Metody symulacji

Testowanie generatorów liczb losowych
Temat II d

Rafał Skrzypiec

263957

Opis testu

Do testowania generatorów liczb losowych ran3 oraz r250 wykorzystano test oparty na zjawisku błądzenia losowego na sieci trójkątnej. Wędrowniczek startuje z punktu (0,0) i po wykonaniu L kroków kończy spacer w punkcie (x,y). Dokonując podziału płaszczyzny na 6 równych części, sprawdzamy, w której z nich wędrowniczek zakończył spacer. Nasza hipoteza zakłada trajektoria cząstki startującej z początku układu współrzędnych powinna z jednakowym prawdopodobieństwem kończyć się w jednej z 6 części płaszczyzny. Aby sprawdzić jej prawdziwość przeprowadzimy test zgodności χ^2 .

Rysunek 1: Przykład sieci trójkątnej [1]

Biorąc pod uwagę fakt, że prawdopodobieństwo p_i zakończenia spaceru w części i wynosi 1/6 możemy obliczyć wartość statystyki χ^2 ze wzoru:

$$V = \frac{6}{n} \sum_{i=0}^{5} \left(n_i - \frac{n}{6} \right)^2$$

Wybierając poziom istotności na poziomie 0.02, dla przypadku z 5 stopniami swobody zbiór krytyczy wynosi [2]:

$$\chi < \chi_{0.01} = 0.55$$
 lub $\chi > \chi_{0.99} = 15.09$

Metodyka

Aby symulować ruch hipotetycznej cząstki wprowadziłem 6 wektorów, o które może zmienić położenie: $e_0=(1,0),\ e_1=(0.5,-\frac{\sqrt{3}}{2}),\ e_2=(-0.5,-\frac{\sqrt{3}}{2}),\ e_3=(-1,0),\ e_4=(-0.5,\frac{\sqrt{3}}{2}),\ e_5=(0.5,\frac{\sqrt{3}}{2})$ Następnie losowałem w L krokach losowałem numery wektora sieciowego, zmieniając położenie

Następnie losowałem w L krokach losowałem numery wektora sieciowego, zmieniając położenie wędrowniczka o wylosowany wektor. Całą płaszczyzną podzieliłem na 6 równych części oraz punkt (0,0) według zasad:

	э на от				
Obszar	Warunki				
0	$x \ge 0$ i $y > \frac{x}{\sqrt{3}}$				
1	$y \le \frac{x}{\sqrt{3}} i y > -\frac{x}{\sqrt{3}}$				
2	$y \le -\frac{x}{\sqrt{3}} i x > 0$				
3	$x \le 0$ i $y < \frac{x}{\sqrt{3}}$				
4	$y \ge \frac{x}{\sqrt{3}}$ i $y < -\frac{x}{\sqrt{3}}$				
5	$y \ge -\frac{x}{\sqrt{3}} \text{ i } x < 0$				
6	y = 0 i x = 0				

Tablica 1: Zdefiniowane obszary płaszczyzny

Następnie zliczałem ilość zakończeń wędrówki po L krokach w każdym z obszarów, zakończenie wędrówki w obszarze nr 6 powodowało powtórzenie spaceru.

Rysunek 2: Płaszczyzna, na której zaznaczono 3000 punktów, w których wędrowniczek zakończył wędrówkę po 1000 kroków, każdy z kolorów odpowiada innemu obszarowi.

Wyniki

Wykonano po 50 powtórzeń symulacji dla każdego z testów dla 10^5 spacerów, które miały po 1000 kroków.

Tablica 2: Przykładowe wyniki symulacji dla 10⁵ spacerów

		-	-	• .		_	
Generator	n_0	n_1	n_2	n_3	n_4	n_5	V
r250	17007	15812	16219	16625	17847	16490	148.37
ran3	16555	16495	16443	16958	17095	16454	24.33

Rysunek 3: Przedstawienie wyników z powyższej tabeli na histogramie, przerywana linia zaznacza wartość $10^5/6$.

Tablica 3: Podsumowanie wyników symulacji

Generator	Ilość symulacji	Średnie V	Odchylenie standardowe V
r250	50	133.26	12.93
ran3	50	26.06	10.01

Rysunek 4: Rozkład wartości V dla 50 prób, każda po 10^5 spacerów, dla generatorów ran3 i r250. Przerywane linie wyznaczają granice zbioru krytycznego.

Wnioski

Analizując powyższe wyniki, zauważamy, że generator r250 nie zdaje testu zgodności χ^2 , średnia wartość statystyki V wynosi 133.26, głęboko trafiając w zbiór krytyczny, który wynosi $V<0.55\,$ lub V>15.09. Na 50 wykonanych testów, wszystkie z nich trafiły w zbiór krytyczny, co pozwala z całą pewnością stwierdzić, że generator r250 oparty na przesuwanym rejestrze nie jest dobrym generatorem liczb losowych.

Generator ran3 poradził sobie w teście nieco lepiej, jednak również nie zdał testu zgodności χ^2 , średnia wartość statystyki V, wynosi 26.06 i trafia w zbiór krytyczny, który wynosi V < 0.55 lub V > 15.09. Na 50 wykonanych testów, 44 z nich trafiły w zbiór krytyczny, pozwala to z całą pewnością stwierdzić, że generator Fibonacciego ran3 nie jest dobrym generatorem liczb losowych.

Literatura

- [1] https://en.wikipedia.org/wiki/Hexagonal_lattice
- [2] http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
- [3] Wykład z Metod symulacji, prof. Czesław Oleksy