EPITA / InfoS2		Mai 202	
NOM ·	Pránom ·	Groupe:	

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (9 points – pas de point négatif)

Soit le circuit ci-dessous. L'interrupteur est ouvert et le condensateur est déchargé.

- 1. Il y a continuité du courant dans le condensateur.
 - a. VRAI

- b. FAUX
- 2. A t = 0, on ferme l'interrupteur K. Remplir le tableau suivant. Vous exprimerez vos réponses en fonction de E et R.

	i_1	i_2	и
$t = 0^+$			
$t \to \infty$			

Une fois le régime permanent établi, on ouvre l'interrupteur.

3. On pose alors t'=0. Remplir le tableau suivant. Vous exprimerez vos réponses en fonction de E et R.

	i_1	i_2	и
$t'=0^+$			

- 4. Quelle est l'unité du produit $C\omega$?
 - a. Des Siemens
- b. Des Hertz
- c. Des Ampères
- d. Des Ohms

Soit une tension sinusoïdale $u(t)=U.\sqrt{2}.\sin{(\omega t+\varphi)}$. On note \underline{U} , l'amplitude complexe associée à u(t).

- 5. Que peut-on dire de U ?
 - a. Il s'exprime en Ampère
 - b. Il n'a pas d'unité

- c. Il représente la valeur maximale de u(t)
- d. Il s'exprime en Volt

- 6. Quel est le module de \underline{U} ?
 - a. *φ*
 - b. ω

- c. *U*
- d. $\omega t + \varphi$

 $v_e(t) = R_1 = 2R$ $R_1 = 2R$ C = R $V_S(t)$

- Soit le filtre ci-contre, où $v_e(t) = V_E.\sqrt{2}.\sin(\omega t)$. (Questions 7 à 10) :
- 7. Quelle est l'impédance complexe Z_{eq} du dipôle équivalent à l'association de R_2 et $\mathcal C$?

a.
$$\underline{Z_{eq}} = \frac{jRC\omega}{R+jC\omega}$$

b.
$$Z_{eq} = \frac{R}{1 + jRC\omega}$$

c.
$$\underline{Z_{eq}} = \frac{jC\omega}{1+jRC\omega}$$

d.
$$Z_{eq} = \frac{RC}{R+C}$$

8. L'amplitude complexe de la tension v_s est donnée par :

a.
$$\underline{V_S} = \frac{1}{3-2jRC\omega}V_E$$

b.
$$\underline{V_S} = \frac{V_E \sin(\omega t)}{3 + 2iRC\omega}$$

c.
$$\underline{V_S} = \frac{1}{3R + iC\omega}V_E$$

d.
$$\underline{V_S} = \frac{1}{3 + 2jRC\omega} V_E$$

- 9. De quel type de filtre s'agit-il?
 - a. Passe-Haut

c. Passe-Bas

b. Passe-Bande

- d. Coupe-Bande
- 10. Quel filtre obtient-on si on remplace R_2 par une bobine ?
 - a. Passe-Bas

c. Coupe-Bande

b. Passe-Bande

d. Passe-Haut

Exercice 2. Régime sinusoïdal forcé : Etude d'un filtre (11 points)

Soit le circuit suivant, où R'=R:

1. Etude Qualitative:

 a.	Donner un schéma équivalent en très basse fréquence (TBF) de ce filtre. En déduire la limite de la tension v_s de ce filtre en TBF.
b.	Donner un schéma équivalent en très haute fréquence (THF) de ce filtre. En déduire la limite de la tension v_{s} de ce filtre en THF.

c. Conclure sur la nature et l'ordre de ce filtre.

d.	Quel type de filtre obtient-on si on inverse la bobine et le condensateur ? Justifiez votre réponse.

2. Etude quantitative:

a. Déterminer $\underline{E_{th}}$ et $\underline{Z_{th}}$ pour que le circuit précédent (Figure 1) soit équivalent à celui-ci-contre. Détaillez votre raisonnement.

Figure 2

b.	En utilisant le schéma de la figure 2, exprimer l'amplitude complexe $\underline{V_S}$ associée à la tension $v_S(t)$ en fonction de $\underline{E_{th}}$ et de $\underline{Z_{th}}$, puis, en fonction de R , L , C , ω et $\underline{V_E}$.
	En déduire la fonction de transfert du filtre, ainsi que son amplification $A(\omega)$.

