Prova scritta di Elementi di Analisi Matematica 2 del 26 febbraio 2019

PARTE A (TEORIA)

 $[\mathbf{T1}]$ Rispondere, $\mathbf{motivando}$ la $\mathbf{risposta}$, ad almeno una delle seguenti domande.

- a) Assegnato un numero complesso α siano z_0 e z_1 le sue radici quadrate. Quale delle seguenti affermazioni è l'unica corretta?
 - $\Box \ z_0 + z_1 = \alpha$
 - $\square \ z_0 z_1 = \alpha$
 - $\square \ z_0 z_1 = -\alpha$
 - $\Box z_0 z_1 = -\alpha^2$
 - b) Siano $A \subseteq \mathbb{R}^2$, $A \neq \emptyset$, $f: A \to \mathbb{R}$ e (x_0, y_0) un punto interno ad A.
 - i) definire le derivate parziali prime di f nel punto (x_0, y_0) ;
 - ii) se f è dotata di derivate parziali prime nel punto (x_0, y_0) è ivi continua?

[T2] Enunciare e dimostrare almeno uno dei seguenti teoremi:

- a) Integrabilitá delle funzioni monotone.
- b) Relazioni tra convergenza e convergenza assoluta di una serie numerica.

Parte B (Esercizi)

[E1] Risolvere almeno uno dei seguenti esercizi.

a) Calcolare il seguente integrale definito:

$$\int_{4}^{5} \frac{\log(x^2+1)}{(x-2)^2} dx$$

b) Data l'equazione differenziale

$$y' = e^x \sqrt{y - 1}$$

determinarne le soluzioni, precisandone l'insieme di definizione.

[E2] Risolvere almeno uno dei seguenti esercizi.

a) Determinare il carattere della seguente serie:

$$\sum_{n=2}^{\infty} \frac{(-1)^n n + \sin n}{n^2 \log n}$$

b) Calcolare, se esistono, i seguenti limiti

$$\lim_{(x,y)\to(0,0)} \frac{2x+3y}{x^2-y^2}, \quad \lim_{(x,y)\to(0,0)} \frac{\sin^2(xy)}{3x^2+2y^2}$$