Université Constantine 2 - Abdelhamid MEHRI

Faculté des Nouvelles Technologies de l'Information et de la Communication - NTIC Département d'Informatique Fondamentale et ses Application - IFA

Approche résiliente pour l'identification et la détection des attaques DDoS dans les réseaux IoT

Présenté par : Japhet DIARRA Mamadou DIARRA MAKADJI TB Sous la Direction de : M^r Amir DJENNA

20 septembre 2020

Table des matières

1. INTRODUCTION

Contexte

Problématique

Objectif

2. APERCU SUR L'ÉTAT DE L'ART

loΤ

DDoS

IDS

3. CONTRIBUTIONS

Deep Learning

Approche proposée

Résultats

Comparaison

4. CONCLUSION GÉNÉRALE

Conclusion

Perspectives

1. INTRODUCTION

Contexte Problématique Objectif

2. APERÇU SUR L'ÉTAT DE L'ART

loT

DDoS

IDS

CONTRIBUTIONS

Deep Learning

Approche proposée

Résultats

Comparaison

4. CONCLUSION GÉNÉRALE

Conclusion

Perspectives

Contexte

Les progrès fulgurants des Technologies de l'Information et de la Communication(TIC) et les nombreuses Innovations dans les communications réseaux ainsi que le besoin de faire collaborer des objets ont conduit à un concept moderne qui est l'Internet des objets(IoT).

Contexte

Les progrès fulgurants des Technologies de l'Information et de la Communication(TIC) et les nombreuses Innovations dans les communications réseaux ainsi que le besoin de faire collaborer des objets ont conduit à un concept moderne qui est l'Internet des objets(IoT).

Avant l'internet des objets

Monde numérique

Monde physique

Contexte(suite)

Selon les experts de CISCO, le nombre d'objets connectés dans le monde est actuellement estimé à 30 milliards et ce nombre atteindrait les 75 milliards d'objets connectés en 2025.

Contexte(suite)

Selon les experts de CISCO, le nombre d'objets connectés dans le monde est actuellement estimé à 30 milliards et ce nombre atteindrait les 75 milliards d'objets connectés en 2025.

Problématique

Problèmes

Cependant la collaboration des objets connectés ouvre de nouvelles portes d'attaques aux hackers qui effectuent des attaques de plus en plus sophistiquées. Parmi ces nouvelles portes d'attaques, on peut retenir le DDoS, considéré comme la plus grande menace visant l'IoT. En plus de ces problèmes, s'ajoutent les faibles capacités des composants IoT en terme :

- D'énergie
- D'espaces de stockage

Rendant la gestion de leur sécurité plus complexe.

Une Priorité

Diminuer les risques de sécurité notamment ceux dû aux attaques **DDoS** révèle d'une priorité primordiale aussi bien pour les entreprises que pour les opérateurs.

Objectif

L'objectif principal

Réaliser une approche résiliente pour l'identification et la détection des attaques DDoS dans les réseaux IoT en vue d'empêcher les intrusions.

L'idée Consiste à intégrer l'IA plus precisement le DL afin d'avoir une precision de détection efficace.

Par ailleurs cette approche inclue l'utilisation séquentielle de l'auto-encodeur(AE) et des réseaux de neurones profonds(DNN).

1. INTRODUCTION

Contexte Problématique Objectif

2. APERÇU SUR L'ÉTAT DE L'ART

loΤ

DDoS

IDS

CONTRIBUTIONS

Deep Learning

Approche proposée

Résultats

Comparaisor

4. CONCLUSION GÉNÉRALE

Conclusion

Perspectives

IoTDéfinitions

Définitions

► L'Internet des Objets est défini comme un ensemble d'objets inter connectés, disponibles et offrant des services en permanence à travers l'internet.

IoTDéfinitions

Définitions

- ► L'Internet des Objets est défini comme un ensemble d'objets inter connectés, disponibles et offrant des services en permanence à travers l'internet.
- Un Objet connecté est un appareil possédant la capacité d'échanger des données via internet avec d'autres entités physiques ou numériques.

Exemples

► Villes intelligentes : Singapour, Oslo

- ► Villes intelligentes : Singapour, Oslo
- ▶ Mobilité : voiture connectée

- ► Villes intelligentes : Singapour, Oslo
- ► Mobilité : voiture connectée
- ► Santé : Tensiomètre connecté,

- ► Villes intelligentes : Singapour, Oslo
- ▶ Mobilité : voiture connectée
- ► Santé : Tensiomètre connecté,
- ► Agriculture : Drones agricoles,

- ► Villes intelligentes : Singapour, Oslo
- ► Mobilité : voiture connectée
- Santé : Tensiomètre connecté,
- ► Agriculture : Drones agricoles,
- ▶ Industrie : Robot connecté

- ► Villes intelligentes : Singapour, Oslo
- ► Mobilité : voiture connectée
- Santé : Tensiomètre connecté,
- ► Agriculture : Drones agricoles,
- ▶ Industrie : Robot connecté
- Domotique : Réfrigérateur connecté

- ► Villes intelligentes : Singapour, Oslo
- ▶ Mobilité : voiture connectée
- Santé : Tensiomètre connecté,
- ► Agriculture : Drones agricoles,
- ▶ Industrie : Robot connecté
- Domotique : Réfrigérateur connecté
- ► Loisirs : Télévision connectée

- ► Villes intelligentes : Singapour, Oslo
- Mobilité : voiture connectée
- Santé : Tensiomètre connecté,
- ► Agriculture : Drones agricoles,
- ▶ Industrie : Robot connecté
- Domotique : Réfrigérateur connecté
- ▶ Loisirs : Télévision connectée
- ► Transports : Gestion de la circulation

IoT

Avantages et Inconvénients de l'IoT

Avantages

- ► Amélioration de la productivité
- Amélioration de nos quotidiens
- ► Diminution des erreurs humaines
- Sécurisation des domiciles
- Surveillance de sa santé
- ► Aide aux personnes âgées

IoT

Avantages et Inconvénients de l'IoT

Avantages

- ► Amélioration de la productivité
- Amélioration de nos quotidiens
- ► Diminution des erreurs humaines
- Sécurisation des domiciles
- Surveillance de sa santé
- ► Aide aux personnes âgées

Inconvénients

- Gestion complexe de la sécurité des objets et des données
- ► Interopérabilité et hétérogénéité
- Génération d'une grande masse de données
- ► Faible protection de la vie privée

DDoS

Définition

Le **DDoS** est l'attaque visant à rendre un service ou une ressource indisponible à ses utilisateurs légitimes. Elle est mise en œuvre à travers un botnet c'est à dire un réseau d'objets infectés

DDoS

Définition

Le **DDoS** est l'attaque visant à rendre un service ou une ressource indisponible à ses utilisateurs légitimes. Elle est mise en œuvre à travers un botnet c'est à dire un réseau d'objets infectés

DDoS

Solution pour se protéger contre les attaques DDoS

Une méthode efficace pour protéger les réseaux IoT contre les attaques DDoS est de détecter les attaques et de se défendre avant même qu'elles ne se produisent :

Solution pour se protéger contre les attaques DDoS

Une méthode efficace pour protéger les réseaux IoT contre les attaques DDoS est de détecter les attaques et de se défendre avant même qu'elles ne se produisent : utilisation des Systèmes de Détection d'Intrusion(IDS)

Définition et les différents types d'IDS

Définition

Un IDS est un composant logiciel ou matériel spécialisé,dont le rôle est de surveiller l'activité d'un réseau ou d'un hôte en vue de détecter toute effraction dans l'utilisation des ressources.

Définition et les différents types d'IDS

Définition

Un IDS est un composant logiciel ou matériel spécialisé, dont le rôle est de surveiller l'activité d'un réseau ou d'un hôte en vue de détecter toute effraction dans l'utilisation des ressources.

1. INTRODUCTION

Contexte Problématique Objectif

2. APERÇU SUR L'ÉTAT DE L'ART

ΙοΤ

DDoS

IDS

3. CONTRIBUTIONS

Deep Learning Approche proposée Résultats Comparaison

4. CONCLUSION GÉNÉRALE

Conclusion Perspectives

Deep Learning

Deep Learning

L'application des techniques d'apprentissage profond pour la détection d'intrusion donne des Résultats très efficaces par rapport aux IDS classiques.

- ► Taux de détection élevés,
- ► Moins de faux positifs

Architecture du modèle

Approche proposée Choix du Dataset

Datasets • Bot IoT • NSL-KDD

Approche proposée Choix du Dataset

Approche proposée Définition du modèle Auto Encodeur(AE)

Approche proposée Définition du modèle Auto Encodeur(AE)


```
public void createModel&E(int numInputs){
    MultiLaverConfiguration configurationAE =
        new NeuralNetConfiguration.Builder()
            .seed (1234)
            .weightInit(WeightInit.XAVIER)
            .optimizationAlgo(OptimizationAlgorithm
                   STOCHASTIC GRADIENT DESCENT)
            .updater(new Adam(0.001))
            .12(0.00005)
            .activation(Activation.TANH)
            .list()
            .laver(0, new DenseLaver, Builder()
                .nIn (numInputs)
                . nOut (10)
                .build())
            .layer(1, new DenseLayer.Builder()
                nIn(10)
                . nOut (4)
                .build())
            .laver(2, new DenseLaver, Builder()
                .nIn(4)
                . nOut (10)
                .build())
            .layer(3, new OutputLayer.Builder()
                .nIn(10)
                .nOut(numInputs)
                .lossFunction(LossFunctions.LossFunction
                     .MEAN SQUARED LOGARITHMIC ERROR >
                .build())
            .build():
    this . modelAE = new MultiLaverNetwork(configurationAE):
    modelAE.init();
```

Définition du modèle du réseau de neurone profond(DNN)

Définition du modèle du réseau de neurone profond(DNN)


```
public void createModelFFNN(MultiLaverNetwork modelAE){
      FineTuneConfiguration fineTuneConf =
        new FineTuneConfiguration . Builder()
               .updater(new Adam(0.01))
               . build ():
      this . modelFFNN = new TransferLearning . Builder (modelAE)
               . fineTuneConfiguration(fineTuneConf)
               .removeOutputLaver()
               .addLayer(new OutputLayer.Builder()
                 . nln (10)
                 . nOut (this . num Classes)
                 activation (Activation SOFTMAX)
                 .lossFunction(new LossMCXENT())
                 . build ())
               . build ():
        modelFFNN.init();
```

Fonction d'activation du modèle Auto Encodeur(AE)

Fonction d'activation du modèle Auto Encodeur(AE)

Fonction d'activation du modèle du réseau de neurone profond (DNN)

Fonction d'activation du modèle du réseau de neurone profond (DNN)

Approche proposée Entrainement du modèle

Somme pondérée

$$z = \sum_{i=1}^{n} (X_i \times W_i) + bias$$
 $y = \varphi(z)$

FIGURE - Entraînement du modèle

Phase de test du modèle

Somme pondérée

$$z = \sum_{i=1}^{n} (X_i imes W_i) + bias$$
 $y = arphi(z)$

Approche proposée Entrainement et test du modèle

FIGURE – Entraînement du

FIGURE – Phase de test du modèle

Résultats

Matrice de confusion

	Classe prédite						
	Classifié \longrightarrow	Normal	DDoS	DoS	Reconn	Theft	
Classe réelle	Normal	29238	1	4	11	0	
	DDOS	0	26684	357	19	0	
	DOS	0	718	26033	79	0	
	Reconn	2	59	175	17909	0	
	Theft	0	0	0	13	25	

Résultats Métriques d'évaluation

Résultats Métriques d'évaluation

moyennes des résultats obtenues

 $\begin{array}{l} \mathsf{Accuracy} = 98.58\% \\ \mathsf{Precision} = 98.89\% \\ \mathsf{Recall} = 92.01\% \\ \mathsf{F} \ \mathsf{Score} = 94.74\% \\ \mathsf{FPR} = 0.38\% \end{array}$

Comparaison

Comparaison avec d'autres Travaux

Méthodes & Auteurs	L'année	Dataset	Accuracy(taux de reussite)
CNN par B.Susilo et R.Sari	2020	Bot IoT	91.27%
FNN par O.Ibitoye et O.Safig	2019	Bot IoT	95.1%
CNN par Y.Zheng, Y.Xin et Y.Zhao	2020	NSLKDD	86.95%
MLP par MOKHTARI Sidi	2018	NSL-KDD	93.57%
Notre Approche	2020 .	Bot IoT	98.58%
		NSL-KDD	99.12%

1. INTRODUCTION

Contexte Problématique Objectif

2. APERÇU SUR L'ÉTAT DE L'ART

lоТ

DDoS

IDS

3. CONTRIBUTIONS

Deep Learning
Approche proposée
Résultats
Comparaison

4. CONCLUSION GÉNÉRALE

Conclusion Perspectives

Conclusion

conclusion

Notre approche a été testé et validé sur les datasets IoT Botnet et NSL-KDD pour l'apprentissage et le test. Les résultats obtenus sont très satisfaisants et prouvent l'efficacité de notre approche avec un taux de réussite(Accuracy) de 98.58% et un taux de faux positifs de 0.38%

Perspectives

- ► IDS mode online
- Gestion multi tâches des alertes dans l'IDS
- ► Générer et Tester avec son propre dataset

Merci pour votre attention!