0 Perturbation Methods (16 Lectures)

0.1 Introduction

- 24 lectures prised into 16.
- Any corrections and suggestions should be emailed to me at S.J.Cowley@maths.cam.ac.uk.
- Closed book examination. Likely rubric:

Attempt no more than TWO questions.

There are THREE questions in total.

The questions carry equal weight.

• Books

- Hinch, Perturbation methods.
- Van Dyke, Perturbation methods in fluid mechanics.
- Kevorkian & Cole, Perturbation methods in applied mathematics.
- Bender & Orszag, Advanced mathematical methods for scientists and engineers.

Philosophy

- Many physical processes are described by equations that cannot be solved analytically.
- One approach is to solve the equations numerically; however, often there exists a 'small' parameter, ε , e.g.
 - * in low Mach number flows $\varepsilon = M = \frac{u}{c}$, where u is the fluid velocity and c is the speed of sound;
 - * in fast flows $\varepsilon = \frac{1}{Re}$, where Re is the Reynolds number.

i

- We can use the smallness of ε to simplify the equations, and then find analytic (or simpler numerical) solutions.
- Primarily interested in differential equations, but a number of the ideas can be illustrated for algebraic equations and/or integrals. We will use algebraic equations to motivate some of the ideas.
- The only pre-requisites are (a) a course in 'Sums' (i.e. a competency to perform moderately messy calculations), and (b) an ability to solve simple differential equations and evaluate simple integrals (e.g. using integration by parts).

1 Algebraic Equations

1.1 Regular Expansions and Iteration

Consider

$$x^2 + \varepsilon x - 1 = 0. \tag{1.1}$$

Exact solution:

$$x = -\frac{1}{2}\varepsilon \pm \left(1 + \frac{1}{4}\varepsilon^2\right)^{\frac{1}{2}} .$$

If $|\varepsilon| < 2$, then can expand in a convergent series:

$$x = \begin{cases} 1 - \frac{1}{2}\varepsilon + \frac{1}{8}\varepsilon^2 - \frac{1}{128}\varepsilon^4 + \cdots \\ -1 - \frac{1}{2}\varepsilon - \frac{1}{8}\varepsilon^2 + \frac{1}{128}\varepsilon^4 + \cdots \end{cases}$$

Since the series is convergent for $|\varepsilon| < 2$, for small ε we can increase the accuracy by taking more terms. We have

solved the equation and then approximated the solution

However, we cannot always solve the equation exactly, so can we

approximate and then solve the equation?

1.1.1 Iterative method (liked by Pure Mathematicians)

Based on

$$x_{n+1} = g(x_n) \, .$$

Suppose $x_n = x^* + \delta_n$ where $x^* = g(x^*)$. Then by Taylor Series

$$\delta_{n+1} = g'(x^*) \, \delta_n + \mathcal{O}\left(\delta_n^2\right) .$$

If we have a good guess, so that $|\delta_n|$ is small, this is convergent if

$$|g'(x^*)| < 1$$
.

Rearrange (1.1):

$$x^2 = 1 - \varepsilon x .$$

For the root near x = 1 try

$$x_{n+1} = (1 - \varepsilon x_n)^{\frac{1}{2}}$$

$$x_0 = 1$$

$$x_1 = (1 - \varepsilon)^{\frac{1}{2}} = 1 - \frac{1}{2}\varepsilon - \frac{1}{8}\varepsilon^2 + \cdots$$

$$x_2 = \left(1 - \varepsilon (1 - \varepsilon)^{\frac{1}{2}}\right)^{\frac{1}{2}} = 1 - \frac{1}{2}\varepsilon + \frac{1}{8}\varepsilon^2 + \frac{1}{8}\varepsilon^3 + \cdots$$

$$x_3 = \left(1 - \varepsilon \left(1 - \varepsilon (1 - \varepsilon)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

$$= 1 - \frac{1}{2}\varepsilon + \frac{1}{8}\varepsilon^2 + 0 + \mathcal{O}\left(\varepsilon^4\right) + \cdots$$

Hard work for the higher terms — also, how many terms are correct?

1.1.2 Expansion method

For $\varepsilon = 0$, the roots are $x = \pm 1$. For the root near x = 1 try

$$x(\varepsilon) = 1 + \varepsilon x_1 + \varepsilon^2 x_2 + \varepsilon^3 x_3 + \cdots$$

Substitute into equation (1.1):

$$1 + 2\varepsilon x_1 + 2\varepsilon^2 x_2 + \varepsilon^2 x_1^2 + 2\varepsilon^3 x_3 + 2\varepsilon^3 x_1 x_2 + \cdots + \varepsilon + \varepsilon^2 x_1 + \varepsilon^3 x_2 + \cdots -1 = 0$$

Equate powers of ε :

$$\begin{array}{llll} \varepsilon^0: & 1-1 & = 0 \\ \varepsilon^1: & 2x_1+1 & = 0 & , & x_1=-\frac{1}{2} \\ \varepsilon^2: & 2x_2+x_1^2+x_1 & = 0 & , & x_2=\frac{1}{8} \\ \varepsilon^3: & 2x_3+2x_1x_2+x_2 & = 0 & , & x_3=0 \end{array}$$

Easier than the iterative method for higher terms, but you need to guess the expansion correctly.

1.2 Singular Perturbations and Rescaling

Consider

$$\varepsilon x^{2} + x - 1 = 0.$$

$$\varepsilon = 0 : \text{ one solution}$$

$$\varepsilon \neq 0 : \text{ two solutions}$$

$$(1.2)$$

The limit process $\varepsilon \to 0$ is said to be singular.

Exact solution: $\frac{-1 \pm (1 + 4\varepsilon)^{\frac{1}{2}}}{2\varepsilon}.$

Expansion for $|\varepsilon| < \frac{1}{4}$:

$$x = \begin{cases} 1 - \varepsilon + 2\varepsilon^2 - 5\varepsilon^3 + \cdots \\ -\frac{1}{\varepsilon} - 1 + \varepsilon - 2\varepsilon^2 + \cdots \end{cases}$$
 (1.3)

The singular (i.e. extra) root $\to \mp \infty$ as $\varepsilon \to 0\pm$.

1.2.1 Iterative method

(a) For the non-singular root try

$$x_{n+1} = 1 - \varepsilon x_n^2 \ .$$

(b) For the singular root, we need to keep the ' εx^2 ' term as a major player. The leading order approximation is

$$\varepsilon x^2 + x \approx 0 \; ;$$

so try rearranging (1.2) to

$$x_{n+1} = -\frac{1}{\varepsilon} + \frac{1}{\varepsilon x_n} \ .$$

Exercise. Confirm (1.3) by iteration.

Note that in (b)

$$x_{n+1} = g(x_n)$$
, where $g(x) = -\frac{1}{\varepsilon} + \frac{1}{\varepsilon x}$.

Hence

$$g'(x) = -\frac{1}{\varepsilon x^2}$$
, $\left| g'\left(-\frac{1}{\varepsilon} \right) \right| = \varepsilon < 1$ if $0 < \varepsilon < 1$.

1.2.2 Expansion method

For one root try

$$x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots, \tag{1.4a}$$

and for the other try

$$x = \frac{x_{-1}}{\varepsilon} + x_0 + \varepsilon x_1 + \cdots {1.4b}$$

Substitute (1.4b) into (1.2):

$$\frac{x_{-1}^2}{\varepsilon} + 2x_{-1}x_0 + \varepsilon \left(x_0^2 + 2x_{-1}x_1\right) + \cdots + \frac{x_{-1}}{\varepsilon} + x_0 + \varepsilon x_1 + \cdots - 1 = 0$$

Equate powers

$$\varepsilon^{-1}: \qquad x_{-1}^2 + x_{-1} = 0 \qquad ; \qquad x_{-1} = 0 \qquad , \qquad -1$$

$$\varepsilon^0: \qquad (2x_{-1} + 1)x_0 - 1 = 0 \qquad ; \qquad x_0 = 1 \qquad , \qquad -1$$

$$\varepsilon: \qquad x_0^2 + 2x_{-1}x_1 + x_1 = 0 \qquad ; \qquad x_1 = -1 \qquad , \qquad 1$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (1.3a) \qquad (1.3b)$$

1.2.3 Rescaling before expansion

How do you decide on the expansion if you do not know the solution?

Seek rescaling[s] to convert the singular equation into a regular equation. Try

$$x = \delta(\varepsilon)\,X$$
 need to choose suitable δ , strictly order 'unity'; say $X = \operatorname{ord}(1).$

(1.2) becomes

$$\varepsilon \delta^2 X^2 + \delta X - 1 = 0 .$$

Consider the possibilities for different choices of δ ($|\varepsilon| \ll 1$):

The distinguished choices are therefore:

$$\begin{array}{lll} \delta=1: & \varepsilon X^2+X-1=0 & ; & X=1+\varepsilon X_1+\varepsilon^2 X_2+\dots \\ \delta=\frac{1}{\varepsilon}: & X^2+X-\varepsilon=0 & ; & X=-1+\varepsilon X_1+\varepsilon^2 X_2+\dots \end{array}$$

01/01

1.3 Non Integral Powers

Inter alia, double roots can cause problems. Consider

$$(1 - \varepsilon) x^2 - 2x + 1 = 0. (1.5)$$

When $\varepsilon = 0$, there is a double root at x = 1. Try an expansion:

$$x = 1 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots$$

then

$$1 + 2\varepsilon x_1 + \varepsilon^2 (2x_2 + x_1^2) + \cdots$$

$$- \varepsilon - \varepsilon^2 (2x_1)$$

$$- 2 - 2\varepsilon x_1 - 2\varepsilon^2 x_2 + \cdots$$

$$+ 1 = 0$$

and equating powers of ε :

$$\varepsilon^0: 1-2+1 = 0$$

 $\varepsilon^1: 2x_1-1-2x_1 = 0$ **

We need ' εx_1 ' to be larger.

From the exact solution:

$$x = \frac{1 \pm \varepsilon^{\frac{1}{2}}}{1 - \varepsilon} \,,$$

we see that we should have expanded in powers of $\varepsilon^{\frac{1}{2}}$:

This time on equating powers of ε we see that

$$\begin{array}{lll} \varepsilon^0: & 1-2+1 & = 0 \\ \varepsilon^{\frac{1}{2}}: & 2x_{\frac{1}{2}}-2x_{\frac{1}{2}} & = 0 \\ \varepsilon^1: & 2x_1+x_{\frac{1}{2}}^2-1-2x_1 & = 0 \end{array} \qquad \begin{array}{ll} \mbox{no information} \\ x_{\frac{1}{2}}=\pm 1 \end{array}$$

We must work to $\mathcal{O}(\varepsilon)$ to obtain the solution to $\mathcal{O}(\varepsilon^{\frac{1}{2}})$.

From the original equation

$$(x-1)^2 = \varepsilon x^2 ,$$

we see that a change in the ordinate by $\operatorname{ord}(\varepsilon)$ changes the position of the root by $\operatorname{ord}(\varepsilon^{\frac{1}{2}})$.

In general we must derive (guess) the expansion required, e.g. try

$$x(\varepsilon) = 1 + \delta_1(\varepsilon) x_1 + \delta_2(\varepsilon) x_2 + \cdots$$

 $1 \gg \delta_1 \gg \delta_2 \gg \cdots$
 $x_i = \operatorname{ord}(1).$

Substitute into (1.5):

The leading order terms are Hence take

$$\delta_1^2 x_1^2$$
 and $-\varepsilon$.
 $\delta_1 = \varepsilon^{\frac{1}{2}} \gamma$ allow x_1 to absorb any multiple roots.

Exercise. Show that the choices $\delta_1^2 \gg \varepsilon$, or $\delta_1^2 \ll \varepsilon$, lead to a *.

Cancelling off these two terms, the leading-order terms become

$$2\delta_1\delta_2x_1x_2$$
 and $-2\varepsilon\delta_1x_1$.

Repeating the argument $\Rightarrow \delta_2 = \varepsilon$ (and $x_2 = 1$).

Logarithms 1.4

Solve

$$xe^{-x} = \varepsilon . ag{1.6}$$

One root is close to $x = \varepsilon$, the other root is between

$$x = \ln \frac{1}{\varepsilon} \qquad (xe^{-x} = \varepsilon \ln \frac{1}{\varepsilon} > \varepsilon)$$

and

$$x = 2 \ln \frac{1}{\varepsilon} \qquad (xe^{-x} = 2\varepsilon^2 \ln \frac{1}{\varepsilon} < \varepsilon, \text{ for } \varepsilon \text{ small}).$$

Note: doubling x reduces the e^{-x} factor by an order of magnitude.

The expansion method is unclear, so try the iteration scheme. Consider a rearrangement that emphasises the e^{-x} factor:

$$e^x = \frac{x}{\varepsilon}$$

so try

$$x_{n+1} = \log \frac{1}{\varepsilon} + \log x_n \ .$$

Then

$$x_{0} = \log \frac{1}{\varepsilon}$$

$$x_{1} = \underbrace{\log \frac{1}{\varepsilon} + \log \log \frac{1}{\varepsilon}}_{L_{1}}$$

$$x_{2} = L_{1} + \log (L_{1} + L_{2})$$

$$= L_{1} + L_{2} + \underbrace{\frac{L_{2}}{L_{1}} - \frac{L_{2}^{2}}{2L_{1}^{2}} + \frac{L_{2}^{3}}{3L_{1}^{3}} + \cdots}_{2}$$

$$x_{3} = L_{1} + \log \left(L_{1} + L_{2} + \frac{L_{2}}{L_{1}} - \frac{L_{2}^{2}}{2L_{1}^{2}} + \frac{L_{2}^{3}}{3L_{1}^{3}} + \cdots\right)$$

$$= L_{1} + L_{2} + \underbrace{\frac{L_{2}}{L_{1}} + \frac{-\frac{1}{2}L_{2}^{2} + L_{2}}{L_{1}^{2}} + \frac{\frac{1}{3}L_{2}^{3} - \frac{3}{2}L_{2}^{2}}{L_{1}^{3}} + \cdots}_{1}$$

The iterative method can give more than one term per iteration.

Numerical disaster. Percentage errors for the truncated series:

Do not separate terms like $-L_2^2/2L_1^2 \& L_2/L_1^2$.

A very small ε is needed before this is tolerably accurate.

Check convergence.

$$x_{n+1} = g(x_n)$$

$$g(x) = \log \frac{1}{\varepsilon} + \log x$$

$$g'(x) = \frac{1}{x}$$

$$g'(x^*) \approx \frac{1}{\log \frac{1}{\varepsilon}}$$

$$\uparrow_{\text{need } \varepsilon \text{ very small for } |g'| \ll 1.$$

01/19