Title: Efficacy of multivitamin/mineral supplementation to reduce chronic disease risk: a critical review of the evidence from observational studies and randomized controlled trials

Giana Angelo, PhD, Linus Pauling Institute;

Victoria J. Drake, PhD, Linus Pauling Institute;

and Balz Frei, PhD, Linus Pauling Institute; Department of Biochemistry and Biophysics

Linus Pauling Institute, Oregon State University, Corvallis, OR

Address for correspondence:

Balz Frei, PhD

Director and Endowed Chair

Linus Pauling Institute

Oregon State University

307 Linus Pauling Science Center

Corvallis, OR 97331

(541) 737-5078

(541) 737-5077

balz.frei@oregonstate.edu

This manuscript has not been published elsewhere nor has it been submitted for publication elsewhere.

Disclosure Information:

Pfizer Consumer Healthcare has sponsored the writing of the manuscript and provided payment to a medical communications agency, Peloton Advantage, LLC, for editorial assistance. Reprints will not be available from the author. GA and VJD received an honorarium from Pfizer in connection with the development of this manuscript. BF is a consultant for Pfizer Inc.

Running Head

Multivitamin/minerals and chronic disease risk

Keywords

Multivitamin/minerals; chronic disease risk; randomized controlled trials; prospective cohort studies; micronutrient inadequacies

ABSTRACT

We reviewed recent scientific evidence regarding the effects of MVM supplements on risk of chronic diseases, including cancer, cardiovascular disease, and age-related eye diseases. Data from randomized controlled trials (RCTs) and observational, prospective cohort studies were examined. The majority of scientific studies investigating the use of MVM supplements in chronic disease risk reduction reported no significant effect. However, the largest and longest RCT of MVM supplements conducted to date, the Physicians' Health Study II (PHS II), found a modest and significant reduction in total and epithelial cancer incidence in male physicians, consistent with the Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) trial. In addition, PHS II found a modest and significant reduction in the incidence of nuclear cataract, in agreement with several other RCTs and observational, prospective cohort studies. The effects of MVM use on other subtypes of cataract and age-related macular degeneration remain unclear. Neither RCTs nor prospective cohort studies are without their limitations. The placebo-controlled trial design of RCTs may be inadequate for nutrient interventions, and residual confounding, measurement error, and the possibility of reverse causality are inherent to any observational study. National surveys show that micronutrient inadequacies are widespread in the US and that dietary supplements, of which MVMs are the most common type, help fulfill micronutrient requirements in adults and children.

INTRODUCTION

In general, a multivitamin/mineral (MVM) supplement is a dietary supplement that contains about 100% of the recommended levels (Food and Drug Administration, 2013; National Academy of Sciences, Institute of Medicine et al., 2010; Pfizer Consumer Healthcare, 2013) of daily intake of most vitamins and essential minerals (**Table 1**). However, there are no standardized definitions for MVMs, and the composition of commercial MVM products varies widely, potentially including such non-nutrient ingredients as herbals, phytochemicals, or hormones. No MVM supplement contains the recommended levels of intake for calcium, magnesium, potassium, and phosphorus since the resulting pill would be too bulky.

Use of dietary supplements has become increasingly common among adults in the US (Bailey R. L., Gahche, J. J. et al., 2011; Briefel R. R., Johnson, C. L., 2004), with MVMs being the most popular type (Bailey R. L., Gahche, J. J. et al., 2013; Gahche J., Bailey, R. et al., 2011).

According to the NHANES 2007–2010, approximately one-third of adults in the US ≥20 years of age take an MVM supplement, with the main motivation being "to improve overall health" (Bailey R. L., Gahche, J. J. et al., 2013). MVM use is more prevalent among women, older adults, non-Hispanic Whites, and those with higher education, as well as those who report participating in physical activity and those with a lower BMI (National Institutes of Health, 2006; Radimer K., Bindewald, B. et al., 2004). Overall, dietary supplement users are more likely to have healthier diets (Foote J. A., Murphy, S. P. et al., 2003; Li K., Kaaks, R. et al., 2010; Rock

C. L., 2007) or rate their health as excellent or very good (Bailey R. L., Gahche, J. J. et al., 2013; Radimer K., Bindewald, B. et al., 2004; Sullivan K. M., Ford, E. S. et al., 2009). On the other hand, individuals with chronic illness seeking to prevent recurrence are also frequent users of dietary supplements (Bender M. M., Levy, A. S. et al., 1992; National Institutes of Health, 2006; Patterson R. E., Neuhouser, M. L. et al., 2003).

Despite MVM use being so prevalent, US national surveys indicate that select micronutrient (vitamin and nutritionally essential minerals) inadequacies still exist. After calculating total usual nutrient intake from all food sources and supplements, a significant proportion of US adults ≥19 years of age still fall short of meeting the estimated average requirement (EAR) (text box) for certain micronutrients, namely vitamin D (68%), vitamin E (58%), vitamin A (37%), vitamin C (28%), calcium (36%), and magnesium (48%) (Fulgoni V. L., III, Keast, D. R. et al., 2011). The majority of US adults consume less than the Adequate Intake (AI) (text box) for potassium and vitamin K (Fulgoni V. L., III, Keast, D. R. et al., 2011). Additionally, many Americans consume foods with many calories and few nutrients. Data from NHANES (1988-1994) estimated that 27% of dietary calorie intake in the American diet is from energy-dense, nutrient-poor foods (Kant A. K., 2000). This survey also found that higher intakes of energy-dense, nutrient-poor foods were associated with lower serum concentrations of several micronutrients, including vitamin A, folate, vitamin B₁₂, vitamin C, and vitamin E (Kant A. K., 2000). According to the Dietary Guidelines for Americans (2010), Americans currently consume too much sodium and too many calories from solid fats, added sugars, and refined grains (US Department of Agriculture, 2010). This contributes to a situation where the over-consumption of high-calorie,

nutrient-poor foods meets or exceeds energy requirements but fails in the provision of essential vitamins and minerals.

Select micronutrient inadequacies are common in other industrialized nations (Elmadfa I., Freisling, H., 2009; Taylor J. P., Maclellan, D. L. et al., 2007; Whatham A., Bartlett, H. et al., 2008), and multiple micronutrient deficiencies, especially iron, vitamin A, zinc, and iodine, are prevalent in the developing world, affecting an estimated 2 billion people (Food and Agriculture Organization of the United Nations, 2004; Muller O., Krawinkel, M., 2005). In addition, vitamin D inadequacy may affect as many as 1 billion people (Holick M. F., 2007) and B-vitamin deficiencies are common in some populations (Ramakrishnan U., 2002). A situation of "hidden hunger" occurs when there is access to sufficient calories yet insufficient amounts of essential micronutrients (Burchi F., Fanzo, J. et al., 2011). Hidden hunger is common in developing and underdeveloped nations where there is a reliance on starchy food staples (Burchi F., Fanzo, J. et al., 2011) and is becoming more prevalent in developed nations where micronutrient inadequacies exist in spite of an abundance and diversity of food (Cole C. R., 2012). While effects of overt deficiencies are well documented, less is known regarding the health effects of marginal or subclinical micronutrient deficiencies, although some studies have reported links to general fatigue (Huskisson E., Maggini, S. et al., 2007), impaired immunity (Bhaskaram P., 2001; Ibs K.-H., Rink, L., 2004), and adverse effects on cognition (Kennedy D. O., Haskell, C. F., 2011). It has also been proposed that during chronic micronutrient inadequacies, short-term metabolic requirements take precedence over long-term needs (Ames B. N., 2006), thus

contributing to cumulative damage and dysfunction that increase one's risk of age-related chronic diseases (Ames B. N., 2006; Heaney R. P., 2008).

Correcting marginal inadequacies through daily MVM supplementation might reduce risk of chronic disease. However, epidemiological studies on the health effects of MVMs have reported conflicting results, and an NIH State-of-the-Science Panel concluded there was insufficient trial evidence to recommend either for or against the use of MVMs in chronic disease prevention as of 2006 (National Institutes of Health, 2006). A 2013 systematic review and meta-analysis from the US Preventive Task Force reported that there was limited evidence to support the use of vitamin and mineral supplements in the primary prevention of cancer and cardiovascular disease (CVD) (Fortmann S. P., Burda, B. U. et al., 2013). Notably, this analysis included only 4 RCTs and 1 cohort study that assessed MVM use; the remaining 23 studies reviewed only single or paired vitamin or mineral supplements, which are not considered MVMs by most standards. Here, we review scientific evidence regarding the effects of MVM supplements on risk of various chronic diseases, including cancer, CVD, and age-related eye diseases, and some basic biological functions. Data from both randomized controlled trials (RCTs) (Age-Related Eye Disease Study 2 Research Group, 2013; AREDS, 2001a; Avenell A., Campbell, M. K. et al., 2005; Bartlett H. E., Eperjesi, F., 2007; Blot W. J., Li, J. Y. et al., 1993; Bogden J. D., Bendich, A. et al., 1994; Gaziano J. M., Sesso, H. D. et al., 2012; Graat J. M., Schouten, E. G. et al., 2002; Hercberg S., Galan, P. et al., 2004; Leng G. C., Lee, A. J. et al., 1997; Li J. Y., Taylor, P. R. et al., 1993; Maraini G., Sperduto, R. D. et al., 2008; McNeill G., Avenell, A. et al., 2007; Richer S., 1996; Richer S., Stiles, W. et al., 2004; Sesso H. D., Christen, W. G. et al., 2012; Sperduto R.

D., Hu, T. S. et al., 1993; Wolters M., Hickstein, M. et al., 2005) and observational, prospective cohort studies (Christen W. G., Ajani, U. A. et al., 1999; Fuchs C. S., Willett, W. C. et al., 2002; Giovannucci E., Stampfer, M. J. et al., 1998; Hara A., Sasazuki, S. et al., 2011; Hotaling J. M., Wright, J. L. et al., 2011; Hunter D. J., Manson, J. E. et al., 1993; Iso H., Kubota, Y., 2007; Jacobs E. J., Connell, C. J. et al., 2002; Kim I., Williamson, D. F. et al., 1993; Larsson S. C., Akesson, A. et al., 2010; Lawson K. A., Wright, M. E. et al., 2007; Li K., Kaaks, R. et al., 2012; Losonczy K. G., Harris, T. B. et al., 1996; Mares-Perlman J. A., Lyle, B. J. et al., 2000; Messerer M., Hakansson, N. et al., 2008; Michaud D. S., Spiegelman, D. et al., 2000; Muntwyler J., Hennekens, C. H. et al., 2002; Mursu J., Robien, K. et al., 2011; Neuhouser M. L., Wassertheil-Smoller, S. et al., 2009; Park S. Y., Murphy, S. P. et al., 2011; Pocobelli G., Peters, U. et al., 2009; Rautiainen S., Akesson, A. et al., 2010; Rautiainen S., Lindblad, B. E. et al., 2010; Rimm E. B., Willett, W. C. et al., 1998; Stampfer M. J., Hennekens, C. H. et al., 1993; Stevens V. L., McCullough, M. L. et al., 2005; Watkins M. L., Erickson, J. D. et al., 2000; Wu K., Willett, W. C. et al., 2002; Zhang S., Hunter, D. J. et al., 1999; Zhang S. M., Giovannucci, E. L. et al., 2001; Zhang S. M., Moore, S. C. et al., 2006; Zhang W., Shu, X. O. et al., 2012) are examined, and the limitations of each study type are discussed.

REVIEW OF SCIENTIFIC EVIDENCE: CHRONIC DISEASE PREVENTION

Randomized controlled trials

RCTs are studies in which participants are allocated by chance alone to receive or not receive a clinical intervention (National Institutes of Health, 2006). There is much variation in the

composition of the MVM formulations used in supplementation trials; some trials use commercially available MVMs while others use specific multi-nutrient combinations that are considered functionally related. Existing reviews and meta-analyses have defined an MVM as a supplement that contains at least 3 vitamins and that may (Bailey R. L., Gahche, J. J. et al., 2011) or may not (Gahche J., Bailey, R. et al., 2011; Huang H. Y., Caballero, B. et al., 2007; Macpherson H., Pipingas, A. et al., 2013) include minerals. For the purpose of this review, we define an MVM as a supplement containing 3 or more vitamins and at least 1 mineral. We considered the same pool of trials from the recent systematic literature search and meta-analysis by Macpherson, et al. regarding the effect of MVM supplementation on mortality (Macpherson H., Pipingas, A. et al., 2013). Their search criteria included a definition of MVM more inclusive than our own, thus ensuring coverage of the pertinent literature (**Table 2**).

Cancer

The Physicians' Health Study II (PHS II) was a large-scale, randomized, double-blind, placebo-controlled trial that tested the long-term effects of a common MVM supplement (Centrum® Silver; Pfizer Consumer Healthcare, Madison, NJ) in the prevention of chronic disease in middle-aged and older male physicians (Christen W. G., Gaziano, J. M. et al., 2000). In the assessment of MVM supplementation in cancer prevention, men who received a daily MVM had a modest but statistically significant reduction in total cancer incidence after a mean of 11.2 years of treatment and follow-up compared to those taking placebo (Gaziano J. M., Sesso, H. D. et al., 2012). Baseline characteristics of the participants were evenly distributed between the MVM and placebo groups, thus minimizing residual confounding factors and strengthening the

assessment of MVM treatment effects. While total cancer (excluding non-melanoma skin cancer) was the primary cancer endpoint, secondary cancer endpoints included other site-specific cancers and cancer mortality. Men who received the MVM also had a reduction in epithelial cancer incidence, but no significant reductions in the incidence of individual site-specific cancers (prostate, lung, colorectal, bladder) or cancer mortality (Gaziano J. M., Sesso, H. D. et al., 2012). The male physician participants enrolled in PHS II differ from the general population in several important ways, namely that there were very few current smokers (4% in PHS II vs. 19% in the US (Schiller J. S., Lucas, J. W. et al., 2012) and 22% worldwide (Naurath N., Jones, J. M., 2007)), the subjects were well nourished, and a high fraction currently used aspirin (76%) (Gaziano J. M., Sesso, H. D. et al., 2012). This limits the relevance of the findings to the general population, younger men, women, and racial and ethnic groups not represented in PHS II.

Residents of Linxian County, China, display very high rates of esophageal/gastric cancers and exhibit subclinical deficiencies in several micronutrients (vitamin A, vitamin E, riboflavin, and vitamin C) (Li B., Taylor, P. R. et al., 1993). This region was therefore chosen for 2 randomized intervention trials testing the effect of micronutrient supplementation on rates of cancer incidence and mortality. In the first trial, 29,584 residents of the Linxian general population received 1 of 8 specific combinations of vitamins and minerals daily for 5.2 years (Blot W. J., Li, J. Y. et al., 1993). Only 1 multi-nutrient combination, vitamin E, beta-carotene, and selenium, significantly reduced the rates of cancer incidence and mortality in this high-risk population (Blot W. J., Li, J. Y. et al., 1993). In the second trial, 3,318 Linxian residents with cytological evidence of esophageal dysplasia received a commercial MVM supplement (Centrum[®], 2 tablets

¹⁰ ACCEPTED MANUSCRIPT

daily) and beta-carotene (Solatene[®], Roche Laboratories, Nutley, NJ, 1 tablet daily) for 6 years (Li J. Y., Taylor, P. R. et al., 1993). MVM supplementation had no significant effect on the rates of cancer incidence or mortality in those with esophageal dysplasia (Li J. Y., Taylor, P. R. et al., 1993). As mentioned, the participants in the Linxian trials were at high risk for certain cancers and chronic deficiencies in several micronutrients, which limits the generalizability of the study results to the general population.

The Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) study was a randomized, placebo-controlled trial of the effects of a combination of antioxidant vitamins and minerals on the incidence of cancer and CVD in middle-aged French adults (Hercberg S., Galan, P. et al., 2004). After a mean of 7.5 years, daily supplementation with an antioxidant capsule significantly reduced total cancer incidence and all-cause mortality in men, but not in women (Hercberg S., Galan, P. et al., 2004). The authors noted that lower baseline beta-carotene status in the male participants of SU.VI.MAX might have contributed to the sex-specific efficacy.

Cardiovascular disease

PHS II also evaluated the effect of MVM supplementation on major cardiovascular events, with primary endpoints including nonfatal myocardial infarction (MI), nonfatal stroke, and CVD mortality (Sesso H. D., Christen, W. G. et al., 2012). Daily MVM supplementation for a mean of 11.2 years had no significant effect on major cardiovascular events in the male physician participants of PHS II (Sesso H. D., Christen, W. G. et al., 2012). Similarly, the SU.VI.MAX trial reported no effect of daily MVM supplementation for a mean of 7.5 years on ischemic CVD

incidence or all-cause mortality in either men or women (Hercberg S., Galan, P. et al., 2004). A small trial performed in patients with lower limb atherosclerosis also reported no significant effect of a combined antioxidant supplement on lower limb disease or the occurrence of cardiovascular events after 2 years of daily supplementation (Leng G. C., Lee, A. J. et al., 1997).

The consistent lack of effect of MVM supplementation on CVD risk may be related, in part, to the widespread use of aspirin, statins, and antihypertensive drugs for the primary and secondary prevention of CVD. For example, 77.4% of male physicians in PHS II used aspirin, and 42.0% and 35.4% had a medical history of hypertension or hypercholesterolemia, respectively (Sesso H. D., Christen, W. G. et al., 2012). Drug-nutrient interactions may be a confounding factor in RCTs but have been little studied thus far.

Age-related eye diseases

Here, age-related eye diseases include cataract and age-related macular degeneration (AMD). Two RCTs assessed the effect of MVM supplementation specifically on the development of age-related cataract, also referred to as lens opacities. The Italian-American Clinical Trial of Nutritional Supplements and Age-Related Cataract (CTNS) evaluated the effect of a commercial MVM supplement (Centrum®) on age-related lens opacities in 1,020 men and women (mean age 68±5 years) with early (N=710) or no (N=310) cataract (Maraini G., Sperduto, R. D. et al., 2008). After an average of 9 years of daily supplementation, "any" lens event (increased nuclear, cortical, or posterior subcapsular [PSC] cataract opacity grades) was significantly less common with MVM supplementation compared with placebo (Maraini G., Sperduto, R. D. et al., 2008).

However, closer examination of the specific types of lens events revealed a significant decrease in the progression or development of nuclear opacities and a significant increase in the development or progression of PSC cataract opacities in the supplement group (Maraini G., Sperduto, R. D. et al., 2008).

Upon completion of the Linxian cancer trials, an eye examination was included in order to assess if the 2 MVM interventions also affected the risk of developing age-related nuclear, cortical, and PSC cataracts (Sperduto R. D., Hu, T. S. et al., 1993). In 2,141 participants from the Linxian Dysplasia Trial, where subjects received 2 MVM (Centrum®) tablets plus beta-carotene daily for 6.0 years, there was a 36% reduction in the prevalence of nuclear cataract with MVM supplementation in those aged 65–74 years (Sperduto R. D., Hu, T. S. et al., 1993). In 3,249 individuals from the Linxian general population trial, a 44% reduction in the prevalence of nuclear cataract was observed only with niacin/riboflavin supplementation in those aged 65–74 years. Similar to the CTNS trial, however, niacin/riboflavin supplementation also had a negative effect on PSC cataracts (Sperduto R. D., Hu, T. S. et al., 1993).

The RCTs that have assessed the effects of MVM supplementation on AMD have each enrolled subjects with pre-existing eye diseases (Age-Related Eye Disease Study 2 Research Group, 2013; AREDS, 2001a; AREDS, 2001b; Bartlett H. E., Eperjesi, F., 2007; Richer S., 1996; Richer S., Stiles, W. et al., 2004). The initial Age-Related Eye Disease Study (AREDS) evaluated the effect of supplementation with high doses of zinc and select antioxidants (in various combinations) on the progression of AMD (AREDS, 2001b) and development of cataract

(AREDS, 2001a) in individuals with evidence of age-related eye disease in at least 1 eye. Treatment with zinc alone or in combination with antioxidants reduced the risk of progression to advanced AMD in high-risk category 3 and 4 participants only (AREDS, 2001b); notably, 80% of US adults over 70 years of age fall into low-risk categories 1 and 2 (Klein R., Klein, B. E. et al., 1992). The AREDS formulation had no effect on the development of cataract (AREDS, 2001a). In AREDS2, the supplement formulation was altered to reflect new information on the dose and types of nutrients most beneficial to eye health (Age-Related Eye Disease Study 2 Research Group, 2013). The addition of lutein and zeaxanthin, the only 2 antioxidants localized to the retina (Bone R. A., Landrum, J. T. et al., 1985), and omega-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid were administered in conjunction with the original AREDS supplement in a complex randomization scheme; for some participants, the AREDS supplement was altered such that beta-carotene was omitted and the dose of zinc lowered, given the potential adverse effects of these nutrients in certain individuals (Age-Related Eye Disease Study 2 Research Group, 2013). No significant reductions in the progression to advanced AMD occurred with any combination or formulation of the AREDS2 supplement (Age-Related Eye Disease Study 2 Research Group, 2013). Subgroup analysis revealed a beneficial effect of lutein and zeaxanthin supplementation only in those reporting low dietary intake of these carotenoids (Age-Related Eye Disease Study 2 Research Group, 2013).

Three other RCTs measured changes in visual function as their index of AMD progression. In the Lutein Antioxidant Supplementation Trial (LAST), men with atrophic AMD who received lutein alone or in combination with a "broad-spectrum" antioxidant supplement for 1 year

demonstrated improved visual function compared with those receiving placebo (Richer S., Stiles, W. et al., 2004). Patients with advanced, dry AMD who received a "broad-spectrum" MVM supplement for 1.5 years in the Multicenter Ophthalmic and Nutritional Age-Related Macular Degeneration (MONMD) study maintained visual acuity, but also experienced increased cortical opacification (Richer S., 1996). Finally, there was no significant effect of 9 months of MVM supplementation on contrast sensitivity score, a measure of visual function, in a small study of 25 subjects (mean age 69.2±7.8 years) with age-related maculopathy (Bartlett H. E., Eperjesi, F., 2007).

PHS II evaluated the effect of a daily MVM supplement (Centrum® Silver) on both cataract and AMD incidence in 14,641 healthy, middle-aged male physicians in the US (Christen W. G., Glynn, R. J. et al., 2014). After 11.2 years of follow-up, there was a significant 9% lower risk of total cataract and a 13% lower risk of "any" nuclear sclerosis (nuclear cataract) in the MVM compared to the placebo group. No significant effect of MVM supplementation was found on the incidence of cortical or PSC cataract. On the other hand, there was a significant 38% increased risk of total AMD in the oldest age group (≥70 years) of men randomized to MVM supplementation.

Limitations

While RCTs are considered the "gold standard" for determining the clinical efficacy of a given intervention, there are unique limitations inherent to nutrient supplementation trials. For one, there can never be a nutrient-free state in study volunteers, thus the "placebo" group in

micronutrient supplementation trials is not a true placebo or "non-exposed" group.

Consequently, treatment exposure is blunted between the groups, potentially contributing to a null effect (Heaney R. P., 2008). Secondly, study participants may not represent the general population. For example, those who were willing and eligible to participate in the first Physicians' Health Study (PHS I) had healthier lifestyle traits, lesser history of disease, and lower relative risks of mortality compared with unwilling and ineligible participants (Sesso H. D., Gaziano, J. M. et al., 2002). Thirdly, the development and progression of chronic disease occur over decades, thus the timing and duration of the nutrient intervention with respect to chronic disease etiology are difficult to determine. And finally, there is much heterogeneity in trial designs, in which vastly different MVM formulations are administered and study participants with very different baseline characteristics are recruited; this adds to the challenge of comparing outcomes from the existing body of evidence.

Observational studies

An observational study is one in which no experimental intervention or treatment is applied, and participants are simply observed over time. Several large, long-term, observational, prospective cohort studies have been conducted that examined the association between MVM intake and the development of chronic disease. We considered prospective studies included in recent reviews of MVM use and the risk of cancer, CVD, and age-related eye diseases (Prentice R. L., 2007; Seddon J. M., 2007); more recent prospective cohort studies were obtained via a PubMed search (**Table 3**).

Cancer

The majority of prospective cohort studies demonstrated no association between MVM use and risk of cancer incidence or mortality (Hotaling J. M., Wright, J. L. et al., 2011; Hunter D. J., Manson, J. E. et al., 1993; Jacobs E. J., Connell, C. J. et al., 2002; Kim I., Williamson, D. F. et al., 1993; Li K., Kaaks, R. et al., 2012; Losonczy K. G., Harris, T. B. et al., 1996; Michaud D. S., Spiegelman, D. et al., 2000; Mursu J., Robien, K. et al., 2011; Neuhouser M. L., Wassertheil-Smoller, S. et al., 2009; Park S. Y., Murphy, S. P. et al., 2011; Pocobelli G., Peters, U. et al., 2009; Wu K., Willett, W. C. et al., 2002; Zhang S., Hunter, D. J. et al., 1999; Zhang S. M., Moore, S. C. et al., 2006). In some instances, a statistically significant association between MVM use and cancer risk in specific populations has been noted in both beneficial (Fuchs C. S., Willett, W. C. et al., 2002; Giovannucci E., Stampfer, M. J. et al., 1998) and harmful (Hara A., Sasazuki, S. et al., 2011; Larsson S. C., Akesson, A. et al., 2010; Messerer M., Hakansson, N. et al., 2008; Watkins M. L., Erickson, J. D. et al., 2000; Zhang S. M., Giovannucci, E. L. et al., 2001; Zhang W., Shu, X. O. et al., 2012) directions. Among specific cancers studied, a negative effect of MVM use on prostate cancer has been demonstrated in several instances. In the NIH-American Association of Retired Persons Diet and Health Study, after a mean follow-up of 5 years, regular MVM use was not associated with prostate cancer risk, while excessive MVM use (greater than 7 times per week) was associated with an increased risk of aggressive and fatal prostate cancer compared to never users (Lawson K. A., Wright, M. E. et al., 2007). In an updated analysis of data from the Cancer Prevention Study II, regular use of MVMs (≥15 times/month) was associated with an increased risk of death from prostate cancer compared with non-users; this increased risk was confined to men who

regularly used MVMs alone (relative risk [RR]: 1.15; 95% confidence interval [CI]: 1.05–1.26) and limited to the early years of follow-up (RR: 1.41; 95% CI: 1.03–1.92) (Stevens V. L., McCullough, M. L. et al., 2005). The reasons behind the variable associations between MVM use and prostate cancer endpoints are unclear. It is cautioned that confounding by stage of disease might be present and that MVM use occurring before or after the establishment of prostate cancer might have differential effects on disease outcomes (Lawson K. A., Wright, M. E. et al., 2007; Stevens V. L., McCullough, M. L. et al., 2005; Watkins M. L., Erickson, J. D. et al., 2000). Notably, there was no effect of MVM supplementation on prostate cancer incidence in PHS II, where prostate cancer comprised more than half of all confirmed cancer cases (Gaziano J. M., Sesso, H. D. et al., 2012).

Because use of dietary supplements is an inconsistent behavior, some prospective cohort studies have collected supplement use data at several time points in order to glean more information about the associations between patterns of MVM use and disease risk. In the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg study, regular MVM use was not associated with mortality from any cause, but MVM use initiated during follow-up was associated with an increased risk of mortality from cancer and all causes (Li K., Kaaks, R. et al., 2012). After excluding cancer cases that occurred between baseline and the third follow-up, the negative association between MVM use and mortality became insignificant, suggesting a "sick user effect" or reverse causality, a phenomenon in which people tend to start taking MVMs after a diagnosis of disease has been made. In the Japan Public Health Center-based Prospective Study, only 4.1% of men and 5.8% of women continued to use vitamin supplements from the

first to the second surveys, a period spanning approximately 5 years (Hara A., Sasazuki, S. et al., 2011). At the end of the study, there was no association between any pattern of supplement use and risk of cancer or CVD in men. In women, however, past and recent supplement use was associated with a higher risk of cancer. These 2 patterns of use in women were also associated with higher BMI, greater likelihood of smoking, and higher use of certain medications, suggesting that the negative association may be partially explained by unhealthy characteristics that accompany the decision to use a dietary supplement (Hara A., Sasazuki, S. et al., 2011).

Cardiovascular disease

Most observational, prospective cohort studies assessing supplement use at multiple time points have found no association with CVD incidence or mortality. In particular, multivitamin or MVM use was not associated with MI (Neuhouser M. L., Wassertheil-Smoller, S. et al., 2009; Stampfer M. J., Hennekens, C. H. et al., 1993), stroke (Neuhouser M. L., Wassertheil-Smoller, S. et al., 2009), venous thromboembolism (Neuhouser M. L., Wassertheil-Smoller, S. et al., 2009), or mortality from coronary heart disease (CHD) (Losonczy K. G., Harris, T. B. et al., 1996; Stampfer M. J., Hennekens, C. H. et al., 1993) or CVD (Li K., Kaaks, R. et al., 2012; Park S. Y., Murphy, S. P. et al., 2011; Pocobelli G., Peters, U. et al., 2009). However, long-term follow-up in the Nurses' Health Study found women who took multiple vitamins had a 24% lower risk for CHD, defined by nonfatal MI or fatal CHD, and this inverse association was stronger in women taking at least 4 multivitamin supplements weekly for at least 5 years (Rimm E. B., Willett, W. C. et al., 1998).

Age-related eye diseases

A 2007 review summarized the results from both clinical trials and observational, prospective cohort studies that investigated the relationship between dietary supplements and age-related eye diseases, including cataract and AMD (Seddon J. M., 2007). With one exception (Mares-Perlman J. A., Lyle, B. J. et al., 2000), prospective cohort studies that specifically assessed multivitamins showed no association between multivitamin use and the risk of cataract or AMD. In the Beaver Dam Eye Study, only those who self-reported use of a multivitamin for more than 10 years had a decreased risk of nuclear and cortical cataracts, but not of PSC cataracts (Mares-Perlman J. A., Lyle, B. J. et al., 2000). A prospective cohort analysis from the AREDS study (Milton R. C., Sperduto, R. D. et al., 2006) showed that participants who elected to supplement with an MVM (Centrum[®]) throughout the trial had a lower risk of progression of "any" lens opacity and nuclear opacity; no association was found between elective MVM supplementation and cortical or PSC opacities. Since 2007, two population-based prospective cohort studies reported that MVM use was not associated with the risk of cataract in men (Zheng Selin J., Rautiainen, S. et al., 2013) or with cataract extraction in women (Rautiainen S., Lindblad, B. E. et al., 2010). Observational evidence indicates that other nutrients from foods, particularly lutein, zeaxanthin, and omega-3 fatty acids, may be most important for AMD (Seddon J. M., 2007).

Limitations

Observational, prospective cohort studies, which reveal associations between a given behavior and the subsequent development of disease, are subject to several important limitations that must be considered when interpreting results. First, accurately measuring MVM use and compliance over many years is difficult. There are wide variations in MVM supplement composition, dose,

and duration of use. Furthermore, MVM use is an inconsistent behavior, and it is likely that study participants alter their patterns of use over the long time period between study enrollment, when information on MVM use is collected, and the development of chronic disease many years later. Some investigators attempt to overcome this limitation by collecting MVM use data at additional time points during follow-up. Even with multiple data points, however, the assessment of MVM use comes from very general questions that rely on accurate recall by study participants. Secondly, MVM use is broadly associated with health-conscious behaviors as well as with poor health (Hara A., Sasazuki, S. et al., 2011; National Institutes of Health, 2006). Thus, MVM use (or lack thereof) may be associated with other unmeasured behaviors that contribute to the study outcome, an epidemiological phenomenon known as residual confounding. Finally, individuals may initiate MVM use when symptoms or diagnosis of chronic disease occurs (Bender M. M., Levy, A. S. et al., 1992; Kwan M. L., Greenlee, H. et al., 2011; Patterson R. E., Neuhouser, M. L. et al., 2003). In this case, the health status of the individual, rather than the MVM supplement by itself, influences the development of disease (i.e., reverse causality).

REVIEW OF SCIENTIFIC EVIDENCE: SUPPORTING NORMAL BIOLOGICAL FUNCTIONS

Immune function

Two RCTs reported that daily MVM supplementation for 1 year had no effect on the risk of infection in community-dwelling older adults (Avenell A., Campbell, M. K. et al., 2005; Graat J. M., Schouten, E. G. et al., 2002). In another trial, 1 year of daily supplementation with a

²¹ ACCEPTED MANUSCRIPT

commercial MVM (Theragran M[®], Bristol-Myers Squibb, New York, NY) increased serum and plasma concentrations of certain micronutrients (vitamin C, beta-carotene, folate, vitamin B₆, and alpha-tocopherol) and improved delayed-type hypersensitivity skin test (DHST) response compared with those taking placebo (Bogden J. D., Bendich, A. et al., 1994).

Cognitive function

The Mineral and Vitamin Intervention Study (MAVIS) tested possible effects of MVM supplementation on cognitive function in 910 older adults (median age 72 years) who received daily MVM tablet or placebo for 1 year (McNeill G., Avenell, A. et al., 2007). Supplementation had no overall effect on short-term memory (digit span forward test) or executive functioning (verbal fluency test) in the total sample of older adults. Subgroup analysis revealed a mild beneficial effect on verbal fluency scores in 2 subgroups: (1) those 75 years and older, and (2) those at increased risk for micronutrient deficiency as assessed by questionnaire (McNeill G., Avenell, A. et al., 2007). In another RCT, 220 healthy, older women (median age 63 years) received an MVM or placebo capsule daily for 6 months (Wolters M., Hickstein, M. et al., 2005). MVM supplementation resulted in higher serum concentrations of all vitamins, yet had no effect on cognitive performance compared with placebo (Wolters M., Hickstein, M. et al., 2005).

A substudy within PHS II evaluated the effect of long-term daily supplementation with a commercial MVM (Centrum[®] Silver) on cognitive function in older (≥65 years) male physicians(Grodstein F., O'Brien, J. et al., 2013). Up to 4 repeated cognitive assessments were completed by telephone interview in 5,947 participants over a mean of 8.5 years of follow-up.

²² ACCEPTED MANUSCRIPT

No differences in mean cognitive change over time or mean level of cognition were observed between the MVM and placebo groups.

Meeting nutrient requirements

Recommended levels of nutrient intake are defined by using specific scientific criteria for nutrient adequacy (text box). While the specific criterion varies for each micronutrient, examples of adequate nutritional states include normal growth, maintenance of normal levels of nutrients in plasma, and other aspects of general health and well-being (Otten J. J., Hellwig, J. P. et al., 2006). National surveys indicate that a considerable percentage of US adults and children consume inadequate levels of vitamins and nutritionally essential minerals from food sources alone (Fulgoni V. L., III, Keast, D. R. et al., 2011). Use of dietary supplements, of which MVMs are the most common type, can make a significant contribution to daily micronutrient intakes, effectively reducing the prevalence of inadequate intakes in all vitamins and minerals examined in representative populations of adults, children, and seniors from the US and Canada (Bailey R. L., Fulgoni, V. L., III et al., 2012a; Bailey R. L., Fulgoni, V. L., III et al., 2012b; Bailey R. L., Gahche, J. J. et al., 2011; Fulgoni V. L., III, Keast, D. R. et al., 2011; Sebastian R. S., Cleveland, L. E. et al., 2007; Shakur Y. A., Tarasuk, V. et al., 2012). For example, according to the Dietary Guidelines for Americans (2010), vitamin D, calcium, and potassium are among several "nutrients of concern" within the US population (Otten J. J., Hellwig, J. P. et al., 2006; US Department of Agriculture, 2010). Use of dietary supplements further reduced the percentage of the total population with usual intakes below the EAR for vitamin D (93% to 70%), calcium

(49% to 38%), vitamin C (37% to 25%), vitamin E (91% to 60%), and magnesium (55% to 45%) (Fulgoni V. L., III, Keast, D. R. et al., 2011).

Safety

Notably, documented cases of nutrient toxicity are generally caused by supplementation, not by food (Hunt J. R., 1996). Thus, while dietary supplements reduce the percentage of the population consuming less than the EAR for all micronutrients, they also contribute to excess intake for some vitamins and minerals (Sebastian R. S., Cleveland, L. E. et al., 2007; Shakur Y. A., Tarasuk, V. et al., 2012). Given the high prevalence of MVM use in the US population, there is concern that individuals may exceed the Tolerable Upper Intake Level (UL) for certain micronutrients (text box) (Mulholland C. A., Benford, D. J., 2007; National Institutes of Health, 2006; Otten J. J., Hellwig, J. P. et al., 2006). A recent national survey tallying nutrient intake from all sources (natural, enriched or fortified, and supplements) indicated that the percentage of US adults ≥19 years of age at or exceeding the UL was low for most nutrients and was highest for niacin (8.5%), followed by zinc (3.3%), calcium (3.2%), and folate (2.6%) (Fulgoni V. L., III, Keast, D. R. et al., 2011). Similarly, in Europe, the risk of excessive intakes was low for the majority of nutrients, with possible exceptions being vitamin A, zinc, iodine, copper, and magnesium (Flynn A., Hirvonen, T. et al., 2009). However, dietary supplement use contributed to total micronutrient intakes above the UL for a sizeable proportion of US children and adolescents (2–18 years old) for zinc (24%), niacin (16%), vitamin A (15%), and folate (15%) (Fulgoni V. L., III, Keast, D. R. et al., 2011). Although dosages of micronutrients included in most commercial MVMs are close to 100% of the recommended dietary allowance (RDA),

²⁴ ACCEPTED MANUSCRIPT

dietary supplements contribute significantly to total nutrient intakes and one must pay attention to their contribution to total daily nutrient exposure.

CONCLUSIONS

The majority of scientific studies investigating the use of MVM supplements in the reduction of the risk of chronic disease report no significant effect (**Tables 2 and 3**). In select populations, both beneficial and adverse outcomes have been documented. Closer examination of study participant characteristics as well as constraints of the existing methodology offers explanations for these variable outcomes.

Much emphasis is placed on PHS II for its strong study design and data set, spanning over 10 years of controlled supplementation with a commercial MVM. There was a modest reduction in total and nuclear cataract, as well as total and epithelial cancer incidence observed in the male physician participants of PHS II, consistent with, e.g., the CTNS with respect to cataract and the SU.VI.MAX trial for total cancer incidence. While these results are meaningful, caution must be used when extrapolating the results from PHS II and other RCTs to the general population. Study participants often have unique characteristics that likely influence the effect of an MVM in the experimental population (e.g., gender, disease history or status, baseline nutritional status). In addition, the overall effect of MVM supplementation on age-related eye diseases remains unclear given the potentially opposing effects on nuclear and PSC cataract subtypes. With respect to AMD, PHS II found an increased risk of total AMD incidence in the oldest age group (≥70

²⁵ ACCEPTED MANUSCRIPT

years) with MVM supplementation; the effect of MVM supplementation on AMD progression is unclear based on currently available data. For trial data on cardiovascular diseases addressed in this review, there was a consistent lack of an effect of daily MVM supplementation, which could be due, in part, to the confounding effect of the polypharmacy often used in CVD prevention.

Overall, observational, prospective cohort studies demonstrate no association between MVM use and the risk of chronic disease. In fact, there are several instances where MVM use is associated with an increased risk of specific cancers and age-related eye diseases. The negative associations detected in observational study subanalyses may be due to inherent methodological limitations regarding patterns of MVM use and the inability to control for this variable with the existing methodology. Supplement use might accompany a healthy lifestyle or a newly diagnosed disease, both of which independently affect disease etiology yet cannot always be accounted for in the final analysis.

The development of chronic disease has been described as a long-latency deficiency disease (Heaney R. P., 2008) or the result of accumulated cellular damage due to chronic micronutrient insufficiency (Ames B. N., 2006). Consistent with these hypotheses, MVM supplementation appears to benefit individuals who are most at risk for nutritional deficiencies. In those studies where nutrient status was assessed, MVM supplementation helped maintain adequacy in older adults, offsetting some age-related declines in immune and cognitive function. Moreover, dietary supplements contributed significantly to daily micronutrient intakes, reducing the prevalence of

inadequacy for all vitamins and minerals examined in nationally representative populations in the US and Canada.

Recommendation

The current dietary pattern of Western populations is energy dense and nutrient poor, itself a risk factor for the development of chronic disease (Otten J. J., Hellwig, J. P. et al., 2006; US

Department of Agriculture, 2010). Although it is possible to meet the RDA of all essential vitamins and minerals through diet alone by choosing nutrient-dense foods in the proper proportions (United States Department of Agriculture, 2013; US Department of Agriculture, 2010), national surveys reveal that certain micronutrients are consistently under-consumed in the typical Western diet (Bailey R. L., Fulgoni, V. L., III et al., 2012a; US Department of Agriculture, 2010) or are difficult to obtain from food sources alone (i.e., vitamin D).

The primary indication for an MVM is to supplement a diet lacking adequate amounts of certain micronutrients in order to maintain normal cell and tissue function, metabolism, growth, and development. Additionally, there is the potential to reduce risk of some chronic diseases with minimal risk of harm (Frei B., Ames, B. N. et al., 2014). For some people, an MVM thus represents an effective, safe, and affordable means of filling micronutrient gaps. That said, one first needs to know a gap exists. While national survey estimates are informative, dietary assessment is the only way to identify one's actual nutrient intake, revealing potential inadequacies or excesses. Should one decide to supplement with an MVM, it is also important to

consider other personal issues in the decision-making process, such as life stage, disease status, risk factors, and lifestyle.

Acknowledgments

GA, VJD, and BF designed the research for this review article, conducted the literature research, analyzed the data, and wrote the paper. GA had primary responsibility for final content. All authors read and approved the final manuscript. Editorial support was provided by Diane Sloan, PharmD, of Peloton Advantage, LLC, and was funded by Pfizer.

REFERENCES

Age-Related Eye Disease Study 2 Research Group. (2013). Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. *JAMA*. **309** : 2005-2015.

Ames B. N. (2006). Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. *Proc Natl Acad Sci U S A.* **103**: 17589-17594.

AREDS. (2001a). A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. *Arch Ophthalmol.* **119**: 1439-1452.

AREDS. (2001b). A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. *Arch Ophthalmol.* **119**: 1417-1436.

Avenell A., Campbell M.K., Cook J.A., et al. (2005). Effect of multivitamin and multimineral supplements on morbidity from infections in older people (MAVIS trial): pragmatic, randomised, double blind, placebo controlled trial. *BMJ*. **331**: 324-329.

Bailey R. L., Fulgoni V.L., III, Keast D.R., Dwyer J.T. (2012a). Examination of vitamin intakes among US adults by dietary supplement use. *J Acad Nutr Diet.* **112**: 657-663.

Bailey R. L., Fulgoni V.L., III, Keast D.R., Lentino C.V., Dwyer J.T. (2012b). Do dietary supplements improve micronutrient sufficiency in children and adolescents? *J Pediatr.* **161**: 837-842.

Bailey R. L., Gahche J.J., Lentino C.V., et al. (2011). Dietary supplement use in the United States, 2003-2006. *J Nutr.* **141** : 261-266.

Bailey R. L., Gahche J.J., Miller P.E., Thomas P.R., Dwyer J.T. (2013). Why US adults use dietary supplements. *JAMA Intern Med.* **173**: 355-361.

Bartlett H. E., Eperjesi F. (2007). Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease: a randomized controlled trial. *Eur J Clin Nutr*. **61**: 1121-1127.

Bender M. M., Levy A.S., Schucker R.E., Yetley E.A. (1992). Trends in prevalence and magnitude of vitamin and mineral supplement usage and correlation with health status. *J Am Diet Assoc.* **92**: 1096-1101.

Bhaskaram P. (2001). Immunobiology of mild micronutrient deficiencies. *Br J Nutr.* **85 Suppl 2** : S75-S80.

Blot W. J., Li J.Y., Taylor P.R., et al. (1993). Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. *J Natl Cancer Inst.* **85**: 1483-1492.

Bogden J. D., Bendich A., Kemp F.W., et al. (1994). Daily micronutrient supplements enhance delayed-hypersensitivity skin test responses in older people. *Am J Clin Nutr.* **60**: 437-447.

Bone R. A., Landrum J.T., Tarsis S.L. (1985). Preliminary identification of the human macular pigment. *Vision Res.* **25** : 1531-1535.

Briefel R. R., Johnson C.L. (2004). Secular trends in dietary intake in the United States. *Annu Rev Nutr.* **24** : 401-431.

Burchi F., Fanzo J., Frison E. (2011). The role of food and nutrition system approaches in tackling hidden hunger. *Int J Environ Res Public Health.* **8**: 358-373.

Christen W. G., Ajani U.A., Glynn R.J., et al. (1999). Prospective cohort study of antioxidant vitamin supplement use and the risk of age-related maculopathy. *Am J Epidemiol.* **149**: 476-484. Christen W. G., Gaziano J.M., Hennekens C.H. (2000). Design of Physicians' Health Study II--a randomized trial of beta-carotene, vitamins E and C, and multivitamins, in prevention of cancer, cardiovascular disease, and eye disease, and review of results of completed trials. *Ann Epidemiol.* **10**: 125-134.

Christen W. G., Glynn R.J., Manson J.E., et al. (2014). Effects of multivitamin supplement on cataract and age-related macular degeneration in a randomized trial of male physicians.

Ophthalmology. 121: 525-534.

Cole C. R. (2012). Preventing hidden hunger in children using micronutrient supplementation. *J Pediatr.* **161** : 777-778.

Elmadfa I., Freisling H. (2009). Nutritional status in Europe: methods and results. *Nutr Rev.* **67 Suppl 1**: S130-S134.

Flynn A., Hirvonen T., Mensink G.B., et al. (2009). Intake of selected nutrients from foods, from fortification and from supplements in various European countries. *Food Nutr Res.* **53** .

Food and Agriculture Organization of the United Nations. *The State of Food Insecurity in the World 2004*. 6th ed. Rome, Italy: Food and Agriculture Organization of the United Nations; 2004.

Food and Drug Administration. Guidance for industry: a food labeling guide (14. appendix F: calculate the percent daily value for the appropriate nutrients). Food and Drug Administration. Available at:

http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Labe lingNutrition/ucm064928.htm. Accessed August 2, 2013

Foote J. A., Murphy S.P., Wilkens L.R., et al. (2003). Factors associated with dietary supplement use among healthy adults of five ethnicities: the Multiethnic Cohort Study. *Am J Epidemiol.* **157** : 888-897.

Fortmann S. P., Burda B.U., Senger C.A., Lin J.S., Whitlock E.P. (2013). Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force. *Ann Intern Med.* **159**: 824-834.

Frei B., Ames B.N., Blumberg J.B., Willett W.C. (2014). Enough is enough: stop wasting money on vitamin and mineral supplements. *Ann Intern Med*.

Fuchs C. S., Willett W.C., Colditz G.A., et al. (2002). The influence of folate and multivitamin use on the familial risk of colon cancer in women. *Cancer Epidemiol Biomarkers Prev.* **11** : 227-234.

Fulgoni V. L., III, Keast D.R., Bailey R.L., Dwyer J. (2011). Foods, fortificants, and supplements: Where do Americans get their nutrients? *J Nutr.* **141**: 1847-1854.

Gahche J., Bailey R., Burt V., et al. (2011). Dietary supplement use among U.S. adults has increased since NHANES III (1988-1994). *NCHS Data Brief.* 1-8.

Gaziano J. M., Sesso H.D., Christen W.G., et al. (2012). Multivitamins in the prevention of cancer in men. The Physicians' Health Study II Randomized Controlled Trial. *JAMA*. **308**: 1871-1880.

Giovannucci E., Stampfer M.J., Colditz G.A., et al. (1998). Multivitamin use, folate, and colon cancer in women in the Nurses' Health Study. *Ann Intern Med.* **129**: 517-524.

Graat J. M., Schouten E.G., Kok F.J. (2002). Effect of daily vitamin E and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. *JAMA*. **288**: 715-721.

Grodstein F., O'Brien J., Kang J.H., et al. (2013). Long-term multivitamin supplementation and cognitive function in men: a randomized trial. *Ann Intern Med.* **159**: 806-814.

Hara A., Sasazuki S., Inoue M., et al. (2011). Use of vitamin supplements and risk of total cancer and cardiovascular disease among the Japanese general population: a population-based survey. BMC Public Health. 11: 540.

Heaney R. P. (2008). Nutrients, endpoints, and the problem of proof. *J Nutr.* **138**: 1591-1595. Hercberg S., Galan P., Preziosi P., et al. (2004). The SU.VI.MAX Study: a randomized, placebocontrolled trial of the health effects of antioxidant vitamins and minerals. *Arch Intern Med.* **164**: 2335-2342.

Holick M. F. (2007). Vitamin D deficiency. N Engl J Med. 357: 266-281.

Hotaling J. M., Wright J.L., Pocobelli G., et al. (2011). Long-term use of supplemental vitamins and minerals does not reduce the risk of urothelial cell carcinoma of the bladder in the VITamins And Lifestyle study. *J Urol.* **185**: 1210-1215.

Huang H. Y., Caballero B., Chang S., et al. (2007). Multivitamin/Mineral supplements and prevention of chronic disease: executive summary. *Am J Clin Nutr.* **85** : 265S-268S.

Hunt J. R. (1996). Position of the American Dietetic Association: vitamin and mineral supplementation. *J Am Diet Assoc.* **96** : 73-77.

Hunter D. J., Manson J.E., Colditz G.A., et al. (1993). A prospective study of the intake of vitamins C, E, and A and the risk of breast cancer. *N Engl J Med.* **329**: 234-240.

Huskisson E., Maggini S., Ruf M. (2007). The role of vitamins and minerals in energy metabolism and well-being. *J Int Med Res.* **35** : 277-289.

Ibs K-H, Rink L. Zinc. In: Hughes DA, Darlington LG, Bendich A, editors. *Diet and Human Immune Function*. Totowa, NJ: Humana Press Inc.; 2004. p. 241-59.

Iso H., Kubota Y. (2007). Nutrition and disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). *Asian Pac J Cancer Prev.* **8 Suppl** : 35-80.

Jacobs E. J., Connell C.J., McCullough M.L., et al. (2002). Vitamin C, vitamin E, and multivitamin supplement use and stomach cancer mortality in the Cancer Prevention Study II cohort. *Cancer Epidemiol Biomarkers Prev.* **11** : 35-41.

Kant A. K. (2000). Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988-1994. *Am J Clin Nutr.* **72**: 929-936.

Kennedy D. O., Haskell C.F. (2011). Vitamins and cognition: what is the evidence? *Drugs.* **71**: 1957-1971.

Kim I., Williamson D.F., Byers T., Koplan J.P. (1993). Vitamin and mineral supplement use and mortality in a US cohort. *Am J Public Health.* **83**: 546-550.

Klein R., Klein B.E., Linton K.L. (1992). Prevalence of age-related maculopathy. The Beaver Dam Eye Study. *Ophthalmology*. **99**: 933-943.

Kwan M. L., Greenlee H., Lee V.S., et al. (2011). Multivitamin use and breast cancer outcomes in women with early-stage breast cancer: the Life After Cancer Epidemiology study. *Breast Cancer Res Treat.* **130**: 195-205.

Larsson S. C., Akesson A., Bergkvist L., Wolk A. (2010). Multivitamin use and breast cancer incidence in a prospective cohort of Swedish women. *Am J Clin Nutr.* **91** : 1268-1272.

Lawson K. A., Wright M.E., Subar A., et al. (2007). Multivitamin use and risk of prostate cancer in the National Institutes of Health-AARP Diet and Health Study. *J Natl Cancer Inst.* **99**: 754-764.

Leng G. C., Lee A.J., Fowkes F.G., et al. (1997). Randomized controlled trial of antioxidants in intermittent claudication. *Vasc Med.* **2** : 279-285.

Li B., Taylor P.R., Li J.Y., et al. (1993). Linxian nutrition intervention trials. Design, methods, participant characteristics, and compliance. *Ann Epidemiol.* **3**: 577-585.

Li J. Y., Taylor P.R., Li B., et al. (1993). Nutrition intervention trials in Linxian, China: multiple vitamin/mineral supplementation, cancer incidence, and disease-specific mortality among adults with esophageal dysplasia. *J Natl Cancer Inst.* **85**: 1492-1498.

Li K., Kaaks R., Linseisen J., Rohrmann S. (2010). Consistency of vitamin and/or mineral supplement use and demographic, lifestyle and health-status predictors: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. *Br J Nutr.* **104**: 1058-1064.

Li K., Kaaks R., Linseisen J., Rohrmann S. (2012). Vitamin/mineral supplementation and cancer, cardiovascular, and all-cause mortality in a German prospective cohort (EPIC-Heidelberg). *Eur J Nutr.* **51**: 407-413.

Losonczy K. G., Harris T.B., Havlik R.J. (1996). Vitamin E and vitamin C supplement use and risk of all-cause and coronary heart disease mortality in older persons: the Established Populations for Epidemiologic Studies of the Elderly. *Am J Clin Nutr.* **64**: 190-196.

Macpherson H., Pipingas A., Pase M.P. (2013). Multivitamin-multimineral supplementation and mortality: a meta-analysis of randomized controlled trials. *Am J Clin Nutr.* **97**: 437-444.

Maraini G., Sperduto R.D., Ferris F., et al. (2008). A randomized, double-masked, placebocontrolled clinical trial of multivitamin supplementation for age-related lens opacities. Clinical trial of nutritional supplements and age-related cataract report no. 3. *Ophthalmology*. **115**: 599-607.

Mares-Perlman J. A., Lyle B.J., Klein R., et al. (2000). Vitamin supplement use and incident cataracts in a population-based study. *Arch Ophthalmol.* **118** : 1556-1563.

McNeill G., Avenell A., Campbell M.K., et al. (2007). Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over: a randomised controlled trial. *Nutr J.* **6**: 10.

Messerer M., Hakansson N., Wolk A., Akesson A. (2008). Dietary supplement use and mortality in a cohort of Swedish men. *Br J Nutr.* **99** : 626-631.

Michaud D. S., Spiegelman D., Clinton S.K., et al. (2000). Prospective study of dietary supplements, macronutrients, micronutrients, and risk of bladder cancer in US men. *Am J Epidemiol.* **152**: 1145-1153.

³⁶ ACCEPTED MANUSCRIPT

Milton R. C., Sperduto R.D., Clemons T.E., Ferris F.L., III. (2006). Centrum use and progression of age-related cataract in the Age-Related Eye Disease Study: a propensity score approach.

AREDS report No. 21. *Ophthalmology*. **113**: 1264-1270.

Mulholland C. A., Benford D.J. (2007). What is known about the safety of multivitamin-multimineral supplements for the generally healthy population? Theoretical basis for harm. $Am\ J$ Clin Nutr. **85**: 318S-322S.

Muller O., Krawinkel M. (2005). Malnutrition and health in developing countries. *CMAJ.* **173**: 279-286.

Muntwyler J., Hennekens C.H., Manson J.E., Buring J.E., Gaziano J.M. (2002). Vitamin supplement use in a low-risk population of US male physicians and subsequent cardiovascular mortality. *Arch Intern Med.* **162**: 1472-1476.

Mursu J., Robien K., Harnack L.J., Park K., Jacobs D.R., Jr. (2011). Dietary supplements and mortality rate in older women: the Iowa Women's Health Study. *Arch Intern Med.* **171**: 1625-1633.

National Academy of Sciences, Institute of Medicine, and Food and Nutrition Board. Dietary Reference Intakes: Recommended Dietary Allowances and Adequate Intakes for Vitamins and Elements. U.S. Department of Agriculture. Available at: http://fnic.nal.usda.gov/dietary-guidance/dietary-reference-intakes/dri-tables. Accessed August 2, 2013

National Institutes of Health. (2006). National Institutes of Health State-of-the-science conference statement: multivitamin/mineral supplements and chronic disease prevention. *Ann Intern Med.* **145**: 364-371.

Naurath, N. and Jones, J. M. Smoking rates around the world - how do Americans compare? Available at: www.gallup.com/poll/28432/smoking-rates-around-world-how-americans-compare.aspx.?version=print.

Neuhouser M. L., Wassertheil-Smoller S., Thomson C., et al. (2009). Multivitamin use and risk of cancer and cardiovascular disease in the Women's Health Initiative cohorts. *Arch Intern Med.* **169**: 294-304.

Otten JJ, Hellwig JP, Meyers LD. *Dietary Reference Intakes: The Essential Guide to Nutrient Requirements*. Washington, DC: The National Academies Press; 2006.

Park S. Y., Murphy S.P., Wilkens L.R., Henderson B.E., Kolonel L.N. (2011). Multivitamin use and the risk of mortality and cancer incidence: the multiethnic cohort study. *Am J Epidemiol.* **173** : 906-914.

Patterson R. E., Neuhouser M.L., Hedderson M.M., et al. (2003). Changes in diet, physical activity, and supplement use among adults diagnosed with cancer. *J Am Diet Assoc.* **103**: 323-328.

Pfizer Consumer Healthcare. What's Inside Centrum? Pfizer Consumer Healthcare. Available at: http://www.centrum.com/whats-inside/products. Accessed August 2, 2013

Pocobelli G., Peters U., Kristal A.R., White E. (2009). Use of supplements of multivitamins, vitamin C, and vitamin E in relation to mortality. *Am J Epidemiol.* **170**: 472-483.

Prentice R. L. (2007). Clinical trials and observational studies to assess the chronic disease benefits and risks of multivitamin-multimineral supplements. *Am J Clin Nutr.* **85** : 308S-313S.

Radimer K., Bindewald B., Hughes J., et al. (2004). Dietary supplement use by US adults: data from the National Health and Nutrition Examination Survey, 1999-2000. *Am J Epidemiol.* **160**: 339-349.

Ramakrishnan U. (2002). Prevalence of micronutrient malnutrition worldwide. *Nutr Rev.* **60**: S46-S52.

Rautiainen S., Akesson A., Levitan E.B., et al. (2010). Multivitamin use and the risk of myocardial infarction: a population-based cohort of Swedish women. *Am J Clin Nutr.* **92** : 1251-1256.

Rautiainen S., Lindblad B.E., Morgenstern R., Wolk A. (2010). Vitamin C supplements and the risk of age-related cataract: a population-based prospective cohort study in women. *Am J Clin Nutr.* **91**: 487-493.

Richer S. (1996). Multicenter ophthalmic and nutritional age-related macular degeneration study-part 2: antioxidant intervention and conclusions. *J Am Optom Assoc.* **67** : 30-49.

Richer S., Stiles W., Statkute L., et al. (2004). Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). *Optometry*. **75**: 216-230.

Rimm E. B., Willett W.C., Hu F.B., et al. (1998). Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. *JAMA*. **279**: 359-364. Rock C. L. (2007). Multivitamin-multimineral supplements: who uses them? *Am J Clin Nutr.* **85**: 277S-279S.

Schiller J. S., Lucas J.W., Ward B.W., Peregoy J.A. (2012). Summary health statistics for U.S. adults: National Health Interview Survey, 2010. *Vital Health Stat 10*. 1-207.

Sebastian R. S., Cleveland L.E., Goldman J.D., Moshfegh A.J. (2007). Older adults who use vitamin/mineral supplements differ from nonusers in nutrient intake adequacy and dietary attitudes. *J Am Diet Assoc.* **107**: 1322-1332.

Seddon J. M. (2007). Multivitamin-multimineral supplements and eye disease: age-related macular degeneration and cataract. *Am J Clin Nutr.* **85**: 304S-307S.

Sesso H. D., Christen W.G., Bubes V., et al. (2012). Multivitamins in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. *JAMA*. **308**: 1751-1760.

Sesso H. D., Gaziano J.M., VanDenburgh M., et al. (2002). Comparison of baseline characteristics and mortality experience of participants and nonparticipants in a randomized clinical trial: the Physicians' Health Study. *Control Clin Trials.* **23**: 686-702.

Shakur Y. A., Tarasuk V., Corey P., O'Connor D.L. (2012). A comparison of micronutrient inadequacy and risk of high micronutrient intakes among vitamin and mineral supplement users and nonusers in Canada. *J Nutr.* **142**: 534-540.

Sperduto R. D., Hu T.S., Milton R.C., et al. (1993). The Linxian cataract studies. Two nutrition intervention trials. *Arch Ophthalmol.* **111** : 1246-1253.

Stampfer M. J., Hennekens C.H., Manson J.E., et al. (1993). Vitamin E consumption and the risk of coronary disease in women. *N Engl J Med.* **328**: 1444-1449.

Stevens V. L., McCullough M.L., Diver W.R., et al. (2005). Use of multivitamins and prostate cancer mortality in a large cohort of US men. *Cancer Causes Control.* **16** : 643-650.

⁴⁰ ACCEPTED MANUSCRIPT

Sullivan K. M., Ford E.S., Azrak M.F., Mokdad A.H. (2009). Multivitamin use in pregnant and nonpregnant women: results from the Behavioral Risk Factor Surveillance System. *Public Health Rep.* **124**: 384-390.

Taylor J. P., Maclellan D.L., van T.L., Sweet L. (2007). Widespread micronutrient inadequacies among adults in prince edward island. *Can J Diet Pract Res.* **68**: 23-29.

United States Department of Agriculture. Choosemyplate.gov. United States Department of Agriculture. Available at: http://www.choosemyplate.gov/. Accessed June 13, 2013

US Department of Agriculture. Dietary guidelines for Americans, 2010. Available at: www.dietaryguidelines.gov. Accessed December 10, 2013

Watkins M. L., Erickson J.D., Thun M.J., Mulinare J., Heath C.W., Jr. (2000). Multivitamin use and mortality in a large prospective study. *Am J Epidemiol*. **152**: 149-162.

Whatham A., Bartlett H., Eperjesi F., et al. (2008). Vitamin and mineral deficiencies in the developed world and their effect on the eye and vision. *Ophthalmic Physiol Opt.* **28**: 1-12.

Wolters M., Hickstein M., Flintermann A., Tewes U., Hahn A. (2005). Cognitive performance in relation to vitamin status in healthy elderly German women-the effect of 6-month multivitamin supplementation. *Prev Med.* **41** : 253-259.

Wu K., Willett W.C., Chan J.M., et al. (2002). A prospective study on supplemental vitamin e intake and risk of colon cancer in women and men. *Cancer Epidemiol Biomarkers Prev.* **11**: 1298-1304.

Zhang S., Hunter D.J., Forman M.R., et al. (1999). Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. *J Natl Cancer Inst.* **91**: 547-556.

Zhang S. M., Giovannucci E.L., Hunter D.J., et al. (2001). Vitamin supplement use and the risk of non-Hodgkin's lymphoma among women and men. *Am J Epidemiol.* **153**: 1056-1063.

Zhang S. M., Moore S.C., Lin J., et al. (2006). Folate, vitamin B6, multivitamin supplements, and colorectal cancer risk in women. *Am J Epidemiol.* **163** : 108-115.

Zhang W., Shu X.O., Li H., et al. (2012). Vitamin intake and liver cancer risk: a report from two cohort studies in China. *J Natl Cancer Inst.* **104**: 1173-1181.

Zheng Selin J., Rautiainen S., Lindblad B.E., Morgenstern R., Wolk A. (2013). High-dose supplements of vitamins C and E, low-dose multivitamins, and the risk of age-related cataract: a population-based prospective cohort study of men. *Am J Epidemiol.* **177**: 548-555.

Text box

Governments of individual nations often set recommendations to assess adequacy of nutrient intake and for dietary planning. Jointly, the US and Canadian governments support the Dietary Reference Intakes (DRIs), which include micronutrient intake recommendations for healthy individuals when sufficient scientific evidence exists and are designed to prevent deficiency disease and reduce the risk of chronic disease. The DRIs are comprised of 4 reference values that can be used to assess the adequacy of diets in individuals and populations (Otten J. J., Hellwig, J. P. et al., 2006):

Estimated Average Requirement (EAR). The average daily nutrient intake level that is estimated to meet the requirements of half of the healthy individuals in a particular life stage and gender group. The EAR is defined by using specific scientific criteria for nutrient adequacy and serves as the primary reference point for assessing the adequacy of nutrient intakes of groups. It is not meant to be used as a goal for daily intake by individuals.

Recommended Dietary Allowance (RDA). The average daily dietary nutrient intake level that is sufficient to meet the nutrient requirements of nearly all (97%–98%) healthy individuals in a particular life stage and gender group. The RDA is mathematically derived from the EAR and is used to guide daily intake by individuals. Because the RDA exceeds the requirements of nearly all members of the group, intakes below the RDA cannot be assessed as being inadequate.

Adequate Intake (AI). The recommended average daily intake level based on observed or experimentally determined approximations or estimates of nutrient intake by a group (or groups) of apparently healthy people who are assumed to be maintaining an adequate nutritional state. The AI is used when an RDA cannot be determined, indicating that more research is needed to determine with some degree of certainty the requirements for a specific nutrient.

Tolerable Upper Intake Level (UL). The highest average daily nutrient intake level that is likely to pose no risk of adverse health effects to almost all individuals in the general population. As intake increases above the UL, the potential risk of adverse effects may increase.

Table 1. Comparison between the daily values, ¹ dietary reference intakes for adults, and a representative commercially available MVM supplement

Micronutrient	DV (Food and	RDA or AI	RDA or AI	Centrum® Adults	Centrum [®]
	Drug	for adult	for adult	(under 50 years)	Adults (under
	Administration,	males	females	(amount/serving)	50 years) (%
	2013)	(amount/day)	(amount/day)	(Pfizer Consumer	DV) (Pfizer
		(National	(National	Healthcare, 2013)	Consumer
		Academy of	Academy of		Healthcare, 2013)
		Sciences,	Sciences,		
		Institute of	Institute of		
		Medicine et	Medicine et		
		al., 2010)	al., 2010)		
Biotin	300 mcg	30 mcg	30 mcg	30 mcg	10
Folate	400 mcg	400 mcg^2	400 mcg^2	400 mcg (folic	100
				acid)	
Niacin	20 mg	16 mg^3	14 mg^3	20 mg	100
Pantothenic	10 mg	5 mg	5 mg	10 mg	100
acid					
Riboflavin	1.7 mg	1.3 mg	1.1 mg	1.7 mg	100
Thiamin	1.5 mg	1.2 mg	1.1 mg	1.5 mg	100
Vitamin A	5,000 IU	3,000 IU ⁴	2,333 IU ⁴	3,500 IU (29% as	70
				beta-carotene)	
Vitamin B ₆	2 mg	1.3–1.7 mg	1.3–1.5 mg	2 mg	100

Vitamin B ₁₂	6 mcg	$2.4~\mathrm{mcg}^5$	$2.4~\mathrm{mcg}^5$	6 mcg	100
Vitamin C	60 mg	90 mg	75 mg	60 mg	100
Vitamin D	400 IU	600–800 IU	600–800 IU	400 IU	100
Vitamin E	30 IU	22.5–33 IU ⁶	22.5–33 IU ⁶	30 IU	100
Vitamin K	80 mcg	120 mcg	90 mcg	25 mcg	31
Calcium	1,000 mg	1,000-1,200	1,000-1,200	200 mg	20
		mg	mg		
Chloride	3,400 mg	1,800-2.300	1,800-2,300	72 mg	2
		mg	mg		
Chromium	120 mcg	30–35 mcg	20–25 mcg	35 mcg	29
Copper	2 mg	900 mcg	900 mcg	0.5 mg	25
Iodine	150 mcg	150 mcg	150 mcg	150 mcg	100
Iron	18 mg	8 mg	8–18 mg	18 mg	100
Magnesium	400 mg	400–420 mg	310–320 mg	50 mg	13
Manganese	2 mg	2.3 mg	1.8 mg	2.3 mg	115
Molybdenum	75 mcg	45 mcg	45 mcg	45 mcg	60
Phosphorus	1,000 mg	700 mg	700 mg	20 mg	2
Potassium	3,500 mg	4,700 mg	4,700 mg	80 mg	2
Selenium	70 mcg	55 mcg	55 mcg	55 mcg	79
Zinc	15 mg	11 mg	8 mg	11 mg	73
Choline	Not established	550 mg	425 mg	_	_
Boron	Not established	_	_	75 mcg	Not established
Nickel	Not established	_	_	5 mcg	Not established
Silicon	Not established	_	_	2 mg	Not established
1					

Tin	Not established	_	_	10 mcg	Not established
Vanadium	Not established	_	_	10 mcg	Not established

¹Established by the United States Food and Drug Administration, the daily value (DV) is meant to inform consumers on the nutrient content of a food product. The DV itself is a nutrient reference value based on a caloric intake of 2,000 calories/day for adults and children 4 or more years of age. The %DV (the ratio between the amount of nutrient per serving of food and the DV for the given nutrient) reflects the nutrient content of the food product.

⁶22.5 IU of natural-source of alpha tocopherol (d-alpha-tocopherol); 33 IU of synthetic alpha-tocopherol (dl-alpha-tocopherol).

AI, adequate intake; DV, daily value; IU, international units; MVM, multivitamin/mineral supplement; RDA, recommended dietary allowance.

²Dietary folate equivalents.

³Niacin equivalent (NE): 1 mg NE=60 mg tryptophan=1 mg niacin.

⁴Retinol activity equivalents.

⁵Intake for adults >50 years of age should be from supplements or fortified foods due to the agerelated increase in food-bound malabsorption.

Table 2. Randomized controlled trials

			Cancer			
Trial name	Participants	Treatment	Formulation ¹	Mean	Primary endpoint(s)	Key outcomes
				follow-		
				up		
PHS II	14,641 US male	Daily MVM	Vitamin A 5,000	11.2 y	Total cancer	Daily MVM
	physicians,	(Centrum [®]	IU, vitamin C 60		(excluding non-	reduced the risk
	mean (SD) age	Silver, Pfizer	mg, vitamin D		melanoma skin	of total cancer by
	64.3 (9.2) y	Consumer	400 IU, vitamin E		cancer)	8% (HR: 0.92;
		Healthcare,	45 IU, vitamin K			95% CI: 0.86–
		Madison, NJ)	10 mcg, thiamin			0.998; <i>P</i> =0.04)
		or placebo	1.5 mg, riboflavin			
			1.7 mg, niacin 20			
			mg, vitamin B ₆ 3			
			mg, folic acid 400			
			mcg, vitamin B ₁₂			
			25 mcg, biotin 30			
		PHS II 14,641 US male physicians, mean (SD) age	PHS II 14,641 US male Daily MVM physicians, (Centrum® mean (SD) age Silver, Pfizer 64.3 (9.2) y Consumer Healthcare, Madison, NJ)	PHS II 14,641 US male Daily MVM Vitamin A 5,000 physicians, (Centrum® IU, vitamin C 60 mean (SD) age Silver, Pfizer mg, vitamin D 64.3 (9.2) y Consumer 400 IU, vitamin E Healthcare, 45 IU, vitamin K Madison, NJ) 10 mcg, thiamin or placebo 1.5 mg, riboflavin 1.7 mg, niacin 20 mg, vitamin B ₆ 3 mg, folic acid 400 mcg, vitamin B ₁₂	Trial nameParticipantsTreatmentFormulation 1 Mean follow-PHS II14,641 US male physicians, $(Centrum^{\oplus})$ Daily MVMVitamin A 5,00011.2 yphysicians, $(Centrum^{\oplus})$ IU, vitamin C 6011.2 ymean (SD) age mean (SD) age folions, $(Centrum^{\oplus})$ Madison, Vitamin D10 mg, vitamin D64.3 (9.2) yConsumer for placebo45 IU, vitamin KHealthcare, for placebo1.5 mg, riboflavin for placebo1.5 mg, riboflavin for placebo1.7 mg, niacin 20 mg, vitamin $(Centrum)$ 1.7 mg, niacin 20 mg, vitamin $(Centrum)$ mg, folions folions for placebomcg, vitamin $(Centrum)$	Trial nameParticipantsTreatmentFormulation follow- follow- upMeanPrimary endpoint(s)PHS II $14,641$ US male physicians, mean (SD) ageDaily MVMVitamin A 5,000 IU, vitamin C 60 mg, vitamin D 11.2 yTotal cancer64.3 (9.2) yConsumer Healthcare, Madison, NJ) 400 IU, vitamin E 10 mcg, thiamincancer)1.5 mg, riboflavin 1.7 mg, niacin 20 mg, vitamin B6 3 mg, folic acid 400 mcg, vitamin B12

mcg, pantothenic acid 10 mg, calcium 200 mg, iron 4 mg, phosphorus 48 mg, iodine 150 mcg, magnesium 100 mg, zinc 15 mg, selenium 20 mcg, copper 2 mg, manganese 3.5 mg, chromium 130 mcg, molybdenum 160 mcg, chloride 72.6 mg, potassium 80 mg, boron 150 mcg,

				nickel 5 mcg,			
				vanadium 10			
				mcg, silicon 2 mg			
Blot, 1993	Linxian	29,584 Chinese	1 of 8 nutrient	(A) retinol 5,000	5.25 y	Total mortality;	9% reduction in
(Blot W. J.,	Cancer	men & women,	combos: AB,	IU and zinc 22.5		cancer incidence and	total mortality
Li, J. Y. et	Prevention	aged 40–69 y	AC, AD, BC,	g; (B) riboflavin		mortality	only with beta-
al., 1993)	Trial		BD, CD,	3.2 g and niacin			carotene,
			ABCD, or	40 mg; (C)			selenium, and
			placebo	ascorbic acid 120			alpha-tocopherol
				mg and			supplementation
				molybdenum 30			(RR: 0.91; 95%
				mcg; (D) beta-			CI: 0.84–0.99;
				carotene 15 mg,			P=0.03);
				selenium 50 mcg,			13% reduction in
				and alpha-			cancer mortality
				tocopherol 30 mg			only with beta-
							carotene,
							selenium, and

							alpha-tocopherol
							supplementation
							(RR: 0.87; 95%
							CI: 0.75–1.00)
Li, 1993 (Li	Linxian	3,318 Chinese	Daily MVM	Beta-carotene 15	6.0 y	Esophageal/gastric	No significant
J. Y.,	Dysplasia	adults, aged 40-	(2 x Centrum [®]	mg, vitamin A		cardia cancer	effect
Taylor, P.	Study	69 y (median 54	tablets and 1 x	10,000 IU,		incidence and	
R. et al.,		y), with	beta-carotene	vitamin E 60 IU,		mortality	
1993)		cytological	capsule) or	vitamin C 180			
		evidence of	placebo	mg, folic acid 800			
		esophageal		mcg, vitamin B ₁ 5			
		dysplasia		mg, vitamin B ₂			
				5.2 mg,			
				niacinamide 40			
				mg, vitamin B ₆ 6			
				mg, vitamin B ₁₂			
				18 mcg, vitamin			
				D 800 IU, biotin			
1							

				90 mcg,			
				pantothenic acid			
				20 mg, calcium			
				324 mg,			
				phosphorus 250			
				mg, iodine 300			
				mcg, iron 54 mg,			
				magnesium 200			
				mg, copper 6 mg,			
				manganese 15			
				mg, potassium			
				15.4 mg, chloride			
				14 mg, chromium			
				30 mcg,			
				molybdenum 30			
				mcg, selenium 50			
				mcg, zinc 45 mg			
Hercberg,	SU.VI.MAX	12,741 French	Daily	Ascorbic acid 120	7.5 y	Cancer incidence;	Antioxidant
I							

2004	adults, women	antioxidant	mg, vitamin E 30		ischemic CVD	supplementation
(Hercberg	aged 35–60 y	capsule or	mg, beta-carotene		incidence; all-cause	reduced total
S., Galan,	and men aged	placebo	6 mg, selenium		mortality (secondary)	cancer incidence
P. et al.,	45–60 y: 7,713		100 mcg			(RR: 0.69; 95%
2004)	women, mean		(selenium-			CI: 0.53-0.91)
	(SD) age 46.6		enriched yeast),			and all-cause
	(6.6) y; 5,028		zinc gluconate 20			mortality (RR:
	men, mean (SD)		mg			0.63; 95% CI:
	age 51.3 (4.7) y					0.42–0.93) in men
						but not in women
			CVD			
Sesso, 2012 PHS II	14,641 US male	Daily MVM	Vitamin A 5,000	11.2 y	Composite endpoint	No significant
(Sesso H.	physicians;	(Centrum [®]	IU, vitamin C 60		of major CV events:	effect on any
D.,	mean (SD) age	Silver) or	mg, vitamin D		nonfatal MI, nonfatal	endpoint
Christen,	64.3 (9.2) y	placebo	400 IU, vitamin E		stroke, CVD	
W. G. et al.,			45 IU, vitamin K		mortality	
2012)			10 mcg, thiamin			
			1.5 mg, riboflavin			
I						I

1.7 mg, niacin 20 mg, vitamin B_6 3 mg, folic acid 400 mcg, vitamin B_{12} 25 mcg, biotin 30 mcg, pantothenic acid 10 mg, calcium 200 mg, iron 4 mg, phosphorus 48 mg, iodine 150 mcg, magnesium 100 mg, zinc 15 mg, selenium 20 mcg, copper 2 mg, manganese 3.5 mg, chromium 130 mcg,

				molybdenum 160			
				mcg, chloride			
				72.6 mg,			
				potassium 80 mg,			
				boron 150 mcg,			
				nickel 5 mcg,			
				vanadium 10			
				mcg, silicon 2 mg			
Hercberg,	SU.VI.MAX	12,741 French	Daily	Ascorbic acid 120	7.5 y	Cancer incidence;	No significant
2004		adults, women	antioxidant	mg, vitamin E 30		ischemic CVD	effect on CVD
(Hercberg		aged 35–60 y	capsule or	mg, beta-carotene		incidence; all-cause	incidence
S., Galan,		and men aged	placebo	6 mg, selenium		mortality	
P. et al.,		45–60 y: 7,713		100 mcg			
2004)		women, mean		(selenium-			
		age (SD) 46.6		enriched yeast),			
		(6.6) y; 5,028		zinc gluconate 20			
		men, mean age		mg			
		(SD) 51.3 (4.7) y					
		(SD) 51.3 (4.7) y					

120 patients	Antioxidant	Beta-carotene 3	2 y	Cholesterol,	No significant
with lower limb	supplement or	mg, vitamin C		lipoproteins,	effect on any
atherosclerosis	placebo	100 mg,		hemostatic, and	endpoint
/intermittent		pyridoxine		rheological factors;	
claudication		hydrochloride 25		ankle/brachial	
		mg, zinc 100 mg,		pressure index; lower	
		nicotinamide 10		limb function;	
		mg, sodium		incidence of CV	
		selenite 1 mg		events; CV mortality	
	Age-re	lated eye diseases			
14,641 US male	Daily MVM	Vitamin A 5,000	11.2 y	Incident cataract	Significant
physicians, aged	(Centrum [®]	IU, vitamin C 60		(total, cortical, PSC,	reduction of total
≥50 years	Silver) or	mg, vitamin D		and "any" nuclear	cataract incidence
	placebo	400 IU, vitamin E		sclerosis); visually	(HR: 0.91; 95%
		45 IU, vitamin K		significant AMD,	CI: 0.83–0.99);
		10 mcg, thiamin		total AMD, and	Significant
		1.5 mg, riboflavin		advanced AMD	reduction of
		1.7 mg, niacin 20			"any" nuclear
	with lower limb atherosclerosis /intermittent claudication 14,641 US male physicians, aged	with lower limb supplement or atherosclerosis placebo /intermittent claudication Age-ref 14,641 US male Daily MVM physicians, aged (Centrum® ≥50 years Silver) or	with lower limb supplement or mg, vitamin C atherosclerosis placebo 100 mg, /intermittent pyridoxine claudication hydrochloride 25 mg, zinc 100 mg, nicotinamide 10 mg, sodium selenite 1 mg **Age-related eye diseases** 14,641 US male Daily MVM Vitamin A 5,000 physicians, aged (Centrum® IU, vitamin C 60 ≥50 years Silver) or mg, vitamin D placebo 400 IU, vitamin E 45 IU, vitamin K 10 mcg, thiamin 1.5 mg, riboflavin	with lower limb supplement or mg, vitamin C atherosclerosis placebo 100 mg, /intermittent pyridoxine claudication hydrochloride 25 mg, zinc 100 mg, nicotinamide 10 mg, sodium selenite 1 mg **Age-related eye diseases** 14,641 US male Daily MVM Vitamin A 5,000 11.2 y physicians, aged (Centrum® IU, vitamin C 60 ≥50 years Silver) or mg, vitamin D placebo 400 IU, vitamin E 45 IU, vitamin K 10 mcg, thiamin 1.5 mg, riboflavin	with lower limb supplement or mg, vitamin C lipoproteins, atherosclerosis placebo 100 mg, hemostatic, and /intermittent pyridoxine rheological factors; claudication hydrochloride 25 ankle/brachial mg, zinc 100 mg, pressure index; lower nicotinamide 10 limb function; mg, sodium incidence of CV selenite 1 mg events; CV mortality **Age-related eye diseases** 14,641 US male Daily MVM Vitamin A 5,000 11.2 y Incident cataract physicians, aged (Centrum® IU, vitamin C 60 (total, cortical, PSC, ≥50 years Silver) or mg, vitamin D and "any" nuclear placebo 400 IU, vitamin E sclerosis); visually 45 IU, vitamin K significant AMD, 10 mcg, thiamin total AMD, and 1.5 mg, riboflavin advanced AMD

mg, vitamin B ₆ 3	sclerosis
mg, folic acid 400	incidence (HR:
mcg, vitamin B ₁₂	0.87; 95% CI:
25 mcg, biotin 30	0.79–0.96); No
mcg, pantothenic	significant effect
acid 10 mg,	on cortical or PSC
calcium 200 mg,	cataract incidence;
iron 4 mg,	Significant
phosphorus 48	increase in total
mg, iodine 150	AMD (HR: 1.22;
mcg, magnesium	95% CI: 1.03–
100 mg, zinc 15	1.44); No
mg, selenium 20	significant effect
mcg, copper 2	on visually
mg, manganese	significant or
3.5 mg, chromium	advanced AMD
130 mcg,	
molybdenum 160	

				mcg, chloride			
				72.6 mg,			
				potassium 80 mg,			
				boron 150 mcg,			
				nickel 5 mcg,			
				vanadium 10			
				mcg, silicon 2 mg			
Maraini,	CTNS	1,020 Italian	Daily MVM	Vitamin A 5,000	9 y	Nuclear, cortical, or	"Total lens
2008		adults, mean age	(Centrum®) or	IU, vitamin E 30		PSC cataract opacity	events" were less
(Maraini		(SD) 68 (5) y,	placebo	IU, vitamin C 60		grades; cataract	common in
G.,		with early		mg, folic acid 400		surgery	participants who
Sperduto,		(n=710) or no		mcg, vitamin B ₁			took the MVM
R. D. et al.,		(n=310) cataract		1.5 mg, vitamin			formulation, but
2008)				B ₂ 1.7 mg,			treatment had
				niacinamide 20			opposite effects
				mg, vitamin B ₆ 2			on the
				mg, vitamin B ₁₂ 6			development or
				mcg, vitamin D			progression of
I							

400 IU, biotin 30	nuclear
mcg, pantothenic	(decreased) and
acid 10 mg,	PSC cataract
calcium 162 mg,	(increased)
phosphorus 125	opacities
mg, iodine 150	
mcg, iron 18 mg,	
magnesium 100	
mg, copper 2 mg,	
zinc 15 mg,	
manganese 2.5	
mg, selenium 25	
mcg, chromium	
25 mcg, vitamin	
K 25 mcg,	
molybdenum 25	
mcg, chloride	
36.3 mg,	

				potassium 40 mg			
Sperduto,	Linxian Eye	2,141 from the	Daily MVM	Beta-carotene 15	6.0 y	Prevalence of	MVM
1993	Study	Linxian	(2 x Centrum®	mg, vitamin A		nuclear, cortical, and	supplementation
(Sperduto		Dysplasia trial,	tablets and 1 x	10,000 IU,		PSC cataract	resulted in a 36%
R. D., Hu,		mean age 59 y	beta-carotene	vitamin E 60 IU,			reduction in the
T. S. et al.,			capsule) or	vitamin C 180			prevalence of
1993)			placebo	mg, folic acid 800			nuclear cataract in
				mcg, vitamin B ₁			those aged 65–74
				4.5 mg, vitamin			у
				B ₂ 5.2 mg,			
				niacinamide 40			
				mg, vitamin B ₆ 6			
				mg, vitamin B ₁₂			
				18 mcg, vitamin			
				D 800 IU, biotin			
				90 mcg,			
				pantothenic acid			
				20 mg, calcium			

				324 mg,			
				phosphorus 250			
				mg, iodine 300			
				mcg, iron 54 mg,			
				magnesium 200			
				mg, copper 6 mg,			
				manganese 15			
				mg, potassium 15			
				mg, chloride 14			
				mg, chromium 30			
				mcg,			
				molybdenum 30			
				mcg, selenium 50			
				mcg, zinc 45 mg			
Sperduto,	Linxian Eye	3,249 from the	1 of 8 nutrient	(A) retinol 5,000	6.0 y	Prevalence of	A 44% reduction
1993	Study	Linxian general	combos: AB,	IU and zinc 22		nuclear, cortical, and	in prevalence of
(Sperduto		population trial,	AC, AD, BC,	mg; (B) riboflavin		PSC cataract	nuclear cataract in
R. D., Hu,		mean age 56–57	BD, CD,	3 g and niacin 40			those aged 65–74

T. S. et al.,		у	ABCD, or	mg; (C) ascorbic			y with
1993)			placebo	acid 120 mg and			niacin/riboflavin
				molybdenum 30			supplementation
				mcg; (D) beta-			only; a
				carotene 15 mg,			deleterious effect
				selenium 50 mcg,			of
				and alpha-			niacin/riboflavin
				tocopherol 30 mg			supplementation
							on PSC cataract in
							those aged 65–74
							у
AREDS	AREDS2	4,203 men &	1 of 4	(1) "placebo"	4.9 y	Progression to	No significant
study		women, aged	AREDS1	consisting of 1 of		advanced AMD;	effect of any
group, 2013		50-85 y, at high-	formulations	4 possible		visual acuity	combination or
(Age-		risk for	in conjunction	AREDS1			formulation
Related Eye		progression to	with (1) lutein	formulations: 1.			
Disease		advanced AMD	and	Original, 2.			
Study 2			zeaxanthin,	Without beta-			
l							ı

Research	(2) omega-3	carotene, 3. With
Group,	fatty acids, or	less zinc (25 mg),
2013)	(3) lutein,	4. Without beta-
	zeaxanthin,	carotene and with
	and omega-3	less zinc, (2)
	fatty acids	lutein (10 mg)
		and zeaxanthin (2
		mg) plus AREDS
		placebo, (3) DHA
		(350 mg) and
		EPA (650 mg)
		plus AREDS
		placebo, and (4)
		lutein, zeaxanthin,
		DHA, and EPA
		plus AREDS
		placebo
AREDS AREDS1 4,629	men and Daily tablet (3	3 (1) antioxidants: 6.3 y Progression to Zinc alone or in

study	Report No.	women, aged	possible	vitamin C (500	advanced AMD;	combination with
group, 2	2001 9	55-80 y, with	treatments) or	mg), vitamin E	visual acuity	antioxidants
(AREDS	S,	vision issues or	placebo; 66%	(400 IU), and		reduced the
2001a)		AMD in at least	of participants	beta-carotene (15		progression to
		1 eye	also elected to	mg), (2) minerals:		advanced AMD in
			take a daily	zinc (80 mg) and		high-risk
			MVM	copper (2 mg), or		participants only
			(Centrum [®])	(3) antioxidants		
				plus zinc		
Richer,	MONMD	71 patients with	Twice daily	Data constant 1.5 v.	Viewal a suite	Supplement group
Telefier,	MOMID	71 patients with	I wice daily	Beta-carotene 1.5 y	Visual acuity,	Supplement group
1996	MONND	advanced, dry	"broad	20,000 IU,	contrast sensitivity,	maintained visual
		•	•	·	•	
1996		advanced, dry	"broad	20,000 IU,	contrast sensitivity,	maintained visual
1996 (Richer		advanced, dry	"broad spectrum"	20,000 IU, vitamin E 200 IU,	contrast sensitivity,	maintained visual acuity but also
1996 (Richer		advanced, dry	"broad spectrum" antioxidant	20,000 IU, vitamin E 200 IU, vitamin C 750	contrast sensitivity,	maintained visual acuity but also had increased
1996 (Richer		advanced, dry	"broad spectrum" antioxidant capsule	20,000 IU, vitamin E 200 IU, vitamin C 750 mg, citrus	contrast sensitivity,	maintained visual acuity but also had increased cortical
1996 (Richer		advanced, dry	"broad spectrum" antioxidant capsule (OcuGuard®;	20,000 IU, vitamin E 200 IU, vitamin C 750 mg, citrus bioflavonoid	contrast sensitivity,	maintained visual acuity but also had increased cortical
1996 (Richer		advanced, dry	"broad spectrum" antioxidant capsule (OcuGuard®; Twinlab, New	20,000 IU, vitamin E 200 IU, vitamin C 750 mg, citrus bioflavonoid complex 125 mg,	contrast sensitivity,	maintained visual acuity but also had increased cortical

zinc picolinate 12.5 mg, selenium 50 mcg, taurine 100 mg, n-acetyl cysteine 100 mg, l-glutathione 5 mg, vitamin B ₂ 25 mg, chromium 100 mcg Richer, LAST 90 male patients (1) lutein Lutein 10 mg, 1 y MPOD; measures of Improved visual 2004 with AMD alone, (2) vitamin A 2,500 visual function function with (Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or Stiles, W. et "broad- 15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E Vitacost, 500 IU, vitamin					mg, rutin 50 mg,			
50 mcg, taurine 100 mg, n-acetyl $\text{cysteine } 100 \text{ mg, n-acetyl}$ $\text{mg, vitamin } B_2 25$ mg, chromium 100 mcg $\text{Richer, LAST} \qquad 90 \text{ male patients} \qquad (1) \text{ lutein} \qquad \text{Lutein } 10 \text{ mg, n} \qquad 1 \text{ y} \qquad \text{MPOD; measures of} \qquad \text{Improved visual}$ $2004 \qquad \text{with } \text{AMD} \qquad \text{alone, } (2) \qquad \text{vitamin } \text{A } 2,500 \qquad \text{visual function} \qquad \text{function with}$ $\text{(Richer S.,} \qquad \text{lutein plus} \qquad \text{IU, beta-carotene} \qquad \text{(visual acuity, lutein alone or}$ $\text{Stiles, W. et} \qquad \text{"broad-} \qquad 15,000 \text{ IU,} \qquad \text{contrast sensitivity)} \qquad \text{lutein plus MVM}$ $\text{al., } 2004) \qquad \text{spectrum"} \qquad \text{vitamin } \text{C } 1,500 \qquad \text{compared with}$ $\text{supplement} \qquad \text{mg, vitamin } \text{D} \qquad \text{placebo}$ $\text{(OcuPower}^{\$}, \qquad 400 \text{ IU, vitamin } \text{E}$					zinc picolinate			
100 mg, n-acetyl $cysteine 100 \text{ mg,}$ $l\text{-glutathione 5}$ $mg, \text{ vitamin B}_2 25$ $mg, \text{ chromium}$ 100 mcg $Richer, LAST 90 \text{ male patients} (1) \text{ lutein} \text{ Lutein 10 mg,} 1 \text{ y} \text{MPOD; measures of} \text{Improved visual}$ $2004 \text{with AMD} \text{alone, (2)} \text{vitamin A 2,500} \text{visual function} \text{function with}$ $(Richer S., \text{lutein plus} IU, \text{ beta-carotene} \text{(visual acuity,} \text{lutein alone or}$ $Stiles, W. \text{ et} \text{"broad-} 15,000 \text{ IU,} \text{contrast sensitivity)} \text{lutein plus MVM}$ $al., 2004) \text{spectrum"} \text{vitamin C 1,500} \text{compared with}$ $\text{supplement} \text{mg, vitamin D} \text{placebo}$ $(OcuPower*, 400 \text{ IU, vitamin E}$					12.5 mg, selenium			
cysteine 100 mg, l-glutathione 5 mg, vitamin B ₂ 25 mg, chromium 100 mcg Richer, LAST 90 male patients (1) lutein Lutein 10 mg, 1 y MPOD; measures of Improved visual 2004 with AMD alone, (2) vitamin A 2,500 visual function function with (Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or Stiles, W. et "broad- 15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E					50 mcg, taurine			
I-glutathione 5 mg, vitamin B ₂ 25 mg, chromium 100 mcg					100 mg, n-acetyl			
mg, vitamin B_2 25 mg, chromium 100 mcg Richer, LAST 90 male patients (1) lutein Lutein 10 mg, 1 y MPOD; measures of Improved visual $2004 \qquad \text{with AMD} \qquad \text{alone, (2)} \qquad \text{vitamin A 2,500} \qquad \text{visual function} \qquad \text{function with}$ (Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or $Stiles, W. \text{ et} \qquad \text{"broad-} \qquad 15,000 \text{ IU,} \qquad \text{contrast sensitivity} \qquad \text{lutein plus MVM}$ $al., 2004) \qquad \text{spectrum"} \qquad \text{vitamin C 1,500} \qquad \text{compared with}$ $\text{supplement} \qquad \text{mg, vitamin D} \qquad \text{placebo}$ $(OcuPower^{\$}, 400 \text{ IU, vitamin E}$					cysteine 100 mg,			
mg, chromium 100 mcg Richer, LAST 90 male patients (1) lutein Lutein 10 mg, 1 y MPOD; measures of Improved visual 2004 with AMD alone, (2) vitamin A 2,500 visual function function with (Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or Stiles, W. et "broad-15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E					l-glutathione 5			
Richer, LAST 90 male patients (1) lutein Lutein 10 mg, 1 y MPOD; measures of Improved visual 2004 with AMD alone, (2) vitamin A 2,500 visual function function with (Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or Stiles, W. et "broad-15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E					mg, vitamin B ₂ 25			
Richer, LAST 90 male patients (1) lutein Lutein 10 mg, 1 y MPOD; measures of Improved visual 2004 with AMD alone, (2) vitamin A 2,500 visual function function with (Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or Stiles, W. et "broad-15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E					mg, chromium			
2004 with AMD alone, (2) vitamin A 2,500 visual function function with (Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or Stiles, W. et "broad- 15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E					100 mcg			
(Richer S., lutein plus IU, beta-carotene (visual acuity, lutein alone or Stiles, W. et "broad- 15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E	Richer,	LAST	90 male patients	(1) lutein	Lutein 10 mg,	1 y	MPOD; measures of	Improved visual
Stiles, W. et "broad- 15,000 IU, contrast sensitivity) lutein plus MVM al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E	2004		with AMD	alone, (2)	vitamin A 2,500		visual function	function with
al., 2004) spectrum" vitamin C 1,500 compared with supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E	(Richer S.,			lutein plus	IU, beta-carotene		(visual acuity,	lutein alone or
supplement mg, vitamin D placebo (OcuPower®, 400 IU, vitamin E	Stiles, W. et			"broad-	15,000 IU,		contrast sensitivity)	lutein plus MVM
(OcuPower [®] , 400 IU, vitamin E	al., 2004)			spectrum"	vitamin C 1,500			compared with
				supplement	mg, vitamin D			placebo
Vitacost, 500 IU, vitamin				(OcuPower®,	400 IU, vitamin E			
				Vitacost,	500 IU, vitamin			

Lexington, B₁ 50 mg, vitamin NC), or (3) B₂ 10 mg, vitamin placebo B₃ 70 mg, vitamin B₅ 50 mg, vitamin B₆ 50 mg, vitamin B₁₂ 500 mcg, folic acid 800 mcg, biotin 300 mcg, calcium 500 mg, magnesium 300 mg, iodine 75 mcg, zinc 25 mg, copper 1 mg, manganese 2 mg, selenium 200 mcg, chromium 200 mcg, molybdenum 75

mcg, lycopene 600 mcg, bilberry extract 160 mg, alpha-lipoic acid 150 mg, N-acetyl cysteine 200 mg, quercetin 100 mg, rutin 100 mg, citrus bioflavonoids 250 mg, plant enzymes 50 mg, black pepper extract 5 mg, malic acid 325 mg, taurine 900 mg, L-glycine 100 mg, L-

			glutathione 10			
			mg, boron 2 mg			
Bartlett,	20 adults; mean	Lutein	Lutein 6 mg,	9 mos	Contrast sensitivity	No significant
2007	(SD) age 69.2	combined	retinol 750 mcg,		score	effect
(Bartlett H.	(7.8) y with age-	with	vitamin C 250			
E., Eperjesi,	related	antioxidant	mg, vitamin E 34			
F., 2007)	maculopathy	vitamins and	mg, zinc 10 mg,			
		minerals or	copper 0.5 mg			
		placebo				
		Cos	gnitive function			
McNeill, MAVIS	910 community-	Daily MVM	Vitamin A 800	12 mos	Immediate memory	No effect on
2007	dwelling	tablet or	mcg, vitamin C		(digit span forward	immediate
(McNeill	Scottish adults,	placebo	60 mg, vitamin D		test); executive	memory;
G., Avenell,	aged ≥65 y;		5 mcg, vitamin E		functioning (verbal	beneficial effect
A. et al.,	median age 72 y		10 mg, thiamin		fluency test)	of
2007)			1.4 mg, riboflavin			supplementation
			1.6 mg, niacin 18			on executive
			mg, pantothenic			functioning in

			acid 6 mg,			subgroup analysis:
			pyridoxine 2 mg,			(1) those ≥75 y;
			vitamin B ₁₂ 1			(2) those at
			mcg, folic acid			increased risk for
			200 mcg, iron 14			micronutrient
			mg, iodine 150			deficiency
			mcg, copper 0.75			
			mg, zinc 15 mg,			
			manganese 1 mg			
Wolters,	220 women,	Daily MVM	Vitamin C 150	6 mos	Cognitive	No effect on
2005	aged 60–91 y;	(Nobilin®	mg, magnesium		performance	cognitive
(Wolters	median age 63 y	Q10,	50 mg, vitamin E		(Symbol Search	performance
M.,		Medicom	36 mg, niacin 34		subtest of the	
Hickstein,		Pharma	mg, pantothenic		Wechsler Adult	
M. et al.,		GmbH,	acid 16 mg, beta-		Intelligence Scale-	
2005)		Baierbrunn,	carotene 9 mg,		Revised III, the	
		Germany) or	pyridoxine 3.4		Kurztest Allgemeine	
		placebo	mg, riboflavin 3.2		Intelligenz, and the	

			capsules	mg, thiamine 2.4		pattern-recognition	
				mg, folic acid 400		subtest of the	
				mcg, biotin 200		Berliner	
				mcg, selenium 60		Amnesietest)	
				mcg, cobalamin 9			
				mcg			
Grodstein,	PHS II	5,947 US male	Daily MVM	Vitamin A 5,000	8.5 y	Composite score	No effect on mean
2013		physicians, aged	(Centrum [®]	IU, vitamin C 60		average of 5 tests of	cognitive change
(Grodstein		≥65 y	Silver) or	mg, vitamin D		global cognition,	over time or mean
F., O'Brien,			placebo	400 IU, vitamin E		verbal memory, and	level of cognition
J. et al.,				45 IU, vitamin K		category fluency;	
2013)				10 mcg, thiamin		cognitive	
				1.5 mg, riboflavin		assessments by	
				1.7 mg, niacin 20		telephone interview	
				mg, vitamin B ₆ 3			
				mg, folic acid 400			
				mcg, vitamin B ₁₂			
				25 mcg, biotin 30			
i							

mcg, pantothenic acid 10 mg, calcium 200 mg, iron 4 mg, phosphorus 48 mg, iodine 150 mcg, magnesium 100 mg, zinc 15 mg, selenium 20 mcg, copper 2 mg, manganese 3.5 mg, chromium 130 mcg, molybdenum 160 mcg, chloride 72.6 mg, potassium 80 mg, boron 150 mcg,

nickel 5 mcg,

vanadium 10

mcg, silicon 2 mg

		meg, sheon 2 mg										
Immune function												
Avenell,	MAVIS	910 community-	Daily MVM	Vitamin A 800	1 y	Self-reported	No effect on any					
2005		dwelling	tablet or	mcg, vitamin C		infection, quality of	outcomes					
(Avenell		Scottish adults,	placebo	60 mg, vitamin D		life, and primary care	measured					
A.,		aged ≥65 y;		5 mcg, vitamin E		visits for infection						
Campbell,		median age 72 y		10 mg, thiamin								
M. K. et al.,				1.4 mg, riboflavin								
2005)				1.6 mg, niacin 18								
				mg, pantothenic								
				acid 6 mg,								
				pyridoxine 2 mg,								
				vitamin B ₁₂ 1								
				mcg, folic acid								
				200 mcg, iron 14								
				mg, iodine 150								

			mcg, copper 0.75			
			mg, zinc 15 mg,			
			manganese 1 mg			
Graat, 2002	652 community-	Daily MVM	Retinol 600 mcg,	15 mos	Incidence and	No effect on any
(Graat J.	dwelling adults	(2 capsules	beta-carotene 1.2		severity of acute	outcomes
M.,	aged ≥60 y	per day),	mg, ascorbic acid		respiratory tract	measured
Schouten,		vitamin E 200	60 mg, vitamin E		infections	
E. G. et al.,		mg, both, or	10 mg,			
2002)		placebo	cholecalciferol 5			
			mcg, vitamin K			
			30 mcg, thiamin			
			1.4 mg, riboflavin			
			1.6 mg, niacin 18			
			mg, pantothenic			
			acid 6 mg,			
			pyridoxine 2.0			
			mg, biotin 150			
			mcg, folic acid			
I						

			200 mcg,			
			cyanocobalamin 1			
			mcg, zinc 10 mg,			
			selenium 25 mcg,			
			iron 4.0 mg,			
			magnesium 30			
			mg, copper 1.0			
			mg, iodine 100			
			mcg, calcium 74			
			mg, phosphorus			
			49 mg,			
			manganese 1.0			
			mg, chromium 25			
			mcg,			
			molybdenum 25			
			mcg, silicium 2			
			mcg			
Bogden,	56 healthy adults	Daily	Vitamin A 1000	1 y	Serum concentrations	Improved DHST

1994	aged 59–85 y	micronutrient	mcg, beta-	9 micronutrients;	responses in
(Bogden J.		supplement	carotene 0.75 mg,	DHST response to 7	supplement group
D.,		(Theragran M)	vitamin C 90 mg,	recall antigens	
Bendich, A.		or placebo	vitamin E 20 mg,		
et al., 1994)			vitamin D 10		
			mcg, thiamine 3		
			mg, riboflavin 3.4		
			mg, niacin 30 mg,		
			vitamin B ₆ 3 mg,		
			vitamin B ₁₂ 9		
			mcg, folic acid		
			0.40 mg,		
			pantothenic acid		
			10 mg, biotin 35		
			mcg, zinc 15 mg,		
			iodine 150 mcg,		
			iron 27 mg,		
			copper 2 mg,		

selenium 10 mcg,
manganese 5 mg,
chromium 15
mcg,
molybdenum 15
mcg, magnesium
100 mg, calcium
40 mg,
phosphorus 31 mg

¹Total daily amounts noted in parentheses, accounting for trials that administered more than 1 pill per day.

AMD, age-related macular degeneration; AREDS, Age-Related Eye Disease Study; CI, confidence interval; CTNS, Italian-American Clinical Trial of Nutritional Supplements and Age-Related Cataract; CVD, cardiovascular disease; DHST, delayed-type hypersensitivity skin test; HR, hazard ratio; IU, international units; LAST, Lutein Antioxidant Supplementation Trial; MAVIS, Mineral and Vitamin Intervention Study; MI, myocardial infarction; MONMD, Multicenter Ophthalmic and Nutritional Age-Related Macular Degeneration study; MPOD, macular pigment optical density; MVM, multivitamin/mineral supplement; PHS II, Physicians' Health Study II; PSC, posterior subcapsular; RE, retinol equivalents; RR, relative risk; SD, standard deviation; SU.VI.MAX, Supplémentation en Vitamines et Minéraux Antioxydants study; US, United States.

Table 3. Observational studies

			Cancer			
Reference	Study name	Participants (age	Assessment of	Mean	Primary endpoints	Key outcomes
		at enrollment)	MVM use	follow-up		
Li, 2012 (Li	EPIC-	23,943 men and	In-person interview	11 y	Mortality from all-	No association
K., Kaaks, R.	Heidelberg	women aged 35-	at baseline: (1) Did		causes, cancer, and	between regular
et al., 2012)		64 y	you regularly take		CVD	MVM use and any
			any medications or			endpoint
			vitamin/mineral			
			supplements in the			
			last 4 weeks?" and			
			(2) If yes, what was			
			the brand name?			
			Also, a self-			
			administered FFQ at			
			baseline, 2nd, and			
			3rd follow-up visits:			

			subject asked if			
			he/she took any			
			vitamin/mineral			
			supplements ≥4			
			weeks in the last 12			
			months.			
Zhang, 2012	Shanghai	72,486 women	In-person interviews	10.9 y	Incidence of liver	No association
(Zhang W.,	Women's Health	(aged 40–70 y)	on dietary habits,	(women);	cancer	between MVM
Shu, X. O. et	Study; Shanghai	and 60,351 men	including use of	5.5 y (men)		use and liver
al., 2012)	Men's Health	(aged 40–74 y)	supplements (if			cancer in women;
	Study		subject used a			increased risk of
			multivitamin ≥3			liver cancer in
			times/week			men with a history
			continuously for >2			of disease
			months), at baseline			
			and first follow-up			
			(2–3 y post-baseline)			
Hara, 2011	The Japan	62,629 men and	Self-reported use of	7-11 y	Risk of cancer and	No association

(Hara A.,	Public Health	women from the	vitamin supplements		CVD	between any
Sasazuki, S. et	Center-Based	Japanese general	at 2 time points			pattern of
al., 2011)	Prospective	population (aged	(never, past, recent,			multivitamin
	Study	40–69 y)	consistent); in survey			supplement use
			I, asked the			and risk of cancer
			frequency and type;			in men; increased
			in survey II, brand			risk of cancer
			names were			with past (HR:
			requested			1.17; 95% CI:
						1.02–1.33) and
						recent (HR: 1.24;
						95% CI: 1.01–
						1.52) use of
						multivitamins in
						women
Park, 2011	Multiethnic	182,099 US adults	Self-administered	11 y	Mortality from all-	No association
(Park S. Y.,	Cohort Study	from 5 ethnic	questionnaire at		causes, cancer, or	between
Murphy, S. P.		groups (aged 45–	baseline and 5-year		CVD; incidence of	supplement use

asked if he/she had major sites used multivitamins (with/without minerals) and 7	
(with/without	
minerals) and 7	
single	
vitamin/mineral	
supplements at least	
weekly during the	
previous year; also	
asked about	
frequency and	
duration (at baseline	
only) for each	
supplement used	
Hotaling, VITAL 77,050 US men Self-administered 6 y Incidence of No association	
and women (aged questionnaire on urothelial cancer between	
(Hotaling J. 50–76 y) supplement use, multivitamin use	

M., Wright, J.			including questions			and urothelial
L. et al., 2011)			on brand, duration,			cancer risk
			and frequency of			
			multivitamin use			
Mursu, 2011	Iowa Women's	38,772 US	Self-administered	19 y	Total mortality,	No association
(Mursu J.,	Health Study	postmenopausal	questionnaire on		cancer mortality,	between
Robien, K. et		women (aged 55-	multivitamin use at		CVD mortality	multivitamin use
al., 2011)		69 y)	baseline and at 11-			and cancer
			and 18-year follow-			mortality
			up			
Larsson, 2010	Swedish	35,329 women	Self-administered	9.5 y	Incidence of breast	Multivitamin use
(Larsson S.	Mammography	(aged 49–83 y)	questionnaire at		cancer	was associated
C., Akesson,	Cohort		baseline			with increased
A. et al.,						risk of breast
2010)						cancer (HR: 1.19;
						95% CI: 1.03–
						1.37)
Neuhouser,	Women's Health	161,808 US	In-person clinic	8 y	(1) Incidence of	No association

2009		Initiative	postmenopausal	visits to collect	cancer (breast,	between MVM
(Neu	nouser		women (aged 50-	detailed information	colon/rectum,	use and any
M. L	,		79 y)	on multivitamin	endometrium,	endpoint
Wass	ertheil-			supplement use	kidney, bladder,	
Smol	ler, S. et			(designate	stomach, ovary,	
al., 20	009)			multivitamin, MVM,	lung), (2) incidence	
				or stress	of CVD (MI, stroke,	
				supplement);	venous	
				subjects brought	thromboembolism),	
				supplement bottles	and (3) total	
				to baseline and	mortality	
				follow-up visits		
				(annually or every 3		
				years); questioned on		
				frequency		
				(pills/week) and		
				duration (months and		
				years) of use		
1						

2009 and women (aged questionnaire at mortality, and cancer between MVM (Pocobelli G., 50–76 y) baseline; ever use of mortality use and cancer Peters, U. et supplements was mortality al., 2009) defined as use of at least once/week for 1 year during the 10-year period before baseline; "multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all-No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM (Messerer M., y) baseline; asked mortality; CVD use and any	P	ocobelli,	VITAL	77,673 US men	Self-administered	5 y	Total mortality, CVD	No association
Peters, U. et supplements was mortality al., 2009) defined as use of at least once/week for 1 year during the 10- year period before baseline; "multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM	20	009		and women (aged	questionnaire at		mortality, and cancer	between MVM
al., 2009) defined as use of at least once/week for 1 year during the 10- year period before baseline; "multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM	(I	Pocobelli G.,		50–76 y)	baseline; ever use of		mortality	use and cancer
least once/week for 1 year during the 10- year period before baseline; "multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM	P	eters, U. et			supplements was			mortality
year during the 10- year period before baseline; "multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM	al	., 2009)			defined as use of at			
year period before baseline; "multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					least once/week for 1			
baseline; "multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					year during the 10-			
"multivitamin" defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					year period before			
defined as a supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					baseline;			
supplement containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- no association questionnaire at all-cause causes, cancer, and between MVM					"multivitamin"			
containing at least 10 vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					defined as a			
vitamins and/or minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					supplement			
minerals Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					containing at least 10			
Messerer, COSM 38,994 Swedish Self-administered 7.7 y for Mortality from all- No association 2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					vitamins and/or			
2008 men (aged 45–79 questionnaire at all-cause causes, cancer, and between MVM					minerals			
	M	lesserer,	COSM	38,994 Swedish	Self-administered	7.7 y for	Mortality from all-	No association
(Messerer M., y) baseline; asked mortality; CVD use and any	20	800		men (aged 45-79	questionnaire at	all-cause	causes, cancer, and	between MVM
	(1	Messerer M.,		y)	baseline; asked	mortality;	CVD	use and any

Hakansson, N.			regarding regular,	5.9 y for		endpoint;
et al., 2008)			occasional, or no use	cancer and		use of any
			of dietary	CVD		supplement was
			supplements; further	mortality		associated with
			specified type used			increased risk of
			(multivitamin,			cancer mortality
			vitamin C, vitamin			in current smokers
			E, and fish oil)			(HR: 1.46; 95%
						CI: 1.06–1.99)
	MILL LADD D'	205 244 110	0.16 1	~		
Lawson, 2007	NIH-AARP Diet	295,344 US men	Self-administered	5 y	Risk of prostate	No association
(Lawson K.	and Health	(aged 50–71 y)	questionnaire at	5 y	Risk of prostate	No association between regular
				5 y	•	
(Lawson K.	and Health		questionnaire at	5 y	•	between regular
(Lawson K. A., Wright,	and Health		questionnaire at	5 y	•	between regular MVM use and
(Lawson K. A., Wright, M. E. et al.,	and Health		questionnaire at	5 y	•	between regular MVM use and risk of prostate
(Lawson K. A., Wright, M. E. et al.,	and Health		questionnaire at	5 y	•	between regular MVM use and risk of prostate cancer;
(Lawson K. A., Wright, M. E. et al.,	and Health		questionnaire at	5 y	•	between regular MVM use and risk of prostate cancer; excessive MVM
(Lawson K. A., Wright, M. E. et al.,	and Health		questionnaire at	5 y	•	between regular MVM use and risk of prostate cancer; excessive MVM use (>7

					increased risk of
					advanced and fatal
					prostate cancer
					compared with
					never users
Stevens, 2005 CPS II	475,726 men	Self-administered	18 y	Risk of prostate	Regular use of
(Stevens V.	(aged 47–70 y)	questionnaire on		cancer mortality	MVMs alone (≥15
L.,		supplement use at			times/month) was
McCullough,		enrollment; (1) asked			associated with an
M. L. et al.,		about duration and			increased risk of
2005)		frequency of current			death from
		use of 4 vitamin			prostate cancer
		supplements			compared with
		(multivitamins,			non-users (RR:
		vitamins A, C, and			1.15; 95% CI:
		E) and (2) asked			1.05–1.26)
		about the number of			
		times in last month			

			and the number of			
			years each			
			supplement was used			
Zhang, 2006	Women's Health	37,916 female US	Self-administered	10.1 y	Risk of colorectal	No association
(Zhang S. M.,	Study	health	questionnaire at		cancer	between MVM
Moore, S. C.		professionals (≥45	baseline, including			use and colorectal
et al., 2006)		y)	questions on MVM			cancer risk
			supplement use			
Fuchs, 2002	NHS	88,758 female US	Self-administered	16 y	Risk of colon cancer	No association
(Fuchs C. S.,		registered nurses	FFQ in 1980			between MVM
Willett, W. C.		(mean age 47 y)				use and risk of
et al., 2002)						colon cancer in
						women without a
						familial history of
						disease;
						MVM use for >5
						y was associated
						with a decreased

						risk of colon
						cancer in women
						with a family
						history of disease
Jacobs, 2002	CPS II	1,045,923 US	Self-administered	16 y	Mortality from	No association
(Jacobs E. J.,		adults	questionnaire at		stomach cancer	between MVM
Connell, C. J.			baseline			use and stomach
et al., 2002)						cancer mortality
Wu, 2002	NHS & HPFS	87,998 women	Mailed FFQ at	Presented	Risk of colon cancer	No association
(Wu K.,		from NHS and	baseline; follow-up	as total-		between MVM
Willett, W. C.		47,344 men from	questionnaires	person y		use and risk of
et al., 2002)		HPFS	mailed every 2 years	for each		colon cancer
			for NHS and every	level of		
			other year for HPFS;	vitamin E		
			asked about current	intake		
			use and dosage of			
			any supplement, and			
			the brand and type of			
1						

			MVM			
Zhang, 2001	NHS & HPFS	88,410 women	Self-administered	16 y	Risk of non-	Regular use of
(Zhang S. M.,		(aged 30–55 y) &	FFQ at baseline	(women);	Hodgkin's lymphoma	MVM (>6/week
Giovannucci,		47,336 men (aged		10 y (men)		for >10 y) was
E. L. et al.,		40–75 y)				associated with an
2001)						increased risk of
						non-Hodgkin's
						lymphoma in
						women but not in
						men
Watkins, 2000	CPS II	1,063,023 US	Self-administered	7 y	Risk of mortality	MVM use was
(Watkins M.		adults (≥30 y)	questionnaire on		from cancer, CVD,	associated with
L., Erickson,			MVM use at		and all-causes	increased risk of
J. D. et al.,			baseline; separate			cancer mortality
2000)			questions on the use			in male smokers
			of MVMs, vitamins			(HR: 1.13; 95%
			A, E, and C, and 11			CI: 1.05–1.23)
			other medications			

Michaud,	HPFS	47,909 men (aged	Self-administered	12 y	Risk of bladder	No association
2000		40–75 y)	FFQ at 2 time points		cancer	between MVM
(Michaud D.						use and risk of
S.,						bladder cancer
Spiegelman,						
D. et al.,						
2000)						
Zhang, 1999	NHS	77,925 women	Self-administered	14 y	Risk of breast cancer	No association
(Zhang S.,		(aged 33–60 y)	FFQ in 1980			between MVM
Hunter, D. J.						use and risk of
et al., 1999)						breast cancer in
						either pre- or
						postmenopausal
						women
Giovannucci,	NHS	88,756 women	Self-administered	14 y	Risk of colon cancer	Reduced risk of
1998		(aged 34–59 y in	questionnaire at			colon cancer only
(Giovannucci		1980)	baseline (1980) and			after >15 y of
E., Stampfer,			biennially (1980–			multivitamin use

M. J. et al.,			1992); asked about			(RR: 0.25; 95%
1998)			type, brand, and how			CI: 0.13–0.51)
			many years of use			
Losonczy,	Established	11,178 US elderly	Use of MVM	6 y	Risk of mortality	No association
1996	Populations for	men and women	supplements		from cancer, CHD,	between MVM
(Losonczy K.	Epidemiologic	(>65 y)	obtained from in-		and all causes	use and mortality
G., Harris, T.	Studies of the		person interviews at			from any cause
B. et al.,	Elderly		enrollment and every			
1996)			3 years; first follow-			
			up visit at year 3 was			
			used as baseline;			
			respondents were			
			asked whether they			
			had taken any			
			medicines or drugs			
			not prescribed by a			
			doctor in the past 2			
			weeks; respondents			
1						l l

vitamins among these drugs at 2 of 4 study sites Hunter, 1993 NHS 89,494 women Self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI Manson, J. E. et al., 1993)
Hunter, 1993 NHS 89,494 women Self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the second
Hunter, 1993 NHS 89,494 women Self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of the self-administered 8 y Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) Risk of breast cancer No association (Hunter D. J., (aged 34–59 y) Risk of breast cancer (Hunter D. J., (aged 34–59 y) Risk of breast cancer (Hunter D. J., (aged 34–59 y) Risk of breast cancer (Hunter D. J., (aged 34–59 y) Risk of breast cancer (Hunter D. J., (aged 34–59 y) Risk of breast cancer (Hunter D. J., (aged 34–59 y) Ri
(Hunter D. J., (aged 34–59 y) FFQ in 1980 between MVI use and risk of
Manson, J. E. use and risk of
et al., 1993) breast cancer
Kim, 1993 NHEFS 10,758 US adults Questionnaire at 13 y Risk of mortality No association
(Kim I., (mean age 50.2 y) baseline: "Are you from cancer and all between MVI
Williamson, taking vitamins or causes use and mortal
D. F. et al., minerals?" from any cau
1993) (regularly,
irregularly, or none)
CVD
Stampfer, NHS 87,245 US women Multivitamin use Up to 8 y Nonfatal MI and fatal No association
1993 (34–59 y) assessed at baseline CHD presented with major C
(Stampfer M. and every 2 years together as major in the basic

J., Hennekens,			thereafter: regular		CHD	multivariate
C. H. et al.,			use of multivitamins			model
1993)			and, if so, type and			
			brand			
Rimm, 1998	NHS	80,082 US women	Questionnaire at	14 y	Nonfatal MI and fatal	Reduced risk of
(Rimm E. B.,		(aged 30-55 y)	baseline and every 2		CHD presented	CHD in women
Willett, W. C.			years; use of		together as CHD risk	who reportedly
et al., 1998)			multiple vitamin			took at least 4
			supplements, type			multiple vitamin
			and brand, usual			supplements
			number taken/week,			weekly for at least
			and years of past use			5 y (HR: 0.71;
						95% CI: 0.56–
						0.90)
Rautiainen,	Swedish	33,932 Swedish	Baseline	10.2 y	Incident MI	Reduced risk for
2010	Mammography	women (48–83 y);	questionnaire			women with no
(Rautiainen	Cohort	31,670 CVD-free	assessing MV use			history of CVD
S., Akesson,		and 2,262 with	with or without			vs. no supplement

A. et al.,	history of CVD at	minerals			use (HR: 0.73;
2010)	baseline				95% CI: 0.57–
					0.93) and the
					association was
					stronger in those
					using
					multivitamins for
					at least 5 y;
					no association in
					those with a
					history of CVD
Watkins, 2000 CPS II	1,063,023 US men	Self-administered	7 y	Ischemic heart	No association
(Watkins M.	and women (aged	questionnaire at		disease and stroke	with stroke
L., Erickson,	>30 y)	baseline		mortality, cancer	mortality in men
J. D. et al.,				mortality	or women;
2000)					no association
					with ischemic
					heart disease in
I					I

men and women with no history at baseline, but a 7% and a 6% lower risk of ischemic heart disease found, respectively, for men and women with a history of the disease; no associations found when duration or frequency of multivitamin supplementation was examined

Pocobelli,	VITAL	77,673 US men	Self-administered	5 y	Total mortality, CVD	Frequent
2009		and women (aged	questionnaire at		mortality, cancer	multivitamin use
(Pocobelli G.,		50–76 y)	baseline; ever use of		mortality	(6–7 d/week over
Peters, U. et			supplements defined			the 10- y period)
al., 2009)			as use at least			was associated
			once/week for 1 year			with a lower risk
			during the 10-year			of CVD mortality
			period before			(HR: 0.84; 95%
			baseline;			CI: 0.70–0.99;
			"multivitamin"			P=0.019);
			defined as a			stronger
			supplement			association in
			containing at least 10			those with no
			vitamins and/or			history of CVD at
			minerals			baseline (HR:
						0.78; 95% CI:
						0.62-0.98;
						P=0.012); and not

						significant in
						those with a
						history of CVD at
						baseline
Iso, 2007 (Iso	Japan	Japanese adults	Multivitamin use		All-cause mortality	Reduced risk of
H., Kubota,	Collaborative	aged 40-79 y who			and disease-specific	mortality from
Y., 2007)	Cohort Study for	completed a self-			mortality, including	cerebrovascular
	Evaluation of	administered			ischemic heart	disease in women
	Cancer	questionnaire			disease and	(HR: 0.77; 95%
					cerebrovascular	CI: 0.60-0.99)
					disease	
Losonczy,	Established	11,178 US elderly	Use of MVM	6 y	All-cause mortality,	No association
1996	Populations for	men and women	supplements		CHD mortality,	with CHD
(Losonczy K.	Epidemiologic	(aged >65 y)	obtained from in-		cancer mortality	mortality
G., Harris, T.	Studies of the		person interviews at			
B. et al.,	Elderly		enrollment and every			
1996)			3 years; first follow-			
			up visit at year 3 was			
1						

		used as baseline;			
		respondents were			
		asked whether they			
		had taken any			
		medicines or drugs			
		not prescribed by a			
		doctor in the past 2			
		weeks; respondents			
		were told to include			
		vitamins among			
		these drugs at 2 of 4			
		study sites			
Muntwyler, PHS I	83,639 US male	Questionnaire at	5.5 y	CHD mortality and	No association
2002	physicians (aged	baseline: current use		total CVD mortality	with any endpoint
(Muntwyler	40–84 y)	of multivitamin			
J., Hennekens,		supplements, number			
C. H. et al.,		of years of vitamin			
2002)		supplementation,			

			brand used, number			
			of pills taken/week			
Li, 2012 (Li	EPIC-	23,943 men (aged	In-person interview	11 y	Mortality from all-	No association
K., Kaaks, R.	Heidelberg	40–64 y) and	("Did you regularly		causes, cancer, and	between regular
et al., 2012)		women (aged 35-	take any medications		CVD	MVM use at
		64 y)	or vitamin/mineral			baseline and any
			supplements in the			endpoint; MVM
			last 4 weeks?") and			use initiated
			self-administered			during follow-up
			FFQ			associated with
			(vitamin/mineral			increased risk of
			supplements ≥4			all-cause mortality
			weeks in last 12			(HR: 1.58; 95%
			months?) at baseline;			CI: 1.17–2.14)
			self-administered			
			FFQs at 2nd and 3rd			
			follow-up			
Mursu, 2011	Iowa Women's	38,772 US	Self-administered	19 y	Total mortality,	No association

(Mursu J.,	Health Study	postmenopausal	questionnaire at		cancer mortality,	between
Robien, K. et		women (aged 55-	baseline and at 2		CVD mortality	multivitamin use
al., 2011)		69 y)	points (year 11 and			and CVD
			18 of follow-up)			mortality
Messerer,	COSM	38,994 Swedish	Self-administered	7.7 y	Mortality from all	No association
2008		men (aged 45–79	questionnaire at		causes, cancer	between
(Messerer M.,		y)	baseline; for		mortality, and CVD	multivitamin use
Hakansson, N.			supplements,		mortality	and CVD
et al., 2008)			subjects asked about			mortality; sub-
			regular, occasional,			analysis revealed
			or no use; study			a reduced risk of
			provided mean			use of any
			content of a			supplement and
			multivitamin,			CVD mortality in
			containing 7			men reporting
			vitamins; no mention			inadequate diets
			of minerals			(assessed by
						Recommended

						Food Score; HR:
						0.72; 95% CI:
						0.57-0.91)
			Age-related eye disease	es		
Rautiainen,	Swedish	24,593 women	Self-administered	8.2 y	Cases of cataract	No association
2010	Mammography	(aged 49–83 y)	questionnaire at		extraction surgery	between MVM
(Rautiainen	Cohort		baseline: (1) asked			use and cataract
S., Lindblad,			about regular,			extraction
B. E. et al.,			occasional, or non-			
2010)			use of dietary			
			supplements; (2) if			
			yes, asked about			
			duration of use			
Milton, 2006	AREDS cohort	4,590 men and	66% (3,037) of	6.3 y	Progression of "any"	Centrum® use was
(Milton R. C.,		women with	participants elected		lens opacity or type-	associated with a
Sperduto, R.		complete	to take a daily MVM		specific (nuclear,	reduction in the
D. et al.,		covariate data,	(Centrum [®])		cortical, or PSC)	progression of
2006)		aged 55-80 y,			opacity	"any" lens opacity

		with vision issues				(OR: 0.84; 95%
		or AMD in at least				CI: 0.72–0.98)
		1 eye				and nuclear
						opacity (OR: 0.75;
						95% CI: 0.61–
						0.91)
Mares-	Beaver Dam Eye	3,089 subjects	In-person interviews	5 y	Incidence of nuclear,	Reported use of
Perlman, 2000	Study	(aged 43–86 y)	at final follow-up		cortical, and PSC	multivitamin
(Mares-			visit		cataract	supplements for
Perlman J. A.,						>10 y associated
Lyle, B. J. et						with a reduced
al., 2000)						risk of nuclear
						(OR: 0.6; 95% CI:
						0.4–0.9) and
						cortical (OR: 0.4;
						95% CI: 0.2–0.8)
						but not PSC (OR:
						0.9; 95% CI: 0.5–

					1.9) cataracts
Christen, 1999 PHS I	21,120 male US	Questionnaire at	12.5	Risk of AMD	No association
(Christen W.	physicians (aged	baseline: (1) asked	person-y		between MVM
G., Ajani, U.	40–84 y)	about supplement			use and AMD
A. et al.,		use (never, past only,			
1999)		or current); (2) asked			
		number of y taken (if			
		current)			

AMD, age-related macular degeneration; AREDS, Age-Related Eye Disease Study; CHD, coronary heart disease; CI, confidence interval; COSM, Cohort of Swedish Men; CPS, Cancer Prevention Study; CVD, cardiovascular disease; EPIC, European Prospective Investigation into Cancer and Nutrition; FFQ, food frequency questionnaire; HPFS, Health Professionals' Follow-up Study; HR, hazard ratio; MI, myocardial infarction; MVM, multivitamin/mineral supplement; NHEFS, National Health and Nutrition Examination Survey I Epidemiological Follow-up Study; NHS, Nurses' Health Study; NIH-AARP, National Institutes of Health-American Association of Retired Persons; OR, odds ratio; PHS I, Physicians' Health Study I; PSC, posterior subcapsular; RR, relative risk; US, United States; VITAL, Vitamins and Lifestyle study.