Introduction to Statistics

Dr. Farman Ali

Assistant Professor

DEPARTMENT OF SOFTWARE

SEJONG UNIVERSITY
Lecture-7

Department of Software Sejong University

Introduction to Statistics

Course Syllabus

- Introduction to the course
- Sampling and data presentation
- ➤ Basic of probability
- **▶** Distributions
- ➤ Confidence intervals
- > Hypothesis testing
- Correlation and simple linear regression
- ➤ Multiple regression

Outline

- > Random variables
- > Discrete random variables
- ➤ Probability distribution of discrete random variables
- **▶** Distribution functions
- Examples of probability distribution of discrete random variables
- > Continuous random variables

Random Variable

- ➤ The outcome of an experiment need not be a number, for example, the outcome when a coin is tossed can be 'heads' or 'tails'.
- ➤ However, we often want to represent outcomes as numbers.
- A random variable is a function that associates a unique numerical value with every outcome of an experiment. The value of the random variable will vary from trial to trial as the experiment is repeated.

Examples

- A coin is tossed ten times. The random variable X is the number of tails that are noted. X can only take the values 0, 1, ..., 10.
- A light bulb is burned until it burns out. The random variable Y is its lifetime in hours. Y can take any positive real value.

Random Variable

- > A random variable is abbreviated as r.v.
- The random variables are usually denoted by capital letters such as X, Y, Z; while the values taken by them are represented by the corresponding small letters such as x, y, z.
- It should be noted that more than one r.v. can be defined on the same sample space.

There are two types of r.v's:

- Discrete Random Variable
- Continuous Random Variable

Discrete Random Variable

- ➤ A random variable X is said to be discrete if it can assume values which are finite.
- \triangleright When X takes on a finite number of values, they may be listed as x1, x2, ..., xn

Examples:

- The number of heads obtained in coin tossing experiments
- The number of defective items observed in a consignment
- The number of fatal accidents

Probability Distribution of a Discrete Random Variable

> The probability distribution of a discrete random variable is a list of probabilities associated with each of its possible values.

Probability Distribution of a Discrete Random Variable

- ➤ The probability distribution of a discrete random variable is a list of probabilities associated with each of its possible values.
- More formally, Let X be a discrete r.v. taking on distinct values x1, x2,, xn,

Then probability distribution function (pdf) of the r.v. X, denoted by p(x) or f(x), defined as:

$$f(x_i) = \begin{cases} P(X = x_i) & for i = 1, 2, ..., n, ... \\ 0 & for x \neq x_i \end{cases}$$

Note: The probability distribution is also called the probability function or the probability mass function.

Probability Distribution of a Discrete Random Variable

Properties:

1.
$$f(x_i) \ge 0$$
, for all i
2. $\sum_{i=1}^{n} f(x_i) = 1$

$$2. \qquad \sum_{i=1}^{n} f(x_i) = 1$$

Distribution Function

Distribution Function

- ➤ It is a function giving the probability that the random variable X is less than or equal to x, for every value x.
- More formally, the distribution function of a random variable X taking value x, denoted by F(x) is defined as: $F(X=x)=P(X \le x)$.
- The distribution function is abbreviated as d.f. and is also called Cumulative Distribution Function (c.d.f.) as it is the cumulative probability function of the X from the smallest up to specific value of x.

Since
$$F(x)$$
 is a probability, so $F(-\infty) = F(\phi) = 0$ and $F(+\infty) = F(S) = 1$

If a and b are any two real numbers such that a<b. Then $P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$

Cumulative Distribution Function

Properties of Cumulative Distribution Function (CDF)

- $F(-\infty) = 0$ and $F(+\infty) = 1$
- F(x) is a non-decreasing function of x, i.e. $F(x_1) \le F(x_2)$ if $x_1 \le x_2$

Note: All random variables (discrete and continuous) have a cumulative distribution function.

Cumulative Distribution Function

Cumulative Distribution Function of a Discrete Random Variable is:

$$F(x) = P(X \le x_i) = \sum_i f(x_i)$$

Probability Distribution of a Discrete Random Variable

Example: Find the probability distribution and distribution function for the number of heads when 3 balanced coins are tossed.

Construct a probability histogram and a graph of the CDF.

Solution: Here S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let X= number of heads then x=0,1,2,3

$$f(0) = P(X = 0) = P[{TTT}] = 1/8$$

 $f(1) = P(X = 1) = P[{HTT, THT, TTH}] = 3/8$
 $f(2) = P(X = 2) = P[{HHT, HTH, THH}] = 3/8$
 $f(3) = P(X = 3) = P[{HHH}] = 1/8$

Probability Distribution of a Discrete Random Variable

Example: Find the probability distribution and distribution function for the number of heads when 3 balanced coins are tossed.

Construct a probability histogram and a graph of the CDF.

Solution: Here S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let X = number of heads then x = 0,1,2,3

$$f(0) = P(X = 0) = P[\{TTT\}] = 1/8$$

$$f(1) = P(X = 1) = P[\{HTT, THT, TTH\}] = 3/8$$

$$f(2) = P(X = 2) = P[\{HHT, HTH, THH\}] = 3/8$$

$$f(3) = P(X = 3) = P[\{HHH\}] = 1/8$$

No of heads (xi)	Probability P(xi) or f(xi)
0	1/8
1	3/8
2	3/8
3	1/8
Total	1

Probability Distribution of a Discrete Random Variable

Example: Find the probability distribution and distribution function for the number of heads when 3 balanced coins are tossed.

Construct a probability histogram and a graph of the CDF.

Solution: Here S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let X = number of heads then x = 0,1,2,3

The probability histogram is given by:

No of heads (xi)	Probability P(xi) or f(xi)
0	1/8
1	3/8
2	3/8
3	1/8
Total	1

Probability Distribution of a Discrete Random Variable

Example: Find the probability distribution and distribution function for the number of heads when 3 balanced coins are tossed.

Construct a probability histogram and a graph of the CDF.

Solution:

The CDF of X is:

(xi)	f(xi)	Distribution Function F(xi)=P(X<=xi)	
0	1/8	$P(X \le 0) = 1/8$	
1	3/8	$P(X \le 1) = P(X = 0) + P(X = 1) = 1/8 + 3/8 = 4/8$	
2	3/8	$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 1/8 + 3/8 + 3/8 = 7/8$	
3	1/8	$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1/8 + 3/8 + 3/8 + 1/8 = 8/8 = 1$	

Probability Distribution of a Discrete Random Variable

Example: Find the probability distribution and distribution function for the number of heads when 3 balanced coins are tossed.

Construct a probability histogram and a graph of the CDF.

Solution:

The graph of CDF of X is:

(xi)	f(xi)	$F(xi)=P(X\leq =xi)$
0	1/8	1/8
1	3/8	4/8
2	3/8	7/8
3	1/8	1

Probability Distribution of a Discrete Random Variable

Example: Find the probability distribution and distribution function for the sum of dots when two fair dice are thrown. $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),$

Solution: Here n(S)=36

Let X= Sum of dots,

then x=2, 3, 4, ..., 11, 12

$$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6),$$

(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)

Probability Distribution of a Discrete Random Variable

Example: Find the probability distribution and distribution function for the sum of dots when two fair dice are thrown.

x _i	f(x _i)	$F(x_i) = P(X \le x_i)$
2	1/36	1/36
3	2/36	3/36
4	3/36	6/36
5	4/36	10/36
6	5/36	15/36
7	6/36	21/36
8	5/36	26/36
9	4/36	30/36
10	3/36	33/36
11	2/36	35/36
12	1/36	36/36=1

$$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$

Continuous Random Variable

A random variable X is said to be continuous if it can assume every possible value in an interval [a, b], a<b.

Examples:

- The height of a person
- The temperature at a place
- The amount of rainfall

Probability Density Function of a Continuous Random Variable

- The probability density function of a continuous random variable is a function which can be integrated to obtain the probability that the random variable takes a value in a given interval.
- More formally, the probability density function, f(x), of a continuous random variable X is the derivative of the cumulative distribution function F(x), i.e.

$$f(x) = \frac{d}{dx} F(x)$$

Where,

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

Probability Density Function of a Continuous Random Variable

Properties:

1.
$$f(x_i) \ge 0$$
, for all x_i

$$2. \qquad \int_{-\infty}^{+\infty} f(x) dx = 1$$

Note: The probability of a continuous r.v. X taking any particular value 'k' is always zero. $P(X = k) = \int_{1}^{k} f(x) dx$

That is why probability for a continuous r.v. is measurable only over a given interval.

Probability Density Function of a Continuous Random Variable

Example: Find the value of k so that the function f(x) defined as follows, may be a density function.

$$f(x) = \begin{cases} kx & , & 0 \le x \le 2 \\ 0 & , & otherwise \end{cases}$$

Solution:

Probability Density Function of a Continuous Random Variable

Example: Find the value of k so that the function f(x) defined as follows, may be a density function.

$$f(x) = \begin{cases} kx & , & 0 \le x \le 2 \\ 0 & , & otherwise \end{cases}$$

Solution:

Since we have,
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

So,

$$\int_{0}^{2} (kx) dx = 1 \Rightarrow k \int_{0}^{2} (x) dx = 1 \Rightarrow k \left| \frac{x^{2}}{2} \right|_{0}^{2} = 1 \Rightarrow k \left(\frac{(2)^{2}}{2} - \frac{(0)^{2}}{2} \right) = 1$$

$$\Rightarrow 2k = 1 \Rightarrow k = 1/2$$

Hence the density function becomes,
$$f(x) = \begin{cases} \frac{1}{2}x & , & 0 \le x \le 2\\ 0 & , & otherwise \end{cases}$$

Probability Density Function of a Continuous Random Variable

Example: Find the distribution function of the following probability density function.

$$f(x) = \begin{cases} \frac{1}{2}x & , & 0 \le x \le 2\\ 0 & , & otherwise \end{cases}$$

Solution: The distribution function is: $F(x) = P(X \le x) = \int_{-\infty}^{\infty} f(x) dx$

So,

For
$$-\infty < x \le 0$$
, $F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} (0) dx = 0$

For
$$0 < x \le 2$$
, $F(x) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{x} f(x) dx = \int_{-\infty}^{0} (0) dx + \int_{0}^{x} \frac{x}{2} dx = \frac{x^{2}}{4}$

For
$$x > 2$$
, $F(x) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{2} f(x) dx + \int_{2}^{x} f(x) dx = \int_{-\infty}^{0} (0) dx + \int_{0}^{2} \frac{x}{2} dx + \int_{2}^{x} (0) dx = 1$

Probability Density Function of a Continuous Random Variable

$$For -\infty < x \le 0, F(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\infty}^{x} (0) dx = 0$$

For
$$0 \le x \le 2$$
, $F(x) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{x} f(x) dx = \int_{-\infty}^{0} (0) dx + \int_{0}^{x} \frac{x}{2} dx = \frac{x^{2}}{4}$

For
$$x > 2$$
, $F(x) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{2} f(x) dx + \int_{2}^{x} f(x) dx = \int_{-\infty}^{0} (0) dx + \int_{0}^{2} \frac{x}{2} dx + \int_{2}^{x} (0) dx = 1$

So the distribution function is:

$$F(x) = \begin{cases} 0 & , & x < 0 \\ \frac{x^2}{4} & , & 0 \le x \le 2 \\ 1 & , & x > 2 \end{cases}$$

Probability Density Function of a Continuous Random Variable

Example: A r.v. X is of continuous type with p.d.f.

$$f(x) = \begin{cases} 2x & , & 0 < x < 1 \\ 0 & , & otherwise \end{cases}$$

Calculate:

- P(X=1/2)
- P(X <= 1/2)
- P(X>1/4)
- P(1/4 <= X <= 1/2)
- $P(X \le 1/2 \mid 1/3 \le X \le 2/3)$

Summary

- > Random variables
- ➤ Discrete random variables
- ➤ Probability distribution of discrete random variables
- ➤ Distribution functions
- Examples of probability distribution of discrete random variables
- > Continuous random variables

Introduction to Statistics

