# Robert Moir: "A Monte Carlo Analysis of the Fisher Randomization Technique"

Experimental Economics 1998

Christian J. Meyer
European University Institute, Department of Economics

March 14, 2016
Topics in Experimental Economics (Schram/Gërxhani)

### Overview of the Presentation

#### 1. Introduction

- Refresher on Statistical Hypothesis Testing
- Parametric and Non-parametric Tests

#### 2. Fisher's Randomization

- Randomization or Permutation Tests
- Example for Fisher's Exact Randomization Test

#### 3. Monte Carlo Results

#### 4. Conclusion

Critique and Proposals

Refresher on Statistical Hypothesis Testing

Introduction

# Statistical Hypothesis Testing

A refresher on how significance, statistical power, and sample size affect correct inference

Paradigm to analyze data with a hypothesized relationship

Refresher on Statistical Hypothesis Testing

Introduction

# Statistical Hypothesis Testing

A refresher on how significance, statistical power, and sample size affect correct inference

- Paradigm to analyze data with a hypothesized relationship
  - ► Trying to find departure from an idealized null hypothesis H<sub>0</sub>. Contrast with **alternative**  $H_A$  for distribution when null is false
  - Experimental effect d is difference between the distributions

Refresher on Statistical Hypothesis Testing

Introduction

OOO

# Statistical Hypothesis Testing

A refresher on how significance, statistical power, and sample size affect correct inference

- Paradigm to analyze data with a hypothesized relationship
  - ► Trying to find departure from an idealized null hypothesis H<sub>0</sub>. Contrast with alternative H<sub>A</sub> for distribution when null is false
  - **Experimental effect** *d* is difference between the distributions
  - Probability of false positives is called significance level or size
  - Probability of detecting the effect is called statistical power
  - False positives (Type 1 error,  $\alpha$ ) vs. false negatives (Type 2 error,  $\beta$ )



Introduction

# Statistical Hypothesis Testing: Trade-offs

- ► Compromise: specificity (avoiding false positives,  $1 \alpha$ ) vs power (avoiding false negatives,  $1 \beta$ )
  - An increase in power comes at the cost of more false positives



- ► Effect size and sample size similarly impact power ► Illustration
- ► Moir studies this trade-off for three different tests

Introduction

### Student's t-test for Difference of Means

- Before testing, we need to consider statistical assumptions about the observed sample: independence, distribution, ...
- Student t-test
  - parametric test
  - use for data randomly sampled from a normallydistributed population
  - two-sample t-test requires same variance in both
  - normality might be strong assumption
  - simulation evidence on small samples inconclusive



# Mann-Whitney-Wilcoxon (MWW) Rank-Sum Test

A common alternative to the t-test to test difference of distributions

- There are two samples
  - ▶ *H*<sub>0</sub>: Both samples have the same distribution
  - ▶ *H*<sub>1</sub>: Observations in one sample tend to be larger than in the other
  - Requires random samples from population; independence within
- Rank each observation and compare rank totals of both samples; if there is no systematic difference, high and low ranks will be distributed relatively evenly
- ▶ Pro
  - ▶ Non-parametric i.e. distribution of test statistic under H<sub>0</sub> known
  - More efficient than t-test for distributions far from normal
  - Robust to outliers
- Con
  - Less power than parametric tests because we discard information

### Fisher's Exact Randomization

- Method by R. A. Fisher (1935) for valid hypothesis test
  - without large samples
  - without probability model
  - purely based on physical act of randomization
- "Sharp" null: Assignment to treatment has absolutely no effect
- Idea: If null is true, randomly shuffling around assignment should produce same test statistic as real data
- How likely it is that we observe an effect "as extreme" as ours? Exact p-value from **number of possible permutations**:
  - In each permutation, calculate test statistic
  - Calculate share of permutations in which test statistic exceeds test statistic from real data

# Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |
|-----------------|--------------------|
| 7               | 0                  |
| 8               | 2                  |
| 11              | 5                  |
| 30              | 9                  |
|                 |                    |

# Example for Fisher's ER Means Test: Coffee at EUI

#### Minutes of concentration

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |
|-----------------|--------------------|
| 7               | 0                  |
| 8               | 2                  |
| 11              | 5                  |
| 30              | 9                  |

1. Calculate test statistic: sample average for both groups

# Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |
|-----------------|--------------------|
| 7               | 0                  |
| 8               | 2                  |
| 11              | 5                  |
| 30              | 9                  |

- 1. Calculate test statistic: sample average for both groups
  - $\overline{y}_1 = 14$  and  $\overline{y}_0 = 4$ , difference d = 10

### Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |
|-----------------|--------------------|
| 7               | 0                  |
| 8               | 2                  |
| 11              | 5                  |
| 30              | 9                  |

- 1. Calculate test statistic: sample average for both groups
  - $\overline{y}_1=14$  and  $\overline{y}_0=4$ , difference d=10
- 2. How many possible ways are there of shuffling around the data?

# Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |
|-----------------|--------------------|
| 7               | 0                  |
| 8               | 2                  |
| 11              | 5                  |
| 30              | 9                  |

- 1. Calculate test statistic: sample average for both groups
  - $\overline{y}_1 = 14$  and  $\overline{y}_0 = 4$ , difference d = 10
- 2. How many possible ways are there of shuffling around the data?
  - ▶ Combination without replacement or "n choose k":  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

### Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |
|-----------------|--------------------|
| 7               | 0                  |
| 8               | 2                  |
| 11              | 5                  |
| 30              | 9                  |

- 1. Calculate test statistic: sample average for both groups
  - $\overline{y}_1 = 14$  and  $\overline{y}_0 = 4$ , difference d = 10
- 2. How many possible ways are there of shuffling around the data?
  - ▶ Combination without replacement or "n choose k":  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
  - ► Here eight values choose sets of four:  $\binom{8}{4} = 70$

### Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |  |  |
|-----------------|--------------------|--|--|
| 7               | 0                  |  |  |
| 8               | 2                  |  |  |
| 11              | 5                  |  |  |
| 30              | 9                  |  |  |

- 1. Calculate test statistic: sample average for both groups
  - $\overline{y}_1=14$  and  $\overline{y}_0=4$ , difference d=10
- 2. How many possible ways are there of shuffling around the data?
  - ▶ Combination without replacement or "n choose k":  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
  - ► Here eight values choose sets of four:  $\binom{8}{4} = 70$
  - ▶ In these 70 combinations, how often is difference in means  $\geq 10$ ?

### Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |  |  |
|-----------------|--------------------|--|--|
| 7               | 0                  |  |  |
| 8               | 2                  |  |  |
| 11              | 5                  |  |  |
| 30              | 9                  |  |  |

- 1. Calculate test statistic: sample average for both groups
  - $\overline{y}_1 = 14$  and  $\overline{y}_0 = 4$ , difference d = 10
- 2. How many possible ways are there of shuffling around the data?
  - ► Combination without replacement or "n choose k":  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
  - ► Here eight values choose sets of four:  $\binom{8}{4} = 70$
  - ▶ In these 70 combinations, how often is difference in means > 10?
  - Simple counting... turns out 3 times

### Example for Fisher's ER Means Test: Coffee at EUI

| Coffee $Y_i(1)$ | No coffee $Y_i(0)$ |
|-----------------|--------------------|
| 7               | 0                  |
| 8               | 2                  |
| 11              | 5                  |
| 30              | 9                  |

- 1. Calculate test statistic: sample average for both groups
  - $\overline{y}_1=14$  and  $\overline{y}_0=4$ , difference d=10
- 2. How many possible ways are there of shuffling around the data?
  - ▶ Combination without replacement or "n choose k":  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
  - ► Here eight values choose sets of four:  $\binom{8}{4} = 70$
  - ▶ In these 70 combinations, how often is difference in means  $\geq 10$ ?
  - Simple counting... turns out 3 times
  - ▶ If original assignment was random, p-value 3/70 = 0.043

### Primer on Monte Carlo Simulation Techniques

- Inference often relies on parametric assumptions & asymptotics
  - → What happens if these are not met and in small samples?
- Monte Carlo studies can characterize performance of tests
  - Randomly generate samples with known characteristics and size
  - ► For each replication (say 10,000), record test performance
- Moir measures performance in two dimensions
  - 1. Size / type 1 error
    - **Nominal** ( $\alpha$ ) from asymptotic results, i.e. significance we choose
    - ► Actual, i.e. the fraction for which test falls in rejection region
  - 2 Power
    - Fraction of actual replications for which null hypothesis is rejected (Note: This requires simulation of alternative hypothesis!)

### Simulation Results for Size and Power

- ▶ Moir's simulation: samples relevant for experimental research
  - Small sample (16 observations), constant size
  - Normal errors as baseline
  - Mixture distributions, fat tails, skewed tails
  - Alternative hypothesis for a range of effect sizes
- Two-sided hypothesis tests to identify treatment effect
- General findings
  - ► ER means: Power at least as good as t-test in most cases
  - t-test: Lower power than ER means when data is not normal
  - MWW: Generally lower power than both ER means and t-test

Size and Power Characteristics from Monte Carlo Simulation

### Discussion of Results for Each Test

#### ▶ t-test

- Departures from normal lead to invalid test statistics (type 1 error higher than should be), particularly with uniform and mixed normal
- Serious power problems in Cauchy distribution

#### MWW

- Generally lower power than ER means and t-test (expected given it is non-parametric and uses less information)
- More power than ER means and t-test in Cauchy distribution

#### ER means test

- Always has correct size because distribution is generated from the sample as opposed to asymptotic results
- Power at least as good as t-test in most cases

# Power Graphs for Normal and Cauchy

### Normal distribution N(0,50)



### Cauchy distribution (median 0)



- ▶ NB: Different scale on x-axis!
- Under Cauchy, t-test rejects null less often than other two

### Fisher Randomization 75 years Later

- Paper has shown favorable performance of ER means test
- ► ER means test attractive for fewer and weaker assumptions
  - **Distribution-free** under  $H_0$ , i.e. nonparametric
  - No assumptions on sampling from some notional population
  - Exact p-values and no asymptotics required
  - Works well in small samples and other "low information" settings
- ► Lends itself to modern lab experiments and randomized studies
- Today computationally easily feasible
- Today has been expanded to provide confidence intervals, deal with instrumental variables, include covariates, etc.

### Thoughts on the **Paper** and **Fisher's ER**

- Monte Carlo might not be the best approach to (re-)introduce Fisher's ER technique to discipline
  - MC typically useful to undertand statistics under realistic data conditions. What is realistic?
  - Except for Cauchy case, hard to see systematic power differences between t-test and FR means test
  - Detailed formal discussion of assumptions, implementation, and assumptions may have been useful
  - Of course not really a fair criticism...
- ▶ ER technique has very sharp null  $H_0: Y_i(1) = Y_i(0) \ \forall i$ 
  - Rare that we want to have a purely confirmatory test of this
  - Maybe overly restrictive?
- How "random" is data? Stratification?

### A Monte Carlo Analysis of the Fisher Randomization Technique Robert Moir *Experimental Economics* 1998

### Christian Johannes Meyer

European University Institute, Department of Economics 

□ christian.meyer@eui.eu

EUI Seminar: Topics in Experimental Economics

### Sample Size, Effect Size, Statistical Power



▶ Back

Charts on this slide and the previous two slides adapted from: Krzywinski and Altman. (2013). "Points of significance: Power and sample size" *Nature Methods*. doi:10.1038/nmeth.2738.

Level of significance

|                         |               | Level of significance           |                                 |                                 |
|-------------------------|---------------|---------------------------------|---------------------------------|---------------------------------|
| Error distribution      | Test          | 0.1000<br>(0.1049) <sup>a</sup> | 0.0500<br>(0.0536) <sup>a</sup> | 0.0100<br>(0.0116) <sup>a</sup> |
| Normal high variance    | t-test        | 0.0973                          | 0.0477                          | 0.0095                          |
|                         | U-test        | 0.0830                          | 0.0495                          | 0.0075                          |
|                         | ER means test | 0.0972                          | 0.0474                          | 0.0095                          |
| Uniform                 | t-test        | 0.1000                          | 0.0531                          | 0.0122 <sup>b</sup>             |
|                         | U-test        | 0.0826                          | 0.0520                          | 0.0067                          |
|                         | ER means test | 0.0993                          | 0.0508                          | 0.0101                          |
| Mixed normal            | t-test        | 0.1028                          | 0.0564 <sup>b</sup>             | 0.0137 <sup>b</sup>             |
|                         | U-test        | 0.0852                          | 0.0527                          | 0.0073                          |
|                         | ER means test | 0.1024                          | 0.0545 <sup>b</sup>             | 0.0111                          |
| Sum of uniform + normal | t-test        | 0.0928                          | 0.0407                          | 0.0060                          |
|                         | U-test        | 0.0815                          | 0.0509                          | 0.0074                          |
|                         | ER means test | 0.0989                          | 0.0494                          | 0.0095                          |
| Logistic                | t-test        | 0.1045                          | 0.0483                          | 0.0076                          |
|                         | U-test        | 0.0878                          | 0.0531                          | 0.0069                          |
|                         | ER means test | 0.1060 <sup>b</sup>             | 0.0539 <sup>b</sup>             | 0.0098                          |
| Cauchy                  | t-test        | 0.0574                          | 0.0209                          | 0.0022                          |
|                         | U-test        | 0.0832                          | 0.0525                          | 0.0079                          |
|                         | ER means test | 0.1027                          | 0.0523                          | 0.0105                          |
| Extreme value           | t-test        | 0.0968                          | 0.0429                          | 0.0063                          |
|                         | U-test        | 0.0873                          | 0.0519                          | 0.0062                          |
|                         | ER means test | 0.1046                          | 0.0519                          | 0.0091                          |
| Exponential             | t-test        | 0.0957                          | 0.0458                          | 0.0083                          |
|                         | U-test        | 0.0822                          | 0.0492                          | 0.0075                          |
|                         | ER means test | 0.0968                          | 0.0477                          | 0.0095                          |
|                         |               |                                 |                                 |                                 |

| Distribution            | Comments                                                                                                                                    |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Normal <sup>a</sup>     | All tests exhibit satisfactory size results.                                                                                                |
|                         | t-test and ER means test: track each other in terms of power, $U$ -test less powerful                                                       |
| Uniform                 | t-test: real size > nominal size at 1 percent level of significance.                                                                        |
|                         | t-test and ER means test: track each other in terms of power, t-test slightly more<br>powerful at 1 percent level (but invalid).            |
|                         | U-test: uniformly less powerful.                                                                                                            |
| Mixed normal            | t-test: real size > nominal size at 5 percent and 1 percent levels.                                                                         |
|                         | ER means test: real size > nominal size at 5 percent level, but t-test rejects true<br>null more often than ER means test.                  |
|                         | t-test and ER means test: track each other in terms of power, t-test slightly more<br>powerful at 1 percent level (but invalid).            |
|                         | U-test: uniformly less powerful.                                                                                                            |
| Sum of normal + uniform | All tests exhibit satisfactory size results.                                                                                                |
|                         | t-test and ER means test: track each other in terms of power.                                                                               |
|                         | U-test: uniformly more powerful at 10 percent and 5 percent levels, but uniformly less powerful at 1 percent level.                         |
| Logistic                | ER means test: real size > nominal size at 10 percent and 5 percent levels (type l error).                                                  |
|                         | t-test and ER means test: track each other in terms of power.                                                                               |
|                         | U-test: slightly more powerful at 5 percent level, but less powerful at 1 percent<br>level.                                                 |
| Cauchy                  | All tests exhibit satisfactory size results; however, t-test rejects significantly less<br>often than U-test or ER-test.                    |
|                         | t-test: uniformly less powerful than ER-test.                                                                                               |
|                         | U-test: more powerful than other tests at 10 percent or 5 percent levels, but less<br>powerful than ER means test at 1 percent level.       |
| Extreme value           | All tests exhibit satisfactory size results.                                                                                                |
|                         | t-test and ER means test: track each other in terms of power.                                                                               |
|                         | U-test: more powerful than other tests at 10 percent or 5 percent levels, but less<br>powerful at 1 percent level.                          |
| Exponential             | All tests exhibit satisfactory size results.                                                                                                |
|                         | t-test and ER means test: track each other in terms of power.                                                                               |
|                         | U-test: slightly less powerful at 10 percent level, more powerful at 5 percent<br>level, and considerably less powerful at 1 percent level. |