	Human	Gorilla	Monkey	Horse	Deer	Pig	Cow	Gull	Trout	Rockcod	Lamprey	Sea-Cuc
Human	1,000	0,843	0,443	0,071	0,008	0,150	0,103	0,016	0,008	0,016	0,008	0,015
Gorilla	0,843	1,000	0,308	0,032	0,008	0,150	0,143	0,008	0,008	0,016	0,008	0,007
Monkey	0,443	0,308	1,000	0,056	0,000	0,135	0,096	0,048	0,008	0,024	0,000	0,007
Horse	0,071	0,032	0,056	1,000	0,024	0,024	0,056	0,024	0,024	0,016	0,008	0,022
Deer	0,008	0,008	0,000	0,024	1,000	0,016	0,000	0,008	0,016	0,016	0,008	0,022
Pig	0,150	0,150	0,135	0,024	0,016	1,000	0,096	0,024	0,008	0,016	0,000	0,000
Cow	0,103	0,143	0,096	0,056	0,000	0,096	1,000	0,040	0,000	0,008	0,008	0,007
Gull	0,016	0,008	0,048	0,024	0,008	0,024	0,040	1,000	0,024	0,024	0,015	0,000
Trout	0,008	0,008	0,008	0,024	0,016	0,008	0,000	0,024	1,000	0,008	0,008	0,022
Rockcod	0,016	0,016	0,024	0,016	0,016	0,016	0,008	0,024	0,008	1,000	0,000	0,022
Lamprey	0,008	0,008	0,000	0,008	0,008	0,000	0,008	0,015	0,008	0,000	1,000	0,000
Sea-Cuc	0,015	0,007	0,007	0,022	0,022	0,000	0,007	0,000	0,022	0,022	0,000	1,000

Gorilla-Sea Cucumber Hash Report

by Asger Balle Pedersen, Adrian Brink, Simon Flachs, Troels Møller

Results

The following table gives the similarity between each pair of species as a number between 0 and 1, higher values meaning "more similar." We have used the hashCode() hash function from Java Standard libraries with d=10000 and k-grams of length k=20. As can be seen, the species closest to us is the *Gorilla*.

Tests

Our static method double $cos_angle(int[] p, int[] q)$ computes the cosine of the angle of two vectors of the same length d. We have tested it on the following examples:

