Praca domowa 1

March 9, 2021

1 Praca domowa nr 1 - WUM2021L

1.0.1 Autor: Bartosz Sawicki

```
[1]: import pandas as pd
import numpy as np
import requests
import seaborn as sns

from matplotlib import pyplot as plt
from scipy import stats
from pandas_profiling import ProfileReport
```

1.1 Pobranie danych

```
[2]: url = 'https://api.apispreadsheets.com/api/dataset/forest-fires/'
r = requests.get(url)
data = r.json()

df = pd.DataFrame.from_dict(data['data'], orient='columns')
```

1.2 Ogólne informacje o zbiorze

```
[3]: df.head()

[3]: X Y month day FFMC DMC DC ISI temp RH wind rain area
```

```
7
                                                            0.0
         mar
              fri 86.2 26.2
                               94.3
                                          8.2
                                               51.0
                                                      6.7
                                                                 0.0
1
  7
              tue 90.6 35.4
                              669.1
                                     6.7
                                         18.0
                                               33.0
                                                      0.9
                                                            0.0
                                                                 0.0
         oct
2
 7 4
         oct sat 90.6 43.7
                              686.9
                                         14.6
                                               33.0
                                                      1.3
                                                            0.0
                                                                 0.0
                                     6.7
3 8
     6
              fri 91.7 33.3
                               77.5
                                     9.0
                                          8.3
                                               97.0
                                                      4.0
                                                            0.2
                                                                 0.0
         mar
4 8 6
              sun 89.3 51.3 102.2 9.6
                                         11.4 99.0
                                                      1.8
                                                            0.0
                                                                 0.0
         mar
```

```
[4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 517 entries, 0 to 516
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	X	517 non-null	int64
1	Y	517 non-null	int64
2	month	517 non-null	object
3	day	517 non-null	object
4	FFMC	517 non-null	float64
5	DMC	517 non-null	float64
6	DC	517 non-null	float64
7	ISI	517 non-null	float64
8	temp	517 non-null	float64
9	RH	517 non-null	float64
10	wind	517 non-null	float64
11	rain	517 non-null	float64
12	area	517 non-null	float64
		. 04(0) 04(0)	1

dtypes: float64(9), int64(2), object(2)

memory usage: 52.6+ KB

[5]: df.describe()

[5]:		X	Y	FFMC	DMC	DC	ISI	\
	count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	
	mean	4.669246	4.299807	90.644681	110.872340	547.940039	9.021663	
	std	2.313778	1.229900	5.520111	64.046482	248.066192	4.559477	
	min	1.000000	2.000000	18.700000	1.100000	7.900000	0.000000	
	25%	3.000000	4.000000	90.200000	68.600000	437.700000	6.500000	
	50%	4.000000	4.000000	91.600000	108.300000	664.200000	8.400000	
	75%	7.000000	5.000000	92.900000	142.400000	713.900000	10.800000	
	max	9.000000	9.000000	96.200000	291.300000	860.600000	56.100000	
		temp	RH	wind	rain	area		
	count	517.000000	517.000000	517.000000	517.000000	517.000000		
	mean	18.889168	44.288201	4.017602	0.021663	12.847292		
	std	5.806625	16.317469	1.791653	0.295959	63.655818		
	min	2.200000	15.000000	0.400000	0.000000	0.000000		
	25%	15.500000	33.000000	2.700000	0.000000	0.000000		
	50%	19.300000	42.000000	4.000000	0.000000	0.520000		
	75%	22.800000	53.000000	4.900000	0.000000	6.570000		
	max	33.300000	100.000000	9.400000	6.400000	1090.840000		

Co oznaczają skróty FFMC, DMC, DC, ISI?

W skrócie: wskaźniki systemu FWI (Fire Weather Index)

• FFMC - The **Fine Fuel Moisture Code** represents fuel moisture of forest litter fuels under the shade of a forest canopy. It is intended to represent moisture conditions for shaded litter fuels, the equivalent of 16-hour timelag. It ranges from 0-101. Subtracting the FFMC value from 100 can provide an estimate for the equivalent (approximately 10h) fuel moisture content, most accurate when FFMC values are roughly above 80.

- DMC The **Duff Moisture Code** represents fuel moisture of decomposed organic material underneath the litter. System designers suggest that it is represents moisture conditions for the equivalent of 15-day (or 360 hr) timelag fuels. It is unitless and open ended. It may provide insight to live fuel moisture stress.
- DC The **Drought Code**, much like the Keetch-Byrum Drought Index, represents drying deep into the soil. It approximates moisture conditions for the equivalent of 53-day (1272 hour) timelag fuels. It is unitless, with a maximum value of 1000. Extreme drought conditions have produced DC values near 800.
- ISI The **Initial Spread Index** integrates fuel moisture for fine dead fuels and surface windspeed to estimate a spread potential. ISI is a key input for fire behavior predictions in the FBP system. It is unitless and open ended.

1.3 Analiza zmiennej objaśnianej - area

```
[7]: df['area'].describe()
[7]: count
               517.000000
     mean
                12.847292
     std
                63.655818
                 0.00000
    min
     25%
                 0.00000
     50%
                 0.520000
     75%
                 6.570000
     max
              1090.840000
     Name: area, dtype: float64
[8]: sns.histplot(df['area'], bins=round(1+3.322*np.log(df['area'].shape[0])),
      →kde=True)
     plt.show()
```


Większość obserwacji jest bliska 0. Rozkład prawostronny.

```
[9]: print("Skośność: %f" % df['area'].skew())
print("Kurtoza: %f" % df['area'].kurt())
```

Skośność: 12.846934 Kurtoza: 194.140721

Potwierdza to obserwacje o prawostronnym i stromym rozkładzie.

1.3.1 Transformacja area

Na stronie zbioru danych zasugerowano aby przetransformować zmienną logarytmem. Sprawdźmy. Zastosujemy $x \rightarrow \log(x+1)$ aby uniknąć problemów z nieskończonością.

```
[10]: sns.histplot(df['area'].apply(lambda x: np.log(x+1)), bins=round(1+3.322*np.

→log(df['area'].shape[0])), kde=True)
plt.show()
```


Dodajmy tak przetransformowaną zmienną do zbioru danych. Sprawdzimy jak wygląda na wykresach zestawiona z innymi cechami.

```
[11]: df['log_area'] = df['area'].apply(lambda x: np.log(x+1))
      df.head()
[11]:
          X
             Y month
                       day
                             FFMC
                                     {\tt DMC}
                                              DC
                                                  ISI
                                                        temp
                                                                 RH
                                                                     wind
                                                                            rain
                                                                                   area
                                                                                          \
          7
             5
                             86.2
                                    26.2
                                            94.3
                                                  5.1
                                                         8.2
                                                               51.0
                                                                       6.7
                                                                             0.0
                                                                                    0.0
      0
                       fri
                  mar
      1
          7
             4
                             90.6
                                    35.4
                                          669.1
                                                  6.7
                                                        18.0
                                                               33.0
                                                                       0.9
                                                                             0.0
                                                                                    0.0
                  oct
                       tue
      2
          7
                                                                       1.3
             4
                             90.6
                                    43.7
                                           686.9
                                                  6.7
                                                        14.6
                                                               33.0
                                                                              0.0
                                                                                    0.0
                  oct
                       sat
      3
          8
                                                                       4.0
             6
                             91.7
                                    33.3
                                            77.5
                                                  9.0
                                                         8.3
                                                               97.0
                                                                              0.2
                                                                                    0.0
                  mar
                       fri
      4
          8
             6
                             89.3
                                    51.3
                                          102.2
                                                  9.6
                                                        11.4
                                                               99.0
                                                                       1.8
                                                                              0.0
                                                                                    0.0
                  mar
                       sun
          log_area
      0
               0.0
      1
               0.0
      2
               0.0
      3
               0.0
               0.0
```

Zobaczmy jak wyglądają dodatnie wartości area

```
[12]: len(df[df['area']>0])
```

[12]: 270

```
[13]: sns.histplot(df.loc[df['area']>0, 'area'], bins=round(1+3.322*np.

→log(df[df['area']>0].shape[0])), kde=True)

plt.show()
```


Teraz możemy zastosować zwykły logarytm.

```
[14]: sns.histplot(df.loc[df['area']>0, 'area'].apply(np.log), bins=round(1+3.322*np.

→log(df[df['area']>0].shape[0])), kde=True)

plt.show()
```


Rozkład bardziej przypomina rozkład normalny. Można rozważyć podzielenie zadania na 2 części. Najpierw klasyfikujemy czy pożar wybuchnie (area > 0), a później przybliżamy $\log(\text{area})$ jakimś modelem.

1.4 Utworzenie kolumn numerycznych kodujących dni tygodnia i miesiące

Dzięki temu będziemy mogli wyliczyć miary statystyczne i zobczyć histogramy.

- dni tygodnia: 1=poniedziałek, ..., 7=niedziela
- miesiące: 1=styczeń, ... , 12=grudzień

```
[15]:
          Х
             Y month
                       day
                            FFMC
                                    DMC
                                              DC
                                                  ISI
                                                        temp
                                                                 RH
                                                                     wind
                                                                            rain
                                                                                   area
          7
                             86.2
                                    26.2
                                           94.3
                                                                       6.7
                                                                             0.0
                                                                                    0.0
      0
             5
                  mar
                       fri
                                                  5.1
                                                         8.2
                                                               51.0
      1
          7
                                    35.4
                                                                      0.9
                                                                                    0.0
                             90.6
                                          669.1
                                                  6.7
                                                        18.0
                                                               33.0
                                                                             0.0
                  oct
                       tue
      2
          7
             4
                  oct
                       sat
                             90.6
                                   43.7
                                          686.9
                                                  6.7
                                                        14.6
                                                               33.0
                                                                       1.3
                                                                             0.0
                                                                                    0.0
      3
                             91.7
                                    33.3
                                                               97.0
                                                                       4.0
          8
             6
                       fri
                                           77.5
                                                  9.0
                                                         8.3
                                                                             0.2
                                                                                    0.0
                  mar
      4
          8
             6
                       sun
                             89.3
                                   51.3
                                          102.2
                                                  9.6
                                                        11.4
                                                               99.0
                                                                       1.8
                                                                             0.0
                                                                                    0.0
                  mar
```

```
log_area month_num day_num
0 0.0 3 5
1 0.0 10 2
```

```
2 0.0 10 6
3 0.0 3 5
4 0.0 3 7
```

1.5 Histogramy zmiennych

```
[16]: df.hist(bins = 40, figsize = (18,12))
plt.show()
```


• rain bardzo dużo obserwacji ma wartość bliską 0. Może warto usunąć tę kolumnę.

1.6 Korelacje cech

```
[17]: corr = df.drop(['month_num', 'day_num'], axis = 1).corr()
   _, __ = plt.subplots(figsize=(12,9))
   sns.heatmap(corr, vmin=-1,annot=True)
   plt.show()
```


• temp odwrotnie skorelowany z RH. Im cieplej tym względna wilgotność niższa.

```
[18]: sns.scatterplot(x = df['temp'], y = df['RH'])
plt.show()
```


• wzajemnie skorelowane ISI, temp, FFMC, DMC, DC.

```
[19]: cols = ['ISI', 'temp', 'FFMC', 'DMC', 'DC']
sns.pairplot(df[cols])
plt.show()
```


1.7 Współrzędne geograficzne

Mapa przedstawiająca podział parku na sektory

```
[28]: import matplotlib.image as mpimg
image = mpimg.imread("images/download.jpeg")
   plt.imshow(image)
   plt.show()
```



```
def create_heatmap(agg_fun):
    geo_df = df.loc[:,['X','Y','area']].groupby(['X', 'Y'], as_index = False).
    agg(agg_fun)
    geo_df_pivot = geo_df.pivot(index = 'X', columns = 'Y', values = 'area')
    geo_df_pivot[geo_df_pivot.isna()] = 0
    sns.heatmap(geo_df_pivot, cmap = 'YlOrRd').set_title(agg_fun + ' of areas_\)
    by coordinates')
    plt.show()

create_heatmap('sum')
    create_heatmap('count')
    create_heatmap('mean')
    create_heatmap('std')
```


Widać, że największe i najczęstsze pożary są w prostokątnym pasie leżącym wzdłuż przekątnej terenu. Stąd też współczynnik korelacji X i Y to 0.54. Największa średnia powierzchnia pożaru jest w prostokącie (8,8), gdzie odnotowano mniej niż 10 pożarów. Odchylenie standardowe spalonej powierzchni w tym rejonie też jest niewielkie. Sugeruje to, że było tam kilka dużych pożarów.

1.8 Dane w czasie

DC opisuje poziom suszy. Logiczne jest, że wraz z nadejściem lata ten wskażnik rośnie

```
[27]: import matplotlib.image as mpimg
image = mpimg.imread("images/437-cffdrs-fuel-moisture-codes-graph.png")
plt.imshow(image)
plt.show()
```



```
[21]: sns.scatterplot(x = df['month_num'], y = df['DC'])
plt.show()
```


Nie jest zaskoczeniem, że późnym latem pożarów jest najwięcej i suma spalonych obszarów jest największa. Warto zauważyć, że średnia powierzchnia pożaru nie zależy aż tak bardzo od pory roku.

```
[23]: weekday_df = df.loc[:,['day_num', 'day', 'area']].groupby(['day_num', 'day']).
      →agg([np.sum, np.size, np.mean]).reset_index()
      weekday_df.loc[:,'area']
      f, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 20))
      sns.barplot(x = weekday_df['day'], y = weekday_df.loc[:,'area']['sum'], ax =__
      \rightarrowax1)
      ax1.title.set_text('Sum of areas by day')
      ax2.set_ylabel('sum of areas')
      sns.barplot(x = weekday_df['day'], y = weekday_df.loc[:,'area']['size'], ax =__
      ⇒ax2)
      ax2.title.set_text('Number of fires by day')
      ax2.set_ylabel('number')
      sns.barplot(x = weekday_df['day'], y = weekday_df.loc[:, 'area']['mean'], ax =__
      \rightarrowax3)
      ax3.title.set_text('Mean of fire areas by day')
      ax3.set_ylabel('mean')
      plt.show()
```


Najwięcej pożarów wybucha w okolicach weekendów. Może to wynikać ze wzmożonej obecności turystów w dni wolne.

1.9 Narzędzie do automatycznej eksploracji - pandas profiler

```
[24]: profile = ProfileReport(df, title='Pandas Profiling Report', explorative=True)
```

[25]: profile.to_notebook_iframe()

Summarize dataset: 0%| | 0/29 [00:00<?, ?it/s]

Generate report structure: 0%| | 0/1 [00:00<?, ?it/s]

Render HTML: 0%| | 0/1 [00:00<?, ?it/s]

<IPython.core.display.HTML object>

1.9.1 Wnioski z raportu

są 4 zdublowane obserwacje. Prawdopodobnie jest to wynik błędu i lepiej je usunąć.

1.9.2 Opinia o narzędziu

- automatyzuje wstępny etap eksploracji
- wyłapuje anomalia w danych, takie jak dużo zerowych wartości, duplikaty
- po przeczytaniu raportu można zyskać intuicję co do dalszej analizy
- profiler nie zrobi za nas bardziej zaawansowanych wykresów i podsumowań