03_Losses_Regularization_Evaluation

1. Regularization

- 1.1. Stabilization
 - 1.1.1. Background
 - 1.1.2. Solution
 - 1.1.3. Geometry
- 1.2. General Approach to regularization
- 1.3. Sparsity Regularization
 - 1.3.1. Model
 - 1.3.2. Geometry
- 2. Bias-Variance
 - 2.1. Bias-Variance Decomposition
 - 2.2. Bias-Variance Tradeoff and Regularization
- 3. Evaluating Learners
 - 3.1. Errors
 - 3.1.1. Estimate True Error
 - 3.1.2. Cross Validation
 - 3.2. Learning Curves
 - 3.3. Feature Curves
 - 3.4. Curse of Dimensionality
 - 3.5. Confusion Matrices

1. Regularization

1.1. Stabilization

1.1.1. Background

Take Linear Regression as Example: $\widehat{w} = \left(X^TX\right)^{-1}X^TY$, if:

- we try to use many dimensions features but only have few observations
- the train data is not "good" (does not present true distribution)

Then some eigenvalues of X may be very small, which means in the inverse, some features will have very large eigenvalues, which means

- the given feature dominates the regression
- ullet new observation of different sample will lead to very large fluctuation on the w, which means, **unstable**

1.1.2. Solution

An idea is: keep the eigenvalues away from 0

$$\widehat{w} = \left(X^TX + \lambda I\right)^{-1}X^TY$$

• The new w will perform poorer on train data

• But it has high possibility perform better on true data

The above equation is equal to:

$$\min_{w} \sum_{i=1}^{N} \left(x_i^T w - y_i
ight)^2 + \lambda \|w\|^2$$

Or the second format:

$$egin{aligned} \min_{w} \sum_{i=1}^{N} \left(f\left(x_{i}, w
ight) - y_{i}
ight)^{2} \ & ext{s.t.} \ \|w\|^{2} \leq au \end{aligned}$$

1.1.3. Geometry

1.2. General Approach to regularization

$$\min_{w}\sum_{i=1}^{N}\ell\left(f\left(x_{i},w
ight),y_{i}
ight)+R(f)$$
 (1)

1.3. Sparsity Regularization

- *Sparsity*: make some w_i to zero
 - To some extend means **simplify the model** (lower down the overfitting)

1.3.1. Model

$$\min_{w} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2$$
s.t. $\|w\|_1 \le \tau$ (2)

1.3.2. Geometry

2. Bias-Variance

2.1. Bias-Variance Decomposition

Assume we have a given format of classification/regression function: f

- optimal prediction $f^*(x)$ (may not belong to \mathbb{F})
- ullet estimate based on some given data $\hat{f}(x) \in \mathbb{F}$

$$\mathbb{E}\left[\left(f^* - \hat{f}\right)^2\right]$$

$$= \mathbb{E}\left[\left(f^* - \mathbb{E}\hat{f}\right)^2\right] + \mathbb{E}\left[\left(\mathbb{E}\hat{f} - \hat{f}\right)^2\right]$$

$$= \text{bias}^2 + \text{variance}$$
(3)

Understanding

• bias is something like "inherent error" between model assumption and real optimal function

• regression is the sensitivity of the given assumption regarding to dataset

2.2. Bias-Variance Tradeoff and Regularization

larger λ

- larger bias: go away from original information from the dataset
- smaller variance: because above, dataset fluctuation is not so important

3. Evaluating Learners

We will use **classifiers** as example

3.1. Errors

3.1.1. Estimate True Error

We can estimate *true error* based on test set

Other training set → other classifier
Other test set → other error estimate

3.1.2. Cross Validation

3.2. Learning Curves

3.3. Feature Curves

3.4. Curse of Dimensionality

For a given set, when the complexity is higher, whether the data set is large enough to learn all parameters of the classifier is unknown.

3.5. Confusion Matrices

Provides counts of class-dependent errors : How many object have been classified as *A* that should have been classified as *B*?