Math 51 Second Exam (Practice #1)

Name:	SUNet ID:	ID #:
-	e following problems. In order to receive full creenswers. You do not need to simplify your answer	, <u>-</u>
on other te	ing examined on mastery of methods taugle chniques do not earn credit. You may use an eate the result before using it, and verify that the	y result discussed in class or the text,
	that your copy of this exam contains 7 pages and that it is adequately stapled.	of exam questions, <i>numbered</i> in the
	e 1 handwritten piece of $8.5'' \times 11''$ paper (both ce sheet". No electronic devices, including phones any reason.	
be writing, in times, the ex	hours. The exam organizer will signal the times acluding anything on this cover sheet, and to have am and all papers must remain in the testing rocam paper to a member of teaching staff.	the exam booklet open. During these
extra room for the end are l	ovided by course staff (apart from your own refer or your answers, use one of the blank pages providabled at the bottom by lower-case Roman nume at that your answer continues there. Do no	ded (those pages except for the one at erals, starting with "ii"), and clearly
after the da	consibility to look over your graded exam in a time atte of this exam (5pm), to resubmit your exam be leader about the exact details of the submission process.	for any regrade considerations; consult
• Please sign the	he following:	
	"On my honor, I have neither given nor rece examination. I have furthermore abided by all honor code with respect to this examination."	v .

Signature:

1. (10 points) Find the maximum and minimum values of $f(x,y) = x^2y - y^2 - 3x^2$ on the square S = $\{(x,y)\in\mathbf{R}^2:-1\leq x,y\leq 1\}$ shown in Figure 1, and the point(s) at which each is attained.

Figure 1: The square S consisting of points (x, y) with $-1 \le x, y \le 1$.

Therefore
$$(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y \end{bmatrix} = \begin{bmatrix} 0 \\ x^2 - 2y = 0 \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x^2 - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

Therefore $(x,y) = \begin{bmatrix} 2xy - 6x \\ x - 2y = 0 \end{bmatrix} \xrightarrow{x^2 = 2y}$

$$\begin{cases} \int_{0}^{1} f(x^{-1}) - 8x & = 0 \\ \int_{0}^{1} f(x^{-1}) - x^{2} - 1 - 3x^{2} & = -4x^{-1} \\ \int_{0}^{1} f(x^{-1}) - 1 & = -8x \\ \int_{0}^{1} f(x^{$$

Possible parts are (-1, 1), (-1,-1), (1, 1), (1,-1).

Test ench point

$$\begin{aligned} & c(l',l): |-l-3:-3| & t(0)-l):-1| & t(0)g = 0 & \text{wax} \\ & t(-l'-l):-l-1-3:-2 & \text{wiv} & t(0)'):-1| & t(-l',\frac{s}{l}):\frac{1}{l}:-\frac{1}{l}:g:-\frac{1}{l}:g:-\frac{1}{l} \\ & t(x)\lambda_l:-x_5\lambda_5-\beta_{55} \\ & t(x)\lambda_l:-x_5\lambda_5-\beta_{55} \end{aligned}$$

- 2. (10 points) For each of the following functions f(x, y) and indicated points $\mathbf{a} \in \mathbf{R}^2$, (i) compute the best linear (really affine) approximation to f near \mathbf{a} (expressed as a function in x, y); and (ii) give the unit vector in the direction that f is most rapidly decreasing away from \mathbf{a} .
 - (a) (3 points) $f(x,y) = 4\ln(1+x^2+y)$, $\mathbf{a} = (1,2)$.

$$\nabla f(x,y) = \begin{bmatrix} \frac{4}{1+x^2+y} & 2x \\ \frac{4}{1+x^2+y} & 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{1+x^2+y} \\ \frac{4}{1+x^2+y} \end{bmatrix}$$

$$\varphi f(x,y) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1/2z \\ -1/2z \end{bmatrix}$$
with tentor is $-4 + (1/2) / |1 - 4 + (1/2)|$

$$= \begin{bmatrix} -1/2z \\ -1/2z \end{bmatrix} / (1/2) = \begin{bmatrix} -1/2z \\ -1/2z \end{bmatrix}$$
where $-4 + (1/2) / |1 - 4 + (1/2)|$

(b) (3 points)
$$f(x,y) = xe^{xy}$$
, $\mathbf{a} = (2,1)$.

$$x^{2}e^{xy}$$
]

Hereby nost at $-0f(2,1):[-3c^{2}-4c^{2}]$
 $||-c^{2}(2,1)||=[9c^{4}+|6c^{4}:]25c^{4}>5c^{2}$

Unit weeks: $[-\frac{3}{5}-\frac{4}{5}]$

(c) (4 points)
$$f(x,y) = \sqrt{1+x^2+xy}$$
, $\mathbf{a} = (1,7)$.

$$\left| \left| - \sqrt{\frac{1}{4}} \right| \right| = \sqrt{\left(-\frac{5}{2}\right)^{2} + \left(-\frac{1}{4}\right)^{2}}$$

$$\Rightarrow \sqrt{\frac{q}{q}} \Rightarrow \sqrt{\frac{1}{4}}$$

$$\Rightarrow \sqrt{\frac{3}{24}} \Rightarrow \sqrt{\frac{1}{18}}$$

- 3. (10 points) Let $f(x, y, z) = 6xy + z^3$.
 - (a) (3 points) Determine the tangent plane to the level surface f(x, y, z) = 2 through $\mathbf{a} = (1, -1, 2)$. Express your answer in two ways: write an *equation* involving x, y, z; and additionally give a parametric form (this has many possible answers).

$$\frac{F(x,y,z)}{g^{2}} = \begin{bmatrix} 6y \\ 6x \\ 3z^{2} \end{bmatrix} \qquad \frac{F(x,y,z)}{g^{2}(x,y,z)} \cdot \begin{bmatrix} x-y, \\ y-y, \\ z-z, \end{bmatrix} : 0 \qquad \qquad \frac{g_{\text{borought}}}{g^{2}(x,y,z)} = 0$$

$$\frac{G}{g} = \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} \qquad \frac{G}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} = 0$$

$$\frac{G}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} = 0$$

$$\frac{G}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} \cdot \frac{1}{g} = 0$$

$$\frac{G}{g} \cdot \frac{1}{g} \cdot \frac{$$

(b) (7 points) Find the maximal and minimal values of f on the sphere $x^2 + y^2 + z^2 = 36$, and the points at which those extremal values are attained.

Project (x) = Proj = (x) + Proj = (x)

- 4. (10 points) Let V be the plane x + y + z = 0 in \mathbb{R}^3 through the origin, so V has an orthogonal basis $\{\mathbf{v}, \mathbf{w}\}$ for $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be the function $L(\mathbf{x}) = \mathbf{Proj}_V(\mathbf{x})$.
 - (a) (4 points) Compute the 3×3 matrix A for L; the entries should be fractions with denominator 3. (Hint: what is the meaning of each column?)

Multiply for L

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{u} \cdot \vec{x}}{\vec{w} \cdot \vec{w}} \vec{w}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} + \frac{\vec{v}}{\vec{v}} \vec{v}$$

$$\frac{\vec{v} \cdot \vec{v}}{\vec{v}} \vec{v} +$$

 $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\frac{d}{dt} \cdot t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

- (b) (3 points) For $\mathbf{a} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$, compute $\mathbf{Proj}_V(\mathbf{a})$ in two ways: using the orthogonal basis $\{\mathbf{v}, \mathbf{w}\}$ for V, and using the matrix-vector product against your answer in (a). (You should get the same answer both ways, a vector with integer entries.)
- $\begin{bmatrix}
 2/3 & -1/5 & -1/5 \\
 -1/3 & 2/5 & -1/5 \\
 -1/3 & -1/3 & 2/5
 \end{bmatrix}
 \begin{bmatrix}
 1 \\
 3 \\
 5
 \end{bmatrix}
 =
 \begin{bmatrix}
 2 & -1 & -1 \\
 -1 & 2 & -1 \\
 -1 & -1 & 2
 \end{bmatrix}
 \begin{bmatrix}
 3 \\
 5
 \end{bmatrix}$ $= \frac{1}{3} \begin{bmatrix}
 -6 \\
 6 \\
 6
 \end{bmatrix}
 =
 \begin{bmatrix}
 -2 \\
 0 \\
 2
 \end{bmatrix}$

(c) (3 points) The geometric definition of \mathbf{Proj}_V gives that its output lies in V, on which \mathbf{Proj}_V has no effect, so $\mathbf{Proj}_V \circ \mathbf{Proj}_V = \mathbf{Proj}_V$. Check that your answer A in (a) satisfies the corresponding matrix equality $A^2 = A$. (Hint: if you write A = (1/3)B for a matrix B with integer entries then the calculation will be cleaner.)

- 5. (10 points) For each of the 30 weeks of the academic year at a certain university, first-year undergraduates are in one of two types: those who plan to major in computer science, and everyone else. Let's call these two types of students "CS" and "non-CS", and assume that during each week a student changes their type at most once (and may change again in subsequent weeks). Let $\mathbf{p}_n = \begin{bmatrix} x_n \\ y_n \end{bmatrix}$ be the 2-vector whose entries x_n and y_n are the proportions of such students of type non-CS and CS respectively at the end of the nth week (so $x_n + y_n = 1$ always).
 - (a) (3 points) Among those of type CS at the start of each week suppose 90% remain that way at the end of the week but 10% switch to non-CS. Among those of type non-CS at the start of each week suppose 85% remain that way at the end of the week but 15% switch to CS. Write down an explicit 2×2 Markov matrix M for which $\mathbf{p}_{n+1} = M\mathbf{p}_n$ for all n.

(b) (3 points) Using your answer to (a), what proportion of students who are type CS at the end of a given week are also type CS two weeks later (they may have switched to non-CS and back in the meantime)?

(c) (4 points) If you computed M correctly then it turns out that to an accuracy of two decimal digits for all $m \ge 17$ we have

$$M^m \approx \begin{bmatrix} .4 & .4 \\ .6 & .6 \end{bmatrix}.$$

Interpret in words what this means, and also interpret in words the fact (verified by direct calculation) that for any $0 \le x \le 1$ we have

$$\begin{bmatrix} .4 & .4 \\ .6 & .6 \end{bmatrix} \begin{bmatrix} x \\ 1-x \end{bmatrix} = \begin{bmatrix} .4 \\ .6 \end{bmatrix}.$$
 If the 17 years, regardees it initial pop, 40% of studies will be considered as 60% . Of studies will be cs.

6. (10 points) Let $F: \mathbf{R}^2 \to \mathbf{R}^3$ be the function $F(x,y) = \begin{bmatrix} xy + y^2 \\ \cos(\pi xy) \\ xy^2 + xy \end{bmatrix}$ and suppose $G: \mathbf{R}^2 \to \mathbf{R}^2$ satisfies $G(1,2) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $(DG)(1,2) = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$.

$$DF(x,y) = \begin{cases} y & x+2y \\ -\pi y \sin(\pi xy) & -\pi x \sin(\pi xy) \\ y^2 + y & 2xy + x \end{cases}$$

(a) (4 points) Compute (DF)(x,y) and $(D(F \circ G))(1,2)$.

$$\begin{cases}
0 (F \cdot G)(1,2), & DF(G(1,2)), & DG(1,2) \\
0 & F(G(1,2)), & F(G(1,2)), & F(G(1,2)), \\
0 & F(G(1,2)), & F(G($$

(b) (4 points) Estimate the 3-vector $(F \circ G)(1.1, 1.9)$.

$$(F_{0}G)(I_{1},I_{2}G) \approx (F_{0}G)(I_{3}Z) + 0 (F_{0}G)(I_{3}Z) \begin{bmatrix} I_{1}I_{1}-I \\ I_{2}I_{2} \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ -I \\ 2 \end{bmatrix} + \begin{bmatrix} 4 & 13 \\ 0 & 0 \\ 5 & 17 \end{bmatrix} \begin{bmatrix} 0.1 \\ -0.1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ -I \\ 2 \end{bmatrix} + \begin{bmatrix} 0.4 - 1.3 \\ 0 \\ 0.5 - 1.7 \end{bmatrix} = \begin{bmatrix} 1.1 \\ -I \\ 0.8 \end{bmatrix}$$

(c) (2 points) Estimate
$$\begin{bmatrix} h \\ k \end{bmatrix}$$
 for which $G(1+h,2+k) = \begin{bmatrix} 0.8 \\ 0.9 \end{bmatrix}$.

$$\begin{cases}
0.8 \\
0.4
\end{cases}
\qquad 2 \begin{cases}
1 \\
1
\end{cases}
\qquad + \begin{cases}
1 \\
1
\end{cases}
\quad + \begin{cases}
1 \\
1
\end{cases}$$