

Machine Learning using Python Exam - Paper 1

[Time: 4 hrs]

[Total Marks: 50]

Part I: Supervised Learning

[Total Marks - 30]

Given is the 'Portugal Bank Marketing' dataset:

Bank client data:

- 1) age (numeric)
- 2) **job:** type of job(categorical:"admin.","bluecollar","entrepreneur","housemaid","management","retired","self-employed","services","student","technician","unemployed","unknown")
- 3) marital: marital status (categorical: "divorced", "married", "single", "unknown"; note: "divorced" means divorced or widowed)
- 4) **education:** education of individual (categorical: "basic.4y","basic.6y","basic.9y","high.school","illiterate","professional.course","university.degree","unknown")
- 5) **default:** has credit in default? (categorical: "no","yes","unknown")
- 6) **housing:** has housing loan? (categorical: "no","yes","unknown")
- 7) **loan:** has personal loan? (categorical: "no", "yes", "unknown")

Related with the last contact of the current campaign:

- 8) **contact:** contact communication type (categorical: "cellular", "telephone")
- 9) month: last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec")
- 10) dayofweek: last contact day of the week (categorical: "mon", "tue", "wed", "thu", "fri")
- 11) **duration:** last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y="no"). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.

Other attributes:

- 12) **campaign:** number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13) **pdays:** number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 14) **previous:** number of contacts performed before this campaign and for this client (numeric)
- 15) **poutcome:** outcome of the previous marketing campaign (categorical: "failure", "nonexistent", "success")

Social and economic context attributes

- 16) **emp.var.rate:** employment variation rate quarterly indicator (numeric)
- 17) **cons.price.idx:** consumer price index monthly indicator (numeric)
- 18) cons.conf.idx: consumer confidence index monthly indicator (numeric)
- 19) concavepoints_se: standard error for number of concave portions of the contour
- 20) **euribor3m**: euribor 3 month rate daily indicator (numeric)
- 21) **nr.employed:** number of employees quarterly indicator (numeric)

Output variable (desired target):

22) y: has the client subscribed a term deposit? (binary: "yes", "no")

	Perform the following tasks:	Marks
Q1.	What does the primary analysis of several categorical	[5]
	features reveal?	
Q2.	Perform the following Exploratory Data Analysis tasks:	[10]
	a. Missing Value Analysis	
	b. Label Encoding wherever required	
	c. Selecting important features based on Random Forest	
	d. Handling unbalanced data using SMOTE	
	e. Standardize the data using the anyone of the scalers	
	provided by sklearn	

Q3. Build the following Supervised Learning models:

[10]

[5]

- a. Logistic Regression
- b. AdaBoost
- c. Naïve Bayes
- d. KNN
- e. SVM
- Q4. Tabulate the performance metrics of all the above models and tell which model performs better in predicting if the client will subscribe to term deposit or not

Part II: Time Series

[Total Marks - 20]

For the given data 'MonthWiseMarketArrivals_Clean.csv', below is attribute information:

This dataset is about Indian onion market.

- 1. Market Name Market Place Name
- 2. Month Month (January-December)
- 3. Year 1996-2016
- 4. Quantity Quantity of Onion (in Kgs)
- 5. priceMin Minimum Selling Price
- 6. priceMax Maximum Selling Price
- 7. Pricemod Modal Price
- 8. State State of market
- 9. City City of market
- 10. Date Date of arrival

	Perform the following tasks:	Marks
Q1.	Get the modal price of onion for each month for the Mumbai	[2]
	market (Hint: set monthly date as index and drop	
	redundant columns)	
Q2.	Build time series model and check the performance of the	[8]
	model using RMSE	
Q3.	Plot ACF and PACF plots	[5]
Q4.	Exponential smoothing using Holt-Winter's technique and	[5]
	Forecast onion price for Mumbai market	

Supervised Machine Learning Test Solution!

Vikrant Singh PGA 27

▼ Part 1

```
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
os.chdir(r'E:\Machine Learning from Purshotum sir\supervised Machine learning\ML Paper 1\Machine Learning Question Paper 1 with datasets\24 M
os.listdir()
     ['bank.csv',
      'Machine Learning using Python Question Paper 1.pdf',
      'MonthWiseMarketArrivals Clean.csv']
df=pd.read_csv(r'bank.csv',sep=';')
df.head()
                   job marital education default housing loan
                                                                     contact month day_of_w
         56
             housemaid
                         married
                                    basic.4v
                                                                    telephone
                                                  no
                                                          no
                                                                no
                                                                                mav
     1
         57
                services
                         married high.school unknown
                                                          no
                                                                no
                                                                    telephone
                                                                                may
     2
         37
                         married high.school
                services
                                                                    telephone
                                                  no
                                                                                mav
                                                          ves
                                                                no
         40
                 admin.
                         married
                                    basic.6y
                                                                    telephone
                                                  no
                                                          no
                                                                no
                                                                                may
         56
                services
                         married high.school
                                                  no
                                                          no
                                                                ves
                                                                    telephone
                                                                                mav
    5 rows × 21 columns
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 41188 entries, 0 to 41187
    Data columns (total 21 columns):
         Column
                         Non-Null Count Dtype
          -----
     0
                         41188 non-null int64
          age
                          41188 non-null object
          job
     2
         marital
                          41188 non-null object
                         41188 non-null object
     3
          education
          default
                          41188 non-null
          housing
                          41188 non-null
                         41188 non-null object
     6
          loan
          contact
                          41188 non-null
                                          object
          month
                          41188 non-null
                                          object
         day_of_week
                          41188 non-null
                                          object
     10
                          41188 non-null
          duration
                                          int64
     11
          campaign
                          41188 non-null
                                          int64
         pdays
                          41188 non-null
                                          int64
     12
                                          int64
                          41188 non-null
     13
          previous
     14
          poutcome
                          41188 non-null
                                          object
         emp.var.rate
                          41188 non-null
                                          float64
          cons.price.idx 41188 non-null
                                          float64
     16
          cons.conf.idx 41188 non-null float64
     17
     18 euribor3m
                          41188 non-null float64
```

df.columns

19

20 y

nr.employed

memory usage: 6.6+ MB

float64

41188 non-null

dtypes: float64(5), int64(5), object(11)

41188 non-null object

```
'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
         dtype='object')
df.isnull().sum()
                  0
    age
    job
                  0
    marital
                  0
    education
    default
                  a
    housing
                  0
    loan
    contact
                  0
    month
                  0
    day_of_week
    duration
                  0
    campaign
                  0
    pdays
                  0
    previous
    poutcome
    emp.var.rate
                  0
    cons.price.idx
                  0
    cons.conf.idx
    euribor3m
                  a
    nr.employed
                  0
    dtype: int64
df.shape
    (41188, 21)
```

df.describe(percentiles=[.01,.02,.03,.04,.05,.25,.50,.75,.90,.95,.96,.97,.98,.99]).T

	count	mean	std	min	1%	2%	3%	
age	41188.0	40.024060	10.421250	17.000	23.00000	24.000	25.000	
duration	41188.0	258.285010	259.279249	0.000	11.00000	17.000	23.000	
campaign	41188.0	2.567593	2.770014	1.000	1.00000	1.000	1.000	
pdays	41188.0	962.475454	186.910907	0.000	3.00000	6.000	9.000	
previous	41188.0	0.172963	0.494901	0.000	0.00000	0.000	0.000	
emp.var.rate	41188.0	0.081886	1.570960	-3.400	-3.40000	-3.400	-3.000	
cons.price.idx	41188.0	93.575664	0.578840	92.201	92.20100	92.379	92.431	
cons.conf.idx	41188.0	-40.502600	4.628198	-50.800	-49.50000	-47.100	-47.100	
euribor3m	41188.0	3.621291	1.734447	0.634	0.65848	0.714	0.720	
nr.employed	41188.0	5167.035911	72.251528	4963.600	4963.60000	4991.600	4991.600	5
4								>

Solution 1

```
def univariate_cat(data,x):
    missing=data[x].isnull().sum()
    unique_cnt=data[x].nunique()
    unique_cat=list(data[x].unique())

f1=pd.DataFrame(data[x].value_counts(dropna=False))
    f1.rename(columns={x: "Count"},inplace=True)
    f2=pd.DataFrame(data[x].value_counts(normalize=True))
    f2.rename(columns={x: "Percentage"},inplace=True)
    f2["Percentage"]=(f2["Percentage"]*100).round(2).astype(str)+" %"
    ff=pd.concat([f1,f2],axis=1)

print(f"Total missing values : {missing}\n")
    print(f"Total count of unique category : {unique_cnt}\n")
    print(f"Unique categories : \n{unique_cat}")
```

```
plt.figure(figsize=(10,8))
  sns.countplot(data=data,x=x)
  plt.xticks(rotation=90)
  plt.show()
df.columns
   'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'],
        dtype='object')
# finding all categorial featurns
df.dtypes[df.dtypes=='object']
    job
               object
   marital
               object
               object
   education
   default
               object
   housing
               object
               object
   loan
   contact
               object
   month
               object
   day_of_week
               object
   poutcome
               object
               object
   dtype: object
univariate_cat(df,x='job')
```

```
Total missing values : 0
     Total count of unique category : 12
     Unique categories :
df['marital'].unique()
     array(['married', 'single', 'divorced', 'unknown'], dtype=object)
     blue-collar
                     9254
                             22.47 %
sns.countplot(data=df,x='marital')
     <AxesSubplot:xlabel='marital', ylabel='count'>
        25000
        20000
       15000
       10000
        5000
                married
                            single
                                      divorced
                                                  unknown
                                 marital
                          1
univariate_cat(data=df,x='marital')
     Total missing values : 0
     Total count of unique category : 4
     Unique categories :
     ['married', 'single', 'divorced', 'unknown']
     Value count and \% :
               Count Percentage
     married
               24928
                        60.52 %
               11568
                         28.09 %
     single
     divorced
                4612
                         11.2 %
     unknown
                         0.19 %
        25000
        20000
        15000
        10000
        5000
                     married
                                                marital
```

univariate_cat(data=df,x='education')

```
Total missing values : 0
 Total count of unique category : 8
Unique categories :
['basic.4y', 'high.school', 'basic.6y', 'basic.9y', 'professional.course', 'unknown', 'u
                                                                                                                                       Count Percentage 12168 29.54 %
 university.degree
high.school
                                                                                                                                                                                                      23.1 %
                                                                                                                                              9515
 basic.9y
                                                                                                                                              6045
                                                                                                                                                                                                  14.68 %
 professional.course
                                                                                                                                              5243
                                                                                                                                                                                                  12.73 %
                                                                                                                                              4176
 basic.4y
                                                                                                                                                                                                  10.14 %
 basic.6y
                                                                                                                                              2292
                                                                                                                                                                                                        5.56 %
 unknown
                                                                                                                                              1731
                                                                                                                                                                                                             4.2 %
 illiterate
                                                                                                                                                                                                         0.04 %
                                                                                                                                                        18
```


univariate_cat(data=df,x='default')

```
Total missing values : 0
     Total count of unique category : 3
    Unique categories :
univariate_cat(data=df,x='housing')
     Total missing values : 0
     Total count of unique category : 3
     Unique categories :
    ['no', 'yes', 'unknown']
Value count and % :
              Count Percentage
               21576
                        52.38 %
     no
              18622
                        45.21 %
                           2.4 %
     unknown
                 990
        20000
        15000
        10000
         5000
                          2
                                                    yes
                                                                               unknown
                                                  housing
```

univariate_cat(data=df,x='loan')

```
Total missing values : 0
     Total count of unique category : 3
     Unique categories :
     ['no', 'yes', 'unknown']
Value count and %:
               Count Percentage
               33950
                         82.43 %
     no
                         15.17 %
                6248
     yes
     unknown
                990
                           2.4 %
univariate_cat(data=df,x='contact')
     Total missing values : 0
     Total count of unique category : 2
     Unique categories :
     ['telephone', 'cellular']
Value count and % :
                 Count Percentage
                           63.47 %
36.53 %
     cellular
                 26144
     telephone 15044
```


univariate_cat(data=df,x='month')

```
Total missing values : 0
    Total count of unique category : 10
    Unique categories :
    ['may', 'jun', 'jul', 'aug', 'oct', 'nov', 'dec', 'mar', 'apr', 'sep']
    Value count and \% :
         Count Percentage
    may 13769
                  33.43 %
                  17.42 %
    jul 7174
    aug
          6178
                   15.0 %
          5318
                  12.91 %
    jun
    nov
          4101
                   9.96 %
                   6.39 %
    apr
          2632
    oct
           718
                   1.74 %
                   1.38 %
           570
    sep
           546
                   1.33 %
    mar
    dec
           182
                   0.44 %
       14000
univariate_cat(data=df,x='day_of_week')
    Total missing values : 0
    Total count of unique category : 5
```

```
Unique categories :
['mon', 'tue', 'wed', 'thu', 'fri']
Value count and \% :
     Count Percentage
     8623
              20.94 %
              20.67 %
mon
     8514
     8134
              19.75 %
wed
tue
      8090
              19.64 %
fri
      7827
              19.0 %
```


univariate_cat(data=df,x='poutcome')

```
Total missing values : 0
     Total count of unique category : 3
     Unique categories :
     ['nonexistent', 'failure', 'success']
     Value count and \% :
                  Count Percentage
     nonexistent 35563
                            86.34 %
                            10.32 %
     failure
                   4252
     success
                   1373
                             3.33 %
        35000
        30000
        25000
        20000
        15000
univariate_cat(data=df,x='y')
     Total missing values : 0
     Total count of unique category : 2
     Unique categories :
     ['no', 'yes']
     Value count and \% :
          Count Percentage
          36548
                   88.73 %
                   11.27 %
     yes
          4640
        35000
        30000
        25000
        15000
        10000
         5000
                               2
```

Total 11 catagorical variables in Bank data set and In Marital Status feature Unknown Value is negligible. Education feature Illiterate count is also negligible and there is a Default feature unknown count is huge, also yes count is only. Dependent variable y is imbalanced where no is 88.73 % and yes is 11.27 % and In Month feature there is no data point present for Jan and Feb months.

→ Solution 2 (EDA)

→ A) Solution

```
df.isnull().sum()
     age
     job
                       0
    marital
                       0
    education
                       0
    default
    housing
                       0
    loan
                       0
    contact
    month
                       0
    day_of_week
    duration
                       0
    campaign
                       0
    pdays
    previous
                       0
                       0
    poutcome
     emp.var.rate
    cons.price.idx
    cons.conf.idx
                       0
    euribor3m
    nr.employed
                       0
    dtype: int64
```

This data has no Missing values.

→ B) Solution

Our Target Value is 'y' so here we are label encoding this variable

```
df['y']=np.where(df['y']=='yes',1,0)
df1=pd.get_dummies(df,drop_first=True)
df1.head()
```

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx
0	56	261	1	999	0	1.1	93.994	-36.4
1	57	149	1	999	0	1.1	93.994	-36.4
2	37	226	1	999	0	1.1	93.994	-36.4
3	40	151	1	999	0	1.1	93.994	-36.4
4	56	307	1	999	0	1.1	93.994	-36.4
5 rc)ws ×	54 columns						

```
# Createing train and test features
x=df1.drop(columns=['y'])
y=df1['y']
```

 $from \ sklearn.model_selection \ import \ train_test_split, GridSearchCV, \ RandomizedSearchCV \\$

 $x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=.25, random_state=100)$

▼ E) Solution - Standardize the data using the anyone of the scalers provided by sklearn.

```
from sklearn.preprocessing import StandardScaler,MinMaxScaler
st=StandardScaler()
x_train_std=st.fit_transform(x_train)
x_test_std=st.transform(x_test)
```

→ C) Solution

```
from sklearn.ensemble import RandomForestClassifier
  rfc=RandomForestClassifier(criterion='gini',n_estimators=20)
  rfc.fit(x_train_std,y_train)
        RandomForestClassifier(n estimators=20)
  rfc.feature_importances_
        array([8.45867839e-02, 2.95180661e-01, 4.10080173e-02, 2.40695179e-02,
                1.71761799e-02, 1.72006557e-02, 1.72706786e-02, 2.98037651e-02,
               7.42099599e-02, 1.00778267e-01, 8.93894348e-03, 4.56764138e-03,
               3.34835631e-03, 6.76549993e-03, 6.36191258e-03, 4.99617804e-03,
               6.99508626e-03, 4.73926045e-03, 1.08640788e-02, 4.06392296e-03,
               1.63474055e-03, 1.23864156e-02, 1.03568976e-02, 6.48211466e-04,
               4.38446831e-03, 8.79179165e-03, 1.17063768e-02, 1.73792135e-04,
               8.66580354e-03, 1.29548167e-02, 4.86688955e-03, 8.66277953e-03,
               0.00000000e+00, 2.04333035e-03, 1.98681863e-02, 2.01544766e-03,
               1.30153402e-02, 9.02663091e-03, 2.42051113e-03, 5.89942041e-04,
               2.53639407e-03, 2.77385727e-03, 4.93321501e-03, 4.14958168e-03,
               2.65843271e-03, 4.61230037e-03, 1.50916923e-03, 1.18760043e-02,
               1.25025574e-02, 1.15577971e-02, 1.17121146e-02, 8.27523881e-03,
               2.37655995e-02])
  importent_featurs=pd.DataFrame({"Variable":x_train.columns,
                 "Importent":rfc.feature_importances_}).sort_values(by="Importent", ascending=False)
  importent_featurs.head()
              Variable Importent
         1
               duration
                          0.295181
         9 nr.employed
                          0.100778
                          0.084587
         0
                   age
                          0.074210
             euribor3m
                          0.041008
         2
              campaign
  # importent Fearturns are .
  importent_featurs[importent_featurs["Importent"]>=0.01]["Variable"].unique()
        array(['duration', 'nr.employed', 'age', 'euribor3m', 'campaign',
               'cons.conf.idx', 'pdays', 'poutcome_success', 'housing_yes', 'cons.price.idx', 'emp.var.rate', 'previous', 'loan_yes', 'education_university.degree', 'day_of_week_thu',
                'marital_married', 'day_of_week_mon', 'day_of_week_wed',
                'education_high.school', 'day_of_week_tue', 'job_technician',
'marital_single'], dtype=object)
▼ D) Solution
  from imblearn.over_sampling import SMOTE
  sm=SMOTE(k_neighbors=5,random_state=100)
  x train smote, y train smote=sm.fit resample(x train std, y train)
  from sklearn.tree import DecisionTreeClassifier
  df_smote_model = DecisionTreeClassifier(criterion = "gini",
                                       random_state = 100,
                                       max depth=12,
                                       min_samples_leaf=20,
                                       min_samples_split=20)
  df_smote_model.fit(x_train_smote, y_train_smote)
        DecisionTreeClassifier(max_depth=12, min_samples_leaf=20, min_samples_split=20,
                                 random_state=100)
```

```
from sklearn import metrics
pred_train_data=df_smote_model.predict(x_train_smote)
print(metrics.classification_report(y_train_smote,pred_train_data))
```

	precision	recall	f1-score	support
0 1	0.94 0.92	0.92 0.95	0.93 0.93	27399 27399
accuracy macro avg weighted avg	0.93 0.93	0.93 0.93	0.93 0.93 0.93	54798 54798 54798

```
pred_test_data=df_smote_model.predict(x_test_std)
print(metrics.classification_report(y_test,pred_test_data))
```

	precision	recall	f1-score	support
0 1	0.96 0.50	0.91 0.73	0.93 0.59	9149 1148
accuracy macro avg weighted avg	0.73 0.91	0.82 0.89	0.89 0.76 0.90	10297 10297 10297

▼ ROC curve

```
FPR,TPR,thresholds= metrics.roc_curve(y_train_smote,pred_train_data)
ROC_accuracy=metrics.auc(FPR,TPR)
ROC_accuracy
```

0.9320413153764736

```
plt.figure(figsize=(10,8))
Show_ROC=metrics.RocCurveDisplay(fpr=FPR,tpr=TPR,roc_auc=ROC_accuracy,estimator_name="Decision Tree")
Show_ROC.plot()
plt.show()
```


Solution 3

Asigning Supervised Machine Learing Models (Logistic Regression, AdaBoost, Naïve Bayes, KNN, SVM)

→ A) Solution

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import recall_score,f1_score,accuracy_score,precision_score
lor=LogisticRegression()

lor.fit(x_train_smote,y_train_smote)
    LogisticRegression()
```

```
pred_train=lor.predict(x_train_smote)
pred_test=lor.predict(x_test_std)
def eval(model,x_train,y_train,x_test,y_test):
    acc=model.score(x train,y train)
   pred=model.predict(x_train)
   rec=recall_score(y_train,pred_train)
   prec=precision_score(y_train,pred_train)
   acctest=model.score(x_test,y_test)
   pred_test=model.predict(x_test)
   rec_test=recall_score(y_test,pred_test)
   prec_test=precision_score(y_test,pred_test)
   final={'train_accuracy':acc,'test_accuracy':acctest,'train_recall':rec,'test_recall':rec_test,'train_precision':prec,'test_precision':pre
   return final
lor_result=pd.DataFrame(eval(lor,x_train_smote,y_train_smote,x_test_std,y_test),index=['LogisticRegression'])
lor_result
                        train_accuracy test_accuracy train_recall test_recall train_preci
     LogisticRegression
                               0.885416
                                              0.867243
                                                            0.905544
                                                                         0.877178
                                                                                            0
```

→ B) solution

```
from sklearn.ensemble import AdaBoostClassifier
adc=AdaBoostClassifier(learning_rate=0.1, n_estimators=200)
adc.fit(x_train_smote,y_train_smote)
    AdaBoostClassifier(learning_rate=0.1, n_estimators=200)

pred_train=adc.predict(x_train_smote)
pred_test=adc.predict(x_test_std)

adc_result=pd.DataFrame(eval(adc,x_train_smote,y_train_smote,x_test_std,y_test),index=['AdaBoostClassifier'])
adc_result
```

		train_accuracy	test_accuracy	train_recall	test_recall	train_preci
Ad	aBoostClassifier	0.905726	0.880936	0.921566	0.835366	0.89
4						+

▼ C) solution

	train_accuracy	test_accuracy	train_recall	test_recall	train_preci
GaussianNaiveBay	0.76897	0.703894	0.844264	0.831882	0.73
4					•

▼ D) Solution

from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier(n_neighbors=5)

```
knn.fit(x_train_smote,y_train_smote)
    KNeighborsClassifier()
```

pred_train=knn.predict(x_train_smote) pred_test=knn.predict(x_test_std)

 $knn_result=pd.DataFrame(eval(knn,x_train_smote,y_train_smote,x_test_std,y_test), index=['KNeighborsClassifier'])$ knn_result

	train_accuracy	test_accuracy	train_recall	test_recall	train_pre
KNeighborsClassifier	0.944451	0.832767	0.998723	0.688153	0.
4					>

▼ E) solution

from sklearn import svm SVM=svm.LinearSVC()

SVM.fit(x_train_smote,y_train_smote)

 ${\tt C:\Users\ASUS\anaconda3\lib\site-packages\sklearn\sym_base.py:1206: Convergence Warning: Liblinear failed to converge, increase the number of the convergence o$ warnings.warn(LinearSVC()

pred_train=SVM.predict(x_train_smote) pred_test=SVM.predict(x_test_std)

 $SVM_result=pd.DataFrame(eval(SVM,x_train_smote,y_train_smote,x_test_std,y_test), index=['SVM'])$ SVM_result

	train_accuracy	test_accuracy	train_recall	test_recall	train_precision	test_pr
SVM	0.883718	0.861416	0.907259	0.877178	0.866464	1
4						>

Solution 4

4

final_result=pd.concat([lor_result,adc_result,nbg_result,knn_result,SVM_result]) final_result

	train_accuracy	test_accuracy	train_recall	test_recall	train_pre
LogisticRegression	0.885416	0.867243	0.905544	0.877178	0.
AdaBoostClassifier	0.905726	0.880936	0.921566	0.835366	0.
GaussianNaiveBay	0.768970	0.703894	0.844264	0.831882	0.
KNeighborsClassifier	0.944451	0.832767	0.998723	0.688153	0.
SVM	0.883718	0.861416	0.907259	0.877178	0.
4					•

final_result.plot(kind='bar',figsize=(12,8))

→ Part 2: Time Series Problem

df_series=pd.read_csv(r'MonthWiseMarketArrivals_Clean.csv')
df_series.head()

	market	month	year	quantity	priceMin	priceMax	priceMod	state	city	
0	ABOHAR(PB)	January	2005	2350	404	493	446	РВ	ABOHAR	J
1	ABOHAR(PB)	January	2006	900	487	638	563	РВ	ABOHAR	J
2	ABOHAR(PB)	January	2010	790	1283	1592	1460	РВ	ABOHAR	J
4										•

df_series.columns

df_series.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10227 entries, 0 to 10226
Data columns (total 10 columns):
#
    Column
              Non-Null Count Dtype
---
0
    market
              10227 non-null object
1
    month
              10227 non-null
                              object
              10227 non-null
                             int64
    year
3
    quantity 10227 non-null
                             int64
    priceMin
              10227 non-null
    priceMax 10227 non-null int64
    priceMod 10227 non-null
                              int64
    state
              10227 non-null
              10227 non-null object
    city
              10227 non-null object
    date
dtypes: int64(5), object(5)
memory usage: 799.1+ KB
```

```
df_series.isnull().sum()
```

```
market
month
           0
           0
year
quantity
           0
priceMin
priceMax
           0
priceMod
state
city
           0
          0
date
dtype: int64
```

df_series.shape

(10227, 10)

df_series.describe(percentiles=[.01,.02,.03,.04,.05,.25,.50,.75,.90,.95,.96,.97,.98,.99])

	year	quantity	priceMin	priceMax	priceMod
count	10227.000000	1.022700e+04	10227.000000	10227.000000	10227.000000
mean	2009.022294	7.660488e+04	646.944363	1212.760731	984.284345
std	4.372841	1.244087e+05	673.121850	979.658874	818.471498
min	1996.000000	2.000000e+01	16.000000	145.000000	80.000000
1%	1998.000000	2.250000e+02	46.260000	223.260000	165.000000
2%	1999.000000	4.000000e+02	55.000000	247.000000	185.000000
3%	2000.000000	5.605600e+02	64.000000	266.000000	200.000000
4%	2001.000000	7.861600e+02	79.000000	283.040000	215.000000
5%	2001.000000	1.017200e+03	91.000000	301.300000	225.000000
25%	2006.000000	8.898000e+03	209.000000	557.000000	448.000000
50%	2009.000000	2.746000e+04	440.000000	923.000000	747.000000
75%	2013.000000	8.835650e+04	828.000000	1527.000000	1248.000000
90%	2015.000000	2.280128e+05	1415.000000	2280.000000	1862.000000
95%	2015.000000	3.128873e+05	1905.000000	3449.400000	2709.000000
96%	2015.000000	3.422976e+05	2043.000000	3837.840000	3027.000000
97%	2015.000000	3.798437e+05	2340.220000	4150.880000	3430.000000
98%	2015.000000	4.318352e+05	2790.480000	4513.400000	3830.440000
99%	2016.000000	5.627590e+05	3610.400000	4933.000000	4249.480000
max	2016.000000	1.639032e+06	6000.000000	8192.000000	6400.000000

→ Solution 1

mumbai=df_series[df_series['market'] == "MUMBAI"]
mumbai

```
market
                                                      month year
                                                                                 quantity priceMin priceMax priceMod state
                                                                                                                                                                                                city
             6654 MUMBAI
                                                  January 2004
                                                                                      267100
                                                                                                                   719
                                                                                                                                         971
                                                                                                                                                               849
                                                                                                                                                                              MS MUMBAI
onion=mumbai[['date','priceMod']]
onion.head()
                                          date priceMod
             6654 January-2004
                                                                  849
             6655 January-2005
                                                                  387
             6656
                         January-2006
                                                                  402
             6657 January-2007
                                                                 997
             6658 January-2008
                                                                  448
onion['Date']=pd.to_datetime(onion['date'])
          C:\Users\ASUS\AppData\Local\Temp\ipykernel_13424\2099925746.py:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
               onion['Date']=pd.to_datetime(onion['date'])
onion.drop(columns=['date'],inplace=True)
          C:\Users\ASUS\AppData\Local\Temp\ipykernel_13424\1949350881.py:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
               onion.drop(columns=['date'],inplace=True)
onion.shape
           (146, 2)
onion.reset_index(inplace=True)
onion.head()
                   index priceMod
                                                                    Date
             0
                     6654
                                             849
                                                       2004-01-01
                     6655
                                                       2005-01-01
                                             387
                     6656
                                                       2006-01-01
             2
                                             402
             3
                     6657
                                             997
                                                       2007-01-01
                     6658
                                                      2008-01-01
                                             448
onion.head()
onion.drop(columns=['index'],inplace=True)
          C:\Users\ASUS\AppData\Local\Temp\ipykernel_13424\4140799691.py:2: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
               onion.drop(columns=['index'],inplace=True)
onion.sort_values(by='Date',inplace=True)
          \verb|C:\USers\ASUS\AppData\Local\Temp\ipykernel\_13424\552070605.py:1: SettingWithCopyWarning: Applied to the property of the pr
          A value is trying to be set on a copy of a slice from a DataFrame
          See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc</a>
```

onion.sort_values(by='Date',inplace=True)

4

```
onion.min()
    priceMod
                                 287
                 2004-01-01 00:00:00
    Date
    dtype: object
onion.max()
    priceMod
                                4714
    Date
                 2016-02-01 00:00:00
    dtype: object
onion['Date'].value_counts()
    2004-01-01
                   1
    2013-02-01
                   1
    2011-10-01
                   1
    2011-11-01
                   1
    2011-12-01
                   1
    2008-02-01
                  1
    2008-03-01
    2008-04-01
    2008-05-01
                   1
    2016-02-01
                   1
    Name: Date, Length: 146, dtype: int64
onion.set_index(['Date'],inplace=True)
onion1=onion['priceMod'].resample("MS").mean()
onion1.head()
    Date
    2004-01-01
                   849.0
    2004-02-01
                   736.0
                   498.0
    2004-03-01
    2004-04-01
                   397.0
     2004-05-01
                   405.0
    Freq: MS, Name: priceMod, dtype: float64
onion1.plot(figsize=(10,8))
plt.show()
```


decomposing
from statsmodels.tsa.seasonal import seasonal_decompose

decompose=seasonal_decompose(onion1,model='multiplicative',two_sided=False,extrapolate_trend=4)

```
decompose.plot()
plt.show()
```


 $\verb|pd.DataFrame({"Actual":decompose.observed,"SeasonalIndex":decompose.seasonal,"Trend":decompose.trend,"IT":decompose.resid})| \\$

	Actual	SeasonalIndex	Trend	IT			
Date							
2004-01-01	849.0	1.060027	717.525000	1.116230			
2004-02-01	736.0	0.850759	698.566667	1.238407			
2004-03-01	498.0	0.673958	679.608333	1.087271			
2004-04-01	397.0	0.614883	660.650000	0.977296			
2004-05-01	405.0	0.640773	641.691667	0.984974			
2015-10-01	3748.0	1.336525	2241.250000	1.251216			
2015-11-01	2623.0	1.383994	2366.666667	0.800806			
2015-12-01	1542.0	1.235864	2389.250000	0.522218			
2016-01-01	1215.0	1.060027	2368.916667	0.483849			
2016-02-01	1128.0	0.850759	2343.375000	0.565797			
146 rows x 4 solumns							

146 rows × 4 columns

```
# creating test train data
train=onion1['2004-01-01':'2011-12-01']
test=onion1['2011-12-01':]
```

train.shape

(96,)

test.shape

(51,)

→ Solution 2

```
from statsmodels.tsa.stattools import adfuller
adfuller(onion1)
    (-4.437736321058303,
     0.00025436714348672806,
     2,
     143,
    {'1%': -3.4769274060112707,
     '5%': -2.8819726324025625,
```

```
'10%': -2.577665408088415}, 1909.6057017652388)
```

```
Give Data is Stationary there is no need to do other implementation to make it stationary
```

```
import statsmodels.api as sm
model=sm.tsa.statespace.SARIMAX(train,order=(1,1,12),seasonal_order=(1,1,12,24),
                               enforce_stationarity=False,
                               enforce_invertibility=False).fit()
    C:\Users\ASUS\anaconda3\lib\site-packages\statsmodels\tsa\statespace\sarimax.py:866: UserWarning: Too few observations to estimate start
       warn('Too few observations to estimate starting parameters%s.'
model.forecast(12)
     2012-01-01
                    306.157870
    2012-02-01
                   -31.662851
     2012-03-01
                   -201.926294
     2012-04-01
                   -280.252189
    2012-05-01
                  -278.997596
     2012-06-01
                  -268.715937
     2012-07-01
                   -239.560399
    2012-08-01
                   -93.924184
     2012-09-01
                   428.624912
    2012-10-01
                   640.560686
    2012-11-01
                  1385.563466
    2012-12-01
                  2229.448084
    Freq: MS, Name: predicted_mean, dtype: float64
test.head()
    Date
    2011-12-01
                   749.0
     2012-01-01
                  546.0
     2012-02-01
                  492.0
    2012-03-01
                  484.0
    2012-04-01
                  544.0
    Freq: MS, Name: priceMod, dtype: float64
forecastarima=model.forecast(12)
forecastarima
    2012-01-01
                   306.157870
    2012-02-01
                   -31.662851
     2012-03-01
                   -201.926294
    2012-04-01
                  -280.252189
    2012-05-01
                   -278.997596
     2012-06-01
                   -268.715937
    2012-07-01
                  -239.560399
     2012-08-01
                   -93.924184
     2012-09-01
                   428.624912
    2012-10-01
                   640.560686
    2012-11-01
                  1385.563466
    2012-12-01
                  2229.448084
    Freq: MS, Name: predicted_mean, dtype: float64
print("RMSE",np.sqrt(np.mean((forecastarima-test)**(2))))
     RMSE 675.3295898036268
# plot the forecast along with the confidence band
axis=train.plot(label='observed',figsize=(20,6))
forecastarima.plot(ax=axis,label='Forecast',alpha=.5)
axis.set_xlabel('years')
axis.set_ylabel('Stock')
plt.legend(loc='best')
plt.show()
```


Solution 3

▼ Solution 4

ets_fit.forecast(24).plot()

plt.show()

```
alpha=.4
beta=.1
gamma=.4

ets_model=ExponentialSmoothing(train,trend='mul',seasonal='mul',seasonal_periods=12)
ets_fit=ets_model.fit(smoothing_level=alpha,smoothing_slope=beta,smoothing_seasonal=gamma)

C:\Users\ASUS\AppData\Local\Temp\ipykernel_13424\3054247851.py:6: FutureWarning: the 'smoothing_slope'' keyword is deprecated, use 'smoothing_fit=ets_model.fit(smoothing_level=alpha,smoothing_slope=beta,smoothing_seasonal=gamma)

C:\Users\ASUS\anaconda3\lib\site-packages\statsmodels\tsa\holtwinters\model.py:83: RuntimeWarning: overflow encountered in matmul return err.T @ err
```

• ×