Doob's Convergence Theorem Let Xn be a supermartingale with sup $E(1X_n 1) < \infty$. Then, $X = \lim_{n \to \infty} X_n$ exists a.s. and is finite. We will now explore matingales with stonger assurptions: L2 - Morfingale In the following, we consider martingales Xn with finite second moment: 1E(Xn2) < 00. We define the inner product (U,V) = 1E(UV) and have the following orthogonality property: for S=t=u=v and an L=martingale Mn $\langle M_{\ell} - M_{S} , M_{\nu} - M_{u} \rangle = 0$ "Increments at different times one independent"

Proof: E(M, - Mu | Fk) = E(M, 17k) - E(M, 17k) = Mk - Mk = 0 for all kiusv. Likewise, $E(M_t - M_s | \mathcal{F}_k) = 0$ yor all keset. $E((M_t-M_s)(M_v-M_u)|\mathcal{F}_t)=(M_t-M_s)E(M_v-M_u/\mathcal{F}_t)$ 7, measurable = (Mz-Mz) · 0 = 0 (a.s.) => E((M_t-M_s)(M_v-M_u)) = E(E((M_t-M_s)(M_v-M_u)|F_E)) = E(0) = 0 So increments over disjoint intervals one orthogonal wrt. <,7. If we write Mn = Mo + (M_-Mo) + (M_2-M_1) + (Mn-Mn-1) then all the summands are pairwise orthogonal and Pythagoras theorem gives us E(M2) = E(M2) + E(M,-M0)2) + .. + E((Mu-Mn)) So $E(M_n^2) < \infty$ (=> $\sum_{n=1}^{\infty} E(M_n - M_{n-1})^2$) $< \infty$

Here also
$$E(|M_n|) = \sqrt{E(M_n)} < \infty$$

30 the commissional theorem applies:

 $M_n > M_{00}$ a.s.

It also holds that $E((X_0 - X_n)^2) = ||X_0 - X_n||_2^2$

tends to O . That is, $M_n > M_{00}$ with respect to the norm $||\cdot||_2$).

One can verify this as follows:

 $E(M_{n+r} - M_r)^2) = \sum_{k=r+1}^{r+1} E(M_k - M_{k-1})^2$

by orthogonality.

Now let $n > \infty$: $E(M_{00} - M_r)^2$)

- $E(\lim_{n \to \infty} (M_{n+r} - M_r)^2) \leq \lim_{n \to \infty} E(M_{n+r} - M_r)^2$

Falou in $E(M_{00} - M_r)^2 > \infty$.

Now as $r > \infty$, It follows that

 $E(M_{00} - M_r)^2 > \infty$.

Now consider the special case when Mn is a Sum of independent random veriables X, , X2, ..., Xn $M_0 = 0$, $M_n = \times_1 + \times_2 + ... + \times_n$ with Oh = Var (Xx) < 00. If IE(Xx) = 0 for all 4, Hen My 15 a mortogale. Theorem If $Z \circ_{k}^{2} < \infty$, then $Z \times_{k} = \lim_{N \to \infty} M_{n}$ exists and is almost surely finite. Proof: $\sum E((M_{k} - M_{k+1})^{2}) = \sum E(X_{k}) = \sum_{k=1}^{\infty} \sigma_{k}$. So convergence follows. [Why? Vork out cletails] Remark: If the Xx one also uniformly bounded, the converse also holds: If the sum ZXK Conviges a. T. , Hun Zoh < 0. [Why? Exercise]

Example: Let X, Xz, ... be random variables with $P(X_i = 1) = P(X_i = -1) = \frac{1}{2}$, and consider the random sum ZakXk, sup |ay| < 00. Note that Var (ax Xx) = IE((ax Xx)2) = ax So the Heorem above shows that the vardour sum comunges (as) if and only if Zak <00. Strong law of large numbers for L'random var. We will combine our L2 mortinge le results with results from real analysis: Cesaro's lemma: If by is a seg of non-neg. reals with by 100 and 1/2 is a conveyent sequence of reals with $v_n \rightarrow v_{\infty}$, then Note: WOG, $b_0 = 0$ and the $\frac{1}{k^{-1}} \frac{5k - b_{k-1}}{b_n} = 1$, so LHS is a weighted average of 4.

Kronecker's lemma: Let by be a non-neg seg of reals with by 100. Let xu be an arbitrary seq. of reals and write $s_n = x_1 + ... + x_n$.

If $\frac{y}{h} = \frac{x_1}{h}$ converges, then $\frac{s_n}{h} \to 0$. Let Yn be a sequence of independent rand variables with E(Yn)=0 and Var (Yn) < 0 for all 4 ch. If I Var(Kn) = 0 then I kn conveyes a.s. This is because Var (1/n) = Var (1/n) and we Can apply the prev. convergence theorem. Kronecker's lemma with by = 11 and xn = In gives $\frac{S_n}{b_n} = \frac{\sqrt{3}}{\sqrt{3}} \frac{V_n}{a}$ Converges for a.e. $\omega \in \mathcal{N}$. Remark: The strong law of large numbers holds for all In s.t. \(\frac{1}{n^2} < \in \text{(rather than } E(\frac{4}{n}) \le k \)

Remark: If Xn is an iid. seg . of random variables with mean prand variance of Var(Xn), then In = Xn - ye satisfies: • $E(Y_n)=0$ } => $\sum_{n \in \mathbb{N}} \frac{V_{ar}(Y_n)}{n^2} = \sum_{n \in \mathbb{N}} \frac{1}{n} < \infty$. Atence, $\frac{X_1 + X_2 + ... + X_n}{n} = \frac{Y_1 + Y_2 + ... + Y_n}{n} + \mu \rightarrow \mu$ almost surely. We will slightly tweak this nethod with a francation approach: Kolmogorov's truncation lumma: let (Xn) be a seq. of iid random variables. Assume X = X is integrable and E(X) = p.
Wife Y = \(\int \) of |X_n| \(\int \) Then the following hold: 1) $E(Y_n) \rightarrow \mu$ or $n \rightarrow \infty$, 2) P(Yn = Xn for all but finitely many n) = 1 3) $\sum_{n \in \mathbb{N}} \frac{V_{ar}(V_n)}{n^2} < \infty.$

dominated convergence,
$$|E(Y_n) - |E(X)| = p$$
.

2) $|P(Y_n \neq X_n)| = |P(|X_n| > n)$. Thus

$$\sum_{n \geq 1} |P(|X_n| > n)|$$

$$= \sum_{n \in A} |P(|X_n| > n)|$$

$$=$$

 $E(|Y_n|) = E|X_n| = E|X| < \infty . Thus by$

Proof: 1) |Yn | = 1×n | and hence

where (x) follows from: $\frac{1}{n^2} \leq \frac{2}{n(n+1)} = \frac{2}{n} - \frac{2}{n+1}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2} \leq \sum_{n=1}^{\infty} \binom{2}{n} - \sum_{n=1}^{\infty} \frac{2}{k} = \binom{2}{k} - \binom{2}{k+1} + \binom{2}{k+1}$ = 2/4 · [] Finally: Kolmogorov's strong law of large numbers (LLN) Let X, X2,.. be indpendent, identically obistichated random variables with E(Xi)- pr. Then, $\int_{n}^{1} (X_{1} + X_{2} + ... + X_{n}) \xrightarrow{-7} \mu$ a.s. Proof: Define in as above (truncation). Note that in (X, + . + Xn) and in (Y, + . + Yn) as have the same limit as they only differ finitely many fines (by 2)). Now $\frac{1}{n}(Y_1 + ... + Y_n) = \frac{(Y_1 - E(Y_1)) + ... + (Y_n - E(Y_n))}{n} + \frac{1}{n}(E(Y_1) + ... + E(Y_n))$

The first summand satisfies person criteria: $E(Y_i - E(Y_i)) = 0$, $\sum_{j} Var(Y_j - E(Y_j)) = \sum_{j} Var(Y_j - E(Y_j)) =$ which is finite by (3). Hence $\lim_{N\to\infty} \frac{1}{n} \binom{V}{n} + ... + \binom{V}{n} = \lim_{N\to\infty} \frac{1}{n} \left(\mathbb{E}(\binom{V}{n}) + ... + \mathbb{E}(\binom{V}{n}) \right)$ which equals in by Cesaro's bemana and Doob decomposition Recall: $\geq \chi_{n-1}$ sub- $E(\chi_n \mid \chi_{n-1}) = \chi_{n-1}$ markingale. $= \chi_{n-1}$ super-Let Xn be an adepted process wit. (Fn). Then we can always find a previsible process An and a martingale Mn s.f. $X_n = X_0 + M_n + A_n \quad \text{and} \quad M_0 = A_0 = 0$ This decomposition is unique (up to a null sot).

From this we also get Xn is a super-/submartingale An is decreasing increasing a.s. Proof: Suppose we se given the ob campo sition: $X_{n-1} = M_{n-1} + A_{n-1} + A_{n-1}$ This gives $E(X_n - X_{n-1} \mid F)$ = E (Mn-Mn-1 17n-1) + E (An-An-1 7n-1) = 10

makingale

previsible

Thus $A_n = \sum_{k=1}^{n} A_k - A_{k-1} = \sum_{k=1}^{n} E(X_k - X_{k-1} | \widetilde{T}_{k-1})$ is uniquely determined and so is M = Xn - Xo - Au (a.s.). Conversely, one can chack that this choice of Mn, An works.

Uniform Integral, by

Problem: Ohm
$$X_n \to X_{00}$$
, when can we

say that $E(X_n) \to E(X_{00})^2$.

Example: $X_n = \begin{cases} n' & \text{with prob} \end{cases} = \begin{cases} x_n \\ 0 & \text{otherwise} \end{cases}$.

Then $E(X_n) = 1$. Since $\sum P(X_n \neq 0) = \sum \frac{1}{n^2} < \infty$

we have $X_n \to X_{00} = 0$ a.s.

But $E(X_{00}) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

Uniform integral, liky is a key condition

that allows exchange of E and $E(X_n)$!

Lemma: let $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

Lemma: let $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

 $E(X_n) = 0 \neq 1 = \lim_{n \to \infty} E(X_n)$!

Proof: Suppose this was not the case: For some Eo > 0 there exists a sequence af events En s.f. P(En) < 2" but IE(1X1. IEn) > Eo. Since ZP(En) < 0 the B.C. Runa implies that only finitely many En sour. Let F= limsup En . Then P(F) = O. Hence $E(1XI \cdot I_F) = 0$. But by the revese Faton lemma: lin sup IE (IXI IEn) = E(XI linsup IEn) $H(|x|^*I_F) = 0$ But the LHS is bounded below by Eo > 0, a contradiction &