Ćwiczenia 4

Funkcje trygonometryczne

Funkcja trygonometryczna	$\alpha = 0^{\circ}$	$\alpha = \frac{\pi}{6} = 30^{\circ}$	$\alpha = \frac{\pi}{4} = 45^{\circ}$	$\alpha = \frac{\pi}{3} = 60^{\circ}$	$\alpha = \frac{\pi}{2} = 90^{\circ}$
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg}(\alpha)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$ctg(\alpha)$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

Wykres funkcji $y = \sin(x)$ (czytaj: sinus) Dziedzina funkcji $y = \sin(x)$: zbiór \mathbb{R}

Wykres funkcji $y = \cos(x)$ (czytaj: kosinus) Dziedzina funkcji $y = \cos(x)$: zbiór \mathbb{R}

 $\begin{array}{c} \textit{Wykres funkcji } y = \operatorname{tg}(x) \ (\textit{czytaj: tangens}) \\ \textit{Dziedzina funkcji } y = \operatorname{tg}(x) \text{: zbiór } \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}, \ \text{gdzie } k \in \mathbb{Z}, \\ \textit{czyli } x \neq \frac{\pi}{2} + k\pi \ \text{dla } k \in \mathbb{Z}. \end{array}$

Wykres funkcji $y = \operatorname{ctg}(x)$ (czytaj: kotangens) Dziedzina funkcji $y = \operatorname{ctg}(x)$: zbiór $\mathbb{R} \setminus \{k\pi\}$, gdzie $k \in \mathbb{Z}$, czyli $x \neq k\pi$ dla $k \in \mathbb{Z}$.

Przydatne zależności trygonometryczne (prawdziwe oczywiście przy ograniczeniach zgodnych z dziedzinami):

W1)
$$\sin^2(x) + \cos^2(x) = 1$$
,

W2)
$$tg(x) \cdot ctg(x) = 1$$
,

W3)
$$\operatorname{tg}(x) = \frac{\sin(x)}{\cos(x)}$$
,

W4)
$$\sin(2x) = 2\sin(x)\cos(x) = \frac{2\operatorname{tg}(x)}{1+\operatorname{tg}^2(x)}$$
,

W5)
$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$
,

W6)
$$tg(2x) = \frac{2tg(x)}{1-tg^2(x)} = \frac{2}{ctg(x)-tg(x)}$$

W7)
$$\operatorname{ctg}(2x) = \frac{\operatorname{ctg}^2(x) - 1}{2\operatorname{ctg}(x)} = \frac{\operatorname{ctg}(x) - \operatorname{tg}(x)}{2},$$

W8)
$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$$
,

W9)
$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha)$$
,

W10)
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
,

W11)
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$
,

W12)
$$\operatorname{tg}(\alpha + \beta) = \frac{\operatorname{tg}(\alpha) + \operatorname{tg}(\beta)}{1 - \operatorname{tg}(\alpha) \operatorname{tg}(\beta)}$$

W13)
$$\operatorname{tg}(\alpha - \beta) = \frac{\operatorname{tg}(\alpha) - \operatorname{tg}(\beta)}{1 + \operatorname{tg}(\alpha)\operatorname{tg}(\beta)},$$

W14)
$$\operatorname{ctg}(\alpha + \beta) = \frac{\operatorname{ctg}(\alpha)\operatorname{ctg}(\beta) - 1}{\operatorname{ctg}(\alpha) + \operatorname{ctg}(\beta)}$$
,

W15)
$$\operatorname{ctg}(\alpha - \beta) = \frac{\operatorname{ctg}(\alpha)\operatorname{ctg}(\beta) + 1}{\operatorname{ctg}(\beta) - \operatorname{ctg}(\alpha)}$$
.

Pozostałe wzory można znaleźć w tablicach matematycznych.

Zadanie 1. Rozwiązać równania:

a)
$$\sin(2x) = 1$$
,

b)
$$\cos(3x) = -\frac{1}{2}$$
,

c)
$$\operatorname{ctg}(\frac{x}{3}) = -1$$
,

d)
$$\operatorname{tg}(\frac{x}{2}) = \sqrt{3}$$
.

Zadanie 2. Rozwiązać równania:

a)
$$tg^3(x) = tg(x)$$
,

b)
$$tg^2(x) - 2tg(x) + 1 = 0$$
,

c)
$$\sin^2(x) + 3\sin(x) + 2 = 0$$
,

d)
$$2\cos(2x) + 3 = 4\cos(x)$$
,

e)
$$\sin^4(x) - \cos^4(x) = \frac{1}{2}$$
,

f)
$$3\sin(x) - \frac{6}{\sin(x)} = -3$$
,

g)
$$2\sin^3(x) - \sin(x)\cos(x) - 3\sin(x) = 0$$
.

Zadanie 3. Rozwiązać nierówności:

a)
$$\sin^2(x) < 1$$
,

b)
$$tg^2(x) > 1$$
,

c)
$$ctg^2(x) > 3$$
,

d)
$$\sin^3(x)\cos(x) + \cos^3(x)\sin(x) \le \frac{1}{4}$$
,

e)
$$\cos(x) \ge \frac{1}{2}$$
,

f)
$$\sin^3(x) - 4\sin^2(x) - \sin(x) + 4 \le 0$$
.

Funkcje cyklometryczne

Funkcja cyklometryczna	x = 0	$x = \frac{1}{2}$	$x = \frac{\sqrt{2}}{2}$	$x = \frac{\sqrt{3}}{2}$	x = 1
$\arcsin(x)$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
arc cos(x)	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

Wykres funkcji $y = \arcsin(x)$ (czytaj: arkus sinus) Dziedzina funkcji $y = \arcsin(x)$: zbiór [-1; 1].

Wykres funkcji $y = \arccos(x)$ (czytaj: arkus kosinus) Dziedzina funkcji $y = \arccos(x)$: zbiór [-1; 1].

Funkcja cyklometryczna	x = 0	$x = \frac{\sqrt{3}}{3}$	x = 1	$x = \sqrt{3}$
arctg(x)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\operatorname{arc}\operatorname{ctg}(x)$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$

Wykres funkcji $y = \operatorname{arc} \operatorname{tg}(x)$ (czytaj: arkus tangens) Dziedzina funkcji $y = \operatorname{arc} \operatorname{tg}(x)$: zbiór \mathbb{R}

Wykres funkcji $y = \operatorname{arc}\operatorname{ctg}(x)$ (czytaj: arkus kotangens) Dziedzina funkcji $y = \operatorname{arc}\operatorname{ctg}(x)$: zbiór $\mathbb R$

Przydatne zależności funkcji cyklometrycznych (prawdziwe oczywiście przy ograniczeniach zgodnych z dziedzinami):

- Z1) $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$,
- Z2) $\operatorname{arctg}(x) + \operatorname{arcctg}(x) = \frac{\pi}{2}$,
- Z3) $\arcsin(-x) = -\arcsin(x)$,
- Z4) $\operatorname{arc}\cos(-x) = \pi \operatorname{arc}\cos(x)$,
- Z5) $\operatorname{arc} \operatorname{tg}(-x) = -\operatorname{arc} \operatorname{tg}(x),$
- Z6) $\operatorname{arcctg}(-x) = \pi \operatorname{arcctg}(x),$
- Z7) dla $0 \le x \le 1$ zachodzi równość: $\arccos(x) = \arcsin(\sqrt{1-x^2}),$
- Z8) dla $-1 \le x \le 0$ zachodzi równość: $\arccos(x) = \pi \arcsin(\sqrt{1-x^2})$,

Zadanie 4. Oblicz:

- a) $\arcsin\left(\frac{\sqrt{2}}{2}\right)$,
- b) $\arcsin(-1)$,
- c) $\operatorname{arc}\cos\left(-\frac{\sqrt{3}}{2}\right)$,
- d) $\operatorname{arctg}(\sqrt{3})$,
- e) $\operatorname{arcctg}\left(-\frac{1}{\sqrt{3}}\right)$,
- f) $\arcsin\left(\sin\left(\frac{\pi}{2}\right)\right)$,
- g) $\operatorname{arc} \operatorname{tg} \left(\operatorname{tg} \left(-\frac{\pi}{4} \right) \right)$,
- h) $\sin(\arcsin(1))$,
- i) $\sin(\arccos(1))$,
- j) $\operatorname{tg}\left(3 \operatorname{arc} \cos\left(-\frac{1}{\sqrt{2}}\right)\right)$.

Zadanie 5. Rozwiązać równania:

- a) $\arcsin(x) = -\frac{\pi}{3}$,
- b) $\cos(\arg(x-1)^3) = \pi$,
- c) $\arcsin(x) = \arccos(x)$,
- d) $\operatorname{arc} \operatorname{tg}(x) = \operatorname{arc} \operatorname{ctg}(x)$,
- e) $\operatorname{arc} \operatorname{tg}^2(x) \operatorname{arc} \operatorname{tg}(x) = 0$,
- f) $3 \arcsin(x) + \arccos(x) = \frac{5}{6}\pi$,
- g) $3 \arctan (x) + 2 \arctan (x) = \frac{4}{3}\pi$.

Zadanie 6. Rozwiązać nierówności:

- a) $arc cos(x + \pi) > \frac{\pi}{3}$,
- b) $3\sin(\arccos(x)) < 3$,
- c) $\frac{\pi}{2} < 3 \arcsin(x) < \pi$,
- d) $\operatorname{arc}\cos\left(\frac{2x-1}{x+1}\right) \ge \operatorname{arc}\cos(2x)$,
- e) $\arcsin\left(\left(\frac{1}{2}\right)^x 1\right) < \arcsin\left(\frac{1}{4}\right)$,
- f) $4 \arccos^2(x) > \arccos(x)$,

g) $|\arcsin(2x)| \ge \frac{\pi}{3}$.

Zadanie 7. Wyznacz dziedzinę funkcji:

a)
$$f(x) = \log\left(\frac{\pi}{6} - \arccos\left(\frac{x-5}{3}\right)\right)$$
,

b)
$$f(x) = \log\left(\arcsin\left(\frac{2x-1}{4}\right)\right)$$
,

c)
$$f(x) = \log(-\frac{\pi}{6} - \arcsin(x - 3)),$$

d)
$$f(x) = \frac{1}{\sqrt{\frac{5}{6}\pi - \arccos(\log_{0.5}(2x))}}$$
.