3.3 Suppose that we have two functions x and y related as

$$y(t) = x(at - b),$$

where a and b are real constants and $a \neq 0$.

- (a) Show that y can be formed by first time shifting x by b and then time scaling the result by a.
- (b) Show that y can also be formed by first time scaling x by a and then time shifting the result by $\frac{b}{a}$

Let f denote the result of time shifting x by b. So, by definition, we have

$$f(t) = x(t - b).$$

Let g denote the result of time scaling f by a. So, by definition, we have

$$g(t) = f(at).$$

Substituting the above formula for f into the equation for g, we obtain

$$g(t) = f(at)$$
 substituting 0
= $x(at - b)$ = $y(t)$.

Therefore, y can be formed in the manner specified in the problem statement.

Answer (b). (scale then Shift)

Let f denote the result of time scaling x by a. So, by definition, we have

$$f(t) = x(at)$$
.

Let g denote the result of time shifting f by $\frac{b}{a}$. So, by definition, we have

$$g(t) = f\left(t - \frac{b}{a}\right)$$
.

Substituting the above formula for f into the equation for g, we obtain

$$g(t) = f\left(t - \frac{b}{a}\right)$$
 substituting (1)
$$= x\left(a\left[t - \frac{b}{a}\right]\right)$$

$$= x(at - b)$$

$$= y(t).$$

Therefore, y can be formed in the manner specified in the problem statement.