Extraction de Connaissances

Ch. II & III : Représentation et Préparation des données

Ecole Centrale de Lyon

2017-2018

Alexander Saidi

Octobre 2017

2 Concepts, instances et attributs

- Rappel de l'essentiel du cours précédent
- Instance, attribut, concepts
- Préparation des données

A consulter (par vous mêmes):

- Représentation de connaissances par diverses méthodes d'apprentissage
- Interprétation des résultats

2.1 ECD: un champ multidisciplinaire

Rappel:

FIGURE 2.1 – ECD et autres disciplines

2.2 Généralisation (Induction) comme Recherche

- L'apprentissage automatique : apprentissage de **Concepts**.
- Sémantique : (des idées intuitives!) : généralisation par la recherche/fouille
 - Recherche dans l'espace de description de concepts possibles pour en trouver un qui correspond aux données.
 - → On énumère tous les ensembles de règles possibles puis on prend celui qui convient à notre base de données .

- Trop complexe: le nombre d'ensembles possibles sans limite (mais fini).
 - → Le nombre d'attributs / valeurs par attribut / règles sont **finis**
 - → Avec discrétisation des numériques
- L'exemple météo : il y 4 x 4 x 3 x 3 x 2 = 288 possibilités pour chaque règle.
 - \blacktriangleright Même si l'on se limite aux ensemble de 14 règles (14 exemples) $288^{14} \simeq 2.7 \times 10^{34}$

- La méthode : énumérer les règles puis les tetster :
 - ⇒ Un **exemple positif** élimine les concepts qui le contredisnet (qu'il ne "match" pas)
 - ⇒ Un **exemple négatif** élimine ceux qu'il "match".
 - → Donc, chaque exemple peut réduire l'ensemble des descriptions.
- S'il en reste (un ou plusieurs), c'est le bon ensemble de concepts recherché
- Un nouvel exemple doit "matcher" tous les concepts restants
 - ightharpoonup S'il rate le "match", l'exemple sera hors le concept (ightharpoonup classification).
 - **⇒** S'il match certain et pas d'autres → ambiguïté.
- → Dans ce cas, si la classe du nouvel exemple est connue d'avance, on peut élaguer
 l'ensemble de concepts qui le classifient mal (sans la remise en cause).

Comment fait-on d'habitude?

- → Outre les méthodes et modèles purement statistiques ...
- ► La plupart des méthodes de DM voit la généralisation comme recherche

• Au lieu d'énumérer et d'enlever celle qui ne convient pas :

Appliquer un processus *Hill Climbing* dans l'espace des concepts pour trouver la description qui "match" le mieux les exemples (selon un critère prédéfini).

- ➡ Processus qui avance de proche en proche
- → Hill Climbing : le maximum local peut être différent du maximum global
- **►** La plupart des algorithmes utilise des heuristiques
- → On ne peut garantir la (meilleure intrinsèquement) description.

2.2.1 Enumération de l'espace de concepts : Espace de Versions

- L'espace de description de concepts consistents
- Complètement défini par 2 ensembles :
- \Rightarrow **L** : les descriptions *les plus spécifiques* qui couvrent tous les exemples positifs et aucun exemple négatif (de manière spécifique).
- \Rightarrow **G**: les descriptions *les plus générales* qui ne couvrent aucun exemple négatif mais tous les exemples positifs (de manière générale).
- L (least) et G (greatest) general descriptions
- On a juste besoin de maintenir et mettre à jour L et G

• Inconvénients : C'est encore coûteux en temps de calcul et..

Permet une définition théorique et claire mais ne résout pas de problème pratique!

\square Exemple :

Soit le vocabulaire : couleurs \in {rouge, vert}, animaux \in {vache, poule}

Ex. positifs	Ex. négatifs	L	G
<>		{ }	{< * , * >}
<vache, verte=""></vache,>		{ <vache, verte="">}</vache,>	{< * , * >}
	<poule, rouge=""></poule,>	{ <vache, verte="">}</vache,>	{<*, verte>, <vache, *="">}</vache,>
<poule, verte=""></poule,>		{<*, verte>}	{<*, verte>, <vache, *="">}</vache,>

• Si l'on ajoute <vache, rouge>?:

 \rightarrow Si ex. positif : ajouter < vache, *> à L

ightarrow Si ex. négatif : retirer <vache, *> de G

Inconsistance si les exemples positifs et négatifs se contredisent.

2.2.2 Algorithme candidate-elimination

Initialiser L et G

Pour tout exemple e:

Si e est positif:

Supprimer tout element de G qui ne couvre pas e

Pour tout $r \in L$ qui ne couvre pas e:

Remplacer r par toutes ses generalisations les plus <u>spécifiques</u> qui couvrent e

et qui sont plus specifiques que les elements dans G

Supprimer tout element de L qui est plus général que les autres elements de L

Si e est negatif:

Supprimer tout elements de L qui couvre e

Pour tout element $r \in G$ qui couvre e:

Remplacer r par toutes ses spécialisations les plus <u>générales</u> qui ne couvre pas e

et qui sont plus généraux les elements dans L

Supprimer tout element de G qui est plus spécifiques que les autres elements de G

2.2.3 Défis et Challenges de l'Extraction de Connaissances

- Echelle Larges (Scalability), WEB
- Réduction de Dimensions (complexité)
- Données Complexes et hétérogènes (texte + image + son + vidéo)
 - ➡ e.g. classification pages WEB
- Qualité de données
- La propriété et la distribution des données
- Préservation de confidentialité (anonimisation)
- Streaming de données (on line, WEB, ...)
- etc...

2.3 Le processus EC : les étapes

- 1. Assemblage des données
- 2. Présentation au logiciel DM
- 3. Interpréter les résultats (& expertise)
- 4. Appliquer les résultats aux nouvelles instances.

• Assemblage de données :

- ightarrow Les données réparties, sur plusieurs DBs, multi sites.
- ightarrow Il faut souvent (au moins) quelques milliers d'instances pertinentes.
- \rightarrow Leur représentativité.
- \rightarrow Phase longue, difficile mais importante.
- → Les données peuvent être accédées via un entrepôt de données, une base de données ou même une feuille de calculs (WEB et DM Textuel, ...)

N.B. : Entrepôt de données (DataWare house) : données sur le même sujet (e.g. les clients) ; données optimisées pour les transactions, redondance possibles, ...

FIGURE 2.2 - Processus simplifié de DM

• Méthodes DM:

- \rightarrow Supervisé ou non?
- → Quelles données pour l'apprentissage / test?
- → Quels attributs utiliser? (c'est une aide)
- → Paramètres d'apprentissage (selon la méthode : Nb. clusters, support, confiance, ..)

• Interprétation des résultats :

Découvertes utiles? Itération de DM pour ajouter des attributs/instances, ...

- Application des Résultats aux nouvelles instances .
- \rightarrow Si l'on découvre que le produit X est presque toujours acheté avec le produit Y,
- ightarrow E.g., on découvre que ceux qui achètent les <u>jeudis</u> des <u>couches pour bébé</u> achètent aussi de la bière (WE en famille!).

2.4 Principales sorties de l'EC (rappel)

2.5 Les Entrées, Sorties, Instances

- Les entrées : instances et attributs
 - ightharpoonup La fonction (EC) : **Entrées** ightharpoonup **Concepts**
 - ➤ Connaître ces entrées est plus important que le traitement!
- Les Sorties = Concepts : ce qui doit être appris = le résultat de l'apprentissage .
 - → Doit être intelligible, compréhensible, discuté, critiqué.
 - ► Il est aussi opérationnel → doit pouvoir être appliqué aux données.

• Instances:

- ➡ la forme des data en entrée (valeurs nominales/catégorielles pour les attributs),
- ➡ chaque instance est individuelle et <u>indépendante</u>
- ➡ chaque instance représente un exemple de ce qui doit être appris.

2.6 Préparation des données

• Récupération, intégration, normalisation, agrégation, assemblage, passage aux Bool.

Formats courants:

- \Rightarrow format **excel** (colonnes séparées par tab ou virgule etc.)
- ⇒ format **ARFF** (utilisé dans **Weka** et autres Extraction de Connaissances)
- ⇒ Autres formats propriétaires

2.6.1 Exemple format ARFF

```
% ARFF file for weather data with some numeric features
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}
@data
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
```

2.6.2 Normalisation des valeurs numériques

- ullet Données numériques normalisées o ramenées dans un intervalle décidé (e.g. [0..1]).
- Exemples de normalisation : (x_i est une valeur)
 - on divise x_i par le $Max(x_i)$: $\boxed{\frac{x_i}{Max(x_i)}}$
 - on soustrait le min puis on divise par la distance max-min :

$$\frac{x_i - Min(x_i)}{Max(x_i) - Min(x_i)}$$

- Standardisation statistiques : centrées réduites
 - on calcule la moyenne μ et l'écart type σ ,
 - on enlève μ de toute valeur, puis diviser par σ : $\left| \frac{x_i \mu}{\sigma} \right|$
 - → Pour les valeurs normalisées : moyenne=0 et écart type=1.

2.6.3 Les valeurs manquantes

• Valeurs manquantes, fausses, inconnues, non pertinentes, ...

• Causes:

- ➡ données non produites en vue de DM,
- ➡ erreurs de frappe,
- → changement de méthode de relevée,
- ➡ fusion de plusieurs DBs différentes,
- → impossibilité de mesure, ...
- Parfois, le manque veut dire quelque chose :
 - ➡ Une valeur non mesurée sur une plante morte
 - → quelque chose de plus que la simple absence :
 - \rightarrow morte avant la fin des mesures \rightarrow temps important?

2.6.4 Valeurs erronées

- La présence d'une valeur négative alors que tout doit être positif
 - \Rightarrow par fois, -1 veut dire "absent"!
 - → Elle peut venir d'erreur de frappe/saisi (c.f. attribut nominal)
 - → Le "-" peut provoquer une nouvelle (fausse) valeur possible
 - → Ou un synonyme (coca et coca-cola, ...)!
- outliers dans des données numériques : souvent détectables.
- Les redondances et données dupliquées
 - ► La répétition peut influencer les résultats
 - → Données plus importantes car 2 fois présentes?

Le format ARFF permet de vérifier les types.

3 Représentation de connaissances (KR)

Chapitre 3

(lecture pour les élèves)

3.1 Représentation des patterns Structurelles

- La sortie d'un système DM = connaissances (concepts, patterns)
- Structure Importante : \rightarrow *Knowledge Representation*.
- ullet Différentes manières de représenter la sortie (\simeq une par technique).
- ullet Comment représenter la sortie est o méthode d'inférence?
- Exemples de sorties : arbre de décision , règles de classification , équation ...

Mais aussi:

- On peut avoir des règles plus complexes : exceptions, relations entre des attributs, ...
- Des formes particulières d'arbres pour prédire des valeurs numériques
- Les représentations à base d'instances s'intéressent beaucoup plus aux exemples qu'aux règles qui gouvernent les valeurs d'attributs.
- Quelques schémas produisent des clusters d'instances...

3.2 Tables de décision

- La plus simple des sorties : comme l'entrée = une table de décision.
- ⇒ On place la classe/décision dans la table
 - → Cette table remplace des règles

Outlook	Humidity	Play
Sunny	High	No
Sunny	Normal	Yes
Overcast	High	Yes
Overcast	Normal	Yes
Rainy	High	No
Rainy	Normal	No

Table 3.1 – Une table de Décision pour l'exemple météo

- "météo" : on regarde les conditions du temps pour dire si l'on joue ou pas.
- ⇒ Certains attributs pas importants pour la sortie
 - \rightarrow la table sera plus simple.
 - \rightarrow Lesquels?

3.3 Arbres de décision

- ullet La stratégie **Diviser pour Conquérir** (divide and conquer) o arbre de décision .
 - ➡ Cf. les exemples <u>lentilles</u> et négociations salariales, ...
- Parcours d'un arbre de décision , test d'attribut p/r à une constante à chaque noeud.
- Autre : comparer <u>deux attributs</u> ou appliquer une <u>fonction</u> sur les attributs.
- \Rightarrow Une feuille de l'arbre donne :
 - \rightarrow une classification qui s'applique aux instances qui arrivent à ce noeud,
 - \rightarrow un ensemble de classification
 - \rightarrow une distribution de probabilités sur toutes les instances.
- Pour classifier une nouvelle instance, on fait les tests noeud par noeud...
 - → Une nouvelle instance trouve (ou pas) de chemin!

Cas des attributs nominaux et Numériques :

- ullet Attribut **nominal** o le nombre de fils d'un noeud = valeurs possibles .
 - → le test ne sera pas refait plus bas dans l'arbre.
- Parfois, les valeurs de l'attribut sont divisées en 2 sous-ensembles :
 - \Rightarrow On prend l'une des 2 branches selon le sous-ensemble dans lequel on tombe.
 - ⇒ L'attribut peut être testé plus d'une fois dans l'arbre.
- Attribut numérique: comparaison $\{=, >, <\}$ p/r à une constante/attribut/...
 - → Tests multiples dans l'arbre possible.
 - → Tests à 3 branches possibles (transformable en 2 fois 2 branches) :
 - \Rightarrow Entiers : =, >, <
 - ⇒ Réels : expression d'intervalles par], [] , [(au-dessous, dans, au-dessus)

• Cas de valeur manquante :

- **→** Quelle branche prendre?
- Dans certains cas, le manque est significatif :
 - → "absent" est une valeur (sens précis) comme une autre
- Dans d'autres cas, il faut un traitement spécial :
 - Sol 1 ⇒ l'instance suit la branche la plus populaire ou
 - **Sol 2** ⇒ l'instance est divisée en pièces (pour suivre plusieurs branches) :
 - ightarrow chaque pièces reçoit un poid entre 0 et 1 (selon le nombre d'instances de chaque branche).
 - \rightarrow classes déduites \rightarrow combinaison des poids ayant conduit aux feuilles.

3.4 Règles de Classification

- Une alternative aux arbre de décision.
- Rappel : format :
 - Antécédent (pré condition) : tests comme dans un arbre de décision .
 - Conséquence : une/plusieurs classe(s) ou une distribution de probabilités .
- Précondition avec des & (ou d'autres expressions) logiques :
- L'ensemble des règles = un OU logique.
 - → Si plus d'une règle s'applique : **conflit**.

• Synonymie entre Règles de Classification et arbres de décision .

De l'arbre de décision aux Règles de Classification :

- Une règle par "path".
 - ⇒ Antécédents : les tests présents sur les noeuds
 - ⇒ Conséquence : la classe de la feuille
- Conversion simple et non ambiguë
- Pas d'ordre dans les règles
- Simplification des règles : enlever des tests (règles) redondants = **élagage**.

Des Règles à l'Arbre:

- Les arbres ne savent pas bien exprimer la disjonction ("OU") entre les règles
 - ightharpoonup Dans un arbre, le "ou" supprime l'ordre sur les fils ightarrow peut poser problème .
 - **►** Exemple (avec 4 attributs booléens {a,b,c,d}):

```
if a and b then x if c and d then x
```

- → Que faire des 2 autres dans chaque cas?
- ⇒ Il faut casser la symétrie et choisir un simple test pour les noeuds de l'arbre.
- \Rightarrow L'arbre contiendra des sous-arbres identiques

Problème de sous-arbre dupliqués (Replicated subtree problem):

• Si le test de **a** est choisi à la racine, la 2e règle doit être répétée 2 fois dans l'arbre

if a and b then x if c and d then x

Figure 3.1 – Une table de Décision pour "Si a & b Alors x / Si c & d Alors x"

FIGURE 3.2 – L'arbre du problème OUx (cas favorable)

Règles à l'arbre : cas favorable (la figure 3.2)

- ⇒ diagramme à gauche = un **OuX** sur 'a' (ou **équivalence** sur 'b').
- \Rightarrow Il faut scinder sur un attribut d'abord (arbre du milieu de la figure).
- ⇒ Les règles reflètent la vrai symétrie (elles ne sont pas plus compactes que l'arbre)

Règles à l'arbre : cas défavorable :

• Règles plus compactes, surtout avec une règle 'par défaut' (mais pas l'arbre).

FIGURE 3.3 - L'arbre avec des sous-arbres dupliqués (cas défavorable)

- Cas plus extrême : 4 attributs $(x, y, z, w) \in \{1, 2, 3\}$ et deux classes a et b.
- \Rightarrow Chaque triangle gris = le sous-arbre à 3 niveaux gris à gauche en bas.
- \Rightarrow Une manière <u>pénible</u> d'exprimer un concept simple!

3.4.1 Règles : suite

- Les règles sont populaires : une règle = une petite "connaissance" indépendante.
- On peut ajouter facilement une règle à un ensemble de règles sans perturber le reste
 - ightharpoonup Mais ajouter un sous-arbre à un arbre ightharpoonup réorganisation de tout l'arbre.

- Un problème : l'indépendance des règles dépend de l'ordre :
 - ⇒ Si exécutées dans l'ordre → une liste de décision (si-alors-sinon inhérent)
 - \Rightarrow Si exécutées pas dans l'ordre \rightarrow Recouvrement, conflit (plusieurs classes)
 - ⇒ Ca n'arrive pas si règles obtenues depuis un arbre de décision
 - → Les redondances sont déjà codées dans l'arbre

Interprétation des règles :

- Si conflit (plusieurs conclusions pour une même instance)
 - \rightarrow Ne pas donner de conclusion du tout!
 - → Prendre la règle la plus *populaire* (la plus appliquée)
 - → Risque de résultats complètement différents
- Si aucune règle ne s'applique
 - \rightarrow Ne pas donner de conclusion du tout!
 - ightarrow Prendre <u>la classe</u> la plus *fréquente* (de l'ensemble d'apprentissage)

Cas particulier : classes booléennes

- Hypothèse : Si l'instance n'est pas dans la classe "Oui", elle sera dans "Non"
- ⇒ Il suffit d'apprendre des règles pour la classe "Oui" + une règle par défaut pour la classe "Non"

Si x=1 & y=1 Alors classe = a

Si z=1 & w=1 Alors classe = a

Sinon classe = b

- ⇒ Hypothèse du monde clos (Close World Assumption = CW)
- ⇒ L'ordre d'interprétation n'a plus d'importance, pas de conflit
- ⇒ Règles sous la forme normale disjonctive (des **OU**s sur des **Et**s)

3.5 Règles d'association

- Prédiction de n'importe quel(s) attribut(s)
- Donnent les **régularités** (corrélations d'attributs) dans une base de données
- Pas destinées à être toutes utilisées comme un ensemble (on fait le tri)
- En général, beaucoup de règles d'association
 - → Choisir les plus prédictives
 - *→ support* et *confiance* élevés
- **Support** = nombre d'instances correctement prédites
- **Confiance** = nombre prédictions correctes
 - ⇒ = une proportion de toutes les instances auxquelles la règle s'applique.

• Exemple :

Si température = froide Alors Humidité = normale {support=4, confiance = 100%}

- → *support*=correctement prédits
 - = nombre de jours qui vérifient l'antécédent (4 dans l'exemple "météo")
- → confiance= proportion des jours froides avec l'humidité normale
 - = 100% dans la base de données (de cet exemple).
- On précise en général ces 2 valeurs (des minima)
 - \rightarrow Dans l'exemple "météo", 58 règles avec $support \geq 2$ et $confiance \geq 95\%$

• Le support peut être spécifié comme un pourcentage de toutes les instances.

3.5.1 Interprétation des règles d'association

• Prudence! Exemple ("météo")

N'est pas un raccourci pour 2 règles séparées

- La règle originale (1) :
 - \rightarrow Le support S et la confiance C mini respectés
 - \rightarrow S exemples avec venteux = faux & jouer = non avec aspect = ensoleillé & humidité = forte
 - \rightarrow Proportion d'au moins C de ces jours avec venteux = faux & jouer = non
- Les règles (2) et (3) sont plus générales (moins contraintes)

• Par contre, la règle correcte (4) peut être déduite de (1) :

$$Si\ humidit\'e = forte\ \&\ venteux = faux\ \&\ jouer = non\ Alors\ aspect = ensoleill\'e$$
 (4)

 \Rightarrow La règle (4) a le même support S que la règle (1) rappelée ici :

$$Si\ venteux = faux\ \&\ jouer = non\ Alors\ aspect = ensoleillé\ \&\ humidité = forte.$$
 (1)

 \Rightarrow La confiance de (4) sera au moins = C car le nombre de jours

humidité = forte & venteux = faux & jouer = non

est nécessairement plus petit que venteux = faux & jouer = non (plus large).

- Des liens entre des règles d'association particulières : certaines impliquent d'autres.
 - → Réduire le nombre de règles produites
 - ➤ Si plusieurs règles sont liées, on prend la plus "forte"
 - ightarrow Dans cet exemple, seule la règle (1) sera conservée.

3.6 Règles avec exception

- Idée : permettre des exceptions
- Exemple Iris :

If petal-length \geq 2.45 and petal-length < 4.45 Then Iris-versicolor.

⇒ Soit une nouvelle instance avec le type donné par un expert (sera mal classée!) :

Taille Sépale	Largeur Sépale	Taille Pétale	Largeur Pétale	Туре
5.1	3.5	2.6	0.2	Iris-setosa

- \Rightarrow Une solution : insérer des exceptions.
- ⇒ Permettent des modifications incrémentales (au lieu de refaire tout).

If petal-length \geq 2.45 and petal-length < 4.45 Then Iris-versicolor

EXCEPT if petal-width < 1.0 then Iris-setosa.

Un exemple plus complexe: exceptions sur les exceptions...

```
default: Iris-setosa
except if petal-length \geq 2.45 and petal-length < 5. 355 and petal-width < 1.75
       then Iris-versicolor
           except if petal-length \geq 4.95 and petal-width < 1.55
                   then Iris-virginica
                   else if sepal-length < 4.95 and sepal-width \ge 2.45
                       then Iris-virginica
       else if petal- length \geq 3.35
           then Iris-virginica
               except if petal-length < 4.85 and sepal-length < 5.95
                       then Iris-versicolor
```

Intérêts des Exceptions:

- modification incrémentale,
- compréhension plus simple,
- ajoute des connaissances du domaine,
- cas particuliers traités,
- Simplification de la compréhension de larges ensembles de règles
- Ajoute simple
- Contextualisation des règles
- Propriétés locales pour l'appréhension
- N'existe pas dans les règles *normales*

— ...

3.7 Règles Relationnelles

- En général : un test sur un attribut p/r à une constante \rightarrow **propositionnel**.
- Pas toujours suffisant, e.g. exprimer des relations entre exemples (cf. Ex. Famille).

- Exemple : Grisés : debout, Autre : couché
 - \Rightarrow Concept recherché : **debout**

FIGURE 3.4 – Exemple de formes géométriques

• Les 4 formes grisées = exemples positifs (debout),

• Les autres négatifs (couchés).

Largeur	Hauteur	Nb. côtés	Classe
2	4	4	debout
3	6	4	debout
4	3	4	couché
7	8	3	debout
7	6	3	couché
2	9	4	debout
9	1	4	couché
10	2	3	couché

ullet Propositionnelle : Si Largeur \geq 3.5 & Hauteur < 7.0 Alors couché

Si Hauteur \geq 3.5 Alors debout

•Une façon courante de fixer les seuils numériques :

- → largeur 3.5 = la moitié de la largeur de la plus fine forme couchée (4 cm) et La largeur de la plus "grosse" forme debout dont la hauteur est moins de 7 (3 cm).
- → hauteur 7.0 = la moitié de la hauteur du plus grand bloc couché (6 cm) et de la plus courte forme debout dont largeur > 3.5 (8 cm).
- Ces règles marchent sur les exemples mais elles ne sont pas bonnes.
 - ⇒ Beaucoup de nouvelles instances mal classées (e.g. largeur = hauteur = 2).
- ⇒ On remarque : les blocs "debouts" sont <u>plus haut que large</u> → relationnel

Si Largeur > Hauteur Alors Couché.

Si Hauteur > Largeur Alors Debout.

3.7.1 Règles avec relations

- Règles **relationnelles** : expriment une relation entre attributs
- Les opérateurs =, <, > sur les numériques et =, \neq sur les nominaux
- Ces relations peuvent figurer dans les arbres de décision .
- L'apprentissage de ces règles est coûteux (peu de système le propose)
- \Rightarrow <u>Une solution</u>: ajouter un attribut extra (e.g. booléen **Largeur** > **Hauteur**?)
 - → Phase de préparation des données

⇒ Autre exemple : BD familiale (vue plus haut) et la relation *soeur*.

Variables dans les règles (1er ordre) :

• Rendre le rôle l'instance explicite :

Si largeur(bloc) > hauteur(bloc) Alors couché(bloc).

Si hauteur(bloc) > largeur(bloc) Alors debout(bloc).

- Si l'on considère l'instance comme une structure
- \Rightarrow E.g. Une pile de blocs avec *top* pour le bloc au dessus :

Si hauteur(pile.top) > largeur(pile.top) Alors debout(pile.top).

- ⇒ Si "reste" = le reste de la pile,
- ⇒ Exprimer "toute la pile est composée de blocs debouts" par la règle récursive :

Si hauteur(pile.top) > largeur(pile.top) and debout(pile.reste) Alors debout(pile).

Si pile=vide Alors debout(pile).

Programmation Logique Inductive

- Ces ensembles de règles = programmes logiques du domaine de ML :
 - \Rightarrow "inductive logic programming" (ILP).
- Permet les définitions récursives de règles
- Difficile à "apprendre" des règles (assez théorique)
- Idéal pour la formalisation
 - \Rightarrow transformation possible
 - ► Les techniques ILP peuvent éviter la récursivité

3.8 Arbres pour la prédiction numérique

- Exemple "performances CPU" du chapitre 1
- **Régression** : calcul d'une expression (équation) pour prédire une valeur numérique
- Arbre de Régression = arbre de décision où une = une prédiction numérique
- ⇒ La conclusion est la moyenne des valeurs de tous les exemples d'apprentissage qui arrivent à cette feuille (dont la performance est connue)
- **Arbre de Modèle** = Arbre de Régression où les feuilles = une Régression linéaire
 - ⇒ Approximation de fonctions contiguës (appelée "linear patches")
- Rappel : la régression linéaire de l'exemple "performances CPU" :

⇒ L'arbre de régression de l'exemple :

FIGURE 3.5 – Arbre de Régression de l'exemple CPU

⇒ **PRP** = performances, **CHMIN/CHMAX** = Nb. mini/maxi de canaux, **CACH** = taille cache, **MMIN/MMAX** = Ram mini/maxi, **MYCT** = cycle (en ns.)

Arbre de Modèle pour l'exemple CPU :

FIGURE 3.6 – Arbre de Modèle de l'exemple CPU

- ⇒ Les LM sont des modèles linéaires au niveau des feuilles.
- \Rightarrow E.g. LM1 : PRP=8.29 + 0.004 MMAX + 2.77 CHMIN

Remarques:

- Les données de ce problème pas bien présentées par un modèle linéaire simple.
- \Rightarrow La moyenne des valeurs absolues des erreurs (prédictions vs. réalité) est **significativement moins importante** pour l'arbre que pour l'équation.
 - → L'arbre de regression est plus juste
- ⇒ Mais l'arbre est touffu et difficile à interpréter (large taille).
- L'arbre de modèle est plus petit et plus simple à lire que l'arbre de décision
 - **►** Les moyennes d'erreurs y sont **plus petites**.

3.9 Representation à base d'exemple (IBL)

- La forme la plus simple d'apprentissage = la *pleine mémorisation* ("rote learning").
 - ⇒ Recherche dans les instances mémorisées pour trouver la **plus ressemblante**
 - ⇒ La connaissance est représentée par les instances mêmes
 - ⇒ La question clé est donc la **ressemblance**
 - ⇒ La fonction **distance** définit ce qui est "appris"
 - ⇒ l'apprentissage à base d'instances est une méthode **différée** (*lazy learning*)
 - → Le "moment" d'apprentissage diffère.
 - ⇒ Par opposition aux autres méthodes **actives** (eager learning)
- Méthodes : le plus proche voisin, k plus proches voisins
 - ⇒ La classe majoritaire des k plus proches voisins
 - ➡ ou la moyenne des distances si données numériques

Calcul de la distance :

- ⇒ Triviale avec <u>un seul</u> attribut numérique
 - ⇒ la différence entre les 2 valeurs (ou une fonction des 2).
- Si plusieurs attributs numériques : distance euclidienne
 - ⇒ avec une normalisation éventuelle = égalisation de l'importance
- Si attributs <u>nominaux</u> : distance=1 si valeurs \neq , 0 si =

Inconvénients de l'Apprentissage à base d'instances :

- \Rightarrow ne donne pas explicitement la structure de ce qui est appris
- ⇒ les instances combinées avec le métrique distance
 - \rightarrow les frontières de l'espace d'instances qui distinguent une classe de l'autre
 - \rightarrow c'est une forme de structure de la connaissance

3.9.1 Apprentissage à base d'instances : suite

- Un des problèmes importants de l'Apprentissage Automatique :
 - \Rightarrow déterminer les attributs importants
 - ⇒ Associer des poids aux attributs est une technique
 - ⇒ Trouver la **bonne pondération** de l'attribut à partir d'un ensemble d'apprentissage
- Parfois, inutile de stocker **toutes** les instances (temps de calcul, mémoire, ...)
- Certains espaces d'attribut sont plus stables que d'autres (p/r aux classes)
 - ⇒ densité à l'intérieur vs. aux frontières
 - ⇒ seulement quelques instances suffisent dans ces région stables
- Décider quelles instances sauvegarder est un autre problème clé de l'IBL.

3.9.2 IBL : Apprentissage de prototypes

- Seules les instances impliquées dans la décision sont stockées
- Idée : utiliser seulement des exemples prototypiques

FIGURE 3.7 - Partitionnement de l'espace d'instances : Ex. gris pâles éliminés

- \Rightarrow Si 2 classes \rightarrow perpendiculaire bissectrice
- ⇒ Si Plus : Polygone de 9 côtés qui sépare la classe de cercles pleins des autres cercles.
 - → Polygone implicite dans l'application de la règle du plus-proche-voisin

IBL: Généralisation Rectangulaire:

- Généralisation explicite de quelques instances (création de rectangles)
- La règle plus-proche-voisin utilisée hors les rectangles
- ullet Les rectangles \simeq règles (souvent plus conservatifs que les règles habituelles)
 - ► Les rectangles imbriqués sont des règles avec exception

FIGURE 3.8 – Partitionnement de l'espace d'instances (suite)

- \Rightarrow Les test sur les dimensions d'un rectangle (dedans=classe, dehors \rightarrow test PPV)
 - ➡ correspond aux tests sur différents attributs

3.10 Clusters (classification non Supervisée)

- La sortie (vs. classifieur) : un diagramme de regroupement
- Forme simple : un numéro de cluster associé à chaque instance.
- Espace 2D partitionné (= table/arbrorescence/....)
- ullet Algorithme : Si une instance dans plusieurs clusters ullet diagramme de "Venn"

FIGURE 3.9 – (a): Représentation 2D et (b): diagramme de Venn (recouvrement)

⇒ plusieurs clusters pour une instance avec des probabilités d'appartenance

- Autre algorithme → arborescence (Dendrogram=clustrum)
 - → Au sommet : peu de clusters, ensuite sub-divisés, ...
 - → Au niveau des feuilles, les éléments regroupés dans un cluster.
- Le clustering est souvent suivi de l'inférence d'un arbre de décision (ou des règles)
 - → affectation des instances aux classes

Figure 3.10 – Affectation avec probabilité et Dendrogramme (Dendron =arbre en grecque)

Table des matières

2	Cond	cepts, instances et attributs	1
	2.1	ECD : un champ multidisciplinaire	2
	2.2	Généralisation (Induction) comme Recherche	3
		2.2.1 Enumération de l'espace de concepts : Espace de Versions	6
		2.2.2 Algorithme candidate-elimination	8
		2.2.3 Défis et Challenges de l'Extraction de Connaissances	9
	2.3	Le processus EC : les étapes	10
	2.4	Principales sorties de l'EC (rappel)	13
	2.5	Les Entrées, Sorties, Instances	14
	2.6	Préparation des données	15
		2.6.1 Exemple format ARFF	16
		2.6.2 Normalisation des valeurs numériques	17
		2.6.3 Les valeurs manquantes	18
		2.6.4 Valeurs erronées	19

3	Rep	Représentation de connaissances (KR)		
	3.1	Représentation des patterns Structurelles	21	
	3.2	Tables de décision	22	
	3.3	Arbres de décision	23	
	3.4	Règles de Classification	26	
		3.4.1 Règles : suite	32	
	3.5	Règles d'association	35	
		3.5.1 Interprétation des règles d'association	37	
	3.6	Règles avec exception	39	
	3.7	Règles Relationnelles	42	
		3.7.1 Règles avec relations	45	
	3.8	Arbres pour la prédiction numérique	48	
	3.9	Representation à base d'exemple (IBL)	52	
		3.9.1 Apprentissage à base d'instances : suite	54	
		3.9.2 IBL : Apprentissage de prototypes	55	
	3.10	Clusters (classification non Supervisée)	57	