学院	专业		成绩			
年级	学号		_ 姓名		日期	
題号 一 得分 一 判断题。(每是	三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三	四	五正確的打	六	七	八 "×")
1、若方阵 A 、 B 、 $C2$ 、每一个秩为 r 的	C, $AB = AC$,	$\mathbb{E}A \neq 0$,则 <i>B</i> =	<i>C</i> 。	()
$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ °					()
B 、 n 维向量组 α_1, α_2	$,\cdots,lpha_s$ 线性无关。	, 则 <i>n</i> 维	向量组。	$\alpha_1, \alpha_2, \cdots$	$,\alpha_{s},\alpha_{s+1}$	$,\cdots,lpha_{{}_{m}}$ 也
线性无关。					()
4、有 n 阶矩阵 A , k	为一常数,,则	kA = k A	A 。		()
5、一个向量组的极力 5、设 <i>A</i> 为 <i>m×n</i> 阶矩 总有解。						
二、 选择题: (每是	返3分 ,共18分	`)				
、已知A是3阶方图	阵, $ A =2$, A^* 是	是它的伴	随阵,贝	$\left \left 2A^* \right =$		o
(a) 4 (b) 8	(c) 16 (d) 32				
2、设向量组(1, 1, ((3, 0, -9)), (1, 2	2, 3),	(1, -1,	6) 的秽	· 是
a) 1 (b) 2 B、设有向量组 <i>A</i> ,向 a)若 <i>A</i> 线性相关,则 c)若 <i>B</i> 线性无关,则	可量组 <i>B</i> 是 <i>A</i> 的 i <i>B</i> 线性相关	部分组, (b)若	A 线性力	无关, 则	B 线性3	
1、设 A 为正交阵,	a_j 是 A 的第 j 列	J,则 <i>a_j</i>	与 a_j 的[为积为_		
a) 0 (b) 1	(c) 2 (d) 3				
5、如果齐次线性方程	呈组 $A_{s \times n} x = 0$ 有	非零解,	那么	o		
(a) $s < n$ (b) $s = 1$	= n (c) s	> n	(d) 三 ^元	种情况都	了有可能	
5、设 A 是 n 阶矩阵,	如果 $ A =0$,贝	IA的特	征值			
a) 全为零 (b)	全不为零 (c)	至少有-	一个是零	(d)	可以是任	意数

苏州大学《线性代数》课程试卷库(第十六卷)共4页

三、 计算题:

1、(10 分) 求行列式的值
$$D = \begin{vmatrix} 2+x & 2 & 2 & 2 \\ 2 & 2-x & 2 & 2 \\ 2 & 2 & 2+y & 2 \\ 2 & 2 & 2 & 2-y \end{vmatrix}$$

2、(10 分) 设
$$A = \begin{pmatrix} 2 & 5 \\ -1 & -3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 \\ -1 & 2 \end{pmatrix}$, $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$, \overrightarrow{R} C^{-1}

四、(10分) 已知矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, 且矩阵 X 满足

AXA + BXB = AXB + BXA + E, 求矩阵 X

五、(10分) 求线性方程组 $\begin{cases} x_2 + 2x_3 + 2x_4 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 = -1 \end{cases}$ 的一个基础解系和全部解。 $4x_1 + 3x_2 + 2x_3 + 2x_4 = -1$

六、(10分)已知A的特征值为3,2,1,它们对应的特征向量为

$$\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, \quad \stackrel{?}{R} A$$

七、(10分) 设矩阵 $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, 求(1) A 的特征值和特征向量;

(2) 正交矩阵Q和对角阵 Λ , 使 $Q^{-1}AQ = \Lambda$ 。

八、(10 分)证明: 向量组 $A:\alpha_1,\alpha_2,\alpha_3$ 线性无关的充要条件是向量组 $B:\beta_1=\alpha_1+\alpha_2$, $\beta_2=\alpha_2+\alpha_3$, $\beta_3=\alpha_1+\alpha_3$ 线性无关。