FLAG: Adversarial Data Augmentation for Graph Neural Networks

Kezhi Kong¹, Guohao Li², Mucong Ding¹, Zuxuan Wu¹, Chen Zhu¹, Bernard Ghanem², Gavin Taylor³, Tom Goldstein¹

¹University of Maryland, ²KAUST, ³US Naval Academy

The Learning on Graphs and Geometry Reading Group (LoGaG) Presentation 2021.09.28

Background

- Data Augmentation is important to generalization
 - For graphs, we have structural-based augmentations:
 - Neighbor Sampling, DropEdge, Virtual Node, Edge Permutation...
- Question: feature-based augmentations for graphs?

Background

Figure 1: Generalization performance of FLAG on all three tasks. Left: node classification with GAT as baseline on ogbn-products; Middle: link prediction with hits@20 as metric (the higher the better) and GraphSAGE as baseline on ogbl-ddi; Right: graph classification with GIN as baseline on ogbg-molhiv. Plotted lines are attained by smoothing the original lines (the shallow ones), where smooth weights are 0.75, 0.75, and 0.5 respectively.

Adversarial Training Is the Cure!

Contributions

- Our work is the first general-purpose feature-based data augmentation method on graph data
- The method works on all the three major graph tasks (node, link, and graph)
- The method has good scalability and works on large-scale datasets
- The method is easy to implement and use
- The method is complementary to existing regularizers (Dropout) and graph structure augmentations (Neighbor sampling & Virtual node)

Pipeline

Min-Max Optimization

$$\min_{\boldsymbol{\theta}} E_{(x,y)\sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\|_{p} \leq \epsilon} L\left(f_{\boldsymbol{\theta}}(x+\boldsymbol{\delta}), y\right) \right],$$

Inner Gradient Ascent

$$\boldsymbol{\delta}_{t+1} = \Pi_{\|\boldsymbol{\delta}\|_{\infty} \leq \epsilon} \left(\boldsymbol{\delta}_{t} + \alpha \cdot \operatorname{sign} \left(\nabla_{\boldsymbol{\delta}} L \left(f_{\boldsymbol{\theta}}(x + \boldsymbol{\delta}_{t}), y \right) \right) \right)$$

Principle: Multi-scale Augmentation

- "Free" Training
 - Leverage the batch replay technique but improve with gradient accumulation
- Weighted Perturbation
 - For node classification, augment labeled vs. unlabeled with diverse magnitudes (typically larger for unlabeled ones)

Principle: Multi-scale Augmentation


```
#M as ascent steps, alpha as ascent step size
    #X denotes input node features, y denotes labels
    def flag(gnn, X, y, optimizer, criterion, M, alpha) :
        gnn.train()
        optimizer.zero_grad()
 5
 6
        pert = torch.FloatTensor(*X.shape).uniform_(-alpha, alpha)
        pert.requires_grad_()
        out = gnn(X+pert)
        loss = criterion(out, y)/M
10
11
        for _ in range(M-1):
12
            loss.backward()
13
            pert_data = pert.detach() + alpha*torch.sign(pert.grad.detach())
14
            pert.data = pert_data.data
15
            pert.grad[:] = 0
16
            out = gnn(X+pert)
17
            loss = criterion(out, y)/M
18
19
        loss.backward()
20
        optimizer.step()
^{21}
```

Experiments

Node Classification

Table 1: Node property prediction test performance on ogbn-products, ogbn-proteins, and ogbn-arxiv datasets. Blank denotes no statistics on the leaderboard.

	ogbn-products	ogbn-proteins	ogbn-arxiv
Backbone	Test Acc	Test ROC-AUC	Test Acc
GCN	-	72.51 \pm 0.35	71.74±0.29
+FLAG	-	71.71 ± 0.50	72.04 ± 0.20
GraphSAGE	78.70 ± 0.36	77.68 ± 0.20	71.49 ± 0.27
+FLAG	79.36 \pm 0.57	76.57 ± 0.75	72.19 ± 0.21
GAT	79.45 ±0.59	-	73.65 ± 0.11
+FLAG	81.76 ± 0.45	-	73.71 ± 0.13
DeeperGCN	80.98 ± 0.20	85.80 ± 0.17	71.92 ± 0.16
+FLAG	81.93 ± 0.31	85.96 ± 0.27	72.14 \pm 0.19

Table 2: Test performance on the heterogeneous OGB node property prediction dataset ogbn-mag.

	ogbn-mag
Backbone	Test Acc
R-GCN	46.78 ±0.67
+FLAG	47.37 ± 0.48

Experiments

Link Prediction

Table 3: Link property prediction test performance on ogbl-ddi and ogbl-collab datasets.

	ogbl-ddi	ogbl-collab
Backbone	Hits@20	Hits@50
GCN	37.07 ±5.07	44.75 ±1.07
+FLAG	51.41 ± 3.76	$46.22 \!\pm\! 0.81$
GraphSAGE	53.90 ± 4.74	48.10 ± 0.81
+FLAG	63.31 ± 6.06	48.44 ± 0.40

ExperimentsGraph Classification

Table 4: Graph property test performance on ogbg-molhiv, ogbg-molpcba, ogbg-ppa, and ogbg-code datasets.

denotes the existence of virtual nodes; blank denotes no statistics on the leaderboard.

Backbone	ogbg-molhiv Test ROC-AUC	ogbg-molpcba Test AP	ogbg–ppa Test Acc	ogbg-code Test F1
GCN	76.06 ± 0.97	20.20 ± 0.24	68.39 ± 0.34	31.63 ± 0.18
+FLAG	76.83 ± 1.02	$21.16 \!\pm\! 0.17$	68.38 ± 0.47	32.09 ± 0.19
GCN-Virtual	75.99 ± 1.19	24.24 ± 0.34	68.57 ± 0.61	32.63 ± 0.13
+FLAG	75.45 ± 1.58	24.83 ± 0.37	69.44 ± 0.52	33.16 ± 0.25
GIN	75.58 ± 1.40	22.66 ± 0.28	68.92 ± 1.00	31.63 ± 0.20
+FLAG	76.54 \pm 1.14	23.95 ± 0.40	69.05 ± 0.92	32.41 ± 0.40
GIN-Virtual	77.07 ± 1.49	27.03 ± 0.23	70.37 ± 1.07	32.04 ± 0.18
+FLAG	77.48 \pm 0.96	28.34 ± 0.38	72.45 ± 1.14	32.96 ± 0.36
DeeperGCN	78.58 ± 1.17	$27.81^{\natural}\pm0.38$	77.12 ± 0.71	-
+FLAG	79.42 \pm 1.20	$28.42^{\natural}\pm0.43$	77.52 ± 0.69	-

Ablation Studies

Table 6: Test accuracy of GAT on ogbn-products trained with different adversarial augmentations. FLAG (fast) means the training epoch number is decreased to make our method trained as fast as the baseline.

Backbone	Test Acc
GAT	79.45 ±0.59
GAT+PGD	80.96 ± 0.41
GAT+"Free"	79.42 ± 0.84
GAT+FLAG	81.76 ±0.45
GAT+FLAG (fast)	80.64 ± 0.74

Table 5: Test Accuracy on the ogbn-arxiv dataset with different BN methods.

Method	GCN	GraphSAGE
w/o BN	71.09 ±0.22	69.58 ±0.76
w/ BN	71.74 ± 0.29	71.49 ± 0.27
w/ BN +FLAG	72.04 ± 0.20	72.19 ± 0.21
w/ Dual BN +FLAG	72.11 ± 0.23	72.21 ± 0.20

Table 7: Test Accuracy on the ogbn-products dataset.

Backbone	Test Acc
GAT w/o dropout	75.67 ±0.27
GAT w/ dropout	79.45 ± 0.59
GAT w/ dropout +FLAG	81.76 ± 0.45

Table 8: Test accuracy on ogbn-products with Graph-SAGE trained with diverse mini-batch algorithms.

	ogbn-products
Backbone	Test Acc
GraphSAGE w/ NS	78.70 ± 0.36
+FLAG	79.36 \pm 0.57
GraphSAGE w/ Cluster	78.97 ± 0.33
+FLAG	78.60 ± 0.27
GraphSAGE w/ SAINT	79.08 ± 0.24
+FLAG	79.60 ± 0.19

Ablation Studies

Figure 3: Results of GraphSAGE and GAT on the ogbn-products dataset.

Analysis

- Guess: Discrete features are the ones that should be adversarially augmented
- Observations
 - 1. FLAG boosts MLPs on graph datasets
 - A. 61.06±0.08% to 62.41±0.16% on ogbn-product
 - B. $55.50 \pm 0.23\%$ to $56.02 \pm 0.19\%$ on ogbn-arxiv
 - 2. Adversarial Training boosts performance of CNNs on MNIST [Tsipras et al. 2018]
 - 3. Gaussian noises destroy the boost

Limitations

- FLAG is empirically oriented, which lacks theoretical motivation
- FLAG introduces time overhead
- FLAG may not work when there are no initial node features

Thanks for listening!

- Paper: https://arxiv.org/abs/2010.09891
- Code: https://github.com/devnkong/FLAG