Deep Imbalanced Regression

Yuzhe Yang¹ Kaiwen Zha¹ Ying-Cong Chen¹ Hao Wang² Dina Katabi¹

¹MIT Computer Science & Artificial Intelligence Laboratory ²Department of Computer Science, Rutgers University ICML 2021

Presenter: Gianmarco Midena

26 November 2024

Overview

Problem Settings

- $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$: training set
- $\mathbf{x}_i \in \mathbb{R}^d$: input
- $y_i \in \mathcal{Y}$: continuous label or target
- $b_i \in \mathcal{B}$: discrete label or target
- $\mathcal{Y} \subset \mathbb{R}$: continuous label space
- $\mathcal{B} = \{1, \dots, M\} \subset \mathbb{Z}^+$: index space
 - lacktriangle divides ${\cal Y}$ into M groups (bins) with equal intervals $[t_j,t_{j+1})$
 - $\{[t_0, t_1), \ldots, [t_{M-1}, t_M)\}$: discrete label space
 - $t_k \in \mathcal{Y}$
 - minimum resolution
 - \star e.g., $\delta y \triangleq t_{j+1} t_j = 1$ in age estimation
- $\hat{y}_i = g(\mathbf{z}_i) \in \mathbb{R}$: predicted continuous label
- $\mathbf{z}_i = f(\mathbf{x}_i; \theta) \in \mathbb{R}^{d'}$: learned representation
- \bullet θ : trainable model parameters

Evaluation

- Divide target space into disjoint regions (bins)
 - ► *Many-shot*: > 100 training examples
 - ▶ *Medium-shot*: 20-100 training examples
 - ► Few-shot: < 20 training examples
 - ► Zero-shot: 0 training examples
 - Inspired by Liu et al. 2019

Metrics

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- ► Pearson Correlation (PCC)
- ► Geometric Mean Error (GM)

$$GM = \sqrt[n]{\prod_{i=1}^{n} |y_i - \hat{y}_i|}$$

★ Pros: + fairness (uniformity) in prediction

Datasets - Overview

Dataset	Target type	Target ran	ge	Bin size	Max bin densit	у	Min bin density	/ # Training set	# Val. set	# Test set
IMDB-WIKI-DIR	Age	0 - 186		1	7,149	Π	1	191,509	11,022	11,022
AgeDB-DIR	Age	0 - 101		1	353		1	12,208	2,140	2,140
STS-B-DIR	Text similarity score	0 - 5		0.1	428	-	1	5,249	1,000	1,000
NYUD2-DIR	Depth	0.7 - 10		0.1	1.46×10^{8}	T	1.13×10^{6}	$ 50,688 (3.51 \times 10^9)$	-	654 (8.70 × 10 ⁵)
SHHS-DIR	Health condition score	0 - 100		1	275	Т	0	1,892	369	369

(Training) Datasets - Label Distributions

Label Distribution Smoothing (LDS)

Imbalanced Categorical vs. Continuous Label Space (1/3)

- (a) Classification
- ullet task: picture \longrightarrow class
- data souce: CIFAR-100

- (b) Regression
- task: person's picture — person's age
- age subrange: 0-99
- data souce: IMDB-WIKI
- Simulated label imbalance
- Label density distributions forced to be equal
 - Balanced test sets

Imbalanced Categorical vs. Continuous Label Space (2/3)

- (a) Classification
- the error distribution *correlates* with the label density distribution
- majority classes with more examples are better learned than minority classes

- (b) Regression
- the error distribution DOES NOT correlate well with the label density distribution
- smoother error distribution

Imbalanced Categorical vs. Continuous Label Space (3/3)

(a) Classification

 Compensating for the imbalance in the empirical label density distribution WORKS WELL.

(b) Regression

- Compensating for the imbalance in the empirical label density distribution is INACCURATE.
- The empirical density does not accurately reflect the imbalance as seen by the model.
- Intuition: dependence between features at nearby labels.
- Proposed solution:
 Label Distribution Sr

Label Distribution Smoothing (LDS)
Image credit: Yang e

Label Distribution Smoothing (LDS) - Overview

Label Distribution Smoothing (LDS)

- Starting points
 - Dependence between features at nearby continuous labels
 - Expected density estimation
 - * Significant literature in statistics (Parzen 1962)
 - * Kernel density estimation
- Functioning
 - ► Convolves a symmetric kernel with the empirical label density distribution.
 - Extracts a kernel-smoothed label density accounting for the feature overlap of neighbouring labels.
- Symmetric kernel
 - E.g., Gaussian or Laplacian kernel
 - ▶ Similarity between target values w.r.t. their distance in the target space.
- Effective label density distribution

$$\tilde{p}(y') \triangleq \int_{\mathcal{V}} k(y, y') p(y) dy$$

where

- \triangleright p(y): nr. occurrences of label y in training data
- How to use it in practice?
 - ▶ Possible direct adaptation of class imbalance techniques.
 - E.g., loss weighted by inverse effective label density

- Starting points
 - lacktriangledown Continuity in the **feature** space \longleftrightarrow Continuity in the **feature** space

- Starting points
 - Ontinuity in the target space ←→ Continuity in the feature space
 - ② Data balance \Longrightarrow close feature statistics of nearby targets

- Starting points
 - Ontinuity in the target space ←→ Continuity in the feature space
 - ② Data balance \Longrightarrow close feature statistics of nearby targets
- Feature statistics: mean and variance (or covariance) w.r.t. each bin

$$\{\boldsymbol{\mu}_b, \boldsymbol{\sigma}_b\}_{b=1}^B$$

- Starting points
 - Ontinuity in the target space ←→ Continuity in the feature space
 - ② Data balance \Longrightarrow close feature statistics of nearby targets
- Feature statistics: mean and variance (or covariance) w.r.t. each bin

$$\{\boldsymbol{\mu}_b, \boldsymbol{\sigma}_b\}_{b=1}^B$$

- (next slides) Feature statistics similarity: cosine similarity of feature statistics between one anchor bin b_0 and all other bins
 - $b_0 = 0, 30, 60, 90$ (age): chosen anchor bins
 - ▶ different target densities: many (>100), medium (20-100), few (<20) examples</p>
 - ▶ task: person's picture → person's age
 - data source: IMDB-WIKI

Feature statistics similarity (1/4)

Anchor age 30

- (a) Baseline
- High similarity in neighbourhood
- High similarities with further regions
- Lower similarities with some closer regions

- (4) 1 = 3
- Improved feature statistics calibration:
 - High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (2/4)

Anchor age 60

- High similarity in neighbourhood
- High similarities with further regions
- Lower similarities with some closer regions

(b) FDS

- Improved feature statistics calibration:
 - ► High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (3/4)

Anchor age 0

- (a) Baseline
- High similarity in neighbourhood for mean
- High similarities with further regions
- Lower similarities with some closer regions, e.g., variance neighbourhood

- (b) FDS
- Improved feature statistics calibration:
 - High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (4/4)

Anchor age 90

- (a) Baseline
- High similarity in neighbourhood, esp. for mean
- High similarities with further regions
- I ower similarities with some closer regions

- (b) FDS
- Improved feature statistics calibration:
 - ► High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Change of feature statistics w.r.t. epoch

- ullet μ, Σ : Running mean and covariance
- $oldsymbol{ ilde{\mu}}, ilde{oldsymbol{\Sigma}}$: Smoothed mean and covariance

Feature Distribution Smoothing (FDS) - Overview

Feature Distribution Smoothing (FDS)

- Transfers the feature statistics between nearby bins.
- Aim: calibrate the potentially biased estimates of feature distribution, esp. for underrepresented target values in training data.
- General functioning
 - lacktriangle Estimates mean $oldsymbol{\mu}_b$ and covariance $oldsymbol{\Sigma}_b$ feature statistics by each target bin.
 - Smooths the feature statistics over the target bins $\mathcal B$ by a symmetric kernel $k(y_b,y_b')$. Obtains the smoothed mean $\tilde{\mu}_b$ and covariance $\tilde{\Sigma}_b$ feature statistics.
 - ▶ Whitens features (Sun et al. 2016):

$$oldsymbol{z}^w = oldsymbol{\Sigma}_b^{-rac{1}{2}}(oldsymbol{z} - oldsymbol{\mu}_b)$$

► Re-colors whitened features (Sun et al. 2016):

$$oldsymbol{z}^r = ilde{oldsymbol{\Sigma}}_b oldsymbol{z}^w + ilde{oldsymbol{\mu}}_b$$

- Integration into deep learning
 - ▶ Feature calibration layer after the final feature map.
 - lacktriangle Momentum update running statistics $\{\mu_b, \Sigma_b\}$ across each epoch.
 - ★ Exponential Moving Average (EMA)
 - ightharpoonup Smoothed statistics $\{ \tilde{\Sigma}_b, \tilde{\mu}_b \}$ updated across different but fixed within each training epoch.

Baselines (1/2)

- Vanilla: neglects data imbalance
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Defines frequent and rare regions using label density.
 - ② Creates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ► SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise
- Focal-R

$$\frac{1}{n} \sum_{i=1}^{n} \sigma(|\beta e_i|)^{\gamma} e_i$$

- Error-aware loss
- ▶ Maps the absolute error into [0, 1].
- e_i : L_1 error for the *i*-th sample
- $\triangleright \beta$, γ : hyper-parameters
- ▶ Inspired by Focal Loss (Lin 2017) for classification

Baselines (2/2)

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - 2 Re-train regressor with inverse re-weighting and frozen encoder.
 - ▶ Inspired by Kang et al. 2019
- Cost-sensitive re-weighting: re-weighting schemes based on label distribution
 - Inverse-frequency weighting (INV)
 - Square-root weighting variant (SQINV)

Results

Could LDS + FDS help when the label distribution is skewed with one or more Gaussian peaks?

- Experimental setup
 - Curated skewed label distributions with 1-4 Gaussian peaks on IMDB-WIKI-DIR
 - Compared with the vanilla model
- Findings
 - Robustness to distribution change
 - Brings improvement

Skewed label distribution with one Gaussian peak

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with two Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with three Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with four Gaussian peaks

Figure: MAE gains of LDS + FDS over the vanilla model.

Skewed label distribution with two Gaussian peaks on IMDB-WIKI-DIR

Metrics		MA	E↓			GM	GM ↓			
Shot	All	w/ data	Interp.	Extrap.	All	w/ data	Interp.	Extrap.		
Vanilla	11.72	9.32	16.13	18.19	7.44	5.33	14.41	16.74		
Vanilla + LDS	10.54	8.31	14.14	17.38	6.50	4.67	12.13	15.36		
Vanilla + FDS	11.40	8.97	15.83	18.01	7.18	5.12	14.02	16.48		
Vanilla + LDS + FDS	10.27	8.11	13.71	17.02	6.33	4.55	11.71	15.13		
Ours (best) VS. VANILLA +1.45 +1.21 +2.42 +1.17 +1.11 +0.78 +2.70 +1.61										

Table: Interpolation & extrapolation results

Best results by smoothing both label & feature distributions

Different skewed label distributions on IMDB-WIKI-DIR

Metrics				MAE	ļ		GM ↓							
Shot	All	Many	Med.	Few	Zero	Interp.	Extrap.	All	Many	Med.	Few	Zero	Interp.	Extrap.
1 peak:														
Vanilla	11.20	6.05	11.43	14.76	22.67	_	22.67	7.02	3.84	8.67	12.26	21.07	_	21.07
Vanilla + LDS	10.09	6.26	9.91	12.12	19.37	_	19.37	6.14	3.92	6.50	8.30	16.35	-	16.35
Vanilla + FDS	11.04	5.97	11.19	14.54	22.35	_	22.35	6.96	3.84	8.54	12.08	20.71	-	20.71
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	10.00	6.28	9.66	11.83	19.21	-	19.21	6.09	3.96	6.26	8.14	15.89	-	15.89
2 peaks:														
VANILLA	11.72	6.83	11.78	15.35	16.86	16.13	18.19	7.44	3.61	8.06	12.94	15.21	14.41	16.74
Vanilla + LDS	10.54	6.72	9.65	12.60	15.30	14.14	17.38	6.50	3.65	5.65	9.30	13.20	12.13	15.36
Vanilla + FDS	11.40	6.69	11.02	14.85	16.61	15.83	18.01	7.18	3.50	7.49	12.73	14.86	14.02	16.48
$\mathrm{Vanilla} + \textbf{LDS} + \textbf{FDS}$	10.27	6.61	9.46	11.96	14.89	13.71	17.02	6.33	3.54	5.68	8.80	12.83	11.71	15.13
3 peaks:														
VANILLA	9.83	7.01	9.81	11.93	20.11	_	20.11	6.04	3.93	6.94	9.84	17.77	-	17.77
Vanilla + LDS	9.08	6.77	8.82	10.48	18.43	_	18.43	5.35	3.78	5.63	7.49	15.46	-	15.46
Vanilla + FDS	9.65	6.88	9.58	11.75	19.80	_	19.80	5.86	3.83	6.68	9.48	17.43	-	17.43
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	8.96	6.88	8.62	10.08	17.76	-	17.76	5.38	3.90	5.61	7.36	14.65	-	14.65
4 peaks:														
Vanilla	9.49	7.23	9.73	10.85	12.16	8.23	18.78	5.68	3.45	6.95	8.20	9.43	6.89	16.02
$\mathrm{Vanilla} + \textbf{LDS}$	8.80	6.98	8.26	10.07	11.26	8.31	16.22	5.10	3.33	5.07	7.08	8.47	6.66	12.74
Vanilla + FDS	9.28	7.11	9.16	10.88	11.95	8.30	18.11	5.49	3.36	6.35	8.15	9.21	6.82	15.30
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	8.76	7.07	8.23	9.54	11.13	8.05	16.32	5.05	3.36	5.07	6.56	8.30	6.34	13.10

References

Branco, Paula, Luís Torgo, and Rita P Ribeiro (2017). "SMOGN: a pre-processing approach for imbalanced regression". In: *First international workshop on learning with imbalanced domains: Theory and applications.* PMLR, pp. 36–50.

Kang, Bingyi et al. (2019). "Decoupling representation and classifier for

long-tailed recognition". In: arXiv preprint arXiv:1910.09217.

Lin, T (2017). "Focal Loss for Dense Object Detection". In: arXiv preprint arXiv:1708.02002.

Liu, Ziwei et al. (2019). "Large-scale long-tailed recognition in an open world". In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2537–2546.
 Parzen, Emanuel (1962). "On estimation of a probability density function

Parzen, Emanuel (1962). "On estimation of a probability density function and mode". In: *The annals of mathematical statistics* 33.3, pp. 1065–1076.

Sun, Baochen, Jiashi Feng, and Kate Saenko (2016). "Return of frustratingly easy domain adaptation". In: *Proceedings of the AAAI conference on artificial intelligence*. Vol. 30. 1.

Torgo, Luís et al. (2013). "Smote for regression". In: Portuguese