COMP4141 Tutorial 5 Diagonalisation, Decidability, Reductions

Ron van der Meyden meyden@cse.unsw.edu.au

March 2019

Exercise 1 An *infinite word* over Σ is an infinite sequence $\rho = a_0 a_1 a_2 \dots$ such that $a_i \in \Sigma$ for all i. Show that the set of infinite words over $\{0,1\}$ is uncountable.

Exercise 2 Show that the language $\{\langle M \rangle \mid M \text{ is a Turing machine with } L(M) \neq \emptyset \}$ is Turing-recognisable.

Exercise 3 Show that \leq_m is transitive, i.e., if $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.

Exercise 4 Show that the language $\{\langle M \rangle \mid M \text{ is a Turing machine such that } L(M) \text{ is an infinite language}\}$ is undecidable.