FCC RF Test Report

APPLICANT: XIAOMI COMMUNICATIONS CO., LTD.

EQUIPMENT : Mobile Phone
BRAND NAME : POCOPHONE
MODEL NAME : M1805E10A

FCC ID : 2AFZZ-XMSE10A

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION: (NII) Unlicensed National Information

Infrastructure

The product was received on May 08, 2018 and testing was completed on Jun. 14, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 1 of 33
Report Issued Date : Jun. 20, 2018

Testing Laboratory 1190

Report No.: FR850814D

Report Version : Rev. 01

TABLE OF CONTENTS

		N HISTORY	
SU		Y OF TEST RESULT	
1	GENE	RAL DESCRIPTION	
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	
	1.6	Testing Location	
	1.7	Applicable Standards	9
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	10
	2.1	Carrier Frequency and Channel	10
	2.2	Test Mode	12
	2.3	Connection Diagram of Test System	14
	2.4	Support Unit used in test configuration and system	14
	2.5	EUT Operation Test Setup	15
	2.6	Measurement Results Explanation Example	15
3	TEST	RESULT	16
	3.1	26dB & 99% Occupied Bandwidth Measurement	16
	3.2	Maximum Conducted Output Power Measurement	18
	3.3	Power Spectral Density Measurement	20
	3.4	Unwanted Emissions Measurement	23
	3.5	AC Conducted Emission Measurement	28
	3.6	Automatically Discontinue Transmission	30
	3.7	Antenna Requirements	31
4	LIST	OF MEASURING EQUIPMENT	32
5		RTAINTY OF EVALUATION	33
AP	PEND	X A. CONDUCTED TEST RESULTS	
ΑP	PEND	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PEND	X C. RADIATED SPURIOUS EMISSION	
ΑP	PEND	X D. DUTY CYCLE PLOTS	
API	PEND	X E. SETUP PHOTOGRAPHS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 2 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

REVISION HISTORY

Report No.: FR850814D

: 3 of 33

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR850814D	Rev. 01	Initial issue of report	Jun. 20, 2018

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Jun. 20, 2018

FAX: 886-3-328-4978 Report Version : Rev. 01 FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	2.1049 & 15.403(i)	26dB & 99% Bandwidth	-	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 24 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 11 dBm	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	Pass	Under limit 2.30 dB at 5725.320 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 12.14 dB at 0.152 MHz
3.6	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.7	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 4 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

1 General Description

1.1 Applicant

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

Report No.: FR850814D

1.2 Manufacturer

Xiaomi Communications Co., Ltd.

The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Phone			
Brand Name	POCOPHONE			
Model Name	M1805E10A			
FCC ID	2AFZZ-XMSE10A			
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/DC-HSUPA/ HSPA+/LTE/ WLAN 2.4GHz 802.11b/g/n HT20 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE			
IMEI Code	Conducted: N/A Conduction: 868703030040513/868703030040521 Radiation: 868703030049035/868703030049043			
HW Version	P2			
SW Version	MIUI 9			
EUT Stage	Identical Prototype			

Remark

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two types of EUT, the difference between two samples is for memory, the sample 1 is 6+64GB capacity and the sample 2 is 6+128GB capacity. According to the difference, we only choose sample 1 to perform full test.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 5 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

1.4 Product Specification of Equipment Under Test

Sta	andards-related Product Specification				
5180 MHz ~ 5240 MHz					
Tx/Rx Frequency Range	5260 MHz ~ 5320 MHz				
	5500 MHz ~ 5700 MHz				
	<5180 MHz ~ 5240 MHz>				
	<ant. 1=""></ant.>				
	802.11a: 16.83 dBm / 0.0482 W				
	802.11n HT20: 16.75 dBm / 0.0473 W				
	802.11n HT40 : 16.46 dBm / 0.0443 W				
	802.11ac VHT20 : 16.65 dBm / 0.0462 W				
	802.11ac VHT40 : 16.39 dBm / 0.0436 W				
	802.11ac VHT80 : 11.69 dBm / 0.0148 W				
	<ant. 2=""></ant.>				
	802.11a: 17.48 dBm / 0.0560 W				
	802.11n HT20 : 17.36 dBm / 0.0545 W				
	802.11n HT40 : 16.97 dBm / 0.0498 W				
	802.11ac VHT20 : 17.24 dBm / 0.0530 W				
	802.11ac VHT40 : 16.93 dBm / 0.0493 W				
	802.11ac VHT80 : 11.14 dBm / 0.0130 W				
	MIMO <ant. 1+2=""></ant.>				
	802.11a : 20.49 dBm / 0.1119 W				
	802.11n HT20 : 20.46 dBm / 0.1112 W				
	802.11n HT40 : 19.95 dBm / 0.0989 W				
	802.11ac VHT20 : 20.41 dBm / 0.1099 W				
	802.11ac VHT40 : 19.93 dBm / 0.0984 W				
	802.11ac VHT80 : 14.66 dBm / 0.0292 W				
	<5260 MHz ~ 5320 MHz>				
aximum Output Power to	<ant. 1=""></ant.>				
Antenna	802.11a : 16.98 dBm / 0.0499 W				
	802.11n HT20 : 16.79 dBm / 0.0478 W				
	802.11n HT40 : 16.46 dBm / 0.0443 W				
	802.11ac VHT20 : 16.76 dBm / 0.0474 W				
	802.11ac VHT40 : 16.44 dBm / 0.0441 W				
	802.11ac VHT80 : 12.86 dBm / 0.0193 W				
	<ant. 2=""></ant.>				
	802.11a : 17.39 dBm / 0.0548 W				
	802.11n HT20 : 17.32 dBm / 0.0540 W				
	802.11n HT40 : 16.96 dBm / 0.0497 W				
	802.11ac VHT20 : 17.24 dBm / 0.0530 W				
	802.11ac VHT40 : 16.76 dBm / 0.0474 W				
	802.11ac VHT80 : 13.21 dBm / 0.0209 W				
	MIMO <ant. 1+2=""></ant.>				
	802.11a : 20.49 dBm / 0.1119 W				
	802.11n HT20 : 20.48 dBm / 0.1117 W				
	802.11n HT40 : 19.95 dBm / 0.0989 W				
	802.11ac VHT20 : 20.43 dBm / 0.1104 W				
	802.11ac VHT40 : 19.93 dBm / 0.0984 W				
	802.11ac VHT80 : 16.18 dBm / 0.0415 W				
	<5500 MHz ~ 5700 MHz >				
	<ant. 1=""></ant.> 902 11a : 16 45 dPm / 0 0442 W				
	802.11a : 16.45 dBm / 0.0442 W 802.11n HT20 : 16.37 dBm / 0.0434 W				

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 6 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

	000 44 - UT40 - 45 05 -ID / 0 0004 \	A /			
	802.11n HT40 : 15.95 dBm / 0.0394 V				
	802.11ac VHT20 : 16.30 dBm / 0.0427 W				
	802.11ac VHT40 : 15.90 dBm / 0.038				
	802.11ac VHT80 : 15.81 dBm / 0.038	1 W			
	<ant. 2=""></ant.>				
	802.11a : 16.43 dBm / 0.0440 W				
	802.11n HT20 : 16.36 dBm / 0.0433 V	N			
	802.11n HT40 : 15.94 dBm / 0.0393 V	N			
	802.11ac VHT20 : 16.32 dBm / 0.042	9 W			
	802.11ac VHT40 : 15.92 dBm / 0.039	1 W			
	802.11ac VHT80 : 15.98 dBm / 0.0396 W				
	MIMO <ant. 1+2=""></ant.>				
	802.11a: 19.49 dBm / 0.0889 W				
	802.11n HT20 : 19.41 dBm / 0.0873 V	N			
	802.11n HT40 : 18.99 dBm / 0.0793 V				
	802.11ac VHT20 : 19.40 dBm / 0.087				
	802.11ac VHT40 : 18.97 dBm / 0.078				
	802.11ac VHT80 : 18.98 dBm / 0.079				
	<5180 MHz ~ 5240 MHz>				
	802.11a : 17.55 MHz				
	802.11n HT20 : 18.65 MHz				
	802.11n HT40 : 36.80 MHz				
	802.11ac VHT80 : 75.72 MHz				
	<5260 MHz ~ 5320 MHz>				
000/ O	802.11a : 17.55 MHz				
99% Occupied Bandwidth	· · · · · · · · · · · · · · · · · · ·				
	802.11n HT40 : 36.80 MHz				
	802.11ac VHT80 : 75.72 MHz				
	<5500 MHz ~ 5700 MHz >				
	802.11a : 17.50 MHz				
	802.11n HT20 : 18.60 MHz				
	802.11n HT40 : 36.70 MHz				
	802.11ac VHT80 : 75.84 MHz				
Antenna Type	Ant. 1 : LDS Antenna				
Antenna Type	Ant. 2: LDS Antenna				
	<5180 MHz ~ 5240 MHz>				
	Ant. 1 : 0.85 dBi				
	Ant. 2 : -2.49 dBi				
	<5260 MHz ~ 5320 MHz>				
Antenna Gain	Ant. 1 : -0.53 dBi				
Antenna Gam	Ant. 2 : -1.05 dBi				
	<5500 MHz ~ 5700 MHz>				
	Ant. 1 : -1.31 dBi				
	1				
	Ant. 2 : -0.73 dBi				
Type of Modulation	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)				
- , , , , , , , , , , , , , , , , , , ,	802.11ac : OFDM (BPSK / QPSK / 16	, , , , , , , , , , , , , , , , , , ,			
	Ant. 1	Ant. 2			
	802.11 a/n/ac	V			
Antenna Function Description	SISO				
	802.11 a/n/ac	.,			
	1 1 1	· · · · · · · · · · · · · · · · · · ·			
	MIMO	V			

Report No.: FR850814D

Note:

1. MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 7 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

2. For SISO & MIMO mode, the whole testing has assessed only MIMO mode by referring to their higher conducted power.

Report No.: FR850814D

- 3. For 802.11n HT20 / ac VHT20 and 802.11n HT40 / ac VHT40 mode, the whole testing have assessed only 802.11an HT20/ HT40 by referring to their maximum conducted power.
- 4. For 802.11a / an HT20 MIMO mode, the whole testing has assessed only 802.11a mode by referring to their higher conducted power for RSE testing.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

SPORTON INTERNATIONAL INC. is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and under the FCC-recognized accredited testing laboratories by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.			
	No.52, Huaya 1st Rd., Guishan Dist. Taoyuan City Taiwan			
Test Site Location	Tel: 886-3-327-3456			
	FAX: +886-3-327-0978			
Took Cita No	Sporton Site No.			
Test Site No.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.			
	No.58, Aly. 75, Ln. 564 Wenha 3rd Rd. Guishan Dist. Taoyuan City Taiwan			
Test Site Location	TEL: +886-3-327-3456			
	FAX: +886-3-328-4978			
	Sporton Sito No	FCC Test Fi Registration		
Test Site No.	Sporton Site No.			
	03CH12-HY	TW0007	214511	

Note: The test site complies with ANSI C63.4 2014 requirement.

 SPORTON INTERNATIONAL INC.
 Page Number
 : 8 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR850814D

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Report Issued Date: Jun. 20, 2018
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 9 of 33

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5180-5240 MHz	38*	5190	46*	5230
Band 1 (U-NII-1)	40	5200	48	5240
(0 1411 1)	42#	5210		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5260-5320 MHz Band 2	54*	5270	62*	5310
(U-NII-2A)	56	5280	64	5320
(3 :::: 2/1)	58#	5290		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5500-5700 MHz	104	5520	132	5660
Band 3 (U-NII-2C)	106#	5530	134*	5670
(6 1111 23)	108	5540	136	5680
	110*	5550	140	5700

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 10 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	118*	5590	124	5620
TDWR Channel	120	5600	126*	5630
	122#	5610	128	5640

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "*" were 802.11ac VHT80.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 11 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Single Antenna

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT80	MCS0

MIMO Antenna

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT80	MCS0

Test Cases						
AC Conducted Emission	Mode 1 : GSM850 Idle + Bluetooth Link + WLAN Link(5GHz) + Camera(Rear) + USB Cable 1(Charging from Adapter1) + SIM 1					
Remark: For Cable 1.	Radiated Test Cases, The tests were performed with Adapter 1, Earphone and USB					

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 12 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No.: FR850814D

Ch. #		Band I: 5180-5240 MHz	Band II:5260-5320 MHz	Band III:5500-5700MHz
		802.11a	802.11a	802.11a
L	Low	36	52	100
M	Middle	44	60	116
Н	High	48	64	140
	Straddle	-	-	144

Ch. #		Band I: 5180-5240 MHz	Band II: 5260-5320 MHz	Band III: 5500-5700MHz
		802.11n HT40	802.11n HT40	802.11n HT40
L	Low	38	54	102
М	Middle	-	-	110
Н	High	46	62	134
Straddle		-	-	142

Ch #		Band I: 5180-5240 MHz Band II: 5260-5320 MHz		Band III:5500-5700MHz
	Ch. #	802.11ac VHT80	802.11ac VHT80	802.11ac VHT80
L	Low	-	-	106
M	Middle	42	58	122
Н	High	-	-	-
:	Straddle	-	-	138

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 13 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No.: FR850814D

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
3.	NOTE BOOK	Dell	Latitude E6320	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone Sony Ericsson		MW600	PY700A2029	N/A	N/A
5.	iPod Earphone	Apple	A1285	DoC	Unshielded, 1.2m	N/A
6.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 14 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuous transmit/receive.

Report No.: FR850814D

: 15 of 33

Report Issued Date: Jun. 20, 2018

Page Number

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 8.2 dB and 20dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 8.2 + 20 = 28.2 (dB)

: Rev. 01 Report Version FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) $\geq 3 * RBW$.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

FAX: 886-3-328-4978

SPORTON INTERNATIONAL INC.Page NumberTEL: 886-3-327-3456Report Issued

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

: 16 of 33

Report No.: FR850814D

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 17 of 33

Report Issued Date : Jun. 20, 2018

Report Version : Rev. 01

Report No.: FR850814D

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

Report No.: FR850814D

For the 5.25–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

Page Number : 18 of 33

Report Issued Date : Jun. 20, 2018

Report Version : Rev. 01

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 19 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

Report No.: FR850814D

For the 5.25–5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456 Report Issued Date: Jun. 20, 2018

FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Report Version : Rev. 01

: 20 of 33

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- The testing follows Method SA-2 of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 - Measure the duty cycle.
 - Set span to encompass the entire emission bandwidth (EBW) of the signal.
 - Set RBW = 1 MHz.
 - Set VBW ≥ 3 MHz.
 - Number of points in sweep ≥ 2 Span / RBW.
 - Sweep time = auto.
 - Detector = RMS
 - Trace average at least 100 traces in power averaging mode.
 - Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the
 average power during the actual transmission times. For example, add 10 log(1/0.25) = 6
 dB if the duty cycle is 25 percent.
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 4. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 21 of 33

Report No.: FR850814D

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 22 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR850814D

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

 SPORTON INTERNATIONAL INC.
 Page Number
 : 23 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

EIRP (dBm)	Field Strength at 3m (dBμV/m)		
- 27	68.2		

Note: The following formula is used to convert the EIRP to field strength.

EIRP =
$$E_{Meas}$$
 + $20log (d_{Meas})$ - 104.7

where

EIRP is the equivalent isotropically radiated power, in dBm

 E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$

 $d_{\mbox{\scriptsize Meas}}$ is the measurement distance, in m

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.
TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 24 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

3.4.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
Section G) Unwanted emissions measurement.

Report No.: FR850814D

- (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
- (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 25 of 33

Report Issued Date : Jun. 20, 2018

Report Version : Rev. 01

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 26 of 33
Report Issued Date : Jun. 20, 2018

Report No.: FR850814D

Report Version : Rev. 01

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 27 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBμV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

SPORTON INTERNATIONAL INC.Page NumberTEL: 886-3-327-3456Report Issued

FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 28 of 33

Report No.: FR850814D

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 29 of 33
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR850814D

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : 30 of 33

Report Issued Date : Jun. 20, 2018

Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR850814D

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 1	Ant 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
Band I	0.85	-2.49	0.85	2.35	0.00	0.00
Band II	-0.53	-1.05	-0.53	2.22	0.00	0.00
Band III	-1.31	-0.73	-0.73	2.00	0.00	0.00

Power limit reduction = Composite gain - 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

 SPORTON INTERNATIONAL INC.
 Page Number
 : 31 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration	Test Date	Due Date	Remark
					Date			
Power Meter	Anritsu	ML2495A	1218006	N/A	Oct. 06, 2017	May 25, 2018~ Jun. 09, 2018	Oct. 05, 2018	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1207363	300MHz~40GHz	Oct. 06, 2017	May 25, 2018~ Jun. 09, 2018	Oct. 05, 2018	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2017	May 25, 2018~ Jun. 09, 2018	Nov. 20, 2018	Conducted (TH05-HY)
Hygrometer	Testo	DTM-303A	TP157075	N/A	Mar. 06, 2018	May 25, 2018~ Jun. 09, 2018	Mar. 05, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC130048 4	N/A	Mar. 01, 2018	May 25, 2018~ Jun. 09, 2018	Feb. 28, 2019	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Nov. 23, 2017	Jun. 02, 2018~ Jun. 14, 2018	Nov. 22, 2018	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&N-6-0 6	35414&AT- N0602	30MHz~1GHz	Oct. 14, 2017	Jun. 02, 2018~ Jun. 14, 2018	Oct. 13, 2018	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Oct. 20, 2017	Jun. 02, 2018~ Jun. 14, 2018	Oct. 19, 2018	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz ~ 40GHz	Nov. 27, 2017	Jun. 02, 2018~ Jun. 14, 2018	Nov. 26, 2018	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 26, 2018	Jun. 02, 2018~ Jun. 14, 2018	Mar. 25, 2019	Radiation (03CH12-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 21, 2018	Jun. 02, 2018~ Jun. 14, 2018	May 20, 2019	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY532701 48	1GHz~26.5GHz	Jan. 15, 2018	Jun. 02, 2018~ Jun. 14, 2018	Jan. 14, 2019	Radiation (03CH12-HY)
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 18, 2017	Jun. 02, 2018~ Jun. 14, 2018	Jul. 17, 2018	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 25, 2017	Jun. 02, 2018~ Jun. 14, 2018	Dec. 24, 2018	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 85	10Hz ~ 44GHz	Oct. 31, 2017	Jun. 02, 2018~ Jun. 14, 2018	Oct. 30, 2018	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	NCR	Jun. 02, 2018~ Jun. 14, 2018	NCR	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	NCR	Jun. 02, 2018~ Jun. 14, 2018	NCR	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	NCR	Jun. 02, 2018~ Jun. 14, 2018	NCR	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP140349	N/A	Oct. 12, 2017	Jun. 02, 2018~ Jun. 14, 2018	Oct. 11, 2018	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2G Low Pass	Jul. 17, 2017	Jun. 02, 2018~ Jun. 14, 2018	Jul. 16, 2018	Radiation (03CH12-HY)
Filter	Woken	WHKX8-5272. 5-6750-18000 -40ST	SN2	6.75G High pass	Jul. 17, 2017	Jun. 02, 2018~ Jun. 14, 2018	Jul. 16, 2018	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30M-18G	Mar. 14, 2018	Jun. 02, 2018~ Jun. 14, 2018	Mar. 13, 2019	Radiation (03CH12-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	NCR	Jun. 10, 2018	NCR	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	3.6GHz	Dec. 08, 2017	Jun. 10, 2018	Dec. 07, 2018	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 06, 2018	Jun. 10, 2018	Mar. 05, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 30, 2017	Jun. 10, 2018	Nov. 29, 2018	Conduction (CO05-HY)

Report No.: FR850814D

NCR: No Calibration Required

SPORTON INTERNATIONAL INC. Page Number TEL: 886-3-327-3456

Report Issued Date: Jun. 20, 2018 FAX: 886-3-328-4978 Report Version : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.7dB
of 95% (U = 2Uc(y))	2.7 UB

Report No.: FR850814D

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	3. IUB

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.2dB
of 95% (U = 2Uc(y))	3.2UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.7dB
of 95% (U = 2Uc(y))	4.7ub

 SPORTON INTERNATIONAL INC.
 Page Number
 : 33 of 33

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report Number : FR850814D

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Kai Liao/Luffy Lin/Lena Lo/Shiang Wang/Derek Hsu/Tommy Lee	Temperature:	21~25	°C
Test Date:	2018/5/25~2018/6/09	Relative Humidity:	51~54	%

Report Number : FR850814D

TEST RESULTS DATA 26dB and 99% OBW

Band I																
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Band	9% width Hz)	Band	26 dB Bandwidth (MHz) IC 99% Bandwidth Power Limit (dBm)		Bandwidth Bandwidth Power Limit EIRP Limit			Note			
	Ant	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2							
11a	6Mbps	2	36	5180	17.40	17.40	23.40	23.70	-		22.41					
11a	6Mbps	2	44	5220	17.50	17.55	23.20	23.00	-		22.43		•			
11a	6Mbps	2	48	5240	17.45	17.50	23.40	23.50	-		22.42		•			
HT20	MCS0	2	36	5180	18.55	18.65	24.60	25.10	-		22.68		•			
HT20	MCS0	2	44	5220	18.55	18.60	25.00	24.80	-		22.68		•			
HT20	MCS0	2	48	5240	18.65	18.55	25.20	24.60	-		-		- 22.68		•	
HT40	MCS0	2	38	5190	36.50	36.50	41.58	41.94	-		- 23.01		•			
HT40	MCS0	2	46	5230	36.80	36.70	47.88	42.48	-		- 23.01		•			
VHT80	MCS0	2	42	5210	75.72	75.72	83.52	82.56	-		23.01		•			

Report Number : FR850814D

TEST RESULTS DATA Average Power Table

	FCC Band I																
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		uty ctor B)	Average Conducted Power (dBm)		FCC Conducted Power Limit (dBm)		DG (dBi)			Pass/Fail			
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2				
11a	6Mbps	1	36	5180	0.08	0.08	15.99	16.01		24.00	24.00	0.85	-2.49		Pass		
11a	6Mbps	1	44	5220	0.08	0.08	16.83	17.48		24.00	24.00	0.85	-2.49		Pass		
11a	6Mbps	1	48	5240	0.08	0.08	16.81	17.45		24.00	24.00	0.85	-2.49		Pass		
HT20	MCS0	1	36	5180	0.09	0.09	16.71	17.35		24.00	24.00	0.85	-2.49		Pass		
HT20	MCS0	1	44	5220	0.09	0.09	16.75	17.36		24.00	24.00	0.85	-2.49		Pass		
HT20	MCS0	1	48	5240	0.09	0.09	16.74	17.32		24.00	24.00	0.85	-2.49		Pass		
HT40	MCS0	1	38	5190	0.16	0.16	12.40	13.08		24.00	24.00	0.85	-2.49		Pass		
HT40	MCS0	1	46	5230	0.16	0.16	16.46	16.97		24.00 24.00		0.85	-2.49		Pass		
VHT20	MCS0	1	36	5180	0.09	0.09	16.61	17.23		24.00 24.00		0.85	-2.49		Pass		
VHT20	MCS0	1	44	5220	0.09	0.09	16.65	17.24		24.00 24.00		0.85	-2.49		Pass		
VHT20	MCS0	1	48	5240	0.09	0.09	16.64	17.20		24.00 24.00		0.85	-2.49		Pass		
VHT40	MCS0	1	38	5190	0.18	0.18	12.39	13.06		24.00 24.00		0.85	-2.49		Pass		
VHT40	MCS0	1	46	5230	0.18	0.18	16.39	16.93		24.00	24.00	0.85	-2.49		Pass		
VHT80	MCS0	1	42	5210	0.36	0.36	11.69	11.14		24.00	24.00	0.85	-2.49		Pass		
11a	6Mbps	2	36	5180	0.08	0.08	16.25	16.32	19.30	24.	00	0.85			Pass		
11a	6Mbps	2	44	5220	0.08	0.08	17.10	17.79	20.47	24.	.00	0.85			Pass		
11a	6Mbps	2	48	5240	0.08	0.08	17.48	17.47	20.49	24.	.00	0.8	35		Pass		
HT20	MCS0	2	36	5180	0.09	0.09	17.52	17.35	20.45	24.	.00	0.8	35		Pass		
HT20	MCS0	2	44	5220	0.09	0.09	17.07	17.72	20.42	24.	.00	0.8	35		Pass		
HT20	MCS0	2	48	5240	0.09	0.09	17.54	17.36	20.46	24.	.00	0.8	35		Pass		
HT40	MCS0	2	38	5190	0.16	0.16	12.67	13.43	16.07	24.	.00	0.85			Pass		
HT40	MCS0	2	46	5230	0.16	0.16	16.79	17.09	19.95	24.	.00	0.8	35		Pass		
VHT20	MCS0	2	36	5180	0.17	0.17	17.13	17.26	20.21	24.	.00	0.85			Pass		
VHT20	MCS0	2	44	5220	0.17	0.17	17.05	17.68	20.39	24.	24.00 0.85		35		Pass		
VHT20	MCS0	2	48	5240	0.17	0.17	17.52	17.27	20.41	24.	24.00		24.00 0.85		35		Pass
VHT40	MCS0	2	38	5190	0.29	0.29	12.63	13.40	16.05	24.	24.00 0.85		35		Pass		
VHT40	MCS0	2	46	5230	0.29	0.29	16.77	17.05	19.93	24.	24.00 0.85		35		Pass		
VHT80	MCS0	2	42	5210	0.56	0.56	11.97	11.30	14.66	24.	.00	0.8	35		Pass		

TEST RESULTS DATA Power Spectral Density

								FCC Ba	ınd I					
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)			Average Power Density IBm/MH		Ave PS Lir (dBm)	SD nit	D (dl	_	Pass /Fail
					Ant 1	Ant 2			SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	36	5180	0.08	0.08	<u> </u>		9.27	11.	00	2.3	35	Pass
11a	6Mbps	2	44	5220	0.08	0.08			10.28	11.	00	2.3	35	Pass
11a	6Mbps	2	48	5240	0.08	0.08			10.15	11.	00	2.3	35	Pass
HT20	MCS0	2	36	5180	0.09	0.09			9.97	11.	00	2.3	35	Pass
HT20	MCS0	2	44	5220	0.09	0.09			9.76	11.	00	2.3	35	Pass
HT20	MCS0	2	48	5240	0.09	0.09			9.72	11.	00	2.3	35	Pass
HT40	MCS0	2	38	5190	0.16	0.16			2.49	11.	00	2.3	35	Pass
HT40	MCS0	2	46	5230	0.16	0.16	╡		6.76	11.	00	2.3	35	Pass
VHT80	MCS0	2	42	5210	0.56	0.56	-		-1.30	11.	00	2.3	35	Pass

TEST RESULTS DATA 26dB and 99% OBW

	Band II														
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Band	99% Bandwidth (MHz)		dB lwidth Hz)	IC 9 Band Power (dB	width r Limit	IC 9 Band EIRP (dE	width Limit	Band Powe	26dB Iwidth r Limit Bm)	Note
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1 Ant 2		Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	52	5260	17.50	17.55	23.70	23.40	23.43		29.	43	23.	.98	
11a	6Mbps	2	60	5300	17.50	17.40	23.60	23.00	23.41		29.	41	23.	.98	
11a	6Mbps	2	64	5320	17.50	17.45	23.60	23.50	23.	42	29.	42	23.	.98	
HT20	MCS0	2	52	5260	18.55	18.50	24.60	24.60	23.	67	29.	67	23.	.98	
HT20	MCS0	2	60	5300	18.55	18.55	25.00	24.80	23.	68	29.	68	23.	.98	
HT20	MCS0	2	64	5320	18.50	18.75	24.80	24.40	23.	67	29.	67	23.	.98	
HT40	MCS0	2	54	5270	36.80	36.70	45.36	43.02	23.	98	30.	00	23.	.98	
HT40	MCS0	2	62	5310	36.60	36.60	41.94	41.94	23.	98	30.	00	23.	.98	
VHT80	MCS0	2	58	5290	75.72	75.72	82.88	82.88	23.	98	30.	00	23.	.98	

TEST RESULTS DATA Average Power Table

								FCC Ba	ınd II						
					Di	ıtv		Average)	FC				EIRP	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Fac (d	ctor	C	onducte Power (dBm)	ed	Cond Powe (dE	r Limit		G Bi)	Power Limit (dBm)	Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	(ubiii)	
11a	6Mbps	1	52	5260	0.08	0.08	16.82	17.39		23.98	23.98	-0.53	-1.05	26.99	Pass
11a	6Mbps	1	60	5300	0.08	0.08	16.78	17.38		23.98	23.98	-0.53	-1.05	26.99	Pass
11a	6Mbps	1	64	5320	0.08	0.08	16.98	17.37		23.98	23.98	-0.53	-1.05	26.99	Pass
HT20	MCS0	1	52	5260	0.09	0.09	16.76	17.32		23.98	23.98	-0.53	-1.05	26.99	Pass
HT20	MCS0	1	60	5300	0.09	0.09	16.71	17.29		23.98	23.98	-0.53	-1.05	26.99	Pass
HT20	MCS0	1	64	5320	0.09	0.09	16.79	17.30		23.98	23.98	-0.53	-1.05	26.99	Pass
HT40	MCS0	1	54	5270	0.16	0.16	16.46	16.96		23.98	23.98	-0.53	-1.05	26.99	Pass
HT40	MCS0	1	62	5310	0.16	0.16	15.01	15.09		23.98 23.98		-0.53	-1.05	26.99	Pass
VHT20	MCS0	1	52	5260	0.09	0.09	16.66	17.18		23.98 23.98		-0.53	-1.05	26.99	Pass
VHT20	MCS0	1	60	5300	0.09	0.09	16.61	17.24		23.98	23.98	-0.53	-1.05	26.99	Pass
VHT20	MCS0	1	64	5320	0.09	0.09	16.76	17.22		23.98	23.98	-0.53	-1.05	26.99	Pass
VHT40	MCS0	1	54	5270	0.18	0.18	16.44	16.76		23.98	23.98	-0.53	-1.05	26.99	Pass
VHT40	MCS0	1	62	5310	0.18	0.18	14.98	15.06		23.98	23.98	-0.53	-1.05	26.99	Pass
VHT80	MCS0	1	58	5290	0.36	0.36	12.86	13.21		23.98	23.98	-0.53	-1.05	26.99	Pass
11a	6Mbps	2	52	5260	0.08	0.08	17.51	17.40	20.47	23.	98	-0.	53	26.99	Pass
11a	6Mbps	2	60	5300	0.08	0.08	17.48	17.48	20.49	23.	.98	-0.	53	26.99	Pass
11a	6Mbps	2	64	5320	0.08	0.08	17.41	17.52	20.48	23.	.98	-0.	53	26.99	Pass
HT20	MCS0	2	52	5260	0.09	0.09	17.47	17.37	20.43	23.	.98	-0.	53	26.99	Pass
HT20	MCS0	2	60	5300	0.09	0.09	17.47	17.48	20.48	23.	.98	-0.	53	26.99	Pass
HT20	MCS0	2	64	5320	0.09	0.09	17.40	17.47	20.44	23.	.98	-0.	53	26.99	Pass
HT40	MCS0	2	54	5270	0.16	0.16	16.85	17.04	19.95	23.	.98	-0.	53	26.99	Pass
HT40	MCS0	2	62	5310	0.16	0.16	15.02	15.12	18.08	23.	.98	-0.	53	26.99	Pass
VHT20	MCS0	2	52	5260	0.17	0.17	17.14	17.23	20.20	23.	.98	-0.	53	26.99	Pass
VHT20	MCS0	2	60	5300	0.17	0.17	17.39	17.45	20.43	23.	.98	-0.	53	26.99	Pass
VHT20	MCS0	2	64	5320	0.17	0.17	17.35	17.32	20.35	23.	.98	-0.	53	26.99	Pass
VHT40	MCS0	2	54	5270	0.29	0.29	16.79	17.03	19.93	23.	.98	-0.	53	26.99	Pass
VHT40	MCS0	2	62	5310	0.29	0.29	15.00	15.10	18.06	23.	.98	-0.	53	26.99	Pass
VHT80	MCS0	2	58	5290	0.56	0.56	12.96	13.37	16.18	23.	.98	-0.	53	26.99	Pass

TEST RESULTS DATA Power Spectral Density

								Band	II					
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)			Average Power Density Bm/MH		Lir	rage SD nit /MHz)	D (dl	_	Pass /Fail
					Ant 1	Ant 2	Ant 1 Ant 2		SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	52	5260	0.08	0.08	'		10.12	11.	00	2.2	22	Pass
11a	6Mbps	2	60	5300	0.08	0.08			9.88	11.	00	2.2	22	Pass
11a	6Mbps	2	64	5320	0.08	0.08			9.73	11.	00	2.2	22	Pass
HT20	MCS0	2	52	5260	0.09	0.09			9.70	11.	00	2.2	22	Pass
HT20	MCS0	2	60	5300	0.09	0.09			9.39	11.	00	2.2	22	Pass
HT20	MCS0	2	64	5320	0.09	0.09			9.31	11.	00	2.2	22	Pass
HT40	MCS0	2	54	5270	0.16	0.16			6.17	11.	00	2.2	22	Pass
HT40	MCS0	2	62	5310	0.16	0.16			4.25	11.	00	2.2	22	Pass
VHT80	MCS0	2	58	5290	0.56	0.56	<u> </u>		0.06	11.	00	2.2	22	Pass

TEST RESULTS DATA 26dB and 99% OBW

								Band	III							
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Band In U-1	9% width NII 2C Hz)	Band In U-I	dB lwidth NII 2C Hz)	IC 9 Band Powe (dE	width	IC 9 Band EIRP (dB	width Limit	Band Powe	26dB width r Limit Bm)	Bandw	
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1 Ant 2		Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2
11a	6Mbps	2	100	5500	17.40	17.40	23.90	22.90	23.41		29.	41	23.	98		
11a	6Mbps	2	116	5580	17.50	17.40	23.70	22.70	23.41		29.	41	23.	.98		
11a	6Mbps	2	140	5700	17.50	17.50	23.60	22.80	23.43		29.	43	23.	.98		
HT20	MCS0	2	100	5500	18.60	18.45	25.20	24.80	23.	66	29.	66	23.	.98		
HT20	MCS0	2	116	5580	18.55	18.40	25.30	24.50	23.	65	29.	65	23.	.98		
HT20	MCS0	2	140	5700	18.55	18.50	25.40	24.80	23.	67	29.	67	23.	.98		
HT40	MCS0	2	102	5510	36.60	36.60	41.76	41.58	23.	98	30.	00	23.	.98		
HT40	MCS0	2	110	5550	36.60	36.70	41.94	41.94	23.	98	30.	00	23.	.98		
HT40	MCS0	2	134	5670	36.70	36.70	42.48	42.84	23.	98	30.	00	23.	.98		
VHT80	MCS0	2	106	5530	75.60	75.72	83.52	82.88	23.	98	30.	00	23.	.98		
VHT80	MCS0	2	122	5610	75.84	75.72	83.20	82.88	23.	98	30.	00	23.	.98		

TEST RESULTS DATA Average Power Table

								FCC Ba	nd III						
								ССБа	iiu iii						
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Fac	uty etor B)		Average conducte Power (dBm) Ant 2		Cond Powe	CC lucted r Limit Bm) Ant 2	_	G Bi)	EIRP Power Limit (dBm)	Pass/Fail
11a	6Mbps	1	100	5500	0.08	0.08	16.40	16.43	SUM	23.98	23.98	-1.31	-0.73	26.99	Pass
11a	6Mbps	1	116	5580	0.08	0.08	16.36	16.42		23.98	23.98	-1.31	-0.73	26.99	Pass
11a	6Mbps	1	140	5700	0.08	0.08	16.45	16.41		23.98	23.98	-1.31	-0.73	26.99	Pass
HT20	MCS0	1	100	5500	0.00	0.00	16.37	16.36		23.98	23.98	-1.31	-0.73	26.99	Pass
HT20	MCS0	1	116	5580	0.09	0.09	16.30	16.31		23.98	23.98	-1.31	-0.73	26.99	Pass
HT20	MCS0	1	140	5700	0.09	0.09	14.19	14.41		23.98	23.98	-1.31	-0.73	26.99	Pass
HT40	MCS0	1	102	5510	0.16	0.03	12.88	13.56		23.98	23.98	-1.31	-0.73	26.99	Pass
HT40	MCS0	1	110	5550	0.16	0.16	15.94	15.94		23.98	23.98	-1.31	-0.73	26.99	Pass
HT40	MCS0	1	134	5670	0.16	0.16	15.95	15.91		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT20	MCS0	1	100	5500	0.09	0.09	16.30	16.32		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT20	MCS0	1	116	5580	0.09	0.09	16.17	16.26		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT20	MCS0	1	140	5700	0.09	0.09	14.16	14.36		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT40	MCS0	1	102	5510	0.18	0.18	12.83	13.53		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT40	MCS0	1	110	5550	0.18	0.18	15.88	15.92		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT40	MCS0	1	134	5670	0.18	0.18	15.90	15.84		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT80	MCS0	1	106	5530	0.36	0.36	12.05	12.65		23.98	23.98	-1.31	-0.73	26.99	Pass
VHT80	MCS0	1	122	5610	0.36	0.36	15.81	15.98		23.98	23.98	-1.31	-0.73	26.99	Pass
11a	6Mbps	2	100	5500	0.08	0.08	16.41	16.43	19.43	23.	.98	-0.	73	26.99	Pass
11a	6Mbps	2	116	5580	0.08	0.08	16.37	16.44	19.42	23.	.98	-0.	73	26.99	Pass
11a	6Mbps	2	140	5700	0.08	0.08	16.45	16.50	19.49	23.	.98	-0.	73	26.99	Pass
HT20	MCS0	2	100	5500	0.09	0.09	16.40	16.41	19.41	23.	.98	-0.	73	26.99	Pass
HT20	MCS0	2	116	5580	0.09	0.09	16.29	16.40	19.35	23.	.98	-0.	73	26.99	Pass
HT20	MCS0	2	140	5700	0.09	0.09	14.21	14.51	17.37	23.	.98	-0.	73	26.99	Pass
HT40	MCS0	2	102	5510	0.16	0.16	12.93	13.62	16.30	23.	.98	-0.	73	26.99	Pass
HT40	MCS0	2	110	5550	0.16	0.16	15.97	15.97	18.98	23.	.98	-0.	73	26.99	Pass
HT40	MCS0	2	134	5670	0.16	0.16	15.96	16.01	18.99	23.	.98	-0.	73	26.99	Pass
VHT20	MCS0	2	100	5500	0.17	0.17	16.39	16.39	19.40	23.	.98	-0.	73	26.99	Pass
VHT20	MCS0	2	116	5580	0.17	0.17	16.19	16.36	19.29	23.	.98	-0.	73	26.99	Pass
VHT20	MCS0	2	140	5700	0.17	0.17	14.20	14.50	17.36	23.	.98	-0.	73	26.99	Pass
VHT40	MCS0	2	102	5510	0.29	0.29	12.91	13.60	16.28	23.	.98	-0.	73	26.99	Pass
VHT40	MCS0	2	110	5550	0.29	0.29	15.92	15.95	18.95	23.	.98	-0.	73	26.99	Pass
VHT40	MCS0	2	134	5670	0.29	0.29	15.92	15.99	18.97	23.	.98	-0.	73	26.99	Pass
VHT80	MCS0	2	106	5530	0.56	0.56	12.29	12.80	15.56	23.	.98	-0.	73	26.99	Pass
VHT80	MCS0	2	122	5610	0.56	0.56	15.82	16.11	18.98	23.	.98	-0.	73	26.99	Pass

TEST RESULTS DATA Power Spectral Density

								Band	Ш					
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)			Average Power Density Bm/MH		PS Lir	rage SD mit /MHz)	D(dE	_	Pass /Fail
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	100	5500	0.08	0.08		•	9.55	11.00		2.0	00	Pass
11a	6Mbps	2	116	5580	0.08	0.08			9.96	11.00		2.0	00	Pass
11a	6Mbps	2	140	5700	0.08	0.08			9.29	11.00		2.0	00	Pass
HT20	MCS0	2	100	5500	0.09	0.09			9.66	11.	00	2.0	00	Pass
HT20	MCS0	2	116	5580	0.09	0.09			10.02	11.	00	2.0	00	Pass
HT20	MCS0	2	140	5700	0.09	0.09			7.06	11.	00	2.0	00	Pass
HT40	MCS0	2	102	5510	0.16	0.16			3.60	11.	00	2.0	00	Pass
HT40	MCS0	2	110	5550	0.16	0.16			6.75	11.	00	2.0	00	Pass
HT40	MCS0	2	134	5670	0.16	0.16			6.29	11.	00	2.0	00	Pass
VHT80	MCS0	2	106	5530	0.56	0.56			0.31	11.	00	2.0	00	Pass
VHT80	MCS0	2	122	5610	0.56	0.56			4.02	11.	00	2.0	00	Pass

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Arthur Heigh	Temperature :	21~25℃
rest Engineer.	Arthur Hsieff	Relative Humidity :	51~55%
Test Voltage :	120Vac / 60Hz	Phase :	Line

Final_Result

_	0 '0 '						
Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.152250		29.77	55.88	26.11	L1	OFF	19.5
0.152250	45.89		65.88	19.99	L1	OFF	19.5
0.390750		26.69	48.05	21.36	L1	OFF	19.5
0.390750	31.25		58.05	26.80	L1	OFF	19.5
0.615750		31.11	46.00	14.89	L1	OFF	19.6
0.615750	36.98		56.00	19.02	L1	OFF	19.6
0.656250		29.03	46.00	16.97	L1	OFF	19.6
0.656250	35.06		56.00	20.94	L1	OFF	19.6
1.950000		27.54	46.00	18.46	L1	OFF	19.6
1.950000	33.00		56.00	23.00	L1	OFF	19.6
2.249250		27.51	46.00	18.49	L1	OFF	19.5
2.249250	31.88		56.00	24.12	L1	OFF	19.5
13.560000		29.61	50.00	20.39	L1	OFF	20.0
13.560000	36.20		60.00	23.80	L1	OFF	20.0

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSE10A Page Number : B1 of B2
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Test Engineer : Arthur Hsieh

Arthur Hsieh

Temperature : 21~25°C

Relative Humidity : 51~55%

Test Voltage : 120Vac / 60Hz

Phase : Neutral

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.152250		32.58	55.88	23.30	N	OFF	19.5
0.152250	53.74		65.88	12.14	N	OFF	19.5
0.231000		27.48	52.41	24.93	N	OFF	19.5
0.231000	33.36		62.41	29.05	N	OFF	19.5
0.404250		26.58	47.77	21.19	N	OFF	19.5
0.404250	35.41		57.77	22.36	N	OFF	19.5
0.609000		30.35	46.00	15.65	N	OFF	19.6
0.609000	40.36		56.00	15.64	N	OFF	19.6
0.676500		28.90	46.00	17.10	N	OFF	19.6
0.676500	39.31		56.00	16.69	N	OFF	19.6
1.682250		27.61	46.00	18.39	N	OFF	19.6
1.682250	35.35		56.00	20.65	N	OFF	19.6
14.642250		29.28	50.00	20.72	N	OFF	20.1
14.642250	38.27		60.00	21.73	N	OFF	20.1

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AFZZ-XMSE10A Page Number : B2 of B2
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Appendix C. Radiated Spurious Emission

Test Engineer :	Watt, Karl, Ken	Temperature :	22~25°C
rest Engineer .		Relative Humidity :	62~65%

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C1 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No.: FR850814D

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5149.76	63.54	-10.46	74	52.91	31.79	9.98	31.14	100	233	Р	Н
		5150	50.98	-3.02	54	40.35	31.79	9.98	31.14	100	233	Α	Н
000 44 -	*	5180	110	-	-	99.31	31.81	10.02	31.14	100	233	Р	Н
802.11a CH 36	*	5180	100.02	-	-	89.33	31.81	10.02	31.14	100	233	Α	Н
5180MHz		5147.16	62.76	-11.24	74	52.13	31.79	9.98	31.14	100	144	Р	V
010011112		5147.42	48.2	-5.8	54	37.57	31.79	9.98	31.14	100	144	Α	V
	*	5180	109.88	-	-	99.19	31.81	10.02	31.14	100	144	Р	V
	*	5180	99.78	-	-	89.09	31.81	10.02	31.14	100	144	Α	V
		5136.24	52.73	-21.27	74	42.13	31.78	9.96	31.14	142	64	Р	Н
		5150	40.94	-13.06	54	30.31	31.79	9.98	31.14	142	64	Α	Н
	*	5220	112.04	-	-	101.29	31.83	10.06	31.14	142	64	Р	Н
	*	5220	101.41	-	-	90.66	31.83	10.06	31.14	142	64	Α	Н
222.44		5430.04	52.36	-21.64	74	41.32	31.96	10.23	31.15	142	64	Р	Н
802.11a		5454.12	40.52	-13.48	54	29.44	31.97	10.26	31.15	142	64	Α	Н
CH 44 5220MHz		5149.24	52.77	-21.23	74	42.14	31.79	9.98	31.14	100	143	Р	V
JZZUIVITIZ		5150	40.65	-13.35	54	30.02	31.79	9.98	31.14	100	143	Α	V
		5220	111.34	-	-	100.59	31.83	10.06	31.14	100	143	Р	V
	*	5220	100.8	-	-	90.05	31.83	10.06	31.14	100	143	Α	V
		5441.52	52.14	-21.86	74	41.08	31.96	10.25	31.15	100	143	Р	V
		5452.44	40.53	-13.47	54	29.45	31.97	10.26	31.15	100	143	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C2 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

		5114.14	52.36	-21.64	74	41.79	31.77	9.94	31.14	117	64	Р	Н
		5150	40.53	-13.47	54	29.9	31.79	9.98	31.14	117	64	Α	Н
	*	5240	112.09	-	-	101.32	31.84	10.07	31.14	117	64	Р	Н
	*	5240	101.38	-	-	90.61	31.84	10.07	31.14	117	64	Α	Н
000 44		5437.88	52.55	-21.45	74	41.5	31.96	10.24	31.15	117	64	Р	Н
802.11a CH 48		5454.96	40.49	-13.51	54	29.41	31.97	10.26	31.15	117	64	Α	Н
5240MHz		5127.14	52.69	-21.31	74	42.1	31.78	9.95	31.14	100	186	Р	٧
3240WII IZ		5150	40.21	-13.79	54	29.58	31.79	9.98	31.14	100	186	Α	٧
	*	5240	111.27	-	-	100.5	31.84	10.07	31.14	100	186	Р	٧
	*	5240	100.87	-	-	90.1	31.84	10.07	31.14	100	186	Α	٧
		5421.64	52.64	-21.36	74	41.62	31.95	10.22	31.15	100	186	Р	V
		5456.36	40.49	-13.51	54	29.41	31.97	10.26	31.15	100	186	Α	٧

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C3 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	ĭ .
		10360	48.91	-25.09	74	50.41	39.86	15.6	56.96	100	0	Р	Н
802.11a		15540	47.2	-26.8	74	45.73	38.53	19.59	56.65	100	0	Р	Н
CH 36		10360	49.98	-24.02	74	51.48	39.86	15.6	56.96	100	0	Р	V
5180MHz		15540	47.28	-26.72	74	45.81	38.53	19.59	56.65	100	0	Р	V
		10440	47.96	-26.04	74	49.23	39.98	15.67	56.92	100	0	Р	Н
802.11a		15660	47.14	-26.86	74	45.72	38.29	19.64	56.51	100	0	Р	Н
CH 44		10440	48.21	-25.79	74	49.48	39.98	15.67	56.92	100	0	Р	V
5220MHz		15660	47.22	-26.78	74	45.8	38.29	19.64	56.51	100	0	Р	V
		10480	48.89	-25.11	74	50.03	40.07	15.7	56.91	100	0	Р	Н
802.11a		15720	46.95	-27.05	74	45.59	38.15	19.65	56.44	100	0	Р	Н
CH 48		10480	49.77	-24.23	74	50.91	40.07	15.7	56.91	100	0	Р	V
5240MHz		15720	47.41	-26.59	74	46.05	38.15	19.65	56.44	100	0	Р	V

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C4 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz WIFI 802.11n HT20 (Band Edge @ 3m)

									,			_	_
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	1
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5149.24	63.34	-10.66	74	52.71	31.79	9.98	31.14	100	103	Р	Н
		5150	50.7	-3.3	54	40.07	31.79	9.98	31.14	100	103	Α	Н
802.11n	*	5180	111.74	-	-	101.05	31.81	10.02	31.14	100	103	Р	Н
HT20	*	5180	100.85	-	-	90.16	31.81	10.02	31.14	100	103	Α	Н
CH 36		5146.9	62	-12	74	51.37	31.79	9.98	31.14	100	307	Р	<
5180MHz		5145.08	49.4	-4.6	54	38.78	31.79	9.97	31.14	100	307	Α	<
	*	5180	110.99	-	-	100.3	31.81	10.02	31.14	100	307	Р	<
	*	5180	99.92	-	-	89.23	31.81	10.02	31.14	100	307	Α	٧
		5064.48	52.75	-21.25	74	42.27	31.74	9.88	31.14	100	255	Р	Н
		5144.3	41.46	-12.54	54	30.84	31.79	9.97	31.14	100	255	Α	Н
	*	5220	112.06	-	-	101.31	31.83	10.06	31.14	100	255	Р	Н
	*	5220	101.28	-	-	90.53	31.83	10.06	31.14	100	255	Α	Н
802.11n		5412.68	52.7	-21.3	74	41.69	31.95	10.21	31.15	100	255	Р	Н
HT20		5443.2	41.29	-12.71	54	30.23	31.96	10.25	31.15	100	255	Α	Н
CH 44		5135.46	52.08	-21.92	74	41.48	31.78	9.96	31.14	116	144	Р	٧
5220MHz		5148.98	41.29	-12.71	54	30.66	31.79	9.98	31.14	116	144	Α	٧
	*	5220	111.21	-	-	100.46	31.83	10.06	31.14	116	144	Р	٧
	*	5220	101.29	-	-	90.54	31.83	10.06	31.14	116	144	Α	٧
		5373.2	53.2	-20.8	74	42.25	31.92	10.18	31.15	116	144	Р	V
		5405.96	41.42	-12.58	54	30.42	31.94	10.21	31.15	116	144	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C5 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

			,									
	5143.26	52.76	-21.24	74	42.14	31.79	9.97	31.14	117	65	Р	Н
	5144.82	41.12	-12.88	54	30.5	31.79	9.97	31.14	117	65	Α	Н
*	5240	111.87	-	-	101.1	31.84	10.07	31.14	117	65	Р	Н
*	5240	101.06	-	-	90.29	31.84	10.07	31.14	117	65	Α	Н
	5374.04	52.28	-21.72	74	41.33	31.92	10.18	31.15	117	65	Р	Н
	5360.04	41.22	-12.78	54	30.29	31.91	10.17	31.15	117	65	Α	Н
	5021.32	52.32	-21.68	74	41.91	31.72	9.83	31.14	100	186	Р	V
	5145.08	40.89	-13.11	54	30.27	31.79	9.97	31.14	100	186	Α	٧
*	5240	111.37	-	-	100.6	31.84	10.07	31.14	100	186	Р	٧
*	5240	100.67	-	-	89.9	31.84	10.07	31.14	100	186	Α	٧
	5356.68	52.6	-21.4	74	41.67	31.91	10.17	31.15	100	186	Р	V
	5445.72	41.3	-12.7	54	30.23	31.97	10.25	31.15	100	186	Α	V
	*	5144.82 * 5240 * 5240 * 5240 5374.04 5360.04 5021.32 5145.08 * 5240 * 5240 5356.68	5144.82 41.12 * 5240 111.87 * 5240 101.06 5374.04 52.28 5360.04 41.22 5021.32 52.32 5145.08 40.89 * 5240 111.37 * 5240 100.67 5356.68 52.6	5144.82 41.12 -12.88 * 5240 111.87 - * 5240 101.06 - 5374.04 52.28 -21.72 5360.04 41.22 -12.78 5021.32 52.32 -21.68 5145.08 40.89 -13.11 * 5240 111.37 - * 5240 100.67 - 5356.68 52.6 -21.4	5144.82 41.12 -12.88 54 * 5240 111.87 - - * 5240 101.06 - - 5374.04 52.28 -21.72 74 5360.04 41.22 -12.78 54 5021.32 52.32 -21.68 74 5145.08 40.89 -13.11 54 * 5240 111.37 - - * 5240 100.67 - - 5356.68 52.6 -21.4 74	5144.82 41.12 -12.88 54 30.5 * 5240 111.87 - - 101.1 * 5240 101.06 - - 90.29 5374.04 52.28 -21.72 74 41.33 5360.04 41.22 -12.78 54 30.29 5021.32 52.32 -21.68 74 41.91 5145.08 40.89 -13.11 54 30.27 * 5240 111.37 - - 100.6 * 5240 100.67 - - 89.9 5356.68 52.6 -21.4 74 41.67	5144.82 41.12 -12.88 54 30.5 31.79 * 5240 111.87 - - 101.1 31.84 * 5240 101.06 - - 90.29 31.84 * 5374.04 52.28 -21.72 74 41.33 31.92 5360.04 41.22 -12.78 54 30.29 31.91 5021.32 52.32 -21.68 74 41.91 31.72 5145.08 40.89 -13.11 54 30.27 31.79 * 5240 111.37 - - 100.6 31.84 * 5240 100.67 - - 89.9 31.84 5356.68 52.6 -21.4 74 41.67 31.91	5144.82 41.12 -12.88 54 30.5 31.79 9.97 * 5240 111.87 - - 101.1 31.84 10.07 * 5240 101.06 - - 90.29 31.84 10.07 5374.04 52.28 -21.72 74 41.33 31.92 10.18 5360.04 41.22 -12.78 54 30.29 31.91 10.17 5021.32 52.32 -21.68 74 41.91 31.72 9.83 5145.08 40.89 -13.11 54 30.27 31.79 9.97 * 5240 111.37 - - 100.6 31.84 10.07 * 5240 100.67 - - 89.9 31.84 10.07 5356.68 52.6 -21.4 74 41.67 31.91 10.17	5144.82 41.12 -12.88 54 30.5 31.79 9.97 31.14 * 5240 111.87 - - 101.1 31.84 10.07 31.14 * 5240 101.06 - - 90.29 31.84 10.07 31.14 5374.04 52.28 -21.72 74 41.33 31.92 10.18 31.15 5360.04 41.22 -12.78 54 30.29 31.91 10.17 31.15 5021.32 52.32 -21.68 74 41.91 31.72 9.83 31.14 * 5145.08 40.89 -13.11 54 30.27 31.79 9.97 31.14 * 5240 111.37 - - 100.6 31.84 10.07 31.14 * 5240 100.67 - - 89.9 31.84 10.07 31.14 * 5356.68 52.6 -21.4 74 41.67 31.91 10.17 31.15	5144.82 41.12 -12.88 54 30.5 31.79 9.97 31.14 117 * 5240 111.87 - - 101.1 31.84 10.07 31.14 117 * 5240 101.06 - - 90.29 31.84 10.07 31.14 117 5374.04 52.28 -21.72 74 41.33 31.92 10.18 31.15 117 5360.04 41.22 -12.78 54 30.29 31.91 10.17 31.15 117 5021.32 52.32 -21.68 74 41.91 31.72 9.83 31.14 100 5145.08 40.89 -13.11 54 30.27 31.79 9.97 31.14 100 * 5240 111.37 - - 100.6 31.84 10.07 31.14 100 * 5240 100.67 - - 89.9 31.84 10.07 31.14 100 5356.68 52.6 -21.4 74 41.67 31.91 10.17<	5144.82 41.12 -12.88 54 30.5 31.79 9.97 31.14 117 65 * 5240 111.87 - - 101.1 31.84 10.07 31.14 117 65 * 5240 101.06 - - 90.29 31.84 10.07 31.14 117 65 5374.04 52.28 -21.72 74 41.33 31.92 10.18 31.15 117 65 5360.04 41.22 -12.78 54 30.29 31.91 10.17 31.15 117 65 5021.32 52.32 -21.68 74 41.91 31.72 9.83 31.14 100 186 5145.08 40.89 -13.11 54 30.27 31.79 9.97 31.14 100 186 * 5240 111.37 - - 100.6 31.84 10.07 31.14 100 186 * 5240 100.67 - - 89.9 31.84 10.07 31.14 100 186 * 5240 100.67 - - 89.9 31.84 10.07 31.14 100 186	5144.82 41.12 -12.88 54 30.5 31.79 9.97 31.14 117 65 A * 5240 111.87 - - 101.1 31.84 10.07 31.14 117 65 P * 5240 101.06 - - 90.29 31.84 10.07 31.14 117 65 A 5374.04 52.28 -21.72 74 41.33 31.92 10.18 31.15 117 65 P 5360.04 41.22 -12.78 54 30.29 31.91 10.17 31.15 117 65 A 5021.32 52.32 -21.68 74 41.91 31.72 9.83 31.14 100 186 P 5145.08 40.89 -13.11 54 30.27 31.79 9.97 31.14 100 186 A * 5240 111.37 - - 100.6 31.84 10.07 31.14 100 186 P * 5240 100.67 -<

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C6 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz WIFI 802.11n HT20 (Harmonic @ 3m)

					•							
Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	i
	10360	49.29	-24.71	74	50.79	39.86	15.6	56.96	100	0	Р	Н
	15540	46.86	-27.14	74	45.39	38.53	19.59	56.65	100	0	Р	Н
	10360	49.41	-24.59	74	50.91	39.86	15.6	56.96	100	0	Р	V
	15540	47.07	-26.93	74	45.6	38.53	19.59	56.65	100	0	Р	V
	10440	49.23	-24.77	74	50.5	39.98	15.67	56.92	100	0	Р	Н
	15660	47.15	-26.85	74	45.73	38.29	19.64	56.51	100	0	Р	Н
	10440	49.84	-24.16	74	51.11	39.98	15.67	56.92	100	0	Р	V
	15660	48.83	-25.17	74	47.41	38.29	19.64	56.51	100	0	Р	V
	10480	49.16	-24.84	74	50.3	40.07	15.7	56.91	100	0	Р	Н
	15720	46.87	-27.13	74	45.51	38.15	19.65	56.44	100	0	Р	Н
	10480	49.19	-24.81	74	50.33	40.07	15.7	56.91	100	0	Р	٧
	15720	47.26	-26.74	74	45.9	38.15	19.65	56.44	100	0	Р	V
	Note	(MHz) 10360 15540 10360 15540 10440 15660 10440 15660 10480 15720 10480	(MHz) (dBμV/m) 10360 49.29 15540 46.86 10360 49.41 15540 47.07 10440 49.23 15660 47.15 10440 49.84 15660 48.83 10480 49.16 15720 46.87 10480 49.19	(MHz) (dBμV/m) Limit (dB) 10360 49.29 -24.71 15540 46.86 -27.14 10360 49.41 -24.59 15540 47.07 -26.93 10440 49.23 -24.77 15660 47.15 -26.85 10440 49.84 -24.16 15660 48.83 -25.17 10480 49.16 -24.84 15720 46.87 -27.13 10480 49.19 -24.81	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) 10360 49.29 -24.71 74 15540 46.86 -27.14 74 10360 49.41 -24.59 74 15540 47.07 -26.93 74 10440 49.23 -24.77 74 15660 47.15 -26.85 74 10440 49.84 -24.16 74 15660 48.83 -25.17 74 10480 49.16 -24.84 74 10480 49.19 -24.81 74	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) 10360 49.29 -24.71 74 50.79 15540 46.86 -27.14 74 45.39 10360 49.41 -24.59 74 50.91 15540 47.07 -26.93 74 45.6 10440 49.23 -24.77 74 50.5 15660 47.15 -26.85 74 45.73 10440 49.84 -24.16 74 51.11 15660 48.83 -25.17 74 47.41 10480 49.16 -24.84 74 50.3 15720 46.87 -27.13 74 45.51 10480 49.19 -24.81 74 50.33	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) 10360 49.29 -24.71 74 50.79 39.86 15540 46.86 -27.14 74 45.39 38.53 10360 49.41 -24.59 74 50.91 39.86 15540 47.07 -26.93 74 45.6 38.53 10440 49.23 -24.77 74 50.5 39.98 15660 47.15 -26.85 74 45.73 38.29 10440 49.84 -24.16 74 51.11 39.98 15660 48.83 -25.17 74 47.41 38.29 10480 49.16 -24.84 74 50.3 40.07 15720 46.87 -27.13 74 45.51 38.15 10480 49.19 -24.81 74 50.33 40.07	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) 10360 49.29 -24.71 74 50.79 39.86 15.6 15540 46.86 -27.14 74 45.39 38.53 19.59 10360 49.41 -24.59 74 50.91 39.86 15.6 15540 47.07 -26.93 74 45.6 38.53 19.59 10440 49.23 -24.77 74 50.5 39.98 15.67 15660 47.15 -26.85 74 45.73 38.29 19.64 10440 49.84 -24.16 74 51.11 39.98 15.67 15660 48.83 -25.17 74 47.41 38.29 19.64 10480 49.16 -24.84 74 50.3 40.07 15.7 15720 46.87 -27.13 74 45.51 38.15 19.65 10480 49.19	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) 10360 49.29 -24.71 74 50.79 39.86 15.6 56.96 15540 46.86 -27.14 74 45.39 38.53 19.59 56.65 10360 49.41 -24.59 74 50.91 39.86 15.6 56.96 15540 47.07 -26.93 74 45.6 38.53 19.59 56.65 10440 49.23 -24.77 74 50.5 39.98 15.67 56.92 15660 47.15 -26.85 74 45.73 38.29 19.64 56.51 10440 49.84 -24.16 74 51.11 39.98 15.67 56.92 15660 48.83 -25.17 74 47.41 38.29 19.64 56.51 10480 49.16 -24.84 74 50.3 40.07 15.7 56.91 </td <td>(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 10360 49.29 -24.71 74 50.79 39.86 15.6 56.96 100 15540 46.86 -27.14 74 45.39 38.53 19.59 56.65 100 10360 49.41 -24.59 74 50.91 39.86 15.6 56.96 100 15540 47.07 -26.93 74 45.6 38.53 19.59 56.65 100 10440 49.23 -24.77 74 50.5 39.98 15.67 56.92 100 15660 47.15 -26.85 74 45.73 38.29 19.64 56.51 100 10440 49.84 -24.16 74 51.11 39.98 15.67 56.92 100 15660 48.83 -25.17 74 47.41 38.29 19.64 56.51 100</td> <td>(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) Pos (deg) 10360 49.29 -24.71 74 50.79 39.86 15.6 56.96 100 0 15540 46.86 -27.14 74 45.39 38.53 19.59 56.65 100 0 10360 49.41 -24.59 74 50.91 39.86 15.6 56.96 100 0 15540 47.07 -26.93 74 45.6 38.53 19.59 56.65 100 0 10440 49.23 -24.77 74 50.5 39.98 15.67 56.92 100 0 15660 47.15 -26.85 74 45.73 38.29 19.64 56.51 100 0 15660 48.83 -25.17 74 47.41 38.29 19.64 56.51 100 0 10480 49.16</td> <td>(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (dg) Pos (P/A) 10360 49.29 -24.71 74 50.79 39.86 15.6 56.96 100 0 P 15540 46.86 -27.14 74 45.39 38.53 19.59 56.65 100 0 P 10360 49.41 -24.59 74 50.91 39.86 15.6 56.96 100 0 P 15540 47.07 -26.93 74 45.6 38.53 19.59 56.65 100 0 P 10440 49.23 -24.77 74 50.5 39.98 15.67 56.92 100 0 P 15660 47.15 -26.85 74 45.73 38.29 19.64 56.51 100 0 P 15660 48.83 -25.17 74 47.41 38.29 19.64 56.51</td>	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 10360 49.29 -24.71 74 50.79 39.86 15.6 56.96 100 15540 46.86 -27.14 74 45.39 38.53 19.59 56.65 100 10360 49.41 -24.59 74 50.91 39.86 15.6 56.96 100 15540 47.07 -26.93 74 45.6 38.53 19.59 56.65 100 10440 49.23 -24.77 74 50.5 39.98 15.67 56.92 100 15660 47.15 -26.85 74 45.73 38.29 19.64 56.51 100 10440 49.84 -24.16 74 51.11 39.98 15.67 56.92 100 15660 48.83 -25.17 74 47.41 38.29 19.64 56.51 100	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) Pos (deg) 10360 49.29 -24.71 74 50.79 39.86 15.6 56.96 100 0 15540 46.86 -27.14 74 45.39 38.53 19.59 56.65 100 0 10360 49.41 -24.59 74 50.91 39.86 15.6 56.96 100 0 15540 47.07 -26.93 74 45.6 38.53 19.59 56.65 100 0 10440 49.23 -24.77 74 50.5 39.98 15.67 56.92 100 0 15660 47.15 -26.85 74 45.73 38.29 19.64 56.51 100 0 15660 48.83 -25.17 74 47.41 38.29 19.64 56.51 100 0 10480 49.16	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) Factor (dB) Pos (dg) Pos (P/A) 10360 49.29 -24.71 74 50.79 39.86 15.6 56.96 100 0 P 15540 46.86 -27.14 74 45.39 38.53 19.59 56.65 100 0 P 10360 49.41 -24.59 74 50.91 39.86 15.6 56.96 100 0 P 15540 47.07 -26.93 74 45.6 38.53 19.59 56.65 100 0 P 10440 49.23 -24.77 74 50.5 39.98 15.67 56.92 100 0 P 15660 47.15 -26.85 74 45.73 38.29 19.64 56.51 100 0 P 15660 48.83 -25.17 74 47.41 38.29 19.64 56.51

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C7 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz WIFI 802.11n HT40 (Band Edge @ 3m)

					-							_	_
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
		5146.12	56.29	-17.71	74	45.66	31.79	9.98	31.14	136	99	Р	Н
		5141.96	45.12	-8.88	54	34.5	31.79	9.97	31.14	136	99	Α	Н
	*	5190	103.69	-	-	92.99	31.81	10.03	31.14	136	99	Р	Н
	*	5190	93.12	-	-	82.42	31.81	10.03	31.14	136	99	Α	Н
802.11n		5412.68	54.4	-19.6	74	43.39	31.95	10.21	31.15	136	99	Р	Н
HT40		5413.8	44.25	-9.75	54	33.23	31.95	10.22	31.15	136	99	Α	Н
CH 38		5149.76	60.69	-13.31	74	50.06	31.79	9.98	31.14	100	144	Р	٧
5190MHz		5150	50.39	-3.61	54	39.76	31.79	9.98	31.14	100	144	Α	٧
	*	5190	104.18	-	-	93.48	31.81	10.03	31.14	100	144	Р	٧
	*	5190	93.88	-	-	83.18	31.81	10.03	31.14	100	144	Α	٧
		5413.24	53.43	-20.57	74	42.42	31.95	10.21	31.15	100	144	Р	٧
		5412.4	43.84	-10.16	54	32.83	31.95	10.21	31.15	100	144	Α	٧
		5145.34	58.61	-15.39	74	47.99	31.79	9.97	31.14	100	253	Р	Н
		5147.42	47.55	-6.45	54	36.92	31.79	9.98	31.14	100	253	Α	Н
	*	5230	108.99	-	-	98.23	31.84	10.06	31.14	100	253	Р	Н
	*	5230	98.77	-	-	88.01	31.84	10.06	31.14	100	253	Α	Н
802.11n		5453.84	54.19	-19.81	74	43.11	31.97	10.26	31.15	100	253	Р	Н
HT40		5452.44	44.51	-9.49	54	33.43	31.97	10.26	31.15	100	253	Α	Н
CH 46		5148.72	58.12	-15.88	74	47.49	31.79	9.98	31.14	100	200	Р	V
5230MHz		5147.68	47.6	-6.4	54	36.97	31.79	9.98	31.14	100	200	Α	V
	*	5230	108.96	-	-	98.2	31.84	10.06	31.14	100	200	Р	٧
	*	5230	98.26	-	-	87.5	31.84	10.06	31.14	100	200	Α	٧
		5452.72	54.09	-19.91	74	43.01	31.97	10.26	31.15	100	200	Р	V
		5452.44	44.31	-9.69	54	33.23	31.97	10.26	31.15	100	200	Α	٧

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C8 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5146.38	58.37	-15.63	74	47.74	31.79	9.98	31.14	105	268	Р	Н
		5147.42	49.51	-4.49	54	38.88	31.79	9.98	31.14	105	268	Α	Н
	*	5210	102.09	-	-	91.35	31.83	10.05	31.14	105	268	Р	Н
	*	5210	90.95	-	-	80.21	31.83	10.05	31.14	105	268	Α	Н
802.11ac		5443.48	52.66	-21.34	74	41.6	31.96	10.25	31.15	105	268	Р	Н
VHT80		5350.24	43.64	-10.36	54	32.72	31.91	10.16	31.15	105	268	Α	Н
CH 42		5146.64	57.01	-16.99	74	46.38	31.79	9.98	31.14	100	311	Р	٧
5210MHz		5150	50.33	-3.67	54	39.7	31.79	9.98	31.14	100	311	Α	٧
	*	5210	102.45	-	-	91.71	31.83	10.05	31.14	100	311	Р	٧
	*	5210	91.52	-	-	80.78	31.83	10.05	31.14	100	311	Α	٧
		5425	52.5	-21.5	74	41.47	31.95	10.23	31.15	100	311	Р	٧
		5351.08	44.04	-9.96	54	33.12	31.91	10.16	31.15	100	311	Α	٧

Remark

No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C9 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5038.76	51.87	-22.13	74	41.43	31.73	9.85	31.14	113	64	Р	Н
		5149.94	40.31	-13.69	54	29.68	31.79	9.98	31.14	113	64	Α	Н
	*	5260	112.12	-	-	101.32	31.86	10.09	31.15	113	64	Р	Н
	*	5260	101.49	-	-	90.69	31.86	10.09	31.15	113	64	Α	Н
902 44 5		5447.28	52.29	-21.71	74	41.22	31.97	10.25	31.15	113	64	Р	Н
802.11a CH 52		5351.76	40.73	-13.27	54	29.81	31.91	10.16	31.15	113	64	Α	Н
5260MHz		5110.5	51.57	-22.43	74	41.01	31.77	9.93	31.14	100	145	Р	V
3200WII 12		5149.26	40.23	-13.77	54	29.6	31.79	9.98	31.14	100	145	Α	V
	*	5260	111.61	-	-	100.81	31.86	10.09	31.15	100	145	Р	٧
	*	5260	100.96	-	-	90.16	31.86	10.09	31.15	100	145	Α	<
		5355.6	52.93	-21.07	74	42.01	31.91	10.16	31.15	100	145	Р	<
		5350.8	40.65	-13.35	54	29.73	31.91	10.16	31.15	100	145	Α	٧
		5147.56	52.46	-21.54	74	41.83	31.79	9.98	31.14	122	62	Р	Н
		5147.56	40.24	-13.76	54	29.61	31.79	9.98	31.14	122	62	Α	Н
	*	5300	112.4	-	-	101.55	31.88	10.12	31.15	122	62	Р	Н
	*	5300	101.93	-	-	91.08	31.88	10.12	31.15	122	62	Α	Н
		5353.92	54.08	-19.92	74	43.16	31.91	10.16	31.15	122	62	Р	Н
802.11a		5350.08	42.82	-11.18	54	31.9	31.91	10.16	31.15	122	62	Α	Н
CH 60		5136	52.21	-21.79	74	41.61	31.78	9.96	31.14	100	202	Р	V
5300MHz		5147.22	40.14	-13.86	54	29.51	31.79	9.98	31.14	100	202	Α	V
	*	5300	112.74	-	-	101.89	31.88	10.12	31.15	100	202	Р	V
	*	5300	102.37	-	-	91.52	31.88	10.12	31.15	100	202	Α	V
		5361.6	54	-20	74	43.06	31.92	10.17	31.15	100	202	Р	V
		5350.08	42.26	-11.74	54	31.34	31.91	10.16	31.15	100	202	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C10 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

	*	5320	112.11	-	-	101.23	31.89	10.14	31.15	111	99	Р	Н
	*	5320	102.03	-	-	91.15	31.89	10.14	31.15	111	99	Α	Н
000.44		5350.08	60.52	-13.48	74	49.6	31.91	10.16	31.15	111	99	Р	Н
802.11a CH 64		5350.08	50.05	-3.95	54	39.13	31.91	10.16	31.15	111	99	Α	Н
5320MHz	*	5320	111.99	1	-	101.11	31.89	10.14	31.15	100	203	Р	V
3320141112	*	5320	101.78	-	-	90.9	31.89	10.14	31.15	100	203	Α	V
		5350.4	61.15	-12.85	74	50.23	31.91	10.16	31.15	100	203	Р	V
		5350.08	50	-4	54	39.08	31.91	10.16	31.15	100	203	Α	V

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C11 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Band 2 5250~5350MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	i i
000.44		10520	48.73	-25.27	74	49.77	40.11	15.73	56.88	100	0	Р	Н
802.11a		15780	47.85	-26.15	74	46.48	38.05	19.68	56.36	100	0	Р	Н
CH 52 5260MHz		10520	48.81	-25.19	74	49.85	40.11	15.73	56.88	100	0	Р	V
5260WIFI2		15780	48.77	-25.23	74	47.4	38.05	19.68	56.36	100	0	Р	٧
		10600	48.21	-25.79	74	49.05	40.18	15.8	56.82	100	0	Р	Н
802.11a		15900	46.98	-27.02	74	45.66	37.81	19.73	56.22	100	0	Р	Н
CH 60 5300MHz		10600	48.17	-25.83	74	49.01	40.18	15.8	56.82	100	0	Р	٧
5300WITZ		15900	46.46	-27.54	74	45.14	37.81	19.73	56.22	100	0	Р	٧
		10640	49.75	-24.25	74	50.51	40.21	15.82	56.79	100	0	Р	Н
802.11a		15960	46.89	-27.11	74	45.63	37.67	19.74	56.15	100	0	Р	Н
CH 64		10640	49	-25	74	49.76	40.21	15.82	56.79	100	0	Р	٧
5320MHz		15960	46.44	-27.56	74	45.18	37.67	19.74	56.15	100	0	Р	٧

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C12 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz WIFI 802.11n HT40 (Band Edge @ 3m)

						_		_	_				
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	4
		5149.26	52.14	-21.86	74	41.51	31.79	9.98	31.14	100	255	Р	Н
		5147.56	41.95	-12.05	54	31.32	31.79	9.98	31.14	100	255	Α	Н
	*	5270	109.47	-	-	98.66	31.86	10.1	31.15	100	255	Р	Н
	*	5270	97.99	-	-	87.18	31.86	10.1	31.15	100	255	Α	Н
802.11n		5351.28	56.21	-17.79	74	45.29	31.91	10.16	31.15	100	255	Р	Н
HT40		5350.56	46.69	-7.31	54	35.77	31.91	10.16	31.15	100	255	Α	Н
CH 54		5045.9	52.55	-21.45	74	42.1	31.73	9.86	31.14	100	143	Р	V
5270MHz		5047.26	43.9	-10.1	54	33.45	31.73	9.86	31.14	100	143	Α	V
	*	5270	108.81	-	-	98	31.86	10.1	31.15	100	143	Р	V
	*	5270	97.87	-	-	87.06	31.86	10.1	31.15	100	143	Α	V
		5350.08	55.85	-18.15	74	44.93	31.91	10.16	31.15	100	143	Р	V
		5350.08	46.45	-7.55	54	35.53	31.91	10.16	31.15	100	143	Α	V
		5086.36	52.38	-21.62	74	41.87	31.75	9.9	31.14	116	103	Р	Н
		5087.38	43.6	-10.4	54	33.09	31.75	9.9	31.14	116	103	Α	Н
	*	5310	107.98	-	-	97.11	31.89	10.13	31.15	116	103	Р	Н
	*	5310	97.57	-	-	86.7	31.89	10.13	31.15	116	103	Α	Н
802.11n		5351.04	59.58	-14.42	74	48.66	31.91	10.16	31.15	116	103	Р	Н
HT40		5350.08	50.52	-3.48	54	39.6	31.91	10.16	31.15	116	103	Α	Н
CH 62		5087.38	53.65	-20.35	74	43.14	31.75	9.9	31.14	100	204	Р	V
5310MHz		5087.38	43.9	-10.1	54	33.39	31.75	9.9	31.14	100	204	Α	V
	*	5310	107.54	-	-	96.67	31.89	10.13	31.15	100	204	Р	V
	*	5310	96.67	-	-	85.8	31.89	10.13	31.15	100	204	Α	٧
		5354.4	60.23	-13.77	74	49.31	31.91	10.16	31.15	100	204	Р	V
		5350.08	49.53	-4.47	54	38.61	31.91	10.16	31.15	100	204	Α	V

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C13 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Band 2 5250~5350MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5019.04	52.3	-21.7	74	41.91	31.71	9.82	31.14	100	314	Р	Н
		5143.82	43.67	-10.33	54	33.05	31.79	9.97	31.14	100	314	Α	Н
	*	5290	104.31	-	-	93.48	31.87	10.11	31.15	100	314	Р	Н
	*	5290	93.58	-	-	82.75	31.87	10.11	31.15	100	314	Α	Н
802.11ac		5354.4	59.03	-14.97	74	48.11	31.91	10.16	31.15	100	314	Р	Н
VHT80		5354.64	50.64	-3.36	54	39.72	31.91	10.16	31.15	100	314	Α	Н
CH 58		5090.1	53.25	-20.75	74	42.72	31.76	9.91	31.14	100	312	Р	٧
5290MHz		5144.16	43.45	-10.55	54	32.83	31.79	9.97	31.14	100	312	Α	٧
	*	5290	104.8	-	-	93.97	31.87	10.11	31.15	100	312	Р	٧
	*	5290	93.45	-	-	82.62	31.87	10.11	31.15	100	312	Α	٧
		5356.8	58.87	-15.13	74	47.94	31.91	10.17	31.15	100	312	Р	٧
		5353.68	50.68	-3.32	54	39.76	31.91	10.16	31.15	100	312	Α	٧

Remark

No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C14 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Band 3 - 5470~5725MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5459.92	57.8	-16.2	74	46.71	31.97	10.27	31.15	113	62	Р	Н
		5469.04	62.42	-5.78	68.2	51.31	31.98	10.28	31.15	113	62	Р	Н
		5460	45.21	-8.79	54	34.12	31.97	10.27	31.15	113	62	Α	Н
802.11a	*	5500	112.36	-	-	101.2	32	10.31	31.15	113	62	Р	Н
CH 100	*	5500	100.26	-	-	89.1	32	10.31	31.15	113	62	Α	Н
5500MHz		5460.08	55.51	-12.69	68.2	44.42	31.97	10.27	31.15	107	173	Р	V
		5468.72	62.55	-5.65	68.2	51.44	31.98	10.28	31.15	107	173	Р	V
	*	5500	111.54	-	-	100.38	32	10.31	31.15	107	173	Р	V
	*	5500	99.33	-	-	88.17	32	10.31	31.15	107	173	Α	V
		5432.56	53.14	-20.86	74	42.09	31.96	10.24	31.15	101	90	Р	Н
		5462.32	51.86	-16.34	68.2	40.77	31.97	10.27	31.15	101	90	Р	Н
		5452.72	40.62	-13.38	54	29.54	31.97	10.26	31.15	101	90	Α	Н
	*	5580	112.34	-	-	101.04	32.1	10.4	31.2	101	90	Р	Н
000 44	*	5580	99.92	-	-	88.62	32.1	10.4	31.2	101	90	Α	I
802.11a		5742.635	52.38	-15.82	68.2	40.78	32.34	10.53	31.27	101	90	Р	Η
CH 116 5580MHz		5412.16	52.5	-21.5	74	41.49	31.95	10.21	31.15	113	102	Р	V
330011112		5462.08	51.83	-16.37	68.2	40.74	31.97	10.27	31.15	113	102	Р	V
		5453.2	40.65	-13.35	54	29.57	31.97	10.26	31.15	113	102	Α	٧
	*	5580	112.55	ı	-	101.25	32.1	10.4	31.2	113	102	Р	V
	*	5580	100.45	ı	-	89.15	32.1	10.4	31.2	113	102	Α	V
		5742.32	52.75	-15.45	68.2	41.15	32.34	10.53	31.27	113	102	Р	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C15 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

	*	5700	112.01	-	-	100.49	32.27	10.5	31.25	105	93	Р	Н
	*	5700	99.93	-	-	88.41	32.27	10.5	31.25	105	93	Α	Н
802.11a		5725.32	65.9	-2.3	68.2	54.33	32.31	10.52	31.26	105	93	Р	Н
CH 140 5700MHz	*	5700	112.47	-	-	100.95	32.27	10.5	31.25	100	205	Р	٧
5700WHZ	*	5700	100.55	-	-	89.03	32.27	10.5	31.25	100	205	Α	٧
		5725.4	64.14	-4.06	68.2	52.57	32.31	10.52	31.26	100	205	Р	٧
Remark		lo other spurio		st Peak	and Averaç	ge limit lin	e.						

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C16 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report No.: FR850814D

Band 3 - 5470~5725MHz WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
000 44-		11000	48.94	-25.06	74	48.84	40.5	16.1	56.5	100	0	Р	Н
802.11a CH 100		16500	47.57	-20.63	68.2	43.49	39.6	20.18	55.7	100	0	Р	Н
5500MHz		11000	49.82	-24.18	74	49.72	40.5	16.1	56.5	100	0	Р	V
3300WITI2		16500	47.28	-20.92	68.2	43.2	39.6	20.18	55.7	100	0	Р	٧
222.44		11160	49.21	-24.79	74	49.05	40.37	16.23	56.44	100	0	Р	Н
802.11a		16740	48.33	-19.87	68.2	43.72	40.13	20.37	55.89	100	0	Р	Н
CH 116 5580MHz		11160	48.67	-25.33	74	48.51	40.37	16.23	56.44	100	0	Р	<
5500WITZ		16740	47.93	-20.27	68.2	43.32	40.13	20.37	55.89	100	0	Р	٧
222.44		11400	49.1	-24.9	74	48.84	40.18	16.42	56.34	100	0	Р	Н
802.11a		17100	49.48	-18.72	68.2	44.05	41.06	20.67	56.3	100	0	Р	Н
CH 140 -		11400	49.85	-24.15	74	49.59	40.18	16.42	56.34	100	0	Р	٧
		17100	48.85	-19.35	68.2	43.42	41.06	20.67	56.3	100	0	Р	٧

Remark

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C17 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - 5470~5725MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5459.92	58.95	-15.05	74	47.86	31.97	10.27	31.15	100	188	Р	Н
		5470	60.09	-8.11	68.2	48.98	31.98	10.28	31.15	100	188	Р	Н
000 44.5		5459.92	46.02	-7.98	54	34.93	31.97	10.27	31.15	100	188	Α	Н
802.11n HT20	*	5500	112.65	-	-	101.49	32	10.31	31.15	100	188	Р	Н
CH 100	*	5500	101.58	-	-	90.42	32	10.31	31.15	100	188	Α	Н
5500MHz		5460.08	57.65	-10.55	68.2	46.56	31.97	10.27	31.15	100	268	Р	V
0000111112		5467.12	63.95	-4.25	68.2	52.85	31.98	10.27	31.15	100	268	Р	V
	*	5500	112.11	-	-	100.95	32	10.31	31.15	100	268	Р	V
	*	5500	101.25	-	-	90.09	32	10.31	31.15	100	268	Α	V
		5376.64	52.55	-21.45	74	41.6	31.92	10.18	31.15	100	90	Р	Н
		5463.52	51.91	-16.29	68.2	40.81	31.98	10.27	31.15	100	90	Р	Η
		5439.52	41.36	-12.64	54	30.31	31.96	10.24	31.15	100	90	Α	Н
	*	5580	112.96	-	-	101.66	32.1	10.4	31.2	100	90	Р	Н
802.11n	*	5580	102.05	-	-	90.75	32.1	10.4	31.2	100	90	Α	Н
HT20		5728.775	52.44	-15.76	68.2	40.87	32.31	10.52	31.26	100	90	Р	Н
CH 116		5446.96	52.77	-21.23	74	41.7	31.97	10.25	31.15	100	339	Р	٧
5580MHz		5470	52.01	-16.19	68.2	40.9	31.98	10.28	31.15	100	339	Р	٧
		5456.56	41.31	-12.69	54	30.23	31.97	10.26	31.15	100	339	Α	V
	*	5580	112.95	-	-	101.65	32.1	10.4	31.2	100	339	Р	V
	*	5580	101.76	-	-	90.46	32.1	10.4	31.2	100	339	Α	V
		5732.24	53.04	-15.16	68.2	41.47	32.31	10.53	31.27	100	339	Р	٧

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C18 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

	*	5700	110.75	-	-	99.23	32.27	10.5	31.25	109	95	Р	Н
802.11n	*	5700	100.1	-	-	88.58	32.27	10.5	31.25	109	95	Α	Н
HT20		5725	63.69	-4.51	68.2	52.12	32.31	10.52	31.26	109	95	Р	Н
CH 140	*	5700	111.7	-	-	100.18	32.27	10.5	31.25	130	233	Р	V
5700MHz	*	5700	100.69	-	-	89.17	32.27	10.5	31.25	130	233	Α	V
		5725	60.62	-7.58	68.2	49.05	32.31	10.52	31.26	130	233	Р	V
Damark	1. No other spurious found.												

Remark 2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A

: C19 of C25 Page Number Report Issued Date: Jun. 20, 2018 Report Version : Rev. 01

Report No.: FR850814D

Band 3 - 5470~5725MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	` ,	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		5458.24	60.66	-13.34	74	49.58	31.97	10.26	31.15	111	81	Р	Н
		5468.56	60.53	-7.67	68.2	49.42	31.98	10.28	31.15	111	81	Р	Н
		5458.72	49.03	-4.97	54	37.95	31.97	10.26	31.15	111	81	Α	Н
	*	5510	106.37	-	-	95.21	32	10.32	31.16	111	81	Р	Н
802.11n	*	5510	96	-	-	84.84	32	10.32	31.16	111	81	Α	Н
HT40		5732.87	53.94	-14.26	68.2	42.37	32.31	10.53	31.27	111	81	Р	Н
CH 102		5457.28	57.57	-16.43	74	46.49	31.97	10.26	31.15	112	118	Р	V
5510MHz		5468.8	63.49	-4.71	68.2	52.38	31.98	10.28	31.15	112	118	Р	V
		5456.56	47.85	-6.15	54	36.77	31.97	10.26	31.15	112	118	Α	٧
	*	5510	107.64	-	-	96.48	32	10.32	31.16	112	118	Р	V
	*	5510	96.83	-	-	85.67	32	10.32	31.16	112	118	Α	V
		5732.555	54.92	-13.28	68.2	43.35	32.31	10.53	31.27	112	118	Р	V
		5447.68	53.31	-20.69	74	42.24	31.97	10.25	31.15	123	96	Р	Н
		5468.56	55.92	-12.28	68.2	44.81	31.98	10.28	31.15	123	96	Р	Н
		5458.72	43.95	-10.05	54	32.87	31.97	10.26	31.15	123	96	Α	Н
	*	5550	109.27	-	-	98.01	32.07	10.36	31.17	123	96	Р	Н
802.11n	*	5550	98.81	-	-	87.55	32.07	10.36	31.17	123	96	Α	Н
HT40		5739.17	52.74	-15.46	68.2	41.14	32.34	10.53	31.27	123	96	Р	Н
CH 110		5449.84	54.12	-19.88	74	43.05	31.97	10.25	31.15	100	198	Р	V
5550MHz		5469.04	56.87	-11.33	68.2	45.76	31.98	10.28	31.15	100	198	Р	٧
		5453.44	44.14	-9.86	54	33.06	31.97	10.26	31.15	100	198	Α	V
	*	5550	109.96	-	-	98.7	32.07	10.36	31.17	100	198	Р	V
	*	5550	99.27	-	-	88.01	32.07	10.36	31.17	100	198	Α	V
		5742.005	52.47	-15.73	68.2	40.87	32.34	10.53	31.27	100	198	Р	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C20 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

		5413.7	53.68	-20.32	74	42.66	31.95	10.22	31.15	124	96	Р	Н
		5469.7	51.4	-16.8	68.2	40.29	31.98	10.28	31.15	124	96	Р	Н
		5414.75	44.15	-9.85	54	33.13	31.95	10.22	31.15	124	96	Α	Н
	*	5670	109.98	-	-	98.49	32.24	10.48	31.23	124	96	Р	Н
802.11n	*	5670	98.78	-	-	87.29	32.24	10.48	31.23	124	96	Α	Н
HT40		5730.7	63.77	-4.43	68.2	52.21	32.31	10.52	31.27	124	96	Р	Н
CH 134		5446.6	55.18	-18.82	74	44.11	31.97	10.25	31.15	100	212	Р	٧
5670MHz		5464.1	53.34	-14.86	68.2	42.24	31.98	10.27	31.15	100	212	Р	٧
		5447.3	44.39	-9.61	54	33.32	31.97	10.25	31.15	100	212	Α	٧
	*	5670	109.68	-	-	98.19	32.24	10.48	31.23	100	212	Р	٧
	*	5670	98.67	-	-	87.18	32.24	10.48	31.23	100	212	Α	٧
		5734.55	61.73	-6.47	68.2	50.13	32.34	10.53	31.27	100	212	Р	٧
		1	<u> </u>	1		1		1	l .	1	1	1	<u> </u>

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C21 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - 5470~5725MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		5446.96	57.83	-16.17	74	46.76	31.97	10.25	31.15	125	90	Р	Н
		5464.24	59.45	-8.75	68.2	48.35	31.98	10.27	31.15	125	90	Р	Н
		5453.68	50.85	-3.15	54	39.77	31.97	10.26	31.15	125	90	Α	Н
	*	5530	102.63	-	-	91.44	32.02	10.34	31.17	125	90	Р	Н
802.11ac	*	5530	91.64	-	-	80.45	32.02	10.34	31.17	125	90	Α	Н
VHT80		5735.39	53.38	-14.82	68.2	41.78	32.34	10.53	31.27	125	90	Р	Н
CH 106		5453.2	58.39	-15.61	74	47.31	31.97	10.26	31.15	105	133	Р	V
5530MHz		5467.36	59.7	-8.5	68.2	48.6	31.98	10.27	31.15	105	133	Р	V
		5452.48	49.61	-4.39	54	38.53	31.97	10.26	31.15	105	133	Α	V
	*	5530	101.76	-	-	90.57	32.02	10.34	31.17	105	133	Р	V
	*	5530	91.74	-	-	80.55	32.02	10.34	31.17	105	133	Α	٧
		5760.59	52.15	-16.05	68.2	40.52	32.36	10.55	31.28	105	133	Р	V
		5457.28	55.07	-18.93	74	43.99	31.97	10.26	31.15	100	69	Р	Н
		5468.08	56.27	-11.93	68.2	45.17	31.98	10.27	31.15	100	69	Р	Н
		5458.48	46.67	-7.33	54	35.59	31.97	10.26	31.15	100	69	Α	Н
	*	5610	105.72	-	-	94.36	32.14	10.43	31.21	100	69	Р	Н
802.11ac	*	5610	95.4	-	-	84.04	32.14	10.43	31.21	100	69	Α	Н
VHT80		5726.57	56.76	-11.44	68.2	45.19	32.31	10.52	31.26	100	69	Р	Н
CH 122		5458.72	55.64	-18.36	74	44.56	31.97	10.26	31.15	100	166	Р	V
5610MHz		5467.6	56.88	-11.32	68.2	45.78	31.98	10.27	31.15	100	166	Р	V
		5458.48	46.23	-7.77	54	35.15	31.97	10.26	31.15	100	166	Α	V
	*	5610	106.26	-	-	94.9	32.14	10.43	31.21	100	166	Р	V
	*	5610	95.75	-	-	84.39	32.14	10.43	31.21	100	166	Α	V
		5736.65	57.36	-10.84	68.2	45.76	32.34	10.53	31.27	100	166	Р	V

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C22 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Emission below 1GHz

WIFI 802.11a (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		41.61	24.5	-15.5	40	35.83	18.15	0.88	30.36	-	ı	Р	Н
		59.7	22.41	-17.59	40	40.27	11.5	1.1	30.46	-	-	Р	Н
		159.33	24.48	-19.02	43.5	36.63	16.32	1.89	30.36	-	1	Р	Н
		571.6	28.92	-17.08	46	29.52	25.72	3.35	29.67	-	-	Р	Н
		689.2	30	-16	46	29.52	26.35	3.66	29.53	-	1	Р	Н
802.11a		736.8	32.28	-13.72	46	30.33	27.6	3.79	29.44	100	0	Р	Н
LF		33.78	34.11	-5.89	40	41.28	22.31	0.76	30.24	100	0	Р	٧
		41.07	33.61	-6.39	40	44.41	18.68	0.86	30.34	-	-	Р	٧
		86.7	29.78	-10.22	40	44.9	13.99	1.33	30.44	-	-	Р	V
		475	26.76	-19.24	46	30.18	23.38	3.03	29.83	-	-	Р	٧
		555.5	29.02	-16.98	46	29.73	25.66	3.33	29.7	-	-	Р	٧
		656.3	29.75	-16.25	46	29.46	26.25	3.61	29.57	-	-	Р	٧
Remark		o other spurious		mit line.									

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C23 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : C24 of C25
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No. : FR850814D

A calculation example for radiated spurious emission is shown as below:

Report No.: FR850814D

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 SPORTON INTERNATIONAL INC.
 Page Number
 : C25 of C25

 TEL: 886-3-327-3456
 Report Issued Date
 : Jun. 20, 2018

 FAX: 886-3-328-4978
 Report Version
 : Rev. 01

FCC ID: 2AFZZ-XMSE10A Report Template No.: BU5-FR15EWL AC MA Version 2.0

Appendix D. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
1+2	802.11a	98.10	-	-	10Hz
1+2	802.11n HT20	97.97	1.930	0.52	1kHz
1+2	802.11n HT40	96.45	0.950	1.05	3kHz
1+2	802.11ac VHT80	87.93	0.255	3.92	10kHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : D1 of D3
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01

Report No.: FR850814D

Report No.: FR850814D

802.11n HT20

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : D2 of D3 Report Issued Date : Jun. 20, 2018 Report Version : Rev. 01

Report No.: FR850814D

802.11n HT40

802.11ac VHT80

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: 2AFZZ-XMSE10A Page Number : D3 of D3
Report Issued Date : Jun. 20, 2018
Report Version : Rev. 01