Credit Card Fraud Analysis

Humphrey Hui, Nathan Arimilli, Minji Kim, Gabriel Sanders, Franco Salinas August 2025

Introduction, Objectives, Data Overview

U.S consumers faced **\$12.5 billion** in losses from credit card fraud in 2024, a **25% increase** from 2023¹. This rise represents a significant financial and security issues for both credit card users and companies.

Research Questions

- Is there a pattern in the feature values for those charges that were fraudulent to see **if specific** customer groups were targeted?
- With these specific features, can we more accurately and confidently predict fraudulent charges to keep our customer base safe and informed?

Dataset Overview

Sourced from

Kaggle

- Customer information
- Transaction time
- Transaction location

^{1.} https://www.clearlypayments.com/blog/credit-card-fraud-statistics-in-2024-for-usa/

Exploratory Data Analysis (EDA)

Our initial inspection of the data found one major issue: **99.6% of the observations were non-fraud**.

So, we **resampled the data** to truncate
the non-fraud
observations to
create a more
usable dataset.

Correlation Heatmap

Action: Consider removing one of the correlated predictors (e.g. lat / long) for better model performance.

Exploratory Data Analysis (EDA)

Our initial inspection of the data found one major issue: **99.6% of the observations were non-fraud**.

So, we **resampled the data** to truncate
the non-fraud
observations to
create a more
usable dataset.

Fraud by Gender

Consideration: As we resampled the original dataset, focus more on the relative positioning.

Exploratory Data Analysis (EDA)

Our initial inspection of the data found one major issue: **99.6% of the observations were non-fraud**.

So, we **resampled the data** to truncate
the non-fraud
observations to
create a more
usable dataset.

Fraud by Transaction Category

Consideration: As we resampled the original dataset, focus more on the relative positioning.

Model – Logistic Regression

Model Setup

Train/Test Split

80/20

Preprocessing

- Feature frequencies
- Time related factors
- Target encoding

Key Features

Night

Amount

Jobs - TE

Merchant - TE

Category - TE

Full Name Freq

Confusion Matrix

ROC-AUC Graph

Key Metrics

Precision: 81%

Accuracy: 90%

Feature Deep Dive

	Coefficient	Odds Ratio
Night	2.28	9.82
Amount	1.86	6.44
Jobs - TE	1.26	3.52
Merchant - TE	0.99	2.68
Category - TE	-0.70	0.50
Full Name Freq	0.56	1.76

Night transactions, higher amount, and higher frequency means more likely to be fraud

Model – Naïve Bayes

Model Setup

Train/Test Split

80/20

Key Features

State - WV

State - VT

Preprocessing

- Jobs categories
- Independent features
- Binned numerical factors

State - UT

Amount

Confusion Matrix

Key Metrics

Precision: 83%

Accuracy: 91%

Top 6 Influential Features

Lower recall, state location found to be more influential

Model – K Nearest Neighbors (KNN)

Model Setup

Train/Test Split

80/20

Preprocessing

- Log(amount), distance
- Time related factors
- Target encoding

Key Features

Merchant - TE

City - TE

City Population

Log(Amount)

Night

Distance

Confusion Matrix

ROC-AUC Graph

Key Metrics

Precision: 89%

Accuracy: 95%

KNN Metrics vs K

K=7 was used as it gave the highest recall, location and merchant features found to be most important

Model – Classification Tree

Model Setup

Train/Test Split

6

80/20

Preprocessing

- Drop features
- Encode categories

Key Features

Amount

Gas 6%

Groceries 2%

72%

Confusion Matrix

ROC-AUC Graph

Key Metrics

Precision: 90%

Accuracy: 96%

Main Tree Splits

Best tree depth is 10, amount the overwhelmingly dominating predictor

Conclusion

Key Fraud Signals

Model Performance

Recommended Actions

Transaction Amount

The **higher the amount**, the more likely it is fraud

Best Model: Classification Tree

Recall: 93%

Precision: 90%

Accuracy: 96%

Real-time Controls

- More stringent checks on high-amount late night transactions
- Additional verification steps for higher risk merchants and categories

Time of Day

The later the transaction in the day, the more likely it is fraud

- Strong ability to capture non-linear patterns and interactions
- High metrics due to synthetic dataset, but research has found classification trees to perform best on credit card fraud²

Model Deployment

- Retrain regularly with latest historical data
- While recall crucial for business, precision is what the customer experience depends on

Merchant and Category

Historically high patterns of fraud for certain merchants and categories