MS&E 125: Intro to Applied Statistics

The Bootstrap

Professor Udell

Management Science and Engineering
Stanford

March 23, 2023

Announcements

How to construct confidence interval?

- ► (last class) normal approximation with analytic formula for standard error
- use a normal approximation with bootstrap estimate for standard error
- use bootstrap quantiles

How to construct confidence interval?

- (last class) normal approximation with analytic formula for standard error
- use a normal approximation with bootstrap estimate for standard error
- use bootstrap quantiles

now suppose we have no model, only data X_1, \ldots, X_n

- can't compute analytic formula for standard error
- can't resample from the distribution

how to estimate uncertainty?

two ways to compute bootstrap confidence intervals: 1. percentiles of bootstrapped distribution 2. normal approximation

Motivating question

a **100 year flood** is a flood that has a 1% chance of occurring each year.

how can we estimate a "100 year flood" level using only data from one year?

Empirical distribution

given the data X_1, \ldots, X_n , we can estimate the (CDF of the) distribution of X by the (CDF of the) **empirical distribution**

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{X_i \le x\}},$$

the fraction of the data that is less than or equal to x.

Plug-in estimator

a **plug-in estimator** estimates a statistic θ (any function of the data) by plugging in the empirical distribution:

$$\hat{\theta}_n = \theta(\hat{F}_n).$$

examples:

- ightharpoonup mean: $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- standard deviation: $\hat{\theta}_n = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i \hat{\theta}_n)^2}$

Plug-in estimator

a **plug-in estimator** estimates a statistic θ (any function of the data) by plugging in the empirical distribution:

$$\hat{\theta}_n = \theta(\hat{F}_n).$$

examples:

ightharpoonup mean: $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$

▶ standard deviation: $\hat{\theta}_n = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \hat{\theta}_n)^2}$

how to estimate error or produce confidence intervals?

Outline

Bootstrap

Bootstrap

idea: we can't sample from the **model**. but we can sample from the **data**.

a **bootstrap sample** B_n is a sample of size n drawn with **replacement** from the data X_1, \ldots, X_n

$$\mathcal{B}_n = \{X_{i_1}, \ldots, X_{i_n}\},\,$$

where i_1, \ldots, i_n are chosen uniformly at random from $\{1, \ldots, n\}$.

bootstrap resamples the data

Bootstrap

idea: we can't sample from the **model**. but we can sample from the **data**.

a **bootstrap sample** B_n is a sample of size n drawn with **replacement** from the data X_1, \ldots, X_n

$$\mathcal{B}_n = \{X_{i_1}, \ldots, X_{i_n}\},\,$$

where i_1, \ldots, i_n are chosen uniformly at random from $\{1, \ldots, n\}$.

bootstrap resamples the data

Q: How does the bootstrap sample differ from the original data?

Bootstrap

idea: we can't sample from the **model**. but we can sample from the **data**.

a **bootstrap sample** B_n is a sample of size n drawn with **replacement** from the data X_1, \ldots, X_n

$$\mathcal{B}_n = \{X_{i_1}, \ldots, X_{i_n}\},\,$$

where i_1, \ldots, i_n are chosen uniformly at random from $\{1, \ldots, n\}$.

bootstrap resamples the data

Q: How does the bootstrap sample differ from the original data?

A: Some data points are repeated, others are omitted

for $k = 1, \dots$

- ▶ sample new $X_i^k \sim P$, i = 1, ..., n, iid to form dataset \mathcal{D}_k
- ightharpoonup estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

for $k = 1, \dots$

- ▶ sample new $X_i^k \sim P$, i = 1, ..., n, iid to form dataset \mathcal{D}_k
- ightharpoonup estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

A: Look at histogram of $\{\theta_k\}_k$

for $k = 1, \dots$

- ▶ sample new $X_i^k \sim P$, i = 1, ..., n, iid to form dataset \mathcal{D}_k
- ightharpoonup estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

A: Look at histogram of $\{\theta_k\}_k$

Q: Can we compute a **confidence interval** for the statistic θ ?

for $k = 1, \dots$

- ▶ sample new $X_i^k \sim P$, i = 1, ..., n, iid to form dataset \mathcal{D}_k
- ightharpoonup estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

A: Look at histogram of $\{\theta_k\}_k$

Q: Can we compute a **confidence interval** for the statistic θ ?

A: Look at 95% confidence bound for $\{\theta_k\}_k$

given dataset \mathcal{D} , for $k = 1, \dots$

- ▶ sample $X_i^k \sim P$, i = 1, ..., n with replacement from \mathcal{D} to form dataset \mathcal{D}_k
- ightharpoonup estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

given dataset \mathcal{D} , for $k = 1, \dots$

- ▶ sample $X_i^k \sim P$, i = 1, ..., n with replacement from \mathcal{D} to form dataset \mathcal{D}_k
- ightharpoonup estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

A: Look at histogram of $\{\theta_k\}_k$

given dataset \mathcal{D} , for $k = 1, \dots$

- ▶ sample $X_i^k \sim P$, i = 1, ..., n with replacement from \mathcal{D} to form dataset \mathcal{D}_k
- estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

A: Look at histogram of $\{\theta_k\}_k$

Q: Can we compute a **confidence interval** for the statistic θ ?

given dataset \mathcal{D} , for $k = 1, \dots$

- ▶ sample $X_i^k \sim P$, i = 1, ..., n with replacement from \mathcal{D} to form dataset \mathcal{D}_k
- estimate $\hat{\theta}_k = \theta(\mathcal{D}_k)$

Q: How sensitive is the prediction to the data set \mathcal{D} ?

A: Look at histogram of $\{\theta_k\}_k$

Q: Can we compute a **confidence interval** for the statistic θ ?

A: Look at 95% confidence bound for $\{\theta_k\}_k$

Bootstrap estimator for the variance

pick a function $h: \mathcal{D} \to \mathbf{R}$. we want to estimate how much h varies when applied to finite data sets from the same distribution.

- resample $\mathcal{D}_1, \ldots, \mathcal{D}_K$ from \mathcal{D}
- ightharpoonup compute $h(\mathcal{D}_1),\ldots,h(\mathcal{D}_K)$
- estimate the mean $\hat{\mu}_h = \frac{1}{K} \sum_{k=1}^K h(\mathcal{D}_k)$
- estimate the variance

$$\hat{\sigma}_h = \sqrt{\frac{1}{K} \sum_{k=1}^K (h(\mathcal{D}_k) - \hat{\mu}_h)^2}$$

Demo: The bootstrap

https://colab.research.google.com/github/ stanford-mse-125/demos/blob/main/bootstrap.ipynb

Bootstrap confidence intervals

two ways to compute bootstrap confidence intervals:

- normal approximation:
 - use the bootstrap to estimate the variance of the statistic
- percentiles of bootstrapped distribution

Why does bootstrap work?

sample X_i^k with replacement from \mathcal{D}

$$\mathbb{P}(X_1^1 = x)$$

$$= \sum_{i=1}^n \mathbb{P}(\text{picked } X_i \text{ from } \mathcal{D} \text{ and was equal to } x)$$

$$= \sum_{i=1}^n \mathbb{P}(\text{picked } X_i \text{ from } \mathcal{D}) \mathbb{P}(X_i = x)$$

$$= \sum_{i=1}^n \frac{1}{n} \mathbb{P}(x)$$

$$= n \frac{1}{n} \mathbb{P}(x)$$

$$= \mathbb{P}(x)$$

Why does bootstrap work?

sample X_i^k with replacement from \mathcal{D}

$$\mathbb{P}\left(X_{1}^{1} = x\right)$$

$$= \sum_{i=1}^{n} \mathbb{P}(\text{picked } X_{i} \text{ from } \mathcal{D} \text{ and was equal to } x)$$

$$= \sum_{i=1}^{n} \mathbb{P}(\text{picked } X_{i} \text{ from } \mathcal{D}) \mathbb{P}(X_{i} = x)$$

$$= \sum_{i=1}^{n} \frac{1}{n} \mathbb{P}(x)$$

$$= n \frac{1}{n} \mathbb{P}(x)$$

$$= \mathbb{P}(x)$$

so X_i^k has the same distribution as X_i (before conditioning on the data)

Why does bootstrap work?

 \mathcal{D}_k each have the same distribution as \mathcal{D} . So for any function $h: \mathcal{D} \to \mathbf{R}$,

$$\mathbb{E}_{\mathcal{D}} \frac{1}{K} \sum_{k=1}^{K} h(\mathcal{D}_k) = \mathbb{E}_{\mathcal{D}} h(\mathcal{D})$$

References

► The Bootstrap: http://www.stat.cmu.edu/~larry/ =stat705/Lecture13.pdf. Wasserman, CMU Stat 705.