Extending Model-based Policy Gradients for Robots in Hetroscedastic Environments

John Martin Jr. and Brendan Englot Stevens Institute of Technology

October 6, 2017

Context

- ► Enable robust autonomy in marine robots
- ▶ The marine environment exhibits complex behavior
- ▶ Sensor performance depends on the environment
- ▶ Learn complex behavior from repeated operation

Reinforcement Learning

Model-based Reinforcement Learning

- \triangleright Evaluate π with model rollouts
- ▶ Update policy parameters in gradient direction
- ▶ Evaluate model with experience
- ▶ Update model for better predictions

Gaussian Process Regression

- Statistical model is $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\varepsilon}$
- $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{ff}), \, \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Gaussian Process Regression

- Statistical model is $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\varepsilon}$
- $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{ff}), \, \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- ightharpoonup Gaussian distributions fully specified by μ and Σ
- ▶ Gaussian processes fully specified by $\mu(\mathbf{x})$ and $k(\mathbf{x}, \mathbf{x}')$

Gaussian Process Regression

- Statistical model is $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\varepsilon}$
- $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{ff}), \, \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- ightharpoonup Gaussian distributions fully specified by μ and Σ
- ▶ Gaussian processes fully specified by $\mu(\mathbf{x})$ and $k(\mathbf{x}, \mathbf{x}')$

Figure: Image from this tutorial.

Heteroscedastic Observations

- \triangleright Noise levels have a functional dependence on \mathbf{x}
- Constant noise levels no longer valid

$$\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$
 $\boldsymbol{\varepsilon}(\mathbf{x}) \sim \mathcal{N}(\mathbf{0}, z(\mathbf{x}) \mathbf{I})$

▶ Statistical model becomes $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\varepsilon}(\mathbf{x})$

- Statistical model becomes $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\varepsilon}(\mathbf{x})$
- ▶ What process specifies $\varepsilon(\mathbf{x}) \sim \mathcal{N}(\mathbf{0}, z(\mathbf{x})\mathbf{I})$?

- ▶ Statistical model becomes $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\varepsilon}(\mathbf{x})$
- ▶ What process specifies $\varepsilon(\mathbf{x}) \sim \mathcal{N}(\mathbf{0}, z(\mathbf{x})\mathbf{I})$?
- ► $z(\mathbf{x}) \sim \exp[\mathcal{N}(0, \sigma^2 \mathbf{I})]$ [Goldberg et al., 1997]

- Statistical model becomes $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \boldsymbol{\varepsilon}(\mathbf{x})$
- ▶ What process specifies $\varepsilon(\mathbf{x}) \sim \mathcal{N}(\mathbf{0}, z(\mathbf{x})\mathbf{I})$?
- $> z(\mathbf{x}) \sim \exp[\mathcal{N}(0, \sigma^2 \mathbf{I})]$ [Goldberg et al., 1997]

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \int p(\mathbf{y}|x_*, \mathbf{X}, \mathbf{y}, \mathbf{z}, z_*) p(\mathbf{z}, z_*|\mathbf{X}, \mathbf{y}) d\mathbf{z} dz_*$$

▶ Predict with EM-style algorithm [Kersting et al., 2007]

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx p(\mathbf{y}|x_*, \mathbf{X}, \mathbf{y}, \mathbf{z}^*, z_*^*)$$

Results

Questions

References I

- [0] Goldberg, P., Williams, C., and Bishop, C. (1997). Regression with input-dependent noise: A gaussian process treatment. In Proceedings of the 10th International Conference on Neural Information Processing Systems.
- [0] Kersting, K., Plagemann, C., Pfaff, P., and Burgard, W. (2007). Most likely heteroscedastic gaussian process regression. In Proceedings of the 24th International Conference on Machine Learning.