Task p. 51-1 / Anwendung S. 51-1

FK

automatic

Working directory

```
> setwd("D:/kronthafranz/Documents/01Lehre/06Quantitative Forschungsmethoden dt en")
```

Load data

> load("D:/kronthafranz/Documents/01Lehre/06Quantitative Forschungsmethoden dt en/07Regression Diagnostic/smartphone.RData")

Descriptive statistics

```
> summary(smartphone)

price sales

Min. : 200.0 Min. : 290000

1st Qu.: 447.5 1st Qu.: 405000

Median : 695.0 Median : 610000

Mean : 695.0 Mean : 614706

3rd Qu.: 942.5 3rd Qu.: 815000

Max. :1190.0 Max. :1050000
```

Scatterplot

```
> scatterplot(sales~price, reg.line=FALSE, smooth=FALSE, spread=FALSE,
+ boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.5, .9),
data=smartphone)
```


- --> clearly a non-linear relationship, u-shaped
- --> modelling a u-shaped relationship: y-estimated=b0+b1*X+b2*X^2

Correlation coefficients

Generate squared independent variable

```
> smartphone$price_sq <- with(smartphone, price * price)</pre>
```

Estimate model

```
> RegModel.1 <- lm(sales~price+price_sq, data=smartphone)
> summary(RegModel.1)

Call:
lm(formula = sales ~ price + price_sq, data = smartphone)
```

- --> Model is significant
- --> R2 is 94.7% explained
- --> Independent variable and squared independent variable are significant
- --> Sign of coefficient of independent variable is negative
- --> Sign of coefficient of squared independent variable is positive
- --> Because of signs and significance we can conclude that there is a u-shaped relationship

Evaluate GM assumptions

Add regression statistics

```
> smartphone<- within(smartphone, {
+ fitted.RegModel.1 <- fitted(RegModel.1)
+ residuals.RegModel.1 <- residuals(RegModel.1)
+ rstudent.RegModel.1 <- rstudent(RegModel.1)
+ hatvalues.RegModel.1 <- hatvalues(RegModel.1)
+ cooks.distance.RegModel.1 <- cooks.distance(RegModel.1)
+ obsNumber <- 1:nrow(smartphone)
+ })</pre>
```

GM1: Linearity and complete specification

Only one independent variable: model fully specified?

Non-linearity is already considered

GM2: Expected value = 0

```
> scatterplot(rstudent.RegModel.1~fitted.RegModel.1, reg.line=FALSE,
+ smooth=FALSE, spread=FALSE, boxplots=FALSE, span=0.5, ellipse=FALSE,
+ levels=c(.5, .9), data=smartphone)
```


Is violated

Important independent variable missing?

GM3: Error term correlated with independent variables?

```
> scatterplot(rstudent.RegModel.1~price, reg.line=FALSE, smooth=FALSE,
+ spread=FALSE, boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.5, .9),
+ data=smartphone)
```



```
> scatterplot(rstudent.RegModel.1~price_sq, reg.line=FALSE, smooth=FALSE,
+ spread=FALSE, boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.5, .9),
+ data=smartphone)
```


Seems not to be the case

GM4: Heteroscedasticity?

```
> scatterplot(rstudent.RegModel.1~fitted.RegModel.1, reg.line=FALSE,
+ smooth=FALSE, spread=FALSE, boxplots=FALSE, span=0.5, ellipse=FALSE,
+ levels=c(.5, .9), data=smartphone)
```


Difficult to evaluate (GM2 is violated)

GM5: Autocorrelation?

```
> scatterplot(rstudent.RegModel.1~obsNumber, reg.line=FALSE, smooth=FALSE,
+ spread=FALSE, boxplots=FALSE, span=0.5, ellipse=FALSE, levels=c(.5, .9),
+ data=smartphone)
```


Pattern, autocorrelation seems to be problematic

GM6: Multicollinearity?

Not a problem, because there is only one independent variable

GM7: Normality?

```
> with(smartphone, Hist(rstudent.RegModel.1, scale="frequency",
+ breaks="Sturges", col="darkgray"))
```



```
> with(smartphone, qqPlot(rstudent.RegModel.1, dist="norm", id.method="y",
+ id.n=2, labels=rownames(smartphone)))
```



```
> library(nortest, pos=14)
> with(smartphone, shapiro.test(rstudent.RegModel.1))

    Shapiro-Wilk normality test

data: rstudent.RegModel.1
W = 0.98304, p-value = 0.8625
```

Normal distribution is not violated

Outliers?

```
> scatterplot(rstudent.RegModel.1~fitted.RegModel.1, reg.line=FALSE,
+ smooth=FALSE, spread=FALSE, boxplots=FALSE, span=0.5, ellipse=FALSE,
+ levels=c(.5, .9), data=smartphone)
```


Studentised residuals are not substantial larger than 2

Summary:

Several assumptions are violated

Most important problem is probably the missing of important independent variables

Course of action would be to solve this problem first and then estimate and evaluate the model again