২২২

গাণিতিক সমস্যার সমাধান

উদাহরণ-৩৭: (5A)₁₆ কে বাইনারিতে রূপান্তর :

সুতরাং (5A)₁₆ = (1011010)₂ (Ans)

উদাহরণ-৩৮: (FF)₁₆ কে বাইনারিতে রূপান্তর:

 \therefore (FF)₁₆ = (11111111)₂ (Ans)

উদাহরণ-৩৯፡ (6F.3C)₁₆ কে বাইনারিতে রূপান্তর :

 \therefore (6F.3C)₁₆ = (1101111.00111100)₂ (Ans)

উদাহরণ-৪০: (ABCD.EF)₁₆ কে বাইনারিতে রূপান্তর :

 \therefore (ABCD.EF)₁₆= (1010101111001101.11101111)₂ (Ans)

উদাহরণ-৪১: (209)10 কে বাইনারিতে রূপান্তর:

 $\therefore (209)_{10} = (11010001)_2$ (Ans)

উদাহরণ-৪২: (398)10 কে বাইনারিতে রূপান্তর:

 $\therefore (398)_{10} = (110001110)_2$ (Ans)

উদাহরণ-৪৩ : (128.375)10 কে বাইনারিতে রূপান্তর :

পূর্ণসংখ্যার ক্ষেত্রে:

∴ (128)₁₀ = (10000000)₂ সুতরাং, (128.375)₁₀ = (10000000.011)₂ (Ans)

ভগ্নাংশের ক্ষেত্রে :

 \therefore (0.375)₁₀ = (0.011)₂ (Ans)

উদাহরণ-৪৪ : (1011010.101)2 কে দশমিকে রূপান্তর :

$$(1011010.101)_{2} = 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

$$= 1 \times 64 + 0 + 1 \times 16 + 1 \times 8 + 0 + 1 \times 2 + 0 + \frac{1}{2} + 0 + \frac{1}{8} \quad [\because x^{\circ} = 1]$$

$$= 64 + 16 + 8 + 2 + 0.5 + 0.125 = 90 + 0.5 + 0.125 = 90.625$$

$$\therefore (1011010.101)_{2} = (90.625)_{10} \text{ (Ans)}$$

উদাহরণ-৪৫:(203.25)ঃ কে দশমিকে রূপান্তর:

$$(203.25)_{8} = 2 \times 8^{2} + 0 \times 8^{1} + 3 \times 8^{0} + 2 \times 8^{-1} + 5 \times 8^{-2}$$

$$= 2 \times 64 + 0 + 3 \times 1 + \frac{2}{8} + \frac{5}{64} \quad [\because x^{\circ} = 1]$$

$$= 128 + 3 + 0.25 + 0.078125 = 131.328125$$

$$\therefore (203.25)_{2} = (131.328125)_{10} \text{ (Ans)}$$

উদাহরণ-৪৬: (6DF)₁₆ কে দশমিকে রূপান্তর:

$$(6DF)_{16}$$
= $6 \times 16^2 + 13 \times 16^1 + 15 \times 16^0$
= $6 \times 256 + 13 \times 16 + 15 \times 1 \text{ [} \because x^\circ = 1\text{]}$
= $1536 + 208 + 15$
= 1759
 $\therefore (6DF)_{16} = (1759)_{10} \text{ (Ans)}$

দশমিক	হেক্সাডেসিমাল
10	A
11	В
12	С
13	D
14	Е
15	F

উদাহরণ-৪৭ : (FF)₁₆ কে দশমিকে রূপান্তর :

$$(FF)_{16} = 15 \times 16^{1} + 15 \times 16^{0}$$

= $15 \times 16 + 15 \times 1$ [: $x^{\circ} = 1$]
= $240 + 15 = 255$

 \therefore (FF)₁₆ = (255)₁₀ (Ans)

উদাহরণ-৪৮ : (5A)₁₆ কে দশমিক রূপান্তর :

$$(5A)_{16} = 5 \times 16^{1} + 10 \times 16^{\circ}$$

= $5 \times 16 + 10 \times 1$
= $80 + 10 = 90$

 \therefore (5A)₁₆ = (90)₁₀ (Ans)

উদাহরণ-৪৯ : (123.54)8 কে দশমিকে রূপান্তর :

$$(123.54)_8 = 1 \times 8^2 + 2 \times 8^1 + 3 \times 8^0 + 5 \times 8^{-1} + 4 \times 8^{-2}$$

$$= 1 \times 64 + 2 \times 8 + 3 \times 1 + \frac{5}{8} + \frac{4}{64}$$

$$= 64 + 16 + 3 + 0.625 + 0.0625$$

$$= 83 + 0.6875 = 83.6875$$

 \therefore (123.54)₈ = (83.6875)₁₀ (Ans)

উদাহরণ-৫০ : $(6F.3C)_{16}$ কে দশমিকে রূপান্তর :

$$(6F.3C)_{16} = 6 \times 16^{1} + 15 \times 16^{0} + 3 \times 16^{-1} + C \times 16^{-2}$$

$$= 6 \times 16 + 15 \times 1 + \frac{3}{16} + \frac{12}{256}$$

$$= 96 + 15 + 0.1875 + 0.046875$$

$$= 111.234375$$

$$\therefore (6F.3C)_{16} = (111.234375)_{10} \text{ (Ans)}$$

২২৪

উদাহরণ-৫১ : (3E.1A)₁₆ কে অক্টালে রূপান্তর :

 $\therefore (3E.1A)_{16} = (76.064)_8 \text{ (Ans)}$

পূর্ণ সংখ্যার ক্ষেত্রে সর্ববামে () থাকলে সেগুলো রাখার প্রয়োজন নেই

উদাহরণ-৫২ : (75)10 কে অক্টালে রূপান্তর :

 $(75)_{10} = (113)_8$ (Ans)

উদাহরণ-৫৩ : (67)10 কে অক্টালে রূপান্তর :

 \therefore (67)₁₀ = (103)₈ (Ans.)

উদাহরণ-৫৪: (67)10 কে হেক্সাডেসিমালে রূপান্তর:

উদাহরণ-৫৫: (128.375)10 কে অক্টালে রূপান্তর:

পূর্ণসংখ্যার ক্ষেত্রে :

ভগ্নাংশের ক্ষেত্রে :

$$\begin{array}{c|c}
 & .375 \\
 & \times 8 \\
\hline
 & 3 & .000 \\
 & .SB \\
 & . (.375)_{10} = (.3)_8
\end{array}$$

সুতরাং, (128.375)₁₀ = (200.3)₈ (Ans.)

উদাহরণ-৫৬: (209)10 কে হেক্সাডেসিমালে রূপান্তর:

$$\begin{array}{c|cccc}
16 & 209 & & & LSB \\
16 & 13 & - & 1 & & & \\
\hline
0 & - & D & & & \\
\end{array}$$

 \therefore (209)₁₀ = (D1)₁₆ (Ans.)

উদাহরণ-৫৭: (398)10 কে হেক্সাডেসিমালে রূপান্তর:

$$\begin{array}{c|cccc}
16 & 398 \\
16 & 24 & -E \\
16 & 1 & -8 \\
0 & -1 & MSB
\end{array}$$

$$\therefore (398)_{10} = (18E)_{16} (Ans.)$$

উদাহরণ–৫৮ : $(128.375)_{10}$ কে হেক্সাডেসিমালে রূপান্তর :

পূর্ণসংখ্যার ক্ষেত্রে :

 \therefore (128)₁₀ = (80)₁₆ (Ans.)

ভগ্নাংশের ক্ষেত্রে:

 \therefore (.375)₁₀ = (.6)₁₆

সুতরাং, (128.375)₁₀ = (80.6)₁₆ (Ans.)

৩.৩ বাইনারি যোগ-বিয়োগ (Binary Addition and Subtraction)

বাইনারি সংখ্যার ব্যবহার ডিজিটাল ইলেকট্রনিক্সে হওয়ার কারণে এর যোগ-বিয়োগে কিছুটা ভিন্ন পদ্ধতি পরিলক্ষিত হয়। বাইনারি যোগ-বিয়োগের এই পদ্ধতিগত ভিন্নতা নিচে ছক আকারে সংক্ষেপে উপস্থাপন করা হলো। এখানে একটি শুরুত্বপূর্ণ বিষয় হলো সাধারণ যোগ-বিয়োগের ক্ষেত্রে কত অঙ্কের সংখ্যা যোগ-বিয়োগ করা হচ্ছে, সেটা বিবেচনার প্রয়োজন বা না থাকলেও ইলেকট্রনিক সার্কিটে যোগ-বিয়োগের জন্য এ বিষয়টি বিবেচনার প্রয়োজন রয়েছে। কোনো সার্কিট যতগুলো বিট ধারণ করতে পারে, তার চেয়ে বেশি সংখ্যক অঙ্ক সংখ্যাটিতে থাকলে ঐ সার্কিটিটি ব্যবহার করা যাবে না। আবার যোগ করার পর বিটের নির্ধারিত সংখ্যার বেশি বিট হয়ে গেলেও ফলাফল সঠিক হবে না।

ক	শ্ব	যোগফল = ক + খ	ক্যারি
0	0	0	নেই
0	1	1	নেই
1	0	1	নেই
1	1	0	1

		_
~~~	. जाउँ जावि	যোগের নিয়ম
(১৮।বজ	: বাহশার	বোরের করম

ক	খ	বিয়োগফল = ক — খ	ক্যারি
0	0	0	0
1	0	1	0
1	1	0	0
0	1	1	1

টেবিল: বাইনারি বিয়োগের নিয়ম

বাইনারি সংখ্যার যোগ (Binary Addition)

বাইনারি সংখ্যার যোগ দশমিক সংখ্যার মতোই।

1100101 8. 110	01 e. 10011
0111010 1100	11100
	+10 10111010 +10 1100

1+1=10; বসে '0', হাতে থাকে '1'। অনুরূপভাবে, 1+1+1=11; বসে '1', হাতে থাকে '1'

বাইনারি সংখ্যার বিয়োগ (Binary Subtraction)

১. 111	২. 1101	o . 1100	8. 1011011	e. 11011.001
$\frac{-101}{010}$	$\frac{-\ 1\ 0\ 1\ 1}{0\ 0\ 1\ 0}$	<u>-101</u> 0111	$\frac{-\ 1\ 0\ 1\ 1\ 1\ 0}{0\ 1\ 0\ 1\ 1\ 0\ 1}$	<u>-1011.110</u> 01111.011
७. 110101.101	9. 110101	b. 10101	৯. 11101.101	٥٠. 10000.1110
$\begin{array}{c} \underline{1\ 0\ 1\ 1\ 0\ .\ 1\ 1\ 0} \\ 0\ 1\ 1\ 1\ 1\ 0\ .\ 1\ 1\ 1 \end{array}$	$\frac{10110}{011111}$	$\frac{1\ 0\ 1\ 0}{0\ 1\ 0\ 1\ 1}$	$\frac{1\ 0\ 0\ 1\ .\ 0\ 0\ 1}{1\ 0\ 1\ 0\ 0\ .\ 1\ 0\ 0}$	$\begin{array}{c} \underline{1\ 0\ 1\ .\ 0\ 1\ 0\ 1} \\ 0\ 1\ 0\ 1\ 1\ .\ 1\ 0\ 0\ 1 \end{array}$

দশমিক সংখ্যা পদ্ধতিতে গাণিতিক কাজে সংখ্যার মানের দু'টি অবস্থা ধনাত্মক বা ঋণাত্মক বোঝানোর জন্য সংখ্যার পূর্বে + বা 🗕 চিহ্ন থাকে।

উদাহরণ-৫৯. $(A09.E2)_{16}$ এর সাথে $(527.06)_8$ যোগ করে ফলাফলকে হেক্সাডেসিমালে প্রকাশ করা

* এভাবে ভিন্ন সংখ্যা পদ্ধতির সংখ্যা যোগ করা যায়। একইভাবে বিয়োগও করা যায়।

অক্টাল যোগ

- ১. ৪-ভিত্তিক অক্টাল সংখ্যার দুইটি ডিজিটের যোগফল ৪-এর নিচে হলে, ৪ এর নিচে যে সংখ্যা হবে তাই হবে যোগফল এবং ক্যারি হবে ।
- ২. ৪-ভিত্তিক অক্টাল সংখ্যা যোগ করার সময় যদি দুটি ডিজিট-এর যোগফল ৪ হয়, তবে যোগফল 0 এবং ক্যারি হবে 1।
- ৩. দুটি ডিজিটের যোগফল ৪ এর বেশি হলে অর্থাৎ ৪ হতে যত বেশি হবে, যোগফল তাই হবে এবং ক্যারি হবে 1।

উদাহরণ-১ এ 7+3=10, এখানে যোগফল 8 হতে 2 বেশি হওয়ায় যোগফল 2 হয়েছে এবং ক্যারি পরবর্তী সংখ্যা 3+4 এর সাথে যোগ হয়ে যোগফল 8 হয়েছে। 8 হওয়াতে যোগফল 0 এবং ক্যারি 1 হবে। পরবর্তী সংখ্যা 6+5+1(ক্যারি) =12-8=4 হয়েছে এবং ক্যারি 1 হওয়ায় 14 হয়েছে।

উদাহরণ-৬০. (36)₈ ও (27)₁₀ এর যোগফল অক্টাল সংখ্যায় বের করা।

সমাধান: এখানে, $(27)_{10}$ কে অক্টাল সংখ্যায় রূপান্তর করে পরবর্তীতে দুটি অক্টাল সংখ্যার যোগফল বের করতে হবে।

$$(27)_{10} = (?)_8$$
 $8 \ 27$ ভাগশেষ
 $8 \ 3-3$ 188

উদাহরণ-৬১. (67)₈ ও (25)₁₀ সংখ্যাদ্বয়ের যোগফল অক্টাল সংখ্যায় বের করা।

সমাধান: (25)10 কে অক্টাল সংখ্যায় রূপান্তর করে পরবর্তীতে দুটি অক্টাল সংখ্যার যোগফল বের করতে হবে।

হেক্সাডেসিমাল যোগ

- **১**. 16-ভিত্তিক হেক্সাডেসিমাল সংখ্যার দুইটি ডিজিটের যোগফল 16 এর নিচে হলে 16 এর নিচে যে সংখ্যা হবে, তাই হবে যোগফল এবং ক্যারি হবে 0।
- ২. হেক্সাডেসিমাল সংখ্যার দুইটি ডিজিটের যোগফল যদি 16 হয়, তবে যোগফল 0 হবে এবং ক্যারি 1 হবে।
- ৩. দুইটি ডিজিটের যোগফল 16 এর বেশি হলে, 16 এর উপর যত বেশি হবে যোগফল তত হবে এবং ক্যারি হবে 1।

ব্যাখ্যা : উদাহরণ-১ এ দুইটি ডিজিট (C=12) এবং (F=15) যোগ করলে যোগফল 27 হয়। তাহলে যোগফল 16 হতে 11 বেশি। তাই যোগফল হয়েছে B (11এর হেক্সাডেসিমাল মান) এবং ক্যারি 1। এই ক্যারি আবার পরবর্তী ডিজিট (B=11) এবং 7 এর সাথে যোগ করে যোগফল 11+7+1=19-16=3 এবং ক্যারি 1 হয়েছে, যা পরবর্তী দুইটি সংখ্যা 10+2+1=13 এর যোগফল 11+10 (11+1+1=130) হয়েছে।

বাইনারি যোগ-বিয়োগ সংক্রান্ত গাণিতিক সমস্যার সমাধান

৩.৪ চিহ্নযুক্ত সংখ্যা (Signed Number)

কোন সংখ্যাকে যোগ ও ঋণাত্মক (Negative) করার ব্যবস্থা থাকলে অন্য সকল গাণিতিক প্রক্রিয়া তথা বিয়োগ, গুণ ও ভাগের কাজটি করা যায়। সেজন্য ডিজিটাল ইলেকট্রনিক্সে বাইনারি সংখ্যা দিয়ে বিয়োগ, গুণ বা ভাগ করার পদ্ধতি থাকার প্রয়োজন নেই। বিয়োগ করার জন্য সংখ্যাটিকে ঋণাত্মক বা নেগেটিভ করে যোগ করা হয়, গুণ করার জন্য সংখ্যাটিকে ঐ নির্দিষ্ট সংখ্যকবার যোগ করা হয় এবং বার বার বিয়োগ করার মাধ্যমে ভাগের কাজটিও করে ফেলা যায়। সুতরাং বাইনারি যোগ করার পদ্ধতি জানার পর এখন আমাদের সংখ্যাকে নেগেটিভ বা ঋণাত্মক করার সুনির্দিষ্ট পদ্ধতি জানতে হবে।

সাইনড নামার বা চিহ্নযুক্ত সংখ্যা : যখন কোন সংখ্যার পূর্বে ধনাত্মক (+) বা ঋণাত্মক (-) চিহ্ন থাকে, তখন সেই সংখ্যাকে চিহ্নযুক্ত সংখ্যা বা সাইনড নাম্বার বলা হয়।

চিহ্ন বা সাইন বিট: বাইনারি পদ্ধতিতে চিহ্নযুক্ত সংখ্যা উপস্থাপনের জন্য প্রকৃত মানের পূর্বে একটি অতিরিক্ত বিট যোগ করা হয়। এই অতিরিক্ত বিটকে চিহ্ন বিট বলা হয়। চিহ্ন বিট 0 হলে সংখ্যাটিকে ধনাত্মক এবং চিহ্নবিট 1 হলে ঋণাত্মক ধরা হয়। কম্পিউটারে কোনো সংখ্যার সাথে কোনো সংখ্যা যোগ-বিয়োগ করার নির্দেশ দিলে প্রথমে ডেসিমাল সংখ্যাটি বাইনারি সংখ্যায় রূপান্তরিত হয়। বাইনারি পদ্ধতিতে সংখ্যাটি ধনাত্মক নাকি ঋণাত্মক তা বুঝানোর জন্য সর্ববামের এক বিট (MSB) ব্যবহার করা হয়। এ বিট 0 হলে সংখ্যাটিকে ধনাত্মক এবং 1 হলে ঋণাত্মক ধরা হয়। ধনাত্মক সংখ্যার ক্ষেত্রে চিহ্ন বিট ছাড়া বাকি অংশটি সংখ্যার মান জ্ঞাপন করে। ঋণাত্মক সংখ্যার মান জ্ঞাপনের জন্য তিনটি গঠন পদ্ধতি আছে। যথা-

١.	চিহ্ন পরিমাণ (Sign-magnitude form) প্রকৃত মান গঠন,
২.	1 এর পরিপূরক গঠন (1'S Complement form)
٥.	2 এর পরিপূরক গঠন (2'S Complement form)

এ তিনটি পদ্ধতির মধ্যে প্রথম দু'টির ব্যবহার বর্তমানে নেই বললেই চলে। তবে ডিজিটাল ডিভাইসে ঋণাত্মক সংখ্যার মান জ্ঞাপনের জন্য 2 এর পরিপূরক ব্যবহার করা হয়। সেজন্য এখানে শুধু 2 এর পরিপূরক গাণিতিক প্রক্রিয়া নিয়ে বিস্তারিত আলোচনা করা হয়েছে। বাইনারি সংখ্যাকে কত বিটে প্রকাশ করা হবে তা নির্ভর করবে রেজিস্টারের শব্দ দৈর্ঘ্যের ওপর। রেজিস্টার যদি 8 বিট বা 1 বাইটের হয় অর্থাৎ 0 থেকে 127 পর্যন্ত দশমিক সংখ্যার ক্ষেত্রে সাইন বিটের জন্য 1 বিট এবং মানের জন্য 7 বিট ব্যবহার করা হয়। রেজিস্টার 2 বাইট বা 16 বিট হলে দশমিক সংখ্যার ক্ষেত্রে সাইন বিটের জন্য 1 বিট এবং মানের জন্য 15 বিট ব্যবহার করা হয়।

৩.৫ ২-এর পরিপূরক গঠন

কোন বাইনারি সংখ্যার প্রতিটি বিটকে পূরক করে বা উল্টিয়ে যে সংখ্যা পাওয়া যায়, তাকে 1-এর পরিপূরক বলা হয়। বাইনারি সংখ্যাকে 1-এর পরিপূরক বা উল্টিয়ে লিখে তার সাথে 1 যোগ করে যে সংখ্যা পাওয়া যায়, তাকে 2-এর পরিপূরক বলা হয়। ১৯৪৫ সালে জন ভন নিউম্যান EDSAC কম্পিউটারে 2-এর পরিপূরক ব্যবহারের প্রস্তাব করেন।

২–এর পরিপূরক গঠনের গুরুত্ব/প্রয়োজনীয়তা :

- ২-এর পরিপূরক গঠনের ফলে বিয়োগের কাজ যোগের মাধ্যমে করা যায়।
- ২-এর পরিপূরক গঠনে যোগ ও বিয়োগের জন্য একই বর্তনী ব্যবহার করা যায় বিধায় সার্কিটের মাত্রা কমে এবং জটিলতা কম হয়। তাই আধুনিক কম্পিউটারে ২-এর পরিপূরক পদ্ধতি ব্যবহার করা হয়।
- ২-এর পরিপুরক গঠন ব্যবহার করে সরল লজিক বর্তনী তৈরি করা যায়, যা দামে সস্তা ও দ্রুত গতিতে কাজ করে।

উদাহরণ : 26-এর 2-এর পরিপূরক গঠন

26-এর বাইনারি সংখ্যা = 11010

8-বিট রেজিস্টারের জন্য এ সংখ্যা = 00011010; একে উল্টিয়ে লিখলে অর্থাৎ 0 এর জায়গায় 1 এবং 1 এর জায়গায় 0 লিখলে 1-এর পরিপুরুক হবে।

উদাহরণ: 12, 22, 8-এর 2-এর পরিপূরক গঠন

12 ডেসিমাল সংখ্যাটির বাইনারি সংখ্যা হলো 1100। ধনাত্মক 12 সংখ্যাটিকে রেজিস্টারে রাখা হয় এভাবে :

$$+12 \rightarrow 0 0 0 0 1 1 0 0$$

কিন্তু −12 ঋণাত্মক সংখ্যাটি 2 এর পরিপূরক হয়ে থাকে, এভাবে →

ঋণাত্মক সংখ্যা বুঝানোর জন্য চিহ্ন বিট ব্যবহৃত হয়েছে। যেমন-

সংখ্যা	চিহ্ন	মান
+ 12	=0	0001100
+ 8	=0	0001000
+ 22	=0	0010110

12 =1100 = 00001100 (৪-বিট হিসেবে সাজিয়ে)
11110011 (1 এর পরিপূরক করে)
+1
(-12) = 11110100 (2 এর পরিপূরক)

সংখ্যা	চিহ্ন	মান
-12		1110100
- 8	= 1	1111000
- 22	= 1	1101010

বিপরীতকরণ বা নিগেশন: কোনো ধনাতাক সংখ্যাকে ঋণাতাক সংখ্যায় অথবা কোনো ঋণাতাক সংখ্যাক ধনাতাক সংখ্যায় পরিবর্তন করাকে নিগেশন (Negation) বা বিপরীতকরণ বলা হয়। বাইনারি চিহ্নযুক্ত সংখ্যাকে 2-এর পরিপূরকে পরিবর্তন করে নিগেশন করা হয়। নিগেশনের ফলে কোনো সংখ্যার মানের পরিবর্তন হয় না কিন্তু চিহ্নের (Sign) পরিবর্তন হয়। ৪ বিটে +9 এর সমতুল্য বাইনারি মান হলো 00001001 এবং -9 এর সমতুল্য বাইনারি মান হলো 10001001।

	00001001	= +9
নিগেশন	10001001	= 🗕 9 (2 এর পরিপূরক)
পুনঃ নিগেশন	00001001	= +9

২-এর পরিপূরকের গাণিতিক কাজ

২-এর পরিপূরক যোগ

২-এর পরিপুরক যোগের সময় বিটের সংখ্যা সমান হতে হয়। এক্ষেত্রে নিচের নিয়মগুলো মেনে চলে:

- সাধারণ বাইনারি যোগ করে।
- ঋণাতাক সংখ্যাকে ২ এর পরিপূরক করে যোগ করে।
- চিহ্ন বিটের পর ক্যারি বাদ দেয়া হয় (ফলাফলের ক্যারি বিট ওভার ফ্লো হলে তা বিবেচনা করা হয় না)।
- ফলাফল ঋণাতাক হলে (চিহ্ন বিট 1 হলে) তা ২-এর পরিপূরক আকারে হয়।

নিচের ৪ বিট সংখ্যার জন্য যোগের প্রক্রিয়া দেখানো হলো:

দু'টি ধনাত্মক সংখ্যা : 8-বিট রেজিস্টারের জন্য +22 ও +9 এর যোগফল নির্ণয়।

এখানে সংখ্যা দু'টি এবং যোগফলের চিহ্ন বিট 0। সুতরাং, সংখ্যাগুলো ধনাত্মক।

বড় ধনাত্মক ও ছোট ঋণাত্মক সংখ্যা : +22 ও -13 এর যোগফল নির্ণয়।

```
      + 22
      :
      0 0 0 1 0 1 1 0

      -13
      :
      1 1 1 1 0 0 1 1
      [2-এর পরিপূরক]

      + 9
      :
      1 0 0 0 0 1 0 0 1
      111110010

      + 1
      :
      (-13)<sub>10</sub>
      = (11110011)<sub>2</sub>

      এখানে ক্যারি 1 ধরা হবে না। চিহ্ন বিট 0 বলে ফলাফল ধনাতাক হবে।
      :
      নির্ণেয় যোগফল = (00001001)<sub>2</sub>
      বা 9 ।
```

বড় ঋণাত্মক ও ছোট ধনাত্মক সংখ্যা : **–22 এর সাথে +13 এর যোগফল নির্ণয়**।

-22 এর সাথে +13 যোগ করলে যোগফল হবে -9 অর্থাৎ 9 এর 2-এর পরিপূরক $(11110111)_2$ পাওয়া যাবে। এ মানটি 2-এর পরিপূরক হিসেবে আছে। এটিকে পুনরায় 2-এর পরিপূরক করলে সংখ্যা মান পাওয়া যাবে।

2-এর পরিপূরক মান হতে সংখ্যা মান বের করা

কোনো সংখ্যা মান 2-এর পরিপূরক হিসেবে থাকলে এটিকে পুনরায় 2-এর পরিপূরক করলে সংখ্যা মান পাওয়া যাবে। ধরা যাক, 11110111 এর সংখ্যা মান 2-এর পরিপূরক হিসেবে আছে। এর সংখ্যা মান বের করতে হবে।

কিন্তু আমাদের ফলাফল যেহেতু – 9, তাই উপরিউক্ত 9 এর বাইনারি মানের চিহ্নবিট 1 হবে। অর্থাৎ –9 = 10001001

দু'টি ঋণাত্মক সংখ্যা: -22 এর সাথে -13 এর যোগফল নির্ণয়।

২-এর পরিপূরক বিয়োগ (2's Complement Subtraction)

২-এর পরিপূরক বিয়োগ ২-এর পরিপূরক যোগের মতোই। এক্ষেত্রেও যোগ করে বিয়োগের কাজ করা হয়। প্রথম সংখ্যাটিকে বিয়োজক (Minuend) এবং দ্বিতীয় সংখ্যাটিকে বিয়োজ্য (Subtrahend) বলা হয়। বিয়োগ করার ক্ষেত্রে যে নিয়মগুলো মানতে হয়, তা হলো-

- বিয়োজ্য সংখ্যাটির চিহ্ন পরিবর্তন করে (+ থাকলে -, থাকলে + করে) বিয়োজকের সাথে যোগ করতে হয়।
- যোগের মতোই সংখ্যাটি যদি ঋণাতাক হয়, তাহলে এটির ২-এর পরিপূরক করা হয়।
- চিহ্ন বিটের অতিরিক্ত ক্যারি ধরা হয় না।

উদাহরণ-১ : +22 থেকে +13 বিয়োগ করতে হবে।

উদাহরণ-২: –13 থেকে –22 বিয়োগ করতে হবে।

-13 থেকে -22 বিয়োগ= (-13) - (-22) = (-13) + 22

ক্যারি 1 বিবেচ্য নয়। তাই চিহ্নবিট ০ হওয়াতে ফলাফল ধনাত্মক হবে।∴ নির্ণেয় বিয়োগফল, (9)₁₀ = (00001001)₂ (উ:)

উদাহরণ-৩ : ২ এর পরিপূরক পদ্ধতি ব্যবহার করে (65)₁₀ থেকে (55)₁₀ বিয়োগ কর।

65 এর বাইনারি মান = 01000001

55 এর বাইনারি মান = 00110111

৪-বিট রেজিস্টারের জন্য এ সংখ্যা হবে = 00110111

```
      + 55 → 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
```

নোট: 65 থেকে 55 বিয়োগ করলে ফলাফল হয় 10 + 10 এর বাইনারি মান = 1010 = (00001010)₂

উদাহরণ-8 : ২-এর পরিপূরক পদ্ধতি ব্যবহার করে (1101101)₂ থেকে (110110)₂ বিয়োগ কর।

এখানে ২য় সংখ্যা 110110 বিয়োগ করতে হবে। তাই এর ২-এর পরিপুরক করে ১ম সংখ্যা 1101101 এর সাথে যোগ করতে হবে।

16 বিট সংখ্যার ক্ষেত্রে ২-এর পরিপুরক

বড় সংখ্যার ক্ষেত্রে বাইনারি মান ৪ বিটের সমান বা তার চেয়ে বেশি হলে অর্থাৎ চিহ্নবিট ছাড়া 7 বিট অতিক্রম করলে সংখ্যাটি 16 বিট করে সাজিয়ে ২-এর পরিপূরক করতে হয়। নিচে একটি উদাহরণ দেয়া হলো :

উদাহরণ : ২-এর পরিপূরক ব্যবহার করে –92 ও –53 সংখ্যা দু'টির যোগফল নির্ণয়।

92 এর সমতুল্য বাইনারি মান = 01011100 এর 16 বিট বাইনারি মান = 0000000001011100 50 এর সমতুল্য বাইনারি মান = 00110101 এর 16 বিট বাইনারি মান = 0000000000110101

অতিরিক্ত ক্যারি বিবেচনা করা হয় না। সুতরাং নির্ণেয় যোগফল = –145 = 1111111101101111 এটি ২-এর পরিপুরক হিসেবে আছে। এ মানকে পুনরায় ২-এর পরিপুরক করলে সংখ্যাটি পাওয়া যাবে।

উল্লেখ্য, কোনো সংখ্যার বাইনারি মান বা তাদের যোগফল 128 বা তার বেশি হলে 16 বিটের রেজিস্টার ব্যবহার করতে হবে।