Class 2: Regression and classification

Andrew Parnell, School of Mathematics and Statistics, University College Dublin

Learning outcomes

- ▶ Be able to understand the structure of regression and classification models
- Know how to read and interpret the output of a statistical model
- Be familiar with some of the extensions to basic regression and classification models

Why regression and classification?

- t-tests are only really useful when you have a continuous outcome variable and one discrete variable with two groups (e.g. treatment vs control)
- For almost any real life situation you have multiple variables of all different types
- ► For these situations you need a statistical model
- ▶ A statistical model allows to perform probabilistic prediction of the outcome variable from the remaining variable, and/or to explain how the other variables are causing the outcome variable to change

Regression vs Classification: what's the difference?

- ▶ In regression we have a single *continuous* outcome variable and lots of other variables which we think might be causing the outcome to change
- ► In classification we have a single *discrete* outcome variable and lots of other variables
- ► In the machine learning literature this is often known as supervised learning
- ► Situations where there are multiple outcome variables are beyond the scope of this course

Response and explanatory variables

- ► The outcome variable is more commonly known as the response variable
- ► The other variables which we think might be causing the response variable to change are called the *explanatory variables* (though be careful with causation)
- ► We will use these words from now on, but beware there are lots of other terms in the literature

A basic regression model

- Let's go back to the prostate cancer data
- ► Recall the key outcome variable is 1psa the log of the prostate specific antigen value. This is our response variable
- ► Suppose we had one explanatory variable lweight

Creating the model

- ► Looking at the plot, there may be a positive, linear relationship between log(weight) and log(psa)
- Perhaps we can create a prediction model that allows us to predict log(psa) from log(weight)
- ► Suppose, for each patient we multiplied the log(weight) value by 1.2 and then subtracted the value 2 so:

$$prediction = 1.2 \times \log(weight) - 2$$

▶ If we do this repeatedly for every value in the data set we get

A first model

```
par(mar=c(3,3,2,1), mgp=c(2,.7,0), tck=-.01,las=1)
prediction = 1.2 * prostate$lweight - 2
plot(prostate$lweight, prostate$lpsa, xlab = 'log(weight)'
points(prostate$lweight, prediction, col='red')
```


Refining the model

- ► Is this model any good?
- ► How might we measure how close our predictions are to the truth?
- ▶ How can we choose the values (here 1.2 and -2) better?

Getting R to do the work

▶ Luckily the R function 1m will do the work for us

```
model_1 = lm(formula = lpsa ~ lweight, data = prostate)
summary(model_1)
##
## Call:
## lm(formula = lpsa ~ lweight, data = prostate)
##
## Residuals:
       Min
             1Q Median
                                  3Q
                                         Max
##
## -2.27976 -0.67507 -0.03503 0.53984 2.93649
##
  Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.7586 0.9103 -1.932
                                          0.0564 .
## lweight 1.1676 0.2491 4.686 9.28e-06 ***
                                                10/27
```

Background details

- ► The two values here are the *y*-intercept and the slope of the line
- ▶ R chooses these values by minimising the vertical distances between the black and the red points (called least squares)
- ► A key assumption in the model is that these vertical distances (known as *residuals*) are normally distributed
- ▶ R uses this assumption to run t-tests on the parameters, which you can see the results of in the summary output

Plotting the fit

▶ One way is to type plot(model_1) which gives residual diagnostics. A quick plot of the fitted line:

```
par(mar=c(3,3,2,1), mgp=c(2,.7,0), tck=-.01,las=1)
plot(prostate$lweight, prostate$lpsa, xlab = 'log(weight)'
abline(model_1, col='red')
```


Expanding the model with two explanatory variables

Suppose we wanted to use two explanatory variables, lweight and age:

```
model_2 = lm(formula = lpsa ~ lweight + age, data = prostar
summary(model_2)
```

```
##
## Call:
## lm(formula = lpsa ~ lweight + age, data = prostate)
```

Residuals: ## Min 1Q Median 3Q Max ## -2.2665 -0.6753 -0.0361 0.5317 2.9712

##

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.897709 1.119033 -1.696 0.0932 . ## lweight 1.147487 0.267094 4.296 4.23e-05

Expanding the fit even more

lbph

```
model_3 = lm(formula = lpsa ~ . - train, data = prostate)
summary(model_3)
```

```
##
## Call:
## lm(formula = lpsa ~ . - train, data = prostate)
##
## Residuals:
      Min 1Q Median 3Q
                                        Max
##
## -1.76644 -0.35510 -0.00328 0.38087 1.55770
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.181561 1.320568 0.137 0.89096
```

lcavol 0.564341 0.087833 6.425 6.55e-09 ***
lweight 0.622020 0.200897 3.096 0.00263 **
age -0.021248 0.011084 -1.917 0.05848

0 057913 1 670 0 09848/27

0 096713

Multiple regression

- ► When you have lots of explanatory variables this is known as multiple regression
- ➤ You can still use the values in the Estimate column to create predictions of lpsa by multiplying and adding up
- Beware the p-values as before: they might be highly dsignificant but still a very poor model
- R gives you two other useful statistics:
 - ► The R-squared which measures the proportion of variation in the repsonse variable explained by the explanatory variables
 - ► The residual standard error which measures how far away the data points are from the fitted line

Dealing with interactions

##

- ► Interactions are important; our explanatory variables will often interact with each other to affect the response variable
- ► The usual way to deal with interactions is to create *new* explanatory variables by multiplying them together

```
model_4 = lm(formula = lpsa ~ lweight + age + lweight:age,
summary(model_4)
```

```
##
## Call:
## lm(formula = lpsa ~ lweight + age + lweight:age, data =
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.23926 -0.62770 -0.00107 0.54302 3.00193
##
## Coefficients:
```

Estimate Std. Error t value Pr (>|t|) 16/27

Regularisation and shrinkage

- When you have lots and lots of explanatory variables, the model can become very slow or might not fit at all
- Worse, we might have lots of spurious p-values
- ▶ It makes sense to remove or reduce some of the coefficients on the explanatory variables if we think their effect is over-stated
- One way of doing this is via regularisation, where we set some of the values to zero, another is via shrinkage where we reduce the values (shrink them towards zero)

Lasso and Ridge

- The R package glmnet will perform shrinkage and regularisation
- ► The Lasso model imposes a restricted sum on all of the coefficient values
- ► The Ridge model imposes an extra assumption that all of the coefficient values come from a normal distribution
- We will play with some of these models later

Even more advanced regression approaches

- ► There is lots of research on regression models of all different types
- The vast majority of them involve creating a set of coefficients to multiply the explanatory variables by and then adding everything up
- It's very important to check the model diagnostics

Intro to classification models

The logit transformation

Example: SA Heart rate

Extending the model

Understanding the output

Plotting the fitted model

Regularisation and shrinkage for classification

More advanced classification approaches