Samlefil for alle data til prøveeksamen

$Filen~1A/Oppgave1AFigur_A.png$

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt
Luminositeten øker med en faktor 1.00e+08.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) det finnes hovedsaklig helium men også noe karbon i stjernas kjerne

STJERNE B) massen til stjerna er 0.2 solmasser og den fusjonerer hydrogen i kjernen

STJERNE C) Stjerna har en overflatetemperatur på 10000K. Radiusen er

betydelig mindre enn solas radius

STJERNE D) stjernas luminositet er 1/10 av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE E) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 5.410e+06 kg/m $\hat{3}$ og temperatur 26 millioner K.

Kjernen i stjerne B har massetet
thet 8.966e+06 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne C har massetet
thet 1.431e+06 kg/m $\hat{3}$ og temperatur 16

millioner K.

Kjernen i stjerne D har massetet
thet 7.266e+06 kg/m3̂ og temperatur 32 millioner K.

Kjernen i stjerne E har massetet
thet 3.700e+06 kg/m3̂ og temperatur 27 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 3.760e+05 kg/m3̂ og temperatur 21.19 millioner K.

Kjernen i stjerne B har massetet
thet 1.112e+05 kg/m3̂ og temperatur 29.08 millioner K.

Kjernen i stjerne C har massetet
thet 4.996e+05 kg/m $\hat{3}$ og temperatur 17.73

millioner K.

Kjernen i stjerne D har massetet
thet 1.342e+05 kg/m3̂ og temperatur 31.12 millioner K.

Kjernen i stjerne E har massetet
thet 2.156e+05 kg/m3̂ og temperatur 19.72 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 1O/1O.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

0.68 | 0.2582

0.2592

0.2602

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

Observasjon er gjort 124.42 dager etter første observasjon.

0.93

0.88

0.88

0.78

0.73

0.2642

0.2652

0.2612

0.2622

Bølgelengde (nm) minus 656nm

0.2632

$Filen~1O/1O_Figur_4_.png$

0.2602

0.2612

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 165.89 dager etter første observasjon. 0.93 0.88 Normalisert fluks 0.83 0.78 0.73 0.68 | | | 0.2592

0.2622

0.2632

Bølgelengde (nm) minus 656nm

0.2642

0.2652

0.2662

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen 2B/2B_Figur_1.png

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B_Figur_2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen 2C/2C_Figur_1.png

Vinkelforflytning 3.33 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Lillehammer som ligger i en avstand av 350 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 98.12620 km/t.

Filen 3E.txt

Tog1 veier 33700.00000 kg og tog2 veier 41200.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 460 km/s.

Filen 4E.txt

Massen til gassklumpene er 10300000.00 kg.

Hastigheten til G1 i x-retning er 25200.00 km/s.

Hastigheten til G2 i x-retning er 30960.00 km/s.

Filen 4G.txt

Massen til stjerna er 48.65 solmasser og radien er 1.30 solradier.