Neurobiology of

Sreekanth

^{*} As I understand it and from my readings, See References

What is Sleep?

- * Natural (all animals have it)
- Low Motor Activity
- Suspended sensory activity
- * Reversible

What is Wakefulness?

- Complementary to sleep
- * Receive and respond to stimulus
- * Active Cerebral cortex
- * Low voltage high frequency EEG and muscle tone.

EEG/EMG patterns

http://www.scholarpedia.org/article/File:Sch Figure1.jpg

Sleep and Wakefulness

The Differences from the perspective of a scientist

Why Sleep?

- * Intellectual function is impaired.
- Brain is not taking a break.
- * Some parts of the brain see more blood flow during sleep than wakefulness esp. during REM

Why Sleep*?

- * Recovery and Restoration
- Energy conservation(like hibernation)
- Brain Plasticity Theory

* There are only strong or weak hypotheses

Restoration and Recovery

- * Increased Growth hormones at sleep onset
- * Increased exercise leads to increased NREM sleep
- * REM sleep seems to help rebalance neurotransmitter levels in the brain
- Improved immune system and wound healing

Energy Conservation

- Metabolic rate and body temperature drops to conserve energy during sleep
- Vasodilatation causes temperature to drop(1-2 C)
- * Sleep onset leads to reduction of the body thermostat in the Hypothalamus

From wakefulness to sleep

http://www.scholarpedia.org/article/File:Sch Figure2.jpg

Stages of sleep

Increased voltage differences Reduced frequency

REM sleep

- Characterised by Eyes moving rapidly
- * Dreams
- Linked to consolidation of memories

Stage 2 sleep

Sleep Spindles and K Complexes

Sleep Spindles

- * Typically beginning or end of NREM stage 2 sleep
- Short burst of high frequency waves
- * Brain is activated and ends with muscle twitching
- Possibly mapping motor neurons to muscles
- * Maintain tranquil sleep in presence of external sounds

K Complexes

- * Typically beginning or end of NREM stage 2 sleep
- * Single delta wave(high voltage). It is largest 'healthy' event on an EEG.
- * Also occur in response to external stimuli
- Linked to memory consolidation
- Cortical "down" state?

NREM Sleep

- * Highly active brain regions
- Consists of multiple stages of varying patterns and length
- Probably important for homeostasis
- * Important for Visiomotor and perceptual learning.

Slow wave sleep

- * Stages 3 and 4
- * Relates to our experience of deep sleep
- * Have "Up" states. Intense firing of cortical neurons
- * And "Down" States. Periods of neuronal silence

https://flic.kr/p/jZbArT

What Causes Sleep?

All animals sleep and it's origins are primitive

Humans follow a daily pattern

 $\underline{https://en.wikipedia.org/wiki/Sleep\#mediaviewer/File:Biological_clock_human.svg}$

Circadian Rhythm

A lot of biological processes are driven by day/night.
These patterns are built in and self sustained

Suprachiasmatic Nucleus(SCN)

- * Situated right above the optic chiasma and gets input from retina
- Part of Hypothalamus
- The master clock to control
 Circadian Rhythms
- Controls endocrinal activities via Pineal gland control to produce melanin

Ventrolateral preoptic nucleus(VLPO)

- * Part of anterior Hypothalamus on the side of optic chiasm
- Inhibits the arousal systems and promotes sleep
- Inhibited by Orexin neurons during transition to wakefulness

Arousal Centers

- Produce alertness and consciousness (wakefulness)
- * Start at the brain stem
- * Enable cerebral cortex to be active.
- Orexin in Hypothalamus also affects cortex and arousal centres

http://healthysleep.med.harvard.edu/healthy/science/how/neurophysiology

Lorem Ipsum Dolor

Sleep wake Balance

The neurotransmitter Orexin modulates the sleep wake cycle.

Homeostatic sleep need

- * Humans need 1 hr of sleep for 2 waking hours
- Long sleep compensates for prolonged wakefulness
- Arousal systems in the brain cause Adenosine accumulation
- * This detected in the brain stem and excites the VLPO inhibitory system to promote sleep.

The balancing act

Sleep and Wake balance

The cast

- * Cortex
- * Brain stem (Pons specifically)
- * Hypothalamus
 - * SCN
 - VLPO(Anterior Hypothalamus)
 - * Orexin

REM sleep activation

- Ultradian oscillator residing in mesopontine junction(pontine taguntum)
- * Rem "off" cells : Acetocholine triggered neurons
- * Rem "off" cells: monoamine triggered neurons
- * Rem "on" and "off" neurons form and A-B feedback to generate the cycles of REM sleep

References

- Circadian Rhythm
- * REM sleep
- * The science of sleep
- * Role of ATP in sleep regulation
- * Sleep
- * Sleep resources