

# CO656 / COMPUTATIONAL INTELLIGENCE IN BUSINESS, ECONOMICS AND FINANCE

**Fernando Otero** 

febo@kent.ac.uk cs.kent.ac.uk/people/staff/febo

# housekeeping

- sample solutions to class exercises will be available on Moodle a week after the class
  - try the tasks first!
- quizzes are available on Moodle for you to check your understanding
  - there are no marks associated with them
  - automatic feedback

### outline:

I. a little bit more on GAs

2. another GA example

# why GA works?

- many random choices
- ...but still we see improvements (evolution)
- stochastic but different than random search
  - selection is based on fitness
  - ... therefore search is biased towards good regions of the search space
- need for multiple runs to estimate the "true" performance of a GA

# why GA works?

- evolution preserves good building blocks
  - blocks of genes in a chromosome
- building blocks are propagated in the population by the fitness-based selection
  - crossover of 2 good individuals with different building block will likely result in an even better offspring
- there are theories that try to characterize the evolution of a GA
  - schema theorem and building block hypothesis
  - ...but there is not a universally accepted theory

# building block hypothesis:

 better solutions are created from the best partial solutions of past generations



### observations:

you might have noticed that the best fitness of the population can **fluctuate** – e.g., be lower than the best fitness of the previous generation

■ roulette wheel selection can be **affected** if you have extreme fitness values — e.g., one individual having a fitness value much higher than the rest of the population

more options of genetic operators?

### elitism:

- **best** individual of a population is guaranteed to be carried over to the next
- solution quality will **not** decrease from one generation to the next

### tournament selection:

- small subset of k individuals is chosen at random
- best individual in this set is selected (tournament winner)
- k = tournament size (user-specified parameter)
- $\blacksquare$  easy to control the selection pressure the higher the value of k, the higher is the selective pressure

```
what happens if k = 1?
what happens if k = population size?
```

### two-point crossover:

same principle as the one-point variation, but uses2 crossover points



### uniform crossover:

- combines genes sampled uniformly from the 2 parents
  - each gene is subject to crossover subject to a probability
  - avoids positional bias



# bit string mutation:

• each gene has a probability of  $\frac{1}{length}$  of being mutated





- Goldberg's book (1989)
  - real-value encoding

- **toy** problem: finding the maximum value of the function **x**<sup>2</sup> in the interval [0..31]
- individual encoding: five bits representing x in [0..31]
- fitness function: x<sup>2</sup> (the larger the fitness, the better the individual)
  - decode 5-bits (genotype) and then compute x<sup>2</sup> (phenotype)

- roulette wheel selection
- genetic operators:
  - one-point crossover
  - point mutation
- termination criteria:
  - optimal solution found
  - maximum number of generations

• initial population (randomly generated):

| l: | 0 | 1 | 1 | 0 | 1 |
|----|---|---|---|---|---|
| 2: | 1 | 1 | 0 | 0 | 0 |
| 3: | 0 | 1 | 0 | 0 | 0 |
| 4: | 1 | 0 | 0 | 1 | 1 |

measuring the fitness of each individual in the population:

|    |   |   |   |   |   | x  | x <sup>2</sup><br>(fitness) | % of total fitness |
|----|---|---|---|---|---|----|-----------------------------|--------------------|
| 1: | 0 | 1 | 1 | 0 | 1 | 13 | 169                         | 14.4               |
| 2: | 1 | 1 | 0 | 0 | 0 | 24 | 576                         | 49.2               |
| 3: | 0 | 1 | 0 | 0 | 0 | 8  | 64                          | 5.5                |
| 4: | 1 | 0 | 0 | 1 | 1 | 19 | 361                         | 30.9               |

**decoding individual 1:**  $0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13$ 

- suppose the selected individuals are:
  - one copy of individual I
  - one copy of individual 4
  - two copies of individual 2 (individual 3 was not selected)
- selected individuals undergo crossover
  - user-defined probability: about 90% 95%
- they can also undergo mutation
  - user-defined probability: about 1% 5%

(lower mutation rate since in nature most mutations are harmful)

### one-point crossover

crossover of individuals I and 2

| 1: | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
|----|---|---|---|---|---|---|---|---|---|---|
| 2: | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |

crossover of individuals 2 and 4

| l: | 1 | 1 | 0 | 0 | 0 | - | L | 1 | 0 | 1 | 1 |
|----|---|---|---|---|---|---|---|---|---|---|---|
| 2: | 1 | 0 | 0 | 1 | 1 | - | L | 0 | 0 | 0 | 0 |

| population at generation 0 |   |   |   |   |   |          |                          |    |   |   | • | • |   | on at<br>on I |                          |
|----------------------------|---|---|---|---|---|----------|--------------------------|----|---|---|---|---|---|---------------|--------------------------|
|                            |   |   |   |   |   | ×        | x <sup>2</sup> (fitness) |    |   |   |   |   |   | X             | x <sup>2</sup> (fitness) |
| l:                         | 0 | 1 | 1 | 0 | 1 | 13       | 169                      | l: | 0 | 1 | 1 | 0 | 0 | 12            | 144                      |
| 2:                         | 1 | 1 | 0 | 0 | 0 | 24       | 576                      | 2: | 1 | 1 | 0 | 0 | 1 | 25            | 625                      |
| 3:                         | 0 | 1 | 0 | 0 | 0 | 8        | 64                       | 3: | 1 | 1 | 0 | 1 | 1 | 27            | 729                      |
| 4:                         | 1 | 0 | 0 | 1 | 1 | 19       | 361                      | 4: | 1 | 0 | 0 | 0 | 0 | 16            | 256                      |
|                            | I |   |   |   |   | Average: | 293                      |    |   |   |   |   |   | Average:      | 439                      |
|                            |   |   |   |   | 1 | Maximum: | 576                      |    |   |   |   |   | 1 | Maximum:      | 729                      |

**note:** generation I has better individuals than generation 0 – the population evolves

### another example:

■ task: find the weights (real numbers) of the polynomial

$$ax^3 + bx^2 + cx + d$$

how would you encode your individual?



### another example:

each weight is represented by a gene (string of realvalued numbers)

- crossover works the same
- mutation generates a new real-valued number

### another example:

- fitness calculation will be based on fitness cases
  - values of x for which the value of the polynomial is known
  - fitness is a notion of how far from the desired value the individual is

| X | individual | correct value | fitness (error) |
|---|------------|---------------|-----------------|
| 2 | 7.5        | 8.8           | 1.3             |
| 3 | 20.7       | 27.3          | 6.6             |
|   |            | total         | 7 9             |

### advantages:

- perform a global search in the search space
  - work with a population of individuals, rather than a single individual (candidate solution)
  - broader exploration of the search space, less likely to get trapped in a local maxima
- candidate solution is represented in a declarative way, independent of the search method
- easy to implement

### considerations:

- do not offer any guarantee of finding the optimal solution, nor any lower bound on the quality
- generally computationally expensive
  - although can be easily parallelised
- several parameters need to be set
  - population size
  - number of generations
  - mutation / crossover probabilities
  - tournament size
  - ... among others

## finishing off:

### Practical class this week:

- more on **GA**
- finish the implementation of the GA before moving on to this week's exercise



This work is licensed under a <u>Creative</u> <u>Commons Attribution-NonCommercial-ShareAlike 4.0 International License</u>.