

AutoImpress

Final Project Report

Team Members

Yaniv Grosberg

Netanel Ohev Shalom

Aviel Shmuel

Supervisor

Dr. Apartsin Alexander

AutoImpress – Clinical Impression Generation from Radiology Reports

Task Data and Task

Dataset: IU-XRay (Indiana University Chest X-ray Reports)

- 3,955 reports with structured fields
- Fields: findings, indication, comparison, image, MeSH, Problems
- Free-text impression target

🎯 Task Definition

Input: Structured report fields

Output: Concise clinical summary

NLP Task Type

- Text-to-Text Generation
- Abstractive Summarization

Evaluation Metrics

- LLM-based clinical equivalence scoring
- BERTScore (semantic similarity)

Prior Art

Source / Title	Approach / Model	Data	Metrics	Key Results
Zhang et al. (2023) Leveraging Summary Guidance on Medical Report Summarization	Fine-tunes BART/T5 on medical reports. Input: Findings + sampled example summary Output: Generated summary	MIMIC-III (DISCHARGE, ECHO, RADIOLOGY)	ROUGE, BERTScore, SummaC, QuestEval	Outperformed BART/T5 baselines, especially on DISCHARGE and ECHO
Ma et al. (2023) From General to Specific: Domain Adaptation for Medical Report Generation	Uses ChatGPT with prompts from similar cases, refined iteratively. Combines general + medical LLMs (HybridFusion). Input: Findings + similar reports Output: Impression section	MIMIC-CXR, OpenI	ROUGE, BERTScore	SOTA: FC-F1 = 80.09 (MIMIC-CXR); ROUGE-1 = 66.37 (OpenI); improved fluency and factuality.
Van Veen et al. (2023) RadAdapt: Lightweight Domain Adaptation of LLMs	Fine-tunes T5 with LoRA/Prefix for efficient impression generation. Input: Findings Output: Impression section (radiologist-validated)	MIMIC-CXR	ROUGE, BERTScore, human evaluation	Best performance with only 0.32% tuned params; clinically validated summaries.

Data Description & EDA

Dataset: IU-XRay

Indiana University Chest X-ray Reports

Dataset Statistics

- Text length: Findings ≈ 190, Impression ≈ 76 chars
- Vocabulary: ≈ 2,000 unique tokens
- Templates: "No acute cardiopulmonary abnormality" in 490+ records

Phrase	Count
No acute cardiopulmonary abnormality	491
No acute cardiopulmonary findings	189
No acute cardiopulmonary abnormalities	168
No acute cardiopulmonary disease	163
No acute disease	126
No acute cardiopulmonary process	106
No acute radiographic cardiopulmonary process	93
No acute cardiopulmonary abnormality identified	80
No acute pulmonary disease	76
No acute findings	60

EDA Highlights

- Retained 3,331 records (removed ~520 incomplete)
- Filled missing fields with "none provided"
- · Replaced anonymized patterns with [REDACTED]

🦞 Key Insight

Short, highly templated clinical texts pose a challenge for true abstraction vs. surface-level copying.

Models & Processing Pipelines

Models Used

- FLAN-T5 (google/flan-t5-base): Baseline + Fine-tuned
- GPT-4.1 (Azure API): Inference & evaluation
- DeepSeek-V3 (Azure API): Inference & evaluation

FLAN-T5 Configuration

- Epochs: 3 | Batch Size: 4
- **Split:** 80% train / 20% test → 90% train / 10% validation
- Platform: Google Colab Pro (L4/A100 GPU)

Pipeline Overview

FLAN-T5:

Data → Few-shot → Baseline → Fine-tune → Validate → GPT-4o Judge

GPT-4.1 & DeepSeek:

Data → 50% Sample → API Generation → BERTScore → GPT-4o Judge

Inference Setup

- Platform: VSCode, Azure APIs
- **Computing:** Cloud-powered (no local GPU)

Metrics

GPT-4o Judge: Binary clinical equivalence (YES/NO) comparing generated vs. ground truth impressions

BERTScore (F1): Semantic similarity between generated and reference impressions

Computation Details

Training: Validation loss on 10% held-out set

Evaluation: BERTScore + GPT-40 judgment on test set

APIs: 50% sample for BERTScore + GPT-4o evaluation

GPT-4o Judge Prompt Example

You are a medical expert. Compare the following two radiology impressions. Determine if they are clinically equivalent in meaning, and verify that the generated impression is written in appropriate radiology language without including non-clinical prompt elements. Reference Impression: {reference} Generated Impression: {generated} If the generated text includes non-clinical formatting or prompt tokens, consider it NOT clinically equivalent. Answer with "Yes" or "No" only.

GPT-40 judgments reflect clinical interpretability, while BERTScore provides surface-level semantic similarity.

Project Structure

GitHub Repository:

Intermediate/Baseline Results

Baseline Model (FLAN-T5 Few-Shot)

- GPT-4o Clinical Equivalence: 1.3% (4/300 samples)
- BERTScore F1: 0.8382 ± 0.0281
- → Strong text similarity but very poor clinical equivalence

Training Metrics

- Epochs: 3, Batch size: 4
- Final validation loss: ≈ 0.1–0.2

Intermediate Steps

- **Preprocessing:** removed ~520 incomplete records (~13% reduction)
- Prompt engineering: cleaned non-clinical tokens
- Fine-tuning setup: 80% train / 20% test, further 90% train / 10% validation

FLAN-T5 Clinical Equivalence Performance

1.3%

Clinical Equivalence Score

Fair Performance (30-70%)

Main Results

Model	GPT-4o Clinical Equivalence	BERTScore F1 (mean ± std)
FLAN-T5 Baseline	1.3% (4/300)	0.8382 ± 0.0281
FLAN-T5 Fine-Tuned	47.7% (318/667)	0.9227 ± 0.0536
GPT-4.1	77.1% (1284/1666)	0.8794 ± 0.0317
DeepSeek	78.6% (1309/1666)	0.8826 ± 0.0319

Conclusions

Fine-tuned FLAN-T5 showed substantial improvement over baseline, achieving major gains in both semantic similarity (BERTScore) and clinical equivalence (GPT-40 judgment).

GPT-4.1 and DeepSeek reached top-tier performance, providing a strong benchmark for large-scale, pretrained models without task-specific fine-tuning.

© Prompt Design Impact

Multiple rounds of careful refinement were required to reach optimal formulation balancing clinical precision, language clarity, and minimal non-clinical artifacts.

& Overall Impact

The project successfully met its objectives, demonstrating that structured input combined with fine-tuning and optimized prompting can substantially narrow the gap toward clinically meaningful text generation.

Dataset Patterns

Advantage: easier to steer prompts toward realistic phrasing

Constraint: limited generalization beyond common cases

AUTOIMPRESS NLP Pipeline Architecture

Graphical Abstract AutoImpress: LLM-Based Radiology Impression Generator

