Sprawdzanie prawa Malusa

1 Wstęp teoretyczny

1.1 Cewka

Przepływ prądu stałego przez cewkę

Podczas przepływu prądu przez cewkę, indukuje się w cewce siła elektromotoryczna. Zakładając, że indukcyjność cewki nie zmienia się, co zachodzi dla większości obwodów elektrycznych, wzór wygląda następująco:

$$\epsilon = -L \frac{di}{dt}$$

 ϵ – siła elektromotoryczna, L– indukcyjność cewki, i– natężenie prądu płynącego przez cewkę, t– czas Dla prądu stałego odpowiednikiem indukcyjności jest stała cewki:

$$C = \frac{H}{I}$$

H– natężenie pola magnetycznego, I– natężenie prądu

Rezystancja cewki to przepływ prądu przemiennego przez cewkę. W obwodach prądu zmiennego sinusoidalnego, w stanie ustalonym napięcie na cewce wyprzedza o 90° prąd płynący w cewce.

Rolą rdzenia w cewce jest wzmacnianie pola magnetycznego wytwarzanego podczas podczas przepływu prądu przez uzwojenie elektromagnesu. Rdzeń wykonany jest ze stali miękkiej i dlatego nie magnesuje się trwale.

Indukcyjność cewki to zdolność obwodu do wytwarzania strumienia pola magnetycznego ϕ powstającego w wyniku przepływu przez obwód prądu elektrycznego. Jednostką indukcyjności jest 1henr[H]. Indukcyjność opisuje się jako stosunek tego strumienia i prądu, który go wytworzył:

$$L = k \frac{\phi}{i}$$

Impedancja to wielkość charakteryzująca zależność między natężeniem prądu i napięciem w obwodach prądu zmiennego. Impedancja idealnej cewki jest równa iloczynowi jej reaktancji i jednostki urojonej.

1.2 Kondensator

Przepływ prądu przemiennego przez kondensator

Doprowadzenie napięcia do okładek kondensatora powoduje zgromadzenie się na nich ładunku elektrycznego. Dla prądu przemiennego przez kondensator płynie prąd określony wzorem:

$$U_c(t) = U_0 \sin(\omega t)$$

$$I_c = C \frac{dU_c}{dt} = CU_o \omega \cos(\omega t)$$

Pojemność kondensatora to pojemność określająca zdolność kondensatora do gromadzenia ładunku

$$C = \frac{Q}{II}$$

U- napięcie

Reaktancja pojemnościowa kondensatora to wielkość wiążąca prąd i napięcie na kondensatorze. Reaktancja jest mniejsza, im większa jest pojemność kondensatora i częstotliwość prądu. Wyraża się ją wzorem:

$$X_C = \frac{-1}{\omega C} = \frac{-1}{2\pi f C}$$

 ω – Pulsacja, f – częstotliwość w hercach, j – jednostka urojona.

Szeregowe i równoległe połączenia kondensatorów

Podobnie jak rezystory i cewki, także kondensatory można łączyć w celu uzyskania pożądanej pojemności. W połączeniu szeregowym pojemność zastępcza dana jest wzorem:

$$\frac{1}{C_z} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

W przypadku połączenia równoległego kondensatorów pojemność zastępcza wyraża się zależnością:

$$C_z = C_1 + C_2 + \dots + C_n$$

Taka zależność wynika z faktu, że ładunek elektryczny równolegle połączonych kondensatorów jest sumą ładunków zgromadzonych na kondensatorach.

2 Opracowanie wyników pomiarów

Charakterystyki prądowo-napięciowe I = f(U) dla:

Cewki z rdzeniem, z zasilaniem układu prądem stałym:

I, mA	u(I), mA	U, V	u(U), V
6, 7	0, 13	0,504	0,0032
13,3	0,17	1	0,0035
19,9	0,20	1,497	0,0037
26, 7	0,23	2,018	0,0040
33	0,27	2,48	0,0042
40,6	0,30	3,05	0,0045
46, 2	0,33	3,51	0,0048
54, 5	0,37	4,088	0,0050

Niepewność obliczona została na podstawie wzoru podanego przez producenta przyrządu pomiarowego tj. dla napięcia

$$0,05\% * x + 3 * 0,003 V$$

oraz dla natężenia

$$0.5\% * x + 1 * 0.1 mA$$

gdzie x to mierzona wartość.

Przy pomocy funkcji w programie Excel 'REGLINP' wyznaczamy wzór lini trendu: y = 13,2657x + 0,019 oraz niepewność u(a) = 0,1103.

Odwrotność współczynnika

$$R = \frac{1}{a}$$

prostej wyznacza rezystancję dla prądu stałego:

$$R = 0.0753823\Omega$$

Aby obliczyć niepewność podanej wartości stosujemy wzór

$$u(R) = \sqrt[2]{(\frac{dR}{da}u(a))^2} = 0,0002063\Omega$$

więc rezystancja jest równa

$$R = 0,0753823\Omega \pm 0,2063m\Omega$$

Cewki z rdzeniem, z zasilaniem układu prądem przemiennym
(zmieniając napięcie co 1V, zaczynając 0 kończąc na 8V):

I, mA	u(I), mA	U, V	u(U), V
1	0,31	0,98	0,015
2,2	0,32	1,99	0,020
3,2	0,33	2,949	0,025
4,3	0,34	3,968	0,030
5,3	0,35	5,007	0,035
6,3	0,36	6,022	0,040
7,3	0,37	6,964	0,045
8,3	0,38	7,973	0,050

Niepewność obliczona została na podstawie wzoru tj. dla napięcia

$$0.5\% * x + 10 * 0.001 V$$

oraz dla natężenia

$$1\% * x + 3 * 0, 1 mA$$

gdzie x to mierzona wartość.

Przy pomocy funkcji w programie Excel 'REGLINP' wyznaczamy wzór lini trendu: y=1,0362x+0,0938 oraz niepewność u(a)=0,01351. Odwrotność współczynnika

$$Z_L = \frac{1}{a}$$

prostej wyznacza impedancję ${\cal Z}_L$ dla prądu zmiennego:

$$Z_L=0,9650664\Omega$$

Aby obliczyć niepewność podanej wartości stosujemy wzór

$$u(Z_L) = \sqrt[2]{(\frac{dZ_L}{da}u(a))^2} = 0,012583\Omega$$

więc impedancja jest równa

$$Z_L = 0,9650664 \pm 12,583 m\Omega$$

Indukcyjność cewki wyliczamy ze wzoru

$$L = \frac{\sqrt{Z_L^2 - R^2}}{2\pi f}$$

gdzie R to obliczona wcześniej rezystancja, a f to częstotliwość prądu przemiennego wynosząca 50Hz.

$$L = 3,063H$$

Korzystając z propagacji niepewności obliczamy u(L)

$$u(L) = \sqrt{\left(\frac{Z_L}{2\pi f \sqrt{Z_L^2 - R^2}} \cdot u(Z_L)\right)^2 + \left(\frac{-R}{2\pi f \sqrt{Z_L^2 - R^2}} \cdot u(R)\right)^2} = 0,031H$$

$$L = 3,063 \ H \pm 0,029 \ H$$

Cewki bez rdzenia, z zasilaniem układu prądem przemiennym:

I, mA	u(I), mA	U, V	u(U), V
6,1	0,36	0,996	0,015
12,5	0,43	2,027	0,020
18,4	0,48	2,97	0,025
24,6	0,55	3,982	0,030
31	0,61	4,999	0,035
37,5	0,68	6,042	0,040
43, 5	0,73	6,986	0,045
51,4	0,81	8,02	0,050

Niepewność obliczona została na podstawie wzoru tj. dla napięcia

$$0,5\% * x + 10 * 0,001 V$$

oraz dla natężenia

$$1\% * x + 3 * 0, 1 mA$$

gdzie x to mierzona wartość.

Przy pomocy funkcji w programie Excel 'REGLINP' wyznaczamy wzór lini trendu: y=6,3118x-0,314 oraz niepewność u(a)=0,0501.

Odwrotność współczynnika

$$Z_L = \frac{1}{a}$$

prostej wyznacza impedancję ${\cal Z}_L$ dla cewki bez rdzenia dla prądu zmiennego:

$$Z_L = 0,1584\Omega$$

Aby obliczyć niepewność podanej wartości stosujemy wzór

$$u(Z_L) = \sqrt[2]{(\frac{dZ_L}{da}u(a))^2} = 0,003546\Omega$$

więc impedancja jest równa

$$Z_L = 0.1584\Omega \pm 3.546m\Omega$$

Indukcyjność cewki wyliczamy ze wzoru

$$L = \frac{\sqrt{Z_L^2 - R^2}}{2\pi f}$$

gdzie R to obliczona wcześniej rezystancja, a f to częstotliwość prądu przemiennego wynosząca 50Hz.

$$L = 0,443447H$$

Korzystając z propagacji niepewności obliczamy u(L)

$$u(L) = \sqrt{\left(\frac{Z_L}{2\pi f \sqrt{Z_L^2 - R^2}} \cdot u(Z_L)\right)^2 + \left(\frac{-R}{2\pi f \sqrt{Z_L^2 - R^2}} \cdot u(R)\right)^2} = 0,008H$$

	L =	0.	443447	H	\pm	0.	008	H
--	-----	----	--------	---	-------	----	-----	---

Kondensatora C_1 , z zasilaniem układu prądem przemiennym:

I, mA	u(I), mA	U, V	u(U), V
0,0123	0,0031	0,993	0,015
0,25	0,0055	2	0,02
0,371	0,0067	2,984	0,025
0,497	0,0080	4,003	0,030
0,624	0,0092	5,014	0,035
0,746	0,010	5,978	0,040
0,872	0,012	7	0,045
0,998	0,013	7,974	0,050

Niepewność obliczona została na podstawie wzoru tj. dla napięcia

$$0,5\% * x + 10 * 0,001 V$$

oraz dla natężenia

$$1\% * x + 3 * 0,001 \ mA$$

gdzie x to mierzona wartość.

Przy pomocy funkcji w programie Excel 'REGLINP' wyznaczamy wzór lini trendu: y=0,1458x-0,1069 oraz niepewność u(a)=0,00021.

Odwrotność współczynnika

$$X_C = \frac{1}{a}$$

prostej wyznacza reaktancję pojemnościową X_C kondensatora C_1 :

$$X_C = 6,85871\Omega$$

Aby obliczyć niepewność podanej wartości stosujemy wzór

$$u(X_C) = \sqrt[2]{(\frac{dX_C}{da}u(a))^2} = 0,013\Omega$$

więc reaktancja pojemnościowa jest równa

$$X_C = 6,85871\Omega \pm 13m\Omega$$

Pojemność C_1 obliczamy ze wzoru

$$C_1 = \frac{1}{2\pi f X_C} = 464,096\mu F$$

Korzystając z propagacji niepewności obliczamy u(C)

$$u(C) = \sqrt{(-\frac{1}{2\pi f X_C^2} \cdot u(X_C))^2} = 0,55\mu F$$

$$C = 464,096\mu F \pm 0,55\mu F$$

Kondensatora C_2 , z zasilaniem układu prądem przemiennym:

I, mA	u(I), mA	U, V	u(U), V
0,064	0,0036	1,023	0,015
0,125	0,0043	2	0,02
0,188	0,0049	3,005	0,025
0,254	0,0055	4,035	0,030
0,313	0,0061	5,009	0,035
0,374	0,0067	5,992	0,040
0,435	0,0074	7,03	0,045
0,504	0,0080	8,045	0,050

Niepewność obliczona została na podstawie wzoru tj. dla napięcia

$$0.5\% * x + 10 * 0.001 V$$

oraz dla natężenia

$$1\% * x + 3 * 0.001 \ mA$$

gdzie x to mierzona wartość.

Przy pomocy funkcji w programie Excel 'REGLINP' wyznaczamy wzór lini trendu: y=0,0623x-0,0005 oraz niepewność u(a)=0,00013.

Odwrotność współczynnika

$$X_C = \frac{1}{a}$$

prostej wyznacza reaktancję pojemnościową X_C kondensatora C_2 :

$$X_C = 16,05136\Omega$$

Aby obliczyć niepewność podanej wartości stosujemy wzór

$$u(X_C) = \sqrt[2]{(\frac{dX_C}{da}u(a))^2} = 0,03349\Omega$$

więc reaktancja pojemnościowa jest równa

$$X_C = 16,05136\Omega \pm 33,49m\Omega$$

Pojemność C_2 obliczamy ze wzoru

$$C_2 = \frac{1}{2\pi f X_C} = 198,307\mu F$$

Korzystając z propagacji niepewności obliczamy u(C)

$$u(C) = \sqrt{(-\frac{1}{2\pi f X_C^2} \cdot u(X_C))^2} = 0,30\mu F$$
$$C = 198,307\mu F \pm 0,30\mu F$$

Kondensatorów połączonych szeregowo, z zasilaniem układu prądem przemiennym:

I, mA	u(I), mA	U, V	u(U), V
0,046	0,0035	1,039	0,015
0,091	0,0039	1,998	0,020
0,138	0,0044	3,015	0,025
0,178	0,0048	3,972	0,030
0,228	0,0053	4,998	0,035
0,273	0,0057	6,005	0,040
0,323	0,0062	7,054	0,045
0,361	0,0066	7,909	0,050

Niepewność obliczona została na podstawie wzoru tj. dla napięcia

$$0,5\% * x + 10 * 0,001 V$$

oraz dla natężenia

$$1\% * x + 3 * 0,001 \ mA$$

gdzie x to mierzona wartość.

Przy pomocy funkcji w programie Excel 'REGLINP' wyznaczamy wzór lini trendu: y=0,0458x-0,0013 oraz niepewność u(a)=0,000062.

Odwrotność współczynnika

$$X_C = \frac{1}{a}$$

prostej wyznacza reaktancję pojemnościową $X_{\cal C}$ szeregowo połączonych kondensatorów ${\cal C}_1$ i ${\cal C}_2$:

$$X_C = 21,83406\Omega$$

Aby obliczyć niepewność podanej wartości stosujemy wzór

$$u(X_C) = \sqrt[2]{(\frac{dX_C}{da}u(a))^2} = 0,02955\Omega$$

więc reaktancja pojemnościowa szeregowo połączonych kondensatorów \mathcal{C}_1 i \mathcal{C}_2 jest równa

$$X_C = 21,83406\Omega \pm 0,02955\Omega$$

Pojemność układu obliczamy ze wzoru

$$C = \frac{C_1 C_2}{C_1 + C_2} = \frac{464,096 \cdot 198,307}{464,096 + 198,307} = 138,9388 \mu F$$

Korzystając z propagacji niepewności obliczamy $u({\cal C})$

$$u(C) = \sqrt{\left(\frac{C_2(C_1 + C_2) - (C_1C_2)}{(C_1 + C_2)^2}u(C_1)\right)^2 + \left(\frac{C_1(C_1 + C_2) - (C_1C_2)}{(C_1 + C_2)^2}u(C_2)\right)^2} = 0, 13\mu F$$

$$C = 138, 9388\mu F \pm 0, 13\mu F$$