7 Equivalence Between Optimization and Separation

Loosely speaking, the Ellipsoid Method shows that if one can separate (over a polyhedron) then one can also optimize (a linear function over it).

It turns out that there is also a reverse connection, which is based on polarity.

Definition

Let $X \subseteq \mathbb{R}^n$. The polar $X' \subseteq \mathbb{R}^n$ of X is given by $X' = \{ y \in \mathbb{R}^n : x^T y \leq 1 \mid \forall x \in X \}.$

Clearly, if
$$A \subseteq B \subseteq IR^n$$
, then $B^\circ \subseteq A^\circ$.

Example 1

Example 2

Let $r \in \mathbb{R}_{>0}$ and consider $B(0,r) := \{x \in \mathbb{R}^n : \|x\|_2 \le r\}$. Then $(B(0,r))^0 = B(0,\frac{1}{r})$.

Lemma 7.1

Let $X \subseteq \mathbb{R}^n$ be a compact (i.e., closed and bounded) convex set, containing the origin in its interior. Then

- (a) X° is a compact convex set with the origin in its interior.
- (b) $(X^{\circ})^{\circ} = X$.

Proof

Theorem 1.47

Let $Y,Z\subseteq\mathbb{R}^n$ be two disjoint closed convex sets with at least one of them being compact, then there exists a strictly (Y,Z)-separating hyperplane.

Lemma 7.2

Let $P\subseteq\mathbb{R}^n$ be a polytope containing the origin in its interior. Then P° is a polytope. Moreover, for any $x\in\mathbb{R}^n$, we have

 $x \text{ is a vertex of } P \quad \Leftrightarrow \quad \{y \in \mathbb{R}^n \colon x^\top y \leq 1\} \text{ is facet-defining for } P^\circ.$

Proof (of Lemma 7.2)

Let $P=\{x\in\mathbb{R}^n\colon Ax\leq b\}$ be a full-dimensional polyhedron, then each inequality $a^{\top}x\leq\beta$ of $Ax\leq b$ that is not facet-defining for P is redundant.

Optimization over P

Separation over P

Separation over po

Optimization over po