Pruebas de Conocimiento Cero y sus Aplicaciones

José Luis Cánovas Sánchez

Tutores:

Antonio José Pallarés Ruiz Leandro Marín Muñoz

11 de julio de 2017

Universidad de Murcia Facultad de Matemáticas

Outline

Decision Problems

Residuos Cuadráticos

Pruebas Interactivas

Pruebas de Conocimiento Cero

Decision Problems

Decision Problem

Definition (Decision Problem)

General description of a task which depend on some parameters and which possible answers are in the set $\{True, False\}$.

Name A characteristic name.

Parameters Arguments the problem depends on.

Question Question such the possible answers are True or False.

Graph Isomorphism

Name Graph Isomorphism Problem (GI).

Parameters Given two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ with $\mid V_1\mid=\mid V_2\mid=n.$

Question Is there a permutation $\tau: V_1 \to V_2$ such that an edge $(u, v) \in E_1$ if and only if $(\tau(u), \tau(v)) \in E_2$?

Complexity classes

Definition (Class P)

The set of decision problems which can be solved in polynomial time.

Definition (Class NP)

The set of decision problems where a *True* answer can be verified in polynomial time, given some extra information (certificate).

Fact

 $P \subset NP$

Millennium Problem

$$P \stackrel{?}{=} NP$$

Discrete Logarithm

Name Discrete Logarithm problem (DL).

Parameters A cyclic group $G = \langle g \rangle$ of prime order q, an element $y \in G$.

Question Does P know $s \in \mathbb{Z}_q$ such that $g^s = y$, or $log_g y = s$?

Discrete Logarithm with $G=\mathbb{Z}_{1231},\ g=3.$ Adolfo Quirós Gracián. *Grupos y criptografía: de Julio César a las curvas elípticas.*

Complexity classes

Definition (Polynomial-time reduction $L_1 \leq_P L_2$)

Be L_1 and L_2 two decision problems. L_1 can be reduced in polynomial time to L_2 if L_1 can be solved using L_2 as a subroutine plus a polynomial time.

Definition (Class NP-complete or NPC)

A decision problems *L* is in **NPC** if:

- 1. $L \in \mathbf{NP}$, and
- 2. $L_1 \leq_P L \quad \forall L_1 \in \mathbf{NP}$.

Hamiltonian Cycle NPC

Name Hamiltonian Cycle Problem (HC).

Parameters Given graph G = (V, E).

Question Does there exist a Hamiltonian cycle in *G*?

Graph 3-colorability NPC

Name Graph 3-colorability Problem (G3C).

Parameters Given graph G = (V, E).

Question Is there a function $\phi: V \to \{1, 2, 3\}$ such that $\phi(u) \neq \phi(v) \quad \forall (u, v) \in E$?

Quadratic residue

Name Factorization problem (FACT).

Parameters Positive integer *N*.

Question Are there integers $p, q \ge 2$ such that N = pq?

Name Quadratic residue problem (QR).

Parameters Given a composite integer N=pq and the integer x with Jacobi Symbol $\left(\frac{x}{N}\right)=1$.

Question Is x a quadratic residue in \mathbb{Z}_N ? $\exists a \in \mathbb{Z}_N : x \equiv a^2(N)$?

Theorem

 $QR \leq_P FACT$

Definición

Sea $x \in \mathbb{Z}_n^*$. Se dice que x es un *residuo cuadrático* módulo n, o un *cuadrado* módulo n, si existe un $a \in \mathbb{Z}_n^*$ tal que $x = a^2 \mod n$

Si no existe dicho *a*, entonces *x* se llama un *no-residuo cuadrático* módulo n.

Al conjunto de los residuos cuadráticos módulo n los denotaremos como Q_n . Al de los no-residuos cuadráticos, como $\overline{Q_n}$.

Ejemplo

Si tomamos n = 4, los no-residuos cuadráticos son 2 y 3, y el único residuo cuadrático es 1:

$$1^2 \equiv 1 \mod 4$$
 $2^2 \equiv 0 \mod 4$ $3^2 \equiv 1 \mod 4$

Por definición $0 \notin \mathbb{Z}_n^*$, y por tanto $0 \notin Q_n$ ni $0 \notin \overline{Q_n}$.

Residuos Cuadráticos: Propiedades

Proposición

Sea p>1 un número primo, entonces $|Q_p|=|\overline{Q_p}|=rac{p-1}{2}$.

Proposición

Sea n y m dos números enteros positivos coprimos. Entonces un elemento $x \in \mathbb{Z}_{mn}$ es un residuo cuadrático si y sólo si $x \mod m$ y $x \mod n$ son residuos cuadráticos en \mathbb{Z}_m y \mathbb{Z}_n respectivamente.

Además, si a y b son raíces cuadradas de x mod m y x mod n en sus correspondientes anillos, podemos combinarlas mediante el Teorema Chino de los Restos para obtener una raíz cuadrada de x en \mathbb{Z}_{mn} .

En particular, esto es cierto cuando queramos estudiar los residuos cuadráticos en \mathbb{Z}_{pq} con p y q dos primos impares distintos, que son en particular coprimos.

Residuos Cuadráticos: Símbolo de Legendre

Definición (Símbolo de Legendre)

Dados un primo impar p y un entero a, se define el Símbolo de Legendre como

$$\left(rac{a}{p}
ight) = egin{cases} 0, & \textit{si } a \equiv 0 \ \textit{mod } p \ 1, & \textit{si } a \in Q_p \ -1, & \textit{si } a \in \overline{Q_p} \end{cases}$$

Residuos Cuadráticos: Símbolo de Jacobi

Definición (Símbolo de Jacobi)

Sea n un entero impar positivo cuya descomposición en factores primos es $n=p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}$ y sea a un entero. Entonces definimos el símbolo de Jacobi de a y n como

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \cdot \left(\frac{a}{p_2}\right)^{e_2} \cdot \cdot \cdot \cdot \cdot \left(\frac{a}{p_t}\right)^{e_t}$$

Observación

Un Símbolo de Jacobi -1 nos indica *no-residuo*, pero un 1 ya no indica necesariamente *residuo cuadrático*.

- El Símbolo de **Legendre** nos indica si un entero es residuo cuadrático módulo un **primo** mayor que 2.
- Podemos calcular una raíz cuadrada módulo un primo en tiempo polinomial con el Algoritmo de Tonelli.
- El Símbolo de **Jacobi** se puede calcular en tiempo polinomial **sin** conocer la **factorización** del módulo.
- Conociendo la factorización del módulo, podemos calcular la raíz modular en tiempo polinomial con el Teorema Chino de los Restos y el Algoritmo de Tonelli.

Residuos Cuadráticos: Problema QR

Nombre Problema de los residuos cuadráticos (QR).

Parametros N un entero impar tal que N=pq para p y q primos, y el entero x tal que $\left(\frac{x}{N}\right)=1$.

Pregunta ¿Es x un residuo cuadrático en \mathbb{Z}_N ?

Probador (P) computacionalmente todopoderosa.

Verificador (V) cómputo limitado, probabilístico de tiempo de polinomial.

Definición (Sistema de Prueba Interactiva)

Un problema de decisión Q tiene un sistema de prueba interactiva si tiene un protocolo de interacción polinomialmente acotado en número de mensajes que cumple:

- Completitud Para toda instancia q Verdadera, del problema Q, V acepta q como Verdadera.
- Robustez Para cada instancia q Falsa, V rechaza la prueba de q con una probabilidad no menor que $\epsilon=1-n^{-c}$, para cualquier constante c>0 y donde n es el tamaño de la instancia.

Definición

Denominamos clase de problemas **IP** (Interactivos en tiempo Polinomial) al conjunto de problemas de decisión para los que existe un sistema de prueba interactivo.

Teorema

 $NP \subset IP$.

Demostración.

Sea Q un problema **NP**. Definimos el siguiente protocolo:

- 1. P resuelve la instancia del problema gracias a su capacidad de cómputo ilimitada y genera el certificado para V.
- V recibe y verifica el certificado en tiempo polinomial. Si es válido, V acepta como Verdadera la instancia. Si no, rechaza la prueba.

Teorema

El problema QR tiene un sistema de prueba interactivo.

Nombre Problema de los residuos cuadráticos (QR).

Parámetros N un entero impar tal que N=pq para p y q primos, y el entero x tal que $\left(\frac{x}{N}\right)=1$.

Pregunta ¿Es x un residuo cuadrático en \mathbb{Z}_N ?

Prueba interactiva para QR (x, N)

Sea t(n) un polinomio en n, el tamaño de la instancia (x, N). P y V repiten t(n) veces los siguientes pasos.

- 1. $P \to V$: $u \in_R \mathbb{Z}_N^{Q+}$, un residuo cuadrático en \mathbb{Z}_N .
- 2. $V \to P$: $b \in_R \{0, 1\}$.
- 3. $P \rightarrow V$: w, una raíz cuadrada aleatoria de $u \cdot x^b$.
- 4. V comprueba si:

$$w^{2} \stackrel{?}{\equiv} \begin{cases} u \bmod N, & si \ b = 0 \\ xu \bmod N, & si \ b = 1. \end{cases}$$

Si la comparación falla, V termina en rechazo. En caso contrario, vuelve al paso 1.

Demostración.

La prueba es completa:

Instancia (x, N) Verdadera $\Rightarrow x$ es residuo cuadrático, existe raíz.

P computacionalmente todopoderoso \Rightarrow puede calcular w raíz de x o xu, residuos cuadráticos.

V acepta la prueba de P.

Demostración.

La prueba es robusta:

Instancia Falsa, x no residuo cuadrático. P^* intenta adivinar el reto $b \in_R \{0,1\}$.

- Si b = 0, sigue el protocolo, elige $u \in_R \mathbb{Z}_N^{Q+}$.
- Si b=1, elige $u\equiv x^{-1}a^2 \mod N$, con $a\in_R \mathbb{Z}_N$. Responde con w=a. V comprobará $w^2\equiv a^2\stackrel{?}{\equiv} x\cdot x^{-1}a^2\equiv a^2 \mod N$.

Si P* falla al adivinar, o no existirá raíz de xu, o $w^2 \not\equiv u \mod N$.

Probabilidad de acertar el reto b: $\frac{1}{2}$.

Probabilidad de pasar la prueba: $2^{-t(n)}$.

Pruebas de Conocimiento Cero

Pruebas de Conocimiento Cero

Definición (Propiedad de conocimiento cero)

Un sistema de prueba interactiva (completo y robusto), para un problema de decisión Q, es de conocimiento cero si el ensamble $Vista_{P,V}(q,h)$ es idéntico al ensamble generado por un Simulador $S_{V^*}(q,h)$, para cualquier instancia $Verdadera\ q\in Q$ y cualquier historial h.

Pruebas de Conocimiento Cero

Definición (Ensamble)

Llamamos ensamble probabilístico (ensemble en inglés) a una familia de variables aleatorias $\{X_i\}_{i\in I}$, con I numerable.

$$Vista_{P,V^*}(q,h) = (q, h, A_1, B_1, C_1, \dots, A_{t(n)}, B_{t(n)}, C_{t(n)}).$$

Definición (Simulador)

Un Simulador $S_{V^*}(q,h)$ es un algoritmo probabilístico de tiempo polinomial, que utiliza toda la información que V^* tiene disponible, para generar una transcripción de una prueba interactiva, para una instancia q del problema Q, sin necesidad de interactuar con P.

Teorema

La prueba interactiva del problema QR es de conocimiento cero.

Demostración

Simulador Instancia (x, N) *Verdadera* del problema QR.

Ejecución: Generadas las primeras i rondas. Repetir para $i+1 \le t(n)$:

- 1. Elegir $b_{i+1} \in_R \{0, 1\}$
- 2. Elegir $w_{i+1} \in_R \mathbb{Z}_N^*$
- 3. Si $b_{i+1}=0$, entonces calcular $u_{i+1}\equiv w_{i+1}^2 \mod N$ Si no, $u_{i+1}\equiv w_{i+1}^2\cdot x^{-1} \mod N$
- 4. Si $b_{i+1} = F(x, N, h, v_i, u_{i+1})$, entonces añadir la tupla $(u_{i+1}, b_{i+1}, w_{i+1})$ a la transcripción. Si no, volver al paso 1.
- 5. i = i + 1

Variables aleatorias

- U_i El residuo cuadrático aleatorio enviado por P en el primer mensaje, $u \in_R \mathbb{Z}_N^{Q+}$.
- B_i El reto aleatorio generado por V, $b \in_R \{0, 1\}$.
- W_i La prueba de P, $w \in_R \Omega_u$ o bien $w \in_R \Omega_{xu}$.

Probabilidad en la Vista

$$P(U_i = u, B_i = b, W_i = w) =$$

$$P(U_i = u) \cdot P(B_i = b \mid V_{i-1} = v, U_i = u, h) \cdot P(W_i = w \mid U_i = u, B_i = b)$$

Sea $\alpha = |\mathbb{Z}_N^{Q+}|$, entonces $P(U_i = u) = \frac{1}{\alpha}$.

Denotamos $P(B_i = b \mid V_{i-1} = v, U_i = u, h) = p_b$, que dependerá de la F utilizada.

Por último, sea $\beta = \mid \Omega_u \mid = \mid \Omega_{xu} \mid$. Entonces:

$$P(W_i = w \mid U_i = u, B_i = 0) = 1/\beta, \ \forall w \in \Omega_u$$

$$P(W_i = w \mid U_i = u, B_i = 1) = 1/\beta, \ \forall w \in \Omega_{xu}$$

En total nos queda, $P(U_i = u, B_i = b, W_i = w) = \frac{p_b}{\alpha \beta}$.

Probabilidad del Simulador

$$P(U_i = u, B_i = b, W_i = w) =$$

$$P(W_i = w) \cdot P(B_i = b \mid V_{i-1} = v, U_i = u, h) \cdot P(U_i = u \mid W_i = w, B_i = b)$$

Sabemos que
$$|\mathbb{Z}_N^*| = \alpha \cdot \beta$$
, por lo que $P(W_i = w) = \frac{1}{\alpha\beta}$.

Utilizando que $w \in \Omega_u \Leftrightarrow b = 0$, $w \in \Omega_{xu} \Leftrightarrow b = 1$ y que W_i y B_i

son independientes, la probabilidad
$$P(U_i' = u) = P(U_i' = u, W_i' \in \Omega_u \cup \Omega_{\times u}, B_i' \in \{0, 1\}) =$$

$$= \sum_{w \in \Omega_{u}} P(U_{i}^{'} = u, W_{i}^{'} = w, B_{i}^{'} = 0) + \sum_{w \in \Omega_{xu}} P(U_{i}^{'} = u, W_{i}^{'} = 0)$$

$$= \sum_{w \in \Omega_{u}} P(W_{i}^{'} = w) P(B_{i}^{'} = 0) + \sum_{w \in \Omega_{xu}} P(W_{i}^{'} = w) P(B_{i}^{'} = 1)$$

$$\sum_{w \in \Omega_u} (P(B_i' = 0) + P(B_i' = 1)) = \frac{1}{\alpha}$$

Pruebas de Conocimiento Cero y sus Aplicaciones

José Luis Cánovas Sánchez

Tutores:

Antonio José Pallarés Ruiz Leandro Marín Muñoz

11 de julio de 2017

Universidad de Murcia Facultad de Matemáticas

Residuos Cuadráticos: Símbolo de Jacobi

Propiedades del Símbolo de Jacobi.

Sean $a, b \in \mathbb{Z}$ y sean m, n enteros positivos impares:

- 1. Si $a \equiv b \mod n$ entonces $\left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$.
- $2. \left(\frac{a^2}{n}\right) = 1.$
- 3. $\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \left(\frac{b}{n}\right)$.
- 4. $\left(\frac{-1}{n}\right) = (-1)^{(n-1)/2}$.
- 5. $\left(\frac{2}{n}\right) = (-1)^{(n^2-1)/8}$.
- 6. $\left(\frac{m}{n}\right)=(-1)^{(n-1)(m-1)/4}\left(\frac{n}{m}\right)$ Ley de Reciprocidad Cuadrática.

Residuos Cuadráticos: Símbolo de Jacobi

Podemos calcular el Símbolo de Jabobi $\left(\frac{a}{b}\right)$ en tiempo polinomial sin conocer la factorización de b:

- 1. En caso de que a sea mayor que b, reducirlo módulo b, $a := a \mod b$.
- 2. Si a es 0, devolver 0.
- 3. Si *a* es 1, devolver 1.
- 4. Dividir a por 2 para ponerlo en la forma $a=2^ea'$ con a' impar. Si e es par o $b\equiv \pm 1 \mod 8$ poner s:=1, en caso contrario poner s:=-1.
- 5. Finalmente si $a' \equiv 3 \mod 4$ y $b \equiv 3 \mod 4$ devolver -sJacobi(b, a') y en caso contrario devolver sJacobi(b, a').