Home DAA DS DBMS Aptitude Selenium Kotlin C# HTML CSS JavaScript jQuery Quiz

Algorithm of Longest Common Sequence

```
LCS-LENGTH (X, Y)
 1. m \leftarrow length [X]
 2. n \leftarrow length [Y]
 3. for i \leftarrow 1 to m
 4. do c [i,0] \leftarrow 0
 5. for j \leftarrow 0 to m
 6. do c [0,j] \leftarrow 0
 7. for i \leftarrow 1 to m
 8. do for j \leftarrow 1 to n
 9. do if x_i = y_i
 10. then c [i,j] \leftarrow c [i-1,j-1] + 1
 11. b [i,j] \leftarrow "\"
 12. else if c[i-1,j] \ge c[i,j-1]
 13. then c [i,j] \leftarrow c [i-1,j]
 14. b [i,j] ← "↑"
 15. else c [i,j] \leftarrow c [i,j-1]
 16. b [i,j] ← "← "
 17. return c and b.
```

Example of Longest Common Sequence

Example: Given two sequences X [1...m] and Y [1....n]. Find the longest common subsequences to both.

 x: A
 B
 C
 B
 D
 A
 B

 y: B
 D
 C
 A
 B
 A

```
here X = (A,B,C,B,D,A,B) and Y = (B,D,C,A,B,A)

m = length [X] and n = length [Y]

m = 7 and n = 6

Here X<sub>1</sub> = x [1] = A    y<sub>1</sub> = y [1] = B

x<sub>2</sub> = B    y<sub>2</sub> = D

x<sub>3</sub> = C    y<sub>3</sub> = C

x<sub>4</sub> = B    y<sub>4</sub> = A

x<sub>5</sub> = D    y<sub>5</sub> = B

x<sub>6</sub> = A    y<sub>6</sub> = A

x<sub>7</sub> = B

Now fill the values of c [i, j] in m x n table
```

Initially, for i=1 to 7 c [i, 0] = 0 For j = 0 to 6 c [0, j] = 0

That is:

i	j	0 y,	1 B	2 D	3 C	4 A	5 B	6 A
0	X,	0	0	0	0	0	0	0
1	Α	0						
2	В	0						
3	C	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

Now for i=1 and j=1

 x_1 and y_1 we get $x_1 \neq y_1$ i.e. A \neq B

And c [i-1,j] = c [0, 1] = 0

c[i, j-1] = c[1,0] = 0

That is, c [i-1,j]=c [i, j-1] so c [1, 1]=0 and b [1, 1]=' '

Now for i=1 and j=2

 x_1 and y_2 we get $x_1 \neq y_2$ i.e. A \neq D

$$c[i-1,j] = c[0, 2] = 0$$

$$c[i, j-1] = c[1,1] = 0$$

That is, c [i-1,j]=c [i, j-1] and c [1, 2]=0 b [1, 2]=' '

Now for i=1 and j=3

 x_1 and y_3 we get $x_1 \neq y_3$ i.e. A \neq C

$$c [i-1,j] = c [0, 3] = 0$$

$$c[i, j-1] = c[1,2] = 0$$

so c
$$[1,3] = 0$$
 b $[1,3] = ' \uparrow '$

Now for i=1 and j=4

$$x_1$$
 and y_4 we get. $x_1=y_4$ i.e A = A

$$c [1,4] = c [1-1,4-1] + 1$$

= $c [0, 3] + 1$

$$c[1,4] = 1$$

Now for i=1 and j=5

$$x_1$$
 and y_5 we get $x_1 \neq y_5$
$$c \ [i-1,j] = c \ [0, \ 5] = 0$$

$$c \ [i, \ j-1] = c \ [1,4] = 1$$
 Thus $c \ [i, \ j-1] > c \ [i-1,j]$ i.e. $c \ [1, \ 5] = c \ [i, \ j-1] = 1$. So $b \ [1, \ 5] = ' \leftarrow '$

Now for i=1 and j=6

i	j	0	1	2	3	4	5	6
		у,	В	D	C	Α	В	Α
0	X,	0	0	0	0	0	0	0
1	Α	0	↑ 0	† 0	↑ 0	1	← 1	^ 1
2	В	0						
3	C	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

Now for i=2 and j=1

We get
$$x_2$$
 and y_1 B = B i.e. $x_2 = y_1$

$$c [2,1] = c [2-1,1-1] + 1$$

$$= c [1, 0] + 1$$

$$= 0 + 1 = 1$$

$$c [2, 1] = 1 \text{ and b } [2, 1] = ' \ '$$

Similarly, we fill the all values of c [i, j] and we get

i	j	0	1	2	3	4	5	6
		\mathbf{y}_{1}	B	D	(C)	Α	B	A
0	X	0	0	0	0	0	0	0
1	Α	0	† 0	↑ 0	↑ 0	[^] 1	← 1	^ ₁
2	B	0	1	← 1	← 1	↑ 1	\ 2	← 2
3	(C)	0	↑ 1	† 1	2	← 2	↑ 2	↑ 2
4	B	0	[^] 1	↑ 1	↑ 2	↑ 2	3	← 3
5	D	0	↑ 1	2	↑ 2	↑ 2	↑ 3	↑ 3
6	A	0	↑ 1	↑ 2	↑ 2	3	↑ 3	4
7	В	0	[^] 1	↑ 2	↑ 2	↑ 3	[^] 4	↑ 4

Step 4: Constructing an LCS: The initial call is PRINT-LCS (b, X, X.length, Y.length)

```
PRINT-LCS (b, x, i, j)

1. if i=0 or j=0

2. then return

3. if b [i,j] = ' \ '

4. then PRINT-LCS (b,x,i-1,j-1)

5. print x_i

6. else if b [i,j] = ' ↑ '

7. then PRINT-LCS (b,X,i-1,j)

8. else PRINT-LCS (b,X,i,j-1)
```

Example: Determine the LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0).

Solution: let X = (1,0,0,1,0,1,0,1) and Y = (0,1,0,1,1,0,1,1,0).

$$c \ [i,j] = \begin{cases} 0 & \text{if } i = 0 & \text{or} \quad j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 & \text{and} \quad x_i = y_i \\ max(c[i,j-1],c[i-1,j]) \text{if } i,j > 0 \text{ and } x_i \neq y_i \end{cases}$$

We are looking for c [8, 9]. The following table is built.

		x = (1,0,0,1,0,1,0,1)					y = (0,1,0,1,1,0,1,1,0)				
	j	0	1	2	3	4	5	6	7	8	9
i		y,	0	1	0	1	1	0	1	1	0
0	Χ,	0	0	0	0	0	0	0	0	0	0
1	1	0	† 0	1	↑ 1	`1	← 1	<u>\</u> 1	`0	1	← 1
2	0	0	^۲ 1	↑ 1	(2)	← 2	←2	٠ 2	← 2	← 2	^۲ 2
3	0	0	^۲ 1	↑ 1	[^] 2	↑ 2	↑ 2	3	← 3	← 3	^۲ 3
4	1	0	1 1	^ر 2	† 2	3	^۲ 3	↑ 3	4	٠ 4	← 4
5	0	0	^۲ 1	↑ 2	^۲ 3	↑ 3	↑ 3	٠ 4	↑ 4	1 4	^ر 5
6	1	0	↑ 1	۲ 2	↑ 3	۲ 4	[^] 4	1 4	ر 5	\ 5	↑ 5
7	0	0	ì	† 2	ر 3	↑ 4	↑ 4	^۲ 5	↑ 5	↑ 5	(6)
8	1	0	1	^ر 2	↑ 3	^۲ 4	5	† 5	ر 6	` 6	↑ 6

From the table we can deduct that LCS = 6. There are several such sequences, for instance (1,0,0,1,1,0) (0,1,0,1,0,1) and (0,0,1,1,0,1)

For Videos Join Our Youtube Channel: Join Now

Feedback

• Send your Feedback to feedback@javatpoint.com

Help Others, Please Share

Learn Latest Tutorials

Preparation

Trending Technologies

Machine Learning

DevOps

B.Tech / MCA

