Домашнее задание Киселев Д.А. РЛ2-119

Задача

Определить обобщённый технический показатель датчика на основе интерферометра Саньяка.

Решение

На сегодняшний день распределённые волоконно-оптические датчики акустических воздействий находят широкое применение в различных областях техники: удалённый мониторинг и контроль границ протяжённых объектов, обеспечение безопасности предприятий, трубопроводов (в том числе, подводных), железнодорожных путей и др. Одним из перспективных вариантов распределённых волоконно-оптических сенсоров для решения описанных задач являются распределённые датчики акустических воздействий на основе интерферометра Саньяка,, обладающие такими преимуществами, как простота оптической схемы и компонентной базы..

Датчик должен обладать как можно меньшей точностью лазерной частоты и точностью линейных измерений.

В качестве аналога был выбран датчик XL-80 от компании Renishaw с точностью лазерной частоты равной ± 0.05 и точностью линейных измерений равной ± 0.5 .

В соответствии с техническим заданием на ВКР на разработку инновации был создан датчик с точностью частоты ± 0.02 и точностью измерений ± 0.1 .

Сравнение разрабатываемого датчика с существующим аналогом

	Точность лазерной частоты	Точность линейных измерений
Разрабатываемый датчик	±0.02	±0.1
XL-80	±0.05	±0.5

Для каждого из сравниваемых параметров необходимо произвести градацию значений параметров.

Признак	Показатели признака	Оценка признака, баллы	
Точность лазерной частоты	0.005 - 0.01	8 – 10	
	0.01 - 0.02	6 – 8	
	0.02 - 0.07	4 – 6	
	> 0.07	до 4	
Точность линейных измерений	0.01 - 0.1	9 – 10	
	0.1 - 0.2	7 – 8	
	0.2 - 0.5	5 – 6	
	> 0.5	до 5	

Произведем расчет обобщенного технического показателя для разрабатываемого детектора и его аналога, принимая во внимание не равную значимость выбранных показателей, т. е., $b_1 = 0.65$, $b_2 = 0.35$.

Технический обобщенный показатель рассчитывается по формуле:

$$K_{\text{отп}} = \sum b_i \cdot M_i$$

 M_i — оценка параметра прибора;

 b_i — весовой коэффициент, определяющий важность каждого параметра прибора, при этом $\sum_{i=1}^n b_i = 1$.

Технический обобщенный показатель разрабатываемого детектора и его аналога.

	Точность лазерной частоты	Точность линейных измерений	Обобщённый технический показатель, $K_{\text{отп}}$
Разрабатываемый датчик	6 баллов	9 баллов	7.05 баллов
XL-80	5 баллов	5 баллов	6.5 баллов

Исходя из полученных значений обобщенного технического показателя $K_{\text{отп}_{\text{разработка}}} > K_{\text{отп}_{\text{аналог}}}$ или 7.05 > 6.5, можно сделать вывод, что вновь разрабатываемая система является конкурентоспособной и ее реализация оправдана и целесообразна.