Trigonalisation simultanée

Nous montrons le théorème de trigonalisation simultanée grâce à l'utilisation des applications transposées (et donc, de la dualité).

Soit E un espace vectoriel de dimension n sur un corps \mathbb{K} .

[**GOU21**] p. 176

Lemme 1. Soit $g \in \mathcal{L}(E)$ un endomorphisme. Soit F un sous-espace vectoriel de E stable par g. Alors,

$$\chi_{g_{|F}} \mid \chi_g$$

Démonstration. On note m la dimension de F. Considérons G, un supplémentaire de F dans E. Soient \mathcal{B}_F et \mathcal{B}_G des bases respectives de F et de G. Alors, la matrice de g dans la base de E constituée de l'union disjointe de \mathcal{B}_F et \mathcal{B}_G est de la forme

$$M = \begin{pmatrix} A & * \\ 0 & * \end{pmatrix}$$

avec $A \in \mathcal{M}_m(\mathbb{K})$, qui est la matrice de l'endomorphisme induit $g_{|F}$. On constate clairement que $\chi_{g_{|F}} = \chi_A \mid \chi_M = \chi_g$.

Lemme 2. Soit $g \in \mathcal{L}(E)$ un endomorphisme trigonalisable. Soit F un sous-espace vectoriel de E stable par g. Alors, $g_{|F}$ est trigonalisable.

Démonstration. g est trigonalisable si et seulement si son polynôme caractéristique est scindé sur \mathbb{K} . Dans ce cas, le polynôme caractéristique de sa restriction à F l'est aussi au vu du Lemme 1. \square

Lemme 3. Soient $f, g \in \mathcal{L}(E)$. On suppose que f et g sont trigonalisables et commutent. Alors, f et g ont un vecteur propre commun.

Démonstration. f est trigonalisable, donc f admet une valeur propre $\lambda \in \mathbb{K}$ (cf. première colonne de la matrice de f dans une base de trigonalisation). Le sous-espace propre $E_{\lambda} = \operatorname{Ker}(f - \lambda \operatorname{id}_{E})$ est alors stable par g:

$$\forall x \in E_{\lambda}$$
, $(f - \lambda \operatorname{id}_{E})(g(x)) = g((f - \lambda \operatorname{id}_{E})(x))$

car f, g et λ id $_E$ commutent. Ainsi,

$$\forall x \in E_{\lambda}$$
, $(f - \lambda \operatorname{id}_{E})(g(x)) = 0$

Par le Lemme 2, la restriction de g à E_{λ} est trigonalisable. Donc, $g_{|E_{\lambda}}$ admet un vecteur propre $x \in E_{\lambda}$ qui est, par construction, un vecteur propre commun à f et g.

Théorème 4 (Trigonalisation simultanée). Soient $f, g \in \mathcal{L}(E)$. On suppose que f et g sont trigonalisables et commutent. Alors, il existe une base de trigonalisation commune de f et g.

Démonstration. On va procéder par récurrence sur n.

- Si n = 1: c'est évident.
- Supposons le résultat vrai au rang n-1. Pour tout $\varphi \in E^*$,

$$({}^{t}f \circ {}^{t}g)(\varphi) = {}^{t}f(\varphi \circ g)$$
$$= \varphi \circ g \circ f$$
$$= \varphi \circ f \circ g$$
$$= ({}^{t}g \circ {}^{t}f)(\varphi)$$

ie. ${}^tf^tg = {}^tf^tg$. De plus, tf et tg sont trigonalisables (car possèdent les mêmes polynômes caractéristiques que f et g). Par le Lemme 3 appliqué à tf et tg , il existe un vecteur propre $\psi \in E^*$ commun à ces deux endomorphismes. Le sous-espace vectoriel $\text{Vect}(\psi)$ est ainsi stable par tf et tg . Notons

$$H = \text{Vect}(\psi)^{\circ} = \{x \in E \mid \psi(x) = 0\} = \text{Ker}(\psi)$$

c'est un hyperplan de E (donc de dimension n-1), qui est de plus stable par f et g. En effet, en notant $\lambda \in \mathbb{K}$ la valeur propre de f associée à ψ , on a :

$$\forall x \in H, \psi(f(x)) = {}^t f(\psi)(x) = \lambda \psi(x) = 0$$

et un même calcul montre la stabilité par g. D'après l'hypothèse de récurrence appliquée aux endomorphismes induits $f_{|H}$ et $g_{|H}$, on obtient une base \mathcal{B}_H de H de cotrigonalisation pour $f_{|H}$ et $g_{|H}$. On la complète en une base quelconque \mathcal{B} de E, dans laquelle on obtient

$$\operatorname{Mat}(f,\mathcal{B}) = \begin{pmatrix} & \operatorname{Mat}(f_{|H},\mathcal{B}_{H}) & & \vdots \\ & & & & \vdots \\ 0 & \dots & 0 & * \end{pmatrix} \text{ et } \operatorname{Mat}(g,\mathcal{B}) = \begin{pmatrix} & \operatorname{Mat}(g_{|H},\mathcal{B}_{H}) & & \vdots \\ & & & & \vdots \\ 0 & \dots & 0 & * \end{pmatrix}$$

où $\operatorname{Mat}(f_{|H},\mathcal{B}_H)$ et $\operatorname{Mat}(g_{|H},\mathcal{B}_H)$ sont triangulaires supérieures d'ordre n-1.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$