Система рівнянь Максвелла

Лекції з електрики та магнетизму

Пономаренко С. М.

Зміст

- 1. Струм зміщення Приклади розрахунку струмів зміщення
- 2. Система рівнянь Максвелла
- 3. Енергія електромагнітного поля Теорема Пойнтінга Приклади використання теореми Пойнтінга

Основоположники теорії електромагнітного поля

Теорія електромагнітного поля, початки якої заклав Фарадей, математично була завершена Максвеллом. При цьому однією з найважливіших нових ідей, висунутих Максвеллом, була думка про симетрію в взаємозалежності електричного і магнітного полів.

Майкл Фарадей (1791 – 1867) — англійський фізик і хімік.

Джеймс Клерк Максвелл (1831 – 1879) — шотландський вчений.

Цитати із книги «Еволюція фізики»

А. Ейнштейн, Л. Інфельд

Кількісне, математичне формулювання законів поля дано в так званих рівняннях Максвелла. [Експериментальні] факти призвели до формулювання цих рівнянь, але зміст їх значно багатший [...]. Їхня проста форма приховує глибину, що виявляється тільки при ретельному вивченні.

Формулювання цих рівнянь є найважливішою подією з часу Ньютона не тільки важливою подією з часу Ньютона не тільки внаслідок цінності їхнього змісту, а й тому, що вони дають зразок нового типу законів. Характерну особливість рівнянь Максвелла, яка проявляється і в усіх інших рівняннях сучасної фізики, можна виразити в одному реченні: рівняння Максвелла суть закони, що виражають структуру поля.

Струм зміщення і закон збереження заряду

Протиріччя в законах магнетизму

Теорема про циркуляцію для постійного магнітного поля:

$$rot \vec{H} = \frac{4\pi}{c} \vec{j}$$

виявляється невірною у випадку змінного електричного поля.

Застосовуючи операцію div до цього рівняння і враховуючи тотожність div rot $\vec{H}=0$, отримуємо div $\vec{j}=0$. З іншого боку, якщо густина заряду змінюється з часом, $\frac{\partial \rho}{\partial t}\neq 0$ то в силу закону збереження заряду

$$\operatorname{div} \vec{j} = -\frac{\partial \rho}{\partial t},$$

тобто $\operatorname{div} \vec{j} \neq 0$. Це протиріччя показує, що необхідно видозмінити теорему про циркуляцію.

Струм зміщення і закон збереження заряду

Гіпотеза Максвелла

Для вирішення цього протиріччя Дж. Максвелл увів поняття струму зміщення $\vec{j}_{\text{эм}}$ співвідношенням

$$\operatorname{rot} \vec{H} = \frac{4\pi}{c} (\vec{j} + \vec{j}_{\mathsf{3M}}),$$

щоб закон збереження заряду виконувалося. Застосовуючи операцію div до записаного рівняння, отримуємо:

$$\operatorname{div}(\vec{j} + \vec{j}_{\text{3M}}) = 0, \Rightarrow \operatorname{div} \vec{j}_{\text{3M}} = \frac{\partial \rho}{\partial t}.$$

За теоремою Гаусса для електричного поля $ho = \frac{1}{4\pi} \operatorname{div} \vec{D}$. Отже:

$$\operatorname{div} \vec{j}_{\scriptscriptstyle \mathsf{3M}} = \frac{\partial}{\partial t} \left(\frac{1}{4\pi} \operatorname{div} \vec{D} \right), \ \Rightarrow \qquad \vec{j}_{\scriptscriptstyle \mathsf{3M}} = \frac{1}{4\pi} \frac{\partial \vec{D}}{\partial t}.$$

Струм зміщення і закон збереження заряду

Теорема про циркуляцію магнітного поля

Таким чином, теорема про циркуляцію для магнітного поля, що узгоджується із законом збереження заряду, має записуватися у вигляді

$$\operatorname{rot} \vec{H} = \frac{4\pi}{c}\vec{j} + \frac{1}{c}\frac{\partial \vec{D}}{\partial t},$$

В інтегральній формі теорема про циркуляцію має вигляд

$$\oint\limits_L \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} \iint\limits_S \vec{j} \cdot d\vec{S} + \frac{1}{c} \iint\limits_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S},$$

де $I_{\rm 3M}=\frac{1}{4\pi}\iint\limits_{S}\frac{\partial D}{\partial t}\cdot d\vec{S}$ — струм зміщення, що пронизує площу S, натягнуту на контур L. Отже, згідно гіпотези Максвелла змінне електричне поле поряд зі звичайними струмами, також створює магнітне поле.

Струм зміщення і закон збереження заряду

5

Порівняння закону Фарадея та гіпотези Максвелла

Порівняємо закон електромагнітної індукції Фарадея, та «оновлену» теорему про циркуляцію за відсутності струмів провідності ($\vec{j}=0$) у вакуумі ($\varepsilon=\mu=1\Rightarrow \vec{\pmb{E}}=\vec{\pmb{D}}, \ \vec{\pmb{H}}=\vec{\pmb{B}}$).

Закон електромагнітної індукції

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

Закон магнітоелектричної індукції

$$\operatorname{rot} \vec{B} = +\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$

Радіальне стікання заряду з кулі

Нехай куля несе заряд Q, який стікає в зовнішнє середовище. Унаслідок стікання заряду виникають струми, які можуть індукувати магнітне поле. Знайдемо це магнітне поле.

Стікання заряду з кулі створює струм провідності, який дорівнює:

$$I = -\frac{\partial Q}{\partial t}.$$

Електричне поле кулі $\vec{E}(r)=\frac{Q(t)}{r^3}\vec{r}$ також зменшується з часом, а тому струм зміщення дорівнює:

$$I_{\scriptscriptstyle \rm 3M} = \frac{1}{4\pi} \oiint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{S} = + \frac{\partial Q}{\partial t} = -I. \label{eq:interpolation}$$

З теореми про циркуляцію:

$$\oint\limits_{\cdot} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} (I + I_{\scriptscriptstyle \mathrm{3M}}) = 0, \; \Rightarrow \; \vec{H} = \vec{B} = 0. \label{eq:equation:equation}$$

Отже, в цьому випадку, магнітного поля не виникає.

Струм зміщення в конденсаторі

зміщення

провідності

Теорема про циркуляцію має вигляд:

• Для лівого рисунка

$$\oint_{I} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} I.$$

• Для правого рисунка

$$\oint_{L} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} I_{\text{3M}}.$$

Оскільки різні поверхні спираються на один і той же контур L, то циркуляція $\oint \vec{H} \cdot d\vec{r}$ не повинна залежати вибору поверхні. А, отже, $I=I_{\scriptscriptstyle 3M}$, тобто в середині конденсатора «протікає» струм зміщення, який замикає коло.

Струм зміщення в конденсаторі

зміщення

провідності

Теорема про циркуляцію має вигляд:

• Для лівого рисунка

$$\oint_{I} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c}I.$$

• Для правого рисунка

$$\oint_{L} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} I_{\text{\tiny 3M}}.$$

Як видно з теореми про циркуляцію, струми зміщення замикають струми провідності і створюють магнітне поле точно так само, як і струми провідності. Вони, однак, не створюють прямо теплового ефекту, до них незастосовні закон Ома і закон Джоуля-Ленца.

Система рівнянь Максвелла

8

Доповнивши основні факти зі сфери електромагнетизму, та доповнивши їх гіпотезою струмів зміщення, Максвелл зміг написати систему фундаментальних рівнянь електродинаміки. Таких рівнянь чотири.

Рівняння	Інтегральна форма	Диференціальна форма
Теорема Гаусса для магнітного поля	$\iint\limits_{S} \vec{B} \cdot d\vec{S} = 0$	$\operatorname{div} \vec{B} = 0$
Теорема про циркуляцію для електричного поля	$\oint\limits_L \vec{E} \cdot d\vec{r} = -\frac{1}{c} \iint\limits_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$	$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
Теорема Гаусса для електричного поля	$\iint\limits_{S} \vec{D} \cdot d\vec{S} = 4\pi \iiint\limits_{V} \rho dV$	$\operatorname{div} \vec{D} = 4\pi\rho$
Теорема про циркуляцію для магнітного поля	$\oint\limits_{L} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} \iint\limits_{S} \left(\vec{j} + \frac{1}{4\pi} \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{S}$	$\operatorname{rot} \vec{H} = \frac{4\pi}{c}\vec{j} + \frac{1}{c}\frac{\partial \vec{D}}{\partial t}$

Вираз електричного поля через потенціали

Рівняння Максвелла групуються парами. Перша пара рівнянь — рівняння без зарядів та струмів, друга пара — рівняння із зарядами та струмами.

Теорема Гаусса для магнітного поля дозволяє ввести векторний потенціал:

$$\vec{B} = \operatorname{rot} \vec{A}$$

Тоді теорема про циркуляцію для електричного поля записується як:

$$\operatorname{rot}\left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$$

Ця рівність означає, що це поле може бути представлене як градієнт скалярної функції, тоді отримуємо:

$$\vec{E} = -\vec{\nabla}\varphi - \frac{\partial\vec{A}}{\partial t}$$

У випадку постійних у часі полів: $\vec{E} = -\vec{\nabla} \varphi$, тобто, що введена тут функція φ збігається зі скалярним потенціалом.

Стаціонарні поля

У стаціонарному випадку часткові похідні за часом від полів дорівнюють нулю, тому рівняння максвела розпадається на дві окремі системи для електростатики і магнітостатики.

Рівняння електростатики	Рівняння магнітостатики	
$\int \operatorname{div} \vec{D} = 4\pi \rho,$	$\int \operatorname{div} \vec{B} = 0,$	
$\int \operatorname{rot} \vec{E} = 0.$	$\begin{cases} \operatorname{div} \vec{B} = 0, \\ \operatorname{rot} \vec{H} = \frac{4\pi}{c} \vec{j}. \end{cases}$	

Матеріальні рівняння

11)

Рівняння Максвелла мають бути доповнені співвідношеннями, що зв'язують поля \vec{D} та \vec{E} з одного боку, та \vec{H} та \vec{B} з іншого боку.

	Вираз
Вектор індукції електричного поля	$\vec{D} = \vec{E} + 4\pi \vec{P}$
Вектор поляризації (для лінійних ізотропних речовин)	$\vec{P} = \chi_e \vec{E}$
Діелектрична проникніть (для лінійних ізотропних речовин)	$\varepsilon = 1 + 4\pi \chi_e$
\vec{D} та \vec{E} (для лінійних ізотропних речовин)	$\vec{D} = \varepsilon \vec{E}$
Вектор напруженості магнітного поля	$\vec{H} = \vec{B} - 4\pi \vec{J}$
Вектор намагнічування (для лінійних ізотропних речовин)	$\vec{J}=\chi_e \vec{H}$
Магнітна проникніть (для лінійних ізотропних речовин)	$\mu = 1 + 4\pi \chi_m$
Зв'язок $ec{H}$ та $ec{B}$ (для лінійних ізотропних речовин)	$\vec{B} = \mu \vec{H}$
У разі струму, спричиненого електричним полем у провідному середовищі, має місце закон Ома	$\vec{j} = \lambda \vec{E}$

Граничні умови

Диференціальні рівняння Максвелла треба доповнити граничними умовами, яким має задовольняти електромагнітне поле на межі розділу двох середовищ. Ці умови неявно містяться в інтегральній формі рівнянь Максвелла і отримуються за їх допомогою. Граничні умови в стаціонарному випадку аналогічні і для випадку змінних полів.

Умови для електричних векторів	Умови для магнітних векторів
$D_{2n} - D_{1n} = 4\pi\sigma$	$B_{1n}=B_{2n}$
$E_{1\tau} = E_{2\tau}$	$\left[\vec{n} \times \vec{H}_2\right] - \left[\vec{n} \times \vec{H}_1\right] = \frac{4\pi}{c}\vec{i}$

Тут σ — поверхнева густина вільних електричних зарядів, а \vec{i} — поверхнева густина струму провідності на розглянутій границі розділу. У випадку, коли поверхневих струмів немає, гранична умова для тангенціальної компоненти вектора напруженості магнітного поля набуває вигляду:

$$H_{1\tau} = H_{2\tau}$$

Закон збереження енергії електромагнітного поля

Якщо у деякій області простору присутнє електромагнітне поле та заряджені частинки, які взаємодіють з цим полем, то енергія такої системи має зберігатись, якщо система замкнена. Якщо ж система незамкнена, то енергія може як втікати в цю область, так і витікати з неї.

(3міна енергії в об'ємі) = (Рух частинок) + (Потік енергії на зовні<math>).

(Рух частинок) = (Зміна енергії в об'ємі) – (Потік енергії на зовні).

Рухати частинки може лише електричне поле. Енергія, яка витрачається полем на розгін частинок в одиниці об'єму за одиницю часу — джоулеве тепло $\vec{j} \cdot \vec{E}$.

Закон збереження енергії електромагнітного поля

Якщо у деякій області простору присутнє електромагнітне поле та заряджені частинки, які взаємодіють з цим полем, то енергія такої системи має зберігатись, якщо система замкнена. Якщо ж система незамкнена, то енергія може як втікати в цю область, так і витікати з неї.

(3міна енергії в об'ємі) = (Рух частинок) + (Потік енергії на зовні<math>).

(Рух частинок) = (Зміна енергії в об'ємі) – (Потік енергії на зовні).

Рухати частинки може лише електричне поле. Енергія, яка витрачається полем на розгін частинок в одиниці об'єму за одиницю часу — джоулеве тепло $\vec{j} \cdot \vec{E}$.

Отримання закону збереження

$$\vec{j} = \frac{c}{4\pi} \operatorname{rot} \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t}$$
, (рівняння Максвелла для $\operatorname{rot} \vec{H}$).

$$\vec{j}\vec{E} = \frac{c}{4\pi}\vec{E} \cdot \operatorname{rot} \vec{H} - \frac{1}{4\pi}\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}$$

$$\vec{E} \cdot \operatorname{rot} \vec{H} = -\operatorname{div} [\vec{E} \times \vec{H}] + \vec{H} \cdot \operatorname{rot} \vec{E},$$
 (формула векторного аналізу).

$$\vec{j} \cdot \vec{E} = -\operatorname{div}\left(\frac{c}{4\pi}[\vec{E} \times \vec{H}]\right) + \frac{c}{4\pi}\vec{H} \cdot \operatorname{rot} \vec{E} - \frac{\partial}{\partial t}\left(\frac{1}{8\pi}\varepsilon\vec{E}^2\right)$$

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
, (рівняння Максвелла для $\operatorname{rot} \vec{E}$).

Врахуємо матеріальні рівняння $\vec{D} = \varepsilon \vec{E}$ та $\vec{B} = \mu \vec{H}$.

$$\vec{j} \cdot \vec{E} = -\operatorname{div}\left(\frac{c}{4\pi} [\vec{E} \times \vec{H}]\right) - \frac{1}{4\pi} \vec{H} \cdot \frac{\partial \vec{B}}{\partial t} - \frac{\partial}{\partial t} \left(\frac{1}{8\pi} \epsilon \vec{E}^2\right)$$

$$\vec{j} \cdot \vec{E} = -\operatorname{div}\left(\frac{c}{4\pi} [\vec{E} \times \vec{H}]\right) - \frac{\partial}{\partial t} \left(\frac{1}{8\pi} \varepsilon \vec{E}^2 + \frac{1}{8\pi} \mu \vec{H}^2\right)$$

Теорема Пойнтінга

Проаналізуємо отриманий вираз:

$$\underbrace{\vec{j} \cdot \vec{E}}_{\text{Енергія руху частинок}} = -\operatorname{div} \underbrace{\left(\frac{c}{4\pi} [\vec{E} \times \vec{H}]\right) - \frac{\partial}{\partial t}}_{\text{Вектор $\vec{\Pi}$}} \underbrace{\left(\frac{\varepsilon \vec{E}^2}{8\pi} + \frac{\mu \vec{H}^2}{8\pi}\right)}_{\text{Густина енергії}} \right)$$

Закон збереження енергії

$$-\frac{\partial w}{\partial t} = \operatorname{div} \vec{\Pi} + \vec{j} \cdot \vec{E}$$

$$-\frac{\partial W}{\partial t} = \iint\limits_{S} \vec{\Pi} \cdot d\vec{S} + \iiint\limits_{V} \vec{j} \cdot \vec{E} dV$$

Теорема Пойнтінга

Зменшення енергії за одиницю часу в даному об'ємі дорівнює потоку енергії крізь поверхню, обмежену цим об'ємом, плюс потужність, яку сили поля виконують над зарядами речовини всередині даного об'єму.

Теорема Пойнтінга

Закон збереження енергії

$$-\frac{\partial w}{\partial t} = \operatorname{div} \vec{\Pi} + \vec{j} \cdot \vec{E}$$

$$-\frac{\partial W}{\partial t} = \iint\limits_{S} \vec{\Pi} \cdot d\vec{S} + \iiint\limits_{V} \vec{j} \cdot \vec{E} dV$$

Теорема Пойнтінга

Зменшення енергії за одиницю часу в даному об'ємі дорівнює потоку енергії крізь поверхню, обмежену цим об'ємом, плюс потужність, яку сили поля виконують над зарядами речовини всередині даного об'єму.

Вектор Пойнтінга

$$\vec{\Pi} = \frac{c}{4\pi} [\vec{E} \times \vec{H}]$$

Вектор визначає кількість енергії поля, що протікає через одиничну площадку в одиницю часу, і показує напрямок руху енергії електромагнітного поля.

Вектор густини потоку енергії (вектор Пойнтінга)

$$\vec{\Pi} = \frac{c}{4\pi} [\vec{E} \times \vec{H}], \quad [\Pi] = \frac{\text{epr}}{\text{cm}^2 \cdot \text{c}} (\text{CFC}), \quad [S] = \frac{\text{BT}}{\text{m}^2} (\text{SI})$$

Густина енергії

$$w = \frac{\vec{E} \cdot \vec{D}}{8\pi} + \frac{\vec{B} \cdot \vec{H}}{8\pi}, \quad [w] = \frac{\text{epr}}{\text{cm}^2} (\text{CCC}), \quad [w] = \frac{\cancel{\square} \times \vec{M}}{\text{m}^3} (\text{SI})$$

Зарядка конденсатора

Плоский конденсатор із пластинами радіуса R заряджається струмом I від зовнішнього джерела енергії . Якщо в деякий момент заряд на нижній пластині дорівнює q, то індукція поля всередині конденсатора дорівнює: $D=4\pi\sigma=\frac{4\pi q}{\pi R^2}$, і напрямлений від нижньої пластини до верхньої. Густина струму зміщення в конденсаторі: $j_{\rm 3M}=\frac{\dot{D}}{4\pi}=\frac{\dot{q}}{\pi R^2}$.

Цей струм породжує в конденсаторі магнітне поле, яке можна знайти за допомогою теореми про циркуляцію:

$$\oint\limits_I \mathbf{H} \, d\mathbf{r} = \frac{4\pi}{c} J_{\scriptscriptstyle \mathsf{3M}}(r) \Rightarrow 2\pi r H(r) = \frac{4\pi}{c} \pi r^2 j_{\scriptscriptstyle \mathsf{3M}}(r) \Rightarrow H(r) = \frac{2r}{c\,R^2} \dot{q}.$$

Тут за контур L узято коло радіусу r з центром на осі конденсатора. Маючи на увазі, що конденсатор заряджається $(\dot{q}>0)$, робимо висновок, що струм зміщення спрямований від нижньої пластини до верхньої. Це означає, що силові лінії магнітного поля спрямовані, як показано на рис.

Зарядка конденсатора

Вектор Пойнтінга $\vec{\Pi} = \frac{c}{4\pi} \left[\vec{E} \times \vec{H} \right]$ спрямований до осі конденсатора і дорівнює за величиною на межі (r=R):

$$\Pi = \frac{c}{4\pi}EH = \frac{c}{4\pi}\left(\frac{4\pi q}{\varepsilon\pi R^2}\right)\left(\frac{2\dot{q}}{cR}\right) = \frac{1}{\varepsilon\pi R^2}2q\dot{q}.$$

Цей струм породжує в конденсаторі магнітне поле, яке можна знайти за допомогою теореми про циркуляцію:

$$\oint\limits_I \mathbf{H} \, d\mathbf{r} = \frac{4\pi}{c} J_{\scriptscriptstyle \mathsf{3M}}(r) \Rightarrow 2\pi r H(r) = \frac{4\pi}{c} \pi r^2 j_{\scriptscriptstyle \mathsf{3M}}(r) \Rightarrow H(r) = \frac{2r}{c\,R^2} \dot{q}.$$

Тут за контур L узято коло радіусу r з центром на осі конденсатора. Маючи на увазі, що конденсатор заряджається $(\dot{q}>0)$, робимо висновок, що струм зміщення спрямований від нижньої пластини до верхньої. Це означає, що силові лінії магнітного поля спрямовані, як показано на рис.

Зарядка конденсатора

Вектор Пойнтінга $\vec{\Pi} = \frac{c}{4\pi} \left[\vec{E} \times \vec{H} \right]$ спрямований до осі конденсатора і дорівнює за величиною на межі (r=R):

$$\Pi = \frac{c}{4\pi}EH = \frac{c}{4\pi}\left(\frac{4\pi q}{\varepsilon\pi R^2}\right)\left(\frac{2\dot{q}}{cR}\right) = \frac{1}{\varepsilon\pi R^2}2q\dot{q}.$$

Якщо відстань між пластинами дорівнює h, то енергія, що втікає в конденсатор за одиницю часу, дорівнює:

$$\frac{dW}{dt} = S \cdot 2\pi Rh = \frac{1}{\varepsilon \pi R^2} \cdot q\dot{q} \cdot 2\pi Rh = \frac{q\dot{q}}{C},$$

де $C=\varepsilon\pi R^2/4\pi h$ — ємність конденсатора. За кінцевий час, при досягненні заряду q на пластині, енергія складе:

$$W = \frac{q^2}{2C}.$$

Ми прийшли до відомої формули для енергії, що запасається в конденсаторі.

Довгий провідник

Розглянемо довгий прямий дріт радіуса R і довжини ℓ , яким тече струм I. На зовнішній поверхні дроту присутнє магнітне поле $H=\frac{2I}{cR}$. Струм у дроті виникає завдяки напрузі U на його кінцях, що створює поле величиною $E=\frac{U}{\ell}$. Напрямки полів \vec{E} і \vec{H} показано на рис.

Вектор Пойнтінга виявляється спрямованим до осі дроту і рівнй за величиною:

$$\Pi = \frac{c}{4\pi}EH = \frac{c}{4\pi}\frac{U}{\ell}\frac{2I}{cR} = \frac{1}{2\pi\ell R}UI$$

Оскільки площа бічної поверхні дроту дорівнює $S=2\pi\ell R$, то повний потік енергії, що втікає в дріт, становить $\Pi S=UI$. Це в точності та сама енергія, що йде на джоулеві втрати в дроті: $\Pi S=Q=UI$.

Таким чином, електрони отримують свою енергію, ззовні, від потоку енергії зовнішнього поля всередину дроту і витрачають її на створення теплоти. Енергія віддалених зарядів якимось чином розтікається по великій області простору і потім втікає всередину дроту.