Digital Logic & Computer Design CS 4341

Professor Dan Moldovan Spring 2010

Chapter 1 :: From Zero to One

Digital Design and Computer Architecture

David Money Harris and Sarah L. Harris

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates
- Logic Levels
- CMOS Transistors
- Power Consumption

Background

- Microprocessors have revolutionized our world
 - Cell phones, Internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$213 billion in 2004

The Game Plan

- The purpose of this course is that you:
 - Learn what's under the hood of a computer
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs
 - Design and build a microprocessor

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –Y's
 - Hierarchy
 - Modularity
 - Regularity

Abstraction

 Hiding details when they aren't important

Application programs Software Operating device drivers **Systems** instructions Architecture registers Microdatapaths architecture controllers adders Logic memories Digital **AND** gates Circuits **NOT** gates amplifiers Analog filters Circuits transistors **Devices** diodes **Physics** electrons

focus of this course

Copyright © 2007 Elsevier

1-<7>

Discipline

- Intentionally restricting your design choices
 - to work more productively at a higher level of abstraction
- Example: Digital discipline
 - Considering discrete voltages instead of continuous voltages used by analog circuits
 - Digital circuits are simpler to design than analog circuits – can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - I.e., digital cameras, digital television, cell phones, CDs

Copyright © 2007 Elsevier

1__8

The Three -Y's

- Hierarchy
 - A system divided into modules and submodules
- Modularity
 - Having well-defined functions and interfaces
- Regularity
 - Encouraging uniformity, so modules can be easily reused

Example: Flintlock Rifle

Hierarchy

- Three main modules:lock, stock, andbarrel
- Submodules of lock:hammer, flint,frizzen, etc.

Copyright © 2007 Elsevier 1-<10>

Example: Flintlock Rifle

Modularity

- Function of stock:mount barrel and lock
- Interface of stock:length and locationof mounting pins

Regularity

Interchangeable parts

The Digital Abstraction

- Most physical variables are continuous, for example
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Instead of considering all values, the digital abstraction considers only a discrete subset of values

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –
 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Digital Discipline: Binary Values

- Typically consider only two discrete values:
 - 1's and 0's
 - 1, TRUE, HIGH
 - 0, FALSE, LOW
- 1 and 0 can be represented by specific voltage levels, rotating gears, fluid levels, etc.
- Digital circuits usually depend on specific voltage levels to represent 1 and 0
- Bit: Binary digit

George Boole, 1815 - 1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Scanned at the American Institute of Physics

Copyright © 2007 Elsevier

Number Systems

• Decimal numbers

• Binary numbers

Number Systems

• Decimal numbers

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

Binary numbers

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$$
one
eight
one
four
one
one
one
one
one
one
one
one
one

ones

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^8 =$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

Number Conversion

- Decimal to binary conversion:
 - Convert 10101₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

- Decimal to binary conversion:
 - Convert 10011₂ to decimal

$$-16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 19_{10}$$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

$$-32 \times 1 + 16 \times 0 + 8 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 1011111_2$$

Binary Values and Range

- *N*-digit decimal number
 - How many values? 10^N
 - Range? $[0, 10^N 1]$
 - Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]
- *N*-bit binary number
 - How many values? 2^N
 - Range: $[0, 2^N 1]$
 - Example: 3-digit binary number:
 - $2^3 = 8$ possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand to write long binary numbers

Copyright © 2007 Elsevier

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - $-0100\ 1010\ 1111_2$

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal

$$-16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$$

Bits, Bytes, Nibbles...

• Bits

• Bytes & Nibbles

• Bytes

10010110

most least significant bit bit

10010110 nibble

CEBF9AD7

most significant byte

least significant byte

Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2^{24} ?

• How many values can a 32-bit variable represent?

Estimating Powers of Two

• What is the value of 2^{24} ?

$$-2^4 \times 2^{20} \approx 16$$
 million

• How many values can a 32-bit variable represent?

$$-2^2 \times 2^{30} \approx 4$$
 billion

Addition

• Decimal

• Binary

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!

Overflow

- Digital systems operate on a fixed number of bits
- Addition overflows when the result is too big to fit in the available number of bits
- See previous example of 11 + 6

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},L \ a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of ± 6:

$$+6 =$$

• Range of an *N*-bit sign/magnitude number:

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},L \ a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of ± 6:

$$+6 = 0110$$

• Range of an *N*-bit sign/magnitude number:

Sign/Magnitude Numbers

- Problems:
 - Addition doesn't work, for example -6 + 6:

– Two representations of $0 (\pm 0)$:

1000

0000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

Two's Complement Numbers

• Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

Two's Complement Numbers

• Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$2. + 1 \over 1101 = -3_{10}$$

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of 1001_2 ?

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

$$2. \frac{+ 1}{1010_2} = -6_{10}$$

- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110

2.
$$\frac{+}{0111_2} = 7_{10}$$
, so $1001_2 = -7_{10}$

Two's Complement Addition

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

Two's Complement Addition

Add 6 + (-6) using two's complement
 numbers
 111

• Add -2 + 3 using two's complement numbers

Increasing Bit Width

- A value can be extended from N bits to M bits (where M > N) by using:
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit is copied into most significant bits.
- Number value remains the same.

• Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

• Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros are copied into most significant bits.
- Value will change for negative numbers.

• Example 1:

- 4-bit value = $0011_2 = 3_{10}$
- 8-bit zero-extended value: $00000011 = 3_{10}$

• Example 2:

- 4-bit value = $1011 = -5_{10}$
- 8-bit zero-extended value: $00001011 = 11_{10}$

Number System Comparison

Number System	Range
Unsigned	$[0, 2^N-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

Unsigned

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two's Complement

1111 1110 1101 1100 1011 1010 1001 $\frac{0000}{1000}$ 0001 0010 0011 0100 0101 0110 0111

Sign/Magnitude

Copyright © 2007 Elsevier

1-252

Logic Gates

- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

Two-Input Logic Gates

AND

$$Y = AB$$

OR

$$Y = A + B$$

A	В	Y
0	0	
0	1	
1	0	
1	1	

Two-Input Logic Gates

AND

$$Y = AB$$

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

XNOR

$$Y = \overline{A \oplus B}$$

Α	В	Y
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates

XOR

$$Y = A \oplus B$$

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XNOR

$$Y = \overline{A \oplus B}$$

_A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

A	В	С	Υ
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

AND4

$$Y = ABCD$$

Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

AND4

$$Y = ABCD$$

	A	В	C	Υ
)	0	0	0
C)	0	1	0
C) [1	0	0
C) [1	1	0
1	_	0	0	0
1	_	0	1	0
1	- ·	1	0	0
1		1	1	1

Multi-input XOR: Odd parity

- Define discrete voltages to represent 1 and 0
- For example, we could define:
 - 0 to be *ground* or 0 volts
 - -1 to be V_{DD} or 5 volts
- What about 4.99 volts? Is that a 0 or a 1?
- What about 3.2 volts?

- Define a *range* of voltages to represent 1 and 0
- Define different ranges for outputs and inputs to allow for *noise* in the system
- What is noise?

- Define a *range* of voltages to represent 1 and 0
- Define different ranges for outputs and inputs to allow for *noise* in the system

What is Noise?

Copyright © 2007 Elsevier 1-<65>

What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- Example: a gate (driver) could output a 5 volt signal but, because of resistance in a long wire, the signal could arrive at the receiver with a degraded value, for example, 4.5 volts

ELSEVIER

The Static Discipline

• Given logically valid inputs, every circuit element must produce logically valid outputs

• Discipline ourselves to use limited ranges of voltages to represent discrete values

ELSEVIER

Noise Margins

$$NM_H = V_{OH} - V_{IH}$$

 $NM_L = V_{IL} - V_{OL}$

DC Transfer Characteristics

Ideal Buffer:

$$NM_H = NM_L = V_{DD}/2$$

Real Buffer:

$$NM_H$$
, $NM_L < V_{DD}/2$

DC Transfer Characteristics

ELSEVIER

V_{DD} Scaling

• Chips in the 1970's and 1980's were designed using $V_{DD} = 5 \text{ V}$

- As technology improved, V_{DD} dropped
 - Avoid frying tiny transistors
 - Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
- Be careful connecting chips with different supply voltages

Chips operate because they contain magic smoke Proof:

if the magic smoke is let out, the chip stops working

Logic Family Examples

Logic Family	V_{DD}	V_{IL}	$V_{I\!H}$	V_{OL}	V_{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

ELSEVIER

Transistors

- Logic gates are usually built out of transistors
- Transistor is a three-ported voltage-controlled switch
 - Two of the ports are connected depending on the voltage on the third port
 - For example, in the switch below the two terminals (d and s) are connected (ON) only when the third terminal (g) is 1

Robert Noyce, 1927 - 1990

- Nicknamed "Mayor of Silicon Valley"
- Cofounded Fairchild Semiconductor in 1957
- Cofounded Intel in 1968
- Co-invented the integrated circuit

ELSEVIER ELSEVIER

Silicon

- Transistors are built out of silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

Copyright © 2007 Elsevier

1-<76>

MOS Transistors

- Metal oxide silicon (MOS) transistors:
 - Polysilicon (used to be **metal**) gate
 - Oxide (silicon dioxide) insulator
 - Doped silicon

ELSEVIER

Transistors: nMOS

Gate = 0, so it is OFF Gate = 1, so it is ON (no connection between (channel between source and drain)

source and drain)

Transistors: pMOS

- pMOS transistor is just the opposite
 - ON when Gate = 0
 - OFF when Gate = 1

Transistor Function

$$g = 0$$

d

OFF

Transistor Function

- nMOS transistors pass good 0's, so connect source to GND
- pMOS transistors pass good 1's, so connect source to V_{DD}

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0			
1			

CMOS Gates: NOT Gate

NOT

$$Y = \overline{A}$$

A	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

\boldsymbol{A}	B	P1	P2	N1	N2	Y
0	0					
0	1					
1	0					
1	1					

Copyright © 2007 Elsevier

CMOS Gates: NAND Gate

NAND

$$Y = \overline{AB}$$

A	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

A	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

Copyright © 2007 Elsevier

CMOS Gate Structure

NOR Gate

How do you build a three-input NOR gate?

Copyright © 2007 Elsevier

NOR3 Gate

Three-input NOR gate

ELSEVIER

Other CMOS Gates

How do you build a two-input AND gate?

Copyright © 2007 Elsevier

Other CMOS Gates

Two-input AND gate

Transmission Gates

- nMOS pass 1's poorly
- pMOS pass 0's poorly
- Transmission gate is a better switch
 - passes both 0 and 1 well
- When EN = 1, the switch is ON:
 - -EN = 0 and A is connected to B
- When EN = 0, the switch is OFF:
 - − A is not connected to B

Pseudo-nMOS Gates

- nMOS gates replace the pull-up network with a weak pMOS transistor that is always on
- The pMOS transistor is called weak because it pulls the output HIGH only when the nMOS network is not pulling it LOW

Pseudo-nMOS Example

Pseudo-nMOS NOR4

Gordon Moore, 1929 -

- Cofounded Intel in 1968 with Robert Noyce.
- Moore's Law: the number of transistors on a computer chip doubles every year (observed in 1965)
- Since 1975, transistor counts have doubled every two years.

Copyright © 2007 Elsevier

1-<94>

Moore's Law

• "If the automobile had followed the same development cycle as the computer, a Rolls-Royce would today cost \$100, get one million miles to the gallon, and explode once a year . . ."

- Robert Cringley

Copyright © 2007 Elsevier

Power Consumption

- Power = Energy consumed per unit time
- Two types of power consumption:
 - Dynamic power consumption
 - Static power consumption

Dynamic Power Consumption

- Power to charge transistor gate capacitances
- The energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
- If the circuit is running at frequency f, and all transistors switch (from 1 to 0 or vice versa) at that frequency, the capacitor is charged f/2 times per second (discharging from 1 to 0 is free).
- Thus, the total dynamic power consumption is:

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

Static Power Consumption

- Power consumed when no gates are switching
- It is caused by the *quiescent supply current*, I_{DD} , also called the *leakage current*
- Thus, the total static power consumption is:

$$P_{static} = I_{DD}V_{DD}$$

Power Consumption Example

• Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$- C = 20 \text{ nF}$$

$$-f=1$$
 GHz

$$-I_{DD} = 20 \text{ mA}$$

Power Consumption Example

• Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

 $-C = 20 \text{ nF}$
 $-f = 1 \text{ GHz}$
 $-I_{DD} = 20 \text{ mA}$

$$P = \frac{1}{2}CV_{DD}^{2}f + I_{DD}V_{DD}$$

$$= \frac{1}{2}(20 \text{ nF})(1.2 \text{ V})^{2}(1 \text{ GHz}) + (20 \text{ mA})(1.2 \text{ V})$$

$$= 14.4 \text{ W}$$

ELSEVIER