						Forest Kobayashi
5.6(4)	5.11	5.15(no normal)	5.17	5.23	Total	Math 147
						HW 5 Solutions 03/13/2019
	5.6(4)	5.6(4) 5.11	5.6(4) 5.11 5.15(no normal)	5.6(4) 5.11 5.15(no normal) 5.17	5.6(4) 5.11 5.15(no normal) 5.17 5.23	5.6(4) 5.11 5.15(no normal) 5.17 5.23 Total

5.6(4). Show that \mathbb{R}^2 with the standard topology is normal.

Solution. First, we introduce some notation.

Notational Note: Let (X,\mathcal{F}) be a topological space. Let $x \in X$, and let $Y \subset X$. Then

$$d(x,Y) = \inf_{y \in Y} d(x,y).$$

Main Proof: Let A, B be disjoint closed subsets of \mathbb{R}^2 . For each $a \in A$, $b \in B$, let

$$\epsilon_a = \frac{d(a,B)}{3}$$

$$\epsilon_b = \frac{d(b, A)}{3}$$

and note that by part (1), $\epsilon_a, \epsilon_b > 0$. Define

$$U = \bigcup_{a \in A} B_{\epsilon_a}(a) \qquad \qquad V = \bigcup_{b \in B} B_{\epsilon_b}(b)$$

and observe $U, V \in \mathcal{I}_{std}$, with $A \subset U$ and $B \subset V$. We want to show $U \cap V = \emptyset$.

Suppose, to obtain a contradiction, that $U \cap V \neq \emptyset$. Let $x \in U \cap V$. Then there exist $a \in A$, $b \in B$ such that $x \in B_{\epsilon_a}(a) \cap B_{\epsilon_b}(b)$. It follows that

$$d(a,b) \le d(a,x) + d(x,b)$$

$$\le \epsilon_a + \epsilon_b$$
(*)

WLOG, suppose $\epsilon_b \leq \epsilon_a$. Then

$$d(a,b) \le 2\epsilon_a$$

$$= \frac{2}{3}d(a,B)$$

$$< d(a,b)$$

a contradiction. Hence, $U \cap V = \emptyset$, so U, V are disjoint open sets containing A and B respectively. Since A, B were arbitrarily chosen, it follows that \mathbb{R}^2 is normal, as desired.

Clarifying Note: How did we get the final inequality? Well, note that

$$d(a,B) = \inf_{b \in B} d(a,b)$$

 $u(a, D) = \lim_{b \in B} u(a, b)$ hence for all $b' \in B$, $d(a, B) \le d(a, b')$. Since d(a, B) > 0, it follows that for all $b' \in B$, $\frac{2}{a} d(a, B) < d(a, b')$

$$\frac{2}{3}d(a,B) < d(a,b').$$

¹Note, here our contradiction is d(a,b) < d(a,b). But we could also just skip (\star) , and directly contradict the triangle inequality by d(a,x) + d(x,b) < d(a,b). I prefer the former, just because it better matches arguments seen in Analysis.

I

orest Hosaya

5.11 (The Incredible Shrinking Theorem). A topological space X is normal if and only if for each pair of open sets U, V such that $U \cup V = X$, there exist open sets U', V' such that $\overline{U'} \subset U$ and $\overline{V'} \subset V$, and $U' \cup V' = X$.

Solution. First, we prove a lemma.² The (\Longrightarrow) direction will follow as a corollary.

Lemma 1. Let (X,\mathcal{T}) be normal. Let $U,V\in\mathcal{T}$ such that $U\cup V=X$. Then there exists $U' \in \mathcal{T}$ such that $\overline{U'} \subset U$, and $U' \cup V = X$.

I'll provide two proofs. The first uses theorem 5.9 (and is hence much cleaner), while the second uses the definition of normality (and is hence much longer / more involed). I included both, so that people who tried to use normality could see how to proceed.

Proof 1: Note that V^c is closed, and $V^c \subset U$. Then by theorem 5.9, there exists $U' \in \mathcal{T}$ such that

$$V^c \subset U' \subset \overline{U'} \subset U$$
.

Note that $V^c \subset U' \implies U' \cup V = X$. Hence, we have our desired U'.

Proof 2: $U, V \in \mathcal{T}$ implies U^c and V^c are closed. Observe that

$$U^c \cap V^c = (U \cup V)^c$$
$$= \varnothing,$$

hence U^c, V^c are disjoint closed sets. Then by definition of normality, there exist disjoint open sets U', V' such that

$$U^c \subset V'$$
 and $V^c \subset U'$.

Note that $V^c \subset U' \implies U' \cup V = X$. It remains to show $\overline{U'} \subset U$. Since $U' \cap V' = \emptyset$ Note that $V \subset \mathcal{C}$ and $U^c \subset V'$, we have

$$U' \subset V'^c \subset U$$

and because V'^c is closed, $\overline{U'} \subset V'^c$ as well. This proves the claim.

Now, the main proof.

 (\Rightarrow) : Suppose X is normal.

Let $U, V \in \mathcal{T}$ such that $U \cup V = X$. Then by the lemma, there exists $U' \in \mathcal{T}$ such that $\overline{U'} \subset U$, and $U' \cup V = X$. Now, applying the lemma to the pair (V, U'), we obtain the desired V'.

 (\Leftarrow) : Suppose that $\forall U, V \in \mathcal{T}$ s.t. $U \cup V = X$, there exists U', V' s.t. $\overline{U'} \subset U, \overline{V'} \subset V$, and $U' \cup V' = X$. WTS X is normal. We will apply Theorem 5.9.

Let $A \subset X$ be an arbitrary closed set, and let $U \in \mathcal{T}$ such that $A \subset U$. Observe that A^c is open, and $U^c \subset A^c$. It follows that $X = U \cup A^c$. Then by hypothesis, there exists $U', V' \in \mathcal{T}$ such that

$$\overline{U'} \subset U \qquad \qquad \overline{V'} \subset A^c$$

and $U' \cup V' = X$. Observe that this last condition implies $(U')^c \subset V'$, hence we have

$$(U')^c \subset V' \subset \overline{V'} \subset A^c$$

Taking the complement and employing $U' \subset U$, we have

$$A \subset (\overline{V'})^c \subset (V')^c \subset U' \subset U.$$

²I'm just proving it as a lemma so that I can offer two proofs. In an actual writeup, I'd just use one of them.

³At least one such U exists, namely X, hence we can freely declare U in this manner.

Note that $(\overline{V'})^c$ is open, while $(V')^c$ is closed. Then by Theorem 3.20,

$$\overline{(\overline{V'})^c} \subset (V')^c$$

hence

$$A\subset (\overline{V'})^c\subset \overline{(\overline{V'})^c}\subset U.$$

Since A and U were arbitrarily chosen, Theorem 5.9 implies X is normal.

5.15. Order topologies are T_1 , Hausdorff, and regular.

Solution. Let X be a totally ordered set, and \mathcal{T} be the associated order topology. Denote the elements of the canonical basis as follows:

- $(-\infty, a) = \{x \in X \mid x < a\}$
- $\bullet \ (a, \infty) = \{x \in X \mid a < x\}$
- $(a,b) = \{x \in X \mid a < x < b\}.$

Square brackets will indicate inclusivity, as usual.

Note. Although the notation here is almost identical to that of the standard topology on \mathbb{R} , we need not have $X = \mathbb{R}$. In fact, X is guaranteed to have no algebraic structure whatsoever. Be sure to keep this in mind as we proceed!

- (1) We apply Theorem 5.1. Let $x \in X$ be arbitrary. Then $(-\infty, x) \cup (x, \infty)$ is open. By complement, $\{x\}$ is closed, hence (X, \mathcal{T}) is T_1 .
- (2) WLOG, suppose x < y. We proceed by casework.
 - (i) Suppose there exists $z \in X$ such that x < z < y. Then $U = (-\infty, x), V = (z, \infty)$ are disjoint open sets with $x \in U, y \in V$.
 - (ii) Suppose no such z exists. Then $U=(-\infty,y),\ V=(x,\infty)$ are disjoint open sets with $x\in U,\ y\in V.$

hence (X, \mathcal{T}) is Hausdorff.

Remark. By Theorem 5.7.2, we actually just need to show regularity now that we have T_1 . But in case you'd like to show Hausdorff constructively for extra practice, this is one way you might do it.

Also, here's a graphic of tenuous worth to "help" illustrate subcase (ii):

Figure 1: Subcase (ii)

Note the gap between x and y. U is the top interval, V is the bottom one.

(3) To show regularity, we will employ Theorem 5.8. But first, a small Lemma.

Lemma 2. Let $(a,b) \subset X$. Then $\overline{(a,b)} \subset [a,b]$. Proof: Note that $X - \underline{[a,b]} = (-\infty,a) \cup (b,\infty)$ is open, hence [a,b] is closed. By Theorem 3.20, we have $\overline{(a,b)} \subset [a,b]$.

Remark. We actually can't do better than this in the general case. For example, you can find subspaces of the lexicographically ordered square that refuse to play nice. Also, if X is a discrete set (such as \mathbb{N} or \mathbb{Z}), plenty of counterexamples exist.

Let $x \in X$ be arbitrary. Let $U \in \mathcal{T}$ such that $x \in U$. Then there exist $a, b \in X \cup \{-\infty, \infty\}$ such that

$$x \in (a,b) \subset U^4$$

⁴Note, this is just a concise way of declaring a basic open set.

Claim: There exists $(a',b') \subset (a,b)$ such that $x \in (a',b') \subset \overline{(a',b')} \subset (a,b)$.

Proof of Claim: When typing this up, I found a slightly cleaner version of the argument I was using at http://web.math.ku.dk/~moller/e02/3gt/opg/S31.pdf, and have modified my proof accordingly.

Let A = (a, x), and B = (x, b). Then we have four subcases.

- i) Suppose that $A, B = \emptyset$. Then $(a, b) = \{x\}$, which is clopen. Hence take (a', b') = (a, b), and the claim holds. \checkmark
- ii) Suppose $A = \emptyset$ and $B \neq \emptyset$, and let $b' \in B$. Then let a' = a, and note (a', b') = [x, b'). Hence $x \in (a', b')$, and $\overline{(a', b')} = \overline{[x, b')} \subset [x, b'] \subset (a, b)$

so the claim holds. \checkmark

- iii) Supposet $A \neq \emptyset$ and $B = \emptyset$. The proof is analogous to the above. \checkmark
- iv) Suppose $A \neq \emptyset \neq B$. Then let $a' \in A$, $b' \in B$. It follows that

$$x \in (a', b') \subset \overline{(a', b')} \subset [a', b'] \subset (a, b)$$

as desired. 🗸

since these cases are exhaustive, we see X is regular, as desired.

5.17. Let X and Y be regular. Then $X \times Y$ is regular.

Solution. Let $p \in X \times Y$ be arbitrary. Let $U \in \mathcal{T}_{\text{prod}}$ such that $x \in U$.

5.23. Let A be a closed subset of a normal space X. Then A is normal when given the relative topology.

Solution. Let \mathcal{T}_X be the topology on X, and \mathcal{C}_X be the set of closed sets in (X,\mathcal{T}) . Similarly, let \mathcal{T}_A , \mathcal{C}_A .

Let $B, C \in \mathcal{C}_A$ be disjoint. Then by Theorem 4.28, there exist $B', C' \in \mathcal{C}_X$ such that

$$B = B' \cap A \qquad \qquad C = C' \cap A.$$

Then since C_X is closed under arbitrary intersection, it follows that B, C are closed in (X, \mathcal{T}) .⁵ Hence by normality, there exist disjoint $U, V \in \mathcal{T}_X$ such that $B \subset U$, and $C \subset V$. Note that

$$B = (B \cap A) \subset U \cap A \qquad \qquad C = (C \cap A) \subset V \cap A,$$

and $U \cap A$, $V \cap A$ are open sets in (A, \mathcal{T}_A) . Since they are also disjoint, we see B, C are separated by disjoint open sets in (A, \mathcal{T}_A) .

Finally, since B, C were arbitrarily chosen, it follows that A is normal with the relative topology.

 $^{^{5}}$ OK, I know I defined \mathcal{C}_{X} above, but I was worried that all the script C's flying around were getting confusing!