MAQAGRTGYDNREIVMKYIHYKLSQRGYEWDVGDVDAAPLG
AAPTPGIFSFQPESNPTPAVHRDMAARTSPLRPIVATTGPT
LSPVPPVVHLTLRRAGDDFSRRYRRDFAEMSSQLHLTPFTA
RGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMS
PLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSVRP
LFDFSWLSLKTLLSLALVGACITLGTYLGHK (SEQ
ID NO: 1)

FIG. 1

MAQAGRTGYDNREIVMKYIHYKLSQRGYEWDVGDVDAAAAA
ASPVPPVVHLTLRRAGDDFSRRYRRDFAEMSSQLHLTPFTA
RGRFATVVEELFRDGVNWGRIVAFFEFGGVMCVESVNREMS
PLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSVRP
LFDFSWLSLKTLLSLALVGACITLGTYLGHK (SEQ
ID NO: 2)

FIG. 2

1 ATGGCTCAAG CTGGGAGAAC AGGGTATGAT AACCGAGAGA TCGTGATGAA
51 GTACATCCAT TATAAGCTGT CACAGAGGGG CTACGAGTGG GATGTGGGAG
101 ATGTGGACGC CGCGGCCGCG GCCGCGAGCC CCGTGCCACC TGTGGTCCAC
151 CTGACCCTCC GCCGGGCTGG GGATGACTTC TCCCGTCGCT ACCGTCGCA
201 CTTCGCGGAG ATGTCCAGTC AGCTGCACCT GACGCCCTTC ACCGCGAGGG
251 GACGCTTTGC TACGGTGGTG GAGGAACTCT TCAGGGATGG GGTGAACTGG
301 GGGAGGATTG TGGCCTTCTT TGAGTTCGGT GGGGTCATGT GTGTGGAGAG
351 CGTCAACAGG GAGATGTCAC CCCTGGTGGA CAACATCGCC CTGTGGATGA
401 CCGAGTACCT GAACCGGCAT CTGCACACCT GGATCCAGGA TAACGGAGGC
451 TGGGACGCAT TTGTGGAACT GTACGGCCCC AGTGTGAGGC CTCTGTTTGA
501 TTTCTCTTGG CTGTCTCTGA AGACCCTGCT CAGCCTGGCC CTGGTCGGGG
551 CCTGCATCAC TCTGGGTACC TACCTGGGCC ACAAGTGA (SEQ ID NO: 3)

FIG. 3

MRHIICHGGVITEEMAASLLDQLIEEVLADNLPPPSHFE
PPTLHELHDLDVTAPEDPNEEAVSQIFPDSVMLAVQEGI
DLLTFPPAPGSPEPPHLSRQPEQPEQRALGPVSMPNLVP
EVIDLTGHEAGFPPSDDEDEEGEEFVLDYVEHPGHGCR
SCHYHRRNTGDPDIMCSLCYMRTCGMFVYSPVSEPEPE
PEPEPARPTRRPKMAPAILRRPTSPVSRECNSSTDSCD
SGPSNTPPEIHPVVPLCPIKPVAVRVGGRRQAVECIEDL
LNEPGQPLDLSCKRPRP (SEQ ID NO: 4)

FIG. 4

1 ATGAGACATA TTATCTGCCA CGGAGGTGTT ATTACCGAAG AAATGGCCGC 51 CAGTCTTTTG GACCAGCTGA TCGAAGAGGT ACTGGCTGAT AATCTTCCAC 101 CTCCTAGCCA TTTTGAACCA CCTACCCTTC ACGAACTGCA TGATTTAGAC 151 GTGACGGCCC CCGAAGATCC CAACGAGGAG GCGGTTTCGC AGATTTTTCC 201 CGACTCTGTA ATGTTGGCGG TGCAGGAAGG GATTGACTTA CTCACTTTTC 251 CGCCGGCGCC CGGTTCTCCG GAGCCGCCTC ACCTTTCCCG GCAGCCCGAG 301 CAGCCGGAGC AGAGAGCCTT GGGTCCGGTT TCTATGCCAA ACCTTGTACC 351 GGAGGTGATC GATCTTACCG GCCACGAGGC TGGCTTTCCA CCCAGTGACG 401 ACGAGGATGA AGAGGGTGAG GAGTTTGTGT TAGATTATGT GGAGCACCCC 451 GGGCACGGTT GCAGGTCTTG TCATTATCAC CGGAGGAATA CGGGGGACCC 501 AGATATTATG TGTTCGCTTT GCTATATGAG GACCTGTGGC ATGTTTGTCT 551 ACAGTAAGTG AAAATTATGG GCAGTGGGTG ATAGAGTGGT GGGTTTGGTG 601 TGGTAATTTT TTTTTTAATT TTTACAGTTT TGTGGTTTAA AGAATTTTGT 651 ATTGTGATTT TTTTAAAAGG TCCTGTGTCT GAACCTGAGC CTGAGCCCGA 701 GCCAGAACCG GAGCCTGCAA GACCTACCCG CCGTCCTAAA ATGGCGCCTG 751 CTATCCTGAG ACGCCCGACA TCACCTGTGT CTAGAGAATG CAATAGTAGT 801 ACGGATAGCT GTGACTCCGG TCCTTCTAAC ACACCTCCTG AGATACACCC 851 GGTGGTCCCG CTGTGCCCCA TTAAACCAGT TGCCGTGAGA GTTGGTGGGC 901 GTCGCCAGGC TGTGGAATGT ATCGAGGACT TGCTTAACGA GCCTGGGCAA 951 CCTTTGGACT TGAGCTGTAA ACGCCCCAGG CCATAA (SEQ ID NO: 5)

FIG. 5

1 GAATTCGCCG CCACCATGGA GGCTTGGGAG TGTTTGGAAG ATTTTCTGC
51 TGTGCGTAAC TTGCTGGAAC AGAGCTCTAA CAGTACCTCT TGGTTTTGGA
101 GGTTTCTGTG GGGCTCATCC CAGGCAAAGT TAGTCTGCAG AATTAAGGAG
151 GATTACAAGT GGGAATTTGA AGAGCTTTTG AAATCCTGTG GTGAGCTGTT
201 TGATTCTTTG AATCTGGGTC ACCAGGCGCT TTTCCAAGAG AAGGTCATCA
251 AGACTTTGGA TTTTTCCACA CCGGGGCGCG CTGCGGCTGC TGTTGCTTTT
301 TTGAGTTTTA TAAAGGATAA ATGGAGCGAA GAAACCCATC TGAGCGGGGG
351 GTACCTGCTG GATTTTCTGG CCATGCATCT GTGGAGAGCG GTTGTGAGAC
401 ACAAGAATCG CCTGCTACTG TTGTCTTCCG TCCGCCCGGC GATAATACCG
451 ACGGAGGAGC AGCAGCAGCA GCAGGAGGAA GCCAGGCGGC GGCGGCAGGA
501 GCAGAGCCCA TGGAACCCGA GAGCCGGCCT GGACCCTCGG GAATGAATGT
551 TGGTCGAC (SEQ ID NO: 15)

FIG. 6

SalI

1	GTCGACGCCG	CCACCATGCC		GCCCAAAACC			CCCCGAAAAA				CGGCCGCCAC			
		M	P	P	K	T	P	R	K	Т	A	A	Т	

- 51 CGCCGCCGCT GCCGCCGCG AACCCCCGGC ACCGCCGCCG CCGCCCCCTC
 A A A A A A B P P A P P P P P P P
- 101 CTGAGGAGGA CCCAGAGCAG GACAGCGGCC CGGAGGACCT GCCTCTCGTC E E D P E O D S G P E D L P L V
- 151 AGGCTTGAGT TTGAAGAAAC AGAAGAACCT GATTTTACTG CATTATGTCA R L E F E E T E E P D F T A L C Q
- 201 GAAATTAAAG ATACCAGATC ATGTCAGAGA GAGAGCTTGG TTAACTTGGG
 K L K I P D H V R E R A W L T W E
- 251 AGAAAGTTTC ATCTGTGGAT GGAGTATTGG GAGGTTATAT TCAAAAGAAA K V S S V D G V L G G Y I Q K K
- 301 AAGGAACTGT GGGGAATCTG TATCTTTATT GCACGAGTTG ACCTAGATGA
 K E L W G I C I F I A R V D L D E
- 351 GATGTCGTTC ACTTTACTGA GCTACAGAAA AACATACGAA ATCAGTGTCC M S F T L L S Y R K T Y E I S V H
- 401 ATAAATTCTT TAACTTACTA AAAGAAATTG ATACCAGTAC CAAAGTTGAT
 K F F N L L K E I D T S T K V D
- 451 AATGCTATGT CAAGACTGTT GAAGAAGTAT GATGTATTGT TTGCACTCTT
 N A M S R L L K K Y D V L F A L F
- 501 CAGCAAATTG GAAAGGACAT GTGAACTTAT ATATTTGACA CAACCCAGCA S K L E R T C E L I Y L T O P S S
- 551 GTTCGATATC TACTGAAATA AATTCTGCAT TGGTGCTAAA AGTTTCTTGG S I S T E I N S A L V L K V S W
- 601 ATCACATTTT TATTAGCTAA AGGGGAAGTA TTACAAATGG AAGATGATCT I T F L L A K G E V L O M E D D L
- 651 GGTGATTCA TTTCAGTTAA TGCTATGTGT CCTTGACTAT TTTATTAAAC V I S F Q L M L C V L D Y F I K L

FIG. 7A

701	S P P	M L L	K E P Y		V I P
751		CACCTCGAAC P R T		GGTCAGAACA G Q N R	GGAGTGCACG S A R
801		CAACTAGAAA Q L E N		AATTATTGAA I I E	GTTCTCTGTA V L C K
851	AAGAACATGA E H E			AAAATGTTTA N V Y	
901	TTTATACCTT F I P F		TCTTGGACTT L G L	GTAACATCTA V T S N	ATGGACTTCC G L P
951	AGAGGTTGAA E V E	AATCTTTCTA N L S K		AGAAATTTAT E I Y	CTTAAAAATA L K N K
1001	AAGATCTAGA D L D			ATGATAAAAC D K T	
1051	GATTCTATAG D S I D		AACACAGAGA T Q R	ACACCACGAA T P R K	
1101	TGATGAAGAG D E E		TTCCTCCACA P P H	CACTCCAGTT T P V	AGGACTGTTA R T V M
1151	TGAACACTAT N T I	CCAACAATTA Q Q L	ATGATGATTT M M I L	TAAATTCTGC N S A	
1201	CCTTCAGAAA P S E N		CTATTTTAAC Y F N	AACTGCACAG N C T V	
				AGGATACATC G Y I	
1301				TCGAAATTGG E I G	
1351		GAGTTCGCTT V R L		GTAATGGAAT V M E S	

FIG. 7B

1401	ATCAGAAGAA	GAACGATTAT		TTTTAGCAAA	CTTCTGAATG
	SEE	ERLS	I Q N	F S K	L L N D
1451	ACAACATTTT N I F	TCATATGTCT H M S		GCGCTCTTGA A L E	GGTTGTAATG V V M
1501	GCCACATATA A T Y S		ATCTCAGAAT S Q N	CTTGATTCTG L D S G	
1551	GTCTTTCCCA S F P		ATGTGCTTAA V L N	TTTAAAAGCC L K A	TTTGATTTTT F D F Y
1601	ACAAAGTGAT K V I			AAGGCAACTT G N L	
1651	ATGATAAAAC M I K H		ATGTGAACAT C E H	CGAATCATGG R I M E	AATCCCTTGC S L A
1701	ATGGCTCTCA W L S		TATTTGATCT F D L	TATTAAACAA I K Q	TCAAAGGACC S K D R
1751				CTTGTCCTCT C P L	
1801	CTCCAGAATA L Q N N			TATCTTTCTC Y L S P	
1851	TCCAAAGAAA P K K		CTACGCGTGT T R V	AAATTCTACT N S T	GCAAATGCAG A N A E
1901	AGACACAAGC T Q A			AGAAGCCATT K P L	GAAATCTACC K S T
1951		TGTTTTATAA F Y K		CGGCTAGCCT R L A Y	ATCTCCGGCT L R L
2001	AAATACACTT N T L			GCACCCAGAA H P E	
				AGAATGAGTA	

FIG. 7C

2101	AGAGACAGGC R D R H		AATTATGATG I M M	TGTTCCATGT C S M Y	
2151				AATCATTGTA I I V	
2201		TCATGCTGTT H A V		TCAAACGTGT K R V	
2251				TATAACTCGG Y N S V	
2301	GAGACTGAAA R L K			TTCCACCAGG S T R	
2351				CTTACAAGTT Y K F	
2401				ATTTCACCCC I S P L	
2451		TCAGAAGGTC S E G L		AACAAAAATG T K M	ACTCCAAGAT T P R S
2501				TCGGGACTTC G T S	
2551	CAGAAAATAA Q K I N			GACCGTGTGC D R V L	
2601	TGCTGAAGGA A E G			GAAAAAACTA K K L	
2651				AACATCTCCC H L P	
2701				TCTACTCGAA S T R T	
2751				CTCAAACAAG S N K	

NotI

2801 GAGGATCTCA GGACCGGCGG CCGC

FIG. 7D

	EcoRI				
1	GAATTCGCCG	CCACCATGAC M T	CATGGACTCT M D S	GGAGCAGACA G A D N	ACCAGCAGAG Q Q S
51	TGGAGATGCA G D A	GCTGTAACAG A V T E	AAGCTGAAAA A E N	CCAACAAATG Q Q M	ACAGTTCAAG T V Q A
101	CCCAGCCACA Q P Q		TTAGCCCAGG L A Q V	TATCTATGCC S M P	AGCAGCTCAT A A H
151	GCAACATCAT A T S S		CGTAACTCTA V T L	GTACAGCTGC V Q L P	CCAATGGGCA N G Q
201				GGCCCAGCCA A Q P	
251		AGTCCAAACA V Q T		CAACTATTGC T I A	
301	GATTCACAGG D S Q E		TAGTGTAACT S V T	GATTCCCAAA D S Q K	AGCGAAGGGA R R E
351	AATTCTTTCA I L S	AGGAGGCCTT R R P S	CCT <u>T</u> CAGGAA F R K	AATTTTGAAT I L N	GACTTATCTT D L S S
401	CTGATGCACC D A P	AGGAGTGCCA G V P		AAGAGAAGTC E K S	
451	GCTTCAGCAC A S A P		CGCTGTAGCG A V A	GTGCCAACGC V P T P	
501	GACTAGCAGT T S S			CCAGAGAGGA Q R G	GCAATACAGC A I Q L
551				GCCTGCAAAC L Q T	
601				ACCATTCTAC T I L Q	
651	GACCACTGAT	GGACAGCAGA	TCTTAGTGCC	CAGCAACCAA	GTTGTTGTTC

FIG. 8A

T T D G Q Q I L V P S N Q V V V Q

701	AAGCTGCCTC			TGGAGACGTA		CAAACATACC			AGATTCGCAC			:AC	AGCACCCACT					
	Α	A	S	G	D	V	Q	Т	Y	Q	I	I	ર	T	A	P) [Γ
751	AGC	ACTA	ATTG	CCC	CTG	GAGT	TG	ΓΤΑ'	ГGG	CA	TCC	TC	CCC	'AG	CAG	CTT	CC.	ГАС
	S 7	[]	A	P	G	V	V	M	A		S	S	P	A]	_	P	Т
801	ACAC	GCC1	GCT	GAA	GAA(GCAG	CAC	CGA	AAG	AG	AGA	GG.	rcc	GT	CT	LA.	'GAZ	AGA
	Q	P	A	E	E A	A A	I	₹ :	K	R	E	V	R	2	L	M	K	N
851	ACAC	GGG <i>I</i>	AAGC	AGC	TCG:	rgag	TG:	rcg'	TAG	AΑ	AGA	AG	AAA	ιGΑ	ATA	ATG	TG	AAA
	R	Ε	Α	Α	R	E	С	R	R	K	K		K	E	Y	V	7]	K
901	TGTTTAGAAA		ACAGAGTGGC		AG.	rgc'	ΓTG	AA	AAT	'CA	\AA	CA	AG	ACA	TT	GAT		
	C I	. E	E N	R	V	A	V	L	Ε		N	Q	N	K		Г	L	Ι
951	TGA	GA(GCTA	AAA	GCA	CTTA	AG	GAC	CTT	ΤA	CTG	CCZ	ACA	AA	TC	AGA	TT	TAA
	\mathbf{E}	\mathbf{E}	\mathbf{L}	K	A 3	ĹΚ	I) :	L	Y	C	H	K	7	S	D	*	

SalI 1001 TTGGGTCGAC

FIG. 8B

Figure 9. Maps of KB5008, pGL3-Control, KB5029, and KB5032.

KB5008 carries a RSVLTR promoter and was used to clone E1a and CREB. pGL3-Control carries a SV40 promoter and was used to clone E1b-19K and Bcl2. KB5029 carries the double expression cassettes for E1a and E1b-19K. KB5032 carries the double expression cassettes for CREB and Bcl2.

aagettgeeg ceaceatgag acatattate tgeeaeggag gtgttattae HindIII M R H I I C H G G V I cgaagaaatg gccgccagtc ttttggacca gctgatcgaa gaggtactgg T E E M A A S L L D Q L I E E V L ctgataatct tccacctcct agccattttg aaccacctac ccttcacgaa A D N L P P P S H F E P P T L H E 101 ctgtatgatt tagacgtgac ggcccccgaa gatcccaacg aggaggcggt L \underline{Y} D L D V T A P E D P N E E A ttcgcagatt tttcccgact ctgtaatgtt ggcggtgcag gaagggattg V S Q I F P D S V M L A V O E G I 201 acttactcac ttttccgccg gcgcccggtt ctccggagcc gcctcacctt D L L T F P P A P G S P E P P H L 251 tcccggcagc ccgagcagcc ggagcagaga gccttgggtc cggtttctat S R Q P E Q P E Q R A L G P V S 301 gccaaacctt gtaccggagg tgatcgatct tacctgccac gaggctggct M P N L V P E V I D L T C H \cdot E A G 351 ttccacccag tgacgacgag gatgaagagg gtgaggagtt tgtgttagat F P P S D D E D E G E E F V L D 401 tatgtggagc accccgggca cggttgcagg tettgtcatt atcaccggag Y V E H P G H G C R S C H Y H Rgaatacgggg gacccagata ttatgtgttc gctttgctat atgaggacct R N T G D P D I M C S L C Y M R T gtggcatgtt tgtctacagt cctgtgtctg aacctgagcc tgagcccgag 551 ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa tggcgcctgc P E P A R P T R R P K M A P 601 tatcctgaga cgcccgacat cacctgtgtc tagagaatgc aatagtagta A I L R R P T S P V S R E C N S S cggatagctg tgactccggt ccttctaaca cacctcctga gatacacccg 701 gtggtcccgc tgtgccccat taaaccagtt gccgtgagag ttggtgggcg V V P L C P I K P V A V R V G Gtegecagget gtggaatgta tegaggaett gettaaegag eetgggeaae R R Q A V E C I E D L L N E P G Q 801 ctttggactt gagctgtaaa cgccccaggc cataa<u>ctcga g</u> P L D L S C K R P R P - XhoI

Figure 10. Nucleotide coding sequence of E1a cDNA (SEQ ID NO: 40). Cloning sites HindIII and XhoI, and two amino acid residue positions Y47 and C124 are underscored.

aagettgeeg ceaceatgag acatattate tgeeaeggag gtgttattae HindIII M R H I I C H G G V I cgaagaaatg gccgccagtc ttttggacca gctgatcgaa gaggtactgg T E E M A A S L L D Q L I E E V L 101 ctgataatct tccacctcct agccattttg aaccacctac ccttcacgaa A D N L P P P S H F E P P T L H E ctgcatgatt tagacgtgac ggcccccgaa gatcccaacg aggaggcggt L H D L D V T A P E D P N E E A 151 ttcgcagatt tttcccgact ctgtaatgtt ggcggtgcag gaagggattg V S Q I F P D S V M L A V Q E G I acttactcac ttttccgccg gcgcccggtt ctccggagcc gcctcacctt D L L T F P P A P G S P E P P H L tcccggcagc ccgagcagcc ggagcagaga gccttgggtc cggtttctat 301 gccaaacctt gtaccggagg tgatcgatct tacctgccac gaggctggct M P N L V P E V I D L T C H E A G ttccacccag tgacgacgag gatgaagagg gtgaggagtt tgtgttagat F P P S D D E D E E G E F V L D 401 tatgtggagc accccgggca cggttgcagg tcttgtcatt atcaccggag Y V E H P G H G C R S C H Y H R 451 gaatacgggg gacccagata ttatgtgttc gctttgctat atgaggacct R N T G D P D I M C S L C Y M R T gtggcatgtt tgtctacagt cctgtgtctg aacctgagcc tgagcccgag 601 tatcctgaga cgcccgacat cacctgtgtc tagagaatgc aatagtagta A I L R R P T S P V S R E C N S S 651 cggatagctg tgactccggt cettctaaca cacetcetga gatacacecg T D S C D S G P S N T P P E I H P gtggtcccgc tgtgccccat taaaccagtt gccgtgagag ttggtgggcg V V P L C P I K P V A V R V G Gtcgccaggct gtggaatgta tcgaggactt gcttaacgag cctgggcaac R R O A V E C I E D L L N E P G O ctttggactt gagctgtaaa cgccccaggc cataactcga g P L D L S C K R P R P - XhoI

Figure 11. Nucleotide coding sequence of E1a_Y47H (SEQ ID NO: 41). Cloning sites HindIII and XhoI are underscored.

aagettgeeg ceaceatgae eatggaatet ggageagaea aecageagag HindIII M T M E S G A D N Q Q tggagatgct gctgtaacag aagctgaaaa tcaacaaatg acagctcaag s G D A A V T E A E N Q Q M T A Q cccaaccaca gattgccaca ttagcccagg tatccatgcc agcagctcat A O P Q I A T L A Q V S M P A A H 101 gcgacatcat ctgctccac tgtaacctta gtgcagctgc ccaatgggca A T S S A P T V T \cdot L V Q L P N G 151 gacagtccaa gtccatggag ttattcaggc ggcccagcca tcagttattc Q T V Q V H G V I Q A A Q P S V I agtetecaca agtecaaaca gtteagtett eetgtaagga ettaaaaaga Q S P Q V Q T V Q S S C K D L K R 251 cttttctccg gaactcagat ttcaactatt gcagaaagtg aggattcaca L F S G T Q I S T I A E S E D S 301 ggaatctgtg gatagtgtaa ctgattccca aaagcgaagg gaaattcttt Q E S V D S V T D S Q K R R E I L 351 caaggaggcc ttcctacagg aaaattttga atgacttatc ttctgatgca s R R P S Y R K I L N D L S S D A ccaggggtgc caaggattga agaagaaaag tcggaagagg agacttcagc P G V P R I E E E K S E E E T S ccctgccatc accactgtga cagtgccaac tccgatttac cagacaagca A P A I T T V T V P T P I Y Q T S 501 gtgggcagta tattgccatt acccagggag gagctataca gctggctaac S G Q Y I A I T Q G G A I Q L A N 551 aatggtaccg atggggtaca gggccttcag acattaacca tgaccaatgc N G T D G V Q G L Q T L T M T N 601 agetgecact cageegggta ceactattet acagtatgea cagaceactg A A A T Q P G T T I L Q Y A Q T T 651 atggacagca gattctagtg cccagcaacc aagttgttgt tcaagctgcc D G Q Q I L V P S N Q V V V Q A A tctggcgatg tacaaacata ccaaattcgt acagcaccca ctagcaccat S G D V Q T Y Q I R T A P T S T 751 cgccctgga gttgttatgg catcctcccc agcacttcct acgcagcctg I A P G V V M A S S P A L P T Q P 801 ctgaagaagc agcccggaag agagaggttc gtctaatgaa gaacagggaa A E E A A R K R E V R L M K N R E gcagcaagag aatgtcgtag aaagaagaaa gaatatgtga aatgtttaga A A R E C R R K K K E Y V K C L 901 gaacagagtg gcagtgcttg aaaaccaaaa caagacattg attgaggagc E N R V A V L E N Q N K T L I E E 951 taaaagcact taaggacctt tactgccaca aatcagatta aggatcc L K A L K D L Y C H K S D - BamhI 1001

Figure 12. Nucleotide coding sequence of hamster CREB-B cDNA (SEQ ID NO: 42). Cloning sites HindIII and BamHI are underscored.

1	aagcttgccg	ccaccatgac	catggaatct	ggagcagaca	accagcagag
	HindIII	M	T M E S	G A D	N Q Q
51	tggagatgct	gctgtaacag	aagctgaaaa	tcaacaaatg	acagctcaag
	S G D A	A V T	E A E	N Q Q M	T A Q
101	cccaaccaca	gattgccaca	ttagcccagg	tatccatgcc	agcagctcat
	A Q P	Q I A T	L A Q	V S M	P A A H
151		·-	tgtaacctta T V T L	gtgcagctgc V Q L	ccaatgggca P N G
201	gacagtccaa	gtccatggag	ttattcaggc	ggcccagcca	tcagttattc
	Q T V Q	V H G	V I Q	A A Q P	S V I
251	agtctccaca	agtccaaaca	gttcagtctt	cctgtaagga	cttaaaaaga
	Q S P	Q V Q T	V Q S	S C K	D L K R
301	cttttctccg	gaactcagat	ttcaactatt	gcagaaagtg	aggattcaca
	L F S	G T Q	I S T I	A E S	E D S
351	ggaatctgtg	gatagtgtaa	ctgattccca	aaagcgaagg	gaaattettt
	Q E S V	D S V	T D S	Q K R R	E I L
401	caaggaggcc	ttcctccagg	aaaattttga	atgacttatc	ttctgatgca
	S R R	PSFR	K I L	N D L	S S D A
451	ccaggggtgc	caaggattga	agaagaaaag	tcggaagagg	agacttcagc
	P G V	P R I	E E E K	S E E	E T S .
501	ccctgccatc	accactgtga	cagtgccaac	tccgatttac	cagacaagca
	A P A I	T T V	T V P	T P I Y	Q T S
551	gtgggcagta	tattgccatt	acccagggag	gagctataca	gctggctaac
	S G Q	Y I A I	T Q G	G A I	Q L A N
601	aatggtaccg	atggggtaca	gggccttcag	acattaacca	tgaccaatgc
	N G T	D G V	Q G L Q	T L T	M T N
651	agctgccact	cagccgggta	ccactattct	acagtatgca	cagaccactg
	A A A T	Q P G	T T I	L Q Y A	Q T T
701	atggacagca	gattctagtg	cccagcaacc	aagttgttgt	tcaagctgcc
	D G Q	Q I L V	P S N	Q V V	V Q A A
751	tctggcgatg	tacaaacata	ccaaattcgt	acagcaccca	ctagcaccat
	S G D	V Q T	Y Q I R	T A P	T S T
801	cgcccctgga	gttgttatgg	catectece	agcacttcct	acgcagcctg
	I A P G	V V M	A S S	P A L P	T Q P
851	ctgaagaagc	agcccggaag	agagaggttc	gtctaatgaa	gaacagggaa
	A E E	A A R K	R E V	R L M	K N R E
901	gcagcaagag	aatgtcgtag	aaagaagaaa	gaatatgtga	aatgtttaga
	A A R	E C R	R K K K	E Y V	K C L
951	gaacagagtg	gcagtgcttg	aaaaccaaaa	caagacattg	attgaggagc
	E N R V	A V L	E N Q	N K T L	I E E
1001	taaaagcact	taaggacctt	tactgccaca	aatcagatta	aggatcc
	L K A	L K D L	Y C H	K S D	- BamHI

Figure 13. Nucleotide coding sequence of hamster CREB-B Y134F cDNA (SEQ ID NO: 43). Cloning sites HindIII and BamHI are underscored.

1 aagettactg ttggtaaage egecaceatg gaggettggg agtgtttgga M E A W E C L *HindIII* 51 agatttttct gctgtgcgta acttgctgga acagagctct aacagtacct EDFSAVR NLL EQSS NST 101 cttggttttg gaggtttctg tggggctcat cccaggcaaa gttagtctgc S W F W R F L W G S S Q A K L V C agaattaagg aggattacaa gtgggaattt gaagagcttt tgaaatcctg RIKEDY KWEF EEL LKS 201 tggtgagctg tttgattctt tgaatctggg tcaccaggcg cttttccaag C G E L F D S L N L G H Q A L F Q agaaggtcat caagactttg gatttttcca caccggggcg cgctgcggct 251 E K V I K T L D F S T P G R A A A 301 gctgttgctt ttttgagttt tataaaggat aaatggagcg aagaaaccca. AVAFLS FIKD KWS EET totgagoggg gggtacotgo tggattttot ggocatgoat otgtggagag H L S G G Y L L D F L A M H L W R cggttgtgag acacaagaat cgcctgctac tgttgtcttc cgtccgcccg 401 AVVRHKNRLLLSSVRP 451 gcgataatac cgacggagga gcagcagcag cagcaggagg aagccaggcg AIIPTE E Q Q Q Q E gcggcggcag gagcagagcc catggaaccc gagagccggc ctggaccctc 501 R R R Q E Q S P W N P R A G L D P 551 gggaatgatc taga R E - XbaI

Figure 14. Nucleotide coding sequence of E1b-19K (SEQ ID NO: 44). Cloning sites HindIII and XbaI are underscored.

Figure 15. Nucleotide coding sequence of hamster Bcl2 deletion mutant (SEQ ID NO: 45). Cloning sites NcoI and XbaI are underscored.

Figure 16. Western blots of E1a, CREB and Bcl2.

In a), b), and c), $1x10^5$ CHO-K1 cells were transfected with 0.4 µg of indicated plasmid DNA. Cell lysates were collected after 48 hours and probed with appropriate antibodies. KB5008 transfected cells were used as negative controles.

Figure 17. E1a and CREB enhanced CMV promoter in CHO-K1 cells.

1x10⁵ cells were transfected with 0.02 μg of SEAP reporter construct KB5019 and 0.2 μg of E1a or CREB expressing constructs. Total DNA was added up to 0.4 μg/well by control plasmid KB5008, E1b-19K or Bcl2 expressing plasmids. SEAP activities from culture media were assay 48 hours after transfection. The control was mock transfected CHO-K1 cells.

Figure 18. Western blots showing overexpression of hamster CREB-B Y134F and hamster Δ Bcl-2 in stable transfectant CHO-S cell lines.