Advanced Risk Management

Exercises Week 5

1. Let (X_1, X_2) have a bivariate standard normal distribution with correlation coefficient ρ , and let S^2 be a $\chi^2(4)$ random variable, divided by 4; S^2 is independent of (X_1, X_2) . Finally, define

$$z_i = \frac{1}{\sqrt{2}} \frac{X_i}{S}, \qquad i = 1, 2,$$

so that (z_1, z_2) has a bivariate standardized t(4) distribution.

(a) For any w_1 and w_2 , show that

$$\frac{w_1 z_1 + w_2 z_2}{\sqrt{w_1^2 + w_2^2 + 2\rho w_1 w_2}}$$

has a standardized t(4) distribution.

- (b) If $\rho = 0$, then X_1 and X_2 are independent. Would you also expect z_1 and z_2 to be independent in this case? Why / why not?
- 2. Let u_t be a random variable with a uniform distribution on the interval [0,1], and define $z_t = \Phi^{-1}(u_t)$, where $\Phi^{-1}(p)$ is the standard normal percentile function. Show that z_t has a standard normal distribution.
- 3. The empirical distribution function of a sample $\{z_i\}_{i=1}^T$ is defined as

$$\hat{F}(z) = \frac{1}{T} \sum_{i=1}^{T} \mathbb{I}(z_i \le z),$$

where $\mathbb{I}(A) = 1$ if A is true, and zero otherwise.

(a) Let T=5 and suppose that $(z_1,\ldots,z_5)=(-2,-1,0,1,2)$. Make a plot of $\hat{F}(z)$, and use this to determine the values of $u_i=\hat{F}(z_i), i=1,\ldots,5$.

The figure mentioned in (a) will show that the function \hat{F} is not one-to-one, so that its inverse \hat{F}^{-1} does not exist; (such an inverse would have to satisfy $\hat{F}(\hat{F}^{-1}(u)) = u$ for all $u \in [0,1]$). However, the empirical quantile function

$$\hat{Q}(u) = \min\{z : \hat{F}(z) \ge u\}$$

is considered a generalized inverse of $\hat{F}(z)$, in the sense that $\hat{Q}(\hat{F}(z_i)) = z_i$ for $i = 1, \dots, T$.

- (b) Make a plot of $\hat{Q}(u)$ for the same example as mentioned in (a).
- (c) Let $U \sim U[0,1]$, and define $Z = \hat{Q}(U)$, where \hat{Q} is the empirical quantile function of a sample $\{z_i\}_{i=1}^T$. Show that Z has a discrete probability distribution with $\Pr(Z = z_i) = 1/T$, for i = 1, ..., T.

The result in (c) implies that (filtered) historical simulation can be carried out as follows:

1

- draw independent random numbers u_i , i = 1, ..., MC, from the U[0, 1] distribution;
- define $\check{z}_i = \hat{Q}(u_i)$, where $\hat{Q}(u)$ is the empirical quantile function of the last m standardized residuals $\{\hat{z}_{t-m+1}, \dots, \hat{z}_t\}$;
- define $\check{R}_{i,t+1} = \sigma_{t+1} \check{z}_i$ for $i = 1, \dots, MC$;
- determine the Value at Risk at time t as minus a percentile of $\{\check{R}_{1,t+1},\ldots,\check{R}_{1,t+1}\}$.

The next question tries to generalize this to the bivariate situation.

- (d) Compare the filtered historical simulation approach, where (z_{1i}, z_{2i}) are drawn with replacement from the observed vectors $(\hat{z}_{1t}, \hat{z}_{2t})$, with a normal copula approach, in which we take the empirical distribution functions of \hat{z}_{1t} and \hat{z}_{2t} for $F_1(z)$ and $F_2(z)$, respectively, and we use:
 - i. an independence copula, i.e., $G(u_1, u_2) = u_1 u_2$;
 - ii. a perfect dependence copula, i.e., $G(u_1, u_2) = u_1 \mathbb{I}(u_2 = u_1)$;
 - iii. a Gaussian copula with correlation $\rho^* = \operatorname{corr}(\hat{z}_{1t}, \hat{z}_{2t})$.