MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 19th February 2018 D1 - Lecture 20

Random Attendance

	17D070059	Yash Sharma	
2	170050002	Mashkaria Satvik Mehulbhai	
3	170050005	Yateesh Agrawal Absent	
4	170050024	Chitrank Gupta	
5	170050057	Arpit Menaria	
6	170050059	Saurav Yadav	
7	170050091	Amanaganti Rohan Ganesh	
8	170050018	Shubhamkar Bajrang Ayare	Absent
9	170050108	Ujjval Goury	
10	170070010	Soumya Chatterjee	
1	170070017	Ojas Sanjiv Thakur	
12	170070018	Himanshu Baheti	
13	170070046	Rishabh Gopichand Ramteke	
14	170070051	Koustav Jana	
15	17D070013	Paras Vijay Bodake Absent	
16	17D070024	Prajwal Dnyaneshwar Kamble	Absent

Recall: Inner product on \mathbb{R}^n

- $v \cdot w = v^T w$ for $v, w \in \mathbb{R}^n$ defines an inner product on \mathbb{R}^n .
- The *norm* (or length) of $v \in \mathbb{R}^n$ is $||v|| = \sqrt{v \cdot v}$.
- Vectors $v, w \in \mathbb{R}^n$ are *orthogonal* to each other if $v \cdot w = 0$.
- The subset $\{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ is an *orthogonal set* if $v_i \neq 0$ for all i and $v_i^T v_j = 0$ for $i \neq j$.
- An orthogonal set $\{v_1, \dots, v_k\} \subseteq \mathbb{R}^n$ is *orthonormal* if each v_i is a unit vector.
- e.g., if $\{v_1, \dots, v_k\}$ is an orthogonal set, then $\{v_1/||v_1||, \dots, v_k/||v_k||\}$ is orthonormal.

Orthogonal Matrices

- An orthogonal subset of \mathbb{R}^n is linearly independent.
- If the columns of an $m \times n$ matrix A form an orthonormal set, then $A^T A = I_n$.
- In particular, if m = n, then A is invertible, $A^{-1} = A^T$ (why?), and $det(A) = \pm 1$.
- A square matrix Q whose column vectors form an orthonormal set is called an *orthogonal* matrix.
- If Q is an $n \times n$ orthogonal matrix, then for each $v \in \mathbb{R}^n$, ||Qv|| = ||v||. In particular, the only (real) eigenvalues of Q, if they exist, are ± 1 .

Orthogonal Basis

Defn. A basis $\mathcal{B} = \{v_1, \dots, v_k\}$ of a subspace V of \mathbb{R}^n is an *orthogonal basis* if it is an orthogonal set, i.e., $v_i^T v_j = 0$ for $i \neq j$.

Furthermore, if each v_i is a unit vector, then \mathcal{B} is an *orthonormal basis* (or o.n.b.) of V.

Example: Consider the bases of \mathbb{R}^2 :

$$\mathcal{B}_1 = \{ w_1 = (8,0)^T, w_2 = (6,3)^T \}, \mathcal{B}_2 = \{ (8,0)^T, (0,3)^T \} \text{ and }$$

$$\mathcal{B}_3 = \left\{ \left(\frac{8}{\sqrt{8^2 + 0^2}}, 0\right)^T, \left(0, \frac{3}{\sqrt{0^2 + 3^2}}\right)^T \right\}.$$

Then \mathcal{B}_1 is not orthogonal,

 \mathcal{B}_2 is an orthogonal basis, but not an orthonormal basis, and \mathcal{B}_3 is an orthonormal basis of \mathbb{R}^2 .

Note: If $\{u_1, \ldots, u_k\}$ is an orthonormal set in \mathbb{R}^n , then it is an o.n.b. of $V = \text{Span}\{u_1, \ldots, u_k\}$.

Importance of Orthogonal Basis

Example : The set $\mathcal{B} = \{v_1 = (-1, 1)^T, v_2 = (1, 1)^T\}$ is a orthogonal basis of \mathbb{R}^2

• Find $[v]_{B} = (a, b)^{T}$:

$$v = av_1 + bv_2 = a(-1, 1)^T + b(1, 1)^T$$

 $v_1^T v = (-1, 1)v = a(-1, 1)(-1, 1)^T = 2a = a||v_1||^2$

Then
$$a = \frac{v_1^T v}{2} = \frac{v_1^T v}{||v_1||^2}$$
 and $b = \frac{v_2^T v}{2} = \frac{v_2^T v}{||v_2||^2}$

General Case: If $\mathcal{B} = \{v_1, \dots, v_n\}$ is an o.n.b of V, then $[v]_{\mathcal{B}} = (c_1, \dots c_n)^T$, where $c_i = v_i^T v$.

Moreover, if $T: V \to V$ is linear, and $[T]_{\mathcal{B}}^{\mathcal{B}} = [a_{ii}]$, then $[T]_{\mathcal{B}}^{\mathcal{B}} = ([T(v_1)]_{\mathcal{B}} \cdots [T(v_n)]_{\mathcal{B}}) \Rightarrow a_{ii} = ...$

Q: When does T map orthogonal sets to orthogonal sets?

6/14

Orthogonal Basis and Projections

- Every subspace of \mathbb{R}^n has an orthogonal basis.
- An orthogonal basis will help us to define projections in \mathbb{R}^n .
- Using projections, we will discuss an application to approximation: Method of linear least squares.

To construct an orthogonal basis in \mathbb{R}^n , we need to know how to find $\operatorname{proj}_{v_1}(v_2)$ in \mathbb{R}^n .

Orthogonal Projections: \mathbb{R}^n

If $v, w \in \mathbb{R}^n$, then the projection of w onto v, $\text{proj}_v(w)$, is a multiple of v and $w - \text{proj}_v(w)$ is orthogonal to v. Thus

$$\operatorname{proj}_{v} w = av \text{ for some } a \in \mathbb{R}$$
 $v^{T}(w - \operatorname{proj}_{v} w) = 0$
 $v^{T}w - v^{T}av = 0 \Leftrightarrow a = \frac{v^{T}w}{v^{T}v}$

Therefore $\operatorname{proj}_{v}(w) = \left(\frac{v^{T}w}{v^{T}v}\right)v$.

Example. If $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, then find the orthogonal projection of w on Span $\{v\}$.

The projection is given by $\operatorname{proj}_{v}(w) = \left(\frac{v^{T}w}{v^{T}v}\right)v = \frac{6}{14}\begin{pmatrix}1\\2\\3\end{pmatrix}$

Gram-Schmidt Process

If the set of vectors v_1, \ldots, v_r in \mathbb{R}^n are linearly independent, then we can find an orthonormal set of vectors q_1, \ldots, q_r such that $\operatorname{Span}\{v_1, \ldots, v_r\} = \operatorname{Span}\{q_1, \ldots, q_r\}$.

First find an orthogonal set.

Let
$$w_1 = v_1$$
, $w_2 = v_2 - \text{proj}_{w_1}(v_2)$.

Then $w_1 \perp w_2$ and Span $\{v_1, v_2\} = \text{Span}\{w_1, w_2\}$.

Let $c_1 w_1 + c_2 w_2$ be the projection of v_3 on Span $\{w_1, w_2\}$.

Then $(v_3 - c_1 w_1 - c_2 w_2) \perp w_1$ and $(v_3 - c_1 w_1 - c_2 w_2) \perp w_2$. $\Rightarrow w_1^T (v_3 - c_1 w_1 - c_2 w_2) = 0 \Rightarrow c_1 w_1 = \operatorname{proj}_{w_1} (v_3)$ and similarly $c_2 w_2 = \operatorname{proj}_{w_2} (v_3)$. Therefore,

$$w_3 = v_3 - \operatorname{proj}_{\operatorname{Span}\{w_1, w_2\}}(v_3) = v_3 - \left(\frac{w_1^T v_3}{\|w_1\|^2}\right) w_1 - \left(\frac{w_2^T v_3}{\|w_2\|^2}\right) w_2.$$

Span $\{v_1, v_2, v_3\}$ = Span $\{w_1, w_2, w_3\}$ and $w_1^T w_3 = 0, w_2^T w_3 = 0$.

Gram-Schmidt Process Contd.

By induction,

$$w_{r} := v_{r} - \operatorname{proj}_{\operatorname{Span}\{w_{1}, \dots w_{r-1}\}}(v_{r}) = v_{r} - \operatorname{proj}_{w_{1}}(v_{r}) - \operatorname{proj}_{w_{2}}(v_{r}) - \dots - \operatorname{proj}_{w_{r-1}}(v_{r}) = v_{r} - \frac{w_{1}^{T}v_{r}}{\|w_{1}\|^{2}}w_{1} - \frac{w_{2}^{T}v_{r}}{\|w_{2}\|^{2}}w_{2} - \dots - \frac{w_{r-1}^{T}v_{r}}{\|w_{r-1}\|^{2}}w_{r-1}$$

Now take
$$q_1 = \frac{w_1}{\|w_1\|}$$
, $q_2 = \frac{w_2}{\|w_2\|}$, ..., $q_r = \frac{w_r}{\|w_r\|}$.

Then $\{q_1, \ldots, q_r\}$ is an orthonormal set and

$$W = \operatorname{Span}\{v_1, \dots, v_r\} = \operatorname{Span}\{w_1, \dots, w_r\} = \operatorname{Span}\{q_1, \dots, q_r\}.$$

In particular, $\{q_1, q_2, \dots, q_r\}$ is an *orthonormal basis* for W .

Exercise: Show that if $\{w_1, \dots, w_r\}$ is an orthogonal set, then

$$proj_{Span\{w_1,...w_{i-1}\}}(v_i) = proj_{w_1}(v_i) + proj_{w_2}(v_i) + \cdots + proj_{w_{i-1}}(v_i).$$

10 / 14

Gram-Schmidt Method: Example

Q: Let
$$S = \left\{ v_1 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} -5 \\ 1 \\ 5 \\ -7 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 8 \end{pmatrix} \right\}$$

and $W = \operatorname{Span}(S)$. Find an orthonormal basis for W.

Exercise: Verify that $\{v_1, v_2, v_3\}$ are linearly independent. (Check that rank of $\begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ is 3).

Hence S is a basis of W. Use Gram-Schmidt method,

$$w_1 = v_1, w_2 = v_2 - \left(\frac{w_1^T v_2}{\|w_1\|^2}\right) w_1$$

$$\Rightarrow w_2 = v_2 - \left(\frac{-15 + 1 - 5 - 21}{9 + 1 + 1 + 9}\right) w_1 = v_2 - \left(\frac{-40}{20}\right) w_1$$

 $\Rightarrow W_2 = V_2 + 2W_1 = \begin{pmatrix} 1 & 3 & 3 & -1 \end{pmatrix}^T$.

Observe: $v_1, v_2 \in \text{Span}\{w_1, w_2\}, w_1, w_2 \in \text{Span}\{v_1, v_2\} \Rightarrow \text{Span}\{v_1, v_2\} = \text{Span}\{w_1, w_2\}.$

Gram-Schmidt Method: Example

Recall
$$w_1 = \begin{pmatrix} 3 & 1 & -1 & 3 \end{pmatrix}^T$$
, $w_2 = \begin{pmatrix} 1 & 3 & 3 & -1 \end{pmatrix}^T$, and $v_3 = \begin{pmatrix} 1 & 1 & -2 & 8 \end{pmatrix}^T$. (Check $w_1^T w_2 = 0$).

Now
$$w_3 = v_3 - \left(\frac{w_1^T v_3}{\|w_1\|^2}\right) w_1 - \left(\frac{w_2^T v_3}{\|w_2\|^2}\right) w_2.$$

$$w_3 = v_3 - \left(\frac{3+1+2+24}{20}\right) w_1 - \left(\frac{1+3-6-8}{20}\right) w_2$$

$$\Rightarrow w_3 = \begin{pmatrix} 1\\1\\-2\\2 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 3\\1\\-1\\-1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1\\3\\3\\3 \end{pmatrix} = \begin{pmatrix} -3\\1\\1\\2 \end{pmatrix}.$$

Check $w_1^T w_3 = 0 = w_2^T w_3$; Span $\{v_1, v_2, v_3\} = \text{Span}\{w_1, w_2, w_3\}$.

Hence $\{w_1, w_2, w_3\}$ is an orthogonal basis of W.

An orthonormal basis for W is $\left\{\frac{1}{\sqrt{20}}w_1, \frac{1}{\sqrt{20}}w_2, \frac{1}{\sqrt{20}}w_3\right\}$.

Reading: QR Factorization

Let $A = (v_1 \dots v_r)$ be an $n \times r$ matrix of rank r. Then v_1, \dots, v_r are linearly independent vectors in \mathbb{R}^n .

By the Gram-Schmidt method, we get an orthonormal basis

$$\{q_1,\ldots,q_r\}$$
 of $C(A)$, where $q_i=\dfrac{w_i}{\|w_i\|}$ and $w_1=v_1$,

$$w_k = v_k - \left(\frac{w_1^T v_k}{\|w_1\|^2}\right) w_1 - \dots - \left(\frac{w_{k-1}^T v_k}{\|w_{k-1}\|^2}\right) w_{k-1}.$$

Let
$$Q = (q_1 \dots q_r)$$
. How are A and Q related?
Span $\{v_1, \dots, v_k\}$ = Span $\{w_1, \dots, w_k\}$ = Span $\{q_1, \dots, q_k\}$ $\forall k$.
If $v_k = c_1q_1 + \dots + c_kq_k$, then $c_1 = q_1^Tv_k$, $c_2 = q_2^Tv_k$, ..., $c_k = q_k^Tv_k$.
Hence $v_k = (q_1^Tv_k)q_1 + \dots + (q_k^Tv_k)q_k$.

Reading: QR factorization

$$v_k = (q_1^T v_k)q_1 + \ldots + (q_k^T v_k)q_k$$
 for each k .

Therefore

$$(v_1 \quad v_2 \quad \dots \quad v_r) = (q_1 \quad q_2 \quad \dots \quad q_r) egin{pmatrix} q_1^{\mathsf{T}} v_1 & q_1^{\mathsf{T}} v_2 & q_1^{\mathsf{T}} v_r \ 0 & q_2^{\mathsf{T}} v_2 & q_2^{\mathsf{T}} v_r \ dots & dots & \ddots & dots \ 0 & 0 & q_r^{\mathsf{T}} v_r \end{pmatrix}$$

i.e. A = QR, where the columns of Q form an orthonormal set and R is an invertible $r \times r$ matrix. **Q:** Why is R invertible? This is called QR-factorization of A.

• If A is invertible $n \times n$, then A = QR, where Q is an orthogonal matrix and R is an invertible upper triangular matrix, both are $n \times n$ matrices.