Examen final geometria 2017

- 1. Tomamos la referencia $\mathcal{R} = \left\{D, \overrightarrow{DP}, \overrightarrow{PC}\right\}$, entonces
 - $\bullet \ D = \begin{pmatrix} 0 & 0 \end{pmatrix}$
 - $\bullet \ P = \begin{pmatrix} 1 & 0 \end{pmatrix}$
 - $A = \begin{pmatrix} 1 & -1 \end{pmatrix}$
 - $C = \begin{pmatrix} 1 & 1 \end{pmatrix}$

Ahora $\overrightarrow{DB} = \frac{3}{2}\overrightarrow{DP} \implies B = \begin{pmatrix} \frac{3}{2} & 0 \end{pmatrix}$. Tambien $\overrightarrow{BC} = \frac{4}{3}\overrightarrow{BY} \iff \overrightarrow{BY} = \frac{3}{4}\overrightarrow{BC} = \frac{3}{4}\begin{pmatrix} -\frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} -\frac{3}{8} & \frac{3}{4} \end{pmatrix}$. Por lo tanto $Y = \begin{pmatrix} \frac{9}{8} & \frac{3}{4} \end{pmatrix}$.

Ahora $\overrightarrow{PX} = \frac{1}{3}\overrightarrow{AC} = \frac{1}{3}\begin{pmatrix}0 & 2\end{pmatrix} = \begin{pmatrix}0 & \frac{2}{3}\end{pmatrix} \implies X = \begin{pmatrix}1 & \frac{2}{3}\end{pmatrix}$

 $Y \stackrel{9}{8} \overrightarrow{DX} = \frac{9}{8} \begin{pmatrix} 1 & \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{9}{8} & \frac{3}{4} \end{pmatrix} = \overrightarrow{DY} \text{ por lo tanto } D, X, Y \text{ estan alineados.}$

2. Primero calculamos la familia de puntos fijos:

$$L := \begin{cases} 4x + 9y - 3 = x \\ -x - 2y + 1 = y \end{cases} \implies x + 3y = 1 \iff \begin{cases} x = -3t + 1 \\ y = t \end{cases}$$

Que es una recta. Tomamos un centro de nuestra referencia un $P \in L$, por ejemplo $P = \begin{pmatrix} 1 & 0 \end{pmatrix}$. Calculamos ahora $Q_f(t)$:

$$Q_f(t) = \det\begin{pmatrix} 4-t & 9\\ -1 & -2-t \end{pmatrix} = t^2 - 2t + 1 = (t-1)^2$$

Como $\ker(f - Id) \neq \mathbb{R}^2$, f no diagonaliza. Calculamos ahora u_1 . Elegimos un punto $Q \notin L(\text{recta de puntos fijos})$, tal que $f(Q) - Q = (f - Id)Q = u_1$ y u_1 sea vep de vap 1:

$$\begin{pmatrix} 3 & 9 & -3 \\ -1 & -3 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

Ya que si u_1 es vep de vap 1, entonces es un multiplo del vector director de L. Podemos tomar, por ejemplo, $Q = \begin{pmatrix} 1 & 1 \end{pmatrix} \implies u_1 = \begin{pmatrix} 9 & -3 \end{pmatrix}$ y $u_2 = Q - P = \begin{pmatrix} 0 & 1 \end{pmatrix} \implies \mathcal{R} = \{P, u_1, u_2\} = \{\begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} 9 & -3 \end{pmatrix}, \begin{pmatrix} 0 & 1 \end{pmatrix}\}$ y:

$$M_{\mathcal{R}}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

f es por tanto, una homologia general de eje L.

3. Primero calculamos $P_p(Q)$. $q \in P_p(Q) \iff \phi(p,q) = 0$:

$$\phi(p,q) = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0 \iff \begin{cases} x = \lambda \\ y = 2\lambda \end{cases} \iff \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Llamamos ahora $A = \begin{pmatrix} 1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \end{pmatrix}$, dado un punto q, tenemos que:

$$area(\stackrel{\triangle}{AB}q) = \frac{1}{2}\sqrt{G\left(\overrightarrow{AB},\overrightarrow{Aq}\right)} = \frac{1}{2}\|\overrightarrow{Aq'}\|\sqrt{G\left(\overrightarrow{AB}\right)} = \frac{\|\overrightarrow{Aq'}\|\|\overrightarrow{AB}\|}{2}$$

Donde $\overrightarrow{Aq'}$ es la proyecion de \overrightarrow{Aq} sobre $\left[\overrightarrow{AB}\right]^{\perp}$. Tenemos que $\left[\overrightarrow{AB}\right] = \left[\begin{pmatrix} -1 & 1 \end{pmatrix}\right]$ y que $\left[\overrightarrow{AB}\right]^{\perp} = \left[\begin{pmatrix} 1 & 1 \end{pmatrix}\right]^{\perp}$, por lo tanto:

$$\overrightarrow{Aq} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} = a \begin{pmatrix} -1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \end{pmatrix} \iff b = \frac{3\lambda - 1}{2}$$

Entonces $\overrightarrow{Aq'}=b$ (1 1). Ahora queremos que $area(\triangle ABq)=1$, lo cual implica que $\|\overrightarrow{Aq'}\|=\sqrt{2}$

$$\|\overrightarrow{Aq'}\| = \sqrt{2(b^2)} = \sqrt{2} \iff \frac{3\lambda - 1}{2} = \pm 1$$

De donde deducimos que los puntos son:

$$\begin{cases} q_1 = \frac{-1}{3} \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{-1}{3} & \frac{-2}{3} \end{pmatrix} \\ q_2 = \begin{pmatrix} 1 & 2 \end{pmatrix} \end{cases}$$

(A) Primero, vemos que $f = S_v \circ S_u$ es una rotacion. S_v y S_u son ambos movimientos directos, por lo tanto, f es tambien un movimiento directo, es decir, f es una traslacion, una rotacion o un movimiento helicoidal. Vemos ahora que f(P) = P (ya que es punto fijo tanto por S_v como por S_u) es un punto fijo, lo cual implica que f es una rotacion. Vemos ahora que P + [w] es una recta de puntos fijos. Vemos que $\forall x \in P + [w]$ $S_u(x) = x - 2Px$ y $S_v(x) = x - 2Px$. Por lo tanto $(S_v \circ S_u)(x) = x$. Para calcular el angulo, miramos un punto f0 el f1, entonces f2, y vemos que el angulo f3 de la rotacion es dos veces el angulo entre f3.

(B) i) Si deja invariante la recta r, entonces r es el eje de la simetria, y tenemos:

$$r = \begin{pmatrix} 1/2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} \implies q \in \mathbb{E}^2 = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \end{pmatrix} \implies b = \frac{x - y - \frac{1}{2}}{2}$$

(Ya que $\begin{pmatrix} 1 & -1 \end{pmatrix} \perp \begin{pmatrix} 1 & 1 \end{pmatrix}$). Ahora tenemos que $S(q) = S(x,y) = \begin{pmatrix} x & y \end{pmatrix} - 2b \begin{pmatrix} 1 & -1 \end{pmatrix}$ (donde S es la simetria, e.d, $f = \tau \circ S$, con τ una traslacion):

$$S(x,y) = \begin{pmatrix} x \\ y \end{pmatrix} - 2 \left(\frac{x-y-\frac{1}{2}}{2} \right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \left(y + \frac{1}{2} \quad x - \frac{1}{2} \right)$$

Calculamos ahora $S\left(1,-\frac{3}{2}\right)=\begin{pmatrix} -1 & \frac{1}{2} \end{pmatrix}$ Y por lo tanto el vector de traslacion es $\left(\frac{9}{8} & \frac{9}{8}\right)$, con lo cual $f(x,y)=\left(y+\frac{1}{2} & x-\frac{1}{2}\right)+\left(\frac{9}{8} & \frac{9}{8}\right)=\left(y+\frac{13}{8} & x+\frac{5}{8}\right)$. Entonces $M_e(f)$:

$$M_e(f) = \begin{pmatrix} 0 & 1 & 13/8 \\ 1 & 0 & 5/8 \\ 0 & 0 & 1 \end{pmatrix}$$

ii) Primero encontramos $M_e(Q)$:

$$M_e(Q) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Miramos ahora si tiene centros. p es centro sii Ap + L = 0:

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Que no tiene solucion, por lo tanto Q no tiene centros. Como det $\tilde{A} \neq 0$, Q es una parabola. Sacamos ahora los veps de A:

$$Q_A(t) = \begin{pmatrix} 1-t & -1 \\ -1 & 1-t \end{pmatrix} = (1-t)^2 - 1 = t(t-2)$$

Tomamos entonces (1 1) vep de vap 0 y (1 -1) vep de vap 2. Normalizamos ahora los veps, quedando $v_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ y $v_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$. Queremos ahora $p = \begin{pmatrix} x & y \end{pmatrix}$ tal que $\phi(p,p) = 0$ y $\phi(v_2,p) = 0$, entonces:

$$\phi(v_2, p) = 0 \iff \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff x = y + \frac{1}{2}$$

Luego p es de la forma $(y + \frac{1}{2} \quad y)$, queremos ahora que:

$$\left(y + \frac{1}{2}\right)^2 - 2y\left(y + \frac{1}{2}\right) + y^2 + 2y + 2 = 0 \iff y = -\frac{9}{8}$$

Con lo cual el centro es $p = \left(-\frac{5}{8} - \frac{9}{8}\right)$. Tomamos ahora $\mathcal{R} = \{p, v_1, v_2\}$ entonces:

$$M_{\mathcal{R}}(Q) = \begin{pmatrix} 0 & 0 & b \\ 0 & 2 & 0 \\ b & 0 & 0 \end{pmatrix}$$

Donde $b = \phi(p, v_1) = \frac{1}{\sqrt{2}}$

iii) Calculamos la imagen del vertice, $f(-\frac{5}{8}, -\frac{9}{8}) = \left(\frac{1}{2} \quad 0\right)$. Calculamos ahora la imagen de $p + [v_1]$, que es $f(p) + [v_1]$ (ya que $p + [v_1]$ es paralelo al eje de simetria). Ahora calculamos $p + [v_2]$, que es invariante porque v_2 es perpendicular al eje de simetria. Por lo tanto, la imagen de Q por f, sera una parabola de vertice $\begin{pmatrix} \frac{1}{2} & 0 \end{pmatrix}$ y eje $\begin{pmatrix} \frac{1}{2} & 0 \end{pmatrix} + \begin{bmatrix} 1 & 1 \end{bmatrix}$.