

planetmath.org

Math for the people, by the people.

definite language

Canonical name DefiniteLanguage
Date of creation 2013-03-22 18:58:57
Last modified on 2013-03-22 18:58:57

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771)
Entry type Definition
Classification msc 68Q42
Classification msc 68Q45

A language is *definite* if the determination of whether a word belongs to the language completely depends on its suffix of a fixed length. Formally,

Definition. Let L be a language over an alphabet Σ . Then L is *definite* if there is a non-negative integer k such that for any word u over Σ with $|u| \geq k$, its suffix v of length k is in L iff u is in L.

Note that if k = 0, then L is either Σ^* or \varnothing .

A definite language has the following characterization:

Proposition 1. L is definite iff there are finite languages L_1 and L_2 such that

$$L = L_1 \cup \Sigma^* L_2$$
.

Proof. Suppose first that L is definite. Let L_1 be the subset of L containing all words with length less than k and L_2 the subset of L containing all words of length k. The case when k=0 is already mentioned in the note above. If k=1, L_1 is either $\{\lambda\}$ or \varnothing , depending on whether or not $\lambda \in L$. In any case, L_1 and L_2 are both finite. We verify that $L=L_1 \cup \Sigma^*L_2$. If $u \in L$ and u has length less than k, then $u \in L_1$. Otherwise, it has length at least k. By the definiteness of L, its suffix v of length k is in L, and thus is in L_2 . Therefore $u \in \Sigma^*L_2$ as a result. This shows that $L \subseteq L_1 \cup \Sigma^*L_2$. On the other hand, suppose $u \in L_1 \cup \Sigma^*L_2$. If |u| < k, then $u \in L_1 \subseteq L$. If $|u| \ge k$, write u = wv where v is the suffix with length k. Then $v \in L_2$, which means that $u \in L$ since L is definite.

Now suppose $L = L_1 \cup \Sigma^* L_2$ with L_1, L_2 finite. Let k be the maximum of lengths of words in $L_1 \cup L_2$, plus 1. k is well-defined since $L_1 \cup L_2$ is finite. Suppose u is a word in Σ^* with $|u| \geq k$. Then $u \notin L_1$. Let v be the suffix of u with |v| = k. Then $v \notin L_1$ likewise. If $v \in L$, then $v \in \Sigma^* L_2$ and hence $u \in \Sigma^* L_2$ as well. If $u \in L$, then $u \in \Sigma^* L_2$, so that u has a suffix $w \in L_2$. Since |w| < k, w is also a suffix of v, and therefore $v \in \Sigma^* L_2 \subseteq L$ as a result. This shows that L is definite.

From this characterization, we see that finite languages are special cases of definite languages. We also see that

Corollary 1. Every definite language is a regular language.

With regard to the closure properties of definite languages, we have the following: let \mathscr{D} be the family of definite languages, then \mathscr{D} is closed under union and complementation, and therefore any Boolean operations. However, \mathscr{D} is not closed under concatenation, Kleene star, and reversal.

Remark. In fact, every definite language is locally testable. The converse, however, is not true.

References

[1] A. Salomaa, Formal Languages, Academic Press, New York (1973).