Architektury systemów komputerowych Wykład 9: Pamieć DRAM

Krystian Bacławski

Instytut Informatyki Uniwersytet Wrocławski

25 kwietnia 2019

A: Transaction request may be delayed in Queue

B: Transaction request sent to Memory Controller

C: Transaction converted to Command Sequences (may be queued)

D: Command/s Sent to DRAM

E₁: Requires only a **CAS** or

 E_2 : Requires **RAS** + **CAS** or

E₃: Requires **PRE + RAS + CAS**

F: Transaction sent back to CPU

DRAM Latency = A + B + C + D + E + F

Rysunek: Strony pamięci DRAM

Rysunek: Kolumna macierzy DRAM

Rysunek: Proces czytania bitów

Rysunek: Kolejność podawania sygnałów

- t_{RAS} Row Access Strobe. Minimalny czas między poleceniem wyboru wiersza, a przywróceniem danych w wierszu po wykonaniu operacji.
 - $t_{RP}\,$ Row Precharge. Czas na przygotowanie innego wiersza na dostęp.
- t_{RCD} Row-to-Column command Delay. Czas między wydaniem polecenia wyboru wiersza, a dostępnością danych na wyjściu z układu wzmacniającego.
- t_{CAS} Column Access Strobe latency. Minimalny czas między wydaniem polecenia odczytu kolumny, sa początkiem transferu danych.
 - t_{RC} Row Cycle. Czas między dostępami do różnych wierszy w banku. $t_{RC}=t_{RAS}+t_{RP}$

Rysunek: Odczyt z pamięci DRAM

Rysunek: Zapis do pamięci DRAM