	Matemáticas para la ciencia de datos Regresiones lineales simples Centro Turing Vamos a discutir los siguientes temas: 1. Entender qué problemas puede resolver el aprendizaje automático 2. Qué problemas puede resolver un modelo de regresiónLos puntos fuertes y débiles de la correlación 3. Cómo se extienden las correlaciones a un modelo de regresión simple 4. Cuándo, qué y porqué del modelo de regresión 5. Las matemáticas esenciales detrás del método de gradiente
	En el proceso, utilizaremos cierta terminología y conceptos estadísticos para ofrecerle la perspectiva de la regresión lineal en el marco más amplio de la estadística, aunque nuestro enfoque seguirá siendo práctico. Definición del problema El aprendizaje automático tiene sólidas raíces en años de investigación: realmente ha sido un largo viaje desde finales de los años cincuenta, cuando Arthur Samuel aclaró que el aprendizaje automático era un "campo de estudio que da a los ordenadores la capacidad de aprender sin ser explícitamente programados". En general, los algoritmos de aprendizaje automático pueden aprender de tres maneras: 1. Aprendizaje supervisado: Es cuando presentamos ejemplos etiquetados para aprender. 2. Aprendizaje no supervisado: Es cuando presentamos ejemplos sin ninguna pista, dejando dejar que el algoritmo cree una etiqueta. 3. Aprendizaje por refuerzo: Es cuando presentamos ejemplos sin etiquetas, como en el aprendizaje no supervisado, pero obtenemos información del entorno sobre si la suposición de la etiqueta es correcta
	o no. El aprendizaje no supervisado tiene importantes aplicaciones en la visión robótica y la creación de características automáticas, y el aprendizaje por refuerzo es fundamental para el desarrollo de la IA autónoma (por ejemplo, en robótica, pero también en la creación de agentes de software inteligentes). Sin embargo, el aprendizaje supervisado es el más importante en la ciencia de los datos porque nos permite hacer predicciones. Notación • En el formalismo matemático, llamamos al resultado que queremos predecir la respuesta o variable objetivo y solemos etiquetarla con la letra minúscula y. • En cambio, las premisas se denominan variables predictivas, o simplemente atributos o características, y se etiquetan con una x minúscula si hay una sola y con una X mayúscula si hay muchas.
In [1]:	<pre>import numpy as np vector = np.array([1,2,3,4,5]) print(vector) print(vector.shape)</pre>
<pre>In [2]:</pre> In [3]:	<pre>vector_columna = vector.resnape((5,1)) print(vector_columna) print(vector_columna.shape) [[1] [2] [3] [4] [5]] (5, 1) vector_renglon = vector.reshape((1,5)) print(vector_renglon) print(vector_renglon.shape) [[1 2 3 4 5]] (1, 5)</pre>
	<pre>np.random.seed(0) print(np.random.randint(10, size=(2,2))) print(np.random.normal(0, 10, size=(2,2))) print(np.random.binomial(10, .25, size=(2,2))) print(np.random.poisson(10, size=(2,2))) [[5 0] [3 3]] [[</pre>
In [5]:	## existen otras maneras de orear matrices print (np. ecros ((5, 21), "\a")" print (np. ecros (5, 21), "\a")" print (np. ecros (5, 21), "\a")" print (np. enes (5)), "\a") print (np. enes (6)), "\a") pr
In [6]:	y la distancia a los centros de trabajo. El segundo conjunto de datos del repositorio Statlib de la Universidad Carnegie Mellon (https://archive.ics.uci.edu/ml/datasets/Housing) contiene 20.640 observaciones derivadas del censo de Estados Unidos de 1990. Cada observación es una serie de estadísticas (9 variables predictivas) de un grupo de bloques, es decir, aproximadamente 1.425 personas que viven en una zona geográficamente compacta. La variable objetivo es un indicador del valor de la vivienda de ese bloque (técnicamente es el logaritmo natural del valor medio de la vivienda en el momento del censo). Las variables predictoras son básicamente la mediana de los ingresos.
Out[6]: In [7]: Out[7]:	<pre># el conjunto de Boston ya esta incluido # es en este conjunto en el que nos enfocaremos from sklearn.datasets import load_boston boston = load_boston() type(boston)</pre>
Out[7]: In [8]: In [9]:	Importaremos los paquetes necesarios 1. numpy: análisis numérico 2. pandas: marcos de datos 3. matplotlib: trazo de gráficas """ import numpy as np import pandas as pd import matplotlib.pyplot as plt
Out[9]: In [10]:	0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2 Aunque una regresión lineal es simple, en realidad el modelo más sencillo es la media aritmética. Sin embargo, esta sólo funciona relativamente bien si los datos están normalmente distribuidos. """ Densidad normal y su implementación en Python """ # pyplot será nuestra herramienta básica para graficar import matplotlib.pyplot as plt # un viejo conocido import numpy as np # importamos la clase que modela las variables normales from scipy.stats import norm
In [12]:	0.2 0.1 0.0 -4 -3 -2 -1 0 1 2 3 4 """ Trazamos el histograma de la variable objetivo del marco de datos """ dataset["target"].plot(kind="hist")
Out[12]: In [13]:	<pre> AxesSubplot:ylabel='Frequency'> 160 140 120 100 20 30 40 20 30 40 50 """ Ahora, bosquejemos una función de densidad aproximada """ dataset["target"].plot(kind="kde" </pre>
Out[13]:	
In [14]:	<pre>from scipy.stats import skew, kurtosis info = """ Estadísticos {} Asimetría (Skewness): {} Curtosis (Kurtosis): {} """.format (dataset["target"].describe(),</pre>
	mean 22.532806 std 9.197104 min 5.000000 25% 17.025000 50% 21.200000 max 50.000000 Name: target, dtype: float64 Asimetría (Skewness): 1.104810822864635 Curtosis (Kurtosis):1.4686287722747462 Como podemos observar, la distrbución tiene asimetría positiva y leptocurtosis. Para más detalles de este concepto consulta Kurtosis() & Skew() Function In Pandas y la documentación correspondiente de Scipy para las funciones skew() y kurtosis(). Ahora podemos evaluar los resultados midiendo el error producido en la predicción de los valores reales de "y" por esta regla. La estadística sugiere que, para medir la diferencia entre la predicción y el valor real, debemos elevar al cuadrado las diferencias y luego sumarlas todas. Este se denomina suma de errores al cuadrado:
<pre>In [15]:</pre> <pre>In [16]:</pre>	<pre># pa.series has permite tratar una columna como una serie de datos # en la que podemos aplicar directamente operadores como la exponenciación mean_expected_value = dataset["target"].mean() print(mean_expected_value) Squared_errors = pd.Series(dataset['target']-mean_expected_value)**2 SSE = np.sum(Squared_errors) print('Sum of Squared Errors (SSE): {:.1f}'.format(SSE)) 22.532806324110677 Sum of Squared Errors (SSE): 42716.3 """ Generaremos un histograma para analizar la distribución de los errores cuadráticos """ density_plot = Squared_errors.plot(kind='hist',</pre>
	bins=range (0, 800, 30) 250 200 200 200 200 200 200 200 200 20
In [17]:	En estadística, hay una cantidad que ayuda a medir cómo se relacionan dos variables: la correlación. Primero estandarizaremos las variables de la siguiente manera $x = \frac{x - \bar{x}}{\sigma}$ En Python se puede lograr vía la siguiente función La desviación estándar, denotada por la letra griega sigma es la raíz cuadrada de la media de las desviaciones al cuadrado de la media, es decir, std = sqrt(mean(x)), where x = abs(a - a.mean())**2. En Numpy, está implementada como la función std() """
In [18]:	def standardize(x):
	delta_2 = variable_2 - np.mean(variable_2) return np.sum(delta_1*delta_2) / (observations-int (bias)) Finalmente definimos el coeficiente r correlación de Pearson, cuyas propiedas más relevantes son 1. El valor del índice de correlación varía en el intervalo [-1,1], indicando el signo el sentido de la relación: 2. Si r=1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables denominada relación directa: cuando una de ellas aumenta, la otra también lo hace en proporción constante. 3. Si 0 <r<1 -1<r<0,="" 4.="" 5.="" correlación="" dos="" entonces="" entre="" esto="" existe="" existir="" implica="" independientes:="" las="" lineal="" lineales="" necesariamente="" negativa.<="" no="" pero="" positiva.="" pueden="" que="" r="0" relaciones="" relación="" si="" son="" td="" todavía="" una="" variables="" variables.=""></r<1>
In [19]:	6. Si r=-1, existe una correlación negativa perfecta. El índice indica una dependencia total entre las dos variables llamada relación inversa: cuando una de ellas aumenta, la otra disminuye en proporción constante. Esta correlación se define como $ r(x,y) = \frac{1}{n} \frac{\sum (x-\bar{x})(y-\bar{y})}{\sigma_x \sigma_y} $ Sin embargo, observa que se puede definir de manera equivalente a partir de la covarianza y de la de estandarización: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente manera: In Implementaremos la correlación de Pearson de la siguiente
In [48]:	""" Ahora calcularemos nuestra implementación en el ejemplo anterior y la compararemos con las funciones propias de Scipy """ from scipy.stats.stats import pearsonr r = correlation(dataset["RM"], dataset["target"]) # {dato:.5f} nos permite inserta el dato que ingresamos como argumento en format() # con cinco decimates de precisión print("Nuestra estimación del coeficiente de correlación: r={dato:.5f}".format(dato=r r_sp, _ = pearsonr(dataset["RM"], dataset["target"]) print("Estimación del coeficiente con Scipy: r={dato:.5f}".format(dato=r_sp)) print(_) Nuestra estimación del coeficiente de correlación: r=0.69536 Estimación del coeficiente con Scipy: r=0.69536
In [21]:	<pre>""" Graficaremos el diagrama de dispersión para visualizar los resultados """ x_range = [dataset["RM"].min(), dataset["RM"].max()] y_range = [dataset["target"].min(), dataset["target"].max()] scatter plot = dataset.plot(kind="scatter", x="RM", y="target", xlim = x_range, ylim = y_range) media_Y = scatter_plot.plot(x_range, [dataset["target"].mean(), dataset["target"].mean()], "", color="red", linewidth=2) media_X = scatter_plot.plot([dataset["RM"].mean(), dataset["RM"].mean()], y_range, "", color="green", linewidth=2)</pre>
In [22]:	 β, β₀ escalares β₀ se conoce como sesgo β₁ se conoce como peso Existen dos métodos para generar regresiones lineales con el paquete Statsmodels: statsmodels.api: Funciona con variables predictoras y de respuesta distintas y requiere que se defina cualquier transformación de las variables en la variable predictora, incluyendo la adición del intercepto. statsmodels.formula.api: Funciona de forma similar a R, permitiendo especificar una forma funcional (la fórmula de la suma de los predictores). llustraremos nuestro ejemplo usando el statsModels.api. Sin embargo, también mostraremos un método alternativo con statsmodels.formula.api.
In [23]:	<pre>Importaremos ambos módulos y definiremos las variables """ import statsmodels.api as sm import statsmodels.formula.api as smf y = dataset['target'] X = dataset['RM'] print(X) 0 6.575 1 6.421 2 7.185 3 6.998 4 7.147 501 6.593 502 6.120 503 6.976 504 6.794 505 6.030 Name: RM, Length: 506, dtype: float64</pre>
	# el sesgo se calculará en consecuencia. X = sm.add_constant(X) print(X) $ \begin{array}{cccccccccccccccccccccccccccccccccc$
In [24]: In [25]:	<pre>Implementación de la regresión con SMF. Esta sintaxis es más parecida a R, pero no la ocuparemos en resto de la unidad. """ linear_regression = smf.ols(formula='target ~ RM', data=dataset) fitted_model = linear_regression.fit() """ Implementación con SM """ linear_regression = sm.OLS(y,X) fitted_model = linear_regression.fit()</pre>
Out[25]:	# imprimimos un resumen de los parámetros y estadísticos de la regresión fitted_model.summary() OLS Regression Results Dep. Variable: target R-squared: 0.484 Model: OLS Adj. R-squared: 0.483 Method: Least Squares F-statistic: 471.8 Date: Tue, 06 Jul 2021 Prob (F-statistic): 2.49e-74 Time: 18:57:05 Log-Likelihood: -1673.1 No. Observations: 506 AIC: 3350. Df Residuals: 504 BIC: 3359. Df Model: 1 Covariance Type: nonrobust coef std err t P- t [0.025 0.975] const -34.6706 2.650 -13.084 0.000 -39.877 -29.465 RM 9.1021 0.419 21.722 0.000 8.279 9.925 Omnibus: 102.585 Durbin-Watson: 0.684 Prob(Omnibus): 0.000 Jarque-Bera (JB): 612.449 Skew: 0.726 Prob(JB): 1.02e-133
In [26]:	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [27]:	1 23.774021 2 30.728032 3 29.025938 4 30.382152 501 25.339584 502 21.034286 503 28.825691 504 27.169108 505 20.215096 Length: 506, dtype: float64 """ Un valor importante a considerar es `R-squared`. Este es el coeficiente de determinac una medida de lo bien que lo hace la regresión con respecto a una media simple. También se puede calcular de la siguiente manera: """ # diferencia de cuadrados respecto a la media mean_sum_squared_errors = np.sum((dataset['target']-dataset['target'].mean())**2) # diferencia de cuadrados respecto a la regresión regr_sum_squared_errors = np.sum((dataset['target']-fitted_values)**2) # diferencia relativa entre la media y la regresión r2 = (mean sum squared errors-regr sum squared errors) / mean sum squared errors
In [28]:	<pre>print(np.round(r2, 3)) 0.484 Para ahondar en la deficinión del valor R-cuadrada, consulta los siguientes artículos: • R-Squared Definition • R-Squared vs. Adjusted R-Squared: What's the Difference? Para más detalles sobre el significado de los diferentes parámetros y estadísticos del resumen, consulta el documento adjunto que te proporcionamos. """ Observación: La media siempre está contenida en la regresión lineal """ X_mean = np.mean(X).to_numpy() print(X_mean) y_mean = np.mean(y) print(y_mean) print(fitted_model.predict(X_mean))</pre>
<pre>In [29]: Out[29]: In [30]:</pre>	Observa que para algunos valores de x, la predicción se vuelve negativa """ fitted_model.predict([1,1]) array([-25.5685118]) Esto nos deja una importante lección: Una regresión lineal siempre puede trabajar dentro del rango de valores que aprendió (esto se llama interpolación) pero puede proporcionar valores correctos para sus límites de aprendizaje (una actividad predictiva diferente llamada extrapolación) sólo en determinadas condiciones. scatter_plot = dataset.plot(
Out[30]:	<pre>kind="scatter", x="RM", y="target", xlim = x_range, ylim = y_range) scatter_plot.plot(dataset["RM"], fitted_values, "", color="red", linewidth=2) [<matplotlib.lines.line2d 0x19489b23c10="" at="">] 50 45 40 35 40 36 27 48 49 49 40 40 40 40 40 41 40 41 40 40 41 40 41 40 41 40 41 40 41 41 41 41 41 41 41 41 41 41 41 41 41</matplotlib.lines.line2d></pre>
In [31]: Out[31]:	2. La varianza no homogénea señala que la regresión no funciona correctamente cuando el predictor tiene determinados valores. 3. Las formas extrañas en la nube de puntos residuales pueden indicar que se necesita un modelo más complejo para los datos que estás analizando. En nuestro caso, podemos calcular fácilmente los residuos restando los valores ajustados de la y luego trazando los residuos estandarizados resultantes en un gráfico. # Los residuales son la diferencia entre los datos y los valores ajustados residuals = dataset['target']-fitted_values # Normalizamos los residuales para entender su comportamiento estadístico # respecto a la regresión lineal normalized_residuals = standardize(residuals) # En este caso, las unidades son deviaciones estándar normalized_residuals.describe() count 5.060000e+02 mean -2.808469e-17 std 1.000990e+00 min -3.533612e+00 25% -3.858019e-01
In [32]:	min -3.535612e+00 25% -3.858019e-01 50% 1.359408e-02 75% 4.521429e-01 max 5.971939e+00 dtype: float64
<pre>In [33]: Out[33]:</pre>	# Histograma de los residuales normalizados normalized_residuals.plot.hist()
In [34]:	200 - 150 - 50 - 50 - 2 4 6
Out[34]:	

	0.2 - 0.1 -
	El gráfico de dispersión resultante indica que los residuos muestran algunos de los problemas que mencionamos anteriormente, como una advertencia de que algo no va bien con tu análisis de regresión. En primer lugar, hay algunos puntos que se encuentran fuera de la banda delimitada por las dos líneas punteadas en los valores residuales normalizados -3 y +3 (un rango que hipotéticamente debería cubrir 99,7% de los valores si los residuos tienen una distribución normal). Entonces, la nube de puntos no está en absoluto dispersa al azar, mostrando diferentes varianzas a diferentes valores de la variable de predicción (el eje de abscisas) y se pueden detectar (puntos en línea
	recta, o los puntos centrales colocados en una especie de U). El número medio de habitaciones es probablemente un buen predictor, pero no es no es la única causa, o hay que replanteársela como causa directa (el número de habitaciones indica una casa más grande, pero ¿qué pasa si las habitaciones son más pequeñas que la media?) Predicciones con un modelo de regresión Cuando introducimos los coeficientes en la fórmula de regresión, predecir es sólo cuestión de aplicar los nuevos datos al vector de coeficientes mediante una multiplicación matricial.
In [35]:	<pre># Escogemos el número de cuartos RM = 5 # Creamos un vector adecuado para insertar en el modelo Xp = np.array([1,RM]) y_pred = fitted_model.predict(Xp)[0]*1000 # Realizamos la predicción print(""" De acuerdo a nuestro modelos, si el número de cuarto es {}, entonces el valor de la casa será de \${:.2f}""".format(RM, y_pred))</pre> De acuerdo a nuestro modelos,
In [36]:	<pre>si el número de cuarto es 5, entonces el valor de la casa será de \$10839.92 Un buen uso del método de predicción es proyectar los valores ajustados en nuestro gráfico de dispersión anterior para permitirnos visualizar la dinámica de los precios con respecto a nuestro predictor, el número medio de habitaciones: x_range = [dataset['RM'].min(), dataset['RM'].max()] y_range = [dataset['target'].min(), dataset['target'].max()] scatter_plot = dataset.plot(kind='scatter',</pre>
	<pre>ylim=y_range,</pre>
	45 - 40 - 35 - 30 - 5 - 20 - 15 - 10 - 5
In [37]:	Además del método de predicción ya implementado, la generación de las predicciones es bastante fácil con solo utilizar la función dot() en NumPy. predictions_by_dot_product = np.dot(X,betas) print("Usando el métrodo implementado:".format(fitted_values[:10].to_numpy())) print("Usando el producto punto:\{}".format(predictions_by_dot_product[:10])) Usando el métrodo implementado: [25.17574577 23.77402099 30.72803225 29.02593787 30.38215211 23.85593997
In [38]:	20.05125842 21.50759586 16.5833549 19.97844155] Usando el producto punto:\[25.17574577 23.77402099 30.72803225 29.02593787 30.38215211 23.85593997 20.05125842 21.50759586 16.5833549 19.97844155] Regresión con Scikit-learn Como hemos visto al trabajar con el paquete StatsModels, se puede construir un modelo lineal utilizando un paquete de aprendizaje automático más orientado como Scikit-learn. Usando el módulo `linear_model()`, podemos establecer un modelo de regresión lineal estab
In [39]:	no deben ser normalizados y que nuestro modelo debe tener un sesgo: """ from sklearn import linear_model linear_regression = linear_model.LinearRegression(normalize=False, fit_intercept=True) """ La preparación de los datos, en cambio, requiere el recuento de las observaciones y la matriz del predictor para especificar sus dos dimensiones (si se deja como un vector, """ observations = len(dataset) X = dataset['RM'].values.reshape((observations,1)) # X debe reformarse como una matrix
In [40]:	<pre>print(X.shape) y = dataset['target'].values # pero y seguirá siendo un vector print(y.shape) (506, 1) (506,) """ After completing all the previous steps, we can fit the model using the fit method: """ linear_regression.fit(X,y)</pre> LinearRegression()
In [41]:	Una característica muy conveniente del paquete Scikit-learn es que todos los modelos, sin importar su tipo de complejidad, comparten los mismos métodos.
In [42]:	Utilizando el método de predicción y restringiéndonos los 10 primeros elementos de la obtenemos los 10 primeros valores ajustados: """ print (linear_regression.predict(X)[:10]) [25.17574577 23.77402099 30.72803225 29.02593787 30.38215211 23.85593997 20.05125842 21.50759586 16.5833549 19.97844155]
In [43]:	Como se ha visto anteriormente, si preparamos una nueva matriz y añadimos una constant podemos calcular los resultados por nosotros mismos utilizando una simple multiplicac: """ Xp = np.column_stack((X,np.ones(observations))) v_coef = list(linear_regression.coef_) + [linear_regression.intercept_] print(v_coef) [9.10210898118031, -34.67062077643857]
Out[44]:	array([25.17574577, 23.77402099, 30.72803225, 29.02593787, 30.38215211, 23.85593997, 20.05125842, 21.50759586, 16.5833549, 19.97844155]) En este punto, sería natural cuestionar el uso de dicho módulo. En comparación con las funciones anteriores ofrecidas por Statsmodels, Scikit-learn parece ofrecer pocos resultados estadísticos, y aparentemente con muchas características de regresión lineal eliminadas. En realidad, ofrece exactamente lo que se necesita en la ciencia de los datos y tiene un rendimiento perfectamente rápido cuando se trata de grandes conjuntos de datos.
In [45]:	from sklearn.datasets import make_regression HX, Hy = make_regression(n_samples=10000000, n_features=1,n_targets=1,random_state=101) Después de generar diez millones de observaciones de una sola variable, comience a medir utilizando la función mágica %%time para IPython.
Out[46]: In [47]:	<pre>sk_linear_regression = linear_model.LinearRegression(normalize=False, fit_intercept=True) sk_linear_regression.fit(HX,Hy) Wall time: 459 ms LinearRegression() %%time sm_linear_regression = sm.OLS(Hy,</pre>
Out[47]:	Resumen En este capítulo hemos presentado la regresión lineal como algoritmo de aprendizaje automático supervisado.
	Explicamos su forma funcional, su relación con las medidas estadísticas de la media y la correlación, e intentamos construir un modelo de regresión lineal simple sobre los datos de los precios de la vivienda en Boston. Después de hacer esto, finalmente echamos un vistazo a cómo funciona la regresión bajo el capó proponiendo sus formulaciones matemáticas clave y su traducción al código Python. ¡Gracias por su participación