MODULE-1

Formal larguage of machines

The El Mr and 430

eather the to the - a

Se transition discourt as

Finite State machine (FSM)

Q1. Design a FSM to recognise even number of Os, over {0,13.

transition state diagram:

(11 11 H) 2

FSM ON FA = { Q, Q, F, S, & }

Q = Set of all states; q = initial selate(only)

F=final state (can be a set)

S = transition function ; & = inputs (language)

: FSM = { {even, odd}, {even}, {even}, S, {o, 1} } Transition fn, &

S(cuesent state, i/p) -> next state.

no. of Ss. = no. of states x no. of i/ps

= 2 × 2 = 4

S(even, o) -> odd

 $S(even, 1) \rightarrow even$

 δ (odd, o) \rightarrow even

S(odd,1) -> odd

transition table

		1 1 15
2 2	0	*(
en	odd	even
dd	even	odd
	ven	ven odd

-> initial state * final state

Q. 1001118

S(A, 10011)

S (A,0011)

8 (B,011)

S(A,11)

S(A,1)

8 (A,#) #-blank

Qu. Design a FA that recognizes string that ends with '00' over {0,1}

transition for, eq:-

$$\rightarrow \delta(B,010)$$

$$S(c, 10100)$$
 $S(c, 10)$

$$M = \{Q, Q_0, F, S, \xi\}$$

transition for:

$$\delta(P,O) \rightarrow B$$

$$\delta(c, \#) \longrightarrow c$$

$$S(B,O) \longrightarrow C$$

$$\delta(c, o) \longrightarrow c$$

$$\delta(c, 1) \longrightarrow A$$

Q3. Design a FB that recognizes string that has atleast two zero's over {0,1}. £={0,13 E = Union of & to & E'= 6 (nother n a K The Mills = {00} ≥3 = { 001, 010, 100,000} ≤4 = {0000,0001,0010,0011,0100,0101, 0110, 1000, 1001, 1010, 11000} without \$:-Encila Edini, the all

8 - FIAIS

R. FA={{A,B}{{A}}}

FA = { { A, B, C, D}, { B}, { A}, & , { a, b} }

$$S(A, \alpha) \rightarrow B$$

$$S(A,b) \rightarrow C$$

$$S(A,b) \rightarrow C \qquad S(C,b) \rightarrow A$$

$$S(\beta,\alpha) \longrightarrow A$$

$$S(B,a) \rightarrow B$$
 $S(D,a) \rightarrow C$

$$S(B,b) \longrightarrow D$$
 $S(D,b) \longrightarrow B$

transition table:

10 0 AF

		n.	1 1		4.	110 01		- 1	,	1
,	QE	a.	d. b	Ĭ.	T. i	11.3		()	, <i>.</i>	
	В	В	C		Las					
	В	В	D							
	B C	D	A		4	(4 1 1	1.5	1		
	D	C	В.	a b		7 18 17	₽€		-	

Qa. Design a DFB to accept odd no. of a's & b's over {a,b}

E ab, ba, aaab, aaba, abaa, baaa, bbba, bbab, babb, abbb---)

Forma bound Earner

the stage of the board of the first the stage of the stag

$$FR = \{ \{ \theta, B, C, D \}, \{ \theta, 3 \}, \{ D \}, \{ a, b \} \} \}$$

$$\{ (\theta, \alpha) \rightarrow B$$

$$\{ (\theta, b) \rightarrow C$$

$$\{ (B, \alpha) \rightarrow B$$

$$\{ (B, b) \rightarrow D \}$$

$$\{ (C, \alpha) \rightarrow D \}$$

$$\{ (C, b) \rightarrow A - B \}$$

S(D, b)→ B. (1)

 $S(D,\#) \rightarrow D$

transition table:

a z	a	b
A	В	C
В	Ð.	D
С	D	A
D	Ċ	B

11 2 - 13 17 8

is the first to the second of upwatter

 $FR = \{ \{e_{1}, e_{2}, c_{3}, \{e_{1}\}, \{e_{1}\}, \{e_{2}\}, \{e_{3}\}, \{e_{4}\}, \{e_{1}\}, \{e_{2}\}, \{e_{3}\}, \{e_{4}\}, \{e_{3}\}, \{e_{4}\}, \{e_{3}\}, \{e_{4}\}, \{e_{4}\},$

transition table: -

a E	a	b
A	В	C
В	A ·	D
С	D	A
D	C	B

d 1. 3 61

Q3. Design a DFP to accept odd no. of a's & even

E={a, abb, bab, blood, abbbbb, babbb----}

FA = { [A, B, C, D] { EB3, [B3, S, {a, b3, }

 $\delta(A,a) \rightarrow B$

 $S(c, \alpha) \rightarrow b - c$

 $S(A,b) \rightarrow C$

 $\delta(c,b) \rightarrow A$

 $\delta(B,a) \rightarrow A$

 $\delta(D, \alpha) \rightarrow C (r, \alpha)$

 $S(B,b) \rightarrow D$

8 (D, b) -8 B- (d, a) 8

1	7		
6	2 5	a	b
	A	В	C
	B /	A	D
	c f	D	A
	D	C	В

at even a's & lodd b's ≤ = { b, dab, aba, baar, bob, baaaa-

bbb, bbbaa, bbaab- ---, 66666---

1 4-11138

FA = { {A,B,C,D}, {A}, {B}, 5, {a,b}} $S(A,a) \rightarrow C$ $\delta(A,b) \rightarrow B$ FE - (5 1 1 1 2 $\{(8,a)\rightarrow D$ 7 6 - (11 6) 2 $\delta(B,b) \rightarrow A$ C-- FIRE $S(c,a) \rightarrow A$ $\{(c,b)\rightarrow D$ $S(D, \alpha) \rightarrow B$ 20-1023 $\delta(0,b) \rightarrow c$

	1	
Q Z	a	6
A	C	B
В	D	A
C .	ħ	D
D	В	C
The state of the s		The second second second second

as atmost 3 a's over {a,b} E* = { \ a, aa, aaa, b, bb, bbb, - - - ab, ba, aab, baa, . - - , bbabbaa... non-final trap $\delta(1,a) \rightarrow a$

FA = \{ 1, a, 3, 4, 5 }, \{ 1, 2, 3, 4 }, \{ a, b} \} $\delta(1,b) \rightarrow 1$ $S(a,a) \longrightarrow 3$

 $\delta(a,b) \rightarrow a$

P 8- - (H H) 3 $\delta(3, \alpha) \longrightarrow 4$

0 / - [n. n'] $\delta(3,b) \rightarrow 3$

 $\delta(4,a) \longrightarrow 5$ 6 0 . (d 8) b

 $\delta(4,b) \longrightarrow 4$ N -- (r 7 2

 $\delta(5,a) \longrightarrow 5$

 $\delta(5,b) \longrightarrow 5$

5 2- (4,1) 3 a b 2 2 3 3

4 5 5

Strate

Q6 atleast 3 a's over {a,b} E={aaa,aaab,aaba,aaabb... aaaa,aaaba,aaaab...aaaaa...}

FA = $\{\{B,B,C,D\},\{B\},\{D\},\{B\}\}\}$ $\{(B,a) \rightarrow B\}$ $\{(B,a) \rightarrow C\}$ $\{(B,b) \rightarrow B\}$ $\{(C,a) \rightarrow D\}$ $\{(C,b) \rightarrow C\}$ $\{(D,a) \rightarrow D\}$ $\{(D,b) \rightarrow D\}$

Q Z	a	Ь
A	B	A
B	C	В
c	D	с
D	D	D

& = {aaa, aaab, aaba, aaabb. --- }

8 R FSM= { { A, B, C, D, E }, { A}, { D}, & , { a, b} }

8 - (ra) %

11 - (1 A 1 8

1. 2. (F 41)

a contains

mark of the 2

5 . - (A 5 1 2

n = -(n,0) ?

0 5-640.3

$$\{(n,a) \rightarrow B$$

$$\delta(A,b) \longrightarrow A$$

$$S(B,a) \rightarrow C$$

$$S(c,a) \rightarrow D$$

$$\delta(c,b) \rightarrow c$$

$$\delta(D, \alpha) \rightarrow E$$

$$S(E,a) \rightarrow E$$

$$\delta(\varepsilon,b) \rightarrow \varepsilon$$

~	-	4
Q Z	a	Ь
A	В	Α
В	<u> </u>	B
С	D	C
D	E	D
E	E	E
1.		1

Design of Non-deterministic finite Automata RI Design a NFA to recognize string ending with aba' over {a,b} DFA E* = { aba, aaba, baba, aaaba; - } b o b

FA = { {A,B,C,D}, {B}, {D}, \$,5,2a,b} }

S: QX Z -> P(Q)

L-S(A,#) US(B,#) US(D,#) does not exin

I tel ver

+ D

: acceptable.

S(A, abaa)

+S(A, baa) US(B, baa)

+ S(A, aa) US(c, aa)

+8(A,a) US(B,a) US(D,a)

+ S(A,#)US(B,#)US #

.. It is not acceptable!

Q2. Design NFA to recognize string ending with 101 on 111 over {0,1}

[] A of 8. (a) (a) (a) a) (b)

(Ray a d) 3 th right bills to

I hadre to take to do A R. I

₹ A .

Crara Ada

Q3. Design NFA to recognize any string on 02 over {0,1} Conversion/Equivalence NEB & DEB 0 ≥= {a,b} . S(q0, a) → {q0, q, 3 NS (new state) δ(q,, b) → {q, 3 os (old state) 2. S({q.,q.3,a} -> S(q.,a) US(q.,a) = { a, a, a, 2 } NS S((a.a,3,b) → S(a,b) US(a,b) = { 90, 9, 7 05 · 8({a., q,, q, 3, a) -> 8(q., a) U 8(a,, a) U 8(q,a) δ([a,a,a,a,], b) → S(a,b) υδ(a,b) υδ(a,b) = {90,91,93} Scanned by CamScanner

		a	Ь	***************************************	
1.	{9.3	[9., 9.3	{a. }	4,53	
એ,	[9.9.3	{a. 9, 923	{9,9,3	flagan)	w/s
3.*	{9.,9,923	{9.9.,92,93}	{90,91,93}	8(4,,1)	
4.	{9.9.9.9.3}	[9,9,9,9,93]	{9,9,9,9,9,3}	F. 12.01. 3) 6	ī
5.	{9,9,93?	{ a, a, a, 2}	{9.,9,,9,}		

M(NFA) = { Q, q, F, 8, 5 } M(DFA) = { Q', Q, F', S', Z } To, & are same All others (Q, F, S) will change. Q2. NFA -> DFA NED :--> 9. {q., q.} {q.} 9, {9.3 * 92 \$. {9.,923 JO BA A {9.3 {9.9.3 {9.23 8 [9,9,3 [90,9,3] [92,9,3] c [92] \$ \$ \$ \$ 90. 3 [90, 92] 0000 0 [9,93] [9,3 {9,90,923 E [90, 92] [90,913 892,903 f{a,a,9,3 } qo,9,3 {90,9,923 5 6 5 a 6 B C 3 B D 6 E D A F B BE B F 6 Gi 6

Scanned by CamScanner

It will accept any not of a followed by any not of b followed by any not of C.

eg:- a,aa, b, abc - ...

E-closure (A) = { A,B,C}

$$\rightarrow \delta(A,aa)$$

$$+\delta(E-c(A),aa)$$

$$+\delta(\{B,B,c\},aa\}$$

$$t \in (A, \epsilon)$$

c is a final state . .: It is accepted.

$$\rightarrow$$
 $S(A,ba)$

+ S({B, B, C3, ba)

$$+ S(B, a)$$
 $+ S(B,c),a)$
 $+ S(B,c),a)$
 $+ S(B,c),a)$
 $+ S(B,c),a)$

Qa. NFA-E to accept atleast 1 a.

$$E - C(q_0) = \{q_0, q_1, q_2\}$$

 $\{q_0, q_1, q_2\}$ of $\{q_1, q_2\}$ $\{q_1, q_2\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$

$$\delta(q_0, a) = \delta(\varepsilon - c(q_0), a)$$

= $\delta(q_0, q_1, q_2, q_2, a)$

=
$$\delta(90n\phi n\phi), \epsilon = \delta(90, \epsilon)$$

Hate will be three it of fortain

$$+ \delta (\epsilon - c(a_0), \epsilon)$$

$$+ \delta (a_0, a_1, a_2) = 0$$

$$+ \delta (a_0, a_1, a_2) = 0$$

$$+ \delta (a_0, a_1, a_2) = 0$$

$$= \delta (a_0, a_1, a_2) = 0$$

$$= \delta (a_1, a_2) = \delta (a_1, a_2) = 0$$

$$= \delta (a_0, a_1, a_2) = \delta (a_1, a_2) = 0$$

$$= \delta (a_0, a_1, a_2) = \delta (a_2, a_2) = 0$$

$$= \delta (a_0, a_1, a_2) = \delta (a_2, a_2) = 0$$

$$= \delta (a_1, a_2) = \delta (a_1, a_2) = \delta (a_2, a_2) = 0$$

$$= \delta (a_1, a_2) = \delta (a_1, a_2) = \delta (a_2, a_2$$

THE TENEDON TO BE A STATE OF THE STATE OF TH

follow pt, a

The Marie To Course I have

a\2	a	Ь	C
*90	[90,91,92]	{9,,923	{a, }
9,	\$ \$	19,,923	{923
*9,	ф	ф	{a,3

2. Design NFF-E to recognise any substring of abac