Name:

J#:

Date:

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard	d V2 .	Mark:							
Determine if	$\begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix} $ can	be writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2\end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

Solution:

$$RREF \left(\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The system has no solution, so $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ is not a linear combination of the three other vectors.

Standard S1.

Determine if the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ are linearly dependent or linearly independent

Solution:

RREF
$$\begin{pmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since each column is a pivot column, the vectors are linearly independent.

Standard S3.
$$\begin{bmatrix} & & & & \\ & &$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -2 & 3 & 1 & 0 \\ 0 & 6 & 1 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then
$$\left\{ \begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$$
 is a basis of W .

Standard S4.

Mark:

Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

Additional Notes/Marks