Corrigé MP-2010

Problème1 (36 / 80) :

LOt	1,7,7	
1,1,	Condition de Gauss: - Objet plan de petites dimensions se trouvant sur l'axe optique du système et perpendiculaire à cet axe L'objet n'envoie sur le système optique que des rayons paraxiaux Les rayons incidents ont des faibles incidences.	-
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H
2- p'-	$\frac{1}{p'} - \frac{1}{(p'-D)} = \frac{1}{f'} \Rightarrow p'^2 - Dp' + f'D = 0$ $p' = O_L A' \text{ existe si } D^2 - 4f'D \ge 0, \text{ soit } D \ge 4f'$	7
3- De	Deux solutions : $p'_1 = \frac{D - \sqrt{D^2 - 4Df'}}{2}$ et $p'_2 = \frac{D + \sqrt{D^2 - 4Df'}}{2}$ $d = p'_2 - p'_1 = \sqrt{D^2 - 4Df'}$, ce qui donne $f' = \frac{D^2 - d^2}{4D}$	1.5
-t-	f'=0,25m	0.5
5- p'=	$=\frac{pf'}{p+f'}$, A.N: p'=0,5m	0.5 + 0.5
6- 7 =	γ ≈ ½ = -1 p	0.5
Fig 7- fra	Figure d'interférences: sur l'écran, on observe une alternance de franges sombres et brillantes. Ces franges sont rectilignes, régulièrement espacées et parallèles à l'axe (oy).	-
∞.	×	
E. 1	F_1 F_2 F_2 F_2 F_3 F_4 F_2 F_2 F_3 F_4 F_5 F_5 F_5 F_5 F_5 F_5	1.5
9. Dè	Dèmonstration : $\delta(M) = \frac{2x}{f_2} \implies \varphi(M) = \frac{2\pi ax}{\lambda f_2}$	7

-	1+0.5	-	0.5	1.5	0.5 + 0.5 + + 0.5	0.5+0.5	0.5+0.5	-	1.5	1.5	0.5 + + 0.5 + + 0.5
$I(M) = 2I_0 \left(1 + \cos \left(2\pi \frac{ax}{\lambda f_2} \right) \right)$	Interfrange : $i = \frac{\lambda f_2^2}{a}$, A.N. : $i \approx 0.5 \text{ mm}$	$1(x) \leftarrow 41_0$	L'ordre d'interférence est $p=\frac{\delta}{\lambda}=\frac{ax}{\lambda f_2}$; $p_0=0 \Rightarrow x=0$: centre O de l'écran.	Démonstration : $\delta(M) = \frac{ax}{f_2} + (n-1)e$	La frange d'ordre $p=0$ ($\delta=0$), se trouve en x_0 tel que: $\frac{ax_0}{f_2} + (n-1)e = 0 \Rightarrow x_0 = \frac{(n-1)cf_2}{a}.$ $x_0 < 0 : les franges se déplacent en bloc vers le bas.$ $d_0 = x_0 = \frac{(n-1)cf_2}{a}.$	$n=1+\frac{ad_0}{ef_2}$, A.N: $n=1,5$	$N = B\left(\frac{d_0}{i}\right)$, i n'est pas modifié, A.N.: $N = 50$ franges	Les deux radiations sont mutuellement incohérentes \Rightarrow $I(M) = I_{x,1}(M) + I_{x,2}(M) \Rightarrow$ chaque radiation donne un phénomène d'interferences. $I_2 > I_1$: on observe des coincidences et des anti—coincidences. La frange centrale est la même pour les deux radiations.	Première anti – coîncidence : $x_1 = q_{12} = \left(q + \frac{1}{2}\right)i_1 \Rightarrow q = \frac{i_1}{2(i_2 - i_1)} \Rightarrow$ $x_1 = \frac{\lambda_1}{2(\lambda_2 - \lambda_1)} \frac{\lambda_2 f_2}{a}$ A.N.: $x_1 = 29$ cm	Démonstration : $\delta(M) = \frac{ax}{f_2} + \frac{aX_s}{f_1}$	La frange d'ordre p = 0 (δ = 0), se trouve en x'o tel que: $\frac{ax'_0 + \frac{aX_s}{f_1} = 0 \Rightarrow x'_0 = -\frac{f_2^2 X_s}{f_1}}{f_2}$ $x'_0 < 0 : les franges se déplacent vers le bas$ $d_1 = \frac{f_2^2 X_s}{f_1}$
10-	-1-11	11-2-	11-3-	12-1-	12-2-	12-3-	12-4-	13-1-	13-2-	14-1-	14-2-

0.5	Pour $b = b_1$, $\Delta p = 1$. Pas de brouillage si $\Delta p < 1$	
+	$+\frac{b}{2}$, p varie de $\Delta p = \frac{ab}{\lambda f_1}$	
1.5	L'ordre en M s'écrit: $p = \frac{a}{\lambda} \left(\frac{x}{f_2} + \frac{X}{f_1} \right)$. Lorsque X varie de $-\frac{b}{2}$ à	18-2-
5.0+5.0	$\mathbf{b_l} = \frac{\lambda f_l}{a}, \text{ A.N.}: \mathbf{b_l} = 0,10\text{mm}$	18-1-
-	Quand b est proche de 0, le contraste C le contraste diminu progressivement, s'annulle (brouillage des franges), puis croît jusqu'à un maximum secondaire (avec inversion), puis décroît pour s'annuler	17-2-
-	$\bigcup_{\mathbf{b}_1 = \mathbf{b}_2} \bigcup_{\mathbf{b}_2} \mathbf{b}$	
+		
0.5	$C = \left \sin_o \left(\frac{ab}{\lambda f_1} \right) \right \qquad (C(b))$	17-1-
7	Démonstration : $I(M) \approx 2I_0 \left[1 + \sin_e \left(\pi \frac{ab}{\lambda I_1^2}\right) \cos\left(2\pi \frac{x}{t}\right)\right]$	16-2-
0.5	Explication: $\varphi(M) = \frac{2\pi}{\lambda} \left(\frac{ax}{f_2} + \frac{aX}{f_1} \right)$	16-1-
0.5	L'élargissement de F _s parallèlement à (O _s X) affecte le contraste des franges. Lorsqu'on augmente la largeur de F _s , le contraste diminue jusqu'à s'annuler: c'est le brouillage des franges.	15-

Problème2 (44 / 80):

Question	A STATE OF THE PROPERTY OF THE	Barème	
-	Sous l'effet de la force de Laplace, la bobine se mei en mouvement en entraînant la membrane dont elle est solidaire. Le mouvement de cette	-	
	membrane dans l'air engendre de faibles variations de pression et	?	
	génère ainsi une onde sonore. Le dispositif joue le rôle d'un haut	•	
	parleur.		
2-	$d\vec{F}_{Lap} = id\vec{C}U_0 \wedge B\vec{U}_r \implies \vec{F}_{Lap} = -iB\vec{C}U_z$	-	
ξ.	RFD: $m \frac{d^2z}{dt^2} + \alpha \frac{dz}{dt} + kz = -iB\ell$ (1)	2.5	
4	fem: $de = (\vec{v} \wedge \vec{B}) \cdot d\vec{l} \implies e = vB\ell$	1.5	
ης	Loi des mailles : $E(t) = L \frac{di}{dt} + Ri - B\ell \frac{dz}{dt}$ (2)	2.5	
	3	Corrigé	Corrige MP.2010

ال	v ² > 1.5 + + + + + + + + + + + + + + + + + + +		$\frac{3^2}{\omega - \frac{k}{\omega}}$	1.5	$+\frac{1}{jL_m\omega}$, avec	1	ant:	$ \begin{array}{c} $
A partir de (1) et (2), on tire : E(t).i(t) = $\frac{dW}{dt}$ + Ri ² + αv^2 , où W = $\frac{1}{2}$ Li ² + $\frac{1}{2}$ mv ² + $\frac{1}{2}$ kz ² est l'énergie du haut parleur	En régime périodique : $W(t_0 + T) = W(t_0)$, d'où : $< E(t).i(t) >= \frac{1}{T} \int_{t_0}^{t_0 + T} \left(\frac{dW}{dt} + Ri^2 + \alpha v^2 \right) \mathrm{d}t = < Ri^2 > + < \alpha v^2 >$ La mussance électrique movenne fournie au haut parleur	usivement a	L'élimination de V entre ces deux équations donne : $\underline{Z} = R + jL\omega + \frac{\ell^2 B^2}{jm\omega + \frac{k}{j\omega} + \alpha} = R + jL\omega + \frac{\ell^2 B^2}{m\omega - \frac{k}{j\omega}}$	$\underline{Z} = \underline{Z_e} + \underline{Z_m} \text{ , avec } \underline{Z_e} = R + jL\omega \text{ et } \underline{Z_m} = \frac{\ell^2 B^2}{\alpha + j \left(m\omega - \frac{k}{\omega}\right)}$	$\begin{split} \frac{1}{Z_m} &= \frac{\alpha}{\ell^2 B^2} + j \frac{m \omega}{\ell^2 B^2} + \frac{k}{j \ell^2 B^2 \omega} \implies \frac{1}{Z_m} = \frac{1}{R_m} + j C_m \omega + \frac{1}{j l_{-m} \omega}, \\ R_m &= \frac{\ell^2 B^2}{\alpha}; C_m = \frac{m}{\ell^2 B^2} \text{ et } L_m = \frac{\ell^2 B^2}{k} \end{split}$	$R_m = 5\Omega$; $C_m \approx 396 \mu F$ et $L_m = 15,8.10^{-3} H$	Le haut parleur peut être modélisé par le circuit électrique suivant : R	$\underline{Z}_{m} = X_{m}(\omega) + jY_{m}(\omega), \text{ avec } X_{m}(\omega) = \frac{R_{m}}{1 + R_{m} \left(C_{m} \omega - \frac{1}{L_{m} \omega} - C_{m} \omega \right)}$ $Y_{m}(\omega) = \frac{R_{n}^{2} \left(\frac{1}{L_{m} \omega} - C_{m} \omega \right)}{1 + R_{n}^{2} \left(C_{m} \omega - \frac{1}{L_{m} \omega} \right)^{2}}$
-9	7-	-6	-01	11-11-	11-2-	13-	13-1.

Corrigé N

1.5	5:1	.	7	2.5		5.	, I	1.5	Corrige MP-2010
13-2- $\left(X_{\rm m}(\omega) - \frac{R_{\rm m}}{2}\right)^2 + Y_{\rm m}^2(\omega) \approx \left(\frac{R_{\rm m}}{2}\right)^2$: dans le plan complexe, c'est un cercle de centre $\zeta\left(\frac{R_{\rm m}}{2},0\right)$ et de rayon $\frac{R_{\rm m}}{2}$.	13-3- $O \longrightarrow P_1 \longrightarrow P_0 \longrightarrow X_m(\omega)$		14- Pour f e [300Hz,3500Hz], f>> $f_{0m} \Rightarrow \underline{Z}_m \to 0 \Rightarrow \underline{Z} \approx \underline{Z}_e = R + jL\omega$, $ \underline{Z} = \sqrt{R^2 + (L\omega)^2} \approx R$, d'où $\underline{Z} \approx R$, A.N. $\underline{Z} \approx R = 12\Omega$	15- Démonstration: $u(t) = \frac{V_0}{2} + \frac{2V_0}{\pi} \sum_{p=0}^{\infty} \frac{\sin[(2p+1)\omega t]}{(2p+1)}$	Ordre		$ \underline{I}(jx) = \frac{1}{\sqrt{1+x^6}} \Rightarrow T(jx)$ décrit un filtre du type BUTTERWORTH	 18- diagramme de Bode: G_{dB} = -10 log₁₀ (1 + x⁶) • pour x <<1, G_{dB} → 0 • pour x = 1, G_{dB} = -3dB • pour x >> 1, G_{dB} → -60 log₁₀(x): pente de -60dB/décade 	5

yest	. 1	2	1.5	1	ĭ
GdB	B.F: bobine ⇔ court-circuit, capacité ⇔ interrupteur ouvert, d'où H _{BF} = 1 H.F: bobine ⇔ interrupteur ouvert, capacité ⇔ court-circuit, d'où H _{MF} → 0 A priori, il s'agit d'un filtre passe bas.	$\underline{H(j\omega)} = \frac{1}{1 + j \frac{L_1 + L_2}{R_0} \omega + L_1 C(j\omega)^2 + \frac{L_1 L_2 C}{R_0} (j\omega)^3}$	Par identification, on tire $L_1 = \frac{3R_0}{2\omega_0}$; $L_2 = \frac{R_0}{2\omega_0}$; $C = \frac{4}{3R_0\omega_0}$	$L_1 = 2,86 \text{ mH}$, $L_2 = 0,95 \text{ mH}$ et $C = 17,7 \mu\text{F}$	$u_1(t) = \frac{V_0}{2} + \frac{V_0\sqrt{2}}{\pi} \sin(\omega t + 1, 25)$
	19-	20-	21~1-	21-2-	22-