each circle K_m is contained in the interior of R_{ν} provided ν is sufficiently large, on the other hand, every R_{ν} is bounded and is therefore contained in a circle K_M of sufficiently large radius M. Since the integrand $e^{-v^2-y^2}$ is positive everywhere, it follows that

$$\iint_{R_m} e^{-x^2-y^2} dx dy \leq \iint_{R_1} e^{-x^2-y^2} dx dy \leq \iint_{R_M} e^{-x^2-y^2} dx dy.$$

As m and M increase, the integrals over K_m and K_M have the same limit π , so that the integral over R_ν must have the same limit, this proves that the integral must converge to the limit π

We obtain a particularly interesting result if for the regions R_{ν} we choose the squares $|x| \leq \nu$, $|y| \leq \nu$ The integral $\int \int_{R_{\nu}} e^{-x^{3}-\nu^{3}} dx dy$ can then be reduced to two simple integrations (of section 2, p. 228):

$$\int\!\int_{\mathcal{R}_{\nu}} e^{-x^{2}-y^{2}} dx dy = \int_{-\nu}^{\nu} e^{-x^{2}} dx \int_{-\nu}^{\iota} e^{-y^{2}} dy = \left(\int_{-\nu}^{\nu} e^{-x^{2}} dx\right)^{2} = \left(2\int_{0}^{\nu} e^{-x^{2}} dx\right)^{2}.$$

If we now let v tend to ∞ , we must again obtain the same limit π . Hence

$$\left(2\int_0^\infty e^{-x^2}dx\right)^2=\pi$$

OF

$$\int_0^\infty e^{-x^2}dx = \tfrac{1}{2}\sqrt{\pi},$$

in agreement with Vol I, p 496

5. Summary and Extensions

It is useful to consider the concepts of this section again from a single unifying point of view. Our extension of the concept of integral to cases in which the definitions in section 2 (p. 224) are not immediately applicable consists in regarding the value of the integral as the limiting value of a sequence of integrals over regions R_{ν} , which approximate to the original region of integration R as ν increases. For this purpose we regard the region R as open instead of closed, we assign all the points of discontinuity of the function f to the boundary and consider the boundary as not belonging to R. We then say that the region is approximated to by a sequence of regions R_1 , R_2 , ..., R_n , ... if all the closed regions R_n he in R and every arbitrarily chosen closed sub-region in the interior of R is also a sub-region of the region R_n , provided only that R_n are so chosen that each one contains the