Simulation Report

ziye.tao

June 2020

1 Result

First recall that A represents the number of all patients, B represents the number of patients who meet some criteria and m is the number of buckets in the HLL process. We introduce $r := \frac{B}{A}$ to represent the ratio of A and B. The purpose of running simulations under different combinations of A, r and m is to construct a table to fit Approximation1 and Approximation2 under these combinations. In all simulations, I restrict A in the interval $\begin{bmatrix} 10^4, 10^7 \end{bmatrix}$ and m in the interval $\begin{bmatrix} 100, 50000 \end{bmatrix}$. Since the simulations are run under the condition of 10-anonymity, I make sure that $\frac{A}{m} > 20$ which is the mean value of the single bucket size. Also, r is restricted in the interval $\begin{bmatrix} 0.005, 0.1 \end{bmatrix}$ and I choose 5 different r which are: 0.1, 0.08, 0.05, 0.01, 0.005 to run the simulations and compare the simulation results with computing results.

The final choice of Approximation1 and Approximation2 is mainly based on $\frac{A}{m}$. In most cases, when $\frac{A}{m} \geq 1000$, Approximation2 is good enough and the computing time will no longer than 3 minutes. When $\frac{A}{m} < 1000$, Approximation2 will be not accurate and we have to choose Approximation1. The computing time of Approximation1 which is proportional to $\sqrt{r}\frac{A}{m}$ is the main concern, and when $\frac{A}{m} < 1000$, the computing time is usually no longer than 15 minutes. But there is several special cases, when r=0.005, the threshold of $\frac{A}{m}$ will be increased to 1500. But fortunately, the computing time of both Approximation1 and Approximation2 are proportional to \sqrt{r} which makes sure that the computing time of Approximation1 no longer than 5 minutes when $\frac{A}{m} < 1500$ and r=0.005.

2 Table

			r = 0.1		r=0.08		r=0.05		r=0.01		r=0.005	
$\frac{A}{m}$	Α	m	A1	A2	A1	A2	A1	A2	A1	A2	A1	A2
100	10^{4}	100										
50	10^{4}	200										
20	10^{4}	500							$\sqrt{}$			
1000	10^{5}	100										
500	10^{5}	200										
200	10^{5}	500										
100	10^{5}	1000							$\sqrt{}$			
50	10^{5}	2000										
20	10^{5}	5000										
10000	10^{6}	100										
2000	10^{6}	500										
1500	10^{6}	666										
1000	10^{6}	1000										
500	10^{6}	2000										
200	10^{6}	5000							$\sqrt{}$			
100	10^{6}	10000							$\sqrt{}$			
50	10^{6}	20000										
20	10^{6}	50000							$\sqrt{}$			
100000	10^{7}	100										
20000	10^{7}	500										
10000	10^{7}	1000										
5000	10^{7}	2000										
3333	10^{7}	3000								$\sqrt{}$		
2000	10^{7}	5000										
1500	10^{7}	6666								$\sqrt{}$		$\sqrt{}$
1000	10^{7}	10000							$\sqrt{}$			
500	10^{7}	20000							$\sqrt{}$			
200	10^{7}	50000										

Note: A1 and A2 represents Approximation 1 and Approximation 2.

For all choices of r, the longest computing time occurs at $A=10^7.$