2022 年全国硕士研究生招生考试数学(一) 试题

一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目 要求,把所选项前的字母填在题后的括号内.)

(1)
$$\lim_{x\to 1} \frac{f(x)}{\ln x} = 1, \text{ M}()$$

$$(A)f(1) = 0.$$

(B)
$$\lim_{x \to 1} f(x) = 0.$$

$$(C)f'(1) = 1.$$

(B)
$$\lim_{x \to 1} f(x) = 0$$
.
(D) $\lim_{x \to 1} f'(x) = 1$.

(2) 设
$$f(u)$$
 可导, $z = xyf\left(\frac{y}{x}\right)$,若 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = y^2(\ln y - \ln x)$,则()

$$(A)f(1) = \frac{1}{2}, f'(1) = 0.$$

$$(B)f(1) = 0, f'(1) = \frac{1}{2}.$$

$$(C)f(1) = \frac{1}{2}, f'(1) = 1.$$

$$(D)f(1) = 0, f'(1) = 1.$$

(3) 设数列
$$\{x_n\}$$
 满足 $-\frac{\pi}{2} \le x_n \le \frac{\pi}{2}$,则(

- (A) 若 $\lim_{n \to \infty} \cos(\sin x_n)$ 存在,则 $\lim_{n \to \infty} x_n$ 存在.
- (B) 若 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在,则 $\lim_{n\to\infty} x_n$ 存在.
- (C) 若 $\lim_{n\to\infty}\cos(\sin x_n)$ 存在,则 $\lim_{n\to\infty}\sin x_n$ 存在,但 $\lim_{n\to\infty}x_n$ 不一定存在.
- (D) 若 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在,则 $\lim_{n\to\infty} \cos x_n$ 存在,但 $\lim_{n\to\infty} x_n$ 不一定存在.

$$(A)I_1 < I_2 < I_3.$$

$$(B)I_2 < I_1 < I_3.$$

$$(C)I_1 < I_3 < I_2.$$

(D)
$$I_{3} < I_{2} < I_{1}$$
.

- (5) 下列 4 个条件中,3 阶矩阵 A 可相似对角化的一个充分非必要条件是(
 - (A)A 有 3 个不同的特征值.
 - (B)A有3个线性无关的特征向量.
 - (C)A 有3个两两线性无关的特征向量.
 - (D)A 的属于不同特征值的特征向量相互正交.
- (6) 设A,B为n阶矩阵,E为n阶单位矩阵,若方程组Ax = 0与Bx = 0同解,则(

$$(A)\begin{pmatrix} A & O \\ E & B \end{pmatrix} y = 0 \text{ 只有零解}.$$

$$(B)\begin{pmatrix} E & A \\ O & AB \end{pmatrix} y = 0 \text{ 只有零解}.$$

$$(C)\begin{pmatrix} A & B \\ O & B \end{pmatrix} y = 0 与 \begin{pmatrix} B & A \\ O & A \end{pmatrix} y = 0 同解.$$

$$(D)\begin{pmatrix} AB & B \\ O & A \end{pmatrix} y = 0 与 \begin{pmatrix} BA & A \\ O & B \end{pmatrix} y = 0 同解.$$

- (7) 设 $\boldsymbol{\alpha}_1 = (\lambda, 1, 1)^T, \boldsymbol{\alpha}_2 = (1, \lambda, 1)^T, \boldsymbol{\alpha}_3 = (1, 1, \lambda)^T, \boldsymbol{\alpha}_4 = (1, \lambda, \lambda^2)^T, 若 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 与 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_4$ 等价,则 λ 的取值范围是()
 - $(A) \{0,1\}.$
 - (B) $\{\lambda \mid \lambda \in \mathbf{R}, \lambda \neq -2\}.$
 - (C) $\{\lambda \mid \lambda \in \mathbb{R}, \lambda \neq -1, \lambda \neq -2\}.$
 - (D) $\{\lambda \mid \lambda \in \mathbf{R}, \lambda \neq -1\}$.
- (8) 设随机变量 X 服从区间(0,3) 上的均匀分布,随机变量 Y 服从参数为 2 的泊松分布,且 X 与 Y 的协方差为 -1,则 D(2X-Y+1)=((C)9. (D)12.
- (9) 设随机变量 X_1, X_2, \cdots, X_n 独立同分布,且 X_1 的 4 阶矩存在, $E(X_1^k) = \mu_k(k=1,2,3,4)$,则根据 切比雪夫不等式,对任意 $\varepsilon > 0$,都有 $P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i^2 \mu_2\right| \ge \varepsilon\right\} \le ($
 - (A) $\frac{\mu_4 \mu_2^2}{n\varepsilon^2}$. (B) $\frac{\mu_4 \mu_2^2}{\sqrt{n}\varepsilon^2}$. (C) $\frac{\mu_2 \mu_1^2}{n\varepsilon^2}$.
- (10) 设随机变量 $X \sim N(0,1)$,若在 X = x 的条件下,随机变量 $Y \sim N(x,1)$,则 X 与 Y 的相关系数为()
 - (A) $\frac{1}{4}$. (B) $\frac{1}{2}$. (C) $\frac{\sqrt{3}}{3}$. (D) $\frac{\sqrt{2}}{2}$.

二、填空题(本题共6小题,每小题5分,共30分,把答案填在题中横线上.)

- (11) 函数 $f(x,y) = x^2 + 2y^2$ 在点(0,1) 处的最大方向导数为_____.
- $(12) \int_1^{e^2} \frac{\ln x}{\sqrt{x}} \mathrm{d}x = \underline{\qquad}.$
- (13) 当 $x \ge 0$, $y \ge 0$ 时, $x^2 + y^2 \le ke^{x+y}$ 恒成立,则 k 的取值范围是_____.
- (14) 已知级数 $\sum_{n=1}^{\infty} \frac{n!}{n^n} e^{-nx}$ 的收敛域为 $(a, + \infty)$,则 $a = _____$.
- (15) 已知矩阵 A 和 E A 可逆,其中 E 为单位矩阵,若矩阵 B 满足 $[E (E A)^{-1}]B = A$,则 B A = .
- (16) 设 A,B,C 为随机事件, 且 A 与 B 互不相容, A 与 C 互不相容, B 与 C 相互独立, $P(A) = P(B) = P(C) = \frac{1}{3}$,则 $P(B \cup C | A \cup B \cup C) = ____.$

三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)

(17) (本题满分10分)

设函数 y(x) 是微分方程 $y'+\frac{1}{2\sqrt{x}}y=2+\sqrt{x}$ 的满足条件 y(1)=3 的解,求曲线 y=y(x) 的渐近线.

(18) (本题满分12分)

已知平面区域 $D = \{(x,y) \mid y - 2 \le x \le \sqrt{4 - y^2}, 0 \le y \le 2\}$, 计算 $I = \iint_D \frac{(x - y)^2}{x^2 + y^2} dx dy$.

(19) (本题满分12分)

已知曲线 L 是曲面 $\Sigma: 4x^2+y^2+z^2=1, x\geq 0, y\geq 0, z\geq 0$ 的边界, 曲面 Σ 方向朝上, 曲线 L 的方向和曲面 Σ 的方向符合右手法则, 计算 $I=\oint_L(yz^2-\cos z)\,\mathrm{d}x+2xz^2\,\mathrm{d}y+(2xyz+x\sin z)\,\mathrm{d}z.$

(20) (本题满分12分)

设函数 f(x) 在 $(-\infty, +\infty)$ 上有二阶连续导数,证明: $f''(x) \ge 0$ 的充分必要条件是对任意不同的实数 a,b,都有 $f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$ 成立.

(21) (本题满分12分)

设二次型
$$f(x_1,x_2,x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} ijx_ix_j$$
.

- (I) 写出 $f(x_1, x_2, x_3)$ 对应的矩阵;
- (II) 求正交变换 x = Qy 将 $f(x_1, x_2, x_3)$ 化为标准形;
- (III) 求 $f(x_1, x_2, x_3) = 0$ 的解.

(22) (本题满分12分)

设 X_1, X_2, \dots, X_n 为来自均值为 θ 的指数分布总体的简单随机样本, Y_1, Y_2, \dots, Y_m 为来自均值 为 2θ 的指数分布总体的简单随机样本,且两样本相互独立,其中 $\theta(\theta > 0)$ 是未知参数. 利用样本 $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_m$,求 θ 的最大似然估计量 $\hat{\theta}$,并求 $D(\hat{\theta})$.