$12a_{0345} \ (K12a_{0345})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^9 + u^7 - u^6 - 3u^5 + 2u^3 + b - u, \ u^{12} - u^{10} + 5u^8 - 4u^6 + 6u^4 - 3u^2 + a - u + 2, \\ u^{13} - u^{12} - u^{11} + 2u^{10} + 4u^9 - 5u^8 - 3u^7 + 6u^6 + 4u^5 - 6u^4 - 2u^3 + 2u^2 + 2u - 1 \rangle \\ I_2^u &= \langle -3u^{47} + 17u^{46} + \dots + 2b + 1, \ -11u^{47} + 29u^{46} + \dots + 2a + 3, \ u^{48} - 3u^{47} + \dots - 2u + 1 \rangle \\ I_3^u &= \langle b + u, \ a + u, \ u^3 + u^2 - 1 \rangle \\ I_4^u &= \langle b - a, \ u^2a + a^2 + u^2 + 2u + 1, \ u^3 + u^2 - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 70 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^9 + u^7 - u^6 - 3u^5 + 2u^3 + b - u, \ u^{12} - u^{10} + 5u^8 - 4u^6 + 6u^4 - 3u^2 + a - u + 2, \ u^{13} - u^{12} + \dots + 2u - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{12} + u^{10} - 5u^{8} + 4u^{6} - 6u^{4} + 3u^{2} + u - 2 \\ u^{9} - u^{7} + u^{6} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{12} + u^{10} - 5u^{8} + 4u^{6} - 7u^{4} + 4u^{2} + u - 2 \\ u^{9} - u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{12} + u^{10} - 5u^{8} + 4u^{6} - 7u^{4} + 4u^{2} + u - 2 \\ u^{9} - u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{12} + u^{10} - 5u^{8} + 4u^{6} - 7u^{4} + 4u^{2} + u - 2 \\ u^{9} - u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{12} - 2u^{10} + u^{9} + 5u^{8} - u^{7} - 6u^{6} + 2u^{5} + 6u^{4} - u^{3} - 3u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{12} - u^{11} - u^{10} + u^{9} + 4u^{8} - 3u^{7} - 4u^{6} + 2u^{5} + 5u^{4} - u^{3} - 3u^{2} - u + 2 \\ -u^{11} + u^{9} - u^{8} - 3u^{7} + 2u^{5} - u^{4} - u^{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{12} + u^{11} + u^{10} - 2u^{9} - 4u^{8} + 4u^{7} + 3u^{6} - 5u^{5} - 5u^{4} + 3u^{3} + 3u^{2} - 2 \\ u^{12} - u^{10} + 5u^{8} - 4u^{6} + 6u^{4} - 2u^{2} - u + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$4u^{12} - 2u^{10} + 18u^8 + 2u^7 - 6u^6 - 4u^5 + 20u^4 + 6u^3 - 2u^2 - 12u - 6u^4 + 6u^3 - 2u^2 - 12u - 6u^2 - 2u^2 - 12u - 6u^2 - 2u^2 - 12u - 6u^2 - 2u^2 -$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_9, c_{10}, c_{12}	$u^{13} + 3u^{12} + \dots + 8u + 1$
c_2, c_5, c_7 c_{11}	$u^{13} + u^{12} + \dots + 2u + 1$
c_3, c_8	$u^{13} - 7u^{12} + \dots - 24u + 8$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_9, c_{10}, c_{12}$	$y^{13} + 17y^{12} + \dots + 16y - 1$
c_2, c_5, c_7 c_{11}	$y^{13} - 3y^{12} + \dots + 8y - 1$
c_3, c_8	$y^{13} + 7y^{12} + \dots + 128y - 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.923828 + 0.421970I		
a = 0.763252 + 0.399422I	-0.05055 + 6.40816I	-12.2349 - 10.2893I
b = 0.261288 - 0.366463I		
u = -0.923828 - 0.421970I		
a = 0.763252 - 0.399422I	-0.05055 - 6.40816I	-12.2349 + 10.2893I
b = 0.261288 + 0.366463I		
u = 0.801388 + 0.281223I		
a = 0.268761 - 0.576127I	-2.04094 - 2.18131I	-16.1482 + 7.3921I
b = -0.168515 + 0.695868I		
u = 0.801388 - 0.281223I		
a = 0.268761 + 0.576127I	-2.04094 + 2.18131I	-16.1482 - 7.3921I
b = -0.168515 - 0.695868I		
u = -0.537404 + 0.591513I		
a = -0.786204 - 0.602557I	2.68260 + 1.42666I	-3.83184 - 3.78939I
b = -0.632206 - 0.390230I		
u = -0.537404 - 0.591513I		
a = -0.786204 + 0.602557I	2.68260 - 1.42666I	-3.83184 + 3.78939I
b = -0.632206 + 0.390230I		
u = 0.855993 + 0.936945I		
a = -3.04281 - 0.69376I	18.0409 + 0.9847I	-4.10351 + 1.46024I
b = -1.58297 - 3.59981I		
u = 0.855993 - 0.936945I		
a = -3.04281 + 0.69376I	18.0409 - 0.9847I	-4.10351 - 1.46024I
b = -1.58297 + 3.59981I		
u = -0.928636 + 0.877531I		
a = -3.22583 + 2.14654I	12.42090 + 6.50749I	-5.85522 - 4.78409I
b = -0.92820 + 5.06333I		
u = -0.928636 - 0.877531I		
a = -3.22583 - 2.14654I	12.42090 - 6.50749I	-5.85522 + 4.78409I
b = -0.92820 - 5.06333I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002580 + 0.857613I		
a = -1.90418 - 2.60319I	17.0728 - 14.2174I	-5.54739 + 7.80237I
b = 0.38407 - 4.60433I		
u = 1.002580 - 0.857613I		
a = -1.90418 + 2.60319I	17.0728 + 14.2174I	-5.54739 - 7.80237I
b = 0.38407 + 4.60433I		
u = 0.459806		
a = -1.14598	-0.845259	-10.5580
b = 0.333063		

II.
$$I_2^u = \langle -3u^{47} + 17u^{46} + \dots + 2b + 1, -11u^{47} + 29u^{46} + \dots + 2a + 3, u^{48} - 3u^{47} + \dots - 2u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{11}{2}u^{47} - \frac{29}{2}u^{46} + \dots - \frac{17}{2}u - \frac{3}{2} \\ \frac{3}{2}u^{47} - \frac{17}{2}u^{46} + \dots - \frac{7}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{17}{2}u^{47} - 23u^{46} + \dots - 9u - \frac{5}{2} \\ 2u^{47} - \frac{27}{2}u^{46} + \dots - \frac{1}{2}u - \frac{7}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{47} + 9u^{45} + \dots - 19u + \frac{9}{2} \\ -2u^{47} + \frac{13}{2}u^{46} + \dots - \frac{19}{2}u + \frac{11}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{45} + u^{44} + \dots + \frac{7}{2}u^{2} + \frac{3}{2} \\ -\frac{1}{2}u^{45} + u^{44} + \dots + \frac{15}{2}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{47} + 3u^{46} + \dots + 7u - 5 \\ -\frac{1}{2}u^{46} - u^{45} + \dots + \frac{13}{2}u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^{47} + \frac{23}{2}u^{46} + \dots \frac{77}{2}u + \frac{11}{2}$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_6 \\ c_9, c_{10}, c_{12}$	$u^{48} + 11u^{47} + \dots + 28u + 1$
c_2, c_5, c_7 c_{11}	$u^{48} + 3u^{47} + \dots + 2u + 1$
c_3, c_8	$(u^{24} + 3u^{23} + \dots + 20u + 8)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_9, c_{10}, c_{12}$	$y^{48} + 53y^{47} + \dots - 188y + 1$
c_2, c_5, c_7 c_{11}	$y^{48} - 11y^{47} + \dots - 28y + 1$
c_3, c_8	$(y^{24} + 21y^{23} + \dots + 496y + 64)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.841794 + 0.516230I		
a = -0.724878 - 0.760407I	1.74731 + 2.75249I	-5.85663 - 4.25990I
b = -0.543660 - 0.322602I		
u = -0.841794 - 0.516230I		
a = -0.724878 + 0.760407I	1.74731 - 2.75249I	-5.85663 + 4.25990I
b = -0.543660 + 0.322602I		
u = 0.930322 + 0.093737I		
a = 0.274062 - 0.684145I	-1.87399 + 1.33150I	-14.6087 - 4.8388I
b = 0.528392 - 0.143631I		
u = 0.930322 - 0.093737I		
a = 0.274062 + 0.684145I	-1.87399 - 1.33150I	-14.6087 + 4.8388I
b = 0.528392 + 0.143631I		
u = 1.074940 + 0.011887I		
a = 0.08400 - 1.42217I	5.18079 + 3.17559I	-10.00740 - 2.50769I
b = 0.24511 - 2.16612I		
u = 1.074940 - 0.011887I		
a = 0.08400 + 1.42217I	5.18079 - 3.17559I	-10.00740 + 2.50769I
b = 0.24511 + 2.16612I		
u = 0.746614 + 0.498009I		
a = -0.183156 - 1.279540I	4.20175 - 4.96532I	-9.50591 + 5.64619I
b = -1.014170 + 0.309519I		
u = 0.746614 - 0.498009I		
a = -0.183156 + 1.279540I	4.20175 + 4.96532I	-9.50591 - 5.64619I
b = -1.014170 - 0.309519I		
u = -0.366415 + 0.805565I		
a = -1.17167 + 1.18416I	10.50330 + 1.42992I	-3.65523 - 2.00550I
b = 0.184920 - 0.596372I		
u = -0.366415 - 0.805565I		
a = -1.17167 - 1.18416I	10.50330 - 1.42992I	-3.65523 + 2.00550I
b = 0.184920 + 0.596372I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.336222 + 0.803215I		
a = 0.87556 - 1.36537I	10.34730 - 5.08751I	-3.92984 + 2.90656I
b = -0.137852 + 0.789514I		
u = -0.336222 - 0.803215I		
a = 0.87556 + 1.36537I	10.34730 + 5.08751I	-3.92984 - 2.90656I
b = -0.137852 - 0.789514I		
u = -0.880758 + 0.714367I		
a = -0.556508 - 0.593812I	2.31973 + 2.73395I	-60.10 - 0.676902I
b = -0.762556 - 0.329885I		
u = -0.880758 - 0.714367I		
a = -0.556508 + 0.593812I	2.31973 - 2.73395I	-60.10 + 0.676902I
b = -0.762556 + 0.329885I		
u = 0.696228 + 0.511765I		
a = -0.02775 + 1.48585I	4.36673 + 1.08082I	-8.65197 + 0.09587I
b = 0.840769 - 0.158612I		
u = 0.696228 - 0.511765I		
a = -0.02775 - 1.48585I	4.36673 - 1.08082I	-8.65197 - 0.09587I
b = 0.840769 + 0.158612I		
u = -1.040760 + 0.477829I		
a = -0.022096 + 0.260934I	8.01455 + 9.71739I	-7.98988 - 8.06760I
b = -1.60902 + 0.01527I		
u = -1.040760 - 0.477829I		
a = -0.022096 - 0.260934I	8.01455 - 9.71739I	-7.98988 + 8.06760I
b = -1.60902 - 0.01527I		
u = -1.035350 + 0.498737I		
a = 0.036384 - 0.448348I	8.29415 + 3.29720I	-7.24610 - 3.17160I
b = 1.46608 - 0.47696I		
u = -1.035350 - 0.498737I		
a = 0.036384 + 0.448348I	8.29415 - 3.29720I	-7.24610 + 3.17160I
b = 1.46608 + 0.47696I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.751107 + 0.340936I		
a = 1.07827 + 0.93654I	-1.87399 + 1.33150I	-14.6087 - 4.8388I
b = 1.136920 + 0.261943I		
u = -0.751107 - 0.340936I		
a = 1.07827 - 0.93654I	-1.87399 - 1.33150I	-14.6087 + 4.8388I
b = 1.136920 - 0.261943I		
u = -0.864737 + 0.816422I		
a = 1.00270 - 1.60989I	4.36673 + 1.08082I	-8.65197 + 0.I
b = -0.28591 - 2.01649I		
u = -0.864737 - 0.816422I		
a = 1.00270 + 1.60989I	4.36673 - 1.08082I	-8.65197 + 0.I
b = -0.28591 + 2.01649I		
u = -0.917877 + 0.800067I		
a = -1.77023 + 0.64969I	4.20175 + 4.96532I	-12.00000 - 5.64619I
b = -1.31308 + 1.88984I		
u = -0.917877 - 0.800067I		
a = -1.77023 - 0.64969I	4.20175 - 4.96532I	-12.00000 + 5.64619I
b = -1.31308 - 1.88984I		
u = 0.871124 + 0.885192I		
a = 1.28643 + 0.63717I	8.29415 + 3.29720I	-12.00000 + 0.I
b = 0.88470 + 1.89792I		
u = 0.871124 - 0.885192I		
a = 1.28643 - 0.63717I	8.29415 - 3.29720I	-12.00000 + 0.I
b = 0.88470 - 1.89792I		
u = 0.913300 + 0.855274I		
a = -0.195582 - 0.163086I	5.18079 - 3.17559I	-12.00000 + 0.I
b = 0.346423 + 0.202860I		
u = 0.913300 - 0.855274I		
a = -0.195582 + 0.163086I	5.18079 + 3.17559I	-12.00000 + 0.I
b = 0.346423 - 0.202860I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.845587 + 0.935523I		
a = 3.03496 + 1.05311I	17.5794 + 7.6165I	-12.00000 + 0.I
b = 1.18613 + 3.70268I		
u = 0.845587 - 0.935523I		
a = 3.03496 - 1.05311I	17.5794 - 7.6165I	-12.00000 + 0.I
b = 1.18613 - 3.70268I		
u = 0.898811 + 0.892925I		
a = -1.169680 + 0.302901I	10.50330 - 1.42992I	-12.00000 + 0.I
b = -1.61570 - 1.19571I		
u = 0.898811 - 0.892925I		
a = -1.169680 - 0.302901I	10.50330 + 1.42992I	-12.00000 + 0.I
b = -1.61570 + 1.19571I		
u = -0.917895 + 0.882530I		
a = 3.01654 - 2.45632I	12.4555	0
b = 0.32556 - 5.04361I		
u = -0.917895 - 0.882530I		
a = 3.01654 + 2.45632I	12.4555	0
b = 0.32556 + 5.04361I		
u = 0.959444 + 0.848413I		
a = -1.18514 - 1.34955I	8.01455 - 9.71739I	0
b = 0.10952 - 1.97053I		
u = 0.959444 - 0.848413I		
a = -1.18514 + 1.34955I	8.01455 + 9.71739I	0
b = 0.10952 + 1.97053I		
u = 0.947556 + 0.870745I		
a = 0.33672 + 1.44236I	10.34730 - 5.08751I	0
b = -1.26760 + 1.29298I		
u = 0.947556 - 0.870745I		
a = 0.33672 - 1.44236I	10.34730 + 5.08751I	0
b = -1.26760 - 1.29298I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.998762 + 0.865177I		
a = 1.62848 + 2.70839I	17.5794 - 7.6165I	0
b = -0.93674 + 4.41906I		
u = 0.998762 - 0.865177I		
a = 1.62848 - 2.70839I	17.5794 + 7.6165I	0
b = -0.93674 - 4.41906I		
u = -0.304534 + 0.542389I		
a = -0.125842 + 0.286126I	1.74731 - 2.75249I	-5.85663 + 4.25990I
b = 0.557583 + 0.600347I		
u = -0.304534 - 0.542389I		
a = -0.125842 - 0.286126I	1.74731 + 2.75249I	-5.85663 - 4.25990I
b = 0.557583 - 0.600347I		
u = 0.579212		
a = -0.784912	-0.838576	-11.3810
b = 0.245364		
u = -0.551506 + 0.061917I		
a = 0.27580 + 2.18978I	2.31973 - 2.73395I	0.279102 + 0.676902I
b = 0.36476 + 1.51138I		
u = -0.551506 - 0.061917I		
a = 0.27580 - 2.18978I	2.31973 + 2.73395I	0.279102 - 0.676902I
b = 0.36476 - 1.51138I		
u = 0.273323		
a = -1.80982	-0.838576	-11.3810
b = 0.373488		

III.
$$I_3^u=\langle b+u,\; a+u,\; u^3+u^2-1\rangle$$

a) Arc colorings
$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u^2 + 1 \\ -u^2 - u + 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u^2 - 1 \\ u^2 + u - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -u^2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ -u^2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^2 - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8u 12

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_9 \ c_{10}$	$u^3 - u^2 + 2u - 1$
c_2, c_7	$u^3 + u^2 - 1$
c_3,c_8	u^3
c_5, c_{11}	$u^3 - u^2 + 1$
c_6, c_{12}	$u^3 + u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_9, c_{10}, c_{12}$	$y^3 + 3y^2 + 2y - 1$
c_2, c_5, c_7 c_{11}	$y^3 - y^2 + 2y - 1$
c_{3}, c_{8}	y^3

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0.877439 - 0.744862I	6.04826 + 5.65624I	-4.98049 - 5.95889I
b = 0.877439 - 0.744862I		
u = -0.877439 - 0.744862I		
a = 0.877439 + 0.744862I	6.04826 - 5.65624I	-4.98049 + 5.95889I
b = 0.877439 + 0.744862I		
u = 0.754878		
a = -0.754878	-2.22691	-18.0390
b = -0.754878		

IV.
$$I_4^u = \langle b - a, u^2 a + a^2 + u^2 + 2u + 1, u^3 + u^2 - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}a + au \\ au \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2}a + au \\ au \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2}a + a + u + 2 \\ -u^{2}a + a + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{2}a - au + a + 1 \\ -u^{2}a - au + a + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $8u^2a + au u^2 8a 19$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_9 c_{10}	$(u^3 - u^2 + 2u - 1)^2$
c_2, c_7	$(u^3 + u^2 - 1)^2$
c_3, c_8	u^6
c_5, c_{11}	$(u^3 - u^2 + 1)^2$
c_6, c_{12}	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_9, c_{10}, c_{12}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5, c_7 c_{11}	$(y^3 - y^2 + 2y - 1)^2$
c_3, c_8	y^6

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I $a = -0.592519 + 0.986732I$	6.04826	-5.39114 + 0.I
b = -0.592519 + 0.986732I $b = -0.592519 + 0.986732I$	0.04820	-9.39114 ± 0.1
u = -0.877439 + 0.744862I		
a = 0.377439 + 0.320410I b = 0.377439 + 0.320410I	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-18.8044 - 4.6518I
u = -0.877439 - 0.744862I		
a = -0.592519 - 0.986732I	6.04826	-5.39114 + 0.I
b = -0.592519 - 0.986732I $u = -0.877439 - 0.744862I$		
a = 0.377439 - 0.320410I	1.91067 - 2.82812I	-18.8044 + 4.6518I
b = 0.377439 - 0.320410I $u = 0.754878$		
a = -0.28492 + 1.73159I	1.91067 + 2.82812I	-18.8044 - 4.6518I
b = -0.28492 + 1.73159I		
u = 0.754878		
a = -0.28492 - 1.73159I	1.91067 - 2.82812I	-18.8044 + 4.6518I
b = -0.28492 - 1.73159I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_9 c_{10}	$((u^{3} - u^{2} + 2u - 1)^{3})(u^{13} + 3u^{12} + \dots + 8u + 1)$ $\cdot (u^{48} + 11u^{47} + \dots + 28u + 1)$
c_{2}, c_{7}	$((u^3 + u^2 - 1)^3)(u^{13} + u^{12} + \dots + 2u + 1)(u^{48} + 3u^{47} + \dots + 2u + 1)$
c_3, c_8	$u^{9}(u^{13} - 7u^{12} + \dots - 24u + 8)(u^{24} + 3u^{23} + \dots + 20u + 8)^{2}$
c_5,c_{11}	$((u^3 - u^2 + 1)^3)(u^{13} + u^{12} + \dots + 2u + 1)(u^{48} + 3u^{47} + \dots + 2u + 1)$
c_6, c_{12}	$((u^{3} + u^{2} + 2u + 1)^{3})(u^{13} + 3u^{12} + \dots + 8u + 1)$ $\cdot (u^{48} + 11u^{47} + \dots + 28u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_6 \\ c_9, c_{10}, c_{12}$	$((y^3 + 3y^2 + 2y - 1)^3)(y^{13} + 17y^{12} + \dots + 16y - 1)$ $\cdot (y^{48} + 53y^{47} + \dots - 188y + 1)$
c_2, c_5, c_7 c_{11}	$((y^3 - y^2 + 2y - 1)^3)(y^{13} - 3y^{12} + \dots + 8y - 1)$ $\cdot (y^{48} - 11y^{47} + \dots - 28y + 1)$
c_{3}, c_{8}	$y^{9}(y^{13} + 7y^{12} + \dots + 128y - 64)(y^{24} + 21y^{23} + \dots + 496y + 64)^{2}$