OF HOT GAS DECONTAMINATION FOR EXPLOSIVES

at

HAWTHORNE ARMY DEPOT

Hawthorne Nevada 89415-0015

VOLUME IV OF IV

FINAL

Prepared for
U.S. ARMY ENVIRONMENTAL CENTER
Aberdeen Proving Ground, Maryland 21010-5401

Prepared by
THE TENNESSEE VALLEY AUTHORITY
ENVIRONMENTAL RESEARCH CENTER
Muscle Shoals, Alabama 35660-1010

SEPTEMBER 1995

19980417 101

DTIC QUALITY INSPECTED 4

DISTRIBUTION STATEMENT

Approved for public releases
Distribution Unlimited

DEPARTMENT OF THE ARMY U.S. ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE (PROVISIONAL) ABERDEEN PROVING GROUND, MARYLAND 21010-5422

REPLY TO ATTENTION OF

MCHB-ME-AP (1mm)

27 January 1995

MEMORANDUM FOR Commander, U.S. Army Material Command, ATTN: AMCEN-A, 5001 Eisenhower Avenue, Alexandria, VA 22333-0001

SUBJECT: Final Report, Hot Gas Decontamination System Compliance Test, Air Pollution Emission Assessment No. 42-21-MX61-95, Hawthorne Army Ammunition Plant, Hawthorne, Nevada, 17-29 October 1994.

Two copies of final report with Executive Summary are enclosed. FOR THE COMMANDER:

Encl

-DAVID L. DAUGHDRÆLL

Program Manager

Air Pollution Source Management

CF (w/encl):
HQDA(DAIM-ED)

USACPW, ATTN: CECPW-ES

CDR, AMCCOM, ATTN: AMCMS-SG

CDR, MEDCOM, ATTN: MCHO-CL-W

CDR, HWAAP, ATTN: SMCHW-OR (3 CY)

CDR, MAMC, ATTN: PVNTMED SVC (2 cy)

CDR, USAEC, ATTN: SFIM-AEC-TIC (2 cy)

CDR, DSA - W

U.S. Army Center for Health Promotion and Preventive Medicine (Provisional)

FINAL REPORT
AIR POLLUTION EMISSION ASSESSMENT NO. 42-21-MX61-95
HOT GAS DECONTAMINATION SYSTEM COMPLIANCE TEST
HAWTHORNE ARMY AMMUNITION PLANT
HAWTHORNE, NEVADA
17-29 OCTOBER 1994

Distribution limited to U.S. Government agencies only; protection of privileged information evaluating another command; Jan 95. Requests for this document must be referred to Commander, Hawthorne Army Ammunition Plant, ATTN: SMCHW-OR, Hawthorne, NV 89415-5000.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document

U.S. ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE (Provisional)

The U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM) lineage can be traced back over fifty years to the Army Industrial Hygiene Laboratory. That organization was established at the beginning of World War II and was under the direct jurisdiction of The Army Surgeon General. It was originally located at the Johns Hopkins School of Hygiene and Public Health, with a staff of three and an annual budget not to exceed three thousand dollars. Its mission was to conduct occupational health surveys of Army operated industrial plants, arsenals, and depots. These surveys were aimed at identifying and eliminating occupational health hazards within the Department of Defense's (DOD) industrial production base and proved to be beneficial to the Nation's war effort.

Most recently, it has been nationally and internationally known as the U.S. Army Environmental Hygiene Agency or AEHA. Its mission, by this time, had been expanded to support the worldwide preventive medicine programs of the Army, DOD and other Federal Agencies through consultations/supportive services, investigations and training.

Today, it is redesignated the U.S. Army Center for Health Promotion and Preventive Medicine. Its mission for the future is to provide worldwide technical support for implementing preventive medicine, public health and health promotion/wellness services into all aspects of America's Army and the Army Community anticipating and rapidly responding to operational needs and adaptable to a changing world environment.

The professional disciplines represented at the Center include chemists, physicists, engineers, physicians, optometrists, audiologists, nurses, industrial hygienists, toxicologists, entomologists, and many others as well as sub-specialties within these professions.

The organization's quest has always been one of excellence and continuous quality improvement; and today its vision, to be the nationally recognized Center for Health Promotion and Preventive Medicine, is clearer than ever. To achieve that end, it holds ever fast to its values which are steeped in its rich heritage:

- Integrity is the foundation
- Excellence is the standard
- Customer satisfaction is the focus
- Its people are the most valued resource
- Continuous quality improvement is its pathway

Once again, the organization stands on the threshold of even greater challenges and responsibilities. It is being totally reorganized with a provisional structure and will obtain its first General Officer leadership. As it moves into the next century, new programs are being added related to health promotion/wellness, soldier fitness and disease surveillance. As always, its mission focus is centered upon the Army Imperatives so that we are trained and ready to enhance the Army's readiness for war and operations other than war.

It is an organization fiercely proud of its history, yet equally excited about the future. It is destined to continue it development as a world-class organization with expanded services to the Army, DOD, other Federal Agencies, the Nation and the World Community.

DEPARTMENT OF THE ARMY U.S. ARMY CENTER FOR HEALTH PROMOTION AND PREVENTIVE MEDICINE (PROVISIONAL) ABERDEEN PROVING GROUND, MARYLAND 21010-5422

REPLY TO ATTENTION OF

EXECUTIVE SUMMARY FINAL REPORT

AIR POLLUTION EMISSION ASSESSMENT NO. 42-21-MX61-95
HOT GAS DECONTAMINATION SYSTEM COMPLIANCE TEST
HAWTHORNE ARMY AMMUNITION PLANT
HAWTHORNE, NEVADA
17-29 OCTOBER 1994

- 1. PURPOSE. The purpose of this assessment was to determine air pollution emissions from the hot gas decontamination system, as tested. The results will be used by the State of Nevada Bureau of Air Quality to set operational and emissions limits.
- 2. CONCLUSIONS. Stack emissions data from the HGD system have been determined for total particulate matter, which includes particulate matter less than 10 microns in diameter, and certain air toxics. Testing for air toxics included carbon monoxide, nitrogen oxides, sulfur dioxide, total hydrocarbons, and the following metals; antimony, arsenic, barium, beryllium, cadmium, chromium, nickel, lead, silver, and thallium.
- 3. RECOMMENDATIONS. Provide a copy of this report to the State of Nevada Bureau of Air Quality.

CONTENTS

Para	agraph	Page
	REFERENCES	1
1.	REFERENCES	-
2.	AUTHORITY	1
3.	PURPOSE	1
4.	CENEDAL	1
4.	GENERAL	ī
	b. Operating Requirements	2
	c. Emission Standards	2
	d. Sampling Location	2
	e. Sampling Time Summary	3
	f. Sampling Equipment and Procedures	4
	g. Sample Recovery and Analysis	4
	h. Calibration Procedures	4
	i. Continuous Emission Monitoring	4
	j. Nonstandard Events	4
	k. Nomenclature and Equations	5
	1. Assessment Personnel	5
_	FINDINGS AND DISCUSSION	5
5.	a. Sampling Train Data Summary	5
	b. Process Operation Data Summary	5
	c. Emission Performance	7
	d. Sampling and Analysis Results	11
	e. Sampling Analysis Quality Assurance	11
	e. Dampiling/midigate gadiney	
6.	CONCLUSIONS	11
	a. Air Toxics Emissions	11
	b. THC Emissions	11
	c. Metals Emissions	12
	d. Operating Requirements	12
7.	RECOMMENDATIONS	12
Ω	TECHNICAL ASSISTANCE	12

Fina 17-2	al Report, Air Pollution Emission Assessment No. 42-21-MX61-95 29 October 1994	5,
TABI	LES	•
1	SAMPLING METHODS SUMMARY	
2	PROCESS WASTE FEED AND AVERAGE OPERATING CONDITIONS 6	
3	SIMMARY OF HGD SYSTEM AVERAGE EMISSIONS	
4	SUMMARY OF HGD SYSTEM AVERAGE EMISSIONS DURING EACH	
-	METALS TEST	
5	SUMMARY OF HGD SYSTEM AVERAGE EMISSIONS DURING EACH	
	PM ₁₀ TEST)
APPI	ENDIX	
A	REFERENCES	-1
В	VELOCITY TRAVERSE AND CYCLONIC FLOW DATA	
C	SAMPITING FOUIPMENT AND PROCEDURES	_
D	SAMPLE RECOVERY AND ANALYSIS D-	-1
Ē	SAMPLING EQUIPMENT CALIBRATION DATA	
F	CONTINUOUS EMISSION MONITOR SYSTEMS	-1
G	NOMENCLATURE AND EQUATIONS	_
H	USACHPPM ASSESSMENT PERSONNEL	
Ī	SAMPLING TRAIN FIELD DATA SHEETS AND SUMMARY I.	
J	DECCERC DATA CDADHS	
K	PROCESS CONTINUOUS EMISSION MONITORS DATA GRAPHS K-	
L	PM. DATA SUMMARY L	
M	CONTINUOUS EMISSION MONITOR CALIBRATION DATA SUMMARY M-	_
N	THC CONTINUOUS EMISSION MONITOR DATA SUMMARY	_
0	NO. CONTINUOUS EMISSION MONITOR DATA SUMMARY O.	
P	CO CONTINUOUS EMISSION MONITOR DATA SUMMARY	
Q	SO, CONTINUOUS EMISSION MONITOR DATA SUMMARY Q-	
Ŕ	STACK CONTINUOUS EMISSION MONITORS GRAPHS AND DATA SUMMARY R	
C	MEMAIC DATA CIMMADY	-1

MCHB-ME-AP

FINAL REPORT AIR POLLUTION EMISSION ASSESSMENT NO. 42-21-MX61-95 HOT GAS DECONTAMINATION SYSTEM COMPLIANCE TEST HAWTHORNE ARMY AMMUNITION PLANT HAWTHORNE, NEVADA 17-29 OCTOBER 1994

- 1. REFERENCES. See Appendix A for a listing of references.
- 2. AUTHORITY. AEHA Form 250-R, USAEC, 9 June 1993.
- 3. PURPOSE. The purpose of this assessment was to determine emissions from the hot gas decontaminations (HGD) system, as tested. The results will be used by the State of Nevada Bureau of Air Quality to set operational and emissions limits.

4. GENERAL.

a. <u>Background</u>. The U.S. Army Environmental Center (USAEC) is investigating technologies to effectively treat explosives—contaminated components. Pilot studies have shown that decontamination of structural components is possible using a heated gas to thermally decompose or volatilize explosives with subsequent incineration in a thermal oxidizer (references 3 and 4). The pilot study conducted at HWAAP from 10 July to 21 September 1989 concluded that the HGD system is effective for treating items contaminated with TNT and ammonium picrate (reference 4). A second pilot study, from 20 June to 31 October 1994, was conducted to determine if the HGD system would successfully decontaminate items contaminated with explosives; COMP A-3, COMP B, HBX, H-6, RDX, TNT, and Yellow D (reference 5). Stack gas testing was conducted during 17-29 October to support HWAAP permitting requirements.

Use of trademark names does not imply endorsement by the U.S. Army but is intended only to assist in identification of a specific product.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

b. Operating Requirements.

- (1) Batch Feed Rate. The HGD chamber was to be loaded between 90% and 100% (22.5 tons and 25 tons, respectively) of capacity with explosive-contaminated items for this assessment. The HGD system runs as a batch process, such that one configuration of contaminated items is loaded, brought up to temperature, decontaminated, cooled and removed, and then repeated with another configuration of items.
- Test Item. Sampling was conducted to determine the stack emissions of the HGD system when decontaminating 175mm projectiles contaminated with COMP B. The 175mm projectiles are considered the worst-case items to be tested in the HGD system based on the decomposition temperature of the TNT fraction, and the potential for elevated CO, NO, and THC emissions. COMP B 60-40 mixture of RDX and TNT, respectively, is the highest formulation of both compounds. The TNT has the highest explosion temperature, 1058°F, of the proposed explosives to be decontaminated (reference 6). TNT has the highest carbon content among all explosives and theoretically requires the longest residence time in the thermal oxidizer for complete combustion. Based on this criteria, TNT was determined to have the greatest potential to generate maximum THC and CO emissions. The RDX fraction has the highest nitrogen content for the explosives of concern, therefore, potentially causing elevated NO, emissions during operations.
- c. <u>Emission Standards</u>. Stack sampling was conducted during the operation of the HGD system to assess air pollutant emissions. The State of Nevada Bureau of Air Quality required testing for particulate matter less than 10 microns in diameter (PM₁₀), and certain air toxics. Testing for air toxics included carbon monoxide (CO), nitrogen oxides (NO_x), sulfur dioxide (SO₂), total hydrocarbons (THC), and the following metals; antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), silver (Ag), and thallium (T1) (reference 7). Table 1 summarizes the U.S. Environmental Protection Agency (EPA) approved reference methods, equipment, and procedures used in this assessment (reference 8).

d. Sampling Location.

(1) The HGD system exhausts to a 54-inch inside diameter (ID) refractory-lined stack that also serves as the thermal oxidizer. Two 6-inch ID ports, located at right angles to each other, are located 111-inches (2.1 duct diameters) upstream and

TABLE 1. SAMPLING METHODS SUMMARY

POLLUTANT	SAMPLING METHOD		
PM ₁₀	Method 202* / RM 5†		
Metals	Multiple Metals Method:		
со	RM 10†		
NO _x	RM 7E†		
SO ₂	RM 6C†		
THC	RM 25A†		
* Reference 9 † Reference 8 ‡ Reference 10			

¹²⁹⁻inches (2.4 duct diameters) downstream from the nearest flow disturbances (the wind dam and the thermal oxidizer burners, respectively). The number of traverse points required per the EPA reference method 1 (RM 1) of reference 7 is 24. The traverse point locations within the stack are shown in Appendix B. A preliminary velocity traverse and cyclonic flow check was performed and the flow was proven to be acceptable. Velocity and cyclonic flow data can be found in Appendix B.

- (2) A 1/4-inch stainless steel line was inserted 45 degrees from and 19 inches above the 6-inch sampling ports to remove a sample stream of gas to be analyzed by the THC, NO_x , CO, and SO_2 continuous emission monitor system (CEMS).
- e. Sampling Time Summary. Testing was conducted during four batch process runs of the HGD system, test series 31 through 34. The PM_{10} sampling train was operated within the first 10 hours of operation and conincided with the time when propellent was flashing off of the 175mm projectiles. The metals sampling train was operated during the last 6 hours of treatment so that sampling wasconducted when the metal was at its maximum temperature in the chamber. The CEMS was operated during each test run, twice during each batch process.

- f. Sampling Equipment and Procedures. A description of the metals and PM_{10} sampling apparatus and procedures can be found in Appendix C.
- g. Sample Recovery and Analysis. A description of the retals and PM_{10} sample recovery and analysis procedures can be found in Appendix D.
- h. <u>Calibration Procedures</u>. A summary of calibration procedures and calibration data for the sampling train and the ORSAT analyzer can be found in Appendix E.
- i. Continuous Emission Monitoring. A description of the THC, NO_{x} , CO, and SO_{2} monitors can be found in Appendix F.

j. Nonstandard Events.

- (1) Process Feed Rate. For all test runs the actual configuration was a total weight of 26.7 tons which was above the specified 25 tons initially specified (reference 11).
- (2) PM_{10} Train Sampling Duration. The PM_{10} train sampling duration was reduced to 2 hours to decrease the potential of equipment failure in the high temperature stack. This also ensured that sampling was conducted during the period that propellent was flashing off projectiles to lessen the likelihood of sample dilution.
- (3) Metals Train Sampling Duration. The metals train sampling duration was increased to 72 minutes to ensure that a minimum sample volume of 30 cubic feet could be drawn from the stack.
- (4) Water-Cooled Probe. The water-cooled probe had developed a hole at the thermocouple weld during testing conducted on 19 Ocotober 1994. Steam was being generated in the probe as it began to heat. The test was postponed for safety concerns until the next morning when a new probe assembly could be configured.
- (5) Run 1. The method 202 train failed the intermediate leak check. An additional batch process was scheduled so that particulate sampling could be conducted during the period when propellent was flashing off the projectiles. Data from the CEMS, however, is still considered valid. The average stack gas flow rate from the remaining runs was used to estimate emission rates from the CEMS data.

- (6) THC Monitor. The THC monitor had a flame failure during the majority of run 3 therefore no data could be generated. Although the monitor calibrated withhin the requirments, the avg THC reading during run 4 was below zero, thus the data is not reported.
- (7) NO_x Monitor. Data from run 4 is not reported because the monitor could not show linearity during the post calibration. Data from runs 6 and 7 was not reported because there was no midrange calibration gas remaining to check the linearity of the NO_x monitor.
- (8) CO Monitor. The CO emission data for runs 1, 2, 3 and 5 is not reported because the monitor did not show linearity during the pre or post calibrations.
- (9) SO_2 Monitor. The SO_2 emission data for run 5 was not reported because the monitor could not show linearity during the post calibration. During run 7, moisture built up in the sample line before the SO_2 monitor and caused SO_2 to be removed from the sample gas, thus, the SO_2 monitor data from run 7 was not reported.
- (10) PM_{10} Sample Analysis. During the analysis of the back half water fraction of the PM_{10} train, the samples were inadvertently discarded. Therefore, no final weights are recorded for the inorganic condensible particulate matter (CPM), method 202 back half, portion of the PM_{10} train.
- k. Nomenclature and Equations. The nomenclature and equations used for this assessment are found in Appendix G.
- 1. Assessment Personnel. Personnel that were in involved in the assessment are listed in Appendix H.

5. FINDINGS AND DISCUSSION

- a. <u>Sampling Train Data Summary</u>. Field data sheets, isokinetic computation sheets, and detailed summaries of all sampling train runs are provided in Appendix I.
- b. <u>Process Operation Data Summary</u>. The charge load rate for each test run was 26.7 tons which was above the 25 ton limit preestablished in the test protocol. A summary of the average process operation data is given in Table 2 for each batch process tested (reference 12). Graphs showing the heatup of certain projectiles in the HGD chamber can be found in Appendix J for each batch process

PROCESS WASTE FEED AND AVERAGE OPERATING CONDITIONS

		TEST*	TEST SERIES 32	TEST SERIES 33	TEST SERIES 34
tes		20-21 Oct	23-24 Oct	26-27 Oct	29-30 Oct
ED DATA					
erage Batch Feed	/99 a \	400	480	480	480
175mm COMP B Proj	(No.)	480	115	115	115
	(lb/ea) (tons)†	27.6	27.6	27.6	27.6
	(cons)	27.0			
erational Data					
Total Batch Proce	ss				
Time (hr)		27.75	30.75	32	28.5
HGD Chamber Targe	t Process	5			
Temp (°F)		550	550	550	550
	_				
Total Heatup Time		18.75	18.5	18	17.5
Process Temp ()	nrj	18./5	10.3	10	2,,0
Treatment Time At	Target				_
Process Temp (hr)	6	6	6	6
Thermal Oxidizer	Set				
Temp (°F)		1800	1800	1800	1800
				•	
Thermal Oxidizer	+/-	50	50	50	50
Limit (°F)		50	50	30	30
Average Thermal O	xidizer				-
Temp (°F)		1798	1804	1805	1797
Thermal Oxidizer	#2 Fuel				
Oil Rate (gal/		28.16	27.87	28.19	28.03
(lbs/		205.71	203.57	205.94	204.78
(MBTU		3.995			
	•				
Average Stack Temp (°F)		1667	1781	1794	1768
Temp (r)		1007	2,02		
Avg Stack					26.2
Pressure (in H	lg)	*	26.4	26.13	26.2
Avg Stack Gas					
Velocity (ft/s	ec)	*	21.61	19.38	21.05

^{*} Test Run 1 - PM₁₀ train failed intermediate leak check. † Batch feed rate exceeds previous limit of 25 tons.

(reference 13). Graphs of CEM data for exhaust gases exiting the HGD chamber can be found in Appendix K for each batch process (reference 13).

- c. Emission Performance. As required, a minimum of three valid runs of data were collected to assess PM_{10} , THC, NO_x , CO, SO_2 and metals emissions form the HGD system. A summary of the average emission rates for all valid test runs for the 175mm COMP B contaminated projectiles is provided in Table 3. A summary of the average emission rates for each run is provided in Tables 4 and 5.
- (1) PM_{10} Emissions. The average PM_{10} emission rate was found to be 1.238 tons/year (based on 8760 hours of operation/year). The emission rate of PM_{10} ranged from 0.605 to 1.592 tons/year. The water sample, method 202 back half portion, from the PM_{10} train was inadvertently discarded; therefore, the PM_{10} results do not include the inorganic fraction of CPM. Detailed PM_{10} sampling data can be found in Appendix L.
- (2) CEM Calibration Data. Calibration of the THC, NO_x , CO and SO_2 CEM's was done each day before and after each test run. Calibration was done using EPA protocol-1 gases. Monitor response had to be within the respective reference method requirements. Detailed CEM calibration data is provided in Appendix M.
- (3) THC Emissions. The average THC emission rate was found to be 0.023 ton/year (based on 8760 hours of operation/year). The emission rate of THC ranged from 0.008 to 0.048 tons/year. Detailed THC sampling data can be found in Appendix N.
- (4) NO_x Emissions. The average NO_x emission rate was found to be 16.31 tons/yr (based on 8760 hours of operation/year). The emission rate of NO_x ranged from 8.58 to 22.04 tons/year. Detailed NO_x sampling data can be found in Appendix O.
- (5) CO Emissions. The average CO emission rate was found to be 0.64 ton/year (based on 8760 hours of operation/year). The emission rate of CO ranged from 0.54 to 0.76 tons/year. Detailed CO sampling data can be found in Appendix P.
- (6) SO_2 Emissions. The average SO_2 emission rate was found to be 10.62 tons/yr (based on 8760 hours of operation/year). The emission rate of SO_2 ranged from 7.79 to 11.92 tons/year. Detailed SO_2 sampling data can be found in Appendix Q.

TABLE 3. SUMMARY OF HGD SYSTEM AVERAGE EMISSIONS

DATE	HWAAP HGD TEST 17-29 Oct 1994
FEED DATA	
Batch Feed per Test 175mm COMP B Proj (No.) (lb/ea) (tons)*	480 115 27.6
EMISSION DATA	
Avg PM ₁₀ Emission† Rate (lb/hr) (tons/yr)	0.283 1.238
Avg THC Emission Rate (lb/hr) (tons/yr)	0.005 0.023
Avg NO _x Emission Rate (lb/hr) (tons/yr)	3.72 16.31
Avg CO Emission Rate (lb/hr) (tons/yr)	0.15 0.64
Avg SO ₂ Emission Rate (lb/hr) (tons/yr)	2.43 10.62
Avg Metals Emission Rate (g/hr) Ag As Ba Be Cd Cr Ni Pb Sb Se T1	0.00494 0.00350 0.02994 0.00031 0.02829 0.14378 0.22324 0.06069 0.00119 0.00063

^{*} Batch feed rate exceeds previous limit of 25 tons.
† Water fraction inadvertently discarded during inorganic CPM analysis.

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

ABLE 4. SUMMARY OF HGD SYSTEM AVERAGE EMISSION DURING EACH METALS TEST

DATE		RUN 2 10/21/94	RUN 4 10/24/94	RUN 6 10/27/94
FEED DATA				;
Average Batch Feed 175mm COMP B Proj	(No.) (1b/ea) (tons)*	480 115 27.6	480 115 27.6	480 115 27.6
EMISSION DATA				
Avg THC Emission Rate (lb/hr) (tons/yr)		0.002 0.008	† †	0.009 0.040
Avg NO _x Emission Rate (lb/hr) (tons/yr)		1.96 8.58	† †	† †
Avg CO Emission Rate (lb/hr) (tons/yr)		† †	0.12 0.54	0.14 0.63
Avg SO ₂ Emission Rate (lb/hr) (tons/yr)		2.52 11.05	2.40 10.52	1.78 7.79
Avg Metals Emission Rate (g/hr) Ag As Ba Be Cd Cr Ni Pb Sb Se T1		0.00146 0.00772 0.03398 0.00036 0.05378 0.04243 0.04441 0.07737 0.00229 0.00071	0.00062 0.00192 0.03972 0.00030 0.02240 0.24067 0.42284 0.07593 0.00090 0.00060	0.01272 0.00085 0.01611 0.00029 0.00869 0.14823 0.20247 0.02878 0.00038 0.00057

^{*} Batch feed rate exceeds previous limit of 25 tons. † Monitor not within calibration requirements.

TABLE 5. SUMMARY OF HGD SYSTEM AVERAGE EMISSIONS DURING EACH PM10 TEST

DATE	.RUN 1* 10/20/94	RUN 3 10/23/94	RUN 5 10/26/94	RUN 7 10/29/94
FEED DATA				
Average Batch Feed 175mm COMP B Proj (No.) (lb/ea) (tons)†		480 115 27.6	480 115 27.6	480 115 27.6
EMISSION DATA				
PM ₁₀ Emission Rate‡ (lb/hr) (tons/yr	*) *	0.346 1.517	0.138 0.605	0.363 1.592
Avg THC Emission Rate (lb/hr) (tons/yr)	0.001 0.002	*	0.011 0.048	0.004
Avg NO, Emission Rate (lb/hr) (tons/yr)	3.63 15.91	4.27 18.72	5.03 22.04	*
Avg CO Emission Rate (lb/hr) (tons/yr)	.	.	* *	0.17 0.76
Avg SO ₂ Emission Rate (lb/hr) (tons/yr)	2.70 11.84	2.72 11.92	*	.

^{*} PM₁₀ train failed intermediate leak check.

[†] Batch feed rate exceeds previous limit of 25 tons.

[#] Water fraction inadvertently discarded during inorganic CPM analysis.

Monitor not within calibration requirements.

⁽⁷⁾ CEMS Graphs. Graphs showing the concentrations of THC, NO_x , CO and SO_2 , emitted during each test run can be found in Appendix R. The 1 minute average CEMS concentration response for THC, NO_x , CO, amd SO_2 , for all test runs, can also be found in Appendix R.

⁽⁸⁾ Metals Emissions. Emissions for the 11 metals that were sampled for at the HGD system have been determined. The 11 metals sampled were picked for their health hazard characteristics based on the RCRA standards for hazardous waste incinerators (HWI's) (reference 14). Detailed metals sampling data can be found in Appendix S.

d. Sampling and Analysis Results.

- (1) Methods Summary. A summary of the sampling procedures used in this assessment is summarized in Table 1.
- (2) Stack Gas Data. A summary of stack gas data can be found in Appendix I.

e. Sampling/Analysis Ouality Assurance.

- (1) QA Objectives. Quality assurance objectives for the trains operated in this assessment are detailed in Appendix D.
- (2) Sampling Procedures. Quality assurance for emission sampling consisted primarily of performing necessary calibrations per references 15 and 16. In addition, stack sampling equipment was operated as per reference 17. EPA Protocol-1 gases were used to calibrate the CEMS. Appendix E contains a summary of calibration data.
- (3) Data Completeness. Data was collected to make a complete assessment of the THC, NO_x , CO, SO_2 , and metals emissions from the HGD system. The back half water condensible particulate matter portion of the PM_{10} train was inadvertently discarded. Therefore the PM_{10} data reflects the sum of the organic fraction of the CPM and the particulate collected in the method 5 portion of the PM_{10} train.

6. CONCLUSIONS.

- a. Air Toxics Emissions. As required, a minimum of three valid test runs were obtained for PM_{10} , THC, NO_x , CO, SO_2 , and metals to determine their respective emissions. The PM_{10} emissions were determined using the total front half particulate and the back half organic CPM. The water sample to determine the inorganic fraction of the CPM was inadvertently discarded during analysis, therefore the inorganic CPM was not included in the results.
- b. THC Emissions. THC emissions were monitored to reflect the efficiency of the thermal oxidizer. The concentration of the THC in the chamber exhaust duct before the thermal oxidizer spiked up to 100 ppm during test 31. But the thermal oxidizer THC concentration never went above 1.10 ppm during all valid THC sampled test runs. This illustrates that the thermal oxidizer is effectively treating the effluent leaving the HGD chamber by destroying the organics that were thermally removed from the projectiles.

- c. <u>Metals Emissions</u>. The metals emissions have not been compared to any standard since the HGD system metal emissions are not RCRA regulated.
- d. Operating Requirements. Normal operations during this testing exceeded the pre-established 25 tons as reflected in the test protocol. Operational data logs recorded during each batch process will be provided upon request if this data is required to set permit operating conditions.

7. RECOMMENDATIONS.

- a. Provide a copy of this report to the State of Nevada Bureau of Air Quality.
- b. Based on the results of testing, consider adjusting the limit of material loaded per batch process to reflect the 26.7 tons of COMP B projectiles treated during each test of the HGD system.
- 8. TECHNICAL ASSISTANCE. Requests for assistance should be directed through appropriate command channels of the requesting activity to the Commander, U.S. Center for Health Promotion and Preventive Medicine (PROV), ATTN: MCHB-ME-AS, Aberdeen Proving Ground, MD 21010-5422, with an information copy furnished to the Commander, U.S. Army Medical Command, ATTN: MCHO-CL-W, 2050 Worth Rd., Fort Sam Houston, TX 78234-6000.

JOHN T. LITYNKSI

Environmental Engineer

Air Pollution Source Management

Program

APPROVED:

DAVID L. DAUGHDRILL Program Manager

Air Pollution Source Management

APPENDIX A

REFERENCES

- 1. AR 40-5, 30 August 1986, Preventive Medicine.
- 2. AR 200-1, 15 June 1982, Environmental Protection and Enhancement.
- 3. Arthur D. Little, Inc., Pilot Plant Testing of Caustic Spray/Hot Gas Building Decontamination Process, prepared for USATHAMA (Task Order Number 5). USATHAMA Reference AMXTH-TE-CR-87112, August 1987.
- 4. Roy F. Weston, Inc., Pilot Test of Hot Gas Decontamination of Explosives-Contaminated equipment at Hawthorne Army Ammunition Plant, prepared for USATHAMA (Task Order Number 2). USATHAMA Report No. CETHA-TE-CR-90036, June 1990.
- 5. The Tennessee Valley Authority Environmental Research Center, Test Plan for Development and Demonstration of Hot Gas Decontamination for Explosives at Hawthorne Army Ammunition Plant, prepared for USAEC (AEC Form Number 45). USAEC Report No. SFIM-AEC-TS-CR-94027, May 1994.
- 6. U.S. Army Material Command, Engineering Design Handbook Explosives Series Properties of Explosives of Military Interest, USAMC Document No. AMCP 706-177, January 1971.
- 7. Telephone conversation between John T. Litynski, this office, and Mark Kvan, State of Nevada Bureau of Air Quality, 30 August 1994, subject: Testing Requirements for Air Toxics at HWAAP.
- 8. Title 40, Code of Federal Regulations (CFR), 1993 rev, Part 60, Standards of Performance for New Stationary Sources, Appendix A, Reference Methods.
- 9. Title 40, CFR, 1993 rev, Part 51, Requirements for Preparation, Adoption, and Submittal of Implementation Plans.
- 10. RCRA Regulations and Keyword Index, Appendix IX, Part 266, Methods Manual for Compliance with the BIF Regulations, McCoy and Associates, Inc., 1992 Edition.
- 11. U.S. Army Center for Health Promotion and Preventive Medicine (Provisional), Test Protocol, Air Pollution Emission Assessment No. 42-21-MX61-94, Hot Gas Decontamination System Compliance Test, 8 September 1994.

- Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994
- 12. The Day and Zimmermann/Basil Corporation, Process operation logs recorded during HGD of COMP B contaminated 175mm projectiles, Testing Conducted: 17 through 29 October 1994.
- 13. The Tennessee Valley Authority Environmental Research Center, CEM and Temperature data logs recorded during HGD of COMP B contaminated 175mm projectiles, Testing conducted: 17 through 29 October 1994.
- 14. RCRA Regulations and Keyword Index, Appendix I, Part 266, Methods Manual for Compliance with the BIF Regulations, McCoy and Associates, Inc., 1992 Edition.
- 15. EPA Manual APTD-0576, March 1982, Maintenance, Calibration, and Operation of Isokinetic Source Sampling Equipment.
- 16. EPA Manual No. 600/4-77/027b, March 1983, Quality Assurance Handbook for Air Pollution Measurement Systems, Vol II, Stationary Source Specific Methods.
- 17. Title 40, CFR, 1992 Rev, Part 60, Standards of Performance for New Stationary Sources.
- 18. EPA Manual SW-846, November 1986, Test Methods for Evaluating Solid Waste, Third Edition: Volume IA: Laboratory Manual Physical/Chemical Methods.

APPENDIX B VELOCITY TRAVERSE AND CYCLONIC FLOW DATA

TRAVERSE POINT LOCATION FOR CIRCULAR STACKS

INSTALLATION: HWAAP

DATE: 10 - 18 - 94

SAMPLING LOCATION: If GD 3 ystems

OF NIPPLE (DISTANCE A):

OUTSIDE OF NEAR WALL TO OUTSIDE /O "

STACK I.D. (A - B): 54"

NEAREST UPSTREAM DISTURBANCE: 129"

NEAREST DOWNSTREAM DISTURBANCE: ///

SCHEMATIC OF SAMPLING LOCATION

3.44%

PITOT TUBE BLOCKAGE CORRECTION FACTOR:

External Sheath and % Blockage > 3% K = 1.0197 - 0.0098 (% Blockage) = .9869

No External Sheath and % Blockage > 2% K = 1.0132 - 0.0101 (% Blockage)

% Blockage = (Stack Dia/2 - Nozzle Length)(Sheath Dia)/Stack Area X 100

c_{pcorr} = 0.84 K Cp_{1Wein} = 0.827 952 0.831

Traverse Point Number	Fraction of Stack ID	Stack ID	Traverse Point Location (To Nearest 1/8")	Distance B	Traverse Point Location From Outside Nipple
1	2.1	54"	14	10'	11 74
2	6.7		3 5/8		13 5/1
3	11.8		6 ³ /8		163/8
4	17.7		9 1/2		19 1/2
5	25.0		13 Y2		23 1/2
6	35.6		19 1/4		29 4
7	84.4		343/4		44 3/4
	75.0		40 1/2		50%
	82.3		44 3/8		54 3%
	88.2		47%		575/8
10	93.3		503/g		607
11	97.9	V	52%	V	62%

73 Blockage =
$$[(stack d = /2 - nozzele | langth)(shealh dim)/stack crowline)$$

= $[(54"/2 - 3")(3")/_{TT}(54)^2/4] \times 100$
= 3.14%

$$\therefore K = 1.0197 - (.0098)(3.14)$$

$$K = .9889$$

STACK GAS VELOCITY AND CYCLONIC FLOW DATA

INSTALLATION	Hawthorne Army Ammunition Plant	DATE
	·	10-18-94

SAMPLING LOCAT	ION	CLOCK TIME
Hot Gas	Decentamination System	

OPERATOR AMBIENT TEMP (°F)		BAROMERTRIC PRESSURE (in. Hg)	STATIC PRESSURE (in. H ₂ O)
	62	·	

MOLECULAR WEIGHT	EXHAUST STACE	K ID (in.)	PITOT TUBE C.
(ls/lb mole)	DIA OR SIDE 1	SIDE 2	,
29,0	54"	54°	0.84

TRAVI POI NUM	NT	POSITION (in.)	STACK GAS VELOCITY HEAD § (in. H-O) E	STACK TEMPERATURE (°F)	YAW ANGLE (degrees)
l	13	11 /4	.013	1718	(1
2	14	13 5/8	:018	1779	10
3	15	1634	.018	1795	12
4	16	191/2	.025	1796	16
5	17	23 1/2	.040	1814	/3
6	18	29 14	.055	1821	1/
7	19	4434	.045	1796	11
8	20	50 1/2	025	1782	08
9	21	54 3/s	.01	1770	97
10	22	57 <i>5</i> %	.013	1761	14
11	23	60%	.015	1752	13
12_	24	62 78	.015	1748	11
Aver	age		0.025	1778	11.4

APPENDIX C

SAMPLING EQUIPMENT AND PROCEDURES

APPENDIX C

SAMPLING EQUIPMENT AND PROCEDURES

- 1. STACK SAMPLING. Due to the different types of emissions that were measured, two different trains and four different continuous emission monitors were used. PM₁₀ emissions were measured using the U.S. Environmental Protection Agency (EPA) approved method 202 with a reference method 5 front half assembly. Metals emission were measured using the EPA recommended mutiple metals train (MMe) (reference 9). A description of the CEMs is located in Appendix F.
- a. Particulate/PM₁₀ Train. The PM₁₀ and particulate matter was collected using a modified method 202 sampling train with the following exception. As per reference 9, an alternative method to directly measuring PM₁₀ (method 201) is to perform the front half of a reference method 5 and the back half of a method 202 train. The temperature exiting the HGD stack was in excess of 1600°F; therefore, an out of stack filter is required. All collected particulate matter was considered as PM₁₀. All collected particulate matter included the probe wash, filter catch, front half rinse, back half rinse (condensible organics), and the impingers' catch (condensible organics). The PM₁₀ train, as shown in Figure C-1, was configured as follows:

Quartz sampling nozzle
Quartz-lined, water-cooled sampling probe
Cyclone eliminator
4-inch filter with glass housing
90-degree glass elbow
Impinger No. 1 - Greenburg-Smith Design - 100 mL D/D H₂O
180-degree glass connector
Impinger No. 2 - Greenburg-Smith Design - 100 mL D/D H₂O
180-degree glass connector
Impinger No. 3 - 100 mL DI H₂O
180-degree glass connector
Impinger No. 4 - silica gel

b. <u>Metals Train</u>. Metals emission samples were collected using the multiple metals sampling train specified in reference 10. This train (MeM5), as shown in Figure C-2, was configured as follows:

Quartz sampling nozzle
Quartz-lined, water-cooled sampling probe
Cyclone eliminator
4-inch filter with glass housing
90-degree glass elbow
Impinger No. 1 - dry
180-degree glass connector
Impinger No. 2 - 100 mL of 5% Nitric Acid (HNO3)
and 10% hydrogen peroxide (H2O2) solution
180-degree glass connector

Impinger Contents

Impinger 1 - 100 mL DD H_2O Impinger 2 - 100 mL DD H_2O Impinger 3 - 100 mL DD H_2O Impinger 4 - silica gel

FIGURE C-1. SCHEMATIC OF PM_{10} SAMPLING TRAIN (RM5 AND METHOD 202)

Impinger Contents

Impinger 1 - dry Impinger 2 - 100 mL HNO_3/H_2O_2 Impinger 3 - 100 mL HNO_3/H_2O_2 Impinger 4 - silica gel

FIGURE C-2. MULTIPLE METALS TRAIN

Impinger No. 3 - Greenburg-Smith Design - 100 mL of 5% (HNO₃) and 10% ($\rm H_2O_2$) solution 180-degree glass connector Impinger No. 4 - silica gel

The following train description is common to both the PM_{10} and MeM5 sampling trains. The water-cooled sampling probe uses a heated Quartz liner. The S-type pitot tubes and thermocouples were attached to the sampling probe. The pitot tubes are 0.75-inch from the probe nozzles, and the thermocouples were placed so as to eliminate any disturbance in the velocity measurements. The probe was attached to a sample box containing a particulate filter which was connected to the impinger train. The PM_{10} filter was tared while the MeM5 filter was not tared. The glass filter was enclosed in a chamber heated to 248 \pm 25 °F. The impingers were packed in an ice bath to cool the gas and remove moisture from the gas sample. The sample box was connected to an umbilical cord that contains the vacuum line, pitot lines, electrical connections, and thermocouple wires. The meter box has a calibrated dry gas meter, a calibrated orifice, and a vacuum pump that draws the sample through the sampling equipment. Two manometers, mounted on the meter box, measured the velocity pressure in the stack and the pressure differential across the meter box orifice.

- 2. STACK SAMPLING TECHNIQUE. All sampling trains were operated isokinetically. Isokinetic sampling was performed by controlling the sampling flow rates so the velocity of the gas entering the sampling nozzle was within 10% of the undisturbed stack gas stream velocity at each sample point. The stack gas velocity was monitored by an S-type pitot tube while stack gas temperature was determined by a thermocouple assembly. An integrated gas sample was taken per RM 3 of reference 8 at a constant rate using a sampling tube attached to the probe assembly, a vacuum pump, and a Teflon® collection bag.
- 3. TEST POINTS. The number of sample points per traverse was determined per EPA RM 1. A total of 24 traverse points (12 per traverse) was required. Figure C-3 indicates the locations within the stack.
- 4. STACK GAS MOISTURE. The stack gas moisture was determined by EPA RM 4. Moisture was collected during each train in the impingers. All impingers were kept in an ice bath so that the temperature of the gas leaving the final impinger did not exceed 68°F. Each impinger was then weighed before and after each run on a top loading scale, accurate to 0.1 gram.
- 5. STACK GAS COMPOSITION. The stack gases were sampled according to EPA RM 3 to determine CO_2 , CO, and O_2 concentrations via ORSAT.

Teflon is a registered trademark of E.I. DuPont de Nemours & Co., Inc., Wilmington, Delaware.

Point No.	Percentage of Stack Diameter	Distance From <u>Stack Wall</u>
1,13	2.1	1 1/4"
2,14	6.7	3 5/8 "
3,15	11.8	6 3/8"
4,16	17.7	9 1/2"
5,17	25.0	13 1/2"
6,18	35.6	19 1/4"
7,19	64.4	34 3/4"
8,20	75.0	40 1/2"
9,21	82.3	44 3/8"
10,22	88.2	47 5/8"
11,23	93.3	50 3/8"
12,24	97.9	52 7/8"

FIGURE C-3. TRAVERSE POINTS WITHIN 54-INCH INSIDE-DIAMETER STACK

APPENDIX D
SAMPLE RECOVERY AND ANALYSIS

APPENDIX D

SAMPLE RECOVERY AND ANALYSIS

1. PM_{10} NITROGEN PURGE. After each PM_{10} train was completed the pH of the first impinger solution was less than 4.5, therefore, a nitrogen (N_2) purge to remove SO_2 was conducted. The probe and filter was detached from the impinger train, and the impinger train was left in the ice bath to maintain the gas temperature below $20\,^{\circ}\text{C}$. The N_2 gas fitting was attached to the inlet of the impinger train as shown in Figure D-1. The N_2 flow and the meter box pump valve were opened simultaneously to avoid over- or underpressurizing the train. The N_2 purge was conducted for 1 hour with a flow rate of 20 L/min through the impinger train (reference 9).

2. SAMPLE RECOVERY.

- a. $\underline{PM_{10}}/Particulate Train Samples$. The sample recovery for the PM_{10} train is as follows (reference 9):
- (1) All impingers were weighed and the results recorded for moisture determination.
- (2) Sample 1 (Filter): The filter was removed from the filter holder and placed in a petri dish. Any particulate matter or filter fibers that adhered to the filter gasket were transferred to the petri dish. The labeled petri dish was then sealed.
- (3) Sample 2 (Front-Half Acetone Rinse): The probe and nozzle were rinsed with acetone followed by scrubbing with a probe brush after the probe was allowed to cool. The probe wash was collected in a sample container. The front half of the sampling train was also rinsed with acetone and combined with the probe wash in the sample container. The sample container was then sealed and labeled.
- (4) Sample 3 (Impinger Contents): The liquid was then measured in the first three impingers by weighing it to within 0.5 g using a balance. This liquid was quantitatively transfered into a clean glass sample bottle; the connecting glassware and each impinger was rinsed twice with water, and the rinse water was added to the same sample bottle. The liquid level was then marked on the bottle.
- (5) Sample 4 [Methylene Chloride (MeCl₂) Rinse]: Following the water rinses of each impinger and the connecting glassware (including probe extension), an additional two rinses of MeCl₂ was performed; the rinse products were saved in a clean, glass sample jar. The liquid level of the jar was then marked and the sample sealed.

FIGURE D-1. SCHEMATIC OF PM10 POST-TEST NITROGEN PURGE

- b. <u>MeM5 Train Samples</u>. The sample recovery for the MeM5 train consisted of the following steps (reference 10):
- (1) All impingers were weighed and the results recorded for moisture determination. (2) Sample No. 1 (Filter): The filter from the filter holder was placed in its identified petri dish. Any particulate matter or filter fibers that adhered to the filter gasket were transferred to the petri dish. The labeled petri dish was then sealed.
- (3) Sample No. 2 (Front-Half Rinse): The nozzle, probe, and front half of the filter holder were rinsed and scrubbed with 100 mL of 0.1 N HNO₃. The rinses were collected into a sample container.
- (4) Sample No. 3 (Impingers 1 through 3, HNO_3/H_2O_2 Impingers Contents and Rinses): The contents of impingers 1 through 3 were combined into a graduated cylinder, and the volume was measured and recorded to within 0.5 mL. The liquid was then transferred into a sample container. After rinsing each impinger, the connecting glassware and the back half of the filter housing with 100 mL of 0.1 N HNO_3 , the rinses were combined with the impinger contents. The sample container was sealed and labeled for analysis.

3. SAMPLE ANALYSIS.

- a. <u>Train Sample Analysis</u>. The analytical procedures used to analyze the train samples generated during this test are summarized in Table D-1.
- (1) Particulate. The filter was desiccated and weighed to a constant weight. The acetone probe wash and front half rinse were transferred into a tared beaker and evaporated to dryness. The total front half particulate weight was determined by adding the probe wash residue to the weight gained by the filter, less the acetone blank correction. The back half water rinse (including impinger 1-3 contents) was combined with the back half MeCl2 rinse and transferred into a separatory funnel. The MeCl2/organic phase was then separated and drained off into a graduated cylinder. additional 75-mL MeCl2 organic extractions were performed on the combined sample. The organic particulate fraction was determined by transferring the extractions into a tared weighing tin and placing it into a laboratory hood to evaporate the solvent to The water portion of the extration for the inorganic particulate determination for the back half was inadvertantly discarded during analysis. The back half particulate weight was determined by accounting for only the organic CPM less the correction for the MeCl2 blank. The total particulate weight was determined by adding the front half particulate weight and the back

TABLE D-1. ANALYTICAL PROCEDURES SUMMARY

COMPONENT	PARAMETER	TECHNIQUE	ANALYSIS METHOD
Particulate/PM ₁₀			
Impingers Acetone Probe	Moisture	Gravimetric	RM 4*
Wash	Particulate	Gravimetric	RM 5*
Filter	Particulate	Gravimetric	RM 5*
Back Half Rinse	Particulate	Gravimetric	Method 202*
MeM5			
Impingers Acid Probe	Moisture	Gravimetric	RM 4*
Wash	Metals	ICAP/AAS	MeM5†
Filter	Metals	ICAP/AAS	MeM5†
Impinger 1-3	Metals	ICAP/AAS	MeM5†

[†] Reference 10

half particulate weight. All weights were determined on an analytical balance accurate to 0.01 mg.

(2) Metals. All train samples were prepared and analyzed per reference 10. The analysis for all target metals were done either by inductively-coupled argon plasma spectroscopy (ICAP) (Method 6010 of reference 18) or by Atomic Absorption Spectroscopy (AAS) methods. If AAS was used, either the direct aspiration or the graphite furnace method was used.

APPENDIX E SAMPLING EQUIPMENT CALIBRATION DATA

APPENDIX E

SAMPLING EQUIPMENT CALIBRATION DATA

- 1. QA/QC PROCEDURES. The QA/QC calibration procedures for the sampling equipment are those specified in applicable methods. In general, they consisted of pretest and posttest calibrations of sampling equipment.
- 2. CALIBRATION OF SAMPLING EQUIPMENT. Calibration of all sampling equipment was performed prior to and immediately following the test using the procedures outlined in reference 15 and 16. Calibrations of the probe nozzles, pitot tube alignment, dry gas meters, thermometers, and thermocouple/pyrometer assemblies were conducted. Additionally, the USACHPPM routinely participates in the EPA national QA audits for dry gas meters and ORSAT combustion gas analyzers. Table E-1 summarizes these equipment calibration methods.

TABLE E-1. CALIBRATION PROCEDURES SUMMARY

DEVICE	METHOD/STANDARD	REFERENCE
Meter Box Orifice Dry Gas Meter Pyrometer Pitot Tube Thermometer/	Wet Test Meter Wet Test Meter NBS Reference Pyrometer Geometry Reference Pyrometer	APTD-0576* APTD-0576* EPA RM 5† EPA RM 2† EPA RM 2†
Thermocouple Nozzle Orsat Analyzer	Micrometer Calibration Gases	EPA RM 5† EPA-600/4-77-027b‡

^{*} Reference 15

t Reference 8

[†] Reference 16

^{3.} CALIBRATION DATA. Pre and post calibration data sheets for equipment used during the HGD system assessment are included in the following pages.

PITOT NUMBER: WC-5	-/
INSPECTOR: 7h 7 mpcm DATE: 30Et 54	RUN:
INSTALLATION:	

	-
PITOT - NOZZLE - THERMOCOUPLE - PROBE CONFIGURATION	
PITOT - NOZZIE - THERHOCOUTES	3/01
- (2.06" th 3/8")	2/8
1. External Tubing Diameter. D _e (3/16" to 3/8") 2. Base of Pitor to Opening Plane Distance, Impact. P _a (1.05 to 1 393% - 56.2.5 Static. P _a (1.05 to 1	50) .559
ma Nietenes i Imperet in a	
2. Base of Pitor to Opening Plane Distance, 54, 3938-5625 Static. Pg(1.05 to 1	.5D ₂) .559
, 5 (50 ,50 =	
3. Angle between plane of impact fact of pitot tube and transver	:se 40
angle between plane of impact last of pittor.	
tube axis. α_i (<10°)	_
4. Angle between plane of static pitor tube face and transverse	50
4. Angle between plane of seasons	
tube axis. <(<10°)	al /0-
5. Angle between plane of impact pitot tube face and longitudin	
axis, 5. (< ± 5°)	nal 00
of serie pirot tube face and longituding	har 0.
6. Angle between plane of static pitot tube face and longitudin	
	.03
7. Distance between leading tip of the impact and static	
7. Distance between real parts of $A = 1.118$ tubes. $Z (< 1/8") Y=0° A= 1.118$. mia
the stanguage axes for the impact and sta	.019
tubes. 2 (< 1/0 /) 20 //2 //2 //2 7/2 //2 8. Distance between the transverse axes for the impact and state $(< 1/32^{\circ})$ $(< 1/32^{\circ})$	
pitot faces.	
9. Pitor - Nozzie Separation. x (> 3/4")	<u>yes</u>
y, picos	
10. Pitot plane above nozzie entry (yes)	yes
: 11. Nozzle type (button hook)	-
12. Distance between thermocouple and pitot, 2 (> 3/4")	
Thermocouple body and centeri	ine
12. Distance between tangent to thermocouple body and centering. S. (>3")	
V4 JEGGE Obergand.	
14. Distance between gas line and centerline of impact	****
. = m i m e / ! 22	_
is some ferrule and centerline of	√ =
15. Distance between sample probe ferrule and centerline of	. —
impact opening. Y (>3")	

IBRATION DATA AND CALETY

(English units)

Annual Calibration

Herer pox Bridger 3989

Calibrated by Allum (Barometric pressure, Ph = 30.080 :=. H:

arometric	pressure.			RDETACU	res ras mel	2.7			
Drifice Banometer setting	Wet Lest meter (V _v)	nese: (V _d),	meter (t _v),	inles	OULLEL	^YE,	Time (0), min	T _£ _	AME,
in. Ho	2:3	15.00	1	94	87			1.002	1.67
0.5	5	15.126	75.5 75.5	94	87			1.003	1.73
1.0	5	15.110	1	194	87.	190:5	15.00	1.003	1.85
1.5	10	10.22		196	188	192		2 1.004	
2.0	120	10.21	1	196	89	192.5		3 1.000	
3.0	10	10.22		97	189	93		17/1.000	1
4.0	3	is. 58					YAI	100	2/1.82

[(= +-460) 872"

₹ = 20	73.6	$Y_{2} = \frac{V_{y} P_{b}(z_{d} + 460)}{V_{2}(P_{b} + \frac{\Delta Z}{13.6}) (z_{y} + 460)}$	$\Delta R_{1} = \frac{0.0317 \ \Delta E}{E_{0} \ (E_{0} + 460)} \left[\frac{(E_{0} + 460) \ E}{V_{0}} \right]$
			Det Test Meter
0.5	0.0368	Heter Box	I IAHR
	`	1 ok	- 310
1.0	0.0723	Front Half Leak Check OK	JOE / REV
		Back Half leak Check Of	
1.	5 0.220	Back Hall Per Check	30 NIV 93
			Calibration Date
2.	0 0.247	Vacuum Gauge Check BR	AK.
	1	Thermometer Check (30:	Leak Check
3.	0 0-227	The mometer theth the	Hate: Level Check
	1 2 20%	of ASIM Eg) In O'R Out O'R	
4.	0.232		The second was temperature

^{*} If there is only one themometer on the dry was mater, record the temperature mage= =5.

PETER BOX CALIBRATION DATA AND CALUTACION FORM

Post - Calibration

Date 10 1	NOV 94	 = <u>30</u>	<u>.12</u> :=.	•	ter box librate			an Bu	LLL.
Orifice manometer setting (AM), in. H.O	Gas v vet test meter (v,) ft3	olume (V _c),	wet test; meter (t _c),	ERDETI TU	Cuttet (td),	^YI (= ¿),	min	-	AHE,
1. (5)		5.051		91				1.010	
1.10	5.0	5.053		91	84		!		1.77
Vacuum	6.8	- F5		"			AVE	1.010	1.77
<u>^=</u> , <u>^</u> =	<u>=</u>	7, 3, (c - <u>11</u> - 13.	<u>:</u> - 460) :) (ty - 4	(60)	ie =]	0.0317 (T ₂ =	<u>사</u> 450)	[(= ₀ +	460) 8]2
1.101.3		Meter Box	Chesi: Ĉ	<u> </u>	Meter No	Wet Te	E- ME.	<u> 114</u> 14	
	Sack S	Ralf Paak = Gauge Ch	Check Ch	k	Celibre Celibre		: 22		NEV NOV 94
	cf AS	ometer Coe THE Eq.) leg	912 (±1375		lezk Ch Watet L		neck_		

² If there is only one thermometer on the dry gas meter, record the temperature under ty.

APPENDIX F CONTINUOUS EMISSION MONITOR SYSTEMS

APPENDIX F

CONTINUOUS EMISSION MONITOR SYSTEMS

- 1. DESCRIPTION. The following continuous monitors were used to measure CO, NO_x , SO_2 , and THC emissions. The results were continuously recorded at 1-minute intervals by a data logger. Calibration gas certification sheets are included in this appendix.
- a. <u>CO Monitor</u>. A Beckman Nondispersive Infrared (NDIR) Analyzer was used to monitor the CO concentration in the stack gases. The analysis is based on the differential measurement of the absorption of infrared energy. The CEM was operated per RM 10 of reference 8. Calibration gases are admitted to the monitoring system tubing at the stack sampling point. The system is calibrated against EPA Protocol 1- certified gases per RM 10. Certified gases with the following concentrations were used:
 - (1) High Span 85.05 ppm CO/N_2
 - (2) Zero Gas Prepurified N_2
 - (3) Low Span 25 ppm CO/N_2
 - (4) Mid Span 46.03 ppm CO/N_2
- b. NO, Monitor. A Thermo Environmental Chemiluminescent Analyzer was used to monitor the NO, concentration in the stack gases. NO2 is converted to nitric oxide (NO) in a heated stainless steel chamber. The analysis is based on the reaction of NO with ozone (O3). A photomultiplier tube records light emitted as the NO converts to NO2, which has a lower energy level. The CEM was operated per RM 7E of reference 8. Calibration gases were admitted to the monitoring system tubing at the stack sampling point. The system was calibrated against certified gases per RM 7E. EPA Protocol 1-certified gases with the following concentrations were used:
 - (1) Zero Gas Prepurified N_2
 - (2) Mid-Range Gas 137.3 ppm NO/N₂
 - (3) High-Range Gas 225.8 ppm NO/N_2
- c. SO_2 MONITOR. A Western Research Model 721AT Ultraviolet SO_2 Analyzer was used to monitor the SO_2 concentration in the stack gases. The monitor is based on a single source emitting the appropriate wavelengths. The radiation beam moves across the gas sample, is split, and passes through two separate filters. Each

beam of radiation is detected by a highly sensitive photomultiplier tube providing the primary signal in the calculation of the SO₂ concentration. The CEM was operated per RM 6C of reference 8. Calibration gases were admitted to the monitoring system tubing at the stack sampling point. The system was calibrated against certified gases per RM 6C. EPA Protocol 1-certified gases with the following concentrations were used:

- (1) Zero Gas Prepurified N₂
- (2) Mid-Range Gas 84.48 ppm SO_2/N_2
- (3) High-Range Gas 149.1 ppm SO_2/N_2
- d. THC Monitor. A Teledyne Model 402R Total Hydrocarbon Analyzer was used to monitor the volatile organic compounds as total nonmethane hydrocarbons. This monitor is a flame ionization detector. The THC concentration is measured by the electrical conduction between two electrodes formed when a regulated flow of sample gas passes through a flame sustained by regulated flows of a fuel gas and air. The sample collection, calibration, and measurement was done in accordance with RM 25A of reference 8. The gas sample was extracted from the stack, passed through a heated filter and condensing system, and pumped to the analyzer. The system was calibrated before and after each sampling run. As per RM 25A, EPA Protocol 1-certified gases with the following concentrations were used:
 - (1) Zero Gas Hydrocarbon Free Air
 - (2) FID Fuel 40% $H_2/60$ % N_2
 - (3) High Span 53.8 ppm Propane/N₂
 - (4) Mid Span 24.88 ppm Propane/ N_2
 - (5) Low Span 8.05 ppm Propane/N₂
- 2. CONDENSING SYSTEM. The moisture removal system was identical to that used for the RM 5 train. The sample gas passed through a fiberglass filter in the heated compartment of a sample box and four short stem dry impingers. All impingers were cooled in an ice bath to remove moisture from the gas sample stream.

1290 COMBERMERE STREET, TROY, MI 48083

(313) 589-2950 FAX: (313) 589-2134

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

CAE INSTRUMENT RENTAL 246 WOODWORK LANE **PALATINE IL 60067-2495**

Assay Laboratory

Scott Specialty Gases, Inc.

1290 Combernere

Troy, MI 48083

Purchase Order 9691-71500 Scott Project # 557395

ANALYTICAL INFORMATION

Certified to exceed the minimum specifications of EPA Protocol 1 Procedure #G1, Section Number 3.0.4

Cylinder Number

AAL3021

Certification Date

Expiration Date = 11-10-96

Cylinder Pressure

1900 psig

Previous Certification Dates

None

ANALYZED CYLINDER

Components Carbon Monoxide Certified Concentration

25.00 ppm

Analytical Uncertainty

±1% NIST Directly Traceabl

*Analytical uncertainty is inclusive of usual known error sources which at least includes reference standard error & precision of the measurement pre-

REFERENCE STANDARD

Type

Expiration Date

Cylinder Number

Concent silon -45.76 PPM IN N2

CRM 1678

5-12-94

AAL6302

Analytical Principle

INSTRUMENTATION

Instrument/Model/Serial # CO: Beckman/867/0100157 Last Date Calibrated 8-23-93

Non-Dispersive Infrared

ANALYZER READINGS (Z-Zero Gas R-Reference Gas T-Test Gas r-Correlation Coefficient)

T1-25.80

77-25.80

R3-46.80

Comp	nenu
Carbon	Monoxide

First Tried Analysis Response Units: my Date: 11-2-93

Z1-0.00

22-46.80

23-0.00

Second Triad Analysis

Calibration Curve OMERICAMA+BE+CE+DE+EE

es Caits: SIV Date: 11-10-93 T1-25.80 R1-46.80 Z1-0.00 TZ-25,30 ZZ-0.00 R2-46.80 R3-46.00 T3-25.00 23-0.00 Ave. Cosc. of Cast. Cyl. 25.00 spen

CRM 1678 -0.99999 A-0.34654E3 C-0.0009539 D-0.9339077 D=0.000003327 E-4 --

R1=46.80

ZZ-0.00

T3-25.80

Avg. Cooc. of Cust. Cyl. 25.00 ppm

Concentration A+Bx+Cx++Dx3+E

Special Notes

F-4

Analyst Frank P. Doran

1290 COMBERMERE STREET, TROY, MI 48063

(810) 589-2950 FAX:(810) 589-2134

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

CAE INSTRUMENT RENTAL 246 WOODWORK LANE PALATINE, IL 60067

Assay Laboratory

Scott Specialty Gases, Inc 1290 Combermere Troy, MI 48083

Purchase Order:

11072-71500

Scott Project # :

564384

ANALYTICAL INFORMATION This certification was performed according to EPA Traccapility Protocol For Assay and Certification of Gaseous Calibration Standards; Procesure G1; September, 1993.

Cylinder Number: Al.M010511

Certificate Date: 4/20/94

Expiration Date:

4/20/97

Cylinder Pressure +: 1900 paig

Previous Certificate Data: None

ANALYZED CYLINDER

Components Carbon Monoxide Certified Concentration

46.83 ppm

Analytical Uncertainty*

±1% NIST Directly Traceable -

Balance Gas: Nitregen

Do not use when cylinder pressure is below 150 pair.
 Applytical excessory to inclusive of usual known error courses which at least include precision of the measurement processes.

REFERENCE STANDARD

Type SRM 2631A Expiration Date

6/22/97

Cylinder Number

ALM-024840

Concentration

96.21 ppm Carbon Monoxide in Nitrogen

INSTRUMENTATION Instrument/Model/Serial #

CO: Bookman/864/102528

Last Date Calibrated

4/23/94

Analytical Principle Non-Dispersive infrared

ANALYZER READINGS (V-Zero Gas R-Reference Gas T-Test Gas r-Correlation Coefficient)

Components Carbon Monoxide First Triad Analysis

Researce Units: MV Date. 4/13/94 T1896 40 91**-60.0**0 Z1-0.00 T2+35.60 Z3=0.00 R2=80.00 R3-00.00 73#38.40 23-0.00

Avg. Cons. of Cust. Cyl. 48.15 ppm

Second Trind Analysis

Response Unite my Dute: 4/20/94 T1=98.20 P1=60.00 Z1=0.00 17-30.70 22-0.50 R2-80.00 R3-80.90 173-28.20 23-0.00 Avg. Conc. of Cust. Cyt: 45.90 part

Calibration Curve

-c. to -t. STOR SHE'S me 1 .000000 Constants: #=1,202500000 D=0.0000000000 2-0.0000

Special Notes

Analyst Rhonda Lundy

290 COMBERMERE STREET, TROY, MI 48083

(313) 589-2950 FAX: (313) 589-2134

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

CAE INSTRUMENT RENTAL 246 WOODWORK LANE PALATINE, IL, 60067-5000

Assay Laboratory

Scott Specialty Gases, Inc.

1290 Combermere Troy, MI 48083

Purchase Order 10084-71: Scott Project# 559264

ANALYTICAL INFORMATION

Certified to exceed the minimum specifications of EPA Protocol 1 Procedure #G1, Section Number 3.0.4

Cylinder Number Cylinder Pressure ALM028214 1900 psig

Certification Date

12-14-93

None

Expiration Date 12-14-9

ANALYZED CYLINDER

Components Carbon Monoxide Certified Concentration

Previous Certification Dates

85.05 ppm

Analytical Uncertainty

±1% NIST Directly Tracest

Balance Gas: Nitrogen

*Analytical uncertainty is inclusive of usual known error sources which at least includes refusence standard error & precision of the measurement

REFERENCE STANDARD

Type CRM 1679A **Expiration Date**

6-22-97

Cylinder Number

ALM024840

Concentration

96.21 PPM CO IN N2_

INSTRUMENTATION

Instrument/Model/Serial #

CO: Beckman/867/0100157

Last Date Calibrated

11-10-93

Analytical Principle Non-Dispersive Infrared

ANALYZER READINGS (Z-Zero Gas R-Reference Gas T-Test Gas r-Correlation Coefficient)

R3-96.40

Co		P	0	п	E	0	8	
----	--	---	---	---	---	---	---	--

Carbon Monoxide

First Triad Analysis

Z3-Q.00

Date: 12-6-93 Response Units: Ely T1-65.50 Z1-0.00 R1-96.40 T2-65.50 R2-96.40 ZZ-0.00

T3-65.50 Avg. Conc. of Cust. Cyl. 85.05 ppm Second Triad Analysis

Reserves Units: 20V Dete: 12-14-93 T1-65.50 Z1=0.00 R1-96.40

E2-96.40 ZZ-0.00 TZ-85.50 R3-96.40 **23-0.00** T3-85.50

Avg. Cooc. of Cost. Cyl. 85.05 spec

Calibration Curve

CRM 1679A -0.99999 A-0,3465483

B-0.9339077 C-0.00095399

D=-0.000003327 -E-0 --

PROPERTY CE +Da +Ex

A+Bx+Cx+Dx+Ex

Special Notes

F-6

Analyst Tim Sanderson

1290 COMBERMERE STREET, TROY, MI 48063

FAX: (313) 589-2134 (313) 589-2950

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

CAE INSTRUMENT RENTAL 246 WOODWORK LANE **PALATINE IL 60067-5000**

Assay Laboratory

Scott Specialty Gases, Inc.

1290 Combermere Troy, MI 48083

Purchase Order 10084-71500 Scott Project # 559264

ANALYTICAL INFORMATION

Certified to exceed the minimum specifications of EPA Protocol 1 Procedure #G1, Section Number 3.0.4

Cylinder Number

AAL5168

Certification Date

12-13-93

Expiration Date - 12-13-95

Cylinder Pressure

1900 psig

Previous Certification Dates

None

ANALYZED CYLINDER

Components

Nitric Oxide

Certified Concentration

137.3 ppm

Anaiytical Uncertainty

±1% NIST Directly Traceable

Total Oxides of Nitrogen

Balance Gas: Nitrogen

137.6 ppm

Reference Value Only

*Analytical uncertainty is inclusive of usual known error sources which at least includes reference standard error at precision of the measurement pro

REFERENCE STANDARD

NTRM 1685

Expiration Date

11-19-94

Cylinder Number

ALM-024062

Concentration

244.7 ppm NO in N₂

INSTRUMENTATION

Instrument/Model/Serial # NO: Beckman/951/0101177 Last Date Calibrated 11-10-93

Analytical Principle

Chemiluminescence

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient) Calibration Curve

Components Nitric Oxide

First Triad Analysis

Date: 12-6-93

Z1=0.00

R2-100.0

Response Units: my

Second Triad Analysis

Date: 12-13-93

Z1-0.00

R2-100.0

23-0.00

Response Units: 201

T1-56.00 T2-56.00

R3-100.0

r=0.99999

C-0 -B-2.444368 2-0

NTRM 1685

A-0.2631951

Concessration=A+Bx+Cx+Dx+Ex+

T3=56.20 Z3-0.00 Avg. Conc. of Cust. Cyl. 137.6 ppm

R1-100.0

Z2-0.00

172-56.20 R3=100.0

T1-56.20

Avg. Conc. of Cast. Cyl. 137.1 ppm

R1=100.0

ZZ-0.00

T3-56.00

Concentration=A+Bz+Cx+Dx+Ex

=A+Bz+Cx+Dx+Ex

Special Notes

F-7

Analyst Frank P. Doran

1290 COMBERMERE STREET, TROY, MI 48083

(810) 589-2950 FAX:(810) 589-2134

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

C A E INSTRUMENT RENTAL 246 WOODWORK LANE PALATINE, IL 60067

Assay Laboratory

Scott Specialty Gases, Inc 1290 Combernere

Troy, MI 48083

Purchase Order: 12153-71500

Scott Project #:

571378

ANALYTICAL INFORMATION

This certification was performed according to EPA Tracespility Protocol For Assay and Certification of Gaseous Calibration Standards: Procedure G1; September, 1993.

Cylinder Number: ALM047786 Cylinder Pressure +: 1900 psig

10/6/94 Certificate Date: Previous Certificate Date:

None

Expiration Date:

10/6/96

ANALYZED CYLINDER

Components

Nitric Oxide Total Oxides of Nitrogen Certified Concentration

225.8 ppm 227.5 ppm Analytical Uncertainty

±1% NIST Directly Traceable Reference Value Only

Balance Gas: Nitrogen

8/4/96

re is below 150 saig. Fassal known error s +Do not use when cylinder pressure is *Analysest accuracy is inclusive of use ich at least include precision of the measure

REFERENCE STANDARD

Type **NTRM 1685** **Expiration Date**

Cylinder Number ALM-036283

Concentration

245.3 ppm Nitric Oxide in Nitrogen

INSTRUMENTATION Instrument/Model/Serial #

Beckman 951 0101177

Last Date Calibrated

9/10/94

Analytical Principle Chemiluminescence

ANALYZER READINGS (Z-Zero Gas R-Reference Gas T-Test Gas r-Correlation Coefficient)

Components

Nit Dxide

First Triad Analysis

e Units: MY Date: 9/25/94 T1=91.00 R1=100.00 Z1=0.00 T2=01.80 22-0.00 F(2=100.00 93a460 00 T3=91.80 23-0.00 Avg. Corp. of Cust. Cyl. 225.6 ppm

Second Tried Analysis

Response Units: IRV Date: 10/6/94 T1=02.00 R1=100.00 Z1=0.00 T2-02.00 22=0.00 R2+100,00 #3#100.00 13-02.00 Z3=0.00 Avg. Conc. of Cust. Cyt. 228.0 ppm

Calibration Curve

103-62 NTIM 1005 r=1.00000 A=1.10290000 C=0.00000000 B=2.444100000 E-0.00000000 D=0.000000000

Special Notes

F-8

Analyst

80 COMBERMERE STREET, TROY, MI 48083

(810) 589-2950 FAX:(810) 585-2134

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

CAE INSTRUMENT RENTAL 246 WOODWORK LANE PALATINE, IL 60067

Assay Laboratory

Scott Specialty Gases, Inc 1290 Combermere Troy, MI 48083

Purchase Order: 11475-71500

Scott Project #:

567212

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay and Certification of Gaseous Calibration Standards; Procedure G1; September, 1993.

Cylinder Number: ALM018262

6/23/94 Certificate Date:

Expiration Date:

6/23/96

Cylinder Pressure +: 1900 psig

Previous Certificate Date:

None

ANALYZED CYLINDER

Components Sulfur Dioxide Certified Concentration

84.48 ppm

Analytical Uncertainty

±1% NIST Directly Traceable

Balance Gas: Nitrogen

+Do not use when eylinder presente is below 150 paig.

*Analytical accuracy is inclusive of usual known error sources which at least include precision of the measurement process

REFERENCE STANDARD

NTRM 1694

Expiration Date

5/10/95

Cylinder Number

ALM-024038

Concentration

93.6 ppm Sulfur Dioxide in Nitrogen

INSTRUMENTATION Instrument/Model/Serial #

SO2: Horiba/OPE-135/560372041

Last Date Calibrated

5/26/94

Analytical Principle -Non-Dispersive Infrared

ANALYZER READINGS (Z-Zero Gas R-Reference Gas T-Test Gas r-Correlation Coefficient)

Components

Sulfur Dioxide

First Triad Analysis

Response Units: MV Date: 6/14/94 T1=65.30 R1=94.30 Z1=0.00 TZ:45.30 R2=94.30 22=0.00 R3=94.30 Z3=0.00 T3=85.30

Avg. Conc. of Cust. Cyl. 84 48 ppm

Second Triad Analysis

Respense Units: MY Date: 6/23/94 T1=65.30 P1=04.20 Z1=0.00 T2=65.30 22=0.00 R2=94.30 R3=84,20 13-05.20 23=0.00 Airg. Conc. of Cust. Cyt 84.48 ppm

Calibration Curve

-----Cz Cz Cz **MTRM 1884** r=1.00000 A=4.27980000 Constants: C=0.000000065 B=0.997790000 E=0.000000000 D=0.000000000

Special Notes

Analyst Rhonda Lundy

F-9

1290 COMBERMERE STREET, TROY, MI 48083

(810) 589-2950 FAX:(810) 589-2134 -

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

CAE INSTRUMENT RENTAL 246 WOODWORK LANE

PALATINE, IL 60067

Assay Laboratory

Scott Specialty Gases, Inc.

1290 Combermere Troy, MI 48083

Purchase Order: 12021-71500

Scott Project #:

570587

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay and Certification of Gaseous Calibration Standards; Procedure G1; September, 1993.

Cylinder Number: ALM022988

Certificate Date:

9/14/94

Expiration Date:

9/14/96 -

Cylinder Pressure +: 1900 psig

Previous Certificate Date: None

ANALYZED CYLINDER

Components Suffer Dioxide **Certified Concentration**

149.1 ppm

Analytical Uncertainty

±1% NIST Directly Traceable -

Balance Gas: Nitrogen

+Do not use whee cylinder pressure is below 150 paig.

*Applytical accuracy is inclusive of useal known error source s which at least include precision of the measure

REFERENCE STANDARD

Туре **NTRM 1661** **Expiration** Date

5/25/96

Cylinder Number ALM-041665

Concentration

468.9 ppm Sulfur Dioxide in Nitrogen

INSTRUMENTATION

Instrument/Model/Serial #

HORIBA ALA 210 566344011

Last Date Calibrated

9/6/94

Analytical Principle ·

Non-Dispersive Infrared

ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

12:34.20

Components Sulfur Dioxide First Tried Analysis

R2=100.00

Researce Unit: 897 Date: 9/7/94 T1=34.20 R1=100.00 Z1=0.00

22-0.00 R3=100.00 T3=94.20 Z3=0.00 Avg. Conc. of Cust. Cyl. 149.1 ppm

Second Triad Analysis

nes Linds MY Date: 9/14/94 T1=54.20 R1=100.00 21-0.00 12-34.20 22-0.00 R2=100.00

es-100.00 T3-0430 73-0.00 Avg. Conc. of Outl. Cyt. 149.1 ppm

Calibration Curve

C1014 NUMBER 1881 r=0.90000 A=4.1025638 C-0.0047423 B=4,192602000 · E-0.50000000 D=0.000000000

Special Notes

F-10

Pan Eckle g-

1290 COMBERMERE STREET, TROY, MI 48083

FAX:(810) 589-2134 (810) 589-2950

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

CAE INSTRUMENT RENTAL 246 WOODWORK LANE

PALATINE, IL 60067

Assay Laboratory

Scott Specialty Gases, Inc 1290 Combernere

Troy, MI 48083

Purchase Order: 12153-71500

Scott Project #:

571394

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay and Certification of Gaseous Calibration Standards; Procedure G1; September, 1993.

Cylinder Number: ALM048204

Certificate Date:

9/27/94

Expiration Date: 9/27/97

Cylinder Pressure +: 1900 psig

Previous Certificate Date:

ANALYZED CYLINDER

Components Propane

Certified Concentration

8.05 ppm

Analytical Uncertainty

±1% NIST Directly Traceable

Balance Gas: Nitrogen

+Do not use when cylinder pressure is below 150 paig.

*Analytical accuracy is inclusive of usual known error sources which at least include precision of the measures

REFERENCE STANDARD

SRM 2643A

Expiration Date 3/28/98

Cylinder Number SX-20290

Concentration

99.12 ppm Propane in Nitrogen

INSTRUMENTATION

Instrument/Model/Serial # Propane: Beckman/400/1002059 Last Date Calibrated

9/22/94

Analytical Principle -Flame Ionization Detector

ANALYZER READINGS (Z-Zero Gas R-Reference Gas T-Test Gas r-Correlation Coefficient)

12-6.10

Components

Propane

First Triad Analysis

Date: 9/27/94 Response Unitic ppm Z1=0.00 R1-99.10 T1=0.05

ZZ=0.00 R2=09.10 R3#89.10 **23=0.0**0 T3=0.10 Avg. Conc. of Cust. Cyl. 8.05 ppm

Second Triad Analysis

Calibration Curve

STALL SEASA re1.00000

Constants B=1.000300000 D=0.0000000000 A-0.0344210 C=0.0000000 E-0.0000000

Special Notes

F-11

Cylinder

(313) 580-2850 FAX: (313) 580-2134

OF ANALYSIS	EPA PROTOC	OL GAS
	OF ANALYSIS	OF ANALYSIS: EPA PROTOC

CAB INSTRUMENT RENTAL 246 WOODWORK LAND PALATINE, IL., 60067-2495

Amny Laboratory Scott Specialty Gases, Inc. 1290 Combermere Troy, MI 48083

Purchase Order 557399 Scott Project # 557399 -

ANALYTICAL INFORMATION

Certified to exceed the minimum specifications of EPA Protocol 1 Procedure # G1, Section Number 3.0.4 Cylinder Number Cylinder Premere

ALM005550 1900 psiu

Cartification Date Provious Cartification Dates

10-27-96 " General Exp. Date -10-37-96 Acid Rain Exp.

Date

ANALYZED CYLINDER

Components : Propent

Certified Concentration

24.88 ppm

Analytical Uncertainty ±1% NIST Directly Tra

aive of usual known error pources which at least includer reference maniard arror & president of the ma Balance Gas: Nitrogen *Analytical encorainty is inch

REJERENCE STANDARD

." Type **SRM 2643A** **Expiration Date**

10-14-95

Cylinder Number

SX-20305

Concentration .

99.12 ppm Propens in N2

INSTRUMENTATION

Instrument/Model/Serial Prop: Beckman/400/1002059 Last Date Calibrated

8-23-93

Austytical Principle > Plame Ionization Detector

ANALYZER READINGS (Z=Zero Gos R=Reference Gos T=Test Gos r=Correlation Coefficient)

ANALYZEK	KEADINGS (DELLE	a - 1 Wated Amplysis	Calibration Curve
Components Propane	First Triad Analysis Date: 10-27-93 Response Units: SNV 21-0.00 R1-99.10 T1=24.90 R2-99.10 22-0.00 T2=24.90 Z3-0.00 T3=24.90 R3-99.10	Second Trind Analysis	Concentration = A + Br + Cr ² + Dr ³ + Er ⁴ y=0.99999 SRM 2643A Commerc: A=-0.69442165 B=1.000549 C=0 D=0 B=0
	Avg. Conc. of Cust. Cvt. 24.88 ppm		Cascassination = A + Ba + Cx ² + Dx ² + Bx ⁴
			Commention A+Bz+Cz ⁴ +Dz ³ +Jiz ⁴

If this product is used for Acid Rain Rule Compliance, the Acid Rain Expireden Date noted shove applies per 40 CFR Part 75, Appendix H. Otherwise, the General Expirence thate applies.

1290 COMBERMERE STREET, TROY, MI 48083

FAX: (313) 589-2134 (313) 589-2950

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

CAE INSTRUMENT RENTAL 246 WOODWORK LANE PALATINE, IL 60067-9760

Assay Laboratory

Scott Specialty Gases, Inc. 1290 Combernere

Troy, MI 48083

Purchase Order -10084-71500

Scott Project # 559258

ANALYTICAL INFORMATION

Certified to exceed the minimum specifications of EPA Protocol 1 Procedure #G1, Section Number 3.0.4

Cylinder Number

AAL16759

Certification Date

12-6-93

Expiration Date = 12-6-96

Cylinder Pressure

1900 psig

Previous Certification Dates

None

ANALYZED CYLINDER

Components

Propane

Certified Concentration

53.80 ppm

Analytical Uncertainty

±1% NIST Directly Traceable

Balance Gas: Nitrogen

*Analytical uncertainty is inclusive of usual known error sources which at least includes reference standard error & precision of the steas

REFERENCE STANDARD

SRM 2643A

Expiration Date

10-14-95

Cylindei Number

Concent. ation -

99.12 ppm Propens in N2

INSTRUMENTATION

Instrument/Model/Serial # Prop: Beckman/400/1002059 Last Date Calibrated 11-15-93

SX-20305

Analytical Principle

Flame ionization Detector

ANALYZER READINGS (Z-Zero Gas R-Reference Gas T-Test Gas r-Correlation Coefficient)

Component	First Triad Analysis	Second Triad Analysis	Calibration Curve -
Components Propune	Date: 12-6-93 Response Units: mv Z1=0.00 R1=99.10 T1=53.80 R2=99.10 Z2=0.00 T2=53.80 Z3=0.00 T3=53.80 R3=99.10 Avg. Conc. of Cast. Cyl. 53.80 ppm		Concentration=A+Bx+Cx ² +Dx ³ +Ex ⁴ r=0.99999 SRM 2643A Constants: A=643442105 B=1.000549 C=6 = D=0 B=6 =-
			Concentration=A+Bx+Cx++Dx++Ex+
			Concentration=A+Bx+Cx+Dx+Ex*

Special Notes

F-13

348075

1888 Decittle Drive Sen Leendro, CA 94577 Telephone: 610-267-8600

AMALTYICAL METORY

To: Sierra Airgas 1845 Industrial Way Date Reported: 07-01-94 Test Number: Fill Date: 07-61-04 Expire Date: 07-01-96 Product Yol:

Material Submitted:

Atr., 0.1

Specification Number: Customer Specification

Nothod of Analysis:

Percent Oxygen Analyzer. Total Hydrocarbon Analyser,

Meisture Monitor, Gas Chromatograph

Result of Investigation: Cylinder No. L61095

Size 200

Concentration

Comment	- Procification	Concentration
Oxygen Total Hydrocarbons Noistare Carbon Monoxide Carbon Dioxide Air	20.9% 0.1ppm Sppm 0.5ppm 1ppm Balance	20.4% <0.1ppm (DL) 0.8ppm 0.25ppm 0.63ppm Balance

Bay Airgas

348054

1586 Decittie Drive San Leandro, CA 94577 Telephone: \$10-297-5900 FAX: \$10-352-0154

AMALYTICAL REPORT

To: Sierra Airgas 396 Wolverine Way Sparks, NV 29431 Date Reported: 07-05-94
Test Number: 04577
Fill Date: 07-05-94
Expire Date: 07-05-96
Product Vol: 208cf

Material Submitted:

40% Hydrogen in Nitrogen

Specification Number:

Airgas Specification

Method of Analysis:

Gas Chromatograph, Total Hydrocarbon Analyser

Result of Investigation: Cylinder No. N413B24

Size 200

Concent	Specification	CONCONTRACTOR
Hydrogen	40%	40.6%
Total Hydrocarbons	0.5ppm	<0.2ppm (DI.)
Hitrogen	Balance	Balance

Authorized Signature

HOME OFFICE: P O. BOX 19255 1725 69th STREET SACRAMENTO, CALIFORNIA 95819 (916) 732 2358 FAX: (916) 454-9263

PRODUCT CERTIFICATION

Nitrogen, UHP <u>Grade 5.</u> has been analyzed and meets the following Minimum Specifications:

 BATCH #
 516941

 CYLINDER S/N
 KH 503487

 OXYGEN
 0.3
 PPM

 THC
 N/D
 PPM

 MOISTURE
 2.5
 PPM

file:

APPENDIX G NOMENCLATURE AND EQUATIONS

1. ABSOLUTE PRESSURE, P and P (inches Hg).

$$P_m = P_{bar} + \frac{\triangle H}{13.6}$$

$$P_s = P_{bar} + \frac{P_{static}}{13.6}$$

2. DRY GAS METER VOLUME, STANDARD CONDITIONS, v_{m} (dscf).

$$V_{\text{mstd}} = \frac{17.65 \text{ V}_{\text{m}} \text{ } \frac{7_{\text{m}} \text{ P}_{\text{m}}}{T_{\text{m}}}$$

3. WATER VAPOR VOLUME, STANDARD CONDITIONS, V_{max} (scf).

4. MOISTURE CONTENT, B (percent).

Gravimetric Method:

5. STACK GAS MOLECULAR WEIGHT, $M_{_{\rm S}}$ (lb/lb-mole).

$$M_s = (1-B_{MO}) [0.44 (% CO_2) + 0.32 (% O_2) + 0.28 (% M_2 + % CO)] + 18 B_{MO}$$

6. AVERAGE STACK GAS VELOCITY, v_s (ft/sec).

$$v_s = 85.48 C_p (\triangle P)_{avg}^{0.5} (T_s /P_s M_s)^{0.5}$$

7. AVERAGE STACK GAS VOLUMETRIC FLOW RATE, Q (dscf/hr).

$$q_s = \frac{63,529 (1-B_{MO}) v_s A_s P_s}{T_e}$$

8. ISOKINETIC SAMPLING RATE, I (percent).

$$I = \frac{1.667 \text{ T}_{S} [0.00267 \text{ V}_{C} + (\text{V}_{m} \frac{\text{7}_{m} \text{ P}_{m}/\text{T}_{m}})]}{\theta \text{ V}_{S} \text{ P}_{S} \text{ A}_{h}}$$

$$I = \frac{0.0945 \text{ T}_{\text{S}} \text{ V}_{\text{m}}}{\theta \text{ v}_{\text{S}} \text{ P}_{\text{S}} \text{ A}_{\text{h}} (1 - \text{B}_{\text{Mo}})}$$

9. PM_{10} Emission Rate, $W_{PM_{10}}$ (lb/hr).

$$W_{PM_{10}} = \frac{M_n + M_{CPM}}{V_{max}} \times Q_s$$

11. THE CONCENTRATION AS CARBON, C (ppmv)

$$C_c$$
 (ppmv) = 3 X $C_{meas(propane)}$

12. THE EMISSION RATE AT STACK, WTHE

$$W_{THC} = C_c \times D_{C_3H_8} \times Q_s \times 10^{-6}$$

13. NO CONCENTRATION, $C_{gas\ NO_{\chi}}(ppmv)$.

$$c_{gas\ NO_X}(ppmv) = (c_{stack\ NO_X} - c_0) \times \frac{c_{ma}}{c_m - c_0}$$

14. NO $_{\rm X}$ EMISSION RATE AT STACK, W_NO $_{\rm X}$ (lb/hr).

15. CO CONCENTRATION, CCO (ppmv).

$$c_{CO}$$
 (ppmv) = c_{CO} MDIR X (1 - % CO_2)

16. CO EMISSION RATE AT STACK, WCO (lb/hr)

17. SO_CONCENTRATION, C gas SO_(ppmv).

18. SO2 EMISSION RATE AT STACK, WSO, (lb/hr).

19. Metal Emission Rate, $W_{\rm metal}$ (g/hr).

$$v_{metal} = \frac{M_{metal} \times 10^{-6} \text{ g/ug}}{v_{matal}} \times q_{s}$$

20. AVERAGE HEAT INPUT TO THERMAL OXIDIZER, HI avg (MBTU)

NOMENCLATURE USED IN EQUATIONS

Symbol Un	its	Description
A _n	ft ²	Cross-sectional area of nozzle
A _s	ft ²	Cross-sectional area of stack
B _{wo}	decimal	Mole fraction of stack gas water content
c ₀	ppmv	Average of initial and final system bias calibration check responses for the zero gas.
c _{co}	ppmv	Corrected CO concentration of stack gas
CCO NDIR	ppmv	CO concentration of stack gas, as measured by the continuous emission monitor
C _{gas} so ₂	ppmv	Effluent gas concentration, dry basis
C _{gas} NO _X	pptiv	Effluent gas concentration, dry basis
c _m	pprov	Average of initial and final system calibration bias check responses for the upscale calibration gas.
C _{ma}	ppmv	Actual concentration of the upscale calibration gas.
Cmeas(propane)	рршу	Concentration measured as propane.
c _p	•	S-type pitot tube coefficient
C _{stack} so ₂	ppmv	Average gas concentration indicated by the gas gas analyzer, dry basis
C _{stack NO_X}	bbus	Average gas concentration indicated by the gas gas analyzer, dry basis
со	x	Concentration of carbon monoxide in gas stream as measured by an Orsat, dry basis
co ²	x	Concentration of carbon dioxide in gas stream as measured by an Orsat, dry basis
D _{C3He}	lb/ft ³	Density of propane as a gas, dry standard
D _{CO}	lb/ft ³	Density of CO as a gas, dry standard
D _{SO2}	lb/ft ³	Density of SO ₂ as a gas, dry standard
ΔH	ingch H O	Average pressure drop across orifice meter
HI	MMBtu/hr	Heat input to boiler

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

HVar	Btu/lb, Btu/gal, Btu/ft ³	Heating value of fuel, as received
1	-X	Ratio to which sampling velocity approaches stack velocity, and is 100 percent when the two are equal
M ₅	mg .	Total particulate matter collected from RM 5 portion of the PM ₁₀ train.
^М СРИ	RG	Total CPM collected in the Method 202 portion of the PM_{10} train.
M metal	ug	Total metal collected in the HMHe train
Ms	lb/lb mole, wet	Molecular weight of stack gas
N ₂	x	Concentration of nitrogen in stack gas, as measured by an Orsat, dry basis
02	×	Concentration of oxygen in stack gas, as measured by an Orsat, dry basis
ΔP	inch H ₂ O	Velocity head of stack gases
P _{bar}	inch Hg	Barometric pressure at local elevation
Pm	inch Hg	Absolute pressure (barometric + △H) at meter
P _s	inch Hg	Absolute pressure (barometric + P in stack)
P _{stat}	ingch H O	Static pressure in stack
o _s	dscf/hr	Average stack gas volumetric flow rate, dry, at standard conditions
RF	lb/hr, ft³/hr	Feed rate of fuel
T _m	٩	Average dry gas meter temperature (°F + 460)
T _s	* R	Average stack gas temperature (°F + 460)
^T std	*R	Standard absolute temperature, 530 °R
v _{lc}	g	Total mass of liquid collected in impingers and silica gel
v _m	ft ³	Volume of gas through dry gas meter at meter conditions
V _m std	dscf	Volume of dry gas sampled at standard conditions
Y _s	ft/sec	Average stack gas velocity at sampling site
v _{sol}	mL	Total volume of impinger solution

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

V _W std	scf	Water vapor volume at standard conditions
w _{co}	lb/hr	Mass emission rate of CO at the stack
Wmetal	g/hr	Mass emission rate of a particular metal at the stack
u _{NO_x}	lb/hr	Mass emission rate of NO_{x} at the stack
W _{PM10}	lb/hr	Mass emission rate of PM_{10} at the stack
W _{SO₂}	lb/hr	Mass emission rate of SO_2 at the stack
u _{THC}	lb/hr	Mass emission rate of THC at the stack
θ	min	Total sampling time
7 _m	•	Dry gas meter coefficient

APPENDIX H

USACHPPM ASSESSMENT PERSONNEL

USACHPPM Personnel

Duty:

John Litynski
Parrish Galusky
Donald Keesee
Emery Thompson
James Pritts

Project Officer
Assistant Project Officer
Engineering Technician
Physical Science Technician
CEMS Technician

APPENDIX I SAMPLING TRAIN FIELD DATA SHEETS AND SUMMARY

TABLE I-1. METALS TRAIN DATA SUMMARY

DATE		RUN 2 10/21/94	RUN 4 10/24/94	RUN 6 10/27/94
OPERATING CHARACTERISTI	CS			
Average Batch Feed				
175mm COMP B Proj (N		480	480	430
(1	.b/ea)	115	115	115
(t	cons) *	27.6	27.6	27.6
STACK GAS DATA				
Barometric Pressure (in	. Hg)	26.35	26.15	26.2
Static Pressure (in. Hg	1)	-0.13	-0.14	-0.14
Average Stack Gas Tempe	erature (°F)	1794	1790	1789
Stack Gas Moisture Cont	ent (%)	7.31	5.13	7.45
Stack Area (ft2)		15.904	15.904	15.904
Stack Gas Velocity (ft/	'sec)	21.36	18.15	19.79
Volumetric Flow Rate (d		233766	202153	215519
CO ₂ Concentration (%, d:		8.0	7.2	7.8
O2 Concentration (%, dr		10.8	12.0	11.2
CO Concentration (%, dr		0.0	0.0	0.0
N ₂ Concentration (%, dr		81.2	80.8	81.0
Stack Gas Molecular Wei	ight	,		
(lb/lb-mole, wet)		28.86	29.04	28.82
SAMPLING EQUIPMENT DATA	1			
Gas Volume Sampled at N	leter			
Conditions (dcf)		36.024		41.69
Dry Gas Volume (dscf)		32.90	33.81	37.66
Total Sampling Time (mi	in)	60	72	72
Pitot Tube Coefficient		0.831	0.831	0.831
Average Pressure Drop A	Across Meter			
Orifice (in H ₂ O)		1.11	0.822	0.965
Average Dry Gas Meter				
Temperature (oF)	_	51.6	58.7	54
Sampling Nozzle Area (1		0.0021	0.0021	0.0022
Dry Gas Meter Coefficie		1.002	1.002	1.002
Average Stack Gas Veloc	city			
Head (in H_2O) ^{0.5}		0.175	0.148	0.161
Total Liquid Collected		55.1	38.8	64.4
Isokinetic Sampling Rat	te (%)	104.53	103.51	105.49

^{*} Batch feed rate exceeds previous limit of 25 tons.

TABLE I-2. PM₁₀ TRAIN DATA SUMMARY

DATE		RUN 3 10/23/94	RUN 5 10/26/94	RUN 7 10/29/.94	
OPERATING CHARACTERISTICS					
Average Batch Feed		•			;
175mm COMP B Proj (No.)	480	480	480		
(lb/ea)	115	115		115	
(tons)*	115 27.6	27.6	27.6	27.6	
STACK GAS DATA	·				
Barometric Pressure (in. Hg)	26.1	26.45	26.11	26.2	
Static Pressure (in. H2O)	*	-0.14	-0.13	-0.135	
Average Stack Gas Temperature (oF)	1667	1797	1778	1748	
Stack Gas Moisture Content (%)	*	6.12	7.76	7.53	
Stack Area (ft ²)	15.904	15.904	15.904	15.904	
Stack Gas Velocity (ft/sec)	*	20.21	21.82	22.24	
Volumetric Flow Rate (dscf/hr)	*	224552	237201	246472	
CO ₂ Concentration (%, dry)	7.8	7.8	7.6	8.0	
O2 Concentration (%, dry)	11.0	10.6	11.4	10.8	
CO Concentration (%, dry)	0.0	0.0	0.0	0.0	
N ₂ Concentration (%, dry)	81.2	81.6	81.0	81.2	
Stack Gas Molecular Weight	•				
(lb/lb-mole, wet)	*	28.96	28.77	28.83	
SAMPLING EQUIPMENT DATA					
Gas Volume Sampled at Meter					
Conditions (dcf)	*	73.293	77.351	80.158	
Dry Gas Volume (dscf)	*	62.722	64.295	70.139	
Total Sampling Time (min)	*	120	120	120	
Pitot Tube Coefficient	0.831	0.831	0.831	0.831	
Average Pressure Drop Across Meter	•				
Orifice (in H ₂ O)	*	1.023	1.166	1.307	
Average Dry Gas Meter					
Temperature (oF)	*	88.0	97.0	71.1	
Sampling Nozzle Area (ft ²)	*	0.0021	0.0021	0.0022	
Dry Gas Meter Coefficient	1.002	1.002	1.002	1.002	
Average Stack Gas Velocity					
Head (in H_2O) ^{0.5}	*	0.164	0.175	0.180	
Total Liquid Collected (mL)	*	86.932	114.94	121.35	
Isokinetic Sampling Rate (%)	*	103.75	100.68	103.09	

^{*} Test Run 1 - PM₁₀ train failed intermediate leak check. † Batch feed rate exceeds previous limit of 25 tons.

GENERAL

Project Number			stallation withorne		1		ox Operator
Sample Location	HG-D	Tyster					
Type of Sample:	Acid M	ist	POHC	Metals	Moistu	re	Particulate -
	SO ₂	so,	SO,	Particle	Size	Other	

EQUIPMENT SPECIFICATIONS

Nomograph/Cal	culator.	No	Nozzle Pitot Tube		
AH. 1. 82	AP. 0.0372	No.	D,	No.	C,T
NH.O 7.5%	P./P. 1.0	256.0.20-1	.626	wc-1	0.84
Tm 92 (55)	T. 1780		.627	Fhiorings	•
"C" Factor 0.84	к, 38.06	•	.627	C _{pet}	156 .831
Ref AP		Daleys	.6267 A. 0.3085 in 2-		
Meter Box No. 2	428	Dry Gas Meter	Y. 1,00Z	D. 4:5 \$4	4 15,904 A
· · · · · · · · · · · · · · · · · · ·	lter			Probe	. •
Туре	N	lumber Length Liner Materia		Material_	
			5° est	Quarte	
			Probe Heat Set	ting 240	5

OPERATIONAL CHECKS

Initia	il Leak Check	Initial Pitot Tube Leak Check
Vacuum (in. Hg)	Leak Rate	0 03/0 co) in. Ho per 15 Min.
15	o.oog ft' per , Min.	at 44/42 in. H ₂ 0
	Leak Check	Final Pitot Tube Leak Check
Vacuum (in. Hg)	Leak Rate	0:00 000 in. H.O per /5 Min.
3.1	0000 ft3 per / Min.	at 41,45 in. H ₂ 0
Gas Bag S	ystem Leak Check	Component Leak Check
Initial 0.0	Final O,O	Vacuum (in Hg.) Leak Rate
Pm 26.35	P= 7513	ft³ per Min.
Start Time 528	End Time U628	ft ³ per Min.

int	e (min)	V. (ft³)	AP inches H ₂ O	(AP) 1/2	AH inches H ₂ O		F)	T, (*F)	Vacuum inches Hg	Final Imp. Temp. (°F)	Filter Temp. (°P)	Remarks KfG 35-6-6 freivT
	-	053.500			<i>(</i> *•• <i>•</i>	(/7	47	1605	2	35-	243	240
;		05463	1015		,571	48	47	1625	1 2	35	245	230
2		055.77	,615	127	,571	50	47	1820	2	36	245	232
3		056.96	.017	,130	770	51	47	1834	2	35	247	23:1
5	10	058.22	,022		-	52	48	1826	2	35	270	235
_	12.5	059.52	027	.148	.778	53	47	1527	2	35	252	240
9	15	06085	1.022	.148	,682	+	47	1815	- 2	75-	251	241
	17.5	062-	,020				48	1834	2	35	25/	740
8	20	063.40	.020	145	,682	1	148	1835		36	251	242
9	22.5		,020	/4/	683		48	1837	7	36	250	
10	25	065	,020	1.141	. 682		198	1824	2	35	248	242
11	27.5	066-7	020		682	+	48	1824		35	249	
12	30	06791	· 1	i	T		49	1800		1	250	24 6
13	32.5	- GF	, 034			-6	49	1808		36	254	
14	35	07099					49	1798		34		
15	37.5						49			35	-25	240
16	40	b74.C						1799		- 35	- 255	241
1/	42.5	779		0,20				179			2 52	240
18	45		- i	1	4	1 ~ ~	-		2 3.c			
14		5 0795		ì	ė .	200		179				
20	50	081.3		2 .228								
21		50832			3 1.7							
12				1								
23		5087.3										
24	60	0895	24.05) 1.23	<u> </u>	7 7 6	5 5-1	1/02	1 2	- - - - - - - - - - 		1
						nis CM.	12 48.	79				
			- 4			137	1701					
TOTA		36,0			., ,	10 5.	.60 '	· F 1794.:	25F			
AVER	AGE 1		030	3/17/	76 11.	110 51	+4		460			
AUE	LAGE 2					-	511.6	R 225				

Run #: MMe-1

Date:

10-21-94

ISOKINETIC SHEET (68 degree reference)

		:=======	=========	:222222		
# Probes 1 Cp,corr.= 0.8310	Dp= 3 Ts= 1794.25	Ds= 54 As= 15.9043	Vm= 36.024	Pbar= 26.35	Theta=	SQR(/\P)= 0.1746
ΛH= 1.11	Tm= 51.6		Dn= 0.6267 An= 0.00214	Ym= 1.002	Pstat= -0.13	-
VIC= 55.1	Mn= 0	%CO2 8.00	%O2 10.80	%N2 81.20	%CO 0.00	
		RI	ESULTS	:2525255		
Pm=	26.43			C's=	0	gr/dscf
Ps=	26.34	"Hg		EA=	102	%
Vm,std=	32.90	scf		Erate=	0.000	lb/hr
Vw,std=	2.59	scf				
Bwo=	0.0731					
Ms=	28.86	lb/lb-mol, w	et _			
Vs,avg=	21.36	ft/sec				
Qs=	233,766	ds cf/ hr				
 =	104.53	%				•

GENERAL

Project Number		1	stallatio wthorne A		Met	\ //	x Operator
Sample Location	HGO	اعریک	ಊ				-
Type of Sample:	Acid	Mist	POHC	Metals	Moisture	•	Particulate - ;
•	SO ₂	so,	so.	Particle	Size (ther:	1

EQUIPMENT SPECIFICATIONS

Nomograph/Calculator		Nozzle		Pitot-Tube+ .	
AH. 1.82	AP. 0.0323	No.	D,	No.	CV-
*H ₂ 0 7.5	P _s /P _m / O	206.0.20-1	.626	WC-1	0.84-
T _m 55	T. 1795		. 627	Filosings	00
"C" Factor	K, 33.74		.627	Cpatr C	36: 131:
Ref ΔP D _{n.wg}		D _{n,avg}	.6267	A 0.3085 in - " -	
Meter Box No. 2928		Dry Gas Meter	Y= 1.002	D. 4.5 H	A-15.904 H=
Filter			Probe Length Liner Material		
Туре	Type Number		Length	Liner Material	
			5' ex	Quet	
			Probe Heat Sett	ing	

OPERATIONAL CHECKS

Initia	l Leak Check	Initial Pitot Tube Leak Check		
Vacuum (in. Hg)	Leak Rate	at 47/48 in. H.O		
15	0.005 ft³ per / Min.			
	Leak Check	Final Pitot Tube Leak Check		
Vacuum (in. Hg)	Leak Rate	0 000/0,000 in. H.O	per // Min.	
2.9	O. Ogo ft per / Min.	at <u>4 8/4,</u>	9 in. H ₂ 0	
Gas Bag S	ystem Leak Check	Component Leak Check		
Initial UK	Final of	Vacuum (in Hg.)	Leak Rate	
P _{ber}	Pmx - , 14		ft¹ per Min.	
Start Time	End Time UUO		ft' per Min.	

12	₽	v_	ΔP	(AP) 1/2	ΔĤ	T		T,	Vacuum			Remarks K/
	(min)	(ft³)	inches	,,	inches	(*	F)		inches	Temp.	Temp.	33.74
		185.400	מט ו		Hio	t _i	t _f	(°F)	Hg	(°F)	(*F)	Probe T
	3	18677	1015	.122	,516	6.0	50	1640	2.0	39	248	228
	ی	188.10	:015	./22	.516	60	58	1793	20	38	250	230
;	9	1897	1620	,141	.690	61	59	1818	2.0	38	246	243
	(2	190.98	1015	.122	.5/6	61	59	1828	2.0	39	245	245
	15	19237	1017	130	.585	61	58	1827	20	39	246	236
	18	193,49	,010	,100	.345	61	58	1807	20	39	248	238
,	21	19503	1	.152	,791	62	58	1790	2.0	39	248	239
,	24	197.05	,040	, 200	1.38	62	58	1802	2-2	39	247	2-30
1	27	1992	043	. 207	1.4%	63	59	1796	, 25	39	249	2:37
	30	201.61	1.055	1.23	\$1.89	63	58	1797	2.8	39	248	240
1	33	20403	-055	.235	1.89	64	59	1747			257	242
2	36	206.49	18.058	1.241	1.99	64	59	1792	2.9	42	255	244
		206.61	0									
3	3	20830	-1	1.158	1860	57	56	1733	7.0	39	246	238
14	6	20981	1.020		1690		56	1801	12.0	39	247	236
15	9	211.18	1015	1.122	- 516	58	56	177	9 2.0	39	244	238
طا	12	212.9	2,025	-1.158	8 .860	59	56	184	/ 2.1	39	240	2.40
17	15	214.4	5 -020	. 14	1 .691	60	156	182	6 2.0	39	238	234
18	18		6 .02	1	L .		56	182	4 2-	1 38	734	236
19	21				2,516	60	56	179	7 2.0	39	234	245
20	24	2186				i i	56	177	0 2.0	79	237	240
21	127		2,01		2,51	6 59	56	178.	5 2.0	9 40	239	234
22	30		0.01		0 - 74		5	5 177	1/2.	0 39	24	2 232
23	33		9101	_	3.4	_	55	176	5 2,	0 39	24	232
24	36		63 .010		0 34	5 5-4	1 55	177	3 2	0 38	24	2 23
COTAL	.	37.85	1 2									
AVER	AGE 1			0.14	84 0,82	2 58	• د.	F 793	• F			
	 						+46	0 +4	60			
AVER	AGE 2					518.	7	R 225	R			
						<u> </u>		I				0

Run#: MMe-2

Date:

10-24-94

ISOKINETIC SHEET (68 degree reference)

		========		_=====================================		
# Probes 1 Cp,corr.= 0.8310	Dp= 3 Ts= 1790	Ds= 54 As= 15.9043	Vm= 37.851	Pbar= 26.15	Theta= 72	SQR(AP)= 0.1484
Λ H= 0. 822	Tm= 58.7		Dn= 0.6267 An= 2.142E-03	Ym= 1.002	Pstat= -0.14	· .
Vic= 38.8	Mn= 0	%CO2 7.20	%O2 12.00	%N2 80.80	%CO 0.00	

RESULTS

Pm=	26.21	•	0	gr/dscf-	
Ps=	26.14	"Hg	EA=	129	%
Vm,std=	33.81	scf	Erate=	0.000	lb/hr
Vw,std=	1.83	scf			
Bwo=	0. 0513			,	
Ms=	29.04	lb/ib-moi, wet			
Vs,avg=	18.15	ft/sec			
Qs=	202,153	ds cf/h r			
 =	103.51	%			

GENERAL

Project Number			tallation thorne A		Mete D	r Box Operator
Sample Location	HGD S	ysten				
Type of Sample:	Acid Mi	7	POHC	Metals -	Moisture	Part i culate
	so ₂	so,	SO,	Particle	Size Ot	her:

EQUIPMENT SPECIFICATIONS

Nomograph	/Calculator	No	zzle	Pit	ot Tube -	
AH., 1.82	ΔP _{res}	No.	D,	No.	C,-	
\$H.O 7.5	P./P. 1.0	206.0.20 -2	, 635	wc-1	0.84	
T. 55	T, 1300		.635	Falestage		
"C" Factor	×, 35.39		. 63 4	C _{per}	56 .31	
Ref AP		Dr6346 A 2.142 E-3			2 E-3	
Meter Box No.	29 2 8	Dry Gas Meter	.Y. 1,00Z	D. 4.5'	A 15.904	
	Filter		Probe			
туре		Number	Length	. Liner Material		
			5' A	Quartz		
			Probe Heat Set	ting		

OPERATIONAL CHECKS

Initia	al Leak Check	Initial Pitot Tube Leak Check
Vacuum (in. Hg)	Leak Rate	0.000/0000 in. H.o per 15 min.
15	Oco8 ft' per / Min.	at (19/. 2) in. H.O
	Leak Check	Final Pitot Tube Leak Check
Vacuum (in. Hg)	Leak Rate	in. H ₂ O per Min.
2-5	OCCU ft3 per Min.	at in. H ₂ O
	ystem Leak Check	Component Leak Check
Initial	Final	Vacuum (in Hg.) Leak Rate
Pm oK	P _{me} _ ,14	ft ¹ per Min.
Start Time	End Time 0625	ft³ per Min.

Point	ө	V _m	ΔP	(AP) in	ΔН	T,	r)	T,	Vacuum	Final Imp.	Filter Temp.	Remarks
No.	(min)	(ft³)	inches		inches H ₂ O	t _i	t,	(°F)	inches Hg		(°F)	PropeT
		330798								2		
1	3	33)50	,623		,814	53	42	1.517	2 (1	32	234	. 2 2 6
2_	6	334.28	.025	.158	.885	4,-3	52	1820	2.0	34	236	235
3	9	3.35.79	23ت.	.152	514	5-4	52	1823		35	242	
4	12	337,35	.020	.141	,710	55	53	1810	20	34	245	241
5	15	33895	.022	148	.780	56	52	1805	20	33	246	
6	18	340.12	.010	,100	,354	57	53	1798	20	36	250	240
7	21	341.64	.020	141	710	57	52	1776	2.0	36	252	240
8	24	343.13		- 134	1637	57	5-3	1784	20	35	251	246
9	27	3 4497		.173	1.062	58	573	1765	22	36	253	. 525
10	30		1040	- 200	1.420	5-4	53	1769	2.2	37	257	250
11	33		7.045	212	1.593	ic	54	1760	2.3	38	256	242
12	36		4,038		1.345	C-0	54	1757	2 2	- 38	254	235
		351.50										
13	3		0,03	3 152	170	51	51	178	2 2,0	35	233	230
14	6	3 55.7				1	51	1815	- 2.5	36	236	228
15	9	_	7.88	195	1.349		51	1508	2.2	36	24	3 245
16	12		4045			3 55	5-1	1834	1 2.3	37	252	236
17	15		1048		1.69	9 56	5 51	1816	2.4	137	25	235
i8			7,030	1	3 1-06	·	1	1812	2. 1	38	752	- 232
19			6.015		_			i		38	754	233
20	_		2,013	1						, 38	- 251	231
21			6:01		- 1.53						251	232
22		· ·	6.023								252	234
23	_		2,01							150		
24		12.7.7	55-07	1	l							
27	10	13 1363	31-07	141	1,776							
TOTA	AL.	41.69	10									
	RAGE 1	171.61		6 111	4 0.91	< 5	4.0	F (788.9	• F			
				10, 161	4 10,11	, ,	+46		60			
AVE	RAGE 2					51	4.0	R 2248.	q R			
									أمهريسي			

Run#: MMe-3

Date:

10-27-94

ISOKINETIC SHEET (68 degree reference)

		========	:::::::::::::::::::::::::::::::::::::::			
# Probes 1 Cp,corr.= 0.8310	Dp= 3 Ts= 1788.9	Ds= 54 As= 15.9043	Vm= 41.69	Pbar= 26.2	Theta= 72	SQR(/\P)= 0.1614
Λ H= 0.965	Tm= 54		Dn= 0.6346 An= 0.00220	Ym= 1.002	Pstat= -0.14	
VIC= 64.4	Mn=	%CO2 7.80	%O2 11.20	% N 2 81.00	%CO 0.00	

RESULTS

Pm=		"Hg scf scf	C's=	0	gr/dscf
Ps=	26.19	"Hg	EA=	110	%
Vm,std=	37.66	scf	Erate=	0.000	lb/hr
Vw,std=	3.03	scf			
Bwo=	0.0745				
Ms=	28.82	lb/lb-mol, wet			
Vs,avg=	19.79	ft/sec	·		
Qs=	215,519	dscf/hr			
1=	105.49	%			

GENERAL

Project Number			stallation wthorne AP	=	1	Meter D	Box Operator
Sample Location	HGD	Syst	tem				
Type of Sample:	Acid Mist		POHC	Metals	Moisture Particula		Particulate
	SO ₂	so,	SO,	Particle	Size	Othe	r:

EQUIPMENT SPECIFICATIONS

Nomograph/C	Calculator	No	zzle	Pit	ot Tube =	
AH. 1.82	AP. 0,0323	No.	D.	No.	C,	
NH.0 7.5	P,/P _m (.0	206.0.20-1	,626	wc-	0:54	
T _m 90	T, 1800		. 627	Falcotage		
"C" Factor	x, 35,95		.627	C _{p.eff}	857 .831	
Ref AP		D _{n.svg}	.6267	An .30	P5 m2	
Meter Box No.	2923	Dry Gas Meter	y Gas Meter Ym D. 4.534 A. 1.			
	Filter		Probe			
туре	N	umber	Length	Liner	Material.	
Quartz	Z-:	3	5° 48	Quetz		
			Probe Heat Sets	ing 240°F		

OPERATIONAL CHECKS

Initia	al Leak Check	Initial Pitot Tube Leak Check				
Vacuum (in. Hg)	Leak Rate	0.000 in. H.O per 15 Hin.				
	0,005 ft³ per / Min.	at 4.6 4.3 in. H.O				
1/5 Final	Leak Check / Min.	Final Pitot Tube Leak Check				
Vacuum (in. Hg)	Leak Rate	0.000 in. H.O per /5 - Hin.				
2 4.0	0.00 ft' per / Min.	at 47/45 in. H ₂ 0				
Gas Bag S	ystem Leak Check	Component Leak Check				
Initial O.O	Final O.D	Vacuum (in Hg.) Leak Rate				
Pm 26.45	Pm 26.45 14	ft³ per Min.				
Start Time 1105	End Time 1320	ft ¹ per Min.				

39.95

nt	θ	v_	ΔP	(AP) 1/2	ΔH	T.	2	T,	Vacuum	Final Imp.	Filter Temp.	Remarks KP 55-95
	(min)	(ft³)	inches H ₋ O		inches H ₂ O	t _i	t,	(*F)	inches Hg	- 1	(* F 5	Pate Texp
-		104.105		(بهس.	-GQ	53	82	11 1	25	54	234	225
	5	10705	,525	, 15 ^{E)}	.998	84	81	1769	2.5	61	242	244
<u>2</u>	10	110.09	.025	158	,799	86	82	1794	2.0	60	245	238
,		112.89		.141	799	87	82	1798	2.0	61	251	232
-	25	115.67	.020	.152	.9/9	58	83	1807	2,2	61	249	230
5		18.59	.023	 ` 		90	83	1811	3.0	62	251	23/
6	30	121.86	<u> </u>	173	1.48	91	83	1780	3.5	59	252	247
-	35	125.45	1	192	1	92	83 55-	1762	3.5	5-5-	252	246
2	40	129.08	.037	./ 97	1.48	92	86	1760		59	247	249
9_	45	13287	240	, 200	13280		86	1758		5-8-	247	243
10	50	136.04	1			93	87	1764		60	244	230
11	<i>55</i>	139 39		1114			8?	1768	20	60	246	
12	-	140.900		1.114	520	58	99			60	250	235
13	95	143.20	L	•	1	1		1809	2.0	53	238	
14	70	145,66		1		88	1			1	242	
15	15	14824		141	-660		88	1864	<u> 7. z</u>			
16	30	150.97			750	 	95				248	
17	J85	1538			4	1	84	1879	2.5		25	
18	30	15:97	i	- 1	- 1	1		1889		1		
19	35			l l			55	1860				
20	Ho				2/./2			1851				
21	#5	166.7			2 1.26			/83				
22					0 /.30			1833				
23	\$15			1	5 1.43			187	***			
24	60	177.39	18 04	0 . 20	0 1.31	6 96	90	182	3 3.	3 5	3 25.	3 246
						C= =	41	6	-			
					حرور	1103	55.4	2		-		
TOTAL		73.29							_			
AVERAGE 1		025	166	4 11.02		· 86 • 1		 #				
					_	9 +460						
AVER	AGE 2					547	ا ۾	R 2257	R			

PM10 Train Summary Data Calculations

Date:	10-23-94
Plant	HWAAP HGDS
Run No:	3

	DATA
Units, Metric(1) or English(2):	2
Units, Matrice 1) or Englander.	26.45
Barometric Pressure (mm rig, m. rig).	
Stack Static Pressure(mm H2O, in. H2O):	-0.14
Stack Area(m^2, ft^2):	15. 9 043
	0.6267
Nozzie Diameter(mm, in.):	• • • • • • • • • • • • • • • • • • • •
Pitot Tube Coefficient, Cp:	0.831
DGM Calibration Factor, Y:	1.002
	104,105
initial DGM Reading(liters, dscf):	
Final DGM Reading(liters, dscf):	177.398
Total Run Time(min):	120
low Kutt thiskimi.	

FILTER. NOZZLE RINSE, AND MOISTURE DATA

	DAIA
Dry Molecular Weight of Stack Gas:	28.9571709
Particulate Mass in Probe Rinse(mg):	9.91
	21.72
Particulate Mass in Filter Catch(mg):	69.2
Water Vapor Condensed in Impingers(ml):	17.7
Water Vapor Collected in Silica Gel(g):	
% CO2	7.80%
% O2	10.60%
% N2	81.60%
73 732	0.00%
% CO	

RESULTS

Average DGM Temperature(K, R): Average Orifice Press. Drop(mm H2O, in. H2O): Standard Dry Gas Volume, Vm(std)(dscm, dscf): Stack Gas Velocity(m/s, t/s): Standard Volumetric Flow Rate(dscmm, dscfm): Standard Volumetric Flow Rate(dscmh,dscfh): Volume of Water Vapor(scm, scf): Moisture Content(%):	547.858 1.023 62.722 20.213 3742.534 224552.055 4.092 6.124
Molecure Containt 29). sokinetics:	103.752

GENERAL

Project Number		Installation Hawthorne AA		Meter Box Operator
Sample Location	HGO Syster			
Type of Sample:	Acid Mist	POHC	Metals !	Moisture Particulate
	SO ₂ S	so, so,	Particle Siz	e Other:

EQUIPMENT SPECIFICATIONS

Nomograph/	Calculator	No	zzle	Pite	ot Tube ÷	
AH., 1.72	APm 0.4723	No.	D _n	No.	Cy-	
NH.0 7.5	P ₁ /P _m /. O	206.0.20-1	,626	ل ان -	0.84	
ī, 90	T. 1800		.627	Funtage		
"C" Factor	K, 35.95		.627	C _{pat}	4 .821	
Ref AP		D _{R.SVE}	.6267	A .3085 m		
Meter Box No.	2 428	Dry Gas Meter	Y= (.052	D. 4.5 Ft	A 15.904 #	
	Filter		P	robe		
Туре	N	umber	Length	Liner	Material	
Queste	Z-1		5-08	Quite		
					 -	
			Probe Heat Sett	ing 240°F		

OPERATIONAL CHECKS

Initia	l Leak Check	Initial Pitot Tube Leak Check			
Vacuum (in. Hg)	Leak Rate	O-occorr in. Ho per			
15	6 007 ft per / Min.	at . 12 /) in. H ₂ O			
	Leak Check	Final Pitot Tube Leak Check			
Vacuum (in. Hg)	Leak Rate	0000/0.000 in. H.O per			
4.8	0.009 ft per / Min.	at. 2.4/.2.3 in. H.O			
Gas Bag S	ystem Leak Check	Component Leak Check			
Initial ex	Final CK	Vacuum (in Hg.) Leak Rate			
Pm 26.11	Pm 26.11 -,13	ft ¹ per Min.			
Start Time	End Time	ft ¹ per Min.			

35.95 Kp = 54.95.

	_												
Po		θ	v,	ΔP	(AP) 1/2	ΔH	Ţ	m.	Ŧ,	Vacuum	Final Imp.	Filter Temp.	Remarks
No.	•	(min)	(ft³)	inches		inches	(-	F)		inches	Temp.	(*7)	Pake -
		`	240.904	H-O		H ² O	ti	tr	(*F)	Hg	(°F)	. (-)	Terr F.
	1	5	243.24	.ت/ح.	. 12	ن بنتر	ي ج	ن ² ک	1772	I. C	55	23%	S & 83
	2	10	245.68	,017	.;30	. 411	テつ	<u>څن</u>	1763	2.5	52	242	240
	3	15		.026		720	99	86	1824	20	52	207	241
	4	20		1022	.148	791	4	87	1535	20	15-2	250	200
	5	15	253.87	1023	.152	.830	92	87	1544	20	53	25%	z 38-
	6	36	256 72	.526	156	.900	93	85	1842	21	55	252	204
	7	35	260.25		145	1,370	94	88	1502	2.8	55	525	249
	8	40	26424		.224	1.800	46	89	1785	7.8	58	251	243
	٩	45	168.32	,052	. 228	1-870	97	91	1255	40	13.2	253	251
	10	<i>5</i> 0	277 73	01.0	.L45	7.160	09	92	1753	4.5	54	250	253
	11	55	277.27	2.063	. 251	2,265	101	43	1788	41.8	58	249	252
	12	60	281.660	060	1.245	2.160	10%	95	. 735	- 45	16 1	247	200
			282.45										ž
	13	-5	285.03	1018	134	.650	10.2	102	1657	7 2.0	62	241	229
	14	10	287.4	1.015	1.722	.540	102	101	1656	دے شہ او	56	244	231
	15	15	280.07	1020	141	-720	0 /23	121	1796	2.0		245	
	16	20	292.60	2 .0 18	1.134	_		100		2.0	55	250	
	17	25	295,3	2.02	1 ,45	7.75	104				154	254	
	18	30			1	2 .830	10.4	100	. 741	2.1	53	254	
	19	35	3013	1.030	2 . 17	3 1.080	1 105	101	177	3 2 2	- 52	25.3	2.31
	20	40	1707.2	7 .03		1.15	10.5	151	1769	7 2.3		252	
	21	45	307.9	3 0 3	3 18	2/19	106	101	1767	7 2.3	53	253	
	22	50	311.6	2 .041	2 . 20	0 1.4	1 106	162	1760	5 30	5	1 252	- 238
	23	55	315.3	6.04	2 .20	5 1.5	1 10	5 10 -					
	24	60	319.00	45 -04	0 .20	2 1.49	1 100	4 10-2	- 175	E 3. C	52	249	240
	TOTAL		77,3	51									
	AVER	AGE 1			0.1	153 1,1'	1 9	7.0	F ניזין	Š F			
								+46	0 +4	460			
	AVERAGE 2			-	•	3	557	R 2237	5R				

PM10 Train Summary Data Calculations

Date: Plant Run No:	10-26-94 HWAAP HGDS 5	
---------------------------	-----------------------------	--

DATA Units, Metric(1) or English(2): 26.11 Barometric Pressure(mm Hg, in. Hg): -0.13 Stack Static Pressure(mm H2O, in. H2O): 15.9043 Stack Area(m^2, ft^2): 0.6267 Nozzie Diameter(mm, in.): 0.831 Pitot Tube Coefficient, Cp: 1.002 DGM Calibration Factor, Y: 241.694 Initial DGM Reading(liters, dscf): 319.045 Final DGM Reading(liters, dscf): 120 Total Run Time(min):

FILTER, NOZZLE RINSE, AND MOISTURE DATA

	DAIA
144-1-bank Greek Greek	28.7660435
Dry Molecular Weight of Stack Gas:	10.35
Particulate Mass in Probe Rinse(mg):	2.48
Particulate Mass in Filter Catch(mg):	91.2
Water Vapor Condensed in Impingers(ml):	23.7
Water Vapor Collected in Silica Gel(g):	7.60%
% CO2	11.40%
% 02	81.00%
% N2	0.00%
% CO	0.50

RESULTS

most Tamanetural / DI	557.042
Average DGM Tempereture(K, R):	1.166
Average Orifice Press. Drop(mm H2O, in. H2O):	64.295
Standard Dry Gas Volume, Vm(std)(dscm, dscf):	21.819
Stack Gas Velocity(m/s, t/s):	3953.351
Standard Volumetric Flow Rate(dscmm, dscfm):	237201.032
Standard Volumetric Flow Rate(dscmh,dscfh):	5.410
Volume of Water Vapor(scm, scf):	7.762
Moisture Content(%):	100.682
Isokinetics:	,00.552

GENERAL

Project Number			Installation Hawthorne AAP			Meter Box Operator D Keesee			
Sample Location	HGD	J ₁ y ₂ †	em	•					
Type of Sample:	Yciq W	ist	POHC	Metals	Moistu	:e <	Particulate		
	SO ₂	so,	so,	Particle	Size	Othe	r:		

EQUIPMENT SPECIFICATIONS

Nomograph/	Calculator	No	zzle	Pitot Tube =		
AH. (. 82	AP. 0.0323	No.	D,	No.	9-	
th.o 7.5	P _s /P _m /. O	206.Q.20-2	.635	WC-	0-84	
T., 90	T. 1840		.635	Falseinge		
"C" Factor	K, 37.8		1634	C _{p,eff}	為.831	
Ref AP		D _{s.ave}	.6346	4 2142 E-3		
Meter Box No.	2928	Dry Gas Meter	٧.	D. 4.5°	4-15904	
	Filter		Probe			
Type	N	umber	Length	Liner Material		
Quetz	z -(9	5- eff	0,,,	utz -	
			Probe Heat Set	ting		

OPERATIONAL CHECKS

Initia	il Leak Check	Initial Pitot Tube Leak Check					
Vacuum (in. Hg)	Leak Rate	000/000 in. Ho per /5 Min.					
<i>;</i> <	C. C O 2 ft' per / Min.	at $(\frac{a}{2}, \frac{a}{2}, \frac{a}{2})$ in. H ₂ O					
Final	Leak Check	Final Pitot Tube Leak Check					
Vacuum (in. Hg)	Leak Rate	o.000/0,000 in. H ₂ O per/5 Hin. at 1.9/2 \(\frac{1}{2}\) in. H ₂ O					
6.8	0.006 ft ³ per Min.						
Gas Bag S	ystem Leak Check	Component Leak Check					
Initial Cic	Final OF	Vacuum (in Hg.) Leak Rate					
P _{ter}	Pm - 1135	ft ³ per Min.					
Start Time	End Time 1325	ft ¹ per Min.					

Kp = 328

			ΔP	(AP) 1/2	ΔH	T,		T,	Vacuum		Filter	Remarks
.nt	θ	(ft³)	inches	(AF)	inches	(*	F)			Imp. Temp.		Probe
	(min)	392600	¥ 0		H ₂ O	t _i	tr	(°F)	Нд	(*F)	(°F)	Temp F.
	5	39506	.0.15	122	,570°	56:	56	1645	<u> 0 0 </u>	5-6	23°C	239
2	10	397.06	.025	.158	945	60	57	1678	2.2	5-2	238	231
3	15	400.53		.134	1.80	63	5-8	1716	2.0	51	245	241
4		403-18	٥٤ ن.	.141	.756	65	59	1737	2.0	54	252	236
5	25	40590	.021	.145	.744	66	60	1743	2.1	56	250	232
6	30	40817	1	.148	832	<i>C</i> • 7	60	1746	2.1	54	244	248
7	35	41205	.035		1.323	68	62	1722	3.0	55	247	253
8	40	4160 -			1810	1	63	1715	4.0	55	750	249
9	45	420.23		7		70	63	1680	4.8	57	7,52	252
10	50	424.80	.065	. 255	2,460	70	64	1682	6.0	55	224	522
11	55	429.50		265		71	65	1684	6.5	55	254	52E.
12	60	434.440			1,772	72	66	1701	6.8	60	253	259
		435.20									- :	
13	5	4375	1	- 122	. 570	73	7/	1804	20	51	23€	23/
14	10	440.15				74	71	1801	2 C	47	232	236
15	15	442.5			756	77	72	176	2 2.1	45	249	230
16	20	445.7	1.02	3 .15	2 .890	79	73	180	3 2 2	_ 4	7 240	23,
17	2.5	448.50	0 .02	2 142	8 .83 4	- 84	74	181-	2 2.1	US	239	247
18	30		_1	1		•	76	1813	3 2 2	- 46	248	
19	35	454.7	3 -03	c 17	3 1.13	1 82	- 76	180	2.8	45	7240	240
20	40				7 1.32	3 84	78	1790	7 3.0	, 48	254	1 250
21	45			5 .21	2 1.70	0 84	1 79	178	2 3.8	49	25	1 256
22	_ 50	405.9	5 ,04	13 . 20	07 1.62	5 84) 9	177	8 3.5	149	255	- 249
23	-	-	4 00		2 170	رج د	50	176	8 4.0	19	255	248
24		0 1735,			5 1.58	8 85	80	177	3 39	, 49	256	243
TOTA		77	77	1.18	10 1.30	07						
AVER	AGE 1	33.15					71.1	F 1749	6 • F			
		752		<u>-</u>			+4(460			
AVEF	VAGE 2					5	31.1	R 220	x8 R			
T-20												

PM10 Train Summary Data Calculations

Date: 10-29-94
Plant: HWAAP HGDS
Run No: 7

DATA Units, Metric(1) or English(2): 26.2 Barometric Pressure(mm Hg, in. Hg): -0.135Stack Static Pressure(mm H2O, in. H2O): 15.9043 Stack Area(m^2, ft^2): 0.6346 Nozzie Diameter(mm, in.): 0.831 Pitot Tube Coefficient, Cp: 1.002 DGM Calibration Factor, Y: 393.362 Initial DGM Reading(liters, dscf): 473.52 Final DGM Reading(liters, dscf): 120 Total Run Time(min):

FILTER, NOZZLE RINSE, AND MOISTURE DATA

DATA 28.8300375 Dry Molecular Weight of Stack Gas: 15.15 Particulate Mass in Probe Rinse(mg): 9.25 Particulate Mass in Filter Catch(mg): 94.7 Water Vapor Condensed in Impingers(ml): 26.6 Water Vapor Collected in Silica Gel(g): 8.00% % CO2 10.80% % O2 81.20% % N2 0.00% % CO

RESULTS

531.188 Average DGM Temperature(K, R): 1.307 Average Orifice Press. Drop(mm H2O, in. H2O): 70.139 Standard Dry Gas Volume, Vm(std)(dscm, dscf): 22.239 Stack Gas Velocity(m/s, f/s): 4107.879 Standard Volumetric Flow Rate(dscmm, dscfm): 246472.711 Standard Volumetric Flow Rate(dscmh,dscfh): 5.712 Volume of Water Vapor(scm, scf): 7.530 Moisture Content(%): 103,086 Isolanetics:

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

APPENDIX J
PROCESS DATA GRAPHS

12 was

HGD Test 32

175mm Comp B (480 Rounds)

CF. STA G Min

A Care A

HGD Test 33

175mm Comp B (480 Rounds)

ges. El

Pt 31 (intermediate peak)

__ Pt 21 (hottest)

___ Pt 28 (early peak)

Pt 4 (late peak)

Pt 3 (coldest)

Pt 2 (adjacent to process probe)

318

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

APPENDIX K

PROCESS CONTINUOUS EMISSION MONITORS DATA GRAPHS

7.7/c

HGD Test 32 175 mm Comp B (480 Rounds)

K-6

HGD Test 34 175 mm Comp B (480 Rounds)

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

APPENDIX L

PM₁₀ DATA SUMMARY

TABLE L-1 SUMMARY OF HGD SYSTEM AVERAGE EMISSIONS DURING EACH PM_{10} TEST

DATE	RUN 3 10/23/94	RUN 5 10/26/94	RUN 7 10/29/94
FEED DATA			
Average Batch Feed			
175mm COMP B Proj (No.)	480	480	480
(lb/ea)	115	115	115 27.6
(tons)*	27.6	27.6	27.0
STACK GAS DATA			
CO, Concentration (%, dry)	7.8	7.6	8.0
O ₂ Concentration (%, dry)	10.6	11.4	10.8
CO Concentration (%, dry)	0.0	0.0	0.0
N ₂ Concentration (%, dry)	81.6	81.0	81.2
Stack Gas Moisture Content (%)	6.12	7.76	7.53
Stack Gas Molecular Weight			
(lb/lb-mole, wet)	28.96	28.77	28.83
SAMPLING EQUIPMENT DATA			
Dry Gas Volume (dscf)	62.722	64.295	70.139
Total Sampling Time (min)	120	120	120
Isokinetic Sampling Rate (%)	103.75	100.68	103.09
Volumetric Flow Rate			
(dscf/hr)	224552	237201	246473
EMISSION DATA			
Particulate Collected,			
Front Half (mg)	31.63	12.83	24.40
Front Half Blank			0.45
Correction (mg)	0.45	0.45	0.45
Organic CPM Collected,	10 50	E 40	23.76
Back Half (mg)	13.50	5.40	23.70
Back Half MeCl ₂ Blank	0.80	0.80	0.80
Correction (mg)	0.60	0.60	J. 00
Total Particulate	43.88	16.98	46.91
Collected (mg) PM ₁₀ Emission Rate† (lb/hr)	0.346	0.138	0.363
(tons/yr)	1.517	0.605	1.592

^{*} Batch feed rate exceeds previous limit of 25 tons.
† Water fraction inadvertanly discarded during inorganic CPM analysis.

Run 3:

$$W_{PM_{10}} = \frac{43.88}{453.593} \times \frac{224,552}{62.722}$$

$$= 0.346 lb/hr$$

Run 5:

$$W_{PM_{10}} = \frac{16.98}{453.593} \times \frac{237,201}{64.295}$$

$$= 0.138 \text{ lb/hr}$$

Run 7:

$$W_{PM_{10}} = \frac{46.91}{453.593} \times \frac{246,473}{70.139}$$

= 0.363 lb/hr

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

APPENDIX M

CONTINUOUS EMISSION MONITOR CALIBRATION DATA SUMMARY

-	THC Span = NOx Span = CO Span =	60.00 ; 250.00 ; 100.00 ; 175.00 ;	opmv opmv				
Run# 1 THC	Calibration Gas Conc.	Precalibration Response	3.00% % Error	Calibration Gas Conc.	Post Calibration Response	3.00% % Error	VALID
	53.80	52.98	1.37%	53.80	NA	0.00%	
	24.88	23.80	1.80%	24.88	24.12	1.27%	
	8.05	8.06	0.02%	8.05	NA	0.00%	
	0.00	-0.05	0.08%	0.00	-0.18	0.30%	
NOv	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID T
NOx	Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
	225.80	225.20	0.24%	225.80	NA	0.00%	
	137.30	138.50	0.48%	137.30	138.50	0.48%	
	0.00	0.00	0.00%	0.00	0.00	0.00%	
CO	Calibration Gas Conc.	Precalibration Response	2.00% % Error	Calibration Gas Conc.	Post Calibration Response	3.00% % Error	Not Valid
	85.05	84,76	0.29%	85.05	84.43	0.62%	
	46.03		2.59%	46.03	NA	0.00%	
	25.00	23.98	1.02%	25.00	NA.	0.00%	
	0.00		0. 05%	0.00	-0.59	0.59%	
SO2	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID
	Gas Conc.	Response	% Error	Gas Conc.	Response	% Елтог	

0.17%

0.33%

0.06%

149.40

83.90

0.10

Gas Conc.

149.10

84.48

0.00

NA

84.00

0.50

0.00%

0.27%

0.29%

149.10

84.48

0.00

	THC Span =	60.00	ppmv				
	NOx Span =	250.00	ppmy.				
	CO Span =	100.00	ppmv				
	SO2 Span =	175.00	ppmv				
Run # -2							
THC	Calibration	Precalibration	3.00%		Post Calibration	3.00%	VALID
	Gas Conc.	Response	% Елтог	Gas Conc.	Response	% Ептог	
•	53.80	53.64	0.27%	53.80	55.31	2.52%	
	24.88	25.37	0.82%	24.88	NA	0.00%	
	8.05	7.73	0.53%	8.05	NA	0.00%	
	0.00	0.01	0.02%	0.00	-0.34	0.57%	
NOx	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID -
1102	Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
	225.80	225.20	0.24%	225.80		0.00%	
	137.30	138.50	0.48%	137.30	137.70	0.16%	
	0.00	-0.10	0.04%	0.00	0.00	0.00%	
			0.000/	Collhantion	Post Calibration	3.00%	Not Valid
CO	Calibration	Precalibration	2.00%			% Error	1101 4 990
	Gas Conc.	Response	% Error	Gas Conc.	Response	/a Elitoi	
	85.05	85.70	0.65%	85.05		1.21%	
	46.03	43.66	2.37%	46.03		0.00%	
	25.00	24.42	0.58%	25.00		0.00%	
	0.00	0.10	0.10%	0.00	2.15	2.15%	
SO2	Calibration	Precalibration	2.00%		Post Calibration	3.00%	VALID
	Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
	149.10	149.40	0.17%	149.10			
	84.48		0.27%	84.48		1.55%	
	0.00	0.10	0.06%	0.00	1.30	0.74%	

THC Span =	60.00 ppmv
NOx Span =	250.00 ppmv
CO Span =	100.00 ppmv
SO2 Span =	175.00 ppmv

		*,	•					
Run# THC	3	Calibration Gas Conc.	Precalibration Response	3.00% % Error	Calibration Gas Conc.	Post Calibration Response	3.00% % Error	Not Valid THC down @ 1130 hr =
		53.80	53,52	0.47%	53.80	NA	0.00%	
		24.88	24.87	0.02%	24.88	NA	0.00%	
		8.05	7.63	0.70%	8.05	NA	0.00%	
		0.00	-0.04	0.07%	0.00	NA	0.00%	
		O-Ebertien	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID
NOx		Calibration Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
		225.80	225.10	0.28%	225.80	NA	0.00%	
		137.30	139.50	0.88%	137.30	139.60	0.92%	•
		0.00	-0.20	0.08%	0.00	2.00	0.80%	
СО		Calibration Gas Conc.	Precalibration Response	2.00% % Error	Calibration Gas Conc.	Post Calibration Response	3.00% % Error	Not Valid
		85.05	85,44	0.39%	85.05	NA	0.00%	
		46.03		4.69%	46.03	NA NA	0.00%	
		25.00		2.40%	25.00) NA		
		0.00		0.09%	0.00) NA	0.00%	
SO2		Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID
302		Gas Conc.	Response	% Error	Gas Conc.	Response	% Епог	
		149.10	148.60	0.29%	149.10			
		84.48		0.41%	84.48		2.10%	
		0.00		0.01%	0.00	0.00	0.00%	

	THC Span =	60.00	vma	•			
	NOx Span =	250.00	•				
•	•	100.00	•				
	CO Span ≃	•	•				
	SO2 Span =	175.00	ppmv				
Run# 4		·,					
THC	Calibration	Precalibration	3.00%	Calibration	Post Calibration	3.00%	Not Valid
	Gas Conc.	Response	% Елгог	Gas Conc.	Response	% Error	Values drift ~
							below zero.
	53.80	53.88	0.13%	53.80	NA	0.00%	
	24.88	25.13	0.42%	24.88	24.68	0.33%	
	8.05	8.17	0.20%	8.05	NA	0.00%	
	0.00	0.00	0.00%	0.00	-0.70	1.17%	
NOx	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	Not Valid
NOX	Gas Conc.	Response	% Ептог	Gas Conc.	Response	% Error	
	Gas Conc.		/0 E1101				
	225.80	224.10	0.68%	225.80		0.00%	
	137.30	142.60	2.12%	137.30		4.56%	
	0.00	0.00	0.00%	0.00	-0.10	0.04%	
				O - 115 41	Deat Calibration	3.00%	VALID .
CO	Calibration	Precalibration	2.00%	Calibration		0.00.0	VALID
	Gas Conc.	Response	% Error	Gas Conc.	Response	% Елтог ————	
	85.05	85.48	0.43%	85.05		0.00%	
	46.03	44.80	1.23%	46.03	43.36	2.67%	
	25.00	25.76	0.76%	25.00	NA NA	0.00%	
	0.00	0.16	0.16%	0.00	0.88	0.88%	
SO2	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID
	Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
	149.10	149.20	0.06%	149.10) NA	0.00%	
	84.48		1.07%	84.48	80.40	2.33%	
	0.00		0.06%	0.00	2.80	1.60%	
	3.00	3.10					

	THC Span = NOx Span = CO Span = SO2 Span =	60.00 250.00 100.00 175.00	opmv opmv				
Run # 5 THC	Calibration Gas Conc.	Precalibration Response	3.00% % Error	Calibration Gas Conc.	Post Calibration Response	3.00% % Error	VALID
	53.80	53.74	0.10%	53.80	NA	0.00%	
	24.88	24.57	0.52%	24.88	24.20	1.13%	
	8.05	8.00	0.08%	8.05	NA	0.00%	
	0.00	0.00	0.00%	0.00	0.00	0.00%	
NOx	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID
1102	Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
	225.80	225.20	0.24%	225.80	NA	0.00%	
	137.30	138.50	0.48%	137.30		0.88%	
	0.00	0.04	0.02%	0.00	0.30	0.12%	
	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	Not Valid
CO	Gas Conc.	Response	% Error	Gas Conc.	Response	% Еггог	
	85.05	85.92	0.87%	85.05		0.00%	
	46.03	43.82	2.21%	46.03	38.80	7 <i>.</i> 23%	
	25.00	23.66	1.34%	25.00	NA NA	0.00%	
	0.00	0.05	0.05%	0.00	-2.20	2.20%	
SO2	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	Not Valid
	Gas Conc.	Response	% Епог	Gas Conc.	Response	% Error	
	149.10	149.40	0.17%	149.10			
	84.48	81.60	1.65%	84.48		29.36%	
	0.00	0.01	0.01%	0.00	1.60	0.91%	

	THC Span =	60.00 p	pmv	•			
	NOx Span =	250.00 p	pmv				
	CO Span =	100.00	pmv				
	SO2 Span =	175.00	pmv				
Run#.6					m -4 0 - Mil fan	3.00%	VALID
THC	Calibration Gas Conc.	Precalibration Response	3.00% % Error	Calibration Gas Conc.	Post Calibration Response	% Error	VALID
	53.80	53.81	0.02%	53.80	NA	0.00%	
	24.88	25.61	1.22%	24.88	25.17	0.48%	
	8.05	8.73	1.13%	8.05	NA	0.00%	
	0.00	0.01	0.02%	0.00	0.01	0.02%	
NOx	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID
1102	Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
	225.80	225.00	0.32%	225.80		0.52%	
	137.30	NA	NA	137.30		0.00%	
	0.00	-0.20	0.08%	0.00	-0.10	0.04%	
00	Calibration	Precalibration	2.00%	Calibration	Post Calibration	3.00%	VALID
CO	Gas Conc.	Response	% Error	Gas Conc.	Response	% Error	
	85.05	85.60	0.55%	85.05	NA	0.00%	
	46.03	44.22	1.81%	46.03	46.00	0.03%	
	25.00	25.46	0.46%	25.00	NA NA		
	0.00	0.22	0.22%	0.00	1.18	1.18%	
SO2	Calibration	Precalibration	2.00%		Post Calibration	3.00%	VALID
	Gas Conc.	Response	% Елгог 	Gas Conc.	Response	% Error	
	149.10		0.51%	149.10			
	84.48		1.19%	84.48		0.96%	
	0.00	0.10	0.06%	0.00	1.50	0.86%	

Run # 7 Calibration Gas Conc. Precalibration 3.00% Calibration Gas Conc. Response Since Si	\/ALID
24.88 24.58 0.50% 24.88 24.50 0.63% 8.05 8.45 0.67% 8.05 NA 0.00% 0.00 0.02 0.03% 0.00 -0.02 0.03% NOx Calibration Response % Error Gas Conc. Response % Error Gas Conc. Response % Error Gas Conc. Response % Error Calibration Response % Error Cal	
24.88 24.58 0.50% 24.88 24.50 0.63% 8.05 8.45 0.67% 8.05 NA 0.00% 0.00 0.00 0.02 0.03% 0.00 -0.02 0.03% NOx Calibration gas Conc. Post Calibration Response 3.00% 225.80 225.30 0.20% 225.80 224.10 0.68% 137.30 NA 54.92% 137.30 NA 0.00%	
8.05 0.00 8.45 0.00 0.67% 0.00 8.05 0.00 NA -0.02 0.00% 0.03% NOx Calibration Gas Conc. Precalibration Response 2.00% Error Calibration Gas Conc. Post Calibration Response 3.00% Error 225.80 225.30 0.20% 137.30 225.80 NA 224.10 54.92% 0.68% 137.30	
NOx Calibration Gas Conc. Precalibration Response 2.00% Error Calibration Gas Conc. Post Calibration Response 3.00% Error 225.80 225.30 0.20% 225.80 224.10 0.68% 137.30 NA 54.92% 137.30 NA 0.00%	
Gas Conc. Response % Error Gas Conc. Response % Error 225.80 225.30 0.20% 225.80 224.10 0.68% 137.30 NA 54.92% 137.30 NA 0.00%	
Gas Conc. Response % Error Gas Conc. Response % Error 225.80 225.30 0.20% 225.80 224.10 0.68% 137.30 NA 54.92% 137.30 NA 0.00%	Not Valid
137.30 NA 54.92% 137.30 NA 0.00%	
137.30 NA 54.92% 137.30 NA 0.00%	
440 0448/	
CO Calibration Precalibration 2.00% Calibration Post Calibration 3.00%	VALID
CO Calibration Precalibration 2.00% Calibration Post Calibration 3.00% Gas Conc. Response % Error Gas Conc. Response % Error	
85.05 85.26 0.21% 85.05 NA 0.00%	
46.03 44.10 1.93% 46.03 43.44 2.59%	
25.00 23.68 1.32% 25.00 NA 0.00%	
0.00 0.29 0.29% 0.00 0.13 0.13%	
SO2 Calibration Precalibration 2.00% Calibration Post Calibration 3.00%	Not Valid
Gas Conc. Response % Error Gas Conc. Response % Error	Moisture in gas line.
149.10 149.40 0.17% 149.10 NA 0.00%	9
84.48 85.40 0.53% 84.48 NA 0.00%	
0.00 0.10 0.06% 0.00 NA 0.00%	

SO2 System Bias Check 20 October 1994

	Source	Value (ppmv)	Value (ppmv)
pre	line	83.900	0.100
pre	direct	84.800	0.000
post	line	84,000	0.500
post	direct	84.900	0.300
Actual Gas		84.900	0.000 ppmv

NOx System Bias Check 20 October 1994

	Source	Value (ppmv)	Value (ppmv)
рге	line	138.5	0.00
pre	direct	138.9	0.00
post	line	138.5	-0.10
post	direct	139.0	0.00
Actual Gas		137.30	0.00 ppmv

APPENDIX N

THC CONTINUOUS EMISSION MONITOR DATA SUMMARY

TABLE N-1. SUMMARY OF HGD SYSTEM THE EMISSION DURING EACH METALS TEST

DATE	RUN 2 10/21/94	RUN 4 10/24/94	RUN 6 10/27/94
		-	
FEED DATA			
Average Batch Feed			
175mm COMP B Proj (No.)	480	480	480
(lb/ea)	115	115	115
(tons) *	27.6	27.6	27.6
STACK GAS DATA			
CO ₂ Concentration (%, dry)	8.0	7.2	7.8
O2 Concentration (%, dry)	10.8	12.0	11.2
CO Concentration (%, dry)		0.0	0.0
N ₂ Concentration (%, dry)		80.8	81.0
Stack Gas Moisture Content		5.13	7.45
Stack Gas Molecular Weight			
(lb/lb-mole, wet)	28.86	29.04	28.82
Volumetric Flow		27.01	
	233766	202153	215519
()			
SAMPLING EQUIPMENT DATA			
Dry Gas Volume (dscf)	32.90	33.81	37.66
Total Sampling Time (min)	60	72	72
Isokinetic Sampling Rate (%)		103.51	105.49
EMISSION DATA			
Avg CEM Conc. Reading			
as Propane (ppmv)	0.065	†	0.265
Avg Corrected C _{THC}		•	
Conc as Carbon (ppmv)	0.195	†	0.794
Density C ₃ H ₁ (lb/ft ³)	0.116	0.116	0.116
Avg THC Emission		0.220	01220
Rate (lb/hr)	0.002	+	0.009
(tons/yr)	0.008	† +	0.040
(cons/ lt)	0.008	ī	0.040

^{*} Batch feed rate exceeds previous limit of 25 tons. † Monitor not within calibration requirements.

TABLE N-2. SUMMARY OF HGD SYSTEM THC EMISSIONS DURING EACH PM10 TEST

DATE	RUN 1* 10/20/94	RUN 3 10/23/94	RUN 5 10/26/94	RUN 7 10/29/94	
FEED DATA					
Average Batch Feed	4				
175mm COMP B Proj (No.)	480	480	480	480	;
(lb/ea)		115	115		*
(tons)†	27.6	27.6	27.6	27.6	
STACK GAS DATA					
CO, Concentration (%, dry)	7.8	7.8	7.6	8.0	
O, Concentration (%, dry)	11.0	10.6	11.4	10.8	
CO Concentration (%, dry)	0.0	0.0	0.0	0.0	
N2 Concentration (%, dry)	81.2	81.6	81.0	81.2	
Stack Gas Moisture Content (*) *	6.12	7.76	7.53	
Stack Gas Molecular Weight (lb/lb-mole, wet)	*	28.96	28.77	28.83	
Volumetric Flow Rate (dscf/hr) 22	6611‡ 2:	24552 2:	37201 24	16473	
SAMPLING EQUIPMENT DATA					
Dry Gas Volume (dscf)	*	62.722	64.295	70.139	
Total Sampling Time (min)	*	120	120	120	
Isokinetic Sampling Rate (%)	* .	103.75	100.68	103.09	
AMISSION DATA					
Avg CEM Conc. Reading					
as Propane (ppmv)	0.014	• -	0.396	0.142	
Avg Corrected C _{THC} Conc as Carbon (ppmv)	0.043	•	1.187	0.426	
Density C ₃ H ₈ (lb/ft ³) Avg THC Emission	0.116		0.116	0.116	
Rate (lb/hr)	0.001	♦	0.011	0.004	
(tons/yr)	0.002	•	0.048	0.018	

^{*} PM_{10} train failed intermediate leak check.

[†] Batch feed rate exceeds previous limit of 25 tons. ‡ Run 1 stack gas flow rate is an average of run 2 through 7.

[♦] Monitor not within calibration requirements.

APPENDIX O

 $\mathtt{NO}_{\mathtt{x}}$ Continuous emission monitor data summary

TABLE 0-1. SUMMARY OF HGD SYSTEM NO, EMISSION DURING EACH METALS TEST

DATE	RUN 2 10/21/94	RUN 4 10/24/94	RUN 6 10/27/94
FEED DATA			
Average Batch Feed			
175mm COMP B Proj (No.)	480	480	480
(lb/ea)		115	115
(tons) *	27.6	27.6	27.6
STACK GAS DATA			
CO ₂ Concentration (%, dry)	8.0	7.2	7.8
O ₂ Concentration (%, dry)	10.8	12.0	11.2
CO Concentration (%, dry)	0.0	0.0	0.0
N ₂ Concentration (%, dry)		80.8	81.0
Stack Gas Moisture Content	(ቼ) 7.31	5.13	7.45
Stack Gas Molecular Weight	20.04	22 24	20.00
(lb/lb-mole, wet)	28.86	29.04	28.82
Volumetric Flow	122766	202152	215510
Rate (dscf/hr)	233/66	202153	215519
SAMPLING EQUIPMENT DATA	_	_	
Dry Gas Volume (dscf)	32.90	33.81	37.66
Total Sampling Time (min)	60	72	72
Isokinetic Sampling Rate (%)	104.53	103.51	105.49
CEM CALIBRATION DATA			
C ₀ (ppmv)	-0.05	ţ	† †
C _m (ppmv)	138.10	ţ	ţ
C _{ma} (ppmv)	137.30	†	†
EMISSION DATA			
Avg CEM Conc.			
Reading (ppmv)	70.0	†	†
Avg Corrected			
Conc (ppmv)	69.6	†	†
Density NO ₂ (lb/ft ³)	0.120	0.120	0.120
Avg NO _x Emission			
Rate (lb/hr)	1.96	· †	†
(tons/yr)	8.58	†	†

^{*} Batch feed rate exceeds previous limit of 25 tons. † Monitor not within calibration requirements.

TABLE 0-2. SUMMARY OF HGD SYSTEM NO, EMISSIONS DURING EACH PM10 TEST

DATE	RUN 1* 10/20/94		RUN 5 4 10/26/94	RUN 7 1 10/29/94	
FEED DATA					
Average Batch Feed	400	400	400	480	
175mm COMP B Proj (No.)	480	480	480 115	115	;
(lb/ea)		115 27.6	27.6	27.6	
(tons)	27.6	27.6	27.0	27.0	
STACK GAS DATA					
CO ₂ Concentration (%, dry)	7.8	7.8	7.6	8.0	
O, Concentration (%, dry)	11.0	10.6	11.4	10.8	
CO Concentration (%, dry)	0.0	0.0	0.0	0.0	
N, Concentration (%, dry)	81.2	81.6	81.0	81.2	
Stack Gas Moisture Content	(%) *	6.12	7.76	7.53	
Stack Gas Molecular Weight (lb/lb-mole, wet)	*	28.96	28.77	28.83	
Volumetric Flow Rate	26611‡	224552	237201	246473	
SAMPLING EQUIPMENT DATA					
Dry Gas Volume (dscf)	*	62.722	64.295	70.139	
Total Sampling Time (min)	*	120	120	120	
Isokinetic Sampling Rate (%) *	103.75	100.68	103.09	
JEM CALIBRATION DATA					
C ₀ (ppmv)	0.00	0.90	0.17	♦	
C _m (ppmv)	138.50	139.55	139.00	♦	
C _{ma} (ppmv)	137.30	137.30	137.30	•	
EMISSION DATA					
Avg CEM Conc.					
Reading (ppmv)	134.4	160.6	159.0	♦	
Avg Corrected C,					
Conc (ppmv)	133.3		175.9	•	
Density NO ₂ (lb/ft ³)	0.12	0 0.120	0.120	0.120	
Avg NO _x Emission	3.63	4.27	5.03	•	
Rate (lb/hr)	3.63 15.91		22.04	*	
(tons/yr)	13.91	10.72	22.04	•	

PM₁₀ train failed intermediate leak check.

[†] Batch feed rate exceeds previous limit of 25 tons. ‡ Run 1 stack gas flow rate is an average of run 2 through 7. • Monitor not within calibration requirements.

SAMPLE CALCULATION RUN 1.

$$C_{gas} = (134.4 - 0.00) * \frac{137.30}{(138.5 - 0.0)}$$

= 133.3 ppmv

$$W_{NO_x} = \frac{133.3 * 0.120 * 226611}{10^6}$$

= 3.63 lb/hr

APPENDIX P

CO CONTINUOUS EMISSION MONITOR DATA SUMMARY

TABLE P-1. SUMMARY OF HGD SYSTEM CO EMISSION DURING EACH METALS TEST

	RUN 2	RUN 4	RUN 6 10/27/94
ATE	10/21/94	10/24/94	10/2//94
EED DATA			
verage Batch Feed			
175mm COMP B Proj (No.)	480	480	480
	ea) 115	115	115
	3)* 27.6	27.6	27.6
TACK GAS DATA			
O2 Concentration (%, dry)		7.2	7.8
Concentration (%, dry)	10.8	12.0	11.2
O Concentration (%, dry)	0.0	0.0	0.0
, Concentration (%, dry)	81.2	80.8	81.0
tack Gas Moisture Conten	t (%) 7.31	5.13	7.45
tack Gas Molecular Weigh	t		
(lb/lb-mole, wet)	28.86	29.04	28.82
olumetric Flow			
Rate (dscf/hr)	233766	202153	215519
AMPLING EQUIPMENT DATA			
Ory Gas Volume (dscf)	32.90	33.81	37.66
otal Sampling Time (min)		72	72
sokinetic Sampling Rate		103.51	105.49
-	-		
MISSION DATA			
lvg CEM Conc.	4	0.1	0.0
Reading (ppmv)	†	9.1	9.9
vg_Corrected Co	.		6. 6
Conc (ppmv)	T	8.4	9.2
ensity CO (lb/ft3)	0.073	0.073	0.073
vg CO Emission			
Rate (lb/hr)	Ţ	0.12	0.14
(tons/yr)	†	0.54	0.63

^{*} Batch feed rate exceeds previous limit of 25 tons. † Monitor not within calibration requirements.

TABLE P-2. SUMMARY OF HGD SYSTEM CO EMISSIONS DURING EACH PM10 TEST

DATE	RUN 1* 10/20/94	RUN 3 10/23/94	RUN 5 10/26/94	RUN 7 10/29/94	
FEED DATA	;			• •	
Average Batch Feed				•	
175mm COMP B Proj (No.)	480	480	480	480	
(lb/e	a) 115	115	115	115	
(tons)† 27.6	27.6	27.6	27.6	
STACK GAS DATA				•	
CO, Concentration (%, dry)	7.8	7.8	7.6	8.0	
O, Concentration (%, dry)	11.0	10.6	11.4	10.8	
CO Concentration (%, dry)	0.0	0.0	0.0	0.0	
N, Concentration (%, dry)	81.2	81.6	81.0	81.2	
Stack Gas Moisture Content	(%) *	6.12	7.76	7.53	•
Stack Gas Molecular Weight					
(lb/lb-mole, wet)	*	28.96	28.77	28.83	
Volumetric Flow Rate					
	226611‡ 23	24552 2	37201 24	46473	
SAMPLING EQUIPMENT DATA					
Dry Gas Volume (dscf)	*	62.722	64.295	70.139	
Total Sampling Time (min)	*	120	120	120	
Isokinetic Sampling Rate (*) *	103.75	100.68	103.09	
MISSION DATA					
Avg CEM Conc.					
Reading (ppmv)	•	• •	• •	10.5	
Avg Corrected Cco	·	-	-		
Conc (ppmv)	♦ -	•	•	9.6	
Density CO (lb/ft ³)	0.073	0.073	0.073	0.073	
Avg CO Emission			· -		
Rate (lb/hr)	•	•	•	0.17	
(tons/yr)	•	• •	• ♦	0.76	
(00110 / 1 2 /	•	•	•	-	

^{*} PM_{10} train failed intermediate leak check.

[†] Batch feed rate exceeds previous limit of 25 tons.

[‡] Run 1 stack gas flow rate is an average of run 2 through 7.

[♦] Monitor not within calibration requirements.

SAMPLE CALCULATION RUN 4.

$$c_{co} = 9.1 * (1 - 0.072)$$

= 8.4 ppmv

$$W_{CO} = \frac{8.4 * 0.073 * 202153}{10^{6}}$$

= 0.12 lb/hr

APPENDIX Q

SO₂ CONTINUOUS EMISSION MONITOR DATA SUMMARY

ABLE Q-1. SUMMARY OF HGD SYSTEM SO₂ EMISSION DURING EACH METALS TEST

ATE	RUN 2 10/21/94	RUN 4 10/24/94	RUN 6 10/27/94
EED DATA			
verage Batch Feed	400	400	480
175mm COMP B Proj (No.)	480	480	115
(lb/ea)	115	115 27.6	27.6
(tons)	27.6	27.6	27.0
TACK GAS DATA			
CO2 Concentration (%, dry)	8.0	7.2	7.8
2 Concentration (%, dry)	10.8	12.0	11.2
CO Concentration (%, dry)	0.0	0.0	0.0
Concentration (%, dry)	81.2	80.8	81.0
Stack Gas Moisture Content	(%) 7.31	5.13	7.45
Stack Gas Molecular Weight			
(lb/lb-mole, wet)	28.86	29.04	28.82
Volumetric Flow			
Rate (dscf/hr)	233766	202153	215519
SAMPLING EQUIPMENT DATA			
ory Gas Volume (dscf)	32.90	33.81	37.66
Total Sampling Time (min)	60	72	72
sokinetic Sampling Rate (%) 104.53	103.51	105.49
TOW ON TODAMION DAMA			
CEM CALIBRATION DATA	0.70	1.45	0.80
C ₀ (ppmv)	85.60	81.50	82.60
(ppmv)		81.50	84.48
Cma (ppmv)	84.48	54.45	04.40
EMISSION DATA			,
Avg CEM Conc.			
Reading (ppmv)	65.3	68.4	48.4
Avg Corrected			
Conc (ppmv)	64.2	70.7	49.1
Density SO ₂ (lb/ft ³)	0.168	0.168	0.168
Avg SO ₂ Emission			
Rate (lb/hr)	2.52	2.40	1.78
(tons/yr)	11.05	10.52	7.79

^{*} Batch feed rate exceeds previous limit of 25 tons.

TABLE Q-2. SUMMARY OF HGD SYSTEM SO $_2$ EMISSIONS DURING EACH PM $_{10}$ TEST

DATE	RUN 1* 10/20/94	RUN 3 10/23/94	RUN 5 10/26/94	RUN 7 10/29/94	
FEED DATA					
Average Batch Feed	400	400	490	480	
175mm COMP B Proj (No.)	480	480	480 115	115	;
(lb/ea)		115	27.6	27.6	
(tons)†	27.6	27.6	27.0	27.0	
STACK GAS DATA	•				
CO, Concentration (%, dry)	7.8	7.8	7.6	8.0	
O, Concentration (%, dry)	11.0	10.6	11.4	10.8	
CO Concentration (%, dry)	0.0	0.0	0.0	0.0	
N2 Concentration (%, dry)	81.2	81.6	81.0	81.2	
Stack Gas Moisture Content (Stack Gas Molecular Weight	%) *	6.12	7.76	7.53	
(lb/lb-mole, wet)	*	28.96	28.77	28.83	
Volumetric Flow Rate					
	6611‡ 2	24552 2	37201 2	46473	
SAMPLING EQUIPMENT DATA					
Dry Gas Volume (dscf)	*	62.722	64.295	70.139	
Total Sampling Time (min)	*	120	120	120	
Isokinetic Sampling Rate (%)	* .	103.75	100.68	103.09	
JEM CALIBRATION DATA					
C ₀ (ppmv)	0.30	0.00	♦	♦	
C _m (ppmv)	83.95	83.00	• •	• •	
C _{ma} (ppmv)	84.48	84.48	•	♦	
EMISSION DATA					
Avg CEM Conc.					
Reading (ppmv)	70.6	65.3	♦	♦	
Avg Corrected C					
Conc (ppmv)	71.0	64.2	•	•	
Density SO ₂ (lb/ft ³)	0.168		0.168	0.168	
Avg SO ₂ Emission					
Rate (lb/hr)	2.70	2.72	•	•	
(tons/yr)	11.84	11.92	•	•	

^{*} PM_{10} train failed intermediate leak check.

[†] Batch feed rate exceeds previous limit of 25 tons.

[‡] Run 1 stack gas flow rate is an average of run 2 through 7.

[♦] Monitor not within calibration requirements.

SAMPLE CALCULATION RUN 1.

$$C_{gas} = (70.6 - 0.30) * \frac{84.48}{(83.95 - 0.30)}$$

= 71.0 ppmv

$$W_{SO_2} = \frac{71.0 * 0.168 * 226611}{10^6}$$

= 2.70 lb/hr

APPENDIX R

STACK CONTINUOUS EMISSION MONITOR GRAPHS AND DATA SUMMARY

Run 1		THC	NOX Value	CO Value	SO2 Value
Data	Time	Value (ppm)	(ppm)	(ppm)	(ppm
Date) IIIIC =================================	=282255	2222222	2222222	
20-Oct-94	01:02 PM	0.06	105.44	7.40	57.92
20-Oct-94	01:03 PM	0.00	120.98	7.07	62.97
20-Oct-94	01:04 PM	-0.03	130.97	7.20	65.87
20-Oct-94	01:05 PM	-0. 02	128.48	7.33	68.63
20-Oct-94	01:06 PM	0.02	129.15	6.90	69.63
20-Oct-94	01:07 PM	-0.02	114.12	6.90	69.90 69.73
20-Oct-94	01:08 PM	0.05	114.15	7.47	69.87
20-Oct-94	01:09 PM	0.47	144.32	6.97	00.83
20-Oct-94	01:10 PM	0.17	143.72	7.17	68.07
20-Oct-94	01:11 PM	-0.02	137.08	6.97	.68.03
20-Oct-94	01:12 PM	0.00	128.93	6.87	68.83
20-Oct-94	01:13 PM	-0.02	125.83	6.63	69.93
20-Oct-94	01:14 PM	0.10	114.10	6.50 6.53	70.63
20-Oct-94	01:15 PM	0.07	107.98	6. 63	70.73
20-Oct-94	01:16 PM	0.02	112.00	7.03	71.07 ⁻
20-Oct-94	01:17 PM	-0.05	121.80	6. 80 7. 2 7	71.33
20-Oct-94	01:18 PM	-0.10	114.00	6. 9 7	71.43
20-Oct-94	01:19 PM	-0.10	118.82	6.77	70.13
20-Oct-94	01:20 PM	- 0. 0 5	119.07	6.83	68.90
20-Oct-94	01:21 PM	-0.10	115.63	7.07	68.60
20-Oct-94		-0.08	117.98	6. 5 0	68.33
20-Oct-94		-0.10	122.93	6. 80	68.30
20-Oct-94		-0.10	113.15	7.23	70:13
20-Oct-94		-0.08	108.30	7. 83	71.30
20-Oct-94		-0.10	126.92	7. 43	72:93
20-Oct-94		-0.03	155.70 144.75	7.30	74.47
20-Oct-94		0.10	130.27	7.17	74.37
20-Oct-94		0.10	128.93	6.97	72.80
20-Oct-94		0.08	115.97	7.30	71.97
20-Oct-94		0.08 0.00	13 1.3 8	7.27	71.17
20-Oct-94		-0.02	161.67	6.60	70.27
20-Oct-94		-0.02 -0.05	128.42	6.57	70.77
20-Oct-94		0.00	123.93	6.40	70.03
20-Oct-94	·	0.00	135.73	6.70	69.73
20-Oct-94		0.00	154.20	6.73	70.23
20-Oct-94	·	0.00	160.53	6. 33	69.9 3
20-Oct-94		0.03	136.25	6. 07	70.63
20-Oct-94		0.08	124.27	6.50	73.87
20-Oct-9- 20-Oct-9-		0.10	120.45	6.50	74.93
20-Oct-9-		0.10	111.75	6.70	74.77
20-Oct-9-	·	0.08	113.95	7.20	76.13
20-Oct-9	·	0.03	126.77	6.50	75.53
20-Oct-9		0.03	114.08	7.00	72.17 70.07
20-Oct-9	· · · · · · · · · · · · · · · · · · ·	-0.03	137.90	6.80	70. 9 7
20-Oct-9		0.00	139.10	7.07	71.00 71.23
20-Oct-9		0.00	154.40	7.13	71.23 70.97
20-Oct-9		0.02	160.87	6.93	72.30
20-Oct-9		0.00	151.53	7.33	72.30 74.13
20-Oct-9	· ·	0.00	169.25	7.27	74.13 75.07
20-Oct-9		0.00	141.75	6.90	19.01

R	Run 1 (continued)		Value Value		CO Value	SOZ Value · (ppm	
	Date	Time	(ppm)	(ppm)	(ppm)	(bhu	
	20-Oct-94	01:53 PM	0.00	127.95	8.00	75.10	
	20-Oct-94	01:54 PM	0.02	161.33	7.23	71.77	
	20-Oct-94	01:55 PM	0.00	163.80	7.03	69.37	
	20-Oct-94	01:56 PM	0.02	146.05	7.83	68.93	
l	20-Oct-94	01:57 PM	0.03	173.77	7.20	69.63 .	
ŀ	20-0ct-94 20-0ct-94	01:58 PM	0.00	170.93	6.47	70.80	
		01:59 PM	0.00	128.93	6.63	70.73	
	20-Oct-94		0.00	128.12	8.00	70:33	
	20-Oct-94	02:00 PM	0.08	192.83	6.87	69.37	
	20-Oct-94	02:01 PM	0.03	180.93	6.50	69310	
	20-Oct-94	02:02 PM	0.02	147.14	7.40	69.96	
i	20-Oct-94	02:03 PM	U.UZ			** •,•	

D 0		THC	NOX	co	SO2
Run 2		Value	Value	Value	Value
Date	Time	(ppm)	(ppm)	(ppm)	(ppm-
222222	=========	0.20	69.30	6.60	64.30
21-Oct-94	05:34 AM	0.20 0.20	69.62	6.57	66.60 :
21-Oct-94	05:35 AM		69.63	6.20	- 0E28
21-Oct-94	05:36 AM	0.20	68.80	6.17	63.3 3 -
21-Oct-94	05:37 AM	0.18	69.48	6.27	62.57
21-Oct-94	05:38 AM	0.13 0.18	70.23	6,03	62.70
21-Oct-94	05:39 AM		70.52	5.90	62.60
21-Oct-94	05:40 AM	0.15	70.53	5.93	61.67~
21-Oct-94	05:41 AM	0.13	70. 7 5	6.00	63.93
21-Oct-94	05:42 AM	0.12	70.10	6.13	64.80 °
21-Oct-94	05:43 AM	0.10	69. 9 3	6.23	65,57
21-Oct-94	05:44 AM	0.10		6.20	65:50
21-Oct-94	05:45 AM	0.07	69.67	6.30	65.33
21-Oct-94	05:46 AM	0.07	69.48	6. 3 3	64,00
21-Oct-94	05:47 AM	0.03	69.68	6.10	62.93
21-Oct-94	05:48 AM	0.00	69.68	6.13	62.87
21-Oct-94	05:49 AM	0.02	69.65	6.20	63.17
21-Oct-94	05:50 AM	0.05	69. 8 5	6.43	63.43
21-Oct-94	05:51 AM	0.02	70.53	6. 63	65.83
21-Oct-94	05:52 AM	0.03	70.52	6.70	65.03
21-Oct-94	05:53 AM	0.00	69.73	6. 83	66.50
21-Oct-94	05:54 AM	0.05	67.65	6. 83	67.57
21-Oct-94	05:55 AM	0.02	69.68	6. 5 7	67:37
21-Oct-94	05:56 AM	0.00	69.32	6. 53	65.07
21-Oct-94	05:57 AM	0.02	68.62		62.57
21-Oct-94	05:58 AM	0.05	69.30	6.10	6230
21-Oct-94	05:59 AM	0.05	68.95	6. 03 5. 97	62.83
21-Oct-94	06:00 AM	0.07	70.87		63.53
21-Oct-94	06:01 AM	0.07	70. 7 0	6.20 6.47	68.17
21-Oct-94	06:02 AM	80.0	70.88	6.17	65.53
21-Oct-94	06:03 AM	0.08	70.28	6. 13 6. 07	65.10
21-Oct-94	06:04 AM	80.0	68.13		67.00
21-Oct-94	06:05 AM	0.05	69.13	6. 03	66.60
21-Oct-94	06:06 AM	0. 03	69.48	5.87 5.37	64. 7 7
21-Oct-94	06:07 AM	0.02	68.95	5.77 5.87	62.70
21-Oct-94	06:08 AM	80.0	69.48	5. 57	62.20
21-Oct-94	06:09 AM	0.10	69.32	5. 60 5. 63	62.63
21-Oct-94	06:10 AM	0.12	70.55	5. 6 7	63.23
21-Oct-94	06:11 AM	0.10	70.92	5. 83	65.00
21-Oct-94	06:12 AM	0.10	70.55	6. 03	66.03
21-Oct-94	06:13 AM	0.10	70.07	6.20	67:00
21-Oct-94	06:14 AM	0.10	69.65	6. 30	68.50
21-Oct-94	06:15 AM	0.10	69.78		69.33
21-Oct-94	06:16 AM	0.10	71.25	6.33	67.53
21-Oct-94	06:17 AM	0.10	71.58	6.10 6.10	66.60
21-Oct-94	06:18 AM	0.08	72.13	6.10 6.10	66.03
21-Oct-94	06:19 AM	0.08	72.67		66.23
21-Oct-94	06:20 AM	0.05	72.67	6.13 5.43	67. 0 0
21-Oct-94	06:21 AM	0.07	73.72	6.43 6.70	69.37
21-Oct-94	06:22 AM	0.07	73. 7 3	6.70	69.93
21-Oct-94	06:23 AM	0.03	73.22	6. 63	67.67
21-Oct-94	06:24 AM	0.05	69.73	6.47	10.10

RUN 2 (continued) Date Time		THC Value (ppm)	NOX Value (ppm)	CO Value (ppm)	Value (ppm
222222	EREFFEE	2222222	2222222	6.23	66,47
21-Oct-94	06:25 AM	0.02	67.62	5.93	62.13
21-Oct-94	06:26 AM	0.05	64.97	5.87	60.37
21-Oct-94	06:27 AM	0.03	64.13	5.57	61.13
21-Oct-94	06:28 AM	. 0.03	68.28	5. 5 0	62.37
21-Oct-94	06:29 AM	0.05	70.27	5.93	64.63
21-Oct-94	06:30 AM	0.03	73.40	5.87	64.90
21-Oct-94	06:31 AM	0.05	73.88		6633
21-Oct-94	06:32 AM	0.00	71.97	5.90	67.57
21-Oct-94	06:33 AM	0.02	71.07	5.97	68.27
21-Oct-94	06:34 AM	0.00	69.98	5.97	
	06:35 AM	0.00	69.67	5.90	68:80
21-Oct-94		0.05	69.3 3	5.80	68.27
21-Oct-94	06:36 AM	0.02	69.10	5.43	65.60
21-Oct-94	06:37 AM	0.03	69.68	5.30	63.2 0 -
21-Oct-94	06:38 AM	0.03	70.52	5.20	62.53
21-Oct-94	06:39 AM		70.55	5.30	62.87
21-Oct-94	06:40 AM	0.08	70.55	5.50	63.47
21-Oct-94	06:41 AM	0.10	71.60	5.83	66.13
21-Oct-94	06:42 AM	0.03	70.62	6.00	68.30
21-Oct-94	06:43 AM	0.02	69. 3 5	6.03	69.3 0
21-Oct-94	06:44 AM	0.00	68. 6 3	6.33	70.0 0
21-Oct-94	06:45 AM	0.00	68.62	5. 97	69.43
21-Oct-94	06:46 AM	0.00	68.12	5.87	66.07
21-Oct-94	06:47 AM	0.05	67.60	5. 5 0	64,70
21-0-4-94	06:48 AM	0.05	O7.0U	0.00	

Dum 3		THC	NOX	СО	SO2
Run 3		Value	Value	Value	Value
Date	Time	(ppm)	(ppm) =======	(ppm)	(ppm
=======	=======================================	0.12	99.42	10.90	66.87
23-Oct-94	11:03 AM	0.12	102.70	10.70	66.10
23-Oct-94	11:04 AM		104.65	10.90	67.07
23-Oct-94	11:05 AM	0.10	106.47	11.50	69.13
23-Oct-94	11:06 AM	0.12 0.10	115.07	11.23	70.40
23-Oct-94	11:07 AM	0.10	114.60	11.73	72.07
23-Oct-94	11:08 AM		121.90	11.73	72.83
23-Oct-94	11:09 AM	0.10	126.85	11.57	71.87
23-Oct-94	11:10 AM	0.12	132.68	11.17	70.3 3
23-Oct-94	11:11 AM	0.15	143.87	11.07	68.57
23-Oct-94	11:12 AM	0.13	142.53	11.43	68:07
23-Oct-94	11:13 AM	0.12	167.08	10.47	67.93
23-Oct-94	11:14 AM	0.18	156.48	9.97	68.3 3
23-Oct-94	11:15 AM	0.13	142.63	9.80	69.60
23-Oct-94	11:16 AM	0.10	144.98	10.40	71.10
23-Oct-94	11:17 AM	0.15	159.35	10.10	71.90
23-Oct-94	11:18 AM	0.17	147.17	9.97	72.40
23-Oct-94	11:19 AM	0.15	142.68	10.17	71.97
23-Oct-94	11:20 AM	0.12	150.50	10.00	71.83
23-Oct-94	11:21 AM	0.10	147.65	9.63	71:17
23-Oct-94	11:22 AM	0.10	139.50	9.83	71.30
23-Oct-94	11:23 AM	0.12	138.70	10.10	71.53
23-Oct-94	11:24 AM	0.17	154.12	9.47	70.70
23-Oct-94	11:25 AM	0.20	146.97	9.93	70.67
23-Oct-94	11:26 AM	0.18	151.67	9.63	70.87
23-Oct-94	11:27 AM	0.17	150.02	9.13	71.77
23-Oct-94	11:28 AM	0.17	136.53	8.70	72.20
23-Oct-94	11:29 AM	0.13	129.38	8.57	72.30
23-Oct-94	11:30 AM	0.17	125.52	8.90	73.23
23-Oct-94	11:31 AM	0.12	129.18	8.57	72.77
23-Oct-94	11:32 AM	0.15	129.75	8.67	72.67
23-Oct-94	11:33 AM	0.03	131.03	8.53	72.30
23-Oct-94	11:34 AM	-0.18 0.43	132.72	8.73	72.97
23-Oct-94	11:35 AM	-0.13	139.68	9.30	72.07
23-Oct-94	11:36 AM	-0.12 -0.10	129.85	8.47	72 .2 7
23-Oct-94	11:37 AM	-0.10 -0.10	124.53	8.60	72.67
23-Oct-94	11:38 AM	-0.10 -0.10	124.03	8.80	73.20
23-Oct-94	11:39 AM	-0.10 -0.10	128.92	8.47	73.37
23-Oct-94	11:40 AM	-0.12	124.53	9. 0 0	72.13
23-Oct-94	11:41 AM	-0.17	132.35	8.93	70.83
23-Oct-94	11:42 AM	-0.17 -0.17	153.15	8.77	71.10
23-Oct-94	11:43 AM	-0.17 -0.18	140.15	8.67	71.37
23-Oct-94	11:44 AM	-0.10 -0.10	141.07	9.90	71.93
23-Oct-94	11:45 AM	-0.13	180.02	9.27	73.63
23-Oct-94	11:46 AM	-0.10	176.87	8.57	74.70
23-Oct-94	11:47 AM	20. 3 5	150.30	8.83	74.73
23-Oct-94	11:48 AM	26. 3 3	146.70	8.77	75.10
23-Oct-94	11:49 AM	21.78	159.48	8.43	74.37
23-Oct-94	11:50 AM	32. 5 8	155.83	8.17	72.80
23-Oct-94	11:51 AM	2.73	144.85	8.10	71.40
23-Oct-94	11:52 AM	18.50	142.68	9.17	71.87
23-Oct-94	11:53 AM	19.00			

Run 3 (continued)		THC	NOX	CO	SO2 Value
(10110 (0011011000)		Value	Value	Value	(ppm
Date	Time	(ppm)	(ppm) =======	(ppm)	******
22 04 04	11:54 AM	25.97	169.67	9.00	71.57
23-Oct-94	11:55 AM	20.42	173.30	9.17	71.87
23-Oct-94 23-Oct-94	11:56 AM	2.43	177.80	9.20	71.50
23-Oct-94	11:57 AM	12.85	175.97	8.70	71.87
23-Oct-94	11:58 AM	11.28	174.03	9.57	71.90
23-Oct-94	11:59 AM	18.48	197.23	8.87	71.A7
23-0ci-94	12:00 PM	0.45	179.80	8.80	71.87
23-Oct-94	12:01 PM	21.28	159.63	9.07	72.77
23-Oct-94	12:02 PM	38.05	149.85	8.73	73.10 72.77
23-Oct-94	12:03 PM	8.63	140.85	8.53	72:57
23-Oct-94	12:04 PM	1.40	143.00	8.80	71.97 ⁻
23-Oct-94	12:05 PM	-0.10	162.95	8.60	
23-Oct-94	12:06 PM	-0.15	172.18	8.80	69.40
23-0ct-94	12:07 PM	-0.12	189.43	8.30	69.23
23-0ct-94	12:08 PM	9.27	177.97	7.93	69.93
23-Oct-94 23-Oct-94	12:09 PM	0.70	156.32	8.47	70.17
23-Oct-94 23-Oct-94	12:10 PM	2.10	160.60	8.33	69.83
23-Oct-94 23-Oct-94	12:11 PM	5.38	168.70	8.07	70.17
23-Oct-94 23-Oct-94	12:12 PM	-0.17	150.28	8.30	70.07
23-Oct-94 23-Oct-94	12:13 PM	-0.13	151.93	9.63	70.43
23-Oct-94	12:14 PM	3.72	203.53	8.47	70.77
23-Oct-94	12:15 PM	16.68	187.42	9.00	71.13 72.10
23-Oct-94	12:16 PM	5. 92	196.72	8.27	73:23
23-Oct-94	12:17 PM	0.72	158.12	8.40	73.77
23-Oct-94	12:18 PM	0.02	146.35	8.63	73.87
23-Oct-94	12:19 PM	-0.50	146.83	8.80	72.93
23-Oct-94	12:20 PM	36.43	152.82	8. 37 8. 9 0	70.83
23-Oct-94	12:21 PM	2.53	152.27	8.10	69.87
23-Oct-94	12:22 PM	3.45	188.95	8.47	69.83
23-Oct-94	12:23 PM	-0. 0 3	159.93	8.53	69.23
23-Oct-94	12:24 PM	-1.60	164.62	8.23	69.87
23-Oct-94	12:25 PM	-0.17	166.68	8.13	71.07
23-Oct-94	12:26 PM	-0.12	154.23 138.53	8. 33	71.47
23-Oct-94	12:27 PM	-0.10	156.97	9.40	71.50
23-Oct-94	12:28 PM	-0.13	196.58	8.57	72.47
23-Oct-94	12:29 PM	-0.10	171.37	8.13	72.2 0
23-Oct-94	12:30 PM	-0.13	155.62	7.87	70.57
23-Oct-94	12:31 PM	14.65	138.65	8.07	67.97
23-Oct-94	12:32 PM	-0.17 -0.15	143.48	7.97	66.97
23-Oct-94	12:33 PM	-0.15 -0.12	159.82	8.13	68.97
23-Oct-94	12:34 PM	8.25	158.63	8.17	70. 2 3
23-Oct-94	12:35 PM	1.47	158.80	8.30	71.67
23-Oct-94	12:36 PM	10.28	162.62	8.13	71.47
23-Oct-94	12:37 PM	-0.17	139.80	8.17	71.93
23-Oct-94	12:38 PM	-0.10	135.52	8.67	73.20
23-Oct-94	12:39 PM 12:40 PM	24. 9 2	158.97	8.27	72.70
23-Oct-94	12:40 PM 12:41 PM	5. 65	152.32	7.93	70.50
23-Oct-94	12:41 PM 12:42 PM	-0.17	142.97	8.07	69.43
23-Oct-94	12:42 PM	10.23	146.67	8.33	69.80
23-Oct-94	12:43 PM 12:44 PM	-0.08	163.23	8.67	69.00
23-Oct-94	16.74 F 141	••			

Run 3 (continued)			NOX	CO Value	SO2 Value
		Value	Value		(ppm
Date	Time	(ppm) ========	(ppm) =======	(p p m)	Separate Colorin
23-Oct-94	12:45 PM	0.08	191.25	8.10	69.27 70.47
23-Oct-94	12:46 PM	5.78	185.58	9.33	
23-Oct-94	12:47 PM	1.60	218.32	8.13	71 .6 7 72.43
23-Oct-94	12:48 PM	16.58	167.73	8.27	72. 9 0
23-Oct-94	12:49 PM	-0.07	150.12	8.90	72:10
23-Oct-94	12:50 PM	-0.10	181.10	8.67	70.10
23-Oct-94	12:51 PM	-0.10	178.97	8.10	69:13
23-Oct-94	12:52 PM	-0.12	156.13	7.80	68.33
23-Oct-94	12:53 PM	9.20	139.30	8.67	68.37
23-Oct-94	12:54 PM	0.43	164.73	8.40	69.17
23-Oct-94	12:55 PM	12.60	170.50	9.00	70.90
23-Oct-94	12:56 PM	13.15	198.57	8.93	72.83
23-Oct-94	12:57 PM	23.5 5	191.23	8.53	73.50
23-Oct-94	12:58 PM	6.42	174.80	8.47	74.17
23-Oct-94	12:59 PM	80.0	152.78	8.70 8.77	72.57
23-Oct-94	01:00 PM	0.08	157.90	8.87	69. 9 7
23-Oct-94	01:01 PM	0.08	191.37	9.27	69.10
23-Oct-94	01:02 PM	0.12	249.22	8.23	68.3 3
23-Oct-94	01:03 PM	0.10	210.92	8.17	67.9 7
23-Oct-94	01:04 PM	0.10	204.03	7.90 7.87	68.53
23-Oct-94	01:05 PM	0.10	208.67	7. 87 9.13	71.07
23-Oct-94	01: 0 6 PM	0,10	192.63		73:10
23-Oct-94	01:07 PM	0.12	249.72	8. 63 9. 60	72.93
23-Oct-94	01:08 PM	0.08	240.35	9.57	72.83
23-Oct-94	01:09 PM	0.08	262.45	9.40	71:13
23-Oct-94	01:10 PM	0.10	294.58	7. 7 0	67.90
23-Oct-94	01:11 PM	0.15	317.98	8.00	67.40
23-Oct-94	01:12 PM	0.15	259.65	8.27	68.50
23-Oct-94	01:13 PM	0.10	243.77	6.90	66.50
23-Oct-94	01:14 PM	0.12	246.93 245.45	6. 97	67.30
23-Oct-94	01:15 PM	0.10	215.45 191.35	6.50	69.07
23-Oct-94	01:16 PM	0.10	171.23	6.60	70.23
23-Oct-94	01:17 PM	0.10	157.83	6.80	71.17
23-Oct-94	01:18 PM	0.10	148.72	6.50	71 <i>.</i> 27
23-Oct-94	01:19 PM	0.08 0.07	138.77	6.30	70.57
23-Oct-94	01:20 PM	0.08	138.23	6.17	68.80
23-Oct-94	01:21 PM	0.10	149.85	5.97	68.03
23-Oct-94	01:22 PM	0.10	151.90	6.20	67.40
23-Oct-94	01:23 PM	0.08	141.72	5.63	67.2 7
23-Oct-94	01:24 PM	0.08	131.28	5. 63	67.40
23-Oct-94	01:25 PM	0.07	126.53	5.97	70.00
23-Oct-94	01:26 PM	0.08	138.28	5.87	71:77
23-Oct-94	01:27 PM	0.12	138.08	5. 93	72.60
23-Oct-94	01:28 PM	0.08	128.43	6.03	72.67
23-Oct-94	01:29 PM	0.03	123.93	6.60	72.37
23-Oct-94	01:30 PM	0.05	122.00	8.07	70.07
23-Oct-94	01:31 PM	0.03	135.88	8. 47	√ 68.60
23-Oct-94	01:32 PM	0.03	142.33	8.10	67 .7 0
23-Oct-94	01:33 PM	0.00			

• - 4		THC	NOX	CO	SO2
Run 4	•	Value	Value	Value	Value
Date	Time	(ppm)	(ppm)	(ppm)	(bbw
=======================================	=======================================	2222222	74.62	9.63	65.30
24-Oct-94	02:48 AM	0.35	72.15	9.37	66.03
24-Oct-94	02:49 AM	0.28	74.93	9.30	65.73
24-Oct-94	02:50 AM	0.22	75.60	9.40	66.17
24-Oct-94	02:51 AM	. 0.18	75.77	9.47	68.93
24-Oct-94	02:52 AM	0.15	75.97	9.53	68.23
24-Oct-94	02:53 AM	0.13 0. 22	74.58	9.73	69.50
24-0ct-94	02:54 AM	0.20	74.53	9.57	69.13
24-Oct-94	02:55 AM	0.18	73.98	9.70	00.93
24-Oct-94	02:56 AM		73.70	9.40	66:07
24-Oct-94	02:57 AM	0.18	73.82	9.13	64.87
24-Oct-94	02:58 AM	0.12	75.10	9.07	63.27
24-Oct-94	02:59 AM	0.17	75.75	9.30	63.23
24-Oct-94	03:00 AM	0.10	77.10	9.47	63.33
24-Oct-94	03:01 AM	0.25	76.93	9.77	65.87
24-Oct-94	03:02 AM	0.22	76.93 77.48	9.67	66.97
24-Oct-94	03:03 AM	0.17	76. 9 5	9.53	66.50
24-Oct-94	03:04 AM	0.13	76. 8 5 75.77	9.60	68.47
24-Oct-94	03:05 AM	0.08	74.78	9.30	67.20
24-Oct-94	03:06 AM	0.10	74.76 75. 6 0	8.73	64.10
24-Oct-94	03:07 AM	0.08	75.80 74.95	8.67	63.40
24-Oct-94	03:08 AM	0.10	74.83 75.22	8.90	65.37
24-Oct-94	03:09 AM	0.07	77.88	8.87	65.47
24-Oct-94	03:10 AM	0.00	77.66 78.98	9.03	65.80
24-Oct-94	03:11 AM	0.02	78. 5 3	9.50	69.93
24-Oct-94	03:12 AM	-0.07	80.23	9.57	71.70
24-Oct-94	03:13 AM	-0.03	79.33	9.63	71.80
24-Oct-94	03:14 AM	-0.05	77.08	9.73	73.13
24-Oct-94	03:15 AM	-0.07	77.60	9.60	72.83
24-Oct-94	03:16 AM	-0.08	77.45	9.60	69.43
24-Oct-94	03:17 AM	0.02	77.10	9.40	67.47
24-Oct-94	03:18 AM	0.02	78.50	9.30	68.37
24-Oct-94	03:19 AM	-0.03 0.07	79.35	9.20	65.70
24-Oct-94	03:20 AM	-0.07 0.02	79.00	9.30	68.57
24-Oct-94	03:21 AM	-0. 03	80.60	9.60	69.40
24-Oct-94	03:22 AM	-0.03 -0.03	80.60	9.80	71.67
24-Oct-94	03:23 AM	-0.03 -0.07	80.07	9.83	72.63
24-Oct-94	03:24 AM	-0.07	79.38	9.60	73.03
24-Oct-94	03:25 AM	-0.05 -0.05	78.48	9.37	72.60
24-Oct-94	03:26 AM	-0.02	78.35	8.80	67.63
24-Oct-94	03:27 AM	-0.10	75.73	8.77	64.37
24-Oct-94	03:28 AM	-0.08	75.07	9.07	66.10
24-Oct-94	03:29 AM	-0.10	78.85	9.03	67.20
24-Oct-94	03:30 AM	-0.12	80.58	9.00	67.93
24-Oct-94	03:31 AM	-0.07	80.60	9.67	70.00 70.97
24-Oct-94	03:32 AM 03:33 AM	-0.07	80.60	9.77	70.97
24-Oct-94	03:33 AM 03:34 AM	-0.08	79. 52	9.90	71.57
24-Oct-94		-0.12	78.47	9.83	71.60
24-Oct-94	03:35 AM	-0.12	77.60	9.70	71.00
24-Oct-94	03:36 AM	-0.13	77.43	9.50	69.03
24-Oct-94	03:37 AM 03:38 AM	-0.12	76. 9 3	9.33	67.17
24-Oct-94	1817 OC.CO	J. 72			

		THC	NOX	co	SO2	
Run 4 (continued)		Value	Value	Value	Value	
Date	Time	(ppm)	(ppm)	(ppm)	(ppm	
	\$2202222	22222222	2222222	9.27	66.23	
24-Oct-94	03:39 AM	-0.12	76.55	9.30	66.47	
24-Oct-94	03:40 AM	-0.08	77.60	9.30	66.57	
24-Oct-94	03:41 AM	-0.10	78.18	9.67	68.10	
24-Oct-94	03:42 AM	-0.05	78.50	9.60	69.80	
24-Oct-94	03:43 AM	-0.10	78.35	9.53	71.00	
24-Oct-94	03:44 AM	-0.05	77.62	9.53	71.03	
24-Oct-94	03:45 AM	-0.10	77.62	9.70	70.97	
24-Oct-94	03:46 AM	-0.10	76.77 76.03	9.43	69.10	
24-Oct-94	03:47 AM	-0.07	76.93	9.07	67.13	
24-Oct-94	03:48 AM	-0.07	76.60 76.27	8.83	65.03	
24-Oct-94	03:49 AM	-0.08	76 .2 7 75.60	8.87	63.83	
24-Oct-94	03:50 AM	-0.10	75.93	9.37	65.80	
24-Oct-94	03:51 AM	-0.10	78.35	9.70	68.17	
24-Oct-94	03:52 AM	-0.10	79. 0 5	9.63	70.40	
24-Oct-94	03:53 AM	-0.10	79.05 78.37	9.70	71.17	
24-Oct-94	03:54 AM	-0.08	77.60	9.57	71.07	
24-Oct-94	03:55 AM	-0.10	77.80 77.80	9.63	70.60	
24-Oct-94	03:56 AM	-0.10	77.80 78.20	9.37	67.80	
24-Oct-94	03:57 AM	-0.10	77.62	9.07	63.33	
24-Oct-94	03:58 AM	-0.10	78.18	8.97	64.63	
24-Oct-94	03:59 AM	-0.15	78. 5 0	8.77	65.73	
24-Oct-94	04:00 AM	-0.13	78.35	8.90	65.97	
24-Oct-94	04:01 AM	-0.10	78. 3 5	9.10	67.37	
24-Oct-94	04:02 AM	-0.12	78. 8 7	9.00	69,60	
24-Oct-94	04:03 AM	-0.13	78. 8 7	9.13	70.67	
24-Oct-94	04:04 AM	-0.18 -0.18	78.07	9.03	71:20	
24-Oct-94	04:05 AM	-0.18	77.65	9.03	71.57	
24-Oct-94	04: 0 6 AM	-0.17	77.62	8.63	69.30	
24-Oct-94	04:07 AM	-0.10	77.63	8. 37	67.33	
24-Oct-94	04:08 AM	-0.15	78.07	8.50	68.67	
24-Oct-94	04:09 AM	-0.13	79.03	8.70	66.57	
24-Oct-94	04:10 AM 04:11 AM	-0.10	79.55	8.77	66.03	
24-Oct-94	04:12 AM	-0.13	79.53	9.20	68.03	
24-Oct-94	04:13 AM	-0.17	79.53	9.37	70.77	
24-Oct-94	04:14 AM	-0.17	79.00	9.60	71.90	
24-Oct-94	04:15 AM	-0.15	77. 7 7	9.47	72. 2 7	
24-Oct-94 24-Oct-94	04:16 AM	-0.18	77.10	9.50	72.67 70.03	
24-Oct-94	04:17 AM	-0.18	77.60	8.87	67.53	
24-Oct-94	04:18 AM	-0.13	76. 6 0	8.40	68.27	
24-Oct-94	04:19 AM	-0.17	<i>77.</i> 73	8.23	65.30	
24-Oct-94	04:20 AM	-0.20	79.05	8.17	65.20	
24-Oct-94	04:21 AM	-0.22	79.03	8.23	68. 0 3	
24-Oct-94	04:22 AM	-0.23	79.02	8.43 8.43	70.17	
24-Oct-94	04:23 AM	-0.25	80.25	8.43 8.67	71.03	
24-Oct-94	04:24 AM	-0.23	79.37	8.70	71.63	
24-Oct-94	04:25 AM	-0.23	78.50	8.73	71.73	
24-Oct-94	04:26 AM	-0.28	78.50	8. 3 7	70.30	
24-Oct-94	04:27 AM	-0.23	77.75	8. 5 0	68. 9 7	
24-Oct-94	04:28 AM	-0.28	78.20	8.43	68.20	
24-Oct-94	04:29 AM	-0.23	78.85	0.43		

F	Run 4 (continued)		THC NOX Value Value	NOX Value	CO Value	SO2 Value	
	Date	Time	(ppm)	(ppm)	(ppm)	(ppm	
	SENS:222	5253#EUE#	0.20	78.85	8.37	67.50	
	24-Oct-94	04:30 AM	-0.20	78.50	8.57	68.33	
	24-Oct-94	04:31 AM	-0.27		8.57	68.77	
	24-Oct-94	04:32 AM	-0.30	79.55	8.73	69.30	
	24-Oct-94	04:33 AM	-0.25	79.57		70.43	
	24-Oct-94	04:34 AM	-0.30	79.57	8.70		
	24-Oct-94	04:35 AM	-0.25	79.40	8.47	71.13	
		04:36 AM	-0.30	78.50	8.37	71.30	
	24-Oct-94	•	-0.30	78.50	8.43	71.70	
	24-Oct-94	04:37 AM		78.50	8.30	71.77	
	24-Oct-94	04:38 AM	-0.28	78.50	8.43	71.17	
	24-Oct-94	04:39 AM	-0.30		8.27	70.30	
	24-04-04	04:40 AM	-0.30	77.92	0.21	, 0.25	

Run 5		THC	NOX Value	CO Value	SO2 Value
	Tone	Value (ppm)	(ppm)	(ppm)	(ppm
Date	Time	======================================	2222222	2222222	22222
26-Oct-94	12:07 PM	0.40	164.93	9.53	53.57 54.17
26-Oct-94	12:08 PM	0.38	157.35	9. 40 9.13	53.73
26-Oct-94	12:09 PM	0.40	148.18	9.13 9.00	53.57
26-Oct-94	12:10 PM	0.38	143.20	9.00 9.17	53. 8 3
26-Oct-94	12:11 PM	0.38	140.52	9.17 9.20	53.47
26-Oct-94	12:12 PM	0.38	146.52	9.20 9.17	53.77
26-Oct-94	12:13 PM	0.37	142.17	9.27	54,40
26-Oct-94	12:14 PM	0.33	146.27	9.67	54.93
26-Oct-94	12:15 PM	0.40	170.68	9.10	55300
26-Oct-94	12:16 PM	0.40	171.52	8. 93	54,97
26-Oct-94	12:17 PM	0.35	155.00	8. 9 3	55.67
26-Oct-94	12:18 PM	0.37	152.02	8.77	55.77
26-Oct-94	12:19 PM	0.30	146.03	9.07	56.20
26-Oct-94	12:20 PM	0.33	144.17	10.73	56.57
26-Oct-94	12:21 PM	0.40	173.50	9.57	57.00
26-Oct-94	12:22 PM	0.37	221.40	9.13	56.70
26-Oct-94	12:23 PM	0.32	175.15	9. 83	58.23
26-Oct-94	12:24 PM	0.30	156.82	9. 87	55.50
26-Oct-94	12:25 PM	0.35	215.95	9.40	55.73
26-Oct-94	12:26 PM	0.30	185.62	9.07	56.07
26-Oct-94	12:27 PM	0.30	174.00	8.93	56.23
26-Oct-94	12:28 PM	0.30	153.77	8.97	56713
26-Oct-94	12:29 PM	0.30	146.00	9.10	56.33
26-Oct-94	12:30 PM	0.30	157.12	8.77	56.50
26-Oct-94	12:31 PM	0.30	149.95	9.17	56.23
26-Oct-94	12:32 PM	0.30	143.68	9.27	55.57
26-Oct-94	12:33 PM	0.32	177.98	8. 97	54.03
26-Oct-94	12:34 PM	0.32	159.93	9.40	54.83
26-Oct-94	12:35 PM	0.30	153.30	9.07	55.83
26-Oct-94	12:36 PM	0.33	180.43 156.63	9.47	56.00
26-Oct-94	12:37 PM	0.32	184.43	10.10	56.23
26-Oct-94	12:38 PM	0.35	250.63	9.90	56.17
26-Oct-94	12:39 PM	0.40	230.63 221.68	9.33	56.50
26-Oct-94	12:40 PM	0.35	208.02	9.07	56.57
26-Oct-94	12:41 PM	0.32	174.48	8.87	56.67
26-Oct-94	12:42 PM	0.32	179.62	9.23	56.9 0
26-Oct-94	12:43 PM	0.37	175.98	8.57	56.50
26-Oct-94	12:44 PM	0.30 0.30	153.90	8.63	58.47
26-Oct-94	12:45 PM	0.30	161.90	9.37	57.10
26-Oct-94	12:46 PM	0.30 0. 3 3	190.27	9.10	57.17
26-Oct-94	12:47 PM	0.35 0.35	176.98	9.27	57.0 0
26-Oct-94	12:48 PM	0.35 0.35	185.92	9.50	57.6 0
26-Oct-94	12:49 PM	0.35	183.47	9.10	57.8 7
26-Oct-94	12:50 PM	0.35 0.35	180.18	9.27	57.13
26-Oct-94	12:51 PM	0.33	163.90	8.90	57.07
26-Oct-94	12:52 PM	0.33	161.40	9.63	57.73
26-Oct-94	12:53 PM	0.38	203.22	10.20	. 58.23
26-Oct-94	12:54 PM	0.47	375.02	10.13	58.33
26-Oct-94	12:55 PM	0.40	212.45	9.67	57.93
26-Oct-94	12:56 PM 12:57 PM	0.40	204.97	10.03	58.40
26-Oct-94	12.37 FW	U. 1U			

		THC	NOX	CO	SO2
Run 5 (continued)		Value	Value	Value	Value
Da∷	Time	(ppm)	(ppm)	(ppm)	(ppm
	======================================	*******	22222222	222222	59.03
26-Oct-94	12:58 PM	0.40	197.22	9.60	58. 9 3
26-Oct-94	12:59 PM	0.38	183.38	9.40	59. 5 3
26-Oct-94	01:00 PM	0.40	170.47	10.03	59. 5 7
26-Oct-94	01:01 PM	0.48	218.97	10.40	5 9.9 0
26-Oct-94	01:02 PM	0.42	228.75	10.33	59.13
26-Oct-94	01:03 PM	0.42	229.35	10.03	58.27
26-Oct-94	01:04 PM	0.43	229.53	9.33	58.87
26-Oct-94	01:05 PM	0.42	189.38	9.53 9.33	57.A7
26-Oct-94	01:06 PM	0.40	184.40		58.50
26-Oct-94	01:07 PM	0.40	175.67	9.13	58.73
26-Oct-94	01:08 PM	0.38	155.78	9.27	59.33
26-Oct-94	01:09 PM	0.40	163.77	9.20	59.83
26-Oct-94	01:10 PM	0.40	160.08	9.53	60.37
26-Oct-94	01:11 PM	0.40	168.02	9.17	
26-Oct-94 26-Oct-94	01:12 PM	0.40	150.97	8.93	60.37
26-Oct-94 26-Oct-94	01:12 PM	0.40	143.45	9.33	60.43
26-Oct-94 26-Oct-94	01:14 PM	0.43	163.25	9.63	60.17
26-Oct-94 26-Oct-94	01:15 PM	0.48	187.42	9.30	58. 3 0 57.80
26-0ct-94	01:16 PM	0.45	168.87	8.93	57.83
26-Oct-94	01:17 PM	0.43	147.45	9.03	57.80
26-Oct-94	01:18 PM	0.43	138.70	9.00	58.47
26-Oct-94	01:19 PM	0.40	145.67	9.10	59. 3 3
26-Oct-94	01:20 PM	0.47	141.15	9.50	59.5 3
26-Oct-94	01:21 PM	0.50	175.32	9.40	58.47
26-Oct-94	01:22 PM	0.47	151.62	9.43	58.90
26-Oct-94	01:23 PM	0.52	184.20	10.43	58.63
26-Oct-94	01:24 PM	0.50	187.08	9.93	57. 9 0
26-Oct-94	01:25 Pil	0.50	218.52	9.77	57.77
26-Oct-94	01:26 PM	0.47	195.68	9.63	54.63
26-Oct-94	01:27 PM	0.48	205.60	9.47	56.13
26-Oct-94	01:28 PM	0.50	189.73	9.70 9.83	57.57
26-Oct-94	01:29 PM	0.50	186.60	9.27	57.9 0
26-Oct-94	01:30 PM	0.58	219.42	8. 80	57.77
26-Oct-94	01:31 PM	0.60	184.73	8. 83	57.73
26-Oct-94	01:32 PM	0.60	160.93	8. 83	57.90
26-Oct-94	01:33 PM	0.65	169.88	9.07	58.40
26-Oct: 94	01:34 PM	0.62	169.98	9.07	59.00
26-Oct-94	01:35 PM	0.67	187.28	8. 53	58.47
26-Oct-94	01:36 PM	0.62	203.68	8. 3 0	58.33
26-Oct-94	01:37 PM	0.62	169.37	8.13	58.77
26-Oct-94	01:38 PM	0.53	150.62	8.83	59.37
26-Oct-94	01:39 PM	0.57	146.32	9.10	60.33
26-Oct-94	01:40 PM	0.52	175. 0 0 227.38	9.47	61.20
26-Oct-94	01:41 PM	0.53	227.36 2 35 .45	9.57	61.47
26-Oct-94	01:42 PM	0.53	233.45 272.60	9.30	61.27
26-Oct-94	01:43 PM	0.53	272.80	8.57	60.53
26-Oct-94	01:44 PM	0.50	230.80 181.93	8.30	58.37
26-Oct-94	01:45 PM	0.50	180.43	8.13	56.77
26-Oct-94	01:46 PM	0.48	212.40	8.43	55.87
26-Oct-94	01:47 PM	0.50	174.63	9.03	56.17
26-Oct-94	01:48 PM	0.48	114.03		

Rur	s 5 (continued)		THC	NOX Value	CO Value	SO2 Value
	Date	Time	Value (ppm)	(ppm)	(ppm)	(ppm
, :		=======================================	=======================================	257.80	9.07	56.90
•	26-Oct-94	01:49 PM	0.52	249.18	9.60	58.43
	26-Oct-94	01:50 PM	0.52	235.40	9.63	58.73
	26-Oct-94	01:51 PM	0.48	274.05	10.03	59.77
	26-Oct-94	01:52 PM	0.50	275.03	9.97	60.77
	26-Oct-94	01:53 PM	0.50	238.55	8.90	60.47
	26-Oct-94	01:54 PM	0.45	218.23	9.43	58.73
	26-Oct-94	01:55 PM	0.43	254.20	9.70	57.6 0
	26-Oct-94	01:56 PM	0.48	265.23	9.77	57.17
	26-Oct-94	01:57 PM	0.50	284.15	10.27	56.90
	26-Oct-94	01:58 PM	0.55	321.13	9.63	55.53
	26-Oct-94	01:59 PM	0.57	270.25	9.83	57.0 0
	26-Oct-94	02:00 PM	0.50	270.73	9.33	:57.87
	26-Oct-94	02:01 PM	0.48	229.63	9.23	58.30
	26-Oct-94	02:02 PM	0.52	235.48	10.07	58.90
	26-Oct-94	02:03 PM	0.50	269.43	8.97	58.77
	26-Oct-94	02:04 PM	0.50	230.03	9.83	57.67
	26-Oct-94	02:05 PM	0.47	283.48	8.87	57.17
	26-Oct-94	02:06 PM	0.50	213.28	9.60	56.57
	26-Oct-94	02:07 PM	0.45	26 8.9 8	9.30	55.30
	26-Oct-94	02:08 PM	0.52	235.20	8.57	58.2 3
	26-Oct-94	02:09 PM	0.47	197.20	9.73	57.43
	26-Oct-94	02:10 PM	0.45	221.62	8.77	57.7 7
	26-Oct-94	02:11 PM	0.42	193.92	8.90	58.00
	26-Oct-94	02:12 PM	0.40	194.67	9.17	58.00
	26-Oct-94	02:13 PM	0.40	207.13	7.90	57.57
	26-Oct-94	02:14 PM	0.38	160.42	7.40	56.13
	26-Oct-94	02:15 PM	0.38	142.47	7.30	55.27
	26-Oct-94	02:16 PM	0.40	135.97	7.17	54.67
	26-Oct-94	02:17 PM	0.40	138.32	7.23	54.53
	26-Oct-94	02:18 PM	0.42 0.40	139.97	7.63	54.73
	26-Oct-94	02:19 PM	0.40	97.00	7.83	55.8 3
	26-Oct-94	02:20 PM	0.35 0.40	142.68	7. 57	57.30
	26-Oct-94	02:21 PM	0.40	154.38	8.20	58.17
	26-Oct-94	02:22 PM	0.40	154.10	7.90	58.70
	26-Oct-94	02:23 PM	0.40	139.00	7.50	58.40
	26-Oct-94	02:24 PM	0.38	130.97	7.10	57.53
	26-Oct-94	02:25 PM	0.32	130.18	7.03	57.20
	26-Oct-94	02:26 PM	0.37	142.28	7.57	58.83
	26-Oct-94	02:27 PM	0.40	163.68	7.17	55.67
	26-Oct-94	02:28 PM	0.40	139.45	7.13	55.37
	26-Oct-94	02:29 PM	0.40	131.48	7.23	56.70
	26-Oct-94	02:30 PM	0.43	134.15	7.47	57.57
	26-Oct-94	02:31 PM	0.42	130.97	7.27	57.70
	26-Oct-94	02:32 PM	0.42	124.62	7.13	57.13
	26-Oct-94	02:33 PM	9. 43	161.88	7.93	56.00
	26-Oct-94	02:34 PM	0.37	149.10	7.33	54.77
	26-Oct-94	02:35 PM	0.40	130.15	7.27	54.93
	26-Oct-94	02:36 PM	0.38	121.72	7.23	55.13
	26-Oct-94	02:37 PM	0.35	118.63	7 .27	55.43
	26-Oct-94	02:38 PM	0.32	120.55	7.37	55.23
	26-Oct-94	02:39 PM	U.J£			

Run 5 (continued)	Time	THC Value (ppm)	NOX Value (ppm)	CO Value (ppm)	SO2 Value (ppm
Date	Time 02:40 PM 02:41 PM 02:42 PM 02:43 PM 02:44 PM 02:45 PM 02:45 PM 02:46 PM 02:47 PM 02:48 PM 02:49 PM 02:50 PM 02:51 PM 02:51 PM 02:52 PM 02:53 PM 02:54 PM 02:55 PM 02:55 PM 02:57 PM	(ppm) 0.30 0.30 0.30 0.28 0.23 0.25 0.20 0.22 0.28 0.28 0.20 0.10 0.10 0.10 0.11 0.13 0.17 0.10	122.87 117.70 136.98 128.18 119.00 115.03 113.80 112.60 163.78 184.77 159.12 137.87 123.20 112.73 127.30 163.13 194.67 146.37	(ppm)	(ppm 54.13 53.80 53.73 53.83 54.07 56.57 58.10 54.17 53.67 54.00 54.83 55.43 55.43 55.60 55.60 55.63 55.50
26-Oct-94 26-Oct-94 26-Oct-94 26-Oct-94	02:58 PM 02:59 PM 03:00 PM 03:01 PM	0.08 0.08 0.32 0.50	131.55 122.55 113.97 112.60	6.93 7.70 8.50	55.20 61.00 82.55

	•	THC	NOX	CO	SO2 ::
Run 6		Value	Value	Value	Value
Data	Time	(ppm)	(ppm)	(ppm)	(ppm
Date	1 H 11C	*****	*******	*******	
27-Oct-94	05:08 AM	0.20	77.65	9.53	45.77
27-Oct-94	05:09 AM	0.18	77.60	9.63	46.40
27-Oct-94	05:10 AM	0.23	76. 6 5	9.70	47,60
27-Oct-94	05:11 AM	0.20	76.50	9.67	48.37 48.83
27-Oct-94	05:12 AM	0 <i>.</i> 2 5	75.67	9.70	48.97 ⁻
27-Oct-94	05:13 AM	0.18	75.50	9.83	48.73
27-Oct-94	05:14 AM	0.18	75.15	9.80	47.73
27-Oct-94	05:15 AM	0 <i>2</i> 3	75.67	9.67	46.60
27-Oct-94	05:16 AM	0 <i>.</i> 27	76. 3 3	9.27	46.17
27-Oct-94	05:17 AM	0.22	76.33	9 <i>.</i> 23	46.43
27-Oct-94	05:18 AM	0.23	77.50	9.37	46.73
27-Oct-94	05:19 AM	0 <i>.</i> 27	77.17	9.50	47,40
27-Oct-94	05:20 AM	0.27	77.0 0	9.70	
27-Oct-94	0521 AM	0.22	76.47	9.60	48.07 48.23
27-Oct-94	05:22 AM	0.25	76 .3 3	9.67	48.57
27-Oct-94	0523 AM	0 <i>.</i> 2 3	76.33	9.63	49.13
27-Oct-94	05:24 AM	0.22	76.67	9.70	49.13 49.20
27-Oct-94	05:25 AM	0 <i>.</i> 2 7	76.67	9.70	49.20
27-Oct-94	05:26 AM	0.28	76.18	9.87	49.10
27-Oct-94	05:27 AM	0 <i>.</i> 27	76.32	10.10	49.23
27-Oct-94	05:28 AM	0.25	76.00	10.10	48.40
27-Oct-94	05:29 AM	0.27	75.47	10.03	48.70
27-Oct-94	05:30 AM	0.25	79.43	10.00	48.70
27-Oct-94	05:31 AM	0.32	79.62	10.03	48.60
27-Oct-94	05:32 AM	0.30	79.62	10.17	47.77
27-Oct-94	05:33 AM	0.28	79.63	10.03	47.30
27-Oct-94	05:34 AM	0.28	79.48	10.20	47.60
27-Oct-94	05:35 AM	0.30	79.62	10.20	47.93
27-Oct-94	05:36 AM	0.28	79.28	10.33	48.00
27-Oct-94	05:37 AM	J. 2 8	78.90	10 <i>.</i> 23 10.07	48.10
27-Oct-94	05:38 AM	0.27	78. 5 8	10.03	48.13
27-Oct-94	05:39 AM	0.30	78.90	9.97	47.97
27-Oct-94	05:40 AM	0.28	78.12	10.13	47.70
27-Oct-94	05:41 AM	0.30	77.65	9.97	47.67
27-Oct-94	05:42 AM	0.32	78.12	9.90	47,87
27-Oct-94	05:43 AM	0.30	77.95	9. 93	47.73
27-Oct-94	05:44 AM	0.28	77.32	10.10	47.63
27-Oct-94	05:45 AM	0.28	78.10	10.17	48.07
27-Oct-94	05:46 AM	0.30	77.95 78.58	10.23	48.20
27-Oct-94	05:47 AM	0.30	76.56 77.95	10.10	48.60
27-Oct-94	05:48 AM	0.28	77.67	9.87	48.17
27-Oct-94	05:49 AM	0.28	78.12	10.03	48.07
27-Oct-94	05:50 AM	0.25	78.12 78.28	10.00	48.03
27-Oct-94	05:51 AM	0.30	78.25	9.90	47.83
27-Oct-94	05:52 AM	0.25	76.23 77.80	10.10	47.77
27-Oct-94	05:53 AM	0.27	78.58	10.03	48.10
27-Oct-94	05:54 AM	0.30	77.80	10.00	48,30
27-Oct-94	05:55 AM	0.27	77.33	10.30	48.97
27-Oct-94	05:56 AM	0.28	11.00		

			NOX	CO	SO2
Run 6 (continued)		THC Value	Value	Value	Value
			(ppm)	(ppm)	(ppm
Date	Time	(ppm)	Annual and	********	2:200000
******	********	0.27	76.50	10.37	50.20
27-Oct-94	05:57 AM	0.27	75.98	10.30	50.87
27-Oct-94	05:58 AM	0.30	75.33	10.00	50.40
27-Oct-94	05:59 AM	0.30	76.22	9.80	48.50
27-Oct-94	06:00 AM	0.30	77.78	9.67	47.80
27-Oct-94	06:01 AM	0.30	77.95	9.57	47.33
27-Oct-94	06:02 AM	0.28	78. 2 5	9.53	47.37
27-Oct-94	.06:03 AM	0.28	78.58	9.63	47.70
27-Oct-94	06:04 AM	0.30	79.10	10.00	49.23
27-Oct-94	06:05 AM	0.28	77.98	10.10	50.07
27-Oct-94	MA 30:30	0.27	77.65	10.17	50.33
27-Oct-94	06:07 AM	0.30	77.35	10.13	50.60
27-0ct-94	MA 80:30	0.28	77.20	9.97	50.10
27-Oct-94	06:09 AM	0.28	77.18	9.97	49.20
27-Oct-94	06:10 AM	0.28	77.50	9. 9 3	48.50
27-Oct-94	06:11 AM		77.83	9.83	48.A7
27-Oct-94	06:12 AM	0.28	78.25	9.80	48.57
27-Oct-94	06:13 AM	0.30	78.58	9.77	48.63
27-Oct-94	06:14 AM	0.28	78. 2 5	10.00	49.10
27-Oct-94	06:15 AM	0.28	77. 9 5	10.00	49.63
27-Oct-94	06:16 AM	0.28 0.27	77.65	10.03	49.90
27-Oct-94	06:17 AM	0.27	76.32	10.00	50.03
27-Oct-94	06:18 AM	0.28	76.67	9. 9 0	49.60
27-Oct-94	06:19 AM	0.27	76.50	9.80	48.27
27-Oct-94	06:20 AM	0.25	77.48	9.50	47.70
27-Oct-94	0621 AM	0.28	77.78	9.70	48.00 48.07
27-Oct-94	06:22 AM 06:23 AM	0.22	78. 2 7	9.60	48.07 48.00
27-Oct-94	06:23 AM 06:24 AM	0.23	78.10	9.77	48.83
27-Oct-94	06:25 AM	0.27	78 .2 7	10.17	49.40
27-Oct-94	06:25 AM	0.22	77.00	10.07	49.17
27-Oct-94	06:27 AM	0.22	76.00	10.00	49.53
27-Oct-94	06:28 AM	0.23	76.50	9.97	49. 9 0
27-Oct-94	06:29 AM	0.23	75.83	9.83	48.07
27-Oct-94	06:30 AM	0.23	76. 0 2	9.60	46.97
27-Oct-94	06:30 AM 06:31 AM	0.25	77.52	9.37	46.50
27-Oct-94	06:32 AM	0.27	77.67	9.40	46.57
27-Oct-94	06:33 AM	0.25	78.42	9.53	46.73
27-Oct-94	06:34 AM	0.20	78.60	9.63	48.47
27-0ct-94	06:35 AM	0.30	78.60	9.80	49.23
27-Oct-94	06:36 AM	0.22	76.98	9.83	49.00
27-Oct-94	06:37 AM	0.20	76.15	9.57	48.27
27-Oct-94	06:38 AM	0.27	76.35	9.70	48.53
27-Oct-94	06:39 AM	0.23	76.48	9.63	47.50
27-Oct-94	06:40 AM	0.33	76.48	9.50	7,20
27-Oct-94	VO.TO MIT				

		710	NOX	co	SO2
Run 7		THC	Value	Value	Value
		Value (ppm)	(ppm)	(ppm)	(ppm
Date	Time	(ppm)	======================================	=========	ENERGY
222222	10:22 AM	0.08	98.93	12.50	47.83 47.83
29-Oct-94	10:23 AM	0.05	90.90	12.23	47.93
29-Oct-94	10:23 AM	0.05	88. 9 5	12.33	47.97
29-Oct-94 29-Oct-94	10:25 AM	0.03	90.07	12.13	48.00 47.73
29-Oct-94	10:26 AM	0.07	92.35	11.93	47.37
29-Oct-94	10:27 AM	0.08	96.72	12.27	47.70
29-Oct-94	10:28 AM	0.05	100.52	11.70	47.93
29-Oct-94	10:29 AM	0.08	101.83	11.40 11.33	47.87
29-Oct-94	10:30 AM	0.05	101.53	11.13	47.70
29-Oct-94	10:31 AM	0.08	103.72	11.40	48.03
29-Oct-94	10:32 AM	0.10	105.30	10.83	48.17
29-Oct-94	10:33 AM	0.08	108.20	10.97	48.50
29-Oct-94	10:34 AM	0.08	109.75	11.73	48.47
29-Oct-94	10:35 AM	0.17	134.78	10.73	48.40
29-Oct-94	10:36 AM	0.13	130.48	11.53	48.80
29-Oct-94	10:37 AM	0.17	127.72	14.37	48.43
29-Oct-94	10:38 AM	0.27	164.52	14.13	48.00
29-Oct-94	10:39 AM	0.30	184.38	13.00	48.00
29-Oct-94	10:40 AM	0.23	154.98	13.17	48.57
29-Oct-94	10:41 AM	0.23	175.45	12.47	48.80
29-Oct-94	10:42 AM	0.23	185.20	13.87	49.13
29-Oct-94	10:43 AM	0.33	209.10 219. 4 7	12.70	49.50
29-Oct-94	10:44 AM	0.33	190.05	11.87	49.90
29-Oct-94	10:45 AM	0.20	160.38	11.37	49.50
29-Oct-94	10:46 AM	0.12	148.12	10.97	49.13
29-Oct-94	10:47 AM	0.12	151.12	11.27	48.77
29-Oct-94	10:48 AM	0.18	151.95	11.07	48.77
29-Oct-94	10:49 AM	0.13	141.78	10.83	48.37
29-Oct-94	10:50 AM	0.12 0.13	150.75	11.67	48.10
29-Oct-94	10:51 AM	0.13	167.03	11.30	47.67
29-Oct-94	10:52 AM	0.17	145.25	10.87	47.60
29-Oct-94	10:53 AM	0.15	140.48	11.10	47.70
29-Oct-94	10:54 AM 10:55 AM	0.17	171.13	11.07	47.63
29-Oct-94	10:56 AM	0.13	154.23	10.43	48.50 48.63
29-Oct-94	10:57 AM	0.08	142.08	10.37	48.93 49.93
29-Oct-94 29-Oct-94	10:58 AM	0.10	137.50	10.10	50.23
29-Oct-94 29-Oct-94	10:59 AM	0.12	136.78	10.40	50.23 50.93
29-Oct-94	11:00 AM	0.15	152.75	10.30	50.87
29-Oct-94	11:01 AM	0.10	146.90	10.67	50.67
29-Oct-94	11:02 AM	0.12	157.62	10.33	50.83
29-Oct-94	11:03 AM	0.13	144.28	10.23 10.90	50.07
29-Oct-94	11:04 AM	80 .0	137.78	10.77	49.33
29-Oct-94	11:05 AM	0.08	131.28	11.57	48.83
29-Oct-94	11:06 AM	0.17	162.17	12.53	48.63
29-Oct-94	11:07 AM	0.13	172.33	11.80	48.87
29-Oct-94	11:08 AM	0.23	206.42	11.10	48.73
29-Oct-94	11:09 AM	0.20	162.53 149.93	10.60	48.60
29-Oct-94	11:10 AM	0.13	149.93 135.47	10.23	48.83
29-Oct-94	11:11 AM	0.12	135.13	10.27	48.87
29-Oct-94	11:12 AM	0.15	133.13		

n 7 (continued)		THC Value	NOX Value	CO Value	SO2 Value (ppm
Date	Time	(ppm) ========	(ppm)	(ppm)	SHEET.
	11:13 AM	0.10	130.77	10.10	48.60 48.47
29-Oct-94	11:14 AM	0.13	157.03	11.63	48.80
29-Oct-94	11:15 AM	0.18	199.27	10.73	48.83
29-Oct-94	11:16 AM	0.10	160.85	10.10	48.77
29-Oct-94	11:17 AM	0.10	141.98	10.40	48.90
29-Oct-94	11:17 AM 11:18 AM	0.18	192.67	11.17	48.70
29-Oct-94	11:19 AM	0.10	160.5 5	10.43	48.90
29-Oct-94	11:20 AM	0.10	166.97	10.93	48.83
29-Oct-94	11:21 AM	0.13	172.90	10.77	48.77
29-Oct-94	11:22 AM	0.10	164.18	10.53	48.93
29-Oct-94		0.20	191.17	11.93	49.07
29-Oct-94	11:23 AM	0.12	167.00	10.90	
29-Oct-94	11:24 AM	0.12	151.88	10.63	49.43
29-Oct-94	11:25 AM	0.13	194.98	11.93	49.47
29-Oct-94	11:26 AM	0.18	218.63	13. 3 3	49.30
29-Oct-94	11:27 AM	0.42	316.78	13.97	48.30
29-Oct-94	11:28 AM	0.28	247.23	12.23	48.00
29-Oct-94	11:29 AM	0.17	196.00	10.50	48.60
29-Oct-94	11:30 AM	0.12	176.25	9.87	48.37
29-Oct-94	11:31 AM	0.12	160.83	10.20	47.43
29-Oct-94	11:32 AM	0.12	165.32	10.53	48.80
29-Oct-94	11:33 AM	0.12	194.78	10.83	49.33
29-Oct-94	11:34 AM	0.08	165.87	10.10	49.97
29-Oct-94	11:35 AM	0.10	170.32	10.07	50.6
29-Oct-94	11:36 AM	0.08	173.30	10.07	50.43
29-Oct-94	11:37 AM	0.13	199.18	10.73	50.43
29-Oct-94	11:38 AM	0.15	224.58	11.03	50.9
29-Oct-94	11:39 AM	0.12	186.73	9.63	50.8
29-Oct-94	11:40 AM	0.17	197.50	10.10	50.5
29-Oct-94	11:41 AM	0.10	170.97	9.33	50.0
29-Oct-94	11:42 AM	0.10	153.42	9.07	49.6
29-Oct-94	11:43 AM	0.07	140.73	9.13	49.4
29-Oct-94	11:44 AM	0.10	163.37	9.60	49.2 49.1
29-Oct-94	11:45 AM	0.10	149.73	9.27	
29-Oct-94	11:46 AM	0.12	157.55	9.00	48.6 48.6
29-Oct-94	11:47 AM	0.10	143.77	8.87	48.3
29-Oct-94	11:48 AM	0.12	200.87	10.97	48.2
29-Oct-94	11:49 AM 11:50 AM	0.23	224.62	10.00	48.8
29-Oct-94	11:50 AW 11:51 AM	0.10	180.25	9.73	50.4
29-Oct-94	11:52 AM	0.10	153.18	9.63	50.5 51.2
29-Oct-94	11:53 AM	0.10	139.95	10.13	52.5
29-Oct-94	11:54 AM	0.18	192.30	10.37	52.
29-Oct-94	11:54 AW 11:55 AM	0.17	169.57	10.00	52. 52.
29-Oct-94	11:55 AM	0.10	152.05	9.57	52. 50.
29-Oct-94	11:57 AM	0.08	137.10	9.37	49.
29-Oct-94	11:57 AM 11:58 AM	0.10	149.92	9.27	49.
29-Oct-94	11:59 AM	0.08	158.93	9.47	48.
29-Oct-94	12:00 PM	0.10	157.53	9.23	49
29-Oct-94	12:00 PM	0.10	153.62	9.43	50.
29-Oct-94	12:01 PM 12:02 PM	0.10	160.22	9.73	50. 51.
29-Oct-94	12:02 PM 12:03 PM	0.12	161.38	10.17	31.

Run 7 (continued)		THC Value	NOX Value	CO Value	SO2 Value
Date	Time	(ppm)	(ppm)	(ppm)	(ppm
=======	=======================================	0.23	233.52	11.93	51.23
29-Oct-94	12:04 PM	0.23	215.82	11.37	50.87
29-Oct-94	12:05 PM	0.18	185.85	9 .9 7	50.6 0
29-Oct-94	12:06 PM	0.13	155.38	9.73	49.40
29-Oct-94	12:07 PM	0.15	160.82	10.23	49.30
29-Oct-94	12:08 PM	0.13	152.30	9.60	49.37
29-Oct-94	12:09 PM	0.10	144.03	9.67	49.40
29-Oct-94	12:10 PM	0.12	174.93	10.50	48.93
29-Oct-94	12:11 PM	0.18	174.63	10.17	48.97
29-Oct-94	12:12 PM	0.12	152.73	9.33	48.83
29-Oct-94	12:13 PM	0.10	140.57	9.73	49.07
29-Oct-94	12:14 PM 12:15 PM	0.20	181. 5 5	10.00	49.17
29-Oct-94	12:16 PM	0.13	194.78	9.93	49.43
29-Oct-94	12:17 PM	0.10	178.25	10.20	49.53
29-Oct-94	12:18 PM	0.12	183.08	10.43	49.57
29-Oct-94	12:19 PM	0.13	197.18	9.83	49.53
29-Oct-94	12:20 PM	0.12	168.48	9.73	49.70
29-Oct-94 29-Oct-94	12:21 PM	0.15	168.83	9.40	49.87
29-Oct-94	12:22 PM	0.15	164.30	9.93	48.77
29-0ct-94 29-0ct-94	12:23 PM	0.22	245.33	11.30	49.00
29-Oct-94	12:24 PM	0.17	227.62	9.93	49.20
29-Oct-94	12:25 PM	0.23	215.98	10.47	48.97
29-Oct-94	12:26 PM	0.15	186.7 0	10.27	49.33
29-Oct-94	12:27 PM	0.20	233.6 5	11.40	51.00
29-Oct-94	12:28 PM	0.17	184.03	10.50	52.00 53.43
29-Oct-94	12:29 PM	0.13	188.32	10.27	52.43 52.23
29-Oct-94	12:30 PM	0.15	170.47	10.70	51.43
29-Oct-94	12:31 PM	0.27	259.92	12.53	49.80
29-Oct-94	12:32 PM	0.30	308.48	11.97	48.63
29-Oct-94	12:33 PM	0.28	267.08	11.20	47.70
29-Oct-94	12:34 PM	0.22	214.67	10.67	47.47
29-Oct-94	12:35 PM	0.20	220.25	10.83	47.90
29-Oct-94	12:36 PM	0.22	194.83	10.53 10.97	48.40
29-Oct-94	12:37 PM	0.22	203.82	11.63	47.40
29-Oct-94	12:38 PM	0.25	225.12	12.10	48.27
29-Oct-94	12:39 PM	0.25	244.00	10.70	48.90
29-Oct-94	12:40 PM	0.22	234.85	12.90	48.80
29-Oct-94	12:41 PM	0.28	291.75	11.30	47.87
29-Oct-94	12:42 PM	0.28	278.18	12.67	47.47
29-Oct-94	12:43 PM	0.28	273.40	10.47	47.17
29-Oct-94	12:44 PM	0.33	281.53 224.77	10.60	46.80
29-Oct-94	12:45 PM	0.22	214.73	10.37	47.40
29-Oct-94	12:46 PM	0.18	188.67	9.93	48.60
29-Oct-94	12:47 PM	0.15	211.80	10.33	49.40
29-Oct-94	12:48 PM	0.17	193.32	10.27	50.17
29-Oct-94	12:49 PM	0.17	194.48	10.37	50.50
29-Oct-94	12:50 PM	0.13	178.12	9.57	50.03
29-Oct-94	12:51 PM	0.13 0.10	148.58	9.30	48.60
29-Oct-94	12:52 PM		155.87	9.10	47.53
29-Oct-94	12:53 PM	0.12 0.10	148.57	9.07	47.13
29-Oct-94	12:54 PM	0.10	170.01		

un 7 (continued) Date	Time	THC Value (ppm)	NOX Value (ppm)	CO Value (ppm)	SO2 Value (ppm
29-Oct-94	12:55 PM	0.13	139.57	8.93	46.87
29-Oct-94	12:56 PM	0.10	147.18	9.33	47.53
29-Oct-94	12:57 PM	0.15	151.53	9.40	49.40
29-Oct-94	12:58 PM	0.12	136.92	9.37	50.37
29-Oct-94	12:59 PM	0.10	131.27	9.47	50.83
29-Oct-94	01:00 PM	0.08	128.30	9.37	50.97
29-0ct-94 29-0ct-94	01:01 PM	0.08	125.25	9. 0 0	50.43
29-Oct-94	01:02 PM	0.07	122.80	9.17	49.07
29-Oct-94	01:03 PM	0.08	139.10	8.83	48.00
29-0ct-94	01:04 PM	0.10	139.08	9.07	47.43
29-0ct-94	01:05 PM	0.10	127.97	8.53	47.13
4-4	01:06 PM	0.10	122.77	8.63	47.70
29-Oct-94	01:07 PM	0.12	122.20	8.73	48.53
29-Oct-94	01:08 PM	0.10	120.70	8.77	49.20
29-Oct-94 29-Oct-94	01:09 PM	0.10	123.47	8. 9 0	49.87
29-Oct-94 29-Oct-94	01:10 PM	0.12	121.82	8.83	50.07
	01:11 PM	0.08	116.77	8.77	49.70
29-Oct-94 29-Oct-94	01:12 PM	0.10	114.97	8.60	48.87
29-Oct-94	01:12 PM	0.10	114.68	8.80	48.90
29-Oct-94	01:14 PM	0.13	132.82	9.10	48.43
29-Oct-94	01:15 PM	0.12	121.82	8.77	48.13
29-Oct-94	01:16 PM	0.05	. 115.65	8.77	47.90
29-Oct-94	01:17 PM	0.03	113.03	8.60	47.67
29-Oct-94	01:18 PM	0.03	112.30	8.70	48.47
29-Oct-94	01:19 PM	0.08	114.67	8.83	49.13
29-Oct-94	01:20 PM	0.12	136.80	9.17	49.03
29-Oct-94	01:21 PM	0.10	124.12	8.93	48.80
29-0:t-94	01:22 PM	0.15	142.62	9.23	48.83
29-Oct-94	01:23 PM	0.13	125.83	9.03	48.90
29-Oct-94	01:24 PM	0.18	113.52	8.87	48.43
29-Oct-94	01:25 PM	0.18	113.08	8.87	48.20
29-Oct-94	01:26 PM	0.13	115.63	8.73	48.57

Final Report, Air Pollution Emission Assessment No. 42-21-MX61-95, 17-29 October 1994

APPENDIX S METALS DATA SUMMARY

TABLE S-1. METALS EMISSIONS SUMMARY

DATE		RUN 2 10/21/94	RUN 4 10/24/94	RUN 6 10/27/94
FEED DATA				
Average Batch Feed				
175mm COMP B Proj	(No.)	480	480	480
· · · · · · · · · · · · · · · · · · ·	(lb/ea)	115 27.6	115	115
. ((tons) *	27.6	27.6	27.6
STACK GAS DATA				
Volumetric Flow				
Rate (dscf/hr)	2:	33766	202153	215519
SAMPLING EQUIPMENT DAY				
Dry Gas Volume (dscf)		32.90	33.81	37.66
Total Sampling Time (min)	60	72	72
Isokinetic Sampling R	ate (%)	104.53	103.51	105.49
EMISSION DATA				
Max Ag Emission				
Rate (g/hr)		0.00146	0.00062	0.01272
Max As Emission				
Rate (g/hr)		0.00772	0.00192	0.00085
Max Ba Emission			•	
Rate (g/hr)		0.03398	0.03972	0.01611
Max Be Emission				
Rate (g/hr)		0.00036	0.00030	0.00029
Max Cd Emission			_	
Rate (g/hr)		0.05378	0.02240	0.00869
Max Cr Emission				
Rate (g/hr)		0.04243	0.24067	0.14823
Max Ni Emission				
Rate (g/hr)		0.04441	0.42284	0.20247
Max Pb Emission				
Rate (g/hr)		0.07737	0.07593	0.02878
Max Sb Emission				
Rate (g/hr)		0.00229	0.00090	0.00038
Max Se Emission			.	
Rate (g/hr)		0.00071	0.00060	0.00057
Max Tl Emission			_	
Rate (g/hr)		0.00071	0.00030	0.00029

^{*} Batch feed rate exceeds previous limit of 25 tons.

EMISSION RATE CALCULATIONS (Run 2)

1. Ag Emission Rate: $M_{Ag} = 0.21$ ug

$$W_{Ag} = \frac{0.21 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.00146 g/hr

2. As Emission Rate: $M_{As} = 1.09 \text{ ug}$

$$W_{As} = \frac{1.09 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.00772 g/hr

3. Ba Emission Rate: $M_{Ba} = 4.78$ ug

4. Be Emission Rate: $M_{Re} = 0.05$ ug

$$W_{Bc} = \frac{0.05 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.00036 g/hr

5. Cd Emission Rate: $M_{Cd} = 7.57$ ug

$$W_{Cd} = \frac{7.57 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.05378 g/hr

6. Cr Emission Rate: $M_{cr} = 5.97$ ug

7. Ni Emission Rate: $M_{Ni} = 6.25$ ug

$$W_{Ni} = \frac{6.25 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.04441 g/hr

8. Pb Emission Rate: $M_{Pb} = 10.89 \text{ ug}$

$$W_{rb} = \frac{10.89 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.07737 g/hr

9. Sb Emission Rate: $M_{Sb} = 0.32$ ug

$$W_{Sb} = \frac{0.32 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.00229 g/hr

10. Se Emission Rate: $M_{Se} = 0.10$ ug

$$W_{Se} = \frac{0.10 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

$$= 0.00071 \text{ g/hr}$$

11. Tl Emission Rate: $M_{Tl} = 0.10$ ug

$$W_{\pi} = \frac{0.10 * 233766}{32.9 * 1,000,000 \text{ ug/g}}$$

= 0.00071 g/hr