Planche 1.

Question de cours. Soient F et G deux sevs de E un ev. Est ce que $F \bigcup G$ est un sev de E?

Exercice 1. On pose les vecteurs : x = (1, 1, 0) , y = (1, 0, 1), u = (1, 3 - 2) et v = (1, 4, -3) de \mathbb{R}^3 . Montrer que

$$Vect(x, y) = Vect(u, v)$$

Exercice 2. Soit $H = \{(x_1, \dots, x_n) \in \mathbb{K}^n : x_1 + \dots + x_n = 0\}$ et $u = (1, \dots, 1) \in \mathbb{K}^n$. Montrer que H et $Vect_K(u)$ sont des sous-espaces vectoriels supplémentaires de \mathbb{K}^n .

Planche 2.

Question de cours. Est ce que tout élement de \mathbb{R}^2 s'écrit de manière unique comme combinaison linéaire de (1,0), (0,1) et (1,1)?

Exercice 1. Soit F l'ensemble des polynômes à coefficients réels qui sont divisibles par $X^2 + 1$. Montrer qu'il s'agit d'un sous-espace vectoriel de $\mathbb{R}[X]$.

Exercice 2. Trouver un supplémentaire de l'ensemble des fonctions réelles et paires dans l'espace vectoriel des fonctions : $\mathbb{R} \to \mathbb{R}$.

Planche 3.

Question de cours. Soient F et G deux sevs de E un ev tels que $F \bigoplus G = E$. Est ce que tout élement de E est soit dans F soit dans G?

Exercice 1. Soit C l'ensemble des fonctions croissantes sur \mathbb{R} . On pose

$$F=\{f-g:(f,g)\in C^2\}$$

Montrer que F est un sous-espace vectoriel de l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} .

Exercice 2. Soit

$$F = \left\{ f \in C^1(\mathbb{R}, \mathbb{R}) : f(0) = f'(0) = 0 \right\}$$

et

$$G = \{x \longmapsto ax + b : a, b \in \mathbb{R}\}\$$

Montrer que F et G sont des sous-espaces vectoriels supplémentaires de $C^1(\mathbb{R},\mathbb{R})$.

Solutions - Planche 1.

Question de cours. Le cours dit que si l'un des deux sous-espaces est inclus dans l'autre alors $F \bigcup G$ est un sev. Donnons un contre-exemple si ce n'est pas le cas. Pour cela, plaçons dans le cadre le plus simple : $E = \mathbb{R}^2$, F = Vect(1,0) et G = Vect(0,1). Alors si $F \bigcup G$ était un sous-espace vectoriel, on aurait que $(1,0) + (0,1) \in F \bigcup G$ car chacun des deux vecteurs est dedans. Donc $(1,1) \in F \bigcup G$. Mais (1,1) n'est ni dans F ni dans G car s'il existait G0 exemples que G1, G2 on aurait G3 existait G4 exemples que G4.

Finalement, $F \cup G$ n'est pas un sous-espace vectoriel dans ce cas.

Exercice 1. Il s'agit de montrer une <u>double inclusion</u>. Il suffit de montrer que x et y sont combinaisons linéaires de u et v et réciproquement que u et v sont combinaisons linéaires de x et y.

Or
$$u=3x-2y$$
 et $v=4x-3y$. Donc $Vect(u,v)\subset Vect(x,y)$. Or $x=3u-2v$ et $y=4u-3v$. Donc $Vect(x,y)\subset Vect(u,v)$. Donc

$$Vect(x,y) = Vect(u,v)$$

Exercice 2. • Vérifions que H est <u>un sous-espace vectoriel</u> de \mathbb{K}^n . $H \subset \mathbb{K}^n$. H contient 0. Si $x, y \in H$ et $\lambda \in \mathbb{K}$ alors $\lambda x \in H$ $\overline{\operatorname{car} \lambda x_1 + \cdots \lambda x_n} = \lambda(x_1 + \cdots + x_n) = 0$. De même $x + y \in H$ car

$$(x_1 + y_1) + \dots + (x_n + y_n) = (x_1 + \dots + x_n) + (y_1 + \dots + y_n) = 0$$

- Montrons maintenant que $\underline{H + Vect_{\mathbb{K}}(u) = \mathbb{K}^n}$. Pour cela, on prend $x \in \mathbb{K}^n$ qui s'écrit $x = (x_1, \dots, x_n)$ et on va montrer que c'est la somme d'un élement de H et d'un multiple de u. On pose $a = \sum_{i=1}^n x_i$. D'où $x u \frac{a}{n} = x (a/n, \dots, a/n) = (x_1 1/n, \dots, x_n a/n)$. On vérifie alors que $v = x u \frac{a}{n}$ est dans H. Donc $x = v + u \frac{a}{n}$. Donc $H + Vect_{\mathbb{K}}(u) = \mathbb{K}^n$.
- Il faut maintenant montrer qu'ils sont <u>en somme directe</u>. C'est-à-dire que l'intersection est réduite à 0. Soit $x \in H \cap Vect_{\mathbb{K}}(u)$. Alors il existe $a \in K$ tel que x = au. Donc $x_1 + \cdots + x_n = 0$ et $x_i = a, \forall i$. Donc a.n = 0 et donc a = 0 (car $n \neq 0$). On en déduit que x = 0 et que les deux sous-espaces sont supplémentaires dans \mathbb{K}^n .

Solutions - Planche 2.

Question de cours. Non ce n'est pas le cas : (1,1) = 1.(1,0) + 1.(0,1) + 0.(1,1) = 0.(1,0) + 0.(0,1) + 1.(1,1).

Exercice 1. $F \subset \mathbb{R}[X]$. $0 \in F$ car $X^2 + 1$ divise 0. Si $P, Q \in F$ alors $X^2 + 1$ divise $\lambda P + Q$ où $\lambda \in \mathbb{R}$. D'où F est un sous-espace vectoriel de $\mathbb{R}[X]$.

Exercice 2. On note $E = \mathbb{R}^{\mathbb{R}}$ l'ensemble des fonctions réelles. Il s'agit d'un \mathbb{R} -espace vectoriel. On pose F l'ensemble des fonctions paires. On vérifie que F est un sous-espace vectoriel de $E: F \subset E, 0 \in F$ et toute combinaison linéaire reste paire.

On pose G l'ensemble des fonctions impaires. Il s'agit aussi d'un sous-espace vectoriel (on le montre aisément de la même manière que dans le cas paire).

- Montrons que F et G sont en <u>somme directe</u>. Soit $f \in F \cap G$. Alors pour tout $x \in \mathbb{R}$: f(x) = f(-x) = -f(-x). Donc f(x) = 0. Donc f = 0.
 - Montrons qu'ils sont supplémentaires. Soit $f \in E$.

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

Or la fonction à gauche est paire et celle de droite est impaire. Donc ils sont bien supplémentaires

Solutions - Planche 3.

Question de cours. Non ce n'est pas le cas. Prenons $E = \mathbb{R}^2$, F = Vect(1,0) et G = Vect(0,1). Il est aisé de montrer que $F \bigoplus G = E$ (montrer que $F \bigcap G = \{0\}$ et F + G = E). Néanmoins, (1,1) n'appartient ni à F ni à G. En effet, si tel était le cas, il existerait $a \in K$ tel que (1,1) = a(1,0) (si $(1,1) \in F$) et a = 1 = 0 (ce qui est impossible).

Exercice 1. • Déjà, $F \subset \mathbb{R}^{\mathbb{R}}$.

- L'élement nul 0 est dans F car 0 = 0 0, où 0 est croissante.
- Montrons maintenant que F est stable par addition. Soient x et y dans F, il existe f, g, h, i dans C tels que : x = f g et y = h i. Alors x + y = (f + h) (g + i). Or f + h et h + i sont croissantes donc $x + y \in F$.
- Montrons finalement que F est stable par multiplication par un scalaire. Soit $\lambda \in \mathbb{R}$ et $h \in F$. Alors il existe f,g croissantes tels que h=f-g. $\lambda h=\lambda f-\lambda g$. Mais λf n'est pas forcément croissante! Si λ est positif alors c'est le cas et $\lambda h \in F$. Sinon $\lambda h=(-\lambda)h-(-\lambda)f$, où ici on a bien deux fonctions croissantes. Donc dans tous les cas $\lambda h \in F$. Et donc F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.
- **Exercice 2.** Montrons d'abord que F est un sous-espace vectoriel. $F \subset C^1(\mathbb{R}, \mathbb{R})$. On a $0 \in F$. Soit λ un réel et $f, g \in F$. Alors $(\lambda f + g)(0) = \lambda f(0) + g(0) = 0$ et de même $(\lambda f + g)'(0) = \lambda f'(0) + g'(0) = 0$. Donc $\lambda f + g \in F$. D'où F est bien un sev.
- Montrons que G est un sous-espace vectoriel. $G \subset C^1(\mathbb{R}, \mathbb{R})$. $0 \in G$ en prenant a = b = 0. Soit λ un réel et $f, g \in G$. Alors $\lambda f + g = (\lambda a + c)x + (\lambda b + d)$ où f = ax + b et g = cx + d. Donc $\lambda f + g \in G$, et donc G est un sev.
- Montrons qu'ils sont en somme directe. Soit $h \in F \cap G$. Alors h(x) = ax + b. h(0) = 0 = b donc b = 0. De plus h'(0) = a = 0. Donc h = 0. Donc $f \cap G = 0$.
- Montrons qu'ils sont supplémentaires. Soit $h \in C^1(\mathbb{R}, \mathbb{R})$. Montrons que h est somme d'un élement de F et d'un élement de G. On pose a = h'(0) et b = h(0). On pose f = h ax b. Donc h = f + ax + b. Or $ax + b \in G$ et on a bien $f \in F$ car f(0) = h(0) b = 0 et f'(0) = h'(0) a = 0.

Donc F et G sont supplémentaires dans $C^1(\mathbb{R},\mathbb{R})$.