CS2120 Discrete Math Sept 13th

Elizabeth Orrico

Agenda

- Quiz Friday
- Do Now
- A bit more on Implies
- DeMorgan's Law
- Everything you need: And's, Or's and Not's
- Product of Sums ⇔ Sum of Products
- What is 3SAT and why is it NP hard? Bonus! How does it relate to Set Cover?
- Equivalence Proofs
- What's Entailment?

Do NOW

• 18 years old & voted vs kid & voted

Boolean Operators

Prove

$$3(x+y) = 3x+3y$$

Prove	X	У	3(x+y) =	3x + 3y

Prove	X	У	3(x+y)	=	3x + 3y
	0	0	3(0 + 0)	=	3(0) + 3(0)

Prove	X	У	3(x+y)	=	3x + 3y
	0 1	0	3(0 + 0) 3(1 + 0)		3(0) + 3(0) 3(1) + 3(0)

Prove	X	У	3(x+y)	=	3x + 3y
	0 1 2	0 0 0	3(0 + 0) 3(1 + 0) 3(2 + 0)	=	3(0) + 3(0) 3(1) + 3(0) 3(1) + 3(0)
			- (-)		-(-)

Prove	X	У	3(x+y) = 3x+3y
	0	0	3(0+0) = 3(0) + 3(0)
	1	0	3(1+0) = 3(1) + 3(0)
	2	0	3(2+0) = 3(2) + 3(0)

"Is equivalent to"

Prove $\neg \neg P \equiv P$

Prove

$$P \lor \bot \equiv P$$

Prove

$$P \equiv P \land (P \leftrightarrow T)$$

Prove

$$P \equiv P \land (P \leftrightarrow T)$$

P | Given

Prove
$$P \equiv P \land (P \leftrightarrow T)$$

$$\begin{array}{c|c}
P & Given \\
E & P \land P & Simplification
\end{array}$$

Prove $\begin{array}{c|c} P \equiv P \land (P \leftrightarrow T) \\ \hline \end{array}$ $\begin{array}{c|c} P & Given \\ \equiv P \land P & Simplification \\ \equiv P \land (P \leftrightarrow T) & Simplification \\ \end{array}$

Prove

$$A \rightarrow (B \oplus A) \equiv \neg A \lor (B \oplus A)$$

Scratch work:
$$A \rightarrow B \equiv \neg A \lor B$$
 where $A = P$ and $B = (Q \oplus P)$

Prove
$$P \rightarrow (Q \oplus P) \equiv \neg P \lor (Q \oplus P)$$

Scratch work:
$$A \rightarrow B \equiv \neg A \lor B$$
 where $A = P$ and $B = (Q \oplus P)$

Prove
$$P \rightarrow (Q \oplus P) \equiv \neg P \lor (Q \oplus P)$$

$$P \rightarrow (Q \oplus P)$$
 Given
 $\equiv \neg P \lor (Q \oplus P)$ Definition of Implication

Prove
$$P \to (Q \oplus P) \equiv \neg P \lor (Q \oplus P)$$

$$P \to (Q \oplus P) \quad | \text{ Given}$$

■ ¬P V (Q ⊕ P) Definition of Implication

Associative Property: you can move parentheses around the operator

Example: (2+3)+5=2+(3+5)

Counterexample: $(2-3)-5 \neq 2-(3-5)$

Which symbols are associative/commutative?

Associativity

Prove $(P \land Q) \land (A) \equiv P \land (Q \land (A))$

Associativity

```
Prove (P \land Q) \land (R \lor Q) \equiv P \land (Q \land (R \lor Q))

(P \land Q) \land (R \lor Q) Given

\equiv P \land (Q \land (R \lor Q)) Associativity
```

Commutative Property: you can swap their operands' position

Example: 2+3 = 3+2

Counterexample: 2-3 ≠ 3-2

Which symbols are associative/commutative?

Commutativity

Prove $(P \lor Q) \lor (R \lor Q) \equiv (P \lor Q) \lor R$

Commutativity

```
Prove (P \lor Q) \lor (R \lor Q) \equiv (P \lor Q) \lor R
 = (P \lor Q) \lor (R \lor Q) Given  \equiv (P \lor Q) \lor (Q \lor R) Commutativity  \equiv (P \lor (Q \lor Q)) \lor R Associativity  \equiv (P \lor Q) \lor R Simplification
```

DeMorgan's Law

P	ro	V	е
P	ro	V	e

$$P \lor \neg (Q \land \neg R) \equiv P \lor (\neg Q \lor R)$$

DeMorgan's Law

Prove
$$P \lor \neg(Q \land \neg R) \equiv P \lor (\neg Q \lor R)$$

$$\equiv P \lor \neg(Q \land \neg R) \quad \text{Given}$$

$$P \lor (\neg Q \lor \neg \neg R) \quad \text{DeMorgan's Law}$$

$$P \lor (\neg Q \lor R) \quad \text{Double Negation}$$

Distributive Law

```
Prove (P \lor \neg Q) \land (P \lor \neg R) \equiv P \lor (\neg Q \land \neg R)
```

Distributive Law

$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$
 $A = P$ $B = \neg Q$ $C = \neg R$
Prove $(P \lor \neg Q) \land (P \lor \neg R) \equiv P \lor (\neg Q \land \neg R)$

Distributive Law

```
A \lor (B \land C) = (A \lor B) \land (A \lor C) \quad A = P \quad B = \neg Q \quad C = \neg R
              (P \lor \neg Q) \land (P \lor \neg R) \equiv P \lor (\neg Q \land \neg R)
Prove
     (P \lor \neg Q) \land (P \lor \neg R) Given

\equiv P \lor (\neg Q \land \neg R) Distributive Law
```