Operating Systems (CS2006)

Date: April 8th 2024

Vetted by:

Course Instructor(s)

Ms. Mahzaib Younas, Ms. Sahar Ajmal Ms. Nasreen Akthar, Mr. Shahbaz Ayyaz

Sessional-II

Exam

Total Time (Hrs.): 1

Total Marks: 50

Signature:

Total Questions: 9

Roll no Section Student Signature

\$\square\$ I hereby certify that the questions included in the question paper have not appeared in the exact form in the previous two years' examinations.

Attempt all the questions.

C2: Implement solutions employing concepts of Processes and Threads

Q1: In the following diagram, the parent creates a process identifier (pid), mentioning the system call that initiates a child process.? Furthermore, mention at what condition the of the pid the state 1 moves to the wait () and exec ()? Note: conditions can be pid>0, pid==0, and pid <0.

[Marks = 4]

Q2: Choose the correct answers

[Marks = 6]

- A process can be terminated due to ______
 - a. normal exit
 - fatal error

- 1 mark for each right option 1 x 5 = 51 marks to attempt the question
- killed by another process
- 2. What is the ready state of a process?
 - when the process is scheduled to run after some execution
 - b. when the process is unable to run until some task has been completed
 - when the process is using the CPU

3. In Unix, which system call creates the new process?

a. fork

b. create

c. new

Q3: What resources are used when a thread is created? How do they differ from those used when a process is created? [Marks = 3]

creating either a user or kernel thread involves allocating a small data structure to hold a thread ID, a program counter, a register set, stack and priority,

[1.5 mark for Thread Resources]

creating a process involves allocating the large data structure called as PCB(Process Control Block) which includes a memory map, list of open files, and environment variables.

[1 5 Mark for Process Resources]

Q4: Write the purpose of Given functions in Threading using P_thread

[Marks = 2]

Function	Purpose
Pthread_join	Wait for the termination of thread
Pthread_cancel	Send the cancellation request to the thread
Pthread_detach	Deallocate the resources of thread
Pthread_Self	Get the thread ID of current Thread.

Q5: what is threading model? Explain its four types also draw the diagrams [Marks =5]

A relationship must exist between user threads and kernel threads. The relationship between the user and kernel thread is known as thread Model [1 marks]

1 Mark for each[0.5 definition + 0.5 Diagram]

One to one Model:

Each user-level thread maps to kernel thread	user threads user space
	kernel space kernel

Many to One Model

Many user-level threads mapped to single kernel thread	user threads	user space
	kernel threads	kernel space

Many to Many Model

Two Mode Model

National University of Computer and Emerging Sciences

Chiniot-Faisalabad Campus

Similar to Many to Many, except that it allows a user thread to be bound to kernel thread	user threads	user space
	kernel threads	kernel space

C3: Evaluate the commonly used mechanisms for scheduling of tasks and implement synchronization mechanisms like Semaphores, TSL, etc.

Q6: Distinguish between PCS and SCS scheduling.
[marks =2]

PCS scheduling is local to the process as competition for the CPU takes place among threads belonging to the same process. [1 Marks]

SCS is used when the operating system schedules kernel thread as competition for the CPU takes place among all threads in the system. [1 Mark]

Q7: Consider the set of 6 processes whose arrival time and burst time are given below answer and If the CPU scheduling policy is Shortest Job First (SJF) preemptive, calculate the following: [Marks = 8]

- 1. Show the scheduling order of the processes using a Gantt chart.
- 2. What is the turnaround time for each process?
- 3. What is the waiting time for each process?
- 4. What is the CPU utilization rate?

Process ID	Arrival Time	Brust Time
P1	3	1
P2	1	8
P3	4	2
P4	0	12
P5	2	6
P6	22	2

Q8: Consider the following scenario and apply round robin with time quantum=3 and complete the given table [Note: All Calculation must be done in required calculation portion given on Page 5] [Marks = 10]

Process	Arrival Time	CPU burst time	Turnaround Time	Waiting Time	Response Time
P0	0	12	36-0 = 36	36-12 = 24	0-0 = 0
P1	2	9	30-2 = 28	28-9 = 19	3-2 = 1
P2	3	11	40-3 = 37	37 - 11 = 26	6-3 = 3
P3	5	8	38 - 5 = 33	33-8 = 25	12-5=7

a. Compute average Turn Around Time

$$ATT = \frac{36 + 28 + 37 + 33}{4} = 33.5$$

b. Compute average Wait time.

$$AWT = \frac{24 + 19 + 26 + 25}{4} = 23.5$$

Compute average response time.

$$ART = \frac{0+1+3+7}{4} = 2.75$$

Compute throughput.

$$Throughput = \frac{4}{40} = 0.1$$

Q9: Consider the following scenario and predict the next CPU burst. [Note: Calculation must be done in required calculation portion given on page 5] [Marks =10]

To		8	10	6	4	3
S_{N+1}	10					

Required Calculations:	