	Utech
Name:	
Roll No.:	(Carried as later)
Invigilator's Signature:	

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE-301/2011-12

2011 ELECTRIC CIRCUIT THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The internal impedance of an ideal current source is
 - a) zero

- b) infinite
- c) both (a) and (b)
- d) none of these.
- ii) In the figure given below, the value of the resistance R in ohm is

a) 10

b) 20

c) 30

d) 40.

3106-(N) [Turn over

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE-80

iii) Time constant of the network shown below is

a) CR

b) 2 CR

c) CR/4

- d) CR/2.
- iv) For a series RC circuit, when subjected to a unit step input voltage, the voltage across the capacitor will be
 - a) $1 e^{-t/RC}$
- b) $e^{-t/RC}$

c) $e^{t/RC}$

- d) 1.
- v) In the figure given below, value of load Z which maximizes the power delivered to it is

- a) 60 + j40
- b) 60 j40

c) 60

- d) none of these.
- vi) If the unit step response of a network is $(1 e^{-\alpha t})$, the unit impulse response will be
 - a) $\alpha \cdot e^{-\alpha t}$

- b) $1/(\alpha \cdot e^{-\alpha t})$
- c) $1/(\alpha \cdot e^{-t \alpha})$
- d) (1α) . e^{t} . $(-\alpha t)$.

3106-(N)

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE

vii) The resistances R_1 , R_2 and R_3 are respectively

- a) 1, 3/2 & 3
- b) 3, 3/2 & 6
- c) 9,3 & 1
- d) 2, 1 & 9.
- viii) The Z-matrix of a 2-port network is given by $\begin{bmatrix} 0.9 & 0.2 \\ 0.2 & 0.6 \end{bmatrix}$

The element Y_{22} of the corresponding Y-matrix of the same network is given by

a) 1.2

b) 0.4

c) - 0·4

- d) 1.8.
- ix) The transfer function of an electric low pass RC network is
 - a) RCS/(1 + RCS)
- b) 1/(1 + RCS)
- c) RC/(1 + RCS)
- d) S/(1 + RCS).
- x) How many branches can be connected to a node?
 - a) 1

b) 2

c) 3

- d) any number.
- xi) When a number of 2-port network is connected in cascade, the individual
 - a) Z_{oc} matrices are added
 - b) Y_{sc} matrices are added
 - c) chain matrices are multiplied
 - d) H matrices are multiplied.

3106-(N)

3

[Turn over

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE-80

- xii) The tie-set matrix gives the relation between
 - a) branch currents and link currents
 - b) branch voltages and link currents
 - c) branch currents and link voltages
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$3 \times 5 = 15$$

2. Convert the current sources into voltage sources (equivalent) and find the voltage v_o .

3. For the network given below determine the X-parameters.

3106-(N)

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE

4. In the circuit given below, the switch is initially in position 1 until the steady state is reached. At t = 0, the switch is moved to position 2. Find i(t), the loop current.

5. a) Define Incidence Matrix.

- 2
- b) For the graph shown below find the complete incidence matrix.

6. Find the Fourier transform for the following gate function:

3106-(N)

5

[Turn over

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE-301/2013-12
Utech
GROUP - C

(Long Answer Type Questions

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) Consider the network illustrated below, draw its graph, and determine:
 - i) No. of links.
 - ii) Rank of the graph
 - iii) Total number of trees.

8

b) Determine the Fourier series expansion for the following waveform.

8. a) State the Final value theorem.

- 2
- b) Find the expression for the current i (t) for a series R-C circuit, if the circuit is initially relaxed.

3106-(N)

6

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE

c) In the circuit shown below, determine the current i(t) when the switch is changed from position 1 to position 2 at t = 0. Find the steady state current using final value theorem.

- 9. a) Find the condition of reciprocity and symmetry for short circuit parameters of a 2-port network. 4 + 4
 - b) Find the transmission parameters for the circuit shown below:

10. a) Differentiate between the following:

4

- i) Active filter and passive filter
- ii) High-pass filter and low-pass filter.
- b) The response of a network to an impulse is

$$h\left(t\right) = 0.18\; (e^{\,-\,0.3t} - e^{\,-\,2.1t}).$$

Find the response of the network to a step function using convolution theorem.

3106-(N)

7

[Turn over

CS/B.TECH (EE-N)/EEE(N)/PWE(N)/ICE(N)/SEM-3/EE-30

c) The input to the circuit shown below is a rectified sine wave as illustrated below. Determine expression of current in the 1Ω resistance. Assume W = 1 rad/sec. 5

 $V_i(\theta) = \sin \theta, 0 < \theta < \pi$

 $= -\sin \theta$, $\pi < \theta < 2\pi$

11. a) The circuit given below shows a low-pass second order active filler. Analyze the circuit and find the cut-off frequency.

8

b) For the second order high-pass filter shown below, find the cut-off frequency and the high frequency gain. 7

3106-(N)