com. US 4,888,283

(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開昭61-239891

(43)公開日 昭和61年(1986)10月25日

	(51) Int. Cl. 5	3	識別記号	庁内整理番号	FI		技術表示箇所
	C12N	9/99	-				
	A 6 1 K	31/135	AED				•
	A 6 1 K	31/165	ADP				
	A 6 1 K	31/19	ABE				
	A 6 1 K	31/195	ACS				
		審査請求	*			(全16頁)	最終頁に続く
	(01) UIEX EL E	Adt. 157	507761 74100		(71)出願人	99999999	
	(21)出願番号	行房	昭61-74109		(71)山源人	コンシグリオナツオナー	レデレリシエルシ
4	(22) 出願日 昭和		161年(1986)3月31日			エ	
	(22) 山原 日	PD11	101(1300/3	/101 H		*	
					(72) 発明者	*	
					(12,72,71	*	•

^{(54) 【}発明の名称】他のアミノオキシダーゼ類との関係におけるベンジルアミンオキシダーゼ類の選択的阻害剤、および それらの製造法

^{(57) 【}要約】本公報は電子出願前の出願データであるた

特開昭61-239891(2)

景および酸素原子の鎖が炭素原子14個までを含有する、特許請求の範囲第1項または第2項記載のペンジルアミンオキシダーで類の選択的阻害剤。 (4) 特許請求の範囲第1項記載の化合物の楽型的に受容しうる塩からなる、ペンジルアミンオキシダーで類の選択的阻害剤。

(5) 数塩が塩酸塩である、特許別求の範囲第4項 記載のペンジルアミンオキシダーゼ類の選択的阻 等剤。

(6) 政選択的阻害剤が2,6-ジェトキシベンジルアミン塩酸塩からたるものである、特許請求の範囲第1項配数のベンジルアミンオキシダーゼの選択的阻害剤。

(7) 該選択的風客剤が2,6-ジ(ロープロポキシ)ペンジルブミン塩酸塩からなるものである、 特許請求の範囲第1項配数のペンジルブミンオキシダーゼの選択的風客剤。

(8) 該選択的阻容剤が2,6‐ジイソプロポキシペンジルアミン協能塩からなるものである、特許 請求の範囲第1項配数のペンジルアミンオキシダ

の選択的阻害剤。

66 飲選択的阻答剤が2,6-ピス(メトキシメトキシ)ペンジルアミン塩限塩からなるものである、特許請求の範囲第1項記載のペンジルアミンオキシゲーゼの選択的阻害剤。

69 該選択的阻害剤が2.6-ピス(メトキシメナル)ペンジルアミン塩散塩である、特許請求の範囲第1項記載のペンジルアミンオキシダーゼの選択的阻害剤。

(6) 該選択的阻害剤が2,6-ジェチルペンジルアミン塩酸塩からなるものである、特許請求の範囲第1項記載のペンジルアミンオキシダーゼの選択的阻害剤。

07 該選択的阻害剤が2.6-ジーロープロピルペンジルアミン塩からなるものである。特許請求の範囲第1項記載のペンジルアミンオキシダーゼの選択的阻害剤。

48 鉄選択的狙客剤が2、6・ピス(2・ヒドロキシエトキシ)ペンジルアミン塩取塩からなるものである、特許請求の範囲第1項記数のペンジル

ーゼの選択的風害剤。

(9) 財選択的阻害剤が2.6-ジ(n-プトキシ)ペンジルアミン塩配塩からなるものである、特許請求の範囲第1項記載のペンジルアミンオキシダーゼの選択的阻害剤。

QD 数週択的阻害剤が2-ヒドロキシメチルペンジルブミン塩酸塩からなるものである、特許請求の範囲第1項配載のペンジルブミンオキシダーゼの選択的阻害剤。

(2) 該選択的阻害剤が2.6-ジメトキシベンジ ルアミン塩酸塩からなるものである、特許請求の 範囲第1項配敷のペンジルアミンオキシダーゼの 選択的阻害剤。

は選択的風害剤が2,6-ジヒドロキシペンジルアミン塩酸塩からなるものである、特許請求の範囲第1項記載のペンジルアミンオキシダーゼ

アミンオキンダーゼの選択的阻害剤。

(4) R¹ および R² がアルコキシル書またはそれらの誘導体である特許請求の範囲第 1 項記載のペンジルアミンオキシゲーゼ類の選択的阻害剤の製造法において、

a) 1,3-位にはアルコキシル基またはそれ ちの誘導体を含有するペンピニック系を合成し、

b) ロープナルリテウムにより、工程 a) 記載 の1,3-ジ費換ペンゼニック系の2-位にリテウムを導入し、

c) ジメテルホルムアミドとの反応により、工程 b) 記載の化合物を安息者配アルデヒド誘導体に変形し、

4) 工程 c) 記載のアルデヒドをオキシムに変形し、そして、

●) 最終ペンジルアミノ - 化合物を得るために 工程 d) 記載の試オヤシムを選元する工程からな ることを特徴とする前記方法。

20 工程 e)の避元換作をラネー合金により行う、 特計請求の範囲第19項記載の方法。

特開昭61-239891(4)

形の場合(レピンソーン(R. Lowinschn)、ク リン・キム・アクタ (Clin. Chim. Acta)、81、 247(1977)〕に減少する。

非常に最近の試験は、血管新形成 (neovascularisation) 過程の間に BAO 水準に おける増加があることを示した【パンシェリ (G. Banchelli)、ツイシエ (M. Ziche)、ド ララ(P. Dolara)、プフオニ(P. Buffoni)、 アクタ・ファマコル・トクス (Acta Pharmacol. Tox.), 53, 40(1983)].

現在まで知られている閩客剤はまた、同じ種類 の他のアミンオキシダーゼ類に対し、同じ程度の 農度において活性であるので、現在において BAO 類の選択的阻容剤はない。

知られているものの中で最も活性な阻害剤はカ ルポニル化合物試薬、たとえばヒドロキシルアミ ン、ヒドラクンおよびヒドラジン誘導体、セミカ ルパクトおよびロ・アミノグアニジンである。

更に、 BAO 類は、シアナイドにより、そしてま た2価の銅のキレート化剤、たとえばジェテルジ

ア.)、パンテエルリ (Banchelli , D.)、ペル トッチ (Bertocci, B.)、ロドピッチ (Lodovici, M.)、イグネスチ (Ignesti, G.)、 ピリシノ (Pirisino , R) 、プフオニ(Buffoni, P.)、ベルナニ(Bertini、 V.)およびデ・ミ ユノ (De Munno , A.)、エイジェンツ・アンド ・アクションズ (Agents and Actions)、 1 6、 95(1985)]。

有用な突用上の適用が、数 BAO 頻の過択的阻害 剤から、薬学の分野において視られりる。

突 版 に、 そのような化合物は 緑維化過程を 選延 させることが予想でき、そこでそのような化合物 は若干の病理学的状態、たとえば肝硬変、本題性 の安定化した高血圧、糖尿病、胸節症等における 全く広範の治療適用において使用できる〔プフォ ニ (Buffoni, P.)、トレンズ・イン・ファーマ コロジカル・サイエンセズ (Trends in

更に、それらの強力な活性は、血管新生過程にお いてより度要なものである(パンチェルリ(G.

チオカルパメートおよびキュプリテン (cuprisone) により図書される。低い選択性そして可逆性の図 客剤、たとえばシステアミン、パパペリン、プル ポカプニン、 アンフェタミンおよびa・メテルベ ンジルアミンがまた知られている(プフォニ (F. Buffoni) デラ・コルテ (L. Della Corte)、 アドプ・ペイオケム・サイコフアーマコル (Adv. Biochem. Psycopharmscol.), 5, 133 (1972)

LAO 類に対しラチョーゲン活性 (Lathyrogenous active) であるタ・アミノプロピオニトリルの 高濃度(Iao > 1 0⁻² W) はまた、設 BAO 類を不 可逆的に狙害する。

月-アミノプロピオニトリル (BAPN) は BAO 類の苦質であり、そして形成されるシアノアセト アルデヒドは、他の自殺的基質(suicidal substrates) たとえば1-フェニル・1-フル オロ・2・アミノエタンにより決定される機構と 同様であるらしい反応機構を通して、不可逆的阻 書に貴を有している[レイモンデイ(Raimondi,

Banchelli)、 ッイシェ (M. Ziche) 、ドララ (P. Dolara), プフオニ(P. Buffoni)、ペ イオケム・ファーム (Biochem. Pharm)、投稿 中、アクタ・ファーマコル・トクス (Acta Pharmacol. Tox.), 53, 40 (1983)].

BAO 類の選択的阻害剤についての必要性を満足 させるために、若干の実験観察を事前に行つたが、 その観察は、 ペンジルアミンオキシメーゼ熱 (BAO' m)により触媒される酸化反応依線が基質 のアミノ基および酸素原子の両者をそれ自体の周 りに同時に配位紹合させ、そしてまたアミノ番を 担う基質の CBa 基からのヒドリドイオンの同じ散 第への移動を助ける酵気中に含有される飼により 示される能力に帰因しりるものであることを拒護 した。七のような移動は、 BAO により促進される 酸化反応を終了に向かわせ;実際に、缺ヒドリド イオンを失つた炭素原子はそれに結合したアミノ Pharmacological Sciences)、4、313(1983)]。 甚の贸累原子から2個の電子を受け取ることがで きてプロトン化イミンを形成し、それは加水分解 後にアルデヒドおよびアンモニアに一致し、一方

特開昭61-239891(6)

来未知である各種オキシムのすべての還元操作。) は、もしもラネー合金で行われるならば、文献中 に記載されている他の登元方法に関し有利である。

本発明の目的である欝集阻害剤は、それ自体の 特徴を有するそれらの各々が先に示された阻害力 法の機構基準に相当しえ、そして本発明の基礎で ある各世化合物である。

本発明の目的である阻害剤は従来知られていた い化合物であるが、それらは各種の誘導体に追跡 することができ、若干の種類におけるそれらの若 干のものは偶然に既に知られていることが判る可 飽性がありこしかしながらペンジルアミンオキシ ゲーゼ類への阻容存性はそれらの任意のものにつ き現在まで発見されていない。

BAO類の選択的盟客剤が各種の誘導体に追跡し うる事実の確証として、文獻中に氏に知られてお り、そしてアミンオキンダーゼ類の阻害剤として 記載されていないる弦の化合物をまた製造し、そ してそれらの活性を試験した(例5、 6および7)。 故化合物は突膜に低い程度であるけれども BAO の

ることにより評価される:

4) 悪質として

physics of

化合物の酸化は、すべての場合において、HaOa の強生を測定することにより評価される。そのよ うな操作は、37℃に設定した温度制御浴中で行 われ、そして空気の存在において撹拌される。 H₂O₂ の強生は、レーマン(H.P. Lehman)、 ッ ヨシンスキー(E. H. Schoeinsky)、ペーラー (M. F. Beeler) の方法(クリン・ケム(Clin. Chem.), 20, 1564(1974)] K + 5 定量的に決定される。

b) 阻害剤として

各種酵業の阻害は、すべての場合において、釜 質を飽和躁度まで添加するのに先立ち、化合物を 酵素と予める0分間インキュペートすることによ り試験される。

ペンジルアミンオキシダーピ類(BAO' m)の定 量的決定は、プフォニ(F. Buffoni)およびイ グネスチ(C. Ignesti)により崩示されたアイ プトープ方法[パイオケム・ジェー (Biochem.J.)、 ・サイ・ユーエスエイ (Proc. Natl. Acad. Sci.

狙客剤として、七してより低い範囲で他のアミン オキシダーゼ類の阻害剤として活性であることが 厚められた。

本発明の目的である阻害剤は、10~7の程度の ICso (M) 値を有するペンジルアミンオキシダー **七類への非常に高い阻害力に到速することができ、** 一方同じ化合物は全く低い程度でアミノオキシダ ーピ類 DAO、 LAO、 MAO (A) および MAO (B) を阻 答し、 BAO K 関連するものに比し約1 0⁴ ~ 1 0⁵ 倍大きな ICso (M) 値を示す。

本発明をよりよく説明しそしてその使用をより 容易にするために、若干の説明的英雄例を以下に 開示するが、駄実施例は含まれる特許語水の鉱田 化示丁如き本発明の範囲を限定するものとは考え **られるべきでない。**

鉄実施例において、阻容活性は、各化合物を2 つの見地から、即ち蒸質として、ならびに各種鍋 - 含有アミンオキンダーゼ類 (B. C. 1、 4、3 . 6.) および PAD - 依存モノアミンオキシダーゼ類 (B. C. 1. 4. 3. 4) の阻害剤として試験す

145、369(1975)]により、孟賀とし て ¹⁴C - ペンジルアミンを 1.7 mM の最終後度で 使用して行われる。

ジアミンオキシダーゼ類(DAO' ■)の定量的決 定は、キュッシエ (J. Kusche)、リヒメー (H. シュミット (J. Schmidt) 、ロレンツ (W. Lorens) に開示されたアイゾトープ方法 (ェイ ジエンフ・アンド・アクションズ (Agents and Actions), 3, 148~156(1973)] により、 若質として 14C - パトレッシンを 1 mM の最終确定で使用して行われる。

リジルオキシダーゼ(LAO)の定量的決定は、 メレット(J. Melet)、ピアンデン(G.D.N.E. Vianden)、 ペシュラ (B.N. Bachra) のアイナ トープ方法[アナル・パイオケム (Azal.

Biochem.), 77, 141(1977)) KI り、芸質としてピネル(8.R. Pinnell)、マー テン(G.R. Martin) [プロス・ナッル・アカド

特開昭61-239891(8)

無水ド、ドージメナルホルムでは存在してに存かしたレグルンノール108を、面度を0でに保かしたがら、無水ド、ドリッメナルホルムのは存在ではでは、30分かかつて、そして投控しつの加える。 はかっし、30分かかので、それでは投控では、32.75%では、10分には、100の存在では、200の方法によっては、100の方法によっては、100の方法によっては、100の方法によって、次に、次に、次に、2000に、100の方法によりに、100の方法には、1

ヒドタ・0 0 8 の 歴 満 液 を、ヒドロ キシル アミン 塩 酸 塩 3・5 4 8 および 水 酸 化ナトリウム 3・2 4 8 に 加え、ついでは 歴 濁 液 を 室 温 で 大量 の 固 体 の 出 環 まで 提 拌 する。 温 合 物 を 二 頭 化 炭素 で 飽 和 し。 そ し て 減 過 する。 固 体 は、 ペン ゼン から 再 結 晶 の 後 に、 ジェト キシペン ズ アル デヒ ド の オ キシ ム を 9 2 9 の 収率 で 与える ; 酸 点 は 1 6 0 ~ 1 6 1 ℃ で ある。

を78岁の収率で与える: 海点105~107℃: 4トール(ホサソン(H.H. Hodgeon)、クレー (H. Clay)、サエー・ケム・ソス(J. Chem. 80c.)、1872(1930)、海点234~ 235℃)。

水25叫中の2,6-ジェトキシペンズアルデ

つの部分に分割する。ペンタン抽出液は、固体水 酸化ナトリウムで乾燥した後、溶媒が完全に除去 されるまで蒸留し、ついでそれらを無水エテルエ ーテル100×1に溶かし、そして塩化水深ガスで 飽和する。分離する塩は、濾過しそして再空下に 乾燥した後、アセトニトリルから再結晶して、2, 6ージエトキシペンジルアミン塩酸塩を88%の 収率で得る:酸点は200~202℃である。 I.R. (EBr) 2615 cm⁻¹ (アエニル)。

阻害剤として、および基質としての化合物の活 性

BAO: n = 4, $IO_{50}(M) = 1.8 \pm 0.8 \times 10^{-7}$, Pr., m., no;

DAO: n = 4, $IO_{50}(M) = 1.25 \pm 0.01 \times 10^{-2}$, s:

LAO: $IC_{50}(H) > 1 \times 1 \ 0^{-5}$;

MAO: n = 4, $IO_{80}(M) = 6.4 \pm 0.5 \times 10^{-6}$,

例 2

特開昭61-239891(10)

族 c - c)、 7 8 2 cm⁻¹ (フェニル)。

2, 6-ジイソプロポキシペンズアルデヒド
1.649は、2, 6-ジェトキシペンズアルデヒドのオキシムの軽速(例1)につき開示されたと
同じ方法で操作して2, 6-ジイソプロポキシペンズアルデヒドのオキシムに変形され、得られる
収率は75%である:融点は、ペンピンから結晶
化の後153~155℃である。

2, 6-ジイソプロボキシペンズアルデヒドのオキシム 1.2 1 g は、2, 6-ジェトキシペンジルアミンの製造(例1)につき開示されたと同様の方法で操作して2, 6-ジイソプロボキシペンジルアミン塩酸塩は、ペンピン/ヘキサン温合物から結晶化の後、融点 1 3 2~1 3 4 ℃を有する:収率は5 3 % である。 I.R. (KBr) 2 5 9 □ cm⁻¹ (BBs⁺)、1 2 6 1 cm⁻¹ (芳香族 c - 0)、7 8 □ cm⁻¹ (フェニル)。

阻害剤として、および基質としての化合物の活 性

1,3-ジ(n-プトキシ)ペンゼン8.0 gは、2,6-ジェトキシペンズアルデヒドの製造(例1)につき関示されたと同様の方法で操作して、2,6-ジ(n-プトキシ)ペンズアルデヒドに変形され、結2,6-ジ(n-プトキシ)ペンズアルデヒドは、134~137℃/0.08トールで蒸留され、そしてn-ペンタンから-70℃で結晶化により更に精製される;収率は47%である。I.R.(膜)1684cm⁻¹(σ-0)、1593cm⁻¹(フェニル)、1250cm⁻¹(芳香族c-0)、777cm⁻¹(フェニル)。

95 メエメノール25 以中の2,6 ージ(ロープトキン)ペンズアルデヒド2.5 8 8 を、ヒドロキシルアミン2.6 0 8 およびピリジン25 以に加える。改混合物を1時間違流し、ついで水200以に0で注入して油が分離し、それは直ちに固体となる。数固体は、減過しそしてペンピン/ローヘキサンから結晶化した後、2,6 ージ(ロープトキン)ペンズアルデヒドのオキシムを82 %の収率で与える。融点は90~91である。

BAO: $IO_{50}(M) > 1 \times 1 \ 0^{-5}$ 、 a 疑い、 DAO: $IO_{50}(M) > 1 \times 1 \ 0^{-5}$ 、 a 疑い;

LAO : $10_{50}(M) > 1 \times 10^{-5}$:

ило: IGso(N) > 1 × 1 0-5 、 a 等い。

67 4

次式の阻害剤の合成および活性

レタルシノール108を、1,3-ジェトキシペンセンの製造(例1)につき開示されたと同様の方法で1-プロモアタンと反応させ、ついで1,3-ジ(ロープトキシ)ペンセンに735の収率で変形する;済点は106~109℃/0.3トールである(イラニ(K.R. Irani)等、ジェー・ユニア・ポンペイ(J. Univ. Bombay)、18、1(1950);シー・エイ(0.A.)45、1974c(1951)、済点299~300℃)。

2,6-ジ(n-プトキシ)ペンズアルデヒド
2.1 0 g は、塩化水素ガスでの処理をエテルエー
テル溶液を使用する代りにn-ペンタン溶液中で
行うことを除いて、ジェトキシペンジルアミン塩
陸塩の製造(例1)につき閉示されたと同様の方
法で操作して、2,6-ジ(n-プトキシ)ペン
ジルアミン塩酸塩に変形されるこかく 得られた 2,6-ジ(n-プトキシ)ペンジルアミン塩酸塩に
エメノール/エテルエーテルから-30で 結晶
化カリリカである。 I.R. (KBr) 2600 cm⁻¹ (NHs⁺)、
1 2 5 3 cm⁻¹ (芳香族 0 - 0)、7 7 3 cm⁻¹ (フェニル)。

阻害剤として、および差質としての化合物の活性

BAO: n = 4, $IO_{80}(M) = 1.40 \pm 0.01 \times 10^{-7}$, pr, ne, ne;

DAO : $IO_{50}(N) > 1 \times 10^{-5}$, a ;

LAO : $IC_{60}(N) > 1 \times 10^{-3}$;

MAO : $IC_{50}(M) > 1 \times 10^{-5}$, ns.

特開昭61-239891(12)

無水テトラヒドロフラン200%に落かした 2, 6-ジメトキンペンスアミド 2.0 8 を、テトラヒ ドロフラン20叫中のリナクムアルミニウムヒド リド1.0 8の懸汚欲に、15分間かかつて加える。 温合物を 8 時間遺流し、ついで注意して水をガス 発生が終了するまで、ついで15メ水酸化ナトリ ウムを加え、そして固体物質を濾過するために進 過する。かく得られた潜板は、固体水酸化カリウ ムで乾燥し、引鋭いて減圧下に溶集を除去し、そ してユーヘキサンから結晶化した後、融点83~ 85℃を有する2。6-ジェトキシペンジルアミ ンを与える;収率は82gである。 缺丁ミンは、 無水エテルエーテル中の塩化水煮ガスで処理し、 そして生成物をアセトニトリルから結晶化した狭、 融点228~230℃を有する2,6~ジメトキ シペンジルアミンを9 4 乡収率で与える(オツハ (F. Bach)、キャエル (A. Kjaer)、アクタ・ ケム・スカンド (Acta Chem. Scand.)、25、 2629(1971), 225~2260, =-テルからる。

返して2, 6-ジヒドロキシペンジルアミン塩酸 塩が得られ、それはエタノール/エテルエーテル 温合物から結晶化の後、触は203~205℃ (分解)を示す:収率は95まである。

I.R. (EBr) 3280 cm^{-1} (OH), 2580 cm^{-1} (NH₃⁺), 785 cm^{-1} ($7x=\nu$).

BAC: n = 2, $IC_{50}(M) = 1 \times 10^{-3}$, no;

DAO : $10_{30}(M) > 1 \times 10^{-3}$;

LAO: $IC_{50}(x) > 1 \times 10^{-3}$:

 $MAO : IO_{50}(M) > 1 \times 1 0^{-3}$.

例 9

次式の阻容剤の合成および活性

水 4 M 中 の Na OH 0.9 3 ú 8 の 存液に加えた、 し、そしてエタノールで洗滌する。 存液を 0 ℃ に メウンセンド (0.A. Townsend)、 クリステンセ 冷却し、ついで 0.5 N HOI で 0 ℃ において放性化

阻害剤として、そして基質としての化合物の活 性

BAO: n - 4, $IO_{80}(M) - 1.2 \pm 0.2 \times 10^{-4}$,

DAO: n = 4, $IO_{80}(M) = 5.6 \pm 0.3 \times 10^{-8}$,

LAO : $10_{80}(M) > 1 \times 10^{-5}$:

MAO: n = 4、 $IO_{80}(M) = 1.9 \pm 0.2 \times 10^{-4}$ 、 s、 s0.0

91 8

次式の阻害剤の合成および活性

2,6-シメトキシベンジルアミン1.60gを 臭化水素の48g水溶液10mに溶かし、そして 3時間遺洗する。混合物を減圧下に蒸発し、つい で適塩散10mを加え、そして再び蒸発する。塩 酸での処理をプロマイドイオンの消失まで2回線

ン(8.0. Christensen)、リンク(J.O. Link)、
ルイス(O.P. Lewis)、ジェー・アム・ケム・
ソス(J. Am. Chem. 80c.)、103、6888
(1981)に従い製造された2,6-ピス(メ
トキシメトキシ)ペンズアルデヒド39を、ヒドロキシルアミン塩酸塩1.109で処理する。温合物を、それが半固体物質に変換されるまで投拝し、ついで水20以を加え、そして00gで飽和する。かくして沈緩した固体を濾過し、ついで水で洗滌し、そして其空下に乾燥して、融点133~
134℃を有する2,6-ピス(メトキシメトキシ)ペンズアルデヒドのオキシムが得られる;収
本は965である。

特閒昭61-239891 (14)

フォスター (D.J. Poster) およびリード、ジ ュニア(D.B. Reed Jr.)の方法(ジェー・オル 8 . 7 A (J. Org. Chem.), 26, 252 (1961)】 に従い、 2 。 6 ー ジエナルアニリ ンから出発し、シアン化第一個でのザンドマイヤ 一反応により製造した2, 6 ージエナルペンゾニ トリル1.598を、無水エナルエーテル50叫に 終かし、そしてエチルエーテル60㎡中のリテウ ムアルミニウムヒドリド O.9 O B 掲載に急速 に加える。混合物を6時間澄洗した茯、それを水 酸化ナトリウムの10分水溶液6単で加水分解し そしてエテルエーテルで抽出し、ついで抽出液を 採取しそして渡過する。エーテル終液は、濾過し そして固体水酸化カリウムで乾燥し、そして溶鉄 を減圧下に完全に致去した後、無水エナルエーテ ル5日料で抽出し、そして塩化水果ガスで飽和す る。沈晟が形成し、それは濾過し、無水エチルエ ーテルで洗液し、真空下に乾燥し、そしてアセト ニトリルから結晶化した後、触点243~245℃ を有する2,6-ジエチルペンジルアミン塩酸塩

を与える; 得られる 収率は 7 7 % である。 I.R. (KBr) 2 6 0 0 cm⁻¹ (BBs⁺)、 7 61 cm⁻¹ (フエユル)。

- 風害剤として、そして基質としての化合物の活 dt

EAO: n = 4, $IC_{50}(M) = 4.3 \pm 0.4 \times 10^{-4}$, r. ne. ne;

DAO : $IC_{80}(M) > 1 \times 10^{-3}$. # ;

140 : $Id_{80}(M) > 1 \times 1 \ 0^{-5}$;

 $x_{A0}: Io_{80}(x) > 1 \times 10^{-8}$, ...

例 1 2

次式の阻害剤の合成および活性

2, 6-ジフルオロ安息香取クロライド
.14.348および2ーアミノー2ーメテルー1ー プロパノール14.528を、メイヤーズ(A.I. Meyers)、テンプル(D.L. Temple)、ハイド

ケピッチ (D. Haidukewich)、ミヘリッチ (E.D. Kihelich) に従う方法(ジェー・オルグ・ ケム(J. Org. Chem.) 39、2787(1974)] と同様の方法でよー(2ーヒドロキシー1,1~ ツーメナルエナル)-2, 6-ジフルオロペンズ アミド(融点110~112°) に変形し、次に それらをチォニルクロライドの存在において、2 - (2, 6-ジフルオロフエニル) - 4, 5-ジ ヒドロー4、4ージメナルー1、3ーオキナゾー ルに胡珥する。後者化合物を、メイヤーズ (A.I. Meyers) およびウイリアムズ (B.S. Williams) に従う方法(テトラヘドロン・ レット(Tetrahedron Lett.)、(1978)、 223〕を拡張することにより、ュープロピルマ グネシウムプロマイドで2~(2,6-シプロピ ルフェニル)-4,5-ジヒドロ-4,4-ジメ ナルー1,ろーオキサナールに変形し、それをメ イヤーズ (A.I. Moyers)、ヒンメルスパツへ (R.J. Himmelsbach)、ロイマン(M. Reuman) の方法(ジェー・オルグ・ケム (J. Org. Chem.)、

48、4053(1983)]に従い、リナウム および故体アンモニアで2~〔〔2,6~ジプロ ピルフェニル)メチル3-アミノ1-2-メチル - 1 - プロオノールに遊元し、ついでメークロロ サクシンイミドで酸化し、塩基性アルミナを使用 して風ハコゲン化を行い、引続いて加水分解して 2, 6-シプロピルペンズアルヂヒドを得る。ピ リジン20×中の2,6~ジプロピルペンズアル デヒド 2.5 0 9 にヒドロキシルアミン塩環塩 2.7 48を加え、ついで水浴上で1時間加熱し、 水40㎡で処理し、濃塩酸で出っ1に餌節し、鉄 容量は3つの部分に分割される。抽出液は、無水 強微ナトリウムで乾燥し、そして溶媒を波圧下に 蒸発した後、租油の形におけるオキシム化合物を 92岁の収率で与える。オキシム2.16月を無水 テトラヒドロフラン24叫に答かし、そしてユン (M.M. Yoon)、 プラウン (H.C. Braun) (ジ エー・アム・ケム・ソス (J. Am. Chem. Boc.)、 90、2927(1968)] K従い製造したテ トラヒドロフラン 2 8.8 M 中 O AlHa 21.12m moles

特別昭61-239891 (16)

いで金素保護下、25~30℃で48時間提拝し、 ついで最塩酸で出ってに調節し、そして減圧で蒸 発する。固体残渣を水る口料で処理し、そして酢 **東エナル2日料で抽出し、駄容量は予め2つの部** 分に分割する。水性層は、溶解している少量の酢 酸エテルを減圧下に除去した後、水酸化カリウム の25分存款で出ー11に調節し、ついでテトラ ヒドロフランで抽出する。抽出放を無水炭酸カリ カムで乾燥し、ついで減圧下に蒸発し、テトラヒ ドロフラン/エチルエーテルの1/1迄合物 30以に潜かし、その後塩化水果ガスで飽和し、 そして減退する。固体は、無水エチルエーテルで 沈滋し、波圧下に乾燥し、そしてエタノール/ア セトニトリルの迄合物から結晶化した扱、2,6 ーピス(ビドロキシエトキシ)ペンジルアミン塩 酸塩を928の収率で与える:融点は166~ 1 6 8 ℃である。 I.R. (KBr) 3 3 2 5 cm⁻¹ (OH), $2605cm^{-1}$ (NH₃+), $1262cm^{-1}$ (芳香族 0 − 0)、 7 7 9 ca⁻¹ (フェニル)。 阻害剤として、そして基質としての化合物の活

BAO: n = 4, $ro_{50}(M) = 2.6 \pm 0.2 \times 10^{-6}$, pr. m. ns:

DAO : $IO_{80}(M) > 1 \times 10^{-8}$. *:

IAO : $IO_{80}(M) > 1 \times 10^{-5}$;

MAO : $IG_{50}(M) > 1 \times 10^{-5}$, ne.

本発明は、その好ましい意様のいくつかを説明 することにより、説明のため、そして限定目的で はなくて開示されたが、変形および変化が、この 技術分野において熟練している者により、優先様 が請求されている本発明の精神および範囲から逸 脱することなしに、それに導入できることは理解 されなければならない。

代理人 战 村 皓

第1頁の続き

	<pre>⑤Int.Cl.*</pre>				識別記号	广内整理番号
	A	61	Κ	31/19 31/195 31/24 31/275	ABE ACS ABU ABG	7330-4C 7330-4C 7330-4C 7330-4C
<i>II</i>	CC	07 07	CC	87/28 91/30 93/14 101/42 103/28 121/78 143/58		6785—4H

フランカ ブフオニ

⑫発 明 者 フランチェスコ ルケ イタリア国レンデ コセンザ,ピア スカグリオニ ナン

シニ パー 9

イタリア国フイレンツェ, ピア エス. ドメニコ ナンバ

- 28エイ

砂発 明 者 パルパラ ベルトシ

イタリア国ピストイア, ビア エス。マリア マジョーレ ナンバー 13エイ