

2

Sumário:

- Sistemas de numeração
- Códigos
- Codificadores
- Descodificadores
- Multiplexers
- Desmultiplexers
- Comparadores
- Somadores
- Subtractores

3

Sistemas de numeração

Sistemas de Numeração são formas de representação das grandezas quantitativas.

Exemplos de sistemas de numeração:

- Decimal (0,1,2,3,4,5,6,7,8,9)
- Binário (0,1)
- Octal (0,1,2,3,4,5,6, 7)
- Hexadecimal (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)

Circuitos combinatórios

4

Sistemas de numeração Binário

- Neste sistema de numeração utilizam-se somente dois símbolos (0,1);
- Normalmente designa-se por sistema de numeração de base 2 ou binário natural;
- Cada dígito binário designa-se por bit;
- Cada coluna do código binário tem um peso diferente (2nº de ordem da coluna);
- Os diferentes pesos s\u00e3o somados por forma a obter o n\u00e1mero desejado.

			,		
		Cóc	ligo Bir	iário	(
Código	24	23	2 ²	21/	2°
Decimal	16	8	4	2	1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1
10	0	1	0	1	0

5

Sistemas de numeração Octal

- Este sistema também pode ser designado por base 8;
- Só tem 8 dígitos: 0, 1, 2, 3, 4, 5, 6, 7.
- As oito combinações do código octal são representadas da mesma forma que as primeiras oito combinações do código decimal.

Código Decimal	Código Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

Como distinguir representações iguais de sistemas de numeração diferentes?

- $1_{(10)} \rightarrow \text{Número 1 na base 10}$
- $1_{(8)} \rightarrow$ Número 1 na base 8

Circuitos combinatórios

6

Sistemas de numeração Hexadecimal

- Este sistema também pode ser designado por base 16;
- Só tem 16 dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F;
- As dez primeiras combinações do código hexadecimal são representadas da mesma forma que as primeiras dez combinações do código decimal.

Como distinguir representações iguais de sistemas de numeração diferentes?

- $1_{(10)} \rightarrow \text{Número 1 na base 10}$
- $1_{(16)} \rightarrow \text{Número 1 na base 16}$

Código Decimal	Código Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	E
15	F

7

É possível representar a mesma grandeza nos vários sistemas de numeração.

O número $\mathbf{8}_{(10)}$ no sistema de numeração decimal é representado por:

- 10₍₈₎ → no sistema de numeração octal
- 8₍₁₆₎ → no sistema de numeração hexadecimal
- 1000₍₂₎ → no sistema de numeração binário

				Cód	igo Bin	ário	
Código Decimal	Código Octal	Código Hexadecimal	24	2 ³	2 ²	21	20
			16	8	4	2	1
0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	1
2	2	2	0	0	0	1	0
3	3	3	0	0	0	1	1
4	4	4	0	0	1	0	0
5	5	5	0	0	1	0	1
6	6	6	0	0	1	1	0
7	7	7	0	0	1	1	1
8	10	8	0	1	0	0	0
9	11	9	0	1	0	0	1
10	12	Α	0	1	0	1	0
11	13	В	0	1	0	1	1
12	14	С	0	1	1	0	0
13	15	D	0	1	1	0	1
14	16	E	0	1	1	1	0
15	17	F	0	1	1	1	1

Circuitos combinatórios

8

Como converter da base 2 para a base 8?

- Divide-se o número binário em grupos de três, da direita para a esquerda;
- A soma ponderada entre cada dígito e o respectivo peso, dá um algarismo no sistema octal.

Converter o seguinte número representado na base 2 para a base 8.

$$\underline{110011}_{(2)} = 0 * 2^2 + 1 * 2^1 + 1 * 2^0 = 2 + 1 = 3_{(8)}$$

 $\underbrace{110011}_{|}_{(2)} = \underbrace{63}_{(8)}$

$$110_{(2)} = 1*2^2 + 1*2^1 + 0*2^0 = 4 + 2 = 6_{(8)}$$

9

Como converter da base 2 para a base 10?

- A soma ponderada entre cada dígito e o respectivo peso, dá um algarismo no sistema decimal;
- Expoentes à esquerda da vírgula são positivos e expoentes à direita da vírgula são negativos.

Converter o seguinte número representado na base 2 para a base 10.

$$1101,011_{(2)}$$

$$1101,011_{(2)} = 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} =$$

$$= 8+4+0+1+0+0,25+0,125 =$$

$$= 13,375_{(10)}$$

Circuitos combinatórios

10

Como converter da base 2 para a base 16?

- Divide-se o número binário em grupos de quatro, da direita para a esquerda;
- A soma ponderada entre cada dígito e o respectivo peso, dá um algarismo no sistema hexadecimal.

Converter o seguinte número representado na base 2 para a base 16. $110001011010_{(2)}$ $1010_{(2)} = 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 8 + 2 = A_{(16)}$ $110001011010_{(2)} = 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 4 + 1 = 5_{(16)}$ $1100_{(2)} = 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0 = 8 + 4 = C_{(16)}$

Conversão Base 2 → Base 8 Divide-se o número binário em grupos de três, da direita para a esquerda; A soma ponderada entre cada digito e o respectivo peso, dá um algarismo no sistema octal. Base 2 → Base 10 A soma ponderada entre cada digito e o respectivo peso, dá um algarismo no sistema decimal; Expoentes à esquerda da vírgula são positivos e expoentes à direita da vírgula são negativos. Base 2 → Base 16 Divide-se o número binário em grupos de quatro, da direita para a esquerda; A soma ponderada entre cada digito e o respectivo peso, dá um algarismo no sistema hexadecimal.

13

Como converter da base 8 para a base 10?

- A soma ponderada entre cada dígito e o respectivo peso, dá um algarismo no sistema decimal;
- A base do expoente é agora 8;
- Expoentes à esquerda da vírgula são positivos e expoentes à direita da vírgula são negativos.

Converter o seguinte número representado na base 8 para a base 10.

$$30,5_{(8)} = 3*8^1 + 0*8^0 + 5*8^{-1} = 24,625_{(10)}$$

Circuitos combinatórios

14

Como converter da base 8 para a base 16?

- Primeiro converte-se da base 8 para a base 10;
- Depois converte-se da base 10 para a base 16, através do método das divisões sucessivas.

Converter o seguinte número representado na base 8 para a base 16.

15

Conversão	Regra para a conversão
Base 8 → Base 2	É necessário recorrer às tabelas dos sistemas de numeração de base 8 e de base 2;
	Converte-se cada algarismo em binário com três dígitos.
Base 8 → Base 10	A soma ponderada entre cada dígito e o respectivo peso, dá um algarismo no sistema decimal;
	A base do expoente é 8;
	• Expoentes à esquerda da vírgula são positivos e expoentes à direita da vírgula são negativos.
Base 8 → Base 16	Primeiro converte-se da base 8 para a base 10;
	• Depois converte-se da base 10 para a base 16, através do Método das Divisões Sucessivas.

Circuitos combinatórios

16

Como converter da base 10 para a base 2?

- Parte inteira:
 - Divide-se sucessivamente o número representado no sistema decimal por 2 até que o valor do quociente seja menor que o divisor;
 - O resto obtido e o último quociente constituem o número no sistema binário;
 - A leitura do número do sistema binário é efectuada da direita para a esquerda.
- Parte fraccionária:
 - Multiplica-se por dois a parte fraccionária, até que a parte fraccionária do resultado seja igual a zero;
 - Os resultados de todas as partes inteiras constituem o número no sistema binário;
 - A leitura do número no sistema binário é efectuada da esquerda para a direita.

Como converter da base 10 para a base 2? Converter o seguinte número representado na base 10 para a base 2. $30,625_{(10)}$ $30 \mid 2$ $0,625 \quad 0,250 \quad 0,500$ $2 \quad 2 \quad 2 \quad 2 \quad 2$ $10,250 \quad 0,500 \quad 1000$ $30_{(10)} = 11110_{(2)}$ $30_{(10)} = 11110_{(2)}$ $30,625_{(10)} = 11110,101_{(2)}$ $30,625_{(10)} = 11110,101_{(2)}$

Circuitos combinatórios

18

Como converter da base 10 para a base 8?

• Parte inteira:

- Divide-se sucessivamente o número representado no sistema decimal por 8 até que o valor do quociente seja menor que o divisor;
- O resto obtido e o último quociente constituem o número no sistema octal;
- A leitura do número do sistema octal é efectuada da direita para a esquerda.

Parte fraccionária:

- Multiplica-se por oito a parte fraccionária, até que a parte fraccionária do resultado seja igual a zero;
- Os resultados de todas as partes inteiras constituem o número no sistema octal;
- A leitura do número no sistema octal é efectuada da esquerda para a direita.

20

Como converter da base 10 para a base 16?

- Parte inteira:
 - Divide-se sucessivamente o número representado no sistema decimal por 16 até que o valor do quociente seja menor que o divisor;
 - O resto obtido e o último quociente constituem o número no sistema hexadecimal;
 - A leitura do número do sistema hexadecimal é efectuada da direita para a esquerda.
- Parte fraccionária:
 - Multiplica-se por dezasseis a parte fraccionária, até que a parte fraccionária do resultado seja igual a zero;
 - Os resultados de todas as partes inteiras constituem o número no sistema hexadecimal;
 - A leitura do número no sistema hexadecimal é efectuada da esquerda para a direita.

Circuitos combinatórios Como converter da base 16 para a base 2? • É necessário recorrer às tabelas dos sistemas de numeração de base 16 e de base 2; • Converte-se cada algarismo em binário com quatro dígitos. Converter o seguinte número representado na base 16 para a base 2. Converter o seguinte número representado na base 16 para a base 2.

Circuitos combinatórios

24

Como converter da base 16 para a base 8?

- Primeiro converte-se da base 16 para a base 10;
- Depois converte-se da base 10 para a base 8, através do método das divisões sucessivas.

25

Como converter da base 16 para a base 10?

- A soma ponderada entre cada dígito e o respectivo peso, dá um algarismo no sistema decimal;
- A base do expoente é agora 16;
- Expoentes à esquerda da vírgula são positivos e expoentes à direita da vírgula são negativos.

Converter o seguinte número representado na base 16 para a base 10. $30, 5_{\left(16\right)}$

 $30,5_{(16)} = 3*16^{1} + 0*16^{0} + 5*16^{-1} = 48,3125_{(10)}$

Circuitos combinatórios

Base 16 → Base 2	 É necessário recorrer às tabelas dos sistemas de numeração de base 16 e de base 2; Converte-se cada algarismo em binário com quatro dígitos.
Base 16 → Base 8	 Primeiro converte-se da base 16 para a base 10; Depois converte-se da base 10 para a base 8, através do Método das Divisões Sucessivas.
Base 16 → Base 10	 A soma ponderada entre cada dígito e o respectivo peso, dá um algarismo no sistema decimal; A base do expoente é agora 16;
	Expoentes à esquerda da vírgula são positivos e expoentes à direita da vírgula são negativos.

27

Códigos

- Um código é um conjunto de unidades de informação relacionadas de forma sistemática e biunívoca com outro conjunto de sinais e símbolos segundo determinadas regras de tradução pré fixadas;
- Os códigos utilizados nos sistemas digitais são binários, isto é, combinações de 1's e 0's;
- Os 1's e 0's representam níveis altos ou baixos de tensão;
- O processo de transformação de informação perceptível aos sistemas digitais é denominado por codificação;
- O processo de transformação de informação perceptível aos sistemas digitais em informação perceptível aos seres humanos é denominado por descodificação.

Circuitos combinatórios

28

Código Decimal Codificado em Binário Natural -BCD Natural

- É um código baseado nas primeiras 16 combinações do código binário;
- É um código que é construído com as primeiras 10 combinações do código binário por ordem crescente (0, ..., 9).

	23	22	21	20
	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

	Código Decimal	2 ³	22	21	20
		8	4	2	1
	0_/_	0	0	0	0
	1	0	0	0	1
1	2	0	0	1	0
	3	0	0	1	1
	4	0	1	0	0
	5	0	1	0	1
	6	0	1	1	0
	7	0	1	1	1
	8	1	0	0	0
	9	1	0	0	1
	10	1	0	1	0
	11	1	0	1	1
-	12	1	1	0	0
	13	1	1	0	1
	14	1	1	1	0
	15	1	1	1	1

Código Decimal Codificado em Binário Excesso 3 - BCD Excesso 3 • É um código baseado nas primeiras 16 combinações do código binário; • É um código que não utiliza as primeiras três combinações nem as três últimas combinações do código binário.

31

Código progressivo Gray

- A característica fundamental dos códigos progressivos é que uma combinação difere da combinação anterior e da combinação seguinte exclusivamente num bit;
- É um código cíclico porque a última combinação difere da combinação anterior e da primeira combinação exclusivamente num bit;
- Podem existir vários códigos Gray.

_							
	Código Gray						
0	0	0	0				
0	0	0	1				
0	0	1	1				
0	0	1	0				
0	1	1	0				
0	1	1	1				
0	1	0	1				
0	1	0	0				
1	1	0	0				
1	1	0	1				
1	1	1	1				
1	1	1	0				
1	0	1	0				
1	0	1	1				
1	0	0	1				
1	0	0	0				

Circuitos combinatórios

32

Códigos detectores de erros

- Existem códigos complexos que detectam os erros na informação;
- Nos códigos mais vulgares, o erro é detectado se ocorre apenas num bit da combinação, uma vez que a probabilidade de haver erro na transmissão em dois bits é muito pequena;
- O número mínimo de bit que estes códigos usam é de cinco;
- Os códigos detectores mais utilizados são os de paridade par e os de paridade ímpar;
- Estes códigos formam-se acrescentando mais um bit aos códigos da família BCD;
- O bit paridade é gerado por um circuito denominado por gerador de paridade, que é construído com portas OU Exclusivo.

33

Códigos detectores de erros de paridade ímpar

- A detecção é realizada (através de um circuito detector formado por portas OU Exclusivo) de maneira que o número de 1's é sempre ímpar;
- Nos códigos de paridade ímpar o número de 1's tem de ser ímpar, entrando em conta com o bit de paridade;
- Estes códigos são sempre baseados nos códigos BCD;
- No exemplo da figura o código utilizado foi o código BCD Excesso 3.

	Código Detector de Erros de Paridade Ímpar							
		Código BC	D Excesso	3				
	23	2 ²	21	20	Bit de Paridade			
	8	4	2	1	ranuaue			
3	0	0	1	1	1			
4	0	1	0	0	0			
5	0	1	0	1	1			
6	0	1	1	0	1			
7	0	1	1	1	0			
8	1	0	0	0	0			
9	1	0	0	1	1			
10	1	0	1	0	1			
11	1	0	1	1	0			
12	1	1	0	0	1			

Circuitos combinatórios

34

Códigos detectores de erros de paridade par

- A detecção é realizada (através de um circuito detector formado por portas OU Exclusivo) de maneira que o número de 1's é sempre par;
- Nos códigos de paridade paro número de 1's tem de ser par, entrando em conta com o bit de paridade;
- Estes códigos são sempre baseados nos códigos BCD;
- No exemplo da figura o código utilizado foi o código BCD Excesso 3.

	Código Detector de Erros de Paridade Par							
		Código BC	D Excesso	3				
	23	2 ²	21	20	Bit de Paridade			
	8	4	2	1	ranuaue			
	0	0	1	1	0			
	0	1	0	0	1			
	0	1	0	1	0			
	0	1	1	0	0			
	0	1	1	1	1			
	1	0	0	0	1			
	1	0	0	1	0			
0	1	0	1	0	0			
1	1	0	1	1	1			
2	1	1	0	0	0			

Circuitos combinatórios P b, b₆ b, b₆ b, b₆ b₃ b₂ b₁ Código ASCII É usado para representar informação de letras, b₄ b₃ b₂ b₃ 0 0 0 0 números e sinais especiais; STX DC2 Existem códigos ASCII de 6 e 7 bits, mais 1 bit de paridade para detecção de erros; ENQ NAK % 5 E BEL ETB ' 7 G W BS CAN (8 H X Permitem diversas ordens de controlo de periféricos (impressoras, monitores, etc.). LF SUB * : VT ESC + : Formato da combinação do código ASCII

Circuitos combinatórios

36

Códigos detectores e correctores de erros

- Existem códigos complexos que detectam e corrigem os erros na informação;
- Nos códigos mais vulgares, o erro é detectado se ocorre apenas num bit da combinação, uma vez que a probabilidade de haver erro na transmissão em dois bits é muito pequena;
- O código detector e corrector mais utilizado é o código de Hamming;
- O código de Hamming é construído sobre os códigos da família BCD;

37

Código detector e corrector de erros - Hamming

- O código de Hamming dá-nos o lugar do bit incorrecto e através de um circuito adequado pode corrigir automaticamente a falha na informação recebida;
- O código de Hamming é formado por sete bits;
- O código de Hamming é construído a partir da família BCD;

	Código BCD Natural						
	23	2 ²	21	20			
	8	4	2	1			
0	0	0	0	0			
1	0	0	0	1			
2	0	0	1	0			
3	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			

Circuitos combinatórios

- As colunas B7, B6, B5 e B3 correspondem ao código BCD Natural;
- As colunas B4, B2 e B1 são preenchidas separadamente;
- As colunas B4, B2 e B1 são construídas por forma a que o número de 1's seja par em cada uma das seguintes combinações:
 - B1 B3 B5 B7
 - B2 B3 B6 B7
 - B4 B5 B6 B7

	Código de Hamming							
	В7	В6	B5	B4	B3	B2	B1	
	2 ³	2 ²	21		2º			
	8	4	2		1			
0	0	0	0	0	0	0	0	
1	0	0	0	0	1	1	1	
2	0	0	1	1	0	0	1	
3	0	0	1	1	1	1	0	
4	0	1	0	1	0	1	0	
5	0	1	0	1	1	0	1	
6	0	1	1	0	0	1	1	
7	0	1	1	0	1	0	0	
8	1	0	0	1	0	1	1	
9	1	0	0	1	1	0	0	

39

- As colunas B7, B6, B5 e B3 correspondem ao código BCD Natural;
- As colunas B4, B2 e B1 são preenchidas separadamente;
- As colunas B4, B2 e B1 são construídas por forma a que o número de 1's seja par em cada uma das seguintes combinações:
 - B1 B3 B5 B7
 - B2 B3 B6 B7
 - B4 B5 B6 B7

	Código de Hamming								
	В7	В6		B4	В3		B1		
	23	2 ²	21		2º				
	8	4	2		1				
0	0		0		0		0		
1	0		0		1		1		
2	0		1		0		1		
3	0		1		1		0		
4	0		0		0		0		
5	0		0		1		1		
6	0		1		0		1		
7	0		1		1		0		
8	1		0		0		1		
9	1		0		1		0		

Circuitos combinatórios

- As colunas B7, B6, B5 e B3 correspondem ao código BCD Natural;
- As colunas B4, B2 e B1 são preenchidas separadamente;
- As colunas B4, B2 e B1 são construídas por forma a que o número de 1's seja par em cada uma das seguintes combinações:
 - B1 B3 B5 B7
 - B2 B3 B6 B7
 - B4 B5 B6 B7

	Código de Hamming							
	В7	В6	B5	B4	B3	B2	B1	
	2 ³	2 ²	21		2º			
	8	4	2		1			
0	0	0			0	0		
1	0	0			1	1		
2	0	0			0	0		
3	0	0			1	1		
4	0	1			0	1		
5	0	1			1	0		
6	0	1			0	1		
7	0	1			1	0		
8	1	0			0	1		
9	1	0			1	0		

41

- As colunas B7, B6, B5 e B3 correspondem ao código BCD Natural;
- As colunas B4, B2 e B1 são preenchidas separadamente;
- As colunas B4, B2 e B1 são construídas por forma a que o número de 1's seja par em cada uma das seguintes combinações:
 - B1 B3 B5 B7
 - B2 B3 B6 B7
 - B4 B5 B6 B7

	Código de Hamming								
	В7	В6	B5	B4	В3	B2	B1		
	23	2 ²	21		2º				
	8	4	2		1				
0	0	0	0	0					
1	0	0	0	0					
2	0	0	1	1					
3	0	0	1	1					
4	0	1	0	1					
5	0	1	0	1					
6	0	1	1	0					
7	0	1	1	0					
В	1	0	0	1					
9	1	0	0	1					

Circuitos combinatórios

- As sete colunas (B1 a B7) estão relacionadas pelas seguintes equações:
 - $c_1 = b_1 \oplus b_3 \oplus b_5 \oplus b_7$
 - $c_2 = b_2 \oplus b_3 \oplus b_6 \oplus b_7$
 - $c_3 = b_4 \oplus b_5 \oplus b_6 \oplus b_7$
- Quando não há erros, o valor das funções C1, C2 e C3 é zero;
- Quando há erro, o número decimal equivalente à combinação binária C3C2C1 indicará o bit incorrecto.

	Código de Hamming								
В7	В6	B5	B4	B3	B2	B1			
2 ³	2 ²	21		2º					
8	4	2		1					
0	0	0	0	0	0	0			
0	0	0	0	1	1	1			
0	0	1	1	0	0	1			
0	0	1	1	1	1	0			
0	1	0	1	0	1	0			
0	1	0	1	1	0	1			
0	1	1	0	0	1	1			
0	1	1	0	1	0	0			
1	0	0	1	0	1	1			
1	0	0	1	1	0	0			

43

Exemplo:

- Vamos supor que ao transmitir a informação relativa ao número $3_{(10)}$ em vez de receber a informação correcta de $00111110_{(2)}$ recebemos a informação errada de $0011010_{(2)}$.
- Como provar que o erro está no terceiro bit a contar da direita?

$$\begin{split} c_1 &= b_1 \oplus b_3 \oplus b_5 \oplus b_7 = 0 \oplus 0 \oplus 1 \oplus 0 = 1 \\ c_2 &= b_2 \oplus b_3 \oplus b_6 \oplus b_7 = 1 \oplus 0 \oplus 0 \oplus 0 = 1 \\ c_3 &= b_4 \oplus b_5 \oplus b_6 \oplus b_7 = 1 \oplus 1 \oplus 0 \oplus 0 = 0 \end{split}$$

 $c_3c_2c_1=011=3$ ightarrow este valor indica que o terceiro bit a contar da direita é o bit que está errado.

Código de Hamming								
В7	В6	B5	B4	В3	B2	B1		
23	2 ²	21		2º				
8	4	2		1				
0	0	0	0	0	0	0		
0	0	0	0	1	1	1		
0	0	1	1	0	0	1		
0	0	1	1	1	1	0		
0	1	0	1	0	1	0		
0	1	0	1	1	0	1		
0	1	1	0	0	1	1		
0	1	1	0	1	0	0		
1	0	0	1	0	1	1		
1	0	0	1	1	0	0		
	23 8 0 0 0 0 0 0 0	21 22 8 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0	21 22 21 8 4 2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0	21 22 21	21 22 21 20 8 4 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1	21 22 21 20 8 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1		

Para corrigir o erro bastava usar uma por NOT para inverter o bit.

Circuitos combinatórios

44

Circuitos combinatórios

- Circuito combinatório é um circuito formado por funções lógicas elementares, que tem um conjunto de entradas e outro conjunto de saídas;
- Os valores das saídas dependem exclusivamente do valor lógico das entradas e da sua constituição interna;
- Exemplos de circuitos combinatórios: Codificadores; Descodificadores; Multiplexers; Desmultiplexers;
 Comparadores; Detectores de paridade; Conversores de código; etc.

45

Codificadores

- Um codificador é um circuito combinatório formado por um número de entradas menor ou igual a 2^{nº} de
- Quando uma entrada adopta um determinado valor lógico, as saídas representam em binário o número de ordem da entrada que foi activada;
- O valor lógico que pode activar uma entrada é 0 ou 1.

- Existem dois tipos de codificadores:
 - Codificadores sem prioridade;
 - Codificadores com prioridade.
- Os codificadores sem prioridade, são circuitos que não admitem a activação simultânea de mais do que uma entrada, porque se isso acontece aparecem códigos errados nas suas saídas;
- Os *codificadores com prioridade*, são circuitos que no caso de ocorrer activação simultânea de várias das suas entradas, aparecerá nas suas saídas o código do número de ordem da entrada de maior prioridade;
- Nos codificadores com prioridade, a prioridade pode ser dada tanto às entradas de maior peso como às entradas de menor peso.

54

Descodificadores

- Os descodificadores realizam a função inversa dos codificadores;
- Um descodificador selecciona uma das saídas dependendo da combinação binária presente nas entradas;
- Um descodificador é um circuito combinatório formado por um número de saídas menor ou igual a 2^{nº de}
 entradas
- o valor lógico que pode activar uma saída é 0 ou 1.

59

Multiplexers

- A função do multiplexer consiste em transmitir por um só canal de saída uma das informações presentes nas várias linhas de entrada;
- A relação entre as entradas e as saídas é dada por: n.º de linhas presentes na entrada = 2^{N.º de entradas de} controlo

Circuitos combinatórios

60

Exemplo 1: Implementar a função lógica F, com um multiplexer de 4 entradas de controlo.

$$F = \overline{A} \bullet \overline{B} \bullet \overline{C} \bullet D + \overline{A} \bullet \overline{B} \bullet C \bullet D + \overline{A} \bullet B \bullet C \bullet \overline{D} + \\ + \overline{A} \bullet B \bullet C \bullet D + \overline{A} \bullet B \bullet \overline{C} \bullet D + \overline{A} \bullet B \bullet \overline{C} \bullet \overline{D} + \\ + A \bullet B \bullet C \bullet \overline{D} + A \bullet B \bullet \overline{C} \bullet \overline{D} + A \bullet \overline{B} \bullet \overline{C} \bullet D$$

1º Identificar quantas variáveis tem a função lógica N.º de variáveis = 4

N.º de entradas de controlo = n.º de variáveis = 4 N.º de linhas presentes na entrada = $2^{n.º}$ de entradas de control = 2^4 = 16 2º Identificar qual o valor das linhas de entrada que é activo pelas diversas combinações das variáveis de controlo.

$$\overline{A} \bullet \overline{B} \bullet \overline{C} \bullet D = 0001_{(2)} = 1_{(10)} \to D_1$$

$$\overline{A} \bullet \overline{B} \bullet C \bullet D = 0011_{(2)} = 3_{(10)} \to D_3$$

$$\overline{A} \bullet B \bullet C \bullet \overline{D} = 0110_{(2)} = 6_{(10)} \to D_6$$

$$\overline{A} \bullet B \bullet C \bullet D = 0111_{(2)} = 7_{(10)} \to D_7$$

$$\overline{A} \bullet B \bullet \overline{C} \bullet D = 0101_{(2)} = 5_{(10)} \to D_5$$

$$\overline{A} \bullet B \bullet \overline{C} \bullet \overline{D} = 0100_{(2)} = 4_{(10)} \to D_4$$

$$A \bullet B \bullet \overline{C} \bullet \overline{D} = 1110_{(2)} = 14_{(10)} \to D_{14}$$

$$A \bullet B \bullet \overline{C} \bullet \overline{D} = 1100_{(2)} = 12_{(10)} \to D_{12}$$

$$A \bullet \overline{B} \bullet \overline{C} \bullet D = 1001_{(2)} = 9_{(10)} \to D_9$$

Circuitos combinatórios 3º Implementar a função lógica utilizando um multiplexer: $1 \text{ lógico} \rightarrow D_1, D_3, D_4, D_5, D_6, D_7, D_9, D_{12}, D_{14}$ $0 \text{ lógico} \rightarrow D_0, D_2, D_8, D_{10}, D_{11}, D_{13}, D_{15}$

Circuitos combinatórios

62

Exemplo 2: Implementar a função lógica F, com um multiplexer de 3 entradas de controlo.

$$F = \overline{A} \bullet \overline{B} \bullet \overline{C} \bullet D + \overline{A} \bullet \overline{B} \bullet C \bullet D + \overline{A} \bullet B \bullet C \bullet \overline{D} + \overline{A} \bullet B \bullet C \bullet D + \overline{A} \bullet B \bullet \overline{C} \bullet D + A \bullet B \bullet \overline{C} \bullet D + A \bullet B \bullet \overline{C} \bullet D + A \bullet B \bullet \overline{C} \bullet D$$

1º Identificar quantas variáveis tem a função lógica

N.º de variáveis = 4

N.º de entradas de controlo = n.º de variáveis = 4

N.º de linhas presentes na entrada = $2^{n.0}$ de entradas de controlo = 2^4 = 16

Atenção

O multiplexer só tem 3 entradas de controlo

N.º de linhas presentes na entrada = $2^{n.^{\circ} de \, entradas \, de \, controlo} = 2^3 = 8$

65

Desmultiplexers

- Os desmultiplexers são circuitos com uma só entrada, n linhas de saídas e n entradas de controlo;
- A informação de entrada é transmitida à linha de saída selecciona pelas entradas de controlo;
- A relação entre as saídas e as entradas é dada por: n.º de linhas presentes na saída = 2^{N.º de entradas de controlo}.

	Entrac Cont		Saídas				
	A	В	S0	S1	S2	S3	
0	0	0	D	0	0	0	
1	0	1	0	D	0	0	
2	1	0	0	0	D	0	
3	1	1	0	0	0	D	

Circuitos combinatórios

66

Comparadores

• Os comparadores são circuitos combinatórios que, ao colocarmos nas suas entradas duas palavras de n bits, detectam se são ou não iguais, e neste caso qual das entradas é maior ou menor.

67

Assumindo outros pressupostos:

- S0 = 1 lógico → A < B
- S1 = 1 lógico → A > B
- S2 = 1 lógico → A = B

a tabela de verdade, as funções lógicas e o circuito são diferentes.

	Entr	adas	Saídas				
	Α	В	S0	S1	S2		
0	0	0	0	0	1		
1	0	1	1	0	0		
2	1	0	0	1	0		
3	1	1	0	0	1		

Circuitos combinatórios

68

Circuitos operativos

- Os circuitos operativos são circuitos combinatórios que permitem realizar operações matemáticas com circuitos digitais;
- Para realizar operações matemáticas em primeiro lugar é necessário transformar os dados em expressões codificadas.
- Estes circuitos comtemplam, para além da(s) saída(s) para o resultado da operação, uma outra saída para o transporte que poderá resultar da operação efectuada:
 - Numa operação de adição o transporte tem o nome de carry;
 - Numa operação de subtracção o transporte tem o nome de *Borrow*;

71

Circuitos operativos somadores completos

- O circuito somador completo, é um circuito aritmético que efectua a soma binária dos dois dígitos de entrada com o transporte de entrada procedente do andar anterior;
- Possui, as mesmas saídas que um circuito semi somador, no entanto tem uma entrada a mais (CA) para poder contemplar o transporte de entrada procedente do andar anterior.

	Entradas	Saídas		
A	В	C _A	S= A + B + C _A	C = Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Circuitos combinatórios

72

Circuitos operativos subtractores completos

- A estrutura destes circuitos é muito parecida com a dos somadores completos, com a diferença de calcularem a subtracção binária dos dígitos de entrada, e os de transporte;
- Tanto o transporte de saída como o de entrada, recebem o nome de empréstimo (borrow).

	Entradas	Saídas		
A	В	B _A	S= A - B - B _A	B = Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

