AutoRec & ConvMF

박상민

Contents

AutoRec ConvMF Implementation

AutoRec - Preliminaries

AutoEncoder

- 동일한 형태의 입/출력 구조.
- Encoder 단계에서는 본래 input으로부터 lower dimensional latent feature를 encode한다.
- Decoder 단계에서는 위 latent feature를 input과 같은 크기의 output을 input과 가능한 유사하게 산출.

AutoRec - Details

$$\min_{\theta} \sum_{\mathbf{r} \in \mathbf{S}} ||\mathbf{r} - h(\mathbf{r}; \theta)||_2^2,$$

AutoRec : AutoEncoder + Recommender system

- R_i(item i에 대해 user들이 매긴 rating 점수들) 기반 (R_u로도 동일하게 적용가능)
- R_i가 encode, decode 단계를 거쳐 reconstruct 된 것이 h 항.
- Reconstruct 됐을 때 missing ratings에 대해 predict하도록 한다.

AutoRec - Details

$$h(\mathbf{r}; \theta) = f(\mathbf{W} \cdot g(\mathbf{V}\mathbf{r} + \boldsymbol{\mu}) + \mathbf{b})$$

$$\min_{\theta} \sum_{i=1}^{n} ||\mathbf{r}^{(i)} - h(\mathbf{r}^{(i)}; \theta))||_{\mathcal{O}}^{2} + \frac{\lambda}{2} \cdot (||\mathbf{W}||_{F}^{2} + ||\mathbf{V}||_{F}^{2})$$

AutoRec

- W,V 는 transformation, µ와 b는 bias, f와 g는 activation function을 의미.
- Observed data에 대해서만 back propagation을 통한 update가 이루어진다.
- Overfitting을 방지하고자하는 Regularization term.
- 2mk + m + k 개의 parameters

AutoRec - Details

AutoRec's distinct feature from others

- MLE가 아닌 RMSE사용
- Gradient back propagatation을 이용한 비교적 빠른 computation
- Parameter 수 감소 (mkr >> 2mk+m+k)
- Item / user 중 택일로 embedding 하여 latent space 생성.
- Non-linear latent representation 학습가능.

AutoRec - Experiment & Conclusion

	ML-1M	ML-10M	$f(\cdot)$	$g(\cdot)$	RMSE
U-RBM	0.881	0.823	Identity	Identity	0.872
I-RBM	0.854	0.825	Sigmoid	Identity	0.852
U-AutoRec	0.874	0.867	Identity	Sigmoid	0.831
I-AutoRec	0.831	$\bf 0.782$	Sigmoid	Sigmoid	0.836

Item based vs User based / non-linear act_f

- Item latent feature based model 이 User based model보다 좋은 성능을 보였다.
- Non-linear act_f이 실제로 성능 개선에 기여를 하는 모습을 보였다. (MF 대비 장점)

AutoRec - Experiment & Conclusion

	ML-1M	ML-10M	Netflix
BiasedMF	0.845	0.803	0.844
I-RBM	0.854	0.825	-
U- RBM	0.881	0.823	0.845
LLORMA	0.833	$\boldsymbol{0.782}$	0.834
I-AutoRec	0.831	0.782	0.823

AutoRec's outperformance / hidden unit impact

- · 기존의 다른 competitors보다 전반적으로 우월한 성능을 보였다.
- Hidden units가 증가함에 따라 성능이 향상되는 것이 확인 되었다.
- Layer를 3개로 더 deep하게 쌓았을 때 미약하게나마 성능이 향상 되었다.

ConvMF - Preliminaries

BOW(Bag of words)

- 단어들의 순서는 전혀 고려하지 않고, 단어들의 출현 빈도에만 집중하는 텍스트 데이터의 수치화 방법
- LDA, SDAE 와 같이 document description을 추가적으로 활용하던 기존 기법들이 이 BOW방식을 채택.

ConvMF - Preliminaries

$$\mathcal{L} = \sum_{i}^{N} \sum_{j}^{M} I_{ij} (r_{ij} - u_{i}^{T} v_{j})^{2} + \lambda_{u} \sum_{i}^{N} ||u_{i}||^{2} + \lambda_{v} \sum_{j}^{M} ||v_{j}||^{2}$$

MF(Matrix Factorization)

- User x Item matrix를 latent feature로 User matrix, Item matrix로 분해

ConvMF - Preliminaries

CNN(Convolutional Neural Network)

- filter를 slide해가면서 **local feature**를 담는 convolutional layer를 형성한다.
- Max pooling으로 concise한 data representative한 feature를 뽑아낸다.

ConvMF - Intro

users, # items 급증

- Sparseness 역시 함께 증가
- Rating 이외 정보도 활용해보자! Ex) Social network (SoReg,SoRec), Item discription(LDA, SDAE)

ConvMF - Intro

"People trust the man." vs "People betray his trust finally."

기존의 document information integrated model은 BOW 방식 활용

- >> Contextual information을 무시한다.
- >> Deeper understanding of document description 은 Rating prediction accuracy에 도움을 주지 않을까?

ConvMF - Intro

CNN + PMF

CNN

- Document의 **local feature** capture : Contextual information 획득.
- Rating 수가 **적어서** description에 더 **의존**해야할 때 영향이 더 클 것이다.
- BOW 방식이 아니기에 pre-trained word embedding 역시 사용 가능.
- 하지만 CNN은 recommendation에 적합하지는 않다.
- PMF와 접목시키자!

$$p(R|U, V, \sigma^2) = \prod_{i=1}^{N} \prod_{j=1}^{M} N(r_{ij}|u_i^T v_j, \sigma^2)^{I_{ij}}$$

$$p(U|\sigma_U^2) = \prod_{j=1}^{N} N(u_i|0, \sigma_U^2 I)$$

$$v_j = cnn(W, X_j) + \epsilon_j$$

$$\epsilon_j \sim N(0, \sigma_V^2 I)$$

$$p(V|W, X, \sigma_V^2) = \prod_{j}^{M} N(v_j|cnn(W, X_j), \sigma_V^2 I)$$

W: weight for CNN

X_j : document for item j

Epsillon_j: Gaussian noise

Figure 1: Graphical model of ConvMF model: PMF part in left (dotted-blue); CNN part in right (dashed-red)

Figure 2: Our CNN architecture for ConvMF

Embedding Layer

- Raw document > dense numeric matrix
- L개의 단어들을 size(dim) p로 embedding.
- Random or Pre-trained word embedding(Glove)

$$c_i^j = f(W_c^j * D_{(:,i:(i+ws-1))} + b_c^j) \qquad \begin{array}{c} c_1 & c_2 & c_1 & c_2 & c_2 & c_2 & c_3 & c_4 &$$

Convolutional Layer

- Contextual feature 뽑아낸다.
- C_ij = ith word가 shared weight W_cj에 의해 추출된 Contextual feature (window size : ws)
- Window size는 surrounding words의 개수. (Filter의 너비와 유사)
- C_j = item j의 document 에 대해 weight W_c를 적용하여 얻은 contextual feature vector
- 서로다른 W를 적용하여 n_c개의 contextual feature vector를 얻는다.

Pooling Layer

- Max pooling으로 Representative features 뽑아낸다.
- Variable(ws) length > fixed-length feature vector
- 쓸데없이 많은(도움이 거의 되지 않으며) contextual feature 중 representative한 것들만 추출

$$s = \tanh(W_{f_2}\{\tanh(W_{f_1}d_f + b_{f_1})\} + b_{f_2})$$

$$s_j = cnn(W, X_j)$$

Output Layer

- dim k로 projection하여 recommendation task에 적합하게 한다.
- Document latent vector S_j for item j

$$\begin{aligned} & \max_{U,V,W} p(U,V,W|R,X,\sigma^{2},\sigma_{U}^{2},\sigma_{V}^{2},\sigma_{W}^{2}) \\ & = \max_{U,V,W} [p(R|U,V,\sigma^{2})p(U|\sigma_{U}^{2})p(V|W,X,\sigma_{V}^{2})p(W|\sigma_{W}^{2})] \\ & \mathcal{L}(U,V,W) = \sum_{i}^{N} \sum_{j}^{M} \frac{I_{ij}}{2} (r_{ij} - u_{i}^{T}v_{j})_{2} + \frac{\lambda_{U}}{2} \sum_{i}^{N} \|u_{i}\|_{2} \\ & + \frac{\lambda_{V}}{2} \sum_{i}^{M} \|v_{j} - cnn(W,X_{j})\|_{2} + \frac{\lambda_{W}}{2} \sum_{i}^{|w_{k}|} \|w_{k}\|_{2}, \end{aligned}$$

Figure 1: Graphical model of ConvMF model: PMF part in left (dotted-blue); CNN part in right (dashed-red)

Optimization Methodology

- 앞선 과정을 통한 map 식 변형
- Negative logarithm으로 Loss function 도출
- W regularization term 추가 및 spherical이 아닌 V regularization term

$$u_i \leftarrow (VI_iV^T + \lambda_U I_K)^{-1}VR_i$$

$$v_j \leftarrow (UI_jU^T + \lambda_V I_K)^{-1}(UR_j + \underline{\lambda_V cnn(W, X_j)})$$

Coordinate descent for U, V

- 한 Variable을 제외하고 나머지는 fix한채 optimize한다.
- U: V와 W를 constant / V: U 와 W를 constant 취급

$$\mathcal{E}(W) = \frac{\lambda_V}{2} \sum_{j}^{M} \|(v_j - cnn(W, X_j))\|^2$$
$$+ \frac{\lambda_W}{2} \sum_{k}^{|w_k|} \|w_k\|^2 + \text{constant}$$

Back propagation for W

- W는 CNN에서 max pooling, non-linear act function을 거쳤기에 coordinate descent적용 불가.
- 대신 Loss function을 단순히 W에 대한 Square error function에 지나지 않는다.
- U와 V는 constant로 바라본다.

$$r_{ij} \approx \mathbb{E}[r_{ij}|u_i^T v_j, \sigma^2]$$
$$= u_i^T v_j = u_i^T (cnn(W, X_j) + \epsilon_j)$$

$$O(k^2n_R + k^3N + k^3M)$$
 $O(n_c \cdot p \cdot l \cdot M)$
 $O(k^2n_R + k^3N + k^3M + n_c \cdot p \cdot l \cdot M)$

Time Complexity Analysis

- Coordinate descent를 진행한 U,V
- CNN computation cost가 dominate하는 W
- Filter / Embedding dim / Words / Items

Dataset	# users	# items	# ratings	density
ML-1m	6,040	3,544	993,482	4.641%
ML-10m	69,878	10,073	9,945,875	1.413%
AIV	29,757	15,149	135,188	0.030%

Table 1: Data statistic on three real-world datasets

MovieLens & Amazon

- Amazon은 제품 리뷰, MovieLens는 IMDB plot을 document로 이용
- Max length, stop words removal, tf-idf score etc..
- Amazon dataset은 특히나 더 sparse한 양상을 보인다.

	ML-1m		ML-10m		AIV	
Model	$\overline{\lambda_U}$	λ_V	λ_U	λ_V	λ_U	λ_V
PMF	0.01	10000	10	100	0.1	0.1
CTR	100	1	10	100	10	0.1
CDL	10	100	100	10	0.1	100
ConvMF	100	10	10	100	1	100
ConvMF+	100	10	10	100	1	100

Table 2: Parameter Setting of λ_U and λ_V

RMSE =
$$\sqrt{\frac{\sum_{i,j}^{N,M}(r_{ij} - \hat{r}_{ij})^2}{\text{# of ratings}}}$$

Competitors & Evaluation Protocol

- CTR/CDL은 LDA/SDAE 활용한 recommendation model
- ConvMF+는 pre-trained word embedding 이용.

	Dataset				
Model	ML-1m	ML-10m	AIV		
PMF	0.8971	0.8311	1.4118		
CTR	0.8969	0.8275	1.5496		
CDL	0.8879	0.8186	1.3594		
ConvMF	0.8531	0.7958	1.1337		
ConvMF+	0.8549	0.7930	1.1279		
Improve	3.92%	2.79%	16.60%		

Table 3: Overall test RMSE

ML-1m(Relatively dense dataset)

- PMF ≈ CTR ≈ CDL < ConvMF & ConvMF
- data가 상대적으로 dense할 땐 **shallow** document analysis는 **큰 도움이 되지 않았다**.
- 그럼에도 Deeper Understanding을 위시한 ConvMF 방식은 가시적인 성능 개선을 보였다.

	Ratio of training set to the entire dataset (density)							
Model	20% (0.93%)	30% (1.39%)	40% (1.86%)	50% (2.32%)	60% (2.78%)	70% (3.25%)	80% (3.71%)	
PMF	1.0168	0.9711	0.9497	0.9354	0.9197	0.9083	0.8971	
CTR	1.0124	0.9685	0.9481	0.9337	0.9194	0.9089	0.8969	
CDL	1.0044	0.9639	0.9377	0.9211	0.9068	0.8970	0.8879	
ConvMF	0.9745	0.9330	0.9063	0.8897	0.8726	0.8676	0.8531	
Improve	2.98%	3.20%	3.36%	3.41%	3.77%	3.27%	3.92%	

Table 4: Test RMSE over various sparseness of training data on ML-1m dataset

Over Various density

- 매번 ConvMF가 우월한 성능을 보였다.
- Dataset density가 높아질수록 성능 격차를 더 벌리게 되었다.
- ConvMF의 CNN이 PMF와 잘 integrate되어 위와 같은 양상을 보이게 되었다.

	Dataset				
Model	ML-1m	ML-10m	AIV		
PMF	0.8971	0.8311	1.4118		
CTR	0.8969	0.8275	1.5496		
CDL	0.8879	0.8186	1.3594		
ConvMF	0.8531	0.7958	1.1337		
ConvMF+	0.8549	0.7930	1.1279		
Improve	3.92%	2.79%	16.60%		

Table 3: Overall test RMSE

AIV(Sparse dataset)

- CDL <<< ConvMF & ConvMF (16.6%)
- Sparse, skewed dataset에서는 현격한 성능개선을 이루어 냈다.
- 이는 ConvMF가 Contextual information을 고려한 document에 대한 deeper understanding 덕분이다.

	Dataset				
Model	ML-1m	ML-10m	AIV		
PMF	0.8971	0.8311	1.4118		
CTR	0.8969	0.8275	1.5496		
CDL	0.8879	0.8186	1.3594		
ConvMF	0.8531	0.7958	1.1337		
ConvMF+	0.8549	0.7930	1.1279		
Improve	3.92%	2.79%	16.60%		

Table 3: Overall test RMSE

Impact of Pre-trained word embedding(Sparse case)

- Data가 sparser해질수록 ConvMF+가 ConvMF보다 좋은 성능을 보였다.
- 이는 Pre-trained embedding의 syntactic, semantic info가 shortage of ratings를 보완하기 때문이다.

		Dataset	
Model	ML-1m	ML-10m	AIV
PMF	0.8971	0.8311	1.4118
CTR	0.8969	0.8275	1.5496
CDL	0.8879	0.8186	1.3594
ConvMF	0.8531	0.7958	1.1337
ConvMF+	0.8549	0.7930	1.1279
Improve	3.92%	2.79%	16.60%

Table 3: Overall test RMSE

Impact of Pre-trained word embedding(Dense case)

- Dense할 땐 오히려 ConvMF가 더 좋은 성능을 내기도 하였다. (ML-1m)
- Dataset이 상대적으로 dense하면 Pre-trained word embedding 정보를 추가하기보단,
 Rating의 영향력을 더 중시해야한다. (Rating은 직접적으로 user x item 사이 관계를 반영하기 때문).

Figure 3: Skewness of the number of ratings for items on each dataset

Figure 4: Ratio of items that have less than num. ratings (N) to each entire dataset

Skewness of Amazon dataset

- 극히 일부 item은 num. Ratings/ max num. Ratings ratio가 높고 나머지는 굉장히 낮다.
- 다른 dataset에 비해 num. Ratings에 따라 그 ratings이하의 items 비율 변화가 급격하다.
- 해당 dataset이 굉장히 skewness가 심하다는 것을 의미한다.

Figure 6: Relative improvements of ConvMF+ over ConvMF

Over various λ_V

- λ_V는 Rating과 document description사이 중요도를 balancing해준다.
- Dataset이 dense한 MovieLens의 경우, λ_V의 영향력이 미미했다.
- Sparse한 Amazon dataset의 경우, λ_{V} 의 영향이 가시적으로 크게 나타났다.

Figure 6: Relative improvements of ConvMF+ over ConvMF

Over various $\lambda_V(Amazon Dataset)$

- λ_V 10 to 1000 : ConvMF+의 상대적 성능이 증가한다.
- λ_V 1000 to 10000 : ConvMF+의 상대적 성능이 감소한다.

Figure 5: The effects of the dimension size of word embedding on Amazon dataset

Parameter analysis over Word vector dimension p

- p가 증가하자 ConvMF는 성능 저하, ConvMF+는 성능 개선이 일어났다. (Amazon dataset)
- Sparse할 때, p가 커짐에 따라 pre-trained word embedding model의 information이 풍부해진다.

Figure 6: Relative improvements of ConvMF+ over ConvMF

Over various $\lambda_V(Amazon Dataset)$

- λ_{V} 가 작을 때는 (+)가 상대적으로 Underfit되어있는 것이 λ_{V} 가 증가하며 점차 해소되다가, 100 이후부터는 (+)가 오히려 Overfit하는 것이 이 양상의 원인이다.
- Amazon dataset은 sparse하기에 이 양상이 더 잘 드러난다.
- 그럼에도 적절한 λ_V라면 pre-trained word embedding을 활용한 ConvMF+가 성능을 더욱 높여주었다.

Parameter analysis over $\lambda_V \& \lambda_u$

- Dataset이 sparse해질수록 λ_{-} V는 증가하고, λ_{-} u는 감소해야 좋은 결과를 산출하였다.
- λ_v 가 크다 > item latent model 변화 작다 > user latent model이 item latent model space에 project.
- Item latent model은 document description에 영향을 크게 받고 있다.
- 즉 sparse해질수록 document가 성능 개선에 영향을 주고 있고, ConvMF의 효과를 방증한다. (λ_v를 이용해 rating과 document 사이 balancing을 하면서)

Phrase captured by W_c^{11}	$\max(c^{11})$	Phrase captured by W_c^{86}	$max(c^{86})$
people trust the man	0.0704	betray his trust finally	0.1009
Test phrases for W_c^{11}	c_{test}^{11}	Test phrases for W_c^{86}	c _{test} ⁸⁶
people believe the man	0.0391	betray his believe finally	0.0682
people faith the man	0.0374	betray his faith finally	0.0693
people tomas the man	0.0054	betray his tomas finally	0.0480

Table 5: Case study on two shared weights of ConvMF

Qualitative Evaluation(Subtle Contextual difference)

- 전자 : believe가 faith보다 높은 feature value 산출. (verb)
- 후자 : faith가 believe보다 높은 feature value 산출. (noun)
- 연관이 없는 tomas에 대해선 굉장히 낮은 feature value를 산출한다.
- 단순한 Contextual meaning 뿐 아니라 Subtle Contextual difference 역시 구별할 수 있다.

ConvMF - Conclusion

Impact of ConvMF

- ConvMF는 기존의 document desciription을 활용하였던 기법(CTR, CDL 등)들에서 더 나아가 CNN과 PMF를 접목시켜 Contextual information까지 포착해 Rating accuracy를 향상시키고자 하였다.
- 광범위한 실험을 통하여 여러 방면에서 ConvMF는 기존의 Competitors를 압도하는 성능 개선을 보였다.
- 특히나 rating이 sparse한 dataset에서 document에 대한 deeper understanding이 성능 개선에 유효한 영향을 끼치는 것을 확인하였다.
- 뿐만 아니라 더 나아가 미묘한 Contextual difference 역시 감지할 수 있음을 실험적으로 보였다.

AutoRec - Implementation

```
class Data(Dataset):
                                                               class AutoRec(nn Module):
   def __init__(self,train, base):
      super(Data, self).__init__()
                                                                    def __init__(self, input, hidden, output)
      self.train = train
                                                                         super(AutoRec, self).__init__()
      self.base = base
                                                                         self.enc = nn.Linear(input, hidden)
      self.n_user, self.n_item = train.shape
                                                                         self.dec = nn.Linear(hidden, output)
   def __len__(self):
      if self.base == 'item':
                                                                         self.activate = F.sigmoid
         return self.n_item
      elif self.base == 'user':
         return self.n_user
                                                                    def forward(self, x):
   def __getitem__(self, idx):
      if self.base == 'item':
                                                                         x = self.activate(self.enc(x))
         return torch.tensor(self.train.iloc[:, idx].values).float()
                                                                         x = self.dec(x)
      elif self.base == 'user':
         return torch.tensor(self.train.iloc[idx, :].values).float()
                                                                         return x
```

AutoRec - Implementation

```
EPOCH 15: TRAINING loss 0.9424899134346811
for x in trainloader:
                                                                   EPOCH 16: TRAINING loss 0.944043463195325
                                                                   EPOCH 17: TRAINING loss 0.9501555757195482
     optimizer.zero grad()
                                                                   EPOCH 18: TRAINING loss 0.9494641918918991
     x = x.to(config.device)
                                                                   EPOCH 19: TRAINING loss 0.9698743369820528
                                                                   EPOCH 20: TRAINING loss 0.9731743313445089
     mask = x > 0
                                                                   EPOCH 21: TRAINING loss 0.9612591393904667
                                                                   EPOCH 22: TRAINING loss 0.9532326361770449
     pred = model(x)
                                                                   EPOCH 23: TRAINING loss 0.9463050780169887
                                                                   EPOCH 24: TRAINING loss 0.9524248820920533
      loss = torch.mean(((x - pred)[mask])**2)
                                                                   EPOCH 25: TRAINING loss 0.9252526664572827
                                                                   EPOCH 26: TRAINING loss 0.9327948593011899
      loss.backward()
                                                                   EPOCH 27: TRAINING loss 0.9211449407007336
     optimizer.step()
                                                                   EPOCH 28: TRAINING loss 0.9249190638146322
                                                                   EPOCH 29: TRAINING loss 0.9120939904530396
      losses.append(np.sqrt(loss.item()))
                                                                   EPOCH 30: TRAINING loss 0.9191502025580571
```

Thank you