# Odin SMR

### Level 2

## Algorithms Theoretical Basis Document

## Contents

| In           | trod              | uction   | 3   n of Common Terms 3   stions 3   w 4   el 1 Processing 4   el 2 Processing 4   Algorithm 5 |     |
|--------------|-------------------|----------|------------------------------------------------------------------------------------------------|-----|
| Notations    |                   |          |                                                                                                |     |
|              | Defi              | nition o | of Common Terms                                                                                | 3   |
|              | Abb               | reviatio | ons                                                                                            | . 3 |
| 1            | Overview          |          |                                                                                                |     |
|              | 1.1               | Level    | 1 Processing                                                                                   | . 4 |
|              |                   |          |                                                                                                |     |
| 2            | Level 2 Algorithm |          |                                                                                                |     |
|              | 2.1               | Optin    | nal Estimation Method                                                                          | 5   |
|              |                   | 2.1.1    | Physics of the Problem                                                                         | . 5 |
|              |                   | 2.1.2    | Mathematical Description of the Algorithm                                                      | 5   |
| $\mathbf{R}$ | efere             | nces     |                                                                                                | 7   |

## Introduction

This is the introduction

A test of references: (Rodgers, 2000)

### **Notations**

### Definition of common terms

Sun-synchronous orbit A Sun-synchronous orbit (sometimes called a heliosynchronous orbit) is a geocentric orbit which combines altitude and inclination in such a way that an object on that orbit will appear to orbit in the same position, from the perspective of the Sun, during its orbit around the Earth

PE says: Don't follow, please, give one example.

JR says: Not at all necessary, but may be a nice feature

#### Abbreviations

**OEM** Optimal Estimation Method

PE says: Please, set up a table structure and give one example.

JR says: I chose the "description" environment instead of a table

### Chapter 1

## Overview

- 1.1 Level 1 Processing
- 1.2 Level 2 Processing

### Chapter 2

## Level 2 Algorithm

#### 2.1 Optimal Estimation Method

#### 2.1.1 Physics of the Problem

Text describing the physics of this particular algorithm...

#### Input Data:

- Number of chickens
- Temperature in the coop
- Number of foxes present

#### **Output Data:**

- Omelett
- Chicken pie

#### 2.1.2 Mathematical Description of the Algorithm

1. In order to vertically displace the yellow of the egg into the frying pan the shell must be removed using a laser incident on the chicken (see Fig. 2.1) while in free fall inside a vacuum. The terminal speed due to the tastefield of the egg is approximated using

$$A = Bx \tag{2.1}$$

where

A [m/s] is the terminal speed of the chicken

B [-] is the number of eggs

 $x = [m^2/kg]$  the taste coefficient of the egg

- 2. Step 2
- 3. Step 3



Figure 2.1: The chicken in question

# Bibliography

C.D. Rodgers. Inverse methods for atmospheric sounding: Theory and practise. World Scientific Publishing, 1 edition, 2000.