IN THE CLAIMS

Please cancel claims 1, 42, and 86 without prejudice or disclaimer. Claim 2 is amended as follows. Underlining represents additions to the text while strikeout text represents text to be removed. The listing of claims will replace all prior versions, and listing of claims in the application.

- 1. (Cancelled)
- 2. (Currently amended) A compound having Formula I:

$$W^1$$
 W^2
 W^3
 W^2
 A

I

wherein:

A is hydrogen, OH, NO₂, -COOR, -C(O)NROH, -C(O)CF₃, -B(OH)₂, -SO₃H, -PO₃R₂, -OPO₃R₂, -C(O)NHSO₂R, or substituted or unsubstituted tetrazole, triazole, thiazole, oxazole, isoxazole, imidazole, or pyrazole, wherein the substituents are selected from the group consisting of F, Cl, Br, I, OR, CN, NRR, NO₂, R, -COOR, -C(O)NRR, -OC(O)R, -NRC(O)R, -OC(O)NR, and -NRC(O)OR;

 $L \ is \ -(CR^4R^5)_{m^-}, \ -O-(CR^4R^5)_{m^-}, \ -S(O)_q-(CR^4R^5)_{m^-}, \ -NR-(CR^4R^5)_{m^-}, \ -NR-(CR^4R^5)_{m^-}, \ -NR-(CO)-(CR^4R^5)_{m^-}, \ -C(O)O-(CR^4R^5)_{m^-}, \ -C(O)NR-(CR^4R^5)_{m^-}, \ -NR-C(O)NR-(CR^4R^5)_{m^-}, \ -S(O)_2-NR-(CR^4R^5)_{m^-}, \ or \ -NR-S(O)_2-(CR^4R^5)_{m^-}, \ provided \ that \ L \ and \ A \ together \ are \ not \ H, \ -CH_3, \ OH, \ or \ -OCH_3;$

W1 is N or CR1;

 W^2 is N or CR^2 ;

W³ is N or CR³;

 $X \text{ is -}(CR^6R^7)_{r^-}, -O\text{-}(CR^6R^7)_{r^-}, -S(O)_{q^-}(CR^6R^7)_{r^-}, -NR\text{-}(CR^6R^7)_{r^-}, -NR\text{-}C(O)\text{-}(CR^6R^7)_{r^-}, -NR\text{-}C(O)\text{-}(CR^6R^7)_{r^-}, -NR\text{-}C(O)\text{-}O(CR^6R^7)_{r^-}, -NR\text{-}C(O)NR\text{-}(CR^6R^7)_{r^-}, -NR\text{-}($

X' is a covalent bond, O, $S(O)_q$, NR, -N(C(O)-R)-, -N(C(O)-OR)-, -N(C(O)-NRR)-, -NR-C(O)-, -NR-C(O)-NR-, substituted or unsubstituted C_{1-4} alkyl, substituted or unsubstituted C_2 alkenyl, or acetylenyl;

Q is a substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkenyl, substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heterocyclylalkyl;

Ar is aryl or heterocyclyl a 6-member aryl, a 5-or 6-member heteroaryl, a 9-12 member bicyclic aryl or heterocyclyl, each substituted with one or more R';

R at each occurrence is independently hydrogen, substituted or unsubstituted C_{1-6} alkyl, substituted or unsubstituted C_{2-6} alkenyl, substituted or unsubstituted C_{2-6} alkynyl, substituted or unsubstituted $(C_{0-4}$ alkylene)(C_{6-10} aryl), or substituted or unsubstituted (C_{0-4} alkylene)(C_{1-9} heterocyclyl);

R' at each occurrence is independently, F, Cl, Br, I, NO₂, CN, substituted or unsubstituted C_{1-8} alkyl, substituted or unsubstituted C_{2-8} alkenyl, substituted or unsubstituted (C_{1-6} alkylene)(C_{6-14} aryl), substituted or unsubstituted (C_{1-6} alkylene)(C_{1-13} heterocyclyl), OR⁸, -C(O)R⁸, -COOR⁸, -S(O)_qR⁸, -NR⁸R⁹, -C(Y)NR⁸R⁹, -N(R⁸)C(Y)OR⁹, -NR¹⁰C(Y)NR⁸R⁹, -NR¹⁰C(NR¹¹)NR⁸R⁹, -C(NR¹⁰)NR⁸R⁹, -NR¹⁰NR⁸R⁹, -NR⁸OR⁹, -S(O)_qNR⁸R⁹, or -NR⁸-SO₂-R⁹, wherein Y is O or S;

 R^1 , R^2 , and R^3 , at each occurrence, are independently hydrogen, F, Cl, Br, I, CN, NO₂, substituted or unsubstituted C_{1-8} alkyl, substituted or unsubstituted C_{2-8} alkenyl, substituted or unsubstituted (C_{0-6} alkylene)(C_{6-14} aryl), substituted or unsubstituted (C_{0-6} alkylene)(C_{1-13} heterocyclyl), OR^8 , $-C(O)R^8$, $-COOR^8$, $-S(O)_qR^8$, $-NR^8R^9$, $-C(Y')NR^8R^9$, $-N(R^8)C(Y')OR^9$, $-NR^{10}C(Y')NR^8R^9$, $-NR^{10}C(NR^{11})NR^8R^9$, $-C(NR^{10})NR^8R^9$, $-NR^{10}NR^8R^9$, $-NR^8OR^9$, $-S(O)_qNR^8R^9$, or $-NR^8-SO_2-R^9$, wherein each Y' is independently O or S;

 R^4 and R^5 are, at each occurrence, independently hydrogen, F, Cl, Br, I, substituted or unsubstituted straight or branched $C_{1^{-4}}$ alkyl, substituted or unsubstituted $C_{2^{-4}}$ alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, -OR, -COOR -NRR; or R^4 and R^5 , together with the carbon to which they are attached, form a carbonyl;

 R^6 and R^7 are, at each occurrence, independently hydrogen, F, Cl, Br, I, substituted or unsubstituted straight or branched $C_{1^{-4}}$ alkyl, substituted or unsubstituted $C_{2^{-4}}$ alkenyl, -OR, -COOR -NRR; or when r is 2 or 3, R^6 and R^7 , together with the carbon to which they are attached, may form a carbonyl;

 R^8 , R^9 , R^{10} , and R^{11} , at each occurrence, are independently hydrogen, substituted or unsubstituted $C_{1^{-8}}$ alkyl, substituted or unsubstituted $C_{2^{-6}}$ alkenyl, substituted or unsubstituted ($C_{0^{-6}}$ alkylene)($C_{6^{-10}}$ aryl), or substituted or unsubstituted ($C_{0^{-6}}$ alkylene)($C_{1^{-9}}$ heterocyclyl); or R^8 and R^9 , together with the N to which they are attached, form a substituted or unsubstituted heterocyclic ring;

$$m = 0 - 4$$
;
each q is independently $0 - 2$; and $r = 0 - 3$;

and stereoisomers thereof, tautomers thereof, solvates thereof, prodrugs thereof, and pharmaceutically acceptable salts thereof;

provided the compound is not acetic acid 3'-(2-acetoxy-4-methoxy-benzoyl)-5-benzoyl-2-methoxy-biphenyl-4-yl ester, acetic acid 5'-(2-acetoxy-4-methoxy-benzoyl)-2,2'-dimethoxy-5-(4-methoxy-benzoyl)-biphenyl-4-yl ester, 5,5'-bis-[bis-(4-tert-butyl-phenyl)-methoxy-methyl]-2,4,2',4'-tetraisopropyl-biphenyl, 3-acetoxy-5-methyl-2-[2,4,2',4'-tetraacetoxy-3'-(2-methoxycarbonyl-4-methyl-6-acetoxybenzoyl)-biphenyl-3-carbonyl]-benzoic acid methyl ester, 3-(3-benzyl-4'-methoxy-biphenyl-4-yl)-propionic acid, 3-(3-benzyl-4'-methoxy-biphenyl-4-yl)-propionyl chloride, or (4,4'-diamino-3'-benzoyl-biphenyl-3-yl)-phenyl-methanone.

3. (Original) The compound of claim 2, wherein A is OH, NO₂, -COOR, -C(O)NROH, -C(O)CF₃, -B(OH)₂, -SO₃H, -PO₃H₂, -OPO₃H₂, -C(O)NHSO₂R, or substituted or unsubstituted tetrazole, triazole, thiazole, oxazole, isoxazole, imidazole, or pyrazole, wherein the substituents

are selected from the group consisting of F, Cl, Br, I, OR, CN, NRR, NO₂, R, -COOR, -C(O)NRR, -OC(O)R, -NRC(O)R, -OC(O)NR, and -NRC(O)OR.

- 4. (Original) The compound of claim 2, wherein A is hydrogen, -COOR, -C(O)NROH, -C(O)CF₃, -B(OH)₂, -SO₃H, -PO₃H₂, -OPO₃H₂, or substituted or unsubstituted tetrazole, triazole, thiazole, oxazole, isoxazole, imidazole, or pyrazole, wherein the substituents are selected from the group consisting of F, Cl, Br, I, OR, CN, NRR, NO₂, R, -COOR, -C(O)NRR, -OC(O)R, -NRC(O)R, -OC(O)NR, and -NRC(O)OR.
- 5. (Withdrawn) The compound of claim 2, wherein A is substituted or unsubstituted tetrazole, triazole, thiazole, oxazole, isoxazole, imidazole, or pyrazole, wherein the substituents are selected from the group consisting of F, Cl, Br, I, OR, CN, NRR, NO₂, R, –COOR, –C(O)NRR, -OC(O)R, -NRC(O)R, -OC(O)NR, and -NRC(O)OR.
- 6. (Original) The compound of claim 2, wherein A is -COOR, -C(O)NHOH, $-C(O)CF_3$, or $-B(OH)_2$.
- 7. (Original) The compound of claim 2, wherein A is -COOR.
- 8. (Original) The compound of claim 2, wherein A is -COOH.
- 9. (Original) The compound of claim 2, wherein L is $-(CR^4R^5)_{m^-}$, $-O-(CR^4R^5)_{m^-}$, $-S(O)_q-(CR^4R^5)_{m^-}$, $-NR-(CR^4R^5)_{m^-}$, $-C(O)O-(CR^4R^5)_{m^-}$, $-C(O)NR-(CR^4R^5)_{m^-}$, $-NR-C(O)-O(CR^4R^5)_{m^-}$, or $-NR-C(O)NR-(CR^4R^5)_{m^-}$.
- 10. (Original) The compound of claim 2, wherein L is $-(CR^4R^5)_{m^-}$, $-O-(CR^4R^5)_{m^-}$, $-S(O)_q-(CR^4R^5)_{m^-}$, $-NR-(CR^4R^5)_{m^-}$, $-NR-C(O)-(CR^4R^5)_{m^-}$, $-C(O)O-(CR^4R^5)_{m^-}$, or $-C(O)NR-(CR^4R^5)_{m^-}$.
- 11. (Original) The compound of claim 2, wherein L is $-(CR^4R^5)_m$ -, $-O-(CR^4R^5)_m$ -, $-S(O)_q$ - $(CR^4R^5)_m$ -, or $-NR-(CR^4R^5)_m$ -.
- 12. (Original) The compound of claim 2, wherein L is -(CR⁴R⁵)_m- or -O-(CR⁴R⁵)_m-.
- 13. (Original) The compound of claim 2, wherein L is $-O-(CR^4R^5)_{m^-}$.

- 14. (Original) The compound of claim 13, wherein R⁴ and R⁵ are each hydrogen.
- 15. (Original) The compound of claim 13, wherein m = 1-2.
- 16. (Original) The compound of claim 2, wherein L and A together are $-(CR^4R^5)_m$ -COOR or $-O-(CR^4R^5)_m$ -COOR.
- 17. (Original) The compound of claim 2 wherein R^4 and R^5 are, at each occurrence, independently hydrogen, F, Cl, Br, I, substituted or unsubstituted straight or branched C_{1-4} alkyl, substituted or unsubstituted C_{2-4} alkenyl, OR, COOR, or -NRR; or R^4 and R^5 , together with the carbon to which they are attached, form a carbonyl.
- 18. (Original) The compound of claim 2, wherein m = 1-3.
- 19. (Original) The compound of claim 2, wherein X is $-(CR^6R^7)_{r^-}$, $-O-(CR^6R^7)_{r^-}$, $-S(O)_q-(CR^6R^7)_{r^-}$, $-NR-(CR^6R^7)_{r^-}$, $-NR-C(O)-(CR^6R^7)_{r^-}$, $-C(O)O-(CR^6R^7)_{r^-}$, $-C(O)NR-(CR^6R^7)_{r^-}$, $-NR-C(O)-O(CR^6R^7)_{r^-}$, or $-NR-C(O)NR-(CR^6R^7)_{r^-}$.
- 20. (Original) The compound of claim 2, wherein X is - $(CR^6R^7)_{r^-}$, -O- $(CR^6R^7)_{r^-}$, -S(O)_q- $(CR^6R^7)_{r^-}$, -NR- $(CR^6R^7)_{r^-}$, -C(O)O- $(CR^6R^7)_{r^-}$, or -C(O)NR- $(CR^6R^7)_{r^-}$.
- 21. (Original) The compound of claim 2, wherein X is - $(CR^6R^7)_{r^-}$, -O- $(CR^6R^7)_{r^-}$, or -S(O)_q- $(CR^6R^7)_{r^-}$.
- 22. (Original) The compound of claim 2, wherein X is $-(CR^6R^7)_{r-1}$
- 23. (Original) The compound of claim 22, wherein X is -CH₂-.
- 24. (Withdrawn) The compound of claim 2, wherein Q is a substituted or unsubstituted cycloalkyl or substituted or unsubstituted cycloalkenyl.
- 25. (Original) The compound of claim 2, wherein Q is a substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heterocyclyl, or substituted or unsubstituted heterocyclylalkyl.

- 26. (Original)The compound of claim 2, wherein Q is a substituted or unsubstituted aryl or substituted or unsubstituted aralkyl.
- 27. (Original) The compound of claim 2, wherein Q is a fused or unfused bicyclic ring selected from the group consisting of substituted and unsubstituted C_{9-12} aryl, substituted and unsubstituted C_{7-12} cycloalkyl, substituted and unsubstituted C_{9-12} cycloalkenyl, and substituted and unsubstituted C_{7-12} heterocyclyl.
- 28. (Original) The compound of claim 2, wherein Q is a fused or unfused bicyclic ring that is substituted or unsubstituted C_{9-12} aryl.
- 29. (Original) The compound of claim 2, wherein Q is substituted or unsubstituted 1-naphthyl, 2-naphthyl, or 4-biphenyl.
- 30. (Original) The compound of claim 29, wherein X is -CH₂-.
- 31. (Original) The compound of claim 2 wherein X' is a covalent bond, O, $S(O)_q$, -NR-, -NR-C(O)-, -NR-C(O)-NR-, substituted or unsubstituted C_{1-2} alkyl, substituted or unsubstituted C_2 alkenyl, or acetylenyl.
- 32. (Original) The compound of claim 2 wherein X' is a covalent bond, O, $S(O)_q$, or -NR-.
- 33. (Withdrawn) The compound of claim 2 wherein X' is a substituted or unsubstituted C_{1-2} alkyl.
- 34. (Original) The compound of claim 2 wherein X' is a covalent bond.
- 35. (Withdrawn) The compound of claim 2 wherein X' is -N(C(O)-R)-, -N(C(O)-NRR)-.
- 36. (Original) The compound of claim 2, wherein W¹ is CR¹.
- 37. (Original) The compound of claim 2, wherein W² is CR².
- 38. (Original) The compound of claim 2, wherein W³ is CR³.
- 39. (Original) The compound of claim 2, wherein W1 is CR1, W2 is CR2, and W3 is CR3.

- 40. (Withdrawn) The compound of claim 2, wherein W^1 is N, W^2 is N, and W^3 is CR^3 .
- 41. (Withdrawn) The compound of claim 2, wherein W^1 is CR^1 , W^2 is N, and W^3 is N.
- 42. (Canceled)
- 43. (Original) The compound of claim 2, wherein Ar is a 6-member aryl or a 5-, or 6-member heteroaryl, each substituted with one or more R'.
- 44. (Withdrawn) The compound of claim 2, wherein Ar is a 9-12 member bicyclic aryl or heterocyclyl, each substituted with one or more R'.
- 45. (Original) The compound of claim 2, wherein Ar is 6-member aryl, substituted with one or more R'.
- 46. (Withdrawn) The compound of claim 2, wherein Ar is a 5- or 6-member heteroaryl, substituted with one or more R'.
- 47. (Withdrawn) The compound of claim 2, wherein Ar is substituted with one or more R' and is selected from the group consisting of phenyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, furanyl, thiophenyl, oxazolyl, isooxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, and triazinyl.
- 48. (Withdrawn) The compound of claim 2, wherein Ar is substituted with one or more R' and is selected from the group consisting of phenyl, pyrrolyl, imidazolyl, pyrazolyl, furanyl, thiophenyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, pyridinyl, pyridinyl, pyrimidinyl, and pyrazinyl.
- 49. (Withdrawn) The compound of claim 2, wherein Ar is substituted with one or more R' and is selected from naphthyl, indolyl, benzofuranyl, benzthiazolyl, benzothiophenyl, chromanyl, isochromanyl, or coumarinyl.
- 50. (Original) The compound of claim 2, wherein Ar is phenyl substituted with one or more R'.
- 51. (Original) The compound of claim 2, wherein R¹, R², and R³, at each occurrence, are independently hydrogen, F, Cl, Br, I, CN, NO₂, substituted or unsubstituted C₁-C₈ alkyl,

substituted or unsubstituted C_{2-8} alkenyl, substituted or unsubstituted $(C_{0-6}$ alkylene) $(C_{6-14}$ aryl), substituted or unsubstituted $(C_{0-6}$ alkylene) $(C_{1-13}$ heterocyclyl), $-OR^8$, $-C(O)R^8$, $-COOR^8$, $-S(O)_qR^8$, $-NR^8R^9$, $-C(O)NR^8R^9$, $-N(R^8)C(O)OR^9$, $-NR^{10}C(O)NR^8R^9$, $-NR^{10}C(NR^{11})NR^8R^9$, $-C(NR^{10})NR^8R^9$, $-NR^{10}NR^8R^9$, $-NR^8OR^9$, $-S(O)_qNR^8R^9$, or $-NR^8-SO_2-R^9$.

- 52. (Original) The compound of claim 2, wherein R', at each occurrence, is independently F, Cl, Br, I, CN, NO₂, substituted or unsubstituted C_{1-8} alkyl, substituted or unsubstituted C_{2-8} alkenyl, substituted or unsubstituted (C_{1-6} alkylene)(C_{6-14} aryl), substituted or unsubstituted (C_{1-6} alkylene)(C_{1-13} heterocyclyl), -OR⁸, -C(O)R⁸, -COOR⁸, -NR⁸R⁹, -C(Y)NR⁸R⁹, or -N(R⁸)C(Y)OR⁹, wherein Y is O or S.
- 53. (Original) The compound of claim 2 wherein R', at each occurrence, is independently F, Cl, Br, I, NO₂, substituted or unsubstituted C_{1-8} alkyl, substituted or unsubstituted C_{2-8} alkenyl, OR^8 , or $-COOR^8$.
- 54. (Original) The compound of claim 2, wherein R⁸ and R⁹, together with the nitrogen to which they are attached, form a substituted or unsubstituted heterocyclyl.
- 55. (Original) The compound of claim 54, wherein the heterocyclyl is selected from the group consisting of pyrrolidinyl, piperidinyl, morpholinyl, and pyrazinyl.
- 56. (Original) The compound of claim 2 having Formula V

$$R^2$$
 X
 Q
 R^3
 R^1
 (V)

wherein n = 1-5.

57. (Original) The compound of claim 56 wherein A is hydrogen, -COOR, -C(O)NROH, -C(O)CF₃, -B(OH)₂, or substituted or unsubstituted tetrazole, triazole, thiazole, oxazole, isoxazole, imidazole, or pyrazole, wherein the substituents are selected from the group consisting of F, Cl, Br, I, -OR, -CN, -NRR, -NO₂, -R, -COOR, -C(O)NRR, -OC(O)R, -NRC(O)R, -OC(O)NR, and -NRC(O)OR.

- 58. (Original) The compound of claim 56, wherein L is $-(CR^4R^5)_{m^-}$, $-O-(CR^4R^5)_{m^-}$, $-S(O)_q-(CR^4R^5)_{m^-}$, $-NR-(CR^4R^5)_{m^-}$, $-NR-C(O)-(CR^4R^5)_{m^-}$, $-C(O)O-(CR^4R^5)_{m^-}$, $-C(O)NR-(CR^4R^5)_{m^-}$, $-NR-C(O)-O(CR^4R^5)_{m^-}$, or $-NR-C(O)NR-(CR^4R^5)_{m^-}$.
- 59. (Original) The compound of claim 56, wherein L is $-(CR^4R^5)_{m^-}$ or $-O-(CR^4R^5)_{m^-}$.
- 60. (Original) The compound of claim 56, wherein L and A together are -(CR⁴R⁵)_m-COOR or -O-(CR⁴R⁵)_m-COOR.
- 61. (Withdrawn) The compound of claim 2 having Formula VI

$$R^2$$
 X
 Q
 R^3
 R^1
 (VI)

wherein n = 1 - 5.

62. (Withdrawn) The compound of claim 61 wherein A is hydrogen, -COOR, -C(O)NROH, -C(O)CF₃, -B(OH)₂, or substituted or unsubstituted tetrazole, triazole, thiazole, oxazole, isoxazole, imidazole, or pyrazole, wherein the substituents are selected from the group consisting of F, Cl, Br, I, -OR, -CN, -NRR, -NO₂, -R, -COOR, -C(O)NRR, -OC(O)R, -NRC(O)R, -OC(O)NR, and -NRC(O)OR.

DLMR_305257.1

- 63. (Withdrawn) The compound of claim 61, wherein L is $-(CR^4R^5)_{m^-}$, $-O-(CR^4R^5)_{m^-}$, $-S(O)_q-(CR^4R^5)_{m^-}$, $-NR-(CR^4R^5)_{m^-}$, $-NR-C(O)-(CR^4R^5)_{m^-}$, $-C(O)O-(CR^4R^5)_{m^-}$, $-C(O)NR-(CR^4R^5)_{m^-}$, $-NR-C(O)-O(CR^4R^5)_{m^-}$, or $-NR-C(O)NR-(CR^4R^5)_{m^-}$.
- 64. (Withdrawn) The compound of claim 61, wherein L is $-(CR^4R^5)_m$ or $-O-(CR^4R^5)_m$.
- 65. (Withdrawn) The compound of claim 61, wherein L and A together are -(CR⁴R⁵)_m-COOR or -O-(CR⁴R⁵)_m-COOR.
- 66. (Original) A pharmaceutical composition, comprising a pharmaceutically effective amount of the compound of claim 2 and a pharmaceutically acceptable carrier or diluent.
- 67. (Withdrawn) A method for the treatment of viral infection, the method comprising administering the composition of claim 66 to a subject in need thereof.
- 68. (Withdrawn) The method of claim 67, wherein the viral infection is HIV, ebola, HRSV, or influenza infection.
- 69. (Withdrawn) The method of claim 67, wherein the viral infection is HIV
- 70. (Withdrawn) A method for the inhibition of cell entry by a virus, the method comprising contacting a virus with a compound of claim 2.
- 71. (Withdrawn) The method of claim 70, wherein the virus is HIV, ebola, HRSV, or influenza.
- 72. (Withdrawn) The method of claim 70, wherein the virus is HIV.
- 73. (Withdrawn) A method of preparing a compound of claim 2 wherein X' is a covalent bond or NH, the method comprising

reacting a compound of Formula III

$$\begin{array}{c|c}
 & A \\
 & X \\
 & W^2 \\
 & W^3
\end{array}$$
(III)

with a compound of Formula IV

Z'-Ar

(IV)

in the presence of a palladium catalyst, a base, and a solvent

to form a compound of claim 2 wherein X' is a covalent bond or NH, and wherein

A, Ar, L, X, Q, Z, W¹, W², and W³ are as defined in claim 2;

Z is B(OR")₂ or NH₂, and Z' is I, Br, Cl, or OTf; or

Z is I, Br, Cl, or OTf, and Z' is B(OR")2 or NH2; and

wherein each R" is independently hydrogen or substituted or unsubstituted alkyl, or, each R", together with B and the atoms to which they are attached, form a cyclic boronate.

74. (Withdrawn) The method of claim 73, wherein the palladium catalyst is $Pd_2(dba)_3$ or $Pd(PPh_3)_4$.

75. (Withdrawn) The method of claim 73, wherein the base is Na₂CO₃, K₂CO₃, or NaOtBu.

76. (Withdrawn) The method of claim 73, wherein the solvent is DMF, toluene, or a mixture of DME, ethanol and toluene.

DLMR_305257.1

12

77. (Withdrawn) A method of preparing a compound of claim 2 wherein X' is O, the method comprising

reacting a compound of Formula III

$$W^1$$
 W^2
 W^3
 W^3
 W^3
 W^3
 W^3

with a compound of Formula IV

Z'-Ar

(IV)

in the presence of a copper catalyst, a base, and a solvent to form a compound of claim 2 wherein X' is O, and wherein A, Ar, L, X, Q, Z, W¹, W², and W³ are as defined in claim 2;

Z is OH, and Z' is I, Br, Cl, or OTf; or Z is I, Br, Cl, or OTf, and Z' is OH.

78. (Withdrawn) The method of claim 77, wherein the copper catalyst is CuI.

79. (Withdrawn) The method of claim 77, wherein the base is Cs_2CO_3 .

80. (Withdrawn) The method of claim 77, wherein the solvent is toluene.

81. (Withdrawn) A method of preparing a compound of claim 2 wherein X' is -CH(OH)-, the method comprising

reacting a compound of Formula III

$$W^1$$
 X
 Q
 W^2
 W^3
 Z
(III)

with a compound of Formula IV

Z'-Ar

(IV)

in the presence of a solvent

to form a compound of claim 2 wherein X' is -CH(OH)-, and wherein

A, Ar, L, X, Q, W¹, W², and W³ are as defined in claim 2;

Z is Li, and Z' is C(O)-H; or Z is C(O)-H, and Z' is Li.

- 82. (Withdrawn) The method of claim 81, wherein the solvent is THF or diethylether.
- 83. (Withdrawn) A method of preparing a compound of claim 2, wherein X' is -CH₂-, the method comprising treating a compound having Formula VII

with a reducing agent in a solvent.

DLMR_305257.1

- 84. (Withdrawn) The method of claim 83 where the reducing agent is H₂ in the presence of Pd/C or triethylsilane with trifluoroacetic acid.
- 85. (Withdrawn) The method of claim 83, where the solvent is EtOAc or DCM.
- 86. (Canceled)