江苏省泰州中学 2023~2024 学年秋学期高三年级期初调研考试

化学学科试卷

F-19 P-31 可能用到的相对原子质量: H-1 Li-12 C-12N-14O-16

S-16 V - 51Fe-56

一、单项选择题: 共13题, 每题3分, 共39分。每题只有一个选项最符合题意。

1. 有利于实现"碳达峰、碳中和"的是(

A. 风能发电 B. 粮食酿酒 C. 燃煤脱硫

D. 石油裂化

2. 下列化学用语或图示表达正确的是(

A. H_2S 分子的球棍模型:

B. NH₂的 VSEPR 模型:

C. 基态 24 Cr 原子价层电子轨道表示式:

- D. 2P, 电子云轮廓图:
- 3. X、Y、Z、W 四种短周期主族元素,原子序数依次增大。X、Y 与 Z 位于同一周期,且只有 X、Y 元素相邻。
- X 基态原子核外有 2 个未成对电子,W 原子在同周期中原子半径最大。下列说法不正确的是(
- A. 第一电离能: Z>Y>X
- B. X 单质中只有共价键
- C. Z、W 原子形成稀有气体电子构型的简单离子的半径: W < Z
- D. W_2X_2 与水反应生成产物之一是非极性分子
- 4. 完成下述实验,装置或试剂不正确的是(

- A. 图①装置可除去 CO_2 中混有的少量HCl
- B. 图②装置可用于制取并收集氨气
- C. 图③操作可排出盛有 $KMnO_4$ 溶液滴定管尖嘴内的气泡
- D. 图④装置可用于测量 O_2 体积

阅读下列资料,完成5~7题:含氯化合物在生产生活中应用广泛。舍勒发现将软锳矿和浓盐酸混合加热可产生氯

气,该方法仍是当今实验室制备氮气的主要方法之一。工业上以NaCl为原料可制得Cl₂、Cl₂O、HClO、

ClO;和ClO; 和ClO; 等。在催化剂CuCl,作用下,通过氧气直接篻化氯化氢制备氮气。该反应为可逆反应,热化学方程

式为 $4HCl(g)+O_2(g)=2Cl_2(g)+2H_2O(g)$ $\Delta H=-116kJ\cdot mol^{-1}$ 。

- 5. 下列有关说法正确的是()
- A. HCl与NaCl的晶体类型相同
- B. ClO₃ 和 ClO₄ 中的 O Cl O 夹角都为109°28′
- C. CuCl, 中Cu²⁺基态时末成对电子数为5
- D. Cl₂O与HClO都是由极性键构成的极性分子
- 6. 下列化学反应表示正确的是()
- A. 实验室制氯气: $MnO_2 + 4HCl(浓)$ $MnCl_2 + Cl_2 \uparrow + 2H_2O$
- B. 电解饱和 NaCl 溶液的阴极反应: $2Cl^- 2e^- = Cl_2$ 个
- C. $4HCl(g) + O_2(g) = 2Cl_2(g) + 2H_2O(1)$ $\Delta H > -116kJ \cdot mol^{-1}$
- D. 氯气溶于水具有漂白性: Cl₂ + H₂O ⇒ 2H⁺ + Cl⁻ + ClO⁻
- 7. 下列有关物质的性质与用途具有对应关系的是()
- A. Cl₂能溶于水,可用于工业制盐酸
- B. ClO₂有强篻化性,可用于水体消毒
- C. HClO 溶液显酸性,可用作漂白剂
- D. NH_4Cl 受热易分解,可用作氮肥
- 8. 硫及其化合物的转化具有重要应用。下列说法不正确的是()
- A. 废水中的 Hg^{2+} 可以被 H_2S 还原后除去
- B. 大气中的 SO_2 遇雨水最终形成 H_2SO_4 进入地面或海洋
- C. 工业排放尾气中的SO, 可与CaO和O, 反应生成CaSO。
- D. 水垢中的 CaSO₄ 可与饱和 Na₂CO₃溶液反应生成 CaCO₃
- 9. 化合物 Z 是合成用于降低体重、缩小腰围药物利莫那班的重要中间体。

下列有关X、Y、Z的说法不正确的是()

A. $X \rightarrow Y$ 、 $Y \rightarrow Z$ 都是取代反应

- B. X 分子中所有碳原子可能在同一平面上
- C. Y 在浓硫酸催化下加热可发生消去反应
- D. Z与足量 NaOH 溶液反应最多消耗 3molNaOH
- 10. 一定温度下,在容积恒为1L的容器中通入一定量 N_2O_4 ,发生反应 $N_2O_4(g)=2NO_2(g)$ $\Delta H>0$,体系中各组分浓度随时间(t)的变化如下表。下列说法不正确的是(

t/s	0	20	40	60	80
$c(N_2O_4)/(\text{mol}\cdot L^{-1})$	0. 100	0.062	0. 048	0. 040	0. 040
$c(\mathrm{NO}_2)/(\mathrm{mol}\cdot\mathrm{L}^{-1})$	0	0. 076	0. 104	0. 120	0. 120

- A. $0 \sim 60 \text{s}$, $N_2 O_4$ 的平均反应速率为 $\nu = 0.06 \text{mol} \cdot \text{L}^{-1} \cdot \text{min}^{-1}$
- B. 升高温度,反应 $2NO_2(g) \rightleftharpoons N_2O_4(g)$ 化学平衡常数值增大
- C. 80s 时,再充入 NO_2 、 N_2O_4 各0.12mol,平衡不移动
- D. 若压缩容器使压强增大, 达新平衡后混合气颜色比原平衡时深
- 11. 下列方案设计、现象和结论都正确的是()

	实验目的	方案设计	现象和结论
A	探究 NO_2 生成 N_2O_4 反应的吸放热	将充有 NO ₂ 的密闭烧瓶放入热水中	烧瓶内气体颜色变浅, \mathbf{NO}_2 生成 $\mathbf{N}_2\mathbf{O}_4$ 的反应为吸热反应
В	比较 CH ₃ COOH 和 HF 的酸性强弱	相同条件下,分别用 pH 试纸测定 0.1mol·L ⁻¹ CH ₃ COONa 溶液、 1.0mol·L ⁻¹ NaF溶液的 pH	NaF 溶液的 pH > CH ₃ COONa 溶液的 pH, 证明 CH ₃ COOH 的酸性比 HF 的酸性强
С	比较氢氧化铜和 氢氧化镁 $K_{\rm sp}$ 的 大小	向浓度均为 $0.1 ext{mol} \cdot ext{L}^{-1}$ 的 $ ext{MgCl}_2$ 、 $ ext{CuCl}_2$ 混合溶液中逐滴加入 $ ext{NaOH}$ 溶液	先出现蓝色沉淀, $K_{\rm sp}\left[{ m Mg(OH)}_2 ight] > K_{\rm sp}\left[{ m Cu(OH)}_2 ight]$
D	镀锌铁皮锌镀层 厚度的测定	装有镀锌铁皮的烧杯中加入足量稀硫酸	产生气泡的速率突然减小,证明镀锌层完全 反应

12. $X(OH)_2$ 为二元弱碱。室温下,配制一组 $c[X(OH)_2]+c[X(OH)^+]+c(X^{2+})=0.100 \text{mol} \cdot L^{-1}$ 的 $X(OH)_2$ 与

HCl的混合溶液,溶液中相关组分的物质的量分数随溶液 pH 变化的曲线如下图所示,下列说法正确的是

()

A. 由图可知 X(OH), 的 $K_{b2} = 10^{-9.2}$

B. pH = 6.2 的溶液中:
$$c[X(OH)^+] = c(X^{2+}) = 0.050 \text{mol} \cdot L^{-1}$$

C. 等物质的量的 $X(NO_3)_2$ 和 $X(OH)NO_3$ 混合溶液中 $c(X^{2+}) < c[X(OH)^+]$

D. 在 pH = 6 的水溶液中,
$$c(OH^-)=c(X^{2+})+c(H^+)+c[X(OH)^+]$$

13. 用草酸二甲酯(H₃COOCCOOCH₃)和氢气为原料制备乙二醇的反应原理如下:

$$H_3COOCCOOCH_3(g) + 2H_2(g) = H_3COOCCH_2OH(g) + CH_3OH(g) \qquad \Delta H = -16.3kJ \cdot mol^{-1}$$

乙醇酸甲酯

$$H_3COOCCH_2OH(g) + 2H_2(g) = HOH_2CCH_2OH(g) + CH_3OH(g) \qquad \Delta H = -14.8kJ \cdot mol^{-1}$$

在 2MPa 条件下,将氢气和草酸二甲酯体积比(氢酯比)为80:1 的混合气体以一定流速通过装有催化剂的反应管,草酸二甲酯的转化率、产物的选择性与温度的关系如下图所示。产物的选择性

$$=\frac{n_{\rm gg}}{n_{\rm gg}}$$
(乙醇酸甲酯或乙二醇) $=\frac{n_{\rm gg}}{n_{\rm gg}}$ (草酸二甲酯)

- A. 曲线 I 表示草酸二甲酯的转化率随温度的变化
- B. 其他条件不变,增大压强或升高温度,草酸二甲酯的平衡转化率均增大
- C. 其他条件不变,在190~195°C温度范围,随着温度升高,出口处乙醇酸甲酯的量不断增大
- D. 其他条件不变,在190~210°C温度范围,随着温度升高,出口处甲醇和乙二醇的物质的量之比

$$\left[\frac{n(CH_3OH)}{n(HOCH_3CH_3OH)}\right]$$
逐渐减小且大于 2

- 二、非选择题: 共 4 题, 共 61 分
- 14. $(15\,\%)$ 锌冶炼过程中产生的锌渣主要成分为铁酸锌 $(\mathbf{ZnFe}_{2}\mathbf{O}_{4})$ 和二氧化硅,以及少量的铜、铁、锌的氧化

物和硫化物。利用酸溶的方法可溶出金属离子,使锌渣得到充分利用。

(1)铁酸锌酸溶。铁酸锌难溶于水,其晶胞由 A、B 结构按照1:1交替累积而成,如图 1 所示。将铁酸锌粉末投入到 $1L1mol\cdot L^{-1}H_2SO_4$ 中,保温 $80^{\circ}C$,匀速搅拌。浸出液中 Fe^{3+} 和 Zn^{2+} 的浓度随时间的变化如下表所示。

t/h	0. 5	1. 0	1.5	2. 0	2. 5
$c \left(Z n^{2+}\right) / \left(mol \cdot L^{-1}\right)$	0. 10	0. 11	0. 15	0. 21	0. 21
$c \Big(F e^{3+} \Big) / \Big(mol \cdot L^{-1} \Big)$	0. 12	0. 13	0. 16	0. 21	0.30

- ①B 结构的化学式为。
- ②铁酸锌和硫酸反应的离子方程式为____。
- ③酸溶时,溶出效率较高的金属离子是

- (2)锌渣酸溶。将锌渣放入 $SO_2 1 mol \cdot L^{-1}H_2SO_4$ 、 $1 mol \cdot L^{-1}H_2SO_4$ 以及 $SO_2 H_2O$ 三种体系中实验,保持 80° C,匀速搅拌,所得结果如图 2 所示。已知: 25° C 时, $K_{\rm sp}$ (FeS) = 6.3×10^{-17} ; $K_{\rm sp}$ (ZnS) = 2.9×10^{-25} ; $K_{\rm sp}$ (CuS) = 6.3×10^{-36} ; $K_{\rm sp}$ (Cu₂S) = 2.5×10^{-48} ; FeS 和 ZnS 可溶于稀硫酸,CuS 和 Cu₂S 不溶于稀硫酸。
- ①在 $SO_2 H_2SO_4$ 体系中, Zn^{2+} 漫出率较高的原因是_____
- ②在 $SO_2 H_2SO_4$ 体系中,溶渣中 Cu_2S 的质量增加,原因是____。
- 15. (15 分) 有机物 F是一种新型大环芳酰胺的合成原料,可通过以下方法合成:

$$COOC_2H_5$$
 $COOC_2H_5$ DMF , Δ NO_2 DMF , Δ Δ DMF , Δ

- (1) A 中采用 sp^2 杂化方式的碳原子有______个。
- (2) D→E的反应类型为。

- (3) 若 B 直接硝化,最后主要产物的结构简式为
- (4) 写出一种符合下列条件的 B 的同分异构体的结构简式: 。
- ①能与FeCl、溶液发生显色反应;
- ②分子中含有2个苯环,共有3种不同化学环境的氢原子。

为原料制备 的合成路线流程图(无机试剂和有机溶剂任用,合成路线流程图示例见本题题干)。

16. (16 分)以废旧锂离子电池的正极材料[活性物质为 $\text{Li}_x\text{CoO}_2(x,1)$ 、附着物为炭黑、聚乙烯醇粘合剂、淀粉等]为原料,制备纳米钴粉和 CO_3O_4 。

- (1) 预处理。将正极材料研磨成粉末后进行高温煆烧。高温抜烧的目的是_____
- (2)浸出。将煅烧后的粉末(含 Li_xCoO_2 和少量难溶杂质)与硫酸混合,得到悬浊液,加入如图 1 所示的烧瓶中。控制温度为75°C,边搅拌边通过分液漏斗滴加双氧水,充分反应后,滤去少量固体残渣,得到 Li_2SO_4 、 CoSO_4 和硫酸的混合溶液。漫出实验中当观察到______,以判断反应结束,不再滴加双氧水。

- (3)制钴粉。向浸出后的溶液中加入 NaOH 调节 pH ,接着加入 $N_2H_4\cdot H_2O$ 可以制取单质钴粉,同时有 N_2 生成。已知不同 pH 时 Co (II)的物种分布图如图 2 所示。 Co^{2+} 可以和柠檬酸根离子 $\left(C_6H_5O_7^{3-}\right)$ 生成配合物 $\left[CoC_6H_5O_7\right]^-$ 。
- ①写出pH=9时制钴粉的离子方程式: _____。
- ②pH>10后所制钴粉中由于含有Co(OH),而导致纯度降低。若向pH>10的溶液中加入柠檬酸钠

$\left(\mathrm{Na_{3}C_{6}H_{5}O_{7}}\right)$,可以提高钴粉的纯度,原因是。
(4) 请补充完整由浸取后滤液先制备 $\operatorname{CoC_2O_4} \cdot 2\operatorname{H_2O}$,并进一步制取 $\operatorname{Co_3O_4}$ 的实验方案:取浸取后滤液,
,得到 Co_3O_4 。[已知: $Li_2C_2O_4$ 易溶于水, CoC_2O_4 难溶于水, $CoC_2O_4 \cdot 2H_2O$ 在空气中加热时的固
体残留率 $\frac{$ 剩余固体质量}{原固体质量} \times 100%)与随温度的变化如图 3 所示。实验中须使用的试剂有 $2 mol \cdot L^{-1} \left(NH_4\right)_2 C_2 O_4$
溶液、 $0.1 \text{mol} \cdot \text{L}^{-1} \text{BaCl}_2$ 溶液]
(5) 用下列实验可以测定 $\operatorname{Li}_x \operatorname{CoO}_2$ 的组成:
实验 1:准确称取一定质量的 Li_xCoO_2 样品,加入盐酸,加热至固体完全溶解(溶液中的金属离子只存在 Li^+ 和
Co^{2+}),冷却后转移到容量瓶中并定容至 $100\mathrm{mL}$ 。
实验 2: 移取 25.00mL 实验 1 容量瓶中溶液,加入指示剂,用 0.01000 mol· L^{-1} EDTA $\left(Na_{2}H_{2}Y\right)$ 溶液滴定至终
点(滴定反应为 $Co^{2+}+Y^{4-}=CoY^{2-}$),平行滴定 3 次,平均消耗 EDTA 溶液 $25.00mL$ 。
实验 3:准确称取与实验 1 中等质量的 Li_xCoO_2 样品,加入一定量的硝酸和 H_2O_2 溶液,加热至固体完全溶解。
冷却后转移到容量瓶中并定容至 100mL 。移取 10.00mL 溶液,通过火焰原子吸收光谱法测定其中 Li^+ 浓度为
$6.000 \times 10^{-3} \text{mol} \cdot L^{-1} $ $_{\circ}$
计算化学式 $\operatorname{Li}_x\operatorname{CoO}_2$ 中 x 的值,并写出计算过程。
17. (15分) 乙苯被吸附在催化剂表面发生脱氢可生成苯乙烯、苯甲醛等,生成苯乙烯的相关反应如下。反应 1:
$C_6H_5CH_2CH_3(g) = C_6H_5CH = CH_2(g) + H_2(g)$ $\Delta H_1 = +117.6kJ \cdot mol^{-1}$
反应 2: $CO_2(g) + H_2(g) = CO(g) + H_2O(g)$ $\Delta H_2 = +41.2 \text{kJ} \cdot \text{mol}^{-1}$

反应 3: $2H_2(g) + O_2(g) = 2H_2O(g)$ $\Delta H_3 = -483.6 \text{kJ} \cdot \text{mol}^{-1}$

- (1) 反应 4: $C_6H_5CH_2CH_3(g)+1/2O_2(g)=C_6H_5CH=CH_2(g)+H_2O(g)$ $\Delta H_4=$ _____kJ·mol⁻¹。
- (2)较低温度下,向乙苯脱氢的反应体系中加入少量 \mathbf{O}_2 ,乙苯平衡转化率较高而苯乙烯的选择性较低,其原因可能是_____。
- (3)向乙苯脱氢反应体系中加入 \mathbf{CO}_2 ,乙苯转化率与体系中 \mathbf{CO}_2 分压强的关系如题图 1 所示。随 \mathbf{CO}_2 的增加,乙苯转化率先增大后减小的可能原因为_____。

- (4)研究发现在 V_2O_5 / MgO 催化剂表面进行 CO_2 的乙苯脱氢反应中,V (+5 价)是反应的活性中心,转化过程如题图 2 所示。
- ①转化 I 发生反应的化学方程式为_____。反应一段时间后,催化剂活性有所下降,原因可能有反应过程产生的积碳覆盖在活性中心表面和____。
- ②简述转化Ⅱ的作用____。
- ③ CO_2 参与的乙苯脱氢机理如题图 3 所示(α 、 β 表示乙苯分子中C或H原子的位置;A、B为催化剂的活性位点,其中A位点带部分正电荷, B_1 、 B_2 位点带部分负电荷)。

图中所示反应机理中步骤Ⅰ和步骤Ⅱ可描述为。