第14章

14.3.2 在图14.02的各电路图中,E = 5V, $u_i = 10$ sin ax V,二极管的正向压降可忽略不计,试分别画出输出电压 u_a 的波形。

14.3.4 在图14.04中,试求下列几种情况下输出端Y的电位 V_Y 及各元件(R, D_A , D_B)中通过的电流:(1) $V_A = V_B = 0$ V; (2) $V_A = +3V$, $V_B = 0$ V 。

(3) $V_A = V_B = +3V$ 。二极管的正向压降可忽略不计。

图14.04 习题14.3.4的图

图14.05 习题14.3.5的图

14.3.5 在图14.05中,试求下列几种情况下输出端电位 $V_{I\!\!P}$ 及各元件中通过的电流: (1) $V_{I\!\!A}=+10~V$, $V_{I\!\!B}=0~V$; (2) $V_{I\!\!A}=+6~V$, $V_{I\!\!B}=+5.8~V$;

- (3) $V_A = V_B = +5$ V。设二极管的正向电阻为零,反向电阻为无穷大。
- 14.5.1 有两个晶体管分别接在电路中, 今测得它们管脚的电位(对"他")分别如下表所列,

1111年11						
管脚	1	2	3			
电位/V	4	3.4	9			

田田田田田			
管 脚	1	2	3
电位/V	-6	-2.3	-2

试判别管子的三个管脚,并说明是硅管还是锗管?是NPN型还是PNP型?

14.5.2 某一晶体管的 $P_{\text{CM}} = 100 mW$, $I_{\text{CM}} = 20 mA$, $U_{\text{LBR})\text{CFFO}} = 15 V$, 试问在下列几种情况下,哪种是正常工作?(1) $U_{\text{CFF}} = 3 \ V$, $I_{\text{C}} = 10 \ mA$, (2) $U_{\text{CFF}} = 2 \ V$, $I_{\text{C}} = 40 \ mA$

14.5.4 在图14.08所示的各个电路中,试问晶体管工作于何种状态?

第15章

15.2.1 晶体管放大电路如图15.01(a)所示,已知 $Ucc=12\ V$, $Rc=3\ k\Omega$,晶体管的 $\beta=40$ 。(1)试用直流通路估算各静态值 I_B,I_C,U_{CE} ;(2)如晶体管的输出特性如图15.01(b)所示,试用图解法作放大电路的静态工作点;(3)在静态时($u_i=0$) C_1 和 C_2 上的电压各为多少?并标出极性。

图15.01 习题15.2.1的图

15.2.2 在上题中,如改变 R_S ,使 U_{CE} =3V,试用直流通路求 R_B 的大小,如改变 R_B ,使 I_C =1.5mA, R_B 又等于多少?并分别用图解法作出静态工

作点。

15.2.5 试判断图15.03中各个电路能不能放大交流信号? 为什么?

15.3.1 利用微变等效电路计算题15.2.1的放大电路的电压放大倍数 A_u 。(1)输出端开路;(2) R_L =6k Ω 。设 r_{be} =0.8 k Ω 。

15.3.4 已知某放大电路的输出电阻为3.3k Ω ,输出端的开路电压的有效值 U_{oc} =2V,试问该放大电路接有负载电阻 R_{I} =5.1k Ω 时,输出电压将下

降到多少?

15.3.5 在图15.05中, U_{cc} =12V, R_c =2k Ω , R_E =2 k Ω , R_B =300 k Ω ,晶体管的 β =50。电路有两个输出端。试

$$A_{u1} = \frac{\dot{U}_{o1}}{\dot{U}_i}$$
 $A_{u2} = \frac{\dot{U}_{o2}}{\dot{U}_i}$ 求: (1) 电压放大倍数 $A_{u2} = \frac{\dot{U}_{o2}}{\dot{U}_i}$; (2) 输出电阻 r_{o1} 和 r_{o2} 。

15.4.1 在图15.4.1的分压式偏置放大电路中,已知 U_{cc} =15V, R_{c} =3K Ω , R_{E} =2K Ω ,

 I_c =1.55mA, β =50,试估算 R_{B1} 和 R_{B2} (取附录H标称值)。

15.4.2 在图15.4.1的分压式偏置放大电路中,已知 U_{cc} =24V, R_c =3.3K Ω , R_E =1.5 K Ω , R_{B1} =33 K Ω , R_{B2} =10 K Ω , R_L =5.1 K Ω ,晶体管的 β =66,

并设 $R_S \approx 0$ 。(1)试求静态值 I_B , I_C 和 U_{CE} ;(2)画出微变等效电路;(3)计算晶体管的输入电阻 r_{be} ;(4)计算电压放大倍数 A_n ;(5)

计算放大电路输出端开路时的电压放大倍数,并说明负载电阻 R_L 对电压放大倍数的影响;(6)估算放大电路的输入电阻和输出电阻。

15.4.3 在上题中,设 R_s =1 $K\Omega$,试计算输出端接有负载时的电压放大倍数 $A_s = \dot{U}_s / \dot{U}_i$ 和 $A_s = \dot{U}_s / \dot{E}_s$,并说明信号源内阳 R_s 对电压放大倍数的影响。

15.4.4 在题15.4.2中,如将图15.4.1(a)中的发射极交流旁路电容 C_E 除去,(1)试问静态值有无变化?(2)画出微变等效电路;(3)计算

电压放大倍数 A_{II} ,并说明发射极电阻 R_{F} 对电压放大倍数的影响;(4)计算放大电路的输入电阻和输出电阻。

15.6.1 在图15.06的射极输出器中,已知 R_s =50 Ω , R_{B1} =100K Ω , R_{B2} =30K Ω ,

 R_E =1KΩ, 晶体管的β=50, r_{be} =1kΩ, 试求 A_u , r_i 和 r_{oo}

2018/9/17 习 是

15.6.2 两级放大电路如图15.07所示,晶体管的 $\beta_1 = \beta_2 = 40$, $r_{bel} = 1.37k\Omega$, $r_{be2} = 0.89k\Omega$ 。(1)画出直流通路,并估算各级电路的静态值(计算 U_{cE1} 时忽略 I_{B2});(2)画出微变等效电路,并计算 A_{u1} , A_{u2} 和 A_{u} ;(3)计算 r_i 和 r_o 。

图15.07 习题15.6.2的图

第16章

16.2.2 在图16.02的同相比例运算电路中,已知 R_1 =2k Ω , R_F =10k Ω , R_2 =2k Ω ,

 $R_3=18k\Omega$, $u_i=1V$,求 u_0 。

图16.02 习题16.2.2的图

16.2.3 为了获得较高的电压放大倍数,而又可避免采用高值电阻 R_F ,将反相比例运算电路改为图16.03所示的电路,并设 R_F >> R_4 ,试证:

$$A_{\mathrm{MF}} = \frac{u_o}{u_i} = -\frac{R_{\mathrm{F}}}{R_1} \bigg(1 + \frac{R_3}{R_4} \bigg) \label{eq:MF}$$

图16.03 习题16.2.3的图

16.2.5 电路如图16.04所示,已知 u_{i1} =1V, u_{i2} =2V, u_{i3} =3V, u_{i4} =4V, R_1 = R_2 =2k Ω , R_3 = R_4 = R_F =1k Ω ,试计算输出电压 u_o 。

16.2.6 求图16.05 fush 中 u 与 u 的 运算关系式。

图16.05 习题16.2.6的图

16.2.10 图16.09是利用两个运算放大器组成的具有较高输入电阻的差分放大电路。试求出 \mathbf{u}_{o} 与 \mathbf{u}_{i1} , \mathbf{u}_{i2} 的运算关系式。

16.2.13 电路如图16.11所示,试证明 $u_o=2u_i$ 。

图16.11 习题16.2.13的图

 $i_z = \frac{u_i}{R_z}$ 。 16.2.15 电路如图16.13所示,试证明

图16.13 习题16.2.15的图

16.2.18 按下列各运算关系式画出运算电路,并计算各电阻的阻值,括号中的反馈电阻 R_F 和电容 C_F 是已知值。

- (1) $u_o = -3u_i(R_F = 50k\Omega)$.
- (2) $u_o = -(u_{i1} + 0.2u_{i2})(R_F = 100k\Omega),$
- (3) $u_o = 5u_i$; $(R_F = 20k\Omega)$;
- (4) $u_o = 0.5u_i$; $(R_F = 10k\Omega)$.
- (5) $u_o = 2u_{i2} u_{i1}(R_F = 10k\Omega)$,
- (6) $u_o = -200 \int u_i dt (C_F = 0.1 \mu F)$;

$$(7) \ u_o = -10 \int u_i dt - 5 \int u_{i2} dt \qquad \left(C_F = 1 \mu F \right)_\circ$$

16.2.23 图16.19是一基准电压电路, u_o 可作基准电压用,试计算 u_o 的调节范围。

第17章

17.1.1 在图17.01所示的各电路中是否引入了反馈,是直流反馈还是交流反馈,是正反馈还是负反馈?

17.2.1 试判别图17.02(a)和(b)两个两级放大电路中引入了何种类型的次序 反馈。

17.2.3 为了实现下述要求,在图1703中应引入何种类型的负反馈?反馈电阻 R_F 应从何处引至何处?(1)减小输入电阻,增大输出电阻;

(2) 稳定输出电压,此时输入电阻增大否? (3) 稳定输出电流,并减小输入电阻。

图17.03 习题17.2.3的图

17.2.5 当保持收音机听的音量不变,能否在收音机的放大电路中引入负反馈来减小外部干扰信号的影响?负反馈能不能抑制放大电路内部出现

的干扰信号?

17.2.6有一负反馈放大电路,已知A=300,F=0.01。试问: (1) 闭环电压放大倍数 A_r 为多少? (2) 如果A发生 $\pm 20\%$ 的变化,则 A_r 的相对变

化为多少?

17.2.7 有一同相比例运算电路,如图17.2.1所示。已知 A_{uo} =1000,F=±0.049。如果输出电压 u_o =2V,试计算输入电压 u_i ,反馈电压 u_f 及净输

入电压ud。

17.2.9 已知一个串联电压负反馈放大电路的电压放大倍数 A_{uf} =20,当其基本放大电路的电压放大倍数 A_{uo} 相对变化了+10%, A_{uf} 的相对变化应

小于+0.1%, 试问F和A₁₁₀各为多少?

17.3.1图17.04是用运算放大器构成的音频信号发生器的简化电路。(1) R_1 大致调到多大才能起振?(2) R_p 为双联电位器,可以0调到14.4k

Ω, 试求振荡频率的调节范围。

17.3.5图17.07 (a) 和 (b) 利力电感三点式和电容三点式振荡电路,试用相位条件判别它们能产生自激振荡,

图17.07 习题17.3.5的图

笙18音

18.1.1 在图18.01中,已知 R_L =80 Ω ,直流电压表V的读数为110V,试求:(1)直流电流表A的读数;(2)整流电流的最大值;(3)交流电压表 V_1 的读数;(4)变压器二次侧电流的有效值。二极管的正向压降忽略不计。

图18.01 习题18.1.1的图

18.1.6 有一整流电路如图18.03所示,(1)试求负载电阻 R_{L1} 和 R_{L2} 上整流电压的平均值 U_{O1} 和 U_{O2} ,并标出极性;(2)试求二极管 D_1 , D_2 , D_3 中的平均电流 I_{D1} , I_{D2} , I_{D3} 以及各管所承受的最高反向电压。

图18.03 习题18.1.6的图

18.2.3 今要求负载电压 U_O =30V,负载电流 I_O =150mA。采有单相桥式整流电路,带电路滤波器。已知交流频率为 $50H_Z$,试选用管子型号和滤

波电容器,并与单相半波整流电路比较,带电容滤波器后,管子承受的最高反向电压是否相同?

18.3.2 如何连接图18.08中的各个元器件以及接"地"符号才能得到对"地"为±15V的直流稳压电源,并写出其导通路径。

2018/9/17

图18.08 习题18.3.2的图

18.3.3 某稳压电源如图18.09所示,试问: (1)输出电压 U_O 的极性和大小如何? (2)电容器 C_1 和 C_2 的极性如何?它们的耐压应多高?(3)负载电阻 R_L 的最小值约为多少?(4)如将稳定管 D_Z 接反,后果如何?(5)如 R=0,又将如何?

图18.09 习题18.3.3的图

18.3.5 在图18.10中,试求输出电压UO的可调范围是多大?

18.3.6 在图18.11中,试求输出电压U₀的可调范围是多少?

图18.11 习题18.3.6的图

第20章

20.2.1 如果与门的两个输入端中,A为信号输入端,B为控制端。设输入A的信号波形如图20.01所示,当控制端B=1和B=0两种状态时,试画出输出波形。如果是与非门、或门、或非门则又如何,分别画出输出波形。最后总结上述四种门电路的控制作用。

20.2.2 试画出图20.02中与非门输出Y的波形

图20.02 习题20.2.2的图

20.2.3 在图20.03的门电路中,当控制端C=1和C=0两种情况时,试求输出Y的逻辑式和波形,并说明该电路的功能。输入A和B的波形如图中所示。

图20.03 习题20.2.3的图

20.5.2 用与非门和非门实现以下逻辑关系, 画出逻辑图;

- (1) Y=AB+AC;
- (2) Y=A+B+C;
- (3) Y=AB+ (A+B) C;
- (4) Y=AB+AC+ABC

20.5.4 写出图20.06所示两图的逻辑式

图20.06 习题20.5.4的图

20.5.5 应用逻辑代数运算法则化简下列各式:

- (1) $Y = AB + \overline{AB} + A\overline{B}$;
- (2) $Y = ABC + \overline{A}B + AB\overline{C}$;
- (3) $Y = \overline{(A+B)+AB}$.
- (4) $Y = (AB + A\overline{B} + \overline{A}B) (A + B + D + \overline{A}\overline{B}\overline{D})$
- (5) $Y = ABC + \overline{A} + \overline{B} + \overline{C} + D$

20.5.7 应用卡诺图化简下列各式:

- (1) $Y = AB + \overline{A}BC + \overline{A}B\overline{C}$;
- (2) $Y = A\overline{B}\overline{C}\overline{D} + \overline{A}B\overline{C}D + \overline{A}BCD + A\overline{B}C\overline{D}$;
- (3) $Y = A\overline{B} + B\overline{C}\overline{D} + ABD + A\overline{B}C\overline{D}$:
- (4) $Y = A + \overline{AB} + \overline{ABC} + \overline{ABC}D$:

20.6.2 证明力20.07 (a) 和 (b) 两电路具有相同的逻辑功能

(a) (b) 图20.07 习题20.6.2的图

20.6.3 列出逻辑状态表分析图20.08所示电路的逻辑功能

20.6.5 某一组合逻辑电路如图20.09所示, 试分析其逻辑功能

图20.09 习题20.6.5的图

20.6.9 图20.12是两处控制照明灯的电路,单刀双投开关A装在一处,B装在别一处,两处都可以开闭电灯。设Y=1表示灯亮,Y=0表示灯灭;A=1表示开关向上扳,A=0表示开关向下扳,B亦如此。试写出灯亮的逻辑式。

20.6.12 甲、乙两校举行联欢会,入场券分红、黄两种,甲校学生持红票入场,乙校学生持黄票入场。会场入口处如设一自动检票机:符合条件者可放行,否则不准入场。试画出此检票机的放行逻辑电路。20.9.1 在图20.15中,若u为正弦电压,其频率f为1H_Z,试问七段LED数码管显示什么字母?

图20.15 习题20.9.1的图

第21章

21.1.1 当由与非门组成的基本RS触发器的 \bar{R}_D 和 \bar{S}_D 端加上图21.01所示的波形时,试画出Q端的输出波形。设初始状态为0和1两种情况。

21.1.2当由或非门组成的基本RS触发器[图21.1.3(a)]的 S_D 和 R_D 端加上图21.02所示的波形时,试画出Q端的输出波形。设初始状态为0和1两种情况。

21.1.3当可控RS触发器[图21.1.4(a)]的CP, S和R端加上图21.03所示的波形时, 试画出Q端的输出波形。设初始状态为0和1两种情况。

图21.03 习题21.1.3的图 21.1.4 当主从型JK触发器的 J, K端外型地上图2104所示的波形时,试画出Q端的输出波形。设初始状态为0。

图21.04 习题21.1.4的图

21.1.5 已知时钟脉冲CP的波形如图21.1.5所示,试分别画出图21.05中各触发器输出端Q的波形。设它们的初始状态均为0。指出哪个具有计数功能。

图21.05 习题21.1.5的图

21.1.6 在图21.06的逻辑图中,试画出 Q_1 和 Q_2 端的波形,时钟脉冲CP的波形如图21.1.5所示。如果时钟脉冲的频率是 $4000H_Z$,那么 Q_1 和 Q_2 波形的频率各为多少?设初始状态 Q_1 = Q_2 =0。

图21.06 习题21.1.6的图

21.1.7根据图21.07的逻辑图及相应的CP, \overline{R}_D 和D的波形,试画出 Q_1 端和 Q_2 端的输出波形,设初始状态 $Q_1=Q_2=0$ 。

图21.07 习题21.1.7的图

21.1.8电路如图21.08所示,试画出 Q_1 和 Q_2 的波形。设两个触发器的初始状态均为0。

图21.08 习题21.1.8的图

21.1.10 试分析图21.10所示的电路,画出 Y_1 和 Y_2 的波形,并与时钟脉冲CP比较,说明电路功能。设初始状态Q=0。

图21.10 习题21.1.10的图

21.3.2 74LS293型计数器的逻辑图、外引线排列图及功能表如图21.13所示。它有两个时钟脉冲输入端 CP_0 和 CP_1 。试问(1)从 CP_0 输入, Q_0 输出时,是几进制计数器?(2)从 CP_1 输入, Q_3 , Q_2 , Q_1 输出时,是几进制计数器?(3)将 Q_0 端接到 CP_1 端,从 CP_0 输入, Q_3 , Q_2 , Q_1 , Q_0 输出时,是几进制计数器?图中 R_0 (1)和 R_0 (2)是清零输入端,当该两端全为1时,将四个触发器清零。

21.3.3 将74LS293接成图21.14所示的两个电路时,各为几进制计数器?如何用它接成七进制计数器?

图21.14 习题21.3.3的图

21.3.6试列出图21.15所示计数器的状态表,从而说明它是一个几进制计数器。设初始状态为000。

图21.15 习题21.3.6的图