

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

26 de Abril de 2022

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

Definición. (Álgebra de Funciones)

Sean $f:A\to C$ y $g:B\to D$ funciones. Entonces f+g, f-g, fg y f/g están definidas como sigue

- $(f-g)(x) = f(x) g(x) \text{ con dominio } A \cap B.$
- $(fg)(x) = f(x)g(x) \text{ con dominio } A \cap B.$

EJEMPLO 1 Dadas las funciones

$$f(x) = \frac{x+1}{\sqrt{x+2}}$$
 y $g(x) = \frac{x^2-1}{x^2-x-6}$

- Calcule (f+g)(2)
- Verifique que

$$\left(\frac{f}{g}\right)(x) = \frac{(x-3)\sqrt{x+2}}{x-1}$$

con dominio $(2, \infty) - \{-1, 1, 3\}$.

Definición. (Función compuesta)

Sean $f:A\to C$ y $g:B\to D$ funciones tales que el recorrido de f está contenido en el dominio de g, esto es, $\mathrm{Rec}(f)\subseteq \mathrm{Dom}(g)$. En este caso, podemos definir la **función compuesta** $g\circ f:A\to D$, que consiste en aplicar primero f y después g. Más precisamente,

$$(g \circ f)(x) = g(f(x))$$
 para todo $x \in A$.

Observación Dadas dos funciones $f: A \to \mathbb{R}$ y $g: B \to \mathbb{R}$, no siempre se cumple que $\text{Rec}(f) \subset B$, luego la definición de la composición no siempre se puede realizar. En estos casos, definimos el dominio de la composición por

$$\mathsf{Dom}(g \circ f) = \{ x \in \mathsf{Dom}(f) \mid f(x) \in \mathsf{Dom}(g) \}$$

No siempre se tiene que $g \circ f$ y $f \circ g$ son iguales, más aún, en ocasiones es imposible definirlas. Por ejemplo

EJEMPLO 2 Sean $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 2x + 1 y $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = x^2$. Entonces, $(g \circ f)(x) = (2x + 1)^2$ mientras que $(f \circ g)(x) = 2x^2 + 1$. Obviamente $g \circ f \neq f \circ g$.

EJEMPLO 3 Sean las funciones $f: \mathbb{N} \to \mathbb{N}$ y $g: P \to \mathbb{Z}$ donde $P = \{2n \mid n \in \mathbb{N}\}$ es el conjunto de los números naturales pares, definidas por f(n) = 2n y g(m) = -m Es posible definir $g \circ f: \mathbb{N} \to \mathbb{Z}$ dada por $(g \circ f)(n) = -2n$. Pero no es posible definir $f \circ g$, pues $g(n) \in \mathbb{Z} \neq \mathbb{N}$, el dominio de f.

EJEMPLO 4 Sean $f:]-\infty, 5[\to \mathbb{R}, \ f(x) = \sqrt{x^2 + 4}.$ y $g: [6, \infty[\to \mathbb{R}, \ g(x) = 2x + 3.$ Defina la función compuesta $g \circ f.$

Solución Tenemos que el dominio de la función composición es

$$x \in \mathsf{Dom}(g \circ f) \iff (x \in \mathsf{Dom}(f)) \land (f(x) \in \mathsf{Dom}(g))$$

$$\iff (x < 5) \land (\sqrt{x^2 + 4} \geqslant 6)$$

$$\iff (x < 5) \land (x \geqslant \sqrt{32} \quad \text{o} \quad x \leqslant -\sqrt{32})$$

$$\iff x \leqslant -\sqrt{32}$$

Por lo tanto, $\mathsf{Dom}(g \circ f) = (-\infty, -\sqrt{32}].$

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x^2 + 4}) = 2\sqrt{x^2 + 4} + 3.$$

EJEMPLO 5 Sean
$$g: \mathbb{R} \to \mathbb{R}$$
, $g(x) = -3x + 1$ y

$$f(x) = \begin{cases} x^2 + 5 & \text{si } x < -1 \\ 1 - x & \text{si } x \geqslant -1 \end{cases}$$

Definir las funciones $f \circ g$ y $g \circ f$.

Solución Tenemos que

$$x \in \mathsf{Dom}(f \circ g) \iff (x \in \mathsf{Dom}(g)) \land (g(x) \in \mathsf{Dom}(f))$$

 $\iff (x \in \mathbb{R}) \land (-3x + 1 \in \mathbb{R})$
 $\iff x \in \mathbb{R}$

Luego, $\mathsf{Dom}(f \circ g) = \mathbb{R}$.

Se tiene que

$$(f \circ g)(x) = f(-3x+1) = \begin{cases} (-3x+1)^2 + 5 & \text{si } -3x+1 < -1 \\ 1 - (-3x+1) & \text{si } -3x+1 \ge -1 \end{cases}$$
$$= \begin{cases} 9x^2 - 6x + 6 & \text{si } x > 2/3 \\ 3x & \text{si } x \le 2/3 \end{cases}$$

Ahora bien,

$$x \in \mathsf{Dom}(g \circ f) \iff (x \in \mathsf{Dom}(f)) \land (f(x) \in \mathsf{Dom}(g))$$

 $\iff (x \in \mathbb{R}) \land (f(x) \in \mathbb{R})$
 $\iff x \in \mathbb{R}$

Luego, $\mathsf{Dom}(g \circ f) = \mathbb{R}$.

Tenemos que

$$(g \circ f)(x) = g(f(x)) = -3f(x) + 1$$

$$= \begin{cases} -3(x^2 + 5) + 1 & \text{si } x < -1 \\ -3(1 - x) + 1 & \text{si } x \ge -1 \end{cases}$$

$$= \begin{cases} -3x^2 - 14 & \text{si } x < -1 \\ 3x - 2 & \text{si } x \ge -1 \end{cases}$$

Proposición.

Sean $f:A\to C$ y $g:B\to D$ son funciones tales que $g\circ f$ está bien definida. Entonces

- ① Si f y g son funciones inyectivas entonces $g \circ f$ es inyectiva.
- ② Si f y g son funciones sobreyectivas entonces $g \circ f$ es sobreyectiva.

En particular, la compuesta de dos biyecciones es una biyección.