CE043 - GAMLSS

Distribuições discretas

Silva, J.P; Taconeli, C.A.

30 de agosto, 2020

Conteúdo

- 1 Introdução
- 2 Modelos probabilísticos para variáveis discretas
- 3 Superdispersão e subdispersão
- 4 Distribuições geradas por mistura
- 5 Distribuições contínuas discretizadas
- 6 O problema do excesso ou escassez de zeros
- 7 Distribuições zero-inflacionadas
- 8 Distribuições zero-ajustadas
- Resumindo
- Próximos passos

• Distribuições discretas são amplamente utilizadas para modelar contagens:

- Distribuições discretas são amplamente utilizadas para modelar contagens:
 - Número de chegadas de aviões a um aeroporto;

- Distribuições discretas são amplamente utilizadas para modelar contagens:
 - Número de chegadas de aviões a um aeroporto;
 - Número de itens defeituosos em lotes de uma produção;

- Distribuições discretas são amplamente utilizadas para modelar contagens:
 - Número de chegadas de aviões a um aeroporto;
 - Número de itens defeituosos em lotes de uma produção;
 - Número de frutos gerados por plantas;

- Distribuições discretas são amplamente utilizadas para modelar contagens:
 - Número de chegadas de aviões a um aeroporto;
 - Número de itens defeituosos em lotes de uma produção;
 - Número de frutos gerados por plantas;
 - Número de problemas de execução de um sistema operacional...

 Diferentes modelos probabilísticos para variáveis discretas estão implementados na biblioteca gamlss, definidos em diferentes conjuntos de valores:

- Diferentes modelos probabilísticos para variáveis discretas estão implementados na biblioteca gamlss, definidos em diferentes conjuntos de valores:
 - Variáveis com suporte no conjunto $R_y = \{0, 1, 2, ...\}$, como a distribuição Poisson (PO);

- Diferentes modelos probabilísticos para variáveis discretas estão implementados na biblioteca gamlss, definidos em diferentes conjuntos de valores:
 - Variáveis com suporte no conjunto $R_y = \{0, 1, 2, ...\}$, como a distribuição Poisson (P0);
 - Variáveis com suporte no conjunto $R_y = \{1, 2, 3, ...\}$, como a distribuição logarítmica (LO);

- Diferentes modelos probabilísticos para variáveis discretas estão implementados na biblioteca gamlss, definidos em diferentes conjuntos de valores:
 - Variáveis com suporte no conjunto $R_y = \{0, 1, 2, ...\}$, como a distribuição Poisson (P0);
 - Variáveis com suporte no conjunto $R_y = \{1, 2, 3, ...\}$, como a distribuição logarítmica (LO);
 - Variáveis com suporte no conjunto $R_y = \{0, 1, 2, ..., n\}$, como a distribuição binomial (BI).

- Diferentes modelos probabilísticos para variáveis discretas estão implementados na biblioteca gamlss, definidos em diferentes conjuntos de valores:
 - Variáveis com suporte no conjunto $R_y = \{0, 1, 2, ...\}$, como a distribuição Poisson (P0);
 - Variáveis com suporte no conjunto $R_y = \{1, 2, 3, ...\}$, como a distribuição logarítmica (LO);
 - Variáveis com suporte no conjunto $R_y = \{0, 1, 2, ..., n\}$, como a distribuição binomial (BI).
- Além dos modelos implementados, novas distribuições podem ser definidas, por exemplo, através de truncamento e discretização.

• Para a distribuição de Poisson é o modelo clássico para contagens definidas no conjunto $R_y = \{0, 1, 2, ...\}$.

- Para a distribuição de Poisson é o modelo clássico para contagens definidas no conjunto $R_y = \{0, 1, 2, ...\}$.
- A v.a. $y \sim \text{Poisson}(\mu)$ tem f.p. dada por:

$$P(Y = y | \mu) := f(y; \mu) = \frac{e^{-\mu} \mu^y}{y!}, \quad y = 0, 1, 2, ...; \mu > 0.$$

- Para a distribuição de Poisson é o modelo clássico para contagens definidas no conjunto $R_y = \{0, 1, 2, ...\}$.
- A v.a. $y \sim \text{Poisson}(\mu)$ tem f.p. dada por:

$$P(Y = y | \mu) := f(y; \mu) = \frac{e^{-\mu} \mu^y}{y!}, \quad y = 0, 1, 2, ...; \mu > 0.$$

• Por ter um único parâmetro, a distribuição de Poisson é pouco flexível na modelagem de dados de contagens.

- Para a distribuição de Poisson é o modelo clássico para contagens definidas no conjunto $R_y = \{0, 1, 2, ...\}$.
- A v.a. $y \sim \text{Poisson}(\mu)$ tem f.p. dada por:

$$P(Y = y | \mu) := f(y; \mu) = \frac{e^{-\mu} \mu^y}{y!}, \quad y = 0, 1, 2, ...; \mu > 0.$$

- Por ter um único parâmetro, a distribuição de Poisson é pouco flexível na modelagem de dados de contagens.
- A distribuição de Poisson é caracterizada pela equidispersão:

$$E(y) = Var(y).$$

 Dentre as principais limitações da distribuição de Poisson, destacamos a impossibilidade de modelar adequadamente dados com:

- Dentre as principais limitações da distribuição de Poisson, destacamos a impossibilidade de modelar adequadamente dados com:
 - Superdispersão (Var(y) > E(y)) e subdispersão (Var(y) < E(y));

- Dentre as principais limitações da distribuição de Poisson, destacamos a impossibilidade de modelar adequadamente dados com:
 - Superdispersão (Var(y) > E(y)) e subdispersão (Var(y) < E(y));
 - Excesso ou escassez de zeros;

- Dentre as principais limitações da distribuição de Poisson, destacamos a impossibilidade de modelar adequadamente dados com:
 - Superdispersão (Var(y) > E(y)) e subdispersão (Var(y) < E(y));
 - Excesso ou escassez de zeros;
 - Forte assimetria à direita.

- Dentre as principais limitações da distribuição de Poisson, destacamos a impossibilidade de modelar adequadamente dados com:
 - Superdispersão (Var(y) > E(y)) e subdispersão (Var(y) < E(y));
 - Excesso ou escassez de zeros;
 - Forte assimetria à direita.

• Distribuições alternativas podem contornar as limitações da Poisson na modelagem de contagens.

Tabela 1: Distribuições com suporte em $R_y = \{0, 1, 2, ...\}$

Distribuicao	Nome gamlss	Parâmetro (função de ligação)				
		μ	σ	ν	au	
beta neg binomial	BNB	log	log	log	-	
Delaporte	DEL	\log	\log	logit	-	
discrete Burr XII	DBURR12	\log	\log	\log	-	
double Poisson	DP0	\log	\log	-	-	
generalized Poisson	GP0	\log	\log	-	-	
geometric	GEOM	\log	-	-	-	
geometric (original)	GEOMo	logit	-	-	-	
negative binomial type I	NBI	\log	\log	-	-	
negative binomial type II	NBII	\log	\log	-	-	
neg binomial family	NBF	\log	\log	\log	-	
Poisson	PO	\log	-	-	-	
Poisson - inv Gaussian	PIG	\log	\log	-	-	
Poisson - inv Gaussian 2 ^a	PIG2	\log	\log	-	-	
Poisson shifted GIG	PSGIG	\log	\log	ident	logit	
Sichel	SI	\log	\log	ident	-	
Sichel (μ the mean)	SICHEL	log	\log	ident	-	
Waring	WARING	\log	\log	-	-	
Yule	YULE	\log	-	-	-	

Tabela 2: Distribuições com suporte em $R_y = \{0, 1, 2, ...\}$ modificadas em y = 0

Distribuição	Nome gamlss	Parâmetro (função de ligação)			
		μ	σ	ν	au
zero-adj beta neg binom	ZABNB	log	log	log	logit
zero-adj logarithmic	ZALG	logit	logit	-	-
zero-adj neg binomial	ZANBI	\log	\log	logit	-
zero-adj PIG	ZAPIG	\log	\log	logit	-
zero-adj Sichel	ZASICHEL	\log	\log	ident	logit
zero-adj Poisson	ZAP	\log	logit	-	-
zero-adj Zipf	ZAZIPF	\log	logit	-	-
zero-inf beta neg binom	ZIBNB	\log	\log	\log	logit
zero-inf neg binomial	ZINBI	\log	\log	logit	-
zero-inf neg binom fam	ZINBF	\log	\log	\log	logit
zero-inf Poisson	ZIP	\log	logit	-	-
zero-inf Poisson (μ the mean)	ZIP2	\log	logit	-	-
zero-inf PIG	ZIPIG	\log	\log	logit	-
zero-inf Sichel	ZISICHEL	log	\log	ident	logit

Tabela 3: Distribuições com suporte em $R_y = \{0, 1, 2, ..., n\}$

Distribuição	Nome gamlss	Parâmetro (função de ligação)				
		μ	σ	ν	au	
binomial	BI	logit	-	-	-	
beta binomial	BB	logit	\log	-	-	
double binomial	DBI	logit	\log	-	-	
zero-adj beta binomial	ZABB	logit	\log	logit	-	
zero-adj binomial	ZABI	logit	logit	-	-	
zero-inf beta binomial	ZIBB	logit	\log	logit	-	
zero-inf binomial	ZIBI	logit	logit	_	-	

Tabela 4: Distribuições com suporte em $R_y = \{1, 2, ...\}$

Distribuição	Nome gamlss	Parâmetro (ligação)				
		μ	σ	ν	au	
logarithmic	LG	logit	-	-	-	
Zipf	BB	\log	-	-	-	

Sessão R - Parte 1

 Nesta sessão, vamosu usar as demos do pacote gamlss para conhecer algumas das distribuições implementadas e suas propriedades.

• Superdispersão e subdispersão são recorrentes em problemas envolvendo dados de contagens.

- Superdispersão e subdispersão são recorrentes em problemas envolvendo dados de contagens.
- Sob a distribuição de Poisson, os eventos sob contagem ocorrem de maneira aleatória ao longo do tempo, espaço, implicando em equidispersão, Var(y) = E(y).

- Superdispersão e subdispersão são recorrentes em problemas envolvendo dados de contagens.
- Sob a distribuição de Poisson, os eventos sob contagem ocorrem de maneira aleatória ao longo do tempo, espaço, implicando em equidispersão, Var(y) = E(y).
- Quando os eventos ocorrem de maneira não aleatória, podemos ter superdispersão, Var(y) > E(y), ou subdispersão, Var(y) < E(y).

- Superdispersão e subdispersão são recorrentes em problemas envolvendo dados de contagens.
- Sob a distribuição de Poisson, os eventos sob contagem ocorrem de maneira aleatória ao longo do tempo, espaço, implicando em equidispersão, Var(y) = E(y).
- Quando os eventos ocorrem de maneira não aleatória, podemos ter superdispersão, Var(y) > E(y), ou subdispersão, Var(y) < E(y).
- A Figura 1 ilustra processos de contagens que caracterizados por equi, super e subdispersão.

Figura 1: Ilustração de processos pontuais com equi, sub e superdispersão.

• Não acomodar super (ou sub) dispersão na análise de dados de contagens pode comprometer a acurácia dos erros padrões, a taxa de cobertura dos intervalos de confiança, nível de significância e poder de testes de hipóteses;

- Não acomodar super (ou sub) dispersão na análise de dados de contagens pode comprometer a acurácia dos erros padrões, a taxa de cobertura dos intervalos de confiança, nível de significância e poder de testes de hipóteses;
- Uma alternativa frequente nesses casos são os métodos de quase-verossimilhança;

- Não acomodar super (ou sub) dispersão na análise de dados de contagens pode comprometer a acurácia dos erros padrões, a taxa de cobertura dos intervalos de confiança, nível de significância e poder de testes de hipóteses;
- Uma alternativa frequente nesses casos são os métodos de quase-verossimilhança;
- Na análise via quase-verossimilhança fazemos suposições apenas quanto aos dois primeiros momentos da distribuição da resposta: média e variância;

- Não acomodar super (ou sub) dispersão na análise de dados de contagens pode comprometer a acurácia dos erros padrões, a taxa de cobertura dos intervalos de confiança, nível de significância e poder de testes de hipóteses;
- Uma alternativa frequente nesses casos são os métodos de quase-verossimilhança;
- Na análise via quase-verossimilhança fazemos suposições apenas quanto aos dois primeiros momentos da distribuição da resposta: média e variância;
- Como limitações, na abordagem de quase-verossimilhança não temos condições de estimar a função de probabilidades, não dispomos de uma função de verossimilhança...

• Usando GAMLSS, assumimos uma distribuição de probabilidades, o que nos habilita a estimar a função de probabilidades, produzir inferências usando a função de verossimilhança.

• Usando GAMLSS, assumimos uma distribuição de probabilidades, o que nos habilita a estimar a função de probabilidades, produzir inferências usando a função de verossimilhança.

• As duas principais abordagens para lidar com sub e superdispersão no contexto de GAMLSS são:

• Usando GAMLSS, assumimos uma distribuição de probabilidades, o que nos habilita a estimar a função de probabilidades, produzir inferências usando a função de verossimilhança.

• As duas principais abordagens para lidar com sub e superdispersão no contexto de GAMLSS são:

Distribuições geradas por misturas;

• Usando GAMLSS, assumimos uma distribuição de probabilidades, o que nos habilita a estimar a função de probabilidades, produzir inferências usando a função de verossimilhança.

• As duas principais abordagens para lidar com sub e superdispersão no contexto de GAMLSS são:

- Distribuições geradas por misturas;
- Distribuições contínuas discretizadas.

• Distribuições geradas por misturas permitem lidar com superdispersão ao assumir que a distribuição da variável resposta Y depende de uma v.a. γ cuja distribuição é conhecida.

- Distribuições geradas por misturas permitem lidar com superdispersão ao assumir que a distribuição da variável resposta Y depende de uma v.a. γ cuja distribuição é conhecida.
- Seja Y uma v.a. discreta com função de probabilidade $P(Y=y|\gamma)$, e γ uma v.a. contínua com f.d.p. $f_{\gamma}(\gamma)$.

- Distribuições geradas por misturas permitem lidar com superdispersão ao assumir que a distribuição da variável resposta Y depende de uma v.a. γ cuja distribuição é conhecida.
- Seja Y uma v.a. discreta com função de probabilidade $P(Y=y|\gamma)$, e γ uma v.a. contínua com f.d.p. $f_{\gamma}(\gamma)$.
- A função de probabilidade marginal (não condicional) de Y fica dada por:

$$P(Y = y) = \int_{R_{\gamma}} P(Y = y|\gamma) f_{\gamma}(\gamma) d\gamma.$$

• Podemos assumir ainda γ uma v.a. discreta com função de probabilidade $P(\gamma=\gamma_j)$, produzindo como distribuição marginal:

$$P(Y = y) = \sum_{R_{\gamma}} P(Y = y | \gamma = \gamma_j) P(\gamma = \gamma_j).$$

• Podemos assumir ainda γ uma v.a. discreta com função de probabilidade $P(\gamma=\gamma_j)$, produzindo como distribuição marginal:

$$P(Y = y) = \sum_{R_{\gamma}} P(Y = y | \gamma = \gamma_j) P(\gamma = \gamma_j).$$

 A distribuição resultante da mistura pode ou não ter uma forma explícita.

• Podemos assumir ainda γ uma v.a. discreta com função de probabilidade $P(\gamma = \gamma_i)$, produzindo como distribuição marginal:

$$P(Y = y) = \sum_{R_{\gamma}} P(Y = y | \gamma = \gamma_j) P(\gamma = \gamma_j).$$

- A distribuição resultante da mistura pode ou não ter uma forma explícita.
- Nas situações em que não se tem uma forma explícita, métodos de aproximação (como quadratura Gaussiana) são usados para integrar γ .

• Misturas envolvendo a distribuição de Poisson são bastante usuais para modelar dados com superdispersão.

- Misturas envolvendo a distribuição de Poisson são bastante usuais para modelar dados com superdispersão.
- Neste caso, consideramos $Y|\gamma \sim \text{Poisson}(\mu\gamma)$, e $\gamma \sim f_{\gamma}(\gamma)$ definida em $(0,\infty)$.

- Misturas envolvendo a distribuição de Poisson são bastante usuais para modelar dados com superdispersão.
- Neste caso, consideramos $Y|\gamma \sim \text{Poisson}(\mu\gamma)$, e $\gamma \sim f_{\gamma}(\gamma)$ definida em $(0,\infty)$.
- Assumindo que $E(\gamma) = 1$, então a variável resultante da mistura terá média igual a μ .

- Misturas envolvendo a distribuição de Poisson são bastante usuais para modelar dados com superdispersão.
- Neste caso, consideramos $Y|\gamma \sim \text{Poisson}(\mu\gamma)$, e $\gamma \sim f_{\gamma}(\gamma)$ definida em $(0,\infty)$.
- Assumindo que $E(\gamma)=1$, então a variável resultante da mistura terá média igual a μ .
- O caso mais conhecido de mistura contínua da distribuição Poisson é a binomial negativa.

• Seja $Y|\gamma \sim \text{Poisson}(\mu\gamma)$ e $\gamma \sim \text{gama}(1, \sigma^{1/2})$, isso é:

$$P(Y = y|\gamma) = \frac{e^{-\mu\gamma}(\mu\gamma)^y}{y!}$$

 \mathbf{e}

$$f_{\gamma}(\gamma) = \frac{\gamma^{1/\sigma - 1} \exp(-\gamma/\sigma)}{\sigma^{(1/\sigma)}\Gamma(1/\sigma)}, \text{ para } \gamma > 0.$$

ullet A distribuição marginal de Y fica dada por:

$$P(Y = y) = \int_0^\infty \frac{e^{-\mu\gamma} (\mu\gamma)^y}{y!} \frac{\gamma^{1/\sigma - 1} \exp(-\gamma/\sigma)}{\sigma^{(1/\sigma)} \Gamma(1/\sigma)} d\gamma$$
$$= \frac{\Gamma(y + 1/\sigma)}{\Gamma(1/\sigma) \Gamma(y + 1)} \left(\frac{\sigma\mu}{1 + \sigma\mu}\right)^y \left(\frac{1}{1 + \sigma\mu}\right)^{1/\sigma}, \text{ para } y = 0, 1, ...,$$

com $\mu>0$ e $\sigma>0$ que corresponde à distribuição binomial negativa, $\mathtt{NBI}(\mu,\sigma)$

ullet A distribuição marginal de Y fica dada por:

$$\begin{split} P(Y=y) &= \int_0^\infty \frac{e^{-\mu\gamma} (\mu\gamma)^y}{y!} \frac{\gamma^{1/\sigma-1} \exp(-\gamma/\sigma)}{\sigma^{(1/\sigma)} \Gamma(1/\sigma)} d\gamma \\ &= \frac{\Gamma\left(y+1/\sigma\right)}{\Gamma\left(1/\sigma\right) \Gamma(y+1)} \left(\frac{\sigma\mu}{1+\sigma\mu}\right)^y \left(\frac{1}{1+\sigma\mu}\right)^{1/\sigma}, \text{para } y=0,1,..., \end{split}$$

com $\mu>0$ e $\sigma>0$ que corresponde à distribuição binomial negativa, $\mathtt{NBI}(\mu,\sigma)$

• Ao usar diferentes distribuições para γ temos diferentes distribuições marginais para Y, conforme pode ser visto na Tabela 5.

Distribuições geradas por mistura - Poisson com misturas contínuas e discretas

Tabela 5: Distribuições geradas por mistura - Poisson com misturas contínuas e discretas.

Distribuição	nome gamlss	Dist. Mistura	$\mathrm{E}(Y)$	Var(Y)
Delaporte	$\mathtt{DEL}(\mu,\sigma, u)$	$SG(1, \sigma^{1/2}, \nu)$	μ	$\mu + \sigma(1-\mu)^2\mu^2$
NB tipo I	$\mathtt{NBI}(\mu,\sigma)$	$\mathtt{GA}(1,\sigma^{1/2})$	μ	$\mu + \sigma \mu^2$
NB tipo II	$\mathtt{NBII}(\mu,\sigma)$	$\mathtt{GA}(1,\sigma^{1/2}\mu^{-1/2})$	μ	$\mu + \sigma \mu$
NB family	$\mathtt{NBF}(\mu,\sigma, u)$	$\mathtt{GA}(1,\sigma^{1/2}\mu^{ u/2-1})$	μ	$\mu + \sigma \mu^{ u}$
PIG	$ exttt{PIG}(\mu,\sigma)$	${\tt IG}(1,\sigma^{1/2})$	μ	$\mu + \sigma \mu^2$
Sichel	$\mathtt{SICHEL}(\mu,\sigma, u)$	$ exttt{GIG}(1,\sigma^{1/2},\! u)$	μ	$\mu + h(\sigma, \nu)\mu^2$
ZI Poisson	$\mathtt{ZIP}(\mu,\sigma)$	$\mathtt{BI}(1,1\text{-}\sigma)$	$(1-\sigma)\mu$	$(1-\sigma)(\mu+\sigma\mu^2)$
ZI Poisson 2	$\mathtt{ZIP2}(\mu,\sigma)$	$(1-\sigma)^{-1}$ BI $(1, 1-\sigma)$	μ	$\mu + \frac{\sigma}{(1-\sigma)}\mu^2$
ZI NB	$\mathtt{ZINBI}(\mu,\sigma,\nu)$	$\mathtt{ZAGA}(1,\sigma^{1/2},\!\nu)$	$(1-\nu)\mu$	$(1-\nu)\left[\mu+(\sigma+\nu)\mu^2\right]$
ZI PIG	$\mathtt{ZIPIG}(\mu,\sigma,\nu)$	${\tt ZAIG}(1,\sigma^{1/2})$	$(1-\nu)\mu$	$(1-\nu)\left[\mu+(\sigma+\nu)\mu^2\right]$

Sessão R - Parte 2

• Nesta sessão R, vamos usar simulação para verificar algumas misturas resultantes da distribuição Poisson:

Sessão R - Parte 2

• Nesta sessão R, vamos usar simulação para verificar algumas misturas resultantes da distribuição Poisson:

• Binomial negativa (Poisson com componente de mistura com distribuição gama);

Sessão R - Parte 2

• Nesta sessão R, vamos usar simulação para verificar algumas misturas resultantes da distribuição Poisson:

 Binomial negativa (Poisson com componente de mistura com distribuição gama);

• Poisson inflacionada de zeros (Poisson com componente de mistura com distribuição Bernoulli).

• Qualquer v.a. contínua com suporte no intervalo $(0, \infty)$ pode ser discretizada, originando uma nova distribuição útil para modelar contagens.

- Qualquer v.a. contínua com suporte no intervalo $(0, \infty)$ pode ser discretizada, originando uma nova distribuição útil para modelar contagens.
- Seja W uma v.a. contínua com f.d.p., f.d.a. e função de sobrevivência denotadas, respectivamente, por $f_W(w)$, $F_W(w)$ e $S_W(w) = 1 F_W(w)$.

- Qualquer v.a. contínua com suporte no intervalo $(0, \infty)$ pode ser discretizada, originando uma nova distribuição útil para modelar contagens.
- Seja W uma v.a. contínua com f.d.p., f.d.a. e função de sobrevivência denotadas, respectivamente, por $f_W(w)$, $F_W(w)$ e $S_W(w) = 1 F_W(w)$.
- A correspondente variável discretizada Y fica definida pela seguinte f.p.:

$$P(Y = y) = P(y < W < y + 1) = \int_{y}^{y+1} f_{W}(w)dw$$
$$= F_{W}(y+1) - F_{W}(y) = S_{W}(y) - S_{W}(y+1),$$

enquanto a f.d.a. é simplesmente $F_Y(y) = F_W(y+1)$, para y = 0, 1, 2, ...

Distribuições Weibull discreta

• Como exemplo, vamos considerar a versão discreta da distribuição Weibull.

Distribuições Weibull discreta

- Como exemplo, vamos considerar a versão discreta da distribuição Weibull.
- Seja $W \sim \text{WEI}(\mu, \sigma)$, isto é, W com f.d.p. e f.d.a. dadas por:

$$f_W(w|\mu,\sigma) = \frac{\sigma y^{\sigma-1}}{\mu^{\sigma}} \exp\left[-\left(\frac{y}{\mu}\right)^{\sigma}\right]$$

е

$$F_W(w|\mu,\sigma) = 1 - \exp\left[-(y/\mu)^{\sigma}\right],$$

com y > 0, $\mu > 0$ e $\sigma > 0$.

Distribuição Weibull discreta

• Desta forma, a distribuição Weibull discreta tem f.p. dada por:

$$P(Y = y | \mu, \sigma) = \{1 - \exp\left[-((y+1)/\mu)^{\sigma}\right]\} - \{1 - \exp\left[-(y/\mu)^{\sigma}\right]\},\,$$

Distribuição Weibull discreta

• Desta forma, a distribuição Weibull discreta tem f.p. dada por:

$$P(Y = y | \mu, \sigma) = \{1 - \exp\left[-((y+1)/\mu)^{\sigma}\right]\} - \{1 - \exp\left[-(y/\mu)^{\sigma}\right]\},\,$$

enquanto a f.d.a. é dada por:

$$F_Y(y|\mu,\sigma) = P(Y \le y|\mu,\sigma) = 1 - \exp[-(y+1)/\mu]^{\sigma},$$

para y = 0, 1, 2,

Distribuição Weibull discreta

• Desta forma, a distribuição Weibull discreta tem f.p. dada por:

$$P(Y = y | \mu, \sigma) = \left\{1 - \exp\left[-((y+1)/\mu)^{\sigma}\right]\right\} - \left\{1 - \exp\left[-(y/\mu)^{\sigma}\right]\right\},$$

enquanto a f.d.a. é dada por:

$$F_Y(y|\mu,\sigma) = P(Y \le y|\mu,\sigma) = 1 - \exp\left[-(y+1)/\mu\right)^\sigma]\,,$$

para y = 0, 1, 2,

• Vamos "construir" a versão discretizada da distribuição Weibull($\mu=2,\ \sigma=2$).

Distribuições Weibull discreta

Figura 2: Ilustração - distribuição Weibull discreta.

Distribuições Weibull discreta

Tabela 6: Função de probabilidades e função distribuição acumulada - Weibull discreta

У	P(W < y)	P(W < y+1)	P(Y=y)	$P(Y \le y)$
0	0.0000	0.2212	0.2212	0.2212
1	0.2212	0.6321	0.4109	0.6321
2	0.6321	0.8946	0.2625	0.8946
3	0.8946	0.9816	0.0870	0.9816
4	0.9816	0.9980	0.0164	0.9980
5	0.9980	0.9998	0.0018	0.9998

Figura 3: Distribuições contínuas discretizadas

Distribuições contínuas discretizadas

• Em algumas aplicações, como em estudos de confiabilidade na Engenharia, é comum o interesse em variáveis discretas com suporte no conjunto $\{1, 2, 3, ...\}$.

Distribuições contínuas discretizadas

• Em algumas aplicações, como em estudos de confiabilidade na Engenharia, é comum o interesse em variáveis discretas com suporte no conjunto {1, 2, 3, ...}.

• Neste caso, variáveis discretizadas podem ser construidas de maneira semelhante, mas atribuindo as P(y < W < y + 1) a y + 1, e não mais a y, para y = 0, 1, 2,

Distribuições contínuas discretizadas

 Em algumas aplicações, como em estudos de confiabilidade na Engenharia, é comum o interesse em variáveis discretas com suporte no conjunto {1, 2, 3, ...}.

• Neste caso, variáveis discretizadas podem ser construidas de maneira semelhante, mas atribuindo as P(y < W < y + 1) a y + 1, e não mais a y, para y = 0, 1, 2,

 Distribuições discretizadas podem ser criadas usando recursos do pacote gamlss.cens. Vamos ao R!

Sessão R - Parte 3

• Nesta sessão R, vamos usar dados de contagens de cistos encontrados em rins de ratos (base de dados cysts).

O problema do excesso ou escassez de zeros

Excesso ou escassez de zeros

• Problemas envolvendo contagens prodem produzir frequências de contagens iguais a zero que são incompatíveis às ajustadas pelos modelos convencionais.

Excesso ou escassez de zeros

 Problemas envolvendo contagens prodem produzir frequências de contagens iguais a zero que são incompatíveis às ajustadas pelos modelos convencionais.

• Nesses casos, modelos zero-inflacionados (zero inflated models) ou modelos zero-ajustados (zero-adjusted models) são recomendáveis.

Excesso ou escassez de zeros

• Problemas envolvendo contagens prodem produzir frequências de contagens iguais a zero que são incompatíveis às ajustadas pelos modelos convencionais.

• Nesses casos, modelos zero-inflacionados (zero inflated models) ou modelos zero-ajustados (zero-adjusted models) são recomendáveis.

• Modelos zero-inflacionados podem lidar apenas com excesso de zeros, enquanto modelos zero-ajustados podem lidar tanto com excesso quanto com escassez de zeros.

• Uma v.a. Y tem distribuição zero-inflacionada se ela assume valor zero com probabilidade p e segue alguma distribuição de probabilidades discreta com probabilidade 1-p.

• Uma v.a. Y tem distribuição zero-inflacionada se ela assume valor zero com probabilidade p e segue alguma distribuição de probabilidades discreta com probabilidade 1-p.

• Assim, para $Y \sim ZID$:

$$P(Y = y) = \begin{cases} p + (1 - p)P(Y_1 = 0) & \text{se } y = 0\\ (1 - p)P(Y_1 = y) & \text{se } y = 1, 2, 3, ..., \end{cases}$$

onde Y_1 representa uma v.a. com distribuição de contagem, e $0 , tal que <math>P(Y=0) > P(Y_1=0)$.

ullet Desta forma, a média e a variância de Y ficam dadas por:

$$E(Y) = 0 \times P(Y = 0) + (1 - p) \times \sum_{i=1}^{\infty} y P(Y_1 = y) = (1 - p) E(Y_1)$$

е

$$Var(Y) = (1 - p)Var(Y_1) + p(1 - p) [E(Y_1)]^2.$$

ullet Desta forma, a média e a variância de Y ficam dadas por:

$$E(Y) = 0 \times P(Y = 0) + (1 - p) \times \sum_{i=1}^{\infty} y P(Y_1 = y) = (1 - p) E(Y_1)$$

 \mathbf{e}

$$Var(Y) = (1 - p)Var(Y_1) + p(1 - p)[E(Y_1)]^2.$$

 \bullet Além disso, a f.d.a. de Y é dada por:

$$F_Y(y) = P(Y \le y) = p + (1 - p)P(Y_1 \le y), \text{ para } y = 0, 1, 2, ...$$

Figura 4: Ilustração - distribuição Poisson zero-inflacionada.

Distribuição Poisson zero-inflacionada

• A v.a. Y tem distribuição Poisson zero-inflacionada (ZIP) se assume valor zero com probabilidade σ (0< σ <1) e se comporta como uma Poisson(μ) com probabilidade 1 – σ :

Distribuição Poisson zero-inflacionada

• A v.a. Y tem distribuição Poisson zero-inflacionada (ZIP) se assume valor zero com probabilidade σ (0< σ <1) e se comporta como uma Poisson(μ) com probabilidade 1 – σ :

$$P(Y = y | \mu, \sigma) = \begin{cases} \sigma + (1 - \sigma)e^{-\mu} & \text{se } y = 0\\ (1 - \sigma)\frac{\mu^y e^{-\mu}}{y!} & \text{se } y = 1, 2, 3, ..., \end{cases}$$

Distribuição Poisson zero-inflacionada

• A v.a. Y tem distribuição Poisson zero-inflacionada (ZIP) se assume valor zero com probabilidade σ (0< σ <1) e se comporta como uma Poisson(μ) com probabilidade 1 – σ :

$$P(Y = y | \mu, \sigma) = \begin{cases} \sigma + (1 - \sigma)e^{-\mu} & \text{se } y = 0\\ (1 - \sigma)\frac{\mu^{y}e^{-\mu}}{y!} & \text{se } y = 1, 2, 3, ..., \end{cases}$$

com média $E(Y) = (1 - \sigma)\mu$ e variância $Var(Y) = (1 - \sigma)\mu + \sigma(1 - \sigma)\mu^2$.

Distribuição binomial negativa zero-inflacionada

• A v.a. Y tem distribuição binomial negativa zero-inflacionada (ZINBI) se assume valor zero com probabilidade ν (0< ν <1) e se comporta como uma NBI(μ , σ) com probabilidade 1 – ν :

Distribuição binomial negativa zero-inflacionada

• A v.a. Y tem distribuição binomial negativa zero-inflacionada (ZINBI) se assume valor zero com probabilidade ν (0< ν <1) e se comporta como uma NBI(μ , σ) com probabilidade 1 – ν :

$$P(Y = y | \mu, \sigma, \nu) = \begin{cases} \nu + (1 - \nu)P(Y_1 = 0 | \mu, \sigma) & \text{se } y = 0\\ (1 - \nu)P(Y_1 = y | \mu, \sigma) & \text{se } y = 1, 2, 3, ..., \end{cases}$$

Distribuição binomial negativa zero-inflacionada

• A v.a. Y tem distribuição binomial negativa zero-inflacionada (ZINBI) se assume valor zero com probabilidade ν (0< ν <1) e se comporta como uma NBI(μ , σ) com probabilidade 1 – ν :

$$P(Y = y | \mu, \sigma, \nu) = \begin{cases} \nu + (1 - \nu)P(Y_1 = 0 | \mu, \sigma) & \text{se } y = 0\\ (1 - \nu)P(Y_1 = y | \mu, \sigma) & \text{se } y = 1, 2, 3, ..., \end{cases}$$

onde $\mu > 0$, $\sigma > 0$, $Y_1 \sim \text{NBI}(\mu, \sigma)$, com média $E(Y) = (1 - \nu)\mu$ e variância $Var(Y) = (1 - \nu)\mu + (1 - \nu)(\sigma + \nu)\mu^2$.

 Outras distribuições zero-inflacionadas disponíveis no pacote gamlss são:

• ZIP2(μ , σ): Poisson zero-inflacionada tipo 2;

- ZIP2(μ , σ): Poisson zero-inflacionada tipo 2;
- ZIPIG (μ, σ, ν) : PIG zero-inflacionada;

- ZIP2(μ , σ): Poisson zero-inflacionada tipo 2;
- ZIPIG (μ, σ, ν) : PIG zero-inflacionada;
- ZIBNB(μ , σ , ν): BNB zero-inflacionada;

- ZIP2(μ , σ): Poisson zero-inflacionada tipo 2;
- ZIPIG(μ , σ , ν): PIG zero-inflacionada;
- ZIBNB(μ , σ , ν): BNB zero-inflacionada;
- ZISICHEL(μ , σ , ν , τ): SICHEL zero-inflacionada.

Distribuição K-inflacionadas

• Como caso mais geral, podemos definir uma distribuição inflacionada em $K \in \{0, 1, 2, ...\}$:

Distribuição K-inflacionadas

• Como caso mais geral, podemos definir uma distribuição inflacionada em $K \in \{0, 1, 2, ...\}$:

$$P(Y = y) = \begin{cases} p + (1 - p)P(Y_1 = K) & \text{se } y = K\\ (1 - p)P(Y_1 = y) & \text{se } y = 0, 1, 2, \dots \text{ (exceto K)} \end{cases}$$

Distribuição K-inflacionadas

• Como caso mais geral, podemos definir uma distribuição inflacionada em $K \in \{0, 1, 2, ...\}$:

$$P(Y = y) = \begin{cases} p + (1 - p)P(Y_1 = K) & \text{se } y = K\\ (1 - p)P(Y_1 = y) & \text{se } y = 0, 1, 2, \dots \text{ (exceto K)} \end{cases}$$

 O pacote gamlss.countKinf permite gerar distribuições K-inflacionadas a partir das distribuições atualmente implementadas. E vamos ao R!

Seção R - Parte 4

 Vamos retomar os dados de frequências de cistos em rins de ratos, e usar disctribuições zero-inflacionadas na modelagem.

Distribuições zero-ajustadas

 \bullet Dizemos que Y é uma v.a. discreta zero-ajustada (ou zero-alterada) se:

- \bullet Dizemos que Y é uma v.a. discreta zero-ajustada (ou zero-alterada) se:
 - Assume valor zero com probabilidade p (0 < p < 1);

- \bullet Dizemos que Y é uma v.a. discreta zero-ajustada (ou zero-alterada) se:
 - Assume valor zero com probabilidade p (0 ;
 - Se comporta como uma v.a. discreta com distribuição truncada em zero (denotemos por Y_1) para y=1,2,3,...

- \bullet Dizemos que Y é uma v.a. discreta zero-ajustada (ou zero-alterada) se:
 - Assume valor zero com probabilidade p (0 < p < 1);
 - Se comporta como uma v.a. discreta com distribuição truncada em zero (denotemos por Y_1) para y=1,2,3,...
- Observe que, diferentemente das distribuições zero-inflacionadas, aqui P(Y=0) não depende da distribuição de Y_1 , mas somente de p;

- \bullet Dizemos que Y é uma v.a. discreta zero-ajustada (ou zero-alterada) se:
 - Assume valor zero com probabilidade p (0 ;
 - Se comporta como uma v.a. discreta com distribuição truncada em zero (denotemos por Y_1) para y=1,2,3,...
- Observe que, diferentemente das distribuições zero-inflacionadas, aqui P(Y=0) não depende da distribuição de Y_1 , mas somente de p;
- Desta forma, diferentemente das zero-inflacionadas, as distribuições zero-ajustadas podem acomodar também escassez de zero (para p suficientemente pequeno).

• A f.p. de Y com distribuição zero-ajustada ($Y \sim {\tt ZAD}$) pode ser representada, de maneira genérica, por:

$$P(Y = y) = \begin{cases} p & \text{se } y = 0\\ (1 - p)P(Y_1 = y) & \text{se } y = 1, 2, 3, ..., \end{cases}$$

onde Y_1 é a versão truncada em zero de uma v.a. discreta com suporte em $\{0,1,2,...\}$ (denotemos a variável não truncada por Y_2).

Distribuições zero-ajustadas (ou zero alteradas)

• A f.p. de Y com distribuição zero-ajustada ($Y \sim {\tt ZAD}$) pode ser representada, de maneira genérica, por:

$$P(Y = y) = \begin{cases} p & \text{se } y = 0\\ (1 - p)P(Y_1 = y) & \text{se } y = 1, 2, 3, ..., \end{cases}$$

onde Y_1 é a versão truncada em zero de uma v.a. discreta com suporte em $\{0, 1, 2, ...\}$ (denotemos a variável não truncada por Y_2).

• De maneira equivalente:

$$P(Y = y) = \begin{cases} p & \text{se } y = 0\\ \frac{(1-p)P(Y_2 = y)}{1-P(Y_2 = 0)} & \text{se } y = 1, 2, 3, \dots \end{cases}$$

Distribuições zero-ajustadas (ou zero alteradas)

• Seja $c=\frac{(1-p)}{1-P(Y_2=0)}$. A média e a variância de $Y\sim {\tt ZAD}$ ficam dadas por:

$$E(Y) = cE(Y_2) e Var(Y) = cVar(Y_2) + c(1-c) [E(Y_2)]^2.$$

Distribuições zero-ajustadas (ou zero alteradas)

• Seja $c = \frac{(1-p)}{1-P(Y_2=0)}$. A média e a variância de $Y \sim \text{ZAD}$ ficam dadas por:

$$E(Y) = cE(Y_2) e Var(Y) = cVar(Y_2) + c(1-c) [E(Y_2)]^2.$$

ullet Já a f.d.a. de Y é dada por:

$$P(Y \le y) = \begin{cases} p & \text{se } y = 0 \\ p + c \left[P(Y_2 \le y) - P(Y_2 = 0) \right] & \text{se } y = 1, 2, 3, \dots \end{cases}$$

Figura 5: Ilustração - distribuição Poisson zero-ajustada.

Distribuição Poisson zero-ajustada

• A distribuição Poisson zero-ajustada (ZAP), assumimos uma mistura de dois componentes: zero, com probabilidade σ (0 < σ < 1), e uma Poisson(μ) truncada em zero, com probabilidade (1 – σ).

Distribuição Poisson zero-ajustada

- A distribuição Poisson zero-ajustada (ZAP), assumimos uma mistura de dois componentes: zero, com probabilidade σ (0 < σ < 1), e uma Poisson(μ) truncada em zero, com probabilidade (1 σ).
- A f.p. de $Y \sim \mathtt{ZAP}(\mu, \sigma)$ é dada por:

$$P(Y = y | \mu, \sigma) = \begin{cases} \sigma & \text{se } y = 0\\ \frac{(1 - \sigma)e^{-\mu}\mu^y}{y!(1 - e^{-\mu})} & \text{se } y = 1, 2, 3, ..., \end{cases}$$

com $\mu > 0$. A média e a variância de Y são dadas por:

$$E(Y) = \frac{(1-\sigma)\mu}{(1-e^{-\mu})} e Var(Y) = (1+\mu)E(Y) - [E(Y)]^2.$$

Distribuição binomial zero-ajustada

• A distribuição binomial negativa zero-ajustada (ZANBI) é gerada por uma mistura de dois componentes: zero, com probabilidade ν (0 < ν < 1), e uma NBI(μ , σ) truncada em zero, com probabilidade (1 – ν).

Distribuição binomial zero-ajustada

- A distribuição binomial negativa zero-ajustada (ZANBI) é gerada por uma mistura de dois componentes: zero, com probabilidade ν (0 < ν < 1), e uma NBI(μ , σ) truncada em zero, com probabilidade (1 ν).
- A f.p. de $Y \sim \mathtt{ZANBI}(\mu, \sigma)$ é dada por:

$$P(Y=y|\mu,\sigma,\nu) = \begin{cases} \nu & \text{se } y=0 \\ \frac{(1-\nu)P(Y_2=y|\mu,\sigma)}{1-P(Y_2=0|\mu,\sigma)} & \text{se } y=1,2,3,..., \end{cases}$$

com $\mu>0,\,\sigma>0$ e $Y_2\sim NBI(\mu,\sigma).$ A média e a variância de Ysão dadas por:

$$E(Y) = \frac{(1-\nu)\mu \left[1 - (1+\mu\sigma)^{-1/\sigma}\right]^{-1}}{(1-e^{-\mu})}$$

$$Var(Y) = [1 + (\sigma + 1)\mu] E(Y) - [E(Y)]^{2}.$$

 Outras distribuições zero-ajustadas implementadas no pacote gamlss:

 Outras distribuições zero-ajustadas implementadas no pacote gamlss:

• $\mathtt{ZALG}(\mu, \sigma)$: zero-ajustada \mathtt{LG} ;

- Outras distribuições zero-ajustadas implementadas no pacote gamlss:
 - ZALG (μ, σ) : zero-ajustada LG;
 - ZAZIPF (μ, σ) : zero-ajustada ZIPF;

- Outras distribuições zero-ajustadas implementadas no pacote gamlss:
 - ZALG (μ, σ) : zero-ajustada LG;
 - ZAZIPF (μ, σ) : zero-ajustada ZIPF;
 - ZAPIG (μ, σ, ν) : zero-ajustada PIG;

- Outras distribuições zero-ajustadas implementadas no pacote gamlss:
 - ZALG (μ, σ) : zero-ajustada LG;
 - ZAZIPF(μ, σ): zero-ajustada ZIPF;
 - ZAPIG (μ, σ, ν) : zero-ajustada PIG;
 - ZABNB (μ, σ, ν, τ) : zero-ajustada BNB;

- Outras distribuições zero-ajustadas implementadas no pacote gamlss:
 - ZALG (μ, σ) : zero-ajustada LG;
 - ZAZIPF(μ, σ): zero-ajustada ZIPF;
 - ZAPIG (μ, σ, ν) : zero-ajustada PIG;
 - ZABNB(μ, σ, ν, τ): zero-ajustada BNB;
 - ZASICHEL (μ, σ, ν, τ) : zero-ajustada SICHEL.

Seção R - Parte 5

 Vamos usar dados de frequência de visitas ao pediatra como motivação para o ajuste de modelos zero-ajustados e zero-inflacionados.

Seção R - Parte 6

• Agora, um problema de regressão para dados de contagens (seção 7.7.3 do livro texto).

Resumindo

 Modelos para variáveis discretas são amplamente utilizados na análise de dados de contagens;

- Modelos para variáveis discretas são amplamente utilizados na análise de dados de contagens;
- Problemas como super (ou sub) dispersão, excesso (ou escassez) de zeros, requerem métodos e modelos específicos;

- Modelos para variáveis discretas são amplamente utilizados na análise de dados de contagens;
- Problemas como super (ou sub) dispersão, excesso (ou escassez) de zeros, requerem métodos e modelos específicos;
- A biblioteca gamlss tem implementados modelos probabilísticos para dados de contagens, permitindo lidar adequadamente com os problemas mencionados;

- Modelos para variáveis discretas são amplamente utilizados na análise de dados de contagens;
- Problemas como super (ou sub) dispersão, excesso (ou escassez) de zeros, requerem métodos e modelos específicos;
- A biblioteca gamlss tem implementados modelos probabilísticos para dados de contagens, permitindo lidar adequadamente com os problemas mencionados;
- Novos modelos podem ser gerados por meio de misturas ou discretização de variáveis contínuas.

• Família GAMLSS - tópicos adicionais

- Família GAMLSS tópicos adicionais
 - Distribuições contínuas com suporte em (0,1);

- Família GAMLSS tópicos adicionais
 - Distribuições contínuas com suporte em (0,1);
 - Distribuições contínuas inflacionadas;

- Família GAMLSS tópicos adicionais
 - Distribuições contínuas com suporte em (0,1);
 - Distribuições contínuas inflacionadas;
 - Geração de novas distribuições contínuas com suporte em (0,1) e inflacionadas;

- Família GAMLSS tópicos adicionais
 - Distribuições contínuas com suporte em (0,1);
 - Distribuições contínuas inflacionadas;
 - Geração de novas distribuições contínuas com suporte em (0,1) e inflacionadas;
 - Recursos adicionais.