Αθήνα, 23 Μαΐου 2018

Καταρχάς, ως ίσχυε και στην προηγούμενη εργασία, η ομάδα μας αποτελείται από τα ακόλουθα μέλη:

Ονοματεπώνυμο	Αριθμός Μητρώου	E-mail επικοινωνίας	
Γεώργιος Μοσχόβης	3150113	p3150113@dias.aueb.gr	
Δημήτριος Βέτσης	3120019	p3120019@dias.aueb.gr	

Σε αυτή την εργασία, προβήκαμε στην υλοποίηση μιας γραφικής διεπαφής χρήστη (Graphical User Interface –GUI) για την εφαρμογή της προηγούμενης φάσης και στην προσθήκη ανακατεύθυνσης εξ'αυτού των παραγόμενων μηνυμάτων.

Η δομή της δημιουργηθείσας εφαρμογής και σύντομη πειραματική αξιολόγηση περιγράφεται στα κεφάλαια αυτού του εγχειριδίου που διαρθρώνεται στις εξής ενότητες:

1. Χρησιμοποιηθέντα εργασίας

Για την υλοποίηση του UDP Server, χρησιμοποιήθηκαν κατά τα γνωστά οι ακόλουθες κλάσεις, οι οποίες διασυνδέονται ως έπεται. Θεωρούμε ότι ο κώδικας είναι επαρκώς σχολιασμένος, θα σταθούμε

όμως σε μερικές λεπτομέρειες των πακέτων (κοινές κλάσεις για τα projects των Server, Client).

Χρησιμοποιούμε το πεδίο *header_ size* = 3, για την αποθήκευση των Packet Number, ACKNowledge Number, Packet Type (Datagram or Acknowledgement), μετρούμενα στην τάξη του bit, που επαρκεί λόγω υιοθέτησης πολιτικής Stop & Wait (πρωτόκολλο κυλιόμενου παραθύρου με r = s = 1). Χρησιμοποιούμε επίσης την εκχώρηση *packetNumber* = -1 σαν ένα σήμα reset, για την επανέναρξη σύνδεσης νέου client (ως καταδεικνύει και το GUI).

Εικόνα 1 – Διάγραμμα κλάσεων στο Server Package

Για την υλοποίηση του UDP Client, χρησιμοποιήθηκαν κατά τα γνωστά ξανά ακόλουθες κλάσεις, οι οποίες διασυνδέονται ως έπεται. Αξιοσημείωτα σε αυτό το package, που αφορά τον UDP Client είναι η κλήση System. getProperty("file.separator"), που εξασφαλίζει την

απόσπαση του ονόματος αρχείου για την εισαγωγή ανέκαθεν απολύτου μονοπατιού, όπως αποδίδεται από τον FileChooser, της βιβλιοθήκης UI java.swing, καθώς και η χρήση γενικευμένου δισδιάστατου διανύσματος class <u>Vec2</u><Τ, Υ> για τη σύμπτυξη των ζητούμενων στατιστικών.

Κατά τα λοιπά, για την υλοποίηση της κλάσης packet καθώς και των υποκλάσεών της, ισχύουν τα απεικονισθέντα και προαναφερθέντα ενώ για την ανακατεύθυνση των μηνυμάτων χρησιμοποιούνται στιγμιότυπα της class MyPrintStream για χρήση πολλαπλών στιγμιοτύπων Runnable σαν όρισμα της SwingUtilities. invokeLater(...).

2. Στατιστικά απόδοσης συστήματος

Η υλοποίηση του αλγορίθμου που αναφέρεται ως άνω έδωσε, για δεδομένα εισόδου τις εικόνες books.jpg χαμηλής ανάλυσης (78,498 bytes) και ALIMOS.JPG υψηλής ανάλυσης (32MP/5,712,243 bytes) τα ακόλουθα αποτελέσματα (επόμενη σελίδα).

Εικόνα 2 – Διάγραμμα κλάσεων στο Client Package

Στατιστικά απόδοσης αλγορίθμων (LocalHost)

PAYLOAD	ALIMOS.JPG ΧΩΡΙΣ	ALIMOS.JPG ME EKO.	BOOKS.JPG ΧΩΡΙΣ	BOOKS.JPG ME EKO.
	ΚΑΘΥΣΤΕΡΗΣΗ	ΚΑΘΥΣΤΕΡΗΣΗ	ΚΑΘΥΣΤΕΡΗΣΗ	ΚΑΘΥΣΤΕΡΗΣΗ
65000 Bytes	78568.484	311.27518	8517.578	824.28174
40000 Bytes	116215.88	56.389812	15331.641	414.36865
20000 Bytes	87161.91	12.390028	10951.172	159.04192
5000 Bytes	53638.098	2.110386	25552.734	28.090216

Πίνακας 1 - Στατιστικά απόδοσης σε MB/sec. για τις προαναφερθείσες εισόδους

PAYLOAD	ALIMOS.JPG ΧΩΡΙΣ ΚΑΘΥΣΤΕΡΗΣΗ	ALIMOS.JPG ME EKΘ. ΚΑΘΥΣΤΕΡΗΣΗ	BOOKS.JPG ΧΩΡΙΣ ΚΑΘΥΣΤΕΡΗΣΗ	ΒΟΟΚ S.JPG ΜΕ ΕΚΘ. ΚΑΘΥΣΤΕΡΗΣΗ
65000 Bytes	71	17921	9	93
40000 Bytes	48	98925	5	185
20000 Bytes	64	450230	7	482
5000 Bytes	104	2643290	3	2729

Πίνακας 2 – Χρόνος εκτέλεσης σε msec. για τις προαναφερθείσες εισόδους

Ιδιαίτερο ενδιαφέρον εμφανίζει η σκιασμένη γραμμή, ο λόγος που ο χρόνος εκτέλεσης σημειώνεται μικρότερος για Payload = 40000 Bytes και όχι για Payload = 20000 είναι ότι το μέγεθος του αρχείου είναι τέτοιο που επιτρέπει τη διαίρεσή του σε λιγότερα IP datagrams, συγκεκριμένα 2 αφού $\left|\frac{78,498}{40,000}\right| = 2$ και η διαδικασία επιταχύνεται.

Επειδή όμως ο άνω πίνακας, μας φαίνεται λίγο αχανής και όπως λέει ο λαός μας *μια εικόνα, χίλιες λέξεις*, κρίνουμε σκόπιμο να σας δείξουμε και την αντίστοιχη διαγραμματική παρουσίασή του.

Εικόνα 5 - Γράφημα διακύμανσης χρόνου

Εικόνα 6 - Γράφημα διακύμανσης χρόνου (2)

Επαναλαμβάνοντας τη διαδικασία στο CSLab2 και δια του τοπικού δικτύου AUEB CSLabs, εκμαιεύουμε ανάλογα συμπεράσματα απόδοσης του πρωτοκόλλου UDP, καταπώς το υλοποιήσαμε, με τα προαναφερθέντα επί της δοκιμής τοπικά, σε έναν υπολογιστή. Ξανά και για τον ίδιο λόγο, ο χρόνος εκτέλεσης σημειώνεται μικρότερος για Payload = 40000 Bytes, έναντι Payload = 20000.

Στατιστικά απόδοσης αλγορίθμων (In Network)

PAYLOAD	ALIMOS.JPG ΧΩΡΙΣ ΚΑΘΥΣΤΕΡΗΣΗ	ALIMOS.JPG ME EKO. ΚΑΘΥΣΤΕΡΗΣΗ	BOOKS.JPG ΧΩΡΙΣ ΚΑΘΥΣΤΕΡΗΣΗ	ΒΟΟΚ S.JPG ΜΕ ΕΚΘ. ΚΑΘΥΣΤΕΡΗΣΗ
65000 Bytes	65000	42582.918	308.09467	6968.9277
40000 Bytes	40000	39845.445	56.222157	25552.734
20000 Bytes	20000	31695.24	12.374801	15331.641
5000 Bytes	5000	12396.361	2.161018	7665.8203

Πίνακας 3 - Στατιστικά απόδοσης σε MB/sec. για τις προαναφερθείσες εισόδους

PAYLOAD	ALIMOS.JPG ΧΩΡΙΣ ΚΑΘΥΣΤΕΡΗΣΗ	ALIMOS.JPG ME EKO. ΚΑΘΥΣΤΕΡΗΣΗ	BOOKS.JPG ΧΩΡΙΣ ΚΑΘΥΣΤΕΡΗΣΗ	ΒΟΟΚ S.JPG ME EKO. ΚΑΘΥΣΤΕΡΗΣΗ
65000 Bytes	131	18106	11	91
40000 Bytes	140	99220	3	185
20000 Bytes	176	450784	5	494
5000 Bytes	450	2643310	10	2759

Πίνακας 4 – Χρόνος εκτέλεσης σε msec. για τις προαναφερθείσες εισόδους

Εικόνα 7 - Γράφημα διακύμανσης απόδοσης

Εικόνα 8 - Γράφημα διακύμανσης απόδοσης (2)

Εικόνα 9 - Γράφημα διακύμανσης χρόνου

Εικόνα 10 - Γράφημα διακύμανσης χρόνου (2)

Επί αμφότερων των περιπτώσεων, σε τοπικό υπολογιστή και εντός του δικτύου, τα συμπεράσματα ως προς την επίδραση του μέγιστου αριθμού bytes στο ρυθμό και το χρόνο μεταφοράς είναι σαφέστατα. Καθίστανται εμφανή:

- η ελαφρώς ανάλογη σχέση payload και ρυθμού μεταφοράς,
- η αντιστρόφως ανάλογη σχέση payload και χρόνου, πέραν της εξαίρεσης που αναφέραμε στη σελ. 5.

Ως εκ τούτοις, η χρήση καθυστέρησης καθίσταται απαγορευτική σε αξιόπιστα δίκτυα. Πιστεύουμε ότι το κείμενο είναι σχετικά πλήρες. Σε περίπτωση που έχουμε παραλείψει να περιγράψουμε κάτι που σας προβληματίσει, θα δεχθούμε ευχαρίστως να δώσουμε διευκρινήσεις.

Enjoy our project!

Με εκτίμηση,

Η ομάδα των προγραμματιστών