Problem Statement LP-V

1. Implement Boston housing price prediction problem using Linear regression.

Dataset: https://www.kaggle.com/code/shreayan98c/boston-house-price-prediction

2. Implement Binary classification using Deep Neural Networks Example: Classify movie reviews

Dataset: https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-

reviews

3. Implement Multiclass classification using Deep Neural Networks: Example: Use the OCR letter recognition dataset

Dataset: https://www.kaggle.com/datasets/preatcher/standard-ocr-dataset

4. Use MNIST Fashion Dataset and create a classifier to classify fashion clothing

Dataset: https://www.kaggle.com/datasets/zalando-research/fashionmnist

5. Use the Google stock prices dataset and design a time series analysis and prediction system using RNN

Dataset: https://www.kaggle.com/datasets/medharawat/google-stock-price

6. Implement Parallel breadth first search using OpenMP

Problem Statement LP-V

7. Implement Parallel depth first search using OpenMP
8. Implement Parallel bubble sort using OpenMP
9. Implement Parallel merge sort using OpenMP
10. Implement min, max using parallel reduction
11. Implement sum, average using parallel reduction
12 Write CUDA program for addition of two vectors
13. Write CUDA program for matrix multiplication