DM2 - Mines MP 2019

1 Premiers exemples

- 1. Le langage reconnu par l'automate A_1 est l'ensemble des \mid mots de taille impaire
- 2. Le langage reconnu par l'automate A_2 est l'ensembles des mots contenant un nombre impair de b

```
3. L(A_1) = (a \cdot a|b \cdot b|a \cdot b|b \cdot a)^* \cdot (a|b)
4. L(A_1) = (a|b \cdot a^* \cdot b)^* \cdot b \cdot a^*
5. let a2 = 2, [[0, 1; 1, 0]], [[false; true]];
```

2 États accessibles d'un automate

```
6.
       let numero n a =
           let t = Array.make n (-1) in
           let rec aux index = function (*parcours la liste*)
             |[] -> ()
              |h::q \rightarrow t.(h) \leftarrow index ; aux (index + 1) q in
7
       let etats_accessibles aut =
           let n, delta, f = aut in
           let visited = Array.make n false in
           let parcours = ref [] in
           let aux etat =
               if not visited.(etat) then
                    begin
                    visited.(etat) <- true ;</pre>
                    parcours := etat :: !parcours ;
                    let succ_a, succ_b = delta.(etat) in
                    aux succ_a ;
                    aux succ_b
                    end in
           aux 0 ;;
           List.rev !parcours
```

Compléxité: La création d'une Array de taille n est en O(n), et l'accés à un élément d'une liste, tout comme $\overline{\text{la concaten}}$ ation d'un élément avec une liste, sont en O(1). On ne s'intéresse donc qu'aux appels récursifs de la fonction aux. Comme |Q|=n, et que pour tout $q\in Q$, il existe deux états q_1 et q_2 (potentiellement égaux) tels que $\delta(q,a)=q_1$ et $\delta(q,b)=q_2$, la fonction aux fait au plus 2^n appels récursifs, soit une compléxité en $O(2^n)$.

3 Morphismes d'automates

3.1 Exemples de morphismes d'automates

- 11. Supposons qu'il existe un morphisme d'automate $\varphi: A_1 \to A_2$, alors, pour vérifier $(2): \varphi(A) = B$, et pour vérifier $(4): \varphi(B) = D$. Or si φ est un morphisme d'automates, alors d'après (3),

 \overline{D}

 \overline{K}

$$\begin{array}{rcl} \varphi(\delta_{\mathcal{A}_1}(A,a)) & = & \varphi(B) \\ & = & D \\ & = & \delta_{\mathcal{A}_2}(\varphi(A),a) \end{array}$$

Mais, $\varphi(A) = C$ d'après (1), donc

$$\begin{array}{rcl} \delta_{\mathcal{A}_2}(\varphi(A),a) & = & \delta_{\mathcal{A}_2}(C,a) \\ & = & D \\ & = & C \\ & \to & \text{Absurde}\,! \end{array}$$

Ainsi, il n'existe pas de morphisme d'automates de A_1 vers A_2

12. Comme à la question précédente, supposons qu'il existe un morphisme d'automate $\varphi: \mathcal{A}_5 \to \mathcal{A}_2$, alors (2) et (4) nous donne : $\varphi(L) = C$, $\varphi(M) = D$ et $\varphi(N) = C$ (car $N \notin F_{\mathcal{A}_5}$). (3) impose alors,

$$\begin{array}{rcl} \varphi(\delta_{\mathcal{A}_5}(N,b)) & = & \varphi(L) \\ & = & C \\ & = & \delta_{\mathcal{A}_2}(\varphi(N),b) \\ & = & \delta_{\mathcal{A}_2}(C,b) \quad (\varphi(N)=C) \\ & = & D \\ & \to & \underline{\text{Absurde}\,!} \end{array}$$

Ainsi, il n'existe pas de morphisme d'automates de A_5 vers A_2

3.2 Propriétés des morphismes d'automates

13. Soit \mathcal{A}, \mathcal{B} deux automates. Supposons qu'il existe un morphisme d'automates $\varphi : \mathcal{A} \to \mathcal{B}$. Notons $\mathcal{P}(n)$ le prédicat : « pour tout $q \in Q_{\mathcal{A}}$ et pour tout mot m de taille $n, \varphi(\delta_{\mathcal{A}}^*(q, m)) = \delta_{\mathcal{B}}^*(\varphi(q), m)$ ». Montrons par récurrence simple, que pour tout $n \in \mathbb{N}, \mathcal{P}(n)$.

Initialisation: Si n=0, alors $m(=\varepsilon)$ est le mot vide, alors pour tout état q, $\delta_{\mathcal{A}}^*(q,\varepsilon)=q$ et $\delta_{\mathcal{B}}^*(\varphi(q),\varepsilon)=\varphi(q)$ donc $\varphi(\delta_{\mathcal{A}}^*(q,\varepsilon))=\varphi(q)=\delta_{\mathcal{B}}^*(\varphi(q),\varepsilon)$.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$, montrons $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$,

Soit $q \in Q_A$ un état quelconque et m un mot de taille n+1, on peut alors noter $m = \sigma m_r$ où m_r est un mot de taille n. Ainsi,

$$\varphi(\delta_{\mathcal{A}}^{*}(q,m)) = \varphi(\delta_{\mathcal{A}}^{*}(\delta_{\mathcal{A}}(q,\sigma),m_{r})) \text{ par définition de } \delta_{\mathcal{A}}^{*}$$

$$= \delta_{\mathcal{B}}^{*}(\varphi(\delta_{\mathcal{A}}(q,\sigma)),m_{r}) \text{ par l'hypothèse de récurrence}$$

$$= \delta_{\mathcal{B}}^{*}(\delta_{\mathcal{B}}(\varphi(q),\sigma),m_{r}) \text{ par la propriété (3) d'un morphisme d'automates}$$

$$= \delta_{\mathcal{B}}^{*}(\varphi(q),m) \text{ par définition de } \delta_{\mathcal{B}}^{*}$$

Donc $\forall n \in \mathbb{N}$, $\mathcal{P}(n)$ est vérifié. Ainsi, si $m \in L(\mathcal{A})$, alors $\delta_{\mathcal{A}}^*(i_{\mathcal{A}}, m) \in F_{\mathcal{A}}$, et donc $\varphi(\delta_{\mathcal{A}}^*(i_{\mathcal{A}}, m)) = \delta_{\mathcal{B}}^*(\varphi(i_{\mathcal{A}}), m) = \delta_{\mathcal{B}}^*(i_{\mathcal{B}}, m) \in F_{\mathcal{B}}$ d'après ce que l'on vient de montrer, (2) et (4). Donc $\delta_{\mathcal{B}}^*(i_{\mathcal{B}}, m) \in F_{\mathcal{B}}$, et par conséquent $m \in L(\mathcal{B})$. D'où le résultat .

14. Soit \mathcal{A}, \mathcal{B} deux automates **finies**, tels que $|Q_{\mathcal{A}}| = |Q_{\mathcal{B}}|$. Supposons qu'il existe un mortphisme d'automates $\varphi : \mathcal{A} \to \mathcal{B}$, alors φ est surjective par définition. Or comme $|Q_{\mathcal{A}}| = |Q_{\mathcal{B}}|$, φ surjective $\Leftrightarrow \varphi$ bijective. Donc φ est nécessairement bijective.

De plus:

- φ^{-1} est bijective donc surjective (1)
- $-\varphi^{-1}(i_{\mathcal{B}}) = \varphi^{-1}(\varphi(i_{\mathcal{B}})) = i_{\mathcal{A}} (2)$
- Soit $q \in F_{\mathcal{B}}$, d'après la définition de φ , $\forall \sigma \in \{a, b\}$, $\varphi(\delta_{\mathcal{A}}(\varphi^{-1}(q), \sigma)) = \delta_{\mathcal{B}}(q, \sigma)$, et donc en appliquant φ^{-1} à l'égalité :
 - $\forall q \in Q_{\mathcal{B}}, \forall \sigma \in \{a, b\}, \varphi^{-1}(\delta_{\mathcal{B}}(q, \sigma)) = \delta_{\mathcal{A}}(\varphi^{-1}(q), \sigma)$ (3)
- $\forall q \in Q_{\mathcal{B}}$, (encore une fois d'après la définition de φ),

$$\varphi^{-1}(q) \in F_{\mathcal{A}} \iff \varphi(\varphi^{-1}(q)) \in F_{\mathcal{B}}$$

 $\iff q \in F_{\mathcal{B}}(4)$

Donc φ^{-1} est bien un morphisme d'automates.

- 15. Soit $\mathcal{A}, \mathcal{B}, \mathcal{C}$ trois automates et $\varphi : \mathcal{B} \to \mathcal{C}, \psi : \mathcal{A} \to \mathcal{B}$ deux morphismes d'automates.
 - φ et ψ surjectives donc $\varphi \circ \psi$ est surjective (1)
 - $(\varphi \circ \psi)(i_{\mathcal{A}}) = \varphi(i_{\mathcal{B}}) = i_{\mathcal{C}} (2)$
 - $\forall q \in Q_{\mathcal{A}}, \forall \sigma \in \{a, b\}, (\varphi \circ \psi)(\delta_{\mathcal{A}}(q, \sigma)) = \varphi(\delta_{\mathcal{B}}(\psi(q), \sigma)) = \delta_{\mathcal{A}}((\varphi \circ \psi)(q), \sigma)$ (3)
 - $\forall q \in Q_{\mathcal{A}}, \ q \in F_{\mathcal{A}} \Longleftrightarrow \psi(q) \in F_{\mathcal{B}} \Longleftrightarrow (\varphi \circ \psi)(q) \in F_{\mathcal{C}}$ (4)

Donc $\varphi \circ \psi : \mathcal{A} \to \mathcal{C}$ est un morphisme d'automates, d'où le résultat

3.3 Existence de morphismes d'automates entre automates accessibles

16. Soit \mathcal{A}, \mathcal{B} deux automates **accessibles**, soit $\varphi : \mathcal{A} \to \mathcal{B}$ une application verifiant les propriétés (2), (3) et (4). Le résulat montré par récurrence à la question 13. est toujours valable puisque les seuls hypothèses utilisées ((2), (3) et (4)) sont vérfiées.

Soit $q \in Q_{\mathcal{B}}$, comme q est accesible, il existe $m \in L(\mathcal{B})$ tel que :

```
\delta_{\mathcal{B}}^{*}(i_{\mathcal{B}}, m) = q 

= \delta_{\mathcal{B}}^{*}(\varphi(i_{\mathcal{A}}), m) \text{ d'après (2)} 

= \varphi(\delta_{\mathcal{A}}^{*}(i_{\mathcal{A}}, m)) \text{ d'après la question 13.}
```

Or, comme $\delta_{\mathcal{A}}^*(i_{\mathcal{A}}, m) \in Q_{\mathcal{A}}$, alors il existe $q' \in Q_{\mathcal{A}}$ tel que $\varphi(q') = q$ donc φ est surjective, d'où (automates accessibles) \wedge (2) \wedge (3) \wedge (4) \Longrightarrow (1)

```
17.
       let existe_morphismes aut1 aut2 =
           let n1, delta1, f1 = aut1 in
           let n2, delta2, f2 = aut2 in
           let def = ref true in (*variable indiquant si un morphisme existe ou non*)
           let visited = Array.make n1 false in
           let morphisme = Array.make n1 (-1) in
           let construire etat1 etat2 = (*fonction qui construit le morphisme*)
               if morphisme.(etat1) <> 1 (*si phi(q) ne s'est pas encore vu etre associe
                  une image, on la definit*)
                   then begin
                       if ( f1.(etat1) = f2.(etat2) ) || ( (not f1.(etat1)) = (not
                        \rightarrow f2.(etat2)) ) (*test de la condition (4)*)
                       then morphisme.(etat1) <- etat2 (*si (4) est respectee, alors on
                        \rightarrow peut definir phi(q)*)
                        else def := false (*sinon il n'existe pas de morphisme*)
               else if morphisme.(etat1) <> etat2 (*si phi(q) est deja defini, mais que la
                   condition (3) n'est pas respectee...*)
                    then def := false (*... alors il n'existe pas de morphisme*)
           let rec aux etat1 = (*fonction qui parcours l'automate afin de constuire le
            → morphisme*)
```

```
if not visited.(etat1) (*on verifie que le sommet n'a pas deja ete visite*)
    then begin
        let etat2 = morphisme.(etat1) in
        let succ1_a, succ1_b = delta1.(etat1) in (*on construit le morphisme
        → recursivement, en partant du sommet que l'on visite*)
        let succ2_a, succ2_b = delta2.(etat2) in
        visited.(etat1) <- true ;</pre>
        construire succ1_a succ2_a ; (*on definit les images de phi pour sigma
        construire succ1_b succ2_b; (*on definit les images de phi pour sigma
        \Rightarrow = b*)
        if !def then (aux succ1_a ; aux succ1_b) (*si le morphisme existe (i.e
           les etapes de construction se sont achevees), alors on continue
        → jusqu'a ce que tous les sommets soient visites*)
        end
morphisme.(0) <- 0; (*initialisation de la constuction avec la condition (2)*)
aux 0 ; (*début du parcours*)
!def , morphisme ;;
```

18.

Partie accessible de $A_3 \times A_4$

```
19.
       let produit aut1 aut2 =
            let n1, delta1, f1 = aut1 in
            let n2, delta2, f2 = aut2 in
            let n = n1 * n2 in
            let f = Array.make n false in
            let delta = Array.make n (0, 0) in
            let prod_etats n x1 x2 = (*fonction auxiliaire pour calculer delta d'un produit
            \leftrightarrow d'automates*)
            match x1, x2 with
            |(a, b), (c, d) -> n*a + c, n*b + d in
            for i = 0 to n1 - 1 do
                for j = 0 to n2 - 1 do
                     {\tt begin}
                     if f1.(i) && f2.(j) then
                     f.(n2 * i + j) < - true ;
                     {\tt delta.(n2*i+j)} \mathrel{<-} {\tt prod\_etats~n2~delta1.(i)~delta2.(j)} \ ;
                     end
                done; done;
            partie_accessible (n, delta, f) ;;
```

20. Soit $\mathcal{A}, \mathcal{A}'$ deux automates.

Notons $\mathcal{P}(n)$ le prédicat : « pour tout état $(q, q') \in Q_{\mathcal{A}} \times Q_{\mathcal{A}'}$ et pour tout mot m de taille n, $\delta^*_{\mathcal{A} \times \mathcal{A}'}((q, q'), m) = (\delta^*_{\mathcal{A}}(q, m), \delta^*_{\mathcal{A}'}(q', m))$ ». Montrons par récurrence simple, que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$.

 $\underline{\text{Initialisation}}: \text{Si } n=0, \text{ alors } m(=\varepsilon) \text{ est le mot vide, alors pour tout \'etat } (q,q'), \, \delta^*_{\mathcal{A}\times\mathcal{A}'}((q,q'),\varepsilon) = (q,q')$ Or $\delta_{\mathcal{A}}^*(q,\varepsilon) = q$ et $\delta_{\mathcal{A}'}^*(q',\varepsilon) = q'$ donc $\delta_{\mathcal{A}\times\mathcal{A}'}^*((q,q'),\varepsilon) = (q,q') = (\delta_{\mathcal{A}}^*(q,\varepsilon),\delta_{\mathcal{A}'}^*(q',\varepsilon))$

<u>Hérédité</u>: Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$, montrons $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$,

Soit $(q, q') \in Q_A \times Q_{A'}$ un état quelconque et m un mot de taille n+1, on peut alors noter $m = \sigma m_r$ où m_r est un mot de taille n. Ainsi,

$$\begin{array}{lll} \delta_{\mathcal{A}\times\mathcal{A}'}^*((q,q'),m) & = & \delta_{\mathcal{A}\times\mathcal{A}'}^*(\delta_{\mathcal{A}\times\mathcal{A}'}((q,q'),\sigma),m_r) \text{ par d\'efinition de } \delta_{\mathcal{A}\times\mathcal{A}'}^*\\ & = & \delta_{\mathcal{A}\times\mathcal{A}'}^*((\delta_{\mathcal{A}}(q,\sigma),\delta_{\mathcal{A}'}(q',\sigma)),m_r) \text{ par par d\'efinition de } \delta_{\mathcal{A}\times\mathcal{A}'}\\ & = & (\delta_{\mathcal{A}}^*(\delta_{\mathcal{A}}(q,\sigma),m_r),\delta_{\mathcal{A}'}^*(\delta_{\mathcal{A}'}(q',\sigma),m_r)) \text{ d'après l'hypothèse de r\'ecurrence}\\ & = & (\delta_{\mathcal{A}}^*(q,m),\delta_{\mathcal{A}'}^*(q',m)) \text{ par d\'efinition de } \delta_{\mathcal{A}}^* \text{ et } \delta_{\mathcal{A}'}^* \end{array}$$

Donc $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vérifié. Ainsi, si $(q, q') \in Q_{\mathcal{A}} \times Q_{\mathcal{A}'}$ est un état accessible, alors il existe m tel que $(q, q') = \delta_{\mathcal{A} \times \mathcal{A}'}^*((i_{\mathcal{A}}, i_{\mathcal{A}'}), m) = (\delta_{\mathcal{A}}^*(i_{\mathcal{A}}, m), \delta_{\mathcal{A}'}^*(i_{\mathcal{A}'}, m)).$

Or comme $L(\mathcal{A}) = L(\mathcal{A}'), m \in L(\mathcal{A}) \iff m \in L(\mathcal{A}').$ D'où $q \in F_{\mathcal{A}} \iff q' \in F_{\mathcal{A}'}$

21. Soit $\mathcal{A}, \mathcal{A}'$ deux automates accessibles qui acceptent le même langage. On considère \mathcal{B} la partie accessible de $\mathcal{A} \times \mathcal{A}'$.

Montrons qu'il existe un morphisme d'automates $\varphi: \mathcal{B} - > \mathcal{A}$:

Considérons $\varphi: \begin{array}{ccc} \mathcal{B} & \to & \mathcal{A} \\ (q,q') & \mapsto & q \end{array}$. D'après la question 16, comme \mathcal{B} et \mathcal{A} sont deux automates accessibles, il suffit de montrer que φ vérifie (2), (3) et (4):

- Comme $i_{\mathcal{B}} = (i_{\mathcal{A}}, i_{\mathcal{A}'})$, on a directement $\varphi(i_{\mathcal{B}}) = i_{\mathcal{A}}$, ce qui montre que φ vérifie (2)
- Si $(q,q') \in Q_{\mathcal{B}}$, alors pour tout $\sigma \in \{a,b\}$, on a à la fois $\varphi(q,q') = q$ par définition de φ et $\varphi(\delta_{\mathcal{B}}((q,q'),\sigma)) = \varphi(\delta_{\mathcal{A}}(q,\sigma),\delta_{\mathcal{A}'}(q',\sigma)) = \delta_{\mathcal{A}}(q,\sigma).$ Donc φ vérifie (3).
- Enfin, soit $(q, q') \in Q_{\mathcal{B}}$:
 - (\Rightarrow) Si $(q, q') \in F_{\mathcal{B}}$, par définition de \mathcal{B} , $\varphi(q, q') = q \in F_{\mathcal{A}}$;
 - (\Leftarrow) Si $\varphi(q,q')=q\in F_{\mathcal{A}}$, alors d'après la question 20, $q'\in F_{\mathcal{A}'}$, et donc $(q,q')\in F_{\mathcal{B}}$;

Donc φ vérifie également (4)

Ainsi, on démontre bien l'existence d'un morphisme d'automates entre \mathcal{B} et \mathcal{A}

La symétrie du problème entre \mathcal{A} et \mathcal{A}' permet de conclure.

Diagramme d'automates

- 22. Montrons que \equiv définit bien une relation d'équivalence :
 - Si $p \in Q_{\mathcal{B}}$ alors il existe une suite de longueur 0+1 constituée du terme $p=q_0=p$ donc $p\equiv p$. Ainsi \equiv est réfléxive.
 - Soit $(p,q) \in Q^2_{\mathcal{B}}$ tel que $p \equiv q$, par définition, il existe une suite de longueur $k+1 \in \mathbb{N}^*$ constituée des termes $p=q_0,q_1,...,q_k=q$, alors en considérant la suite constituée des termes $q=q_0,q_1,...,q_k=q$ $p_0, p_1, ..., p_{k-1}, p_k = p$, où $\forall 0 \le j \le k, p_j = q_{k-j}$. Ainsi on a:

$$\forall \ 0 \leq j < k, \ \varphi(p_{j+1}) = \varphi(q_{\underbrace{k-j-1}}) = \varphi(q_{k-j}) = \varphi(p_j)$$
 ou
$$\psi(p_{j+1}) = \psi(q_{\underbrace{k-j-1}}) = \psi(q_{k-j}) = \psi(p_j)$$

Soit, $\forall 0 \le j < k, \ \varphi(p_j) = \varphi(p_{j+1}) \text{ ou } \psi(p_j) = \psi(p_{j+1})$ Ce qui montre $p \equiv q \implies q \equiv p$, et donc que \equiv est symétrique.

— Soit $(p,q,r) \in Q^3_{\mathcal{B}}$ tel que $p \equiv q$ et $q \equiv r$, alors il existe deux suites, de taille respective l+1 et m+1 $((l,m) \in \mathbb{N}^2)$, constituées des termes $p = q_0, q_1, ..., q_l = q$ et $q = r_0, r_1, ..., r_m = r$. Alors en considérant la suite de taille k+1 (où $k=l+m\in\mathbb{N}$) constituée des termes $p = q_0, q_1, ..., q_l = r_0, r_1, ..., r_m = r$, on a clairement :

$$\forall \ 0 \leq j < k, \ \varphi(p_j) = \varphi(p_{j+1}) \text{ ou } \psi(p_j) = \psi(p_{j+1}) \text{ (m\^{e}me lorsque } j = l \text{ puisque } \varphi(q_l) = \varphi(r_0) = \varphi(r_1))$$

Donc $p \equiv q \land q \equiv r \implies p \equiv r$, ce qui conclut sur la transitivité de \equiv

On a ainsi montré que \equiv est une relation d'équivalence

23. Soit $(p,q) \in Q_{\mathcal{B}}^2$ tel que $p \equiv q$. Soit $p = q_0, q_1, ..., q_k = q$ la suite associée à \equiv . Soit $\sigma \in \{a,b\}, \ j \in \llbracket 0; k \rrbracket$. Si $\varphi(q_j) = \varphi(q_{j+1})$, il découle :

$$\begin{split} \varphi(\delta_{\mathcal{B}}(q_{j},\sigma)) &= \delta_{\mathcal{A}}(\varphi(q_{j}),\sigma) & \text{par propriété de morphisme de } \varphi \\ &= \delta_{\mathcal{A}}(\varphi(q_{j+1}),\sigma) \\ &= \varphi(\delta_{\mathcal{B}}(q_{j+1},\sigma)) & \text{à nouveau par propriété de } \varphi \end{split}$$

Le résultat est clairement similaire avec ψ , si on suppose $\psi(q_j) = \psi(q_{j+1})$. Ainsi en définissant la suite $\Delta_0, \Delta_1, ..., \Delta_k$, avec $\forall j \in [0; k], \Delta_j = \delta_{\mathcal{B}}(q_j, \sigma)$, alors

$$\forall 0 \leq j < k, \ \varphi(\Delta_j) = \varphi(\Delta_{j+1}) \text{ ou } \psi(\Delta_j) = \psi(\Delta_{j+1}) \text{ (d'après ce qu'on vient de montrer)}.$$

D'où le résultat : $\boxed{\delta_{\mathcal{B}}(p,\sigma) \equiv \delta_{\mathcal{B}}(q,\sigma)}$.

24. Soit $(p,q) \in Q^2_{\mathcal{B}}$ tel que $p \equiv q$. Par symétrie de la relation \equiv , montrer que $p \in F_{\mathcal{B}} \implies q \in F_{\mathcal{B}}$ suffira à montrer l'équivalence.

Soit $p=q_0,q_1,...,q_k=q$ la suite associée à \equiv .

Soit $j \in [0; k[$. Si $\varphi(q_j) = \varphi(q_{j+1})$, montrons que $q_j \in F_{\mathcal{B}} \implies q_{j+1} \in F_{\mathcal{B}}$:

$$q_j \in F_{\mathcal{B}} \implies \varphi(q_j) = \varphi(q_{j+1}) \in F_{\mathcal{A}} \implies q_{j+1} \in F_{\mathcal{B}} \text{ (par propriété de morphisme de } \varphi)$$

Le résultat est clairement similaire avec ψ , si on suppose $\psi(q_j) = \psi(q_{j+1})$.

Et donc, par une récurrence immédiate, $p \in F_{\mathcal{B}} \implies q \in F_{\mathcal{B}}$ et ainsi $p \in F_{\mathcal{B}} \iff q \in F_{\mathcal{B}}$

25.