```
In [1]: # Step 1: Load & Inspect Dataset
        import pandas as pd
        # Load the dataset
        df = pd.read_csv('/Users/maazhussain/Desktop/Projects/Banking Churn Risk & F
        # Show structure and first rows
        print("Shape:", df.shape)
        df.info()
        df.head()
       Shape: (10000, 14)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype				
0	RowNumber	10000 non-null	int64				
1	CustomerId	10000 non-null	int64				
2	Surname	10000 non-null	object				
3	CreditScore	10000 non-null	int64				
4	Geography	10000 non-null	object				
5	Gender	10000 non-null	object				
6	Age	10000 non-null	int64				
7	Tenure	10000 non-null	int64				
8	Balance	10000 non-null	float64				
9	NumOfProducts	10000 non-null	int64				
10	HasCrCard	10000 non-null	int64				
11	IsActiveMember	10000 non-null	int64				
12	EstimatedSalary	10000 non-null	float64				
13	Exited	10000 non-null	int64				
<pre>dtypes: float64(2), int64(9), object(3)</pre>							

memory usage: 1.1+ MB

```
Out[1]:
           RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
                         15634602 Hargrave
        0
                     1
                                                    619
                                                             France
                                                                     Female
                                                                              42
                                                                                       2
                                                              Spain Female
         1
                     2
                                         Hill
                                                    608
                                                                              41
                                                                                       1
                          15647311
         2
                     3
                                                    502
                                                                              42
                                                                                       8
                          15619304
                                        Onio
                                                             France Female
                                                    699
         3
                          15701354
                                        Boni
                                                             France
                                                                     Female
                                                                              39
                                                                                       1
        4
                     5
                          15737888
                                     Mitchell
                                                    850
                                                              Spain Female
                                                                              43
                                                                                       2
```

```
In [3]: # Step 2: Clean & Prepare
        # Drop non-essential columns
        df_clean = df.drop(columns=["RowNumber", "CustomerId", "Surname"])
        # Check the cleaned dataset
        print("Cleaned shape:", df_clean.shape)
        df_clean.head()
```

Cleaned shape: (10000, 11)

Out[3]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCr(
	0	619	France	Female	42	2	0.00	1	
	1	608	Spain	Female	41	1	83807.86	1	
	2	502	France	Female	42	8	159660.80	3	
	3	699	France	Female	39	1	0.00	2	
	4	850	Spain	Female	43	2	125510.82	1	

```
In [5]: # Step 3: EDA — Visualize churn vs key features
        import seaborn as sns
        import matplotlib.pyplot as plt
        sns.set(style="whitegrid")
        fig, axes = plt.subplots(2, 2, figsize=(14, 10))
        # 1. Age vs Churn
        sns.histplot(data=df_clean, x="Age", hue="Exited", multiple="stack", bins=30
        axes[0, 0].set_title("Age Distribution by Churn")
        # 2. Balance vs Churn (exclude zero balances)
        sns.histplot(data=df_clean[df_clean["Balance"] > 0], x="Balance", hue="Exite")
        axes[0, 1].set_title("Balance Distribution by Churn (Non-Zero Only)")
        # 3. Tenure vs Churn
        sns.countplot(data=df_clean, x="Tenure", hue="Exited", ax=axes[1, 0])
        axes[1, 0].set_title("Churn Count by Tenure")
        # 4. Num of Products vs Churn
        sns.countplot(data=df_clean, x="NumOfProducts", hue="Exited", ax=axes[1, 1])
        axes[1, 1].set_title("Churn Count by Number of Products")
        plt.tight layout()
        plt.show()
```


In [7]: # Step 4: Churn Breakdown by Categorical Features import seaborn as sns import matplotlib.pyplot as plt sns.set(style="whitegrid") fig, axes = plt.subplots(2, 2, figsize=(14, 10)) # 1. Geography vs Churn sns.countplot(data=df_clean, x="Geography", hue="Exited", ax=axes[0, 0]) axes[0, 0].set_title("Churn Count by Geography") # 2. Gender vs Churn sns.countplot(data=df_clean, x="Gender", hue="Exited", ax=axes[0, 1]) axes[0, 1].set_title("Churn Count by Gender") # 3. IsActiveMember vs Churn sns.countplot(data=df_clean, x="IsActiveMember", hue="Exited", ax=axes[1, 0] axes[1, 0].set title("Churn by Active Membership (1 = Active)") # 4. HasCrCard vs Churn sns.countplot(data=df_clean, x="HasCrCard", hue="Exited", ax=axes[1, 1]) axes[1, 1].set_title("Churn by Credit Card Ownership (1 = Has Card)") plt.tight_layout() plt.show()

In [9]: # Step 5.1: Prepare data for modeling

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder

Copy the clean dataframe
model_df = df_clean.copy()

Encode categorical columns: Geography and Gender
model_df["Geography"] = LabelEncoder().fit_transform(model_df["Geography"])
model_df["Gender"] = LabelEncoder().fit_transform(model_df["Gender"])

Define features and target
X = model_df.drop("Exited", axis=1)
y = model_df["Exited"]

Split into training and testing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
X_train.shape, X_test.shape

In [11]: # Step 5.2: Train & Evaluate Logistic Regression
 from sklearn.linear_model import LogisticRegression
 from sklearn.metrics import accuracy_score, classification_report, confusior
Initialize and train model

Out[9]: ((8000, 10), (2000, 10))

```
lr = LogisticRegression(max_iter=1000)
lr.fit(X_train, y_train)

# Predict on test set
y_pred = lr.predict(X_test)

# Evaluation
print(" Accuracy:", accuracy_score(y_test, y_pred))
print("\n Classification Report:\n", classification_report(y_test, y_pred))
print("\n Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
```

Accuracy: 0.8165

Classification Report:

	precision	recall	f1-score	support
0	0.83	0.97	0.89	1607
1	0.61	0.18	0.28	393
accuracy			0.82	2000
macro avg	0.72	0.58	0.59	2000
weighted avg	0.79	0.82	0.77	2000

```
Confusion Matrix: [[1561 46] [ 321 72]]
```

n_iter_i = _check_optimize_result(

```
/opt/anaconda3/lib/python3.12/site-packages/sklearn/linear_model/_logistic.p
y:469: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion
```

```
In [13]: # Step 5.3: Random Forest Classifier

from sklearn.ensemble import RandomForestClassifier

# Initialize and train
    rf = RandomForestClassifier(n_estimators=100, random_state=42)
    rf.fit(X_train, y_train)

# Predict
    rf_pred = rf.predict(X_test)

# Evaluation
    from sklearn.metrics import classification_report, accuracy_score, confusion

print(" Random Forest Accuracy:", accuracy_score(y_test, rf_pred))
    print("\n Classification Report:\n", classification_report(y_test, rf_pred))
    print("\n Confusion Matrix:\n", confusion_matrix(y_test, rf_pred))
```

Random Forest Accuracy: 0.8645

Classification Report:

	precision	recall	f1-score	support
0 1	0.88 0.75	0.96 0.47	0.92 0.58	1607 393
accuracy macro avg weighted avg	0.81 0.85	0.71 0.86	0.86 0.75 0.85	2000 2000 2000

Confusion Matrix: [[1545 62] [209 184]]

Capstone Report – Banking Churn Risk Analysis

Objective

To analyze customer churn in a European bank and identify key drivers using exploratory data analysis and predictive modeling. The goal is to support data-driven retention strategies.

Dataset Summary

Source: Kaggle – Churn for Bank Customers Rows: 10,000 customers Target Variable: Exited (1 = churned, 0 = retained) Key Features: Age, Geography, Tenure, Balance, Products, Credit Card Ownership, Activity

Key Insights from EDA

Feature Churn Trend Age Older customers (40+) churn more frequently Balance High churn even among high-balance customers Products Single-product customers are most likely to churn Geography Germany has the highest churn ratio among regions Activity Inactive users show significantly higher churn Credit Card Non-card holders churn slightly more often

Model Results

Model | Accuracy | Churn Recall | Churn Precision | F1 (Churn) Logistic Regression | 81.7% | 18% | 61% | 28% Random Forest | 86.5% | 47% | 75% | 58%

Conclusion: Random Forest significantly outperforms logistic regression, capturing more than double the churners. It's recommended for deployment.

Recommendations

Focus retention efforts on older, inactive customers with only one product Target Germany with tailored campaigns Promote cross-selling to increase product ownership

D 11 1							
Rulla	automated	chilrn rick	dashboards	tor real-	-time	decision-	makind
Duna	automateu	CHUITITISK	aasiibbalas	TOT TOUT	UIIIC	accision	making

In []: