

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 100091268LEX-001 Project Number: G100091268

Evaluation of Model Number: 32 Channel Wireless EEG Part Number 515-015400

> FCCID: XGU-515-015X00 IC ID: 8516A-SM2144N2

Tested to the SAR Criteria in FCC OET Bulletin 65, Supplement C (Edition 01-01) **Industry Canada RSS-102 Issue 4**

For

Care Fusion

Test Performed by: Intertek 731 Enterprise Drive Lexington, KY 40510 Test Authorized by:

Care Fusion 1850 Deming Way Middleton, WI 53562

Prepared By:

6/11/2010

Jason Centers, Senior Project Engineer

Approved Bv:

Bryan Taylor, Team Leader – Engineering

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been unde an Intertek certification program.

Model Number: 32 Channel Wireless EEGXGU-515-015X00

TABLE OF CONTENTS

1.0	DOCUMENT HISTORY	4
2.0	REFERENCES	5
3.0	INTRODUCTION	
	ODIFICATIONS MADE TO TEST SAMPLE	
4.0	TEST SITE DESCRIPTION	7
	EASUREMENT EQUIPMENT	
	EASUREMENT TRACEABILITY	
	EASUREMENT UNCERTAINTY	
5.0	JOB DESCRIPTION	10
6.0	SYSTEM VERIFICATION	
SY	STEM VALIDATION	15
TIS	SSUE SIMULATING LIQUID DESCRIPTION AND VALIDATION	16
7.0	EVALUATION PROCEDURES	18
TE	SST POSITIONS:	18
RE	EFERENCE POWER MEASUREMENT:	18
Co	DARSE SCAN:	18
Zo	OOM SCAN:	18
DA	ATA EXTRAPOLATION:	19
RE	EFERENCE POWER MEASUREMENT:	19
RF	F AMBIENT ACTIVITY:	19
8.0	TEST CONFIGURATION	20
9.0	CRITERIA	25
10.0	TABULAR TEST RESULTS	26
Co	ONDUCTED POWER MEASUREMENTS	26
ВС	DDY MODE SAR TEST RESULTS	27
11.0	DIPOLE VALIDATION SCANS	28
12.0	GRAPHICAL SAR SCAN RESULTS	32
13.0	PROBE CERTIFICATE	41
14.0	DIPOLE CERTIFICATE	52

Evaluation For:Care Fusion	Model Number: 32 Channel Wireless EEGXGU-515-015X0
Report Number: 100091268LEX-001	
15.0 PHANTOM CERTIFICATE	6

Model Number: 32 Channel Wireless EEGXGU-515-015X00

1.0 DOCUMENT HISTORY

Revision/ Project Number	Writer Initials	Date	Change
1.0 /G100091268	JC	6/11/2010	Original document

Model Number: 32 Channel Wireless EEGXGU-515-015X00

2.0 REFERENCES

- [1] ANSI, ANSI/IEEE C95.1-1991: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), FCC, Washington, D.C. 20554, 1997
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", *IEEE Transaction on Microwave Theory and Techniques*, vol. 44, pp. 105-113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetic evaluation of mobile communications equipment with know precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp.645-652, May 1997.
- [5] NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddinton, Middlesex, England, 1994.
- [6] Barry N. Tayor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.
- [7] Federal Communications Commission, "SAR Measurement Procedures for 802.11 a/b/g Transmitters"
- [8] Federal Communications Commission, KDB 648474 "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas".
- [9] Federal Communications Commission, KDB 447498 "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies".
- [10] ANSI, ANSI/IEEE C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices.

Model Number: 32 Channel Wireless EEGXGU-515-015X00

3.0 INTRODUCTION

At the request of Care Fusion, the 32 Channel Wireless EEG was evaluated for SAR in accordance with the requirements for RF Exposure compliance testing defined in FCC OET Bulletin 65, Supplement C (Edition 01-01). Testing was performed at the Intertek facility in Lexington, Kentucky on 5/14/2010.

For the evaluation, the dosimetric assessment system DASY4 was used. The phantom employed was the "SAM Twin Phantom". The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be ±21.9%.

The 32 Channel Wireless EEG was tested at the maximum output power measured by Intertek. Maximum output power measurements are tabulated under **Heading 11.0 - Tabular Test Results**.

The maximum spatial peak SAR value for the sample device averaged over 1g was found to be:

			Worst Case Extrapolated SAR _{1g}
Phantom	Mode	Setup Details	mW/g
Flat Section (Body Mode)	Ch 6 - 802.11b, 1 Mbps Data Rate	Antenna side of device against phantom	0.128

Table 1: Maximum Measured SAR

Based on the worst-case data presented above, the 32 Channel Wireless EEG was found to be **compliant** with the 1.6 mW/g requirement defined in OET Bulletin 65, Supplement C (Edition 01-01) for general population / uncontrolled exposure.

Modifications made to test sample

Intertek implemented no modifications.

Report Number: 100091268LEX-001

4.0 TEST SITE DESCRIPTION

The SAR test site located at 731 Enterprise Drive, Lexington KY 40510 is comprised of the SPEAG model DASY 4 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3]. This system is installed in an ambient-free shielded chamber. The ambient temperature is controlled to $22.0 \pm 2^{\circ}$ C. During the SAR evaluations, the RF ambient conditions are monitored continuously for signals that might interfere with the test results. The tissue simulating liquid is also stored in this area in order to keep it at the same constant ambient temperature as the room.

Figure 1: Intertek SAR Test Site

Report Number: 100091268LEX-001

Measurement Equipment

The following major equipment/components were used for the SAR evaluations:

SAR Measurement System									
Equipment	Specifications	S/N #	Cal. Due						
Robot	Stäubli RX60L	597412-01	N/A						
	Repeatability: ± 0.025mm Accuracy: 0.806x10-3 degree Number of Axes: 6								
E-Field Probe	EX3DV3	3516	12/15/2010						
	Frequency Range: 10MHz to 6GHz Probe Linearity: ± 0.2 dB (30MHz to 6GHz) Length: 337 mm Distance between the probe tip and the dipole center: 1 mm Tip Diameter: 2.5 mm Calibration: 835, 900, 1750, 1900, 2450, 5200, 5800MHz for head & body tissue simulating liquid								
Data Acquisition	DAE4	358	4/14/2011						
	Measurement Range: 1μV to >200mV Input offset Voltage: < 1μV (with auto ze Input Resistance: 200 M								
Phantom	SAM Twin V4.0	TP-1243	N/A						
Complies with IEEE 1528-2003	Type SAM Twin, Homogenous Shell Material: Fiberglass Thickness: 2 ± 0.2 mm Capacity: 20 liter Size of the flat section: approx. 320 x 230) mm							
Device holder	Non-conductive holder supplied with DASY4, dielectric constant less than 5.0	N/A	N/A						
Network Analyzer	Agilent 8753A	3018	2/24/2011						
	Frequency Range: 30KHz – 3.0 GHz								
Signal Generator	Signal Generator ESG-D3000A 2038 10/1								
	Frequency Range: 10MHz – 3 GHz								
Spectrum Analyzer	ectrum Analyzer Rohde & Schwarz FSP 7 1164.4391.07 8/17/								
	Frequency Range: 9KHz – 7 GHz								

Table 2: Test Equipment Used for SAR Evaluation

Measurement Traceability

All measurements described in this report are traceable to National Institute of Standards and Technology (NIST) standards or appropriate national standards.

Report Number: 100091268LEX-001

Measurement Uncertainty

The Table below includes the uncertainty budget suggested by the IEEE Std 1528-2003 and determined by SPEAG for the DASY4 measurement System

		Prob.				Std.Unc.	Std.Unc.	
Error Description	Uncertainty Value	Dist.	Div.	c_i (1g)	$c_i(10g)$	(1g)	(10g)	(v _i) v _{eff}
Measurement System								
Probe Calibration	±5.9%	N	1	1	1	±5.9%	±5.9%	00
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	00
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	00
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Conditions	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
			,					
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Tissue Parameters								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	<u>∞</u>
Liquid Permittivity (target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	00
Combined Standard Uncertainty						±10.9%	±10.7%	387
Expanded STD Uncertainty						±21.9%	±21.4%	

Notes.

1. Worst Case uncertainty budget for DASY4 assessed according to IEEE 1528. The budget is valid for the frequency range 300 MHz – 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Model Number: 32 Channel Wireless EEGXGU-515-015X00 **Evaluation For:Care Fusion**

Report Number: 100091268LEX-001

5.0 JOB DESCRIPTION

At the request of Care Fusion, the 32 Channel Wireless EEG was evaluated to the requirements defined in OET Bulletin 65, Supplement C.

Test sample						
Manufacturer	Care Fusion					
Model Number	32 Channel Wireless EEG					
Serial Number	Not Labeled					
Receive Date	5/13/2010					
Device Received Condition	Good condition production unit					
Device Category	Portable					
RF Exposure Category	General Population/Uncontrolled Environment					
Frequency Band	2.4GHz ISM Band					
Mode(s) of Operation	802.11b/g					
Duty Cycle	100% (Test Commands)					
Maximum Output Power	802.11: 14.92 dBm - Peak					
Test Channels	802.11b – Ch1 (2412MHz), Ch 6 (2437MHz), Ch 11 (2462MHz)					
Antenna Type	802.11b/g – PCB					
	Test sample Accessories					
Battery Pack	BATTERY/LI-ION 10.8V 4.2AH; Part Number - 222-497900					
Power Supply	PCM32; Part Number - 113-405500					
Photic Cable	Wireless EEG Photic; Part Number - 085-481900					
Patient Event Cable	Part Number - 085-470200					
Electrodes	Part Number- 019-414400					
SPO2	Nonin Pulse Oximiter; Model=7000A					
Shoulder Bag	143-417700					
Contact Information						
Contact Name	Dan Lombardi					
Phone Number	(608) 441-2365					
Email Address	daniel.lombardi@viasyshc.com					

Table 3: Product Information

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Test Sample Pictures:

Photographs of the test sample and its accessories are shown in Figure 2 through Figure 5.

Figure 2: Front of Test Sample

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Figure 3: Back Side of Test Sample with Amp Installed

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Figure 4: Left Side of Test Sample with Cables Installed

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Figure 5: Right of Test Sample

Evaluation For:Care Fusion Report Number: 100091268LEX-001 **6.0 SYSTEM VERIFICATION** Model Number: 32 Channel Wireless EEGXGU-515-015X00

System Validation

Prior to the assessment, the system was verified to be within $\pm 10\%$ of the specifications by using the system validation kit. The validation was performed at 2450 MHz using muscle simulating tissue. The results from the daily dipole validation are shown in Table 4.

Figure 6: System Verification Setup

Table 4: Dipole Validation

	Reference Dipole Validation									
					Cal.		%			
Frequency		Dipole		Dipole	Lab		Error			
Measure		Serial		Power	SAR	Measured	SAR			
(MHz)	Dipole Type	Number	Fluid Type	Input	(1g)	SAR (1g)	(1g)	Date		
2450	D2450	718	2450 MSL	1W	50.2	51.10	1.79	5/13/2010		
2450	D2450	718	2450 MSL	1W	50.2	54.20	7.97	5/14/2010		

Report Number: 100091268LEX-001

Tissue Simulating Liquid Description and Validation

The dielectric parameters were verified to be within 5% of the target values each day prior to assessment. The dielectric parameters (ε_r , σ) and temperature on each day of testing are shown in Table 5 and Table 6. A recipe for the tissue simulating fluid used is shown in Table 7.

Table 5: Dielectric Parameter Validation

	Body Tissue Parameters										
Frequency Measure (MHz)	Dielectric Constant Target	Dielectric Constant Measure	Dielectric % Deviation	Imaginary Part	Conductivity Target	Conductivity Measure	Conductivity % Deviation	Date			
2412	52.75	52.7	0.09	14.65	1.91	1.96	2.85				
2437	52.72	52.5	0.42	14.78	1.94	2.00	3.22				
2450	52.7	52.42	0.53	14.82	1.95	2.02	3.52				
2462	52.68	52.27	0.78	14.97	1.97	2.05	4.01	5/13/2010			
The % devia	tion should b	e below 5%.									

Body Tissue Parameters Frequency Dielectric Dielectric **Dielectric** Measure Constant Constant **% Imaginary** Conductivity Conductivity **Conductivity** (MHz) **Target** Measure **Deviation Part Target** Measure **% Deviation** Date 2412 1.91 1.97 52.75 52.6 0.28 14.66 2.92 2437 52.72 52.45 14.67 1.94 1.99 0.51 2.45 2450 52.33 0.70 1.95 2.02 52.7 14.85 **3.73** 0.91 14.8 1.97 5/14/2010 2462 52.68 52.2 2.03 2.83 The % deviation should be below 5%.

Table 6: Temperature Validation

Date	Ambient Temperature(°C)	Muscle Simulating Liquid Temperature (°C) f=2450MHz
5/13/2010	21.9	21.7
5/14/2010	22.1	21.6

Report Number: 100091268LEX-001

Table 7: Tissue Simulating Fluid Recipe

 $TYPICAL\ COMPOSITION\ OF\ INGREDIENTS\ FOR\ LIQUID\ TISSUE\ PHANTOMS, Supplement\ C\ Edition\ 01-01\ to\ OET\ Bulletin\ 65\ Edition\ 97-01,\ Page\ 36.\ (450MHz\ to\ 2450\ MHz\ data\ only)$

Ingredient	f (MHz)											
(% by weight)	450		835		915		1900		2450		5500	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56	54.9	70.45	62.7	68.64	65.53	78.67
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.36	0.5	0	0	0
Sugar	56.32	46.78	56	45	56.5	41.76	0	0	0	0	0	0
HEC	0.98	0.52	1	1	1	1.21	0	0	0	0	0	0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0	0	0	0	0	0
Triton X-100	0	0	0	0	0	0	0	0	36.8	0	17.235	10.665
DGBE	0	0	0	0	0	0	44.92	29.18	0	31.37	0	0
DGHE	0	0	0	0	0	0	0	0	0	0	17.235	10.665
Dielectric Constant	43.42	58	42.54	56.1	42	56.8	39.9	53.3	39.8	52.7		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1	1.07	1.42	1.52	1.88	1.95		

Report Number: 100091268LEX-001

7.0 EVALUATION PROCEDURES

Prior to any testing, the appropriate fluid was used to fill the phantom to a depth of 15 cm \pm 0.2cm. The fluid parameters were verified and the dipole validation was performed as described in the previous sections.

Test Positions:

The Device was positioned against the SAM and flat phantom using the exact procedure described in Supplement C Edition 01 – 01 of Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C. 20554, 1997.

Reference Power Measurement:

The measurement probe was positioned at a fixed location above the reference point. A power measurement was made with the probe above this reference position so it could used for the assessing the power drift later in the test procedure.

Coarse Scan:

A coarse area scan with a horizontal grid spacing of 15 x 15 mm was performed in order to find the approximate location of the peak SAR value. This scan was performed with the measurement probe at a constant height in the simulating fluid. A two dimensional spline interpolation algorithm was then used to determine the peaks and gradients within the scanned area.

Zoom Scan:

A zoom scan was performed around the approximate location of the peak SAR as determined from the coarse scan. The zoom scan was comprised of a measurement volume of $30 \times 30 \times 30$ mm based on $7 \times 7 \times 7$ points. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

Report Number: 100091268LEX-001

Data Extrapolation:

Since the center of the dipoles in the measurement probe are 1 mm away from the tip of the probe, and the distance between the surface and the lowest measurement point is 2 mm the data at the surface was extrapolated. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in the Z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

The maximum interpolated value was searched with a straightforward sorting algorithm. Around this maximum, the SAR values averaged over the spatial volumes (1g or 10g) were computed using a 3-D spline interpolation algorithm. The 3-D spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y and z directions). The volume was integrated with a trapezoidal algorithm. $1000 \text{ points} (10 \times 10 \times 10)$ were interpolated to calculate the average.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Power Drift Measurement:

The probe was positioned at precisely the same reference point and the reference power measurement was repeated. The difference between the initial reference power and the final one is referred to as the power drift. The power drift measurement was used to assess the output power stability of the test sample throughout the SAR scan.

RF Ambient Activity:

During the entire SAR evaluation, the RF ambient activity was monitored using a spectrum analyzer with an antenna connected to it. The spectrum analyzer was tuned to the frequency of measurement and with one trace set to max hold mode. In this way, it was possible to determine if at any point during the SAR measurement there was an interfering ambient signal. If an ambient signal was detected, then the SAR measurement was repeated.

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001 **8.0 TEST CONFIGURATION**

For the purpose of this evaluation, the 32 Channel Wireless EEG was considered to be a device that could be operated when held against the body. All SAR scans were performed with a freshly charged battery

installed.

The test channels and operating modes were selected using software based test commands. The device was positioned against the bottom of the phantom with zero clearance during the evaluation. A photograph of the 32 Channel Wireless EEG, as positioned for testing, is shown in Figure 7.

Figure 7: Device Positioning for SAR Scans – Front Side Against Phantom¹

¹ The position of the device was manipulated to provide the minimum distance from the phantom to the antenna.

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Figure 8: Device Positioning for SAR Scans – Front Side Against Phantom In Garment Bag²

² The position of the device was manipulated to provide the minimum distance from the phantom to the antenna.

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Figure 9: Device Positioning for SAR Scans – Back Side Against Phantom

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Figure 10: Device Positioning for SAR Scans – Back Side Against Phantom In Garment Bag

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Figure 11: Device Positioning for SAR Scans – Antenna Side Against Phantom

Report Number: 100091268LEX-001

9.0 CRITERIA

The following FCC limits for SAR apply to devices operating in the General Population/Uncontrolled Exposure environment:

Exposure	SAR
(General Population/Uncontrolled Exposure environment)	(W/kg)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

Report Number: 100091268LEX-001

10.0 TABULAR TEST RESULTS

The results on the following page(s) were obtained when the device was transmitting at maximum output power. Detailed measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are referenced under **Heading 12.0** - **Graphical SAR Scan Results** on page 32.

Conducted Power Measurements

The conducted power measurements for the 32 Channel Wireless EEG were performed in accordance to ANSI C63.19:2009 Section 6.10.2.1 using the channel integration method. The measurements were performed using the channel power function of the spectrum analyzer in peak and average detection mode. Cable loss was accounted for by offsetting the readings by the appropriate amount.

Table 8: Conducted Output Power – 802.11b/g Mode

Channel	Frequency (MHz)	Modulation	Data Rate	Peak Conducted Output Power (dBm)	Avg Conducted Output Power (dBm)
1	2412	BPSK	1 Mbps	14.74	12.96
		ССК	11 Mbps	14.67	12.92
		64 QAM	54 Mbps	12.45	10.25
6	2437	BPSK	1 Mbps	14.5	10.78
		CCK	11 Mbps	14.92	13.30
		64 QAM	54 Mbps	12.39	10.77
11	2462	BPSK	1 Mbps	13.4	9.52
		CCK	11 Mbps	14.55	12.10
		64 QAM	54 Mbps	12.5	10.65

Report Number: 100091268LEX-001

Body Mode SAR Test Results

The device could be held against the body using a body worn garment or set next to or on the patient during normal use. The device had optional cable and power accessories that could be used while operating near the body. The device was tested in the different configurations shown in Table 9 to determine the worst case exposure condition. Scans was performed at 11Mbps data rate in b-mode on the channel with the highest output power. A scan was performed in the worse case configuration with the device operating with a data rate of 1 Mbps on the channel with the highest output power. Since the output power in 802.11g mode was less than 802.11b mode, no scans were required for that mode. The worse case 1-g SAR value was less than the 1.6mW/g limit.

Table 9: Configuration List

Configuration	Channel	Data Rate (Mbps)	Orientation	Description	
1	6	11	Front	Minimum cable configuration - 5 electrode cables, patient event cable, battery pack	
2	6	11	Front	Maximum cable configuration - 5 electrode cables, patient event cable, battery pack, power supply, photic out cable, Nonin cable	
3	6	11	Front	Worst case cable configuration installed the body worn garment.	
4	6	11	Back	Worse case cable configuration.	
5	6	11	Back	Worst case cable configuration installed the body worn garment.	
6	6	11	Antenna Side	Side of product closest to antenna against phantom. Worse case cable configuration.	
7	6	1	Antenna Side	Worse 1g SAR configuration with device operating in 1mbps data rate.	

Table 10: Body Mode SAR Results – 802.11b/g Mode

Configuration	Mode/Channel	Data Rate	Freq. (MHz)	Position	SAR Drift (dB)	Measured 1-g SAR (mW/g)	Meas. 10g-SAR (mw/g)		
1	802.11b - Ch. 6	11 Mbps	2437	Front	0.001	0.110	0.050		
2	802.11b - Ch. 6	11 Mbps	2437	Front	0.001	0.115	0.052		
3	802.11b - Ch. 6	11 Mbps	2437	Front	-0.204	0.037	0.019		
4	802.11b - Ch. 6	11 Mbps	2437	Back	0.156	0.003	0.002		
5	802.11b - Ch. 6	11 Mbps	2437	Back	0.047	0.001	0.001		
6	802.11b - Ch. 6	11 Mbps	2437	Side	-0.202	0.118	0.052		
7	802.11b - Ch. 6	1 Mbps	2437	Side	-0.050	0.128	0.055		
FCC Limit = 1.6mW/g (General Population / Uncontrolled Exposure)									

Report Number: 100091268LEX-001

11.0 DIPOLE VALIDATION SCANS

Date/Time: 5/13/2010 9:19:40 AM

Test Laboratory: Intertek ETL Semko

File Name: Dipole Validation 5_13_2010.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:718

Program Name: System Performance Check at 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.22, 8.22, 8.22); Calibrated: 12/15/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn358; Calibrated: 4/14/2010

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1243

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=10mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.044 mW/g

d=10mm, Pin=10mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 5.35 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 107.9 W/kg

SAR(1 g) = 51.1 mW/g; SAR(10 g) = 23.7 mW/g

Normalized to target power = 1 W and actual power = 0.001 W

Maximum value of SAR (measured) = 57.6 mW/g

d=10mm, Pin=10mW/Z Scan (1x1x6): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Maximum value of SAR (measured) = 0.062 mW/g

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Date/Time: 5/14/2010 8:59:11 AM

Test Laboratory: Intertek ETL Semko

File Name: Dipole Validation 5_14_2010.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:718

Program Name: System Performance Check at 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.22, 8.22, 8.22); Calibrated: 12/15/2009

- Sensor-Surface: 4mm (Mechanical Surface Detection)Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn358; Calibrated: 4/14/2010

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1243

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=10mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.044 mW/g

d=10mm, Pin=10mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 5.52 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 117.2 W/kg

SAR(1 g) = 54.2 mW/g; SAR(10 g) = 25 mW/g

Normalized to target power = 1 W and actual power = 0.001 W

Maximum value of SAR (measured) = 62.1 mW/g

d=10mm, Pin=10mW/Z Scan (1x1x6): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Maximum value of SAR (measured) = 0.063 mW/g

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

12.0 GRAPHICAL SAR SCAN RESULTS

Date/Time: 5/13/2010 2:04:39 PM

Test Laboratory: Intertek ETL Semko

File Name: CH 6 802.11b 11mbps front of device against phantom.da4

DUT: CareFusion;

Program Name: Different Test Procedures (Left-Hand Side)

Communication System: 802.11b/g; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3516; ConvF(8.22, 8.22, 8.22); Calibrated: 12/15/2009
- Sensor-Surface: 2.7mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 4/14/2010
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1243
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cube7x7x7 - Flat Phantom/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.068 mW/g

Cube7x7x7 - Flat Phantom/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=7mm

Reference Value = 1.67 V/m; Power Drift = 0.188 dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.053 mW/g; SAR(10 g) = 0.026 mW/g

Maximum value of SAR (measured) = 0.071 mW/g

0 dB = 0.068 mW/g

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Report Number: 100091268LEX-001

Date/Time: 5/13/2010 3:33:12 PM

Test Laboratory: Intertek ETL Semko

File Name: Configuration 2 CH 6 802.11b 11mbps front of device against phantom all cables

connected.da4

DUT: CareFusion;

Program Name: Different Test Procedures (Left-Hand Side)

Communication System: 802.11b/g; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3516; ConvF(8.22, 8.22, 8.22); Calibrated: 12/15/2009
- Sensor-Surface: 2.7mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 4/14/2010
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1243
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cube7x7x7 - Flat Phantom/Area Scan (11x15x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.159 mW/g

Cube7x7x7 - Flat Phantom/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=7mm

Reference Value = 8.25 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 0.244 W/kg

SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.052 mW/gMaximum value of SAR (measured) = 0.157 mW/g

0 dB = 0.157 mW/g

Report Number: 100091268LEX-001

Date/Time: 5/14/2010 10:26:37 AM

Test Laboratory: Intertek ETL Semko

File Name: Configuration 4 CH 6 802.11b 11mbps back of device against phantom all cables

connected.da4

DUT: CareFusion;

Program Name: Different Test Procedures (Left-Hand Side)

Communication System: 802.11b/g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.22, 8.22, 8.22); Calibrated: 12/15/2009

- Sensor-Surface: 2.7mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn358; Calibrated: 4/14/2010

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1243

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cube7x7x7 - Flat Phantom/Area Scan (15x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.004 mW/g

Cube7x7x7 - Flat Phantom/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=7mm

Reference Value = 0.965 V/m; Power Drift = 0.156 dB

Peak SAR (extrapolated) = 0.005 W/kg

SAR(1 g) = 0.00344 mW/g; SAR(10 g) = 0.00225 mW/g

Evaluation For:Care Fusion Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Date/Time: 5/14/2010 1:03:31 PM

Test Laboratory: Intertek ETL Semko

File Name: Configuration 6 CH 6 802.11b 11mbps Side Against Phantom.da4

DUT: CareFusion;

Program Name: Different Test Procedures (Left-Hand Side)

Communication System: 802.11b/g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 SN3516; ConvF(8.22, 8.22, 8.22); Calibrated: 12/15/2009
- Sensor-Surface: 2.7mm (Mechanical Surface Detection)Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn358; Calibrated: 4/14/2010
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1243
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cube7x7x7 - Flat Phantom/Area Scan (15x19x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.151 mW/g

Cube7x7x7 - Flat Phantom/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=7mm

Reference Value = 3.99 V/m; Power Drift = -0.202 dB

Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.118 mW/g; SAR(10 g) = 0.052 mW/g

Maximum value of SAR (measured) = 0.165 mW/g

Cube7x7x7 - Flat Phantom/Z Scan (1x1x6): Measurement grid: dx=20mm, dy=20mm, dz=20mm Maximum value of SAR (measured) = 0.031 mW/g

Evaluation For:Care Fusion Report Number: 100091268LEX-001 Model Number: 32 Channel Wireless EEGXGU-515-015X00

Evaluation For:Care Fusion Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Date/Time: 5/14/2010 1:42:20 PM

Test Laboratory: Intertek ETL Semko

File Name: Configuration 7 CH 6 802.11b 1mbps Side Against Phantom.da4

DUT: CareFusion;

Program Name: Different Test Procedures (Left-Hand Side)

Communication System: 802.11b/g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV3 - SN3516; ConvF(8.22, 8.22, 8.22); Calibrated: 12/15/2009

- Sensor-Surface: 2.7mm (Mechanical Surface Detection)Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn358; Calibrated: 4/14/2010

- Phantom: SAM with CRP; Type: SAM; Serial: TP-1243

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cube7x7x7 - Flat Phantom/Area Scan (11x15x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.158 mW/g

Cube7x7x7 - Flat Phantom/Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=7mm

Reference Value = 5.08 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 0.309 W/kg

SAR(1 g) = 0.128 mW/g; SAR(10 g) = 0.055 mW/g

Maximum value of SAR (measured) = 0.195 mW/g

Cube7x7x7 - Flat Phantom/Z Scan (1x1x6): Measurement grid: dx=20mm, dy=20mm, dz=20mm Maximum value of SAR (measured) = 0.051 mW/g

0 dB = 0.158 mW/g

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001 13.0 PROBE CERTIFICATE

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Intertek

Certificate No: EX3-3516_Dec09

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE EX3DV3 - SN:3516 Object QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes December 15, 2009 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards !D# Power meter E4419B GB41293874 1-Apr-09 (No. 217-01030) Apr-10 MY41495277 1-Apr-09 (No. 217-01030) Арг-10 Power sensor E4412A Power sensor E4412A MY41498087 1-Apr-09 (No. 217-01030) Арг-10 Reference 3 dB Attenuator SN: S5054 (3c) 31-Mar-09 (No. 217-01026) Mar-10 Mar-10 SN: S5086 (20b) 31-Mar-09 (No. 217-01028) Reference 20 dB Attenuator 31-Mar-09 (No. 217-01027) Mar-10 Reference 30 dB Attenuator SN: S5129 (30b) Reference Probe ES3DV2 SN: 3013 2-Jan-09 (No. ES3-3013_Jan09) Jan-10 DAE4 SN: 660 29-Sep-09 (No. DAE4-660_Sep09) Sep-10 ID# Check Date (in house) Scheduled Check Secondary Standards US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 RF generator HP 8648C In house check: Oct10 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) Function Signature Name Technical Manager Calibrated by: Katia Pokovic Approved by: Niels Kuster **Quality Manager** Issued: December 16, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3516_Dec09

Page 1 of 11

Report Number: 100091268LEX-001

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3516_Dec09 Page 2 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

Probe EX3DV3

SN:3516

Manufactured:

March 8, 2004

Last calibrated:

November 13, 2008

Recalibrated:

December 15, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3516_Dec09

Page 3 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

DASY - Parameters of Probe: EX3DV3 SN:3516

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.86	0.77	0.62	± 10.1%
DCP (mV) ^B	92.7	94.5	93.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300	± 1.5%
			Υ	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3516_Dec09

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

DASY - Parameters of Probe: EX3DV3 SN:3516

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	10.65	10.65	10.65	0.67	0.65 ± 11.0%
900	± 50 / ± 100	41.5 ± 5%	$0.97 \pm 5\%$	10.35	10.35	10.35	0.63	0.66 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	9.27	9.27	9.27	0.40	0.72 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	9.00	9.00	9.00	0.52	0.67 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	8.15	8.15	8.15	0.30	0.88 ± 11.0%
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	5.32	5.32	5.32	0.40	1.80 ± 13.1%
5800	± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	4.67	4.67	4.67	0.45	1.80 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3516_Dec09

Page 5 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

DASY - Parameters of Probe: EX3DV3 SN:3516

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	10.54	10.54	10.54	0.59	0.70 ± 11.0%
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	10.32	10.32	10.32	0.58	0.72 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	9.16	9.16	9.16	0.45	0.79 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	8.71	8.71	8.71	0.34	0.86 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	8.22	8.22	8.22	0.30	0.95 ± 11.0%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	4.18	4.18	4.18	0.60	1.80 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.84	3.84	3.84	0.60	1.80 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3516_Dec09

Page 6 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

Certificate No: EX3-3516_Dec09

Page 7 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3516_Dec09

Page 8 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3516_Dec09

Page 9 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3516_Dec09

Page 10 of 11

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

EX3DV3 SN:3516

December 15, 2009

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3516_Dec09

Report Number: 100091268LEX-001

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Calibration Laboratory of

14.0 DIPOLE CERTIFICATE

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Intertek

Certificate No: D2450V2-718_Dec09

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 718

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: December 10, 2009

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1-le-
Approved by:	Katja Pokovic	Technical Manager	He lef
			Issued: December 16, 2009
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory	<i>y</i>

Certificate No: D2450V2-718_Dec09

Page 1 of 9

Evaluation For:Care Fusion Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature during test	(21.4 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.31 mW / g
SAR normalized	normalized to 1W	25.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.2 mW /g ± 16.5 % (k=2)

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 mW / g
SAR normalized	normalized to 1W	50.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.82 mW / g
SAR normalized	normalized to 1W	23.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.2 mW / g ± 16.5 % (k=2)

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2 Ω + 2.8 jΩ
Return Loss	- 26.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 4.5 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.147 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

Evaluation For:Care Fusion Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

DASY5 Validation Report for Head TSL

Date/Time: 09.12.2009 12:32:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:718

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03,2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.3 V/m; Power Drift = 0.052 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.31 mW/g

Maximum value of SAR (measured) = 17.1 mW/g

0 dB = 17.1 mW/g

Page 6 of 9

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-718_Dec09

Page 7 of 9

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

DASY5 Validation Report for Body

Date/Time: 10.12.2009 13:47:28

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:718

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.82 mW/g

Maximum value of SAR (measured) = 16.8 mW/g

0 dB = 16.8 mW/g

Page 8 of 9

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-718_Dec09

Page 9 of 9

Model Number: 32 Channel Wireless EEGXGU-515-015X00

Report Number: 100091268LEX-001 **15.0 PHANTOM CERTIFICATE**

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA. Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50381
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp