Automata toolbox - Homework 2

Winter semester 2023/2024

Exercise 1. How many subsets $X \subseteq \mathbb{A}^3$ satisfy the following condition

$$x \in X \Rightarrow \pi(x) \in X$$
 for every $\pi : \mathbb{A} \to \mathbb{A}$, not necessarily bijective.

Exercise 2. Consider a nondeterministic register automaton, with input alphabet \mathbb{A} , in which the transition function reads not only the current input letter, but the k most recent input letters. In other words, the transition relation is an equivariant subset

$$\delta \subseteq \text{configurations} \times \mathbb{A}^{\leq k} \times \text{configurations}.$$

We put $\mathbb{A}^{\leq k}$ instead of \mathbb{A}^k , since when the automaton is a letter close to the beginning of the input string, i.e. the *i*-th letter for i < k, then there are only i most recent letters. Show that universality is decidable for this model when there is one register, i.e. the space of configurations is

(a finite set)
$$\times$$
 ($\mathbb{A} + \bot$).

Exercise 3. Consider multisets of \mathbb{A}^2 , ordered by

$$X \leq Y$$
 if $\pi(X) \subseteq Y$ for some atom permutation π .

In the above, \subseteq is multiset inclusion. Show that this partially ordered set has an infinite antichain.