Ch.8 **Hardware Connection**

Yongjun Park Hanyang University

PIN: Layout

- Pin Layout
 - A total of 40 pins
 - 32 pins are used for I/O ports (8 pins/port, 4 ports)
 - The remaining 8 pins
 - VCC, GND, XTAL1, XTAL2, RST, EA, PSEN, ALE
- VCC
 - Pin 40
 - Provide supply voltage to the chip
 - Voltage source is +5V
- GND
 - Pin 20
 - Ground

Division of Computer Science & Engineering

Outline

- Pin Description
- DS89C4x0 Trainer
- Intel HEX file

Hanyang University Division of Computer Science & Engineering

PIN: XTAL1 and XTAL2

- Pin Layout
 - Provide external clock to 8051 (input pins)
 - Configuration 1 (most common):
 - Connect to a quartz crystal oscillator
 - Crystal oscillator can generate square waveform at a fixed frequency (e.g. 11.0592MHz)
 - Different 8051 chips have different speed ratings
 - E.g. a 12MHz chip can only be connected to a crystal oscillator with frequency 12MHz or lower
 - We can observe the clock with an oscilloscope on XTAL2 pin
 - Configuration 2:
 - Connect it to an external TTL oscillator (e.g. a clock signal generated by a function generator)
 - Only XTAL1 is used, XTAL2 is left unconnected (NC: not connected)

PIN: RST

RST (Reset, input pin)

- Active high: upon applying a high pulse to the pin, the uC will reset and terminate all activities
 - Normally it's value is low so uC can work normally

• In order for it too be effective, the high pulse must be high for a minimum of 2 machine cycles

Reset by switch

- When SW is open, RST is low When SW is closed, RST is high
- When SW is released, RST is low → reset
- Power on reset
 - At the instant of power on, RST is high After a while, the capacitor will be fully charged
 - · In steady state, RST is low

Division of Computer Science & Engineering

PIN: EA, PSN, and ALE

8031

- A simplified version of 8051, it doesn't have built-in ROM or RAM
- Needs to be connected to external ROM and RAM through EA. PSN. and ALE

EA

- External access (input pin): indicates whether there is external ROM
- Active low: it's effective when the voltage is low
- If it is connected to ground, there is external ROM
- If it is connected to VCC, there is no external ROM

PIN: EA, PSN, and ALE

PSEN

- Program store enable (output pin)
- If external ROM is connected to the uC. this pin is connected to the OE (output enable) pin of the ROM to enable the output of the ROM

• ALE

- Address latch enable (output pin)
- Port 0 is used as both address and data bus for external RAM
- If it is high, then PO is used as address bus: if it is low, then PO is used as data bus

PIN: Default Values

 The default value of some 8051 registers upon reset

Register	Reset Value (hex)
PC .	0000
DPTR	0000
ACC	00
PSW	00
SP	07
В	00
P0-P3	FF

Machine cycle and crystal frequency

Chip (Maker)	Clocks per Mach	ine Cycle
AT89C51/52 (Atmel)		12
P89C54X2 (Phillips)		6
DS5000 (Dallas Semi	conductor)	4
DS89C4x0 (Dallas Sc	emiconductor)	11

Outline

- Pin Description
- DS89C4x0 Trainer
- Intel HEX file

Hanyang University

Division of Computer Science & Engineering

Hardware: Key Features

- Key Features of DS89C4x0
 - On-chip flash ROM
 - DS89C420/30: 16kB
 - DS89C440: 32kB
 - DS89C450: 64kB
 - High speed
 - 1 clock per machine cycle
 - DC to 33MHz operation (it can be connected to a crystal with frequency 33KMHz)
 - 256 bytes RAM, Two full duplex serial ports
 - 13 interrupt sources(6 external) with 5 levels of interrupt priority
 - Programmable watchdog timer

Hardware

9

Outline

- Pin Description
- DS89C4x0 Trainer
- Intel HEX file

Intel HEX File

• Intel HEX file

- A widely used file format designed to standardize the loading of executable machine code into a ROM chip
- Review:

Intel HEX File

Format of HEX file

:1000000075805575905575A0557DFA111C7580AA9F :100010007590AA75A0AA7DFA111C80E47C237B4F01 :07002000DBFEDCFADDF62235 :00000001FF

- It can be open by using any text editor
- Each line can be decomposed into 4 fields

:CC	AAAA	TT	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	SS
:10	0000	00	75805575905575A0557DFA111C7580AA	9F
:10	0010	00	7590AA75A0AA7DFA111C80E47C237B4F	01
:07	0020	00	DBFEDCFADDF622	35
:00	0000	01	FF	

Intel HEX File

Format of Intel HEX file

- Each line starts with a colon
- Details
 - CC: the number of bytes in this line, the maximum value of 10H
 - AAAA: a 16-bit address indicating where the contents of the line should be stored in ROM
 - TT: type. if TT = 00, then this is not the last line, if TT = 01, then this is the last line
 - DD...DDD: the real data or code to be stored in ROM
 - SS: checksum for everything in the line to make sure there is no error
- It always ends with FF_

FF :CC	AAAA	TT	DDDDDDDDDDDDDDDDDDDDDDDDDDDDD	SS
:10	0000	00	75805575905575A0557DFA111C7580AA	9F
:10	0010	00	7590AA75A0AA7DFA111C80E47C237B4F	01
:07	0020	00	DBFEDCFADDF622	35
:00	0000	01	FF	

Division of Computer Science & Engineering

Intel HEX File

List file

LOC	OBJ	LINE	3		
0000		1		ORG OH	
0000	758055	2	MAIN:	MOV PO, #55H	
0003	759055	3		MOV P1, #55H	
0006	75A055	4		MOV P2, #55H	
0009	7DFA	5		MOV R5, #250	
000B	111C	6		ACALL MSDELAY	
000D	7580AA	7		MOV PO, #OAAH	
0010	7590AA	8		MOV P1, #0AAH	
0013	75A0AA	9		MOV P2, #0AAH	
0016	7DFA	10		MOV R5, #250	
0018	111C	11		ACALL MSDELAY	
001A	80E4	12		SJMP MAIN	
		13	THE 2	250 MILLISECOND DE	ELAY.
		14	MSDELAY		
001C	7C23	15	HERE3:	MOV R4, #35	
001E	7B4F	16	HERE2:	MOV R3, #79	
0020	DBFE	17	HERE1:	DJNZ R3, HERE1	
0022	DCFA	18		DJNZ R4, HERE2	
0024	DDF6	19		DJNZ R5, HERE3	
0026	22	20		RET	:CC
		21		END	1.10
					1.10

Hex file

:CC	AAAA	TT	DDDDDDDDDDDDDDDDDDDDDDDDDDDDD	SS
:10	0000	UU	75805575905575A0557DFA111C7580AA	9 F
:10	0010	00	7590AA75A0AA7DFA111C80E47C237B4F	01
:07	0020	00	DBFEDCFADDF622	35
.00	0000	0.1	FF	

