Image Processing III

Yan-Fu Kuo Dept. of Biomechatronics Engineering National Taiwan University

Contents

01 Spatial Filtering (Cont'd)

Edge Detection

02 Morphological Image Processing

Morphology Operations & Structuring Element

Erosion & Dilation

Opening & Closing

Quick Recap

Import scikit-image

```
import skimage
```

Reading image

```
coins_snp = io.imread('coins_s&p.png')
print(type(coins_snp))
print(coins_snp.shape)
```

Showing image

```
plt.imshow(coins_snp, cmap='gray')
plt.show()
```

01 Spatial Filtering (Cont'd)

Object Detection

Sobel Filter

-1	0	1
-2	0	2
-1	0	1

Sobel x

1	2	1
0	0	0
-1	-2	-1

Sobel y

Sobel Filter

```
from skimage import filters

building = io.imread('building.jpg', as_gray=True)

building_sobel_x = filters.sobel_v(building)
building_sobel_y = filters.sobel_h(building)
```


Original image

Sobel x Sobel y

Derivative

1st derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

■ 2nd derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Edges in Image

1st derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Sobel x filter

-1	0	1
-2	0	2
-1	0	1

Laplacian Filter

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

2nd derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Laplacian Filter

building_laplacian = filters.laplace(building)

Can Laplacian filter detect round edges?

Edge Enhancement

Caution!

skimage uses the filter below as Laplacian filter

0	-1	0
-1	4	-1
0	-1	0

02 Morphological Image Processing

Problem Setup

Erosion & Dilation

Erosion

Dilation

Structuring Elements

from skimage.morphology import disk, square, rectangle, diamond
selem = disk(radius=1)

Fit, Hit, and Miss

1. Fit

<u>All</u> on pixels in the structuring element superimpose pixels in the image ()

2. Hit

Any on pixel in the structuring element superimpose pixels in the image

3. Miss

No on pixel in the structuring element superimpose pixels in the image

Erosion

For each pixel in A superimpose the origin of B, if B is completely contained by A (**fit**), the pixel is retained, else deleted.

Dilation

For each pixel in A that has a value of 1, superimpose B, with the center of B aligned with the corresponding pixel in A.

Each pixel of every superimposed B is included in the dilation of A by B.

Quiz 1

skimage.morphology

```
from skimage import morphology
from skimage.morphology import disk, square, rectangle, diamond

fingerprint = io.imread('mmbw.jpg')

selem = disk(radius=1)
mm_erosion = morphology.binary_erosion()
```

Also try morphology.binary_dilation

Try changing the structuring element shape

What is the difference between increasing selem size and repeating the erosion operation?

Exercise 1

Eliminate the noise by using the erosion operation $(A \ominus B)$

What do you observe on the fingerprint?

Try performing a dilation operation after the erosion $((A \ominus B) \oplus B)$

Compound Operations

Opening = erosion \rightarrow dilation $A \circ B = (A \ominus B) \oplus B$

Closing = dilation \rightarrow erosion $A \cdot B = (A \oplus B) \ominus B$

More Morphological Operations

remove_small_objects

remove_small_holes

skeletonize

medial_axis

