

Chapter 2: Empirical Risk Minimization

Advanced Topics in Statistical Machine Learning

Tom Rainforth Hilary 2024

rainforth@stats.ox.ac.uk

Problem Setting

- For the first part of the course we are going to focus on discriminative approaches to supervised learning
- We will assume that there is true underlying joint distribution P(X,Y) over inputs $X\in\mathcal{X}$ and outputs/labels $Y\in\mathcal{Y}$
- We do not know P(X,Y) itself, but we have access to samples from it in the form of our dataset $\mathcal{D}=\{(x_i,y_i)\}_{i=1}^n$
 - We will implicitly assume that each datapoint (x_i, y_i) is independent and identically distributed (i.i.d.)
- Our goal is to accurately predict Y|X=x (or some characterization of Y, e.g. class probabilities) for new inputs x
- As we are taking a discriminative approach, this is done by directly **learning a function** $f: \mathcal{X} \to \mathcal{Y}$
 - We will reason about P(X,Y), but not direct model it

Loss Functions

- To learn f, we need an objective function that quantifies the relative performance of different possible functions
- This requires a loss function $L\left(y,f(x),x\right)$ that attributes a cost to making a prediction f(x) for input X=x when the true output is Y=y
- A loss function is thus any function that takes the form¹

$$L: \mathcal{Y} \times \mathcal{Y} \times \mathcal{X} \to \mathbb{R}^+$$

such that its outputs are strictly non-negative (they can be 0)

- L(y,f(x),x) is measure of the discrepancy between the predicted output f(x) and the true output y at the input x
- Most loss function functions do not depend directly on x, so we will simplify this notation to L(y, f(x)) from now on

 $^{^{1}}$ This definition is not always exactly true as sometimes our predictions are not truly in \mathcal{Y} , e.g. predicting class probabilities rather than classes directly.

- ullet A loss function is defined for particular instances of X and Y
- To convert it into an objective we need to consider its value over different possible instances
- By far the most common approach to this is to consider the expectation of the loss over possible input—output pairs

Risk

For a given loss function L, the ${\bf risk}\ R$ of a predictive function f is given by the expected loss

$$R(f) := \mathbb{E}_{X,Y} \left[L(Y, f(X)) \right].$$

3

Hypothesis Space

- ullet The need to choose a machine learning algorithm means that there are generally restrictions on what f we can learn
- \bullet The set of all possible functions is known as the **hypothesis** space $\mathcal H$
- ullet We can now formally define the optimal f as

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}} R(f) = \operatorname*{arg\,min}_{f \in \mathcal{H}} \mathbb{E}_{X,Y}[L(Y, f(X))]$$

• In many cases our function is explicitly parameterized by some parameters $\theta \in \Theta$ such that our hypothesis space is represented through the form of f_{θ} and the set of allowable parameters Θ . We then have

$$f^{\star} = f_{\theta^{\star}}$$
 where $\theta^{*} = \operatorname*{arg\,min}_{\theta \in \Theta} \mathbb{E}_{X,Y}[L(Y, f_{\theta}(X))]$

Empirical Risk

- The risk R(f) (sometimes known as the **true risk**) is an expectation with respect to the true (unknown) joint distribution of (X,Y)
- In practice it is thus unknown as we do not have infinite data or computation, but we can compute the empirical risk:

$$\hat{R}(f) := \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))$$

- For an arbitrary f that is chosen independently of the data, the empirical risk is an unbiased estimate of the true risk
- ... but if f is trained using this data it becomes a negatively biased because we have actively chosen f for which the empirical risk is smaller

Empirical Risk Minimization

- Ideally we would like to learn f^{\star} , but the intractability of R(f) means that this is impossible
- Empirical Risk Minimization (ERM): minimize the empirical risk instead

$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{arg \, min}} \, \hat{R}(f) = \underset{f \in \mathcal{H}}{\operatorname{arg \, min}} \, \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))$$

- Training a discriminative machine learning algorithm now corresponds to (approximately) performing this ERM
- Most of supervised machine learning now boils down to the three choices of a) our hypothesis class, b) our loss function, and c) our mechanism for performing the subsequent ERM

Example Hypotheses Classes

- Linear functions: $\mathcal{H}:=\{f:f(x)=w^{\top}x+b\}$, parametrized by $w\in\mathbb{R}^p$ and $b\in\mathbb{R}$
- Linear functions with nonlinear mappings: $\mathcal{H} := \{f: f(x) = w^\top \varphi(x) + b\} \text{ for some predefined nonlinear feature expansion } \varphi: \mathcal{X} \to \mathbb{R}^D, \text{ typically with } D > p$
 - If we allow D to be potentially infinitely dimensional, this
 results in an important type of hypothesis space: Reproducing
 Kernel Hilbert Space (RKHS).
- ullet Deep learning: computational graph of parameterized, differential, mappings that starts with x and ends with y

Example Loss Functions for Regression

Squared loss: $(y - f(x))^2$ optimal f is the conditional mean $\mathbb{E}[Y|X=x]$,

 $\begin{tabular}{ll} \textbf{Absolute loss:} & |y-f(x)| \\ \textbf{optimal} & f & \text{is the conditional} \\ \textbf{median med}[Y|X=x], \\ \end{tabular}$

 $\begin{aligned} \tau\text{-pinball loss } & (\tau \in (0,1)): \\ 2\max\{\tau(y-f(x)), (\tau-1)(y-f(x))\}, \\ & \text{optimal } f \text{ is the } \tau\text{-quantile of } \\ & P(Y=y|X=x). \end{aligned}$

Figure 1: Loss functions for regression

Loss Functions for Classification

- Rather than have f(x) directly predict classes, we normally have f(x) map to some preference of the different classes, from which we have a fixed mapping to the classes themselves
- For binary classification, we typically denote our classes as -1 and +1 and then predict classes as $\mathrm{sign}(f(x))$, such that the magnitude of f(x) represents the "confidence"
 - We can also derive the class probabilities via

$$P_y(x) = \frac{1}{1 + \exp(-yf(x))}$$

- For multi-class classification, we have $\mathcal{Y} = \{1,\dots,K\}$ and typically learn a mapping $f_k(x)$ of each class k and then predict classes as $\arg\max_k f_k(x)$
 - We can derive the class probabilities via the softmax function

$$P_y(x) = \frac{\exp(f_y(x))}{\sum_{k=1}^{K} \exp(f_k(x))}$$

Example Loss Functions for Binary Classification

- 0/1 loss (misclassification loss) $L(y, f(x)) = \mathbb{I}\{yf(x) \leq 0\}$ Optimal solution is called the **Bayes classifier** and is given by $f(x) = \arg\max_{y \in \{-1,1\}} P(Y = y | X = x)$
- Hinge loss $L(y,f(x))=\max(0,(1-yf(x)))$ Used in **support vector machines**, leads to sparse solutions
- Exponential loss $L(y, f(x)) = \exp(-yf(x))$ Used in **boosting** algorithms like Adaboost
- Logistic loss $L(y, f(x)) = \log(1 + \exp(-yf(x)))$ Used in **logistic regression**, has generative interpretations

Good losses should generally not just penalize misclassification, they should also depend on the confidence of our predictions

Figure 2: Loss functions for binary classification

Example Loss Functions for Multi-Class Classification

Most common loss for multi-class classification loss is the **cross-entropy** loss which generalizes the logistic loss:

$$L(y, f(x)) = -\log P_y(x)$$

$$= -\log \frac{\exp(f_y(x))}{\sum_{k=1}^K \exp(f_k(x))}$$

Overfitting

• How complex should we allow functions f to be? If hypothesis space $\mathcal H$ is "too large", ERM can lead to **overfitting**:

$$\hat{f}(x) = \begin{cases} y_i & \text{if } x = x_i, \\ 0 & \text{otherwise} \end{cases}$$

will have zero empirical risk, but is useless for generalization.

- For a completely unconstrained f, it is possible to simultaneously achieve $\hat{R}(\hat{f})=0$ and $R(\hat{f})=\infty$ for any dataset!
- Remember that $\hat{R}(\hat{f})$ is negatively biased estimate for $R(\hat{f})$
- To avoid overfitting we either need to either restrict our hypothesis class, or apply regularization

Overfitting and Underfitting

Figure 3: Underfitting and Overfitting

Regularization

- Powerful models typically must be flexible and are therefore usually prone to overfitting
- Regularization: add a term r(f), known as a regularizer, to the empirical risk that penalizes complex functions:

$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{arg\,min}} \, \hat{R}(f) + r(f) = \underset{f \in \mathcal{H}}{\operatorname{arg\,min}} \, \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + r(f)$$

 Note that we would not need to regularize the true risk if we could calculate it: the job of the regularizer is to account for the overfitting bias induced by optimizing the empirical risk

Regularizers

- ullet For parameterized functions, it is common for larger values of the parameters heta to correspond to more complex functions
 - Example: larger coefficients in polynomial regression produce steeper gradients and more "wiggly" functions
- \bullet This means we can introduce regularization by **penalizing** large values of θ

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \, \hat{R}(f_{\theta}) + \lambda \|\theta\|_{\rho}^{\rho}$$

where $\rho \geq 1$, and $\|\theta\|_{\rho} = (\sum_{j=1}^{p} |\theta_{j}|^{\rho})^{1/\rho}$ is the L_{ρ} norm of θ (also of interest when $\rho \in [0,1)$, but is no longer a norm)

- Also known as shrinkage methods—parameters are shrunk towards 0
- λ is a hyperparameter that controls the amount of regularisation, and resulting complexity of the model

Regularization Example

Figure 4: Effect of L_2 regularization. Source:

Types of Regularization

- Ridge regression / Tikhonov regularisation: $\rho=2$ (Euclidean norm)
- LASSO: $\rho = 1$ (Manhattan norm)
- **Sparsity-inducing** regularisation: $\rho \le 1$ (nonconvex if $\rho < 1$)
- Elastic net regularisation: mixed L_1/L_2 penalty:

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \Theta} \hat{R}(f_{\theta}) + \lambda \left[(1 - \alpha) \|\theta\|_{2}^{2} + \alpha \|\theta\|_{1} \right]$$

Sometimes we can even regularize directly in function space,
 e.g. using the **Sobolev norm**

$$||f||_{W^1}^2 = \int_{-\infty}^{+\infty} f(x)^2 dx + \int_{-\infty}^{+\infty} f'(x)^2 dx, \tag{1}$$

which penalises functions for being "wiggly:" it prefers functions that have small magnitude and small derivatives

- In discriminative supervised learning we look to find the function that minimizes the **risk** $R(f) := \mathbb{E}_{X,Y}[L(Y, f(X))]$
- As this is intractable we instead use the **empirical risk** $\hat{R}(f):=\frac{1}{n}\sum_{i=1}^n L(y_i,f(x_i))$
- To prevent overfitting and allow generalization, we need to either constrain our hypothesis class of functions or apply some form of regularization
- A large portion learning now boils down to how we choose our hypothesis class, loss function, regularizer, and optimizer

Further Reading

- The "Statistical Machine Learning" course will go into more depth on ERM (particularly in terms of generalization).
- Examples in the course notes
- Chapter 2 of Trevor Hastie, Robert Tibshirani, and
 Jerome Friedman. The elements of statistical learning:
 data mining, inference, and prediction. Springer Science &
 Business Media, 2009 (https://web.stanford.edu/~hastie/ElemStatLearn/)