Note 19

1 Fishy Computations

Assume for each part that the random variable can be modelled by a Poisson distribution.

- (a) Suppose that on average, a fisherman catches 20 salmon per week. What is the probability that he will catch exactly 7 salmon this week?
- (b) Suppose that on average, you go to Fisherman's Wharf twice a year. What is the probability that you will go at most once in 2024?
- (c) Suppose that in March, on average, there are 5.7 boats that sail in Laguna Beach per day. What is the probability there will be *at least* 3 boats sailing throughout the *next two days* in Laguna?
- (d) Denote $X \sim \text{Pois}(\lambda)$. Prove that

$$\mathbb{E}[Xf(X)] = \lambda \, \mathbb{E}[f(X+1)]$$

for any function f.

(e) Shreyas is holding Office Hours but wants to take a nap. Suppose that students' arrival to Office Hours can be modeled by a Poisson random variable with rate 1.5 students per minute. If Shreyas sees no students arrive for a consecutive window of 2 minutes, he will go nap. Compute the expected number of students Shreyas will help before taking a nap. You may assume the time it takes Shreyas to help a student is instantaneous.

Solution:

(a) Let X be the number of salmon the fisherman catches per week. $X \sim \text{Poiss}(20 \text{ salmon/week})$, so

$$\mathbb{P}[X = 7 \text{ salmon/week}] = \frac{20^7}{7!}e^{-20} \approx 5.23 \cdot 10^{-4}.$$

(b) Similarly $X \sim \text{Poiss}(2)$, so

$$\mathbb{P}[X \le 1] = \frac{2^0}{0!}e^{-2} + \frac{2^1}{1!}e^{-2} \approx 0.41.$$

(c) Let X_1 be the number of sailing boats on the next day, and X_2 be the number of sailing boats on the day after next. Now, we can model sailing boats on day i as a Poisson distribution $X_i \sim$

Poiss($\lambda = 5.7$). Let *Y* be the number of boats that sail in the next two days. We are interested in $Y = X_1 + X_2$. We know that the sum of two independent Poisson random variables is Poisson (from Theorem 19.5 in lecture notes). Thus, we have $Y \sim \text{Poiss}(\lambda = 5.7 + 5.7 = 11.4)$.

$$\mathbb{P}[Y \ge 3] = 1 - \mathbb{P}[Y < 3]
= 1 - \mathbb{P}[Y = 0 \cup Y = 1 \cup Y = 2]
= 1 - (\mathbb{P}[Y = 0] + \mathbb{P}[Y = 1] + \mathbb{P}[Y = 2])
= 1 - \left(\frac{11.4^{0}}{0!}e^{-11.4} + \frac{11.4^{1}}{1!}e^{-11.4} + \frac{11.4^{2}}{2!}e^{-11.4}\right)
\approx 0.999.$$

(d) We apply the Law of the Unconscious Statistician,

$$\mathbb{E}[Xf(X)] = \sum_{x=0}^{\infty} xf(x)\mathbb{P}[X=x]$$

$$= \sum_{x=0}^{\infty} xf(x) \frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \sum_{x=1}^{\infty} xf(x) \frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \lambda \sum_{x=1}^{\infty} f(x) \frac{e^{-\lambda}\lambda^{x-1}}{(x-1)!}$$

$$= \lambda \sum_{x=0}^{\infty} f(x+1) \frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \lambda \mathbb{E}[f(X+1)]$$

as desired.

Note 19

(e) Recall in discussion we proved that the sum of independent Poisson is also Poisson whose parameter is a sum of the parameters. Hence, for a window of 2 minutes, we can see that the rate of student arrival is Poisson with parameter $1.5 \cdot 2 = 3$. Hence, we see that the probability for a student arrival in any window of time is $1 - \mathbb{P}[0 \text{ arrivals}] = 1 - e^{-3}$. Denote N as the number of students Shreyas helps before he takes a nap. The idea is that each time a student arrives, we can think of the interval being interrupted and so Shreyas starts a new 2 minute window from that point. Hence, student arrivals can be viewed as independent. By the Tail Sum formula for expectation,

$$\mathbb{E}[N] = \sum_{i=1}^{\infty} \mathbb{P}[N \ge i] = \sum_{i=1}^{\infty} (1 - e^{-3})^{i} = e^{3} - 1 \approx 19.06.$$

2 Coupon Collector Variance

It's that time of the year again—Safeway is offering its Monopoly Card promotion. Each time you visit Safeway, you are given one of *n* different Monopoly Cards with equal probability. You need

2

CS 70, Fall 2023, HW 11

to collect them all to redeem the grand prize.

Let *X* be the number of visits you have to make before you can redeem the grand prize. Show that $Var(X) = n^2 \left(\sum_{i=1}^n i^{-2} \right) - \mathbb{E}[X]$.

Solution:

Note that this is the coupon collector's problem, but now we have to find the variance. Let X_i be the number of visits we need to make before we have collected the *i*th unique Monopoly card actually obtained, given that we have already collected i-1 unique Monopoly cards. Then $X = \sum_{i=1}^{n} X_i$ and each X_i is geometrically distributed with p = (n-i+1)/n. Moreover, the indicators themselves are independent, since each time you collect a new card, you are starting from a clean slate.

$$\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(X_i) \qquad \text{(as the } X_i \text{ are independent)}$$

$$= \sum_{i=1}^{n} \frac{1 - (n - i + 1)/n}{[(n - i + 1)/n]^2} \qquad \text{(variance of a geometric r.v. is } (1 - p)/p^2)$$

$$= \sum_{j=1}^{n} \frac{1 - j/n}{(j/n)^2} \qquad \text{(by noticing that } n - i + 1 \text{ takes on all values from 1 to } n)$$

$$= \sum_{j=1}^{n} \frac{n(n - j)}{j^2}$$

$$= \sum_{j=1}^{n} \frac{n^2}{j^2} - \sum_{j=1}^{n} \frac{n}{j}$$

$$= n^2 \left(\sum_{j=1}^{n} \frac{1}{j^2}\right) - \mathbb{E}[X] \qquad \text{(using the coupon collector problem expected value)}.$$

3 Diversify Your Hand

You are dealt 5 cards from a standard 52 card deck. Let *X* be the number of distinct values in your hand. For instance, the hand (A, A, A, 2, 3) has 3 distinct values.

- (a) Calculate $\mathbb{E}[X]$. (Hint: Consider indicator variables X_i representing whether i appears in the hand.)
- (b) Calculate Var(X).

Solution:

Note 15 Note 16

(a) Let X_i be the indicator of the *i*th value appearing in your hand. Then, $X = X_1 + X_2 + ... + X_{13}$. (Here we let 13 correspond to K, 12 correspond to Q, and 11 correspond to J.) By linearity of expectation, $\mathbb{E}[X] = \sum_{i=1}^{13} \mathbb{E}[X_i]$.

CS 70, Fall 2023, HW 11 3

We can calculate $\mathbb{P}[X_i = 1]$ by taking the complement, $1 - \mathbb{P}[X_i = 0]$, or 1 minus the probability that the card does not appear in your hand. This is $1 - \frac{\binom{48}{5}}{\binom{52}{5}}$.

Then,
$$\mathbb{E}[X] = 13\mathbb{P}[X_1 = 1] = 13\left(1 - \frac{\binom{48}{5}}{\binom{52}{5}}\right)$$
.

(b) To calculate variance, since the indicators are not independent, we have to use the formula $\mathbb{E}[X^2] = \sum_{i=j} \mathbb{E}[X_i^2] + \sum_{i\neq j} \mathbb{E}[X_i X_j]$.

First, we have

$$\sum_{i=j} \mathbb{E}[X_i^2] = \sum_{i=j} \mathbb{E}[X_i] = 13 \left(1 - \frac{\binom{48}{5}}{\binom{52}{5}} \right).$$

Next, we tackle $\sum_{i\neq j} \mathbb{E}[X_iX_j]$. Note that $\mathbb{E}[X_iX_j] = \mathbb{P}[X_iX_j = 1]$, as X_iX_j is either 0 or 1.

To calculate $\mathbb{P}[X_iX_j=1]$ (the probability we have both cards in our hand), we note that $\mathbb{P}[X_iX_i=1]=1-\mathbb{P}[X_i=0]-\mathbb{P}[X_i=0]+\mathbb{P}[X_i=0,X_j=0]$. Then

$$\sum_{i \neq j} \mathbb{E}[X_i X_j] = 13 \cdot 12 \mathbb{P}[X_i X_j = 1]$$

$$= 13 \cdot 12 (1 - \mathbb{P}[X_i = 0] - \mathbb{P}[X_j = 0] + \mathbb{P}[X_i = 0, X_j = 0])$$

$$= 156 \left(1 - 2\frac{\binom{48}{5}}{\binom{52}{5}} + \frac{\binom{44}{5}}{\binom{52}{5}}\right)$$

Putting it all together, we have

$$\operatorname{Var}(X) = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$

$$= 13 \left(1 - \frac{\binom{48}{5}}{\binom{52}{5}} \right) + 156 \left(1 - 2 \frac{\binom{48}{5}}{\binom{52}{5}} + \frac{\binom{44}{5}}{\binom{52}{5}} \right) - \left(13 \left(1 - \frac{\binom{48}{5}}{\binom{52}{5}} \right) \right)^{2}.$$

4 Double-Check Your Intuition Again

- (a) You roll a fair six-sided die and record the result *X*. You roll the die again and record the result *Y*.
 - (i) What is cov(X+Y,X-Y)?
 - (ii) Prove that X + Y and X Y are not independent.

For each of the problems below, if you think the answer is "yes" then provide a proof. If you think the answer is "no", then provide a counterexample.

- (b) If X is a random variable and Var(X) = 0, then must X be a constant?
- (c) If X is a random variable and c is a constant, then is Var(cX) = c Var(X)?

Note 16

- (d) If A and B are random variables with nonzero standard deviations and Corr(A, B) = 0, then are A and B independent?
- (e) If *X* and *Y* are not necessarily independent random variables, but Corr(X,Y) = 0, and *X* and *Y* have nonzero standard deviations, then is Var(X+Y) = Var(X) + Var(Y)?

The two subparts below are **optional** and will not be graded but are recommended for practice.

- (f) If *X* and *Y* are random variables then is $\mathbb{E}[\max(X,Y)\min(X,Y)] = \mathbb{E}[XY]$?
- (g) If X and Y are independent random variables with nonzero standard deviations, then is

$$Corr(max(X,Y),min(X,Y)) = Corr(X,Y)$$
?

Solution:

(a) (i) Using bilinearity of covariance, we have

$$cov(X+Y,X-Y) = cov(X,X) + cov(X,Y) - cov(Y,X) - cov(Y,Y)$$
$$= cov(X,X) - cov(Y,Y),$$
$$= 0$$

where we use that cov(X,Y) = cov(Y,X) to get the second equality.

- (ii) Observe that $\mathbb{P}[X+Y=7,X-Y=0]=0$ because if X-Y=0, then the sum of our two dice rolls must be even. However, both $\mathbb{P}[X+Y=7]$ and $\mathbb{P}[X-Y=0]$ are nonzero, so $\mathbb{P}[X+Y=7,X-Y=0]\neq \mathbb{P}[X+Y=7]\cdot \mathbb{P}[X-Y=0]$.
- (b) Yes. If we write $\mu = \mathbb{E}[X]$, then $0 = \text{Var}(X) = \mathbb{E}[(X \mu)^2]$ so $(X \mu)^2$ must be identically 0 since perfect squares are non-negative. Thus $X = \mu$.
- (c) No. We have $Var(cX) = \mathbb{E}[(cX \mathbb{E}[cX])^2] = c^2 \mathbb{E}[(X \mathbb{E}[X])^2] = c^2 Var(X)$ so if $Var(X) \neq 0$ and $c \neq 0$ or $c \neq 1$ then $Var(cX) \neq c Var(X)$. This does prove that $\sigma(cX) = c\sigma(X)$ though.
- (d) No. Let A = X + Y and B = X Y from part (a). Since A and B are not constants then part (b) says they must have nonzero variances which means they also have nonzero standard deviations. Part (a) says that their covariance is 0 which means they are uncorrelated, and that they are not independent.

Recall from lecture that the converse is true though.

- (e) Yes. If Corr(X,Y) = 0, then cov(X,Y) = 0. We have Var(X+Y) = cov(X+Y,X+Y) = Var(X) + Var(Y) + 2cov(X,Y) = Var(X) + Var(Y).
- (f) Yes. For any values x, y we have $\max(x, y) \min(x, y) = xy$. Thus, $\mathbb{E}[\max(X, Y) \min(X, Y)] = \mathbb{E}[XY]$.

CS 70, Fall 2023, HW 11 5

(g) No. You may be tempted to think that because $(\max(x,y),\min(x,y))$ is either (x,y) or (y,x), then $Corr(\max(X,Y),\min(X,Y)) = Corr(X,Y)$ because Corr(X,Y) = Corr(Y,X). That reasoning is flawed because $(\max(X,Y),\min(X,Y))$ is not always equal to (X,Y) or always equal to (Y,X) and the inconsistency affects the correlation. It is possible for X and Y to be independent while $\max(X,Y)$ and $\min(X,Y)$ are not.

For a concrete example, suppose X is either 0 or 1 with probability 1/2 each and Y is independently drawn from the same distribution. Then Corr(X,Y)=0 because X and Y are independent. Even though X never gives information about Y, if you know max(X,Y)=0 then you know for sure min(X,Y)=0.

More formally, $\max(X, Y) = 1$ with probability 3/4 and 0 with probability 1/4, and $\min(X, Y) = 1$ with probability 1/4 and 0 with probability 3/4. This means

$$\mathbb{E}[\max(X,Y)] = 1 \cdot \frac{3}{4} + 0 \cdot \frac{1}{4} = \frac{3}{4}$$

and

$$\mathbb{E}[\min(X,Y)] = 1 \cdot \frac{1}{4} + 0 \cdot \frac{3}{4} = \frac{1}{4}.$$

Thus,

$$cov(max(X,Y), min(X,Y)) = \mathbb{E}[max(X,Y) min(X,Y)] - \frac{3}{16}$$
$$= \frac{1}{4} - \frac{3}{16} = \frac{1}{16} \neq 0$$

We conclude that $Corr(max(X,Y), min(X,Y)) \neq 0 = Corr(X,Y)$.

5 Dice Games

Note 20

- (a) Alice rolls a die until she gets a 1. Let X be the number of total rolls she makes (including the last one), and let Y be the number of rolls on which she gets an even number. Compute $\mathbb{E}[Y \mid X = x]$, and use it to calculate $\mathbb{E}[Y]$.
- (b) Bob plays a game in which he starts off with one die. At each time step, he rolls all the dice he has. Then, for each die, if it comes up as an odd number, he puts that die back, and adds a number of dice equal to the number displayed to his collection. (For example, if he rolls a one on the first time step, he puts that die back along with an extra die.) However, if it comes up as an even number, he removes that die from his collection.

Compute the expected number of dice Bob will have after n time steps. (Hint: compute the value of $\mathbb{E}[X_k \mid X_{k-1}]$ in terms of X_{k-1} where X_i is the random variable representing the number of dice after i time steps.)

Solution:

(a) Let's compute $\mathbb{E}[Y \mid X = x]$. If Alice makes x total rolls, then before rolling a 1, she makes x-1 rolls that are not a 1. Since these rolls are independent, Y follows a binomial distribution with n = x - 1 and p = 3/5, and $\mathbb{E}[Y \mid X = x] = \frac{3}{5}(x - 1)$.

Now, we'd like to compute $\mathbb{E}[Y]$. With total expectation, we have

$$\mathbb{E}[Y] = \sum_{x} \mathbb{E}[Y \mid X = x] \mathbb{P}[X = x]$$

$$= \sum_{x} \frac{3}{5} (x - 1) \mathbb{P}[X = x]$$

$$= \frac{3}{5} \sum_{x} x \cdot \mathbb{P}[X = x] - \frac{3}{5} \sum_{x} \mathbb{P}[X = x]$$

$$= \frac{3}{5} \mathbb{E}[X] - \frac{3}{5}$$

Since *X* follows a geometric distribution with p = 1/6, $\mathbb{E}[X] = 6$, and

$$\mathbb{E}[Y] = \frac{3}{5}\mathbb{E}[X] - \frac{3}{5} = \frac{3}{5} \cdot 6 - \frac{3}{5} = 3.$$

(b) Let X_k be a random variable representing the number of dice after k time steps. In particular, this means that $X_0 = 1$. To compute the number of dice at step k, we first condition on $X_{k-1} = m$. Each one of the m dice is expected to leave behind 2 in its place, since there's a $\frac{1}{2}$ probability that it leaves behind 0 dice, a $\frac{1}{6}$ probability for each of 2, 4, and 6 dice, corresponding to rolling a 1, 3, and 5 respectively.

Therefore, we have $\mathbb{E}[X_k \mid X_{k-1} = m] = 2m$, so with total expectation, we have

$$\mathbb{E}[X_k] = \sum_{m} \mathbb{E}[X_k \mid X_{k-1} = m] \mathbb{P}[X_{k-1} = m]$$

$$= \sum_{m} 2m \cdot \mathbb{P}[X_{k-1} = m]$$

$$= 2\sum_{m} m \cdot \mathbb{P}[X_{k-1} = m]$$

$$= 2\mathbb{E}[X_{k-1}]$$

This means that we expect to have $\mathbb{E}[X_n] = 2\mathbb{E}[X_{n-1}] = 2^2\mathbb{E}[X_{n-2}] = \cdots = 2^n\mathbb{E}[X_0] = 2^n$ dice.

CS 70, Fall 2023, HW 11 7