The original problem is below. Since we are looking for a 10 digit number where each c_i is the number of i's in the number we know that the sum of the digits must be 10. Thus we only need to look at the following possibilities for the digits:

9100000000	5311000000	3322000000
8200000000	5221000000	3321100000
8110000000	5211100000	3311110000
7300000000	5111110000	3222100000
7210000000	442000000	3221110000
7111000000	4411000000	3211111000
6400000000	433000000	3111111100
6310000000	4321000000	2222200000
6220000000	4311100000	222110000
6211000000	422200000	2221111000
6111110000	4221100000	2211111100
5500000000	4211110000	2111111110
5410000000	4111111000	111111111
5320000000	3331000000	

Now for each of these possibilities count the number of each digit found in the number. For example 9 1 0 0 0 0 0 0 0 0 gives

 $8\,1\,0\,0\,0\,0\,0\,0\,1$. (8 zeros, 1 one, 1 nine, 0 for everything else.) If the digits are the same in the original number and the count then the count is the solution to the problem. The only one that works is $6\,2\,1\,1\,0\,0\,0\,0\,0$ which gives

6 2 1 0 0 0 1 0 0 0 so this is the only solution.

Digit Counting

Find a 10 digit number of the form

$$c_0\,c_1\,c_2\,c_3\,c_4\,c_5\,c_6\,c_7\,c_8\,c_9$$

such that each c_i is the number of i's in the number. i.e. if there are four zeros in the number then c_0 =4.

Small example:

Suppose we were looking for a 4 digit number: $c_0 c_1 c_2 c_3$ This means that c_0 is the number of 0's in the number, c_1 is the number of 1's in the number, c_2 is the number of 2's in the number, and c_3 is the number of 3's in the number. There are 2 solutions: 2020 which has 2 zeros, 0 ones, 2 twos, and 0 threes; and 1210 which has 1 zero, 2 ones, 1 two and 0 threes.