Functional Dependencies and **Schema Refinement**

CS 186, Fall 2008, R&G Chapter 19

Science is the knowledge of consequences, and dependence of one fact upon another.

Thomas Hobbes (1588-1679)

Review: Database Design

- Requirements Analysis
 - user needs; what must database do?
- Conceptual Design
 - high level descr (often done w/ER model)
- Logical Design
 - translate ER into DBMS data model
- Schema Refinement
 - consistency, normalization
- Physical Design indexes, disk layout
- Security Design who accesses what

Review: Database Design

- Requirements Analysis
 - user needs; what must database do?
- Conceptual Design
 - high level descr (often done w/ER model)
- Logical Design
 - translate ER into DBMS data model
- Schema Refinement
 - consistency,normalization
- Physical Design indexes, disk layout
- Security Design who accesses what

The Evils of Redundancy

- Redundancy is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: decomposition
 - replacing ABCD with, say, AB and BCD, or ACD and ABD.
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)

 A <u>functional dependency</u> X → Y holds over relation schema R if, for every <u>allowable</u> <u>instance</u> r of R:

$$t1 \in r$$
, $t2 \in r$, $\pi_X(t1) = \pi_X(t2)$
implies $\pi_Y(t1) = \pi_Y(t2)$

(where t1 and t2 are tuples; X and Y are sets of attributes)

• In other words: X → Y means

Given any two tuples in *r*, if the X values are the same, then the Y values must also be the same. (but not vice versa)

Can read "→" as "determines"

FD's Continued

- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given some instance r1 of R, we can check if r1 violates some FD f, but we cannot determine if f holds over R.
- Question: How related to keys?
- if "K → all attributes of R" then K is a superkey for R

(does not require K to be minimal.)

• FDs are a generalization of keys.

Example: Constraints on Entity Set

- **Consider relation obtained from** Hourly_Emps: Hourly_Emps (<u>ssn</u>, name, lot, rating, wage_per_hr, hrs_per_wk)
- We sometimes denote a relation schema by listing the attributes: e.g., SNLRWH
- This is really the set of attributes {S,N,L,R,W,H}.
- Sometimes, we refer to the set of *all attributes* of a relation by using the relation name. e.g., "Hourly_Emps" for SNLRWH

What are some FDs on Hourly_Emps?

ssn is the key: $S \rightarrow SNLRWH$

rating determines $wage_per_hr$: $R \rightarrow W$

lot determines *lot*: $L \rightarrow L$ ("trivial" dependency)

Problems Due to $R \rightarrow W$

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps

- <u>Update anomaly</u>: Can we modify W in only the 1st tuple of SNLRWH?
- <u>Insertion anomaly</u>: What if we want to insert an employee and don't know the hourly wage for his or her rating? (or we get it wrong?)
- <u>Deletion anomaly</u>: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Detecting Reduncancy

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps

Q: Why was $R \rightarrow W$ problematic, but $S \rightarrow W$ not?

Decomposing a Relation

- Redundancy can be removed by "chopping" the relation into pieces.
- FD's are used to drive this process.
 - R → W is causing the problems, so decompose SNLRWH into what relations?

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R W 8 10 5 7 Wages

Hourly_Emps2

Refining an ER Diagram

- 1st diagram becomes: Workers(S,N,L,D,Si) Departments(D,M,B)
 - Lots associated with workers.
- Suppose all workers in a dept are assigned the same lot: D → L
- Redundancy; fixed by: Workers2(S,N,D,Si) Dept_Lots(D,L) Departments(D,M,B)
- Can fine-tune this: Workers2(S,N,D,Si) Departments(D,M,B,L)

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - $title \rightarrow studio$, star implies $title \rightarrow studio$ and $title \rightarrow star$
 - $title \rightarrow studio$ and $title \rightarrow star$ implies $title \rightarrow studio$, star
 - $title \rightarrow studio, studio \rightarrow star \text{ implies } title \rightarrow star$

But,

 $\it title, star \to \it studio \$ does NOT necessarily imply that $\it title \to \it studio \$ or that $\it star \to \it studio \$

- An FD f is <u>implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
- F⁺ = <u>closure of F</u> is the set of all FDs that are implied by F. (includes "trivial dependencies")

Rules of Inference

- Armstrong's Axioms (X, Y, Z are <u>sets</u> of attributes):
 - <u>Reflexivity</u>: If $X \subseteq Y$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These are sound and complete inference rules for FDs!
 - i.e., using AA you can compute all the FDs in F+ and only these FDs.
- Some additional rules (that follow from AA):
 - *Union*: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Example

- Contracts(cid, sid, jid, did, pid, qty, value), and:
 - C is the key: $C \rightarrow CSJDPQV$
 - Proj purchases each part using single contract: JP → C
 - Dept purchases at most 1 part from a supplier: SD → P
- Problem: Prove that SDJ is a key for Contracts
- JP \rightarrow C, C \rightarrow CSJDPQV imply JP \rightarrow CSJDPQV (by transitivity) (shows that JP is a key)
- SD → P implies SDJ → JP (by augmentation)
- SDJ → JP, JP → CSJDPQV imply SDJ → CSJDPQV (by transitivity) thus SDJ is a key.

Q: can you now infer that SD → CSDPQV (i.e., drop J on both sides)?

No! FD inference is not like arithmetic multiplication.

Attribute Closure

- · Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD X → Y is in the closure of a set of FDs *F*. An efficient check:
 - Compute <u>attribute closure</u> of X (denoted X+) wrt F.
 - $^{+}$ = Set of all attributes A such that X \rightarrow A is in F⁺

 - Repeat until no change: if there is in fd $U \rightarrow V$ in F such that Uis in X+, then add V to X+
 - Check if Y is in X+
 - Approach can also be used to find the keys of a relation.
 - If all attributes of R are in the closure of X then X is a superkey for R.
 - Q: How to check if X is a "candidate key"?

Χ

Attribute Closure (example)

- R = {A, B, C, D, E}
- $F = \{ B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B \}$
- Is B → E in F⁺ ?
 - $B^+ = B$
 - $B^+ = BCD$
 - $B^+ = BCDA$
 - $B^+ = BCDAE \dots Yes!$
- and B is a key for R too!
- Is D a key for R?
 - $D^+ = D$
 - $D^+ = DE$
- $D^+ = DEC$
- ... Nope!

- . Is AD a key for R?
 - + = AD
- $AD^+ = ABD$ and B is a key, so

AD

- Yest
- Is AD a candidate key for R?

 - A not a key, nor is D so Yes!
- Is ADE a candidate key
- for R?
- No! AD is a key, so ADE is a superkey, but not a cand. key

Functional Dependencies (Review)

A <u>functional dependency</u> $X \rightarrow Y$ holds over relation schema R if, for every <u>allowable instance</u> r of R:

 $t1 \in r$, $t2 \in r$, $\pi_X(t1) = \pi_X(t2)$ implies $\pi_Y(t1) = \pi_Y(t2)$

(where t1 and t2 are tuples; X and Y are sets of attributes)

• In other words: X → Y means

Given any two tuples in r, if the X values are the same, then the Y values must also be the same. (but not vice versa)

Can read "→" as "determines"

Keys (review)

• A key is a set of attributes that uniquely identifies each tuple in a relation.

key → all attributes in the relation

A candidate key is a key that is minimal.

If AB is a candidate key, then neither A nor B is a key on its own.

 A superkey is a key that is not necessarily minimal (although it could be)

If AB is a candidate key then ABC, ABD, and even AB are superkeys.

Normal Forms

- Back to schema refinement...
- · Q1: is any refinement is needed??!
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given A → B: If A is not a key, then several tuples could have the same A value, and if so, they'll all have the same B value!
- 1st Normal Form all attributes are atomic
- $1^{st} \supset 2^{nd}$ (of historical interest) $\supset 3^{rd} \supset$ Boyce-Codd $\supset ...$

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in BCNF if, for all X → A in F+
 - $-A \in X$ (called a *trivial* FD), or
 - X is a superkey for R.
- In other words: "R is in BCNF if the only non-trivial FDs over R are key constraints."
- If R in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
 - Say we know FD X → A holds for this example relation:
 - Can you guess the value of the missing attribute?
- X Y A x y1 a x y2 ?
- •Yes, so relation is not in BCNF

Boyce-Codd Normal Form -Alternative Formulation

"The key, the whole key, and nothing but the key, so help me Codd."

Decomposition of a Relation Scheme

- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.
- Suppose that relation R contains attributes A1 ... An. A
 <u>decomposition</u> of R consists of replacing R by two or more
 relations such that:
 - Each new relation scheme contains a subset of the attributes of R, and
 - Every attribute of R appears as an attribute of at least one of the new relations.

Example (same as before)

S	N	L	R	W	Н	
123-22-3666	Attishoo	48	8	10	40	•
231-31-5368	Smiley	22	8	10	30	
131-24-3650	Smethurst	35	5	7	30	Hourly_Emps
434-26-3751	Guldu	35	5	7	32	
612-67-4134	Madayan	35	8	10	40	

- \bullet SNLRWH has FDs $\, \mathsf{S} \to \mathsf{SNLRWH} \,$ and $\, \mathsf{R} \to \mathsf{W} \,$
- Q: Is this relation in BCNF?

No, The second FD causes a violation; W values repeatedly associated with R values.

Decomposing a Relation

 Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madavan	35	8	40

Hourly_Emps2

- •Q: Are both of these relations are now in BCNF?
- Decompositions should be used only when needed.
 - -Q: potential problems of decomposition?

Problems with Decompositions

- There are three potential problems to consider:
 - 1) May be impossible to reconstruct the original relation! (Lossiness)
 - Fortunately, not in the SNLRWH example.
 - 2) Dependency checking may require joins.
 - Fortunately, not in the SNLRWH example.
 - 3) Some queries become more expensive.
 - e.g., How much does Guldu earn?

<u>Tradeoff:</u> Must consider these issues vs. redundancy.

Lossless Join Decompositions

 Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$\pi_{X}(r) \bowtie \pi_{Y}(r) = r$$

- It is always true that $r \subseteq \pi_X(r) \bowtie \pi_Y(r)$
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem #1)

More on Lossless Decomposition

 The decomposition of R into X and Y is lossless with respect to F if and only if the closure of F contains:

$$X \cap Y \rightarrow X$$
, or $X \cap Y \rightarrow Y$

in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., "B") is not a key of either resulting relation.

 Useful result: If W → Z holds over R and W ∩ Z is empty, then decomposition of R into R-Z and WZ is loss-less.

Dependency Preserving Decomposition

- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem #2 on our list.)
- <u>Projection of set of FDs F</u>: If R is decomposed into X and Y the projection of F on X (denoted F_X) is the set of FDs U → V in F⁺ (closure of F, not just F) such that all of the attributes U, V are in X. (same holds for Y of course)

Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is <u>dependency</u> <u>preserving</u> if (F_X ∪ F_Y) + = F +
 - i.e., if we consider only dependencies in the closure F⁺ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F⁺.
- Important to consider F + in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved??????

 note: F + contains F ∪ {A → C, B → A, C → B}, so...
- FAB contains A \rightarrow B and B \rightarrow A; FBC contains B \rightarrow C and C \rightarrow B
- So, (FAB ∪ FBC)⁺ contains C → A

Decomposition into BCNF

- Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R - Y and XY (guaranteed to be loss-less).
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - {contractid, supplierid, projectid,deptid,partid, qty, value}
 - To deal with SD → P, decompose into SDP, CSJDQV.
 - To deal with J → S, decompose CSJDOV into JS and CJDOV
 - So we end up with: SDP, JS, and CJDQV
- Note: several dependencies may cause violation of BCNF. The order in which we ``deal with" them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS \rightarrow Z, Z \rightarrow C
 - Can't decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
- {contractid, supplierid, projectid,deptid,partid, qty, value}
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the f.d. (Redundancy!)

Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all X → A in F⁺
 - $A \in X$ (called a *trivial* FD), or
 - X is a superkey of R, or
 - A is part of some candidate key (not superkey!) for R. (sometimes stated as "A is *prime"*)
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good" decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

What Does 3NF Achieve?

- If 3NF violated by X → A, one of the following holds:
 - X is a subset of some key K ("partial dependency")
 We store (X, A) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card) with key SBD and
 - X is not a proper subset of any key. ("transitive dep.")
 - There is a chain of FDs K → X → A, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value (different K's, same X implies same A!) – problem with initial SNLRWH example.
- But: even if R is in 3NF, these problems could arise.
 - e.g., Reserves SBDC (note: "C" is for credit card here), $S \rightarrow C$, $C \rightarrow S$ is in 3NF (why?), but for each reservation of sailor S, same (S,C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.

Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve' JP \rightarrow C. What if we also have J \rightarrow C?

 Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and ``as small as possible" in order to get the same closure as F.
- e.g., A → B, ABCD → E, EF → GH, ACDF → EG has the following minimal cover:
 - $-A \rightarrow B$, ACD $\rightarrow E$, EF $\rightarrow G$ and EF $\rightarrow H$
- M.C. implies Lossless-Join, Dep. Pres. Decomp!!!

 (in book)

Summary of Schema Refinement

- BCNF: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- Not in BCNF? Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!
- Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- Note: even more restrictive Normal Forms exist (we don't cover them in this course, but some are in the book.)