PRINTABLE VERSION

Quiz 12

Question 1

The graph of f'(x) ,the derivative of f(x), is shown below. Find the critical number(s) of f(x).

a)
$$0 x = -5$$

$$\mathbf{b)} \quad \bigcirc x = 0$$

c)
$$\bigcirc x = 5$$

d)
$$\bigcirc x = \{-5, 5\}$$

e)
$$\bigcirc x = \{-5, 0, 5\}$$

Suppose that c=-1 is a critical number for a function f. Determine if f(c) is a local maximum, local minimum or neither if the graph of f'(x) is shown below.

- a) Neither
- **b)** Local Minimum
- c) Local Maximum

Question 3

The graph of f^\prime is shown. Find the intervals on which f decreases.

- a) $\bigcirc (-\infty, \infty)$
- b) $\bigcirc (-\infty,0)$
- c) $\bigcirc f$ is not decreasing anywhere.
- d) \bigcirc $(-\infty, -3)$ and $(3, \infty)$
- e) \bigcirc $(0,\infty)$

The graph of f^\prime is shown. Find the intervals on which f increases.

- a) $\bigcirc (-\infty, \infty)$
- b) $\bigcirc(-\infty,2)$
- c) $\bigcirc f$ is not increasing anywhere.
- d) $\bigcirc (0\infty)$
- e) \bigcirc $(2,\infty)$

Find the critical numbers of $f(x)=4x^3+12x+1$ and classify all local extreme values.

a) Critical no. 0; local max f(0) = 1.

- **b)** No critical numbers, no local extreme values.
- c) Critical nos. ± 1 ; local max f(-1) = -15; local min f(1) = 17.
- **d)** Critical no. 0; local min f(0) = 1.
- e) Critical nos. ± 1 ; local max f(1)=17; local min f(-1)=-15.

Find the critical numbers of $f(x)=\dfrac{5-4x}{2+x}$ and classify all local extreme values.

- a) Critical nos. -2, $\frac{5}{4}$; local min f(-2)=0; local max $f\left(\frac{5}{4}\right)=0$.
- **b)** Critical no. 0; local max f(0) = 0.
- c) Critical no. $\frac{5}{4}$; local min $f\bigg(\frac{5}{4}\bigg)=0$.
- **d)** No critical numbers, no extreme values.
- **e)** Critical nos. 0, $\frac{5}{4}$; local min $f\bigg(\frac{5}{4}\bigg)=0$; local max $f(0)=\frac{5}{2}$.

Question 7

Find the critical numbers of $f(x)=x^2-12x+7$ and classify all extreme values given $0\leq x\leq 8$.

a) Critical no. 0; local max f(0) = 7.

- **b)** No critical numbers, no extreme values.
- c) Critical nos. 0 and 6; local and absolute min f(6)=-29; absolute max f(8)=-25.
- **d)** Oritical no. 6 and 8; local max f(8) = f(6) = -25.
- **e)** Critical no. 6; absolute max f(0) = 7; local and absolute min f(6) = -29.

Find the critical numbers of $f(x)=rac{2\,x}{x^2+16}$ and classify the extreme values given: $-5\leq x\leq 3$.

- a) No critical numbers, no extreme values.
- **b)** Critical nos. 4 and -4; local and absolute min f(-4); local and absolute max f(4).
- c) Critical no. -4; local and absolute min f(-4); absolute max f(3).
- **d)** Critical no. -4; absolute min f(3); local min f(-4); absolute max f(0).
- **e)** Critical no. 0; local and absolute max f(0).

Question 9

Find the critical numbers of $f(x)=5\sqrt{3}(\cos)\,x+5\sin^2x$ and classify the extreme values given: $0\leq x\leq\pi$.

a) Critical nos. 0 and π ; local and absolute min $f(0) = 5\sqrt{3}$; local and

absolute max $f(\pi) = -5\sqrt{3}$.

- **b)** Critical nos. 0 and $\frac{\pi}{6}$; local and absolute max $f\!\left(\frac{\pi}{6}\right) = \!\!\frac{35}{4}$
- c) No critical numbers, no extreme values.
- **d)** Critical no. $\frac{\pi}{6}$; local max $f\!\left(\frac{\pi}{6}\right) = \frac{35}{4}$
- e) Critical no. $\frac{\pi}{6}$; absolute min $f(\pi)=-5\sqrt{3}$; local and absolute max $f\left(\frac{\pi}{6}\right)=\frac{35}{4}$

Question 10

Read Carefully! The graph of f' (the derivative of f) is shown below. Classify the smallest critical number for f.

- a) local maximum
- **b)** local minimum
- c) neither

Read Carefully! The graph of f' (the derivative of f) is shown below. Classify the smallest critical number for f.

- a) local maximum
- **b)** neither
- c) local minimum

8 of 8