|----------------------------------------------|--------------|------|---------|-----------------------|----------------|----------------|-----------|--|
| Name                   | Parameter                                    | Туре         | Targ | et erar | Туре                  | Lower<br>Bound | Upper<br>Bound | Tolerance |  |
| Minimize P7            | P7 - Solid Volume                            | Minimize     | 0    |         | No Constraint         | 1              |                |           |  |
| P4 <= 1.3226E+07<br>Pa | P4 - Equivalent Stress<br>Maximum            | No Objective | -    |         | Values <= Upper Bound | 1              | 1.3226E+07     | 0.001     |  |
| P5 >= 1642 Hz          | P5 - Total Deformation<br>Reported Frequency | No Objective | -    |         | Values >= Lower Bound | 1642           |                | 0.001     |  |
| P6 <= 405.9 C          | P6 - Temperature<br>Maximum                  | No Objective |      |         | Values <= Upper Bound | 1              | 405.9          | 0.001     |  |

Figure 17: Objective And Constraints For Final Optimization



Figure 18: Candidate Points From Final Optimization

From Figure 18 above, the variation from both candidate points to verified points and candidate points to candidate points is relatively low. This is a good indicator of approaching an optimal solution.



Figure 19: Sensitivities for Final Optimization

# **Optimal Solution**

The figures below are a visual representation of the final solution.



Figure 20: Final Geometry



Figure 21: Final Equivalent Stress From Static Structural Analysis



Figure 22: Final Total Deformation From Modal Analysis



Figure 23: Final Temperature From Transient Thermal Analysis

### **Result Validation**

The optimal solution reached was a pretty reasonable optimization of the initial design. It minimized volume, minimized stress, and maximized frequency as shown in the table below. Specifically, the main objective, the volume, was significantly improved. The only aspect in which it was unsuccessful was it increased the temperature instead of decreasing it.

Table 2: Results Comparision

| Parameter                                         | Initial Value | Optimal value   | % Difference |
|---------------------------------------------------|---------------|-----------------|--------------|
|                                                   |               |                 |              |
| P1 - rotor_thickness (mm)                         | 25            | 13.63381702     | -58.84%      |
| P2 - rotor_OD (mm)                                | 125           | 123.305501      | -1.36%       |
| P3 - rotor_ID (mm)                                | 75            | 81.96505569     | 8.87%        |
| P4 - Equivalent Stress Maximum (Pa)               | 13226000      | 13157839.5      | -0.52%       |
| P5 - Total Deformation Reported<br>Frequency (Hz) | 1642          | 1827.424017     | 10.69%       |
| P6 - Temperature Maximum (C)                      | 307.09        | 405.401825      | 27.60%       |
| P7 - Solid Volume (m^3)                           | 0.00099667    | 0.0005995741148 | -49.75%      |

Although the design failed in one aspect, that is a tradeoff of MOGA optimization in ANSYS. You can only set one variable as the objective, the rest have to be set as constraints that can exist in the samples.

Ultimately, I believe the optimal design was reasonable based on the iterations ran. A bigger sample was first used and then the optimal design from there was used to create a new set of bounds and samples. Additionally, the sensitivity of the final sample was mostly monotonic. Finally, the variance percentage in the candidate points from optimization was pretty low.