Cognoms i Nom:	Doc. Identitat:

Totes les respostes han d'estar degudament justificades

1) Donat un sensor que genera un senyal amb les següents característiques

	Mínim	Màxim
Voltatge de sortida (Volts)	1,7	4,0
Freqüència senyal de sortida (KHz)	0,07	0,9

Determinar el nombre de bits del Convertidor Analògic Digital (CAD), i la freqüència de mostreig, mínimes necessàries per treballar amb una resolució de 0,01 Volts/divisió, i satisfer el criteri de Nyquist.

Utilitzem el mòdul CAD del PIC18F4550. Vref+= 5 Volts, Vref-= 0 Volts, F_{OSC}= 20 MHz

(1 p.)

2) Volem configurar el CAD d'un PIC18F4550 que funciona amb un oscil·lador extern a 20MHz. Amb quins valors hem de configurar els bits ADCS2:ADCS0 i els bits ACQT2:ACQT0 per tal que la conversió es realitzi correctament? (1,5 p.)

bit 7 ADFM: A/D Result Format Select bit 1 = Right justified 0 = Left justified bit 6 Unimplemented: Read as '0' bit 5-3 ACQT2:ACQT0: A/D Acquisition Time Select bits 111 = 20 TAD 110 = 16 TAD 101 = 12 TAD 100 = 8 TAD 011 = 6 TAD010 = 4 TAD 001 = 2 TAD000 = 0 TAD(1) bit 2-0 ADC\$2:ADC\$0: A/D Conversion Clock Select bits

REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0

011 = FRC (clock derived from A/D RC oscillator)(1)

111 = FRC (clock derived from A/D RC oscillator)(1)

010 = FOSC/32 001 = FOSC/8 000 = FOSC/2

110 = FOSC/64 101 = FOSC/16 100 = FOSC/4

_

. .. -

3) Volem connectar un PIC18F450 a una sèrie de 8 LEDS RGB tipus ShiftBrite com el que hem utilitzat al laboratori. Els LEDS estan connectats entre si seguin una configuració sèrie tal i com mostra la figura.

Explica quants bits haurem de transmetre des del PIC abans d'activar el senyal latch per tal de que tots els leds s'actualitzin a l'hora. (1,5 p.)

4) Descriu el 4 tipus d' Endpoints que podem trobar en el protocol USB.

(1,5 p.)

Computer Interfacina lercer Parcial 30/5/20.	Computer Interfacing	Tercer Parcial	30/5/2016
--	----------------------	----------------	-----------

Cognoms i Nom:	UNA POSSIBLE SOLUCIÓ	1	Doc. Identitat:

Totes les respostes han d'estar degudament justificades

5) Configurar el mòdul EUSART adequadament per a transmetre informació en el següent format: Comunicació asíncrona full-duplex, 8 bits de dades, sense bit de paritat, 1 start bit, 1 stop bit, Baud rate= 19200 bits/seg. Fosc= 8 MHz.

Calculeu l'error relatiu (%) en la velocitat de comunicació per a la configuració seleccionada.

(2 p.)

REGISTER 20-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D

REGISTER 20-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D

REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN

TABLE 20-1: BAUD RATE FORMULAS

Co	Configuration Bits		BRG/EUSART Mode	Baud Rate Formula	
SYNC	BRG16	BRGH	DRG/EUSART Wode	Daud Rate Formula	
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]	
0	0	1	8-bit/Asynchronous	Fosc/[16 (n + 1)]	
0	1	0	16-bit/Asynchronous	F050/[16 (II + 1)]	
0	1	1	16-bit/Asynchronous		
1	0	×	8-bit/Synchronous	Fosc/[4 (n + 1)]	
1	1	×	16-bit/Synchronous		

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

- 6. Tenim dos sistemes A i B que han d'intercanviar blocs d'informació de 1500 Bytes, fent de vegades d'emissor A i d'altres B. Indicar pels protocols de comunicació RS-232 (115200 bauds), SPI (1,5 M bauds), I2C (100 K bauds) i USB (1,5 M bauds). En el context descrit indicar:
 - 1) Nombre, nom i funció dels senyals (cables) que connecten els dos sistemes
 - 2) Nombre mínim de bits que cal intercanviar entre A i B per transmetre 1500 Bytes d'informació segons cada protocol, i temps mínim necessari per fer l'intercanvi (suposem que no hi ha esperes, pauses o errors durant la comunicació)
 - 3) Avantatges, inconvenients i/o limitacions de cada protocol

(2,5 p.)