### Teoria da Computação

#### Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

19 de Junho de 2024

### Algoritmos em Grafos

- Um grafo é uma estrutura definida por G = (V,E);
- Conjunto não-vazio de vértices;
- Conjunto de elementos denominados arestas;
- Uma aresta é representada por:
  - (vi, vj);



$$V = \{v1, v2, v3, v4, v5\}$$

$$E = \{a1, a2, a3, a4, a5, a6, a7, a8\}$$

Sendo que 
$$a1 = (v1,v2)$$
,  $a2 = (v1,v3)$ ,  $a3 = (v1,v3)$ ,  $a4 = (v2,v3)$ ,  $a5 = (v2,v5)$ ,  $a6 = (v5,v5)$ ,  $a7 = (v3,v5)$ ,  $a8 = (v3,v4)$ .

### Grafos

$$ullet$$
 Grafo G = (V,E); 
$$n=|V|= {
m n\'umero\ de\ v\'ertices}$$
  $m=|E|={
m n\'umero\ de\ arestas}$ 

### Grafos - Representação Computacional

- Matriz de incidência;
- Matriz de adjacência;
- Lista de adjacência;
- Conjunto;

#### Matriz de incidência

- Matriz n x m;
- Cada elemento  $m_{ij}$ :
  - $m_{i_i} = 1$  se a aresta  $a_i$  é incidente ao vértice  $a_i$ ;
  - $m_{i_i} = 0$  caso contrário.



### Matriz de adjacência

- Matriz de n x n;
- cada elemento e<sub>ik</sub>:
  - $e_{jk} = 1$  se os vértices  $v_j$  e  $v_k$  são ligados por uma aresta;
  - $e_{jk} = 0$  caso contrário.



## Lista de adjacência





### Conjunto





### Análise de complexidade - Notação assintótica

- Lidar com duas variáveis;
- Relacionadas ao tamanho da entrada de dados;

### Análise de complexidade - Notação assintótica

- Lidar com duas variáveis:
- Relacionadas ao tamanho da entrada de dados:
  - n: Número de vértices;
  - m: Número de arestas.

## Complexidade

|                        | Mat. Inc. | Mat. Adj. | Lista Adj. | Conjuntos |
|------------------------|-----------|-----------|------------|-----------|
| Memória                |           |           |            |           |
| (complexidade de       | 1.1       | 1.2       | 1.3        | 1.4       |
| espaço)                |           |           |            |           |
| Algoritmo para         |           |           |            |           |
| Buscar todos os        | 2.1       | 2.2       | 2.3        | 2.4       |
| adjacentes de $v_i$    | 2.1       | 2.2       | 2.3        | 2.4       |
| Algoritmo para         |           |           |            |           |
| Conferir adjacência de | 3.1       | 3.2       | 3.3        | 3.4       |
| $v_i \in v_j$          | 5.1       | 5.2       | 3.3        | 3.4       |
| Algoritmo para         |           |           |            |           |
| Visitar todas as       | 4.1       | 4.2       | 4.3        | 4.4       |
| arestas                | 4.1       | 4.2       | 4.5        | 7.7       |
| Algoritmo para         |           |           |            |           |
| Calcular grau de um    | 5.1       | 5.2       | 5.3        | 5.4       |
| vértice                | 5.1       | 5.2       | 3.3        | 3.4       |

## Memória (complexidade de espaço)

|         | Mat. Inc. | Mat. Adj. | Lista Adj. | Conjuntos |
|---------|-----------|-----------|------------|-----------|
| Memória | O(mn)     | $O(n^2)$  | O(m+n)     | O(m+n)    |

- Matriz de Incidência (Mat. Inc.): O(mn) onde m é o número de arestas e n é o número de vértices.
- Matriz de Adjacência (Mat. Adj.): O(n²) pois cada par de vértices é considerado.
- Lista Adjacência (Lista Adj.): O(m+n) pois armazena listas de adjacência.
- **Conjuntos**: O(m+n) pois armazena conjuntos de arestas e vértices.

### Buscar todos os adjacentes de $v_i$

|                   | Mat. Inc. | Mat. Adj. | Lista Adj. | Conjuntos |
|-------------------|-----------|-----------|------------|-----------|
| Buscar adjacentes | O(mn)*    | O(n)      | O(n)*      | O(m)      |

- Matriz de Incidência (Mat. Inc.): O(mn) no pior caso.
- Matriz de Adjacência (Mat. Adj.): O(n) pois percorre a linha do vértice v<sub>i</sub>.
- Lista Adjacência (Lista Adj.): O(n) no pior caso.
- **Conjuntos**: O(m) pois verifica todas as arestas.

## Conferir adjacência de $v_i$ e $v_j$

|                     | Mat. Inc. | Mat. Adj. | Lista Adj. | Conjuntos |
|---------------------|-----------|-----------|------------|-----------|
| Conferir adjacência | O(m)*     | O(1)      | O(n)*      | O(m)*     |

- Matriz de Incidência (Mat. Inc.): O(m) no pior caso.
- Matriz de Adjacência (Mat. Adj.): O(1) pois acessa diretamente a entrada na matriz.
- Lista Adjacência (Lista Adj.): O(n) no pior caso.
- Conjuntos: O(m) no pior caso.

### Visitar todas as arestas

|                 | Mat. Inc. | Mat. Adj. | Lista Adj. | Conjuntos |
|-----------------|-----------|-----------|------------|-----------|
| Visitar arestas | O(mn)     | $O(n^2)$  | O(m+n)     | O(m)      |

- Matriz de Incidência (Mat. Inc.): O(mn) pois percorre toda a matriz.
- Matriz de Adjacência (Mat. Adj.): O(n²) pois percorre todas as entradas.
- Lista Adjacência (Lista Adj.): O(m+n) pois visita cada lista de adjacência.
- Conjuntos: O(m) pois visita cada aresta uma vez.

### Calcular grau de um vértice

|               | Mat. Inc. | Mat. Adj.             | Lista Adj. | Conjuntos |
|---------------|-----------|-----------------------|------------|-----------|
| Calcular grau | O(m)      | <i>O</i> ( <i>n</i> ) | O(n)**     | O(m)      |

- Matriz de Incidência (Mat. Inc.): O(m) pois verifica todas as arestas incidentes.
- Matriz de Adjacência (Mat. Adj.): O(n) pois conta as entradas na linha do vértice.
- Lista Adjacência (Lista Adj.): O(n) no pior caso para grafos não orientados.
- **Conjuntos**: O(m) pois verifica todas as arestas.

## Complexidade

|                                                                       | Mat. Inc. | Mat. Adj.  | Lista Adj. | Conjuntos |
|-----------------------------------------------------------------------|-----------|------------|------------|-----------|
| Memória<br>(complexidade de<br>espaço)                                | O(mn)     | $O(n^2)$ ) | O(m+n)     | O(m+n)    |
| Algoritmo para Buscar todos os adjacentes de $v_i$                    | O(mn)     | O(n)       | O(n)       | O(m)      |
| Algoritmo para Conferir adjacência de v <sub>i</sub> e v <sub>i</sub> | O(m)      | O(1)       | O(n)       | O(m)      |
| Algoritmo para Visitar todas as arestas                               | O(mn)     | $O(n^2)$   | O(m+n)     | O(m)      |
| Algoritmo para Calcular grau de um vértice                            | O(m)      | O(n)       | O(n)       | O(m)      |

- Busca em profundidade;
- Busca em largura;

- É possível montar sua equação de recorrência?
- É possível analisar a complexidade linha por linha?

- É possível montar sua equação de recorrência?
- É possível analisar a complexidade linha por linha?
  - Tempo para visitar todos os vértices;
  - Tempo para processar todas as arestas adjacentes a cada vértice;
  - O(n + m);

- É possível montar sua equação de recorrência?
- É possível analisar a complexidade linha por linha?
- A complexidade depende da estrutura de dados utilizada?

- É possível montar sua equação de recorrência?
- É possível analisar a complexidade linha por linha?
- A complexidade depende da estrutura de dados utilizada?
  - Lista de Adjacência:
    - Espaço: O(n+m)
    - Tempo: O(n+m)
  - Matriz de Adjacência:
    - Espaço: O(n²)
    - Tempo:  $O(n^2)$
  - Matriz de Incidência:
    - Espaço: O(nm)
    - Tempo: O(nm)

#### Atividade - Parte 1

- Montar grupos de até 3 pessoas e explicar os problemas a seguir, discutindo também a complexidade computacional de cada um:
  - Colore um grafo;
  - Árvore Geradora Mínima;
  - Componentes Fortemente Conectados;
  - Identificar articulações no grafo.

#### Atividade - Parte 2

- Escreva um algoritmo e de sua complexidade computacional para:
  - Colore um grafo;
  - Árvore Geradora Mínima;
  - Componentes Fortemente Conectados;
  - Identificar articulações no grafo.

### Bibliografia Básica

- LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos de Teoria da Computação. 2 ed. Porto Alegre: Bookman, 2000.
- VIEIRA, N. J. Introdução aos Fundamentos da Computação. Editora Pioneira Thomson Learning, 2006.
- DIVERIO, T. A.; MENEZES, P. B. Teoria da Computação: Máquinas Universais e Computabilidade. Série Livros Didáticos Número 5, Instituto de Informática da UFRGS, Editora Sagra Luzzato, 1 ed. 1999.

# Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024