

POLITECHNIKA ŚLĄSKA W GLIWICACH

Obliczenia Równoległe II

Komunikacja między procesami oraz redukcja danych (MPI)

AUTOR: Bartłomiej Buchała

Informatyka SSM, semestr II Rok akademicki 2016/2017 Grupa OS1

1 Wstęp

Wraz z rozwojem nauk ścisłych pojawiają się coraz bardziej skomplikowane problemy natury naukowej. Do ich rozwiązania niezbędne są komputery o dużej mocy obliczeniowej. Rozwój technologii pozwolił jednak na stworzenie maszyn o większej szybkości obliczeń. Zgodnie z prawem Moore'a, które zakłada, że liczba tranzystorów w procesorach rośnie wykładniczo, moc obliczeniowa jrdnostek centralnych wzrasta dwukrotnie co każde dwa lata. Przy stałym zwiększaniu taktowania procesora, napotkano jednak pewien problen – dla pewnego progu zużycie prądu (a przede wszystkim temperatura pracującego CPU) rosną eksponencjalnie w stosunku do częstotliwości taktowania. W okolicach 2005 roku, większość producentów procesorów zdecydowała się wykorzystać inne podejście – zastosować obliczenia równoległe. W tym celu, zamiast rozwijać coraz to szybsze (a konkretnie – wyżej taktowane) procesory monolityczne, kolejne jednostki centralne miały zostać wyposażone w wielokrotne procesory zintegrowane w jednym obwodzie – tak zwane **procesory wielordzeniowe**.

Dodanie dodatkowych rdzeniów nie rozwiązało jednak w magiczny sposób problemów z wydajnością w przypadku większości istniejących programów. Główną przyczyną był fakt, że spora część algorytmów przygotowana była z myślą o wykonaniu sekwencyjnym – czyli przeznaczonym do wykonaniu na jednym procesorze. W tym przypadku wykonywany kod nie był świadomy obecności innych jednostek obliczeniowych, co uniemożliwiało ich użycie przy wykonywaniu kolejnych rozkazów. Szybkość z jaką wykonywał się taki program była zazwyczaj zbliżona do tej wyliczonej w trakcie użycia jednego procesora. Do doprowadziło do powstania do programów równoległych.

Przez **programowanie równoległe** rozumiemy taką motodę tworzenia algorytmu, która pozwala jednoznacznie wskazać, które fragmenty obliczeń mają zostać wykonane w sposób równoległy na osobnych procesorach. W tym celu wyodrębniono 3 pojęcia:

Program współbieżny (ang. *concurrent*) występuje w przypadku, gdy procesy są wykonywane przez jeden procesor rzeczywisty metodą przeplotu.

Program równoległy (ang. *parallel*) to przypadek, kiedy każdy proces wykonywany jest przez osobną jednostkę obliczeniową, a procesory posiadają dostęp do wspólnej pamięci.

Program rozproszony (ang. *distributed*) występuje, gdy procesy wykonywane są przez odrębne, rozproszone procesory połączone kanałami komunikacyjnymi.

W pierwszym rozpatrywanym przypadku nie dochodzi do prawdziwego wykonania równoległego, ponieważ w dowolnym momencie czasu nie istnieją przynajmniej 2 procesy, które są wykonywane jednocześnie. Obliczeniami zajmuje się jeden procesor, a kolejne rozkazy procesów wykonywane są na zmianę – pomiędzy nimi zachodzi przełączanie kontekstu (zapamiętanie niezbędnych danych dotyczących stanu procesu). W dwóch pozostałych scenariuszach, należy rozwiązać dodatkowo jeden problem: komunikację między procesorami w określonych momentach obliczeń. Istnieją dwa so=posoby realizacji takiego przedsięwzięcia:

- Wykorzystanie **pamięci wspólnej** zakłada ono istnienie pamięci operacyjnej, w której znajdują się dane potrzebne do obliczeń. Każdy procesor biorący udział w obliczeniach ma dostęp do zmiennych wspólnych (ang *shared variables*), na którach może wykonywać określone operacje (np. operacje czytania, zapisu, lub bardziej zaawansowane jak porównanie-zamiana lub czytanie-modyfikacja-zapis).
- Przesył wiadomości za pomocą kanałów komunikacyjnych zakłada istenie specjalnych kanałów, poprzez które procesory wysyłają między sobą wirtualne wiadomości. Każdy kanał jest dwukierunkowy i łączy 2 procesory, natomiast ich zbiór stanowi sieć połączeń. Procesory w klastrze mogą był połączone w różne schaematy, np. listy cyklicznej czy macierzy. Obliczenia wykonywane są asynchronicznie, gdyż nie można dokładnie określić momentów, w których operacje wykonywane są współbieżnie, a także momentów wysyłu i odbioru wiadomości pomiędzy poszczególnymi CPU.

W latach 90-tych XX wieku powstały dwa standardy, które miały ułatwić tworzenie i pracę z kodem przeznaczionym do wykonania równoległego: OpenMP (ang. *Open Multi-Processing*), który charakteryzuje się wykorzystaniem pamięci wspólnej) oraz MPI (ang. *Message Passing Interface*), korzystający z kanałów komunikacyjnych. Dalsza część referatu zostanie poświęcona temu drugiemu.

- 2 Komunikacja między procesami w biliotece MPI
- 3 Redukcja danych w bibliotece MPI
- 4 Podsumowanie

Literatura

- [1] Z. J. Czech, Wprowadzenie do obliczeń równoległych, Wydawnictwo PWN, Warszawa 2013, wyd. 2
- [2] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Version 3.0, High Performance Computing Center Stuttgart (HLRS), Stuttgart 2012
- [3] P. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, San Francisco 2001
- [4] M. J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, Nowy Jork 2003