Отчёт по четвертому этапу группового проекта Образование планетной системы

Абакумов Егор, Сухарев Кирилл, Калинина Кристина, Еременко Артем

Цели

Цель работы

Провести моделирование одного из этапов эволюции Вселенной - образование некой «солнечной» системы из межзвездного газа.

Цель этапа

Провести коллективное обсуждение результата проекта, подвести итоги работы, сделать выводы.

Теоретическое обоснование

Определение значимых для модели свойств объекта

Для всестороннего моделирования планетарной системы нами были выбраны следующие характеристики:

- Положение тел в пространстве
- Macca
- Радиусы
- Скорость
- Ускорение
- Потенциальная энергия

Механизмы взаимодействия

Движение частиц будет вычисляться согласно II закону Ньютона:

$$F_i = m_i \frac{d^2 r_i}{dt^2}$$

Потенциальное энергия взаимодействия частицы со всеми остальными описывается следующим уравнением:

$$U_i = \sum_{i \neq j} \frac{\gamma m_j m_i}{r_{ij}}$$

Механизмы взаимодействия

Сила отталкивания между двумя частицами равна:

$$F^r(b) = k((\frac{a}{b})^8 - 1)$$

А сила трения вычисляется по формуле:

$$F^f = \mu_1 \mu_2 F^r(b)$$

Построение алгоритма

По сути алгоритм сошелся к нахождению векторной суммы всех сил, действующих на частицу, а затем к просчету ее новых координат согласно следующим законам движения:

• Координаты:

$$x_{n+1} = x_n + v_n dt + \frac{a_n dt^2}{2}$$

Скорости:

$$v_{n+1} = v_n + \frac{a_{n+1} + a_n}{2} dt$$

Построение алгоритма

Также необходимо учитывать, что при сильном сближении частицы слипаются. Их параметры в таком случае примут следующий вид.

$$r = \frac{m_i r_i + m_j r_j}{m_i + m_j}$$

$$v = \frac{m_i v_i + m_j v_j}{m_i + m_j}$$

$$R = \sqrt[3]{R_i^3 + R_j^3}$$

Программная реализация

Нахождение векторной суммы всех сил

```
for i in range(N):
dx = np.divide(dx, d, where = d! = 0)
dy = np.divide(dy, d, where = d! = 0)
nax = np.zeros(N)
nay = np.zeros(N)
for i in range(N):
   for j in range(N):
           if (d[i][i] > rs):
               gravity_value = G * m[i] * m[j] / d[i][j] ** 2
               nax[i] += dx[i][j] * gravity value
               nay[i] += dy[i][j] * gravity value
                repulsive value = k * ((rs / d[i][j]) ** 8 - 1)
                nax[i] += dx[j][i] * repulsive_value
               nay[i] += dy[j][i] * repulsive value
                friction_value = repulsive_value * mu[i] * mu[j]
               nax[i] += -1 * dy[i][j] * friction_value
               nay[i] += dx[i][j] * friction_value
nax /= m
nay /= m
```

Слипание частиц

```
if (d[i][j] < alpha * rs):</pre>
       y[i] = (y[i] * m[i] + y[j] * m[j]) / m_c
       m = np.delete(m, j)
        x = np.delete(x, j)
        y = np.delete(y, j)
       vx = np.delete(vx, j)
        vv = np.delete(vv. i)
        ay = np.delete(ay, j)
        r = np.delete(r, j)
       d = np.delete(d, j, 0)
       d = np.delete(d, j, 1)
       dx = np.delete(dx, i, 0)
       dx = np.delete(dx, j, 1)
       dy = np.delete(dy, j, 0)
       dy = np.delete(dy, j, 1)
i += 1
```

График потенциальной энергии

Графическое моделирование

Графическое моделирование

Графическое моделирование

Выводы

Выводы

В ходе работы была разработана и реализована в программном коде модель некой «солнечной» системы из межзвездного газа. Проведены все математические расчеты и подготовлено теоретическое обоснование.

Оценка модели. Плюсы

- Модель получилась объемной, охватывающей множество частиц
- Модель учитывает воздействие на частицы всех значимых сил
 - Модель предусматривает слипание частиц и их отталкивание
- Модель соотносится с реальными условиями, частицы ведут себя естественно

Оценка модели. Минусы

- Из-за значительной вычислительной сложности пришлось ограничить масштабы модели несколькими сотнями частиц
- Модель двумерна
- Константы и коэффициенты взаимодействия некоторых частиц не всегда соотносятся с реальными, так как размер частицы на экране технически ограничен количеством пикселей, невозможно подобрать действительные коэффициенты

Самооценка

Свою работу наша группа оценивает положительно, так как все основные аспекты моделируемого объекта были учтены, необходимые практические результаты были получены и продемонстрированы. Работа была тщательно проанализирована, ошибки учтены и исправлены, выводы по результатам сделаны, а оставшиеся недостатки обусловлены лишь техническими ограничениями.