

20 (new) The method of Claim 19 further comprising altering the supply of said selected additive in response to said measured characteristic.

Remarks

The claims as amended are believed to more clearly define the present invention and are not made in response to the prior art rejections. The amendments are not believed to include or create new subject matter.

REJECTIONS

The drawings stand objected to because it is the Examiner's position that Fig. 4 shows the arrow from additive pump B to the flow meter to be in the wrong direction.

In regard to the objection to the drawings, the Applicants file herewith a new drawing, page 5 of 5. The arrows through the check valves have been changed to show that the flow of the additive is from the pumps toward the flow meter.

Claims 1-8, 10, 14, and 16-18 stand rejected under 35 U.S.C. §103(a), as being unpatentable over U. S. Patent No. 4,635,723 to Spivey (SPIVEY) in view of U.S. Patent No. 4,721,158 to Merritt, Jr., et al. (MERRITT). It is the Examiner's position that SPIVEY discloses a system for a controlled injection of corrosion inhibiting additive to a production well

(60), the system comprising a source of additive (13), a pump (30), a flow meter (35, 39) that generates appropriate signals via transmitters (36, 40) to a microprocessor based first controller (53) that controls a solenoid operated valve (46) to ensure a desired amount of additive to be injected into the well (60). The Examiner further states that the controller (53) needs to be programmed (Col. 4, lines 51 - 55) which presumably involves an operator and thus via suitable programming the system is inherently capable of being manually overridden with previously programmed values. The examiner notes that the SPIVEY reference does not disclosed the elements of (a) having a second controller that remotely controls the first controller to deliver a desired amount of additive into the well and (b) the system controlling a plurality of well bores.

It is the Examiner's position that MERRITT discloses a control system wherein a remote controller (40) controls a first controller (35) to deliver a desired amount of additive into the well and that MERRITT discloses that it is known in the art to set the flow rate of the additive to be within a predetermined range and to adjust the flow rate if the measured flow rates fall outside of the set range (1. 4, lines 35 - 56). It is the Examiner's position that MERRITT discloses details of controlling a plurality of well bores. The Examiner states that it would have been obvious at the time the invention was made to one of ordinary skill in the art to (a) have added a second controller at a remote location to the system of SPIVEY to be able to control the first controller from a remote location to deliver a desired amount of additive into the well, and (b) adapt the flow control/delivery system to work with a plurality of wells as recognized by MERRITT

The Examiner also notes that whether the flow meter is of the positive displacement type or of a nutating type is merely a design choice that fails to patentably distinguish over the SPIVEY - MERRITT combination set forth above and that the SPIVEY - MERRITT combination as set forth above is capable of performing the method recited in claims 16-18.

The Applicants respectfully asserts that the Claims of the present invention are not obvious over SPIVEY in view of MERRITT. As the Examiner has indicated, the SPIVEY lacks the elements of a second controller and a system for treating a plurality of well bores. In addition, the SPIVEY invention lacks a positive displacement flow meter such as is required in Claim 4.

The flow meter taught in SPIVEY is a described at column 3, lines 30-41, as "[a]n orifice (35) or like means for controlling and metering flow ... [using a] differential pressure transmitter (36) ... operatively connected across the orifice (35) to cooperate with the orifice to effectively measure differential pressure, ... fluid flow rate, etc." By their natures, such flow meters are not designed to work with low flow rates, widely variable flow rates, and a variety of materials.

SPIVEY represents the prior art over which the present invention represents a significant improvement. The system of the present invention is a system that can be remotely programmed to insure that additives are pumped into produced oil at the correct rates without having a technician on site. The present invention is useful, even in the event of situations such as partial shut-ins,

reduced production rates, increased production rates, well contamination, equipment breakdown, and the like. The system of SPIVEY would lack the flexibility to operate in many if not all of these circumstances.

In circumstances where production flow rates must be drastically lowered, the SPIVEY flow meters lack the flexibility to measure very low flows that would be required to ovoid over or under feeding additives. Ironically, in instances where production flow rates must be drastically raised, the SPIVEY system might also be unusable because, at least in situations where the additives are injected down hole, the higher production rates might also be associated with higher production pressures reducing the pressure differential across the SPIVEY orifice. This weakness in SPIVEY is reinforced at Column 4, lines 8-14, where SPIVEY states that a sensor (50) is used to insure that oil does not backup through the feed tube. If the SPIVEY flow meters were functional in broad ranges, particularly in low, no and reverse flow situations, then such devices would not be needed.

The system of the present invention also has the flexibility to be easily used with a broad range of materials. The positive displacement flow meters used with the present invention measure flow by volume. Calculating flow using an orifice requires that the specific density of the material be accurately known. SPIVEY is designed to work with on-site water for dilution, but the density of on-site water can vary dramatically. For example, in oil field operations, on-site water can vary from fresh surface water to fresh ground water to surface seawater to subsurface brine and even

potable water. The specific density of each of these could vary substantially as well as include constituents that could interact with at least some additives that could be used in such a system to have additional impacts upon the accuracy of the flow measurements of the SPIVEY flow meters. In order for SPIVEY to be used with a variety of materials, a technician would need to be on hand to determine specific density of the additive as used. This defeats one of the advantages of the present invention ... reduced technician time on-site.

Just as the claims of the present invention are not obvious over SPIVEY, they are also not obvious over MERRITT. The Examiner has noted the elements in common between MERRITT and the present invention. But the elements in common are far less significant than the differences between MERRITT and the present invention. Upon close inspection, it is clear that MERRITT is not directed to the field of the present invention at all, but rather to water flooding and possibly polymer flooding, forms of secondary and tertiary recovery respectively. The evidence of this is throughout the MERRITT reference. Water flooding is used as part of Secondary Recovery while polymer flooding is normally a form of Tertiary Recovery (B. Berger & K. Anderson, Modern Petroleum A Basic Primer of the Industry, 3rd Ed., 236-240, 1992). Evidence that MERRITT is directed to flooding can be found as follows.

In MERRITT, at the paragraph bridging columns 2 and 3, the pressure of fluid being injected is measured. This has no relevance to additive injection, the field of the present invention, and important relevance to field flooding. In injection of a drive fluid, care must be taken to not

damage the injection well with too high pressure. (Column 1, lines 30-37). In the injection of an additive, the additive is not injected into the formation, but rather into oil and gas being produced. Stated another way, in field flooding, a comparatively large quantity of drive fluid is injected into an oil bearing formation by means of one or more injection wells to drive the remaining oil to a producing well to be recovered, while in the practice of the present invention, a comparatively small amount of additives are injected into a production stream of oil and gas to, for example, protect against scaling and the like.

In the present application, the claims are clearly limited to systems for injection of additives into a production fluid being produced from a wellbore. As amended, each independent claim has a limitation to a source of additives and the additives are limited to a specific and low concentration, from 1 to 10,000 ppm (1 to 0.0001 %). Additives are defined in the first paragraph of the Background to be chemicals injected from a surface source into wells to treat the formation fluid being produced and flowing through such wells. In MERRITT, there is no production, only injection of large quantities of a drive fluid into an injection well and then into a producing formation. (See, Column 1, lines 24-26). The flow rates associated with water flooding are huge. Attached, please find, is a paper, Formation Damage in Iranian Oil Fields, SPE 73781, wherein it is disclosed at page 2 that the water flooding injection rate for the subject field was from 2200 bbl/day to 9100 bbl/day (92,400 to 382,200 gallons/day). This is dramatically greater than the present invention wherein injection rates of additives are into the formation fluid as it is exiting the formation and are no greater than 1% of the flow rate of the well.

The problems being solved in MERRITT are quite different. In MERRITT, the object of the invention is to get as much water flooding into a reservoir with the least expenditure of resources, for example not crushing the porous zone in the injection well which would then increase the time and energy necessary to get the same volume of water into the formation. The system of the present invention delivers a measured amount of additives into oil being produced from a production well, reducing the flow to 0 or near 0 when production stops or nearly stops, and maintaining treatment at high levels during periods of high production, all with the least possible on site (and expensive) technician intervention.

MERRITT does not even suggest the replacement of the SPIVEY orifice flow meter with positive displacement flow meters. MERRITT is measuring very high flows and teaches combining a flow meter with a pressure transducer. MERRITT's reliance on a pressure transducer would not motivate one of ordinary skill in the art to use a positive displacement flow meter when MERRITT actually teaches that pressure must be monitored in order to protect the injection well.

The reason, suggestion, or motivation to combine [references to find obviousness] may be found explicitly or implicitly: 1) in the prior art references themselves; 2) in the knowledge of those of ordinary skill in the art that certain references, or disclosures in those references, are of special interest or importance in the field; or 3) from the nature of the problem to be solved, "leading inventors to look to references relating to possible solutions to that problem."

Ruiz v. A. B. Chance Co., 57 USPQ2d 1161, 1167 (Fed. Cir. 2000) (internal references omitted).

The two references, SPIVEY and MERRITT do not have any suggestion within them to make this

combination. There is nothing in either SPIVEY or MERRITT to indicate that they are of special interest or importance in their respective fields of art. Nothing in the nature of the problems to be solved in the present application would motivate one of ordinary skill in the art in adding additives to oil being produced to look to MERRITT. And in regard to the last element of the test, one of ordinary skill in the art would not look to a reference which teaches water flooding an entire formation for secondary and tertiary recovery to solve a problem with injecting small amounts of additives into oil to prevent corrosion, scaling and the like in routine production. Clearly, the claims of the present invention are not obvious over SPIVEY in view of MERRITT.

There is additional evidence available to show that the present invention is not obvious over SPIVEY in view of MERRITT. The assignee has had significant financial success in the sale systems as claimed in the present application. Should the Examiner find such information relevant in the examination of the present application, but require additional evidence to that effect, please so advise the Applicants, and, subject to confidentiality obligations, it will be made available.

Claim 9 stands rejected under 35 U.S.C. §103(a), as being unpatentable over SPIVEY in view of MERRITT and in further view of U.S. Patent No. 5,706,896 to Tubel, et al. (TUBEL). It is the Examiner's position that TUBEL discloses that it is known in the art to employ a host computer that is adapted to communicate with a plurality of computers over a network for the purpose of controlling wells located over a plurality of platforms.

It is the Applicants' position that Claim 9 of the present application is not obvious over SPIVEY in view of MERRITT and in further view of TUBEL. The problems being solved in TUBEL are very different from the problems resolved by the present invention. In TUBEL, the problem solved was controlling downhole tools using downhole sensors to monitor formation measurements. This is very different from the object of the present invention, the efficient and cost effective supply of additives to formation fluid as it is being produced from a production wellbore.

Claims 11 and 12 stand rejected under 35 U.S.C. §103(a), as being unpatentable over SPIVEY in view of MERRITT and in further view of U. S. Patent No. 4,665,981 to Hayatdavoudi (HAYATDAVOUDI). It is the Examiner's position that SPIVEY and MERRITT disclose all of the elements of these Claims except having a sensor measuring a characteristic of the formation fluid and altering the supply of a selected additive in response to the measured characteristic.

It is the Applicants' position that Claims 11 and 12 of the present application are not obvious over SPIVEY in view of MERRITT and in further view of HAYATDAVOUDI. HAYATDAVOUDI is directed toward a single additive while the present invention is directed at all additives. HAYATDAVOUDI also lacks the elements necessary to be practical. There is no flow meter that can be used to confirm the correct functioning of the system. It cannot be remotely programmed. Use of the system of HAYATDAVOUDI would result in either wasted additives or under feeding additives when the system failed and no checking of flow rates takes place.

Claim 13 stands rejected under 35 U.S.C. §103(a), as being unpatentable over SPIVEY in view of MERRITT and in further view of U.S. Patent No. 4,901,563 to Pearson (PEARSON). It is the Examiner's position that that SPIVEY and MERRITT disclose all of the elements of this Claims except having redundant flow control devices that are controlled by an onsite controller. It is the Examiner's position that PEARSON discloses that it is known in the art to employ redundant flow control devices controlled by an onsite controller.

It is the Applicants' position that Claim 13 of the present application is not obvious over SPIVEY in view of MERRITT and in further view of PEARSON. PEARSON is directed toward well stimulation processes. These processes include hydraulic fracturing. Hydraulic fracturing is even more remote from the method of the present invention than is the water flooding of MERRITT. The pumps cited by the Examiner are not necessarily redundant but rather are more likely needed to achieve the flow volumes and pressures necessary for hydraulic fracturing. At Column 3, lines 21-23, it is disclosed that the flow rates for this process may exceed 4,200 gallons per minute (252,000 gallons per hour). Particularly on a portable apparatus such as that pictured in the application, it would take more than one pump on the manifold to achieve that such a high flow rate. This is very different from the present invention wherein the redundant pumps are used to extend the periods between service calls at remote well sites.

Claim 15 stands rejected under 35 U.S.C. §103(a), as being unpatentable over SPIVEY in view of MERRITT and in further view of WO 98/57030 to JOHNSON, et al. (JOHNSON). It is the Examiner's position that that SPIVEY and MERRITT disclose all of the elements of this Claim except the injection of additives at pre-determined depths.

It is the Applicants' position that Claim 15 of the present application is not obvious over SPIVEY in view of MERRITT and in further view of JOHNSON. Claim 15 is dependent from an independent claim relating to injection into multiple wells, each having its own flow control device. JOHNSON teaches injection into a single well. The element of multiple wells with each well having a injection depth which may by unique to each of the multiple wells is not taught or suggested by JOHNSON.

The Claims of the present invention are also not obvious over the art cited by the Examiner for additional reasons. The first reason, already mentioned above, is the financial success of the present invention. The second reason relates to the nature of the invention, or at least parts of it. Some of the elements the claims of the present invention may seem like only minor advances, such as the positive displacement flow meter of Claim 4, but that is not a basis for finding the claims of the present invention obvious. In *Intel Corp v. International Trade Commission*, 20 USPQ2d 1161 (Fed Cir. 1991), at 1173, the Federal circuit holds a claim as unobvious stating (at 1173), in a case regarding a UPROM, that "[w]hile the extension of the sidewalls may seem like only a minor advance, it was not an obvious one." In the larger sense,

.

the Applicants have found a way to take a known technology, treating formation fluid with additives, and apply it in a way that solves many of the problems with this technology, namely the cost of wasted additives, the costs of overfeeding additives, and the costs of providing technicians for on site visits to oil and gas production sites. In the same case the Federal Circuit also states that "failure of others to provide a feasible solution to a longstanding problem is probative of non-obviousness." (Id. At 1173.)

The Applicants respectfully submit that the present invention is not obvious. Of the art cited by the Examiner, some of it clearly would not be considered by one of ordinary skill in the art, MERRITT and PEARSON, for example. Of the others, there was neither express nor implied teaching or suggestion to combine the references that would have led one of ordinary skill in the art to the present invention as claimed, except as a hindsight reconstruction in view of the Applicants' recognition of the source of the problems of applying additives in the field during oil and gas production.

In view of the foregoing arguments, the Applicants respectfully request the Examiner to withdraw the rejections and issue a notice of allowance for Claims 1-20, all of the pending claims.

Version Of The Amended Claims To Show Changes Made

- 1. (amended) A system for monitoring and controlling a supply of an additive introduced into formation fluid [recovered through] within a production wellbore, comprising:
 - (a) a flow control device for supplying a selected additive from a source thereof at a wellsite to the formation fluid being recovered from the <u>production</u> wellbore;
 - (b) a flow measuring device for providing a signal representative of the flow rate of the selected additive supplied to said formation fluid in the production wellbore;
 - a first onsite controller receiving the signals from the flow measuring device and determining therefrom the flow rate, said first onsite controller transmitting signals representative of the flow rate to a remote location; and
 - (d) a second remote controller at said remote location receiving signals transmitted by said first controller and in response thereto transmitting command signals to said first controller representative of a desired change in the flow rate of the selected additive;

wherein the first onsite controller causes the flow control device to change the flow rate of the selected additive in response to the command signals and the system supplies the selected additive such that it is present at a concentration of from about 1 ppm to about 10,000 ppm in the formation fluid recovered from the production wellbore.

- 3. The system of claim 1, wherein the additive is supplied to [one of (a)] a selected location in the wellbore and [or (b)] a hydrocarbon processing unit processing the formation fluid at the wellsite.
- 11. (amended) The system of claim 1 further including at least one sensor providing a measure of a characteristic of said formation fluid, said characteristic being the presence or formation of any of the group consisting of corrosion, sulfites, hydrogen sulfide, paraffin, emulsion, scale, asphaltenes, and hydrates.
- 14. (amended) [A system] The system of Claim 1 for monitoring and controlling the supply of additives to a plurality of production wells, said system further comprising:
 - (a) a supply line and a flow control device associated with each of said plurality of wells;
 - (b) a flow measuring device in each said supply line measuring a parameter indicative of the flow rate of an additive supplied to a corresponding well, each said flow measuring device generating signals indicative of a flow rate of the additive supplied to its corresponding well; and
 - a first onsite controller receives signals from each of the flow measuring devices and transmits signals representative of the flow rate for each well to a second remote controller which in response to the signals transmitted by said first onsite

controller transmits to said first onsite controller command signals representative of a desired change in the flow rate of the additives supplied to each said well.

- 16. (amended) A method of monitoring at a wellsite, the supply of additives to formation fluid recovered through a <u>production</u> wellbore and controlling said supply of additives into the production wellbore from a remote location, said method comprising:
 - (a) controlling the flow rate of the supply of a selected additive from a source thereof at the wellsite into said formation fluid via a supply line into the production wellbore;
 - (b) measuring a parameter indicative of the flow rate of the additive supplied to said formation fluid and generating a signal indicative of said flow rate;
 - (c) receiving at the wellsite the signal indicative of the flow rate and transmitting a signal representative of the flow rate to the remote location; and
 - (d) receiving at said remote location signals transmitted from the wellsite and in response thereto transmitting command signals to the wellsite representative of a desired change in the flow rate of the additive supplied; and
 - (e) controlling the flow rate of the supply of the additive in response to the command signals such that the additive is present at a concentration of from about 1 ppm to about 10,000 ppm in the formation fluid recovered from the wellbore.

19. (new) The method of Claim 16 additionally comprising the step of using at least one sensor providing a measure of a characteristic of said formation fluid, said characteristic being the presence or formation of any of the group consisting of corrosion, sulfites, hydrogen sulfide, paraffin, emulsion, scale, asphaltenes, and hydrates.

20 (new) The method of Claim 19 further comprising altering the supply of said selected additive in response to said measured characteristic.

Respectfully submitted,

Gene L. Tyler

Reg. No. 35,395

Madan, Mossman & Sriram

2603 Augusta

Suite 700

Houston, Texas 77057

(713) 266-1130 x 122 Tel

(713) 266-8510 Fax

Date: March 11, 2002

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

• 5/5

SPE 73781

Formation Damage in Iranian Oil Fields

J. Moghadasi, SPE, Petroleum University, University of Surrey, M. Jamialahmadi, SPE, Petroleum University, University of Surrey, H. Müller-Steinhagen, Stuttgart University, A. Sharif, University of Surrey, M.R. Izadpanah, Kerman University

Copyright 2002, Society of Petroloum Engineers Inc.

This paper was prepared for presentation at the SPE International Symposium and Exhibition on Formation Damage Control hald in Lafayette, Louisians, 20-21 February 2002.

This paper was solected for presentation by an SPE Program Committee following review of information contained in an abstract submitted by the author(s). Certients of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the sudher(s). The material, as presented, does not necessarily reflect any period of the Society of Petroleum Engineers, its officers, or members. Papers presented at SPE meetings are subject to publication review by Editorial Committees of the Society of Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be capied. The abstract must contain conspicuous ecknowledgment of where and by whom the paper was presented. Write Librarien, SPE, P.O. Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract

The fine migration and the scale formation into the porous media and the resulting production decline have long been the problem to the petroleum industry. It is also generally accepted that formation due to the particle movement and the scale formation are not thoroughly understood. In contributing to the solution of this problem, an experimentally study of calcium sulphate scale formation and the particle movement in the porous media using of packing bed with 12 different size of the glass and sand bead and the 8 core plug that gathered from the Siri oilfields. The purpose was to study the different physical and mechanical aspects of the processes leading to the formation damage caused by the movement and the entrapment of the suspended particles and the scale formation.

The permeability is the key parameter among several others that control the reservoir performance. The experiments are based on the results of the permeability reduction. The interception of the permeability reduction by the interaction between the operational parameter is very complex. Therefore, several of these factors such as the temperature, the concentration, the fluid dynamic and the type of porous media are considered.

The experimental results are analyzed and a new model which can predicts particle movement and the scaling tendency of the common oilfield water deposits in the water disposal wells, the water flooding systems, and in surface equipment's and the facilities is developed. The developed of the model is based on the experimental data and the empirical correlation, which perfectly much the Iranian oilfields condition. This model has

boen applied to the investigate of the potential of the scale precipitation in the Iranian oilfields, either in the onshore or the offshore fields, where the water injection is being performed for the desalting units water disposal purpose or as the method of secondary recovery or the reservoir pressure maintenance.

Introduction

The success of oil recovery is strongly influenced by whether the reservoir permeability can be kept intact or even improved. Permeability changes in petroleum reservoirs have received a great deal of concern by the oil and gas industry. This problem is termed as "formation damage". It can occur during almost any stage of petroleum exploration and production operations. Attempting to understand formation damage is becoming an important task for reservoir engineers, oilfield chemists, and decision-makers in business, because it is first step to be taken to prevent and further alleviate this problem.

formation Damage Mechanisms-Two phenomena can change the permeability of the rock. One is change of porosity. This phenomenon is due to the swelling of clay minerals or deposition of solids in the pore body. The other is the plugging of pore throats. The narrow passages govern the ease of fluid flow through porous media. If they are blocked, the permeability of the porous rock will be low even though the pore space remains large. Either organic or inorganic matter may cause the plugging of pore throats. The organic induced damage is due to the formation of high viscosity hydrocarbon scale when temperature and pressure conditions in the reservoirs are changed. The inorganic damage involves release and capture of particulate including in situ fines and precipitates from chemical reactions.

The mechanisms that trigger the formation damage can be categorized into three major processes (Leone and Scott, 1987).

Hydrodynamic- A mechanical force mobilizes loosely attached fine particles from the pore surface by exerting a pressure gradient during fluid flow. The movement of clay minerals, quartz, amorphous silica, feldspars, and carbonates may gause mechanical fine migration damage.

Physico-Chemical- This mechanism is induced by the water sensitivity clays. Clays exist in equilibrium with the formation

brine until the ionic composition and concentration of the brine is changed (Crowe, 1986). Double layer forces govern the surface attraction and repulsion between the clay particles and pore wall.

Geochemical- During treatment of reservoirs or waterflooding, the injected fluid may not be compatible with the indigenous pore fluid. This incompatibility results in chemical nonequilibrium in the porous system. The ions contained in the injected fluid may react with the ions in the native fluid to form solid precipitates downstream in the porous system to plug pore throats or to deposit onto pore wall resulting in porosity reduction.

Occurrence of Formation Damage- When fluids are introduced into a porous rock during petroleum exploration and production, its original purpose is to increase the recovery of hydrocarbon. However, due to the incompatibility between injected and indigenous fluids, change of reservoir rock properties can often be expected. The following sections describe the potential causes of formation damage during various oil exploitation activities.

Drilling - During drilling, higher pressure is needed in the wellbore to control the formation being penetrated, the pressure differential will result in invasion of mud solids and mud filtrate into reservoir rock near wellbore. Damage mud solid invasion is strongly influenced by particle size and pore throat size distribution.

Production - The temperature and pressure in the reservoirs are constantly changing during the oil and gas production. Organic scale such as paraffin waxes and asphaltenes may deposit out of the crude oil to plug the formation. Inorganic salts such as calcium carbonate any barium sulfate may also precipitate out of the aqueous phase to block flow paths. The large pressure gradient near the wellbore often is capable of mobilizing fines residing on the surface of pore wall around the producing wells to cause fines migration.

Waterflooding - Compatibility of the injected water with native reservoir fluids is an important factor that influences the success of a waterflooding program. Ions in the source water may react with ions in the reservoir fluids to form insoluble precipitates. Iron corrosion products from injection pipeline and equipment's may generate insoluble compounds; such as iron hydroxide (Fe (OH)₂), after mixing with the pore liquid (Krueger, 1986). Pre-filtration of source water is crucial because solids contained in the injected water may induce formation plugging.

Stimulation and EOR - Most stimulation and EOR operations involve chemical treatments. Reactions of different kinds occur when chemicals are introduced into formations. Some of the reactions have adverse effects on formation permeability. During acidizing, acid dissolves iron-containing minerals, such as chlorite, siderite (FeCO₃), and hematite (Fe₂O₃). The ferric ions (Fe³) may precipitate as low soluble ferric hydroxide (Fe (OH)₃) upon spending of acid (Crowe, 1985). Acid can also dissolve cementing materials, often

carbonates, and liberate sand grains to move within the porous structure and cause permeability reduction (Bryant and Buller, 1988; 1977). Alkaline flooding may be a cost-effective alternative to micellar-polymer flooding to reduce interfacial tension with the natural surfactant formed in situ (Thornton and Lorenz, 1987). Multivalent ions tend to react with alkali to form precipitates. The precipitates include carbonates, hydroxides, and silicates. The common multivalent ions are calcium and magnesium (Krumrine et al., 1985).

In micellar flooding, sulfonate precipitation occurs when the surfactant contacts reservoir fluid that contains inorganic ions. This precipitation may lead to formation plugging (Somasundaran et al., 1984).

A field example is the offshore Siri oil field in Persian Gulf consisted of four platforms A, B, C, and D. It was discovered in 1970 and development drilling began in 1975. Oil production of the field from all the four platforms started in 1978. Total number of the wells drilled was 33 from which 24 were producer, 7 injector and 2 were producer/injector wells. Primary production by natural depletion amounted to 13 MMSTB, which are approximately 2.3% of the total oil in place. Existence of an active aquifer and other appropriate conditions led to the decision of a water injection program. Water injection into the Siri field was stared in 1984 with 9100 bbl/day in order to maintain the pressure and to increase oil recovery. But the injectivity decreased very fast and it reached to 2200 bbl/day in 1990 and consequently the water injection was stopped. The history of water injection in the Siri filed is shown in Figure 1 with a drop in injectivity of approximately 7000 bbl/day over a period of six years. This paper discusses many commonly occurring water quality issues and how they impact injectivity, including damage due to injection of suspended solids, fincs migration and formation of insoluble scales and precipitates by an experimental investigation.

Fig. 1- Water injection history in Iranian Siri oll field

Experimental Apparatus

Experiments were carried out using a test rig, the schematic of which is shown in Figure 2. The prepared suspension flows through a closed looped consisting of a mixing tank, a

3

reciprocating pump, the test section and the data acquisition system. It consists of the following:

The Tank - It is made of stainless steel. It is heated to approximately 50°C using four band heaters. Each band heater is 40mm wide and has a power rating of 500W @ 240volts. The band heaters are heating against a small cooling coil, which is placed inside the tank, to allow a better control of the liquid temperature in the tank. The cooling coil is made from 20-s.w.g stainless steel tubing, which has an OD of 0.25 inches, and a length of 15 inches. A rotameter is installed to control the cooling water flow rate. The temperature of the liquid inside the tank is determined using a thermocouple which is connected to a controller which in turn will control the band heaters power output. This will hold the temperature at a desired set point. A stirrer is also placed in the tank to agitate the liquid to provide a uniform temperature. The stirrer can rotate between 0-2500 rev/min.

The peristaltic pump - The pump speed ranges from 0.5-55 rpm, so that the liquid flow can be accurately controlled by varying the pump speed which is displayed on a digital screen. The maximum design pressure of the pump is 10 bars which is achieved by utilising a tubing with an internal diameter of 1.6-6.4mm and a wall thickness of 1.6mm. The tubing is made from marprene II, a material which is resistant to water and mineral oil.

Test section - It is a tube made of stainless steel with an internal diameter of 32mm and a wall thickness of 5mm. The total length of the tube is 580mm. Spiral and longitudinal grooves have milled on the outside of the to accommodate heating wire and thermocouples measuring the wall temperature. Bores to insert thermocouples and pressure transducers for measuring the temperature and pressure along the test section. The heating wire is a single core, cold ended heater which is 6m long and 2mm in diameter and is wrapped around the tube at an 8mm pitch. The heating wire is placed inside the 2mm-hemisphere groove and silvers soldered to the tube to keep it in position. The whole heated section is covered in silver solder and lagged so as to reduce heat losses to the surroundings. The heating wire has a hot length of 600cm two cold ends each of 100cm long and two connectors. It has a maximum power output of 2000Watts and a total resistance of 18.06W. The power is controlled to maintain the wall temperature below the maximum operating temperature of around 200°C. Along the tube length there are six pressure transducers and six thermocouples placed at distances .On the same cross section as the third thermocouple from the inlet, there are four thermocouples which are placed inside the longitudinal grooves at an interval of 90° from each other, the averaged value read by them indicate the wall temperature.

Data Acquisition System - It consists of two boards, namely the CIO-DAS08 and the CIO-EXP32 cards which are connected to a desktop computer. The CIO-EXP32 analogue input multiplexer expands the total of analogue input channels of any A/D board

by 32 channels. Two banks of 16 analogue inputs, are multiplexed into two of the A/D boards analogue channels. Therefore one bank will be used for inputting thermocouple measurements from the test section, while the other bank will be used for inputting pressure transducer measurements from the test section. The thermocouples and pressure transducers are directly wired into the appropriate banks.

Fig. 2- Schematic diagram of the test rig

Experimental Procedure

All tests were initiated by adjusting the speed of the pump so as to establish a predetermined steady fluid velocity. The power supply was then set to impose a constant rating on the outside of the test section. After rig reached the steady state, the temperature and pressure data were recorded directly into the computer using a Quick Basic program that calculated the permeability. The range of experimental parameters covered in this investigation is summarised in Table 1.

Table1- Range of operating parameters in experiments				
Inlet temperature	25-80 °C			
Bulk temperature	30-90°C			
Flow rates	1- 200 cm³/min			
System pressure	1-1000 Kpa			
Fluid suspension viscosity	0,790-2 ср.			
Specific gravity of Bentonite	2,65 g/cm ³			
Specific gravity of Aluminium oxide	3,45 g/cm°			
Suspension concentration of Bentonite	10 - 40 g/l			
Suspension concentration of Aluminium oxide	500 - 2000 ppm			
Solid particle mixed with packing material	5-10 % wt			
Concentration of CaSO.	0.015 - 0.075 M			
Sand and glass bead spherical particle size	250 - 1000 µm			

Results and Discussions

Sulphate scaling in Siri fields during water injection-By using of supersaturation index will be shown that in the Siri Field incompatibility problem exist between Persian Gulf,

Mar 11 '02

JAMSHID MOGHADASI, MOHAMAD JAMIALAHMADI, HANS MÜLLER, ADEL SHARIF AND REZA IZADPANAH

injection water and Mishrif formation water. Table 2 gives the composition of the Mishrif formation water and Persian Gulf water. The sulphate scaling tendency in the mixed injection. Figure 3 through 7 show the predicted supersaturation of BaSO₄, SrSO₄ and CaSO₄ for Siri- C reservoir. Corresponding to these Figures can be seen that SrSO4 and CaSO4 have tended to formation scale and BaSO4 scale may be formed together. By comparison of Figures 3 with 4 and 5 demonstrates the temperature effect on the sulphate scaling tendencies. An increase in temperature generally, the CaSO4 scaling increases as same as SrSO₄ scaling tendencies, thus less gypsum scale and more anhydrate scale will form at higher temperature in this field. The pressure increase universally makes all the sulphate more soluble and therefore less prone to scaling, as indicated from the comparison between Figure 3 and 6 and between Figure 5 and 7. Hence sulphate scale formation may simply result from a pressure drop e.g. as the produced water flow from the reservoir up to the producing wellhead. Figures 8 to 10 show the prediction of sulphate scale formation in Siri Field (Siri -D, Siri-E and Nosrat) in various temperature and pressure. Summary of prediction of scale formation in Siri Filed at reservoir conditions and various temperature and pressure conditions are presented in Table 3.

Table	Table 2- Water analysis of Persian Gulf water and Mishrif formation water in Siri Field						
lans (mg/l)	Siri- C	Siri- D	Siri- E	Nosrat	Sea Water		
CI ⁻	73942	70740	83324	86900	23000		
SO ₄	635	310	142	340	3350		
HCO ₃	579	528	397	244	166		
Ma*2	759	766	552	2010	2996		
Ca*2	3032	4525	8917	7920	267		
Na*	42215	35391	42800	43700	11750		
K ^t	1986	•	88	-	•		
Ba*2			-	18	0.09		
Fe*2	17	5.6	246	-	0.42		
Sr*2	547	760	-	610	3,4		
Li*		-	-	•	-		
TDS	131472	129225	137370	141000	40270		
PH	6.82	5.86	6.25	5.6	7.7		
CO ₂	- 1	100	-	-	•		
H₂S	-	14			-		

Table 3 – Summary of prediction of scale formation In Siri Field (Siri- C, Siri- D, Siri- E and Nosrat)						
Reservoir	T, C	P, psi	Type of scale			
Siri- C	100	270	SrSO ₄ , Anhydrate (Reservoir condition)			
	70	270	SrSO ₄			
	50	270	SrSO ₄ , Anhydrate			
	100	135	SrSO ₄			
	50	135	SrSO ₄			
Siri- D	103	270	SrSO ₄ , Anhydrate (Reservoir condition)			
	50	60	SrSO ₄ , Anhydrate			
\$iri- E	100	270	Gypsum, Anhydrate (Reservoir condition)			
	50	135	Gypsum, Anhydrate			
Nosrat	100	270	BaSO ₄ , SrSO ₄ , Anhydrate			
	50	135	BaSO ₄ , SrSO ₄			

Scale formation in sand pack porous medium- Figure 11 shows that until 1.3 pore volume injected the permeability ratio approximately constant and then very rapidly decrease. It shows that the calcium sulfate crystallization occurred in the inlet section of porous media and caused that restricted for flowing of fluid. Therefore permeability ratio reduction is very fast. Figure 12 shows that when concentration of calcium sulfate increase to 0.075 M, after 0.3 pore volume injected the reduction of permeability ratio become very fast and then it reaches to 0.01. Figure 13 shows when concentration of calcium sulfate kept constant to .075 and injection flow rate is increased to 25 cm³/min, trend of permeability ratio reduction is slower than before case that flow rate was 10 cm³/min. This shows that by increases of flow rate, the value of supersaturation increased, consequently the rate of precipitation, crystal growth and plugging is rapidly raised and a sharply decrease in permeability ratio.

Scale formation in glass bead porous medium- For preventing of any chemical or mechanical interaction that may be occurred between sand and injected solution, glass bead media is chosen as porous media. In following experimental results, which are done in various temperature, concentration and flow rates.

Effect of temperature- The role of temperature on the solubility and crystal growth of calcium sulphate is very important. These series of experiment are done at three different temperatures and the flow rate are kept constant in 25 cm³/min. Figure 14 shows that the effect of temperature on permeability reduction. As temperature raises, the rate of nucleation and crystal growth and plugging are increased. Consequently in higher temperature, the rate of permeability ratio reduction becomes faster.

Effect of concentration—To investigate the effect of calcium sulphate concentration on the permeability reduction, three tests were considered, in which the rate of injection solution and temperature was remained constant but the concentration solution was 0.015 M, 0.025 M and 0.075 M. Figure 15 shows the effect of concentration on permeability ratio reduction. A concentration is increased the supersaturation of solution raises and the rate of nucleation and crystal growth raised. Therefore by increasing of concentration, the rate of reaction, nucleation, crystal growth and plugging are increased.

Particle movement in glass bead porous medium. The experiment runs performed were aimed to determine the effect of different parameters on the permeability reduction due to particle movement in the porous media. These parameters are concentration of solid suspension particles, flow rate and solid particle, which initially presented in the porous medium. Effect

Effect of injection flow rate- To investigate the effect of injection flow rate on pressure drop and permeability reduction a set of tests were performed, in which the concentration of solids in the injected water was kept at a

5

constant value of 30g/l while the injection rate was varied in each test. Figure 16 shows that the rates of permeability reduction increase sharply as the flow rate increases. The reason for this behavior may be do to the fact that the rate of plugging increase as the flow rate increase.

Effect of solid particle concentration- To study the effect of the concentration of solid particles in the injection water on the permeability reduction, a number of tests were carried out. In these experiments, the rate of injection fluid was kept constant and the concentration of the solid particles in the injecting fluid was varied. These tests were carried out at constant injection rate of 50 cm3/min and three different solids concentrations of 20 g/l, 30 g/l and 40 g/l. Variation of permeability ratio as a function of pore volume injected is shown in Figure 17. By increasing the concentration of solid particles in injecting fluid, sedimentation and plugging occurs more rapidly and consequently, the permeability reduction decreases more rapidly.

Effect of solid particles initially present in porous medium-Before starting the water injection, some particles is present in the porous medium. When the water is injected into the porous medium and the water velocity reaches the mobilization velocity, these particles move and cause some plugging, therefore, reducing the permeability of the porous medium. To investigate the effect and the role of this phenomenon on permeability reduction, the following experiments are performed. In the first run, the glass bead medium was filled with 4.5% wt. alumina particles of 7 µm particle size. Pure water was then injected into the glass bead medium. As the water flows in the medium, the alumina particles move ahead and cause throat plugging. Consequently, as it is shown in Figure 18, the pressure gradient across the glass bead medium increases. It can be seen that the pressure increases initially very smoothly and then starts to increase more rapidly. As the pressure reaches a certain value, the pressure of the system starts to fluctuate. This fluctuation in pressure may indicate the breaking of the plugs of the throats. Figure 19 shows the behavior of the system permeability as the water is injected. As before, a slow permeability decrease in the glass bed is observed, and then this decrease in permeability proceeds faster, and after about 140 minutes fluctuation in permeability is recognized. This fluctuation is due to the breaking of the bridges in the throats of the porous medium.

Mathematical model to describe particle movement and deposition in porous media- The phenomenon of solid particles invasion and capture in a porous medium is a subject that is encountered in reservoir engineering applications. A mathematical model is obviously necessary to theoretically explain the underlying phenomena. An attempt to describe the phenomenon of formation damage caused by solid particles invasion and capture in a porous medium and the subsequent permeability alteration is one of the reasons to develop a new mathematical model in this study. The mathematical expressions derived in this study are obtained by conceptually representing an actual porous medium using a porous model based on the following fundamental and general assumptions:

17:31

- Solid particles are uniformly suspended in an incompressible fluid.
- The porous medium is homogeneous and isotropic.
- The porous medium contains a large number of pore bodies, which are interconnected by pore throats whose sizes are log-normally distributed.
- 4. The interaction forces between the glass bead and the suspended solids are not accounted.
- The fluid containing solid particles is injected into a porous medium at a constant flow rate.

Consider an element of the porous medium of length Δx and cross-sectional area A with effective initial porosity, \$\phi_i\$, (Figure

Fig. 22- Schematic diagram of linear model

The particle material balance on the stream of fluid flowing through the elemental porous medium can be represented by the following expressions:

$$-\frac{\partial}{\partial x} \left(QC_s - D_s A\phi \frac{\partial}{\partial x} C_s \right) \Delta x = A\Delta x\phi \frac{\partial}{\partial t} C_s$$
 (1)

Based on the operating conditions observed in the experiments, the pore space of the porous medium is occupied by saturating fluid. Initially, the concentration of solid particles is set to zero, therefore:

$$C_s(x,0) = 0 (2)$$

$$C_{s}(0,t) = C_{si} \tag{3}$$

$$C_s(\infty, t) = 0 \tag{4}$$

The solution of the equation (1) using the above initial and boundary conditions yields:

$$C_{s}(x,t) = \frac{1}{2}C_{si}\left\{erfc\left(\frac{x\phi - ut}{\sqrt{4D_{s}t}}\right) + exp\left(\frac{ux}{D_{s}}\right)erfc\left(\frac{x\phi + ut}{\sqrt{4D_{s}t}}\right)\right\}$$
(5)

Using similar methods as for solving equation (1), in a radial

$$C_s(r,t) = C_{si} \exp \left[\alpha (r - r_0) + \sqrt{\frac{\beta}{D_s}} (r - r_0) + 2\beta t \right]$$
 (6)

$$\alpha = \frac{1}{2D_s} \left(\frac{D_s}{r} - \frac{Q}{\gamma} \right), \beta = \frac{1}{4D_s} \left(\frac{D_s}{r} - \frac{Q}{\gamma} \right)^2 \text{ and } \gamma = 2\pi h r \phi$$
 (7)

Due to solid particle invasion into a porous medium, the porosity of the porous medium will change. The instantaneous porosity is calculated with the following equation

$$\phi = \phi_i - \phi_s \tag{8}$$

Mar 11 '02

Kumar and Todd (1988) developed a relationship between solid particles, C, and instantaneous porosity. This relationship is used in this model.

$$\phi = \phi_i - \phi_s = \left(\frac{C_{si} + C_s}{\rho_s - C_s}\right) \phi_i \tag{9}$$

The following power law relationship using initial and instantaneous porosity has been suggested by Civan et al. (1988). This model is used to predict the instantaneous value of porosity in the developed model.

$$\frac{\mathbf{k}}{\mathbf{k}_{i}} = \left(\frac{\mathbf{\phi}}{\mathbf{\phi}_{i}}\right)^{3} \tag{10}$$

Validation of the phenomenological model-The phenomenological model developed in this study is intended to predict the behavior of solid particles contained in water during injection into a porous medium. The model is validated using parameters, which are employed in the experiments, and the results are compared with experimental data. The results exhibit a clear trend of permeability decline. This trend increases as the flow rate increases. When the concentration of solid particles increases, the level of permeability damage is also increased and a large difference exists at low concentration. These effects are clearly shown in Figures 21-22.

Conclusions

The current research has been successful in achieving several important goals:

- Permeability decline is affected by the following parameters: solid particle concentration, flow rate, and the initial permeability of the porous medium. The high rates of permeability damage occurred under conditions of high concentration of solid particles, small ratio of solid particle size to the mean diameter as well as low flow rates in low permeability porous media.
- Low permeability porous media are more sensitive to permeability damage caused by solid particles invading pore spaces than high permeability porous media.
- Solid particles initially present in the porous medium perform an important role when the water is injected into porous media
- 4. The phenomena of the invasion of solid particles into a porous medium were simulated by the use of a phenomenological mathematical model. The modeling results provided same information for understanding the mechanisms of permeability alteration resulting from solid particle invasion into a porous medium.
- 5. The presented model is capable of simulating invasion of solid particles through the porous medium. The modeling results obtained from running the phenomenological model demonstrated that this model could predict the trend of permeability damage due to the invasion of solid particles.

- The modeling results demonstrate a close agreement with experimental data.
- The radial model predicts permeability reduction in radial porous media.
- 8. The injection rate has a significant effect on the permeability reduction. The effect is different from what is reported for pipelines. In the porous medium, as the injection rate is increased, the rate of pressure drops increase too. This shows that the increase of injection rate in porous media leads to faster and more severe permeability reduction during water injection.
- 9. The amount of solid particles that are carried by the injection water into the porous medium is another important factor. Unfortunately, we could not do any tests with specified particle sizes. However, some tests were carried out with different solid particle concentrations in the injecting water. The results show that as the concentration of solid particles is reduced, the permeability reduction takes a longer time. Based on these results the importance of filtration of the injecting water is confirmed.
- 10. Injection zone: from the results of the tests and upon comparison of permeability reduction curves of the overall system and the of middle part, it is concluded that permeability reduction takes place mostly in the inlet zone of the injected medium. By this we mean that permeability reduction is more severe near the injection point. The formation damage due to permeability impairment takes place in the first few centimeters of the system and deeper parts of the system are less important for the overall permeability reduction of the whole system.

Based on experiments it is concluded that solid particles that are initially present in the porous medium can cause permeability reduction in the porous medium during water injection. The injection water can mobilize these particles and these mobilized particles can subsequently cause permeability reduction. One of the important factors in permeability reduction due to the movement of internal solid particles is the sticking factor. If the solid particles are more strongly attached to the pore wall surface, then the required injection velocity for mobilizing the particles is higher.

Nomenclature

A cross-sectional area, m²
C, mass solid concentration, kg/m³
dp/dx pressure gradient in x direction, N/m³

D. Diffusion coefficient, m²/s

h depth, m

K permeability, m²

L average length of flow path, m

p pressure, N/m²

Q volumetric flow rate, m3/s

7

r

- radial distance, m
- radius, m r,
- well bore radius, m
- Τ temperature
- **TSS** total suspended solids
- time, s
- velocity flowing phase through porous media, m/s u
- ٧ volume, m³
- distance from inlet face of core

Greek Symbols

- ф porosity
- viscosity of the carrier liquid, kg/m.s μ_1
- fluid mass density, kg/m3 ρ
- particle grain density, kg/m3 ρ,

Subscripts

- core inlet, stagnant or initial
- bbl barrel
 - initial or inlet
- in inlet
- liquid
- L length
- out let side out
- Pascal (N/m2) Pa

References

- 1. Bryont, S.L. and Buller, D.C.: "Formation Damage from Acid Treatments," Paper SPE 17597 Presented at the SPE International Meeting on Petroleum Engineering, Tianjin, China,
- 2. Crow, C.W.: "Evaluation of Agents for Preventing Precipitation of Ferric Hydroxide From Spent Treating Acid," JPT (Apr. 1985) 691-695.
- 3. Crow, C.W.: "Precipitation of Hydrate Silica From Spent Hydrofluoric Acid," JPT (Nov. 1986) 1234-1240.
- 4. Krueger, R.F.: "An Overview of formation Damage and Well Productivity in Oil Field Operation," JPT (Feb. 1986) 131-152.
- Krumine, P.H., Mayer, E.H. and Brock, G.E.: "Scale Formation During Alkaline Flooding," JPT (Aug. 1985) 1466-1474. Kumar, T. and Todd, A.C.: "A New Approach for Mathematical
- Modeling of Formation Damage Due to Invasion of Solid Suspensions," paper SPE 18203 Presented at the 63rd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Houston, TX, October 2-5, 1988. Leon, J.A. and Scott, E.M.: "Characterization and Control of
- Formation Damage During Water Flooding at High Clay content Reservoir," Paper SPE 16234 Presented at the SPE Production Operation Symposium, Oklahoma City, OK, Mar. 8-10, (1987).
- Somasundaran, P., Celik, M., Goyal, A. and Maney, E.: "The Role of Surfactant Precipitation and Redissolution in the Adsorption of Sulfonate on Minerals," SPEJ, (Apr. 1984), 233-239.
- Thronton, S.D. and Lorenz, P.B.: "Role of Silicate and Aluminate Ions in the Reaction of Sodium Hydroxide with Reservoir Minerals," Paper SPE 16277 Presented at the SPE International Symposium on Oilfield Chemistry, San Antoni, TX, Feb. 4-6, 1987.

Fig. 3- Prediction of Sulphate scale formation from mixing of Siri-C formation water and Persian Gulf

Fig. 4- Prediction of Sulphate scale formation from mixing of Siri-C formation water and Persian Gulf

Fig. 5. Prediction of Sulphate scale formation from mixing of Siri-C formation water and Persian Gulf

Fig. 6- Prediction of Sulphate scale formation from mixing of SIri-C formation water and Persian Gulf

SPE 73781

Fig. 7- Prediction of Sulphate scale formation from mixing of Siri-C formation water and Persian Gulf

Fig. 8- Prediction of Sulphate scale formation from mixing of SIri-D formation water and Persian Gulf

Fig. 9- Prediction of Suiphate scale formation from mixing of Siri-E formation water and Persian Gulf

Fig. 10- Prediction of Sulphate scale formation from mixing of Siri-Nocrat formation water and Persian Gulf

Fig. 11- Variation of permeability ratio as a function of pore volume during calcium sulphate solution injecetd

Fig. 12-Variation of permeability ratio as a function of pore volume during calcium sulphate solution injecetal

Fig. 13- Variation of permeability ratio as a function of pore volume during calcium sulphate solution injected

Fig. 14- Variation of permeability ratio as a function of pore volume during calcium sulphate solution injected

FORMATION DAMAGE IN IRANIAN OIL FIELDS

Fig. 15- Variation of permeability ratio as a function of pore volume during calcium sulphate solution injected

Fig. 16- Variation of permeability rade as a function of pere volume

Fig. 17- Variation of permeability ratio as a function of pore volume

Fig. 18- Variation of permeability ratio as a function of time

Fig. 19- Variation of permeability ratio as a function of pore volume

Fig. 20- Variation of permeability ratio as a function of pore volume

Fig. 21- Variation of permeability ratio as a function of pore