Slide 1: Project Overview

Detailed Notes:

- **Problem Statement:** The ball-and-beam system is a fundamental example of an unstable system in control theory:
 - Small disturbances can cause significant deviations in the ball's position.
 - A feedback controller is necessary to stabilize the system and return the ball to its desired position.

• Objective:

- Design a feedback controller to adjust the beam angle and stabilize the ball at the center.
- Use a 3D simulation model (Simscape Multibody) to analyze the system's real-world behavior.

• Technical Approach:

- Use **Newtonian mechanics** to derive force-based equations of motion.
- Use **Lagrangian mechanics** to represent energy-based system dynamics.
- Linearize the equations around the equilibrium point $(x = 0, \theta = 0)$ for control design.
- Implement a Linear Quadratic Regulator (LQR) to optimize control performance.

Slide 2: Challenges and Control Goals

Detailed Notes:

• System Challenges:

- The system is inherently unstable. Small angular changes (θ) amplify into large displacements (x).
- Dynamics of the ball and beam are coupled, meaning the motion of one affects the other.
- The nonlinear nature of the dynamics complicates control design.

• Control Goals:

- Stabilize the ball at the center position (x = 0).
- Minimize transient response metrics:
 - * Overshoot: Limit the extent to which the ball overshoots its target position.
 - * **Settling Time:** Reduce the time required for the ball to reach and remain near the target.
 - * Steady-State Error: Ensure the ball remains as close to the center as possible over time.
- The diagram shows how forces interact within the system, highlighting the instability and complexity of control.

Slide 3: Degrees of Freedom and Modeling Approach

Detailed Notes:

- Degrees of Freedom:
 - Translational motion (x): Describes the ball's position along the beam axis.
 - Rotational motion (θ): Refers to the beam's angle relative to the horizontal.
- Modeling Approach:
 - Newtonian Mechanics:
 - * F = ma: Governs the translational motion of the ball, where F is the net force, m is the ball's mass, and a is the acceleration.
 - * $\tau = I\alpha$: Describes the beam's rotational motion, where τ is the torque, I is the moment of inertia, and α is the angular acceleration.
 - Lagrangian Mechanics:
 - * The system dynamics are formulated based on energy:
 - · **Kinetic Energy** (T): Represents energy due to motion of the ball and the beam.
 - · Potential Energy (V): Accounts for gravitational effects acting on the ball.
 - * The Lagrangian is defined as:

$$\mathcal{L} = T - V$$

* Equations of motion are derived using:

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) - \frac{\partial \mathcal{L}}{\partial q} = 0$$

where q represents generalized coordinates (e.g., x and θ).

Slide 4: System Parameters and State-Space Representation

Detailed Notes:

- System Parameters:
 - Beam:
 - * Length $(L = 1.0 \,\mathrm{m})$.
 - * Width $(w = 0.05 \,\mathrm{m})$.
 - * Height $(h = 0.1 \,\mathrm{m})$.
 - Ball:
 - * Mass $(m = 0.5 \,\mathrm{kg})$.
 - * Radius $(r = 0.05 \,\mathrm{m})$.
 - * Moment of inertia $(I = 0.02 \,\mathrm{kg} \cdot \mathrm{m}^2)$.
 - **Gravity:** $g = 9.81 \,\mathrm{m/s^2}$, which influences the potential energy and torque acting on the system.

• State-Space Representation:

- The linearized equations of motion are expressed in state-space form:

$$\dot{x} = Ax + Bu, \quad y = Cx + Du$$

- Matrices A and B capture the system's dynamics:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{g}{L} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{mgr}{I} & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{I} \end{bmatrix}.$$

 Linearization is necessary to simplify control design while ensuring accuracy for small deviations.

Slide 5: Controller Design

Detailed Notes:

• **Objective:** Design a controller to balance system performance and control effort by minimizing the cost function:

$$J = \int_0^\infty \left(x^T Q x + u^T R u \right) dt$$

- The first term (x^TQx) penalizes state deviations (e.g., ball position and beam angle).
- The second term $(u^T R u)$ penalizes excessive control input to ensure energy efficiency and practicality.

• Design Parameters:

- -Q = diag([200, 10, 10, 10]):
 - * Emphasizes the importance of precise ball position (x).
 - * Penalizes deviations in beam angle (θ) .
- -R=1: Ensures smooth and efficient control inputs.

• MATLAB Implementation:

- Feedback gain (K) is computed using MATLAB's LQR function:

$$K = \mathsf{lqr}(A, B, Q, R)$$

- The control law is defined as:

$$u = -Kx$$

where u is the control input, and x represents the system states.

 This approach ensures optimal trade-offs between control precision and energy usage.

Slide 6: MATLAB Integration

Detailed Notes:

MATLAB was used for the numerical computation, design of the controller, and performance evaluation.

• Purpose:

- Define system parameters, including the ball and beam properties.
- Derive and implement the state-space representation of the system.
- Design the controller using the lqr function to calculate feedback gains (K).

• MATLAB Features:

- Performance metrics:
 - * IAE (Integral Absolute Error): Measures the cumulative error magnitude to ensure precise control.
 - * **ISE** (Integral Square Error): Emphasizes larger errors to penalize instability.
 - * ITAE (Integral Time-weighted Absolute Error): Focuses on reducing sustained errors, improving settling time.
- Assess the transient response:
 - * Overshoot quantifies how much the ball exceeds its desired position.
 - * Settling time measures how quickly the system stabilizes.

• Outputs:

- Plots for:
 - * Ball position (x) and beam angle (θ) .
 - * Control input (u) over time to evaluate controller performance.
- Metrics provide a quantitative way to compare the performance of different controllers.

6

Slide 7: Simulation Results

Detailed Notes:

• Objective: Evaluate the performance of the LQR controller using simulations.

• State Trajectories:

- The ball's position stabilizes within 5 seconds after minor disturbances.
- The beam angle (θ) adjusts dynamically to counteract disturbances and stabilize the ball.
- Both plots demonstrate the controller's ability to achieve stability with minimal overshoot.

• Control Input:

- Smooth control input (u) indicates the controller does not demand excessive effort, ensuring practical implementation.
- Oscillation-free behavior validates the LQR controller's effectiveness over alternatives like pole placement.

• Performance Metrics:

- IAE (0.06657): Indicates minimal cumulative error, ensuring precise stabilization.
- ISE (0.00494): Reflects small deviations and penalizes larger errors effectively.
- ITAE (0.02813): Demonstrates efficient settling and minimal sustained errors.
- Visual representations, including trajectories and control input, illustrate the system's dynamic response under LQR control.

Slide 8: Simulink System Diagram

Detailed Notes:

• **Purpose:** Simulate the real-world behavior of the ball-and-beam system using Simulink and the Simscape Multibody toolbox.

• System Components:

- Global Configuration: Includes world frame and solver configuration for numerical simulations.
- Ball and Beam Dynamics:
 - * Models the interaction between the ball's motion and the beam's rotation.

- * Captures nonlinear dynamics realistically.
- **Integral Compensation:** Corrects for steady-state errors by integrating position errors over time.
- LQR Controller: Provides feedback gains (K) for stabilizing the system.
- States Subsystem: Tracks key variables, including $x, \dot{x}, \theta, \dot{\theta}$.

• Benefits:

- Realistic visualization of the ball and beam motion.
- Validates MATLAB-based controller design in a 3D environment.
- Outputs: Includes dynamic animations and plots that align with experimental results, enabling intuitive analysis.

8

Slide 9: Challenges and Future Work

Detailed Notes:

• Challenges:

- Parameter sensitivity: Variations in ball mass or beam length can destabilize the system.
- Linearization limitations: The model's accuracy decreases for large beam angles (θ) .
- Pole placement was ineffective:
 - * Led to oscillations and high control effort.
 - * LQR provided a more balanced approach.

• Future Work:

- Incorporate external disturbances (e.g., friction) for robust testing.

- Use Kalman filtering for noise reduction in state estimation.

- Extend the control system for dynamic reference tracking.

- Investigate nonlinear control techniques to improve large-angle stability.