Exercises 2.5

Exercise 2.5.1

- a. Show that the logistic function σ satisfies the inequality $0 < \sigma'(x) \le \frac{1}{4}$, for all $x \in \mathbb{R}$.
- b. How does the inequality changes in the case of the functions σ_c ?

Exercise 2.5.2

Let S(x) and H(x) denote the bipolar step function and the Heaviside function, respectively. Show that:

- a. S(x) = 2H(x) 1
- b. $ReLU(x) = \frac{1}{2}x(S(x) + 1)$

Exercise 2.5.3

Show that the softplus function, sp(x), satisfies the following properties:

- a. $sp'(x) = \sigma(x)$, where $\sigma(x) = \frac{1}{1+e^{-x}}$
- b. Show that sp(x) is invertible with inverse $sp^{-1}(x) = \ln(e^x 1)$
- c. Use the softplus function to show the formula $\sigma(x) = 1 \sigma(-x)$

Exercise 2.5.4

Show that $tanh(x) = 2\sigma(2x) - 1$

Exercise 2.5.5

Show that the softsign function, so(x), satisfies the following properties:

- a. Its sctrictly increasing;
- b. Its is onto (-1,1), with the inverse $so^{-1}(x) = \frac{x}{1-|x|}$, for |x| < 1.
- c. so(|x|) is subadditive, i.e., $so(|x+y|) \le so(|x|) + so(|y|)$.

Exercise 2.5.6

Show that the softmax function is invariant with respect to the addition of constant vectors $\mathbf{c} = (c_1 \dots c_n)^T$, i.e.,

$$softmax(y + \mathbf{c}) = softmax(y).$$

This property is used in practice by replacing $\mathbf{c} = -\max_i y_i$, fact that leads to a more stable numerically variant of this function.

Exercise 2.5.7

Let $\rho: \mathbb{R}^n \to \mathbb{R}^n$ defined by $\rho(y) \in \mathbb{R}^n$, with $\rho(y)_i = \frac{y_i^2}{\|y\|^2}$. Show that:

a.
$$0 \le \rho(y)_i \le 1$$
 and $\sum_i \rho(y)_i = 1$.

b. The function ρ is invariant with to multiplication by nonzero constant, i.e., $\rho(\lambda y) = \rho(y)$ for any $\lambda \in \mathbb{R}/0$. Taking $\lambda = \frac{1}{\max_i y_i}$ leads in practice to a more stable version of this function.

Exercise 2.5.8 (cosine squasher)

Show that the function $\varphi(x) = \frac{1}{2}(1 + \cos(x + \frac{3\pi}{2}))1_{[-\frac{\pi}{2},\frac{\pi}{2}]}(x) + 1_{(\frac{\pi}{2},\infty)}(x)$ is a squashing function.

Exercise 2.5.9

- a. Show that any squashing function is a sigmoidal function.
- b. Give an example of a sigmoidal function which is not a squashing function.

SOLUTIONS

2.5.1 (a)

Computing the derivative of σ we find: $\sigma'(x) = \frac{d}{dx} \frac{1}{1+e^{-x}} = \frac{d}{dx} \frac{e^x}{1+e^x} = \frac{e^x}{(1+e^x)^2}$. From the inequality $1 \le (1+e^x)^2$ and the non-negativeness of the exponential function follows that $0 \le \frac{e^x}{(1+e^x)^2}$.

Now lets prove that in x=0 the function has a local maximum in [-1,1], this will imply $0 \le \frac{e^x}{(1+e^x)^2} \le \sigma'(0)$, $\sigma'(0) = \frac{1}{4}$. By computing the first derivative of σ' we find: $\sigma''(x) = e^x \frac{1-e^x}{(1+e^x)^3}$. The critical will be found by solving the equation $\sigma''(x) = 0$.

From $\sigma''(x) = e^x \frac{1-e^x}{(1+e^x)^3} = 0$ follows that $1-e^x = 0$, is straigth-forward to check that the solution is x = 0. It rests to determine the nature of the extremizing point. To achieve this goal is necessary to calculate the second derivative of σ' .

$$\sigma'''(x) = \frac{d}{dx} \frac{e^x - e^{2x}}{(1 + e^x)^3} = \frac{(e^x - 2e^{2x})(1 + e^x)^3 - 3(1 + e^x)^2 e^x (e^x - e^{2x})}{(1 + e^x)^6}$$
$$= \frac{e^x \{1 - 4e^x + e^{2x}\}(1 + e^x)^2}{(1 + e^x)^6} = \frac{e^x \{1 - 4e^x + e^{2x}\}}{(1 + e^x)^4}$$

We clearly have $\sigma'''(0) < 0$, then x = 0 is a local maximum for σ' , i.e $\forall x \in [-1, 1], \ \sigma'(x) \le \frac{1}{4}$. On the other hand, the function σ' decreases on the intervals $(-\infty, -1)$ and $(1, \infty)$ this implies that:

$$\sup_{x \in (1,\infty)} \sigma'(x) = \frac{e}{(1+e)^2} = \frac{e^{-1}}{(1+e^{-1})^2} = \sup_{x \in (-\infty,-1)} \sigma'(x).$$
 From the fact that $\frac{e}{(1+e)^2} < \frac{1}{4}$ follows that $0 \le \sigma'(x) \le \frac{1}{4}$ is valid $\forall x \in \mathbb{R}$. \square

2.5.1 (b)

The inequality changes to: $0 \le \sigma'_c(x) \le \frac{c}{4}$, $\forall x \in \mathbb{R}$. From the expression $\sigma_c(x) = \frac{1}{1+e^{-cx}}$, c > 0 one finds that $\sigma'_c(x) = \frac{d}{dx} \frac{e^{cx}}{1+e^{cx}} = c \frac{e^{cx}}{(1+e^{cx})^2}$. By the chain rule it can be easily verified that all the computations made for $\sigma'(x)$ in 2.5.1.a, can by applied to $\sigma'_c(x)$, having in mind the relationship $\sigma'_c(x) = c\sigma'(cx)$.

Then, one finds: $\sigma_c''(x) = c^2 e^{cx} \frac{1 - e^{cx}}{(1 + e^{cx})^3}$, this implies that x = 0 is a critical point. Using the same relationship is clear that $\sigma_c'''(x)\Big|_{x=0} = c^3 \frac{e^{cx}\{1 - 4e^{cx} + e^{2cx}\}}{(1 + e^{cx})^4}\Big|_{x=0} < 0$. Then, x = 0 is a maximum.

Arguing like in 2.5.1.a, on the interval [-1,1], $\sigma'_c(0) = \frac{c}{4}$ is a local maximum. More over, the function σ'_c decreases on the intervals $(-\infty, -1)$ and $(1, \infty)$, implying:

$$\sup_{x \in (1,\infty)} \sigma'_c(x) = \frac{ce^c}{(1+e^c)^2} = \frac{ce^{-c}}{(1+e^{-c})^2} = \sup_{x \in (-\infty, -1)} \sigma'_c(x)$$

Lets now prove the inequality $\frac{ce^c}{(1+e^c)^2} < \frac{c}{4}$. We have:

$$\frac{ce^{c}}{(1+e^{c})^{2}} = \frac{c}{\frac{(1+e^{c})^{2}}{e^{\frac{2c}{2}}}} = \frac{c}{(\frac{1+e^{c}}{e^{\frac{c}{2}}})^{2}}$$

$$= \frac{c}{(e^{-\frac{c}{2}} + e^{\frac{c}{2}})^{2}} < \frac{c}{(1-\frac{c}{2} + 1 + \frac{c}{2})^{2}} = \frac{c}{4}$$

Where we have used the inequality $1+x \leq e^x$, $\forall x \in \mathbb{R}$. The later shows $\sigma'_c(0)$ is a global maximum, i.e $0 \leq \sigma'_c(x) \leq \frac{c}{4}$ is valid $\forall x \in \mathbb{R}$. \square

2.5.2 (a)

From the Heaviside function definition one has:

$$2H(x) - 1 = \begin{cases} 2 - 1 & \text{if } x > 0 \\ 2(0) - 1 & \text{otherwise} \end{cases}$$
$$= \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{otherwise} \end{cases} = S(x). \quad \Box$$

2.5.2 (b)

We know $ReLU(x) := \max(0, x)$. Consider the identities $\max(0, x) = \frac{1}{2}\{x + |x|\}$,

$$|x| = \begin{cases} 1x \text{ if } x > 0\\ -1x \text{ otherwise} \end{cases} = xS(x).$$
 Substituting the last identity into the first one yields:

$$ReLU(x) = \frac{1}{2}(x + xS(x)) = \frac{1}{2}x(1 + S(x)).$$

2.5.3 (a)

The identity immediately follows from the application of the chain rule to the function $\ln(1+e^x)$. In fact, we have: $sp'(x) = \frac{d}{dx}\ln(1+e^x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}} = \sigma(x)$. \square

2.5.3 (b)

The function e^x is well known to never be zero, then $1 + e^x > 0, \forall x \in \mathbb{R}$. This implies $sp'(x) \neq 0, \forall x \in \mathbb{R}$. Then by the inverse function theorem the function is invertible. We can now compute its inverse, which is given by:

$$sp(x) = y = \ln(e^x + 1) \implies e^y = e^x + 1 \implies x = sp^{-1}(y) = \ln(e^y - 1).$$

2.5.3 (c)

Let F(x) := x + sp(-x) - sp(x). It happens that derivative of F is 0, then by the chain rule, the linearity of the derivative operator and the relationship proved in 2.5.3.a yield:

 $\frac{d}{dx}[x+sp(-x)]=1-\sigma(-x)=\frac{d}{dx}sp(x)=\sigma(x).$ Lets now prove the claim aforementioned to complete the proof. We have:

$$\frac{d}{dx}F(x) = \frac{d}{dx}\left[x + sp(-x) - sp(x)\right] = \frac{d}{dx}\left[x + \ln\left(\frac{e^{-x} + 1}{e^{x} + 1}\right)\right]$$

$$= 1 + \frac{e^{x} + 1}{e^{-x} + 1}\frac{d}{dx}\left[\frac{e^{-x} + 1}{e^{x} + 1}\right] = 1 + \frac{e^{x} + 1}{e^{-x} + 1}\frac{-e^{-x}(e^{x} + 1) - e^{x}(1 + e^{-x})}{(e^{x} + 1)^{2}}$$

$$= 1 + \frac{e^{x} + 1}{e^{-x} + 1}\frac{-e^{-x}(e^{x} + 1) - (1 + e^{x})}{(e^{x} + 1)^{2}} = 1 + \frac{e^{x} + 1}{e^{-x} + 1}\frac{-(e^{x} + 1)(1 + e^{x})}{(e^{x} + 1)^{2}} = 1 - 1 = 0. \quad \Box$$

2.5.4 (a)

From the tanh definition we have:

$$\begin{split} \tanh(x) := \frac{e^x - e^{-x}}{e^x + e^{-x}} &= \frac{e^x}{e^x + e^{-x}} - \frac{e^{-x}}{e^x + e^{-x}} = \frac{e^{2x}}{e^{2x} + 1} - \frac{e^{-x}}{e^x + e^{-x}} \\ &= \sigma(2x) - \frac{e^{-x}}{e^{-x}(1 + e^{2x})} = \sigma(2x) - \frac{1}{1 + e^{2x}} \\ &= \sigma(2x) - \frac{1 + e^{2x} - e^{2x}}{1 + e^{2x}} = \sigma(2x) - \{1 - \frac{e^{2x}}{1 + e^{2x}}\} \\ &= \sigma(2x) - \{1 - \sigma(2x)\} = 2\sigma(2x) - 1. \quad \Box \end{split}$$

2.5.5 (a)

CASE x > 0:

Taking the derivative of so(x) we find: $\frac{d}{dx}so(x) = \frac{d}{dx}\frac{x}{1+x} = \frac{1(1+x)-x(1)}{(1+x)^2} = \frac{1}{(1+x)^2} > 0$. This implies so(x) is strictly increasing on the interval $(0, \infty)$.

CASE x < 0:

Taking the derivative of so(x): $\frac{d}{dx}so(x) = \frac{d}{dx}\frac{x}{1-x} = \frac{1(1-x)+x(1)}{(1-x)^2} = \frac{1}{(1-x)^2} > 0$. Therefore, the function so(x) is strictly increasing on the interval $(-\infty, 0)$.

CASE x < y, x < 0, y > 0:

Let $u, u' \in (x, y)$ with u < 0, u' > 0. Then is clear that u < u' From the condition u < |u| follows that uu' = u|u'| < |u||u'|. Summing this inequality to the inequality u < u' we get: u + u|u'| = u(1 + |u'|) < u' + |u||u'| = u'(1 + |u|) which implies $\frac{u}{1+|u|} < \frac{u'}{1+|u'|}$, i.e so is strictly incresing on intervals of the type (x, y), x < 0, y > 0.

The aforementioned 3 cases imply $so(x), \forall x \in \mathbb{R}$ is sctrictly increasing. \square

2.5.5 (b)

From x < 1 + |x| follows $\frac{x}{1+|x|} < 1$, $\forall x \in \mathbb{R}^{>0}$. To get the inequality $-1 < \frac{x}{1+|x|}$ apply the second inequality to u and then multiply by -1. In summary, we have that the image of so(x) is the interval (-1,1)

On the other hand, note that S(x) = S(so(x)). Now, let $u \in (-1,1), u > 0$. Suppose there is a x such that so(x) = u, we have:

$$u = \frac{x}{1+|x|} \implies x = u + |x|u = u(1+x) \implies x(1-u) = u \implies x = \frac{u}{1-u} = so^{-1}(u)$$

If in the contrary, u < 0, suppose it exists an x such that so(x) = u:

$$u = \frac{x}{1+|x|} \implies x = u - xu = u(1-x) \implies x(1+u) = u \implies x = \frac{u}{1+u} = so^{-1}(u)$$

Both cases can be complactly written as: $x = so^{-1}(u) = \frac{u}{1-|u|}$. \square

2.5.5 (c)

From 2.5.5.a and by the triangle inequality (|x+y| < |x| + |y|) follows:

$$so(|x+y|) \le so(|x|+|y|) = \frac{|x|+|y|}{1+|x|+|y|} = \frac{|x|}{1+|x|+|y|} + \frac{|y|}{1+|x|+|y|}$$

$$\le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|} = so(|x|) + so(|y|). \quad \Box$$

2.5.6 (a)

To be more consistent with notation lets write $softmax(\mathbf{c};y) := \frac{(e^{c_1+y},\dots,e^{c_j+y},\dots,e^{c_n+y})}{\sum\limits_{i=0}^n e^{c_j+y}}$ i.e softmax

with a scalar shift, instead of $softmax(y + \mathbf{c})$. Because otherwise, one should be precise to define objects of the type $y + \mathbf{c}$ with $y \in \mathbb{R}$, $\mathbf{c} \in \mathbb{R}^n$. That said, $softmax(\mathbf{c}; 0) = softmax(\mathbf{c})$; Continuing with the proof, from the functional form of the function $softmax(y; \mathbf{c})$ it is clear that:

$$softmax(\mathbf{c}; y) = \frac{(e^{c_1 + y}, \dots, e^{c_j + y}, \dots, e^{c_n + y})}{\displaystyle \sum_{j=0}^n e^{c_j + y}}$$

$$= \frac{(e^{c_1} e^y, \dots, e^{c_j} e^y, \dots, e^{c_n} e^y)}{e^y \displaystyle \sum_{j=0}^n e^{c_j}} = \frac{e^y (e^{c_1}, \dots, e^{c_j}, \dots, e^{c_n})}{e^y \displaystyle \sum_{j=0}^n e^{c_j}}$$

$$= \frac{(e^{c_1}, \dots, e^{c_j}, \dots, e^{c_n})}{\displaystyle \sum_{j=0}^n e^{c_j}} = softmax(\mathbf{c}; 0). \quad \Box$$

2.5.7 (a)

By the definition of the L_2 norm follows the claim. Indeed $\forall \mathbf{y} \in \mathbb{R}^n/\{\mathbf{0}\}$:

$$0 \le y_k^2 \le \|\mathbf{y}\|^2 = \sum_{k=0}^n \frac{y_i^2}{\|y\|^2} \|\mathbf{y}\|^2 \implies 0 \le \rho(\mathbf{y})_k \|\mathbf{y}\|^2 \le \|\mathbf{y}\|^2 \implies 0 \le \rho(\mathbf{y})_k \le 1$$

$$\|\mathbf{y}\|^2 = \sum_{k=0}^n y_k^2 = \sum_{k=0}^n \frac{y_i^2}{\|y\|^2} \|\mathbf{y}\|^2 = \sum_{k=0}^n \rho(\mathbf{y})_k \|\mathbf{y}\|^2 \implies \sum_{k=0}^n \rho(\mathbf{y})_k = 1. \quad \Box$$