САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Направление: 01.03.02 Прикладная математика и информатика ООП: Прикладная математика, фундаментальная информатика и программирование и

ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ

(НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ)

Тема задания: Регрессионный анализ совершения самоубийств по регионам России.

Выполнил: Сыдыгалиева Бегаим Нурбековна, студент группы 21.Б03

Научный Руководитель: Буре Владимир Мансурович

Санкт-Петербург 2024

СОДЕРЖАНИЕ

ПОСТАНОВКА ЗАДАЧИ	3
ТЕОРЕТИКО-МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ	4
СТАТИСТИЧЕСКИЕ ДАННЫЕ	5
ОБРАБОТКА И АНАЛИЗ ДАННЫХ	6
Построение регрессионной модели для 2019 года	6
Проверка значимости уравнения в целом	10
Анализ значимости коэффициентов регрессии:	12
Анализ остатков модели:	12
Построение регрессионной модели на значимых коэффициентах	14
Построение регрессионной модели для 2021 года	16
Проверка значимости модели F-критерием:	17
Анализ значимости коэффициентов регрессии:	18
Анализ остатков:	19
Построение регрессионной модели на значимых коэффициентах	19
ЗАКЛЮЧЕНИЕ	20
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	21

ПОСТАНОВКА ЗАДАЧИ

- Тема: Регрессионный анализ совершения самоубийств по регионам России.
- Объект исследования: Социально-экономические факторы, воздействующие на состояние человека
- Цель работы: Выявление статистически значимых факторов

В процессе работы были построены линейные регрессионные модели, проанализированы характеристики и проверены гипотезы с помощью языка программирования python с использованием библиотек для анализа данных и машинного обучения: sklearn, statsmodels.[4]

В основе суицидального поведения лежит множество причин. Факторы, приводящие к самоубийству, сложны и взаимосвязаны. По данным ВОЗ к таким факторам относят возрастные особенности, половые различия, психические заболевания, биологические, социальные факторы окружающей среды и факторы, связанные с историей жизни индивида. В структуру социальных факторов и факторов окружающей среды входят: доступность средств самоубийства , место жительства человека, трудовая занятость, иммиграционные процессы, принадлежность определенной религии и экономические условия.

Оценка и выявление причин "смертей от отчаяния" имеет большое значение для обеспечения устойчивого развития общества

Для анализа влияния социально-экономических факторов на девиантное поведения граждан можно использовать метод множественной линейной регрессии.

ТЕОРЕТИКО-МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ

Линейный регрессионный анализ (Linear regression) - Это метод аппроксимации зависимостей между предикторными переменными (или регрессорами) и критериальными на основе линейной модели. [5]

Данный метод позволяет предсказывать значения зависимой переменной у по значениям независимой переменной х В качестве функции потерь (меры количества ошибок, которые наша линейная регрессия делает на наборе данных будет рассмотрена Среднеквадратичная ошибка (MSE).

<u>Вычисление MSE</u>: все отдельные остатки регрессии возводятся в квадрат, суммируются, сумма делится на общее число ошибок

В случае множественной линейной регрессии модель будет описываться гиперплоскостью. Коэффициенты уравнения множественной линейной регрессии подбираются так, чтобы минимизировать сумму квадратов отклонения реальных точек данных от этой гиперплоскости.

СТАТИСТИЧЕСКИЕ ДАННЫЕ

Источник: Данные собраны из Единой межведомственной информационно-статистической системы (ЕМИСС) и из Федеральной службы государственной статистики.

Используемые инструменты:

- Для предобработки и анализа данных были использованы библиотеки numpy и pandas
- Для построения модели линейной регрессии: *sklearn* (библиотека Python для машинного обучения. Она включает все алгоритмы и инструменты, которые нужны для задач классификации, регрессии и кластеризации. Она также включает все методы оценки производительности модели машинного обучения)

Исследуемый датасет:

Целевой столбец:

• 'num_suicide' - количество совершенных самоубийств на 10000 тысяч человек

Признаки:

- 'alco' Розничные продажи алкогольной продукции (в литрах этанола)
- 'cash_income' Денежные доходы (в среднем на душу)
- 'mental_disorder' Число зарегистрированных больных с диагнозом психического расстройства и расстройствами поведения
- 'num_crimes' Количество совершенных преступлений
- 'poverty_level' Уровень бедности
- 'employee_ratio' Отношение числа занятых в экономике региона к численности населения региона в трудоспособном возрасте
- 'incomes_below_the_poverty' Количество людей за чертой бедности

	district	num_suicide	alco	cash_income	incomes_below_the_poverty_line	mental_disorder	num_crimes	poverty_level	rape_num	employee_ratio
0	Российская Федерация	11.7	6.0336	10.477457	2.509599	15.185182	13.692960	2.509599	3177	4.461300
1	Белгородская область	11.0	4.9824	10.385852	2.054124	10.518619	8.772765	2.054124		4.476200
2	Брянская область	11.3	5.5272	10.254919	2.624669	10.020426	8.860499	2.624669	17	4.347694
3	Владимирская область	14.3	7.6111	10.142150	2.533697	10.690034	8.870663	2.533697	18	4.458988
4	Воронежская область	11.1	4.9702	10.374178	2.186051	11.093873	9.343734	2.186051	38	4.454347
80	Амурская область	30.2	7.2232	10.413433	2.753661	10.165583	8.978787	2.753661		4.457830
81	Магаданская область	16.3	10.6641	11.087773	2.230014	8.191186	7.349231	2.230014		4.681205
82	Сахалинская область	0.4	11.1699	10.985564	2.104134	9.416948	8.344980	2.104134		4.601162
83	Еврейская автономная область	32.7	8.4527	10.188742	3.173878	8.709630	7.221836	3.173878		4.265493
84	Чукотский автономный округ	18.0	8.3082	11.331224	2.140066	7.935587	6.331502	2.140066		4.675629
85 го	ws × 10 columns									

ОБРАБОТКА И АНАЛИЗ ДАННЫХ

Построение регрессионной модели для 2019 года

Визуализация разброса значений на гистограммах

При расчете коэффициентов асимметрии значений у данных выявлена правосторонняя асимметрия у последних пяти признаков:

данные рассматриваемых признаков имеют логнормальное распределение

Корреляционная матрица:

Для проверки связи между факторами рассматривается коэффициент корреляции г-Пирсона и графики рассеяния

Проверка существования корреляции проводится двусторонним t-тестом

При отклонении нулевой гипотезы были удалены факторы, имеющие меньшую связь с целевой переменной

```
t_test(data['rape_num'],data['num_crimes'])

v 0.0s

{'t-значение': 6.330074436489531, 'p-значение': 1.2331414173069111e-08}

t_test(data['incomes_below_the_poverty_line'],data['poverty_level'])

v 0.0s

{'t-значение': 8.969080126971338, 'p-значение': 8.292094798620893e-14}

t_test(data['mental_disorder'],data['num_crimes'])

v 0.0s

{'t-значение': 8.427291235284113, 'p-значение': 9.917283607862887e-13}

t_test(data['poverty_level'],data['employee_ratio'])

v 0.0s

{'t-значение': -6.445230992257486, 'p-значение': 1.9999999925387852}
```

Линейная множественная регрессионная модель построена по оставшимся четырем признакам: 'alco', 'mental_disorder', 'poverty_level', 'employee_ratio'

Коэффициенты модели:

```
alco 1.68
mental_disorder 0.06
incomes_below_the_poverty_line 15.72
employee_ratio 5.91
Intercept: -63.74
```

График остатков модели:

MSE: 55.553

Величина средней ошибки аппроксимации: 281.45722302798134

Множественный коэффициент детерминации R2: 0.2954427464594547

Проверка значимости уравнения в целом

Применим F-критерий:

Значение F-критерия = 3.945880658551282e-05

Нулевая гипотеза отвергается, модель признается статистически значимой на 5% уровне

Общие сведения построенной модели (пакет Statmodels)

```
OLS Regression Results
Dep. Variable: num_suicide R-squared:
                                                           0.295
Model:
                           OLS Adj. R-squared:
                                                           0.260
Method:
                  Least Squares F-statistic:
                                                          8.282
Date:
                Sun, 26 May 2024 Prob (F-statistic):
                                                       1.25e-05
Time:
                       01:35:53 Log-Likelihood:
                                                         -287.92
No. Observations:
                           84 AIC:
                                                           585.8
Df Residuals:
                            79 BIC:
                                                           598.0
Df Model:
                            4
Covariance Type:
                     nonrobust
                 coef std err
                                           P>|t|
                                                  [0.025
Intercept
             -63.7441 48.890 -1.304 0.196 -161.058
                                                              33.570
               1.6821
alco
                        0.430
                                 3.910
                                          0.000
                                                    0.826
                                                              2.538
                         0.939
mental disorder
              0.0590
                                 0.063
                                          0.950
                                                   -1.810
                                                              1.928
poverty level
                                          0.000
                                                    8.264
              15.7151
                        3.743
                                 4.198
                                                             23.166
              5.9055 9.003 0.656 0.514
employee_ratio
                                                             23.826
                                                   -12.015
Omnibus:
                         0.192 Durbin-Watson:
                                                          1.864
Prob(Omnibus):
                         0.909 Jarque-Bera (JB):
                                                           0.296
Skew:
                         -0.107 Prob(JB):
                                                           0.863
Kurtosis:
                                Cond. No.
                          2.802
                                                            780.
```

```
регрессионная модель объясняет 29.5% вариации переменной Y.

расчетный уровень значимости Prob (F-statistic) = 1.25e-05

так как значение Prob (F-statistic) < 0.05, то нулевая гипотеза R-squared

= 0 НЕ ПРИНИМАЕТСЯ, т.е. коэффициент детерминации ЗНАЧИМ
```

Проверка адекватности модели:

Анализ значимости коэффициентов регрессии:

Проверка гипотезы о значимости и доверительные интервалы

Расчетный уровень значимости P>|t| не превышает 0.05 у коэффициента при alco и poverty_level - оба коэффициента регрессии значимы, остальные - нет

Анализ остатков модели:

```
Skew = -0.107 и Kurtosis = 2.802 - показатели асимметрии и эксцесса остатков
```

p-value коэффициентов:

result linear ols.pvalues =

Intercept 0.196082

alco 0.000194

mental_disorder 0.950044

poverty level 0.000070

employee ratio 0.513781

Доверительные интервалы:

0 1

Intercept -161.057688 33.569577

alco 0.825718 2.538492

mental disorder -1.809652 1.927662

poverty_level 8.264130 23.166160

employee_ratio -12.015196 23.826124

Obs	Dep Var Population	Predicted Value	Std Error Mean Predict	Mean ci 95% low	Mean ci 95% upp	Predict ci 95% low	Predict ci 95% upp	Residual	Std Error Residual	Student Residual	Cook's
1	11.000	3.972	2.055	-0.117	8.062	-11.863	19.808	7.028	7.406	0.949	0.014
2	11.300	13.067	1.039	10.998	15.135	-2.370	28.504	-1.767	7.615	-0.232	0.000
3	14.300	15.839	1.078	13.693	17.986	0.391	31.287	-1.539	7.610	-0.202	0.000
4	11.100	5.930	1.655	2.637	9.223	-9.718	21.578	5.170	7.505	0.689	0.005
5	17.200	15.819	0.956	13.917	17.722	0.404	31.235	1.381	7.626	0.181	0.000
6	11.900	12.144	1.101	9.954	14.335	-3.310	27.598	-0.244	7.606	-0.032	0.000
7	18.400	15.314	1.187	12.952	17.677	-0.165	30.794	3.086	7.593	0.406	0.001
8	10.900	7.042	1.553	3.952	10.133	-8.565	22.649	3.858	7.527	0.513	0.002
9	2.400	6.229	1.685	2.876	9.582	-9.432	21.890	-3.829	7.499	-0.511	0.003
10	11.500	9.892	3.022	3 .877	15.907	-6.546	26.330	1.608	7.067	0.228	0.002
11	10.300	12.170	1.178	9.825	14.515	-3.306	27.647	-1.870	7.595	-0.246	0.000
12	3.700	13.011	0.882	11.255	14.768	-2.387	28.410	-9.311	7.635	-1.220	0.004
13	8.900	18.557	1.203	16.162	20.952	3.072	34.041	-9.657	7.591	-1.272	0.008
14	9.800	7.308	1.570	4.183	10.433	-8.306	22.922	2.492	7.524	0.331	0.001
15	16.800	14.500	1.065	12.380	16.620	-0.944	29.944	2.300	7.612	0.302	0.000
16	10.700	9.448	1.176	7.108	11.788	-6.028	24.924	1.252	7.595	0.165	0.000
17	5.100	13.332	1.132	11.078	15.585	-2.131	28.795	-8.232	7.602	-1.083	0.005
18	2.300	4.468	3.134	-1.770	10.706	-12.053	20.989	-2.168	7.018	-0.309	0.004
19	15.100	22.345	1.959	18.445	26.244	6.557	38.132	-7.245	7.432	-0.975	0.013
20	25.100	24.418	2.298	19.844	28.992	8.451	40.385	0.682	7.334	0.093	0.000
21	29.600	14.931	3.949	7.072	22.791	-2.267	32.130	14.669	6.594	2.225	0.355
83	32.700	26.056	2.462	21.155	30.957	9.992	42.120	6.644	7.281	0.913	0.019
84	18.000	11.943	3.019	5 . 934	17.951	-4.493	28.378	6.057	7.068	0.857	0.027

Проверка гипотезы о нормальном распределении остатков

Для исследования применяем критерий Жака-Бера:

SignificanceResult:

(statistic=0.2955573116880474, pvalue=0.8626220301574741)

Нулевая гипотеза о нормальности распределения остатков ряда не отвергается

Анализ независимости случайных отклонений :

Критерий Дарбина-Уотсона

d = 1.8789636574595088

гипотеза о независимости случайных отклонений не отвергается

Построение регрессионной модели на значимых коэффициентах

OLS Regression Results										
Dep. Variable:		num_suicide	R-squared	!:	0.292					
Model:		OLS	Adj. R-sq	quared:	0.274					
Method:	Le	east Squares	F-statist	ic:	16.67					
Date:	Sun,	26 May 2024	Prob (F-s	statistic):	8.64e-07					
Time:		04:06:47	Log-Likel	ihood:		-288.15				
No. Observations	:	84	AIC:			582.3				
Df Residuals:		81	BIC:			589.6				
Df Model:		2								
Covariance Type:		nonrobust								
	coef	std err	t	P> t	[0.025	0.975]				
Intercept	-33.6943	8.379	-4.021	0.000	-50.367	-17.022				
alco	1.7678	0.399	4.434	0.000	0.974	2.561				
poverty_level	14.2105	2.673	5.317	0.000	8.893	19.528				
Omnibus:		0.111	===== Durbin-Wa	tson:		1.862				
Prob(Omnibus):		0.946	Jarque-Be	era (JB):		0.190				
Skew:		-0.083	Prob(JB):			0.909				
Kurtosis:		2.836	Cond. No.			74.3				
========		=======================================		:======	=======	======				

result_linear_ols.pvalues =

Intercept 1.292115e-04 alco 2.884002e-05

poverty level 9.118108e-07

Доверительный интервал

0 1
Intercept -50.366587 -17.022110
alco 0.974441 2.561062
poverty_level 8.892995 19.528019

R2 = 0.292, незначительно меньше значения со всеми коэффициентами

Анализ остатков:

Критерий Жака-Бера

Значение статистики: 0.22358939412175294

Нулевая гипотеза о нормальности распределения остатков ряда не отвергается

Критерий Дарбина-Уотсона

d = 1.8789636574595088

гипотеза о независимости случайных отклонений не отвергается

Построение регрессионной модели для 2021 года

Аналогично исследуем факторы, выявляя несильно коррелируемые

Коэффициенты:

alco 1.31

mental disorder -0.55

incomes below the poverty line 14.25

employee ratio 11.01

Intercept: -74.04

График остатков

Ошибка аппроксимации: 302.6840681979601

MSE: 59.649

Множественный коэффициент детерминации R2: 0.2527374521860234

Проверка значимости модели F-критерием:

F-critical = 0.00031632028131289847

rejected, модель признается статистически значимой

Dep. Variable:	nu	m_suicide	R-squared:		0.253		
Model:		OLS	Adj. R-squa	red:	0.215		
Method:	Leas	t Squares			6.680		
Date:	Sun, 26	May 2024			0.000110		
Time:		03:43:30	Log-Likelih	ood:	-29	0.91	
No. Observations:		84	AIC:			91.8	
Df Residuals:		79	BIC:		6	04.0	
Df Model:		4					
Covariance Type:		nonrobust 					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-74.0422	48.235	-1.535	0.129	-170.052	21.968	
alco	1.3114	0.461	2.843	0.006	0.393	2.229	
mental_disorder	-0.5484	0.969	-0.566	0.573	-2.478	1.381	
poverty_level	14.2511	3.648	3.907	0.000	6.991	21.511	
employee_ratio	11.0141	9.201	1.197	0.235	-7 . 301	29.329	
Omnibus:		3.922	 Durbin-Wats	on:		.785	
Prob(Omnibus):		0.141	Jarque-Bera	(JB):	3.337		
Skew:	0.326	Prob(JB):		0.189			
Kurtosis:	3.726	Cond. No.			750.		

Регрессионная модель объясняет 25.3% вариации переменной num_suicide

Проверка адекватности:

	SST	SSE	dfT	dfE	MST	MSE	p_level	F_calc	F_table	F_calc >= F_table	a_calc	adequacy_check
linear_ols	6705.172689	5010.524427	83	79	80.785213	63.42436	0.95	1.273725	1.445939	False	0.139882	adequacy

Анализ значимости коэффициентов регрессии:

result_linear_ols.pvalues =
Intercept 0.128774
alco 0.005686
mental_disorder 0.573185
poverty_level 0.000196
employee_ratio 0.234881
Доверительные интервалы:

Intercept -170.052202 21.967809
alco 0.393255 2.229466
mental_disorder -2.478087 1.381204
poverty_level 6.990867 21.511258

employee ratio -7.300665 29.328908

Значимы коэффициенты: alco и poverty level

Анализ остатков:

Критерий Жака-Бера - проверка гипотезы о нормальности распределения остатков

Значение статистики = 3.8787816804764272

Нулевая гипотеза о нормальности распределения остатков ряда не отвергается

Критерий Дарбина-Уотсона

d = 1.865232128745912

гипотеза о независимости случайных отклонений не отвергается

Построение регрессионной модели на значимых коэффициентах

p-values коэффициентов

result_linear_ols.pvalues =

Intercept 0.001114

alco 0.000308

poverty level 0.000015

Доверительные интервалы:

0 1
Intercept -44.501475 -11.528693
alco 0.744155 2.407006
poverty_level 6.985432 17.595614

Анализ остатков:

Критерий Жака-Бера

Значение статистики: 3.8787816804764272

Нулевая гипотеза о нормальности распределения остатков ряда не отвергается

График остатков:

Критерий Дарбина-Уотсона

d = 1.865232128745912

гипотеза о независимости случайных отклонений не отвергается

ЗАКЛЮЧЕНИЕ

В данной работе были выявлены статистически значимые коэффициенты: количество алкоголя потребляемое в области на 10000 т. человек и уровень бедности. Также проведено сравнение результатов, получаемых при построении моделей для различных исследуемых годов - значимые коэффициенты сохранялись

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Буре В. М., Парилина Е. М. Методы прикладной статистики в R и Excel. СПб.: Лань, 2013.
- [2] Носко В. П. Эконометрика. М.: Издат. дом «Дело», 2011. 672 с.
- [3] Федеральная служба государственной статистики. [Электронный ресурс]: URL: https://rosstat.gov.ru/
- [4] Единая межведомственная информационно-статистическая система (ЕМИСС). [Электронный ресурс]: URL: https://fedstat.ru/
- [5] В. Ф. Войцех. Динамика суицидов в регионах России. ФГУ "Московский НИИ психиатрии Росздрава". [Электронный ресурс]: URL: https://mniip.serbsky.ru/assets/uploads/2017/12/scp_2008-1-14.pdf
- [6] Ю. Н. Тюрин А. А. Макаров Теория вероятностей и математическая статистика «Московские учебники» Москва, 2004
- [7] Scikit-Learn. [Электронный ресурс]: URL: https://scikit-learn.org/stable/
- [8] Статистический анализ с использованием пакетов Python. [Электронный pecypc]: URL: https://habr.com/ru/articles/557424/
- [9] Учебник по машинному обучению. ШАД [Электронный ресурс]: URL: https://education.vandex.ru/handbook/ml
- [10] Computer Science Center : Лекции по анализу данных. [Электронный ресурс]: URL: https://youtube.com/playlist?list=PLlb7e2G7aSpRb95_Wi7lZ-zA6f0jV3_l7&si=_P1as40xkkHJySW4