

AD-A116 288

NAVAL SURFACE WEAPONS CENTER SILVER SPRING MD
WOLFP, WOLF'S METHOD FOR QUADRATIC PROGRAMMING. (U)
MAR 82 J W WINBATE, J S YOUNGS
NSWC/TR-82-30

F/8 9/2

UNCLASSIFIED

Dr I
Begin

SBI-AD-F800 036

NL

END
DATE PLACED
7-10-82
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD A116288

AD-F 500036

(12)

NSWC TR 82-30

WOLFQP, WOLFE'S METHOD FOR QUADRATIC PROGRAMMING

BY JOHN W. WINGATE,
JEFFREY S. YOUNGS

RESEARCH AND TECHNOLOGY DEPARTMENT

17 MARCH 1982

Approved for public release, distribution unlimited.

DTIC
ELECTED
S JUN 29 1982 D
B

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

DTIC FILE COPY
82 06 29 013

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NSWC TR 82-30	2. GOVT ACCESSION NO. <i>DD A 116288</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) WOLFQP, WOLFE'S METHOD FOR QUADRATIC PROGRAMMING	5. TYPE OF REPORT & PERIOD COVERED	
7. AUTHOR(s) John W. Wingate Jeffrey S. Youngs	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (Code R44) White Oak Silver Spring, MD 20910	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 65856N, R0128-SB, R0128-SB, 2R44EA501	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE 17 March 1982	
	13. NUMBER OF PAGES 94	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Quadratic Programming; Linear Programming; Constrained Optimization; Wolfe's Method		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report documents a FORTRAN routine WOLFQP for solving quadratic programming problems. Theory, usage notes and examples are included in the report.		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

FOREWORD

This report documents a FORTRAN routine WOLFQP for solving quadratic programming problems. Theory, usage notes and examples are included in the report.

Ira M Blatstein

IRA M. BLATSTEIN
By direction

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

CONTENTS

<u>Chapter</u>		<u>Page</u>
1	WOLFE'S METHOD FOR QUADRATIC PROGRAMMING	5
2	USER'S NOTES	15
3	EXAMPLES	19
APPENDIX A - LISTING		49
APPENDIX B - MODIFICATION FOR PROJECTION PROBLEMS.	93
APPENDIX C - MACHINE DEPENDENCIES.		95

CHAPTER 1

WOLFE'S METHOD FOR QUADRATIC PROGRAMMING

Wolfe's quadratic programming method¹ is based on solving a system of linear relations subject to complementarity conditions. The linear system (without the complementarity conditions) can be solved by the simplex method of linear programming. The pivoting rules of the simplex method can be restricted so that the complementarity conditions are met. When the quadratic form in the objective function is positive definite (for a minimization problem) the pivoting restrictions do not prevent the simplex method from solving the linear system.

The linear system is based on the Karush-Kuhn-Tucker conditions (or Lagrange multiplier rule) for the problem to be solved. Let this problem be:

$$\text{minimize } \frac{1}{2} \begin{bmatrix} x_1^T & x_2^T \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{12}^T & Q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} p_1^T & p_2^T \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + C$$

subject to the constraints

$$x_1 \geq 0 \quad (\text{n_1 variables}),$$

$$x_2 \text{ unconstrained } (\text{n_2 variables}),$$

$$\begin{bmatrix} A_{11} & A_{12} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq b_1 \quad (\text{m_1 constraints}),$$

$$\begin{bmatrix} A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b_2 \quad (\text{m_2 constraints}).$$

The constant term C is included for evaluation purposes only, it does not affect the minimizing point. If there are no unconstrained variables ($n_2 = 0$)

the matrix $Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{12}^T & Q_{22} \end{bmatrix}$ reduces to Q_{11} and $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ reduces to $\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$

Similar interpretations apply when $n_1 = 0$, $m_1 = 0$ or $m_2 = 0$. Inequalities apply componentwise; i.e., $x_1 \geq 0$ is equivalent to $x_{1j} \geq 0$, $j = 1, \dots, n_1$. Q is positive definite.

Introduce Lagrange multiplier vectors κ_1 for the constraint $x_1 \geq 0$ and λ_1 and λ_2 for the other constraints, and form the Lagrangian

$$\begin{aligned} L = 1/2 & \left[\begin{bmatrix} x_1^T & x_2^T \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{12}^T & Q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} p_1^T & p_2^T \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + c \right. \\ & + \kappa_1^T x_1 \\ & + \lambda_1^T \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - b_1 \right) \\ & \left. + \lambda_2^T \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - b_2 \right) \right] \end{aligned}$$

from which, by the Lagrange multiplier rule for inequality constrained problems, we get the linear conditions

$$\begin{aligned} \kappa_1 + \begin{bmatrix} Q_{11} & Q_{12} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} A_{11}^T & A_{21}^T \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} + p_1 &= 0, \\ \begin{bmatrix} Q_{12} & Q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} A_{12}^T & A_{22}^T \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} + p_2 &= 0, \end{aligned}$$

along with the original constraints

$$x_1 \geq 0,$$

$$\begin{bmatrix} A_{11} & A_{12} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq b_1,$$

$$\begin{bmatrix} A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b_2,$$

the sign constraints on the multipliers for the inequalities

$$\kappa_1 \leq 0,$$

$$\lambda_1 \geq 0,$$

and the complementary slackness condition

$$\kappa_1^T x_1 + \lambda_1^T \left(\begin{bmatrix} A_{11} & A_{12} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - b_1 \right) + \lambda_2^T \left(\begin{bmatrix} A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - b_2 \right) = 0.$$

Since each of the $n_1 + m_1 + m_2$ terms in this sum is nonpositive by the constraints, each must individually vanish:

$$\kappa_{1j} = 0 \text{ or } x_{1j} = 0, j = 1, \dots, n_1,$$

etc.

An alternate phrasing of this system of linear inequalities and equations can be made if we introduce auxiliary vector variables κ_2 , s_1 and s_2 .

Find a solution to:

$$\begin{bmatrix} I & 0 & 0 & 0 & Q_{11} & Q_{12} & A_{11}^T & A_{21}^T \\ 0 & I & 0 & 0 & Q_{12}^T & Q_{22} & A_{12}^T & A_{22}^T \\ 0 & 0 & I & 0 & A_{11} & A_{12} & 0 & 0 \\ 0 & 0 & 0 & I & A_{21} & A_{22} & 0 & 0 \end{bmatrix} \begin{bmatrix} \kappa_1 \\ \kappa_2 \\ s_1 \\ s_2 \\ x_1 \\ x_2 \\ \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} -p_1 \\ -p_2 \\ b_1 \\ b_2 \end{bmatrix} \quad (1)$$

$$\kappa_1 \leq 0, \kappa_2 = 0, s_1 \geq 0, s_2 = 0, x_1 \geq 0, \lambda_1 \geq 0 \quad . \quad (2)$$

and

$$\kappa_1^T x_1 = 0, s_1^T \lambda_1 = 0 . \quad (3)$$

(The complementary slackness conditions (3) again require each term in the scalar products $\kappa_1^T x_1$ and $s_1^T \lambda_1$ to vanish.) If we ignore the complementary slackness conditions, we can solve (1) and (2) by minimizing a penalty function

$$P = \sum_{j=1}^{n_1} \max\{0, \kappa_{1j}\} + \sum_{j=1}^{n_2} |\kappa_{2j}| + \sum_{j=1}^{m_1} \max\{-s_{1j}, 0\} + \sum_{j=1}^{m_2} |s_{2j}|$$

$$+ \sum_{j=1}^{n_1} \max\{-x_{1j}, 0\} + \sum_{j=1}^{m_1} \max\{-\lambda_{1j}, 0\}$$

Subject to (1) (and no sign constraints). The minimum value of P is 0 if and only if (1) and (2) are consistent. Of course, it is not necessary to weight all the sign constraint violations equally. For example, we could replace $|s_{2j}|$ by $\max\{-a s_{2j}, b s_{2j}\}$ where a and b are positive. Changing the weights in this manner does not affect the equivalence of the consistency of (1) and (2) to the minimum being zero. A slightly different procedure is normally used (in a simplex method Phase I). The identity matrix in the first $(n_1 + n_2 + m_1 + m_2)$ columns is used as an initial basis for the primal simplex method, any constraint violations resulting therefrom are penalized, and sign constraints are retained

in such a way that the penalty function is linear. For example, if $b_{2j} > 0$, $S_{2j} = b_{2j}$ in the initial basic solution. The term $\cdots + S_{2j} + \cdots$ appears in the penalty and the restriction $S_{2j} \geq 0$ is imposed; S_{2j} is termed an "artificial variable" in this case. (If b_{2j} were negative, the penalty would be $-S_{2j}$ and S_{2j} kept nonpositive.) For S_1 the treatment is slightly different. If $b_{1j} \geq 0$, set $S_{1j} = b_{1j}$, with no penalty. If $b_{1j} < 0$, divide S_{1j} into the sum of a slack variable S_{1j}^a (unpenalized, nonnegative) and an artificial variable S_{1j}^m (penalized, nonpositive), set to b_{1j} initially. This procedure is, however, equivalent to changing the weights in P . Using $b_{2j} > 0$ again as an example, we could change the weighting so that the penalty on S_{2j} changes from $|S_{2j}|$ to $\max\{(-\infty)S_{2j}, S_{2j}\}$ and in practice we could replace ∞ by a suitable large positive quantity M .

It is not actually necessary to use a linear cost functional. With a little care in programming, the usual simplex method can handle cost functionals like P . The linear programming code LINOPT² uses the dual simplex method to solve problems of maximizing a linear functional subject to upper and lower bounds on all variables and constrained quantities. The problem of minimizing P subject to (1) is the dual of such a problem, which could be solved using LINOPT, with the effect of minimizing P subject to (1) by the primal simplex method.

Let us now consider the complementary slackness conditions (3). In terms of the primal simplex method, they can be enforced by ensuring that S_{1j} and its complementary variable λ_{1j} (κ_{1j} and x_{1j}) are not simultaneously basic. This is an easily enforced pivoting restriction. Unfortunately it is too strong to be applied to minimizing P subject to (1) directly: the algorithm may terminate with $P > 0$ even though (1), (2) and (3) are consistent. We get around this difficulty by using a phase I/phase II procedure. Suppose we split κ_1 into a multiplier κ_1^m , subject to complementary pivoting restrictions, and an artificial variable κ_1^a , not so restricted: $\kappa_1 = \kappa_1^m + \kappa_1^a$. Since κ_{1j}^m and κ_{1j}^a cannot both be basic, one of them is always zero and nonbasic.

We can let κ_{1j} be whichever of them is basic (if one is) and keep track of whether this is κ_{1j}^a or κ_{1j}^m .

Suppose now that we have a basic feasible solution to the constraints on x .

Then

$$\begin{bmatrix} I & 0 & A_{11} & A_{12} \\ 0 & I & A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$s_1 \geq 0, s_2 = 0, x_1 \geq 0$$

Extend this basis to the constraint matrix for (1) by making κ_1^a and κ_2 basic. If we now minimize $P' = \sum_{j=1}^{n_1} |\kappa_{1j}^a| + \sum_{j=1}^{n_2} |\kappa_{2j}|$ subject to (1) and

$\kappa_1 = \kappa_1^a + \kappa_1^m$, $\kappa_1^m \leq 0$, $x_1 \geq 0$, $s_1 \geq 0$, $s_2 = 0$, $\lambda_1 \geq 0$ and the complementary pivoting restriction, the minimum will be zero, and we will have solved (1), (2) and (3). (The proof of this fact requires the positive definiteness of Q .)

If we wish to enforce the sign constraints by penalty terms added to P' these terms must be so heavily weighted that no change of basis that reduces P' can introduce sign constraint violations.

The phase I is to find the initial basic feasible solution. It is not necessary to work on a smaller problem using only the $[I \ A]$ part of the full coefficient matrix $\begin{bmatrix} I & 0 & Q & A^T \\ 0 & I & A & 0 \end{bmatrix}$. If we allow κ_1 and κ_2 to be basic and

unconstrained in phase I, they will be basic throughout phase I and the initial basis inverse for Phase II will be the final basis inverse for phase I.

Phase I problem:

$$\text{minimize } P_I = M \left\{ \sum_{j=1}^{m_1} \max\{-s_{1j}, 0\} + \sum_{j=1}^{m_2} |s_{2j}| + \sum_{j=1}^{n_1} \max\{-x_{1j}, 0\} + \sum_{j=1}^{n_2} \max\{-\lambda_{1j}, 0\} \right\}$$

subject to:

$$\begin{bmatrix} I & 0 & 0 & 0 & Q_{11} & Q_{12} & A_{11}^T & A_{21}^T \\ 0 & I & 0 & 0 & Q_{12}^T & Q_{22} & A_{12}^T & A_{22}^T \\ 0 & 0 & I & 0 & A_{11} & A_{12} & 0 & 0 \\ 0 & 0 & 0 & I & A_{21} & A_{22} & 0 & 0 \end{bmatrix} \begin{bmatrix} \kappa_1 \\ \kappa_2 \\ s_1 \\ s_2 \\ x_1 \\ x_2 \\ \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} -p_1 \\ -p_2 \\ b_1 \\ b_2 \end{bmatrix}$$

where $M \gg 1$. Since M scales out of the problem it is not actually needed here. It is included as part of the setup for phase II. A similar comment applied to the penalty on λ_1 which remains nonbasic and zero throughout phase I (and could therefore be ignored). Starting basic variables are κ_1 , κ_2 , s_1 and s_2 . The program actually sets up and solves the dual to this problem. Let k_1 be a vector of variables dual to κ_1 , k_2 dual to κ_2 , σ_1 dual to s_1 , σ_2 dual to s_2 , ξ_1 dual to x_1 , ξ_2 dual to x_2 , ℓ_1 dual to λ_1 and ℓ_2 dual to λ_2 . For both phases the dual variables are related by the transpose of the coefficient matrix:

$$\begin{bmatrix} k_1 \\ k_2 \\ \sigma_1 \\ \sigma_2 \\ \xi_1 \\ \xi_2 \\ \ell_1 \\ \ell_2 \end{bmatrix} = \begin{bmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \\ Q_{11} & Q_{12} & A_{11}^T & A_{21}^T \\ Q_{12}^T & Q_{22} & A_{12}^T & A_{22}^T \\ A_{11} & A_{12} & 0 & 0 \\ A_{21} & A_{22} & 0 & 0 \end{bmatrix} \begin{bmatrix} \kappa_1 \\ \kappa_2 \\ \sigma_1 \\ \sigma_2 \end{bmatrix} \quad (4)$$

The dual phase I problem is to maximize $z = [-p_1^T - p_2^T b_1^T b_2] \begin{bmatrix} k_1 \\ k_2 \\ \sigma_1 \\ \sigma_2 \end{bmatrix}$
 subject to the bounds:

$$k_1 = 0, k_2 = 0, -M \leq \sigma_1 \leq 0, -M \leq \sigma_2 \leq M$$

$$-M \leq \xi_1 \leq 0, \xi_2 = 0, -M \leq \ell_1 \leq 0, \ell_2 = 0$$

(The bounds on ℓ_1 and ℓ_2 are obviously always satisfied in phase I.)

The objective function is defined by the right-hand side of (1). The bounds are defined by the penalties in P_I : the bounds for a dual variable deriving from the penalties on the corresponding variable. Violation of nonzero bounds in phases I and II are ignored: they can be made to go away by increasing the penalty on the appropriate variable and we could have set up the penalty function in this way in the first place. Furthermore, ignoring violation of nonzero bounds yields a more efficient procedure.

Assuming that phase I ends with feasibility shown, we start phase II by changing the penalty from P_I to

$$P_{II} = P_I + \sum_{j=1}^{n_1} |\kappa_{1j}^a| + \sum_{j=1}^{n_2} |\kappa_{2j}| + \sum_{j=1}^{n_1} \max \{0, \kappa_{1j}^m\},$$

or equivalently, changing the bounds on k_1 and k_2 . For k_2 this is easy:

$-1 \leq k_2 \leq 1$, but for k_1 , setting the bounds is complicated by the implicit handling of the split of κ_1 into $\kappa_1^m + \kappa_1^a$. Let us start by making each artificial variable κ_{1j}^a basic, and treat κ_{1j} as its dual, with bounds $-1 \leq \kappa_{1j} \leq 1$. Then κ_{1j} will initially be either +1 or -1 (depending on the sign of κ_{1j}^a). Ordinarily, without the pivoting restriction, if $\kappa_{1j} = \kappa_{1j}^a = -1$, the lower bound (zero) on $\kappa_{1j}^m = \kappa_{1j}^a = \kappa_{1j}$ would be violated, and we could pivot κ_{1j}^m into the basis with value zero, with no change in the basis inverse matrix. With the pivoting restriction, we can still do this if ξ_{1j} is not basic (and zero--but it will be zero if basic because we ignore violation of nonzero bounds). Since we want to reduce artificial variables to zero, we might as well do so at the start. Thus the initial setup of bounds on k_1 are: $r_j \leq \kappa_{1j} \leq 1$
 where $r_j = -1$ if ξ_{1j} is basic at the end of phase I,
 $r_j = 0$ if ξ_{1j} is nonbasic at the end of phase I.

In proceeding through phase II, we should interpret k_{1j} as dual to k_{1j}^m as soon as possible. Thus r_j should be set to zero whenever ξ_{1j} leaves the basis, not only the lower bound, but k_{1j} itself should be reset.

Since each variable in ℓ_1 is nonbasic at the start of phase II, the complementarity restrictions on ℓ_1 and ℓ_1 cause no problems in setting up for phase II.

Comments in the modified LINOPT code referring to pivoting restrictions are given in terms appropriate to the dual problem (4) with phase II bounds. A further thing to note is that the negation of p_1 and p_2 in the objective row

$$[-p_1^T \quad -p_2^T \quad b_1^T \quad b_2^T]$$

is handled internally, so that this vector should be passed as

$$[p_1^T \quad p_2^T \quad b_1^T \quad b_2^T].$$

CHAPTER 2
USER'S NOTES

WOLFQP is a FORTRAN Language computer code written to solve problem (1) with the method described in the previous section. The code is a modified version of LINOPT which takes advantage of the structure in the Quadratic Programming problem to reduce the storage required. Also the user is only required to input the QP problem, it is translated by WOLFQP into the Linear Programming Problem.

Communication with the calling program is accomplished through the calling statement. The formal parameters are described thoroughly in the internal documentation (See Appendix A). This section therefore will only attempt to clarify some of the murkier details.

The scratch array SCR must be dimensioned at least $N^2 + 13N + 6$ ($N = N_1 + N_2 + M_1 + M_2$; where N_1 = Number of sign constrained variables, N_2 = Number of sign unconstrained variables, M_1 = Number of inequality constraints, M_2 = Number of equality constraints). Failure to do this will cause memory to be overwritten and result in indeterminate output. The scratch array is divided into the internal arrays required of LINOPT. The correlation between these internal variables and positions in SCR are detailed in the internal documentation (See Appendix A). For detailed descriptions of the internal variables see reference [1].

It is noted that the unknown vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in problem (1) has sign constrained x_1 and sign unconstrained x_2 variables. For ease of notation the constrained and free variables are grouped separately. WOLFQP does not require the user to so order the variables. The integer vector IND allows the user to permute the variables without permuting the Q, A1 and A2 matrices. This allows the user to form the matrices in a convenient manner.

The First N_1 locations of IND contain the indices for which there are sign constraints. Locations $N_1 + 1, \dots, N_1 + N_2$ contain the indices for the free variables.

Also it may be inconvenient to reform the constraint matrices for a call to WOLFQP. As an example the user may wish to call WOLFQP with only some of the constraint rows active. Locations $N_1 + N_2 + 1 \dots N_1 + N_2 + M_1$ of IND contain the indices of the active rows, if any, in the inequality constraint matrix A1. In the same manner locations $N_1 + N_2 + M_1 + 1 \dots N_1 + N_2 + M_1 + M_2$ of IND contain the indices of the active rows, if any, in A2; the equality constraint matrix.

If the value of the objective function is desired the user should set the formal parameter VALUE to a non-zero value. This results in the calculation of the objectives function value at the optimal solution. The Scalar C is ignored except in this calculation.

Two inputs which control the algorithm are ITMAX and NINVT, corresponding to IPASS (2) and IPASS(8) respectively. ITMAX is the iteration limit. Upon completion of ITMAX iterations control is returned to the calling program with IERR (IPASS (4)) set to 2. All internal storage has been saved. If desired WOLFQP may be recalled and computation continued by calling WOLFQP with FLAG set to true. No other change is necessary or advised.

On output the optimal distribution is placed in the array Y. The value is calculated, if desired. The iteration number and error indicator are stored in the appropriate positions of IPASS (See Appendix A). Also if the user desires to look at the internal variables SCR contains these values.

Other error conditions (IERR = 1,3,4+) must be corrected before re-calling WOLFQP. For these conditions the tableau must be re-initialized. (Flag set to False).

An upper limit on ITMAX should be between $5*N$ and $10*N$. Some problems may take more; most should take fewer iterations. Practically ITMAX should be set so that an inordinate amount of CP time is not consumed before the problem formulation has been thoroughly checked.

NINVT controls the re-inversion of the tableau. Since succeeding inverses are formed as perturbations of previous inverses truncation error can accumulate in the inverse. To remedy this situation the inverse must be re-formed. Every NINVT iterations the inverse will be reformed. To avoid unnecessary calculations this should not occur too frequently. The recommended value is between $2 \times N$ and $3 \times N$.

The final input controlling calculations is EPS1. This is used to control zero tolerance. Zero tolerance is important in two parts of the algorithm. Tableau entries which are less than EPS1 in magnitude are treated as zero.

Their values are considered to be truncation error. Thus for this purpose EPS1 is set to the truncation error of the machine.

The other spot where zero tolerance is involved is when constraint violations are checked. Constraint violations less than EPS1 are treated as zero. This is also to avoid truncation error but the user must be careful. If the problem is scaled such that entries in the tableau are less than EPS1 their entries will be ignored. For this purpose EPS1 must be on the order of the smallest entries in the tableau (Q , A_1 and A_2). The input value for EPS1 should be the minimum of these two values.

The major modification to LINOPT occurs in PIVROW. This subroutine chooses the incoming basic variable which is required to meet the complementary slackness condition. Flags contained in the internal array BASIC are used to facilitate this checking.

Each word in the BASIC array contains seven bits used as flags and if the complementary slackness condition applied to the variable, (a complementary index). Bits are used to reduce the storage requirement. The layout of each basic word is described in the internal documentation of SETQP. (See Appendix A).

The Bit operations OR, AND, SHIFT and COMPLEMENT are required to access and define the flag bits. These operations are described more thoroughly in machine dependencies (Appendix C).

The Flag Bits are also used in DSIMP. In DSIMP the basic or non-basic bit is set as appropriate and bounds are reset, if applicable, on variables leaving the basis.

CHAPTER 3

EXAMPLES

A short test program appears at the end of the source listing. (Appendix A). The problem is defined by the NAMELIST inputs. Mnemonic names are used in the NAMELIST which are then loaded into the IPASS array. The following examples list the NAMELIST inputs and the output resulting from a subsequent call to QPTAB.

Example 1.

This problem illustrates the basic use of the algorithm.

$$\min \frac{1}{2} [x_1, x_2] \begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [6 \ 0] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

s.t.

$$x_1, x_2 \geq 0$$

$$x_1 \leq 2$$

$$x_2 \leq 1$$

$$x_1 + x_2 = 2$$

This problem requires the following inputs

```
$IN
EPS = 1.E-10,
FLAG = .FALSE.,
IND = 1,2,1,2,1,
N = 5,
NCON = 2,
NUNC = 0,
NINEQ = 2,
NINV = 3000,
ITMAX = 100,
Q = 4., -2.,
Q(1,2) = 2., 4.,
A1 = 1., 0.,
A1(1,2) = 0., 1.,
A2(1,1) = 1.,
A2(1,2) = 1.,
OBJ = 6., 0., 2., 1., 2.,
C = 0.,
VALUE = 1.,
SEND
```

output of QPTAB after call to WOLFQP

\$OUT

N = 5,
 NCON = 2,
 NUNC = 0,
 NINEQ = 2,
 NEQ = 1,
 NINV = 3000,
 ITMAX = 100,
 ITER = 2,
 IERR = 0,
 C = 0.0,
 VALUE = .8E+01,

\$END

Q

.4000E+01	-.2000E+01
-.2000E+01	.4000E+01

P

.6000E+01	0.
-----------	----

A1*X	B1	A1	
.1000E+01	.2000E+01	.1000E+01	0.
.1000E+01	.1000E+01	0.	.1000E+01

A2*X	B2	A2	
------	----	----	--

.2000E+01	.2000E+01	.1000E+01	.1000E+01
-----------	-----------	-----------	-----------

X

.1000E+01	.1000E+01
-----------	-----------

Basically the output reprints the inputs with the addition of the solution vector $X = [1., 1.]$, the value of the function $VALUE = 8.$, ($VALUE$ on input was non-zero). The number of iterations required $ITER = 2$, the error indicator $IERR = 0$ indicating solution and each constraint is evaluated as a check.
 (See $A1*X$ and $A2*X$ columns. •

Example 2.

This example illustrates how sign constraints can be written implicitly or explicitly. The inputs differ slightly. The explicit version requires more iterations.

$$\begin{aligned} \min \frac{1}{2} [x_1, x_2, x_3, x_4] & \begin{bmatrix} 1 & 0 & 6 & 1 \\ 0 & 4 & 6 & 4 \\ 6 & 6 & 61 & 12 \\ 1 & 4 & 12 & 100 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \\ & + \begin{bmatrix} 0, 0, 0, -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \\ x_1, x_2, x_3, x_4 & \geq 0 \end{aligned}$$

Inputs for Problem 1

```
$IN
EPS = 1.E-10,
FLAG = .FALSE.,
OBJ = 10*0.,
N = 4.,
NCON = 4,
NUNC = 0,
NINEQ = 0,
NINV = 2000,
ITMAX = 100,
Q(1,1) = 1.,0.,6.,1.,
Q(1,2) = 0.,4.,6.,4.,
Q(1,3) = 6.,6.,61.,12.,
Q(1,4) = 1.,4.,12.,100.,
OBJ = 0.,0.,0.,-1.,
C = 0.,
VALUE = 1.,
IND = 1,2,3,4,
$END
```

One notes that the sign constraints are entered implicitly and are the only constraints.

Outputs:

\$OUT

N = 4,
 NCON = 4,
 NUNC = 0,
 NINEQ = 0,
 NEQ = 0,
 NINV = 2000,
 ITMAX = 100,
 ITER = 1,
 IERR = 0,
 C = 0.0,
 VALUE = -5E-02,

\$END

Q

.1000E+01	0.	.6000E+01	.1000E+01
0.	.4000E+01	.6000E+01	.4000E+01
.6000E+01	.6000E+01	.6100E+02	.1200E+02
.1000E+01	.4000E+01	.1200E+02	.1000E+03

P

0.	0.	0.	-.1000E+01
----	----	----	------------

X

0.	0.	0.	.1000E-01
----	----	----	-----------

Note only 1 iteration is required.

The following inputs solve the same problem, but x_1 and x_2 are implicitly constrained. x_3 and x_4 have explicit constraints in the A1 matrix.

Inputs:

\$IN
 EPS = 1.E-10,
 FLAG = .FALSE.,
 A1 = 300*0., A2 = 300*0., Q=900*0., OBJ = 30*0.,
 OBJ = 10*0,
 N = 6,
 NCON = 2,
 NUNC = 2,
 NINEQ = 2,
 NINV = 2000,
 ITMAX = 100,
 Q(1,1) = 1.,0.,6.,1.,

```

Q(1,2) = 0.,4.,6.,4.,
Q(1,3) = 6.,6.,61.,12.,
Q(1,4) = 1.,4.,12.,100.,
A1(1,1) = -1.,0.,0.,0.,
A1(1,2) = 0.,-1.,0.,0.,
A1(1,3) = 0.,0.,-1.,0.,
A1(1,4) = 0.,0.,0.,-1.,
OBJ = 0.,0.,0.,-1.,
C = 0.,
VALUE = 1.,
IND = 1,2,3,4,3,4,
$END

```

Output:

```

$OUT
N      = 6,
NCON   = 2,
NUNC   = 2,
NINEQ  = 2,
NEQ    = 0,
NINV   = 2000,
ITMAX  = 100,
ITER   = 3,
IERR   = 0,
C      = 0.0,
VALUE  = -.5E-02,
$END

```

Q

.1000E+01	0.	.6000E+01	.1000E+01
0.	.4000E+01	.6000E+01	.4000E+01
.6000E+01	.6000E+01	.6100E+02	.1200E+02
.1000E+01	.4000E+01	.1200E+02	.1000E+03

P

0.	0.	0.	-.1000E+01
----	----	----	------------

A1*X	B1	A1
------	----	----

0.	0.	0.	0.	-.1000E+01	0.
-.1000E-01	0.	0.	0.	0.	-.1000E+01

X

0.	0.	0.	.1000E-01
----	----	----	-----------

Note the solution is the same as the implicitly constrained example but this solution required 3 iterations instead of 1 the problem has increased in size

from $N = 4$ to $N = 6$ thus requiring additional storage.

If one wishes to continue in this vein, all sign constraints can be made explicit. The dimension of the problem becomes $N = 8$. The same solution now requires 7 iterations. The reader may verify this if desired.

Example 3

This is an example displaying the restart capabilities of the code. Since the Q matrix is the identity this is a constrained least squares problem of a particularly simple type. By following the directions in Appendix B the user can eliminate the need to store the identity matrix in memory.

This problem arises as a sub-problem of the feasible direction method. What is required is to find the direction of steepest descent subject to the binding constraints. The feasible direction method can at times require many constrained gradients to be calculated. The constraint matrix is usually full throughout the process but which constraints are binding depend on the given position where the constrained gradient is to be calculated.

This motivates the use of the linked list IND. First to indicate in the first N_1 positions the indices of the sign constrained variables. In the following N_2 positions the indices of sign unconstrained variables. Thus the variables need not be ordered constrained followed by unconstrained. The next M_1 positions of IND are filled with the row indices of the active inequality constraints and finally the last M_2 positions are filled by the indices of the active equality constraints.

Thus for the feasible direction method the full constraint matrix is formed once. Afterward only the row indices of the matrices must be manipulated to pass the current constraint set. Note the objective row containing the right hand side of the constraints must be reformed each time it changes.

The gradient projection problem can be stated:

$$\min_{\hat{g}} \frac{1}{2} \langle \hat{g} - g(x), \hat{g} - g(x) \rangle$$

where $g(x)$ is the gradient at x and \hat{g} is the constrained gradient.

Subject to

$$\hat{g}_i \geq 0 \text{ for all } x_i = 0$$

Maintaining x_i as non-negative

$$A_1 \hat{g} \leq 0$$

$$A_2 \hat{g} = 0$$

where for the gradient project problem A_1 and A_2 are the constraints matrices on K.

Inputs

```
$IN
EPS = 1.E-10
FLAG = .FALSE.,
C = 0.,
VALUE = 1.,
N = 26,
NCON = 12,
NUNC = 8,
NINEQ = 4,
NINV = 3000,
ITMAX = 100,
Q = 900 * 0.,
Q(1,1) = 1.,
Q(2,2) = 1.,
Q(3,3) = 1.,
Q(4,4) = 1.,
Q(5,5) = 1.,
Q(6,6) = 1.,
Q(7,7) = 1.,
Q(8,8) = 1.,
Q(9,9) = 1.,
Q(10,10) = 1.,
Q(11,11) = 1.,
Q(12,12) = 1.,
Q(13,13) = 1.,
Q(14,14) = 1.,
Q(15,15) = 1.,
Q(16,16) = 1.,
Q(17,17) = 1.,
Q(18,18) = 1.,
Q(19,19) = 1.,
Q(20,20) = 1.,
A1 = 300*0.,
A1(1,1) = 1.,
A1(1,2) = 1.,
A1(1,3) = 1.,
A1(1,4) = 0.,1.,
A1(1,5) = 0.,1.,
A1(1,6) = 0.,1.,
A1(1,11) = 2*0.,1.,
A1(1,12) = 2*0.,1.,
A1(1,13) = 2*0.,1.,
A1(1,14) = 3*0.,1.,
A1(1,15) = 3*0.,1.,
```

```
A1(1,16) = 3*0.,1.,
A2(1,1) = 300*0.,
A2(1,1) = 1.,
A2(1,2) = 1.,
A2(1,3) = 1.,
A2(1,4) = 1.,
A2(1,5) = 1.,
A2(1,6) = 1.,
A2(1,7) = 1.,
A2(1,8) = 1.,
A2(1,9) = 1.,
A2(1,10) = 1.,
A2(1,11) = 0.,1.,
A2(1,12) = 0.,1.,
A2(1,13) = 0.,1.,
A2(1,14) = 0.,1.,
A2(1,15) = 0.,1.,
A2(1,16) = 0.,1.,
A2(1,17) = 0.,1.,
A2(1,18) = 0.,1.,
A2(1,19) = 0.,1.,
A2(1,20) = 0.,1.,
OBJ = -1.,-.566,-.8187,-.9927,-.8187,-.8187,-.8047,-.7800,-.9643,
      -.7701,-.0659,-.0221,-.0130,-.0667,-.0158,-.0043,14*0.,
IND = 2,3,5,6,8,10,11,12,13,18,19,20,1,4,7,9,14,15,16,17,1,2,3,4,1,2,
$END
```

NSWC TR 82-30

Outputs:

SOUT	$\approx 26^\circ$
N	$\approx 12^\circ$
NCOUN	$\approx 8^\circ$
NUNC	$\approx 4^\circ$
NINEQ	$\approx 2^\circ$
NEU	$\approx 3000^\circ$
NINV	$\approx 100^\circ$
ITMAX	$\approx 26^\circ$
ITER	$\approx 0.0^\circ$
C	$\approx 0.0^\circ$

The figure consists of a 7x7 grid of small plots, each showing the evolution of a variable over time. The y-axis for all plots is logarithmic, with major ticks at 1.000E-01, 1.000E+00, 1.000E+01, 1.000E+02, and 1.000E+03. The x-axis represents time, with labels at 0.0000t+01, 1.000t+01, 1.0000t+01, 1.0000t+01, 1.0000t+01, 1.0000t+01, and 1.0000t+01. The plots show a general upward trend in the variable over time.

Outputs Continued:

Note the constraint matrices. The unequality constraints are groups of three consecutive variables. The equality constraints are groups of ten consecutive variables. Also 26 iterations were required to determine the solution.

This next problem is identical to the previous but instead of using the permutation indice the matrices have been reformed. Sign constrained variables have been ordered first followed by sign unconstrained variables.

If this must be done many times for a given constraint tableau one can see a considerable work would be required. Also ITMAX has been set to 5.

Inputs:

\$IN

```
EPS = 1.E-10,
FLAG = .FALSE.,
IND = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,1,2,
C = 0.,
VALUE = 1.,
N = 26,
NCON = 12,
NUNC = 8,
NINEQ = 4,
NINV = 3000,
ITMAX = 5,
Q = 900 * 0.,
Q(1,1) = 1.,
Q(2,2) = 1.,
Q(3,3) = 1.,
Q(4,4) = 1.,
Q(5,5) = 1.,
Q(6,6) = 1.,
Q(7,7) = 1.,
Q(8,8) = 1.,
Q(9,9) = 1.,
Q(10,10) = 1.,
Q(11,11) = 1.,
Q(12,12) = 1.,
Q(13,13) = 1.,
Q(14,14) = 1.,
Q(15,15) = 1.,
Q(16,16) = 1.,
Q(17,17) = 1.,
Q(18,18) = 1.,
Q(19,19) = 1.,
Q(20,20) = 1.,
A1 = 300*0.,
A1(1,1) = 1.,
A1(1,2) = 1.,
A1(1,3) = 0.,1.,
```

NSWC TR 82-30

```
A1(1,4) = 0.,1.,
A1(1,7) = 2*0.,1.,
A1(1,8) = 2*0.,1.,
A1(1,9) = 2*0.,1.,
A1(1,13) = 1.,
A1(1,14) = 0.,1.,
A1(1,17) = 3*0.,1.,
A1(1,18) = 3*0.,1.,
A1(1,19) = 3*0.,0.,
A2(1,1) = 300*0.,
A2(1,1) = 1.,
A2(1,2) = 1.,
A2(1,3) = 1.,
A2(1,4) = 1.,
A2(1,5) = 1.,
A2(1,6) = 1.,
A2(1,7) = 0.,1.,
A2(1,8) = 0.,1.,
A2(1,9) = 0.,1.,
A2(1,10) = 0.,1.,
A2(1,11) = 0.,1.,
A2(1,12) = 0.,1.,
A2(1,13) = 1.,
A2(1,14) = 1.,
A2(1,15) = 1.,
A2(1,16) = 1.,
A2(1,17) = 0.,1.,
A2(1,18) = 0.,1.,
A2(1,19) = 0.,1.,
A2(1,20) = 0.,1.,
OBJ = -.8566,-.8187,-.8187,-.8187,-.78,-.7701,-.0659,-.0221,-.0130,
      3*0.,-1.,-.9927,-.8047,-.9643,-.0667,-.0158,-.0043,11*0.,
$END
```

NSWC TR 82-30

Dut puts:

Output Cont inued:

NSWC TR 82-30

Note IERR returns equal to 2 indicating the iteration limit has been reached.
To continue we call WOLFQP changing MAXIT to 100. No other change is necessary.

Inputs:

```
$IN
EPS = 1.E-10,
FLAG = .TRUE.,
IND = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,1,2,
C = 0.,
VALUE = 1.,
N = 26,
NCON = 12,
NUNC = 8,
NINEQ = 4,
NINV = 3000,
ITMAX = 100,
Q = 900 * 0.,
Q(1,1) = 1.,
Q(2,2) = 1.,
Q(3,3) = 1.,
Q(4,4) = 1.,
Q(5,5) = 1.,
Q(6,6) = 1.,
Q(7,7) = 1.,
Q(8,8) = 1.,
Q(9,9) = 1.,
Q(10,10) = 1.,
Q(11,11) = 1.,
Q(12,12) = 1.,
Q(13,13) = 1.,
Q(14,14) = 1.,
Q(15,15) = 1.,
Q(16,16) = 1.,
Q(17,17) = 1.,
Q(18,18) = 1.,
Q(19,19) = 1.,
Q(20,20) = 1.,
A1 = 300*0.,
A1(1,1) = 1.,
A1(1,2) = 1.,
A1(1,3) = 0.,1.,
A1(1,4) = 0.,1.,
A1(1,7) = 2*0.,1.,
A1(1,8) = 2*0.,1.,
A1(1,9) = 2*0.,1.,
A1(1,13) = 1.,
A1(1,14) = 0.,1.,
A1(1,17) = 3*0.,1.,
A1(1,18) = 3*0.,1.,
A1(1,19) = 3*0.,1.,
A2(1,1) = 300*0.,
A2(1,1) = 1.,
```

A2(1,2) = 1.,
A2(1,3) = 1.,
A2(1,4) = 1.,
A2(1,5) = 1.,
A2(1,6) = 1.,
A2(1,7) = 0.,1.,
A2(1,8) = 0.,1.,
A2(1,9) = 0.,1.,
A2(1,10) = 0.,1.,
A2(1,11) = 0.,1.,
A2(1,12) = 0.,1.,
A2(1,13) = 1.,
A2(1,14) = 1.,
A2(1,15) = 1.,
A2(1,16) = 1.,
A2(1,17) = 0.,1.,
A2(1,18) = 0.,1.,
A2(1,19) = 0.,1.,
A2(1,20) = 0.,1.,
OBJ = -.8566,-.8187,-.8187,-.78,-.7701,-.0659,-.0221,-.0130,
3*0.,-1.,-.9927,-.8047,-.9643,-.0667,-.0158,-.0043,11*0.,
END

NSWC TR 82-30

TOUT
 N = 26.
 NCUN = 12.
 NUNC = 6.
 NINEU = 4.
 NEQ = 2.
 NINV = 3000.
 ITMAX = 100.
 ITEM = 16.
 ItemH = 0.
 C = 0.0.
 VALUE = -7470843333331E-02.
 SEND Q

After unscrambling the output so that it corresponds to the first problem of this example set one can see the answers are the same.

Example 4

Example 3 illustrated a constrained least-squares problem which consisted of finding a Euclidean projection onto a cone. More general least-squares approximation problems lead, by the same algebraic manipulations which yield the normal equations, to quadratic minimization problems with the Q - matrix not equal to the identity.

Given k values H_1, \dots, H_k , we wish to find n values x_1, \dots, x_n which minimize $\frac{1}{2} \sum_{i=1}^k h_i^2$ where $h_i = \sum_{j=1}^n C_{ij} x_j - H_i$, the i-th residual, subject to upper and lower bounds on the variables x_j , $j=1, \dots, n$. In matrix terms we can define a vector residual $h = CX - H$, where C is $k \times n$. Expanding the quadratic gives us the problem:

$$\text{minimize } \frac{1}{2} x^T (C^T C) x - (H^T C) x + \frac{1}{2} H^T H$$

$$\text{subject to } \begin{bmatrix} I \\ -I \end{bmatrix} x \leq \begin{bmatrix} u \\ -l \end{bmatrix}$$

where u and l are vectors of upper and lower bounds. Here $C^T C$ corresponds to Q , $-H^T C$ to p and $\frac{1}{2} H^T H$ to C . (More general linear constraints could also be used.)

The following example, for which we are indebted to George Gray of E22, NSWC, treats the approximation of a given magnetic field. The original data, unscaled, make all the Q-matrix entries very small ($\sim 10^{-12}$). Since values less than EPS1 in magnitude are set to zero in the tableau calculations, we must ensure that EPS1 is small enough to ensure that no significant Q - matrix entries are zeroed. We present three cases, one with $\text{EPS1} = 10^{-10}$ (which bombs), one with $\text{EPS1} = 0$, and one with $\text{EPS1} = 10^{-10}$ but with the data rescaled (x divided by 10^6 , C multiplied by 10^6) so that this difficulty does not arise.

Example 4, Case 1
Inputs:

```

SIN
EPS = 1.E-10,
N = 27,
NCUN = 0,
NUCN = 9,
NINEQ = 18,
NIWV = 200,
FLAG = "FALSE",
IMAX = 200,
VALUE = 1.,
C = 1065.7777,
IND = 123.3445.678.9+1.23.45.6.7.8.9.10.11.12.13.14.15.16.17.18.
OBJ = 2.293260445.5.2.76572302E-6,-2.179388535E-5,-3.783683192E-5,
-3.79912681E-5,-4.532612771E-5,-4.154215575E-5,-1.86391216E-5,
1.288575819E-5.3.10621E+8.88499E-6.13.0600E-6.6.1.625537+7,
1.9137.7.1.7781.7.1.65675.7.1.7075E-6.5.80300E-6,
-1.0051E-6,-2.82833E+6.4.35334E+0,-5.4.186E+0,-6.3678E+7,-.59270E+7,
-5525.7,-4.2525E-6,-1.9343E+6,
Q = 8.706679319E-12+3.2939667558E-13,-2.362473067E-12,-1.102176011E-12,
-4.77248319E-13,-1.9716935E-13,-8.30622389E-14,-4.3252662E-14,-2.29156193E-14,
Q(1,2) = 3.2939667558E-13,7.496769556E-12,3.640486738E-13,-2.343175479E-12,
-1.17408002E-12,-4.73843526E-13,-1.956924747E-13,-8.002831699E-14,-4.324526662E-14,
Q(1,3) = -2.362473067E-12,3.640488738E-13,8.38498621E-12,5.172899E-13,-2.399273365E-12,
-1.180883408E-12,-4.725728139E-13,-1.956923747E-13,-8.630662389E-14,
Q(1,4) = -1.182179011E-12,-2.343175479E-12,5.172899E-13,8.56586882E-12,3.484107527E-13,
-2.3676544E-12,-1.180883408E-12,-7.3863352E-13,-1.9169938E-13,
Q(1,5) = -4.737249319E-13,-1.17408002E-12,-3.39273365E-12,3.48410527E-13,7.46775672E-12,
3.484107521E-13,-2.339273365E-12,-3.39273365E-12,-3.48410527E-13,
Q(1,6) = -1.9169335E-13,-4.73843526E-13,-1.180883408E-12,-2.39276544E-12,3.484107527E-13,
Q(1,7) = -8.630666389E-14,-1.956924747E-13,-4.725728139E-13,-1.100883408E-12,-2.339273365E-12,
2.51128094E-13,0.384986211E-12,3.640488738E-13,-2.362473067E-12,
Q(1,8) = -4.324526662E-14,-8.602831499E-14,-1.956924747E-13,-4.738498621E-12,-3.293987558E-13,
-2.343175479E-12,3.640488738E-13,7.49676956E-12,3.293987558E-13,
Q(1,9) = -2.9156193E-14,-3.24526662E-14,-8.830662389E-14,-1.7169935E-13,-4.737248319E-12,
-1.182179011E-12,-2.362473067E-12,3.293967558E-13,8.700679319E-12,
A1 = 6000.,
A1(1,1) = 1.,
A1(2,2) = 1.,
A1(3,3) = 1.,
A1(4,4) = 1.,
A1(5,5) = 1.,
A1(6,6) = 1.,
A1(7,7) = 1.,
A1(8,8) = 1.,
A1(9,9) = 1.,
A1(10,10) = 1.,
A1(11,11) = 1.,
A1(12,12) = 1.,
A1(13,13) = 1.,
A1(14,14) = 1.,
A1(15,15) = 1.,
A1(16,16) = 1.,
A1(17,17) = 1.,
A1(18,18) = 1.,
SEND

```

NSWC TR 82-30

Example 4, Case 1
Outputs:

ABOUT

SCOUT **ICON** **UNC** **VIEW** **HEQ** **INV** **ITMAX** **ITER** **IERR** **C** **VALUE** **SEND**

NSWC TR 82-30

Example 4, Case 1 Outputs Cont.::

Example 4, Case 2
Inputs:

```

SIN      EPS = 0.0
N = 27,
NCON = 0,
NUNC = 9,
NINEQ = 18,
NINV = 200,
FLAG = .FALSE.,
TIMAX = 200.
VALUE = 1.0
C = 1065.777.
IND = 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
OBJ = 2.2934604E-5*2.765142302E-6,-2.179388555E-5,-3.785483192E-5,
-3.73901268165E-5,-4.532212771E-5,-4.156215575E-5,-1.86391216E-5,
1.286575818E-5,3.16621556,8.48499E-6,11.06100E-6,1.611.62557E-7,
1.91037E-11.1.77811.7,1.65675E-7,1.275075E-6,5.90300E-6,
-1.050505E-6,-2.82333E-6,-1.36334E-6,-5.4186E-7,-6.63678E-7,-5.92707E-7,
-5.52255E-7,-4.23525E-6,-1.93335E-6,
0 = 8.706619319E-12,-0.293667558E-13,-2.362473067E-12,-1.182174011E-12,
-4.737248319E-13,-1.97169935E-13,-8.8306662369E-14,-4.124526662E-14,-2.291560193E-14,
Q(1,1) = 3.293987558E-13,7.49676956E-12,3.640088738E-13,-2.343175A79E-12,
-1.17408002E-12,-4.73845352E-13,-1.95692474E-13,-8.802831499E-14,-4.324526662E-14,
Q(1,3) = -2.362273067E-12,3.640488738E-13,8.38958621E-12,2.517128094E-13,-2.339273365E-12,
Q(1,4) = -1.18217901E-12,-2.343175419E-12,-2.51112809E-13,8.563588012E-12,3.48410527E-13,
-2.36276544E-12,-1.18083408E-12,-4.73845352E-13,-1.37169355E-13,
Q(1,5) = -4.737248319E-13,-4.339273365E-12,-1.174080021E-12,-2.339273365E-12,3.467745672E-12,
Q(1,6) = -1.97169935E-13,-4.73845352E-13,-1.18083408E-12,-2.36276544E-12,3.484107527E-13,
Q(1,7) = -8.830662389E-14,-1.95692474E-13,-4.125729139E-13,-2.362473067E-12,
Q(1,8) = -2.517120094E-13,8.38496211E-12,3.640088738E-13,-2.362473067E-12,
-2.343175419E-12,3.640488738E-14,-8.802831499E-14,-1.95692474E-13,-4.73845352E-13,-1.174080021E-12,
Q(1,9) = -2.291560193E-14,-4.324526662E-14,-8.830662389E-14,-1.97169935E-13,-4.737248319E-13,
A1 = 600.0.,
A1(1,1) = 1.0
A1(1,2) = 1.0
A1(1,3) = 1.0
A1(1,4) = 1.0
A1(1,5) = 1.0
A1(1,6) = 1.0
A1(1,7) = 1.0
A1(1,8) = 1.0
A1(1,9) = 1.0
A1(10,1) = -1.0
A1(11,2) = -1.0
A1(12,3) = -1.0
A1(13,4) = -1.0
A1(14,5) = -1.0
A1(15,6) = -1.0
A1(16,7) = -1.0
A1(17,8) = -1.0
A1(18,9) = -1.0
SEND

```

Example 4, Case 2

Outputs:

SOUT

```

N      = 27,
NCN    = 0,
NUNC   = 9,
NINEQ  = 16,
NEQ    = 0,
NINV   = 200,
ITMAX  = 200,
ITER   = 12,
IERR   = 0,
C      = .10657777E+04,
VALUE  = .7597274307163E+01,
SEND

```

SEND

A

.8707E-11	*3294E-12	-*2362E-11	*1102E-11	*737E-12	-*1972E-12	*8631E-13	*4325E-13	-*2292E-13
*3294E-12	.797E-11	-*1174E-11	-*1174E-11	-*738E-12	-*197E-12	*8803E-13	*435E-13	-*8831E-13
*2362E-11	.3640E-12	*2303E-11	-*2303E-11	-*1161E-11	-*1161E-11	*1957E-12	*1957E-12	-*1957E-12
.3640E-12	*8385E-11	*2517E-12	-*2339E-11	-*2363E-11	-*1181E-11	-*1181E-12	-*1181E-12	-*1181E-12
*2339E-11	.3640E-12	*8564E-11	*3484E-12	*3484E-12	*3484E-12	-*1174E-11	-*1174E-11	-*1174E-11
*4737E-12	-*1174E-11	*2339E-11	*7468E-12	*7468E-12	*7468E-12	-*2319E-11	-*2319E-11	-*2319E-11
-*1174E-11	-*4737E-12	-*1161E-11	*2363E-11	*2363E-11	*2363E-11	-*2517E-12	-*2517E-12	-*2517E-12
-*1161E-11	-*4737E-12	-*1181E-11	-*1181E-11	-*1181E-11	-*1181E-11	-*3640E-12	-*3640E-12	-*3640E-12
-*1181E-11	-*4737E-12	-*1957E-12	-*4738E-12	-*4738E-12	-*4738E-12	*3294E-12	*3294E-12	*3294E-12
-*1957E-12	-*4737E-13	-*8803E-13	-*8803E-13	-*8803E-13	-*8803E-13	-*1182E-11	-*1182E-11	-*1182E-11
-*8803E-13	-*4325E-13	-*2292E-13	-*4325E-13	-*4325E-13	-*4325E-13	-*1182E-11	-*1182E-11	-*1182E-11

B

.2766E-04	*2766E-05	-*2179E-04	-*3785E-04	-*3739E-04	-*4154E-04	-*4154E-04	-*1864E-04	*1287E-04
A1*x	B1	A1						
*2112E+07	*3166E+07	*1000E+01	0.	0.	0.	0.	0.	0.
*5657E+07	*6485E+07	0.	*1000E+01	0.	0.	0.	0.	0.
*1070E+07	*1306E+08	0.	0.	*1000E+01	0.	0.	0.	0.
*1084E+08	*1626E+08	0.	0.	0.	*1000E+01	0.	0.	0.
*1274E+08	*1910E+08	0.	0.	0.	0.	*1000E+01	0.	0.
*1485E+08	*1657E+08	0.	0.	0.	0.	0.	*1000E+01	0.
*1105E+08	*1275E+08	0.	0.	0.	0.	0.	0.	*1000E+01
*8470E+07	*5803E+07	0.	0.	0.	0.	0.	0.	0.
*2112E+07	-*1051E+07	-*1000E+01	0.	0.	0.	0.	0.	0.
*5657E+07	-*2828E+07	0.	-*1000E+01	0.	0.	0.	0.	0.
*1070E+07	-*4353E+07	0.	0.	*1000E+01	0.	0.	0.	0.
-*1070E+09	-*5419E+07	0.	0.	0.	-*1000E+01	0.	0.	0.
*1274E+08	-*6368E+07	0.	0.	0.	0.	*1000E+01	0.	0.
*1105E+08	-*5927E+07	0.	0.	0.	0.	0.	*1000E+01	0.
*1105E+08	-*5523E+07	0.	0.	0.	0.	0.	0.	*1000E+01
*8470E+07	-*1235E+07	0.	0.	0.	0.	0.	0.	0.
*3863E+07	-*1334E+07	0.	0.	0.	0.	0.	0.	0.

P

*2293E-04								
A1*x	B1	A1						
*2112E+07	*3166E+07	*1000E+01	0.	0.	0.	0.	0.	0.
*5657E+07	*6485E+07	0.	*1000E+01	0.	0.	0.	0.	0.
*1070E+07	*1306E+08	0.	0.	*1000E+01	0.	0.	0.	0.
*1084E+08	*1626E+08	0.	0.	0.	*1000E+01	0.	0.	0.
*1274E+08	*1910E+08	0.	0.	0.	0.	*1000E+01	0.	0.
*1485E+08	*1657E+08	0.	0.	0.	0.	0.	*1000E+01	0.
*1105E+08	*1275E+08	0.	0.	0.	0.	0.	0.	*1000E+01
*8470E+07	*5803E+07	0.	0.	0.	0.	0.	0.	0.
*2112E+07	-*1051E+07	-*1000E+01	0.	0.	0.	0.	0.	0.
*5657E+07	-*2828E+07	0.	-*1000E+01	0.	0.	0.	0.	0.
*1070E+07	-*4353E+07	0.	0.	*1000E+01	0.	0.	0.	0.
-*1070E+09	-*5419E+07	0.	0.	0.	-*1000E+01	0.	0.	0.
*1274E+08	-*6368E+07	0.	0.	0.	0.	*1000E+01	0.	0.
*1105E+08	-*5927E+07	0.	0.	0.	0.	0.	*1000E+01	0.
*1105E+08	-*5523E+07	0.	0.	0.	0.	0.	0.	*1000E+01
*8470E+07	-*1235E+07	0.	0.	0.	0.	0.	0.	0.
*3863E+07	-*1334E+07	0.	0.	0.	0.	0.	0.	0.

Example 4, Case 2 Outputs Cont.:

NSWC TR 82-30

X	$2.112E+07$	$.5657E+07$	$.8107E+07$	$.10845E+08$	$.1274E+08$	$.1185E+08$	$.1116E+08$	$.10845E+08$	$.1055E+08$	$.1047E+07$	$.3869E+07$
---	-------------	-------------	-------------	--------------	-------------	-------------	-------------	--------------	-------------	-------------	-------------

Example 4, Case 3
Inputs:

Example 4, Case 3 Outputs Cont.:

100,000,000
100,000,000

REFERENCES

1. J. W. Wingate, LINOPT, A FORTRAN Routine for Solving Linear Programming Problems, NSWC TR 80-413
2. P. Wolfe, The Simplex Method for Quadratic Programming, *Econometrica* v.27 pp. 382-298 (1959)
3. G. Zoutendijk, Methods of Feasible Directions, Elsevier, Amsterdam, 1960

NSWC TR 82-30

APPENDIX A

LISTING

```

1      13/14   (nrl=1          F IN 4.04452          UC/UL/CB, 14.3444d    PAGE 1
1      SUBROUTINE MULFRUP(A1,A2,B1,B2,I,NCON,NCUN,NCMC,NMUL)
1      C
1      C-----QUADRATIC PROGRAMMING BY MULFRUP METHOD
1      C
1      C DETERMINE A VECTOR OR UNKNOWN X WHICH
1      C
1      C MINIMIZE  $\frac{1}{2}x^T A x + b^T x + c$ 
1      C
1      C SUCH THAT
1      C
1      C     A1 * X <= B1
1      C
1      C     A2 * X = B2
1      C
1      C ELEMENTS OF THE VECTOR X CAN HAVE NON-NEGATIVITY CONSTRAINTS
1      C IMPLICITLY HANDLED USING IML, NCUN, AND NMC (SET TEXT
1      C FOLLOWING).  THIS
1      C
1      C      NMUL(I) >= 0.      I = 1...NCON
1      C      X(IND(I)) UNCONSTRAINED IN SIGN      I = NCUN+1...NCON+NUNC
1      C WHERE NCUN IS THE NUMBER OF SIGN CONSTRAINED VARIABLES AND
1      C NMUL IS THE NUMBER OF FREE VARIABLES.
1      C
1      C-----INPUTS--THE FOLLOWING VARIABLES AND ARRAYS MUST BE DEFINED ON
1      C ENTR Y
1      C IPASS  INIT OF ARRAY CONTAINING SCALAR VARIABLES DEFINING
1      C THE PROBLEM.
1      C IPASS(1)  N  THE DIMENSION OF THE PROBLEM (NUMBER OF
1      C           * DIMENSION(I)).  DIMENSION(1)=1.
1      C IPASS(2)  IMAX  THE MAXIMUM NUMBER OF ITERATIONS USEABLE.
1      C IPASS(3)  NCUN  THE NUMBER OF SIGN CONSTRAINED VARIABLES.
1      C IPASS(4)  NMUC  THE NUMBER OF UNCONSTRAINED IN SIGN VARIABLE
1      C           NMUL  THE NUMBER OF INEQUALITY CONSTRAINTS.
1      C IPASS(5)  NMUL  THE NUMBER OF ITERATIONS ALLOWED
1      C IPASS(6)  NMUL  THE NUMBER OF ITERATIONS TO CONTROL ROUND-OFF.
1      C IPASS(7)  NMUL  DECLARED NUM ITERATIONS IN Q.
1      C IPASS(8)  NMUL  UTILIZED NUM ITERATIONS OF AL.

```

```

      1374  IPASS(1)      IN 4.0E+52      62/1/28. 1.0E+46      FAULT
      60  C  IPASS(1)  NCNU  UNLACKED ROW DIMENSION OF A2.
      61  C  Q   REAL ARRAY CONTAINING A POSITIVE SEMI-DEFINIT
      62  C  MAtrIX CORRESPONDING TO THE QUADRATIC
      63  C  FUNCTION OF THE OBJECTIVE FUNCTION.
      64  C  A1  REAL ARRAY CONTAINING THE INEQUALITY CONSTRAINTS.
      65  C  AC  REAL ARRAY CONTAINING THE EQUALITY CONSTRAINTS.
      66  C  UB1  REAL ARRAY CONTAINING THE OBJECTIVE
      67  C  FUNCTION OF THE CORRESPONDING LINEAR
      68  C  PHISHAMMING PROBLEM.
      69  C  I   I
      70  C  UBJ = (P + Q + R)
      71  C  IND  INTEGER ARRAY USED TO ORDER X INTO SIGN
      72  C  CONSTRAINED AND SIGN UNCONSTRAINED PARTITIONS.
      73  C  ALSO USED TO INDEX WHICH ROWS OF THE CONSTRAINT
      74  C  MATRICES (A1, A2) ARE TO BE USED (IF ANY).
      75  C  THUS
      76  C  A(IND(I)) >= 0.  I = 1... NCUN
      77  C  X(IND(I))  FRET  I = NCUN+1... NCUN+NUNC
      78  C  SUM OVER I  A(IND(J)*K+1)*X(I) <= B1(J)
      79  C  K = NCUN + NUNC + 1... NINTQ
      80  C  SUM OVER I  A(IND(J)*K+1)*X(I) = B2(J)
      81  C  K = NCUN + NUNC + NINTQ - J + 1... N-K
      82  C
      83  C  NCALC  REAL SCALAR CONTAINING THE CONSTANT TERM
      84  C  OF THE QUADRATIC PROBLEM.
      85  C  VALU  ON INPUT IF QUADRATIC OBJECTIVE FUNCTION
      86  C  IS TO BE EVALUATED VALUE SHOULD BE SET NOT EQUAL
      87  C  TO ZERO. IF VALUE IS ZERO THE
      88  C  QUADRATIC OBJECTIVE FUNCTION IS
      89  C  NOT EVALUATED.
      90  C  FLAG  LOGICAL VARIABLE. ON INITIAL CALL TO WOLFUP THIS
      91  C  VARIABLE MUST BE FALSE. IT IS USED IF WOLFUP IS
      92  C  RECALLED AND THE TABLEAU IS NOT TO BE RESET. IF
      93  C  THE ITERATION LIMIT HAS BEEN REACHED PREVIOUSLY
      94  C  WOLFUP CAN BE RECALLED WITH THE FLAG SET TO TRUE.
      95  C  NO OTHER CHANGE IS NECESSARY UN ADVISED.
      96  C  COMPUTATION BEGINS WHERE PREVIOUS ITERATIONS
      97  C  STOPPED. THE ITERATION COUNTER IS RESET TO ZERO.
      98  C
      99  C  EPS1  REAL SCALAR. THIS VARIABLE REPRESENTS ZERO
      100 C  TOLERANCE. CONSTRAINT VARIATIONS ON TABLEAU
      101 C  ENTRIES LESS THAN OR EQUAL TO EPS ARE IGNORED.
      102 C
      103 C  OUTPUTS--THE FOLLOWING VARIABLES AND ARRAYS ARE DEFINED
      104 C  ON REDEFINITION ON EXIT.
      105 C  IPASS(1) ITEM NUMBER OF ITERATIONS COMPLETED DURING
      106 C
      107 C
      108 C
      109 C
      110 C
      111 C
      112 C
      113 C

```

PAGE 3

4/2/82 14:34:48

FIN 4.06.452

4/2/82 14:34:48

115 C THE CURRENT CALL TO WOLF UP.

116 C IMASS(4) 16H EMMH INDICATOR

117 C 0 --UP TIMUM FOUND

118 C 1 --INCONSISTENT CONSTRAINTS

119 C 2 --ITERATION LIMIT REACHED

120 C 3 --INVERSION FAILED(UAD INITIAL BASIS)

121 C 4.L--+ ALGO TO SOLVE QUADRATIC PROBLEM

122 C HFASUN FUD FAILSAFE IS DUE TO EMMH L

123 C WOLF UP

124 C WOLF UP

125 C WOLF UP

126 C WOLF UP

127 C WOLF UP

128 C WOLF UP

129 C WOLF UP

130 C WOLF UP

131 C WOLF UP

132 C WOLF UP

133 C WOLF UP

134 C WOLF UP

135 C WOLF UP

136 C WOLF UP

137 C WOLF UP

138 C WOLF UP

139 C WOLF UP

140 C WOLF UP

141 C WOLF UP

142 C WOLF UP

143 C WOLF UP

144 C WOLF UP

145 C WOLF UP

146 C WOLF UP

147 C WOLF UP

148 C WOLF UP

149 C WOLF UP

150 C WOLF UP

151 C WOLF UP

152 C WOLF UP

153 C WOLF UP

154 C WOLF UP

155 C WOLF UP

156 C WOLF UP

157 C WOLF UP

158 C WOLF UP

159 C WOLF UP

160 C WOLF UP

161 C WOLF UP

162 C WOLF UP

163 C WOLF UP

164 C (H,A,L) WOLF UP

165 C (H,A,L) WOLF UP

166 C WOLF UP

167 C (INIT,EH) WOLF UP

168 C WOLF UP

169 C WOLF UP

170 C WOLF UP

171 C

172 C

173 C

174 C

175 C

176 C

177 C

178 C

179 C

180 C

181 C

182 C

183 C

184 C

185 C

186 C

187 C

188 C

189 C

190 C

191 C

192 C

193 C

194 C

195 C

196 C

197 C

198 C

199 C

200 C

201 C

202 C

203 C

204 C

205 C

206 C

207 C

208 C

209 C

210 C

211 C

212 C

213 C

214 C

215 C

216 C

217 C

218 C

219 C

220 C

221 C

222 C

223 C

224 C

225 C

226 C

227 C

228 C

229 C

230 C

231 C

232 C

233 C

234 C

235 C

236 C

237 C

238 C

239 C

240 C

241 C

242 C

243 C

244 C

245 C

246 C

247 C

248 C

249 C

250 C

251 C

252 C

253 C

254 C

255 C

256 C

257 C

258 C

259 C

260 C

261 C

262 C

263 C

264 C

265 C

266 C

267 C

268 C

269 C

270 C

271 C

272 C

273 C

274 C

275 C

276 C

277 C

278 C

279 C

280 C

281 C

282 C

283 C

284 C

285 C

286 C

287 C

288 C

289 C

290 C

291 C

292 C

293 C

294 C

295 C

296 C

297 C

298 C

299 C

300 C

301 C

302 C

303 C

304 C

305 C

306 C

307 C

308 C

309 C

310 C

311 C

312 C

313 C

314 C

315 C

316 C

317 C

318 C

319 C

320 C

321 C

322 C

323 C

324 C

325 C

326 C

327 C

328 C

329 C

330 C

331 C

332 C

333 C

334 C

335 C

336 C

337 C

338 C

339 C

340 C

341 C

342 C

343 C

344 C

345 C

346 C

347 C

348 C

349 C

350 C

351 C

352 C

353 C

354 C

355 C

356 C

357 C

358 C

359 C

360 C

361 C

362 C

363 C

364 C

365 C

366 C

367 C

368 C

369 C

370 C

371 C

372 C

373 C

374 C

375 C

376 C

377 C

378 C

379 C

380 C

381 C

382 C

383 C

384 C

385 C

386 C

387 C

388 C

389 C

390 C

391 C

392 C

393 C

394 C

395 C

396 C

397 C

398 C

399 C

400 C

401 C

402 C

403 C

404 C

405 C

406 C

407 C

408 C

409 C

410 C

411 C

412 C

413 C

414 C

415 C

416 C

417 C

418 C

419 C

420 C

421 C

422 C

423 C

424 C

425 C

426 C

427 C

428 C

429 C

430 C

431 C

432 C

433 C

434 C

435 C

436 C

437 C

438 C

439 C

440 C

441 C

442 C

443 C

444 C

445 C

446 C

447 C

448 C

449 C

450 C

451 C

452 C

453 C

454 C

455 C

456 C

457 C

458 C

459 C

460 C

461 C

462 C

463 C

464 C

465 C

466 C

467 C

468 C

469 C

470 C

471 C

472 C

473 C

474 C

475 C

476 C

477 C

478 C

479 C

480 C

481 C

482 C

483 C

484 C

485 C

486 C

487 C

488 C

489 C

490 C

491 C

492 C

493 C

494 C

495 C

496 C

497 C

498 C

499 C

500 C

501 C

502 C

503 C

504 C

505 C

506 C

507 C

508 C

509 C

510 C

511 C

512 C

513 C

514 C

515 C

516 C

517 C

518 C

519 C

520 C

521 C

522 C

523 C

524 C

525 C

526 C

527 C

528 C

529 C

530 C

531 C

532 C

533 C

534 C

535 C

536 C

537 C

538 C

539 C

540 C

541 C

542 C

543 C

544 C

545 C

546 C

547 C

548 C

549 C

550 C

551 C

552 C

553 C

554 C

555 C

556 C

557 C

558 C

559 C

560 C

561 C

562 C

563 C

564 C

565 C

566 C

567 C

568 C

569 C

570 C

571 C

572 C

573 C

574 C

575 C

576 C

577 C

578 C

579 C

580 C

581 C

582 C

583 C

584 C

585 C

586 C

587 C

588 C

589 C

590 C

591 C

592 C

593 C

594 C

595 C

596 C

597 C

598 C

599 C

600 C

601 C

602 C

603 C

604 C

605 C

606 C

607 C

608 C

609 C

610 C

611 C

612 C

613 C

614 C

615 C

616 C

617 C

618 C

619 C

620 C

621 C

622 C

623 C

624 C

625 C

626 C

627 C

628 C

629 C

630 C

631 C

632 C

633 C

634 C

635 C

636 C

637 C

638 C

639 C

640 C

641 C

642 C

643 C

644 C

645 C

646 C

647 C

648 C

649 C

650 C

651 C

652 C

653 C

654 C

655 C

656 C

657 C

658 C

659 C

660 C

661 C

662 C

663 C

664 C

665 C

666 C

667 C

668 C

669 C

670 C

671 C

672 C

673 C

674 C

675 C

676 C

677 C

678 C

679 C

680 C

681 C

682 C

683 C

684 C

685 C

686 C

687 C

688 C

689 C

690 C

691 C

692 C

693 C

694 C

695 C

696 C

697 C

698 C

699 C

700 C

701 C

702 C

703 C

704 C

705 C

706 C

707 C

708 C

709 C

710 C

711 C

712 C

713 C

714 C

715 C

716 C

717 C

718 C

719 C

720 C

721 C

722 C

723 C

724 C

725 C

726 C

727 C

728 C

729 C

730 C

731 C

732 C

733 C

734 C

735 C

736 C

737 C

738 C

739 C

740 C

741 C

742 C

743 C

744 C

745 C

746 C

747 C

748 C

749 C

750 C

751 C

752 C

753 C

754 C

755 C

756 C

757 C

758 C

759 C

760 C

761 C

762 C

763 C

764 C

765 C

766 C

767 C

768 C

769 C

770 C

771 C

772 C

773 C

774 C

775 C

776 C

777 C

778 C

779 C

780 C

781 C

782 C

783 C

784 C

785 C

786 C

787 C

788 C

789 C

790 C

791 C

792 C

793 C

794 C

795 C

796 C

797 C

798 C

799 C

800 C

801 C

802 C

803 C

804 C

805 C

806 C

807 C

808 C

809 C

810 C

811 C

812 C

813 C

814 C

815 C

816 C

817 C

818 C

819 C

820 C

821 C

822 C

823 C

824 C

825 C

826 C

827 C

828 C

829 C

830 C

831 C

832 C

833 C

834 C

835 C

836 C

837 C

838 C

839 C

840 C

841 C

842 C

843 C

844 C

845 C

846 C

847 C

848 C

849 C

850 C

851 C

852 C

853 C

854 C

855 C

856 C

857 C

858 C

859 C

860 C

861 C

862 C

863 C

864 C

865 C

866 C

867 C

868 C

869 C

870 C

871 C

872 C

873 C

874 C

875 C

876 C

877 C

878 C

879 C

880 C

881 C

882 C

883 C

884 C

885 C

886 C

887 C

888 C

889 C

890 C

891 C

892 C

893 C

894 C

895 C

896 C

897 C

898 C

899 C

900 C

901 C

902 C

903 C

904 C

905 C

906 C

907 C

908 C

909 C

910 C

911 C

912 C

913 C

914 C

915 C

916 C

917 C

918 C

919 C

920 C

921 C

922 C

923 C

924 C

925 C

926 C

927 C

928 C

929 C

930 C

931 C

932 C

933 C

934 C

935 C

936 C

937 C

938 C

939 C

940 C

941 C

942 C

943 C

944 C

945 C

946 C

947 C

948 C

949 C

950 C

951 C

952 C

953 C

954 C

955 C

956 C

957 C

958 C

959 C

960 C

961 C

962 C

963 C

964 C

965 C

966 C

967 C

968 C

969 C

970 C

971 C

972 C

973 C

974 C

975 C

976 C

977 C

978 C

979 C

980 C

981 C

982 C

983 C

984 C

985 C

986 C

987 C

988 C

989 C

990 C

991 C

992 C

993 C

994 C

995 C

996 C

997 C

998 C

999 C

1000 C

PAGE 6

SUBROUTINE WOLFUP	73 / 4	(P/I=1		FIN 4.06*452	B2/01/2B. 14.34.48

```

    TTEMP = 0.
    DO 130 J = 1, N
      TTEMP = TEMP + Q(I-J-1)*NUD+1)*SCH((P-J-1)*N)
      CONTINUE
      VALUE = VALUE + SCH(IP3-1+I*N)*(TTEMP/2. + UHJ(1))
      CONTINUE
      C      END
      C      END
      200 CONTINUE
      DO 210 J = 1, N
        Y(J) = SCR(IP3-1+J*N)
      210 CONTINUE
      220 CONTINUE
      IPASS(4) = IENH
      IPASS(3) = IIEH
      RETURN
      END
  
```

290 295 300

```

    TTEMP = 0.
    DO 130 J = 1, N
      TTEMP = TEMP + Q(I-J-1)*NUD+1)*SCH((P-J-1)*N)
      CONTINUE
      VALUE = VALUE + SCH(IP3-1+I*N)*(TTEMP/2. + UHJ(1))
      CONTINUE
      C      END
      C      END
      200 CONTINUE
      DO 210 J = 1, N
        Y(J) = SCR(IP3-1+J*N)
      210 CONTINUE
      220 CONTINUE
      IPASS(4) = IENH
      IPASS(3) = IIEH
      RETURN
      END
  
```

290 295 300

WOLFUP	276				
WOLFUP	277				
WOLFUP	278				
WOLFUP	280				
WOLFUP	281				
WOLFUP	282				
WOLFUP	283				
WOLFUP	284				
WOLFUP	285				
WOLFUP	286				
WOLFUP	287				
WOLFUP	288				
WOLFUP	289				
WOLFUP	290				
WOLFUP	291				
WOLFUP	292				

SYMBOLIC REFERENCE MAP (R=2)

ENTRY POINT	DEF LINE	REFERENCES			
4 WOLFUP	1				
VARIABLES	SN	TYPE	RELOCATION		
0 A1	HtAL	F.P.	HtFS	263	DEFINED 1
0 A2	HEAL	F.P.	HtFS	264	DEFINED 244
20 BIGM	HEAL	F.P.	HtFS	264	DEFINED 1
0 C	HEAL	F.P.	HtFS	264	DEFINED 239
4 EPS	HEAL	F.P.	HtFS	264	DEFINED 1
0 EPS1	HEAL	F.P.	HtFS	264	DEFINED 239
0 FLAG	LOGICAL	F.P.	HtFS	264	DEFINED 1
337 I	INTEGER	F.P.	HtFS	264	DEFINED 239
6 IENH	INTEGER	F.P.	HtFS	264	DEFINED 239
0 IND	INTEGER	F.P.	HtFS	264	DEFINED 239
0 IOHJ	INTEGER	F.P.	HtFS	264	DEFINED 239
0 IPASS	INTEGER	F.P.	HtFS	264	DEFINED 239
11 IPIV	INTEGER	F.P.	HtFS	264	DEFINED 239
330 IP1	INTEGER	F.P.	HtFS	264	DEFINED 239
331 IP2	INTEGER	F.P.	HtFS	264	DEFINED 239
332 IP3	INTEGER	F.P.	HtFS	264	DEFINED 239
333 IP4	INTEGER	F.P.	HtFS	264	DEFINED 239
334 IP5	INTEGER	F.P.	HtFS	264	DEFINED 239
335 IP6	INTEGER	F.P.	HtFS	264	DEFINED 239
336 IP7	INTEGER	F.P.	HtFS	264	DEFINED 239
5 IEFH	INTEGER	F.P.	HtFS	264	DEFINED 239
3 IMAX	INTEGER	F.P.	HtFS	264	DEFINED 239
1 JP1	INTEGER	F.P.	HtFS	264	DEFINED 239
1 M	INTEGER	F.P.	HtFS	264	DEFINED 239
2 N	INTEGER	F.P.	HtFS	264	DEFINED 239

VARIABLES	SN	TYPE	13/74	OPT=1	FIN 4.6+452	82/01/2B. 14.34+48	PAGE	7
1.3 NEGIV		LOGICAL	XXXXP		290	296	DEFINED	240
2.1 NINVT		INTEGER	XXXXP		223	225	DEFINED	258
1.0 NPM		INTEGER	XXXXP		224	225	DEFINED	
7 NP1		INTEGER	XXXXP		253	254	DEFINED	257
325 NUD		INTEGER	XXXXP		253	254	DEFINED	
1.4 N1		INTEGER	XXXXP		253	254	DEFINED	
326 N1D		INTEGER	XXXXP		253	254	DEFINED	
1.5 N1I		INTEGER	XXXXP		253	254	DEFINED	
1.6 NC		INTEGER	XXXXP		253	254	DEFINED	
327 NC'D		INTEGER	XXXXP		253	254	DEFINED	
1.7 N21		INTEGER	XXXXP		253	254	DEFINED	
0 OBJ		REAL	ARRAY	F.*.	219	261	DEFINED	290
22 PHASE1		LOGICAL	XXXXP		223	225	DEFINED	246
0 Q		REAL	ARRAY	F.*.	223	225	DEFINED	243
0 SCH .		REAL	ARRAY	F.*.	263	267	DEFINED	247
340 TEMP		REAL	ARRAY	F.*.	223	225	DEFINED	244
0 VALUE		REAL	ARRAY	F.*.	219	261	DEFINED	267
0 V		REAL	ARRAY	F.*.	1	224	DEFINED	242
INTERNAL		TYPE	AMGS	REFERENCES	225	227	DEFINED	274
DSIMP			16		219	263	DEFINED	250
PSOL			11		219	263	DEFINED	1
SETUP			10		290	3*263	8*267	286
STATEMENT LABELS			DEF LINE	REFERENCES	296	274	281	286
24 L00			261		219	263		
J15 L05			264		219	263		
0 L10			274		296	DEF LINE		
16* L20			281		296	DEF LINE	1	
0 L30			289		296	DEF LINE		
0 L40			291		296	DEF LINE		
232 L200			294		296	DEF LINE		
0 L210			297		296	DEF LINE	1	
0 L220			298		296	DEF LINE	1	
LOOPS	LABEL	INDEX	FROM-TO	LENGTH	PROPHILES	NOT INFP		
176 L40	*	J	245 291	334	INSTACK	INSTACK	-13H	271
112 L50	J		261 269	4H			?3H	14
243 L10	J		245 297	2H				
COMMON BLOCKS	LENGTH							
XXXXP	14							

STATISTICS
 PROGRAM LENGTH
 CM LABELED COMMON LENGTH
 50000H C1 USED

PAGE 1

Subroutine Start	1.5/74	INPUT	FIN 4-6-452	82/01/28. 14.34.48
1	C	SUMOUTLINE SETUP(KOBJ,ML,BU,X,U,BASIC,L,NCUN,IND)	SETUP	6
	C		SETUP	3
	C		LINE	2
4	C	DIMENSION K(1), U(1), ML(1), BU(1), X(1), U(1)	LINE	3
	C	DIMENSION BASIC(1), E(1), IND(1)	LINE	4
	C	INTEGER BASIC	LINE	5
10	C		SETUP	6
	C		SETUP	7
	C		LINE	2
	C	COMMON /XXXUP/ I030, M, N, IMAX, EPS, IITER, IERR	LINE	3
	C	COMMON /XXXUP/ NPI1, NPM, IPIV, JPIV, NEGV, NI, NI1, N2, N21	LINE	4
	C	COMMON /XXXUP/ HIGH, NIWV, PHASE1	LINE	5
15	C	LUGICAL NEGV, PHASE1	LINE	2
	C		LINE	3
20	C	INTERNAL COMPOSITION OF FLAG WORD BASIC	LINE	4
	C	BASIC(*) = (COMPLEMENTARY INDEX) ABCDEF	SETUP	11
	C	COMPLEMENTARY INDEX = BITS(8-60) THIS CONTAINS THE INDEX	SETUP	12
	C	OF THE COMPLEMENTARY VARIABLE IF	SETUP	13
	C	COMPLEMENTARY SLACKNESS APPLIES TO	SETUP	14
	C	THIS VARIABLE.	SETUP	15
25	C	A - BIT(7) 1 - WHEN VARIABLE BECOMES NON-BASIC CHANGE	SETUP	16
	C	LOWER ROUND TO ZERO SET PRIMAL VARIABLE	SETUP	17
	C	TO ZERO, AND SET BIT A TO ZERO IN THIS	SETUP	18
	C	WORD AND IN ITS COMPLEMENT FLAG WORD.	SETUP	19
	C	0 - NO CHANGE WHEN VARIABLE BECOMES NON-BASIC	SETUP	20
30	C	B - BIT(6) 1 - WHEN VARIABLE BECOMES NON-BASIC MAINTAIN	SETUP	21
	C	UPPER ROUND	SETUP	22
	C	0 - CHANGE UPPER BOUND TO +INFINITY WHEN	SETUP	23
	C	LOWER ROUND TO -INFINITY.	SETUP	24
35	C	C - BIT(5) 1 - WHEN VARIABLE BECOMES NON-BASIC MAINTAIN	SETUP	25
	C	LOWER ROUND.	SETUP	26
	C	0 - WHEN VARIABLE BECOMES NON-BASIC CHANGE	SETUP	27
	C	LOWER ROUND TO -INFINITY.	SETUP	28
40	C	U - BIT(4) 1 - VARIABLE IS BASIC	SETUP	29
	C	0 - VARIABLE IS NON-BASIC	SETUP	30
	C	E - BIT(3) 1 - COMPLEMENTARY SLACKNESS APPLIES TO VARIABLE	SETUP	31
	C	0 - COMPLEMENTARY SLACKNESS DOES NOT APPLY	SETUP	32
45	C	F - BIT(?) 1 - CHECK UPPER ROUND FOR UNCONSTRAINT VIOLATIONS	SETUP	33
	C	0 - DUNP'T CHECK UPPER ROUND	SETUP	34
	C	G - BIT(1) 1 - CHECK LOWER ROUND FOR CONSTRAINT VIOLATIONS	SETUP	35
	C	0 - DUNP'T CHECK LOWER ROUND	SETUP	36
50	C	LINT	LINE	3

PAGE 2

ROUTINE	SETUP	ITER	LINE
		14.04.48	82/01/28 • 14.04.48
MAIN	SETUP	1	4
60	C DATA MASK1 / 77H/, MASK2 / 66H/, MASK3 / 73H/, MASK4 / 63H/ DATA MASK5 / 70H/, MASK6 / 60H/, MASK7 / 70H/, MASK8 / 60H/ DATA MASK9 / 10H/, MASK10 / 20H/, MASK11 / 10H/, MASK12 / 37H/ DATA MASK13 / 11H/, MASK14 / 13H/, MASK15 / 100H/ C		49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
65	C IF(I.NOT.PHASE1) GO TO 65		
70	C PHASE 1		
75	C SET E TO THE IDENTITY		
80	C JJ = 0 DO 15 J = 1, N DO 10 I = 1, N E(I,J) = 0. 10 CONTINUE E(J,J) = 1. JJ = JJ + N 15 CONTINUE		
85	C SET INITIAL FLAGS(HASIC), UPPER AND LOWER BOUNDUS AND INITIAL PRIMAL AND DUAL SOLUTIONS		
90	C DO 50 J = 1, N K(J) = J IF((J .GT. NCN)) GO TO 16 ELSE J - DUAL TO ARTIFICIAL OR SLACK ON CONSTRAINED VARIABLE J+N - DUAL TO CONSTRAINED VARIABLE		
95	C BASIC(IND(J)) = 0.(MASK1)SHIFT(IND(J)*N,1) ML(IND(J)) = 0. HU(IND(J)) = 0. RL(IND(J)*N) = -RIGHT BL(IND(J)*N) = 0. AL(IND(J)) = 0. 50 GO TO 14		
100	C END 16 IF((J .GT. NCN)) GO TO 17 ELSE J - DUAL TO ARTIFICIAL OR UNCONSTRAINED VARIABLE J+N - DUAL TO UNCONSTRAINED VARIABLE		
105	C BASIC(IND(J)) = MASK3 BASIC(IND(J)*N) = MASK4 HU(IND(J)) = 0. ML(IND(J)) = 0. RL(IND(J)*N) = 0. BL(IND(J)*N) = 0. AL(IND(J)) = 0. 17 GO TO 19		
110	C END		

NSWC TR 82-30

```

42/01/28. 14:34:22   FIN 4.6-452

SUBROUTINE SETUP    13/14  UP1=1

115      C   17   IF (J .GT. N2) GO TO 18
          C   ELSE
          C   J = DUAL TO ARTIFICIAL OR SLACK ON INEQUALITY CONSTRAINTS
          C   J+N = DUAL TO LAGHANGE MULIT ON INEQUALITY CONSTRAINTS
          C
          BASIC(JJ) = 0.0(MASK1,0 SHIFT(1,J+N+7))
          BASIC(J+N) = MASK6
          HL(JJ) = - B1(M
          BL(JJ) = 0.
          HL(J+N) = - B1(M
          BL(J+N) = 0.
          X1(JJ) = 0.
          GO TO 19
          C
          END
          C   J = DUAL TO ARTIFICIAL ON EQUALITY CONSTRAINTS
          C   J+N = DUAL TO LAGHANGE MULIT ON EQUALITY CONSTRAINTS
          C
          BASIC(JJ) = MASK7
          BASIC(J+N) = MASK8
          HL(JJ) = - B1(M
          BL(JJ) = B1(M
          IF (OBJ(J) .LT. 0.) BASIC(JJ) = OR(BASIC(J) * MASK1,0)
          IF (OBJ(J) .LT. 0.) BASIC(J+N) = OR(BASIC(J) * MASKY)
          HL(J+N) = 0.
          BL(J+N) = 0.
          HU(J+N) = 0.
          X1(JJ) = B1(M
          X1(J+N) = B1(M
          CONTINUE
          KJ = K1(JJ)
          IF (J .LE. N1) KJ = IND(JJ)
          UKJ = OBJ(KJ)
          IF (.LE. N1) UKJ = -UKJ
          IF (UKJ) 20, 40, 30
          20
          CONTINUE
          X1(KJ) = HL(KJ)
          GO TO 40
          POSITIVE
          CONTINUE
          X1(KJ) = HU(KJ)
          40
          CONTINUE
          50
          CONTINUE
          DO 60 J = NPI, NPM
              K(J) = J
              U(K(J)) = 0.
              60
              CONTINUE
              BL(10M) = - B1(M
              BL(10M) = B1(M
              BASIC(10M) = MASK8
              RETURN
              C
              C
              SETUP 103
              SETUP 104
              SETUP 105
              SETUP 106
              SETUP 107
              SETUP 108
              SETUP 109
              SETUP 110
              SETUP 111
              SETUP 112
              SETUP 113
              SETUP 114
              SETUP 115
              SETUP 116
              SETUP 117
              SETUP 118
              SETUP 119
              SETUP 120
              SETUP 121
              SETUP 122
              SETUP 123
              SETUP 124
              SETUP 125
              SETUP 126
              SETUP 127
              SETUP 128
              SETUP 129
              SETUP 130
              SETUP 131
              SETUP 132
              SETUP 133
              SETUP 134
              SETUP 135
              SETUP 136
              SETUP 137
              SETUP 138
              SETUP 139
              SETUP 140
              SETUP 141
              SETUP 142
              SETUP 143
              SETUP 144
              SETUP 145
              SETUP 146
              SETUP 147
              SETUP 148
              SETUP 149
              SETUP 150
              SETUP 151
              SETUP 152
              SETUP 153
              SETUP 154
              SETUP 155
              SETUP 156
              SETUP 157
              SETUP 158
              STUP

```

```

SUBROUTINE SETUP      73/74   OPT=1          FIN 4.6+52      02/01/28. 14.34.48 PAGE 4

C   CONSTRAINED VARIABLE AND COMPLEMENT
C   BUILIND(UJ) = 1.
C   L2 = SHIFT(IND(UJ),N,7)
C   L1 = AND(BASIC(IND(UJ)+N),MASK11)
C   IF(L1 .EQ. 0) 70. 80
C   THEN
C   175
C   70
C   VARIABLE IS ARTIFICIAL
C   BL(IND(UJ)) = 0.
C   BASIC(IND(UJ)) = OR(MASK12,L2)
C   GO TO 100
C   ELSE
C   180
C   80
C   VARIABLE IS SLACK
C   BL(IND(UJ)) = -1.
C   BASIC(IND(UJ)) = OR(MASK13,L2)
C   BASIC(IND(UJ)+N) = OR(BASIC(IND(UJ)+N),MASK15)
C   GO TO 100
C   END
C   ENDO
C   UNCONSTRAINED VARIABLES
C   90
C   HL(IND(UJ)) = -1.
C   RU(IND(UJ)) = 1.
C   BASIC(IND(UJ)) = MASK14
C   SET PRIMAL VARIABLE WITH NEW BOUNDS
C   100
C   X(IND(UJ)) = BL(IND(UJ))
C   IF(UL(IND(UJ)) .GT. 0.) X(IND(UJ)) = RU(IND(UJ))
C   110 CONTINUE
C   SET FLAGS FOR COMPLEMENTS OF EQUALITY CONSTRAINTS
C   120
C   IF(N11 .GT. N2) GO TO 125
C   DO 120 J = N11, N2
C   BASIC(J,N) = OR(ISHIFT((J+7),MASK2))
C   125 CONTINUE
C   125 IF(N11 .GT. N) GO TO 140
C   DO 130 J = N21, N
C   BASIC(J+N) = MASK4
C   130 CONTINUE
C   140 CONTINUE
C   RETURN
C   END
C   140
C   145
C   150
C   155
C   160
C   165
C   170
C   175
C   180
C   185
C   190
C   195
C   200
C   205
C   210
C   215
C   220
C   225
C   230
C   235
C   240
C   245
C   250
C   255
C   260
C   265
C   270
C   275
C   280
C   285
C   290
C   295
C   300
C   305
C   310
C   315
C   320
C   325
C   330
C   335
C   340
C   345
C   350
C   355
C   360
C   365
C   370
C   375
C   380
C   385
C   390
C   395
C   400
C   405
C   410
C   415
C   420
C   425
C   430
C   435
C   440
C   445
C   450
C   455
C   460
C   465
C   470
C   475
C   480
C   485
C   490
C   495
C   500
C   505
C   510
C   515
C   520
C   525
C   530
C   535
C   540
C   545
C   550
C   555
C   560
C   565
C   570
C   575
C   580
C   585
C   590
C   595
C   600
C   605
C   610
C   615
C   620
C   625
C   630
C   635
C   640
C   645
C   650
C   655
C   660
C   665
C   670
C   675
C   680
C   685
C   690
C   695
C   700
C   705
C   710
C   715
C   720
C   725
C   730
C   735
C   740
C   745
C   750
C   755
C   760
C   765
C   770
C   775
C   780
C   785
C   790
C   795
C   800
C   805
C   810
C   815
C   820
C   825
C   830
C   835
C   840
C   845
C   850
C   855
C   860
C   865
C   870
C   875
C   880
C   885
C   890
C   895
C   900
C   905
C   910
C   915
C   920
C   925
C   930
C   935
C   940
C   945
C   950
C   955
C   960
C   965
C   970
C   975
C   980
C   985
C   990
C   995
C   1000
C   1005
C   1010
C   1015
C   1020
C   1025
C   1030
C   1035
C   1040
C   1045
C   1050
C   1055
C   1060
C   1065
C   1070
C   1075
C   1080
C   1085
C   1090
C   1095
C   1100
C   1105
C   1110
C   1115
C   1120
C   1125
C   1130
C   1135
C   1140
C   1145
C   1150
C   1155
C   1160
C   1165
C   1170
C   1175
C   1180
C   1185
C   1190
C   1195
C   1200
C   1205
C   1210
C   1215
C   1220
C   1225
C   1230
C   1235
C   1240
C   1245
C   1250
C   1255
C   1260
C   1265
C   1270
C   1275
C   1280
C   1285
C   1290
C   1295
C   1300
C   1305
C   1310
C   1315
C   1320
C   1325
C   1330
C   1335
C   1340
C   1345
C   1350
C   1355
C   1360
C   1365
C   1370
C   1375
C   1380
C   1385
C   1390
C   1395
C   1400
C   1405
C   1410
C   1415
C   1420
C   1425
C   1430
C   1435
C   1440
C   1445
C   1450
C   1455
C   1460
C   1465
C   1470
C   1475
C   1480
C   1485
C   1490
C   1495
C   1500
C   1505
C   1510
C   1515
C   1520
C   1525
C   1530
C   1535
C   1540
C   1545
C   1550
C   1555
C   1560
C   1565
C   1570
C   1575
C   1580
C   1585
C   1590
C   1595
C   1600
C   1605
C   1610
C   1615
C   1620
C   1625
C   1630
C   1635
C   1640
C   1645
C   1650
C   1655
C   1660
C   1665
C   1670
C   1675
C   1680
C   1685
C   1690
C   1695
C   1700
C   1705
C   1710
C   1715
C   1720
C   1725
C   1730
C   1735
C   1740
C   1745
C   1750
C   1755
C   1760
C   1765
C   1770
C   1775
C   1780
C   1785
C   1790
C   1795
C   1800
C   1805
C   1810
C   1815
C   1820
C   1825
C   1830
C   1835
C   1840
C   1845
C   1850
C   1855
C   1860
C   1865
C   1870
C   1875
C   1880
C   1885
C   1890
C   1895
C   1900
C   1905
C   1910
C   1915
C   1920
C   1925
C   1930
C   1935
C   1940
C   1945
C   1950
C   1955
C   1960
C   1965
C   1970
C   1975
C   1980
C   1985
C   1990
C   1995
C   2000
C   2005
C   2010
C   2015
C   2020
C   2025
C   2030
C   2035
C   2040
C   2045
C   2050
C   2055
C   2060
C   2065
C   2070
C   2075
C   2080
C   2085
C   2090
C   2095
C   2100
C   2105
C   2110
C   2115
C   2120
C   2125
C   2130
C   2135
C   2140
C   2145
C   2150
C   2155
C   2160
C   2165
C   2170
C   2175
C   2180
C   2185
C   2190
C   2195
C   2200
C   2205
C   2210
C   2215
C   2220
C   2225
C   2230
C   2235
C   2240
C   2245
C   2250
C   2255
C   2260
C   2265
C   2270
C   2275
C   2280
C   2285
C   2290
C   2295
C   2300
C   2305
C   2310
C   2315
C   2320
C   2325
C   2330
C   2335
C   2340
C   2345
C   2350
C   2355
C   2360
C   2365
C   2370
C   2375
C   2380
C   2385
C   2390
C   2395
C   2400
C   2405
C   2410
C   2415
C   2420
C   2425
C   2430
C   2435
C   2440
C   2445
C   2450
C   2455
C   2460
C   2465
C   2470
C   2475
C   2480
C   2485
C   2490
C   2495
C   2500
C   2505
C   2510
C   2515
C   2520
C   2525
C   2530
C   2535
C   2540
C   2545
C   2550
C   2555
C   2560
C   2565
C   2570
C   2575
C   2580
C   2585
C   2590
C   2595
C   2600
C   2605
C   2610
C   2615
C   2620
C   2625
C   2630
C   2635
C   2640
C   2645
C   2650
C   2655
C   2660
C   2665
C   2670
C   2675
C   2680
C   2685
C   2690
C   2695
C   2700
C   2705
C   2710
C   2715
C   2720
C   2725
C   2730
C   2735
C   2740
C   2745
C   2750
C   2755
C   2760
C   2765
C   2770
C   2775
C   2780
C   2785
C   2790
C   2795
C   2800
C   2805
C   2810
C   2815
C   2820
C   2825
C   2830
C   2835
C   2840
C   2845
C   2850
C   2855
C   2860
C   2865
C   2870
C   2875
C   2880
C   2885
C   2890
C   2895
C   2900
C   2905
C   2910
C   2915
C   2920
C   2925
C   2930
C   2935
C   2940
C   2945
C   2950
C   2955
C   2960
C   2965
C   2970
C   2975
C   2980
C   2985
C   2990
C   2995
C   3000
C   3005
C   3010
C   3015
C   3020
C   3025
C   3030
C   3035
C   3040
C   3045
C   3050
C   3055
C   3060
C   3065
C   3070
C   3075
C   3080
C   3085
C   3090
C   3095
C   3100
C   3105
C   3110
C   3115
C   3120
C   3125
C   3130
C   3135
C   3140
C   3145
C   3150
C   3155
C   3160
C   3165
C   3170
C   3175
C   3180
C   3185
C   3190
C   3195
C   3200
C   3205
C   3210
C   3215
C   3220
C   3225
C   3230
C   3235
C   3240
C   3245
C   3250
C   3255
C   3260
C   3265
C   3270
C   3275
C   3280
C   3285
C   3290
C   3295
C   3300
C   3305
C   3310
C   3315
C   3320
C   3325
C   3330
C   3335
C   3340
C   3345
C   3350
C   3355
C   3360
C   3365
C   3370
C   3375
C   3380
C   3385
C   3390
C   3395
C   3400
C   3405
C   3410
C   3415
C   3420
C   3425
C   3430
C   3435
C   3440
C   3445
C   3450
C   3455
C   3460
C   3465
C   3470
C   3475
C   3480
C   3485
C   3490
C   3495
C   3500
C   3505
C   3510
C   3515
C   3520
C   3525
C   3530
C   3535
C   3540
C   3545
C   3550
C   3555
C   3560
C   3565
C   3570
C   3575
C   3580
C   3585
C   3590
C   3595
C   3600
C   3605
C   3610
C   3615
C   3620
C   3625
C   3630
C   3635
C   3640
C   3645
C   3650
C   3655
C   3660
C   3665
C   3670
C   3675
C   3680
C   3685
C   3690
C   3695
C   3700
C   3705
C   3710
C   3715
C   3720
C   3725
C   3730
C   3735
C   3740
C   3745
C   3750
C   3755
C   3760
C   3765
C   3770
C   3775
C   3780
C   3785
C   3790
C   3795
C   3800
C   3805
C   3810
C   3815
C   3820
C   3825
C   3830
C   3835
C   3840
C   3845
C   3850
C   3855
C   3860
C   3865
C   3870
C   3875
C   3880
C   3885
C   3890
C   3895
C   3900
C   3905
C   3910
C   3915
C   3920
C   3925
C   3930
C   3935
C   3940
C   3945
C   3950
C   3955
C   3960
C   3965
C   3970
C   3975
C   3980
C   3985
C   3990
C   3995
C   4000
C   4005
C   4010
C   4015
C   4020
C   4025
C   4030
C   4035
C   4040
C   4045
C   4050
C   4055
C   4060
C   4065
C   4070
C   4075
C   4080
C   4085
C   4090
C   4095
C   4100
C   4105
C   4110
C   4115
C   4120
C   4125
C   4130
C   4135
C   4140
C   4145
C   4150
C   4155
C   4160
C   4165
C   4170
C   4175
C   4180
C   4185
C   4190
C   4195
C   4200
C   4205
C   4210
C   4215
C   4220
C   4225
C   4230
C   4235
C   4240
C   4245
C   4250
C   4255
C   4260
C   4265
C   4270
C   4275
C   4280
C   4285
C   4290
C   4295
C   4300
C   4305
C   4310
C   4315
C   4320
C   4325
C   4330
C   4335
C   4340
C   4345
C   4350
C   4355
C   4360
C   4365
C   4370
C   4375
C   4380
C   4385
C   4390
C   4395
C   4400
C   4405
C   4410
C   4415
C   4420
C   4425
C   4430
C   4435
C   4440
C   4445
C   4450
C   4455
C   4460
C   4465
C   4470
C   4475
C   4480
C   4485
C   4490
C   4495
C   4500
C   4505
C   4510
C   4515
C   4520
C   4525
C   4530
C   4535
C   4540
C   4545
C   4550
C   4555
C   4560
C   4565
C   4570
C   4575
C   4580
C   4585
C   4590
C   4595
C   4600
C   4605
C   4610
C   4615
C   4620
C   4625
C   4630
C   4635
C   4640
C   4645
C   4650
C   4655
C   4660
C   4665
C   4670
C   4675
C   4680
C   4685
C   4690
C   4695
C   4700
C   4705
C   4710
C   4715
C   4720
C   4725
C   4730
C   4735
C   4740
C   4745
C   4750
C   4755
C   4760
C   4765
C   4770
C   4775
C   4780
C   4785
C   4790
C   4795
C   4800
C   4805
C   4810
C   4815
C   4820
C   4825
C   4830
C   4835
C   4840
C   4845
C   4850
C   4855
C   4860
C   4865
C   4870
C   4875
C   4880
C   4885
C   4890
C   4895
C   4900
C   4905
C   4910
C   4915
C   4920
C   4925
C   4930
C   4935
C   4940
C   4945
C   4950
C   4955
C   4960
C   4965
C   4970
C   4975
C   4980
C   4985
C   4990
C   4995
C   5000
C   5005
C   5010
C   5015
C   5020
C   5025
C   5030
C   5035
C   5040
C   5045
C   5050
C   5055
C   5060
C   5065
C   5070
C   5075
C   5080
C   5085
C   5090
C   5095
C   5100
C   5105
C   5110
C   5115
C   5120
C   5125
C   5130
C   5135
C   5140
C   5145
C   5150
C   5155
C   5160
C   5165
C   5170
C   5175
C   5180
C   5185
C   5190
C   5195
C   5200
C   5205
C   5210
C   5215
C   5220
C   5225
C   5230
C   5235
C   5240
C   5245
C   5250
C   5255
C   5260
C   5265
C   5270
C   5275
C   5280
C   5285
C   5290
C   5295
C   5300
C   5305
C   5310
C   5315
C   5320
C   5325
C   5330
C   5335
C   5340
C   5345
C   5350
C   5355
C   5360
C   5365
C   5370
C   5375
C   5380
C   5385
C   5390
C   5395
C   5400
C   5405
C   5410
C   5415
C   5420
C   5425
C   5430
C   5435
C   5440
C   5445
C   5450
C   5455
C   5460
C   5465
C   5470
C   5475
C   5480
C   5485
C   5490
C   5495
C   5500
C   5505
C   5510
C   5515
C   5520
C   5525
C   5530
C   5535
C   5540
C   5545
C   5550
C   5555
C   5560
C   5565
C   5570
C   5575
C   5580
C   5585
C   5590
C   5595
C   5600
C   5605
C   5610
C   5615
C   5620
C   5625
C   5630
C   5635
C   5640
C   5645
C   5650
C   5655
C   5660
C   5665
C   5670
C   5675
C   5680
C   5685
C   5690
C   5695
C   5700
C   5705
C   5710
C   5715
C   5720
C   5725
C   5730
C   5735
C   5740
C   5745
C   5750
C   5755
C   5760
C   5765
C   5770
C   5775
C   5780
C   5785
C   5790
C   5795
C   5800
C   5805
C   5810
C   5815
C   5820
C   5825
C   5830
C   5835
C   5840
C   5845
C   5850
C   5855
C   5860
C   5865
C   5870
C   5875
C   5880
C   5885
C   5890
C   5895
C   5900
C   5905
C   5910
C   5915
C   5920
C   5925
C   5930
C   5935
C   5940
C   5945
C   5950
C   5955
C   5960
C   5965
C   5970
C   5975
C   5980
C   5985
C   5990
C   5995
C   6000
C   6005
C   6010
C   6015
C   6020
C   6025
C   6030
C   6035
C   6040
C   6045
C   6050
C   6055
C   6060
C   6065
C   6070
C   6075
C   6080
C   6085
C   6090
C   6095
C   6100
C   6105
C   6110
C   6115
C   6120
C   6125
C   6130
C   6135
C   6140
C   6145
C   6150
C   6155
C   6160
C   6165
C   6170
C   6175
C   6180
C   6185
C   6190
C   6195
C   6200
C   6205
C   6210
C   6215
C   6220
C   6225
C   6230
C   6235
C   6240
C   6245
C   6250
C   6255
C   6260
C   6265
C   6270
C   6275
C   6280
C   6285
C   6290
C   6295
C   6300
C   6305
C   6310
C   6315
C   6320
C   6325
C   6330
C   6335
C   6340
C   6345
C   6350
C   6355
C   6360
C   6365
C   6370
C   6375
C   6380
C   6385
C   6390
C   6395
C   6400
C   6405
C   6410
C   6415
C   6420
C   6425
C   6430
C   6435
C   6440
C   6445
C   6450
C   6455
C   6460
C   6465
C   6470
C   6475
C   6480
C   6485
C   6490
C   6495
C   6500
C   6505
C   6510
C   6515
C   6520
C   6525
C   6530
C   6535
C   6540
C   6545
C   6550
C   6555
C   6560
C   6565
C   6570
C   6575
C   6580
C   6585
C   6590
C   6595
C   6600
C   6605
C   6610
C   6615
C   6620
C   6625
C   6630
C   6635
C   6640
C   6645
C   6650
C   6655
C   6660
C   6665
C   6670
C   6675
C   6680
C   6685
C   6690
C   6695
C   6700
C   6705
C   6710
C   6715
C   6720
C   6725
C   6730
C   6735
C   6740
C   6745
C   6750
C   6755
C   6760
C   6765
C   6770
C   6775
C   6780
C   6785
C   6790
C   6795
C   6800
C   6805
C   6810
C   6815
C   6820
C   6825
C   6830
C   6835
C   6840
C   6845
C   6850
C   6855
C   6860
C   6865
C   6870
C   6875
C   6880
C   6885
C   6890
C   6895
C   6900
C   6905
C   6910
C   6915
C   6920
C   6925
C   6930
C   6935
C   6940
C   6945
C   6950
C   6955
C   6960
C   6965
C   6970
C   6975
C   6980
C   6985
C   6990
C   6995
C   7000
C   7005
C   7010
C   7015
C   7020
C   7025
C   7030
C   7035
C   7040
C   7045
C   7050
C   7055
C   7060
C   7065
C   7070
C   7075
C   7080
C   7085
C   7090
C   7095
C   7100
C   7105
C   7110
C   7115
C   7120
C   7125
C   7130
C   7135
C   7140
C   7145
C   7150
C   7155
C   7160
C   7165
C   7170
C   7175
C   7180
C   7185
C   7190
C   7195
C   7200
C   7205
C   7210
C   7215
C   7220
C   7225
C   7230
C   7235
C   7240
C   7245
C   7250
C   7255
C   7260
C   7265
C   7270
C   7275
C   7280
C   7285
C   7290
C   7295
C   7300
C   7305
C   7310
C   7315
C   7320
C   7325
C   7330
C   7335
C   7340
C   7345
C   7350
C   7355
C   7360
C   7365
C   7370
C   7375
C   7380
C   7385
C   7390
C   7395
C   7400
C   7405
C   7410
C   7415
C   7420
C   7425
C   7430
C   7435
C   7440
C   7445
C   7450
C   7455
C   7460
C   7465
C   7470
C   7475
C   7480
C   7485
C   7490
C   7495
C   7500
C   7505
C   7510
C   7515
C   7520
C   7525
C   7530
C   7535
C   7540
C   7545
C   7550
C   7555
C   7560
C   7565
C   7570
C   7575
C   7580
C   7585
C   7590
C   7595
C   7600
C   7605
C   7610
C   7615
```

NSWC TR 82-30

SUBROUTINE SETUP			73/14	0H[1]					PAGE
VARIABLES	SN	TYPE	LOCATION						6
0	NCUN	INTEGER	F.P.						
13	NEV	LOGICAL	XAXUP						
21	NINV	INTEGER	XAXUP						
10	NIM	INTEGER	XAXUP						
7	NPI	INTEGER	XAXUP						
14	NI	INTEGER	XAXUP						
15	N11	INTEGER	XAXUP						
16	NE2	INTEGER	XAXUP						
17	N21	INTEGER	XAXUP						
0	OBJ	REAL	ARRAY	F.P.					
22	PHASE1	LOGICAL	XAXUP	F.P.					
0	U	REAL	ARRAY	XAXUP	F.P.				
0	X	REAL	ARRAY	F.P.	XAXUP				
INLINE FUNCTIONS			AMGS	DEF LINE REFERENCES					
AND	NO TYPE	0	INTRIN	176					
OR	NO TYPE	0	INTRIN	92	93	120	136	166	167
SHIFT	NO TYPE	2	INTRIN	207	93	120	175	207	
STATEMENT LABELS			DEF LINE	REFERENCES					
0	10		77	75					
0	15		60	74					
67	16		101	H7					
76	17		115	101					
106	18		132	115					
122	19		141	99	113	127			
0	20	INACTIVE	148	146					
140	30		152	146					
142	40		154	146	150				
0	50		155	H5					
0	60		159	146					
167	65		169	66					
0	70	INACTIVE	180	177					
212	80		185	177					
220	90		193	170					
224	100		199	182	168				
0	110		201	169					
0	120		209	205					
251	125		212	210					
0	130		213	209					
266	140								
LOOPS	LABEL	INDEX	FROM-TO	LENGTH	PUNCTUATORS NOT INNER				
c1	15	*	14 80	204					
32	10	1	15 77	24	INSTACK				
56	50	1	65 155	664	UPI				
154	60	1	156 159	2H	INSTACK				
200	110	1	169 201	J1H	UPI				
244	120	1	200 204	JH	INSTACK				
cnc	150	1	210 217	2H	INSTACK				

NSWC TR 82-30

SUBROUTINE SETUP	73/74	UP TO 1	FIN 4.00452
COMMON BLOCKS LENGTH	19		82/01/20 14:34:44
MAX	MAX		PAGE 7
STATISTICS			
PROGRAM LENGTH	3628	242	
LW LABELS COMMON LENGTH	238	19	
52000H CM USED			

SUBROUTINE DSIMP T3/T6 OPT=1 FIN 4.0.452 02/01/28. 14.36.48 PAGE 2

```

      C   10 + OH - INFINITY
      C   IF (MAIN1 .LT. 3) GO TO 45
      ELSE
      C
      C   MAIN1 GREATER THAN 3 INDICATES LOWER BOUND
      C   CHANGES TO ZERO. CHANGE BOUND. RESET VARIABLE
      C   AND TURN FLAG OFF IN THIS BOUND AND IN THE
      C   COMPLEMENTARY FLAG M0NU.
      C
      C   JJ = KK
      C   LCOMP = SHIFT(BASIC(KK),-7)
      IF (MAIN1 .NE. 4) JJ = LCOMP
      BASIC(KK) = AND(BASIC(KK),COMPL(MASK4))
      BASIC(LCOMP) = AND(BASIC(LCOMP),COMPL(MASK4))
      BL(JJ) = 0.
      IF (X(JJ) .LT. 0.) X(JJ) = 0.
      IF (MAIN1 .NE. 4) GO TO 50
      IF (MAIN1 .NE. 4) GO TO 50
      MAIN1 = 1
      END
      CONTINUE
      BASIC(KK) = OR(AND(BASIC(KK),MAIN1),MASK1)
      IF (MAIN1 .LT. 2) BLKK = HIGH
      IF (MAIN1 .NE. 1) BL(KK) = -BLKK
      END
      CONTINUE
      K1PIV1 = KK
      K1PIV1 = KK
      CALL NEWINVITE(AROW)
      NEW PHIMAL SOLUTION
      CALL GETROW(0,A1+2*OBJ,IND0,10BJ,AROW,NQD,NID,N2D)
      DO 70 J = 1, N
      U(K,J)) = AROW(J)
      CONTINUE
      K1PIV1 = KK
      CALL NEWINVITE(AROW)
      NEW PHIMAL SOLUTION
      X(KK) = HUKKON
      IF (INEQV(X(KK)), HUKKON) = HUKKON
      CALL PSOL(WA1*AZ,OBJ,IND0,K1P,E,NQD,NID,N2D)
      ITM = ITEN + 1
      IF (MOD(ITERINVIT),EQ.0)
      *          CALL STINV(O,A1,A2,OBJ,IND0,K,F,AROW,NQD,NID,N2D)
      IF (ITHM .EQ. 3) RETURN
      CONTINUE
      RETURN
      END

```

SYMBOLIC REFERENCE MAP (H=?)

ENTRY POINTS	DEF. LINE	ELEMENTS	29	34	40	109	102
DSIMP	1						

NSWC TR 82-30

SUBROUTINE (S1MP)		13174		041-1		F LN 4.6*452		02/01/28. 14.34.4H		PAGE	
VARIABLE'S # AND	SN TYPE:	HT AL	HT LOCATION	F • P*	HT FS	10	32	33	86	88	90
U A1	HT AL	HT AL	HT LOC	F • P*	HT FS	1	88	96	9H	DEFINED	1
U A2	HT AL	HT AL	HT LOC	F • P*	HT FS	32	98	96	9H	DEFINED	1
U BASIC	INT GR	INT GR	INT LOC	F • P*	HT FS	10	11	25	47	48	53
20 BIGM	HT AL	HT AL	HT LOC	XXXUP	HT FS	71	72	79	DEFINED	1	69
0 BU	HT AL	HT AL	HT LOC	XXXUP	HT FS	10	15	80	H1	DEFINED	71
0 F	REAL	REAL	REAL	XXXUP	HT FS	81	82	85	88	DEFINED	1
* FTS	REAL	REAL	REAL	XXXUP	HT FS	10	10	25	33	95	80
362 ILOMP	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	94	DEFINED	1
b ITEM	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	73
j55 II	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	80
0 IND	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	37
0 IOHJ	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	1
11 JPIV	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	92
5 ITEM	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	97
3 ITMAX	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	24	40	40	
363 J	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	100	DEFINED	22	
j61 JJ	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
12 JPIV	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
0 K	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
357 KN	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
356 KHUN	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
1 M	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
360 MAINT	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
367 MASK1	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
350 MASK2	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
351 MASK3	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
352 MASK4	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
2 N	NEGL	NEGL	NEGL	XXXUP	HT FS	1	1	1	96	98	
13 NEGV	LOGICAL	LOGICAL	LOGICAL	XXXUP	HT FS	1	1	1	96	98	
21 NINV1	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
10 NP4	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
7 NP1	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
0 NUO	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
14 NI	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
0 NJD	INTEGER	INTEGER	INTEGER	XXXUP	HT FS	1	1	1	96	98	
22 PHASE1	LOGICAL	LOGICAL	LOGICAL	XXXUP	HT FS	1	1	1	96	98	
0 H1	HT AL	HT AL	HT AL	XXXUP	HT FS	1	1	1	96	98	
0 H2	HT AL	HT AL	HT AL	XXXUP	HT FS	1	1	1	96	98	
0 H3	HT AL	HT AL	HT AL	XXXUP	HT FS	1	1	1	96	98	
0 A	HT AL	HT AL	HT AL	XXXUP	HT FS	1	1	1	96	98	

EXTERNALS	TYPE	AMOS	REFERENCES	DEF LINE	REF LINE	PAGE
GETROW		11				4
NRINV		2	H6			
PIVCOL		6	33			
PIVROW		6	75			
PSOL		11	96			
STINV		11	98			
INLINE FUNCTIONS	TYPE	AROS	REFERENCES	DEF LINE	REF LINE	
AND	NO TYPE	0 INTRIN	48	53	71	
CMPBL	NO TYPE	1 INTRIN	48	71	72	
MUL	INTEGER	2 INTRIN	4H			
OR	NO TYPE	0 INTRIN	47	74		
SHIFT	NO TYPE	2 INTRIN	53	69		
STATEMENT LABELS		DEF LINE	REFERENCES			
.36 .10		30	26			
.70 .40		39	34			
.122 .45		78	60			
.136 .50-		63	54			
.0 .70		91	89			
.0 .100		101	24			
LOOPS	LABEL	INDEX	FROM-TO	LENGTH	PROPERTIES	
.22 .100	*	I	24 101	2234	EXIT WFS NOT IMMTH	
.167 .70	*	J	89 91	38	INSTACK	
COMMON BLOCKS	LENGTH	XXXXP	19			
STATISTICS						
PROGRAM LENGTH		5228	338			
CM LABELED COMMON LENGTH		238	19			
52000H CM USED						

NSWC TR 82-30

SYMBOLIC REFERÉNCE MAP (H=2)

SUBROUTINE P1N0W		I3/I4	O4-1		P1N 4-6*6*52	B2/01/28. 14.34.48	PAGE
VARIABLES	SN	TYPE	LOCATION				3
112 FLAG		LOGICAL	HRS	19	71	85	DEFINED
113 FLAG		LOGICAL	HFS	19	69	H3	DEFINED
114 FLAG		LOGICAL	HFS	19	64	DEFINED	47
115 FLAG		LOGICAL	HFS	19	79	DEFINED	46
116 I		INTEGER	HFS	43	53	57	DEFINED
121 ICOMP		INTEGER	DEFINTU	42			2*80
6 IFHR		INTEGER	XAXUP	58	71	85	DEFINED
115 11		INTEGER	HFS	14			51
0 IORJ		INTEGER	XAXUP	42	75	89	DEFINED
11 IPIV		INTEGER	XAXUP	15	DEFINED	38	
5 ITK		INTEGER	XAXUP	14		75	89
3 JMAX		INTEGER	XAXUP	14			
12 JPIV		INTEGER	XAXUP	15			
0 K		INTEGER	F.P.	9	42	DEFINED	1
117 L		INTEGER	HFS	44	46	49	DEFINED
120 LI		INTEGER	HFS	54	59	DEFINED	53
1 M		INTEGER	XAXUP	14	DEFINED	36	58
105 MASK1		INTEGER	HFS	43			
106 MASK2		INTEGER	HFS	53	DEFINED	36	
107 MASK3		INTEGER	HFS	54	DEFINED	36	
2 N		INTEGER	XAXUP	14			
13 NTGW		LOGICAL	HFS	15	17	DEFINED	76
21 NINP7		INTEGER	XAXUP	15			90
10 NPM		INTEGER	XAXUP	15			
7 NP1		INTEGER	XAXUP	15			
14 NI		INTEGER	XAXUP	15			
15 NII		INTEGER	XAXUP	15			
16 NC		INTEGER	HFS	15			
17 NC1		INTEGER	XAXUP	15			
22 PHASE1		LOGICAL	XAXUP	16	17	51	
0 U		HIAL	AMHAY	15			
114 VIOL		HIAL	F.P.	12	DEFINED	1	
0 X		HIAL	AMHAY	9	65	80	
INLINE FUNCTIONS AND SHIFT	NU TYPE	AMOS	DEF LINE	REFENCES	53	58	
	NO TYPE	U	INTWIN	*3			
	NO TYPE	P	INTWIN	57			
STATEMENT LABELS		DEF LINE	REFERENCES				
46 1		6?	51	54			
61 5		73	69	66			
62 10		78	64				
77 20		87	H1				
102 30		91	H1				
102 40		92	H1				
102 50		93	41	44			
100PS LAMP		INPUT	FROM-19	14			
23 SU		11	41	100H			
COMMON BLOCKS		LIGHT	PROBLEMS	0H-1			

NSWC TR 82-30

ROUTINE PIVONK 73/74 (P1=1)
FIN 406452 82/01/26 16:34:48 PAt
STATISTICS
PROGRAM LENGTH 1238 43
CM LABELED COMMON LENGTH 238 19
52000B CH USED

SUBROUTINE PIVCOL			I3/I7*		OP7=1		REFLATION		REFLATION		REFLATION		REFLATION		REFLATION		REFLATION		REFLATION		REFLATION	
VARIABLES	SN	TYPE					XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP	XAXUP
3	I1MAX	INTEGER																				
65	J	INTEGER																				
66	JJ	INTEGER																				
12	JPIV	INTEGER																				
0	K	INTEGER																				
1	M	INTEGER																				
2	N	LOGICAL																				
13	MEGV	INTEGER																				
21	NINT1	INTEGER																				
10	NPM	INTEGER																				
7	NP1	INTEGER																				
14	N1	INTEGER																				
15	N11	INTEGER																				
16	N2	INTEGER																				
17	N21	LOGICAL																				
22	PHASE1	REAL																				
67	K	REAL																				
0	U	REAL																				
63	W	REAL																				
0	K	REAL																				
INLINE FUNCTIONS			TYPE				AMGS	INRIN	DEF LINE	REFERENCES												
RANF			REAL																			
STATEMENT	LABELS								DEF LINE	REFERENCES												
56	I0								31	27												
56	20								32	24												
0	30								33	20												
LOOPS	LABEL	INTEGER					FNUM-10	LENGTH	PROPERTIES													
33	30	JJ					20	33	24H	OPT												
COMMON BLOCKS			LENGTH																			
XAXUP			19																			
STATISTICS																						
PROGRAM LENGTH																						
CM LABLED COMMON LENGTH																						
520000 CM USED																						

REFERENCES
 28
 25
 24
 20
 PROPERTIES
 OPT

104B
 238
 19

SUBROUTINE	RETURNS	PARMS	UP TO 1	FIN 4.6+452	82/01/28. 14.3+48	PAGE	3
VARIABLES	SN	TYPE	HP LOCATION				
270 L		INTEGER	XAXUP	HFS	63	10	DEFINED
1 M		INTEGER	XAXUP	HFS	12	36	
2 N		INTEGER	XAXUP	HFS	12	19	25
13 NEGY		LOGICAL	XAXUP	HFS	56	22	
21 NIINV		INTEGER	XAXUP	HFS	42	57	74
10 NPM		INTEGER	XAXUP	HFS	13		
7 NP1		INTEGER	XAXUP	HFS	13		
0 NUD		INTEGER	F.P.	HFS	9	DEFINED	1
14 N1		INTEGER	XAXUP	HFS	13	38	47
9 NID		INTEGER	F.P.	HFS	13		49
15 N11		INTEGER	XAXUP	HFS	13	41	52
16 N2		INTEGER	XAXUP	HFS	13	52	53
0 N2D		INTEGER	F.P.	HFS	9	DEFINED	1
17 N21		INTEGER	XAXUP	HFS	13	56	57
0 OBJ		REAL	ARRAY	HFS	9	39	43
22 PHASE1		LOGICAL	ARRAY	HFS	14	15	DEFINED
0 Q		REAL	F.P.	HFS	9	50	1
INLINE FUNCTIONS	TYPE	AHGS	DEF LINE	REFERENCES			
ABS.	REAL	1 INTRIN	24	73			
STATEMENT LABELS		DEF LINE	REFERENCES				
0 10		26	22				
52 20		28	19				
0 30		40	38				
0 34		44	46				
117 40		47	16				
0 50		51	49				
0 60		55	53				
162 65		56	52				
0 70		59	57				
206 80		62	47				
0 90		66	64				
230 100		69	62				
0 110		71	69				
246 120		72	61				
0 130		75	44				
257 140		76	27				
LOOPS	LABEL	INDEX	FLOOP-TO	LENGTH	PROPERTIES		
60 10	J		22 26	7H	INSTACK	NOT INNER	
60 130	*	J	34 75	176H	INSTACK	NOT INNER	
73 30	I		38 40	3H	INSTACK		
111 34	I		42 44	3H	INSTACK		
133 50	I		49 51	3H	INSTACK		
154 60	I		53 55	4H	INSTACK		
177 70	I		57 59	4H	INSTACK		
222 90	I		64 66	4H	INSTACK		
241 110	I		69 71	3H	INSTACK		
COMMON BLOCKS	LEN	LEN					
PHOTON LENGTH							
CM LENGTH COMMON LENGTH							
STATISTICS							

NSWC TR 82-30

SUBROUTINE GETRUM 7174 (0P1=1
STATISTICS 32000H CM UStD
FIN 4.06452 82/01/28. 14.34.48 PAGE

FIN 4.6452
82/01/26. 14.36.48

ROUTINE PSOL	13/74 UPTR=1	PAGE 2
C 90 IF (KK .GT. N) GO TO 110	PSOL 50	
ELSE DO 100 J = 1, N	PSOL 51	
X(KJ) = X(KJ) + A2(L,J)*X(J)	PSOL 52	
CONTINUE	PSOL 53	
GO TO 130	PSOL 54	
C END	PSOL 55	
110 UO 120 J = 1, N	PSOL 56	
X(KJ) = X(KJ) - U8(J,U)*X(J)	PSOL 57	
CONTINUE	PSOL 58	
IF (N1 .GT. N) GO TO 130	PSOL 59	
DO 120 J = N1, N	PSOL 60	
X(KJ) = X(KJ) + U8(J,U)*X(J)	PSOL 61	
CONTINUE	PSOL 62	
C END	PSOL 63	
130 CONTINUE	PSOL 64	
RETURN	PSOL 65	
END	PSOL 66	
75	PSOL 67	

SYMBOLIC DIFFERENCE MAP (R=?)

ENTRY POINTS	OFF LINE	REFERENCES
* PSOL	1	74
VARIABLES	SN TYPE	RELOCATION
0 A1	HREAL	AHAY F..P.
0 A2	HREAL	AHAY F..P.
20 HIGH	HREAL	XAXUP F..P.
0 E	HREAL	AHAY F..P.
4 EPS	HREAL	XAXUP HREAL
254 I	INTEGER	HFS XAXUP
0 IERH	INTEGER	AHAY F..P.
0 INU	INTEGER	AHAY F..P.
0 IUPJ	INTEGER	AHAY F..P.
11 IPIV	INTEGER	AHAY F..P.
5 ITMAX	INTEGER	XAXUP HREAL
3 ITMAX	INTEGER	XAXUP HREAL
257 J	INTEGER	HFS 2*70
VARIABLES	SN TYPE	RELOCATION
0 A1	HREAL	AHAY F..P.
0 A2	HREAL	AHAY F..P.
20 HIGH	HREAL	XAXUP F..P.
0 E	HREAL	AHAY F..P.
4 EPS	HREAL	XAXUP HREAL
254 I	INTEGER	HFS XAXUP
0 IERH	INTEGER	AHAY F..P.
0 INU	INTEGER	AHAY F..P.
0 IUPJ	INTEGER	AHAY F..P.
11 IPIV	INTEGER	AHAY F..P.
5 ITMAX	INTEGER	XAXUP HREAL
3 ITMAX	INTEGER	XAXUP HREAL
257 J	INTEGER	HFS 2*70
VARIABLES	SN TYPE	RELOCATION
0 A1	HREAL	AHAY F..P.
0 A2	HREAL	AHAY F..P.
20 HIGH	HREAL	XAXUP F..P.
0 K	HREAL	AHAY F..P.
255 K1	HREAL	AHAY F..P.
260 KK	INTEGER	DEFINED
261 L	INTEGER	HFS 69
1 M	INTEGER	XAXUP HFS
2 N	INTEGER	XAXUP HFS
13 NLGY	LOGICAL	XAXUP HFS

STATEMENT LABELS	LABEL	INDEX	FROM-TO	LENGTH	PROPERTIES	NOT INMEM
26 30	*	1	19 29	27H	INSTACK	NOT INMEM
43 16	*	1	24 27	5H	INSTACK	NOT INMEM
57 130	*	1	30 73	16H	INSTACK	NOT INMEM
100 40	*	1	38 40	3H	INSTACK	
120 50	*	1	42 44	4H	INSTACK	
142 60	*	1	46 48	4H	INSTACK	
160 80	*	1	53 55	3H	INSTACK	
205 100	*	1	60 62	3H	INSTACK	
221 120	*	1	65 67	3H	INSTACK	
230 124	*	1	69 71	3H	INSTACK	
COMMON BLOCKS	ARRAY	19				
STATISTICS	PROGRAM LENGTH		340H	274		
	CM LABLED COMMON LENGTH		23H	14		
	52000H CM UNIT					

VARIABLES	SN	TYPE	LOCATION	DEFN	PAGE
21 NINTV		INTEGER	XAXUP	HFS	14
10 NPM		INTEGER	XAXUP	HFS	30
7 NPI		INTEGER	XAXUP	HFS	30
0 NW0		INTEGER	F-P.	HFS	1
14 NI1		INTEGER	XAXUP	HFS	53
0 NI0		INTEGER	F-P.	HFS	60
15 NI1		INTEGER	XAXUP	HFS	65
16 NC		INTEGER	XAXUP	HFS	42
0 NC0		INTEGER	F-P.	HFS	69
17 N21		INTEGER	XAXUP	HFS	42
0 OB0		REAL	ANHAY	HFS	51
0 DB1		LOGICAL	XAXUP	HFS	1
22 PHASE1		REAL	ANHAY	HFS	1
0 X		REAL	F-P.	HFS	1
0 X		REAL	F-P.	HFS	1
			2*66	2*39	247
			43	54	33
					261
					39

REF LINE REFERENCES

REF LINE	DEFN	PAGE
27	1	14
28	1	30
29	1	30
40	1	30
50	1	30
126 55	1	30
60	1	30
151 70	1	30
0 80	1	30
172 90	1	30
0 100	1	30
213 110	1	30
0 120	1	30
0 124	1	30
2*3 130	1	30

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

NSWC TR 82-30

NSWC TR 82-30

Subroutine `STINV`

11/14

11P-1-1

`F IN 4.6+452``F Aut``L`

SYNTACTIC HIERARCHY MAP (H=1)

TOKEN POINTS

DEF LINE

HEIRENTHS

QH

1

VARIABLES

SN

TYPE

LOCATION

HFS

DEFINED

1

H AL

H AL

HAWAY

STATEMENT LABELS	U#	L#	TOTAL REFERENCES	FILE 4.6.452	FILE 4.6.452	PAGE
10		23	21			3
20		26	20			
30		30	24			
40		34	32			
50		35	33			
60		44	41			
70		45	19			
80		49	46			
90		53	31			
LOOPS	LABEL	INDEX	FROM-TO	LENGTH	PROPERTIES	
22	20	J	20-26	20H	NOT INNER	
31	10	I	21-23	2H	INSTACK	
50	30	J	24-30	2H	INSTACK	
55	90	J	31-53	63H	TEXT NOT INNER	
57	40	J	32-34	5H	TEXT EXITS	
111	70	L	39-45	7H	INSTACK	
COMMON BLOCKS		LENGTH				
	XAXUP	19				
STATISTICS						
PROGRAM LENGTH			250B	152		
IN LABELED COMMON LENGTH			23H	19		
52000H CM USED						

NSWC TR 82-30

STRUCTUREN NAME			T3/T4		UPPER		TIN 4.6.4.52		82/01/28 14.34.48		PAGE	
ELEMENTS	SN	TYPE	RELOCATON									
1	N	INTEGER	X	X	X	X	X	X	18	19	24	25
13	NEGV	LOGICAL	X	X	X	X	X	X	12	14		
21	NIINV	INTEGER	X	X	X	X	X	X	13			
10	NPW	INTEGER	X	X	X	X	X	X	12			
7	NP1	INTEGER	X	X	X	X	X	X	12			
14	NI1	INTEGER	X	X	X	X	X	X	12			
15	NI11	INTEGER	X	X	X	X	X	X	12			
16	N2	INTEGER	X	X	X	X	X	X	12			
17	N21	INTEGER	X	X	X	X	X	X	12			
22	PHASE1	LOGICAL	X	X	X	X	X	X	13			
INLINE FUNCTIONS			TYPE	ARGS	DEF LINE	INTRIN	DEF LINE	INTRIN	REFERENCES			
ABS	Ht_AL			1					21			
STATEMENT LABELS			DEF LINE		DEF LINE		DEF LINE		REFERENCES			
0	10				26				23			
0	15				22				221			
52	20				28				19			
LOOPS			LABEL	INDEX	FROM-TO	LENGTH	PROPERTIES		21			
23	20	*	I	J	19 28	J2H	NOT INNER					
41	10				23 26	5H	INSTACK					
COMMON BLOCKS			LENGTH									
			X	X								
STATISTICS												
PHIGHAM LENGTH									56			
CM LABELED COMMON LENGTH									19			
>2000H CM USED									238			


```

SUBROUTINE UPTAB
    I3/I4  0P1=1          I N 4.6452
    82/01/28. 14.34.48      PAGE 2

60          SUM = 0. L = 1. NINE = 0
    LL = IND(L,NN)
    I = G1, 1 GU TO 135
    ELSE
        SUM = 0.
        DO 130 K = 1, NN
            SUM = SUM + A1(LL,K)*Y(K)
        CONTINUE
        WRITE(IOUT,3) SUM, P(NN+L)* (A1(LL,K),K=1,NN)
        GO TO 140
    END
    C   135  WHITE(IOUT,7) (A1(LL,K),K=1,NN)
    140  CONTINUE
    140  WHITE(IOUT,6)
    150  CONTINUE
    160  IF(IND(LL,LT,0) GU TO 200
        WHITE(IOUT,6)
        DO 140 I = 1, NN* R
            NI = MIN(I,LT,NN)
            DO 160 L = I, NN
                LL = IND(L,NN)
                IFL(I,GT,1) GU TO 175
                ELSE
                    SUM = 0.
                    DO 170 K = 1, NN
                        SUM = SUM + A2(LL,K)*Y(K)
                    CONTINUE
                    WRITE(IOUT,3) SUM, P(NN+L)* (A2(LL,K),K=1,NN)
                    GO TO 180
                END
                175  WHITE(IOUT,7) (A2(LL,K),K=1,NN)
    C   175  CONTINUE
    180  WHITE(IOUT,6)
    190  CONTINUE
    200  WHITE(IOUT,6)
    DO 210 I = 1, NH* 10
        NI = MIN(I,Y,NN)
        WRITE(IOUT,3) Y(L),L=1,NN
    210  CONTINUE
    RETURN
END

```

SYMBOLIC REFERENCE MAP (H=2)

ENTRY POINTS	PT LINE	HEFFERENCES
* UPTAB	1	YH
AVAILABLES	SN IPT	HELOCATI
U A1	RT AL	ANAY
U A2	RT AL	RT
U C	RT AL	RT
S/	RTGTH	RTS

OPTAB	55
OPTAB	56
OPTAB	57
OPTAB	58
OPTAB	59
OPTAB	60
OPTAB	61
OPTAB	62
OPTAB	63
OPTAB	64
OPTAB	65
OPTAB	66
OPTAB	67
OPTAB	68
OPTAB	69
OPTAB	70
OPTAB	71
OPTAB	72
OPTAB	73
OPTAB	74
OPTAB	75
OPTAB	76
OPTAB	77
OPTAB	78
OPTAB	79
OPTAB	80
OPTAB	81
OPTAB	82
OPTAB	83
OPTAB	84
OPTAB	85
OPTAB	86
OPTAB	87
OPTAB	88
OPTAB	89
OPTAB	90
OPTAB	91
OPTAB	92
OPTAB	93
OPTAB	94
OPTAB	95
OPTAB	96

NSWC TR 82-30

SUBROUTINE OPTAH		73/74	DP1=1	IN 4.6452	82/01/28. 14.34.44	PAGE
STATEMENT LABELS	U/F LINE	H/FENCES				4
0 100	47	45				
0 110		49	47			
0 120		54	51			
0 130		66	64			
204 135		70	61			
223 140		71	59	68		
0 150		73	57			
234 160		74	55			
0 170		85	83			
J14 175		89	80			
333 180		90	78			
0 190		92	76			
J44 200		93	74			
0 210		97	94			
LOOPS	LABEL	INPUT	FROM-TO	LENGTH	PROPERTIES	
47	110	0 J	43 49	36H	EXT H/F'S	NOT INNER
54	100	0 L	45 47	22H	EXT H/F'S	NOT INNER
60		0 L	46 46	13H	EXT H/F'S	
106	120	0 I	51 54	15H	EXT H/F'S	
130	150	0 L	57 73	103H	EXT H/F'S	NOT INNER
135	140	0 L	59 71	71H	EXT H/F'S	NOT INNER
152	130	K	64 66	4H	INSTACK	EXT H/F'S
167		K	67 67	11H		EXT H/F'S
210		K	70 70	11H		EXT H/F'S
240	190	0 J	76 92	103H	EXT H/F'S	NOT INNER
245	180	0 L	78 90	71H	EXT H/F'S	NOT INNER
262	170	K	83 85	4H	INSTACK	
C77		K	86 86	11H		EXT H/F'S
320		K	89 89	11H		EXT H/F'S
347	210	0 L	94 97	15H	EXT H/F'S	
STATISTICS	PROGRAM LENGTH	644H	420			
	27000H CM USED					

SYMBOLIC REFERENCE MAP ($H=2$)

ENTROPY POINTS		DFT LINE		REFERENCES	
PARAMETERS	VALUES	SN	TYPE	REF AL.	REF LOCAL
α_{11}	0.137	1751	AI	AIHAT	AIHAT
α_{12}	0.175	42	A _c	AIHAT	AIHAT
α_{22}	0.310	4310	C	AIHAT	AIHAT
α_{33}	0.310	4310	C	AIHAT	AIHAT

NSWC TR 82-30

APPENDIX B

MODIFICATION FOR PROJECTION PROBLEMS

WOLFQP as written will solve a projection problem. For large problems space may be reduced by modification to the program.

In the projection problem the Q matrix reduces to the identity. This need not be stored. The specific modifications are:

WOLFQP

Delete the Do Loop with 130
Replace with
 $TEMP = TEMP + SCR(IP3 + I + N)$

GETROW

Delete Do Loop with 50
Replace with
 $AROW(J) = AROW(J) + E(KK + JJ)$

PSOL

Delete Do Loop with 40
Replace with
 $X(KI) = X(KI) + X(KK)$

By then substituting a dummy argument for Q in the calling Sequence the user has removed the necessity of storing the identity matrix. Of course the user may then remove Q and NQD completely from the calling sequence if desired.

APPENDIX C
MACHINE DEPENDENCIES

- BIGM - Defined by Data Statement in WOLFQP. BIGM represents machine infinity. For CDC Machines 10^{100} is used. This constant clearly depends on the exponent range available.
- BASIC - An array used to store internal flags. To reduce space 7 bits of each BASIC word are used to store flags the remaining bits are required to store an integer. If the word size of the machine is M bits this integer must be less than $2^{M-7}-1$. For CDC machines this becomes $2^{53}-1$. This number $2^{M-7}-1$ represents the largest problem which can be solved with this encoding of the algorithm.

Since bit operations are performed on the Basic array certain bit functions must be utilized.

Octal constants are used to set certain bit patterns in SETQP, DSIMP and PIVROW. They are either used to set the bit patterns or mask certain bits from the given word. The octal constants appear only in Data Statements in the appropriate routines. They appear as integers followed by the letter B. These are numbers written in Base 8 and must be written with the appropriate notation and in the appropriate base for the machine.

i.e. 7B = 7 Hex

10B = 8 Hex

60B = 30 Hex

The Machine functions utilized are:

- OR(A,B) - Perform bit by bit logical or on A,B. The truth table is

	0	1
0	0	1
1	1	1

AND(A,B) - Perform bit by bit logical and
on A,B. The truth table is

	0	1
0	0	0
1	0	1

SHIFT(A,I) - SHIFT the word I bits. If I is positive SHIFT left I positions.

If I is negative shift right I positions.

i.e. if A contains the following bit pattern

A = 0001011010

then

SHIFT(A,2) = 0101101000

SHIFT(A,-2)= 0000010110

COMPL(A) - form bit by bit Boolean complement of A.

i.e. if A = 10110

COMPL(A)= 01001

The following library function is required in PIVCOL

RANF(X) - returns a uniform random number, the argument is ignored, in
the function.

The random number is used in an anti-cycling procedure. Some
other method of preventing cycling could be used instead.

DISTRIBUTION

Copies

Commanding Officer Naval Air Systems Command Attn: Dr. G. A. Heiche (AIR 310A) Washington, DC 20361	1
Office of Naval Research 800 N. Quincy Street Attn: Dr. Stuart L. Brodsky Arlington, VA 22217	1
Commander Naval Weapons Center Attn: Dr. R. D. Smith (Code 3911) China Lake, CA 93555	1
Professor Anthony Calise Drexel University Philadelphia, PA 19104	1
Chief of Naval Operations Department of the Navy Attn: Mr. R. Piacesi Washington, DC 20350	1
Defense Technical Information Center Cameron Station Alexandria, VA 22314	12

