

Ikatan Kimia

PENDAHULUAN

- 🦠 **Ikatan kimia** adalah ikatan antara atom-atom untuk membentuk senyawa, sehingga mencapai kestabilan.
- 🔪 Atom yang belum stabil menginginkan dirinya agar stabil seperti unsur gas mulia.
- 🔦 Oleh karena itu, untuk mencapai kestabilan, suatu atom membentuk konfigurasi gas mulia, yaitu:
 - 1) Duplet, memiliki elektron valensi 2, seperti
 - 2) Oktet, memiliki elektron valensi 8, seperti Ne, Ar, Kr, Xe, Rn.
- 🦠 Namun, kadang-kadang terjadi penyimpangan oktet, dimana elektron valensi jumlahnya lebih dari 8, namun atom tetap stabil.
- 🦠 **Ikatan kimia** terdiri dari tiga jenis: ikatan ion, ikatan kovalen, dan ikatan logam.

IKATAN ION

- 🦠 **Ikatan ion** adalah ikatan yang terjadi:
 - 1) Berdasarkan serah terima/perpindahan elektron.
 - 2) Antara ion positif dan ion negatif.
 - 3) Antara unsur logam dan non-logam.
 - 4) Antara unsur golongan IA dan IIA (+) dan golongan VIA dan VIIA (-).
- 🥄 Contoh senyawa ion antara lain: NaCl, MgCl₂, CaCl₂, KOH, KCl, dll.
- 🔪 Jalan terjadinya ikatan ion:

Contoh:

Atom Na berikatan dengan atom Cl,

Konfigurasi:

11Na :2.8.1 Na akan membentuk ion dan memberi positif

elektron kepada Cl agar mencapai kestabilan.

:2.8.7 Cl akan membentuk ion 19**Cl** negatif dan menerima elektron dari Na agar mencapai kestabilan.

Reaksi yang dapat dituliskan:

Na → Na⁺ + e 2.8

2.8.8 Cl + e → Cl⁻

Rumus molekul:

Na⁺ + Cl⁻ → NaCl

Hasil akhir adalah terbentuknya senyawa NaCl yang stabil.

Atom Mg berikatan dengan atom Cl,

Konfigurasi:

12Mg : 2.8.2 Mg akan membentuk ion

dan memberi positif elektron kepada Cl agar

mencapai kestabilan.

:2.8.7 Cl akan membentuk ion 19**Cl**

negatif dan menerima elektron dari Na agar mencapai kestabilan.

Reaksi yang dapat dituliskan:

Mg → Mg²⁺ + 2e 2.8

2.8.8 Cl + e → Cl⁻

Karena kedua atom muatannya tidak seimbang, maka hasil akhir dari ikatan dibutuhkan dua atom Cl untuk menerima 2 elektron atom Mg.

Reaksi yang dapat dituliskan:

→ Mg²⁺ + 2e Mg

2Cl + 2e → 2Cl⁻

Rumus molekul:

Mg²⁺ + 2Cl⁻ → MgCl₂

Hasil akhir adalah terbentuknya senyawa MgCl₂ yang stabil.

Atom Ca berikatan dengan atom S,

Konfigurasi:

20Ca :2.8.8.2 Ca akan membentuk ion

positif dan memberi elektron kepada S agar

mencapai kestabilan.

16**S** :2.8.6 S akan membentuk ion negatif dan menerima

> elektron dari Ca agar mencapai kestabilan.

Reaksi yang dapat dituliskan:

Ca → Ca²⁺ + 2e 2.8.8 → S²⁻ 2.8.8 S + 2e

Rumus molekul:

 $Ca^{2+} + S^{2-} \rightarrow CaS$

Hasil akhir adalah terbentuknya senyawa CaS yang stabil.

C. IKATAN KOVALEN

- 🔌 Ikatan kovalen adalah ikatan yang terjadi:
 - 1) Berdasarkan pemakaian pasangan elektron bersama.
 - 2) Antara unsur non-logam dan non-logam.
 - 3) Ikatan kovalen terdiri dari tiga jenis: ikatan kovalen biasa, ikatan kovalen rangkap, ikatan kovalen koordinat.

- **Natan kovalen** dituliskan menggunakan rumus Lewis dan rumus bangun∕struktur molekul.
 - Rumus Lewis (rumus elektron)
 Rumus Lewis menggambarkan bagaimana keadaan elektron-elektron valensi atomatom saling berpasangan dan saling berikatan secara kovalen.
 - Rumus bangun (struktur molekul)
 Rumus bangun menggambarkan bagaimana cara ikatan kovalen yang digunakan atomatom.

- a. Garis satu (–) melambangkan ikatan kovalen biasa.
- b. Garis dua (=) atau tiga (≡) melambangkan ikatan kovalen rangkap.
- c. Tanda panah (→) melambangkan ikatan kovalen koordinat.
- **Contoh senyawa kovalen** antara lain: H₂O, HF, HCl, CO₂, NH₃, Cl₂, I₂, Br₂, O₂, dll.

IKATAN KOVALEN BIASA

Ikatan kovalen biasa adalah ikatan kovalen yang jumlah pemakaian elektron bersamanya adalah satu pasang.

Hidrogen klorida (HCl)		Air (H₂O)				
Konfigurasi	₁ H :1	• Konfigurasi	₁ H :1		•	
	17 Cl : 2 . 8. 7	X	Komitgurast	80 :2.	6	X
Rumus Lewis	H ° Cl*		Rumus Lewis	H [®] Ö [®] H		
Rumus bangun	H – Cl		Rumus bangun	H - O - H		
	Amonia (NH₃)			Metana (CH ₄)		
Konfigurasi	1 H :1	•	Konfigurasi	¹H ∶1		•
Komigurasi	7N : 2.5	X	Komiguiast	6C : 2.	4	X
Rumus Lewis	H * N * H	1	Rumus Lewis	Н	H *C*H H	
Rumus bangun	H – N – F H	1	Rumus bangun	Н	H C – H H	

IKATAN KOVALEN RANGKAP

Ikatan kovalen rangkap adalah ikatan kovalen yang jumlah pemakaian elektron bersamanya lebih dari satu pasang.

Oksigen (O ₂)		Nitrogen (N₂)		
Konfigurasi	80 : 2 . 6	Konfigurasi	7N : 2 . 5	
Rumus Lewis	00 * * *	Rumus Lewis	*N**N*	
Rumus bangun	O = O	Rumus bangun	$N \equiv N$	

IKATAN KOVALEN KOORDINAT

Ikatan kovalen koordinat adalah ikatan kovalen yang pemakaian elektron bersamanya hanya berasal dari satu atom.

Amonium (NH ₄ ⁺)		Amino boron trifluorida (BF3NH3)		
Rumus Lewis	H **** H *****H H	Rumus Lewis	H F B F F F F F F F F F F F F F F F F F	
Rumus bangun	H H – N→H H	Rumus bangun	H F H − N →B − F H F	
	NH₃ + H⁺ → NH₄⁺ NH₃ dan H⁺ menggunakan elektron valensi bebas dari NH₃ bersama.		BF₃ + NH₃ → BF₃NH₃ BF ₃ dan NH ₃ menggunakan elektron valensi bebas dari NH ₃ bersama.	
Asam sulfat (H ₂ SO ₄)		Asam nitrat (HNO ₃)		
Rumus Lewis	H:0:5:0:H	Rumus Lewis	HON N	
Rumus bangun	O ↑ H-O-S-O-H ↓ O	Rumus bangun	O H − O − N → O	

D. KEPOLARAN

- Kepolaran senyawa adalah perilaku suatu zat yang menyerupai medan magnet, yaitu terdapat kutub sementara yang disebut dipol.
- - 1) Senyawa kovalen polar

Adalah senyawa kovalen yang dibentuk oleh dua unsur berbeda, dimana keelektronegatifan pasti berbeda, sehingga menghasilkan dipol.

Contoh: HCl, HBr, HI, H₂O.

2) Senyawa kovalen non-polar

Adalah senyawa kovalen yang dibentuk oleh dua unsur sama, dimana keelektronegatifan pasti sama.

Contoh: H_2 , Cl_2 , O_2 , N_2 , dan senyawa poliatomik lainnya.

Tingkat kepolaran senyawa dinyatakan dalam momen dipol dalam satuan Coulumb meter. Senyawa non-polar memiliki momen dipol nol.

E. PERBEDAAN IKATAN ION DAN KOVALEN

Senyawa ionik dan kovalen memiliki beberapa perbedaan sifat, antara lain:

Sifat	Senyawa ionik	Senyawa kovalen
Titik leleh dan titik didih	tinggi	rendah
Wujud keadaan kamar	padat	padat, cair, dan gas
Volatilitas (kemudahan menguap)	non-volatil	volatil
Kelarutan pada pelarut polar	larut (pada air)	tidak larut
Kelarutan pada pelarut non-polar	tidak larut	larut
Daya hantar listrik larutan	menghantar	menghantar
Daya hantar listrik lelehan	menghantar	tidak menghantar

F. IKATAN LOGAM

- Natan logam adalah ikatan yang terjadi:
 - 1) Antar atom-atom unsur logam.
 - 2) Antara elektron valensi logam yang membentuk lautan valensi.
- Unsur logam kulit terluarnya relatif longgar, karena memiliki sedikit elektron valensi. Elektron valensi tersebut mengalami delokalisasi.
- ▶ Delokalisasi adalah keadaan dimana posisi elektron tidak tetap dan berpindah-pindah, sehingga berbaur menyerupai awan/lautan valensi.
- Awan/lautan valensi tersebut bertindak sebagai perekat atom logam yang saling tarik-menarik dan berdekatan satu sama lain.
- Natan logam menjadikan logam:
 - 1) Keras namun lentur.
 - 2) Tidak mudah patah meski ditempa.
 - 3) Titik leleh dan titik didih yang tinggi.
 - 4) Konduktor listrik dan panas yang baik.