Весьма замечательно, что имеет место даже следующий факт: **Теорема 185.** Существует функция f(x), неограниченное число раз дифференцируемая для всех x и такая, что

$$\lim_{m=\infty} \sum_{\nu=0}^{m} \frac{f^{(\nu)}(0)}{\nu!} h^{\nu}$$

существует для каждого h, но имеет значение f(h) лишь $npu \ h = 0$.

Доказательство. Пусть

$$f(x) = \begin{cases} 0 & \text{при} & x = 0, \\ e^{-\frac{1}{x^2}} & \text{при} & x \neq 0. \end{cases}$$

Я покажу сначала, что для каждого целого $\nu \geqslant 0$

(1)
$$f^{(\nu)}(x) = \begin{cases} 0 & \text{при} & \mathbf{x} = 0, \\ P_{\nu}(\frac{1}{x})e^{-\frac{1}{x^2}} & \text{при} & \mathbf{x} \neq 0, \end{cases}$$

где $P_{\nu}(z)$ — полином относительно z.

Согласно примеру к теореме 160,

$$e^b > b$$
 при $b > 0$.

Следовательно, при $x \neq 0$ для каждого целого $n \geqslant 0$ имеют место неравенства

$$e^{\frac{1}{x^2}} = \left(e^{\frac{1}{(n+1)x^2}}\right)^{n+1} > \left(\frac{1}{(n+1)x^2}\right)^{n+1},$$

$$\frac{1}{|x|^n}e^{-\frac{1}{x^2}} < (n+1)^{n+1}|x|^{n+2},$$

откуда

$$\lim_{x=0} \frac{1}{x^n} e^{-\frac{1}{x^2}} = 0$$

для каждого целого $n\geqslant 0$. Поэтому и для каждого полинома P(z) имеем

(2)
$$\lim_{x=0} P(\frac{1}{x})e^{-\frac{1}{x^2}} = 0.$$

Формула (1) при $\nu=0$ (с $P_0(z)=1$) очевидна. Из ν следует $\nu+1$, так как тогда, в силу равенства (2),

$$f^{(\nu+1)}(0) = \lim_{x=0} \frac{f^{(\nu)}(x)}{x} = \lim_{x=0} \frac{1}{x} P_{\nu}(\frac{1}{x}) e^{-\frac{1}{x^2}} = 0$$

(ведь $zP_{\nu}(z)$ также полином), а при $x \neq 0$

$$f^{\nu+1}(x) = (P_{\nu}(\frac{1}{x})e^{-\frac{1}{x^2}})' =$$

$$=P_{\nu}'(\frac{1}{x})(-\frac{1}{x^2})e^{-\frac{1}{x^2}}+P_{\nu}(\frac{1}{x})\frac{2}{x^3}e^{-\frac{1}{x^2}}=P_{\nu+1}(\frac{1}{x})e^{-\frac{1}{x^2}}.$$

Тем самым формула (1) доказана. Поэтому для всех h и всех целых $m\geqslant 0$

$$\sum_{\nu=0}^{m} \frac{f^{(\nu)}(0)}{\nu!} h^{\nu},$$

следовательно, для всех h

$$\lim_{m=\infty} \sum_{\nu=0}^{m} \frac{f^{(\nu)}(0)}{\nu!} h^{\nu},$$

 \mathbf{a}

$$f(h) = e^{-\frac{1}{h^2}}$$

отлично от 0.

Теорема 186. Пусть $n \geqslant 2$ целое,

$$f^{(\nu)}(\xi) = 0 \quad npu \quad 1 \leqslant \nu \leqslant n - 1,$$
$$f^{(n)}(\xi) \neq 0.$$

- 1)Eсли n четное u $f^{(n)}(\xi) > 0$, то f(x) имеет в ξ минимум.
- 2)Eсли n четное u $f^{(n)}(\xi) < 0$, то f(x) имеет g ξ максимум.
- 3)Если n нечетное u $f^{(n)}(\xi) > 0$, то f(x) возрастает в ξ .
 - 4)Если n нечетное и $f^{(n)}(\xi)$ < 0, то $f(\xi)$ убывает в $\xi,$