Accès Multiple Avancé: OFDMA versus SC-FDMA Couche PHY LTE

C. Poulliat

25 novembre 2020

1/58

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

- OFDM et SC-FDE
- Accès multiple par répartition en fréquence
- Spectral Shaping
- Egalisation et analyse

Accès multiples par Répartition en fréquences : OFDMA et SC-FDMA

OFDM: principe de base

Orthogonal Frequency Division Multiplexing

- Introduit pour traiter efficacement les interférences entre symboles pour les canaux fortement dispersifs,
- Principe: transformer un canal large bande en un certains nombre de canaux bande étroite de largeur plus petite que la bande de cohérence du canal.
 - ⇒ flat fading sur chaque canal

Accès multiples par Répartition en fréquences :OFDMA et SC-FDMA

OFDM: principe du préfixe cyclique

6/58

OFDM

OFDMA et SC-FDMA

OFDM: structure émetteur-récepteur en mono-utilisateur

Intervales de garde ⇒ pas d'IES inter-symboles OFDM

Préfixe cyclique : rendre la convolution avec le canal circulaire

Ajout Préfixe cyclique : plus IES intra symbole OFDM

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

Egalisation Monoporteuse dans le domaine fréquentiel : SC-FDE vs OFDM

^{*} CP: Cyclic Prefix, PS: Pulse Shaping

SC-FDE vs OFDM: récepteurs

SC-FDE vs OFDM : interprétation dans le plan temps-fréquence

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA

Accès Multiple Par Répartition en Fréquence

Principe générale

 chaque utilisateur se voit assigner une fréquence ou bande de fréquences (généralement contigues) pour la durée de sa communication,

Principe générale du FDMA

- - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA

Accès Multiple Par Répartition en Fréquence **Avantages**

- Généralement, moins de traitement de signal requis (communications bandes étroites).
- synchronisation temporelle facilité

Désavantages

- sensibilité au fading fréquentiel (pas de diversité fréquentielle),
- interférence des canaux adjacents (en part. VM), produits d'intermodulation (BS).
- nécessité éventuelle d'intervalle fréquentiel de garde

Type de systèmes utilisant le FDMA

- systèmes de communications analogiques,
- en combinaison avec d'autres méthodes d'accès (ex : GSM),
- systèmes à forts débits

16/58

OFDM-FDMA

- On assigne différentes sous-porteuses à chaque utilisateurs,
- La façon d'allouer varie suivant la stratégie d'optimisation mise en oeuvre :
 - Localized FDMA/ Block FDMA (LFDMA): les sous-porteuses sont attribuées par sous-blocs,
 Interloqued FDMA (LFDMA): les sous porteuses cent attribuées de manière
 - Interleaved FDMA (IFDMA): les sous-porteuses sont attribuées de manière entrelacée,
- Allocation dynamique des porteuses possible pour gain en diversité en utilisant des algorithmes de scheduling

25 novembre 2020

Accès multiples basés OFDM

OFDM-TDMA

- Les utilisateurs sont slottés,
- Un utilisateur utilise toute la bande pendant un ou plusieurs symboles OFDM puis attend à nouveau son tour,
- Approprié pour des applications à débits constants,
- Allocation TDMA Statique : Round Robin scheduling

Accès multiples par Répartition en fréquences : OFDMA et SC-FDMA

OFDMA

- Combinaison d'un accès FDMA et TDMA,
- On alloue un "pavé" temps-fréquence (slice, resource grids): N_{mc} sous porteuses sur N_s symboles OFDM consécutifs,
- Différents types d'allocation :
 - distribuée (distributed/comb/diversity allocation), type IFDMA,
 - localisée (localized/block/grouped/band AMC cluster), type LFDMA.
- utilisé pour WIMAX et 3GPP-LTE liaison descendante

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

SC-FDMA: principe générale

"Single Carrier": Sequential transmission of the symbols over a single frequency carrier.

"FDMA": User multiplexing in the frequency domain.

*M, N: number of data symbols

SC-FDMA: architecture récepteur

Comparaison OFDMA vs SC-FDMA: structure

SC-FDMA: allocation de sous porteuses

SC-FDMA: allocation de sous-porteuses

C. Poulliat

SC-FDMA: cas multi-utilisateurs - émetteurs

SC-FDMA : cas multi-utilisateurs - récepteurs

Dynamique des signaux : SC-FDMA vs OFDMA

$$PAPR = \frac{|s(t)|^2}{\mathbb{E}(|s(t)|^2)}$$

PAPR pour OFDM avec 16 canaux 🗇 🔭 📳 👢 🔊 🤄

29/58

PAPR pour SC-FDMA localisé M = 64, N = 512

PAPR pour SC-FDMAs

PAPR pour SC-FDMAs

SC-FDMA vs OFDMA

SC-FDMA vs OFDMA

SC-FDMA:

- PAPR faible,
- Moins sensible aux offsets de fréquence,
- Robustesse face aux évanoussements fréquentiels,
- bit-loading non possible,

OFDMA:

- PAPR plus important,
- Plus sensible aux offsets de fréquence,
- Sensible face aux évanouissements fréquentiels,
- bit-loading possible
- ⇒ SC-FDMA plus adapté pour la liaison montante

Spectral Shaping

Spectral shaping

SC-FDMA shaping

Spectral shaping

SC-FDMA shaping

37/58

Spectral shaping

SC-FDMA shaping

Spectral shaping

SC-FDMA shaping

SC-FDMA shaping :

- Pas implémenté finalement sur le standard actuel,
- Utilisé dans le cadre du DVB-NGH sous l'accronyme SC-OFDM (),
- Connu également sous le nom de Extented-Weighted SC-OFDM.

Plan

- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

Emetteur

Récepteur

Principales notations et définitions

TFD:

$$X[k] = TFD(x[n]) = \sum_{n=0}^{N-1} x[n]e^{-i\frac{2\pi}{N}kn}, \ \forall k = 1: N-1$$

TFD inverse :

$$x[n] = TFD^{-1}(x[n]) = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+i\frac{2\pi}{N}nk}, \ \forall k = 1 : N-1$$

Convolution circulaire :

TD:
$$y[n] \triangleq h \circledast x[n]$$

= $\sum_{m=0}^{N-1} x[m]h[< n - m>_N], \ \forall n = 0: N-1$
FD: $Y[k] = H[k]X[k], \ \forall k = 0: N-1$

Plan

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

Modèle du signal en réception

Domaine fréquentiel :

$$Y[k] = H[k]X[k] + B[k], \forall k = 1 : N - 1$$

$$Y_e[k] = W[k]Y[K]$$

= $W[k]H[k]X[k] + W[k]B[k], \forall k = 1: M-1$

Domaine temporel :

$$\hat{x}[n] = TFD^{-1}(Y_e[k]), \ \forall n = 1 : M - 1$$

$$= \underbrace{\tilde{w} \circledast x[n]}_{\text{signal utile}} + \underbrace{w \circledast x[n]}_{\text{bruit filtre}} = \underbrace{x_u[n] + x_i[n]}_{\hat{x}_t[n]} + \hat{b}[n]$$

$$\stackrel{+}{\text{interference}}_{\text{entre symbole}}$$
(1)

avec
$$\tilde{w} = TFD^{-1}(\tilde{W}[k]) = TFD^{-1}(W[k]H[k])$$

Puissance de bruit 1/3

Domaine temporel :

$$\hat{b}[n] = TFD^{-1}(W[k]B[k]), \forall n = 1: M-1$$
 (2)

$$= \frac{1}{M} \sum_{k=0}^{M-1} W[k]B[k]e^{-i\frac{2\pi}{M}nk}$$
 (3)

Variance du bruit, cas générale :

$$\sigma_{\hat{b}}^2 \triangleq \mathbb{E}(|\hat{b}[n]|^2)$$

$$= \frac{\sigma_B^2}{M} \times \frac{1}{M} \sum_{k=0}^{M-1} |W[k]|^2$$

$$= \sigma_{\tilde{b}_M}^2 \sum_{n=0}^{M-1} |w[n]|^2$$

avec $\tilde{b}_M[n] = TFD^{-1}(B[k])$ et $w[n] = TFD^{-1}(W[k])$

Puissance de bruit 2/3

Cas MMSE

$$W[k] = \frac{\gamma H[k]^*}{\gamma |H[k]|^2 + 1} \tag{4}$$

$$\gamma = \frac{\sigma_X^2}{\sigma_B^2} \tag{5}$$

$$\gamma_k = |H[k]|^2 \gamma \tag{6}$$

$$\sigma_{\hat{b}}^2 = \frac{\sigma_B^2}{M^2} \sum_{k=0}^{M-1} \frac{\gamma^2 |H[k]|^2}{(\gamma |H[k]|^2 + 1)^2}$$
 (7)

Puissance de bruit 3/3

Cas ZF:

$$W[k] = \frac{\gamma H[k]^*}{\gamma |H[k]|^2} \tag{8}$$

$$\sigma_{\hat{b}}^2 = \frac{\sigma_B^2}{M^2} \sum_{k=0}^{M-1} \frac{1}{\gamma |H[k]|^2}$$
 (9)

48/58

Puissance terme utile

Signal utile en sortie de IDFT :

$$\hat{x}_{u}[n] = \tilde{w}[0]x[n] = x[n] \frac{1}{M} \sum_{k=0}^{M-1} W[k]H[k]$$
 (10)

Variance de x̂_u[n] :

$$\sigma_{x_u}^2 = \sigma_x^2 \left| \frac{1}{M} \sum_{k=0}^{M-1} W[k] H[k] \right|^2$$
 (11)

Puissance terme interférence entre symbole

• Variance de $\hat{x}_i[n]$:

$$\sigma_{X_i}^2 = \sigma_{X_t}^2 - \sigma_{X_u}^2 \tag{12}$$

$$\sigma_{x_t}^2 = \sigma_x^2 \sum_{m=0}^{M-1} |\tilde{w}[< n - m>_M]|^2$$

$$= \sigma_x^2 \frac{1}{M} \sum_{k=0}^{M-1} |\tilde{W}[k]|^2$$

$$= \sigma_x^2 \frac{1}{M} \sum_{k=0}^{M-1} |W[k]H[k]|^2$$

Rapport signal à bruit en sortie de DFT

Cas général :

SNR =
$$\frac{\sigma_{\chi_{u}}^{2}}{\sigma_{\chi_{t}}^{2} - \sigma_{\chi_{u}}^{2} + \sigma_{\hat{b}}^{2}}$$

$$= \frac{|\alpha|^{2}}{\frac{1}{M} \sum_{k=0}^{M-1} (|H[k]|^{2} + \gamma^{-1})|W[k]|^{2} - |\alpha|^{2}}$$
(13)

$$\alpha = \frac{1}{M} \sum_{k=0}^{M-1} W[k]H[k]$$

Rapport signal à bruit en sortie de DFT

Cas MMSE :

$$SNR = \frac{\beta}{1 - \beta} \tag{14}$$

avec

$$\beta = \frac{1}{M} \sum_{k=0}^{M-1} \frac{\gamma_k}{\gamma_k + 1}$$

Cas ZF :

$$SNR = \frac{1}{\beta} \tag{15}$$

$$\beta = \frac{1}{M} \sum_{k=0}^{M-1} \frac{1}{\gamma_k}$$

Plan

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

Modèle du signal en réception

Modèle domaine fréquentiel

• Domaine fréquentiel sans combinaison :

$$Y_e[k] = W_0[k]Y[k]$$

= $W_0[k]\tilde{H}[k]X[k] + W_0[k]B[k], \ \forall k \in I_1$

Domaine fréquenciel avec combinaison :

$$Y_{e}[k] = W_{1}[k]Y_{1}[k] + W_{2}[k]Y_{2}[k], \ \forall k \in I_{2}$$
$$= (W_{1}[k]\tilde{H}_{1}[k] + W_{2}[k]\tilde{H}_{2}[k])X[k] + W_{1}[k]B_{1}[k] + W_{2}[k]B_{2}[k]$$

avec $\tilde{H}[k]$ canal en réception + weighting

Modèle du signal en réception

Modèle équivalent

$$Y_{e}[k] = \begin{cases} \tilde{W}[k]X[k] + W_{0}[k]B[k] &, \forall k \in I_{1} \\ \tilde{W}[k]X[k] + W_{1}[k]B_{1}[k] + W_{2}[k]B_{2}[k] &, \forall k \in I_{2} \end{cases}$$

$$\tilde{W}[k] = \begin{cases} W[k]\tilde{H}[k] &, \forall k \in I_1 \\ W_1[k]\tilde{H}_1[k] + W_2[k]\tilde{H}_2[k] &, \forall k \in I_2 \end{cases}$$

Rapport signal à bruit en sortie de DFT

Cas général :

$$SNR = \frac{|\alpha|^2}{\frac{1}{M} \sum_{k=0}^{M-1} (|\tilde{W}[k]|^2 + \gamma^{-1} |W[k]|^2) - |\alpha|^2}$$
(16)

avec

$$\alpha = \frac{1}{M} \sum_{k=0}^{M-1} \tilde{W}[k]$$

et

$$|W[k]|^2 = \begin{cases} |W_0[k]|^2 & , \forall k \in I_1 \\ |W_1[k]|^2 + |W_2[k]|^2 & , \forall k \in I_2 \end{cases}$$

⇒ valable pour tout type de combinaison

56/58

Plan

- OFDM et SC-FDE
 - OFDM
 - Egalisation dans le domaine fréquenciel
- Accès multiple par répartition en fréquence
 - FDMA : principe générale
 - OFDM-A
 - SC-FDMA
- Spectral Shaping
- Egalisation et analyse
 - Modélisation SC-FDMA
 - Modélisation EW-SC-FDMA
 - Références

Bibliographie

- [SESIA11] S Sesia et al., LTE The UMTS Long Term Evolution, Wiley, 2011.
- [KHAN09] F. KHAN, LTE for 4G Mobile Broadband Air Interface Technologies and Performance, Cambridge University Press, 2009.
- [3GPP1] 3GPP R1-051335, "Simulation Methodology of IFDMA and DFT DFT-Spread-OFDMA," Nov. 2005.
- [3*GPP*2] 3GPP R1-051352, "Simulation methodology for EUTRA uplink: SC-FDMA and OFDMA," Nov. 2005.

58/58