

Core Flight System (cFS) Training

Simple Sat Overview

Goals & Agenda

- Provide hands on exercises for the systems engineering training modules
- Work through exercises using Simple Sat (SimSat)
 - Fictional spacecraft to provide a context for the data management design and exercises

•

SimSat

Low Earth Orbit (LEO)

- -90 minute orbit
- One 15 minute ground contact per orbit with bi-directional comm

One science instrument, iSim

- Detector's 1Hz scan produces 10 bytes of data
- Power on sequence
 - Apply power, wait for instrument warm up (~20s), then enable science
- Power off sequence
 - Disable power

SimSat Applications

SimSat Ops Concepts & Requirements

Science team requires

- A 1Hz auxiliary spacecraft data containing time, attitude, orbit data, and instrument status
- Start science during a ground contact. Can be automated but ops prefers to monitor instrument health.
- Ground contact resources/schedule are preplanned
 - Implies autonomous operations can be loaded on board using stored commands
- Each pass can either be a low or high downlink rate
- FSW must autonomously monitor instrument health and power off the instrument in the event of a fault

SimSat App Solution (1 of 5)

iSim App

- Simulate science instrument data
- Creates science data files and moves them to downlink directory
- Commands
 - Power instrument on/off
 - Start/stop science data
 - Set/clear fault
- Telemetry
 - Instrument status: Off, Initializing, Ready
 - Science data: Enabled, disabled
 - Fault: True, False
- Use informational events to trace behavior.

SimSat App Solution (1 of 5)

Contact Activities

Assess health

Retrieve Data

Upload

- Create and load stored command sequences to run a demo
- Use OpenSatKit exercises to work through an example

SimSat App Solution (2 of 5)

Housekeeping (HK)

- HK Combo packet 1 (0x089C) comes predefined with HK and contains HK data from each cFE app
 - Scheduler Slot 6, Activity 6
- Create a new auxiliary science data packet using HK combo packet 2 (0x089D) that combines instrument status telemetry and ADC data
 - Scheduler Slot 6, Activity

Data Storage (DS)

- Configure file & filter tables to create:
 - Event message file: DS filter 6, file 0
 - Auxiliary data file: DS filter 15, file 6

SimSat App Solution (4 of 5)

Telemetry Output (KIT_TO)

- Doesn't support filter tables
- Create low/high tables that define which packets will be output for each scenario
- Load low/high rate tables using stored commands

Limit Checker

- Monitor instrument status for the ready state and start RTS to enable science
- Monitor instrument for a fault and start RTS to power off instrument if a fault persists for 3 seconds
 - WP #12 Monitor ISIM fault
 - AP #2 Start RTS 6 to stop science and power off the instrument

SimSat App Solution (3 of 5)

Stored Command (SC)

 Create Relative Time Sequences (RTS) to perform specific operational functions

RTS Definitions

6 - Power off science instrument

TODO

- Load KIT TO low rate table
- Load KIT_TO high rate table
- Power on science instrument
- Start science
- Stop science
- Start pass
- End pass

Absolute Time Sequence (ATS)

- Create an ATS to manage 24 hours of operations
- For periodic operations such as bSat the duration of an ATS should be much longer than the ATS upload frequency to account for contingencies

SimSat App Solution (5 of 5)

File Manager (FM) & Trivial File Transfer Protocol (TFTP)

- Use FM to perform directory listing of files to downlink and to
- Transfer files from flight to ground using TFTP

Checksum

Configure checksum to monitor the stored command table checksums

CCSDS File Delivery Protocol (CF)

- Currently not in the kit
- CF could significantly change the operational scenarios. Most of the file transfer and onboard file deletion activities could be automated if CF's "hot directory" and Class 2 mode are used

Contact Planning

For each ground contact

- 1. Assess health of spacecraft
 - a. Take action if needed
- 2. Manage onboard data files
- 3. Uplink new ATS if needed

Assess Health of Spacecraft

Verify expected spacecraft state

- This is mission specific, includes items such as
 - Expected control mode, clear LC flags, etc.

Dump, transfer, and display event log

- Event log should not fill up with informational events if you're judicious on how you define events. See cFE training module for guidelines
- Clear log after log transferred to the ground

Manage Onboard Data Files

- 1. Use FM to list directory to a file
- 2. Transfer directory file to the ground
- 3. Sort files in priority order
- 4. Transfer files in priority order
 - a. Delete each file after successful transfer

Reference

OSK - Making Space for Everyone