Normalization

Normalization is a process of organizing data in the database.

It is used to minimize the redundancy from relations or a set of relations.

> 1st Normal Form:

It says that a relation is in 1NF if and only if:

- The domain of each attribute contains only atomic value.
- The value of each attribute contains only a single value from that domain.
- There should not be repeating groups.

> 2nd Normal Form:

It says that a relation is in second normal form if and only if:

- The relation should be in 1NF.
- Every non key attribute should be fully functionally dependent on each candidate key.

> 3rd Normal Form:

It says that a relation is in 3rd normal form if and only if:

- It is in 2NF.
- Transitive functional dependency of a non-prime attribute on any candidate key should be removed. Or

All Fields can be determined only by the key in the table and no other column.

Theatre (th_id, loc, city, state)

Th id	loc	city	state
100	Akota	Vadodara	Gujarat
101	Sarkhej	Ahmedabad	Gujarat

Each cell is single valued

The table is in 1NF.

The table is in 2NF as there are no candidate keys.

th_id --> loc and loc --> city hence th_id --> city

Also, city --> state so th_id --> state.

Since there is transitivity, the table is not in 3NF.

The table can be divided as:

Th_main (th_id, loc)

Th_loc (loc, city)

Th_st (city,_state)

Screen (<u>screen id, th id</u>, silver_seats, gold_seats, screen_name)

screen id	th id	silver_seats	Gold_seats	screen_name

Each attribute is single valued. Therefore, it is in 1NF.

The number of silver seats and gold seats a screen will have is dependent on screen_id as well th_id. However, screen names depend on only screen_id.

So, table can be divided as:

Screen (screen_id, th_id, silver_seats, gold_seats)

Screen_name (screen_id, screen_name)

Scree	Screen id		Silver	seats	Gold_seats	Screen_name
screen id	th id	silver_seats	gold seats		screen id	screen_name
			<u> </u>			

Both the tables are in 2NF.

Since Screen table has no transitivity, it is in 3NF.

Projection_Room (screen id, th id, server, type)

Screen id	th id	server	type

Since there can be multivalve for type attribute (2D, 3D), the table is not in 1NF.

The table can be divided as:

Proection_Room (<u>screen_id, th_id</u>, server)
Projection_type (<u>screen_id, th_id, type</u>)

Screen id		1	th id	serv	er	1	type
		_		,			
screen id	<u>th</u>	<u>id</u>	server	screen	id	th_id	<u>type</u>

As server depends on screen_id and th_id together the table Pro_Room is in 2NF. There is no more than 1 non-prime attribute So, it is also in 3NF.

Pr_type has no non-prime attribute, so it is also in 2NF and in 3NF.

Employee (<u>eid, th_id</u>, ename, email, phone_no, job, hiredate, sal)

One employee can have more than one contact number, so the table is not in 1NF.

It can be divided as:

Employee (eid, th_id, ename, email, job, hiredate, sal, comm)

Em_no (eid, th_id, phone_no)

<u> </u>	eid	th id	ename	email	phone_	no	job	hi	reda	te	sal	c	omm
				<u> </u>				\perp					
		T		/		<u> </u>		_	_	\			
<u>eid</u>	th_id	ename	email	job	hiredate	sa	al	comm	4	<u>eid</u>	<u>t</u>	h_id	phone_n
							_		$\bot \vdash$				
							_		4				
									┙┞				

As ename depend only on eid and not on th_id so the table Employee is not in 2NF and sal depend on job and th_id not on eid. So table is divided as:

Employee_n (<u>eid</u>, ename)

Employee_jsal(th_id, job, sal, comm)

Employee (eid, th_id, email, job, hiredate)

	<u>eid</u>	th ic	<u>d</u> ena	ame en	nail	job	hiredat	e sal	comr	n
				$\overline{}$						
<u>th</u>	<u>id</u>	<u>job</u>	sal	comm			<u>eid</u>	th id	job	hiredate

Projectionist (pid, th_id, shift)

<u>pid</u>	th_id	shift

Each projectionist will have only one shift, so it is in 1NF.

As shift depends on pid as well as th_id, it is in 2NF.

Since there is no more than 1 non-prime attribute, it is in 3NF.

Movie (<u>mov_name</u>, release_dt, duration, lang, genre, budget)

Mov name	Release_dt	duration	language	genre	budget	M_share

As one movie has many genres and it can be in more than 1 language, the table is not in 1NF.

It can be divided as:

Movie (mov_name, release_dt, duration, budget, movie_share)

Movie_genre (mov_name, genre)

Movie_lang (mov_name, language)

As there is no non-prime attribute in Movie_genre and Movie_lang, they both are in 2NF and 3NF.

M_share depend on budget and budget depend on mov-name. So there is transitivity. So it is not in 3NF. The table can be divided as :

Movie (mov_name, release_dt, duration)

Movie_share (mov_name, budget, m_share)

Shows (<u>screen_id</u>, th_id, <u>sdatetime</u>, mov_name, runtime)

Screen id	Th id	sdatetime	Mov_name	runtime

Mov_name and runtime will be single valued for same screen_id, th_id and sdatetime together.

So, the table is in 1NF.

Mov_name and runtime both are totally dependent on the candidate key (screen_id, th_id, sdatetime). So, the table is in 2NF. As there is no transitivity the table is in 3NF.

Silver_seat (silver_seatnum, screen_id, th_id, sdatetime, availability, price)

Silver_seatnum	Screen_id	Th_id	<u>sdatetime</u>	availability	price

Availability is a single value attribute, so the table is in 1NF.

Now price depends on screen_id, th_id and sdatetime only because each seat is silver. Therefore, the table is not in 2NF. The table is divided into:

Silver_seat (silver_seatnum, screen_id, th_id, sadtetime, availability)
Silver_price(th_id, screen_id, sdatetime, price)

Availability depends on the candidate key totally so the silver_seat table is in 2NF. Price depends on th_id, screen_id and sdatetime together. So, table silver_price is also in 2NF.

As there is no more than 1 non-prime attribute the tables are in 3NF.

Gold_seat (gold_seatnum, screen_id, th_id, sdatetime, availability, price)

Gold_seatnum	Screen_id	Th_id	<u>sdatetime</u>	availability	price

Availability is a single value attribute, so the table is in 1NF.

Now price depends on screen_id, th_id and sdatetime only because each seat is gold. Therefore, the table is not in 2NF. The table is divided into:

Gold_seat (gold_seatnum, screen_id, th_id, sadtetime, availability)

Gold_price(th_id, screen_id, sdatetime, price)

Availability depends on the candidate key totally so the gold_seat table is in 2NF. Price depends on th_id, screen_id and sdatetime together. So, table gold_price_is also in 2NF.

As there is no more than 1 non-prime attribute the tables are in 3NF. Customer (Cid, cname, phone_num, email, payment_method, th_id)

<u>cid</u>	Th_id	cname	Phone_num	email	Payment_method

As each attribute is a single valued the table is in 1NF.

It is in the 2NF as there are no candidate keys.

There is no transitivity, the table is in 3NF.

SilverTicket (<u>ticket_id, th_id</u>, nprice, bk_dt_time, bk_type, sdatetime, screen_id, silver_seatnum, cid, webname)

Ticket_is	Th_id	nprice	Bk_d t_ti me	Bk_type	sdatetime	Screen _id	Silver_seat num	cid	webname

GoldTicket (ticket id, th id, nprice, bk_dt_time, bk_type, sdatetime, screen_id, gold_seatnum, cid, webname)

Ticket_is	Th_id	nprice	Bk_d t_ti me	Bk_type	sdatetime	Screen _id	gold_seatn um	cid	webname

Boxoffice (th_id, sdatetime, screen_id, mov_name)

Th id	sdatetime	Screen_id	Mov name
-------	-----------	-----------	----------

Each attribute is single valued, so the table is in 1NF.

Screen_id depends on th_id, sdatetime and mov_name together. So the is in 2NF.

As there are no more than 1 non-prime attribute the table is in 3NF.

Website (wid, sdatetime, screen_id, mov_name)

wid	sdatetime	Screen_id	Mov name	

Each attribute is single valued, so the table is in 1NF.

Screen_id depends on wid, sdatetime and mov_name together. So the is in 2NF.

As there are no more than 1 non-prime attribute the table is in 3NF.