Homework 2

Hao Xu hx2208

Problem 1.

Answer:

(a)
$$\mu_{y,j} = \frac{\sum_{i=1}^{n} \mathbb{1}\{y_i = y\}x_{i,j}}{\sum_{i=1}^{n} \mathbb{1}\{y_i = y\}}$$

- (b) Training error rate is: 0.2163. Test error rate is: 0.3760
- (c) Training error rate is: 0.05779. Test error rate is: 0.1313.
- (d) Most positive word list: [firearms, occupied, israelis, serdar, argic, appressian, ohanus, melkonian, sahak, villages, cramer, armenia, cpr, sdqa, handgun, optilink, palestine, firearm, budget, arabs]

 $\label{linear_continuous_continuous_continuous} Most negative word list: \\ [athos, atheism, atheists, clh, teachings, revelation, testament, \\ livesey, atheist, solntze, wpd, scriptures, theology, believer, ks and, alink, benedikt, \\ jesus, prophet, mozumder]$

Problem 2.

Answer:

(a) According to the definition: $f^* = min \left\{ \frac{2}{3} c \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \frac{1}{3} \frac{1}{\sqrt{\frac{1}{2}\pi}} e^{-2(x-2)^2} \right\}$

So f^* would predict 1 when $0 < \frac{1}{3} \frac{1}{\sqrt{\frac{1}{2}\pi}} e^{-2(x-2)^2} < \frac{2}{3} c \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

Let
$$\frac{1}{3} \frac{1}{\sqrt{\frac{1}{2}\pi}} e^{-2(x-2)^2} = \frac{2}{3} c \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

get
$$ce^{-\frac{x^2}{2}} = e^{-2(x-2)^2}$$

Take log on both side, get: $2lnc - x^2 = -4(x-2)^2$

$$3x^2 - 16x + 16 + 2lnc = 0$$

In order to have a root, $\Delta=256-12(16+2lnc)>0$

Thus,
$$8 - 3lnc > 0$$

get
$$c < e^{\frac{8}{3}} = 14.39$$

Therefore, while $0 \le c \le 14$, for $\frac{8-\sqrt{16-6lnc}}{3} \le x \le \frac{8+\sqrt{16-6lnc}}{3}$, f^* would predict 1.

(b) According to Question (a), when $c>e^{\frac{8}{3}}$, there would be no root for $\frac{1}{3}\frac{1}{\sqrt{\frac{1}{2}\pi}}e^{-2(x-2)^2}=\frac{2}{3}c\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, thus, there would be no 1 in prediction.

Therefore, whatever x value we take, f^* would predict the class as 0.

Problem 3.

Answer:

- (a) the eigenvalues of $\Sigma + \sigma^2 I$ are: $\lambda_1 + \sigma^2$, $\lambda_2 + \sigma^2$,..., $\lambda_d + \sigma^2$
- (b) the eigenvalues of $(\Sigma + \sigma^2 I)^{-2}$ are $\frac{1}{\lambda^2}$ $(\lambda$ are: $\lambda_1 + \sigma^2, \lambda_2 + \sigma^2, ..., \lambda_d + \sigma^2)$