

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Dissertação em Trabalho de Conclusão de Curso (TCC) – Bacharelado em Ciências da Computação.

Roberto Carlos dos Santos

RecPy: pré-compilador para estudo da conversão de funções recursivas

Orientador: Professor Dr. Fabiano de Souza Oliveira

Rio de Janeiro 2021

UERJ OF

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

RESUMO

- > conceitos básicos relacionados a funções recursivas;
- ➤ Benefícios das conversões, entre si, de *algoritmos recursivos ou iterativos*;
- > o aplicativo *RecPy*;
- > resultados obtidos;
- conclusões gerais do trabalho.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Conceitos úteis – Função recursiva

Contém uma ou várias chamadas a si mesma.

Pode ser de dois tipos:

- recursiva caudal (TR) ou
- recursiva não caudal (NTR).

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Conceitos úteis – Função recursiva não caudal (Non Tail Recursion-NTR)

Função que, para retornar resultados, depende de operação extra.

Exemplo de função recursiva não caudal:

```
def fatNTR(n):

if n < 2:

return 1

return fatNTR(n - 1) * n
```


Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Recursão não caudal (Non Tail Recursion-NTR) Exemplo de estrutura de pilha

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Conceitos úteis – Recursão caudal (Tail Recursion-TR)

- > A função retorna seu resultado sem necessidade de outra operação.
- ➤ Mais eficiente que as NTR.
- > Dispensa um quadro de pilha novo para cada chamada recursiva.

Exemplo de função recursiva caudal resultante da conversão NTR-TR, no RecPy:

```
def fatTR(n, acc=1):

if n < 2:

return acc

return fatTR(n - 1, n * acc)
```


Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Recursão caudal (Tail Recursion-TR) Exemplo de estrutura de pilha não otimizada

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Conceitos úteis – Eliminação da chamada de cauda (Tail Recursion Elimination-TRE ou Tail Call Elimination-TCE)

O RecPy elimina a chamada de cauda transformando-a em uma função iterativa.

Exemplo de função iterativa resultante da conversão NTR-IT, no RecPy:

```
def fatIT(n, acc=1):
while not n < 2:
n,acc = n - 1, n * acc
return acc
```


Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Função iterativa (IT) Exemplo de estrutura de pilha

Get live help for free in the Python tutoring Discord chat room

UERJ OF STADO OF

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Conceitos úteis – Indução matemática

Prova a validade de fórmulas conjecturadas ou deduzidas.

Forte correlação entre os algoritmos recursivos e a noção de indução matemática.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Conceitos úteis – Algoritmos de divisão e conquista

Resolve um problema:

- 1. Quebrando-o em instâncias menores de mesmo tipo;
 - 2. Recursivamente resolvendo esses subproblemas; e
 - 3. Combinando suas respostas apropriadamente.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Objetivo geral

Oferecer à comunidade científica e acadêmica aplicação destinada ao estudo sistemático de técnicas de conversão de algoritmos.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Objetivos específicos

Abordar:

- Vantagens e desvantagens de algoritmos recursivos;
- Comparação, em termos de eficiência, de algoritmos;
- Problemas que podem ocorrer nos algoritmos recursivos;
 - Apresentação de exemplos no *RecPy*;
- restrições sintáticas na linguagem reconhecida pelo RecPy.
 - Descrição do desenvolvimento do RecPy.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Motivação e justificativa do trabalho

Colaborar com o ensino e o aprendizado de conversão de funções recursivas.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Levantamento de hipóteses

- Algumas linguagens, como Python, apresentam problemas com códigos recursivos.
- Há benefícios na transformação de uma função recursiva em iterativa.
- Há vantagens das rotinas recursivas caudais em relação às não caudais, na otimização dos códigos.
- Há viabilidade e benefícios, em termos de ganhos de eficiência ou de facilitação de estudos, na tradução automática de rotinas recursivas.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

REVISÃO DA LITERATURA CIENTÍFICA

Diferenças em relação a outros trabalhos que tratam da conversão de funções recursivas

- Abordagem eminentemente prática, sem descuidar de aspectos teóricos;
- Não se restringe à temática de otimização de funções recursivas.
 Trata, também, de questões de interesse no estudo da disciplina de Compiladores.

OHINE STADO OF THE STADO OF THE

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

CONVERSÃO AUTOMÁTICA DE FUNÇÕES RECURSIVAS: APLICATIVO RECPY

Python é uma dessas linguagens que, apesar de ter inúmeros bons atributos, tem, em sua concepção, a discordância em relação à eliminação das recursões caudais. Por isso mesmo, foi a escolhida como linguagem objeto *RecPy*, destinado ao estudo e automatização de conversões entre algoritmos recursivos e iterativos.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Vantagens de algoritmos recursivos

- Poderoso método de resolução de problemas científicos;
- Frequentemente produzem soluções elegantes e mais fáceis de entender do que as respectivas iterativas;
- Frequentemente torna mais claros programas complexos;
- Solução natural em implementações que envolvam manipulações de árvores;
- Permite resolução de problemas através do princípio de dividir e conquistar;
- São comumente mais concisos;
- Possibilidade do uso de induções matemáticas para comprovação de seu funcionamento correto.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Desvantagens da utilização de algoritmos recursivos

- Aumentam o uso intensivo da memória de pilha;
- Tendem a ser mais lentos do que os equivalentes iterativos;
- Especialmente quando há repetição de subproblemas, tornamse ineficientes;
- Propensos ao estouro de pilha;
- São mais difíceis de serem depurados.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Apresentação do RecPy

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Apresentação do RecPy

O RecPy:

- simplifica a conversão de algoritmos recursivos;
- Facilita o estudo de funções recursivas;
- serve potencialmente como material de estudo para a disciplina de Compiladores.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Escopo de conversões possíveis no RecPy

O *RecPy* realiza quatro tipos de conversão específicos, com as especificações e restrições apresentadas no Item 5.5 do TCC:

- 1) a conversão de função recursiva caudal em função iterativa (TR-IT);
- 2) a conversão de função recursiva não caudal em função recursiva caudal (NTR-TR);
- 3) a conversão de função recursiva não caudal em função iterativa (NTR-IT);
- 4) a conversão de função iterativa em função recursiva caudal (IT-TR).

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Como utilizar o RecPy

Link para o vídeo de orientações para a utilização do RecPy: https://youtu.be/D_fMF0I5OeM

GALLINET 30 Q

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Formatos de funções recursivas reconhecíveis no RecPy

1) Funções recursivas caudais simples:

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Formatos de funções recursivas reconhecíveis no RecPy

Funções recursivas não caudais simples:

```
def <nome_da_funcao_recursiva_nao_caudal>( def <nome_da_funcao_recur
```

UERJ ON ESTADO OF

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Formatos de funções recursivas reconhecíveis no RecPy

3) Funções iterativas simples:

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Resumo dos principais Requisitos, restrições, observações e recomendações

- 1. Utilize padrões reconhecíveis pelo RecPy: Tópico 5.4.;
- 2. Na nomenclatura das funções, utilize os prefixos (ou sufixos) IT, TR ou NTR;
- 3. Na tradução TR-IT, mantenha a mesma ordem das variáveis contidas em listas;
- 4. Observe os cuidados com os IFs, WHILEs e RETURNs;
- 5. Evite parêntesis desnecessários;
- 6. Utilize a sintaxe de Python 2.7.xx;
- 7. Mantenha a primeira linha (def ...) junto à margem esquerda;
- 8. Cuidado com comentários que contenham palavras reservadas do Python;
- 9. Em caso de erros, experimente retirar os comentários;
- 10. Quando experimentar uma função isolada, insira uma linha em branco ao final;
- 11. Na tradução IT-TR, apenas uma linha do bloco da função deve conter o caractere "=".

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Desenvolvimento do aplicativo RecPy

O ANTLR4 foi escolhido para desenvolvimento do núcleo do *RecPy*, em razão de suas características:

- possibilitar desenvolvimento rápido;
- facilidade de aprendizado;
- simplicidade de alterações de códigos do compilador.
- a gramática pode ser ampliada para outros casos e linguagens de modo rápido e simples.
- Na versão atual ANTLR 4.9.1, a ferramenta pode gerar código em Java, C#, Python 2 e 3, Javascript, Go, C++, Swift e PHP.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Desenvolvimento do núcleo do RecPy, no AntIr4

Link para o vídeo de orientações sobre o Desenvolvimento do núcleo de conversão do RecPy, no AntIr4.

Inclui geração de tokens e de árvores sintáticas abstratas (AST), bem como a codificação do parser e do lexer utilizados no núcleo de conversão do RecPy:

https://youtu.be/NhMietucQFI

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Experimentos realizados

Resultados gráficos contidos na pasta Apresentação de resultados > Gráficos de resultados

UERJ OF STADO OF

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Síntese dos resultados

Quanto ao sucesso no procedimento de conversão e reconhecimento do algoritmo

Algoritmo	Versão original	TR->IT: a conversão funcionou?	NTR->TR: a conversão funcionou?	NTR->IT: a conversão funcionou?	IT->TR: a conversão funcionou?
FatMod	fatModNTR	<u>√</u>	<u> </u>	<u> </u>	<u>√</u>
Fatorial	fatNTR		\square	$\overline{\checkmark}$	\square
Fibonacci	fibTR				\square
Inverte String	invNTR		\square	\square	Ø
MDC	mdcTR	$\overline{\square}$			\square
Ordenação	ordNTR		\square		\square
Palíndromo	palTR	$\overline{\square}$			\square
Potenciação	potNTR	\square	\square	\square	abla
Primo	primTR				\overline{V}
Soma de vetor	sumVecNTR	$\overline{\checkmark}$	\square		abla
Texto	textNTR				abla

Quadro 8 - Síntese de resultados quanto ao sucesso no procedimento de conversão e de reconhecimento das funções testadas

Legendas:	
☑ Sim, funcionou perfeitamente e de modo	automático
☐ Não houve versão NTR	

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Síntese dos resultados

Quanto ao valor máximo da variável N (quantidade de chamadas recursivas ou de iterações)

Tabela 1 - Resultados quanto ao valor máximo da variável N (quantidade de chamadas recursivas ou de iterações)

Tabela I - Resultados quanto ao valor maximo da variavel N (quantidade de chamadas recursivas ou de iterações)						
Algoritmo	Iterativo	Recursivo	Recursivo	Iterativo	Recursão	Recursão
	(IT)	caudal	não caudal	(IT)	Caudal (TR)	não Caudal
	Máx.	(TR)	(NTR)	Máx. valor	Máx. valor	(NTR)
	valor N	Máx.	Máx. valor	N	N	Máx. valor
	Python	valor N	N	Python	Python	N
	2.7.16	Python	Python	3.7.9	3.7.9	Python
		2.7.16	2.7.16			3.7.9
<u>FatMod</u>	> 9990	3060	4180	> 9990	2160	2610
Fatorial	> 108 mil	3064	4188	>120 mil	2163	2616
Fibonacci	> 9980	4185		> 9980	2615	
Inverte String	> 31 mil	3063	4186	> 30 mil	2162	2613
MDC	> 9986	> 9986		> 9986	>9986	
Ordenação	> 28	> 28	> 30	> 28	> 28	> 28
Palíndromo	> 100 mil	> 100 mil		> 100 mil	> 100 mil	
Potenciação	> 310 mil	2615	4185	> 270 mil	2611	2611
Primo	> 99 mil	> 99 mil		> 99 mil	> 99 mil	
Soma de vetor	> 9990	3060	4180	> 9990	2160	2610
Texto	>3710	3060	4180	>3070	2160	2610

Legendas:

> #### Maior do que N chamadas recursivas ou iterações (onde #### é o valor de N). Ou seja, nos casos em que há o sinal ">" na frente, o algoritmo foi experimentado até N chamadas recursivas ou iterações, mas poderia ir além.

■ Não houve versã	10	1	١I	h	٢
-------------------	----	---	----	---	---

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Síntese dos resultados

Quanto à complexidade de tempo de execução dos algoritmos das funções recursivas experimentadas, na notação assintótica

Complexidade de tempo de execução dos algoritmos experimentados

Algoritmo	Versão original	Iterativo (IT)	Recursivo caudal (TR)	Recursivo não caudal (NTR)
FatMod	<u>fatModNTR</u>	Θ(n)	Θ(n)	Θ(n)
Fatorial	<u>fatNTR</u>	Θ(n)	Θ(n)	Θ(n)
Fibonacci	fibTR	Θ(n)	Θ(n)	
Inverte String	invNTR	Θ(n)	Θ(n)	Θ(n)
MDC	<u>mdcTR</u>	O(log n)	O(log n)	
Ordenação	ordNTR	O(n²)	O(n²)	O(n²)
Palíndromo	palTR	Θ(n)	Θ(n)	
Potenciação	potNTR	Θ(n)	Θ(n)	Θ(n)
Primo	primTR	Θ(n)	Θ(n)	
Soma de vetor	<u>sumVecNTR</u>	Θ(n)	Θ(n)	Θ(n)
Texto	textNTR	Θ(n)	Θ(n)	Θ(n)

Quadro 9 - Complexidade de tempo de execução dos algoritmos experimentados

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Resumo das conclusões quanto às hipóteses levantadas

- a) De fato, em alguns casos, os algoritmos recursivos provocam o estouro de pilha;
- b) Na conversão de funções recursivas para iterativas, ficou bem claro o aumento na escalabilidade da quantidade de iterações, nos casos em que as funções recursivas estavam apresentando limitações em suas versões recursivas. Em nenhum dos experimentos as versões iterativas apresentaram limitações;
- c) Em termos de tempo de execução dos códigos, não se vislumbraram diferenças muito significativas entre as versões TR e NTR.
- d) O RecPy mostrou-se ferramenta útil tanto para agilizar o procedimento de conversão de funções recursivas e iterativas quanto no estudo dessas funções.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

SUGESTÃO DE TRABALHOS FUTUROS

- podem-se utilizar linguagens-alvo diferentes de Python ou linguagens de implementação diferentes de Java.
 - Pode-se, também, ampliar o rol de funções recursivas e iterativas reconhecíveis.
- Para fins exclusivamente teóricos e didáticos, podem ser elaborados módulos de conversão IT-NTR ou TR-NTR, embora de pouca utilidade prática.

Centro de Tecnologia e Ciências Instituto de Matemática e Estatística

Agradeço pela sua atenção.

Roberto Carlos dos Santos roberto.c.santos.rj@gmail.com