

Kaj se dogaja z molekulami med kuhanjem?

Ko dovajamo energijo, dvigujemo temperaturo in posledično spreminjamo

- strukture molekul
- porazdelitev molekul

V čem se razlikujejo stanja?

↑ entropija

↓ energija

Kam se razvijajo stanja?

Določa prosta energija (G):

$$G = E - TS$$

$$G = E - k_B T \ln(P)$$

Proti ravnovesju:

$$\Delta G < 0$$

G ... prosta energija

E ... energija (entalpija)

T ... absolutna temperature

S ... entropija

P ... število stanj sistema

 k_B ... Botzmannova konstanta (1,38 x 10⁻²³ J/K = 8,6 x 10⁻⁵ eV/K)

Tudi v ravnovesju ni vse enako

 Molekule so lahko v različnih stanjih z enako prosto energijo:

$$G_1 = G_2$$

 $E_1 - TS_1 = E_2 - TS_2$

Porazdelitev verjetnosti stanj p_i
 (Boltzmannov faktor):

$$p_i \propto e^{-E_i/kT}$$

• Razmerje verjetnosti:

$$\frac{p_1}{p_2} = e^{-\Delta E/kT}$$

Življenjski čas molekularnih struktur

• Razmerje verjetnosti stanj = razmerje življenjskih časov (τ):

$$\frac{p_1}{p_2} = \frac{\tau_1}{\tau_2} = e^{-\Delta E/kT}$$

- Primeri:
 - H- in kovalentna vez
 - sekundarna struktura proteinov

vsaka dodatna H-vez podaljša življenjski čas strukture za ~55x!

Temperatura spreminja porazdelitev stanj

izločanje maščobe iz juhe pri ohlajanju

raztapljanje sladkorja pri kuhanju marmelade

$$\frac{p_1}{p_2} = \frac{\tau_1}{\tau_2} = e^{-\Delta E/kT}$$

Stacionarno stanje NI ravnovesje

System at Equilibrium

System with Lower Entropy (in violation of the Second Law)

↑ entropija

↓ energija

Kako hitro pridemo iz enega stanja v drugo?

• Hitrost spremembe (npr. reakcije, k_R) je odvisna od verjetnosti vmesnega stanja (*Arrheniusova relacija*)

$$k_R = A e^{-E_A/kT}$$

E_A ... aktivacijska energija

$$\ln(k_R) = \ln(A) - \frac{E_A}{k} \frac{1}{T}$$

 Celo v kompleksnih bioloških kaskadah reakcij hitrost navadno določa ena od reakcij

Kako se molekule "prepoznajo"?

• Primeri:

- Receptor-ligand
- Encim—substrat
- Protitelo—antigen
- Transkripcijski faktor–DNA
- Ionski kanali
- Bazni pari DNA
- •

• Konformacija interakcijskih motivov na pravem mestu in v pravi smeri

Specifičnost ionskega kanala

