Introduction to Deep Learning Part IV - Hands-On April 13, 2022

Auliya Fitri, Jakob Gawlikowski

Machine Learning Group
Institute of Data Science (DW)
Jena

Knowledge for Tomorrow

Practical part

Load Tutorials on Binder:

https://mybinder.org/v2/gh/auliyafitri/deep_learning_basics_pytorch/HEAD

or

https://tinyurl.com/dlbasics-dlr

Practical part

Four parts: Basics ~20 Minutes (now)

Regression ~50 Minutes

(Afternoon)

Classification ~50 Minutes

(Afternoon)

Image Classification ~50 Minutes

(Afternoon)

Structure: ~15 Minutes Present Jupyter Notebook

~25 Minutes Excercises and Self-Study

~10 Minutes Wrap-Up and Discussion

Practical Part: Basics

Time: ~10 Minutes: Presentation

~10 Minutes: Self-study

Content: Simple definitions and operations using Python and the PyTorch Package

Goal: Get familiar with the setup

Learn to run a Jupyter Notebook on Binder

Learn very first steps with PyTorch

Practical Part: Regression

Time: ~15 Minutes: Presentation

~25 Minutes: Self-study

~10 Minutes: Wrap-Up

Content: Solve a regression task with

linear and non-linear mode

Goal: Learn regression analysis

Figure out the differences

between nonlinearities

100 data points around the line $y= x^3 + 0.3$

Practical Part: Classification

Time: ~15 Minutes: Presentation

~25 Minutes: Self-study

~10 Minutes: Wrap-Up

Content: Train a classifier for a binary classification task

Data based on XOR function

Train with "overlapping classes "

Goal: Learn how classification tasks are defined

Figure out necessety of non-linearities

Get an idea of certain and uncertain predictions

Practical Part: Image Classification

Time: ~15 Minutes: Presentation

~25 Minutes: Self-study

~10 Minutes: Wrap-Up

Content: Train a classifier for a image classification task based on the MNIST dataset

Compare a fully connected and a convolutional neural network

Bonus: evaluate the performance on rotated images (=> Out-of-distribution)

Goal: Learn classification of image data

Figure out the efficiency of Concolutional Neural Networks

Bonus: Learn the limitations of neural networks regarding out-of-distribution samples

Feedback Session and Goodbye

Special Thanks to Simon Meininger!

