Elementos de Probabilidades e Teoria de Números

Teste - Teoria de Números

	dı	uração: 2 ho	ras _	
Nome:		lúmero:		
	Grupo I			
	mente às questões deste grupo, indique para cada alínea se a afirmação é , marcando ${\sf x}$ no quadrado respetivo.	verdadeira	a (V) ou
(.)	, marcanae x no quadrado respenter		V	F
1.	O resto da divisão de 85 por -6 é 7 porque $85 = (-6) \times (-13) + 7$.			
2.	Para quaisquer $a,b,c\in\mathbb{Z}$, se $a b$ e $a\nmid(5b+4c)$, então $a\nmid c$.			
3.	Se a é um inteiro tal que $\mathrm{m.d.c.}(a,80)=10$ e $\mathrm{m.m.c.}(a,80)=2^4\times 3^2\times 5^2$ $a>500.$, então		
4.	Para quaisquer $a,b\in\mathbb{Z}$ tais que $a\neq 0$ ou $b\neq 0$, $\mathrm{m.d.c.}(a,b) \mathrm{m.d.c.}(3a,8b)$.			
5.	Qualquer que seja $n\in\mathbb{N}$ tal que $1< n< 280$, se n não admite um divisor d $1< d\le 14$, então n é um número primo.	tal que		
6.	Sejam $a,b,p\in\mathbb{Z}.$ Se p é um número primo e $p a^3b^2$, então $p a$ ou $p b.$			
7.	O inteiro 3333 é combinação linear de 5 e 30 .			
8.	O conjunto $\{-2,1,3,6,10,5\}$ é um sistema completo de resíduos módulo $6.$			
9.	$-85 \equiv 5 \pmod{15}.$			
10.	A congruência linear $6x \equiv 5 \pmod{33}$ tem 3 soluções módulo 33 .			
	Grupo II			

Para cada uma das questões deste grupo, indique a sua resposta no espaço disponibilizado a seguir à questão, justificando sucintamente.

1. Considere as divisões seguintes

Indique o m.d.c.(255,123) e exprima-o como combinação linear de 255 e 123.

Resposta:

2. Sabendo que (28,58) é uma solução da equação diofantina 255x-123y=6, justifique que a congruência linear $255x\equiv 6 \pmod{123}$ é solúvel e indique duas das suas soluções não congruentes módulo 123. Resposta:

3. Determine o resto de $3^{124}+1$ na divisão por 7. Resposta:

Grupo III

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

- 1. Num refeitório, com capacidade para 902 pessoas, há 55 mesas circulares e 77 mesas retangulares. As mesas circulares têm todas a mesma capacidade, o mesmo se passando com as mesas retangulares. Além disso, a capacidade de qualquer um dos tipos de mesas é superior ou igual a 2.
 - (a) Escreva uma equação diofantina cuja resolução permita obter a capacidade das mesas circulares e a capacidade das mesas retangulares.
 - (b) Determine a capacidade das mesas circulares e a capacidade das mesas retangulares.
- 2. Resolva a congruência linear $6x \equiv 501 \pmod{21}$ e indique a maior solução não positiva.
- 3. Considere o sistema de congruências lineares (S) a seguir indicado

$$(S) \left\{ \begin{array}{ll} x & \equiv & 3 \, (\mathrm{mod} \, 7) \\ x & \equiv & 4 \, (\mathrm{mod} \, 5) \\ x & \equiv & 1 \, (\mathrm{mod} \, 3) \end{array} \right.$$

Recorrendo ao Teorema Chinês dos Restos, justifique que o sistema (S) é solúvel e resolva-o. Indique a menor solução de (S) maior do que 200.

Cotações: Grupo I: 7,5. Grupo II: 6,0. Grupo III: 2,5+1,75+2,25.