Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks

Yan Scholten¹ Jan Schuchardt¹ Simon Geisler¹ Aleksandar Bojchevski² Stephan Günnemann¹

¹Technical University of Munich ²CISPA Helmholtz Center for Information Security

tl;dr: Gray-box Robustness Certificates for GNNs

- Exploit underlying message-passing principles
- Adversaries control multiple nodes in the graph and perturb node features arbitrarily
- Model-agnostic & efficient

Motivation

GNNs are susceptible to adversarial examples

If adversaries control multiple nodes & perturb features...

...GNNs will propagate adversarial information through the graph...

...allowing adversaries to alter the prediction for target nodes v:

Class A \Rightarrow Class B

Robustness certificates: Provable guarantees for stable predictions

Existing robustness certificates are inadequate

- White-box certificates only certify specific models
- Black-box certificates ignore properties of the classifier

We enhance model-agnostic black-box certificates by exploiting message-passing principles

Interception Smoothing

Exploit message-passing principles & intercept messages

Intercept messages using edge deletion and node feature ablation

Constructing a smoothed classifier that intercepts messages

Provable robustness certificates for interception smoothing

 Δ bounds probability to receive adversarial messages

If adversary does not control enough probability mass to change majority vote $\Rightarrow g(G) = g(\tilde{G})$ for any graph $\tilde{G} \in \mathcal{B}_r(G)$

Practical challenge: How to compute Δ for arbitrary graphs?

 $\Delta = \max_{|W|=r} p_{\phi}$ (v receives any message from nodes in W)

⇒ Lower bound on certifiable robustness by relaxing to independent paths

Experimental Evaluation

Robustness certificates against strong adversaries

Adversaries control multiple nodes & perturb features arbitrarily

Stronger certificates for sparser graphs

Certificates independent of node feature dimensionality

Efficient certificates: 100x faster than previous methods

