ТЕН ИЗПИТ ПО МАТЕМАТИКА ЗА ДЪРЖАВЕН ЗРЕЛОС

ПЪРВА ЧАСТ

- **1.** Най-голямото от числата $\log_{\frac{1}{2}} \sqrt[3]{2}$, $\log_{\frac{1}{2}} 4$, $\log_{\frac{1}{2}} \frac{1}{8}$ и $\log_{\frac{1}{2}} \frac{1}{2}$ е:
 - + A) $\log_{\frac{1}{2}} \frac{1}{8}$ B) $\log_{\frac{1}{2}} \sqrt[3]{2}$ Γ) $\log_{\frac{1}{2}} \frac{1}{2}$

- **2.** Кое от уравненията има корени $\frac{1}{2}$ и $-\frac{2}{3}$?
 - A) $6x^2 2x 1 = 0$

 $\mathbf{E}) \ 3x^2 + x - 2 = 0$

+ B) $6x^2 + x - 2 = 0$

- Γ) $6x^2 x 2 = 0$
- **3.** Ако x_1 и x_2 са корените на уравнението $x^2 + 4x 1 = 0$, то стойността на израза $A = x_1 - x_2(x_1 - 1)$ е равна на:
 - A) 3
- B) 5
- Γ) 5

4. Графиката на функцията $f(x) = x^2 + x + \frac{1}{4}$ e:

+B

- **5.** Допустимите стойности на променливата x в израза $\sqrt{\frac{x^2 + 2x}{2x^2 8}}$ са:
 - A) $x \in (-\infty; 0] \cup (2; +\infty)$

- Б) $x \in (-\infty; -2) \cup (-2; 0) \cup (2; +\infty)$
- A) $x \in (-\infty; 0] \cup (2; +\infty)$ B) $x \in (-\infty; -2) \cup (-2; 0] \cup (2; +\infty)$ B) $x \in (-\infty; -2) \cup (-2; 0] \cup (2; +\infty)$ B) $x \in (-\infty; -2) \cup (-2; 0] \cup (2; +\infty)$
- **6.** Стойността на израза $M = \log_2 1 5^{\log_5 6} + \log_{\frac{1}{3}} \frac{1}{81}$ е равна на:
 - + A) 2
- (5) 3
- B) 0
- Γ) -1
- 7. Кое от уравненията има точно два различни реални корена?
 - A) $4x^4 + 4x^2 + 1 = 0$

 $\text{B) } x^3 - 3x^2 + 2x = 0$

+ B) $(9-x^2)\sqrt{2x+1}=0$

- Γ) $\frac{4-x^2}{x^2+x^2}=0$
- 8. Коя от редиците е геометрична прогресия?
 - A) 3, 6, 9, 12; ...

- Б) 1, 8, 27, 64, ...
- +B) -6, 9, $-\frac{27}{2}$, $\frac{81}{4}$, ...
- Γ) $\sqrt{3}$, $2\sqrt{3}$, $3\sqrt{3}$, $4\sqrt{3}$, ...

на първите 10 члена S_{10} на тази прогресия е равна на: + A) 115Б) 130 B) 230 Γ) 165 10. Студент получил печалба от лотария на стойност 20 000 лв. и ги внесъл в банка за срок от 2 години при сложна годишна лихва 5 %. Колко лева е спечелил студентът от банката за тези 2 години? A) 22 000 Б) 2 000 B) 22 050 $+\Gamma$) 2 050 **11.** След опростяване на израза $M = \cos(90^\circ + \alpha) \cdot \sin \beta - \cos \alpha \cdot \sin(90^\circ - \beta)$ се получава: + B) - $\cos(\alpha - \beta)$ B) $\sin(\beta - \alpha)$ Γ) $\cos(\alpha - \beta)$ A) $-\cos(\alpha + \beta)$ 12. Да работят по проект на дадена тема изявили желание 10 ученици. Броят на екипите, които могат да се съставят от един ръководител и трима членове, е: A) 210 $+ \,\mathrm{E})\,840$ B) 720 Γ) 5040 13. Кое число може да се добави към множеството от данни: 14, 15, 25, 11, 17, 20 така, че медианата на новополученото множество да е същата? A) 15 Б) 17 Г) няма такова число **14.** След опростяване на израза $\frac{\sqrt[4]{a} + \sqrt[4]{a^3}}{\sqrt{a} + 1} + \frac{1 - \sqrt{a}}{\sqrt[4]{a}}$ при a > 0 се получава: **15.** Хипотенузата на правоъгълен триъгълник с периметър 60 cm и лице 150 cm² е равна на: Б) 27.5 cm + A) 25 cmB) 35 cm Γ) 32,5 cm **16.** В равнобедрения $\triangle ABC$ (AC = BC) радиусът на вписаната окръжност се отнася към височината СН както 5:18. Ако периметърът на триъгълника е 36 dm, то дължината на СН е равна на: Б) $\frac{18}{22}\sqrt{299}$ dm A) 13 dm $+\Gamma$) 12 dm B) 11 dm HBA **17.** Даден е трапецът АBCD, за който $AB \parallel CD$ и $AD \cap BC = M$. Ако $S_{\Delta DCM} = 18 \, \mathrm{cm}^{-2}$ и $S_{ABCD} = 32 \, \mathrm{cm}^{-2}$, то отношението AD : DM е равно на: A) 3:2+ $\mathbf{5}) 2 : 3$ B) 5:3Γ) 16:9

18. За $\triangle ABC$ на чертежа BC = 10 cm, AB = 20 cm и медианата BM = 13 cm. Дължината на страната AC е равна на:

 Γ) $4\sqrt{42}$ cm

A) 16 cm

+ B) 18 cm

Б) $4\sqrt{11}$ cm

9. Ако за аритметичната прогресия a_1, a_2, a_3, \dots е изпълнено $a_1 = -2$ и $a_7 = 16$, то сумата

19. На чертежа ABCD е успоредник, $AC \cap BD = O$ и $\angle BAD = \alpha$. Окръжност с диаметър AO пресича страните AB и AD съответно в точките M и N. Ако MN = m, то диагоналът AC има дължина, равна на:

A)
$$\frac{m}{\sin \alpha}$$

$$\mathbf{b}) \frac{m}{\cos \alpha}$$

+B)
$$\frac{2m}{\sin\alpha}$$

$$\Gamma$$
) $\frac{m}{2\sin\alpha}$

20. Триъгълникът ABC има страни AB = 6 dm, BC = 5 dm и AC = 7 dm. Вярно е, че:

A)
$$\triangle ABC$$
 е правоъгълен

+ B)
$$S_{ABC} = 6\sqrt{6} \text{ dm}^2$$

B)
$$\cos \angle ABC = -\frac{1}{5}$$

$$\Gamma$$
) височината $CH = \sqrt{6} \, \mathrm{dm}$

ВТОРА ЧАСТ

21. Най-малката и най-голямата стойност на функцията $y = -2x^2 + x + 1$ в интервала [-1; 2] са равни на

Отговор:
$$-5; \frac{9}{8}$$

22. Положителните решения на системата $\begin{vmatrix} x^2 + y^2 + x + y = 152 \\ xy = 44 \end{vmatrix}$ са

23. В един ден шест класа $X^A, X^B, ..., X^E$ имат часове в шест различни, разположени една до друга стаи в училище. Вероятността X^A и X^B да имат часове в съседни стаи е равна на

Отговор:
$$\frac{1}{3}$$

24. Успоредник има периметър 30 cm, по-голям диагонал 13 cm и ъгъл 120°. Лицето на успоредника е равно на

Отговор:
$$28\sqrt{3}$$
 cm²

25. Радиусът на описаната около остроъгълния триъгълник ABC окръжност е 20 cm. Ако страната AC = 24 cm, то $tg \angle ABC$ е равен на

Отговор:
$$\frac{3}{4}$$

ТРЕТА ЧАСТ

26. Решете уравнението $\left(2x + \frac{1}{x}\right)^2 + 3\left(2x + \frac{1}{x}\right) - 4 = 0$

Отговор:
$$\frac{-2 \pm \sqrt{2}}{2}$$

27. За $\triangle ABC$ ($AC \neq AB$) AC = 4 cm, BC = 6 cm и $\angle ABC$: $\angle BAC = 1$: 2. Намерете $\cos \angle ABC$, дължините на страната AB и ъглополовящата CL ($L \in AB$).

Отговор:
$$\frac{3}{4}$$
; 5 cm; $3\sqrt{2}$ cm

28. Номерата на билетите, участващи в томбола, са четирицифрени числа с различни цифри. Раздадени били предметни награди на участници с номера на билетите, започващи с цифрата 5 и окончаващи на четна цифра. Определете броя на възможните печеливши билети.

Отговор: 280

Автор на предложения изпитен вариант за ДЗИ по математика - Сияна Руменова Матеева, учител по математика в МГ "Д-р Петър Берон" - Варна.