Solutions to Munkres' Topology

By:

Dustin Smith

Contents

1	Set Theory and Logic	5
	1.1 Fundamental Concepts	5
2	Topological Spaces and Continuous Functions	7
	2.1 Topological Spaces	7
	2.2 Basis for a Topology	

1 Set Theory and Logic

Skipped for now

1.1 Fundamental Concepts

2 Topological Spaces and Continuous Functions

2.1 Topological Spaces

2.2 Basis for a Topology

1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U contianing x such that $U \subset A$. Show A is open in X.

For each x in A, there exists an open set U_x such that $x \in U_x \subset A$. Then $\bigcup_{x \in A} U_x \subseteq A$. Since U_x is an open set containing all $x \in A$, $A = \bigcup_{x \in A} U_x$; that is, A is the arbitrary union of a collection of open set so A is open in X.

2. Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in example 1 of chapter 2 section 2.1. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is finer.

Let $X = \{a, b, c\}$. Next, let's index the nine topologies.

$$\begin{array}{lll} \mathfrak{T}_{1} = \{\varnothing,X\} & \mathfrak{T}_{2} = \{\varnothing,\{a\},\{a,b\},X\} & \mathfrak{T}_{3} = \{\varnothing,\{b\},\{a,b\},\{b,c\},X\} \\ \\ \mathfrak{T}_{4} = \{\varnothing,\{b\},X\} & \mathfrak{T}_{5} = \{\varnothing,\{a\},\{b,c\},X\} & \mathfrak{T}_{6} = \{\varnothing,\{b\},\{c\},\{a,b\},\{b,c\},X\} \\ \\ \mathfrak{T}_{7} = \{\varnothing,\{a,b\},X\} & \mathfrak{T}_{8} = \{\varnothing,\{a\},\{b\},\{a,b\},X\} & \mathfrak{T}_{9} = \{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},X\} \\ \end{array}$$

A topology \mathfrak{T}_i is comparable with \mathfrak{T}_j for $i \neq j$ if either $\mathfrak{T}_i \supset \mathfrak{T}_j$ or $\mathfrak{T}_i \subset \mathfrak{T}_j$. Now $\mathfrak{T}_1 \subset \mathfrak{T}_j$ for $i \in [2,9]$. Therefore, \mathfrak{T}_1 is coarser than \mathfrak{T}_i so \mathfrak{T}_i is finer than \mathfrak{T}_1 . We will next look at \mathfrak{T}_9 . For $i \in [1,8]$, $\mathfrak{T}_i \subset \mathfrak{T}_9$. Therefore, \mathfrak{T}_9 is finer than \mathfrak{T}_i for $i \in [1,8]$. \mathfrak{T}_2 is comparable with \mathfrak{T}_7 and \mathfrak{T}_8 For \mathfrak{T}_8 , $\mathfrak{T}_2 \subset \mathfrak{T}_8$ so \mathfrak{T}_8 is finer than \mathfrak{T}_2 , but $\mathfrak{T}_7 \subset \mathfrak{T}_2$ so \mathfrak{T}_2 is finer than \mathfrak{T}_7 . \mathfrak{T}_3 is comparable with \mathfrak{T}_4 , \mathfrak{T}_6 , and \mathfrak{T}_7 . For i = 4,7, $\mathfrak{T}_i \subset \mathfrak{T}_3$ so \mathfrak{T}_3 is finer than \mathfrak{T}_i for i = 4,7, but $\mathfrak{T}_3 \subset \mathfrak{T}_6$ so \mathfrak{T}_6 is finer \mathfrak{T}_3 . \mathfrak{T}_4 is comparable to \mathfrak{T}_6 and \mathfrak{T}_8 and $\mathfrak{T}_4 \subset \mathfrak{T}_6$ for i = 6,8 so \mathfrak{T}_i is finer than \mathfrak{T}_4 . \mathfrak{T}_5 and \mathfrak{T}_6 are only comparable to \mathfrak{T}_9 and we have already determined the comparability of \mathfrak{T}_9 . \mathfrak{T}_7 is comparable to \mathfrak{T}_8 and $\mathfrak{T}_7 \subset \mathfrak{T}_8$ so \mathfrak{T}_8 is finer than \mathfrak{T}_7 . \mathfrak{T}_8 has been compared with all possible topologies by now.

3. Show that the collection \mathcal{T}_c given in example 4 of chapter 2 section 2.1 is a topology on the set X. Is the collection

$$\mathcal{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$$

a topology on X?

- 4. (a) If \mathcal{T}_{α} is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X?
 - (b) Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .
 - (c) If $X = \{a, b, c\}$, let

$$\mathfrak{I}_1 = \{\emptyset, X, \{\alpha\}, \{\alpha, b\}\}\$$
 and $\mathfrak{I}_2 = \{\emptyset, X, \{\alpha\}, \{b, c\}\}.$

Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology containing \mathcal{T}_1 and \mathcal{T}_2 .

- 5. Show that if A is a basis for a topology on X, then the topology generated by A equals the intersection of all topologies on X that contain A. Prove the same if A is a subbasis.
- 6. Show that the topologies on \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable.
- 7. Consider the following topologies on \mathbb{R} :

 \mathfrak{T}_2 = the topology of \mathbb{R}_K ,

 \mathfrak{I}_3 = the finite complement topology,

 $\mathbb{T}_4=$ the upper limit topology, having all sets $(\mathfrak{a},\mathfrak{b}]$ as a basis,

 $\mathcal{T}_5 = \text{the topology having all sets } (-\infty, \alpha) = \{x \mid x < \alpha\} \text{ as a basis.}$

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a,b) \mid a < b, \ a,b \in \mathbb{Q}\}$$

is a basis that generates the standard topology on \mathbb{R} .

(b) Show that the collection

$$\mathcal{C} = \{[a,b) \mid a < b, a,b \in \mathbb{Q}\}\$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .