2.3.1

Получение и измерение вакуума

Егор Берсенев

1 Цель:

- 1. Измерение объемов форвакуумной и высоковакуумной частей установки.
- 2. Определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

2 Оборудование:

Вакуумная установка с манометрами: масляным, термопарным и ионизационным.

3 Теоретическая часть

Формула, выражающая скорость откачки газа из установки через предельный объем:

$$-VdP = (P_{\text{np}}W - Q_{\text{d}} - Q_{\text{h}} - Q_{\text{h}})dt \tag{1}$$

При достижении предельного давления $\frac{\mathrm{d}P}{\mathrm{d}t}=0$, значит:

$$P_{\rm np}W = Q_{\rm d} + Q_{\rm h} + Q_{\rm u} \tag{2}$$

Обычно $Q_{\rm д}, Q_{\rm h}, Q_{\rm u}$ можно считать постоянными. Тогда, проинтегрировав, получаем:

$$P = P_0 \exp\left(-\frac{W}{V}t\right) \tag{3}$$

Для газа, протекающего через трубу в Кнудсеновском режиме справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu} \frac{P_2 - P_1}{L}}$$
 (4)

Применим для газа, протекающего через трубу от установки к насосу.

$$_{\mathrm{TP}} = \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}} \tag{5}$$

Пропускная способность кранов:

$$\nu = \frac{1}{4} S n \bar{v} \implies C_{\text{\tiny OTB}} = \frac{1}{4} S \bar{v} \tag{6}$$

4 Экспериментальная установка

ФБ – форвакуумный баллон

ВН – высоковакуумный диффузионный насос

ВБ – высоковакуумный баллон

М – масляной манометр

И – ионизационный манометр

М1, М2 – термопарные манометры

К1 — К6 – соединительные краны

5 Ход работы

5.1 Опредение объема форвакуумной и высоковакуумной частей установки

Проверим положение кранов, откроем кран K2, чтобы запустить в систему воздух, подождем 2 минуты, пока воздух заполнт всю установку. Между кранами K5 и K6 заперто $V_{\rm K5+K6+kan}=60+\pm3{\rm cm}^3$ воздуха при атмосферном давлении. Откачаем систему до низкого вакуума и откроем кран. Воздух, запертый в кране заполнит объем форвакуумной части установки. Рассчитаем его. По масляному манометру $h_1=21, h_2=40 \implies \Delta h=19$

$$P_2 = \Delta h \cdot \rho \cdot g = 0.19 \cdot 885 \cdot 9.8 = 1647 \,\Pi \text{a} \implies V_{\text{фв}} = \frac{P_{\text{атм}} V_{\text{крана}}}{P_{\text{фв}}} = \frac{101325 \cdot 0.06}{1647} = 3.69 \pm 0.19 \, \text{л}$$

Рассчитаем объем высоковакумной части.

$$P_3 = \Delta h \cdot \rho \cdot g = 0.105 \cdot 885 \cdot 9.8 = 910.6 \,\Pi \text{a} \implies V_{\text{фв+вв}} = \frac{P_{\text{атм}} V_{\text{крана}}}{P_{\text{фв+вв}}} = \frac{101325 \cdot 0.06}{910.6} = 6.676 \,\pi$$

$$V_{\scriptscriptstyle
m BB} = 6.676 - 3.69 = 2.986 \pm 0.16$$
 л

Измерим предельное давление в системе: $P_{\rm пред}=3\cdot 10^{-4}$ торр при $U=30\,{\rm mA}.$ Найдем ухудшение вакуума во времени по изменению показаний ионизационного манометра.

$P \cdot 10^{-5}$, Topp	30	40	50	60	70	80	70	60	50	40	30
t_1, c	0	8.5	25.26	40.31	58.67	76.38	3.79	8.5	15.96	31.15	59.25
t_2 , c	0	12.36	28.856	46.26	64.85	84.85	5.2	9.09	16.16	28.65	53.74
\bar{t} , c	0	10.43	27.06	43.29	61.76	80.62	4.5	8.8	16.06	29.90	56.50

Построим графики:

Из графиков найдем скорость откачки: $W=(13.4\pm0.6)\cdot 10^{-2}\frac{\pi}{\rm c}$. Оценим $Q_{\rm H}\sim WP_{\rm пp}-V_{\rm BB}\frac{{\rm d}P}{{\rm d}t}=2.24\cdot 10^{-5}\frac{{
m Topp}\cdot\pi}{\rm c}$.

$$P_{\text{np}}W = Q_1, \quad P_{\text{ycr}}W = Q_1 + \frac{d(PV)}{dt}$$

$$W = \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}} = 12.08 \pm 0.7 \frac{\mathrm{J}}{\mathrm{c}}$$

Этот результат примерно совпадает с полученным в предыдущем пункте.

6 Вывод

Получение вакуума, безусловно, интересный процесс. Мы научились получать и измерять высокий и низкий вакуум. Возможно, это понадобится.