Leveraging Content Connectivity and Location Awareness for Adaptive Forwarding in NDNbased Mobile Ad Hoc Networks

Muktadir Chowdhury¹, Junaid Ahmed Khan², Lan Wang¹

¹University of Memphis, ²Western Washington University

7th ACM Conference on Information-Centric Networking (ICN 2020)

Motivation

- Wireless networks are ubiquitous.
- Mobile Ad-Hoc Networks are useful in many scenarios.
 - Vehicle-to-Vehicle Communication.
 - Military Missions.
 - Emergency Response.
- Data sharing enables vehicles to acquire information not in sensors' range.
 - Avoid collision
 - Know road information and change route accordingly.

NDN over MANET

- NDN has unique advantages over TCP/IP for wireless mobile communication.
 - Name-based Forwarding [1]
 - Pervasive caching
 - Network-Layer Security [2, 3]
- Develop a forwarding strategy for NDNbased MANET that can make smart forwarding decisions with minimal or no routing information.

^[1] L. Wang, R. Wakikawa, R. Kuntz, R. Vuyyuru, L. Zhang, "Data Naming in Vehicle-to-Vehicle Communications", IEEE INFOCOM Workshop on Emerging Design Choices in Name-Oriented Networking, 2012

 ^[2] M. Chowdhury, A. Gawande, L. Wang, "Secure Information Sharing among Autonomous Vehicles," ACM IoTDI, April 2017
 [3] M. Chowdhury, A. Gawande, L. Wang, "Anonymous Authentication and Pseudonym-Renewal for VANET in NDN," ACM ICN, poster Sept. 2017

Forwarding in NDN-based MANET

- VANET via Named Data Networking (VNDN) [1]
 - Nodes farther from consumer will wait less time before forwarding.
- Navigo [2]
 - Nodes closer to the Data location will be selected for forwarding.
- VNDN and NAVIGO are geo-location based routing.
 - Need to resort to broadcast when location information is not available.
- STRIVE [3]
 - Centrality Score → Interest satisfaction rate of a vehicle → A measure of the connectivity of a vehicle.
 - Topology based: Vehicular Network is always changing → Frequently update the table.
 - Generalized score.

^{3.} J. Khan and Y. Ghamri-Doudane. "Strive: Socially-aware three-tier routing in information-centric vehicular environment." IEEE GLOBECOM, 2016.

^{1.} G. Grassi, D. Pesavento, G. Pau, R. Vuyyuru, R. Wakikawa, and L. Zhang."VANET via named data networking." IEEE INFOCOM WKSHPS, 2014.

^{2.} G. Grassi, D. Pesavento, G. Pau, and L. Zhang, "Navigo: Interest forwarding by geolocations in vehicular named data networking." IEEE WoWMoM, 2015

Content Connectivity and Location-Aware Forwarding (CCLF) Design

- Tableless timer-based forwarding.
 - Each node takes forwarding decision independently.
- Leverage Geo-Location in forwarding whenever available.
 - Not mandatory in Forwarding.
- Uses Centrality Score in Forwarding.
 - Interest satisfaction ratio.
 - Prefix-wise Centrality Score.
- Node-Density Aware Interest/ Data suppression mechanism to encounter Broadcast storm.

How CCLF Works - Overview

Prefix-based Content Connectivity Score

- Each node in the C-L tree has a nameprefix and it's corresponding score and location.
- The score represents how successful a node has been in getting data under a name prefix.
- Score of a prefix j: $CCS_j = \frac{D_j + \sum_{i \in Desc(j)} D_i}{I_j + \sum_{i \in Desc(j)} I_i}$
- Periodically update Smoothed Score $\widehat{CCS_{i,N}} = \alpha CCS_{i,N} + (1-\alpha) \widehat{CCS_{i,N-1}}$

C-L Tree

Wait-time Calculation: Location Score

 A node waits for FW-Delay timer before forwarding an Interest. The timer is calculated using Location Score and Centrality Score.

Wait-time Calculation: Weight of a Node

The weight of a node for a prefix:

FW-Delay timer of the node for the prefix :

$$t = \begin{cases} min(\frac{1}{w}, T), & \text{if } w > 0 \\ T, & \text{if } w = 0 \end{cases}$$
 At the beginning, when a node doesn't have Location Information or Centrality Score

T is an upper bound on t. The forwarding timer is set to a random value uniformly distributed between 0.5t μ s and 1.5t μ s

Density Aware Packet Suppression

- Receives same Interest before timer expires
 - → Calculates suppression probability

$$p = \min(K * n, 1)$$

K = Suppression Constant, n = Number of Neighbors

- Higher the number of neighbors, higher probability of suppression.
- We have run experiments to find a suitable value for K in suburban and urban environment.

F2 will have a higher probability to cancel forwarding and suppress a received packet.

Ad-Hoc Link Adaptation Layer (ALAL)

 Enhance reliability of packet forwarding in Mobile Ad-hoc Network.

- Roles of ALAL
 - 1. Keep track of number of the neighbors in Tx range.
 - 2. Queue outgoing packet when no neighbors around.
 - 3. Get location information from GPS and add Location header.

Obtaining Geo-location and Prefix Information

- Add Location Header in NDNLP^[1] packet.
 - Previous node's location
 - Data location
- Interest can carry the Location header.
- Data can carry Data-Location field and Prefix Announcement header.

 C-L tree will be populated by the Prefix Announcement and Location in the Data packet

How does CCLF address existing schemes' limitations?

- Topology-based proactive schemes:
 - High overhead ← CCLF has no routing messages
- Topology-based reactive schemes:
 - High delay CCLF uses name-prefix based connectivity score to avoid initial learning delay.
- Pure geo-location based schemes:
 - Local optimum and broadcast CCLF uses connectivity score to get around local optimum and avoid broadcast storm.

Implementation and Evaluation

Forwarding Strategy is implemented in ndn-cxx library and

NFD.

- Added NDNLP headers in ndn-cxx.
- Forwarding Strategy in NFD.
- AdHoc Link Adaptation Layer in Transport Service
- Simulation using ndnSIM.
 - Traffic Trace and Map: SUMO^[1]
- Metric
 - Interest Satisfaction Ratio
 - Data Fetching Delay
 - Message Overhead

[1] Krajzewicz, Daniel, et al. "SUMO (Simulation of Urban MObility)-an open-source traffic simulation." *Proceedings of the 4th middle East Symposium on Simulation and Modelling (MESM20002)*. 2002.

Simulation Parameters (Vehicular Topology)

Communication Parameter Setting

Parameters	Value		
Propagation Loss Model	Range Propagation		
WiFi Transmission Range	100 m		
Wifi Standard	802.11p		
Physical Mode	OfdmRate6MbpsBW10 MHz		
Propagation Delay Model	Constant Speed		
Data Packet Payload Size	1200 B		

Traffic Parameter Setting

Parameters	Value	
Road Topology	3x3 Grid	
Area	300x300 m ²	
Speed	7-13 m/s	

Determining the value of K

Suppression Constant, K = 0.04.

Traffic Condition	No. of Vehicles/Mile / Lane	Median No. of Neighbors (2 Lane)	Median No. of Neighbors (Grid)	Duplicate Suppression Probability (2 Lane)	Duplicate Suppression Probability (Grid)
Sparse	1-12	1-4	1-11	4%-16%	4%-44%
Medium	13-30	5-10	12-26	20%-40%	48%-100%
Dense	31-40	10-15	26-34	40%-60%	100%

• Performance of CCLF for various value of K in Grid topology.

Results: CCLF (With Geo Location)

- One consumer and One producer.
- Consumer sending one interest/second.
- Comparing CCLF with other geolocation-based strategies: VNDN and NAVIGO.

Results: CCLF (W/O Geo Location)

- One consumer and One producer.
- Consumer sending one interest/second.
- Comparing CCLF with a centrality score- to based strategy: STRIVE.

Conclusion

- CCLF incurs lower protocol overhead ← Less Flooding + Densityaware packet suppression + Packet queuing at ALAL.
- CCLF incurs lower delay because Name-prefix based connectivity helps:
 - To avoid initial learning delay.
 - To find better connected path to data producer.
- Future Works
 - Study different ways to calculate forwarding timer and suppression probability.
 - Offer guidelines on setting CCLF parameters.

