Mathematical Logic Questions

- 1. Исчисление высказываний. Общезначимость, следование, доказуемость, выводимость. Корректность, полнота, непротиворечивость. Теорема о дедукции для исчисления высказываний.
- 2. Теорема о полноте исчисления высказываний.
- <u>3. Интуиционистское исчисление высказываний. ВНК-интерпретация. Решётки. Булевы и псевдобулевы алгебры. Теорема Гливенко</u>
- <u>4. Алгебра Линденбаума. Полнота интуиционистского исчисления высказываний в псевдобулевых</u> алгебрах.
- <u>5. Модели Крипке. Сведение моделей Крипке к псевдобулевым алгебрам. Нетабличность интуиционистского исчисления высказываний.</u>
- 6. Гёделева алгебра. Операция Г(А). Дизъюнктивность интуиционистского исчисления высказываний.
- 7. Исчисление предикатов. Общезначимость, следование, выводимость. Теорема о дедукции в исчислении предикатов.
- 8. Непротиворечивые множества формул. Доказательство существования моделей у непротиворечивых множеств формул в бескванторном исчислении предикатов.
- <u>9. Теорема Гёделя о полноте исчисления предикатов. Доказательство полноты исчисления предикатов.</u>
- 10. Теории первого порядка, структуры и модели. Аксиоматика Пеано. Арифметические операции. Формальная арифметика.
- <u>11. Примитивно-рекурсивные и рекурсивные функции. Функция Аккермана. Примитивная рекурсивность арифметических функций, функций вычисления простых чисел, частичного логарифма.</u>
- 12. Выразимость отношений и представимость функций в формальной арифметике. Представимость примитивов N,Z,S,U в формальной арифметике.
- <u>13. Бета-функция Гёделя. Представимость примитивов R и M и рекурсивных функций в формальной арифметике.</u>
- 14. Гёделева нумерация. Рекурсивность представимых в формальной арифметике функций.
- <u>15. Непротиворечивость и w-непротиворечивость. Первая теорема Гёделя о неполноте арифметики, её неформальный смысл.</u>
- 16. Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера, её неформальный смысл. Формулировка второй теоремы Гёделя о неполноте арифметики, Consis. Неформальное пояснение метода доказательства.
- 1. Исчисление высказываний. Общезначимость, следование, доказуемость, выводимость. Корректность, полнота, непротиворечивость. Теорема о дедукции для исчисления высказываний.
 - Общезначимость($\models \alpha$) . Общезначимое высказывание высказывание, которое истинно при любой оценке пропозициональных переменных.

- Следование($\Gamma \models \alpha$). Пусть $\Gamma = \gamma_1, \gamma_2, \ldots, \gamma_n$. Тогда α следует из Γ , если при любой оценке пропозициональных переменных, входящих в высказывания Γ и α , на которых все высказывания Γ истинны, α также истинна.
- Выполнимость. Формула истинна при какой-нибудь оценке.
- Невыполнимость. Формула не истинна ни при какой оценке.
- Опровержимость. Формула ложна при какой-нибудь оценке.
- Схемы аксиом и правило вывода
 - 1. $\alpha \rightarrow \beta \rightarrow \alpha$

2.
$$(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma)$$

- 3. $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- $4. \alpha \& \beta \rightarrow \alpha$
- $5.\ \alpha\&eta
 ightarrow eta$
- 6. $\alpha \rightarrow \alpha \vee \beta$
- 7. $\beta \rightarrow \alpha \vee \beta$

8.
$$(\alpha \rightarrow \gamma) \rightarrow (\beta \rightarrow \gamma) \rightarrow (\alpha \lor \beta \rightarrow \gamma)$$

$$9.\ (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Modus Ponens:

$$\frac{\alpha, \alpha \rightarrow \beta}{\beta}$$

• Доказуемость($\vdash \alpha$) . Высказывание α доказуемо, если существует доказательство $\alpha_1,\alpha_2\dots\alpha_k$ и α_k совпадает с α

Доказательство. Доказательство в исчислении высказываний — это некоторая конечная последовательность выражений (высказываний) $\alpha_1,\alpha_2\ldots\alpha_k$, что каждое из высказываний α_i либо является аксиомой, либо получается из других утверждений $\alpha_{P_1},\alpha_{P_2},\ldots,\alpha_{P_n}$ ($P_1\ldots P_n< i$) по правилу вывода.

• Выводимость ($\Gamma \vdash \alpha$). Высказывание α выводимо из списка гипотез Γ , если существует вывод $\alpha_1, \alpha_2 \dots \alpha_k$ и α_k совпадает с α .

Вывод. Доказательство, в котором могут использоваться гипотезы.

Ака. Вывод в исчислении высказываний — это некоторая конечная последовательность выражений (высказываний) $\alpha_1,\alpha_2\ldots\alpha_k$, что каждое из высказываний α_i либо является аксиомой, либо получается из других утверждений $\alpha_{P_1},\alpha_{P_2},\ldots,\alpha_{P_n}$ $(P_1\ldots P_n< i)$ по правилу вывода, либо является гипотезой из списка Γ .

- Корректность ($\vdash \alpha \Rightarrow \models \alpha$). Если высказывание доказуемо, то оно общезначимо
- Полнота($\models \alpha \Rightarrow \vdash \alpha$). Если высказывание общезначимо, то оно доказуемо.
- Непротиворечивость. Теория непротиворечива если не существует формулы α такой, что $\vdash \alpha$ и $\vdash \neg \alpha$
- Противоречивость. Если теория противоречива, то в ней доказуема любая формула
- Теорема о дедукции. Пусть имеется Γ, α, β . Утверждение $\Gamma \vdash \alpha \to \beta$ тогда и только тогда, когда $\Gamma, \alpha \vdash \beta$

(если из списка высказываний Γ выводится импликация α и β , то можно перестроить вывод таким образом, что из Γ, α выводимо β и наоборот)

2. Теорема о полноте исчисления высказываний.

• Классическое исчисление высказываний полно.

Полнота($\models \alpha \Rightarrow \vdash \alpha$). Если высказывание общезначимо, то оно доказуемо.

- ▶ Вспомогательные утверждения
 - \circ Лемма 1. Если $\Gamma, \Sigma \vdash \alpha$, то $\Gamma, \Sigma, \Delta \vdash \alpha$. Если $\Gamma, \Sigma, \Delta, \Phi \vdash \alpha$, то $\Gamma, \Delta, \Sigma, \Phi \vdash \alpha$.
 - Лемма 2. Если справедливы три утверждения: $\Gamma \vdash \gamma, \ \Delta \vdash \delta, \ \gamma, \delta \vdash \alpha$, то справедливо и $\Gamma, \Delta \vdash \alpha$
 - Лемма 3. (Правило контрапозиции). Каковы бы ни были формулы α, β , справедливо, что $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
 - \circ Лемма 4. Правило исключенного третьего. Какова бы ни была формула $\alpha, \vdash \alpha \lor \neg \alpha$
 - Лемма 5. Каждое из построенных по таблицам истинности утверждений доказуемо.
 - Лемма 6. Пусть пропозициональные переменные $X_1, X_2 \dots X_N$ все переменные, которые используются в формуле α . И пусть задана некоторая оценка переменных. Тогда $X_1^{(\neg)}, X_2^{(\neg)} \dots X_N^{(\neg)} \vdash \alpha^{(\neg)}$.
 - Лемма 7. Исключение допущения. Пусть справедливо $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$. Тогда также справедливо $\Gamma \vdash \alpha$.
 - \circ *Лемма 8.* Пусть при всех оценках переменных $X_1^{(\neg)}, X_2^{(\neg)} \dots X_N^{(\neg)} dash lpha$, тогда dash lpha
- Классическое исчисление высказываний корректно.

3. Интуиционистское исчисление высказываний. ВНКинтерпретация. Решётки. Булевы и псевдобулевы алгебры. Теорема Гливенко.

- Интуиционистское исчисление высказываний. Чтобы получить ИИВ (Интуиционистское исчисление высказываний) нужно в КИВ (Классическое исчисление высказываний) заменить 10-ю аксиому $(\neg\neg \alpha \to \alpha)$ на $\alpha \to \neg \alpha \to \beta$
 - В интуиционистском исчислении высказываний невозможно доказать правило исключенного третьего: $\alpha \vee \neg \alpha$
 - Существует множество способов построить модель для интуиционистской логики: ВНК-интерпретация, Модели Крипке, Топологическая интерпретация...
 - ∘ ▶ Топологическая интерпретация.

Начнем с множества истинностных значений. Возьмем в качестве этого множества все открытые множества некоторого заранее выбранного топологического пространства. Определим оценку для связок интуиционистского исчисления высказываний следующим образом:

- $[A\&B] = [A] \cap [B]$
- $\bullet \quad [A \vee B] = [A] \cup [B]$
- $\bullet \quad [A \to B] = (c[A] \cup [B])^{\circ}$
- $[\neg A] = (c[A])^{\circ}$

Будем считать, что формула истинна в данной модели, если её значение оказалось равно всему пространству.

* Example: возьмем пространство R, и вычислим значение формулы $A \vee \neg A$ при A равном (0,1):

$$[A \vee \neg A] = (0,1) \cup [\neg A] = (0,1) \cup (c(0,1))^\circ = (0,1) \cup ((-\infty,0) \cup (1,\infty)) = (-\infty,0) \cup (0,1) \cup (1,\infty)$$

• ВНК-интерпретация (Brouwer-Heyting-Kolmogorov interpretation). Пусть заданы высказывания α, β , тогда:

- \circ мы считаем $\alpha\&eta$ доказанным, если у нас есть доказательство lpha и есть доказательство eta
- \circ мы считаем $\alpha \lor \beta$ доказанным, если у нас есть доказательство α или доказательство β , и мы точно знаем какое
- $\circ~$ мы считаем $\alpha \to \beta$ доказанным, если из доказательства α мы можем построить доказательство β
- \circ мы считаем \bot (aka 0) утверждением не имеющим доказательства
- \circ $\neg \alpha$ есть сокращение $\alpha \to \bot$. Мы считаем $\neg \alpha$ доказанным, если мы умеем из доказательства α получить противоречие
- Решётка. Частично-упорядоченное(рефлексивно, транзитивно, антисимметрично) множество $\langle M, \sqsubseteq \rangle$, в котором, для любых a,b определены две операции:
 - ullet верхняя грань a,b: a+b=c, наименьший c, что $a\sqsubseteq c,b\sqsubseteq c$
 - \circ нижняя грань a,b: a*b=c, наибольший c, что $c\sqsubseteq a,c\sqsubseteq b$
 - example: a + b = x, a * b = y

 \circ наименьший и минимальный:\ z-наименьший в M, если для всех $t\in M:\ z\sqsubseteq t$ \ z-минимальный в M, если нет такого $t\in M:\ t\sqsubseteq z$ example: z,z': никакой не наименьший, но оба минимальные

- Дистрибутивная решетка. Для любых a,b,c: (a+b)*c = a*c+b*c
 - \circ Решетка дистрибутивна т. и т. т., когда при любых a,b,c : a*b+c=(a+c)*(b+c)
- Импликативная решётка. Решетка с псевдодополнением, определённым для любых двух элементов этой решетки
 - ullet Операция псевдодополнения. c=a o b, c это такой наибольший t, что $t*a\sqsubseteq b$
 - В импликативной решетке есть наибольший элемент
- Псевдобулева алгебра (алгебра Гейтинга). Импликативная решетка с 0
 - 0 наименьший элемент решетки
- Булева алгебра. Псевдобулева алгебра, в которой для любых a: $a+(a\to 0)=1$. \ Булева алгебра пример классической логики: $a+(a\to 0)=1$ Закон исключенного третьего, который читается как "Либо альфа, либо не альфа выполнено"

• **Теорема Гливенко.** $\vdash_{\mathtt{K}\,\mathtt{M}\,\mathtt{B}} \alpha$, то $\vdash_{\mathtt{M}\,\mathtt{M}\,\mathtt{B}} \alpha$. Если формула α выводима в классическом исчислении высказываний, то $\neg \alpha$ выводима в интуиционистком исчислении высказываний.

4. Алгебра Линденбаума. Полнота интуиционистского исчисления высказываний в псевдобулевых алгебрах.

- **Алгебра Линденбаума.** Множество множеств (классов) факторизованных по отношению эквивалентности.
 - Определение. Возьмем множество всех формул ИИВ, тогда:
 - 1. $\alpha \sqsubseteq \beta$, если $\alpha \vdash \beta$
 - 2. lphapproxeta, если $lpha\sqsubseteqeta$ и $eta\sqsubseteqlpha$
- Полнота ИИВ TODO()

5. Модели Крипке. Сведение моделей Крипке к псевдобулевым алгебрам. Нетабличность интуиционистского исчисления высказываний.

- Вообще, очень полезно посмотреть видосики на степике
- Определение
 - 1. Пусть W множество миров. (миры это какие-то множества;
 - 2. $(\preceq) \subseteq W \times W$ отношение частичного порядка на W;
 - 3. (\Vdash) $\subseteq W \times P$ отношение вынужденности, причём если $W_x \preceq W_y$ и $W_x \Vdash X$, то $W_y \Vdash X$, где X переменная. (Мы требуем, чтобы если некоторый мир наследует нашему, то все переменные, которые вынуждены в нашем мире в нем тоже были бы вынуждены)

Тогда
$$< W, (\preceq), (\Vdash) >$$
 - модель Крипке

Как оценить высказывание в модели Крипке?

• Определение

- 1. $W_k \Vdash P$ задано в модели.
- 2. $W_k \Vdash \phi \& \psi$ если $W_k \Vdash \phi$ и $W_k \Vdash \psi$
- 3. $W_k \Vdash \phi \lor \psi$ если $W_k \Vdash \phi$ или $W_k \Vdash \psi$
- 4. $W_k \Vdash \phi
 ightarrow \psi$ если в любом $W_i: W_k \preceq W_i$ из $W_i \Vdash \phi$ следует $W_i \Vdash \psi$
- 5. $W_k \Vdash
 eg \phi$ если в любом $W_i: W_k \preceq W_i$ выполнено $W_i \not \Vdash \phi$
- 6. $W_k \nVdash \bot$

• Определение

- $\Vdash \phi$ в модели W (иначе: $W \models \phi$), если $W_i \Vdash \phi$ при всех $W_i \in W$ (Будем говорить, что формула ϕ истинна в данной модели, если она вынуждена в каждом мире этой модели)
- $\circ \models \phi$, если $\Vdash \phi$ во всех моделях W (Будем говорить, что формула ϕ **общезначима**, если она вынуждена во всех моделях)
- Теорема
 - Модель Крипке это алгебра Гейтинга
- Табличная модель. Будем говорить, что модель исчисления табличная, если:
 - 1. Задано множество истинностных значений V.
 - 2. Для каждой связки задана функция оценки: $f_\star: V*V o V$ и $f_\lnot: V o V$
 - 3. Среди V выделены некоторые истинные значения \top . Мы считаем, что $\models \alpha$, если $[\alpha] \in \top$ при любых оценках пропозициональных переменных.

- 4. Модель корректна
- классическая оценка для исчисления высказываний табличная модель
- ТОДО картинки?....
- Теорема В интуиционистской логике нет полной табличной модели

6. Гёделева алгебра. Операция $\Gamma(A)$. Дизъюнктивность интуиционистского исчисления высказываний.

- Гёделева алгебра Алгебра A гёделева, если для любых $a,b\in A$ если a+b=1, то a=1 и b=1.
- Гёделизация ($\Gamma(A)$) Добавление элемента, который больше всех

Алгебра с добавлением ω и $1_{\Gamma(A)}$. Причем если $a\in A$, то $\omega\geqslant a, 1_{\Gamma}(A)\geqslant a$ и $1_{\Gamma}(A)>\omega$

- Утв. если A алгебра Гейтинга, то $\Gamma(A)$ алгебра Гейтинга
- Дизъюнктивность ИИВ. Если $\vdash \alpha \lor \beta$, то $\vdash \alpha$ или $\vdash \beta$

7. Исчисление предикатов. Общезначимость, следование, выводимость. Теорема о дедукции в исчислении предикатов.

• Определение

- Терм исчисления предикатов (или предметное выражение) это:
 - Предметная переменная маленькая буква начала или конца лат. алфавита, (возможно с индексами или апострофом)
 - Применение функции: если $(\theta_1, \dots \theta_n)$ термы и f функциональный символ (некая функция), то $f(\theta_1, \dots \theta_n)$ тоже терм. (Например константы нульместные функции)

• Определение

- Формула исчисления предикатов это:
 - Если α и β формулы исчисления предикатов, то $\neg \alpha, \alpha \& \beta, \alpha \lor \beta, \alpha \to \beta$ также формула
 - Если α формула, и x предметная переменная, то $\forall x.\,\alpha$ и $\exists x.\,\alpha$ также формулы
 - Применение предиката: если $(\theta_1, \dots \theta_n)$ термы, и P предикатный символ, то $P(\theta_1, \dots \theta_n)$ формула.

• Определение

• Дана некоторая формула s. Будем говорить, что подстрока s_1 строки s является подформулой если она в точности соответствует какому-то одному нетерминалу в дереве разбора строки s.

• Определение

• Если в формулу входит подформула, полученная по правилам для кванторов $(\forall x.\ \alpha, \exists x.\ \alpha)$, то мы будем говорить, что формула α находится в области действия данного квантора по переменной x. Также будем говорить, что любая подформула формулы α находится в области действия данного квантора.

• Определение

• Если некоторое вхождение переменной x находится в области действия квантора по переменной x, то такое вхождение мы назовем **связанным**. Вхождение x непосредственно рядом с квантором назовём **связывающим**. Те вхождения переменных, которые не являются связанными или связывающими назовём **свободными**. Формула не имеющая свободных вхождений переменных называется **замкнутой**.

• Определение

- Будем говорить, что терм θ свободен для подстановки в формулу ψ вместо x, если после подстановки вместо свободных вхождений x ни одно вхождение свободной переменной в θ не станет связанным.
- В исчислении предикатов к схемам аксиом из исчисления высказываний добавляется две схемы аксиом:

Пусть θ свободно для подстановки вместо x в ψ

1.
$$(\forall x. \psi) \rightarrow (\psi[x := \theta])$$

2. $\psi[x := \theta] \rightarrow \exists x. \psi$

• Правила вывода:

Пусть x не входит свободно в ϕ , тогда имеют место следующие правила вывода:

$$\frac{\phi \rightarrow \psi}{\phi \rightarrow \forall x.\psi} \\ \psi \rightarrow \phi \\ (\exists x.\psi) \rightarrow \phi$$

• Определения

- \circ Формула в исчислении предикатов **общезначима**, если она истинна на любом предметном множестве D, при любой оценке предикатных и функциональных символов, и при любых оценках свободных предметных переменных.
- Пусть имеется некоторое исчисление предикатов с множеством аксиом A, и пусть дан некоторый список Γ формул исчисления предикатов. Тогда **вывод** формулы α в исчислении с аксиомами $A \cup \Gamma$ мы назовем выводом из допущений Γ и будем записывать как $\Gamma \vdash \alpha$

- Пусть имеется какое-то предметное множество D, список формул Γ и высказывание α , тогда **следованием** из Γ в α назовем следующее утверждение: если при всех оценках (предикатных, функциональных и т.д.) в предметном множестве D, где формулы Γ истинны, истинна и α . (мб можно понятнее написать TODO)
- Теорема о дедукции

Если $\Gamma, \alpha \vdash \beta$, и в доказательстве отсутствуют применения правил для кванторов, использующих свободные применения правил для кванторов, использующих свободные переменные из формулы α , то $\Gamma \vdash \alpha \to \beta$. Обратно, если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$

• Исчисление предикатов корректно, т.е. любое доказуемое утверждение общезначимо

8. Непротиворечивые множества формул. Доказательство существования моделей у непротиворечивых множеств формул в бескванторном исчислении предикатов.

- **Непротиворечивое множество формул.** Назовем Γ множество замкнутых формул непротиворечивым, если ни для какой формулы α невозможно показать, что $\Gamma \vdash \alpha$ и $\Gamma \vdash \neg \alpha$
 - Альтернативное определение. Γ непротиворечивое множество формул, если $\Gamma \nvdash \alpha \& \neg \alpha$ при некотором α
- Пример замкнутых и бескванторных.
 - Бескванторная = не содержащая кванторов.\ Замкнутая = не содержащая свободных переменных.

Возможны все 4 варианта:\

```
3Б: 0 = 1
```

3: $\forall x. \, x = 1$

Б: x = 1

 $\forall x. x = y$

- **Def.** Полным непротиворечивым множеством замкнутых (замкнутых и бескванторных) формул назовем такое множество Γ , что для любой замкнутой (замкнутой и бескванторной) формулы α либо $\alpha \in \Gamma$, либо $(\neg \alpha) \in \Gamma$
- ▶ Некоторые теоремы.
 - **Теорема.** Пусть Γ непротиворечивое множество замкнутых (замкнутых и бескванторных) формул. Тогда какова бы ни была замкнутая (замкнутая и бескванторная) формула ϕ , хотя бы $\Gamma \cup \{\phi\}$ или $\Gamma \cup \{\neg \phi\}$ непротиворечиво
 - Теорема. Пусть Г непротиворечивое множество замкнутых (замкнутых и бескванторных) формул. Тогда найдется полное непротиворечивое множество замкнутых (замкнутых и бескванторных) формул Δ, что Г ∈ Δ.
 - **Def.** Моделью для множества формул F назовем такую модель M, что при всяком $\phi \in F$ выполнено $[\phi]_M = \mathsf{n}$
 - \circ Альтернативное обозначение. $M \models \phi$
 - Теорема. Любое непротиворечивое множество замкнутых бескванторных формул имеет модель.
 - **Def.** Пусть M полное непротиворечивое множество замкнутых формул. Тогда модель M задается так:
 - 1. D множество всех бескванторных формул и дополнительная строка "ошибка!"
 - 2. $[f(\theta_1, \dots, \theta_n)] = f("++[\theta_1]++", "++\dots++", "++[\theta_n]++")$

- 1. [x] = "ошибка!", т.к. формулы замкнуты
- Лемма. Пусть ϕ бескванторная формула, тогда $M \models \phi$ тогда и только тогда, когда $\phi \in {
 m M}$
- Lemma. Пусть Γ полное непротиворечивое множество бескванторных формул. Тогда существует модель для Γ .

9. Теорема Гёделя о полноте исчисления предикатов. Доказательство полноты исчисления предикатов.

• Определение

• Назовём формулу α формулой с поверхностными кванторами, если существует такой узел в дереве разбора формула, не являющийся квантором, ниже которого нет ни одного квантора, а выше - нет ничего кроме кванторов. (Например: $\forall x \exists y \forall z (P(x,y,z) \& P(z,y,x))$

• Лемма

Для любой формулы исчисления предикатов найдётся эквивалентная ей формула с поверхностными кванторами.

• Теорема Гёделя о полноте исчисления предикатов.

Пусть Γ - непротиворечивое множество формул исчисления предикатов. Тогда существует модель для Γ .

• Теорема

Если $\models \alpha$, то $\vdash \alpha$

10. Теории первого порядка, структуры и модели. Аксиоматика Пеано. Арифметические операции. Формальная арифметика.

- **Теория первого порядка.** Теорией первого порядка назовем исчисление предикатов с дополнительными ("нелогическими" или "математическими")
 - предикатными и функциональными символами
 - аксиомами\
 сущности, взятые из исходного исчисления высказываний, назовём логическими.
- Структура. Структурой теории первого порядка мы назовем упорядоченную тройку $\langle D, F, P \rangle$, где $F = \langle F_0, F_1 \dots \rangle$ списки оценок для 0-местных, 1-местных и т.д. функций, и $P = \langle P_0, P_1 \dots \rangle$ списки оценок для 0-местных, 1-местных и т.д. предикатов, D предметное множество.
 - ▶ Небольшое пояснение
- Def. Назовем структуру корректной, если любая доказуемая формула истинна в данной структуре.
- Модель. Модель теории любая корректная структура
- **Аксиоматика Пеано.** Рассмотрим некоторое множество N. Будем говорить, что оно удовлетворяет аксиомам Пеано, если выполнено:
 - $\circ~$ В нем существует некоторый выделенный элемент $0~(0\in N)$
 - \circ Для каждого элемента определена операция ' , результат ее также принадлежит множеству $N \ (N o N)$

Кроме того, эти элементы и операция к этим элементам должны удовлетворять следующим требованиям:

 \circ Не существует такого $x \in N$, что x' = 0 (Нет предшественника у минимального элемента)

- \circ Если при x и y из N верно, что x'=y', то x=y. Если x=y', то x назовем следующим за y, а y предшествующим x (определение операции x')
- \circ Каково бы ни было свойство ("предикат") P:N o V, если:
 - выполнено P(0)
 - при любом $x \in N$ из $P(x) \Rightarrow P(x')$ то при любом $x \in N$ выполнено P(x) (Индукция)
- **Формальная арифметика.** (формализация аксиоматики Пеано) формальная арифметика теория первого порядка, со следующими добавленными нелогическими:
 - двуместными функциональными символами (+),(*), одноместным функциональным символом ('), нульместным функциональным символом 0;
 - двуместным предикатным символом (=);
 - восемью аксиомами:
 - (A1) a=b
 ightarrow a=c
 ightarrow b=c (транзитивность равенства)
 - (A2) a=b
 ightarrow a'=b' (инъективность штриха)
 - (A3) a'=b' o a=b (инъективность штриха)
 - $(A4) \neg a' = 0$ (у нуля нет предшественников)
 - (A5) a + 0 = a (определение сложения)
 - (A6) a + b' = (a + b)' (определение сложения)
 - $(A7) \ a*0 = 0$ (определение умножения)
 - $(A8) \ a*b' = a*b+a$ (определение умножения)
 - ullet схемой аксиом индукции $\psi[x:=0]\&(\forall x.\,(\psi o \psi[x:=x'])) o \psi$
- Еще один пример теории первого порядка.

Теория групп. К исчислению предикатов добавим двуместный предикат (=), двуместную функцию (*), одноместную функцию x^{-1} , нульместную функцию 1 и следующие аксиомы:

- \circ (E1) $a = b \rightarrow a = c \rightarrow b = c$
- \circ (E2) $a = b \to (a * c = b * c)$
- \circ (E3) $a = b \to (c * a = c * b)$
- \circ (G1) a * (b * c) = (a * b) * c
- \circ (G2) a * 1 = a
- \circ (G3) $a*a^{-1}=1$

11. Примитивно-рекурсивные и рекурсивные функции. Функция Аккермана. Примитивная рекурсивность арифметических функций, функций вычисления простых чисел, частичного логарифма.

- Примитивы:
 - 1. Ноль. $Z:\mathbb{N}_0 o\mathbb{N}_0, Z(x)=0$
 - 2. Инкремент. $N:\mathbb{N}_0 o\mathbb{N}_0, N(x)=x'$
 - 3. Проекция. $V_i^n: \mathbb{N}_0^n o \mathbb{N}_0, V_i^n(x_1,\dots,x_n) = x_i$
 - 4. Подстановка. Если $f:\mathbb{N}_0^n o\mathbb{N}_0$ и $g_1,\dots,g_n:\mathbb{N}_0^m o\mathbb{N}_0$, то $S\langle f,g_1,\dots,g_n\rangle:\mathbb{N}_0^m o\mathbb{N}_0$, при этом:

$$S\langle f,g_1,\ldots,g_n
angle(x_1,\ldots,x_m)=f(g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m))$$

5. Примитивная рекурсия. Если $f:\mathbb{N}_0^n o\mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} o\mathbb{N}_0$, то $R\langle f,g\rangle:\mathbb{N}_0^{n+1} o\mathbb{N}_0$, при этом

$$R\langle f,g
angle(x_1,\ldots,x_n,y)=\left\{egin{aligned} f(x_1,\ldots,x_n),y=0\ g(x_1,\ldots,x_n,y-1,R\langle f,g
angle(x_1,\ldots,x_n,y)),y>0 \end{aligned}
ight.$$

6. Минимизация. Если $f:\mathbb{N}_0^{n+1} o\mathbb{N}_0$, то $\mu\langle f
angle:\mathbb{N}_0^n o\mathbb{N}_0$, при этом

$$\mu\langle f
angle(x_1,\ldots,x_n)=$$
 такое минимальное число y , что $f(x_1,\ldots,x_n,y)=0.$
Если такого y нет , то результат примитива неопределён

- Примитивно-рекурсивная функция. Функция называется примитивно-рекурсивной, если возможно построить выражение только из первых пяти примитивов, такое, что оно при всех аргументах возвращает значение, равно значению требуемой функции.
- **Рекурсивная функция.** Если функция может быть выражена только из 6 примитивов, то она называется рекурсивной.
- Функция Аккермана. Рекурсивна, но не примитивно-рекурсивна

$$A(m,n) = \left\{egin{aligned} n+1, & ext{если} & m=0 \ A(m-1,1), & ext{если} & m>0, n=0 \ A(m-1,A(m,n-1)), & ext{если} & m>0, n>0 \end{aligned}
ight.$$

- Простые арифметические операции
 - Сложение
 - Умножение
 - Вычитание
 - Остальные арифметические операции
- Проверка числа на простоту. Функция проверки числа на простоту примитивно-рекурсивна.
- Частичный логарифм. Частичный логарифм примитивно-рекурсивен.

12. Выразимость отношений и представимость функций в формальной арифметике. Представимость примитивов N, Z, S, U в формальной арифметике.

- Выразимое отношение. Отношение R называется выразимым (в формальной арифметике), если существует такая формула $\alpha(x_1,\ldots x_n)$ с n свободными переменными, что для любых натуральных чисел k_1,\ldots,k_n
 - 1. если $(k_1,\ldots,k_n)\in R$, то доказуемо $lpha(\overline{k_1},\ldots,\overline{k_n})$
 - 2. если $(k_1,\ldots,k_n)
 otin R$, то доказуемо $eg lpha(\overline{k_1},\ldots,\overline{k_n})$
- Представимость. Функция f от n аргументов называется представимой в формальной арифметике, если существует такая формула $\alpha(x_1,\ldots,x_{n+1})$ с n+1 свободной переменной, что для любых натуральных k_1,\ldots,k_n :
 - 1. $f(k_1,\ldots,k_n)=k_{n+1}$ тогда и только тогда, когда доказуемо $lpha(\overline{k_1},\ldots,\overline{k_{n+1}})$
 - 2. Доказуемо $\exists ! b. \, lpha(\overline{k_1}, \ldots, \overline{k_n}, \overline{b}),$

где
$$\exists ! y.\, lpha(y) = (\exists y.\, lpha(y))\& orall a.\, orall b.\, lpha(a)\& lpha(b) o a = b$$

- Вспомогательные утверждения.
 - ▶ Spoiler

Для любого выводимого выражения мы можем составить этот же вывод с другими переменными, пусть $T:=0=0 \to 0=0 \to 0=0$ (sch.ax.1) : \

$$Lemma\ 1) \vdash P[x := \Theta] \setminus$$

$$1.~P
ightarrow T
ightarrow P$$
 (sch.ax.1)\

 $1.5\ P$ (т.к. это выводимое утверждение) \

$$2.~T
ightarrow P~$$
 (MP 1, 1.5) \

 $3.\ T o \forall x.\ (P)$ (по правилу вывода(2) можно ввести кванторы по переменным внутри P, если эти переменные не входят свободно в T, что верно по построению) \

$$3.5 T \text{ (sch.ax.1)} \$$

```
4.\ \forall x.\ (P)\ (\text{MP }3.5,3)\ \ 5.\ (\forall x.\ (P)) 	o (P[x:=\Theta])\ (\text{по sch.ax.11}\ \text{можно заменить переменные по кванторам внутри P})\ \ 6.(P[x:=\Theta])\ (\text{MP }4.5) Lemma\ 2)\ a=b\vdash b=a 1.\ a=b\ (Hypothesis\ 1) 2.\ a=a\ (\text{Hетрудно показать по Лемме}\ 1) 3.\ a=b\to a=a\to b=a\ (Ax.\ 2\ (FA)) 4.\ b=a\ (2\ MP\ from\ 3)
```

- Представимость примитива Z (Ноль). Примитив Z представим в ФА $\psi(x_1,x_2):=x_1=x_1\&x_2=0$
- Представимость примитива N (Инкремент). Примитив N представим в ФА. $\alpha(x_1,x_2):=x_2=x_1'$
- Представимость примитива U (Проекция). Примитив U представим в ФА $\beta(x_1,\dots,x_{n+1}):=(\&_{i\neq k}x_i=x_i)\&x_k=x_{n+1}$
- Представимость примитива S (Подстановка). Пусть функции f,g_1,\ldots,g_k представимы в ФА. Тогда $S\langle f,g_1,\ldots,g_k\rangle$ представим в ФА $\exists g_1\ldots\exists g_k.\ \phi(g_1,\ldots,g_k,x_{n+1})\&\gamma_1(x_1,\ldots,x_n,g_1)\&\ldots\&\gamma_k(x_1,\ldots x_n,g_k)$

13. Бета-функция Гёделя. Представимость примитивов R и M и рекурсивных функций в формальной арифметике.

• β -функция Гёделя. $\beta(b,c,i):=b\%(1+(i+1)*c)$ Здесь b,c параметры, а i - какой-то элемент последовательности. Ака b,c определяют что за

▶ Представление бета-функции в ФА

массив, а i говорит о каком-то индексе.

eta-функция Гёделя представима в ФА формулой: $eta(c,d,i,d) := \exists q.\, (b=q*(1+c*(i+1))+d)\&(d<1+c*(i+1)) \land$ Деление b на x с остатком: найдутся частное (q) и остаток (d), что b=q*x+d и $0\leq d< x$ Доказать формально???

Теорема. Китайская теорема об остатках (вариант формулировки):

если u_0, \dots, u_n - попарно взаимно-просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$ Теорема. Главное свойство β -функции.

Если $a_0,\ldots,a_n\in\mathbb{N}_0$, то найдутся такие $b,c\in\mathbb{N}_0$, что $a_i=eta(b,c,i)$

• Представимость примитива R (Примитивная рекурсия). Примитив R представим в ФА. примитив $R\langle f,g\rangle$ представим в ФА формулой $\rho(x_1,\ldots,x_n,y,a)$:

$$\exists b. \, \exists c. \, (\exists a_0. \, eta(b,c,0,a_0) \& \phi(x_1,\ldots,x_n,a_0))$$
 $\& orall k. \, k < y
ightarrow \exists d. \, \exists e. \, eta(b,c,k,d) \& eta(b,c,k',e) \& \gamma(x_1,\ldots,x_n,k,d,e)$ $\& eta(b,c,y,a)$

• Представимость примитива M (Минимизация). Примитив M представим в ФА. Пусть функция $f:\mathbb{N}_0^{n+1} \to \mathbb{N}_0$ представима в ФА формулой $\phi(x_1,\dots,x_n,y)$. Тогда примитив $M\langle f \rangle$ представим в ФА формулой:

$$\mu(x_1, \dots, x_n, y) := \neg \phi(x_1, \dots, x_n, y, 0) \& \forall u. \, u < y \to \phi(x_1, \dots, x_n, u, 0)$$

• **Представимость рекурсивных в формальной арифметике.** Рекурсивные функции представимы в формальной арифметике (индукция по длине док-ва)

14. Гёделева нумерация. Рекурсивность представимых в формальной арифметике функций.

• Гёделева нумерация (Способ представления доказательств в виде натуральных чисел). Будем называть Гёделевой нумераций следующую конструкцию. Пусть $\langle a_0,\ldots,a_{n-1}\rangle$ -некоторый список положительных натуральных чисел. Пусть p_i -простое число номер i, тогда Гёделева нумерация этого списка:

$$\lceil \langle a_0, \dots, a_{n-1}
angle
ceil = 2^{a_0} * 3^{a_1} * \dots * p_{n-1}^{a_{n-1}}$$

• Также мы можем составить Гёделеву нумерацию для всей программы, в т.ч. для отдельных символов:

Номер	Символ
3	(
5)
7	1
9	
11	_
13	\rightarrow
15	V
17	&
19	A
21	3
23	F
25+6k	x_k
$27+6*2^k*3^n$	f_k^n
$29+6*2^k*3^n$	p_k^n

Формула.
$$\phi\equiv s_0s_1\dots s_{n-1}$$
. Гёделев номер $\ulcorner \phi \urcorner=2^{\lceil s_1
ceil}*\dots*p_{n-1}^{\lceil s_{n-1}
ceil}$ Доказательство. $\Pi=\delta_0\delta_1\dots\delta_{k-1}$, его Гёделев номер: $\ulcorner \Pi \urcorner=2^{\lceil \delta_1
ceil}*\dots*p_{n-1}^{\lceil \delta_{k-1}
ceil}$

• Рекурсивность функций представимых в ФА. Функции, представимые в ФА, рекурсивны. То есть, если мы можем про функцию доказать, что эта функция действительна равна такому значению, то значит мы можем написать программу, которая ее вычисляет.

Более формально. Если $f:\mathbb{N}^n_0 o\mathbb{N}_0$, и f представима в ФА формулой ϕ , то f - рекурсивна.

15. Непротиворечивость и ω -непротиворечивость. Первая теорема Гёделя о неполноте арифметики, её неформальный смысл.

- ▶ Некоторые определения
 - Проблема останова. Не существует функции bool p (std::string source, std::string arg), возвращающей true тогда и только тогда, когда функция с исходным кодом source (имеющая аргумент типа std::string) оканчивает работу, если ей передать на вход значение ara

Ее полный исходный код - в переменной s_source

Что вернет р (s_source, s_source)? Если возвращаемое p истинно, то s должна остановиться, но по ее исходному коду она зациклиться. Если возвращаемое p ложна, то s должна зациклиться, но по ее исходному коду она должна остановиться. Противоречие.\ Из этого получаем, что такой функции p не существует.

• Самоприменимость. $W_1:W_1(x,p)=1$, если $x=\lceil \xi \rceil$, где ξ - формула с единственной свободной переменной x_1 , а p - доказательство самоприменения ξ :

$$\vdash \xi(\overline{\ulcorner \xi \urcorner})$$

 $W_1(x,p) = 0$, если это не так.

Теорема. Существует формула ω_1 со свободными переменными x_1, x_2 , такая, что:

1.
$$\vdash \omega_1(\lceil \overline{\phi} \rceil, \overline{p})$$
, если p - гёделев номер доказательства самоприменения ϕ ; 2. $\vdash \neg \omega_1(\lceil \overline{\phi} \rceil, \overline{p})$, иначе

Док-во. W_1 рекурсивна, то есть представима в ФА формулой o_1 . Функция такая же как и proof (add ref to proof TODO()).

Возьмем $\omega_1(x_1,x_2) := o_1(x_1,x_2,\overline{1}).$

- **Непротиворечивость.** Формальная арифметика непротиворечива, если нет формулы α , что $\vdash \alpha$ и $\vdash \neg \alpha$
- ω -непротиворечивость. Формальная арифметика ω -непротиворечива, если для любой формулы $\phi(x)$, что
 - ullet $\phi(\overline{p})$ при всех $p\in\mathbb{N}_0$ выполнено $ot \vdash \exists p.\,
 eg\phi(p)$
 - \circ (менее формально) пусть $\vdash \phi(\overline{0}), \vdash \phi(\overline{1})...$ Значит, нет p, что $\vdash \neg \phi(p)$
- **Теорема.** Если формальная арифметика ω -непротиворечива, то она непротиворечива.
- Первая теорема Гёделя о неполноте арифметики.

Def. $\sigma(x) := \forall p. \neg \omega_1(x,p)$. Не существует доказательства p для самоприменения x.

Теорема Гёделя

- \circ Если формальная арифметика непротиворечива, то $\nvdash \sigma(\overline{\ulcorner \sigma \urcorner})$
- Если формальная арифметика ω -непротиворечива, то $\nvdash \neg \sigma(\overline{\ulcorner \sigma \urcorner})$

```
$\sigma(x):=\forall p.\neg\omega_1(x,p)$:
$\sigma(\overline{\ulcorner\sigma\urcorner})$ означает "я не доказуема". При этом мы
```

Teopeмa \$\models\sigma(\overline{\ulcorner\sigma\urcorner})\$ В стандартной интерпретации формальной арифметики: \$D=\N_0,a'=a+1\$ и т.д.

показали, что она не доказуема, значит она истинна? Покажем это формально.

16. Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера, её неформальный смысл. Формулировка второй теоремы Гёделя о неполноте арифметики, Consis. Неформальное пояснение метода доказательства.

- Первая теорема Гёделя в форме Россера.
 - \circ **Def.** $W_2(x,p)=1$, если р-доказательство отрицания самоприменения.
 - ullet Лемма. Существует формула ω_2 , что $\vdash \omega_2(\overline{x},\overline{p})$, если $W_2(x,p)=1$, иначе $\vdash \lnot \omega_2(\overline{x},\overline{p})$
 - ullet Теорема. Пусть $ho(x) := orall p. \ \omega_1(x,p) o \exists q. \ q < p\& \omega_2(x,q)$, тогда $ot \vdash
 ho(\overline{\ulcorner
 ho\urcorner})$ и $ot \vdash \lnot
 ho(\overline{\ulcorner
 ho\urcorner})$

Описание. Мы говорим, что если p является доказательством самоприменения x, то найдется доказательство q, причем, с меньшим Гёделевым номером, чем p, который является док-вом отрицания самоприменения x. Тогда не доказуемо ни самоприменение ρ , ни отрицание самоприменения.

Менее формальное определение теоремы. Если существует доказательство самоприменения ρ , то существует и доказательство отрицания самоприменения ρ , причем с меньшим номером

- ullet Формула Consis.
 - \circ **Теорема.** Существует формула $\pi(x,p)$ доказуемая тогда и только тогда, когда proof(x,p)=1. Проверка, что p является доказательством x
 - \circ **Def.** Формула "доказуемо": $\pi_r(x) := \exists p.\, \pi(x,p)$. Если найдется p гёделев номер доказательства x
 - **Def.** $Consis := \neg \pi_r(\lceil \overline{1} = 0 \rceil)$. Если формальная арифметика непротиворечива, то ожидаем, что формула Consis истинна.
- Вторая теорема Гёделя о неполноте арифметики.

$$\vdash Consis
ightarrow \sigma(\overline{\ulcorner \sigma \urcorner})$$

"Если непротиворечивость формальной арифметики может быть доказана в формальной арифметике, то формальная арифметика противоречива"