Lecture 4: Outline

- Reminder: relations
- More operations on relations
- Example: a printer access system
- Total and partial functions (as a special kind of relations)
- Example: the vending machine revisited

Relations (reminder)

- A relation R between sets S and T can be represented as a set of pairs (s, t) representing those elements of S and T that are related
- Mathematically, a relation between sets S and T is a subset of $S \times T$ (or, equivalently, a member of $\mathbb{P}(S \times T)$)
- Note: $S \times T$ all possible pair combinations between elements of S and T
- Note: $\mathbb{P}(S)$ all possible subsets of S. Hence, $x \in \mathbb{P}(S)$ means that x is some subset of S, i.e., $x \subseteq S$
- $S \leftrightarrow T$ is a shorthand for $\mathbb{P}(S \times T)$

Relations (reminder)

- 3 equivalent statements saying that R is a relation between S and T: $R \in S \leftrightarrow T$, $R \in \mathbb{P}(S \times T)$, $R \subseteq S \times T$
- The *domain* of a relation $R \in S \leftrightarrow T$ is the subset of elements of S that are related to something in T
- Dually, the domain range of a relation $R \in S \leftrightarrow T$ is the subset of elements of T that are related to something in S
- We can filter relations, focusing on the relation domain (domain restriction $S \triangleleft R$ or domain subtraction $S \triangleleft R$) or the relation range (range restriction $R \triangleright S$ or range subtraction $R \triangleright S$)

Basic operations with relations

- Initialising (for $R \in S \leftrightarrow T$): $R := \{s_1 \mapsto t_1, s_2 \mapsto t_2, ...\}$ or $R := S \times \{t_0\}$ where $s_i \mapsto t_i$ are constructed pairs from $S \leftrightarrow T$
- Adding, merging elements (using set operations): $R := R \cup \{s \mapsto t\}$ or $R := R \cup Q$ where Q is a relation of the same type, i.e., $Q \in S \leftrightarrow T$
- Checking membership or inclusion: $s \mapsto t \in R$ or $R \subseteq Q$
- Removing elements (filtering on the relation domain): $R := \{s_1, s_2, ...\} \lhd R$ or $R := \{s_1, s_2, ...\} \lhd R$
- Removing elements (filtering on the relation range): $R := R \rhd \{t_1, t_2, ...\}$ or $R := R \rhd \{t_1, t_2, ...\}$

More operations on relations

- Inverse relation R^{-1} (ascii R^{\sim}). Includes all such $(x \mapsto y)$ that $(y \mapsto x) \in R$
- Example: for the relation $owns_camera = \{Jonas \mapsto Canon, \ Vaidas \mapsto Nikon, \\ Vaiva \mapsto Sony, \ Jonas \mapsto Sony, \ Sandra \mapsto Pentax\}$ its inverse is $owns_camera^{-1} = \{Canon \mapsto Jonas, \ Nikon \mapsto Vaidas, \\ Sony \mapsto Vaiva, \ Sony \mapsto Jonas, \ Pentax \mapsto Sandra\}$
- Relational image R[S]. Returns a subset of the relation range related to any element from the given set S
- Example: for the relation owns_camera defined above owns_camera[{Jonas, Vaiva}] = {Canon, Sony}

More operations on relations (cont.)

- Relational composition R_1 ; R_2 . Composition of relations $R_1 \in S \leftrightarrow T$ and $R_2 \in T \leftrightarrow U$ is relation $\{(s \mapsto u) \mid \exists t. \ (s \mapsto t) \in R_1 \land (t \mapsto u) \in R_2\}$
- Example: Suppose we are given a relation between camera models and their brands $cmodels \in CMODEL \leftrightarrow CAMERA$, for instance,

 $\textit{cmodels} \ = \ \{350 \mapsto \textit{Canon}, 60D \mapsto \textit{Canon}, D5200 \mapsto \textit{Nikon}, ...\}$

Then the previously defined $owns_camera$ can be built as a result of a composition of the relations $owns_cmodel \in PERSON \leftrightarrow CMODEL$ and $cmodels \in CMODEL \leftrightarrow CAMERA$, i.e.,

owns_camera = owns_cmodel; cmodels

More operations on relations (cont.)

• Relational overriding $R_1 \Leftrightarrow R_2$ (ascii $R_1 <+ R_2$).

Updating the relation
$$R_1$$
 by R_2 :
 $R_1 \Leftrightarrow R_2 = (dom(R_2) \Leftrightarrow R_1) \cup R_2$

Example: owns_camera ← {Jonas → Nikon}

Two pairs $Jonas \mapsto Canon$ and $Jonas \mapsto Sony$ are removed, one pair $Jonas \mapsto Nikon$ is added

More operations on relations (cont.)

• Identity relation: $id \in S \leftrightarrow S$

The relation contains pairs $(s \mapsto s)$ for all $s \in S$ (each element is only related to itself)

Example: suppose we have the relation

$$connected \in \mathit{CITY} \leftrightarrow \mathit{CITY}$$

containing all the road connections between cities (encoding a graph representation of roads between cities)

Then the requirements "Roads can only be between different cities" can be formulated as

connected
$$\cap$$
 id = \emptyset

Printer access example: requirements

- 1 The system purpose is to manage user access to printers
- The dynamic information about which user has currently access to to which printer is stored by the system
- This information can be updated by three operations: granting access, blocking access, or banning the user
- In the first case, the user can be given access to a specific printer
- In the second case, the user can be blocked from accessing a specific printer
- on the last case, the user can be banned from using any printer

Printer access example: requirements

- Each printer supports a number of printing options (like color or double side printing)
- All printers support at least one printing option
- Also, all options are supported by at least one printer
- The information about all printer options is static and known beforehand
- The user can send an enquiry about whether he or she has a possibility to use a specific printing option
- The manager can send an enquiry about by all the users of a specific printer

Printer access example: context

```
CONTEXT
  Access ctx
SETS
  USER
  PRINTER
  OPTION
  PERMISSION
CONSTANTS
  Options, Ok, No permission
AXIOMS
  Options \in PRINTER \leftrightarrow OPTION
  dom(Options) = PRINTER
  ran(Options) = OPTION
  partition({PERMISSION, {Ok}, {NoAccess}})
END
```

```
MACHINE
  Access mch
SEES
  Access ctx
VARIABLES
  access, last query, pr users
INVARIANT
  access \in USER \leftrightarrow PRINTER
  last query ∈ PERMISSION
  pr \ users \in \mathbb{P} (USERS)
INITIALISATION
  access, pr users := \varnothing, \varnothing
  last query := NoAccess
```

```
EVENTS
  add access =
    ANY u, p
    WHEN u \in USER \land p \in PRINTER
    THEN access := access \cup \{u \mapsto p\} END
  block access =
    ANY u, p
    WHEN u \in USER \land p \in PRINTER \land (u \mapsto p) \in access
    THEN access := access \setminus \{u \mapsto p\} END
  ban user =
    ANY u
    WHEN u \in USER \land u \in dom(access)
    THEN access := \{u\} \triangleleft access END
```

```
perm query OK =
  ANY u, o
  WHEN u \in USER \land o \in OPTION
          (u \mapsto o) \in access; Options
  THEN perm query := Ok END
perm query NOK =
  ANY u. o
  WHEN u \in USER \land o \in OPTION
          (u \mapsto o) \notin access; Options
  THEN perm query := NoAccess END
```

```
...
  printer_query =
   ANY p
   WHEN p ∈ PRINTER
   THEN pr_users := access [{p}]
   END
END
```

Functions

- Functions form a special class of relations that satisfy additional requirement: any element of the source set can be related to no more than 1 element of the target
- Functionality requirement mathematically:

$$\forall x, y, z. \ (x \mapsto y) \in R \ \land \ (x \mapsto z) \in R \ \Rightarrow \ y = z$$

- Any operation applicable to a relation or a set is also applicable to a function. For example, we can talk about the domain and the range of a function or a function as a set of pairs
- If f is a function, then f(x) is the result of the function f for the argument x

Total and partial functions

- Functions are called *total* if their domain is the whole source set Syntax: $f \in S \rightarrow T$ (or ascii $f : S \rightarrow T$) where dom(f) = S and $ran(f) \subseteq T$
- Example: the camera model relation is actually a total function cmodels ∈ CMODEL → CAMERA (any camera model identifier is uniquely associated with its brand)
- Functions are called *partial* if their domain is a subset of the source set Syntax: $f \in S \rightarrow T$ (or ascii f : S +->T) where $dom(f) \subseteq S$ and $ran(f) \subseteq T$
- Example: room reservation relation is actually a partial function reserved ∈ ROOM → CUSTOMER
 (each reserved room has the unique customer that served it, however, not all rooms must be reserved)

Arrays

- An array is a named, indexed collection of values of a given type.
- The array values can be accessed (read and updated) by using appropriate indexes.
- If we use 1..n (for some $n \in \mathbb{N}$) as our index set, then an array (containing elements of type S) can be modelled as a function from 1..n to S.
- In fact, any set can be used as the index set for arrays. Therefore, arrays can be usually modelled as total functions from S (index set) to \mathcal{T} (the type of array values).

Functional (array) assignment

 The notation used to describe machine actions (i.e., assignments in the machine events) allows us to directly assign values to indexed elements of arrays:

$$a(i) := E$$

• This is just syntactic sugaring for the following assignment:

$$a := a \Leftrightarrow \{(i \mapsto E)\}$$

- The assignment also works if a is modelled as a partial function. However, if we want to check/read values from such an array, we have to ensure/prove (by using the event guards and/or machine invariants) that the used index belongs to the function domain, i.e., $i \in dom(a)$
- reserved(r) := FALSE

OK!

• nltems(j) := nltems(i) + 1

only if $i \in dom(nltems)$

Vending machine example revisited

New (additional) requirements:

- The system stores the constant information about the prices of served items
- The payment operation is successful only if the supplied payment (credit) is sufficient to cover the price of the chosen item
- The amount of the served items in the vending machine is limited
- The system stores the current number of available items (for each item)

Vending machine example revisited (cont.)

- The item selection operation is only possible if the number of available numbers is positive
- After serving the product, the system decreases the corresponding number of available items of this kind
- Initially, the system contains the pre-defined number of each item
- The number of available items can be increased by loading some number of items of particular kind

Vending machine example: context

```
CONTEXT Vending ctx
SETS
  CHOICES
CONSTANTS
  None
  price
  initial amount
  Items
AXIOMS
  None \in CHOICES
  price \in CHOICES \rightarrow \mathbb{N}1
  dom(price) = CHOICES \setminus \{None\}
  initial amount \in \mathbb{N}1
  Items \subseteq CHOICES
  Items = CHOICES \setminus \{None\}
END
```

Vending machine example: machine

```
MACHINE
  Vending mch
SEES
  Vending ctx
VARIABLES
  ready, choice, payed, served, nItems
INVARIANT
  nltems \in ltems \rightarrow \mathbb{N}
  choice \neq None \land served = FALSE \Rightarrow nItems(choice) > 0
INITIALISATION
  nltems := ltems \times \{initial \ amount\}
```

Vending machine example: machine (cont.)

```
EVENTS
  choose =
    ANY choice WHERE ... nltems(choice) > 0
    THEN ... END
 cancel = ...
 pay = ANY credit
   WHERE ... credit > price(choice)
    THEN ... END
 serve =
    WHEN ...
    THEN ... nltems(choice) := nltems(choice) - 1 END
```

Vending machine example: machine (cont.)

Additional event for refilling items:

```
add items =
  ANY it, n
  WHERE
    ready = TRUE
    it \in Items
    n \in \mathbb{N}1
  THEN
    nltems(it) := nltems(it) + n
  END
```