Vektorräume

Bemerkung

Vektoren sind Elemente von Vektorräumen, z.B. \nearrow , π , i, 2 + 3i, $\int_0^1 f(x) dx$

Definition

Sei K ein Körper, Ein K -Vektorraum (kurz: K:-VR also VR über k) $(V;+,(k|k\in K))$ besteht aus:

- 1. einer Menge V $(V \notin \emptyset)$
- 2. einer Addition $+; v \times v \rightarrow v$
- 3. einer Skalarmultiplikation $(k|k\ inK); K\times K\to V$ mit der Eigenschaften (v1) bis (v10)

Die Elemente von V heißen Vektoren

Bezeichnungen:

$$\mathbb{R} - VR$$
 (d.h. $K = \mathbb{R}$): reeller VR

$$\mathbb{C} - VR$$
 (d.h. $K = \mathbb{C}$): komplexer VR

kurz: VR V (wenn klar ist, um welchen Körper es geht)

$$\vec{V} \in V$$
 Skalar $\to k \in K$

Vektorräume - Axiome

- 1. Zu je zwei $v_1, v_2 \in V$ existiert ein eindeutig bestimmtes $v_1 + v_2$ in V
- 2. Für alle $v_1, v_2, v_3 \in V$ gilt: $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$ (+ ist assoziativ)
- 3. Für alle $v_1, v_2 \in V$ gilt: $v_1 + v_2 = v_2 + v_1$ (+ ist kommutativ)
- 4. Es gibt in V ein Element 0(Null, Nullvektor) mit v+0=0+v=v für alle $v \in V$
- 5. Zu jedem $v \in V$ existiert ein $-v \in V$ mit v + -v = -v + v = 0
- 6. Zu jedem k inK und jedem $v \in V$ existiert ein eindeutig bestimmtes $k \cdot v \in V$
- 7. Für alle $v \in V$ gilt: $1 \cdot v = v$ (1 bzw. 1_k ist das Einselement aus K)
- 8. Für alle $k_1, k_2 \in K$ und alle $v \in V$ gilt: $k_1 \cdot (k_2 \cdot v) = (k_1 \cdot k_2) \cdot v$
- 9. Für alle $k_1, k_2 \in K$ und alle vinV gilt: $(k_1 + k_2) \cdot v = k_1 \cdot v + k_2 \cdot v$
- 10. Für alle $k \in K$ und alle $v_1, v_2 \in V$ gilt: $k \cdot (v_1 + v_2) = k \cdot v_1 + k \cdot v_2$