Методи уточнення коренів:

- 1) поділу відрізка навпіл (метод бісекції, діхотомії);
- 2) січних (хорд);
- 3) Ньютона (метод дотичних)

Приклад. Уточнити корінь рівняння $x^4 + x^3 - 36 \cdot x - 20 = 0$, відокремлений на відрізку [3: 4].

- 1) Дослідимо функцію $f(x) := x^4 + x^3 36 \cdot x 20$
 - 1.1) Побудуємо графік функції

1.2) Знайдемо корені рівняння $x^4 + x^3 - 36 \cdot x - 20 = 0$ за допомогою функції polyroots

$$v := \begin{bmatrix} -20 \\ -36 \\ 0 \\ 1 \\ 1 \end{bmatrix} \qquad X := \text{polyroots} (v) = \begin{bmatrix} -1.8114 - 2.8275i \\ -1.8114 + 2.8275i \\ -0.5577 \\ 3.1805 \end{bmatrix}$$

Отже, даний многочлен має два дійсних корені: від'ємний корінь на відрізку [-1; 0] та додатній на відрізку [3; 4].

2) Метод поділу відрізка навпіл (метод бісекції, діхотомії)

2.1) Методом бісекції уточнимо корінь рівняння $x^4 + x^3 - 36 \cdot x - 20 = 0$, відокремлений на відрізку [3: 4]

$$f(x) := x^4 + x^3 - 36 \cdot x - 20$$

 $a := 3$ $b := 4$ $\varepsilon := 0.01$

 $root_x := \frac{a+b}{2}$ - знаходимо середину відрізка [a, b]

$$f(a) \cdot f(root_x) = -938.75$$
 $f(a) \cdot f(root_x) < 0$, тому з двох утворених відрізків [a; $root_x$] та $[root_x, b]$ залишаємо відрізок [a; $root_x$], покладаючи $b = root_x$

$$b$$
 := $root_x$ = 3.5
$$|b-a| = 0.5$$
 $|b-a| < \varepsilon = 0$ - критерій завершення процесу уточнення кореня не виконується, оскільки $|b-a| > \varepsilon$

$$a=3$$
 $b=3.5$ $root_x = \frac{a+b}{2}$ $f(a) \cdot f(root_x) = -177.8906$ $f(a) \cdot f(root_x) < 0$, залишаемо відрізок [a; $root_x$], покладаючи $b=root_x$ $b=root_x = 3.25$ $|b-a| = 0.25$ $|b-a| < \varepsilon = 0$ $a=3$ $b=3.25$ $|c-a| = 0.25$ $|c-a| < \varepsilon = 0$ $a=root_x = \frac{a+b}{2}$ $f(a) \cdot f(root_x) > 0$, залишаемо відрізок $[root_x, b]$, покладаючи $a=root_x$ $a=root_x = 3.125$ $|b-a| = 0.125$ $|b-a| < \varepsilon = 0$ $a=3.125$ $b=3.25$ $|c-a| = 0.125$ $|c-a| < \varepsilon = 0$ $a=3.125$ $b=3.1875$ $|c-a| = 0.0625$ $|c-a| < \varepsilon = 0$ $a=3.125$ $b=3.1875$ $|c-a| = 0.0625$ $|c-a| < \varepsilon = 0$ $a=3.126$ $a=3.126$

a=3.1719 b=3.1875 $root_x := \frac{a+b}{2}$ $f(a) \cdot f(root_x) = 0.106$

 $\varepsilon = 0.01$ $a \coloneqq root_x = 3.1797$ |b-a| = 0.0078 $|b-a| < \varepsilon = 1$ корінь знайдено з точністю ε

Перевірка. Порівняємо корінь рівняння, уточнений методом бісекції, з коренем, знайденим за допомогою функції polyroots

$$root_x = 3.1797$$
 $f(root_x) = -0.1004$
 $X_4 = 3.1805$ $f(X_4) = 0$

2.2) Задамо функцію, яка реалізує метод бісекції:

n - кількість ітерацій

root_x - корінь рівняння,
обчислений методом бісекцій

 $X_{_{4}}\!=\!3.1805$ - корінь, знайдений за допомогою функції polyroots

$$Method_bisection(f, 3, 4, 0.0001) = \begin{bmatrix} 14 \\ 3.1805 \end{bmatrix} \qquad root_xI := 3.1805 \quad f(root_xI) = -4.3322 \cdot 10^{-4}$$

 $X_{_{3}} = -0.5577$ - корінь, знайдений за допомогою функції polyroots

$$Method_bisection(f, -1, 0, 0.0001) = \begin{bmatrix} 14 \\ -0.5577 \end{bmatrix} \qquad root_x2 := -0.5577 \quad f(root_x2) = 4.7818 \cdot 10^{-4}$$

3) Метод січних або хорд

3.1) Побудуємо графік даної функції $f(x) = x^4 + x^3 - 36 \cdot x - 20$ на відрізку [3; 4] та хорду, що проходить через точки (a, f(a)) та (b, f(b))

Рівняння прямої, що проходить через дві задані точки: $\frac{x-3}{4-3} = \frac{y-f(3)}{f(4)-f(3)}$ або $\frac{y+20}{176} = \frac{x-3}{1}$ або $y = 176 \cdot (x-3) - 20$

$$f_{horda}(x) := 176 \cdot x - 548$$

$$x := a, a + 0.01..b$$

3.2) Методом хорд уточнимо корінь рівняння $x^4 + x^3 - 36 \cdot x - 20 = 0$, відокремлений на відрізку [3: 4]

clear(x)

clear(x, y, ...) - функція очистки змінних

$$f(x) := x^4 + x^3 - 36 \cdot x - 20$$

a := 3 b := 4 - даний відрізок [a, b]

$$f'(x) \to 4 \cdot x^3 + 3 \cdot x^2 - 36$$
 - похідна 1-го порядку

$$f''(x) \to 12 \cdot x^2 + 6 \cdot x$$

 $f''(x) \to 12 \cdot x^2 + 6 \cdot x$ - похідна 2-го порядку

Візьмемо довільну точку на відрізку [3; 4], наприклад середину відрізка х=3.5

$$f'\left(\frac{a+b}{2}\right) \cdot f''\left(\frac{a+b}{2}\right) = 28938 \qquad \operatorname{sign}\left(f'\left(\frac{a+b}{2}\right) \cdot f''\left(\frac{a+b}{2}\right)\right) = 1 \quad \text{тобто} \quad f'(3.5) \cdot f''(3.5) > 0$$

Оскільки $f(x) \cdot f'(x) > 0$, то **нерухливою є права границя** відрізку [a; b], тобто **точка b**, зафіксуємо її як початкову: x0=b=4, тоді x1=a=3

$$x0 := b = 4$$

$$\varepsilon \coloneqq 0.01$$
 - точність

x1 := a = 3

$$x2 := xI - \frac{f(xI)}{f(xI) - f(x0)} \cdot (xI - x0) = 3.1136$$
 $|x2 - xI| = 0.1136$ $|x2 - xI| < \varepsilon = 0$

$$x3 := x2 - \frac{f(x2)}{f(x2) - f(x0)} \cdot (x2 - x0) = 3.1564$$
 $|x3 - x2| = 0.0428$ $|x3 - x2| < \varepsilon = 0$ $x4 := x3 - \frac{f(x3)}{f(x3) - f(x0)} \cdot (x3 - x0) = 3.1719$ $|x4 - x3| = 0.0155$ $|x4 - x3| < \varepsilon = 0$ $|x5 := x4 - \frac{f(x4)}{f(x4) - f(x0)} \cdot (x4 - x0) = 3.1775$ $|x5 - x4| = 0.0055$ $|x5 - x4| < \varepsilon = 1$ $\varepsilon = 0.01$ корінь знайдено з точністю ε

Перевірка. Порівняємо корінь рівняння, уточнений методом бісекції, з коренем, знайденим за допомогою функції polyroots

$$root_x := 3.1775$$
 $X_4 = 3.1805$

3.3) Задамо функцію, яка реалізує метод хорд:

$$Method_chord(f, a, b, \varepsilon) := \left\| \begin{array}{l} \text{if } f\left(\frac{a+b}{2}\right) \cdot f'\left(\frac{a+b}{2}\right) < 0 \\ \left\| \begin{array}{l} x0 \leftarrow a \\ x1 \leftarrow b \end{array} \right\| \\ \text{else} \\ \left\| \begin{array}{l} x0 \leftarrow b \\ x1 \leftarrow a \end{array} \right| \\ x_previous \leftarrow x1 \\ n \leftarrow 0 \\ \text{while 1} \\ \left\| \begin{array}{l} x_current \leftarrow x_previous - \frac{f(x_previous)}{f(x_previous) - f(x0)} \cdot (x_previous - x0) \\ \left\| \begin{array}{l} n \leftarrow n+1 \\ \text{if } \left| x_current - x_previous \right| < \varepsilon \\ \left\| \begin{array}{l} b \text{break} \\ x_previous \leftarrow x_current \end{array} \right\| \\ \text{return } \begin{bmatrix} n \\ x_current \end{bmatrix}$$

n - кількість ітерацій

 $x_current$ - корінь рівняння, обчислений методом хорд з заданою точністю arepsilon

 $X_{\!_{4}}\!=\!3.1805$ - корінь, знайдений за допомогою функції polyroots

$$Method_chord(f, 3, 4, 0.001) = \begin{bmatrix} 6 \\ 3.1801 \end{bmatrix} \qquad root_x1 := 3.1801 \qquad f(root_x1) = -4.9637 \cdot 10^{-2}$$

$$Method_chord(f, 3, 4, 0.0001) = \begin{bmatrix} 8 \\ 3.1805 \end{bmatrix} \qquad root_x2 := 3.1805 \qquad f(root_x2) = -4.3322 \cdot 10^{-4}$$

 $X_{_3} = -0.5577$ - корінь, знайдений за допомогою функції polyroots

$$Method_chord(f, -1, 0, 0.0001) = \begin{bmatrix} 3 \\ -0.5577 \end{bmatrix} \qquad root_x3 := -0.5577 \quad f(root_x3) = 4.7818 \cdot 10^{-4}$$

4) Метод дотичних або Ньютона

4.1) Методом дотичних (Ньютона) уточнимо корінь рівняння $x^4 + x^3 - 36 \cdot x - 20 = 0$, відокремлений на відрізку [3: 4]

Візьмемо довільну точку на відрізку [3; 4], наприклад середину відрізка х=3.5 та визначимо знак добутку похідних першого та другого порядку

$$f'\left(\frac{a+b}{2}\right) \cdot f''\left(\frac{a+b}{2}\right) = 28938 \qquad \operatorname{sign}\left(f'\left(\frac{a+b}{2}\right) \cdot f''\left(\frac{a+b}{2}\right)\right) = 1 \quad \text{тобто} \quad f'(3.5) \cdot f''(3.5) > 0$$

Оскільки $f'(x) \cdot f''(x) > 0$, то в якості початкової точки (в якій будемо починати проводити дотичні) обираємо **праву границю** відрізку [a; b], тобто **точку b**: x0=b=4.

$$x := b = 4$$
 $x_root := x - \frac{f(x)}{f'(x)} = 3.4179$
 $|x_root - x| = 0.5821$
 $|x_root - x| < \varepsilon = 0$
 $x := x_root$
 $|x_root - x| = 0.2101$
 $|x_root - x| < \varepsilon = 0$
 $|x_root - x| = 0.2101$
 $|x_root - x| < \varepsilon = 0$
 $|x_root - x| = 0.0269$
 $|x_root - x| < \varepsilon = 0$
 $|x_root - x| < \varepsilon$

Перевірка. Порівняємо корінь рівняння, уточнений методом дотичних (за 4 кроки), з коренем, знайденим за допомогою функції polyroots

$$root_x := 3.1805$$
 $f(root_x) = -0.0004$
 $X_4 = 3.1805$ $f(X_4) = 0$

4.2) Задамо функцію, яка реалізує метод Ньютона

$$Method_Newton(f, a, b, \varepsilon) := \left\| \text{ if } f\left(\frac{a+b}{2}\right) \cdot f''\left(\frac{a+b}{2}\right) < 0 \right\|$$

$$\left\| x_previous \leftarrow a \right\|$$

$$\left\| x_previous \leftarrow b \right\|$$

$$n \leftarrow 0$$

$$\text{while } 1$$

$$\left\| x_current \leftarrow x_previous - \frac{f(x_previous)}{f(x_previous)} \right\|$$

$$\left\| n \leftarrow n + 1 \right\|$$

$$\left\| \text{ if } \left| x_current - x_previous \right| < \varepsilon$$

$$\left\| \text{ break} \right\|$$

$$\left\| x_previous \leftarrow x_current \right\|$$

$$\left\| x_previous \leftarrow x_current \right\|$$

$$\left\| x_current \right\|$$

 $X_{_{\! A}}\!=\!3.1805$ - корінь, знайдений за допомогою функції polyroots

$$Method_Newton(f, 3, 4, 0.0001) = \begin{bmatrix} 5 \\ 3.1805 \end{bmatrix} \qquad root_x1 := 3.1805 \qquad f(root_x1) = -4.3322 \cdot 10^{-4}$$

 $X_{_{\! 3}}\!=\!-0.5577$ - корінь, знайдений за допомогою функції polyroots

$$Method_Newton(f, -1, 0, 0.0001) = \begin{bmatrix} 3 \\ -0.5577 \end{bmatrix} \qquad root_x2 := -0.5577 \quad f(root_x2) = 4.7818 \cdot 10^{-4}$$