Credit Card Fraud Detec on Project Report

Student Name: JAYABHARATHI N, Register

Number: 422723104046 Institution: V.R.S College of engineering

and technology, Department: Computer science engineering, Date

of Submission:

9.05.2025GithubRepositoryLink:https://www.kaggle.com/datagul

/tanmay111999/fraud-detection-smote-f1-score-90-5-models

b/creditcardfraud......datasetlink:https://www.kaggle.com/code

1. Problem Statement

Credit card fraud is a major inancial issue for banks, retailers, and consumers. The goal is to build a model that detects fraudulent transactions based on historical transaction data.

- Problem Type: Binary Classi ication (Fraudulent vs. Non-Fraudulent)
- Why it Matters: Preventing fraud reduces inancial losses and improves trust in inancial systems. Real-time fraud

2. Project Objec ves

detection systems are essential for securing digital transactions.

- Technical Objective: Build and evaluate models to detect fraudulent transactions with high precision and recall.
- Model Goals:
- Minimize false negatives (missing fraud)
- Maintain interpretability (especially in high-risk domains)
- Handle class imbalance effectively

3. Flowchart of the Project Workflow

- The objective evolved post-EDA to focus more on handling data imbalance and model interpretability.

Data Collection \rightarrow Data Preprocessing \rightarrow EDA \rightarrow Feature Engineering \rightarrow Model Building \rightarrow Evaluation \rightarrow Results

4. Data Descrip on

- Dataset Name: Credit Card Fraud Detection -

Interpretation

Source:https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud Type:

Structured, time-series - Records: ~284,807 transactions - Features: 30 (28

anonymized features + Time, Amount) - Target: Class (0 = Non-Fraud, 1 =

Fraud)

- Nature: Static dataset, highly imbalanced

5. Data Preprocessing

- Missing Values: None detected - Duplicates: Removed ~100 duplicate entries -

Outliers: Identi ied and treated using IQR on Amount - Data Types: All numeric

- Encoding: Not required (already numeric) - Scaling: StandardScaler applied to

Amount and Time

- Imbalance: Will be handled during model training with SMOTE or class weights

6. Exploratory Data Analysis (EDA)

- Univariate: Fraud cases are <0.2% of data. Amount distribution is skewed. Bivariate: Fraudulent transactions tend to have higher values in certain principal components (e.g., V14, V17) Multivariate: Correlation matrix shows strong patterns in a few components Insights:
- V14 and V17 show distinct distributions for fraud vs. non-fraud
- Feature selection or dimensionality reduction may be valuable

7. Feature Engineering

- Created hour_of_day from Time - Binned
Amount into categories for analysis - PCA not
applied as data already anonymized

8. Model Building

- SMOTE used to balance classes before training
- Models: Logistic Regression, Random Forest, XGBoost
- Split: 70/30 Train-Test split with strati ication
- Metrics:
- Accuracy
- Precision
- Recall
- F1-score
- AUC-ROC
- Why these models:

- Logistic Regression for baseline & interpretability
- Random Forest/XGBoost for robustness and handling imbalance9. Visualiza on of Results &
- Confusion Matrix: Shows effectiveness in capturing fraud
- ROC Curve: AUC > 0.90 for best model
- Feature Importance: V14, V17, V10 most important in fraud detection
- Conclusion: XGBoost provided best performance with minimal over itting

10. Tools and Technologies Used

- Language: Python
- IDE: Jupyter Notebook
- Libraries: pandas, numpy, seaborn, matplotlib, scikit-learn, imbalanced-learn, XGBoost
- Visualization: seaborn, matplotlib, Plotly

11. Team Members and Contribu ons

-Jayapratha.A: Data Cleaning, EDA

-Kamali.V: Feature Engineering, SMOTE, Model Training

Jayabharathi.N: Documentation, Visualizations

-Jesima.J: Model Evaluation, Reporting