哈尔滨工程大学本科生 2023-2024 第二学期 期中考试答题卡

课程编号: 201912400202 课程名称: 工科数学分析(二)A卷

	学号填涂区									
姓 名:		0	0	0	0	0	0	0	0	□
	□	1	1	1	1	1		1	1	
院 系:	2	2	2	2	2	2	2	2	2	2
凡 尔·	3	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	4	4	4
班级:	5	5	5	5	5	5	5	5	5	5
	6	6	6	6	6	6	6	6	6	6
	7	7	7	7	7	7	7	7	7	7
座位号:	8	8	8	8	8	8	8	8	8	8
	9	9	9	9	9	9	9	9	9	9

注意事项:

- 1. 所有选择题必须使用 2B 铅笔填涂在本答题卡中选择题 填涂区域内, 答在其他位置无效。
- 2. 所有填空题必须答在本答题卡中填空题解答区域内, 答在其他位置无效。
- 3. 选择题答案如有修改, 需用先用橡皮擦干净。
- 4. 保持答题卡纸面清洁, 不要折叠、不要弄皱。

选择题填涂区域

一、单项选择题(每题1分,共10分)

1	Α	В	C	
2	А	В	C	E
3	А	В	C	
4	Α	В	C	
5	Α	В	C	
6	Α	В	C	
7	Α	В	C	
8	Α	В	C	
9	Α	В	C	
10	Α	В	C	

填空颞答题区域

_,	填空题(每题1分,共10分)
1	
2	
3	
4	
5	

一、单项选择题(每题7分,共70分)

- 1. 下列命题正确的是 .
- (A) 函数 $f(x,y) = \sqrt{x^2 + y^2}$ 在点(0,0)处沿 $\vec{\tau} = (1,1)$ 的方向导数不存在;
- (B) 设函数 $z = \ln(x^2 + y^2)$, 则其全微分 $dz|_{(1)} = 2dx + 2dy$;
- (C) 在点(0,1,1)的某个邻域内, 方程 $xy-z\ln y+e^{xz}=1$ 只能确定一个 具有连续偏导数的单值函数 x = x(y,z);
- (D) 连续函数 f(x,y)满足 $\lim_{\substack{x\to 0\\x\to 0}} \frac{f(x,y)-xy}{(x^2+y^2)^2} = 1$, 则点 (0,0) 不是 f(x,y)

的极值点.

- (A) 连续, 偏导数存在;
- (B) 连续, 偏导数不存在;
- (C) 不连续, 偏导数存在;
- (D) 不连续, 偏导数不存在.

3. 设 z = z(x, y) 是由方程 $F(\frac{y}{x}, \frac{z}{x}) = 0$ 所确定的函数, 其中 F(u, v) 具 有连续偏导数,则必有

(A)
$$y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = z$$

(A)
$$y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = z$$
; (B) $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$;

(C)
$$y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = z$$
; (D) $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = z$.

(D)
$$x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = z$$
.

4. 设 M(x, y, z) 为平面 x+y+z=1 上一点,且点 M 到两定点 (2,1,0),(1,0,1)距离的平方之和为最小,则点M的坐标为_____

- (A) (1,0,0); (B) (0,1,0); (C) (0,0,1); (D) $(0,\frac{1}{2},\frac{1}{2})$.

5. 设积分 $I_1 = \iint_D \sqrt{x + y} dx dy$, $I_2 = \iint_D (x + y) dx dy$, $I_3 = \iint_D (x + y)^{\frac{3}{2}} dx dy$, 其中积分区域 $D = \{(x,y) | x + y \le 1, x \ge 0, y \ge 0\}$,则下列关系式成立

(A) $I_1 < I_2 < I_3$; (B) $I_2 > I_1 > I_3$; (C) $I_1 > I_2 > I_3$; (D) $I_2 < I_1 < I_3$.

6. 设区域 $D: x^2 + y^2 \le 4$,则二重积分 $\iint \sqrt{x^2 + y^2} \, dx dy$ 的值为______.

- (A) 4π ; (B) 8π ; (C) $\frac{8}{3}\pi$; (D) $\frac{16}{3}\pi$.

7. 设 Ω 为上半球 $x^2 + y^2 + z^2 \le 1, z \ge 0$, Ω_1 为 Ω 在第一卦限的部分, 则下列等式正确的是 .

- (A) $\iiint \sin(xyz) dV = 0;$
- (B) $\iiint \sin(xyz) dV = 4 \iiint \sin(xyz) dV;$
- (C) $\iiint_{\Omega} xy \sin(xyz) dV = 2 \iiint_{\Omega} xy \sin(xyz) dV;$

1

(D)
$$\iiint_{\Omega} z \sin(xyz) dV = 4 \iiint_{\Omega_1} z \sin(xyz) dV.$$

8. 设函数 f(x,y,z) 在 Ω 内连续, 其中 Ω 是由 $x^2 + y^2 + z^2 = 2z$ 和 $z = \sqrt{x^2 + y^2}$ 围成的含z 轴的部分,则三重积分 $\iiint\limits_{\Omega} f(x, y, z) dV = \underline{\qquad}.$

- (A) $\int_0^{2\pi} d\theta \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^2 f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr;$
- (B) $\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^2 f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr;$
- (C) $\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^{2\cos\varphi} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr;$
- (D) $\int_0^{2\pi} d\theta \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin\varphi d\varphi \int_0^{2\cos\varphi} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 dr.$
- 9. 设曲线 $L: y = x^2, 0 \le x \le \sqrt{2}$,则 $\int_L x ds =$ ______.

- (A) $\frac{13}{3}$; (B) $\frac{13}{6}$; (C) $\frac{13}{3}\sqrt{2}$; (D) $\frac{13}{6}\sqrt{2}$.

10. 在力场 $\vec{F} = xy^2\vec{i} + yx^2\vec{j}$ 的作用下,单位质点沿光滑曲线段 $L: x^4 + y^4 = 1(x \ge 0, y \ge 0)$ 从点 A(0,1) 运动到点 B(1,0),则力 \vec{F} 所作的 功为_____.

- (A) 0;

- (B) $\frac{1}{2}$; (C) 1; (D) $\frac{3}{2}$.

二、填空题(每题6分,共30分)

1. 设函数 $z = f(x, y^2 - x^2)$, 其中 f(u,v) 具有二阶连续偏导数,则

$$\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$$

- 2. 曲面 $z e^z + 2xy = 3$ 在点 (1, 2, 0) 处的法线方程是_____
- 3. 函数 $u = x^2 \cos(y + 3z)$ 在点 (-1,0,0) 处方向导数的最大值为_____.
- 4. 二次积分 $\int_0^1 dy \int_y^1 \frac{\sin x}{x} dx$ 的值为______.

5. 设曲线 L 为圆周 $\begin{cases} x^2 + y^2 + z^2 = 9 \\ x + y + z = 0 \end{cases}$, 则曲线积分 $\oint_L xyds$ 的值