فرض منزلي رفم @ الدورة الثانبة -الموضوع-

لثانوبت النأهبلبت الأمبر مولاي رشبد

|2017/2018|

المادة: الرياضيات | القسم: الثانية باكالوريا علوم تجريبية | د. العلالي عبد الفتاح |

التمرين الأول (أسئلة مستقلة)

(E):y''-4y'+5y=0 أـ حدد الحل العام للمعادلة التفاضلية $oldsymbol{0}$ g'(0)=2 و g(0)=1 : تحقق g(0)=1 و حدد دالة g

$$\int_1^e rac{1}{t(1+2\ln(t))} \ dt$$
 , $\int_1^e rac{2}{1-e^x} \ dt$, $\int_0^1 xe^{x^2-1} \ dt$: أحسب التكاملات التالية

$$\int_0^{\ln(2)} xe^{2x} \ dx$$
 , $\int_{\frac{1}{2}}^1 (2x+1) \ln(x) \ dx$: باستعمال المكاملة بالأجزاء أحسب التكاملين $m{\Theta}$

$$\int_{rac{1}{5}}^{1}rac{x^{2}}{4-x^{2}}\;dx=-rac{1}{2}+\ln(rac{9}{5})$$
 أـ تحقق أن $orall x = -rac{1}{2}+\ln(rac{9}{5})$ ثم إستنتج أن $orall x \in \mathbb{R}-\{-2;2\}\;;\;rac{x^{2}}{4-x^{2}}=-1+rac{1}{2+x}+rac{1}{2-x}$ أـ تحقق أن

$$\int_{rac{1}{2}}^{1} \ln(4-x^2) \; dx$$
: باستعمال المكاملة بالأجزاء أحسب التكامل

التمرين الثاني

$$(S): x^2 + y^2 + z^2 - 6x - 4y - 8z = 0$$
 : نعتبرالفلكة (S) التي معادلتها

$$(D): egin{cases} x+2z-22=0 \\ y-z+4=0 \end{cases}$$
 والمستقيم $(P): 3x+2y+4z=0:$

- . $\sqrt{29}$ بين ان مركز الفلكة (S)هى النقطة $\Omega(3;2;4)$ وشعاعها ${f 0}$
 - (S) أ) بين ان المستوى (P) مماس للفلكة (S)
- (S) با دد مثلوث احداثيات K نقطة تماس المستوى (P) و الفلكة (P)
 - \bullet أ \bullet حدد تمثيلا بارامترى للمستقيم (D).
- ب) بين ان المستقيم (D) يقطع الفلكة (S) في نقطة E مع تحديد إحداثياتها.
 - (D) أدرس تقاطع المستوى (P) والمستقيم \bullet
 - (P) لتكن M المسقط العمودي للنقطة N(0;1;-1) على المستوى Φ
 - $N \notin (P)$: أيتحقق أن
 - MN أحسب المسافة
 - M جدد إحداثيات

التمرين الثالث

$$f(x)=rac{x}{4}-rac{1}{2x}+rac{\ln(x)}{x}$$
 : ينعتبر الدالة العددية f المعرفة على $0;+\infty[$ بما يلي $|\overrightarrow{i}|=2cm$: يكن (C_f) منحنى الدالة f في معلم. م. م (C_f) حيث (C_f)

- $(\Delta):y=rac{x}{4}$ أدرس الوضع النسبي ل (C_f) أدرس الوضع النسبي ال
 - $\int_{-\pi}^{e} \frac{\ln(x)}{x} dx$: أحسب التكامل Θ
- x=e و $x=\sqrt{e}$ والمستقيمين (Δ) والمستقيم و (C_f) والمستقيمين X=e
- مساحة الحيز المحصور بين المنحنى (C_f) ومحور الأفاصيل والمستقيمين x=e و $x=\sqrt{e}$ نقبل أن $oldsymbol{0}$ $. (\forall x \in [\sqrt{e}; e]; f(x) \ge 0$

