Multi-stage Children Story Speech Synthesis

First Seminar by **Harikrishna D M** Roll No. 12IT72P07

under the supervision of

Dr. K. Sreenivasa Rao School of Information Technology Indian Institute of Technology Kharagpur

Harikrishna D M First Seminar August 6, 2015 1 / 41

Overview

- Introduction
- 2 Literature Review
- 3 Scope of the work
- Work Done
- 5 Summary and Conclusions
- 6 Future Work

Harikrishna D M First Seminar August 6, 2015 2 / 41

Introduction

- Synthesizing expressive speech: Embedding natural expressions into speech, according to the semantics present in the text.
- Story synthesis: Synthesizing story-style speech from the text using text-to-speech (TTS) systems.
- Story synthesis approaches
 - Development of TTS systems using story speech corpus.
 - Rule-based story speech synthesis.
- Application: Audiobooks.

Harikrishna D M First Seminar August 6, 2015 3 / 41

Literature Review: Text Classification

Table: Literature Review in the context of Text Classification

Author	Work	Dataset	Contribution				
Joachims	Text categorization with	Ohsumed (Medi-	Use of SVM for text classifica-				
(1998) [1]	SVM	cal abstracts): 13929	tion				
		documents, 23 classes					
Yang et al.	Examination of text cat-	Reuters (News arti-	Controlled study with statistical				
(1999) [2]	egorization methods	cles): 21578 docu-	signicance tests: SVM, KNN,				
		ments, 90 classes	NN, LLSF and NB				
Moldovan et al.	LSA for patent docu-	USPTO (Patent doc-	Comparison of VSM and LSA				
(2005) [3]	ments	uments): 33923 doc-					
		uments, 10 classes					
Sainath et al.	Sparse representation for	20 Newsgroup (News	Slight improvement in SR				
(2010) [4]	text classification	articles): 20000 doc-	method over NB				
		uments, 20 classes					

 Limited to text classification in the domains such as news articles, medical abstracts and patents.

Literature Review: Story-telling Applications

Table: Literature Review in the context of Story-telling Applications

Author	Work	Contribution	Result
Alm et al.	Perceptions of emo-	Analysis of expressive story-	Semantic and prosodic cues
(2005) [5]	tions in expressive sto-	telling speech	collaborate to express and
	rytelling		reinforce emotional content
Lobo et al.	Fairy tale corpus orga-	LSA to represent stories,	Organized 453 fairy tales
(2010) [6]	nization	and recommendation algo-	from Project Gutenberg
		rithm to define clusters of	
		similar stories	
Ceran et al.	A semantic triplet	< Subject, Verb, Object >	Better performance with
(2012) [7]	based story classifier	triplets to identify paragraph	keyword, POS, named
		as story or not	entities and semantic triplet
		-	features
losif et al.	Multi-step system for	Character identification, at-	Hybrid approach for children
(2014) [8]	children story analysis	tribution of quotes and af-	story analysis
		fective analysis of quoted materials	

Limited to corpus organization, story analysis and identification.

Harikrishna D M First Seminar August 6, 2015 5 / 41

Literature Review: Indian Languages

Table: Literature Review in the context of Indian Language

Language	Author	Work	Contribution	Result
Punjabi	Nidhi et al.	Classification of	Sports specific on-	Ontology Based
	(2012) [9]	Punjabi news	tology, Gazetteer	Classification >
		articles	lists	NB
Marathi	Meera et al.	Comparison of	Rule based stem-	NB > Centroid >
	(2014) [10]	Marathi text	mer and Marathi	Modified KNN $>$
		classifiers	word dictionary	KNN
Kannada	Deepamala et	Kannada Webpage	Sentence bound-	Performance im-
	al. (2014) [11]	Classification	ary detection,	provement with
			stemming, stop-	stemming and
			word removal	stopword removal

Harikrishna D M First Seminar August 6, 2015 6 / 41

Literature Review: Indian Languages (Cont..)

Table: Literature Review in the context of Indian Language

Language	Author	Work	Contribution	Result		
Tamil	Rajan et al.	Tamil document clas-	Comparison of VSM	ANN > VSM		
	(2009) [12]	sification	and ANN			
Telugu	Kavi Narayana	Telugu News Articles	Used NB to classify	Base system for tel-		
	Murthy (2003)	classification	news articles into Pol-	ugu document classi-		
	[13]		itics, Sports, Business	fication		
			and Cinema			
Ten Indian	Raghuveer et	Text Categorization in	Corpus-based ma-	SVM outperformed		
Languages	al. (2007) [14]	Indian Languages us-	chine learning tech-	KNN and NB		
		ing ML Approaches	niques for text			
			categorization			

- Limited to text classification in the domains such as news articles and web pages.
- None of the works attempted story classification in Indian languages

Scope of present work

- Highly challenging task: Generating an expressive, naturally sounding, story like speech from text using a neutral TTS system.
- Steps in story synthesis

Figure: Overview of steps in story synthesis

Harikrishna D M First Seminar August 6, 2015 8 / 41

Motivation

- Project requirement: Development of Text-to-Speech systems in Indian languages (Phase - II).
- Basic objective: To synthesize story style speech from a story text using the neutral text-to-speech (TTS) systems developed in Phase-I of the project.
- Syllable-based unit selection neutral TTS systems developed for six Indian languages in Phase - I of the project [15].
- Each story will be narrated in different style depending on story type.
- Derivation of story specific prosody rules.
- Attempting story classification in view of synthesizing story speech.

Harikrishna D M First Seminar August 6, 2015 9 / 4

Work Done

- Story Classification Framework
- Story Classification using Keyword based Features
- Story Classification using POS Features
- Story Classification using Concatenation of Keyword and POS Features

Harikrishna D M First Seminar August 6, 2015 10 / 41

Story Classification Framework

11 / 41

Story Classification Framework

Figure: Flow diagram of Story Classification Framework

Story Corpora

- Hindi and Telugu story corpora: 300 and 150 short stories from Blogs¹, Panchatantra and Akbar-Birbal books.
- Classification of stories into three genres: Fable, folk-tale and legend.
- Definition of story genres
 - Fable: Tale involving animals as an essential character.
 - Folk-tale: Story passed on from one generation to the next.
 - Legend: Story carrying significant meaning or symbolism for the culture.

Table: Details of Hindi and Telugu Story Corpora

Story gonro	Hir	ndi	Telugu				
Story genre	# Stories	# Words	# Stories	# Words			
Fable	100	50344	50	6668			
Folk-tale	100	46900	50	6144			
Legend	100	35991	50	8540			

¹http://telugubalalu.blogspot.in/

Harikrishna D M First Seminar August 6, 2015 13 / 41

Text Pre-processing and POS Tagging

- Corpus cleaning: Stripping multiple white spaces, removing special symbols and numbers.
- POS tagging and lemmatization: Hindi and Telugu shallow parsers² developed by IIIT Hyderabad.
- Lemmatization: Converting word into its root word (base form).
- Stopwords: List of 164 and 138 stopwords.

Harikrishna D M First Seminar August 6, 2015 14 / 41

Keyword-based Features

- "R" is used for feature extraction.
- Term Frequency (TF): Frequency of terms in a story.
- Term Frequency Inverse Document Frequency (TFIDF):
 Product of TF and IDF. IDF is calculated as

$$idf(t_i) = log \frac{N}{n_i}$$

where N is the total number of stories and n_i is the number of stories in the corpus that contains word t_i .

Harikrishna D M First Seminar August 6, 2015 15 / 41

Linguistic-based features

- POS: Category of words having similar grammatical property.
- POS tags: Noun (NN), Proper Noun (NNP), Spatial and Temporal Nouns (NST), Pronoun (PRP), Finite Verb (VM), Auxiliary Verb (VAUX), Post Position (PSP), Particles (RP), Adjective (JJ) and Quantifiers (QF).
- Relevance of the POS tags with respect to Indian languages are explained in shallow parser manual³.
- POS Density (PD): For each story, PD is calculated as

$$PD = \sum_{p \in P} \frac{count(p)}{Total \ words \ in \ story}$$

where P = NN, VM, PSP, PRP, NNP, NST, JJ and QF.

3http://ltrc.iiit.ac.in/tr031/posguidelines.pdf Harikrishna D M First Seminar August 6, 2015 16 / 41

Classifiers

- Combinations of features: PD, TF, TFIDF, TF + PD and TFIDF + PD.
- Three promising machine learning classifiers: Naive Bayes (NB),
 K-Nearest Neighbour (KNN), Support Vector Machine (SVM).
- 10-fold cross validation, nine nearest neighbours (k=9), linear kernel for SVM.
- Implementation of classifiers: WEKA combined with LibSVM package.

Harikrishna D M First Seminar August 6, 2015 17 / 41

Evaluation Measures

$$Precision (P) = \frac{\textit{No. of stories correctly classified as class "x"}}{\textit{No. of stories classified as class "x"}} \\ Recall (R) = \frac{\textit{No. of stories correctly classified as class "x"}}{\textit{Actual No. of stories of class "x"}} \\ F - \textit{measure} (F) = \frac{2 \times P \times R}{(P+R)} \\ \textit{Accuracy} = \frac{\textit{No. of stories correctly classified}}{\textit{Total No. of stories}} \\$$

$$Macro F1 = \frac{\sum_{i \in C} F_i}{\mid C \mid}$$

where C is the set of predefined classes and F_i is the F-measure for the i^{th} class in C.

Statistical significance test: McNemar's test.

Harikrishna D M First Seminar August 6, 2015 18 / 41

Story Classification using Keyword based Features

Story Classification using Keyword based Features

- Document-term matrix (DTM): Each row represents a story and each column represents a term in the collection.
- DTM: Huge feature size and highly sparse.
- Better performance can be achieved by optimal representation of features.
- Feature reduction techniques: Sparse Term Removal, Latent Semantic Analysis (LSA).
- Sparseness factors: 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95.
- LSA: Values of k for Hindi and Telugu respectively are $\{25, 50, 75, 100, 125, 150\}$ and $\{15, 30, 45, 60, 75, 90\}$.

Harikrishna D M First Seminar August 6, 2015 20 / 41

Results of Story Classification using Keyword based Features

Table: Macro F1 measure for story classification using feature reduction techniques for Hindi

			Dimension Reduction Techniques												
Classifiers	Full Story	Sparseness Factor						LSA							
Classificis		0.7	0.75	0.8	0.85	0.9	0.95	25	50	75	100	125	150		
	300×6608	300×78	300×104	300×143	300×182	300×366	300×681	300×25	300×50	300×75	300×100	300×125	300×150		
NB	0.71	0.81	0.83	0.84	0.86	0.89	0.84	0.4	0.4	0.41	0.41	0.43	0.42		
KNN	0.61	0.71	0.73	0.74	0.75	0.77	0.73	0.62	0.63	0.63	0.67	0.68	0.65		
SVM	0.62	0.79	0.82	0.85	0.86	0.91	0.82	0.32	0.37	0.41	0.46	0.48	0.47		

Table: Macro F1 measure for story classification using feature reduction techniques for Telugu

		Dimension Reduction Techniques											
Classifiers	Full Story			Sparsen	ess Factor					LS	SA.		
Classifiers		0.7	0.75	0.8	0.85	0.9	0.95	15	30	45	60	75	90
	150×4539	150×17	150×29	150×49	150×88	150×232	150×582	150×15	150×30	150×45	150×60	150×75	150×90
NB	0.76	0.78	0.8	0.81	0.83	0.86	0.8	0.64	0.66	0.67	0.61	0.56	0.54
KNN	0.46	0.68	0.7	0.72	0.73	0.75	0.71	0.63	0.65	0.71	0.63	0.58	0.46
SVM	0.81	0.84	0.85	0.87	0.89	0.94	0.87	0.44	0.51	0.58	0.56	0.55	0.52

Analysis of Results of Story Classification using Keyword based Features

- Increasing the sparseness factor, the most frequently repeated terms in story corpora are included in DTM.
- Increasing the sparseness factor beyond a threshold can add noisy terms, which do not contribute for identifying the story genre and thus decreases the performance.
- LSA failed to capture the behaviour of implicit higher-order structure by lower dimensional document-term matrix.
- Conclusion: Sparseness factor of 0.9 assures a good performance.

Story Classification using POS Features

Distribution of POS tags

 Motivation for selecting POS: More named entities in stories, POS such as nouns, adjectives, quantifiers and verbs are useful feature for distinguishing between story genres.

Table: POS distribution across story genres

POS Tags		Hindi		Telugu				
FO3 Tags	Fable	Folk-tale	Legend	Fable	Folk-tale	Legend		
NN	10975	9985	7277	2539	2386	2957		
VM	9298	8439	6098	1919	1730	2377		
PSP	6788	6249	4898	104	110	131		
PRP	5286	4910	3761	615	557	769		
VAUX	4278	3735	2817	40	38	48		
JJ	1691	1698	1420	264	217	238		
NNP	1534	1497	1554	22	152	516		
RP	1456	1353	1011	45	38	86		
NST	1035	764	584	275	178	283		
QF	635	530	503	61	40	75		

POS Tag Sets

- Unclear that which class of POS tags like Nouns, Verbs, Adjectives, Quantifiers, Particles or Post position are necessary for recognition of story genres.
- Different combination of POS tags: Investigation of the effect of linguistic information on story classification.

Table: Different sets of POS tags

Set	POS Tags
Set 1	$\{NN, NNP, NST, PRP, JJ, QF, VM, VAUX, PSP, RP\}$
Set 2	$\{NN, NNP, NST, PRP, JJ, QF\}$
Set 3	$\{NN, NNP, NST, PRP, VM, VAUX\}$
Set 4	$\{NN, NNP, NST, PRP, PSP, RP\}$
Set 5	$\{NN, NNP, NST, PRP\}$
Set 6	$\{JJ, QF, VM, VAUX\}$

Performance Measures for Different POS Tag Sets

Table: Macro F1 measures for different sets of POS tags

Set		Hindi		Telugu				
Jei	NB KNN		SVM	NB	KNN	SVM		
Set 1	0.48	0.4	0.45	0.55	0.47	0.56		
Set 2	0.49	0.43	0.5	0.56	0.55	0.58		
Set 3	0.48	0.4	0.48	0.55	0.51	0.57		
Set 4	0.48	0.38	0.47	0.54	0.52	0.56		
Set 5	0.45	0.4	0.46	0.53	0.51	0.56		
Set 6	0.42	0.33	0.39	0.38	0.38	0.36		

- POS tags are similar across stories, hence they cannot be as contributing as keyword based features.
- Conclusion: Nouns, adjectives and quantifiers have contributed more to the story classification.

Story Classification using Concatenation of Keyword and **POS** Features

Results of Story Classification using Concatenation of Keyword and POS Features

Table: Performance measures for story classification using concatenation of keyword and POS features

		Hindi								Telugu									
Story Genre	Features		NB			KNN			SVM			NB			KNN			SVM	
		Р	R	F	Р	R	F	Р	R	F	Р	R	F	Р	R	F	Р	R	F
	PD	0.46	0.65	0.54	0.47	0.70	0.57	0.46	0.48	0.48	0.56	0.62	0.59	0.48	0.72	0.58	0.59	0.96	0.73
			0.88							0.92									
Fable										0.94									
	TFIDF	0.89	0.44	0.59	0.86	0.56	0.68	0.92	0.9	0.91	0.86	0.74	8.0	0.64	0.64	0.64	0.92	0.92	0.92
	TFIDF + PD	0.9	0.75	0.81	0.88	0.66	0.75	0.94	0.92	0.93	0.93	0.78	0.85	0.72	0.68	0.7	0.94	0.92	0.93
	PD	0.63	0.35	0.45	0.38	0.31	0.34	0.52	0.41	0.46	0.46	0.72	0.56	0.55	0.30	0.39	0.58	0.22	0.32
	TF	0.87	0.87	0.87	0.66	0.84	0.74	0.96	0.9	0.93	0.75	0.92	0.83	0.86	0.76	0.8	0.96	0.92	0.94
Folk-tale	TF + PD	0.87	0.90	0.89	0.75	0.86	8.0	0.97	0.92	0.94	0.76	0.94	0.84	0.8	0.82	0.81	0.98	0.94	0.96
	TFIDF	0.76	0.76	0.76	0.65	0.82	0.73	0.94	0.89	0.91	0.74	0.84	0.78	0.78	0.72	0.75	0.94	0.9	0.92
	TFIDF + PD	0.82	0.8	0.81	0.7	0.83	0.76	0.94	0.9	0.92	0.79	0.86	0.82	0.76	0.78	0.77	0.96	0.92	0.94
	PD	0.59	0.39	0.47	0.49	0.34	0.40	0.54	0.54	0.54	0.87	0.40	0.55	0.75	0.60	0.67	0.72	0.62	0.67
	TF	0.87	0.93	0.9	0.85	0.9	0.87	0.85	0.94	0.89	0.91	0.86	0.88	0.72	0.8	0.76	0.92	0.96	0.93
Legend	TF + PD	0.96	0.96	0.96	0.84	0.92	0.88	0.9	0.96	0.93	0.96	0.88	0.92	0.84	0.84	0.84	0.92	0.98	0.95
	TFIDF	0.64	0.96	0.77	0.82	0.9	0.86	0.86	0.92	0.88	0.82	0.82	0.82	0.68	0.74	0.71	0.9	0.94	0.91
	TFIDF + PD	0.74	0.88	8.0	0.84	0.91	0.87	0.87	0.93	0.9	0.81	0.88	0.84	0.77	8.0	0.78	0.9	0.96	0.93

Story Classification Accuracy using Concatenation of Keyword and POS Features

Figure: Story classification accuracy using concatenation of keyword and POS features

McNemar's Significance Test Results for Different Combinations of Features

Table: Statistical significance test results for different combination of features

Classifier		Hindi	Telugu					
Classifier	TF + PD vs TF	TFIDF + PD vs TFIDF	TF + PD vs TF	TFIDF + PD vs TFIDF				
NB	>	~	>	~				
KNN	~	~	~	~				
SVM	>	>	>	>				

" > " means 0.01 < P-value ≤ 0.05 , which is statistically significant

" \sim " means $\emph{P-value}~>~0.05,$ which is not statistically significant

Demo

McNemar's Significance Test Results for Cross-classifier Performance

Table: Statistical significance test results for cross-classifier performance

Classifier A	Classifier B	Hindi					Telugu				
		PD	TF	TF + PD	TFIDF	TFIDF + PD	PD	TF	TF + PD	TFIDF	TFIDF + PD
NB	KNN	~	>>	>>	>	~	~	>>	>>	>>	>>
SVM	KNN	~	>>	>>	>>	>>	~	>>	>>	>>	>>
SVM	NB	~	~	~	>>	>>	~	>>	>	>>	>

" \gg " means P-value ≤ 0.01 , which is extremely statistically significant ">" means 0.01 < P-value ≤ 0.05 , which is statistically significant " \sim " means P-value > 0.05, which is not statistically significant

Demo

Analysis of Results of Story Classification using Concatenation of Keyword and POS Features

- NB is a probabilistic learning method. It is based on Bayes theorem and the story genre will be assigned to the class having maximum a posteriori probability.
- The poor performance of KNN can be due to the noisy terms in the DTM.
- SVM has better performance because it is resilient to noise.

Summary and Conclusions

Contributions

- Developed story corpora for Hindi and Telugu.
- Story Classification using Concatenation of Keyword and POS Features.

Conclusions

- In case of feature reduction techniques, sparseness factor of 0.9 gave the highest performance.
- Using linguistic information boosts the performance of story classification significantly.
- POS tag set consisting of nouns, adjectives and quantifiers have the highest accuracy and are important for story classification.
- In most of the cases, the highest performance is achieved by TF + PD features and SVM models outperformed the other models in terms of classification accuracy.

Future Work

- Story classification using partial story information: Exploring story classification by dividing stories into parts based on story semantics.
- Emotion prediction from story text: Exploring Keyword, POS and story specific features for predicting emotion from story text.
- Deriving prosody rules: Deriving prosody rules (modification factors) specific to emotions and story genres.
- Synthesis of story speech using mark-up language: Story-specific prosody rules can be effectively incorporated using SABLE mark-up language. The quality and naturalness of the synthesized story speech can be evaluated using subjective tests.

Harikrishna D M First Seminar August 6, 2015 34 / 41

Publications

Conference

 Harikrishna D M and K. Sreenivasa Rao, "Classification of Children Stories in Hindi Using Keywords and POS Density," in International Conference on Computer Communication and Control (IC4), Indore, 2015.

ACKNOWLEDGMENTS

We are thankful to the **Department of Information Technology, Govt.**of India for supporting the research work, "Development of
Text-to-Speech synthesis for Indian Languages Phase II"

References I

- [1] T. Joachims, Text categorization with support vector machines: Learning with many relevant features. Springer, 1998.
- [2] Y. Yang and X. Liu, "A re-examination of text categorization methods," in *Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*. ACM, pp. 42–49, 1999.
- [3] A. Moldovan, R. I. Bot, and G. Wanka, "Latent semantic indexing for patent documents," *International Journal of Applied Mathematics and Computer Science*, vol. 15, pp. 551–591, 2005.
- [4] T. N. Sainath, S. Maskey, D. Kanevsky, B. Ramabhadran, D. Nahamoo, and J. Hirschberg, "Sparse representations for text categorization," in *INTERSPEECH*, pp. 2266–2269, 2010.

- [5] C. O. Alm and R. Sproat, "Perceptions of emotions in expressive storytelling," in *INTERSPEECH*, pp. 533–536, 2005.
- [6] P. V. Lobo and D. M. De Matos, "Fairy tale corpus organization using latent semantic mapping and an item-to-item top-n recommendation algorithm," in *Language Resources and Evaluation Conference (LREC)*, 2010.
- [7] B. Ceran, R. Karad, A. Mandvekar, S. R. Corman, and H. Davulcu, "A semantic triplet based story classifier," in *International Conference on Advances in Social Networks Analysis and Mining (ASONAM)*, 2012.
- [8] E. Iosif and T. Mishra, "From speaker identification to affective analysis: A multi-step system for analyzing children stories," *European Chapter of the ACL (EACL)*, pp. 40–49, 2014.

- [9] Nidhi and V. Gupta, "Domain based classification of Punjabi text documents using ontology and hybrid based approach," in *Proceedings of the 3rd Workshop on South and Southeast Asian Natural Language Processing, COLING*, 2012.
- [10] M. Patil and P. Game, "Comparison of Marathi Text Classifiers," Association of Computer Electronics and Electrical Engineers, vol. 4, 2014.
- [11] N. Deepamala and P. R. Kumar, "Text Classification of Kannada webpages using various pre-processing agents," in *Recent Advances in Intelligent Informatics*. Springer, 2014.
- [12] K. Rajan, V. Ramalingam, M. Ganesan, S. Palanivel, and B. Palaniappan, "Automatic classification of Tamil documents using vector space model and artificial neural network," *Expert Systems* with Applications, vol. 36, pp. 10914–10918, 2009.

References IV

- [13] K. N. Murthy, "Automatic categorization of Telugu news articles," Department of Computer and Information Sciences, 2003.
- [14] K. Raghuveer and K. N. Murthy, "Text categorization in Indian languages using machine learning approaches," in *Indian International Conference on Artificial Intelligence*, 2007.
- [15] H. A. Patil, T. B. Patel, N. J. Shah, H. B. Sailor, R. Krishnan, G. Kasthuri, T. Nagarajan, L. Christina, N. Kumar, V. Raghavendra et al., "A syllable-based framework for unit selection synthesis in 13 Indian languages," in Oriental COCOSDA held jointly with Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE). IEEE, pp. 1–8, 2013.

Harikrishna D M First Seminar August 6, 2015 40 / 41

Thank You

Backup Slides

Harikrishna D M First Seminar August 6, 2015 41 / 41

McNemar's significance test

Contingency table

η_{00} : Number of examples misclassified by both classifiers C_A and C_B	η_{01} : Number of examples misclassified by classifier C_A but not by C_B
	η_{11} : Number of examples mis-

– The statistic χ is defined as

$$\chi = \frac{(\mid \eta_{01} - \eta_{10} \mid -1)^2}{\eta_{01} + \eta_{10}}$$

Sparse Term Removal Example

```
Story 1.txt - Story one text example
Story 2.txt - Story two text example
Story 3.txt - Story three text example
Story 4.txt - Story four text example
Story 5.txt - Story five text example
Story 6.txt - Story six text example
Story 7.txt - Story seven text
Story 8.txt - Story eight text
Story 9.txt - Story nine
Story 10.txt - Story ten
```

Figure: Story text

Document Term Matrix

```
<<DocumentTermMatrix (documents: 10, terms: 13)>>
Non-/sparse entries: 34/96
Sparsity
                   : 74%
Maximal term length: 7
Weiahtina
                   : term frequency (tf)
              Terms
               eight example five four nine one seven six story ten text three two
Docs
  Story_10.txt
  Story 1.txt
  Story_2.txt
  Story_3.txt
  Story 4.txt
  Story_5.txt
  Story 6.txt
  Story 7.txt
  Story_8.txt
  Story 9.txt
<<DocumentTermMatrix (documents: 10, terms: 13)>>
Non-/sparse entries: 34/96
Sparsity
                   : 74%
Maximal term length: 7
                   : term frequency (tf)
Weiahtina
>
```

Figure: Document Term Matrix

Sparse Term Removal

- Sparseness factor = 0.1
- Remove terms which have greater than 10% percentage of empty elements or get terms which exists in 90% of stories.

```
<<DocumentTermMatrix (documents: 10, terms: 13)>>
Non-/sparse entries: 34/96
Sparsity
Maximal term length:
Weighting
                     term frequency (tf)
              Terms
Docs
               storv
  Story_10.txt
  Story_1.txt
  Story 2.txt
  Story 3.txt
  Story 4.txt
  Story_5.txt
  Storv 6.txt
  Story_7.txt
  Story_8.txt
  Story 9.txt
<<DocumentTermMatrix (documents: 10, terms: 1)>>
Non-/sparse entries: 10/0
Sparsity
                     0%
Maximal term length: 5
Weighting
                   : term frequency (tf)
```

Figure: With Sparseness factor of 0.1

Sparse Term Removal (Cont...)

- Sparseness factor = 0.2
- Remove terms which have greater than 20% percentage of empty elements or get terms which exists in 80% of stories.

```
<<DocumentTermMatrix (documents: 10, terms: 13)>>
Non-/sparse entries: 34/96
Sparsity
Maximal term length:
Weighting
                     term frequency (tf)
              Terms
Docs
               storv text
  Story_10.txt
  Story 1.txt
  Story_2.txt
  Storv 3.txt
  Storv 4.txt
  Story_5.txt
  Story_6.txt
  Story 7.txt
  Story 8.txt
  Storv 9.txt
                        0
<<DocumentTermMatrix (documents: 10. terms: 2)>>
Non-/sparse entries:
                     18/2
Sparsity
                     10%
Maximal term length: 5
Weighting
                   : term frequency (tf)
```

Figure: With Sparseness factor of 0.2

Sparse Term Removal (Cont...)

- Sparseness factor = 0.4
- Remove terms which have greater than 40% percentage of empty elements or get terms which exists in 60% of stories.

```
<<DocumentTermMatrix (documents: 10. terms: 13)>>
Non-/sparse entries: 34/96
Sparsity
                     74%
Maximal term length:
                     term frequency (tf)
Weiahtina
              Terms
Docs
               example story text
  Storv 10.txt
                      Θ
  Story_1.txt
  Storv 2.txt
  Storv 3.txt
  Storv 4.txt
  Story_5.txt
  Storv 6.txt
  Storv 7.txt
  Story_8.txt
                                 1
  Storv 9.txt
<<DocumentTermMatrix (documents: 10. terms: 3)>>
Non-/sparse entries: 24/6
Sparsity

    20%

Maximal term length:
Weiahtina
                    : term frequency (tf)
```

Figure: With Sparseness factor of 0.4

Sparse Term Removal (Cont...)

- Sparseness factor = 0.9.
- Remove terms which have greater than 90% percentage of empty elements or get terms which exists in 10% of stories.
- Same as without sparse term removal

```
<<DocumentTermMatrix (documents: 10. terms: 13)>>
Non-/sparse entries: 34/96
Sparsity
Maximal term length:
Weighting
                    : term frequency (tf)
              Terms
               eight example five four nine one seven six story
Docs
  Story_10.txt
  Story_1.txt
                    0
                                                          0
                                                                                     0
  Story_2.txt
                                                                                     1
  Story 3.txt
  Story 4.txt
                                                                                     0
  Story 5.txt
                                                                                    0
  Storv 6.txt
  Story_7.txt
  Story_8.txt
                                                                                    0
  Story 9.txt
<<DocumentTermMatrix (documents: 10, terms: 13)>>
Non-/sparse entries:
                      34/96
Sparsity

    74%

Maximal term length:
Weiahtina
                    : term frequency (tf)
```

Latent Semantic Analysis

- Basic Idea: Let C be a DTM $(M \times N)$ with non-negative real valued entries and m = min(M, N). C can be decomposed into a set of k orthogonal matrices whose linear combination is a good approximation of initial matrix C.
- Formal definition: C can be decomposed as, $C = USV^T$; where matrices $U(M \times m)$ and $V(N \times m)$ are orthonormal matrices $(U^TU = I_m \text{ and } V^TV = I_m)$ whose columns define left and right singular vectors respectively and S is a $m \times m$ diagonal matrix of singular values of C decreasingly ordered along its diagonal.
- Retain only the k greatest singular values in S, then the product of resulting matrices S_k , U_k and V_k is the best approximation of original C by a matrix of rank k

$$C \simeq C_k = U_k S_k V_k^T$$

where C_k is the approximation of original document-term matrix C, S_k is a diagonal matrix consisting of largest k values.

Harikrishna D M First Seminar August 6, 2015 41 / 41

LSA Example

- Source: Introduction to Information Retrieval (Manning et al., 2008)
- Consider a term-document matrix C

Example 18.4: Consider the term-document matrix C =

	d_1	d_2	d_3	d_4	d_5	d_6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
voyage	1	0	0	1	1	0
trip	0	0	0	1	0	1

Figure: Term document matrix

Matrix U

	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
voyage	-0.70	0.35	0.15	-0.58	0.16
trip	-0.26	0.65	-0.41	0.58	-0.09

Harikrishna D M First Seminar August 6, 2015 41 / 41,

LSA Example (Cont...)

Matrix S

```
2.16
       0.00
              0.00
                      0.00
                              0.00
0.00
       1.59
              0.00
                      0.00
                             0.00
0.00
       0.00
              1.28
                      0.00
                             0.00
0.00
       0.00
              0.00
                      1.00
                             0.00
0.00
       0.00
              0.00
                      0.00
                             0.39
```

Figure: Singular Values matrix

Matrix V^T

Figure: SVD document matrix

LSA Example (Cont...)

– When k = 2, Matrix S

```
2.16
       0.00
              0.00
                     0.00
                             0.00
0.00
       1.59
              0.00
                     0.00
                             0.00
0.00
       0.00
              0.00
                     0.00
                             0.00
0.00
       0.00
              0.00
                     0.00
                             0.00
0.00
       0.00
              0.00
                     0.00
                             0.00
```

Figure: Singular Values matrix for k = 2

- Matrix C₂

Figure: Term document matrix for k = 2

LSA Example (Cont...)

Term document matrix C reduced to two dimensions.

Figure: Term document matrix reduced to two dimensions

LSA Result Analysis

- LSA captures most of underlying structure in association of terms and documents.
- Since $k \ll terms$, it is expected that terms which occur in similar stories will be near each other in k dimensional space even though if they never co-occur in same stories.
- Some stories which do not share any words in common, may however be near in k-dimensional space.

Confusion Matrix

 Confusion matrix for various classifiers using TF + PD features for Hindi. (A) indicates actual and (P) indicates predicted.

Table: Confusion matrix for NB

	Fable (P)	Folk-tale (P)	Legend (P)
Fable (A)	88	8	4
Folk-tale (A)	9	89	2
Legend (A)	5	5	90

Table: Confusion matrix for KNN

	Fable (P)	Folk-tale (P)	Legend (P)
Fable (A)	68	25	7
Folk-tale (A)	13	80	7
Legend (A)	6	4	90

Table: Confusion matrix for SVM

	Fable (P)	Folk-tale (P)	Legend (P)	
Fable (A)	92	2	6	
Folk-tale (A)	2	90	8	
Legend (A)	3	4	93	
1014				