DELHI TECHNOLOGICAL UNIVERSITY

PROBABILITY AND STATISTICS (MC-205)

PRACTICAL FILE

SUBMITTED TO:

PROF. JAMKHONGAM TOUTHANG

SUBMITTED BY:

NITYA MITTAL

(2K19/MC/089)

<u>INDEX</u>

S. No.	Name of Experiment	Page	Date	Signatur e
1	IMPORTING DATA INTO SPSS FROM TEXT AND MICROSOFT EXCEL FILES			
2	(a) MERGING OF FILES (b) SPLITTING OF FILES			
3	PICTORIAL REPRESENTATION OF DATA			
4	DISTRIBUTION OF CURVES			
5	DESCRIPTIVE STATISTICS FOR DATA IN SPSS			
6	CORRELATION AND REGRESSION			
7	HYPOTHESIS TESTING			
8	t-TEST			
9	CHI-SQUARE TEST			
10	ANOVA			

EXPERIMENT 8

Z-Test of one and two proportions

SOURCE CODE:

1. Z-Test of One Proportion

```
res \leftarrow prop.test(x = 95, n = 160, p = 0.5,correct = FALSE) res
```

2. Z-Test of Two Proportions

```
res <- prop.test(x = c(490, 400), n = c(500, 500)) res
```

OUTPUT:

1. Z-Test of One Proportion

2. Z-Test of Two Proportions

```
> res <- prop.test(x = c(490, 400), n = c(500, 500))
> res

2-sample test for equality of proportions with continuity correction

data: c(490, 400) out of c(500, 500)
X-squared = 80.909, df = 1, p-value < 2.2e-16
alternative hypothesis: two.sided
95 percent confidence interval:
    0.1408536 0.2191464
sample estimates:
prop 1 prop 2
    0.98    0.80</pre>
```

CONCLUSION:

A **Z-test** is any statistical test for which the distribution of the test statistic under the null hypothesis can be approximated by a normal distribution. Z-test tests the mean of a distribution. For each significance level in the confidence interval, the Z-test has a single critical value which makes it more convenient than the Student's *t*-test whose critical values are defined by the sample size (through the corresponding degrees of freedom).

Because of the **central limit theorem**, many test statistics are approximately normally distributed for large samples. Therefore, many statistical tests can be conveniently performed as approximate *Z*-tests if the sample size is large or the population variance is known.