4-2 In-Class Exercise

1. Use the Subspace Test to determine whether the set is a subspace of M_{nn} .

The set of all $n \times n$ matrices A such that $A^T = -A$.

2. Use the Subspace Test to determine whether the set is a subspace of R^4 .

All vectors of the form (a, 0, b, 0).

4-2 Suggested Exercises

1. Use the Subspace Test to determine whether the set is a subspace of M_{nn} .

The set of all $n \times n$ matrices A such that tr(A) = 0.

2. Use the Subspace Test to determine whether the set is a subspace of R^3 .

All vectors of the form (a, b, c), where b = a + c.

3. Use the Subspace Test to determine whether the set is a subspace of P_3 .

All polynomials of the form $a_0 + a_1x + a_2x^2 + a_3x^3$ in which a_0 , a_1 , a_2 , and a_3 are rational numbers.

4. Use the Subspace Test to determine whether the set is a subspace of M_{22} .

All 2×2 matrices A such that

$$A \begin{bmatrix} 0 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 1 \end{bmatrix} A$$

5. Use the Subspace Test to determine whether the set is a subspace of R^4 .

All vectors
$$\mathbf{x}$$
 in R^4 such that $A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, where
$$A = \begin{bmatrix} 0 & -1 & 0 & 2 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

6. If T_A is multiplication by a matrix A with three columns, then the kernel of T_A is one of four possible geometric objects. What are they? Explain how you reached your conclusion.