Answer keys to CHM 113M: End-Sem Examination

1.

(a) Answer: Cis and trans;2 GI are possible(1 mark)Cis isomer shows optical isomerism(1 mark)Structure drawing(2 mark)

(B).

Answer: For calculation (3 Marks)

The CFSE for Fe⁺² (d⁶ electronic configuration, e³t₂³) in the tetrahedral field is:

$$[3 \times (-0.6) + 3 \times (0.4)]\Delta t = -0.6\Delta t = -0.27\Delta o \ (\Delta t = 4/9\Delta o)$$

CFSE for Fe²⁺ in octahedral field $(t_{2g}^{4}e_{g}^{2}) = [4 \times (-0.4) + 2 (0.6)]\Delta o = -0.4\Delta o$

CFSE for Fe^{3+} (d⁵) is = 0 in both tetrahedral or octahedral holes.

Thus, Fe²⁺ would occupy octahedral holes, and Fe³⁺ would go to tetrahedral sites.

This results in inverse spinel structure, $Fe^{III}[Fe^{II}Fe^{III}]O_4$ (1 Marks)

$$(C) (1 + 1 Marks)$$

$$3 \text{ Ru}(0) = 3 \times 8 = 24 \text{ e}^{-1}$$
 No. of metal-metal bond is $= \frac{54-48}{2} = 3$

$$12 \frac{\text{CO} = 12 \times 2 = 24 \text{ e}^{-1}}{\text{Total} = 48 \text{ e}^{-1}}$$

2. Answer: (2+2 Marks)

The tetrahedral complex shows an electronic configuration of Ni(II), $e^4t_2^4$ with two unpaired electrons, thus paramagnetic in nature. All the electrons are paired in the square planar Ni(II) complex which is diamagnetic.

(B) (1 Marks)

(C) (1+1+1+1 Marks)

(1 Marks)

2

3. (A). (3+1 Marks)

Answer: In deoxy Hb, Fe^{2+} is HS (four no. unpaired electrons). In oxy-Mb, Fe^{3+} is in LS, and due to antiferromagnetic coupling with O_2^- , it is diamagnetic.

(B) Answer: (1 + 1 + 1 + 1 Marks)

(C) (2 Mark)

4. (A) Answer:

(B) Answer: (2 Marks)

21 kJ/mol

The energy of the molecule 3

=11 kJ/mol (CH₃-CH₃ eclipsed) + 6 kJ/mol (CH₃-H eclipsed) + 4 kJ/mol (H-H eclipsed)

=21 kJ/mol

(C) Answer: (2 Marks)

5. (A) Answer: (6 Marks)

HO HO
$$(R)$$
 (R) (R)

(B) Answer: (2 Marks)

(C). Answer: (2 Marks)

6. (A)Answer:

(4 Marks)

Both the oxygen is in axial position w.r.t. the neighbor ring, the structure is stabilized due to the anomeric effect.

(B) Answer:

(4 Marks)

75%

Enantiomeric excess= (20/40)x100% = 50%. i.e. one of the isomers is present in 50% excess.

Here observed specific rotation is -20° , and the S isomer is present in excess.

The remaining 50 % is an equal mixture of R and S (i.e., 25% R and 25% S)

So total content of *R* in the mixture is 25 %

The total content of S in the mixture is 50+25 %=75%

(C)

(2 Marks)

Alkane stability E>Z

7. (A) (4 Marks)

(2 marks)

No, β hydrogen in the *trans* (anti-periplanar) position w.r.t. leaving group, Br. Thus, only S_N2 .

(2 marks)

Only one, β hydrogen in the *trans* (anit-periplanar) position w.r.t. leaving group, Br. The elimination (E2) leads to the formation of the major product.

(2 Marks)

(C) Answer: (4 Marks)

Axial content is 2.787 %

'A' value indicates the preference of equatorial conformer over axial, the change in Gibbs free energy (ΔG) between the two conformers.

$$\Delta G = -RT \ln K_{eq}$$

 ΔG is the change in Gibbs free energy, R is the universal gas constant, T is the absolute temperature (in Kelvin), Here, T=298K, R= 8.314 JK⁻¹mol⁻¹, ΔG = 8.8 kJ.mol⁻¹

$$\Delta G = -RT \ln K_{eq}$$

$$8.8 \text{ kJmol}^{-1} = -(8.314 \text{ JK}^{-1}\text{mol}^{-1})\text{x}(298 \text{ K})\text{x ln}(K_{\text{eq}})$$

$$\ln (K_{eq}) = -3.552$$

$$K_{\rm eq} = 0.02867$$

$$K_{\text{eq}} = [\text{axial}]/[\text{equatorial}]$$

= axial/
$$\{axial (1+1/K_{eq})\}x100$$

$$= 1/(1+34.8797)x100$$

$$=2.787$$