Prof. Oke

UMassAmherst

College of Engineering

October 9, 2025

Outline

- Preamble
- 2 Joint distributions
- 3 Discrete random variables
- 4 Continuous random variables

Preamble

Joint distributions:

Joint distributions:

Understand the concept of jointly distributed random variables

Joint distributions:

- Understand the concept of jointly distributed random variables
- Differentiate between marginal and conditional distributions

Joint distributions:

- Understand the concept of jointly distributed random variables
- Differentiate between marginal and conditional distributions
- Manipulate joint distributions to compute probabilities

Joint distributions

4/16

Joint distributions

Given two random variables X and Y:

Joint distributions

Discrete case

The joint PMF is:

$$p_{X,Y}(x_i, y_j) = P(X = x_i, Y = y_j)$$
 (1)

Given two random variables X and Y:

Discrete case

The joint PMF is:

$$p_{X,Y}(x_i, y_i) = P(X = x_i, Y = y_i)$$
 (1)

The CDF is:

$$F_{X,Y}(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{X,Y}(x_i, y_j)$$
 (2)

Given two random variables X and Y:

Discrete case

The joint PMF is:

$$p_{X,Y}(x_i, y_i) = P(X = x_i, Y = y_i)$$
 (1)

The CDF is:

$$F_{X,Y}(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{X,Y}(x_i, y_j)$$
 (2)

Continuous case

Given two random variables X and Y:

Discrete case

The joint PMF is:

$$p_{X,Y}(x_i, y_j) = P(X = x_i, Y = y_j)$$
 (1)

The CDF is:

$$F_{X,Y}(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{X,Y}(x_i, y_j)$$
 (2)

Continuous case

The joint probability is given by:

$$P(a < X \le b, c < Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx$$
 (3)

Marginal distributions: $f(x_1)$ and $f(x_2)$

Joint distribution: $f(x_1, x_2)$.

Marginal distributions: $f(x_1)$ and $f(x_2)$

Joint distribution: $f(x_1, x_2)$.

	Y=0	Y=1	Y=2	$p_X(x)$
X = 0	<u>1</u>	<u>1</u>	<u>1</u> 8	?
<i>X</i> = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

	Y=0	Y=1	Y=2	$p_X(x)$
X = 0	<u>1</u>	<u>1</u>	<u>1</u> 8	?
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

	Y=0	Y=1	Y = 2	$p_X(x)$
X = 0	<u>1</u>	<u>1</u>	<u>1</u> 8	?
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

(a) Find
$$P(X = 0, Y \le 1)$$

	Y=0	Y=1	Y = 2	$p_X(x)$
X = 0	<u>1</u>	<u>1</u>	<u>1</u> 8	?
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

- (a) Find $P(X = 0, Y \le 1)$
- (b) Find the marginal PMFs of X and Y
- (c) Find P(Y = 1 | X = 0)
- (d) Are X and Y independent?

Preamble

Solution

(a) To find the probability $P(X = 0, Y \le 1)$, simply add up the cells *jointly* satisfying the conditions.

Discrete random variables

Solution

(a) To find the probability $P(X = 0, Y \le 1)$, simply add up the cells *jointly* satisfying the conditions.

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8	?
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

$$P(X = 0, Y \le 1) =$$

Solution

(a) To find the probability $P(X = 0, Y \le 1)$, simply add up the cells *jointly* satisfying the conditions.

	Y=0	Y=1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	<u>1</u>	1/8	?
X = 1	1/8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

Discrete random variables

$$P(X = 0, Y \le 1) = \frac{1}{6} + \frac{1}{4}$$

Discrete random variables

Solution

(a) To find the probability $P(X = 0, Y \le 1)$, simply add up the cells *jointly* satisfying the conditions.

	Y=0	Y=1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	<u>1</u>	1/8	?
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

$$P(X = 0, Y \le 1) = \frac{1}{6} + \frac{1}{4}$$

= $\frac{4+6}{24} = \frac{10}{24}$

Discrete random variables

Solution

(a) To find the probability $P(X = 0, Y \le 1)$, simply add up the cells *jointly* satisfying the conditions.

	Y=0	Y=1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	<u>1</u>	1/8	?
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$?
$p_Y(y)$?	?	?	

$$P(X = 0, Y \le 1) = \frac{1}{6} + \frac{1}{4}$$

= $\frac{4+6}{24} = \frac{10}{24} = \frac{5}{12}$

Preamble

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y=1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$	

Discrete random variables

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8}$

Discrete random variables

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y=1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y=1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6}$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y=1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
<i>X</i> = 1	1 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$

$$p_Y(y)$$

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	1 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$

$$p_Y(y) \mid \frac{1}{6} + \frac{1}{8} =$$

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y=1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	1 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$

$$p_Y(y) \mid \frac{1}{6} + \frac{1}{8} = \frac{7}{24}$$

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y=1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
n (w)	1 , 1 _ 7	1 , 1 _		

$$p_Y(y) \mid \frac{1}{6} + \frac{1}{8} = \frac{7}{24} \mid \frac{1}{4} + \frac{1}{6} =$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
<i>X</i> = 1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
n _v (v)	1 _ 1 _ 7	1 _ 1 _ 5		

$$p_Y(y) \mid \frac{1}{6} + \frac{1}{8} = \frac{7}{24} \mid \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} =$	

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y=1	<i>Y</i> = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y=1	<i>Y</i> = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

$$p_X(x) =$$

Discrete random variables

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y=0	Y=1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

$$p_X(x) = \begin{cases} \frac{13}{24}, & x = 0 \end{cases}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = \begin{cases} \frac{13}{24}, & x = 0\\ \frac{11}{24}, & x = 1 \end{cases}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = egin{cases} rac{13}{24}, & x = 0 \ rac{11}{24}, & x = 1 \ 0, & ext{otherwise} \end{cases}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = egin{cases} rac{13}{24}, & x = 0 \ rac{11}{24}, & x = 1 \ 0, & ext{otherwise} \end{cases}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = \begin{cases} rac{13}{24}, & x = 0 \\ rac{11}{24}, & x = 1 \\ 0, & \text{otherwise} \end{cases}$$
 $p_Y(y) = 0$

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = \begin{cases} \frac{13}{24}, & x = 0\\ \frac{11}{24}, & x = 1\\ 0, & \text{otherwise} \end{cases} \qquad p_Y(y) = \begin{cases} \frac{7}{24}, & y = 0\\ \end{cases}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = \begin{cases} \frac{13}{24}, & x = 0\\ \frac{11}{24}, & x = 1\\ 0, & \text{otherwise} \end{cases} \qquad p_Y(y) = \begin{cases} \frac{7}{24}, & y = 0\\ \frac{5}{12}, & y = 1 \end{cases}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = \begin{cases} \frac{13}{24}, & x = 0\\ \frac{11}{24}, & x = 1\\ 0, & \text{otherwise} \end{cases} \qquad p_Y(y) = \begin{cases} \frac{7}{24}, & y = 0\\ \frac{5}{12}, & y = 1\\ \frac{7}{24}, & y = 2 \end{cases}$$

Solution

(b) To find the marginal PMFs of X and Y, i.e. $p_X(x) = P(X = x)$ and $p_Y(y) = P(Y = y)$, respectively, sum up the rows and columns in the table:

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

$$p_X(x) = \begin{cases} \frac{13}{24}, & x = 0\\ \frac{11}{24}, & x = 1\\ 0, & \text{otherwise} \end{cases} \qquad p_Y(y) = \begin{cases} \frac{7}{24}, & y = 0\\ \frac{5}{12}, & y = 1\\ \frac{7}{24}, & y = 2\\ 0, & \text{otherwise} \end{cases}$$

Preamble

	Y=0	Y = 1	Y = 2	$p_X(x)$
X=0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8}$

	Y=0	Y = 1	Y=2	$p_X(x)$
X=0	<u>1</u> 6	<u>1</u>	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	1/8	$\frac{1}{6}$	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6}$

	Y = 0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$

$$p_Y(y) \mid \frac{1}{6} + \frac{1}{8} =$$

Preamble

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	<u>1</u> 6	<u>1</u>	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} =$		

	Y=0	Y = 1	Y = 2	$p_X(x)$
X=0	<u>1</u> 6	<u>1</u>	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	<u>1</u> 8	<u>1</u> 6	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} =$	

Preamble

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	<u>1</u> 8	<u>1</u> 6	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u>	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

Discrete random variables

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u>	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

$$P(Y = 1|X = 0) =$$

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u>	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

$$P(Y = 1|X = 0) = \frac{P(Y = 1 \cap X = 0)}{P(X = 0)}$$

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X=1	<u>1</u> 8	<u>1</u> 6	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

$$P(Y = 1|X = 0) = \frac{P(Y = 1 \cap X = 0)}{P(X = 0)} = \frac{P(Y = 1, X = 0)}{P(X = 0)}$$

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u>	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

$$P(Y = 1|X = 0) = \frac{P(Y = 1 \cap X = 0)}{P(X = 0)} = \frac{P(Y = 1, X = 0)}{P(X = 0)}$$
$$= \frac{p_{XY}(0, 1)}{p_{X}(0)} =$$

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u>	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

$$P(Y = 1|X = 0) = \frac{P(Y = 1 \cap X = 0)}{P(X = 0)} = \frac{P(Y = 1, X = 0)}{P(X = 0)}$$
$$= \frac{p_{XY}(0, 1)}{p_X(0)} = \frac{\frac{1}{4}}{\frac{13}{24}} =$$

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u>	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

$$P(Y = 1|X = 0) = \frac{P(Y = 1 \cap X = 0)}{P(X = 0)} = \frac{P(Y = 1, X = 0)}{P(X = 0)}$$
$$= \frac{p_{XY}(0, 1)}{p_X(0)} = \frac{\frac{1}{4}}{\frac{13}{24}} = \frac{6}{13}$$

Example 1: Joint PMF of two random variables (cont.)

Preamble

$$Y = 0$$
 $Y = 1$ $Y = 2$ $p_X(x)$ $Y = 0$ $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{6} + \frac{1}{4} + \frac{1}{8}$

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	1/8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6}$

Example 1: Joint PMF of two random variables (cont.)

	Y = 0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$

$$p_Y(y) \mid \frac{1}{6} + \frac{1}{8} =$$

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_{V}(v)$	<u>1 + 1 - 7</u>	1 _ 1		

$$p_Y(y) \mid \frac{1}{6} + \frac{1}{8} = \frac{7}{24} \mid \frac{1}{4} + \frac{1}{6} =$$

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	1/4	1/8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u> 6	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} =$	

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Discrete random variables

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

(d) Two r.v.'s are independent if $P(Y = y_j | X = x_i) = P(X = x_i)$ or $P(X = x_i | Y = y_i) = P(Y = y_i)$ for all i and j.

Example 1: Joint PMF of two random variables (cont.)

Discrete random variables

	Y = 0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u> 6	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

(d) Two r.v.'s are independent if $P(Y = y_i | X = x_i) = P(X = x_i)$ or $P(X = x_i | Y = y_i) = P(Y = y_i)$ for all i and j. Here,

$$P(Y = 1|X = 0)$$

Discrete random variables

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u> 6	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

(d) Two r.v.'s are independent if $P(Y = y_j | X = x_i) = P(X = x_i)$ or $P(X = x_i | Y = y_j) = P(Y = y_j)$ for all i and j. Here,

$$P(Y=1|X=0) = \frac{6}{13}$$

Discrete random variables

	Y=0	Y = 1	Y = 2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	<u>1</u> 6	<u>1</u> 6	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

(d) Two r.v.'s are independent if $P(Y = y_j | X = x_i) = P(X = x_i)$ or $P(X = x_i | Y = y_j) = P(Y = y_j)$ for all i and j. Here,

$$P(Y = 1|X = 0) = \frac{6}{13} \neq P(Y = 1)$$

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

(d) Two r.v.'s are independent if $P(Y = y_j | X = x_i) = P(X = x_i)$ or $P(X = x_i | Y = y_j) = P(Y = y_j)$ for all i and j. Here,

$$P(Y = 1|X = 0) = \frac{6}{13} \neq P(Y = 1) = \frac{5}{12}$$

The independence condition fails.

Example 1: Joint PMF of two random variables (cont.)

	Y=0	Y = 1	Y=2	$p_X(x)$
X = 0	$\frac{1}{6}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{6} + \frac{1}{4} + \frac{1}{8} = \frac{13}{24}$
X = 1	<u>1</u> 8	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8} + \frac{1}{6} + \frac{1}{6} = \frac{11}{24}$
$p_Y(y)$	$\frac{1}{6} + \frac{1}{8} = \frac{7}{24}$	$\frac{1}{4} + \frac{1}{6} = \frac{5}{12}$	$\frac{1}{8} + \frac{1}{6} = \frac{7}{24}$	

Solution

(d) Two r.v.'s are independent if $P(Y = y_j | X = x_i) = P(X = x_i)$ or $P(X = x_i | Y = y_j) = P(Y = y_j)$ for all i and j. Here,

$$P(Y = 1|X = 0) = \frac{6}{13} \neq P(Y = 1) = \frac{5}{12}$$

The independence condition fails. Hence X and Y are not independent.

Joint distributions

OO

Discrete random variables

OO

Continuous random variables

OO

OOOO

Continuous random variables

OOOOO

Conditional distributions of continuous random variables

Recall the definition of conditional probability (multiplication rule):

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{4}$$

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)}$$

$$P(AB) =$$
(4)

Continuous random variables

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)}$$

$$P(AB) = P(A|B)P(B) =$$
(4)

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{4}$$

$$P(AB) = P(A|B)P(B) = P(B|A)P(A)$$
 (5)

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{4}$$

$$P(AB) = P(A|B)P(B) = P(B|A)P(A)$$
 (5)

Similarly, for two continuous r.v.'s, the conditional PDF of X given Y is:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \tag{6}$$

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{4}$$

$$P(AB) = P(A|B)P(B) = P(B|A)P(A)$$
 (5)

Similarly, for two continuous r.v.'s, the conditional PDF of X given Y is:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \tag{6}$$

Joint PDF and CDF of two variables

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{4}$$

$$P(AB) = P(A|B)P(B) = P(B|A)P(A)$$
 (5)

Similarly, for two continuous r.v.'s, the conditional PDF of X given Y is:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \tag{6}$$

Joint PDF and CDF of two variables

The joint PDF is given by:

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$$
 (7)

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{4}$$

$$P(AB) = P(A|B)P(B) = P(B|A)P(A)$$
 (5)

Similarly, for two continuous r.v.'s, the conditional PDF of X given Y is:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} \tag{6}$$

Joint PDF and CDF of two variables

The joint PDF is given by:

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$$
(7)

While the joint CDF is given by:

$$F_{X Y}(a, b) = P(X < a, Y < b) =$$

Recall the definition of conditional probability (multiplication rule):

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{4}$$

$$P(AB) = P(A|B)P(B) = P(B|A)P(A)$$
 (5)

Similarly, for two continuous r.v.'s, the conditional PDF of X given Y is:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} \tag{6}$$

Joint PDF and CDF of two variables

The joint PDF is given by:

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$$
 (7)

While the joint CDF is given by:

$$F_{X,Y}(a,b) = P(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx \tag{8}$$

Marginal distributions of continuous random variables

Recall the theorem of total probability:

Continuous random variables

Recall the theorem of total probability:

$$P(A) =$$

Continuous random variables

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n}$$

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)$$

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
(9)

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
(9)

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
 (9)

$$f_X(x) =$$

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
(9)

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy =$$

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
 (9)

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 (10)

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
(9)

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 (10)

$$f_{\mathcal{V}}(v) =$$

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
 (9)

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx =$$
(10)

Recall the theorem of total probability:

$$P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$$
(9)

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
 (10)

$$f_Y(y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$
 (11)

Example 2: Water levels

Example 2: Water levels

The daily water levels of two reservoirs A and B are denoted by two r.v.'s X and Y having the following joint PDF:

Continuous random variables

000000

Example 2: Water levels

The daily water levels of two reservoirs A and B are denoted by two r.v.'s X and Y having the following joint PDF:

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

- (a) Determine the marginal density function of the daily water level for reservoir A.
- (b) If reservoir A is half full on a given day, what is the probability that the water level will be more than half full?

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

Solution

(a) We obtain the marginal density function $f_X(x)$ by integrating the joint PDF over y:

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

(a) We obtain the marginal density function $f_X(x)$ by integrating the joint PDF over y:

$$f_X(x) = \int_0^1 \frac{6}{5} (x + y^2) dy$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

(a) We obtain the marginal density function $f_X(x)$ by integrating the joint PDF over y:

$$f_X(x) = \int_0^1 \frac{6}{5} (x + y^2) dy$$

= $\frac{6}{5} \left[xy + \frac{y^3}{3} \right]_0^1$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

Solution

(a) We obtain the marginal density function $f_X(x)$ by integrating the joint PDF over y:

$$f_X(x) = \int_0^1 \frac{6}{5} (x + y^2) dy$$
$$= \frac{6}{5} \left[xy + \frac{y^3}{3} \right]_0^1$$
$$= \frac{2}{5} (3x + 1) \quad (0 < x < 1)$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

(a) We obtain the marginal density function $f_X(x)$ by integrating the joint PDF over y:

$$f_X(x) = \int_0^1 \frac{6}{5} (x + y^2) dy$$
$$= \frac{6}{5} \left[xy + \frac{y^3}{3} \right]_0^1$$
$$= \frac{2}{5} (3x + 1) \quad (0 < x < 1)$$

This is the marginal distribution

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

Solution

(b) If reservoir A is half full on a given day, what is the probability that the water level will be more than half full?

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

Solution

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} =$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2}$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2} = 3\frac{x+y^2}{3x+1}$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2} = 3\frac{x+y^2}{3x+1}$$

Thus:
$$P(Y > 0.5|X = 0.5)$$
 =

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2} = 3\frac{x+y^2}{3x+1}$$
Thus: $P(Y > 0.5|X = 0.5) = \int_{0.5}^{1} f_{Y|X}(y|x = 0.5)dy$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

Solution

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2} = 3\frac{x+y^2}{3x+1}$$
Thus: $P(Y > 0.5|X = 0.5) = \int_{0.5}^{1} f_{Y|X}(y|x = 0.5)dy$

$$= 3\int_{0.5}^{1} \frac{0.5+y^2}{1.5+1}dy$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

Solution

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2} = 3\frac{x+y^2}{3x+1}$$
Thus: $P(Y > 0.5|X = 0.5) = \int_{0.5}^{1} f_{Y|X}(y|x = 0.5)dy$

$$= 3\int_{0.5}^{1} \frac{0.5+y^2}{1.5+1}dy$$

$$= \left(\frac{3}{2.5}\right)$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

Solution

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2} = 3\frac{x+y^2}{3x+1}$$
Thus: $P(Y > 0.5|X = 0.5) = \int_{0.5}^{1} f_{Y|X}(y|x = 0.5)dy$

$$= 3\int_{0.5}^{1} \frac{0.5+y^2}{1.5+1}dy$$

$$= \left(\frac{3}{2.5}\right) \left[0.5y + \frac{y^3}{3}\right]_{0.5}^{1}$$

$$f(x,y) = \frac{6}{5}(x+y^2), \quad 0 < x < 1; 0 < y < 1$$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{6}{5}(x+y^2)}{\frac{2}{5}(3x+1)^2} = 3\frac{x+y^2}{3x+1}$$
Thus: $P(Y > 0.5|X = 0.5) = \int_{0.5}^{1} f_{Y|X}(y|x = 0.5)dy$

$$= 3\int_{0.5}^{1} \frac{0.5+y^2}{1.5+1}dy$$

$$= \left(\frac{3}{2.5}\right) \left[0.5y + \frac{y^3}{3}\right]_{0.5}^{1} = \boxed{0.65}$$

Exponential distribution: Section 4.7 (Navidi)

• Exponential distribution: Section 4.7 (Navidi)

Joint distributions

Also read up on the Uniform Distribution in Section 4.8 (Navidi)

- Exponential distribution: Section 4.7 (Navidi)
- Also read up on the Uniform Distribution in Section 4.8 (Navidi)
- Joint distributions: Section 2.6 (Navidi)