MATH 425b ASSIGNMENT 8 SPRING 2016 Prof. Alexander Due Wednesday April 13.

Rudin Chapter 9 #30ab and:

- (I) Let $f: E \to \mathbb{R}$ be a \mathcal{C}' function on an open set $E \subset \mathbb{R}^3$, and define the surface $S = \{(x,y,z): f(x,y,z)=0\}$. Suppose $(x_0,y_0,z_0) \in S$ and $D_1f(x_0,y_0,z_0) \neq 0$. By the Implicit Function Theorem, in a neighborhood W of (x_0,y_0,z_0) one can express the surface as x = u(y,z) for some \mathcal{C}' function u. We then define two curves in the surface S passing through (x_0,y_0,z_0) : $\gamma(z)=(u(y_0,z),y_0,z)$ and $\tilde{\gamma}(y)=(u(y,z_0),y,z_0)$. The derivatives $\gamma'(z)$ and $\tilde{\gamma}'(y)$ are then vectors tangent to S and we define the translated tangent plane at (x_0,y_0,z_0) to be the span of $\gamma'(z_0)$ and $\tilde{\gamma}'(y_0)$. ("Translated" means it passes through the origin, not necessarily through the point (x_0,y_0,z_0) .)
- (a) Express the tangent vectors $\gamma'(z_0)$ and $\tilde{\gamma}'(y_0)$ in terms of the partial derivatives D_1u and D_2u . (Some entries may just be numbers.)
- (b) Let $\varphi: E \to \mathbb{R}$ be another \mathcal{C}' function. We say φ has a local maximum on S at (x_0, y_0, z_0) if there is a neighborhood Y of (x_0, y_0, z_0) such that $\varphi(x_0, y_0, z_0) = \sup\{\varphi(x, y, z) : (x, y, z) \in Y \cap S\}$. Show that in this case, $\nabla \varphi$ is perpendicular to the translated tangent plane at (x_0, y_0, z_0) , and $\nabla \varphi$ is a scalar multiple of ∇f at (x_0, y_0, z_0) .

As an observation, part (b) is what underlies the method of Lagrange multipliers—to find local maxima/minima of φ on a surface f = contstant, you look for places where $\nabla \varphi$ is a scalar multiple of ∇f .

- (II) You may take the following as given. A 2×2 symmetric matrix H is always diagonalizable to $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, that is, $H = U^t D U$ for some unitary matrix U and some λ_i 's which are eigenvalues of H. (Unitary means $|U\mathbf{x}| = |\mathbf{x}|$ for all \mathbf{x} , i.e. U preserves length, and U^t means the transpose.) The sum at the top of p. 244 is called the Taylor polynomial of f of order m-1 at a.
- (a) Let $f: E \to \mathbb{R}$ be a $\mathcal{C}^{(3)}$ function on an open subset $E \subset \mathbb{R}^2$. The quadratic part of the Taylor polynomial at a is the sum of the 4 terms which are constant multiples of $x_1^2, x_1 x_2$ and x_2^2 . Show that there is a 2×2 symmetric matrix H such that the quadratic part can be expressed as $\mathbf{x}^t H \mathbf{x}$ for the column vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. The entries of H are given by some derivatives of f.
 - (b) Show that if both eigenvalues of H are positive, $\lambda_1 \geq \lambda_2 > 0$, then the quadratic part

satisfies $\mathbf{x}^t H \mathbf{x} \geq \lambda_2 |\mathbf{x}|^2$ for all \mathbf{x} .

(c) Show that if the total derivative $Df(a) = \nabla f(a) = 0$ and both eigenvalues of H are positive, then f has a local minimum at a.

HINTS:

- (30)(a) The hardest part of this is "bookkeeping," meaning using notation correctly and precisely enough to formalize what's not a complicated idea. "Repeated application" means induction on k: assume you have shown $h^{(k-1)}(t) = \sum (D_{i_2\cdots i_k}f)(p(t))x_{i_2}\cdots x_{i_k}$ and prove the statement for $h^{(k)}$.
- (I)(b) To get perpendicularity, consider the function $\varphi(u(y,z),y,z)$ and its partial derivatives in y and z, at (y_0,z_0) . Can you apply this result to $\varphi=f$?
- (II)(b) Use $H = U^t D U$ and recall that for matrices $A, B, (AB)^t = B^t A^t$.
- (c) If you didn't have the remainder term $r(\mathbf{x})$ at the top of p. 244, this would be easy. So you need to show that the remainder term is too small to alter the existence of a minimum.