

Fundamentals of Power Electronics

Third Edition

Robert W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado Boulder Boulder, CO, USA Dragan Maksimović Department of Electrical, Computer, and Energy Engineering University of Colorado Boulder Boulder, CO, USA

ISBN 978-3-030-43879-1 ISBN 978-3-030-43881-4 (eBook) https://doi.org/10.1007/978-3-030-43881-4

1st edition: © Springer Science+Business Media Dordrecht 1997

2nd edition: © Kluwer Academic Publishers 2001

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Magnetics Design Tables

Geometrical data for several standard ferrite core shapes are listed here. The geometrical constant K_g is a measure of core size, useful for designing inductors and transformers that attain a given copper loss [99]. The K_g method for inductor design is described in Chap. 11. K_g is defined as

$$K_g = \frac{A_c^2 W_A}{MLT} \tag{B.1}$$

where A_c is the core cross-sectional area, W_A is the window area, and MLT is the winding meanlength-per-turn. The geometrical constant K_{gfe} is a similar measure of core size, which is useful for designing ac inductors and transformers when the total copper plus core loss is constrained. The K_{gfe} method for magnetics design is described in Chap. 12. K_{gfe} is defined as

$$K_{gfe} = \frac{W_A A_c^{2(1-1/\beta)}}{MLT \,\ell_m^{2/\beta}} u(\beta)$$
 (B.2)

where ℓ_m is the core mean magnetic path length, and β is the core loss exponent:

$$P_{fe} = K_{fe} B_{max}^{\beta} \tag{B.3}$$

For modern ferrite materials, β typically lies in the range 2.6 to 2.8. The quantity $u(\beta)$ is defined as

$$u(\beta) = \left[\left(\frac{\beta}{2} \right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2} \right)^{\left(\frac{2}{\beta+2}\right)} \right]^{-\left(\frac{\beta+2}{\beta}\right)}$$
(B.4)

 $u(\beta)$ is equal to 0.305 for $\beta = 2.7$. This quantity varies by roughly 5% over the range $2.6 \le \beta \le 2.8$. Values of K_{gfe} are tabulated for $\beta = 2.7$; variation of K_{gfe} over the range $2.6 \le \beta \le 2.8$ is typically quite small.

Thermal resistances are listed in those cases where published manufacturer's data are available. The thermal resistances listed are the approximate temperature rise from the center leg of the core to ambient, per watt of total power loss. Different temperature rises may be observed under conditions of forced air cooling, unusual power loss distributions, etc. Listed window areas are the winding areas for conventional single-section bobbins.

An American Wire Gauge table is included at the end of this appendix.

B.1 Pot Core Data

Fig. B.1 Pot core

Core type	Geometrical constant	Geometrical constant	Cross- sectional area	Bobbin winding area		path	Thermal resistance	
(AH)	K_g	K_{gfe}	A_c	W_A	MLT	ℓ_m	R_{th}	
(mm)	cm ⁵	cm ^x	(cm^2)	(cm^2)	(cm)	(cm)	(°C/W)	(g)
704	$0.738 \cdot 10^{-6}$	$1.61 \cdot 10^{-6}$	0.070	$0.22 \cdot 10^{-3}$	1.46	1.0		0.5
905	$0.183 \cdot 10^{-3}$	$256 \cdot 10^{-6}$	0.101	0.034	1.90	1.26		1.0
1107	$0.667 \cdot 10^{-3}$	$554 \cdot 10^{-6}$	0.167	0.055	2.30	1.55		1.8
1408	$2.107 \cdot 10^{-3}$	$1.1 \cdot 10^{-3}$	0.251	0.097	2.90	2.00	100	3.2
1811	$9.45 \cdot 10^{-3}$	$2.6\cdot10^{-3}$	0.433	0.187	3.71	2.60	60	7.3
2212	27.1 10-3	$4.9 \cdot 10^{-3}$	0.625	0.207	4.42	2.15	20	1.2
_	$27.1 \cdot 10^{-3}$, 10	0.635	0.297	4.42	3.15	38	13
2616	$69.1 \cdot 10^{-3}$	$8.2 \cdot 10^{-3}$	0.948	0.406	5.28	3.75	30	20
3019	0.180	$14.2 \cdot 10^{-3}$	1.38	0.587	6.20	4.50	23	34
3622	0.411	$21.7 \cdot 10^{-3}$	2.02	0.748	7.42	5.30	19	57
4229	1.15	$41.1\cdot 10^{-3}$	2.66	1.40	8.60	6.81	13.5	104

B.2 EE Core Data

Fig. B.2 EE core

Core type	Geometrical constant	Geometrical constant	Cross- sectional	Bobbin winding		Magnetic path	Core weight
			area	area	per turn	length	
(A)	K_g	K_{gfe}	A_c	W_A	MLT	ℓ_m	
(mm)	(cm ⁵)	(cm^x)	(cm^2)	(cm ²)	(cm)	(cm)	(g)
EE12	$0.731 \cdot 10^{-3}$	$0.458 \cdot 10^{-3}$	0.14	0.085	2.28	2.7	2.34
EE16	$2.02 \cdot 10^{-3}$	$0.842 \cdot 10^{-3}$	0.19	0.190	3.40	3.45	3.29
EE19	$4.07 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	0.23	0.284	3.69	3.94	4.83
EE22	$8.26 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	0.41	0.196	3.99	3.96	8.81
EE30	$85.7 \cdot 10^{-3}$	$6.7 \cdot 10^{-3}$	1.09	0.476	6.60	5.77	32.4
EE40	0.209	$11.8 \cdot 10^{-3}$	1.27	1.10	8.50	7.70	50.3
EE50	0.909	$28.4 \cdot 10^{-3}$	2.26	1.78	10.0	9.58	116
EE60	1.38	$36.4 \cdot 10^{-3}$	2.47	2.89	12.8	11.0	135
EE70/68/19	5.06	$75.9 \cdot 10^{-3}$	3.24	6.75	14.0	18.0	280

B.3 EC Core Data

Fig. B.3 EC core

Core	Geometrical	Geometrical	Cross-	Bobbin	Mean	Magnetic	Thermal	Core
type	constant	constant	sectional	winding	length	path	resistance	weight
			area	area	per turn	length		
(A)	K_g	K_{gfe}	A_c	W_A	MLT	ℓ_m	R_{th}	
(mm)	(cm ⁵)	(cm^x)	(cm^2)	(cm ²)	(cm)	(cm)	(°C/W)	(g)
EC35	0.131	$9.9\cdot 10^{-3}$	0.843	0.975	5.30	7.74	18.5	35.5
EC41	0.374	$19.5 \cdot 10^{-3}$	1.21	1.35	5.30	8.93	16.5	57.0
EC52	0.914	$31.7 \cdot 10^{-3}$	1.80	2.12	7.50	10.5	11.0	111
EC70	2.84	$56.2 \cdot 10^{-3}$	2.79	4.71	12.9	14.4	7.5	256

B.4 ETD Core Data

Fig. B.4 ETD core

Core	Geometrical	Geometrical	Cross-	Bobbin	Mean	Magnetic	Thermal	Core
type	constant	constant	sectional	winding	length	path	resistance	weight
			area	area	per turn	length		
(A)	K_g	K_{gfe}	A_c	W_A	MLT	ℓ_m	R_{th}	
(mm)	(cm ⁵)	(cm^x)	(cm^2)	(cm^2)	(cm)	(cm)	(°C/W)	(g)
ETD29	0.0978	$8.5 \cdot 10^{-3}$	0.76	0.903	5.33	7.20		30
ETD34	0.193	$13.1 \cdot 10^{-3}$	0.97	1.23	6.00	7.86	19	40
ETD39	0.397	$19.8 \cdot 10^{-3}$	1.25	1.74	6.86	9.21	15	60
ETD44	0.846	$30.4 \cdot 10^{-3}$	1.74	2.13	7.62	10.3	12	94
ETD49	1.42	$41.0 \cdot 10^{-3}$	2.11	2.71	8.51	11.4	11	124

B.5 PQ Core Data

Fig. B.5 PQ core

Core	Geometrical	Geometrical	Cross-	Bobbin	Mean	Magnetic	Core
type	constant	constant	sectional	winding	length	path	weight
			area	area	per turn	length	
$(A_1/2D)$	K_g	K_{gfe}	A_c	W_A	MLT	ℓ_m	
(mm)	(cm ⁵)	(cm^x)	(cm^2)	(cm ²)	(cm)	(cm)	(g)
	$22.4\cdot10^{-3}$	$3.7\cdot 10^{-3}$	0.62	0.256	4.4	3.74	13
	$33.6 \cdot 10^{-3}$	$4.8 \cdot 10^{-3}$	0.62	0.384	4.4	4.54	15
PQ26/20	$83.9 \cdot 10^{-3}$	$7.2 \cdot 10^{-3}$	1.19	0.333	5.62	4.63	31
PQ26/25	0.125	$9.4 \cdot 10^{-3}$	1.18	0.503	5.62	5.55	36
PQ32/20	0.203	$11.7 \cdot 10^{-3}$	1.70	0.471	6.71	5.55	42
PQ32/30	0.384	$18.6 \cdot 10^{-3}$	1.61	0.995	6.71	7.46	55
PQ35/35	0.820	$30.4 \cdot 10^{-3}$	1.96	1.61	7.52	8.79	73
PQ40/40	1.20	$39.1 \cdot 10^{-3}$	2.01	2.50	8.39	10.2	95

B.6 American Wire Gauge Data

AWG #	Bare area,	Resistance,	Diameter,
	10^{-3} cm^2	$10^{-6}\Omega/\mathrm{cm}$	cm
0000	1072.3	1.608	1.168
000	850.3	2.027	1.040
00	674.2	2.557	0.927
0	534.8	3.224	0.825
1	424.1	4.065	0.735
2	336.3	5.128	0.654
3	266.7	6.463	0.583
4	211.5	8.153	0.519
5	167.7	10.28	0.462
6	133.0	13.0	0.411
7	105.5	16.3	0.366
8	83.67	20.6	0.326
9	66.32	26.0	0.291
10	50.41	22.0	0.267
10	52.41	32.9	0.267
11	41.60	41.37	0.238
12	33.08	52.09	0.213
13	26.26	69.64	0.190
14	20.02	82.80	0.171
15	16.51	104.3	0.153
16	13.07	131.8	0.137
17	10.39	165.8	0.122
18	8.228	209.5	0.109
19	6.531	263.9	0.0948
20	5.188	332.3	0.0874
21	4.116	418.9	0.0785
22	3.243	531.4	0.0701
23	2.508	666.0	0.0632
24	2.047	842.1	0.0566
2.7	1.600	1062.0	0.0707
25	1.623	1062.0	0.0505
26	1.280	1345.0	0.0452
27	1.021	1687.6	0.0409
28	0.8046	2142.7	0.0366
29	0.6470	2664.3	0.0330

(continued)

AWG #	Bare area, 10^{-3} cm^2	Resistance, $10^{-6} \Omega/\text{cm}$	Diameter, cm
30	0.5067	3402.2	0.0294
31	0.4013	4294.6	0.0267
32	0.3242	5314.9	0.0241
33	0.2554	6748.6	0.0236
34	0.2011	8572.8	0.0191
35	0.1589	10849	0.0170
36	0.1266	13608	0.0152
37	0.1026	16801	0.0140
38	0.08107	21266	0.0124
39	0.06207	27775	0.0109
40	0.04869	35400	0.0096
41	0.03972	43405	0.00863
42	0.03166	54429	0.00762
43	0.02452	70308	0.00685
44	0.0202	85072	0.00635

PRINCIPLES OF POWER ELECTRONICS

Second Edition

(Preliminary Draft KPVS22-12-6)

John G. Kassakian

David J. Perreault

George C. Verghese

Martin F. Schlecht

Copyright 2022 - Authorized Use Only

Page-685

Figure 20.2 Representative core shape for the RM family of ferrite cores. The illustration shows the geometry of the RM8, RM10 and RM12 cores.

Core factor, which has units of linear dimension to the fifth power (e.g., m^5), expresses a geometrical property of a magnetic core. Given a design requirement for a filter inductor as expressed by the left side of (20.15), we know the minimum value of K_g that a core must have to implement the inductor. A designer may calculate K_g for a given core from data sheet information, or leverage pre-tabulated values of K_g , which are available for a variety of cores. For example, Table 20.1 shows a variety of data about the RM (Rectangular Modular) family of ferrite cores, including the core factor K_g . The physical structure of RM-type cores is illustrated in Fig. 20.2. The core halves are designed to clamp around a toroidal bobbin and winding such that the inductor presents an approximately square footprint. The cylindrical centerpost may be machined down on one or both core halves to provide a gap for energy storage.

_

686

	Effective	Effective	Minimum	Core	Bobbin	Bobbin
	Magnetic	Core Area	Core Area	Window	Window	Mean
Core	Path Length			Area	Area	Turn Length
	ℓ_c	$A_{c,e}$	$A_{c,\mathrm{min}}$	$W_{A,c}$	$W_{A,b}$	ℓ_t
	(mm)	(mm^2)	(mm^2)	(mm^2)	(mm^2)	(mm)
RM4	22.7	14.0	10.7	15.6	7.7	20
RM5	22.4	23.7	17.3	18.2	9.5	25
RM6	28.6	36.6	30.2	26.0	15	30
RM8	38.0	64.0	53.5	48.9	30.0	42
RM10	44.0	98.0	86.6	69.5	41.5	52
RM12	56.9	140	121	110	73.0	61
RM14	70.0	178	165	155	107	71.5
	Effective	Core	Effective	Thermal	Core	Core
	Core	Set	Surface	Resistance	Area	Factor
Core	Volume	Weight	Area		Product	K_g
	$V_{c,e}$		$A_{s,e}$	R_{th}	$A_{c,e}W_{A,b}$	$A_{c,\min}^2 W_{A,b}/\ell_t$
	(mm^3)	(g)	(mm^2)	$(^{\circ}C/W)$	(mm^4)	(mm^5)
RM4	318	1.7	586	86	1.1×10^{2}	4.4×10^{1}
RM5	530	3.0	787	69	2.3×10^{2}	1.1×10^{2}
RM6	1050	5.5	1130	60	5.5×10^{2}	4.6×10^{2}
RM8	2430	13	2020	38	1.92×10^{3}	2.0×10^{3}
RM10	4310	23	2960	30	4.07×10^{3}	6.0×10^{3}
RM12	7970	42	4460	23	1.02×10^{4}	1.8×10^{4}
RM14					1.90×10^{4}	4.07×10^{4}

Core Data for the RM (Rectangular Modular) family of ferrite cores. $\,$ **Table 20.1**

