

Barem de corectare — proba teoretică Clasa a XII-a

Problema 1

	Legea refracției la intrarea în fibră: $\sin \theta_{\text{max}} = n_0 \sin r$	0,50
	Condiția de reflexie totală pe suprafața de separație dintre mediul optic din care este realizată fibra și mediul optic care mărginește fibra: $n_0 \sin \ell = n$	0,50
a.	Din construcție: $r = \frac{\pi}{2} - \ell$	0,25
	Rezultă: $\sin \theta_{\text{max}} = n_0 \cos \ell$	0,50
	Respectiv: $\sin \theta_{\text{max}} = \sqrt{n_0^2 - n^2}$	1,00
	Numeric: $\sin \theta_{\text{max}} \cong 0,247$, $\theta_{\text{max}} \cong 14,3^{\circ}$	0,25
	Total 1a:	3,00
	În funcție de unghiul de incidență, razele de lumină care pătrund în fibra optică parcurg diferite drumuri optice.	0,25
	Cel mai scurt drum optic corespunde incidenței normale la intrarea în fibra optică. Durata propagării luminii pe acest drum este cea mai scurtă posibilă. Rezultă: $t_{\min} = \frac{L}{v} = \frac{n_0 L}{c}$	0,75
b.	Cel mai lung drum optic corespunde incidenței la unghiul θ_{\max} . Durata propagării luminii pe acest drum este cea mai lungă posibilă. Rezultă: $t_{\max} = \frac{D_{\max}}{v}$	0,75
	Din construcție: $D_{\text{max}} = \frac{L}{\sin \ell}$	1,00
	Rezultă: $t_{\text{max}} = \frac{n_0^2 L}{nc}$	0,50
	Capătul de ieșire al fibrei optice va fi luminat un interval de timp: $\Delta t = t_{\rm max} - t_{\rm min}$. Rezultă: $\Delta t = \frac{n_0 L}{c} \left(\frac{n_0}{n} - 1 \right)$	0,50
	Numeric: $\Delta t = 67,55 \text{ ns}$	0,25
	Total 1b:	4,00
	Pentru ca două impulsuri succesive să nu se suprapună la ieșirea din fibra optică, este necesar ca intervalul dintre ele τ să fie cel puțin egal cu intervalul Δt calculat anterior: $\tau \ge \Delta t$	1,25
c.	Rezultă capacitatea de transmisie a fibrei (pe secundă): $\mathbb{C} = \frac{1}{\Delta t} = \frac{n}{n_0 (n_0 - n)} \frac{c}{L}$	1,50
	Numeric: $\mathbb{C} \cong 15 \frac{\text{Mbiţi}}{\text{s}}$	0,25
	Total 1c:	3,00
Total problema 1:		

Problema 2

Α.	
Legea conservării impulsului: $Ox: m_1 v_{1x} + m_2 v_{2x} = m v_x \implies \frac{m_{01} v_{1x}}{\sqrt{1 - \frac{v_{1x}^2}{c^2}}} + \frac{m_{02} v_{2x}}{\sqrt{1 - \frac{v_{2x}^2 + v_{2y}^2}{c^2}}} = \frac{m_0 v_x}{\sqrt{1 - \frac{v_x^2 + v_y^2}{c^2}}} $ (1)	0,25
$Oy: m_2 v_{2y} = m v_y \implies \frac{m_{02} v_{2y}}{\sqrt{1 - \frac{v_{2x}^2 + v_{2y}^2}{C^2}}} = \frac{m_0 v_y}{\sqrt{1 - \frac{v_x^2 + v_y^2}{C^2}}} $ (2)	0,25
Legea conservării energiei:	
	0,50
Rezolvând sistemul format din ecuațiile (1), (2) și (3) se obține:	
$\mathbf{v}_{x} = \frac{\frac{m_{01}\mathbf{v}_{1x}}{\sqrt{1 - \frac{\mathbf{v}_{1x}^{2}}{c^{2}}}} + \frac{m_{02}\mathbf{v}_{2x}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^{2} + \mathbf{v}_{2y}^{2}}{c^{2}}}}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^{2} + \mathbf{v}_{2y}^{2}}{c^{2}}}}; \mathbf{v}_{y} = \frac{\frac{m_{02}\mathbf{v}_{2y}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^{2} + \mathbf{v}_{2y}^{2}}{c^{2}}}}}{\frac{m_{01}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^{2} + \mathbf{v}_{2y}^{2}}{c^{2}}}}} + \frac{m_{02}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^{2} + \mathbf{v}_{2y}^{2}}{c^{2}}}}}$	1,00
$\begin{split} & Respectiv: \\ & m_0 = \left(\frac{m_{01}}{\sqrt{1 - \frac{\mathbf{v}_{1x}^2}{c^2}}} + \frac{m_{02}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^2 + \mathbf{v}_{2y}^2}{c^2}}} \right) \cdot \\ & \qquad \qquad \\ & \left[\frac{m_{01}^2 \mathbf{v}_{1x}^2}{1 - \frac{\mathbf{v}_{1x}^2}{c^2}} + \frac{m_{02}^2 \left(\mathbf{v}_{2x}^2 + \mathbf{v}_{2y}^2 \right)}{1 - \frac{\mathbf{v}_{2x}^2 + \mathbf{v}_{2y}^2}{c^2}} + \frac{2m_{01}m_{02}\mathbf{v}_{1x}\mathbf{v}_{2x}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^2 + \mathbf{v}_{2y}^2}{c^2}}} \right]^{1/2} \\ & \qquad \qquad \\ & \left[1 - \frac{1}{c^2} \frac{m_{01}^2 \mathbf{v}_{1x}^2 + \frac{m_{02}^2 \left(\mathbf{v}_{2x}^2 + \mathbf{v}_{2y}^2 \right)}{1 - \frac{\mathbf{v}_{2x}^2 + \mathbf{v}_{2y}^2}{c^2}} + \frac{2m_{01}m_{02}\mathbf{v}_{1x}\mathbf{v}_{2x}}{\sqrt{1 - \frac{\mathbf{v}_{2x}^2 + \mathbf{v}_{2y}^2}{c^2}}} \right]^{1/2} \end{split}$	1,00
Dacă cei doi atomi se deplasează în sensuri opuse de-a lungul axei Ox , având impulsurile egale în modul, în rezultatele anterioare se fac următoarele particularizări: $v_{2y} = 0 \text{ și } \frac{m_{01}v_{1x}}{\sqrt{1-\frac{v_{1x}^2}{c^2}}} = -\frac{m_{02}v_{2x}}{\sqrt{1-\frac{v_{2x}^2}{c^2}}}$	0,50
Rezultă: $v_x = 0$; $v_y = 0$ și respectiv $m_0 = \frac{m_{01}}{\sqrt{1 - \frac{v_{1x}^2}{c^2}}} + \frac{m_{02}}{\sqrt{1 - \frac{v_{2x}^2}{c^2}}}$	0,50
Total 2A:	4,00

	В.	
	Fie (S) sistemul de referință legat de Pământ, iar (S') sistemul de referință legat de rachetă. Intervalul de timp Δt este egal cu durata necesară parcurgerii de către semnalul electromagnetic dus-întors a distanței $d+\ell$, unde d este distanța parcursă de rachetă în timp ce semnalul electromagnetic străbate într-un singur sens distanța dintre cele două oglinzi, iar ℓ este distanța dintre oglinzi măsurată față de sistemul de referință (S).	0,50
	Fie Δt ' durata necesară parcurgerii de către semnalul luminos a distanței dintre cele două oglinzi, măsurată față de sistemul de referință (S'): $\Delta t' = \frac{\ell_0}{c}$	0,50
	Durata aceluiași proces, măsurată din sistemul de referință (S), este: $\Delta t_1 = \frac{\Delta t'}{\sqrt{1-\beta^2}} \implies \Delta t_1 = \frac{\ell_0}{c\sqrt{1-\beta^2}}; \ \beta = \frac{v}{c}$	0,50
a.	Distanța d parcursă de rachetă față de sistemul de referință (S) este: $d = v\Delta t_1 = \frac{\beta \ell_0}{\sqrt{1-\beta^2}}$	0,50
	Distanța dintre cele două oglinzi, măsurată față de sistemul de referință (S) este: $\ell = \ell_0 \sqrt{1-\beta^2}$	0,50
	Rezultă: $\Delta t = \frac{2(d+\ell)}{c} = \frac{2}{c} \left(\frac{\beta \ell_0}{\sqrt{1-\beta^2}} + \ell_0 \sqrt{1-\beta^2} \right) \Rightarrow \Delta t = \frac{2\ell_0}{c} \frac{1+\beta-\beta^2}{\sqrt{1-\beta^2}}$	0,50
	$\beta^2 << \beta \implies \Delta t \cong \frac{2\ell_0}{c} \sqrt{\frac{1+\beta}{1-\beta}}$	0,50
	Viteza rachetei este: $v = c \frac{(\Delta t)^2 c^2 - 4\ell_0^2}{(\Delta t)^2 c^2 + 4\ell_0^2}$	0,50
	Total 2Ba:	4,00
	Frecvența semnalului electromagnetic înregistrat pe rachetă este: $v'=v_0\sqrt{\frac{1-\beta}{1+\beta}}$	0,75
b.	Frecvența semnalului electromagnetic înregistrat pe Pământ, după reflecție, este: $\nu=\nu'\sqrt{\frac{1-\beta}{1+\beta}}$	0,75
	Rezultă: $v = v_0 \frac{1 - \beta}{1 + \beta}$	0,50
	Total 2Bb:	2,00
	Total problema 2:	10,00

Problema 3

	In condițiile date, un atom oarecare trece pe nivelul n prin ciocnire cu un electron din fasciculul incident, dacă: $E_{C0} \ge \frac{E_1}{n^2} - E_1 \implies E_{C0} \ge W_i - \frac{W_i}{n^2}$	0,50
	Nivelul energetic cel mai înalt pe care se poate produce excitarea atomilor de hidrogen prin ciocniri cu electronii din fasciculul incident este: $n_{\max} = \left[\sqrt{\frac{W_i}{W_i - E_{C0}}}\right]; \; E_{C0} < W_i$	1,00
	Din incintă ies radiații care corespund tuturor tranzițiilor $n \to k$ pentru care $n \le n_{\text{max}}$ și $k \le n-1$.	0,25
a.	Frecvenţa radiaţiilor emise este: $v_{n\to k} = cR_{\infty} \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$	0,50
	Energiile cinetice ale electronilor care ies din incintă sunt: • E_{C0} pentru electronii care trec fără ciocniri sau care suferă numai ciocniri elastice cu atomii de hidrogen • $E_{C0} - W_i \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$, $n \le n_{\max}$; $k \le n-1$ pentru electronii care suferă ciocniri inelastice cu atomii de hidrogen	0,50
	Dacă energia cinetică a electronilor din fasciculul incident este $E_{C0} \ge W_i$, atunci din incintă se emite întregul spectru de radiații al hidrogenului, iar electronii care ies din incintă vor avea energia cinetică atât într-un spectru discret, cât și într-un spectru continuu (electronii rezultați prin ionizarea atomilor de hidrogen)	0,25
	Total 3a:	3,00
b.	Constanta lui $Rydberg$ în ipoteza nucleului neantrenat este: $R_{\infty} = \frac{me^4}{8c\varepsilon_0^2 h^3}$ Dacă se ia în considerare antrenarea nucleului, în locul masei electronului apare masa redusă a sistemului electron-nucleu: $R = \frac{mM}{m+M} \frac{e^4}{8c\varepsilon_0^2 h^3} \Rightarrow R = \frac{M}{m+M} R_{\infty} \text{ (se acceptă și fără demonstrație)}$	2,00
	Pentru hidrogenul uşor: $R_H = \frac{M}{m+M} R_{\infty}$	0,25
	Pentru hidrogenul greu: $R_D = \frac{2M}{m+2M} R_{\infty}$	0,25
	Deplasarea izotopică pentru linia spectrală $n \to k$, $n \le n_{\text{max}}$; $k \le n-1$ este: $\Delta v_{D-H} = cR_{\infty} \left(\frac{2M}{m+2M} - \frac{M}{m+M} \right) \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$	1,00

	Efectuând calculele și neglijând m^2 față de M^2 , se obține:	
	$\Delta V_{D-H} \cong cR_{\infty} \frac{m}{3m + 2M} \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$	0,50
	Total 3b:	4,00
	Agitația termică determină o lărgire Doppler a liniilor spectrale. Dacă v_0 este	
	frecvența radiației în sistemul de referință al atomului, atunci:	
	$v = v_0 \sqrt{\frac{c-v}{c+v}}$, în care v este viteza atomului față de sistemul de referință în care se	1,00
	detectează radiația cu frecvența v.	
	Viteza datorată agitației termice este mult mai mică decât viteza luminii. Rezultă:	
c.	$\left \mathbf{v} - \mathbf{v}_0 \right \cong \mathbf{v}_0 \frac{\mathbf{v}}{c}$	0,50
	Dar:	
	$\frac{M v^2}{2} \sim \frac{3}{2} k_B T \implies v \sim \sqrt{\frac{3k_B T}{M}}$	1,00
	Rezultă lărgirea <i>Doppler</i> a liniei spectrale:	
	$\left \Delta v \right \sim v_0 \sqrt{\frac{3k_B T}{Mc^2}}$	0,50
	Total 3c:	3,00
	Total problema 3:	10,00