DELD

Electronics Engineering Department

Registers

- ☐ An Array of Flip-Flops used to store binary information
- ☐ No. of Flip-Flops will be equal to the no of bits required to store the information
- ☐ Data can be entered serially or parallely
- ☐ It can also be used for Data movement
- ☐ Basically know as shift register, it shifts it output every clock pulse

Types

- ☐ Serial In Serial Out
- ☐ Serial In Parallel Out
- ☐ Parallel In Serial Out
- ☐ Parallel In Parallel Out

- ☐ Shift Left
- ☐ Shift Right

Types

Working Concept

Another Perspective

Serial In Serial Out

Bit Movement

CLK	$FF0(Q_0)$	$FF1(Q_1)$	$FF2(Q_2)$	FF3 (Q_3)
Initial	0	0	0	0
1	0	0	0	0
2	1	0	0	0
3	0		0	0
4	1	0	1	0

Bit Movement Cont..

CLK	$\mathbf{FF0}(Q_0)$	$FF1(Q_1)$	$FF2(Q_2)$	FF3 (Q_3)
Initial	1	0	1	0
5	0	1	0	1
6	O	0	1	0
7	0	0	O	1
8	0	0	0	0

Concept Check

Solution

Serial In Parallel Out

Concept Check

Solution

Parallel In Parallel Out

To B Continued...