Fiche de TD n° 1

Exercice n° 1

- 1) Dans un chiffrement basé sur la transposition par colonnes utilisant une matrice dont la dimension 2x4 (2 lignes et 4 colonnes) et la clé (4 2 1 3), quel est le chiffrement du message "EINSTEIN"?
- 2) Quel est le résultat du chiffrement du message "EINSTEIN" si on utilise des transpositions périodiques dont la taille du bloc est 4 et la clé (4 2 1 3) ?

Exercice n° 2

En utilisant la numérotation des lettres de l'alphabet suivante :

A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	s	T	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- 1. Coder le message "EINSTEIN" à l'aide du chiffrement par décalage dont la clé K = 5.
- 2. Déchiffrer le message "SJBYTS" sachant qu'il a été créé par un chiffrement par décalage dont la clé K=5.
- 3. On utilise une substitution affine pour chiffrer un message de la manière suivante :

$$\forall k = (a, b) \in K, x \in P$$
 $e_k(x) = (ax + b) [26] = y, d_k(y) = a^{-1}(y - b) = x$

- a. Chiffrer le message de la question 1 en utilisant la clé K=(3,12)?
- b. Calculer 3⁻¹ [26] en utilisant l'algorithme d'Euclide étendu.
- c. Déchiffrer le message de la question 2 ?

Exercice n° 3

On considère un chiffrement de Hill s'effectuant par bloc de 2 lettres à l'aide d'une clé de chiffrement qui est la matrice carrée d'ordre $2: K = \begin{bmatrix} 2 & 5 \\ 1 & 4 \end{bmatrix}$.

On cherche à chiffrer le message : M = "CODAGE" par le chiffrement de HILL.

- 1) A l'aide la grille utilisée dans l'exercice n° 2,
 - a. Calculer les matrices $Y_1 = KX_1$, $Y_2 = KX_2$ et $Y_3 = KX_3$ tel que $M = X_1X_2X_3$
 - b. A l'aide du tableau précédent, en associant les éléments des matrices Y₁, Y₂, et Y₃, quel est le résultat de chiffrement du message "CODAGE".
- 2) Déterminer K^{-1} la matrice inverse de K.
- 3) Déchiffrer le message "WGGDGW" en utilisant la même clé K pour vérifier que ça redonne le message d'origine.