1

Control Systems

G V V Sharma*

CONTENTS

1	Mason's Gain Formula			
2	Bode Plot 2.1 Introduction			
3	Second order System 3.1 Damping			
4	Routh Hurwitz Criterion 4.1 Routh Array	. 3		
5	State-Space Model 5.1 Controllability and Observab 5.2 Second Order System	•		
6	Nyquist Plot	3		
7	Compensators	3		
8	Phase Margin	3		

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 Mason's Gain Formula

1.1. The Block diagram of a system is illustrated in the figure shown, where X(s) is the input and Y(s) is the output. Draw the equivalent signal flow graph.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.1.1: Block Diagram

Solution: The signal flow graph of the block diagram in Fig. 1.1.1 is available in Fig. 1.1.2

Fig. 1.1.2: Signal Flow Graph

1.2. Draw all the forward paths in Fig. 1.1.2 and compute the respective gains.

Solution: The forward paths are available in Figs. 1.2.3 and 1.2.4. The respective gains are

$$P_1 = s\left(\frac{1}{s}\right) = 1\tag{1.2.1}$$

$$P_2 = (1/s)(1/s) = 1/s^2$$
 (1.2.2)

Fig. 1.2.4: P₂

1.3. Draw all the loops in Fig. 1.1.2 and calculate the respective gains.

Solution: The loops are available in Figs. 1.3.5-1.3.8 and the corresponding gains are

$$L_1 = (-1)(s) = -s \tag{1.3.1}$$

$$L_2 = s\left(\frac{1}{s}\right)(-1) = -1$$
 (1.3.2)

$$L_3 = \left(\frac{1}{s}\right)(-1) = -\frac{1}{s} \tag{1.3.3}$$

$$L_4 = \left(\frac{1}{s}\right) \left(\frac{1}{s}\right) (-1) = -\frac{1}{s^2} \tag{1.3.4}$$

Fig. 1.3.5: L₁

Fig. 1.3.6: L₂

Fig. 1.3.7: L₃

Fig. 1.3.8: L₄

1.4. State Mason's Gain formula and explain the parameters through a table.

Solution: According to Mason's Gain Formula,

$$T = \frac{Y(s)}{X(s)} \tag{1.4.1}$$

$$=\frac{\sum_{i=1}^{N} P_i \Delta_i}{\Delta} \tag{1.4.2}$$

where the parameters are described in Table 1.4

Variable	Description
P_i	ith forward path
L_{j}	<i>j</i> th loop
Δ	$1 - \sum_{L_i} + \sum_{L_i \cap L_j = \phi} L_i L_j - \sum_{L_i \cap L_j \cap L_k = \phi} L_i L_j L_k + \dots$
Δ_i	$1 - \sum_{L_k \cap P_i = \phi} L_k + \sum_{L_k \cap L_j \cap P_i = \phi} L_k L_j - \dots$

TABLE 1.4

1.5. List the parameters in Table 1.4 for Fig. 1.1.2. **Solution:** The parameters are available in Table 1.5

Path	Value	Parameter	Value	Remarks
P_1	1	Δ_1	1	All loops
				intersect
				with P_1
P_2	$\frac{1}{s^2}$	Δ_2	1	All loops
	-			intersect
				with P_2
L_1	-s			
L_2	-1			
L_3	$-\frac{1}{s}$	Δ	$1-\sum_i L_i$	All loops
				intersect
L_4	$-\frac{1}{c^2}$			

TABLE 1.5

1.6. Find the transfer function using Mason's Gain Formula.

Solution: From (1.4.2) and 1.5,

$$T(s) = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta} \tag{1.6.1}$$

$$= \frac{1 + \frac{1}{s^2}}{1 - (-s - 1 - \frac{1}{s} - \frac{1}{s^2})}$$
 (1.6.2)

$$=\frac{s^2+1}{s^3+2s^2+s+1} \tag{1.6.3}$$

after simplification.

1.7. State the Equivalent Matrix Form of Masons Gain formula

Solution: Mason's rule can be stated in a simple matrix form. Assume T is the transient matrix of the graph where

$$t_{nm} = [T_{nm}]$$

is sum transmittance of branches from node m toward node n. Then, the gain from node m to node n of the graph is equal to

$$u_{nm} = [U_{nm}]$$

where,

$$U = (I - T)^{-1} \tag{1.7.1}$$

and I is the identity matrix.

1.8. Find the Transfer Function using the matrix equivalent form of Masons Gain Formula

Solution: The transient matrix for 1.1.2 is

$$\mathbf{T} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & s+1/s & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1/s \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 (1.8.1)

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \tag{1.8.2}$$

$$\mathbf{I} - \mathbf{T} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -s - 1/s & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & 1 & -1/s \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(1.8.3)$$

$$U = (\mathbf{I} - \mathbf{T})^{-1} \tag{1.8.4}$$

finding

$$U_{01} = \frac{s^2 + 1}{s^3 + 2s^2 + s + 1} \tag{1.8.5}$$

gives us the transfer function

1.9. Write a program to compute Mason's gain formula, given the branch nodes and gains for each path.

Solution: The following code computes Masons Gain

codes/MasonsGain.py

2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 3 SECOND ORDER SYSTEM
- 3.1 Damping
- 3.2 Example
 - 4 ROUTH HURWITZ CRITERION
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
 - 6 Nyouist Plot
 - 7 Compensators
 - 8 Phase Margin