

Probabilidade no pacote Rcmdr

Como utilizar o pacote Rcmdr para o cálculo de probabilidades

Diogo Macedo Mendes Keyla Megumi Sano de Oliveira Profa. Dra. Giovana Fumes Ghantous October 18, 2023

• Experimentos independentes, respostas dicotômicas.

Exemplo 1. Em uma fábrica de pacotes de arroz espera-se que o peso do produto final esteja entre 998 e 1002 gramas. 90% das embalagens continham a quantidade desejada, se escolhermos aleatoriamente 10 embalagens.

a) Qual a probabilidade de se encontrar 8 pacotes no peso ideal? (P(X = 8))

Para o cálculo da probabilidade P(X = 8), basta ir em **Distribuições** > **Distribuições** > **Distribuição binomial** > **Probabilidades da binomial**, que retornará as probabilidades associadas para x = 0, ..., 10, incluindo o valor desejado.

Assim, tem-se que P(X = 8) = 0.1937.

b) Qual a probabilidade de se encontrar no máximo 8 pacotes da amostra no peso ideal? $(P(X \le 8))$.

Distribuições > Distribuições Discreta > Distribuição Binomial > Probabilidades da Binomial

R Probabilidade da Binomia	al .	×
Valores da Variável Experimentos da Binomial Probabilidade de sucesso Cauda inferior Cauda superior	10 0.9	
•	Resetar OK Cancelar Aplicar	
[1] 0.2639011	IO, prob=0.9, lower.tail=TRUE)	

Assim, tem-se que $P(X \le 8) = 0.2639$.

c) Qual a probabilidade de encontrar mais de 8 pacotes no peso ideal? (P(X>8))

Distribuições > Distribuições Discreta > Distribuição Binomial > Probabilidades das caudas da Binomial

R Probabilidade da Binomia	l	×
Valores da Variável Experimentos da Binomial Probabilidade de sucesso Cauda inferior Cauda superior	B 10 0.9	
Ajuda 🥎	Resetar V OK	Cancelar Aplicar
> pbinom(c(8), size= [1] 0.7360989	10, prob=0.9, lower.tail	=FALSE)

Assim, tem-se que P(X > 8) = 0.7361.

Exemplo 2. Seja X uma variável aleatória que conta o número de plantas com mutação em um total de n plantas irradiadas, e seja $p=0{,}0001$ a probabilidade de uma planta irradiada apresentar mutação.

Calcular:

a) A probabilidade de não aparecer plantas com mutação em um total de 1000 plantas irradiadas.

Distribuições > Distribuições discretas > Distribuição binomial > Probabilidades das caudas da binomial

(Experimentos = 1000, p = 0,0001)

Probabilidade da Binomial	×
Valores da Variável Experimentos da Binomial Probabilidade de sucesso O.0001 Cauda inferior Cauda superior Resetar OK Cancelar Aplicar	
> pbinom(c(0), size=1000, prob=0.0001, lower.tail=TRUE) [1] 0.9048329	

Assim, tem-se que P(X = 0) = 0.9048.

b) A probabilidade de aparecer ao menos uma planta com mutação em 1000 plantas irradiadas.

R Probabilidade da Binomial	×
Valores da Variável Experimentos da Binomial Probabilidade de sucesso ○ Cauda inferior ○ Cauda superior ◇ Ajuda ◇ Resetar ◇ OK Cancelar ◇ Aplic	ar
> pbinom(c(0), size=1000, prob=0.0001, lower.tail=FALSE) [1] 0.09516711	

Assim, tem-se que $P(X \ge 1) = 0.0952$.

c) A probabilidade de não aparecer planta com mutação em 2000 plantas irradiadas.

Valores da Variável	0			
Experimentos da Binomial				
Probabilidade de sucesso	0.0001			
Cauda inferior				
Cauda superior				
(Č) Ajuda 🥠	Resetar	√ OK	X Cancelar	Aplicar
- Juda				

Assim, tem-se que P(X = 0) = 0.8187.

d) A probabilidade de aparecer pelo menos duas plantas com mutação em 2000 plantas irradiadas.

R Probabilidade da Binomia	I	×	3
Valores da Variável Experimentos da Binomial Probabilidade de sucesso Cauda inferior Cauda superior	1 2000 0.0001		
Ajuda 🥎	Resetar OK Cancelar Aplicat	1	
> pbinom(c(1), size= [1] 0.01751655	2000, prob=0.0001, lower.tail=FALSE)		,

Assim, tem-se que $P(X \ge 2) = 0.0175$.

É possível também, dada uma certa probabilidade, encontrar o quantil associada a ela, por exemplo, o interesse pode ser o inverso do visto no item anterior, ou seja, dada uma variável aleatória X, que segue uma distribuição binomial com n=2000 e p=0,0001, qual o valor de x, para o qual $P(X \ge x) = 0.01751$?

Distribuições > Distribuições discretas > Distribuição binomial > Quantis da binomial

R Quantis da Binomial		×
Probabilidades Experimentos da Binomial Probabilidade de sucesso Cauda inferior Cauda superior	D.01751 2000 0.0001	
Ajuda 🥠	Resetar OK Cancelar Aplica	ır
> qbinom(c(0.01751) [1] 2	, size=2000, prob=0.0001, lower.tail=FALSE)	

Modelo Poisson

O modelo de probabilidade de Poisson é usado para modelar a probabilidade de ocorrência de um certo número de eventos em um intervalo fixo de tempo ou espaço, dado um número médio esperado de ocorrências. Ele é especialmente útil quando se trata de eventos raros, independentes e discretos.

- Biologia
- Contagem de eventos raros
- Epidemologia

Exemplo 1. A emissão de partículas radioativas tem sido modelada por meio de uma distribuição de Poisson, com o valor do parâmetro dependendo da fonte utilizada. Suponha que o número de partículas alfa, emitidas por minuto, seja uma variável aleatória seguindo o modelo de Poisson com parâmetro 5, isto é, a taxa média de ocorrência é de 5 emissões a cada minuto. Calcule a probabilidade de haver mais de duas emissões em um minuto.

Distribuições Distribuições Distribuição Poisson > Probabilidades da dist. poisson (caudas)

R Probabilidade da l	Poisson	×
Valores da Variável Média O Cauda inferior © Cauda superior	₽ 5 Nesetar	plicar
> ppois(c(2), 1 [1] 0.875348	ambda=5, lower.tail=FALSE)	

Assim, tem-se que P(X > 2) = 0.8753.

Exemplo 2. Um telefone recebe, em média, cinco chamadas por minuto. Supondo que a distribuição de Poisson seja adequada nessa situação, obter a probabilidade de que o telefone não receba chamadas durante um intervalo de um minuto.

Distribuições Distribuições Distribuição Poisson > Probabilidades da dist. poisson (caudas)

R Probabilidade da	Poisson	×
Valores da Variável Média Cauda inferior Cauda superior	b 5	
> ppois(c(0), 1 1 0.00673794	Resetar OK Cancelar Aplicar lambda=5, lower.tail=TRUE)	

Assim, tem-se que P(X = 0) = 0,0067.

Exemplo 3. Suponha que um determinado em uma fábrica de laticínios, na etapa de embalagens podem ocorrer falhas, de acordo com uma variável aleatória X que segue uma distribuição de Poisson de parâmetro $\lambda = 3$. (P (X = 3)).

Distribuições > Distribuições Discreta > Distribuição Poisson > Probabilidades da dist. Poisson

R Probabilidade da Poisson					
Média 3					
	Ajuda Sesetar				
Ou	tput				
1	0.1493612051				
2	0.2240418077				
3	0.2240418077				
4	0.1680313557				
5	0.1008188134				
6	0.0504094067				
<					

Assim, tem-se, por exemplo, que P(X = 5) = 0.1008.

Exemplo 4. Usando a mesma distribuição Poisson do **Exemplo 3**, o quantil também pode ser calculado, por exemplo, para que x seja tal que $P(X \le x) = 0.95$.

Quantis da Po	isson.	×
Probabilidades Média Cauda inferio Cauda superi		
> qpois(c(0.	95), lambda=3, lower.tail=TRUE)	

O quantil referente ao percentil de ordem 0,95 de uma variável aleatória que segue uma distribuição de Poisson, com média 3 é 6.

O modelo normal apresenta dois parâmetros - a média e a variância, que determinam o centro e a variabilidade da distribuição dos dados.

Exemplo 1. A curva vermelha possui média igual a 9 e desvo padrão igual a 2, enquanto que, a azul possui média 8 e desvio padrão 1.

Exemplo 2. Em uma determinada sala de aula, a média das alturas dos alunos é de 1,72 m, com desvio padrão de 0,105 m. Considerando que a distribuição dos dados segue um modelo normal, qual é a probabilidade dos alunos apresentarem uma altura inferior à 1,40 metros? (P(X < 1,40))

Distribuição -> Distribuição contínuas -> Distribuição normal -> Probabilidades da normal

Para o cálculo, o valor da variável, a média e o desvio padrão devem ser inseridos. A opção cauda inferior deve ser selecionada, pois deseja-se calcular a probabilidade da altura ser menor que 1.40 metros.

R Probabilidades da	Normal			×
Valores da Variável Média Desvio padrão © Cauda inferior Cauda superior	1.4 1.7271! 0.1051:			
Ajuda	Nesetar	 ✓ OK	X Cancelar	Aplicar


```
> pnorm(c(1.4), mean=1.727158, sd=0.1051395, lower.tail=TRUE)
[1] 0.0009302044
```

Assim, tem-se que P(X < 1.40) = 0.0009.

Exemplo 3. Em uma determinada sala de aula, a média das alturas dos alunos é de 1,72 m, com desvio padrão de 0,105 m. Considerando que a distribuição dos dados segue um modelo normal, qual é a probabilidade dos alunos apresentarem uma altura superior a 1,80 m? (P (X > 1,80))

Distribuição -> Distribuição contínuas -> Distribuição normal -> Probabilidades da normal

Os mesmos passos do Exemplo 2 devem ser seguidos, porém, a opção cauda superior deve ser selecionada, pois deseja-se conhecer a probabilidade da altura ser maior que 1,80 m.


```
> pnorm(c(1.8), mean=1.727158, sd=0.1051395, lower.tail=FALSE)
[1] 0.2442135
```

Assim, tem-se que P(X > 1.80) = 0.2442.

Exemplo 4. Em uma determinada sala de aula, a média das alturas dos alunos é de 1,72 m, com desvio padrão de 0,105 m. Considerando que a distribuição dos dados segue um modelo normal, qual a probabilidade dos alunos possuírem uma altura entre 1,50 m e 1,60? (P(1,50 < X < 1,60)

1. Seguindo os mesmos passos vistos no **Exemplo 2**, calcula-se a P(X < 1,60).

Probabilidades da	Normal			×
Valores da Variável Média Desvio padrão © Cauda inferior Cauda superior	1.6 1.72 0.105			
Ajuda	Nesetar	 ✓ OK	X Cancelar	Aplicar

Output > pnorm(c(1.6), mean=1.72, sd=0.105, lower.tail=TRUE)
[1] 0.126549

2. Seguindo os mesmos passos vistos no Exemplo 2, calcula-se a P(X < 1,50).

R Probabilidades da	Normal	×
Valores da Variável Média Desvio padrão	1.5 1.72 0.105	
(D) Ajuda	↑ Resetar ✓ OK X Cancelar Aplicar	

Output > pnorm(c(1.5), mean=1.72, sd=0.105, lower.tail=TRUE) [1] 0.01807492

3. P(1,50 < X < 1,60) = P(X < 1,60) - P(X < 1,50) = 0,126549 - 0,01807492 = 0,1084741.

Exemplo 5. Calcule os valores de X correspondentes às porcentagens esperadas, em que X é o diâmetro em mm de tomates, que segue uma distribuição N(60,49).

Classificação	Diâmetro	Porcentagem esperada
Pequeno	até <i>mm</i>	20%
Médio	De a <i>mm</i>	60%
Grande	acima de <i>mm</i>	20%

1. Distribuição -> Distribuições contínuas -> Distribuição normal -> Quantis da normal

Vamos calcular o diâmetro classificado como pequeno, que varia de 0 até x mm, ou seja, P(X < x) = 0,20

Seleciona-se a **cauda inferior**, e preenche as informações da probabilidade (0.20), média (60) e desvio padrão (7).

R Quantis da Nor	rmal	×
Probabilidades	0.20	
Média	60	
Desvio padrão	7	
Cauda inferior		
O Cauda superio	or	
Ajuda	♦ Resetar ✓ OK X Cancelar ← Aplicar	

Assim, os 20% dos tomates classificados como pequenos possuem diâmetros de até $54{,}108$ mm.

Agora, vamos calcular o diâmetro classificado como médio, que está entre x_1 e x_2 , ou seja, $P(x_1 < X < x_2) = 0,60$

Como valor de $x_1 = 54,108$ mm, já calculado anteriormente, basta então o cálculo de x_2 .

Seleciona-se a **cauda superior**, e preenche as informações da probabilidade (0.20), média (60) e desvio padrão (7).

R Quantis da No	rmal	×
Probabilidades	0.20	
Média	60	
Desvio padrão	7	
 Cauda inferio 	or .	
Cauda superi	or	
(i) Ajuda	♦ Resetar V OK Cancelar Aplicar	,


```
Output
> qnorm(c(0.20), mean=60, sd=7, lower.tail=FALSE)
[1] 65.89135
```


Portanto, os diâmetros classificados como médio, são aqueles que possuem diâmetros entre 54,108 mm e 65,89 mm. E, por fim, serão classificados com grandes, aqueles que tiveram um diâmetro superior a 65,89 mm.

Uma variável aleatória X que tem distribuição uniforme, é definida em um intervalo [a, b].

Exemplo 1. A dureza H de uma peça de aço pode ser pensada como sendo uma variável aleatória com distribuição uniforme no intervalo [50,70] da escala de Rockwell. Calcule a probabilidade de uma peça ter a dureza entre 55 e 60.

1. Siga o passo a passo:

Distribuições Ferramentas Ajuda				
Definir semente geradora de número aleatório				
Distribuições Contínuas	•	Distribuição Normal	•	1
Distribuições Discretas	٠	Distribuição t	٠	
TRUE)	1	Distribuição Qui-Quadrado Distribuição F Distribuição Exponencial	+	
cdf=FALSE, xlab="x", ylab="Density",		Distribuição Uniforme	•	Quantis da Uniforme
:60, Standard deviation=7"), regions=1	1:	Distribuição Beta	۰	Probabilidades da Uniformel
		Dietribuicão Cauchy		Gráfica da distribuição uniforma

Pede-se P(55 < X < 60), primeiro calcular a probabilidade da peça de aço possuir uma dureza de até 60, ou seja, P(X < 60).

Para o cálculo de P(X < 60), basta inserir valor da variável (60), e os valores de mínimo e máximo do intervalo, dados por 50 e 70, respectivamente.

R Probabilidades da	Uniforme	×
Valores da Variável Mínimo Máximo ②] Cauda inferior Cauda superior	60 50 70	
(Ajuda	♦ Resetar ✓ OK	plicar
Output		
> punif	(c(60), min=50, max=70, lower.tail=TRUE)	

Em seguida, calcule a probabilidade da peça de aço possuir uma dureza de menor que 55, ou seja, P(X < 55).

[1] 0.25

O processo é análogo ao anterior, a única alteração é no valor da variável, que no caso é 55.

R Probabilidades da	Uniforme			×
Valores da Variável Mínimo Máximo (a) Cauda inferior Cauda superior	55 50 70			
Ajuda	♦ Resetar	√ ок	X Cancelar	Aplicar
0.11				

> punif(c(55), min=50, max=70, lower.tail=TRUE)

Análogo ao exemplo feito para a distribuição normal, para o cálculo da probabilidade desejada, tem-se P(55 < X < 60) = P(X < 60) - P(X < 55) = 0,50 - 0,25 = 0,25. Portanto, a probabilidade de uma peça possuir a dureza entre 55 e 60 é de 25%.

Distribuiçoes de Probabilidade - Exponencial

Probabilidade ao longo do tempo ou distância entre ocorrências num intervalo contínuo, utilizado para prever o período de tempo necessário até a ocorrência de um evento.

Exemplo: O tempo de vida (em horas) de um componente eletrônico pode ser considerado uma variável aleatória com distribuição exponencial com $\beta = 500$. Segue-se que a vida média desse componente é E(T) = 500 horas. Qual é a probabilidade de que ele dure mais do que a média?

Distribuições de Probabilidade - Exponencial

1. Siga o passo a passo.

Distribuições Ferramentas Ajuda				
Definir semente geradora de número aleatório				
Distribuições Contínuas	•	Distribuição Normal	٠	
Distribuições Discretas	•	Distribuição t	٠	
		Distribuição Qui-Quadrado	٠	
)) , cdf=FALSE, xlab="x", ylab="Density", mum=50, Maximum=70"), regions=list(C(0)		Distribuição F	•	
		Distribuição Exponencial	- +	Quantis da Exponencial
		Distribuição Uniforme	٠	Probabilidades da exponencial
		Distribuição Beta	-	Gráfico da distribuição exponencial

Distribuiçoes de Probabilidade - Exponencia

Basta preencher o valor da variável (500), a taxa é calculada pela fração:

$$\tan a = \frac{1}{\beta} = \frac{1}{500} = 0,002.$$

Seleciona-se a cauda superior, pois procura-se a probabilidade do tempo de vida durar mais do que a média, ou seja, P(T > 500).

R Probabilidades da	Exponencial	×
Valores da Variável	500	
Taxa	0.002	
 Cauda inferior 		
Cauda superior		
(D) Ajuda	♦ Resetar	r

Distribuiçoes de Probabilidade - Exponencial


```
> pexp(c(500), rate=0.002, lower.tail=FALSE)
[1] 0.3678794
```

Assim, tem-se a probabilidade de 36,78% de que o tempo de vida do componente eletrônico dure mais do que a média.