Lecture 1: Introduction to Predictive Modeling

Professor Ilias Bilionis

The uncertainty propagation problem

Example: Driving a trailer on a bumpy road

- m: mass
- k: spring constant
- v: velocity
- y_0 : amplitude of road roughness
- L: "wavelength" of road roughness

Dynamics

Example: Driving a trailer on a bumpy road

$$\omega = \frac{2\pi v}{L} \qquad X = \left| \frac{ky_0}{k - m\omega^2} \right| \qquad \text{model (causal)}$$

Example: Driving a trailer on a bumpy road

Variable	Туре	Values	
k	Manufacturing uncertainty	[159,999, 160,001] N/m	
v	Operating condition	[80, 150] km/hour	nodes that
m	Loading condition	[100, 200] kg	have no parent
у	Road condition	[0, 100] mm	parent
L	Road condition	[1, 2] m	

Our state of knowledge about the problem.

The uncertainty propagation problem

Having quantified our uncertainty about all unknowns, propagate this uncertainty through the causal model to characterize our uncertainty about a quantity of interest.

The Monte Carlo solution to the uncertainty propagation problem

- Sample random inputs many times.
- Evaluate model outputs at these inputs.
- Estimate any statistics of interest.

How uncertainty in the inputs propogates/translates to the outputs/derived quantities

