Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 19

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Standard A3.

Mark:

Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the matrix $\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}$

Solution:

- (a) $\det \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = 1$, so the matrix is invertible, hence S is bijective.
- (b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

RREF
$$\left(\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -5 & -\frac{5}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are only two pivot columns, T is not surjective.

Standard A4.

Mark:

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear map given by $T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 8x - 3y - z + 4w \\ y + 3z - 4w \\ -7x + 3y + 2z - 5w \end{bmatrix}$. Compute the kernel and image of T.

Solution:

$$RREF \left(\begin{bmatrix} 8 & -3 & -1 & 4 \\ 0 & 1 & 3 & -4 \\ -7 & 3 & 2 & -5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\operatorname{Im}(T) = \operatorname{span}\left(\left\{ \begin{bmatrix} 8\\0\\-7 \end{bmatrix}, \begin{bmatrix} -3\\1\\3 \end{bmatrix} \right\} \right)$$
$$\ker(T) = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\4\\0\\1 \end{bmatrix} \right\} \right)$$