

Augmented Medicine in the time of COVID19

Reshaping healthcare with AI and medtech

Dr. Giovanni Briganti, MD

Research Fellow – I³H

Université libre de Bruxelles

Giovanni.Briganti@ulb.be

Twitter: @giovbriganti

Law, Cognitive Technologies and Artificial Intelligence May 29th 2020, Brussels School of Competition

From tongue depressors to wearables What happened to medical technologies?

- Medical technologies
 - Early diagnosis
 - Fewer complications
 - Optimize treatment
 - Reduce hospital stay length
- Smart medical technologies
 - High computational power on the go
 - Artificial Intelligence (AI) powered applications

Explaining "techthusiasm" Why patients easily adopt medtech

- 4P medicine is enabled
- Increased autonomy in various contexts
 - Keep electronic personal health records
 - Monitor vital functions with biosensors
 - Reach optimal therapeutic compliance
- → The empowered "patient-partner"

Rise of medical Al Back to basics

- AI: perceiving, reasoning, and acting computation
- Machine learning: improving from experience
 - Supervised learning: data is labeled → prediction
 - Unsupervised learning: data is unlabeled → prediction
 - Random forest (decision trees)
 - Artificial Neural Networks (hidden layers and n neurons per layer)
- Deep learning: decreasing number of n neurons per layer
 - Low computational resources → big/temporal data

Rise of medical Al Statistics v Machine Learning

Statistics	Machine Learning
Theory	Data
Hypothesis testing	Predictability
Low dimensional	High dimensional
Reasonable n	Very high n (big data)

Origins of Augmented Medicine

- FDA approval of several Al-based algorithms
- Bridging the gap with other digital tools:
 - Surgical navigation systems/computer-assisted surgery
 - Virtuality-Reality continuum tools
- The war on AI: physician resistance
 - Unpreparedness due to lack of background knowledge
 - Failures of the early digitization processes < physician burnout
 - "Will Al steal my job?"
 - World-wide lack of legal framework (What if?)

Applications of AI in medicine Cardiology and Pulmonology

- Atrial fibrillation, the first use-case
 - AliveCor (2014) > Kardia
 - Apple Watch 4 (2018)
- Prediction of cardiovascular risk
 - From electronic health records
- Pulmonary functions tests
 - Decision support

Applications of AI in medicine Endocrinology and Nephrology

- Continuous glucose monitoring
 - Medtronic > Guardian
 - Medtronic + IBM > prediction
 - Reduce stigma
 - Confidence >< failure to regulate
- Decline in GFR
- Progressive IgA nephropathy
 - Risk assessment

Applications of AI in medicine Gastroenterology

- Wide range of Al applications
- Deep learning
 - process images in endoscopy & ultrasound > detect abnormal structures
- Machine learning
 - Predict outcomes, survival, risk of metastasis

Applications of AI in medicine Neurology

- Epilepsy
 - Empatica > Embrace
 - Dermic captors to detect seizure
 - Alert family & physicians
 - Soon: prediction?
- Gait, posture and tremor
 - Quantitative assessment
 - Multiple sclerosis
 - Parkinson
 - Huntington

Applications of AI in medicine Pathology and imaging

- Paige.ai < breakthrough status FDA
 - Memorian Sloan Kettering < 1 million images
 - Diagnose cancer in computational histology
- Radiologists vs Al
 - Meta-analysis: deep learning as efficient radiologists
 - BUT
 - 99% of studies with NO reliable design
 - 1/1000 of studies compared with other source populations
 - Need of extensive validation through clinical trials

Other fields of augmented medicine

- Evidence-based practice
 - Data driven platforms of clinical decision support
- Outsourcing genomics
- Outsourcing clinical trials > cash for data platforms
- Smart history taking
- Teleconsultation

Fighting COVID19 with AI

- Am I at risk? Smart contact tracing
 - Awaiting regulation in Belgium as of May 2020
- Am I symptomatic ? Outsourced history taking
 - Validated in Belgium
- Where should I be tested? Matching algorithms
 - Current under development in Belgium, used in UK
- Diagnosis → CT Scan
 - Developed and FDA-approved, but not used in Belgium

Validation of Al-based technologies Towards a replication crisis?

- Challenge 1: clinical validation of core concepts and tools
 - Lack of primary replication (no other source than training and testing set)
 - Solution: open data and open science
- Challenge 2: the problem of overfitting
 - Models optimally fit training data set but do not replicate
 - Solution: reevaluation and recalibration after adoption
 - Solution: development of algorithms to fit larger communities and subgroups
- Challenge 3: the study of AI vs physicians
 - Not the best way to tackle the issue of performance
 - Solution: study the combined force of AI and physicians

Ethical implications The issue of ongoing monitoring

- Medtech: 1000 billion \$ 2019
 - Increasing % due to retail to younger populations
- Redefining the concept of "healthy individual"
 - Young individual: not the primary target consumer profile?
 - The concern of the quantified self
- Tech + government deals > large scale distribution to induce lifestyle change
 - Risk of increasing stigma on disadvantaged citizens
 - Reduce access to health benefits
 - Ex: Deep Mind, Nightingale, Singapore

Ethical implications Data ownership

- Two-decade old debate
- Option 1: common ownership of data
 - Profit to development of personalized medicine
- Option 2: patient ownership of data
 - Improvement of information sharing
 - 1 on 1 data use agreements
- Consensus from recent epistemological works is shifting towards Option 2

Reshaping education On the need to educate augmented doctors

- To enlighten and manage the digital transition in healthcare and public institutions
- To educate patients and peers
- To be a safety net in complex medical and bioethical issues
- To drive innovative research projects and policies

Reshaping health On the need to have augmented care

More and more healthcare institutions are including CMIOs in the medical leadership.

- The war on AI?
- Or war between Al-powered doctors and regular ones?
- The turning point on legal, bioethical, clinical and social standard
- The competency shifts initiated by tech giants will isolate European healthcare institutions if no wake-up call
- Re-placing academia as the heart of scientific developments in the AI field

We need European-made experts to deal with these challenges by our standards of care.

Exit the patient, enter the client The intrusion of new players in healthcare

- Medtech startups and the hospital wall
 - Lack of bridges between med and tech worlds
 - Innovation ostracised
- New players interested by augmented health
 - Insurance companies
 - Nutrition companies
 - Wellness and sport
 - Retail

Exit the patient, enter the client On why profit is interested in healthcare

- Mission sharing for market capture
- The economic actors are interested in easy tasks
 - Basic services
 - Chronic patients
 - Telemedicine
 - Ex. Walmart Health

Innovating done right during the pandemic

We already know what tools to choose

- Outsourcing healthcare is how we support hospitals during the pandemic
- History taking
- Smart contact tracing (debated)
- Prediction
- Pseudonymization
- Matching algorithms

Innovating done right during the pandemic

What is taking so long?

- Too many solutions
- Each solution tackles 1 (very) specific issue
- Each solution operates in a narrow digital ecosystem
- Interdisciplinary solutions emerging from collective expertise from different stakeholders are the way to go
 - And healthcare professionals should be actively included in their development!
- Invest in security
- Transparency in development

Moving forward with AI The promise of ambient clinical intelligence (ACI)

- Administrative burden is a major issue in healthcare
 - Indirect patient care time > 80%
 - Main source of burnout
 - Natural Language Processing is part of the solution
- ACI: sensitive, adaptive and responsive digital environment around the physician and the patient
 - Analyzing and writing interview report
 - Fill electronic health record
 - Decision support

Conclusions Al will not change what it means to be a doctor

- MedTech as support
- An agenda for 2030
 - Study physician + Al
 - Translational clinical trials
- A position of privilege
 - But education needed to provide future leaders with competencies to lead innovation

Thank you!

@giovbriganti

Giovanni.Briganti@ulb.be

