503, V -> trivial subspaces

Definition

A *subspace* of a vector space V is a subset H of V that has two properties:

- **1.** H is closed under vector addition. That is, for each u and v in H, the sum u + v is in H.
- **ID** H is closed under multiplication by scalars. That is, for each u in H and each scalar c, the vector cu is in H.

Examples

- The zero subspace $\{0\}$ consisting of only the zero vector, is a subspace of every vector space.
- Lines in \mathbb{R}^2 passing through the origin, are subspaces of \mathbb{R}^2 .
- lacksquare Planes in \mathbb{R}^3 passing through the origin, are subspaces of \mathbb{R}^3 .
- Solutions of any homogeneous linear system Ax = 0. If A is an $m \times n$ matrix then these solutions sets are subspaces of \mathbb{R}^n .

Let Abe or MYN matrix. W= SXERN AX=03 (i) Let v, we will. $=) f_{V} = 0, f_{W} = 0.$ Then A (V+W) = 0 (ii) Let NEW, CER - A(CN) = CAN=0

(i) 2 (ii) =) Wisa subspace

of Rh.

Definition

Let v_1, \ldots, v_p be distinct elements of a vector space V, and let c_1, \ldots, c_p be scalars. The vector

$$c_1v_1+\ldots+c_pv_p$$

is called a *linear combination* of the vectors v_1, \ldots, v_p .

Definition

Let S be a nonempty subset of a vector space V. The set of all elements of V that can be expressed as linear combinations of elements of S is called the *span* of S, and is denoted by Span S. If S is the empty set, we define Span S to be the singleton set $\{0\}$.

hat Span S is $\sqrt{}$ a subspace of V, if Sis a finite set. Need to show: Spar Sisa subspace of when Sis Claim: If S, C S, C Vthen Span Span Sz. Let ve Span Si. V= C, U, + ... + C, Un Some Ci, ..., (nER, and some U, . . , Un E S,

Clamy u,, ..., un ES2 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$ ESPANS2. =/ Span S, C Span S2 Now consider the rase when Sis on infinite subsetol.

Let V, we Span S. $-) V = C_1 U_1 + \cdots + C_n U_n$ for 50M2 Gralans (1, ..., Cn and vectors U,,..., une S. for some scalars d, ..., dm and some victory vi, ..., vm ES.

Consider A = 3u, , ..., un? $\sqrt{\frac{5}{2}}$ Clearly A is a finite set, Since A is finite, Span A

=> V+W E Span A C Spans =) V+W & Span S J Span S Closure runder scalar multiplication - complete this feer homework Span Sis a subspace ...

Proposition

Let $S \subset V$. Then Span S is a subspace of V.

Proved on earlier zages.

Example

(sinn + d conn

Consider the set V of all solutions of the differential equation

$$y'' + y = 0$$

The set $W = \text{Span}\{\sin x\}$ is a subspace of V.

Also $V = \operatorname{Span}\{\sin x, \cos x\}$.

In general, solution sets of n-th order ODEs can be expressed as the span of n linearly independent solutions, but this is something you will cover in your other classes.

Homework

Characterization of Linearly Dependent Sets

An indexed set $S = \{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

In fact, if S is linearly dependent and $\mathbf{v_1} \neq \mathbf{0}$, then some $\mathbf{v_j}$ (with j>1) is a linear combination of the preceding vectors, $\mathbf{v_1},\ldots,\mathbf{v_{i-1}}$.

A very similar proof to the one we saw on earlier works in the context of abstract vector spaces. Please adapt the proof which was presented for the \mathbb{R}^n case as homework.

Fundamental Subspaces of Matrix A.

Definition

The *null space* of an $m \times n$ matrix A written as Nul A, is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

$$\textit{Nul } A = \{ \mathbf{x} \in \mathbb{R}^n \ : \ A\mathbf{x} = \mathbf{0} \}$$

Proposition

Nul A is a subspace of \mathbb{R}^n .

proof or previous Slide

Definition

The *column space* of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n],$$

then

Col
$$A = Span\{\mathbf{a}_1, \dots, \mathbf{a}_n\}.$$

Proposition

Col A is a subspace of \mathbb{R}^m .

Proof: Span of any subset 118

We will verisit this when
we look at SVD
Singular Value Decomposite

Definition

The row space of an $m \times n$ matrix A, written as Row A, is the set of all linear combinations of the rows of A.

$$Row A = \underbrace{Col A^T}$$

Thus Row A is a subspace of \mathbb{R}^n .

 $Nul\ A,\ Col\ A$ and $Row\ A$ are called the $Fundamental\ Subspaces$ associated with the matrix A. \longrightarrow $\bigcap a \lor i$ $\bigwedge A$ $\bigcap A$ $\bigcap A$

Some sources also consider $Nul A^T$ as a fundamental subpace associated with A.

Definition

Let V be a vector space. Let S be an infinite subset of V. We say S is a *linearly independent* set if every finite subset of S is linearly independent.

Note: The above definition is given only for the sake of completeness. You will NOT be asked any question on an exam which is based on infinite linearly independent sets.

Definition

Let V be a vector space. A set of vectors $\mathcal{B} \subset V$ is said to be a basis of V if

 \mathcal{B} is linearly independent.

 \mathcal{B} spans V.

Whenever \mathcal{B} is a finite set, we say V is finite dimensional.

NXN Jalentity (1,0)(0)Prid VERN, So V = (V), . . . , Vp), (0,0)(0)When VII., Vr Ell. V = V, l, + V2 l2 + . . . + Vrln & Span 5l, , - . , Pny

 $C_{1}(1,0,1,-1,0) = ((1,0,1,0,0))$ $C_{2}(0,1,-1,0) = ((0,0,1,-1,0))$ = (0,0,1,-1,0) = (0,0,1,-1,0) = (0,0,1,0,0,0)Claim. Ser, englis linedaly independent set Suppulle (10,0,...,0) + (2(0,1,0-...0) + ...-+ ch(0,...,0))When Ci, ..., CnER $= \left(\begin{array}{c} C_1, \dots, C_n \right) = O \Rightarrow C_1 = C_2 = \dots = C_n = 0.$ $\vdots \quad \exists e_1, \dots, e_n \end{cases} \quad i \in [1] \text{ set}.$