Contents

0.1	Large Batch Tr	raining	of	Con	volu	tio	nal	. Ne	etw	ork	S										1
	0.1.1 Backgroun	nd																			1
	0.1.2 Motivation	on																			1
	0.1.31ARS																				2
	0 1 4 Some note	e s																			2

0.1 Large Batch Training of Convolutional Networks

0.1.1 Background

- Increasing the global batch while keeping the same number of epochs means that you have fewer iterations to update weights.
 - The straight-forward way to compensate for a smaller number of iterations is to do larger steps by increasing the learning rate (LR).
 - using a larger LR makes optimization more difficult, and networks may diverge especially during the initial phase.
 - "learning rate warm-up
- apply linear scaling and warm-up scheme to train Alexnet on Imagenet
- BUT scaling stopped after B=2K since training diverged for large LRs.

batch size	accuracy
base (256)	57.6%
4K	53.1%
8K	44.8%

• To fix this:

- replace Local Response Normalization with Batch Normalization (BN) -> AlexNet-BN
- BN improves model convergence for large LR
- for B=8K the accuracy gap was decreased from 14% to 2.2%.

0.1.2 Motivation

- propose a way to analyze the training stability with large LRs: measure the ratio between the norm of the layer weights and norm of gradients update
- if this ratio is:
 - too high, the training may become unstable
 - too small, then weights don't change fast enough
- This ratio varies a lot between different layers, which makes it necessary to use a separate LR for each layer.
- Propose LARS, two notable differences:
 - uses a separate learning rate for each layer and not for each weight, which leads to better stability
 - 2. the magnitude of the update is controlled with respect to the weight norm for better control of training speed.

• With LARS, Alexnet-BN and Resnet-50 trained with B=32K without accuracy loss.

0.1.3 lARS

```
Algorithm 1 SGD with LARS. Example with weight decay, momentum and polynomial LR decay. Parameters: base LR \gamma_0, momentum m, weight decay \beta, LARS coefficient \eta, number of steps T Init: t=0, v=0. Init weight w_0^l for each layer l while t < T for each layer l do g_t^l \leftarrow \nabla L(w_t^l) (obtain a stochastic gradient for the current mini-batch) \gamma_t \leftarrow \gamma_0 * \left(1 - \frac{t}{T}\right)^2 (compute the global learning rate) \lambda^l \leftarrow \frac{||w_t^l||}{||g_t^l|| + \beta ||w_t^l||} (compute the local LR \lambda^l) v_{t+1}^l \leftarrow mv_t^l + \gamma_{t+1} * \lambda^l * (g_t^l + \beta w_t^l) (update the momentum) w_{t+1}^l \leftarrow w_t^l - v_{t+1}^l (update the weights) end while
```

The LARS algorithm.

0.1.4 Some notes

- LR warm-up: training starts with small LR, and then LR is gradually increased to the target.
- BN makes it possible to use larger learning rates.
- ullet When λ is large, the update $\|\lambda*\nabla L(\omega_t)\|$ can become larger than ω , and this can cause the divergence. This makes the initial phase of training highly sensitive to the weight initialization and to initial LR.
- ullet The paper found that the ratio the L2-norm of weights and gradients $\|\omega\|/\|\nabla L(\omega)\|$ varies significantly between weights and biases, and between different layers.
- The ratio is high during the initial phase, and it is rapidly decrease after few epochs.

Table 2: AlexNet-BN: The norm of weights and gradients at 1st iteration.

Layer	conv1.b	conv1.w	conv2.b	conv2.w	conv3.b	conv3.w	conv4.b	conv4.w
w	1.86	0.098	5.546	0.16	9.40	0.196	8.15	0.196
$ \nabla L(w) $	0.22	0.017	0.165	0.002	0.135	0.0015	0.109	0.0013
$\frac{ w }{ \nabla L(w) }$	8.48	5.76	33.6	83.5	69.9	127	74.6	148
Layer	conv5.b	conv5.w	fc6.b	fc6.w	fc7.b	fc7.w	fc8.b	fc8.w
w	6.65	0.16	30.7	6.4	20.5	6.4	20.2	0.316
$ \nabla L(w) $	0.09	0.0002	0.26	0.005	0.30	0.013	0.22	0.016
$\frac{ w }{ \nabla L(w) }$	73.6	69	117	1345	68	489	93	19