Swiping Burger

Florian, Steffen, Felix, Lukas

June 13, 2016

Table of Contents

Expose

Design

Within-, Between-group or Split-plot Independent and Dependent Variables Participants and Location Questionnaires

Analysis Methods

Discussion

Expose

- Examination of a sequence of questions in an e-learning app often does not happen sequentially
- Swipe gestures are efficient when going through data sequentially, but how about other scenarios?
- Comparison of Hamburger menu navigation with swipe gestures for large jumps within sequence

Tasks

- Starting at page one, in each task, participant has to visit five pages in a predefined order (kind of a treasure hunt)
- ▶ The distances between two pages are once d-1, three times d, and once d+1: average distance is d
- ► After completion of a task, questionnaire has to be filled in (built into the application)

Tasks - Example

Figure: A task where d = 5

Sequence:

 $\mathsf{Room1} \to \mathsf{Room6} \to \mathsf{Room2} \to \mathsf{Room7} \to \mathsf{Room13} \to \mathsf{Room8}$

Tasks

In total there are five tasks with different distances: 5, 10, 15, 20, 25

- ▶ Room1 → Room6 → Room2 → Room7 → Room13 → Room8
- ▶ Room1 → Room11 → Room2 → Room12 → Room23 → Room13
- ▶ Room1 → Room16 → Room2 → Room17 → Room33 → Room18
- ▶ Room1 → Room21 → Room2 → Room22 → Room43 → Room23
- ▶ Room1 → Room26 → Room2 → Room27 → Room53 → Room28

Tasks - Realization

Figure: Navigation with swipe gestures

Figure: Navigation with Hamburger menu

Tasks - Realization cont'd

Figure: Opening the right door, a wrong door, and the last door

Hypotheses

- Usage of Hamburger Menu navigation requires constant time to travel a path.
- Usage of Swipe navigation results in growing time depending on the distance.
- There is some point of intersection, where the required navigation time of Swipe exceeds the required navigation time of Hamburger Menu.

Table of Contents

Expose

Design

Within-, Between-group or Split-plot Independent and Dependent Variables Participants and Location Questionnaires

Analysis Methods

Discussion

Within-, Between-group or Split-plot

- ▶ Between group treatment among navigation methods
- ▶ Within group design over the length of the navigation paths
- \rightarrow Split-plot design.

Independent / Dependent Variables

Independent Variables

- Navigation Method
- Navigation Distance

Dependent Variables

- ► Time
- User satisfaction (Questionnaires)

Participant Acquisition and where to investigate

Field study

Why? Participants should not get bored. Experiment is not too long.

Where? Mensa: because student's are used to smartphones.

When? Not during meal times to avoid distraction.

Questionnaires

After each distance block

- " Ich konnte die Aufgaben gut lösen."
- " Die Erreichung des Ziels war mir zu umständlich."

At the very end

- "Die Umgebung hat mich beim Bearbeiten der Aufgaben gestört"
- "Die Dauer des Experiments war mir zu hoch?"
- "Die Bedienung des mobilen Geräts war intuitiv"
- "Die Art der Navigation hat mir zugesagt"

Table of Contents

Expose

Design

Within-, Between-group or Split-plot Independent and Dependent Variables Participants and Location Questionnaires

Analysis Methods

Discussion

Main Idea

- ▶ **Given**: Required time, for each navigation method (swipe, burger) and for each distance $d \in D$.
- ▶ Wanted: Point of intersection, distance *d**, at which Swipe navigation becomes less efficient than Hamburger Menu navigation.

▶ The Plan:

- Compare the different distances within one navigation method to each other.
- 2. Draw a comparison between the two navigation methods.

Hamburger Menu Navigation over distances D

- Consider normally distributed random variables X_d with means \bar{x}_d and variance σ_x^2 being the time required for traveling d pages using Hamburger Menu navigation.
- We hypothesize that

$$H_0^{\text{burger}}: \bar{x}_{d_1} = \bar{x}_{d_2} = \cdots = \bar{x}_{d_{|D|}}$$

- ► Since we can assume equal variances, we evaluate the hypothesis using Repeated Measures ANOVA.
- In case we do not find significant differences, we can use the overall mean \bar{x} for comparison with the Swipe navigation.

Swipe Menu Navigation over distances D

- ► Consider normally distributed random variables Y_d with means \bar{y}_d and variances $\sigma_{y,d}^2$ being the time required for traveling d pages using Swipe navigation.
- ▶ Then we assert that the following hypothesis can be rejected:

$$H_0^{\text{swipe}}: \bar{y}_{d_1} = \bar{y}_{d_2} = \cdots = \bar{y}_{d_{|D|}}$$

Since we can not assume homogeneity of variance in this case, we evaluate the hypothesis using the Friedmann test.

Swipe Navigation vs Hamburger Menu Navigation

- ▶ In case we can reject H_0^{swipe} and can not reject H_0^{burger} :
- ▶ Compare per-distance means \bar{y}_d of Swipe navigation with overall mean \bar{x} of Hamburger Menu navigation:

$$H_0^{(d)}: \bar{y}_d = \bar{x} \ \forall d \in D$$

- ▶ We evaluate these hypotheses using the Welch's *t*-test, because we can not assume equal variances.
- ▶ In the end, we (hopefully) find the distance d^* , for which the required time with Swipe navigation exceeds the required time with Hamburger Menu navigation.

Table of Contents

Expose

Design

Within-, Between-group or Split-plot Independent and Dependent Variables Participants and Location Questionnaires

Analysis Methods

Discussion

Discussion

▶ Where would you expect the point of intersection d^* to be?