Harvard University Extension School Computer Science E-121

Problem Set 6

Due November 6, 2015 at 11:59 PM.

Submit your solutions electronically on the course website, located at https://canvas.harvard.edu/courses/4896/assignments. On the site, use the assignments tab to find the correct problem set, then with the "submit assignment" button, upload the PDF file of your solution.

LATE PROBLEM SETS WILL NOT BE ACCEPTED.

See the syllabus for the collaboration policy.

PROBLEM 1 (6 points, suggested length of 1/3 page)

Prove that the class of decidable languages is closed under union.

PROBLEM 2 (6 points, suggested length of 1/3 page)

Prove that the class of Turing-recognizable languages is closed under intersection.

PROBLEM 3 (3 + 5 points, suggested length of 5 lines, 1/3 page)

- (A) Consider $L = \{\langle M \rangle : M \text{ is a TM that accepts no strings shorter than 42 characters in length}\}$. Prove that L is not decidable. Hint: Consider Rice's Theorem.
- (B) Use that the fact that L is not decidable to prove that L is not recognizable.

PROBLEM 4 (3 points, suggested length of 5 lines)

Define $\text{Prefix}(L) = \{x : xy \in L \text{ for some } y \in \Sigma^*\}$. Show that if L is Turing-recognizable, then Prefix(L) is Turing-recognizable.

PROBLEM 5 (8 points, suggested length of 2/3 page)

Let $L = \{ \langle M \rangle : M \text{ moves left on the tape at some point when run on } \varepsilon \}$. Show that L is decidable.

PROBLEM 6 (10 points, suggested length of 3/4 page)

Show that a language L_1 is Turing-recognizable if and only if there exists some decidable language L_2 such that $L_1 = \{x : \text{there exists } y \text{ such that } \langle x, y \rangle \in L_2 \}.$

Note that the $\langle \rangle$ notation signifies that you are "stringify-ing" the contents within the bracket, since Turing Machines take strings as input.

(Hint: Imagine that y gives you information about an accepting computation on x, if one exists.)

PROBLEM 7 (Challenge!! (3) points, suggested length of 1/3 page)

Show that every infinite regular language has a subset that is Turing-recognizable but undecidable.