Recall that the secant function is defined as the reciprocal of the cosine function: $\sec(x) = \frac{1}{\cos(x)}$. In this problem, we will find some properties of the secant function.

Exercise 1 (a) Recall that $\cos(x) = 0$ when x is an odd multiple of $\frac{\pi}{2}$: $\dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$ Select the domain of the cosecant function.

Multiple Choice:

- (i) $(-\infty, \infty)$
- (ii) $(-\infty,0)\cup(0,\infty)$
- (iii) $\cdots \cup (-2\pi, -\pi) \cup (-\pi, 0) \cup (0, \pi) \cup (\pi, 2\pi) \cup \cdots$

(iv)
$$\cdots \cup \left(-\frac{5\pi}{2}, -\frac{3\pi}{2}\right) \cup \left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \cup \cdots \checkmark$$

(b) Recall that cosine is an even function. Secant is

Multiple Choice:

- (i) odd.
- (ii) even. ✓
- (iii) odd and even.
- (iv) neither odd nor even.
- (c) On the interval $\left(0, \frac{\pi}{2}\right)$, secant is

Multiple Choice:

- (i) increasing. ✓
- (ii) decreasing.
- (iii) neither increasing nor decreasing.
- (d) Using knowledge of famous angles, $\sec\left(\frac{\pi}{3}\right) = \boxed{2}$.
- (e) Which of the following graphs is the graph of sec(x)?

Multiple Choice:

- (i) A
- (ii) $B \checkmark$
- (iii) C
- (iv) D

Figure 1: A on the left and B on the right

Figure 2: C on the left and D on the right