This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG. 1

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

```
CCCCAAAACC CCAAAACCCC AAAACCCCTA TAAAAAAAGA AAAAATTGAG
      GTAGTTTAGA AATAAAATAT TATTCCCGCA CAAATGGAGA TGGATATTGA
  51
 101
      TTTGGATGAT ATAGAAAATT TACTTCCTAA TACATTCAAC AAGTATAGCA
      GCTCTTGTAG TGACAAGAAA GGATGCAAAA CATTGAAATC TGGCTCGAAA
 151
 201
      TCGCCTTCAT TGACTATTCC AAAGTTGCAA AAACAATTAG AGTTCTACTT
 251
      CTCGGATGCA AATCTTTATA ACGATTCTTT CTTGAGAAAA TTAGTTTTAA
      AAAGCGGAGA GCAAAGAGTA GAAATTGAAA CATTACTAAT GTTTAAATAA
 301
 351
      AATCAGGTAA TGAGGATTAT TCTATTTTTT AGATCACTTC TTAAGGAGCA
      TTATGGAGAA AATTACTTAA TACTAAAAGG TAAACAGTTT GGATTATTTC
 401
 451
      CCTAGCCAAC AATGATGAGT ATATTAAATT CATATGAGAA TGAGTCAAAG
      GATCTCGATA CATCAGACTT ACCAAAGACA AACTCGCTAT AAAACGCAAG
 501
 551
      AAAAAGTTTG ATAATCGAAC AGCAGAAGAA CTTATTGCAT TTACTATTCG
 601
      TATGGGTTTT ATTACAATTG TTTTAGGTAT CGACGGTGAA CTCCCGAGTC
      TTGAGACAAT
                 TGAAAAAGCT GTTTACAACT GAAGGAATCG CAGTTCTGAA
 651
 701
      AGTTCTGATG TGTATGCCAT TATTTTGTGA ATTAATCTCA AATATCTTAT
      CTCAATTAA TGGATAGCTA TAGAAACAAA CCAAATAAAC CATGCAAGTT
 751
 801
      TAATGGAATA TACGTTAAAT
                            CCTTTGGGAC AAATGCACAC
                                                  TGAATTTATA
 851
      TTGGATTCTT AAAGCATAGA TACACAGAAT GCTTTAGAGA CTGATTTAGC
 901
      TTACAACAGA TTACCTGTTT TGATTACTCT TGCTCATCTC TTATATCTTT
 951
      AAAAGAAGCA GGCGAAATGA AAAGAAGACT AAAGAAAGAG ATTTCAAAAT
1001
      TTGTTGATTC TTCTGTAACC GGAATTAACA ACAAGAATAT TAGCAACGAA
      AAAGAAGAAG AGCTATCACA ATCCTGATTC TTAAAGATTT CAAAAATTCC
1051
1101
      AGGTAAGAGA GATACATTCA TTAAAATTCA TATATTATAG TTTTTCATTT
1151
      CACAGCTGTT ATTTTCTTTT ATCTTAACAA TATTTTTTGA TTAGCTGGAA
1201
      GTAAAAAGTA TCAAATAAGA GAAGCGCTAG ACTGAGGTAA CTTAGCTTAT
      TCACATTCAT AGATCGACCT TCATATATCC AATACGATGA TAAGGAAACA
1251
1301
      GCAGTCATCC GTTTTAAAAA TAGTGCTATG AGGACTAAAT TTTTAGAGTC
      AAGAAATGGA GCCGAAATCT TAATCAAAAA GAATTGCGTC GATATTGCAA
1351
1401
      AAGAATCGAA CTCTAAATCT TTCGTTAATA AGTATTACCA ATCTTGATTG
1451
      ATTGAAGAGA TTGACGAGGC AACTGCACAG AAGATCATTA AAGAAATAAA
1501
      GTAACTTTA TTAATTAGAG AATAAACTAA ATTACTAATA TAGAGATCAG
1551
      CGATCTTCAA TTGACGAAAT AAAAGCTGAA CTAAAGTTAG ACAATAAAAA
      ATACAAACCT TGGTCAAAAT ATTGAGGAAG GAAAAGAAGA CCAGTTAGCA
1601
1651
      AAAGAAAAA TAAGGCAATA AATAAAATGA GTACAGAAGT GAAGAAATAA
      AAGATTTATT TTTTTCAATA ATTTATTGAA AAGAGGGGTT TTGGGGTTTT
1701
1751
      GGGGTTTTGG GG
```

FIG. 11

FIG. 8

1		AACCCCAAAA			
51		TTAATAAGCT		ATATTAATTA	CAAAACCTAA
101		ATGTTGATAA	TCAAGCTGAT	AATCATGGCA	TTCACTCAGC
151	TCTTAAGACT	TGTGAAGAAA	TTAAAGAAGC	TAAAACGTTG	TACTCTTGGA
201	TCCAGAAAGT	TATTAGATGA	AGAAATCAAT	CTCAAAGTCA	TTATAAAGAT
251	TTAGAAGATA	TTAAAATATT	TGCGCAGACA	AATATTGTTG	CTACTCCACG
301	AGACTATAAT	GAAGAAGATT	TTAAAGTTAT	TGCAAGAAAA	GAAGTATTTT
351	CAACTGGACT	AATGATCGAA	CTTATTGACA	AATGCTTAGT	TGAACTTCTT
401	TCATCAAGCG	ATGTTTCAGA	TAGACAAAAA	CTTCAATGAT	TTGGATTTCA
451	ACTTAAGGGA	AATCAATTAG	CAAAGACCCA	TTTATTAACA	GCTCTTTCAA
501	CTCAAAAGCA	GTATTTCTTT	CAAGACGAAT	GGAACCAAGT	TAGAGCAATG
551	ATTGGAAATG	AGCTCTTCCG	ACATCTCTAC	ACTAAATATT	TAATATTCCA
601	GCGAACTTCT	GAAGGAACTC	TTGTTCAATT	TTGCGGGAAT	AACGTTTTTG
651	ATCATTTGAA	AGTCAACGAT	AAGTTTGACA	AAAAGCAAAA	
701		ATGAACCTCG		ACCTGCAAAT	ACAATGTCAA
751		GATCACTTTC	TCAACAACAT	CAACGTGCCG	AATTGGAATA
801		AAGAACCAGA		GCACTCATTT	TAATAGAAAT
851	AACCAATTCT	TCAAAAAGCA	TGAGTTTGTG	AGTAACAAAA	ACAATATTTC
901		AGAGCTCAGA		GAATATATTC	AGATTTAATA
951		GAAGCTAAAA	GATAAGGTTA	TCGAAAAAAT	TGCCTACATG
1001	CTTGAGAAAG	TCAAAGATTT	TAACTTCAAC	TACTATTTAA	CAAAATCTTG
1051		GAAAATTGGC	GGGAACGGAA	ACAAAAAATC	GAAAACTTGA
1101	TAAATAAAAC	TAGAGAAGAA	AAGTCGAAGT	ACTATGAAGA	
1151		ATAATAAATG	CGTCACACAA	TTTATTAATG	AATTTTTCTA
1201	CAATATACTC	CCCAAAGACT		AAGAAACCGT	
1251	AAAAGAAAGT	TAAGAAATAT	GTGGAACTAA		
1301	AAAAACTTAT	TGCTTGAGAA		AGAGAAATAT	CATGGATGCA
1351	GGTTGAGACC	TCTGCAAAGC	ATTTTTATTA	TTTTGATCAC	
1401	ACGTCTTATG	GAAATTGCTC	CGATGGATAT	TCGAGGATCT	CGTCGTCTCG
1451	CTGATTAGAT	GATTTTTCTA	TGTCACCGAG	CAACAGAAAA	
				•	
1501	AACCTATTAC	TACAGAAAGA		CGTCATTATG	
1551		AAAGAAGGAA		AGGTCCAAGA	
1601		AAAAGTCGCT	TGGATTTGCA	CCTGGAAAAC	TCAGACTAAT
1651		ACTACTTTCC	GTCCAATTAT	GACTTTCAAT	AAGAAGATTG
1701			ACAAAATTAA	CTACAAATAC	GAAGTTATTG
1751	AACTCTCACT	TAATGCTTAA	GACATTGAAG	AATAGAATGT	TTAAAGATCC
1801	TTTTGGATTC		ACTATGATGA	TGTAATGAAA	
1851	AGTTTGTTTG	CAAATGGAAG	CAAGTTGGAC	AACCAAAACT	CTTCTTTGCA
1901	ACTATGGATA	TCGAAAAGTG	ATATGATAGT	GTAAACAGAG	AAAAACTATC
1951		AAAACTACTA		TTCAGATTTC	TGGATTATGA
2001	CTGCACAAAT		AAGAATAACA	TAGTTATCGA	TTCGAAAAAC
2051			AGATTATTTT	AGACAGAAAT	TCCAGAAGAT
2101	TGCACTTGAA	GGAGGACAAT	ATCCAACCTT	ATTCAGTGTT	CTTGAAAATG
2151	AACAAAATGA	CTTAAATGCA		TAATTGTTGA	AGCAAAGCAA
2201	AGAAATTATT	TTAAGAAAGA	TAACTTACTT	CAACCAGTCA	TTAATATTTG
2251	CCAATATAAT	TACATTAACT	TTAATGGGAA	GTTTTATAAA	CAAACAAAAG
2301	GAATTCCTCA	AGGTCTTTGA	GTTTCATCAA	TTTTGTCATC	ATTTTATTAT
2351	GCAACATTAG	AGGAAAGCTC	CTTAGGATTC	CTTAGAGATG	AATCAATGAA

FIG. 9A

2401	CCCTGAAAAT	CCAAATGTTA	ATCTTCTAAT	GAGACTTACA	GATGACTATC
2451	TTTTGATTAC	AACTCAAGAG	AATAATGCAG	TATTGTTTAT	TGAGAAACTT
2501	ATAAACGTAA	GTCGTGAAAA	TGGATTTAAA	TTCAATATGA	AGAAACTACA
2551	GACTAGTTTT	CCATTAAGTC	CAAGCAAATT	TGCAAAATAC	GGAATGGATA
2601	GTGTTGAGGA	GCAAAATATT	GTTCAAGATT	ACTGCGATTG	GATTGGCATC
2651	TCAATTGATA	TGAAAACTCT	TGCTTTAATG	CCAAATATTA	ACTTGAGAAT
2701	AGAAGGAATT	CTGTGTACAC	TCAATCTAAA	CATGCAAACA	AAGAAAGCAT
2751	CAATGTGGCT	CAAGAAGAAA	CTAAAGTCGT	TTTTAATGAA	TAACATTACC
2801	CATTATTTTA	GAAAGACGAT	TACAACCGAA	GACTTTGCGA	ATAAAACTCT
2851	CAACAAGTTA	TTTATATCAG	GCGGTTACAA	ATACATGCAA	TGAGCCAAAG
2901	AATACAAGGA	CCACTTTAAG	AAGAACTTAG	CTATGAGCAG	TATGATCGAC
2951	TTAGAGGTAT	CTAAAATTAT	ATACTCTGTA	ACCAGAGCAT	TCTTTAAATA
3001	CCTTGTGTGC	AATATTAAGG	ATACAATTTT	TGGAGAGGAG	CATTATCCAG
3051	ACTTTTTCCT	TAGCACACTG	AAGCACTTTA	TTGAAATATT	CAGCACAAAA
3101	AAGTACATTT	TCAACAGAGT	TTGCATGATC	CTCAAGGCAA	AAGAAGCAAA
3151	GCTAAAAAGT	GACCAATGTC	AATCTCTAAT	TCAATATGAT	GCATAGTCGA
3201	CTATTCTAAC	TTATTTTGGA	AAGTTAATTT	TCAATTTTTG	TCTTATATAC
3251	TGGGGTTTTG	GGGTTTTGGG	GTTTTGGGG		

FIG. 9B

1	MEVDVDNQAD	NHGIHSALKT	CEEIKEAKTL	YSWIQKVIRC	RNQSQSHYKD
51	LEDIKIFAQT	NIVATPRDYN	EEDFKVIARK	EVFSTGLMIE	LIDKCLVELL
101	SSSDVSDRQK	LQCFGFQLKG	NQLAKTHLLT	ALSTQKQYFF	QDEWNQVRAM
151	IGNELFRHLY	TKYLIFQRTS	EGTLVQFCGN	NVFDHLKVND	KFDKKQKGGA
201	ADMNEPRCCS	TCKYNVKNEK	DHFLNNINVP	NWNNMKSRTR	IFYCTHFNRN
251	NQFFKKHEFV	SNKNNISAMD	RAQTIFTNIF	RFNRIRKKLK	DKVIEKIAYM
301	LEKVKDFNFN	YYLTKSCPLP	ENWRERKQKI	ENLINKTREE	KSKYYEELFS
351	YTTDNKCVTQ	FINEFFYNIL	PKDFLTGRNR	KNFQKKVKKY	VELNKHELIH
401	KNLLLEKINT	REISWMQVET	SAKHFYYFDH	ENIYVLWKLL	RWIFEDLVVS
451	LIRCFFYVTE	QQKSYSKTYY	YRKNIWDVIM	KMSIADLKKE	TLAEVQEKEV
501	EEWKKSLGFA	PGKLRLIPKK	TTFRPIMTFN	KKIVNSDRKT	TKLTTNTKLL
551	NSHLMLKTLK	NRMFKDPFGF	AVFNYDDVMK	KYEEFVCKWK	QVGQPKLFFA
601	TMDIEKCYDS	VNREKLSTFL	KTTKLLSSDF	WIMTAQILKR	KNNIVIDSKN
651	FRKKEMKDYF	RQKFQKIALE	GGQYPTLFSV	LENEQNDLNA	KKTLIVEAKQ
701	RNYFKKDNLL	QPVINICQYN	YINFNGKFYK	QTKGIPQGLC	VSSILSSFYY
751	ATLEESSLGF	LRDESMNPEN	PNVNLLMRLT	DDYLLITTQE	NNAVLFIEKL
801	INVSRENGFK	FNMKKLQTSF	PLSPSKFAKY	GMDSVEEQNI	VQDYCDWIGI
851	SIDMKTLALM	PNINLRIEGI	LCTLNLNMQT	KKASMWLKKK	LKSFLMNNIT
901	HYFRKTITTE	DFANKTLNKL	FISGGYKYMQ	CAKEYKDHFK	KNLAMSSMID
951	LEVSKIIYSV	TRAFFKYLVC	NIKDTIFGEE	HYPDFFLSTL	KHFIEIFSTK
1001	KYIFNRVCMI	LKAKEAKLKS	DQCQSLIQYD	A	

FIG. 10

CCCCAAAACCCCAAAACCCCTATAAAAAAAAAAAATTGAGGTAGTTTAGA
1++ 60 GGGGTTTTGGGGTTTTGGGGATATTTTTTTTTTTTAACTCCATCAAATCT
a P Q N P K T P K P L * K K K K L R * F R - b P K T P K P Q N P Y K K R K N * G S L E - c P K P Q N P K T P I K K E K I E V V * K -
AATAAAATATTATTCCCGCACAAATGGAGATGGATATTGATTTGGATGATATAGAAAATT 61+ 120 TTATTTTATAATAAGGGCGTGTTTACCTCTACCTATAACTAAACCTACATATATCTTTTAA
a NKILFPHKWRWILIWMI*KI- b IKYYSRTNGDGY*FG*YRKF- c *NIIPAQMEMDIDLDDIENL-
TACTTCCTAATACATTCAACAAGTATAGCAGCTCTTGTAGTGACAAGAAAGGATGCAAAA 121+ 180 ATGAAGGATTATGTAAGTTGTTCATATCGTCGAGAACATCACTGTTCTTTCCTACGTTTT
a Y F L I H S T S I A A L V V T R K D A K - b T S * Y I Q Q V * Q L L * * Q E R M Q N - c L P N T F N K Y S S S C S D K K G C K T -
CATTGAAATCTGGCTCGAAATCGCCTTCATTGACTATTCCAAAGTTGCAAAAACAATTAG 181+ 240 GTAACTTTAGACCGAGCTTTAGCGGAAGTAACTGATAAGGTTTCAACGTTTTTGTTAATC
a H * N L A R N R L H * L F Q S C K N N * - b I E I W L E I A F I D Y S K V A K T I R - c L K S G S K S P S L T I P K L Q K Q L E -
AGTTCTACTTCTCGGATGCAAATCTTTATAACGATTCTTTCT
a S S T S R M Q I F I T I L S * E N * F * - b V L L L G C K S L * R F F L E K I S F K - c F Y F S D A N L Y N D S F L R K L V L K -
AAAGCGGAGAGCAAAGAGTAGAAATTGAAACATTACTAATGTTTAAATAAA
a
TGAGGATTATTCTATTTTTTAGATCACTTCTTAAGGAGCATTATGGAGAAAATTACTTAA 361+ 420 ACTCCTAATAAGATAAAAATCTAGTGAAGAATTCCTCGTAATACCTCTTTTAATGAATT
a * G L F Y F L D H F L R S I M E K I T * - b E D Y S I F * I T S * G A L W R K L L N - c R I I L F F R S L L K E H Y G E N Y L I -

FIG. 12A

TACTAAAAGGTAAACAGTTTGGATTATTTCCCTAGCCAACAATGATGAGTATATTAAATT 421+ 480 ATGATTTTCCATTTGTCAAACCTAATAAAGGGATCGGTTGTTACTACTCATATAATTTAA
a Y * K V N S L D Y F P S Q Q * * V Y * I - b T K R * T V W I I S L A N N D E Y I K F - c L K G K Q F G L F P * P T M M S I L N S -
CATATGAGAATGAGTCAAAGGATCTCGATACATCAGACTTACCAAAGACAAACTCGCTAT 481
a H M R M S Q R I S I H Q T Y Q R Q T R Y - b I * E * V K G S R Y I R L T K D K L A I - c Y E N E S K D L D T S D L P K T N S L * -
AAAACGCAAGAAAAAGTTTGATAATCGAACAGCAGAAGAACTTATTGCATTTACTATTCG 541+
a K T Q E K V * * S N S R R T Y C I Y Y S - b K R K K F D N R T A E E L I A F T I R - c N A R K S L I I E Q Q K N L L H L L F V -
TATGGGTTTTATTACAATTGTTTTAGGTATCGACGGTGAACTCCCGAGTCTTGAGACAAT 601+
a Y G F Y Y N C F R Y R R * T P E S * D N - b M G F I T I V L G I D G E L P S L E T I - c W V L L Q L F * V S T V N S R V L R Q L -
TGAAAAAGCTGTTTACAACTGAAGGAATCGCAGTTCTGAAAGTTCTGATGTGTATGCCAT 661+ 720 ACTTTTTCGACAAATGTTGACTTCCTTAGCGTCAAGACTTTCAAGACTACACATACGGTA
a * K S C L Q L K E S Q F * K F * C V C H - b E K A V Y N * R N R S S E S S D V Y A I - c K K L F T T E G I A V L K V L M C M P L -
TATTTTGTGAATTAATCTCAAATATCTTATCTCAATTTAATGGATAGCTATAGAAACAAA 721+
a Y F V N * S Q I S Y L N L M D S Y R N K - b I L * I N L K Y L I S I * W I A I E T N - c F C E L I S N I L S Q F N G * L * K Q T -
CCAAATAAACCATGCAAGTTTAATGGAATATACGTTAAATCCTTTGGGACAAATGCACAC 781
a P N K P C K F N G I Y V K S F G T N A H - b Q I N H A S L M E Y T L N P L G Q M H T - c K * T M Q V * W N I R * I L W D K C T L -
TGAATTTATATTGGATTCTTAAAGCATAGATACACAGAATGCTTTAGAGACTGATTTAGC 841+
a * I Y I G F L K H R Y T E C F R D * F S - b E F I L D S * S I D T Q N A L E T D L A - c N L Y W I L K A * I H R M L * R L I * L -

FIG. 12B

TTACAACAGATTACCTGTTTTGATTACTCTTGCTCATCTCTTATATCTTTAAAAGAAGCA 901+ 960 AATGTTGTCTAATGGACAAAACTAATGAGAACGAGTAGAGAATATAGAAATTTTCTTCGT
a L Q Q I T C F D Y S C S S L I S L K E A - b Y N R L P V L I T L A H L L Y L * K K Q - c T T D Y L F * L L L I S Y I F K R S R -
GGCGAAATGAAAAGAAGACTAAAGAAAGAGATTTCAAAATTTGTTGATTCTTCTGTAACC 961+ 1020 CCGCTTTACTTTCTTGTTTCTTCTTAAAGTTTTTAAACAACTAAGAAGACATTGG
a G E M K R R L K K E I S K F V D S S V T - b A K * K E D * R K R F Q N L L I L L * P - c R N E K K T K E R D F K I C * F F C N R -
GGAATTAACAACAAGAATATTAGCAACGAAAAAGAAGAAGAGCTATCACAATCCTGATTC 1021+ 1080 CCTTAATTGTTGTTCTTATAATCGTTGCTTTTTCTTCTCGATAGTGTTAGGACTAAG
a G I N N K N I S N E K E E E L S Q S * F - b E L T T R I L A T K K K K S Y H N P D S - c N * Q Q E Y * Q R K R R R A I T I L I L -
TTAAAGATTTCAAAAATTCCAGGTAAGAGAGATACATTCATT
a L K I S K I P G K R D T F I K I H I L * - b * R F Q K F Q V R E I H S L K F I Y Y S - c K D F K N S R * E R Y I H * N S Y I I V -
TTTTTCATTTCACAGCTGTTATTTTCTTTATCTTAACAATATTTTTTGATTAGCTGGAA 1141+ 1200 AAAAAGTAAAGTGTCGACAATAAAAGAAAATAGAATTGTTATAAAAAAACTAATCGACCTT
a F F I S Q L L F S F I L T I F F D * L E - b F S F H S C Y F L L S * Q Y F L I S W K - c F H F T A V I F F Y L N N I F * L A G S -
GTAAAAGTATCAAATAAGAGAAGCGCTAGACTGAGGTAACTTAGCTTATTCACATTCAT 1201+ 1260 CATTTTCATAGTTTATTCTCTTCGCGATCTGACTCCATTGAATCGAATAAGTGTAAGTA
a V K S I K * E K R * T E V T * L I H I H - b * K V S N K R S A R L R * L S L F T F I - c K K Y Q I R E A L D * G N L A Y S H S * -
AGATCGACCTTCATATATCCAATACGATGATAAGGAAACAGCAGTCATCCGTTTTAAAAA 1261+ 1320 TCTAGCTGGAAGTATATAGGTTATGCTACTATTCCTTTGTCGTCAGTAGGCAAAATTTTT
a R S T F I Y P I R * * G N S S H P F * K - b D R P S Y I Q Y D D K E T A V I R F K N - c I D L H I S N T M I R K Q Q S S V L K I -
TAGTGCTATGAGGACTAAATTTTTAGAGTCAAGAAATGGAGCCGAAATCTTAATCAAAAA 1321+ 1380 ATCACGATACTCCTGATTTAAAAAATCTCAGTTCTTTACCTCGGCTTTAGAATTAGTTTTT
a * C Y E D * I F R V K K W S R N L N Q K - b S A M R T K F L E S R N G A E I L I K K - c V L * G L N F * S Q E M E P K S * S K R -

GAATTGCGTCGATATTGCAAAAGAATCGAACTCTAAATCTTTCGTTAATAAGTATTACCA
1381+ 1440 CTTAACGCAGCTATAACGTTTCTTAGCTTGAGATTTAGAAAGCAATTATTCATAATGGT
a E L R R Y C K R I E L * I F R * * V L P - b N C V D I A K E S N S K S F V N K Y Y Q - c I A S I L Q K N R T L N L S L I S I T N -
ATCTTGATTGAAGAGATTGACGAGGCAACTGCACAGAAGATCATTAAAGAAATAAA 1441+
a I L I D C R D * R G N C T E D H * R N K - b S * L I E E I D E A T A Q K I I K E I K - c L D * L K R L T R Q L H R R S L K K * S -
GTAACTTTTATTAATTAGAGAATAAACTAAATTACTAATATAGAGATCAGCGATCTTCAA 1501+ 1560 CATTGAAAATAATTAATCTCTTATTTGATTTAATGATTATCTCTAGTCGCTAGAAGTT
a V T F I N * R I N * I T N I E I S D L Q - b * L L I R E * T K L L I * R S A I F N - c N F Y * L E N K L N Y * Y R D Q R S S I -
TTGACGAAATAAAAGCTGAACTAAAGTTAGACAATAAAAAATACAAACCTTGGTCAAAAT 1561
a L T K * K L N * S * T I K N T N L G Q N - b * R N K S * T K V R Q * K I Q T L V K I - c D E I K A E L K L D N K K Y K P W S K Y -
ATTGAGGAAGAAAAGAAGACCAGTTAGCAAAAGAAAAAATAAGGCAATAAATA
a I E E G K E D Q L A K E K I R Q * I K * - b L R K E K K T S * Q K K K * G N K * N E - c * G R K R R P V S K R K N K A I N K M S -
GTACAGAAGTGAAGAATAAAAGATTTATTTTTTCAATAATTTATTGAAAAGAGGGGTT 1681
a V Q K * R N K R F I F F N N L L K R G V - b Y R S E E I K D L F F S I I Y * K E G F - c T E V K K * K I Y F F Q * F I E K R G F -
TTGGGGTTTTGGGG 1741
a L G F W G F G - b W G F G V L G - c G V L G F W -

FIG. 12D

14/78

2	EVDVQNQADNHGIHSALKTCEEIKEAKTLYSWIQKVIRCRNQSQSHYKDL	51
19	::: ::: : : :: :: . ELELEMQENQNDIQVRVKIDDPKQYLVNVTAACLLQEGSYYQDK	62
52	EDIKIFAQTNIVATPRDYNEEDFKVIARKEVF.STGLMIELIDKCLVELL :::: : . . :: : .:	100
63	DERRYIITKALLEVAESDPEFICQLAVYIRNELYIRTTTNYIVAF.	107
101		150
108	:: : . : : : 	144
151	IGNELFRHLYTKYLIFQRTSEGTLVQFCGNNVFDHLKVNDKFDKKQKGGA	200
145	:: : .: ::: : :: :: :: :: FDATEFKNLYLDRILSQDIRKELTFRKCLQRCVRSKF	181
201	ADMNEPRCCSTCKYNVKNEKDHFLNNINVPNWNNMKSRTRIFYCTHF .:: .:: : . :: .:	247
182	SEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK	220
248	NRNNQFFKKHEFVSNKNNISAMDRAQTIFTNIFRFNRIRKKLKDKVIEKI	297
221	.: :: :: .: : . :. . .	264
298		347
265	:	294
348	LFSYTTDNKCVTQFINEFFYNILPKDFLTGRNRKNFQKKVKKYVELNKHE	397
295	: : :: . LIKFCHISEPKERVYKILGKKYPKTEEEYKAAFGDSASAPFN.PE	338
398	LIHKNLLLEKINTREISWMQVETSAKHFYYFDHENIYVLWKLLRWIFEDL	447
339	LAGKRMKIEISKTWENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSN	386
448	VVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSIADLKKETLAEVQE : ::.	497
387	ILKAGVSD	394
498	KEVEEWKKSLGFAPGKLRLIPKKTTFRPIMTFNKKIVNSDRKTTKLTTNT : .	547
395	TTHS	398
548	KLLNSHLMLKTLKNRMFKDPFGFAVFNYDDVMKKYEEFVCKWKQVGQPKL : . . : . :	597
399	IVINKICEPKAVENSKM	415
598	FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKNNIVID	
416	:: :: :: ::: :: FPLQFFSAIEAVN.EAVTKGFKAKKRENMNLKGQIEAVKEVVE	457
648	SKNFRKKEMKDYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVE	697
458	.: : . .: : :. KTDEEKKDMELEQTEEGEFVKVNEGIGKQYINSIELAIK	496
698	AKQRNYFKKDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSS : ::: : : : : : : : : : : : : : :	747
497	IAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLECALVLGL	546
748	FYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFI : : : : : :	797
547	MVKQRCEKSSFYIFSSPSSQCNKCYLEVDL	576

	EKLINVSRENGFKFNMKK.LQTSFPLSPSKFAKYGMDSVEEQNIVQDYCD .:::: :::	
577	.::::: : : : : : : : : :	617
	WIGISIDMKTLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLM . : ::::: . :::: NIVILSDMMIAEGYSDINVRGSSIVNSI	
618	NIVILSDMMIAEGYSDİNVRGSSİVNSIKKYKDEVN	653
	NNITHYFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKD.HFKKNLAM .:.: ::: ::: PNIKIFAVDLEGYGKCLNLGDEFNENNYIKIFGM	
654	PNİKIFAVDLEGYGKCLNLGDEFNENNYIKIFGM	687
	SSMIDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHFIE . : :::. ::: SDSILKFISAKQGGANMVE	
688	ŠDSÍLKFISAKQGGANMVÉ	706
	IFSTKKYIFNRVC 1008 :: .: :.:: VIKNFALQKIG 717	
707	VIKNFALQKIG 717	

FIG. 13B

132	LSTQKQYFFQDEWNQVRAMIGNEL.FRHLYTKYLIFQRTSEGTLVQFC:	178
1	MSRRNQKKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQI	43
179	GNNVFDHLKVNDKFDKKQKGGAADMNEPRCCSTCKYNVKNEKDHFLNNIN	228
44	:::: :: : KEEDLKLLKFKNQDQDGNSGNDDDDEENNSNKQQELLRRVN	84
229	VPNWNNMKSRTRIFYCTHFNRNNQFFKKHEFVSNKNNISAMDRAQTIFTN	278
85	:: :: :. :	114
279	<pre>IFRFNRIRKKLKDKVIEKIAYMLEKVKDFNFNYYLTKSCPLPENWRERKQ ::</pre>	328
115	GLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGGHRRHRRETDY	164
329	KIENLINKTREEKSKYYEELFSYTTDNKCVTQFINE.FFYNILPKDFLTG	37
165	.::: .:: .: .: : ::. DTEKWFEISHDQK	200
378	RNRKNFQKKVKKYVELNKHELIHKNLLLEKINTREISWMQVETSAKHFYY	427
201	. .:::: :. : : :. . : : : NNYDHLNVSINRLETEAEFYAFDDFSQTIKLTNNSYQTVNID	242
428	FDHENIYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNI .: : :: : : : : .	475
243	VNFDNNLCILALLRFLLSLERFNILNIRSSYTRNQYNFEKIGELLETI	290
476	WDVIMKMSIADLKKETLAEVQEKEVEEWKKSLGFAPGKLRLIPKKTTFRP	525
291	:. : : :.::	330
526	<pre>IMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKNRMFKDPFGFAVFNY : : . : . : . : : .</pre>	575
331	VYSFSTDLKLVD. TNKVQDYFKFLQEFPRLTHVSQQAIPVSATNAVENL	378

FIG. 14A

576	DDVMKKYEEFVCKWKQVGQPKLF FATMDIEKCYDS VNREK	615
379	: .: : . . : . : .: : : .:: NVLLKKVKH ANLNLVSIPTQFNFDFYFVNLQHLKLEFGLEPNILTKQK	426
516	LSTFLKTTKLLSSDFWIMTAQILKRKNNIVIDSKNFRKKEMK	657
427	LENLLLSIKQSKNLKFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQ	476
558	DYFRQKFQKIALEGGQYPTLFSVLENEQNDLNAKKTLIVEAKQRNYFK : : : : :	705
477	EETPETKDETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIY	520
706	KDNLLQPVINICQYNYINFNGKFYKQTKGIPQGLCVSSILSSFYYATLEE	755
521		564
756	SSLGFLRDESMNPENPNVNLLMRLTDDYLLITTQENNAVLFIEKLINVSR	305
565	: . : : .::: LKRCSVNISNPHGNISYELTNKDSTFYKFKLTLNQE	500
806	ENGFKFNMKKLQTSFPLSPSKFAKYGMDSVEEQNIVQDYCDWIGISIDMK	855
601	::: .:. .:. : . ::: : :::. LQHAKYTFKQNEFQFNNVKSAKIESSSLESLEDIDSLCKSIASCKNLQ	648
856	TLALMPNINLRIEGILCTLNLNMQTKKASMWLKKKLKSFLMNNITH .:.: :: :. : ::: .: . .	901
649	.:.: :: :. : ::: .: . . NVNIIASLLYPNNIQKNPFNKPNLLFFKQFEQLKNLENVSINC	691
902	YFRKTITTEDFANKTLNKLFISGGYKYMQCAKEYKDHFKKNLAMSSM .: . : .: : : :	948
692	ILDQHILNSISEFLEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPEL	741
949	IDLEVSKIIYSVTRAFFKYLVCNIKDTIFGEEHY :: : : :. . ::. ::	982
742	NQVYINQQLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQTLQLIDF	791
983	PDFFLS TLKHFIEIFSTKKY IFNRVCMILKAKEAKLKSDQCQSLIQ .: : . : . : ::. . :.	1028
792	DQNTVSDDSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQELLK	840

FIG. 14B

4	DIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPSLTIPK	47
	-:: : -	
617	NVKSAKİĖSSSLESLEDIDSLČKSIASČKNLQNVNIIASLLYPNNIQKNP	666
48	LQKQLEFYFSDANLYNDSFLRKLVLKSGEQRVEIETLLM	86
667	FNKPNLLFFKQFEQLKNLENVSINCILDQHILNSISEFLEKNKKİKAFIL	716

FIG. 15

1	MEMDIDLDDIENLLPNTFNKYSSSCSDKKGCKTLKSGSKSPS	42
	: : : :	
491	IELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGAKKYGSVRTCLEC	540
43	.LTIPKLOKOLEFYFSDANLYNDSFLRKLVLKSGEORVEIETLL	85
15	.: : : :: : .:: .:: :	0.5
541		589

FIG. 16

telomerase p43 human La Xenopus LaA Drosophila La S. c. Lhp1p

FIG. 18

1 aactcattta attactaatt taatcaacaa gattgataaa aagcagtaaa taaaacccaa 61 tagatttaat ttagaaagta tcaattgaaa aatggaaatt gaaaacaact aagcacaata 121 gccaaaagcc gaaaaattgt ggtgggaact tgaattagag atgcaagaaa accaaaatga 181 tatataagtt agggttaaga tigacgatco taagcaatat otogtgaacg toactgoago 241 atgtttgttg taggaaggta gttactacta agataaagat gaaagaagat atatcatcac 301 taaagcactt cttgaggtgg ctgagtctga tcctgagttc atctgctagt tggcagtcta 361 catcogtaat gaactttaca toagaactac cactaactac attgtagcat titgtgttgt 421 coacaagaat actcaaccat toatcgaaaa gtacttcaac aaagcagtac tittgcctaa 481 tgacttactg gaagtctgtg aatttgcata ggttctctat attittgatg caactgaatt 541 caaaaatttg tatcttgata ggatactttc ataagatatt cgtaaggaac tcactttccg 601 taagtgttta caaagatgcg tcagaagcaa gttttctgaa ttcaacgaat actaacttgg 661 taagtattgc actgaatcct aacgtaagaa aacaatgttc cgttacctct cagttaccaa 721 caagtaaaag tgggattaaa ctaagaagaa gagaaaagag aatctcttaa ccaaacttta 781 ggcaataaag gaatctgaag ataagtccaa gagagaaact ggagacataa tgaacgttga 841 agatgcaatc aaggctttaa aaccagcagt tatgaagaaa atagccaaga gatagaatgc 901 catgaagaaa cacatgaagg cacctaaaat tcctaactct accttggaat caaagtactt 961 gaccttcaag gatctcatta agttctgcca tatttctgag cctaaagaaa gagtctataa 1021 gatccttggt aaaaaatacc ctaagaccga agaggaatac aaagcagcct ttggtgattc 1081 tgcatctgca cccttcaatc ctgaattggc tggaaagcgt atgaagattg aaatctctaa 1141 aacatgggaa aatgaactca gtgcaaaagg caacactgct gaggtttggg ataatttaat 1201 ttcaagcaat taactcccat atatggccat gttacgtaac ttgtctaaca tcttaaaagc 1261 cggtgtttca gatactacac actetattgt gatcaacaag atttgtgagc ccaaggccgt 1321 tgagaactcc aagatgttcc ctcttcaatt ctttagtgcc attgaagctg ttaatgaagc 1381 agttactaag ggattcaagg ccaagaagag agaaaatatg aatcttaaag gtcaaatcga 1441 agcagtaaag gaagttgttg aaaaaaccga tgaagagaag aaagatatgg agttggagta 1501 aaccgaagaa ggagaatttg ttaaagtcaa cgaaggaatt ggcaagcaat acattaactc 1561 cattgaactt gcaatcaaga tagcagttaa caagaattta gatgaaatca aaggacacac 1621 tgcaatcttc tctgatgttt ctggttctat gagtacctca atgtcaggtg gagccaagaa 1681 gtatggttcc gttcgtactt gtctcgagtg tgcattagtc cttggtttga tggtaaaata 1741 acgttgtgaa aagtceteat tetacatett cagtteacet agtteteaat geaataagtg 1801 ttacttagaa gttgatctcc ctggagacga actccgtcct tctatgtaaa aacttttgca 1861 agagaaagga aaacttggtg gtggtactga tttcccctat gagtgcattg atgaatggac 1921 aaagaataaa actcacgtag acaatatcgt tattttgtct gatatgatga ttgcagaagg 1981 atattcagat atcaatgtta gaggcagttc cattgttaac agcatcaaaa agtacaagga 2041 tgaagtaaat cctaacatta aaatctttgc agttgactta gaaggttacg gaaagtgcct 2101 taatctaggt gatgagttca atgaaaacaa ctacatcaag atattcggta tgagcgattc 2161 aatcttaaag ttcatttcag ccaagcaagg aggagcaaat atggtcgaag ttatcaaaaa 2221 ctttgccctt caaaaaatag gacaaaagtg agtttcttga gattcttcta taacaaaaat 2281 ctcaccccac ttttttgttt tattgcatag ccattatgaa atttaaatta ttatctattt 2341 atttaagtta ottacatagt ttatgtatog cagtotatta gootattoaa atgattotgo 2401 aaagaacaaa aaagattaaa a

JUL 2 6 2004

+

Motif

Motif B

GQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLL-100-KFYKQTKGIPQGLCVSSILSSFYYATLEESSLGFL h---+-QG----SP h--hDh---h telomerase p123 Dong (LINE) a1 S.c. (groupII) Consensus

KNRNLHCTYDDYKKAFDSIPHSWLIQVLEIYKIN- 28-RQIAİKKGIY**QG**DSL**S**PLWFCLALNPLSHQLHNDR FGGSNWFREV**D**LKKCFDTISHDLIIKELKRYISD- 26-HVPVGPRVCV**QG**APT**SPA**LCNAVLLRLDRRLAGLA LKKKKSVTVL**D**VGDAYFSVPLDEDFRKYTAFTIP- 7-GIRYQYNVLP**QG**WKG**S**PAIFQSSMTKILEPFRKQN

68-KCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFK VLPELYFMKFDVKSCYDSIPRMECMRILKDALKN-L8543.12

HIV-RT

-16-HLIYMDDIKLYAKNDKE-0-MKKLIDTTTIFSNDISMQFGLDKCKT-25-KCLYKYLGFQQ h-hLGh-h - 4-IYQYMDDLYVGSHLEIG-1-HRTKIEELRQHLLRWGLTTPDKKHQK- 0-EPPFLWMGYEL -14-LMRLTDDYLLITTQENN-0-AVLFIEKLINVSRENGFKFNMKKLQT-23-QDYCDWIGISI -55-YVRYADDILIGVLGSKN-2-KIIKRDLNNFLNS.LGLTINEEXTLI- 4-ETPARFLGYNI Motif E Gh-h---K Motif D h--YhDDhhh al S.c. (groupII) telomerase p123 Dong (LINE) Consensus HIV-RT

Motif C

- 8-ILKLADDFLIISTDQQQ......VINIKKLAMGGFQKYNAKANR-41-IRSKSSKGIFR

L8543.12

19/78

MEIENNQAQQPKAEKLWWELELEMQENQNDIQVRVKIDDPKQYL VNVTAACLLQEGSYYQDKDERRYIITKALLEVAESDPEFICQLA VYIRNELYIRTTTNYIVAFCVVHKNTQPFIEKYFNKAVLLPNDL LEVCEFAQVLYIFDATEFKNLYLDRILSQDIRKELTFRKCLQRC VRSKFSEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTKKK RKENLLTKLQAIKESEDKSKRETGDIMNVEDAIKALKPAVMKKI AKRONAMKKHMKAPKIPNSTLESKYLTFKDLIKFCHISEPKERV YKILGKKYPKTEEEYKAAFGDSASAPFNPELAGKRMKIEISKTW ENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSNILKAGVSDTT HSIVINKICEPKAVENSKMFPLQFFSAIEAVNEAVTKGFKAKKR ENMNLKGQIEAVKEVVEKTDEEKKDMELEQTEEGEFVKVNEGIG KQYINSIELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSMSGGA KKYGSVRTCLECALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL EVDLPGDELRPSMQKLLQEKGKLGGGTDFPYECIDEWTKNKTHV DNIVILSDMMIAEGYSDINVRGSSIVNSIKKYKDEVNPNIKIFA VDLEGYGKCLNLGDEFNENNYIKIFGMSDSILKFISAKQGGANM VEVIKNFALQKIGQK

FIG. 20

MSRRNQKKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQIK EEDLKLLKFKNODODGNSGNDDDDEENNSNKOOELLRRVNOIKO QVQLIKKVGSKVEKDLNLNEDENKKNGLSEQQVKEEQLRTITEE QVKYQNLVFNMDYQLDLNESGGHRRHRRETDYDTEKWFEISHDQ KNYVSIYANQKTSYCWWLKDYFNKNNYDHLNVSINRLETEAEFY AFDDFSQTIKLTNNSYQTVNIDVNFDNNLCILALLRFLLSLERF NILNIRSSYTRNOYNFEKIGELLETIFAVVFSHRHLOGIHLOVP CEAFQYLVNSSSQISVKDSQLQVYSFSTDLKLVDTNKVQDYFKF LOEFPRLTHVSQOAIPVSATNAVENLNVLLKKVKHANLNLVSIP TQFNFDFYFVNLQHLKLEFGLEPNILTKQKLENLLLSIKQSKNL KFLRLNFYTYVAQETSRKQILKQATTIKNLKNNKNQEETPETKD ETPSESTSGMKFFDHLSELTELEDFSVNLQATQEIYDSLHKLLI RSTNLKKFKLSYKYEMEKSKMDTFIDLKNIYETLNNLKRCSVNI SNPHGNI SYELTNKDSTFYKFKLTLNQELQHAKYTFKQNEFQFN NVKSAKIESSSLESLEDIDSLCKSIASCKNLQNVNIIASLLYPN NIQKNPFNKPNLLFFKQFEQLKNLENVSINCILDQHILNSISEF LEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPELNQVYINQ QLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSQTLQLIDFD ONTVSDDSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQ ELLKACDEKGVLVKAYYKFPLCLPTGTYYDYNSDRW

FIG. 22

MKILFEFIQDKLDIDLQTNSTYKENLKCGHFNGLDEILTTCFAL PNSRKIALPCLPGDLSHKAVIDHCIIYLLTGELYNNVLTFGYKI ARNEDVNNSLFCHSANVNVTLLKGAAWKMFHSLVGTYAFVDLLI NYTVIQFNGQFFTQIVGNRCNEPHLPPKWVQRSSSSSATAAQIK QLTEPVTNKQFLHKLNINSSSFFPYSKILPSSSSIKKLTDLREA IFPTNLVKIPQRLKVRINLTLQKLLKRHKRLNYVSILNSICPPL EGTVLDLSHLSRQSPKERVLKFIIVILQKLLPQEMFGSKKNKGK IIKNLNLLLSLPLNGYLPFDSLLKKLRLKDFRWLFISDIWFTKH NFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVTIVYFR HDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRI IPKKSNNEFRIIAIPCRGADEEEFTIYKENHKNAIQPTQKILEY LRNKRPTSFTKIYSPTOIADRIKEFKORLLKKFNNVLPELYFMK FDVKSCYDSIPRMECMRILKDALKNENGFFVRSQYFFNTNTGVL KLFNVVNASRVPKPYELYIDNVRTVHLSNQDVINVVEMEIFKTA LWVEDKCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS QDTLILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDK ILAVSSOSDDDTVIOFCAMHIFVKELEVWKHSSTMNNFHIRSKS SKGIFRSLIALFNTRISYKTIDTNLNSTNTVLMQIDHVVKNISE CYKSAFKDLSINVTQNMQFHSFLQRIIEMTVSGCPITKCDPLIE YEVRFTILNGFLESLSSNTSKFKDNIILLRKEIQHLQAYIYIYI HIVN

FIG. 23

		taattaataa				
		ccataggctc				tattacaaaa
		tacaaaagcc				
181	ggaggatctc	aagcttttaa	agttcaaaaa	ttaagattag	gatggaaact	ctggcaacga
241	tgatgatgat	gaagaaaaca	actcaaataa	ataataagaa	ttattaagga	gagtcaatta
301	gattaagtag	caagtttaat	tgataaaaaa	agttggttct	aaggtagaga	aagatttgaa
		gatgaaaaca				
421	attaagaacg	attactgaag	aataggttaa	gtattaaaat	ttagtattta	acatggacta
481	ccagttagat	ttaaatgaga	gtggtggcca	tagaagacac	agaagagaaa	cagattatga
		tggtttgaaa				
601	ctaaaagaca	tcatattgtt	ggtggcttaa	agattattt	aataaaaaca	attatgatca
		agcattaaca				
		atcaaactta				
781	tgataataat	ctctgtatac	tcqcattqct	tagattttta	ttatcactag	aaagattcaa
		ataagatctt				
		actatcttcg				
		tgcgaagcgt				
		ttataggtat				
1081	agtccaagat	tattttaagt	tcttataaga	attecetegt	ttgactcatg	taagctagta
1141	ggctatccca	gttagtgcta	ctaacgctgt	agagaacctc	aatgttttac	ttaaaaaaaat
1201	caagcatgct	aatcttaatt	tagtttctat	ccctacctaa	ttcaattttq	atttctactt
1261	tgttaattta	taacatttga	aattagagtt	tggattagaa	ccaaatattt	tgacaaaaca
		aatctacttt				
		acctacgttg				
1441	aacaatcaaa	aatctcaaaa	acaataaaaa	tcaagaagaa	actcctgaaa	ctaaagetge
		gaaagcacaa				
		ttcagcgtta				
1621	acttttgatt	agatcaacaa	atttaaaga	ottossatta	acttacgata	atgaaatgga
1681	aaanantaaa	atggatacat	tcatacatct	taagaatatt	tatoaaacct	taaaaatgga
		tctgttaata				
		actttttata				
		aagtagaacg				
		gaaagcttag				
		aatgttaata				
		aagcccaatc				
		atcaactgta				
		aaaaaaataa				
2221	ccttgattat	actaaattat	ttaaaacact	tcaatagtta	cctgaattaa	attaagttta
		caattagaag				
2341	ccacaagcaa	aaagctttct	atgaaccatt	atgtgagttt	atcaaagaat	catcctaaac
2401	cctttagcta	atagattttg	accaaaacac	tgtaagtgat	gactctatta	aaaagatttt
2461 2501	agaatctata	tctgagtcta	agtatcatca	ttatttgaga	ttgaacccta	gttaatctag
252I	cagtttaatt	aaatctgaaa	acgaagaaat	ttaagaactt	ctcaaagctt	gcgacgaaaa
2581	aggtgtttta	gtaaaagcat	actataaatt	ccctctatgt	ttaccaactg	gtacttatta
2641	cgattacaat	tcagatagat	ggtgattaat	taaatattag	tttaaataaa	tattaaatat
2701	tgaatatttc	tttgcttatt	atttgaataa	tacatacaat	agtcattttt	agtgttttga
		gttatttaat	tcattatttt	aagtaaataa	ttattttca	atcattttt
2821	aaaaaatcg					

FIG. 21

Oxytricha Euplotes LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT LCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLT

FIG. 24

ATTTATACTCATGAAAATCTTATTCGAGTTCATTCAAGACAAGCTTGACATTGATCTACA GACCAACAGTACTTACAAAGAAAATTTAAAATGTGGTCACTTCAATGGCCTCGATGAAAT TCTAACTACGTGTTTCGCACTACCAAATTCAAGAAAAATAGCATTACCATGCCTTCCTGG TGACTTAAGCCACAAAGCAGTCATTGATCACTGCATCATTTACCTGTTGACGGGCGAATT ATACAACAACGTACTAACATTTGGCTATAAAATAGCTAGAAATGAAGATGTCAACAATAG TCTTTTTTGCCATTCTGCAAATGTTAACGTTACGTTACTGAAAGGCGCTGCTTGGAAAAT GTTCCACAGTTTGGTCGGTACATACGCATTCGTTGATTTATTGATCAATTATACAGTAAT TCAATTTAATGGGCAGTTTTTCACTCAAATCGTGGGTAACAGATGTAACGAACCTCATCT GCCGCCCAAATGGGTCCAACGATCATCCTCATCATCCGCAACTGCTGCGCAAATCAAACA ACTTACAGAACCAGTGACAAATAAACAATTCTTACACAAGCTCAATATAAATTCCTCTTC TTTTTTCCTTATAGCAAGATCCTTCCTTCATCATCATCAAAAAGCTAACTGACTT GAGAGAAGCTATTTTCCCACAAATTTGGTTAAAATTCCTCAGAGACTAAAGGTACGAAT TAATTTGACGCTGCAAAAGCTATTAAAGAGACATAAGCGTTTGAATTACGTTTCTATTTT GAATAGTATTTGCCCACCATTGGAAGGGACCGTATTGGACTTGTCGCATTTGAGTAGGCA ATCACCAAAGGAACGAGTCTTGAAATTTATCATTGTTATTTTACAGAAGTTATTACCCCA AGAAATGTTTGGCTCAAAGAAAAATAAAGGAAAAATTATCAAGAATCTAAATCTTTTATT AAGTTTACCCTTAAATGGCTATTTACCATTTGATAGTTTGTTGAAAAAGTTAAGATTAAA GGATTTTCGGTGGTTGTTCATTTCTGATATTTTGGTTCACCAAGCACAATTTTGAAAACTT GAATCAATTGGCGATTTGTTTCATTTCCTGGCTATTTAGACAACTAATTCCCAAAATTAT ACAGACTTTTTTTACTGCACCGAAATATCTTCTACAGTGACAATTGTTTACTTTAGACA TGATACTTGGAATAAACTTATCACCCCTTTTATCGTAGAATATTTTAAGACGTACTTAGT CGAAAACAACGTATGTAGAAACCATAATAGTTACACGTTGTCCAATTTCAATCATAGCAA AATGAGGATTATACCAAAAAAAGTAATAATGAGTTCAGGATTATTGCCATCCCATGCAG AGGGGCAGACGAAGAATTCACAATTTATAAGGAGAATCACAAAAATGCTATCCAGCC CACTCAAAAAATTTTAGAATACCTAAGAAACAAAAGGCCGACTAGTTTTACTAAAATATA TTCTCCAACGCAAATAGCTGACCGTATCAAAGAATTTAAGCAGAGACTTTTAAAGAAATT TAATAATGTCTTACCAGAGCTTTATTTCATGAAATTTGATGTCAAATCTTGCTATGATTC CATACCAAGGATGGAATGTATGAGGATACTCAAGGATGCGCTAAAAAATGAAAATGGGTT TTTCGTTAGATCTCAATATTTCTTCAATACCAATACAGGTGTATTGAAGTTATTTAATGT TGTTAACGCTAGCAGAGTACCAAAACCTTATGAGCTATACATAGATAATGTGAGGACGGT TCATTTATCAAATCAGGATGTTATAAACGTTGTAGAGATGGAAATATTTAAAACAGCTTT GTGGGTTGAAGATAAGTGCTACATTAGAGAAGATGGTCTTTTTCAGGGCTCTAGTTTATC TGCTCCGATCGTTGATTTGGTGTATGACGATCTTCTGGAGTTTTATAGCGAGTTTAAAGC CAGTCCTAGCCAGGACACATTAATTTTAAAACTGGCTGACGATTTCCTTATAATATCAAC AGACCAACAGCAAGTGATCAATATCAAAAAGCTTGCCATGGGCGGATTTCAAAAATATAA TGCGAAAGCCAATAGAGACAAAATTTTAGCCGTAAGCTCCCAATCAGATGATGATACGGT TATTCAATTTGTGCAATGCACATATTTGTTAAAGAATTGGAAGTTTGGAAACATTCAAG CACAATGAATAATTTCCATATCCGTTCGAAATCTAGTAAAGGGATATTTCGAAGTTTAAT AGCGCTGTTTAACACTAGAATCTCTTATAAAACAATTGACACAAATTTAAATTCAACAAA CACCGTTCTCATGCAAATTGATCATGTTGTAAAGAACATTTCGGAATGTTATAAATCTGC TTTTAAGGATCTATCAATTAATGTTACGCAAAATATGCAATTTCATTCGTTCTTACAACG CATCATTGAAATGACAGTCAGCGGTTGTCCAATTACGAAATGTGATCCTTTAATCGAGTA TGAGGTACGATTCACCATATTGAATGGATTTTTTGGAAAGCCTATCTTCAAACACATCAAA ATTTAAAGATAATATCATTCTTTTGAGAAAGGAAATTCAACACTTGCAAGC

FIG. 26

AKFLHWLMSVYVVELLRSFFYVTETTFQKNR ISEIEWLVLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNR LKDFRWLFISDIWFTKHNFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVT- TREISWMQVET-SAKHFYYFDHEN-IYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSK	MOCIÍ 1 LFFYRKSVWSKLQSIGIRQHLKRVQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGL TVYFRKDIWKLLCRPFI-TSMKMEAFEKINENNVRMDTQK-TTLPPAVIRLLPKKNTF IVYFRHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRIIPKKSNNEF TYYYRKNIWDVIMKMSI-ADLKKETLAEVQEKEVEEWKKS-LGFAPGKLRLIPKKTTF	MOCÍÍ 2 RPIVNMDYVVGARTFRREKRAERLTSRVKALF-SVLNYERA RLITN-LRKRFLIKMGSNKKMLVSTNQTLRPVASILKHLINEESSGIPFNLEVYMKLLTF RLITN-CRGADEEEFTIYKENHKNAIQPTQKILEYLRNKRPTSFTKIYSPTQIADRIKEF RPIMTFNKKIVNSDRKITTKLTNTKLLNSHLMLKTLKN-RMFKDPFGFAVFNYDDVMKKY * *	MOLIÍ 3 (A) KKDLLKHRMFGR-KKYFVRIDIKSCYDRIKQDLMFRIVKK-KLKDPEFVIRKYATIHATS KQRLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKD-ALKNENGFFVRSQYFFNTN EEFVCKWKQVGQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKN
human tez1 EST2 p123	human tez1 EST2 p123	human tez1 EST2 p123	tez1 EST2 p123

TG. 2

AKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKR VQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREK RAERLTSRVKALFSVLNYERA

FIG. 27

GCCAAGTTCCTGCACTGGCTGATGAGTGTTACGTCGTCGAGCTGCTCAGGTC
TTTCTTTATGTCACGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACC
GGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAAG
AGGGTGCAGCTGCGGGACGTGTCGGAAGCAGAGGTCAGGCAGCATCGGGAAGC
CAGGCCCGCCTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACGGC
TGCGGCCGATTGTAACATGGACTACGTCGTGGGAGCCAGAACGTTCCGCAGA
GAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCGTGCT
CAACTACGAGCGGGCGCG

FIG. 28

MTEHHTPKSRILRFLENQYVYLCTLNDYVQLVLRGSPASSYSNICERLRSDVQTSFSIFLHSTVVGF
DSKPDEGVQFSSPKCSQSELIANVVKQMFDESFERRNLLMKGFSMNHEDFRAMHVNGVQNDLVSTF
PNYLISILESKNWQLLLEIIGSDAMHYLLSKGSIFEALPNDNYLQISGIPLFKNNVFEETVSKKRKR
TIETSITQNKSARKEVSWNSISISRFSIFYRSSYKKFKQDLYFNLHSICDRNTVHMWLQWIFPRQFG
LINAFQVKQLHKVIPLVSQSTVVPKRLLKVYPLIEQTAKRLHRISLSKVYNHYCPYIDTHDDEKILS
YSLKPNQVFAFLRSILVRVFPKLIWGNQRIFEIILKDLETFLKLSRYESFSLHYLMSNIKISEIEWL
VLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCR
PFITSMKMEAFEKINENNVRMDTQKTTLPPAVIRLLPKKNTFRLITNLRKRFLIKMGSNKKMLVSTN
QTLRPVASILKHLINEESSGIPFNLEVYMKLLTFKKDLLKHRMFGRKKYFVRIDIKSCYDRIKQDLM
FRIVKKKLKDPEFVIRKYATIHATSDRATKNFVSEAFSYFDMVPFEKVVQLLSMKTSDTLFVDFVDY
WTKSSSEIFKMLKEHLSGHIVKIGNSQYLQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTKKKGSVL
LRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENSNGIINNTFFNESKKRMPFFG
FSVNMRSLDTLLACPKIDEALFNSTSVELTKHMGKSFFYKILRSSLASFAQVFIDITHNSKFNSCCN
IYRLGYSMCMRAQAYLKRMKDIFIPQRMFITDLLNVIGRKIWKKLAEILGYTSRRFLSSAEVKWLFC
LGMRDGLKPSFKYHPCFEQLIYQFQSLTDLIKPLRPVLROVLFLHRRIAD

FIG. 29

ccaagtataaggacaaaagaacaacttccttcccctaaagacttttactttattaatttacttttcaaatatatttcg agctcttggagtagctcacagaaatccttacaaatcttctgatgagactatattagattcattacagtccgtgcatattc ttaacatggagccttacactttagatgagtcacgtcgcatgatggagtatttggtatcatccaacgtttgccttgaaaag gttgataattatttgcaaaatcatgtccttagtggtggtaatccgcgaaagttttttgatgcttgcacacgtctagcatg ccaaatatgtatcatctcgtattaggctttttccgttttactcctggaatcgtacctttttcactattccccctaatga ataatctaaattagtttcgcttataattgatagtagtagaaagattggtgattctactcgtgtaatgttattagtttaaa ATGTACAACTTGTTTTGAGAGGGTCGCCGGCAAGCTCGTATAGCAATATATGCGAACGCTTGAGAAGCGATGTACAAACG AATTGGCAACTTTTGTTAGAAATGtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatagTATCGG CAGTGATGCCATGCATTACTTATTATCCAAAGGAAGTATTTTTGAGGCTCTTTCCAAATGACAATTACCTTCAGATTTCTG accagACCTCGAAACTTTCTTGAAATTATCGAGATACGAGTCTTTTTAGTTTACATTAATGAGTAACATAAĞG¢taa TATTACCTAAGAAGAATACCTTTCGTCTCATTACGAATTTAAGAAAAAGATTCTTAATAAAGGtattaatttttggtcat caatgtactttacttctaatctattattagcagATGGGTTCAAACAAAAAAAATGTTAGTCAGTACGAACCAAACTTTACG ggtaccgatttactttccttcttcataagctaattgcttcctcgaacgctcctaaatctctggaaatatttttacaaga actcaataacaataccaagtcaaattccaatatgaaggtgttattagtgatcgataatattctatttctattttatcggtcgtta ggttcgcttacttttaatcgtgggtactgttttagctgctacttctagccaaccgcgtgtttctaccccqtcattqqatat attgagatattcaaaaatttctatccactacaactcctttaacgcgggttttatttttctattttctattctattctcatgttgt GACCGAACACCATACCCCCAAĀAGCAĞGATTCTTCGCTTTCTAGAGAATCAATATGTATCTATGTACTTAAATĞATT TCCTTTTCTATTTTTCTTCATTCGACTGTAGTCGGCTTCGACAGTAAGCCCAGATGAAGGTGTTCAATTTTCTTCTTCCAAA GAATGTTGTAAAACAGATGTTTCGATGAAAGTTTTGAGCGTCGAAGGAATCTACTGATGAAAGGGTTTTTCCATGGtaaggt ${ t attctaattgtgaaatatttacctgcaattactgtttcaaaagagattgtatttaaccgataaaq<math>{ t AATCATGAAGATTTTC}$ GAGCCATGCATGTAAACGGAGTACAAAATGATCTCGTTTCTĀCTTTTCCTAATTACCTTATATGTATACCTTGGAGTCAAAA CAAAATAAAAGCGCCCGCAAAGAAGTTTCCTGGAATAGCATTTCAATTAGTAGGTTTAGCATTTTTTACAGGTCATCCTA GTGATCGGAACACAGTACACATGTGGCTTCAATGGATTTTTTCCAAGGCAATTTTGGACTTATAAACGCATTTCAAGTGAAG CAATTGCACAAAGTGATTCCACTGGTATCACAGAGTACAGTTGTGCCCAAACGTCTCCTAAAGGTATACCCTTTAATTGA AAATTAATCTGGGGTAACCAAAGGATATTTGAGATAATATTAAAAGgtattgtataaaatttattaccactaacgatttt tatgccaaatttttttaccattaattaacaatcaqATTTCAGAAATTGAATGGCTAGTCCTTGGAAAAAGGTCAAATGCG ACCTATTTTACAATCTTTTTTTTATATCACTGAATCAAGTGATTTACGAAATCGAACTGTTTATTTTAGAAAAGATATTT tttocaaaaaqctaatatttcaqAACAATGTTAGGATGGATACTCAGAAAACTACTTTGCCTCCAGCAGTTATTCGTC acctgtggcatcgatactgaaacatttaatcaatgaagaagtagtggtattccatttaacttggaggtttacatgaagc TAAGAAGTTTAAGCAAGGtaactaatactgttatccttcataactaattttagATCTATTTAACTTACACTCTATTT ATGAAAAAATCCTTAGTTATTCCTTAAAGCCGAACCAGGTGTTTGCGTTTCTTCGATCCATTCTTGTTGTTCGAGTGTTTCTT AAAATGTGTGCTTAAGTGATTTTTGAGAAACGCAAAGCAAATATTTGCGGAATTCATCTACTGGCTATACAATTCGTTTATAAT

FIG. 30/

ATGGTGCCTTTTGAAAAAGTCGTGCAGTTACTTTCTATGAAAACATCAGATACTTTGTTGTTGATTTTGTGGATTATTG GACCAAAAGTTCTTCTGAAATTTTTAAAATGCTCAAGGAACATCTCTCTGGACACATTGTTAAGGtataccaattgttga TTACGAGTAGTCGACGATTTCCTCTTTATAACAGTTAATAAAAAGGATGCAAAAAAATTTTTGAATTTATTATTAAGAG CTCTGTGAACATGAGGTCTCTTGATACATTGTTAGCATGTCCTAAAATTGATGAAGCCTTATTTAACTCTACATCTGTAG AGCTGACGAAACATATGGGGAAATCTTTTTTTACAAATTCTAAGgtatactgtgtaactgaataatagctgacaaata TGTTCATAACGGgtgagtacttattttaactagaaaagtcattaattaaccttagATCTTTTGAATGTTATTGGAAGAAA <u>AATTTGGAAAAAĞTTGĞCCGAAATATTAGGATĀTACGĀGTAGGCGTTTCTTGTCČTCTGCAGAAGTCAAATGGtacgtgt</u> TATCATCCATGCTTCGAACAGCTAATATACCAATTTCAGTCATTGACTGATCTTATCAAGCCGCTAAGACCAGTTTTGCG **ACAGGTGTTATTTTTACATAGAAGAATAGCTGATTAAtgtcattttcaattttattatatacatcctttattactggtgtc** cccattaaacgggagtggttaaacattaaaagtaatacatgaggctaatctcctttcatttagaataaggaaagtggttt tctataatgaataatgcccgcactaatgcaaaaagacgaagattatcttctaaacaagggggattaagcatatccgaagg aaaagagagtaatatacccagtgttgttgaagaaagcaaggataatttggaacaagcttctgcagatgacaggctaaatt agtitigaatactaatagcicatitiaatgicitatataaaggiiitigiiititiccigaciicaatiiitgcatgggigaaaag aaatagtgttaagccattattggattccgaaatagccaaatttcttggttcctcaaagcggaagtctaaagaacttattg aagcttatgaggcttcaaaaactcctcctgatttaaaggaggaatcttccaccgatgaggaaatggatagcttatcagct gctgaggagaagcctaattttttgcaaaaaagaaaatatcattgggagacatctcttgatgaatcagatgcggagagtat ctccagcggatccttgatgtcaataacttctatttctgaaatgtatggtcctactgtcgcttcgacttctcgtagctcta TTCTTACTTTTAAGAAGGATCTTCTTAAGCACCGAATGTTTGGgtaattatataatgcgcgattcctcattattaatttt gcagGCGTAAGAAGTATTTTGTACGGATAGATATAAAATCCTGŤTATGATCGAATAĀAĞCĀAGATTTGATGTTTCGGATT GTTAAAAAAGAAACTCAAGGATCCCGAATTTGTAATTCGAAAGTATGCAACCATACATGCAACAAGTGACCGAGCTACAAA AAACTTTGTTAGTGAGGCGTTTTTCCTATTgtaagtttattttttcattggaattttttaacaaattcttttaqTTGAT attgtaataacactaatgaaactagATAGGAAATTCTCAATACCTTCAAAAAGTTGGTATCCCTCAGGGCTCAATTCTGT tgagttgctgtcattcctaagttctaaccgttgaagGATTTGAGAAACACAATTTTTCTACGAGCCTGGAGAAAACAGTA cggtctcgagacttcagcaatattgacacatcagGCTTTTTTGTCTTGGAATGAGAGGGTTTGAAACCCTCTTTCAAA ATAAACTTTGAAAATAGTAATGGGATAATAAACAATACTTTTTTTAATGAAAGCAAGAAAAGAATGCCATTCTTCGGTTT cgcagttaagtgaccaaaggtacc

F/G. 30B

EST2 pep	FFYCTEISST VTIVYFRHDT WNKLIT PFIVE YFK-TYLVEN	44
Euplotes pep	FFYVTEQQKS YSKTYYYRKN IWDVI-MKMS IADLKK ETLAEVQE	44
Trans of tetrahymen	KHKE GSQIFYYRKP IWKLVSKLTI VKVRIQFSEK NKQMKNNFYQ	44
Consensus	FFY.TEKSYYYRK. IWKLFKV	20
EST2 pep	NVCRNHNSY TLSNFNHSKM RITPKKSNNE FRITAIPCRG	79
Euplotes pep	KEVEEWKKSLGFAPGKG RLIPKKIT FRPIMTFNKK	78
Trans of tetrahymen	KIQLEBENLE KVEEKLIPED SFQKYPQGKL RIIPKKGS FRPIMTFLRK	92
Consensus	KEFGKL RILPKK FRPLMTF.RK	100
EST2 pep	ADEEEFTIYK ENHKNAIQPT QKILEYLRNK RPTSFTKIYS PTQIADRIKE	129
Euplotes pep	IVNSDRKTTK LTTNTKLLNS HLMLKTLKNRMFK -DPFGFAVFN	120
Trans of tetrahymen	DKQKNIK LNLNQILMDS QLVFRNLKDML-G -QKIGYSVFD	130
Consensus	K.KLN.N.L.SQL.L.LKNIGVF.	150
EST2 pep	FKORLLKKÆN NVLPELYFMKFD VKSCYD	157
Euplotes pep	YD-DVMKKYYE EFVCKWKQVH CPKLFFATMD IEKCYD	155
Trans of tetrahymen	NK-QISEKÆA QFIEKWKNKG RPCLYYVTL	158
Consensus	$. ext{K-}\dots ext{K}$ Кр $.. ext{F}$. $. ext{F}$. Ки $ ext{K}$. G . $ ext{P}$. $ ext{L}$ У $ ext{F}$. $ ext{T}$ СУD	186

F/G. 3

S-1: FFY VTE TTF QKN RLF FYR KSV WSK S-2: RQH LKR VQL RDV SEA EVR QHR EA

S-3: ART FRR EKR AER LTS RVK ALF SVL NYE

A-1: AKF LHW LMS VYV VEL LRS FFY VTE TTF Q A-2: LFF YRK SVW SKL QSI GIR QHL KRV QLR DVS A-3: PAL LTS RLR FIP KPD GLR PIV NMD YVV

FIG. 32

Poly 4 t t c t c ta a g c c tcg 5'- cag acc aaa gga att cca taa gg -3' Q T K G I P Q G 4 (B')

5(c')

D D Y L L I T
3'- ctg ctg atg gag gag tag tgg -5'
a a a a a a a a t t t t c c Poly 1

FIG. 34

FIG. 33A

FIG. 33B

DGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPS-----QDTLILKLADDFLIIS KGIPQGLCVSSILSSFYYATLEESSLGFLRDESMNPENPNVNLLMRLTDDYLLIT SILSSFLCHFYMEDLIDEYLSFTKKK------GSVLLRVV LCVSYILSSFYYANLEENALQFLRKESMDPEKPETNLLMRLT Ea_p123 Sp_M2 Sc_p103 g

<---Actual Genomic Sequence. cag gg.. ט P cct atc caa aaa gtt ggt Ö ¥ ŏ

Poly 4
t t c
t a a g c c t c g
cag acc aaa gga att cca taa gg

ag acc aaa gga att cca tca ggC TCA ATT CTG TCA TCT TTT TTG TGT CAT TTC TAT ATG tc tgg ttt cct taa ggt agt ccG AGT TAA GAC AGT AGA AAA AAC ACA GTA AAG ATA TAC

Σ

נצו

耳

U

Ц

Ŀ

ഗ

ß

ᆸ

Н

ß

ტ

ഗ

Д

Н

Ö

×

FIG. 36A

GAA GAT TTG ATT GAT GAA TAC CTA TCG TTT ACG AAA AAG AAA GGA TCA GTG TTG TTA CGA CTT CTA AAC TAA CTA ATG GAT AGC AAA TGC TTT TTC TTT CCT AGT CAC AAT GCT ഷ ᆸ Ц > ഗ ט ¥ × 노 Н Щ ഗ П × Ш Д Н ᆸ Д ы

GTA GTC gac gac tac ctc ctc acc CAT CAG ctg ctg atg gag gag tag tgg

ы

ы

Ω

Д

>

>

- ctg ctg atg gag gag tag tgg a a a a a a a a t t t t c c <---Actual Genomic Sequence ttc ctc ttt ata aca...... F L F I Tgac gat D D

FIG. 36B

3. Second Round PCR Using Inside Primer and $Q_{\mbox{\scriptsize I}}$ Primer

4. Sequence Second Round PCR Products Using Inside Primer Q_I Primer

╬

FIG. 39

				. (205) . (173) . (209)
(429). WLYNSFIIPILQ (366). WLFRQLIPKIIQ (441). WIFEDLVVSLIR	Motif 1 Motif 2 K p hh h K AVIRLIPKKNTFRLITN-LRKRF (61) SKMRIIPKKSNNEFRIIAIPCRGAD (62) GKLRLIPKKTTFRPIMTFNKKIV (61)	Motif 3(A) P h hDh KKYFVRIDIKSC ELYFMKFDVKSC KLFFATMDIEKC	Motif 4(B') hPQG pP hh h YLQKVGIPQGSILSSFLCHFYMEDLIDEYLSF YIREDGLFQGSSLSAPIVDLVYDDLLEFYSEF YKQTKGIPQGLCVSSILSSFYYATLEESSLGF * ** **	Y Motif 5(D) h F DDhh vLLRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENS LILKLADDFLIISTDQQQVINIKKLAMGGFQKYNAKANRDKILAVSSQS LLMRLTDDYLLITQENNAVLFIEKLINVSRENGFKFNMKKLQTSFPLS ** * *
Tezlp Est2p p123	Tezlp Est2p p123	Tez1p Est2p p123	Tezlp Est2p p123	Tezlp Est2p p123
S В В С С С	လ လ ங တ ဂ မ မ	လ လ မ တ ဂ ဖ 	လ လ တ ဂ က 	о о н О о в

F/G. 47

Ä

37/78

1MTEHHTPKSRILRFLENQYVYLCT 24 1MKILFEF 7 1 MEVDVDNQADNHGIHSALKTCEEIKEAKTLYSW 33	25 LNDYVQLVLRGSPASSYSNICERLRSDVQTSFS 57 8 IQDKLDIDLQTN - STYK ENLKCGHFNGLD 35 34 IQKVIRCRNQSQ - SHYK DLEDIKIFAQTN 61	58 IFLHSTVVGFDSKPDEGVQFSSPKCSQSELIAN 90 36 EILTTCFALPNSR-KIALPCLPGDLSHKAVIDH 67 62 IVATPRDYNEEDFKVIARKEVFSTGLMIELIDK 94	91 68 6		156 124 153	
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42A

/	OIPE
B	JUL 2 6 2004 5
THE STATE OF THE S	Transminder Col

284 223 275 313 252 308 342 282 341 359 299 374 392 332 406 | FA | LA | | V LW PLIEQTAKRLHRIS LTLQKLLKRHKRLN EKIAYMLEKVKDFN **- ≥** ∟ OGZ _ 4 -· · × 3ド目 Z - - -• Ш Z Q Z • • ш XZ-SSI OKK ا X X X > 1 – - 1 – TO O ZWH IQZ GLINAFQVKQLH
---SIKKLTDLR
FVSNKNNISAMDI 」の≻ 교 보고 ᄀᄄᆇ **~** _ . M M M SSYKKFKQDLYEN ---KQFLHKLNIN PNWNNMKSRTRIF X T Z SOI KLSRYESFS SLPLNGYLP/ELNKHEL I H - - - V F A F L R S - L V - - - V L K F I I V I L Q I N K C V T Q F I N E F F Y _ o _ KRSNAKMCLSDFE ---DIWFTKHNFE TS-AKHFYYFDHE တ ျ <u>≻ &</u> z S S M Y v Q - QSTVVPKRLLKVY - LVKIPQRLKVRIN RFNRIRKKLKDKVI 日 し K D-THDDE EGTVLDL μош O O I KISEIEWLVLGKR RLKDFRWLFIS--NTREISWMQVETS NORIFEIILKDL SKKNKGKIIKNL G-RNRKNFOKKV α > Z > . · 🗅 ш ____ . . – ·Z . . – ≥×° S 'Z 4 · ·> <u>∨ − v</u> ш O O Z 1 10 · LL œ · • 1 <u>≷</u> S ·I エのメ . . . T N L ۵ ، 1 1 . . ш . . . I • Ш S . . · > . . --> XXX — L X X X . .Z S ・メ \vdash $\times \infty \succ$ · · > ٠ш S > Z のヱ⊢ ・・・メ Z Z . . ZZ **X** · **X** >⊢ ╙ · 0 184 218 252 201 249 285 224 276 314 253 309 343 283 342 360 300 375 393 333 407 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123

FIG. 42E

616 557 630 458 394 470 491 427 503 522 460 534 552 491 564 584 524 597 **≻≻≻** >>≻ **⊢** OS≥ NSD . Q С П П П **- □ - > エー エ** $\cdot \vdash \sqsubseteq$. · × · Ф Ф Х П Х **4** − ے ک ن · 0 ≥ z> шző R Q X · 🗠 · · 124 K O N Z K Z @ | | | | | ・マ 日内氏 or m o • ш LRN T < Y S N M ZZZ • > TNQTLRPVASILKHLIHKNA I QPTQK I LEYLRTNTKLLNSHLMLKTLK K L L T F K K D L L K H R M F R I K E F K Q R L L K K F N N V M K K Y E E F V C K W K Q V ZUY ۰ ۵ $\square > \square$ **z** – **الا** RRR 1 - G - - - E - A E TSMKMEAFEKIN VEYFKTYLVENN ADLKKETLAEVQ ロSK • ≥ \overline{X} <u>8 - 8</u> **XXX XD H** • Ш . . . PILQSFFYITES PKIIQTFFYCTEI VSLIRCFFYVTEQ RIVE . . . шшш · 64 **—Ш** — · · L ZZH **Ⅲ ∑** ⊘ . .Z MCL . . . RIKQDLN SIPRMEC SVNREKI · S Z · Ø **ススス** ススス マ・ロ **-** · -**~** ~ ~ R : -| |-|-|шшσ $\Sigma \square \Omega$ OΟZ YWLYNSFIIP SWLFRQLIPK RWIFEDLVVS KD I WK L L C R P F HD T WN K L I T P F KN I WD V I MK M S YFVRIDIKSCYDR YFMKFDVKSCYDS FFATMDIEKCYDS > - × > - × D A ∨ 222 v Z ⊢ $\sigma \vdash z$ ⊢ Z Y X-⊢ ≅≻⊢ $A \vdash A$ \neg \vdash \vdash IZY **- 止 그 z** • > N F R L O A \vdash \vdash \vdash ___Ω < > 0 > O d SI ᇟᅐᇿ **⊢** ⊗ **⊣** 9 . . $\times \circ \vdash$ FRAY YRH XK > r ≷ - > -S R ≅ Σ \square \square スコの $o \vdash a$ ட்ட α⊢× 以目ら らFD ᄑᇰᆇ — Ш Z $\vdash \succ \checkmark$ ESK **≻≻**⊑ 426 363 438 459 395 471 523 461 535 492 428 504 553 492 565 585 525 598 A. Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123

FIG. 420

365 591 396 698 624 729 731 657 762 756 584 795 LSGHIVKIGNSQY IFKTALWVEDKCY CQYNYINFNGKFY $X \leq X$ 그 돈 & YZJ · · • SZL DAK NAV NAV トスコ MGKSFFYKILR® FNTRISYKTIDTI KASMWLKKKLK® JF∑ • 14 **∟** ⊗ **⊣** шшш 114 KVVQLLS - - MKTSDT NVVNASR - - VPKPYE SVLENEQNDLNAKKT s ш s **5** · 0 DSA L | | ZQL Դ Դ Տ **SSS** ZØJ шοд TV-NE H S H SFLCHFYMEDLI PIVDLVYDDLL SILSSFYYATLE - S V L L R V V D D F L F - T L I L K L A D D F L I V N L L M R L T D D Y L L SE-FKMLKEHL SDV-NVVEME-I ONLLQPV-N-C E C Y X 4 F I J Z N M L LRGFEKHNFSTSL MGGFQKYNAKANR INVSRENGFKFNM DMVPFEK - VLKLFN > とし SAN STS GEFI $x \cdot \alpha$ တ တ လ С В > | \ | \ | \ | \ | \ GMDSVEEQNI တ္ထြ က်ပ ZYU CVGIPQGSI EDGLFQGSS KGIPQGLQ YWTKSS TVHLSN ZRNYFKF . .Z よらし · (5) . . _ 」の-' 'Z · (5 > Q X D • Ш M N M S . . • ⋖ · 4 · 🗅 Z SAJ N X N Ш · 02 ᇫᆂᄀ · × S $A \square \vdash$ **5** 0 0 $\Delta \perp Z$ ٦ - ٨ <u>۵</u> «۵ . .> · 0 スピヨ **ーメー** > OZ-Ш ・エ ·Œ メらロ **VZZ** 635 571 664 666 592 697 699 625 730 732 658 763 757 685 796 787 714 829 A. Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123

FIG. 42L

Ą.

882	915	948	981	988
793	821	854	877	884
927	960	993	1023	1031
LASFAQVFIDITHNSKFNSCCNIYRLGYSMCMR	M O L N C L	LAEILGYTSRRFLSSAEVKWLFCLGMRDGLKPS	IKPLRPVLRQVL	LHRRIAD.
LNSTNTVLMQIDHVVKNISEC		TVSGCPITKCDPLIEYEVRFTILNGFLESLSSN	LRKEIQHLQAYI	IYIHIVN.
LMNNITHYFRKTITTEDFANKTLNKLFISGGYK		TRAFFKYLVCNIKDTIFGEEHYPDFFLSTLKHF	LKAKEAKLKSDQ	QSLIQYDA
850	883	916	949	982
773	794	822	855	878
895	928	961	994	1024
Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p	Sp_Tip1p
Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p	Sc_Est2p
Ea_p123	Ea_p123	Ea_p123	Ea_p123	Ea_p123

FIG. 42E

155 123 152 88 55 85 122 93 122 57 35 61 90 67 94 24 7 33 I **G G G** ZLI $\infty \vdash \times$ ⊢╙Ѯ SO Z ZIY . . ОШÓ **400** Σ _>_ >>> \bot \bot \vdash 1 1 と 巨 口 **- 」 2** 4 ЩΖЩ တတ္ . . ШСИ шsq $\vdash Z \triangleleft$ α しい> $\angle m >$ **GILL 国 文 国 し** H R a & z FO: $x \vdash x$ > I -のオー DWG コ 正 > - z z C L A N A M W W W W X N D M N Ø **Z** ∢ りらと 999 GIZ \square Z Zsg⊢ Z · W IKO **∽** 0 − **S S D** 日・人 Z \ **—** — ц R X D **ひ ∟ 0** 1 10 шш aaa . . 0 $\Delta \Box \vdash$ **∑** – J $\infty \times Q$ ц іШ 1 1 02 M Z J $\sigma \circ \sigma$ \succ \mathbf{L} \mathbf{J} **М**·М \square \square \square \circ $\bot \succ \bot$ **z** – a. S _ > 000 $Z \Vdash \vdash$ し・こ S · ggш · **-**E O Ш $\overline{\mathbf{A} \mathbf{r} \mathbf{r}}$ __ _ _ _ \Box \Box \Box ⊢ ∢ Z Z ' ' ス・ド Q P X **∑**⊢0 **- - >** ZOШ **- ∢∑** -Ω + + Ω + + Ω ⊗ Ω - 1 > **–** & $o \vdash o$ **□** · Ø S $S \vdash \Box$ -><u>×</u> メ・ス O A A JZH **-44** >> F ۵ · 0 ш — — ZZY шsq · I ロベ> . . G **- თ** ტ I . — マ・ス 24 . 24 ZZØ V . · (J I <u>a.</u> . . ᄶᅂᇤ 2 . 0 民る人 ш ·I SZQ S S D M Z V **L**SA $rac{1}{2}$ よるの ·Z **ე** ⊢ თ \square \square ш >> $\vdash x \vdash$ **ე ≻ ≻** $\alpha \alpha x$ **ω** − ⊢ **⊼ Z X** Σ . **D 2** 0 0 шФш S C L \mathbf{x} , , . 4 JJZ ບ ⊣ z S E S > 4 1 ス・ス MHYLLS FVDLLS FRHLY1 · 0 ><> ш O S コーエ 900 ·Z \Box \vdash \circ > L ロ **□** S **⊢** >> 4 > _ -Q D R . 0 ⊢≥⊻ **下** 0 R 411 ZZY · > $o \vdash \sigma$ $\Sigma \cup \cup$ OZ4 耳ドロ . 0 **>**ママ> ШQZ エトト gγш >> -· > **6** · · りりと **ス**ー> \neg A A J **L L** > 上 二 二 二 二 二 二 - - Щ zøø > - -**Z** ' ' > 」と $\Box \succ \Box$ > U U > ' ' $o \vdash z$ ZIJ 25 8 34 8 58 36 62 91 68 95 23 23 23 156 124 153 86 55 86 86 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123

-1G. 42F

43/78

251 200 248 284 223 275 313 252 308 342 282 341 359 299 374 392 332 406 **– ∑** ∟ O & Z **__** __ _ . . . S M M **∢** - ≥ **SZZ** 2 _ _ **- 그 또** ٠Ш OFF Δ \perp \vdash $\blacksquare \blacktriangleleft \square$ スロス ーᄔェ **--** 0 x x D• • Щ - -> SSF エスス O R R \Box <u>≻</u>S aa≻ > < < **コェ>** $Z \coprod \vdash$ ISS ド 巨 民 IOZ \times z-」の≻ I K O **R R X** アスス > _ _ **コドス &** _ . SOI YZZ ZZ L \bot \bot Σ **スス**国 Y L Z $\alpha \times z$ SSYKKFKQDLYF ---KQFLHKLN-PNWNNMKSRTR-**4** _ _ QDA > g > шшш _ の _ ᄔᆚᅳ $\times \vdash \circ$ $\vdash \bot \Sigma$ $\sigma \Delta \Delta$ SYJ L L I SNAKMCLSDF DIWFTKHNF AKHFYYFDF σ×≻ ШΟШ **> _ –** > & Z **—** — 止 M Q A ω>ш O Y Z S S Ш > Z I 7 – – 7 – S **__ _ _** スしょ エソフ - _ -**して 内** $\triangleleft - \preceq$ ーエス S P Z N N H шшш zoz \Box \Box よるの > z -> - > **4 Y O** - · o 日 し と - LKDLETFLK KI-KNLNLLS FQKKVKKYVE **┙・>** GTVLE ОГГ **ス 52 ス** Si шのШ ロヘト コスス . . . OOI 2 · S $\mathbf{Z} \rightarrow \mathbf{J}$. .Z 民の人 **メ**・ト σ σ imes**ド** R X . . 0 Оςш ᄔᅩᅩ σαχ _ _ _ . · **-_->** > - -> <u>o</u> <u>s</u> ·Z **—** — **ш ≻** ┛ ┙ . · |-> **⊥** Ø $o \cdot z$ ≥×a $\sigma \sigma \sigma$. . > \mathbf{Z} > - S ш • 🗕 OUZ $\vdash \times \kappa$ • : **(**) - \times zJ ≻ Z **足・圧** ほら K $\sigma > z$ · 1 **≷** - Z Z SI Q L L **– ц** – エのス . _ _ _ _ . . ~ • Ш ШОШ . . zzs · • • ш ٠Ш I \succ \bot \bot $K \times K$ ら 火 尺 . **- - -**>-> > · > QX . SIX \vdash ··Z メット · > N S XKZ • Ш . . . oz⊢ $\sigma > z$ **७७⊢** Z . . _ _ _ ≥zz α \bot \succ \blacksquare . . 0 ≥ ਘ ⊣ · 04 > - 4 ZYY 184 252 201 249 285 224 276 314 253 309 343 283 342 360 300 375 393 333 407 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123

616 557 630 458 394 470 491 427 503 522 460 534 584 524 597 552 491 564 ≻≻≻ >>≻ O S ≥ マー 1 шшш . **→** □ > \cdot \vdash \bot **4** − **ス** 三 ス : △ ≥ G $\overline{x} \cdot \overline{x}$. 4 · 12 · 田Ζの $\alpha = m$ $\kappa \omega \times$ · 64 日内民 2 J Q >z> **ス R ス** дшα SFIIPILQSFFYITESSDLRNQLIPKIIQTFFYCTEISSTVTDLVVSLIRCFFYVTEQQKSYS ZKW ZZZ **७** > ७ R O Z OZJ · > ш > ш ≤ О ⊼ __ _ _ _ ースス ⊾z> スメー . 0 EZQ z--**レース** · 노 SMKMEAFEK-NE/EYFKTYLVENNV <u>⊢</u>∢∑ エント . 2 $\forall \forall \vdash$ **ス** m ス • Ш ___ スロー , X , X ススス 22 22 22 , , <u>R</u> шшш __ _ _ $\vdash \square \vdash$ $\alpha \alpha \vdash$. . X ZZH 上 区 の ' Z ' メ メ ヨ $\alpha \alpha \neg$ ᄔᄔᅩ · 00 · Z · S **XXX XXX - 4 X** - - - 1 \vdash \square \prec ¥ . 0 **-** -- S - X - X - X - X п п с |---| |---| Ø z ⊢ **__ _ _**_ __ < · > ZYZ $\Sigma \cap \Omega$ OΟZ $\vdash I \vdash$ **8 8 8** ທ z ⊢ 000 $\sigma \vdash z$ WKLLCR WNKL-TR WDV-MKN **> W** $\vdash Z \times$ > ' コスス \triangleleft \vdash \bowtie A S O ≥≻⊢ \neg \vdash \vdash ららて IZY YWLYNS SWLFRO RWLFED _ _ _ ->-ススm ᅀᆂᅀ **メート** z 4 > Л П П Р <u>S</u> A \vdash \vdash \vdash ストス H O A $rac{1}{2}$ A > Q_ _ O > O 4 ⊢ZU S . . **- 4 ≥** Q Q Z**L S J 9** · · Ω ス μ スメー X S F $\mathbf{K} \mathbf{K} \mathbf{K}$ $\mathbf{X} \mathbf{I} \mathbf{X}$ $\Sigma \sqcup \Box$ $\omega \vdash \Phi$ > ≥ ∢ ト し ら $\alpha \alpha \Sigma$ ᄔᄔᆚ ഗ ഥ മ Q F X ド 三 ら шшш ->-ESK <u>ш</u> ш > $\vdash \succ \succeq$ **— Ш Z** 日の人 $\rightarrow \rightarrow \bot$ > ⊥ ≥ 426 363 438 459 395 471 492 428 504 523 461 535 553 492 565 585 525 598 617 558 631 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123

-IG. 42H

786 713 828 816 739 861 849 772 894 665 591 696 698 624 729 731 657 762 756 684 795 J ≥ d SZL $\succ \succ \succ$ $\forall \forall \alpha$ Y Z J . . 4 **X->** トスー · · · \bot \vdash Σ S F S <u>gош</u> шшш SKK . . . **⊢** ⊗ **⊣** ROK н ш н Z D O υшО ΩØZ (J · (V DOA _ _ _ _ A L W V E E QLLS - - MKTSD NASR - - VPKPY ENEQNDLNAKK $- \circ -$ X Q Z ZOL コエー ートメ **တ တ တ** SKT $\succ \succ \circ$ KGE ススス $\succ \succ \checkmark$ Шμσ ZQG ZØJ FSL ДШШ > - шοд ZWO — — ш **⊢** ∽ ⊢ шσш L SGH C F K T A CHFYMEDL VDLVYDDLU SSFYYATLE <u>-</u> – ___ $z > \omega$ T < - | H - - -SШS PFFGF HFFKF DWIGI **ED X** ススス エШー SE F F M L K E F SD V - N V V E M E SN L L Q P V - N I $\forall \forall \vdash$ >∢⊢ ᆜᅂ室 > _ _ σzz ΣΣυ Y Z V $x \times x$ ⊢∢╙ **د ، > __ _ __** шцц > W _ らメメ と・ り MVPFE VLKLF YPTLF $\mathbb{L} \triangleleft \mathbb{L}$ $x \cdot \alpha$ のエΖ SAS ST 6 S <> **S** S S ZZ Ű ш O — $\omega \vdash z$ $I \succ Z$ 8 G D _ თ ე · ·> **スス**国 $Z \perp Z$ Z ソ ン と ス よ の $\triangle \cdot Q$ のNY **S S J** ··Z ШQК щaa L S L 7 F - G G G $\omega \omega \times$ (D) (D) (D) . . _ пπо **ц** — Ш _ い _ DF VD YWTKS DN VRTVHLS EAKQRN YFK aaa ⊢>巡 . .Z ტ ტ > Q X Q • Ш αщα • • Ш M O Z z -> S ШΩШ $z \circ \omega$. _ _ _ _ _ . . • **」≥** – □ K ш ٠ 🗸 000 _ _ _ _ <u>~</u> ~ ⋖ · OZ SAI . _ Ш <u>>ロス</u> · @ 2 **レース** — · ≥ スエー ・エ . · O $A \square \vdash$ S ပြဟဟ $Z \times \Pi$ ᅂᄣᆂ ·ā O R O ᅐᇚ **コ** ス ー · ·> OZ- \neg \sim メるロ . . . **VZZ** 699 625 730 635 571 664 595 597 597 732 658 763 757 685 796 787 714 829 817 740 862 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123 Sp_Tip1p Sc_Est2p Ea_p123

FIG. 421

മ്

⁼1G. 42J

(These cells will show a senescence phenotype if the disrupted gene encodes a telomerase subunit.)

FIG. 43

FIG. 45

1018 1078 1138 1198 1272 86 1405 1469 128 1332 480 640 800 880 160 400 560 0 20 80 ataatctaaattagtttcgcttataattgatagtagtagaaagattggtgattctactcgtgtaatgttattagtttaaa gatactttgcaaaacatttattagctatcattatataaaaaaatcctataaatattataaatattaatcaatatttgcggtc gtatatatattttttgtttttgatttttttttctattcgggatagctaatatgggcag actcaataacaataccaagtcaaattccaatatgaaggtgttattagtgatcgataatatttctattttatcggtcgtta agctcttggagtagctcacagaaatccttacaaatcttctgatgagactatattagattcattacagtccgtgcatattc ccaaatatgtatcatctcgtattaggcttttttcccgttttactcctggaatcgtacctttttcactattccccctaatga ccaagtataaggacaaaaagaacaacttccttcccctaaagacttttactttaatttaatttacttttcaaatatatttcg gtaaggtattctaattgtgaaatatttacctgcaattactgttcaaagaga ggtaccgatttactttccttccttcataagctaattgcttcctcgaacgctcctaaaatctctggaaatatttttacaaga ggttcgcttacttttaatcgtggtactgttttagctgctacttctagccaaccgcgtgtttctaccccgtcattggatat gttgataattatttgcaaaatcatgtccttagtggtggtaatccgcgaaagttttttgatgcttgcacacgtctagcatg GTA V AAT N CTA CAA TAT AAT N GTA AGG CAA O GGA AAT N GTA AAC V N GAG E CGT R GAG E CTA ACG TTT CGA GCC ATG CAT F R A M H $_{
m LLL}$ GGT TTT F CGC R CAA GAA AGT S GAT GAA E GIA CITCCA GAT D GAT AGG R AAG AGC S AGC S AGA AGT GAT D GAA E AAA GAC CAG CCC P CAT H GAT AAA 1406 ttgtatttaaccgataaag AAT 114 N ACC GAG GAA g_{G}^{α} CAT H TC T CAC CAG AAT ഥ ACC T ATG M AGC S ATG M TAC Y CTG L TAT Y CAT H AAA CTA 1019 1199 1273 1079 1139 241 21 161 321 401 561 641 801 881 81 87 107 481 721 41 61

F/G. 46/

JUL 2 6 2004

FIG. 461

2336 375	2396 395	2465 405	2525 425	2585 445	2645 465	2705 485	2775 495	2835 515	2906 524	2967 542	3027 562	3088 581
ACT T	AAG K	GGA G	GCG A	TAT Y	AAA K	GAG	ACT T	ACG	gtattaatttttggtcatcaatgtactttacttctaatctatta	GTG V	GAG	gtaat
GAA Z	ATA I	CTT	TTT F	TTT F	TGG W	AAC N	AAA K	ATT I	atct	CCT P	TTG L	ი გ
CTC L	AAC N	GTC V	ATA I	TTT F	ATT I	ATA I	CAG	CTC	tota	CGA R	AAC N	TTT F
ig AC	AGT	CTA L	CAA O	TCT	GAT D	AAA K	ACT	CGT R	tact	TTA L	TTT F	ATG M
G gtattgtataaaatttattaccactaacgattttaccag AC D	ATG M	TGG W	AAG K	CAA Q	AAA K	GAA E	AGG ATG GAT R M D	TTT F	actt	ACT T	CCA P	CGA R
ttt	$_{\rm L}^{\rm TTA}$	GAA E	CGC R	TTA L	AGA R	$_{\rm F}^{\rm TT}$	3 ATG M	ACC T	ıatgt	AAC CAA N Q	ATT I	CAC H
acga	$_{\rm Y}^{\rm TAT}$	ATT I	AAA K	ATT I	$\mathop{\rm TTT}_{\rm F}$	GCG A	r AGG R	AAT N	atca	AAC N	GGT G	AAG K
acta	CAT H	GAA E	GAG E	CCT P	TAT Y	GAA E	r GTT V	AAG K	ggto	ACG T	AGT S	CTT L
tacc	$_{\rm L}^{\rm TTA}$	TCA S	TTT F	ATA I	GTT V	ATG M	AA7 N	AAG K	tttt	AGT S	AGT S	CIT
ttat	AGT	ATT I	GAT D	ATA I	ACT T	AAA K	y AAC N	CCT	taat	GTC V	GAA E	GAT D
aaaat	TTT F	ccag	AGT S	TTT F	CGA R	ATG M	tcac	TTA L	gtat	TTA L	GAA E	AAG K
gtati	TCT	gtaatatgccaaatttttttaccattaattaacaatcag	TTA L	TCG S	AAT N	TCA	gtattttaaagtatttttgcaaaagctaatatttcag AAC AAT $_{ m N}$	CTA L	AAG K	ATG M	AAT N	AAG K
tatto	GAG E	atta	TGC	AAT N	CGA R	ACA T	ctaat	ATT CGT I R	ATA I	AAA K	ATC I	$_{\rm F}^{\rm TTT}$
Ω D	TAC	atta	ATG M	TAC Y	TTA L	ATT I	aaago	ATT I	TTA L	AAA K	TTA L	ACT T
GAG ATA ATA TA AAA E I I L K	AGA R	tacci	AAA ATG K M	CTA L	GAT D	TTT F	gcaaa	GTT V	TTC	AAC N	CAT H	$_{\rm L}^{\rm CTT}$
TTA L	TCG	ttti	GCG A	TGG ¥	AGT S	CCC	ttti	GCA A	AGA R	TCA S	AAA K	$_{\rm L}^{\rm CTT}$
ATA I	TTA L	aatt	AAT N	TAC Y	TCA	CGA R	tatti	CCA P	AAA K	GGT G	CTG L	AAG K
ATA I	AAA K	gcca	TCA S	ATC I	GAA E	TGC	aaagi	CCT P	AGA R	ATG M	ATA I	ATG M
GAG E	$_{ m L}^{ m TTG}$	atat	AGG R	TTC	ACT	$_{\rm L}^{\rm TTG}$	ttt	$_{\rm L}^{\rm TTG}$	TTA L	ttagcag	TCG	TAC Y
$ ext{TTT}$	TTC		AAA K	GAA E	ATC I	CTC L	gta	ACT T	AAT N	tta	GCA A	GTT V
2268 366	2337 376	2397 396	2466 406	2526 426	2586 446	2646 466	2706 486	2776 496	2836 516	2907 525	2968 543	3028 563

FIG.

FIG. 46D

4588 986 4089 848 4149 868 4209 888 4339 917 4401 935 4528 966 4210 AGG ATG AAG GAT ATA TTT ATT CCC CAA AGA ATG TTC ATA ACG G gtgagtacttatttaactaga 4274 889 R M K D I F I P Q R M F I T D TCG S 4275 aaagtcattaattaaccttag AT CTT TTG AAT GTT ATT GGA AGA AAA ATT TGG AAA AAG TTG GCC 904 TG gtacgtgtc W GAT TAA tgtcattttcaatttattatatacatcctttattactggtgtcttaaacaatattattactaagtata D * AAA K AAA K ACT T GAT CTT ATC AAG CCG CTA AGA CCA GTT TTG CGA CAG GTG TTA TTT TTA CAT AGA ATA D L I K P L R P V L R Q V L F L H R R I TCT TAC TTA A gtatactgtgtaactgaataatagctgacaaataatcag CAT GGT GAA ATA TTA GGA TAT ACG AGT AGG CGT TTC TTG TCC TCT GCA GAA GTC AAA E I L S S A E V K CAG Q AAA K GCA A GAT D ${
m TTG}$ AAA K ACA T CAA AGA R TTT F GTA GAG CTG ACG V E L T TCA S ATG M CTT GAT ATG AGA GCA M R A CAA O AAT N GGA G TAC Y CAC H GAA CAG CTA ATA E Q L I $_{\rm L}^{\rm CTT}$ $_{
m TCT}$ ACC AGG R TCT TGT C TGT C ATT I TTT F GTG AAC ATG V N M AAC TCT ACA N S T GAC D TCT ATT I 4402 ggtctcgagacttcagcaatattgacacatcag G CTT 936 TAC TTC AG R TGC C CTA L TCT ATT I CCA P TTC F CAT H GGT GCC AAA K AGG R TAT TAT AAA K AAT N ${
m TTC}_{
m F}$ CCA P TCT CCC AGA A AA AGC S JGC C 4340 918 4090 849 4150 869 4021 839

:/G. 46E

FIG. 46F

met ser val tyr val val glu leu leu ATG AGT GTG TAC GTC GTC GAG CTG CTC GCCAAGTTCCTGCACTGGCTG 10 arg ser phe phe tyr val thr glu thr thr phe gln lys asn arg AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC AGG 30 leu phe phe tyr arg lys ser val trp ser lys leu gln ser ile CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ATT 40 gly ile arg gln his leu lys arg val gln leu arg glu leu ser ĞGÂ ATC AGĂ CAG CAC TTG AÂG AGĞ GTG CAG CTG CGĞ ĞAG CTG TCG 60 glu ala glu val arg gln his arg glu ala arg pro ala leu leu GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG CTG 8.0 thr ser arg leu arg phe ile pro lys pro asp gly leu arg pro ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG CCG ile val asn met asp tyr val val gly ala arg thr phe arg arg ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC AGA 110 glu lys ala glu arg leu thr ser arg val lys ala leu phe GAA AAG ARG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG TTC 120 ser val leu asn tyr glu arg ala arg arg pro gly leu leu gly AGC GTG CTC AAC TAC GAG CGG GCG CGC CGC CCC GGC CTC CTG GGC 130 ala ser val leu gly leu asp asp ile his arg ala trp arg thr GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC ACC 150 phe val leu arg val arg ala gln asp pro pro pro glu leu tyr TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCG CCT GAG CTG TAC 160 170 phe val lys val asp val thr gly ala tyr asp thr ile pro gln TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC CAG 180 asp arg leu thr glu val ile ala ser ile ile lys pro gln asn GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC 190 200 thr tyr cys val arg arg tyr ala val val gln lys ala ala met ACG TÂC TGC GTG CGT CGG TÂT GCC GTG GTC CAG AÂG GCC GCC ATG

FIG. 47A

210 gly thr ser ala arg pro ser arg ala thr ser tyr val gln cys GGC ACG TCC GCA AGG CCT TCA AGA GCC ACG TCC TAC GTC CAG TGC 230 gln gly ile pro gln gly ser ile leu ser thr leu leu cys ser CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC TGC AGC 240 leu cys tyr gly asp met glu asn lys leu phe ala gly ile arg CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG ATT CGG 260 arg asp gly leu leu leu arg leu val asp asp phe leu leu val CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG TTG GTG 270 thr pro his leu thr his ala lys thr phe leu arg thr leu val ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC CTG GTC arg gly val pro glu tyr gly cys val val asn leu arg lys thr CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG AAG ACA 300 val val asn phe pro val glu asp glu ala leu gly gly thr ala GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC ACG GCT 310 phe val gln met pro ala his gly leu phe pro trp cys gly leu TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC GGC CTG 330 leu leu asp thr arg thr leu glu val gln ser asp tyr ser ser CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC TCC AGC 340 350 tyr ala arg thr ser ile arg ala ser leu thr phe asn arg gly TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC CGC GGC phe lys ala gly arg asn met arg arg lys leu phe gly val leu TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG GTC TTG 380 arg leu lys cys his ser leu phe leu asp leu gln val asn ser CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG AAC AGC leu gln thr val cys thr asn ile tyr lys ile leu leu gln CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG CTG CAG 410 ala tyr arg phe his ala cys val leu gln leu pro phe his gln GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT CAT CAG

FIG. 47B

gln val trp lys asn pro his phe ser cys ala ser ser leu thr CAA GTT TGG AAG AAC CCA CAT TTT TCC TGC GCG TCA TCT CTG ACA arg leu pro leu leu his pro glu ser gln glu arg arg asp CGĞ CTC CCT CTG CTA CTC CAT CCT ĞAA AGC CAA ĞAA CGC AGĞ GAT val ala gly gln gly arg arg pro ser ala leu arg gly GTC GCT GGG GGC CAA GGG CGC CGC CGC CCC TCT GCC CTC CGA GGC arg ala val ala val pro pro ser ile pro ala gln ala asp ser CGT GCA GTG GCT GTG CCA CCA AGC ATT CCT GCT CAA GCT GAC TCG 480 thr pro cys his leu arg ala thr pro gly val thr gln asp ser ACA CCG TGT CAC CTA CGT GCC ACT CCT GGG GTC ACT CAG GAC AGC 490 500 pro asp ala ala glu ser glu ala pro gly asp asp ala asp cys CCA GAC GCA GCT GAG TCG GAA GCT CCC GGG GAC GAC GCT GAC TGC 510 pro gly gly arg ser gln pro gly thr ala leu arg leu gln asp CCT GGA GGC CGC AGC CAA CCC GGC ACT GCC CTC AGA CTT CAA GAC 520 his pro gly leu met ala thr arg pro gln pro gly arg glu gln CAT CCT GGA CTG ATG GCC ACC CGC CCA CAG CCA GGC CGA GAG CAG 540 thr pro ala ala leu ser arg arg ala tyr thr ser gln gly gly ACA CCA GCA GCC CTG TCA CGC CGG GCT TAT ACG TCC CAG GGA GGG 560 arg gly gly pro his pro gly leu his arg trp glu ser glu ala AGG GGC GGC CCA CAC CCA GGC CTG CAC CGC TGG GAG TCT GAG GCC 564 OP TGA GTGAGTGTTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGC CTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCCAGCACCTGCGTTTTCACTTCCCCAC AGGCTGGCGTTCGGTCCACCCCAGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACT CCCCACATAGGAATAGTCCATCCCCAGATTCGCCATTGTTCACCCTTCGCCCTGCCTTCC TTTGCCTTCCACCCCCACCATTCAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTTTGGG AATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGGACCCTGCACCTGGATGGGG GTCCCTGTGGGTCAAATTGGGGGGGGGGTGCTGTGGGAGTAAAATACTGAATATATGAGTT TTTCAGTTTTGGAAAAAAAAAAAAAAAAAAAAAAAAAA

FIG. 47C


```
Motif -1
               ...LVVSLIRCFFYVTEQQKSYSKT...
Ep p123
Sp Tez1
               ...FIIPILQSFFYITESSDLRNRT...
Sc Est2
               ...LIPKIIQTFFYCTEISSTVTIV...
               ...YVVELLRSFFYVTETTFQKNRL...
Hs TCP1
                          FFY TE
consensus
                                                  K
Motif 0
                         p hhh K
                                      hR h
                                                  R
Ep p123
               ...KSLGFAPGKLRLIPKKT--TFRPIMTFNKKIV...
Sp Tez1
              ...QKTTLPPAVIRLLPKKN--TFRLITNLRKRFL...
Sc Est2
               ...TLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD...
Hs TCP1
               ... ARPALLTSRLRFIPKPD--GLRPIVNMDYVVG...
consensus
                            R PK
                              AF
Motif A
                      h hDh GY
                                 h
Ep p123
               ... PKLFFATMDIEKCYDSVNREKLSTFLK...
Sp Tez1
               ... RKKYFVRIDIKSCYDRIKQDLMFRIVK...
Sc Est2
              ...PELYFMKFDVKSCYDSIPRMECMRILK...
Hs TCP1
               ...PELYFVKVDVTGAYDTIPQDRLTEVIA...//...
consensus
                      F
                          D
                               YD
Motif B
                            hPQG
                                   pS hh
               ...NGKFYKQTKGIPQGLCVSSILSSFYYA...
Ep p123
Sp Tez1
               ...GNSQYLQKVGIPQGSILSSFLCHFYME...
Sc Est2
               ... EDKCYIREDGLFQGSSLSAPIVDLVYD...
Hs TCP1
               ... RATSYVQCQGIPQGSILSTLLCSLCYG...
consensus
                           G QG
                          Y
                       h F DD hhh
Motif C
Ep p123
Sp Tez1
               ... PNVNLLMRLTDDYLLITTQENN...
              ... KKGSVLLRVVDDFLFITVNKKD...
Sc Est2
              ... SQDTLILKLADDFLIISTDQQQ...
Hs TCP1
               ... RRDGLLLRLVDDFLLVTPHLTH...
consensus
                            DD L
Motif D
                        Gh h cK
              ...NVSRENGFKFNMKKL...
Ep p123
Sp Tez1
              ...LNLSLRGFEKHNFST...
Sc Est2
              ...KKLAMGGFQKYNAKA...
Hs TCP1
              ...LRTLVRGVPEYGCVV...
consensus
```

FIG. 48

	_		~~~~~~~~	a a a a a a a a a a a a a a a a a a a	***********	2222222
	1		GTCCTGCTGC	GCACGTGGGA		CCGGCCACCC
5		CCGCGATGCC	GCGCGCTCCC	CGCTGCCGAG	CCGTGCGCTC	CCTGCTGCGC
10		AGCCACTACC	GCGAGGTGCT	GCCGCTGGCC	ACGTTCGTGC	GGCGCCTGGG
15		GCCCCAGGGC	TGGCGGCTGG	TGCAGCGCGG	GGACCCGGCG	GCTTTCCGCG
20		CGNTGGTGGC	CCANTGCNTG	GTGTGCGTGC	CCTGGGANGN	ANGGCNGCCC
25		CCCGCCGCCC	CCTCCTTCCG	CCAGGTGTCC	TGCCTGAANG	ANCTGGTGGC
30		CCGAGTGCTG	CANANGCTGT	GCGANCGCGG	CGCGAANAAC	GTGCTGGCCT
35		TCGGCTTCGC	GCTGCTGGAC	GGGGCCCGCG	GGGGCCCCC	CGAGGCCTTC
40		ACCACCAGCG	TGCGCAGCTA	CCTGCCCAAC	ACGGTGACCG	
45		GGGGAGCGGG	GCGTGGGGGC	TGCTGCTGCG	CCGCGTGGGC	GACGACGTGC
50		TGGTTCACCT	GCTGGCACGC	TGCGCGNTNT	TTGTGCTGGT	GGNTCCCAGC
55		TGCGCCTACC	ANGTGTGCGG	GCCGCCGCTG	TACCAGCTCG	GCGCTGCNAC
60		TCAGGCCCGG	CCCCCGCCAC	ACGCTANTGG	ACCCGAANGC	GTCTGGGATC
65		CAACGGGCCT	GGAACCATAG	CGTCAGGGAG	GCCGGGGTCC	CCCTGGGCTG
70		CCAGCCCCGG	GTGCGAGGAG	GCGCGGGGC	AGTGCCAGCC	GAAGTCTGCC
75		GTTGCCCAAG	AGGCCCAGGC	GTGGCGCTGC	CCCTGAGCCG	GAGCGGACGC
80		CCGTTGGGCA	GGGGTCCTGG	GCCCACCCGG	GCAGGACGCC	TGGACCGAGT
85		GACCGTGGTT	TCTGTGTGGT	GTCACCTGCC	AGACCCGCCG	AAGAAGCCAC
90		CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG	CCACTCCCAC	CCATCCGTGG
95		GCCGCCAGCA	CCACGCGGGC	CCCCCATCCA	CATCGCGGCC	ACCACGTCCT
100		GGGACACGCC	TTGTCCCCCG	GTGTACGCCG	AGACCAAGCA	CTTCCTCTAC
105	1	TCCTCAGGCG	ACAAGNACAC	TGCGNCCCTC	CTTCCTACTC	AATATATCTG
110	1	AGGCCCAGCC	TGACTGGCGT	TCGGGAGGTT	CGTGGAGACA	NTCTTTCTGG
115	1	TTCCAGGCCT	TGGATGCCAG	GATTCCCCGC	AGGTTGCCCC	GCCTGCCCCA
120	1	GCGNTACTGG	CAAATGCGGC	CCCTGTTTCT	GGAGCTGCTT	GGGAACCACG
125	1	CGCAGTGCCC	CTACGGGGTG	TTCCTCAAGA	CGCACTGCCC	GCTGCGAGCT
130	1	GCGGTCACCC	CAGCAGCCGG	TGTCTGTGCC	CGGGAGAAGC	CCCAGGGCTC
135	1	TGTGGCGGCC	CCCGAGGAGG	AGGAACACAG	ACCCCCGTCG	CCTGGTGCAG
140	1	CTGCTCCGCC	AGCACAGCAG	CCCCTGGCAG	GTGTACGGCT	TCGTGCGGGC
145	1	CTGCCTGCGC	CGGCTGGTGC	CCCCAGGCCT	CTGGGGCTCC	AGGCACAACG
150	1	AACGCCGCTT	CCTCAGGAAC	ACCAAGAAGT	TCATCTCCCT	GGGGAAGCAT
155	1	GCCAAGCTCT	CGCTGCAGGA	GCTGACGTGG	AAGATGAGCG	TGCGGGACTG
160	1	CGCTTGGCTG	CGCAGGAGCC	CAGGGGTTGG	CTGTGTTCCG	GCCGCAGAGC
165	1	ACCGTCTGCG	TGAGGAGATC	CTGGCCAAGT	TCCTGCACTG	GCTGATGAGT
170	1	GTGTACGTCG	TCGAGCTGCT	CAGGTCTTTC	TTTTATGTCA	CGGAGACCAC
175	1	GTTTCAAAAG	AACAGGCTCT	TTTTCTACCG	GAAGAGTGTC	TGGAGCAAGT
180	1	TGCAAAGCAT	TGGAATCAGA	CAGCACTTGA	AGAGGGTGCA	GCTGCGGGAG
185	1	CTGTCGGAAG	CAGAGGTCAG	GCAGCATCGG	GAAGCCAGGC	CCGCCCTGCT
190	1	GACGTCCAGA	CTCCGCTTCA	TCCCCAAGCC	TGACGGGCTG	CGGCCGATTG
195	1	TGAACATGGA	CTACGTCGTG	GGAGCCAGAA	CGTTCCGCAG	AGAAAAGAGG
200	1	GCCGAGCGTC	TCACCTCGAG	GGTGAAGGCA	CTGTTCAGCG	TGCTCAACTA
205	1	CGAGCGGGCG	CGGCGCCCCG	GCCTCCTGGG	CGCCTCTGTG	CTGGGCCTGG
210	1	ACGATATCCA	CAGGGCCTGG	CGCACCTTCG	TGCTGCGTGT	GCGGGCCCAG
215		GACCCGCCGC	CTGAGCTGTA	CTTTGTCAAG	GTGGATGTGA	CGGGCGCGTA
220		CGACACCATC	CCCCAGGACA	GGCTCACGGA	GGTCATCGCC	AGCATCATCA
225		AACCCCAGAA	CACGTACTGC	GTGCGTCGGT	ATGCCGTGGT	CCAGAAGGCC
230		GCCCATGGGC	ACGTCCGCAA	GGCCTTCAAG	AGCCACGTCT	CTACCTTGAC
235		AGACCTCCAG	CCGTACATGC	GACAGTTCGT	GGCTCACCTG	CAGGANAACA
240		GCCCGCTGAG	GGATGCCGTC	GTCATCGAGC	AGAGCTCCTC	CCTGAATGAG
245		GCCAGCAGTG		CGTCTTCCTA	CGCTTCATGT	GCCACCACGC

FIG. 50A

CGTGCGCATC AGGGGCAAGT CCTACGTCCA GTGCCAGGGG ATCCCGCAGG 2501 GCTCCATCCT CTCCACGCTG CTCTGCAGCC TGTGCTACGG CGACATGGAG 2551 AACAAGCTGT TTGCGGGGAT TCGGCGGGAC GGGCTGCTCC TGCGTTTGGT 2601 GGATGATTTC TTGTTGGTGA CACCTCACCT CACCCACGCG AAAACCTTCC TCAGGACCCT GGTCCGAGGT GTCCCTGAGT ATGGCTGCGT GGTGAACTTG 2701 CGGAAGACAG TGGTGAACTT CCCTGTAGAA GACGAGGCCC TGGGTGGCAC 2751 2801 GGCTTTTGTT CAGATGCCGG CCCACGGCCT ATTCCCCTGG TGCGGCCTGC 2851 TGCTGGATAC CCGGACCCTG GAGGTGCAGA GCGACTACTC CAGCTATGCC CGGACCTCCA TCAGAGCCAG TCTCACCTTC AACCGCGGCT TCAAGGCTGG 2901 GAGGAACATG CGTCGCAAAC TCTTTGGGGT CTTGCGGCTG AAGTGTCACA 2951 GCCTGTTTCT GGATTTGCAG GTGAACAGCC TCCAGACGGT GTGCACCAAC 3001 3051 ATCTACAAGA TCCTCCTGCT GCAGGCGTAC AGGTTTCACG CATGTGTGCT 3101 GCAGCTCCCA TTTCATCAGC AAGTTTGGAA GAACCCCACA TTTTTCCTGC GCGTCATCTC TGACACGGCC TCCCTCTGCT ACTCCATCCT GAAAGCCAAG 3151 3201 AACGCAGGGA TGTCGCTGGG GGCCAAGGGC GCCGCCGGCC CTCTGCCCTC CGAGGCCGTG CAGTGGCTGT GCCACCAAGC ATTCCTGCTC AAGCTGACTC 3251 GACACCGTGT CACCTACGTG CCACTCCTGG GGTCACTCAG GACAGCCCAG 3301 ACGCAGCTGA GTCGGAAGCT CCCGGGGACG ACGCTGACTG CCCTGGAGGC 3351 CGCAGCCAAC CCGGCACTGC CCTCAGACTT CAAGACCATC CTGGACTGAT 3401 GGCCACCGC CCACAGCCAG GCCGAGAGCA GACACCAGCA GCCCTGTCAC 3451 3501 GCCGGGCTCT ACGTCCCAGG GAGGGAGGGG CGGCCCACAC CCAGGCCCGC ACCGCTGGGA GTCTGAGGCC TGAGTGAGTG TTTGGCCGAG GCCTGCATGT 3551 3601 CCGGCTGAAG GCTGAGTGTC CGGCTGAGGC CTGAGCGAGT GTCCAGCCAA GGGCTGAGTG TCCAGCACAC CTGCCGTCTT CACTTCCCCA CAGGCTGGCG 3651 3701 CTCGGCTCCA CCCCAGGGCC AGCTTTTCCT CACCAGGAGC CCGGCTTCCA CTCCCCACAT AGGAATAGTC CATCCCCAGA TTCGCCATTG TTCACCCCTC 3751 GCCCTGCCCT CCTTTGCCTT CCACCCCCAC CATCCAGGTG GAGACCCTGA 3801 3851 GAAGGACCCT GGGAGCTCTG GGAATTTGGA GTGACCAAAG GTGTGCCCTG 3901 TACACAGGCG AGGACCCTGC ACCTGGATGG GGGTCCCTGT GGGTCAAATT 3951 GGGGGGAGGT GCTGTGGGAG TAAAATACTG AATATATGAG TTTTTCAGTT TTGAAAAAA AAAAAAAAA AAAAAAAA 4001

FIG. 50B

		CGTCGCGACGACGACGACGACGTGCGCACCTTCGCCCCGCCACCCCCGCGATGCC	60
a b c		A A L R P A A H V G S P G P G H P R D A Q R C V L L R T W E A L A P A T P A M P S A A S C C A R G K P W P R P P P R C R	
	61	GCGCGCTCCCGCTGCCGAGCCGTGCGCTCCCTGCTGCGCAGCCACTACCGCGAGGTGCT+ CGCGCGAGGGGCGACGGCTCGGCACGACGACGACGCGTCGGTGATGGCGCTCCACGA	120
a b c		A R S P L P S R A L P A A Q P L P R G A R A P R C R A V R S L L R S H Y R E V L A L P A A E P C A P C C A A T T A R C C	
	121	GCCGCTGGCCACGTTCGTGCGGCGCCTGGGGCCCCAGGGCTGGCGGCTGGTGCAGCGCGG + CGGCGACCGGTGCAAGCACGCCGCGACCCCGGGGTCCCGACCGA	180
a b c		A A G H V R A A P G A P G L A A G A A R P L A T F V R R L G P Q G W R L V Q R G R W P R S C G A W G P R A G G W C S A G	- - -
	181	GGACCCGGCGGCTTTCCGCGCGNTGGTGGCCCANTGCNTGGTGTGCGTGCCCTGGGANGN+ CCTGGGCCGCCGAAAGGCGCCCCCCGGTNACCACCACACACACACACGCACGGACCCTNCN	240
a b c		G P G G F P R ? G G P ? ? G V R A L G ? D P A A F R A ? V A ? C ? V C V P W ? ? T R R L S A R W W P ? A W C A C P G ? ?	- -
	241	ANGGCNGCCCCCGCCGCCCCTCCTTCCGCCAGGTGTCCTGCCTGAANGANCTGGTGGC+ TNCCGNCGGGGGGGGGGGGGGGGAGGAAGGCGGTCCACAGGACGGAC	300
a b c		? A A P R R P L L P P G V L P E ? ? G G ? ? P P A A P S F R Q V S C L ? ? L V A G ? P P P P P S A R C P A * ? ? W W P	- - -
	301	CCGAGTGCTGCANANGCTGTGCGANCGCGGCGCGAANAACGTGCTGGCCTTCGGCTTCGC+ GGCTCACGACGTNTNCGACACGCTNGCGCCGCGCTTNTTGCACGACCGGAAGCCGAAGCG	360
a b c		P S A A ? A V R ? R R E ? R A G L R L R R V L ? ? L C ? R G A ? N V L A F G F A E C C ? ? C A ? A A R ? T C W P S A S R	- - -
	361	GCTGCTGGACGGGGCCCGCGGGGGCCCCCCGAGGCCTTCACCACCAGCGTGCGCAGCTA+ CGACGACCTGCCCCGGGGGGCCCCCCGGGGGGGCTCCGGAAGTGGTCGCACGCGTCGAT	420
a b c		A A G R G P R G P P R G L H H Q R A Q L L L D G A R G G P P E A F T T S V R S Y C W T G P A G A P P R P S P P A C A A T	<u>-</u> -
	421	CCTGCCCAACACGGTGACCGACGCACTGCGGGGGGGGGG	480
a b c		P A Q H G D R R T A G E R G V G A A A A L P N T V T D A L R G S G A W G L L L R C P T R * P T H C G G A G R G G C C C A	- - -

a b c		P R G R R R A G S P A G T L R ? ? C A G R V G D D V L V H L L A R C A ? F V L V A W A T T C W F T C W H A A R ? L C W W	- - -
	541	GGNTCCCAGCTGCGCCTACCANGTGTGCGGGCCGCCGCTGTACCAGCTCGGCGCTGCNAC+ CCNAGGGTCGACGCGGATGGTNCACACGCCCGGCGCGACATGGTCGAGCCGCGACGNTG	600
a b c		G S Q L R L P ? V R A A A V P A R R C ? ? P S C A Y ? V C G P P L Y Q L G A A T ? P A A P T ? C A G R R C T S S A L ? L	- - -
		${\tt TCAGGCCCGGCCCCGCCACACGCTANTGGACCCGAANGCGTCTGGGATCCAACGGGCCT}$	
	601	AGTCCGGGCCGGGGGGGGTGTGCGATNACCTGGGCTTNCGCAGACCCTAGGTTGCCCGGA	660
a b c		S G P A P A T R ? W T R ? R L G S N G P Q A R P P P H A ? G P E ? V W D P T G L R P G P R H T L ? D P ? A S G I Q R A W	
	c c 1	$\tt GGAACCATAGCGTCAGGGAGGCCGGGGTCCCCCTGGGCTGCCAGCCCCGGGTGCGAGGAGGGGGGGG$	720
	9 9 T	CCTTGGTATCGCAGTCCCTCCGGCCCCAGGGGGACCCGACGGTCGGGCCCACGCTCCTC	720
a b c		G T I A S G R P G S P W A A S P G C E E E P * R Q G G R G P P G L P A P G A R R N H S V R E A G V P L G C Q P R V R G G	
	701	$\tt GCGCGGGGCAGTGCCGAAGTCTGCCGTTGCCCAAGAGGCCCAGGCGTGGCGCTGC$	700
	/21	CGCGCCCCGTCACGGTCGCCTTCAGACGGCAACGGGTTCTCCGGGTCCGCACCGCGACG	780
a b c		ARGQCQPKSAVAQEAQAWRC RGGSASRSLPLPKRPRGAA AGAVPAEVCRCPRGPGVALP	
	781	CCCTGAGCCGGAGCGCCCGTTGGGCAGGGGTCCTGGGCCCACCCGGGCAGGACGCC	840
a b c		P * A G A D A R W A G V L G P P G Q D A P E P E R T P V G Q G S W A H P G R T P L S R S G R P L G R G P G P T R A G R L	
	841	TGGACCGAGTGACCGTGGTTTCTGTGTGTGTCACCTGCCAGACCCGCCGAAGAAGCCAC+ ACCTGGCTCACTGGCACCAAAGACACACCACAGTGGACGGTCTGGGCGCGTTCTTCGGTG	900
a b c		W T E * P W F L C G V T C Q T R R R S H G P S D R G F C V V S P A R P A E E A T D R V T V V S V W C H L P D P P K K P P	- - -
	901	CTCTTTGGAGGTGCGCTCTCTGGCACGCGCCACTCCCACCCA	960
a b c		L F G G C A L W H A P L P P I R G P P A S L E G A L S G T R H S H P S V G R Q H L W R V R S L A R A T P T H P W A A S T	
	961	CCACGCGGGCCCCCATCCACATCGCGGCCACCACGTCCTGGGACACGCCTTGTCCCCCG	1020

a b c		PRGPPIHIAATTSWDTPCPP- HAGPPSTSRPPRPGTRLVPR- TRAPHPHRGHHVLGHALSPG-
	1021	GTGTACGCCGAGACCAAGCACTTCCTCTACTCCTCAGGCGACAAGNACACTGCGNCCCTC
a b c		V Y A E T K H F L Y S S G D K ? T A ? L - C T P R P S T S S T P Q A T ? T L R P S - V R R D Q A L P L L R R Q ? H C ? P P -
	1081	CTTCCTACTCAATATATCTGAGGCCCAGCCTGACTGGCGTTCGGGAGGTTCGTGGAGACA+ 1140 GAAGGATGAGTTATATAGACTCCGGGTCGGACTGACCGCAAGCCCTCCAAGCACCTCTGT
a b c		L P T Q Y I * G P A * L A F G R F V E T - F L L N I S E A Q P D W R S G G S W R ? - S Y S I Y L R P S L T G V R E V R G D ? -
	1141	NTCTTTCTGGTTCCAGGCCTTGGATGCCAGGATTCCCCGCAGGTTGCCCCGCCTGCCCCA+ 1200 NAGAAAGACCAAGGTCCGGAACCTACGGTCCTAAGGGGGCGTCCAACGGGGCGGACGGGT
a b c		? F L V P G L G C Q D S P Q V A P P A P - S F W F Q A L D A R I P R R L P R L P Q - L S G S R P W M P G F P A G C P A C P S -
	1201	GCGNTACTGGCAAATGCGGCCCCTGTTTCTGGAGCTGCTTGGGAACCACGCGCAGTGCCC+ 1260 CGCNATGACCGTTTACGCCGGGGACAAAGACCTCGACGAACCCTTGGTGCGCGTCACGGG
a b c		A ? L A N A A P V S G A A W E P R A V P - R Y W Q M R P L F L E L L G N H A Q C P - ? T G K C G P C F W S C L G T T R S A P -
	1261	CTACGGGGTGTTCCTCAAGACGCACTGCCCGCTGCGAGCTGCGGTCACCCCAGCAGCCGG+ 1320 GATGCCCCACAAGGAGTTCTGCGTGACGGCGACGCTCGACGCCAGTGGGGTCGTCGCC
a b c		L R G V P Q D A L P A A S C G H P S S R - Y G V F L K T H C P L R A A V T P A A G - T G C S S R R T A R C E L R S P Q Q P V -
	1321	TGTCTGTGCCCGGGAGAAGCCCCAGGGCTCTGTGGCGGCCCCCGAGGAGGAGGAACACAG++ 1380 ACAGACACGGGCCCTCTTCGGGGTCCCGAGACACCGCCGGGGGCTCCTCCTTCTTGTCTC
a b c		C L C P G E A P G L C G G P R G G G T Q - V C A R E K P Q G S V A A P E E E E H R - S V P G R S P R A L W R P P R R R N T D -
	1381	ACCCCGTCGCCTGGTGCAGCTGCTCCGCCAGCACAGCAGCCCCTGGCAGGTGTACGGCT
a b c		T P V A W C S C S A S T A A P G R C T A - P P S P G A A A P P A Q Q P L A G V R L - P R R L V Q L L R Q H S S P W Q V Y G F -
	1441	TCGTGCGGGCCTGCCCGGCTGGTGCCCCCAGGCCTCTGGGGCTCCAGGCACAACG

a b c		S C G P A C A G W C P Q A S G A P G T T - R A G L P A P A G A P R P L G L Q A Q R - V R A C L R R L V P P G L W G S R H N E -
	1501	AACGCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGGAAGCATGCCAAGCTCT
		TTGCGGCGAAGGAGTCCTTGTGGTTCTTCAAGTAGAGGGACCCCTTCGTACGGTTCGAGA
a b c		N A A S S G T P R S S S P W G S M P S S - T P L P Q E H Q E V H L P G E A C Q A L - R R F L R N T K K F I S L G K H A K L S -
		CGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCGGGACTGCGCTTGGCTGCGCAGGAGCC
	1561	GCGACGTCCTCGACTGCACCTTCTACTCGCACGCCCTGACGCGAACCGACGCGTCCTCGG
a b c		R C R S * R G R * A C G T A L G C A G A - A A G A D V E D E R A G L R L A A Q E P - L Q E L T W K M S V R D C A W L R R S P -
		CAGGGGTTGGCTGTTCCGGCCGCAGAGCACCGTCTGCGTGAGGAGATCCTGGCCAAGT
	1621	GTCCCCAACCGACACAAGGCCGGCGTCTCGTGGCAGACGCACTCCTCTAGGACCGGTTCA
a b c		Q G L A V F R P Q S T V C V R R S W P S - R G W L C S G R R A P S A * G D P G Q V - G V G C V P A A E H R L R E E I L A K F -
		TCCTGCACTGGCTGATGAGTGTGTACGTCGTCGAGCTGCTCAGGTCTTTCTT
	1681	AGGACGTGACCGACTACTCACACATGCAGCAGCTCGACGAGTCCAGAAAGAA
a b c		S C T G * * V C T S S S C S G L S F M S - P A L A D E C V R R R A A Q V F L L C H - L H W L M S V Y V V E L L R S F F Y V T -
		CGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTGGAGCAAGT
	1741	GCCTCTGGTGCAAAGTTTTCTTGTCCGAGAAAAAGATGGCCTTCTCACAGACCTCGTTCA
a b c		R R P R F K R T G S F S T G R V S G A S - G D H V S K E Q A L F L P E E C L E Q V - E T T F Q K N R L F F Y R K S V W S K L -
		TGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCTGTCGGAAG
	1801	ACGTTTCGTAACCTTAGTCTGTCGTGAACTTCTCCCACGTCGACGCCCTCGACAGCCTTC
a b c		C K A L E S D S T * R G C S C G S C R K - A K H W N Q T A L E E G A A A G A V G S - Q S I G I R Q H L K R V Q L R E L S E A -
	1861	CAGAGGTCAGGCAGCATCGGGAAGCCAGGCCCGCCCTGCTGACGTCCAGACTCCGCTTCA
		GTCTCCAGTCCGTAGCCCTTCGGTCCGGGCGGACGACTGCAGGTCTGAGGCGAAGT
a b c		Q R S G S I G K P G P P C * R P D S A S - R G Q A A S G S Q A R P A D V Q T P L H - E V R Q H R E A R P A L L T S R L R F I -
	1921	TCCCCAAGCCTGACGGGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAA+ 1980 AGGGGTTCGGACTGCCCGACGCCGGCTAACACTTGTACCTGATGCAGCACCCTCGGTCTT

FIG. 51D

a b c		S P S L T G C G R L * T W T T S W E P E - P Q A * R A A A D C E H G L R R G S Q N - P K P D G L R P I V N M D Y V V G A R T -
	1981	CGTTCCGCAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCG+ 2040 GCAAGGCGTCTCTTTTCTCCCGGCTCGCAGAGTGGAGCTCCCACTTCCGTGACAAGTCGC
a b c		R S A E K R G P S V S P R G * R H C S A - V P Q R K E G R A S H L E G E G T V Q R - F R R E K R A E R L T S R V K A L F S V -
	2041	TGCTCAACTACGAGCGGGGCGCGCGCCCCGGGCCTCCTGGGCGCCTCTGTGCTGGGCCTCGGCCTCGGGCCTCTGTGCTGGGCCTGGGCCTGGGCCTGGGCCTGGGCCTCGGGCCCGGGGCCGGGGCCGGAGACACGACCCGGACCCGAGACCCGGACCCGGAGACACACGACCCGGACCCGACCCGACCCGGACCCGACCCGACCCGACCCGACCCGACCC
a b c		C S T T S G R G A P A S W A P L C W A W - A Q L R A G A A P R P P G R L C A G P G - L N Y E R A R P G L L G A S V L G L D -
	2101	ACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCGGGCCCAGGACCCGCCGC+ 2160 TGCTATAGGTGTCCCGGACCGCGTGGAAGCACGACGACGCCCGGGTCCTGGGCGGCG
a b c		T I S T G P G A P S C C V C G P R T R R - R Y P Q G L A H L R A A C A G P G P A A - D I H R A W R T F V L R V R A Q D P P P -
	2161	CTGAGCTGTACTTTGTCAAGGTGGATGTGACGGCGCGCGTACGACACCATCCCCCAGGACA+ 2220 GACTCGACATGAAACAGTTCCACCTACACTGCCCGCGCATGCTGTGGTAGGGGGTCCTGT
a b c		L S C T L S R W M * R A R T T P S P R T - * A V L C Q G G C D G R V R H H P P G Q - E L Y F V K V D V T G A Y D T I P Q D R -
	2221	GGCTCACGGAGGTCATCGCCAGCATCATCAAACCCCAGAACACGTACTGCGTGCG
a b c		G S R R S S P A S S N P R T R T A C V G - A H G G H R Q H H Q T P E H V L R A S V - L T E V I A S I I K P Q N T Y C V R R Y -
	2281	ATGCCGTGGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAGCCACGTCT+ 2340 TACGGCACCAGGTCTTCCGGCGGGTACCCGTGCAGGCGTTCCGGAAGTTCTCGGTGCAGA
a b c		M P W S R R P P M G T S A R P S R A T S - C R G P E G R P W A R P Q G L Q E P R L - A V V Q K A A H G H V R K A F K S H V S -
	2341	CTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGANAACA+ 2400 GATGGAACTGTCTGGAGGTCGGCATGTACGCTGTCAAGCACCGAGTGGACGTCCTNTTGT
a b c		L P * Q T S S R T C D S S W L T C R ? T - Y L D R P P A V H A T V R G S P A G ? Q - T L T D L Q P Y M R Q F V A H L Q ? N S -
	2401	GCCCGCTGAGGGATGCCGTCGTCATCGAGCAGAGCTCCTCCCTGAATGAGGCCAGCAGTG+

FIG. 51E

a b c		A R * G M P S S S S R A P P * M R P A V - P A E G C R R H R A E L L P E * G Q Q W - P L R D A V V I E Q S S S L N E A S S G -
	2461	GCCTCTTCGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGT
a b c		A S S T S S Y A S C A T T P C A S G A S - P L R R L P T L H V P P R R A H Q G Q V - L F D V F L R F M C H H A V R I R G K S -
	2521	CCTACGTCCAGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTGCAGCC
a b c		P T S S A R G S R R A P S S P R C S A A - L R P V P G D P A G L H P L H A A L Q P - Y V Q C Q G I P Q G S I L S T L L C S L -
	2581	TGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGACGGGCTGCTCC
a b c		C A T A T W R T S C L R G F G G T G C S - V L R R H G E Q A V C G D S A G R A A P - C Y G D M E N K L F A G I R R D G L L L -
	2641	TGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACCTCACCCACGCGAAAACCTTCC
a b c		C V W W M I S C W * H L T S P T R K P S - A F G G * F L V G D T S P H P R E N L P - R L V D D F L L V T P H L T H A K T F L -
	2701	TCAGGACCCTGGTCCGAGGTGTCCCTGAGTATGGCTGCGTGAACTTGCGGAAGACAG
a b c		S G P W S E V S L S M A A W * T C G R Q - Q D P G P R C P * V W L R G E L A E D S - R T L V R G V P E Y G C V V N L R K T V -
	2761	TGGTGAACTTCCCTGTAGAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGATGCCGG+ 2820 ACCACTTGAAGGGACATCTTCTGCTCCGGGACCCACCGTGCCGAAAACAAGTCTACGGCC
a b c		W * T S L * K T R P W V A R L L F R C R - G E L P C R R G P G W H G F C S D A G - V N F P V E D E A L G G T A F V Q M P A -
	2821	CCCACGGCCTATTCCCCTGGTGCGGCCTGCTGCTGGATACCCGGACCCTGGAGGTGCAGA+ 2880 GGGTGCCGGATAAGGGGACCACGCCGGACGACGACCTATGGGCCTGGACCTCCACGTCT
a b c		P T A Y S P G A A C C W I P G P W R C R - P R P I P L V R P A A G Y P D P G G A E - H G L F P W C G L L L D T R T L E V Q S -
	2881	GCGACTACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACCGCGGCT

		na: Corro
a b c		ATTPAMPGPPSEPVSPSTAA-RLLQLCPDLHQSQSHLQPRL- DYSSYARTSIRASLTFNRGF-
	2941	TCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGTGTCACA
a b c		S R L G G T C V A N S L G S C G * S V T - Q G W E E H A S Q T L W G L A A E V S Q - K A G R N M R R K L F G V L R L K C H S -
	3001	GCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCTACAAGA
a b c		A C F W I C R * T A S R R C A P T S T R - P V S G F A G E Q P P D G V H Q H L Q D - L F L D L Q V N S L Q T V C T N I Y K I -
	3061	TCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTCATCAGC
a b c		S S C C R R T G F T H V C C S S H F I S - P P A A G V Q V S R M C A A A P I S S A - L L L Q A Y R F H A C V L Q L P F H Q Q -
	3121	AAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGCCTCCCTC
a b c		K F G R T P H F S C A S S L T R P P S A - S L E E P H I F P A R H L * H G L P L L - V W K N P T F F L R V I S D T A S L C Y -
	3181	ACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGCCAAGGGCGCCGGCCCCCCCC
a b c		T P S * K P R T Q G C R W G P R A P P A - L H P E S Q E R R D V A G G Q G R R R P - S I L K A K N A G M S L G A K G A A G P -
		CTCTGCCCTCCGAGGCCGTGCAGTGGCTGCCACCAAGCATTCCTGCTCAAGCTGACTC+
a b c		L C P P R P C S G C A T K H S C S S * L - S A L R G R A V A V P P S I P A Q A D S - L P S E A V Q W L C H Q A F L L K L T R -
	3301	GACACCGTGTCACCTACGTGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGCAGCTGA+
a b c		D T V S P T C H S W G H S G Q P R R S * - T P C H L R A T P G V T Q D S P D A A E - H R V T Y V P L L G S L R T A Q T Q L S -
	3361	GTCGGAAGCTCCCGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGGCACTGC

a b c		V G S S R G R R * L P W R P Q P T R H C - S E A P G D D A D C P G G R S Q P G T A - R K L P G T T L T A L E A A A N P A L P -
	3421	CCTCAGACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCGAGAGCA
a b c		PQTSRPSWTDGHPPTARPRA - LRLQDHPGLMATRPQPGREQ - SDFKTILD*WPPAHSQAESR-
	3481	GACACCAGCAGCCCTGTCACGCCGGGCTCTACGTCCCAGGGAGGG
a b c		D T S S P V T P G S T S Q G G R G G P H - T P A A L S R R A L R P R E G G A A H T - H Q Q P C H A G L Y V P G R E G R P T P -
	3541	CCAGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGAGTG
a b c		P G P H R W E S E A * V S V W P R P A C - Q A R T A G S L R P E * V F G R G L H V - R P A P L G V * G L S E C L A E A C M S -
	3601	CCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTG
a b c		P A E G * V S G * G L S E C P A K G * V - R L K A E C P A E A * A S V Q P R A E C - G * R L S V R L R P E R V S S Q G L S V -
	3661	TCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCCACCCCAGGGCC
a b c		S
	3721	AGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGA
a b c		S F S S P G A R L P L P T * E * S I P R - A F P H Q E P G F H S P H R N S P S P D - L F L T R S P A S T P H I G I V H P Q I -
	3781	TTCGCCATTGTTCACCCCTCGCCCTGCCCTCTTTGCCTTCCACCCCCACCATCCAGGTG
a b c		FAIVHPSPCPPLPSTPTIQV- SPLFTPRPALLCLPPPPSRW- RHCSPLALPSFAFHPHHPGG-
	3841	GAGACCCTGAGAAGGACCCTGGGAGTTTGGAGTGACCAAAGGTGTGCCCTG


```
DPEKDPGSSGNLE*PKVCPV-
C
    TACACAGGCGAGGACCCTGCACCTGGATGGGGTCCCTGTGGGTCAAATTGGGGGGAGGT
 3901 ------ 3960
    ATGTGTCCGCTCCTGGGACGTGGACCTACCCCCAGGGACACCCAGTTTAACCCCCCTCCA
    b
С
    A V G V K Y * I Y E F F S F E K K K K K - L W E * N T E Y M S F S V L K K K K K K - C G S K I L N I * V F Q F * K K K K K K -
а
b
C
    AAAAAAAA
 4021 ----- 4029
    TTTTTTTT
    K K K
    K K
K K
b
C
```

FIG. 511

GCAGCGCTGCGTCCTGCCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCGCG										1 met ATG
pro arg ala CCG CGC GCT	pro arg	cys arg TGC CGA	ala GCC	10 val GTG	arg CGC	ser TCC	leu CTG	leu CTG	arg CGC	ser AGC
his tyr arg										
gly pro gln	gly trp GGC TGG	arg leu CGG CTG	val GTG	40 gln CAG	arg CGC	gly GGG	asp GAC	pro CCG	ala GCG	ala GCT
phe arg ala	50 leu val CTG GTG	ala gln GCC CAG	cys TGC	leu CTG	val GTG	cys TGC	val GTG	pro CCC	60 trp TGG	asp GAC
ala arg pro GCA CGG CCG	pro pro	ala ala GCC GCC	pro CCC	70 ser TCC	phe TTC	arg CGC	gln CAG	val GTG	ser TCC	cys TGC
leu lys glu CTG AAG GAG	80 leu val CTG GTG	ala arg GCC CGA	val GTG	leu CTG	gln CAG	arg AGG	leu CTG	cys TGC	90 glu GAG	arg CGC
gly ala lys	asn val AAC GTG	leu ala CTG GCC	phe TTC	100 gly GGC	phe TTC	ala GCG	leu CTG	leu CTG	asp GAC	gly GGG
ala arg gly GCC CGC GGG	110 gly pro GGC CCC	pro glu CCC GAG	ala GCC	phe TTC	thr ACC	thr ACC	ser AGC	val GTG	120 arg CGC	ser AGC
tyr leu pro	asn thr AAC ACG	val thr GTG ACC	asp GAC	130 ala GCA	leu CTG	arg CGG	gly GGG	ser AGC	gly GGG	ala GCG
trp gly leu TGG GGG CTG	140 leu leu CTG CTG	arg arg CGC CGC	val GTG	gly GGC	asp GAC	asp GAC	val GTG	leu CTG	150 val GTT	his CAC
leu leu ala CTG CTG GCA	arg cys CGC TGC	ala leu GCG CTC	phe TTT	160 val GTG	leu CTG	val GTG	ala GCT	pro CCC	ser AGC	cys TGC
ala tyr gln GCC TAC CAG	170 val cys GTG TGC	gly pro GGG CCG	pro CCG	leu CTG	tyr TAC	gln CAG	leu CTC	gly GGC	180 ala GCT	ala GCC
thr gln ala ACT CAG GCC	arg pro	pro pro	his CAC	190 ala GCT	ser AGT	gly GGA	pro CCC	arg CGA	arg AGG	arg CGT

FIG. 53A

2	200							:	210	
leu gly cys CTG GGA TGC	glu arg	ala trp GCC TGG	asn AAC	his CAT	ser AGC	val GTC	arg AGG	glu GAG	ala GCC	gly GGG
val pro leu GTC CCC CTG	gly leu GGC CTG	pro ala	pro	220 gly GGT	ala GCG	arg AGG	arg AGG	arg CGC	gly GGG	gly GGC
ser ala ser AGT GCC AGC	230 arg ser CGA AGT	leu pro	leu TTG	pro CCC	lys AAG	arg AGG	pro CCC	arg AGG	240 arg CGT	gly GGC
ala ala pro GCT GCC CCT	glu pro GAG CCG	glu arg	thr ACG	250 pro CCC	val GTT	gly GGG	gln CAG	gly GGG	ser TCC	trp TGG
ala his pro GCC CAC CCG										
val val ser GTG GTG TCA	CCT GCC								TTG	
gly ala leu GGT GCG CTC	290 ser gly TCT GGC	thr arg	his CAC	ser TCC	his CAC	pro CCA	ser TCC	val GTG	300 gly GGC	arg CGC
gln his his CAG CAC CAC	ala gly GCG GGC	pro pro	ser TCC	310 thr ACA	ser TCG	arg CGG	pro CCA	pro CCA	arg CGT	pro CCC
trp asp thr TGG GAC ACG	320 pro cys CCT TGT	pro pro	val GTG	tyr TAC	ala GCC	glu GAG	thr ACC	lys AAG	330 his CAC	phe TTC
leu tyr ser CTC TAC TCC	ser gly TCA GGC	asp lys	glu GAG	340 gln CAG	leu CTG	arg CGG	pro CCC	ser TCC	phe TTC	leu CTA
leu ser ser CTC AGC TCT	350 leu arg CTG AGG	pro ser	leu CTG	thr ACT	gly GGC	ala GCT	arg CGG	arg AGG	360 leu CTC	val GTG
glu thr ile GAG ACC ATC	phe leu TTT CTG	gly ser	arg AGG	370 pro CCC	trp TGG	met ATG	pro CCA	gly GGG	thr ACT	pro CCC
arg arg leu CGC AGG TTG	380 pro arg CCC CGC	leu pro	gln CAG	arg CGC	tyr TAC	trp TGG	gln CAA	met ATG	390 arg CGG	pro CCC
leu phe leu CTG TTT CTG	glu leu GAG CTG	leu gly CTT GGG	asn AAC	400 his CAC	ala GCG	gln CAG	cys TGC	pro CCC	tyr TAC	gly GGG
val leu leu GTG CTC CTC	410 lys thr AAG ACG	his cys	pro CCG	leu CTG	arg CGA	ala GCT	ala GCG	val GTC	420 thr ACC	pro CCA

FIG. 53B

430 ala ala gly val cys ala arg glu lys pro gln gly ser val ala GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG 440 ala pro glu glu glu asp thr asp pro arg arg leu val gln leu GCC CCC GAG GAG GAG GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG 460 leu arg gln his ser ser pro trp gln val tyr gly phe val arg CTC CGC CAG CAC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG ala cys leu arg arg leu val pro pro gly leu trp gly ser arg GCC TGC CTG CGC CGG CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG 490 his asn glu arg arg phe leu arg asn thr lys lys phe ile ser CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC leu gly lys his ala lys leu ser leu gln glu leu thr trp lys CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG met ser val arg asp cys ala trp leu arg arg ser pro gly val ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT gly cys val pro ala ala glu his arg leu arg glu glu ile leu GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG 550 ala lys phe leu his trp leu met ser val tyr val val glu leu GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG 560 leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn CTC AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC 580 arg leu phe phe tyr arg lys ser val trp ser lys leu gln ser AGG CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ile gly ile arg gln his leu lys arg val gln leu arg glu leu ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG 610 ser glu ala glu val arg gln his arg glu ala arg pro ala leu TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG 620 leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG 640 pro ile val asn met asp tyr val val gly ala arg thr phe arg CCG ATT GTG AAC ATG GAC TÂC GTC GTG ĞGA GCC AGA ACG TTC CGC

FIG. 53C

	650)//0	0					660		
arg AGA	glu GAA	lvs	arq	ala GCC	glu GAG	arg CGT	leu CTC	thr ACC	ser TCG	arg AGG	val GTG	lys	ala	leu CTG	
phe TTC	ser AGC	val GTG	leu CTC	asn AAC	tyr TAC	glu GAG	arg CGG	670 ala GCG	arg CGG	arg CGC	pro CCC	gly GGC	leu CTC	leu CTG	
gly GGC	ala GCC	ser TCT	680 val GTG	leu CTG	gly GGC	leu CTG	asp GAC	asp GAT	ile ATC	his CAC	arg AGG	ala GCC	690 trp TGG	arg CGC	
thr ACC	phe TTC	val GTG	leu CTG	arg CGT	val GTG	arg CGG	ala GCC	700 gln CAG	asp GAC	pro CCG	pro CCG	pro CCT	glu GAG	leu CTG	
tyr TAC	phe TTT	val GTC	710 lys AAG	val GTG	asp GAT	val GTG	thr ACG	gly GGC	ala GCG	tyr TAC	asp GAC	thr ACC	720 ile ATC	pro CCC	
gln CAG	asp GAC	arg AGG	leu CTC	thr ACG	glu GAG	val GTC	ile ATC	730 ala GCC	ser AGC	ile ATC	ile ATC	lys AAA	pro CCC	gln CAG	
asn AAC	thr ACG	tyr TAC	740 cys TGC	val GTG	arg CGT	arg CGG	tyr TAT	ala GCC	val GTG	val GTC	gln CAG	lys AAG	750 ala GCC	ala GCC	
his CAT	gly GGG	his CAC	val GTC	arg CGC	lys AAG	ala GCC	phe TTC	760 lys AAG	ser AGC	his CAC	val GTC	ser TCT	thr ACC	leu TTG	
thr ACA	asp GAC	leu CTC	770 gln CAG	pro CCG	tyr TAC	met ATG	arg CGA	gln CAG	phe TTC	val GTG	ala GCT	his CAC	780 leu CTG	gln CAG	
glu GAG	thr ACC	ser AGC	pro CCG	leu CTG	arg AGG	asp GAT	ala GCC	790 val GTC	val GTC	ile ATC	glu GAG	gln CAG	ser AGC	ser TCC	
ser TCC	leu CTG	asn AAT	800 glu GAG	ala GCC	ser AGC	ser AGT	gly GGC	leu CTC	phe TTC	asp GAC	val GTC	phe TTC	810 leu CTA	arg CGC	
phe TTC	met ATG	cys TGC	his CAC	his CAC	ala GCC	val GTG	arg CGC	820 ile ATC	arg AGG	gly GGC	lys AAG	ser TCC	tyr TAC	val GTC	
gln CAG	cys TGC	gln CAG	830 gly GGG	ile ATC	pro CCG	gln CAG	gly GGC	ser TCC	ile ATC	leu CTC	ser TCC	thr ACG	840 leu CTG	leu CTC	
cys TGC	ser AGC	leu CTG	cys TGC	tyr TAC	gly GGC	asp GAC	met ATG	850 glu GAG	asn AAC	lys AAG	leu CTG	phe TTT	ala GCG	gly GGG	
ile ATT	arg CGG	arg CGG	860 asp GAC	gly GGG	leu CTG	leu CTC	leu CTG	arg CGT	leu TTG	val GTG	asp GAT	asp GAT	870 phe TTC	leu TTG	

FIG. 53D

880 leu val thr pro his leu thr his ala lys thr phe leu arg thr TTG GTG ACA CCT CAC CTC ACC CAC GCG AAA ACC TTC CTC AGG ACC 890 leu val arg gly val pro glu tyr gly cys val val asn leu arg CTG GTC CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG 910 lys thr val val asn phe pro val glu asp glu ala leu gly gly AAG ACA GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC 920 thr ala phe val gln met pro ala his gly leu phe pro trp cys ACG GCT TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC gly leu leu asp thr arg thr leu glu val gln ser asp tyr GGC CTG CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC 950 960 ser ser tyr ala arg thr ser ile arg ala ser leu thr phe asn TCC AGC TAT GCC CGG ACC TCC ATC AGA GCC AGT CTC ACC TTC AAC 970 arg gly phe lys ala gly arg asn met arg arg lys leu phe gly CGC GGC TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG 980 val leu arg leu lys cys his ser leu phe leu asp leu gln val GTC TTG CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG 1000 asn ser leu gln thr val cys thr asn ile tyr lys ile leu leu AAC AGC CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG 1010 leu gln ala tyr arg phe his ala cys val leu gln leu pro phe CTG CAG GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT 1030 his gln gln val trp lys asn pro thr phe phe leu arg val ile CAT CAG CAA GTT TGG AAG AAC CCC ACA TTT TTC CTG CGC GTC ATC 1040 ser asp thr ala ser leu cys tyr ser ile leu lys ala lys asn TCT GAC ACG GCC TCC CTC TGC TAC TCC ATC CTG AAA GCC AAG AAC 1060 ala gly met ser leu gly ala lys gly ala ala gly pro leu pro GCA GGG ATG TCG CTG GGG GCC AAG GGC GCC GCC GGC CCT CTG CCC 1070 ser glu ala val gln trp leu cys his gln ala phe leu leu lys TCC GAG GCC GTG CAG TGG CTG TGC CAC CAA GCA TTC CTG CTC AAG 1090 leu thr arg his arg val thr tyr val pro leu leu gly ser leu CTG ACT CGĂ CAC CGŤ GTC ACC TÂC GTG CCA CTC CTG GGG TCA CTC

FIG. 53E

arg thr ala gln thr gln leu ser arg lys leu pro gly thr thr AGG ACA GCC CAG ACG CTG AGT CGG AAG CTC CCG GGG ACG ACG 1120 leu thr ala leu glu ala ala ala asn pro ala leu pro ser asp CTG ACT GCC CTG GAG GCC GCA GCC AAC CCG GCA CTG CCC TCA GAC 1130 1132 phe lys thr ile leu asp OP TTC AAG ACC ATC CTG GAC TGA TGGCCACCCGCCCACAGCCAGGCCGAGAGCAGA AGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGATTTTGGCCGAGGCCTGCATGTCC GGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTC CAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCCGCCTCCACCCCAGGGCCAG CTTTTCYTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGATT CGCCATTGTTCACCCYTCGCCTGCCYTCCTTTGCCTTCCACCCCCACCATCCAGGTGGA GACCCTGAGAAGGACCCTGGGAGCTCTGGGAATTTGGAGTGACCAAAGGTGTGCCCTGTA CACAGGCGAGGACCCTGCACCTGGATGGGGGTCCCTGTGGGTCAAATTGGGGGGGAGGTGC AAAAAAAA

FIG. 53F

FIG. 54