Introduction to Machine Learning

Fall 2022

University of Science and Technology of China

Lecturer: Jie Wang
Name: Yunqin Zhu
Homework 1
ID: PB20061372

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Limit and Limit Points

1. Show that $\{\mathbf{x}_n\}$ in \mathbb{R}^n converges to $\mathbf{x} \in \mathbb{R}^n$ if and only if $\{\mathbf{x}_n\}$ is bounded and has a unique limit point \mathbf{x} .

Solution:

- (\Rightarrow) Suppose that $\mathbf{x}_n \to \mathbf{x}$. For any $\epsilon > 0$, there exists a positive integer N such that $\|\mathbf{x}_k \mathbf{x}\|_2 < \epsilon$ whenever $k \geq N$. Hence $\|\mathbf{x}_k\|_2 \leq \|\mathbf{x}_k \mathbf{x}\|_2 + \|\mathbf{x}\|_2 < \epsilon + \|\mathbf{x}\|_2$. Let $M = \max\{\|\mathbf{x}_1\|, \|\mathbf{x}_2\|, \dots, \|\mathbf{x}_{N-1}\|, \epsilon + \|\mathbf{x}\|_2\}$. Then $\|\mathbf{x}_n\|_2 \leq M$, which implies that $\{\mathbf{x}_n\}$ is bounded. Let $\{\mathbf{x}_{n_k}\}_k$ be an arbitrary subsequence of $\{\mathbf{x}_n\}$. Since $n_k \geq k$, we have $\|\mathbf{x}_{n_k} \mathbf{x}\|_2 < \epsilon$ whenever $k \geq N$, i.e. $\lim_{k \to \infty} \mathbf{x}_{n_k} = \mathbf{x}$. Clearly $\mathbf{x}_{n_k} \neq \mathbf{x}$, so \mathbf{x} is a unique limit point of $\{\mathbf{x}_n\}$.
- (\Leftarrow) Suppose that $\{\mathbf{x}_n\}$ is bounded and has a unique limit point \mathbf{x} . Assume that $\mathbf{x}_n \not\to \mathbf{x}$. Then there exists $\delta > 0$ such that given any positive integer N, we can find $k \geq N$ satisfying $\|\mathbf{x}_k \mathbf{x}\|_2 \geq \delta$. Let $n_1 = 1$ and, for any n_k , find $n_{k+1} \geq n_k + 1$ such that $\|\mathbf{x}_{n_{k+1}} \mathbf{x}\|_2 \geq \delta$. By Bolzano-Weierstrass theorem, the bounded sequence $\{\mathbf{x}_{n_k}\}$ has a convergent subsequence $\{\mathbf{x}_{m_k}\}$. Since \mathbf{x} is the unique limit point, $\{\mathbf{x}_{m_k}\}$ must converge to \mathbf{x} , which contradicts $\|\mathbf{x}_{m_k} \mathbf{x}\|_2 \geq \delta$. Therefore, $\mathbf{x}_n \to \mathbf{x}$.
- 2. (Limit Points of a Set). Let C be a subset of \mathbb{R}^n . A point $\mathbf{x} \in \mathbb{R}^n$ is called a limit point of C if there is a sequence $\{\mathbf{x}_n\}$ in C such that $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{x}_n \neq \mathbf{x}$ for all positive integers n. If $\mathbf{x} \in C$ and \mathbf{x} is not a limit point of C, then \mathbf{x} is called an isolated point of C. Let C' be the set of limit points of the set C. Please show the following statements.
 - (a) If $C = (0,1) \cup \{2\} \subset \mathbb{R}$, then C' = [0,1] and x = 2 is an isolated point of C.
 - (b) The set C' is closed.
 - (c) The closure of C is the union of C' and C; that is $\operatorname{\mathbf{cl}} C = C' \cup C$. Moreover, $C' \subset C$ if and only if C is closed.

- (a) For $x \in (0,1]$, the sequence $\{(1-2^{-n})x\} \subset C$ converges to x. For x=0, $\{2^{-n}\} \subset C$ converges to x. Hence $C' \supset [0,1]$. Suppose $\{x_n\}$ converges to some $x \notin [0,1]$. For $x \in (-\infty,0)$, the neighborhood (-2x,0) intersects $\{x_n\}$ but does not intersects C. For $x \in (1,\infty)$, the neighborhood $(1,x) \cap (x,2x-1)$ intersects $\{x_n\}$ but does not intersects C. Hence $\{x_n\} \not\subset C \implies C' \subset [0,1] \implies C' = [0,1]$. Specifically, $x=2 \in C \setminus C'$ is an isolated point.
- (b) Let \mathbf{x} be a limit point of C'. From a sequence $\{\mathbf{x}_n\} \subset C'$ converging to \mathbf{x} , pick \mathbf{x}_{n_k} satisfying $\|\mathbf{x}_{n_k} \mathbf{x}\|_2 < \frac{1}{k}$, where k is a positive integer. Since \mathbf{x}_{n_k} is a limit point of C, we can similarly find some $\mathbf{y}_k \in C$ satisfying $\|\mathbf{y}_k \mathbf{x}_{n_k}\|_2 < \frac{1}{k}$ and $\mathbf{y}_k \neq \mathbf{x}$. Then we

- have $\|\mathbf{y}_k \mathbf{x}\|_2 \leq \|\mathbf{y}_k \mathbf{x}_{n_k}\|_2 + \|\mathbf{x}_{n_k} \mathbf{x}\|_2 < \frac{2}{k}$, which implies that $\lim_{k\to\infty} \mathbf{y}_k = \mathbf{x}$. Hence \mathbf{x} is a limit point of $C \implies \mathbf{x} \in C'$. Since \mathbf{x} is arbitrary, we know C' contains all of its limit points. According to (c), C' is closed.
- (c) (\Rightarrow) Assume that $C' \subset C$ but C is not closed. Let \mathbf{x} be a point in $\mathbb{R}^n \setminus C$. Since $\mathbb{R}^n \setminus C$ is not open, for any $\epsilon > 0$, the ϵ -neighborhood $N_{\epsilon}(\mathbf{x})$ must intersect C. For each positive integer n, we can let $\epsilon = \frac{1}{n}$ and find some $\mathbf{x}_n \in N_{\epsilon}(\mathbf{x}) \cap C$. Clearly $\mathbf{x}_n \neq \mathbf{x}$ and $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{x}$, so $\mathbf{x} \in C'$. But $\mathbf{x} \notin C$, which is a contradiction.
 - (\Leftarrow) If \mathbf{x} is a limit point of C, then there exists $\{\mathbf{x}_n\} \subset C$ converging to \mathbf{x} . Given any $N_{\epsilon}(\mathbf{x})$ with $\epsilon > 0$, we can always find some \mathbf{x}_n in $N_{\epsilon}(\mathbf{x})$, which implies that $N_{\epsilon}(\mathbf{x})$ intersects C, i.e. $N_{\epsilon}(\mathbf{x}) \not\subset \mathbb{R}^n \setminus C$. Since $\mathbb{R}^n \setminus C$ is open, \mathbf{x} must be in C. Hence $C' \subset C$.

Exercise 2: Open and Closed Sets

The norm ball $\{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y} - \mathbf{x}\|_2 < r, \mathbf{x} \in \mathbb{R}^n \}$ is denoted by $B_r(\mathbf{x})$.

- 1. Given a set $C \subset \mathbb{R}^n$, please show the following are equivalent.
 - (a) The set C is closed; that is $\mathbf{cl}\ C = C$.
 - (b) The complement of C is open.
 - (c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset$ for every $\epsilon > 0$, then $\mathbf{x} \in C$.

Solution:

- (a) \Rightarrow (b) Assume that $\mathbb{R}^n \setminus C$ is not open. Let \mathbf{x} be a point in $\mathbb{R}^n \setminus C$. For each positive integer n, we have $B_{\frac{1}{n}}(\mathbf{x}) \not\subset \mathbb{R}^n \setminus C$, so there exists $\mathbf{x}_n \in B_{\frac{1}{n}}(\mathbf{x}) \cap C$. Clearly $\mathbf{x}_n \neq \mathbf{x}$ and $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}$, so \mathbf{x} is a limit point of C, i.e. $\mathbf{x} \in \mathbf{cl}\ C = C$. But $\mathbf{x} \in \mathbb{R}^n \setminus C$, which is a contradiction.
- (b) \Rightarrow (c) If $B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset \implies B_{\epsilon}(\mathbf{x}) \not\subset \mathbb{R}^n \setminus C$ for every $\epsilon > 0$, then \mathbf{x} is not an interior point of $\mathbb{R}^n \setminus C$. Since $\mathbb{R}^n \setminus C$ is open, \mathbf{x} must be in C.
- (c) \Rightarrow (a) Suppose \mathbf{x} is a limit point of C. Then there exists $\{\mathbf{x}_n\} \subset C \setminus \{\mathbf{x}\}$ converging to \mathbf{x} . Given any $\epsilon > 0$, we can always find some $\mathbf{x}_n \in B_{\epsilon}(\mathbf{x}) \Longrightarrow B_{\epsilon}(\mathbf{x}) \cap C \neq \emptyset \Longrightarrow \mathbf{x} \in C$. Since \mathbf{x} is arbitrary, it follows that C contains all of its limit points, i.e. $\mathbf{cl}\ C = C$.
 - 2. Given $A \subset \mathbb{R}^n$, a set $C \subset A$ is called open in A if

$$C = \{ \mathbf{x} \in C : B_{\epsilon}(\mathbf{x}) \cap A \subset C \text{ for some } \epsilon > 0 \}.$$

A set C is said to be closed in A if $A \setminus C$ is open in A.

- (a) Let $B = [0, 1] \cup \{2\}$. Please show that [0, 1] is not an open set in \mathbb{R} , while it is both open and closed in B.
- (b) Please show that a set $C \subset A$ is open in A if and only if $C = A \cap U$, where U is open in \mathbb{R}^n .

- (a) For every $\epsilon > 0$, we have $(\epsilon, 0] \subset B_{\epsilon}(0)$ and $(\epsilon, 0] \not\subset [0, 1]$. Hence $B_{\epsilon}(0) \cap \mathbb{R} \not\subset [0, 1]$, i.e. x = 0 is not an interior point of [0, 1]. Therefore, [0, 1] is not an open set in \mathbb{R} . For every $x \in [0, 1]$, $B_1(x) \cap B \subset (-1, 2) \cap B = [0, 1]$, so [0, 1] is open in B. For $x \in B \setminus [0, 1] = \{2\}$, $B_1(x) \cap B = \{2\}$, so $\{2\}$ is open in B, i.e. [0, 1] is closed in B.
- (b)(\Rightarrow) For every $\mathbf{x} \in C$, there exists $\epsilon_{\mathbf{x}} > 0$ such that $B_{\epsilon_{\mathbf{x}}}(\mathbf{x}) \cap A \subset C$. Let $U = \bigcup_{\mathbf{x} \in C} B_{\epsilon_{\mathbf{x}}}(\mathbf{x})$. On the one hand, since $\mathbf{x} \in B_{\epsilon_{\mathbf{x}}}(\mathbf{x})$, it follows that $C \subset U \implies C \subset U \cap A$. On the other hand, $U \cap A = \bigcup_{\mathbf{x} \in C} (B_{\epsilon_{\mathbf{x}}}(\mathbf{x}) \cap A) \subset C$. Hence $U \cap A = C$. Since every $B_{\epsilon_{\mathbf{x}}}(\mathbf{x})$ is open in \mathbb{R}^n , U is also open in \mathbb{R}^n .
 - (⇐) For every $\mathbf{x} \in C \subset U$, there exists $\epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}) \subset U \implies B_{\epsilon}(\mathbf{x}) \cap A \subset (U \cap A) = C$. Hence C is open in A.

Exercise 3: Bolzano-Weierstrass Theorem

The Least Upper Bound Axiom

Any nonempty set of real numbers with an upper bound has a least upper bound. That is, $\sup C$ always exists for a nonempty bounded above set $C \subset \mathbb{R}$.

Please show the following statements from the least upper bound axiom.

1. Let C be a nonempty subset of \mathbb{R} that is bounded above. Prove that $u = \sup C$ if and only if u is an upper bound of C and

$$\forall \epsilon > 0, \exists a \in C \text{ such that } a > u - \epsilon.$$

Solution:

- (⇒) Since u is the least upper bound, for any $\epsilon > 0$, $u \epsilon$ cannot be an upper bound of C. Hence, there must be some $a \in C$ such that $a > u \epsilon$.
- (\Leftarrow) For any u' < u, there exists some $a \in C$ such that a > u', implying that u' is not an upper bound of C. Hence, u is the least upper bound.
- 2. Every bounded sequence in \mathbb{R} has at least one limit point.

Solution:

Suppose $\{x_n\}$ to be a bounded sequence in \mathbb{R} . Let $C=\{x:x< x_n \text{ for an infinite number of } x_n\}$. C is nonempty because it contains all lower bounds of x_n . Moreover, C is bounded above by every upper bound of x_n . By the least upper bound axiom, $u=\sup C$ must exist. Then we can find $a\in C$ satisfying $a>u-\frac{1}{k}$ for each positive integer k. That is, there exist infinitely many x_n greater than $u-\frac{1}{k}$. Furthermore, since $u+\frac{1}{k}\not\in C$, only a finite number of x_n is greater than $u+\frac{1}{k}$. From those infinitely many x_n who satisfy $|x_n-u|<\frac{1}{k}$, pick x_{n_k} such that $x_{n_k}\neq u$. Since $\lim_{k\to\infty} x_{n_k}=u$, we know u is a limit point of $\{x_n\}$.

3. Every bounded sequence in \mathbb{R}^n has at least one limit point.

Solution:

Suppose $\{\mathbf{x}^m\}$ to be a bounded sequence in \mathbb{R}^n and $\mathbf{x}^m = (x_1^m, x_2^m, \dots, x_n^m)$. Then $\{x_1^m\}$ is a bounded sequence in \mathbb{R} with at least one limit point x_1 , which implies that it has a subsequence $\{x_1^{m_{1,k}}\}_k$ converging to x_1 . For each $d=2,3,\ldots,n$, let x_d be a limit point of the bounded sequence $\{x_d^{m_{d-1,k}}\}_k$. Then there exists a subsequence $\{x_d^{m_{d,k}}\}_k \subset \{x_d^{m_{d-1,k}}\}_k$ converging to x_d . Now, consider the components of $\{\mathbf{x}^{m_{n,k}}\}_k$. Since $\{x_1^{m_{n,k}}\}_k \subset \{x_1^{m_{1,k}}\}_k, \{x_1^{m_{n,k}}\}_k$ must converge to x_1 . Analogously, $\{x_d^{m_{n,k}}\}_k$ must converge to x_d for each $d=2,3,\ldots,n-1$. If we denote (x_1,x_2,\ldots,x_n) by \mathbf{x} , then $\lim_{k\to\infty}\mathbf{x}^{m_{n,k}}=\mathbf{x}$. Clearly $\mathbf{x}^{m_{n,k}}\neq\mathbf{x}$, so $\{\mathbf{x}^m\}$ has a limit point \mathbf{x} .

Exercise 4: Extreme Value Theorem

1. Show that a set $C \subset \mathbb{R}^n$ is compact if and only if C is closed and bounded.

Solution:

- (\Rightarrow) Let C be compact. Assume that C is not bounded. Then, given any positive integer n, there must exist some $\mathbf{x}_n \in C$ such that $\|\mathbf{x}_n\|_2 > n$. Since C is compact, $\{\mathbf{x}_n\}$ has a convergent subsequence $\{\mathbf{x}_{n_k}\}$. According to Exercise 1.1, $\{\mathbf{x}_{n_k}\}$ must be bounded, but $\|\mathbf{x}_{n_k}\|_2 > n_k$, which is a contradiction. Therefore, C is bounded. Let \mathbf{x} be a limit point of C. Then there is a sequence $\{\mathbf{x}_n\} \subset C \setminus \{\mathbf{x}\}$ that converges to \mathbf{x} . Since C is compact, $\{\mathbf{x}_n\}$ has a convergent subsequence $\{\mathbf{x}_{n_k}\}$ and $\lim_{k\to\infty}\mathbf{x}_{n_k}\in C$. According to Exercise 1.1, we have $\lim_{k\to\infty}\mathbf{x}_{n_k}=\mathbf{x} \implies \mathbf{x}\in C$. Since \mathbf{x} is arbitrary, we know C contains all of its limit points. Therefore, C is closed.
- (\Leftarrow) Let $C \subset \mathbb{R}^n$ be closed and bounded. Then any sequence $\{\mathbf{x}_n\} \subset C$ is also bounded. By Bolzano-Weierstrass theorem, we can find a convergent subsequence $\{\mathbf{x}_{n_k}\}$ whose limit \mathbf{x} is also a limit point of C. Because C is closed, it follows that $\mathbf{x} \in C$. Hence C is compact.
- 2. Let C be a compact subset of \mathbb{R}^n and $f: C \to \mathbb{R}$ be continuous. Please show that there exist $\mathbf{a}, \mathbf{b} \in C$ such that

$$f(\mathbf{a}) \le f(\mathbf{x}) \le f(\mathbf{b}), \, \forall \, \mathbf{x} \in C.$$

(**Hint:** first prove that f(C) is compact, in \mathbb{R} .)

Solution:

Consider an arbitrary sequence $\{y_n\} \subset f(C)$. For each positive integer n, there exists $\mathbf{x}_n \in C$ such that $f(\mathbf{x}_n) = y_n$. Since C is compact, $\{\mathbf{x}_n\} \subset C$ has a convergent subsequence $\{\mathbf{x}_{n_k}\}$ satisfying $\lim_{k\to\infty} \mathbf{x}_{n_k} \in C$. Denote $\lim_{k\to\infty} \mathbf{x}_{n_k}$ by \mathbf{x} . Because f is continuous, $\mathbf{x}_{n_k} \to \mathbf{x}$ $\implies \mathbf{y}_{n_k} \to f(\mathbf{x})$. Moreover, $\mathbf{x} \in C \implies f(\mathbf{x}) \in f(C)$. Therefore, f(C) is compact in \mathbb{R} , i.e. bounded and closed.

Since f(C) is bounded, we can find $u = \sup f(C)$ and $l = \inf f(C)$. For each positive n, there exists $u_n \in f(C)$ such that $u - \frac{1}{n} < u_n \le u$, which implies that $\lim_{n \to \infty} u_n = u$. If $u_n = u$ for some n, then $u \in f(C)$. Otherwise u is a limit point of f(C), and since f(C) is closed, it still follows that $u \in f(C)$. Analogously, we can conclude that $l \in f(C)$. Hence, there exists $\mathbf{a}, \mathbf{b} \in C$ such that $f(\mathbf{a}) = l$ and $f(\mathbf{b}) = u$, which leads to the desired statement.

3. Let $f:[a,b]\to\mathbb{R}$ be continuous. Show that the range of f is a compact interval [c,d] for some $c,d\in\mathbb{R}$.

Solution:

Clearly, [a, b] is a compact in \mathbb{R} . By Exercise 4.2, we know that f([a, b]) is also compact in \mathbb{R} and $c = \min f([a, b])$, $d = \max f([a, b])$ both exist. For any $y \in (c, d)$, we define $C = \{x \in [a, b] : f(x) \leq y\}$. Since C is nonempty and bounded above, $u = \sup C$ must exist. Assume that f(u) > y. Since f is continuous, there exists $\epsilon > 0$ such that f(x) > y for all $x \in (u - \epsilon, u + \epsilon)$. Then $u - \epsilon$ is an upper bound of C less than u, which is a contradiction. Assume that f(u) < y. Since f is continuous, there exists $\epsilon > 0$ such that f(x) < y for all $x \in (u - \epsilon, u + \epsilon)$. Then $u + \frac{\epsilon}{2}$ is an element of C greater than u, which is a contradiction. Hence f(u) = y, from which we conclude that $f([a, b]) \supset [c, d]$, i.e. f([a, b]) = [c, d].

Exercise 5: Basis and Coordinates

Suppose that $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of an *n*-dimensional vector space V.

1. Show that $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is also a basis of V for nonzero scalars $\lambda_1, \lambda_2, \dots, \lambda_n$.

Solution:

Because $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of V, for every $\mathbf{v} \in V$, there exists x_1, x_2, \dots, x_n such that $\mathbf{v} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n$. Let $y_i = \frac{x_i}{\lambda_i}$, then $\mathbf{v} = y_1 \lambda_1 \mathbf{a}_1 + y_2 \lambda_2 \mathbf{a}_2 + \dots + y_n \lambda_n \mathbf{a}_n$. Therefore, $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is a basis of V.

2. Let $V = \mathbb{R}^n$ and $(\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n) = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)\mathbf{P}$, where $\mathbf{P} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_i \in \mathbb{R}^n$, for any $i \in \{1, \dots, n\}$. Show that $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is also a basis of V for any invertible matrix \mathbf{P} .

Solution:

Let $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ and $\mathbf{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$, then $\mathbf{B} = \mathbf{AP}$. Because $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of V, for every $\mathbf{v} \in V$, there exists $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ such that $\mathbf{v} = \mathbf{Ax}$. Let $\mathbf{y} = \mathbf{P}^{-1}\mathbf{x}$, then $\mathbf{v} = \mathbf{By}$. Therefore, $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is a basis of V.

- 3. Suppose that the coordinate of a vector **v** under the basis $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is $\mathbf{x} = (x_1, x_2, \dots, x_n)$.
 - (a) What is the coordinate of **v** under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$?
 - (b) What are the coordinates of $\mathbf{w} = \mathbf{a}_1 + \cdots + \mathbf{a}_n$ under $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ and $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$? Note that $\lambda_i \neq 0$ for any $i \in \{1, \dots, n\}$.

- (a) By Exercise 5.1, the coordinate under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is $(\frac{x_1}{\lambda_1}, \frac{x_2}{\lambda_2}, \dots, \frac{x_n}{\lambda_n})$.
- (b) The coordinate under $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is $(1, 1, \dots, 1)$. The coordinate under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is $(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n})$.

Exercise 6: Derivatives with Matrices

Definition 1 (Differentiability). [1] Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function, $\mathbf{x}_0 \in \mathbb{R}^n$ be a point, and let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. We say that f is differentiable at \mathbf{x}_0 with derivative L if we have

$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0.$$

We denote this derivative by $f'(\mathbf{x}_0)$.

- 1. Let $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$. Consider the functions as follows. Please show that they are differentiable and find $f'(\mathbf{x})$.
 - (a) $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$.
 - (b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}$.
 - (c) $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Solution:

(a)
$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\mathbf{a}^\top \mathbf{x} - \mathbf{a}^\top \mathbf{x}_0 - \mathbf{a}^\top (\mathbf{x} - \mathbf{x}_0)}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$
$$= \lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{0}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0 \implies f'(\mathbf{x}) \equiv \mathbf{a}^\top.$$

(b)
$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\mathbf{x}^\top \mathbf{x} - \mathbf{x}_0^\top \mathbf{x}_0 - 2\mathbf{x}_0^\top (\mathbf{x} - \mathbf{x}_0)}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$

$$= \lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{(\mathbf{x} - \mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0)}{\|\mathbf{x} - \mathbf{x}_0\|_2}$$

$$= \lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \|\mathbf{x} - \mathbf{x}_0\|_2 = 0 \implies f'(\mathbf{x}) = 2\mathbf{x}^\top.$$

(c)
$$f(\mathbf{x}) = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2}$$

 $= (\mathbf{y} - \mathbf{A}\mathbf{x})^{\top}(\mathbf{y} - \mathbf{A}\mathbf{x})$
 $= \mathbf{y}^{\top}\mathbf{y} - 2\mathbf{y}^{\top}\mathbf{A}\mathbf{x} + \mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x}.$

$$\lim_{\mathbf{x} \to \mathbf{x}_{0}; \mathbf{x} \neq \mathbf{x}_{0}} \frac{f(\mathbf{x}) - f(\mathbf{x}_{0}) - (-2\mathbf{y}^{\top}\mathbf{A} + 2\mathbf{x}_{0}^{\top}\mathbf{A}^{\top}\mathbf{A})(\mathbf{x} - \mathbf{x}_{0})}{\|\mathbf{x} - \mathbf{x}_{0}\|_{2}}$$

$$= \lim_{\mathbf{x} \to \mathbf{x}_{0}; \mathbf{x} \neq \mathbf{x}_{0}} \frac{\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{x}_{0}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} + \mathbf{x}_{0}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x}_{0}^{\top}}{\|\mathbf{x} - \mathbf{x}_{0}\|_{2}}$$

$$= \lim_{\mathbf{x} \to \mathbf{x}_{0}; \mathbf{x} \neq \mathbf{x}_{0}} \frac{(\mathbf{x} - \mathbf{x}_{0})^{\top}\mathbf{A}^{\top}\mathbf{A}(\mathbf{x} - \mathbf{x}_{0})}{\|\mathbf{x} - \mathbf{x}_{0}\|_{2}}$$

$$\leq \lim_{\mathbf{x} \to \mathbf{x}_{0}; \mathbf{x} \neq \mathbf{x}_{0}} \|\mathbf{A}^{\top}\mathbf{A}\|_{2} \cdot \|\mathbf{x} - \mathbf{x}_{0}\|_{2} = 0 \implies f'(\mathbf{x}) = -2\mathbf{y}^{\top}\mathbf{A} + 2\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}.$$

2. Please follow Definition 1 and give the definition of the differentiability of the functions $f: \mathbb{R}^{n \times n} \to \mathbb{R}$.

Solution:

Let $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ be a function, $\mathbf{X}_0 \in \mathbb{R}^{n \times n}$ be a matrix, and let $L: \mathbb{R}^{n \times n} \to \mathbb{R}$ be a linear transformation. We say that f is differentiable at \mathbf{X}_0 with derivative L if we have

$$\lim_{\mathbf{X} \to \mathbf{X}_0; \mathbf{X} \neq \mathbf{X}_0} \frac{f(\mathbf{X}) - f(\mathbf{X}_0) - L(\mathbf{X} - \mathbf{X}_0)}{\|\mathbf{X} - \mathbf{X}_0\|_F} = 0.$$

We denote this derivative by $f'(\mathbf{X}_0)$.

3. Let $f(\mathbf{X}) = \det(\mathbf{X})$, where $\det(\mathbf{X})$ is the determinant of $\mathbf{X} \in \mathbb{R}^{n \times n}$. Please discuss the differentiability of f rigorously according to your definition in the last part. If f is differentiable, please find $f'(\mathbf{X})$.

Solution:

$$\det(\mathbf{X} + \Delta \mathbf{X})$$

$$= \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n (x_{i,\sigma_i} + \Delta x_{i,\sigma_i}) \right)$$

$$= \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma_i} \right) + \sum_{i=1}^n \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \Delta x_{i,\sigma_i} \prod_{j \neq i} x_{j,\sigma_j} \right) + O(\|\Delta \mathbf{X}\|_F^2)$$

$$= \det(\mathbf{X} + \Delta \mathbf{X}) + \sum_{i=1}^n \sum_{j=1}^n \operatorname{cof}(\mathbf{X})_{ij} \Delta x_{ij} + O(\|\Delta \mathbf{X}\|_F^2)$$

$$= \det(\mathbf{X} + \Delta \mathbf{X}) + \operatorname{tr}(\operatorname{adj}(\mathbf{X}) \Delta \mathbf{X}) + o(\|\Delta \mathbf{X}\|_F).$$

$$\therefore \lim_{\Delta \mathbf{X} \to \mathbf{O}} \frac{\det(\mathbf{X} + \Delta \mathbf{X}) - \det(\mathbf{X}) - \operatorname{tr}(\operatorname{adj}(\mathbf{X}) \Delta \mathbf{X})}{\|\Delta \mathbf{X}\|_F}$$

$$= \lim_{\Delta \mathbf{X} \to \mathbf{O}} \frac{o(\|\Delta \mathbf{X}\|_F)}{\|\Delta \mathbf{X}\|_F} = 0 \implies f'(\mathbf{X}) : \mathbf{\Xi} \mapsto \operatorname{tr}(\operatorname{adj}(\mathbf{X}) \mathbf{\Xi}).$$

4. Let $f(\mathbf{X}) = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{X})$, where $\mathbf{A}, \mathbf{X} \in \mathbb{R}^{n \times m}$, and $\operatorname{tr}(\cdot)$ denotes the trace of a matrix. Please discuss the differentiability of f and find f' if it is differentiable.

Solution:

$$\lim_{\mathbf{X} \to \mathbf{X}_0; \mathbf{X} \neq \mathbf{X}_0} \frac{\operatorname{tr}(\mathbf{A}^{\top} \mathbf{X}) - \operatorname{tr}(\mathbf{A}^{\top} \mathbf{X}_0) - \operatorname{tr}(\mathbf{A}^{\top} (\mathbf{X} - \mathbf{X}_0))}{\|\mathbf{X} - \mathbf{X}_0\|_F}$$

$$= \lim_{\mathbf{X} \to \mathbf{X}_0; \mathbf{X} \neq \mathbf{X}_0} \frac{0}{\|\mathbf{X} - \mathbf{X}_0\|_F} = 0 \implies f'(\mathbf{X}) : \mathbf{\Xi} \mapsto \operatorname{tr}(\mathbf{A}^{\top} \mathbf{\Xi}).$$

5. Let \mathbf{S}_{++}^n be the space of all positive definite $n \times n$ matrices. Prove the function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ defined by $f(\mathbf{X}) = \operatorname{tr} \mathbf{X}^{-1}$ is differentiable on \mathbf{S}_{++}^n . (Hint: Expand the expression $(\mathbf{X} + t\mathbf{Y})^{-1}$ as a power series.)

$$\frac{\mathrm{d}\mathbf{X}^{-1}}{\mathrm{d}t}\mathbf{X} + \mathbf{X}^{-1}\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} = \frac{\mathrm{d}(\mathbf{X}^{-1}\mathbf{X})}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{I}}{\mathrm{d}t} = \mathbf{O} \implies \frac{\mathrm{d}\mathbf{X}^{-1}}{\mathrm{d}t} = -\mathbf{X}^{-1}\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t}\mathbf{X}^{-1}.$$

$$\therefore \quad (\mathbf{X} + t\mathbf{Y})^{-1} = \mathbf{X}^{-1} - \mathbf{X}^{-1}(t\mathbf{Y})\mathbf{X}^{-1} + O(t^{2}).$$

$$\therefore \quad \lim_{t \to 0} \frac{\operatorname{tr}(\mathbf{X} + t\mathbf{Y}) - \operatorname{tr}(\mathbf{X}) + \operatorname{tr}(\mathbf{X}^{-1}(t\mathbf{Y})\mathbf{X}^{-1})}{\|t\mathbf{Y}\|_{F}}$$

$$= \quad \lim_{t \to 0} \frac{o(t)}{O(t)} = \quad 0 \quad \Longrightarrow f'(\mathbf{X}) : \mathbf{\Xi} \mapsto \operatorname{tr}(-\mathbf{X}^{-1}\mathbf{\Xi}\mathbf{X}^{-1}).$$

6. Define a function $f: \mathbf{S}_{++}^n \to \mathbb{R}$ by $f(\mathbf{X}) = \log \det \mathbf{X}$. Prove $\nabla f(\mathbf{I}) = \mathbf{I}$. Deduce $\nabla f(\mathbf{X}) = \mathbf{X}^{-1}$ for any \mathbf{X} in \mathbf{S}_{++}^n .

$$\frac{\partial \det(\mathbf{X})}{\partial x_{ij}} = \sum_{k=1}^{n} \left(\frac{\partial x_{ik}}{\partial x_{ij}} \operatorname{cof}(\mathbf{X})_{ik} + x_{ik} \frac{\partial \operatorname{cof}(\mathbf{X})_{ik}}{\partial x_{ij}} \right) = \operatorname{cof}(\mathbf{X})_{ij}$$

$$\implies \frac{\partial f(\mathbf{X})}{\partial x_{ij}} = \frac{\operatorname{d}f(\mathbf{X})}{\operatorname{d}\det(\mathbf{X})} \frac{\partial \det(\mathbf{X})}{\partial x_{ij}} = \frac{\operatorname{cof}(\mathbf{X})_{ij}}{\det(\mathbf{X})}$$

$$\implies \nabla f(\mathbf{X}) = \frac{\operatorname{cof}(\mathbf{X})}{\det(\mathbf{X})} = \mathbf{X}^{-\top}.$$

Let
$$\mathbf{X} = \mathbf{I} \implies \nabla f(\mathbf{I}) = \mathbf{I}$$
. For any $\mathbf{X} \in \mathbf{S}_{++}^n$, $\mathbf{X} = \mathbf{X}^{\top} \implies \nabla f(\mathbf{X}) = \mathbf{X}^{-1}$.

Exercise 7: Rank of Matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

- 1. Please show that
 - (a) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top});$
 - (b) $\operatorname{rank}(\mathbf{AB}) \leq \operatorname{rank}(\mathbf{A});$
 - (c) $\operatorname{rank}(\mathbf{AB}) \leq \operatorname{rank}(\mathbf{B});$
 - (d) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}).$

Solution:

- (a) Suppose $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_r\}$ is a basis of $\mathcal{C}(\mathbf{A})$, where $r = \mathbf{rank}(\mathbf{A})$. Let $\mathbf{C} = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_r)$ $\in \mathbb{R}^{m \times r}$. Since all n columns of \mathbf{A} are linear combinations of $\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_r\}$, there exists a matrix $\mathbf{R} \in \mathbb{R}^{r \times n}$ such that $\mathbf{A} = \mathbf{CR}$. Then each row of \mathbf{A} can be written as a linear combination of rows of \mathbf{R} , implying that $\mathbf{rank}(\mathbf{A}^\top) \leq \mathbf{rank}(\mathbf{R}) \leq r$. Moreover, $\mathbf{rank}(\mathbf{A}) = \mathbf{rank}((\mathbf{A}^\top)^\top) \leq \mathbf{rank}(\mathbf{A}^\top)$. Therefore, $\mathbf{rank}(\mathbf{A}) = \mathbf{rank}(\mathbf{A}^\top)$.
- (b) Columns of AB are linear combinations of columns of $A \implies \mathcal{C}(AB) \subset \mathcal{C}(A) \implies \operatorname{rank}(AB) = \dim(\mathcal{C}(AB)) \leq \dim(\mathcal{C}(A)) = \operatorname{rank}(A)$.
- (c) Rows of $\mathbf{A}\mathbf{B}$ are linear combinations of rows of $\mathbf{B} \implies \mathcal{C}(\mathbf{B}^{\top}\mathbf{A}^{\top}) \subset \mathcal{C}(\mathbf{B}^{\top}) \implies \mathbf{rank}(\mathbf{A}\mathbf{B}) = \dim(\mathcal{C}(\mathbf{B}^{\top}\mathbf{A}^{\top})) \leq \dim(\mathcal{C}(\mathbf{B}^{\top})) = \mathbf{rank}(\mathbf{B}).$
- (d) According to (a), $\mathbf{A} = \mathbf{C}\mathbf{R}$, where \mathbf{C} has full column rank and \mathbf{R} has full row rank. If $\mathbf{C}^{\top}\mathbf{C}\mathbf{x} = \mathbf{0}$ for some $\mathbf{x} \in \mathbb{R}^r$, then $\mathbf{x}^{\top}\mathbf{C}^{\top}\mathbf{C}\mathbf{x} = \mathbf{0} \implies \mathbf{C}\mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$. Hence $\mathbf{C}^{\top}\mathbf{C}$ also has full rank. Analogously, we show that $\mathbf{R}\mathbf{R}^{\top}$ has full rank. Then $\mathbf{A} = \mathbf{C}(\mathbf{C}^{\top}\mathbf{C})^{-1}(\mathbf{R}\mathbf{R}^{\top})^{-1}\mathbf{R}\mathbf{A}^{\top}\mathbf{A}$, which implies that $\mathbf{rank}(\mathbf{A}) \leq \mathbf{rank}(\mathbf{A}^{\top}\mathbf{A})$. On the other hand, $\mathbf{rank}(\mathbf{A}^{\top}\mathbf{A}) \leq \mathbf{rank}(\mathbf{A})$, so $\mathbf{rank}(\mathbf{A}) = \mathbf{rank}(\mathbf{A}^{\top}\mathbf{A})$.
- 2. The column space of **A** is defined by

$$C(\mathbf{A}) = {\mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \mathbf{x} \in \mathbb{R}^n}.$$

The *null space* of \mathbf{A} is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of **A** is the dimension of the column space of **A**.

Please show that

- (a) $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n$;
- (b) $\mathbf{y} = \mathbf{0}$ if and only if $\mathbf{a}_i^{\top} \mathbf{y} = 0$ for i = 1, ..., m, where $\mathbf{y} \in \mathbb{R}^m$ and $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m\}$ is a basis of \mathbb{R}^m .

Solution:

(a) Let $r = \operatorname{rank}(\mathbf{A})$. There exists a permutation matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{AP} = (\mathbf{C} \ \mathbf{CR})$, where $\mathbf{C} \in \mathbb{R}^{m \times r}$ is r linearly independent columns of \mathbf{A} and $\mathbf{CR} \in \mathbb{R}^{m \times (n-r)}$ is the other columns.

Let $\mathbf{X} = \mathbf{P} \begin{pmatrix} -\mathbf{R} \\ \mathbf{I}_{n-r} \end{pmatrix} \in \mathbb{R}^{n \times (n-r)}$. Then $\mathbf{A}\mathbf{X} = (\mathbf{C} \ \mathbf{C}\mathbf{R}) \begin{pmatrix} -\mathbf{R} \\ \mathbf{I}_{n-r} \end{pmatrix} = \mathbf{0}$, implying that all columns of \mathbf{X} are in $\mathcal{N}(\mathbf{A})$.

If $\mathbf{X}\mathbf{u} = \mathbf{0}$ for some $\mathbf{u} \in \mathbb{R}^{n-r}$, then $\mathbf{P} \begin{pmatrix} -\mathbf{R}\mathbf{u} \\ \mathbf{u} \end{pmatrix} = \mathbf{0} \implies \mathbf{u} = \mathbf{0}$. Hence columns of \mathbf{X} are linearly independent.

If $\mathbf{A}\mathbf{x} = \mathbf{0}$ for some $\mathbf{x} = \mathbf{P}\begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix}$ where $\mathbf{u}_1 \in \mathbb{R}^r$ and $\mathbf{u}_2 \in \mathbb{R}^{n-r}$, then $\mathbf{C}(\mathbf{I}_r - \mathbf{R})\begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} =$

$$\mathbf{0} \implies (\mathbf{I}_r \quad \mathbf{R}) \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{0} \implies \mathbf{u}_1 = -\mathbf{R}\mathbf{u}_2 \implies \mathbf{x} = \mathbf{P} \begin{pmatrix} -\mathbf{R}\mathbf{u}_2 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{X}\mathbf{u}_2, \text{ i.e. any}$$

 $\mathbf{x} \in \mathcal{N}(\mathbf{A})$ is a linear combination of columns of \mathbf{X} .

To conclude, columns of **X** form a basis of $\mathcal{N}(\mathbf{A})$. Therefore, $\operatorname{\mathbf{rank}}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = \operatorname{\mathbf{rank}}(\mathbf{A}) + \operatorname{\mathbf{rank}}(\mathbf{X}) = r + (n - r) = n$.

$$(\mathbf{b})(\Rightarrow) \ \mathbf{y} = \mathbf{0} \implies \mathbf{a}_i^{\top} \mathbf{y} = \mathbf{a}_i^{\top} \mathbf{0} = 0, \, \forall \, i = 1, 2, \dots, m.$$

$$(\Leftarrow) \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$$
 is a basis of $\mathbb{R}^m \implies \mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m) \in \mathbb{R}^{m \times m}$ is invertible. Then $\mathbf{A}\mathbf{y} = \mathbf{0} \implies \mathbf{y} = \mathbf{A}^{-1}\mathbf{0} = \mathbf{0}$.

3. Show that

$$rank (AB) = rank (B) - dim(C(B) \cap N(A)).$$
(1)

Solution:

Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$. Let $r = \mathbf{rank}(\mathbf{AB})$ and $s = \mathbf{rank}(\mathbf{B})$. Factor \mathbf{B} as $\mathbf{C_B}\mathbf{R_B}$, where $\mathbf{C_B} \in \mathbb{R}^{n \times s}$ has full column rank and $\mathbf{R_B} \in \mathbb{R}^{s \times p}$ has full row rank. $\mathbf{AB} = \mathbf{AC_B}\mathbf{R_B} \implies \mathbf{rank}(\mathbf{AB}) \le \mathbf{rank}(\mathbf{AC_B})$. $\mathbf{AC_B} = \mathbf{ABR_B}^{\top}(\mathbf{R_B}\mathbf{R_B}^{\top})^{-1} \implies \mathbf{rank}(\mathbf{AC_B}) \le \mathbf{rank}(\mathbf{AB})$. Hence $\mathbf{rank}(\mathbf{AC_B}) = r$. Find a permutation matrix $\mathbf{P} \in \mathbb{R}^{s \times s}$ such that $\mathbf{AC_B}\mathbf{P} = (\mathbf{C} \quad \mathbf{CR})$, where $\mathbf{C} \in \mathbb{R}^{m \times r}$ is r linearly independent columns of $\mathbf{AC_B}$ and $\mathbf{CR} \in \mathbb{R}^{m \times (s-r)}$ is the other columns.

Let $\mathbf{X} = \mathbf{C_B} \mathbf{P} \begin{pmatrix} -\mathbf{R} \\ \mathbf{I}_{s-r} \end{pmatrix} \in \mathbb{R}^{n \times (s-r)}$. Clearly, columns of \mathbf{X} are in $\mathcal{C}(\mathbf{B})$. Since $\mathbf{A}\mathbf{X} = (\mathbf{C} \ \mathbf{C}\mathbf{R}) \begin{pmatrix} -\mathbf{R} \\ \mathbf{I}_{s-r} \end{pmatrix} = \mathbf{0}$, columns of \mathbf{X} are also in $\mathcal{N}(\mathbf{A})$, and thus in $\mathcal{C}(\mathbf{B}) \cap \mathcal{N}(\mathbf{A})$.

If $\mathbf{X}\mathbf{u} = \mathbf{0}$ for some $\mathbf{u} \in \mathbb{R}^{s-r}$, then $(\mathbf{C}_{\mathbf{B}}^{\top}\mathbf{C}_{\mathbf{B}})^{-1}\mathbf{C}_{\mathbf{B}}^{\top}\mathbf{X}\mathbf{u} = \mathbf{0} \implies \mathbf{P} \begin{pmatrix} -\mathbf{R}\mathbf{u} \\ \mathbf{u} \end{pmatrix} = \mathbf{0} \implies \mathbf{u} = \mathbf{0}$. Hence columns of \mathbf{X} are linearly independent.

If $\mathbf{A}\mathbf{x} = \mathbf{0}$ for some $\mathbf{x} = \mathbf{C}_{\mathbf{B}}\mathbf{P}\begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix}$ where $\mathbf{u}_1 \in \mathbb{R}^r$ and $\mathbf{u}_2 \in \mathbb{R}^{s-r}$, then $\mathbf{C}(\mathbf{I}_r - \mathbf{R})\begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{0}$

$$\implies (\mathbf{I}_r \quad \mathbf{R}) \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{0} \implies \mathbf{u}_1 = -\mathbf{R}\mathbf{u}_2 \implies \mathbf{x} = \mathbf{C}_{\mathbf{B}} \mathbf{P} \begin{pmatrix} -\mathbf{R}\mathbf{u}_2 \\ \mathbf{u}_2 \end{pmatrix} = \mathbf{X}\mathbf{u}_2, \text{ i.e. any}$$

 $\mathbf{x} \in \mathcal{C}(\mathbf{B}) \cap \mathcal{N}(\mathbf{A})$ is a linear combination of columns of \mathbf{X} .

To conclude, columns of **X** form a basis of $C(\mathbf{B}) \cap \mathcal{N}(\mathbf{A})$. Therefore, $\operatorname{rank}(\mathbf{AB}) = r = s - (s - r) = \operatorname{rank}(\mathbf{B}) - \operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{B}) - \dim(C(\mathbf{B}) \cap \mathcal{N}(\mathbf{A}))$.

4. Suppose that the first term on the right-hand side (RHS) of Eq. (1) changes to **rank**(**A**). Please find the second term on the RHS of Eq. (1) such that it still holds.

$$\mathbf{rank}\left(\mathbf{B}^{\top}\mathbf{A}^{\top}\right) = \mathbf{rank}\left(\mathbf{A}^{\top}\right) - \dim(\mathcal{C}(\mathbf{A}^{\top}) \cap \mathcal{N}(\mathbf{B}^{\top}))$$

$$\implies \mathbf{rank} (\mathbf{AB}) = \mathbf{rank} (\mathbf{A}) - \dim(\mathcal{C}(\mathbf{A}^{\top}) \cap \mathcal{N}(\mathbf{B}^{\top})).$$
 The second term on the RHS changes to $\dim(\mathcal{C}(\mathbf{A}^{\top}) \cap \mathcal{N}(\mathbf{B}^{\top})).$

5. Show the results in 1. by Eq. (1) or the one you established in 4.

- (a) $\operatorname{rank}(\mathbf{I}\mathbf{A}) = \operatorname{rank}(\mathbf{I}) \dim(\mathcal{C}(\mathbf{I})^{\top} \cap \mathcal{N}(\mathbf{A}^{\top})) \implies \operatorname{rank}(\mathbf{A}) = n \dim(\mathcal{N}(\mathbf{A}^{\top})).$ $\operatorname{rank}(\mathbf{A}^{\top}\mathbf{I}) = \operatorname{rank}(\mathbf{I}) - \dim(\mathcal{C}(\mathbf{I}) \cap \mathcal{N}(\mathbf{A}^{\top})) \implies \operatorname{rank}(\mathbf{A}^{\top}) = n - \dim(\mathcal{N}(\mathbf{A}^{\top})).$ Hence $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}).$
- (b) $\operatorname{rank}(\mathbf{A}\mathbf{B}) = \operatorname{rank}(\mathbf{A}) \dim(\mathcal{C}(\mathbf{A}^{\top}) \cap \mathcal{N}(\mathbf{B}^{\top})) \leq \operatorname{rank}(\mathbf{A}).$
- (c) $\operatorname{rank}(AB) = \operatorname{rank}(B) \dim(\mathcal{C}(B) \cap \mathcal{N}(A)) \leq \operatorname{rank}(B)$.
- (d) $\operatorname{\mathbf{rank}} (\mathbf{A}^{\top} \mathbf{A}) = \operatorname{\mathbf{rank}} (\mathbf{A}) \dim(\mathcal{C}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A}^{\top}))$. For any $\mathbf{x} = \mathbf{A}\mathbf{u} \in \mathcal{C}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A}^{\top})$, we have $\mathbf{x}^{\top} \mathbf{x} = \mathbf{u}^{\top} \mathbf{A}^{\top} \mathbf{x} = \mathbf{u}^{\top} \mathbf{0} = 0 \implies \mathbf{x} = \mathbf{0}$, so $\dim(\mathcal{C}(\mathbf{A}) \cap \mathcal{N}(\mathbf{A}^{\top})) = 0$, and hence $\operatorname{\mathbf{rank}} (\mathbf{A}^{\top} \mathbf{A}) = \operatorname{\mathbf{rank}} (\mathbf{A})$.

Exercise 8: Linear Equations

Consider the system of linear equations in w

$$\mathbf{y} = \mathbf{X}\mathbf{w},\tag{2}$$

where $\mathbf{y} \in \mathbb{R}^n$, $\mathbf{w} \in \mathbb{R}^d$, and $\mathbf{X} \in \mathbb{R}^{n \times d}$.

- 1. Give an example for " \mathbf{X} " and " \mathbf{y} " to satisfy the following three situations respectively:
 - (a) there exists one unique solution;
 - (b) there does not exist any solution;
 - (c) there exists more than one solution.

Solution:

- (a) $\mathbf{X} = \begin{pmatrix} \mathbf{I} \\ \mathbf{O} \end{pmatrix} (n > d), \mathbf{y} = \mathbf{0}$. The unique solution is $\mathbf{w} = \mathbf{0}$.
- (b) $\mathbf{X} = \mathbf{O}, \mathbf{y} \neq \mathbf{0}$. No solution because $\mathbf{X}\mathbf{w} \equiv \mathbf{0}$.
- (c) $\mathbf{X} = \mathbf{O}$, $\mathbf{y} = \mathbf{0}$. The solution can be any $\mathbf{w} \in \mathbb{R}^d$.
- 2. Suppose that **X** has full column rank and $\operatorname{rank}((\mathbf{X},\mathbf{y})) = \operatorname{rank}(\mathbf{X})$. Show that the system of linear equations (2) always admits a unique solution.

Solution:

 $\operatorname{rank}((\mathbf{X}, \mathbf{y})) = \operatorname{rank}(\mathbf{X}) \implies \dim \mathcal{C}((\mathbf{X}, \mathbf{y})) = \dim \mathcal{C}(\mathbf{X}) = d$. Since \mathbf{X} has full column rank, the d columns of \mathbf{X} are linearly independent and thus form a basis of $\mathcal{C}((\mathbf{X}, \mathbf{y}))$. Then \mathbf{y} can be represented as a linearly combination of columns of \mathbf{X} , i.e. $\mathbf{y} = \mathbf{X}\mathbf{w}$ admits a solution. Because $\mathbf{X}^{\top}\mathbf{X}$ is invertible, we have $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$, which must be unique.

3. (Normal equations) Consider another system of linear equations in w

$$\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\mathbf{w}.\tag{3}$$

Please show that the system (3) always admits a solution. Moreover, does it always admit a unique solution?

Solution:

 $\begin{aligned} & \mathbf{rank}\left(\mathbf{X}^{\top}\right) = \mathbf{rank}\left(\mathbf{X}^{\top}\mathbf{X}\right) \leq \mathbf{rank}\left((\mathbf{X}^{\top}\mathbf{X} \ \mathbf{X}^{\top}\mathbf{y})\right) \leq \mathbf{rank}\left(\mathbf{X}^{\top}\right) \implies \mathbf{rank}\left(\mathbf{X}^{\top}\mathbf{X}\right) = \\ & \mathbf{rank}\left((\mathbf{X}^{\top}\mathbf{X} \ \mathbf{X}^{\top}\mathbf{y})\right). \text{ According to Exercise 8.2, } \mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\mathbf{w} \text{ admits a solution.} \end{aligned}$ If \mathbf{X} has full column rank, then $\mathbf{X}^{\top}\mathbf{X}$ is invertible and $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ is the unique solution.

If $\mathbf{X} \neq \mathbf{O}$ is rank-deficient, it can be factored as $\mathbf{C}\mathbf{R}$, where \mathbf{C} has full column rank and \mathbf{R} has full row rank. Then $\mathbf{w}_0 = \mathbf{R}^{\top}(\mathbf{R}\mathbf{R}^{\top})^{-1}(\mathbf{C}^{\top}\mathbf{C})^{-1}\mathbf{C}^{\top}\mathbf{y}$ is a solution to $\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\mathbf{w}$. For any $\mathbf{u} \in \mathbb{R}^d$, $\mathbf{v} = (\mathbf{I} - \mathbf{R}^{\top}(\mathbf{R}\mathbf{R}^{\top})^{-1}\mathbf{R})\mathbf{u} \neq \mathbf{0}$ is a solution to $\mathbf{0} = \mathbf{X}^{\top}\mathbf{X}\mathbf{w}$, and hence $\mathbf{w} = \mathbf{w}_0 + \mathbf{v}$ is a solution to $\mathbf{X}^{\top}\mathbf{y} = \mathbf{X}^{\top}\mathbf{X}\mathbf{w}$, which is not unique.

Exercise 9: Properties of Eigenvalues and Singular Values

1. Suppose the maximum eigenvalue, minimum eigenvalue of a given symmetric matrix $\mathbf{A} \in S^n$ are denoted by $\lambda_{\max}(\mathbf{A})$ and $\lambda_{\min}(\mathbf{A})$, respectively. Please show that

$$\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}, \quad \lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{A} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$

Solution:

Consider the optimization problem $\max / \min R_{\mathbf{A}} = \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$ s.t. $\mathbf{x}^{\top} \mathbf{x} = 1$. We have the Lagrangian $L(\mathbf{x}, \lambda) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \lambda (\mathbf{x}^{\top} \mathbf{x} - 1)$. Then the first order conditions become $\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = 2\mathbf{A} \mathbf{x} - 2\lambda \mathbf{x} = 0 \implies (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$ and $\mathbf{x}^{\top} \mathbf{x} = 1$, implying that λ is an eigenvalue of \mathbf{A} and \mathbf{x} is a unit eigenvector corresponding to λ . For the maximization problem, the second order condition is $\nabla^2_{\mathbf{x}\mathbf{x}} L(\mathbf{x}, \lambda) = 2\mathbf{A} - 2\lambda \mathbf{I} \leq 0 \implies \mathbf{A} - \lambda \mathbf{I} \leq 0$, which is satisfied if and only if $\lambda = \lambda_{\max}(\mathbf{A})$. For the minimization problem, the second order condition is $\nabla^2_{\mathbf{x}\mathbf{x}} L(\mathbf{x}, \lambda) = 2\mathbf{A} - 2\lambda \mathbf{I} \geq 0 \implies \mathbf{A} - \lambda \mathbf{I} \geq 0$, which is satisfied if and only if $\lambda = \lambda_{\min}(\mathbf{A})$. Therefore, the global maximum is $R_{\mathbf{A}} = \mathbf{x}^{\top} \lambda_{\max}(\mathbf{A})\mathbf{x} = \lambda_{\max}(\mathbf{A})$ and the global minimum is $R_{\mathbf{A}} = \mathbf{x}^{\top} \lambda_{\min}(\mathbf{A})\mathbf{x} = \lambda_{\min}(\mathbf{A})$. In other words, $\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$ and $\lambda_{\min}(\mathbf{A}) = \inf_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$.

- 2. Suppose $\mathbf{B} = (b_{ij}) \in \mathbb{R}^{m \times n}$ with maximum singular value $\sigma_{\max}(\mathbf{B})$.
 - (a) Let $\|\mathbf{B}\|_2 := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$. Please show that

$$\sigma_{\max}(\mathbf{B}) = \|\mathbf{B}\|_2.$$

(b) Please show that

$$\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^\top \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}.$$

(c) Let $\|\mathbf{B}\|_1 := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_1}{\|\mathbf{x}\|_1}$. Please show that

$$\|\mathbf{B}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |b_{ij}|.$$

(d) Let $\|\mathbf{B}\|_{\infty} := \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{B}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}}$. Please show that

$$\|\mathbf{B}\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |b_{ij}|.$$

Solution:

(a) $\|\mathbf{B}\|_2 = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \sqrt{\frac{\mathbf{x}^\top \mathbf{B}^\top \mathbf{B} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}}$. Since $\mathbf{B}^\top \mathbf{B}$ is symmetric, by Exercise 9.1, we have $\|\mathbf{B}\|_2 = \sqrt{\lambda_{\max}(\mathbf{B}^\top \mathbf{B})} = \sigma_{\max}(\mathbf{B})$.

- (b) Consider maximizing $R_{\mathbf{B}} = \frac{\mathbf{x}^{\top} \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_{2} \|\mathbf{y}\|_{2}}$ subject to $\|\mathbf{x}\|_{2} = \|\mathbf{y}\|_{2} = 1$. Let $\mathbf{z} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$ and the Lagrangian $L(\mathbf{z}, \boldsymbol{\lambda}) = \mathbf{x}^{\top} \mathbf{B} \mathbf{y} \frac{1}{2} \lambda_{1} (\|\mathbf{x}\|_{2}^{2} 1) \frac{1}{2} \lambda_{2} (\|\mathbf{y}\|_{2}^{2} 1)$. The necessary conditions $\nabla_{\mathbf{z}} L(\mathbf{z}, \boldsymbol{\lambda}) = \begin{pmatrix} \mathbf{B} \mathbf{y} \lambda_{1} \mathbf{x} \\ \mathbf{B}^{\top} \mathbf{x} \lambda_{2} \mathbf{y} \end{pmatrix} = 0$ and $\mathbf{x}^{\top} \mathbf{x} = \mathbf{y}^{\top} \mathbf{y} = 1$ imply that $\sigma := \lambda_{1} = \lambda_{2}$ is a singular value of \mathbf{B} with unit left and right singular vectors \mathbf{x} and \mathbf{y} , respectively. Let $\mathbf{A} = \begin{pmatrix} \mathbf{B} \\ \mathbf{B}^{\top} \end{pmatrix}$. Then $\nabla_{\mathbf{z}\mathbf{z}}^{2} L(\mathbf{z}, \boldsymbol{\lambda}) = \begin{pmatrix} -\lambda_{1} \mathbf{I}_{m} & \mathbf{B} \\ \mathbf{B}^{\top} & -\lambda_{2} \mathbf{I}_{n} \end{pmatrix} = \mathbf{A} \sigma \mathbf{I}$. Clearly, every eigenvalue of \mathbf{A} is also a singular value of \mathbf{B} , and $\sigma_{\max}(\mathbf{B})$ is the largest eigenvalue of \mathbf{A} . So $\nabla_{\mathbf{z}\mathbf{z}}^{2} L(\mathbf{z}, \boldsymbol{\lambda})$ is negative semidefinite if and only if $\sigma = \sigma_{\max}(\mathbf{B})$, and hence the maximum of $R_{\mathbf{B}} = \mathbf{x}^{\top} \mathbf{B} \mathbf{y} = \mathbf{x}^{\top} \sigma \mathbf{x} = \sigma_{\max}(\mathbf{B})$. In other words, $\sigma_{\max}(\mathbf{B}) = \sup_{\mathbf{x} \in \mathbb{R}^{m}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{x}, \mathbf{y} \neq 0} \frac{\mathbf{x}^{\top} \mathbf{B} \mathbf{y}}{\|\mathbf{x}\|_{2} \|\mathbf{y}\|_{2}}$.
- (c) $\frac{\|\mathbf{B}\mathbf{x}\|_{1}}{\|\mathbf{x}\|_{1}} = \frac{\sum_{i=1}^{m} |\sum_{j=1}^{n} b_{ij} x_{j}|}{\sum_{j=1}^{n} |x_{j}|} \le \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} |b_{ij}| |x_{j}|}{\sum_{j=1}^{n} |x_{j}|} = \frac{\sum_{j=1}^{n} (\sum_{i=1}^{m} |b_{ij}|) |x_{j}|}{\sum_{j=1}^{n} |x_{j}|}$ $\le \frac{\sum_{j=1}^{n} |x_{j}|}{\sum_{j=1}^{n} |x_{j}|} \max_{1 \le j \le n} \sum_{i=1}^{m} |b_{ij}| = \max_{1 \le j \le n} \sum_{i=1}^{m} |b_{ij}|.$

The equality holds if $x_j = \begin{cases} 1, & \text{if } j = \underset{1 \le j \le n}{\operatorname{argmax}} \sum_{i=1}^m |b_{ij}|, \text{ so } ||\mathbf{B}||_1 = \underset{1 \le j \le n}{\max} \sum_{i=1}^m |b_{ij}|. \\ 0, & \text{otherwise} \end{cases}$

(d)
$$\frac{\|\mathbf{B}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} = \frac{\max_{1 \le i \le m} |\sum_{j=1}^{n} b_{ij} x_{j}|}{\max_{1 \le j \le n} |x_{j}|} \le \frac{\max_{1 \le i \le m} \sum_{j=1}^{n} |b_{ij}| |x_{j}|}{\max_{1 \le j \le n} |x_{j}|}$$
$$\le \frac{\max_{1 \le j \le n} |x_{j}|}{\max_{1 \le j \le n} |x_{j}|} \max_{1 \le i \le m} \sum_{j=1}^{n} |b_{ij}| = \max_{1 \le i \le m} \sum_{j=1}^{n} |b_{ij}|.$$

Let $k = \underset{1 \le i \le m}{\operatorname{argmax}} \sum_{j=1}^{n} |b_{ij}|$. The equality holds if $x_j = \begin{cases} 1, & \text{if } b_{kj} \ge 0 \\ -1, & \text{if } b_{kj} < 0 \end{cases}$, so $\|\mathbf{B}\|_{\infty} = \underset{1 \le i \le m}{\max} \sum_{j=1}^{n} |b_{ij}|$.

Exercise 10: Projection to a Linear Subspace

1. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank d and $\mathbf{y} \in \mathbb{R}^n$. Consider the optimization problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2,$$

- (a) We denote the column space of \mathbf{X} by $\mathcal{C}(\mathbf{X})$. Please show that $\hat{\mathbf{y}} := \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ is the projection of \mathbf{y} on $\mathcal{C}(\mathbf{X})$, i.e. $\langle \mathbf{y} \hat{\mathbf{y}}, \mathbf{x} \rangle = 0$ for any $\mathbf{x} \in \mathcal{C}(\mathbf{X})$.
- (b) Please solve the above optimization problem by completing the square.
- (c) Please show that $\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}\mathbf{w}\|_2 \le \|\mathbf{y}\|_2$. Then find the necessary and sufficient condition where the equality holds and give it a geometric interpretation.

Solution:

- (a) For any $\mathbf{x} = \mathbf{X}\mathbf{u} \in \mathcal{C}(\mathbf{X}), \ \langle \mathbf{y} \hat{\mathbf{y}}, \mathbf{x} \rangle = (\mathbf{y} \hat{\mathbf{y}})^{\top}\mathbf{x} = \mathbf{y}^{\top}(\mathbf{I} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top})\mathbf{x} = \mathbf{y}^{\top}(\mathbf{X}\mathbf{u} \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}(\mathbf{X}^{\top}\mathbf{X})\mathbf{u}) = \mathbf{y}^{\top}\mathbf{0} = 0.$
- (b) $\|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 = \|\mathbf{y} \hat{\mathbf{y}} + \hat{\mathbf{y}} \mathbf{X}\mathbf{w}\|_2^2 = \|\mathbf{y} \hat{\mathbf{y}}\|_2^2 + 2\langle \mathbf{y} \hat{\mathbf{y}}, \hat{\mathbf{y}} \mathbf{X}\mathbf{w}\rangle + \|\hat{\mathbf{y}} \mathbf{X}\mathbf{w}\|_2^2$. Since $\hat{\mathbf{y}} \mathbf{X}\mathbf{w} = \mathbf{X}(\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \mathbf{w}) \in \mathcal{C}(\mathbf{X})$, it follows that $\langle \mathbf{y} \hat{\mathbf{y}}, \hat{\mathbf{y}} \mathbf{X}\mathbf{w}\rangle = 0$. So $\|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 = \|\mathbf{y} \hat{\mathbf{y}}\|_2^2 + \|\hat{\mathbf{y}} \mathbf{X}\mathbf{w}\|_2^2 \ge \|\mathbf{y} \hat{\mathbf{y}}\|_2^2$, where the equality holds if and only if $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, i.e. $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$. And hence $\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 = \|\mathbf{y} \hat{\mathbf{y}}\|_2^2$.
- (c) $\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X} \mathbf{w}\|_2^2 = \langle \mathbf{y} \hat{\mathbf{y}}, \mathbf{y} + \hat{\mathbf{y}} 2\hat{\mathbf{y}} \rangle = \|\mathbf{y}\|_2^2 \|\hat{\mathbf{y}}\|_2^2 2\langle \mathbf{y} \hat{\mathbf{y}}, \hat{\mathbf{y}} \rangle = \|\mathbf{y}\|_2^2 \|\hat{\mathbf{y}}\|_2^2 \le \|\mathbf{y}\|_2^2$ $\implies \min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{y} \mathbf{X} \mathbf{w}\|_2 \le \|\mathbf{y}\|_2$. The equality holds if and only if $\|\hat{\mathbf{y}}\|_2 = 0 \iff \hat{\mathbf{y}} = \mathbf{0} \iff \langle \mathbf{y}, \mathbf{x} \rangle = 0$ for any $\mathbf{x} \in \mathcal{C}(\mathbf{X})$. In other words, the projection of \mathbf{y} on $\mathcal{C}(\mathbf{X})$ is zero, and thus \mathbf{y} is orthogonal to $\mathcal{C}(\mathbf{X})$, i.e. $\mathbf{y} \in \mathcal{N}(\mathbf{X}^\top)$.
- 2. Suppose X and Y are both random variables defined in the same sample space Ω with finite second-order moment, i.e. $\mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty$.
 - (a) Let $L^2(\Omega) = \{Z : \Omega \to \mathbb{R} \mid \mathbb{E}[Z^2] < \infty\}$ be the set of random variables with finite second-order moment. Please show that $L^2(\Omega)$ is a linear space, and $\langle X, Y \rangle := \mathbb{E}[XY]$ defines an inner product in $L^2(\Omega)$. Then find the projection of Y on the subspace of $L^2(\Omega)$ consisting of all constant variables.
 - (b) Please find a real constant \hat{c} , such that

$$\hat{c} = \underset{c \in \mathbb{R}}{\operatorname{argmin}} \ \mathbb{E}[(Y - c)^2].$$

[Hint: you can solve it by completing the square.]

(c) Please find the necessary and sufficient condition where $\min_{c \in \mathbb{R}} \mathbb{E}[(Y-c)^2] = \mathbb{E}[Y^2]$. Then give it a geometric interpretation using inner product and projection.

Solution:

(a) Suppose $X, Y, Z \in L^2(\Omega)$ and $a, b \in \mathbb{R}$. Then $\mathbb{E}[(X+Y)^2] = \mathbb{E}[X^2] + \mathbb{E}[Y^2] + 2\mathbb{E}[XY] \le \mathbb{E}[X^2] + \mathbb{E}[Y^2] + 2\sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]} < \infty$ and $\mathbb{E}[aX^2] = a\mathbb{E}[X^2] < \infty$, implying that $X + Y, aX \in L^2(\Omega)$. Therefore, we can define vector addition in $L^2(\Omega)$ as the usual addition of random variables, and scalar multiplication as the usual multiplication of a random variable by a real constant. Clearly, the addition is associative and commutative, with 0 as the identity element, i.e. X + (Y + Z) = (X + Y) + Z, X + Y = Y + X and

X+0=X. The scalar multiplication, with 1 as the identity element, is compatible with field multiplication and distributive with respect to both vector addition and field addition, i.e. 1X=X, a(bX)=(ab)X, a(X+Y)=aX+aY and (a+b)X=aX+bX. To conclude, $L^2(\Omega)$ is a linear space.

Morever, the given definition of inner product satisfies symmetry, linearity and positive definiteness, i.e. $\mathbb{E}[XY] = \mathbb{E}[YX]$, $\mathbb{E}[(aX + bY)Z] = a\mathbb{E}[XZ] + b\mathbb{E}[YZ]$ and $\mathbb{E}[X^2] \geq 0$, where the equality holds if and only if $X \equiv 0$.

For any real constant variable C in the subspace, $\langle Y - \mathbb{E}[Y], C \rangle = \mathbb{E}[C](\mathbb{E}[Y] - \mathbb{E}[\mathbb{E}[Y]]) = C(\mathbb{E}[Y] - \mathbb{E}[Y] = 0$. Hence the projection of Y on the subspace is $\mathbb{E}[Y]$.

- (b) $\mathbb{E}[(Y-c)^2] = \mathbb{E}[(Y-\mathbb{E}[Y]+\mathbb{E}[Y]-c)^2] = \mathbb{E}[(Y-\mathbb{E}[Y])^2] + 2\langle Y-\mathbb{E}[Y],\mathbb{E}[Y]-c\rangle + \mathbb{E}[(\mathbb{E}[Y]-c)^2] = \operatorname{Var}(Y) + (\mathbb{E}[Y]-c)^2 \geq \operatorname{Var}(Y)$, where the equality holds if and only if $\mathbb{E}[Y]-c=0$. Hence $\hat{c}=\mathbb{E}[Y]$.
- (c) $\min_{c \in \mathbb{R}} \mathbb{E}[(Y-c)^2] = \operatorname{Var}(Y) = \mathbb{E}[Y^2] \mathbb{E}[Y]^2 \leq \mathbb{E}[Y^2]$. The equality holds if and only if $\mathbb{E}[Y] = 0 \iff \langle Y, C \rangle = 0$ for any C in the subspace consisting of constant variables. In other words, the projection of Y on the subspace is zero, and thus Y is orthogonal to the subspace.
- 3. Suppose X and Y are both random variables defined in the same sample space Ω and all the expectations exist in this problem. Consider the problem

$$\min_{f:\mathbb{R}\to\mathbb{R}} \mathbb{E}[(f(X)-Y)^2].$$

- (a) Please solve the above problem by completing the square.
- (b) We let $\mathcal{C}(X)$ denote the subspace $\{f(X) \mid f(\cdot) : \mathbb{R} \to \mathbb{R}, \mathbb{E}[f(X)^2] < \infty\}$ of $L^2(\Omega)$. Please show that the solution of the above problem is the projection of Y on $\mathcal{C}(X)$.
- (c) Please show that question 2 is a special case of question 3.

Solution:

(a)
$$\mathbb{E}[(f(X) - Y)^2] = \mathbb{E}[(f(X) - \mathbb{E}[Y|X] + \mathbb{E}[Y|X] - Y)^2]$$

 $= \mathbb{E}[(f(X) - \mathbb{E}[Y|X])^2] + \mathbb{E}[(\mathbb{E}[Y|X] - Y)^2]$
 $+ 2\mathbb{E}[(f(X) - \mathbb{E}[Y|X])(\mathbb{E}[Y|X] - Y)].$

$$\begin{split} \mathbb{E}[(f(X) - \mathbb{E}[Y|X])(\mathbb{E}[Y|X] - Y)] &= \mathbb{E}\{(f(X) - \mathbb{E}[Y|X]) \, \mathbb{E}[\mathbb{E}[Y|X] - Y|X]\} \\ &= \mathbb{E}\{(f(X) - \mathbb{E}[Y|X]) \, (\mathbb{E}[Y|X] - \mathbb{E}[Y|X])\} \\ &= \mathbb{E}\{(f(X) - \mathbb{E}[Y|X]) \cdot 0\} = 0. \end{split}$$

$$\therefore \mathbb{E}[(f(X)-Y)^2] = \mathbb{E}[(f(X)-\mathbb{E}[Y|X])^2] + \mathbb{E}[(\mathbb{E}[Y|X]-Y)^2] \geq \mathbb{E}[(\mathbb{E}[Y|X]-Y)^2].$$

The equality holds if and only if $f(X) = \mathbb{E}[Y|X]$. Hence $\min_{f:\mathbb{R}\to\mathbb{R}} \mathbb{E}[(f(X)-Y)^2] = \mathbb{E}[(\mathbb{E}[Y|X]-Y)^2] = \operatorname{Var}(Y|X)$.

- (b) For any $f(X) \in \mathcal{C}(X)$, $\langle Y \mathbb{E}[Y|X], f(X) \rangle = \mathbb{E}[f(X)(Y \mathbb{E}[Y|X])] = \mathbb{E}\{f(X)\mathbb{E}[Y \mathbb{E}[Y|X]]X]\} = \mathbb{E}\{f(X) \cdot 0\} = 0$. Hence the projection of Y on $\mathcal{C}(X)$ is $\mathbb{E}[Y|X]$.
- (c) If X, Y are independent, then $\mathbb{E}[Y|X] = \mathbb{E}[Y]$ and $\min_{f:\mathbb{R}\to\mathbb{R}} \mathbb{E}[(f(X)-Y)^2] = \min_{c\in\mathbb{R}} \mathbb{E}[(Y-c)^2] = \operatorname{Var}(Y)$. More specifically, if X is a constant variable, then $\mathcal{C}(X)$ consists of all constant variables, and hence question 3 becomes question 2.

References

 $[1]\,$ T. Tao. Analysis II. Springer, 2015.