Smoothing Mixed Effects Models and Election Poll Aggregation: An Application to the 2020 Democratic Primary

Lisa Wilson

June 8, 2020

Background

Motivation

- ► Election polling and forecasting models under more scrutiny after the 2016 U.S. election
- Different election forecasting approaches
 - Fundamental models: historical data, economic indicators, other covariates; no current polling data
 - Poll aggregation models: combines current polling data, sometimes historical as well
 - Hybrid/synthetic models: incorporate fundamental elements and poll aggregation

Wright's Smoothing Mixed Effects Model

- Wright (2018) evaluates models used by FiveThirtyEight, NYT Upshot, Princeton Election Consortium, and HuffPost
- Proposes a smoothing mixed effects model with the log-ratio of percent support for Clinton over Trump in each state as the response, using only state polls
 - Matches or outperforms the prediction sites, predicts a higher probability of a Trump electoral college win
- Log-ratio is less affected by the percentage of third-party supporters, which tends to be higher in polls than in election results
- ▶ Log-ratio and the difference between candidate support have the same sign, so predictions about which candidate will win a particular state can be made on either scale

$$y_{ij}(t) = \mu(t) + v_i(t) + \epsilon_{ij}$$

- $y_{ij}(t) = \log(\frac{A_{ij}(t)}{B_{ij}(t)})$: log-ratio of percent support for candidate A to candidate B for state i and poll j at time t days before the election
- $\blacktriangleright \mu(t)$: national fixed effect (as measured from state polls)
- \triangleright $v_i(t)$: state-level random effect
- $ightharpoonup \epsilon_{ij}$: iid normal error terms with mean 0

$$y_{ij}(t) = \mu(t) + v_i(t) + \epsilon_{ij}$$

- $\theta_i(t) = E(y_i(t))$: true log-ratio of support for candidate A to candidate B
- $\hat{\theta}_i(0)$: spline-extrapolated estimate of the log-ratio of candidate support on election day in state i
- t: number of days between the mid-date of the poll and the election

- Model estimation with the R package sme
 - Fits smooth functions $\mu(t)$ and $\{v_i(t)\}$ with splines using maximum likelihood estimation, penalized by bandwidth parameters λ_{μ} and λ_{ν}
- ▶ Use a training and test set of polls to determine the $\lambda_{\mu}, \lambda_{\nu}$ combination that minimizes RMSE for the test set
 - All possible combinations of $\lambda_{\mu}, \lambda_{\nu} = (0.5, 1, 5, 10, 50, 100, 500, 1000, 5000)$
- ▶ To obtain $\hat{\theta}_i(0)$, use spline extrapolation with model estimates for $\mu(t)$ and $\{v_i(t)\}$ at all time points present in data

- ► Calculate standard errors by using a parametric bootstrap method to estimate the variance-covariance matrix for $\hat{\theta}_i(0)$
 - ► Generate new values of log-ratio of percent candidate support for state *i* and poll *j* for each pollster in each state
 - Obtain $\hat{\theta}_i(0)$
 - Repeat for 500 sets of estimates
 - ▶ Take the covariance of the matrix of $\hat{\theta}_i(0)$ to get the estimated variance-covariance matrix

Application

Super Tuesday 2020 Data

- Focusing on the 2020 Democratic presidential primary
- Super Tuesday: March 3, 2020
 - Alabama, Arkansas, California, Colorado, Maine, Massachusetts, Minnesota, North Carolina, Oklahoma, Tennessee, Texas, Utah, Vermont, and Virginia
- Biden and Sanders chosen as two candidates to model
 - Frontrunners of the moderate and progressive wings
- Raw polling data from FiveThirtyEight's poll tracking site
- ho $\lambda_{\mu}=5000$, $\lambda_{v}=100$ identified as best bandwidth values

Results

 Positive: more support for Biden; Negative: more support for Sanders

Results

Maine, Minnesota, Texas, and Utah were miscalled

Results

Arkansas, Colorado, and Virginia closest; Utah furthest

Results

► RMSE = 0.4210

Results

Coverage rate = 92.86%

Results

 Intervals for 9 out of 14 states included 0, indicating a Biden or Sanders win was plausible

Results

 Not appropriate to transform log-ratio to difference scale, but can transform to ratio scale

State

► RMSE = 0.5375

Results

Results

$$\hat{\theta}_i(0) = -0.012 + 0.782\theta_i(0)$$

Regression of estimated log-ratios on true log-ratios

Results

► RMSE = 0.2922

Results

Comparison to FiveThirtyEight predictions

	SME	FiveThirtyEight
RMSE	0.421	0.3349
Correlation	0.7441	0.8688
$\hat{eta}_{f 0}$	-0.0117	-0.138
$\boldsymbol{\hat{\beta}_1}$	0.7816	0.7885
Miscalled	ME, MN, TX,	ME, MA, MN
	UT	

Conclusion

Conclusions

 Smoothing mixed effects model works well in this primary setting, in addition to general election setting demonstrated by Wright

Limitations

- Model may have performed well because primary had become essentially a two-candidate race
 - Possible Massachusetts counterexample: votes more evenly split among Biden, Sanders, and Warren
- Also possible that model performs well for an election day with many states voting, but may not work as well with fewer states
- ▶ Can only interpret on the log-ratio or ratio scale

Conclusions

Strengths

- Simplicity: only state polls available before election day
- Still indicates relative support for each frontrunner in each state, predicts winner
- Works even for states with few polls because it can draw on other states, estimated national effect
- Future work
 - Extending the model to analyze relative support among three or more candidates

Thank you!

Questions?