Readiness Assurance Test

Choose the most appropriate response for each question.

- 31) Solve y' = 2xy.

 - (a) $y = ke^{x^2}$ (b) $y = e^{x^2} + C$
- (c) $y = ke^{2x}$
- (d) $y = e^{2x} + C$

- 32) Solve $y' = 3y^2$.
 - (a) $y = -\frac{1}{3x} + C$ (b) $y = -\frac{1}{3x+C}$ (c) $y = x^3 + C$ (d) $y = x^{\frac{1}{3}} + C$

- 33) If $f(x,y) = \frac{x}{y}$, compute $\frac{\partial f}{\partial y}$.

 - (a) $\frac{-x}{y}$ (b) $\frac{-x}{y^2}$

(c) $\frac{1}{y^2}$

(d) $\frac{1}{y}$

- 34) If $f(x,y) = e^{x^2 + y^2}$, compute $\frac{\partial f}{\partial x}$.

 - (a) e^{x^2} (b) $e^{x^2+y^2}$
- (c) $2xe^{x^2}$
- (d) $2xe^{x^2+y^2}$

- 35) If $f(x,y) = \sin(xy^2)$, compute $\frac{\partial f}{\partial y}$.
- (a) $\cos(xy^2)$ (b) $2y\cos(xy^2)$ (c) $2xy\cos(xy^2)$ (d) $xy^2\cos(xy^2)$

36)	At how many points does the function $f(x,y) = \sqrt{x^2 + y^2}$ fail to be continuous?				
	(a) Infinitely	many (b) 2	(c) 1	(d) 0	
07)	A. 1				
37)	At how many	points does the function $f($	$(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ fail to be con	ntinuous?	
	(a) 0	(b) 1	(c) 2	(d) Infinitely many	7
38)	At how many	points does the function $f($	$(x,y) = \sqrt{x^2 - y^2}$ fail to be o	continuous?	
,					
	(a) 0	(b) 1	(c) 2	(d) Infinitely many	7
39)	Let $f(x)$ be a	function with $f(3) = 2$ and	f'(3) = -1. Use a linear ap	proximation to estimate $f(3)$.	2).
	(a) 2.2	(b) 2.1	(c) 1.9	(d) 1.8	
40)	Let $f(x)$ be a	function with $f(0) = 3$ and	$f'(x) = e^{x^2}$. Use a linear an	opproximation to estimate $f(0)$.	.3).
10)	(a) 1	(b) 1.09	(c) 3.3	(d) 3.9	-)•
	(α) Ι	(0) 1.00	(0) 0.0	(u) 0.0	