ASSIGNMENT 3 PRESENTATION JINGXUAN FENG \$3843790

SUGGESTED APPROACH TO COLLABORATIVE FILTERING (CF)

- Combining user-based and item-based approaches
- Why combining the two approaches?
- Use correlation inside a user-item matrix
- Possible issue of either similar users or items or both at the same time

LOCATING SIMILAR NEIGHBOURS

First step is to locate similar neighbours for both users and items using the following:

$$Sim(a,u) = \frac{\sum_{i \in I(a) \cap I(u)} (r_{a,i} - \overline{r}_a) \cdot (r_{u,i} - \overline{r}_u)}{\sqrt{\sum_{i \in I(a) \cap I(u)} (r_{a,i} - \overline{r}_a)^2} \cdot \sqrt{\sum_{i \in I(a) \cap I(u)} (r_{u,i} - \overline{r}_u)^2}},$$

$$(1)$$

$$Sim(i,j) = \frac{\sum_{u \in U(i) \cap U(j)} (r_{u,i} - \overline{r}_i) \cdot (r_{u,j} - \overline{r}_j)}{\sqrt{\sum_{u \in U(i) \cap U(j)} (r_{u,i} - \overline{r}_i)^2} \cdot \sqrt{\sum_{u \in U(i) \cap U(j)} (r_{u,j} - \overline{r}_j)^2}},$$

$$(2)$$

• Significance rating between 0-1 & corresponding equations:

$$Sim'(a, u) = \frac{Min(|I_a \cap I_u|, \gamma)}{\gamma} \cdot Sim(a, u), \tag{4}$$

$$Sim'(i,j) = \frac{Min(|U_i \cap U_j|, \delta)}{\delta} \cdot Sim(i,j), \tag{5}$$

OVERCOMING FLAWS OF TOP-N NEIGHBOUR SELECTION

- If selected neighbours are dissimilar with the current user, prediction of missing data will be inaccurate.
- Threshold eta is used to overcome the flaws of Top-N neighbour selection

$$S(u) = \{u_a | Sim'(u_a, u) > \eta, u_a \neq u\},$$
 (6)
$$S(i) = \{i_k | Sim'(i_k, i) > \theta, i_k \neq i\},$$
 (7)

FURTHER FORMULAS USED

• Where S(u) = 0, the missing value is calculated by:

$$P(r_{u,i}) = \overline{i} + \frac{\sum_{i_k \in S(i)} Sim'(i_k, i) \cdot (r_{u,i_k} - \overline{i}_k)}{\sum_{i_k \in S(i)} Sim'(i_k, i)}.$$
 (10)

• If the length of S(i) is equal to zero, the missing value can be calculated by:

$$P(r_{u,i}) = \overline{u} + \frac{\sum_{u_a \in S(u)} Sim'(u_a, u) \cdot (r_{u_a,i} - \overline{u}_a)}{\sum_{u_a \in S(u)} Sim'(u_a, u)}.$$
 (9)

• If both S(i) and S(u) are not equal to zero, the missing value can be by:

$$P(r_{u,i}) = \lambda \times (\overline{u} + \frac{\sum_{u_a \in S(u)} Sim'(u_a, u) \cdot (r_{u_a, i} - \overline{u}_a)}{\sum_{u_a \in S(u)} Sim'(u_a, u)}) + \frac{\sum_{u_a \in S(u)} Sim'(i_k, i) \cdot (r_{u, i_k} - \overline{i}_k)}{\sum_{i_k \in S(i)} Sim'(i_k, i)}, \quad (8)$$

• If both S(i) and S(u) are equal to zero the prediction of missing data $P(r_{u,i})$ is defined as follows:

$$P(r_{u,i}) = 0. (11)$$

WHY IS THE SOLUTION PROVIDED VIABLE?

- The method detailed in the report can tackle the missing value problem in CF
- With only 5 parameters, it is possible to tune these parameters
- Alleviates the potential negative influences from bad predictions

MY CODE IMPLEMENTATION

- Implemented the equations using some methods from Numpy
- 2 methods to calculate the similarity score between two users and two items
 - Sim_U (a , u , GAMMA)
 - Sim_I (I , j , DELTA)
- 2 methods to find similar users and items
 - Sim_users (u_indx , GAMMA , ITA)
 - Sim items (i indx, DELTA, THETA)
- If / else statements used to implement equations 8-11
 - P_u (u_indx , i_indx , GAMMA , ITA)
 - P_i (u_indx , i_indx , DELTA , THETA)
 - P_ui (u_indx , i_indx , LAMBDA , DELTA , THETA , GAMMA , ITA)
- Searching the 2D array for missing value using 2 for loops.

REFERENCES

- [1] H. Ma, I. King and M. R. Lyu, "Effective Missing Data Prediction for Collaborative Filtering", p. 8, 2007. [Accessed 11 June 2021].
- [2] H. Singh, "Methods in Python A Key Concept of Object Oriented Programming", Analytics Vidhya, 2020. [Online]. Available: https://www.analyticsvidhya.com/blog/2020/11/basic-concepts-object-oriented-programming-types-methods-python/. [Accessed: 12- Jun- 2021].