ЛАБОРАТОРНАЯ РАБОТА 7

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

Отчет по лабораторной работе должен содержать

- 1) постановку задачи;
- 2) необходимый теоретический материал (формулы)
- 3) результаты вычисления;
- 4) текст программы и графический материал.

Задание. Найти приближенное решение задачи теплопроводности методом конечных разностей. Построить графики функции u(x,t) для некоторых моментов времени. Положив h=0,1; шаг по времени выбрать из условия, Т выбрать самостоятельно.

1.
$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}, \ a > 0, \ \frac{u(0,t) = 0,}{u(1,t) = 0,} \ u(x,0) = \sin(2\pi x).$$

2.
$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}, \ a > 0, \ \frac{u(0,t) = 0,}{u(1,t) = 1,} \ u(x,0) = x + \sin(\pi x).$$

3.
$$\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}, \ a > 0, \ u(0, t) = \exp(-2t), \ u(x, 0) = \cos x.$$

4.
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \sin(\pi x), \quad u(0,t) = 0, \quad u(x,0) = \cos x.$$

5.
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \cos x(\cos t + \sin t), \quad u(0, t) = \sin t, \\ u(1, t) = -\sin t, \quad u(x, 0) = 0,$$

6.
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 0.5 \exp(-0.5t) \cos x$$
, $\frac{u}{u(0,t)} = \exp(-0.5t)$, $u(x,0) = \sin x$,

7.
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - 2u, \quad u(0,t) = \exp(-3t), \quad u(x,0) = \sin x,$$

8.
$$\frac{\partial \mathbf{u}}{\partial t} = \frac{\partial^2 \mathbf{u}}{\partial x^2} + 1.5 \exp(-t) \cos x, \quad u(0,t) = 0, \\ u(1,t) = 1, \quad u(x,0) = x + \sin(\pi x).$$

Уравнение
$$\frac{du}{dt} = \frac{d^2u}{dx^2}$$
 при заданных условиях: $u(x;0)=f(x), \quad u(0;t)=\varphi(t)$ и $u(0.6;t)=\psi(t)$, где $x\in[0;0.6]$.

Варианты заданий:

№ варианта	f(x)	$\varphi(t)$	$\psi(t)$
9	cos(2x)	1-6 <i>t</i>	0,3624
10	x(x+1)	2t+0,96	0,9600
11	$1,3+\ln(x+0,4)$	0,8+t	1,2
12	$\sin(2x)$	2 <i>t</i>	0,932
13	3x(2-x)	t+2,52	2,52
14	$\sin(0.55x+0.33)$	t+0,33	0,354
15	2x(1-x)+0,22	0,2+t	0,68
16	2x(x+0,2)+0,4	2 <i>t</i> +0,4	1,36
17	ln(x+0,26)+1	0,415+t	0,9345
18	(x-0,2)(x+1)+0,2	6 <i>t</i>	0,84
19	$\sin(x+0.02)$	3 <i>t</i> +0,02	0,581
20	$2\cos(x+0.55)$	0,8179+3 <i>t</i>	1,705