Homework 8 Extra Credit

Lance Remigio

November 25, 2024

Problem 1. Prove that

 $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n) \le \limsup a_n + \liminf b_n$

provided that all expressions are meaningful.

Proof. Our goal is to show that

- (1) $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n)$
- (2) $\inf(a_n + b_n) \le \limsup a_n + \liminf b_n$.

To show (1), we will assume that the left-hand side is NOT of the form $\infty + \infty$. Hence, there exists $n \ge n_0$ and $\ell \ge n$ such that

$$a_{\ell} \ge \inf\{a_k : k \ge n\},$$

 $b_{\ell} \ge \inf\{b_k : k \ge n\}.$

Adding both inequalities above gives us

$$a_{\ell} + b_{\ell} \ge \inf\{a_k : k \ge n\} + \inf\{b_k : k \ge n\}.$$

Using the order limit theorem and algebraic limit theorem, we can write

$$\lim_{n \to \infty} \inf \{ a_{\ell} + b_{\ell} : \ell \ge n \} \ge \lim_{n \to \infty} \left[\inf \{ a_k : k \ge n \} + \inf \{ b_k : k \ge n \} \right]$$
$$= \lim_{n \to \infty} \inf \{ a_k : k \ge n \} + \lim_{n \to \infty} \inf \{ b_k : k \ge n \}.$$

Thus, we can conclude that

$$\lim \inf(a_n + b_n) \ge \lim \inf(a_n) + \lim \inf(b_n)$$

which establishes (1).

To show (2), we will consider the three cases; that is,

- $\liminf (a_n + b_n) \neq -\infty$
- $\limsup a_n = \infty$
- $\liminf (a_n + b_n) \neq -\infty$ and $\limsup a_n \neq \infty$.

Suppose $\liminf (a_n + b_n) \neq -\infty$. If this is the case, the right-hand side of (2) will always hold. Next, suppose $\limsup a_n = \infty$. Note that the right-hand side of (2) is NOT of the form $\infty + \infty$. So, we can conclude that $\liminf b_n \neq -\infty$ and so

$$\lim \inf b_n + \lim \sup a_n = \infty.$$

Now, suppose that $\liminf (a_n + b_n) \neq -\infty$ and $\limsup a_n \neq \infty$. Then using (1) and the algebraic limit theorem, we can write

$$\lim \inf b_n = \lim \inf [(b_n + a_n) + (-a_n)]
\geq \lim \inf (a_n + b_n) + \lim \inf (a_n)$$
(ALT and (1))
$$= \lim \inf (a_n + b_n) - \lim \sup (a_n).$$
(Exercise 9)

Then we have

$$\liminf (a_n + b_n) \le \liminf b_n + \limsup a_n$$

which establishes (2). Hence, we now conclude that

 $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n) \le \limsup a_n + \liminf b_n$

Problem 2. Suppose X is a nonempty complete metric space, and (G_n) is a sequence of dense open subsets of X. Prove Baire's Theorem, namely, $\bigcap_{n=1}^{\infty} G_n$ is nonempty.

Proof.

Problem 3. Prove the following theorem:

Suppose (s_n) and (b_n) are two sequences of real numbers, (b_n) is a strictly increasing sequence that diverges to ∞ , and $\lim_{n\to\infty}\frac{s_{n+1}-s_n}{b_{n+1}-b_n}=L\in\mathbb{R}$. Then $\lim_{n\to\infty}\frac{s_n}{b_n}=L$.

Proof. Suppose (s_n) and (b_n) are two sequences of real numbers and (b_n) is a strictly increasing sequence that diverges to ∞ , and that

$$\lim_{n \to \infty} \frac{s_{n+1} - s_n}{b_{n+1} - b_n} = L \in \mathbb{R}.$$

Our goal is to show that $\lim_{n\to\infty} \frac{s_n}{b_n} = L$. In order to do this, we need to show that for any given $\varepsilon > 0$, we have

$$\limsup \frac{s_n}{b_n} \le L + \varepsilon \tag{1}$$

$$\limsup \frac{s_n}{b_n} \le L + \varepsilon \tag{1}$$

$$\liminf \frac{s_n}{b_n} \ge L + \varepsilon \tag{2}$$

To this end, let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} \frac{s_{n+1} - s_n}{b_{n+1} - b_n} = L$, there exists an $N \in \mathbb{N}$ such that for any n > N, we have

$$\left| \frac{s_{n+1} - s_n}{b_{n+1} - b_n} - L \right| < \varepsilon$$

which can be written in the following way:

$$(L - \varepsilon)(b_{n+1} - b_n) < s_{n+1} - s_n < (L + \varepsilon)(b_{n+1} - b_n). \tag{*}$$

Now, fix an $\hat{N} > N$ denoted by $\hat{N} = N + 2$. Then observe that

$$s_n = [(s_n - s_{n-1}) + (s_{n-1} - s_{n-2}) + \dots + (s_{\hat{N}} - s_{\hat{N}-1})] + s_{\hat{N}-1}.$$

Applying (*) to the equation above gives us

$$s_n < (L+\varepsilon)[(b_n - b_{n-1}) + (b_{n-1} - b_{n-2}) + \dots + (b_{\hat{N}} - b_{\hat{N}-1})] + s_{\hat{N}-1}$$

= $(L+\varepsilon)[b_n - b_{\hat{N}-1}] + s_{\hat{N}-1}$

Multiplying by b_n on both sides, we get

$$\frac{s_n}{b_n} < (L+\varepsilon) \left[\frac{b_n - b_{\hat{N}-1}}{b_n} \right] + \frac{s_{\hat{N}-1}}{b_n}$$
$$= (L+\varepsilon) + \frac{s_{\hat{N}-1} - b_{\hat{N}-1}(L+\varepsilon)}{b_n}$$

Since we have (b_n) is a strictly increasing sequence that diverges to ∞ , we must have $\frac{1}{b_n} \to 0$. Since

$$\alpha = s_{\hat{N}-1} - b_{\hat{N}-1}(L+\varepsilon)$$

is a fixed quantity (because \hat{N} is fixed), we have that $\frac{\alpha}{b_n} \to 0$ by the algebraic limit theorem. By the order limit theorem, we can see that

$$\begin{split} \lim_{n \to \infty} \sup \frac{a_n}{b_n} & \leq \lim_{n \to \infty} \left[(L + \varepsilon) + \frac{\alpha}{b_n} \right] \\ & = (L + \varepsilon) + \lim_{n \to \infty} \frac{\alpha}{b_n} \\ & = L + \varepsilon + 0 \\ & = L + \varepsilon. \end{split} \tag{ALT}$$

which establishes (1).

We can apply an analogous process to establish (2). By applying (*), we can see that

$$\frac{s_n}{b_n} > (L - \varepsilon) + \frac{s_{\hat{N}-1} - b_{\hat{N}-1}(L - \varepsilon)}{b_n}.$$

Now, set

$$\beta = s_{\hat{N}-1} - b_{\hat{N}-1}(L - \varepsilon).$$

By the order limit theorem, we see that

$$\lim_{n \to \infty} \inf \frac{s_n}{b_n} \ge \lim_{n \to \infty} \left[(L - \varepsilon) + \frac{\beta}{b_n} \right]$$

$$= (L - \varepsilon) + \lim_{n \to \infty} \frac{\beta}{b_n}$$

$$= L - \varepsilon + 0$$

$$= L - \varepsilon$$
(ALT)

which establishes (2). Since $\varepsilon > 0$ is arbitrary, (1) and (2) imply that

$$\limsup \frac{s_n}{b_n} \le L$$
 and $\liminf \frac{s_n}{b_n} \ge L$.

Thus, we can see that

$$\limsup \frac{s_n}{b_n} = \liminf \frac{s_n}{b_n} = L.$$

This tells us that

$$\lim_{n \to \infty} \frac{s_n}{b_n} = L.$$