Caratterizzazione di filtri RC passa-alto e passa-basso

Simone Aronica, Giovanni Bloise, Gabriele Camisa, Giuseppe Casale

19 gennaio 2023

Indice

1	Strumenti usati	2
2	Sintesi dell'esperienza	2
3	Filtro passa-basso3.1Frequenza di taglio3.2Campionamento della risposta in frequenza3.3Diagrammi di Bode	2 2 3 4
4	Filtro passa-alto4.1Frequenza di taglio4.2Campionamento della risposta in frequenza4.3Diagrammi di Bode	5 6 7
5	Conclusioni	8

1 Strumenti usati

- Multimetro HP 34401A
- Rigol DS1054-Z
- Generatore di funzioni

2 Sintesi dell'esperienza

In questa esperienza di laboratorio è stato osservato il comportamento in frequenza di un circuito stampato che implementa un filtro RC passa-basso e passa-alto.

Come valutazione preliminare è stata verificata la compatibilità del valore effettivo della resistenza integrata nel circuito rispetto a quello nominale dichiarato dal produttore. È stato trovato che questo valore è di $1021 \pm 11.2~\Omega$, che è compatibile con il valore dichiarato di $1000 \pm 800~\Omega$. I condensatori sono stati considerati, come dichiarato dal produttore, di capacità $C = 10~\mathrm{nF}, 20\%$.

Dunque è stato impostato un generatore di segnali alla frequenza di $100\,\mathrm{Hz}$ per generare un segnale sinusoidale di tensione picco-picco $800\,\mathrm{mV}$.

Tutte le misurazioni sono state effettuate tramite un oscilloscopio, tenendo il coefficiente di sensibilità verticale a $100 \frac{\text{mV}}{\text{div}}$.

Per il campionamento della risposta in frequenza del segnale d'ingresso è stato variato da 200 Hz a 1 MHz.

3 Filtro passa-basso

3.1 Frequenza di taglio

La frequenza di taglio del filtro passa-basso è pari a:

$$f_T = \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 1021 \,\Omega \cdot 20 \,\mathrm{nF}} = 8.0 \,\mathrm{kHz}$$

con un'incertezza pari a:

$$\epsilon f_T = \epsilon R + \epsilon C = 5\% + 40\% = 45\% \Rightarrow \delta f_T = 3.6 \text{ kHz}$$

3.2 Campionamento della risposta in frequenza

Freq. /Hz	$V_{\rm in} \pm \delta V_{\rm in} / {\rm mV}$	$V_{\rm out} \pm \delta V_{\rm out} / {\rm mV}$	$\Delta\phi \pm \delta(\Delta\phi)$ /°	$20\log_{10}\left(V_{\rm out}/V_{\rm in}\right)/{\rm dB}$
100	880 ± 80	800 ± 80	0.0 ± 1.44	-0.83
300	880 ± 80	800 ± 80	0.0 ± 4.32	-0.83
500	880 ± 80	800 ± 80	0.0 ± 7.2	-0.83
1k	880 ± 80	800 ± 80	3.6 ± 7.2	-0.83
3k	880 ± 80	800 ± 80	8.64 ± 8.64	-0.83
5k	880 ± 80	800 ± 80	18.0 ± 3.6	-0.83
10k	880 ± 80	680 ± 80	29.52 ± 1.44	-2.24
30k	880 ± 80	400 ± 80	62.64 ± 4.32	-6.85
50k	880 ± 80	240 ± 80	72.0 ± 3.6	-11.29
100k	880 ± 80	130 ± 8	79.2 ± 7.2	-16.61
300k	880 ± 80	44 ± 4	95.04 ± 4.32	-26.02
500k	880 ± 80	28 ± 4	93.6 ± 7.2	-29.95
1M	880 ± 80	12 ± 4	90.0 ± 14.4	-37.31

Tabella 1: Misurazioni per filtro passa-basso

3.3 Diagrammi di Bode

Figura 1: Diagramma di Bode del modulo per il filtro passa-basso

Figura 2: Diagramma di Bode della fase per il filtro passa-basso

4 Filtro passa-alto

4.1 Frequenza di taglio

La frequenza di taglio del filtro passa-basso è pari a:

$$f_T = \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 1021\,\Omega \cdot 10\,\mathrm{nF}} = 16.0\,\mathrm{kHz}$$

con un'incertezza pari a:

$$\epsilon f_T = \epsilon R + \epsilon C = 5\% + 20\% = 25\% \Rightarrow \delta f_T = 4.0 \, \mathrm{kHz}$$

4.2 Campionamento della risposta in frequenza

Freq. /Hz	$V_{\rm in} \pm \delta V_{\rm in} / {\rm mV}$	$V_{\rm out} \pm \delta V_{\rm out} / {\rm mV}$	$\Delta\phi \pm \delta(\Delta\phi)$ /°	$20\log_{10}\left(V_{\rm out}/V_{\rm in}\right)/{\rm dB}$
100	880 ± 80	5 ± 0.5	93.6 ± 18.0	-44.91
300	880 ± 80	16 ± 3	86.4 ± 10.8	-34.81
500	880 ± 80	16 ± 8	45.0 ± 18.0	-34.81
1k	880 ± 80	80 ± 80	90.0 ± 9.0	-20.83
3k	880 ± 80	160 ± 80	86.4 ± 4.32	-14.81
5k	880 ± 80	240 ± 80	72.0 ± 7.2	-11.29
10k	880 ± 80	400 ± 80	57.6 ± 3.6	-6.85
30k	880 ± 80	720 ± 80	27.0 ± 2.16	-1.74
50k	880 ± 80	760 ± 80	18.0 ± 3.6	-1.27
100k	880 ± 80	760 ± 80	9.0 ± 3.6	-1.27
300k	880 ± 80	800 ± 80	4.32 ± 4.32	-0.83
500k	880 ± 80	800 ± 80	0.0 ± 3.6	-0.83
1M	880 ± 80	800 ± 80	0.0 ± 7.2	-0.83

Tabella 2: Misurazioni per filtro passa-alto

4.3 Diagrammi di Bode

Figura 3: Diagramma di Bode del modulo per il filtro passa-alto

Figura 4: Diagramma di Bode della fase per il filtro passa-alto

5 Conclusioni

Dai dati raccolti abbiamo ottenuto interpolazioni delle funzioni di trasferimento empiriche e ne abbiamo notato la coerenza con i modelli teorici di trasferimento per filtro passa-basso e passa-alto. In particolare verifichiamo:

- \bullet l'attenuazione di 3 dB del modulo del segnale in corrispondenza della frequenza di taglio
- \bullet lo sfasamento di 90° del segnale nello spazio di due decadi centrato nella frequenza di taglio.