Пример. На локализованном интервале [1; 1,5] уточнить корень нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

до точности $\varepsilon = \delta = 10^{-3}$ с помощью метода Риддерса.

Решение. Вначале вычисляется координата середины заданного интервала

$$c = \frac{1+1,5}{2} = 1,25$$

и значения функции на концах заданного интервала, а также во вновь найденной точке

$$f(1)=1^3-\frac{1^2+1}{5}-1,2=-0,6$$

$$f(1,25) = 1,25^{3} - \frac{1,25^{2} + 1,25}{5} - 1,2 = 0,190625,$$

 $f(1,5) = 1,5^{3} - \frac{1,5^{2} + 1,5}{5} - 1,2 = 1,425.$

Прежде чем воспользоваться формулой для определения координаты точки пересечения экспоненты с осью абсцисс определяется знак разности f(a) - f(b) = -2,025, поскольку результат меньше нуля, то первый множитель в числителе sign[f(a)-f(b)] принимает значение -1.

Подставляем определенные значения в формулу для определения искомой неизвестной

$$x_0 = 1,3497612 + (1,3497612 - 1)$$

$$-\frac{170,190025}{\sqrt{0,190625^2-\left(-0,6\right)\cdot 1,425}}=1,1995224$$
 и вычисляем значение функции во вновь найденной точке

 $f(1,1995224) = 1,1995224^3 - \frac{1,1995224^2 + 1,1995224}{1,1995224}$

-1.0,190625

-1,2 = -0.0017377.

Найденное значение функции в точке x_0 позволяет выполнить анализ интервалов $[a, x_0]$ и $[x_0, b]$, а также выделить тот под интервал, на котором происходит смены знака функции. В рассматриваемом случае знак функции меняется на интервале $[x_0, b]$, таким образом, осуществляется перенос точки а на место найденной x_0 . В результате заданный первоначальный интервал сузился до [1,1995224; 1,5].

Для вновь определенного интервала проводится повторное вычисление координаты середины интервала

$$c_1 = \frac{1,1995224 + 1,5}{2} = 1,3497612$$

и значение функции в этой точке

$$f(1,3497612) = 1,3497612^{3} - \frac{1,3497612^{2} + 1,3497612}{5} - \frac{1,2 = 0,6247463}{5}$$

Перед определением координаты точки пересечения экспоненты с осью абсцисс проводится анализ знака первого члена в числителе, который, как и ранее является отрицательным. Находим точку пересечения экспоненты с осью абсцисс

$$x_1 = 1,3497612 + (1,3497612 - 1,1995224)$$

$$\frac{-1 \cdot 0,6247463}{\sqrt{0,6247463^2 - (-0,0017377) \cdot 1,425}} = 1,1999967$$

и значение функции в точке x_1

$$f(1,1999967) = 1,1999967^3 - \frac{1,1999967^2 + 1,1999967}{5}$$

-1,2 = -0.0000119.

Проводится проверка на достижение полученным решением заданной точности

заданной точности
$$|x_{i}-x_{i}|<\varepsilon.$$

$$|x_1-x_0|<\varepsilon$$
,

|1,1999967-1,1995224| = 0,0004743 < 0,001.

Как видим необходимое условие достижения решения с заданной точностью выполнено. Далее проверяется достаточное условие по достижению значением функции в точке x_1 заданной

условие по достижению значением функции в точке
$$x_1$$
 заданной точности
$$|f(x_1)| < \delta ,$$

Таблица 10 – Решение нелинейного уравнения методом

P	ИД	ΙД	e	p	ca	•
_	222	1				

<u>k</u>	a	f(a)	b	f(b)	c
0	1	-0,6	1,5	1,425	1,25
1	1,1995224	-0,0017377	1,5	1,425	1,3497612

<u>k</u>	f(c)	sign(x)	x	f(x)
0	0,1906250	-1	1,1995224	-0,0017377
1	0,6247463	-1	1,1999967	-0,0000119

|-0.0000119| < 0.001.

Видим, что и достаточное условие сходимости для полученного решения также выполнено.

Процесс нахождения решения нелинейного уравнения методом Риддерса представлен в таблице 10.

В итоге для достижения решения с требуемой точностью сверхлинейному методу потребовалось всего две итерации.

Точное решение заданного нелинейного уравнения соответствует $x^* = 1, 2$.

Ответ. Данное нелинейное уравнение на рассматриваемом интервале имеет решение x = 1,1999967, которое получено с точностью $\varepsilon = 0,001$ за две итерации.