Friday, January 10, 2020

Dual of
$$L^{p}$$
 (p.q. conjugate: $\frac{1}{p} + \frac{1}{q} = 1$)

Given $g \in L^{q}$ define q_{g} on L^{p} by:

 $q_{g}(f) := \int f g$.

$$\phi_g$$
 is a bounded operator:
$$\|\phi_g\|_{:=} \sup \{|fg|: \|f\|_p = 1\} < \infty.$$

$$\|\phi_{2}\| \leq \|fg\| \leq \|f\|_{p} \|g\|_{2} = \|g\|_{2} \qquad \forall \quad f \in \mathbb{L}^{p} \ \omega_{1} \quad \|f\|_{p} = 1.$$

Exercise: prove the prop when q=1.

Simple functions
$$\int_{\infty}^{\infty} w_i f_n f_i w_i f_n = 0.$$
 Simple functions
$$\int_{\infty}^{\infty} w_i f_n f_i w_i f_n = 0.$$
 Support and
$$\int_{\infty}^{\infty} w_i f_n f_n = 0.$$
 And
$$\int_{\infty}^{\infty} w_i f_n f_n = 0.$$

Also, either $S_g = \{g \neq 0\}$ is o-finite or μ is semifinite. Then $g \in L^2$ and $M_q(g) = \|g\|_2$. If Next time.