Mid-term Examination

Date: March 27, 2015

Duration: 90 minutes

SUBJECT: Electromagnetic Theory	
Dean of School of Electrical Engineering	Lecturer: Tran Van Su, M.Eng.
Signature:	Signature:
Full name: Trần Văn Sư	Full name: Trần Văn Sư

INTRODUCTIONS:

- 1. Each student can use his/her own note (one paper of A4 size). Other materials and devices are not allowed except calculators.
- 2. Answer all questions

Question 1 (10 Marks)

Let $\vec{A} = 2\hat{x} + 4\hat{y} + 3\hat{z}$ and $\vec{B} = \hat{x} - 6\hat{y} + 2\hat{z}$

- a. Compute $\vec{A} \cdot \vec{B}$. (2 Marks)
- b. Compute $\vec{A} \times \vec{B}$. (2 Marks)
- c. Find the component of \vec{A} along \vec{B} . (3 Marks)
- d. Determine the unit vector which is perpendicular to both \vec{A} , \vec{B} . (3 Marks)

Question 2 (20 Marks)

We have two point charges Q_1 at (1,0,0) and Q_2 at (0,1,0). One current element $Id\vec{l} = \hat{x}[A]$ at (3,0,0). They have locations and/or direction in free space shown in Fig. 1.

- a) Determine electric field at point A(1,1,0).
- (10 Marks)
- b) Determine magnetic field at point B (3,1,0).
- (10 Marks) $\vec{A} \times \vec{B}$

Given: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}, \ \mu_0 = 4 \pi \times 10^{-7} \text{ H/m}$

Question 3 (20 Marks)

An infinite plane sheet of current lies in the z=0 plane with uniform surface current densities of $2 \hat{x}$ [A], and an infinite plane sheet of charge lies in the z=10 plane with uniform charge density of 4 [C/m²]. Find the resulting magnetic flux densities (\vec{B}) and displacement flux (\vec{D}) at (0,0,5) in free space. Given: $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m, $\mu_0 = 4\pi \times 10^{-7}$ H/m.

Question 4 (20 Marks)

Charge is distributed with uniform density ρ_o [C/m3] inside the sphere S_a which has the radius of a. Determine the displacement flux \vec{D} at distance r of sphere S_r shown in Fig. 2. It is known that displacement flux \vec{D} on the surface S_r is uniform in spherical coordinate system due to the symmetry. The surface area and the volume of S_r are $4\pi r^2$ and $4\pi r^3/3$, respectively. Give D with a = 1m and r = 2m.

Fig. 2

Question 5 (20 Marks)

An infinite plane sheet of current density $\vec{J}_S = -J_S(t)\hat{x}$ (A/m) where $J_S(t)$ is as shown in Fig. 3, lies in the z = 0 plane in free space. Find and sketch

- a. E_x versus t in the z = 300m plane. (10 Marks)
- b. H_y versus t in the z = -600m plane. (10 Marks) The phase velocity is given 3.10^8 m/s

Question 6 (10 Marks)

The electric field of a uniform plane wave in the free space is given by

$$\vec{E} = E_o \cos(12 \pi \times 10^8 t + 4 \pi x) \hat{y} \text{ (V/m)}$$

Find the followings:

- a) velocity of the wave. (3 Marks)
- b) the wavelength of the wave. (3 Marks)
- c) Magnetic field \vec{H} . (4 Marks)