ΝΟΜΟΙ ΚΑΤΗΓΟΡΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ

ΚΑΤΗΓΟΡΗΜΑΤΙΚΗ ΛΟΓΙΚΗ www.psounis.gr

<u>Οι νόμοι ΚΛ</u> είναι:			
	Όνομα Νόμου	Διατύπωση	
1	Άρνηση Ποσοδείκτη	$\neg \forall x \varphi \leftrightarrow \exists x \neg \varphi$ $\neg \exists x \varphi \leftrightarrow \forall x \neg \varphi$	
2	Κατανομή Ποσοδείκτη	$\forall x (\varphi \land \psi) \leftrightarrow \forall x \varphi \land \forall x \psi$ $\exists x (\varphi \lor \psi) \leftrightarrow \exists x \varphi \lor \exists x \psi$	
3	Εναλλαγή Ποσοδεικτών	$\forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi$	

 $\exists x \exists y \varphi \leftrightarrow \exists y \exists x \varphi$

 $(\varphi \to \forall x \psi) \leftrightarrow \forall x (\varphi \to \psi)$

 $(\varphi \to \exists x \psi) \leftrightarrow \exists x (\varphi \to \psi)$ $(\forall x \phi \rightarrow \psi) \leftrightarrow \exists x (\phi \rightarrow \psi)$ $(\exists x \varphi \rightarrow \psi) \leftrightarrow \forall x (\varphi \rightarrow \psi)$ Ορισμός: Ένας τύπος φ θα λέμε ότι είναι σε Κανονική Ποσοδεικτική Μορφή αν έχει τη μορφή:

$$Q_1 y_1 Q_2 y_2 \dots Q_n y_n \Psi$$

Όπου τα:

- Q_1,Q_2,\dots,Q_n είναι ποσοδείκτες, δηλαδή: \exists ή \forall
- $y_1, y_2, ..., y_n$ είναι μεταβλητές
- Το Ψ είναι ανοιχτός τύπος (δεν έχει ποσοδείκτες)

ΜΕΟΔΟΛΟΓΙΑ Εύρεσης Κανονικής Ποσοδεικτικής Μορφής:

Μετακίνηση Ποσοδείκτη

4

Στην αρχή του τύπου μόνο ποσοδείκτες που δεσμεύουν όλο τον τύπο. Κάνουμε αλφαβητικές παραλλαγές (αν έχουμε ποσοδείκτες με το ίδιο όνομα ή ελεύθερη μεταβλητή με ίδιο όνο-μα με μεταβλητή ποσοδείκτη) και εφαρμόζουμε νόμους κατηγορηματικής λογικής για να φέρουμε τους ποσοδείκτες μπροστά (μετακίνησης και άρνησης και νόμοι της προτασιακής που κανουν τα σύμβολα συνεπαγωγές).

ΘΕΩΡΗΜΑ: Κάθε τύπος είναι ταυτολογικά ισοδύναμος με έναν τύπο σε κανονική ποσοδεικτική μορφή!

ΠΑΡΑΔΕΙΓΜΑ: Να βρεθεί η κανονική ποσοδείκτη μορφή του τύπου $\forall x O(x) \lor \forall x R(x,x)$

$$\forall x Q(x) \lor \forall x R(x,x)$$
 (Αλφαβητική Παραλλαγή)

 $\equiv \forall x Q(x) \lor \forall y R(y, y)$ (Εφαρμόζω το νόμο διπλής άρνησης)

 $\equiv \neg \neg \forall x Q(x) \lor \forall y R(y, y)$ (Εφαρμόζω το 1ο νόμο αντικατάστασης)

 $\equiv \neg \forall x Q(x) \rightarrow \forall y R(y, y)$ (Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)

 $\equiv \forall y [\neg \forall x Q(x) \rightarrow R(y, y)]$ (Εφαρμόζω το νόμο άρνησης ποσοδείκτη)

 $\equiv \forall y [\exists x \neg Q(x) \rightarrow R(y, y)]$ (Εφαρμόζω το νόμο μετακίνησης ποσοδείκτη)

 $\equiv \forall y \forall x [\neg Q(x) \rightarrow R(y, y)]$