Lecture 19 (Capacitance and Capacitors)

Physics 161-01 Spring 2012
Douglas Fields

Capacitors

 A capacitor is any object or system of objects which can hold a charge separated from an opposite charge.

Capacitance

 The capacitance is a property of the *system* (not the charge that is put on the system) that relates the amount of charge to the potential difference between the objects.

 $C = \frac{\text{Charge on object}}{\text{Potential of object relative to place where opposite charge resides}}$

Capacitance

- Remember, the capacitance is a property of the *system* (not the charge that is put on the system) that relates the amount of charge to the potential difference between the objects.
- So, if you double the charge, the potential will also double.
- How is the capacitance affected?

 $C = \frac{\text{Charge on object}}{\text{Potential of object relative to place where opposite charge resides}}$

$$C \equiv \frac{Q}{V} = \frac{2Q}{2V}$$

The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to -2Q, while keeping the conductors in the same positions.

As a result of this change, the capacitance *C* of the two conductors

- A. becomes 4 times great.
- B. B. becomes twice as great.
- C. remains the same.
- D. becomes 1/2 as great.
- E. becomes 1/4 as great.

The two conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to -2Q, while keeping the conductors in the same positions.

As a result of this change, the capacitance *C* of the two conductors

B. B. becomes twice as great.

- C. remains the same.
- D. becomes 1/2 as great.
- E. becomes 1/4 as great.

Parallel Plate Capacitor

- Steps to find capacitance:
 - Find the potential given a certain amount of charge.
 - Do this by first finding the electric field, then integrating the field to find the potential.
 - Then just divide the charge by the potential.

$$C = \frac{Q}{V} = \frac{\sigma A}{Ed} = \frac{\sigma A}{\frac{\sigma}{\varepsilon_0}} = \frac{\varepsilon_0 A}{d}$$

(a) Arrangement of the capacitor plates

(b) Side view of the electric field \vec{E}

@ 2012 Pearson Education, Inc.

You reposition the two plates of a capacitor so that the capacitance doubles. There is vacuum between the plates.

If the charges +Q and -Q on the two plates are kept constant in this process, what happens to the potential difference V_{ab} between the two plates?

- A. V_{ab} becomes 4 times as great.
- B. V_{ab} becomes twice as great.
- C. V_{ab} remains the same.
- D. V_{ab} becomes 1/2 as great.
- E. V_{ab} becomes 1/4 as great.

You reposition the two plates of a capacitor so that the capacitance doubles. There is vacuum between the plates.

If the charges +Q and -Q on the two plates are kept constant in this process, what happens to the potential difference V_{ab} between the two plates?

- A. V_{ab} becomes 4 times as great.
- B. V_{ab} becomes twice as great.
- C. V_{ab} remains the same. D. V_{ab} becomes 1/2 as great.
- E. V_{ab} becomes 1/4 as great.

Spherical Capacitor

- Steps to find capacitance:
 - Find the potential given a certain amount of charge.
 - Do this by first finding the electric field, then integrating the field to find the potential.

Then just divide the charge

by the potential.

$$C = \frac{Q}{V}$$

Cylindrical Capacitor

- Steps to find capacitance:
 - Find the potential given a certain amount of charge.
 - Do this by first finding the electric field, then integrating the field to find the potential.
 - Then just divide the charge by the potential.

$$C = \frac{Q}{V}$$

Capacitors in Circuits

Capacitors are used in circuits extensively.

$$Q = CV$$

Capacitors in Series

- Capacitors in series:
 - Have the same charge
 - Potential difference across them add

$$V_1 + V_2 = V$$

$$Q_1 = Q_2 = Q$$

(a) Two capacitors in series

Capacitors in series:

- The capacitors have the same charge Q.
- Their potential differences add:

$$V_{ac} + V_{cb} = V_{ab}.$$

© 2012 Pearson Education, Inc.

Capacitors in Series

 If you wanted to replace these capacitors with just one equivalent capacitor:

$$C_{\text{eq}} = \frac{Q}{V} = \frac{Q}{V_1 + V_2} \Rightarrow$$

$$\frac{1}{C_{\text{eq}}} = \frac{V_1 + V_2}{Q} = \frac{V_1}{Q} + \frac{V_2}{Q} = \frac{1}{C_1} + \frac{1}{C_2} \Rightarrow$$

(b) The equivalent single capacitor

Capacitor in Parallel

- Capacitors in parallel:
 - Have the same potential
 - Charge depends on capacitance

$$V_1 = V_2 = V$$

$$Q_1 = C_1 V$$

$$Q_2 = C_2 V$$

(a) Two capacitors in parallel

Capacitors in parallel:

- The capacitors have the same potential *V*.
- The charge on each capacitor depends on its capacitance: $Q_1 = C_1 V$, $Q_2 = C_2 V$.

Capacitor in Parallel

 If you wanted to replace these capacitors with just one equivalent capacitor:

$$\begin{split} C_{\text{eq}} &= \frac{Q}{V} = \frac{Q_1 + Q_2}{V} \Longrightarrow \\ C_{\text{eq}} &= \frac{Q_1}{V} + \frac{Q_2}{V} = C_1 + C_2 \Longrightarrow \\ C_{\text{eq}} &= C_1 + C_2 \end{split}$$

(b) The equivalent single capacitor

