Relación de ejercicios 3.2

- 1. Distinga si las siguientes expresiones son ecuaciones diferenciales y determine el tipo (ordinarias o en derivadas parciales) y el orden.
 - a) $x^2 + 3y^2 = 5xy$
- b) $x^2 + 3y'' 5(y')^3 = 0$
- c) 1 + y + y'' + y''' = 0 d) $xy y' \sin x = 0$
- e) $x \frac{dy}{dx} \sin x = e^x$ f) $5\left(\frac{\partial z}{\partial x}\right)^2 + xy\frac{\partial z}{\partial y} = 3xyz$
- 2. Consideremos la ecuación y' + 2y = 0. Se pide:
 - a) Estudie la existencia y unicidad de soluciones.
 - b) Compruebe que la función $y = Ce^{-2x}$ es una solución general.
 - c) Determine la solución particular que pasa por el punto (0,3).
- 3. Consideremos la ecuación diferencial $y' = y^2 4$. Se pide
 - a) Estudie la existencia y unicidad de soluciones
 - b) Resuelva la ecuación (variables separables) y obtener la solución general.
 - c) Calcule la solución particular, si existe, que pasa por (0,0).
 - d) Calcule la solución particular, si existe, que pasa por (0,2).
 - e) Calcule la solución particular, si existe, que pasa por (0, -2).
- 4. Compruebe que la ecuación $xyy' \ln x = 0$ es de variables separables y resuélvala. ¿Alguna solución pasa por el punto (1, -2)?
- 5. Compruebe que la ecuación (2x-3y)+(2y-3x)y'=0 es exacta y resuélvala. ¿Alguna solución pasa por el punto (1, -2)?
- 6. Resuelva la ecuación diferencial lineal $y' + \frac{y}{x} = 3x + 4$ y compruebe la solución. ¿Alguna solución pasa por el punto (2,6)?
- 7. Resuelva la ecuación $y' = \frac{xy}{x^2 y^2}$ utilizando el cambio de variable $y = x \cdot u$ y compruebe la solución.
- 8. Resuelva la ecuación $yy' 2y^2 = e^x$ utilizando el cambio de variable $u = y^2$.
- 9. Entre los modelos estudiados en el tema, determine qué tipo de ecuación diferencial es cada una de las siguientes:
 - a) (2+x)y' = 3y

- $b) \ y' = \frac{3x + 2y}{x}$
- a) (2 + x)y = 0c) $2\cos(2x y) y'\cos(2x y) = 0$ d) $y' = -2 y + y^2$ e) $(x 1)y' + y = x^2 1$ f) $y' = \frac{y + x 3}{y x 1}$

a) y' + 2xy = 2x

 $h) e^{x}uu' = e^{-y} + e^{-2x-y}$

i) $y' + 2y = \sin x$

 $(i) y^2 e^{xy^2} + 2xyy' e^{xy^2} = 0$