APPENDIX A

1 (Currently Amended). A method for evaluating a digital signaling system comprising the steps of:

generating a transmit repeating pattern in a transmit circuit;

transmitting the transmit repeating pattern to a receive circuit;

generating a receive repeating pattern in the receive circuit;

comparing the transmitted transmit repeating pattern to the receive repeating pattern in a test mode to obtain a comparison; and

adjusting a parameter affecting reception of the transmit repeating pattern at the receive circuit to evaluate how the digital signaling system may operates in a normal mode with the adjusted parameter.

- 2 (Original). The method of claim 1 wherein the parameter is a termination setting.
- 3 (Original). The method of claim 1 wherein the parameter is a transmit clock offset.

- 4 (Original). The method of claim 1 wherein the parameter is a receive clock offset.
- 5 (Original). The method of claim 1 wherein the parameter is an input receiver window.
- 6 (Original). The method of claim 1 wherein the parameter is an output drive level.
- 7 (Original). The method of claim 1 wherein the parameter is a crosstalk cancellation coefficient.
- 8 (Original). The method of claim 1 wherein the parameter is an equalization coefficient.
- 9 (Original). The method of claim 1 wherein the step of generating a transmit repeating pattern in a transmit circuit comprises the step of:
- utilizing a shift register to generate the transmit repeating pattern.
- 10 (Original). The method of claim 9 wherein the step of utilizing a shift register to generate the transmit repeating

pattern comprises the step of:

utilizing a linear feedback shift register to generate the transmit repeating pattern.

11 (Original). The method of claim 1 wherein the step of transmitting the transmit repeating pattern to the receive circuit further comprises the step of:

transmitting the transmit repeating pattern as a signal referenced to a ground.

12 (Original). The method of claim 1 wherein the step of transmitting the transmit repeating pattern to the receive circuit further comprises the step of:

transmitting the transmit repeating pattern as a differential signal over a pair of conductors.

13 (Original). The method of claim 1 wherein the step of transmitting the transmit repeating pattern to the receive circuit further comprises the step of:

transmitting the transmit repeating pattern by encoding two bits of information on a single conductor simultaneously.

14 (Original). The method of claim 1 further comprising the step

of:

setting the parameter affecting reception of the transmit

repeating pattern at the receive circuit.

15 (Original). The method of claim 1 wherein the step of

adjusting the parameter affecting reception of the transmit

repeating pattern at the receive circuit is repeated over a

range of values of the parameter.

16 (Previously Presented). The method of claim 15 wherein the

steps of transmitting the transmit repeating pattern to the

receive circuit and comparing the transmitted transmit repeating

pattern to the receive repeating pattern in a test mode to

obtain a comparison are repeated after the step of adjusting the

parameter affecting reception of the transmit repeating pattern

at the receive circuit is performed.

17 (Original). The method of claim 16 further comprising the

step of:

constructing a representation of a waveform based on the

comparison.

18 (Original). The method of claim 1 further comprising the step

of:

selecting a value of the parameter so as to optimize

reception at the receive circuit of a transmit data output

signal transmitted by the transmit circuit.

19 (Original). The method of claim 18 wherein the transmit

repeating pattern and the transmit data output signal are

communicated from the transmit circuit to the receive circuit

over a common medium.

20 (Original). The method of claim 19 wherein the common medium

is a data line.

21 (Original). The method of claim 19 wherein the common medium

is an address line.

22 (Original). The method of claim 19 wherein the common medium

is a control line.

23 (Previously Presented). The method of claim 18 wherein at

least one medium is used to communicate the transmit data output

signal but not to communicate the transmit repeating pattern.

Client Reference No.: RA208.CIP1.US

24 (Original). The method of claim 23 wherein the at least one medium is a data line.

25 (Original). The method of claim 23 wherein the at least one medium is an address line.

26 (Original). The method of claim 23 wherein the at least one medium is a control line.

27 (Original). The method of claim 23 wherein at least one analysis medium is used to communicate the transmit repeating pattern.

- 28 (Original). The method of claim 27 wherein the at least one analysis medium is a data line.
- 29 (Original). The method of claim 27 wherein the at least one analysis medium is an address line.
- 30 (Original). The method of claim 27 wherein the at least one analysis medium is a control line.
- 31 (Original). The method of claim 1 wherein the receive

Patent Application

Attorney Docket No.: 57941.000041

Client Reference No.: RA208.CIP1.US

repeating pattern is repeated with a first period and the

transmit repeating pattern is repeated with a second period, the

first period and the second period bearing a multiple and

submultiple relationship to each other.

32 (Original). The method of claim 31 wherein the first period

and the second period are equal.

33 (Previously Presented). The method of claim 31 wherein the

step of comparing the transmitted transmit repeating pattern and

the receive repeating pattern in a test mode is performed over

multiple instances of the first period and the second period.

34 (Original). The method of claim 33 wherein the step of

adjusting the parameter occurs in the transmit circuit.

35 (Original). The method of claim 33 wherein the step of

adjusting the parameter occurs in the receive circuit.

36 (Original). The method of claim 35 wherein the parameter

affects reception of a receive data input signal, the receive

data input signal communicated along a first medium used to

transmit the transmit repeating pattern to the receive circuit.

Patent Application

Attorney Docket No.: 57941.000041

Client Reference No.: RA208.CIP1.US

37 (Original). The method of claim 36 wherein the parameter

further affects reception of a second receive data input signal,

the second receive data input signal communicated along a second

medium, the second medium being distinct from the first medium.

38 (Original). The method of claim 1 wherein the step of

generating the transmit repeating pattern is performed so that

the transmit repeating pattern is clocked at a transmit clock

rate and the step of generating the receive repeating pattern is

performed so that the receive repeating pattern is clocked at a

receive clock rate, the transmit clock rate and the receive

clock rate bearing a multiple and submultiple relationship to

each other.

39 (Original). The method of claim 1 further comprising the step

of:

adjusting a second parameter affecting reception of the

transmit repeating pattern at the receive circuit.

40 (Previously Presented). The method of claim 39 wherein the

step of comparing the transmitted transmit repeating pattern to

the receive repeating pattern in a test mode comprises the step

of:

comparing over a first range of the parameter and a second range of the second parameter.

41 (Previously Presented). The method of claim 1 wherein the step of comparing the transmitted transmit repeating pattern to the receive repeating pattern in a test mode comprises the step of:

detecting non-repeatability in a relationship between the transmitted transmit repeating pattern and the receive repeating pattern.

42 (Original). The method of claim 41 wherein the step of adjusting the parameter further comprises the step of:

adjusting the parameter based on the non-repeatability.

43 (Previously Presented). The method of claim 1 wherein the step of comparing the transmitted transmit repeating pattern to the receive repeating pattern in a test mode to obtain a comparison is performed at system start-up.

44 (Previously Presented). The method of claim 1 wherein the step of comparing the transmitted transmit repeating pattern to

the receive repeating pattern in a test mode to obtain a comparison is performed upon detection of a communication

45 (Previously Presented). The method of claim 1 wherein the step of comparing the transmitted transmit repeating pattern to the receive repeating pattern in a test mode to obtain a comparison is performed occasionally between periods of communication of user data between the transmit circuit and the receive circuit.

46 (Original). The method of claim 1 wherein the transmit circuit and the receive circuit are located within the digital signaling system being evaluated.

47 (Original). The method of claim 1 wherein the transmit circuit is located external to the digital signaling system being evaluated.

48 (Original). The method of claim 1 wherein the receive circuit is located external to the digital signaling system being evaluated.

failure.

49 (Previously Presented). A transmit circuit comprising:

a transmit data storage element configured to receive data from a transmit data input and sequentially transmit a transmit data output signal when the transmit circuit is operating in a the transmit data storage element normal mode, configured to provide a repeating pattern signal when the transmit circuit is operating in a test mode, the transmit circuit sequentially transmitting the transmit data output signal based on the repeating pattern signal when the transmit circuit is operating in the test mode, wherein the transmit data storage element is loaded from the transmit data input to initialize the test mode.

50 (Original). The transmit circuit of claim 49 wherein the transmit data storage element comprises a shift register.

51 (Original). The transmit circuit of claim 49 further comprising:

a test loop coupled to the transmit data storage element when the transmit circuit is operating in the test mode, the test loop providing feedback to allow the transmit data storage element to provide the repeating pattern signal.

Patent Application

Attorney Docket No.: 57941.000041

Client Reference No.: RA208.CIP1.US

52 (Original). The transmit circuit of claim 49 wherein the

repeating pattern signal has a data length greater than a data

capacity of the transmit data storage element.

53 (Original). The transmit circuit of claim 49 wherein the

repeating pattern signal represents a sequence of data bits, the

transmit data storage element storing each of the data bits.

54 (Original). The transmit circuit of claim 49 wherein, when

the transmit data storage element is divided into transmit data

storage sub-elements during operation in the normal mode, the

transmit data storage sub-elements are combined as the transmit

data storage element for providing the repeating pattern signal

when the transmit circuit is operating in the test mode.

55 (Cancelled).

56 (Cancelled).

57 (Original). The transmit circuit of claim 49 wherein the

transmit data storage element is loaded via a parallel transmit

load input.

58 (Currently Amended). The transmit circuit of claim 49

wherein the transmit circuit receives an adjustment signal from

a receiver circuit, the receive circuit receiving the transmit

data output signal, the transmit circuit adjusting a parameter

of the transmit data output signal based on the adjustment

signal.

59 (Original). The transmit circuit of claim 58 wherein the

receive circuit is embodied in a first memory device and a

second receive circuit is embodied in a second memory device.

60 (Original). The transmit circuit of claim 59 wherein the

transmit circuit adjusts the parameter to a first value for

communication with the first memory device and to a second value

for communication with the second memory device.

61 (Previously Presented). A receive circuit comprising:

a receive data storage element configured to output a

receive data output signal based on a receive data input signal

received at a receive data input when the receive circuit is

operating in a normal mode, the receive data storage element

further configured to provide a repeating pattern signal when

the receive circuit is operating in a test mode; and

a comparison element configured to perform a comparison of a relationship between the repeating pattern signal and the

receive data input signal received at the receive data input and

to produce a comparison output signal based on the comparison

when the receive circuit is operating in the test mode.

62 (Original). The receive circuit of claim 61 wherein the

receive data storage element comprises a shift register.

63 (Original). The receive circuit of claim 61 further

comprising:

a test loop coupled to the receive data storage element

when the receive circuit is operating in the test mode, the test

loop providing feedback to allow the receive data storage

element to provide the repeating pattern signal.

64 (Original). The receive circuit of claim 61 wherein the

repeating pattern signal has a data length greater than a data

capacity of the receive data storage element.

65 (Original). The receive circuit of claim 61 wherein the

repeating pattern signal represents a sequence of data bits, the

receive data storage element storing each of the data bits.

66 (Original). The receive circuit of claim 61 wherein, when the

receive data storage element is divided into receive data

storage sub-elements during operation in the normal mode, the

receive data storage sub-elements are combined as the receive

data storage element for providing the repeating pattern signal

when the receive circuit is operating in the test mode.

67 (Original). The receive circuit of claim 61 wherein the

receive data storage element is loaded from the receive data

input to initialize the test mode.

68 (Original). The receive circuit of claim 61 wherein the

receive data storage element is loaded from a source other than

the receive data input to initialize the test mode.

69 (Original). The receive circuit of claim 61 wherein the

receive data storage element is loaded via a parallel receive

load input

70 (Original). The receive circuit of claim 61 wherein the

comparison element detects variation of the relationship between

the repeating pattern signal and the receive data input signal

Patent Application

Attorney Docket No.: 57941.000041 Client Reference No.: RA208.CIP1.US

received at the receive data input.

71 (Original). The receive circuit of claim 70 wherein the

repeating pattern signal is repeated with a first period and the

receive data input signal is repeated with a second period, the

first period and the second period bearing a multiple and

submultiple relationship to each other.

72 (Original). The receive circuit of claim 71 wherein the first

period and the second period are equal.

73 (Original). The receive circuit of claim 71 wherein the

comparison of the relationship between the repeating pattern

signal and the receive data input signal is performed over

multiple instances of the first period and the second period.

74 (Original). The receive circuit of claim 73 wherein the

receive circuit communicates the comparison output signal to a

source of the receive data input signal.

75 (Original). The receive circuit of claim 73 wherein the

receive circuit adjusts a parameter affecting its reception of

the receive data input signal based on the comparison output

signal.

76 (Original). The receive circuit of claim 75 wherein the parameter affects reception of a second receive data input signal, the second receive data input signal being distinct from the receive data input signal.

77 (Previously Presented). A method for operating a transmit circuit to provide for evaluation of a digital signaling system comprising the steps of:

passing transmit data through the transmit circuit when the transmit circuit is operating in a normal mode; and

generating a transmit repeating pattern in the transmit circuit when the transmit circuit is operating in a test mode by uniting a plurality of pipeline structures within the transmit circuit into a transmit repeating pattern generator when the transmit circuit is operating in the test mode.

78 (Original). The method of claim 77 wherein the step of generating a transmit repeating pattern in the transmit circuit further comprises the step of:

preloading an initialization pattern into the transmit circuit.

79 (Cancelled).

80 (Previously Presented). The method of claim 77 wherein the step of passing transmit data through the transmit circuit further comprises the step of:

passing distinct data through each of the plurality of pipeline structures when the transmit circuit is operating in the normal mode.

81 (Previously Presented). The method of claim 77 further comprising the steps of:

receiving the transmit data in a receive circuit when the transmit circuit is operating in the normal mode; and

receiving the transmit repeating pattern in the receive circuit when the transmit circuit is operating in the test mode.

82 (Previously Presented). The method of claim 77 further comprising the steps of:

receiving the transmit data in a receive circuit when the transmit circuit is operating in the normal mode; and

receiving the transmit repeating pattern in a test receiver separate from the receive circuit when the transmit circuit is

operating in the test mode.

83 (Previously Presented). A method for operating a receive

circuit to provide for evaluation of a digital signaling system

comprising the steps of:

passing receive data through the receive circuit when the

receive circuit is operating in a normal mode; and

generating a receive repeating pattern in the receive

circuit when the receive circuit is operating in a test mode by

uniting a plurality of pipeline structures within the receive

circuit into a receive repeating pattern generator when the

receive circuit is operating in the test mode.

84 (Original). The method of claim 83 wherein the step of

generating a receive repeating pattern in the receive circuit

further comprises the step of:

preloading an initialization pattern into the receive

circuit.

85 (Cancelled).

86 (Previously Presented). The method of claim 83 wherein the

step of passing receive data through the receive circuit further

Patent Application Attorney Docket No.: 57941.000041

Client Reference No.: RA208.CIP1.US

comprises the step of:

passing distinct data through each of the plurality of pipeline structures when the receive circuit is operating in the

normal mode.

87 (Previously Presented). The method of claim 83 further

comprising the steps of:

transmitting the receive data to the receive circuit from a transmit circuit when the receive circuit is operating in the normal mode; and

transmitting a transmit repeating pattern to the receive

circuit from the transmit circuit when the receive circuit is

operating in the test mode.

88 (Previously Presented). The method of claim 83 further

comprising the steps of:

transmitting the receive data to the receive circuit from a

transmit circuit when the receive circuit is operating in the

normal mode; and

transmitting a transmit repeating pattern to the receive

circuit from a test transmitter separate from the transmit

circuit when the receive circuit is operating in the test mode.

89 (Currently Amended). A method for improving the operation of a digital signaling system comprising the steps of:

generating a transmit repeating pattern in a transmit circuit;

transmitting the transmit repeating pattern to a receive circuit;

generating a receive repeating pattern in the receive circuit;

comparing the transmitted transmit repeating pattern to the receive repeating pattern in a test mode to obtain a comparison; and

adjusting a parameter affecting reception of the transmit repeating pattern at the receive circuit based at least in part upon the comparison such that the operation of the digital signaling system is improved in a normal mode with the adjusted parameter.

90 (Previously Presented). A transmit circuit comprising:

a transmit data storage element configured to receive parallel data from a transmit data input and sequentially transmit a serial transmit data output signal when the transmit circuit is operating in a normal mode, the transmit data storage element further configured to provide a repeating pattern signal

when the transmit circuit is operating in a test mode, the transmit circuit sequentially transmitting the serial transmit data output signal based on the repeating pattern signal when the transmit circuit is operating in the test mode, wherein the transmit data storage element is loaded from the transmit data input to initialize the test mode.

91 (Previously Presented). A transmit circuit comprising:

a transmit data storage element configured to receive serial data from a transmit data input and sequentially transmit a serial transmit data output signal when the transmit circuit is operating in a normal mode, the transmit data storage element further configured to provide a repeating pattern signal when the transmit circuit is operating in a test mode, the transmit circuit sequentially transmitting the serial transmit data output signal based on the repeating pattern signal when the transmit circuit is operating in the test mode.

92 (Previously Presented). A receive circuit comprising:

a receive data storage element configured to output a parallel receive data output signal based on a serial receive data input signal received at a receive data input when the receive circuit is operating in a normal mode, the receive data

storage element further configured to provide a repeating pattern signal when the receive circuit is operating in a test mode; and

a comparison element configured to perform a comparison of a relationship between the repeating pattern signal and the serial receive data input signal received at the receive data input and to produce a comparison output signal based on the comparison when the receive circuit is operating in the test mode;

wherein the receive data storage element is loaded from the receive data input to initialize the test mode.

93 (Previously Presented). A receive circuit comprising:

a receive data storage element configured to output a serial receive data output signal based on a serial receive data input signal received at a receive data input when the receive circuit is operating in a normal mode, the receive data storage element further configured to provide a repeating pattern signal when the receive circuit is operating in a test mode; and

a comparison element configured to perform a comparison of a relationship between the repeating pattern signal and the serial receive data input signal received at the receive data input and to produce a comparison output signal based on the

comparison when the receive circuit is operating in the test mode.