Example No. 5: Add Descending Grid Points

If the maximum number of grid points is greater than the number of grid points and the distribution is negative at an interpolated point, the code will automatically add grid points (up to the maximum), at those points where the distribution is negative.

Example No. 6: Condensation and Restart

The effect of source and removal mechanisms on the first moment of the distribution is not computed if condensation is included in the G.D.E.

Example No. 7: Input Errors to DC GDE

Notice that the code automatically resets the last multiplet number to twice the number of discrete sizes. The error messages should be self-explanatory.

Example No. 8: DC GDE with Source

Notice that "STEADY STATE" is printed before the output for the discrete regime if the steady state approximation is used to calculate the cluster concentrations.

Example No. 9: DC GDE and Steady State

If the spline interpolation method is changed during the simulation, the code will repeat the printout using the new interpolation method.

0. 2 1.00E-20 2 1.00E-20 3 1.00E-20 1.E-20 1.E-20 1.E-20 1.E-20 1.E-20 1.E-20 1.E-20 1.E-20 1.E-20 1.E-20	
1.00E- 1.00E- 1.00E- 1.655E26 1.655E26 5.00E-3 5.00E-3	
1. 606.000 600 600 600 600 600 600 600 60	
1.19E- 1.19E- 1.687E- 1.778E 1.778E 1.54E- 1.54E- 1.55E-	1.60£+85
## 1921125 ## 1921125	3. 400. +05
	276E-13
ANO. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	730E-13
	. 200E-12

	EXAMPLE NO. 1		IMPUT ERRORS				
SMALLEST PARTICLE SIZE	.100E+02		LARGEST PARTICLE SIZE	TICLE 517	1 2	•	.1000E+01
RELATIVE INTEGRATION ERROR	20-3001·		ABSOLUTE INTEGRATION ERROR	TEGRATION	I ERROR	•	
TOTAL NUMBER OF GRID POINTS	110		MAXIMUM NUMBER OF GRID POINTS	BER OF GR	ID POINTS		=
MUMBER OF DISCRETE SIZES	•		NUMBER OF #	OF MULTIPLETS GIVEN	GIVEN		: •
NUMBER OF OUTPUT TINES			SUITCH INTE	RPOLATION	SWITCH INTERPOLATION AT OUTPUT MEMBER	CHBER	, a
STEADY STATE AT OUTPUT HUNBER	•		NUMBER OF GRID POINTS GIVEN	RID POINT	S GIVEN		•
NUMBER OF INTERPOLATING POINTS			NUMBER OF CO	DHTINUOUS	CONTINUOUS SOURCE TERMS	2	· ua
NUMBER OF CONTINUOUS REHOUAL TERMS	2		NUMBER OF DISCRETE SOURCE	ISCRETE S	OURCE TERMS		•
NUMBER OF DISCRETE REMOUAL TERMS	•		COMDENSATION (0-NO/1-YES)	1 (0-NO/1	•YES)		• ••
INITIAL SPLINE INTERPOLATION METHOD NUMBER	-		CALL SETUP !	EFORE IN	SETUP BEFORE INTERPOLATING (0-MO/1-YES)	CB=M0/1 = VE	5) 5
SPLINE NUMBER FOR SUITCHED METHOD	ເທ		CALL SETUP F	OR SUITCE	SETUP FOR SUITCHED METHOD (8-NO/1-YES)	8-H0/1-YES	
TIME DEPENDENT CONG. ZEUMP. COEFFICIENT (0-NO/1-YES)	10/1-YES) 6	•	USER SUPPLIE	D PARAME	SUPPLIED PARAMETER SUITCHES	•	1 0 0 0
	ETTO	OUTPUT TIMES	w				
HO. TIME NO. TIME NO. 1	TIME	중+	TINE . 4006E+01	0	TINE	Ė	TIME
	GRID	GRID POINTS					
HO. 51ZE NO. 51ZE NO. 1 .1000E+02 2 .7743E+01 3 7 .2154E+01 8 .1668E+01 9	S12E .5995E+01 .1292E+01	2 ~ 9	SIZE .4642E+01 .1000E+01	Šr.	SIZE .3594E+01		SIZE .2783E+ 0 1
SMALLEST SIZE MUST BE LESS THAN LARGEST SIZE							
OUTPUT TIMES MUST BE NON-NEGATIVE AND IN ASCENDING ORDER	ASCENDING ORDE	Oc.					
MANBER OF CONTINUOUS SOURCES IS QREATER THAN	THOM 3						
HUMBER OF CONTINUOUS REMOUALS IS GREATER THAN	THAN 3						
WHETHER TO CALL SETUP HAS NOT BEEN PROPERLY SPECIFIED	ILY SPECIFIED						
IF COMMUNATION COEFFICIENT IS TIME DEPEND	TIME DEPENDENT HAS NOT BEEN PROPERLY SPECIFIED	EN PROPE	RLY SPECIFIE				
GATIVE				•			
	MALLEST PARTICI ECTIVELY ARE	LE AT INITIAL 73256E-15	ITIAL TIME DO	ES NOT #	TIME DOES NOT MATCH GIVEN DERIVATIVE .36613E-15	ERIUATIUE	
INITIAL DISTRIBUTION MEGATIVE FOR A PARTICLE SIZE.		.1006E+62					

		Š	EXAMPLE NO. 2 S		SIMPLE CORQUIATION					
SMALLEST PARTICLE SIZE			.4190E-20		LARGEST PARTICLE SIZE	FICLE 517	W		. 2888E-89	
RELATIVE INTEGRATION ERROR			.1000E-01		ABSOLUTE INTEGRATION ERROR	FECRATION	ERROR		.10005-19	
TOTAL NUMBER OF GRID POINTS	Ñ		88		HAXIMUM MUNBER OF GRID POINTS	DER OF CA	IID POINTS		8	
NUMBER OF DISCRETE SIZES			•		NUMBER OF MULTIPLETS GIVEN	JLTIPLETS	GIVEN		•	
NUMBER OF OUTPUT TIMES			ю		SUITCH INTER	POLATION	INTERPOLATION AT OUTPUT NUMBER	UMBER	•	
STEADY STATE AT OUTPUT HUMBER	BER		●.		NUMBER OF GR	GRID POINTS GIVEN	S GIVEN		•	
NUMBER OF INTERPOLATING POINTS	INTS		-		NUMBER OF CC	NTINGOUS	CONTINUOUS SOURCE TERMS	S	•	
NUMBER OF CONTINUOUS REMOV	REMOUAL TERMS		•	_	NUMBER OF DISCRETE SOURCE TERMS	SCRETE 9	OURCE TERMS		•	
NUMBER OF DISCRETE REHOUAL TERMS	TERMS		•		CONDENSATION (0-MO/1-YES)	(CB=H0/1	•YES)		•	
INITIAL SPLINE INTERPOLATION METHOD MUNBER	ON METHOD MU	19ER	•		CALL SETUP 1	EFORE IN	CALL SETUP BEFORE INTERPOLATING (0-NO/1-YES)	(0-H0/1-	'YES) 1	
SPLINE MUNBER FOR SUITCHED NETHOD	METHOD		•	Ī	CALL SETUP F	OR SUITC	CALL SETUP FOR SUITCHED METHOD (0-NO/1-YES)	0-NO/1-5	€S) •	
TIME DEPENDENT COAG./EUAP. COEFFICIENT (0-MO/1-YES)	COEFFICIENT	(B-H0/1	• VES) ●		JSER SUPPLIE	D PARAME	USER SUPPLIED PARAMETER SUITCHES	•		Ф
			OUTPU'	OUTPUT TIMES						
TIME HO.	TINE .3000E+03	Š.	TIME . 6860E+63	У	TINE	?	111/6	į	TIME	
			GRID	GRID POINTS				-		
S12E .4190E-20 2 .1016E-17 8 .1009E-14 14	512E -1185E-19 -6068E-17 -3107E-14	Suara Suara	\$12E .3352E-19 .1716E-16 .8788E-14	5 4 5	\$12E \$481E-19 .4855E-16	₹º=5	\$126 .2682E-18 .1373E-15	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	512E . 7585E-18 . 3884E-15	
	. 1591E-11	ដ	.4500E-11	25	12736-10	S.	.3609E-10	7	. 1018E-69	

HO DATA INPUT ERRORS FOUND

	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	.2846E-17 .4801E-16	48146-14	2868E-1	37066-12	8436E-1	28085-1	5912E-1	12256-1	2651E-1	.4351E-10	.44835-10	.3795E-10	17805-16	.1463E-10	.1794E-10	2241E-10	3538E-10	31795-10		12695-16	.1721E-15	1736E-14	.6156E-13	. 22055E-123	11726-11	.2119E-11	. 2579E-11	.1694E-10	. 2859E-10	. 458#E-10	4217E-10	.21736-10	15275-10	21306-10	- 2030E-10	36416~10	TOTAL VOLUME	95/35	- Yali - 4
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHREACC	.8536E-14 .1918E-08 .8578F-68	. 5106E-07	641014 - 650 64426 - 66	1389E-05	12527F- 0 5		.5542E-05	.8117E-05	. 1455F104	. 1020E-04	.7428E-05	. 44476-05	1048	90-30909	.5254E-06	4704F-195	.3664E-06	. 2328E- 9 6	HION	32825.	39696-08	-2190E-07	.3882E-06	. 9831E-96	.2614E-05	.33412-65	67555	.9443E-05	111272-04	- 3226a.	28-39LE	15146-65	75255 - 46	.5267E-46	51105-06	. 3684E-66	TOTAL SURFACE AREA	Chresce	11166-01
TIME .6. SE	NUMBER DISTRIBUTION N(LOG(D))	. 6701E+03 . 4051E+04 . 1706E+05	.5078E+05	16025+65	1727E+06		20705	. 4306E+05	.31535+05	11 (25+85	. 4950E+04	. 1803E+04		20 + 10 CO = 1	. 9196E+01	1989EF -	1045040	.3475E+00	.1104E+00	INTERPOLATED DISTRIBUTION	.1801E+64	₩93E+04	.3080E+05	. 1365E+06	.1728E+ 06	11496+96	.7341E+05	.3711E+05	.2594E+05	.1547E+05	349636	2746F+8-1	6497E+02	.16155+02	.2825E+01	.13736+01	.2008:+94 .2008:+94		1700	
=	PARTICLE DIAMETER D CM		.5657E-06	1131611	1600E-05		4526E-05	. 6401E-05	. 9952E-95	18105-04	.2560E-04	. 3621E- 4 4	22425-44	10246-03	.1448E-03	100 A BELL 100 A		.5794E-03	.8193E-03	IN	.2379E- 0 6	. 3364E-46	67285-46	.9515E-06	13466-05	.2691E-05	. 38 46 E-45	.7612E-65	1076E-0	120	3045E-		77.5	17225-43	13961	. 3446E-43	. 68966-63	HEAN DIANETER	100 CH	
	PARTICLE VOLUME CC	. 41996-20 . 11856-19 . 33526-19	. 9481E-19	75856-18	21455-17	1-3665E-17	4855E-16	21-36-61	. 3884E-15	31075-14	8788E-14	.2486E-13	100001	. 5625E-12	. 1591E-11	. 4500E-11	35005-10	. 1018E-09	.2886E-89		.7047E-20	19936-19	15056-19	. 4510E-18	3508F-17	. 1021E-16	.2887E-16	23696-15	.6532E-15	52255-14	.1478E-13	.1182E-12	.33446-18	25765-11	75625-11	. 2141E-10	17125-49	MEAN VOLUME	30107	
	£	-	4 1	n ce	·~•	50 0	. 2	다! 다	nic H+	1	15	9:		0	• ·		יי ניין עו ניין	4	ដ		-	ณเ	7) (F	ın (٥٢-	. 00 (O @) ee	n c) -	اما	• (~	••	3 9	-1	RJ (*	•			

	!		e i		
8	PARTICLE VOLUME CC	PARTICLE DIAMETER D CM	HUMBER DISTRIBUTION N(LOG(D)) 1/CC	SURFACE AREA DISTRIBUTION S(LOG(D)) CHIRZ/CC	UOLUME DISTRIBUTION U(LOG(D)) CC/CC
≕ଷମ	. 4109E-20 . 1105E-120 . 33EE-120	.2822E-86 .4882E-86	.3581E+02 .7427E+03 .6485E+04	.4500E-11 .1867E-09	.1500E-18 .8802E-17
υ¥	. 0481E-19	.5657206 .8001E06	2872E+05		
91-	.7585E-18 .2145E-17	.11316-05 .1600E- 0 5	.1305E+06 .1532E+06	÷÷	
09 0	.6068E-17	2000000.	.1308E+06 .8954F+05	2104E-8	
9:	48556-16	45265-65	. 5914E+05	90	2871E-1
- 0.0	.3884E-15		31525+05	8114E-8	
7	.3107E-14	. 1810E-04	.1114E+05	à ô	
55	.8788E-14 .2486E-13	.36216-04	.4057E+04 .1805E+04	1 0 21E-0 7435E-0	
<u>-2</u>	. 7031E-13	.5121E-04	.5401E+03	on d	3797E-1
200	5625E-1	1024	31816-62	104BE-0	
ซีก็	.4580E-11	. 2648E-63	.9196E+81 .3986E+81	94	1 463E-1 1 794F-1
ល្អក	1273E-10	. 2897E-03	19966+01		
วีซีน	1018E-00	.5744F-493	3475E+80		→
ì				10001	•
•			INTERPOLATED DISTRII	STRIBUTION	
٦n	.7047E-20	.2379E-96	17996+63	.3181E-10	
ימונ	.5638E-19	.4757E-06	14632+05	1040E-07	~ ~
₹ U	.1595E-18	.6728E-06	.4981E+05	. 7083E-07	-
ωr	1276E-1	1346E-05	1475E+86	8389E-96	٠.,
- 00 (.1021E-16	2601E-05	11036+06	.2511E-05	-
P.	2887E-1 8165E-1	. 38 - 66-65	. 7233E+ 85	32926-05	~-
==	2369E-1	76125-65	37846+65	.6743E-05	85556-11
ie:	1847E-1	15225	. 1550E+05	11296-04	-
- E	1478E-3	30455-04	.7625E+04 .3067E+04	. 1119E-04 . 8932E-65	77
91	. 4189E-13	4396E-04	1009E+04	.588 9E-95	4220E-10
90	33446-1	- 12E-0	. 6408m+	15148-65	21736-10
	2676E-1	1722-03	. 5788E+01	. 5304E-06	1549E-10
ដូល	.7568E-11 .2141E-10	. 245E-03	. 1373E+01	.5267£~ 6 6 .5118E- 6 6	.2939E-10
ហេមា បេះ	.1712E-65	. 4872E-63 . 6896E-63	. 5728E+00	.4271E-46 .3484E-66	.3468E-10 .3541E-10
	MEAN VOLUME	MEAN DIAMETER	TOTAL MUMBER	TOTAL SURFACE AREA	TOTAL UQUINE
	.50105-15	.3276E- 8 5	1187E+06	.1120E-04	.5946E-10

	VOLUME DISTRIBUTION U(LOG(D)) CC/CC		. 7939E-20 . 1657E-17	.1561E-14	1470E-13	25266-12	. 7458E-12	. 2842E-11	.5868E-11	12235-14	.3466E-10	43625-10	1700F1 10	.2763E-10	17895-10	1704F-18	.2541E-10	- 3266E-1	31796-10		.1634E-18	.1246E-16	.5194E-14	3664E-13	. 48425-12	1080E-11	.40396-11	.8537E-11	28685-10	. 4538E-10	. 42225-10	.2174E-10	15288-10	21385-10			1018L 0010F	.5946E-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHITZ/CC		. 35146-12 . 35146-14	16556-67	. 1102E-05	1000E-05	2000E-05	3768E-05	2500E-	. 8100E-65	. 1149E-04	. 1022E-04	. 44515105	. 2239E-05	. 1648E-65	.5254E-06	. 5263E-06	. 3665E-86	. 2328E-06	HION	.4123E-11	25255 - 00 100 - 32555 - 00 100 - 32555 - 00	. 4632E-97	2311E- 8 6	.1527505	22205-65	. 4502E-05	.6729E-05	11300	. 8942E-65	. SB836-05	1514E-05	. 7526E-06	. 5267E- 6 6	. 5118E - 55 . 4271E - 66 . 3604E - 66		CHARACC AREA	1126-
TIME6000E+03 SE	MUMBER DISTRIBUTION N(LOG(D)) 1/CC		. 13986+61 . 13986+63	16462+05	10695+05	1361E+06	. 15585+65 87315+85	. 5855E+ 6 5	42738+65	20545+05	11166+05	49645+04	. 5403E+03	13596+03	01075+62	.3986E+01	. 1996E+01	3475E+	.11046+60	INTERPOLATED DISTRIBUTION	. 2319E+02	.6250E+03	.3257£+85	.8124E+05	13425+06	.1058E+06	. 49476+05	36976+05	1552E+05	30706+04	.1616E+64	65000	.1615E+02 .5782E+01	-2826E+01	.5728E+00 .2068E+00		1/CC	. 1 -5 2E+ -6
F	PARTICLE DIANETER D CH	L	2829E-46	. 5657E-06	.1131E-05	. 1600E-05		45265-05	.6461E-05	1280E-04	. 1810E-04	.2560E-04	. 5121E-04	. 7242E-64	. 14487163	. 2048E-03	. 2897E-03	5794E-03	.8193E- 0 3		. 2379E-06	.33646-06	.67285-06	13465-06	1963E-65	. 3806E-05	. 5382E-0S	. 1076E-04	15225-04	- 364SE - 64	. 4346E-84 . 6838F-84	186126-04	17225-03	.24368-63	. 6896E-83	MEGAN DIAMETER	5	. 354£2 8 5
	PARTICLE VOLUME CC	46-54017	11856-19	2401E-19	7585E-18	. 2145E-17 . 5058F-17	.1716E-16	4555E-16	30045-15	. 1099E-14	.3107E-14	.2486E-14	.7031E-13	19896-12	.1591E-11	. 4500E-11	. 1273E-10 .3600F-10	1018E-09	.2880E-09		.7047E-20	.19935-19	. 1595E-18	.1276E-17	.360E-17	.2887E-16	. B165E-16	65326-15	. 1847E-14 . 5225F-14	1478E-13	. 1182E-13	.3344E-12	.2676E-11	.756EE-11	. 6054E-10	MEAN UOLLING		5135°086.
	9	•	• W C	ŦŲ	10	r-α	a	2:	= n	E	<u> </u>	15	12	œ <u>c</u>		100	יי ער	7	S)		(บต	41	n w	۰-	o ca	•:	• (U) •	23	10.4	92	* 0	: : :	= 0.1	22			

EXAMPLE NO. 3 COAGULATION AND SOURCES

				Š	EAMAPLE NO. 3		CHARGE AND SOLVED					
SHALLE	SMALLEST PARTICLE SIZE	SIZE			.4190E-20		LARGEST PARTICLE	TICLE SIZE	Lui		,2880E-09	
RELATI	RELATIVE INTEGRATION ERROR	ON ERROR			. 1080501		ABSOLUTE IN	INTEGRATION ERROR	ERROR		.10006-19	
TOTAL	TOTAL NUMBER OF GRID POINTS	ID POINTS	(0		X		MAXIMUM NUMBER OF GRID POINTS	ER OF GR	ID POINTS		• m	
NUMBER	NUMBER OF DISCRETE SIZES	SIZES			•	-	MUMBER OF MULTIPLETS GIVEN	ILTIPLETS	GIVEN		•	
NUMBER	MUMBER OF OUTPUT TIMES	CINES			m		SULTCH INTER	POLATION	SUITCH INTERPOLATION AT OUTPUT MUNBER	UMBER	•	
STEADY	STEADY STATE AT OUTPUT	TPUT NUMBER	#		•		NUMBER OF GR	GRID POINTS GIVEN	S GIVEN		•	
MHBER	NUMBER OF INTERPOLATING		POINTS		•		NUMBER OF CO	NTINUOUS	CONTINUOUS SOURCE TERMS	is.	ດເ	
NUMBER	NUMBER OF CONTINUOUS RENOVAL TERMS	IS REMOUA	AL TERMS		•		NUMBER OF DI	SCRETE S	DISCRETE SOURCE TERMS		•	
NUMBER	NUMBER OF DISCRETE REHOL	REMOUAL	JAL TERMS		9		CONDENSATION (0-NO/1-YES)	(0-NO/1	-4E5)		•	
IHITIA	INITIAL SPLINE INTERPOL		ITION METHOD NUMBER	MBER	•		CALL SETUP	EFORE IN	SETUP BEFORE INTERPOLATING (0-NO/1-YES)	(-1/0H-0)	/ES) 1.	
SPLINE	SPLINE NUMBER FOR SUITCH	UITCHED	HED METHOD		5		CALL SETUP F	OR SUITC	SETUP FOR SUITCHED METHOD (0-NO/1-YES)	0-HO/1-YE	9 (SI	
TINE D	TIME DEPENDENT COAG./EV	ġ.	COEFFICIENT (0.NO/1-YES)	(0*NO/1	-YES) 0		USER SUPPLIE	SUPPLIED PARAMETER	TER SUITCHES	•		•
					PTUO	OUTPUT TIMES	10					
30 10 10 10 10 10 10 10 10 10 10 10 10 10	TIME	Šu	TIME .3000E+03	Ş [™]	TIME.600E+03	0	TIME	9	TIFE	į	TIME	
					GRID	GRID POINTS	٠					
5 ###	512E 2199E-20 2199E-20 1019E-17 5625E-11	Sum Ze	512E .1185E-19 .6068E-17 .3107E-14	genaria	SIZE .3352E-19 .1716E-16 .8788E-14	ine ± ± €	\$126 .94816-19 .48556-16 .24866-13	83725.	\$12E .2682E-18 .1373E-15 .7031E-13 .3600E-10	₹œñæ¥	SIZE .7585E-18 .3884E-15 .1989E-12	

NO DATA INPUT ERRORS FOUND

	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	28466 481016 481016 481016 10218686 10218686 102186	707AL WOLUME CC/CC .5946E-10	
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CM**2/CC	8. 18. 18. 18. 18. 18. 18. 18. 18. 18. 1	TOTAL SURFACE AREA CNEX2/CC .1128E-#4	
·	NUMBER DISTRIBUTION R(LOG(D))	. 14693 . 14693 . 14694 . 1469	TOTAL NUMBER TA 1/CC 1/379E+06 VOLUME ADDED	••
TIME	PARTICLE Diameter Dich	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	MEAN DIAMETER CM . 2968E-05 MECF	
	PARTICLE UDILIME U CC	1.00	76AN VOLUME CC .4312E-15	
	, ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

ភ្នំ <i>ក្</i> ហាយ៩៧៧৮ ៧២១ ១៧៧៥៩៧៧២៩៧	7-A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	### ### ### ### ### ### ### ### ### ##	NUMBER DISTRIBUTION NCLOG(D)) NCLOG(D)	5 SUBTACE AREA DISTRIBUTION STICOG(D)) CARAZZCC . 6503E-09 STREED STREE	UCLUME CC/CC . 22 - 1412E - 18 . 1412E - 18 . 1412E - 18 . 1526E - 13 . 1526E - 13 . 1526E - 13 . 1526E - 13 . 1486E - 13
			VOLUME ADDED		
•		¥	MECHANISM (CC/CC) 1 .2576E- 2 .7579E-	7579E-13	

	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	96826 1301866 130186	TOTAL WOLUME CC/CC .6103E-10	
SECONDS	SUMPACE AREA DISTRIBUTION S(LOG(D)) CHERZCC	1648E-09 1648E-09 1945-E-09 1988E-09 1988E-09 1988E-09 1988E-09 1988E-09 1988E-09 1988E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09 1888E-09	TOTAL SURFACE AREA CMXX2/CC .1898-04	-13 -11
TIME = .6000E+03 SE	NUMBER DISTRIBUTION N(LOG(D)) 1/CC	.2311E+92 .9556ff+93 .9556ff+93 .9556ff+95 .9556ff+96 .9556ff+96 .9556ff+96 .9556ff+96 .9556ff+96 .9556ff+96 .9556ff+96 .9556ff+96 .9566ff+96	TOTAL NUNBER 1/CC .1968E+06 VOLUME ADDED	MECHANISM (CC/CC) 1 .5152E-1 2 .1516E-1
•	PARTICLE DIAMETER D CM	**************************************	HEAN DIANETER CM .2828E-05	E
	PARTICLE UOLUME U U C C	**************************************	MEAN VOLUME CC .3101E-15	
	ċ	MUNTINGS		

				<u>۵</u>	EXAMPLE NO. 4	ADD GRI	ADD GRID POINTS				
SMALL	SMALLEST PARTICLE SI	3Z15 :			.41906-20		LARGEST PARTICLE SIZE	TICLE SI	32		.5000E-09
RELAT	RELATIVE INTEGRATION	TON ERROR	E.		.1000E-02		ABSOLUTE INTEGRATION ERROR	TEGRATION	H ERROR		.1000E-19
TOTAL	TOTAL NUMBER OF GRID	RID POINTS	ITS		92		MAXIMUM NUMBER OF GRID POINTS	BER OF G	RID POINTS		52
NUMBE	NUMBER OF DISCRETE SIZES	E SIZES			•		NUMBER OF MULTIPLETS GIVEN	ULTIPLETS	S GIVEN		•
NUMBE	NUMBER OF OUTPUT TIMES	TIMES			m		SUITCH INTE	RPOLATION	SUITCH INTERPOLATION AT OUTPUT NUMBER	UMBER	•
STEAD	STEADY STATE AT OUTPUT NUMBER	UTPUT NU	MBER		•		NUMBER OF G	OF GRID POINTS GIVEN	IS GIVEN		▼ .
NUMBE	HURBER OF INTERPOLAT	LATING P	ING POINTS		•		NUMBER OF C	ONT INDOUG	NUMBER OF CONTINUOUS SOURCE TERMS	G	NJ.
NUMBE	NUMBER OF CONTINUOUS		REMOUAL TERMS		സ		NUMBER OF D	ISCRETE !	NUMBER OF DISCRETE SOURCE TERMS		•
	NUMBER OF DISCRETE REHOUAL TERMS	E REMOUA	L TERMS				CONDENSATION (0-NO/1-YES)	1 (0-NO/)	(S3A=1		•
INITI	AL SPLINE IN	TERPOLAT	INITIAL SPLINE INTERPOLATION METHOD MUMBER	UMBER	•		CALL SETUP 1	DEFORE IN	CALL SETUP BEFORE INTERPOLATING (0-NO/1-YES)	(8-H0/1	-YES) 1
SPLIN	SPLINE MURBER FOR SUITCHED METHOD	SUITCHE	D METHOD		9		CALL SETUP #	OR SUIT	CALL SETUP FOR SUITCHED METHOD (0-NO/1-YES)	0-N0/1-1	/ES) 0
TIME	DEPENDENT CO.	AG./EUAP	TIME DEPENDENT COAG./EUAP. COEFFICIENT (0-NO/1-YES)	7 (8-NO/	1-YES) @		USER SUPPLIE	ED PARAME	USER SUPPLIED PARAMETER SUITCHES	9	• • • • • • •
					OUT	OUTPUT TIMES					
¥0.	TIME	ξω	TIME .12005+03	Š.	TIME . 3000E+03	5	TINE		TIME	į	TIME
					GRII	GRID POINTS					
\$-rg	512E .4199E-20 .1077E-17	50m 1	512E 512E 50000 50	Şmañ	SIZE .1000E-19 .2321E-16 .2321E-16	Ž+ 9 9	\$12E .1077E-19 .1077E-15	동마큐다	512E .5996E-19 .5996E-15	<u> </u>	SIZE . 2321E-18 . 2321E-14
2		ð									

NO DATA INPUT ERRORS FOUND

66

	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	2.000	TOTAL VOLUME CC/CC . BZ00E-10	
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHRECC		TOTAL SURFACE AREA CHIIZOC AND 1129E-04	G -
TIME -0. SE	NUMBER DISTRIBUTION N(LOG(D)) 1/CC	.67201 20121	TOTAL HUMBER 1/CC 1/384E+66 UGLUME ADDED	MECHANISM (CC/CC
P	PARTICLE DIAMETER D CM	80000000000000000000000000000000000000	MEAN DIAMETER CM .2967E-05	-
	PARTICLE UOLUME CC		MEAN UOLUME CC .4483E-15	

	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	153488 118 153488 118 153488 118 15348 118 15348 118 15348 118 15348 118 118 118 118 118 118 118 118 118 1	TOTAL UOLUME CC/CC .6133E-10	
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CNEERCC	144 - 146 -	TOTAL SURFACE AREA CAREACC CAREA.1164E-04	. Ompring. 2. See 13. See
TIME1200E+03 Si	NICCON INC.	21836 21	TOTAL NUMBER 1/CC .1520E+06 VOLUME ADDED	MECHANISH (CC/CC) 1 1090E-12 2 3032E-12 3 -,9657E-12 4 -,9858E-14
-	PARTICLE DIAMETER CM		NEAN DIAMETER	
	PARTICLE VOLUME CC	4	MEAN VOLUME CC .4035E-15	
	ċ			

	NO USTRIBUTION UCLOG(D))		AREA TOTAL UOLUME CC/CC .6117E-10	
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D))	85844444444444444444444444444444444444	TOTAL SURFACE CN*#2/CC .1215E-04	. 2576E-13 . 7579E-12 . 7579E-12
TIME3880E+63	NUMBER DISTRIBUTIO H(LOG(D))	8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-	MECHANISM (CC 1 125 2 255 3 - 755
	PARTICLE DIAMETER D CM		MEAN DIAMETER CN .2851E-05	
	PARTICLE VOLUME U CC		MEAN UOLUME CC .3578E-15	

POINTS
GRID
DESCENDING
5 ADD
2
PLE

SRALL	SMALLEST PARTICLE SIZE	SIZE			.5000E-20		LABGEST PARTICLE S175	TTOTE ST	25		041244
) 							1	:	
RELAT	RELATIVE INTEGRATION ERROR	ION ERR	3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3		.2000E-02		ABSOLUTE INTEGRATION ERROR	TEGRATIO	N ERROR	7	.1000E-04
TOTAL	TOTAL NUMBER OF GRID POINTS	RID POIN	TTS TTS		•		MAXINUM NUMBER OF GRID POINTS	ER OF G	RID POINTS		25
NOMBE	NUMBER OF DISCRETE SIZES	E SIZES			•		NUMBER OF MULTIPLETS GIVEN	JLTIPLET	S GIVEN		•
KUMBE	NUMBER OF OUTPUT TIMES	TIMES			•		SULTCH INTER	POLATION	SULTCH INTERPOLATION AT OUTPUT MURBER	CHBER	•
STEAD	STEADY STATE AT OUTPUT		NUMBER		•		NUMBER OF GRID POINTS GIVEN	NID POIN	IS GIVEN		ល្
KUNDE	NUMBER OF INTERPOLATING POINTS	LATING P	OINTS		ഡ		NUMBER OF CO	HTINDOU	NUMBER OF CONTINUOUS SOURCE TERMS	S	•
MUMBE	NUMBER OF CONTINUOUS REHOVAL TERMS	JUS REMO	UAL TERMS		5		NUMBER OF DI	SCRETE	NUMBER OF DISCRETE SOURCE TERMS		•
KURBE	HUMBER OF DISCRETE REMOVAL TERMS	: REMOUA	IL TERMS		69		COMDENSATION (0-NO/1-YES)	1 (0-NO/	I-YES)		•
INITIA	AL SPLINE INT	TERPOLAT	INITIAL SPLINE INTERPOLATION METHOD MUNBER	MBER	•		CALL SETUP 1	EFORE 11	CALL SETUP BEFORE INTERPOLATING (0-NO/1-YES)	(0-NO/1-YE	5) 1
SPLINE	SPLINE NUMBER FOR SUITCHED METHOD	SUITCHE	D METHOD	-	D	•	CALL SETUP F	OR SUIT(CALL SETUP FOR SUITCHED METHOD (0=M0/1=YES)	9=H0/1=YES	•
TIME 1	DEPENDENT COA	IG./EUMP	TIME DEPENDENT COAG, ZEUAP, COEFFICIENT (0-NO/1-YES) 0	(0-NO/1	•YES) 0		USER SUPPLIE	D PARAM	USER SUPPLIED PARAMETER SUITCHES	9	
					OUTPU	OUTPUT TIMES			•		
-	TIME	운	TIME	£	TIRE	٠ چ	TINE		TIME	į	TIME
					GRID	GRID POINTS					
કે~~	SIZE .5000E-20 .1203E-11	Şun	SIZE .1247E-18 .3000E-18	Şma	SIZE .3110E-17 .5888E-18		SIZE .7755E-16		SIZE .1934E-14	<u>ξ</u> φ	SIZE . 4824E-13
•		•		•		2					

NO DATA INPUT ERRORS FOUND

	OOLURE DISTRIBUTION U(LOG(D)) CC/CC	74746-17 -79676-11 -396486-11 -29116-10 -44616-10 -31626-10 -3566-10		14056-11 19876-13 19876-13 19886-11 16886-10 11686-10 19886-10 19886-09 17976-09 1276-09 1276-09 1276-09	. 4227E-09
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHAKE/CC	.1333E-09 .169BE-07 .1130E-05 .175E-05 .675E-06 .4921E-06 .4294E-06	T10N	. 1946 - 07 . 1946 - 07 . 25716 - 06 . 7556 - 05 . 47196 - 05 . 47196 - 05 . 47196 - 05 . 6786 - 04 - 12156 - 04 - 23066 - 04 - 3726 - 04 - 3726 - 04 - 3726 - 04 - 3726 - 04 - 1216 - 05 - 1386 - 05 - 1586 - 05	.1821E-04
TIME .O. SEC	NUMBER DISTRIBUTION N(LOG(D))	.94295+05 .63895+05 .163895+05 .16995+05 .16955+05 .16955+05 .16955+05 .17935+06 .57935+06	INTERPOLATED DISTRIBUTION	****** * C	.1392E+06
I.T.	PARTICLE DIAMETER D		INI		.29825-05
	PARTICLE UOLUME CC			1461E-19 14648F-19 14648F-19 14648F-17 16658F-17 16658F-15 16658F-15 16658F-15 1671F-12 1871F-12 1871F-12 1871F-12 1871F-12 1871F-13 1871F	.3037E-14
	9			20040000000000000000000000000000000000	

EXX CURUE FIT NEGATIVE AT FOLLOWING POINTS

	64
	SIZE
	141
	12
	£
	POINTS IN PARTICL
	2
	OIR
	Ē
	ABOU
	THE ABOUE !
	뇽
	•
1 .14906-12 2 .41176-12 3 .37866-10	IRST
#1262 2007	-
~~174	Ĭ
	P
-1004	₹
	E
	ã
·	THE
	Ē
	э Д
	3
	Ę
	ᆵ
	7
	3
	STEP UILL BE RETRIED UITH THE ADDITION OF
	111

	VOLUME DISTRIBUTION U(LOG(D)) CC/CC	4		28346-11 18846-11 18846-11 18846-11 18938-	.7575E-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) .CHERE/CC	14.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	TION	19924E - 08 75574E - 08 75574E - 08 75574E - 08 75574E - 08 65756 - 08 65756 - 08 75756 - 08 75756 - 08 75756 - 08 7576 - 08 7	+0-3C82T.
TIME -0. SE(NUMBER DISTRIBUTION N(LOG(D)) 1/CC	. 638868 + 6	INTERPOLATED DISTRIBUTION	1.1302E+05 1.1802E+06 1.1802E+06 1.1802E+06 1.1802E+06 1.1802E+05 1.1802E+05 1.1802E+03 1.1803E+03	.13936+96
Ţ	PARTICLE DIAMETER D CH	61100000000000000000000000000000000000	H		.3011E-05
	PARTICLE VOLUME CC	0.000000000000000000000000000000000000		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	.5437E-15
	ž	는 도로 보는 보다 보다 보다 되는 보다 되는 보다		ກຸດທຸດທຸດພະສຸດສຸດພະສຸດພະສຸດພະສຸດພະສຸດພະສຸດພະສຸດ	

RESTART
£
COMBENSATION
9
Ę
EXAMPLE

				i							-
SMALL	SMALLEST, PARTICLE SIZE	512E			.1000E-17		LARGEST PARTICLE SIZE	TICLE SIZ	Įų.		.1000E-11
RELAT	RELATIVE INTEGRATION	OH ERROR	œ		.3000E-02		ABSOLUTE INTEGRATION ERROR	TEGRATION	# ERROR		.1000E-19
TOTAL	TOTAL MINDER OF GRID	IID POINTS	15		25		MAXIMUM MUNDER OF GRID POINTS	BER OF OF	NID POINTS		8
NUMBE	NUMBER OF DISCRETE ST	S12E5			•		NUMBER OF MULTIPLETS GIVEN	ULTIPLETS	GIVEN		•
NUMBE	NUMBER OF OUTPUT TIME	INES			ro ro		SWITCH INTE	RPOLATION	INTERPOLATION AT OUTPUT NUMBER	UMBER	•
STEAD	STEADY STATE AT OUTPU	ITPUT NUMBER	18ER		•		NUMBER OF G	GRID POINTS GIVEN	S GIVEN		•
NUMBE	NUMBER OF INTERPOLATI		NG POINTS		-		NUMBER OF C	SUTINDOUS	CONTINUOUS SOURCE TERMS	<u>s</u>	•
	NUMBER OF CONTINUOUS		RENOVAL TERMS		.		NUMBER OF D	SCRETE S	DISCRETE SOURCE TERMS		•
NUMBE	NUMBER OF DISCRETE RE		HOUAL TERMS		•		CONDENSATION (0-NO/1-YES)	1 (0-H0/1	-YES)		**
INITI	INITIAL SPLINE INTERP	ERPOLATI	OLATION RETHOD NUMBER	MIER	•		CALL SETUP	BEFORE IN	SETUP BEFORE INTERPOLATING (0-KO/1-YES)	(0-H0/1-)	(ES) 1
SPLIN	SPLINE NUMBER FOR SUI		TCHED NETHOD		•		CALL SETUP	OR SUITC	SETUP FOR SUITCHED METHOD (0-NO/1-YES)	0-NO/1-YE	• (5)
TINE	TIME DEPENDENT COAG./	G./EUAP.	EURP. COEFFICIENT (8-NO/1-YES)	. (8-NO/	1-YES) 0		USER SUPPLIE	ED PARAME	USER SUPPLIED PARAMETER SUITCHES	•	106666
					ATUO	OUTPUT TIMES	ú				
	TIME .1000E+01	ξω	TIME.	ξm	TINE .2000E+03	Š.	TIME	£	TIME	62	TIME
					G-81B	GRID POINTS					·
Sec. deligible	51ZE -1606E-17 -3162E-16 -1606E-14 -3162E-13 -1606E-14	Šω#4 ¥	\$12E .1778E-17 .5623E-16 .1778E-14 .5623E-13	Šeari Seari	SIZE 31626-17 10006-15 31666-15	S.4428	\$12£ .5623£-17 .1778E-15 .5623E-14	321125 23127	SIZE .1000E-16 .316ZE-15 .1000E-13 .316ZE-12	\$ waa7	912E -1778E-16 -5623E-15 -1778E-13 -5623E-12

HO DATA INPUT ERRORS FOUND

	UCLOGED)	844844446868444848484848484848484848484	99200000000000000000000000000000000000
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHEE/CC	.3395E- .4317E- .437E- .1748E-	4193E - 05 4193E - 05 74133E - 05 74133E - 05 74133E - 05 7545E - 05 7565E - 05 756
* .1000E+01	NUMBER DISTRIBUTION N(LOG(D))	.8875E+86 .6982E+86 .6139E+86 .8139E+86 .3185E+86 .28128E+85 .2385E+85 .2385E+85 .2385E+85 .2385E+85 .2385E+85 .2385E+85 .2385E+85 .2385E+85 .2385E+83 .45285E+83 .45285E+83 .4628E+83 .4628E+83 .4628E+83 .4628E+83 .4628E+83 .4658E+83 .46	
TINE	PARTICLE DIAMETER OR	1241E - 655	1.156566.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055666.055
	PARTICLE VOLUME CC	1.05.00	2.0334
	9	MAUNDUNG SEGENGADUNG SEGENGADUNG UND AUND AUND UND UND MANAGER SEGENGADUNG SEGENGA	

	VOLUME DISTRIBUTION V(LOG(D)) CC/CC	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHIRE/CC	2055557 2055557 2055557 2055557 2055557 2055	9197E - 05 98693E - 05 98693E - 05 98693E - 05 1130E - 04 1130E - 05 1230E - 05 123	
2000E+03	NUMBER DISTRIBUTION M(LOG(D))		115546+07 115546+07 115546+07 115546+07 1156866+066 116666+066 116666+066 116666+066 116666+066 116666+066 116666+066 116666+066 116666+067 116666+067 116666+067 116666+067 116666+067 116666+067 11666+0	
TIRE	PARTICLE DIAMETER D CM	######################################	### ### ##############################	!
	PARTICLE UOLUME U	1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	13334E-117 13336E-117 13336E-117 13336E-116 13336E-116 13336E-118	
	€	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	UUTUUUTE O-UUTTUUC BAO-UUTT UUTTUUTUUTTUUTTUUTTUUTTUUTTUUTTU	

				ä	EXAMPLE NO. 7	INPUT	INPUT ERRORS TO DO	报				
SHAL	SMALLEST PARTICLE SIZE	E SIZE			.1000E+01		LARGEST PARTICLE	TICLE SIZE	Ħ		.1000E+02	
RELA	RELATIVE INTEGRATION	TION ERROR	œ		.1000E-02		ABSOLUTE INTEGRATION ERROR	TEGRATION	ERROR		.1000E-19	
TOTA	TOTAL NUMBER OF GRID	GRID POINTS	15		12		MAXINUM NUMBER OF		GRID POINTS		22	
NUMB	NUMBER OF DISCRETE SI	TE SIZES			-		NUMBER OF IN	OF MULTIPLETS	GIVEN		ณ	
HCHB	NUMBER OF OUTPUT TIMES	TIMES			-		SUITCH INTERPOLATION	RPOLATION	I AT OUTPUT NUMBER	KUNBER	Ħ	
STEA	STEADY STATE AT OUTPUT NUMBER	OUTPUT NUP	HER		Ca		NUMBER OF G	GRID POINTS	S GIVEN		*	
K	NUMBER OF INTERPOLATI	DLATING PC	NG POINTS		Ou		HUMBER OF C	ONT INDOUS	CONTINUOUS SOURCE TERMS	2	•	
HUMB	HUMBER OF CONTINUOUS		REMOUAL TERMS		9		NUMBER OF DISCRETE SOURCE	SCRETE :	OURCE TERMS		•	
	HUMBER OF DISCRETE RENOVAL TERMS	TE REMOUAL	. TERMS		69		CONDENSATION (0.NO/1.YES)	1 (0+NO/)	«YES)			
INIT	IAL SPLIKE IN	STERPOLATI	INITIAL SPLINE INTERPOLATION METHOD NUMBER	MBER	9		CALL SETUP 1	EFORE IN	SETUP BEFORE INTERPOLATING (0-MO/1-YES	(8-H0/1-	YES) 3	
SPLI	SPLINE NUMBER FOR SUITCHED METHOD	SUITCHED	METHOD		0		CALL SETUP (OR SUIT	SETUP FOR SUITCHED METHOD (0-NO/1-YES)	0-NO/1-Y	(ES) 0	
11	TIME DEPENDENT COAG./	JAG.ZEUAP.	EUAP. COEFFICIENT (0-NO/1-YES)	(0-N0/1	-YES) 0		USER SUPPLIE	SUPPLIED PARAMETER	TER SUITCHES	•	0 5 9 9 0	•
						OUTPUT TIMES						
£-	TIME	6	TIME	ž	TIME	¥0.	TIRE		TIME	į	TIRE	
	21	ໜ			GRID POINTS	AT THE I	THE FOLLOWING MULTIPLETS	TIPLETS				
					GRII	GRID POINTS						
₹ -1≻	SIZE .2000E+01 .4000E+01	Š _ú a	SIZE .1900E+02 .4804E+01	<u>\$</u> ma	512E .2000E+01 .5771E+01	중 4 형	512E .2000E+01 .6931E+01	5°5	SIZE .3000E+01 .8326E+01	န့် ကက္က	512E .5800E+01 .1980E+02	
1	IF CONDENSATION IS	IN IS INCL	INCLUDED THERE CA	CAN BE HO	DISCRETE	SIZES						
\$	WETHER TO CALL SET		UP HAS NOT BEEN PROPERLY SPECIFIED	ROPERLY	SPECIFIED							
7	BETA ROUTINE IS NOT		POSITIVE							٠		
A FE	REF. J. COLLOID AND	ITH NO CO	O COMBULATION IT IS BETTER TO USE THE METHOD OF INTENFACE SCIENCE, U.68, P.173 (1979)	IS BETT	ER TO USE TH P.173 (1979	E PETHOI	OF CHARACTERISTICS	RISTICS				
¥I	THE DISCRET	E CONTINU	IF THE DISCRETE CONTINUOUS EQUATIONS ARE USED, THERE MUST BE AT LEAST	PRE US	ED, THERE M	IST DE AT		2 DISCRETE SI	SIZES			
7	MULTIPLET MUNDER		Z IS GREATER THAN TUICE THE MUMBER OF DISCRETE SIZES	M TUICE	THE MURBER	OF DISCA	ETE SIZES					
3	-CRID POINT NUMBER		3 HAS A MULTIPLET NUMBER LESS THAN OR EQUAL TO THE NUMBER OF DISCRETE SIZES	. NUMBER	LESS THAN 0	R EQUAL	TO THE NUMBE	R OF DIS	CRETE SIZES			
7	HULTIPLET NUMBERS	COS.	AND 3 AME OUT OF	IT OF ORDER	DER							
3	CRID POINTS MUST BE		IN ORDER, CHECK	CHECK GRID POINT	INT MO. 3							
3	CRID POINTS MUST BE		IN ORDER, CHECK	CHECK GRID POINT	INT NO. 4							
3			IN ORDER, CHECK	CHECK CRID POINT NO.	INT NO. 7							

	.5240E-12	.10006-24	8	ณ	•	ເນ	4	ຒ	•	1-YES) 1	•VES) 0	1		TIME			512E .3757E-20 .1485E-17 .523E-12 .1953E-12
					NUMBER		1 5			(O-K)	(- NO/1.	•		÷			**************************************
	Ħ	1 ERROR	RID POINTS	GIVEN	SUITCH INTERPOLATION AT OUTPUT NUMBER	S GIVEN	OF CONTINUOUS SOURCE TERMS	OURCE TERMS	•YES)	CALL SETUP BEFORE INTERPOLATING (0-NO/1-YES)	CALL SETUP FOR SUITCHED METHOD (0-NO/1-YES)	TER SUITCHES		TINE			512E .1400E-20 .5225E-10 .1950E-15
	FICLE SI2	FEGRAT10	BER OF CA	JLTIPLETS	POLATION	GRID POINTS GIVEN	NTINUOUS	SCRETE S	1 (0*NO/1	EFORE IN	OR SUITC	D PARAME		€	TIPLETS		11 TO
DC GDE LITH SOURCE	LARGEST PARTICLE SIZE	ABSOLUTE INTEGRATION ERROR	MAXINUM NUMBER OF GRID POINTS	NUMBER OF MULTIPLETS GIVEN	SUITCH INTER	NUMBER OF GR	NUMBER OF CO	NUMBER OF DISCRETE SOURCE TERMS	CONDENSATION (0.NO/1.YES)	CALL SETUP B	CALL SETUP F	USER SUPPLIED PARAMETER	"	TIME.1000E+02	GRID POINTS AT THE FOLLOUING MULTIPLETS		5126 .90666-21 .19476-18 .72686-16
DC GDE													OUTPUT TIMES	ģ •	AT THE F	CRID POINTS	544000 446000
EXAMPLE NO. 8	.6540E-22	.5000E-02	25	ŧĢ∕	*	7	-			•		/1-VES) 0	ОПТР	TIME. 1800E+01	GRID POINTS	GRID	512E .654@E-21 .7257E-19 .2709E-16
iei										BER		ÒN-0		ž ^m			Šuani i
			vı			ER	INTS	REMOUAL TERMS	HOUAL TERMS	INITIAL SPLINE INTERPOLATION NETHOD MUNBER	METHOD	TIME DEPENDENT COAG./EUAP. COEFFICIENT (0*NO/1*VES)		TIME .			512E -5232E-21 -2785E-19 -1969E-16
	812E	ION ERROR	RID POINTS	E SIZES	TIMES	UTPUT NUMBER	LATING POINTS		E REMOUAL	TERPOLATIO	SUITCHED	4G./EUMP.		ξ'n	•		Z Gum±⊕
	SMALLEST PARTICLE SIZE	RELATIVE INTEGRATION	TOTAL NUMBER OF GRID	NUMBER OF DISCRETE SI	NUMBER OF OUTPUT TIME	STEADY STATE AT OUTPU	HUMBER OF INTERPOLATI	NUMBER OF CONTINUOUS	NUMBER OF DISCRETE RE	SPLINE IN	SPLINE NUMBER FOR SUITCHED METHOD	PENDENT CO.		TINE .	œ		5126 .39246-21 .39246-13 .37626-17 .14046-14
	SHALLES	RELATIO	TOTAL H	NUMBER	NUMBER	STEADY	HUMBER	NUMBER	NUMBER	INITIAL	SPLINE !	TIME DEF		MO.	G		\$ 2558

NO DATA INPUT ERRORS FOUND

		F	TIME -0. 8	SECONDS	
	PARTICLE VOLUME CC	PARTICLE DIAMETER D CM	NUMBER DISTRIBUTION N(LOG(D)) 1/CC	SURFACE AREA DISTRIBUTION S(LOG(D)) CHEE/CC	VOLUME DISTRIBUTION V(LOG(D)) CC/CC
	10.74000	0683E=87	2874F+09	100 3F 40 F	
- 030		. 9997E-07	33585+08	1055E-05	1757E-13
7 4	. 900E-21	11985-06	. 2570E+0B	115BE-0	
S)	1400E-20	13886-96	.2067E+88	1251E-0	
-10	1008E-19	26895	7804E+07	17616-05	
60 (.2705E-19	37246-96	.4795E+87	2000E-1	
2 9	. 1047E-18	7191E-06	18116+07	2942E0	
!=	.5225E-18	90-30555	11135+07	3401E-0	
o c	,1402E-17	-1388E -	- 6838E+ 0 6	4142E-4	9587E1
24	1000E-16	2681E-05	18316+06	4136E-	1848E-1
r.	2769E-16	37265-05	45036+05		
96	10545-15	21955-05	2916E+05	4743E-0	1-32895
. 🕮	5233E-15	50-38666·	17816+05	5592E-	9318E-1
0.5	14045-14	13825-04	0150E+04	5548E-0	1285E-1
9 -	37676-14	10016	7280F+04	100 100 100 100 100 100 100 100 100 100	
:0	27126-13	3728E-04	.26916+03	.1175E-05	7299E-1
S	.7278E-13	-2180E-04	7951E+02	6703E-06	5787E-1
<u> </u>	.1953£-12 .5240£-12	. 1000E-03	.7862E+01	.3539E-06	4246E-1 4120E-1
			INTERPOLATED DISTRI	TRIBUTION	
-	.4531E-21	.95295-07	3609E+08	.1036E-05	.1635E-13
លព	.5850E-21	. 1638E-66	31785+08	.1075E-05	18595-13
¬ ▼	11225-29	12895-96	. 2304E+68	. 1204E:05	. 2587E-13
ьc	80-3000 10000	.1636E- 0 6	16205+68	. 1362E- 0 5	.3714E-13
o r~	1651E-19	31506-06	.6116E+67	. 1918E-05	. 1010E-12
DB (4430E-10	43996-06	3759E+07	- 22766 - 45	.1665E-12
3 4	31005-18	8477F-46	14205+87	. 3205E-05	45295-12
	81-30558	11786-05	.8705E+06	37956-45	7450E-12
u m	.6162E-17	. 2275E-05	29443996°	. 4821E-65	18285-11
41	.1653E-16	.3161E-05	.9786E+05	. 3846E-65	. 1605E-11
ņφ	11906-15	61036-65	.2998E+05	35896-65	35696-11
اجا	.3194E-15	.8491E-05	.2418E+05	.54636-45	.7722E-11
. 0.	.6571E-15 .2360E-14	16385-04	.12362+05 .5448E+04	. 45946-45	12536-10
2:	.61716-14	-22766-04	.1191E+04	19386-65	.735EE-11
<u>- 0</u>	.4443E-13	4304E-04	14636+63	85138-	.6235E-11
ΩI	.1192E-12	. 6106E-04 . 8485E-04	.4342E+62 .1172E+62	.5085E-96 .2551E-96	.5177E-11
	MEAN VOLUME	HEAN DIAMETER		TOTAL SURFACE AREA CONTREPCE	TOTAL VOLUME
	. 9293E-18	. 2391E-06	.1131E+08	.8101E-05	.10516-10

			CONCENTRATION COCCCC	.6540E-15 .3924E-15 .1962E-15 .7848E-16 .3270E-16	TOTAL VOLUME CC/CC .1354E-14					CONCENTRATION U	.6616E-14 .4916E-15 .1239E-15 .7696E-16	TOTAL VOLUME CC/CC .7426E-14
	(0)		SURFACE AREA CONCENTRATION CHIXZ/CC	.7859E-07 .1637E-07 .5934E-08 .5934E-08	TOTAL SURFACE AREA CHIMEA/CC .1404E-06					SURFACE AREA CONCENTRATION S CHXXZ/CC	.7941E-06 .4677E-07 .1031E-07 .5751E-08	TOTAL SURFACE AREA CHINENCE .8653E-86
VOLUME ADDED	MECHANISM (CC/CC) 1 0. 2 0.	DISCRETE REGIME	CONCENTRATION N 1/CC	. 1000E+08 . 1000E+07 . 1000E+07 . 1000E+06	TOTAL NUMBER 1/CC 1440E+68	VOLUME ADDED	MECHANISM (CC/CC)	STEADY STATE	DISCRETE REGIME	NUMBER CONCENTRATION N 1/CC	.1012E+09 .3754E+07 .6313E+06 .2908E+06	TOTAL NUMBER 1/CC .1062E+09
			PARTICLE DIAMETER D CM	. 6298E-07 . 6298E-07 . 7205E-07 . 7935E-07	MEAN DIAMETER CM .5508E-07		-			PARTICLE DIAMETER D CN	. 49896-07 . 62986-07 . 7256-07 . 7356-07	MEAN DIAMETER CM .5078E-07
			PARTICLE VOLUME CC	. 6540E-22 . 1368E-21 . 1962E-21 . 3279E-21	MEAN VOLUME CC .9401E-22					PARTICLE UOLUME U CC	.6548E-22 .1368E-21 .1962E-21 .2616E-21	MEAN VOLLING CC 65936-28

		F	TIME1000E+00	SECONDS	
ō.	PARTICLE UOLUME C CC	PARTICLE DIAMETER D CM	NUMBER DISTRIBUTION H(LOG(D)) 1/CC	SURFACE AREA DISTRIBUTION S(LOG(D)) CHREZCC	UOLUME DISTRIBUTION U(LOG(D)) CC/CC
	11000	74.31040	9	9-3030	
- ณ (. 5525 101 101 101 101 101	- 10000 - 10000		40E-6	
	. 00-00:	.1198E-06	ò	155E-0	2306E-1
ın.	1400E-20	13886-96	2052E+0	24BE-0	2887E-1
ع اد	1008E-12	. 2680E-85	7799E+8	9-309L	7861E-1
- 63	27056-19	37245-0	47946+0	988E-0	12976-1
D 4	12576-19	5175E-0 7191E-0	1811E+0	142E-0	
. =	.5225E-18	9993E-0	11135+0	191E-0	5814E-1
OL C	.1402E-17	2000 BC1.	90	142E-8	
, 4	100gE-16	2621E-0	1831E+0	376-0	1849E-1
ហុម	.2709E-16	3726E-0	00	964E-0	1220E-1 2610F-1
-۱۵	.19505-15	7195E-0	2916E+0	743E-0	
53 (. \$233E-15	90085-0	•	392E-0	
) .	37675-14	19316-0	2545E+0	1795-0	
- · ·	10118-13	9683E-€	77095+0	743E-0	
ų (r	72786-13	5180E-0	•	0-3E•	
Ŧ.	. 1953E-12	.7198E-64 .1608E-63	.21746+02 .78626+01	.35395-86	.4246E-11
1		•	IST		
_	Ú	70-30250 ·	35878	10235-85	
• ru	5850E-2	.1038E-66	3164	. 1070E-05	
en 4	7672E-2	.1136E- 0 6	27716	11236-05	
run	22936-2	16365-06	16176	1360E-05	
40	61536-2	. 2274E- 0 6	20456	16155-05	
- 40	44306-1	. 439eE-e6	375BE	22755-65	
o-=	1180E-1	,6101E-06		22-44-1-45 12-45-1-45	
) w (•	11785-05	87956+96	.3795E-05	
u m	61625-1	. 22755-155	2566	.4821E-65	
41	16536-1	.3161E- 9 5	97e6	.3846E-85	
D 401	•	. 6103E-05	2002	30000	
~	31946-1	.8481E-95	2418E	. 0460M 1400	
	3000	16.38C	.5448E+04	459er-es	
.	~ ~	31625-04	1966	. 1560E-05	
wn.	. 11926-13	40-134-15	. 4342E+#3	20128. 20128. 20128. 20128.	51776-11
.	-	. 1455-14	ğ	.cb)lt-w	36486-111
	MEAN VOLUME	MEAN DIAMETER	TOTAL NUMBER	TOTAL SURFACE AREA CHEER/CC	TOTAL VOLUME
	. 9316E~1E	- 32.5E2 -	.1128E+01	Ş	-14916-14

			CONCENTRATION CONCENTRATION CC/CC	. 37276-15 . 37276-15 . 19146-15 . 77326-16	TOTAL UOLUME CC/CC 1413E-14					CONCENTRATION CONCENTRATION CC/CC	.4949E-15 .1238E-15 .7579E-16 .1187E-15	TOTAL VOLUME CC/CC .7426E-14
	55) FF-17		SURFACE AREA CONCENTRATION 5 CMXXZ/CC	.8847E-07 .3551E-07 .1593E-07 .5846E-08	TOTAL SURFACE AREA CHIRALICO CHIRALICO 1482E-06		(CC/CC) .6540E-16 .5852E-20 .1695E-17			SURFACE AREA. CONCENTRATION S CMXX2/CC	. 7942E-06 . 4677E-07 . 1030E-07 . 5731E-08	TOTAL SURFACE AREA CHARZACC
UOLUME ADDED	MECHANISM (CC/CC) 1 .8587E-17 21014E-19	DISCRETE REGIME	NUMBER CONCENTRATION N 1/CC	.11276+08 .2850E+07 .9757E+06 .2956E+06	TOTAL NUMBER 1/CC .1550E+08	VOLUME ADDED	MECHANISM (CC/C	STEADY STATE	DISCRETE REGIME	CONCENTRATION 1/CC	.1912E+09 .3753E+07 .6310E+06 .2897E+06	TOTAL NUMBER 1/CC .1062E+09
	•		PARTICLE DIAMETER D	. 49996 - 67 . 62986 - 67 . 79356 - 67 . 85486 - 67	MEAN DIAMETER CM .5457E-07		=			PARTICLE DIAMETER D CM	.4999E-67 .6298E-67 .7269E-67 .7935E-67	MEAN DIAMETER CM .5078E-07
			PARTICLE UOLUME CC		MEAN VOLUME CC .9118E-22					PARTICLE UOLUME UC	. 654 13086. 13088. 25188. 25188. 2778. 2778.	MEAN VOLUME CC . 6992E-22

	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	1600E113 1675E113 2843E113	2831E-1 4716E-1 7817E-1	21356-1 35246-1	5814E-1 9589E-1 1581E-1	1849E-11	5687E-1	3587E-1	7299E-1 5787E-1 4246E-1 120E-1		15396-13	.1782E-13	.3658E-13	.1005E-12	.2743E-12 .4527E-12	.7451E-12 .1246E-11	.1828E-11 .1606E-11	. 1204E-11 . 3569E-11	11116-10	. 7352E-11	.6235E-11 .5177E-11 .3749E-11	TOTAL VOLUME CC/CC .1051E-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHREFCC	. 1030 1000 1000 1000 1100 1100 1100 100 1	. 1224E - 65 . 1457E - 65 . 1756 - 65	24 C	.34916-05 .41436-05 .49176-05	4138E	. 5743E - 95	2980E	.11755-05 .67035-06 .35395-06 .24715-06	TRIBUTION	.9691E-06	. 1038E-05	1141E-05	. 1969E-65	,2697E-05 ,3204E-05	. 3795E - #5 . 4566E - #5	. 488396 . 6 5	3509E-	. 5555E-05	1938E-1	. 8513E-06 . 5086E-06 . 2651E-06	TOTAL SURFACE AREA CHIXZ/CC .8087E-05
TIME = .1000E+01 SE	MUMBER DISTRIBUTION N(LOG(D)) 1/CC	.3590 .320 .320 .880 .880 .840 .840 .840 .840 .840 .84	. 1255E+08 - 1255E+08 - 7755E+08	. 2942E+07 . 1810E+07	.11135+67 .68395+06 .42035+06	. 1832E+06 . 4506E+05 . 2766E+05	.2916E+85 .1781E+85	. 2545E+04 . 7710E+03	.2691E+03 .7951E+02 .2174E+02 .7862E+01	NTERPOLATED DISTRIBL	, 3397E+ 0 8	. 2686E+08	. 1595E+ 0 8 . 9869E+ 6 2	. 5089E+07	. 2307E+07 . 1415E+07	.8706E+06 .5424E+06	. 9711E+05	2008E+65	. 1296E+05	.1191E+84 .4966E+03	.14036+63 .43426+02 .11726+63	TOTAL NUMBER 1/CC .1104E+08
	PARTICLE DIANETER D CM	.9997E-07 .1977E-06 .198E-06	11000000000000000000000000000000000000	. 5175E-86	. 1989E-05	.3726E-05 .3726E-05	71956-05 99986-05 19998-05	1001E-04	.3728E-64 .5188E-64 .7198E-64	Á	.9529E-07	11.368-96	. 1536E-06 . 2274E-06	. 3159E-06	.6101E-06	1178E- 6 5	.2275E- 6 5 .3161E- 6 5	. 61836-65 . 84836-65	11796-04	.3162E-04	. 4394E-04 . 6196E-04 . 8485E-04	NEAN DIANETER CN .2419E-06
	PARTICLE VOLUME CC		. 3400F - 20 . 3757F - 20 . 1008F - 120	72521 72521 74761 19476 189	. 14626-18 . 37626-17	. 2709E-16 . 2709E-16 . 7268E-16	. 1950E-15	.3767E-14			4531E-	7672E-6	2293E-2	,1651E-19 ,443@E-19	31896-1	2557E-1	5162E-1	199E-1	1571E-1	171E-1 656E-1	.11926-12 .31996-12	HEAN VOLUME CC . 9521E-18
	ē.	₩ 007	10 to 10	20 G	(u) (r)	4 No	~ ec o		លាយៈឧល		~ 1	มต.	. v. a	<u>r- co</u>		⊶ณı	7 T 1	0 W P	- 60	0 - 1	เมคา	

			CONCENTRATION CC/CC	.14066-14 .24006-15 .15416-15 .68546-16	TOTAL VOLUME CC/CC .1917E-14					CONCENTRATION U CC/CC	.6625E-14 .4818E-15 .1236E-15 .7134E-16 .1126E-15	TOTAL VOLUME CC/CC .7414E-14
	56) 76 – 16 56 – 19		SURFACE AREA CONCENTRATION S CMXXZ/CC	. 1688E-06 . 2295E-07 . 1282E-07 . 5183E-08	TOTAL SURFACE AREA CHERACE CHERACE.		.6540E-15 .6540E-15 .5852E-19			SURFACE AREA CONCENTRATION S CMX#2/CC	. 7952E - 66 . 4596E - 67 . 1963E - 67 . 1394E - 68	TOTAL SURFACE AREA CHERZ/CC .8646E-06
VOLUME ADDED	MECHANISM (CC/CC) 1 .8587E-16 29865E-19	DISCRETE REGIME	NAMBER CONCENTRATION N 1/CC	.2150E+08 .1842E+07 .7853E+06 .2620E+06	TOTAL NUMBER , 1/6C .2454E+0B	VOLUME ADDED	MECHANISM (CC/C 1 .6546 2 .5856 31946	STEADY STATE	DISCRETE REGIME	NUMBER CONCENTRATION N 1/CC	.1013E+09 .3684E+07 .6268E+06 .3727E+06	TOTAL MUNBER 1/CC .1062E+09
			PARTICLE DIAMETER D CM	. 4999E-07 . 6298E-07 . 7299E-07 . 7935E-07	MEAN DIAMETER CM .SELSE-07		Ē			PARTICLE DIANETER D	. 4999E-07 . 6298E-07 . 7269E-07 . 7935E-07	MEAN DIAMETER CN .5076E-07
			PARTICLE UOLUME U		NEAN UOLUNE CC .7814E-22					PARTICLE VOLUME U CC	. 65406-22 13086-21 19626-21 26166-21	MEAN VOLUME CC .6979E-22
	•			anatn						·	⊣ 0101410	

•	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		.93816-14 .185866-13 .26556-13 .956596-13 .956596-13 .45566-13 .18566-11 .18566-11 .18566-11 .18566-11 .18566-11 .18566-11 .18566-11 .18566-11 .18566-11 .18566-11	.1951E-10
SECONDS	SURFACE AREA DISTRIBUTION 5(LOG(D))	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	STRIBUTION	10.00 mm m	7585E-85
TIME 1000E+02 5	MUNTER DISTRIBUTION N(LOG(D)) 1/CC	1949E+ 2141E+08 1937E+08 11586E+08 11686E+08 11136E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+07 1891E+03 1891E	INTERPOLATED DISTRII	10-70E + 68 10-10-70E + 68 10-10-70E + 68 10-10-70E + 69 10-70E + 69	17CC .9158E+07
	PARTICLE DIAMETER D CH	100 100 100 100 100 100 100 100 100 100		9509C-07 1038C-06 1138C-06 1638C-06 1539C-06 1359C-06 135	. 2654E-96
	PARTICLE VOLUME C			5859E-21 11872E-21 11872E-20 11872E-20 11872E-20 11872E-20 11872E-18 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17 11872E-17	
	•				

	·		UOLUME COMCENTRATION U CC/CC	.4693E-14 .4535E-16 .4639E-16 .7512E-16	TOTAL VOLUME CC/CC .5071E-14					CONCENTRATION U CC/CC	.6669E-14 .4932E-15 .1197E-15 .5873E-16	TOTAL VOLLINE CC/CC .7463E-14
	(CC/CC) .8587E-15 .8679E-18		SURFACE AREA CONCENTRATION S CHINZ/CC		TOTAL SURFACE AREA CHARACE CHARACC SYGGE-86		(C.) 14 16-18 16-15			SURFACE AREA CONCENTRATION S CHXXZ/CC	. 7994E - 96 . 4699E - 87 . 9963E - 88 . 4441E - 98 . 4989E - 98	TOTAL SURFACE AREA CHIIZZCC .8658E-06
VOLUME ADDED	MECHANISM (CC/(1 .858' 2867	DISCRETE REGIME	HUMBER CONCENTRATION 1/CC	.7176E+98 .1651E+07 .2312E+06 .1567E+06	TOTAL MUMBER 1/CC .7403E+08	VOLUME ADDED	MECHANISM (CC/CC) 6548E-14 2 .5852E-18 3 .5352E-15	STEADY STATE	DISCRETE REGIME	NUMBER CONCENTRATION N 1/CC	.1018E+09 .3771E+07 .6102E+06 .2245E+06	TOTAL MURBER 1/CC .1067E+89
	-		PARTICLE DIAMETER D CM	.4999E-07 .6298E-07 .7299E-07 .7935E-07	NEAN DIAMETER CM .59526-07					PARTICLE DIAMETER D	.4999E-87 .6298E-87 .7289E-87 .7935E-87	HEAN DIANETER CR .5071E-07
			PARTICLE VOLUME CC		NEAN VOLUME CC .6849E-22					PARTICLE VOLUME U CC		MEAN VOLUME CC .6941E-22
			ĕ.	⊣ 00040						Š.	เตผ∡ _เ ก	·

SMALLEST PARTICLE SIZE		Š	EXAMPLE NO. 9 DK . 6540E-22	DC GDE	AND STEADY STATE LARGEST PARTICLE SIZE	TATE ICLE SIZ	ш	•	.524 0 E-12
RELATIVE INTEGRATION ERROR	æ		.1000E-01		ABSOLUTE INTEGRATION ERROR	EGRATION	ERROR	•	.1000E-21
TOTAL NUMBER OF GRID POINTS	15		X		HAXINUN NUMBER OF GRID POINTS	ER OF GR	ID POINTS		•
NUMBER OF DISCRETE SIZES			ıs		NUMBER OF MUI	OF MULTIPLETS GIVEN	GIVEN		u
NUMBER OF OUTPUT TIMES			9		SUITCH INTER	POLATION	INTERPOLATION AT OUTPUT NUMBER	MBER	· IA
	NUMBER		4		NUMBER OF GR	CRID POINTS GIVEN	S GIVEN		en I
79	POINTS		•		HUNDER OF CO	47 INUOUS	CONTINUOUS SOURCE TERMS		N
NUMBER OF CONTINUOUS REHOUAL TERMS	JAL TERMS		ឈ		NUMBER OF DIS	SCRETE S	DISCRETE SOURCE TERMS		Ŋ
NUMBER OF DISCRETE RENOVAL TERMS	. TERMS		ឈ		CONDENSATION (0-NO/1-YES	(8-NO/1	· YES }		•
INITIAL SPLIME INTERPOLATI	LATION METHOD NUMBER	DER	•		CALL SETUP BE	FORE IN	SETUP BEFORE INTERPOLATING (0-NO/1-YES)	(0-H0/1-Y	ES) 1
SPLINE NUMBER FOR SUITCHED) METHOD	•	- 4		CALL SETUP FO	SETUP FOR SUITCHED	HED METHOD (0.NO/I=YES)	34-1/0H-	9 (5
TIME DEPENDENT COAG./EVAP.	, COEFFICIENT (0-NO/1-YES)	(B-N0/1	8 (S3A=)		USER SUPPLIEI	SUPPLIED PARAMETER	TER SUITCHES		0 0 0 0 0 0
			OUTPUT TIMES	TIMES					
HO. TIME NO.	TIME.5000E-01	€m	TIME N. SOOBE+88	호	TINE .2000E+61	Šņ.	TIME . 5000E+01	žφ	TIME.
⊕ ≈ 3			CRID POINTS AT	표 보	AT THE FOLLOUING MULTIPLETS	riplets			
			GRID POINTS	INTS			-		
10. 512E NO.	512E .583E-21 .6603E-19 .1678E-16	\$ want	SIZE .6540E-21 .1662E-18 .422E-16 .1073E-13	25.00 ± 5.00 ± 5.00	SIZE .1646E-20 .4182E-18 .1963E-15 .2760E-13	83711 S	512E .4142E-20 .1053E-17 .2674E-15 .730E-13	5000 BY	512E .1042E-19 .2649E-17 .6730E-15

NO DATA IMPUT ERRORS FOUND

	UOLUME DISTRIBUTION U(LOG(D)) CC/CC	######################################		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	107AL VOLUME CC/CC .1046E-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CMXXZ/CC	A	NOTE	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	TOTAL SURFACE AREA CHINZ/CC CHINZ/CC BIZTE-65
TIME =0. SE(NUMBER DISTRIBUTION N(LOG(D)) 1/CC	3879E+98 3958EF98 3968EF98 1208EF97 1308EF97 1308EF97 1208EF96 1208EF96 1532EF96 1532EF96 1532EF96 1532EF96 1532EF96 17174E+93	7	2010 2010 2010 2010 2010 2010 2010 2010	TOTAL NUMBER 1/CC 1131E+08
F	PARTICLE DIAMETER D CN	0.000000000000000000000000000000000000			MEAN DIANETER CN .2398E-66
	PARTICLE UOLUME CC				MEAN VOLUME CC . D251E-18
	. 9	というできまり しょうしょうしょう ちょくしょう ちょくしょうしょう こうごうごうしゅ ちゅくうしょうしょうしゅう ちょくしょう ちょうしょう ちょうしょう しょうしょう しょうしゅう しょうしょう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しゅうしゅう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしょう しゅうしゅう しゅうしょう しゅうしゅう しゅうりょう しゅうりょう しゅうしゅう しゅうりょう しゅうりょう しゅうしゅう しゅうりょう しゅうしゅう しゅう			

SURFACE AREA CONCENTRATION S CMIRZ/CC CONCENTRATION
N
1/CC VOLUME ADDED VOLUME ADDED DISCRETE REGINE MECHANISH MEAN DIAMETER CM ,5509E-07 MEAN VOLUME CC .9401E-22 .6540E-22 1308E-21 1962E-21 2616E-21 3270E-21

	UCLUME DISTRIBUTION U(LOG(D)) CC/CC			18766-13 32686-13 32686-13 32686-13 63368-13 65136-13 65136-13 6716-13	. 10466-14
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CR**Z/CC		TRIBUTION	1002E-05 11002E-05 11005-05 11005-05 11012E-05 1012E-05 1012E-05 1	.8127E-05
10-30005 = 3	FLMBER DISTRIBUTION N(LOG(D)) 1/CC	12.20.20.20.20.20.20.20.20.20.20.20.20.20	INTERPOLATED DISTRIB		11306+08
HIL	PARTICLE DIAMETER D CM	######################################	H	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	. 2399E
	PARTICLE VOLUME U			455316 655316	. Segae-18
	92	NUNDUNG COCHENTANT CO			

			UOLUME CONCENTRATION U CC/CC	.6820E~15 .3907E~15 .1956E~15 .7832E~16	TOTAL UOLUME CC/CC .1379E-14
	200 177 128 128 128		SURFACE AREA CONCENTRATION CM**Z/CC	.8186E-07 .3722E-07 .1628E-07 .5922E-08	TOTAL SURFACE AREA CHXXZ/CC .1436E-06
VOLUME ADDED	MECHANISM (00/00) 1.4893E-17 2 .1863E-18 38665E-28	DISCRETE REGIME	HUMBER CONCENTRATION N 1/CC	. 1643E+08 . 2987E+06 . 9976E+06 . 998EE+06	TOTAL NUMBER 1/CC .1481E+08
	•		PARTICLE DIAMETER D CM	.4999E-07 .6298E-07 .7269E-07 .7935E-07	MEAN DIAMETER CM .5493E-07
			PARTICLE VOLUME CC	.654@E-22 .1308E-21 .1962E-21 .2616E-21	MEAN VOLUME CC .9312E-22

VOLUME ADDED

	VOLUME DISTRIBUTION V(LOG(D)) CC/CC	1.448 1.		0.00	TOTAL VOLUME CC/CC .1047E-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHRECC	64444444444444444444444444444444444444	HION	ជុំងំជុំងំជុំងំជុំងំងំងំងំងំងំងំងំងំងំងំ	TOTAL SURFACE AREA CHAKA/CC .81236-85
5000E+00	NUMBER DISTRIBUTION M(LOG(D))		INTERPOLATED DISTRIBUTION	6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	TOTAL MUMBER 1/CC 1121E+68
TIME	PARTICLE DIANETER D	60	INI	20	MEAN DIAMETER CN .2488E-66
	PARTICLE VOLUME U	######################################		4.000	MEAN UOLUME CC . 9339E-18
	ě.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		さらしょうらしまなのよろうかい しょうしょうしょう しょうしょう しょうしょう こうしょう しゅうごう インらて おみのしんごう インシャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン・シャン	

			CONCENTRATION U CC/CC	.3764E-15 .1905E-15 .7698E-16 .3227E-16	TOTAL VOLUME CC/CC .1602E-14		
	() 		SURFACE AREA CONCENTRATION S CM*#2/CC	.1111E-06 .3586E-07 .1856E-07 .5851E-08	TOTAL SURFACE AREA CMINENCO 1749E-86		50 15 15 15 15 15 15 15 15 15 15 15 15 15
UOLUME ADDED	MECHANISM (CC/CC) 1 .4293E.16 2 .1263E-14 32828E-19 43389E-21	DISCRETE REGIME	CONCENTRATION N N N N N N N N N N N N N N N N N N	.1415E+98 .2878E+07 .9712E+06 .2943E+96	101AL NUMBER 1/CC .1839E+08	VOLUME ADDED	MECHANISM (CC/CC) 32746-15 2 .29266-19 34959E-17 41185E-16
	-		PARTICLE DIAMETER D CM	,4999E-07 ,7209E-07 ,7309E-07 ,7936E-07	MEAN DIAMETER CM .5385E-07		E
			PARTICLE UOLUME UCC	. 1044 1044 1046 1046 105 105 105 105 105 105 105 105 105 105	MEAN VOLUME CC .8708E-22		
			ю.	and-tr			

	UOLUNE U(LOG(D)) U(C)CC	740887 740887 740887 740887 740888 740888 740888 74088	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45.77.56.25.25.25.25.25.25.25.25.25.25.25.25.25.	1.51.751.751.751.751.751.751.751.751.751	10476-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHEEZ/CC	200414 - 010 0000414 - 010 0000414 - 000 0000414 - 000 0000414 - 000 0000414 - 000 00044 - 000 0004 - 000 0004 - 000 0004 - 000	::::::::::::::::::::::::::::::::::::::		95590-06 1901316-05 1101316-05	
E2000E+61	HUMBER DISTRIBUTION H(LOG(D))	118428 48334 11868 4835 6835 6835 6835	100 100 100 100 100 100 100 100 100 100			1,000E+08
HIT	PARTICLE DIAMETER D CM	2000 2000 2000 2146.4. 2146	200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	10000000000000000000000000000000000000	######################################	.244 9E-9 E
	PARTICLE VOLUME VO		6.2.4.4.6.6.6.4.4.6.6.6.6.6.6.6.6.6.6.6.	6.16.70.70.70.70.70.70.70.70.70.70.70.70.70.	1685316 1685316 1685316 166531	. 9584E-18
	ě	~!!!!##\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\		~ # # # # # # # # # # # # # # # # # # #	ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ	

			UOLLME CONCENTRATION U CC/CC	.1629E-14 .3414E-15 .1763E-15 .3135E-16	TOTAL VOLUME CC/CC .2251E-14					CONCENTRATION CC/CC	.3981E-14 .8912E-15 .3816E-15 .2018E-15	TOTAL VOLUME CC/CC .5575E-14
ME ADDED	CC) 76-15 36-14 36-14 96-20		SURFACE AREA CONCENTRATION 5 CH**Z/CC	.1955E-06 .3253E-07 .1468E-07 .5560E-08	TOTAL SURFACE AREA CM112/CC .2501E-86		C) F-14 F-16 F-16			SURFACE AREA CONCENTRATION CNATZ/CC	.4778E-06 .8400E-07 .3171E-07 .1526E-07	TOTAL SURFACE AREA CHINELOC AREA .6181E-96
UOLUME ADDED	MECHANISH (CC/CC) 1717E-15 2 .3953E-14 31256E-18 41489E-29	DISCRETE REGIME	CONCENTRATION N I/CC	.2610E+08 .2610E+07 .8988E+06 .2811E+06	TOTAL NUMBER 1/CC .2879E+08	VOLUME ADDED	MECHANISM (CC/CC) 1 .1308E-14 2 .1170E-18 32729E-16 47231E-16	STEADY STATE	DISCRETE REGINE	CONCENTRATION 1/CC	.6086E+08 .6813E+07 .1942E+07 .7714E+06	TOTAL NUMBER 1/CC .7876E+88
	-		PARTICLE DIAMETER D CM	. 4999E-07 . 6298E-07 . 7269E-07 . 7935E-07 . 8548E-07	MEAN DIAMETER CM .5226E-07		E	,		PARTICLE DIANETER D	.4999E-07 .6298E-07 .7209E-07 .7935E-07	MEAN DIANETER CN . 5235E-07
			PARTICLE VOLUME CC	6	MEAN VOLUME CC .7820E-22					PARTICLE UOLUME U		MEAN UOLUME CC .7878E-22
			₹	~መወፋው						ž	⇔ のですい	

	OLLOG(D) UCLOG(D) CC/CC	44-44-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		1476E-13 3738E-13 3738E-13 5168E-13 5168E-13 5168E-13 5168E-13 5168E-11 117	.104ME-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D))	20000000000000000000000000000000000000	80.00.00.00.00.00.00.00.00.00.00.00.00.0	24586-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	9292EE - 66 - 1408EE - 66 - 15773EE - 65 - 158776E - 65 - 26826E - 65 - 43646E - 65 - 4566E -	CHEENCO POSE-OS
TIME5000E+01 SE	MUNDER DISTRIBUTION N(LOG(D))	. 2565/E+08 . 1265/E+08 . 1265/E+08 . 145/E+08 . 747/E+07 . 474/E+07	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	7180E+04 .2160E+04 .726E+03 .270SE+03 .791EE+02 .2147E+02 .7862E+01	C	1/00 53E+08
F	PARTICLE DIAMETER D CM	2000 1			**************************************	355
	PARTICLE VOLUME CC	24 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1682E-18 1683E-18 2649E-17 2656E-17 1672E-16 1673E-15 2673E-15	2.4.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	285392 285392	
	£	→他の平均40~40	09=007550 <u>C</u>	ក្សាលល្អប្រកាស លុកបាលក្នុក លុកបាលក្នុក		

ADDED	
VOLUME	

(00/00)	12636	- 1256E-	
HECHANISM	N	i (i) Ter	

STEADY STATE

	CONCENTRATI		TOTAL VOLU CC/CC .5641E-14
	SURFACE AREA CONCENTRATION S CMXXZ/CC	. 4811E-06 . 8672E-07 . 3266E-07 . 8572E-07	TOTAL SURFACE AREA CMAXZ/CC .6248E-06
JISCRETE REGINE	NUMBER CONCENTRATION N 1/CC	.6129E+08 .6959E+07 .2969E+07 .7949E+06	TOTAL MUMBER 1/CC .7142E+08
	PARTICLE DIAMETER D	. 4999E-07 . 6298E-07 . 7235E-07 . 8548E-07	NEAN DIAMETER CM .52396-07
	PARTICLE VOLUME CC	. 654-65 1394-62 12626-21 26766-21	MEAN VOLUME CC .7899E-22

CC L42E+08 VOLUME ADDED MECHANISM (r7

98

	VOLUME DISTRIBUTION V(LOG(D)) CC/CC	11111111111111111111111111111111111111	4	15.50 15	TOTAL UDLUME CC/CC .1103E-10
SECONDS	SURFACE AREA DISTRIBUTION S(LOG(D)) CHARZ/CC	9888	9.31.63.	91.155745 1.155	TOTAL SURFACE AREA CHIIIS/CC .8367E-05
1000E+02	NUMBER DISTRIBUTION N(LOG(D)) 1/CC	1.154.26 1.154.26 1.154.26 1.154.26 1.154.36 1.154.	. COBJETE. NTERPOLATED DISTRIBUTION	8865 865 865 865 865 865 865 865 865 865	TOTAL NUMBER 1 17CC 11014E+08
TIME	PARTICLE DIAMETER D CM	99999999999999999999999999999999999999		200111101420-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	MEAN DIAMETER Ch .2549E-06
	PARTICLE UOLUME U	600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 5640E-16	4.2000	MEAN UOLUME CC .1087E-17
	,		G	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

				UOLUME CONCENTRATION U CC/CC	.3997E-14 .3814E-15 .1996E-15	TOTAL VOLUME CC/CC .5591E-14		
	CO			SURFACE AREA CONCENTRATION S	.4797E-06 .8541E-07 .3174E-07 .1509E-07	TOTAL SURFACE AREA CHR#2/CC .6201E-06		41. 41.
COLUME ADDED	MECHANISM (CC/CC) 1 .8587E-11 2 .5526E-11 31256E-11	STEADY STATE	DISCRETE REGIME	NUMBER CONCENTRATION N 1/CC	.611E+08 .6854E+07 .1944E+07 .7629E+06 .3554E+06	TOTAL NUMBER 1/00 .7103E+08	VOLUME ADDED	MECHANISM (CC/CC)
	-			PARTICLE DIAMETER D CM	. 4999E-07 . 6298E-07 . 7209E-07 . 7935E-07	HEAN DIAMETER CM .5234E-07		Ë
		٠		PARTICLE VOLUME CC	.6540E-22 .1308E-21 .1962E-21 .2616E-21	MEAN VOLUME CC . 7871E-22		

```
SUBROUTINE BETA (NPTS, TIME, XVOLUM, YVOLUM, COEF)
C*
      THIS SUBROUTINE CALCULATES THE COAGULATION COEFFICIENTS BETA,
C*
      AS A FUNCTION OF THE VOLUMES OF THE COAGULATING PARTICLES
Č*
C*
                              VARIABLES
C*
C*
      AKNUDX=KNUDSEN NUMBER OF FIRST PARTICLE
C*
      AKNUDY=KNUDSEN NUMBER OF SECOND PARTICLE
C*
      COEF=COAGULATION COEFFICIENT
                                      (OUTPUT ARRAY IN CC/SEC)
C·*
      DENSTY=PARTICLE MATERIAL DENSITY (GRAMS/CC)
C*
      DIFX=DIFFUSIVITY OF FIRST PARTICLE
                                           (CM**2/SEC)
C*
      DIFY=DIFFUSIVITY OF SECOND PARTICLE
                                            (CM**2/SEC)
C*
      DX=DIAMETER OF FIRST PARTICLE
                                     (CM)
C*
      DY=DIAMETER OF SECOND PARTICLE
C*
      FREEMN=MEAN FREE PATH OF AIR (CENTIMETERS)
C*
      NPTS=NUMBER OF POINTS
                             (INPUT)
C*
      TEMPK=TEMPERATURE (DEGREES KELVIN)
C*
      TIME=TIME
                (INPUT IN SECONDS)
C*
      VISCOS=VISCOSITY OF AIR
C*
      XVOLUM=VOLUME OF FIRST PARTICLE
                                        (INPUT IN CC)
C*
      YVOLUM=VOLUME OF SECOND PARTICLE (INPUT ARRAY IN CC)
C*
C*
      EXPRESSION TAKEN FROM FUCHS, N.A., 'THE MECHANICS OF AEROSOLS',
C*
      PERGAMON PRESS, NEW YORK, 1964 PAGES 291-294.
      DIMENSION YVOLUM(1), COEF(1)
      COMMON/AERSL1/IPARM(10)
      DATA TEMPK, DENSTY, VISCOS, FREEMN/298., 1., 1.83E-4,.066E-4/
      IF(IPARM(3).EQ.1)GO TO 1
      IF(IPARM(3).EO.2)GO TO 2
C
      DX=(1.90986*XVOLUM)**.33333333333
      AKNUDX=FREEMN*2./DX
      TKV=1.46E-17*TEMPK/VISCOS
      DIFX=(1.+AKNUDX*(1.257+.4*EXP(-1.1/AKNUDX)))*TKV/DX
      SPEEDX=3.51E-16*TEMPK/(XVOLUM*DENSTY)
      PMEANX=2.546479*DIFX/SQRT(SPEEDX)
      GX=DX+PMEANX
      GX1=DX*DX+PMEANX*PMEANX
      GX = (GX*GX*GX-GX1*SQRT(GX1))/(3.*DX*PMEANX)-DX
      GX=GX*GX
C .
      DO 10 I=1,NPTS
      DY=(1.90986*YVOLUM(I))**.33333333333
      AKNUDY=FREEMN*2./DY
      DIFY=(1+AKNUDY*(1.257+.4*EXP(-1.1/AKNUDY)))*TKV/DY
      SPEEDY=SQRT(3.51E-16*TEMPK/(YVOLUM(I)*DENSTY))
      SPEED=SQRT(SPEEDX+SPEEDY*SPEEDY)
      PMEANY=2.546479*DIFY/SPEEDY
```

```
GY=DY+PMEANY
      GY1=DY*DY+PMEANY*PMEANY
      GY=(GY*GY*GY-GY1*SQRT(GY1))/(3.*DY*PMEANY)-DY
      G=SQRT (GX+GY*GY)
      COEF(I) = (DX+DY) *.5
      COEF(I) = COEF(I) / (COEF(I) + G) + 4.* (DIFX+DIFY) / (SPEED*COEF(I))
   10 COEF(I) =6.2832*(DIFX+DIFY)*(DX+DY)/COEF(I)
      RETURN.
C
    1 DO 11 I=1,NPTS
   11 COEF(I) =XVOLUM-YVOLUM(I)
      RETURN
C
    2 DO 12 I=1,NPTS
   12 COEF(I)=0.
      RETURN
      END
```

Figure 2

C	FUNCTION BOUNDR (TIME)	
C*	THIS IS AN EXAMPLE OF A BOUNDARY SOURCE FUNCTION.	* *
C*	VARIABLES	* *
C* C*	BOUNDR=SOURCE AT BOUNDARY (PARTICLE VOLUME=VA) (1/CC/SEC/CC/) TOUT(I)=I-TH OUTPUT TIME (SECONDS) VA=LOWER LIMIT OF CONTINUOUS DISTRIBUTION IN PARTICLE VOLUME (C	* * C)*
	COMMON/AERSL6/TOUT(16),TDUMY,VA,VB,VBOVA,ALGVBA BOUNDR=.3 IF(TIME.GT.TOUT(2))BOUNDR=BOUNDR*EXP(.0005*(TOUT(2)-TIME)) RETURN END	

SUBROUTINE CSOURC (NPTS, TIME, V, DISTV, SOURCE, REMOVE)

```
C-
C*
      THIS IS AN EXAMPLE OF A SOURCE AND/OR REMOVAL SUBROUTINE IN THE
C*
      CONTINUOUS REGIME
C*
C*
                     VARIABLES
C*
C*
      DISTV(I) = THE DISTRIBUTION FUNCTION OF PARTICLE VOLUME OF THE I-TH*
C*
        PARTICLE SIZE
                       (INPUT ARRAY IN
                                         1/cc/cc)
C*
      GLSIG=NATURAL LOGARITHM OF THE GEOMETRIC STANDARD DEVIATION
C*
      GMEAN=GEOMETRIC MEAN VOLUME
                                    (CC)
C*
      REMOVE(J,I)=THE J-TH REMOVAL TERM FOR THE I-TH PARTICLE SIZE
C*
                   (OUTPUT ARRAY IN 1/CC/SEC/CC)
C*
      SOURCE(J,I) = THE J-TH SOURCE TERM FOR THE I-TH PARTICLE SIZE
C*
                   (OUTPUT ARRAY IN 1/CC/SEC/CC)
C* '
      TIME=TIME (INPUT IN SEC)
C*
      TOT=NUMBER PER CC
C*
      V(I)=I-TH PARTICLE VOLUME (INPUT ARRAY IN CC)
      DIMENSION V(1), DISTV(1), SOURCE(3,1), REMOVE(3,1)
      ALNORM(TOT, GMEAN, GLSIG) = .3989*TOT*EXP(-.5*(ALOG(V(I)/GMEAN)/
        GLSIG) **2) / (V(I) *GLSIG)
      DO 1 I=1,NPTS
      SOURCE(1,1) = ALNORM(100.4.08E-19,1.22)
      SOURCE(2,I) = ALNORM(1.E2,5.E-18,1.8)
      REMOVE(1,I) = -5.E6*V(I)*EXP(-.005*TIME)*DISTV(I)
    1 REMOVE(2,I) = -6.E4*V(I)*EXP(-.01*TIME)*DISTV(I)
      RETURN
      END
```

```
SUBROUTINE DSOURC (NPTS, TIME, CLSCON, SOURCE, REMOVE)
C-
C*
      THIS IS AN EXAMPLE OF A SOURCE AND/OR REMOVAL SUBROUTINE IN THE
C*
      THE DISCRETE REGIME
C*
C*
                       VARIABLES
C*
C*
      CLSCON(I)=I-TH CLUSTER CONCENTRATION (INPUT IN 1/CC)
C*
      I=CLUSTER NUMBER (INPUT)
C*
      REMOVE(J,I) = THE J-TH REMOVAL TERM FOR THE I-TH CLUSTER (OUTPUT
C*
        ARRAY IN 1/SEC/CC)
C*
      SOURCE(J,I) = THE J-TH SOURCE TERM FOR THE I-TH CLUSTER
C*
        ARRAY IN 1/SEC/CC)
C*
      TIME=TIME
                 (INPUT IN SEC)
      DIMENSION CLSCON(1), SOURCE(3,1), REMOVE(3,1)
      DO 1 I=1,NPTS
      REMOVE(1,I) =-1.E-2*CLSCON(I)
      REMOVE(2,I) = -1.E-1*EXP(-FLOAT(I))*CLSCON(I)*EXP(-.01*TIME)
      SOURCE(1,I) =0.
      SOURCE(2,I)=1.E3*EXP(-FLOAT(I))
      IF(I.GT.1)GO TO 1
      SOURCE(1,I) =1.0E7
    1 CONTINUE
      RETURN
      END
```

```
SUBROUTINE GROWTH (NPTS, TIME, V, RATE, PARTAL)
C-
C*
       THIS IS AN EXAMPLE OF A GROWTH SUBROUTINE USING THE CONTINUUM
C*
       GROWTH LAW. (REF. GELBARD, F. AND SEINFELD, J.H., JOURNAL OF
C*
       COLLOID AND INTERFACE SCIENCE, VOL.68, PAGES 173-183 (1979))
C*
C*
                   VARIABLES
C*
C*
      D=PARTICLE DIAMETER
C*
      DIFUS=MOLECULAR DIFFUSIVITY
                                    (CM**2/SECOND)
C*
      DEL=CONCENTRATION DIFFERENCE
                                     (1/CC)
C*
      NPTS=NUMBER OF POINTS (INPUT)
C*
      PARTAL=PARTIAL OF RATE W.R.T. PARTICLE VOLUME (OUTPUT IN 1/SEC)
C*
      RATE=GROWTH RATE OF A PARTICLE OF VOLUME V (OUTPUT IN CC/SEC)
C*
      V=PARTICLE VOLUME (INPUT IN CC)
C*
      VMOLEC=MOLECULAR VOLUME
      DIMENSION V(1), RATE(1), PARTAL(1)
      COMMON/AERSL1/IPARM(10)
      DATA PI, DIFUS, VMOLEC/3.14159, .1, 6.54E-23/
      DEL=1.E8*EXP(-.001*TIME)
      DO 1 I=1,NPTS
      RATE(I) = 2. *PI*D*DIFUS*DEL*VMOLEC
      PARTAL(I) = RATE(I) / (3.*V(I))
    1 IF (IPARM(3).EQ.1) RATE(I) = -2.*RATE(I)
      RETURN
      END .
```

```
SUBROUTINE EVAP (NPTS, TIME, V, COEF)
C*
       THIS IS AN EXAMPLE OF A EVAPORATION FUNCTION SUBROUTINE
C*
      REFS. SKINNER, L.M. AND SAMBLES, J.R., 'THE KELVIN EQUATION - A
C*
      REVIEW', J. AEROSOL SCIENCE, VOL. 3, PP. 199-210 (1972) AND
      FRIEDLANDER, S.K., 'SMOKE, DUST AND HAZE', P.229, JOHN WILEY AND
C*
C*
      SONS, NEW YORK (1977)
C*
C*
                      VARIABLES
C*
C*
      BOLTZ=BOLTZMANN'S CONSTANT
                                   (ERG/DEG K)
C*
      COEF(I) = EVAPORATION COEFFICIENT (OUTPUT ARRAY IN 1/SEC)
C*
      D=PARTICLE DIAMETER (CM)
C*
      EQNUM=EQUILIBRIUM NUMBER CONCENTRATION
                                               (1/CC)
C*
      NPTS=NUMBER OF POINTS
                              (INPUT)
C*
      SURTEN=SURFACE TENSION
                               (DYNES/CM)
C*
      TEMPK=TEMPERATURE
                          (DEG K)
C*
      TIME=TIME
                (INPUT IN SEC)
C*
      V(I) = PARTICLE VOLUME
                            (INPUT ARRAY IN CC)
C*
      VMOLEC=MOLECULAR VOLUME (CC)
      DIMENSION V(1), COEF(1)
      COMMON/AERSL1/IPARM(10)
      DATA SURTEN, VMOLEC, BOLTZ, TEMPK, EQNUM/70.,6.54E-23,1.38E-16,298.
     $,1.E6/
С
      DO 1 I=1.NPTS
      COEF(I) = 0.
      IF(IPARM(1).EQ.1)GO TO 1
      CALL BETA(1, TIME, VMOLEC, V(I) - VMOLEC, COEF(I))
      COEF(I) = COEF(I) *EQNUM*EXP(4.*SURTEN*VMOLEC/(D*BOLTZ*TEMPK))
    1 CONTINUE
      RETURN
      END
```

SUBROUTINE XINTL(NPTS, V, DISTB)

```
C--
C*
        THIS IS AN EXAMPLE OF AN INITIAL DISTRIBUTION FUNCTION.
C*
      OF THREE LOG-NORMAL FUNCTIONS OR A LOGARITHMIC INTERPOLATION
C*
      BETWEEN DATA POINTS CAN BE USED DEPENDING ON IPARM(2)
C*
C*
                   VARIABLES
C*
      DISTB-OUTPUT ARRAY OF INITIAL DISTRIBUTIONS
                                                      (NO./CC/CC)
C*
      NPTS=NUMBER OF POINTS
                               (INPUT)
C*
      V=INPUT ARRAY OF PARTICLE VOLUMES
                                           (CC)
C--
      DIMENSION DP(19), F(19), V(1), DISTB(1)
      COMMON/AERSL1/IPARM(10)
      DATA DP/.0133,.0237,.0421,.075,.133,.237,.42,.513,.61,.704,.784,
         .847,.902,.953,1.01,1.07,1.16,1.28,1.41/
      DATA F/2.38E7,5.68E6,2.76E5,1.7E5,3.54E4,2.1E3,1.9E2,70.7,24.8,
        13.9,10.5,7.78,5.9,4.57,3.22,2.36,1.58,.714,.705/
      DATA ICALL/0/
C
      ALNORM(TOT,GMEAN,GLSIG,VX)=.3989*TOT*EXP(-.5*(ALOG(VX/GMEAN)/
     $ GLSIG) **2) / (VX*GLSIG)
C
      IF(IPARM(2).EO.1)GO TO 2
      DO 1 I=1,NPTS
    1 DISTB(I) = ALNORM(1.06E5, 1.44E-18, 1.76, V(I)) +
        ALNORM(3.2E4,8.24E-17,2.31,V(I))+ALNORM(5.4,3.33E-13,2.38,V(I))
      RETURN
C
    2 IF(ICALL.EQ.1)GO TO 22
      ICALL=1
      DO 23 I=1,19
      DP(I) = ALOG(DP(I))
   23 F(I) = ALOG(F(I))
   22 DO 3 NP=1,NPTS
      D=(6.E12*V(NP)/3.14159)**(.3333333333333)
      DL=ALOG(D)
      DO 24 I=2,19
      IF(DL.LT.DP(I))GO TO 25
   24 CONTINUE
   25 DL=F(I)+(DP(I)-DL)/(DP(I)-DP(I-1))*(F(I-1)-F(I))
    3 DISTB(NP) = EXP(DL) *D/(3.*V(NP))
      RETURN
      END
```

Ĭ

```
SUBROUTINE DISTW(ISPLIN, NVARM1, NPTS, WX, ZDIST)
C*
              THIS ROUTINE COMPUTES THE VALUES OF THE M(WX,T) DISTRIBUTION
              BY INTERPOLATING FROM THE VALUES OF A AT THE GRID POINTS.
C*
              NOTE THAT A(I) IS EQUAL TO THE 'M' DISTRIBUTION FUNCTION AT W(I)
C*
C*
C*
                                  VARIABLES
C*
C*
              M(WX,TIME) = N(X,TIME) *DERIVATIVE OF X WITH RESPECT TO WX
.C*
               NPTS=NUMBER OF POINTS IN WX ARRAY
                                                                                                    (INPUT)
C*
              NVARM1=NUMBER OF GRID POINTS MINUS ONE
C*
              WX=LN(X/XA)/LN(XB/XA)
                                                                          (INPUT ARRAY)
C*
              X(I) = PARTICLE SIZE AT THE I-TH GRID POINT
C*
              XA=SMALLEST PARTICLE SIZE IN CONTINUOUS REGIME
C*
              XB=LARGEST PARTICLE SIZE IN CONTINUOUS REGIME
C*
               ZDIST(I) = ARRAY OF M(WX, TIME)
                                                                                           (OUTPUT)
C*
C*
               INTERPOLATION METHOD
C*
                      ISPLIN=0
                                            CUBIC SPLINES
C*
                                                 REF. GERALD, C.F., 'APPLIED NUMERICAL ANALYSIS',
C*
                                                              PP.474-488, ADDISON-WESLEY 1978
C*
                                                             ALSO CARNAHAN, B., LUTHER, H.A., AND WILKES, J.O.*
C*
                                                              'APPLIED NUMERICAL METHODS', P. 63, WILEY 1969
C*
                                              LINEAR SPLINES
C*
                                              LOGARITHMIC SPLINES (POWER LAW)
              DIMENSION WX(1), ZDIST(1)
              COMMON/AERSL2/A(60), X(60), W(40)
              COMMON/AERSL7/P(38)
C
              DELTA(J) = W(J+1) - W(J)
C
С
                     DETERMINE BOUNDING GRID POINTS OF WX ASSUMING THAT THE POINTS
C
                     WX(I), I=1, NPTS ARE IN ASCENDING ORDER
C
              JSTART=1
              DO 3 I=1,NPTS
              DO 25 J=JSTART, NVARM1
              IF(WX(I).LE.W(J+1))GO TO 20
        25 CONTINUE
              J=NVARM1
       20 IF(ISPLIN.EQ.1)GO TO 1
              IF(ISPLIN.EQ.2)GO TO 2
C
C
                               CUBIC SPLINES
              IF(J.EQ.1)GO TO 30
              IF(J.EQ.NVARM1) GO TO 40
              ZDIST(I) = (P(J-1) * (W(J+1) - WX(I)) * *3 + P(J) * (WX(I) - W(J)) * *3 + (6.*A(J+1)) * (WX(I) - W(J)) 
            $ -DELTA(J)**2*P(J))*(WX(I)-W(J))+(6.*A(J)-DELTA(J)**2*P(J-1))
```

```
$ *(W(J+1)-WX(I)))/(6.*DELTA(J))
      GO TO 3
   30 ZDIST(I) = (P(J) * (WX(I) - W(J)) **3 + (6.*A(J+1) - DELTA(J) **2 *P(J)) *
         (WX(I)-W(J))+6.*A(J)*(W(J+1)-WX(I)))/(6.*DELTA(J))
      GO TO 3
   40 ZDIST(I) = (P(J-1)*(W(J+1)-WX(I))**3+6.*A(J+1)*(WX(I)-W(J))+(6.*A(J))
     $ -DELTA(J)**2*P(J-1))*(W(J+1)-WX(I)))/(6.*DELTA(J))
      GO TO 3
С
Č
              LINEAR SPLINES
C
    1 ZDIST(I) = A(J+1) + (WX(I) - W(J+1)) / (W(J) - W(J+1)) * (A(J) - A(J+1))
      GO TO 3
C
С
              LOGARITHMIC SPLINES
С
    2 ZDIST(I) =ALOG(A(J+1))
       ZDIST(I) = ZDIST(I) + (WX(I) - W(J+1)) / (W(J) - W(J+1)) *
         (ALOG(A(J))-ZDIST(I))
       ZDIST(I) = EXP(ZDIST(I))
    3 JSTART=J
      RETURN
       END
```

SUBROUTINE SETUP (ISPLIN, NEWSET, NVAR)

```
C*
       THIS ROUTINE IS USED FOR DETERMINING THE SECOND DERIVATIVE OF
C*
      THE DISTRIBUTION AT THE GRID POINTS BY SOLVING A SYSTEM OF LINEAR*
Ċ*
      ALGEBRAIC EQUATIONS WITH A TRI-DIAGONAL COEFFICIENT MATRIX.
C*
       THE ROUTINE IS REQUIRED FOR A CUBIC SPLINE INTERPOLATION.
C*
       REFERENCE; CARNAHAN, B., LUTHER, H.A. AND WILKES, J.O. 'APPLIED
C*
       NUMERICAL METHODS, ' JOHN WILEY AND SONS, PAGE 446 (1969)
C*
C*
                  VARIABLES
C*
C*
      DIAG(I) = THE I-TH DIAGONAL ELEMENT OF THE MATRIX
C*
       ISPLIN=FLAG FOR SPLINE INTERPOLATION METHOD
C*
       NEWSET=FLAG TO INDICATE A NEW SET OF GRID POINTS
C*
              0=SAME SET OF GRID POINTS
C*
              1=NEW SET OF GRID POINTS
C*
       NVAR=NUMBER OF GRID POINTS
                                      (INPUT)
C*
       P(I)=THE SECOND DERIVATIVE AT THE (I+1)-TH GRID POINT
C*
       SUB(I)=THE (I-1)-TH SUB DIAGONAL ELEMENT OF THE MATRIX
C*
       SUPER(I) = THE I-TH SUPER-DIAGONAL ELEMENT OF THE MATRIX
C-
       DIMENSION G(38), DIAG(38), SUB(38), SUPER(38)
       COMMON/AERSL2/A(60), X(60), W(40)
       COMMON/AERSL7/P(38)
C
       DELTA(I) = W(I+1) - W(I)
C
C
          COMPUTE TRI-DIAGONAL MATRIX
C
       IF (NEWSET.EQ.0) GO TO 6
       NVARM2=NVAR-2
       NVARM3=NVARM2-1
       DO 1 I=1,NVARM2
       SUB(I) = DELTA(I) **2/6.
       SUPER(I) =DELTA(I) *DELTA(I+1)/6.
    1 DIAG(I) = 2.*(SUB(I) + SUPER(I))
       DO 2 I=2, NVARM2
    2 DIAG(I) = DIAG(I) - SUB(I) * SUPER(I-1) / DIAG(I-1)
C
C
.C
          SOLVE THE LINEAR SYSTEM WITH THE TRI-DIAGONAL MATRIX
    6 DO 5 I=1,NVARM2
    5 P(I) = DELTA(I) * (A(I+2) - A(I+1)) / DELTA(I+1) - A(I+1) + A(I)
       G(1) = P(1) / DIAG(1)
       DO 3 I=2,NVARM2
    3 G(I) = (P(I) - SUB(I) *G(I-1)) / DIAG(I)
       P(NVARM2) = G(NVARM2)
       DO 4 J=1, NVARM3
       I=NVARM2-J
    4 P(I)=G(I)-SUPER(I)*P(I+1)/DIAG(I)
       RETURN
       END
```

SUBROUTINE DERIVT(ISPLIN, NVAR, DERIV) C--C* THIS ROUTINE CALCULATES THE DERIVATIVE OF THE 'M' DISTRIBUTION C* FUNCTION W.R.T. W, FOR THE NVAR GRID POINTS C* REF. SEE REFERENCES TO ROUTINE DISTW C* C* **VARIABLES** C* A(I)='M' DISTRIBUTION AT W(I) C* DERIV-OUTPUT ARRAY OF DERIVATIVES AT GRID POINTS C* ISPLIN=FLAG FOR SPLINE INTERPOLATION FORMULA C* NVAR=NUMBER OF GRID POINTS (INPUT) C* W(I) = LOGARITHMICALLY TRANSFORMED PARTICLE SIZE AT THE I-TH GRID C* C* X(I) = PARTICLE SIZE AT THE I-TH GRID POINT DIMENSION DERIV(1) COMMON/AERSL2/A(60),X(60),W(40) COMMON/AERSL7/P(38) C DELTA(I) = W(I+1) - W(I)C NVARM1=NVAR-1 NVARM2=NVAR-2 DERIV(1) = (A(2) - A(1)) / DELTA(1) - DELTA(1) *P(1) / 6.DO 1 I=2,NVARM2 1 DERIV(I) = (A(I+1)-A(I))/DELTA(I)-DELTA(I)*(2.*P(I-1)+P(I))/6.DERIV(NVARM1) = (A(NVAR) - A(NVARM1))/DELTA(NVARM1) - DELTA(NVARM1) * \$ P(NVARM2)/3. DERIV(NVAR) = DERIV(NVARM1) + 0.5*DELTA(NVARM1) *P(NVARM2) RETURN END

FOOTNOTES

1. In (1), n(x,t) was defined by

$$N_{i} = \int_{x_{i}-x_{1}/2}^{x_{i}+x_{1}/2} n(x,t) dx$$

With this definition the concept of the area under the distribution being proportional to the number concentration is more meaningful for small values of i. However, since it is easier to write the code using Eq. [4] and both definitions are virtually the same for i > 1, Eq. [4] is used as the defining equation for n(x,t).

 The "sectional" technique (7), uses the lowest order interpolation formula, i.e., a constant.

REFERENCES

- Gelbard, F. and Seinfeld, J. H., "The General Dynamic Equation for Aerosols; Theory and Application to Aerosol Formation and Growth," J. Colloid Interface Science 68, 363-382 (1979).
- Gelbard, F. and Seinfeld, J. H., "Numerical Solution of the Dynamic Equation for Particulate Systems," J. Computational Physics 28, 357-375 (1978).
- 3. Shampine, L. F. and Gordin, M. K., Computer Solution of Ordinary Differential Equations, The Initial Value Problem, Freeman (1975).
- 4. Carnahan, B., Luther, H. A. and Wilkes, J. O., Applied Numerical Analysis, 100-105, Wiley (1969).
- 5. Abramowitz, M. and Stegun, I., <u>Handbook of Mathematical</u>
 <u>Functions</u>, 917 Dover (1970).
- Fuchs, N. A., <u>The Mechanics of Aerosols</u>, 291-294, Pergamon (1964).
- Gelbard, F., Tambour, Y. and Seinfeld, J. H., "Sectional Representations for Simulating Aerosol Dynamics," J. Colloid and Interface Science, 76, 541-556 (1980).
- 8. Gelbard, F. and Seinfeld, J. H., "Simulation of Multicomponent Aerosol Dynamics," J. Colloid and Interface Science 78, 485-501 (1980).

NOTATION

•	Symbol Symbol	Meaning	Page First Referenced	Units
4) ************************************	Ei	rate of monomer evaporation from an i-mer	- 6	s ⁻¹
	I(x,t)	net growth rate of particles of size x at time t	11	$cm^{-3}s^{-1}$
	k	number of monomers in largest particle in the discrete regime	7	
	m(w,t)	rescaled distribution function	12	cm ⁻³
	N _i	number concentration of i-mers	6	cm ⁻³
	n(x,t)	size distribution function for particles of size x at time t	7	cm ⁻⁶
	n(x _i ,t)	$= N_{i}/x_{1}$	7	cm ⁻⁶
	R _i (N _i ,t)	removal rate of i-mers at time t	6	$cm^{-3}s^{-1}$
	$R_{i}[n(x_{i},t),t]$	$= \overline{R}_{i}(N_{i},t)/x_{1}$, 9	$\mathrm{cm}^{-6}\mathrm{s}^{-1}$
	$R[n(x_i,t),x_i,t]$	$= \overline{R}_{i}(N_{i},t)/x_{1}$	10	$\mathrm{cm}^{-6}\mathrm{s}^{-1}$
	$\overline{S}_{i}(t)$	generation rate of i-mers at time t	6	cm ⁻³ s ⁻¹
	S _i (t)	$= \overline{S}_{i}(t)/x_{1}$	9	$cm^{-6}s^{-1}$
	S(x _i ,t)	$= \overline{S}_{i}(t)/x_{1}$	10	$\mathrm{cm}^{-6}\mathrm{s}^{-1}$
	t	time	6	s
	W	logarithmically rescaled particle size	12	
	w _a	smallest particle size in the continuous regime in terms of logarithmically rescaled particle size	12	
	w _b	largest particle size in the continuous regime in terms of log- arithmically rescaled particle size	12	
	x	particle size	7	cm ³
	^x a	smallest particle size in the continuous regime	12	cm ³

NOTATION

Symbol	Meaning	Page First Referenced	Units
REMOVE	array of removal rates	21	$\mathrm{cm}^{-6}\mathrm{s}^{-1}$
SOURCE	array of source rates	21	$cm^{-6}s^{-1}$
TIME	time	19	s
Х	array of particle sizes	19	cm ³

NOTATION

<u>Symbol</u>	Meaning	Page First Referenced	Units
x _b	largest particle size in the continuous regime	12	cm ³
x _i	size of an i-mer	7	cm ³
β _{i,j}	coagulation coefficient between i-mers and j-mers	7	cm ³ s ⁻¹
δ _{2,j}	Kronecker delta function	6	

Nearly all variables used in the code are defined at the beginning of the code in the form of comment statements. The following is a condensed list of some of the variables which are frequently discussed in this manual.

COEF	dummy array for passing coefficients	19	units vary with appli- cation
DISTX	array of size distribution functions at the grid points	21	cm ⁻⁶
ISPLIN	flag to indicate spline interpolation method	27	
ISTOP	error flag	30	
MAXDIS	maximum number of discrete sizes	33	
MAXSRC	maximum number of continuous source mechanisms	33	
MAXTIM	maximum number of output times	33	
MAXVAR	maximum number of grid points	33	
NDISCR	number of discrete particles sizes	33	,
NPTS	dummy integer representing length of an array	19	
NQUADP	number of quadrature points	29	
NVAR .	number of grid points	28	
NVARM1	number of grid points minus one	26	
PARTAL	array of partial derivatives of the growth rate with respect to particle size	25	s ⁻¹
RATE	array of growth rates	25	cm^3s^{-1}

Distribution:

USNRC Distribution Contractor (CDSI) (380 copies for R7) 7300 Pearl Street Bethesda, MD 20014

R. T. Curtis Chief of Analytical Advanced Reactor Safety Research U. S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555

M. Silberberg
Chief of Experimental Fast Reactor
Safety Research
U. S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555

Dr. Robert Bergström. Systems Applications, Inc. 950 Northgate Drive San Rafael, CA 94903

Dr. Richard C. Flagan Dept. of Environmental Engineering California Institute of Technology Pasadena, CA 91125

Dr. Ronald L. Drake Battelle Pacific Northwest Labs Richland, WA 99352

Dr. William S. Gregory Los Alamos Scientific Laboratory WX-8, Mail Stop 928 P. O. Box 1663 Los Alamos, NM 87545

Dr. P. H. McMurry Department of Mechanical Engineering 125 Mechanical Engineering 111 Church Street SE Minneapolis, MN 55455

Dr. George Mulholland U. S. Department of Commerce National Bureau of Standards Washington, DC 20232 John H. Seinfeld Department of Chemical Engineering California Institute of Technology Pasadena, CA 91125

John Glissmeyer Battelle Pacific Northwest P. O. Box 999 Richland, WA 99352

Melvin G. Piepho
Fast Reactor Safety Development Div.
P. O. Box 1970
Westinghouse Hanford
Richland, WA 99352

Dr. Leonard K. Peters University of Kentucky College of Engineering Department of Chemical Engineering Lexington, KY 40506

Dr. Thomas W. Peterson
Department of Chemical Engineering
University of Arizona
Tucson, AZ 85721

4422 D. A. Powers 4423 P. S. Pickard (5) 4424 J. P. Odom

4530 R. W. Lynch

4533 B. D. Zak

4533 F. Gelbard (12)

4551 R. P. Sandoval 8214 M. A. Pound

3141 L. J. Erickson (5)

3151 W. L. Garner (3)

for DOE/TIC (Limited Release)

3172-3 R. P. Campbell (25) For NRC Distribution to NTIS