SQL Queries - SQL Course

Matheus Henrique SantAnna Cardoso DRE: 121073530

25 de Junho de 2023

1 Curso Iniciante

Queries SQL realizadas para o curso SQL Course online. Estas, para a parte inicial do mesmo curso.

1.1 Selecting Data

1.) - Exiba o primeiro nome e a idade de todos os que estão na tabela.

SELECT first, age FROM empinfo;

\mathbf{first}	age
John	45
Mary	25
Eric	32
Mary Ann	32
Ginger	42
Sebastian	23
Gus	35
Mary Ann	52
Erica	60
Leroy	22
Elroy	22

2.) - Exiba o nome, o sobrenome e a cidade de todos que não são de Payson.

```
SELECT first, last, city FROM empinfo WHERE city <> "Payson";
```

first	last	\mathbf{city}
Eric	Edwards	San Diego
Mary Ann	Edwards	Phoenix
Ginger	Howell	Cottonwood
Sebastian	Smith	Gila Bend
Gus	Gray	Bagdad
Mary Ann	May	Tucson
Erica	Williams	Show Low
Leroy	Brown	Pinetop
Elroy	Cleaver	Globe

3.) - Exiba todas as colunas para todas as pessoas com mais de 40 anos.

```
SELECT * FROM empinfo WHERE age > 40;
```

\mathbf{first}	\mathbf{last}	id	age	\mathbf{city}	\mathbf{state}
John	Jones	99980	45	Payson	Arizona
Ginger	Howell	98002	42	Cottonwood	Arizona
Mary Ann	May	32326	52	Tucson	Arizona
Erica	Williams	32327	60	Show Low	Arizona

4.) - Exiba o nome e o sobrenome de todos cujo sobrenome termina em "ay".

```
SELECT first, last FROM empinfo WHERE last LIKE "%ay"
```

```
first last
Gus Gray
Mary Ann May
```

5.) - Exiba todas as colunas para todos cujo primeiro nome é igual a "Mary".

```
SELECT * FROM empinfo WHERE first = "Mary";

first last id age city state

Mary Jones 99982 25 Payson Arizona
```

6.) - Exiba todas as colunas para todos cujo primeiro nome contenha "Mary".

```
SELECT * FROM empinfo WHERE first LIKE "%Mary%";
```

\mathbf{first}	last	id	age	\mathbf{city}	\mathbf{state}
Mary	Jones	99982	25	Payson	Arizona
Mary Ann	Edwards	88233	32	Phoenix	Arizona
Mary Ann	May	32326	52	Tucson	Arizona

1.2 Creating Tables

```
CREATE TABLE myemployees(
firstname VARCHAR(50),
lastname VARCHAR(50),
title VARCHAR(50),
age NUMBER(128),
salary NUMBER(2000000)
);
```

1.3 Inserting Into a Table

```
INSERT INTO
       myemployees
           (firstname, lastname, title, age, salary)
       VALUES
           ("Jonie", "Weber", "Secretary", 28, 19500.00);
       INSERT INTO
       myemployees
          (firstname, lastname, title, age, salary)
9
       VALUES
          ("Potsy", "Weber", "Programmer", 32, 45300.00);
11
       INSERT INTO
       myemployees
14
           (firstname, lastname, title, age, salary)
       VALUES
16
           ("Dirk", "Smith", "Programmer II", 45, 75020.00);
17
```

1.) - Selecione todas as colunas para todos em sua tabela de funcionários.

```
SELECT * FROM myemployees;
```

firstname	lastname	title	age	salary
Jonie	Weber	Secretary	28	19500
Potsy	Weber	Programmer	32	45300
Dirk	Smith	Programmer II	45	75020

2.) - Selecione todas as colunas para todos com um salário acima de 30.000.

```
title
 firstname
              lastname
                                          age
                                                salary
 Potsy
              Weber
                          Programmer
                                          32
                                                45300
 Dirk
              Smith
                          Programmer II
                                          45
                                                 75020
3.) - Selecione o nome e o sobrenome de todas as pessoas com menos de 30 anos.
  SELECT firstname, lastname FROM myemployees WHERE age < 30;
 firstname
             lastname
 Jonie
              Weber
4.) - Selecione o nome, o sobrenome e o salário de qualquer pessoa com "Programmer" no cargo.
  SELECT firstname, lastname FROM myemployees WHERE title LIKE "%Programmer%";
 firstname
             lastname
 Potsv
              Weber
 Dirk
              Smith
5.) - Selecione todas as colunas para todos cujo sobrenome contenha "ebe".
  SELECT * FROM myemployees WHERE lastname LIKE "%ebe%";
 firstname
             lastname
                          title
                                        age
                                              salary
 Jonie
              Weber
                          Secretary
                                        28
                                              19500
                                              45300
 Potsy
              Weber
                          Programmer
                                        32
```

firstname

Potsy

7.) - Selecione todas as colunas para todos com mais de 80 anos.

SELECT firstname FROM myemployees WHERE firstname = "Potsy";

SELECT * FROM myemployees WHERE salary > 30000;

```
SELECT * FROM myemployees WHERE age > 80;
```

firstname lastname title age salary

8.) - Selecione todas as colunas para todos cujo sobrenome termina em "ith"

6.) - Selecione o primeiro nome para todos cujo primeiro nome é igual a "Potsy".

```
SELECT * FROM myemployees WHERE lastname LIKE "%ith";
```

1.4 Updating Records

1.) - Jonie Weber acabou de se casar com Bob Williams. Ela solicitou que seu sobrenome fosse atualizado para Weber-Williams.

```
UPDATE myemployees

SET lastname = "Weber-Williams"

WHERE firstname = "Jonie";

SELECT * FROM myemployees;
```

firstname	lastname	title	age	salary
Jonie	Weber-Williams	Secretary	28	19500
Potsy	Weber	Programmer	32	45300
Dirk	Smith	Programmer II	45	75020

2.) - O aniversário de Dirk Smith é hoje, adicione 1 a sua idade.

```
UPDATE myemployees

SET age = age + 1

WHERE firstname = "Dirk";

SELECT * FROM myemployees;
```

firstname	lastname	title	age	salary
Jonie	Weber-Williams	Secretary	28	19500
Potsy	Weber	Programmer	32	45300
Dirk	Smith	Programmer II	46	75020

3.) - Todas as secretárias passam a ser chamadas de "Auxiliar Administrativo". Atualize todos os títulos de acordo.

```
UPDATE myemployees

SET title = "Administrative Assistant"

WHERE title = "Secretary";

SELECT * FROM myemployees;
```

firstname	lastname	title	age	salary
Jonie	Weber-Williams	Administrative Assistant	28	19500
Potsy	Weber	Programmer	32	45300
Dirk	Smith	Programmer II	46	75020

4.) - Todos que estão ganhando menos de 30.000 receberão um aumento de 3.500 por ano.

```
UPDATE myemployees

SET salary = salary + 3500

WHERE salary < 30000;

SELECT * FROM myemployees;
```

firstname	lastname	title	age	salary
Jonie	Weber-Williams	Administrative Assistant	28	23000
Potsy	Weber	Programmer	32	45300
Dirk	Smith	Programmer II	46	75020

5.) - Todos que estão ganhando mais de 33.500 receberão um aumento de 4.500 por ano.

```
UPDATE myemployees

SET salary = salary + 4500

WHERE salary > 33500;

SELECT * FROM myemployees;
```

```
firstname
           lastname
                             title
                                                            salary
                                                      age
Jonie
            Weber-Williams
                             Administrative Assistant
                                                            23000
                                                      28
Potsy
            Weber
                             Programmer
                                                      32
                                                            49800
            Smith
Dirk
                             Programmer II
                                                      46
                                                            79520
```

6.) - Todos os títulos de "Programador II" agora são promovidos a "Programador III"

```
UPDATE myemployees

SET title = "Programmer III"

WHERE title = "Programmer II";

SELECT * FROM myemployees;
```

firstname	lastname	title	\mathbf{age}	salary
Jonie	Weber-Williams	Administrative Assistant	28	23000
Potsy	Weber	Programmer	32	49800
Dirk	Smith	Programmer III	46	79520

7.) - Todos os títulos de "Programador" agora são promovidos a "Programador II"

```
UPDATE myemployees

SET title = "Programmer II"

WHERE title = "Programmer";

SELECT * FROM myemployees;
```

firstname	lastname	title	age	salary
Jonie	Weber-Williams	Administrative Assistant	28	23000
Potsy	Weber	Programmer II	32	49800
Dirk	Smith	Programmer III	46	79520

1.5 Deleting Records

1.) - Jonie Weber-Williams acabou de sair, remova seu registro da tabela.

```
DELETE FROM myemployees

WHERE firstname = "Jonie" AND lastname = "Weber-Williams";

SELECT * FROM myemployees;
```

firstname	lastname	title	age	salary
Potsy	Weber	Programmer II	32	49800
Dirk	Smith	Programmer III	46	79520

2.) - É hora de cortes orçamentários. Remova todos os funcionários que estão ganhando mais de 70.000 dólares.

```
DELETE FROM myemployees
WHERE salary > 70000;

SELECT * FROM myemployees;
```

firstname lastname title age salary Potsy Weber Programmer II 32 49800

1.6 Drop a Table

DROP TABLE myemployees;

2 Advanced Course

2.1 Select Statement

1.) - Na tabela items_ordered, selecione uma lista de todos os itens comprados para o customerid 10449. Exiba o customerid, item e preço para este cliente.

```
SELECT customerid, item, price
  FROM items_ordered
  WHERE customerid = 10449;
  customerid
                item
                                price
  10449
                 Unicycle
                                180.79
  10449
                Snow Shoes
                                45
                Bicycle
  10449
                                380.5
  10449
                 Canoe
                                280
                 Flashlight
                                4.5
  10449
  10449
                 Canoe paddle
                                40
```

2.) - Selecione todas as colunas da tabela items_ordered para quem comprou uma Tent.

```
FROM items_ordered
WHERE item = "Tent";
```

$\operatorname{customerid}$	${f order_date}$	item	${f quantity}$	price
10439	18-Sep-1999	Tent	1	88
10438	18-Jan-2000	Tent	1	79.99

3.) - Selecione os valores customerid, order_date e item da tabela items_ordered para todos os itens na coluna de itens que começam com a letra "S".

```
SELECT customerid, order_date, item
FROM items_ordered
WHERE item LIKE "S%";
```

$\operatorname{customerid}$	${\bf order_date}$	item
10449	$01 ext{-}Sep ext{-}1999$	Snow Shoes
10410	28-Oct-1999	Sleeping Bag
10101	08 -Mar-2000	Sleeping Bag
10330	19-Apr-2000	Shovel

4.) - Selecione os itens distintos na tabela items_ordered. Em outras palavras, exiba uma listagem de cada um dos itens exclusivos da tabela items_ordered.

SELECT DISTINCT item FROM items_ordered;

item

Pogo stick

Raft

Skateboard

Life Vest

Parachute

Umbrella

Unicycle

Ski Poles

Rain Coat

Snow Shoes

Tent

Lantern

Sleeping Bag

Pillow

Helmet

Bicycle

Canoe

Hoola Hoop

Flashlight

Inflatable Mattress

Lawnchair

Compass

Pocket Knife

Canoe paddle

Ear Muffs

Shovel

5.) - Crie suas próprias declarações selecionadas e envie-as.

SELECT DISTINCT item FROM items_ordered WHERE price < 10;</pre>

item

Umbrella

Pillow

Compass

Flashlight

2.2**Aggregate Functions**

1.) - Selecione o preço máximo de qualquer item pedido na tabela items_ordered. Dica: selecione apenas o preço máximo.

```
SELECT MAX(price) FROM items_ordered;
```

MAX(price)

1250

2.) - Selecione o preço médio de todos os itens pedidos que foram comprados no mês de dezembro.

```
SELECT AVG(price) FROM items_ordered WHERE order_date LIKE "%Dec%";

AVG(price)
174.3125

3.) - Qual é o número total de linhas na tabela items_ordered?

SELECT COUNT(*) FROM items_ordered;

COUNT(*)
32
```

4.) - Para todas as barracas que foram encomendadas na tabela items_ordered, qual é o preço da barraca mais barata? Dica: Sua consulta deve retornar apenas o preço.

```
SELECT MIN(price) FROM items_ordered WHERE item = "Tent";

MIN(price)
79.99
```

2.3 Group By Clause

1.) - Quantas pessoas estão em cada estado único na tabela de clientes? Selecione o estado e exiba o número de pessoas em cada um. Dica: count é usado para contar linhas em uma coluna, sum funciona apenas em dados numéricos.

SELECT COUNT(customerid), state FROM customers GROUP BY state;

${f COUNT}({f customerid})$	state
6	Arizona
2	Colorado
1	Hawaii
1	Idaho
1	North Carolina
2	Oregon
1	South Carolina
2	Washington
1	Wisconsin

2.) - Na tabela items_ordered, selecione o item, preço máximo e preço mínimo para cada item específico na tabela. Dica: Os itens precisarão ser divididos em grupos separados.

```
SELECT item, MAX(price), MIN(price) FROM items_ordered GROUP BY item;
```

		,
item	MAX(price)	${ m MIN}({ m price})$
Bicycle	380.5	380.5
Canoe	280	280
Canoe paddle	40	40
Compass	8	8
Ear Muffs	12.5	12.5
Flashlight	28	4.5
Helmet	22	22
Hoola Hoop	14.75	14.75
Inflatable Mattress	38	38
Lantern	29	16
Lawnchair	32	32
Life Vest	125	125
Parachute	1250	1250
Pillow	8.5	8.5
Pocket Knife	22.38	22.38
Pogo stick	28	28
Raft	58	58
Rain Coat	18.3	18.3
Shovel	16.75	16.75
Skateboard	33	33
Ski Poles	25.5	25.5
Sleeping Bag	89.22	88.7
Snow Shoes	45	45
Tent	88	79.99
Umbrella	6.75	4.5
Unicycle	192.5	180.79
v		

3.) - Quantos pedidos cada cliente fez? Use a tabela items_ordered. Selecione o customerid, o número de pedidos que eles fizeram e a soma de seus pedidos.

SELECT customerid, COUNT(*) FROM items_ordered GROUP BY customerid;

${f customerid}$	COUNT(*)
10101	6
10298	5
10299	2
10315	1
10330	3
10339	1
10410	2
10413	1
10438	3
10439	2
10449	6

2.4 Having Clause

1.) - Quantas pessoas estão em cada estado único na tabela de clientes que tem mais de uma pessoa no estado? Selecione o estado e exiba o número de quantas pessoas estão em cada, se for maior que 1.

```
SELECT COUNT(*), state
FROM customers
GROUP BY state
HAVING COUNT(*) > 1;

COUNT(*) state
6 Arizona
2 Colorado
2 Oregon
2 Washington
```

2.) - Na tabela items_ordered, selecione o item, preço máximo e preço mínimo para cada item específico na tabela. Exiba os resultados somente se o preço máximo de um dos itens for maior que 190,00.

```
SELECT item, MAX(price), MIN(price)
     FROM items_ordered
2
     GROUP BY item
     HAVING MAX(price) > 190.00;
     item
                 MAX(price)
                                MIN(price)
     Bicycle
                 380.5
                                 380.5
     Canoe
                 280
                                 280
     Parachute
                 1250
                                1250
     Unicycle
                 192.5
                                180.79
```

3.) - Quantos pedidos cada cliente fez? Use a tabela items_ordered. Selecione o ID do cliente, o número de pedidos que eles fizeram e a soma de seus pedidos, caso tenham comprado mais de 1 item.

```
SELECT customerid, COUNT(*), SUM(price)
FROM items_ordered
GROUP BY customerid
HAVING COUNT(*) > 1;
```

${f customerid}$	COUNT(*)	SUM(price)
10101	6	320.75
10298	5	118.88
10299	2	1288
10330	3	72.75
10410	2	281.72
10438	3	95.24
10439	2	113.5
10449	6	930.79

3 Order By Clause

1.) - Selecione o sobrenome, o nome e a cidade de todos os clientes na tabela de clientes. Exiba os resultados em ordem crescente com base no sobrenome.

SELECT * FROM customers ORDER BY lastname;

${f customerid}$	firstname	lastname	city	state
10298	Leroy	Brown	Pinetop	Arizona
10408	Elroy	Cleaver	Globe	Arizona
10330	Shawn	Dalton	Cannon Beach	Oregon
10413	Donald	Davids	Gila Bend	Arizona
10439	Conrad	Giles	Telluride	Colorado
10429	Sarah	Graham	Greensboro	North Carolina
10101	$_{ m John}$	Gray	Lynden	Washington
10338	Michael	Howell	Tillamook	Oregon
10410	Mary Ann	Howell	Charleston	South Carolina
10315	Lisa	Jones	Oshkosh	Wisconsin
10299	Elroy	Keller	Snoqualmie	Washington
10329	Kelly	Mendoza	Kailua	Hawaii
10449	Isabela	Moore	Yuma	Arizona
10419	Linda	Sakahara	Nogales	Arizona
10339	Anthony	Sanchez	Winslow	Arizona
10325	Ginger	Schultz	Pocatello	Idaho
10438	Kevin	Smith	Durango	Colorado

2.) - Igual ao exercício n^{Q} 1, mas exiba os resultados em ordem decrescente.

SELECT * FROM customers ORDER BY lastname DESC;

${f customerid}$	firstname	lastname	\mathbf{city}	state
10438	Kevin	Smith	Durango	Colorado
10325	Ginger	Schultz	Pocatello	Idaho
10339	Anthony	Sanchez	Winslow	Arizona
10419	Linda	Sakahara	Nogales	Arizona
10449	Isabela	Moore	Yuma	Arizona
10329	Kelly	Mendoza	Kailua	Hawaii
10299	Elroy	Keller	Snoqualmie	Washington
10315	Lisa	Jones	Oshkosh	Wisconsin
10338	Michael	Howell	Tillamook	Oregon
10410	Mary Ann	Howell	Charleston	South Carolina
10101	$_{ m John}$	Gray	Lynden	Washington
10429	Sarah	Graham	Greensboro	North Carolina
10439	Conrad	Giles	Telluride	Colorado
10413	Donald	Davids	Gila Bend	Arizona
10330	Shawn	Dalton	Cannon Beach	Oregon
10408	Elroy	Cleaver	Globe	Arizona
10298	Leroy	Brown	Pinetop	Arizona

3.) - Selecione o item e o preço de todos os itens na tabela items_ordered cujo preço seja maior que 10,00. Exiba os resultados em ordem crescente com base no preço.

```
SELECT item, price
FROM items_ordered
WHERE price > 10
ORDER BY price;
```

item	price
Ear Muffs	12.5
Hoola Hoop	14.75
Lantern	16
Shovel	16.75
Rain Coat	18.3
Helmet	22
Pocket Knife	22.38
Ski Poles	25.5
Pogo stick	28
Flashlight	28
Lantern	29
Lawnchair	32
Skateboard	33
Inflatable Mattress	38
Canoe paddle	40
Snow Shoes	45
Raft	58
Tent	79.99
Tent	88
Sleeping Bag	88.7
Sleeping Bag	89.22
Life Vest	125
Unicycle	180.79
Unicycle	192.5
Canoe	280
Bicycle	380.5
Parachute	1250

4 Combining Conditions And Booleans Operators

1.) - Selecione customerid, order_date e item da tabela items_ordered para todos os itens, a menos que sejam 'Snow Shoes' ou se forem 'Ear Muffs'. Exiba as linhas, desde que não sejam nenhum desses dois itens.

```
SELECT customerid, item, order_date
FROM items_ordered
WHERE item <> "Snow Shoes" OR item <> "Ear Muffs";
```

customerid	item	${\bf order_date}$
10330	Pogo stick	30-Jun- 1999
10101	Raft	30-Jun-1999
10298	Skateboard	01-Jul-1999
10101	Life Vest	01-Jul-1999
10299	Parachute	06-Jul-1999
10339	Umbrella	27-Jul-1999
10449	Unicycle	13-Aug-1999
10439	Ski Poles	14-Aug-1999
10101	Rain Coat	18-Aug-1999
10449	Snow Shoes	$01 ext{-} ext{Sep-}1999$
10439	Tent	18-Sep-1999
10298	Lantern	19 -Sep -1999
10410	Sleeping Bag	28-Oct-1999
10438	Umbrella	01-Nov-1999
10438	Pillow	02-Nov-1999
10298	Helmet	$01 ext{-} ext{Dec-}1999$
10449	Bicycle	$15 ext{-} ext{Dec-}1999$
10449	Canoe	$22 ext{-} ext{Dec-}1999$
10101	Hoola Hoop	$30 ext{-} ext{Dec-}1999$
10330	Flashlight	01-Jan-2000
10101	Lantern	02-Jan-2000
10299	Inflatable Mattress	18-Jan-2000
10438	Tent	18-Jan- 2000
10413	Lawnchair	19-Jan-2000
10410	Unicycle	30-Jan- 2000
10315	Compass	$02 ext{-} ext{Feb-}2000$
10449	Flashlight	29 - Feb - 2000
10101	Sleeping Bag	08 -Mar-2000
10298	Pocket Knife	18-Mar- 2000
10449	Canoe paddle	19 mar-2000
10298	Ear Muffs	01-Apr-2000
10330	Shovel	19-Apr-2000

2.) - Selecione o item e o preço de todos os itens que começam com as letras 'S', 'P' ou 'F'

```
SELECT item, price
FROM items_ordered
WHERE item LIKE "S%" OR item LIKE "P%" OR item LIKE "F%";
```

price item ${\bf Pogo~stick}$ 28 Skateboard 33 Parachute 1250 Ski Poles 25.5 Snow Shoes 45Sleeping Bag 89.22 Pillow 8.5 Flashlight 28 Flashlight 4.5 Sleeping Bag 88.7 Pocket Knife 22.38Shovel 16.75

5 In And Between

1.) - Selecione a data, o item e o preço da tabela items_ordered para todas as linhas que possuem um valor de preço variando de 10,00 a 80,00.

```
SELECT order_date, item, price FROM items_ordered
WHERE price BETWEEN 10 AND 80;
```

$\mathbf{order_date}$	item	price
30-Jun-1999	Pogo stick	28
30-Jun-1999	Raft	58
01-Jul-1999	Skateboard	33
14-Aug-1999	Ski Poles	25.5
18-Aug-1999	Rain Coat	18.3
$01 ext{-}Sep ext{-}1999$	Snow Shoes	45
19-Sep-1999	Lantern	29
01-Dec-1999	Helmet	22
$30 ext{-} ext{Dec-}1999$	Hoola Hoop	14.75
01-Jan-2000	Flashlight	28
02-Jan-2000	Lantern	16
18-Jan-2000	Inflatable Mattress	38
18-Jan-2000	Tent	79.99
19-Jan-2000	Lawnchair	32
$18 ext{-Mar-}2000$	Pocket Knife	22.38
19-Mar-2000	Canoe paddle	40
01-Apr-2000	Ear Muffs	12.5
19-Apr-2000	Shovel	16.75

2.) - Selecione o nome, a cidade e o estado da tabela de clientes para todas as linhas em que o valor do estado é: Arizona, Washington, Oklahoma, Colorado ou Havaí.

```
SELECT firstname, city, state
FROM customers
WHERE state IN ("Arizona", "Washington", "Oklahoma", "Colorado", "Hawaii");
```

firstname	city	state
John	Lynden	Washington
Leroy	Pinetop	Arizona
Elroy	Snoqualmie	Washington
Kelly	Kailua	Hawaii
Anthony	Winslow	Arizona
Elroy	Globe	Arizona
Donald	Gila Bend	Arizona
Linda	Nogales	Arizona
Kevin	Durango	Colorado
Conrad	Telluride	Colorado
Isabela	Yuma	Arizona

6 Mathematical Functions

1.) - Selecione o item e o preço unitário de cada item na tabela items_ordered. Dica: divida o preço pela quantidade.

```
SELECT item, price / COUNT(*)
FROM items_ordered
GROUP BY item;
```

item	price / COUNT(*)
Bicycle	380.5
Canoe	280
Canoe paddle	40
Compass	8
Ear Muffs	12.5
Flashlight	14
Helmet	22
Hoola Hoop	14.75
Inflatable Mattress	38
Lantern	14
Lawnchair	32
Life Vest	125
Parachute	1250
Pillow	8.5
Pocket Knife	22.38
Pogo stick	28
Raft	58
Rain Coat	18.3
Shovel	16.75
Skateboard	33
Ski Poles	25.5
Sleeping Bag	44.61
Snow Shoes	45
Tent	44
Umbrella	2.25
Unicycle	90.395

7 Joins

1.) - Escreva uma consulta usando uma junção para determinar quais itens foram pedidos por cada um dos clientes na tabela de clientes. Selecione customerid, firstname, lastname, order_date, item e preço para tudo que cada cliente comprou na tabela items_ordered.

```
SELECT customers.customerid, firstname, lastname, order_date, item, price
FROM customers INNER JOIN items_ordered;
```

$\operatorname{customerid}$	firstname	lastname	$\mathbf{order_date}$	item	price
10101	John	Gray	30-Jun- 1999	Pogo stick	28
10101	John	Gray	30-Jun-1999	Raft	58
10101	John	Gray	01-Jul-1999	Skateboard	33
10101	John	Gray	01-Jul-1999	Life Vest	125
10101	John	Gray	06-Jul-1999	Parachute	1250
10101	John	Gray	27-Jul-1999	Umbrella	4.5
10101	John	Gray	13-Aug-1999	Unicycle	180.79
10101	John	Gray	14-Aug-1999	Ski Poles	25.5
10101	John	Gray	18-Aug-1999	Rain Coat	18.3
10101	John	Gray	$01 ext{-} ext{Sep-}1999$	Snow Shoes	45
10101	John	Gray	18-Sep-1999	Tent	88
10101	John	Gray	19 -Sep -1999	Lantern	29
10101	John	Gray	28-Oct-1999	Sleeping Bag	89.22
10101	John	Gray	01-Nov-1999	Umbrella	6.75
10101	John	Gray	02-Nov-1999	Pillow	8.5
10101	John	Gray	$01\text{-}{\rm Dec}\text{-}1999$	Helmet	22
10101	John	Gray	15-Dec-1999	Bicycle	380.5
10101	John	Gray	22-Dec-1999	Canoe	280
10101	John	Gray	$30\text{-}{\rm Dec}\text{-}1999$	Hoola Hoop	14.75
10101	John	Gray	01-Jan- 2000	Flashlight	28
10101	John	Gray	02-Jan- 2000	Lantern	16
10101	John	Gray	18-Jan- 2000	Inflatable Mattress	38
10101	John	Gray	18-Jan- 2000	Tent	79.99
10101	John	Gray	19-Jan-2000	Lawnchair	32
10101	John	Gray	30-Jan- 2000	Unicycle	192.5
10101	John	Gray	$02 ext{-} ext{Feb-}2000$	Compass	8
10101	John	Gray	$29 ext{-} ext{Feb-}2000$	Flashlight	4.5
10101	John	Gray	08 -Mar-2000	Sleeping Bag	88.7
10101	John	Gray	$18 ext{-Mar-}2000$	Pocket Knife	22.38
10101	John	Gray	19 mar-2000	Canoe paddle	40
10101	John	Gray	01-Apr-2000	Ear Muffs	12.5

A query acima foi grande demais para ser mostrada.