Universidad Industrial de Santander - Escuela de Física

Introducción a la Física (Asorey-Sarmiento-Pinilla)

Guía 02: Vectores 2da Parte 2014

- 1) A partir de la definición del producto escalar en \mathbb{R}^3 , $\vec{v} \cdot \vec{w} = \sum_{i=1}^3 v_i w_i = (v_1 w_1 + v_2 w_2 + v_3 w_3)$, verifique que esta definición cumple con las propiedades de un producto escalar
- 2) Sean $\vec{a} = (1,3,6)$, $\vec{b} = (4,-3,3)$ y $\vec{c} = (2,1,5)$ tres vectores de \mathbb{R}^3 . Obtenga:
 - 1) $\vec{a} \cdot \vec{b}$
 - 2) $\vec{b} \cdot \vec{c}$
 - 3) $\vec{a} \cdot \vec{c}$
 - 4) $\vec{a} \cdot (\vec{b} + \vec{c})$
 - 5) $(\vec{a} \vec{b}) \cdot \vec{c}$
 - 6) $(3\vec{a}+4\vec{b})\cdot\vec{c}$
- 3) A partir de las propiedades del producto escalar, verifique que la norma inducida por el producto escalar, $||v|| = \sqrt{\vec{v} \cdot \vec{v}}$, cumple con las propiedades de una norma en un espacio vectorial normado genérico.
- 4) Diga si las siguientes declaraciones son verdaderas o falsas:
 - 1) Si $\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{u}$, y $\vec{v} \neq \vec{0}$, entonces $\vec{w} = \vec{u}$.
 - 2) Si $\vec{v} \cdot \vec{w} = 0 \forall \vec{w}$, entonces $\vec{v} = \vec{0}$.
- 5) Sean $\vec{a} = (1,3,6)$, $\vec{b} = (4,-3,3)$ y $\vec{c} = (2,1,5)$ tres vectores de \mathbb{R}^3 , con la definición usual de producto escalar en \mathbb{R}^3 , calcule
 - 1) $\|\vec{a}\|$, $\|\vec{b}\|$ y $\|\vec{c}\|$.
 - 2) $\|\vec{a} + \vec{b}\|$, $\|\vec{a} + \vec{c}\|$ y $\|\vec{b} + \vec{c}\|$.
 - 3) $\|\vec{a} \vec{b}\|$, $\|\vec{a} \vec{c}\|$ y $\|\vec{b} \vec{c}\|$.
 - 4) $\left\| \left(3\vec{a} + 4\vec{b} \right) \right\|$.
 - 5) $\left\| \left(-\frac{5}{2}\vec{a} + \frac{1}{3}\vec{b} \frac{3}{5}c \right) \right\|$.
- 6) A partir de la definición de versor, $\hat{v} = \vec{v}/|\vec{v}|$, encuentre las componentes de los versores asociados a los siguientes vectores (obtenidos en el punto anterior):
 - 1) \vec{a} , \vec{b} y \vec{c} .
 - 2) $\vec{a} + \vec{b}$, $\vec{a} + \vec{c}$ y $\vec{b} + \vec{c}$.
 - 3) $\vec{a} \vec{b}$, $\vec{a} \vec{c}$ y $\vec{b} \vec{c}$.
 - 4) $(3\vec{a} + 4\vec{b})$.
 - 5) $\left(-\frac{5}{2}\vec{a} + \frac{1}{3}\vec{b} \frac{3}{5}c\right)$.
- 7) En \mathbb{R}^3 , y utilizando los vectores \vec{a} , \vec{b} y \vec{c} de los puntos anteriores, calcule las siguientes distancias:
 - 1) $d(\vec{a}, \vec{a})$.

- 2) $d(\vec{a}, \vec{b}), d(\vec{a}, \vec{c}) y d(\vec{b}, \vec{c})$.
- 3) $d\left(\left(\vec{a} + \vec{b}\right), \vec{c}\right)$.
- 4) $d\left(\left(\frac{7}{5}\vec{a} + \frac{4}{9}\vec{b}\right), \left(\frac{1}{3}\vec{a} \frac{3}{4}\vec{c}\right)\right)$.
- 8) En \mathbb{R}^3 , y utilizando los vectores \vec{a} , \vec{b} y \vec{c} de los puntos anteriores, calcule los ángulos entre los siguientes vectores:
 - 1) $\angle (\vec{a}, \vec{b}), \angle (\vec{a}, \vec{c}) \, y \angle (\vec{b}, \vec{c}).$
 - 2) $\angle ((\vec{a} + \vec{b}), \vec{c})$.
 - 3) $\angle\left(\left(\frac{7}{5}\vec{a} + \frac{4}{9}\vec{b}\right), \left(\frac{1}{3}\vec{a} \frac{3}{4}\vec{c}\right)\right)$.
- 9) Para cada caso, encuentre un vector $\vec{w} \in \mathbb{R}^2$, tal que $\vec{v} \cdot \vec{w} = 0$ y $||\vec{v}|| = ||\vec{w}||$:
 - 1) $\vec{v} = (1, 1)$
 - 2) $\vec{v} = (1, -1)$
 - 3) $\vec{v} = (2, -3)$
 - 4) $\vec{v} = (s, t)$
- 10) Sean $\vec{a} = (1, -2, 3)$ y $\vec{b} = (3, 1, 2)$ dos vectores en \mathbb{R}^3 . Para cada caso, encuentre un versor \hat{c} (vector de módulo 1) que sea paralelo a:
 - 1) $\vec{a} + \vec{b}$
 - 2) $\vec{a} \vec{b}$
 - 3) $\vec{a} + 2\vec{b}$
 - 4) $\vec{a} 2\vec{b}$
 - 5) $2\vec{a} \vec{b}$
- 11) Diga si las siguientes declaraciones relacionadas a vectores en \mathbb{R}^n son verdaderas o falsas:
 - 1) Si \vec{v} es perpendicular a \vec{w} , entonces $||\vec{v} + s\vec{w}|| \ge ||\vec{v}|| \ \forall s \in \mathbb{R}$
 - 2) Si $\|\vec{v} + s\vec{w}\| \ge \|\vec{v}\| \ \forall s \in \mathbb{R}$, entonces \vec{v} es perpendicular a \vec{w} .