EDA Project house sells data

Diving into data:)

Content

- Quick overview
 - Pairplot
 - Histplot
 - Corrplot
- Questioning
- Linear Regression

King County Data Set

* **id**

* **dateDate**

* **pricePrice**

* **bedroomsNumber**

* **bathroomsNumber**

* **sqft_livingsquare**

* **sqft_lotsquare**

* **floorsTotal**

* **waterfront**

* **view**

* **condition**

* **grade**

- unique identified for a house

- house was sold

- is prediction target

- # of bedrooms

- # of bathrooms

- footage of the home

- footage of the lot

- floors (levels) in house

- House which has a view to a waterfront

- Has been viewed

- How good the condition is (Overall)

 overall grade given to the housing unit, based on King County grading system

King County Data Set

*	**S0	ıft	abc)Ve**
---	------	-----	-----	-------

- square footage of house apart from basement

* **sqft basement**

- square footage of the basement

* **vr built**

- Built Year

* **yr renovated**

- Year when house was renovated

* **zipcode**

- zip

* **lat**

- Latitude coordinate

* **long**

- Longitude coordinate

* **sqft_living15**

- The square footage of interior housing living space for the nearest 15 neighbors

* **sqft lot15**

The square footage of the land lots of the nearest 15 neighbors

Corrplot of the numerical data

King County Data Set

Pairplot of the numerical data

Histplot of the numerical data

Corrplot of the numerical data

Questions

- Is condition or grade better to estimate the price?
- What is the best time to buy or sell a house?
- Is a house with a waterfront more expensive than others?
- Does the house size effect the price?
- Do the neighbours effect the house price?

Is condition or grade better to estimate the price?

What is the best time to buy or sell a house?

What is the best time to buy or sell a house?

Is a house with a waterfront more expensive than others?

Does the house size effect the price?

Does the house size effect the price?

Do the neighbours effect the house price?

Do the neighbours effect the house price?

Linear Regression with statsmodels.formula.api

- R-squared: 0.493
- price ~ sqft_living

Multi Linear Regression with statsmodels.formula.api

• R-squared: 0.854

Adj. R-squared: 0.847

Code:

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import stats
import seaborn as sns

import statsmodels.formula.api as smf
import pathlib

from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import accuracy_score
from sklearn import linear_model
from sklearn.model_selection import train_test_split
import pickle
```

```
data = pd.read csv('kc house prices/King County House prices dataset.csv')
data['sqft basement num'] = pd.to numeric(data[data['sqft basement']!
='?'].sqft_basement)
data.head()
data = data.replace([np.inf, -np.inf], np.nan)
data.dropna(inplace=True)
Y = data['price']
X = data[['price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot',
       'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above',
       'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
       'sqft living15', 'sqft lot15', 'sqft basement num']]
X = pd.get dummies(data=X, drop first=True)
X train, X test, Y_train, Y_test = train_test_split(X, Y, test_size = .20,
random state = 42)
```

```
# save the model to disk
filename = 'finalized_model.sav'
pickle.dump(my_model, open(filename, 'wb'))

print('\n some time later...')

# load the model from disk
loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.score(X_test, Y_test)
print(result)
```

Y test pred = f(X test) vs Y test

To improve

- Renovation via price
- Model
 - Refine the linear model
 - Cut outliners
 - Normalize the data set
 - Compare linear model to other models
- Map Gps points
- Convert to "normale" units Sqrf to sqrm:)
- Create use case for customers
 - I like to have/sell that house with these properties and I want to have ...