

Grundzüge der Informatik 1

Vorlesung 5

Überblick

Überblick

- Wiederholung
- Korrektheitsbeweise (Rekursionen)
- Teile & Herrsche Verfahren

Wiederholung

Korrektheitsbeweis

Formale Argumentation, dass ein Algorithmus korrekt arbeitet

Problembeschreibung

Definiert für eine Menge von zulässigen Eingaben die zugehörigen gewünschten Ausgaben

Korrektheit

- Wir bezeichnen einen Algorithmus für eine vorgegebene Problembeschreibung als korrekt, wenn er für jede zulässige Eingabe die in der Problembeschreibung spezifizierte Ausgabe berechnet
- Streng genommen kann man also nur von Korrektheit sprechen, wenn vorher festgelegt wurde, was der Algorithmus eigentlich tun soll

Universit

Wiederholung

Beweisprinzip der mathematischen Induktion

- Sei A(n) eine Aussage über eine natürliche Zahl n∈N={1, 2, 3,...}
- Wir wollen zeigen, dass die Aussage für alle natürlichen Zahlen gilt

Mathematische Induktion besteht aus 2 Hauptkomponenten

- Induktionsanfang: Aussage A(1) stimmt
- Induktionsschritt: Wenn A(n) gilt, dann gilt auch A(n+1)

Beispiel

- A(1)
- A(2)
- A(3)

Wiederholung

Schleifeninvariante

- A(n) ist eine Aussage über den Zustand des Algorithmus vor dem n-ten Durchlauf einer Schleife
- Eine Schleifeninvariante ist korrekt, wenn Sie zu Beginn jedes Schleifendurchlaufs erfüllt ist.
- A(1) wird auch als Initialisierung bezeichnet.

Korrektheitsbeweis für Invarianten

- Induktionsanfang: Die Aussage A(1) gilt
- Induktionsschluss: Gilt A(n) und ist die Eintrittsbedingung der Schleife erfüllt so gilt auch A(n+1)

- Schleifeninvarianten

MaxSuche(A, n) * Array A der Länge n wird übergeben

- $1. \quad \text{max} = 1$
- 2. **for** i=2 **to** n **do**
- 3. if A[i] > A[max] then max = i
- 4. return max

Schleifeninvariante

A(i): A[max] ist ein größtes Element aus dem Teilarray A[1..i-1]

Lemma 4.1

A(i) ist eine korrekte Schleifeninvariante.

Satz 5.1

 Algorithmus MaxSuche(A,n) berechnet den Index eines größten Elements aus einem Feld A mit n Zahlen.

Beweis

- Der Schleifenaustritt aus der for-Schleife erfolgt für i=n+1
- Nach Lemma 4.1 ist die Schleifeninvariante erfüllt und es gilt somit, dass A[max] ein größtes Element aus dem Array A[1..i-1] = A[1..n] ist
- Der return Befehl in Zeile 4 gibt max zurück. Dies ist damit der Index eines größten Elements.

Korrektheitsbeweise - Schleifeninvarianten

MaxSuche(A, n) * Array A der Länge n wird übergeben

- $1. \quad \text{max} = 1$
- 2. for i=2 to n do
- 3. if A[i] > A[max] then max = i
- 4. **return** max

- * Invariante: A[max] ist ein größtes
- * Element aus dem Teilarray A[1..i-1]

Kommentare in Programmen

 Schleifeninvarianten eignen sich sehr gut, um Algorithmen und Programme zu kommentieren

Korrektheitsbeweis für InsertionSort

- Beobachtung: Zwei Schleifen
- Innere Schleife ist while-Schleife
- Vereinfachung: Wir fassen den Rumpf der for-Schleife zusammen

InsertionSort(A, n)

- 1. **for** i=2 **to** n **do**
- 2. Füge A[i] in das sortierte Teilarray A[1..i-1] ein

Korrektheitsbeweis für InsertionSort

- Beobachtung: Zwei Schleifen
- Innere Schleife ist while-Schleife
- Vereinfachung: Wir fassen den Rumpf der for-Schleife zusammen

InsertionSort(A, n)

- 1. **for** i=2 **to** n **do**
- 2. Füge A[i] in das sortierte Teilarray A[1..i-1] ein

Korrektheitsbeweis für InsertionSort

- Beobachtung: Zwei Schleifen
- Innere Schleife ist while-Schleife
- Vereinfachung: Wir fassen den Rumpf der for-Schleife zusammen

Lemma 5.1

- Die for-Schleife von Algorithmus InsertionSort erfüllt folgende Invariante:
- Das Teilarray A[1..i-1] ist aufsteigend sortiert.

Beweis (Teil 1):

Induktionsanfang (i=2): Das Teilarray A[1..i-1] = A[1..1] enthält nur eine Zahl und ist damit sortiert.

InsertionSort(A, n)

- 1. **for** i=2 **to** n **do**
- 2. Füge A[i] in das sortierte Teilarray A[1..i-1] ein

Korrektheitsbeweis für InsertionSort

- Beobachtung: Zwei Schleifen
- Innere Schleife ist while-Schleife
- Vereinfachung: Wir fassen den Rumpf der for-Schleife zusammen

Beweis (Teil 2):

- Induktionsannahme: Die Invariante gilt für i≤n
- Induktionsschluss: Nach Induktionsannahme ist das Teilarray A[1..i-1] sortiert.
- Zeile 2 des Algorithmus fügt A[i] an die richtige Stelle im sortierten Teilarray ein.
 Damit ist nach dem Einfügen A[1..i] sortiert und die Invariante gilt für i+1.

InsertionSort(A, n)

2.
$$x = A[i]$$

3.
$$|j = i - 1|$$

4. **while** j>0 and A[j]>x **do**

5.
$$A[j+1] = A[j]$$

7.
$$A[j+1]=x$$

* Feld A der Länge n wird übergeben

* Invariante: A[1..i-1] ist aufsteigend sortiert

* Schleifenrumpf: A[i] wird in Teilarray A[1..i-1]

* eingefügt

- InsertionSort

Satz 5.2 (Korrektheit von InsertionSort)

Algorithmus InsertionSort(A,n) sortiert ein Feld A der Länge n.

Beweis

- Die for-Schleife endet, wenn i den Wert n+1 hat
- Nach Lemma 5.1 gilt die Schleifeninvariante, dass A[1..i-1] = A[1..n] aufsteigend sortiert ist
- Daher ist am Ende des Algorithmus das Feld aufsteigend sortiert

- Rekursionen

Sum(A,n)

- 1. if n=1 then return A[1]
- 2. **else**
- 3. W = Sum(A,n-1)
- 4. return W+A[n]

Problem

Die Anzahl rekursiver Aufrufe hängt von der Eingabe ab

- Rekursionen

Sum(A,n)

- 1. if n=1 then return A[1]
- 2. else
- 3. W= Sum(A,n-1)
- 4. return W+A[n]

Lösung

- Rekursion ist in gewisser Hinsicht das Gegenstück zu Iteration/Induktion
- Rekursionsabbruch entspricht Induktionsanfang
- Rekursionsaufruf entspricht Induktionsschritt
- Korrektheit lässt sich daher per Induktion zeigen

- Rekursionen

Sum(A,n)

- 1. if n=1 then return A[1]
- 2. else
- 3. W = Sum(A, n-1)
- 4. return W+A[n]

Satz 5.3

 Algorithmus Sum(A,n) berechnet die Summe der ersten n Einträge von Feld A.

Universitä

Beweis (Teil 1)

- Induktionsanfang (n=1): Der Algorithmus gibt in Zeile 1 korrekt A[1] zurück
- Induktionsschluss: Wir betrachten den Aufruf von Sum(A,n). Da n>1 ist, wird der else-Fall der ersten if-Anweisung aufgerufen.

- Rekursionen

Sum(A,n)

- 1. if n=1 then return A[1]
- 2. else
- 3. W=Sum(A,n-1)
- 4. return W+A[n]

Satz 5.3

 Algorithmus Sum(A,n) berechnet die Summe der ersten n Einträge von Feld A.

Beweis (Teil 2)

- In Zeile 3 wird W auf Sum(A,n-1) gesetzt
- Nach I.V. ist dies die Summe der ersten n-1 Einträge von A
- Nun wird in Zeile 4 A[n]+W, also die Summe der ersten n Einträge von A zurückgegeben
- Es folgt, dass Sum(A,n) die Summe der ersten n Zahlen berechnet

Zusammenfassung

- Ohne Schleifen: Nachvollziehen der Abfolge der Befehle
- Schleifen: Korrektheit mit Hilfe von Invarianten und Induktion
- Rekursion: Korrektheit mit Hilfe von Induktion

Motivation

- Vertieftes Verständnis des Algorithmus
- "Sprache", um über die Funktionsweise von Algorithmen zu reden
- Invarianten helfen bei Kommentaren

Sortieren

- Eines der wichtigsten Probleme in der Informatik
- Sortieren erlaubt schnelles Suchen
- Beispiel: Telefonbuch

Bisher

- Sortieralgorithmus OurSort mit Hilfe von Rekursion
- Wir haben das Sortieren von n Zahlen auf n-1 Zahlen zurückgeführt
- Umwandlung in einen iterativen Algorithmus -> InsertionSort

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen
- Beispiel: Sortieren durch Aufteilen in zwei Teile

15 7 6 13 25 4 9 12

Schritt 1: Aufteilen der Eingabe

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen
- Beispiel: Sortieren durch Aufteilen in zwei Teile

Schritt 1: Aufteilen der Eingabe

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen
- Beispiel: Sortieren durch Aufteilen in zwei Teile

Schritt 2: Rekursiv Sortieren

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Beispiel: Sortieren durch Aufteilen in zwei Teile

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Beispiel: Sortieren durch Aufteilen in zwei Teile

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Beispiel: Sortieren durch Aufteilen in zwei Teile

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Beispiel: Sortieren durch Aufteilen in zwei Teile

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Beispiel: Sortieren durch Aufteilen in zwei Teile

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Beispiel: Sortieren durch Aufteilen in zwei Teile

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Beispiel: Sortieren durch Aufteilen in zwei Teile

Teile & Herrsche Verfahren

- Idee: Teile die Eingabe in mehrere gleich große Teile auf
- Löse das Problem rekursiv auf den einzelnen Teilen.
- Füge die Teile zu einer Lösung des Gesamtproblems zusammen

Wichtig

- Wir benötigen Rekursionsabbruch
- Beim Sortieren: Folgen der Länge 1

MergeSort(A,p,r)

- 1. if p<r then
- 2. $q=\lfloor (p+r)/2 \rfloor$
- 3. MergeSort(A,p,q)
- 4. MergeSort(A,q+1,r)
- 5. Merge(A,p,q,r)

- * Sortiert A[p..r]
- * Rekursionsabbruch, wenn p=r
- *** Berechne die Mitte**
- * Sortiere linke Teilhälfte
- * Sortiere rechte Teilhälfte
- * Füge die Teile zusammen

Aufruf des Algorithmus

MergeSort(A,1,r), wobei r die Länge des Feldes A ist

- Erweiterte Induktion

Induktion

- Sei A(n) eine Aussage über eine natürliche Zahl n∈N={1, 2, 3,...}
- Wir wollen zeigen, dass die Aussage für alle natürlichen Zahlen gilt

Erweiterte Induktion

- Induktionsanfang: Aussage A(1) stimmt
- Induktionsschritt: Wenn A(1), A(2),..., A(n-1) gelten, dann gilt auch A(n)

Korrektheitsbeweis - MergeSort

Satz 5.4

Algorithmus MergeSort(A,p,r) sortiert das Feld A[p..r] korrekt.

Beweis (1. Teil)

- Induktion über die Größe n des zu sortierenden Bereichs (d.h. n=r-p+1)
- Induktionsanfang (n=1):
- In diesem Fall enthält der zu sortierende Bereich A[p..r] ein Element (p=r)
- Dann ist der Bereich bereits sortiert
- Der Algorithmus tritt in Zeile 1 nicht in den then-Fall ein und endet ohne das Feld zu verändern
- Damit ist der Induktionsanfang korrekt

Korrektheitsbeweis - MergeSort

Satz 5.4

Algorithmus MergeSort(A,p,r) sortiert das Feld A[p..r] korrekt.

Beweis (2. Teil)

- Induktionsannahme: MergeSort sortiert Bereiche der Größe m mit 1≤m<n korrekt
- Induktionsschluss:
- Wir betrachten MergeSort(A,p,r) mit n=r-p+1
- Da n>1 folgt p<r und der Algorithmus führt den then-Fall aus
- Hier wird q auf [(p+r)/2] gesetzt
- Es gilt q≥p und q<r

Korrektheitsbeweis - MergeSort

Satz 5.4

Algorithmus MergeSort(A,p,r) sortiert das Feld A[p..r] korrekt.

Beweis (2. Teil)

- Es gilt q≥p und q<r</p>
- Dann wird MergeSort rekursiv in den Grenzen p,q bzw. q+1,r aufgerufen
- Nach Induktionsannahme sortiert MergeSort in diesem Fall korrekt
- Nun folgt die Korrektheit aus der Tatsache, dass Merge die beiden Bereiche korrekt zu einem sortierten Feld zusammenfügt

Laufzeitanalyse - MergeSort

is it Zwin poten

MergeSort(A,p,r)

- 1. if p<r then
- 2. $q=\lfloor (p+r)/2 \rfloor$
- MergeSort(A,p,q)
- 4. MergeSort(A,q+1,r)
- Merge(A,p,q,r)

* Sortiert A[p..r]

- MergeSort(A,1,r), wobei r die Länge des Feldes A ist
- Sei <u>T(n)</u> die Worst-Case Laufzeit von MergeSort, um ein Teilarray der Größe n=r-p+1 zu sortieren

Laufzeitanalyse

- MergeSort

Laufzeit als Rekursion

4+ (-m +2T (m/2)

Wobei c eine genügend große Konstante ist.

Zusammenfassung

Zusammenfassung

- Korrektheitsbeweise
 - Kommentare
 - Rekursionen
 - Beweis per Induktion
- Teile & Herrsche Verfahren
 - Sortieralgorithmus MergeSort
 - Eine erste Laufzeitrekursion

Referenzen

T. Cormen, C. Leisserson, R. Rivest, C. Stein. Introduction to Algorithms.
 The MIT press. Second edition, 2001.

