

PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

RELATÓRIO DO PROJETO: PROCESSADOR INSALUBYTE

ALUNOS:

Ryan Kayky Marques Rolins Bastos – 202207080 Giovana Oliveira Moraes de Lima – 2022006980 Victor Hugo Costa - 2022010016

> Novembro de 2023 Boa Vista/Roraima

PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE RORAIMA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

RELATÓRIO DO PROJETO: PROCESSADOR INSALUBYTE

Novembro de 2023 Boa Vista/Roraima

Resumo

Este trabalho aborda o projeto de implementação de um processador 16 bits uni ciclo baseado na arquitetura do processador MIPS, implementado através da linguagem VHDL e a ferramenta Intel Quartus Prime Lite. Ao decorrer do relatório será apresentado a descrição de cada componente necessário para o funcionamento do processador, bem como alguns testes realizados ao decorrer do desenvolvimento.

Conteúdo

Conteú	do		4
1 Esp	pecifi	cação	7
1.1	Plat	taforma de desenvolvimento	7
1.2	Cor	njunto de instruções	7
1.3	Des	scrição do Hardware	9
1.3	8.1 AL	.U ou ULA	9
1.3	3.2	Somador	9
1.3	3.3	PC	10
1.3	3.4	Unidade de Controle (UC)	10
1.3	3.5	Memória de dados (RAM)	11
1.3	3.6	Memória de Instruções (ROM)	12
1.3	3.7	Banco de registradores	12
1.3	8.8	Divisor de instruções	13
1.3	3.9	Multiplexador	13
1.3	3.10	Extensor de sinal 4x16	13
1.3	3.11	Branch Helper	14
1.4	Dat	tapath	14
2 Sin	nulaç	cões e Testes	15
3 Consi	deraç	ções finais	18
4 Ref	ferên	cias	18

Lista de Figuras

FIGURA 1 - ESPECIFICAÇÕES NO QUARTUS	7
FIGURA 2 - BLOCO SIMBÓLICO DO COMPONENTE COMPULA GERADO PELO QUARTUS	9
FIGURA 3 - BLOCO SIMBÓLICO DO COMPONENTE SOMADOR GERADO PELO QUARTUS	9
FIGURA 4 - BLOCO SIMBÓLICO DO COMPONENTE PC GERADO PELO QUARTUS	10
FIGURA 5 - BLOCO SIMBÓLICO DO COMPONENTE UC GERADO PELO QUARTUS	10
FIGURA 6 - BLOCO SIMBÓLICO DO COMPONENTE RAM GERADO PELO QUARTUS	11
FIGURA 7 - BLOCO SIMBÓLICO DO COMPONENTE ROM GERADO PELO QUARTUS	12
FIGURA 8 - BLOCO SIMBÓLICO DO COMPONENTE REGISTRADORES GERADO PELO QUARTUS	12
FIGURA 9 - BLOCO SIMBÓLICO DO COMPONENTE DIVISOR DE INSTRUÇÃO GERADO PELO QUARTUS	13
FIGURA 10 - BLOCO SIMBÓLICO DO COMPONENTE MUX GERADO PELO QUARTUS	13
FIGURA 11 - BLOCO SIMBÓLICO DO COMPONENTE EXTENSOR GERADO PELO QUARTUS	13
FIGURA 12 - BLOCO SIMBÓLICO DO COMPONENTE BRANCH GERADO PELO QUARTUS	14
FIGURA 13 - BLOCO SIMBÓLICO DA CPU GERADO PELO QUARTUS	14
FIGURA 14 - RESULTADO NA WAVEFORM (FIBONACCI).	16
Figura 15 – Resultado na waveform (fatorial)	17

Lista de Tabelas

Tabela 1 – Escrita em binário do tipo R e I.	8
TABELA 2 – ESCRITA EM BINÁRIO DO TIPO J.	8
TABELA 3 – LISTA DE OPCODES UTILIZADAS PELO PROCESSADOR INSALUBYTE.	8
TABELA 4 - DETALHES DAS FLAGS DE CONTROLE DO PROCESSADOR.	11
TABELA 5 - CÓDIGO FIBONACCI PARA O PROCESSADOR QUANTUM/EXEMPLO.	15
TABELA 6 – CÓDIGO DO FATORIAL.	16

1 Especificação

Nesta seção é apresentado o conjunto de itens para o desenvolvimento do processador INSALUBYTE, bem como a descrição de cada etapa da construção do processador.

1.1 Plataforma de desenvolvimento

Para a implementação do processador INSALUBYTE foi utilizado a IDE Quartus Prime Lite Edition, versão 19.1.0 e simulador ModelSim na versão 19.1.0.670. É uma ferramenta que fornece os recursos necessários para a realização do projeto.

A grande vantagem de usar a IDE é pôr em prática a programação da linguagem VHDL, adquirir experiências na manipulação de hardware e componentes funcionais de um processador.

Flow Status	Successful - Wed Nov 29 14:22:14 2023
Quartus Prime Version	19.1.0 Build 670 09/22/2019 SJ Lite Edition
Revision Name	Processador
Top-level Entity Name	Processador
Family	Cyclone V
Device	5CGXFC7C7F23C8
Timing Models	Final
Logic utilization (in ALMs)	83 / 56,480 (< 1 %)
Total registers	64
Total pins	145 / 268 (54 %)
Total virtual pins	0
Total block memory bits	256 / 7,024,640 (< 1 %)
Total DSP Blocks	0 / 156 (0 %)
Total HSSI RX PCSs	0/6(0%)
Total HSSI PMA RX Deserializers	0/6(0%)
Total HSSI TX PCSs	0/6(0%)
Total HSSI PMA TX Serializers	0/6(0%)
Total PLLs	0 / 13 (0 %)
Total DLLs	0 / 4 (0 %)
	and the second s

Figura 1 - Especificações no Quartus

1.2 Conjunto de instruções

O processador INSALUBYTE possui 8 registradores: S0, S1, S2, S3, S4, S5, S6, S7. Assim como 3 formatos de instruções de 16 bits cada, Instruções do **tipo R** (operações aritméticas e saltos condicionais), **I** (operações com valores na memória e valores imediatos) e **J** (saltos incondicionais), seguem algumas considerações sobre as estruturas contidas nas instruções:

- **Opcode**: a operação básica a ser executada pelo processador, tradicionalmente chamado de código de operação;
- Reg1: É o registrador de destino para alguns tipos de instruções (ex. instruções do tipo R) e o primeiro operando fonte;
- Reg2: o registrador contendo o segundo operando fonte;
- Reg3: o registrador contendo o terceiro operando fonte;

Tipo de Instruções:

- **Formato do tipo R:** Este formato aborda instruções de Load (exceto *load Immediately*), Store e instruções baseadas em operações aritméticas.

Formato para escrita em código binário do tipo R e I:

Tabela 1 - Escrita em binário do tipo R e I

Opcode	Reg1	Reg2	Reg3	
4 bits	4 bits	4 bits	4 bits	
15-12	11-8	7-4	3-0	

Formato para escrita em código binário do tipo J:

Tabela 2 – Escrita em binário do tipo J

Opcode	Label
4 bits	12 bits
15-12	11-0

Visão geral das instruções do Processador INSALUBYTE:

O número de bits do campo **Opcode** das instruções é igual a quatro, sendo assim obtemos um total $(Bit(0e1)^{NumeroTodaldeBitsdoOpcode} : 2^4 = 16)$ de 16 **Opcodes (0-12)** que são distribuídos entre as instruções, assim como é apresentado na Tabela 1.

Tabela 3 – Lista de Opcodes utilizadas pelo processador INSALUBYTE

Opcod	Opcod Nome Formato		Breve Descrição	Exemplo		
е						
0000	ADD	R	Soma	add \$S0, \$S1, \$S2, ou seja, \$S0 := \$S1+\$S2		
0001	ADDi	- 1	Soma Imediata	addi \$\$0, \$\$1, X, ou seja, \$\$0 := \$\$1+X		
0010	SUB	R	Subtração	sub \$S0, \$S1, \$S2, ou seja, \$S0 := \$S1 - \$S2		
0011	SUBi	1	Subtração Imediata	subi \$S0, \$S1, X, ou seja, \$S0 := \$S1-X		
0100	LW		Load Word	lw \$\$0, 0(\$0)		
0101	SW	1	Store Word	sw \$S0, 0(\$0)		
0110	LI	I	Load Imediato	li \$S0, 31		
0111	BEQ	R	Salto Condicional	beq \$S0, \$S1, L1		
1000	IF	R	Condição	If \$S0, \$S1		
1001	J	J	Salto	JL1		
1010	MULT	R	Multiplicação	mult \$\$0, \$\$1, \$\$2, ou seja, \$\$0 := \$\$1*\$\$2		
1011	MULTi	I	Multiplicação imetiada	multi \$\$0, \$\$1, X, ou seja, \$\$0 := \$\$1*X		

1.3 Descrição do Hardware

Nesta seção são descritos os componentes do hardware que compõem o processador INSALUBYTE, incluindo uma descrição de suas funcionalidades, valores de entrada e saída.

1.3.1 ALU ou ULA

O componente compULA (Unidade Lógica Aritmética) tem como principal objetivo efetuar as principais operações aritméticas, dentre elas: soma, subtração e multiplicação. Adicionalmente o compULA efetua operações de comparação de valor como maior ou igual, menor ou igual, somente maior, menor ou igual. O elemento recebe como entrada três valores:

- rs Dado de 16 bits para operação;
- rd Dado de 16 bits para operação;
- AluOp Identificador da operação que será realizada, com 4 bits.

O membro também possui duas saídas:

- z Identificador de resultado (1bit) para comparações (1 se verdade e 0 caso contrário);
- resultado Saída com o resultado das operações aritméticas.

Figura 2 - Bloco simbólico do componente compULA gerado pelo Quartus

1.3.2 Somador

O somador_pc desempenha a função de somar o valor da instrução atual do PC com o valor 1 em binário. Ele possui duas entradas, o "Clock" e a "Entrada", onde recebe o endereço de 16 bits da instrução atual do PC. Além disso, apresenta uma saída denominada "Saida", que receberá o resultado da operação de soma do endereço atual com o valor 1, resultando no próximo endereço de instrução a ser armazenado no PC.

Figura 3 - Bloco simbólico do componente somador gerado pelo Quartus

1.3.3 PC

A função do componente PC é armazenar o endereço de 16 bits da instrução que será executada. Ele possui dois valores de entrada: o Clock, que é responsável por ativar o componente, e o enderecoDeEntrada, onde entra o endereço da instrução a ser executada. Além disso, possui uma saída enderecoDeEntrada, de onde sai o endereço da instrução a ser executada.

Figura 4 - Bloco simbólico do componente PC gerado pelo Quartus

1.3.4 Unidade de Controle (UC)

A Unidade de Controle (UC) tem como propósito gerenciar todos os componentes do processador com base no opcode de 4 bits recebido no OpCode. Esse controle é realizado por meio das flags de saída a seguir:

- jump: sinal que determina a adoção de um desvio incondicional.
- branch: sinal que determina se vai ocorrer um desvio condicional.
- MemRead: sinal que determina se será lido um dado da memória RAM.
- **MemToReg**: sinal que determina se o dado será escrito no banco de registradores será enviado pela ULA ou pela memória RAM.
- MemWrite: sinal para decidir se será escrito um dado da memória RAM.
- **RegWrite**: sinal para determinar se o banco de registradores vai escrever um dado na posição do registrador de destino.
- AluSrc: sinal para decidir se o dado que entrará na ULA será enviado pelo banco de registradores ou pelo extensor de sinal.

Figura 5 - Bloco simbólico do componente UC gerado pelo Quartus

Abaixo segue a tabela, onde é feita a associação entre os OpCodes e as flags de controle:

Comand o	AluOp	Regwrite	Jum p	Branch	MemRead	MemToRea d	MemWrite	Alusr C
Add	0000	1	0	0	0	0	0	0
addi	0001	1	0	0	0	0	0	1
sub	0010	1	0	0	0	0	0	0
subi	0011	1	0	0	0	0	0	1
Lw	0100	1	0	0	1	1	0	0
Sw	0101	0	0	0	0	0	1	0
Li	0110	1	0	0	0	0	0	1
Beq	0111	0	0	1	0	0	0	0
IF_Op	1000	0	0	0	0	0	0	0
Mult	1010	1	0	0	0	0	0	0
Multi	1011	1	0	0	0	0	0	1
J	1001	0	1	0	0	0	0	0

Tabela 4 - Detalhes das flags de controle do processador

1.3.5 Memória de dados (RAM)

A memória RAM desempenha a função de armazenar temporariamente os dados utilizados durante a execução das instruções. Ela possui cinco entradas:

- Clock: ativa o componente;
- DATA_IN: recebe o dado de 16 bits que será temporariamente armazenado na RAM;
- WRITE_MEMORY: recebe 1 bit para determinar se haverá armazenamento de dados na RAM;
- READ_MEMORY: recebe 1 bit para determinar se haverá leitura de dados na RAM;
- Endereco: entrada de 16 bits que representa a posição na memória RAM onde o dado será escrito ou lido.

A memória RAM também possui uma saída denominada `DATA_OUT`, da qual é emitido um dado de 16 bits da posição indicada pelo endereço, somente se a entrada `READ_MEMORY` estiver recebendo '1'.

Figura 6 - Bloco simbólico do componente RAM gerado pelo Quartus

1.3.6 Memória de Instruções (ROM)

A Memória de Instrução desempenha a função de armazenar as instruções que serão executadas pelo processador. Esta memória possui duas entradas:

- Clock: responsável por ativar o componente;
- Endereco: endereço de 16 bits que indica a localização da instrução que será executada.

Além disso, a Memória de Instrução possui uma saída de 16 bits, pela qual é emitida a instrução correspondente ao endereço fornecido.

Figura 7 - Bloco simbólico do componente ROM gerado pelo Quartus

1.3.7 Banco de registradores

O banco de registradores é encarregado de armazenar os dados utilizados na execução das operações que o empregam. Este banco possui 8 registradores capazes de armazenar valores de 16 bits. Suas entradas incluem o clock, responsável por ativar o componente, reg_write, que habilita a opção de escrever dados no registrador, e write_data, que recebe o valor de 16 bits a ser gravado no primeiro registrador. Adicionalmente, Reg1 recebe 4 bits para indicar o endereço do primeiro registrador, enquanto Reg2 e reg3 recebem, cada um, 4 bits para indicar os endereços do segundo e terceiro registradores, respectivamente.

Os componentes RegA_de_saida e RegB_de_saida produzem uma saída de 16 bits, representando o valor armazenado nos endereços de Reg2 e Reg3, respectivamente.

Figura 8 - Bloco simbólico do componente Registradores gerado pelo Quartus

1.3.8 Divisor de instruções

O divisor é utilizado uma única vez ao longo do processador e tem a função de separar a instrução para os componentes subsequentes. A instrução está no formato [OPCODE, R1, R2, R3] quando lidamos com uma instrução do tipo R. Suas entradas compreendem a instrução, enquanto suas saídas incluem opcode, rs, rt, rd e endereço.

Figura 9 - Bloco simbólico do componente Divisor de Instrução gerado pelo Quartus

1.3.9 Multiplexador

Um multiplexador 2 para 1 possui duas entradas de 16 bits, denominadas a e b, que recebem os dados, e uma entrada s, responsável por determinar qual dado será selecionado como saída. Quando s é igual a 0, o dado de saída será idêntico ao de a; caso s seja 1, o dado de saída será o correspondente a b

Figura 10 - Bloco simbólico do componente MUX gerado pelo Quartus

1.3.10 Extensor de sinal 4x16

O extensor de sinal desempenha a função de ampliar o número de bits da entrada, que é de 4 bits, para 16 bits na saída. Seu resultado é empregado nas operações na ULA e também para fornecer o endereço à memória de dados.

Figura 11 - Bloco simbólico do componente Extensor gerado pelo Quartus

1.3.11 Branch Helper

O Branch helper é responsável por realizar a comparação nos jumps condicionais, como Beq e If. Ele possui uma entrada A de 1 bit e uma saída S de 1 bit. Seu resultado é utilizado quando a condição Beq é verdadeira

Figura 12 - Bloco simbólico do componente Branch gerado pelo Quartus

1.4 Datapath

É a conexão entre as unidades funcionais formando um único caminho de dados e acrescentando uma unidade de controle responsável pelo gerenciamento das ações que serão realizadas para diferentes classes de instruções.

Figura 13 - Bloco simbólico da CPU gerado pelo Quartus

2 Simulações e Testes

Objetivando analisar e verificar o funcionamento do processador, efetuamos alguns testes analisando cada componente do processador em específico, em seguida efetuamos testes de cada instrução que o processador implementa. Para demonstrar o funcionamento do processador INSALUBYTE utilizaremos como exemplo o código para calcular o número da sequência de Fibonacci.

Binário Linguagem de Alto Reg1 Reg2 Reg3 Endereço Opcode Nível Endereço Dado Addi \$\$0, \$\$0, 0 **Sw** \$S0 0 Addi \$\$0, \$\$0, 1 Addi \$\$1, \$\$1, 1 Lw \$S2.0 **Add** \$S2, \$S2, \$S1 **Add** \$\$1, \$\$1, \$\$0 Lw \$S0, 0 Add \$\$0, \$\$0, \$\$2 J 0100

Tabela 5 - Código Fibonacci para o processador Quantum/EXEMPLO.

Explicando o funcionamento do código, primeiramente ocorre uma adição imediata em \$\$0, tornando-o igual a 0. Em seguida, temos a instrução de armazenamento (store - sw) que armazena o valor de \$\$0 na posição 0 da RAM. No início da sequência de Fibonacci, adicionamos 1 a \$\$0 e 1 a \$\$1. Em seguida, carregamos o valor armazenado na RAM da posição 0 em \$\$2.

As etapas subsequentes envolvem operações aritméticas: somamos \$S2 a \$S1, somamos \$S1 a \$S0 e carregamos o valor de \$S0 na RAM (Posição 0). Adicionalmente, somamos \$S0 a \$S2 e, por fim, saltamos para a linha 3, mantendo um ciclo até atingir o limite do processador. Este ciclo representa a iteração do código na execução da sequência de Fibonacci

Verificação dos resultados no relatório da simulação: Após a compilação e execução da simulação, o seguinte relatório é exibido.

Figura 14 - Resultado na waveform (Fibonacci).

Estes são os pinos de saída para observação dos resultados, entre eles nós podemos citar: PC, Memória de Instruções, ULA, Unidade de Controle e Registradores.

Nesta parte, podemos ver que o processador está pegando as instruções corretamente da ROM e realizando as devidas operações.

Tabela 6 - Código do fatorial.

	Linguagem de Alto Nível	Binário				
Endoroco		Opcode	Reg1	Reg2	Reg3	
Endereço				Endereço		
			Dado			
0	Li \$S0 8	0110	0000	0000	1000	
U	LI \$30 6		011000000	0001000		
1	li¢C1 1	0110	0001	0001	0001	
'	Li \$S1 1	011000010001				
2	Li \$S2 1	0110	0001	0001	0001	
		0110001000100001				
3	If \$S0 == \$S2	1000	0000	0000	0010	
		10000000000010				
4	beq \$s2 \$s0 jump	0111	0010	0000	1000	
	1000	011100100001000				
5	mult \$S1 \$S1 \$S2	1010	0001	0001	0010	
		1010000100010				
6	addi \$S2 \$S2 1	0001	0010	0010	0001	
		0001001000100001				
7	J 0011	1001	0000	0000	0011	
		10010000000011				

Figura 15 - Resultado na waveform (fatorial)

Ao observarmos a saída da ULA, podemos perceber que o código funciona.

Explicando o funcionamento do código, inicialmente utilizamos a instrução load imediato para carregar um valor que servirá como critério de parada para o cálculo do fatorial; no exemplo, esse valor é 8. Posteriormente, carregamos nos registradores \$\$1 e \$\$2 o valor 1, onde um será usado para armazenar o resultado do fatorial e o outro para representar o contador (variável "i").

Em seguida, o código inclui uma estrutura condicional (if) que verifica se \$\$0 é igual a \$\$2, indicando que "i" atingiu o valor estabelecido no \$\$0. Logo após, temos uma instrução de branch equal (beq) que utiliza o resultado da condição do if para determinar se o fluxo de controle deve pular para o label 8, encerrando o laço. Caso a condição não seja satisfeita, o programa prossegue para a próxima instrução.

Posteriormente, o código realiza a multiplicação do valor em \$S1 (representando o fatorial) pelo valor em \$S2 (representando "i"). Em seguida, incrementa 1 em \$S2, indicando o aumento do contador "i". Finalmente, o programa realiza um salto incondicional (jump) de volta à linha 3, reiniciando o ciclo até que a condição de parada seja atendida. Este processo continua até que o fatorial seja calculado conforme o critério estabelecido.

3 Considerações finais

Este trabalho apresentou o projeto e implementação do processador RISC de 16 bits denominado INSALUBYTE. Ficando claro, a descrição de todos os componentes, suas características e respectivas operações fundamentais exigidas nas orientações do projeto.

No entanto, foram encontradas dificuldades no decorrer do projeto. Dentre elas estão:

- Não opera com valores negativos.
- ULA sem suporte para overflow.
- O número de Opcodes é limitado a 16.

Sendo evidente que algumas dessas limitações apresentadas são reflexo da adoção de uma arquitetura baseada em 16 bits. Mesmo com essas limitações apresentadas, o processador INSALUBYTE é totalmente funcional quando utilizamos os 3 formatos de instruções (R, I, J), além de ter mostrado o desenvolvimento de circuitos utilizando VHDL e a utilização do Quartus.

No geral, foi uma boa experiencia voltada ao funcionamento e criação de um processador e a utilização de linguagens de baixo nível, onde foram utilizados os conceitos apresentados em aula.

4 Referências

PATTERSON, D.; HENESSY, J. L. Organização e projeto de computadores: a interface hardware/software. 3ª Edição. São Paulo: Elsevier, 2005.

nataliaalmada - Overview. Disponível em: https://github.com/nataliaalmada

ed-henrique - Overview. Disponível em: https://github.com/ed-henrique

VHDL code for MIPS Processor. Disponível em: https://www.fpga4student.com/2017/09/vhdl-code-for-mips-processor.html