Course Project, Spring 2016

Cluster-State Quantum Computing

Mayra Amezcua, Dileep V. Reddy, Zach Schmidt

May 25, 2016

CIS410/510 Introduction to Quantum Information Theory

Lecturer: Prof. Xiaodi Wu

Computer and Information Science, University of Oregon

Table of Contents (optional frame. Can delete.)

- Motivation
 - Gates through teleportation
- Cluster states (CS)
 - Definition
 - Representations
 - Properties
- Universal computation through CS

- Linear wire
- Arbitrary single qubit operations
- Two qubit operations
- Advantages and disadvantages
 - Parallelizability
 - Experimental implementations
 - CS model as an analysis tool
- References

template frame (delete me)

test block

some text

test varblock

Variable block (here 4cm)

test alert

some alert

test example

some example citation ¹

¹Auth, DV, 123, 2001.

Arbitrary quantum circuit involving unitary operations on 3 qubits.

One-way quantum computing, measurement based quantum computing As opposed to circuit based quantum computing

Basic teleporation

Motivation Cluster states (CS) Universal computation through CS

Cluster states form a class of multiparty entangled quantum states which belong to the larger set of so-called graph states.

Examples of graph states:

- Bell states
- Greenberger-Horne-Zeilinger (GHZ) states
- states that appear in quantum error correction

Intuitively, graph states can be thought of as multi-qubit states that can be represented by a graph.

- Each qubit is represented by a vertex of the graph
- An edge between vertices represents an interacting pair of qubits

Cluster states (CS)

Blah

Representations

Figure: Figure showing representative 2-D cluster shapes. The vertices are qubits with integer indices, and the edges indicate entanglement connectivity between select neighbors.

The spacial layout of the graph representation of the cluster state plays a role in the computational power of that state.

Operations on a linearly prepared cluster state can be efficiently simulated on a classical computer in $O(n \log^c(1/n))$, where n is the initial number of qubits, and c is the cost of floating point multiplication [Nielsen, 2006].

In general, measurement based models can be polynomial time reduced to the gate array model, and thus have the same power, but they are more easily parallelizable [Jozsa, 2006].

Callback to teleportation discussion

Linear wire Arbitrary single qubit operations

Apply $\,C_z^{(A,1)}\,$ and $\,C_z^{(B,5)}\,$ to input quantum information into cluster state.

Apply $C_z^{(A,1)}$ and $C_z^{(B,5)}$ to input quantum information into cluster state.

Parallelizability Experimental implementations

[Jozsa, 2006] Jozsa, R. (2006).

An introduction to measurement based quantum computation.

NATO Science Series, III: Computer and Systems Sciences. Quantum Information Processing-From Theory to Experiment, 199:137-158.

[Nielsen, 2006] Nielsen, M. A. (2006).

Cluster-state quantum computation.

Reports on Mathematical Physics, 57(1):147-161.

