

Hardware Livre USP

Oficina de Introdução ao Arduino

Conteúdo da oficina

- Estrutura de uma placa Arduino
- Conceitos de sinais elétricos
 - o Sinal digital, analógico, PWM
- Componentes eletrônicos básicos
 - LED, resistor, protoboard
- Ambiente de desenvolvimento
 - Os blocos básicos de um programa em Arduino
 - Receber e enviar sinais digitais
- Projeto Genius (Jogo da memória)

O Arduino UNO

Entrada e Saída (I/O)

- Entrada e saída de dados / sinais em relação ao microcontrolador
- Entrada
 - o Um sinal externo é enviado ao microcontrolador
- Saída
 - o O microcontrolador gera um sinal e o envia ao meio externo
- Que sinais são esses?

Analógico Vs Digital

- Sinal analógico
 - Pode assumir qualquer valor entre o limite mínimo e máximo
- Sinal digital
 - o Discretizado (geralmente apenas 0 ou 1)

Pulse Width Modulation (PWM)

- Pulsos (ligado e desligado / 1 e 0)
 durante determinada proporção
 de tempo em um ciclo constante
- Simula um sinal analógico a partir de um sinal digital

https://www.arduino.cc/en/Tutorial/PWM

LED (Light Emitting Diode)

- Usualmente operam em um nível de tensão de 1,6 a 3,3 volts e sob uma corrente elétrica próxima de 20 mA
- Possuem polaridade
 - Perna maior é positiva
 - o Perna menor é negativa

https://en.wikipedia.org/wiki/Light-emitting_diode

Resistores

- Dificultam a passagem de corrente elétrica
- Provocam queda do potencial elétrico de uma ponta para a outra

A IDE Arduino

- Instale a IDE do Arduino:
 - https://www.arduino.cc/en/Main/Software

File Edit Sketch Tools Help

```
memorygame
    level = 1:
    start = 1:
void loop()
 if(start) {
     for (int i = 0; i < length; i++) {
      playNote(notes[i], beats[i]*tempo);
      delay(tempo/2):
    lcd.clear();
    lcd.print("Press Again to");
    lcd.setCursor(0, 1);
    lcd.print("Start");
    lcd.setCursor(5, 1);
    lcd.write((uint8 t)0);
    delay(100);
    lcd.setCursor(5, 1);
    lcd.write((uint8 t)1);
    delay (100);
    if (getButtonPress()) {
      start = 0;
      lcd.clear();
      lcd.setCursor(0, 0);
      if (user == game && game != 0 && score < 10) {
       lcd.print("You Are Correct");
        score++;
        lcd.setCursor(0, 1);
       lcd.print("Score:");
        lcd.setCursor(6, 1);
```

Done compiling.

Binary sketch size: 7.912 bytes (of a 32.256 byte maximum)

Checklist Inicial

- Conecte o Arduino em uma porta USB do computador
- Selecione a placa Arduino em Tools -> Board
- Selecione a porta USB em Tools -> Serial Port

Protoboard / breadboard

Olá, lembra de mim? Eu sou uma protoboard.

Protoboard / breadboard

- As ilhas no centro da placa estão conectadas "verticalmente"
- As ilhas nas laterais da placa estão conectadas "horizontalmente"

Projeto Blink

- Monte o projeto na protoboard
- Hardware necessário
 - Placa Arduino
 - Protoboard
 - o 1 LED
 - o 1 Resistor de 220 Ohms
 - Fios para conectar os componentes

Projeto Blink

- Abra o código do exemplo em
 File -> Examples -> Basics -> Blink
- Compile o código

 Envie o programa para o Arduino

Linguagem de programação

- Linguagem baseada em
 C/C++
- Estrutura simples
 - setup()
 - Executa apenas uma vez logo no início
 - loop()
 - Executa ciclicamente após o setup()

Atividades

- Modifique o projeto
 - Sugestões:
 - altere a frequência com que o LED pisca
 - faça dois LEDs piscarem juntos
 - faça dois LEDs piscarem alternadamente
- Utilize analogWrite(led, <valor>) no lugar de digitalWrite(led, HIGH)
 - <valor> é um número entre 0 e 255 (inclusive)
- Rode o exemplo em File -> Examples -> Basics -> Fade
 - Projeto completo disponível em https://www.arduino.cc/en/Tutorial/Fade

tup()

icture

Buv

Download

ol Structures

op()

else vitch case

nile ... while

eak ntinue

turn to

er Syntax

semicolon) (curly braces)

Products -

Learning -

Constants

Variables

HIGH I LOW

LED BUILTIN

integer constants

floating point constants

true I false

Data Types

void

char

word

long

boolean

Forum

INPUT I OUTPUT I INPUT PULLUP

byte int

unsigned char

unsigned int

Functions

Digital I/O pinMode()

digitalWrite()

digitalRead()

Analog I/O

analogReference()

analogRead() analogWrite() - PW

Due & Zero only

analogReadResolut

analogWriteResolu

Advanced I/O

tone()

noTone()

shiftOut()

Milhares de exemplos

A IDE Arduino vem com vários exemplos, dos mais simples (piscar um LED) aos mais elaborados envolvendo sensores, motores, etc..

MEN CLILTIN 03. Analog Blink Ctrl+O 04.Communication Open... DigitalReadSerial Sketchbook 05.Control Fade 06.Sensors ReadAnalogVoltage Ctrl+W Close 07.Display Ctrl+S 08.Strings Save Ctrl+Shift+S Save As... 09.USB Ctrl+U 10.StarterKit Upload Ctrl+Shift+U ArduinoISP Upload Using Programmer Ctrl+Shift+P GroveLCDRGBBacklight Page Setup Ctrl+P HCSR04Ultrasonic Print Ctrl+Virgula IRremote Preferences Ctrl+Q SoftwareServo Quit **EEPROM** Esplora Ethernet Firmata GSM LiquidCrystal Robot Control Robot Motor SD Servo SoftwareSerial SPI

Recebendo e enviando sinais digitais

Objetivo: Ligar e desligar um LED de acordo com o estado de um botão.

O botão / push button

Quando pressionado o botão conecta os contatos A e C aos contatos em B e D.

Projeto Botão

- Hardware necessário
 - o Placa Arduino
 - Protoboard
 - o 1 LED
 - 2 Resistores de220 ohms
 - Fios para conectar os componentes
 - Um botão

Projeto Botão

- Código para o projeto em: File -> Examples -> Digital -> Button
- Compile o código (opcional)
- Envie o programa para o Arduino

Button §

- Button const int buttonPin = 2; 🚣 const int ledPin =
- Apelidando os pinos 2 e 13 de buttonPin e ledPin, respectivamente.
- const indica que os apelidos não mudam.

O pino do botão recebe sinias 5V ou OV

- int buttonState = 0; 🚛 buttonState guarda o estado do botão. 1 / HIGH para pressionado, 0 / LOW
- void setup() { pinMode (ledPin, OUTPUT); para não pressionado. pinMode(buttonPin, INPUT);
 - Obtendo o estado do botão
- void loop(){ buttonState = digitalRead(buttonPin);
 - if (buttonState == HIGH) { Se o botão estiver
 - digitalWrite(ledPin, HIGH);
- else {
- pressionado líque o LED, caso contrário desligue-o digitalWrite(ledPin, LOW);

Melhores momentos do **Projeto Botão**

- Usamos a Arduino tando para receber quanto para transmitir sinais digitais
- Poderíamos ter ligado outra coisa que não um LED (um sensor por exemplo)

Pullup e pulldown

- Até agora usamos resistores pulldown
- As Arduinos têm resistores internos para uso como resistores pullup
- Acessados com pinMode(<pino>,
 INPUT_PULLUP) isso inverte o
 comportamento do pino de entrada
 - HIGH quando o sensor está desligado e
 LOW quando ligado

Projeto Botão (pullup)

- Hardware necessário
 - o Placa Arduino
 - Protoboard
 - o 1 LED
 - 2 Resistores de 220 ohms
 - Fios para conectar os componentes
 - Um botão

Atividades

- Mude o código para que o LED mude de estado (ligado/desligado) ao pressionar e soltar do botão
 - Botão liga e desliga
- Mude o projeto para que o LED ligue e permaneça ligado ao pressionar de um botão e desligue e permaneça desligado ao pressionar de outro botão.
 - o Botão liga e (outro) botão desliga

Atividades

- Estude o exemplo em https://www.arduino.cc/en/Tutorial/InputPullupSerial
- Faça a atividade anterior (botão liga e botão desliga) sem usar resistores
- Extra: estude o conteúdo em https://www.arduino.cc/en/Tutorial/DigitalPins

Projeto Genius (Jogo da memória)

- Hardware necessário
 - Placa Arduino
 - Protoboard
 - o 4 LEDs
 - o 4 Resistores de 220 ohms
 - o 4 Resistores de 1000 ohms
 - 4 botões
 - 1 alto falante (speaker)
 - Fios para conectar os componentes

Código do projeto em https://goo.gl/0P3qGp

E se eu não tiver uma placa Arduino?

Se você não tiver uma placa Arduino visite

https://123d.circuits.io/

Grupo HardwareLivreUSP

Muito obrigado!

Curta nossa pagina no facebook: www.facebook.com/Hardwarelivreusp

Participe do nosso grupo de e-mail: hardwarelivreusp@googlegroups.com

Acesse nosso site: http://hardwarelivreusp.org