安徽大学 2021—2022 学年第 二 学期

《大学物理 A (上)》期中考试试卷 (闭卷 时间 120 分钟)

			3	考场登记	是表序号				
题号	(1) (1) · (1)	rti <u>s</u> 9	三(15)	三(16)	三(17)	三(18)	四(19)	总分]
得分	8 F - F 1	预订的	8 17 17 1		en i kin metang papanban ana		and the same of		1
阅卷人	SELA HOLD	S 40 . 12 A	(45-412-65)	- A (w)	200	170/1	-CO- 46	British and a second	
一、单选	题(每小	题2分,	共20分)				得分	7 %
1. 一质点在	生平面上运	动,已知	质点位 置 9	量的表达	式 $\bar{\mathbf{r}} = \mathbf{m} \mathbf{t}^2 \bar{\mathbf{r}}$		中m和r	 1 为常数),	 则质点做
						[]	, , , , ,	
(A) 变	速直线运	动.		(B) 5	7速直线运	- 动.	_		
(C) 抛	物线运动.	3		(D) A	习速率圆周:	运动.			
2. 在系统	下受外力作	用的非弹	性碰撞过和	星中		E .]		
(A) 只	有机械能等	守恒.		(B) \$	力能和动量	都不守恒.			
(C) 动	能不守恒、	动量守恒	ī.	(D) \$	力能守恒、z	动量不守恒	•	6	
3. 甲船以	ν ₁ =10m/s	的速度向i	南航行,乙	船以 ν ₂ =1	0m/s 的速度	度向东航行	,则甲船_	上的人观察	乙船的返
度大小为多	少,向哪·	个方向航	Ţ			Ε]		
(A) 1	$0\sqrt{2}m/s$,东偏北	45°.	(B)	$10\sqrt{2}m/s$,	西偏北4	5°.		
(C) 1	$0\sqrt{3}m/s$,东偏北:	30°.	(D) 1	$0\sqrt{3}m/s$,	西偏北30	۰.		
4. 一船浮	于静水中,	船长L,	质量为 M,	一个质量	为m的人	人船尾走到	船头,已	知 M=2m.	不计水和
空气的阻力	,则在此	过程中船	将	,		[]		
(A) 7	不动.	(B)	后退L.	(C)	后退 $\frac{1}{2}$ L		(D) 后退	$\frac{1}{3}$ L.	
5. 如图所	示,质点从	人竖直放置	的圆周顶	端 A 处分别]沿不同长周	度的弦 AB系	II AC (ACX	AB)由静止	下滑, 7
计摩擦阻力	。质点下	滑到底部)	听需要的时	间分别为	t_B 和 t_C ,贝	J []		
(A) t_B	$=t_C$.	(B)	$t_B > t_C$.					4	_
(C) t _R	$\langle t_c$.	(D)	条件不足	,无法判员	₹.				11

Г

6. 一质点做匀速率圆周运动时

(A) 质点的动量不变,对圆心的角动量也不变.

(B) 质点的动量不变,对圆心的角动量不断改变.

(C) 质点的动量不断改变,对圆心的角动量不变.
(D) 质点的动量不断改变,对圆心的角动量也不断改变.
7.质点的质量为 m,置于光滑球面的顶点 A 处(球面固定不动),如图所示.当它由静止开始下滑至
球面上 B 点时,它的加速度大小为 []
(A) $2g(1-\cos\theta)$. (B) $g\sin\theta$.
(C) g . (D) $\sqrt{4g^2(1-\cos\theta)^2+g^2\sin^2\theta}$.
8. 小球 A 和 B 的质量相同,B 球原来静止,A 球以速度 u 与 B 球作对心碰撞. 这两球碰撞后的速度 $ u_{A}$
和 ν _в 的各种可能值中有 []
(A) $-u 2u$. (B) $u/4 3u/4$.
(C) $-u/4$ $5u/4$. (D) $u/2$ $-\sqrt{3}u/2$.
9.关于刚体对轴的转动惯量,下列说法中正确的是[]
(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.
(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.
(C) 取决于刚体的质量、质量的空间分布和轴的位置.
(D) 取决于刚体的质量和轴的位置,与质量的空间分布无关.
10. 一个转动惯量为 $f J$ 的圆盘绕一固定轴转动,初角速度为 $m \omega_0$. 设它所受到的阻力矩与转动角速度成
正比,即 $\mathbf{M}=-k\omega$ (k 为正常数)。它的角速度从 ω_0 变为 $\frac{\omega_0}{2}$ 所需时间为[
(A) $J/2$. (B) J/k .
(C) $(J/k) \ln 2$. (D) $J/2k$.
二、填空题(每小题 4 分, 共 16 分)
11. 一质点的运动方程是 $\vec{r}=R\cos\omega t\hat{i}+R\sin\omega t\hat{j}$, R 、 ω 为正常数. 从 $t=\pi/\omega$ 到 $t=2\pi/\omega$ 时间
内,该质点的位移是,路程是
12. 一质量为 20g 的子弹以 200m/s 的速率射入一固定墙壁内,设子弹所受
阻力与其进入墙壁的深度 x 的关系如图所示,则该子弹能进入墙壁的深度 x(cm)
为,阻力做的功为 <i>·</i>
13. 质量为 0.25kg 的质点,受 $\vec{F}=t\vec{i}$ (N)的力作用, $t=0$ 时该质点以 $\vec{v}=2\vec{j}$ m/s 的速度通过坐标原点,
该质点任意时刻的速度表达式为,位置矢量表达式为
14.一质点在二恒力的作用下,位移为 $\Delta ar r$ =3 $ar i$ +8 $ar j$ (m),在此过程中,动能增量为 24 $ar J$,已知其中一

三、计算题(每小题13分,共52分)

得分

- 15. 摩托快艇以速率 v_0 行驶,它受到的摩擦阻力与速率平方成正比,可表示为 $F = -kv^2$ (k 为正常数)。 设摩托快艇的质量为 m, 当摩托快艇发动机关闭后,
 - (1)求速率 v 随时间 t 的变化规律。
 - (2)路程 x 随时间 t 的变化规律。
- 16. 图中A为定滑轮,B为动滑轮,三个物体 $m_1=200g$, $m_2=100g$, $m_3=50g$, 滑轮及绳的 质量以及摩擦均忽略不计。(其中 $g=10m/s^2$) 求:
 - (1) 每个物体的加速度;

Z,

Ħ.

¥

- (2) 两根绳子的张力 T_1 与 T_2 .
- 17. 长l=0.40m、质量M=1.50kg的匀质木棒,可绕水平轴O在竖直平面内转动, 开始时棒自然竖直悬垂,现有质量m=8g的子弹以v=200m/s的速率从A点射入棒 中,A 点与 O 点的距离为 $\frac{3}{4}$ l,如图所示。求: (1) 棒开始运动时的角速度: (2) 棒 的最大偏转角.

- 18. 一质量为m的小球,由顶端沿质量为 M 的圆弧形木槽自静止下滑,设圆弧形槽的半径为 R (如图 所示)。忽略所有摩擦,求
 - (1)小球刚离开圆弧形槽时,小球和圆弧形槽的速度;
 - (2)小球滑到 B 点时对木槽的压力.

四、证明题(共12分)

得分

19. 一个小球与一质量相等的静止小球发生非对心弹性碰撞,证明碰后两小球的运动方向互相垂直,

第3页 共3页

安徽大学 2021—2022 学年第<u>二</u>学期《大学物理 A(上)》期中考试试题参考答案及评分标准

一、单选题(每小题2分,共20分)

1. A 2. C 3. A 4. D 5. A 6. C 7. D 8. B 9. C 10. C

二、填空题(每小题4分,共16分)

11. $2R\bar{i}$

 πR

12. 3cm

400J

13.
$$2t^2\vec{i} + 2\vec{j} (\text{m/s})$$
 $\frac{2}{3}t^3\vec{i} + 2t\vec{j}$ (m)

14. 20*J* 4*J*

三、计算题(共52分)

15. 解: (1) 由牛顿运动定律 F = ma 得 (2 分)

$$-kv^2 = m \frac{\mathrm{d}v}{\mathrm{d}t}$$
, 分离变量 $-\frac{k}{m} \mathrm{d}t = \frac{\mathrm{d}v}{v^2}$

两边积分
$$\int_0^t -\frac{k}{m} \, \mathrm{d}t = \int_{\nu_0}^\nu \frac{\mathrm{d}\nu}{\nu^2} \,$$
 (3 分)

速率随时间变化的规律为
$$v = \frac{1}{\frac{1}{v_0} + \frac{k}{m}t}$$
 (3 分)

(2) 由位移和速度的积分关系 $x = \int_0^t v dt + x_0$, 设 $x_0 = 0$

积分
$$x = \int_0^t v dt = \int_0^t \frac{1}{\frac{1}{v_0} + \frac{k}{m}t} dt = \frac{m}{k} \ln(\frac{1}{v_0} + \frac{k}{m}t) - \frac{m}{k} \ln\frac{1}{v_0}$$
 (3分)

路程随时间变化的规律为
$$x = \frac{m}{k} \ln(1 + \frac{k}{m} \upsilon_0 t)$$
 (2 分)

16. 解: 设两根绳子的张力分别为 T_1 、 T_2 ; m_2 、 m_3 相对 B 轮的加速度大小为 a_2' ; m_1 、 m_2 、 m_3 的加速度大小分别为 a_1 、 a_2 、 a_3 。

根据牛顿运动定律

$$m_1 g - T_1 = m_1 a_1 \tag{2 \%}$$

$$m_2g - T_2 = m_2a_2 = m_2(a_2' - a_1)$$
 (2 分)

$$m_3g - T_2 = m_3(-a_3) = m_3(-a_2' - a_1)$$
 (2 分)

$$2T_2 - T_1 = 0$$
 (2 $\%$)

由以上六式解得

$$a_1 = \frac{1}{5}g = 2(m/s^2)$$
 方向竖直向下 $a_2' = \frac{2}{5}g = 4(m/s^2)$ $a_2 = \frac{1}{5}g = 2(m/s^2)$ 方向竖直向下 $a_3 = \frac{3}{5}g = 6(m/s^2)$ 方向竖直向上 $T_1 = 0.16g = 1.6(N)$ $T_2 = 0.08g = 0.8(N)$ (5分)

17. 解: (1) 应用角动量守恒定律

$$m\upsilon \cdot \frac{3}{4}l = \frac{1}{3}Ml^2\omega + m\left(\frac{3}{4}l\right)^2\omega \tag{4.5}$$

得
$$\omega = \frac{\frac{3}{4}m\upsilon}{\left(\frac{1}{3}M + \frac{9}{16}m\right)l} = \frac{\frac{3}{4} \times 8 \times 10^{-3} \times 200}{\left(\frac{1}{3} \times 1.5 + \frac{9}{16} \times 8 \times 10^{-3}\right) \times 0.4} = 5.95(rad/s)$$
 (3 分)

(2) 应用机械能守恒定律

$$\frac{1}{2} \left[\frac{1}{3} M l^2 + m \left(\frac{3}{4} l \right)^2 \right] \omega^2 - M g \frac{l}{2} - m g \frac{3l}{4} = -M g \frac{l}{2} \cos \theta - m g \frac{3l}{4} \cos \theta \tag{4 \%}$$

得
$$\cos \theta = 1 - \frac{\frac{2}{3}M + \frac{9}{8}m}{2M + 3m} \cdot \frac{l}{g}\omega^2 = 0.52$$
 $\theta = 58.6^{\circ}$ (2分)

18 解:设小球和圆弧形槽的速度分别为 υ_1 和 υ_2

(1)由动量守恒定律
$$m\upsilon_1 + M\upsilon_2 = 0$$
 (2 分)

由机械能守恒定律
$$\frac{1}{2}mv_1^2 + \frac{1}{2}Mv_2^2 = mgR$$
 (2 分)

由上面两式解得

$$\upsilon_{1} = \sqrt{\frac{2MgR}{m+M}} = M\sqrt{\frac{2gR}{(m+M)M}} \qquad \qquad \upsilon_{2} = -m\sqrt{\frac{2gR}{(m+M)M}}$$
 (2 分)

(2)小球相对槽的速度为 $\bar{\upsilon} = \bar{\upsilon}_1 - \bar{\upsilon}_2$

$$\upsilon = \upsilon_1 - \upsilon_2 = (M + m)\sqrt{\frac{2gR}{(m+M)M}}$$
 (2 分)

竖直方向应用牛顿运动第二定律

$$N - mg = m\frac{v^2}{R} \tag{2 \%}$$

$$N' = N = mg + m\frac{v^2}{R} = mg + (M + m)^2 \frac{2mg}{(m + M)M} = 3mg + \frac{2m^2g}{M}$$
 (3 分)

四、证明题(共12分)

19. 证:两小球碰撞过程中,机械能守恒,动量守恒

$$\frac{1}{2}m\upsilon_0^2 = \frac{1}{2}m\upsilon_1^2 + \frac{1}{2}m\upsilon_2^2 \qquad \qquad \upsilon_0^2 = \upsilon_1^2 + \upsilon_2^2 \qquad (1) \qquad (4 \, \%)$$

$$m\bar{\upsilon}_0 = m\bar{\upsilon}_1 + m\bar{\upsilon}_2 \qquad \qquad \bar{\upsilon}_0 = \bar{\upsilon}_1 + \bar{\upsilon}_2 \qquad (2)$$

 $m\bar{\upsilon}_0=m\bar{\upsilon}_1+m\bar{\upsilon}_2$ $\bar{\upsilon}_0=\bar{\upsilon}_1+\bar{\upsilon}_2$ (2) (4分) 由 (2) 式可以作出矢量三角形,又由 (1) 式可知三矢量大小满足勾股定理定理,且 $\bar{\upsilon}_0$ 为 斜边,因此 $\bar{\upsilon}_1$ 与 $\bar{\upsilon}_2$ 是互相垂直的 (4分)

