- Utilizando do repositório UCI as bases de dados IRIS e GLASS
 - Investigar SVMs
 - Três kernels diferentes
 - o Particionar os dados como no exercício de métodos probabilísticos
 - o Ajustar parâmetros por tentativa e erro
 - Comparar com resultados do kNN, com os dos métodos probabilísticos e das redes neurais

- Sejam agora cinco classificadores
 - Predições iguais
 - \blacksquare Taxa de erro = 0.4
 - Predições independentes
 - Taxa de erro = ?

• Seja o seguinte cadastro de pacientes:

Nome	Febre	Enjôo	Manchas Dores	Diagnóstico
João	sim	sim	pequenas sim	doente
	• • • • • • • • • • • • • • • • • • • •		•	
Pedro	não	não	grandes não	saudável
Maria	sim	sim	pequenas não	saudável
José	sim	não	grandes sim	doente
Ana	sim	não	pequenas sim	saudável
Leila	não	não	grandes sim	doente

- Avaliar o desempenho de bagging, boosting, stacking e random forest e XGBoost
 - o Usar CART como classificador base e combinador
- Como seriam classificados os exemplos?
 - (Luis, não, não, pequenas, sim)
 - o (Laura, sim, sim, grandes, sim)

- Avaliar o desempenho de bagging, boosting, stacking, random forest e XGBoost
 - Usar CART como classificador base e combinador
 - o Comparar com algoritmo CART usado de forma isolada
- Usar conjunto de dados glass da UCI
- Particionar os dados utilizando 10-fold cross-validation

