Teoria degli automi e calcolabilità a.a. 2022/23 Prova scritta 14 giugno 2023

Esercizio 1 Si consideri il seguente automa a stati finiti con transizioni silenti.

- 1. Si trasformi l'automa in un NFA eliminando le transizioni silenti.
- 2. Si dia un'espressione regolare che denota il linguaggio accettato.

Soluzione Diamo l'automa anche in formato tabellare:

	a	b	c	ϵ
$\rightarrow q_0$				q_1, q_4
q_1	q_2			
q_2			q_3	
$\star q_3$				
$\overline{q_4}$				q_5, q_6
$\overline{q_5}$	q_7			
q_6		q_7		
q_7				q_0

1. Un NFA senza transizioni ϵ equivalente è il seguente.

	a	b	c
$\rightarrow q_0$	$q_0, q_1, q_2, q_4, q_5, q_6, q_7$	$q_0, q_1, q_4, q_5, q_6, q_7$	
q_1	q_2		
q_2			q_3
$\star q_3$			
q_4	$q_0, q_1, q_4, q_5, q_6, q_7$	$q_0, q_1, q_4, q_5, q_6, q_7$	
q_5	$q_0, q_1, q_4, q_5, q_6, q_7$		
q_6		$q_0, q_1, q_4, q_5, q_6, q_7$	
q_7	$q_0, q_1, q_2, q_4, q_5, q_6, q_7$	$q_0, q_1, q_4, q_5, q_6, q_7$	

2. Un'espressione regolare che denota il linguaggio accettato è $(a+b)^*ac$. Si può infatti notare che identificando in unico insieme A l'insieme di stati $\{q_0, q_1, q_4, q_5, q_6, q_7\}$ si ottiene:

	a	b	c
$\rightarrow A$	A, q_2	A	
q_2			q_3
$\star q_3$			

Esercizio 2 Si consideri il linguaggio $L = \{a^n b^m c^n \mid m \text{ dispari}\}$. Si dia un'automa a pila che riconosce il linguaggio, spiegando su quale idea intuitiva è basato.

Soluzione Inizialmente, l'automa mette nella pila un simbolo A per ogni a letta, mantenendo Z in cima. Poi legge le b (almeno una) utilizzando due stati per controllare che il numero sia dispari, senza modificare la pila. infine rimuove la Z in cima e legge le c, controllando che siano in numero uguale alle a togliendo ogni volta un simbolo A dalla pila.

Esercizio 3 Si dia una macchina di Turing che, data in input una stringa di 0 e 1, produca in output la stringa privata degli 0. Quindi, per esempio, data la stringa 01100100, produce in output la stringa 111. È assolutamente necessario dare prima una descrizione a parole dell'algoritmo, e solo successivamente la matrice di transizione, preferibilmente usando nomi significativi per gli stati.

Soluzione Un algoritmo molto semplice (stato iniziale 0) se trova uno 0 semplicemente lo cancella, mentre se trova un 1, cerca la fine della stringa da leggere (stato goR), cerca la fine della stringa di 1 già costruita (stato goRR) e aggiunge in fondo a questa un altro 1. Poi ritorna a sinistra (stati goL e goLL e ricomincia.

Esercizio 4 Dire se le seguenti affermazioni sono vere o false motivando la risposta.

- 1. La proprietà dei programmi corrispondente all'insieme $\{x \mid x \leq 100\}$ non è estensionale.
- 2. La proprietà dei programmi corrispondente all'insieme $\{x \mid x \leq 100\}$ è ricorsiva.
- 3. La proprietà dei programmi corrispondente all'insieme $\{x \mid \phi_x(0) \leq 100\}$ è ricorsivamente enumerabile.

Soluzione

- 1. Vero. Infatti, considerando per esempio la funzione ϕ_0 calcolata dal programma 0, sappiamo che esistono altri (infiniti) indici che la calcolano, quindi ci sono (infiniti) indici che la calcolano e non appartengono all'insieme, dato che questo è finito; quindi si tratta di una proprietà non estensionale.
- 2. Vero. Infatti, basta controllare se $x \leq 100$.
- 3. Vero. Infatti, per avere un algoritmo che semidecide l'insieme basta eseguire il programma con indice x sull'input 0 e se questo termina con un output ≤ 100 restituire vero.

Esercizio 5 Supponiamo di avere un predicato decidibile Q su coppie di numeri naturali Q(x, y). Si consideri il predicato P sui numeri naturali tale che P(x) è vero se e solo se esiste y tale che Q(x, y) è falso. Si descriva un algoritmo di semidecisione per P.

Soluzione Sia \mathcal{M}_Q un algoritmo di decisione per Q. Dato un input x, basta eseguire successivamente l'algoritmo $\mathcal{M}_Q(x,y)$ su tutti gli y. Dato che ogni volta l'algoritmo termina, se esiste un y per il quale la risposta è positiva questo sarà trovato, e in quel caso sappiamo che vale P(x).