

ASTROINFORMÁTICA I AULA 02

Prof. Dr. Luciano Silva luciano.silva@mackenzie.br

OBJETIVOS

- Conhecer e programar leitura e exibição de variáveis em Python
- Conhecer e programar os comandos condicionais e de repetição em Python
- Utilizar comandos condicionais e de repetição em algoritmos iterativos
- Conhecer e programar com funções em Python
- Aprender a contar tempo de execução de programas

VARIÁVEIS EM PYTHON

LEITURA/TIPAGEM

```
x = float(input("1st Number: "))
y = float(input("2nd Number: "))
z = float(input("3rd Number: "))
```

Python Built-in Types

COMANDO CONDICIONAL

IF-ELSE

```
if condition_1:
    statement_block_1
elif condition_2:
    statement_block_2
else:
    statement_block_3
```

```
x = float(input("1st Number: "))
y = float(input("2nd Number: "))
z = float(input("3rd Number: "))

if x > y and x > z:
    maximum = x
elif y > x and y > z:
    maximum = y
else:
    maximum = z

print("The maximal value is: " + str(maximum))
```

operator	function
<	less than
<=	less than or equal to
>	greater than
>=	greater than or equal to
==	equal
!=	not equal

X	У	x AND y	x OR y	NOT x
TRUE	TRUE	TRUE	TRUE	FALSE
TRUE	FALSE	FALSE	TRUE	
TRUE	NULL	NULL	TRUE	
FALSE	TRUE	FALSE	TRUE	TRUE
FALSE	FALSE	FALSE	FALSE	
FALSE	NULL	FALSE	NULL	
NULL	TRUE	NULL	TRUE	NULL
NULL	FALSE	FALSE	NULL	
NULL	NULL	NULL	NULL	

COMANDO DE REPETIÇÃO

WHILE LOOP


```
n = 100

sum = 0
counter = 1
while counter <= n:
    sum = sum + counter
    counter += 1

print("Sum of 1 until %d: %d" % (n,sum))</pre>
```

COMANDO DE REPETIÇÃO FOR LOOP

range (begin, end, step)

```
n = 100

sum = 0
for counter in range(1,n+1):
    sum = sum + counter

print("Sum of 1 until %d: %d" % (n,sum))
```

ALGORITMO ITERATIVO

CÁLCULO DE RAÍZES DE EQUAÇÕES POLINOMIAIS - MÉTODO DE NEWTON

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

EXEMPLO

CALCULAR A RAIZ QUADRADA DE 612

$$x^2 = 612$$

$$f(x) = x^2 - 612$$

$$f'(x) = 2x$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 10 - \frac{10^2 - 612}{2 \cdot 10} = 35.6$$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 35.6 - \frac{35.6^2 - 612}{2 \cdot 35.6} = \underline{2}6.395505617978...$
 $x_3 = \vdots = \underline{24.790635492455...}$
 $x_4 = \vdots = \underline{24.738688294075...}$
 $x_5 = \vdots = \underline{24.7386337537}67...$

EXERCÍCIO

CALCULAR A RAIZ QUADRADA DE 612 EM PYTHON PELO MÉTODO DE NEWTON

FUNÇÕES PROGRAMAÇÃO ESTRUTURADA

```
def function-name(Parameter list):
    statements, i.e. the function body
```

```
def fahrenheit(T_in_celsius):
    """ returns the temperature in degrees Fahrenheit """
    return (T_in_celsius * 9 / 5) + 32

for t in (22.6, 25.8, 27.3, 29.8):
    print(t, ": ", fahrenheit(t))
```

EXERCÍCIO

CALCULAR A RAIZ QUADRADA DE 612 EM PYTHON PELO MÉTODO DE NEWTON USANDO FUNÇÕES EM PYTHON

CONTAGEM DE TEMPO DE EXECUÇÃO

```
import time
start = time.time()
# run your code
end = time.time()
elapsed = end - start
```