In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: data=pd.read_csv('dataset.csv')
 data

Out[3]:

	VIN (1-10)	County	City	State	Postal Code	Model Year	Make	Model	E V	
0	JTMEB3FV6N	Monroe	Key West	FL	33040	2022	ТОҮОТА	RAV4 PRIME	F (I	
1	1G1RD6E45D	Clark	Laughlin	NV	89029	2013	CHEVROLET	VOLT	F \ (I	
2	JN1AZ0CP8B	Yakima	Yakima	WA	98901	2011	NISSAN	LEAF	E E \	
3	1G1FW6S08H	Skagit	Concrete	WA	98237	2017	CHEVROLET	BOLT EV	E E \	
4	3FA6P0SU1K	Snohomish	Everett	WA	98201	2019	FORD	FUSION	[E \ (I	
112629	7SAYGDEF2N	King	Duvall	WA	98019	2022	TESLA	MODEL Y	E E \	
112630	1N4BZ1CP7K	San Juan	Friday Harbor	WA	98250	2019	NISSAN	LEAF	E E \	
112631	1FMCU0KZ4N	King	Vashon	WA	98070	2022	FORD	ESCAPE	[
112632	KNDCD3LD4J	King	Covington	WA	98042	2018	KIA	NIRO	E \ (I	
112633	YV4BR0CL8N	King	Covington	WA	98042	2022	VOLVO	XC90	E \ (1	
112634 rows × 17 columns										
→										

In [4]: data.columns = data.columns.str.strip()

Univariate Analysis

```
In [5]: sns.set(style="whitegrid")

# Descriptive statistics for numeric columns
numeric_columns = ['Model Year', 'Electric Range', 'Base MSRP']
print(data[numeric_columns].describe())

# Plot histograms for numeric columns
fig, axes = plt.subplots(len(numeric_columns), 1, figsize=(8, 12))
fig.suptitle('Univariate Analysis - Histograms of Numeric Variables')

for i, column in enumerate(numeric_columns):
    sns.histplot(data[column], kde=True, ax=axes[i])
    axes[i].set_title(f'Distribution of {column}')
    axes[i].set_xlabel(column)
    axes[i].set_ylabel('Frequency')

plt.tight_layout()
plt.show()
```

	Model Year	Electric Range	Base MSRP
count	112634.000000	112634.000000	112634.000000
mean	2019.003365	87.812987	1793.439681
std	2.892364	102.334216	10783.753486
min	1997.000000	0.000000	0.000000
25%	2017.000000	0.000000	0.000000
50%	2020.000000	32.000000	0.000000
75%	2022.000000	208.000000	0.000000
max	2023.000000	337.000000	845000.000000

Univariate Analysis - Histograms of Numeric Variables

Frequency distribution for categorical columns

```
In [6]: categorical_columns = ['Make', 'Electric Vehicle Type', 'Clean Alternative
        print(data[categorical columns].describe())
        # Plot bar plots for categorical columns
        fig, axes = plt.subplots(len(categorical_columns), 1, figsize=(10, 15))
        fig.suptitle('Univariate Analysis - Bar Plots of Categorical Variables')
        for i, column in enumerate(categorical columns):
            sns.countplot(y=data[column], order=data[column].value counts().index,
            axes[i].set title(f'Count of {column}')
            axes[i].set xlabel('Count')
            axes[i].set_ylabel(column)
        plt.tight_layout()
        plt.show()
                  Make
                                  Electric Vehicle Type \
        count
                112634
                                                 112634
        unique
                    34
                                                      2
        top
                 TESLA
                        Battery Electric Vehicle (BEV)
        freq
                 52078
                                                  86044
               Clean Alternative Fuel Vehicle (CAFV) Eligibility
                                                                    State
        count
                                                           112634 112634
        unique
                                                                       45
                         Clean Alternative Fuel Vehicle Eligible
        top
                                                                       WΑ
        freq
                                                            58639 112348
```


Bivariate Analysis

```
In [7]:
        plt.figure(figsize=(10, 6))
        sns.scatterplot(x='Electric Range', y='Base MSRP', hue='Electric Vehicle Ty
        plt.title('Electric Range vs Base MSRP, by Vehicle Type')
        plt.xlabel('Electric Range (miles)')
        plt.ylabel('Base MSRP (USD)')
        plt.legend(title='Electric Vehicle Type')
        plt.show()
        # Box plot of Electric Range grouped by Model Year
        plt.figure(figsize=(10, 6))
        sns.boxplot(x='Model Year', y='Electric Range', data=data)
        plt.title('Electric Range Distribution by Model Year')
        plt.xlabel('Model Year')
        plt.ylabel('Electric Range (miles)')
        plt.xticks(rotation=45)
        plt.show()
```


Box plot of Electric Range grouped by CAFV Eligibility

```
In [9]: plt.figure(figsize=(10, 6))
    sns.boxplot(x='Clean Alternative Fuel Vehicle (CAFV) Eligibility', y='Elect
    plt.title('Electric Range by CAFV Eligibility')
    plt.xlabel('CAFV Eligibility')
    plt.ylabel('Electric Range (miles)')
    plt.show()
```


Clean Alternative Fuel Vehicle Eligible Not eligible due to low battering einknown as battery range has not been researched CAFV Eligibility

In []: