Filtry pasywne I i II rzędu								
Julita Wójcik Jakub Szczypek	30 III 2022	Środa, 08.00	5A					

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z filtrami dolno i górnoprzepustowymi typu RC I i II rzędu poprzez dokonanie pomiarów charakterystyk amplitudowo-częstotliwościowych każdego z filtrów i porównanie ich z krzywiznami wyznaczonymi na podstawie ich transmitancji.

2. Przebieg ćwiczenia

2.1. Przygotowanie stanowiska do zajęć

Zestawiono układ pomiarowy, w którym na wejście filtru podawany był sygnał z generatora funkcyjnego. Ten kanał generatora był również połączony z pierwszym kanałem oscyloskopu (z wykorzystaniem trójnika BNC). Do drugiego kanału oscyloskopu podłączono wyjście filtru. Ustawiono parametry sygnału sinusoidalny na generatorze funkcyjnym (V_{pp} , f, offset)

2.2. Filtr dolnoprzepustowy I rzędu

Podczas ćwiczenia laboratoryjnego korzystano z płytki nr 7, zlokalizowano rezystor i kondensator, o wartościach które najbliżej odpowiadają zadanym w tabeli załączonej w instrukcji.

$$R_{zad} = 2k\Omega \quad C_{zad} = 3.3 \ nF$$

$$R_{zmierz} = 1978,55 \ \Omega \ (nr \ 2) \qquad C_{zmierz} = 2.9n \ F \ (nr \ 6)$$

Obliczono wartość częstotliwości granicznej powstałego filtra dolnoprzepustowego i wyznaczono jego transmitancję.

$$f_{g_{zad}} = \frac{1}{2\pi R_{zad}C_{zad}} = 24115,097 \, Hz$$

$$G_{zad}(s) = \frac{\frac{1}{sC_{zad}}}{\frac{1}{sC_{zad}} + R_{zad}} = \frac{1}{sR_{zad}C_{zad} + 1} = \frac{1}{6,6*10^{-6}s + 1}$$

$$f_{g_{zmierz}} = \frac{1}{2\pi R_{zmierz}C_{zmierz}} = 27752,067 \, Hz$$

$$G_{zmierz}(s) = \frac{\frac{1}{sC_{zmierz}}}{\frac{1}{sC_{zmierz}} + R_{zmierz}} = \frac{1}{sR_{zmierz}C_{zmierz} + 1} = \frac{1}{5,738*10^{-6}s + 1}$$

Dokonano pomiaru amplitud sygnału wejściowego i wyjściowego dla rożnych częstotliwości sygnału wejściowego. Częstotliwość zmieniano od około 1 kHz do 100 kHz wykonując około 10 pomiarów na dekadę. Pomiary przedstawiono w Tabeli 1.

Tabela 1. -zmierzone wartości amplitud wraz z obliczonym wzmocnieniem G wyznaczonym w dB

f [kHz]	1	1,3	1,7	2,1	2,8	3,6	4,6	6	7,7	10
V pp wej.	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02
Vpp wyj.	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	0,98	0,96
G [db]	0	0	0	0	0	0	0	0	-0,347	-0,527
f [kHz]	13	17	21	28	36	46	60	77	100	
f [kHz] V pp wej.	13 1,02	17 1,02	21 1,2	28 1,2	36 1,2	46 1,2	60 1,2	77 1,2	100 0,96	
•										

W programie Matlab wyznaczono charakterystyki amplitudowo-fazowej badanego filtru, z przebiegiem zmierzonej charakterystyki dodatkowo wrysowanym na tym samym wykresie w części amplitudowej. Zaznaczono częstotliwość graniczną filtru symulowanego na podstawie transmitancji oraz filtru dla którego zebrano pomiary. Zaznaczono także po której stronie znajduje się pasmo przenoszenia a po której pasmo zaporowe.

Charakterystyka amplitudowa zasymulowana i zmierzona filtru dolnoprzepustowego I rzędu

Rysunek 1. Charakterystyki amplitudowe filtru dolnoprzepustowego I rzędu

Charakterystyka fazowa filtru dolnoprzepustowego I rzędu

Rysunek 2. Charakterystyka fazowa filtru dolnoprzepustowego I rzędu

Otrzymane charakterystyki są zbliżone do siebie, różnice mogą wynikać z innych wartości rezystancji i pojemności (niemożliwe było użycie rezystora i kondensatora o wartościach identycznych jak z tabeli).

2.3. Filtr górnoprzepustowy I rzędu

Podczas ćwiczenia laboratoryjnego korzystano z płytki nr 7, zlokalizowano rezystor i kondensator, o wartościach które najbliżej odpowiadają zadanym w tabeli załączonej w instrukcji.

$$R_{zad} = 10k\Omega \quad C_{zad} = 330 \; pF$$

$$R_{zmierz} = 10019,3 \; \Omega \; (nr \; 2) \qquad C_{zmierz} = 0,300n \; F \; (nr \; 6)$$

Obliczono wartość częstotliwości granicznej powstałego filtra górnoprzepustowego i wyznaczono jego transmitancję.

smitancję.
$$f_{g_{zad}} = \frac{1}{2\pi R_{zad}C_{zad}} = 48228,771Hz$$

$$G_{zad}(s) = \frac{\frac{1}{sC_{zad}}}{\frac{1}{sC_{zad}} + R_{zad}} = \frac{1}{sR_{zad}C_{zad} + 1} = \frac{1}{3,3*10^{-5}s + 1}$$

$$f_{g_{zmierz}} = \frac{1}{2\pi R_{zmierz}C_{zmierz}} = 52949,455 Hz$$

$$G_{zmierz}(s) = \frac{\frac{1}{sC_{zmierz}}}{\frac{1}{sC_{zmierz}} + R_{zmierz}} = \frac{1}{sR_{zmierz}C_{zmierz} + 1} = \frac{1}{3,006*10^{-6}s + 1}$$

Dokonano pomiaru amplitud sygnału wejściowego i wyjściowego dla rożnych częstotliwości sygnału wejściowego. Częstotliwość zmieniano od około 1 kHz do 100 kHz wykonując około 10 pomiarów na dekadę. Pomiary przedstawiono w Tabeli 2.

Tabela 2. -zmierzone wartości amplitud wraz z obliczonym wzmocnieniem G wyznaczonym w dB

f [kHz]	1	1,3	1,7	2,1	2,8	3,6	4,6	6	7,7	10
V pp wejścia [V]	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02
Vpp wyjścia [V]	0,06	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,1	0,14
G [db]	-24,609	-22,110	-22,110	-22,110	-22,110	-22,110	-22,110	-22,110	-20,172	-17,249
f [kHz]	13	17	21	28	36	46	60	77	100	
V pp wejścia [V]	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	
Vpp wyjścia [V]	0,16	0,24	0,32	0,46	0,52	0,56	0,62	0,66	0,68	
G [db]	-16,089	-12,567	-10,069	-6,916	-5,851	-5,208	-4,324	-3,781	-3,521	

Ponownie wyznaczono charakterystyki amplitudowo-fazowej badanego filtru, z przebiegiem zmierzonej charakterystyki dodatkowo wrysowanym na tym samym wykresie w części amplitudowej. Zaznaczono częstotliwość graniczną filtru symulowanego na podstawie transmitancji oraz filtru dla którego zebrano pomiary. Zaznaczono także po której stronie znajduje się pasmo przenoszenia a po której pasmo zaporowe

Charakterystyka amplitudowa zasymulowana i zmierzona filtru gómoprzepustowego I rzędu

Rysunek 3. Charakterystyki amplitudowe filtru górnoprzepustowego I rzędu

Charakterystyka fazowa filtru górnoprzepustowego I rzędu

Rysunek 4. Charakterystyka fazowa filtru górnoprzepustowego I rzędu

Otrzymane charakterystyki różnią znacząco na początku zakresu, potem stają się zbliżone. Może być to spowodowane problemami sprzętowymi (uszkodzone przewody) lub błędem ludzkim – nieprawidłowa konfiguracja sprzętu (np. brak wyskalowania oscyloskopu).

2.3. Filtr pasmowoprzepustowy II rzędu

Podczas ćwiczenia laboratoryjnego korzystano z płytki nr 3, zlokalizowano rezystor i kondensator, o wartościach które najbliżej odpowiadają zadanym w tabeli załączonej w instrukcji.

$$R_{zad1} = 3k\Omega$$
 $C_{zad1} = 10 nF$ $R_{zad2} = 8k\Omega$ $C_{zad2} = 1 nF$ $R_{zmierz1} = 3254 \Omega (nr 25)$ $C_{zmierz1} = 10,32 nF (nr 8)$ $C_{zmierz2} = 8028 \Omega (nr 8)$ $C_{zmierz2} = 1,05 nF (nr 4)$

Obliczono wartości częstotliwości granicznych powstałego filtra pasmowoprzepustowego, a także częstotliwość o maksymalnym wzmocnieniu.

$$f_{g_{zad1}} = \frac{1}{2\pi R_{zad1}C_{zad1}} = 5305,165 \, Hz$$

$$f_{g_{zad2}} = \frac{1}{2\pi R_{zad2}C_{zad2}} = 19894,369 \, Hz$$

$$f_{g_{zmierz1}} = \frac{1}{2\pi R_{zmierz1}C_{zmierz1}} = 4739,395 \, Hz$$

$$f_{g_{zmierz2}} = \frac{1}{2\pi R_{zmierz2}C_{zmierz2}} = 18880,934 \, Hz$$

$$f_{maks_{zad}} = \sqrt{f_{g_{zad1}} * f_{g_{zad2}}} = 10273,408 \, Hz$$

$$f_{maks_{zmierz}} = \sqrt{f_{g_{zmierz1}} * f_{g_{zmierz2}}} = 9459,609 \, Hz$$

Dokonano pomiaru amplitud sygnału wejściowego i wyjściowego dla rożnych częstotliwości sygnału wejściowego. Częstotliwość zmieniano od około 1 kHz do 100 kHz wykonując około 10 pomiarów na dekadę. Pomiary przedstawiono w Tabeli 3

Tabela 3. -zmierzone wartości amplitud wraz z obliczonym wzmocnieniem G wyznaczonym w dB

f [kHz]	1	1,3	1,7	2,1	2,8	3,6	4,6	6	7,7	10
V pp wejścia [V]	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02
Vpp wyjścia [V]	0,16	0,184	0,22	0,228	0,248	0,26	0,268	0,272	0,276	0,284
G [db]	-16,089	-14,875	-13,324	-13,013	-12,283	-11,873	-11,601	-11,486	-11,354	-11,106
f [kHz]	13	17	21	28	36	46	60	77	100	
V pp wejścia [V]	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	1,02	
Vpp wyjścia [V]	0,276	0,272	0,264	0,264	0,248	0,224	0,208	0,184	0,152	
G [db]	-11,354	-11,481	-11,740	-11,734	-12,283	-13,167	-13,811	-14,8756	-16,535	

W programie LtSpice wyznaczono: zasymulowaną charakterystykę samego członu górnoprzepustowego, zasymulowaną charakterystykę samego członu dolnoprzepustowego, zasymulowaną charakterystykę filtra pasmowoprzepustowego.

Dane eksportowano do Matlaba, umieszczono na jednym wykresie wraz z przebiegiem zmierzonej charakterystyki części amplitudowej. Zaznaczono częstotliwości graniczne filtru symulowanego.

Rysunek 5. Charakterystyki amplitudowe poszczególnych filtrów

Charakterystyki różnią się od siebie znacząco na zadanym przedziale (ale ich prawidłowy "kształt" jest zachowany). Decydującą przyczyną jest sposób stworzenia układu na płytce pomiarowej – z powodów technicznych niemożliwe było odwzorowanie układu z instrukcji. Wykonano analogiczny schemat (rysunek 6), ale różniący się transmitancją.

Rysunek 6. Zastępczy schemat filtru pasmowoprzepustowego II rzędu

W celu sprawdzenia dokładności pomiarów w programie LtSpice wyznaczono zasymulowaną charakterystykę zastępczego układu, porównano ją z zmierzoną charakterystyką.

Rysunek 7. Charakterystyka amplitudowa zastępcza i zmierzona filtru pasmoprzepustowego

Zmierzona charakterystyka jest bardziej zbliżona do przebiegu nowo otrzymanej charakterystyki. Błędy ponownie mogą wynikać z przyjętych rezystorów czy kondensatorów bądź rezystancji przewodów.

Następnie, dokonano pomiaru przesunięcia czasowego, przesunięcia fazowego, oraz dokonano obliczeń okresu sygnału wejściowego. Częstotliwość zmieniano od około 1 kHz do 100 kHz wykonując około 10 pomiarów na dekadę. Pomiary przedstawiono w Tabeli 4

Tabela 4. Przesunięcie czasowe, przesunięcie fazowa oraz okres sygnału wejściowego filtru pasmoprzepustowego II rzędu

f [kHz]	1	1,3	1,7	2,1	2,8	3,6	4,6	6	7,7	10
okres sygnału wejściowego [s]	0,001	0,000769	0,000588	0,000476	0,000357	0,000278	0,000217	0,000167	0,00013	0,0001
przesunięcie czasowe [s]	-0,00017	-0,0001	-5,2E-05	-4,4E-05	-2,4E-05	-0,00002	-0,00001	-0,00001	-0,00001	-4E-06
przesunięcie fazowe [deg]	-57	-49	-39	-33	-24	-20	-13	-4	-2	0
f [kHz]	13	17	21	28	36	46	60	77	100	
okres sygnału wejściowego [s]	7,69E-05	5,88E-05	4,76E-05	3,57E-05	2,78E-05	2,17E-05	1,67E-05	1,3E-05	0,00001	
przesunięcie czasowe [s]	0,000004	0,000004	0,000002	0,000002	2,4E-06	0,000002	0,000002	1,8E-06	-8,5E-06	
przesunięcie fazowe [deg]	3	9	15	24	25	36	41	50	57	

W programie LtSpice wyznaczono zasymulowaną w charakterystykę fazową charakterystykę filtra pasmowoprzepustowego (schemat z instrukcji). Dane eksportowano do Matlaba, umieszczono na jednym wykresie wraz z przebiegiem zmierzonej charakterystyki części fazowej. Zaznaczono częstotliwości graniczne filtru symulowanego.

Rysunek 8. Charakterystyka fazowa zasymulowana i zmierzona filtru pasmoprzepustowego

Otrzymana charakterystyka różni się od przebiegu zasymulowanej – dlatego ponownie porównano ją z charakterystyką filtru z zastępczego schematu.

Rysunek 9. Charakterystyka fazowa zastępcza i zmierzona filtru pasmoprzepustowego

Zmierzony przebieg bardzo dobrze odzwierciedla charakterystykę filtru stworzonego na podstawie zastępczego schematu.

3. Wnioski

W trakcie zajęć zapoznano się z właściwościami i parametrami charakterystycznymi dla filtrów I i II rzędu. Zapoznano się z nowym sprzętem laboratoryjnym (np. obsługa i konfiguracja oscyloskopu). Nauczono się budowania nowych schematów na płytce pomiarowej oraz tworzenia prostych schematów w programie LtSPice. Program pozwala na generowanie różnego rodzaju przebiegów w sposób niewymagający wykonywania żmudnych obliczeń rachunkowych. Większość uzyskanych pomiarów jest zadowalająca, co świadczy o poprawności wykonania ćwiczenia.