EXAME PARA BOLSA PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA

CÓDIGO	NOTA	

A1	
A2	
A3	
A4	

C1	
C2	
C3	
C4	

DEZEMBRO 2005

Qual é a transformação linear $T: IR^2 \rightarrow IR^3$, tal que T(1,1) = (3,2,1) e T(0,-2) = (0,1,0).

- A2 Prove ou dê um contra-exemplo.
 - (a) Se todos os autovalores de A são nulos então A é a matriz nula?
 - (b) Se $AT = A^{-1}$, então $|\det(A)| = 1$.
 - (c) $A^{T}A$ e A têm o mesmo núcleo.
- A3 Mostre que a matriz

tem um autovalor positivo e um autovalor negativo.

A4 Considere o conjunto

$$E_{\lambda} = \{ v \to V: T(v) = \lambda V \},$$

onde $T: V \rightarrow V$ é uma transformação linear e λ é um elemento qualquer do corpo associado a V.

- (a) Mostre que E_{λ} é um subespaço de V.
- (b) Mostre que, $\forall v \in E_{\lambda}$, $T(v) \in E_{\lambda}$,.
- **C1** Seja $f: IR \rightarrow IR$ contínua em [a, b], tal que f(a) < f(b). Suponha que quaisquer que sejam $s \in t$ em [a, b], $s \neq t \Rightarrow f(s) \neq f(t)$. Prove que $f \in t$ estritamente crescente em [a, b].

- **C2** Seja $f: IR \rightarrow IR$.
 - (a) O que significa f ser contínua no ponto x_0 ?
 - (b) Mostrar, usando a definição dada em (a), que f(x) = 2x + 1 é contínua no ponto 1.
- Seja $f: [0,1] \rightarrow IR$ contínua, tal que $\forall x \in [0,1]$, tem-se $0 \le f(x) \le 1$. Prove que existe c em [0,1], tal que f(c) = c.
- **C4** Seja $f: IR \rightarrow IR$ contínua e diferenciável. Provar que:
 - (a) se $f(z) \neq 10$, então | $f \mid e$ diferenciável em z.
 - (b) $|f|^2$ é diferenciável.