Introduction to Al using Deep Learning

Divyansh Jha

Intel SA for AI

What is Intelligence?

Why are we Intelligent?

What does it mean something to be artificially intelligent?

Goal of Artificial Intelligence Community

- Goal is to make machines artificially intelligent.(To see, understand, respond)
 (Alexa competition)
- Companies like Google, Microsoft, Facebook are working to achieve this.
- Various Researchers like Geoffrey Hinton, Yann LeCun, Yoshua Bengio

How can we create Al systems?

What is Machine Learning?

- Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.

ML algorithms need data!

Step 1
Gathering data from various sources

Step 2
Cleaning data to have homogeneity

Step 2
Cleaning data to have homogeneity

Step 3
Model BuildingSelecting the right ML algorithm

Selecting the right ML algorithm

Step 4
Gaining insights from the model's results into visuals graphs

ML is great for:

- Problems for which existing solutions require a lot of hand-tuning or long lists of rules: one Machine Learning algorithm can often simplify code and perform better.
- Complex problems for which there is no good solution at all using a traditional approach: the best Machine Learning techniques can find a solution.
- Fluctuating environments: a Machine Learning system can adapt to new data.
- Getting insights about complex problems and large amounts of data.

Supervised Learning

$$Y=f(X)$$

Classification

Regression

Unsupervised Learning

What is Deep Learning?

Subset of Machine Learning

 Deep learning algorithms attempt to learn (multiple levels of) representation and an output

From "raw" inputs x

(e.g., sound, characters, or words)

Why Deep Learning?

Most machine learning methods work well because of human-designed representations and input features

For example: features for finding named entities like locations or organization names (Finkel et al., 2010):

Perceptron/ Linear Model

Inspired from the Human Neuron

Linear Model Contd...

For eg. - Classification

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Multilayer Perceptron


```
# forward-pass of a 3-layer neural network: f = lambda \ x: \ 1.0/(1.0 + np.exp(-x)) \ \# \ activation \ function \ (use \ sigmoid) \\ x = np.random.randn(3, 1) \ \# \ random \ input \ vector \ of \ three \ numbers \ (3x1) \\ h1 = f(np.dot(W1, x) + b1) \ \# \ calculate \ first \ hidden \ layer \ activations \ (4x1) \\ h2 = f(np.dot(W2, h1) + b2) \ \# \ calculate \ second \ hidden \ layer \ activations \ (4x1) \\ out = np.dot(W3, h2) + b3 \ \# \ output \ neuron \ (1x1)
```

Activation Functions

Deep Learning for Image Classification

- Problems in Image Classification

Deep Learning Frameworks

Intel Al Academy

- Free access to DevCloud for members
- Free Machine Learning and Deep learning Courses
- Community Support by Intel DevMesh
- https://software.intel.com/en-us/ai-academy/basics

Intel[®] Nervana[™] Al Academy Overview

What is the Intel® Nervana™ AI Academy?

http://software.intel.com/ai

Learn

Online tutorials
Webinars
Student kits
Support forums

For beginners to advanced developers

Develop

Intel Optimized Frameworks Exclusive access to Intel® Nervana™ DevCloud

For Developers, Students, Professors and Startups

Teach

Comprehensive courseware Hands-on labs Cloud compute Technical Support

> For Instructors Worldwide

Share

Project showcase opportunities at Intel Developer Mesh, Industry Academic events For Developers,

For Developers, Student Ambassadors and Instructors

Join the Academy

http://software.intel.com/ai

Learn the Basics

Sharpen your selfs in algorithms, machine learning, and more. Our Sharper

` |

Enhan

Framework

Get faster training of deep neutral reducing on Intal® Actifiacture.

Streets Options

Enhance with Tools

Optimize and expand the capacities of your frameworks with our fibraries. Explore & Orientical

Technical Session

Functional Connectivity of Epileptic Brains

Student anticessador Paruwat Janwattanapong describes his Alresearch to improve the detection and diagnoses of epileptic brein function, Q4 may

Noted Student Performances

A-FELL

Strata Data Conference

New York City, New York September 26 - 29 Vital is a disablept sportage. Alterni the Valle and see up at booth #121.

Latest Project

Classify Plant Disease from Leaf Images

Value Pold explore how farmers can guidly determine desires that could affect their coops.

All N Property

Latest Updat

Detect Unattended Baggage Using Deep Neural Networks

Create a solution using inflamma of a Microsoft Common Dispots in Contest (MS-COCC), detection model and intelligent and contest and intelligent and contest a

At futurals

DevMesh

Tell us what you are working on – papers, research, projects – this site is a way for us to learn about amazing work and engage further!

Join the Student Group on DevMesh at devmesh.intel.com

Intel Al Devcloud

- Highly optimised python
- Intel Math Kernel Library
- Optimised DL frameworks

Let's Build an Image Classifier in Keras using an MLP

Convolutional Neural Networks

It is the workhorse of Computer Vision

Four main parts

- Convolution
- Non-Linearity (Activation Function)
- Pooling
- MLP

What is Convolution?

http://setosa.io/ev/image-kernels/

Strides and Padding

Stride: the step of the convolution operation.

When the stride is 1 then we move the filters one pixel at a time.

The nice feature of zero padding is that it will allow us to control the spatial size of the output volumes.

Pooling

Let's Build a ConvNet in Keras

Intel® Movidius™ Neural Compute Stick

Get started: https://developer.movidius.com/

INTEL® NERVANA™ PORTFOLIO

My Project Overview

Al Saturdays

Resources

- Intel AI academy
- Hand-on Machine learning book
- Deeplearning.ai Coursera course
- CS231n Course by Stanford
- Fast.ai