Review 1

Vectors

 Vector quantities need both magnitude (size or numerical value) and direction to completely describe them

 Scalar quantities are completely described by magnitude only

Coordinate Systems

- Used to describe the position of a point in space
- Coordinate system consists of
 - a fixed reference point called the origin
 - specific axes with scales and labels
 - instructions on how to label a point relative to the origin and the axes

Cartesian Coordinate System

- Also called rectangular coordinate system
- x- and y- axes intersect at the origin
- Points are labeled (x,y)

- Origin and reference line are noted
- Point is distance r
 from the origin in the
 direction of angle θ,
 ccw from reference
 line
- Points are labeled (r, θ)

(a)

Polar to Cartesian Coordinates

- Based on forming a right triangle from r and θ
- $X = r \cos \theta$
- $y = r \sin \theta$

$$\sin\theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}$$

(b)

Cartesian to Polar Coordinates

• r is the hypotenuse and θ an angle

$$\tan \theta = \frac{y}{x}$$
$$r = \sqrt{x^2 + y^2}$$

 θ must be ccw from positive x axis for these equations to be valid

Example

The Cartesian coordinates of a point in the xy plane are (x,y) = (-3.50, -2.50) m, as shown in the figure. Find the polar coordinates of this point.

Solution: We have,

$$r = \sqrt{x^2 + y^2} = \sqrt{(-3.50 \text{ m})^2 + (-2.50 \text{ m})^2} = 4.30 \text{ m}$$

and from Equation 3.3,

$$\tan \theta = \frac{y}{x} = \frac{-2.50 \text{ m}}{-3.50 \text{ m}} = 0.714$$

$$\theta = 216^{\circ}$$

- A scalar quantity is completely specified by a single value with an appropriate unit and has no direction.
- A vector quantity is completely described by a number and appropriate units plus a direction.

- When handwritten, use an arrow: A
- When printed, will be in bold print: A
- When dealing with just the magnitude of a vector in print, an italic letter will be used: A or |A|
- The magnitude of the vector has physical units
- The magnitude of a vector is always a positive number

- A particle travels from A to B along the path shown by the dotted red line
 - This is the *distance* traveled and is a scalar
- The *displacement* is the solid line from A to B
 - The displacement is independent of the path taken between the two points
 - Displacement is a vector

Equality of Two Vectors

- Two vectors are equal if they have the same magnitude and the same direction
- A = B if A = B and they point along parallel lines
- All of the vectors shown are equal

Adding Vectors

- When adding vectors, their directions must be taken into account
- Units must be the same
- Graphical Methods
 - Use scale drawings
- Algebraic Methods
 - More convenient

Adding Vectors Graphically

- Choose a scale
- Draw the first vector with the appropriate length and in the direction specified, with respect to a coordinate system
- Draw the next vector with the appropriate length and in the direction specified, with respect to a coordinate system whose origin is the end of vector A and parallel to the coordinate system used for A

Adding Vectors Graphically, cont.

- Continue drawing the vectors "tip-to-tail"
- The resultant is drawn from the origin of A to the end of the last vector
- Measure the length of R and its angle
 - Use the scale factor to convert length to actual magnitude

Adding Vectors Graphically, final

- When you have many vectors, just keep repeating the process until all are included
- The resultant is still drawn from the origin of the first vector to the end of the last vector

Adding Vectors, Rules

- When two vectors are added, the sum is independent of the order of the addition.
 - This is the commutative law of addition
 - A + B = B + A

@ 2004 Thomson/Brooks Cole

- When adding three or more vectors, their sum is independent of the way in which the individual vectors are grouped
 - This is called the Associative Property of Addition
 - (A + B) + C = A + (B + C)

Adding Vectors, Rules final

- When adding vectors, all of the vectors must have the same units
- All of the vectors must be of the same type of quantity
 - For example, you cannot add a displacement to a velocity

4

Negative of a Vector

- The negative of a vector is defined as the vector that, when added to the original vector, gives a resultant of zero
 - Represented as -A
 - A + (-A) = 0
- The negative of the vector will have the same magnitude, but point in the opposite direction

- Special case of vector addition
- If A − B, then use
 A+(-B)
- Continue with standard vector addition procedure

- The result of the multiplication or division is a vector
- The magnitude of the vector is multiplied or divided by the scalar
- If the scalar is positive, the direction of the result is the same as of the original vector
- If the scalar is negative, the direction of the result is opposite that of the original vector

Components of a Vector

- A component is a part
- It is useful to use rectangular components
 - These are the projections of the vector along the xand y-axes

- A_x and A_y are the *component vectors* of A
 - They are vectors and follow all the rules for vectors
- A_x and A_y are scalars, and will be referred to as the *components* of A

4

Components of a Vector, 2

The x-component of a vector is the projection along the x-axis

$$A_{x} = A\cos\theta$$

 The y-component of a vector is the projection along the y-axis

$$A_y = A \sin \theta$$

Then,

Components of a Vector, 3

- The y-component is moved to the end of the x-component
- This is due to the fact that any vector can be moved parallel to itself without being affected
 - This completes the triangle

Components of a Vector, 4

- The previous equations are valid only if θ is measured with respect to the x-axis
- The components are the legs of the right triangle whose hypotenuse is A

$$A = \sqrt{A_x^2 + A_y^2}$$
 and $\theta = \tan^{-1} \frac{A_y}{A_x}$

May still have to find θ with respect to the positive x-axis

Components of a Vector, final

- The components can be positive or negative and will have the same units as the original vector
- The signs of the components will depend on the angle

y	
A_x negative	A_x positive
A_y positive	A_y positive
A_x negative	A_{x} positive
A_{y} negative	A_{y} negative

© 2004 Thomson/Brooks Cole

- A unit vector is a vector with a magnitude of exactly 1.
- Unit vectors are used to specify a direction and have no other physical significance

Unit Vectors, cont.

- The symbols
 î, ĵ, and k
 represent unit vectors
- They form a set of mutually perpendicular vectors

Unit Vectors in Vector Notation

- $\mathbf{A}_{\mathbf{x}}$ is the same as $A_{\mathbf{x}}$ i and $\mathbf{A}_{\mathbf{y}}$ is the same as $A_{\mathbf{y}}$ i etc.
- The complete vector can be expressed as

$$\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$$

Adding Vectors Using Unit Vectors

- Using $\mathbf{R} = \mathbf{A} + \mathbf{B}$
- Then

$$\mathbf{R} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}) + (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}})$$

$$\mathbf{R} = (A_x + B_x) \hat{\mathbf{i}} + (A_y + B_y) \hat{\mathbf{j}}$$

$$\mathbf{R} = R_x + R_y$$

• and so $R_x = A_x + B_x$ and $R_y = A_y + B_y$

$$R = \sqrt{R_x^2 + R_y^2} \quad \theta = \tan^{-1} \frac{R_y}{R_x}$$

Trig Function Warning

- The component equations $(A_x = A \cos \theta)$ and $A_y = A \sin \theta$ apply only when the angle is measured with respect to the *x*-axis (preferably from the positive *x*-axis).
- The resultant angle (tan $\theta = A_y / A_x$) gives the angle with respect to the *x*-axis.
 - You can always think about the actual triangle being formed and what angle you know and apply the appropriate trig functions

Adding Vectors with Unit Vectors

Adding Vectors Using Unit Vectors – Three Directions

• Using $\mathbf{R} = \mathbf{A} + \mathbf{B}$

$$\mathbf{R} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}) + (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}})$$

$$\mathbf{R} = (A_x + B_x) \hat{\mathbf{i}} + (A_y + B_y) \hat{\mathbf{j}} + (A_z + B_z) \hat{\mathbf{k}}$$

$$\mathbf{R} = R_x + R_y + R_z$$

• $R_X = A_X + B_X$, $R_y = A_y + B_y$ and $R_z = A_z + B_z$

$$R = \sqrt{R_x^2 + R_y^2 + R_z^2}$$
 $\theta_x = \tan^{-1} \frac{R_x}{R}$ etc.