

Continuous Assessment Test (CAT)- I- October 2022

Programme	:	B.Tech.	Semester	:	Fall Semester Year I 2022-2023
Course Title		Calculus	Code	:	BMAT101L
Course Title		Calculus	Slot	:	E1+TE1
Faculty	:	Dr. Saroj Kumar Dash, Dr. Manivannan A, Dr. C.	Class Nbr	:	CH2022231700190,
		Rajivganthi, Dr. Harshavarthini, Dr. Prosenjit, Dr. Ashis			189, 191, 192, 196,
		Bera, Dr. Ankit Kumar, Dr. Sandip Saha, Dr. Kriti Arya			194, 257, 323, 883
Duration	:	1 ½ Hours	Max. Marks	:	50

Answer all the Questions (50 marks)

Q.No.	Question Description	Marks		
1.	a) Using Mean Value Theorem (MVT) prove that $0 < \frac{1}{x} \log \left(\frac{e^x - 1}{x} \right) < 1$ for $x > 0$.			
	b) Find the intervals on which the function $f(x) = 3x^2 - 4x^3$, $x \in \mathbb{R}$ is increasing or decreasing?	[5]		
2.	Examine the extreme values of the function $f(x) = x^5 - 5x^4 + 5x^3 + 12$, $x \in \mathbb{R}$. Also find the intervals on which the function $f(x)$ is concave up and concave down.	[10]		
3.	Find the volume of the solid formed by revolving the region enclosed by the parabola	[10]		
	$y^2 = 4ax$ and the straight line $y = x$, (i) about x-axis, (ii) about y-axis.			
4.	. Let $f(x, y) = (x^2 + y^2)^{2/3}$. Find f_x , f_y , f_{xy} and f_{yx} at each point in \mathbb{R}^2 .	[10]		
5.	a) The inductance L (in microhenrys) of a straight nonmagnetic wire in free space is: $L = 0.00021 \left[ln \left(\frac{2h}{r} \right) - 0.75 \right],$ where 'h' is the length of the wire in the millimetre and 'r' is the radius of the circular cross section. Find the maximum possible error of L , when $r = 2 \pm \frac{1}{16}$	[5]		
	millimetres and $h = 100 \pm \frac{1}{100}$ millimetres. b) Find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$, where $u = \cos x \cosh y$, $v = \sin x \cosh y$ and $w = \sinh z$.	[5]		