

Universidade Federal de Pernambuco Centro de Informática

Cálculo Numérico (IF215)

Profa. Maíra Santana

- É um método de quebra, assim como o método da Bisseção:
 - A quebra é realizada no ponto de interseção da reta (a, f(a)) e (b, f(b)) com o eixo x;

- No intervalo de separação f(x) é substituída por uma reta;
- · A raiz da reta é tomada como uma aproximação.

• Equação da reta:

$$y = f(a) + \frac{f(b) - f(a)}{(b - a)}(x - a)$$

quando y = 0, o valor de x é a raiz da reta:

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

 Então, assim como foi feito com o ponto médio para o método da bisseção, aqui os valores de x podem ser iterativamente calculados por:

$$x_i = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

• A cada iteração observa onde está a raiz calculando f(x) nos extremos dos subintervalos.

Passos do Método da Falsa posição:

- I. Parte de um intervalo de separação I = [a; b] de uma raiz ξ da função f(x);
- II. Calcula o valor de x_i a partir do intervalo [a;b]; trocamos a "máquina geradora"
- II. Verifica em qual subintervalo a raiz ficou ([a ; x_i] ou [x_i ; b]):
 - Lembrando: condição para ter uma raiz em um intervalo troca de sinal:

$$f(a) \times f(x_i) < 0$$
 ou $f(b) \times f(x_i) < 0$

- IV. Passa a considerar o subintervalo onde a raiz ficou como um novo intervalo [a;b]:
 - Se $f(a) \times f(x_i) < 0$, $b = x_i$.
 - $Sef(b) \times f(x_i) < 0$, $a = x_i$.
- V. Repete os passos II a IV até que o critério de parada seja alcançado.

Exemplo:

Determinar, usando o método da Falsa Posição, o valor aproximado da menor raiz real positiva da função:

$$f(x) = 2^{-x} - 2\sin x$$

Solução:

- 1. Aproximação inicial;
- 2. Método da Falsa Posição.

Exemplo:

Determinar, usando o método da Falsa Posição, o valor aproximado da menor raiz real positiva da função:

$$f(x) = 2^{-x} - 2\sin x$$

Solução:

Primeira etapa: aproximação inicial

$$I = [a; b] = [0; 1]$$

https://colab.research.google.com/drive/1FZ Up3hyk-eVGeRPrpoby7NmYffjccu1?usp=sharing

$x_i = \frac{af(b) - bf(a)}{f(b) - f(a)}$

Exemplo:

Determinar, usando o método da Falsa Posição, o valor aproximado da menor raiz real positiva da função:

$$f(x) = 2^{-x} - 2\sin x$$

Segunda etapa: método da Falsa Posição

i	а	b	f(a)	f(b)	x_i	$f(x_i)$	С
0	0,000000	1,000000	1,000000	-1,182942	0,458097	-0,156539	1,00000
1	0,000000	0,458097	1,000000	-0,156539	0,396093	-0,011721	0,458097
2	0,000000	0,396093	1,000000	-0,011721	0,391505	-0,000825	0,396093
3	0,000000	0,391505	1,000000	-0,000825	0,391182	-0,000058	0,391505
4	0,000000	0,391182	1,000000	-0,000058	0,391159	-0,000004	0,391182
5	0,000000	0,391159	1,000000	-0,000004	0,391158	-0,000000	0,391159
6	0,000000	0,391158	1,000000	-0,000000	0,391158	-0,000000	0,391158

Raiz exata da função: 0,391158

Método da Falsa Posição (cordas)

 O critério de parada definido pode não ser o mais adequado;

- Existem outros critérios que podem ser adotados:
 - Número de iterações;
 - Erro absoluto;
 - · Valor da imagem.

- Número de iterações:
 - Para quando uma quantidade máxima de iterações é alcançada;
 - · Não considera a qualidade da aproximação;
 - Impede looping;
 - · Geralmente é associado a outros critérios de parada.

- Erro absoluto:
 - É a diferença entre o valor exato (ξ) e o valor aproximado (x_{i+1});
 - No entanto, não sabemos o valor da raiz ξ ;
 - Logo, podemos calcular o erro a partir dos dois últimos valores encontrados para a aproximação da raiz:

$$|x_{i+1} - x_i| \le \zeta$$

para ζ suficientemente pequeno

- Valor da imagem:
 - Verificar quão próximo $f(x_{i+1})$ está de zero (imagem da aproximação):

$$|f(x_{i+1})| \le \zeta_1$$

para um dado ζ_1 .

- Na prática costuma-se associar mais de um critério de parada;
 - Conjunção "OU" (or) ou "E" (and).

- A adoção de qualquer um desses critérios **não garante** que sempre vai chegar a um **valor aceitável da raiz** procurada:
 - Problemas de convergência lenta;
 - Valor da função em torno da raiz se aproximar muito de zero.

Exercícios

Exercícios propostos:

- 1. Aplique o método da falsa posição na função $f(x) = x^3 9x + 3$ no intervalo [0; 1] considerando $l = 5 \cdot 10^{-4}$.
- 2. Aplique o método da falsa posição na função $f(x) = \sin(x) + \ln(x)$ no intervalo I = [0.2; 0.8], utilizando como critério de parada $c = b a \le l$, onde l = 0.05 (amplitude final).
- 1. Aplique o método da falsa posição na função $f(x) = \sin(x) + \ln(x)$ no intervalo I = [0.2; 0.8], utilizando como critério de parada $f(x_0) \le P2$, onde P2 = 0.01 (precisão relacionada à distância da imagem de x_0).

Categorias dos métodos

- 1. Métodos de quebra:
 - Bisseção;
 - Falsa posição (cordas).
- 2. Métodos de ponto fixo:
 - Método Iterativo Linear (MIL);
 - Método de Newton;
 - · Método das secantes.

- Consiste em transformar o problema de encontrar uma raiz da equação f(x)=0 no problema de resolver a equação $\varphi(x)=x$;
- Ou seja, queremos reescrever f(x) como $f(x) = \varphi(x) x_i$
- A raiz de f(x) passa a ser o **ponto fixo** de $\varphi(x)$;
- $\varphi(x)$ deve possuir as mesmas soluções que f(x);
- $\varphi(x)$ passa a ser a "máquina geradora" da sequência x_i :

$$x_{i+1} = \varphi(x_i), i = 0, 1, 2, ...$$

• Encontra-se uma função de iteração $(\varphi(x))$ que obedeça as **condições suficientes** (devem ocorrer) do Teorema a seguir para garantir a conversão.

Teorema: Sejam ξ um zero real da função f, I um intervalo de separação de ξ , centrado em ξ , e φ uma função de iteração para a equação f(x) = 0.

Se

- i. $\varphi \in \varphi'$ forem continuas em I;
- ii. $|\varphi'(x)| \le k < 1, \forall x \in I$;
- *iii.* $x_0 \in I$;

então a sequência $\{x_i\}$ gerada por $x_{i+1}=\varphi(x_i)$, $i=0,1,2,\dots$ converge para ξ .

Passos do MIL:

- Parte de um intervalo de separação I=[a;b] de uma raiz ξ da função f(x), com valor inicial x_0 preestabelecido;
- II. Define $\varphi(x)$ de maneira que $\varphi(x) = x$ e sua derivada $\varphi'(x)$. Verifica se ambas são contínuas em I e se $|\varphi'(x)| < 1$, $\forall x \in I$. *Caso as condições suficientes do item III forem atendidas (Teorema), podemos aplicar o MIL;
- II. Calculamos sucessivos valores de x_i a partir de $x_{i+1} = \varphi(x_i)$ até que as condições de parada sejam satisfeitas.

Exemplo 1.1:

Determinar, usando o MIL, o valor aproximado da menor raiz real positiva da função $f(x) = x \ln(x) - 1$.

- A partir do estudo gráfico e analítico: $\xi \in [1,7;1,8] = I$.
- Portanto, temos que $x_0 = 1,75$.
- Como $x \ln(x) 1 = 0$, tem-se:

$$ln(x) = \frac{1}{x}$$
 ou $x = e^{1/x} = \varphi(x)$

Assim,

$$\boldsymbol{\varphi}'(\boldsymbol{x}) = -\frac{e^{1/x}}{x^2}$$

Então, $\varphi(x)$ e $\varphi'(x)$ são contínuas em I. Além disso, $|\varphi'(x)| < 1$, $\forall x \in I$. Logo, podemos garantir que **haverá convergência**.

Logo, considerando as 20 primeiras iterações, temos:

i	x_i
0	1,75
1	1,770795
2	1,758952
3	1.765653
4	1.761847
5	1.764004
6	1.762780
7	1.763474
8	1.763080
9	1.763304

i	x_i
10	1.763177
11	1,763249
12	1,763208
13	1.763231
14	1.763218
15	1.763226
16	1.763221
17	1.763224
18	1.763222
19	1.763223

https://colab.research.google.com/drive/14NtXewCzAYdJP PxUkukLdpLCACXRdBa?usp=sharing

Exemplo 2:

Determinar, usando o MIL, o valor aproximado da menor raiz real positiva da função $f(x) = x^2 + x - 6$.

$$x = 6 - x^2$$
$$\varphi(x) = 6 - x^2$$

Tomando $x_0 = 1.5$ temos:

i	x_i			
0	1,5			
1	3,75			
2	-8,0625			
3	-59,003906			
4	-3475,460923			

Raiz esperada: $\xi = 2$. Logo, está divergindo.

Exemplo 2:

Determinar, usando o MIL, o valor aproximado da menor raiz real positiva da função $f(x) = x^2 + x - 6$.

$$x = 6 - x^2$$
$$\varphi(x) = 6 - x^2$$

Analisando as condições para convergência:

i.
$$\varphi(x) = 6 - x^2 e \varphi'(x) = -2x$$
. Ambas são contínuas em \mathbb{R} .

ii.
$$|\varphi'(x)| < 1, \forall x \in I$$

 $|-2x| < 1$
 $-\frac{1}{2} < x < \frac{1}{2}$

Logo, para um intervalo que inclua a raiz da função essa condição não é satisfeita. Então não há garantia de convergência.

Raiz esperada: $\xi = 2$.

É indispensável avaliar a convergência antes de aplicar o método!

Referências

• Métodos Numéricos. José Dias dos Santos e Zanoni Carvalho da Silva. (capítulo 2);

Cálculo Numérico – aspectos teóricos e computacionais.
 Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes.
 (capítulo 2).