# SPWLA 2022: Machine Learning & Al Workshop





Instructors: Lalitha Venkataramanan (Schlumberger), Andy McDonald (Lloyd's Register), Vikas Jain (Schlumberger)

## Introduction

This workshop will focus on the applications of Artificial Intelligence (AI) and Machine Learning (ML) to the upstream O&G industry. The aims of the workshop are to introduce machine learning, layout sample workflows and steps for ML applications and summarize some of the use cases within the industry.

## Course Material



Link to the workshop Repository:

https://github.com/andymcdgeo/spwla 2022 machine learning workshop



Link to Interactive Binder Notebooks:

https://mybinder.org/v2/gh/andymcdgeo/spwla 2022 m achine learning workshop/HEAD

## Machine Learning Types

#### **Supervised Learning**

Most common machine learning task. It is designed to learn by example using input data that has been paired with the correct outputs. After the model has been trained it can be used to predict an output.

Can be split up into regression, where models are used to predict continuous numerical output, and classification, where models are used to predict a discrete output category.

#### **Unsupervised Learning**

Used to identify underlying patterns within the data without the need for labelled data. It can be used for initial exploratory data analysis, dimensionality reduction and classification

#### **Reinforcement Learning**

Goal orientated algorithms that learn to make decisions in order to achieve complex objectives based on interactions with its environment.

# Downloading Course Material

#### **Cloning the Repository**

- 1. Navigate to the GitHub Repository
- 2. In the top right, click on the green Code button



3. Click on the copy button to copy the repository address



- 4. Open a terminal window (MacOS) or command prompt window (Windows)
- 5. Navigate to a directory where you want the repository to be downloaded to.
- 6. Type in: 'https://github.com/andymcdgeo/spwla 2022 machine le arning workshop'



7. Once the data has downloaded you will be able to access it from a Jupyter Notebook or from Jupyter-Labs

## Data

The data used for this workshop comes from the Volve dataset.

In 2018, Equinor released the entire contents of the Volve Field to the public domain to foster research and learning. Data includes: Well Logs; Petrophysical interpretations; Reports; Core Measurements; Seismic data; etc.

The Volve Field is located some 200 km west of Stavanger in the Norwegian Sector of the North Sea. Hydrocarbons were discovered within the Jurassic aged Hugin Formation in 1993. Oil production began in 2008 and lasted for 8 years (twice as long as planned) until 2016, when production ceased. In total 63 MMBO were produced over the field's lifetime and reached a plateau of 56,000 B/D.

Details for the Volve Field and the entire dataset can be found <u>here</u>. The full license agreement can be found <u>here</u>.

| Curve Name | Units | Description                     |
|------------|-------|---------------------------------|
| MD         | m     | Measured Depth                  |
| BS         | in    | Bitsize                         |
| CALI       | in    | Caliper                         |
| DT         | us/ft | Acoustic Compressional Slowness |
| DTS        | us/ft | Acoustic Shear Slowness         |
| GR         | api   | Gamma Ray                       |
| NPHI       | dec   | Neutron Porosity                |
| RACEHM     | ohm.m | Resistivity (High Freq. Atten)  |
| RACELM     | ohm.m | Resistivity (Low Freq. Atten)   |
| RHOB       | g/cc  | Bulk Density                    |
| RPCEHM     | ohm.m | Resistivity (High Freq. Phase)  |
| RPCELM     | ohm.m | Resistivity (Low Freq. Phase)   |
| PHIF       | dec   | Final Porosity                  |
| SW         | dec   | Water Saturation                |
| VSH        | dec   | Shale Volume                    |



# SPWLA 2021: Machine Learning & Al Workshop



Instructors: Lalitha Venkataramanan (Schlumberger), Chicheng Xu (Aramco), Andy McDonald (Lloyd's Register), Vikas Jain (Schlumberger)

# Libraries Used in Workshop

**Data Storage & Manipulation** 





**Data Visualisation** 





**Machine Learning** 







# **Working With Libraries**

**Installing Libraries** 

pip install numpy

pip install keras

pip install matplotlib

pip install seaborn

**Importing Libraries** 

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from math import pi

### Installing From requirements.txt

**Open Command Prompt** 

CD to folder where reqtuirements.txt exists

Type:

pip install -r requirements.txt

## pandas

Load in a csv file df = pd.read\_csv('file.csv') View key stats about the data df.describe() View a summary of the dataframe df.info() View the first n rows of the dataframe df.head(n) View the last n rows of the dataframe df.tail(n) Access a column by name df['GR'] Access a column by index position df.iloc[:,1] Access a row by index position df.iloc[1,:] Drop all null values df.dropna()

# missingno

df.drop('GR', axis=1)





msno.matrix(df)

Drop a column



Image from https://github.com/ResidentMario/missingno

## matplotlib



Image from https://matplotlib.org/stable/gallery/showcase/anatomy.html

### **Creating plots**

plt.plot(x, y)Create a line plotplt.scatter(x,y)Create a scatter plotplt.boxplot(x)Create a boxplotplt.bar(x)Create a bar plotplt.hist(x)Create a histogramplt.violin(dataset)Create a violin plot

