Тема I: Многочлены

§ 1. Делимость многочленов

Многочлены над полем

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Определения

Вспомним одно определение из курса «Введение в математику» Коммутативное ассоциативное кольцо без делителей нуля называется областью целостности. Часто говорят просто «область».

Примеры: кольцо целых чисел \mathbb{Z} , любое поле, кольцо многочленов F[X] над произвольным полем F, и вообще, кольцо многочленов D[X] над произвольной областью D.

Мы будем изучать делимость в кольце многочленов над областью с 1, но некоторые базовые определения и свойства делимости приведем для произвольной области D с 1.

Элемент $a\in D$ делится на $b\in D$, если существует элемент $c\in D$ такой, что a=bc. В этом случае b называют делителем a и пишут b|a.

Отношение | рефлексивно (в силу наличия 1) и транзитивно (в силу ассоциативности умножения), но, вообще говоря, не антисимметрично. Элементы, которые делят друг друга, называют *ассоциированными*.

Обозначение: $a\sim b$. Ясно, что \sim – отношение эквивалентности.

Один из классов этой эквивалентности – $\{0\}$, другой – группа всех обратимых элементов области D.

В $\mathbb Z$ классы ассоциированности суть $\{0\}$, $\{\pm 1\}$, $\{\pm 2\}$,

Простейшие свойства

Замечание 1 (характеризация ассоциированности в области с 1)

Пусть D – область с 1. Элементы $a,b\in D$ ассоциированы тогда и только тогда, когда a=bu для некоторого обратимого элемента $u\in D$.

Доказательство. Если a=bu, то b|a по определению. Если к тому же элемент u обратим, то умножив равенство a=bu на u^{-1} , получим $au^{-1}=b$, откуда a|b. Итак, a и b делят друг друга, т.е. $a\sim b$.

Обратно, пусть a|b и b|a, т.е. a=bc и b=ad для некоторых c и d. Подставив 2-е равенство в 1-е, получим a=adc, откуда a(1-dc)=0. Если a=0, то b=0, и $a=b\cdot 1$. Если $a\neq 0$, то поскольку в D нет делителей нуля, 1-dc=0, откуда cd=1 и c – обратимый элемент.

Замечание 2 (связь делимости с операциями кольца)

Если a|b, то a|bc для любого c, а если $a|b_1$ и $a|b_2$, то $a|(b_1\pm b_2)$.

Доказательство – упражнение.

Определение

Необратимый элемент p области D называется $\frac{}{}$ непредстави́м как произведение двух элементов, не ассоциированных с p.

$$\forall a, b, c \in D \ (pc \neq 1) \ \& \ (p = ab \rightarrow (p \sim a) \lor (p \sim b)).$$

Пример: неразложимые элементы кольца $\mathbb Z$ суть в точности числа $\pm p$, где p – простое число.

Определение

Область называется *областью с однозначным разложением* (*OOP*), если каждый ее ненулевой необратимый элемент представим в виде произведения неразложимых, причем такое представление однозначно с точностью до порядка сомножителей и ассоциированности.

Однозначность с точностью до порядка сомножителей и ассоциированности означает, что если $p_1p_2\cdots p_n=q_1q_2\cdots q_k$, где все $p_1,p_2,\ldots,p_n,q_1,q_2,\ldots,q_k$ неразложимы, то k=n, а множители произведения $q_1q_2\cdots q_n$ можно переставить так, что в получившемся после перестановки произведении первый множитель будет ассоциирован с p_1 , второй — с p_2,\ldots,n —й — с p_n .

Области с однозначным разложением

Известный вам со школы пример области с однозначным разложением – кольцо \mathbb{Z} . Это так называемая *основная теорема арифметики* (которую, впрочем, в школе обычно не доказывают).

Однозначность разложения настолько привычна, что складывается впечатление, что она выполняется всегда. Увы, это далеко не так.

Вот простой пример области, в которой каждый необратимый элемент представим как произведение неразложимых, но однозначности нет:

$$\mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}.$$

Имеем $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{-5}).$ Можно проверить, что каждое из чисел $2,\ 3,\ 1+\sqrt{-5},\ 1-\sqrt{-5}$ – неразложимый элемент кольца $\mathbb{Z}[\sqrt{-5}]$, но ни один из этих элементов не ассоциирован в $\mathbb{Z}[\sqrt{-5}]$ ни с одним другим.

Даже когда однозначность разложения есть, доказать это бывает непросто. Пример OOP: кольцо целых гауссовых чисел $\mathbb{Z}[i]:=\{a+bi\mid a,b\in\mathbb{Z}\}.$ Вопрос на дом: почему равенства 5=(2+i)(2-i)=(1+2i)(1-2i) не противоречат только что высказанному утверждению, что $\mathbb{Z}[i]$ есть OOP?

Однозначность разложения и теорема Ферма

Деление с остатком в кольце многочленов

Наша ближайшая цель – доказать, что для любого поля F кольцо многочленов F[x] является областью с однозначным разложением.

Основной инструмент здесь – деление многочленов с остатком.

Определение, обозначение и соглашение

Степень ненулевого многочлена $f(x)=a_0+a_1x+a_2x^2+\ldots$ – это наибольшее n такое, что $a_n\neq 0$. Степень f обозначается через $\deg f$. Степень нулевого многочлена равна $-\infty$, причем символ $-\infty$ меньше любого целого числа и $n+(-\infty)=-\infty+n:=-\infty$ для любого целого n.

Теорема о делении многочленов с остатком

Пусть F — поле и $f,g\in F[x]$, причем $g\neq 0$. Тогда существуют такие однозначно определенные многочлены $q,r\in F[x]$, что

$$f = qg + r \text{ u } \deg r < \deg g.$$

Многочлен q называется (неполным) частным, а многочлен r – остатком от деления f на g. Заметим, что если r=0, то g делит f в обычном смысле.

Доказательство теоремы о делении многочленов с остатком

Доказательство. Существование многочленов q и r. При $\deg f < \deg g$ достаточно положить $q:=0,\ r:=f$. Пусть теперь $k:=\deg f \geq m:=\deg g,$ $f=\alpha x^k+$ члены меньших степеней, $g=\beta x^m+$ члены меньших степеней.

Проведем индукцию по k-m. Если k-m=0, т.е. k=m, положим $q:=\dfrac{\alpha}{\beta}$ и $r:=f-\dfrac{\alpha}{\beta}g$; тогда f=qg+r и $\deg r<\deg g$.

Пусть k-m>0. Положим $h:=f-\frac{\alpha}{\beta}x^{k-m}g$. Старший член многочлена $\frac{\alpha}{\beta}x^{k-m}g$ равен αx^k , и потому $\deg h < k$. Применяя к многочленам h и g предположение индукции, получаем, что существуют такие многочлены q_1,r , что $h=q_1g+r$ и $\deg r < \deg g$. Но тогда

$$f = \frac{\alpha}{\beta} x^{k-m} g + h = \frac{\alpha}{\beta} x^{k-m} g + q_1 g + r = \left(\frac{\alpha}{\beta} x^{k-m} + q_1\right) g + r,$$

что дает требуемое равенство f=qg+r с суммой $\dfrac{\alpha}{\beta}x^{k-m}+q_1$ в роли q.

Доказательство теоремы о делении многочленов с остатком (2)

Единственность многочленов q и r. Предположим, что $f=q_1g+r_1$ и $f=q_2g+r_2$ для некоторых многочленов $q_1,\ q_2,\ r_1$ и r_2 таких что $\deg r_1,\deg r_2<\deg g$. Из равенства $q_1g+r_1=q_2g+r_2$ получаем $(q_1-q_2)g=r_2-r_1$. Но если $q_1-q_2\neq 0$, то это невозможно, так как $\deg \left((q_1-q_2)g\right)\geqslant \deg g$, а $\deg(r_2-r_1)<\deg g$. Следовательно, $q_1-q_2=0$, откуда $q_1=q_2$ и $r_1=r_2$.

Замечание

Доказательство дает алгоритм построения частного и остатка.

Пример: поделим «уголком» $6x^3 - 2x^2 + x + 3$ на $x^2 - x + 1$ с остатком.

$$-\underbrace{\frac{6x^3 - 2x^2 + x + 3}{6x^3 - 6x^2 + 6x}}_{-6x^2 + 6x} \underbrace{\frac{x^2 - x + 1}{6x + 4}}_{-x - 1}$$

Частное 6x + 4, остаток -x - 1.

Наибольший общий делитель

Определение

Пусть F — поле и $f,g\in F[x]$. Многочлен $h\in F[x]$ называется наибольшим общим делителем (НОД) многочленов f и g, если $h|f,\ h|g$ и для любого $p\in F[x]$ из того, что p|f и p|g, следует, что p|h.

НОД многочленов определен с точностью до ассоциированности.

Теорема о наибольшем общем делителе

Для любых ненулевых многочленов f и g над полем F существует наибольший общий делитель и для некоторых многочленов $u,v\in F[x]$

$$HOД(f,g) = uf + vg.$$

Доказательство. Рассмотрим множество $I:=\{uf+vg\mid u,v\in F[x]\}$. Оно содержит ненулевые многочлены (например, сами f и g). Покажем, что ненулевой многочлен наименьшей степени в I есть $\mathsf{HOД}(f,g)$.

Наибольший общий делитель (2)

Итак, пусть d – ненулевой многочлен наименьшей степени в $I=\{uf+vg\mid u,v\in F[x]\}.$ Прежде всего, проверим, что d|f и d|g.

Поделим f на d с остатком: f=qd+r, где $\deg r<\deg d$. Имеем $d=u_0f+v_0g$ для каких-то многочленов $u_0,v_0\in F[x]$, откуда $r=f-qd=f-q(u_0f+v_0g)=(1-qu_0)f+(-qv_0)g\in I$.

Поскольку $\deg r < \deg d$, а d — ненулевой многочлен наименьшей степени в I, заключаем, что r=0 и f=qd, т.е. d|f. Аналогично, d|g.

Если $p\in F[x]$ таков, что p|f и p|g, то по свойствам делимости $p|(u_0f+v_0g)$, т.е. p|d. Итак, $d=\mathsf{HOД}(f,g)$.

Приведенное доказательство компактно, но неконструктивно. Способ практического вычисления $\mathsf{HOД}(f,g)$, а также таких многочленов $u,v\in F[x]$, что $\mathsf{HOД}(f,g)=uf+vg$ дает *алгоритм Евклида*.

Алгоритм Евклида

Пусть даны ненулевые многочлены f и g. Без ограничения общности предположим, что $\deg f \geqslant \deg g$.

Если g|f, то $\mathsf{HOД}(f,g)=g$.

Если $g \nmid f$, разделим f на g с остатком: $f = q_1g + r_1$.

Если $r_1|g$, то процесс закончен, иначе разделим g на r_1 с остатком: $q=q_2r_1+r_2.$

Если $r_2 | r_1$, то процесс закончен, иначе разделим r_1 на r_2 с остатком: $r_1 = q_3 r_2 + r_3$.

Продолжаем этот процесс, пока один из получающихся остатков не разделится на следующий. Если процесс в какой-то момент закончится, последний ненулевой остаток и будет равен $\mathsf{HOД}(f,g)$.

Теорема (корректность алгоритма Евклида)

Для любых ненулевых многочленов f и g процесс в алгоритме Евклида заканчивается за конечное число шагов и последний ненулевой остаток равен HOD(f,g).

Доказательство. Поскольку $\deg g, \deg r_1, \deg r_2, \dots \in \mathbb{N} \cup \{0\}$ и $\deg g > \deg r_1 > \deg r_2 > \dots$, процесс должен завершиться.

Алгоритм Евклида (2)

Выпишем всю последовательность получения остатков:

Последнее равенство означает, что $r_n|r_{n-1}$. Поднимаясь на строчку выше, мы видим, что r_n делит правую часть равенства, а значит, $r_n|r_{n-2}$. Еще поднимаемся на одну строку и получаем, что $r_n|r_{n-3}$. И так далее, доходим до второй строки сверху и получаем, что $r_n|g$. Рассматривая первую строку, получаем, что $r_n|f$. Итак, r_n — общий делитель многочленов f и g.

Идя по последовательности (*) сверху вниз, покажем, что если h|f и h|g, то $h|r_n$. Из первого равенства $r_1=f-q_1g$; отсюда по свойствам делимости $h|r_1$. Рассматривая следующее равенство, получаем $r_2=g-q_2r_1$, откуда $h|r_2$. Итак, опускаясь по равенствам (*), получим, что $h|r_s$ при всех $s=3,\ldots,n$. Поэтому $r_n=\text{HOД}(f,g)$.

Алгоритм Евклида (3)

Взглянем еще раз на последовательность получения остатков:

Из предпоследнего равенства можно выразить r_n через r_{n-1} и r_{n-2} с некоторыми полиномиальными коэффициентами: $r_n=r_{n-2}-q_nr_{n-1}$. Подставим в это равенство выражение r_{n-1} из предыдущей строки:

$$r_n = r_{n-2} - q_n(r_{n-3} - q_{n-1}r_{n-2}) = (1 + q_{n-1}q_n)r_{n-2} - q_nr_{n-3}.$$

Так r_n выражено с коэффициентами $(1+q_{n-1}q_n)$ и $-q_n$ через r_{n-2} и r_{n-3} . Подставим в полученное равенство выражение для r_{n-2} и т.д.

Продолжая этот процесс, придём к выражению r_n через f и g

с некоторыми полиномиальными коэффициентами u и v.

Итак, алгоритм Евклида позволяет находить и сам НОД данных многочленов, и его представление в виде комбинации этих многочленов с полиномиальными коэффициентами.

Взаимно простые многочлены

Определение

Многочлены f и g называются взаимно простыми, если их НОД равен 1.

Предложение о взаимно простых многочленах

Пусть f, g и h — многочлены над полем F.

- 1) Если f и g взаимно просты, f|h и g|h, то (fg)|h.
- 2) Если f и g взаимно просты и f|(gh), то f|h.

Доказательство. 1) Пусть h=fp=gq для некоторых многочленов p и q. Так как f и g взаимно просты, существуют многочлены u и v такие, что выполняется равенство 1=uf+vg. Умножая обе части этого равенства на h, получим h=huf+hvg, откуда h=gquf+fpvg=fg(qu+pv).

2) По условию gh=fp для некоторого многочлена p. Так как f и g взаимно просты, uf+vg=1 для некоторых многочленов u и v. Следовательно, huf+hvg=h, откуда h=huf+fpv=f(hu+pv).

Неприводимые многочлены

Неразложимые элементы кольца многочленов D[x] принято называть $\ensuremath{\textit{неприводимыми}}$ многочленами.

Важно понимать, что приводимость/неприводимость данного многочлена зависит от того, над какой областью рассматривается этот многочлен!

Примеры. 1) Многочлен x^2-2 неприводим над $\mathbb Q$, но приводим над $\mathbb R$:

$$x^{2} - 2 = (x - \sqrt{2})(x + \sqrt{2}).$$

2) Многочлен x^2+1 неприводим над $\mathbb R$, но приводим над $\mathbb C$:

$$x^{2} + 1 = (x - i)(x + i).$$

Этот же многочлен приводим над двухэлементным полем:

$$x^{2} + 1 = (x+1)(x+1).$$

3) Многочлен 2x+2 неприводим над $\mathbb Q$, но приводим над $\mathbb Z$:

$$2x + 2 = 2(x + 1).$$

Неприводимые многочлены (2)

Предложение о неприводимых многочленах

Если g — неприводимый многочлен над полем F и g делит произведение некоторых многочленов $h_1\cdots h_m$, то g делит один из многочленов h_i .

 \mathcal{L} оказательство. Индукция по m с очевидной базой.

Шаг индукции. Пусть m>1. Положим $d:=\mathrm{HOД}(g,h_m)$. Тогда g=qd для некоторого многочлена q. В силу неприводимости многочлена g один из многочленов d и q ассоциирован с g. Если d ассоциирован с g, то g|d, откуда $g|h_m$. Если q ассоциирован с g, то d — многочлен нулевой степени, т.е. ненулевой элемент поля. Поэтому многочлены g и h_m взаимно просты. В силу п. 2) предложения о взаимно простых многочленах в этом случае g делит произведение $h_1\cdots h_{m-1}$, и по предположению индукции g делит один из сомножителей этого произведения.

Однозначность разложения многочленов над полем

Теорема о разложении многочлена на неприводимые множители

Кольцо многочленов над полем – область с однозначным разложением.

Напомним, что область D называется областью с однозначным разложением, если каждый ее ненулевой необратимый элемент представим как произведение неразложимых, причем это представление однозначно с точностью до порядка сомножителей и ассоциированности. В кольце многочленов F[x] над полем F обратимыми являются в точности элементы поля, т.е. многочлены нулевой степени. Поэтому теорема означает, что в F[x] каждый многочлен степени $n \geq 1$ однозначно представим как произведение неприводимых многочленов.

Доказательство. Индукция по n. База индукции n=1 следует из того, что многочлены первой степени над полем неприводимы. Шаг индукции — cуществование. Рассмотрим произвольный многочлен f степени n>1. Если f неприводим, доказывать нечего. Если f приводим, то f=gh, где g и h необратимы в F[x]. Как отмечено, в F[x] обратимы многочлены нулевой степени. Поэтому $\deg g, \deg h \geqslant 1$ и, поскольку $\deg f = \deg g + \deg h$, имеем $\deg g, \deg h < \deg f = n$. Многочлены g и h можно разложить в произведение неприводимых по предположению индукции. Перемножая разложения g и h, получим разложение f.

Шаг индукции — единственность. Рассмотрим произвольный многочлен f степени n>1 и пусть $f=g_1\cdots g_k=h_1\cdots h_m$, где $g_1,\ldots,g_k,h_1,\ldots,h_m$ — неприводимые над F многочлены. Многочлен g_1 делит $h_1\cdots h_m$. В силу предложения о неприводимых многочленах g_1 делит h_i для некоторого i. Не ограничивая общности, можно считать, что i=1 (в противном случае можно переставить сомножители в произведении $h_1\cdots h_m$). Итак, $h_1=wg_1$ для некоторого многочлена w. Поскольку многочлен h_1 неприводим, один из многочленов w и g_1 ассоциирован с h_1 . Если w ассоциирован с h_1 , то $g_1\in F$, что невозможно. Следовательно, $w\in F$ и $g_1\sim h_1$. Сократим на g_1 равенство

$$g_1g_2\cdots g_k=wg_1h_2\cdots h_m.$$

Если k=1, в левой части останется 1, а значит, m=1, и все доказано. Если k>1, получим $g_2\cdots g_k=(wh_2)\cdots h_m$. Степень многочлена $f_1:=\frac{f}{g_1}$ меньше $\deg f=n$, а значит, к его разложениям $f_1=g_2\cdots g_k=(wh_2)\cdots h_m$ применимо предположение индукции. Отсюда k-1=m-1, т.е. k=m, и для каждого из многочленов g_2,\ldots,g_k найдется ассоциированный с ним многочлен среди $(wh_2),\ldots,h_m$.

Однозначность разложения и теорема Ферма

Пьер Ферма́ (1601–1665) написал на полях своего экземпляра латинского перевода «Арифметики» Диофанта (греческого математика III века н.э.): «Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашёл этому поистине чудесное доказательство, но поля книги слишком узки для него.»

В привычных нам обозначениях Ферма утверждает, что при $n\geq 3$

$$x^n + y^n = z^n$$

не имеет решений в целых числах. Это — так называемая «Великая» или «Последняя» теорема Ферма. Исходя из того круга идей, которыми владел Ферма, понятно, что его «чудесное доказательство» основывалось на разложении левой части

$$x^{n} + y^{n} = (x+y)(x+\varepsilon y)(x+\varepsilon^{2}y)\cdots(x+\varepsilon^{n-1}y),$$

где arepsilon – корень n-й степени из -1, и на (само собой разумеющейся в те времена) однозначности разложения на неразложимые множители в $\mathbb{Z}[arepsilon]$. Однако на самом деле при $n\geq 23$ однозначности **нет** (Куммер).

Вернуться обратно