1 分位数Granger因果检验实现原理

1.1 各变量含义

待估计方程:

$$Q_{Y_t}\left[au|Z_{t-1}
ight] = a(au) + Y'_{t-1,p}lpha(au) + X'_{t-1,q}eta(au) = Z'_{t-1} heta(au)$$

其中, $a(\tau)$ 为截距项, $\alpha(\tau)$ 和 $\beta(\tau)$ 为回归系数列向量; $\theta(\tau)$ 为回归系数向量,

$$a(au) = [alpha(au), lpha(au)', eta(au)']'$$
 $Y'_{t-1,p} = (Y_{t-1}, \cdots, Y_{t-p})$
 $X'_{t-1,q} = (X_{t-1}, \cdots, X_{t-q})$
 $Z'_{t-1} = \left(Y'_{t-1,p}, X'_{t-1,q}\right)$

Wald检验量为: $W_T(au)=Trac{\hat{eta}(au)'\hat{\Sigma}(au)^{-1}\hat{eta}(au)}{ au(1- au)}$

Sup-Wald检验量为: $\sup W_T = \sup_{i=1,\cdots,n} W_{T(au_i)}$

Python在进行分位数回归时,方差默认为核估计

1.2 分位数方差核密度估计原理(基于Eviews帮助文件)

独立但不同分布假设下的参数渐近分布:

当分位数密度函数独立但不同分布即与解释变量X相关时, $\sqrt{T}(\hat{\beta}(\tau)-\beta(\tau))$ 的渐近分布服从Huber sandwich形式:

$$\sqrt{T}\left(\hat{eta}_{(au)}-eta_{(au)}
ight){\sim}N\left(0, au(1- au)H(au)^{-1}JH(au)^{-1}
ight)$$

其中T为样本容量, τ 为分位点, $\hat{\beta}_{(\tau)}$ 为 τ 分位点下回归系数估计量,N为正态分布, X_i 为解释变量矩阵;

$$J = \lim_{n o \infty} \left(\sum_i rac{X_i X_i'}{T}
ight) = \lim_{n o \infty} \left(rac{XX}{T}
ight)$$

$$H(au) = \lim_{T o \infty} \left(\sum_i X_i X_i' f_i \left(q_i(au)
ight) / T
ight)$$

 $f_i(q_i(\tau))$ 是个体i在 τ 分位点上的条件密度函数。使用核密度进行估计:

$$\hat{H}(au) = (1/T) \sum_{i=1}^T c_T^{-1} K\left(\hat{u}_{(au)t}/c_T
ight) X_i X_i'$$

其中 $\hat{U}_{(\tau)i}$ 表示分位数回归的残差; c_T 为带宽,估计原理见下文;表示 κ 核密度函数。EViews中可以选择的核密度函数有Epanechnikov核函数(默认)、均匀 (Uniform) 核函数、三角(Triangular)核函数、二权(Biweight)核函数、三权(Triweight)核函数、正态(Normal)核函数、余弦(Cosinus)核函数,具体函数形式见图。

表 27.1 常用的核函数

核函数名称	核函数的数学形式	δ
均匀核(uniform or rectangular)	$\frac{1}{2} \cdot 1(z <1)$	1. 351 0
三角核(triangular or Bartlett)	$(1- z)\cdot 1(z <1)$	39 7.3 ,9
伊番科尼可夫核(Epanechnikov) ^① 或二次核(quadratic)	$\frac{3}{4}(1-z^2)\cdot1(\mid z\mid <1)$	1.718 8
四次核(quartic) 或双权核(biweight)	$\frac{15}{16}(1-z^2)^2 \cdot 1(z <1)$	2. 036 2
三权核(Triweight)	$\frac{35}{32}(1-z^2)^3 \cdot 1(z <1)$	2. 312 2
三三核(Tricubic)	$\frac{70}{81}(1- z ^3)^3 \cdot 1(z <1)$	大的遊客而貨
高斯核(Gaussian or Normal)	$\frac{1}{\sqrt{2\pi}}\exp\{-z^2/2\}$	0. 776 4

注:其中δ为用来计算"Silverman 嵌入估计"的常数,参见下文。

El 27.1 _WK (Epancellinkov

 c_T 的估计原理: $c_T = \kappa \left(\Phi^{-1} \left(au + h_n
ight) - \Phi^{-1} \left(au - h_n
ight)
ight)$

其中 $\kappa=\min(s,IQR/1.34)$,IQR为四分位距, $IQR=Q_3-Q_1$;s为残差的标准差; h_n 是Siddiqui带宽,

$$h_n = T^{-1/3} Z_lpha^{2/3} \left(rac{1.5ig(arphi \left(\Phi^{-1}(au)
ight)ig)^2}{2ig(\Phi^{-1}(au))^2+1}
ight)^{1/3}$$

 Φ 表示正态分布的积累分布函数, Φ^{-1} 表示正态分布的逆函数, φ 表示正态分布的密度函数, $Z_{\alpha}=\Phi^{-1}(1-\alpha/2)$ 为选择的显著性水平 α 对应的Z值。

文中只列出一种方差的估计原理,更多内容详见Eviews 8帮助文件