Chapter 1

Binary words avoiding powers

A finite set is referred to as an **alphabet**; its elements are **letters**. Let Σ be an alphabet.

An **overlap** is a word of the form BBb where B is a word and b is the first letter of B. For example, acdcacdca is an overlap, taking B = acdc, b = a. A word w is **overlap-free** if none of its factors are overlaps. Otherwise w contains an overlap.

If word w can be written w = ps, we call p a **prefix** of w, and s a **suffix** of w. We write $p \leq_p w$, $s \leq_s w$. We say that w is a **right-extension** of p, and a **left-extension** of s. If w = pus, we call u a **factor** of w, and w an **extension** of u. The **index** of factor u is |p|, the number of letters in p. Thus 123 is a prefix of 123456, while 56 is a suffix. Word 345 is a factor of 123456. On the other hand, 123456 is a right extension of 123, a left extension of 56 and an extension of 123, of 56, and of 345.

An ω -word over Σ is a sequence $w = \{a_n\}_{n=1}^{\infty}$ where $a_n \in A$ for $n \in \mathbb{N}$. The prefixes of w are the finite words $a_1 a_2 \cdots a_n$ for $n \in \mathbb{N}$. (When n = 0 we interpret $a_1 a_2 \cdots a_n$ to be ϵ , the empty word.) We say that finite word u is a factor of w if u is a factor of some finite prefix of w.

- 1. Fix a finite alphabet Σ . Let $L \subseteq \Sigma^*$. Suppose that L is infinite.
 - (a) Show that if L is closed under taking prefixes, then there is an ω -word w over Σ such that every prefix of w is in L.
 - (b) Give an example to show that if L is not closed under taking prefixes, then the claim may fail.

- 2. Show that if u is an overlap, then there exist words v, w, z such that u = wv = zw and |w| > |v|.
- 3. Show that if u is an overlap, then either
 - (a) There is a non-empty word x such that u = xxx or
 - (b) There are non-empty words x and y such that u = xyxyx.

Let $\mu : \{0,1\}^* \to \{0,1\}^*$ be the morphism generated by $\mu(0) = 01$, $\mu(1) = 10$.

- 4. Suppose that $v \in \{0,1\}^*$ contains an overlap; then $\mu(v)$ contains an overlap.
- 5. Let $w \in \{0,1\}^*$ be overlap-free. Show that there exist words $u, v, z \in \{0,1\}^*$ such that $w = u\mu(v)z$ where v is overlap-free and $u, z \in \{\epsilon, 0, 1, 00, 11\}$.
- 6. Let n be a non-negative integer, and write $\mu^n(0) = a_0 a_1 a_2 \cdots a_{2^n-1}$, where $a_i \in \{0, 1\}$, $i = 0, 1, \dots 2^n 1$. For each non-negative integer i, denote by b(i) the (mod 2) sum of the digits in the binary representation of i; for example, b(13) = 1 + 1 + 0 + 1 = 1. For $i = 0, 1, \dots 2^n 1$, show that $a_i = b_i$.
- 7. Define a sequence of words $\{w_n\}_{n=0}^{\infty}$ by $w_0 = 0$, $w_{n+1} = w_n \overline{w}_n$, n > 0. Show that for each n, $w_n = \mu^n(0)$.
- 8. Show that if $w \in \{0,1\}^*$ is overlap-free, then so is $\mu(w)$. Conclude that $\mu^{\omega}(0)$ is overlap-free.
- 9. Show that if BB is a non-empty factor of $\mu^{\omega}(0)$ then |B| has the form 2^n or $3(2^n)$ for some integer n.

Suppose that alphabet Σ is ordered by \leq . The **lexicographic order** \leq on Σ^* is given recursively by

- (a) $\epsilon \leq \epsilon$
- (b) For $a, b \in \Sigma$, $u, v \in \Sigma^*$, we have $au \leq bv$ if and only if
 - i. $a \leq b$ or
 - ii. a = b and $u \leq v$

- 10. Show that there is a lexicographically least binary ω -word over $\{0,1\}$.
- 11. Show that μ is order-preserving with respect to the lexicographic order on $\{0,1\}^*$; if $u \leq v$, then $\mu(u) \leq \mu(v)$.
- 12. Show that $001001\mu^{\omega}(1)$ is overlap-free.
- 13. Show that $\mu^{\omega}(1)$ is the lexicographically least overlap-free ω -word over $\{0,1\}$ that starts with 1.
- 14. Show that $001001\mu^{\omega}(1)$ is the lexicographically least overlap-free ω -word over $\{0,1\}$.
- 15. For each non-negative integer n let c_n be the number of distinct overlapfree words of length n in $\{0,1\}^*$. Show that there is a constant k such that $c_n \leq n^k$ for every non-negative integer n.
- 16. Let $h:\{0,1\}^* \to \{0,1\}^*$ be the morphism generated by h(0)=001, h(1)=011. Show that the word $h^{\omega}(0)$ has no factor xxx with x non-empty.
- 17. The 'Mephisto waltz' morphism $g: \{0,1\}^* \to \{0,1\}^*$ is generated by g(0) = 001, g(1) = 110. Show that the word $g^{\omega}(0)$ has no factor xxxx with x non-empty.
- 18. The Fibonacci word $f^{\omega}(0)$ is the fixed point of the morphism $f: \{0,1\}^* \to \{0,1\}^*$ generated by f(0) = 01, f(1) = 0. Show that the Fibonacci word has no factor xxy where y is a prefix of x with $|y| > \frac{1+\sqrt{5}}{2}|x|$.
- 19. Show that if uu is a non-empty factor of the Fibonacci word, then u is a conjugate of $f^n(0)$ for some positive integer n.
- 20. Show that there uncountably many overlap-free ω -words in $\{0,1\}^*$.

Define the **distance** between ω -words u and v to be

$$d(u,v) = \begin{cases} 0 & u = v \\ 1/k & \text{the longest common prefix of } u \text{ and } v \text{ has length } k \end{cases}$$

- 21. Show that if u is an overlap-free ω -word over $\{0,1\}$, there are overlap-free ω -words over $\{0,1\}$ other than u which are arbitrarily close to u.
 - A bi-infinite word over Σ is a function $w: BbbZ \to \Sigma$. Let $u = u_1u_2\cdots u_n \in \Sigma^*$. Word u is a factor of w if for some integer k, $u_i = w(k+i)$, $i = 1, 2, \cdots n$.
- 22. Show that there is a bi-infinite word w over $\{0,1\}$ such that no factor of w is an overlap.
- 23. For each non-negative integer i, denote by b(i) the sum of the digits in the binary representation of i. Show that $\sum_{i=0}^{\infty} b_i 2^{-i}$ is a transcendental number.
 - Word w is a circular overlap-free word if ww contains no overlaps of length |w| or less. Word v is a **conjugate** of w if there are words u and z such that w = uz and v = zu.
- 24. Show that the relation v is a conjugate of w is an equivalence relation.
- 25. Show that w is a circular overlap-free word if and only if every conjugate of w is overlap-free.
- 26. Show that for each non-negative integer n, word $\mu^n(0)$ is circular overlapfree.
- 27. Show that if $w \in \{0, 1\}^*$ circular overlap-free, then |w| has the form 2^n or $3(2^n)$ for some integer n.
 - An word w over $\{0,1\}$ is a **maximal overlap-free word** if w is overlap-free, but none of its proper extensions is overlap-free.
- 28. Show that every overlap-free word over $\{0,1\}$ has an extension which is a maximal overlap-free word.

The **paper-folding word** $a_1a_2a_3a_4\cdots$ is the ω -word over $\{0,1\}$ given by

$$a_i = \begin{cases} (1 + (-1)^{(i+1)/2})/2, & i \text{ odd} \\ a_{i/2}, & i \text{ even} \end{cases}$$

29. Show that the paper-folding word contains no nonempty factors of the form xxxx.

- 30. Show that the only factors of the form xxx in the paper-folding word are 000 and 111.
 - Let $u, v \in \{0, 1\}^*$. We say that u encounters v if there is a morphism $\phi : \{0, 1\}^* \to \{0, 1\}^* \ \phi(v)$ is a factor of u. If u doesn't encounter v, then u avoids v. If u avoids v and v avoids u we say that u and v are mutually incomparable.
- 31. Show that there is an infinite collection \mathcal{C} of overlap-free words over $\{0,1\}$ such that if $u,v\in\mathcal{C}$, then u and v are mutually incomparable.
- 32. Let $\alpha > 2$ be a rational number. Let w be a binary word, and suppose that $\mu(w)$ contains an α power z of period p, $|z| = \alpha p$. Then w contains a word u of period p/2, with $|u| \ge |z|/2$.
- 33. Let k be a rational number. Let w be a binary circular k^+ power-free word. Then $\mu(w)$ is circular k^+ power-free.

Chapter 2

Hints

2.1 Binary words avoiding powers

- 1.
- 2. Write u = BBb.
- 3. Consider $\mu(BBb)$.
- 4. The cases correspond to |B| = 1, |B| > 1.
- 5. Consider the longest word v such that we can write $w=u\mu(v)z$, with $u,v,z\in\{0,1\}^*.$
- 6. Show that for $1 \le i \le 2^n 1$,

$$a_i = \begin{cases} a_{i/2}, & i \text{ even} \\ 1 - a_{(i-1)/2}, & i \text{ odd} \end{cases}$$

7. Consider the most significant binary digit of i for $2^{n-1} \le i < 2^n$..

Chapter 3

Solutions

3.1 Binary words avoiding powers

- 1. (a) We define a sequence of words $\epsilon = w_0 \leq_p w_1 \leq_p w_2 \leq_p w_3 \leq_p \cdots$ and a sequence of sets $L = L_0 \supseteq L_1 \supseteq L_2 \supseteq \cdots$ so that for each non-negative integer n
 - i. The set L_n is infinite,
 - ii. $|w_n| = n$,
 - iii. w_n is a prefix of every word of L_n .

Let $w_0 = \epsilon$, $L_0 = L$. Certainly, (a), (b), (c) hold here with n = 0. For some non-negative integer n, suppose that L_n , w_n have been defined in such a way that (a), (b), (c) hold. Let $u_1, u_2, \ldots, u_{|\Sigma|}$ be all the extensions of w_n of length n + 1. For $i = 1, 2, \ldots |\Sigma|$, let $U_i = \{u \in L_n : u_i \leq_p u\}$. Since $L_n = \{w_n\} \cup \bigcup_{i=1}^{|\Sigma|} U_i$ is infinite, set U_{i_0} is infinite for some $i_0 \in \{1, 2, \ldots |\Sigma|\}$. We let $w_{n+1} = u_{i_0}$, $L_{n+1} = U_{i_0}$. Then $w_n \leq_p w_{n+1}$, $L_n \supseteq L_{n+1}$ and (a), (b), (c) hold with n + 1 in place of n.

We define w to be the unique ω -word having all the w_n as prefixes. Any prefix of w will be w_n for some n, and thus a prefix of a word of L.

- (b) Let $L = \bigcup_{m=0}^{\infty} \{0^{2m}, 1^{2m+1}\}.$
- 2. Suppose that u is an overlap, u = BBb, where b is the first letter of B. If |B| = 1, then B = b, and we can let w = v = z = b.

- Otherwise, $|B| \ge 2$, and we can write B = bC, some word C. Then u = BBb = bCbCb, and the result is true with w = bCb, v = Cb, z = bC.
- 3. Let u = BBb be an overlap, where b is the first letter of B. If |B| = 1, then let x = B = b, so that u = xxx. If |B| > 1, let b = x and write B = xy where y is a non-empty word. Then BBb = xyxyx where x = b.
- 4. Suppose that bCbCb is a factor of v, some $b \in \{0,1\}$. It follows that $\mu(v)$ contains factor $\mu(bC)\mu(bC)\mu(b)$. From the definition of μ , letter b is the first letter of $\mu(b)$, and hence of $\mu(bC)$. Thus $\mu(bC)\mu(bC)b$ is an overlap contained in $\mu(v)$.
- 5. Write $w = u\mu(v)z$, with $u, v, z \in \{0, 1\}^*$, and v as long as possible. By the previous exercise, v is overlap-free. Suppose that $u \notin \{\epsilon, 0, 1, 00, 11\}$. (The case where $z \notin \{\epsilon, 0, 1, 00, 11\}$ is similar.) By the maximality of |v|, u cannot end in 01 or 10. Thus u ends in 00 or 11. Replacing w by its binary complement if necessary, we suppose that u ends in 00. Since $u \neq 00$, word u ends in 100. Since $\mu(1) = 10$ is a factor of u, the maximality of v indicates that $|\mu(v)| \geq 2$. Since w is overlap free, v starts with 1, lest w contain 100.01, (the dot is for clarity, and indicates the break between u and $\mu(v)$) and hence the overlap 000. Now $\mu(10) = 1001$ is a factor of 100.10, and hence of w. The maximality of v therefore implies that $|\mu(v)| \geq 4$. If v starts 11, then w contains 100.1010, and the overlap 01010. If v starts 10, then w contains 100.1001, which is an overlap. Either case gives a contradiction.
- 6. For $x \in \{0, 1\}$, $|\mu(x)| = 2$, the first letter of $\mu(x)$ is x, and the second letter of $\mu(x)$ is 1 x. Suppose that i is odd, $1 \le i \le 2^n 1$; then $|a_0a_1 \cdots a_i|$ is even, and $a_0a_1 \cdots a_i = \mu(a_0a_1 \cdots a_{(i-1)/2})$. Thus $a_{i-1}a_i = \mu(a_{(i-1)/2})$, and $a_i = 1 a_{(i-1)/2}$. Suppose that i is even, $1 \le i \le 2^n 1$; then $a_0a_1 \cdots a_ia_{i+1} = \mu(a_0a_1 \cdots a_{i/2})$. Thus $a_ia_{i+1} = \mu(a_{i/2})$, and $a_i = a_{i/2}$.

If i is even, then the binary representation of i ends in a 0, so that $b_i = b_{i/2}$. If i is odd, the binary representation of i ends in a 1, so that $b_i = 1 - b_{(i-1)/2}$, and the b_i obey the same recursion as the a_i . Since, $a_0 = 0 = b_0$, it follows that $a_i = b_i$, $0 \le i \le 2^n - 1$.

- 7. For a non-negative integer n, write $w_n = a_0 a_1 a_2 \cdots a_{2^n-1}$, where $a_i \in \{0,1\}$, $i=0,1,\ldots 2^n-1$. For each non-negative integer i, denote by b(i) the (mod 2) sum of the digits in the binary representation of i. By the definition of the w_n , for $2^{n-1} \le i < 2^n$, we have $a_i = 1 a_{i-2^{n-1}}$. Now consider the binary representation of i; this will consist of a 1, followed by the binary representation of $i-2^{n-1}$. It follows that $b_i = 1 b_{i-2^{n-1}}$. Since $a_0 = b_0 = 0$ and the a_i and b_i satisfy the same recursion, the result follows by induction and the previous exercise.
- 8. Suppose that $w \in \{0,1\}^*$ is overlap-free, but $\mu(w) = xBBby$ for some words x, y, B with b the first letter of B. We form cases based on whether |x| is even or odd.
 - (a) If |x| is even, then $x = \mu(z)$ for some prefix z of w, and $xBB = \mu(zz')$ for some prefix zz' of w. Thus $BB = \mu(z')$, and $|B| = |z'| = |\mu(z')|_1 = |BB|_1 = 2|B|_1$, which is even. Write $B = b_1b_2b_3\cdots b_m$, where $b_1 = b$ and m is even. Then $\mu(z') = BB = b_1b_2b_3\cdots b_mb_1b_2b_3\cdots b_m$, so that $z' = b_1b_3\cdots b_{m-1}b_1b_3\cdots b_{m-1}$. Further, since xBBb is a prefix of $\mu(w)$, and |xBB| is even, we must have $xBBb\bar{b}$ as a prefix of $\mu(w)$, where $\bar{b} = 1 b$. It follows that zz'b is a prefix of w, and w contains the overlap $z'b = b_1b_3\cdots b_{m-1}b_1b_3\cdots b_{m-1}b_1$.
 - (b) If |x| is odd, write B = bB'. Then $xb = \mu(z)$ for some prefix z of w, and $xBBb = \mu(zz')$ for some prefix zz' of w. Thus $B'bB'b = \mu(z')$, and $|B| = |B'b| = |z'| = |\mu(z')|_1 = |B'bB'b|_1 = 2|B'b|_1$, which is even. Write $B'b = b_1b_2b_3\cdots b_m$, where $b_m = b$ and m is even. Then $\mu(z') = B'bB'b = b_1b_2b_3\cdots b_mb_1b_2b_3\cdots b_m$, so that $z' = b_1b_3\cdots b_{m-1}b_1b_3\cdots b_{m-1}$, and $b_m = 1 m_{m-1}$. Further, since xb is a prefix of $\mu(w)$, and |xb| is even, we must have $x'b_{m-1}bB'bB'b$ as a prefix of $\mu(w)$, where $\mu(w)$ is a prefix of $\mu(w)$, where $\mu(w)$ is a prefix of $\mu(w)$ of $\mu(w)$, where $\mu(w)$ is a prefix of $\mu(w)$ of $\mu(w)$ is a prefix of $\mu(w)$.
- 9. Let r be least such that BB is a factor of $\mu^r(0)$, and write $\mu^r(0) = xBBy$. If $r \leq 2$ then BB is a factor of $\mu^2(0) = 0110$, and $|B| = 1 = 2^0$. We prove the result by induction on r. Suppose that whenever uu is a non-empty factor of $\mu^{r-1}(0)$ then |u| has the form 2^s or $3(2^s)$ for some integer s. We make cases depending on whether |x| is odd or even.

- (a) If |x| is even, then $x = \mu(z)$ and $xBB = \mu(zz')$ for some prefix zz' of $\mu^{r-1}(0)$. Thus $BB = \mu(z')$, and $|B| = |z'| = |\mu(z')|_1 = |BB|_1 = 2|B|_1$, which is even. Write $B = b_1b_2b_3\cdots b_m$, where m is even. Then $\mu(z') = BB = b_1b_2b_3\cdots b_mb_1b_2b_3\cdots b_m$, so that $z' = b_1b_3\cdots b_{m-1}b_1b_3\cdots b_{m-1} = uu$ where $u = b_1b_3\cdots b_{m-1}$. By the induction hypothesis, |u| has the form 2^s or $3(2^s)$ for some integer s, and |B| = 2|u| has the form 2^n or $3(2^n)$ where n = s+1.
- (b) Suppose that |x| is odd. If $|B| = 1 = 2^0$ we are done. Suppose then that B = aB'b where $a, b \in \{0, 1\}$. Then $xa = \mu(z)$ and $xaB'baB' = \mu(zz')$ where zz' is some prefix of $\mu^{r-1}(0)$. Since $xa = \mu(z)$ we can write $x = x'\overline{a}$ where $\overline{a} = 1 - a$. If $b \neq a$, then $b = \overline{a}$, and xaB'baB' = x'baB'baB' where |x'| is even. We then replace B by baB', and by the previous case |B| = |baB'|has the form 2^n or $3(2^n)$, as desired. Otherwise, b=a, and xaB'baB' = xaB'aaB'. Since a cannot be $\mu(0) = 01$ or $\mu(1) = 10$, we conclude that |xaB'aa| is odd. As |x| is odd, we conclude that |B| = |B'aa| = |xaB'aa| - |x| - 1 is odd. Let |B| = 2t + 1, and write $B = b_1 b_2 \cdots b_{2t} b_{2t+1}$. Since $|xb_1|$ is even, we find that each of b_2b_3 , b_4b_5 ,..., $b_{2t}b_{2t+1}$ is either 01 or 10, and $b_{2i} = 1 - b_{2i+1}$, $i=1,2,\ldots t$. On the other hand, since |xB| is even, we find that each of b_1b_2 , b_3b_4 ,..., $b_{2t-1}b_{2t}$ is either 01 or 10. In conclusion, B is an alternating string of 0's and 1's. Since BB must be overlapfree, we must have |B| < 5, to avoid the overlaps 01010 and 10101. Since |B| is an odd number greater than 1, we have |B| = 3 = $3(2^0)$.
- 10. For each positive integer n, let

 $F_n = \{u \in \{0,1\}^n : u \text{ is a prefix of an overlap-free } \omega\text{-word over }\{0,1\}\}.$

Let w_n be the lexicographically least word in the finite set F_n . We claim that $w_n \leq_p w_{n+1}$. Write $w_{n+1} = ua$ where $u \in \{0,1\}^n$, $a \in \{0,1\}$. By the choice of w_n , $w_n \leq u$. Let an overlap-free ω -word extending w_n be $w_n b v$, where $b \in \{0,1\}$. By the choice of w_{n+1} , we have $w_{n+1} = ua \leq w_n b$. This implies that $u \leq w_n$, so that $w_n = u \leq_p w_{n+1}$. Finally, let w be the unique ω -word having all the w_n as prefixes.

We claim that w is the lexicographically least overlap-free ω -word over $\{0,1\}$. Suppose not. Let $y \neq w$ be an overlap-free ω -word over $\{0,1\}$

- so that $y \leq w$. There are then finite words $y' \leq_p y$ and $w_n \leq_p w$ with $|y'| = |w_n|, y \neq w_n, y \leq w_n$. This contradicts the choice of the w_n .
- 11. Suppose that $u, v \in \{0, 1\}^*$ and $u \leq v$. Let the longest common prefix of u and v be w. It follows that u = w0u' and v = w1v' for some $u, v \in \{0, 1\}^*$. Then $\mu(u) = \mu(w)01\mu(u') \prec \mu(w)10\mu(v')$.
- 12. For each positive n, $\mu^n(1)$ is a prefix of $\mu^{2n+1}(1)$. Also, 01001 is a suffix of $\mu^{2n+1}(0)$. It follows that 01001 $\mu^n(1)$ is a factor of $\mu^{2n+1}(01)$, and is thus overlap-free.

Suppose now that $001001\mu^{n}(1) = xbB'bB'by$ for $x, y, B' \in \{0, 1\}^{*}$, $b \in \{0, 1\}$. Since $01001\mu^{n}(1)$ is overlap-free, $x = \epsilon$ and $001001\mu^{n}(1) = bB'bB'by$.

If w is a factor of $\mu^{\omega}(0)$, then $w = a\mu(v)b$ for some $v \in \{0,1\}^*$, $a,b \in \{\epsilon,0,1\}$. Since $|\mu(v)|_0 = |\mu(v)|_1$, we see that $||w|_0 - |w|_1| \le 2$. On the other hand, $|00100|_0 - |00100|_1 = 4 - 1 = 3$. It follows that 00100 is not a factor of $1001\mu^n(1)$. Word bB' is a prefix of $001001\mu^n(1)$, and also a factor of $01001\mu^n(1)$. If $|bB'| \ge 5$, then 00100 is a prefix of bB', which is impossible, since 00100 is not a factor of $1001\mu^n(1)$. We conclude then that $|bB'| \le 4$, and overlap bB'bB'b is a prefix of $001001\mu^n(1)$ of length at most 9. Then overlap bB'bB'b is a prefix of overlap-free word 001001100. This is impossible. \square

- 13. Word $\mu^{\omega}(1)$ is an overlap-free ω -word beginning with 100101. Suppose that y is the lexicographically least overlap-free ω -word over $\{0,1\}$ which starts with 1. Over $\{0,1\}$, the lexicographically least overlap-free word of length 6 starting with 1 is 100100. However, the two right extensions 1001000 and 1001001 of this word contain overlaps. Therefore, the lexicographically least overlap-free word of length 6 which extends to an ω -word is 100101, which extends to $\mu^{\omega}(1)$. It follows that y has 100101 as a prefix. By Exercise 4, $y = \mu(t)$, some ω -word t over $\{0,1\}$ where t starts with a 1. Now $y \leq t$, and since μ is order-preserving, $\mu(y) \leq \mu(t) = y$. However, since y is lexicographically least, we also have $y \leq \mu(y)$, whence $\mu(y) = y$. It follows that y is the fixed point of μ starting with 1, namely $\mu^{\omega}(1)$.
- 14. Suppose that x is the lexicographically least overlap-free ω -word over $\{0,1\}$. Let $y = \mu^{\omega}(1)$ as in the previous exercise. Over $\{0,1\}$, the lexicographically least overlap-free word of length 7 is 0010011. Since this

extends to an overlap-free ω -word 001001y, word x must have the form x = 0010011u for some u. By Exercise 4 then, $x = 001001\mu(t)$, some ω -word t over $\{0,1\}$ where t starts with a 1. Now $y \leq t$ by the previous exercise, and since μ is order-preserving, $001001y = 001001\mu(y) \leq 001001\mu(t) = x$. However, since x is lexicographically least, we also have $x \leq 001001y$, whence x = 001001y.

15. Let C_n be the set of overlap-free binary words of length n. By Exercise 5, we can write any overlap-free binary word w of length n in the form $u\mu(v)z$ where $u,v \in \{\epsilon,0,1,00,11\}$. If n is even, we thus have $C_n \subseteq \mu(C_{n/2}) \cup \{0,1\} \mu(C_{(n-2)/2})\{0,1\} \cup \{00,11\} \mu(C_{(n-2)/2}) \cup \mu(C_{(n-2)/2})\{00,11\} \cup \{00,11\} \mu(C_{(n-4)/2})\{00,11\}$.

If n is odd, we have $C_n \subseteq \{0,1\}\mu(C_{(n-1)/2})\cup\mu(C_{(n-1)/2})\{0,1\}\cup\{00,11\}\mu(C_{(n-3)/2})\{0,1\}$, $\{0,1\}\mu(C_{(n-3)/2})\{00,11\}$.

Proof: Note that $\alpha > 2$ is necessary, since 01 is 2 power-free, but $\mu(01)$ contains the square 11.

Write $z = (z_1 z_2 \cdots z_p)^n z_1 z_2 \cdots z_m$ where the z_i are letters, n, m are integers, $n \geq 2$ and m < p. Write $\mu(w) = xzy$. If |x| is even, then for some \underline{z} we can write the even length prefix $(z_1 z_2 \cdots z_p)^2$ of z as $\mu(\underline{z})$. We see that

$$p = |\underline{z}|$$

$$= |\mu(\underline{z})|_1$$

$$= |(z_1 z_2 \cdots z_p)^2|_1$$

$$= 2|(z_1 z_2 \cdots z_p)|_1$$

so that p is even. If |x| is odd, then $|xz_1|$ is even, and we can write $(z_2 \cdots z_p z_1)^2 = \mu(\underline{z})$ for some \underline{z} . Again we find that p is even.

Without loss of generality, assume that z is the longest factor of $\mu(w)$ having period p. We will show that |x| is even. Suppose that |x| is odd. Write $x = \mu(\underline{x})x_0$, where x_0 is a letter, \underline{x} some word. Since p is even, write $xz_1z_2\cdots z_pz_1$ as $\mu(\underline{x})x_0z_1\mu(\underline{z})z_pz_1$ for some \underline{z} . It follows that $x_0 = \bar{z}_1 = z_p$. Now, however, x_0z has period p, but is longer than z. This is a contradiction. We conclude that |x| must be even. Symmetrically, |y| must be even, so that |z| is even also. This implies that m is even and $z = \mu(u)$ where $u = (z_1z_3\cdots z_{p-1})^nz_1z_3\cdots z_{m-1}$. We see that u has period p/2, while |u| = |z|/2. \square

Proof: Suppose that $\mu(w)$ is not circular k^+ power-free. This means that $\mu(w)\mu(w)=\mu(ww)$ contains some α power $z,\,\alpha>k,\,|z|\leq |\mu(w)|$. Word z has period $p=|z|/\alpha$. By the previous lemma, ww contains a word u of period p/2, with $|u|=\lceil |z|/2\rceil\leq |w|$. Moreover, u is a β power, where $\beta=|u|/(p/2)=\lceil |z|/2\rceil/(p/2)\geq |z|/p=\alpha$.

Now ww contains a k^+ power u, with $|u| \leq |w|$. This means that w is not circular k^+ power-free. \square

Shallit-Karhumaki