试卷类别

A

 $B \square$

使用学期

2016 年

春□ 秋■

命题人签字

审题人签字

审定人签字

考生学号

考生姓名

所在班级

课程名课程名称: 概率论与数理统计 学时: 56

卷面总分: 100 分 考试时长: 120 分钟

考试方式: 闭卷笔试■ 开卷笔试□ 口试□ 其它_____ 辅助工具: 可用□ 工具名称: 不可用■

考试内容:

- 一、填空题 $(3' \times 5 = 15)$ 分,将答案填在答题纸上,不填解题过程)
- 1. 设在 $500 \, m^2$ 的海域里有面积达 $40 \, m^2$ 的大陆架蕴藏着石油. 在此海域里任选一点钻探, 可以钻到石油的概率为
- 2. 设随机变量 X 服从参数为 λ 的泊松分布,且 $P\{X=0\} = \frac{1}{2}$,则 E(X) =____.
- 3. 设X,Y相互独立,且均服从区间[0,3]上的均匀分布,则 $P\{\max(X,Y) \le 1\} =$ ____
- 4. 随机变量 X_1, X_2, Λ , X_n 相互独立,都服从参数为 $\lambda=2$ 的指数分布,则由大数定理可 知,当 $n \to \infty$ 时, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛于_____.
- 5. 设 (X_1, X_2, Λ, X_n) 是来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,其中参数 μ, σ^2 未知,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $Q^2 = \sum_{i=1}^{n} (X_i - \overline{X})^2$,则假设 $H_0: \mu = \mu_0$ 的 t 检验使用统计量 $T = \underline{\qquad}$.
- 二、选择题(3'×5=15分,每小题仅有一个选择是正确的,将正确的代号填在答题纸上)
- 1. 设随机事件 A, B 满足 $P(A) = P(B) = \frac{1}{2}$, $P(A \cup B) = 1$, 则下列结论正确的是()
 - (A) $AUB = \Omega$;

- (B) $AB = \emptyset$:
- (C) P(A-B) = P(A); (D) $P(\overline{A} \cup \overline{B}) = 0$.
- 2. 设随机变量 $X \sim N(0,1)$, $\varphi(x)$ 与 $\Phi(x)$ 分别是 X 的分布密度与分布函数,则对任意 实数a,必有()

 - (A) $\Phi(-a) = 1 \int_0^a \varphi(x) dx$; (B) $\Phi(-a) = \frac{1}{2} \int_0^a \varphi(x) dx$;
 - (C) $\Phi(-a) = \Phi(a)$:
- (D) $\Phi(-a) = 2\Phi(a) 1$.

- 设随机变量 X 的方差 D(X) 存在, 则()

 - (A) $[E(X)]^2 = E(X^2)$; (B) $[E(X)]^2 \ge E(X^2)$;
- 4. 设 $X \sim N(1,\sigma^2)$, X_1, X_2, L_1, X_2, h 的样本,则()

(A)
$$\frac{\overline{X}-1}{\sigma} \sim N(0.1)$$

(B)
$$\frac{\overline{X}-1}{\sigma/} \sim N(0.1)$$
;

(A)
$$\frac{\overline{X}-1}{\sigma} \sim N(0,1);$$
 (B) $\frac{\overline{X}-1}{\sigma/n} \sim N(0,1);$ (C) $\frac{\overline{X}-1}{S/n} \sim t(n-1);$ (D) $\frac{\overline{X}-1}{S/n} \sim t(n).$

(D)
$$\frac{\overline{X}-1}{S/\sqrt{n}} \sim t(n)$$

- 5. 对正态总体的数学期望 μ 进行假设检验,如果在显著性水平 0.05 时,接受假设 H_0 : $\mu = \mu_0$,则 在显著性水平 0.01 下, 肯定正确的是()

 - (A)接受; (B)可能接受,也可能拒绝; (C)拒绝; (D)不接受也不拒绝.

三、解答题(每小题 10 分,7 小题,共 70 分,答案写在答题纸上,要有解题过程)

- 我校某学院在通选课中有92%的学生选修了普通心理学,有93%的学生选修了科学技术史,在没 有选修普通心理学的学生中仍有85%的学生选修了科学技术史. 在该院中任选 一名学生, 求下列 事件的概率: (1) 该学生至少选修了普通心理学或科学技术史中的一门;
 - (2) 该学生没有选修科学技术史,但是选修了普通心理学.
- 设0 < P(A) < 1. (1) 证明: $P(B \mid A) \ge 1 \frac{P(B)}{P(A)}$;
 - (2) 证明事件 $A \subseteq B$ 独立的充要条件是: P(B|A) = P(B|A).
- 已知离散型随机变量 X 的分布律为 3.

X	-1	0	1	2	3
P	1/3	1/6	1/6	1/12	1/4

求: (1) $Y = (X-2)^2$ 的分布律; (2) 概率 $P\{|X| \le 2 |X>0\}$.

- 4. 设随机变量 X 服从区间 [a,b] 上的均匀分布,并且 E(X)=3, $D(X)=\frac{4}{3}$.
 - (1) 求常数 a, b 的值; (2) 求 $Y = e^{X}$ 的概率密度.
- 5. 设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} 2e^{-(x+y)}, & 0 \le x \le y, \\ 0, & 其他. \end{cases}$$

- (1) 求X与Y的边缘密度 $f_X(x)$ 和 $f_Y(y)$, 并判断X与Y是否相互独立;
- (2) 求E(X), E(Y), cov(X,Y).
- 6. 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{\theta} x^{\frac{(1-\theta)}{\theta}}, & 0 < x < 1, \\ 0, & 其它. \end{cases}$ 其中 $0 < \theta < \infty$,

 X_1, X_2, Λ, X_n 为来自总体 X 的样本.

- (1) 求 θ 的极大似然估计量 $\hat{\theta}$; (2) 证明 $\hat{\theta}$ 是参数 θ 的无偏估计量.
- 7. 设某次考试的考生成绩服从正态分布 $N(\mu, \sigma^2)$,现从中随机抽取了 36 位考生的成绩,算得平均成绩为 $\overline{X} = 66.5$ 分,标准差 S = 12 分,(1) 求在置信度 $1-\alpha = 0.95$ 下期望 μ 的置信区间; (2) 仍取 $\alpha = 0.05$,请检验: 是否可以认为期望值 μ 为 $\mu_0 = 70$ 分? (参考数据: $t_{0.05}(35) = 1.6896$, $t_{0.05}(36) = 1.6883$, $t_{0.025}(35) = 2.0301$, $t_{0.025}(36) = 2.0281$)

考生学号

装

订

考生姓名

所在班级

	7
ı	1

	·····································			
考生学号				
考生姓名	线			
所在班级				

