Welcome back!

Nameplates please. And technology encouraged today!

All TF materials are available at github.com/nolankav/api-202.

If you want to follow along, download the dataset here:

In R: df <- read.csv("http://tinyurl.com/api-202-tf-1")</pre>

In Excel: http://tinyurl.com/api-202-tf-2

Multiple regression and omitted variables

API 202: TF Session 2

R

Nolan M. Kavanagh February 2, 2024

Goals for today

- 1. Review core concepts in bivariate analysis.
- 2. Learn how to run multiple regressions.
- 3. Practice interpreting multiple regressions.
- 4. Consider an example of omitted variable bias.

We'll treat this session like a workshop with interactive examples.

Overview of our sample data

Dataset of U.S. county-level characteristics in 2020

Si	tai	te	

county fips

pc_under_18

pc over 65

pc male

pc black

pc latin

pc hs grad

unemploy_rate

med_income_000s

pc_uninsured

pc_trump

State of county

County FIPS identifier

Percent of county under age 18

Percent of county over age 65

Percent of county that is male

Percent of county that is Black

Percent of county that is Hispanic/Latino

Percent of county that graduated high school

County unemployment rate (%)

County median income (\$1,000s)

Percent of county without health insurance

Percent of county votes for Trump in 2020

Administrative

Administrative

American Community Survey (2016–2020)

MIT Election Lab

Hmm, I have an idea!

Was support for Trump about economic grievances?

This idea is (was?) very hot in political science and among pundits on MSNBC and Fox News.

Population regression function

Does the graph check out?

```
# Graph median income and Trump support
plot 1 <- ggplot(df, aes(x=med inc 000s, y=pc trump)) +</pre>
  # Add scatterplot points
  geom point(alpha=0.25) +
  # Labels of axes
  xlab("County median income (000s)") +
 ylab("County support for Trump") +
  # Add best fit line
  geom smooth(method="lm", se=F, formula = y~x) +
  # Cosmetic changes
  theme light() + theme(text = element text(face="bold")) +
  scale y continuous(limits=c(0,100),
                     labels = function(x) paste0(x,"%")) +
  scale x continuous(limits=c(0,150),
                     labels = scales::dollar format())
```


Does the regression check out?

```
# Estimate regression
reg_1 <- lm(pc_trump ~ med_inc_000s, data=df)
summary(reg 1)
Call:
lm(formula = pc trump ~ med inc 000s, data = df)
Residuals:
    Min
             10 Median
                                   Max
-62.940 \quad -8.985 \quad 3.256 \quad 11.042 \quad 39.239
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 81.93207 1.07913 75.92 <2e-16 ***
med inc 000s -0.30905 0.01899 -16.28 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.5 on 3112 degrees of freedom
Multiple R-squared: 0.07845, Adjusted R-squared: 0.07815
F-statistic: 264.9 on 1 and 3112 DF, p-value: < 2.2e-16
```

Looks right to me!

So Trump was all about economic grievances.

Case closed!

Or are we missing something?

Or are we missing something?

The result? Bias in our regression.

Fine, let's add education to our analysis.

We use alpha vs. beta just to distinguish the different regressions.

Short regression

$$(Trump)_i = \alpha_0 + \alpha_1 (med_inc)_i + u_i$$

Long regression

$$(Trump)_i = \beta_0 + \beta_1 (med_inc)_i + \beta_2 (HS_grad)_i + u_i$$

the omitted variable

To include multiple predictors in our regression, we just add them to the right-hand side with a "+".

```
# Estimate long regression
reg_2 <- lm(pc_trump ~ med_inc_000s + pc_hs_grad, data=df)</pre>
summary(reg 2)
Call:
lm(formula = pc trump ~ med inc 000s + pc hs grad, data = df)
Residuals:
            10 Median 30
   Min
-57.641 -8.134 0.859 9.436 45.269
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 134.44740 2.30947 58.216 <2e-16 ***
med inc 000s -0.02966 0.02058 -1.442 0.149
pc_hs_grad -1.02700 0.04086 -25.135 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.13 on 3111 degrees of freedom
Multiple R-squared: 0.234,
                                    Adjusted R-squared: 0.2335
F-statistic: 475.2 on 2 and 3111 DF, p-value: < 2.2e-16
```

```
# Estimate long regression
reg_2 <- lm(pc_trump ~ med_inc_000s + pc_hs_grad, data=df)</pre>
summary(reg 2)
Call:
lm(formula = pc_trump ~ med_inc_000s + pc_hs_grad, data = df)
Residuals:
    Min
             10 Median
                0.859 9.436 45.269
-57.641 -8.134
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 134.44740
                       2.30947 58.216
                                           <2e-16
med inc 000s -0.02966
                       0.02058 - 1.442
                                            0.149
                         0.04086 - 25.135
                                           <2e-16 ***
              -1.02700
pc_hs_grad
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
Residual standard error: 14.13 on 3111 degrees of freedom
Multiple R-squared: 0.234,
                                      Adjusted R-squared: 0.2335
F-statistic: 475.2 on 2 and 3111 DF, p-value: < 2.2e-16
```

Well. Shit.

Controlling for high school graduation rates, each \$1,000 increase in county median income is associated with a 0.03 pp decline in Trump support.

And it's not statistically significant.


```
# Estimate long regression
reg_2 <- lm(pc_trump ~ med_inc_000s + pc_hs_grad, data=df)</pre>
summary(reg 2)
Call:
lm(formula = pc trump ~ med inc 000s + pc hs grad, data = df)
Residuals:
            10 Median
   Min
-57.641 -8.134 0.859 9.436 45.269
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 134.44740
                      2.30947 58.216 <2e-16 ***
med inc 000s -0.02966 0.02058 -1.442
                                           0.149
                      0.04086 - 25.135
                                          <2e-16 ***
             -1.02700
pc hs grad
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 14.13 on 3111 degrees of freedom

F-statistic: 475.2 on 2 and 3111 DF, p-value: < 2.2e-16

Adjusted R-squared: 0.2335

Multiple R-squared: 0.234,

Meanwhile, each 1 pp increase in a county's high school graduation rate was associated with 1.0 pp less support for Trump, controlling for county median income.

This adjusted association is statistically significant at the 5% level.

```
# Estimate long regression
reg_2 <- lm(pc_trump ~ med_inc_000s + pc_hs_grad, data=df)</pre>
summary(reg 2)
Call:
lm(formula = pc trump ~ med inc 000s + pc hs grad, data = df)
Residuals:
            10 Median
    Min
-57.641 -8.134 0.859 9.436 45.269
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                       2.30947 58.216
                                           <2e-16 ***
(Intercept) 134.44740
med inc 000s -0.02966 0.02058 -1.442
                                            0.149
pc_hs_grad
                         0.04086 - 25.135
                                           <2e-16 ***
             -1.02700
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.13 on 3111 degrees of freedom
Multiple R-squared: 0.234,
                                     Adjusted R-squared: 0.2335
F-statistic: 475.2 on 2 and 3111 DF, p-value: < 2.2e-16
```

When county median income AND high school graduation rates are set to 0, the expected support for Trump is 134%.

(Obviously, this isn't a meaningful value.)

Womp.

	Model 1	Model 2
Intercept	81.93	134.45
	(-1.08)	(-2.31)
	P<0.001	P<0.001
County median income (\$1000s)	$\hat{\alpha}_1$ -0.31	$-0.03 \qquad \hat{\beta}_1$
	(0.02)	(0.02)
	P<0.001	P=0.149
County graduation rate		-1.03 $\hat{\beta}_{\alpha}$
		(0.04)
		P<0.001
Num.Obs.	3114	3114
R2	0.078	0.234
R2 Adj.	0.078	0.234

Short regression $(Trump)_i = \alpha_0 + \alpha_1 (med_inc)_i + u_i$ Long regression $(Trump)_i = \beta_0 + \beta_1 (med_inc)_i + \beta_2 (HS_grad)_i + u_i$

Clearly, we were missing something.

Relative to the true β_1 (–), our estimate of a_1 is even more negative.

Bias formula
$$\alpha_1 - \beta_1 = \beta_2 * \gamma_1 = (-)(+) = (-)$$

What happens to our graph when we control for education?

OK, what did we learn?

Omitted variables can mess up our regressions.

Think carefully about what might be missing.

Is our new model causal? Or are we missing something else?