Komboglyze® 2,5 mg/850 mg Filmtabletten Komboglyze® 2,5 mg/1000 mg Filmtabletten

1. BEZEICHNUNG DES ARZNEIMITTELS

Komboglyze® 2,5 mg/850 mg Filmtabletten Komboglyze® 2,5 mg/1000 mg Filmtabletten

2. QUALITATIVE UND QUANTITATIVE **ZUSAMMENSETZUNG**

Komboglyze 2,5 mg/850 mg Filmtabletten:

Jede Tablette enthält 2,5 mg Saxagliptin (als Hydrochlorid) und 850 mg Metforminhydro-

Komboglyze 2,5 mg/1000 mg Filmtab-

Jede Tablette enthält 2,5 mg Saxagliptin (als Hydrochlorid) und 1000 mg Metforminhydrochlorid.

Vollständige Auflistung der sonstigen Bestandteile, siehe Abschnitt 6.1.

3. DARREICHUNGSFORM

Filmtablette (Tablette).

Komboglyze 2,5 mg/850 mg Filmtabletten:

Hellbraune bis braune, bikonvexe, runde Filmtabletten mit dem Aufdruck "2.5/850" auf der einen und "4246" auf der anderen Seite in blauer Tinte.

Komboglyze 2,5 mg/1000 mg Filmtabletten:

Blassgelbe bis hellgelbe, bikonvexe, ovale Filmtabletten mit dem Aufdruck "2.5/1000" auf der einen und "4247" auf der anderen Seite in blauer Tinte.

4. KLINISCHE ANGABEN

4.1 Anwendungsgebiete

Komboglyze ist als Ergänzung zu Diät und Bewegung angezeigt, um die Blutzuckerkontrolle bei erwachsenen Patienten im Alter von 18 Jahren und älter mit Typ-2-Diabetes mellitus zu verbessern, die mit der maximal verträglichen Dosis von Metformin allein nicht ausreichend kontrolliert sind, oder die bereits mit der Kombination von Saxagliptin und Metformin als separate Tabletten behandelt werden.

Komboglyze ist auch in Kombination mit Insulin (d.h. als Dreifach-Kombinationstherapie) als Ergänzung zu Diät und Bewegung angezeigt, um die Blutzuckerkontrolle bei erwachsenen Patienten im Alter von 18 Jahren und älter mit Typ-2-Diabetes mellitus zu verbessern, wenn Insulin und Metformin allein den Blutzucker nicht ausreichend kontrollieren.

Komboglyze ist auch in Kombination mit einem Sulfonylharnstoff (d.h. als Dreifach-Kombinationstherapie) als Ergänzung zu Diät und Bewegung angezeigt, um die Blutzuckerkontrolle bei erwachsenen Patienten im Alter von 18 Jahren und älter mit Typ-2-Diabetes mellitus zu verbessern, wenn die maximal verträgliche Dosis sowohl von Metformin als auch des Sulfonylharnstoffs den Blutzucker nicht ausreichend kontrolliert.

4.2 Dosierung und Art der Anwendung

Dosierung

Für Patienten, die mit der maximal verträglichen Dosis einer Metformin-Monotherapie unzureichend kontrolliert sind Patienten, die mit Metformin allein nicht ausreichend kontrolliert sind, sollten eine Dosis von Komboglyze erhalten, die der Tagesgesamtdosis von 5 mg Saxagliptin entspricht, dosiert als zweimal täglich 2,5 mg, zuzüglich der bereits eingenommenen Dosis Metfor-

Für Patienten, die von separaten Saxagliptin- und Metformin-Tabletten umgestellt werden

Patienten, die von separaten Saxagliptinund Metformin-Tabletten umgestellt werden, sollten die Dosen von Saxagliptin und Metformin erhalten, die bereits eingenommen werden.

Für Patienten, die mit einer Zweifach-Kombinationstherapie aus Insulin und Metformin unzureichend kontrolliert sind, oder für Patienten, die mit einer Dreifach-Kombinationstherapie aus Insulin und separaten Metformin- und Saxagliptin-Tabletten ausreichend kontrolliert sind.

Die Dosis von Komboglyze sollte 2,5 mg Saxagliptin zweimal täglich (5 mg Tagesgesamtdosis) und eine Metformin-Dosis ähnlich der bereits eingenommenen Dosis bereitstellen. Wenn Komboglyze in Kombination mit Insulin angewendet wird, kann es erforderlich sein, die Insulin-Dosis zu reduzieren, um das Risiko einer Hypoglykämie zu verringern (siehe Abschnitt 4.4).

Für Patienten, die mit einer Zweifach-Kombinationstherapie aus einem Sulfonylharnstoff und Metformin unzureichend kontrolliert sind, oder für Patienten, die von einer Dreifach-Kombinationstherapie aus Saxagliptin, Metformin und einem Sulfonylharnstoff als separate Tabletten umgestellt werden.

Die Dosis von Komboglyze sollte 2,5 mg Saxagliptin zweimal täglich (5 mg Tagesgesamtdosis) und eine Metformin-Dosis ähnlich der bereits eingenommenen Dosis bereitstellen. Wenn Komboglyze in Kombination mit einem Sulfonylharnstoff angewendet wird, kann es erforderlich sein, die Sulfonylharnstoff-Dosis zu reduzieren, um das Risiko einer Hypoglykämie zu verringern (siehe Abschnitt 4.4).

Besondere Patientengruppen

Eingeschränkte Nierenfunktion

Bei Patienten mit leicht eingeschränkter Nierenfunktion wird keine Dosisanpassung empfohlen. Komboglyze sollte nicht bei Patienten mit mäßig bis schwer eingeschränkter Nierenfunktion (siehe Abschnitte 4.3, 4.4 und 5.2) angewendet werden.

Eingeschränkte Leberfunktion

Komboglyze sollte nicht bei Patienten mit eingeschränkter Leberfunktion (siehe Abschnitte 4.3 und 5.2) angewendet werden.

Ältere Patienten (≥ 65 Jahre)

Da Metformin und Saxagliptin über die Nieren ausgeschieden werden, sollte Komboglyze bei älteren Patienten mit Vorsicht angewendet werden. Eine Überwachung der Nierenfunktion ist notwendig, um eine Metformin-assoziierte Laktatazidose zu verhindern, insbesondere bei älteren Patienten (siehe Abschnitte 4.3, 4.4 und 5.2).

Kinder und Jugendliche

Die Sicherheit und Wirksamkeit von Komboglyze bei Kindern von der Geburt bis zu einem Alter von < 18 Jahren ist nicht erwiesen. Es liegen keine Daten vor.

Art der Anwendung

Komboglyze sollte zweimal täglich zu einer Mahlzeit eingenommen werden, um die mit Metformin verbundenen gastrointestinalen Nebenwirkungen zu vermindern.

4.3 Gegenanzeigen

Komboglyze ist kontraindiziert bei Patienten mit:

- Überempfindlichkeit gegen den (die) Wirkstoff(e) oder einen der in Abschnitt 6.1 genannten sonstigen Bestandteile oder einer Vorgeschichte einer schwerwiegenden Überempfindlichkeitsreaktion gegen jeglichen Dipeptidyl-Peptidase-4-(DPP4)-Inhibitor einschließlich einer anaphylaktischen Reaktion, eines anaphylaktischen Schocks und Angioödem (siehe Abschnitte 4.4 und 4.8);
- diabetischer Ketoazidose, diabetischem Präkoma:
- mäßiger und schwerer Nierenfunktionsstörung (Kreatinin-Clearance < 60 ml/ min) (siehe Abschnitt 4.4);
- akuten Erkrankungen, die potenziell die Nierenfunktion beeinflussen können,
 - Dehydratation,
 - schwere Infektion,
- Schock;
- einer akuten oder chronischen Erkrankung, die zu einer Gewebehypoxie führen kann, wie:
 - Herz- oder Lungeninsuffizienz,
 - kürzlich stattgefundener Myokardinfarkt.
 - Schock;
- Leberfunktionsstörung (siehe Abschnitte 4.2 und 5.2);
- akuter Alkoholvergiftung, Alkoholismus (siehe Abschnitt 4.5);
- Stillzeit (siehe Abschnitt 4.6).

4.4 Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung

Komboglyze sollte bei Patienten mit Typ-1-Diabetes mellitus oder zur Behandlung einer Diabetes-bedingten Ketoazidose nicht angewendet werden.

Komboglyze ist kein Ersatz für Insulin bei insulinpflichtigen Patienten.

Akute Pankreatitis

Die Anwendung von DPP4-Inhibitoren wurde mit dem Risiko für das Auftreten einer akuten Pankreatitis in Zusammenhang gebracht. Die Patienten sollten über die charakteristischen Symptome einer akuten Pankreatitis informiert werden: persistierende, starke Abdominalschmerzen. Besteht Verdacht auf eine Pankreatitis, muss Komboglyze abgesetzt werden. Wenn eine akute Pankreatitis bestätigt wird, darf die Behandlung mit Komboglyze nicht wieder auf-

Komboglyze® 2,5 mg/850 mg Filmtabletten Komboglyze® 2,5 mg/1000 mg Filmtabletten

AstraZeneca GmbH, 22876 Wedel

genommen werden. Bei Patienten mit einer Pankreatitis in der Vorgeschichte ist Vorsicht geboten.

Im Rahmen der Erfahrungen mit Saxagliptin seit Markteinführung sind Nebenwirkungen von akuter Pankreatitis spontan berichtet worden.

Laktatazidose

Laktatazidose ist eine sehr seltene, jedoch schwerwiegende metabolische Komplikation (hohe Mortalität bei nicht sofortiger Behandlung). Sie kann aufgrund einer Akkumulation von Metformin, eines Bestandteils von Komboglyze, auftreten. Gemeldete Fälle einer Laktatazidose bei Patienten unter Metformin traten primär bei Diabetikern mit signifikanter Niereninsuffizienz auf. Die Inzidenz der Laktatazidose kann und sollte reduziert werden durch zusätzliche Bewertung damit assoziierter Risikofaktoren, wie schlecht eingestellter Diabetes, Ketose. längeres Fasten, übermäßiger Alkoholkonsum, Leberinsuffizienz und alle mit Hypoxie assoziierten Erkrankungen.

Diagnose

Die Laktatazidose wird charakterisiert durch azidotische Dyspnoe, Bauchschmerzen und Hypothermie gefolgt von Koma. Diagnostische Laborwerte sind ein verringerter pH-Wert des Blutes, Plasma-Laktatspiegel über 5 mmol/l sowie eine Erhöhung der Anionenlücke und des Laktat/Pyruvat-Quotienten. Besteht ein Verdacht auf eine metabolische Azidose, sollte die Behandlung mit dem Arzneimittel abgebrochen und der Patient sofort in ein Krankenhaus eingewiesen werden (siehe Abschnitt 4.9).

Nierenfunktion

Da Metformin über die Nieren ausgeschieden wird, sollte die Serum-Kreatinin-Konzentration regelmäßig bestimmt werden:

- mindestens einmal j\u00e4hrlich bei Patienten mit normaler Nierenfunktion
- mindestens zwei- bis viermal j\u00e4hrlich bei Patienten mit Serum-Kreatinin-Spiegeln an oder \u00fcber der Obergrenze des Normalwertes sowie bei \u00e4lteren Patienten.

Bei älteren Patienten ist eine verminderte Nierenfunktion häufig und asymptomatisch. Besondere Vorsicht ist in Situationen geboten, in denen die Nierenfunktion beeinträchtigt werden kann, z.B. bei Beginn einer antihypertensiven oder diuretischen Therapie, oder zu Beginn einer Behandlung mit einem nichtsteroidalen anti-inflammatorischen Arzneimittel (NSAR).

Operationen

Da Komboglyze Metformin enthält, sollte die Behandlung 48 Stunden vor einer geplanten Operation unter Allgemein-, Spinaloder Epiduralanästhesie unterbrochen werden. Komboglyze sollte in der Regel nicht früher als 48 Stunden danach wieder eingenommen werden, und nur, nachdem die Nierenfunktion erneut untersucht und für normal befunden wurde.

Anwendung jodierter Kontrastmittel

Die intravaskuläre Anwendung jodierter Kontrastmittel bei radiologischen Untersuchungen kann zu Nierenversagen führen. Dies wurde bei Patienten, die Metformin erhielten, mit Laktatazidose in Verbindung gebracht. Daher muss Komboglyze vor

oder zum Zeitpunkt der Untersuchung abgesetzt werden und darf erst 48 Stunden danach wieder angewendet werden, und nur, nachdem die Nierenfunktion erneut untersucht und für normal befunden wurde (siehe Abschnitt 4.5).

Hauterkrankungen

In nichtklinischen toxikologischen Studien mit Saxagliptin wurde über ulzerative und nekrotische Hautläsionen an den Extremitäten von Affen berichtet (siehe Abschnitt 5.3). In klinischen Studien wurde keine erhöhte Inzidenz von Hautläsionen beobachtet. Nach Markteinführung wurde über Hautausschlag in der Klasse der DPP-4-Inhibitoren berichtet. Hautausschlag wird zudem als ein unerwünschtes Ereignis (UE) von Saxagliptin beobachtet (siehe Abschnitt 4.8). Daher wird im Rahmen der Routinebetreuung von Diabetes-Patienten eine Überwachung hinsichtlich Hauterkrankungen, wie z.B. Blasenbildung, Ulzeration oder Hautausschlag empfohlen.

Überempfindlichkeitsreaktionen

Da Komboglyze Saxagliptin enthält, darf es nicht bei Patienten angewendet werden, die schon einmal eine schwere Überempfindlichkeitsreaktion gegen einen Dipeptidyl-Peptidase-4-(DPP-4-) Inhibitor hatten.

Im Rahmen der Erfahrungen seit Markteinführung, einschließlich Spontanberichten und klinischen Studien, wurden folgende Nebenwirkungen während der Anwendung von Saxagliptin gemeldet: schwerwiegende Überempfindlichkeitsreaktionen einschließlich einer anaphylaktischen Reaktion, eines anaphylaktischen Schocks und Angioödem. Wenn eine schwerwiegende Überempfindlichkeitsreaktion gegen Saxagliptin vermutet wird, ist Komboglyze abzusetzen, andere potenzielle Ursachen für das Ereignis sind zu bewerten und eine alternative Diabetes-Behandlung ist einzuleiten (siehe Abschnitte 4.3 und 4.8).

Veränderung des klinischen Zustands von Patienten mit zuvor kontrolliertem Typ-2-Diabetes

Da Komboglyze Metformin enthält, sollte ein mit Komboglyze zuvor gut kontrollierter Typ-2-Diabetes-Patient, der abnorme Laborwerte oder klinische Erkrankungen (insbesondere unklare oder schlecht zu definierende Erkrankungen) entwickelt, umgehend auf eine Ketoazidose oder Laktatazidose hin untersucht werden. Die Bewertung sollte Serum-Elektrolyte und Ketone, Blutzucker und, falls indiziert, Blut-pH-Wert, Laktat-, Pyruvat- und Metformin-Spiegel umfassen. Sollte eine Azidose in jeglicher Form auftreten, muss Komboglyze sofet abgesetzt werden und andere geeignete korrektive Maßnahmen sind zu ergreifen.

Herzinsuffizienz

In der SAVOR-Studie wurde ein geringer Anstieg der Hospitalisierungsrate aufgrund von Herzinsuffizienz bei mit Saxagliptin behandelten Patienten gegenüber Placebo beobachtet, obwohl ein kausaler Zusammenhang nicht festgestellt werden konnte (siehe Abschnitt 5.1). Vorsicht ist geboten, wenn Komboglyze bei Patienten angewendet wird, die bekannte Risikofaktoren für eine Hospitalisierung aufgrund von Herzin-

suffizienz haben, wie zum Beispiel Herzinsuffizienz oder mäßige bis schwere Niereninsuffizienz in der Vorgeschichte. Patienten sollten über die charakteristischen Symptome einer Herzinsuffizienz informiert und angehalten werden, derartige Symptome umgehend zu berichten.

Arthralgie

In Bezug auf DPP4-Inhibitoren wurde nach Markteinführung über Gelenkschmerzen berichtet, die auch stark sein können (siehe Abschnitt 4.8). Die Patienten verspürten eine Linderung der Symptome nach Absetzen des Arzneimittels und bei einigen Patienten traten die Symptome bei erneuter Einnahme desselben oder eines anderen DPP4-Inhibitors wieder auf. Nach Beginn der Behandlung können die Symptome rasch oder erst nach einer längeren Behandlungsdauer einsetzen. Sollte sich ein Patient mit starken Gelenkschmerzen vorstellen, sollte die Weiterführung der Behandlung individuell beurteilt werden.

Immunsupprimierte Patienten

Immunsupprimierte Patienten, wie Patienten, die sich einer Organtransplantation unterzogen haben, oder Patienten, bei denen das humane Immunschwächesyndrom diagnostiziert wurde, sind im klinischen Programm von Saxagliptin nicht untersucht worden. Daher ist die Wirksamkeit und das Sicherheitsprofil von Saxagliptin bei diesen Patienten nicht bekannt.

Anwendung mit potenten CYP3A4-Induktoren

Die Anwendung von CYP3A4-Induktoren wie Carbamazepin, Dexamethason, Phenobarbital, Phenytoin und Rifampicin kann die blutzuckersenkende Wirkung von Saxagliptin reduzieren (siehe Abschnitt 4.5).

Anwendung mit Arzneimitteln, die bekanntermaßen Hypoglykämien verursachen Insulin und Sulfonylharnstoffe sind bekannt dafür, Hypoglykämien auszulösen. Um das Risiko einer Hypoglykämie zu verringern, kann es deshalb erforderlich sein, die Dosis des Insulins oder des Sulfonylharnstoffs bei Kombination mit Komboglyze zu reduzie-

4.5 Wechselwirkungen mit anderen Arzneimitteln und sonstige Wechselwirkungen

Die gleichzeitige Anwendung mehrerer Dosen von Saxagliptin (2,5 mg zweimal täglich) und Metformin (1000 mg zweimal täglich) veränderte bei Patienten mit Typ-2-Diabetes weder die Pharmakokinetik von Saxagliptin noch die von Metformin wesentlich.

Es wurden keine formalen Studien zur Erfassung von Wechselwirkungen für Komboglyze durchgeführt. Die folgenden Aussagen geben die für die einzelnen Wirkstoffe verfügbaren Informationen wieder.

Saxagliptin

Die unten beschriebenen klinischen Daten deuten darauf hin, dass das Risiko für klinisch relevante Wechselwirkungen mit gleichzeitig angewendeten Arzneimitteln gering ist.

Die Metabolisierung von Saxagliptin wird hauptsächlich durch Cytochrom P450 3A4/5

Komboglyze® 2,5 mg/850 mg Filmtabletten Komboglyze® 2,5 mg/1000 mg Filmtabletten

(CYP3A4/5) vermittelt. In in-vitro-Studien inhibierten Saxagliptin und sein Hauptmetabolit weder CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 oder 3A4, noch induzierten sie CYP1A2, 2B6, 2C9 oder 3A4. In Studien mit gesunden Probanden veränderte sich weder die Pharmakokinetik von Saxagliptin noch die seines Hauptmetaboliten bedeutsam durch Metformin, Glibenclamid, Pioglitazon, Digoxin, Simvastatin, Omeprazol, Antazida oder Famotidin. Darüber hinaus wurde die Pharmakokinetik von Metformin, Glibenclamid, Pioglitazon, Digoxin, Simvastatin, den wirksamen Bestandteilen eines kombinierten oralen Kontrazeptivums (Ethinylestradiol und Norgestimat), Diltiazem oder Ketoconazol durch Saxagliptin nicht wesentlich verändert.

Die gleichzeitige Anwendung von Saxagliptin mit dem moderaten CYP3A4/5-Inhibitor Diltiazem erhöhte die C_{max} - und AUC-Werte von Saxagliptin um 63 % bzw. das 2,1-fache und die entsprechenden Werte für den aktiven Metaboliten wurden dabei um 44 %bzw. 34 % gesenkt.

Die gleichzeitige Anwendung von Saxagliptin mit dem starken CYP3A4/5-Inhibitor Ketoconazol erhöhte die C_{max}- und AUC-Werte von Saxagliptin um 62 % bzw. das 2,5-fache, und die entsprechenden Werte für den aktiven Metaboliten wurden dabei um 95 % bzw. 88 % gesenkt.

Die gleichzeitige Anwendung von Saxagliptin mit dem starken CYP3A4/5-Induktor Rifampicin senkte die C_{max}- und AUC-Werte von Saxagliptin um 53 % bzw. 76 %. Die Exposition des aktiven Metaboliten und die Hemmung der Plasma-DPP4-Aktivität wurden über ein Dosisintervall nicht durch Rifampicin beeinflusst (siehe Abschnitt 4.4).

Die gleichzeitige Anwendung von Saxagliptin und anderen CYP3A4/5-Induktoren als Rifampicin (wie z. B. Carbamazepin, Dexamethason, Phenobarbital und Phenytoin) wurde nicht untersucht und kann zu erniedrigten Plasmakonzentrationen von Saxagliptin und einer erhöhten Konzentration seines Hauptmetaboliten führen. Die Blutzuckerkontrolle sollte sorgfältig bewertet werden, wenn Saxagliptin gleichzeitig mit einem starken CYP3A4-Induktor angewendet wird.

Die Auswirkungen von Rauchen, Diät, pflanzlichen Mitteln und Alkoholkonsum auf die Pharmakokinetik von Saxagliptin wurden nicht speziell untersucht.

Metformin

Nicht empfohlene Kombinationen

Es besteht ein erhöhtes Risiko einer Laktatazidose bei akuter Alkoholvergiftung (insbesondere im Zusammenhang mit Fasten, Mangelernährung oder Leberfunktionsstörung) durch den Wirkstoff Metformin in Komboglyze (siehe Abschnitt 4.4). Der Konsum von Alkohol und alkoholhaltigen Arzneimitteln sollte vermieden werden.

Kationische Substanzen, die durch renale tubuläre Sekretion ausgeschieden werden (z. B. Cimetidin), können durch Konkurrenz um gemeinsame renale tubuläre Transportsysteme mit Metformin interagieren. Eine an sieben normalen, gesunden Probanden durchgeführte Studie ergab, dass Cimeti-

din, 400 mg zweimal täglich angewendet, die systemische Exposition (AUC) von Metformin um 50 % und die C_{max} -Werte um 81% erhöhte. Daher sollten eine enge Überwachung der Blutzuckerkontrolle, eine Dosisanpassung innerhalb der empfohlenen Dosierung sowie eine Änderung der Diabetesbehandlung in Betracht gezogen werden, wenn kationische Arzneimittel, die durch renale tubuläre Sekretion ausgeschieden werden, gleichzeitig angewendet

Die intravaskuläre Anwendung von jodierten Kontrastmitteln in radiologischen Untersuchungen kann zu Nierenversagen führen, was zu einer Akkumulation von Metformin und dem Risiko einer Laktatazidose führt. Daher muss Komboglyze vor oder zum Zeitpunkt der Untersuchung abgesetzt werden und darf erst 48 Stunden danach wieder angewendet werden, und nur, nachdem die Nierenfunktion erneut untersucht und für normal befunden wurde (siehe Abschnitt 4.4).

Kombinationen, bei denen Vorsicht geboten ist

Glukokortikoide (systemisch und lokal angewendet), Beta-2-Agonisten und Diuretika besitzen eine intrinsische hyperglykämische Aktivität. Der Patient sollte darüber informiert und häufigere Blutzuckermessungen vorgenommen werden, vor allem zu Beginn der Behandlung mit solchen Arzneimitteln. Falls erforderlich, sollte die Dosis des anti-hyperglykämischen Arzneimittels während der Therapie mit dem anderen Arzneimittel sowie nach dessen Absetzen angepasst werden.

4.6 Fertilität, Schwangerschaft und Stillzeit

Schwangerschaft

Die Anwendung von Komboglyze oder Saxagliptin wurde bei schwangeren Frauen nicht untersucht. Tierexperimentelle Studien haben eine Reproduktionstoxizität bei hohen Dosierungen von Saxagliptin allein oder in Kombination mit Metformin gezeigt (siehe Abschnitt 5.3). Das potenzielle Risiko für den Menschen ist nicht bekannt. Eine begrenzte Datenmenge deutet darauf hin, dass die Anwendung von Metformin bei schwangeren Frauen nicht mit einem erhöhten Risiko von angeborenen Missbildungen verbunden ist. Tierstudien mit Metformin weisen nicht auf schädliche Wirkungen in Bezug auf Schwangerschaft, embryonale oder fetale Entwicklung, Geburt oder postnatale Entwicklung hin (siehe Abschnitt 5.3). Komboglyze sollte während der Schwangerschaft nicht angewendet werden. Wenn die Patientin wünscht, schwanger zu werden, oder wenn eine Schwangerschaft eintritt, sollte die Behandlung mit Komboglyze abgesetzt und so schnell wie möglich zu einer Insulin-Behandlung gewechselt werden.

Stillzeit

Tierexperimentelle Studien haben eine Ausscheidung von Saxagliptin und/oder Metaboliten und Metformin in die Milch gezeigt. Es ist nicht bekannt, ob Saxagliptin in die Muttermilch übergeht, aber Metformin geht in geringen Mengen in die Muttermilch über. Komboglyze darf daher bei Frauen, die stillen, nicht angewendet werden (siehe Abschnitt 4.3).

Fertilität

Die Wirkung von Saxagliptin auf die Fruchtbarkeit des Menschen wurde nicht untersucht. Auswirkungen auf die Fertilität wurden an männlichen und weiblichen Ratten bei hohen Dosen, die zu offenkundigen Anzeichen von Toxizität führten, beobachtet (siehe Abschnitt 5.3). Für Metformin haben tierexperimentelle Studien keine Reproduktionstoxizität gezeigt (siehe Abschnitt 5.3).

4.7 Auswirkungen auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen

Saxagliptin oder Metformin haben möglicherweise einen zu vernachlässigenden Einfluss auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen. Beim Fahren oder beim Bedienen von Maschinen sollte berücksichtigt werden, dass in Studien mit Saxagliptin über Schwindel berichtet wurde. Des Weiteren sollten Patienten auf das Risiko einer Hypoglykämie aufmerksam gemacht werden, wenn Komboalvze in Kombination mit anderen Antidiabetika angewendet wird, die bekanntermaßen eine Hypoglykämie verursachen können (z. B. Insulin, Sulfonylharnstoffe).

4.8 Nebenwirkungen

Es wurden keine therapeutischen klinischen Studien mit Komboglyze-Tabletten durchgeführt, jedoch wurde die Bioäquivalenz von Komboglyze mit gleichzeitig angewendetem Saxagliptin und Metformin nachgewiesen (siehe Abschnitt 5.2).

Saxagliptin

Zusammenfassung des Sicherheitsprofils

4.148 Patienten mit Typ-2-Diabetes, darunter 3.021 mit Saxagliptin behandelte Patienten, wurden zur Untersuchung der Wirkungen von Saxagliptin auf die Blutzuckerkontrolle in sechs doppelblinde, kontrollierte klinische Sicherheits- und Wirksamkeitsstudien randomisiert. In randomisierten, kontrollierten, doppelblinden klinischen Studien (einschließlich Erfahrungen im Rahmen der Entwicklung und nach Markteinführung) wurden über 17.000 Typ-2-Diabetes-Patienten mit Saxagliptin behandelt.

In einer gepoolten Analyse von 1.681 Patienten mit Typ-2-Diabetes, darunter 882 mit Saxagliptin 5 mg behandelte Patienten, die in fünf doppelblinde, Placebo-kontrollierte klinische Sicherheits- und Wirksamkeitsstudien zur Untersuchung der Wirkungen von Saxagliptin auf die Blutzuckerkontrolle randomisiert wurden, war die Gesamthäufigkeit von UEs bei Patienten, die mit Saxagliptin 5 mg behandelt wurden, ähnlich der von Placebo. Ein Abbruch der Therapie aufgrund von UEs war bei Patienten, die Saxagliptin 5 mg erhielten, im Vergleich zu Placebo höher (3,3 % im Vergleich zu 1,8 %).

Tabellarische Liste der Nebenwirkungen

Nebenwirkungen, die für ≥ 5 % der mit Saxagliptin 5 mg behandelten Patienten und häufiger als für mit Placebo behandelte Patienten berichtet wurden oder die für

Tabelle 1 Häufigkeit von Nebenwirkungen nach Systemorganklassen

Systemorganklasse Nebenwirkung	Häufigkeit von Nebenwirkungen nach Behandlungsregime Saxagliptin mit Metformin ¹	
Infektionen und parasitäre Erkrankungen		
Infektion der oberen Atemwege	Häufig	
Harnwegsinfektion	Häufig	
Gastroenteritis	Häufig	
Sinusitis	Häufig	
Nasopharyngitis	Häufig ²	
Erkrankungen des Nervensystems		
Kopfschmerzen	Häufig	
Erkrankungen des Gastrointestinaltrakts		
Erbrechen	Häufig	

- Schließt Saxagliptin in der Add-on-Kombination mit Metformin und der initialen Kombination mit Metformin ein.
- ² Nur in der initialen Kombinationstherapie.

Tabelle 2 Häufigkeit zusätzlicher Nebenwirkungen nach Systemorganklassen

Systemorganklasse Nebenwirkung	Häufigkeit von Nebenwirkungen¹	
Erkrankungen des Gastrointestinaltrakts		
Übelkeit Pankreatitis Obstipation	Häufig Gelegentlich Nicht bekannt	
Erkrankungen des Immunsystems		
Überempfindlichkeitsreaktionen² (siehe Abschnitte 4.3 und 4.4) Anaphylaktische Reaktionen einschließlich anaphylaktischen Schocks (siehe Abschnitte 4.3 und 4.4)	Gelegentlich Selten	
Erkrankungen der Haut und des Unterhautzellgewebes		
Angioödem (siehe Abschnitte 4.3 und 4.4) Dermatitis Pruritus Hautausschlag ² Urtikaria	Selten Gelegentlich Gelegentlich Häufig Gelegentlich	

- Die Schätzungen für die Häufigkeiten basieren auf einer gepoolten Analyse der klinischen Studien für die Saxagliptin-Monotherapie, die add-on-Kombination mit Metformin und die initiale Kombination mit Metformin, die add-on-Kombination mit einem Sulfonylharnstoff und die add-on-Kombination mit einem Thiazolidindion.
- ² Diese Nebenwirkungen wurden auch in klinischen Studien vor der Zulassung identifiziert, entsprechen aber nicht den Kriterien der Tabelle 1.

 $\geq 2\,\%$ der mit Saxagliptin 5 mg behandelten Patienten und $\geq 1\,\%$ häufiger im Vergleich zu Placebo berichtet wurden, sind in Tabelle 1 aufgeführt.

Die Nebenwirkungen sind nach Systemorganklasse und absoluter Häufigkeit aufgelistet. Die Häufigkeiten sind definiert als sehr häufig (\geq 1/10), häufig (\geq 1/100, < 1/10), gelegentlich (\geq 1/1.000, < 1/100), selten (\geq 1/10.000, < 1/1.000) oder sehr selten (< 1/10.000), nicht bekannt (Häufigkeit auf Grundlage der verfügbaren Daten nicht abschätzbar).

Erfahrungen seit Markteinführung aus klinischen Studien und Spontanberichten

Tabelle 2 auf Seite 4 zeigt zusätzliche Nebenwirkungen, die im Rahmen der Erfahrungen mit Saxagliptin seit Markteinführung gemeldet worden sind. Die Häufigkeiten basieren auf Erfahrungen aus klinischen Studien.

Ergebnisse der SAVOR-Studie

Die SAVOR-Studie schloss 8.240 Patienten ein, die mit Saxagliptin 5 mg oder 2,5 mg

einmal täglich behandelt wurden, sowie 8.173 Patienten, die Placebo erhielten. In dieser Studie war die Gesamthäufigkeit von unerwünschten Ereignissen bei Patienten, die mit Saxagliptin behandelt wurden, ähnlich der von Placebo (72,5 % bzw. 72,2 %). Die Häufigkeit von gesicherten Pankreatitis-Ereignissen betrug in der *Intent-to-Treat-Population* sowohl bei den Patienten, die mit Saxagliptin behandelt wurden, als auch bei den mit Placebo behandelten Patienten 0.3 %.

Die Häufigkeit von Überempfindlichkeitsreaktionen betrug sowohl bei den mit Saxagliptin als auch bei den mit Placebo behandelten Patienten 1,1 %.

Die Gesamthäufigkeit der berichteten Hypoglykämiefälle (aufgezeichnet in täglichen Patiententagebüchern) betrug 17,1% bei den mit Saxagliptin behandelten Patienten und 14,8% bei den mit Placebo behandelten Patienten. Während der Behandlung war der Prozentsatz an Patienten mit berichteten schweren Hypoglykämie-Ereignissen (definiert als Ereignis, bei dem Hilfe

von einer anderen Person erforderlich war) in der Saxagliptin-Gruppe größer als in der Placebo-Gruppe (2,1 % bzw. 1,6 %). Das erhöhte Risiko der gesamten Hypoglykämiefälle sowie der schweren Hypoglykämiefälle, das in der mit Saxagliptin behandelten Gruppe beobachtet wurde, trat hauptsächlich bei Personen auf, die zu Studienbeginn mit Sulfonylharnstoff behandelt wurden. Es trat nicht bei Personen auf, die zu Studienbeginn mit einer Insulinoder Metformin-Monotherapie behandelt wurden. Das erhöhte Risiko der gesamten und der schweren Hypoglykämiefälle wurde hauptsächlich bei Patienten mit einem HbA_{1c}-Ausgangswert < 7 % beobachtet.

Über eine erniedrigte Lymphozytenanzahl wurde bei 0,5% der mit Saxagliptin behandelten Patienten und bei 0,4% der mit Placebo behandelten Patienten berichtet.

Eine Hospitalisierung aufgrund von Herzinsuffizienz trat häufiger in der Saxagliptin-Gruppe (3,5%) als in der Placebo-Gruppe (2,8%) auf, mit einer nominal statistischen Signifikanz zugunsten von Placebo [Hazard Ratio (HR) = 1,27; 95% Konfidenzintervall (Cl) 1,07; 1,51; p = 0,007]. Siehe auch Abschnitt 5.1.

Beschreibung ausgewählter Nebenwirkungen

UEs, für die der Prüfarzt zumindest einen möglichen Zusammenhang mit dem Arzneimittel in Betracht zog und die bei mindestens zwei weiteren mit Saxagliptin 5 mg behandelten Patienten im Vergleich zur Kontrollgruppe berichtet wurden, werden im Folgenden, unterteilt nach Behandlungsregimen, beschrieben.

In der Monotherapie: Schwindel (häufig) und Erschöpfung (häufig).

In der *Add-on-*Therapie mit Metformin: Dyspepsie (häufig) und Myalgie (häufig).

In der initialen Kombination mit Metformin: Gastritis (häufig), Arthralgie* (gelegentlich), Myalgie (gelegentlich) und erektile Dysfunktion (gelegentlich).

In der *Add-on-*Therapie zu Metformin und einem Sulfonylharnstoff: Schwindel (häufig), Erschöpfung (häufig) und Flatulenz (häufig).

 Über Arthralgie wurde auch im Rahmen der Beobachtung nach Markteinführung berichtet (siehe Abschnitt 4.4).

Hypoglykämie

Als Basis für die Nebenwirkung Hypoglykämie dienten alle Berichte über Hypoglykämie; eine gleichzeitige Glukosemessung war nicht erforderlich. Die Häufigkeit der berichteten Hypoglykämiefälle unter Saxagliptin 5 mg gegenüber Placebo, als Addon-Therapie mit Metformin gegeben, betrug 5,8% gegenüber 5%. Die Häufigkeit der berichteten Hypoglykämiefälle betrug 3,4% bei nicht-vorbehandelten Patienten, denen Saxagliptin 5 mg plus Metformin gegeben wurde, und 4,0 % bei Patienten, denen nur Metformin gegeben wurde. Im Rahmen der Add-on-Therapie mit Insulin (mit oder ohne Metformin) betrug die Gesamthäufigkeit berichteter Hypoglykämiefälle 18,4% unter Saxagliptin 5 mg und 19,9% unter Placebo.

Komboglyze® 2,5 mg/850 mg Filmtabletten Komboglyze® 2,5 mg/1000 mg Filmtabletten

Tabelle 3 Häufigkeit der Nebenwirkungen von Metformin, die in klinischen Studien und aus Daten seit Markteinführung bestimmt wurde

Systemorganklasse Nebenwirkung	Häufigkeit	
Stoffwechsel- und Ernährungsstörungen		
Laktatazidose Vitamin-B12-Mangel ¹	Sehr selten Sehr selten	
Erkrankungen des Nervensystems		
Metallischer Geschmack	Häufig	
Erkrankungen des Gastrointestinaltrakts		
Gastrointestinale Symptome ²	Sehr häufig	
Leber- und Gallenerkrankungen		
Leberfunktionsstörungen, Hepatitis	Sehr selten	
Erkrankungen der Haut und des Unterhautzellgewebes		
Urtikaria, Erythem, Juckreiz	Sehr selten	

- Die langfristige Behandlung mit Metformin ist mit einer Abnahme der Vitamin-B12-Resorption in Verbindung gebracht worden, die sehr selten zu einem klinisch signifikanten Vitamin-B12-Mangel führen kann (z. B. megaloblastische Anämie).
- ² Gastrointestinale Symptome wie Übelkeit, Erbrechen, Durchfall, Bauchschmerzen und Appetitlosigkeit treten meist zu Beginn der Therapie auf und bilden sich in den meisten Fällen spontan zurück.

Im Rahmen der *Add-on-*Kombinationstherapie mit Metformin und einem Sulfonylharnstoff betrug die Gesamthäufigkeit berichteter Hypoglykämien 10,1 % unter Saxagliptin 5 mg und 6,3 % unter Placebo.

Untersuchungen

In allen klinischen Studien war die Häufigkeit von UEs in Bezug auf Labor-Parameter bei Patienten, die Saxagliptin 5 mg bzw. Placebo erhielten, ähnlich. Es wurde eine leichte Abnahme der absoluten Lymphozytenanzahl beobachtet. In der Placebo-kontrollierten gepoolten Analyse wurde, ausgehend von einer mittleren absoluten Lymphozytenanzahl von etwa 2200 Zellen/µl, eine mittlere Abnahme von etwa 100 Zel $len/\mu l$ im Vergleich zu Placebo beobachtet. Die mittlere absolute Lymphozytenanzahl blieb bei einer täglichen Anwendung über eine Dauer von bis zu 102 Wochen stabil. Die Abnahme der Lymphozytenanzahl war nicht mit klinisch relevanten Nebenwirkungen verbunden. Die klinische Signifikanz dieser Abnahme der Lymphozytenzahl im Verhältnis zu Placebo ist nicht bekannt.

Metformin

Daten aus klinischen Studien und nach Markteinführung

Tabelle 3 stellt Nebenwirkungen nach Systemorganklasse und nach Häufigkeitskategorie dar. Die Häufigkeitskategorien basieren auf den Informationen, die in der Zusammenfassung der Merkmale des Arzneimittels (Fachinformation) von Metformin in der Europäischen Union verfügbar sind.

Meldung des Verdachts auf Nebenwirkungen

Die Meldung des Verdachts auf Nebenwirkungen nach der Zulassung ist von großer Wichtigkeit. Sie ermöglicht eine kontinuierliche Überwachung des Nutzen-Risiko-Verhältnisses des Arzneimittels. Angehörige von Gesundheitsberufen sind aufgefordert, jeden Verdachtsfall einer Nebenwirkung über das nationale Meldesystem anzuzeigen:

Bundesinstitut für Arzneimittel und Medizinprodukte Abt. Pharmakovigilanz Kurt-Georg-Kiesinger-Allee 3 D-53175 Bonn

Website: http://www.bfarm.de

4.9 Überdosierung

Bezüglich einer Überdosierung mit Komboglyze liegen keine Daten vor.

Saxagliptin

Bei einer täglichen oralen Dosis von bis zu 400 mg über 2 Wochen (entspricht dem 80-fachen der empfohlenen Dosis) hat sich Saxagliptin als gut verträglich, ohne klinisch bedeutsamen Effekt auf das QTc-Intervall oder die Herzfrequenz, erwiesen. Im Falle einer Überdosierung sollte in Abhängigkeit vom klinischen Zustand des Patienten eine angemessene supportive Behandlung erfolgen. Saxagliptin und sein Hauptmetabolit können mittels Hämodialyse eliminiert werden (23 % der Dosis über 4 Stunden).

Metformin

Eine starke Überdosierung oder die begleitenden Risiken von Metformin können zu einer Laktatazidose führen. Eine Laktatazidose ist ein medizinischer Notfall und muss im Krankenhaus behandelt werden. Die effektivste Methode, um Laktat und Metformin zu entfernen, ist die Hämodialyse.

5. PHARMAKOLOGISCHE EIGEN-SCHAFTEN

5.1 Pharmakodynamische Eigenschaften

Pharmakotherapeutische Gruppe: Antidiabetika, Kombinationen mit oralen Antidiabetika, ATC-Code: A10BD10.

Wirkmechanismus und pharmakodynamische Wirkungen

Komboglyze kombiniert zwei anti-hyperglykämische Arzneimittel mit komplementären Wirkmechanismen, um die glykämische Kontrolle bei Patienten mit Typ-2-Diabetes zu verbessern: Saxagliptin, ein DipeptidylPeptidase-4-(DPP-4-)Inhibitor, und Metforminhydrochlorid, ein Vertreter der Klasse der Biguanide.

Saxagliptin

Saxagliptin ist ein hoch potenter (Ki-Wert: 1,3 nM), selektiver, reversibler, kompetitiver DPP-4-Inhibitor. Bei Patienten mit Typ-2-Diabetes führte die Gabe von Saxagliptin zu einer 24-stündigen Hemmung der DPP-4-Enzymaktivität. Nach einer oralen Glukoseapplikation führte diese DPP-4-Hemmung zu einem 2- bis 3-fachen Anstieg der zirkulierenden Spiegel von aktiven Inkretinhormonen, einschließlich des glucagon-like peptide-1 (GLP-1) und des glucose-dependent insulinotropic polypeptide (GIP), verringerten Glucagonkonzentrationen und einer erhöhten glukoseabhängigen Beta-Zell-Sensitivität, die zu höheren Insulin- und C-Peptid-Konzentrationen führte. Der Anstieg der Insulinausschüttung durch die pankreatischen Beta-Zellen und die Abnahme der Glucagonausschüttung durch die pankreatischen Alpha-Zellen waren mit niedrigeren Nüchtern-Glukosekonzentrationen und einem geringeren Glukoseausschlag nach einer oralen Glukoseapplikation oder einer Mahlzeit verbunden. Saxagliptin verbessert die Blutzuckerkontrolle, indem es die Nüchtern- und postprandialen Glukosekonzentrationen bei Patienten mit Typ-2-Diabetes senkt.

Metformin

Metformin ist ein Biguanid mit anti-hyperglykämischen Effekten, das sowohl den basalen als auch den postprandialen Blutzuckerspiegel senkt. Es stimuliert die Insulinsekretion nicht und erzeugt daher keine Hypoglykämie.

Metformin kann über drei Mechanismen wirken:

- durch Verminderung der hepatischen Glukoseproduktion mittels Hemmung der Glukoneogenese und der Glycogenolyse in der Muskulatur;
- durch maßvolle Erhöhung der Insulinsensitivität und Verbesserung der peripheren Glukoseaufnahme und -verwertung;
- durch Verzögerung der intestinalen Glukoseresorption.

Metformin stimuliert die intrazelluläre Glycogensynthese durch seine Wirkung auf die Glycogensynthase. Metformin erhöht die Transportkapazität von spezifischen Arten membranständiger Glukosetransporter (GLUT-1 und GLUT-4).

Unabhängig von seiner Wirkung auf den Blutzuckerspiegel wirkt Metformin begünstigend auf den Fettstoffwechsel beim Menschen. Dies wurde in therapeutischer Dosierung in kontrollierten mittel- oder langfristigen klinischen Studien nachgewiesen: Metformin senkt das Gesamtcholesterin, die LDLc- und die Triglyzerid-Spiegel.

Klinische Wirksamkeit und Sicherheit

In randomisierten, kontrollierten, doppelblinden klinischen Studien (einschließlich Erfahrungen im Rahmen der Entwicklung und nach Markteinführung) wurden über 17.000 Typ-2-Diabetes-Patienten mit Saxagliptin behandelt.

<u>Saxagliptin in Kombination mit Metformin zur Blutzuckerkontrolle</u>

Die gleichzeitige Anwendung von Saxagliptin und Metformin wurde bei Patienten mit Tvp-2-Diabetes untersucht, die mit Metformin allein unzureichend kontrolliert waren, und bei nicht vorbehandelten Patienten, die mit Diät und Bewegung allein unzureichend kontrolliert waren. Die Behandlung mit Saxagliptin 5 mg einmal täglich führte zu klinisch relevanten und statistisch signifikanten Verbesserungen der Hämoglobin-A1c-(HbA_{1c}-) Werte, der Nüchtern-Plasmaglukose-Werte (fasting plasma glucose, FPG) und der postprandialen Glukose-(PPG-) Werte im Vergleich zu Placebo in Kombination mit Metformin (Initial- oder Add-on-Therapie). Senkungen der A_{1c}-Werte wurden in allen Subgruppen einschließlich Geschlecht, Alter, Rasse und BMI-Ausgangswert beobachtet. Die Abnahme des Körpergewichts in den Behandlungsgruppen, denen Saxagliptin in Kombination mit Metformin gegeben wurde, war ähnlich wie in den Gruppen, denen nur Metformin gegeben wurde. Im Vergleich zu Metformin allein wurde Saxagliptin plus Metformin nicht mit signifikanten Veränderungen der Nüchtern-Serumlipid-Werte bezogen auf den Ausgangswert in Verbindung gebracht.

Saxagliptin in der Add-on-Therapie mit Metformin

Zur Bewertung der Wirksamkeit und Sicherheit von Saxagliptin in Kombination mit Metformin wurde eine Placebo-kontrollierte Add-on zu Metformin-Studie über 24 Wochen bei Patienten mit unzureichender Blutzuckerkontrolle unter Metformin allein (HbA_{1c} 7-10%) durchgeführt. Saxagliptin (n = 186) führte zu signifikanten Verbesserungen der HbA_{1c} -, FPG- und PPG-Werte im Vergleich zu Placebo (n = 175). Die Verbesserungen der HbA_{1c}-, PPG- und FPG-Werte nach einer Behandlung mit Saxagliptin 5 mg plus Metformin blieben bis Woche 102 erhalten. Die Veränderung des HbA_{1c}-Wertes unter Saxagliptin 5 mg plus Metformin (n = 31) betrug im Vergleich zu Placebo plus Metformin (n = 15) -0.8% in Woche

Saxagliptin zweimal täglich in der Addon-Therapie mit Metformin

Zur Bewertung der Wirksamkeit und Sicherheit von Saxagliptin 2,5 mg zweimal täglich in Kombination mit Metformin wurde eine Placebo-kontrollierte Add-on zu Metformin-Studie über 12 Wochen bei Patienten mit unzureichender Blutzuckerkontrolle unter Metformin allein (HbA_{1c}-Wert 7 – 10 %) durchgeführt. Nach 12 Wochen wies die Saxagliptin-Gruppe (n = 74) eine größere mittlere Reduktion des HbA_{1c}-Wertes bezogen auf den Ausgangswert auf als die Placebo-Gruppe (n = 86) (-0.6% bzw. -0.2%, Differenz von -0,34 %, bei einem mittleren HbA_{1c}-Ausgangswert von 7,9% in der Saxagliptin-Gruppe und von 8,0% in der Placebo-Gruppe) sowie eine größere FPG-Reduktion (-13,73 mg/dl versus -4,22 mg/dl), statistisch iedoch nicht signifikant (p = 0.12. 95 % Konfidenzintervall (CI) [-21,68; 2,66]).

Saxagliptin in der Add-on-Therapie mit Metformin im Vergleich zu einem Sulfonylharnstoff in der Add-on-Therapie mit Metformin

Zur Bewertung der Wirksamkeit und Sicherheit von Saxagliptin 5 mg in Kombination mit Metformin (428 Patienten) verglichen mit einem Sulfonylharnstoff (Glipizid, 5 mg nach Bedarf titriert bis auf 20 mg, mittlere Dosis 15 mg) in Kombination mit Metformin (430 Patienten) wurde eine 52-wöchige Studie mit 858 Patienten mit unzureichender Blutzuckerkontrolle unter Metformin allein (HbA $_{1c}$ 6,5 % – 10 %) durchgeführt. Die mittlere Metformin-Dosis betrug ungefähr 1900 mg in jeder Behandlungsgruppe. Nach 52 Wochen wiesen die Saxagliptin- und Glipizid-Gruppen in der Per-Protocol-Analyse ähnliche mittlere Reduktionen des HbA_{1c}-Wertes gegenüber dem Ausgangswert auf (-0,7% bzw. -0,8%, mittlerer HbA_{1c}-Ausgangswert in beiden Gruppen 7,5%). Die Intent-to-Treat-Analyse lieferte übereinstimmende Ergebnisse. Die Reduktion des FPG-Wertes war in der Saxagliptin-Gruppe etwas geringer, und es gab mehr Abbrüche (3,5% vs. 1,2%) aufgrund mangelnder Wirksamkeit basierend auf den FPG-Kriterien während der ersten 24 Wochen der Studie. Saxagliptin führte ebenfalls zu einem signifikant geringeren Anteil an Patienten mit Hypoglykämie, 3 % (19 Ereignisse bei 13 Patienten) vs. 36,3 % (750 Ereignisse bei 156 Patienten) bei Glipizid. Patienten, die mit Saxagliptin behandelt wurden, wiesen eine signifikante Gewichtsreduktion gegenüber dem Ausgangswert auf im Vergleich zu einer Gewichtszunahme bei Patienten, die Glipizid erhielten (-1,1 vs. +1,1 kg).

Saxagliptin in der Add-on-Therapie mit Metformin im Vergleich zu Sitagliptin in der Add-on-Therapie mit Metformin

Zur Bewertung der Wirksamkeit und Sicherheit von Saxagliptin 5 mg in Kombination mit Metformin (403 Patienten) verglichen mit Sitagliptin 100 mg in Kombination mit Metformin (398 Patienten) wurde eine 18-wöchige Studie mit 801 Patienten mit unzureichender Blutzuckerkontrolle unter Metformin allein durchgeführt. Nach 18 Wochen war Saxagliptin gegenüber Sitagliptin hinsichtlich der mittleren Reduktion des HbA_{1c}-Wertes gegenüber dem Ausgangswert sowohl in der Per-Protocol-Analyse als auch dem vollständigen Analysensatz nicht unterlegen (non-inferior). In der primären Per-Protocol-Analyse betrugen die Reduktionen des HbA_{1c}-Wertes gegenüber dem Ausgangswert für Saxagliptin bzw. Sitagliptin -0,5% (Mittelwert und Median) und -0,6% (Mittelwert und Median). Im konfirmatorischen, vollständigen Analysensatz betrugen die mittleren Reduktionen -0,4 % und -0,6 % für Saxagliptin bzw. Sitagliptin mit medianen Reduktionen von -0,5% in beiden Gruppen.

Saxagliptin in Kombination mit Metformin als initiale Therapie

Um die Wirksamkeit und Sicherheit von Saxagliptin 5 mg in Kombination mit Metformin als initiale Kombinationstherapie bei zuvor unbehandelten Patienten mit unzureichender Blutzuckerkontrolle zu bewerten (HbA_{1c} 8–12 %), wurde eine Studie über

24 Wochen durchgeführt. Die initiale Kombinationstherapie mit Saxagliptin 5 mg plus Metformin (n= 306) führte zu signifikanten Verbesserungen der HbA_{1c}-, der FPG- und der PPG-Werte im Vergleich sowohl zur Initialtherapie mit Saxagliptin allein (n = 317) als auch zur Initialtherapie mit Metformin allein (n = 313). Auf Basis der HbA_{1c}-Ausgangswerte konnten Reduktionen der HbA_{1c}-Werte bis zur Woche 24 in allen ausgewerteten Subgruppen, definiert nach HbA_{1c}-Ausgangswerten, beobachtet werden, wobei eine höhere Reduktion bei Patienten mit HbA_{1c}-Ausgangswerten ≥ 10 % (siehe Tabelle 4 auf Seite 7) beobachtet wurde. Die Verbesserungen der HbA_{1c}-, PPG- und FPG-Werte nach initialer Therapie mit Saxagliptin 5 mg plus Metformin blieben bis Woche 76 erhalten. Die Veränderung des HbA_{1c}-Wertes unter Saxagliptin 5 mg plus Metformin (n = 177) betrug -0,5% in Woche 76 verglichen mit Metformin plus Placebo (n = 147).

Saxagliptin in der Add-on-Kombinationstherapie mit Insulin (mit oder ohne Metformin)

Insgesamt nahmen 455 Patienten mit Typ-2-Diabetes an einer 24-wöchigen, randomisierten, doppelblinden, Placebo-kontrollierten Studie teil, um die Wirksamkeit und Sicherheit von Saxagliptin in Kombination mit einer stabilen Insulin-Dosis (mittlerer Ausgangswert: 54,2 Einheiten) bei Patienten mit unzureichender Blutzuckerkontrolle (HbA_{1c} \geq 7,5% und \leq 11%) unter Insulin allein (n = 141) oder unter Insulin in Kombination mit einer stabilen Metformin-Dosis (n = 314) zu bewerten. In der Addon-Kombination mit Insulin führte Saxagliptin 5 mg mit oder ohne Metformin nach 24 Wochen zu signifikanten Verbesserungen der HbA_{1c}- und PPG-Werte im Vergleich zu Placebo in der Add-on-Kombination mit Insulin mit oder ohne Metformin. Unabhängig von einer Metformin-Gabe wurden ähnliche Reduktionen des HbA1c-Wertes gegenüber Placebo bei Patienten erreicht, die 5 mg Saxagliptin in der Addon-Kombination mit Insulin erhielten (-0,4% für beide Subgruppen). Die Verbesserungen vom HbA_{1c}-Ausgangswert blieben in der Gruppe, die Saxagliptin in der Add-on-Kombination mit Insulin erhielt, verglichen mit der Gruppe, die Placebo in der Add-on-Kombination mit Insulin erhielt, mit oder ohne Metformin bis Woche 52 erhalten. Die Veränderung des HbA_{1c}-Wertes in der Saxagliptin-Gruppe (n = 244) gegenüber Placebo (n = 124) betrug -0.4% in Woche 52.

Saxagliptin in der Add-on-Kombinationstherapie mit Metformin und einem Sulfonylharnstoff

Insgesamt nahmen 257 Patienten mit Typ-2-Diabetes an einer 24-wöchigen, randomisierten, doppelblinden, Placebo-kontrollierten Studie teil, um die Wirksamkeit und Sicherheit von Saxagliptin (einmal täglich 5 mg) in Kombination mit Metformin und einem Sulfonylharnstoff (SH) bei Patienten mit unzureichender Blutzuckerkontrolle (HbA1c-Wert $\geq 7\,\%$ und $\leq 10\,\%$) zu bewerten. Im Vergleich zu Placebo (n = 128) führte Saxagliptin (n = 127) zu signifikanten Verbesserungen des HbA1c- und PPG-Wertes. Gegenüber Placebo betrug die HbA1c-

6

Tabelle 4 Hauptergebnisse aus Placebo-kontrollierten Kombinationstherapiestudien mit Saxagliptin und Metformin

	Mittlerer HbA _{1c} - Aus- gangswert (%)	Mittlere Veränderung¹ gegenüber dem HbA₁c- Ausgangswert (%)	Placebo- korrigierte mittlere Verände- rung des HbA _{1c} - Wertes (%) (95 % CI)			
ADD-ON-/INITIALE KOMBINATIONSSTUDIEN MIT METFORMIN						
24 Wochen						
Saxa 5 mg täglich add-on zu Metformin; Studie CV181014 (n = 186) Saxa 5 mg täglich in der initialen Kombination mit Metformin; Studie CV1810393:	8,1	-0,7	-0,8 (-1,0; -0,6) ²			
Gesamtpopulation (n = 306) HbA _{1c} -Ausgangswert ≥ 10 % Stratum (n = 107)	9,4 10,8	-2,5 -3,3	-0,5 (-0,7; -0,4) ⁴ -0,6 (-0,9; -0,3) ⁵			
12 Wochen						
Saxa 2,5 mg zweimal täglich add-on zu Metformin; Studie CV181080 (n = 74)	7,9	-0,6	-0,3 (-0,6; -0,1)6			
ADD-ON-/KOMBINATIONSSTUDIEN MIT ZUSÄTZLICHEN THERAPIEN						
Add-on zu Insulin (+/- Metformin)						
Saxa 5 mg täglich, Studie CV181057: Gesamtpopulation (n = 300)	8,7	-0,7	-0,4 (-0,6; -0,2)2			
24 Wochen						
Saxa 5 mg täglich add-on zu Metformin und Sulfonylharnstoff; Studie D1680L00006 (n = 257)	8,4	-0,7	-0,7 (-0,9; -0,5)2			

- n = randomisierte Patienten
- Angepasste mittlere Veränderung vom Ausgangswert, angepasst für den Ausgangswert (ANCOVA).
- ² p < 0,0001 im Vergleich zu Placebo.
- Metformin wurde von 500 bis auf 2000 mg pro Tag je nach Verträglichkeit auftitriert.
- Die mittlere Veränderung des HbA_{1c}-Wertes als Differenz zwischen der Saxagliptin 5 mg + Metformin- und der Metformin-Gruppe (p < 0,0001).</p>
- ⁵ Die mittlere Veränderung des HbA_{1c}-Wertes als Differenz zwischen der Saxagliptin 5 mg + Metformin- und der Metformin-Gruppe.
- ⁶ p-Wert = 0,0063 (zwischen den Gruppenvergleichen signifikant bei α = 0,05).

Veränderung unter Saxagliptin -0,7 % in Woche 24.

Siehe Tabelle 4

Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus- Thrombolysis in Myocardial Infarction (SAVOR) Studie

SAVOR war eine kardiovaskuläre Endpunktstudie mit 16.492 Patienten mit einem HbA_{1c}-Wert ≥ 6,5 % und < 12 % (12.959 mit einer bestehenden kardiovaskulären Erkrankung; 3.533 lediglich mit mehreren Risikofaktoren), die auf Saxagliptin (n = 8.280) oder Placebo (n = 8.212) in Ergänzung zu regionalen Standardbehandlungen von HbA_{1c}- und kardiovaskulären Risikofaktoren randomisiert wurden. Die Studienpopulation schloss Patienten ≥ 65 Jahre (n = 8.561) und ≥ 75 Jahre (n = 2.330), mit normaler oder leicht eingeschränkter Nierenfunktion (n = 13.916) ein sowie Patienten mit mäßig (n = 2.240) oder schwer (n = 336) eingeschränkter Nierenfunktion.

Der primäre Sicherheitsendpunkt (Nichtunterlegenheit) und Wirksamkeitsendpunkt (Überlegenheit) war ein kombinierter Endpunkt aus der Zeit bis zum ersten Auftreten eines der folgenden schweren, unerwünschten kardiovaskulären Ereignisse (MACE): kardiovaskulärer Tod, nicht tödlicher Myokardinfarkt oder nicht tödlicher ischämischer Schlaganfall.

Nach einer mittleren Nachbeobachtungszeit von bis zu 2 Jahren erreichte die Studie ihren primären Sicherheitsendpunkt und zeigte, dass Saxagliptin das kardiovaskuläre Risiko bei Patienten mit Typ-2-Diabetes im Vergleich zu Placebo nicht erhöht, wenn es zu einer etablierten Basistherapie ergänzt wird.

Der primäre Wirksamkeitsendpunkt wurde nicht erreicht.

Siehe Tabelle 5 auf Seite 8

Eine Komponente des sekundären kombinierten Endpunkts, Hospitalisierung aufgrund von Herzinsuffizienz, trat häufiger in der Saxagliptin-Gruppe (3,5%) als in der

Placebo-Gruppe (2,8%) auf, mit einer nominal statistischen Signifikanz zugunsten von Placebo [HR = 1,27; (95% CI 1,07; 1,51); p = 0,007]. Klinisch relevante Faktoren zur Vorhersage eines erhöhten, relativen Risikos bei einer Saxagliptin-Behandlung konnten nicht endgültig identifiziert werden. Personen mit einem höheren Risiko für eine Hospitalisierung aufgrund von Herzinsuffizienz konnten, ungeachtet der zugeordneten Behandlung, durch bekannte Risikofaktoren für Herzinsuffizienz, wie z.B. Herzinsuffizienz in der Vorgeschichte zu Studienbeginn oder eingeschränkte Nierenfunktion, identifiziert werden, Allerdings war das Risiko hinsichtlich der primären oder sekundären, kombinierten Endpunkte oder der Gesamtmortalität bei Saxagliptin-Patienten, die zu Studienbeginn eine Herzinsuffizienz oder eine eingeschränkte Nierenfunktion in der Vorgeschichte hatten, im Vergleich zu Placebo nicht erhöht.

In einer explorativen Analyse war der HbA_{1C}-Wert bei Saxagliptin niedriger im Vergleich zu Placebo.

Metformin

In einer prospektiven randomisierten Studie (UKPDS) wurde der langfristige Nutzen einer intensiven Blutzuckerkontrolle bei Typ-2-Diabetikern nachgewiesen. Die Auswertung der Ergebnisse für übergewichtige Patienten, die nach Versagen einer diätetischen Maßnahme allein mit Metformin behandelt wurden, ergab:

- eine signifikante Reduktion des absoluten Risikos einer jeglichen Diabetes-bedingten Komplikation in der Metformin-Gruppe (29,8 Ereignisse/1000 Patientenjahre) gegenüber einer Diät allein (43,3 Ereignisse/1000 Patientenjahre), p = 0,0023, und gegenüber den kombinierten Gruppen mit Sulfonylharnstoffund Insulin-Monotherapie (40,1 Ereignisse/1000 Patientenjahre), p = 0,0034;
- eine signifikante Reduktion des absoluten Risikos einer jeglichen Diabetes-bedingten Mortalität: Metformin 7,5 Ereignisse/1000 Patientenjahre, Diät allein 12,7 Ereignisse/1000 Patientenjahre, p = 0,017;
- eine signifikante Reduktion des absoluten Risikos der Gesamtmortalität: Metformin 13,5 Ereignisse/1000 Patientenjahre gegenüber einer Diät allein 20,6 Ereignisse/1000 Patientenjahre, (p = 0,011), und gegenüber den kombinierten Gruppen mit Sulfonylharnstoff- und Insulin-Monotherapie 18,9 Ereignisse/1000 Patientenjahre (p = 0,021);
- eine signifikante Reduktion des absoluten Risikos für Myokardinfarkt: Metformin 11 Ereignisse/1000 Patientenjahre, Diät allein 18 Ereignisse/1000 Patientenjahre, (p = 0,01).

Kinder und Jugendliche

Die Europäische Arzneimittel-Agentur hat für Komboglyze eine Freistellung von der Verpflichtung zur Vorlage von Ergebnissen zu Studien in allen pädiatrischen Altersklassen bei Typ-2-Diabetes mellitus gewährt (siehe Abschnitt 4.2 bzgl. Informationen zur Anwendung bei Kindern und Jugendlichen).

Tabelle 5 Primäre und sekundäre klinische Endpunkte nach Behandlungsgruppe in der SAVOR-Studie*

	Saxagliptin (n = 8.280)		Placebo (n = 8.212)		
Endpunkt	Patienten mit Ereignissen n (%)	Ereignisrate pro 100 Patienten- jahre	Patienten mit Ereignissen n (%)	Ereignisrate pro 100 Patienten- jahre	Hazard Ratio (95 % CI)†
Primärer kombinierter Endpunkt: MACE	613 (7,4)	3,76	609 (7,4)	3,77	1,00 (0,89; 1,12) ^{‡,§,#}
Sekundärer kombinierter Endpunkt: MACE plus	1.059 (12,8)	6,72	1.034 (12,6)	6,60	1,02 (0,94; 1,11)¶
Gesamtmortalität	420 (5,1)	2,50	378 (4,6)	2,26	1,11 (0,96; 1,27)¶

- * Intent-to-Treat-Population
- † Hazard ratio (HR) angepasst gemäß Nierenfunktionskategorie zu Studienbeginn und Risikofaktorkategorie für eine kardiovaskuläre Erkrankung zu Studienbeginn.
- [‡] p-Wert < 0,001 für Nichtunterlegenheit (basierend auf HR < 1,3) im Vergleich zu Placebo.
- § p-Wert = 0,99 für Überlegenheit (basierend auf HR < 1,0) im Vergleich zu Placebo.
- # Ereignisse kumulierten gleichmäßig im Laufe der Zeit, und die Ereignisraten für Saxagliptin und Placebo divergierten nicht auffallend im Laufe der Zeit.
- Die Signifikanz wurde nicht getestet.

Ältere Patienten

In den Subgruppen der SAVOR-Studie älter als 65 und älter als 75 Jahre war die Wirksamkeit und Sicherheit mit der Gesamtstudienpopulation übereinstimmend.

GENERATION war eine 52-wöchige Studie zur Blutzuckerkontrolle bei 720 älteren Patienten mit einem mittleren Alter von 72,6 Jahren; 433 Patienten (60,1 %) waren < 75 Jahre, und 287 Patienten (39,9%) waren ≥ 75 Jahre. Der primäre Endpunkt war der Anteil an Patienten, die einen HbA_{1c}-Wert von < 7 % ohne bestätigte oder schwere Hypoglykämie erreichten. Es schien keinen Unterschied in der Responderrate zu geben: 37,9% (Saxagliptin) und 38,2% (Glimepirid) erreichten den primären Endpunkt. Im Vergleich zur Glimepirid-Gruppe (54,7%) erreichte ein geringerer Anteil an Patienten in der Saxagliptin-Gruppe (44,7%) den HbA_{1c}-Zielwert von 7,0 %. Im Vergleich zur Glimepirid-Gruppe (15,3%) hatte ein geringerer Anteil an Patienten in der Saxagliptin-Gruppe (1,1%) ein bestätigtes oder schweres hypoglykämisches Ereignis.

5.2 Pharmakokinetische Eigenschaften

Die Ergebnisse von Bioäquivalenz-Studien an gesunden Probanden zeigten, dass Komboglyze-Kombinationstabletten bioäquivalent zur gleichzeitigen Anwendung entsprechender Dosen von Saxagliptin und Metforminhydrochlorid als einzelne Tabletten sind.

Die folgenden Angaben geben die pharmakokinetischen Eigenschaften der einzelnen Wirkstoffe von Komboglyze wieder.

Saxagliptin

Die Pharmakokinetik von Saxagliptin und seinem Hauptmetaboliten war bei gesunden Probanden und bei Patienten mit Typ-2-Diabetes ähnlich.

Resorption

Nach oraler Gabe im nüchternen Zustand wurde Saxagliptin rasch resorbiert, wobei die maximalen Plasmakonzentrationen (C_{max}) von Saxagliptin und seinem Hauptmetaboliten innerhalb von 2 bzw. 4 Stunden (t_{max}) erreicht wurden. Die C_{max}- bzw. AUC-Werte von Saxagliptin und seinem Hauptmetaboliten erhöhten sich proportional zur Erhöhung der Saxagliptin-Dosis. Diese Dosisproportionalität wurde bei Dosen bis zu 400 mg beobachtet. Nach einer oralen Einzelgabe von 5 mg Saxagliptin an gesunde Probanden betrugen die mittleren Plasma-AUC-Werte von Saxagliptin und seinem Hauptmetaboliten 78 ng·h/ml bzw. 214 ng·h/ml. Die entsprechenden Plasma-C_{max}-Werte betrugen 24 ng/ml bzw. 47 ng/ml. Die intraindividuellen Varianz-Koeffizienten für die C_{max} - und die AUC-Werte von Saxagliptin betrugen weniger als 12%.

Die Hemmung der Plasma-DPP-4-Aktivität über mindestens 24 Stunden nach oraler Applikation von Saxagliptin ist auf die hohe Potenz, die hohe Affinität und auf die verlängerte Bindung an das aktive Zentrum zurückzuführen.

Wechselwirkung mit Nahrung

Bei gesunden Probanden hatte eine Nahrungsaufnahme einen relativ geringen Einfluss auf die Pharmakokinetik von Saxagliptin. Die Einnahme zusammen mit Nahrung (einer sehr fettreichen Mahlzeit) führte zu keiner Veränderung der $C_{\rm max}$ und zu einer Erhöhung der AUC von Saxagliptin um 27 % im Vergleich zu einer Einnahme im nüchternen Zustand. Die Zeit, die Saxagliptin benötigt, um $C_{\rm max}$ zu erreichen ($t_{\rm max}$), war mit Nahrungsaufnahme um ungefähr 0,5 Stunden im Vergleich zum nüchternen Zustand verlängert. Diese Veränderungen wurden als nicht klinisch relevant erachtet.

Verteilung

Die *in-vitro-*Proteinbindung von Saxagliptin und seinem Hauptmetaboliten im mensch-

lichen Serum ist zu vernachlässigen. Daher ist nicht zu erwarten, dass sich die Verfügbarkeit von Saxagliptin durch Veränderungen der Proteinkonzentration im Blut bei verschiedenen Erkrankungen (z. B. Nierenoder Leberinsuffizienz) verändert.

Biotransformation

Die Biotransformation von Saxagliptin erfolgt hauptsächlich durch Cytochrom P450 3A4/5 (CYP3A4/5). Der Hauptmetabolit von Saxagliptin ist auch ein selektiver, reversibler, kompetitiver DPP-4-Inhibitor, der halb so potent ist wie Saxagliptin.

Elimination

Die mittleren terminalen Plasmahalbwertszeiten (t_{1/2}) für Saxagliptin und seinen Hauptmetaboliten betrugen 2,5 bzw. 3,1 Stunden. Der mittlere $t_{1/2}$ -Wert für die Plasma DPP-4-Hemmung betrug 26,9 Stunden. Saxagliptin wird sowohl renal als auch hepatisch eliminiert. Nach einer 50-mg-Einzeldosis von ¹⁴C-Saxagliptin wurden über den Urin 24% als Saxagliptin, 36% als Hauptmetabolit und insgesamt 75 % der verabreichten Gesamtradioaktivität ausgeschieden. Die durchschnittliche renale Saxagliptin-Clearance (~ 230 ml/min) war größer als die durchschnittlich erwartete glomeruläre Filtrationsrate (~ 120 ml/min), was auf eine gewisse aktive renale Ausscheidung schließen lässt. Für den Hauptmetaboliten war die renale Clearance vergleichbar mit der geschätzten glomerulären Filtrationsrate. In den Fäzes wurden insgesamt 22% der applizierten Radioaktivität wiedergefunden. Dies stellt den Anteil der Saxagliptin-Dosis dar, die über die Galle ausgeschieden wird und/oder das nicht-resorbierte Arzneimittel aus dem Gastrointestinaltrakt.

Linearität

Die C_{max}- und AUC-Werte von Saxagliptin und seinem Hauptmetaboliten erhöhten sich proportional zur Saxagliptin-Dosis. Bei keiner Dosierung wurde bei wiederholter einmal täglicher Gabe eine merkliche Akkumulation von Saxagliptin oder seinem Hauptmetaboliten beobachtet. Bei einer einmal täglichen Dosierung von Saxagliptin in Dosen von 2,5 mg bis 400 mg über 14 Tage wurde weder eine Dosis- noch eine Zeitabhängigkeit der Clearance von Saxagliptin und seinem Hauptmetaboliten festgestellt.

Besondere Patientengruppen

Niereninsuffizienz

In einer offenen Studie wurde die Pharmakokinetik einer oralen 10-mg-Saxagliptin-Einzeldosis von Probanden, die an einer chronischen Nierenfunktionsstörung unterschiedlichen Grades litten, mit Probanden mit normaler Nierenfunktion verglichen. Bei Probanden mit leichter (> 50 bis \leq 80 ml/min), mäßiger (\geq 30 bis \leq 50 ml/min) oder schwerer (19–30 ml/min) Niereninsuffizienz fielen die Saxagliptin-Expositionen 1,2-, 1,4-bzw. 2,1-fach höher aus, und die BMS-510849-Expositionen waren 1,7-, 2,9-bzw. 4,5-fach höher gegenüber Probanden mit normaler Nierenfunktion (> 80 ml/min).

Leberinsuffizienz

Bei Probanden mit leichter (Child-Pugh-Klasse A), mäßiger (Child-Pugh-Klasse B) oder schwerer (Child-Pugh-Klasse C) Leber-

Komboglyze® 2,5 mg/850 mg Filmtabletten Komboglyze® 2,5 mg/1000 mg Filmtabletten

insuffizienz war die Saxagliptin-Exposition um das 1,1-, 1,4- bzw. 1,8-fache höher, und die BMS-510849-Exposition war um 22%, 7% bzw. 33% niedriger als bei gesunden Probanden.

Ältere Patienten (≥ 65 Jahre)

Ältere Patienten (65-80 Jahre) hatten etwa 60% höhere Saxagliptin-AUC-Werte als junge Patienten (18-40 Jahre). Dies wird als klinisch nicht bedeutsam erachtet, deshalb wird keine allein auf dem Alter basierende Dosisanpassung für Komboglyze empfohlen.

Metformin

Resorption

Nach oraler Gabe von Metformin wird t_{max} nach 2,5 Stunden erreicht. Die absolute Bioverfügbarkeit einer 500-mg-Metformintablette beträgt bei gesunden Probanden ungefähr 50-60 %. Nach einer oralen Dosis betrug der nicht-resorbierte, im Stuhl wiedergefundene Anteil 20-30%.

Nach oraler Gabe ist die Resorption von Metformin sättigbar und unvollständig. Es wird angenommen, dass die Pharmakokinetik der Metformin-Resorption nicht linear ist. Bei den üblichen Metformin-Dosen und Dosierungsschemata werden die steady state-Plasmakonzentrationen innerhalb von 24-48 h erreicht und betragen im Allgemeinen weniger als 1 µg/ml. In kontrollierten klinischen Studien überstiegen die maximalen Plasmakonzentrationen (C_{max}) von Metformin selbst bei maximaler Dosierung nicht 4 µg/ml.

Wechselwirkung mit Nahrung

Durch Nahrung wird die Resorption von Metformin verringert und leicht verzögert. Nach Gabe einer Dosis von 850 mg wurden eine um 40 % geringere Plasmaspitzenkonzentration, eine Senkung der AUC-Werte um 25%, und eine 35 min längere Zeit bis zum Erreichen der maximalen Plasmakonzentration beobachtet. Die klinische Relevanz dieser Senkung ist nicht bekannt.

Verteiluna

Die Plasmaproteinbindung ist zu vernachlässigen. Metformin geht in Erythrozyten über. Der Maximalwert im Blut ist niedriger als im Plasma und stellt sich ungefähr zur gleichen Zeit ein. Die roten Blutkörperchen stellen wahrscheinlich ein sekundäres Verteilungskompartiment dar. Der mittlere V_d-Wert lag zwischen 63-276 I.

Biotransformation

Metformin wird unverändert über den Urin ausgeschieden. Beim Menschen wurden keine Metaboliten identifiziert.

Elimination

Die renale Clearance von Metformin ist > 400 ml/min, was darauf hinweist, dass Metformin durch glomeruläre Filtration und tubuläre Sekretion ausgeschieden wird. Nach einer oralen Dosis beträgt die apparente terminale Eliminationshalbwertszeit ca. 6,5 h. Bei eingeschränkter Nierenfunktion ist die renale Clearance proportional zur Kreatinin-Clearance verringert und damit die Eliminationshalbwertszeit verlängert, was zu erhöhten Metformin-Plasmaspiegeln führt.

5.3 Präklinische Daten zur Sicherheit

Gleichzeitige Anwendung von Saxagliptin und Metformin

Eine 3-monatige Studie an Hunden und embryo-fetale Entwicklungsstudien an Ratten und Kaninchen wurden mit der Kombination aus Saxagliptin und Metformin durch-

Die gleichzeitige Anwendung von Saxagliptin und Metformin bei trächtigen Ratten und Kaninchen während der Organogenese-Phase war nach einer Dosis, die bei Ratten systemische Konzentrationen (AUC) bis zum 100- bzw. 10-fachen der maximalen empfohlenen Dosis für den Menschen (recommended human dose, RHD; 5 mg Saxagliptin und 2000 mg Metformin) und beim Kaninchen systemische Konzentrationen des 249- bzw. 1,1-fachen der RHD ergab, bei beiden Spezies weder embryoletal noch teratogen. Bei Ratten beschränkte sich eine geringfügige Entwicklungstoxizität auf eine höhere Inzidenz verzögerter Knochenbildung ("gewellte Rippen"); eine damit zusammenhängende maternale Toxizität beschränkte sich auf eine Gewichtsabnahme von 5-6% im Verlauf des 13. bis 18. Tages der Trächtigkeit, sowie auf eine damit verbundene verminderte Nahrungsaufnahme durch die Mutter. Bei Kaninchen wurde die gleichzeitige Anwendung von vielen Muttertieren schlecht vertragen und führte zu Tod, Sterblichkeit oder Fehlgeburten. Unter den überlebenden Muttertieren mit auswertbaren Würfen beschränkte sich die maternale Toxizität jedoch auf eine geringfügige Abnahme des Körpergewichts im Verlauf des 21. bis 29. Tages der Trächtigkeit; und die damit verbundene Entwicklungstoxizität bei diesen Würfen beschränkte sich auf einen fetalen Körpergewichtsverlust von 7% sowie auf eine geringe Inzidenz von verzögerter Knochenbildung des fetalen Zungenbeins.

Mit der Kombination von Saxagliptin und Metformin wurde eine 3-monatige Studie an Hunden durchgeführt. Es wurde keine Kombinationstoxizität bei AUC-Expositionen des 68- bzw. 1,5-fachen der RHD für Saxagliptin und Metformin beobachtet.

Es wurden keine tierexperimentellen Studien mit der Kombination der Wirkstoffe von Komboglyze durchgeführt, um Karzinogenese, Mutagenese oder eine Beeinträchtigung der Fruchtbarkeit zu bewerten. Die folgenden Daten basieren auf den Ergebnissen aus Einzelstudien zu Saxagliptin und Metformin.

Saxagliptin

Bei Cynomolgus-Affen verursachte Saxagliptin reversible Hautläsionen (Schorf, Ulzerationen sowie Nekrosen) an den Extremitäten (Schwanz, Fingern, Skrotum und/oder Nase) bei Dosen von ≥ 3 mg/kg/Tag. Der no-effect-level (NOEL) für Läsionen beträgt das 1- bzw. 2-fache der Humanexposition von Saxagliptin und seinem Hauptmetaboliten bei der empfohlenen Dosis für den Menschen von 5 mg/Tag (RHD).

Die klinische Bedeutung der Hautveränderungen ist nicht bekannt, jedoch wurden keine klinischen Korrelate zu den Hautver-

änderungen bei Affen in klinischen Studien mit Saxagliptin am Menschen beobachtet.

Über Immunsystem-bezogene Befunde von minimalen, nicht-progressiven lymphoiden Hyperplasien in Milz, Lymphknoten und Knochenmark, ohne Spätkomplikationen, wurde bei allen Species berichtet, die, beginnend mit dem 7-fachen der RHD, getestet wurden.

Saxagliptin führte zu gastrointestinaler Toxizität bei Hunden, einschließlich blutiger/ schleimiger Fäzes und Enteropathie bei höheren Dosen mit einem NOEL, der für Saxagliptin und seinen Hauptmetaboliten dem 4- bzw. 2-fachen der Humanexposition bei RHD entsprach.

In-vivo und in-vitro war Saxagliptin in einer konventionellen Reihe genotoxischer Studien nicht genotoxisch. In einer Karzinogenitätsuntersuchung über 2 Jahre wurde bei Mäusen und Ratten kein kanzerogenes Potenzial festgestellt.

Auswirkungen auf die Fertilität männlicher und weiblicher Ratten wurden bei hohen Dosen, die offenkundige Anzeichen von Toxizität hervorriefen, beobachtet. Saxagliptin war bei keiner Dosierung, die an Ratten und Kaninchen untersucht wurde, teratogen. Hohe Saxagliptin-Dosen führten bei Ratten zu einer Reduktion der Ossifikation (Entwicklungsverzögerung) des fetalen Beckens und einer Abnahme des fetalen Körpergewichts (bei gleichzeitiger maternaler Toxizität) bei einem NOEL, der für Saxagliptin dem 303-fachen bzw. für den Hauptmetaboliten dem 30-fachen der Humanexposition bei RHD entsprach. Bei Kaninchen beschränkten sich die Wirkungen von Saxagliptin auf geringfügige Veränderungen des Skelettes, die nur bei maternal toxischen Dosen beobachtet wurden (NOEL 158- bzw. 224-fach erhöht gegenüber der Humanexposition von Saxagliptin und seinem Hauptmetaboliten bei RHD). In einer prä- und postnatalen Entwicklungsstudie an Ratten führte Saxagliptin bei Rattenjungen zu einer Gewichtsabnahme bei maternal toxischen Dosen, mit einem NOFL, der für Saxagliptin 488- bzw. für den Hauptmetaboliten 45-fach gegenüber der Humanexposition bei RHD lag. Die Auswirkungen auf das Körpergewicht der Nachkommen wurden an Weibchen bis zum 92. Tag nach der Geburt und bei Männchen bis zum 120. Tag nach der Geburt beobachtet.

Basierend auf konventionellen Studien zur pharmakologischen Sicherheit, Toxizität bei wiederholten Dosen, Genotoxizität, zum karzinogenen Potenzial und zur Reproduktionstoxizität ergeben präklinische Daten zu Metformin keine besonderen Gefahren für den Menschen.

6. PHARMAZEUTISCHE ANGABEN

6.1 Liste der sonstigen Bestandteile

Tablettenkern Povidon K30 Magnesiumstearat

Komboglyze® 2,5 mg/850 mg Filmtabletten Komboglyze® 2,5 mg/1000 mg Filmtabletten

Filmüberzug Komboglyze 2,5 mg/850 mg Filmtabletten

Poly(vinylalkohol)
Macrogol 3350

Titandioxid (E171)

Talkum (E553b)

Eisen(III)-oxid (E172)

Eisen(III)-hydroxid-oxid \times H₂O (E172)

Filmüberzug Komboglyze 2,5 mg/ 1000 mg Filmtabletten

Poly(vinylalkohol) Macrogol 3350

Titandioxid (E171) Talkum (E553b)

Eisen(III)-hydroxid-oxid \times H₂O (E172)

Drucktinte Schellack

Indigocarmin, Aluminiumsalz (E132)

6.2 Inkompatibilitäten

Nicht zutreffend.

6.3 Dauer der Haltbarkeit

36 Monate

6.4 Besondere Vorsichtsmaßnahmen für die Aufbewahrung

Nicht über 25°C lagern.

6.5 Art und Inhalt des Behältnisses

Alu/Alu-Blisterpackung.

Packungsgrößen mit 14, 28, 56 und 60 Filmtabletten in nicht-perforierten Blisterpackungen.

Bündelpackungen, die 112 (2 \times 56) und 196 (7 \times 28) Filmtabletten in nicht-perforierten Blisterpackungen enthalten.

60 x 1 Filmtabletten in perforierten Blisterpackungen zur Abgabe von Einzeldosen. Es werden möglicherweise nicht alle Packungsgrößen in den Verkehr gebracht.

6.6 Besondere Vorsichtsmaßnahmen für die Beseitigung

Keine besonderen Anforderungen. Nicht verwendetes Arzneimittel oder Abfallmaterial ist entsprechend den nationalen Anforderungen zu beseitigen.

7. INHABER DER ZULASSUNG

AstraZeneca AB SE-151 85 Södertälje Schweden

8. ZULASSUNGSNUMMER(N)

<u>Komboglyze 2,5 mg/850 mg Filmta-</u> bletten

EU/1/11/731/001 – 006 EU/1/11/731/013

Komboglyze 2,5 mg/1000 mg Filmtabletten

EU/1/11/731/007-012 EU/1/11/731/014

9. DATUM DER ERTEILUNG DER ZULASSUNG/VERLÄNGERUNG DER ZULASSUNG

24. November 2011

10

10. STAND DER INFORMATION

Oktober 2015

Ausführliche Informationen zu diesem Arzneimittel sind auf den Internetseiten der Europäischen Arzneimittel-Agentur http://www.ema.europa.eu/ verfügbar.

11. VERKAUFSABGRENZUNG

Verschreibungspflichtig

12. PACKUNGSGRÖSSEN

Packungen zu 56 N2 und 196 N3 Filmtabletten. Klinikpackungen mit 56 Filmtabletten.

13. KONTAKTADRESSE IN DEUTSCHLAND

Für weitere Informationen zu diesen Präparaten wenden Sie sich bitte an den örtlichen Vertreter:

AstraZeneca GmbH 22876 Wedel Tolofon: 0.41,03/70

Telefon: 0 41 03/70 80

Produktanfragen: 0800 22 88 660 Telefax: 0 41 03/708 32 93 E-Mail: azinfo@astrazeneca.com

www.astrazeneca.de

Zentrale Anforderung an:

Rote Liste Service GmbH

Fachinfo-Service

Mainzer Landstraße 55 60329 Frankfurt

013645-17126