МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

МЕТОДЫ ИЗМЕРЕНИЯ АКТИВНОГО СОПРОТИВЛЕНИЯ

Отчет по лабораторной работе №2 по дисциплине «Метрология, стандартизация и сертификация» Вариант 2

Выполнил студент группы ИВТ-32	
Проверил доцент кафедры ЭВМ	/Скворцов А. А./

Цель данной лабораторной работы - изучение основных методов измерения активных сопротивлений в электрических цепях постоянного тока.

2 Задание

- 1. Собрать схему. Принять: $E_{on} = 12 \, \mathrm{B} \, , \, R_{\delta} = 1 \, \, \mathrm{KOM} \, , \, R_A = 10 \, \, \mathrm{OM} \, .$
- 2. Зарегистрировать показания амперметра при замкнутом и разомкнутом положении ключа K.
 - 3. Рассчитать значение сопротивления R_x .
 - 4. Вычислить относительную погрешность измерения по формуле

$$\gamma = \frac{R_{xp} - R_{xu}}{R_{xu}} \cdot 100\%,$$

где R_{xu} - установленное на схеме значение неизвестного сопротивления; R_{xp} - значение сопротивления, полученное в п.3.

- 5. Собрать схему. Принять при этом: $E_{on} = 12B$, $R_V = 100 \ \kappa {
 m OM}$.
- 6. Зарегистрировать показания вольтметра при замкнутом и разомкнутом положении ключа K.
- 7. Повторить операции по пунктам 3-4 (если получено отрицательное значение погрешности, то его необходимо взять по модулю). В случае получения существенной относительной погрешности, объясните причину и попытайтесь ее уменьшить, изменяя значение \mathbf{R}_{V} .
- 8. Собрать схемы (обе по очереди), с параметрами: $E_{on}=12{
 m B}\,,$ $R_V=100$ к ${
 m CM}\,,~R_A=10$ ${
 m CM}\,.$
 - 9. Включить схемы и записать показания амперметров и вольтметров.
- 10. Рассчитать значения сопротивлений R_x и погрешности измерений по формулам, приведенным в описании схем 3а и 3б.
- 11. Собрать схемы. Параметры: $E_{on}=12B\,, \qquad R_V=100~\kappa O M\,,$ $R_A=10~O M\,, R_0=1~\kappa O M\,.$
 - 12. Произвести измерение токов и напряжений.
- 13. Рассчитать значения сопротивлений по формулам, приведенным в описании схем 4а и 4б.
- 14. Рассчитать погрешности определения R_x по формуле, приведенной в п.4.
- 15. Собрать схему. Уравновесить схему резистором R_1 до достижения показаний вольтметра, равного нулю, при $E_{on}=12\mathrm{B}$, $R_V=100$ кОм , $R_1=1.5$ кОм, $R_2=R_3=1$ кОм.
- 16. Рассчитать значение R_x (с учетом положения устройства регулирования сопротивления на реостате переменного сопротивления R_1).

17. Вычислить погрешность расчета	${\it R}_{\it x}$ по формуле, приведенной в п.4.
3 Выполнение задания	

3.1 Экспериментальная часть

Результаты всех измерений, проведенных во время работы представлены на рисунках 1-10.

Рисунок 1 — Параметры при разомкнутом положении ключа в схеме измерения методом амперметра

Рисунок 2 — Параметры при замкнутом положении ключа в схеме измерения методом амперметра

Рисунок 3 — Параметры при замкнутом положении ключа в схеме измерения методом вольтметра

Рисунок 4 — Параметры при разомкнутом положении ключа в схеме измерения методом вольтметра

Рисунок 5 — Параметры при первом варианте включения приборов в схеме измерения методом амперметра — вольтметра

Рисунок 6 — Параметры при втором варианте включения приборов в схеме измерения методом амперметра — вольтметра

Рисунок 7 — Параметры при последовательном соединении сопротивлений в схеме измерения методом сравнения с образцовым сопротивлением при первом положении ключа

Рисунок 8 — Параметры при последовательном соединении сопротивлений в схеме измерения методом сравнения с образцовым сопротивлением при втором положении ключа

Рисунок 9 — Параметры при параллельном соединении сопротивлений в схеме измерения методом сравнения с образцовым сопротивлением

Рисунок 10 – Параметры в мостовой схеме измерения сопротивления

3.2 Аналитическая часть

1) Расчеты по схемам рисунков 1-2:

$$I_{1} = \frac{E_{on}}{R_{A} + R_{o}}$$

$$I_{1} = \frac{12}{10 + 1000} = 11.88 \text{ MA}$$

$$I_{2} = \frac{E_{on}}{R_{A} + R_{o}(1 + \frac{R_{A}}{R_{x}})}$$

$$I_{2} = 10.98 \text{ MA}$$

$$R_{x} = R_{A} \cdot \frac{I_{2}}{I_{1} - I_{2}} \cdot \frac{R_{o}}{R_{A} + R_{o}} = 10 * \frac{10.98}{11.88 - .98} * \frac{1000}{10 + 1000} = 120.8 \text{ OM}$$

$$\gamma = \frac{R_{xp} - R_{xu}}{R_{xu}} \cdot 100\% = \frac{120.8 - 120}{120} * 100\% = 0.67\%$$

2) Расчеты по схемам рисунков 3-4:

$$U_{1} = E_{on}$$

$$U_{1} = 12 \text{ B}$$

$$U_{2} = \frac{E_{on} \cdot R_{V}}{R_{X} + R_{V}} = 5.941 \text{ B}$$

$$R_{x} = \frac{E_{on} R_{V}}{U_{2}} - R_{V} = \frac{U_{1} R_{V}}{U_{2}} - R_{V} \cdot = \frac{12*100}{5.941} - 100 = 101.98 \text{ OM}$$

$$\gamma = \frac{R_{xp} - R_{xu}}{R_{xu}} \cdot 100\% = \frac{101.98 - 102}{102} * 100 \% = 0.02 \%$$

3) Расчеты по схеме рисунка 5:

$$U_{V} = U_{x}$$

$$U = 11.08 \text{ B.}$$

$$I = I_{x} + I_{V} = \frac{U_{x}}{R_{x}} + \frac{U_{x}}{R_{V}}$$

$$I = 92.41 \text{ mA}$$

$$U = U_{x} + U_{A} = 11.08 \text{ B}$$

$$I = I_{x} = 92.41 \text{ mA}$$

$$R_{x} = \frac{U}{I} = \frac{11.08}{0.09241} = 119.9 \text{ Om}$$

$$\Delta R_{x} = R_{p} - R_{x} = \frac{-R_{x}^{2}}{R_{x} + R_{V}} = -\frac{119.9^{2}}{119.9 + 100000} = -0.144 \text{ Om}$$

$$\gamma = \frac{\Delta R_{x}}{R_{x}} \cdot 100\% = -\frac{R_{x}}{R_{x} + R_{V}} \cdot 100\%$$

$$\gamma = \frac{0.144}{119.9} * 100\% = 0.12 \%$$

4) Расчеты по схеме рисунка 6:

$$R_x = \frac{U_I}{I} = \frac{12}{0.09231} = 130 \text{ OM}$$

 $\Delta R_x = R_p - R_x = R_A = 10 \text{ OM}$
 $\gamma = \frac{\Delta R_x}{R_x} \cdot 100\% = \frac{R_A}{R_x} \cdot 100\% = \frac{10}{130} * 100\% = 7.8 \%$

5) Расчеты по схемам рисунков 7-9:

При первом расположении:

$$U_{x} = IR_{x} = 4.012 \text{ B}$$

$$U_{0} = R_{0}I = 3.974 \text{ B}$$

$$\frac{U_{x}}{U_{0}} = \frac{IR_{x}}{IR_{0}} = \frac{R_{x}}{R_{0}},$$

$$R_{x} = R_{0} \cdot \frac{U_{x}}{U_{0}} = 1.0 * \frac{4.012}{3.974} = 1.0096 \text{ kOm}$$

$$\gamma = \frac{R_{xp} - R_{xu}}{R_{xu}} \cdot 100\% = \frac{1.02 - 1.0096}{1.02} * 100\% = 1\%$$

При втором расположении:

$$I_{x} = \frac{E_{on}}{R_{x}} = 11.65 \text{ mA}$$
 $I_{0} = \frac{E_{on}}{R_{0}} = 11.88 \text{ mA}$
$$\frac{I_{x}}{I_{0}} = \frac{R_{0}}{R_{x}} \quad \text{m} \quad R_{x} = R_{0} \cdot \frac{I_{0}}{I_{x}} = 1.000 * \frac{11.88}{11.65} = 1.0197 \text{ kOm}$$

$$\gamma = \frac{R_{xp} - R_{xu}}{R_{xu}} \cdot 100\% = \frac{1.02 - 1.0197}{1.02} * 100\% = 0.03\%$$

6) Расчеты по схеме рисунка 10:

$$R_I = 1.5 * 0.68 = 1.02 \text{ kOm}$$

$$R_X = R_1 \cdot \frac{R_3}{R_2} = 1.02 * \frac{1.0}{1.0} = 1.02 \text{ kOm}$$

$$\gamma = \frac{R_{xp} - R_{xu}}{R_{xu}} \cdot 100\% = \frac{1.02 - 1.02}{1.02} * 100\% = 0.001\%$$

4 Вывод

В ходе данной лабораторной работы были изучены основные методы измерения активных сопротивлений в электрических цепях постоянного тока.

Были изучены: метод амперметра, метод вольтметра, метод амперметравольтметра, метод сравнения с образцовым сопротивлением, нулевой метод измерения. В ходе изучения выяснилось, что погрешность всех произведенных измерений достаточно низкая.

В результате выполнения было выявлено, что наилучшим методом измерения активного сопротивления является метод нулевого измерения, имеющий самую высокую точность вычисления и не слишком трудоемкие вычисления.