

The Arc Index of Theta-Curve and Handcuff Graph

Eunchan Cho¹ Jeongwon Shin¹ Boyeon Seo¹ Minho Choi¹

SEP 6, 2025

Introduction

Theta-Curves

- A theta-curve T is a graph embedded in S^3 , which consists of two vertices v_1 , v_2 and three edges e_1 , e_2 , e_3 , such that each edge joins the vertices.
- A constituent knot T_{ij} , $1 \le i < j \le 3$, is a subgraph of T that consists of two vertices v_1 , v_2 and two edges e_i , e_j .
- Theta-curves are roughly classified by comparing the triples of constituent knots.
- A theta-curve is said to be **trivial** if it can be embedded in a 2-sphere in S^3 .

Handcuff Graphs

- A handcuff graph H is a graph embedded in S^3 consisting of two vertices (v_1, v_2) and three edges (e_1, e_2, e_3) , where e_3 has distinct endpoints v_1 and v_2 , and e_1 and e_2 are loops based at v_1 and v_2 .
- A constituent link H_{12} , is a subgraph of H that consists of two vertices v_1 , v_2 and two edges e_1 , e_2 .

Reidemaister Moves for Theta-Curves and Handcuff Graphs

Arc Presentation

- Arc presentation of a theta-curve or handcuff graph is an embedding of them.
- It is contained in the union of finitely many half planes (called pages).
- The embedding is with the common boundary line (called axis).
- · Each vertex lies in the axis.
- Each page contains a properly embedded single arc.
- Arc index, is the minimal number of pages among all possible arc presentations of graph.
- This arc presentation with the minimal number of pages is **minimal arc presentation**.

Arc Presentation

Grid Diagram

- The **grid diagram** of theta-curve or handcuff graph is a diagram with only vertical strand and horizontal strands.
- (number of vertical strands) + 1 = (number of horizontal strands)
- At every crossing, the vertical strand crosses over the horizontal strand.
- · No two horizontal strands are in the same row.
- · No two vertical strands are in same column.

Grid Diagram

· A grid diagram gives rise to an arc presentation and vice versa.

Arc Presentation of the Theta-Curve and Handcuff Graph

Theorem

Every theta-curve and handcuff graph admit a grid diagram.

PROOF

Corollary

Every theta-curve and handcuff graph admit a arc presentation.