Modulhandbuch

Kooperatives Ingenieurstudium Mechatronik

Bachelor of Engineering Stand: 14.02.23

Curriculum

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO 2019

Die Module sind entsprechend der Studierreihenfolge sortiert.

Module und Lehrveranstaltungen	8	SWS	empfohl. Semester	Lehrforme	Leistungsa	Prüfungs- formen	2
Kommunikation	4	3	1.		SL	bHA u. K u. RPr	
Kommunikation in der Technik	1	1	1.	V			
Technisches Englisch	3	2	1.	SU			Ja
Mathematik A	4	4	1.		PL	K	Ja
Mathematik 1	4	4	1.	SU			
Projektmanagement & Systemtechnik	6	4	1 2.				
Projektmanagement	3	2	1.	SU	SL	AH	
Systemtechnik	3	2	2.	SU	SL	AH u. RPr	1
Werkstoffe	7	6.5	1 2.				
Werkstoffe 1	4	4	1.	V + P	PL	PT-VL u. K	_
Kunststoffe	3	2.5	2.	V + P	PL	PT-VL u. K	+-
Technische Mechanik A	6	6	1 2.				
Technische Mechanik 1	3	3	1.	SU	PL	K	_
Technische Mechanik 2	3	3	2.	SU	PL	K	+
Berufspraktische Phase	30	5	1 5.	00	SL	[MET]	
Berufspraktische Phase	30	5	1 5.	SU	JL	[ITE1]	_
Naturwissenschaften	30	3	2.	30	PL	K o. AH	
Grundzüge der Physik	3	3	2.	V + Ü	PL	IX O. AIT	
Konstruktionsgrundlagen	5	4	2 3.	V + U	DI	BT-VL u. K o. AH	
Konstruktionsgrundlagen 1				SU+P	PL	DI-VL U. N U. AH	
	3	2	2.				+
Konstruktionsgrundlagen 2 Mathematik B	2	2	3.	SU			
Mathematik B Mathematik 2	6	6	2 3.	CII	-	1/	Ja
	4	4	2.	SU	PL	K	
Mathematik 3	2	2	3.	SU	PL	K	_
Elektrotechnik	5	5	3.		PL	K	
Elektrotechnik	5	5	3.	V + Ü			
Informatik	6	5	3 4.				
Einführung Matlab	2	1	3.	V + P	SL	bHA u. KT o. bHA o. KT [MET]	
Prozedurale Programmierung und Problemlösestrategien	4	4	4.	V + P	PL	PT-VL u. BT o. BT	
Technische Mechanik B	7	6	3 4.				
Technische Mechanik 3	4	3	3.	SU	PL	K	
Maschinendynamik	3	3	4.	V + Ü	PL	K	
Fertigung & Prozesse	6	4	3 4.				
Fertigungsverfahren	3	2	3.	SU	SL	K	
Prozesstechnik	3	2	4.	SU	PL	K	
Wärme und Strömung	5	4	4.		PL	K	
Wärme-/Strömungslehre	5	4	4.	SU			T
Elektronik & Digitaltechnik	6	5	4 5.		PL	K o. mP o. AH	
Elektronik	4	3	4.	SU			
Digitaltechnik	2	2	5.	SU			+
Mess- und Sensortechnik	5	4	5.				
Mess- und Sensortechnik Praktikum	1	1	5.	Р	SL	PT	_
Mess- und Sensortechnik	4	3	5.	SU	PL	K	+
Antriebe	8	7	5.	- 00	1 -		
Antriebstechnik	3	3	5.	SU	PL	K	+
Aktorik/Elektrische Antriebstechnik	5	4	5.	SU + P	PL	K o. mP	+
	3	7	J.	30 11	1 -	bHA-VL u. KT o.	
Numerische Methoden (im MB)	5	4	5.		PL	bHA-VL u. K	
Numerische Methoden im Maschinenbau	5	4	5.	V + P			
Sensorik und Bussysteme	5	4	6.				
Sensorik und Bussysteme Praktikum	1	1	6.	Р	SL	PT	
Sensorik und Bussysteme	4	3	6.	SU	PL	K	
Praxisprojekt A	8	1	6.		PL	AH o. RPr	
Praxisprojekt A	8	1	6.	Р			
Steuerungs-/Regelungstechnik	8	7	6 7.				
Steuerungs-/Regelungstechnik 1	5	4	6.	V + Ü + P	PL	PT-VL u. K	
Steuerungs-/Regelungstechnik 2	3	3	7.	SU + P	PL	PT-VL u. K	+

Bei Lehrveranstaltungen, deren Kompetenzen in Form einer praktischen Tätigkeit geprüft werden, besteht Anwesenheitspflicht. Im Falle unverschuldeter Versäumnis (vgl. Ziffer 6.2) einzelner Termine wird im Rahmen der organisatorischen Möglichkeiten zeitnah ein Ersatztermin angeboten.

fodule und Lehrveranstaltungen	8	SWS	empfohl. Semester	Lehrformen	Leistungsart	Prüfungs- formen	\$
irtschaft & Recht	4	4	6 7.		_		
Betriebswirtschaftslehre	2	2	6.	SU	PL	K	
Recht (Einführung)	2	2	7.	SU	SL	K o. mP	
usgewählte Themen zur Vertiefung 1 (siehe Fußnote 1)	12	~	6 8.				
Industrielle Bildverarbeitung	4	4	6.	SU	PL	K o. AH o. mP	
Auswahl aus dem Wahlpflichtangebot 1 – Auswahl von genau 8 CP aus den folgenden Lehrveranstaltungen und dem gesamten Bachelor-Angebot der Hochschule Rhein-Main. Zum Erreichen der Gesamt-CP des Moduls kann die Anzahl von 8 CP einmalig mit einer Studienleistung überbucht werden.	8		6 8.		SL	~	
Auswahl aus dem Competence & Career Center	1	1	6 8.	V	SL	~	<u> </u>
3D-Druck in der Produktentwicklung	3	2	6 8.	SU	SL	AH [MET]	<u> </u>
Cleaner Production	3	3	6 8.	SU	SL	AH o. K [MET]	
Ethik und Technik	2	2	6 8.	SU	SL	K o. mP o. AH [MET]	
Flugsicherungstechnik und -betrieb	3	3	6 8.	SU	SL	AH o. K o. mP [MET]	
Frauen in Ingenieurwissenschaften	2	2	6 8.	SU	SL	AH o. RPr [MET]	
Konstruktionswettbewerb	3	2	6 8.	Р	SL	PT [MET]	
Personal & Organisation	2	2	6 8.	SU	SL	K o. mP o. AH [MET]	
Strategisches Management	3	2	6 8.	SU	SL	K o. mP o. AH [MET]	
Umweltinformationssysteme	2	2	6 8.	SU	SL	K o. mP [MET]	
Verzahnungstechnik	2	2	6 8.	SU	SL	K o. mP [MET]	
Volkswirtschaftslehre	2	2	6 8.	SU	SL	K o. mP [MET]	
Thermische Fügetechnik	2	2	6 8.	SU	SL	K o. mP [MET]	
raxisprojekt B	8	1	7.		PL	AH o. RPr	
Praxisprojekt B inite-Element-Methode (FEM) Finite Elemente Methode (FEM)	3	3 3	7. 7.	P SU+P	PL	K o. BT u. K o. BT-VL u. BT u. K	
usgewählte Themen zur Vertiefung 2 (siehe Fußnote 1)	13	~	7 8.				
Business English	3	2	7.	SU	PL	bHA u. K u. mP	Ja
Auswahl aus dem Wahlpflichtangebot 2 – Auswahl von genau 10 CP aus den folgenden Lehrveranstaltungen und dem gesamten Bachelor-Angebot der Hochschule RheinMain. Zum Erreichen der Gesamt-CP des Moduls kann die Anzahl von 10 CP einmalig mit einer Studienleistung überbucht werden.	10		7 8.	911	SL	~	
Auswahl aus dem Competence & Career Center	1	1	7 8.	SU	SL	~	+
3D-Druck in der Produktentwicklung	3	2	7 8.	SU	SL	AH [MET]	+
Cleaner Production	3	3	7 8.	SU	SL	AH o. K [MET]	+
Ethik und Technik	2	2	7 8.	SU	SL	K o. mP o. AH [MET]	+
Flugsicherungstechnik und -betrieb	3	3	7 8.	SU	SL	AH o. K o. mP [MET]	₩
Frauen in Ingenieurwissenschaften	2	2	7 8.	SU	SL	AH o. RPr [MET]	₩
Konstruktionswettbewerb	3	2	7 8.	Р	SL	PT [MET]	_
Personal & Organisation	2	2	7 8.	SU	SL	K o. mP o. AH [MET]	
Strategisches Management	3	2	7 8.	SU	SL	K o. mP o. AH [MET]	_
Umweltinformationssysteme	2	2	7 8.	SU	SL	K o. mP [MET]	
Verzahnungstechnik	2	2	7 8.	SU	SL	K o. mP [MET]	₩
Volkswirtschaftslehre	2	2	7 8.	SU	SL	K o. mP [MET]	
Thermische Fügetechnik	2	2	7 8.	SU	SL	K o. mP [MET]	\perp
echatronik & Robotik	8	7	7 8.				
Mechatronische Systeme	5	4	7.	SU + P	PL	K o. mP o. AH	
l l	3	3	8.	V + P	PL	PT-VL u. K	
Robotertechnik		5	8.		PL	PT-VL u. K	
Robotertechnik roduktion & Qualität	5	0	0.				
	5 3	3	8.	V + P			
roduktion & Qualität				V + P V			
roduktion & Qualität Produktionstechnik	3	3	8.		PL	AH	Ja

Allgemeine Abkürzungen:

CP: Credit-Points nach ECTS, **SWS:** Semesterwochenstunden, **PL:** Prüfungsleistung, **SL:** Studienleistung, **MET:** mit Erfolg teilgenommen, ∼: je nach Auswahl, **fV:** formale Voraussetzungen ("Ja": Näheres siehe Prüfungsordnung)

Lehrformen:

V: Vorlesung, SU: Seminaristischer Unterricht, Ü: Übung, P: Praktikum, BA: Bachelor-Arbeit

Prüfungsformen:

¹Das Profil der mit dem Bachelorabschluss erreichten Kompetenzen sollte durch eine entsprechende Zusammenstellung der Wahlpflicht-Lehrveranstaltungen geschärft werden. Sie sind aus dem gesamten Bachelor-Angebot der Hochschule RheinMain auszuwählen. Auf Antrag (Absprache mit dem Prüfungsausschuss notwendig) können auch qualifizierte Angebote des ccc gewählt werden.

AH: Ausarbeitung/Hausarbeit, BT: Bildschirmtest, K: Klausur, KT: Kurztest, PT: praktische/künstlerische Tätigkeit, RPr: Referat/Präsentation, bHA: bewertete Hausaufgabe, mP: mündliche Prüfung, ~: Je nach Auswahl, BT-VL: Vorleistung Bildschirmtest, PT-VL: Vorleistung Praktische Tätigkeit, bHA-VL: Vorleistung bewertete Hausaufgabe

Inhaltsverzeichnis

Pflichtmodule	7
Kommunikation	 7
Kommunikation in der Technik	 S
Technisches Englisch	 10
Mathematik A	 12
Mathematik $1 \ldots \ldots \ldots \ldots$	14
Projektmanagement & Systemtechnik	 15
Projektmanagement	17
Systemtechnik	 19
Werkstoffe	20
Werkstoffe 1	 22
Kunststoffe	 24
Technische Mechanik A	 26
Technische Mechanik $1 \ldots \ldots \ldots \ldots \ldots$	 28
Technische Mechanik 2	 30
Berufspraktische Phase	32
Berufspraktische Phase	 34
Naturwissenschaften	35
Grundzüge der Physik	 37
Konstruktionsgrundlagen	 38
Konstruktionsgrundlagen 1	 40
Konstruktionsgrundlagen 2	 41
Mathematik B	42
Mathematik 2	 44
Mathematik 3	 45
Elektrotechnik	46
Elektrotechnik	 48
Informatik	50
Einführung Matlab	 52
Prozedurale Programmierung und Problemlösestrategien	54
Technische Mechanik B	 56
Technische Mechanik 3	58
Maschinendynamik	60
Fertigung & Prozesse	 62
Fertigungsverfahren	 64
Prozesstechnik	66
Wärme und Strömung	68
Wärme-/Strömungslehre	70
Elektronik & Digitaltechnik	72
Elektronik	74
Digitaltechnik	75
Mess- und Sensortechnik	76
Mess- und Sensortechnik Praktikum	78
Mess- und Sensortechnik	80
Antriebe	82
Antriebstechnik	84
Aktorik/Elektrische Antriebstechnik	86
Numerische Methoden (im MB)	 88
Numerische Methoden im Maschinenbau	90
Sensorik und Bussysteme	 91
Sensorik und Bussysteme Praktikum	93
Sensorik und Bussysteme	 95 97
Praxisprojekt A	
Praxisprojekt A	99 100
Steuerungs-/Regelungstechnik	100
Steuerungs-/Regelungstechnik 1	 104
Steuerungs-/Regelungstechnik 2	106
Wirtschaft & Recht	
Detriebswii tschaltstehle	 TUC

\mathcal{J}'	110
	112
Industrielle Bildverarbeitung	114
Auswahl aus dem Competence & Career Center	116
3D-Druck in der Produktentwicklung	117
Cleaner Production	119
Ethik und Technik	121
Flugsicherungstechnik und -betrieb	123
Frauen in Ingenieurwissenschaften	125
Konstruktionswettbewerb	127
Personal & Organisation	128
	130
	132
	134
	136
	138
	$\frac{100}{140}$
	142
	143
Finite Elemente Methode (FEM)	145
	147
Business English	149
	151
3D-Druck in der Produktentwicklung	152
	154
	156
	158
Frauen in Ingenieurwissenschaften	160
	162
	163
	165
	167
	169
\mathbf{J}^{-1}	171
	173
	175
	177
· · · · · · · · · · · · · · · · · · ·	177
	179 181
	183
	185
	187
Bachelor-Thesis	189

Kommunikation Communication

ModulnummerKürzelModulverbindlichkeitModulbenotung1110KMPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)4 CP, davon 3 SWS1 Semesterjedes JahrDeutsch; Englisch

FachsemesterPrüfungsartLeistungsart1. (empfohlen)ModulprüfungStudienleistung

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Diplom-Pädagogin Simone Diel, Carolin Sermond

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

<u>Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)</u>
Beherrschung verschiedener mündlicher und schriftlicher Formen der technischen Kommunikation als Grundlage für das Studium und den Ingenieurberuf – deutsch und englisch.

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

bewertete Hausaufgabe u. Klausur u. Referat/Präsentation

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

100, davon 45 Präsenz (3 SWS) 55 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

45 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

55 Stunden

Anmerkungen/Hinweise

- Zugehörige Lehrveranstaltungen

 Pflichtveranstaltung/en:

 1111 Kommunikation in der Technik (V, 1. Sem., 1 SWS)

 1111 Technisches Englisch (SU, 1. Sem., 2 SWS)

Kommunikation in der Technik **Technical Communication Skills**

Kürzel **LV-Nummer** Arbeitsaufwand **Fachsemester** 1111

1 CP, davon 1 SWS als Vor-1. (empfohlen)

lesung

Lehrformen Häufigkeit Sprache(n) iedes Semester Deutsch Vorlesung

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Diplom-Pädagogin Simone Diel

Fachliche Voraussetzung

Empfohlene Voraussetzungen

PC-Kenntnisse

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Grundlagen Kommunizieren
- · Einführung in Teamarbeit
- Informationskompetenz
- Literaturverwaltung mit Citavi
- · Präsentation technischer Zusammenhänge
- · Erstellen technischer Berichte

Medienformen

Literatur

- Vorlesungsskripte
- · Literaturliste wird zu Beginn der Veranstaltung bekannt gegeben.

Arbeitsaufwand der LV in Zeitstunden (h)

25 Stunden, davon 1 SWS als Vorlesung

Technisches Englisch Technical English for Mechanical Engineering

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Se- 1. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr **Sprache(n)**Englisch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

M.A. Roland Matthée, Carolin Sermond

Fachliche Voraussetzung

• Die Teilnahme an den Prüfungen zu den Lehrveranstaltungen Technisches Englisch und Business English setzt voraus, dass zuvor ein Einstufungstest zum Niveau B1 erfolgreich absolviert wurde.

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- Die Studierenden sollen nach Abschluss der Lehrveranstaltung auf dem Level B1/B2 des Common European Framework of Reference for Language Learning in Wort und Schrift technische Sachverhalte kommunizieren können.
- Training des Umgangs mit technischen Texten in der Fremdsprache
- Erlernen des Fachvokabulars zum Beschreiben des Aufbaus, der Funktionsweise und Eigenschaften technischer Geräte. Aufbauten und Materialien.
- Einüben des präzisen Beschreibens technischer Sachverhalte in der Fremdsprache.
- Übungen zum Verfassen von Manuals und Berichten zu Gefahrensituationen, Defekten und Mängeln sowie deren Auslösern.
- Erlernen und Anwenden des umfangreichen technischen Fachvokabulars aus verschiedenen Bereichen des Ingenieurswesens.

Themen/Inhalte der LV

- Technischer Grund- und Aufbauwortschatz, Wiederholung und Vertiefung einiger grammatikalischer Grundstrukturen.
- · Inventions/Innovation
- · Describing Structures, Processes and Influences
- Tools / Manuals
- · Material Processing
- Material Properties
- Health and Safety / Instructions
- Automotive

Medienformen

Skript, Folien, Videos, übliche Präsentationsmedien der Studierenden

Literatur

- Skript
- · Zeitschriften, z.B. "engine", "Inch"

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Mathematik A Mathmatics A

ModulnummerKürzelModulverbindlichkeitModulbenotung1140M1 (KIS)PflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)4 CP, davon 4 SWS1 Semesterjedes JahrDeutsch

FachsemesterPrüfungsartLeistungsart1. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr. rer. nat. Peter Dannenmann, Brigitta Ullwer

Formale Voraussetzungen

• Die Teilnahme an der Prüfung im Modul Mathematik A setzt voraus, dass zuvor ein Test über Grundkompetenzen in Mathematik erfolgreich absolviert wurde.

Empfohlene Voraussetzungen

Kompetenzen

<u>Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)</u> Bei Modulen mit einer LV sind Fach- und Methodenkompetenzen identisch mit denen der LV.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Im Rahmen des Moduls erwerben Studierende die Fähigkeit, das eigene Wissen zu vertiefen und fachübergreifend anzuwenden.

Prüfungsform

Klausur

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

100, davon 60 Präsenz (4 SWS) 40 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

40 Stunden

Anmerkungen/Hinweise

Zugehörige LehrveranstaltungenPflichtveranstaltung/en: • 1142 Mathematik 1 (SU, 1. Sem., 4 SWS)

Mathematik 1
Mathematics 1

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 1142 4 CP, davon 4 SWS als Se- 1. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr **Sprache(n)**Deutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Brigitta Ullwer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Sehr gute Mathematik-Schulkenntnisse

Kompetenzen/Lernziele der LV

- Studierende erlernen das Wissen verschiedene Ansätze/Verfahren im Bereich Mathematik anzuwenden/zu verstehen/zu erinnern und diese auf ingenieurmäßige Fragestellungen zu übertragen.
- Die Befähigung zur strukturierten Vorgehensweise für Problemlösungen durch die Anwendung mathematischer Standardmethoden für elektrotechnische, informationstechnische und maschinenbauliche Aufgabenstellungen.
- · Weiterhin der selbstständige Umgang und die Nutzung von mathematischer Fachliteratur.

Themen/Inhalte der LV

- Lineare Gleichungssysteme
- Funktionen
- Trigonometrie
- Differenzialrechnung
- · Komplexe Zahlen

Medienformen

Beamer, Tafel

Literatur

Papula: Mathematik für Ingenieure und Naturwissenschaftler, Bd 1, Vieweg, Wiesbaden

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 4 SWS als Seminaristischer Unterricht

Projektmanagement & Systemtechnik Project Management &

Modulnummer 1130	Kürzel PM+SY	Modulverbindlichkeit Pflicht	Modulbenotung Benotet (differenziert)	
Arbeitsaufwand 6 CP, davon 4 SWS	Dauer 1 Semester	Häufigkeit jedes Jahr	Sprache(n) Deutsch	
Fachsemester 1 2. (empfohlen)		Prüfungsart Zusammengesetzte Modul _l	prüfung	

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus den Themenfeldern Projektmanagement und Systemtechnik. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr.-Ing. Karlheinz Sossenheimer, Prof. Dipl.-Ing. Reinhard Winzer

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Die Studierenden werde in die Lage versetzt, das strategische Planen, initiieren und verfolgen eines Projektes aus dem *Projektmanagement* auf die Analyse eines technischen Systems (*Systemtechnik*) anzuwenden.
- Sie lernen, sich selbst zu organisieren, die anstehenden Aufgaben der Analyse zu definieren, zu verteilen und zeitlich zu organisieren, um das gewünschte Ziel zu erreichen.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation) Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

150, davon 60 Präsenz (4 SWS) 90 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

90 Stunden

Anmerkungen/Hinweise

- **Zugehörige Lehrveranstaltungen**Pflichtveranstaltung/en:
 1131 Projektmanagement (SU, 1. Sem., 2 SWS)
 1132 Systemtechnik (SU, 2. Sem., 2 SWS)

Projektmanagement Project Managemement

LV-NummerKürzel
3 CP, davon 2 SWS als Se1. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr

Sprache(n)
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Ludwig Dorn, Prof. Dr.-Ing. Karlheinz Sossenheimer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Lehrveranstaltung thematisiert die Grundlagen eines modernen Projektmanagements. Im Fokus der Vermittlung, Analyse und kritischen Auseinandersetzung stehen dabei die Leitlinien Projektmanagement, der Norm DIN ISO 21500:2016-02. Die Studierenden sollen den Lebenszyklus von Projekten kennen. Sie analysieren die Projektphase der Initiierung und erstellen einen Projektauftrag. Sie strukturieren in der Projektplanungsphase den Projektstrukturplan und entwickeln exemplarische Termin-, Ressourcen-, Informations- und Kommunikationspläne. Des weiteren können sie zentrale Planungsdokumente im Verlauf von Projekten erstellen und einsetzen und den den Projektfortschritt dokumentieren, analysieren und steuern. Sie kennen wichtige rechtliche Grundlagen (wie Lasten- und Pflichtenheft, Werk- vs. Dienstleistungsvertrag). Darüber hinaus können sie die Projektrisiken analysieren und implementieren ein Risikomanagement als permanente Aufgabe im Projektmanagement. Sie beherrschen MS Project als EDV-Tool zur Projektplanung und Durrchführung.

Themen/Inhalte der LV

- Einführung in das Projektmanagement: Grundlagen, charakteristische Merkmale, Aufgaben, generelle Kernprobleme und Lösungsansätze
- Organisation von Projektarbeit: Aufgabe/Verantwortung/Kompetenz der Projektbeteiligten; Projektmanagementhandbuch, Funktionenmatrix
- Methoden und Instrumente der Leitung und Abwicklung: Planung, Überwachung, Steuerung von: Ablauf, Terminen, Ressourcen und Kosten
- Projekt-Controlling und Standardisierung
- Risikomanagement
- Konfigurations- und Änderungsmanagement
- · Soziale Kompetenz: Projektkultur, Konfliktmanagement, Teamarbeit
- Nutzung gängiger PM-Software (z.B. SAP-R3-PS und MS-Project)

Medienformen

- Seminaristische Lehrveranstaltung, Präsentation,
- · Lehrgespräch und Diskussion
- Gruppenarbeiten

Literatur

- Vorlesungsskript Projektmanagement
- Karlheinz Sossenheimer, Projektmanagement MS-Project 2016 Einführung, Seminarunterlagen Dettmer Verlag
- J. Kuster, E. Huber, R. Lippmann, A. Schmid, E. Schneider, U. Witschi, R. Wüst: "Handbuch Projektmanagement" ,3., erweit. Aufl. 2011, ISBN 978-3-642-21243-7

 • Bea, F.X., S. Scheurer, S. Hesselmann, 2008, Projektmanagement, Stuttgart
- Litke, H.-D., 2007, Projektmanagement: Methoden, Techniken, Verhaltensweisen, 5. erweiterte Auflage, München

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Systemtechnik Systems Technology

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 1132 SP, davon 2 SWS als Se- 2. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes JahrDeutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dipl.-Ing. Reinhard Winzer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Das Erkennen von physikalischen Prinzipien und des Zusammenspiels von Maschinenbau, Elektrotechnik und Informationstechnik in der Entwicklung, Konstruktion, Fertigung und Produktnutzung (ganzheitliches "Systemdenken"). Weiterhin die Befähigung zu projektorientierter Teamarbeit und Kenntnisse von unterschiedlichen Aspekten der Ingenieurtätigkeit.

Themen/Inhalte der LV

Recherche zu einem technischen Gerät (z.B. Ultralight-Flugzeug). * Analyse des Gerätes hinsichtlich seiner Funktionen, Teilfunktionen, und den darin enthaltenen physikalischen Prinzipien. * Analyse der typischen Phasen des Produktlebenszyklus, wie Entwicklung/Konstruktion, Herstellung, Fertigungsverfahren, Werkstoffauswahl, Erprobung, Nutzung, Kostenermittlung, Marketing, etc. * Seminaristische Unterrichtseinheiten zu Recherche- und Analysemethoden, methodische Vorgehensweise, physikalische Grundprinzipien, Projekt- und Teamarbeit.

Medienformen

Tafel, Beamer, Flip Chart, Whiteboard

Literatur

- Arbeitsblätter
- Fröhlich, Peter, et al; Das Maschinenbau-Planspiel MeTec. Wiesbaden 2000
- Longmuß: Projektarbeit in der Konstruktionsausbildung. Düsseldorf

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit u. Referat/Präsentation

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Werkstoffe Material Sciences

ModulnummerKürzelModulverbindlichkeitModulbenotung1130KIS-WSTPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)7 CP. davon 6.5 SWS2 SemesterDeutsch

Fachsemester Prüfungsart

1. - 2. (empfohlen) Zusammengesetzte Modulprüfung

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus den Themenfeldern Kunststoffe und metallische Werkstoffe. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsehene.

Modulverantwortliche(r)

Prof. Dr.-Ing. Klaus Biehl, Prof. Dr.-Ing Ralf Koch

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

<u>Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)</u>
Die Befähigung zur Anwendung der erworbenen Kenntnisse der Werkstoffarten, des Werkstoffaufbaus und der Werkstoffeigenschaften für ingenieurtechnische Fragestellungen aus Konstruktion, Produktion und Qualitätssicherung.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

175, davon 97.5 Präsenz (6.5 SWS) 77.5 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

97.5 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

77.5 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen Pflichtveranstaltung/en: 1122 Werkstoffe 1 (V, 1. Sem., 3 SWS) 1122 Werkstoffe 1 (P, 1. Sem., 1 SWS) 1124 Kunststoffe (V, 2. Sem., 2 SWS) 1124 Kunststoffe (P, 2. Sem., 0.5 SWS)

Werkstoffe 1 Materials Science 1

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 1122 4 CP, davon 3 SWS als Vor- 1. (empfohlen)

lesung, 1 SWS als Prakti-

kum

LehrformenVorlesung, Praktikum

Häufigkeit
Nur im Wintersemester

Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing Ralf Koch

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden besitzen:

- die Kenntnis über metallische Werkstoffe, deren Eigenschaften sowie deren Prüfung,
- · die Fähigkeit, Werkstoffkenndaten für den Festigkeitsnachweis von Konstruktionen anwenden zu können,
- Kenntnisse über das Werkstoffverhalten bei Betriebsbeanspruchungen,
- · die Kenntnis der verschiedenen Korrosionsarten und deren Entstehung,
- · die Kenntnis des Korrosionsschutz mittels galvanischer und chemischer Verfahren.

Themen/Inhalte der LV

Grundlagen der Metallkunde:

- · Gitteraufbau, Gefügeaufbau, Kristallgitterbaufehler, elektrische und thermische Eigenschaften
- · elastische und plastische Verformung
- · Zustandsschaubilder von Legierungen
- Zustandsdiagramm Eisen-Kohlenstoff und Wärmebehandlungsverfahren
- · Bezeichnungen der Stähle
- Nichteisenmetalle Aluminium, Magnesium, Titan und Kupfer

Praktikum:

- Zugversuch, Härteprüfung, Kerbschlagbiegeversuch, Dauerschwingversuch, Zeitstandversuch, zerstörungsfreie Werkstoffprüfung, Dehnungsermittlung mittels Dehnmessstreifen
- Einfluss der Versuchstemperatur und der Bauteilgestalt (Kerben) auf die mechanischen Eigenschaften, Stirnabschreckversuch, Ausscheidungshärtung von Legierungen

Medienformen

Literatur

- Krauss: Umdrucke zur Vorlesung
 Weißbach: Werkstoffkunde und Werkstoffprüfung. Vieweg Verlag
 Greven/Magin: Werkstoffkunde/Werkstoffprüfung. Verlag Handwerk und Technik
- Shackelford: Werkstofftechnologie für Ingenieure
- Pearson Ashby, Jones: Werkstoffe 1 und 2. Verlag Spektrum

Leistungsart

Prüfungsleistung

Prüfungsform

Vorleistung Praktische Tätigkeit u. Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 3 SWS als Vorlesung, 1 SWS als Praktikum

Kunststoffe Plastics

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Vor- 2. (empfohlen)

lesung, 0.5 SWS als Prakti-

kum

LehrformenHäufigkeitSprache(n)Vorlesung, Praktikumnur im SommersemesterDeutsch

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing Ralf Koch

Fachliche Voraussetzung

Empfohlene Voraussetzungen

• B-MB-CH

Kompetenzen/Lernziele der LV

- Kenntnisse über Polymerwerkstoffe, deren Herstellung, deren Verarbeitung, deren Eigenschaften sowie deren Prüfung,
- die Fähigkeit, Werkstoffdaten für Festigkeitsnachweis von Konstruktionen anwenden zu können,
- · Kenntnisse über das Werkstoffverhalten bei Betriebsbeanspruchungen.

Themen/Inhalte der LV

- Werkstoffliche Grundlagen der Kunststoffe
- · Bildungsreaktionen der Makromoleküle
- Molekularer Aufbau und Eigenschaften
- Ausgewählte Methoden der Kunststoffprüfung
- · Kunststoffe im Medienkontakt, Alterung
- · Wichtige Thermoplaste, Elastomere, Duroplaste
- Weichmachung, thermischer Einsatzbereich
- · Recycling der Kunststoffe
- Klebstoffe
- Kunststoffschweißen
- Verbundwerkstoffe
- Kunststoffverarbeitung, Gestaltung von Kunststoffteilen
- Laborversuche

Medienformen

Literatur

- Vorlesungsskript
- D. Braun: Kunststofftechnik für Einsteiger, Carl Hanser Verlag, 2003
 G. Menges: Werkstoffkunde der Kunststoffe, Carl Hanser Verlag, 2010
 Schwarz/Ebling: Kunststoffkunde, Vogel Verlag 2007

- H. Dominighaus: Kunststoffe, Springer Verlag
- R Dangel: Spritzgießwerkzeuge für Einsteiger, Carl Hanser Verlag

Leistungsart

Prüfungsleistung

Prüfungsform

Vorleistung Praktische Tätigkeit u. Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Vorlesung, 0.5 SWS als Praktikum

Technische Mechanik A Applied Mechanics A

Modulnummer 1150	Kürzel	Modulverbindlichkeit	Modulbenotung	
	TM	Pflicht	Benotet (differenziert)	
Arbeitsaufwand 6 CP, davon 6 SWS	Dauer	Häufigkeit	Sprache(n)	
	1 Semester	jedes Jahr	Deutsch	
Fachsemester 1 2. (empfohlen)		Prüfungsart Zusammengesetzte Modul _l	prüfung	

Modulverwendbarkeit

- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus Statik, Elastostatik und Dynamik. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Kiefer, Prof. Dr.-Ing. Claus Schul

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

<u>Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)</u>
Die Befähigung zur Anwendung der Gesetzmäßigkeiten der Technischen Mechanik auf ingenieurmäßige Fragestellungen in verwandten Fachgebieten wie Konstruktion, Systemtechnik, Mechatronische Systeme, Simulation.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Analytische Denken erlernen, Fragestellungen aus der Ingenieurspraxis in die Modellbeschreibung der Technischen Mechanik zu übertragen.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

150, davon 90 Präsenz (6 SWS) 60 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

90 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

60 Stunden

Anmerkungen/Hinweise

- **Zugehörige Lehrveranstaltungen**Pflichtveranstaltung/en:
 1152 Technische Mechanik 1 (SU, 1. Sem., 3 SWS)
 1154 Technische Mechanik 2 (SU, 2. Sem., 3 SWS)

Technische Mechanik 1 Applied Mechanics 1

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 1152 3 CP, davon 3 SWS als Se- 1. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr **Sprache(n)**Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Claus Schul

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- Die Studierenden sind aufgrund der verschiedenen Übungsaufgaben in der Lage, bei Balkenmodellen Lagerreaktionen. Schnittkräfte und -momente zu ermitteln.
- Die Studierenden können einfache, reale Bauteile in ein mechanisches Ersatzmodell überführen.
- Befähigung der Studierenden zur Überprüfung der eigenen Berechnungen auf Plausibilität und Übereinstimmung mit der ingenieurmäßigen Modellbildung von Lastfällen.
- Die Studierenden erlangen die Fähigkeit, in neuen Aufgaben Ähnlichkeiten zu bekannten Aufgaben zu erkennen, und die oben genannte Modellbildung und Berechnungen auf die neuen Lastfälle zu übertragen.

Themen/Inhalte der LV

Statik starrer Körper

- · Äußere Kräfte, Freimachen, Lagerreaktionen
- · Innere Kräfte und Momente
- · Stab- und Balkentragwerke, räumliche Systeme
- Haftung und Reibung
- · Vorrechnung von Beispielaufgaben an der Tafel.

Medienformen

Beamer, Tafelanschrieb

Literatur

- Vorlesungsskript
- · Gross, Hauger, Schröder, Wall: Technische Mechanik 1, Statik; Springer Vieweg, 13. Auflage 2016
- Gross, Ehlers, Wriggers, Schröder, Müller: Formeln und Aufgaben zur Technischen Mechanik 1, Statik; Springer Vieweg, 12. Auflage 2016
- R. C. Hibbeler: Technische Mechanik 1, Statik, Pearson Studium; 12. Auflage 2012
- Mayr, Martin: Technische Mechanik: Statik, Kinematik, Kinetik, Schwingungen, Festigkeitslehre; Carl Hanser, 11.
 Auflage 2015
- Mayr, Martin: Mechanik Training; Beispiele und Prüfungsaufgaben, Carl Hanser, 4. Auflage 2015.

Leistungsart Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 3 SWS als Seminaristischer Unterricht

Anmerkungen Abstimmung mit TM2 steht noch aus.

Technische Mechanik 2 Applied Mechanics 2

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 1154 2. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes JahrDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Kiefer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Technische Mechanik 1

Kompetenzen/Lernziele der LV

- Auf der Grundlage der Mechanik ruhender Körper können die Studierenden statische Beanspruchungen (Zug-Druck, Biegung, Scherung und Torsion) von Bauteilen rechnerisch bestimmen bzw. die Bauteile beanspruchungsgerecht dimensionieren.
- Die Studierenden sind in der Lage, reale Tragwerke in ein mechanisches Modell zu überführen und ein Freikörperbild zu skizzieren. Sie können die Lagerkräfte und Momente von Tragwerken ermitteln und die in der Struktur wirkenden Schnittgrößen ableiten.
- Die Studierenden sind mit den Grundbegriffen der Elastostatik vertraut. Insbesondere können sie, auf Basis der Schnittgrößen und der Strukturgeometrie, die Spannungen im Bauteil ermitteln.
- Sie sind in der Lage, die zulässige Spannung zu definieren, um zu Aussagen zur Bauteilfestigkeit zu gelangen. Sie sind mit dem Stoffgesetz in Form des Hookeschen Gesetzes vertraut, so dass sie die den Spannungen zugehörigen Verzerrungen und Verschiebungen berechnen können.

Themen/Inhalte der LV

- Einführung in die Zielsetzungen der Elastostatik: Festigkeitsnachweis, Bauteildimensionierung, Bauteilverformungen
- Überblick zu den Beanspruchungsarten
- Innere Bauteil-Beanspruchungen, Konzept der Spannung
- · Kinematik der Bauteil-Verformungen, Konzept der Verzerrung
- Stoffgesetz: Zugversuch, Hooksches Gesetz, Materialkenngrößen, zulässige Spannungen
- Beschreibung des elastostatischen Verhaltens von Bauteilen in Bezug auf: Zug-Druck, Biegung, Schub, Torsion

Medienformen

Beamer, Tafelanschrieb, Modelle

Literatur

- Vorlesungsskript
- Technische Mechanik 2, Gross, Hauger, Schröder, Schnell; Springer-Verlag
 Technische Mechanik 2, Hibbeler, Pearson Studium
- Technische Mechanik, Böge; Vieweg-Verlag
- Richard/Sander: Technische Mechanik. Festigkeitslehre. Vieweg+Teubner

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 3 SWS als Seminaristischer Unterricht

Berufspraktische Phase Vocational training period

Modulnummer Kürzel Modulverbindlichkeit Modulbenotung

1000 BP Pflicht Mit Erfolg teilgenommen

(undifferenziert)

Arbeitsaufwand Dauer Häufigkeit Sprache(n)

30 CP, davon 5 SWS 1 Semester jedes Semester

FachsemesterPrüfungsartLeistungsart1. - 5. (empfohlen)ModulprüfungStudienleistung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Albert Fechter, Prof. Dr.-Ing. Claus Schul

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)
Die Befähigung zur Umsetzung der erlernten praktischen und anwendungsnahen Grundfertigkeiten und Kenntnisse aus dem Metall- und Elektrobereich (festgelegt in den Ausbildungsordnungen der IHK/HK für Berufe aus dem Metall- und Elektrobereich), sowie der Transfer dieser Fähigkeiten auf das Studium und auf die spätere Ingenieurtätigkeit. Die selbstständige Bearbeitung und Lösung praktischer Aufgabenstellungen und die Nutzung der technischen und unternehmensspezifischen Prozesse zur Lösung der gestellten Aufgaben. Außerdem die Befähigung zur sachgerechten Kommunikation auf Facharbeiterniveau (fachlich und sozial).

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

750, davon 75 Präsenz (5 SWS) 675 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

75 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

675 Stunden

Anmerkungen/HinweiseBegleitende Betreuung der Berufsausbildung durch die HS-RM-Lehrenden

Zugehörige Lehrveranstaltungen

Berufspraktische Phase Vocational training period

LV-Nummer1001
Kürzel
Arbeitsaufwand
30 CP, davon 5 SWS als Se1. - 5. (empfohlen)

minaristischer Unterricht

Lehrformen Häufigkeit Sprache(n)

Seminaristischer Unterricht

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Claus Schul

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Befähigung zur Umsetzung der erlernten praktischen und anwendungsnahen Grundfertigkeiten und Kenntnisse aus dem Metall- und Elektrobereich (festgelegt in den Ausbildungsordnungen der IHK/HK für Berufe aus dem Metall- und Elektrobereich), sowie der Transfer dieser Fähigkeiten auf das Studium und auf die spätere Ingenieurtätigkeit. Die selbstständige Bearbeitung und Lösung praktischer Aufgabenstellungen und die Nutzung der technischen und unternehmensspezifischen Prozesse zur Lösung der gestellten Aufgaben. Außerdem die Befähigung zur sachgerechten Kommunikation auf Facharbeiterniveau (fachlich und sozial).

Themen/Inhalte der LV

Medienformen

Literatur

Arbeitsaufwand der LV in Zeitstunden (h)

750 Stunden, davon 5 SWS als Seminaristischer Unterricht

Naturwissenschaften Sciences

ModulnummerKürzelModulverbindlichkeitModulbenotung1240NWPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)3 CP, davon 3 SWS1 Semesterjedes SemesterDeutsch

FachsemesterPrüfungsartLeistungsart2. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

Identisch MBKooperatives Ingenieurstudium Mechatronik

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr. rer. nat. Stefan Kontermann

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

Die Studierenden entwickeln ein grundlegendes Verständnis für die Rolle und Vorgehensweise der Physik. Insbesondere verstehen sie die physikalische Methode, aus dem Wechselspiel von Experiment und Modellbildung, allgemeinere quantitative Aussagen abzuleiten. Die Studierenden wiederholen und üben zentrale Lerninhalte und Kompetenzen ihrer Schulbildung, auf die dann weitere Themen der Physik aufgebaut werden. Dabei ist die quantitative Behandlung von physikalischen Vorgängen ein zentraler Bestandteil der behandelten Themen. Die Studierenden werden in die Lage versetzt, einfache physikalische Definitionen zu verstehen und anzuwenden, mit Einheiten und Zehnerpotenzen umzugehen sowie einfache Grafiken oder geometrische Sachverhalte quantitativ zu interpretieren. Sie können physikalische Phänomene, ausgedrückt in mathematischer Formelsprache, verstehen, interpretieren, durch Nähern oder Grenzwertbildung vereinfachen, in Diagrammen darstellen und Größen abschätzen. Sie erhalten abschließend einen Überblick über die großen Einzelgebiete der Physik und das Physikalische Weltbild.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Klausur o. Ausarbeitung/Hausarbeit (*Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.*)

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

75, davon 45 Präsenz (3 SWS) 30 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

45 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

30 Stunden

Anmerkungen/Hinweise

- **Zugehörige Lehrveranstaltungen**<u>Pflichtveranstaltung/en:</u>
 1242 Grundzüge der Physik (V, 2. Sem., 2 SWS)
 1242 Grundzüge der Physik (Ü, 2. Sem., 1 SWS)

Grundzüge der Physik Basics of Physics

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Vor- 2. (empfohlen)

lesung, 1 SWS als Übung

LehrformenHäufigkeitSprache(n)Vorlesung, Übungjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. rer. nat. Hans-Dieter Bauer, Prof. Dr. Andreas Brensing, Prof. Dr. rer. nat. Stefan Kontermann

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Gute Schulkenntnisse in Mathematik und Physik, Technische Mechanik 1

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

Die Was ist Physik? (Naturbeobachtung und Naturbefragung, Wechselspiel Experiment und Modellbildung, Ableitung von mathemat. Beziehungen, Gültigkeitsbereich, Vorhersagbarkeit, die Natur von "Fehlern") Physikalische Größen und Einheiten (SI-Einheiten, Wesen von Skalaren und Vektoren, zusammengesetzte Einheiten, Umrechnung, Nutzen von Zehnerpotenzen, anhand z.B. von Dichte, Geschwindigkeit, Energie, Erhaltungsgrößen, Schwingungsformen) Texte, Grafiken und Formeln verstehen (Umsetzen von Textvorgaben in mathemat. Sprache, Interpretieren von Gleichungen/Formeln, Grenzübergänge und Abschätzungen, Interpretieren von s-t-, v-t-Diagrammen, Umsetzen von geometrischen Sachverhalten in mathematische Sprache) Themengebiete der Physik und das Physikalische Weltbild (Phänomenologische Darstellung der Teilgebiete der Physik in bildlich-anschaulicher Weise)

Medienformen

Vorlesungsexperimente, Präsentations-Folien, Übungsblätter, Aufgabensammlung

Literatur

- · P. Tipler, Physik
- D. Halliday, Physik für Ingenieure
- Weitere Literatur wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Vorlesung, 1 SWS als Übung

Konstruktionsgrundlagen Engineering Design Basics

ModulnummerKürzelModulverbindlichkeitModulbenotung1210KGPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)5 CP, davon 4 SWS2 Semesterjedes JahrDeutsch

FachsemesterPrüfungsartLeistungsart2. - 3. (empfohlen)Kombinierte ModulprüfungPrüfungsleistung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Albert Fechter

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

Die Befähigung zum methodischen Vorgehen bei der Entwicklung und Konstruktion von Geräten, Maschinen und Anlagen. Weiterhin die Befähigung zur Anwendung der erworbenen Kenntnisse und Fertigkeiten für konstruktive Fragestellungen und Aufgaben und zur Kommunikation konstruktiver Themen mit technisch orientierten Kommilitonen und Kollegen. Das Erkennen von physikalischen Prinzipien der Entwicklung, Konstruktion, Fertigung und Produktnutzung (ganzheitliches "Systemdenken"). Weiterhin die Befähigung zu projektorientierter Teamarbeit und Kenntnisse von unterschiedlichen Aspekten der Ingenieurtätigkeit.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Vorleistung Bildschirmtest u. Klausur o. Ausarbeitung/Hausarbeit (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

125, davon 60 Präsenz (4 SWS) 65 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

65 Stunden

Anmerkungen/Hinweise

- Zugehörige Lehrveranstaltungen

 Pflichtveranstaltung/en:

 1212 Konstruktionsgrundlagen 1 (SU, 2. Sem., 1 SWS)

 1212 Konstruktionsgrundlagen 1 (P, 2. Sem., 1 SWS)

 KG2 Konstruktionsgrundlagen 2 (SU, 3. Sem., 2 SWS)

Konstruktionsgrundlagen 1 Engineering Design Fundamentals 1

LV-NummerKürzel
3 CP, davon 1 SWS als Se2. (empfohlen)

minaristischer Unterricht, 1 SWS als Praktikum

LehrformenHäufigkeitSprache(n)SeminaristischerUnter-jedes JahrDeutschricht, Praktikum

Verwendbarkeit der LV

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Albert Fechter

Fachliche Voraussetzung

Empfohlene Voraussetzungen

PC-Kenntnisse

Kompetenzen/Lernziele der LV

- Die Studierenden sind aufgrund der verschiedenen Übungsaufgaben in der Lage, 3D-CAD Modelle von einfachen Werkstücken zu erstellen und daraus technische Zeichungen abzuleiten.
- Die Studierenden können einfache, reale Bauteile mittels technischer Handskizzen normgerecht darstellen.
- Befähigung der Studierenden zur Bemaßung sowie Eintragung von Toleranzen, Passungen und Oberflächenangaben.

Themen/Inhalte der LV

- 3D-CAD: Modellieren von Bauteilen und Ableiten von Technischen Zeichnungen.
- · Handskizzieren: Bauteile als Technische Zeichnung normgerecht darstellen.
- · Grundlagen der Bemaßung, Toleranzen, Passungen, Oberflächenangaben.
- · Grundlagen des Methodischen Konstruierens.

Medienformen

Folien, Tafelanschrieb, Übungsblätter, CAD-System

Literatur

- Vorlesungsfolien
- · Skolaut W. Hrsg.: Maschinenbau Ein Lehrbuch für das ganze Bachelor-Studium, 2018 Springer
- · Kurz, Wittel: Böttcher/Forberg Technisches Zeichnen, 2014 Springer
- Feldhusen Hrsg.: Pahl/Beitz Konstruktionslehre, 2013 Springer
- CAD-Praktikum mit NX (G. Engelken)

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 1 SWS als Seminaristischer Unterricht, 1 SWS als Praktikum

Konstruktionsgrundlagen 2 Engineering Design Fundamentals 2

LV-Nummer Kürzel Arbeitsaufwand Fachsemester KG2 2 CP, davon 2 SWS als Se- 3. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes JahrDeutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Albert Fechter

Fachliche Voraussetzung

Empfohlene Voraussetzungen

- Berufspraktische Phase
- Konstruktionsgrundlagen 1

Kompetenzen/Lernziele der LV

- Die Studierenden sind aufgrund der verschiedenen Übungsaufgaben in der Lage, technische Komponenten zu berechnen, auszulegen und zu gestalten.
- Die Studierenden können die wichtigsten Maschinenelemente auswählen und dimensionierem.

Themen/Inhalte der LV

- Grundlagen der Gestaltung und Berechnung von technischen Komponenten
- Einführung ausgewählter Maschinenelemente (Welle-Nabe-Verbindungen, Schrauben, Federn, Lager, Dichtungen)

Medienformen

Folien, Tafelanschrieb

Literatur

- Vorlesungsfolien
- Skolaut W. Hrsg.: Maschinenbau Ein Lehrbuch für das ganze Bachelor-Studium, 2018 Springer
- Muhs/Wittel/Becker: Roloff/Matek Maschinenelemente, 2017 Springer

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Mathematik B Mathematics B

Modulnummer	Kürzel	Modulverbindlichkeit	Modulbenotung
1220	M2	Pflicht	Benotet (differenziert)
Arbeitsaufwand	Dauer	Häufigkeit	Sprache(n)

6 CP, davon 6 SWS 2 Semester jedes Jahr Deutsch

Fachsemester Prüfungsart

2. - 3. (empfohlen) Zusammengesetzte Modulprüfung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr. rer. nat. Peter Dannenmann, Brigitta Ullwer

Formale Voraussetzungen

• Die Teilnahme an der Prüfung im Modul Mathematik A setzt voraus, dass zuvor ein Test über Grundkompetenzen in Mathematik erfolgreich absolviert wurde.

Empfohlene Voraussetzungen

· Mathematik A

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Studierende erlernen das Wissen, verschiedene Ansätze/Verfahren im Bereich Mathematik anzuwenden/zu verstehen/zu erinnern und diese auf ingenieurmäßige Fragestellungen zu übertragen.
- Die Befähigung zur strukturierten Vorgehensweise für Problemlösungen durch die Anwendung mathematischer Standardmethoden für elektrotechnische, informationstechnische und maschinenbauliche Aufgabenstellungen.
- · Weiterhin der selbstständige Umgang und die Nutzung von mathematischer Fachliteratur.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Im Rahmen des Moduls erwerben Studierende die Fähigkeit, das eigene Wissen zu vertiefen und fachübergreifend anzuwenden.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

150, davon 90 Präsenz (6 SWS) 60 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

90 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

60 Stunden

Anmerkungen/Hinweise

- **Zugehörige Lehrveranstaltungen**<u>Pflichtveranstaltung/en:</u>
 1224 Mathematik 2 (SU, 2. Sem., 4 SWS)
 1226 Mathematik 3 (SU, 3. Sem., 2 SWS)

Mathematik 2 Mathematics 2

LV-NummerKürzel
Arbeitsaufwand
Fachsemester
4 CP, davon 4 SWS als Se2. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes JahrDeutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Brigitta Ullwer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Mathematik 1

Kompetenzen/Lernziele der LV

- Nach der Teilnahme an der Lehrveranstaltung Mathematik 2 haben die Studierenden breite und fundierte Kenntnisse in den Lerninhalten der LV.
- Studierende verstehen die wichtigsten Theorien, Prinzipien und Methoden und sind in der Lage Ihre Kenntnisse in der Praxis anzuwenden.

Themen/Inhalte der LV

- Integralrechnung,
- · Funktionen mehreren Variablen, *Reihenentwicklung,
- Mehrfachintegrale,
- · Matrizen, Determinanten
- Vektoralgebra

Medienformen

Beamer, Tafel

Literatur

Papula: Mathematik für Ingenieure und Naturwissenschaftler, Bd 2, Vieweg, Wiesbaden

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 4 SWS als Seminaristischer Unterricht

Mathematik 3
Mathematics 3

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 2 CP, davon 2 SWS als Se- 3. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes JahrDeutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Brigitta Ullwer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Mathematik 1

Kompetenzen/Lernziele der LV

- Nach der Teilnahme an der Lehrveranstaltung Mathematik 2 haben die Studierenden breite und fundierte Kenntnisse in den Lerninhalten der LV.
- Studierende verstehen die wichtigsten Theorien, Prinzipien und Methoden und sind in der Lage Ihre Kenntnisse in der Praxis anzuwenden.

Themen/Inhalte der LV

- Gewöhnliche Differentialgleichungen
- Laplace-Transformation

Medienformen

Beamer, Tafel

Literatur

- · Papula: Mathematik für Ingenieure und Naturwissenschaftler, Bd 2, Vieweg, Wiesbaden
- · Papula: Mathematische Formelsammelung für Ingenieure und Naturwissenschaftler, Vieweg, Wiesbaden

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Elektrotechnik Electrical Engineering

ModulnummerKürzelModulverbindlichkeitModulbenotung1330ETPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)5 CP, davon 5 SWS1 Semesterjedes JahrDeutsch

FachsemesterPrüfungsartLeistungsart3. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr. Harald Klausmann

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Befähigung zur technischen Anwendung der elektrotechnischen Grundgesetze und der feldtheoretischen Grundgesetze der Elektrotechnik
- Befähigung zur Auswahl und Grob-Auslegung elektrischer, mechanischer und fluidischer Antriebe
- · Beurteilungsfähigkeit der verschiedenen Antriebsarten hinsichtlich ihrer Eignung für Antriebsaufgaben
- Kennenlernen der spezifischen Eigenschaften und Besonderheiten für Projektierung und Betrieb

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Klausur

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

125, davon 75 Präsenz (5 SWS) 50 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

75 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

50 Stunden

Anmerkungen/Hinweise

- **Zugehörige Lehrveranstaltungen**Pflichtveranstaltung/en:
 1332 Elektrotechnik (Ü, 3. Sem., 2 SWS)
 1332 Elektrotechnik (V, 3. Sem., 3 SWS)

Elektrotechnik Electrical Engineering

LV-NummerKürzel
4rbeitsaufwand
5 CP, davon 3 SWS als Vor3. (empfohlen)

lesung, 2 SWS als Übung

LehrformenHäufigkeitSprache(n)Vorlesung, Übungjedes SemesterDeutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Harald Klausmann, Dipl.-Ing. Rainer Radimersky

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Gute Schulkenntnisse in Physik

Kompetenzen/Lernziele der LV

- Grundlegende Übersicht über das Themengebiet der Elektrotechnik.
- Verständnis der Fachbegriffe, kompetente Kommunikation mit elektrotechnischen Fachkräften.
- Problembewußtsein bezüglich elektrischer Gefahren.

Themen/Inhalte der LV

- · Grundbegriffe und -gesetze der Elektrotechnik
- · Elektrotechnische Größen und Einheiten
- · Elektrischer Gleichstromkreis
- · Methoden zur Berechnung elektrischer Netzwerke
- Elektrostatisches Feld, Kapazität
- · Magnetisches Feld, Induktivität und Induktion
- · Sinusförmige periodische Ströme und Spannungen
- · Elektromagnetische Verträglichkeit, elektrische Sicherheit
- Grundlagen und Eigenschaften elektrischer Antriebsmaschinen
- · Grundlagen der Leistungselektronik
- · Grundbegriffe der Wechselstrom- und Drehstromtechnik
- Elektrotechnische Verfahren der Materialbearbeitung
- · Elektrische Fügeverfahren und Oberflächenbearbeitung
- Erzeugung, Übertragung und Bereitstellung elektrischer Energie
- Erfassung elektrischer und nicht-elektrischer Messgrößen

Medienformen

- · Skript und Aufgabensammlung in digitaler Form
- Elektronische Präsentation
- Tafelanschriebe

Literatur

- Vorlesungsskript, Formelsammlung und Übungsaufgaben
 Albach, M.: Grundlagen der Elektrotechnik 1, 2, Pearson, Studium, 2005
- Marinescu, M., Winter, J.: Basiswissen Gleich- und Wechselstromtechnik, Vieweg, 2005
- Moeller et.al.: Grundlagen der Elektrotechnik, Teubner Verlag, 1996
- Paul,R.: Elektrotechnik 1 und 2, Springer Verlag, 3. Auflage, 1993
 Pregla, R.: Grundlagen der Elektrotechnik I und II, Hüthig Verlag, 1998
- Weißgerber, W.: Elektrotechnik für Ingenieure. Vieweg Verlag, 2005, Bände 1, 2

Arbeitsaufwand der LV in Zeitstunden (h)

125 Stunden, davon 3 SWS als Vorlesung, 2 SWS als Übung

Informatik Informatics

ModulnummerKürzelModulverbindlichkeitModulbenotung1310INFPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)6 CP, davon 5 SWS2 SemesterDeutsch

Fachsemester Prüfungsart

3. - 4. (empfohlen) Zusammengesetzte Modulprüfung

Modulverwendbarkeit

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus den beiden Lehrveranstaltungen des Moduls. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr. rer. nat. Peter Dannenmann, Prof. Dr. Thomas Hoch

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)
Befähigung zur strukturierten Vorgehensweise für Problemlösungen und zur Anwendung informationswissenschaftlicher Standardmethoden zum Lösen formaler Probleme. Zudem selbstständiger Umgang und Nutzung von informationswissenschaftlicher Fachliteratur.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

150, davon 75 Präsenz (5 SWS) 75 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

75 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

75 Stunden

Anmerkungen/Hinweise

- Zugehörige Lehrveranstaltungen

 Pflichtveranstaltung/en:

 1311 Einführung Matlab (P, 3. Sem., 0.5 SWS)

 1311 Einführung Matlab (V, 3. Sem., 0.5 SWS)

 1312 Prozedurale Programmierung und Problemlösestrategien (V, 4. Sem., 2 SWS)

 1312 Prozedurale Programmierung und Problemlösestrategien (P, 4. Sem., 2 SWS)

Einführung Matlab Introduction Matlab

LV-NummerKürzel
Arbeitsaufwand
2 CP, davon 0.5 SWS als
3. (empfohlen)

Vorlesung, 0.5 SWS als

Praktikum

LehrformenVorlesung, Praktikum

Häufigkeit
Nur im Wintersemester

Sprache(n)
Deutsch

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Kiefer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden sind dazu befähigt

- einfache mathematische Problemstellungen auch mit numerischen Methoden zu lösen.
- ein dazu geeignetes Softwarepaket (hier: Matlab) zu verwenden und sich selbstständig in weiterführende Funktionalität der Software einzuarbeiten

Themen/Inhalte der LV

Bearbeitung verschiedener mathematischer Problemstellungen mit einem geeignetem Softwarepaket (Matlab)

- Vektor- und Matrizenrechnung
- Rechnen mit komplexen Zahlen
- · Lösung von Gleichungssystemen
- Visualisierung und Analyse von mathematischen Funktionen
- Numerische Integration und Differenzieren
- · Symbolisches Rechnen

Medienformen

Literatur

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Band 1 + 2, Vieweg Verlag Wiesbaden
- Papula, Lothar: Mathematische Formelsammlung, Vieweg Verlag Wiesbaden
- Praktische Mathematik mit MATLAB, Scilab und Octave für Ingenieure und Naturwissenschaftler; Thuselt, Frank; Springer-Verlag; 2013
- Ingenieurmathematik kompakt Problemlösungen mit MATLAB; Benker, Hans; Springer-Verlag; 2010

Leistungsart

Studienleistung

Prüfungsform

bewertete Hausaufgabe u. Kurztest o. bewertete Hausaufgabe o. Kurztest [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 0.5 SWS als Vorlesung, 0.5 SWS als Praktikum

Prozedurale Programmierung und Problemlösestrategien Procedural programming and problem solving strategies

LV-Nummer 1312	Kürzel	Arbeitsaufwand 4 CP, davon 2 SWS als Vorlesung, 2 SWS als Praktikum	Fachsemester 4. (empfohlen)
Lehrformen	Häufigkeit	Sprache(n)	
Vorlesung, Praktikum	nur im Wintersemester	Deutsch	

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. - Ing. Patrick Metzler

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden kennen die wichtigsten Methoden zum Lösen formaler Probleme. Sie sind in der Lage, die zur Lösung eines formalen Problems geeignete Methode auszuwählen und auf das Problem anzuwenden. Die Studierenden können die Lösung eines formalen Problems in Form eines prozeduralen Programms auf einem Rechner implementieren. Die Studierenden können für Wissenschaft und Technik wichtige Spezialfunktionen von Excel anwenden.

Themen/Inhalte der LV

- Methoden der Problemlösung (Teile und Herrsche, Aufspüren von Wiederholungen, Analogien, Plausibilitäts- und Grenzwertbetrachtungen)
- Einsatz eines Solvers bei der Lösung von Problemen
- · Der Solver von Excel
- Standardprogrammierkonstrukte (Wenn-Funktion bzw. if-Verzweigung, Autoausfüllen bzw. Schleife)
- Debugger Funktionen (Haltepunkte, Überwachung)
- Programmieren eigener Solver in Excel und VBA (brute force, Intervallhalbierung)
- Visualisierungen (z. B. der Intervallhalbierung und des Babylonischen Wurzelziehens)
- Matrixrechnung in Excel und VBA (z.B. Lösen überbestimmter Gleichungssysteme mit dem Ansatz kleinster Fehlerquadrate)
- Funktionen (Definition, Aufruf, Parameterübergabe, Wert- und Referenzübergabe, rekursive Aufrufe)
- · Höhere Datenstrukturen: Felder (ein- und mehrdimensional, dynamische Speicherallokierung)
- Zusammengesetzte Datentypen (Type Anweisung Ausblick auf objektorientierte Programmierung anhand des Excel-Objektkatalogs)

Medienformen

Literatur

- · Skripte "Excel für Ingenieure", "VBA für Ingenieure",
- Aufgabensammlung
 Vonhoegen, Helmut: Excel 2007 Formeln und Funktionen, 2. korr. Aufl., Galileo Press, 2009
- Martin, René: VBA mit Excel: Grundlagen und Profiwissen, Hanser, 2008
- · Diverse sonstige Bücher und Skripte über Excel/VBA und Algorithmenentwicklung
- Handbücher des RRZN

Leistungsart

Prüfungsleistung

Prüfungsform

Vorleistung Praktische Tätigkeit u. Bildschirmtest o. Bildschirmtest (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 2 SWS als Vorlesung, 2 SWS als Praktikum

Technische Mechanik B Applied Mechaniks B

Modulnummer 1320	Kürzel TMB	Modulverbindlichkeit Pflicht	Modulbenotung Benotet (differenziert)
Arbeitsaufwand 7 CP, davon 6 SWS	Dauer 1 Semester	Häufigkeit jedes Jahr	Sprache(n) Deutsch
Fachsemester 3 4. (empfohlen)		Prüfungsart Zusammengesetzte Modulprüfung	

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Kiefer, Prof. Dr.-Ing. Alexander Zopp

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- · Kenntnis der wesentlichen physikalischen Größen und Begriffe der Kinematik, Kinetik und der Schwingungslehre
- Beherrschung der Lösungsmethoden für grundlegende Aufgaben aus Kinematik, Kinetik und der Schwingungslehre für Ein- und Mehrmassensysteme
- Befähigung zur Anwendung dieser Kenntnisse und Methoden für praktische Konstruktionsaufgaben und Analysen im Maschinenbauumfeld

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

175, davon 90 Präsenz (6 SWS) 85 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

90 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

85 Stunden

Anmerkungen/Hinweise

- Zugehörige Lehrveranstaltungen

 Pflichtveranstaltung/en:

 1322 Technische Mechanik 3 (SU, 3. Sem., 3 SWS)

 1324 Maschinendynamik (V, 4. Sem., 2 SWS)

 1324 Maschinendynamik (Ü, 4. Sem., 1 SWS)

Technische Mechanik 3 Applied Mechanics 3

LV-NummerKürzel

Arbeitsaufwand
Fachsemester
4 CP, davon 3 SWS als Se3. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes JahrDeutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Kiefer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- · Kenntnis der wesentlichen physikalischen Größen und Begriffe der Kinematik und Kinetik
- · Beherrschung der Lösungsmethoden für grundlegende Aufgaben aus Kinematik und Kinetik
- Befähigung zur Anwendung dieser Kenntnisse und Methoden für praktische Konstruktionsaufgaben und Analysen im Maschinenbauumfeld

Themen/Inhalte der LV

Kinematik und Kinetik des starren Körper:

- Bewegungsgrößen und deren Zusammenhänge
- · Ursachen der Bewegung und deren Zusammenhänge
- · Dynamische Grundgleichung, Trägheitskräfte
- · Leistung, Arbeit, Energie
- Arbeits- und Energiesatz, Impuls und Impulserhaltungssatz, Stoßgesetze

Medienformen

Beamer, Tafelanschrieb, Modelle

Literatur

- Vorlesungsskript
- · H. Richard, M. Sander, Technische Mechanik, Dynamik, Vieweg Verlag
- Gross, Hauger, Schnell, Schröder, Technische Mechanik 3: Kinetik, Springer Verlag

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 3 SWS als Seminaristischer Unterricht

Maschinendynamik Machine Dynamics

LV-NummerKürzel
3 CP, davon 2 SWS als Vor4. (empfohlen)

lesung, 1 SWS als Übung

LehrformenHäufigkeitSprache(n)Vorlesung, Übungjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Kiefer, Prof. Dr.-Ing. Alexander Zopp

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Module Technische Mechanik A, Mathematik A / B LV Technische Mechanik 3, Physik

Kompetenzen/Lernziele der LV

Die Studierenden:

- besitzen Kenntnis der wesentlichen physikalischen Größen und Begriffe, die benötigt werden um Schwingungen zu beschreiben,
- beherrschen die Lösungsmethoden für grundlegende Aufgaben aus Kinematik, Kinetik und der Schwingungslehre für Ein- und Mehrmassensysteme,
- sind zur Anwendung dieser Kenntnisse und Methoden für praktische Konstruktionsaufgaben und Analysen im Maschinenbauumfeld befähigt.

Themen/Inhalte der LV

- Schwingungsfähige Systeme mit einem und mehreren Freiheitsgraden (translatorische und rotatorische Schwinger, Pendelschwinger)
- · Ungedämpfte und gedämpfte Schwingungen
- Freie und fremderregte Schwingungen
- Aufstellen der Bewegungsgleichungen
- Ermittlung der Auslenkungs-, Geschwindigkeits- und Beschleunigungsverläufe
- Ermittlung von Systemparametern (Massenkennwerte, Federsteifigkeiten, etc.)

Medienformen

Powerpoint-Präsentation, Tafelanschrieb, Visualisierung mittels des Programms ALGODOO

Literatur

- Vorlesungsskript
- · Jäger, Mastel, Knaebel: Technische Schwingungslehre, Springer Verlag
- · Richard, Sander: Technische Mechanik, Dynamik, Vieweg Verlag
- Jürgler: Maschinendynamik, VDI-Verlag
- · Dresig, Holzweissig: Lehrbuch der Maschinendynamik, Springer Verlag
- · Gross, Hauger, Schnell, Schröder: Technische Mechanik 3: Kinetik, Springer Verlag

Leistungsart Prüfungsleistung

Prüfungsform Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 2 SWS als Vorlesung, 1 SWS als Übung

Fertigung & Prozesse

Manufacturing Technology & Process Technology

Modulnummer 1340	Kürzel FV&PRT	Modulverbindlichkeit Pflicht	Modulbenotung Benotet (differenziert)
Arbeitsaufwand 6 CP, davon 4 SWS	Dauer 1 Semester	Häufigkeit jedes Jahr	Sprache(n) Deutsch
Fachsemester 3 4. (empfohlen)		Prüfungsart Zusammengesetzte Modulpri	üfung

Modulverwendbarkeit

- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- Wirtschaftsingenieurwesen (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus Fertigung und Prozessen. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Albert Fechter

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Grundlagen der wichtigsten Fertigungsverfahren (Urformen, Umformen, Trennen, Fügen und Beschichten) und der damit verbundenen Prozesse verstehen.
- Fähigkeit erwerben, geeignete Herstellungsverfahren für bestimmte Bauteile auszuwählen und deren technologischen Parameter zu bestimmen.
- Verständnis erwerben für technische Systeme und Prozesse.

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

150, davon 60 Präsenz (4 SWS) 90 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

90 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

- Pflichtveranstaltung/en:

 1341 Fertigungsverfahren (SU, 3. Sem., 2 SWS)

 1342 Prozesstechnik (SU, 4. Sem., 2 SWS)

Fertigungsverfahren Manufacturing

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Se- 3. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im WintersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Albert Fechter

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- Die Studierenden sind in der Lage fertigungstechnische Prozesse auszuwählen und zu berechnen.
- Befähigung für ein Werkstück die geeigneten Fertigungsverfahren auszuwählen.
- Die Studierenden können die einzelnen Prozessschritte unterschiedlicher Fertigungsverfahren beschreiben und charakteristische Parameter bestimmen.

Themen/Inhalte der LV

- Herstellung von Eisen und Stahl (Hochofenprozess, Direktreduktion, Stahlerzeugung).
- Urformen aus dem festen, pastenförmigen und flüssigen Zustand. Gießen mit verlorener Form (verlorene Modelle, Dauermodelle) und Gießen mit Dauerform.
- Pulvermetallurgische Formgebung: Anwendungsgebiete, Verfahrenstechnik.
- Umformen: Theoretische Grundlagen, Massivumformen, Blechumformen. Bestimmen von Prozessparametern der verschiedenen Umformverfahren.
- Trennen: Theoretische Grundlagen, Zerteilen und Zerspanen. Wirkbewegungen beim Zerspanen, Grundlagen der Zerspanungsmaschinen und Werkzeuge.
- · Grundlagen des Thermischen Trennens, des Fügens und des Beschichtens.

Medienformen

Folien, Tafelanschrieb, audio-visuelle Medien

Literatur

- Vorlesungsskript, Folien
- · Skolaut: Maschinenbau Ein Lehrbuch für das ganze Bachelor-Studium, 2018 Springer
- · Fritz: Fertigungstechnik, 2018 Springer

Leistungsart

Studienleistung

Prüfungsform

Klausur

LV-Benotung Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Prozesstechnik Process Technology

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Se- 4. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr

Sprache(n)
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- · Kooperatives Ingenieurstudium Systems Engineering (B.Sc.), PO2012

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Albert Fechter

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Verständnis erwerben für technische Systeme und Prozesse. Die Fähigkeit erlernen kontinuierliche und diskrete technische Prozesse zu modellieren. Die Studierenden in die Lage versetzen stochastische diskrete Prozesse zu verstehen, zu analysieren und mittels Simulationen zu optimieren und zu bewerten.

Themen/Inhalte der LV

- Grundlagen Systeme und Prozesse
- Kontinuierliche Technische Prozesse
- Modellbildung von Prozessen
- · Diskrete Technische Prozesse
- · Ereignisse und Aktivitäten
- Simulation diskreter Prozesse und zufälliger Ereignisse
- Ereignisorientierte Simulation stochastischer diskreter Prozesse
- Laborübung

Medienformen

Folien, Tafelanschrieb, Simulationssoftware

Literatur

- · Vorlesungs- und Praktikumsskript
- Ulrich Hedtstück: Simulation diskreter Prozesse, Springer Vieweg, Berlin Heidelberg, 2013
- · Rainer Reimert: Einführung in Life Science Engineering III, Vorlesungsskript, Universität Karlsruhe
- Walter Bierwerth: Tabellenbuch Chemietechnik , Europa Lehrmittel, 2016

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Wärme und Strömung Thermodynamics and Fluid Mechanics

Modulnummer	Kürzel	Modulverbindlichkeit	Modulbenotung
1450	WSL	Pflicht	Benotet (differenziert)
Arbeitsaufwand 5 CP, davon 4 SWS	Dauer	Häufigkeit	Sprache(n)
	1 Semester	jedes Jahr	Deutsch

FachsemesterPrüfungsartLeistungsart4. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Christian Streuber

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Befähigung zum Erkennen von thermodynamischen Systemzusammenhängen und energetischen Gesetzmäßigkeiten für ingenieurtechnische Fächer und Anwendungen
- Befähigung zur Anwendung der erworbenen Kenntnisse und Methoden für ingenieurtechnische Fragestellungen vornehmlich aus den Anwendungsbereichen Maschinenbau und Verfahrenstechnik.
- Befähigung zur Kommunikation wärme- und strömungstechnischer Themen mit technisch orientierten Kommilitonen und Kollegen.

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Klausur

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

125, davon 60 Präsenz (4 SWS) 65 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

65 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen<u>Pflichtveranstaltung/en:</u>

1452 Wärme-/Strömungslehre (SU, 4. Sem., 4 SWS)

Wärme-/Strömungslehre Thermodynamics and Fluid Mechanics

LV-NummerKürzel
4. (empfohlen)
5 CP, davon 4 SWS als Se-

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im SommersemesterDeutsch

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing Werner Eißler, Prof. Dr.-Ing. Stefan Rusche, Prof. Dr.-Ing. Christian Streuber

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Mathematik A

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- · Hauptsätze der Thermodynamik
- Thermische Zustandsgleichung idealer Gase
- Zustandsänderungen idealer Gase (Isobare, Isochore, Isotherme, Isentrope, Polytrope)
- Stoffdaten von idealen Gasen
- Anwendung der Massen- und Energieerhaltungssätze auf Fluide mit konstanter Dichte, Satz von Bernoulli (reibungsfrei)
- Anwendung der Massen- und Energieerhaltungssätze auf Fluide mit konstanter Dichte, Satz von Bernoulli (reibungsbehaftet), Druckverluste
- Kreisprozesse mit idealen Gasen
- Wasser-, Wasserdampf, T,s- und h,s-Diagramme, Aggregatzuständen und ihre Änderungen
- Dampfkraftprozesse
- · Wärmedurchgang und Wärmeübertrager
- · Verbrennung gasförmiger Brennstoffe

Medienformen

Literatur

- Vorlesungsskript
- · Cerbe / Wilhelms: Technische Thermodynamik, Hanser Verlag, München
- · Bohl: Technische Strömungslehre, Vogel Verlag, Würzburg

Arbeitsaufwand der LV in Zeitstunden (h)

125 Stunden, davon 4 SWS als Seminaristischer Unterricht

Elektronik & Digitaltechnik Eelctronics and digital technology

Modulnummer	Kürzel	Modulverbindlichkeit	Modulbenotung
1410	ELE&DT	Pflicht	Benotet (differenziert)
Arbeitsaufwand 6 CP, davon 5 SWS	Dauer	Häufigkeit	Sprache(n)
	1 Semester	jedes Jahr	Deutsch

Fachsemester4. - 5. (empfohlen)

Prüfungsart

Modulprüfung

Prüfungsleistung

Modulverwendbarkeit

- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Barbara Lhuillier, Prof. Dr.-Ing. Michael Voigt

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Die Befähigung zur Anwendung und Umsetzung der erworbenen Kenntnisse über elektronische Bauelemente und Schaltungen.
- Weiterhin die Befähigung zur Auswahl geeigneter Verfahren und Geräte für Test- und Automatisierungsaufgaben und zum problemgerechten Einsatz für maschinenbauliche und elektrotechnische Fragestellungen.
- Außerdem die Befähigung zum Erkennen von Systemzusammenhängen und zur Kommunikation messtechnischer Themen mit technisch orientierten Kommilitonen und Kollegen.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

150, davon 75 Präsenz (5 SWS) 75 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

75 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

75 Stunden

Anmerkungen/Hinweise

- Zugehörige Lehrveranstaltungen

 Pflichtveranstaltung/en:

 1412 Elektronik (SU, 4. Sem., 3 SWS)

 1412 Digitaltechnik (SU, 5. Sem., 2 SWS)

Elektronik Electronics

LV-NummerKürzel
4 CP, davon 3 SWS als Se4. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr **Sprache(n)**Deutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Michael Voigt

Fachliche Voraussetzung

Empfohlene Voraussetzungen

- Elektrotechnik
- Mathematik A

Kompetenzen/Lernziele der LV

Die Lehrveranstaltung vermittelt Grundkenntnisse von elektronischen Bauelementen und darauf aufbauenden elektronischen Schaltungskonzepten. Nach Besuch des Kurses sollten die Studierenden in der Lage sein:

- Elektronische Schaltungen interpretieren und dimensionieren zu können
- Datenblätter und Applikationsschriften elektronischer Bauelemente zu verstehen, um eine geeignete Auswahl zu treffen

Themen/Inhalte der LV

- · Grundlagen der Halbleiter
- Dioden (z.B. PN-Diode, Z-Diode, Schottky-Diode, LED): Funktionsweise, Kennlinien, Ersatzschaltbilder, Schaltungsbeispiele mit Dioden
- Bipolartransistor: Funktionsweise, Kennlinien, Großsignalverhalten, Arbeitspunkteinstellung, Kleinsignalersatzschaltbild
- Feldeffekttransistoren (JFET, MOSFET): Funktionsweise, Kennlinien, Großsignalverhalten, Arbeitspunkteinstellung, Kleinsignalersatzschaltbild
- Transistor-Grundschaltungen, elementare Verstärkerschaltungen, "Differenzverstärker
- Operationsverstärker: Aufbau, idealer OP, Gegenkopplung, Grundschaltungen, Frequenzverhalten

Medienformen

Vorlesungsfolien und Übungsaufgaben, Tafel

Literatur

- S. Goßner: "Grundlagen der Elektronik", Shaker-Verlag
- · H. Hartl, E. Krasser, W. Pribyl, P. Söser, G. Winkler: "Elektronische Schaltungstechnik, Pearson Studium
- A. Sedra, K. Smith: "Microelectronic Circuits", Oxford University Press
- · U. Tietze, Ch. Schenk: "Halbleiter-Schaltungstechnik", Springer-Verlag

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 3 SWS als Seminaristischer Unterricht

Digitaltechnik Digital technology

LV-NummerKürzel
Arbeitsaufwand
Fachsemester
2 CP, davon 2 SWS als Se5. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr **Sprache(n)**Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Barbara Lhuillier

Fachliche Voraussetzung

Empfohlene Voraussetzungen

- Mathematik A
- Flektrotechnik

Kompetenzen/Lernziele der LV

Studierende erlangen das Wissen und üben, verschieden Ansätze und Verfahren im Bereich kombinatorischer und sequentieller logischer Schaltungen anzuwenden und zu verstehen. Sie können die Tätigkeiten Analyse, Entwurf und Schaltungsimplementierung anwenden. Studierende besitzen die Fähigkeit, im Bereich Verhalten kombinatorische und sequentielle logische Schaltungen zu verstehen.

Themen/Inhalte der LV

- Grundbegriffe
- Zahlensysteme, speziell Stellenwertsysteme (binär, 2er-Komplement, dezimal)
- Codes
- Schaltalgebra (Verknüpfungsfunktionen mit 2 Variablen, Minterme und Maxterme, KV-Diagramm, etc.)
- Kombinatorischer Schaltungen (Analyse, Synthese, Minimierung)
- Ausgewählte kombinatorische Schaltungen
- Grundlagen der sequentiellen Logik, Flipflops
- Speicher

Medienformen

Power Point Präsentation Begleitende Online-Information mit Kursmaterial

Literatur

- · Urbanski/Woitowitz: Digitaltechnik, Springer, Berlin
- Wakerly: Digital Design Principles & Practices, Prentice Hall, New Jersey
- Tocci/Widmer/Moss: Digital Systems: Principles and Applications, Prentice Hall, New Jersey

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Mess- und Sensortechnik Electrical Metrology and Sensor Technology

Modulnummer 1530	Kürzel	Modulverbindlichkeit	Modulbenotung
	MST	Pflicht	Benotet (differenziert)
Arbeitsaufwand 5 CP, davon 4 SWS	Dauer	Häufigkeit	Sprache(n)
	1 Semester	jedes Jahr	Deutsch
Fachaamaatau		Duilformanaut	

Fachsemester Prüfungsart

5. (empfohlen) Zusammengesetzte Modulprüfung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr. rer. nat. Jörg Heimel

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

Die Kenntnis der Messtechnik stellt die Grundlage für die Wahl geeigneter Messgeräte und Messverfahren zum Testen analoger und digitaler Schaltungen sowie zum Messen elektrischer und nichtelektrischer Größen dar.

Die Studierenden sollen mit erfolgreicher Teilnahme an den Lehrveranstaltungen Mess- und Sensortechnik befähigt werden

- Grundbegriffe der Messtechnik zuzuordnen,
- elektrische Grundschaltungen für Messungen anzuwenden,
- · Messaufbauten und Messsysteme zu entwerfen,
- mit analogen und digitalen Messgeräten, insbesondere dem Oszilloskop, Messgrößen zu erfassen,
- Messergebnisse zu interpretieren,
- Grundprinzipien des Einsatzes von Sensoren und Messprinzipien zu verstehen und anzuwenden,

Die Themen werden mit Beispielen aus den Anwendungsgebieten Industrie und Automatisierung, Automobiltechnik und Verbraucherprodukte diskutiert werden.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Es werden Kompetenzen erworben

- neue Problemstellungen zu analysieren, um sie mit bekanntem und neuem Wissen zu lösen,
- erforderliche Informationen auch aus englischsprachigen Datenblättern zu extrahieren,
- Lösungsansätze kritisch auf Praxistauglichkeit zu hinterfragen.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

125, davon 60 Präsenz (4 SWS) 65 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

65 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

Pflichtveranstaltung/en:

- 1531 Mess- und Sensortechnik Praktikum (P, 5. Sem., 1 SWS)
- 1532 Mess- und Sensortechnik (SU, 5. Sem., 3 SWS)

Mess- und Sensortechnik Praktikum Electrical Metrology and Sensor Technology Laboratory

LV-Nummer Kürzel Arbeitsaufwand **Fachsemester** 1531 5. (empfohlen)

1 CP, davon 1 SWS als Prak-

tikum

Lehrformen Häufigkeit Sprache(n) Praktikum jedes Jahr Deutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. rer. nat. Jörg Heimel

Fachliche Voraussetzung

Empfohlene Voraussetzungen

- Elektronik & Digitaltechnik
- Berufspraktische Phase
- Flektrotechnik

Kompetenzen/Lernziele der LV

Das Laborpraktikum trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Messungen mit dem Oszilloskop
- · Nutzung von Signal- bzw. Funktionsgeneratoren
- Untersuchung von Testschaltungen im Zeit- und Frequenzbereich
- Messdatenerfassung mit dem PC, z.B. mit NI LabVIEW

Medienformen

- Versuchsanleitungen
- Anschauungsmuster
- Beamer

Literatur

- J. Heimel et al.: Versuchsanleitungen zum Laborpraktikum
- · J. Heimel, M. Liess, J. Sobota: Elektrische Messtechnik, Skript
- K. Bergmann, Elektrische Messtechnik, Vieweg-Verlag
- R. Felderhoff, Elektrische und Elektronische Messtechnik, Hanser-Verlag
- E. Schrüfer, Elektrische Messtechnik, Hanser-Verlag
- D. Benda, K. Lipinski, Oszilloskope für Praktiker, VDE-Verlag

Leistungsart

Studienleistung

Prüfungsform

praktische/künstlerische Tätigkeit

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 25 Stunden, davon 1 SWS als Praktikum

Mess- und Sensortechnik Electrical Metrology and Sensor Technology

LV-NummerKürzel

Arbeitsaufwand
Fachsemester
4 CP, davon 3 SWS als Se5. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes JahrDeutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. rer. nat. Jörg Heimel

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Grundbegriffe der Messtechnik,
 - u.a. Messgröße, Messabweichung und Messunsicherheit
- Einflussgrößen, Fehlerarten, Statistik von Messergebnissen
- Beeinflussung von Messungen durch physikalische Größen
- Oszilloskop (Grundlagen, Geräteeigenschaften)
- · Messen der elektrischen Größen: Spannung, Strom, Leistung und Energie
- Messschaltungen für Widerstands- und Impedanzmessung
- Universalzähler zur Messung von Freguenz und Zeitintervall
- Analog-Digital- und Digital-Analog-Wandler (Grundprinzipien, Verfahren, Eigenschaften)
- Digitalmultimeter
- Digitaloszilloskop
- Einführung in das Messen nichtelektrischer Größen
- Grundbegriffe zu Sensoren und Beispiele zum Einsatz von Sensoren

Medienformen

- Beamer
- · PowerPoint-Präsentation
- Tafelanschrieb
- Anschauungsmuster
- Lehrvideos

Literatur

- J. Heimel, M. Liess, J. Sobota: Elektrische Messtechnik, Skript
- K. Bergmann, Elektrische Messtechnik, Vieweg-Verlag
- R. Felderhoff, Elektrische und Elektronische Messtechnik, Hanser-Verlag
- E. Schrüfer, Elektrische Messtechnik, Hanser-Verlag
- D. Benda, K. Lipinski, Oszilloskope für Praktiker, VDE-Verlag

Leistungsart Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 100 Stunden, davon 3 SWS als Seminaristischer Unterricht

Antriebe

Propulsion Systems

ModulnummerKürzelModulverbindlichkeitModulbenotung1550ANPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)8 CP, davon 7 SWS1 Semesterjedes JahrDeutsch

Fachsemester Prüfungsart

5. (empfohlen) Zusammengesetzte Modulprüfung

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus den Themenfeldern Aktorik und Antriebstechnik. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr.-Ing. Christian Jochum, Prof. Dr. Harald Klausmann

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Die Befähigung zur Anwendung antriebstechnischer Grundkenntnisse und zur Beurteilung elektrotechnischer, informationstechnischer und maschinenbaulicher Fragestellungen (Automatisierung).
- Weiterhin die Befähigung zum Erkennen von Systemzusammenhängen und zur Kommunikation antriebstechnischer Themen mit technisch orientierten Kommilitonen und Kollegen.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

200, davon 105 Präsenz (7 SWS) 95 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

105 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

95 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

Pflichtveranstaltung/en:

- 1552 Antriebstechnik (SU, 5. Sem., 3 SWS)
 1554 Aktorik/Elektrische Antriebstechnik (P, 5. Sem., 1 SWS)
- 1554 Aktorik/Elektrische Antriebstechnik (SU, 5. Sem., 3 SWS)

Antriebstechnik Drive Systems

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 3 SWS als Se- 5. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im WintersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Module Konstruktion, Technische Mechanik, Elektrotechnik

Kompetenzen/Lernziele der LV

Die Studierenden besitzen die Fähigkeit zur Analyse/Entwicklung von mechanischen, fluiden und elektrischen Leistungswandlern im Maschinenbau-Umfeld (Funktion, Leistungsentwicklung, Wirkungsgrade, etc.).

Themen/Inhalte der LV

- Grundsätzlicher Aufbau von Antriebssträngen
- · Schnittstelle Arbeitsmaschine Antrieb
- Bewegungs- und Belastungsgrößen
- · Verlustleistung, Wirkungsgrad, Erwärmung, Wandlung
- Mechanische und Fluidische Antriebe (Überblick, Aufbau, Eigenschaften, Betriebsverhalten, Steuerungs- und Regelungsmöglichkeiten, Anwendungsbeispiele)
- Elektrischer Antriebe (Überblick, Aufbau, Eigenschaften, Betriebsverhalten, Steuerungs- und Regelungsmöglichkeiten, Anwendungsbeispiele)

Medienformen

Literatur

Nachschlagewerke für das gesamte Fachgebiet:

- 1. Dubbel Taschenbuch für den Maschinenbau, Springer-Verlag Berlin
- 2. Czichos Hütte Die Grundlagen der Ingenieurwissenschaften, Springer-Verlag Berlin
- 3. Dittrich und Schumann Anwendungen der Antriebstechnik, Band III: Getriebe, Krausskopf-Vlg Mainz

Literatur zu Mechanischen Antrieben:

- 4. Loomann Zahnradgetriebe, Springer-Verlag Berlin
- 5. H. W. Müller Die Umlaufgetriebe, Springer-Verlag Berlin
- 6. W. Funk Zugmittelgetriebe, Springer-Verlag Berlin

Literatur zu Fluidischen Antrieben:

- 7. Matthies Einführung in die Ölhydraulik, Teubner-Verlag Stuttgart
- 8. Murrenhoff Grundlagen der Fluidtechnik, Teil 1: Hydraulik, Eigenverlag Institut für fluidtechnische Antriebe und Steuerungen Aachen
- 9. Murrenhoff Grundlagen der Fluidtechnik, Teil 2: Pneumatik, Eigenverlag Institut für fluidtechnische Antriebe und Steuerungen

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 3 SWS als Seminaristischer Unterricht

Aktorik/Elektrische Antriebstechnik Actuator engineering and electrical propulsion systems

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 5 CP, davon 3 SWS als Se- 5. (empfohlen)

minaristischer Unterricht, 1 SWS als Praktikum

LehrformenSeminaristischer
Unterjedes Jahr

Sprache(n)
Deutsch

Seminaristischer richt, Praktikum

Verwendbarkeit der LV

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Harald Klausmann

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Elektrotechnik

Kompetenzen/Lernziele der LV

- Die Befähigung zur Anwendung von Grundkenntnisse über Elektrische Maschinen und deren typisches Einsatzfeld
- Weiterhin die Befähigung zum Erkennen von Systemzusammenhängen und zur Kommunikation von Themen der Elektrischen Antriebstechnik mit technisch orientierten Kommilitonen und Kollegen.

Themen/Inhalte der LV

- Physik linearer und rotierender Bewegungen
- Grundlagen, Aufbau, Betriebsverhalten und Einsatzgrenzen elektrischer Maschinen bei Netz- und Umrichterbetrieb
- · Piezo-, Thermo-, und andere Antriebe
- · Das Antriebssystem als Regelkreis
- Wirkungsgrade und Ökonomie
- Projektierung und Antriebsauslegung

Medienformen

Literatur

- Klausmann, H.: Vorlesungsskript Elektrische Antriebstechnik/Aktorik
- · Janocha, H.: Aktoren Grundlagen und Anwendungen, Springer Berlin 1992
- Gerke, W.: Elektrische Maschinen und Aktoren , Verlag: Oldenbourg 2012
- Heimann, B.; Albert, A.: Ortmaier, T.; Rissing, L.: Mechatronik Komponenten Methoden Beispiele; Hanser-Fachbuch
 4. Auflage. 11/2015

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur o. mündliche Prüfung (Die Prüfungsform sowie aaf. die exakte Prüfungsdauer werden vom Prüfungsausschuss

zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 125 Stunden, davon 3 SWS als Seminaristischer Unterricht, 1 SWS als Praktikum

Numerische Methoden (im MB) Numerical methods in mechanical engineering

ModulnummerKürzelModulverbindlichkeitModulbenotung1590NMMPflichtBenotet (differenziert)

Arbeitsaufwand Dauer Häufigkeit Sprache(n)

5 CP, davon 4 SWS 1 Semester jedes Semester

FachsemesterPrüfungsartLeistungsart5. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

Modul und LV analog MBKooperatives Ingenieurstudium Mechatronik

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Kiefer, Prof. Dr. - Ing. Patrick Metzler

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)
Die Studierenden kennen ein im Ingenieursbereich gebräuchliches numerisches Rechen- und Simulationsprogramm (z.B. Matlab / Simulink). Sie kennen die Grundlagen, Möglichkeiten und Grenzen der gebräuchlichsten numerischen Rechenmethoden und deren typische Anwendungsfelder. Sie können Programme bzw. Simulationsmodelle in dem gewählten Werkzeug erstellen. Sie sind in der Lage, einem numerischen Problem angemessen geeignete numerische Verfahren auszuwählen und in dem gewählten Werkzeug zur Lösung der gegebenen Fragestellung zu implementieren. Weiterhin

sind sie in der Lage, ihre Ergebnisse wissenschaftlich angemessen darzustellen und zu dokumentieren.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation) Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Vorleistung bewertete Hausaufgabe u. Kurztest o. Vorleistung bewertete Hausaufgabe u. Klausur (*Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.*)

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

125, davon 60 Präsenz (4 SWS) 65 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

65 Stunden

Anmerkungen/Hinweise

- **Zugehörige Lehrveranstaltungen**Pflichtveranstaltung/en:

 1592 Numerische Methoden im Maschinenbau (P, 5. Sem., 2 SWS)

 1592 Numerische Methoden im Maschinenbau (V, 5. Sem., 2 SWS)

Numerische Methoden im Maschinenbau Numerical methods in mechanical engineering

Kürzel **LV-Nummer** Arbeitsaufwand **Fachsemester** 1592 5 CP, davon 2 SWS als Vor-5. (empfohlen)

lesung, 2 SWS als Praktikum

Lehrformen Häufigkeit Sprache(n)

Vorlesung, Praktikum jedes Semester

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- Wirtschaftsingenieurwesen (B.Eng.), PO2023
- Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Kiefer, Prof. Dipl.-Ing. Xiaofeng Wang, Prof. Dr.-Ing. Alexander Zopp

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Abgeschlossene Module Mathematik und Informatik, Technische Mechanik und Maschinendynamik

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

Mathematische Grundlagen für verschiedene numerische Methoden im Maschinenbau. Bearbeitung verschiedener Problemstellungen aus dem Maschinenbau mit einem geeignetem Softwarepaket (Matlab/Simulink):

- · Vektor- und Matrizenrechnung, komplexe Zahlen, Inter- und Extrapolation
- Numerische Integration und Differentiation
- Lösung von Gleichungssystemen
- Numerische Lösung von Differentialgleichungen im Zeit- und Frequenzbereich
- Praktische Anwendung der numerischen Methoden anhand einfacher Beispiele
- Einlesen, Verarbeiten und Visualisierung von Mess- und Analysedaten

Medienformen

Literatur

- Vorlesungsskript
- Hilfefunktion und Tutorials der verwendeten Software

Arbeitsaufwand der LV in Zeitstunden (h)

125 Stunden, davon 2 SWS als Vorlesung, 2 SWS als Praktikum

Anmerkungen

LV analog MB

Sensorik und Bussysteme Sensors and Communication Bus-Systems

Modulnummer 1610	Kürzel SEN	Modulverbindlichkeit Pflicht	Modulbenotung Benotet (differenziert)
Arbeitsaufwand 5 CP, davon 4 SWS	Dauer 1 Semester	Häufigkeit jedes Jahr	Sprache(n) Deutsch
Fachsemester 6. (empfohlen)		Prüfungsart Zusammengesetzte Modulpri	üfung

Modulverwendbarkeit

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr. rer. nat. Jörg Heimel, Prof. Dr.-Ing. habil. Martin Liess

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

Mit Hilfe der Sensorik können viele physikalische Messgrößen mit Bezug u.a. zu Industrieproduktion, Automatisierung, Mobilität etc. quantitativ erfasst werden.

Die Studierenden sollen mit erfolgreicher Teilnahme an den Lehrveranstaltungen Sensorik und Bussysteme

- bei der Entwicklung und Anwendung von Sensoren und sensorbasierten Lösungen die Messgrößen und physikalische Einflussgrößen zuordnen sowie Sensoreigenschaften berücksichtigen,
- beim Sensoreinsatz systematische Fehler erkennen, vermeiden oder kompensieren,
- allgemeine Grundkenntnisse über Bussysteme (Topologie, Übertragungstechnik, Kommunikation nach ISO) erlangen,
- ausgewählte Bussysteme kennenlernen.

Die Themen werden mit Beispielen aus den Anwendungsgebieten Industrie und Automatisierung, Automobiltechnik und Verbraucherprodukte diskutiert werden.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Es werden Kompetenzen erworben

- neue Problemstellungen zu analysieren, um sie mit bekanntem und neuem Wissen zu lösen,
- erforderliche Informationen auch aus englischsprachigen Datenblättern zu extrahieren,
- · Lösungsansätze kritisch auf Praxistauglichkeit zu hinterfragen.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

125, davon 60 Präsenz (4 SWS) 65 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

65 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

Pflichtveranstaltung/en:

- 1611 Sensorik und Bussysteme Praktikum (P, 6. Sem., 1 SWS)
- 1612 Sensorik und Bussysteme (SU, 6. Sem., 3 SWS)

Sensorik und Bussysteme Praktikum Sensors and Communication Bus-Systems Laboratory

LV-Nummer Kürzel Arbeitsaufwand **Fachsemester** 1611

1 CP, davon 1 SWS als Prak-

6. (empfohlen)

tikum

Lehrformen Häufigkeit Sprache(n) Praktikum jedes Jahr Deutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. rer. nat. Jörg Heimel, Prof. Dr.-Ing. habil. Martin Liess

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Das Laborpraktikum trägt zu den Lernzielen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalten bei.

Themen/Inhalte der LV

Vertiefende Laborversuche zu ausgewählten Themen, z.B.

- Lock-In-Messtechnik
- Dehnungsmessstreifen und Wägezelle
- weitere physikalische Messgrößen

Medienformen

- Versuchsanleitungen
- Anschauungsmuster
- Beamer

Literatur

- H. Bernstein: Messelektronik und Sensoren, Springer Vieweg
- E. Hering, G. Schönfelder: Sensoren in Wissenschaft und Technik, Vieweg + Teubner
- S. Hesse, G. Schnell: Sensoren für die Prozess- und Fabrikautomation, Vieweg + Teubner
- R. Lerch: Elektrische Messtechnik, Springer
- K. Reif: Sensoren im Kraftfahrzeug, Vieweg + Teubner
- G. Schnell, B. Wiedemann: Bussysteme in der Automatisierungstechnik, Vieweg
- H.-R. Tränkler, L. M. Reindl: Sensortechnik, Springer Vieweg

Leistungsart

Studienleistung

Prüfungsform

praktische/künstlerische Tätigkeit

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 25 Stunden, davon 1 SWS als Praktikum

Sensorik und Bussysteme Sensors and Communication Bus-Systems

LV-NummerKürzel

Arbeitsaufwand
Fachsemester
4 CP, davon 3 SWS als Se6. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr **Sprache(n)**Deutsch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. rer. nat. Jörg Heimel, Prof. Dr.-Ing. habil. Martin Liess

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Lehrveranstaltung trägt zu den Lernzielen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalten bei.

Themen/Inhalte der LV

- Theoretische Sensorgrundlagen
- · Mess- und Einflussgrößen
- Sensorkenngrößen
- Messprinzipien wie z.B. Lock-In-Verfahren
- Sensorsignalverarbeitung
- ausgewählte physikalische Effekte für den Sensoreinsatz
 - z.B. resistive, kapazitive, induktive Verfahren
- Sensorbeispiele für die physikalischen Messgrößen:
 - Weg, Winkel, Geschwindigkeit, Beschleunigung,
 - Dehnung, Kraft, Druck, Temperatur, Feuchte etc.
- Einfluss von Umweltgrößen
- Überprüfung von Sensorsystemen
- Nutzung von Sensordatenblättern
- · Systemebenen bei Bussystemen, ISO-OSI-Schichtenmodell
- Grundlegende Eigenschaften von Bussystemen
- Beispiele industrieller Kommunikationssysteme

Die Themen werden mit Beispielen aus den Anwendungsgebieten Industrie und Automatisierung, Automobiltechnik und Verbraucherprodukte diskutiert werden.

Medienformen

- Beamer
- · PowerPoint-Präsentation
- Lehrvideos
- Tafelanschrieb
- Anschauungsmuster

Literatur

- H. Bernstein: Messelektronik und Sensoren, Springer Vieweg
- E. Hering, G. Schönfelder: Sensoren in Wissenschaft und Technik, Vieweg + Teubner
- S. Hesse, G. Schnell: Sensoren für die Prozess- und Fabrikautomation, Vieweg + Teubner
- R. Lerch: Elektrische Messtechnik, Springer
- K. Reif: Sensoren im Kraftfahrzeug, Vieweg + Teubner
- G. Schnell, B. Wiedemann: Bussysteme in der Automatisierungstechnik, Vieweg
- H.-R. Tränkler, L. M. Reindl: Sensortechnik, Springer Vieweg

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 3 SWS als Seminaristischer Unterricht

Praxisprojekt A Practice Project A

ModulnummerKürzelModulverbindlichkeitModulbenotung1620Prax APflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)8 CP, davon 1 SWS1 Semesterjedes Jahr

FachsemesterPrüfungsartLeistungsart6. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Albert Fechter, Prof. Dr.-Ing. Claus Schul

Formale Voraussetzungen

Empfohlene Voraussetzungen

• Alle Leistungsnachweise 1. - 5. Semester abgeschlossen.

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Befähigung zur wissenschaftlich-methodischen Vorgehensweise für konkrete Projekte in den Partnerunternehmen.
- · Berücksichtigung von unterschiedlichen Aspekten der Ingenieurtätigkeit im Unternehmensalltag.
- Erkennen von technischen und unternehmensspezifischen Prozessen.
- Erkennen von systemischen Zusammenhängen (technisch betriebswirtschaftlich arbeitssoziologisch)
- Befähigung zur projektorientierten und arbeitsteiligen Teamarbeit. Außerdem die Befähigung zur sachgerechten Kommunikation mit den Mitarbeitern der entsprechenden Fachabteilungen auf Ingenieurniveau (fachlich und sozial).

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Ausarbeitung/Hausarbeit o. Referat/Präsentation (*Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.*)

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

200, davon 15 Präsenz (1 SWS) 185 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

15 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

185 Stunden

Anmerkungen/Hinweise

Das Praxisprojekt A wird schwerpunktmäßig in den Partnerunternehmen und an den Arbeitsplätzen der Studierenden in den Unternehmen durchgeführt. Mögliche Schwerpunkte des Praxisprojektes: technisch, betriebswirtschaftlich, soziologisch. Durchführung auch im Ausland möglich.

Zugehörige Lehrveranstaltungen

Pflichtveranstaltung/en:

• 1622 Praxisprojekt A (P, 6. Sem., 1 SWS)

Praxisprojekt A Practice Project A

LV-Nummer Kürzel **Fachsemester Arbeitsaufwand** 1622

8 CP, davon 1 SWS als Prak-

6. (empfohlen)

Lehrformen Praktikum

Häufigkeit

Sprache(n)

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

s. Modulbeschreibung

Themen/Inhalte der LV

Das Praxisprojekt A wird schwerpunktmäßig in den Partnerunternehmen und an den Arbeitsplätzen der Studierenden in den Unternehmen durchgeführt. Mögliche Schwerpunkte des Praxisprojektes: technisch, betriebswirtschaftlich, soziologisch. Durchführung auch im Ausland möglich.

Medienformen

Literatur

Arbeitsaufwand der LV in Zeitstunden (h)

200 Stunden, davon 1 SWS als Praktikum

Steuerungs-/Regelungstechnik Control engineering

Modulnummer	Kürzel	Modulverbindlichkeit	Modulbenotung
1630	SR+RT	Pflicht	Benotet (differenziert)
Arbeitsaufwand	Dauer	Häufigkeit	Sprache(n)
8 CP, davon 7 SWS	1 Semester		Deutsch

Fachsemester Prüfungsart

6. - 7. (empfohlen) Zusammengesetzte Modulprüfung

Modulverwendbarkeit

- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus Regelung und Steuerung. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Dr.-Ing. Gerhard Engelken, Prof. Dr. - Ing. Patrick Metzler

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)
Die Studierenden können dynamische Systeme (Mechatronik, Prozesstechnik, Roboter) analysieren und modellieren. Sie

Die Studierenden können dynamische Systeme (Mechatronik, Prozesstechnik, Roboter) analysieren und modellieren. Sie können Steuerungen und Regelungen entwerfen und implementieren.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Die Studierenden lernen die Inhalte der Veranstaltungen Mathematik, Technische Mechanik, Konstruktion & Systemtechnik, Elektrotechnik, Fertigung & Prozesse, Physik, Informatik, Wärme- und Strömungslehre, Elektronik und Sensorik ganzheitlich auf abstrakterer Ebene auf reale Probleme anzuwenden.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

200, davon 105 Präsenz (7 SWS) 95 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

105 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

95 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

Pflichtveranstaltung/en:

- 1632 Steuerungs-/Regelungstechnik 1 (Ü, 6. Sem., 1 SWS)
 1632 Steuerungs-/Regelungstechnik 1 (V, 6. Sem., 2 SWS)
 1632 Steuerungs-/Regelungstechnik 1 (P, 6. Sem., 1 SWS)
 1634 Steuerungs-/Regelungstechnik 2 (SU, 7. Sem., 2 SWS)
 1634 Steuerungs-/Regelungstechnik 2 (P, 7. Sem., 1 SWS)

Steuerungs-/Regelungstechnik 1 Control engineering 1

LV-NummerKürzel

Arbeitsaufwand
Fachsemester
5 CP, davon 2 SWS als Vor6. (empfohlen)

lesung, 1 SWS als Übung, 1 SWS als Praktikum

Lehrformen Häufigkeit Sprache(n) Vorlesung, Übung, Prakti- jedes Jahr Deutsch

kum

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020

Lehrveranstaltungsverantwortliche/r

Prof. Dr. - Ing. Patrick Metzler

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Mathematik - Technische Mechanik -Elektrotechnik, -Physik, -Informatik

Kompetenzen/Lernziele der LV

Die Studierenden verstehen die Steuerungs- und regelungstechnischen Begriffe der DIN EN 60027-6 und können Sie auf praktische Problemstellungen anwenden. Die Studierende können dynamische Systeme modellieren und mit gängigen Softwaresystemen simulieren. Die Studierende können einfache Entwurfsverfahren für Regler anwenden und kommerzielle Prozessregler bedienen.

Themen/Inhalte der LV

- Unterscheidung Regelungstechik, Steuerungstechnik1 (feed forward control) und Steuerungstechnik2 (logical control)
- Modellierung dynamischer Systeme mit Simulink
- Eigenschaften dynamischer Systeme
- · Beharrungszustände und deren Einstellung mittels Regler
- Der Prozessregeler (Umschaltung Hand/Automatik, unterschiedliches Verhalten bezüglich einer Regeldifferenz beim Umschalten)
- Einstellregeln
- Grundlagen zur Stabilität von Regelkreisen
- · Auslegung eines Regelkreises im Zeitbereich für Systeme niedriger Ordnung

Medienformen

Beamer, Tafelanschrieb, Labor

Literatur

- Zacher: Regelungstechnik für Ingenieure, Vieweg, Wiesbaden
- · Lunze: Regelungstechnik I, Springer Vieweg,
- Tieste: Keine Panik vor Regelungstechnik, Springer Vieweg
- Skolaut: Maschinenbau: Ein Lehrbuch für das ganze Bachelor-Studium, Springer Berlin Heidelberg
- Föllinger Regelungstechnik, VDE-Verlag
- Dannenmann, Fries, Metzler, Modelling and Simulation using Simulink, Iversity 2015, mittlerweile im Lernmanagement System abgelegt
- Vorlesungsskript
- Simulink Bibliothek des Dozenten

Leistungsart

Prüfungsleistung

Prüfungsform Vorleistung Praktische Tätigkeit u. Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 125 Stunden, davon 2 SWS als Vorlesung, 1 SWS als Übung, 1 SWS als Praktikum

Steuerungs-/Regelungstechnik 2 Control engineering 2

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Se-7. (empfohlen)

minaristischer Unterricht, 1 SWS als Praktikum

LehrformenHäufigkeitSprache(n)SeminaristischerUnter-jedes JahrDeutsch

Verwendbarkeit der LV

richt. Praktikum

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020

Lehrveranstaltungsverantwortliche/r

Prof. Dr. - Ing. Patrick Metzler

Fachliche Voraussetzung

Empfohlene Voraussetzungen

• Steuerungs-/Regelungstechnik 1

Kompetenzen/Lernziele der LV

Die Studierenden können komplexere Strecke modellieren. Sie können zu einem gegebenen Streckenmodell die Parameter identifizieren. Sie können mit marktgängiger Hardware Messglieder, Stellglieder und Regler realisieren.

Themen/Inhalte der LV

- Bestimmung von Streckenparameter durch Messungen, Grey- Box und Black-Box-Verfahren.
- · Parameterschätzung dynamischer Systeme als Lösen eines überbestimmten Gleichungssystems.
- Maximum Likelihood Methode. Methode der kleinsten Quadrate.
- · Identifikation einer Laborstrecke.
- Messglieder, Stellglieder und Regler aus Standardhardware zusammenstellen

Medienformen

Beamer, Tafelanschrieb, Labor

Literatur

- Lunze: Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung, Springer
- · Unbehauen: Regelungstechnik II: Zustandsregelungen, digitale und nichtlineare Regelsysteme, Vieweg
- Christian Bohn, Heinz Unbehauen: Identifikation dynamischer Systeme: Methoden zur experimentellen Modellbildung aus Messdaten, Springer

Leistungsart

Prüfungsleistung

Prüfungsform

Vorleistung Praktische Tätigkeit u. Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Seminaristischer Unterricht, 1 SWS als Praktikum

Wirtschaft & Recht Business Administration & Basic Law

Modulnummer	Kürzel	Modulverbindlichkeit	Modulbenotung
1650	RE+BWL	Pflicht	Benotet (differenziert)
Arbeitsaufwand	Dauer	Häufigkeit	Sprache(n)
4 CP, davon 4 SWS	1 Semester		Deutsch

Fachsemester Prüfungsart

6. - 7. (empfohlen) Zusammengesetzte Modulprüfung

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Eigenständige Qualifikationen mit stark anwendungsbezogenen Inhalten aus BWL bzw. Recht. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Prof. Dr. Matthias Halbleib, Prof. Dr. Thomas Heimer

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

Die Studierenden erwerben grundlegendes wirtschaftliches und rechtliches Fachwissen und entwickeln ein Verständis für grundlegende Zusammenhänge in beiden Disziplinen. Sie erwerben darüber hinaus die Fähigkeit, sowohl betriebswirtschaftliche als auch rechtliche Aspekte bei ihrer Arbeit als Ingenieurin bzw. Ingenieur zu berücksichtigen.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Die Studierenden lernen, interdisziplinär zu denken. Dabei entwickeln sie ihre analytischen und integrativen Fähigkeiten. Ihre Fähigkeit zur Anwendung von erworbenem Fachwissen stärkt die Problemlösungskompetenz, die Diskussion von Problemstellungen die Kommunikationsfähigkeit.

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

100, davon 60 Präsenz (4 SWS) 40 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

60 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

40 Stunden

Anmerkungen/Hinweise

- Zugehörige Lehrveranstaltungen

 Pflichtveranstaltung/en:

 1652 Betriebswirtschaftslehre (SU, 6. Sem., 2 SWS)

 1651 Recht (Einführung) (SU, 7. Sem., 2 SWS)

Betriebswirtschaftslehre Business Administration

LV-NummerKürzel
Arbeitsaufwand
1652
2 CP, davon 2 SWS als Seminaristischer Unterricht
6. (empfohlen)

LehrformenSeminaristischer Unterricht
Häufigkeit
Nur im Sommersemester
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Matthias Halbleib

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden sind in der Lage, grundlegende betriebswirtschaftliche Zusammenhänge und deren Bedeutung in der Unternehmenspraxis zu verstehen und kritisch zu würdigen. Sie kennen wesentliche Konzepte und Instrumente und sind darauf vorbereitet, diese auf Problemstellungen in der Praxis anzuwenden.

Themen/Inhalte der LV

- Einführung in die Betriebswirtschaftslehre
- Übersicht der Kernelemente der Absatzfunktion und der personalwirtschaftlichen Aufgaben
- Grundfragen der Führung eines Unternehmens (inkl. Entscheidungstheorie)
- · Konstitutive Entscheidungen (Rechtsform, Standort, Unternehmensverbindungen)
- Organisationsfragen
- Betriebswirtschaftliche Entscheidungsfelder der Produktion
- · Investition und Finanzierung
- Grundlagen des Rechnungswesen

Medienformen

- Seminaristischer Unterricht
- Erörterung und Diskussion von Beispielen aus der Unternehmenspraxis
- Fallübungen

Literatur

- Beschorner, D., Peemöller, V. H.: Allgemeine Betriebswirtschaftslehre: Grundlagen und Konzepte
- · Corsten, H.; Corsten, M.: Betriebswirtschaftslehre
- Hutzschenreuter, T.: Allgemeine Betriebswirtschaftslehre: Grundlagen mit zahlreichen Praxisbeispielen
- Thommen, J.-P., Achleitner, A.-K.: Allgemeine Betriebswirtschaftslehre: Umfassende Einführung aus managementorientierter Sicht
- Wöhe, G./Döring, U.: Einführung in die Betriebswirtschaftslehre

(in der jeweils aktuellen Auflage)

Leistungsart

Prüfungsleistung

Prüfungsform Klausur

LV-Benotung Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Recht (Einführung) Basic Law

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 2 CP, davon 2 SWS als Se-7. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Stefan Gieltowski

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden verstehen die Grundzüge des deutschen Rechtssystems und seine Aufgliederung. Sie sind in der Lage entsprechend rechtliche Problemstellungen einzelnen Rechtsgebieten zuzuordnen.

Themen/Inhalte der LV

Einführung in die Grundprinzipien des BGB:

- Grundlagen des Rechts
- Einführung in das BGB
- · Allgemeines Schuldrecht
- Einführung in das Sachenrecht
- · Allgemeine Geschäftsbedingungen

Medienformen

Literatur

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Modul

Ausgewählte Themen zur Vertiefung 1 Selected subjects for specialization 1

Modulnummer	Kürzel	Modulverbindlichkeit	Modulbenotung
1600	NT	Pflicht	Benotet (differenziert)
Arbeitsaufwand	Dauer	Häufigkeit	Sprache(n) Deutsch; Deutsch und Englisch
12 CP, variable SWS	1 Semester	jedes Jahr	
Fachsemester		Prüfungsart	

Modulprüfung (Wahlpflichtbereich)

Modulverwendbarkeit

6. - 8. (empfohlen)

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Das Profil der mit dem Bachelorabschluss erreichten Kompetenzen sollte durch eine entsprechende Zusammenstellung der Wahlpflicht-Lehrveranstaltungen geschärft werden. Sie sind aus dem gesamten Bachelor-Angebot der Hochschule RheinMain auszuwählen. Auf Antrag (Absprache mit dem Prüfungsausschuss notwendig) können auch qualifizierte Angebote des ccc gewählt werden.

Begründung für zusammengesetzte Modulprüfung

Getrennte Prüfungen im Wahlpflichtbereich.

Modulverantwortliche(r)

Prof. Dr. Thomas Heimer

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Befähigung zur Anwendung des durch die freie Wahlmöglichkeit gegebenen Wissenszuwachses in den verschiedensten technischnaturwissenschaftlichen Bereichen. Das ermöglicht einen Blick "über den Tellerrand" und eine entsprechende Erweiterung des Horizontes.
- Spezifische Kompetenzen werden in der jeweiligen Beschreibung der Lehrveranstaltung erläutert.

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

300, davon 180 Präsenz (12 SWS) 120 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

180 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

120 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

Pflichtveranstaltung/en:

• 1602 Industrielle Bildverarbeitung (SU, 6. Sem., 4 SWS)

Wahlpflichtveranstaltung/en:

- Auswahl aus dem Competence & Career Center (V, 6. 8. Sem., 1 SWS)
- 2001 3D-Druck in der Produktentwicklung (SU, 6. 8. Sem., 2 SWS)
- 2003 Cleaner Production (SU, 6. 8. Sem., 3 SWS)
- 2005 Ethik und Technik (SU, 6. 8. Sem., 2 SWS)
- 2007 Flugsicherungstechnik und -betrieb (SU, 6. 8. Sem., 3 SWS)
- 2009 Frauen in Ingenieurwissenschaften (SU, 6. 8. Sem., 2 SWS)
- 2011 Konstruktionswettbewerb (P, 6. 8. Sem., 2 SWS)
- 2013 Personal & Organisation (SU, 6. 8. Sem., 2 SWS)
- 2015 Strategisches Management (SU, 6. 8. Sem., 2 SWS)
- 2017 Umweltinformationssysteme (SU, 6. 8. Sem., 2 SWS)
- 2019 Verzahnungstechnik (SU, 6. 8. Sem., 2 SWS)
- 2021 Volkswirtschaftslehre (SU, 6. 8. Sem., 2 SWS)

Optionale Veranstaltung/en:

• 2023 Thermische Fügetechnik (SU, 6. - 8. Sem., 2 SWS)

Industrielle Bildverarbeitung Machine Vision

LV-NummerKürzel
4 CP, davon 4 SWS als Se6. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer UnterrichtDeutsch

Verwendbarkeit der LV

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Michael Voigt

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- Nach der Teilnahme an der Lernveranstaltung kennen die Studierenden die mathematischen Hintergründe wichtiger Bildverarbeitungsfunktionen sowie deren Umsetzung in Algorithmen. Deren Umsetzung erfolgt in der Programmiersprache Matlab.
- Weiterhin lernen die Studierenden wesentliche Aspekte bei der Realisierung von ausgewählten industriellen Bildverarbeitungsystemen kennen.

Themen/Inhalte der LV

Bildentstehung, Komponenten eines Bildverarbeitungssystems (Beleuchtung, Objektive, Kameras, Schnittstellen), Farbbilder, Bildverbesserung (Punktoperationen, Lineare und nichtlineare Filterung, Kanten- und Liniendetektion, Morphologische Filter), Einfache Bildsegmentierung, Lageerkennung von Objekten (Regionen in Binärbilder), Geometrische Bildtransformationen (Translationen, Rotationen, Skalierungen, affine und perspektivische Abbildungen), Stereosehen, Abtastung und Interpolation, Merkmalsextraktion und Vermessung von Objekten, Einführung in Objektklassifikation und maschinelle Lernverfahren.

Medienformen

PPT-Folien, Tafelanschrieb und Programmierübungen.

Literatur

C. Demant, B. Streicher-Abel, A. Springhoff: Industrieelle Bildverarbeitung; W. Burger, M.J. Burge: Digitale Bildverarbeitung, Springer, 2015. R.C. Gonzalez, R.E. Woods: Digital Image Processing, Pearson, 2008.

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur o. Ausarbeitung/Hausarbeit o. mündliche Prüfung (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

100 Stunden, davon 4 SWS als Seminaristischer Unterricht

Auswahl aus dem Competence & Career Center Selection of Competence & Carreer Center subjects

LV-Nummer Kürzel Arbeitsaufwand Fachsemester

1 CP, davon 1 SWS als Vor- 6. - 8. (empfohlen)

lesung

Lehrformen Häufigkeit Sprache(n)

Vorlesung

Verwendbarkeit der LV

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Das Competence & Career Center ist eine zentrale Einrichtung der Hochschule RheinMain. Sie bietet Studierenden aller Fachbereiche exklusiv und kostenfrei Seminare, Workshops und Projekte zur Förderung ihrer Schlüsselkompetenzen sowie persönliche Beratung und Informationen für den Berufseinstieg und die Existenzgründung.

Themen/Inhalte der LV

Nach Angebot und Auswahl.

Medienformen

Literatur

Leistungsart

Studienleistung

Prüfungsform

Je nach Auswahl

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

25 Stunden, davon 1 SWS als Vorlesung

3D-Druck in der Produktentwicklung

3D-Printing in Product Development

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Se- 6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im SommersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Dozentinnen und Dozenten des Fachbereichs Ingenieurwissenschaften

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Am Ende der Veranstaltung kennen die Studierenden die wesentlichen Themen im Bereich "Additive Manufacturing" (3D-Druck).

- Sie haben einen Überblick über aktuelle 3D-Druck-Technologien und ihren Einsatz in der Produktentwicklung.
- Sie kennen in Bezug auf 3D-Druck
 - die Einsatzmöglichkeiten und -grenzen
 - die Besonderheiten bei der Konstruktion
 - die Besonderheiten bei der Auslegung und Simulation
 - die eingesetzten Fertigungsverfahren und -anlagen
 - die verwendeten Werkstoffe und Materialien
- Sie können entscheiden, für welche Produkte 3D-Druck in Frage kommt und sind in der Lage, 3D-Druck-spezifische Lösungskonzepte zu erarbeiten.

Themen/Inhalte der LV

Die Lehrveranstaltung "3D-Druck in der Produktentwicklung (3DP)" ist als Ringveranstaltung konzipiert, die verschiedene Aspekte des 3D-Drucks abdeckt.

Die Ringveranstaltung besteht aus sechs Einzelveranstaltungen mit jeweils 4 Unterrichtseinheiten (3 Zeitstunden), die aus unterschiedlichen Perspektiven auf das Thema schauen und von verschiedenen Fachleuten gehalten werden. Zum Abschluss findet eine Exkursion statt.

Medienformen

Literatur

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit [MET]

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Anmerkungen

Die Teilnahme an allen Einzelveranstaltungen sowie an der Exkursion ist verpflichtend.

Voraussetzung für eine Benotung ist die aktive Teilnahme an den Unterrichtseinheiten, insbesondere bei den zugehörigen Übungen, sowie die Peer-Reviews.

Cleaner Production Cleaner Production

LV-Nummer2003

Kürzel
Arbeitsaufwand
3 CP, davon 3 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. rer. nat. habil. Ulrike Stadtmüller

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Studierende

- erarbeiten das Thema Cleaner Production und k\u00f6nnen an fachliche Diskussionen im Bereich Cleaner Production teilnehmen,
- · können Problemlösungen und Argumente im Fachgebiet Cleaner Production erarbeiten und weiterentwickeln.

Themen/Inhalte der LV

- Entwicklung der Umweltschutztechniken
- Nachhaltige Produktentwicklung
- Recyclinggerechte Konstruktion
- Umweltgerechte Fertigungstechniken
- · Hinweise auf vorsorgende Abfallwirtschaft und nachhaltige Nutzungskonzepte

Medienformen

Literatur

- · Hirth, T., Woidasky, J., Eyerer, P. (2007), Nachhaltige rohstoffnahe Produktion, Fraunhöfer IRB-Verlag
- Nagel, J. (2015), Nachhaltige Verfahrenstechnik. Carl Hanser-Verlag, München, Wien

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit o. Klausur [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 3 SWS als Seminaristischer Unterricht

Ethik und Technik Ethics and Technology

LV-Nummer2005

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Semester

Häufigkeit
Sprache(n)
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Jochen Müller

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Grundlagen der Ethik und Berufsethik in den Ingenieur- und Wirtschaftswissenschaften
- Diskussion über ethische Fragen und Verantwortungsfelder anhand von Beispielen, Übung in den moralischen Argumentationen, Interpretation von Ethik-Kodizes
- Technikfolgenabschätzung in Theorie und Praxis; Methoden, Verfahren, disziplinäre Bezüge u. Praxisfelder der TA;
 Grenzen und Perspektiven

Medienformen

Literatur

- Julian Nida-Rümelin (Hg.): Angewandte Ethik. Die Bereichsethiken und ihre theoretische Fundierung. Ein Handbuch. Stuttgart: Kröner Verlag 2005
- Hans Lenk u. Günter Ropohl (Hg.): Technik und Ethik. Stuttgart: Reclam 1993
- · Hans Lenk u. Matthias Maring (Hg.): Technikethik und Wirtschaftsethik
- Fragen der praktischen Philosophie. Opladen: Leske u. Budrich 1998
- Armin Grunwald: Technikfolgenabschätzung eine Einführung. 2. Auflage Berlin: Edition Sigma 2010
- Bernd Noll: Grundriss der Wirtschaftsethik. Von der Stammesmoral zur Ethik der Globalisierung. Stuttgart: Verlag W. Kohlhammer 2010
- Elisabeth Göbel: Unternehmensethik. 2. Aufl. Stuttgart: Lucius & Lucius 2010
- Jonas, Hans: Das Prinzip Verantwortung. Frankfurt/M: Suhrkamp 1979

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Flugsicherungstechnik und -betrieb Technique and operation of airtraffic control

LV-Nummer2007

Kürzel
Arbeitsaufwand
3 CP, davon 3 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Semester

Häufigkeit
Sprache(n)
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Jürgen Lühmann

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Grundlagen der Elektrotechnik

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Darstellung des Wegsicherungsprozesses
- · gesetzliche Grundlagen
- Struktur und Organisation des Luftraumes
- Flugsicherungsstrategien
- · Sichtflug- und Instrumentenflugregeln
- Staffelungsverfahren
- Instrumentenflug
- An- und Abflugverfahren
- Flugsicherungsbetriebsdienste
- · Instrumentarien der Flugsicherung
- Planung, Organisation und Kontrolle des Luftverkehrs
- Flugverkehrskontrollbelastung und Kontrollkapazität
- Technische Hilfsmittel zur Lenkung und Leitung des Luftverkehrs
- Navigationsanlagentechnik
- Boden- und Bordgestützte Navigation, Satellitennavigation
- · funktechnische Landehilfen
- · satelliten-basierte Landehilfen
- Radartechnik, Primär-, Sekundärradar, Radardatenverarbeitung
- Flugsicherungsbetriebssysteme
- · Datenübertragungs- und Vermittlungssysteme
- Datenverarbeitungs- und Anzeigesysteme
- Fernmeldeanlagentechnik und Kommunikationssysteme
- fester und beweglicher Flugfunk
- · optische Anlagentechnik, Befeuerungssysteme
- · Rollführungs- und Andocksysteme

Medienformen

Literatur

"Moderne Flugsicherung", 3. Aufl. (Mensen), Springer Verlag, Berlin

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit o. Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 3 SWS als Seminaristischer Unterricht

Frauen in Ingenieurwissenschaften Women in Engineering

LV-Nummer2009

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im WintersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Konstanze Anspach

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- · Reflexion von Geschlechterrollenerwartungen und -verhalten in Studium und Beruf
- Kennenlernen von Organisationen und Berufsverbänden für Frauen im MINT-Bereich
- Aufbau von eigenen Karriere-Netzwerken
- · Stärkung der berufsspezifischen Schlüsselkompetenzen

Themen/Inhalte der LV

Die Veranstaltung richtet sich an Studentinnen im MINT-Bereich. In der Veranstaltung werden in unterschiedlichen Formaten wie Diskussionsrunden, Firmenexkursionen oder Workshops die Situation und die Chancen von Frauen im ingenieurwissenschaftlichen Bereich thematisiert. Der Zweck der Veranstaltung besteht darin, Frauen zu vernetzen und sie im Studium und beim Übergang zum Beruf zu unterstützen.

Medienformen

Literatur

· Literaturliste wird in der LV bekannt gegeben.

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit o. Referat/Präsentation [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Anmerkungen

In der Lehrveranstaltung ist Anwesenheitspflicht.

Konstruktionswettbewerb Engineering Challenge

LV-NummerKürzel

Arbeitsaufwand

3 CP. davon 2 SWS als Prak6. - 8. (empfohle)

3 CP, davon 2 SWS als Prak- 6. - 8. (empfohlen)

tikum

Lehrformen Häufigkeit Sprache(n)

Praktikum jedes Semester Deutsch und Englisch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Dipl.-Ing.(Fh) Robert Helfrich

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden werde in die Lage versetzt, selbständig ein Produkt von der Idee bis zur praktischen Umsetzung zu konzeptionieren und -realisieren.

Themen/Inhalte der LV

Konstruktionen/Produktentwicklung bis zur funktionstüchtigen Realisierung innerhalb von studentischen Projekten.

Medienformen

Literatur

- Konstruktionslehre, Pahl/Beitz
- · Maschinenelemente, K.-H. Decker
- Rennwagentechnik, M. Trzesniowski

Leistungsart

Studienleistung

Prüfungsform

praktische/künstlerische Tätigkeit [MET]

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Praktikum

Personal & Organisation Human Resources & Organisation

LV-Nummer2013

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Semester

Häufigkeit
Sprache(n)
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Thomas Heimer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden erkennen Anforderungen und Herausforderungen an das Human Resources Management und sind mit Ansätzen des Human Resource Managements vertraut.

Themen/Inhalte der LV

- · Einführung in das Personalmanagement
- Diskussion personalwirtschaftlicher Funktionsbereiche
- Grundlagen der organisationstheoretischen Entscheidung
- Diskussion von aufbau- und ablauforganisatorischen Konzepten
- · Anwendung auf projektbezogene Anwendungsgebiete

Medienformen

Literatur

- Bea., F.X., et al: Projektmanagement, Lucius & Lucius Verlag, Stuttgart 2008
- Bisani, F. (1995): Personalwesen und Personalführung. Der State of the Art der betrieblichen Personalarbeit, 4.
 Auflage, Wiesbaden: Gabler Verlag
- Olfert, K. Personalwirtschaft, Kiehl Verlag, 2008

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Strategisches Management Strategic Management

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Se- 6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im WintersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Matthias Halbleib

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Grundlagen Betriebswirtschaftslehre

Kompetenzen/Lernziele der LV

Die Studierenden verstehen die Notwendigkeit und die Grundgedanken des Strategischen Managements. Sie kennen wesentliche Methoden und Tools und können diese in den Bezugsrahmen des Strategischen Managements einordnen. Sie sind in der Lage, Chancen und Herausforderungen aus dem Verhältnis eines Unternehmens und seiner Umwelt zu analysieren und im Hinblok auf die weitere Unternehmensentwicklung zu reflektieren. Die kritische Diskussion von Praxisbeispielen und Werkzeugen des Strategischen Management fördert die Fähigkeit zur Anwendung der erworbenen Kenntnisse sowie die eigene Reflexion und Kommunikationsfähigkeit der Studierenden.

Themen/Inhalte der LV

- Grundlagen des Strategischen Management
- Entwicklung einer strategischen Denkweise
- Festlegung eines Zielbildes für ein Unternehmen
- · Analyse der strategischen Ausgangsposition
- · Entwicklung von Strategien zur Positionierung
- Auswahl und Implementierung von Strategien
- · Strategisches Controlling

Medienformen

Diskussion aktueller Praxisbeispiele

Literatur

- Bea, F.X., Haas, J.: Strategisches Management, Konstanz
- Johnson, G., Scholes, K., Whittington, R.: Strategisches Management Eine Einführung: Analyse, Entscheidung und Umsetzung, München. (Übersetzung der englischsprachigen Ausgabe "Exploring Corporate Strategy")
- Malik, F.: Strategie: Navigieren in der Komplexität der Neuen Welt, Frankfurt/New York
- Müller-Stewens, G., Lechner, C.: Strategisches Management: Wie strategische Initiativen zum Wandel führen, Stuttgart
- Welge, M. K., Al-Laham, A.: Strategisches Management: Grundlagen Prozess Implementierung, Wiesbaden
- Weitere Literaturhinweise werden zu Beginn der Veranstaltung gegeben

(in der jeweils neuesten Auflage)

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Umweltinformationssysteme Environmental Information Systems

LV-Nummer2017

Kürzel
Arbeitsaufwand
2 CP, davon 2 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Matthias Götz

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Studierende lernen, Konzepte zur Lösung von Problemen im Bereich Umweltinformationssysteme zu konstruieren und zu implementieren

Themen/Inhalte der LV

- UIS Grundlagen (Geodätische Bezugssysteme, Koordinationssystme, Geodaten, digitale Karten)
- Arbeiten mit GIS-Software anhand exemplarischer Einsatzbeispiele (z.B. Umwelt-Katastersysteme, Interpolation von Messdaten, Umwelt-Planung)
- Betriebliche Umweltinformationssysteme (z.B. Chemikalienmanagement, Stoffstromanalysesoftware)

Medienformen

Literatur

- Skript zur Lehrveranstaltung
- · Ralf Bill: Grundlagen der Geo-Informationssysteme, Verlag Wichmann
- Resnik, Bill: Vermessungskunde für den Planungs-, Bau- und Umweltbereich, Verlag Wichmann

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Verzahnungstechnik Gear Technology

LV-Nummer2019
Kürzel
2 CP, davon 2 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Christian Kunze

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Anwendung verschiedener Verzahnungstechniken.

Themen/Inhalte der LV

- · Grundlagen der Verzahnung
- Evolventenverzahnung
- · Geometrische, kinematische Grundlagen
- · Mit und ohne Profilverschiebung
- Festigkeitsnachweis nach DIN 3990
- Überblick Zahnradgetriebe
- Geradverzahnung/Schrägverzahnung
- Kegelradverzahnung
- Schneckenradgetriebe

Medienformen

Literatur

- Vorlesungsskript
- · Literaturliste wird zu Beginn der Veranstaltung bekannt gegeben.

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Volkswirtschaftslehre Economics

LV-NummerKürzel
2021
Arbeitsaufwand
2 CP, davon 2 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Egbert Hayessen, Prof. Dr. Thomas Heimer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden erlangen die Kompetenz, volkswirtschaftliche Problemstellungen zu erkennen und Ansätze volkswirtschaftlicher Lösungen zu erkennen. Darüber hinaus werden sie in der Kompetenz geschult, volkswirtschaftliche Lösungsansätze auf neue Problemfelder transferieren zu können.

Themen/Inhalte der LV

Ausgewählte Themen der Volkswirtschaftslehre. Neben grundlegenden Begriffen und Fragestellungen der Volkswirtschaftslehre steht das Erarbeiten von Einsichten in die Themenkreise:

- · Rahmenbedingungen der Volkswirtschaft
- Marktmechanismen
- Wettbewerb
- Außenhandel
- Lohnpolitik
- Wirtschaftskreislauf
- Wirtschaftspolitik

Medienformen

Literatur

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Thermische Fügetechnik Welding Technology

LV-NummerKürzel
2023
Arbeitsaufwand
2 CP, davon 2 SWS als Se6. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Dipl.-Ing. (FH) IWE M.Eng. Andreas Hannappel

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· LV Thermische Fügeverfahren

Kompetenzen/Lernziele der LV

- Einsatz von industriell genutzten Thermischen Füge- und Trennprozessen
- Verfahrensgrundlagen und Varianten
- Maschinen und Ausrüstung

Themen/Inhalte der LV

Überblick über thermische Füge- und Trennverfahren

- Laserverfahren
- Elektronenstrahlverfahren
- Hochleistungsverfahren
- · Wärmereduzierte Verfahren
- · Plasma-Schweiß- und Schneidverfahren

Physikalische Wirkprinzipien und Funktionsweise der genannten Verfahren

Medienformen

- Beamer
- Tafelanschrieb
- Folien
- Audiovisuelle Medien

Literatur

- Vorlesungsskript
- Eine aktuelle Literaturliste wird zu Beginn der Veranstaltung bekannt gegeben

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Modul

Praxisprojekt B Practice Project B

ModulnummerKürzelModulverbindlichkeitModulbenotung1710Prax BPflichtBenotet (differenziert)

Arbeitsaufwand Dauer Häufigkeit Sprache(n)

8 CP, davon 1 SWS 1 Semester

FachsemesterPrüfungsartLeistungsart7. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Claus Schul

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Befähigung zur wissenschaftlich-methodischen Vorgehensweise für konkrete Projekte in den Partnerunternehmen.
- · Berücksichtigung von unterschiedlichen Aspekten der Ingenieurtätigkeit im Unternehmensalltag.
- Erkennen von technischen und unternehmensspezifischen Prozessen.
- Erkennen von systemischen Zusammenhängen (technisch betriebswirtschaftlich arbeitssoziologisch)
- Befähigung zur projektorientierten und arbeitsteiligen Teamarbeit. Außerdem die Befähigung zur sachgerechten Kommunikation mit den Mitarbeitern der entsprechenden Fachabteilungen auf Ingenieurniveau (fachlich und sozial).

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Ausarbeitung/Hausarbeit o. Referat/Präsentation (*Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.*)

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

200, davon 15 Präsenz (1 SWS) 185 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

15 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

185 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen<u>Pflichtveranstaltung/en:</u>

1712 Praxisprojekt B (P, 7. Sem., 1 SWS)

Praxisprojekt B Practice Project B

Kürzel **LV-Nummer Arbeitsaufwand Fachsemester** 1712

8 CP, davon 1 SWS als Prak-

7. (empfohlen)

Lehrformen Häufigkeit Sprache(n) Praktikum

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

s. Modulbeschreibung

Themen/Inhalte der LV

Das Praxisprojekt B wird schwerpunktmäßig in den Partnerunternehmen und an den Arbeitsplätzen der Studierenden in den Unternehmen durchgeführt. Mögliche Schwerpunkte des Praxisprojektes: technisch, betriebswirtschaftlich, soziologisch. Durchführung auch im Ausland möglich.

Medienformen

Literatur

Arbeitsaufwand der LV in Zeitstunden (h)

200 Stunden, davon 1 SWS als Praktikum

Modul

Finite-Element-Methode (FEM) Finite Elements Methods (FEM)

ModulnummerKürzelModulverbindlichkeitModulbenotung1790FEMPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)3 CP, davon 3 SWS1 Semesternur im WintersemesterDeutsch

FachsemesterPrüfungsartLeistungsart7. (empfohlen)Kombinierte ModulprüfungPrüfungsleistung

Modulverwendbarkeit

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr. rer. nat. Peter Dannenmann, Prof. Dr. - Ing. Patrick Metzler

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

Mit Abschluss dieses Moduls haben die Studierenden folgende Kenntnisse und Kompetenzen erworben: Einführung in die Finite Elemente Methode (FEM), Kenntnisse zu Grundgleichungen und Prinzipien der FEM für lineare strukturmechanische Aufgabenstellungen. Durchführen von linearen statischen Strukturanalysen mit der FE-Methode. Unterschiede zwischen linearen und nichtlinearen Aufgabenstellungen, Anwendung einer Finite Elemente Software auf strukturmechanische Aufgabenstellungen. Einschätzen der Möglichkeiten, Stärken, Schwächen und Grenzen der FE-Methode. Kenntnisse hinsichtlich des Einflusses der Modellbildung auf die Simulationsergebnisse. Kenntnisse zu Auswertemöglichkeiten und Darstellung der Ergebnisse. Kenntnisse bzgl. typischer strukturmechanische Aufgabenstellungen aus der Industrie, Kenntnisse um Problemstellungen zu identifizieren und Lösungswege herauszufinden. Sie sind in der Lage die Methode anzuwenden und die Software zu bedienen bzw. die Anwendung vergleichbare Softwarelösungen schnell und effektiv zu erlernen. Die Studierenden haben Grundkenntnisse, um die erhaltenen Ergebnisse zu analysieren, prüfen (verifizieren), beurteilen, mit Zielwerten vergleichen und Maßnahmen zur Verbesserung der analysierten Struktur abzuleiten.

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Klausur o. Bildschirmtest u. Klausur o. Vorleistung Bildschirmtest u. Bildschirmtest u. Klausur (*Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.*)

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

75, davon 45 Präsenz (3 SWS) 30 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

45 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

30 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

- Pflichtveranstaltung/en:

 1792 Finite Elemente Methode (FEM) (SU, 7. Sem., 1 SWS)

 1792 Finite Elemente Methode (FEM) (P, 7. Sem., 2 SWS)

Finite Elemente Methode (FEM) Finite Elements Methods (FEM)

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 1 SWS als Se-7. (empfohlen)

minaristischer Unterricht, 2 SWS als Praktikum

LehrformenHäufigkeitSprache(n)SeminaristischerUnter-nur im WintersemesterDeutsch

richt, Praktikum

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Wolfgang Feickert, Prof. Dr.-Ing. Thomas Kiefer, Prof. Dr.-Ing. Alexander Zopp

Fachliche Voraussetzung

Empfohlene Voraussetzungen

 - Grundlagen der Elastostatik (Verformungen, Dehnungen, Spannungen, Spannungszustand, Normalspannung, Schubspannung, Biegespannung), etc.) - Werkstoffkunde (Materialbeschreibung, sprödes/zähes Verhalten, Festigkeitshypothesen)

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Grundlagen und Theorie zur Finite Elemente Methode für lineare strukturmechanische Aufgabenstellungen
- praktische Durchführung von linearen, statischen, Analysen von Bauteilen mit der FE-Methode
- Anwendung einer Finite Elemente Software auf strukturmechanische Aufgabenstellungen
- Einflusses der Modellbildung auf die Simulationsergebnisse
- Auswertemöglichkeiten und Darstellung der Ergebnisse
- Simulationsergebnisse analysieren, prüfen (verifizieren) und beurteilen.

Medienformen

Beamer, Tafelanschrieb, Vorlesungsmodelle

l iteratur

- Gebhardt, Christoph: Praxisbuch FEM mit ANSYS Workbench, Einführung in die lineare und nichtlineare Mechanik, Carl Hanser Verlag
- Westermann, Thomas: Modellbildung und Simulation, Mit einer Einführung in ANSYS, Springer, Berlin Heidelberg
- Nasdala, Lutz: FEM Formelsammlung Statik und Dynamik, Hintergrundinformationen, Tipps und Tricks, Springer Vieweg, 2. Auflage
- Rieg, Frank; Hackenschmidt, Rheinhard: Finite Element Analyse für Ingenieure, Eine leicht verständliche Einführung, Carl Hanser Verlag, München Wien

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 1 SWS als Seminaristischer Unterricht, 2 SWS als Praktikum

Modul

Ausgewählte Themen zur Vertiefung 2 Selected subjects for specialization 2

Modulnummer	Kürzel	Modulverbindlichkeit	Modulbenotung
1700	GW	Pflicht	Benotet (differenziert)
Arbeitsaufwand	Dauer	Häufigkeit	Sprache(n) Deutsch; Deutsch und Englisch; Englisch
13 CP, variable SWS	1 Semester	jedes Jahr	

Fachsemester

7. - 8. (empfohlen)

Prüfungsart

Modulprüfung (Wahlpflichtbereich)

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Das Profil der mit dem Bachelorabschluss erreichten Kompetenzen sollte durch eine entsprechende Zusammenstellung der Wahlpflicht-Lehrveranstaltungen geschärft werden. Sie sind aus dem gesamten Bachelor-Angebot der Hochschule RheinMain auszuwählen. Auf Antrag (Absprache mit dem Prüfungsausschuss notwendig) können auch qualifizierte Angebote des ccc gewählt werden.

Begründung für zusammengesetzte Modulprüfung

Getrennte Prüfungen im Wahlpflichtbereich.

Modulverantwortliche(r)

Prof. Dr.-Ing. Claus Schul

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)
Befähigung zur Anwendung des durch die freie Wahlmöglichkeit gegebenen Wissenszuwachses in den verschiedensten gesellschaftswissenschaftlichen / sprachlichen Bereichen. Das ermöglicht einen Blick "über den Tellerrand" und eine entsprechende Erweiterung des Horizontes.

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> Fachunabhängige Kompetenzen werden integriert erworben.

Zusammensetzung der Modulnote

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

325, davon 150 Präsenz (10 SWS) 175 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

150 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

175 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen

Pflichtveranstaltung/en:

• 1702 Business English (SU, 7. Sem., 2 SWS)

Wahlpflichtveranstaltung/en:

- Auswahl aus dem Competence & Career Center (SU, 7. 8. Sem., 1 SWS)
- 2001 3D-Druck in der Produktentwicklung (SU, 7. 8. Sem., 2 SWS)
- 2003 Cleaner Production (SU, 7. 8. Sem., 3 SWS)
- 2005 Ethik und Technik (SU, 7. 8. Sem., 2 SWS)
- 2007 Flugsicherungstechnik und -betrieb (SU, 7. 8. Sem., 3 SWS)
- 2009 Frauen in Ingenieurwissenschaften (SU, 7. 8. Sem., 2 SWS)
- 2011 Konstruktionswettbewerb (P, 7. 8. Sem., 2 SWS)
- · 2013 Personal & Organisation (SU, 7. 8. Sem., 2 SWS)
- · 2015 Strategisches Management (SU, 7. 8. Sem., 2 SWS)
- 2017 Umweltinformationssysteme (SU, 7. 8. Sem., 2 SWS)
- 2019 Verzahnungstechnik (SU, 7. 8. Sem., 2 SWS)
- 2021 Volkswirtschaftslehre (SU, 7. 8. Sem., 2 SWS)

Optionale Veranstaltung/en:

• 2023 Thermische Fügetechnik (SU, 7. - 8. Sem., 2 SWS)

Business English Business English

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 2 SWS als Se-7. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Jahr **Sprache(n)**Englisch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Carolin Sermond

Fachliche Voraussetzung

• Die Teilnahme an den Prüfungen zu den Lehrveranstaltungen Technisches Englisch und Business English setzt voraus, dass zuvor ein Einstufungstest zum Niveau B1 erfolgreich absolviert wurde.

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- Entwickeln von Englischkompetenzen in verschiedenen beruflichen Situationen.
- Sensibilisierung für höfliche und diplomatische Ausdrucksweise unter Berücksichtigung kultureller Unterschiede zu verschiedenen englischsprachigen Ländern.
- Erlernen des Fachvokabulars für Korrespondenz in der Fremdsprache.
- Argumentieren, Diskutieren und Verhandeln, Verbesserung der rhetorischen Möglichkeiten in der Fremdsprache. Telefonieren. Erläuterung von Graphen.

Themen/Inhalte der LV

- Der Kurs wird auf dem Level B1/B2 des Common European Framework of Reference for Language Learning unterrichtet.
- Erlernen des Fachvokabulars für Korrespondenz in der Fremdsprache.
- · Argumentieren, Diskutieren und Verhandeln, Verbesserung der rhetorischen Möglichkeiten in der Fremdsprache.
- Telefongespräche führen.
- · Erläuterung von Graphen.

Medienformen

Skript

Literatur

- Skript
- · Vollmer: Englisch im Beruf. New Basis for Business, Pre-Intermediate

Leistungsart

Prüfungsleistung

Prüfungsform

bewertete Hausaufgabe u. Klausur u. mündliche Prüfung

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Auswahl aus dem Competence & Career Center

LV-Nummer Kürzel Arbeitsaufwand Fachsemester
1 CP, davon 1 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

Lehrformen Häufigkeit Sprache(n)

Seminaristischer Unterricht

Verwendbarkeit der LV

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

Medienformen

Literatur

Leistungsart

Studienleistung

Prüfungsform

Je nach Auswahl

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

25 Stunden, davon 1 SWS als Seminaristischer Unterricht

3D-Druck in der Produktentwicklung

3D-Printing in Product Development

LV-Nummer2001

Kürzel

Arbeitsaufwand

3 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im SommersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Dozentinnen und Dozenten des Fachbereichs Ingenieurwissenschaften

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Am Ende der Veranstaltung kennen die Studierenden die wesentlichen Themen im Bereich "Additive Manufacturing" (3D-Druck).

- Sie haben einen Überblick über aktuelle 3D-Druck-Technologien und ihren Einsatz in der Produktentwicklung.
- Sie kennen in Bezug auf 3D-Druck
 - die Einsatzmöglichkeiten und -grenzen
 - die Besonderheiten bei der Konstruktion
 - die Besonderheiten bei der Auslegung und Simulation
 - die eingesetzten Fertigungsverfahren und -anlagen
 - die verwendeten Werkstoffe und Materialien
- Sie können entscheiden, für welche Produkte 3D-Druck in Frage kommt und sind in der Lage, 3D-Druck-spezifische Lösungskonzepte zu erarbeiten.

Themen/Inhalte der LV

Die Lehrveranstaltung "3D-Druck in der Produktentwicklung (3DP)" ist als Ringveranstaltung konzipiert, die verschiedene Aspekte des 3D-Drucks abdeckt.

Die Ringveranstaltung besteht aus sechs Einzelveranstaltungen mit jeweils 4 Unterrichtseinheiten (3 Zeitstunden), die aus unterschiedlichen Perspektiven auf das Thema schauen und von verschiedenen Fachleuten gehalten werden. Zum Abschluss findet eine Exkursion statt.

Medienformen

Literatur

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit [MET]

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Anmerkungen

Die Teilnahme an allen Einzelveranstaltungen sowie an der Exkursion ist verpflichtend.

Voraussetzung für eine Benotung ist die aktive Teilnahme an den Unterrichtseinheiten, insbesondere bei den zugehörigen Übungen, sowie die Peer-Reviews.

Cleaner Production Cleaner Production

LV-Nummer2003

Kürzel

Arbeitsaufwand
3 CP, davon 3 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. rer. nat. habil. Ulrike Stadtmüller

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Studierende

- erarbeiten das Thema Cleaner Production und k\u00f6nnen an fachliche Diskussionen im Bereich Cleaner Production teilnehmen,
- · können Problemlösungen und Argumente im Fachgebiet Cleaner Production erarbeiten und weiterentwickeln.

Themen/Inhalte der LV

- Entwicklung der Umweltschutztechniken
- Nachhaltige Produktentwicklung
- Recyclinggerechte Konstruktion
- Umweltgerechte Fertigungstechniken
- · Hinweise auf vorsorgende Abfallwirtschaft und nachhaltige Nutzungskonzepte

Medienformen

Literatur

- · Hirth, T., Woidasky, J., Eyerer, P. (2007), Nachhaltige rohstoffnahe Produktion, Fraunhöfer IRB-Verlag
- Nagel, J. (2015), Nachhaltige Verfahrenstechnik. Carl Hanser-Verlag, München, Wien

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit o. Klausur [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 3 SWS als Seminaristischer Unterricht

Ethik und Technik Ethics and Technology

LV-Nummer2005

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Jochen Müller

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Grundlagen der Ethik und Berufsethik in den Ingenieur- und Wirtschaftswissenschaften
- Diskussion über ethische Fragen und Verantwortungsfelder anhand von Beispielen, Übung in den moralischen Argumentationen, Interpretation von Ethik-Kodizes
- Technikfolgenabschätzung in Theorie und Praxis; Methoden, Verfahren, disziplinäre Bezüge u. Praxisfelder der TA;
 Grenzen und Perspektiven

Medienformen

Literatur

- Julian Nida-Rümelin (Hg.): Angewandte Ethik. Die Bereichsethiken und ihre theoretische Fundierung. Ein Handbuch. Stuttgart: Kröner Verlag 2005
- Hans Lenk u. Günter Ropohl (Hg.): Technik und Ethik. Stuttgart: Reclam 1993
- · Hans Lenk u. Matthias Maring (Hg.): Technikethik und Wirtschaftsethik
- Fragen der praktischen Philosophie. Opladen: Leske u. Budrich 1998
- Armin Grunwald: Technikfolgenabschätzung eine Einführung. 2. Auflage Berlin: Edition Sigma 2010
- Bernd Noll: Grundriss der Wirtschaftsethik. Von der Stammesmoral zur Ethik der Globalisierung. Stuttgart: Verlag W. Kohlhammer 2010
- Elisabeth Göbel: Unternehmensethik. 2. Aufl. Stuttgart: Lucius & Lucius 2010
- Jonas, Hans: Das Prinzip Verantwortung. Frankfurt/M: Suhrkamp 1979

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Flugsicherungstechnik und -betrieb Technique and operation of airtraffic control

LV-Nummer2007

Kürzel
Arbeitsaufwand
3 CP, davon 3 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht
Häufigkeit
Sprache(n)
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Jürgen Lühmann

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Grundlagen der Elektrotechnik

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Darstellung des Wegsicherungsprozesses
- · gesetzliche Grundlagen
- Struktur und Organisation des Luftraumes
- Flugsicherungsstrategien
- · Sichtflug- und Instrumentenflugregeln
- Staffelungsverfahren
- Instrumentenflug
- An- und Abflugverfahren
- Flugsicherungsbetriebsdienste
- · Instrumentarien der Flugsicherung
- Planung, Organisation und Kontrolle des Luftverkehrs
- Flugverkehrskontrollbelastung und Kontrollkapazität
- Technische Hilfsmittel zur Lenkung und Leitung des Luftverkehrs
- Navigationsanlagentechnik
- Boden- und Bordgestützte Navigation, Satellitennavigation
- · funktechnische Landehilfen
- · satelliten-basierte Landehilfen
- Radartechnik, Primär-, Sekundärradar, Radardatenverarbeitung
- Flugsicherungsbetriebssysteme
- · Datenübertragungs- und Vermittlungssysteme
- Datenverarbeitungs- und Anzeigesysteme
- Fernmeldeanlagentechnik und Kommunikationssysteme
- fester und beweglicher Flugfunk
- optische Anlagentechnik, Befeuerungssysteme
- · Rollführungs- und Andocksysteme

Medienformen

Literatur

"Moderne Flugsicherung", 3. Aufl. (Mensen), Springer Verlag, Berlin

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit o. Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 3 SWS als Seminaristischer Unterricht

Frauen in Ingenieurwissenschaften Women in Engineering

LV-Nummer2009

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im WintersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Konstanze Anspach

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- · Reflexion von Geschlechterrollenerwartungen und -verhalten in Studium und Beruf
- Kennenlernen von Organisationen und Berufsverbänden für Frauen im MINT-Bereich
- Aufbau von eigenen Karriere-Netzwerken
- · Stärkung der berufsspezifischen Schlüsselkompetenzen

Themen/Inhalte der LV

Die Veranstaltung richtet sich an Studentinnen im MINT-Bereich. In der Veranstaltung werden in unterschiedlichen Formaten wie Diskussionsrunden, Firmenexkursionen oder Workshops die Situation und die Chancen von Frauen im ingenieurwissenschaftlichen Bereich thematisiert. Der Zweck der Veranstaltung besteht darin, Frauen zu vernetzen und sie im Studium und beim Übergang zum Beruf zu unterstützen.

Medienformen

Literatur

· Literaturliste wird in der LV bekannt gegeben.

Leistungsart

Studienleistung

Prüfungsform

Ausarbeitung/Hausarbeit o. Referat/Präsentation [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Anmerkungen

In der Lehrveranstaltung ist Anwesenheitspflicht.

Konstruktionswettbewerb Engineering Challenge

LV-NummerKürzel

Arbeitsaufwand

3 CP. davon 2 SWS als Prak7, - 8, (empfohler

3 CP, davon 2 SWS als Prak- 7. - 8. (empfohlen)

tikun

Lehrformen Häufigkeit Sprache(n)

Praktikum jedes Semester Deutsch und Englisch

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Dipl.-Ing.(Fh) Robert Helfrich

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden werde in die Lage versetzt, selbständig ein Produkt von der Idee bis zur praktischen Umsetzung zu konzeptionieren und -realisieren.

Themen/Inhalte der LV

Konstruktionen/Produktentwicklung bis zur funktionstüchtigen Realisierung innerhalb von studentischen Projekten.

Medienformen

Literatur

- Konstruktionslehre, Pahl/Beitz
- · Maschinenelemente, K.-H. Decker
- Rennwagentechnik, M. Trzesniowski

Leistungsart

Studienleistung

Prüfungsform

praktische/künstlerische Tätigkeit [MET]

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Praktikum

Personal & Organisation Human Resources & Organisation

LV-Nummer2013

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Thomas Heimer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- · Einführung in das Personalmanagement
- Diskussion personalwirtschaftlicher Funktionsbereiche
- Grundlagen der organisationstheoretischen Entscheidung
- Diskussion von aufbau- und ablauforganisatorischen Konzepten
- · Anwendung auf projektbezogene Anwendungsgebiete

Medienformen

Literatur

- Bea., F.X., et al: Projektmanagement, Lucius & Lucius Verlag, Stuttgart 2008
- Bisani, F. (1995): Personalwesen und Personalführung. Der State of the Art der betrieblichen Personalarbeit, 4.
 Auflage, Wiesbaden: Gabler Verlag
- Olfert, K. Personalwirtschaft, Kiehl Verlag, 2008

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Strategisches Management Strategic Management

LV-Nummer2015

Kürzel
Arbeitsaufwand
3 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtnur im WintersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Matthias Halbleib

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Grundlagen Betriebswirtschaftslehre

Kompetenzen/Lernziele der LV

Die Studierenden verstehen die Notwendigkeit und die Grundgedanken des Strategischen Managements. Sie kennen wesentliche Methoden und Tools und können diese in den Bezugsrahmen des Strategischen Managements einordnen. Sie sind in der Lage, Chancen und Herausforderungen aus dem Verhältnis eines Unternehmens und seiner Umwelt zu analysieren und im Hinblok auf die weitere Unternehmensentwicklung zu reflektieren. Die kritische Diskussion von Praxisbeispielen und Werkzeugen des Strategischen Management fördert die Fähigkeit zur Anwendung der erworbenen Kenntnisse sowie die eigene Reflexion und Kommunikationsfähigkeit der Studierenden.

Themen/Inhalte der LV

- Grundlagen des Strategischen Management
- Entwicklung einer strategischen Denkweise
- Festlegung eines Zielbildes für ein Unternehmen
- Analyse der strategischen Ausgangsposition
- · Entwicklung von Strategien zur Positionierung
- Auswahl und Implementierung von Strategien
- · Strategisches Controlling

Medienformen

Diskussion aktueller Praxisbeispiele

Literatur

- Bea, F.X., Haas, J.: Strategisches Management, Konstanz
- Johnson, G., Scholes, K., Whittington, R.: Strategisches Management Eine Einführung: Analyse, Entscheidung und Umsetzung, München. (Übersetzung der englischsprachigen Ausgabe "Exploring Corporate Strategy")
- Malik, F.: Strategie: Navigieren in der Komplexität der Neuen Welt, Frankfurt/New York
- Müller-Stewens, G., Lechner, C.: Strategisches Management: Wie strategische Initiativen zum Wandel führen, Stuttgart
- Welge, M. K., Al-Laham, A.: Strategisches Management: Grundlagen Prozess Implementierung, Wiesbaden
- Weitere Literaturhinweise werden zu Beginn der Veranstaltung gegeben

(in der jeweils neuesten Auflage)

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 2 SWS als Seminaristischer Unterricht

Umweltinformationssysteme Environmental Information Systems

LV-Nummer2017

Kürzel
Arbeitsaufwand
2 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenSeminaristischer Unterricht jedes Semester

Häufigkeit
Sprache(n)
Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Matthias Götz

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Studierende lernen, Konzepte zur Lösung von Problemen im Bereich Umweltinformationssysteme zu konstruieren und zu implementieren

Themen/Inhalte der LV

- UIS Grundlagen (Geodätische Bezugssysteme, Koordinationssystme, Geodaten, digitale Karten)
- Arbeiten mit GIS-Software anhand exemplarischer Einsatzbeispiele (z.B. Umwelt-Katastersysteme, Interpolation von Messdaten, Umwelt-Planung)
- Betriebliche Umweltinformationssysteme (z.B. Chemikalienmanagement, Stoffstromanalysesoftware)

Medienformen

Literatur

- Skript zur Lehrveranstaltung
- · Ralf Bill: Grundlagen der Geo-Informationssysteme, Verlag Wichmann
- Resnik, Bill: Vermessungskunde für den Planungs-, Bau- und Umweltbereich, Verlag Wichmann

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Verzahnungstechnik Gear Technology

LV-Nummer2019

Kürzel

Arbeitsaufwand

CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Christian Kunze

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die LV trägt zu den Lernergebnissen des Moduls mit der Erarbeitung der angegebenen Themen/Inhalte bei.

Themen/Inhalte der LV

- Grundlagen der Verzahnung
- Evolventenverzahnung
- · Geometrische, kinematische Grundlagen
- · Mit und ohne Profilverschiebung
- Festigkeitsnachweis nach DIN 3990
- Überblick Zahnradgetriebe
- Geradverzahnung/Schrägverzahnung
- Kegelradverzahnung
- Schneckenradgetriebe

Medienformen

Literatur

- Vorlesungsskript
- · Literaturliste wird zu Beginn der Veranstaltung bekannt gegeben.

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Volkswirtschaftslehre Economics

LV-Nummer2021

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Prof. Dr. Egbert Hayessen, Prof. Dr. Thomas Heimer

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Die Studierenden erlangen die Kompetenz, volkswirtschaftliche Problemstellungen zu erkennen und Ansätze volkswirtschaftlicher Lösungen zu erkennen. Darüber hinaus werden sie in der Kompetenz geschult, volkswirtschaftliche Lösungsansätze auf neue Problemfelder transferieren zu können.

Themen/Inhalte der LV

Ausgewählte Themen der Volkswirtschaftslehre. Neben grundlegenden Begriffen und Fragestellungen der Volkswirtschaftslehre steht das Erarbeiten von Einsichten in die Themenkreise:

- · Rahmenbedingungen der Volkswirtschaft
- Marktmechanismen
- Wettbewerb
- Außenhandel
- Lohnpolitik
- Wirtschaftskreislauf
- Wirtschaftspolitik

Medienformen

Literatur

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung

Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Thermische Fügetechnik Welding Technology

LV-Nummer2023

Kürzel

Arbeitsaufwand
2 CP, davon 2 SWS als Se7. - 8. (empfohlen)

minaristischer Unterricht

LehrformenHäufigkeitSprache(n)Seminaristischer Unterrichtjedes SemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1

Lehrveranstaltungsverantwortliche/r

Dipl.-Ing. (FH) IWE M.Eng. Andreas Hannappel

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· LV Thermische Fügeverfahren

Kompetenzen/Lernziele der LV

- Einsatz von industriell genutzten Thermischen Füge- und Trennprozessen
- Verfahrensgrundlagen und Varianten
- · Maschinen und Ausrüstung

Themen/Inhalte der LV

Überblick über thermische Füge- und Trennverfahren

- Laserverfahren
- Elektronenstrahlverfahren
- Hochleistungsverfahren
- · Wärmereduzierte Verfahren
- · Plasma-Schweiß- und Schneidverfahren

Physikalische Wirkprinzipien und Funktionsweise der genannten Verfahren

Medienformen

- Beamer
- Tafelanschrieb
- Folien
- Audiovisuelle Medien

Literatur

- Vorlesungsskript
- Eine aktuelle Literaturliste wird zu Beginn der Veranstaltung bekannt gegeben

Leistungsart

Studienleistung

Prüfungsform

Klausur o. mündliche Prüfung [MET] (Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.)

LV-Benotung Mit Erfolg teilgenommen

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Seminaristischer Unterricht

Modul

Mechatronik & Robotik Mechatronics & Robotics

Modulnummer 1720	Kürzel	Modulverbindlichkeit	Modulbenotung
	MS+ROB	Pflicht	Benotet (differenziert)
Arbeitsaufwand	Dauer	Häufigkeit	Sprache(n) Deutsch
8 CP, davon 7 SWS	1 Semester	jedes Jahr	
Fachsemester 7 8. (empfohlen)		Prüfungsart Zusammengesetzte Modulprüfung	

Modulverwendbarkeit

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019

Hinweise für Curriculum

Begründung für zusammengesetzte Modulprüfung

Stark anwendungsbezogene Inhalte aus beiden Lehrveranstaltungen. Die Prüfungen erfolgen den empfohlenen Semestern bzw. kompetenzorientiert und der Lehrform entsprechend auf Lehrveranstaltungsebene.

Modulverantwortliche(r)

Dipl.-Ing. (FH) IWE M.Eng. Andreas Hannappel, Prof. Dipl.-Ing. Xiaofeng Wang

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

• Die Befähigung zum ganzheitlichen, praxisorientierten Systemverständnis durch die Kombination aus Theorie (Mechanik, Elektronik, Informatik) und der praktischen Anwendung bei der Robotik.

<u>Fachunabhängige Kompetenzen (Kommunikation und Kooperation)</u> werden integriert erworben

Zusammensetzung der Modulnote

CP-gewichteter Mittelwert aus den LV-Noten

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

200, davon 105 Präsenz (7 SWS) 95 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

105 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

95 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen Pflichtveranstaltung/en:

- 1722 Mechatronische Systeme (P, 7. Sem., 2 SWS)
 1722 Mechatronische Systeme (SU, 7. Sem., 2 SWS)
 1724 Robotertechnik (P, 8. Sem., 2 SWS)
 1724 Robotertechnik (V, 8. Sem., 1 SWS)

Mechatronische Systeme Mechatronic Systems

LV-NummerKürzel

Arbeitsaufwand
Fachsemester
5 CP, davon 2 SWS als Se7. (empfohlen)

minaristischer Unterricht, 2 SWS als Praktikum

LehrformenHäufigkeitSprache(n)SeminaristischerUnter-jedes JahrDeutsch

richt, Praktikum

Verwendbarkeit der LV

Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dipl.-Ing. Xiaofeng Wang

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

- Die Befähigung zum ganzheitlichen Systemverständnis durch die Integration des Wissens aus Mechanik, Elektronik, und Informatik.
- · Weiterhin die Befähigung zum Finden innovativer Lösungen für ingenieurmäßige Fragestellungen.

Themen/Inhalte der LV

- Mechatronik-Übersicht und Anwendungsbeispiele (Kraftfahrzeugtechnik, Luft- und Raumfahrttechnik)
- Grundlagen mechatronischer Systeme (Systemaufbau, Modellbildung, Schwingungen, Dynamik, Elektronik)
- · Regelung und Steuerung in der Mechatronik
- Sensorik (Sensorprinzipien, Sensoren für Funktionsgrössen)
- Aktorik (Prinzipien: elektro./magn./piezo-mech./fluid.)
- · Prozessorik (Sensor/Aktor-Signalaufbereitung, Signalverarbeitung in der Mechatronik)
- Simulation mechatronischer Systeme (Einführung in Matlab/Simulink)

Medienformen

Beamer, Tafelanschrieb

Literatur

- · Roddeck: Einführung in die Mechatronik, Teubner-Verlag
- · Renningen: Modellbildung und Simulation mechatronischer Systeme, expert-Verlag

Leistungsart

Prüfungsleistung

Prüfungsform

Klausur o. mündliche Prüfung o. Ausarbeitung/Hausarbeit (*Die Prüfungsform sowie ggf. die exakte Prüfungsdauer werden vom Prüfungsausschuss zu Beginn des Semesters fachbereichsöffentlich bekannt gegeben.*)

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h) 125 Stunden, davon 2 SWS als Seminaristischer Unterricht, 2 SWS als Praktikum

Robotics Robotics

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 3 CP, davon 1 SWS als Vor- 8. (empfohlen)

lesung, 2 SWS als Prakti-

kum

LehrformenVorlesung, Praktikum

Häufigkeit
jedes Semester

Sprache(n)
Deutsch

Verwendbarkeit der LV

- · Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Dipl.-Ing. (FH) IWE M.Eng. Andreas Hannappel

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

Gelehrt werden die Möglichkeiten der Automatisierung durch Roboter für industrielle Fertigungsaufgaben. Die Studierenden sollen Fertigungsabläufe mit Robotern analysieren, und geeignete Robotersysteme auswählen können. Dazu werden auch Kenntnisse über theoretische und praktische Möglichkeiten der Programmierung von Robotersystemen vermittelt.

Themen/Inhalte der LV

- Grundlagen der Robotertechnik
- Einsatzgebiete und Anwendungen von Robotersystemen
- Mechanischer und elektrotechnischer Aufbau von Robotern
- · Planung von Fertigungsaufgaben mit Robotern
- Aufbau und Komponenten von Robotersystemen
- · Roboterprogrammierung, offline/online
- Wirtschaftlichkeit von Fertigungsaufgaben mit Robotern
- · Arbeitssicherheit im Umgang mit Roboteranlagen
- Im Roboterpraktikum werden Fertigungsaufgaben analysiert, geplant und realisiert

Medienformen

- Beamer
- Tafelanschrieb
- Folien
- · Audiovisuelle Medien

Literatur

- Vorlesungsskript
- · H. Maier: Grundlagen der Robotik, VDE-Verlag
- Hesse, S., Malisa, V.: Robotik Montage Handhabung, Carl Hanser-Verlag
- Hesse, S.: Grundlagen der Handhabungstechnik, Carl Hanser-Verlag
- Weber, W.: Industrieroboter: Methoden der Steuerung und Regelung, Carl Hanser-Verlag
- Reinhart, G., Flores, A., Zwicker, C.: Industrieroboter: Planung Integration, Vogel-Verlag

Leistungsart

Prüfungsleistung

Prüfungsform

Vorleistung Praktische Tätigkeit u. Klausur

LV-Benotung

Benotet

Arbeitsaufwand der LV in Zeitstunden (h)

75 Stunden, davon 1 SWS als Vorlesung, 2 SWS als Praktikum

Anmerkungen

Praktikum wird mit MET (Mit Erfolg teilgenommen) bewertet. Prüfungsart: Klausur, mündliche Prüfung, Bildschirmtest.

Modul

Produktion & Qualität Production & Quality

ModulnummerKürzelModulverbindlichkeitModulbenotung1810PT+QMPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)5 CP, davon 5 SWS1 Semesterjedes JahrDeutsch

FachsemesterPrüfungsartLeistungsart8. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

analog MBKooperatives Ingenieurstudium Mechatronik

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Thomas Albert Fechter, Prof. Harald Jaich, Prof. Dr.-Ing Ralf Koch

Formale Voraussetzungen

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

- Kenntnis von Qualitätskonzepten, Qualitätsnormen sowie Methoden und Techniken des Qualitätsmanagements erwerben.
- · Verständnis für durchgängige Prozessketten sowie die Grundlagen der Automatisierungstechnik verstehen.
- Methoden und Techniken der Fertigungsplanung und Fertigungssteuerung erlernen.
- Moderne Methoden der durchgängigen Prozessketten, der virtuellen Produktentwicklung und der digitalen Fabrik über den gesamten Produktlebenszyklus kennen lernen.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Vorleistung Praktische Tätigkeit u. Klausur

Gewichtungsfaktor für Gesamtnote

nach CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

125, davon 75 Präsenz (5 SWS) 50 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

75 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

50 Stunden

Anmerkungen/Hinweise

- Zugehörige Lehrveranstaltungen

 Pflichtveranstaltung/en:

 1812 Produktionstechnik (P, 8. Sem., 1 SWS)

 1812 Produktionstechnik (V, 8. Sem., 2 SWS)

 1812 Qualitätsmanagement (V, 8. Sem., 2 SWS)

Produktionstechnik Production Engineering

Kürzel **LV-Nummer** Arbeitsaufwand **Fachsemester** 1812 3 CP, davon 2 SWS als Vor-8. (empfohlen)

lesung, 1 SWS als Praktikum

Lehrformen Häufigkeit Sprache(n) Vorlesung, Praktikum nur im Wintersemester Deutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019
- Maschinenbau (B.Eng.), PO2019.1
- Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing. Thomas Albert Fechter, Prof. Harald Jaich

Fachliche Voraussetzung

Empfohlene Voraussetzungen

LV Fertigungsverfahren

Kompetenzen/Lernziele der LV

- Die Studierenden sind aufgrund der verschiedenen Praktikumsaufgaben in der Lage einfache Arbeitspläne zu erstellen, Wirtschaftlichkeitsstudien durchzuführen sowie mit einfachen digitalen Prototypen zu arbeiten.
- Die Studierenden können Automatisierungskonzepte und -strategein auswählen und beurteilen sowie Produktionseinrichtungen planen.
- Befähigung der Studierenden zur Anwendung von Methoden des Simultaneous Engineerings, der virtuellen Produktentwicklung sowie der Fertigungssteuerung.

Themen/Inhalte der LV

- Aufgaben und Ziele der Produktionstechnik
- Lean Management und Simultaneous Engineering
- Virtuelle Produktentwicklung, Digital Mock-Up
- Arbeitsvorbereitung (Aufgaben und Ziele der Arbeitsplanung und Arbeitssteuerung)
- Planung und Organisation von Produktionseinrichtungen
- · Grundlagen der CNC-Technik
- Automatisierungsstrategien der Fertigung und Montage
- Fertigungssteuerung

Medienformen

Folien, Tafelanschrieb, audio-visuelle Medien

Literatur

- Vorlesungsskript
- Eversheim W.: Organisation in der Produktionstechnik, 4 Bände, 1990 Springer
- Skolaut W. Hrsg.: Maschinenbau Ein Lehrbuch für das ganze Bachelor-Studium, 2018 Springer

Arbeitsaufwand der LV in Zeitstunden (h) 75 Stunden, davon 2 SWS als Vorlesung, 1 SWS als Praktikum

Qualitätsmanagement Quality Management

LV-NummerKürzel
Arbeitsaufwand
2 CP, davon 2 SWS als Vor8. (empfohlen)

lesung

LehrformenHäufigkeitSprache(n)Vorlesungnur im WintersemesterDeutsch

Verwendbarkeit der LV

- Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019
- Interdisziplinäre Ingenieurwissenschaften (B.Eng.), PO2020
- Internationales Wirtschaftsingenieurwesen (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019
- · Maschinenbau (B.Eng.), PO2019.1
- · Wirtschaftsingenieurwesen (B.Eng.), PO2023
- · Wirtschaftsingenieurwesen (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Prof. Dr.-Ing Ralf Koch

Fachliche Voraussetzung

Empfohlene Voraussetzungen

· Produktionstechnik, BWL, Technische Kommunikation

Kompetenzen/Lernziele der LV

- Die Studierenden kennen den Qualitätsbegriff, Aufgaben des Qualitätsmanagements sowie Methoden des Total Quality Managements.
- Befähigung der Studierenden Methoden und Techniken des Qualitätsmanagements in den verschiedenen Phasen der Produktentstehung anzuwenden.
- Aufgrund der praktischen Übungen können die Studierenden SixSigma-Projekte zur Qualitätsverbesserung durchführen.

Themen/Inhalte der LV

- Qualitätsbegriff, QM-Konzepte, Total Quality Management (TQM)
- · Aufgaben des Qualitätsmanagements in den unterschiedlichen Phasen des Produkt-Lebenszyklus
- Qualitätsnormen und gesetzliche Regelungen, Aufbau und Zertifizierung von QM-Systemen nach DIN EN ISO 9000ff
- Methoden u. Techniken des Qualitätsmanagements in den verschiedenen Phasen der Produktdefinition und herstellung
- Praktikum: SixSigma-Projekte Qualitätsverbesserung Produkt und Prozess

Medienformen

Literatur

- Vorlesungs- und Praktikumsskript;
- Schmitt, R., Pfeifer, T.: Qualitätsmanagement-Strategien-Methoden-Techniken, C.Hanser-Verlag München Wien 4. Aufl. 2010

Arbeitsaufwand der LV in Zeitstunden (h) 50 Stunden, davon 2 SWS als Vorlesung

Modul

Bachelor-Thesis Bachelor's Thesis

ModulnummerKürzelModulverbindlichkeitModulbenotung9050BTPflichtBenotet (differenziert)

ArbeitsaufwandDauerHäufigkeitSprache(n)12 CP, davon 2 SWS1 Semesterjedes SemesterDeutsch

FachsemesterPrüfungsartLeistungsart8. (empfohlen)ModulprüfungPrüfungsleistung

Modulverwendbarkeit

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Hinweise für Curriculum

Modulverantwortliche(r)

Prof. Dr.-Ing. Claus Schul, Prof. Dr.-Ing. Karlheinz Sossenheimer

Formale Voraussetzungen

• Der Nachweis über den Erwerb der 130 Credit-Points aus den Semestern eins bis sechs.

Empfohlene Voraussetzungen

Kompetenzen

Fach- und Methodenkompetenzen (Wissen und Verstehen sowie Anwendung und Erzeugung von Wissen)

Das Modul Bachelor-Thesis soll zeigen, dass die Kandidatin oder der Kandidat in der Lage ist, innerhalb einer vorgegebenen Frist eine Aufgabenstellung aus einem Fachgebiet ihres oder seines Studienganges selbstständig nach wissenschaftlichen Methoden zu bearbeiten. Das erfordert von den Studierenden den adäquaten Einsatz der erworbenen fachlichen und persönlichen Kompetenzen:

- Die Fähigkeit, eine ingenieurwissenschaftliche Aufgabenstellung zu lösen.
- Eine systematische Vorgehensweise bei der Lösungsfindung, basierend auf wissenschaftlichen Methoden.
- Kreativität und Selbständigkeit
- Zielführende Kooperation und Kommunikation mit Beteiligten.
- Die Fähigkeit, eine wissenschaftliche Arbeit zu dokumentieren, zu präsentieren und zu verteidigen.

Fachunabhängige Kompetenzen (Kommunikation und Kooperation)

Fachunabhängige Kompetenzen werden integriert erworben.

Prüfungsform

Ausarbeitung/Hausarbeit

Gewichtungsfaktor für Gesamtnote

2.0-faches der CP

Gesamtworkload des Moduls Arbeitsaufwand = Zeitstunden (h)

300, davon 30 Präsenz (2 SWS) 270 Selbststudium inkl. Prüfungsvorbereitung

Anteil Präsenzzeit in Zeitstunden (h)

30 Stunden

Anteil Selbststudium inklusive Prüfungsvorbereitung in Zeitstunden (h)

270 Stunden

Anmerkungen/Hinweise

Zugehörige Lehrveranstaltungen<u>Pflichtveranstaltung/en:</u>

9052 Bachelor-Thesis (BA, 8. Sem., 2 SWS)

Bachelor-Thesis Bachelor's Thesis

LV-Nummer Kürzel Arbeitsaufwand Fachsemester 9052 CP, davon 2 SWS als 8. (empfohlen)

Bachelor-Arbeit

LehrformenBachelor-Arbeit
Häufigkeit
jedes Semester
Deutsch

Verwendbarkeit der LV

· Kooperatives Ingenieurstudium Mechatronik (B.Eng.), PO2019

Lehrveranstaltungsverantwortliche/r

Fachliche Voraussetzung

Empfohlene Voraussetzungen

Kompetenzen/Lernziele der LV

s. Modulbeschreibung

Themen/Inhalte der LV

Werden individuell mit den Betreuern abgesprochen und finden i.d.R. im kooperierenden Unternehmen statt.

Medienformen

Literatur

Bänsch, A. Wissenschaftliches Arbeiten (2003)

Arbeitsaufwand der LV in Zeitstunden (h)

300 Stunden, davon 2 SWS als Bachelor-Arbeit