

第三章 随机变量的 数字特征

第一节 随机变量的数学期望

第二节 随机变量的方差和矩

第三节 协方差与相关系数

下页 ——返回

第一节 数号期望

- 一、数学期望的概念
- 二、随机变量函数的数学期望
- 三、数学期望的性质
- 四、内容小结

一、数学期望的概念

引例1 了解二年级学生身高X.

随机挑选n个人,有 m_1 个人身高为 x_1 , m_2 个人身高为 x_2 ,

 m_k 个人身高为 x_k ,

其中 $m_1+m_2+\cdots+m_k=n$.

问题: 如何评价二年级学生的身高?

解 一般的方法是求它们的算术平均值:

$$\overline{x} = \frac{1}{n}(m_1x_1 + m_2x_2 + \dots + m_kx_k)$$

随机 = $\sum_{i=1}^{k} x_i \cdot \frac{m_i}{n}$ 这正是身高为 x_i 的频率!

"平均身高"的稳定值=?

$$\sum_{i=1}^k x_i \cdot \frac{m_i}{n} \xrightarrow{n \to \infty} \sum_{i=1}^k x_i \cdot p_i$$

"平均身高 "等于身高 的可能值与 其概率之积 的和.

1. 离散型随机变量的数学期望

(1) 定义3.1

设离散型随机变量X的分布律为

$$P\{X = x_k\} = p_k, \quad k = 1, 2, \cdots$$

若级数 $\sum_{k=1}^{\infty} x_k p_k$ 绝对收敛,则称级数 $\sum_{k=1}^{\infty} x_k p_k$

的和为随机变量X的数学期望,记为E(X).即

$$E(X) = \sum_{k=1}^{\infty} x_k p_k.$$

身高问题

"平均身高"即为 X 的数学期望

$$E(X) = \sum_{i=1}^{k} x_i \cdot p_i$$

(2) 关于定义的几点说明

1° E(X)是一个实数,而非变量,它是一种加权平均,与一般的平均值不同,它从本质上体现了随机变量 X 取可能值的真正的平均值,也称均值.

随机变量 X 的算术平均值为 $\frac{1+2}{2}=1.5$,

$$E(X) = 1 \times 0.02 + 2 \times 0.98 = 1.98.$$

$$\delta$$
 1 2

2°分布律 → EX

3°级数的绝对收敛性保证了级数的和不随级数各项次序的改变而改变,之所以这样要求是因为数学期望是反映随机变量X取可能值的平均值,它不应随可能值的排列次序而改变.

例1 谁的技术比较好?

甲,乙两个射手,他们的射击技术分别为

甲射手

击中环数	8	9	10
概率	0.3	0.1	0.6

乙射手

击中环数	8	9	10
概率	0.2	0.5	0.3

试问哪个射手技术较好?

解 设甲,乙射手击中的环数分别为 X1, X2.

$$E(X_1) = 8 \times 0.3 + 9 \times 0.1 + 10 \times 0.6 = 9.3(5),$$

$$E(X_2) = 8 \times 0.2 + 9 \times 0.5 + 10 \times 0.3 = 9.1(5),$$

故甲射手的技术比较好.

(3) 常见离散型随机变量的数学期望

分布	分布律	E(X)
(0-1)分布	$P{X = k} = p^k (1-p)^{1-k}$	
$X\sim B(1,p)$	k=0,1	p
二项分布	$P{X=k}=C_n^k p^k (1-p)^{n-k}$	
$X\sim B(n,p)$	k=0,1,2,,n	np
泊松分布	$P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda}$	2
$X \sim P(\lambda)$	k!	
	k=0,1,2,	
几何分布	$P{X=k}=(1-p)^{k-1}p$	1
	k=1,2,	p

二项分布

设随机变量X服从参数为n,p二项分布,其分布律为

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}, (k = 0,1,2,\dots,n),$$
则有
$$E(X) = \sum_{k=0}^n k \cdot P\{X = k\}$$

$$= \sum_{k=0}^n k C_n^k p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^{n} \frac{kn!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$=\sum_{k=1}^{n}\frac{np(n-1)!}{(k-1)![(n-1)-(k-1)]!}p^{k-1}(1-p)^{(n-1)-(k-1)}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!} p^{k-1} (1-p)^{(n-1)-(k-1)}$$

$$= np[p + (1-p)]^{n-1}$$

=np

则二项分布B(n,p)的数学期望为np.

并有两点分布B(1,p)的数学期望为

p.

泊松分布

设 $X \sim P(\lambda)$,且分布律为

$$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k=0,1,2,\dots, \quad \lambda > 0.$$

则有

$$E(X) = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \cdot \lambda$$

$$= \lambda e^{-\lambda} \cdot e^{\lambda} = \lambda.$$

几何分布

设随机变量X的分布律为

$$P{X = k} = q^{k-1}p,$$

 $q = 1 - p; k = 1, 2, \dots; 0$

则有
$$E(X) = \sum_{k=1}^{\infty} k \cdot q^{k-1} p = p \sum_{k=1}^{\infty} k \cdot q^{k-1}$$

$$= p \cdot \sum_{k=1}^{\infty} (q^{k})' = p \cdot (\sum_{k=1}^{\infty} q^{k})' = p \cdot (\frac{q}{1-q})'$$

$$= p \cdot \frac{1}{(1-q)^{2}}$$

$$= p \cdot \frac{1}{p^{2}} = \frac{1}{p}.$$

2.连续型随机变量数学期望的定义

(1)定义3.2

设连续型随机变量X的概率密度为p(x),

若积分
$$\int_{-\infty}^{+\infty} x \, p(x) \, \mathrm{d} x$$

绝对收敛,则称积分 $\int_{-\infty}^{+\infty} x p(x) dx$ 的值得为随机变量 X 的数学期望,记为 E(X).即

$$E(X) = \int_{-\infty}^{+\infty} x \, p(x) \, \mathrm{d} \, x.$$

例4 顾客平均等待多长时间?

设顾客在某银行的窗口等待的服务的时间

X(以分计)服从指数分布,其概率密度为

$$p(x) = \begin{cases} \frac{1}{5}e^{-x/5}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

试求顾客等待服务的平均时间?

解
$$E(X) = \int_{-\infty}^{+\infty} x \, p(x) \, dx = \int_{0}^{+\infty} x \cdot \frac{1}{5} e^{-x/5} \, dx = 5(分钟).$$

因此, 顾客平均等待5分钟就可得到服务.

(2) 常见连续型随机变量的数学期望

分布名称	概率密度	E(X)
均匀分布	$n(x) - \int \frac{1}{1}, x \in [a,b]$	$\frac{a+b}{2}$
$X\sim U[a,b]$	$p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{其他} \end{cases}$	4
正态分布	$1 \qquad \frac{-(x-\mu)^2}{2}$	
$X \sim N(\mu, \sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ
指数分布	$\int \lambda e^{-\lambda x}, x > 0$	$\frac{1}{\lambda}$
$X \sim E(\lambda)$	$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{ if } d \end{cases}$	Λ
	$(\lambda > 0)$	

均匀分布

设 $X \sim U(a,b)$,其概率密度为

$$p(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, &$$
其它.

则有
$$E(X) = \int_{-\infty}^{\infty} xp(x) dx = \int_{a}^{b} \frac{1}{b-a} x dx$$

= $\frac{1}{2}(a+b)$. 结论 均匀分布的数学
期望位于区间的中点.

指数分布

设随机变量X服从指数分布其概率密度为

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases} \quad \sharp + \lambda > 0.$$

则有

$$E(X) = \int_{-\infty}^{+\infty} x p(x) dx = \int_{0}^{+\infty} x \cdot \lambda e^{-\lambda x} dx$$

$$=-xe^{-\lambda x}\Big|_0^{+\infty}+\int_0^{+\infty}e^{-\lambda x}\,\mathrm{d}\,x=\frac{1}{\lambda}.$$

正态分布

设 $X \sim N(\mu, \sigma^2)$,其概率密度为

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \sigma > 0, \quad -\infty < x < +\infty.$$

则有
$$E(X) = \int_{-\infty}^{+\infty} x p(x) dx$$

$$= \int_{-\infty}^{+\infty} x \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$\diamondsuit \frac{x-\mu}{\sigma} = t \implies x = \mu + \sigma t,$$

所以
$$E(X) = \int_{-\infty}^{+\infty} x \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$x = \mu + \sigma t$$

$$dx = \sigma dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (\mu + \sigma t) e^{-\frac{t^2}{2}} dt$$

$$= \mu \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt + \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t e^{-\frac{t^2}{2}} dt$$

奇函数

二、随机变量函数的数学期望

1. 离散型随机变量函数的数学期望

引例 设随机变量 X 的分布律为

$$X = x_k$$
 -1 0 1 2
 $P\{X = x_k\} = p_k$ p_1 p_2 p_3 p_4

若 $Y = f(X) = X^2$,求E(Y).

解 先求 $Y = X^2$ 的分布律

$Y = X^2$	0	1	4	
p	p_2	$p_1 + p_3$	p_4	

则有
$$E(Y) = E(f(X)) = E(X^2)$$

 $= 0 \cdot p_2 + 1 \cdot (p_1 + p_3) + 4 \cdot p_4$
 $= 0 \cdot p_2 + (-1)^2 \cdot p_1 + 1^2 \cdot p_3 + 2^2 \cdot p_4$
 $= \sum_{k=1}^4 f(x_k) P\{X = x_k\}.$

因此离散型随机变量函数的数学期望为

若
$$Y=f(X)$$
, 且 $P\{X=x_k\}=p_k$, $(k=1,2,\cdots)$,

则有
$$E(f(X)) = \sum_{k=1}^{\infty} f(x_k) p_k$$
.

2. 连续型随机变量函数的数学期望

若 X 是连续型的,它的分布密度为 p(x) 则

$$E(f(X)) = \int_{-\infty}^{+\infty} f(x)p(x) dx.$$

3. 二维随机变量函数的数学期望

(1) 设 X,Y 为离散型随机变量, f(x,y) 为二元函数,则 $E[f(X,Y)] = \sum_{i} \sum_{j} f(x_{i},y_{j})p_{ij}$.

其中(X,Y)的联合概率分布为 p_{ii} .

(2) 设 X,Y 为连续型随机变量, f(x,y) 为二元函数,则

$$E[f(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)p(x,y) dx dy.$$

其中(X,Y)的联合概率密度为p(x,y).

例5 设 (X,Y) 的分布律为

YX	1	2	3
-1	0.2	0.1	0
0	0.1	0	0.3
1	0.1	0.1	0.1

求:E(X), E(Y), E(Y/X), $E[(X-Y)^2]$.

解X的分布律为

X	1	2	3
p	0.4	0.2	0.4

得 $E(X) = 1 \times 0.4 + 2 \times 0.2 + 3 \times 0.4 = 2.$

Y的分布律为

Y	-1	0	1
p	0.3	0.4	0.3

得 $E(Y) = -1 \times 0.3 + 0 \times 0.4 + 1 \times 0.3 = 0.$ 由于

p	0.2	0.1	0.1	0.1	0.1	0.3	0.1
(X,Y)	(1,-1)	(1,0)	(1,1)	(2,-1)	(2,1)	(3,0)	(3,1)
Y/X	-1	0	1	-1/2	1/2	0	1/3

于是

$$E\left(\frac{Y}{X}\right) = -1 \times 0.2 + 0 \times 0.1 + 1 \times 0.1 - \frac{1}{2} \times 0.1 + \frac{1}{2} \times 0.1 + 0 \times 0.3 + \frac{1}{3} \times 0.1$$
$$= \frac{1}{15}.$$

p	0.2	0.1	0.1	0.1	0.1	0.3	0.1
(X,Y)	(1,-1)	(1,0)	(1,1)	(2,-1)	(2,1)	(3,0)	(3,1)
$(X-Y)^2$	4	1	0	9	1	9	4

得
$$E[(X-Y)^2] = 4 \times 0.3 + 1 \times 0.2 + 0 \times 0.1 + 9 \times 0.4$$

= 5.

三、数学期望的性质

1. 设C是常数,则有 E(C) = C.

if
$$E(X) = E(C) = 1 \times C = C$$
.

2. 设X是一个随机变量,C是常数,则有E(CX) = CE(X).

if
$$E(CX) = \sum_{k} Cx_{k} p_{k} = C \sum_{k} x_{k} p_{k} = CE(X).$$

例如: E(X) = 5, 则 $E(3X) = 3E(X) = 3 \times 5 = 15$.

3. 设 X、Y 是两个随机变量,则有

$$E(X+Y) = E(X) + E(Y).$$

证
$$E(X + Y) = \sum_{i} \sum_{j} (x_{i} + y_{j}) p_{ij}$$

$$= \sum_{i} x_{i} p_{i} + \sum_{j} y_{j} p_{.j} = E(X) + E(Y).$$
推广
$$E(\sum_{i=1}^{n} a_{i} X_{i}) = \sum_{i=1}^{n} a_{i} E(X_{i}).$$

4. 设 X、Y 是相互独立的随机变量,则有 E(XY) = E(X)E(Y).

说明 连续型随机变量 X 的数学期望与离散型随机变量数学期望的性质类似.

四、内容小结

- 1. 数学期望是一个实数,而非变量,它是一种加权平均,与一般的平均值不同,它从本质上体现了随机变量 X 取可能值的真正的平均值.
- 2. 数学期望的性质

$$\begin{cases} 1^{0} & E(C) = C; \\ 2^{0} & E(CX) = CE(X); \\ 3^{0} & E(X+Y) = E(X) + E(Y); \\ 4^{0} & X,Y 独立 \Rightarrow E(XY) = E(X)E(Y). \end{cases}$$

备份题

例1 你知道自己该交多少保险费吗?

根据生命表知,某年龄段保险者里,一年中每个人死亡的概率为0.002,现有10000个这类人参加人寿保险,若在死亡时家属可从保险公司领取 2000 元赔偿金.问每人一年须交保险费多少元?

解 设1年中死亡人数为X,则 $X \sim b(10000, 0.002)$

$$E(X) = \sum_{k=0}^{10000} k \cdot {1000 \choose k} (0.002)^k (1 - 0.002)^{10000-k}$$
$$= 20(\text{L}).$$

被保险人所得赔偿金的期望值应为

$$20 \times 2000 = 40000$$
(元).

若设每人一年须交保险费为a元,

由被保险人交的"纯保险费"与他们所能得到的赔偿金的期望值相等知

$$10000a = 40000 \Rightarrow a = 4(元)$$
,

故每人1年应向保险公司交保险费4元.

例2 某大学二年级学生进行了一次数学统考,设其成绩 X 服从 N(75,9) 的正态分布,试求学生成绩的

f(x)

0.1

期望值.

解 因为 $X \sim N(75,9)$,

知
$$p(x) = \frac{1}{3\sqrt{2\pi}}e^{-\frac{(x-75)^2}{3^2}}, 0.075$$

故
$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$

$$e^{-\frac{(x-75)^2}{3^2}} dx = 75(2).$$

$$= \int_{-\infty}^{\infty} x \cdot \frac{1}{3\sqrt{2\pi}} e^{-\frac{(x-75)^2}{3^2}} dx = 75(\%).$$

90

求: $E(2X^3+5)$.

$$\mathbf{E}(2X^3 + 5) = 2E(X^3) + E(5)$$

$$= 2E(X^3) + 5,$$

$$\mathbb{X} E(X^3) = (-2)^3 \times \frac{1}{3} + 0^3 \times \frac{1}{2} + 1^3 \times \frac{1}{12} + 3^3 \times \frac{1}{12} = -\frac{1}{3},$$

故
$$E(2X^3+5)=2E(X^3)+5=2\times\left(-\frac{1}{3}\right)+5=\frac{13}{3}$$
.

例4 设一电路中电流I(A)与电阻 $R(\Omega)$ 是两个相互独立的随机变量其概率密度分别为

$$g(i) = \begin{cases} 2i, & 0 \le i \le 1, \\ 0, & 其它, \end{cases}$$
 $h(r) = \begin{cases} \frac{r^2}{9}, & 0 \le r \le 3, \\ 0, & 其它. \end{cases}$

试求电压V = IR 的均值.

解
$$E(V) = E(IR) = E(I)E(R)$$
$$= \left[\int_{-\infty}^{\infty} ig(i) di\right] \left[\int_{-\infty}^{\infty} rh(r) dr\right]$$
$$= \left[\int_{0}^{1} 2i^{2} di\right] \left[\int_{0}^{3} \frac{r^{3}}{9} dr\right] = \frac{3}{2}(V).$$

例5 商店的销售策略

某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X(以年计),规定: $X \le 1$,一台付款1500元; $1 < X \le 2$,一台付款2000元; $2 < X \le 3$,一台付款2500元;X > 3,一台付款3000元.

设寿命 X 服从指数分布,概率密度为

$$f(x) = \begin{cases} \frac{1}{10}e^{-x/10}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

试求该商店一台收费Y的数学期望.

解
$$P\{X \le 1\} = \int_0^1 \frac{1}{10} e^{-x/10} dx = 1 - e^{-0.1} = 0.0952,$$

$$P\{1 < X \le 2\} = \int_{1}^{2} \frac{1}{10} e^{-x/10} \, \mathrm{d} x$$

$$=e^{-0.1}-e^{-0.2}=0.0861,$$

$$P\{2 < X \le 3\} = \int_{2}^{3} \frac{1}{10} e^{-x/10} \, \mathrm{d} x$$

$$=e^{-0.2}-e^{-0.3}=0.0779,$$

$$P\{X > 3\} = \int_{3}^{\infty} \frac{1}{10} e^{-x/10} dx$$
$$= e^{-0.3} = 0.7408.$$

因而一台收费Y的分布律为

Y	1500	2000	2500	3000	
p_k	0.0952	0.0861	0.0779	0.7408	

得 E(Y) = 2732.15, 即平均一台收费 2732.15.

例7 按规定,某车站每天8:00~9:00,9:00~ 10:00都恰有一辆客车到站,但到站的时刻是随机 的,且两者到站的时间相互独立.其规律为

到站时刻	8:10	8:30	8:50	
工小村中小人小	9:10	9:30	9:50	LAFARRADA H
概率	$\frac{1}{6}$	3 6	2 6	

(ii) 一旅客8:20到车站,求他候车时间的数学期望.

解 设旅客的候车时间为 X(以分计).

(i) X的分布律为

X	10	30	50
p_{k}	1	3	2
	6	6	6

候车时间的数学期望为

$$E(X) = 10 \times \frac{1}{6} + 30 \times \frac{3}{6} + 50 \times \frac{2}{6}$$
$$= 33.33(分).$$

(ii) X的分布律为

X	10	30	50	70	90
	3	2	1,1	1 3	1 2
\boldsymbol{p}_k	6	6		$\frac{-\times -}{6}$	

候车时间的数学期望为

$$E(X) = 10 \times \frac{3}{6} + 30 \times \frac{2}{6} + 50 \times \frac{1}{6} \times \frac{1}{6} + 70 \times \frac{1}{6} \times \frac{3}{6} + 90 \times \frac{1}{6} \times \frac{2}{6}$$
$$= 27.22(\cancel{5}).$$