Лабораторная работа №1

- 1. Загрузите данные из файла «wr9464.xlsx» в *DataFrame*;
- 2. Добавьте заголовки к столбцам: «Индекс ВМО», «Год», «Месяц», «День», «Минимальная температура воздуха», «Средняя температура воздуха», «Максимальная температура воздуха», «Количество осадков»;
- 3. Объедините столбцы «Год», «Месяц» и «День» в один столбец «Дата» в формате гггг-мм-дд (2000-01-20). Данные в новом столбце должны иметь формат *datetime*;
- 4. Переместите дату в индекс;
- 5. Удалите столбец «Индекс ВМО»;
- 6. Ответьте на вопросы:
 - 6.1. Содержатся ли в данных пропущенные значения?
 - 6.2. В каком столбце данных больше всего пропущенных значений?
 - 6.3. В климатических показателях за какой год содержится наибольшее количество пропусков?
- 7. Удалите все наблюдения (дни) до 01.01.1966 г.;
- 8. Для каждого наблюдения рассчитайте размах температур (разность максимальной и минимальной суточных температур) и количество предшествующих ему дней без осадков:

Мин. темп. воздуха	Сред. темп. воздуха	Макс. темп. воздуха	Кол-во осадков	Размах темп.	Кол-во дней без осадков
-12.4	-11.0	-9.9	3.9	2.5	0
-28.1	-14.8	-9.8	3.8	18.3	0
-38.5	-34.6	-26.6	0.0	11.9	0
-34.6	-30.1	-23.4	0.0	11.2	1
-26.8	-21.4	-16.6	1.1	10.2	2
-28.6	-24.2	-17.4	0.8	11.2	0
-31.0	-27.0	-24.0	0.0	7.0	0
-33.3	-30.3	-24.6	0.0	8.7	1

- 9. Запишите получившийся DataFrame в файл формата «.xlsx»;
- 10. Определите самый длинный период засухи;
- 11. Вычислите среднюю температуру воздуха в июне и максимальную температуру воздуха в январе каждого года;
- 12. Выведете наблюдения, удовлетворяющие условиям:
 - 12.1. Средняя температура воздуха ниже -30 $^{\circ}$ С,
 - 12.2. Средняя температура воздуха выше 25°C и количество дней без осадков больше 3.

Полезные функции и методы

- \triangleright pd.read_excel() загрузить данные, представленные в формате «.xlsx»;
- \triangleright pd.read_csv() загрузить данные формата «.csv»;
- ➤ Заголовки столбцов могут быть переданы списком в параметр *names* функций pd.read_excel() и pd.read_csv();
- \blacktriangleright <u>.head()</u> отобразить несколько первых строк *DataFrame*;
- ➤ .set index() изменить индексы;
- ▶ .drop() удалить строки или столбцы;
- ▶ .dtypes узнать тип данных в столбце;
- ▶ .astype(), to_datetime(), .to_numeric() изменить тип данных;
- ≽ <u>.isnull()</u>.sum() вычислить количество пропущенных значений в каждом столбце;
- \rightarrow .max(), .min(), .mean() максимум, минимум, среднее значение;
- ▶ pd.Grouper(), .groupby() группировка наблюдений;
- <u>.agg()</u> агрегирование наблюдений;
- ▶ .truncate() логическая индексация (можно использовать даты!);
- ➤ .to_excel(),.to_csv() запись DataFrame в файл формата «.xlsx» или «.csv»;
- Уже знакомые вам операторы тоже работают с pandas. Действие (или условие) выполняется (или проверяется) для каждого наблюдения. Так, например, чтобы найти разность между двумя числовыми характеристиками (столбцами) по всему набору данных, используйте оператор «-»:
 - имя_ DF [«новый_столбец»] = имя_ DF [«столбец_1»] имя_ DF [«столбец_2»] Если необходимо найти сумму двух числовых характеристика или склеить строковые значения двух столбцов используйте «+». Если вы хотите получить значения, которые больше заданного числа, например 5, используйте запись

имя DataFrame [«имя столбца»] > 5

 Одним из вариантов выполнения задания 6.3 может быть следующая конструкция:

```
for i in range(1963, 1967):
    print(i, df[df.index.year == i].isnull().sum().sum())

1963 2
1964 0
1965 96
1966 0
```

➤ Шпаргалка: https://smysl.io/blog/pandas/.