Source: [KBhBIO101ProteinSynthesis]

1 | Protein Translation

After [KBhBIO101DNATranscription] and [KBhBIO101mRNAPreprocessing].pdf, the mature mRNA was sent to ribosome. mRNA must travel to the cytoplasm in the Eukarotes to catch the RNA, whereas in prokarotes they don't have to go anywhere.

1.1 | **Ribo**

Ribosomes has two units: 50S unit + 30S unit => they come together whenever a mRNA needs it. Each contained specialized rRNA + tTRNA to catalyze attachment of and carry amino acids + adapt the incoming mRNA respectively.

Note! The beginning of mRNA is not translated. There a portion on the 5' end of the mRNA (starts with AGGAGG) — about 170 nuclotides in humans, and shorter in bacteria — that's called UTR (untranslated region.) This region helps ribosomes bind to it + stablize the binds.

- 3 protein factors IF1, IF2, IF3 forms a complex for transcription by binding to a subunit on the ribosome
- Methionine-carrying tRNA binds to the start of the mRNA, which forms the initiation complex. This is typically removed after translation if not coded for (f M-A amino acid pair coded for, methonine removed; but if M-L pairs coded for, methonine not removed.)
- A-site: translates mRNA to tRNA anti-codon pairs
- · P-site: amino acid dumped from tRNA to the actual chain being built
- · Spent tRNA ejected to the E-site, which is then recycled
- · Catalyst tRNA combines with rRNA to catalyze amino acid peptide bond
- Each codon (group of 3 units in tRNA), matches a specific [KBhBIO101AminoAcids]

Smaller ribosome unit grabs, larger attaches + forms amino acid

After the amino acids are assembled, it's time for KBe2020bio101refProteinFolding. See also KBBB10101Proteins.

=> Shaperones fold proteins, and if its finds proteins impossible to fold, it flags it using ubiquitin to send to the garbage