LISTA DE EJERCICIOS 1: ANÁLISIS FUNCIONAL

UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ

PRIMER SEMESTRE 2025

PROFESOR: OSCAR RIAÑO

Observación. Salvo que se diga lo contrario, los espacios vectoriales considerados tienen como campo escalar \mathbb{R} .

ESPACIOS VECTORIALES NORMADOS

Ejercicio 1. Sea $C^1([0,1]) = C^1([0,1];\mathbb{R})$ el espacio de todas las funciones continuas a valores reales sobre [0,1] que son diferenciables en (0,1) y cuyas derivadas se pueden extender continuamente a [0,1].

(i) Para $f \in C^1([0,1])$ definitions

$$||f|| = \max_{x \in [0,1]} \{|f(x)|, |f'(x)|\},$$

donde f' denota la derivada de f. Muestre que $C^1([0,1])$ es un espacio de Banach con la norma anterior.

(ii) De un ejemplo de una norma para la cual es espacio $C^1([0,1])$ sea normado, pero no completo. Misma pregunta para C([0,1]).

Ejercicio 2. Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Defina

$$\mathcal{K} = \{ x \in E : ||x|| = 1 \}.$$

Demuestre que E es de Banach si y solamente si K es completo.

Ejercicio 3. Sean $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ espacios vectoriales normados. Considere $T: E \to F$ una transformación lineal. Muestre que los siguientes afirmaciones son equivalentes:

- (i) T es continua.
- (ii) T es continua en cero.
- (iii) T es acotada. Es decir, existe M > 0 tal que para todo $x \in E$,

$$||Tx||_F \le M||x||_E.$$

(iv) Si $\overline{B(0,1)} = \{x \in E : ||x||_E \le 1\}$, entonces la imagen directa $T(\overline{B(0,1)})$ es un conjunto acotado de F.

Ejercicio 4. Demuestre que si $T \in L(E,F)^1$, entonces

- (i) $||Tx||_F \le ||T|| ||x||_E$, para todo $x \in E$. (ii) $||T|| = \sup_{\substack{x \in E \\ x \ne 0}} \frac{||Tx||_F}{||x||_E}$.

¹Recuerde que L(E,F) denota el conjunto de operadores lineales de E en F. Dado $T \in L(E,F)$ definimos la norma de T como $\|T\| = \sup_{\substack{x \in E \\ \|x\|_E \le 1}} \|Tx\|_F.$

$$\begin{split} \text{(iii)} \ \ \|T\| &= \sup_{\substack{x \in E \\ \|x\|_E = 1}} \|Tx\|_F. \\ \text{(iv)} \ \ \|T\| &= \inf\{M > 0: \|Tx\|_F \leq M \|x\|_E, \, \forall x \in E\}. \end{split}$$

(iv)
$$||T|| = \inf\{M > 0 : ||Tx||_F \le M||x||_E, \forall x \in E\}.$$

Ejercicio 5. Sean $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ espacios vectoriales normados. Suponga que F es un espacio de Banach. Muestre que L(E,F) es un espacio de Banach con la norma usual de L(E,F). En particular, $E^* = L(E,\mathbb{R})$, $E^{**} = L(E^*,\mathbb{R})$ son espacios de Banach.

Ejercicio 6. Sean E y F espacios vectoriales normados. Suponqa que E es de dimensión finita (F no necesariamente es de dimensión finita).

- (i) Muestre que todas las normas asignadas a E son equivalentes².
- (ii) Muestre que toda transformación lineal $T: E \to F$ es continua.
- (iii) De un ejemplo donde se verifique que (ii) puede ser falsa si E es de dimensión infinita.

Ejercicio 7. Sea $E = \{u \in C([0,1]) : u(0) = 0\}$ con la norma $||f||_{L^{\infty}} =$ sup |f(x)|. Considere el funcional $f: E \to \mathbb{R}$ dado por $x \in [0,1]$

$$f(u) = \langle f, u \rangle = \int_0^1 u(x) dx.$$

- (i) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.
- (ii) Es posible encontrar $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?

Ejercicio 8. Considere $E = c_0$ donde

$$c_0 = \{u = \{u_n\}_{n \ge 1} : tales \ que \ u_n \in \mathbb{R}, \ n \ge 1, \ \lim_{n \to \infty} u_n = 0\}.$$

Es decir, c_0 es el conjunto de las secuencias reales que tienden a cero. Dotamos a este espacio con la norma $||u||_{l^{\infty}} = \sup |u_n|$. Considere el funcional $f: E \to \mathbb{R}$ dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

- (i) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.
- (ii) Es posible encontrar $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?

Teoremas de Hahn-Banach

Ejercicio 9. Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0,r) = \{y \in E : ||y|| < r\}$. Determine el funcional de Minkowski³ de C.

Ejercicio 10. Demuestre que el teorema de Hahn-Banach vale con hipótesis más débiles en espacios de dimensión finita. Más precisamente, sea E un espacio vectorial normado de dimensión finita. Considere $C \subset E$ un conjunto convexo no vacío tal que $0 \notin C$. Demuestre que existe un hiperplano que separa estrictamente a C y {0}.

 $^{^2{\}rm Sean} \parallel \cdot \parallel_1 \le \parallel \cdot \parallel_2$ dos normas sobre E. Recordemos que dos normas son equivalentes si existen constantes positivas c_1 , c_2 , tales que $c_1||x||_1 \le ||x||_2 \le c_2||x||_1$, para todo $x \in E$.

³Recuerde que dado C abierto, convexo con $0 \in C$, el funcional de Minkowski se define como $p(x) = \inf\{\alpha > 0 : \alpha^{-1}x \in C\}, x \in E.$

Sugerencia: vea el libro de Brezis, Functional Analysis, Sobolev spaces and PDEs, Ejercicio 1.10.

Ejercicio 11. Sea E un espacio vectorial normado. Sean W un subespacio de E y Z un subespacio de E^* . Definimos

$$W^{\perp} = \{ f \in E^* : \langle f, x \rangle = 0 \ para \ todo \ x \in W \}$$

y

$$Z^{\perp} = \{x \in E : \langle f, x \rangle = 0 \ \text{para todo } f \in Z\}.$$

- (i) Muestre que Z^{\perp} es un subespacio cerrado de E.
- (ii) Muestre que $(W^{\perp})^{\perp} = \overline{W}$.
- (iii) Muestre que $\overline{Z} \subset (Z^{\perp})^{\perp}$.
- (iv) Muestre que si E es reflexivo⁴, entonces $\overline{Z} = (Z^{\perp})^{\perp}$.

Ejercicio 12. Sea E un espacio vectorial normado.

- (i) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := dist(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.
- (ii) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.
 - 3. Principio de acotación uniforma y el teorema del gráfico cerrado

Ejercicio 13. Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios de Banach.

- (i) Sea $K \subset E$ un subespacio cerrado de E. Definimos la relación sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relación de equivalencia sobre E.
 - (b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$||x + K||_{E/K} = \inf_{k \in K} ||x - k||, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial, normado, cuya norma lo hace completo.

(ii) Sea $T \in L(E, W)$ tal que existe c > 0 para el cual

$$||Tx||_F \ge c||x||_E,$$

para todo $x \in E$. Si K denota le espacio nulo de T y R(T) el rango de T, muestre que $\overline{T}: E/K \to R(T)$ dada por $\widetilde{T}(x+K) = T(x), \ x \in E$, está bien definida y es un isomorfismo. Esto es $\widetilde{T} \in L(E/K, R(T))$ y $\widetilde{T}^{-1} \in L(R(T), E/K)$.

Ejercicio 14. Sea E un espacio de Banach y $T: E \to E^*$ un operador lineal para el cual

$$\langle Tx, x \rangle \ge 0, \quad \forall x \in E.$$

Muestre que $T \in L(E, E^*)$.

⁴Recuerde que E es reflexivo, si la aplicación canónica $J: E \to E^{**}$ dada por $J(x) = J_x: E^* \to \mathbb{R}$ con $J_x(f) = \langle f, x \rangle$, es sobreyectiva.

Ejercicio 15. Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $||f||_{L^{\infty}} = \sup_{x \in [0,1]} |f(x)|$. Definimos el operador derivada $D: C^1([0,1]) \to C([0,1])$ dado por $f \mapsto f'$. Muestre que D es un operador no acotado, pero su gráfico G(D) es cerrado.

Ejercicio 16. Sea E un espacio de Banach y $T: E \to E^*$ un operador lineal tal que

$$\langle Tx,y\rangle = \langle Ty,x\rangle, \ \forall x,y \in E.$$

Muestre que $T \in L(E, E^*)$. Sugerencia: muestre que el gráfico de T es cerrado.

Universidad Nacional de Colombia, Bogotá $Email\ address$: ogrianoc@unal.edu.co