Neural Information Processing

Neural population data analysis

Dr. Cian O'Donnell cian.odonnell@bristol.ac.uk

Golshani et al., J Neurosci (2009)

What we will cover

- Why analyse neural populations instead of single neurons?
- What properties should a good statistical model have?
- The independent-neuron model.
- Methods that capture spatial correlations:
 - Maximum entropy-based
 - Population-count-based models
 - The dichotomised gaussian

Why neural populations?

The recent shift to neural populations

- Historically, neuroscientists focused on understanding the firing properties of single neurons (e.g. tuning curves, receptive fields, place cells).
- But the brain has a lot of neurons! (~100 billion in humans)
 What are they all for?
- This was partly due to limitations in recording techniques, but also because we didn't know what questions to ask.
- But (as theorists have long pushed for) the trend is to now routinely record from 10s or 100s of neurons simultaneously.
- What we don't know is how to analyse or think about these data yet.

Stevenson & Kording, Nat Neurosci (2011)

data from A. Kohn (Einstein College of Med)

What properties should a good statistical model for neural population data have?

Desirable properties of a statistical model for neural population data

- It captures the statistical structure in neural population data.
- Parameters can be fit efficiently for limited data.
- Parameter fitting can be done in reasonable computational time.
- We can generate samples from fitted model.
- Closed-form likelihood function.
- Model parameters are interpretable for humans.
- Can directly compute summary statistics from fitted parameters (entropy, distances between two parameter fits, etc)
- Someone has coded it up in MATLAB or Python

How should we mathematically represent the neural activity?

Schneidman et al, Nature (2006)

$$P(x_1, x_2, ..., x_N) = P(\mathbf{x}) = ?$$

The support of this distribution is the space of all possible binary patterns ~2^N

Modelling strategy

Neural circuit (implicit *P_{true}*)

Data (samples from P_{true})

Compute statistics from data (constraints for model)

Model (determines P_{model})

→ Whatever you want to do...

- Draw samples
- Decode stimulus
- Interpret parameter values
- Compare fits to different datasets

The problem with histogramming

- If each pattern has a true probability of occurring p_i , then in the long run ($t \to \infty$) the maximum likelihood estimate $\hat{p}_i = n_1/(n_0 + n_1)$ converges towards p_i .
- However, since the number of possible patterns grows $\sim 2^N$, for reasonably-sized populations there may be many patterns with low p_i , which we observe only rarely. Maybe never.
- For example, if we recorded some neural activity continually since the Big Bang (13.8B years ago = $4x10^{17}$ s), and binned our recording in 10 ms intervals, we could maximally observe the number of patterns corresponding to only $\log_2(4x10^{19}) \sim 65$ neurons.
- These unobserved patterns are the brain's "dark matter"! They can exist (surely with non-zero probability) but need not ever occur.

The solution? Parametric models.

Independent neuron model

- The independent neuron model makes the assumption that neurons are statistically independent.
- This is wrong... but not that wrong.

ON OFF neurons neurons
$$p(x) = \prod_{i} [x_i \sigma_i + (1 - x_i)(1 - \sigma_i)]$$

where σ_i is single neuron firing probability

Testing the independent model

Three models with correlations

- Pairwise maximum entropy
- Population count-based models
- Dichotomised gaussian

Pairwise maximum entropy models

 Assume neural firing is as independent as possible, given the individual neuron firing rates and pairwise correlations.

$$p(x) = \frac{1}{Z} \exp\left[\sum_{i} h_i x_i + \sum_{i \neq j} J_{ij} x_i x_j\right]$$

where h_i are single neuron firing parameters and J_{ij} are pairwise coupling strengths.

• h_i and J_{ij} are chosen so that $\mathbf{E}[x_i] = \hat{\sigma}_i$ and $\mathbf{E}[x_i x_j] = \hat{c}_{ij}$

Predictions of the pairwise maximum entropy model

Interpreting the parameter fits

Schneidman et al, Nature (2006)

Problems with pairwise maxent

- Data-hungry.
- Doesn't accurately match data from large numbers of neurons (even for infinite data).
- Computationally hard to fit parameters for large numbers of neurons.

Further reading

 Schneidman, E., Berry, M.J., Segev, R., Bialek, W., 2006. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012