

Indice

BASE DE DATOS
 BASE DE DATOS

PROCESAMIENTO

03 MODELOS

04 Mejoras

05 CONCLUSIONES

Chinese-MNIST

Tratamiento de datos

Diferentes modelos usados y comparativas

Mejoras del modelo y comparativas

Ultimo repaso de todo y conclusiones finales

MODELOS

Modelos Sin One Hot Encoded

Modelos Con One × Hot Encoded

MSE

MAPE

Prediccion: 5 Prediccion: 0 Prediccion: 6 た Prediccion: 3 Prediccion: 5 Prediccion: 0 Prediccion: 12 Prediccion: 12 Prediccion: 5 Prediccion: 12 Prediccion: 5 Prediccion: 13 Prediccion: 8 Prediccion: 12 Prediccion: 0

MAE

CCE

Comparativas

×

×

MEJORAS

Prediccion: 5 Prediccion: 11 Prediccion: 13 れ Prediccion: 7 Prediccion: 13 Prediccion: 10 Prediccion: 12 Prediccion: 12 Prediccion: 0 Prediccion: 11 Prediccion: 13 Prediccion: 12 Prediccion: 0

CCE 2 capas y 50 neuronas

CCE 1 capa y 128 neuronas

CCE 3 capas y 128 neuronas

CCE 2 capas y 128 neuronas

Comparativas

Red Neuronal Convolucional

Red Neuronal Convolucional

```
model(NN = tf.keras.Sequential([
  tf.keras.layers.Conv2D(32, (3,3), input_shape=[64, 64, 1], activation=tf.nn.relu),
  tf.keras.layers.MaxPooling2D(2,2),#2,2 es el tamaño de la matriz
  tf.keras.layers.Conv2D(64, (3,3), input_shape=[64, 64, 1], activation=tf.nn.relu),
  tf.keras.layers.MaxPooling2D(2,2),#2,2 es el tamaño de la matriz
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(128, activation=tf.nn.relu),
  tf.keras.layers.Dense(128, activation=tf.nn.relu),
  tf.keras.layers.Dense(128, activation=tf.nn.relu),
  tf.keras.layers.Dense(15, activation=tf.nn.softmax), posibles
modelCNN.compile(
  optimizer = 'adam',
  loss='categorical_crossentropy',
  metrics=['accuracy']
modelCNN.summary()
```


Comparativas

GRACIAS!

Alguna pregunta?

youremail@freepik.com +34 654 321 432 yourwebsite.com

×

Use our editable graphic resources...

You can easily **resize** these resources without losing quality. To **change the color**, just ungroup the resource and click on the object you want to change. Then, click on the paint bucket and select the color you want. Group the resource again when you're done. You can also look for more **infographics** on Slidesgo.

