

# Science: Lesson 5 - Gases and Properties of Gases

**Pressure:** force applied perpendicular to the surface of an object per unit area.

• Pressure of Solids:  $Pressure = \frac{Force}{Area}$ 

• Pressure of Liquids:  $Pressure = \rho gh$ 

 $\circ$  where  $\rho$  is the density of the fluid

o g is acceleration due to gravity

o *h* is the height of the fluid above the object.

- **Atmospheric Pressure** is the pressure exerted by the atmosphere and is denoted by  $P_{atm}$ .
- **Gauge Pressure:** the pressure of a system above atmospheric pressure. The readings from gauge pressure includes the weight of the atmosphere.
- **Pneumatic Pressure:** the pressure exerted by a pressurized gas. Pneumatic systems work by compressing the gas and increasing pressure.
- Hydraulic Pressure: the pressure that is generated by a hydraulic fluid in a confined space when it is subjected to an external force.
- Hydrostatic Pressure: the pressure exerted by a liquid at rest due to the force of gravity acting on it.

$$P_H = \rho g h$$



- Absolute pressure, Gauge pressure, Atmospheric pressure Explained.
   Absolute pressure Gauge. English
- <u>Pressure: Atmospheric & Hydrostatic Pressure and Fluids Physics |</u>
   Lecturio

Ideal Gas: a gas which obeys the ideal gas laws at all pressures and temperatures.

 Ideal Gas Law: states that the pressure of a gas is inversely proportional to volume and directly proportional to temperature. It is a relation between the pressure P, volume V, and temperature T of a gas in the limit of low pressures and high temperatures.

$$PV = nRT$$

- o *P* is the pressure
- V is the volume
- o *n* is the number of moles of gas
- o R is the ideal gas constant
- o *T* is the temperature in Kelvin.



Ideal Gas Law



**Pascal's Principle**: When a change in pressure is applied to an enclosed fluid, it is transmitted undiminished to all portions of the fluid and to the walls of its container.

$$P = \frac{F_1}{A_1}, \qquad P = \frac{F_2}{A_2}$$
$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

This figure<sup>1</sup> provides a visualization of Pascal's principle.





Pascal's law - Animated and explained with 3d program (youtube.com).

# Pressure and Altitude (or Height):

- The higher the altitude of an object, the lower the pressure exerted on that object.
- The lower the altitude of that object, the higher the pressure exerted on the object.
- The pressure on a mountain top is lower than the pressure at sea level. Pressure is **inversely proportional** to altitude.

$$P \alpha \frac{1}{h}$$

This is why the boiling point of water is lower at the top of the mountain (due to lower pressure) and higher at sea level.



Atmospheric Pressure and Boiling - YouTube.

<sup>&</sup>lt;sup>1</sup>The figure was snipped from <u>Pascals Law for (principle of Transmission of Fluid Pressure Stock Illustration - Illustration of water, automotive: 281662369 (dreamstime.com) website.</u>



### Science: Lesson 6 - Intro to Mechanical Science

**Energy** is defined as the ability to do work.

- Joules is the SI unit of energy.
- The six different forms of energy are:
  - o chemical, electrical, mechanical, radiant, thermal, and nuclear energy.

All energy can be classified into two broad types of energy:

1. **Kinetic Energy** is the energy of motion.

$$K.E. = \frac{1}{2}mv^2$$

2. **Potential Energy** is the internal energy a body possesses (or stored energy in a body).

$$P.E. = mgh$$

It is essential to remember that the weight of an object is the force exerted on the object by gravity, W=mg.

**Law of Conservation of Energy:** energy can neither be created nor destroyed but can be changed from one form to another or can be transformed from one system to another.

**Work:** is the product of the force applied on an object and the distance the object is moved, i.e.,

$$W = Force \times displacement$$



- Work is the transfer of energy (in or out of a system).
- **Joules** is also the SI unit of work

#### Relationship Between Work and Energy

- Work is the transfer of energy from one object to another.
  - Work is performed when a force is applied in moving an object over a certain distance. This results in the change in energy of the object.
- Energy is the capacity to do the work in moving that object over the distance.



**Power:** the rate at which work is done or the rate at which energy is transferred or converted.

• Watts is the SI unit of power. It is also measured in I/s or kW or  $ft \ lb \ sec^{-1}$ .

$$P = \frac{Work}{time} = \frac{Force \times distance}{time}$$



**Horsepower** is another unit of measuring power. An important conversion to take note of is:

$$1 Hp = 746 Watts$$

**Efficiency**: The efficiency of a machine is the measure of how much input power is available as actual output power.

$$Efficiency = \frac{Power\ output}{Power\ input} \times 100\%$$

- Efficiency tells us how efficient the machine is.
  - If the efficiency is 100%, then the machine is perfectly efficient. This
    means all the power is used with NO energy loss.
  - If the efficiency is 0%, then all the input power is lost and the machine cannot put out any energy.
- Example: If a machine has an efficiency of 80%, it means that 80% of the power input is converted into useful work, while the remaining 20% is lost as waste heat, friction, or other inefficiencies.



### Science: Lesson 4 - Fluids

**Fluid:** A substance that can flow and it doesn't maintain a fixed shape.

- Gases and liquids are usually considered as fluids.
- Characteristics of fluids: compressibility, pressure, buoyancy, viscosity, and surface tension.

**Cohesive Forces** bind molecules of the same substance together (particles within a fluid being strongly attracted to each other). Cohesion:

- Is strong in solids but weak in gases.
- Is strong enough in liquids to keep the particles together but weak enough to allow the molecules to slide past each other. This lets liquids take the shape of their container.

**Adhesive forces** bind molecules of different substances together. Particles of different substances are strongly attracted to each other.



Video: Adhesion, Cohesion and Surface Tension Part 10 (youtube.com)

**Surface Tension:** a contractive tendency of the surface of a liquid that allows it to resist an external force. Examples are the ability of some insects to run on water's surface, needle and plant leaf resting on water.



**Video:** What is Surface Tension? | Richard Hammond's Invisible Worlds | Earth Science (youtube.com)

**Viscosity:** the measure of a fluid's resistance to flow.

- It is the internal friction of liquids.
- It can also be how strongly a fluid's cohesive forces will affect the movement of its molecules.
- The stronger the cohesive force, the stronger the viscosity and the slower the fluid will flow.



Video: What is Viscosity | Understanding Resistance to Flow (youtube.com)

**Buoyancy:** the net upward force on any object in any fluid due to the pressure difference at different depths.

 Any object which is partially or totally submerged in a liquid has a buoyant force acting on it which pushes the object up.



Video: What is Buoyancy? | Physics | Don't Memorise



**Archimedes Principle:** Any body completely or partially submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the body.

$$F_B = W_{fluid}$$

- $F_B$  is the magnitude of the buoyant force,
- $W_{fluid}$  is the weight of the fluid.

$$F_{R} = \rho g V$$

- where  $\rho$  is the density of the fluid
- g is acceleration due to gravity
- *V* is the volume of the object.



The following video explains Archimedes principle: <u>Archimedes principle & buoyancy | fluids | Physics | Khan Academy (youtube.com)</u>

An object immersed into a liquid will either float, be partially submerged or totally submerged (and sink).

- The object will rise to the surface and float if the buoyant force is greater than the object's weight.
- The object will sink if the buoyant force is less than the object's weight.
- The object will remain submerged (or suspended) in the liquid if the buoyant force equals the object's weight.
- An object floats if it is less dense than the fluid it is immersed in.
- An object sinks if it is denser than the fluid.



**Video:** helps with visual explanation: <u>Density & Floating: Why Some Objects</u> Float While Others Sink (youtube.com)

# **Apparent Weight and Specific Gravity**

Apparent weight is the weight that an object appears to have.

- This is not the actual weight of the object.
- Apparent weight differs from the actual weight when the force of gravity acting on the object is not balanced by an equal but opposite force.
- Apparent weight also differs from weight when an object is "partially or completely immersed in a fluid".

Apparent weight = weight of object 
$$-$$
 Bouyant force

**Specific Gravity** is the measure of the density of a substance in comparison to the density of water.

$$Specific\ gravity\ = \frac{Density\ of\ substance}{Density\ of\ water}$$