Семинар 21-22. Матрицы. Умножение матриц. Обратная матрица. Матричные уравнения. Ранг матрицы.

 $Mampuue\check{u}$ над полем \mathbb{F} называется прямоугольная таблица элементов поля \mathbb{F} . Например, матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

имеет ровно n строк и m столбцов. Всегда, когда количество строк и столбцов матрицы имеет значение, будем обозначать такую матрицу $A_{n\times m}$. Элемент матрицы A, находящийся в i-той строке и j-том столбце, будем обозначать a_{ij} .

§1. Умножение матриц.

Чтобы можно было умножить матрицу A на матрицу B, количество столбцов матрицы A должно совпадать с количеством строк матрицы B. В результате умножения матрицы A на матрицу B получим матрицу, количество строк в которой совпадает с количеством строк матрицы A, а количество столбцов — с количеством столбцов матрицы B, а именно

$$A_{n\times m}\cdot B_{m\times k}=C_{n\times k}.$$

Элементы матрицы C вычисляются по формуле

$$c_{ij} = \sum_{t=1}^{m} a_{it} b_{tj},$$

то есть все элементы i-той строки матрицы A умножаются на элементы j-того столбца матрицы B.

Задача 3.78. Вычислить
$$\begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$$
.

Решение: В результате умножения матриц размером 2×2 и 2×2 получим матрицу 2×2 (количество строк совпадает с количеством строк первой матрицы, а количество столбцов — с количеством столбцов второй матрицы).

Чтобы получить элемент c_{11} произведения матриц, нужно элементы первой строки матрицы A (3 и -2) умножить на элементы первого столбца матрицы B (3 и 2). Аналогично, чтобы получить элемент c_{21} произведения матриц, нужно элементы второй строки матрицы A (5 и -4) умножить на элементы первого столбца матрицы B (3 и 2). В итоге имеем:

$$\begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 9-4 & 12-10 \\ 15-8 & 20-20 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 7 & 0 \end{pmatrix}.$$

Задача 3.80. Вычислить
$$\begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -28 & 93 \\ 38 & -126 \end{pmatrix} \begin{pmatrix} 7 & 3 \\ 2 & 1 \end{pmatrix}$$
.

Решение: Умножение матриц будем выполнять последовательно, то есть произведение первых двух матриц умножим на третью матрицу. Кстати, умножение матриц ассоциативно:

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C,$$

а потому можно сначала умножить вторую матрицу на третью, после чего первую матрицу умножить на произведение второй и третьей. Обратите внимание, что произвдение матриц не коммутативно:

$$A \cdot B \neq B \cdot A$$
.

В данном случае имеем

$$\begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -28 & 93 \\ 38 & -126 \end{pmatrix} \begin{pmatrix} 7 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -112 + 114 & 372 - 378 \\ -196 + 190 & 651 - 630 \end{pmatrix} \begin{pmatrix} 7 & 3 \\ 2 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 2 & -6 \\ -6 & 21 \end{pmatrix} \begin{pmatrix} 7 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 14 - 12 & 6 - 6 \\ -42 + 42 & -18 + 21 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

Задача 3.81. Вычислить
$$\begin{pmatrix} 1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{pmatrix}.$$

Решение: В результате умножения матриц размером 3×3 и 3×3 получим матрицу 3×3 . Получим

$$\begin{pmatrix} 1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3 \end{pmatrix} \begin{pmatrix} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 - 3 + 2 & 5 - 6 + 6 & 6 - 15 + 4 \\ 6 - 4 + 1 & 15 - 8 + 3 & 18 - 20 + 2 \\ 4 - 5 + 3 & 10 - 10 + 9 & 12 - 25 + 6 \end{pmatrix} = \begin{pmatrix} 1 & 5 & -5 \\ 3 & 10 & 0 \\ 2 & 9 & -7 \end{pmatrix}.$$

Задача 3.83. Вычислить
$$\begin{pmatrix} 5 & 0 & 2 & 3 \\ 4 & 1 & 5 & 3 \\ 3 & 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ -2 \\ 7 \\ 4 \end{pmatrix}.$$

Решение: В результате умножения матриц размером 3×4 и 4×1 получим матрицу 3×1 (количество строк совпадает с количеством строк первой матрицы, количество столбцов совпадает с количеством столбцов второй матрицы). Имеем

$$\begin{pmatrix} 5 & 0 & 2 & 3 \\ 4 & 1 & 5 & 3 \\ 3 & 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ -2 \\ 7 \\ 4 \end{pmatrix} = \begin{pmatrix} 30 + 0 + 14 + 12 \\ 24 - 2 + 35 + 12 \\ 18 - 2 - 7 + 8 \end{pmatrix} = \begin{pmatrix} 56 \\ 69 \\ 17 \end{pmatrix}.$$

Задача 3.86. Вычислить
$$\begin{pmatrix} 1 & -2 \ 3 & -4 \end{pmatrix}^3$$
.

Решение: Натуральная степень матрицы определяется через последовательное умножение матрицы на саму себя. Обратите внимание, что возводить в степень можно только квадратные матрицы, у которых количество строк и столбцов одинаково. В данном случае имеем

$$\left(\begin{array}{cc} 1 & -2 \\ 3 & -4 \end{array}\right)^3 = \left(\begin{array}{cc} -5 & 6 \\ -9 & 10 \end{array}\right) \left(\begin{array}{cc} 1 & -2 \\ 3 & -4 \end{array}\right) = \left(\begin{array}{cc} 13 & -14 \\ 21 & -22 \end{array}\right).$$

Задача 3.99. Найти все матрицы 2-го порядка, квадраты которых равны нулевой матрице.

Решение: Рассмотрим матрицу $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ такую, что $A^2 = 0$.

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^2 = \begin{pmatrix} a_{11}^2 + a_{12}a_{21} & a_{11}a_{12} + a_{12}a_{22} \\ a_{21}a_{11} + a_{22}a_{21} & a_{21}a_{12} + a_{22}^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} a_{11}^2 + a_{12}a_{21} & = 0 \\ a_{21}a_{12} + a_{22}^2 & = 0 \\ a_{11}a_{12} + a_{12}a_{22} & = 0 \\ a_{21}a_{11} + a_{22}a_{21} & = 0 \end{cases} .$$

Из первых двух уравнений $a_{11}^2 - a_{22}^2 = 0$, то есть либо $a_{11} = a_{22}$, либо $a_{11} = -a_{22}$. Рассмотрим сначала первый случай. Из третьего и четвёртого уравнений $a_{12} = a_{21} = 0$, тогда из первых двух $a_{11} = a_{22} = 0$, то есть матрица A нулевая.

Пусть теперь $a_{11} = -a_{22}$. В этом случае последние два уравнения обращаются в тождества и систему можно записать в виде

$$\begin{cases} a_{11}^2 + a_{12}a_{21} &= 0 \\ a_{11} + a_{22} &= 0 \end{cases}.$$

Легко видеть, что коэффициенты нулевой матрицы также являются решением этой системы. Таким образом, полученная система описывает элементы искомых матриц.

Кстати, если умножить второе уравнение последней системы на a_{11} , а потом вычесть из второго уравнения первое, получим

$$a_{11}a_{22} - a_{12}a_{21} = \det A = 0,$$

что означает, что такие матрицы вырождены.

Задача 1. Вычислить
$$A^{2017}$$
, если $A = \begin{pmatrix} 8 & 3 & -5 \\ -10 & -4 & 6 \\ 6 & 2 & -4 \end{pmatrix}$.

Решение: Будем последовательно вычислять все степени матрицы A, пока не заметим какую-нибудь закономерность, которая позволит нам не считать 2017-ю степень механически. Имеем:

$$A^{2} = \begin{pmatrix} 4 & 2 & -2 \\ -4 & -2 & 2 \\ 4 & 2 & -2 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Таким образом, при умножении матрицы A^3 на любую другую матрицу получим нулевую матрицу, а значит,

$$A^{2017} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Задача 2. Вычислить
$$R^{2022}$$
, если $R=\left(egin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$.

Решение: Будем последовательно вычислять все степени матрицы R, пока не заметим какую-нибудь закономерность, которая позволит нам не считать 2022-ю степень механически. Имеем:

$$R^{2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad R^{3} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad R^{4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Таким образом, R^4 образует единичную матрицу (нейтральный элемент по умножению в группе матриц), то есть $R^4 = I$. Это означает, что степени матрицы R образуют циклическую группу порядка 4. Имеем

$$2022 = 2020 + 2,$$

то есть

$$R^{2022} = R^{2020} \cdot R^2 = R^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Матрица $B_{n\times m}$ называется m ранспонированной к матрице $A_{m\times n}$, если

$$b_{ij} = a_{ji}$$
.

Транспонированная матрица обозначается A^{T} . Например, транспонированной к матрице

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

будет матрица

$$A^T = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix}.$$

Задача 3.103. Вычислить AA^T и A^TA для матрицы $A=\left(\begin{array}{ccc} 1 & 2 & 1 & 3 \\ 4 & -1 & 5 & -1 \end{array}\right)$

Решение: Обратите внимание, что произведения AA^T и $A^{\hat{T}}A$ определены для матрип любого размера. Имеем

$$AA^{T} = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 4 & -1 & 5 & -1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & -1 \\ 1 & 5 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 15 & 4 \\ 4 & 43 \end{pmatrix}$$

$$A^T A = \begin{pmatrix} 1 & 4 \\ 2 & -1 \\ 1 & 5 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 4 & -1 & 5 & -1 \end{pmatrix} = \begin{pmatrix} 17 & -2 & 21 & -1 \\ -2 & 5 & -3 & 7 \\ 21 & -3 & 26 & -2 \\ -1 & 7 & -2 & 10 \end{pmatrix}.$$

В результате умножения AA^T и A^TA должна получиться *симметричная* матрица, то есть матрица, для которой выполнено свойство

$$a_{ij} = a_{ji} \, \forall i, j$$
 или $A = A^T$.

§2. Методы нахождения обратной матрицы.

Если квадратная матрица A невырождена, то есть $\det A \neq 0$, то можно найти обратную матрицу A^{-1} , то есть такую матрицу, что

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$
.

Рассмотрим два метода нахождения обратной матрицы:

- 1. Метод присоединенной матрицы,
- 2. Метод элементарных преобразований.

Метод присоединенной матрицы. Присоединенная матрица A^V определяется как транспонированная к матрице, составленной из алгебраических дополнений. В этом случае обратную матрицу можно вычислить по формуле

$$A^{-1} = \frac{1}{\det A} A^V.$$

Напомню, что алгебраическим дополнением к элементу a_{ij} матрицы A называется число

$$A^{(i,j)} = (-1)^{i+j} \begin{vmatrix} a_{11} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{nn} \end{vmatrix},$$

то есть с точностью до множителя $(-1)^{i+j}$ определитель, полученный из матрицы A вычеркиванием i-той строки и j-того столбца.

Задача 3. Вывести формулу для обращения матрицы 2×2 .

Решение: Пусть

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}.$$

Вычислим алгебраические дополнения элементов матрицы A:

$$A^{(1,1)} = a_{22}, \quad A^{(1,2)} = -a_{21}, \quad A^{(2,1)} = -a_{12}, \quad A^{(2,2)} = a_{11}.$$

Таким образом, присоединенная матрица равна

$$A^V = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix},$$

которая может быть получена перестановкой элементов главной диагонали и взятием противоположных элементов от элементов побочной диагонали. Определитель матрицы A равен

$$\det A = a_{11}a_{22} - a_{12}a_{21},$$

откуда получаем формулу для вычисления обратной матрицы A^{-1} :

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

Задача 3.106. Методом присоединённой матрицы найти матрицу, обратную к матрице

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right).$$

Решение: Найдем алгебраические дополнения элементов матрицы:

$$A^{(1,1)} = 4$$
, $A^{(1,2)} = -3$, $A^{(2,1)} = -2$, $A^{(2,2)} = 1$.

Составляем матрицу из алгебраических дополнений:

$$\left\{A^{(i,j)}\right\} = \left(\begin{array}{cc} 4 & -3 \\ -2 & 1 \end{array}\right).$$

Транспонируем полученную матрицу, чтобы получить присоединенную матрицу:

$$A^V = \left(\begin{array}{cc} 4 & -2 \\ -3 & 1 \end{array} \right).$$

Видно, что эта матрица получена перестановкой элементов главной диагонали исходной матрицы, и взятием противоположного элемента элементов побочной диагонали. Определитель данной матрицы равен

$$\det A = 1 \cdot 4 - 2 \cdot 3 = -2.$$

Таким образом, обратная матрица равна

$$A^{-1} = \frac{1}{\det A} A^V = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}.$$

Задача 3.108. Методом присоединённой матрицы найти матрицу, обратную к

$$\left(\begin{array}{cc}
\cos\alpha & -\sin\alpha \\
\sin\alpha & \cos\alpha
\end{array}\right).$$

Решение: Присоединенная матрица равна

$$A^V = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}.$$

Определитель матрицы равен 1. Значит, обратная матрица равна

$$A^{-1} = \frac{1}{\det A} A^{V} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}.$$

Матрица, рассмотренная в данном примере, называется матрицей поворота, поскольку эта матрица — матрица аффинного преобразования поворота относительно точки на плоскости. Для этой матрицы верно равенство

$$A^{-1} = A^T.$$

Матрицы, для которых выполнено это равенство, называются *ортогональными*. Таким образом, матрица поворота — это пример ортогональной матрицы.

Задача 3.109. Методом присоединённой матрицы найти матрицу, обратную к

$$\begin{pmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{pmatrix}.$$

Решение: Вычислим все алгебраические дополнения элементов матрицы:

$$A^{(1,1)} = \begin{vmatrix} 3 & 4 \\ -2 & -3 \end{vmatrix} = -1, \quad A^{(1,2)} = -\begin{vmatrix} 6 & 4 \\ 5 & -3 \end{vmatrix} = 38, \quad A^{(1,3)} = \begin{vmatrix} 6 & 3 \\ 5 & -2 \end{vmatrix} = -27;$$

$$A^{(2,1)} = -\begin{vmatrix} 5 & 7 \\ -2 & -3 \end{vmatrix} = 1, \quad A^{(2,2)} = \begin{vmatrix} 2 & 7 \\ 5 & -3 \end{vmatrix} = -41, \quad A^{(2,3)} = -\begin{vmatrix} 2 & 5 \\ 5 & -2 \end{vmatrix} = 29;$$

$$A^{(3,1)} = \begin{vmatrix} 5 & 7 \\ 3 & 4 \end{vmatrix} = -1, \quad A^{(3,2)} = -\begin{vmatrix} 2 & 7 \\ 6 & 4 \end{vmatrix} = 34, \quad A^{(3,3)} = \begin{vmatrix} 2 & 5 \\ 6 & 3 \end{vmatrix} = -24.$$

Составим матрицу из алгебраических дополнений:

$$\left\{A^{(i,j)}\right\} = \begin{pmatrix} -1 & 38 & -27\\ 1 & -41 & 29\\ -1 & 34 & -24 \end{pmatrix}$$

и транспонируем ее, чтобы получить присоединенную матрицу

$$A^V = \begin{pmatrix} -1 & 1 & -1 \\ 38 & -41 & 34 \\ -27 & 29 & -24 \end{pmatrix}.$$

Определитель матрицы равен

$$\det A = \begin{vmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{vmatrix} = -18 + 100 - 84 - 105 + 16 + 90 = -1.$$

Таким образом, обратная матрица равна

$$A^{-1} = \frac{1}{\det A} A^{V} = -\begin{pmatrix} -1 & 1 & -1 \\ 38 & -41 & 34 \\ -27 & 29 & -24 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{pmatrix}.$$

Метод элементарных преобразований. Элементарными преобразованиями строк матрицы являются:

- Перестановка строк,
- Умножение строки на число,
- Добавление к строки линейной комбинации других строк.

Чтобы обратить матрицу методом элементарных преобразований, нужно дописать справа от исходной матрицы единичную матрицу, после чего элементарными преобразованиями над строками (как исходной, так и дописанной справа матрицы) добиться того, чтобы исходная матрица стала равна единичной. Тогда справа будет записана единичная матри-

Чтобы продемонстрировать такой метод обращения матрицы, рассмотрим сначала задачу, которая уже была решена другим методом.

Задача 3.106. Методом элементарных преобразований найти матрицу, обратную к матрице

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right).$$

Решение: Допишем справа от матрицы единичную матрицу размера 2×2 :

$$\left(\begin{array}{cc|c}1 & 2 & 1 & 0\\3 & 4 & 0 & 1\end{array}\right).$$

Выполняем элементарные преобразования над строками:

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{pmatrix} - 3 \cdot I \sim \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \end{pmatrix} : (-2) \sim \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 3/2 & -1/2 \end{pmatrix} - 2 \cdot II \sim$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3/2 & -1/2 \end{pmatrix} .$$

Таким образом, обратная матрица равна

$$A^{-1} = \left(\begin{array}{cc} -2 & 1\\ 3/2 & -1/2 \end{array}\right)$$

Однако преимущество этого метода больше очевидно для обращения матриц большего размера.

Задача 3.114. Методом элементарных преобразований найти матрицу, обратную к матрице

$$\left(\begin{array}{ccc} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{array}\right).$$

Решение: Запишем справа от матрицы единичную матрицу размера 3×3 и выполним элементарные преобразования над строками:

$$\begin{pmatrix} 2 & 7 & 3 & 1 & 0 & 0 \\ 3 & 9 & 4 & 0 & 1 & 0 \\ 1 & 5 & 3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \text{III} \sim \begin{pmatrix} 1 & 5 & 3 & 0 & 0 & 1 \\ 3 & 9 & 4 & 0 & 1 & 0 \\ 2 & 7 & 3 & 1 & 0 & 0 \end{pmatrix} -3 \cdot \text{I} \sim \begin{pmatrix} 1 & 5 & 3 & 0 & 0 & 1 \\ 0 & -6 & -5 & 0 & 1 & -3 \\ 2 & 7 & 3 & 1 & 0 & 0 \end{pmatrix} -2 \cdot \text{I} \sim$$

$$\sim \begin{pmatrix} 1 & 5 & 3 & 0 & 0 & 1 \\ 0 & -6 & -5 & 0 & 1 & -3 \\ 0 & -3 & -3 & 1 & 0 & -2 \end{pmatrix} : (-6) \sim \begin{pmatrix} 1 & 5 & 3 & 0 & 0 & 1 \\ 0 & 1 & 5/6 & 0 & -1/6 & 1/2 \\ 0 & -3 & -3 & 1 & 0 & -2 \end{pmatrix} -5 \cdot \text{II} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & -7/6 & 0 & 5/6 & -3/2 \\ 0 & 1 & 5/6 & 0 & -1/6 & 1/2 \\ 0 & -3 & -3 & 1 & 0 & -2 \end{pmatrix} +3 \cdot \text{II} \sim \begin{pmatrix} 1 & 0 & -7/6 & 0 & 5/6 & -3/2 \\ 0 & 1 & 5/6 & 0 & -1/6 & 1/2 \\ 0 & 0 & -1/2 & 1 & -1/2 & -1/2 \end{pmatrix} \cdot (-2) \sim$$

$$\sim \begin{pmatrix} 1 & 0 & -7/6 & 0 & 5/6 & -3/2 \\ 0 & 1 & 5/6 & 0 & -1/6 & 1/2 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{pmatrix} -5/6 \cdot \text{III} \sim \begin{pmatrix} 1 & 0 & -7/6 & 0 & 5/6 & -3/2 \\ 0 & 1 & 0 & 5/3 & -1 & -1/3 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{pmatrix} +7/6 \cdot \text{III} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & -7/3 & 2 & -1/3 \\ 0 & 1 & 0 & 5/3 & -1 & -1/3 \\ 0 & 0 & 1 & -2 & 1 & 1 \end{pmatrix} .$$

Таким образом, обратная матрица равна

$$\begin{pmatrix} -7/3 & 2 & -1/3 \\ 5/3 & -1 & -1/3 \\ -2 & 1 & 1 \end{pmatrix}.$$

Задача 4. Найти матрицу, обратную к матрице

$$\begin{pmatrix}
1 & 1 & \dots & 1 & -1 \\
1 & 1 & \dots & -1 & 1 \\
\dots & \dots & \dots & \dots & \dots \\
1 & -1 & \dots & 1 & 1 \\
-1 & 1 & \dots & 1 & 1
\end{pmatrix}$$

размера n.

Решение: Запишем справа от матрицы единичную матрицу размера $n \times n$ и выполним элементарные преобразования над строками:

$$\begin{pmatrix} 1 & 1 & \dots & 1 & -1 & 1 & 0 & \dots & 0 & 0 \\ 1 & 1 & \dots & -1 & 1 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots \\ 1 & -1 & \dots & 1 & 1 & 0 & 0 & \dots & 1 & 0 \\ -1 & 1 & \dots & 1 & 1 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} - \begin{matrix} I \\ \dots \\ -I \\ -I \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 1 & \dots & 1 & -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & -2 & 2 & -1 & 1 & \dots & 0 & 0 \\ \dots & \dots \\ 0 & -2 & \dots & 0 & 2 & -1 & 0 & \dots & 1 & 0 \\ -2 & 0 & \dots & 0 & 2 & -1 & 0 & \dots & 0 & 1 \end{pmatrix} \sim \begin{bmatrix} \text{переставим} \\ \text{строки} \\ \text{в обратном} \\ \text{порядке} \end{bmatrix} \sim \\ \begin{pmatrix} -2 & 0 & \dots & 0 & 2 & -1 & 0 & \dots & 0 & 1 \\ 0 & -2 & \dots & 0 & 2 & -1 & 0 & \dots & 1 & 0 \\ \dots & \dots \\ 0 & 0 & \dots & -2 & 2 & -1 & 1 & \dots & 0 & 0 \\ 1 & 1 & \dots & 1 & -1 & 1 & 0 & \dots & 0 & 0 \end{pmatrix} \vdots (-2) \\ \dots & \dots \\ 0 & 0 & \dots & -2 & 2 & -1 & 1 & \dots & 0 & 0 \\ 1 & 1 & \dots & 0 & -1 & 1/2 & 0 & \dots & 0 & -1/2 \\ \dots & \dots \\ 0 & 0 & \dots & 1 & -1 & 1/2 & 0 & \dots & -1/2 & 0 \\ \dots & \dots \\ 0 & 0 & \dots & 1 & -1 & 1/2 & -1/2 & \dots & 0 & 0 \\ 1 & 1 & \dots & 1 & -1 & 1 & 0 & \dots & 0 & 0 \end{pmatrix} \rightarrow -\text{I} - \dots - (n-1) \\ \end{pmatrix}$$

Вычтем из последней строки сумму всех строк, кроме последней. Сумма всех элементов последнего столбца левой матрицы, кроме последнего, равна -(n-1), поскольку все эти элементы равны -1, а их количество n-1. Сумма всех элементов первого столбца правой матрицы равна $\frac{1}{2}(n-1)$, поэтому при вычитании из 1 этого числа получим $\frac{3-n}{2}$. В итоге имеем

$$\sim \begin{pmatrix}
1 & 0 & \dots & 0 & -1 & | 1/2 & 0 & \dots & 0 & -1/2 \\
0 & 1 & \dots & 0 & -1 & | 1/2 & 0 & \dots & -1/2 & 0 \\
\dots & \dots \\
0 & 0 & \dots & 1 & -1 & | 1/2 & -1/2 & \dots & 0 & 0 \\
0 & 0 & \dots & 0 & n-2 & | \frac{3-n}{2} & \frac{1}{2} & \dots & \frac{1}{2} & \frac{1}{2}
\end{pmatrix} : (n-2)$$

$$\sim \begin{pmatrix}
1 & 0 & \dots & 0 & -1 & | 1/2 & 0 & \dots & 0 & -1/2 \\
0 & 1 & \dots & 0 & -1 & | 1/2 & 0 & \dots & -1/2 & 0 \\
\dots & \dots \\
0 & 0 & \dots & 1 & -1 & | 1/2 & -1/2 & \dots & 0 & 0 \\
0 & 0 & \dots & 0 & 1 & | \frac{3-n}{2(n-2)} & \frac{1}{2(n-2)} & \dots & \frac{1}{2(n-2)} & \frac{1}{2(n-2)}
\end{pmatrix} + (n)$$

$$+(n)$$

Прибавим ко всем строкам, кроме последней, последнюю строку. В результате на побочной диагонали получим элемент

$$-\frac{1}{2} + \frac{1}{2(n-2)} = \frac{3-n}{2(n-2)},$$

а все остальные элементы матрицы будут равны $\frac{1}{2(n-2)}$. Имеем

$$\sim \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \frac{1}{2(n-2)} & \frac{1}{2(n-2)} & \dots & \frac{1}{2(n-2)} & \frac{3-n}{2(n-2)} \\ 0 & 1 & \dots & 0 & 0 & \frac{1}{2(n-2)} & \frac{1}{2(n-2)} & \dots & \frac{3-n}{2(n-2)} & \frac{1}{2(n-2)} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & 0 & \frac{1}{2(n-2)} & \frac{3-n}{2(n-2)} & \dots & \frac{1}{2(n-2)} & \frac{1}{2(n-2)} \\ 0 & 0 & \dots & 0 & 1 & \frac{3-n}{2(n-2)} & \frac{1}{2(n-2)} & \dots & \frac{1}{2(n-2)} & \frac{1}{2(n-2)} \end{pmatrix}.$$

Таким образом, обратная матрица будет равна

$$\begin{pmatrix} \frac{1}{2(n-2)} & \frac{1}{2(n-2)} & \cdots & \frac{1}{2(n-2)} & \frac{3-n}{2(n-2)} \\ \frac{1}{2(n-2)} & \frac{1}{2(n-2)} & \cdots & \frac{3-n}{2(n-2)} & \frac{1}{2(n-2)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2(n-2)} & \frac{3-n}{2(n-2)} & \cdots & \frac{1}{2(n-2)} & \frac{1}{2(n-2)} \\ \frac{3-n}{2(n-2)} & \frac{1}{2(n-2)} & \cdots & \frac{1}{2(n-2)} & \frac{1}{2(n-2)} \end{pmatrix}.$$

§3. Решение матричных уравнений.

Рассмотрим линейное матричное уравнение вида

$$A \cdot X = B$$
 или $X \cdot A = B$

в котором A,B,X — квадратные матрицы одинакового размера. Будем считать матрицы A,B известными. Задача решения матричного уравнения заключается в нахождении матрицы X.

Решением матричного уравнения вида AX = B является матрица

$$X = A^{-1}B,$$

а решением матричного уравнения вида XA = B является матрица

$$X = BA^{-1},$$

поэтому для решения матричного уравнения достаточно обратить матрицу A и умножить ее на матрицу B справа или слева (умножение матриц не коммутативно). Таким образом, матричное уравнение имеет единственное решение, если матрица A невырождена.

При решении матричных уравнений можно объединить операции обращения матрицы методом элементарных преобразований и операции умножения матрицы.

Для решения матричного уравнения вида

$$AX = B$$

можно записать матрицу B справа от матрицы A, после чего элементарными преобразованиями строк привести матрицу A к единичной. Тогда справа от единичной матрицы будет записана матрица $A^{-1}B$, то есть как раз решение уравнения:

$$(A|B) \sim \cdots \sim (I|A^{-1}B).$$

Чтобы таким образом решить уравнение вида

$$XA = B$$
.

нужно сначала переписать его в виде

$$A^T X^T = B^T,$$

то есть транспонировать левую и правую часть уравнения. После этого записать матрицу B^T справа от матрицы A^T , после чего элементарными преобразованиями строк привести матрицу A^T к единичной. Тогда справа от единичной матрицы будет записана матрица $(A^T)^{-1}B^T = (BA^{-1})^T$, то есть матрица, транспонированная к решению уравнения

$$(A^T|B^T) \sim \cdots \sim (I|(BA^{-1})^T).$$

Задача 3.121. Решить матричное уравнение

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) \cdot X = \left(\begin{array}{cc} 3 & 5 \\ 5 & 9 \end{array}\right).$$

Решение: Будем использовать метод элементарных преобразований. Запишем матрицу A, а справа от нее — матрицу B, после чего элементарными преобразованиями строк приведем матрицу A к единичной. Получим

$$\begin{pmatrix} 1 & 2 & 3 & 5 \\ 3 & 4 & 5 & 9 \end{pmatrix} - 3 \cdot I \sim \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & -2 & -4 & -6 \end{pmatrix} : (-2) \sim \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 1 & 2 & 3 \end{pmatrix} - 2 \cdot II \sim \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 2 & 3 \end{pmatrix}.$$

Таким образом, решением матричного уравнения является матрица

$$X = \left(\begin{array}{cc} -1 & -1 \\ 2 & 3 \end{array}\right).$$

Задача 3.122. Решить матричное уравнение

$$X \cdot \left(\begin{array}{cc} 3 & -2 \\ 5 & -4 \end{array} \right) = \left(\begin{array}{cc} -1 & 2 \\ -5 & 6 \end{array} \right).$$

Решение: Это уравнение эквивалентно уравнению

$$\left(\begin{array}{cc} 3 & 5 \\ -2 & -4 \end{array}\right) \cdot X^T = \left(\begin{array}{cc} -1 & -5 \\ 2 & 6 \end{array}\right).$$

Решим это уравнение методом элементарных преобразований:

$$\begin{pmatrix} 3 & 5 & -1 & -5 \\ -2 & -4 & 2 & 6 \end{pmatrix} : \stackrel{3}{\sim} \begin{pmatrix} 1 & 5/3 & -1/3 & -5/3 \\ -2 & -4 & 2 & 6 \end{pmatrix} + 2 \cdot \stackrel{1}{\sim}$$

$$\sim \begin{pmatrix} 1 & 5/3 & -1/3 & -5/3 \\ 0 & -2/3 & 4/3 & 8/3 \end{pmatrix} \cdot (-3/2) \sim \begin{pmatrix} 1 & 5/3 & -1/3 & -5/3 \\ 0 & 1 & -2 & -4 \end{pmatrix} - \frac{5/3 \cdot II}{-2} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -2 & -4 \end{pmatrix}.$$

Таким образом,

$$X^T = \left(\begin{array}{cc} 3 & 5 \\ -2 & -4 \end{array}\right),$$

откуда

$$X = \left(\begin{array}{cc} 3 & -2 \\ 5 & -4 \end{array}\right).$$

Заметим, что дробей в решении можно избежать, если первым преобразованием добавить вторую строку к первой (или поделить вторую строку на -2, после чего переставить

строки). Вообще, если элемент в первой строке и первом столбце равен 1, это упрощает вычисления.

Задача 3.125. Решить матричное уравнение

$$X \cdot \begin{pmatrix} 5 & 3 & 1 \\ 1 & -3 & -2 \\ -5 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -8 & 3 & 0 \\ -5 & 9 & 0 \\ -2 & 15 & 0 \end{pmatrix}.$$

Решение: Это уравнение эквивалентно уравнению

$$\begin{pmatrix} 5 & 1 & -5 \\ 3 & -3 & 2 \\ 1 & -2 & 1 \end{pmatrix} \cdot X^T = \begin{pmatrix} -8 & -5 & -2 \\ 3 & 9 & 15 \\ 0 & 0 & 0 \end{pmatrix}.$$

Решим это уравнение методом элементарных преобразований:

Таким образом,

$$X^T = \left(\begin{array}{rrr} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{array}\right),$$

откуда

$$X = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right).$$

§4. Ранг матрицы.

Mинором k-того порядка матрицы называется определитель, стоящий на пересечении некоторых k строк и k столбцов матрицы. Минор, стоящий на пересечении строк (i_1, \ldots, i_k) и столбцов (j_1, \ldots, j_k) , будем обозначать $M_{j_1, \ldots, j_k}^{i_1, \ldots, i_k}$.

Максимальный порядок отличного от нуля минора матрицы называется paнгом матрицы и обозначается $\operatorname{Rg} A$, а любой ненулевой минор порядка $\operatorname{Rg} A$ называется $basel{basel} basel{basel} basel{basel} basel{basel} basel{basel} muhopom матрицы <math>A$. Понятие ранга матрицы определено не только для квадратных матриц. Кроме того,

$$\operatorname{Rg} A_{n \times m} \le \min\{n, m\}.$$

Рассмотрим два метода нахождения ранга матрицы:

- Метод окаймляющих миноров,
- Метод элементарных преобразований.

Метод окаймляющих миноров.

Окаймляющим для минора k-го порядка называется такой минор (k+1)-го порядка, который содержит в своей записи те же строки и столбцы, что и минор k-го порядка (и еще одну строку и столбец). Пусть в матрице A нашли минор $M \neq 0$ k-го порядка. Рассмотрим все окаймляющие миноры для M. Если они все равны нулю, то $\operatorname{Rg} A = k$. Если же нашли минор $\overline{M} \neq 0$ (k+1)-го порядка, то повторяем процедуру поиска окаймляющих миноров для \overline{M} , пока не достигнем величины $\min\{n,m\}$ или пока на очередном шаге не получим, что все окаймляющие миноры равны нулю.

Задача 3.150. Методом окаймляющих миноров найти ранг матрицы

$$A = \left(\begin{array}{cccc} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{array}\right).$$

Решение: Найдем минор первого порядка, отличный от нуля:

$$M_1^1 = 2 \neq 0.$$

Найдем окаймляющие миноры для M_1^1 :

$$M_{1,2}^{1,2} = \begin{vmatrix} 2 & -1 \\ 4 & -2 \end{vmatrix} = 0, \quad M_{1,3}^{1,2} = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2 \neq 0.$$

Найдем окаймляющие миноры для $M_{1,3}^{1,2}$:

$$M_{1,2,3}^{1,2,3} = \begin{vmatrix} 2 & -1 & 3 \\ 4 & -2 & 5 \\ 2 & -1 & 1 \end{vmatrix} = 0, \quad M_{1,3,4}^{1,2,3} = \begin{vmatrix} 2 & 3 & -2 \\ 4 & 5 & 1 \\ 2 & 1 & 8 \end{vmatrix} = 0, \quad M_{1,3,5}^{1,2,3} = \begin{vmatrix} 2 & 3 & 4 \\ 4 & 5 & 7 \\ 2 & 1 & 2 \end{vmatrix} = 0.$$

Получили, что все окаймляющие миноры для $M_{1,3}^{1,2}$ равны нулю, значит, процесс поиска ранга матрицы завершен. Таким образом, $\operatorname{Rg} A = 2$.

Задача 3.154. Методом окаймляющих миноров найти ранг матрицы

$$A = \left(\begin{array}{rrrr} 1 & 2 & 3 & 0 & -1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 3 & 4 & 1 & -1 \end{array}\right).$$

Решение: Найдем минор первого порядка, отличный от нуля:

$$M_1^1 = 1 \neq 0.$$

Найдем окаймляющие миноры для M_1^1 :

$$M_{1,2}^{1,2} = \left| \begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right| = 1 \neq 0.$$

13

Найдем окаймляющие миноры для $M_{1,2}^{1,2}$:

$$M_{1,2,3}^{1,2,3} = \left| \begin{array}{ccc|c} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{array} \right| = 0, \quad M_{1,2,4}^{1,2,3} = \left| \begin{array}{ccc|c} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 3 & 1 \end{array} \right| = 0, \quad M_{1,2,5}^{1,2,3} = \left| \begin{array}{ccc|c} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \end{array} \right| = 0.$$

Получили, что все окаймляющие миноры для $M_{1,2}^{1,2}$ равны нулю, значит, процесс поиска ранга матрицы завершен. Таким образом, $\operatorname{Rg} A = 2$.

Задача 3.156. Чему равен ранг матрицы

$$A = \left(\begin{array}{cccc} 3 & 1 & 1 & 4 \\ \lambda & 4 & 10 & 1 \\ 1 & 7 & 17 & 3 \\ 2 & 2 & 4 & 3 \end{array}\right)$$

при различных значениях λ ?

Решение: Найдем минор первого порядка, отличный от нуля:

$$M_4^1 = 4 \neq 0.$$

Найдем окаймляющий минор для M_4^1 , отличный от нуля:

$$M_{3,4}^{1,2} = \begin{vmatrix} 1 & 4 \\ 10 & 1 \end{vmatrix} = -39 \neq 0.$$

Найдем окаймляющие миноры для $M_{3,4}^{1,2}$:

$$\begin{split} M_{2,3,4}^{1,2,3} = \left| \begin{array}{ccc} 1 & 1 & 4 \\ 4 & 10 & 1 \\ 7 & 17 & 3 \end{array} \right| = 0, \quad M_{2,3,4}^{1,2,4} = \left| \begin{array}{ccc} 1 & 1 & 4 \\ 4 & 10 & 1 \\ 2 & 4 & 3 \end{array} \right| = 0, \\ M_{1,3,4}^{1,2,3} = \left| \begin{array}{ccc} 3 & 1 & 4 \\ \lambda & 10 & 1 \\ 1 & 17 & 3 \end{array} \right| = 65\lambda, \quad M_{1,3,4}^{1,2,4} = \left| \begin{array}{ccc} 3 & 1 & 4 \\ \lambda & 10 & 1 \\ 2 & 4 & 3 \end{array} \right| = 13\lambda. \end{split}$$

Если $M_{1,3,4}^{1,2,3}$ и $M_{1,3,4}^{1,2,4}$ оба равны нулю (а это возможно, когда $\lambda=0$), то ранг матрицы равен $\operatorname{Rg} A=2$, иначе $\operatorname{Rg} A\geq 3$. Далее рассмотрим случай $\lambda\neq 0$. Есть всего один минор четвертого порядка, окаймляющий для $M_{1,3,4}^{1,2,4}$:

$$M_{1,2,3,4}^{1,2,3,4} = \left| \begin{array}{ccc|c} 3 & 1 & 1 & 4 \\ \lambda & 4 & 10 & 1 \\ 1 & 7 & 17 & 3 \\ 2 & 2 & 4 & 3 \end{array} \right| = 3 \cdot \left| \begin{array}{ccc|c} 4 & 10 & 1 \\ 7 & 17 & 3 \\ 2 & 4 & 3 \end{array} \right| - \lambda \cdot \left| \begin{array}{ccc|c} 1 & 1 & 4 \\ 7 & 17 & 3 \\ 2 & 4 & 3 \end{array} \right| + \left| \begin{array}{ccc|c} 1 & 1 & 4 \\ 4 & 10 & 1 \\ 2 & 4 & 3 \end{array} \right| - 2 \cdot \left| \begin{array}{ccc|c} 1 & 1 & 4 \\ 4 & 10 & 1 \\ 7 & 17 & 3 \end{array} \right| = 0.$$

Таким образом, если $\lambda = 0$, то $\operatorname{Rg} A = 2$, иначе $\operatorname{Rg} A = 3$.

Метод элементарных преобразований.

Ранг матрицы не меняется при элементарных преобразованиях. Поэтому для применения метода элементарных преобразований для нахождения ранга матрицы нужно с помощью элементарных преобразований привести матрицу к ступенчатому виду, в результате чего количество ненулевых строк даст ранг матрицы.

Задача 3.159. Методом элементарных преобразований найти ранг матрицы

$$\begin{pmatrix}
25 & 31 & 17 & 43 \\
75 & 94 & 53 & 132 \\
75 & 94 & 54 & 134 \\
25 & 32 & 20 & 48
\end{pmatrix}.$$

Решение: Будем выполнять элементарные преобразования только над строками матрицы:

$$\begin{pmatrix} 25 & 31 & 17 & 43 \\ 75 & 94 & 53 & 132 \\ 75 & 94 & 54 & 134 \\ 25 & 32 & 20 & 48 \end{pmatrix} \sim \begin{pmatrix} 25 & 31 & 17 & 43 \\ 75 & 94 & 53 & 132 \\ 75 & 94 & 54 & 134 \\ 0 & 1 & 3 & 5 \end{pmatrix} - \text{II} \sim \begin{pmatrix} 25 & 31 & 17 & 43 \\ 75 & 94 & 53 & 132 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 3 & 5 \end{pmatrix} - 3 \cdot \text{I} \sim \begin{pmatrix} 25 & 31 & 17 & 43 \\ 0 & 1 & 3 & 5 \end{pmatrix} \sim \begin{pmatrix} 25 & 31 & 17 & 43 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 25 & 31 & 17 & 43 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix} - \text{III} \sim \begin{pmatrix} 25 & 31 & 17 & 43 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Количество ненулевых строк равно трем, а значит, $\operatorname{Rg} A = 3$.

Задача 3.168. Методом элементарных преобразований найти ранг матрицы

$$\left(\begin{array}{ccccccc}
0 & 1 & 0 & 4 & 3 & 1 \\
0 & 1 & 3 & 0 & 2 & 1 \\
2 & 1 & 0 & 0 & 1 & 1 \\
-1 & 2 & -1 & -1 & -1 & 1
\end{array}\right).$$

Решение: Будем выполнять элементарные преобразования только над строками матрицы:

$$\begin{pmatrix} 0 & 1 & 0 & 4 & 3 & 1 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 & 1 & 1 \\ -1 & 2 & -1 & -1 & -1 & 1 \end{pmatrix} + 2 \cdot IV \sim \begin{pmatrix} 0 & 1 & 0 & 4 & 3 & 1 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ 0 & 5 & 2 & -2 & -1 & 3 \\ -1 & 2 & -1 & -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & -3 & 4 & 1 & 0 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ 0 & 5 & 2 & -2 & -1 & 3 \\ -1 & 2 & -1 & -1 & -1 & 1 \end{pmatrix} \rightarrow III \sim \begin{pmatrix} 0 & 0 & -3 & 4 & 1 & 0 \\ 0 & 5 & 2 & -2 & -1 & 3 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ -1 & 2 & -1 & -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & -3 & 4 & 1 & 0 \\ 0 & 5 & 2 & -2 & -1 & 3 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ -1 & 2 & -1 & -1 & -1 & 1 \end{pmatrix} - 5 \cdot III \sim \begin{pmatrix} 0 & 0 & -3 & 4 & 1 & 0 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & -13 & -2 & -11 & -2 \\ 0 & 1 & 3 & 0 & 2 & 1 \\ -1 & 2 & -1 & -1 & -1 & 1 \end{pmatrix}.$$

Количество ненулевых строк равно четырем, а значит, $\operatorname{Rg} A = 4$.

Задача 5. Чему равен ранг матрицы

$$A = \begin{pmatrix} 2 & 3 & 4 & -1 \\ 5 & \lambda & 7 & 2 \\ 1 & 1 & 3 & -2 \\ 4 & 7 & 6 & 1 \end{pmatrix}$$

при различных значениях λ ?

Решение: Будем выполнять элементарные преобразования только над строками матрицы:

$$\begin{pmatrix} 2 & 3 & 4 & -1 \\ 5 & \lambda & 7 & 2 \\ 1 & 1 & 3 & -2 \\ 4 & 7 & 6 & 1 \end{pmatrix} \to \prod \sim \begin{pmatrix} 1 & 1 & 3 & -2 \\ 5 & \lambda & 7 & 2 \\ 2 & 3 & 4 & -1 \\ 4 & 7 & 6 & 1 \end{pmatrix} - \underbrace{5 \cdot I}_{-2 \cdot I} \sim$$

$$\sim \begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & \lambda - 5 & -8 & 12 \\ 0 & 1 & -2 & 3 \\ 0 & 3 & -6 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & \lambda - 5 & -8 & 12 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} -4 \cdot \text{III} \sim \begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & \lambda - 9 & 3 & 0 \\ 0 & \lambda - 9 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \text{III} \sim \begin{pmatrix} 1 & 1 & 3 & -2 \\ 0 & 1 & -2 & 3 \\ 0 & \lambda - 9 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Отсюда видно, что если элемент $\lambda - 9$ равен нулю, третья строка матрицы нулевая, а потому $\operatorname{Rg} A = 2$, иначе $\operatorname{Rg} A = 3$. Таким образом,

- если $\lambda = 9$, то $\operatorname{Rg} A = 2$,
- если $\lambda \neq 9$, то Rg A=3.

Напоследок рассмотрим несколько теоретических задач.

Задача 6. Доказать, что если K — поле, характеристика которого не равна 2, n — нечетное число и A — антисимметричная матрица размера n, то $\det A = 0$.

Решение: Матрица A называется *антисимметричной*, если $A^T = -A$. Получаем

$$\det A = \det A^T = \det(-A) = (-1)^n \det A = -\det A \quad \to \quad \det A + \det A = 0.$$

Поскольку характеристика поля не равна 2, то равенство a+a=0 возможно только при a=0, откуда

$$\det A = 0.$$

Множество всех квадратных невырожденных матриц порядка n с элементами в поле \mathbb{F} с операцией умножения образует группу, которая называется общей линейной группой (general linear group) и обозначается $GL_n(\mathbb{F})$.

Задача 7. Найти порядок группы $GL_2(\mathbb{Z}_p)$ невырожденных матриц размера 2×2 над полем вычетов по модулю p.

Решение: В первой строке матрицы 2-го порядка 2 элемента, каждый из которых может принимать одно из p значений. Таким образом, возможно p^2 различных первых строк. Чтобы матрица была невырожденной, первая строка не должна быть нулевой, а значит, возможно только

$$p_1 = p^2 - 1$$

вариантов первых строк.

Аналогично, существует p^2 вариантов вторых строк. Но для невырожденности матрицы необходимо, чтобы вторая строка не была линейной комбинацией первой строки, то есть чтобы вторая строка была получена умножением первой на некоторый элемент поля \mathbb{Z}_p . Таким образом, существует только

$$p_2 = p^2 - p$$

вариантов вторых строк. Нулевая строка при этом также исключается, поскольку можно считать, что нулевая строка — это первая строка, умноженная на 0. Количество невырожденных матриц второго порядка с элементами в поле \mathbb{Z}_p равно порядку группы $GL_2(\mathbb{Z}_p)$, то есть

$$|GL_2(\mathbb{Z}_p)| = p_1 p_2 = (p^2 - 1)(p^2 - p).$$

Задача 8. Найти порядок группы $GL_n(\mathbb{Z}_p)$ невырожденных матриц порядка n над полем вычетов по модулю p.

Решение: Будем рассуждать аналогично предыдущей задаче. Чтобы матрица была невырожденной, первая строка не должна быть нулевой, а значит, возможно

$$p_1 = p^n - 1$$

вариантов первых строк. Вторая строка не должна быть линейной комбинацией первой строки, то есть чтобы вторая строка не может быть получена умножением первой на некоторый элемент поля \mathbb{Z}_p . Таким образом, существует только

$$p_2 = p^n - p$$

вариантов вторых строк. Третья строка не должна быть линейной комбинацией первых двух строк. При этом существует ровно p^2 линейных комбинаций двух строк. Значит, возможно только

$$p_3 = p^n - p^2$$

вариантов третьих строк.

Продолжая рассуждения аналогично, получим, что возможно $p_n = p^n - p^{n-1}$ вариантов последней строки. Таким образом, порядок группы равен

$$|GL_n(\mathbb{Z}_p)| = (p^n - 1)(p^n - p)(p^n - p^2)\dots(p^n - p^{n-1}) = \prod_{k=0}^{n-1}(p^n - p^k).$$

Множество всех квадратных невырожденных матриц A порядка n с элементами в поле \mathbb{F} , для которых $\det A = 1$, с операцией умножения образует группу, которая называется cnequanьной линейной группой (special linear group) и обозначается $SL_n(\mathbb{F})$.

Задача 9. Найти порядок группы $SL_n(\mathbb{F})$ невырожденных матриц порядка n с $\det A = 1$ над полем вычетов по модулю p.

Решение: $SL_n(\mathbb{F})$ образует подгруппу в группе $GL_n(\mathbb{F})$, а значит, порядок $SL_n(\mathbb{F})$ делит порядок группы $GL_n(\mathbb{F})$.

Любая матрица с определителем $q \in \mathbb{Z}_p \neq 0$ может быть получена из матрицы с определителем 1 умножением первой строки на q. Таким образом, матриц с разными определителями равное количество. Существует p-1 вариантов определителя для невырожденной матрицы, поскольку в поле \mathbb{Z}_p ровно p-1 ненулевых чисел. Значит, порядок группы $SL_n(\mathbb{F})$ равен

$$|SL_n(\mathbb{Z}_p)| = \frac{|GL_n(\mathbb{Z}_p)|}{p-1} = \frac{\prod_{k=0}^{n-1} (p^n - p^k)}{p-1}.$$

Задачи для самостоятельного решения

Из задачника Ефимова-Демидовича: 3.76, 79, 84, 85, 93, 104, 110, 115, 124, 152, 157, 160, 167.

Задача 1. Вычислить
$$A^{2020}$$
, если $A = \begin{pmatrix} 30 & 42 & 16 \\ -25 & -36 & -18 \\ 6 & 9 & 6 \end{pmatrix}$.

Задача 2. Найти матрицу, обратную к матрице

$$\begin{pmatrix} n & n-1 & n-2 & \dots & 2 & 1 \\ 1 & n-1 & n-2 & \dots & 2 & 1 \\ 1 & 1 & n-2 & \dots & 2 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 2 & 1 \\ 1 & 1 & 1 & \dots & 1 & 1 \end{pmatrix}$$

размера n.

Задача 3. Чему равен ранг матрицы

$$A = \begin{pmatrix} 1 & -6 & 8 & 11 \\ 3 & 4 & \lambda & 0 \\ 2 & 6 & 7 & -5 \\ 5 & 14 & 18 & -11 \end{pmatrix}$$

при различных значениях λ ?