

NOV 22, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.e6nvwjxnzlmk/v1

Protocol Citation: Chien-Ju Chen, Kian Kalhor, Kun Zhang 2023. DART-FISH Protocol. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.e6nvwjxnzlmk/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jun 02, 2023

Last Modified: Nov 22,

2023

C DART-FISH Protocol

Chien-Ju Chen¹, Kian Kalhor¹, Kun Zhang¹

¹University of California, San Diego

Chien-Ju Chen

ABSTRACT

In the manuscript Mapping Human Tissues with Highly Multiplexed RNA in situ Hybridization

(https://doi.org/10.1101/2023.08.16.553610), we describe a highly multiplexed in situ hybridization technique based on in situ padlock probe capture and demonstrate in applicability to different human tissue types. This protocol details the rolony generation and decoding steps of DART-FISH.

MATERIALS

Reagents

Material	Supplier	Catalog Number
UltraPure™ DEPC-treated Water 1L	ThermoFisher Scientific	750023
Pierce™ 16% Formaldehyde (w/v), Methanol-free	ThermoFisher Scientific	28908
PBS - Phosphate-Buffered Saline (10X) pH 7.4, RNase-free	ThermoFisher Scientific	AM9624
Ethyl alcohol, Pure	Sigma-Aldrich	E7023
Triton™ X-100 solution	Sigma-Aldrich	93443
pepsin	Sigma-Aldrich	10108057001
SuperScript™ IV Reverse Transcriptase	ThermoFisher Scientific	18090010
SUPERase-In RNase inhibitor	ThermoFisher Scientific	AM2696
Advantage® UltraPure dNTP Combination Kit	ClonTech	639132
RNase inhibitor	Enzymatics	Y9240L
Aminoallyl dUTP, 4 mM in TE buffer *UltraPure Grade*, Anaspec Inc	Anaspec (VWR)	AS-83203
BS(PEG)9	ThermoFisher Scientific	21582
UltraPure™ DNase/RNase-Free Distilled Water	TheroFischer Scientific	10977023
Ribonuclease; RNAse H; Conc. 5,000 U/mL; 5,000 U; incl. 10X buffer	Fisher Scientific	50305945

PROTOCOL integer ID: 82786

Material	Supplier	Catalog Number
RNase Cocktail™ Enzyme Mix	Invitrogen	AM2288
Ampligase® Enzyme and Buffer	VWR	76081-598
SSC (20X), RNase-free	ThermoFisher Scientific	AM9763
Formamide (Deionized)	ThermoFisher Scientific	AM9342
BSA, Molecular Biology Grade	NEB	B9000S
Phi29 DNA polymerase (10U/uL)	ThermoFisher Scientific	EP0094
Acryloyl-X, SE in DMSO	ThermoFisher Scientific	A20770
Acrylamide/Bis-acrylamide, BioReagent, for molecular biology, 37:1 (ratio)	Sigma-Aldrich	A6050-100ML
Ammonium persulfate	Sigma-Aldrich	A3678
TEMED	Fisher Scientific	17919
gel slick solution	Lonza	50640
TrueBlack lipofuscin autofluorescence quencher	Biotium	23007
Silicone Isolators JTR20R-2.5 20mm DIA x 2.4 mm Depth 25 x 25mm OD No PSA	Grace Bio-Labs	664304
Coverslips, Glass, 18mm dia.	Ted Pella	260369
Azer Scientific cover glass, No. 1.5, 24 x 60 mm	Neta Scientific	Azer-1152460

Probes

Oligo name	Vendor	Sequence
Acr_dc10-Cy5_N9	IDT	/5AmMC12/CCGATAGTCACGATCTGTGGNNNN NNNN*N
Acr_dc7-488_dT20	IDT	/5Acryd/CATGGATTCGCGGAGGATCATTTTTTT TTTTTTTTV*N
rca_primer	IDT	GATATCGGGAAGCTGA*A*G
DARTFISH_anchor_ Cy3	IDT	/5Cy3/CTTCAGCTTCCCGATATCCG
dcProbe7-AF488	IDT	/5Alex488N/TGATCCTCCGCGAATCCATG
dcProbe10- ATT0647N	IDT	/5ATTO647NN/CCACAGATCGTGACTATCGG
dcProbe0-AF488	IDT	/5Alex488N/TGTATCGCGCTCGATTGGCA
dcProbe0-Cy3	IDT	/5Cy3/CGTATCGGTAGTCGCAACGC
dcProbe0- ATT0647N	IDT	/5ATTO647NN/ACGCTACGGAGTACGCCACT

Oligo name	Vendor	Sequence
dcProbe1-AF488	IDT	/5Alex488N/TCTTGCGTGCGATACGGAGT
dcProbe1-Cy3	IDT	/5Cy3/AACGGTATTCGGTCGTCATC
dcProbe1- ATT0647N	IDT	/5ATTO647NN/CTGGTTCGGGCGTACCTAAC
dcProbe2-AF488	IDT	/5Alex488N/AGAACTTGCGCGGATACACG
dcProbe2-Cy3	IDT	/5Cy3/CTACTTCGTCGCGTCAGACC
dcProbe2- ATT0647N	IDT	GACGAACGGTCGAGATTTAC/3ATT0647NN/
dcProbe3-AF488	IDT	/5Alex488N/GAATTGTCCGCGCTCTACGA
dcProbe3-Cy3_2	IDT	/5Cy3/TCGTACTTCGACGGCACTCA
dcProbe3- ATT0647N	IDT	/5ATTO647NN/AACTGCGACCGTCGGCTTAC
dcProbe4-AF488	IDT	/5Alex488N/CGGAATACGTCGTTGACTGC
dcProbe4-Cy3	IDT	/5Cy3/TACCATTCGCGTGCGATTCC
dcProbe4- ATT0647N_2	IDT	/5ATTO647NN/ACTCTACCGGCAATCGCGTC
dcProbe5-AF488	IDT	/5Alex488N/GAGTGTCGCGCAACTTAGCG
dcProbe5-Cy3	IDT	/5Cy3/ACGTCTGCGTACCGGCTTAG
dcProbe5- ATT0647N	IDT	/5ATTO647NN/CATGCGATTAACCGCGACTG
dcProbe6-AF488_2	IDT	/5Alex488N/CTTGCGGCGACAGTCGAACA
dcProbe6-Cy3	IDT	/5Cy3/TCGTAACCCGTGCGAAGTGC
dcProbe6- ATT0647N	IDT	/5ATTO647NN/CTCTCGTAGCGTGCGATGAG
dcProbe7-AF488_2	IDT	/5Alex488N/TTAGGTCGCCTACCGACTGC
dcProbe7-Cy3	IDT	/5Cy3/GCCACATCGACTCGGTCTAT
dcProbe7- ATTO647N	IDT	GCTCAGCCGGACGAGTAGAT/3ATTO647NN/

BEFORE START INSTRUCTIONS

Prepare fresh frozen tissue sections at 10um thickness on coverslips. Store the sections in -80C and transfer on dry ice upon the start of the protocol.

Make sure that the padlock probes have 5' phosphate. The enzymatic production of padlock probes (accompanying protocol) leaves a 5' phosphate. If probes are individually synthesized without 5' phosphate, run T4 PNK reaction and clean up the product using Zymo ssDNA/RNA clean up columns.

Preparation

10m

- 1 Wash, dry and UV the silicone isolators. UV the EasyDip jars. Move away unused stuff from the bench. Wipe the working area by 70% ethanol and RNase Zap. Set the HybEZ oven 37 °C.
- 2 Prepare two jars of DEPC-1xPBST and keep one at 4 °C

Component	Volume (ml)
10x PBS	8
10% Tween-20	0.8
DEPC-H2O	72

Fixation

Prepare 80ml of 4% formaldehyde in 1x PBS. Store at 4 °C for use in the same day.

Component	Volume (ml)
DEPC-water	52
16% PFA	20
10X PBS	8

Take the tissue sections that are on 25mm*60mm coverslips out of -80 °C freezer, put them on dr ice, quickly insert them into the EasyDip slide holder, submerge the slide holder in the staining jar containing 4% PFA in PBS. Fix for 01:00:00 at 4 °C.

⊙ 01:00:00 4C

- 5 Remove the DEPC-PBST jar and the 4% PFA jar containing the samples from 4C. Insert the sample ho into the cold 1x PBST jar. Incubate for 3 minutes. Then insert the sample holder in the room temperature 1x PBST jar. Incubate for 3 minutes.
 - 00:03:00 in 4C DEPC-PBST with occasional agitation
 - 00:03:00 in RT DEPC-PBST with occasional agitation

dehydration and mounting

20m

6 Prepare jars of 50%, 70% and two 100% ethanol. Dehydrate tissue sections with 20m

- 00:05:00 50% EtOH at room temperature
- 00:05:00 70% EtOH at room temperature
- (*) 00:05:00 100% EtOH at room temperature
- (*) 00:05:00 100% EtOH at room temperature
- 7 Take the coverslips out of the sample holder.

5m

(5) 00:05:00 Air drying at room temperature.

In the meantime, put 20mm diameter Press-To-Seal silicone isolators on a kipwipe on a flat surface. Carefully put the coverslips on silicone isolators, with the tissue sample in the hole. Gently press on the back of the coverslip to seal completely. Attach another 20mm diameter isolator on top of the already mounted 20mm isolator to increase the volume.

permeabilization

10m

8 Permeabilize the tissue section with 0.25% Triton X-100 in DEPC-1X PBS

(5) 00:10:00 at Room temperature

Component	1x volume (ul)
10X PBS	40
DEPC-H2O	350
RNase inhibitor (enzymatics) (40U/ul)	2
10% Triton X-100	10
SUPERase In (20U/ul)	1

9 Wash thrice with cold PBSTR and cold DEPC-Water 6m

△ 200 µL PBSTR for ♦ 00:03:00

△ 200 µL PBSTR for (00:03:00

△ 1 mL DEPC-water quick wash

pepsin digestion

10m

Digest with 0.01% Pepsin in 0.1N HCl. Pre-warm the pepsin to 37 °C for at least 5 minutes bef 1m 30s use.

Ϫ 100 μL 0.01% Pepsin in 0.1N HCl for ♦ 00:01:30 at \$ 37 °C

Component	1x volume (ul)
1% pepsin	1
0.1N HCl	99

11 Wash two times with cold PBSTR 🕙 00:00:00 🚨 200 μL PBSTR for 🕙 00:03:00

3m

reverse transcription

15m

12 Prepare Reverse Transcription Mix on Ice.

15m

Component	1x volume (ul)
DEPC-H20	88.125
Acr_dc10-Cy5_N9 (100uM)	3.75
Acr_dc7-488_dT20 (100uM)	3.75
5X SSIV Buffer	30
0.1 M DTT	7.5
10 mM dNTP	3.75
4 mM aminoallyl-dUTP	1.5
RNase Inhibitor (enzymatics, 40U/ul)	3.75
Superase In (20U/ul)	0.375
SuperScript IV Reverse Transcriptase	7.5

Incubate tissue sections with the Reverse Transcription Mix

△ 150 μL Reverse Transcription Mix for ⊙ 00:10:00 at ° 4 °C then ⊙ Overnight at ° 37 °C

Make sure to fully cover the silicone well. If you use a coverslip, do not press on it and do not let the coverslip come in contact with the reagents inside the well.

13 Wash two times with cold PBSTR

Δ 200 μL PBSTR quick wash

Δ 200 μL PBSTR quick wash

cDNA crosslinking and gel embedding

1h 30m

14 Treat the sample with Acryloyl-X mix:

ı	3	0	m	1

Component	1x volume (ul)
10X PBS	50
10mg/mL Acryloyl-X, SE in DMSO	10
ultrapure water	440

Δ 500 μL Acryloyl-X Mix to the sample and incubate for 👏 00:30:00 at

Room temperature

quick wash with PBSTR

Δ 400 μL PBSTR quick wash

15

Incubate the sample with 🗸 300 µL Acrylamide Solution for 🚫 00:30:00 at 🖁 Room temperat 30m

Prepare Acrylamide Solution.

Component	1x volume (ul)
10X PBS	50
40% Acrylamide/Bis (37:1)	50
SUPERase-In RNase inhibitor(20U/uL)	1.25
Enzymatic RNase inhibitor	2.5
ultrapure water	400

In the mean time prepare 5% TEMED: Δ 5 μ L TEMED in Δ 95 μ L ultrapure water

Prepare 4% APS: 🛕 10 mg Ammonium Persulfate in 🗸 250 µL ultrapure water

RNaseZap and UV 18mm coverslips and treat them with Gel-Slick.

16 Prepare the polymerization mix and mix well by gently pipetting up and down. 42m

Note: Be quick at this step

Component	1x volume (uL)
Acrylamide solution	138
4% APS	6
5% TEMED	6

Wash with 1x PBST for 3min twice

Carefully remove the Gel-Slick-treated coverslip on the samples using a needle

Wash with 1xPBST for 3min twice

RNase digestion

1h

17 Prepare RNase Digestion Mix

11

Component	1x volume (ul)	
ultrapure water	168	
10X RNase H buffer	20	
RNase H (5U/uL)	10	
RNase Cocktail	2	

Add 🗸 200 µL RNase Digestion Mix

Incubate at \$\mathbb{S} 37 \cdot \cd

18 Wash samples with 1X PBS twice.

6m

padlock probe hybridization

33m

Prepare the padlock-probe-hybridization mix according to the table below. Preheat the probe-water m 3m to 8 85 °C for 00:03:00 and immediately move them to a cold block or on ice. Then complete the padlock-probe-hybridization mix.

Note: Adjust the volume and ultrapure water and padlock probes so that the final concentration of

padlock probes is at 100 nM for the brain probe set and 180 nM for the kidney probe set

padlock-probe-hybridization mix

Component	1x volume (ul)
ultrapure water	93.1
10X Ampligase buffer	15
padlock probes (22.9 ng/uL)	31.9
100nM PLP1 oligos	1.5
Ampligase (5U/uL)	10

add Δ 150 μL padlock-probe-hybridization mix to tissue sections

20 Incubate samples in the padlock-probe-hybridization mix at \$\mathbb{g}\$ 37 °C for \$\infty\$ 00:30:00 , then at

\$ 55 °C Overnight

For the overnight incubation, first set the Ez hyb oven to 6 60 °C and then change it to 55 °C as you put the samples in. Cover the sample well so that the tissue sections won't dry out overnight.

Wash samples with 1x PBS twice.

△ 1 mL 1X PBS for ৩ 00:03:00

△ 1 mL 1X PBS for ৩ 00:03:00

RCA

6h

1h

30m

22 Prepare RCA Primer Mix

Component	1x volume (ul)
ultrapure water	119
20X SSC	20
formamide	60
100 uM rca_primer	1

add A 200 µL RCA Primer Mix to each sample and incubate at 8 37 °C for 6 01:00:00

Wash samples with 2xSSC.

protocols.io |

Component	1x volume (ul)
ultrapure water	119.25
10X Phi29 polymerase buffer	15
10mM dNTP	3.75
4mM aminoallyl-dUTP	1.5
NEB BSA (20mg/mL)	7.5
ThermoFisher Phi29 polymerase	3

Add \underline{A} 150 μ L RCA Enzyme Mix to each sample

Incubate samples in RCA Enzyme Mix at \$\ \ 30 \circ for \ \ \ 07:00:00 \end{array}

25 Wash samples with 1x PBS twice.

rolony crosslinking

Add the crosslinking mix to crosslink rolonies with BS(PEG)9. Prepare crosslinking mix.

1h 30m

6m

Component	1x volume (ul)
250mM BS(PEG)9	10
10X PBS	50
ultrapure water	440

Crosslink rolonies with BS(PEG)9

Δ 500 μL 5 mM BS(PEG)9 in PBS for (♦) 01:00:00 at β Room temperature

Wash with PBS twice

👃 1 mL 1x PBS quick wash

△ 1 mL 1x PBS quick wash

Quench unreacted crosslinker with 1M Tris, pH 8.0

△ 1 mL 1M Tris pH8.0 for ⑤ 00:30:00 at 『 Room temperature

Wash with PBS twice

imaging

11m

stain the sample with Probe Hybridization Mix with decoding probes (Take dcProbe0_AF488, dcProbe0_Cy3, dcProbe0_ATT0647N probes as an example).

10m

Prepare Probe Hybridization Mix

Component	1x volume (ul)
100 uM dcProbe0_AF488	1
100 uM dcProbe0_Cy3	1
100 uM dcProbe0_ATT0647N	1
100% formamide	60
20X SSC	20
ultrapure water	117

add Z 200 µL Probe Hybridization Mix to each sample. Incubate for 00:10:00 at

Room temperature

Wash with washing buffer (10% formamide in 2X SSC, 0.1% TritonX-100) twice. Then, image sample in 4m imaging buffer (10% formamide in 2x SSC buffer).

29 Strip with A 1 mL 80% formamide in 2X SSC for 00:05:00

5m

Wash with A 1 mL 2X washing buffer twice.

Repeat the decoding imaging with the next set of decoding probes (dcProbe1, dcProbe2, dcProbe3, dcProbe4, dcProbe5).

After images of samples stained with dcProbe0, 1, 2, 3, 4, 5 were taken, take the nuclei staining imag with Draq5 staining.

add 🚨 500 µL 5 uM DRAQ5 solution to the sample. Incubate for 👏 00:10:00 at

wash the sample with 1x PBS twice. Then, image.

