形式语言与自动机 作业3

1951112 林日中

习题 4.1.2 证明下列语言都不是正则的:

- e) 由 0 和 1 构成的 ww 形式的串的集合,也就是某个串重复的串集合.
- f) 由 0 和 1 构成的 ww^R 形式的串的集合,也就是由某个串后面跟着它的反转所构成的串的集合.(一个串的逆的形式化定义见 4.2.2 节.)
- g) 由 0 和 1 构成的 $w\overline{w}$ 形式的串的集合,其中 \overline{w} 是把 w 中所有的 0 都换成 1 同时把所有的 1 都换成 0 而得到的串,例如, $\overline{011}$ = 100,因此 011100 是该语言中的一个串.
- h) 所有由 0 和 1 构成的 $w1^n$ 形式的串的集合,其中 w 是由 0 和 1 构成的长度为 n 的串.

证明.

e) 假设这个语言 L 是正则的. 那么由泵引理,存在一常数 n>0,对于语言 L 中每个满足 $|w| \ge n$ 的字符串 w,存在一组 x,y,z 使得 w=xyz 且有 $|xy| \le n, |z| \ge 1$,并且有 $\forall k \ge 0, xy^k z \in L$.

考察串 $w=0^n1^n, w'=ww=0^n1^n0^n1^n$,显然,有 $|w'|\geq n$. 按照泵引理对串 w' 生成一组分解 x,y,z. 因为 $|xy|\leq n$,那么泵 y 必仅由 0 组成;那么,由 L 是正则的,有 $xz\in L$,其中, $xz=0^{n-|y|}1^n0^n1^n, |y|\geq 1$;显然,有 $xz\notin L$.

因此,存在由 0 和 1 构成的 ww 形式的串不满足泵引理,这与假设矛盾. 故这个语言不是正则的. □

f) 假设这个语言 L 是正则的. 那么由泵引理,存在一常数 n>0,对于语言 L 中每个满足 $|w| \ge n$ 的字符串 w,存在一组 x,y,z 使得 w=xyz 且有 $|xy| \le n, |z| \ge 1$,并且有 $\forall k \ge 0, xy^k z \in L$.

考察串 $w = 0^n 1, w' = ww^R = 0^n 110^n$,显然有 $|w'| \ge n$. 按照泵引理对串 w' 生成一组分解 x,y,z. 因为 $|xy| \le n$,那么泵 y 必仅由 0 组成;那么,由 L 是正则的,有 $xz \in L$,其中, $xz = 0^{n-|y|} 110^n$, $|y| \ge 1$;显然,有 $xz \notin L$.

因此,存在由 0 和 1 构成的 ww^R 形式的串不满足泵引理,这与假设矛盾. 故这个语言不是正则的. \square

g) 假设这个语言 L 是正则的. 那么由泵引理,存在一常数 n>0,对于语言 L 中每个满足 $|w| \ge n$ 的字符串 w,存在一组 x,y,z 使得 w=xyz 且有 $|xy| \le n, |z| \ge 1$,并且有 $\forall k \ge 0, xy^k z \in L$.

考察串 $w = 0^n, w' = w\overline{w} = 0^n 1^n$,显然有 $|w'| \ge n$. 按照泵引理对串 w' 生成一组分解 x,y,z. 因为 $|xy| \le n$,那么泵 y 必仅由 0 组成;那么,由 L 是正则的,有 $xz \in L$,其中, $xz = 0^{n-|y|}1^n, |y| \ge 1$;显然,有 $xz \notin L$.

因此,存在由 0 和 1 构成的 $w\bar{w}$ 形式的串不满足泵引理,这与假设矛盾. 故这个语言不是正则的.

h) 假设这个语言 L 是正则的. 那么由泵引理,存在一常数 n>0,对于语言 L 中每个满足 $|w|\geq n$ 的字符串 w,存在一组 x,y,z 使得 w=xyz 且有 $|xy|\leq n,|z|\geq 1$,并且有 $\forall k\geq 0, xy^kz\in L$.

考察串 $w = 0^n, w' = w1^n = 0^n1^n$,显然有 $|w'| \ge n$. 按照泵引理对串 w' 生成一组分解 x,y,z. 因为 $|xy| \le n$,那么泵 y 必仅由 0 组成; 那么,由 L 是正则的,有 $xz \in L$,其中, $xz = 0^{n-|y|}1^n, |y| \ge 1$;显然,有 $xz \notin L$.

因此, 存在由 0 和 1 构成的 $w1^n$, |w| = n 形式的串不满足泵引理, 这与假设矛盾. 故这个语言不是正则的. \square

习题 4.1.3 证明下列语言都不是正则的:

- a) 所有满足以下条件的串的集合:由 0 和 1 构成,开头的是 1,并且当我们把该串看作是一个整数时该整数是一个素数.
 - b) 所有满足以下条件的 0^i1^j 形式的串的集合: i 和 j 的最大公约数是 1. 证明.
- a) 由初等数论知识,存在任意大的素数. 假设这个语言 L 是正则的. 那么由泵引理,存在一常数 n>0,对于语言 L 中每个满足 $|w|\geq n$ 的字符串 w,存在一组 x,y,z 使得 w=xyz 且有 $|xy|\leq n,|z|\geq 1$,并且有 $\forall k\geq 0,xy^kz\in L$.

考察素数 $q=x\cdot 2^{m+k}+y\cdot 2^k+z\in L$, $w_q,|w_q|\geq n$ 为 q 对应的二进制串,即 $w_q=xyz,|y|=m,|z|=k$. x,y,z 即为串 w_q 根据泵引理生成的一组分解. 那么,由 L 是正则的,有

$$w_p = xy^q z \in L, p = x \cdot 2^{qm+k} + y \cdot 2^k \cdot \sum_{j=0}^{q-1} 2^{jm} + z$$

故 p 也是素数.

由费马小定理 $2^{q-1} \equiv 1 \pmod{q}$, 有

$$2^{qn} = 2^{(q-1)n} \cdot 2^n \equiv 2^n \pmod{q}$$

因此

$$2^{qn} - 1 \equiv 2^n - 1 \pmod{q}$$

因为 $2^n - 1 < q$, 有

$$\frac{2^{qn}-1}{2^n-1} = 1 + 2^n + \dots + 2^{(q-1)n} \equiv 1 \pmod{q}$$

因此

$$p \equiv x \cdot 2^{m+k} + y \cdot 2^k + z = q \equiv 0 \pmod{q}$$

即 q|p. 这与 p 是素数矛盾.

故 L 不是正则语言. □

b) 假设这个语言 L 是正则的. 那么由泵引理,存在一常数 n>0,对于语言 L 中每个满足 $|w|\geq n$ 的字符串 w,存在一组 x,y,z 使得 w=xyz 且有 $|xy|\leq n,|z|\geq 1$,并且有 $\forall k\geq 0, xy^kz\in L$.

考察串 $w = 0^q 1^{(q-1)!}$,其中,q 是不比 n 小的最小质数,那么显然有 $|w| \ge n$,且 $\gcd(q,(q-1)!) = 1$. 按照泵引理对串 w 生成一组分解 x,y,z. 因为 $|xy| \le n$,那么泵 y 必仅由 0 组成;那么,由 L 是正则的,有 $xz \in L$,其中, $xz = 0^{q-|y|} 1^{(q-1)!}$, $|y| \ge 1$;而 $\gcd(q-k,(q-1)!) = q-k,k \ge 1$. 显然,有 $xz \notin L$.

因此,存在 $0^i 1^j$, $\gcd(i,j) = 1$ 形式的串不满足泵引理,这与假设矛盾. 故这个语言不是正则的. \square

习题 4.2.2 如果 L 是一个语言, a 是一个符号, 则 L/a (称作 L 和 a 的商)是所有满足如下条件的串 w 的集合: wa 属于 L. 例如, 如果 $L = \{a,aab,baa\}$, 则 $L/a = \{\varepsilon,ba\}$, 证明: 如果 L 是正则的,那么 L/a 也是. 提示: 从 L 的 DFA 出发,考虑接受状态的集合.

证明. 因为 L 是正则的, 那么存在 DFA $M = (Q, \Sigma, \delta, s, F)$ 使得 L(M) = L. 根据 M

构造一个新的 DFA $M' = (Q, \Sigma, \delta, s, F')$,它与 M 具有相同的状态集、转移函数和初始状态;不同之处是,接受状态 F' 被定义为

$$F' = \{q | \delta(q, a) \in F\}$$

即状态 q 是 M' 的接受状态, 当且仅当 $\delta(q,a)$ 是 M 的接受状态.

那么,对于每一个到达接受状态 $q' \in F'$ 的输入 w,有 $wa \in L$,因为读取 w 后再读取一个 a,会跳转到 M 的接受状态 $q \in F$. 因此,自动机 M' 对应的语言 L(M') = L/a. 故如果 L 是正则的,L/a 也是正则的. \square

习题 4.2.7 如果 $w = a_1 a_2 \cdots a_n$ 和 $x = b_1 b_2 \cdots b_n$ 是同样长度的串,定义 alt(w,x) 是把 w 和 x 交叉起来且以 w 开头所得到的串,即 $a_1 b_1 a_2 b_2 \cdots a_n b_n$. 如果 L 和 M 是语言,定义 alt(L,M) 是所有形式为 alt(w,x) 的串的集合,其中 w 是 L 中的任意串,而 x 是 M 中与 w 等长的任意串。证明:如果 L 和 M 都是正则的,那么 alt(L,M) 也是.

证明. 要证 alt(L,M) 是正则的,只需证可以通过保留正则性的操作,将 L 和 M 转换为 alt(L,M).

我们假设 L 和 M 的字母表 Σ_L 和 Σ_M 是不相交的. 如果它们不是不相交的,我们可以简单地对其中一种语言的字母表进行同态,然后,我们只需在最后做相应的逆同态.

首先, 我们定义同态 h_1 如下:

$$\forall a \in \Sigma_L, h_1(a) = a$$

$$\forall b \in \Sigma_M, h_2(b) = \varepsilon$$

那么, $h_1^{-1}(L)$ 是包含 L 中的字符串的语言,其中任意插入了 Σ_M 中的符号.

类似地, 我们定义同态 h_2 如下:

$$\forall b \in \Sigma_M, h_1(b) = b$$

$$\forall a \in \Sigma_L, h_2(a) = \varepsilon$$

因此, alt(L,M) 可以表示为

$$alt(L, M) = h_1^{-1}(L) \cap h_2^{-1}(M) \cap (\Sigma_L \Sigma_M)^*$$

因此, alt(L,M) 可以通过保留正则性的操作从 L 和 M 得到.

故如果 L 和 M 都是正则的, 那么 alt(L,M) 也是正则的. \square

习题 4.2.8 设 L 是一个语言, 定义 half(L) 是所有 L 中串的前一半构成的集合,

即 $\{w \mid \text{对于某个满足} \mid x \mid = \mid w \mid \text{的 } x, \ wx \ \text{属于 } L \}$. 例如,如果 $L = \{\varepsilon,0010,011,010110\}$,则 $half(L) = \{\varepsilon,00,010\}$. 注意,长度为奇数的串对于 half(L) 没有贡献. 证明:如果 L 是正则的,那么 half(L) 也是.

证明. 因为 L 是正则的, 那么存在 DFA $A = (Q_A, \Sigma, \delta_A, q_0, F_A)$ 使得 L(A) = L. 对于 half(L) 构造 DFA $B = (Q_B, \Sigma, \delta_B, [q_0, F_A], F_B)$ 如下:

• $Q_B =$

 $\left\{[q,S]\in Q_A\times P(Q_A)\middle| \forall w\in \Sigma^*, q=\hat{\delta}_A(q_0,w), S=\left\{p\in Q_A\middle| \hat{\delta}_A(p,w')\in F_A, w'\in \Sigma^{|w|}\right\}\right\}$

- $\delta_B([q,S],a) = [\delta_A(q,a),T], \quad \text{\sharp P} \quad a \in \Sigma, \quad T = \{p \in Q_A | \forall b \in \Sigma, \delta_A(p,b) \in S\}$
- $F_B = \{[q, S] \in Q_B | q \in S\}$

以这种构造方式,我们得到: 状态 [q,S] 是某个串 w 可以让 A 从初始状态 q_0 转移 到状态 q,并且 S 中的状态均可以在接收某个与 w 等长的串后转移至 A 的接受状态。

那么, F_B 中的所有元素都具有"DFA A 接收某个长度的串到达状态 q 后,可再次接收另一个等长的串到达接受状态"的性质。因此,L(B) = half(L)。

故如果 L 是正则的, 那么 half(L) 也是正则的。□

习题 4.2.9 我们把习题 4.2.8 推广到能够决定取走串中多大部分的一系列函数. 如果 f 是一个整数函数,定义 f(L) 为 $\{w \mid \text{对某个满足 } |x| = f(|w|)$ 的 x , wx 属于 $L\}$. 例如,和 运算 half 对应的 f 是恒等函数 f(n) = n,因为 half(L) 的定义中有 |x| = |w|. 证明: 如果 L 是正则的,那么对于以下的 f , f(L) 也是正则的:

- a) f(n) = 2n (也就是取走串的前三分之一).
- b) $f(n) = n^2$ (也就是取走的长度是没取走部分长度的平方根).
- c) $f(n) = 2^n$ (也就是取走的长度是剩下长度的对数).

证明. 因为 L 是正则的,那么存在 DFA $A = (Q_A, \Sigma, \delta_A, q_0, F_A)$ 使得 L(A) = L. 对于 half(L) 构造 DFA $B = (Q_B, \Sigma, \delta_B, [q_0, F_A], F_B)$ 如下:

 \bullet $Q_B =$

 $\left\{[q,S]\in Q_A\times P(Q_A)\left|\forall w\in \Sigma^*, q=\hat{\delta}_A(q_0,w), S=\left\{p\in Q_A\middle|\hat{\delta}_A(p,w')\in F_A, w'\in \Sigma^{f(|w|)}\right\}\right\}$

- $\delta_B([q,S],a) = [\delta_A(q,a),T], \quad \text{i.i.} \quad a \in \Sigma, \quad T = \{p \in Q_A | \forall b \in \Sigma, \delta_A(p,b) \in S\}$
- $F_B = \{[q, S] \in Q_B | q \in S\}$

以这种构造方式,我们得到: 状态 [q,S] 是某个串 w 可以让 A 从初始状态 q_0 转移 到状态 q,并且 S 中的状态均可以在接收某个长度为 f(|w|) 的串后转移至 A 的接受状态。

那么, F_B 中的所有元素都具有"DFA A 接收某个长度的串到达状态 q 后,可再次接收另一个长度为 f(n) 的串到达接受状态"的性质。因此,L(B) = f(L)。

故如果 L 是正则的, 那么 f(L) 也是正则的。 \square

习题补充 1 给出如下的正则文法 G, 求出对应的 DFA M, 使得 L(M) = L(G).

(1)
$$G_1 = (V, T, P_1, S)$$
$$P_1: S \to bB, B \to aB \mid bA \mid b, A \to a \mid aS$$

(2)
$$G_2 = (V, T, P_2, S)$$

 $P_2: S \to aS \mid bB \mid a, B \to bA \mid aB \mid aS$

解答.

(1) 文法 G_1 对应的 NFA M_1 如下图所示.

经确定化后的 DFA M_1' 如下图所示.

(2) 文法 G_2 对应的 NFA M_2 如下图所示.

经确定化后的 DFA M_2' 如下图所示.

习题补充 2 给出下图描述的两个 DFA M,分别求出对应的正则文法 G,使得 L(G) = L(M).

解答.

a) DFA M_1 对应的文法 $G_1 = (V, T, P_1, S)$

$$P_1:S\to 0S\mid 1A\mid \varepsilon$$

$$B \to 0B \mid 1B$$

$$A \to 1A \mid 0B \mid \varepsilon$$

b) DFA M_2 对应的文法 $G_2 = (V, T, P_2, S)$

$$P_2: S \to 1C \mid 0A \mid \varepsilon$$

$$A \rightarrow 0S \mid 1C \mid \varepsilon$$

$$B \rightarrow 0C \mid 0A$$

$$C \rightarrow 1A \mid 0B \mid \varepsilon$$

习题补充 3 Let $L_1 \subseteq \{0,1,2\}^*$ be a regular language, we can consider L_1 as a subset of integers under base 3, let L_2 be the corresponding set of L_1 over $\{0,1\}^*$ (i.e. under base 2), for example if $L_1 = \{11,12,121\}$, then $L_2 = \{100,101,10000\}$. Question: is L_2 a regular language?

Solution. L_2 may or may not be a regular language, depending on L_1 . We illustrate it with cases a) and b).

- a) Taking $L_1 = \{11\}, L_2 = \{100\}$ as an example, both L_1 and L_2 are obviously regular.
- b) We use $[m]_2$ and $[m]_3$ to denote the decimal values corresponding to a string m consisting of symbols in $\{0,1\}$ or $\{0,1,2\}$ (i.e., an integer string under base 2 or 3), respectively.

Apparently, 2^* is a regular language, and $2^* \in L_1$. Thus

$$\forall k \in \mathbb{N}, 2^k \in L_1, [2^k] = 3^k - 1$$

Let $L = \{w | [w]_2 = 3^k - 1, k \in \mathbb{N}\}$. Now we are to prove that L is not a regular language.

Suppose language L is regular. Then the pumping lemma says that there is an n so that for all strings w with length $|w| \ge n$, there is a decomposition w = xyz so that $|xy| \le n$, $|y| \ge 0$, and xy^kz is also in this language for all $k \ge 0$.

Now, consider string w where $[w]_2 = 3^n - 1$. Then apparently $|w| \ge n$, so there is a decomposition w = xyz that satisfies the criteria in the pumping lemma. Thus

$$[w]_2 = [x]_2 \cdot 2^{|y| + |z|} + [y]_2 \cdot 2^{|z|} + [z]_2$$
 (1)

Let $w' = xy^k z \in L, k \ge 0$, we have

$$[w']_2 = [x]_2 \cdot 2^{k|y|+|z|} + [y]_2 \cdot 2^{|z|} \cdot \sum_{i=0}^{k-1} 2^{i|y|} + [z]_2$$
 (2)

We conduct (1) - (2), where

$$[w']_2 - [w]_2 = 2^{|y| + |z|} \cdot \frac{2^{(k-1)|y|} - 1}{2^{|y|} - 1} \cdot ([x]_2 \cdot (2^{|y|} - 1) + [y]_2)$$
(3)

It is clear that $[w]_2 < [w']_2$ and $w, w' \in L$, so $[w']_2 - [w]_2$ must be a multiple of 3^n , i.e., $[w']_2 - [w]_2$ contains a factor 3^n . Based on the fact that $2^{|y|+|z|}$ does not contain factor 3, and that $[x]_2 \cdot (2^{|y|} - 1) + [y]_2 < [w]_2 < 3^n$, $[w']_2 - [w]_2$ does **not** contain factor 3^n , which produces a contradiction.

Therefore, L is not regular, then neither is L_2 . \square