Unit 8: Integration

Subunit 8.4: Applications of integration (Area and Volume)

Topical Question No: 1

3

The diagram shows part of the curve with equation $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis and the line y = 5 is rotated through 360° about the y-axis.

Find the volume obtained.	[4]

The diagram shows the curve with equation $x = y^2 + 1$. The points A(5, 2) and B(2, -1) lie on the curve.

(a)	Find an equation of the line AB .	[2]
(b)	Find the volume of revolution when the region between the curve and the line AB i through 360° about the y -axis.	s rotated [9]

The diagram shows the curve with equation

$$y = 4(3x+4)^{\frac{1}{2}} - 2x - 6$$

for values of x such that $0 \le x \le 7$. The tangent to the curve at the point P(7,0) meets the y-axis at the point Q. Region A is bounded by the curve and the two axes. Region B is bounded by the curve, the line segment PQ and the y-axis.

(a)	Find the area of region A .	[4]
(b)	Find the area of region B .	[5]

The diagram shows part of the curve $y = \frac{8}{x+2}$ and the line 2y + x = 8, intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB.

(a)	Find, by calculation, the coordinates of A , B and C .	[6]
(b)	Find the volume generated when the shaded region, bounded by the curve and the line, through 360° about the <i>x</i> -axis.	is rotated, [6]

Topical Question No: 5

increasing at a constant rate of 600 cm ³ per second. The balloon was empty at the start of pumping.		
(a)	Find the radius of the balloon after 30 seconds.	[2]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	[3]
(b)	Find the rate of increase of the radius after 30 seconds.	
(b)		

The diagram shows part of the curve $y = \frac{6}{x}$. The points (1, 6) and (3, 2) lie on the curve. The shaded region is bounded by the curve and the lines y = 2 and x = 1.

(a) Find the volume generated when the shaded region is rotated through 360° about the *y*-axis. [5]

(b)	The tangent to the curve at a point X is parallel to the line $y + 2x = 0$. Show that X lies on the line $y = 2x$.

The diagram shows part of the curve with equation $y^2 = x - 2$ and the lines x = 5 and y = 1. The shaded region enclosed by the curve and the lines is rotated through 360° about the *x*-axis.

Find the volume obtained.	[6]
	•••••

7

The diagram shows the curve with equation $y = (3x - 2)^{\frac{1}{2}}$ and the line $y = \frac{1}{2}x + 1$. The curve and the line intersect at points A and B.

(a)	Find the coordinates of A and B .	[4]
		•••••
		•••••
(b)	Hence find the area of the region enclosed between the curve and the line.	[5]
		•••••

The diagram shows the curve with equation $y = 5x^{\frac{1}{2}}$ and the line with equation $y = 2x + 2$.		
Find the exact area of the shaded region which is bounded by the line and the curve. [5]		

The diagram shows part of the curve with equation $y = \frac{4}{(2x-1)^2}$ and parts of the lines x = 1 and y = 1. The curve passes through the points A(1, 4) and $B(\frac{3}{2}, 1)$.

(a)	Find the exact volume generated when the shaded region is rotated through 360° about the x-axis [5]
(b)	A triangle is formed from the tangent to the curve at B , the normal to the curve at B and the x -axis.
	Find the area of this triangle. [6]

The diagram shows the curve with equation $y = 10x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}}$ for x > 0. The curve meets the x-axis at the points (0, 0) and (4, 0).

Find the area of the shaded region.	[4]

q

The diagram shows part of the curve with equation $y = \frac{1}{(5x-4)^{\frac{1}{3}}}$ and the lines x = 2.4 and y = 1. The curve intersects the line y = 1 at the point (1,1).

Find the exact volume of the solid generated when the shaded region is rotated through 360° about the x-axis.

Topical Question No: 13

The curve with equation $y = 2x - 8x^{\frac{1}{2}}$ has a minimum point at A and intersects the positive x-axis at B. (a) Find the coordinates of A and B. [4] (b)

 $v = 2x - 8x^{\frac{1}{2}}$

The diagram shows the curve with equation $y = 5x^{\frac{3}{2}} - 20x$ and the line with equation y = x - 16. The *x*-coordinates of the points of intersection of the curve and line are 1 and 16.

Find the area of the shaded region between the curve and the line.	[5]