ELECTRÓNICA ANALÓGICA I

PRACTICA N°5

EL TRANSISTOR USO COMO INTERRUPTOR AMPLIFICADOR EMISOR COMÚN

Índice:

- 1. Objetivos.
- 2. Textos de referencia.
- 3. Listado de Componentes.
- 4. Listado de Instrumental.
- 5. Prueba del Transistor.
- 6. Medida del h_{FE} del Transistor.
- 7. Uso del Transistor como Interruptor.
- 8. Polarización mediante Divisor de Tensión.
- 9. Amplificador en Emisor Común.

Apéndice A: Práctica de Simulación.

Apéndice B: Hoja de datos del BC547.

PRACTICA Nº 5

EL TRANSISTOR. USO COMO INTERRUPTOR. AMPLIFICADOR EMISOR COMÚN.

1. Objetivos

- Verificar el uso del transistor como interruptor.
- Analizar y el funcionamiento en corriente continua y en señal pequeña del amplificador emisor común.

2. Textos de referencia.

- Principios de Electrónica, Cap. 7, Fundamentos de los Transistores. Malvino. 5^{ta} ed.
- Principios de Electrónica, Cap. 8, Polarización de los Transistores. Malvino, 5^{ta} ed.
- Principios de Electrónica, Cap. 9, Modelos Equivalentes para Señal. Malvino, 5^{ta} ed.
- Dispositivos Electrónicos, Cap. 4, Transistores de Unión Bipolar. T. Floyd, 3^{ra} ed.
- Dispositivos Electrónicos, Cap. 5, Polarización de Transistores Bipolares. T. Floyd, 3^{ra} ed.
- Dispositivos Electrónicos, Cap. 6, Amplificadores Bipolares en Señal Pequeña. T. Floyd, 3^{ra} ed.

3. Listado de Componentes.

- 1 Transistor Bipolar BC547A o equivalente.
- 1 Resistencia 1.2 K Ω $\frac{1}{4}$ W.
- 1 Resistencia 330 Ω $\frac{1}{4}$ W.
- 1 Resistencia 10 K Ω $\frac{1}{4}$ W.
- 1 Resistencia 3.3 K Ω $\frac{1}{4}$ W.
- 1 Resistencia 1 K Ω $\frac{1}{4}$ W.
- 1 Resistencia 820 Ω $\frac{1}{4}$ W.
- 1 Resistencia 470 Ω $\frac{1}{4}$ W.
- 1 Resistencia 47 Ω $\frac{1}{4}$ W.
- 2 Capacitor Electrolítico 22 mF / 25V.
- 1 Capacitor Electrolítico 47 mF / 25V.
- 1 Led 5 mm.

4. Listado de Instrumental.

- Kit de experimentación EXPUN.
- Tester Digital.
- Generador de Funciones.
- Osciloscopio.

5. Prueba del Transistor.

5.1. Considere el diagrama mostrado en la Figura 1 que muestra la equivalencia entre el Transistor y un par de diodos dispuestos espalda con espalda (la equivalencia es sólo a los fines de la prueba del transistor).

Figura 1

5.2. Seleccione en el multímetro el modo "diode check". Para realizar esto, coloque la llave selectora de rango en la posición marcada con el símbolo.

- **5.3.** Conecte las dos puntas de prueba del multímetro: el Cable Rojo al terminal "V-Ω-A" y el cable Negro al terminal "COM".
- **5.4. Realice las medidas previstas en la tabla siguiente.** Emplee la hoja de datos del transistor para localizar los terminales Base, Emisor y Colector.

Terminales del Multímetro		Lectura
Rojo	Negro	
Base	Emisor	
Emisor	Base	
Base	Colector	
Colector	Base	
Colector	Emisor	
Emisor	Colector	

Nota: En el modo "diode check" el instrumento hace circular una corriente continua, que fluye desde el terminal positivo (Rojo) hacia el terminal común (Negro). Cuando el diodo es polarizado en forma directa, el instrumento indica en el display la caída de tensión a través del mismo. Cuando las puntas del instrumento se conectan de modo que el diodo quede polarizado en inversa, en el display se indica la lectura correspondiente a fuera de rango. A una unión que esté en corto circuito le corresponderá una lectura de 0.00, y fuera de rango si la misma está abierta (cuando el diodo está polarizado en forma directa). Cualquiera de estas dos condiciones indicarán que la juntura correspondiente está en mal estado.

- 6. Medida del h_{FE} del transistor.
- **6.1. Lleve la llave selectora de rango a la posición para prueba de transistores**, seleccionando la posición **NPN** o **PNP** de acuerdo con el transistor a ser medido.
- **6.2.** Insertar los terminales del transistor en el zócalo conector, respetando la secuencia E-B-C correspondiente al transistor utilizado (ver hoja de datos).
- 6.3. Anote a continuación la lectura realizada: $h_{FE} = \dots$

Nota: Algunos multímetros digitales cuentan con una función de prueba de transistores. Esta función da una indicación de la ganancia de corriente continua del transistor, según condiciones de prueba determinadas. El multímetro realiza la medición automáticamente, aplicando una tensión continua C - E conocida y una corriente de base conocida. Posteriormente mide la corriente de colector resultante.

- 7. Uso del transistor como interruptor.
- 7.1. Arme el circuito de la Figura 2.

Figura 2

7.2. Mida y calcule la corriente de base I_B . Anote los resultados a continuación.

7.3. Mida y calcule la corriente de colector I_C cuando se cierra el interruptor de la base. Suponga que el transistor está saturado y que en el diodo Led caen aproximadamente 1,5 Volt.

7.4. Determine el h_{FE} de las medidas y los cálculos efectuados en los puntos anteriores.

- 7.5. ¿Por qué existe tanta diferencia entre el valor de h_{FE} calculado y medido en el punto anterior, con el encontrado en el punto 6.3.?.
- 7.6. Mida y calcule la tensión colector emisor $V_{\it CE}$ cuando el transistor se encuentra en el corte.

- 7.7. ¿A qué se debe la discrepancia entre los dos valores anteriores?.
- 8. Polarización mediante Divisor de Tensión.
- 8.1. Arme el circuito de la Figura 3.

8.2. Calcule y mida los valores de tensión y corriente indicados en la tabla siguiente.

	Valor Esperado	Valor Medido
V_B		
V_E		
I_E		
I_C		
V_C		
V_{CE}		

8.3. Dibuje la recta de carga. Indique los valores extremos de la misma.

- 8.4. Marque en la gráfica anterior el punto de trabajo en el que se encuentra polarizado el transistor. Indique los valores de I_c y V_{CE} del mismo.
- 9. Amplificador en Emisor Común.
- 9.1. Fórmulas útiles.

Ganancia del amplificador con carga:

$$A_v = \frac{R_C // R_L}{r_e + R_E}$$
 donde R_C es la resistencia de colector, R_E la de emisor y R_L la de carga.

Resistencia Base-Emisor para señales pequeñas:

$$r_e = \frac{25\,mV}{I_E}$$
 donde I_E es la corriente de emisor.

9.2. Arme el circuito de la Figura 4. Observe que no debe desarmar el circuito que utilizó en el ejercicio anterior.

9.3.	Ajuste el generador de fu características:	nciones para que	entregue una	señal de e	entrada con	ı las	siguientes
		Tipo de onda:	Senoidal.				
		Frecuencia:	10 kHz.				
		Amplitud:	200 mV pico a	i pico.			
9.4.	Observe las señales de entra	da y salida. ¿Cuál d	es la diferencia	de fase entr	e ellas?.		
9.5.	Calcule la ganancia de tensi en una de las resistencias de en		amplificador est	á cargado y	tiene un cap	acitor	de puenteo
	A_{v} (calculada) =		(con carg	a y con capa	citor c	le puenteo)
	Nota: Tenga en cuenta que ateada con el capacitor de 47 m		ene dos resisten	cias de emi	sor y una s	ola de	e ellas esta
9.6.	Mida la ganancia de tensión	calculada en el pun	to anterior.				
	A_1	, (medida) =		(con carg	a y con capa	citor c	le puenteo)
9.7.	Calcule y mida la ganancia puenteo.	a de tensión para	el amplificadoı	r sin carga	. Mantenga	ı el ca	apacitor de
	$A_{ u}$ (e	calculada) =		(sin carg	a y con capa	citor d	le puenteo)
	A	, (medida) =		(sin carg	a y con capa	citor c	le puenteo)
9.8.	¿Qué sucede con la ganancia ¿A qué se debe esto?.	cuando se elimina	la resistencia de	e carga?.			
9.9.	Calcule y mida la ganancia resistencia de carga.	de tensión para el	amplificador si	n el capaci	or de puen	teo. F	Restituya la
	$A_{ u}$ (o	calculada) =		(con car	ga y sin capa	citor c	le puenteo)
	\boldsymbol{A}	, (medida) =		(con car	ga y sin capa	citor c	le puenteo)
9.10	. ¿Qué sucede con la gana ¿A qué se debe esto?.	ncia cuando se elim	ina el capacitor	de puenteo	?.		
9.11	. Por último, aumente la a salida.	amplitud de la seña	l de entrada y o	observe con	10 se distors	siona l	la onda de

¿Cuál es la máxima tensión pico a pico de entrada que no produce una salida distorsionada?.

9.12.

//1.

Apéndice A Práctica de simulación

1. Amplificador en emisor común.

1.1. Cargue el circuito que se encuentra en el archivo CE-AMP.ewb.

1.2. Realice el análisis de continua del circuito anterior calculando y midiendo las cantidades que se muestran en la tabla siguiente. Para realizar las medidas desconecte la señal de entrada.

	Valor Esperado	Valor Medido
V_B		
V_E		
I_E		
I_C		
V_C		
V_{CE}		

1.3. Dibuje la recta de carga de continua e incluya el punto de trabajo en el que se encuentra polarizado el transistor.

1.4. Conecte la fuente de tensión alterna y observe las señales de entrada y salida. ¿Cuál es la diferencia de fase entre ellas?.

0/12

1.5. Mida la ganancia de tensión para el circuito con la carga y con el capacitor de puenteo de emisor conectados.

 $A_{\nu} = \dots$ (con carga y con capacitor de puenteo)

1.6. Mida ahora la ganancia de tensión luego de desconectar la resistencia de carga. No elimine el capacitor de puenteo.

 $A_{\nu} = \dots$ (sin carga y con capacitor de puenteo)

1.7. ¿Qué sucede con la ganancia de tensión?.

¿A qué se debe esto?.

1.8. Por último, mida la ganancia de tensión luego de desconectar el capacitor de puenteo. No restituya la resistencia de carga.

 $A_{\nu} = \dots$ (sin carga y sin capacitor de puenteo)

- 1.9. Compare los valores de ganancia medidos en los puntos 1.6. y 1.8. ¿Qué sucede con la ganancia al eliminar el capacitor de puenteo?. ¿A qué se debe esto?.
- 2. Amplificador en colector común.
- 2.1. Cargue el circuito que se encuentra en el archivo CC-AMP.ewb.

2.2. Dibuje la recta de carga de continua e incluya el punto de trabajo en el que se encuentra polarizado el transistor.

2.3. Desconecte la resistencia de carga y posteriormente aumente la tensión de entrada hasta encontrar que la salida se distorsiona.

2.4.	¿Cuál es la máxima amplitud de la señal de entrada que no produce distorsión a la salida?.
	$V_{ent (max)} = \dots [max]$ (máxima amplitud de entrada sin carga)
2.5.	¿Qué relación guarda el resultado anterior con la recta de carga dibujada calculada anteriormente?.
2.6.	Conecte la resistencia de carga. ¿Cuál es ahora la máxima amplitud de la señal de entrada que no produce distorsión a la salida?.
	$V_{ent (max)} = \dots [\dots [\dots]$ (máxima amplitud de entrada con carga)
2.7.	¿Cuál puede ser la causa de que sean diferentes los valores de amplitud máxima de la señal de entrada con y sin carga que no producen una salida distorsionada?

Philips Semiconductors Product specification

NPN general purpose transistors

BC546; BC547; BC548

FEATURES

• Low current (max. 100 mA)

• Low voltage (max. 65 V).

APPLICATIONS

• General purpose switching and amplification.

DESCRIPTION

NPN transistor in a TO-92; SOT54 plastic package. PNP complements: BC556, BC557 and BC558.

PINNING

PIN	DESCRIPTION	
1	emitter	
2	base	
3	collector	

Fig.1 Simplified outline (TO-92; SOT54) and symbol.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter			
	BC546		_	80	V
	BC547		_	50	V
	BC548		_	30	V
V _{CEO}	collector-emitter voltage	open base			
	BC546		_	65	V
	BC547		_	45	V
	BC548		_	30	V
I _{CM}	peak collector current		_	200	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	_	500	mW
h _{FE}	DC current gain	I _C = 2 mA; V _{CE} = 5 V			
	BC546		110	450	
	BC547		110	800	
	BC548		110	800	
f _T	transition frequency	I _C = 10 mA; V _{CE} = 5 V; f = 100 MHz	100	_	MHz

1997 Mar 04 2

Philips Semiconductors Product specification

NPN general purpose transistors

BC546; BC547; BC548

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CBO}	collector-base voltage	open emitter			
	BC546		_	80	V
	BC547		_	50	V
	BC548		_	30	V
V _{CEO}	collector-emitter voltage	open base			
	BC546		_	65	V
	BC547		_	45	V
	BC548		_	30	V
V _{EBO}	emitter-base voltage	open collector			
	BC546		_	6	V
	BC547		_	6	V
	BC548		_	5	V
I _C	collector current (DC)		_	100	mA
I _{CM}	peak collector current		_	200	mA
I _{BM}	peak base current		_	200	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C; note 1	_	500	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		_	150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

Note

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	note 1	0.25	K/mW

Note

1. Transistor mounted on an FR4 printed-circuit board.

1997 Mar 04 3

^{1.} Transistor mounted on an FR4 printed-circuit board.

Philips Semiconductors Product specification

NPN general purpose transistors

BC546; BC547; BC548

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 30 V	_	_	15	nA
		I _E = 0; V _{CB} = 30 V; T _j = 150 °C	_	_	5	μΑ
I _{EBO}	emitter cut-off current	I _C = 0; V _{EB} = 5 V	_	_	100	nA
h _{FE}	DC current gain BC546A; BC547A; BC548A BC546B; BC547B; BC548B BC547C; BC548C	I_C = 10 μ A; V_{CE} = 5 V; see Figs 2, 3 and 4	-	90 150 270	_ _	
h _{FE}	DC current gain BC546A; BC547A; BC548A BC546B; BC547B; BC548B BC547C; BC548C BC547; BC548	I _C = 2 mA; V _{CE} = 5 V; see Figs 2, 3 and 4	110 200 420 110	180 290 520	220 450 800 800	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	BC546	1 40 40 40	110	-	450	>/
V _{CEsat}	collector-emitter saturation voltage	$I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$ $I_C = 100 \text{ mA}; I_B = 5 \text{ mA}$	_	90 200	250 600	mV mV
V _{BEsat}	base-emitter saturation voltage	$I_C = 10 \text{ mA}$; $I_B = 0.5 \text{ mA}$; note 1 $I_C = 100 \text{ mA}$; $I_B = 5 \text{ mA}$; note 1	_	700 900	-	mV mV
V _{BE}	base-emitter voltage	$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V}; \text{ note } 2$ $I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	580 -	660	700 770	mV mV
C _c	collector capacitance	I _E = i _e = 0; V _{CB} = 10 V; f = 1 MHz	_	1.5	_	pF
C _e	emitter capacitance	I _C = i _c = 0; V _{EB} = 0.5 V; f = 1 MHz	_	11	_	pF
f _T	transition frequency	I _C = 10mA; V _{CE} = 5 V; f = 100 MHz	100	_	_	MHz
F	noise figure	$I_C = 200 \mu A; V_{CE} = 5 V;$ $R_S = 2 k\Omega; f = 1 kHz; B = 200 Hz$	_	2	10	dB

Notes

- 1. V_{BEsat} decreases by about 1.7 mV/K with increasing temperature.
- 2. V_{BE} decreases by about 2 mV/K with increasing temperature.

1997 Mar 04 4