Original Output:

Model: "sequential_42"

Layer (type)	Output Shape	Param #
dense_155 (Dense)	(None, 20)	180
dense_156 (Dense)	(None, 1)	21

```
Total params: 605 (2.37 KB)
Trainable params: 201 (804.00 B)
Non-trainable params: 0 (0.00 B)
Optimizer params: 404 (1.58 KB)
None
6/6 —————— 0s 4ms/step - acc: 0.7335 - loss: 0.7068
[0.6483923196792603, 0.7291666865348816]
```

Model: "sequential_44"

Layer (type)	Output Shape	Param #
dense_160 (Dense)	(None, 20)	180
dense_161 (Dense)	(None, 15)	315
dense_162 (Dense)	(None, 1)	16

Model: "sequential_45"

Layer (type)	Output Shape	Param #
dense_163 (Dense)	(None, 20)	180
dense_164 (Dense)	(None, 15)	315
dense_165 (Dense)	(None, 10)	160
dense_166 (Dense)	(None, 5)	55
dense_167 (Dense)	(None, 1)	6

As I add more layers, it seems like the accuracy seems to be slowly increasing after initially decreasing

Next I tried the new dataset, and got this output after making some changes so that M/B would be 1 and 0. I kept getting NaN for loss and figured out that there was a column that contained only nulls so I dropped that column and got this as the output:

Model: "sequential_52"

Layer (type)	Output Shape	Param #
dense_194 (Dense)	(None, 20)	620
dense_195 (Dense)	(None, 15)	315
dense_196 (Dense)	(None, 10)	160
dense_197 (Dense)	(None, 5)	55
dense_198 (Dense)	(None, 1)	6

Then after this I implemented the normalization changes and got this:

Model: "sequential_53"

Layer (type)	Output Shape	Param #
dense_199 (Dense)	(None, 20)	620
dense_200 (Dense)	(None, 15)	315
dense_201 (Dense)	(None, 10)	160
dense_202 (Dense)	(None, 5)	55
dense_203 (Dense)	(None, 1)	6

This seems to be pretty good, I will see if I can improve upon it further.

After removing the hidden layers I was able to get this:

Model: "sequential_54"

Layer (type)	Output Shape	Param #
dense_204 (Dense)	(None, 20)	620
dense_205 (Dense)	(None, 1)	21

This one was able to reduce the loss by a large amount while keeping the accuracy the same.

Video Link: https://youtu.be/yQglnwvgx7c