CS202 - Algorithm Analysis Graph Based Algorithms

Aravind Mohan

Allegheny College

May 10, 2021

Graph Traversal

- Graph traversal is a process used to visit each node or vertex in a connected graph.
- Two popular algorithms are generally used for the traversal of a graph, namely, Depth First Search (DFS) and Breadth First Search (BFS).

An important: application of graph traversal is to detect cycles in a Graph.

Depth First Search (DFS) Algorithm

DFS(G, u)

Input: Graph G = (V, E) directed or undirected, vertex u (element of) V

Output: DFS traversal order from node u

```
create a Stack S
mark u as visited
push(S, u)
while S is not empty
   v = peek(S)
   if v has an unvisited neighbour w then
       mark w as visted
      push(S, w)
   else
      pop(S)
   end if
end while
```

Complexity Analysis

Time Complexity - O(V + E)

DFS Exercise

Try out 1

 Compute the DFS traversal order in the Graph provided below, starting from vertex a:

BFS example

Queue	1	3	2	5	6		
Result	0	1					

Queue 3	3 2	5	6	4		i
Result 0) 1	3				

Queue	2	5	6	4		
Result	0	1	3	2		

Queue	5	6	4				
Result	0	1	3	2	5		

Breadth First Search (BFS) Algorithm

BFS(G, u)

Input: Graph G = (V, E) directed or undirected, vertex u (element of) V

Output: BFS traversal order from node u

```
create a Oueue O
enqueue (Q, u)
while (Q is not empty)
  s = Dequeue(0)
  if (visited of vertex s == false)
    result.add(s)
    visited of vertex s = true
  end if
  for all m (element of) neighbours of s
    if (visited of vertex m == false)
      enqueue (Q, m)
    end if
  end for
end while
return result
```

Complexity Analysis

Time Complexity - O(V + E)

Graph - Exercise

Try out 2

• Compute the BFS traversal order in the Graph provided below, starting from vertex **a**. Show the Queue and Result array in your solution.

Next:

• Graph Shortest Path Algorithms:

Dijkstras algorithm.

Reading Assignment

Sedgewick 4.1 and 4.2

Questions?

Please ask if there are any Questions through Slack, Email, and/or during the virtual office hours!