

Data Imaging and Visualization Analysis

Team DIVA: Naeem Alam, Teddy Corrales, Erin Estes, Kevin Ho, Austin Hom, Mughil Muthupari, Justin Pan, Justin Shen

Mentor: Dr. Stephen Penny

We pledge on our honor that we have not given or received any unauthorized assistance on this assignment/examination.

Overview

- Background
- Past Research
 - \circ 2-D maps \rightarrow 3-D maps
 - o Our solution: Virtual Reality
- Research Questions
- Methodology
 - Product Development
 - Product Improvement
 - Product Evaluation

Motivation for our Project

- Lots of new climate data collected every day
- Current visualization and analysis methods are inadequate, and not interactive
 - Difficult to view multiple variables
 - Difficult to observe correlations
 - Difficult to zoom in on areas of interest

Past Research: Current Visualization Methods

2-D Color Maps

Mean Surface Temperature. Timeframe unknown (Potter et al., 2009).

3-D Globes

Tropical cyclone visualized in World Wind globe API (Liu et al., 2015).

Our Solution

Visualize and Analyze Data with Virtual Reality (VR)

(Koutek, M., & Post, F., n.d.)

Research Questions

In terms of computation time, feature selection, and storage, how can we most effectively design and create a Virtual Reality climate data visualization tool?

What are the most user-friendly, aesthetically pleasing and informative ways for scientists and the general public to visualize climate data through VR?

Methodology

Phase I- Product Development: Oculus Rift Overview

- Most widely used VR device with cutting-edge capabilities
 - Head- and Position-tracking
- Enhanced interactivity of Oculus Touch
- ReactVR web interface

(Turbosquid, 2015)

Phase I- Product Development: System Overview

Control Flow for Cloud-based Climate Data Visualization Tool

Phase I- Product Development: Platform Overview

Unity 5

- Uses C# and own version Javascript -"Unityscript"
- Advantages:
 - Less resource intensive
- Disadvantages:
 - Very low version .NET Recently updated to .NET 3.5 but still not enough
 - "Unityscript" breaks from the norm of Javascript
 - No netCDF library built natively in C#
- Must wait until Unity support for.NET 4.0 gets released

Unreal Engine 4

- Uses unmodified C++
- Advantages:
 - netCDF library written in C so simple integration
 - More potential for better graphics in visualization
 - "Blueprint" mode
- Disadvantages:
 - Resource intensive especially processor speed and graphics
- Planning to obtain supercomputer in the future to host Unreal Engine

Current Progress

Able to read in and display an entire netCDF file of one variable

Future Goals

- Ability to display multiple variables
- Volumetric 3D rendering for height fields
- Tools to identify meaningful correlations among data
- Interface with maps and location services
- Adjustable color schemes

Phase II - Product Improvement: Focus Groups

- Three separate focus groups
- Two teammates leading a facilitated discussion with guided questions
- Video recording of discussion

Phase II - Product Improvement: Focus Groups

First Focus Group

Who

Second Focus Group

Who

Second Focus Group

Third Focus Group

Who

Sample of Sam

GoalGoalGoalTo refine aesthetics and user interfaceTo get broad feedback on usabilityTo get feedback with respect to climate visualization

Phase III - Product Evaluation: Individual Surveys

- Convenience Surveys: Rate our product compared to traditional methods
 - About 50 new participants from the general public
 - Record ratings on each tool and compare
- Targeted Surveys: Given a specific task, record time required
 - o 10 research experts with experience in visualization software
 - Complete the same survey as the general public in addition to timed task
- Anticipated Results: ratings will be significantly higher, and times will be significantly quicker

Future Plans

Budget

	Name	Unit Price	Quantity	Costs	Date
Expenses					
550	Oculus VR Device	\$ 800.00	1	\$ 800.00	Spring 2017
	Oculus VR Device	\$ 800.00	1	\$ 800.00	Fall 2018
	Student Survey Compensation	\$ 5.00	50	\$ 250.00	Spring 2018 / Fall 2019
	Student Focus Group Compensation	\$ 15.00	30	\$ 450.00	Fall 2017
	Graphic Designer Focus Group	\$ 20.00	10	\$ 200.00	Fall 2017
	Climate Expert Focus Group	\$ 20.00	10	\$ 200.00	Fall 2018 / Spring 2019
	Travel Expenses / Conferences	\$ 1,200.00	3	\$ 3,600.00	Spring 2019
Total				\$ 6,300.00	
Revenue		3			
	Sustaiability Fund	\$ 2,000.00	1	\$ 2,000.00	Spring 2017
	Launch UMD	\$ 4,500.00	1	\$ 4,500.00	Spring 2017
	Gemstone Funding*	\$ 600.00	1	\$ 600.00	Fall 2016
	Gemstone Funding*	\$ 600.00	1	\$ 600.00	Fall 2017
	Gemstone Funding*	\$ 600.00	1	\$ 600.00	fall 2018
Total				\$ 8,300.00	
	* goes away after every school year				

Acknowledgements

Dr. Stephen Penny (Mentor)

Dr. Kelley O'Neal (Librarian)

Dr. Kristan Skendall and Dr. Frank Coale (Instructors)

Jill Smith (Section Leader)

Questions?

(Turbosquid, 2015)

References

Image Sources:

Koutek, M., & Post, F. (n.d.). Virtual Reality for Data Visualization. Retrieved November 06, 2016, from http://graphics.tudelft.nl/~michal/vr_demos/

Liu, P., Gong, J., & Yu, M. (2015). Visualizing and analyzing dynamic meteorological data with virtual globes: A case study of tropical cyclones. Environmental Modelling & Software, 64, 80-93.

NASA (n.d.). Retrieved November 06, 2016, from http://climate.nasa.gov/nasa_science/missions/

Potter, K., Wilson, A., Bremer, P. T., Williams, D., Doutriaux, C., Pascucci, V., & Johhson, C. (2009). Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather forecast data with integrated ViSUS-CDAT systems. In Journal of Physics: Conference Series (Vol. 180, No. 1, p. 012089). IOP Publishing.

Teuling, A. J., Stöckli, R., & Seneviratne, S. I. (2011). Bivariate colour maps for visualizing climate data. International Journal of Climatology, 31(9), 1408-1412.

Turbosquid. (2015). Oculus Rift and Touch. Retrieved November 06,2016, from http://www.turbosquid.com/3d-models/3ds-max-oculus-rift-touch/94267

Wickham, H., Hofmann, H., Wickham, C., & Cook, D. (2012). Glyph-maps for visually exploring temporal patterns in climate data and models. Environmetrics, 23(5), 382-393.

Appendix A: Glyph Maps

Glyph map of temperature across a region (Wickham et al., 2012).

Appendix B: Two-variable Colored Maps

2-D map of relative humidity and temperature (Teuling et al., 2011).