1 HIO using Volterra-operators

Let $w: [0,T] \to \mathbb{R}^m$, $y: [0,T] \to \mathbb{R}^p$, $A \in \mathbb{R}^{n \times n}$, $D \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{p \times n}$ such that

$$y(t) = \int_{0}^{t} C \exp\{A(t-\tau)\}Dw(\tau) d\tau \quad . \tag{1}$$

Due to Cayley-Hamilton

$$A^{k} = \sum_{l=0}^{n-1} c_{k,l} A^{l}$$
 (2)

with coefficients $c_{k,l}$ that in general are not unique. By choosing N the smallest number such that

$$A^{N} \in \operatorname{span}\left(A^{0}, A^{1}, \dots, A^{N-1}\right) \quad , \tag{3}$$

the coefficients $c_{k,l}$ count $l=0,1,\ldots,N-1$ and are unique. For each $k\leq N-1$ we find the Kronecker-delta

$$c_{k,l} = \delta_{k,l} \quad . \tag{4}$$

Expanding the exponential function to its power series we get

$$\exp\{A(t-\tau)\} = \sum_{k=0}^{\infty} \frac{(t-\tau)^k}{k!} A^k$$

$$= \sum_{l=0}^{N-1} A^l \underbrace{\sum_{k=0}^{\infty} \frac{(t-\tau)^k}{k!} c_{k,l}}_{\phi_l(t,\tau)} . \tag{5}$$

Both sums should converge absolutely since they are either finite or suppressed exponentially. Using (5) we can write (1) as

$$y(t) = \sum_{l=0}^{n-1} CA^l D \int_0^t \phi_l(t, \tau) w(\tau) d\tau .$$
 (6)

From Volterra- to matrix-equation

Definition 1. According to [1] or [2] the equation

$$\int_{0}^{t} K(t,s)f(s) ds = g(t)$$
(7)

where $f, g : [0, T] \to \mathbb{R}$ and $K : \{(t, s) \in [0, T] \times [0, T] | s < t\} \to \mathbb{R}$ is called *Volterra integral equation of the first kind (V1)* and K is called the *kernel*.

Comparing (6) and (7) we see that, if w_i denotes the i-th component of w, we get m V1 equations

$$\int_{0}^{t} \phi_{l}(t,\tau) w_{i}(\tau) d\tau = z_{i,l}(t) \quad . \tag{8}$$

Let $z_l(t)$ be any desired trajectory in \mathbb{R}^m and we want to solve (8).

Definition 2. Again according to [1] and [2]

$$f(s) - \int_{0}^{t} K(t, s) f(s) ds = g(t)$$

$$(9)$$

is called Volterra integral equation of the second kind (V2).

Theorem 1 (Proof in [1] and [2]). For any admissable function g, V2 has a unique solution f that is given by the Neumann series.

Theorem 2. Let K be a continuous kernel, $K(t, t) \neq 0$ and $\frac{\partial K}{\partial t}$ continuous. Then, given an differentiable g, V1 has a unique solution f.

Proof. We follow the proof in [2].

Differentiation of V1 with respect to t yields

$$K(t,t)f(t) + \int_{0}^{t} \frac{\partial K}{\partial t}(t,s)f(s) ds = \frac{dg}{dt}(t)$$
 (10)

Only if $K(t, t) \neq 0$ we can divide the whole equation by K(t, t) and redefine the kernel and right hand side to end up with a V2, which has a unique solution. \Box

Now turning back to (8), we want to apply theorem 2 to get information about the solution. But we find that the kernels ϕ_l do not fit to the assumption since

$$\phi_l(t,t) = \sum_{k=0}^{\infty} \frac{(t-t)^k}{k!} c_{k,l} = c_{0,l}$$
(11)

and comparing to (4)

$$\phi_0(t,t) = 1$$
 , $\phi_l(t,t) = 0$ for $l = 1,2,...,N-1$. (12)

Example 1. To show that (12) will cause problems especially for the hidden input observability, consider

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad , \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad , \quad D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \quad . \tag{13}$$

This yields

$$\phi_0(t,\tau) = 1$$
 , $\phi_1(t,\tau) = t - \tau$ and $\phi_2(t,\tau) = \frac{(t-\tau)^2}{2}$. (14)

Choosing $w(\tau) = 2 \forall \tau$ we get

$$\int_{0}^{t} \phi_{1}(t,\tau) w(\tau) d\tau = 0 \quad \forall t \quad . \tag{15}$$

Assume, we find a set $\{A^i\}$ with i from an index set \mathscr{I} , such that

$$A^{k} = \sum_{i \in \mathcal{I}} c_{k,i} A^{i} \quad \text{and} \quad c_{0,i} \neq 0 \,\forall i \in \mathcal{I}$$
 (16)

which means span $\{A^i | i \in \mathcal{I}\} = \text{span} \{A^0, A^1, ..., A^{n-1}\}$ and $|\mathcal{I}| > N$.

Example 2. Consider n = 3

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad , \quad C = D = 1 \quad . \tag{17}$$

It is not possible to solve (16). Though $[CD, CAD, CA^2D]$ has rank n.

Example 3. The Matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{18}$$

and the set $\{A^1,A^2,A^3\}$ or equivalently $\mathcal{I}=\{1,2,3\}$ yields (16) if we choose $c_{0,1}=1,\,c_{0,2}=1$ and $c_{0,3}=-1$.

Under an appropriate set $\{A^i\}$ equation (8) has a unique solution and (6) becomes

$$y(t) = \sum_{i \in \mathcal{I}} CA^i Dz_i(t) \quad . \tag{19}$$

Properties of the matrix-equation

Assume that for a given system the preceding conditions hold. Does $y(t) = 0 \forall t$ imply $w(t) = 0 \forall t$? Writing (19) as

$$\underbrace{\begin{bmatrix} CA^{i_1}D, CA^{i_2}D, \dots, CA^{i_{|\mathcal{I}|}} \end{bmatrix}}_{M:\mathbb{R}^{m|\mathcal{I}|} \to \mathbb{R}^p \text{ linear with rank } r \leq p} \begin{bmatrix} z_{i_1}(t) \\ z_{i_2}(t) \\ \vdots \\ z_{i_{|\mathcal{I}|}}(t) \end{bmatrix}$$

$$(20)$$

we use the dimension formula

$$m|\mathcal{J}| = \dim \operatorname{kernel} M + r$$
 (21)

$$\Rightarrow$$
 $mN < \dim \ker \operatorname{nel} M + r$ (22)

$$\Rightarrow \qquad mN \le \dim \ker \operatorname{nel} M + p \tag{23}$$

$$\Rightarrow \qquad mN - p \le \dim \operatorname{kernel} M \quad . \tag{24}$$

Since $N \ge 1$

References

- [1] Harro Heuser. Funktionalanalysis. 1992.
- [2] Andreas Kirsch. Lineare Integralgleichungen. 2010.