PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2001139729 A

(43) Date of publication of application: 22.05.01

(51) Int. CI

C08L 9/00

C08K 3/04

C08K 3/36

//(C08L 9/00

, C08L 15:00)

(21) Application number: 2000052156

(22) Date of filing: 23.02.00

(30) Priority:

31.08.99 JP 11246190

(71) Applicant:

YOKOHAMA RUBBER CO

LTD:THE

(72) Inventor:

CHINO KEISUKE

ONOI SHUICHI **MIHARA SATOSHI**

(54) RUBBER COMPOSITION AND METHOD FOR PRODUCING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a rubber COPYRIGHT: (C)2001, JPO composition improved in wet braking and rolling resistance and good at abrasion resistance.

SOLUTION: This rubber composition is obtained by including 50-90 pts.wt. diene-based resin and 50-10 pts.wt. rubber gels having 16-150 toluene lubricated index (wherein a total of 100 pts.wt.).

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-139729 (P2001-139729A)

(43)公開日 平成13年5月22日(2001.5.22)

(51) Int.Cl. ⁷	談別記号	FΙ	テーマコード(参考)
COSL 9/00		C08L 9/00	4 J O O 2
C08K 3/04		C 0 8 K 3/04	
3/36		3/36	
// (CO8L 9/00		(C08L 9/00	
15: 00)		15: 00)	
22. 2.7		審査請求 未請求	請求項の数5 OL (全 9 頁)
(21)出顧番号	特膜2000-52156(P2000-52156)	(71)出顧人 00000671	14
		横浜ゴム	株式会社
(22)出顧日	平成12年 2 月23日 (2000. 2. 23)	東京都港	区新橋5丁目36番11号
		(72)発明者 知野 圭	計
(31)優先権主張番号	特顏平11-246190	神奈川県	平塚市迫分2番1号 横浜ゴム株
(32)優先日	平成11年8月31日(1999.8.31)	式会社平	塚製造所内
(33)優先権主張国	日本 (JP)	(72)発明者 尾ノ井	秀一
(55)		神奈川県	平塚市迫分2番1号 横浜ゴム株
,		式会社平	家製造所内
		(74)代理人 10007751	7
		弁理士	石田 敬 (外4名)
			最終頁に続く

(54) 【発明の名称】 ゴム組成物及びその製造方法

(57) 【要約】

【課題】 ウェット制動及び転がり抵抗を改良し、かつ 耐摩耗性の良好なゴム組成物を得る。

【解決手段】 ジエン系ゴム $50 \sim 90$ 重量部及びトルエン膨潤指数が $16 \sim 150$ のゲル化ゴム $50 \sim 10$ 重量部 (但し合計で 100 重量部) を含んで成るゴム組成物。

【特許請求の範囲】

【請求項1】 ジエン系ゴム50~90重量部及びトル エン膨潤指数が16~150のゲル化ゴム50~10重 母部(但し合計で100重量部)を含んで成るゴム組成 物。

1

【請求項2】 ジエン系ゴムのガラス転移温度が、ゲル 化ゴムのガラス転移温度よりも10℃以上低い請求項1 に記載のゴム組成物。

酸無水物骨格を 0. 1 重量%以上含むゲ 【請求項3】 ル化ゴムを配合した請求項1又は2に記載のゴム組成 物。

【請求項4】 ジエン系ゴムのガラス転移温度がゲル化 ゴムの転移温度より10℃以上低い、ジエン系ゴム50 ~90重量部とゲル化ゴム50~10重量部とからなる 原料ゴム100重量部に対して補強剤30~120重量 部を配合して成るゴム組成物を製造するにあたり、ジエ ン系ゴムと補強剤総量の80重量%以上とを135℃以 上の温度で混合し、次にゲル化ゴムと残りの補強剤を混 合することを特徴とするゴム組成物の製造方法。

【請求項5】 前記ゲル化ゴムのトルエン膨潤指数が1 6~150である請求項4に記載のゴム組成物の製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はジエン系ゴムに酸無 水物などで変性ゲル化したゲル化ゴムを配合することに よって得られる耐摩耗性を実質的に低下させることな く、ウェット性能が向上し、更に転がり抵抗が低下した 例えばタイヤ用として好適なゴム組成物及びその製造方 法に関する。

[0002]

【従来の技術】自動車タイヤなどに使用するゴム組成物 においては湿潤路面での走行性に優れ、転がり抵抗の低 いゴム組成物が望まれている。かかる観点から、例えば 特開平10-204217号公報にはゴム組成物にSB Rゴムゲルを配合することが提案されている。このSB Rゴムゲルは、重合中にジピニルベンゼンなどの多官能 化合物で架橋させる方法と重合後のポリマーを過酸化物 等で架橋させる方法で合成されている。

[0003]

【発明が解決しようとする課題】ゴムにカーボンを配合 することにより、温度に対する tan δ 曲線がプロード になり、粘弾性特性が悪化することが知られている。本 発明者らはウェット性能に優れた、即ち湿潤路面でのグ リップ力が高く、転がり抵抗の低いゴム組成物を開発す べく、ガラス転移温度Tgの高いゴムをゲル化させたも のを低Tgのゴムに混合することにより、カーポンの侵 入が抑えられ、0℃と60℃のtan δがパランスした ゴム組成物が得られることを期待して研究を進めた。そ の結果、ジエン系ゴムに架橋剤等によりゲル化させたゲ 50 有するフェノール系化合物(フェノール、tーブチルフ

ル化ゴムを混合することによりゴム組成物の粘弾性特性 が改良されることを見出した。また、低Tgゴムにカー ボン及びその他の配合剤を予め混合し、その後、それら と高丁gゴムをゲル化させたゲル化ゴムを混合する2段 混合法により調製したゴム組成物は、その粘弾性特性が 更に改良されることを見出した。

【0004】即ち、本発明の目的は、耐摩耗性を実質的 に低下させることなく、ウェット性能が向上し、更に転 がり抵抗を低下させることができる t a n δ パランスに 優れたゴム組成物及びその製造方法を提供することにあ る。

[0005]

【課題を解決するための手段】本発明に従えば、ジエン 系ゴム50~90重量部及びトルエン膨潤指数が16~ 150のゲル化ゴム50~10重量部(但し合計で10 0 重量部)を含んで成るゴム組成物が提供される。

【0006】本発明に従えば、またジエン系ゴムのガラ ス転移温度がゲル化ゴムの転移温度より10℃以上低 い、ジエン系ゴム50~90重量部とゲル化ゴム50~ 10重量部とからなる原料ゴム100重量部に対して補 強剤30~120重量部と配合して成るゴム組成物を製 造するにあたり、ジエン系ゴムと補強剤総量の80重量 %以上とを135℃以上の温度で混合し、次にゲル化ゴ ムと残りの補強剤及び加硫剤、加硫促進剤などを含むそ の他の配合剤を混合することからなるゴム組成物の製造 方法が提供される。

[0007]

20

【発明の実施の形態】低Tg(ガラス転移温度)ポリマ ーと高Tgポリマーからなるタイヤ用ゴム組成物では0 ℃付近の t a n δ は両ポリマーの相溶性に大きく影響さ れ、両ポリマーが非相溶性であれば0℃付近のtanδ が向上する。また、ゴムにカーボンブラックを配合する ことにより、tanδカーブはブロード化される。その ため、低Tgポリマーにカーボンブラックを偏在させ、 これに高Tgポリマーを配合することにより高Tgポリ マー側へのカーボンブラックの侵入が抑えられ、60℃ 付近の t a n δが低下する。本発明ではトルエン膨潤指 数が16~150のゲル化ゴムを高丁gポリマーとし て、ジエン系ゴムの低Tgポリマーと配合することによ り両ポリマーの非相溶化が促進され、0℃付近のtan δが向上し、また、耐摩耗性をあまり損なわず、場合に よっては向上する特性を有している。さらに本発明によ って、低Tgポリマーにカーポンプラックなどの補強剤 を偏在させ、これにゲル化ゴムを添加することにより0 ℃付近の t a n δが向上し、60℃付近の t a n δが低 下すると同時に、耐摩耗性も保持される。

【0008】本発明において使用するゲル化ゴムは、例 えばスチレンプタジエン共重合体ゴム(SBR)などの ジエン系ゴムを、無水マレイン酸及び芳香族系水酸基を

ェノール、カテコール及び t - ブチルカテコール、ハイ ドロキノン、並びにレゾルシン等)、あるいは過酸化物 系化合物(過酸化ジクミル等)、あるいはメルカプト系 化合物(トリチオシアヌル酸、1,10-デカンチオー ル等)を、80~250℃の温度で反応させることによ り製造することができる。

【0009】前記フェノール系化合物としては、例えば 以下のものを例示することができる。

モノフェノール系化合物

- 2, 6-ジ-t-ブチル-p-クレゾールブチル化ヒド 10 ロキシアニソール (BHA)
- 2. 6-ジーt-ブチルー4-エチルフェノール ステアリルー β -(3,5-ジーt-ブチルー4-ヒド ロキシフェニル) プロピオネート

【0010】ピスフェノール系化合物

- 2, 2'-メチレンピス(4-メチル-6-t-プチル フェノール)
- 2. 2'-メチレンピス(4-エチル-6-t-ブチル
- 4, 4'-チオピス (3-メチル-6-t-ブチルフェ 20
- 4, 4'-ブチリデンビス(3-メチル-6-t-ブチ ルフェノール)
- 3. 9-ピス〔1. 1-ジメチル-2-〔β- (3-t) -ブチル-4-ヒドロキシ-5-メチルフェニル)プロ ピオニルオキシ〕エチル〕2,4,8,10-テトラオ キサスピロ〔5, 5〕ウンデカン

【0011】高分子型フェノール系化合物

- 1, 1, 3-トリス (2-メチル-4-ヒドロキシ-5 - t - ブチルフェニル) ブタン
- 1, 3, 5-トリメチルー2, 4, 6-トリス(3, 5 ージーtーブチルー4ーヒドロキシベンジル) ベンゼン テトラキスー〔メチレンー3- (3´, 5´ージーt-ブチルー4′ーヒドロキシフェニル)プロピオネート〕 メタン
- ピス〔3, 3'ーピス(4'-ヒドロキシ-3'-t-ブチルフェニル) ブチリックアシッド] グリコールエス テル
- 1, 3, 5-トリス (3', 5'-ジーtープチルー 4′-ヒドロキシベンジル)-S-トリアジン-2.
- 4, 6-(1H, 3H, 5H) トリオン

トコフェロール(類)

【0012】その他のフェノール系化合物

- 2, 6-ジーtert-プチルー4-メチルフェノール (BHT)
- モノ (またはジまたはトリ) (α-メチルペンジル) フ ェノール
- プチルフェノール)

ブチルフェノール)

- 4, 4'-プチリデンピス(6-tert-ブチル-3 -メチルフェノール)
- 4, 4'-チオピス(6-tert-プチル-3-メチ ルフェノール)
- 1, 1-ピス(4-ヒドロキシフェニル) -シクロヘキ サン
- 2, 5-ジーtert-ブチルハイドロキノン
- 2, 5-ジーtert-アミルハイドロキノン
- 【0013】その他の架橋剤としては例えば、有機過酸 化物、例えば過酸化ジクミル、過酸化 t ープチルクミ ル、ピスー (tープチルーペルオキシーイソプロピル) ペンゼン、過酸化ジー t - プチル、2, 5 - ジメチルへ キサン-2,5-ジヒドロペルオキシド、2,5-ジメ チルー3-ヘキシン-2、5-ジヒドロペルオキシド、 過酸化ペンゾイル、過酸化2,4-ジクロルペンゾイ ル、過安息香酸 tープチル、そして、アゾピスイソプチ ロニトリルとアゾビスシクロヘキサンニトリルのような 有機アゾ化合物、そしてジメルカプトエタン、1,6-ジメルカプトヘキサン、1,3,5-トリメルカプトト リアジンのようなジメルカプト化合物とポリメルカプト 化合物、そしてピスークロルエチルホルマールと多硫化 ナトリウムのメルカプト停止反応生成物のようなメルカ プト停止多硫化ゴム、塩化イオウ、ジメルカプト酸、キ ノン類 (例えばp-キノン)、キノンジオキシム類 (例 えばpーキノンジオキシム、pーキノンジオキシムベン ゾエート)、ポリハロゲン化物(トリクロルメラミン、 ヘキサクロロシクロペンタジエン、オクタクロロシクロ ペンタジエン、トリクロロメタンスルフォクロリド、ペ 30 ンゾトリクロリド、塩化パラフィン、PVC、クロロブ レンゴム、クロロスルホン化ポリエチレンなど)及び金 属酸化物(塩化第一すず、酸化鉛など)又はトリエタノ ールアミン、パラホルムアルデヒド又はポリオキシメチ レン及びプロトン酸又はルイス酸(塩化スズ(川)、パ ラトルエンスルホン酸など)、ポラン類(例えばトリエ チルアミン-クロルボラン、トリエチレンジアミン-ビ スクロルボラン)、ジニトロン類(フェニルヒドロキシ ルアシン及びテレフタルアルデヒド)、ジニトリルオキ シド類(テレフタロニトリルオキシド、テレフタロヒド 40 ロキサミルクロリド)、ジニトリルイミン類(テレフタ リルフェニルヒドラジドクロリド及びトリエチルアミ ン)、ジシドノン類 (p-フェニレン-3, 3´-ジシ ドノン)、チオニルパラフェニレンジアミンなどをあげ ることができる。

【0014】ここで無水マレイン酸はゴムに対して0. 1重量%以上、好ましくは0.5~30重量%、ter tープチルカテコールなどのフェノール系化合物などは 0.05重量%以上、好ましくは0.1~5重量%反応 させる。この反応機構は、フェノール系化合物がベンジ 2. 2'-メチレンピス(4-エチルー6-tertー 50 ル位又はアリル位の水素を引き抜き、生成したペンジル

ラジカル又はアリルラジカルが酸無水物に付加し、さら に生成したラジカルが他のゴム分子の二重結合に付加あ るいは他のゴム分子とラジカルカップリングし、架橋が 生ずるものと推測される。

【0015】本発明に係るゲル化ゴムはトルエン膨潤指 数が16~150、好ましくは16~100であること が必要である。ここで、「トルエン膨潤指数」とはゲル 化ゴム0.2gをトルエン100페中に24時間浸し、 その時のゴムの重量(濡れ重量)を秤量する。秤量後、 乾燥させ乾燥重量を秤量し、濡れ重量/乾燥重量により **膨潤指数を求めた。このトルエン膨潤指数が小さすぎる** と耐摩耗性が悪化するので好ましくなく、逆に大きすぎ ると通常のゲル化させていないゴムと大差がなく、粘弾 性特性の改良効果が見られない。さらに分子中に酸無水 物骨格を0.1重量%以上、好ましくは0.5~10重 量%含むゲル化ゴムは通常のゴムと比較して耐摩耗性の 悪化が少なく、場合によっては向上する。また、過酸化 物系化合物、あるいはメルカプト系化合物により製造し たゲル化ゴムをジエン系ゴムに混合し得られるゴム組成 物は過酸化物系化合物、あるいはメルカプト系化合物が 加硫物性に影響を与える可能性があるため、酸無水物と フェノール系化合物により製造するゲル化ゴムがより好 ましい。

【0016】本発明に従ったゴム組成物はジエン系ゴム 50~90重量部、好ましくは60~85重量部と前記 ゲル化ゴムの少なくとも一種50~10重量部、好まし くは40~15重量部(但し合計量100重量部)とを 配合する。ゲル化ゴムの配合量が少な過ぎると期待する 効果が現れにくいので好ましくなく、逆に多過ぎると耐 摩耗性を悪化させてしまうので好ましくない。

【0017】本発明のゴム組成物に使用するジエン系ゴ ムには特に限定はないが、従来から各種ゴム組成物に一 般的に配合されている任意のゴム、例えば天然ゴム(N R)、ポリイソプレンゴム(IR)、スチレンブタジエ ン共重合体ゴム(SBR)、ポリブタジエンゴム(B R)、アクリロニトリルプタジエン共重合体ゴム(NB R)、ブチルゴム (IIR)、クロロプレンゴム、エチ レンプロピレン共重合体ゴム、エチレンープロピレンジ エン共重合体ゴム等をあげることができる。これらのゴ ムは単独又は任意のプレンドとして使用することができ 40 る。

【0018】本発明に従ったゴム組成物は好ましくは以 下のようにして製造される。即ち、本発明によれば、ジ エン系ゴム50~90重量部(好ましくは60~85重 **最部)とゲル化ゴム50~10重量部(好ましくは40** ~15重量部)とからなる原料ゴム100重量部に対し てカーポンプラック、シリカなどの補強剤30~120 重最部(好ましくは40~100重量部)を配合する。 この際、ジエン系ゴムのガラス転移温度Tgがゲル化ゴ ムのTgより10℃以上低いのが好ましく、更に好まし 50 で混合混練した。得られたゴム組成物を160℃で20

くは、ジエン系ゴムと補強剤総量の80重量%以上を1 35℃以上の温度で混合した後、ゲル化ゴムと残りの補 強剤を混合することによって所望のゴム組成物を製造す ることができる。

【0019】本発明のゴム組成物には、ゴム工業で通常 使用される配合剤を必要に応じて配合することができ る。このような配合剤としては、前記したカーボンプラ ック・シリカ等の補強剤の他に、例えば、加硫促進剤、 加硫活性化剤、老化防止剤、可塑剤、軟化剤等が挙げら れ、それぞれ必要量配合することができる。

【0020】本発明のゴム組成物は、タイヤ、ホース、 コンペヤベルト、ゴムシート、防舷材等各種ゴム製品に 使用することができるが、特にタイヤ用ゴム組成物とし て好適に用いることができる。

[0021]

【実施例】以下、実施例によって本発明を更に説明する が、本発明の範囲をこれらの実施例に限定するものでな いことは言うまでもない。

【0022】標準例1、実施例1~2及び比較例1 ゲル化ゴムの合成

(1) SBR1-ゲル1: スチレン-ブタジエン共重合 体ゴム (SBR) (ガラス転移温度-24.5℃) (日 本ゼオン製NS110)500gに、無水マレイン酸5 g及びtertープチルカテコール0.5gを加え、ニ ーダーで150℃にて約60分間混合してゲル化ゴムS BR1-ゲル1を製造した。このようにして得られたゴ ムを0.2gをトルエン100刷中に24時間浸したと ころ、溶解せず膨潤したことから、ゲル化していること を確認し、濡れ重量/乾燥重量により膨潤指数を算出し た。またIR分析により、1780cm⁻¹の吸収を確認 し、ゴム中に酸無水物構造が導入されたことを確認し た。得られたSBR1ーゲル1は酸無水物含量0.8重 量%及び膨潤指数18であった。

【0023】(2) SBR1-POゲル: SBR (日本 ゼオン製NS110) 250gをシクロヘキサン1リッ トルに溶解し、これに過酸化ジクミル20gを加え、オ ートクレープ中、窒素下60℃で2時間攪拌後、温度を 上げて150℃で45分間攪拌した。その後、10%硫 酸水溶液100gを加えてゲル化ゴムを凝固させ、60 ℃で2日間減圧乾燥した。膨潤指数は13であった。

【0024】(3) SBR2-ゲル1:スチレン・ブタ ジエンゴム (日本ゼオン、NS110) をSBR1-ゲ ル1と同様の方法で150℃で30分間混合した以外は 同様にして製造した。膨潤指数は18であった。

【0025】上で合成したゲル化ゴム及びその原料ゴム であるSBR1 (日本ゼオン製NS110、Tg=-2 4. 5℃) を用いて、表 I に示す配合内容 (重量部) に 従って標準例1、比較例1及び実施例1~2のゴム組成 物を常法に従ってバンバリーミキサー及び練りロール機

分間プレス加硫して目的とする試験片を調製し、その物 性を評価した。

【0026】使用した配合成分は以下の通りである。 NR (天然ゴム):ガラス転移温度-56℃

カーボンブラック:シースト3H (東海カーボン (株))

亜鉛華:亜鉛華3号(正同化学(株))

ステアリン酸: Lunac YA (花王石鹸 (株))

老化防止剤6C:ノクラック6C(大内新興化学工業)

硫黄:油処理硫黄(軽井沢精練所)

促進剤:加硫促進剤ノクセラーC2(大内新興化学工

業)

【0027】物性評価試験は以下の方法によった。結果*

*は表 I に示す。

(5)

 $tan\delta$ (0℃及び60℃):スペクトロメーター ((株) 東洋精機製作所製)を用いて、振幅±2%、振動20Hz、静歪10%で測定した。 $tan\delta$ (0℃)の値が大きいほど湿潤路面でのグリップが高いことを示し、 $tan\delta$ (60℃)の値が小さいほど転がり抵抗が少ないことを示す。

耐摩耗性:岩本製作所製ランボーン試験機を用いてJIS K6264に準拠して測定し、比較例1の値を100として指数表示した。この値が大きい方が耐摩耗性は良好である。

[0028]

【表1】

表 【

	標準例1	比較例I	実施例Ⅰ	実施例 2
NR	70	70	70	70
SBR1502	30	-	-	-
SBR 1 - POゲル	_	30	-	-
SBR 1 ーゲル 1	-	- .	30	_
SBR 2 ーゲル 1	-	-	_	30
カーボンプラック	50	50	50	50
亜鉛華	3	3	3	3
ステアリン酸	1	1	1	1
老化防止剤60	1	1	1	1
硫黄	1.75	1.75	1.75	1.75
加硫促進剤	1	1	1	1
tanδ (9°C)	0. 282	0. 301	0. 305	0. 314
tan & (80°C)	0. 176	0. 188	0.165	0. 158
tamるバランス	1. 602	1.601	1.848	1. 987
耐摩耗性(指数)	100	84	94	97

【0029】標準例2、実施例3~5及び比較例2~3 ジエン系ゴムとして下記のSBR3及び4、ゲル化ゴム として下記のゴムを用いた以外は実施例1及び比較例1 ~2と同様にして表口の配合(重量部)でゴム組成物を 得、その物性を評価した。結果を表口に示す。

【0030】SBR3:スチレン・ブタジエンゴム(旭 化成、タフデン1000R、Tg; -72℃)

SBR4:スチレン・プタジエンゴム (日本ゼオン、Nipol 9529、Tg;-21℃)

【0031】SBR4-POゲル1:スチレン・ブタジエンゴム(日本ゼオン、Nipol9550)250gをシクロヘキサン1リットルで溶解し、過酸化ジクミル37.5gを加えて、SBR1-POゲルと同様の方法で作製した。膨潤指数は13であった。

SBR4-ゲル1:スチレン・ブタジエンゴム(日本ゼ 50

オン、Nipol 9550) をSBR1-ゲル1と同様の方法でゲル化ゴムを作製した。膨潤指数は14であった。

SBR4-POゲル2:スチレン・ブタジエンゴム(日40 本ゼオン、Nipol9550)250gをシクロヘキサン1リットルで溶解し、過酸化ジクミル20gを加えて、SBR1-POゲルと同様の方法で作製した。膨潤指数は18であった。

SBR4-ゲル2:スチレン・ブタジエンゴム (日本ゼオン、Nipol 9550) をSBR2-ゲルと同様の方法でゲル化ゴムを作製した。膨潤指数は25であった。

SBR5-ゲル:スチレン・ブタジエンゴムゲル(日本ゼオン、2001)。膨潤指数は72であった。

0 [0032]

【表2】

麦_ 川

	標準例2	出較例 2	比較例3	実施例3	実施例 4	実施例5
SBR 3	70	70	70	70	70	70
SBR 4	30	-		-	_	-
SBR 4 - POゲル 1	-	30	-	_	-	_
SBR 4 -ゲル1	-	-	30	-	_	-
SER 4 - POゲル2	_	-	_	30	_	_
SBR 4 ーゲル 2		-		_	30	_
SBR 5 ーゲル	-	_	-	-	_	30
カーボン	70	70	70	70	70	70
亜鉛華	3	3	3	3	3	3
ステアリン酸	1	1	l	1	1	1
老防 6 C	1	1	1	1	1	1
アロマオイル	15	15	15	0 .	15	15
硫黄	1.75	1.75	1.75	1. <i>7</i> 5	1.75	1.75
促進剤	1	1	1	1	1	1
tanδ (0°C)	0. 450	0. 457	0. 454	0.509	0. 513	0. 517
tan∂ (60°C)	0. <i>2</i> 72	0, 332	0. 325	0.265	0. 260	0. 277
tanゟパランス	1.658	1.377	1. 397	1. 921	1. 975	1. 866
耐摩耗性(指数)	100	82	84	93	98	95

【0033】<u>標準例3~5、実施例6~7及び比較例4</u> ~5

ゴム成分として表Vに示すものを用いて、実施例1及び 30 比較例1~2と同様にして表III に示す配合 (重量部) で第1段工程及び第2段工程の2段工程で配合してゴム 組成物を得、その物性を評価した。なお1段工程の配合 は実施例1及び比較例1~2と同様の方法にて混合混練 し、2段工程の配合は加硫系以外の配合剤をバンバリー ミキサーで混合混練し、放出後加硫系配合剤をロールで 加えて混合混練した。結果を表III に示す。

【0034】SBR3及びSBR4:前述の通り SBR5:スチレン・ブタジエンゴム (日本エラストマー、アサプレン303、Tg;-33℃) 【0035】SBR4-ゲル1及びSBR4-ゲル2: 前述の通り

SBR5-ゲル1:スチレン・ブタジエンゴム (日本エラストマー、アサブレン303) をSBR1-ゲル1と 同様の方法でゲル化ゴムを作製した。膨潤指数は10であった。

SBR5-ゲル2:スチレン・ブタジエンゴム (日本エラストマー、アサプレン303) をSBR2-ゲルと同様の方法でゲル化ゴムを作製した。膨潤指数は17であった。

[0036]

【表3】

40

表皿

	標準例	標準例 4	比較例 4	実施例	標準例 5	標準例 6	出校例 5	実施例7
1段工程	T							
SBR 3	70	70	70	70	70	70	70	70
SBR 4	45	_	-	-	-	_	-	-
SBR 5	-	••	-	_	30	-	_	-
カーボン	70	70	70	70	70	70	70	70
華金	3	3	3	. 3	3	3	3	3
ステアリン酸	1	1	ì	i	1	1	1	1
老防 6 C	1	l	1	l	1	1	1	1
アロマオイル	0	0	15	15	15	15	15	15
NP	160	160	160	160	160	160	160	160
2段工程	İ				Ì			
SBR 4	-	45	– .	-	-	-	_	-
SBR 4 —GEL 1	-	-	30	-	-	-	_	_
SBR 4 -CEL 2	_	-	-	30	-	-	-	-
SER 5	-	_	-	-	_	30	-	-
SBR 5 -GEL 1		-	-	_	_	-	30	-
SBR 5 -GEL 2	-	_	-	-	_	-	-	30
硫黄	1.75	1.75	1.75	1.75	1. 75	1.75	1.75	1.75
促進期	1	1	1	1	1	1	1	1
tanδ (0°C)	0.450	0.415	0.460	0. 475	0. 446	0. 415	0. 450	0. 468
tan & (60°C)	0. 272	0.219	0. 295	0. 221	0. 319	0. 252	0. 328	0. 239
tanゟパランス	1.664	1.895	1.559	2. 149	1. 398	1.647	1. 372	1. 958
耐摩托性(指数)	100	102	82	97	100	136	86	125

【0037】標準例7及び実施例8~13

表IVに示す配合(重量部)を用いた以外は実施例1と同様にして配合してゴム組成物を得、その物性を評価した。結果を表IVに示す。

【0038】SBR3及びSBR4:前述の通り

【0039】SBR4-ゲル3:スチレン・ブタジエンゴム(日本ゼオン、Nipol 9529、Tg;-21℃)400gに1,10-デカンチオール10gを加え、ニーダーにて185℃で40分間混合し、ゲル化ゴムを作製した。膨潤指数は21であった。

SBR4-ゲル4:スチレン・ブタジエンゴム (日本ゼ 40 オン、Nipol 9529、Tg;-21℃) 400 gにトリチオシアヌル酸9gを加え、ニーダーにて190℃で15分間混合し、ゲル化ゴムを作製した。膨潤指数は32であった。

SBR4-ゲル5:スチレン・ブタジエンゴム (日本ゼオン、Nipol 9529、Tg;-21℃) 400 gに過酸化ジクミル7gを加え、ニーダーにて175℃で5分間混合し、ゲル化ゴムを作製した。膨潤指数は1

30 6 であった。

SBR4-ゲル6:スチレン・ブタジエンゴム (日本ゼオン、Nipol 9529、Tg; -21°C) 400 gにペンゾキノン7g、無水マレイン酸10gを加え、ニーダーにて180°Cで20分間混合し、ゲル化ゴムを作製した。膨潤指数は18°であった。

SBR4-ゲル7:スチレン・ブタジエンゴム (日本ゼオン、Nipol 9529、Tg; -21℃) 400 gにフェノール11g、無水マレイン酸10gを加え、ニーダーにて180℃で30分間混合し、ゲル化ゴムを作製した。膨潤指数は17であった。

SBR4-ゲル8:スチレン・ブタジエンゴム (日本ゼオン、Nipol 9529、Tg;-21℃)400gにハイドロキノン11g、無水マレイン酸10gを加え、ニーダーにて180℃で40分間混合し、ゲル化ゴムを作製した。膨潤指数は29であった。

[0040]

【表4】

<u> 多」IV</u>

	標準例 7	実施例8	実施例 9	実施例10	実施例11	实施例12	実施例13
1段目							
SBR 3	70	70	70	70	70	70	70
SBR 4	45	-	-	-	-	-	-
SBR 4 ーゲル 3	-	30	-	-	-	-	-
SBR 4 - ゲル4	-	-	30	-	-	-	_
SBB 4 - ゲル 5	-	-	-	30	-	-	-
SBR 4 ーゲル6	_	-	-	-	30	-	-
SBR4ーゲルで	_	-	-	-	-	30	-
SBR 4 ーゲル 8	-	-	-	-	-	-	30
カーポンプラック	70	70	70	70	70	70	70
亜鉛筆	3	3	3	3	3	3	3
ステアリン酸	1	1	1	1	1	I	1
老化防止兩6℃	1	1	1	1	1	1	1
アロマオイル		15	15	15	15	15	15
破貨	1.75	1.75	1, 75	1. 75	1. 75	1.75	1. 75
加蘇促進制	1	1	1	1	1	1	1
tanő (O°C)	0. 466	0. 452	0. 455	0, 515	0. 505	0. 533	0, 535
tan <i>ō</i> (60°C)	0. 296	0. 268	0. 279	0. 291	0. 271	0. 272	0. 287
tamδパランス	1. 574	1. 687	1. 631	1. 770	1. 863	1.960	1.864
耐摩耗性(指数)	160	98	95	87	86	87	86

【0041】標準例8~9及び実施例14~19 表Vに示す配合 (重量部) を用いた以外は実施例6~7 30 SBR4-ゲル3~SBR4-ゲル8:前述の通り と同様にして第1段及び第2段の2工程で配合してゴム 組成物を得、その物性を評価した。結果を表Vに示す。

【0042】SBR3~SBR5:前述の通り [0043] 【表 5 】

表 V

	- Distance	D 120007-1						
	经期	8 標準例 9	9 奥姆	04 実施例	15 実施の	116 実施列	17 美元列	8 英語和
1段工程								
SBR 3	70	70	70	70	70	70	70	70
SER 4	45	-	_	-	-	-	-	-
SBR 5		-	_	_	-	_	-	
カーボンブラック	70	70	70	70	70	70	70	70
亜鉛華	3	3	3	3	3	3	3	3
ステアリン酸	1	1	1	. 1	1	1	1	1
老化防止剂6 C	1	1	1	1	1	1	1	t
アロマオイル	0	0	15	15	15	15	15	15
NP	160	160	160	160	160	160	160	160
2段工程								
SBR 4	-	45	-	-	-	-	-	-
SBR 4 ーゲル3	-	-	30	-	-	-	-	-
SBR 4 ーゲル 4	-	-	-	30	-	-	-	-
SBR4ーゲル5	-	-	_	-	30	-	-	-
5884 ーゲル 6	-	-	_	_		30	-	-
数4ーゲル7	-	-	-	-	-	-	30	-]
配4ーゲル8	_	-	-	-	-	-	-	30
(6)	1.75	L 75	L 75	1.75	i. 75	1. 75	1. 75	L 75
1225年	ì	1	1	1	1	1	1	1
ໝາ∂ (0°C)	0.466	0.414	0.443	0. 419	0. 513	0. 510	0. 507	0.485
140 € (SPC)	0. 296	0. 234	0.235	0. 233	0. 285	0. 246	0. 241	0.241
8がランス	1.574	1.769	L 885	L 798	1. 800	2 073	2. 103	2 012
海峡性(指数)	100	101	92	011	102	106	117	109

【0044】 【発明の効果】以上の通り、本発明に従ったゲル化ゴム を配合したゴム組成物は、0℃でのtan-6が高く (ウェット制動良好)、そして60℃のtan6が低い

30 (転がり抵抗良好) ゴム組成物を得ることができ、粘弾性に優れたゴム組成物としてタイヤなどの用途に好適である。またコンペアベルト、ゴムホース、防舷材、ゴムシート等にも用いることができる。

フロントページの続き

(72) 発明者 三原 論

神奈川県平塚市追分2番1号 横浜ゴム株式会社平塚製造所内

F 夕一ム(参考) 4J002 AC011 AC031 AC061 AC071 AC081 AC091 AC112 BB151 BB181 DA036 FD016 GN01