6. Advanced plotting

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

We have seen already two options to plot data: we can use the "raw" Matplotlib which in principle allows one to create any possible plot, however with lots of code, and we saw the simpler internal Pandas solution. While the latter solution is very practical to quickly look through data, it is rather cumbersome to realise more complex plots.

Here we look at another type of plotting resting on the concepts of the grammar of graphics. This approach allows to create complex plots where data can be simply split in a plot into color, shapes etc. without having to do a grouping operation in beforehand. We will mainly look at Seaborn, and finish with an example with Plotnine, the port to Python of ggplot.

Importing data

We come back here to the dataset of swiss towns. To make the dataset more interestig we add to it some categorical data. First we attempt to add the main language for each town. It is a good example of the type of data wranglig one ofen has to do by combining information from different sources.

```
In [4]: #merge tables using the town name. This adds the canton abbreviation to
    the main table
    towns_canton = pd.merge(towns, cantons, left_on='Commune', right_on='ORT
    NAME',how = 'inner')
```

In [7]: towns_language['town_type'] = towns_language['Surface agricole en %'].ap
 ply(lambda x: 'Land' if x<50 else 'City')</pre>

Out[8]:									
		Commune	Party	Party score	Code commune	Habitants	Variation en %	Densité de la population par km²	Etrangers en %
	0	Aeugst am Albis	UDC	30.929249	1	1977	8.388158	249.936789	13.100658
	1	Aeugst am Albis	PS	18.645940	1	1977	8.388158	249.936789	13.100658
	2	Aeugst am Albis	PDC	2.076428	1	1977	8.388158	249.936789	13.100658
	3	Affoltern am Albis	UDC	33.785785	2	11900	7.294203	1123.701605	27.848740
	4	Affoltern am Albis	PS	19.080314	2	11900	7.294203	1123.701605	27.848740
	5	Affoltern am Albis	PDC	4.585387	2	11900	7.294203	1123.701605	27.848740
	6	Bonstetten	UDC	29.100156	3	5435	5.349874	731.493943	14.149034
	7	Bonstetten	PS	20.403265	3	5435	5.349874	731.493943	14.149034
	8	Bonstetten	PDC	3.378541	3	5435	5.349874	731.493943	14.149034
	9	Hausen am Albis	UDC	34.937369	4	3571	6.279762	262.573529	14.533744
	10	Hausen am Albis	PS	19.393305	4	3571	6.279762	262.573529	14.533744
	11	Hausen am Albis	PDC	2.881915	4	3571	6.279762	262.573529	14.533744
	12	Hedingen	UDC	30.114599	5	3687	8.123167	564.624809	14.971522
	13	Hedingen	PS	22.478008	5	3687	8.123167	564.624809	14.971522
	14	Hedingen	PDC	3.918166	5	3687	8.123167	564.624809	14.971522
	15	Kappel am Albis	UDC	48.615099	6	1110	20.915033	140.151515	18.018018
	16	Kappel am Albis	PS	10.285425	6	1110	20.915033	140.151515	18.018018
	17	Kappel am Albis	PDC	2.744469	6	1110	20.915033	140.151515	18.018018
	18	Knonau	UDC	32.876136	7	2168	20.444444	335.085008	17.158672
	19	Knonau	PS	18.436553	7	2168	20.444444	335.085008	17.158672
	20	Knonau	PDC	3.126052	7	2168	20.444444	335.085008	17.158672
	21	Maschwanden	UDC	43.383446	8	626	1.623377	133.475480	12.140575
	22	Maschwanden	PS	22.732529	8	626	1.623377	133.475480	12.140575
	23	Maschwanden	PDC	3.502396	8	626	1.623377	133.475480	12.140575
	24	Mettmenstetten	UDC	35.671015	9	4861	14.565166	373.062164	14.873483
	25	Mettmenstetten	PS	18.800282	9	4861	14.565166	373.062164	14.873483
	26	Mettmenstetten	PDC	3.649155	9	4861	14.565166	373.062164	14.873483
	27	Obfelden	UDC	36.174029	10	5131	9.496372	680.503979	20.015591

Basic plotting

We finally have a table with mostly numerical information but also two categorical data: language and town type (land or city). With Seaborn we can now easily make all sorts of plots. For example what are the average scores of the different parties:

```
In [9]: sns.barplot(data = towns_language, y='Party score', x = 'Party');
```

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW arning: Using a non-tuple sequence for multidimensional indexing is depre cated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Do land towns vote more for the right-wing party?

```
In [10]: g = sns.scatterplot(data = towns_language, y='UDC', x = 'Surface agricol
e en %', s = 10, alpha = 0.5);
g.set_xlim([0,100]);
```


Using categories as "aesthetics"

The greate advantage of using these packages is that they allow to include categories as "aesthetics" of the plot. For example we looked before at average party scores. But are they different between language regions? We can just specify that the hue (color) should be mapped to the town language:

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW arning: Using a non-tuple sequence for multidimensional indexing is depre cated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Similarly with scatter plots. Is the relation between land and voting on the right language dependent?

Statistics

We see difference in the last plot, but it is still to clearly see the relation. Luckiliy these packages allow us to either create summary statistics or to fit the data:

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW arning: Using a non-tuple sequence for multidimensional indexing is depre cated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Now we can also do the same exercise for all parties. Does the relation hold?

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureW arning: Using a non-tuple sequence for multidimensional indexing is depre cated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Adding eve more information

We can recover from some other place (Poste) the coordinates of each town. Again by merging we can add that information to our main table:

So now we can in addition look at the geography of these parameters. For example, who votes for the right-wing party?

```
In [17]:
              fix, ax = plt.subplots(figsize = (12,8))
              sns.scatterplot(data = towns_language, x= 'long', y = 'lat', hue='UDC',
style = 'Language', palette='Reds');
                                                                                                                    UDC
0.0
30.0
                 47.75
                                                                                                                    60.0
                 47.50
                                                                                                                    Language
                                                                                                                    German
                                                                                                                    French
Italian
                 47.25
                 47.00
               변
46.75
                 46.50
                 46.25
                 46.00
                 45.75
                                                                                                                10
```

In [18]: # MZ: if used to ggplot -> use 'plotnine' package
same grammar as ggplot