

MATERIA: Redes de Información

NIVEL: Cuarto

2022

TRABAJO DE LABORATORIO Nº 6

(Versión para desarrollo No Presencial)

Análisis de segmentos y aplicaciones de red en Ethernet

ACTIVIDAD DE FORMACION PRACTICA

1. Formación experimental (laboratorio).

OBJETIVOS

- 1. Analizar el tráfico, los procesos que generan y los servicios que proporcionan los protocolos TCP y UDP.
- 2. Comprender el funcionamiento de los protocolos DHCP, DNS, HTTP, HTTPS, FTP, TCP y UDP.
- 3. Entender los procesos de segmentación, ordenamiento y reensamble; multiplexación; encapsulamiento; conexión; confiabilidad; control de flujo y control de errores en Capa 4.

CONOCIMIENTOS Y ACTIVIDADES PREVIAS

- 1. Formato de la PDU y funcionamiento de LAN Ethernet/IEEE 802.3.1
- 2. PDU, funcionamiento y direccionamiento IP. Procesos de enrutamiento básicos.
- 3. Formatos de las PDUs y funcionamiento de cada uno de los servicios que proporcionan los protocolos TCP y UDP, así como las técnicas o métodos y sus operaciones para brindar los servicios.²
- PDU y funcionamiento de los protocolos DNS y NetBIOS.³
- 5. Protocolos de Aplicación de la familia TCP/IP: DHCP HTTP HTTPS FTP DNS. Operaciones primitivas, funcionamiento o proceso y puertos.⁴
- Operación y uso del analizador de tramas

TIEMPO ASIGNADO: 60 minutos

MATERIAL NECESARIO

PC del laboratorio con S. O. Windows y analizador de tramas **Wireshark. última versión**, con acceso a red basada en hub / switch y acceso a Internet.

¹ Douglas E. Comer, **Redes Globales de Información con Internet y TCP/IP – Principios básicos, protocolos y arquitectura,** PRENTICE HALL, 3ª Edición, Capítulo 2.

² Ibídem, comprensión detallada de los Capítulos 12 y 13.

³ Ibídem, apartados y capítulos respectivos.

⁴ Ibídem, apartados y capítulos respectivos.

MATERIA: Redes de Información

NIVEL: Cuarto

DESCRIPCION

Los alumnos deberán ejecutar la práctica individualmente desde una PC conectada a la red.

1. Caso de Estudio

Tráfico real circulante y / o generado por el alumno, en su red con acceso a Internet. Cuando no se puedan realizar capturas en la red, se utilizarán ejemplos disponibles en https://wiki.wireshark.org/SampleCaptures.

2. Requerimientos para el alumno (Obietivos Técnicos)

- a. Demostrar la comprensión del funcionamiento de los protocolos considerados en la actividad de laboratorio, mediante la verificación experimental del modelo y proceso descripto en la teoría y en las RFCs respectivas.
- b. Resguardar los archivos de capturas, para revisión individual de las actividades realizadas o para futuras actividades de laboratorio.
- c. Responder el cuestionario escrito, al finalizar las tareas.

3. Tareas de análisis

- a. Análisis del tráfico que produce un protocolo orientado a la conexión.
 - 1) Ejecute una aplicación TCP / IP que emplee el protocolo TCP e inicie una captura con el analizador de protocolos.
 - a) Verifique que el protocolo pueda ser empleado.
 - b) Ejecute una captura del tráfico cursado entre los hosts.
 - c) Desde la PC ejecute la aplicación a la dirección IP destino.
 - 2) Analice el tráfico cursado, graficando la comunicación de tramas (intercambio de tramas que encapsulan los segmentos que representan la comunicación orientada a la conexión) y verifique lo siguiente:
 - a) Establecimiento de conexión TCP. ¿Cuántos segmentos se emplean para establecer y liberar la comunicación?
 - b) Conexión lógica (sockets)
 - c) Transferencia de datos a través de un canal. ¿Cuántos segmentos se emplean para transmitir los datos?
 - d) ¿Qué servicios proporciona TCP en el nivel de transporte?
 - (1) Ordenamiento y reensamble
 - (2) Fiabilidad
 - (3) Control de errores Reconocimientos y retransmisiones
 - (4) Control de flujo El modelo de ventana aplicado en TCP
 - (5) Multiplexación
 - (6) Conexión Full Duplex
 - e) Cierre de conexión en el Tx Cierre de Conexión en el Rx. ¿Cuántos segmentos se emplean para liberar la conexión?

MATERIA: Redes de Información

NIVEL: Cuarto

b. Análisis del tráfico que produce un protocolo no orientado a la conexión.

- 1) Ejecute una aplicación TCP / IP que emplee el protocolo **UDP** e inicie una captura con el analizador de protocolos.
 - a) Verifique que el protocolo pueda ser empleado.
 - b) Ejecute una captura del tráfico cursado entre los hosts.
 - c) Desde la PC asignada ejecute la aplicación a la dirección IP destino.
- 2) Analice el tráfico cursado, graficando la comunicación de tramas (intercambio de tramas que encapsulan los segmentos que representan la comunicación no orientada a la conexión) y verifique lo siguiente:
 - a) Si UDP proporciona los siguientes servicios en el nivel de transporte:
 - (1) Conexión
 - (2) Fiabilidad
 - (3) Control de Flujo
 - (4) Control de errores
 - (5) Multiplexación
- 3) Realice el siguiente cálculo para determinar el encapsulamiento de un segmento UDP y otro TCP.

c. DHCP - HTTP - HTTPS - FTP - DNS

Estudie los procesos / servicios de segmentación, ordenamiento y reensamble; multiplexación; encapsulamiento; conexión; confiabilidad; control de flujo y control de errores que el protocolo TCP o UDP le brindan a cada protocolo de aplicación, en cada caso.

Para cada proceso o servicio, identifique los campos y parámetros (valores) del encabezado de TCP / UDP que intervienen, tanto en el Tx como en el Rx, indicando un ejemplo de cada caso.

CRITERIO DE AUTOEVALUACION

El TLab se debe considerar aprobado si se alcanzan los siguientes resultados:

- 1. Ejecución correcta de las actividades experimentales y logro de los objetivos técnicos.
- 2. Respuestas satisfactorias a evaluaciones orales o escritas individuales sobre situaciones de análisis de tráfico o captura de tramas.