Sistemas Digitais

1º Ano de Engenharia Informática

Multiplexers e Demultiplexers	
Counc	
Grupo	
Diogo António Costa Medeiros	n.° <u>70633</u>
	n.°
	n.°

Turma __5___

Objectivos

- Verificar o funcionamento de um *multiplexer* 2ⁿ-para-1
- Verificar o funcionamento de um *demultiplexer* 1–para–2ⁿ
- Compreender a dualidade *demultiplexer*/descodificador.
- Compreender as possibilidades de ligação em cascata de circuitos multiplexadores e desmultiplexadores.
- Utilizar o multiplexer como gerador de funções.

Referências

- TAUB, Herbert, "Circuitos Digitais e Microprocessadores", McGraw-Hill
- Texas Instruments online [http://www.ti.com/]

Material

- Placa RH21
- 74LS139A 2-TO-4 LINE DECODERS/DEMULTIPLEXERS
- 74LS151 1-OF-8 DATA SELECTORS/MULTIPLEXERS
- 74LS153 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS
- 2 × 74LS157 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS
- 74LS04 NOT

1. *Multiplexer* 2ⁿ-para-1

Um *multiplexer* (abreviadamente, MUX), ou multiplexador, é um circuito MSI com múltiplas entradas de dados (geralmente uma potência de base 2) e uma única saída. Para além das 2^n entradas de dados, todos os *multiplexers* têm n entradas de selecção: o número formado por estas n linhas indica qual das entradas de dados verá o seu valor copiado para a saída. Por essa razão os *multiplexers* são também chamados de selectores de dados, em que uma de entre 2^n linhas de entrada é seleccionada (copiada) para a saída.

Poderão existir entradas adicionais (p. ex., um *enable*), sendo também possível a existência de uma saída extra, que apresenta o complemento do valor lógico da entrada seleccionada.

A figura 1 (ao lado) ilustra uma analogia eléctrica comummente associada a um *multiplexer*: um interruptor rotativo de múltiplas posições.

Figura 1. Analogia eléctrica de um *multiplexer* 4:1.

A figura 2 apresenta o caso particular do 74LS153, um *multiplexer* 4–para–1 dual (por comodidade, apenas um dos dois *multiplexers* contidos no chip é apresentado). Para a constituição interna deste chip, consulte as folhas de dados.

Figura 2. (a) MUX 4:1 (excerto do símbolo IEEE). (b) Tabela de verdade.

1.1 Aplique a um dos *multiplexers* do **74LS153** os valores / sinais indicados na tabela apresentada a seguir e indique os valores / sinais lidos na saída.

В	A	C0	C1	<i>C</i> 2	<i>C3</i>	\overline{G}	Y
0	0					0	Erro
U	Ü					1	0
	1	<u> </u>	ıda	,0, (i	·1'	0	O mesmo sinal que C1
U	1	berto	nadra Hz	gico tante	gico tante	1	0
1	0	(em aberto)	onda quadrada 100 Hz	valor lógico ' (constante)	valor lógico '1 (constante)	0	0
1	U	٣	ono	val (val	1	0
1	1					0	1
1	1					1	0

É extremamente fácil implementar *multiplexers* maiores (com mais linhas de entrada de dados e, consequentemente, mais linhas de selecção) usando como bloco básico *multiplexers* menores ligados em cascata. A figura 3 (página seguinte) mostra um exemplo: um *multiplexer* 4:1 construído à custa de três *multiplexers* 2:1.

1.2 Use os **74LS157** para implementar o circuito da figura 3 (página seguinte), confirmando que o circuito resultante se comporta como o do ponto anterior (preencha a tabela respectiva).

Figura 3. Um MUX 4:1 constuído usando como bloco básico o MUX 2:1.

S1	SO	X0	X1	<i>X</i> 2	<i>X3</i>	<i>Y0</i>	<i>Y1</i>	Y
0	0	(da	,0,	,1,	Erro	0	Erro
0	1	aberto)	quadrada)0 Hz	lógico	lógico	X1	1	X1
1	0	(em al		or 16	or 1óg	Erro	0	0
1	1	9)	onda 10	valor	valor	X1	1	1

2. Demultiplexer 1-para-2ⁿ

Um *demultiplexer* (abreviadamente, DEMUX ou DMUX), ou desmultiplexador, é o circuito que efectua a operação inversa de um *multiplexer*. Tem, por isso, uma única entrada de dados, que são "encaminhados" para uma das 2ⁿ saídas de dados disponíveis, de acordo com o número formado pelas *n* linhas de selecção da saída. Tal como com o *multiplexer*, poderão existir pinos adicionais (por exemplo, um *enable*).

A figura 4 (ao lado) ilustra uma analogia eléctrica comummente associada a um *demultiplexer*: um interruptor rotativo de múltiplas posições, tal como anteriormente, mas desta vez com várias entradas e uma única saída.

Figura 4. Analogia eléctrica de um *demultiplexer* 1:4.

O 74LS139A (um descodificador 2:4, usado no trabalho anterior) pode ser usado com *demultiplexer* de quatro saídas (DMUX 1:4). Isto é, a linha de dados pode ser ligada a \overline{G} e encaminhada para uma das saídas, de acordo com o código de endereço formado por A e B.

2.1 Use o gerador de sinais para aplicar uma **onda quadrada entre 0 e 5V** no pino \overline{G} . Coloque à entrada a combinação A=1 e B=0 e registe os resultados desenhando as formas de onda obtidas nas saídas:

Esta correspondência descodificador—demultiplexer existe desde que o descodificador possua pelo menos uma entrada de enable (que servirá, em funcionamento como demultiplexer, de entrada de dados), o que, por razões óbvias, acontece sempre. A tabela seguinte resume as "funções" dos diferentes pinos do '139A, conforme seja utilizado como descodificador ou demultiplexer; estas relações podem ser generalizadas a qualquer descodificador/demultiplexer.

Funções de cada pino do '139A, conforme seja utilizado como descodificador ou como demultiplexer

		Descodificador 2:4	Demultiplexer 1:4
SO	Y0, Y1, Y2, Y3	saídas descodificadas	saídas de dados
lin0	A, B	código de entrada	selector da saída
P	\overline{G}	Enable	entrada de dados

(Para um exemplo de *demultiplexers* ligados em cascata, consultar no trabalho anterior a montagem, equivalente, de descodificadores em cascata.)

3. O multiplexer como gerador de funções

Com nada mais do que um $multiplexer 2^n$ -para-1 pode implementar-se qualquer função binária de n variáveis de entrada. Por essa razão, diz-se frequentemente que um multiplexer é um gerador de funções.

A figura 5 ilustra um exemplo dessa utilização: uma função de 3 variáveis de entrada é implementada usando um **74LS151** (MUX 8:1).

Figura 5. MUX como gerador de funções.

3.1 Implemente o circuito da figura 5 e preencha seguinte tabela com as leituras efectuadas. (As duas colunas mais à direita correspondem aos pontos 3.4 e 3.5.)

Е	ntrada	as	Saída Y		Y = f(X0)
<i>X2</i>	<i>X1</i>	<i>X0</i>	3.1	3.4	3.5
0	0	0	0	0	0
0	0	1	0	0	U
0	1	0	1	1	\X0
0	1	1	0	0	\AU
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	X0
1	1	1	1	1	AU

3.2 Escreva a função obtida em termos de soma de mintermos e de produto de maxtermos:

$$Y = \Sigma \text{ m} (\underline{2, 4, 5, 7}) = \Pi M (\underline{0, 1, 3, 6})$$

3.3 Compare as respostas do ponto anterior com o circuito lógico da figura 5 e conclua. Quando expressa na soma de mintermos, estes correspondem às entradas ligadas a 1. Já no produto de maxtermos, estes correspondem às entradas ligadas a 0. Dado que o 74LS151 é um multiplexer 8:1, consoante a entrada selecionada por X2/X1/X0, o valor lógico da mesma é apresentado à saída.

Uma implementação alternativa permite ainda gerar qualquer função de n variáveis usando não mais do que um $multiplexer\ 2^{n-1}$ e, eventualmente, uma porta inversora.

3.4 Implemente o circuito da figura 6 e verifique que a função gerada é igual à do ponto 3.1. (Registe as leituras efectuadas na tabela do ponto 3.1.)

Figura 6. MUX como gerador de funções (configuração alternativa).

3.5 Compare as colunas da variável de entrada X0 e da variável de saída Y e, para cada par de linhas da tabela do ponto 3.1, estabeleça uma relação Y = f(X0). (Preencha a respectiva coluna da tabela.)

6

3.6 Compare as respostas do ponto anterior com o circuito lógico da figura 6 e conclua. No 3.1, representou-se o circuito associado à função Y com o auxílio de um multiplexer 8:1, dado tratar-se de uma função de 3 variáveis. Ao observar a tabela de verdade obtida, podemos concluir que Y pode ser expressa como uma função de X0 usando apenas um multiplexer 4:1, como evidente na figura 6.

Questionário:

- 1. Apresente o **diagrama de blocos** de um *multiplexer* **16:1** implementado usando como bloco fundamental o *multiplexer* **4:1**.
- 2. Apresente o **diagrama de blocos** de um *multiplexer* **8:1** implementado usando como bloco fundamental o *multiplexer* **2:1**.
- 3. Apresente o circuito lógico que implementa a função $Y = \sum m(0,1,3,4,7,11,14)$, usando um *multiplexer* 8:1.

Questionário

Exercício 1:

Exercício 2:

Exercício 3:

mintermo	Х3	X2	X1	Х0	Υ
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

