Advantage Actor-Critic (A2C)

Shusen Wang

Actor and Critic

- Policy network (actor): $\pi(a|s;\theta)$.
 - It is an approximation to the policy function, $\pi(a|s)$.
 - It controls the agent.

Actor and Critic

- Policy network (actor): $\pi(a|s;\theta)$.
 - It is an approximation to the policy function, $\pi(a|s)$.
 - It controls the agent.
- Value network (critic): $v(s; \mathbf{w})$.
 - It is an approximation to the state-value function, $V_{\pi}(s)$.
 - It evaluates how good the state *s* is.

Actor and Critic

- Observe a transition (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$.

- Observe a transition (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$.
- TD error: $\delta_t = v(s_t; \mathbf{w}) y_t$.

- Observe a transition (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$.
- TD error: $\delta_t = v(s_t; \mathbf{w}) y_t$.
- Update the policy network (actor) by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

- Observe a transition (s_t, a_t, r_t, s_{t+1}) .
- TD target: $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$.
- TD error: $\delta_t = v(s_t; \mathbf{w}) y_t$.
- Update the policy network (actor) by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

Update the value network (critic) by:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

Outline

- 1. Value functions and Monte Carlo approximations.
- 2. Updating policy network.
- 3. Updating value network.

Properties of Value Functions

Value Functions

Discounted return:

$$U_{t} = R_{t} + \gamma \cdot R_{t+1} + \gamma^{2} \cdot R_{t+2} + \gamma^{3} \cdot R_{t+3} + \cdots$$

Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t \mid s_t, \mathbf{a_t}].$$

State-value function:

$$V_{\pi}(s_t) = \mathbb{E}_{A_t}[Q_{\pi}(s_t, A_t) \mid s_t].$$

Identity:
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}_{S_{t+1}, \mathbf{A}_{t+1}}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A}_{t+1})].$$

Identity:
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}_{S_{t+1}, \mathbf{A}_{t+1}}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A}_{t+1})].$$

Identity:
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}_{S_{t+1}, \mathbf{A}_{t+1}}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A}_{t+1})].$$

• Thus,
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot \mathbb{E}_{A_{t+1}}[Q_{\pi}(S_{t+1}, A_{t+1})]]$$

Identity:
$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}_{S_{t+1}, \mathbf{A_{t+1}}}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A_{t+1}})].$$

• Thus,
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma (\mathbb{E}_{A_{t+1}}[Q_{\pi}(S_{t+1}, A_{t+1})])$$

$$=V_{\pi}(s_{t+1}).$$

Identity:
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}_{S_{t+1}, \mathbf{A}_{t+1}}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A}_{t+1})].$$

• Thus,
$$Q_{\pi}(s_t, \boldsymbol{a}_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \left(\mathbb{E}_{A_{t+1}}[Q_{\pi}(S_{t+1}, A_{t+1})]\right)]$$
$$= \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

Identity:
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}_{S_{t+1}, \mathbf{A}_{t+1}}[R_t + \gamma \cdot Q_{\pi}(S_{t+1}, \mathbf{A}_{t+1})].$$

• Thus,
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot \mathbb{E}_{A_{t+1}}[Q_{\pi}(S_{t+1}, A_{t+1})]]$$

= $\mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

Property of State-Value Function

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

• By definition, $V_{\pi}(s_t) = \mathbb{E}_{A_t}[Q_{\pi}(s_t, A_t)]$

Property of State-Value Function

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

• By definition, $V_{\pi}(s_t) = \mathbb{E}_{A_t}[Q_{\pi}(s_t, A_t)]$

$$= \mathbb{E}_{A_t} \left[\mathbb{E}_{S_{t+1}} [R_t + \gamma \cdot V_{\pi}(S_{t+1})] \right]$$

Property of State-Value Function

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

• By definition, $V_{\pi}(s_t) = \mathbb{E}_{A_t}[Q_{\pi}(s_t, A_t)]$

$$= \mathbb{E}_{A_t} \left[\mathbb{E}_{S_{t+1}} [R_t + \gamma \cdot V_{\pi}(S_{t+1})] \right]$$

Theorem 2:
$$V_{\pi}(s_t) = \mathbb{E}_{A_t, S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

Monte Carlo Approximations

Approximation to Action-Value

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

Approximation to Action-Value

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

- Suppose we know (s_t, a_t, r_t, s_{t+1}) .
- Unbiased estimation:

$$Q_{\pi}(s_t, \mathbf{a}_t) \approx r_t + \gamma \cdot V_{\pi}(s_{t+1}).$$

Approximation to Action-Value

Theorem 1:
$$Q_{\pi}(s_t, a_t) = \mathbb{E}_{S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

- Suppose we know (s_t, a_t, r_t, s_{t+1}) .
- Unbiased estimation:

$$Q_{\pi}(s_t, \mathbf{a}_t) \approx r_t + \gamma \cdot V_{\pi}(s_{t+1}).$$

Approximation to State-Value

Theorem 2:
$$V_{\pi}(s_t) = \mathbb{E}_{A_t, S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

Approximation to State-Value

Theorem 2:
$$V_{\pi}(s_t) = \mathbb{E}_{A_t, S_{t+1}}[R_t + \gamma \cdot V_{\pi}(S_{t+1})].$$

- Suppose we know (s_t, a_t, r_t, s_{t+1}) .
- Unbiased estimation:

$$V_{\pi}(s_t) \approx r_t + \gamma \cdot V_{\pi}(s_{t+1}).$$

Approximations

Approximation to action-value:

$$Q_{\pi}(s_t, \mathbf{a}_t) \approx r_t + \gamma \cdot V_{\pi}(s_{t+1}).$$

Approximation to state-value:

$$V_{\pi}(s_t) \approx r_t + \gamma \cdot V_{\pi}(s_{t+1}).$$

Updating Policy Network

Policy Gradient with Baseline

Stochastic policy gradient:

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t;\theta)}{\partial \theta} \cdot ((Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

Advantage function

Policy Gradient with Baseline

Stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}_t) = \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t,\mathbf{a}_t) - V_{\pi}(s_t)\right).$$

Unknown

MC Approximation to Action-Value

Stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}_t) = \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t,\mathbf{a}_t) - V_{\pi}(s_t)\right).$$

$$\approx r_t + \gamma \cdot V_{\pi}(s_{t+1}).$$

MC Approximation to Action-Value

Approximate stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot (\mathbf{r}_t + \gamma \cdot V_{\pi}(s_{t+1}) - V_{\pi}(s_t)).$$

Function Approximation to State-Value

Approximate stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot (\mathbf{r}_t + \gamma \cdot V_{\pi}(s_{t+1}) - V_{\pi}(s_t)).$$

• Approximate $V_{\pi}(s)$ by the value network $v(s; \mathbf{w})$.

Function Approximation to State-Value

Approximate stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot (r_t + \gamma \cdot v(s_{t+1}; \mathbf{w}) - v(s_t; \mathbf{w})).$$

Updating Policy Network

Approximate stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot \left(r_t + \gamma \cdot v(s_{t+1}; \mathbf{w}) - v(s_t; \mathbf{w}) \right).$$

Denote it by y_t

Updating Policy Network

Approximate stochastic policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(r_t + \gamma \cdot v(s_{t+1};\mathbf{w}) - v(s_t;\mathbf{w}) \right).$$

Denote it by y_t

Policy gradient ascent:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (y_t - v(s_t; \mathbf{w})).$$

MC approximation: $V_{\pi}(s_t) \approx r_t + \gamma \cdot V_{\pi}(s_{t+1})$.

Approximation: $v(s_t; \mathbf{w}) \approx r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$.

Approximation: $v(s_t; \mathbf{w}) \approx r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$.

TD target y_t

- TD error: $\delta_t = v(s_t; \mathbf{w}) y_t$.
- Gradient: $\frac{\partial \delta_t^2/2}{\partial \mathbf{w}}$

• TD error:
$$\delta_t = v(s_t; \mathbf{w}) - y_t$$
.

• Gradient:
$$\frac{\partial \delta_t^2/2}{\partial \mathbf{w}} = \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

- TD error: $\delta_t = v(s_t; \mathbf{w}) y_t$.
- Gradient: $\frac{\partial \delta_t^2/2}{\partial \mathbf{w}} = \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$.
- Update value network by gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

More Explanations

Approximate policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(r_t + \gamma \cdot v(s_{t+1};\mathbf{w}) - v(s_t;\mathbf{w}) \right)$$

evaluation made by the critic

Approximate policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot (\mathbf{r}_t + \gamma \cdot v(s_{t+1};\mathbf{w}) - v(s_t;\mathbf{w})).$$

Approximation to $\mathbb{E}[U_t \mid s_t]$

At time t, the critic evaluates how good s_t is.

Approximate policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(r_t + \gamma \cdot v(s_{t+1};\mathbf{w}) - v(s_t;\mathbf{w}) \right).$$

Approximation to $\mathbb{E}[U_t \mid s_t, s_{t+1}]$

At time t + 1, the critic evaluates how good s_t is.

Approximate policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot \left(r_t + \gamma \cdot v(s_{t+1}; \mathbf{w}) - v(s_t; \mathbf{w}) \right).$$

Both are approximations to $\mathbb{E}[U_t]$.

Both evaluate how good s_t is.

Approximate policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(r_t + \gamma \cdot v(s_{t+1};\mathbf{w}) - v(s_t;\mathbf{w}) \right).$$

Depends on a_t

Independent of a_t

If a_t is good, their difference is positive.

Approximate policy gradient:

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot \left(r_t + \gamma \cdot v(s_{t+1};\mathbf{w}) - v(s_t;\mathbf{w}) \right)$$

evaluation made by the critic

Thank you!