

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 050 541 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
08.11.2000 Bulletin 2000/45(51) Int. Cl.⁷: C07K 14/44, A61K 39/018,
C12N 15/00, C07K 16/20,
G01N 33/53

(21) Application number: 00201485.0

(22) Date of filing: 25.04.2000

(84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE
 Designated Extension States:
 AL LT LV MK RO SI

(30) Priority: 29.04.1999 EP 99201322

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: Akzo Nobel N.V.
6824 BM Arnhem (NL)

(72) Inventors:
 • Schetters, Theodorus Petrus Maria
 5432 CD Cuyk (NL)

- Carcy, Bernard
34070 Montpellier (FR)
- Gorenflo, André
34090 Montpellier (FR)
- Précigout, Eric
34730 Prades Le Lez (FR)
- Vallet, Alexina
St. Paul en Chablais (FR)

(74) Representative:
 Mestrom, Joannes Jozef Louis et al
 N.V. Organon,
 Postbus 20
 5340 BH Oss (NL)

(54) Babesia vaccine

(57) The present invention relates to the nucleic acid sequence of genes encoding proteins of the 37 kD protein family of *Babesia divergens*. Furthermore, the invention relates to recombinant molecules comprising such nucleic acid sequences, live recombinant carriers comprising such nucleic acid sequences and host cells comprising such nucleic acid sequences. Yet another embodiment of the invention relates to vaccines against *Babesia divergens* comprising proteins of the 37 kD protein family, nucleic acid sequence of genes encoding proteins of the 37 kD protein family of *Babesia divergens*, recombinant molecules comprising such nucleic acid sequences, live recombinant carriers comprising such nucleic acid sequences, host cells comprising such nucleic acid sequences, antibodies against proteins of the 37 kD protein family and methods for the preparation of such vaccines. Additionally, diagnostic kits for the detection of *Babesia divergens*, diagnostic kits for the detection of antibodies against *Babesia divergens* and methods for the detection of *Babesia divergens* and antibodies against *Babesia divergens* are disclosed. Finally, an embodiment relates to the use of a protein of the 37 kD protein family or a mixture of such proteins for the manufacture of vaccines.

Description

[0001] The present invention relates to the nucleic acid sequence of genes encoding proteins of the 37 kD protein family of *Babesia divergens*, recombinant molecules comprising such nucleic acid sequences, live recombinant carriers comprising such nucleic acid sequences, host cells comprising such nucleic acid sequences, vaccines against *Babesia divergens* comprising proteins of the 37 kD protein family, methods for the preparation of such vaccines, methods for the detection of antibodies against a protein of the 37 kD protein family, diagnostic kits for the detection of *Babesia divergens*, diagnostic kits for the detection of antibodies against *Babesia divergens* and methods for the detection of *Babesia divergens*.

[0002] The parasite *Babesia divergens* causes severe economical losses in cattle. The genus *Babesia* to which *Babesia divergens* belongs comprises amongst others also the species *B. bovis*, *B. canis* and *B. bigemina*. In Europe, *Babesia divergens* is the most pathogenic *Babesia* species affecting cattle. (Kuttler, K.L., in M. Ristic (ed.), *Babesiosis of domestic animals and man*. CRC Press, Inc., Boca Raton, Fla. 1988). The parasite is transmitted by the three-host cattle-tick *Ixodes ricinus*. *Babesia divergens* causes anaemia in cattle, in severe cases leading to death. The disease is also called "red water" since in a progressed state it causes bloody urine. The problem of bovine Babesiosis has been a long-standing problem: vaccination against bovine Babesiosis in Sweden, using blood from carrier cattle which had acute Babesiosis in the previous summer, was already advised by local veterinary authorities in 1920. In spite of all efforts however, there is still no safe and efficacious vaccine commercially available today, although in Sweden alone, babesiosis costs farmers more than 875.000 \$ each year. It has been shown that babesiosis in cattle can be controlled by vaccination with live attenuated vaccines. The presently available live vaccines however have the drawback that their application needs veterinary surveillance. This is due to their variable infectivity and morbidity: in unhealthy animals an attenuated live vaccine causes a virulent infection leading to sickness. It is known that vaccination with live vaccines is however not necessary. It appeared that so-called Soluble Parasite Antigen (SPA) preparations are capable of inducing an immune response that, although not necessarily affecting the parasite, sufficiently reduces the level of clinical manifestations upon infection. (Rev.: Schetters et al. in *Parasitology today* 11: 456-462 (1995)). Further analysis of the various components found in SPA has revealed several proteins that possibly play a role in inducing protection against infection, or at least against the clinical manifestations of the infection. When the SPA proteins were separated into 4 separate groups F1-F4, based on their molecular weight, it surprisingly turned out that all 4 groups contained a compound that gave at least a certain amount of protection against infection. (Précigout et al., *Experimental Parasitology* 77: 425-434 (1993)). Of the proteins found in the F4-fraction, one specific *Babesia divergens* protein has been studied for several years already for its use in vaccines: the 17 kD Merozoite Membrane protein. Of this protein it has been strongly suggested that it plays a very important role, if not the key role, in inducing immunity against *Babesia*. This was based i.a. upon the finding that monoclonal antibodies against the 17 kD protein were induced after live infection and could *in vitro* drastically inhibit growth of the parasite. (Précigout et al. (1993), *Exp. Parasitol.* 77 (4) : 425-34).

[0003] Two other proteins, present in the same fraction that comprises the 17 kD protein, i.e. the F4-fraction, and also recognised by antiserum against *Babesia divergens*, are a 50 kD protein and a 37 kD protein. (Carcy et al., *Infect. and Immun.* 63: 811-817 (1995)). The detection of both the 50 kD and the 37 kD protein was based on the fact that *in vivo* antibodies are raised against these proteins. This is however the case with many proteins of the SPA: practically all proteins are capable of raising antibodies, but only one or a minor number of proteins plays a role in the induction of neutralising antibodies. Only antibodies against the 17 kD protein were known to possess protective activity. Thus, one would expect this 17 kD protein to be the protein of the F4-group that is responsible for inducing immunity. And therefore the possible role of the other F4-proteins, e.g. the 37 kD and the 50 kD protein remained fully unclear.

[0004] It is an objective of the present invention to provide an novel and efficient vaccine component against *Babesia divergens* infection in cattle, or at least against the clinical manifestations of the infection.

[0005] In one embodiment, therefore, the present invention provides for the first time the nucleotide sequence of the gene encoding the 37 kD protein. Surprisingly it was found, that the 37 kD protein can be found in at least two different variant forms: a 37 kD form and a slightly shorter form; a 35 kD form. Other, slightly smaller or larger forms are also seen. The form depends on the *Babesia divergens* strain from which the gene was isolated. It is therefore appropriate to talk about a 37 kD protein family rather than merely a 37 kD protein. The reason for the difference in size of the various members lies in the fact that certain regions of the protein can apparently be deleted without drastically altering the function of the protein (see below). Many different *Babesia divergens* strains have until now been isolated that indeed show such variations in molecular weight of the 37 kD protein. It will be clear, that the molecular weight of the proteins is determined on a PAGE-gel relative to marker proteins. Therefore it is appropriate to read 37 kD as 37 kD (+/- 3 kD), and to read 35 kD as 35 kD (+/- 3 kD).

It is clear that for the determination of the level of homology between two members of the 37 kD protein family, a DNA

fragment that is present in one protein and deleted in the other contributes to a decrease in homology level, even in the case that all nucleic acids still present would be 100 % homologous. The following may serve as an example: if the genes encoding a 37 kD protein and a 35 kD protein are compared, there is a non-homology of 5% which is only due to the deletion in the shorter of the two genes. Therefore, in order to compensate for those differences in homology that are due to differences in size of the proteins of the 37 kD protein family, the minimal level of overall homology between the genes encoding the various proteins of the 37 kD protein family is estimated to be 60%. Thus, the 37 kD protein family comprises those proteins of which the genes encoding them share at least 60% homology with the genes encoding the 37 kD protein family of which the nucleic acid sequences are given in SEQ ID NO: 1, 2 and 3. These sequences are merely given as examples of proteins of the 37 kD protein family. The algorithm used for the determination of the level of nucleic acid homology is known as "Clustal W" and has been described by Thompson et al., in Nucleic Acid Research 22: 4673-4680 (1994). The program can be found at several sites on Internet.

5 All genes encoding a protein of the 37 kD protein family that share at least 60% homology with the nucleic acid sequences given in SEQ ID NO: 1, 2 or 3 are considered to be members of the 37 kD protein family. For e.g. vaccine applications (see below) the homology between a selected gene encoding a protein of the 37 kD protein family and SEQ ID NO: 1, 2 or 3 will preferably be somewhat higher than 60%. Although a 60% homology with SEQ ID NO: 1, 2 or 3 would be acceptable, a homology of > 70 % would be preferred. A homology of > 80% is more preferred, whereas an homology of > 90% is most preferred.

10 In exceptional cases, a member of the 37 kD protein may be found to have a nucleic acid homology that is below the level given above. This may e.g. be caused by an exceptionally large deletion. Nevertheless, such genes belong to the family of genes encoding a protein of the 37 kD protein family if they hybridise with any of the genes of which the nucleic acid sequence is given in SEQ ID NO: 1, 2 or 3 under stringent conditions. The conditions for hybridisation are given in Example 1.

15 [0006] Another way of determining if a protein belongs to the proteins of the 37 kD protein family is based upon binding of the protein to a specific antibody. This way of characterising the proteins of the 37 kD family is provided below. The characterisation is based upon the specific reaction of proteins of the 37 kD protein family with the monoclonal antibody F4.2F8. This monoclonal antibody binds to most proteins of the 37 kD family tested so far. The monoclonal antibody is highly specific; a common characteristic of all monoclonal antibodies. A hybridoma cell line producing the monoclonal antibody F4.2F8 has been deposited with the European Collection of Cell Cultures (ECACC), Centre for Applied Microbiology & Research (CAMR), Salisbury, Wiltshire SP4 0JG United Kingdom, under accession number 99031816. Therefore, all proteins binding to F4.2F8 are considered to be members of the 37 kD protein family.

20 It can not be excluded that occasionally a strain is isolated having a protein of the 37 kD protein family that does not bind to monoclonal antibody F4.2F8. In such exceptional cases, the gene encoding the protein will however still hybridise to a gene of which the nucleic acid sequence is given in SEQ ID NO: 1, 2 or 3, or the gene will show a homology of at least 60 % with the nucleic acid sequence is given in SEQ ID NO: 1, 2 or 3.

25 [0007] In a first embodiment, the invention provides a nucleic acid sequence of *Babesia divergens* that encodes a protein of the 37 kD protein family or an immunogenic fragment thereof.

30 [0008] It could be shown by sequence analysis of the genes encoding the 37 kD protein family in the various strains, that the difference in size is often due to the presence, absence or polymorphism of small nucleic acid deletions in the gene. This is shown in fig. 1. This figure shows a sequence comparison between the *B. divergens* strains Rouen 1987 (R), Weybridge 8843 (W) and Y5. It can be seen that strains W and Y5 encode a 35 kD variant form, whereas strain R encodes a 37 kD variant.

35 [0009] Next to the presence/absence of the deletion in W and Y5 compared to R, there are minor variations in the overall nucleic acid sequence of the gene encoding a protein of the 37 kD protein family in the respective *Babesia* strains. These variations may have no effect on the amino acid sequence of the polypeptide, in case that the modification is such that the variant triplet codes for the same amino acid. This cause of variation is based upon the phenomenon of degeneracy of the genetic code. It happens e.g. that due to natural mutation the G in the triplet CTG, coding for the amino acid Leucine, is replaced by a C, also coding for Leucine, or that the G in GAG coding for glutamic acid is replaced by an A, which triplet still encodes glutamic acid. Such a mutation is a silent mutation, i.e. it does not show at the amino acid level. Such silent modifications are very frequently found in nature, when comparing e.g. two different field isolates of *Babesia divergens*. This phenomenon holds for all amino acids, except Met and Trp. Thus, it is obvious, that the protein family of the present invention can not only be coded for by the nucleotide sequences given in SEQ ID NO: 1-3 but also by a very large variety of other sequences, all encoding the identical protein. It therefore goes without saying that any nucleic acid sequence encoding the proteins of SEQ. ID. NO: 1, 2 or 3 of the present invention as well as nucleic acid sequences having a 60% homology are also considered to fall within the scope of the invention.

40 [0010] It will be understood that, for the particular proteins embraced herein, natural variations can exist between individual *Babesia* parasites or strains. These variations may be demonstrated by (an) amino acid difference(s) in the overall sequence or by deletions, substitutions, insertions, inversions or additions of (an) amino acid(s) in said sequence. Amino acid substitutions which do not essentially alter biological and immunological activities, have been

described, e.g. by Neurath et al in "The Proteins" Academic Press New York (1979). Amino acid replacements between related amino acids or replacements which have occurred frequently in evolution are, inter alia, Ser/Ala, Ser/Gly, Asp/Gly, Asp/Asn, Ile/Val (see Dayhoff, M.D., Atlas of protein sequence and structure, Nat. Biomed. Res. Found., Washington D.C., 1978, vol. 5, suppl. 3). Other amino acid substitutions include Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Thr/Phe, Ala/Pro, Lys/Arg, Leu/Ile, Leu/Val and Ala/Glu. Based on this information, Lipman and Pearson developed a method for rapid and sensitive protein comparison (Science, **227**, 1435-1441, 1985) and determining the functional similarity between homologous proteins. Such amino acid substitutions of the exemplary embodiments of this invention, as well as variations having deletions and/or insertions are within the scope of the invention as long as the resulting proteins retain their immunoreactivity. Thus, variations not essentially influencing the immunogenicity of the protein compared to the wild type protein as depicted in SEQ ID NO: 4-6 are considered to fall within the scope of the invention. Those variations in the amino acid sequence of a certain 37 kD protein according to the invention that still provide a protein capable of inducing protection against infection with *B. divergens* or at least against the clinical manifestations of the infection are considered as "not essentially influencing the immunogenicity".

5 [0011] In a preferred form, the invention relates to a nucleic acid sequence encoding a 37 kD protein or an immunogenic fragment thereof. Such a sequence could e.g. be isolated from an R strain, or any other strain encoding a protein of the 37 kD protein family with a molecular weight of 37 kD.

10 [0012] In a more preferred form of this embodiment the gene encoding the 37 kD protein has the sequence depicted in SEQ ID NO: 1.

15 [0013] In another preferred form, the invention relates to a nucleic acid sequence encoding a 35 kD protein or an immunogenic fragment thereof. This sequence could e.g. be isolated from a W strain, or any other strain encoding a protein of the 37 kD protein family with a molecular weight of 35 kD.

20 [0014] In a more preferred form of this embodiment the gene encoding the 35 kD protein has the sequence depicted in SEQ ID NO: 2 or 3.

25 [0015] The invention also relates to nucleic acid sequences encoding a protein of the 37 kD protein family that is capable of binding to the monoclonal antibody F42F8.

30 [0016] A definition of immunogenic fragments of a protein of the 37 kD protein family will be given below, where another embodiment of the invention, i.e. vaccination is discussed.

35 [0017] In general, the term "protein" refers to a molecular chain of amino acids with biological activity. A protein is not of a specific length and can, if required, be modified *in vivo* or *in vitro*, by, for example, glycosylation, amidation, carboxylation or phosphorylation; thus, inter alia, peptides, oligopeptides and polypeptides are included within the definition.

40 [0018] Since the present invention discloses the nucleic acid sequence encoding members of the 37 kD protein family, it is now for the first time possible to obtain such proteins in sufficient quantities. This can e.g. be done by using expression systems to express the gene encoding the protein of the 37 kD protein family.

45 [0019] An essential requirement for the expression of the nucleic acid sequence is an adequate promoter operably linked to the nucleic acid sequence. It is obvious to those skilled in the art that the choice of a promoter extends to any eukaryotic, prokaryotic or viral promoter capable of directing gene transcription in cells used as host cells for protein expression. Therefore, an even more preferred form of this embodiment relates to recombinant DNA molecules, i.e. DNA molecules according to the invention to which regulating sequences enabling expression of that nucleic acid sequence have been added. This can be obtained by means of e.g. standard molecular biology techniques. (Maniatis/Sambrook (Sambrook, J. Molecular cloning: a laboratory manual, 1989. ISBN 0-87969-309-6).

50 [0020] When the host cells are bacteria, useful expression control sequences which may be used include the Trp promoter and operator (Goeddel, et al., Nucl. Acids Res., **8**, 4057, 1980); the lac promoter and operator (Chang, et al., Nature, **275**, 615, 1978); the outer membrane protein promoter (Nakamura, K. and Inouge, M., EMBO J., **1**, 771-775, 1982); the bacteriophage lambda promoters and operators (Remaut, E. et al., Nucl. Acids Res., **11**, 4677-4688, 1983); the α -amylase (*B. subtilis*) promoter and operator, termination sequences and other expression enhancement and control sequences compatible with the selected host cell.

55 [0021] When the host cell is yeast, useful expression control sequences include, e.g., α -mating factor. For insect cells the polyhedrin or p10 promoters of baculoviruses can be used (Smith, G.E. et al., Mol. Cell. Biol., **3**, 2156-65, 1983). When the host cell is of mammalian origin illustrative useful expression control sequences include the SV-40 promoter (Berman, P.W. et al., Science, **222**, 524-527, 1983) or the metallothionein promoter (Brinster, R.L., Nature, **296**, 39-42, 1982) or a heat shock promoter (Voellmy et al., Proc. Natl. Acad. Sci. USA, **82**, 4949-53, 1985). Alternatively, expression control sequences present in *Babesia* may also be applied. For maximising gene expression, see also Roberts and Lauer (Methods in Enzymology, **68**, 473, 1979).

56 [0022] Bacterial, yeast, fungal, insect and mammalian cell expression systems are very frequently used systems. Such systems are well-known in the art and easily available, e.g. commercially through Clontech Laboratories, Inc. 4030 Fabian Way, Palo Alto, California 94303-4607, USA. Next to these expression systems, parasite-based expression systems are very attractive expression systems. Such systems are e.g. described in the French Patent Application

with Publication number 2 714 074, and in US NTIS Publication No US 08/043109 (Hoffman, S. and Rogers, W.: Public. Date 1 December 1993).

[0021] Another embodiment of the invention relates to Live Recombinant Carrier microorganisms (LRCs) comprising a gene encoding a protein of the 37 kD protein family according to the invention. Such micro-organisms are e.g. bacteria and viruses. These LRC micro-organisms are micro-organisms in which additional genetic information has been cloned. Animals infected with such LRCs will produce an immunogenic response not only against the immunogens of the vector, but also against the immunogenic parts of the polypeptide(s) for which the genetic code is additionally cloned into the LRC, e.g. the 37 kD protein.

As an example of bacterial LRCs, attenuated *Salmonella* strains known in the art can attractively be used.

[0022] Live recombinant carrier parasites have i.a. been described by Vermeulen, A. N. (Int. Journ. Parasitol. 28: 1121-1130 (1998))

Also, LRC viruses may be used as a way of transporting the nucleic acid sequence into a target cell. Live recombinant carrier viruses are also called vector viruses. The site of integration of the gene encoding a 37 kD protein may be a site in a viral gene that is not essential to the virus, or a site in an intergenic region. Viruses often used as vectors are *Vaccinia* viruses (Panicali et al; Proc. Natl. Acad. Sci. USA, 79: 4927 (1982), *Herpesviruses* (E.P.A. 0473210A2), and *Reoviruses* (Valerio, D. et al; in Baum, S.J., Dicke, K.A., Lotzova, E. and Pluznik, D.H. (Eds.), *Experimental Haematology today* - 1988. Springer Verlag, New York: pp. 92-99 (1989)).

[0023] The technique of *in vivo* homologous recombination, well-known in the art, can be used to introduce a recombinant nucleic acid sequence into the genome of a bacterium, parasite or virus of choice, capable of inducing expression of the inserted nucleic acid sequence according to the invention in the host animal.

[0024] Furthermore the invention relates to a host cell containing a nucleic acid sequence encoding the protein according to the invention, or a recombinant nucleic acid molecule encoding the protein under the control of regulating sequences enabling expression of the protein encoded by said nucleic acid sequence.

The invention also relates to a host cell containing a live recombinant carrier containing a nucleic acid molecule encoding a protein of the 37 kD family, or a recombinant nucleic acid molecule encoding a protein of the 37 kD family under the control of regulating sequences enabling expression of the protein encoded by said nucleic acid sequence. A host cell may be a cell of bacterial origin, e.g. *Escherichia coli*, *Bacillus subtilis* and *Lactobacillus* species, in combination with bacteria-based plasmids as pBR322, or bacterial expression vectors as pGEX, or with bacteriophages. The host cell may also be of eukaryotic origin, e.g. yeast-cells in combination with yeast-specific vector molecules, or higher eukaryotic cells like insect cells (Luckow et al; Bio-technology 6: 47-55 (1988)) in combination with vectors or recombinant baculoviruses, plant cells in combination with e.g. Ti-plasmid based vectors or plant viral vectors (Barton, K.A. et al; Cell 32: 1033 (1983), mammalian cells like *HeLa* cells, Chinese Hamster Ovary cells (CHO) or Crandell Feline Kidney-cells, also with appropriate vectors or recombinant viruses.

[0025] Another objective of the invention is to provide an efficient vaccine against *Babesia divergens* infection, or at least against the clinical manifestations of the infection.

It was now surprisingly found, that an immunological response that provides immunity against infection with the *Babesia* parasite, or at least an immunological response that sufficiently reduces the level of clinical manifestations upon infection (as shown e.g. by a decrease of the haematocrit value), can be obtained by vaccination with vaccines comprising a protein of the 37 kD protein family or an immunogenic fragment thereof.

[0026] When a polypeptide is used for e.g. vaccination purposes or for raising antibodies, it is however not necessary to use the whole polypeptide. It is also possible to use a fragment of that polypeptide that is capable, as such or coupled to a carrier such as e.g. KLH, of inducing an immune response against that polypeptide, a so-called immunogenic fragment. An "immunogenic fragment" is understood to be a fragment of the full-length protein of the 37 kD family, that still has retained its capability to induce an immune response in the host, i.e. comprises a B- or T-cell epitope. At this moment, a variety of techniques is available to easily identify DNA fragments encoding antigenic fragments (determinants). The method described by Geysen et al (Patent Application WO 84/03564, Patent Application WO 86/06487, US Patent NR. 4,833,092, Proc. Natl Acad. Sci. 81: 3998-4002 (1984), J. Imm. Meth. 102, 259-274 (1987), the so-called PEPSCAN method is an easy to perform, quick and well-established method for the detection of epitopes; the immunologically important regions of the protein. The method is used worldwide and as such well-known to man skilled in the art. This (empirical) method is especially suitable for the detection of B-cell epitopes. Also, given the sequence of the gene encoding any protein, computer algorithms are able to designate specific polypeptide fragments as the immunologically important epitopes on the basis of their sequential and/or structural agreement with epitopes that are now known. The determination of these regions is based on a combination of the hydrophilicity criteria according to Hopp and Woods (Proc. Natl. Acad. Sci. 78: 38248-3828 (1981)), and the secondary structure aspects according to Chou and Fasman (Advances in Enzymology 47: 45-148 (1987) and US Patent 4,554,101). T-cell epitopes can likewise be predicted from the sequence by computer with the aid of Berzofsky's amphiphilicity criterion (Science 235, 1059-1062 (1987) and US Patent application NTIS US 07/005,885). A condensed overview is found in: Shan Lu on common principles: Tibtech 9: 238-242 (1991), Good et al on Malaria epitopes; Science 235: 1059-1062 (1987), Lu for a review; Vac-

cine 10: 3-7 (1992), Berzowsky for HIV-epitopes; The FASEB Journal 5:2412-2418 (1991).

[0027] Therefore, another embodiment of the invention relates to vaccines inducing protection against infection with *B. divergens* or the clinical manifestations of the infection, comprising at least one protein of the 37 kD protein family or an immunogenic fragment thereof. It is clear that the protein of choice selected from the 37 kD protein family, or the gene encoding that protein can be a 35 kD protein or a 37 kD protein, or a mixture of the two. The protein or the gene encoding the protein can e.g. be chosen from *Babesia divergens* strain Rouen 1987 or Weybridge 8843 or any variants from other isolates.

[0028] More surprisingly it was also found, that proteins of the 37 kD protein family are capable of inducing antibodies that do not only protect against infection with a homologous *Babesia divergens* strain, but also with heterologous strains. This means i.a. that a vaccine based upon a 35 kD protein of e.g. *B. divergens* strain Weybridge induces protection against a 37 kD protein of e.g. *B. divergens* strain Rouen and *vice versa*.

Also, it was unexpectedly found that antibodies against a protein of the 37 kD protein family are capable of conferring *in vivo* immunity against both homologous and heterologous challenge.

This is the more surprising for the following reason: antibodies against the 17 kD protein mentioned above are abundantly found after experimental infection and after immunisation with fraction 4. Moreover, α -Bd17, a monoclonal antibody against the 17 kD protein was described as the relevant vaccine component in passive vaccination against *Babesia* (Précigout et al., Experimental Parasitology 77: 425-434 (1993), see above) on the basis of the fact that it dramatically inhibits *in vitro* growth of the parasite. On the basis thereof, the 17 kD protein was expected to be the relevant vaccine component. This antibody however, when used as a reference in *in vivo* experiments, did unexpectedly not confer any protection at all, nor in a homologous nor in a heterologous challenge experiment (as will be seen in Example 4).

[0029] It was even more surprisingly found, that a vaccine comprising a mixture of two or more different proteins of the 37 kD family exhibit a synergistic effect compared to vaccines comprising the same amount of protein but from only one member of the 37 kD protein family. This has the advantage that vaccines comprising a mixture of two or more different proteins of the 37 kD protein family may comprise a lower overall amount of antigenic material compared to vaccines comprising a protein of only one member of the 37 kD protein family.

Thus in a preferred form, this embodiment of the invention relates to vaccines comprising two or more different proteins of the 37 kD protein family.

[0030] The following may serve as an example: a vaccine comprising a 35 kD protein and a 37 kD protein exhibits a synergistic effect compared to vaccines comprising the same amount of protein but from only 37 or 35 kD protein. A vaccine comprising both 50-75% of a 37 kD protein and 25-50 % of a 35 kD protein gives a level of protection against disease that is between 33% and 60% better than that found when the same amount of pure 37 kD protein or 35 kD protein was used as a vaccine. This holds true for challenge with strains comprising a 37 kD protein as well as for strains comprising a 35 kD protein. This has the advantage that relatively low amounts of immunogenic material can be used, yet giving rise to a sufficiently high immune response.

Such vaccines can be made e.g. by admixing the desired amounts of the purified proteins, but also by admixing the desired amounts of cells comprising the different proteins. Therefore, in a more preferred form, this embodiment of the invention relates to vaccines comprising both 50-75% of a 37 kD protein of the 37 kD protein family and 25-50 % of a 35 kD protein of the 37 kD protein family.

[0031] Such vaccines can alternatively be made by admixing live recombinant carriers encoding the 37 kD protein and encoding the 35 kD protein according to the invention.

Alternatively, in the case of DNA-vaccines, mixtures of recombinant DNA molecules each capable of expressing one of the proteins can be made.

[0032] It is clear, that a vaccine for the protection of cattle against *Babesia divergens* infection or the clinical manifestations thereof can also be based upon the administration of antibodies against a protein of the 37 kD protein family.

As a source of antibodies a polyclonal antiserum raised in e.g. rabbits against a member of the 37 kD protein family can be used. As described above, antisera against one protein of the 37 kD protein family show cross-protection against other proteins of the 37 kD protein family. Therefore, any protein of the 37 kD protein family can be used for the induction of such a polyclonal antiserum. Also, neutralising monoclonal antibodies against a protein of the 37 kD protein family, such as e.g. the monoclonal antibody F4.2F8 can be used.

Thus, the invention also relates to vaccines protecting against infection of cattle with *B. divergens* or the clinical manifestations of the infection, that comprise antibodies against a protein of the 37 kD protein family.

[0033] Also, a vaccine according to the invention may comprise a recombinant DNA molecule comprising a nucleic acid sequence according to the invention and regulating sequences enabling expression of that nucleic acid sequence as described above. Such a vaccine is capable of making the encoded protein of the 37 kD family in the host animal.

[0034] As an alternative to the administration of vaccines comprising proteins of the 37 kD protein family, vaccines can be administered that comprise an LRC carrying a gene encoding a protein of the 37 kD protein family or an immunogenic fragment thereof. The advantage of such an approach is, that such an LRC invades certain target cells of the host organism. Once inside the target cells all LRC-genes are expressed, including the gene encoding the protein of

the 37 kD protein family as carried by the LRC. As a result, the protein of the 37 kD protein family is expressed and presented to the immune system in a way that closely mimics the natural way of expression and immune presentation. Therefore, vaccination with a LRC carrying a gene of the 37 kD protein family or an immunogenic fragment thereof can advantageously be used.

5 Thus in another form of the embodiment relating to vaccines, the vaccine inducing protection against infection with *B. divergens* or at least against the clinical manifestations of the infection comprises a live recombinant carrier according to the invention.

[0035] When a vaccine is made on the basis of a protein of the 37 kD protein family or an immunogenic fragment thereof obtained from an expression system, in principle the protein can be purified from the proteins of the host cells 10 of the expression system. This is however not always necessary. It is very well possible to incorporate in a vaccine the cells that have been used for the expression of the protein of choice from the 37 kD protein family.

Thus, in still another form of the embodiment relating to vaccines, the vaccine inducing protection against infection with *B. divergens* or at least against the clinical manifestations of the infection, comprises a host cell according to the invention.

15 [0036] Additionally, the vaccine according to the invention may comprise one or more immunogenic proteins of other pathogens. This is advantageous, since vaccination with such a vaccine makes it possible to immunise an animal against two or more diseases in one vaccination step.

There are several ways of obtaining such a vaccine. One is admixing a protein according to the invention with one or 20 more immunogenic proteins of other pathogens. Another possibility is the cloning of a heterologous DNA sequence encoding an immunogenic protein of another pathogen into a live recombinant carrier according to the invention.

[0037] Preferably the immunogenic protein is chosen from the group of cattle pathogens, consisting of Bovine Herpesvirus, bovine Viral Diarrhoea virus, Parainfluenza type 3 virus, Bovine Paramyxovirus, Foot and Mouth Disease virus, *Pasteurella haemolytica*, Bovine Respiratory Syncytial Virus, *Theileria parva*, *Theileria annulata*, *Babesia bovis*, *Babesia bigemina*, *Babesia major*, *Trypanosoma species*, *Anaplasma marginale*, *Anaplasma centrale* or *Neospora caninum*.

25 [0038] Furthermore, the heterologous DNA sequence may encode a cytokine such as interleukins, TNF and interferons. Several cytokines, e.g. interferons are known to play an important role as immune modulators. Thus it may be advantageous to include genetic information for this kind of molecule into said section.

[0039] It is obvious that a heterologous DNA sequence can be introduced at a certain site in said section, e.g. in a 30 restriction site without deleting any nucleotides from the section. On the other hand, it is possible to exchange one or more nucleotides with heterologous DNA sequences of equal or different length.

[0040] Vaccines according to the present invention can be made e.g. by merely admixing of a protein of the 37 kD protein family or an immunogenic fragment thereof, either as such or coupled to a suitable carrier molecule, and a pharmaceutically acceptable carrier. A pharmaceutically acceptable carrier is understood to be a compound that does not 35 adverse effect the health of the animal to be vaccinated, at least not to the extend that the adverse effect is worse than the effects seen when the animal is not vaccinated. A pharmaceutically acceptable carrier can be e.g. sterile water or a sterile physiological salt solution. In a more complex form the carrier can e.g. be a buffer.

Also, the vaccine can be made by admixing a nucleic acid sequence encoding a protein of the 37 kD family, a recombinant DNA molecule encoding a protein of the 37 kD family, a live recombinant carrier or a host cell according to the 40 invention and a pharmaceutically acceptable carrier.

[0041] Thus another embodiment of the invention relates to methods for the preparation of a vaccine comprising the admixing of a protein of the 37 kD protein family or an immunogenic fragment thereof, antibodies against a protein of the 37 kD family, a nucleic acid sequence according to the invention, a recombinant DNA molecule according to the invention, a live recombinant carrier according to the invention or a host cell according to the invention and a pharmaceutically acceptable carrier.

[0042] The vaccine according to the present invention may in a preferred presentation also contain an adjuvant. Adjuvants in general comprise substances that boost the immune response of the host. A number of different adjuvants are known in the art. Examples of adjuvants are Freunds Complete and Incomplete adjuvant, vitamin E, non-ionic block polymers and polyamines such as dextran sulphate, carbopol and pyran. Also very suitable are surface active substances such as Quil A^(R).

[0043] Saponins are a preferred adjuvant. Saponins are preferably added to the vaccine at a level between 20 and 150 µg/ml. Within the group of saponins, the saponin Quil A is a more preferred adjuvant. Furthermore, peptides such as muramyldipeptides, dimethylglycine, tuftsin, are often used. Next to these adjuvants, Immune-stimulating Complexes (ISCOMS), mineral oil e.g. Bayol^(R) or Markol^(R), vegetable oils or emulsions thereof 55 and Diluvac^(R) Forte can advantageously be used. The vaccine may also comprise a so-called "vehicle". A vehicle is a compound to which the polypeptide adheres, without being covalently bound to it. Often used vehicle compounds are e.g. aluminium hydroxide, -phosphate, sulphate or -oxide, silica, Kaolin, and Bentonite. A special form of such a vehicle, in which the antigen is partially embedded in the vehicle, is the so-called ISCOM (EP 109.942, EP 180.564, EP

242.380).

Often, the vaccine is mixed with stabilisers, e.g. to protect degradation-prone polypeptides from being degraded, to enhance the shelf-life of the vaccine, or to improve freeze-drying efficiency. Useful stabilisers are i.a. SPGA (Bovarnik et al; J. Bacteriology 59: 509 (1950)), skimmed milk, gelatin, bovine serum albumin, carbohydrates e.g. sorbitol, manitol, trehalose, starch, sucrose, dextran or glucose, proteins such as albumin or casein or degradation products thereof, and buffers, such as alkali metal phosphates.

5 Freeze-drying is an efficient method for conservation. Freeze-dried material can be stored and kept viable for many years. Storage temperatures for freeze-dried material may well be above zero degrees, without being detrimental to the material.

10 Freeze-drying can be done according to all well-known standard freeze-drying procedures.

Therefore, in a preferred embodiment, the vaccine is in a freeze-dried form.

In addition, the vaccine may be suspended in a physiologically acceptable diluent. Such a diluent can e.g. be as simple as sterile water, or a physiological salt solution.

It goes without saying, that other ways of adjuvanting, adding vehicle compounds or diluents, emulsifying or stabilising a 15 polypeptide are also embodied in the present invention.

[0044] The vaccine according to the invention can be administered in a conventional active immunisation scheme: single or repeated administration in a manner compatible with the dosage formulation, and in such amount as will be prophylactically effective, i.e. the amount of immunising antigen or recombinant micro-organism capable of expressing said antigen that will induce immunity in cattle against challenge by virulent *Babesia divergens* parasites. Immunity is

20 defined as the induction of a significant level of protection in a population of cattle after vaccination compared to an unvaccinated group.

[0045] For live viral vector vaccines the dose rate per animal may range from 10^3 to 10^8 pfu (but even <1000 pfu might be sufficient e.g. for Bovine Herpesvirus carrier virus). A typical subunit vaccine according to the invention comprises 0.1 to 100 μ g of the polypeptide (or variant or fragment thereof) according to the invention. Preferably at least 5 μ g 25 will be present. Such vaccines can be administered e.g. intradermally, subcutaneously, intramuscularly, intraperitoneally, intravenously, orally or intranasally.

[0046] An alternative and efficient way of vaccination is direct vaccination with DNA encoding the relevant antigen. Direct vaccination with DNA encoding proteins has been successful for many different proteins. (As reviewed in e.g. Donnelly et al., The Immunologist 2: 20-26 (1993)). In the field of anti-parasite vaccines, protection against e.g. Plasmodium yoelii has been obtained with DNA-vaccination with the Plasmodium yoelii circumsporozoite gene (Vaccine 12: 30 1529-1533 (1994)). Protection against Leishmania major has been obtained with DNA-vaccination with the Leishmania major surface glycoprotein gp63 gene (Vaccine 12: 1534-1536 (1994)). This way of vaccination is also very attractive for the vaccination of cattle against Babesiosis. Therefore, the invention 35 also relates to vaccines comprising DNA encoding one or more proteins of the 37 kD protein family or an immunogenic fragment thereof.

[0047] Since infection with *Babesia divergens* may progress relatively slowly, it may take some time before the diagnosis of *Babesia divergens* infection is made. In many cases in diseased animals *Babesia divergens* infection is only found to be the cause of the disease after the occurrence of haemoglobinuria (visible since it turns the urine red), which means that the disease has already significantly progressed.

40 Moreover, babesiosis infection is found in different forms. One form is characterised by the fact that *Babesia* antigens are found in the plasma, but no antibodies have yet been formed. This situation is found in acutely infected animals.

[0048] A second form is the form in which the *Babesia* parasites have been cured and the plasma does contain antibodies against *Babesia* antigens but no *Babesia* antigens. This is the situation found in animals that have developed a sterile immunity against *Babesia*. A third form is the form in which both antigens and antibodies are found in the 45 plasma. Animals having this form of infection are immune against *Babesia* but they are at the same time carrier of the parasite. These animals are a potential source of infection for other animals.

Thus in order to determine the *Babesia* infection status of an animal it is important to determine both the *Babesia* antigen-levels and the anti-*Babesia* antibody-level in the serum. Therefore diagnostic tools, preferably capable of differentiating between the various forms, are highly wanted.

50 Another embodiment of this invention provides such diagnostic tools.

[0049] A diagnostic test for the detection of *Babesia divergens* antibodies in sera can be e.g. a simple ELISA-test in which purified protein of the 37 kD protein family or an antigenic fragment thereof is coated to the wall of the wells of an ELISA-plate. Incubation with serum from mammals to be tested, followed by e.g. incubation with a labelled antibody against the relevant mammalian antibody can then reveal the presence or absence of antibodies against the 37 kD protein.

55 Another example of a diagnostic test system is e.g. the incubation of a Western blot comprising 37 kD protein with serum of mammals to be tested, followed by analysis of the blot.

[0050] Thus, one form of this embodiment relates to a method for the detection in serum of antibodies against

Babesia divergens in which the method comprises the incubation of serum with protein of the 37 kD protein family or an antigenic fragment thereof.

[0051] A diagnostic test for the *Babesia* antigens and therefore suitable for the detection of *Babesia divergens* parasites can e.g. also be a standard ELISA test, in which the walls of the wells of an ELISA plate are coated with antibodies directed against a protein of the 37 kD protein family.

[0052] The invention also relates to methods for the detection of *Babesia divergens* parasites, that comprise the incubation of serum with antibodies against a protein of the 37 kD protein family.

[0053] A quantitative, or competition ELISA not only indicating the presence or absence of *Babesia* antigens but also indicating the amount of *Babesia* antigens, is also part of the invention. Such an ELISA is well-known in the art.

10 Thus this embodiment of the invention also relates to competitive ELISAs.

[0054] Antibodies or derivatives thereof (e.g. fragments such as Fab, F(ab')₂ or Fv fragments), which are directed against proteins of the 37 kD protein family according to the invention and have potential uses in passive immunotherapy, diagnostic immunoassays and in the generation of anti-idiotypic antibodies can be made according to standard techniques as indicated below.

15 The proteins or immunogenic fragments thereof according to the invention as characterised above can be used to produce antibodies, which may be polyclonal, monospecific or monoclonal (or derivatives thereof). If polyclonal antibodies are desired, techniques for producing and processing polyclonal sera are known in the art (e.g. Mayer and Walter, eds. *Immunochemical Methods in Cell and Molecular Biology*, Academic Press, London, 1987).

20 Monoclonal antibodies, reactive against the protein according to the invention (or variants or fragments thereof) according to the present invention, can be prepared by immunising inbred mice by techniques known in the art (Kohler and Milstein, *Nature*, 256, 495-497, 1975).

Antibodies against any of the polypeptides of the present invention and made e.g. in one of the manners described above, can be used i.a. for vaccination purposes, especially in immunocompromised animals.

25 [0055] All kinds of antibodies against a protein of the 37 kDa protein family can be used in the diagnostic tests described above. Polyclonal antibodies obtained by injection of the Bd37 protein to an animal have a high affinity with all proteins of the 37 kDa protein family. Nevertheless, the antibodies of preference are specific antibodies made by the hybridoma cell line deposited with the ECACC under accession number 99031816. They have a high affinity with all proteins of the 37 kDa protein family tested so far.

30 [0056] The diagnostic tests for the detection of antibodies against *Babesia divergens* are preferably in the form of a kit, comprising 37 kD protein in a purified form. The antigens could e.g. be purified through standard protein separation techniques over a suitable column. Another possibility is separation on a PAAGE gel followed by Western-blotting. On the Western-blot, the 37 kD protein will form a specific band, separated from other *Babesia divergens* protein bands, and thus is also considered to be purified. Also, a pure form of the protein can be obtained by expressing one of the nucleic acid sequences according to the invention.

35 In principle, the easiest way of making such a diagnostic test system is to use purified whole 37 kD protein as explained above. It is however very well possible to use only part of the 37 kD protein. This with the proviso that the fragment used still comprises an antigenic determinant of the protein. All antigenic determinants of the 37 kD protein will induce antibodies by definition. Therefore, the use of a 37 kD protein fragment comprising even one single antigenic determinant of the 37 kD protein will be capable of binding to anti-37 kD protein antibodies.

40 Therefore, in another embodiment the present invention relates to a diagnostic kit for the detection of antibodies against *Babesia divergens*, in which the kit comprises a purified protein of the 37 kD protein family or fragments thereof still comprising an antigenic determinant.

45 As mentioned above, the protein can be purified directly from cells infected with the parasite. It is however also possible to use standard expression systems such as bacterial, parasite, yeast, baculovirus or mammalian expression systems, of which a large variety has been described in the art, for the expression of the 37 kD protein. The protein thus expressed can easily be purified.

[0057] In still another embodiment the present invention relates to a diagnostic kit for the detection of *Babesia divergens* parasites, in which the kit comprises antibodies reactive with an antigenic determinant on a protein of the 37 kD family.

50 [0058] Finally, still another embodiment of the invention relates to the use of a protein of the 37 kD protein family or a mixture of such proteins for the manufacture of a vaccine inducing protection against infection of cattle with *B. divergens* or the clinical manifestations of the infection. Such manufacture is described above where methods for the preparation of vaccines are described.

EXAMPLES :

Example 1.

5 Growth of *Babesia divergens* and Genomic DNA extraction

[0059] An *in vitro* culture of *Babesia divergens* was grown according to Grande *et al.* (Parasitology, 115, 81-84 (1997)).

When parasitemia from *in vitro* culture reached 30 %, *B. divergens* parasitized erythrocytes were pelleted by centrifugation 5 min. at 2500 g.

Supernatant was centrifuged 20 min. at 15000 g : the pellet, containing merozoites, was washed twice in RPMI.

Infected red blood cells were lysed in 5 volumes of lysis buffer (5 mM EDTA ; 100 mM NaCl; 20 mM Tris pH 7.5; 0.5 % Triton X-100; 0.5 % SDS) supplemented with proteinase K at a final concentration of 1 mg/ml, 1 h at 37°C.

DNA extraction was performed in 3 steps with phenol, phenol-chloroform, and finally chloroform : isoamyl alcohol (24 :1) : addition of 1 volume of phenol or phenol-chloroform or chloroform : isoamyl alcohol (24 :1), vortex 1 min., centrifugation 5 min. at 10000 g, and transfer of the top aqueous phase in a fresh tube.

DNA was then precipitated by 2 volumes of cold ethanol 100 % and 1/10 volume of 3M sodium acetate pH 5.6, 1h at -80°C. After centrifugation 15 min. at 10000 g at 4°C, DNA pellet was washed with ethanol 70 %, dried and resuspended in sterile water.

20

Plasmid miniprep

[0060] A single plasmid colony was picked up into a tube containing 1.5ml of LB medium (10 g of bactotryptone, 5 g of yeast extract and 5 g of NaCl in 1 litre of distilled water, mixed and autoclaved), containing the appropriate antibiotic and incubated overnight at 37°C. Cells, pelleted by centrifugation 30 seconds at 10000 g, were firstly dissolved in 200 µl of a solution containing 100 mM Tris-HCl pH 7.5; 10 mM EDTA, secondly in 200 µl of a solution containing 200 mM NaOH, 1 % SDS and thirdly, after 5 min. at room temperature, in 200 µl of a solution containing 3 M potassium acetate and 5 M acetic acid. After incubation during 5 min. at 4°C and centrifugation 5 min. at 10000 g, plasmid DNA contained in the supernatant was precipitated by 0.7 volumes of isopropanol : it was then dissolved in 200 µl of TE buffer (10 mM Tris-HCl pH 7.5 ; 1 mM EDTA). For sequencing, a phenol-chloroform extraction and an ethanol precipitation were performed, as previously described.

cDNA library construction

35 [0061] A cDNA library was obtained from mRNA derived from *B. divergens* Rouen 1987 cultures as follows: 10⁹ infected erythrocytes were pelleted by centrifugation of culture and treated by a lytic agent containing guanidine thiocyanate, using RNA-agents® Total RNA Isolation System kit (Promega). Total RNA were then purified by phenol : chloroform extraction and precipitated with isopropanol. With total RNA as the starting material, the poly(A) mRNA fraction was isolated by hybridisation to a biotinylated oligo(dT) primer, using PolyA Tract mRNA Isolation Systems kit (Promega). The hybrids were captured and washed at high stringency using streptavidin coupled to paramagnetic particles and a magnetic separation stand. mRNA were eluted by water and cDNA were synthesised, using ZAP Express™ cDNA Synthesis kit (Stratagene).

cDNA synthesis was performed by reverse transcription, using a primer which contains a poly(dT) sequence and a *Xba*I restriction site. *Eco*RI adapters were added to the 5' end of 0.4-4 kbp cDNA fragments (size-fractionated on Sephadryl S-500 spin Columns), after *Xba*I digestion. cDNA was ligated into the λ-ZAPII Express Vector in a sense orientation (*Eco*RI-*Xba*I) with respect to the lacZ promoter, using a ratio of 150 ng of cDNA to 1 µg of vector. Recombinant lambda phages were then packaged in Gigapack II packaging extracts from Stratagene, and plated on NZY agar plates, using XL1-Blue MRF' cells, to be amplified and titered as recommended by the manufacturer (Stratagene).

50 cDNA library screening

[0062] The polyclonal antibody directed against the 37 kDa protein family (α-Bd37) was used for the screening of the cDNA library of *B. divergens* Rouen 1987.

For screening, 4000 recombinants of the cDNA library were plated using XL1-Blue MRF' cells. After 8 hours growth at 37°C, recombinant β-galactosidase from each clone was blotted during 3 hours onto membranes of nitrocellulose, saturated with 10 mM IPTG. Discs were then saturated overnight in TBS (150 mM NaCl, 20 mM Tris-HCl pH 7.2) + 5 % non fat milk at 4°C, washed in TBS and incubated 1 h with the α-Bd37 at a dilution of 1:250. Positive plates were visualised using goat anti-rabbit IgG conjugated to peroxidase, at a dilution of 1:500.

[0063] Positive plates were transferred in 500 µl of SM buffer, incubated 1 h at 37°C and stored at 4°C. Following purification of these positive plates, cDNA encoding the 37 kDa protein was excised out of the λ -ZAPII phage in the form of the kanamycin resistant pBK-CMV phagemid vector, using a helper phage, as recommended by Stratagene.

5 **cDNA sequencing**

[0064] 4 µg of plasmids carrying cDNA encoding the 37 kDa protein of *B. divergens* Rouen were sequenced by using the T^7 Sequencing™ kit (Pharmacia Biotech). After denaturation with NaOH, neutralisation and ethanol precipitation, cDNA was pelleted by centrifugation and resuspended in 10 µl of water. Annealing reactions were made using 10 pmol of primer and then, DNA were sequenced using the dideoxy method of Sanger *et al.*((1977), *Proc. Natl. Acad. Sci. USA* 74 (12) : 5463-7), using the reagents and procedures of Pharmacia Biotech. Primers useful for reading the entire sequence were synthesised by Eurogentec.

15 **Analysis of the cDNA sequence encoding the 37 kDa protein**

[0065] The sequence of the cDNA encoding the 37 kDa protein (1208 bp between restrictions sites *Eco*RI and *Xba*I) showed the presence of a poly(A)₁₈ tail and a coding region of 1023 desoxyribonucleotides, giving a single open reading frame of 341 amino acids, without repetitive motif.

20 Analysis of the hydrophilicity profile revealed two hydrophobic sequences, at each extremity of the protein : from amino acids 1 to 18 at the N-terminal end and from amino acids 321 to 341 at the C-terminal end of the protein. The hydrophobic segment at the N-terminal end could correspond to the signal sequence of the 37 kDa protein and the presence of such a cleavable N-terminal signal sequence suggested that the 37 kDa protein is a secreted protein. However, the presence of another hydrophobic segment at the C-terminal end of the molecule indicated that the 37 kDa protein could interact or be anchored in the membrane of parasitic vesicles during the secretory pathway to be on the surface of the 25 parasite at the end of this process. These observations are consistent with the pattern of immunofluorescence obtained on *B. divergens* infected erythrocyte since the labelling was observed both inside parasitic vesicles and on the surface of the parasite. The finding of the 37 kDa protein in the supernatant of *in vitro* culture could result in a cleavage of the molecule either from the surface of the parasite or from secreting vesicles.

30 **Cloning of the 37 kDa protein gDNA from different isolates of *B. divergens* in pGEM®-T Vector**

[0066] Genomic DNA (gDNA) of the *B. divergens* Rouen 1987, Weybridge 8843 and Y5 isolates were amplified by Polymerase Chain Reaction (PCR) and cloned in pGEM®-T vector System II (Promega), in order to be sequenced as described above.

35 gDNA from *B. divergens* Rouen 1987 and Weybridge 8843 were amplified using primer Bd37-5 (sense oligonucleotide), 5'-GAATTACGACCATAAGAATA-3', and Bd37-Low (antisense oligonucleotide), 5'-ACAGGATCCAAAAGCTA-CATAGCTGTCCACT-3', whereas gDNA from *B. divergens* Y5 were amplified using primer Bd37-Upp (sense oligonucleotide), 5'-CAAGGATCCTCTAAGTACGATGAAAACAGTAA-3', and Bd37-Low. To perform the PCR, 100 ng of each gDNA were incubated with 0.5 µl of each primer at 10 µM, 4 µl of dNTP (1.25 mM each), 2.5 µl of 10X enzyme 40 buffer and 1 unit of *Taq* DNA polymerase (Ozyme), in a final volume of 25 µl. The following conditions were used : 3 min. at 94°C, 30 cycles of 1 min. at 94°C, 1 min. at 50°C and 2 min. at 72°C, and then 5 min. at 72°C.

PCR products were purified by electroelution : they were subjected to a 1 % agarose gel electrophoresis. The expected band was visualised under UV, excised and subjected to electroelution in 400 µl of TAE buffer, at 100 mA during 1 h. The electroeluted materials was phenol extracted and ethanol precipitated as described above.

45 The ligation reaction was performed by adding 50 ng of each gDNA to 50 ng of pGEM vector, and 3 units of T4 DNA ligase in 1 µl of the 10X appropriate buffer, during 5 h at 16°C. 2 µl of each ligation mix were used for the transformation reaction, in JM109 High Efficiency Competent Cells, as recommended by Promega.

Recombinant vectors were visualised, using blue-white screening : some white colonies were picked up and transferred in 50 µl of sterile water. After vortex, tubes were boiled for 5 min. and centrifuged 1 min. at 10000 g : 10 µl of the supernatant were used for a PCR reaction as described above, with T3 and T7 primers, in order to verify the presence of the insert. For sequencing of the insert, a culture of 1,5 ml in LB of the recombinant vector was used for a plasmid miniprep, as previously described.

55 **Characterisation of genes as encoding a protein of the 37 kD protein family by hybridisation.**

[0067] For hybridisation experiments 4 µg of genomic DNA is digested by 20 units of *Pst* I restriction enzyme, 3 h at 37°C and digested products are submitted to a 0.8 % agarose electrophoresis. After denaturation and neutralisation, DNA is transferred to Hybond-N membrane (Amersham) and fixed by UV. The DNA to be tested is labeled using Nick

Translation kit (Boehringer Mannheim), with the Redivue™ [α -³²P]dCTP (3000 Ci/mmol) at a final concentration of 20 μ Ci (Amersham) and then purified using Probe Purification after labelling kit (Jetnick) as recommended by manufacturer. Membranes are firstly incubated in a prehybridization solution (5xSSC, 0.5 % SDS and 1 g/l of Ficoll type 400, Polyvinylpyrrolidone and Bovine Serum Albumine), 1 h at 65°C and then hybridized overnight at 65°C in 10 ml of the same solution, supplemented with 1 mg of herring sperm DNA and the denatured labelled probe. Membranes are washed three times for 15 min. at 65°C in 6xSSC and exposed to Biomax MR-1 film (Polylabo) at -80°C, during 48 hours.

DNA that hybridises to the DNA on the Hybond-N membrane comprises a gene encoding a protein of the 37 kD protein family.

10

Example 2

Cloning of the Bd37 cDNA in the pGEX-A vector

15 [0068] In order to express a recombinant Bd37 protein, the cDNA was sub-cloned in the *E. coli* vector pGEX-A. In a first step, the entire coding region of the cDNA was amplified by PCR using primers Bd37-Upp (sense oligonucleotide) and Bd37-Low (antisense oligonucleotide), which contain *Bam*HI restriction sites. The PCR products was then sub-cloned in the pGEM®-T vector, as described above. In a second step, 500ng of pGEX-A vector and 500ng of the pGEM®-T vector containing Bd37 cDNA were digested with 30 units of *Bam*HI restriction enzyme, 3 h at 37°C, in the appropriate buffer (Life technologies), in order to be ligated.

20 After phenol/chloroform extraction and ethanol precipitation, the pGEX-A vector was dephosphorylated, using 0.0015 units of Calf Intestinal Alkaline Phosphatase (Promega), 1 h at 37°C in the appropriate buffer and reprecipitated. The excised cDNA fragment was purified by electroelution, as described above.

The ligation of 100 ng of *Bam*HI-cut phosphatase treated pGEX-A vector with 100 ng of Bd37 cDNA fragment was performed using 15 units of T4 DNA ligase, in the appropriate buffer, during 1 h at 25°C. 1 μ l of the ligation mix were used to transform 75 μ l of Epicurian Coli® SURE®2 supercompetent cells, as recommended by the manufacturer (Stratagene).

25 Recombinants were determined by hybridisation : Hybond-N (Amersham) filters were applied 30 seconds on plates, denatured 1 min. with 1.5M NaCl, 0.5N NaOH and neutralised with 1.5 M NaCl, 0.5 M Tris-HCl pH 7.5. The filters were rinsed in 2xSSC, air dried and exposed, DNA side up, to UV (λ >254nm) during 3 min.

30 A PCR was performed on *B. divergens* Rouen 1987 cDNA, using internal primers Bd37-E1 (sense oligonucleotide), 5'-CAAGGTGGTGCAGATTCAAAG-3' and Bd37-E4 (antisense oligonucleotide), 5'-ATACAATGATACCGAATTCAATGG-3' : 0.2 μ g of the electroeluted PCR fragment were used to synthesise a nucleotide probe using Nick Translation kit (Boehringer Mannheim). The probe was labelled with the Redivue™ [α -³²P]dCTP (3000 Ci/mmol) at a final concentration of 20 μ Ci (Amersham). The excess of triphosphate deoxyribonucleosides were discarded on a column of glass beads (Glasperlen 0.25-0.3 μ from Braun) and Sephadex® G50 superfine (Pharmacia).

35 Membranes were prehybridised in 6xSSC + 2.5% non fat milk, 1 h at 65°C, and hybridized overnight at 65°C in 6xSSC + 2.5% non fat milk containing herring sperm DNA at 100 μ g/ml and the denatured labelled probe. Membranes were washed three times for 15 min. at 65°C in 6xSSC and exposed to Biomax MR-1 film (Polylabo) at -80°C, during two hours.

40 The correct orientation of the Bd37 fragment in the positive recombinant pGEX-A vector was controlled by performing PCR on the purified recombinant vector using the 5'pGEX primer (Pharmacia), combined with the internal Bd37-E4 primer.

[0069] The same procedure has been followed, using 100 ng of genomic DNA from *B. divergens* Weybridge 8843 as the starting material, in order to clone a gene encoding a 35 kDa protein in the pGEX-A vector and to express a recombinant Bd35 protein.

[0070] Lastly, as a control, 100 ng of native pGEX-A vector were used to transform 75 μ l of Epicurian Coli® SURE®2, supercompetent cells, in order to produce native glutathione S-transferase (GST).

50 **Production of recombinant GST, GST-Bd37 and GST-6d35 proteins for a vaccination assay.**

[0071] The different constructs, which express GST or a fusion protein of Bd37 or Bd35 protein with GST, were induced by IPTG. The bacterial cultures were grown overnight and diluted 1:10 with LB-medium supplemented with ampicillin at 50 μ g/ml. The cultures were incubated for 1 h at 37°C and then induced with 10⁻⁴M IPTG during 3 h. The bacteria were lysed by sonication in MTPBS (150mM NaCl, 16mM Na₂HPO₄, 4mM NaH₂PO₄, pH 7.3)-1% Triton X-100 and the recombinant proteins were purified by affinity on glutathione-agarose beads and eluted by competition with reduced glutathione (Smith D.B. and Johnson K.S. (1988), *Gene* 67(1): 31-40).

Production of a recombinant 37 kDa protein in insect cells for a vaccination assay

[0072] For the production of the recombinant DNA in baculovirus, the cDNA encoding the 37 kDa protein was cloned according to standard procedures into the Bac-to-Bac™ vector provided by Life Technologies, 8717 Grovemont Circle, P.O. box 6009, Gaithersburg, MD 20884-9980, U.S.A.

Six T75 flasks were used for the culture of infected and non-infected SF9 cells, containing each 7.5×10^6 SF9 cells in a final volume of 15 ml of HYQ CCM3 medium (Hyclone Europe NV, Belgium) : three of these flasks were infected with 52.5 µl of Bd37-1 virus (6.9×10^7 pfu/ml), which correspond to an infection of SF9 cells at a multiplicity of infection of 0.5. Infected and non-infected cells (NIC) were collected 60 h post-infection in a final volume of 7.5 ml of CCM3 medium and treated by 0.3 % Triton X-100, 1 h at room temperature. An aliquot of 100 µl of infected and non-infected cells were dissociated in 10 µl of 10X Sample Buffer and boiled during 5 min. Two aliquots of 25 µl from each sample (one used for a Coomassie Blue staining and one used for an immunoblotting using the monoclonal antibody F4.2F8 at a dilution of 1:50) were submitted to a 12 % SDS-PAGE. These infected cells, expressing the 37 kDa protein, and non-infected cells have been used to immunise gerbils, in order to test the immunoprotective effect of the 37 kDa protein.

Example 3**Vaccination assay with a recombinant 35 and 37 kD protein of the 37 kDa protein family.**

[0073] The vaccination assay has been conducted on 15 groups of 10 gerbils, in order to test the immunoprotective effect of the recombinant Bd37 protein, either expressed in the prokaryotic system (using the fusion proteins GST-Bd37 or GST-bd35) or in the eukaryotic Bac-to-bac system (using the recombinant Bac-Bd37). Three different doses of recombinant proteins, comprising of 5 µg, 25 µg and 125 µg, have been tested (See table 1). Negative controls groups have only received the equivalent of native GST or non infected insect cells. Each vaccine preparation have been adjuvanted with the Quil-A adjuvant. A positive control group have received 300 µl of supernatant from *B. divergens* Rouen 1987 *in vitro* culture. A challenge control group only received 10^6 parasitized erythrocytes.

Animals

[0074] Gerbils (7-8 weeks of age) were used. The animals received food and water ad libitum.

Parasites

[0075] The challenge strain used was *B. divergens* Rouen 1987 and each animal received 10^6 parasitized erythrocytes in a final volume of 100 µl.

Vaccine preparation

[0076] Recombinant proteins (GST, GST-Bd35 or GST-Bd37 protein, infected or non-infected insect cells lysate) were produced as described above. (cf. fig. 3)

Supernatant from *B. divergens* Rouen 1987 *in vitro* culture was harvested when parasitemia reached 30-40% in RPMI-Albumax, centrifuged at 10000 g for 15 min., passed through a filter-membrane (0.22 µm pore-size ; Gelman Sciences) and stored at -80°C until use.

[0077] Each preparation (GST, GST-Bd35 or GST-Bd37 protein, infected or non-infected insect cells lysate and supernatant from *in vitro* culture) was diluted in RPMI in order to obtain 12 doses each containing the expected quantity of recombinant protein (or equivalent) in a final volume of 3.4 ml. 100 µl of a stock solution Quil A at 2.8 mg/ml have been added to each vaccine preparation. A dose of 300 µl has been injected subcutaneously to each gerbil.

Table 1

Group	Vaccine	Quantity	Nb of injection	Challenge
1	GST-Bd37	5µg	2	R
2	GST-Bd37	25µg	2	R
3	GST-Bd37	125µg	2	R
4	GST-Bd35	25µg	2	R

Table 1 (continued)

Group	Vaccine	Quantity	Nb of injection	Challenge
5	GST	2,5µg	2	R
6	GST	12,5µg	2	R
7	GST	62,5µg	2	R
8	bac-Bd37	5µg	2	R
9	bac-Bd37	25µg	2	R
10	bac-Bd37	125µg	2	R
11	NIC	5µg	2	R
12	NIC	25µg	2	R
13	NIC	125µg	2	R
14	SN R	300µl	2	R
15	/	/	2	R

R : *B. divergens* Rouen 1987 strain
 NIC : non-infected insect cells
 SN R : supernatant from *B. divergens* Rouen 1987 *in vitro* culture

Vaccination procedure

[0078] Priming and booster infections have been done subcutaneously with a 3 weeks interval. Animals were challenged with *B. divergens* Rouen 1987 intraperitoneally, 3 weeks after the booster injection, with 10^6 parasitized erythrocytes (100 µl)/gerbil.

[0079] At days D-43, D-22 and D-1, a blood sample has been collected from the animals of each group. The serum samples of each group were tested by immunoprecipitation and immunofluorescence in order to analyse the humoral response of the gerbils against the recombinant 37 kDa protein.

Results

35 Immunoprecipitation

[0080] The sera from each gerbil, from D-43, D-22 and D-1, were used to immunoprecipitate 35 S-radiolabelled *B. divergens* Rouen 1987 total antigens.

Firstly, from figure 4, it can be seen that non-infected insect cells and native GST are not immunogenic in the sense that the humoral response doesn't cross-react with *B. divergens* antigens (groups 5 to 7 and 11 to 13) : the pattern observed corresponds to the non-specific response.

For all the sera from gerbils vaccinated with the 37 kDa recombinant protein, a strong humoral response against the protein is specifically observed (groups 1 to 4 and 8 to 10), whereas controls vaccinated with NIC (non-infected cells) or native GST are negative.

45

50

55

Protection

[0081]

5 **Table 2A :**

Groups	1	2	3	4	5	6	7
Challenge doses	10 ⁶ parasites						
Challenge strain	R	R	R	R	R	R	R
Number of gerbils	9	10	10	10	10	10	10
Vaccine	GST-37	GST-37	GST-37	GST-35	GST	GST	GST
Dose (μg)	5	25	125	25	2,5	12,5	62,5
Number of gerbils	9	10	10	10	0	0	0

10 **Table 2B :**

Groups	8	9	10	11	12	13	14	15
Challenge doses	10 ⁶ parasites							
Challenge strain	R	R	R	R	R	R	R	R
Number of gerbils	9	10	10	10	10	10	10	10
Vaccine	Bac-Bd37	Bac-Bd37	Bac-Bd37	NIC	NIC	NIC	SN R	/
Dose (μg)	5	25	125	5	25	125	300 μl	/
Number of gerbils	8	10	8	1	1	0	10	0

15 **Table 2 : Protection with recombinant 37 kDa protein expressed in a prokaryotic (A) or eucaryotic (B) system**

20

Conclusion

25 [0082] As can be seen from Table 2A, a total immunoprotection is conferred to gerbils vaccinated with GST-Bd37 and GST-Bd35, respectively against a homologous or heterologous challenge with *B. divergens* Rouen 1987 (which encodes a 37kDa protein). Gerbils did not present any fall of haematocrit and any positive parasitemia. These results were obtained with very low (5 μg) doses as well as with high doses (125 μg) of recombinant protein. Contrary to this, all control gerbils, vaccinated with native GST, died.

30 From Table 2B it can be seen that very good results were also obtained for gerbils vaccinated with recombinant Bac-Bd37, even taking into account that the Bd37 protein was not purified. Even if gerbils received a high dose of insect cells lysate, the level of protection reached 80 to 100 %, according to the dose tested, whereas control gerbils, vaccinated with non-infected insect cells, all died except one.

35 It can be concluded, that protein of the 37 kD protein family gives very high level protection regardless the expression

system used.

Example 4.

5 **Passive immunisation with monoclonal antibodies F4.2F8 and homologous or heterologous challenge**

[0083] Hybridoma producing the mAb F4.2F8 were grown and the monoclonal antibodies were purified according to standard procedures for the preparation of monoclonal antibodies. The monoclonal antibodies were injected intra-peritoneally in gerbils and the concentrations of F4.2F8 were maintained by multiple injections, starting one day before the challenge and continuing several days after.

10 As an antibody concentration of 100 µg/ml is needed (1 % of total gerbil immunoglobulins), 0.5 mg of antibodies in culture medium was daily injected per gerbil. The experiment was continued during 7 days after challenge.

[0084] Two different challenge strains were used : *B. divergens* Rouen 1987 (comprising the 37 kDa protein) and Weybridge 8843 (comprising the 35 kDa protein). Gerbils were challenged by a high dose (10^6 parasitized erythrocytes by gerbil) or a low dose (10^3 parasitized erythrocytes by gerbil). The volume of the challenge dose (10^6 PE or 10^3 PE) was 100 µl.

15 For each strain of challenge, a first control group (isotype control) has received an unrelated mouse monoclonal antibody IgG2a, which is an antibody against a non-37 kDa protein having however the same isotype as F4.2F8, in order to test the non-specific activity. A second control group (antibody control) has received the monoclonal antibody α -

20 Bd17, directed against another *B. divergens* protein, the 17 kDa protein described above (Précigout *et al.* (1993), *Exp. Parasitol.* 77 (4): 425-34). A last control has not received any injection of antibodies (no antibody control), in order to control the virulence of the strains.

Results

25

[0085]

	A-Homologous		B-Heterologous	
	Rouen (37 kDa) 10^6 parasites	Rouen (37 kDa) 10^3 parasites	Weybr. (35 kDa) 10^6 parasites	Weybr. (35 kDa) 10^3 parasites
mAb F4.2F8	100	100	100	100
α -Bd17 control	n.d.	30	n.d.	10
isotype control	n.d.	20	n.d.	40
no antibody control	0	20	0	0

45

Table 3 : homologous (A) and heterologous (B) challenge results after passive immunisation

50

Conclusion

homologous challenge results

55

[0086] As is clear from Table 3A, vaccination with antibodies specifically raised against the 37 kDa protein gives full protection against infection with a homologous *Babesia divergens* strain. This corroborate the fact that the 37 kDa protein according to the invention is capable of triggering antibodies providing full protection against homologous chal-

lenge.

heterologous challenge results

5 [0087] As follows from Table 3B, the 37 kDa antibodies do not only provide full protection against homologous challenge (a strain expressing the 37 kDa protein), but also against heterologous challenge (a strain expressing the 35 kDa protein).
 Therefore it can be concluded that proteins of the 37 kDa protein family according to the invention induce an antibody response that gives protection against challenge with both homologous *Babesia divergens* strains but also against heterologous strains.
 10

Example 5.

Synergistic effect of vaccines comprising both a 35 kD protein and a 37 kD protein of the 37 kD protein family

15 Vaccine preparation

[0088] *B. divergens* Rouen en Weybridge parasites were propagated in human erythrocytes in RPMI 1640 medium supplemented with 5 g/l Albumax®. Culture supernatants were harvested at 30-40% parasitaemia, and passed through 20 a 0.22 µm filter. The total volume was kept at 250 µl. One dose of vaccine contained 23.3 µg of Quil A.

Immunisation procedure

[0089] Vaccination of gerbils was done with volumina of 250 µl, comprising supernatant of Rouen/Weybridge in a 25 ratio of 0/100, 25/75, 50/50, 75/25 and 100/0. Vaccination was done twice, with a three week interval.

Challenge

[0090] Gerbils were challenged intraperitoneally with 10^3 or 10^6 parasitized erythrocytes/250µl/gerbil at three 30 weeks after booster injection. Challenge strain 7107b was passed through gerbils to prepare the challenge inoculum. After developing babesiosis, animals were sacrificed and the level of parasitaemia was determined.

Rank score analysis

[0091] Survival, minimal PCV (Packed Cell Volume = haematocrite) and parasite load were submitted to rank score 35 analysis. For each parameter, groups were ranked. The best group was ranked 1, the second best 2 and so on. After ranking the different parameters the total scores for each group were determined. The total net rank score was expressed as the difference between the control and vaccinated groups. This total score can be described as new 40 parameter: protection based upon the different parameters mentioned above.

Results.

[0092] As can be clearly seen from figure 5, a vaccine based upon a mixture of both 35 kD and 37 kD proteins 45 according to the invention gives a better protection against challenge with both strains comprising 35 kD and 37 kD protein, compared to vaccines based upon the same amount of protein from only a 35 kD or a 37 kD protein.

Conclusion.

[0093] Vaccination with a mixed vaccine comprising both 35 kD and 37 kD protein has a synergistic effect. Such a 50 vaccine protects, when given in low (i.e. below the optimal protective) doses, even better against challenge with both homologous and heterologous strains than comparable low amounts of vaccines based upon pure 35 kD or 37 kD protein.

Legend to the figures

[0094]

5 Figure 1: Alignment of nucleic acid sequences encoding protein of the 37 kDa protein family in *B. divergens* strains Rouen 1987, Weybridge and Y5, respectively SEQ. ID. NO: 1, 2 and 3 by Clustal method.

10 Figure 2: Alignment of amino acid sequences of the 37 kDa protein family in *B. divergens* strains Rouen 1987, Weybridge and Y5, respectively SEQ. ID. NO : 4,5 and 6 by Clustal method.

15 Figure 3: Recombinant proteins of the 37 kD protein family were produced either in a prokaryotic system (A) or in a eukaryotic baculovirus (Bac-to-bac) system (B). The following proteins are visible on gel: purified GST-Bd37 (lane 1) and GST-Bd35 (lane 2) fusion proteins, infected cell lysate containing the Bac-Bd37 protein (lane 3) and non-infected insect cell lysate (lane 4).

20 Figure 4: Immunoprecipitation of antigens from *B. divergens* Rouen 1987 by sera from gerbils vaccinated with recombinant Bd37 proteins.

25 Figure 5: Total net rank score of minimal PCV, parasite load and survival of gerbils vaccinated with a mix of Weybridge and Rouen SPA (Soluble Parasite Antigen) challenged with a high or a low challenge dose.

25

30

35

40

45

50

55

SEQUENCE LISTING

5 41102 AKZC Nobel U.V.

<120> Babesia vacpine

10 <130> 94472

<140> 99201322,7

<141> 1996 64-29

15

<160> : 1

20 <170> PatentIn Ver. 2.1

<210> 1

<211> 1131

25

<313> Babuska,divergence

1330

62313 CDS

6222 1761 11100

62332 Baum

36

<400> 1

qaaatccqqa qataacqaa; qattaaqaa; qattaaqaa; qattaaqaa; qataatcaaq 60

40 ttctttctaa gtaeg atg aaa acc agt aag att ctc aac act gct gct atc lli
Met Lys Thr Ser Lys Ile Leu Asn Thr Ala Ala Ile

45 tgc ctc ctg gct atg ggt ttc aat ggc aat aat gtg agc tgc acc aat 159
 Cys Leu Leu Ala Met Gly The Asn Gly Asn Asn Val Ser Cys Thr Asn
 15 20 25

50 ctc aat ggc tca cag gaa cca gca gcg gct aac cct gtt gtt tca act 207
Leu Asn Gly Ser Gln Glu Pro Ala Ala Ala Asn Pro Val Val Ser Thr

EP 1050 541 A1

	30	35	40	
5	cc t ggg aat gat g g g g c a g a g c g t g g t a g a g g t g g g a a c a c c 255			
	Pro Gly Asn Asp Ala Glu Glu Ala Gly Thr Glu Glu Gly Ala Asn			
45	50	55	60	
10	t c a a g g t c c t t c g a g a c a g a g c g t g g g g q a a c 303			
	Ser Lys Ser Val Pro Glu Glu Glu Pro Glu Glu Ala Ala Gly Glu Thr			
	65	70	75	
15	a c t g a c g t g t g t a a a c c t g a t g c t c t c t g g g g g a c t 351			
	Thr Ala Thr Val Val Val Lys Thr Leu Asp Val Leu Arg Gly Glu Leu			
20	80	85	90	
	a g g g c a g c g t g a g c g t t c c t t c g a g a a t a t a a t c g a t g g g 399			
	Arg Gly Gln Arg Glu Ala Phe Leu Ser Glu Ile Ile Lys Ser Asp Gly			
25	95	100	105	
	c c t t a c t t t t c a g t t t g g t a c t c t c t c t g a c a 447			
	Pro Phe Thr Ile Leu Glu Leu Val Gly Tyr Leu Arg Val Val Asp Thr			
30	110	115	120	
	g a t t c t c t c t g a a a g t t a c a a a g t g t g a g a g c g c a a 495			
	Asp Leu Leu Leu Lys Val Asp Ser Thr Lys Val Asp Glu Ala Gly Lys			
35	125	130	135	140
	a a g t a a g c t a c t g a a a a t g g a t a a g g g t g g a a 543			
40	Lys Val Lys Ala Tyr Leu Glu Lys Ile Gly Ile Arg Gly Asp Ser Val			
	145	150	155	
	g a g c g c c t g a a a c t a g a a g t t a g a a t c a a c a a 591			
	Glu Ala Ala Leu Asp Asn Leu Met Ile Lys Val Tyr Glu Ile Thr Lys			
45	160	165	170	
	g g t a g t g a a g t c g c a a g g t a c a a c g a g g c t a a 639			
	Gly Thr Val Glu Ser Ser Ala Gln Gly Thr Asp Ser Glu Glu Leu Lys			
50	175	180	185	
55				

EP 1050 541 A1

act tgg tta tta aag ttc agc gaa gat ctc aag gct gag caa gaa ctt 687
 Thr Leu Leu Leu Lys Phe Ser Glu Asp Leu Lys Ala Glu Glu Leu
 5 190 195 200

cat agt gaa gcc aag ggc ggt gag gac ttt tct agc atg aag acg 735
 His Ser Glu Ala Lys Gly Gly Glu Ala Leu Leu Ser Ser Met Lys Thr
 10 205 210 215 220

cag cat gat gaa cta ctt aag aag ttt gct gcc ctt acc cct act ttc 783
 Gln His Asp Glu Leu Leu Lys Lys Phe Ala Ala Leu Thr Pro Thr Phe
 15 225 230 235

tta acc tca gag gat ata ttt ggc tac ctt acc gtc ccc gaa tac ggt 831
 Leu Thr Ser Glu Asp Ile Ser Gly Tyr Leu Thr Val Pro Glu Tyr Gly
 20 240 245 250

gcc cct atg aat gct gcg aag tgg aaa aag gtc gaa gga atg atc cat 879
 Ala Pro Met Asn Ala Ala Lys Trp Lys Lys Val Glu Gly Met Ile His
 25 255 260 265

gga aag ctc gag tct tct gaa gta cca gct aat ctc aaa gct ctg gtt 927
 Gly Lys Leu Glu Ser Ser Glu Val Pro Ala Asn Leu Lys Ala Leu Val
 30 270 275 280

gca gaa tta att gaa tgg agt gaa gag atg atg gat tgg cta tac ggc 975
 Ala Glu Leu Ile Glu Leu Arg Glu Glu Met Met Asp Leu Leu Tyr Gly
 35 285 290 300

cct att gct cat caa gat tgg gct gca gga tca ggt cag gga tct agt 1023
 Pro Ile Gly His His Asp Cys Ala Ala Gly Ser Gly Gln Gly Ser Ser
 40 305 310 315

cct aag aag cca tcc ttc gct gct gta cct tct tct ttg tct gcc att 1071
 Pro Lys Lys Pro Ser Phe Ala Ala Val Pro Ser Ser Leu Ser Ala Ile
 45 320 325 330

gtc ttc ggt atc att gta tca atg ttc taa gtggacagct atgttagctt 1121
 Val Phe Gly Ile Ile Val Ser Met Phe
 50

55

335

340

5 tggatcttgt

1131

10 <210> 2
<211> 341
<212> PRT
<213> Babesia divergens15 <400> 2
Met Lys Thr Ser Lys Ile Leu Asn Thr Ala Ala Ile Cys Leu Leu Ala
1 5 10 1520 Met Gly Phe Asn Gly Asn Asn Val Val Cys Thr Asn Leu Asn Gly Ser
20 25 3025 Gln Glu Pro Ala Ala Ala Asn Pro Val Val Ser Thr Pro Gly Asn Asp
35 40 4530 Ala Gln Gln Ala Gly Thr Gln Gln Gly Ala Asn Ser Lys Ser Val
50 55 6035 Pro Glu Gln Gln Pro Gln Gln Ala Ala Gly Glu Thr Thr Ala Thr Val
65 70 75 8040 Val Val Lys Thr Leu Asp Val Leu Arg Gly Glu Leu Arg Gly Gln Arg
85 90 9545 Glu Ala Phe Leu Ser Glu Ile Ile Lys Ser Asp Gly Pro Phe Thr Ile
100 105 11050 Leu Gln Leu Val Gly Tyr Leu Arg Val Val Asp Thr Asp Leu Leu Leu
115 120 12555 Lys Val Asp Ser Thr Lys Val Asp Glu Ala Gly Lys Lys Val Lys Ala
130 135 140

EP 1050 541 A1

5

Tyr Leu Glu Lys Ile Gly Ile Arg Gly Asp Ser Val Glu Ala Ala Leu
145 150 155 160

10

Asp Asn Leu Met Ile Lys Val Tyr Glu Ile Thr Lys Gly Thr Val Glu
165 170 175

15

Ser Ser Ala Gln Gly Thr Asp Ser Glu Glu Leu Lys Thr Leu Leu Leu
180 185 190

20

Lys Phe Ser Glu Asp Leu Lys Ala Glu Gln Glu Leu His Ser Glu Ala
195 200 205

25

Lys Gly Gly Glu Ala Leu Leu Ser Ser Met Lys Thr Gln His Asp Glu
210 215 220

30

Leu Leu Lys Phe Ala Ala Leu Thr Pro Thr Phe Leu Thr Ser Glu
225 230 235 240

35

Asp Ile Ser Gly Tyr Leu Thr Val Pro Glu Tyr Gly Ala Pro Met Asn
245 250 255

40

Ala Ala Lys Trp Lys Val Glu Gly Met Ile His Gly Lys Leu Glu
260 265 270

45

Ser Ser Glu Val Pro Ala Asn Leu Lys Ala Leu Val Ala Glu Leu Ile
275 280 285

50

Glu Leu Arg Glu Gln Met Met Asp Leu Leu Tyr Gly Pro Ile Gly His
290 295 300

55

His Asp Cys Ala Ala Gly Ser Gly Gln Gly Ser Ser Pro Lys Lys Pro
305 310 315 320

60

Ser Phe Ala Ala Val Pro Ser Ser Leu Ser Ala Ile Val Phe Gly Ile
325 330 335

65

Ile Val Ser Met Phe
340

5 <210> 3
 <211> 1101
 <212> DNA
 <213> Babesia divergens

 10 <220>
 <221> CDS
 <222> (76)..(1071)
 15 <223> Weybridge

 <400> 3

 20 gaattcacga ccatacgaat aqttacgtgt gtcgtttaac ttatataat cctaatcaag 60

 ttctctctaa ctacg atg aaa acc agt aag att ctc aac act gct gct atc 111
 Met Lys Thr Ser Lys Ile Leu Asn Thr Ala Ala Ile
 25 1 5 10

 tgc ctc ctg qct atg ggt ttc aat ggc aat aat gtg cgc tgc acc aat 159
 Cys Ile Leu Ala Met Gly Phe Asn Gly Asn Asn Val Arg Cys Thr Asn
 30 15 20 25

 ctc agt ggc gca cag cag cta gca gcg agt acc ccc ggt gtt tca act 207
 Leu Ser Gly Ala Gln Gln Pro Ala Ala Ser Thr Pro Gly Val Ser Thr
 35 30 35 40

 tct gga aat gat tcc cag caa ggt atc act tca gag cag cag cca cag 255
 Ser Gly Asn Asp Ser Gln Gln Gly Ile Thr Ser Glu Gln Gln Pro Gln
 40 45 50 55 60

 cag gct gcc ggc gaa acc cct gct aag gtc gtg gta aag act cta gat 303
 Gln Ala Ala Gly Glu Thr Pro Ala Lys Val Val Val Lys Thr Leu Asp
 45 65 70 75

 50 gaa ctc cgt ggg gaa ctc agg ggg cag cyt gag gct ttc ctt tca gag 351
 Glu Leu Arg Gly Glu Leu Arg Gly Gln Arg Glu Ala Phe Leu Ser Glu

	80	85	90	
5	ata att aua tcc gat qqt cca ttc act att ttg caq ttg gtt ggc tac			399
	Ile Ile Lys Ser Asp Gly Pro Phe Thr Ile Leu Gln Leu Val Gly Tyr			
	95	100	105	
10	ctt cgt gtt atc gac aca gat ctt ctc ctg aag gtt gat tcc gtg aag			447
	Leu Arg Val Ile Asp Thr Asp Leu Leu Leu Lys Val Asp Ser Val Lys			
	110	115	120	
15	gtt act gaa gcc ggc aag aag gtc aag acc tac ctt gaa aaa att ggu			495
	Val Thr Glu Ala Gly Lys Lys Val Lys Thr Tyr Leu Glu Lys Ile Gly			
	125	130	135	140
20	ata acg ggt gac agt gtt gag gca gca ctt gac aat ctt atg ata aag			543
	Ile Thr Gly Asp Ser Val Glu Ala Ala Leu Asp Asn Leu Met Ile Lys			
	145	150	155	
25	att tat gaa ctc acc aat ggt act gtg gaa agt tca cca caa ggt act			591
	Ile Tyr Glu Leu Thr Asn Gly Thr Val Glu Ser Ser Pro Gln Gly Thr			
	160	165	170	
30	gac agt gag gag ctg aag act ttg tta tta aag ttc agg gag gat ctc			639
	Asp Ser Glu Glu Leu Lys Thr Leu Leu Leu Lys Phe Arg Glu Asp Leu			
	175	180	185	
35	agg gct gag caa gaa ctt tat agt gaa gca aag ggc ggt gag gac ttg			687
	Arg Ala Glu Gln Glu Leu His Ser Glu Ala Lys Gly Gly Glu Ala Leu			
	190	195	200	
40	ctt tct agc atg aag aag gag cat gac gaa cta ctt aag aag ttt gct			735
	Leu Ser Ser Met Lys Thr Gln His Asp Glu Leu Leu Lys Lys Phe Ala			
	205	210	215	220
45	gcc ctt aac cct act ttc tta tcc aca gag gat ata tct ggc tac ctt			783
	Ala Leu Asn Pro Thr Phe Leu Ser Thr Glu Asp Ile Ser Gly Tyr Leu			
	225	230	235	
50				
55				

EP 1050 541 A1

acc gtg ccc gaa tac ggt gcc ccc atg aat gct gcg aag tgg aaa aag 831
 Thr Val Pro Glu Tyr Gly Ala Pro Met Asn Ala Ala Lys Trp Lys Lys
 5 240 245 250

g: g gaa gga aag atc aat gaa aag ttc gag tct tcc gaa ata caa ggt 874
 Val Glu Gly Lys Ile Asn Glu Lys Leu Glu Ser Ser Glu Ile Gln Gly
 10 255 260 265

gat ctc aaa gct ctc gtt gca gag tta att aag ttc cgt gaa cag atg 927
 Asp Leu Lys Ala Leu Val Ala Glu Leu Ile Lys Leu Arg Glu Gln Met
 15 270 275 280

atg gat ttg cta tac ggc cct att ggt cat cac gat tgt gct gca gga 975
 Met Asp Ile Leu Tyr Gly Pro Ile Gly His His Asp Cys Ala Ala Gly
 20 295 290 295 300

tca ggt cag gga tct agt cct aag aag cca tcc ttc gct gct gta cct 1023
 Ser Gly Gln Gly Ser Ser Pro Lys Lys Pro Ser Phe Ala Ala Val Pro
 25 305 310 315

tct tct ttg tgt gtc att gtc ttc ggt atc att gtc tca atg ttc taa 1071
 Ser Ser Ile Cys Ala Ile Val Phe Gly Ile Ile Val Ser Met Phe
 30 320 325 330

35 gtggacagct atgttagttt tggatctgt 1101

<210> 4
 40 <211> 331
 <212> PRT
 <213> Babesia divergens

45 <400> 4
 Met Lys Thr Ser Lys Ile Leu Asn Thr Ala Ala Ile Cys Leu Leu Ala
 1 5 10 15

50 Met Gly Phe Asn Gly Asn Asn Val Arg Cys Thr Asn Leu Ser Gly Ala
 20 25 30

55

EP 1050 541 A1

5
Gln Gln Pro Ala Ala Ser Thr Phe Gly Val Ser Thr Ser Gly Asn Asp
35 40 45
Ser Gln Gln Gly Ile Thr Ser Glu Gln Gln Pro Gln Gln Ala Ala Gly
50 55 60
10 Glu Thr Pro Ala Lys Val Val Val Lys Thr Leu Asp Glu Leu Arg Gly
65 70 75 80
Glu Leu Arg Gly Gln Arg Glu Ala Phe Leu Ser Glu Ile Ile Lys Ser
85 90 95
20 Asp Gly Pro Phe Thr Ile Leu Gln Leu Val Gly Tyr Leu Arg Val Ile
100 105 110
Asp Thr Asp Leu Leu Leu Lys Val Asp Ser Val Lys Val Thr Glu Ala
25 115 120 125
Gly Lys Lys Val Lys Thr Tyr Leu Glu Lys Ile Gly Ile Thr Gly Asp
130 135 140
30 Ser Val Glu Ala Ala Leu Asp Asn Leu Met Ile Lys Ile Tyr Glu Leu
145 150 155 160
35 Thr Asn Gly Thr Val Glu Ser Ser Pro Gln Gly Thr Asp Ser Glu Glu
165 170 175
40 Leu Lys Thr Leu Leu Leu Lys Phe Arg Glu Asp Leu Arg Ala Glu Gln
180 185 190
45 Glu Leu His Ser Glu Ala Lys Gly Gly Glu Ala Leu Leu Ser Ser Met
195 200 205
50 Lys Thr Gln His Asp Glu Leu Leu Lys Phe Ala Ala Leu Asn Pro
210 215 220
Thr Phe Leu Ser Thr Glu Asp Ile Ser Gly Tyr Leu Thr Val Pro Glu

55

EP 1050 541 A1

225 230 235 240
5 Tyr Gly Ala Pro Met Asn Ala Ala Lys Thr Lys Lys Val Glu Gly Lys
245 250 255
10 Ile Asn Glu Lys Leu Glu Ser Ser Glu Ile Gln Gly Asp Leu Lys Ala
260 265 270
15 Leu Val Ala Glu Leu Ile Lys Leu Arg Glu Gln Met Met Asp Leu Leu
275 280 285
20 Tyr Gly Pro Ile Gly His His Asp Cys Ala Ala Gly Ser Gly Gln Gly
290 295 300
25 Ser Ser Pro Lys Lys Pro Ser Phe Ala Ala Val Pro Ser Ser Leu Cys
305 310 315 320
30 Ala Ile Val Phe Gly Ile Ile Val Ser Met Phe
325 330
35 <210> 5
<211> 1033
<212> DNA
<213> Babesia divergens
40 <220>
<221> cDS
<222> (201..1003)
<223> r5
45 <400> 5
caaggatcct ctaagtacg atg aaa acc agt aaa att ctc aac acg gct gct 52
Met Lys Thr Ser Lys Ile Leu Asn Thr Ala Ala
50 1 5 10
atc tgc ctc ctg gct atg ggt ttc aat ggc aat aat gtg agc tgc gcc 100
55

EP 1050 541 A1

Ile Cys Leu Leu Ala Met Gly Phe Asn Gly Asn Asn Val Ser Cys Ala
 15 20 25

5

Cat. Ala Arg Ggc Aca Cag Gag Aca Gca Gcg Gtt Aac Ctg Ggt. Gac Tca 148
 His Ile Ser Gly Thr Gln Glu Thr Ala Ala Ala Asn Ser Gly Asp Ser
 10 30 35 40

10

Act Act Agg Aat Gac Gcg Cag Cag Tct Ggt Gaa Gta Cag Caa Act Cca 196
 Thr Thr Arg Asn Asp Ala Gln Gln Ser Gly Glu Val Gln Gln Thr Pro
 15 45 50 55

15

Cag Cag Acc Cct Gta Aag Gct Gta Gta Aaa Tcc Ctg Gag Gac Tta Cgt 244
 Gln Gln Thr Pro Val Lys Ala Val Val Lys Ser Leu Glu Asp Leu Arg
 20 60 65 70 75

20

Gaa Gag Ctt Aag Ggt Cag Cgt Gaa Acc Ttc Ctt Tca Aag Tta Att Gag 292
 Glu Glu Leu Lys Gly Gln Arg Glu Thr Phe Leu Ser Lys Leu Ile Glu
 25 80 85 90

25

Tcg Gac Gca Ttc Ggt Ttt Ctt Caa Ttg Atc Gac Ttc Ctt Cgt Gtt 340
 Ser Asp Gly Ala Phe Gly Phe Leu Gln Leu Ile Asp Phe Leu Arg Val
 30 95 100 105

30

Att Gac Aca Gac Ctt Ctc Ctg Aag Gtt Gac Ggg Aca Aag Gtt Gag Aaa 388
 Ile Asp Thr Asp Leu Leu Leu Lys Val Asp Gly Thr Lys Val Glu Lys
 35 110 115 120

35

Gcg Gga Gtt Aaa Gtg Aag Gcc Tac Ctt Gag Tct Att Gga Ata Aag Ggt 436
 Ala Gly Val Lys Val Lys Ala Tyr Leu Glu Ser Ile Gly Ile Lys Gly
 40 125 130 135

40

Gga Agt Gtt Gag Gaa Tgt Ctt Gac Aat Ctt Atg Aca Aag Gtt Tct Gca 484
 Gly Ser Val Glu Glu Cys Leu Asp Asn Leu Met Thr Lys Val Ser Ala
 45 140 145 150 155

45

Atc Acc Agg Ggt Act Gta Gaa Ggt Tca Gca Caa Agt Act Gac Agt Gag 532
 Ile Thr Arg Gly Thr Val Glu Gly Ser Ala Gln Ser Thr Asp Ser Glu
 50 160 165 170

55

5	gat ctg aag act ttg tta cta aag ttc agc gaa gat ctc aag gct gag Asp Leu Lys Thr Leu Leu Leu Lys Phe Ser Glu Asp Leu Lys Ala Glu 175 180 185	580
10	caa gaa cgc cat ggt gac aag gat gaa aat aag gaa tta ctg aag aat Gln Glu Arg His Gly Asp Lys Asp Glu Ser Lys Glu Leu Leu Lys Asn 190 195 200	628
15	ttg ggt gtg cag cgt gat gaa ttg gtc aag aag ttt act gag atg agc Leu Gly Val Gln Arg Asp Glu Leu Val Lys Lys Phe Thr Glu Met Ser 205 210 215	676
20	cca tcc ttc ttg acc tca gaa gat ata tct ggc ttc ctc aca gtc ccc Pro Ser Phe Leu Thr Ser Glu Asp Ile Ser Gly Phe Leu Thr Val Pro 220 225 230 235	724
25	gag tac ggt ttc cct atg gat gct gct aag aag tgg aag aaa gtc gaa aag Glu Tyr Gly Phe Pro Met Asp Ala Ala Lys Trp Lys Lys Val Glu Lys 240 245 250	772
30	aag atc aat gat aag tcc gag tct tcc gat ata aca act gac ctc aaa Lys Ile Ser Asp Lys Leu Glu Ser Ser Asp Ile Thr Thr Asp Leu Lys 255 260 265	820
35	act ctg ctt gca aag ttg att gaa cag cgt gaa aaa atg atg gat ttg Thr Leu Leu Ala Lys Leu Ile Glu Gln Arg Glu Lys Met Met Asp Leu 270 275 280	868
40	cta tac ggc cct att ggt cat gag gat tgt cct gcc aga tca ggt cag Leu Tyr Gly Pro Ile Gly His Glu Asp Cys Pro Ala Arg Ser Gly Gln 285 290 295	916
45	gga tct ggt ccg aag aag cca tcc ttc gca gct gtc ccc tcc tct tlg Gly Ser Gly Pro Lys Lys Pro Ser Phe Ala Ala Val Pro Ser Ser Leu 300 305 310 315	964
50	tgc gcc att gtg ttc ggt atc att gta tca atg ttc taa gtggacaaqct	1013

55

Cys Ala Ile Val Phe Gly Ile Val Ser Met Phe

320

325

5

atgttagctt tggatccatgt

1033

10

<210> 6

<211> 327

<212> PRT

15

<213> Babesia divergens

<400> 6

Met Lys Thr Ser Lys Ile Leu Asn Thr Ala Ala Ile Cys Leu Leu Ala

20

5

10

15

Met Gly Phe Asn Gly Asn Asn Val Ser Cys Ala His Ile Ser Gly Thr

20

25

30

25

Gln Glu Thr Ala Ala Asn Ser Gly Asp Ser Thr Thr Arg Asn Asp

35

40

45

30

Ala Gln Gln Ser Gly Glu Val Gln Gln Thr Pro Gln Gln Thr Pro Val

50

55

60

35

Lys Ala Val Val Lys Ser Leu Glu Asp Leu Arg Glu Glu Leu Lys Gly

65

70

75

80

40

Gln Arg Glu Thr Phe Leu Ser Lys Leu Ile Glu Ser Asp Gly Ala Phe

85

90

95

40

Gly Phe Leu Gln Leu Ile Asp Phe Leu Arg Val Ile Asp Thr Asp Leu

100

105

110

45

Leu Leu Lys Val Asp Gly Thr Lys Val Glu Lys Ala Gly Val Lys Val

115

120

125

50

Lys Ala Tyr Leu Glu Ser Ile Gly Ile Lys Gly Gly Ser Val Glu Glu

130

135

140

55

EP 1050 541 A1

5 Cys Leu Asp Asn Leu Met Thr Lys Val Ser Ala Ile Thr Arg Gly Thr
145 150 155 160

10 Val Glu Gly Ser Ala Gln Ser Thr Asp Ser Glu Asp Leu Lys Thr Leu
165 170 175

15 Leu Leu Lys Phe Ser Glu Asp Leu Lys Ala Glu Gln Glu Arg His Gly
180 185 190

20 Asp Lys Asp Glu Ser Lys Glu Leu Leu Lys Asn Leu Gly Val Gln Arg
195 200 205

25 Asp Glu Leu Val Lys Lys Phe Thr Glu Met Ser Pro Ser Phe Leu Thr
210 215 220

30 Ser Glu Asp Ile Ser Gly Phe Leu Thr Val Pro Glu Tyr Gly Phe Pro
225 230 235 240

35 Met Asp Ala Ala Lys Trp Lys Lys Val Glu Lys Lys Ile Ser Asp Lys
245 250 255

40 Leu Glu Ser Ser Asp Ile Thr Thr Asp Leu Lys Thr Leu Leu Ala Lys
260 265 270

45 Leu Ile Glu Gln Arg Glu Lys Met Met Asp Leu Leu Tyr Gly Pro Ile
275 280 285

50 Gly His Glu Asp Cys Pro Ala Arg Ser Gly Gln Gly Ser Gly Pro Lys
290 295 300

55 Lys Pro Ser Phe Ala Ala Val Pro Ser Ser Leu Cys Ala Ile Val Phe
305 310 315 320

50 Gly Ile Ile Val Ser Met Phe
325

5 <210> 7
 <211> 21
 <212> DNA
 <213> Babesia divergens

10 <220>
 <221> misc_feature
 <222> (1)..(21)
 <223> PRIMER Bd37-5

15 <400> 7
 qaattcacga ccatacqaaat a 21

20 <210> 8
 <211> 21
 <212> DNA
 <213> Babesia divergens

25 <220>
 <221> misc_feature
 <222> (1)..(21)
 <223> PRIMER Bd37-E1

30 <400> 8
 caagggtgtg cggatccaaa g 21

35 <210> 9
 <211> 24
 <212> DNA
 <213> Babesia divergens

40 <220>
 <221> misc_feature
 <222> (1)..(24)
 <223> PRIMER Bd37-E4

45 <50>

50 <210> 10
 <211> 24
 <212> DNA
 <213> Babesia divergens

55 <220>
 <221> misc_feature
 <222> (1)..(24)
 <223> PRIMER Bd37-E4

5 <400> 9
atacaatgtat accgaattca atgg
10 <210> 10
<211> 31
<212> DNA
<213> Babesia divergens
15 <220>
<221> misc_feature
<222> (1)..(31)
20 <223> PRIMER Bd37-low

<400> 10
acaggatcca aaagctacat aqctqtccac t
25
26
27
28
29
30 <210> 11
<211> 33
<212> DNA
<213> Babesia divergens
35 <220>
<221> misc_feature
<222> (1)..(33)
40 <223> PRIMER Bd37-Upp

<400> 11
caaggatcct ctaaqtacga taaaaaccag taa
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
205

Claims

50 1. Nucleic acid sequence of *Babesia divergens* characterised in that it encodes a protein of the 37 kD protein family or an immunogenic fragment thereof.

55 2. Nucleic acid sequence according to claim 1, characterised in that the protein has a molecular weight of 37 kD.

3. Nucleic acid sequence according to claim 1, characterised in that the protein has a molecular weight of 35 kD.

4. Nucleic acid sequence according to claim 2, characterised in that it comprises the sequence shown in SEQ ID NO

1.

5. Nucleic acid sequence according to claim 3, characterised in that it comprises the sequence shown in SEQ ID NO 2 or 3.

5

6. Nucleic acid sequence encoding a protein of the 37 kD protein family that is capable of binding to the monoclonal antibody F42F8.

10

7. Recombinant DNA molecule characterised in that it comprises a nucleic acid sequence according to claims 1-6 and regulating sequences enabling expression of said nucleic acid sequence.

15

8. Live recombinant carrier micro-organism comprising a nucleic acid sequence according to claims 1-7.

9. Live recombinant carrier according to claim 8, characterised in that said carrier additionally comprises a heterologous gene encoding an antigen of a cattle-pathogen, which is able to elicit an immune response.

20

10. Live recombinant carrier according to claim 9, characterised in that said cattle pathogen is selected from the group of cattle pathogens, consisting of Bovine Herpesvirus, bovine Viral Diarrhoea virus, Parainfluenza type 3 virus, Bovine Paramyxovirus, Foot and Mouth Disease virus, *Pasteurella haemolytica*, Bovine Respiratory Syncytial Virus, *Theileria parva*, *Theileria annulata*, *Babesia bovis*, *Babesia bigemina*, *Babesia major*, *Trypanosoma species*, *Anaplasma marginale*, *Anaplasma centrale* or *Neospora caninum*.

25

11. Host cell comprising a nucleic acid sequence according to claims 1-6, a recombinant DNA molecule according to claim 7 or a live recombinant carrier according to claims 8-10.

12. Vaccine inducing protection against infection of cattle with *B. divergens* or the clinical manifestations of the infection, characterised in that it comprises at least one protein of the 37 kD protein family or an immunogenic fragment thereof and a pharmaceutically acceptable carrier.

30

13. Vaccine according to claim 12, characterised in that it comprises two or more different proteins of the 37 kD protein family.

14. Vaccine according to claim 13, characterised in that it comprises 50-75% of a 37 kD member of the 37 kD protein family and 50-25% of a 35 kD protein member of the 37 kD protein family.

35

15. Vaccine inducing protection against infection of cattle with *B. divergens* or the clinical manifestations of the infection, characterised in that it comprises a nucleic acid sequence according to claims 1-6, a recombinant DNA molecule according to claim 7, a live recombinant carrier according to claims 8-10 or a host cell according to claim 11.

40

16. Vaccine protecting against infection of cattle with *B. divergens* or the clinical manifestations of the infection, characterised in that it comprises antibodies against a protein of the 37 kD family.

17. Method for the preparation of a vaccine according to claim 12, 15 or 16, characterised in that said method comprises the admixing of a protein of the 37 kD protein family or an immunogenic fragment thereof, antibodies against a protein of the 37 kD family, a nucleic acid sequence according to claims 1-6, a recombinant DNA molecule according to claim 7, a live recombinant carrier according to claims 8-10 or a host cell according to claim 11 and a pharmaceutically acceptable carrier.

45

18. Method for the preparation of a vaccine according to claim 13, characterised in that said method comprises the admixing of two different proteins of the 37 kD protein family or immunogenic fragments thereof and a pharmaceutically acceptable carrier.

50

19. Diagnostic kit for the detection of antibodies against *Babesia divergens*, said kit comprising purified protein of the 37 kD protein family or fragments thereof still comprising an antigenic determinant.

55

20. Diagnostic kit for the detection of *Babesia divergens*, said kit comprising antibodies reactive with an antigenic determinant on a protein the 37 kD protein family.

21. Method for the detection of antibodies against *Babesia divergens*, said method comprising incubating serum with a protein of the 37 kD protein family or an antigenic fragment thereof.
- 5 22. Method for the detection of *Babesia divergens* parasites, said method comprising incubating serum with antibodies against a protein of the 37 kD protein family.
23. Use of a protein of the 37 kD protein family or a mixture of such proteins for the manufacture of a vaccine inducing protection against infection of cattle with *B. divergens* or the clinical manifestations of the infection

10

15

20

25

30

35

40

45

50

55

Fig. 1 :

	10	20	30	40	50	
60						
1	GAATTCAAGGACCATACGAATAGTTACTGTTGTCGGTTAACCTTATTAATATCCTAATCAAG					
2	GAATTCAAGGACCATACGAATAGTTACTGTTGTCGGTTAACCTTATTAATATCCTAATCAAG					
3	-----CAAG					

	70	80	90	100	110	
120						
1	TTCTTTCTAAGTACGATGAAAACCAGTAAGATTCTCAACACTGCTGCTATCTGCCTCCTG					
2	TTCTCTCTAACTACGATGAAAACCAGTAAGATTCTCAACACTGCTGCTATCTGCCTCCTG					
3	GATCCCTCTAAGTACGATGAAAACCAGTAAAATTCTCAACACGGCTGCTATCTGCCTCCTG					

	130	140	150	160	170	180
1	GCTATGGGTTCATGGCAATAATGTGAGCTGCCACCAATCTCAATGGCTCACAGGAGCCA					
2	GCTATGGGTTCATGGCAATAATGTGAGCTGCCACCAATCTCAATGGCTCACAGGAGCCA					
3	GCTATGGGTTCATGGCAATAATGTGAGCTGCCACCAATCTCAATGGCTCACAGGAGCCA					

	190	200	210	220	230	240
1	GCACCGGCTAACCCCTGTTGTTCAACTCCTGGGAATGATGGCAGCAGGCTGGTACGCAG					
2	GCAGCGAGTACCCCGGGTGTTCAACTTCTGGAAATGATTGGCAGCAAGGTATCA-----					
3	GCAGCGGCTAACCTGGGTGATTCAACTACTAGGAATGATGGCAGCAGCTGGTGA-----					
	*****					*
	250	260	270	280	290	300
1	CAAGGTGGTGCAGACTCAAAGTCCGTTCCAGAGCAGCAG---CCACAGCAGGCTGCCGGC					
2	-----CTTCAGAGCAGCAG---CCACAGCAGGCTGCCGGC					
3	-----AGTACAGCAAACCTCCACAGCAG-----					
	**					*****

	310	320	330	340	350	360
1	GAAACCACTGCTACGGCGTGGTAAAGACTCTAGATGTGCTCCGTGGGAACTCAGGGGG					
2	GAAACCCCTGCTAAGGCGTGGTAAAGACTCTAGATGAACCTCCGTGGGAACTCAGGGGG					
3	---ACCCCTGTAAGGCGTGTAGTAAAATCCCTGGAGGATTACGTGAAGAGCTAAGGGT					
	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *
	370	380	390	400	410	420
1	CAGCGTGAGGCTTCCTTCAGAGATAATTAAATCGGATGGTCCATTCACTATTTGCAG					
2	CAGCGTGAGGCTTCCTTCAGAGATAATTAAATCGGATGGTCCATTCACTATTTGCAG					
3	CAGCGTGAAACCTTCCTTCAGTTAATTGAGTCGGATGGAGCATTGGTTCTCAA					
	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *
	430	440	450	460	470	480
1	TTGGTTGGCTACCTCGTGTGACACAGATCTTCTCCTGAAAGTTGATTCCACGAAG					
2	TTGGTTGGCTACCTCGTGTATCGACACAGATCTTCTCCTGAAAGTTGATTCCGTGAAG					
3	TTGATCGATTTCTTCGTGTATTGACACAGATCTTCTCCTGAAAGTTGACGGGACAAAG					
	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *
	490	500	510	520	530	540
1	GTTGATGAAGCCGGCAAGAAGGTCAAGGCCTACCTTGAAAAAATTGGAATAAGGGGTGAC					
2	GTTACTGAAGCCGGCAAGAAGGTCAAGACCTACCTTGAAAAAATTGGAATAACGGGTGAC					
3	GTTGAGAAAGCGGGAGTTAAAGTGAAGGCCTACCTTGAGTCTATTGGAATAAAAGGGTGGAA					
	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *
	550	560	570	580	590	600
1	AGTGTGAAGCAGCGCTTGACAATCTTATGATAAAGTTATGAAATCACCAAAGGTACT					
2	AGTGTGAGGCAGCACTTGACAATCTTATGATAAAGATTATGAACTCACCAAAGGTACT					
3	AGTGTGAGGAATGTCTTGACAATCTTATGACAAAGTTCTGCAATCACCAAGGGTACT					
	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *	* * * * *
	610	620	630	640	650	660
1	GTGGAAGTTAGCACAAGGTACTGACAGTGAGGAGCTGAAGACTTTGTTATTAAAGTTC					
2	GTGGAAGTTAGCACAAGGTACTGACAGTGAGGAGCTGAAGACTTTGTTATTAAAGTTC					
3	GTAGAAGGTTAGCACAAGGTACTGACAGTGAGGATCTGAAGACTTTGTTACTAAAGTTC					

EP 1 050 541 A1

670 680 690 700 710 720
| | | | | |
1 AGCGAAGATCTCAAGGCTGAGCAAGAACCTCATAGTGAAGCCAAGGGCG---GTGAGGCC
2 AGGGAGGATCTCAGGGCTGAGCAAGAACCTCATAGTGAAGCCAAGGGCG---GTGAGGCC
3 AGCGAAGATCTCAAGGCTGAGCAAGAACGCCATGGTGA---CAAGGATGAAAGTAAAGGAA

730 740 750 760 770 780
| | | | | |
1 TTGCTTTCTAGCATGAAGACGCAGCATGATGAACTACTTAAGAAGTTGCTGCCCTTACC
2 TTGCTTTCTAGCATGAAGACGCAGCATGACGAACACTTAAGAAGTTGCTGCCCTTAAC
3 TTACTGAAGAATTGGGTGTGCAGCGTGATGAATTGGTCAAGAAGTTACTGAGATGAGC

790 800 810 820 830 840
| | | | | |
1 CCTACTTTCTAACCTCAGAGGATATATCTGGCTACCTTACCGTGCCGGAATACGGTGCC
2 CCTACTTTCTTATCCACAGAGGATATATCTGGCTACCTTACCGTGCCGGAATACGGTGCC
3 CCATCCTTCTTGACCTCAGAAGATATATCTGGCTCCTCACGGTGCCGGAGTACGGTTTC

850 860 870 880 890 900
| | | | | |
1 CCTATGAATGCTGCGAAGTGGAAAAAGGTGGAAGGAATGATCCATGGAAAGCTCGAGTCT
2 CCTATGAATGCTGCGAAGTGGAAAAAGGTGGAAGGAAGATCAATGAAAAGCTCGAGTCT
3 CCTATGGATGCTGCTAAGTGGAAAGAAGTGGAAAAGAAGATCAGTGATAAGCTCGAGTCT

910 920 930 940 950 960
| | | | | |
1 TCCGAAAGTACCAAGCTAATCTCAAAGCTCTGGTTGCAGAGTTAATTGAGTTGCGTGAACAG
2 TCCGAAATACAAGGTGATCTCAAAGCTCTGGTTGCAGAGTTAATTGAGTTGCGTGAACAG
3 TCCGATATAACAAACTGACCTCAAAACTCTGTTGCAAAGTTGATTGAACAGCGTGAAAAA

970 980 990 1000 1010
1020 | | | | | |

1 ATGATGGATTTGCTATA CGGCCCTATTGGTCATCACGATTGTGCTGCAGGATCAGGTAG
2 ATGATGGATTTGCTATA CGGCCCTATTGGTCATCACGATTGTGCTGCAGGATCAGGTAG
3 ATGATGGATTTGCTATA CGGCCCTATTGGTCATGAGGATTGTCCCTGCCAGATCAGGTAG

1030 1040 1050 1060 1070 1080
| | | | | |
1 GGATCTAGTCCTAAGAACCCATCCTTCGCTGCTGTACCTTCTTCTTGTCTGCCATTGTC
2 GGATCTAGTCCTAAGAACCCATCCTTCGCTGCTGTACCTTCTTCTTGTGTGCCATTGTC
3 GGATCTGGTCCGAAGAACCCATCCTTCGAGCTGTGCCCTCCTTTGTGCGCCATTGTC

1090 1100 1110 1120 1130 1137
| | | | | |
1 TTCGGTATCATTGTATCAATGTTCTAAGTGGACAGCTATGTAGCTTTGGATCCTGT
2 TTCGGTATCATTGTGTCAATGTTCTAAGTGGACAGCTATGTAGCTTTGGATCCTGT
3 TTCGGTATCATTGTATCAATGTTCTAAGTGGACAGCTATGTAGCTTTGGATCCTGT

1 Rouen 1987
2 Weybridge 5843
I.O.W.
3 Y5

Fig. 2 :

	10	20	30	40	50	60
4						
5	MKTSKILNTAAICLLAMGFNGNNVSCTNLNGSQEPAAANPVVSTPGNDAQQAGTQQGGAN					
6	MKTSKILNTAAICLLAMGFNGNNVRCTNLSGAQQPAASTPGVSTSGNDSQQGITS-----					
	MKTSKILNTAAICLLAMGFNGNNVSCAHSIGTQETAAANSGDSTTRNDAQQSGEV-----					
	*****:*****:*****:*****:*****:*****:*****:*****:*****:*****:					
	70	80	90	100	110	120
4						
5	SKSVPPEQQPQQAAGETTATVVVKTLDVDLRGELRGQRE AFLSEIIKSDGPFTILQLVGYLR					
6	-----EQQPQQAAGETPAKVVVKTLDELRGELRGQRE AFLSEIIKSDGPFTILQLVGYLR					
	-----QQTFQQTPVKAVVKSLEDLREELKGQRETFLSKLIESDGAFCFLQLIDFLR					
	*****:*****:*****:*****:*****:*****:*****:*****:*****:*****:					
	130	140	150	160	170	180
4						
5	VVDTDLKKVDSTKVDEAGKKVKAYLEKIGIRGDSVEAALDNLMIKVYEITKGTVESSAQ					
6	VVDTDLKKVDSTKVDEAGKKVKTYLEKIGITGDSVEAALDNLMIKIYELTNGTVESSPQ					
	VVDTDLKKVDGKVKAYLESIGIKGGSVEECLDNLMTKVSAITRGTVEGSAQ					
	*****:*****:*****:*****:*****:*****:*****:*****:*****:*****:					
	190	200	210	220	230	240
4						
5	GTDSEELKTLLKFS EDLKAEQELHSEAKGEALLSSMKTQHDELLKKFAALTPTFLTSE					
6	GTDSEELKTLLKFS EDLRAEQELHSEAKGEALLSSMKTQHDELLKKFAALNPTFLSTE					
	STDSEDLKTLLKFS EDLKAEQERHGDKDESKELLKNLGVRDELVKKFTEMSPSFLTSE					
	*****:*****:*****:*****:*****:*****:*****:*****:*****:*****:					
	250	260	270	280	290	300
4						
5	DISGYLTVP EY GAPMNAAKWKKVEGMIGHKLESSEVPANL KALVAELIELREQMMDLLYG					
6	DISGYLTVP EY GAPMNAAKWKKVEGKINEKLESSEIQGDLKALVAELIKLREQMMDLLYG					
	DISGFLTVPEYGFPMDAAKWKKVEKKISDKLESSDIT TDLKTLAKLIEQREKMMMDLLYG					
	*****:*****:*****:*****:*****:*****:*****:*****:*****:*****:					
	310	320	330	340		

4 PIGHHDCAAGSGQGSSPKKPSFAAVPSSLSAIVFGIIVSMF
5 PIGHHDCAAGSGQGSSPKKPSFAAVPSSLCAIVFGIIVSMF
6 PIGHEDCPARSGQGSGPKKPSFAAVPSSLCAIVFGIIVSMF
*****.***.* *****.*****.*****.*****.*****

4: Strain Rouen 1987 341 aa
5: Strain Weybridge 331 aa
6: Strain Y5 327 aa

BEST AVAILABLE COPY

EP 1 050 541 A1

Fig.3

2A : serum collected at day-22

2B : serum collected at day-1

Fig. 4

Figure 5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Y	EP 0 417 524 A (COMMW SCIENT IND RES ORG) 20 March 1991 (1991-03-20) * abstract * * page 10, column 17, line 22 - page 16, column 30, line 41 * ---	1-10	C07K14/44 A61K39/018 C12N15/00 C07K16/20 G01N33/53
Y	GRANDE N. ET AL.: "Comparison between aseric and seric culture-derived exoantigens of Babesia divergens in their ability to induce immunoprotection in gerbils" PARASITOLOGY INTERNATIONAL, vol. 47, no. 4, December 1998 (1998-12), pages 269-279, XP002116986 * the whole document *	1-10	
A	CARCY B. ET AL.: "A 37-kilodalton glycoprotein of Babesia divergens is a major component of a protective fraction containing low-molecular-mass culture-derived exoantigens" INFECTION AND IMMUNITY, vol. 63, no. 3, 1995, pages 811-817, XP002116987 WASHINGTON US * the whole document *	1-10	
A	D'OLIVEIRA C ET AL: "Expression of genes encoding two major Theileria annulata merozoite surface antigens in Escherichia coli and a Salmonella typhimurium aroA vaccine strain" GENE, vol. 172, no. 1, 12 June 1996 (1996-06-12), page 33-39 XP004042704 ISSN: 0378-1119 * the whole document *	10	A61K C07K
		-/--	
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
BERLIN	13 July 2000	Panzica, G	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 00 20 1485

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
A	<p>EP 0 834 567 A (CORIXA CORP) 8 April 1998 (1998-04-08)</p> <p>-----</p>		
			<p>TECHNICAL FIELDS SEARCHED (Int.Cl.7)</p>
<p>The present search report has been drawn up for all claims</p>			
Place of search	Data of completion of the search		Examiner
BERLIN	13 July 2000		Panzica, G
CATEGORY OF CITED DOCUMENTS			
<p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background C : non-written disclosure P : intermediate document</p>		<p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons a : member of the same patent family, corresponding document</p>	

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 00 20 1485

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13-07-2000

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 0417524	A	20-03-1991	AT	122096 T	15-05-1995
			AU	640398 B	26-08-1993
			AU	6124690 A	28-02-1991
			DE	69019092 D	08-06-1995
			ZA	9006667 A	26-06-1991
EP 0834567	A	08-04-1998	NONE		

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82