Romeo Capozziello HW 1

Problem 1:

Using direct proof, prove: If n is any even interger, then $(-1)^n = 1$

If n is even then n = 2kThen $(-1^n) = (-1^{2k}) = (-1^k) * (-1^k)$ If $(-1^k) = 1$, then $(-1^k) * (-1^k) = 1 * 1 = 1$ If $(-1^k) = -1$, then $(-1^k) * (-1^k) = -1 * -1 = 1$ Then $(-1^k) * (-1^k) = 1 \to (-1^{2k}) = 1 \to (-1^n) = 1$

Problem 2:

Using induction proof, prove for integer $n \geq 5$, $4n < 2^n$

Base Case: n=5, $4(5)<2^5\to 20<32$ Assume true for n=k, $4k<2^k$ 4(k+1)=4k+4) $2^{k+1}=2^k*2=2^k+2^k$ $4k+4<2^k+2k$ $4k<2^k+2^k-4$ $4k<2^k$ by assumption Then $4k<2^k<2^k+2^k-4$ Then $4k<2^k+2^k-4\to 4k<2^{k+1}-4\to 4k+4<2^{k+1}$ Then $4(k+1)<2^{k+1}$

Problem 3:

Prove by induction that $(11^n - 6)$ is divisible by 5 for every possible integer n.

Base Case: n = 0, 5 | $(11^0 - 6) \rightarrow 5$ | $(1-6) \rightarrow 5$ | -5 Assume true for n = k, 5 | $(11^k - 6)$

$$\begin{array}{l} 5\mid (11^{k+1}-6)\\ 11^{k+1}-6=11*11^k-6\\ 5\mid (11^k-6) \text{ by assumption, thus } 11^k=5x+6\\ 11^{k+1}-6=11*11^k-6=11*(5x+6)-6=55x+66-6=55x+60\\ 55x+60=5*(11x+12),\, 5\mid 5(11x+12)\\ 5\mid (11^{k+1}-6) \end{array}$$

Problem 4:

Prove the following statement by Contradiction

The sum of a rational number and an irrational number is irrational.

Assume a the sum of a rational and irrational number was rational Let $\mathbf x$ be an irrational number

Then
$$\frac{a}{b} + x = \frac{c}{d}$$

Then $x = \frac{c}{d} - \frac{a}{b}$
Then $x = \frac{bc - da}{bd}$

Since $\frac{a}{b}$ and $\frac{c}{d}$ are rational, then their difference, $\frac{bc-da}{bd}$ is also rational And since $\mathbf{x} = \frac{bc-da}{bd}$, then \mathbf{x} is rational But \mathbf{x} is irrational by definition