Pruebas para validar normalidad	
Un contraste muy frecuente en la práctica es el signiente:	
Dada XII. Xu Ima Ma	
Ho: Xi ~ N(M), F3) Conocer el valor	
$H_1: Xi \not\rightarrow \mathcal{N}(\mu, \sigma^2)$ de (μ, σ^2)	
Existen varios formas de hacer el contraste:	
1) Recursos gráficos	
2) Recursos cuantitativos	
-> 1.1) Histogramas (no non garantia de normalidad; (absoluta no se compodenos absoluta no se consequentes)	
1.2) Boxploto alrolutar normalidad descartar normalidad	
1.3) Gráficas cuantil - cuantil (QQ - plot) muestra prádicamente	
normal 9/ x/ 9	
observados "perfecto" 10% -128 -275	
$\frac{100}{20\%} = 0.84 = 1.97$	
mo-normal 30% -0.52 -0.58	
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	
teóricos $\rightarrow 50\%$ 0.73 $\rightarrow 60\%$ 0.25 ;	
: 0.5Z	
-> 2.1) Prueta de Jarque-Bera	
How V: $A \cup N(u=2)$ Estadístico: $T(X) = JB = \frac{u}{6} \left[S^2 + \frac{1}{4} (k-3)^2 \right] - \frac{d}{2} $	
Ho: $X: \mathcal{A} \mathcal{N}(\mu, \sigma^2)$ Estadístico: $T(X) = JB = G(S + 4(K-3))$	
$H_1: X_1 \sim \mathcal{N}(\mu_1 \sigma^2)$ doud! N es el tamaño de muestra (o bien JB χ^2_2	
5 es el callinate de asimotore	
En et gemplo en K	
Nor-p de la normal = 5.5% 0% = x</td <td></td>	
Rechaeannos tro $S = \frac{\hat{\mu}_3}{100}$ $S = \frac{\hat{\mu}_3}{100}$	
Jalor-p de la ji-cuadrada = 100% > 10% = x	
No rechayamos Ho Xi X N (MJZ)	

El problema de predicción

Consiste en explicar el comportamiento de una v.a. Y en términos de otra u otras v.a. X,..., Xn

V=(g(X))+(ε) donde ε es un termino de "error aleatorio"

La regresión lineal simple es cuando $g(X) = \beta_0 + \beta_1 X$

:. Y = B. X + E

 $ENW(0,\sigma^2)$

Deseamos estimar los parámetros B. y B, para poder a m vez estimar Y:

La regresión lineal múltiple es cuando $g(X_1,...,X_p) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p$