PRACTICE PROBLEMS ON PARTIAL DIFFERENTIATION

TYPE-I

1. If
$$u = \sin\left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = \frac{1}{2}\left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)\cos\left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)$.

2. If
$$u = e^{xyz}$$
, prove that, $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$

3. If
$$z = x^2 tan^{-1} \left(\frac{y}{x}\right) - y^2 tan^{-1} \left(\frac{x}{y}\right)$$
, prove that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{x^2 - y^2}{x^2 + y^2}$

4. If
$$u = f\left(\frac{x^2}{y}\right)$$
, prove that $x\frac{\partial u}{\partial x} + 2y\frac{\partial u}{\partial y} = 0$ and $x^2\frac{\partial^2 u}{\partial x^2} + 3xy\frac{\partial^2 u}{\partial x \partial y} + 2y^2\frac{\partial^2 u}{\partial y^2} = 0$.

5. If
$$u = \log(x^3 + y^3 - x^2y - xy^2)$$
, prove that (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$. (ii) $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = -\frac{4}{(x+y)^2}$

6. If
$$u = \log r$$
, $r = (x^3 + y^3 - x^2y - xy^2)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$ & $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 u = -\frac{4}{(x+y)^2}$

7. If
$$u = (1 - 2xy + y^2)^{-1/2}$$
, prove that $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = y^2 u^3$.

8. If
$$u = (1 - 2xy + y^2)^{-1/2}$$
, prove that $\frac{\partial}{\partial x} \left[(1 - x^2) \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial y} \left[y^2 \frac{\partial u}{\partial y} \right] = 0$.

9. If
$$u = \log(\tan x + \tan y + \tan z)$$
, prove that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$.

10. If
$$z = ct^{-1/2}e^{-x^2/4a^2t}$$
, prove that $\frac{\partial z}{\partial t} = a^2 \frac{\partial^2 z}{\partial x^2}$

11. If
$$u = (x^2 + y^2 + z^2)^{-1/2}$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.

or If
$$\frac{1}{u^2} = x^2 + y^2 + z^2$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.

or If
$$u = \frac{1}{r}$$
, $r = \sqrt{x^2 + y^2 + z^2}$ prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.

12. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, prove that

(i)
$$\frac{\partial x}{\partial r} = \frac{\partial r}{\partial x}$$
 (ii) $\frac{\partial x}{\partial \theta} = r^2 \frac{\partial \theta}{\partial x}$

(ii)
$$\frac{\partial x}{\partial \theta} = r^2 \frac{\partial \theta}{\partial x}$$

(iii)
$$\left[x\left(\frac{\partial x}{\partial r}\right) + y\left(\frac{\partial y}{\partial r}\right)\right]^2 = x^2 + y^2$$

13. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, prove that

(i)
$$\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r} \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 \right],$$

(ii)
$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0.$$

14 If
$$u = f(r)$$
 and $r = \sqrt{x^2 + y^2}$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$. or

If
$$u=f\Big(\sqrt{x^2+y^2}\Big)$$
, prove that $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{1}{\sqrt{x^2+y^2}}f'\Big(\sqrt{x^2+y^2}\Big)+f''\Big(\sqrt{x^2+y^2}\Big)$

15. If
$$u = f(r^2)$$
 where $r^2 = x^2 + y^2 + z^2$ prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 4r^2 f''(r^2) + 6f'(r^2)$

16. If
$$u = e^{xyz} f\left(\frac{xy}{z}\right)$$
, prove that $x\frac{\partial u}{\partial x} + z\frac{\partial u}{\partial z} = 2xyzu$; $y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 2xyzu$.

Hence, show that
$$x \frac{\partial^2 u}{\partial z \partial x} = y \frac{\partial^2 u}{\partial z \partial y}$$

NANDINI RAI Page 1

FY BTECH SEM-I AM-I

- **17.** If z = xf(x+y) + yg(x+y), prove that $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$.
- **18.** If $z = x \log(x+r) r$ where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{1}{x+r}$, $\frac{\partial^3 z}{\partial x^3} = -\frac{x}{x^3}$.
- Find that value of n so that $V = r^n(3\cos^2\theta 1)$ satisfies the equation,

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) = 0.$$

Ans: $n = 2 \ or - 3$.

If $u = Ae^{-gx}sin(nt - gx)$ where A, g, n are constants, satisfies the equation $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$ Show that $ag = \sqrt{\frac{n}{2}}$

TYPE – II

- If $z = x^2 + y^2$, $x = at^2$, y = 2at, verify that $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$
- If $z = xy^2 + x^2y$, $x = at^2$, y = 2at, find $\frac{dz}{dt}$ Ans: $a^3(16t^3 + 10t^4)$
- If $z = tan^{-1}\left(\frac{x}{y}\right)$, x = 2t, $y = 1 t^2$, prove that $\frac{dz}{dt} = \frac{2}{1+t^2}$.
- If $z = sin^{-1}(x y)$, x = 3t, $y = 4t^3$, prove that $\frac{dz}{dt} = \frac{3}{\sqrt{1 t^2}}$
- If $u = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$, find $\frac{du}{dt}$. Ans: $4e^{2t}$

TYPE - III

- If u = f(2x 3y, 3y 4z, 4z 2x) prove that $6\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} + 3\frac{\partial u}{\partial z} = 0$.
- If z = f(x, y), $x = e^u + e^{-v}$, $y = e^{-u} e^v$, prove that $\frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y}$
- If z = f(x, y), x = ucoshv, y = usinhv, prove that $\left(\frac{\partial z}{\partial x}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial y}\right)^2 \frac{1}{u^2}\left(\frac{\partial z}{\partial v}\right)^2$
- If z = f(x, y), $x = e^u \cos v$, $y = e^u \sin v$, prove that

(i)
$$x \frac{\partial z}{\partial v} + y \frac{\partial z}{\partial u} = e^{2u} \frac{\partial z}{\partial y}$$
.

(i)
$$x \frac{\partial z}{\partial v} + y \frac{\partial z}{\partial u} = e^{2u} \frac{\partial z}{\partial v}$$
. (ii) $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 = e^{-2u} \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right]$

- If z = f(x, y) and $x = e^u \sec v$, $y = e^u \tan v$, prove that $\left(\frac{\partial z}{\partial x}\right)^2 \left(\frac{\partial z}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial z}{\partial u}\right)^2 \cos^2 v \left(\frac{\partial z}{\partial v}\right)^2\right]$
- If $u = f\left(\frac{y-x}{yy}, \frac{z-x}{yz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$
- If $u = f(e^{y-z}, e^{z-x}, e^{x-y})$, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
- If x = u + v + w, y = uv + vw + wu, z = uvw, prove that 8. $x\frac{\partial\Phi}{\partial x} + 2y\frac{\partial\Phi}{\partial y} + 3z\frac{\partial\Phi}{\partial z} = u\frac{\partial\Phi}{\partial y} + v\frac{\partial\Phi}{\partial y} + w\frac{\partial\Phi}{\partial w}$ where Φ is a function of x, y, z.

NANDINI RAI