Revisiting phenomena and instability mechanisms

Thierry Van Cutsem

Department of Electrical Engineering and Computer Science University of Liège - Belgium

Objectives

- definition and classification of power system stability notions
- qualitative explanation of instability mechanisms
- emphasis put on instability triggered by a large disturbance
- illustration from time simulations of a simple system

Main classification of stability problems

(Rotor) angle stability

- most of the electrical energy is generated by synchronous machines
- in normal system operation:
 - ullet all synchronous machines have the same electrical speed $2\pi f$
 - the mechanical and electromagnetic torques acting on the rotating masses of each generator balance each other
 - the difference between the rotor angles of any two machines is constant = synchronism
- following a disturbance, there is an imbalance between the two torques and the rotor speed varies
- rotor angle stability deals with the ability to keep synchronism after being subject to a disturbance

Small-disturbance angle stability

- small-signal (or small-disturbance) angle stability deals with the ability of the system to keep synchronism after being subject to small disturbances
- "small disturbances" are those for which the system equations can be linearized (around an equilibrium point)
- following small disturbances, the change in electromagnetic torque has two components:
 - synchronizing torque proportional to rotor angle deviation
 - damping torque proportional to rotor speed deviation
- a decrease in synchronizing torque will eventually lead to aperiodic instability (machine "going out of step")
- a decrease in damping torque will eventually lead to oscillatory instability (growing oscillations)

Transient (angle) stability

- transient (angle) stability deals with the ability of the system to keep synchronism after being subject to a large disturbance
- typical "large" disturbances:
 - short-circuit cleared by opening of circuit breakers
 - more complex sequences in case of breaker failure, line autoreclosing, etc.
- synchronizing torque T_s is nonlinear function of rotor angle δ : the larger $\Delta \delta$, the lower $\frac{\Delta T_s}{\Delta \delta}$ ("stiffness")
- for large disturbances, this nonlinear effect must be taken into account
- unacceptable consequences of transient instability:
 - generators losing synchronism are tripped by protections
 - large angle swings create voltage dips disturbing customers

Remarks

- small-signal angle stability:
 - depends on operating point and system parameters
 - does not depend on the disturbance (assumed infinitesimal and arbitrary)
 - is a necessary condition for operating a power system (small disturbances are always present!)
- transient stability:
 - depends on operating point, system parameters, AND the disturbance:
 - the system may be stable wrt disturbance D1 but not disturbance D2
 - if so, the system is *insecure* wrt D2, but as long as D2 does not happen, it can operate. . .

Transient stability - example

- synchronous generator (6th-order model) with Automatic
 Voltage Regulator (AVR), steam turbine and speed governor
- external system represented by Thévenin equivalent

short-circuit at t=1 s, on line 1-3, near bus 3 cleared by opening one circuit, after 0.14 and 0.15 s, respectively

Transient instability mechanism - equal-area criterion

Small-signal angle stability - example

same initial power flow tripping of the line without short-circuit

with the AVR gain increased to 120, the post-disturbance equilibrium is almost the same but is oscillatory unstable

Not shown by this simple example: interarea oscillations

Frequency stability

- Electricity cannot be stored as such (in significant amount). It has to be converted into/from other forms of energy
- the active power balance $P_{gener} = P_{load} + P_{losses}$ must be satisfied at any time
- immediately after a disturbance:
 - generation deficit taken from kinetic energy of rotating masses in power plants → speed decrease → drop in frequency
 - \bullet generation excess given to rotating masses \longrightarrow speed increase \longrightarrow rise in frequency
- fastly, the speed deviation is corrected by speed governors adjusting the turbine control valves (to change the steam/water flow) = primary frequency control
- later on, frequency deviations left by primary control are corrected by secondary frequency (or load frequency) control
- together with deviations of tie-line power flows from schedule

Frequency stability

- Frequency stability deals with the ability of the system to keep frequency near its nominal value after a severe disturbance, with or without system split
- in large interconnections:
 - frequency is controlled accurately Example: sensitivity of UCTE system \simeq 18,000 MW/Hz
 - frequency instability of concern after:
 - a system split causing large power imbalance

a severe loss of generation
 Example: UCTE: maximum 3,000 MW

Frequency stability - example 1

50 MW imported from equivalent system at t=1 s, tripping of the double line \Rightarrow generator and load left isolated generator driven by a turbine with 450 MW nominal power

Frequency stability - example 2

same disturbance different operating point:

larger load and larger power import from equivalent system

Frequency instability mechanism

combined steady-state characteristics of turbines and speed governors in islanded network

• There is a maximum power that generators can deliver to loads through the network

- the reactive power production of a generator is limited by the thermal overload of the field winding
- when the OvereXcitation limiter (OXL) is active the generator voltage is no longer controlled
- the stator (or armature) current may be also limiting

• the reactive power limits of generators strongly impact the maximum power that can be delivered to loads

 after being subject to a voltage drop, some loads tend to restore their power consumption (close) to their pre-disturbance value

component	time scale	internal variable	equilibrium
			condition
induction motor	$\simeq 1$ second	motor speed	mechan. torque =
			electrom. torque
load tap changer	\simeq few minutes	transformer	controlled voltage
		ratio	within deadband
thermostatically	\simeq few tens	amount of	temperature
controlled load	of minutes	connected load	within deadband

- Voltage stability deals with the ability of the system to keep voltages near their nominal values after a disturbance
- voltage instability results from the inability of the combined transmission-generation system to provide the power requested by loads
- it is usually characterized by a monotonic decrease of system voltages
- it may develop in the short- as well as in the long-term time scale.

Time-scale decomposition

Short-term voltage stability - example 1

55 % induction motor load (single-motor equivalent) at t=1 s, tripping of one circuit of the line

Short-term voltage stability - example 2

at t = 1 s, tripping of both the generator and one circuit of the line

instability mechanism shown by motor speed-torque curves

loss of short-term equilibrium

Short-term voltage stability - example 3

short-circuit at t=1 s, on line 1-3, near bus 3 cleared by opening one circuit, after 0.14 and 0.15 s, respectively

instability mechanism shown by motor speed-torque curves

lack of attraction to post-fault stable equilibrium

Time-scale decomposition

Long-term voltage stability - example 1

whole load with exponential model $P = \left(\frac{V}{V^o}\right)^{1.5}$ $Q = \left(\frac{V}{V^o}\right)^{2.5}$ Load Tap Changer (LTC) controlling distribution voltage generator equipped with field current limiter at t=1 s, tripping of one circuit of the line

Long-term voltage stability - example 2

larger load same disturbance

instability mechanism shown by PV curves

loss of equilibrium of long-term dynamics pseudo-stabilization when LTC hits its limit a case of "pure" long-term voltage instability

Long-term voltage stability - example 3

same load, larger production of generator same disturbance

instability mechanism shown by PV curves

long-term instability \to slow system degradation \to instability of short-term dynamics (loss of synchronism) \to system collapse

Long-term voltage stability - example 4

50 % induction motor load same disturbance long-term instability \rightarrow slow system degradation \rightarrow instability of short-term dynamics (motor stalling, followed by loss of synchronism) \rightarrow system collapse

