Playing Atari games with an Interpretable Agent

Erwan Lecarpentier, Dennis G. Wilson, Sylvain Cussat-Blanc, Hervé Luga, Guillaume Jubelin, and, Lionel Cordesses

November 9, 2021

1. [Context] Interpretability in Atari

- 1. [Context] Interpretability in Atari
- 2. [Method] Cartesian Genetic Programming

- 1. [Context] Interpretability in Atari
- 2. [Method] Cartesian Genetic Programming
- 3. [Experiments] Results on Atari

- 1. [Context] Interpretability in Atari
- 2. [Method] Cartesian Genetic Programming
- 3. [Experiments] Results on Atari
- 4. [Conclusion] Next steps

- 1. [Context] Interpretability in Atari
- 2. [Method] Cartesian Genetic Programming
- 3. [Experiments] Results on Atari
- 4. [Conclusion] Next steps

[Context] Interpretability

[Context] Interpretability

Interpretability is the degree to which a human can understand the cause of a decision¹.

 $^{^1\}mathrm{Miller},$ Tim. "Explanation in artificial intelligence: Insights from the social sciences." Artificial intelligence 267 (2019): 1-38

Interpretability

"Techniques for Interpretable Machine Learning", Du, Liu, and Hu 2019

Interpretability	Inherent Self-explained model	Post-hoc Explain model with another model
------------------	-------------------------------	---

"Techniques for Interpretable Machine Learning", Du, Liu, and Hu2019

Interpretability	Inherent Self-explained model	$egin{aligned} \mathbf{Post-hoc} \ Explain \ model \ with \ another \ model \ \dots \end{aligned}$
Global		
$\dots \ for \ ALL$		
decisions		
Local		
\dots for $SOME$		
decisions		

"Techniques for Interpretable Machine Learning", Du, Liu, and Hu2019

Interpretability	Inherent Self-explained model	$egin{aligned} \mathbf{Post-hoc} \ Explain \ model \ with \ another \ model \ \dots \end{aligned}$
$\begin{array}{c} \textbf{Global} \\ \dots \ for \ ALL \\ decisions \end{array}$	Linear model	
Local for SOME decisions		

[&]quot;Techniques for Interpretable Machine Learning", Du, Liu, and Hu2019

Interpretability	Inherent Self-explained model	$egin{aligned} \mathbf{Post} ext{-}\mathbf{hoc} \ Explain \ model \ with \ another \ model \ \ldots \end{aligned}$
$\begin{array}{c} \textbf{Global} \\ \dots \ for \ ALL \\ decisions \end{array}$	Linear model	Learn activating input images in CNN
Local for SOME decisions		

[&]quot;Techniques for Interpretable Machine Learning", Du, Liu, and Hu2019

Interpretability	Inherent Self-explained model	$egin{array}{c} \mathbf{Post-hoc} \ Explain \ model \ with \ another \ model \ \dots \end{array}$
$\begin{array}{c} \textbf{Global} \\ \dots \ for \ ALL \\ decisions \end{array}$	Linear model	Learn activating input images in CNN
Local for SOME decisions	Attention mechanisms	

[&]quot;Techniques for Interpretable Machine Learning", Du, Liu, and Hu2019

Interpretability	Inherent Self-explained model	Post-hoc Explain model with another model
$\begin{array}{c} \textbf{Global} \\ \dots \ for \ ALL \\ decisions \end{array}$	Linear model	Learn activating input images in CNN
$\begin{array}{c} \textbf{Local} \\ \dots \ \textit{for SOME} \\ \textit{decisions} \end{array}$	Attention mechanisms	Local approximation with white-box model

[&]quot;Techniques for Interpretable Machine Learning", Du, Liu, and Hu2019

Why did you take the action "kick"?

Why did you take the action "kick"?

Because:

Why did you take the action "kick"?

Because:

$$\hat{M}\left(a=\mathrm{kick}\;\left|\;\;\hat{M}\left(a\neq\mathrm{kick}\;\right|\;\;\;\right)$$

Why did you take the action "kick"?

Because:

Why did you take the action "kick"?

Because:

 σ (0.403 \times 0.635 \pm 0.472 \times 0.687 \pm 0.281 \times 0.53 \pm 0.866 \times 0.931 \pm 0.182 \times 0.427 + 0.834 \times 0.913 + σ (0.986 \times 0.993 + 0.169 \times 0.412) + 0.755 \times $0.869 \pm 0.352 \times 0.593 \pm 0.366 \times 0.605) \pm \sigma$ (0.662 × 0.813 ± 0.639 × 0.8 $\pm 0.281 \times 0.53 \pm 0.516 \times 0.718 \pm 0.187 \times 0.432) \pm \sigma (0.867 \times 0.931 \pm$ 0.017 × 0.058 ± 0.703 × 0.80 ± 0.303 × 0.637 ± 0.381 × 0.531 ± 0.5 × 0.707 + 0.772 × 0.870) + \(\sigma\) (0.854 × 0.024 + 0.411 × 0.641 + 0.052 × 0.228 + 67 (0.712 × 0.844 + 0.050 × 0.070) + 0.107 × 0.444 + 0.456 × 0.675 ± 0.785 × 0.886) ± σ (0.72 × 0.849 ± 0.998 × 0.999 ± 0.216 × 0.465 + 0.034 × 0.184 + 0.003 × 0.058 + 0.55 × 0.741 + 0.949 × 0.974 + 0.815 \times 0.903) $\pm \sigma$ (0.768 \times 0.876 \pm 0.494 \times 0.703 \pm 0.838 \times 0.915) $\pm \sigma$ (0.153 X 0.301 ± 0.103 X 0.322 ± 0.344 X 0.587 ± 0.136 X 0.369 ± 0.115 X 0.339 10205 X 0542 + 0656 X 081 + 004 X 021 + 07 (0402 X 0625 + 0472 X 0.007 + 0.201 X 0.52 + 0.000 X 0.021 + 0.102 X 0.427 + 0.024 X 0.012 + σ (0.986 × 0.993 + 0.169 × 0.412) + 0.755 × 0.869 + 0.352 × 0.593 + 0.266 × 0.665 + σ (0.662 × 0.612 + 0.626 × 0.6 + 0.261 × 0.62 + 0.616 \times 0.718 \pm 0.187 \times 0.432) \pm σ (0.867 \times 0.931 \pm 0.917 \times 0.958 \pm 0.793 \times 0.89 ± 0.393 × 0.627 ± 0.281 × 0.531 ± 0.5 × 0.707 ± 0.772 × 0.879) ± σ $(0.854 \times 0.924 + 0.411 \times 0.641 + 0.052 \times 0.228 + \sigma (0.712 \times 0.844 +$ 0.959 × 0.979) ± 0.197 × 0.444 ± 0.456 × 0.675 ± 0.785 × 0.886) ± σ (0.72 X 0.849 + 0.998 X 0.999 + 0.216 X 0.465 + 0.034 X 0.184 + 0.003 X 0.058 1 0 55 X 0 741 1 0 040 X 0 074 1 0 045 X 0 000 1 7 70 700 X 0 070 1 $0.494 \times 0.703 + 0.838 \times 0.915) + \sigma (0.153 \times 0.391 + 0.103 \times 0.322 +$

 $0.432) + \sigma$ (0.867 \times 0.931 + 0.917 \times 0.958 + 0.793 \times 0.89 + 0.393 \times 0.627 $+0.281 \times 0.531 + 0.5 \times 0.707 + 0.772 \times 0.879) + \sigma (0.854 \times 0.924 + 0.411$ \times 0.641 ± 0.052 \times 0.228 ± σ (0.712 \times 0.844 ± 0.959 \times 0.979) ± 0.197 \times 0.444 + 0.456 × 0.675 + 0.765 × 0.860 + 0.072 × 0.840 + 0.006 × 0.000 + 0.216 × 0.465 + 0.024 × 0.184 + 0.002 × 0.058 + 0.55 × 0.741 + 0.040 X 0.074 + 0.815 X 0.003) + \(\sigma\) (0.768 X 0.876 + 0.404 X 0.703 + 0.838 X 0.915) + \(\sigma\) (0.403 \(\times\) 0.635 + 0.472 \(\times\) 0.687 + 0.281 \(\times\) 0.53 + 0.866 \(\times\) 0.931 $\pm 0.182 \times 0.427 \pm 0.834 \times 0.913 \pm \sigma (0.986 \times 0.993 \pm 0.169 \times 0.412) \pm$ 0.755 × 0.869 ± 0.352 × 0.593 ± 0.366 × 0.605) ± σ (0.153 × 0.391 ± 0.103 × 0.322 ± 0.344 × 0.587 ± 0.136 × 0.369 ± 0.115 × 0.339 ± 0.295 × 0.542 ± 0.656 × 0.61 ± 0.04 × 0.21 ± 0.067 × 0.021 ± 0.017 × 0.056 ± 0.702 × 0.80 ± 0.202 × 0.627 ± 0.201 × 0.521 ± 0.5 × 0.707 ± 0.772 × 0.879) + \(\sigma\) (0.854 \(\times\) 0.924 + 0.411 \(\times\) 0.641 + 0.052 \(\times\) 0.228 + \(\sigma\) (0.712 \(\times\) 0.044 + 0.050 × 0.070 + 0.107 × 0.444 + 0.456 × 0.675 + 0.765 × 0.666) + σ (0.72 \times 0.849 \pm 0.998 \times 0.999 \pm 0.216 \times 0.465 \pm 0.034 \times 0.184 \pm 0.003 \times 0.058 \pm 0.55 \times 0.741 \pm 0.949 \times 0.974 \pm 0.815 \times 0.903) \pm σ 70.768 \times $0.876 + 0.494 \times 0.703 + 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.635 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.838 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.838 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.838 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.838 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.838 + 0.472 \times 0.838 \times 0.915) + \sigma (0.403 \times 0.838 + 0.472 \times 0.838 + 0.472 \times 0.838 \times 0.912 \times 0.912 + 0.472 \times 0.838 \times 0.912 \times 0.912 + 0.002 \times 0.912 \times 0.91$ 0.687 ± 0.281 × 0.53 ± 0.866 × 0.931 ± 0.182 × 0.427 ± 0.834 × 0.913 ± σ (0.000 × 0.000 + 0.100 × 0.410) + 0.755 × 0.000 + 0.253 × 0.502 + 0.200 × 0.605) + σ /0.152 × 0.201 + 0.102 × 0.222 + 0.244 × 0.527 + 0.126 × 0.369 + 0.115 X 0.339 + 0.295 X 0.543 + 0.656 X 0.81 + 0.04 X 0.2)

 σ (0.662 \times 0.813 \pm 0.639 \times 0.8 \pm 0.281 \times 0.53 \pm 0.516 \times 0.718 \pm 0.187 \times

- 1. [Context] Interpretability in Atari
- 2. [Method] Cartesian Genetic Programming
- 3. [Experiments] Results on Atari
- 4. [Conclusion] Next steps

[Method] Approach: Interpretable Encoder – Controller

[Method] Approach: Interpretable Encoder – Controller

Atari Image

Actions

Function pool: $\{f_i: \mathcal{X}^2 \to \mathcal{X}\}_i$

Function pool: $\{f_i: \mathcal{X}^2 \to \mathcal{X}\}_i$

Function pool: $\{f_i: \mathcal{X}^2 \to \mathcal{X}\}_i$ Genotype: $[1, 1, 2, 13, 1, \dots, 3] \in \mathbb{N}^{3 \times \text{number of nodes} + \text{number of outputs}}$

Input

 $\begin{array}{c} {\rm Encoder's} \\ {\rm Output} \end{array}$

Genotype: $[1,1,2,13,1,\ldots,3] \in \mathbb{N}^{3 \times number \ of \ nodes \ + \ number \ of \ outputs}$

Content

- 1. [Context] Interpretability in Atari
- 2. [Method] Cartesian Genetic Programming
- 3. [Experiments] Results on Atari
- 4. [Conclusion] Next steps

[Experiments] Settings

[Experiments] Settings

► Encoder input: 1 gray-level down-scaled image

[Experiments] Settings

- ► Encoder input: 1 gray-level down-scaled image
- ► Stochasticity: repeat_action_probability = 0.25

[Experiments] Settings

- ► Encoder input: 1 gray-level down-scaled image
- ► Stochasticity: repeat_action_probability = 0.25
- ▶ Fitness evaluation: score obtained after 1 roll-out

[Experiments] Settings

- ► Encoder input: 1 gray-level down-scaled image
- ► Stochasticity: repeat_action_probability = 0.25
- ▶ Fitness evaluation: score obtained after 1 roll-out
- ► **Seed:** same seed for all evaluations

[Experiments] Results: performance

[Experiments] Results: performance

https://github.com/erwanlecarpentier/ICGP-results

[Experiments] Results: interpretability

[Experiments] Results: interpretability

Videos:

Freeway

Space Invaders

Boxing

Same setting with a different seed for each generation

Same setting with a different seed for each generation

https://github.com/erwanlecarpentier/ICGP-results

Same setting with a different seed for each generation

- ► Boxing: collapse
- ► Freeway Solaris Gravitar: no learning progress

https://github.com/erwanlecarpentier/ICGP-results

Content

- 1. [Context] Interpretability in Atari
- 2. [Method] Cartesian Genetic Programming
- 3. [Experiments] Results on Atari
- 4. [Conclusion] Next steps

► Goal: interpretable agent in pixel-based Atari games

- ► Goal: interpretable agent in pixel-based Atari games
- ▶ Method: CGP co-evolution in an encoder-controller scheme

- ► Goal: interpretable agent in pixel-based Atari games
- ▶ Method: CGP co-evolution in an encoder-controller scheme
- ► Encoder: interpretable image processing functions

- ► Goal: interpretable agent in pixel-based Atari games
- ▶ Method: CGP co-evolution in an encoder-controller scheme
- ► Encoder: interpretable image processing functions
- ► Controller: interpretable scalar functions

- ► Goal: interpretable agent in pixel-based Atari games
- ▶ Method: CGP co-evolution in an encoder-controller scheme
- ► Encoder: interpretable image processing functions
- ► Controller: interpretable scalar functions
- ► Experiments:

	Performance	Interpretability
Atari deterministic	OK	OK
Atari stochastic	NOT YET	OK

Images: pixabay.com and Wilson, Dennis G., et al. "Evolving simple programs for playing Atari games." GECCO 2018

Population Encoder Controller

