Zero inflated Poisson

Mark Andrews Psychology Department, Nottingham Trent University

mark.andrews@ntu.ac.uk

Probabilistic mixture models; latent class models

- Assume our data is n observations $y_1, y_2 \dots y_n$.
- ► A non-mixture model of this data might be

$$y_i \sim N(\mu, \sigma^2)$$
, for $i \in 1...n$,

▶ A K component mixture model assumes that there is a discrete latent variable $z_1, z_2 ... z_n$, where each $z_i \in \{1, 2 ... K\}$, and then (e.g., K = 3)

$$y_{i} \sim \begin{cases} N(\mu_{1}, \sigma_{1}^{2}), & \text{if } z_{i} = 1 \\ N(\mu_{2}, \sigma_{2}^{2}), & \text{if } z_{i} = 2 \\ N(\mu_{3}, \sigma_{3}^{2}), & \text{if } z_{i} = 3 \end{cases}$$

$$z_{i} \sim P(\pi).$$

where $\pi = [\pi_1, \pi_2, \pi_3]$ is a probability distribution of $\{1, 2, 3\}$.

Probabilistic mixture regression; latent class regression

- Assume our data is $\{(y_1, x_1), (y_2, x_2) \dots (y_n, x_n)\}$.
- ▶ In non-mixture regression, we assumes

$$y_i \sim (\alpha + \beta x_i, \sigma^2), \text{ for } i \in 1...n,$$

▶ In a mixture of K = 3 regressions, we assume that there is a latent variable $z_1, z_2 ... z_n$, with each $z_i \in K$, and (e.g., K = 3)

$$\begin{aligned} y_i \sim \begin{cases} N(\alpha_1 + \beta_1 x_i, \sigma_1^2), & \text{if } z_i = 1 \\ N(\alpha_2 + \beta_2 x_i, \sigma_2^2), & \text{if } z_i = 2 \\ N(\alpha_3 + \beta_3 x_i, \sigma_3^2), & \text{if } z_i = 3 \end{cases}, \\ z_i \sim P(\pi), \end{aligned}$$

where $\pi = [\pi_1, \pi_2, \pi_3]$ is a probability distribution of $\{1, 2, 3\}$.

Probabilistic mixture regression; latent class regression

- In the previous mixture of regressions, we assume the probability that each z_i take any value in 1,2... K is constant, i.e. it is given by π .
- ▶ However, the value of z_i could also be a function function of the predictor x_i .
- ▶ If K = 2 for example, the probability that z_i takes on the value of 1 of 2 (equivalently, 0 or 1) could be determined by a logistic regression with x_i as predictor.

$$\begin{aligned} y_i \sim \begin{cases} N(\alpha_1 + \beta_1 x_i, \sigma_1^2), & \text{if } z_i = 0 \\ N(\alpha_2 + \beta_2 x_i, \sigma_2^2), & \text{if } z_i = 1 \end{cases} \\ \log \left(\frac{P(z_i = 1)}{1 - P(z_i = 1)} \right) = \alpha + b x_i \end{aligned}$$

Zero-Inflated Poisson regression

- A zero inflated Poisson regression is K = 2 mixture regression model.
- ► There are two component models, so K = 2 and each latent variable $z_i \in \{0, \}$.
- ► The probability that $z_i = 1$ is a logistic regression function of the predictor(s) x_i .
- ► The two component of the zero-inflated Poisson model are:
 - 1. A Poisson distribution.
 - 2. A zero-valued point mass distribution (a probability distribution with all its mass at zero).

Poisson Distribution

A sample from a Poisson distribution with $\lambda = 5.5$.

Zero inflated Poisson Distribution

A sample from a zero inflated Poisson distribution with $\lambda = 5.5$, with probability of *zero-component* is 0.2.

Poisson regression to Zero-Inflated Poisson regression

- ▶ In Poisson regression (with a single predictor, for simplicity), we assume that each y_i is a Poisson random variable with rate λ_i that is a function of the predictor x_i .
- ► In Zero-Inflated Poisson regression, we assume that each y_i is distributed as a Zero-Inflated Poisson mixture model:

$$y_i \sim \begin{cases} Poisson(\lambda_i) & \text{if } z_i = 0, \\ 0, & \text{if } z_i = 1 \end{cases}$$

where rate λ_i and $P(z_i = 1)$ are functions of the predictor x_i .

Zero-Inflated Poisson regression

Assuming data $\{(x_i, y_i), (x_2, y_2) \dots (x_n, y_n)\}$, Poisson regression models this data as:

$$\begin{aligned} y_i &\sim \begin{cases} Poisson(\lambda_i) & & \text{if } z_i = 0,\\ 0, & & \text{if } z_i = 1 \end{cases},\\ z_i &\sim Bernoulli(\theta_i), \end{aligned}$$

where θ_i and λ_i are functions of x_i .

Zero-Inflated Poisson regression

► The θ_i and λ_i variables are the usual suspects, i.e.

$$log(\lambda_i) = \alpha + \beta x_i,$$

and

$$\log\left(\frac{\theta_{\mathfrak{i}}}{1-\theta_{\mathfrak{i}}}\right) = a + bx_{\mathfrak{i}}.$$

In other words, λ_i is modelled just as in ordinary Poisson regression and θ_i is modelled in logistic regression.