1. Please check the normality of $\,X_4\,$ and $\,X_5\,$ of the banknotes data. Sol.

Suppose X_4 = Distance of inner frame to the lower border X_5 = Distance of inner frame to the upper border

Univariate normality:

Figure 1: univariate qq-plot for x_4

Figure 2: univariate qq-plot for x_5

According to the Q-Q plot of X_5 above, the sample quantile values are plotted on the x-axis, and the corresponding quantile values of the dataset are plotted on the y-axis. We can see that the points lie nearly along the 45-degrees reference line, it means that the x_5 are approximately normal. On the other hand, we can see that the points of x_4 on both endpoints are deviate from the reference line, it means that the data of x_4 is not normally distributed.

Furthermore, we can also use the Shapiro-Wilk test to detect if each distribution is exact normality. From the results of r code, for the data of x_4 , have p-value equal 6.354e-07. When p-value<0.05, we have sufficient evidence to say that the sample data x_4 does not come from a population that is normally distributed. For the data of x_5 , it has a p-value equal 0.05856, so the distribution of the data are not significantly different from normal distribution.

In conclusion, if we test these two variables separately, x_4 is probably not normally distributed in the population, x_5 is normally distributed in the population.

Bivariate normality:

Figure 3: scatterplot for x_4 versus x_5

Figure 4: contour of the density of x_4 and x_5

Figure 5: Chi-square Q-Q plot for x_4 and x_5

從圖三散佈圖可以看出, x_4 和 x_5 分別散落在兩邊,且從圖四可明顯看出有兩個橢圓,代表兩變數有明顯差異。若將圖三與圖四重疊,則能對應出每筆資料分佈的疏密程度,兩群體中間被明顯地區分。除了用單變量的 qq plot 與 scatter plot,檢查多變量是否為常態還需要經過與 chi-squared plot 比對,從圖五可以看出全部的點連線並沒有構成一條直線,右上角的兩筆資料也與其他資料有明顯變化,因此無法稱之為多變量常態分配。

2. Detect the outliers of $\,X_4\,$ and $\,X_5\,$ of the banknotes data. Sol.

Figure 6: Multivariate outlier detection based on Mahalanobis distance

Figure 7: Multivariate outlier detection based on adjusted-Mahalanobis distance

從圖一與圖二中可以看出個別變數中異常大或異常小的離群值,然而在多變量中需要考慮到更多面向,多變量的重點在討論兩兩變數之間的關係,藉由以下幾種方法可以互相驗證找到真實的離群值。

在圖三 scatter plot 中我們可以看到兩個異常點,一個位於圖表中下方、一個位於圖表右邊中間,兩者都離群體很遠,但圖表中下方的點雖然是 x_5 的離群值,但對 x_4 的資料中,他不屬於離群值;另一個右邊中間的點則是反過來,它對 x_5 來說屬於正常分布範圍內,對 x_4 而言卻是一筆離群值。

圖五可以看出右上方兩點離其他點都很遠,代表它們的 Mahalanobis Distance 很大,可以認定為離群值。另外,藉由 MVN test 可以得到圖六與圖七的離群值結果,我們可以合理推測圖五中距離群體最遠的點,即為圖六、圖七的編號 190 的點(第 190 筆資料),它的 Mahalanobis Distance=21.192,表示該點到群體中心的距離為 21.192;而第二遙遠的則為第 5 筆資料,它的 Mahalanobis Distance=16.381。觀察全部的離群值,我們可以發現大部分的離群值都出現在假鈔的資料(第 101~200 筆)。由單變量分析計算 z-scores 也可以應證離群值的資料,其 z 分數皆落在±2個標準差之外。

Observation	Mahala	nahia Di	c+0000	$\triangle \cup + 1 : \triangle \times$
Observation	IVIdIIdid	וט צומטוזו	Istance	Outilei

190	190	21.192	TRUE
5	5	16.381	TRUE
159	159	15.719	TRUE
122	122	13.662	TRUE
132	132	12.941	TRUE
154	154	12.003	TRUE
118	118	11.833	TRUE
172	172	11.503	TRUE
152	152	11.047	TRUE
146	146	10.337	TRUE
151	151	10.233	TRUE
140	140	10.168	TRUE
136	136	10.161	TRUE
176	176	10.160	TRUE
117	117	9.690	TRUE
173	173	9.690	TRUE
105	105	9.467	TRUE
156	156	8.458	TRUE
177	177	8.458	TRUE
123	123	8.365	TRUE
195	195	8.365	TRUE

R code:

clear all variables
rm(list = ls(all = TRUE))
graphics.off()

install and load packages

install.packages("dplyr")

install.packages("ggpubr")

import data

bank <- read.table("C:/Users/user/Desktop/多變量 11101/MVA-ToDo-master/QID-948-MVApcabankr/bank2.dat")

x4 <- bank\$V4

x5 <- bank\$V5

```
x45 <- as.data.frame(cbind(bank[, 4],bank[, 5]))
# Shapiro-Wilk test
# p-value>0.05:不拒絕虛無假設(符合常態分佈)
# p-value<0.05:拒絕虛無假設(不符合常態分佈)
shapiro.test(x4)
shapiro.test(x5)
# Q-Q plot
library(ggpubr)
ggqqplot(x4,color = 'blue', main = 'x4')
ggqqplot(x5,color = 'red', main = 'x5')
# scatter plot with linear fit line
ggplot(bank,
        aes(x = x4, y = x5)) +
  geom point(color="steelblue") +
  geom_smooth(formula = y ~ x, method = "lm") +
  labs(y = "Distance of inner frame to theupper border(x5)",
        x = "Distance of inner frame to the lower border(x4)",
        title = "Scatter Plot")
# chi-square plot
# install and load packages
install.packages("mvoutlier")
install.packages("sgeostat")
library(mvoutlier)
# draw the plot
chisq.plot(x45, quan=1/2, ask=TRUE)
# detecting outliers
#zscore
install.packages("outliers")
library(outliers)
z.scores <- x45 %>% scores(type = "z")
# MVN
install.packages("MVN")
library(MVN)
```

```
result_uni <- mvn(x45, mvnTest = "mardia", univariateTest = "SW", showOutliers = TRUE)

result_multi <- mvn(x45, mvnTest = "mardia", multivariateOutlierMethod = "quan", showOutliers = TRUE)

result_multi <- mvn(x45, mvnTest = "mardia", multivariateOutlierMethod = "adj", showOutliers = TRUE)

result_uniqq <- mvn(x45, mvnTest = "mardia", univariatePlot = "qqplot")

result_multiqq <- mvn(x45, mvnTest = "mardia", multivariatePlot = "qq")

result_muticon <- mvn(x45, mvnTest = "mardia", multivariatePlot = "contour")
```