Dataset/Model	GCN	GIN	GAT	GraphSAGE
IMDB-BINARY	0.558/0.573/ <u>0.830</u> / 0.833	0.563/0.525/ <u>0.788</u> / 0.825	0.612/0.643/ <u>0.817</u> / 0.825	0.582/0.550/ 0.822 / <u>0.813</u>
IMDB-MULTI	0.408/0.414/ <u>0.417</u> / 0.537	<u>0.357</u> / 0.363 /0.318/0.327	0.354/0.400/ <u>0.426</u> / 0.524	0.372/ <u>0.423</u> /0.388/ 0.497
MSRC_21	0.614/0.746/ <u>0.798</u> / 0.860	0.412/0.798/ <u>0.827</u> / 0.842	0.497/ <u>0.819</u> /0.789/ 0.833	0.418/0.743/ <u>0.789</u> / 0.813

Table 1. Additional covariant shift/GNN backbones: Graph size as covariate shift (a new type of covariate shift with additional GNN backbones). For each entry, the four numbers correspond to different data selection methods: Random/KIDD/LAVA/Ours. For ease of demonstration, we omit the GNN training on full dataset and only report the performance (mean accuracy) with 20% selected training data. The best performances are marked in **bold** and the second best performances are underlined.

Dataset/Model	GCN	GIN	GAT	GraphSAGE
IMDB-BINARY	×	×	0.662/0.813/ <u>0.835</u> / 0.858	0.738/0.797/ <u>0.835</u> / 0.855
IMDB-MULTI	×	×	0.067/0.133/ <u>0.790</u> / 0.800	0.132/0.137/ <u>0.570</u> / 0.580
MSRC_21	×	×	0.713/0.740/ <u>0.842</u> / 0.857	0.731/0.711/ <u>0.827</u> / 0.842

Table 2. Additional covariant shift/GNN backbones: Graph density as covariate shift (with additional GNN backbones). For each entry, the four numbers correspond to different data selection methods: Random/KIDD/LAVA/Ours. For ease of demonstration, we omit the GNN training on full dataset and only report the performance (mean accuracy) with 20% selected training data. The best performances are marked in **bold** and the second best performances are <u>underlined</u>. The repeated experiment settings will be marked in \times (i.e. already included in the original paper).

	Procedure / Dataset	IMDB-BINARY	IMDB-MULTI	MSRC_21
Off-line Computation	FGW Pairwise distance	7.41	9.61	18.18
	Label-informed pairwise distance	0.04	0.06	0.24
On-line Computation	GREAT algorithm (Algorithm 2)	0.28	0.52	0.11
	LAVA algorithm	0.09	0.14	0.03
GNN Training Time	GCN (w/ 10% data)	13.45	16.36	9.59
	GCN (w/ 20% data)	17.64	21.40	13.85
	GCN (w/ 50% data)	29.92	45.82	19.57

Table 3. **Empirical run-time behavior (in seconds)**. We can observe that the off-line procedures can be run comparable to a single GNN training time and the on-line procedure has a negligible runtime compared to GNN training time. In addition, we can achieve significantly better performance compared to LAVA with slight additional on-line runtime.

Dataset/Model	GCN	GIN	GAT	GraphSAGE
ogbg-molbace	0.555 /0.492/0.465/ <u>0.535</u>	0.450/ <u>0.579</u> /0.577/ 0.644	0.477/0.477/ 0.502 / <u>0.492</u>	0.522/0.496/ <u>0.544</u> / 0.629
ogbg-molbbbp	<u>0.670</u> /0.659/0.657/ 0.672	0.670/0.470/ <u>0.864</u> / 0.884	0.623/0.581/ <u>0.651</u> / 0.713	<u>0.628</u> /0.576/0.610/ 0.637
ogbg-molhiv	0.570/0.522/ 0.631 / <u>0.622</u>	0.640/0.601/ <u>0.755</u> / 0.760	0.557/0.554/ 0.708 / <u>0.644</u>	0.489/0.572/ 0.686 / <u>0.622</u>

Table 4. Additional datasets/covariant shift/GNN backbones: Graph size as covariate shift (a new type of covariate shift with additional GNN backbones). For each entry, the four numbers correspond to different data selection methods: Random/KIDD/LAVA/Ours. For ease of demonstration, we omit the GNN training on full dataset and only report the performance (mean AUCROC) with 20% selected training data. We train each model for 100 epochs. The best performances are marked in **bold** and the second best performances are underlined.

Dataset/Model	GCN	GIN	GAT	GraphSAGE
ogbg-molbace	0.529/0.511/ <u>0.541</u> / 0.585	0.622/0.631/ <u>0.655</u> / 0.672	0.472/ 0.575 /0.515/ <u>0.518</u>	0.459/ <u>0.530</u> /0.514/ 0.536
ogbg-molbbbp	<u>0.528</u> /0.453/0.503/ 0.571	0.480/0.469/ 0.675 / <u>0.644</u>	0.486/0.414/ <u>0.511</u> / 0.538	0.472/0.424/ <u>0.491</u> / 0.533
ogbg-molhiv	0.598/0.541/ 0.627 / <u>0.611</u>	0.590/0.607/ 0.746 / <u>0.728</u>	0.593/0.608/ 0.644 / <u>0.639</u>	0.602/0.579/ <u>0.635</u> / 0.638

Table 5. Additional datasets/GNN backbones: Graph density as covariate shift (with additional GNN backbones). For each entry, the four numbers correspond to different data selection methods: Random/KIDD/LAVA/Ours. For ease of demonstration, we omit the GNN training on full dataset and only report the performance (mean AUCROC) with 20% selected training data. We train each model for 100 epochs. The best performances are marked in **bold** and the second best performances are <u>underlined</u>.

Dataset/Selection Method	Top $ au$ -fraction densest	Random selection	Our method
IMDB-BINARY	0.590/0.795/ <u>0.868</u>	0.737/0.660/0.827	0.805/0.855/0.890
IMDB-MULTI	<u>0.439</u> / 0.450 /0.467	0.139/0.092/0.080	0.588 / <u>0.349</u> / 0.603
MSRC_21	0.529/0.675/ <u>0.865</u>	<u>0.576/0.702</u> /0.830	0.681/0.789/0.906

Table 6. Comparison to top- τ selection and random selection. Each entry shows accuracy from training a GCN with 10%/20%/50% of the training data. The best performances are marked in **bold** and the second best performances are <u>underlined</u>.

Type	Model	Data	IMDB-BINARY	IMDB-MULTI	MSRC_21	ogbg-molbace	ogbg-molbbbp	ogbg-molhiv
GDA	AdaGCN	Full	0.808± 0.015	0.073 ± 0.000	0.319 ± 0.032	0.641 ± 0.018	0.764 ± 0.009	0.471 ± 0.007
	GRADE	Full	0.822 ± 0.012	0.123 ± 0.061	0.804 ± 0.011	0.685 ± 0.034	$0.497 {\scriptstyle\pm0.025}$	0.567 ± 0.004
	ASN	Full	0.782 ± 0.030	0.119 ± 0.047	0.833 ± 0.033	0.650 ± 0.034	0.511 ± 0.006	0.480 ± 0.093
	UDAGCN	Full	0.807 ± 0.013	0.114 ± 0.049	0.351 ± 0.019	0.541 ± 0.034	0.634 ± 0.013	0.451 ± 0.036
	A2GNN	Full	0.795 ± 0.023	0.114 ± 0.029	0.828 ± 0.039	0.569 ± 0.049	$0.538 {\pm} 0.022$	0.623 ± 0.002
		Random 20%	0.660 ± 0.012	0.092 ± 0.032	0.702 ± 0.045	0.529 ± 0.124	0.528 ± 0.030	0.598 ± 0.003
	GCN	LAVA 20%	0.620 ± 0.000	0.092 ± 0.032	$0.819 {\pm} 0.011$	0.541 ± 0.067	0.503 ± 0.043	0.591 ± 0.030
		GENIUS 20%	0.830 ± 0.021	0.349 ± 0.323	0.797 ± 0.008	$0.585 {\pm} 0.074$	0.571 ± 0.035	0.583 ± 0.006
		Random 20%	0.710± 0.049	0.180 ± 0.005	0.801 ± 0.046	0.622 ± 0.028	0.480 ± 0.041	0.590 ± 0.033
	GIN	LAVA 20%	0.778 ± 0.045	0.170 ± 0.009	$\underline{0.851} \pm 0.012$	0.655 ± 0.067	0.644 ± 0.021	$\underline{0.638} \pm 0.012$
Vanilla		GENIUS 20%	0.832 ± 0.025	0.266 ± 0.133	0.860 ± 0.007	$\underline{0.662} \pm 0.006$	$\underline{0.665} \pm 0.053$	0.644 ± 0.017
		Random 20%	0.662 ± 0.029	0.067 ± 0.005	0.713 ± 0.008	0.472 ± 0.034	0.486 ± 0.041	0.593 ± 0.012
	GAT	LAVA 20%	0.835 ± 0.002	0.790 ± 0.002	$0.842 {\pm} 0.026$	$0.515 {\pm} 0.019$	0.511 ± 0.069	0.602 ± 0.017
		GENIUS 20%	0.858 ± 0.005	0.800 ± 0.133	$\underline{0.857} \pm 0.008$	$0.518 {\pm} 0.026$	$0.538 {\pm0.098}$	0.598 ± 0.004
		Random 20%	0.738± 0.059	0.132 ± 0.036	0.731 ± 0.027	0.459 ± 0.057	0.472 ± 0.016	0.602 ± 0.006
	GraphSAGE	LAVA 20%	0.835 ± 0.005	0.570 ± 0.292	$0.827 {\pm} 0.015$	0.514 ± 0.132	0.491 ± 0.095	0.537 ± 0.067
		GENIUS 20%	0.855 ± 0.005	$0.580 {\pm} 0.281$	0.842 ± 0.007	$0.536 {\pm} 0.062$	$0.533 {\pm} 0.037$	0.541 ± 0.014

Table 7. Performance comparison across GDA and vanilla methods for graph density shift. We use **bold**/<u>underline</u> to indicate the 1st/2nd best results. We add one GDA baseline, three more datasets and two GNN backbones. For the three OGB datasets, AUCROC is used for evaluation. Our method can achieve top-2 performance across datasets.

Figure 1. ECDF plots of graph density and size for IMDB-BINARY, IMDB-MULTI, and MSRC_21 datasets. The Blue, Orange, and Green curves represent the distributions of the training, validation, and test splits, respectively. Graphs are sorted in ascending order by the specified shift (density or size).

Figure 2. ECDF plots of graph density and size for ogbg-molbbbp, ogbg-molbace, and ogbg-molhiv datasets. The Blue, Orange, and Green curves represent the distributions of the training, validation, and test splits, respectively. Graphs are sorted in ascending order by the specified shift (density or size).