Geometry Problem booklet

Assoc. Prof. Cornel Pintea

E-mail: cpintea math.ubbcluj.ro

Contents

1	Week 4: Analytic conditions of parallelism. Projections and symmetries			1
1.1 Brief theoretical background. Analytic conditions of parallelism			heoretical background. Analytic conditions of parallelism	1
1.2 Projections and symmetries. Pencils of planes		tions and symmetries. Pencils of planes	2	
		1.2.1	The intersection point of a straight line and a plane	2
		1.2.2	The projection on a plane parallel to a given line	3
		1.2.3	The symmetry with respect to a plane parallel to a line	4
		1.2.4	The projection on a straight line parallel to a given plane	4
		1.2.5	The symmetry with respect to a line parallel to a plane	5
1.3 Pencils of planes		s of planes	5	
1.4 Problems				6

Module leader: Assoc. Prof. Cornel Pintea

Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania

1 Week 4: Analytic conditions of parallelism. Projections and symmetries

1.1 Brief theoretical background. Analytic conditions of parallelism

The equation AX + BY + CZ = 0 is a necessary and sufficient condition for the vector $\overrightarrow{A_0M}(X,Y,Z)$ to be contained within the direction of the plane

$$\pi: A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$

Thus the equation of the director subspace $\overrightarrow{\pi} = \{\overrightarrow{A_0M} \mid M \in \pi\}$ is AX + BY + CZ = 0.

Proposition 1.1. The straight line

$$\Delta: \frac{x-x_0}{p} = \frac{y-y_0}{q} = \frac{z-z_0}{r}$$

is parallel to the plane $\pi: Ax + By + Cz + D = 0$ iff

$$Ap + Bq + Cr = 0 (1.1)$$

Proposition 1.2. Consider the planes

$$(\pi_1) A_1 x + B_1 y + C_1 z + D_1 = 0$$
, $(\pi_2) A_2 x + B_2 y + C_2 z + D_2 = 0$.

Then $\dim(\overrightarrow{\pi}_1 \cap \overrightarrow{\pi}_2) \in \{1,2\}$ and the following statemenets are equivalent

- 1. $\pi_1 || \pi_2$.
- 2. $\dim(\overrightarrow{\pi}_1 \cap \overrightarrow{\pi}_2) = 2$, i.e. $\overrightarrow{\pi}_1 = \overrightarrow{\pi}_2$.
- 3. $rang\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 1.$
- 4. The vectors (A_1, B_1, C_1) , $(A_2, B_2, C_2) \in \mathbb{R}^3$ are linearly dependent.

Corollary 1.3. *Consider the planes*

$$(\pi_1) A_1 x + B_1 y + C_1 z + D_1 = 0, \ (\pi_2) A_2 x + B_2 y + C_2 z + D_2 = 0.$$

The following statements are equivalent

- 1. $\pi_1 \not || \pi_2$.
- 2. $\dim(\overset{\rightarrow}{\pi}_1 \cap \overset{\rightarrow}{\pi}_2) = 1$.
- 3. $rang\begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix} = 2.$
- 4. The vectors (A_1, B_1, C_1) , $(A_2, B_2, C_2) \in \mathbb{R}^3$ are linearly independent.

By using the characterization of parallelism between a line and a plane (Proposition 1.1), we shall find a necessary and sufficient condition for a vector to be contained within the direction of a straight line which is given as the intersection of two planes.

Consider the planes (π_1) $A_1x + B_1y + C_1z + D_1 = 0$, (π_2) $A_2x + B_2y + C_2z + D_2 = 0$ such that

$$\operatorname{rang}\left(\begin{array}{cc} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{array}\right) = 2,$$

alongside their intersectio9n straight line $\Delta = \pi_1 \cap \pi_2$ of equations

$$(\Delta) \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_1 = 0. \end{cases}$$

Thus, $\overset{\rightarrow}{\Delta} = \overset{\rightarrow}{\pi}_1 \cap \overset{\rightarrow}{\pi}_2$ and therefore, by means of some previous Proposition, it follows that the equations of $\overset{\rightarrow}{\Delta}$ are

$$(\overset{\rightarrow}{\Delta}) \begin{cases} A_1 X + B_1 Y + C_1 Z = 0 \\ A_2 X + B_2 Y + C_2 Z = 0. \end{cases}$$
 (1.2)

By solving the system (1.2) one can therefore deduce that $\overrightarrow{d}(p,q,r) \in \overset{\rightarrow}{\Delta} \Leftrightarrow \exists \lambda \in \mathbb{R} \text{ such that}$

$$(p,q,r) = \lambda \left(\left| \begin{array}{cc|c} B_1 & C_1 \\ B_2 & C_2 \end{array} \right|, \left| \begin{array}{cc|c} C_1 & A_1 \\ C_2 & A_2 \end{array} \right|, \left| \begin{array}{cc|c} A_1 & B_1 \\ A_2 & B_2 \end{array} \right| \right). \tag{1.3}$$

The relation is usually (1.3) written in the form

$$\frac{p}{\left|\begin{array}{c|c} B_1 & C_1 \\ B_2 & C_2 \end{array}\right|} = \frac{q}{\left|\begin{array}{c|c} C_1 & A_1 \\ C_2 & A_2 \end{array}\right|} = \frac{r}{\left|\begin{array}{c|c} A_1 & B_1 \\ A_2 & B_2 \end{array}\right|}.$$
 (1.4)

Let us mention that the chosen values for (p,q,r) are usually precisely

1.2 Projections and symmetries. Pencils of planes

1.2.1 The intersection point of a straight line and a plane

Consider a straight line

$$d: \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$$

and a plane $\pi: Ax + By + Cz + D = 0$ which are not parallel to each other, i.e.

$$Ap + Bq + Cr \neq 0$$
.

The parametric equations of *d* are

$$\begin{cases} x = x_0 + pt \\ y = y_0 + qt , t \in \mathbb{R}. \\ z = z_0 + rt \end{cases}$$
 (1.5)

The value of $t \in \mathbb{R}$ for which this line (1.5) punctures the plane π can be determined by imposing the condition on the point of coordinates

$$(x_0 + pt, y_0 + qt, z_0 + rt)$$

to verify the equation of the plane, namely

$$A(x_0 + pt) + B(y_0 + qt) + C(z_0 + Ct) + D = 0.$$

Thus

$$t = -\frac{Ax_0 + By_0 + Cz_0 + D}{Ap + Bq + Cr} = -\frac{F(x_0, y_0, z_0)}{Ap + Bq + Cr},$$

where F(x, y, z) = Ax + By + Cz + D.

The coordinates of the intersection point $d \cap \pi$ are

$$\begin{cases} x_{0} - p \frac{F(x_{0}, y_{0}, z_{0})}{Ap + Bq + Cr} \\ y_{0} - q \frac{F(x_{0}, y_{0}, z_{0})}{Ap + Bq + Cr} \\ z_{0} - r \frac{F(x_{0}, y_{0}, z_{0})}{Ap + Bq + Cr}. \end{cases}$$

$$(1.6)$$

1.2.2 The projection on a plane parallel to a given line

Consider a straight line

$$d: \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$$

and a plane $\pi: Ax + By + Cz + D = 0$ which are not parallel to each other, i.e.

$$Ap + Bq + Cr \neq 0$$
.

For these given data we may define the projection $p_{\pi,d}: \mathcal{P} \longrightarrow \pi$ of \mathcal{P} on π parallel to d, whose value $p_{\pi,d}(M)$ at $M \in \mathcal{P}$ is the intersection point between π and the line through M which is parallel to d. Due to relations (1.6), the coordinates of $p_{\pi,d}(M)$, in terms of the coordinates of M, are

$$\begin{cases} x_{M} - p \frac{F(x_{M}, y_{M}, z_{M})}{Ap + Bq + Cr} \\ y_{M} - q \frac{F(x_{M}, y_{M}, z_{M})}{Ap + Bq + Cr} \\ z_{M} - r \frac{F(x_{M}, y_{M}, z_{M})}{Ap + Bq + Cr'} \end{cases}$$
(1.7)

where F(x, y, z) = Ax + By + Cz + D.

Consequently, the position vector of $p_{\pi,d}(M)$ is

$$\overrightarrow{Op_{\pi,d}(M)} = \overrightarrow{OM} - \frac{F(M)}{Ap + Bq + Cr} \overrightarrow{d}. \tag{1.8}$$

1.2.3 The symmetry with respect to a plane parallel to a line

We call the function $s_{\pi,d}: \mathcal{P} \longrightarrow \mathcal{P}$, whose value $s_{\pi,d}(M)$ at $M \in \mathcal{P}$ is the symmetric point of M with respect to $p_{\pi,d}(M)$ the symmetry of \mathcal{P} with respect to π parallel to d. The direction of d is equally called the *direction* of the symmetry and π is called the *axis* of the symmetry. For the position vector of $s_{\pi,d}(M)$ we have

$$\overrightarrow{Op_{\pi,d}(M)} = \frac{\overrightarrow{OM} + \overrightarrow{Os_{\pi,d}(M)}}{2}, \text{ i.e.}$$
 (1.9)

$$\overrightarrow{Os_{\pi,d}(M)} = 2 \overrightarrow{Op_{\pi,d}(M)} - \overrightarrow{OM} = \overrightarrow{OM} - 2 \frac{F(M)}{Ap + Bq + Cr} \overrightarrow{d}.$$
 (1.10)

1.2.4 The projection on a straight line parallel to a given plane

Consider a straight line

$$d: \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$$

and a plane $\pi: Ax + By + Cz + D = 0$ which are not parallel to each other, i.e.

$$Ap + Bq + Cr \neq 0$$
.

For these given data we may define the projection $p_{d,\pi}: \mathcal{P} \longrightarrow d$ of \mathcal{P} on d, whose value $p_{d,\pi}(M)$ at $M \in \mathcal{P}$ is the intersection point between d and the plane through M which is parallel to π . Due to relations (1.6), the coordinates of $p_{d,\pi}(M)$, in terms of the coordinates of M, are

$$\begin{cases} x_{0} + p \frac{G(x_{M}, y_{M}, z_{M})}{Ap + Bq + Cr} = x_{0} + p \frac{F(M) - F(A_{0})}{Ap + Bq + Cr} \\ y_{0} + q \frac{G(x_{M}, y_{M}, z_{M})}{Ap + Bq + Cr} = y_{0} + q \frac{F(M) - F(A_{0})}{Ap + Bq + Cr} \\ z_{0} + r \frac{G(x_{M}, y_{M}, z_{M})}{Ap + Bq + Cr} = z_{0} + r \frac{F(M) - F(A_{0})}{Ap + Bq + Cr}, \end{cases}$$

$$(1.11)$$

where $G(x,y,z) = A(x-x_0) + B(y-y_0) + C(z-z_0) = F(M) - F(A_0)$ and F(x,y,z) = Ax + By + Cz + D The position vector of $p_{d,\pi}(M)$ is

$$\overrightarrow{Op_{d,\pi}(M)} = \overrightarrow{OA_0} + \frac{F(M) - F(A_0)}{Ap + Bq + Cr} \stackrel{\rightarrow}{d}, \text{ where } A_0(x_0, y_0, z_0).$$
 (1.12)

1.2.5 The symmetry with respect to a line parallel to a plane

We call the function $s_{d,\pi}: \mathcal{P} \longrightarrow \mathcal{P}$, whose value $s_{d,\pi}(M)$ at $M \in \mathcal{P}$ is the symmetric point of M with respect to $p_{d,\pi}(M)$, the symmetry of \mathcal{P} with respect to d parallel to π . The direction of π is equally called the *direction* of the symmetry and d is called the *axis* of the symmetry. For the position vector of $s_{d,\pi}(M)$ we have

$$\overrightarrow{Op_{d,\pi}(M)} = \frac{\overrightarrow{OM} + \overrightarrow{Os_{d,\pi}(M)}}{2}, \text{ i.e.}$$
 (1.13)

$$\overrightarrow{Os_{d,\pi}(M)} = 2 \overrightarrow{Op_{d,\pi}(M)} - \overrightarrow{OM}
= 2 \overrightarrow{OA_0} - \overrightarrow{OM} + 2 \frac{F(M) - F(A_0)}{Ap + Bq + Cr} \overrightarrow{d}.$$
(1.14)

1.3 Pencils of planes

Definition 1.4. The collection of all planes containing a given straight line

$$(\Delta) \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

is called the pencil of planes through Δ .

Proposition 1.5. The plane π belongs to the pencil of planes through the straight line Δ if and only if there exists λ , $\mu \in \mathbb{R}$, $\lambda^2 + \mu^2 > 0$ such that the equation of the plane π is

$$\lambda(A_1x + B_1y + C_1z + D_1) + \mu(A_2x + B_2y + C_2z + D_2) = 0. \tag{1.15}$$

Remark 1.6. *The family of planes*

$$A_1x + B_1y + C_1z + D_1 + \lambda(A_2x + B_2y + C_2z + D_2) = 0$$

where λ covers the whole real line \mathbb{R} , is the so called reduced pencil of planes through Δ and it consists in all planes through Δ except the plane of equation $A_2x + B_2y + C_2z + D_2 = 0$.

Remark 1.7. If

$$(\Delta_1) \left\{ \begin{array}{l} A_1x + B_1y + C_1z + D_1 = 0 \\ Ax + By + Cz + D = 0 \end{array} \right. (\Delta_2) \left\{ \begin{array}{l} A_2x + B_2y + C_2z + D_2 = 0 \\ Ax + By + Cz + D = 0 \end{array} \right.$$

are two concurrent lines at some point P, then the family of lines

$$(\Delta_{\lambda,\mu}) \left\{ \begin{array}{l} A_1 x + B_1 y + C_1 z + D_1 + \lambda (Ax + By + Cz + D) = 0 \\ A_2 x + B_2 y + C_2 z + D_2 + \mu (Ax + By + Cz + D) = 0 \end{array} \right.$$

consists in all lines through P except those lines which lie in the plane

$$\pi: Ax + By + Cz + D = 0.$$

1.4 Problems

1. Write the equation of the line which passes through the point M(1,0,7), is parallel to the plane (π) 3x - y + 2z - 15 = 0 and intersects the line

$$(d) \ \frac{x-1}{4} = \frac{y-3}{2} = \frac{z}{1}.$$

2. Write the equations of the projection of the line

$$(d) \begin{cases} 2x - y + z - 1 = 0 \\ x + y - z + 1 = 0 \end{cases}$$

on the plane $\pi: x+2y-z=0$ parallel to the direction \overrightarrow{u} (1,1,-2). Write the equations of the symmetry of the line d with respect to the plane π parallel to the direction \overrightarrow{u} (1,1,-2).

3. Write the equation of the plane determined by the line

$$(d) \begin{cases} x - 2y + 3z = 0 \\ 2x + z - 3 = 0 \end{cases}$$

and the point A(-1,2,6).

4. Find the equation of the plane containing the origin and the line

$$(d) \frac{x-2}{3} = \frac{y-4}{1} = \frac{z-1}{1}.$$

5. Show that two different parallel lines are either projected onto parallel lines or on two points by a projection $p_{\pi,d}$, where

$$(\pi) Ax + By + Cz + D = 0, \quad (d) \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$$

and $\pi \not \mid d$.

6. Show that two parallel lines are mapped onto parallel lines by a symmetry $s_{\pi,d}$, where

$$(\pi) Ax + By + Cz + D = 0, \quad (d) \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$$

and $\pi \not \mid d$.

7. Consider a plane (π) Ax + By + Cz + D = 0 and a line

$$(d) \ \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$$

with respect a coordinate Cartesian reference system R = (O, b), where $b = [\mathbf{u}, \mathbf{v}, \mathbf{w}]$ is a basis of V. If $\pi \not\mid d$, show that:

(a) $p_{\pi,d}(M)p_{\pi,d}(N) = p(MN)$, $\forall M, N \in \mathcal{P}$, where $p: \mathcal{V} \longrightarrow \mathcal{V}$ is the linear transformation with the matrix representation

$$[p]_b = rac{1}{Ap + Bq + Cr} \left(egin{array}{ccc} Bq + Cr & -Bp & -Cp \ -Aq & Ap + Cr & -Cq \ -Ar & -Br & Ap + Bq \end{array}
ight).$$

(b) $s_{\pi,d}(M)s_{\pi,d}(N) = s(MN)$, $\forall M, N \in \mathcal{P}$, where $s: \mathcal{V} \longrightarrow \mathcal{V}$ is the linear transformation with the matrix representation

$$[s]_b = rac{1}{Ap + Bq + Cr} \left(egin{array}{ccc} -Ap + Bq + Cr & -2Bp & -2Cp \ -2Aq & Ap - Bq + Cr & -2Cq \ -2Ar & -2Br & Ap + Bq - Cr \end{array}
ight).$$

8. Consider a plane (π) Ax + By + Cz + D = 0 and a line

$$(d) \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}.$$

If $\pi \not\parallel d$, show that:

- (a) $p_{\pi,d} \circ p_{\pi,d} = p_{\pi,d}$;
- (b) $s_{\pi,d} \circ s_{\pi,d} = id_{\mathcal{P}}$.

References

- [1] Andrica, D., Topan, L., Analytic geometry, Cluj University Press, 2004.
- [2] Galbură Gh., Radó, F., Geometrie, Editura didactică și pedagogică-București, 1979.
- [3] Pintea, C. Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa Universitară Clujeană, 2001.
- [4] Radó, F., Orban, B., Groze, V., Vasiu, A., Culegere de Probleme de Geometrie, Lit. Univ. "Babeş-Bolyai", Cluj-Napoca, 1979.