

Université Sultan Moulay Slimane Ecole Supérieure de Technologie Département Mécatronique

Electronique Numérique

Chapitre 4 : Les circuits combinatoires Pr.ARSALANE

I. Circuit combinatoire : Définition

- Sj = f(Ei)
 - Les sorties Si sont fonctions uniquement de la valeur des entrées Ei
- Un circuit combinatoire est défini par une ou plusieurs fonctions logiques
 - Définition de la valeur des sorties en fonction des entrées du circuit
 - Algèbre de Boole et les fonctions logiques sont donc le support théorique des circuits combinatoires
- Un circuit se représente par un logigramme

II. Synthèse d'un circuit logique 😉

- A partir d'une fonction logique
 - Trouver le logigramme correspondant à cette fonction
- Principe
 - Simplifier la fonction logique avec 2 méthodes
 - La méthode algébrique (algèbre de Boole)
 - La méthode des tableaux de Karnaugh
 - En déduire le logigramme correspondant

II. Synthèse d'un circuit logique : Exemple 😉

Soit la fonction

$$f(a,b,c) = abc + a\overline{b}\overline{c} + \overline{a}\overline{b}\overline{c} + a\overline{b}c$$

- Trouver le logigramme correspondant à cette fonction
- Après simplification, on obtient

$$f(a,b,c) = ac + \overline{b}\overline{c}$$

III. Analyse de circuit logique

- A partir du logigramme d'un circuit
 - Trouver sa fonction logique
- **Principe**
 - Donner l'expression des sorties de chaque porte/composant en fonction des valeurs de ses entrées
 - En déduire au final la (ou les) fonction(s) logique(s) du circuit
- On peut ensuite
 - Déterminer la table de vérité du circuit
 - Simplifier la fonction logique à l'aide des propriétés de l'algèbre de Boole ou les tableaux de Karnaugh

III. Analyse de circuit logique : Exemple 😉

- Exemple de circuit logique
 - 3 entrées, 1 sortie
 - Composé uniquement de portes logiques

Quelle est la fonction logique de ce circuit ?

III. Analyse de circuit logique : Exemple 😉

A partir de son logigramme

$$f(a,b,c) = \overline{(a+b)(\overline{b}c)}$$

Après simplification

$$f(a,b,c) = \overline{a} + b + \overline{c}$$

Table de vérité :

Х	у	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Equations logique de S et R :

$$S = \overline{x}y + x\overline{y} = x \oplus y$$
$$R = xy$$

IV. Additionneur binaire

2. Additionneur Complet: Full-Adder

- Table de vérité :
- Equations logiques:
 - Simplification de S:

$$S = \overline{R_0}\overline{x}y + \overline{R_0}x\overline{y} + R_0\overline{x}\,\overline{y} + R_0xy$$

$$S = \overline{R_0}(\overline{x}y + x\overline{y}) + R_0(\overline{x}\,\overline{y} + xy)$$

$$S = \overline{R_0}(x \oplus y) + R_0(\overline{x \oplus y})$$

$$S = R_0 \oplus x \oplus y$$

R_0	Х	у	S	R_1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2. Additionneur Complet: Full-Adder

- **Equations logiques:**
 - Simplification de R₁

$$R_1 = xy + R_0x + R_0y$$

$$R_1 = xy + R_0(x+y)$$

R ₀ \xy	00	01	11	10
0			1	
1		1	[1]	1

3. Additionneur de n bits

- Exemple pour additionneur 4 bits
- On enchaîne en série 4 additionneurs 1 bit complet
- Le résultat est connu après propagation des valeurs calculées le long de tout le circuit
- C = A + B, en précision 4 bits. R : retenue globale

V. Soustracteur binaire

1. Demi-Soustracteur

- Table de vérité :
- Equations logique de S et R :

$$S = \overline{x}y + x\overline{y} = x \oplus y$$

$$R = \overline{x}y$$

Х	у	D	R
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

V. Soustracteur binaire

2. Soustracteur Complet

- Table de vérité:
- Equations logiques:
 - Simplification de D :

$$D = \overline{x} \, \overline{y} R_0 + \overline{x} y \overline{R_0} + x \overline{y} \overline{R_0} + x y R_0$$

$$D = \overline{R_0}(\overline{x}y + x\overline{y}) + R_0(\overline{x}\,\overline{y} + xy)$$

$$D = \overline{R_0}(x \oplus y) + R_0(\overline{x \oplus y})$$

$$D = R_0 \oplus x \oplus y$$

Х	у	R_0	D	R_1
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

2. Soustracteur Complet

- Equations logiques:
 - Simplification de R₁

$$R_1 = \overline{x}R_0 + \overline{x}y + yR_0$$

$$R_1 = \overline{x}y + R_0(\overline{x} + y)$$

x\ yR ₀	00	01	11	10	
0		1	1	1	
1			1		

<u>}</u>

VI. Les Circuits combinatoires effectuant des

comparaisons

- Ces circuits permettent de détecter l'égalité de deux nombres.
- Certains de ces circuits permettent aussi de détecter si A est supérieur ou bien inférieur à B et de commander une décision lors d'un programme dans l'unité centrale d'un ordinateur
- Comparateur de 2 bits:
 - Table de vérité
 - Equations logiques

$$S = x\overline{y}$$

$$E = \overline{x}\,\overline{y} + xy = \overline{x \oplus y}$$

 $I = \overline{x}y$

X	У	S	E	
		(x>y)	(x=y)	(x <y)< th=""></y)<>
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

- Ces circuits sont :
 - Le multiplexeur : qui regroupe sur une voie les signaux provenant de n voies en parallèles
 - Le démultiplexeur : qui aiguille vers n voies en parallèle les signaux venant en série d'une voie

1. Les multiplexeurs :

- Un multiplexeur est un circuit de 2ⁿ entrées d'informations $(D_1, D_2, \dots, D_{2^n})$, **n** entrées d'adresse et une sortie S.
- En sélectionnant une entrée par son adresse codée avec n chiffres binaires, on transmet son signal vers la sortie.
- En outre, On trouve une entrée de validation V qui autorise ou n'autorise pas le multiplexeur à délivrer sur sa sortie S l'état de l'entrée adressée.

1. Les multiplexeurs :

- Exemple 1 :
 - Table de vérité :
 - Equation logique:

$$S = D_0 \overline{A} + D_1 A$$

A	S
0	D_0
1	D_1

1. Les multiplexeurs :

- Exemple 2 :
 - Table de vérité :

Α	В	S
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Equation logique:

$$S = (\overline{A} \, \overline{B} D_0 + \overline{A} B D_1 + A \overline{B} D_2 + A B D_3) V$$

1. Les multiplexeurs :

Exemple 2 :

- Multiplexeur simple à 8 entrées de données et une sortie: 74LS151
- Multiplexeur simple à 16 entrées de données et une sortie: 74LS150
- Double multiplexeur à 2 fois 4 entrées de données et deux sorties 74LS153
- Quadruple multiplexeur à 4 fois 2 entrées de données et 4 sorties 74LS157

1. Les multiplexeurs :

Exemple d'application : Génération de fonctions logique

$$S = \overline{x} \, \overline{y}z + \overline{x}y\overline{z} + \overline{x}yz + xy\overline{z}$$

2. Les démultiplexeurs :

- Un démultiplexeur est circuit qui contient une seule entrée et plusieurs sorties
- Il permet d'amener le signal de l'entrée sur l'une des sorties sélectionnée
- Il réalise l'opération inverse de celle d'un multiplexeur

2. Les démultiplexeurs :

- Exemple 1:
 - Table de vérité
 - Equations logiques

$$S_1 = \overline{A}D$$

$$S_2 = AD$$

A	S ₁	S ₂
0	D	0
1	0	D

2. Les démultiplexeurs :

- Exemple 2:
 - Table de vérité
 - Equations logiques

$$S_1 = \overline{ABD}$$

$$S_2 = \overline{A}BD$$

$$S_3 = A\overline{B}D$$

$$S_4 = ABD$$

A	В	S ₁	S ₂	S_3	S ₄
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

- Exemple 2:
 - Logigramme:

Le décodeur est un circuit logique qui établie la correspondance entre 1 code d'entrée binaire de N bits et M lignes de sorties avec :

$$M \leq 2^N$$

- Certains décodeurs n'utilise pas toute la gamme des 2N codes d'entrées possibles, mais seulement un sous ensemble de celle-ci.
- Exemple : Le décodeur DCB-Décimal qui a comme entrée un code de 4 bits et 10 lignes de sorties, une pour chacune des 10 représentations du code DCB.

Table de vérité

D	С	В	A	S ₀	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1

- Exemple 2 : Décodeur DCB 7 Segments
 - Table de vérité

D	С	В	A	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

- Le codeur réalise l'opération inverse du Décodeur
- Exemple : Codeur Décimal-DCB

Exemple d'utilisation : codeur d'intérrupteur

