#### TMR4290

# Project 1 - Matlab calculations for a marine power plant

Authors: Shiv Jeet RAI

 $March\ 13,\ 2016$ 



### Contents

| 1        | Deri | vations 3                                                                                                                      |
|----------|------|--------------------------------------------------------------------------------------------------------------------------------|
|          | 1.1  | Loads                                                                                                                          |
|          |      | 1.1.1 Equation for "Resulting per-phase impedance of induction motor" 3                                                        |
|          | 1.2  | Generators                                                                                                                     |
|          |      | 1.2.1 Equation for "Resulting Thevenin Voltage and Imepdance"                                                                  |
|          | 1.3  | MATLAB Programs                                                                                                                |
|          |      | 1.3.1 Node Analysis                                                                                                            |
|          |      | 1.3.2 Electric parameters for loads                                                                                            |
|          |      | 1.3.3 Electric parameters for generators                                                                                       |
|          |      |                                                                                                                                |
| <b>2</b> | Sim  | ulations cases 4                                                                                                               |
|          | 2.1  | Case 1: All running - All breakers closed (Same Internal rms-voltage and phase) . 4                                            |
|          |      | 2.1.1 a)                                                                                                                       |
|          |      | 2.1.2 b)                                                                                                                       |
|          |      | 2.1.3 c)                                                                                                                       |
|          |      | 2.1.4 d)                                                                                                                       |
|          |      | 2.1.5 e)                                                                                                                       |
|          |      | 2.1.6 f)                                                                                                                       |
|          | 2.2  | Case 1: All running - All breakers closed (Same Internal rms-voltage, but different                                            |
|          |      | phase)                                                                                                                         |
|          |      | 2.2.1 a)                                                                                                                       |
|          |      | 2.2.2 b)                                                                                                                       |
|          | 2.3  | c)                                                                                                                             |
|          | 2.4  | Case 1: All running - All breakers closed (Different Internal rms-voltage, but same                                            |
|          |      | phase)                                                                                                                         |
|          |      | 2.4.1 a)                                                                                                                       |
|          |      | 2.4.2 b)                                                                                                                       |
|          |      | 2.4.3 c)                                                                                                                       |
|          | 2.5  | Case 2: 2-split system - Gen2 disconnected (Different Internal rms-voltage, but                                                |
|          |      | same phase)                                                                                                                    |
|          |      | 2.5.1 a)                                                                                                                       |
|          |      | 2.5.2 b)                                                                                                                       |
|          | 2.6  | Case 2: 2-split system - Gen2 disconnected (Same Internal rms-voltage and phase.                                               |
|          |      | $(BT1 = closed)) \dots $ |
|          |      | 2.6.1 a)                                                                                                                       |
|          |      | 2.6.2 b)                                                                                                                       |
|          |      | 2.6.3 c)                                                                                                                       |
|          |      |                                                                                                                                |
| 3        |      | endix: Matlab-scripts 9                                                                                                        |
|          | 3.1  | Resulting load impedances                                                                                                      |
|          | 3.2  | Thévenin equivalent supply circuit                                                                                             |
|          | 3.3  | Node voltage analysis                                                                                                          |
|          | 3.4  | Electric parameters for loads                                                                                                  |
|          | 3.5  | Electric parameters for generators                                                                                             |
|          | 3.6  | Overall program                                                                                                                |
|          | 3.7  | Marine Power Plant Constants                                                                                                   |
|          | 3.8  | Simulation of case 1.1                                                                                                         |
|          | 3.9  | Simulation of case 1.2                                                                                                         |
|          | 3.10 | Simulation of case 1.3                                                                                                         |
|          | 3.11 | Simulation of case 2.1                                                                                                         |

| 3.12 | Simulation of case 2.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 6 |  |
|------|------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|--|
|      |                        |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |   |  |

#### 1 Derivations

#### 1.1 Loads

#### 1.1.1 Equation for "Resulting per-phase impedance of induction motor"

The resulting per-phase impedance of the induction motor is given by equation(1)

$$Z_{\text{Motor}} = R_{\text{Sm}} + jX_{\text{Sm}} + \frac{1}{\frac{1}{R_C} + \frac{1}{jX_m} + \frac{1}{jX_2 + \frac{R_2}{s}}}$$
(1)

As stated by the project description, the utility load and the per-phase transformer can be represented as "the load in the secondary circuit seen from the source":

$$Z_{\text{utility load}} = \frac{Z_{L_a}}{N^2} = \frac{Z_{L_c}}{N^2} = \frac{Z_{L_c}}{N^2}$$
 (2)

Based on the bus-tie breaker and the load feeders, the load impedance is calculated as the parallel load of the connected loads in port and starboard. If the bus-tie breaker is closed then the resulting load impedance was the total parallel impedance of the connected loads. The parallel loads consisted of:  $Z_{\text{Motor1}}$ ,  $Z_{\text{Motor2}}$  and  $Z_{\text{utility load}}$ .

#### 1.2 Generators

#### 1.2.1 Equation for "Resulting Thevenin Voltage and Imepdance"

The circuit from the project description has three lines with a voltage source in series with an impedance each. By transforming each line to its Norten equivalent, and thereafter adding the lines together, we get:

$$I_{\text{Norton a-phase}} = \frac{\tilde{E}_1}{Z_{a1}} + \frac{\tilde{E}_2}{Z_{a2}} + \frac{\tilde{E}_3}{Z_{a3}}$$
 (3)

$$Z_{\text{Thevenin}} = \frac{1}{\frac{1}{Z_{a1}} + \frac{1}{Z_{a2}} + \frac{1}{Z_{a3}}} \tag{4}$$

$$V_{\text{Thevenin a-phase}} = I_{\text{Norton a-phase}} Z_{\text{Thevenin}} \tag{5}$$

The b- and c-phase of the voltage was found by multiplying with a phase shift of -120 and 120 degrees respectively. Notice that the equations (3-5) are dependent on the bus-tie breaker and the load feeders. See the respective script in appendix for more detail.

#### 1.3 MATLAB Programs

#### 1.3.1 Node Analysis

By Node Analyses the following equations were used to find the bus phase voltages:

$$V_{\rm an} = V_{\rm Thevenin a-phase} \frac{Z_{\rm Load}}{Z_{\rm Thevenin} + Z_{\rm Load}}$$
 (6)

$$V_{\rm bn} = V_{\rm Thevenin \ b\text{-}phase} \frac{Z_{\rm Load}}{Z_{\rm Thevenin} + Z_{\rm Load}}$$
 (7)

$$V_{\rm cn} = V_{\rm Thevenin\ c\text{-}phase} \frac{Z_{\rm Load}}{Z_{\rm Thevenin} + Z_{\rm Load}}$$
 (8)

#### 1.3.2 Electric parameters for loads

$$I_{\text{Motor1 1}} = V_{\text{an}}/Z_{\text{Motor1}} \tag{9}$$

$$I_{\text{Motor1 2}} = V_{\text{bn}}/Z_{\text{Motor1}} \tag{10}$$

$$I_{\text{Motor1 3}} = V_{\text{cn}}/Z_{\text{Motor1}} \tag{11}$$

$$I_{\text{Motor1 N}} = -I_{\text{Motor1 1}} - I_{\text{Motor1 2}} - I_{\text{Motor1 3}}$$
(12)

$$S_{\text{Motor1}} = \begin{bmatrix} V_{an} & V_{bn} & V_{cn} \end{bmatrix} \begin{bmatrix} I_{\text{Motor1 1}}^* & I_{\text{Motor1 2}}^* & I_{\text{Motor1 3}}^* \end{bmatrix}^T$$

$$(13)$$

$$P_{\text{Motor1}} = \text{real}(S_{\text{Motor1}})$$
  $Q_{\text{Motor1}} = \text{imag}(S_{\text{Motor1}})$   $pf_{\text{Motor1}} = \cos(\text{angle}(S_{\text{Motor1}}))$  (14)

Similarly for Motor2 and Transformer1.

#### 1.3.3 Electric parameters for generators

$$I_{\text{Generator1 1}} = \tilde{E}_1 e^{j\theta} - V_{an} \tag{15}$$

$$I_{\text{Generator1 2}} = \tilde{E}_1 e^{j\theta} - V_{bn} \tag{16}$$

$$I_{\text{Generator1 }3} = \tilde{E}_1 e^{j\theta} - V_{cn} \tag{17}$$

The nuetral current, the power (complex, active, reactive) and power factor are found in same manner as equations (12-14). Similarly for Generator 2 and 3. Look at the Matlab scripts for more detail.

#### 2 Simulations cases

### 2.1 Case 1: All running - All breakers closed (Same Internal rms-voltage and phase)

$$BT1 = CB1 = CB2 = CB3 = CB4 = CB5 = CB6 = 1$$

Given by task:

$$\tilde{E}_1 = \tilde{E}_2 = \tilde{E}_3 = 650V$$
  $\theta_1 = \theta_2 = \theta_3 = 15 \text{degrees}$ 

#### 2.1.1 a)

|                          | Load                |
|--------------------------|---------------------|
| Load [Ohm]               | 0.19956 + 0.15426i  |
| Thevenin impedance [Ohm] | 4.7448e-05+0.20563i |

Table 1: Load and Thevenin Impedance

|                       | RMS | Angle |
|-----------------------|-----|-------|
| Thevenin [V][degrees] | 650 | 15    |

Table 2: Load and Thevenin Impedance

#### 2.1.2 b)

|             | rmsPort  | anglePort | rmsStbd  | angleStbd |
|-------------|----------|-----------|----------|-----------|
| $V_{an}[V]$ | 398.3787 | -8.2821   | 398.3787 | -8.2821   |
| $V_{bn}[V]$ | 398.3787 | -128.2821 | 398.3787 | -128.2821 |
| $V_{cn}[V]$ | 398.3787 | 111.7179  | 398.3787 | 111.7179  |
| $V_{ab}[V]$ | 690.0122 | 21.7179   | 690.0122 | 21.7179   |
| $V_{bc}[V]$ | 690.0122 | -98.2821  | 690.0122 | -98.2821  |
| $V_{ca}[V]$ | 690.0122 | 141.7179  | 690.0122 | 141.7179  |

Table 3: The line-to-line and bus phase voltages in rms values

|          | Motor1                 | Motor2                               | Transformer1        |
|----------|------------------------|--------------------------------------|---------------------|
| $I_a[A]$ | 635.7399-517.907i      | 211.7769-365.425i                    | 249.9379-252.5617i  |
| $I_b[A]$ | -766.3906-291.6134i    | -422.3558-0.6916491i                 | -343.6938-90.17174i |
| $I_c[A]$ | 130.6507 + 809.5204i   | $210.5789 \!+\! 366.1167 \mathrm{i}$ | 93.7559+342.7335i   |
| $I_n[A]$ | 2.8422e-14+2.2737e-13i | -2.8422e- $14+1.7053$ e- $13$ i      | 0+5.6843e-14i       |
| P [kW]   | 841.0323               | 313.3725                             | 339.0745            |
| Q [kVAR] | 503.0679               | 395.7193                             | 255.6694            |
| pf [-]   | 0.85819                | 0.62082                              | 0.79846             |

Table 4: Electric parameters for loads

|                     | Generator1                      | Generator2                      | Generator3                      |
|---------------------|---------------------------------|---------------------------------|---------------------------------|
| $I_a[A]$            | 442.9115-458.4564i              | 442.9115-458.4564i              | 211.6317-218.9809i              |
| $I_b[A]$            | -618.4906-154.3444i             | -618.4906-154.3444i             | -295.4589-73.78793i             |
| $I_c[A]$            | 175.5791 + 612.8008i            | 175.5791 + 612.8008i            | 83.82722 + 292.7689i            |
| $I_n[A]$            | -8.5265e- $14+1.1369$ e- $13$ i | -8.5265e- $14+1.1369$ e- $13$ i | -4.2633e- $14+5.6843$ e- $14$ i |
| P [kW]              | 602.7449                        | 602.7449                        | 287.9896                        |
| Q [kVAR]            | 465.9538                        | 465.9538                        | 222.549                         |
| $P/P_r[percentage]$ | 66.9717                         | 66.9717                         | 66.9121                         |
| $Q/Q_r[percentage]$ | 69.0302                         | 69.0302                         | 68.9433                         |

Table 5: Electric parameters for generator

#### 2.1.3 c)

|         | Supplied               | Consumed               |
|---------|------------------------|------------------------|
| S [kVA] | 1493.4793 + 1154.4566i | 1493.4793 + 1154.4566i |

Table 6: Total complex power supplied and consumed

#### 2.1.4 d)

It can be verified from Table 5 that the active power is approx. equal in %-loading for the 3-gensets.

#### 2.1.5 e)

It can be verified from Table 5 that the reactive power is approx. equal in %-loading for the 3-gensets.

#### 2.1.6 f)

It can be verified from Table 5 that the current in the neutral wire for the 3 gensets is 0. I got a value with a factor  $10^{-13}$ , which is approx 0.

### 2.2 Case 1: All running - All breakers closed (Same Internal rms-voltage, but different phase)

#### Given by task:

$$\tilde{E}_1 = \tilde{E}_2 = \tilde{E}_3 = 650V$$
  $\theta_1 = 14, \, \theta_2 = 15 \text{ and } \theta_3 = 16.5 \text{ degrees}$ 

#### 2.2.1 a)

|                       | RMS      | Angle   |
|-----------------------|----------|---------|
| Thevenin [V][degrees] | 649.9178 | 14.8856 |

Table 7: The venin voltage in rms with angle

#### 2.2.2 b)

|                     | Generator1 | Generator2 | Generator3 |
|---------------------|------------|------------|------------|
| $P/P_r[percentage]$ | 64.5505    | 67.2737    | 71.2555    |
| $Q/Q_r[percentage]$ | 70.3946    | 68.8602    | 66.3552    |

Table 8: Power delivered in %-loading by each generator

#### 2.3 c)

The difference in phase angles mainly affected the sharing of active power. Genset1 went from 66.97~% to 64.55~%, Genset2 went from 66.97~% to 67.27~% and Genset3 went from 66.91~% to 71.25~%. While the biggest deviation in sharing of reactive power is a bit above 2~%.

### 2.4 Case 1: All running - All breakers closed (Different Internal rms-voltage, but same phase)

#### Given by task:

$$\tilde{E}_1 = 640V, \ \tilde{E}_2 = 650V \ \text{and} \ \tilde{E}_3 = 675V \qquad \theta_1 = \theta_2 = \theta_3 = 15 \ \text{degrees}$$

#### **2.4.1** a)

|                       | RMS      | Angle   |
|-----------------------|----------|---------|
| Thevenin [V][degrees] | 650.7843 | 15.0001 |

Table 9: The venin voltage in rms with angle

#### 2.4.2 b)

|                     | Generator1 | Generator2 | Generator3 |
|---------------------|------------|------------|------------|
| $P/P_r[percentage]$ | 66.0203    | 67.0522    | 69.5707    |
| $Q/Q_r[percentage]$ | 65.7506    | 68.9464    | 76.84      |

Table 10: Power delivered in %-loading by each generator

#### 2.4.3 c)

The difference in internal rms voltages mainly affected the sharing of reactive power between the generators. Generator3 had the biggest deviation and went from 69.94 % to 76.84 %, while the biggest deviation in sharing of active power was a bit below 3 %.

### 2.5 Case 2: 2-split system - Gen2 disconnected (Different Internal rms-voltage, but same phase)

$$CB1 = CB3 = CB4 = CB6 = 1$$
  
 $BT1 = CB2 = CB5 = 0$ 

#### Given by task:

$$\tilde{E}_1 = 710V, \ \tilde{E}_2 = 0 \ \text{and} \ \tilde{E}_3 = 696V \qquad \theta_1 = \theta_2 = \theta_3 = 20 \ \text{degrees}$$

#### 2.5.1 a)

|            | rmsPort  | anglePort | rmsStbd  | angleStbd |
|------------|----------|-----------|----------|-----------|
| $V_a b[V]$ | 689.9549 | 19.6762   | 690.1776 | 24.2325   |
| $V_b c[V]$ | 689.9549 | -100.3238 | 690.1776 | -95.7675  |
| $V_c a[V]$ | 689.9549 | 139.6762  | 690.1776 | 144.2325  |

Table 11: Line-to-line voltage in rms with angle

#### 2.5.2 b)

|                     | Generator1 | Generator2 | Generator3 |
|---------------------|------------|------------|------------|
| $P/P_r[percentage]$ | 93.4325    | 0          | 78.819     |
| $Q/Q_r[percentage]$ | 74.5162    | 0          | 79.2416    |

Table 12: Power delivered in %-loading by each generator

## 2.6 Case 2: 2-split system - Gen2 disconnected (Same Internal rms-voltage and phase. (BT1 = closed))

$$BT1 = CB1 = CB3 = CB4 = CB6 = 1$$
  
 $CB2 = CB5 = 0$ 

#### Given by task:

$$\tilde{E}_1 = \tilde{E}_3 = 705V$$
 and  $\tilde{E}_2 = 0V$   $\theta_1 = \theta_2 = \theta_3 = 20$  degrees

#### 2.6.1 a)

|            | rmsPort | anglePort | rmsStbd | angleStbd |
|------------|---------|-----------|---------|-----------|
| $V_a b[V]$ | 690.034 | 21.1287   | 690.034 | 21.1287   |
| $V_b c[V]$ | 690.034 | -98.8713  | 690.034 | -98.8713  |
| $V_c a[V]$ | 690.034 | 141.1287  | 690.034 | 141.1287  |

Table 13: Line-to-line voltage in rms with angle

#### 2.6.2 b)

|                     | Generator1 | Generator2 | Generator3 |
|---------------------|------------|------------|------------|
| $P/P_r[percentage]$ | 88.735     | 0          | 88.654     |
| $Q/Q_r[percentage]$ | 76.0779    | 0          | 75.9786    |

Table 14: Power delivered in %-loading by each generator

#### 2.6.3 c)

From Table 12 it can be seen that the load sharing between generator 1 and 3 is uneven in both active and reactive power. Generator 1 was working on 93.43 % while Generator 3 had 78.82 % on active power. However when the BT1 got closed and the rms internal voltages were set to be equal, the generators got a even loadsharing on both active and reactive power. This can be seen Table 14.

#### 3 Appendix: Matlab-scripts

#### 3.1 Resulting load impedances

```
function [Z L vec] = getResultingPerPhaseLoadImpedance(BT1, CB4, CB5,
       CB6)
   global M1 M2 T1 Utility load
  CLOSED = 1;
  % Resulting per-phase impedance of induction motor M1
  Z_p_{temp} = 1/(1/(M1.R_c) + 1/(j*M1.X_m) + 1/(j*M1.X_2 + M1.R_2/M1.slip)
      ));
  Z m1 = M1.R sm + j*M1.X sm + Z p temp;
10
  % Resulting per-phase impedance of induction motor M2
  Z_p_{temp} = 1/(1/(M_2.R_c) + 1/(j*M_2.X_m) + 1/(j*M_2.X_2 + M_2.R_2/M_2.slip)
      ));
  Z m2 = M2.R sm + j*M2.X sm + Z p temp;
14
15
  % Utility load and per-phase transformer seen from the source
  Z utility = Utility load.Z La/(T1.N<sup>2</sup>)
   if (BT1 == CLOSED)
18
       if CB4 == 0 && CB5 == 0 && CB6 == 0
19
           Z \;=\; i\,n\,f + j * i\,n\,f\;;
20
       else
21
           Z = 1 /((CB4/Z m1) + (CB5/Z m2) + (CB6/Z utility));
22
       end
23
       Z_L_{vec} = [Z; Z];
24
   else %BT1 == OPEN
25
       if CB4 == 0
26
           Z \text{ port} = \inf + j * \inf;
27
       else
28
           Z_port = Z_m1;
29
       end
30
       if CB5 = 0 \&\& CB6 = 0
31
           Z \text{ starboard} = \inf + j * \inf;
32
       else
33
           Z 	ext{ starboard} = 1/((CB5/Z m2) + (CB6/Z utility))
34
       end
35
       Z_L_{vec} = [Z_{port}; Z_{starboard}];
36
  end
37
  end
38
```

#### 3.2 Thévenin equivalent supply circuit

```
%theta is taken in as degrees
   function [V T vec, Z T vec] = getTheveninEquivalents (BT1, CB1, CB2,
      CB3, E_tilde_vec, theta_vec)
   global G1 G2 G3
4
  CLOSED = 1;
  77777777777777777777
  %Internal impedance of generators
  Z a1 = G1.R a1 + j*G1.X s1;
  Z_a2 = G2.R_a1 + j*G2.X_s1;
  Z = G3.R = 1 + j*G3.X = 1;
11
12
  % Internal rms voltages and phase angles
  E_a = [E_{tilde\_vec(1)} * (cosd(theta\_vec(1)) + j*sind(theta\_vec(1)));
            E_{tilde_{vec}(2)*(cosd(theta_{vec}(2)) + j*sind(theta_{vec}(2)));
15
            E tilde vec(3)*(cosd(theta vec(3)) + j*sind(theta vec(3)));
16
         ];
17
18
  % From voltage to current (Thev-Nort) transformation
  I \ a1 = CB1 * E \ a(1)/Z \ a1;
  I \ a2 = CB2 * E \ a(2)/Z \ a2;
21
  I a3 = CB3 * E a(3)/Z a3;
22
23
   if (BT1 = CLOSED)
24
       if CB1 = 0 \&\& CB2 = 0 \&\& CB3 = 0
25
           ZT
                    = \inf + j * \inf;
26
           I a
                     = \inf + j * \inf;
27
           V_{-}Ta
                    = 0 + j*0;
28
       else
29
           Z T
                    = 1/((CB1/Z a1)+(CB2/Z a2)+(CB3/Z a3));
30
                     = I a1+I a2+I a3;
31
           V Ta
                    = Z T*I a;
32
33
       end
34
       V \text{ Tb} = V \text{ Ta} * (\cos d(-120) + j*\sin d(-120));
35
       V Tc = V Ta * (cosd(120) + j*sind(120));
36
37
       Z T vec = [Z_T; Z_T];
38
       V_T_{\text{vec}} = [V_Ta, V_Tb, V_Tc; V_Ta, V_Tb, V_Tc];
39
40
   else %BT1 is open
41
       if CB1 == 0
42
            Z T port
                         = \inf + j * \inf;
43
            V_Ta_port
                         = 0 + j*0;
44
       e\,l\,s\,e
45
            Z T port
                         = Z a1;
46
                         = I a1*Z T port;
            V Ta port
47
       end
48
```

```
V_Tb_port = V_Ta_port * (cosd(-120) + j*sind(-120));
49
       V \text{ Tc port} = V \text{ Ta port} * (\cos d(120) + j * \sin d(120));
50
51
52
       if CB2 = 0 \&\& CB3 = 0
53
            Z_T_{starboard}
                              = \inf + j * \inf;
54
            V Ta starboard
                             = 0 + j*0;
55
       else
56
            Z_T_{starboard}
                              = 1/((CB2/Z_a2)+(CB3/Z_a3));
57
            I a starboard
                              = CB2*I a2+CB3*I a3;
58
            V Ta starboard
                             = I a starboard*Z T starboard;
59
       end
60
       V_Tb_starboard = V_Ta_starboard * (cosd(-120) + j*sind(-120));
61
       V_Tc_starboard = V_Ta_starboard * (cosd(120) + j*sind(120));
62
63
       V Ta = [V Ta port; V Ta starboard];
64
       V_Tb = [V_Tb_port; V_Tb_starboard];
65
       V_Tc = [V_Tc_port; V_Tc_starboard];
66
67
       Z_T_{vec} = [Z_T_{port}; Z_T_{starboard}];
68
       V_T_{\text{vec}} = [V_Ta, V_Tb, V_Tc];
69
70
  end
71
  end
```

#### 3.3 Node voltage analysis

#### 3.4 Electric parameters for loads

```
function [I M, I T1, P M T,Q M T, pf M T] = getElectricParamForLoads(
              CB4, CB5, CB6, V bus phase vec)
       global M1 M2 T1 Utility_load
     %The bus phase voltages
      V_{an} = V_{bus_phase_vec}(:,1);
     V \text{ bn} = V \text{ bus phase } vec(:,2);
      V_{cn} = V_{bus_phase_vec}(:,3);
     % Resulting per-phase impedance of induction motor M1
 9
                                    = 1/(1/(M1.R_c) + 1/(j*M1.X_m) + 1/(j*M1.X_2 + M1.R_2/M1.
      Z_p_temp
              slip));
      Z m1
11
                                              M1.R sm +
                                                                          j*M1.X sm + Z p temp;
12
                                              M1.R_sm + j*M1.X_sm + Z_p_temp;
13
14
                                          |;
15
     % Resulting per-phase impedance of induction motor M2
16
                                    = 1/(1/(M2.R c) + 1/(j*M2.X m) + 1/(j*M2.X 2 + M2.R 2/M2.
      Z p temp
17
              slip));
     Z m2
                                    = |
18
                                              M2.R sm + j*M2.X sm + Z p temp;
19
                                                                          j*M2.X_sm + Z p temp;
                                              M2.R sm +
20
21
     % Utility load and per-phase transformer seen from the source
22
       Z utility
23
                                               Utility load.Z La/(T1.N<sup>2</sup>);
                                               Utility_load.Z_La/(T1.N^2);
25
                                          ];
26
27
      28
       if CB4 == 0
29
                I_M1 = [[0;0], [0;0], [0;0], [0;0]];
30
       else
31
                I M1 = [CB4*V an./Z m1, CB4*V bn./Z m1, CB4*V cn./Z m1, [0;0]];
32
                I M1(:,4) = -I M1(:,1) - I M1(:,2) - I M1(:,3);
33
      end
34
     S M1 = (V bus phase vec*(I M1(1,1:3))')/1000; \% [kVA]
     P M1 = real(S M1);
36
     Q M1 = imag(S M1);
      pf_M1 = cos(angle(S_M1));
      \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\
39
40
      41
       if CB5 = 0
42
                I M2 = [[0;0], [0;0], [0;0], [0;0]];
43
       else
44
                I M2 = [CB5*V an./Z m2, CB5*V bn./Z m2, CB5*V cn./Z m2, [0;0]];
45
                I M2(:,4) = -I M2(:,1) - I M2(:,2) - I M2(:,3);
46
```

```
\operatorname{end}
47
  S M2 = (V bus phase vec*(I M2(2,1:3))')/1000; \% [kVA]
 P M2 = real(S M2);
  Q M2 = imag(S M2);
  pf M2 = \cos(angle(S M2));
51
  53
  54
  if CB6 = 0
55
      I_T1 = [[0;0], [0;0], [0;0], [0;0]];
56
  else
57
      I_T1 = [CB6*V_an./Z_utility, CB6*V_bn./Z_utility, CB6*V_cn./
58
         Z_utility, [0;0]];
      I_T1(:,4) = -I_T1(:,1) - I_T1(:,2) - I_T1(:,3);
59
60
  S T1 = (V_bus_phase_vec*(I_T1(2,1:3))')/1000; \% [kVA]
61
  P T1 = real(S_T1);
62
  Q_T1 = imag(S_T1);
  pf T1 = \cos(\text{angle}(S \ T1));
  65
66
_{67} I_M = [I_M1,I M2];
^{68} P M T = [P M1, P M2, P T1];
^{69} Q M T = [Q M1,Q M2,Q T1];
70 pf_M_T = [pf_M1, pf_M2, pf_T1];
_{71} end
```

#### 3.5 Electric parameters for generators

```
function [I G, P G and per, Q G and per] = getElectricParamForGen(CB1,
      CB2, CB3, V bus phase vec, E vec, theta vec)
   global G1 G2 G3
2
  %The bus phase voltages
  V_{an} = V_{bus_phase_vec(:,1)};
5
6
  %Internal impedance of generators
  Z = G1.R = a1 + j*G1.X = s1;
  Z = G2.R = 1 + j*G1.X = 1;
  Z_a3 = G3.R_a1 + j*G3.X_s1;
11
  Sn = [G1.S N; G2.S N; G3.S N];
   pf = [G1.pf; G2.pf; G3.pf];
14
  Pn = Sn.*pf;
15
  Qn = Sn.*[sin(acos(G1.pf));sin(acos(G2.pf));sin(acos(G3.pf))];
16
17
  18
  I G1 = zeros(2,4);
  I G2 = zeros(2,4);
  I G3 = zeros(2,4);
21
22
  E_a = [E_{vec}(1) * (cosd(theta_{vec}(1)) + j*sind(theta_{vec}(1)));
23
            E_{\text{vec}}(2)*(\cos d(\text{theta}_{\text{vec}}(2)) + j*\sin d(\text{theta}_{\text{vec}}(2)));
24
            E \operatorname{vec}(3) * (\operatorname{cosd}(\operatorname{theta} \operatorname{vec}(3)) + j * \operatorname{sind}(\operatorname{theta} \operatorname{vec}(3)));
25
          ];
26
27
   if CB1 = 0
28
       V G1 = 0;
29
   else
30
       V G1 = E a(1)-V an;
31
  end
32
   if CB2 = 0
33
       V_G2 = 0;
34
35
       V G2 = E a(2)-V an;
36
  end
37
   if CB3 = 0
38
       V_G3 = 0;
39
40
       V G3 = E a(3)-V an;
41
  end
42
  I G1(:,1) = CB1*V G1/Z a1;
  I G1(:,2) = (CB1*V G1/Z a1) *(cosd(-120)+j*sind(-120));
  I_G1(:,3) = (CB1*V_G1/Z_a1) *(cosd(120)+j*sind(120));
46
  I G1(:,4) = -I G1(:,1) - I G1(:,2) - I G1(:,3);
47
48
```

```
I G2(:,1) = CB2*V G2/Z a2;
  I G2(:,2) = (CB2*V G2/Z a2) *(cosd(-120)+j*sind(-120));
  I\_G2(:,3) \; = \; (CB2*V\_G2/Z\_a2) \; \; *(\; cosd\, (120) + j * sind\, (120) \; ) \; ;
  I_G2(:,4) = -I_G2(:,1) - I_G2(:,2) - I_G2(:,3);
53
  I G3(:,1) = CB3*V G3/Z a3;
  I G3(:,2) = (CB3*V G3/Z a3) *(cosd(-120)+j*sind(-120));
  I_G3(:,3) = (CB3*V_G3/Z_a3) *(cosd(120)+j*sind(120));
  I_G3(:,4) = -I_G3(:,1) - I_G3(:,2) - I_G3(:,3);
58
59
  S G1 = (V bus phase vec*(I G1(1,1:3))')/1000;
  S_G2 = (V_bus_phase_vec*(I_G2(2,1:3))')/1000;
  S_G3 = (V_bus_phase_vec*(I_G3(2,1:3))')/1000;
63
  P G1 = real(S G1);
64
  P G2 = real(S G2);
  P_G3 = real(S_G3);
67
  P_G1_per = 100* (P_G1/Pn(1,1));
68
  P G2 per = 100* (P G2/Pn(2,1));
69
  P_G3_per = 100* (P_G3/Pn(3,1));
71
72
  Q G1 = imag(S G1);
  Q G2 = imag(S G2);
74
  Q G3 = imag(S G3);
75
76
  Q G1 per = 100* (Q G1/Qn(1,1));
77
  Q_G2_per = 100* (Q_G2/Qn(2,1));
  Q_G3_per = 100* (Q_G3/Qn(3,1));
79
80
81
  I G = [I G1, I G2, I G3];
  P_G_{and\_per} = [P_G_{1}, P_G_{1}_{per}, P_G_{2}, P_G_{2}_{per}, P_G_{3}, P_G_{3}_{per}];
  Q G \text{ and } per = [Q G1, Q G1 per, Q G2, Q G2 per, Q G3, Q G3 per];
  end
85
```

#### 3.6 Overall program

```
function [V bus phase vec, V line to line vec, ...
                   I M, I T, P M T,Q M T, pf M T, ... %script 4
                   I_G, P_G_and_per,Q_G_and_per, ... %script 5
 3
                   S consumed, S supplied = overallProgram (BT1, CB1, CB2, CB3, CB4, CB5,
 4
                            CB6, E vec, theta vec)
 5
 6
        [V bus phase vec] = nodeVoltage (BT1, CB1, CB2, CB3, CB4, CB5, CB6, E vec,
                theta vec);
       [I_M, I_T, P_M_T, Q_M_T, pf_M_T] = getElectricParamForLoads(CB4, CB5, CB5, ParamForLoads)
 9
                CB6, V bus phase vec);
10
       [I G, P G and per, Q G and per] = getElectricParamForGen(CB1, CB2, CB3,
11
                V bus phase vec, E vec, theta vec);
12
       P \text{ consumed} = P M T(1,1) + P M T(2,2) + P M T(2,3);
13
       Q \text{ consumed} = Q M T(1,1) + Q M T(2,2) + Q M T(2,3);
14
15
       P supplied = P G and per(1,1) + P G and per(2,3) + P G and per(2,5);
16
       Q supplied = Q G and per(1,1) + Q G and per(2,3) + Q G and per(2,5);
17
18
       S_{consumed} = [P_{consumed}, Q_{consumed}];
19
       S_supplied = [P_supplied, Q_supplied];
20
21
      V an = V bus phase vec(:,1);
      V \text{ bn} = V \text{ bus phase } vec(:,2);
      V_cn = V_bus_phase_vec(:,3);
24
25
      %%%% line-to-line-voltage %%%%%
26
      V ab = V an - V bn;
      V bc = V bn - V cn;
      V ca = V cn - V an;
      V line to line vec = [V ab, V bc, V ca];
30
      \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\
31
32
33
      end
```

#### 3.7 Marine Power Plant Constants

```
1 global M1 M2 T1 Utility_load G1 G2 G3
2 G1 = struct('S_N', 1125, 'pf', 0.8, 'R_a1', 0.0001, 'X_s1', 0.5095, 'rpm', 1800, 'poles', 4, 'VAC_LtL', 690);
3 G2 = struct('S_N', 1125, 'pf', 0.8, 'R_a1', 0.0001, 'X_s1', 0.5095, 'rpm', 1800, 'poles', 4, 'VAC_LtL', 690);
4 G3 = struct('S_N', 538, 'pf', 0.8, 'R_a1', 0.0004, 'X_s1', 1.0665, 'rpm', 1800, 'poles', 4, 'VAC_LtL', 690);
5 M1 = struct('slip', 0.02, 'R_sm', 0.4169, 'X_sm', 0.2429, 'X_m', 0.0065, 'R_c', 290, 'R_2', 0.023, 'X_2', 0.264);
6 M2 = struct('slip', 0.025, 'R_sm', 0.5854, 'X_sm', 0.7255, 'X_m', 0.0140, 'R_c', 325, 'R_2', 0.026, 'X_2', 0.295);
7 T1 = struct('N', 0.57735, 'Connection', 'Ynyn');
8 Utility_load = struct('Z_La', 0.2984+j*0.2250, 'Z_Lb', 0.2984+j*0.2250);
```

#### 3.8 Simulation of case 1.1

```
clc
      clear all;
      close all;
     % Values
     Param
     CB1 = 1;
     BT1 = 1;
                                                               CB2 = 1:
                                                                                             CB3 = 1:
     CB4 = 1;
                                  CB5 = 1;
                                                               CB6 = 1:
11
12
                                  E2 = 650;
     E1 = 650;
                                                               E3 = 650;
13
14
     theta 1 = 15; theta 2 = 15; theta 3 = 15;
15
16
     E \text{ vec} = [E1; E2; E3];
17
     theta vec = [theta 1; theta 2; theta 3];
18
     19
20
     % Functions
21
     [Z L] = getResultingPerPhaseLoadImpedance(BT1, CB4, CB5, CB6);
      [V T, Z T] = getTheveninEquivalents(BT1, CB1, CB2, CB3, E vec,
             theta vec);
      [V\_bus\_phase\_vec, V\_line\_to\_line\_vec, I\_M, I\_T1, P\_M\_T, Q M T, pf M T, I G T,
             , P G and per, Q G and per, S consumed, S supplied = overallProgram (
             BT1, CB1, CB2, CB3, CB4, CB5, CB6, E_vec, theta_vec);
25
     % Table
26
     format long
     %%%% Verification of program %%%%%
     Z L = Z L(1);
     Z \text{ TPhaseA} = Z \text{ T(1)};
     V TPhaseA = V T(1,1);
31
32
     Thevenin = transpose([Z TPhaseA, V TPhaseA]);
33
     Load = transpose([Z_L, inf]);
34
      T verification = table (Load, Thevenin,...
                'RowNames', {'Imedance [Ohm]', 'Voltage [V]'})
36
      table2csv(T_verification, 'case_5_1_1_verification.csv')
37
     38
39
     format short
     %%%% RMS of the bus voltages %%%%%
     V bus rms
                                  = zeros(2,3);
                                                                       V_bus_angle = zeros(2,3);
      V line rms = zeros(2,3);
                                                                      V line angle = zeros(2,3);
43
      for i = 1:1:2
44
               for j_{-} = 1:1:3
45
                         V bus rms(i,j) = abs(V bus phase vec(i,j));
46
```

```
V_{line\_rms}(i_{,j_{}}) = abs(V_{line\_to\_line\_vec}(i_{,j_{}}));
47
48
                       V_bus_angle(i_,j_) = angle(V_bus_phase_vec(i_,j_)) * 180/pi;
49
                        V_{line\_angle(i\_,j\_)} = \frac{angle(V_{line\_to\_line\_vec(i\_,j\_)}) * 180/
50
              end
51
     end
52
53
     rmsPort = transpose([V_bus_rms(1,:),V_line_rms(1,:)]);
     rmsStbd = transpose([V_bus_rms(2,:),V_line_rms(2,:)]);
55
      anglePort = transpose([V bus angle(1,:),V line angle(1,:)]);
56
     angleStbd = transpose([V bus angle(2,:),V line angle(2,:)]);
57
58
     T voltage = table (rmsPort, anglePort, rmsStbd, angleStbd, ...
59
               'RowNames', \{ V_{an} | V \} [V]' 'V_{bn} [V]' 'V_{cn} [V]' 'V_{ab} [V]' '
60
                     V_{bc} [V]' 'V_{ca} [V]'})
61
      table2csv(T_voltage, 'case_5_1_1_voltage.csv')
62
63
     64
65
     66
     Motor1 = transpose([I M(1,1:4), P M T(1,1), Q M T(1,1), pf M T(1,1)]);
     Motor2 = transpose([I M(1,5:8), P M T(1,2), Q M T(1,2), pf M T(1,2)]);
     Transformer1 = transpose([I T1(1,:),P M T(1,3),Q M T(1,3),pf M T(1,3)]
69
             ]);
70
     T motor = table (Motor1, Motor2, Transformer1, ...
71
               'RowNames', { 'I_a [A] ' 'I_b [A] ' 'I_c [A] ' 'I n [A] ' 'P [kW] ' 'Q [
                    kVAR ' 'pf [-]')
73
     table2csv(T_motor, 'case 5 1 1 motor.csv')
74
     75
76
     77
     Generator 1 = \text{transpose} ([I G(1,1:4), P G \text{ and } per(1,1), Q 
            P G and per(1,2), Q G and per(1,2);
     Generator 2 = \text{transpose} ([I G(1,5:8), P G \text{ and } per(1,3), Q G \text{ and } per(1,3),
            P G and per(1,4), Q G and per(1,4));
      Generator3 = transpose ([I G(1,9:12), P G and per(1,5), Q G and per(1,5))
             P G \text{ and } per(1,6), Q G \text{ and } per(1,6);
81
     T_generator = table (Generator1, Generator2, Generator3,...
82
                'RowNames', { 'I_a [A]' 'I_b [A]' 'I_c [A]' 'I_n [A]' 'P [kW]' 'Q [
83
                    kVAR] ' 'P/P_r [percentage] ' 'Q/Q r [percentage] '})
84
     table2csv(T_generator, 'case_5_1_1_generator.csv')
     86
87
     format long
88
```

```
Supplied = S supplied (1) + j*S supplied (2)
  Consumed = S consumed (1) + j*S consumed (2)
91
  T power = table (Supplied, Consumed, ...
92
      'RowNames', { 'S [kVA]'})
93
  table2csv(T power, 'case 5 1 1 power.csv')
94
 format short
  3.9
      Simulation of case 1.2
  clc
  clear all;
  close all;
 % Values
 BT1 = 1;
            CB1 = 1;
                       CB2 = 1;
                                 CB3 = 1;
  CB4 = 1;
            CB5 = 1;
                       CB6 = 1;
11
12
  E1 = 650;
            E2 = 650;
                       E3 = 650;
13
14
  theta 1 = 14; theta 2 = 15; theta 3 = 16.5;
16
  E \text{ vec} = [E1; E2; E3];
17
  theta_vec = [theta_1; theta_2; theta_3];
18
  19
20
 % Functions
21
  [Z L] = getResultingPerPhaseLoadImpedance(BT1, CB4, CB5, CB6);
  [V_T, Z_T] = getTheveninEquivalents(BT1, CB1, CB2, CB3, E_vec,
    theta vec);
  [V bus phase vec, V line to line vec, I M, I T1, P M T, Q M T, pf M T, I G
     P G and per, Q G and per, S consumed, S supplied = overallProgram(
    BT1, CB1, CB2, CB3, CB4, CB5, CB6, E_vec, theta_vec);
25
 % Table
26
  format short
27
 %%%% Verification of program %%%%%
 RMS = abs(V T(1,1));
  Angle = angle(V T(1,1)) * 180/pi;
30
  T verification = table (RMS, Angle, ...
31
      'RowNames', { 'Thevenin [V][degrees]'})
32
  table2csv(T verification, 'case 5 1 2 verification.csv')
33
  34
 Generator1 = transpose([P_G_and_per(1,2),Q_G_and_per(1,2)]);
37
  Generator2 = transpose ([P G and per(1,4),Q G and per(1,4)]);
  Generator3 = transpose ([P G and per(1,6),Q G and per(1,6)]);
```

```
T_generator = table(Generator1, Generator2, Generator3,...
'RowNames', {'P/P_r [percentage]' 'Q/Q_r [percentage]'})

table2csv(T_generator, 'case_5_1_2_generator_power.csv')

**TowNames', **Townson of the content of
```

#### 3.10 Simulation of case 1.3

```
clc
     clear all;
     close all;
    % Values
    Param
    CB1 = 1:
                                                           CB2 = 1:
     BT1 = 1;
                                                                                       CB3 = 1:
10
                                CB5 = 1;
     CB4 = 1;
                                                           CB6 = 1:
11
12
                                E2 = 650;
     E1 = 640;
                                                           E3 = 675;
13
14
     theta 1 = 15; theta 2 = 15; theta 3 = 15;
15
16
     E \text{ vec} = [E1; E2; E3];
17
     theta vec = [theta 1; theta 2; theta 3];
18
     \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1
19
20
    % Functions
21
     [Z L] = getResultingPerPhaseLoadImpedance(BT1, CB4, CB5, CB6);
     [V T, Z T] = getTheveninEquivalents(BT1, CB1, CB2, CB3, E vec,
            theta vec);
      [V bus phase vec, V line to line vec, I M, I T1, P M T, Q M T, pf M T, I G
             , P G and per, Q G and per, S consumed, S supplied = overallProgram (
            BT1, CB1, CB2, CB3, CB4, CB5, CB6, E vec, theta vec);
25
    % Table
26
     format short
    %%%% Verification of program %%%%%
    RMS = abs(V T(1,1));
     Angle = angle(V_T(1,1)) * 180/pi;
30
     T verification = table (RMS, Angle,...
31
                'RowNames', { 'Thevenin [V][degrees]'})
32
     table2csv(T verification, 'case 5 1 3 verification.csv')
33
     34
35
     36
     Generator1 = transpose([P_G_and_per(1,2),Q_G_and_per(1,2)]);
37
     Generator = transpose ([P G and per(1,4),Q G and per(1,4)]);
38
     Generator3 = transpose ([P G and per(1,6),Q G and per(1,6)]);
39
40
     T generator = table (Generator1, Generator2, Generator3, ...
41
               'RowNames', { 'P/P r [percentage]' 'Q/Q r [percentage]'})
42
43
     table2csv(T generator, 'case_5_1_3_generator_power.csv')
```

#### 3.11 Simulation of case 2.1

```
clc
  clear all;
  close all;
  % Values
  Param
  CB1 = 1:
  BT1 = 0:
                         CB2 = 0:
                                     CB3 = 1;
  CB4 = 1;
             CB5 = 0;
                         CB6 = 1;
11
12
             E2 = 0;
                       E3 = 696;
  E1 = 710;
13
14
  theta 1 = 20; theta 2 = 20; theta 3 = 20;
15
16
  E \text{ vec} = [E1; E2; E3];
17
  theta vec = [theta 1; theta 2; theta 3];
18
  19
20
  % Functions
21
  [Z L] = getResultingPerPhaseLoadImpedance(BT1, CB4, CB5, CB6);
  [V T, Z T] = getTheveninEquivalents(BT1, CB1, CB2, CB3, E vec,
     theta vec);
  [V_bus_phase_vec, V_line_to line vec, I M, I T1, P M T, Q M T, pf M T, I G
     , P G and per, Q G and per, S consumed, S supplied = overallProgram (
     BT1, CB1, CB2, CB3, CB4, CB5, CB6, E vec, theta vec);
25
  % Table
26
  %%%% RMS of the complex variables %%%%%
  V line rms = zeros(2,3); V line angle = zeros(2,3);
28
  for i = 1:1:2
29
      for j = 1:1:3
30
          V line rms(i,j) = abs(V line to line vec(i,j));
31
32
33
          V_{line\_angle(i,j)} = angle(V_{line\_to\_line\_vec(i,j)}) * 180/pi;
34
      end
35
  end
36
37
  rmsPort = transpose(V_line_rms(1,:));
38
  rmsStbd = transpose(V line rms(2,:));
39
  anglePort = transpose(V line angle(1,:));
  angleStbd = transpose(V line angle(2,:));
41
42
  T voltage = table (rmsPort, anglePort, rmsStbd, angleStbd, ...
43
      'RowNames', { 'V ab [V]' 'V bc [V]' 'V ca [V]'})
44
45
  table2csv(T voltage, 'case 5 2 1 voltage.csv')
```

```
47
           48
49
           50
            Generator 1 \ = \ transpose \left( \left[ P\_G\_and\_per(1\,,2) \right., Q\_G\_and\_per(1\,,2) \right] \right) \, ;
51
            Generator2 = transpose([P_G_and_per(2,4),Q_G_and_per(2,4)]);
            Generator3 = transpose([P_G_and_per(2,6),Q_G_and_per(2,6)]);
53
54
            T_generator = table (Generator1, Generator2, Generator3,...
55
                                'RowNames', { 'P/P_r [percentage]' 'Q/Q_r [percentage]'})
56
57
            table2csv(T generator, 'case 5 2 1 generator power.csv')
           \(\frac{\partial \partial \par
```

#### 3.12 Simulation of case 2.2

```
clc
  clear all;
  close all;
  % Values
  Param
  CB1 = 1:
  BT1 = 1;
                         CB2 = 0:
                                     CB3 = 1;
  CB4 = 1;
             CB5 = 0;
                         CB6 = 1;
11
12
             E2 = 0;
  E1 = 705;
                       E3 = 705;
13
14
  theta 1 = 20; theta 2 = 20; theta 3 = 20;
15
16
  E \text{ vec} = [E1; E2; E3];
17
  theta vec = [theta 1; theta 2; theta 3];
18
  19
20
  % Functions
21
  [Z L] = getResultingPerPhaseLoadImpedance(BT1, CB4, CB5, CB6);
  [V T, Z T] = getTheveninEquivalents (BT1, CB1, CB2, CB3, E vec,
     theta vec);
  [V_bus_phase_vec, V_line_to line vec, I M, I T1, P M T, Q M T, pf M T, I G
     , P G and per, Q G and per, S consumed, S supplied = overallProgram (
     BT1, CB1, CB2, CB3, CB4, CB5, CB6, E vec, theta vec);
25
  % Table
26
  %%%% RMS of the complex variables %%%%%
  V line rms = zeros(2,3); V line angle = zeros(2,3);
28
  for i = 1:1:2
29
      for j = 1:1:3
30
          V line rms(i,j) = abs(V line to line vec(i,j));
31
32
33
          V_{line\_angle(i,j)} = angle(V_{line\_to\_line\_vec(i,j)}) * 180/pi;
34
      end
35
  end
36
37
  rmsPort = transpose(V_line_rms(1,:));
38
  rmsStbd = transpose(V line rms(2,:));
39
  anglePort = transpose(V line angle(1,:));
  angleStbd = transpose(V line angle(2,:));
41
42
  T voltage = table (rmsPort, anglePort, rmsStbd, angleStbd, ...
43
      'RowNames', { 'V ab [V]' 'V bc [V]' 'V ca [V]'})
44
45
  table2csv(T voltage, 'case 5 2 2 voltage.csv')
```

```
47
           48
49
           50
            Generator 1 \ = \ transpose \left( \left[ P\_G\_and\_per(1\,,2) \right., Q\_G\_and\_per(1\,,2) \right] \right) \, ;
51
            Generator2 = transpose([P_G_and_per(2,4),Q_G_and_per(2,4)]);
            Generator3 = transpose([P_G_and_per(2,6),Q_G_and_per(2,6)]);
53
54
            T_generator = table (Generator1, Generator2, Generator3,...
55
                                'RowNames', { 'P/P_r [percentage]' 'Q/Q_r [percentage]'})
56
57
            table2csv(T generator, 'case 5 2 2 generator power.csv')
           \(\frac{\partial \partial \par
```