0.1 全纯函数的 Taylor 展开

定理 0.1

式,得

若 $f \in H(B(z_0, R))$, 则 f 可以在 $B(z_0, R)$ 中展开成幂级数:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, \quad z \in B(z_0, R).$$
 (1)

右端的级数称为 f 的 Taylor 级数, 并且 f 的 Taylor 级数展开式是唯一的.

证明 任意取定 $z \in B(z_0, R)$, 再取 $\rho < R$, 使得 $|z - z_0| < \rho$ (见图 1). 记 $\gamma_\rho = \{\zeta : |\zeta - z_0| = \rho\}$, 根据 Cauchy 积分公

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_o} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

把 $\frac{1}{\zeta-z}$ 展开成级数,为

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \frac{1}{\zeta - z_0} \left(1 - \frac{z - z_0}{\zeta - z_0} \right)^{-1} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n,$$

最后一个等式成立是因为 $\left| \frac{z-z_0}{\zeta-z_0} \right| = \frac{|z-z_0|}{\rho} < 1$ 的缘故. 现在可得

$$\frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} f(\zeta) \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$
 (2)

因为 f 在 γ_{ρ} 上连续, 记 $M = \sup\{|f(\zeta)|: \zeta \in \gamma_{\rho}\}$, 于是当 $\zeta \in \gamma_{\rho}$ 时, 有

$$\left| \frac{f(\zeta)(z-z_0)^n}{(\zeta-z_0)^{n+1}} \right| \le \frac{M}{\rho} \left(\frac{|z-z_0|}{\rho} \right)^n.$$

右端是一收敛级数, 故由 Weierstrass 判别法, 级数(2) 在 γ_{ρ} 上一致收敛, 故由定理??可知, 级数(2)可逐项积分. 又 因为 $f \in \overline{H(B(z_0, \rho))}$, 所以再由定理??可得

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{\rho}} \sum_{n=0}^{\infty} f(\zeta) \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} d\zeta = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta \right) (z-z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n.$$

由于 z 是 $B(z_0, R)$ 中的任意点, 所以上式在 $B(z_0, R)$ 中成立.

f 的展开式(1)是唯一的. 因为若有展开式

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

那么由定理??可知

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) a_n (z-z_0)^{n-k}.$$

在上式中令 $z=z_0$, 即得 $f^{(k)}(z_0)=k!a_k$, 或者 $a_k=\frac{f^{(k)}(z_0)}{k!}$, 所以

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n,$$

这就是展开式(1).

定理 0.2

f 在点 z_0 处全纯的充分必要条件是 f 在 z_0 的邻域内可以展开成幂级数:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

证明 由定理 0.1和定理??立得.

定义 0.1

设 f 在 Zo 点全纯且不恒为零, 如果

$$f(z_0) = 0$$
, $f'(z_0) = 0$, ..., $f^{(m-1)}(z_0) = 0$, $f^{(m)}(z_0) \neq 0$,

则称 z_0 是 f 的 m 阶零点.

命题 0.1

 z_0 为 f 的 m 阶零点的充分必要条件是 f 在 z_0 的邻域内可以表示为

$$f(z) = (z - z_0)^m g(z), (3)$$

这里,g 在 z_0 点全纯, 且 $g(z_0) \neq 0$.

证明 如果 z_0 是 f 的 m 阶零点,则从 f 的 Taylor 展开可得

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=m}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$
$$= (z - z_0)^m \left\{ \frac{f^{(m)}(z_0)}{m!} + \frac{f^{(m+1)}(z_0)}{(m+1)!} (z - z_0) + \cdots \right\}$$
$$= (z - z_0)^m g(z).$$

这里,g(z)就是花括弧中的幂级数,它当然在zo处全纯,而且

$$g(z_0) = \frac{f^{(m)}(z_0)}{m!} \neq 0.$$

反之, 如果 (3) 式成立, f 当然在 z_0 处全纯, 通过直接计算即知 z_0 是 f 的 m 阶零点.

命题 0.2

设 $D \in \mathbb{C}$ 中的域, $f \in H(D)$, 如果 $f \in D$ 中的小圆盘 $B(z_0, \varepsilon)$ 上恒等于零, 那么 $f \in D$ 上恒等于零.

证明 在 D 中任取一点 a, 我们证明 f(a) = 0. 用 D 中的曲线 γ 连接 z_0 和 a, 由定理??, $\rho = d(\gamma, \partial D) > 0$. 在 γ 上依 次取点 $z_0, z_1, z_2, \cdots, z_n = a$, 使得 $z_1 \in B(z_0, \varepsilon)$, 其他各点之间的距离都小于 ρ , 作圆盘 $B(z_j, \rho)$, $j = 1, \cdots, n$ (图 2). 由于 f 在 $B(z_0, \varepsilon)$ 中恒为零,所以 $f^{(n)}(z_1) = 0$, $n = 0, 1, \cdots$. 于是, f 在 $B(z_1, \rho)$ 中的 Taylor 展开式的系数全为零,所以 f 在 $B(z_1, \rho)$ 中恒为零。由于 $z_2 \in B(z_1, \rho)$,所以 $f^{(n)}(z_2) = 0$, $n = 0, 1, \cdots$,用同样的方法推理, f 在 $B(z_2, \rho)$ 中恒为零。再往下推,即知 f 在 $B(a, \rho)$ 中恒为零,所以 f(a) = 0.

命题 0.3

设 $D \in \mathbb{C}$ 中的域, $f \in H(D)$, $f(z) \neq 0$, 那么 $f \in D$ 中的零点是孤立的. 即若 z_0 为 f 的零点, 则必存在 z_0 的 邻域 $B(z_0, \varepsilon)$, 使得 f 在 $B(z_0, \varepsilon)$ 中除了 z_0 外不再有其他的零点.

证明 由命题 0.2 知, f 在 z_0 的邻域中不能恒等于零, 故不妨设 z_0 为 f 的 m 阶零点. 由命题 0.1知, f 在 z_0 的邻域中 可表示为 $f(z) = (z - z_0)^m g(z)$, 因 g 在 z_0 处连续, 且 $g(z_0) \neq 0$, 故存在 z_0 的邻域 $B(z_0, \varepsilon)$, 使得 g 在 $B(z_0, \varepsilon)$ 中处处 不为零,因而 f 在 $B(z_0,\varepsilon)$ 中除了 z_0 外不再有其他的零点.

定理 0.3 (唯一性定理)

设 D 是 \mathbb{C} 中的域, $f_1, f_2 \in H(D)$. 如果存在 D 中的点列 $\{z_n\}$, 使得 $f_1(z_n) = f_2(z_n)$, $n = 1, 2, \cdots$, 且 $\lim z_n = 1$ $a \in D$, 那么在 D 中有 $f_1(z) \equiv f_2(z)$.

注 这个定理说明, 全纯函数由极限在域中的一列点上的值所完全确定, 这是一个非常深刻的结果.

 $\mathbf{\dot{z}}$ 必须注意, $\lim_{\substack{n\to\infty\\ i\to\infty}} z_n = a, a\in D$ 这个条件是不能去掉的, 否则结果不成立. 例如, $f(z)=\sin\frac{1}{1-z}$ 在单位圆盘中全纯, 令 $z_n = 1 - \frac{1}{n\pi}$, 则 $f(z_n) = 0, n = 1, 2, \dots$, 但 $f(z) \neq 0$, 原因是 $z_n \to 1$, 而 1 不在单位圆盘中.

证明 令 $g(z) = f_1(z) - f_2(z)$, 则 $g(z_n) = 0, n = 1, 2, \cdots$. 由于 $g \in H(D)$, 所以 $g(a) = \lim_{n \to \infty} g(z_n) = 0$, 即 $a \neq g$ 的一个 零点. 由于 $\{z_n\}$ 也是 g 的零点,而且 $z_n \to a$,因而零点 a 不是孤立的. 由命题 0.2,得 $g(z) \equiv 0$,即 $f_1(z) \equiv f_2(z)$.

命题 0.4 (常用的初等函数的 Taylor 展开式)

(1)
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C}.$$

(2)
$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad z \in \mathbb{C}.$$

(3) $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C}.$

(3)
$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C}.$$

(4)
$$\log(1+z) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{z^n}{n}, \quad |z| < 1.$$

(4)
$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}, \quad |z| < 1.$$

(5) $e^{\alpha \log(1+z)} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n, \quad \alpha \in \mathbb{R}, |z| < 1.$

证明

(1) 指数函数 $f(z) = e^z$, 它是一个整函数, 所以可以在圆盘 B(0,R) 中展开成幂级数, 其中, R 是任意正数. 由于

 $f^{(n)}(z) = e^z, f^{(n)}(0) = 1,$ 所以

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad z \in \mathbb{C}.$$
 (4)

公式(4) 也可以由全纯函数的唯一性定理得到. 由直接计算知道, 幂级数 $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ 的收敛半径 $R=\infty$, 所以

 $\varphi(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ 是一个整函数. 已知 e^z 是一个整函数, 这两个整函数在实轴上相等, 即

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R},$$

故由唯一性定理知道这两个整函数在 €上处处相等, 这就是公式 (4).

- (2) 由(1)同理可得.
- (3) 由(1) 同理可得.
- (4) 由例题?? 我们已经得到

$$-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, \quad |z| < 1,$$

在上式中用一z代替z,立刻可得

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}, \quad |z| < 1.$$

(5) 函数 $f(z) = (1+z)^{\alpha}$, α 不是整数, 我们考虑它的主支 $f(z) = e^{\alpha \log(1+z)}$ 在 z = 0 处的 Taylor 展开式. 这个分支 在 z = 0 处的值为 1. 它的各阶导数在 z = 0 处的值为

$$f^{(n)}(0) = \alpha(\alpha - 1) \cdots (\alpha - n + 1), \quad n = 1, 2, \cdots$$

如果记

$$\begin{pmatrix} \alpha \\ n \end{pmatrix} = \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{n!}, \quad n = 1, 2, \cdots,$$
$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1,$$

那么

$$e^{\alpha \log(1+z)} = \sum_{n=0}^{\infty} {\alpha \choose n} z^n, \quad |z| < 1.$$

也可通过直接计算得到右端级数的收敛半径为 1. 上式对整数 α 当然也成立, 特别当 α 为正整数时, 右端为一多项式.