- (1) wherein any P₂O₅ former is added in an amount such that:
- (a) ${SiO_2} + ({P_2O_5} (58 + 0.5({MgO} 10))) > -2.4 \text{ wt\% if } {MgO} > 10 \text{ wt\%}$; and
 - (b) $\{SiO_2\} + (\{P_2O_5\} 58) > -2.4 \text{ wt\% if } \{MgO\} \le 10$; and optionally
- (2) wherein any B_2O_3 former is added in an amount such that $\{B_2O_3\}$ is in the range from 0 to 4 wt%; wherein $\{SiO_2\}$, $\{P_2O_5\}$, $\{MgO\}$, and $\{B_2O_3\}$ are the concentrations of SiO_2 , P_2O_5 ,

MgO, and B₂O₃, respectively, in the fiber in wt%; thereby producing inorganic fibers having a shrinkage of less than 3.5% when exposed to a temperature of 1000 °C for 24 hours and a shrinkage of less than 3.5% when exposed to a temperature of 800 °C for 24 hours.

14. (Amended) A saline soluble inorganic fiber having a shrinkage of less than 3.5% when exposed to a temperature of 1000 °C for 24 hours and having a shrinkage of less than 3.5% when exposed to a temperature of 800 °C for 24 hours, comprising SiO₂, CaO, MgO, and one or both of P₂O₅ and B₂O₃ in concentrations falling within the ranges:

$${SiO_2}$$
 44.34 wt% to 62.48 wt%;

$$\{P_2O_5\}$$
 0 wt% to 12.01 wt%;

$${B_2O_3}$$
 0 wt% to 3.54 wt%;

wherein $\{SiO_2\}$, $\{CaO\}$, $\{MgO\}$, $\{P_2O_5\}$, and $\{B_2O_3\}$ are the concentrations of SiO_2 , CaO, MgO, P_2O_5 , and B_2O_3 , respectively, in the fiber, and wherein

(a)
$${SiO_2} + ({P_2O_5} - (58 + 0.5({MgO} - 10))) > -2.4 \text{ wt\% if } {MgO} > 10 \text{ wt\%, and}$$

(b)
$${SiO_2} + ({P_2O_5} - 58) > -2.4 \text{ wt\% if } {MgO} \le 10.$$