Overheads: - Outline

Test dates: Midterm moved to Feb 10

Recap Chain Reactions: 3 parts to mechanism?

1 <u>Initiation</u> - make <u>small amount</u> of radicals

$$rac{hv}{cl} \sim \frac{hv}{or \Delta} \sim 2 cl^{\bullet}$$

2 Propagation - make lots of product

(3) <u>Termination</u> - any 2 radicals combine, stops reaction

Selectivity: more substituted radicals formed more easily

BUT, Cl₂ less selective than Br₂

Br₂: endothermic RDS
∴TS more like intermediate (radical)
∴TS more like reactants

 \therefore stability of radical makes more difference to Br_2 reaction (TS more like radical) \therefore Br_2 more selective

Why is Br* RDS endothermic, but Cl* exo?

- only difference is energy of reactants!

⇒ Cl* must be higher E (less stable) than Br*

$$\Delta H^{\circ}_{f} = +122 \text{ kJ.mol}$$
 $\Delta H^{\circ}_{f} = +96 \text{ kJ.mol}$

Cl* higher E ∴ wants to react more

Clarify: talking about stability of Cl• vs Br• (= reactant, not product)

more stable <u>reactant</u>, does not want to react

Ea

more stable <u>product</u>, formed faster

lower E product, Eav

lower E reactant, Ea

SO, Cl• higher E, more reactive, ⇒ reacts faster, grabs whatever it can

Br• reacts slower, more choosy (selective) \Rightarrow waits for $3^{\circ} > 2^{\circ} > 1^{\circ}$

I• even more stable ⇒ too choosy! Doesn't react at all F• too reactive ⇒ reacts with anything it can find!

How much less selective is Cl•?

$$3^{\circ} > 2^{\circ} > 1^{\circ}$$

Br• 1600 82 1
Cl• 5 3.8 1 } Can use to predict ratios

Amount
$$3^{\circ} = (\#3^{\circ}H)(3^{\circ} \text{ preference}) = x$$

 $2^{\circ} = (\#2^{\circ}H)(2^{\circ} \text{ preference}) = y$
 $1^{\circ} = (\#1^{\circ}H)(1^{\circ} \text{ preference}) = z$
 $Total = x+y+z$

e.g.
$$H = \begin{bmatrix} H & H & H \\ | & | & | \\ C & C & C \\ | & | & | \\ H & H & H \end{bmatrix} \xrightarrow{\text{Cl}_2} ?$$

$$3^{\circ} = (0)(5) = 0$$

 $2^{\circ} = (2)(3.8) = 7.6$
 $1^{\circ} = (6)(1) = 6$
Total = 13.6

Same as experimental!

NOTE: Unlike carbocations, radicals do not rearrange, so ratio "stays" as predicted

"Homework"

- 1) Predict Br₂ ratios (should be 4:96!)
- 2) Predict ratios for:

Resonance-Stabilized Radicals:

+ charge shared between 2 C's (delocalized) more stable

Radicals:

$$H_2C = C - CH_2$$
 $etc.$
 $H_2C = C - CH_2$
 $H_2C = CH_3$
 $H_2C =$

- ⇒ get 2 products (ratio depends on conditions)
- \Rightarrow BUT... there is a problem! Br₂ can react directly with C=C! (CHEM 241)

$$\frac{\mathrm{Br_2}}{\mathrm{no \, hv}}$$
 Br

- electrophilic addition competes with radical halogenation
- since $[Br_2] \gg [Br^{\bullet}]$, get more addition

Solution: use another source of Br•

NBS = N-bromosuccinimide

N-Br
$$\frac{h\nu}{\text{peroxides}}$$
 X $\stackrel{\bullet}{\longrightarrow}$ Initiation (X $\stackrel{\bullet}{\circ}$ can be Br $\stackrel{\bullet}{\circ}$ or R₂N $\stackrel{\bullet}{\circ}$)

radical initiator... will see more later

- NBS can be used to make small amount of radicals, then acts as source of $\underline{\text{small amount}}$ of $\underline{\text{Br}_2}$ during the reaction

⇒ NBS does same reaction as Br₂, but avoids competing Electrophilic Addition