

Comp Chem in Drug Design What Works and What Doesn't

Paul Finn

CCK-9 - 9th November, 2017

Academic

Biochemistry, Oxford; PhD, Manchester

Industry

- Beecham (SmithKline Beecham, GSK),
- Pfizer
- Prolifix (TopoTarget)
- InhibOx (Oxford Drug Design)

Example I – Beecham - Antibiotics

Confidential

- Piperacillin a broad-spectrum β-lactam antibiotic, first marketed in early 1980s
- Beecham programme investigated piperacillin analogues
- Modelling consisted mostly of classical QSAR
 - In 1987 there were 238 structures in the PDB!

Example I – QSAR correlations

- The modelling work uncovered a classical biphasic dependence of activity on logP
- There were, however, some outliers in the regression, with much better than expected activity
- All outliers contained a catechol sidechain
- Further investigation established that these compounds were utilizing a siderophore, iron-uptake pathway, improving penetration in Gramnegative bacteria
- Antibacterial activity of catecholic piperacillin analogue. Basker et al., | Antibiotics 42:1328-1330, 1989.
- Iron-regulated outer membrane proteins of Escherichia coli K- I2 and mechanism of action of catechol-substituted cephalosporins. Curtis et al. Antimicrob Agents Chemother, 32:1879-86, 1988,

Example I - Conclusions

- Traditional QSAR methods have fallen out of fashion
- Despite (many) limitations they can be very informative, when applied with moderation
- Outliers are interesting don't discard them
- The same things are discovered repeatedly

- Tillotson. Trojan Horse Antibiotics—A Novel Way to Circumvent Gram- Negative Bacterial Resistance? Infectious Diseases: Research and Treatment 2016:9 45–52 doi:10.4137/IDRT.S31567.
- In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother. doi:10.1128/AAC.01454-17

Confidentia

6

Example 2 – Pfizer - 5α -reductase inhibitors

- 5α -reductase converts testosterone to the more potent androgen DHT
- Two isoforms, 5α -RI and 5α -R2
- Inhibitors are potential treatments for benign prostatic hypertrophy, prostate cancer and male pattern baldness
- Project sought potent, non-steroidal, balanced inhibitor

Example 2 – Conformation Analysis

- Initial weak 5α-R2 lead identified
- Objectives
 - Remove ortho-hydroxy aniline
 - Balanced isoform activity
- Approach
 - Conformational analysis
 - Seek plausible bioactive conformation hypothesis
 - Rigidify scaffold in bioactive conformation

No.	Structure	Rat	Human	Human
		5α-R	5α-R1	5α-R2
-	_	(nM)	(nM)	(nM)
1	COOH	1.7		256
2	CH ₆	24	113	481
3	OCCH CH6	1	40	4
4	H _b C CH _b	9	25	25

Example 2 - Conclusions

- Simple principles of conformational analysis, coupled with experimental data (CSD) can shed light on bioactive conformation
 - Significant potency gains are possible

Outcome

- Balanced inhibitor, long half-life, high oral bioavailability, clean tox profile, 48% reduction in prostate weight in animal model study
- Compound from this series reached Ph-2

Example 3 – Prolifix – HDAC inhibitors

- Enzymes involved in epigenetic modifications of histones were exciting new cancer targets
- Histone deacetylase appeared an attractive target
- Multiple HDAC isoforms, limited knowledge of biological function
- Most HDAC inhibitors known at the time of project initiation were unattractive as leads

Acetylases, methylases, phosphorylases

Deacetylases, demethylases, phosphatases

Reading

Bromodomain, chromodomain, PHD finger, WD40 repeat

Example 3 – Structure-based design

10 Confidential

Rigidify linker for high binding affinity

Head Linker Zn binding group

Structural novelty Maintain strong Zinc binding group, eg. Hydroxamic acid

 Only X-ray data available at the time was a bacterial HDAC homologue –TSA structure

SAR for HDAC activity (HeLa cell extract)

- Zinc-binding group required
- Flexible linkers less potent
 - Short linkers inactive
- Sulphonamide direction important
- Extended configuration required
- Larger head groups well tolerated
- Many other compounds explored, but PXD101 selected for further development

Compound	Structure	HDAC inhibition IC ₅₀ (nM)
PXD101	N. S. O. O. H. OH	27
1	No. S O OH	>1000
2	H.S. O. O. O. O.	>1000
3	Пз. Он	300
4	Me N.S.O.O.	238
5	O S N H	>1000
6	TN.S.O.O.	22

Example 3 - Conclusions

- Structural input was useful at providing qualitative guidance
- Attempts were made to identify other zinc-binding groups, all unsuccessful
- Important to make the compounds you want, not just the ones that are easy – vital in gaining IP protection in this project
- Compound approved by FDA for treatment of peripheral T-cell lymphoma, July 2014

Example 3a – InhibOx - TACE

- Opportunistic collaboration with TopoTarget exploring hydroxamate compounds in another Zn-enzyme
- Leads identified (not active against HDAC)
- Optimization challenge was selectivity over other ADAM/MMP family members
- Achieved through discovery of novel hydroxamate-bearing scaffold with other known TACEselective functionality
- Conclusion build on what you know and have

Enzyme	IC ₅₀ (nM)		
	Apratastat	(-)-IX3496024	
TACE	2	1	
MMP 1	26	>10000	
MMP 2		-3%@5μM	
MMP 3	4	>10000	
MMP 7		31%@5μM	
MMP 8		-13%@5μM	
MMP 9	40	>10000	
MMP 10		9%@5μM	
MMP 12	1	5300	
MMP 13		-10%@5μM	
MMP 14		4%@5μM	
ADAM 9	92	>10000	
ADAM 10	79	1400	

Example 4 – Oxford Drug Design - Antibacterials

Target – aminoacyl-tRNA Synthetases

- Essential enzymes generate aminoacyl-tRNA for ribosomal protein synthesis
- Individual family members, e.g. Leucyl-tRNA (LeuRS) synthetase are conserved across bacteria, but significantly different to human enzymes
- Clinically validated mechanism mupirocin IleRS inhibitor – natural product - topical only – Grampositive spectrum
- Aim: aaRS inhibitors with systemic activity and Gramnegative spectrum

tRNA Synthetase – Rational Design

NH₂ NH₂

Cubist Pharmaceuticals (IleuRS)

Challenges

 NH_2

- Prior art compounds have little, if any, Gram-negative activity
- Natural product and reaction intermediate analogues unattractive as leads

tRNA Synthetases — Surprising SAR

- Enzymes show great conformation shifts on ligand binding
- Quantitative correlations with IC₅₀ and thermodynamic data challenging

NB – Drug Design is Mostly Not About Potency

Conclusions – What Works and What Doesn't

Use the simplest possible model

- E.g. Simple QSAR, combined with interpretable descriptors
- Compare/validate with experimental data
- Don't believe the model, even if it appears to be working well
 - Always make compounds to challenge your assumptions
- Make the compounds you should, even if they are hard (within reason)
- The search for quantitative models usually fails, and they are generally not crucial to project progress
- Have a good memory experience is valuable but remain openminded

Acknowledgements

ODD

Dr. Michael Charlton

Dr. Grace Edmund

Dr. Jerome Wicker

Prof. W. Graham Richards

Dr. Garrett Morris

Dr. Richard Cooper

Dr. Daniel Robinson

tRNA-Synthetases

Prof. John. P. Hays (Erasmus MC)

Dr. Wil Goessens (Erasmus MC)

Dr. Carmine Monteferrante (Erasmus MC)

Prof. Lluis Ribas (Omnia)

Dr. Adélaïde Saint-leger (Omnia)

Prof. Alex O'Neill (Leeds)

Arya Gupta (Leeds)

Dr. Aigars Jirgensons (OSI)

Dr. Kristaps Jaudzems (OSI)

Rihards Aleksis (OSI)

HDAC

Dr. Elizabeth Carstensen

Dr. Peter Buhl

Prof. Nick LaThangue

Dr. Einars Loža (OSI)

5α-reductase

Prof. Julian Blagg

Dr. Colin Greengrass

Dr. Graham Maw

