Machine Learning Dimensionality Reduction using PCA

Department of Information Technology SVKM's Dwarkadas J. Sanghvi College of Engineering, Vile Parle, Mumbai. ORCID | Scopus | Google Scholar | Google Site | Website

Outline

- Dimensionality Reduction
 - Dimensionality Reduction Techniques
 - Principal Components Analysis (Eigenvalues, Eigen vectors, Orthogonality)
 - Independent Component Analysis
 - Single Value Decomposition

Dimensionality Reduction

- Introduction
- Data Science and ML helps to solve several complex regression and classification problems.
- However, the performance of all these models depends on the input dataset.
- So, It is important to provide optimal dataset to ML models.
- Large dataset leads to increased computational demands
- Large dataset leads to overfitting.
- If we provide large dataset (with a large no. of features/columns) to ML models
 - o it gives rise to the problem of overfitting,
 - wherein the model starts getting influenced by outlier values and noise.
 - This is called the Curse of Dimensionality.

Dimensionality Reduction

- Dimensionality Reduction is a statistical/ML-based technique
- It helps to reduce the number of features in our dataset.
- It helps to obtain a dataset with an optimal number of dimensions.
- It is useful in Feature Extraction
 - By reduce the number of dimensions by mapping a higher dimensional feature space to a lower-dimensional feature space.
- Effect of the change in model performance with the increase in the number of dimensions of the dataset.
- The model performance is best only at an option dimension, beyond which it starts decreasing.
- Technique of Dimensionality Reduction (Feature Extraction)
 - Principal Component Analysis (PCA)
 - Independent Component Analysis (ICA)
 - Singular Value Decomposition (SVD)
 - Linear Discriminant Analysis (LDA)

No. of Dimensions (Features)

Dimensionality Reduction

- Application of DR wrt the type of datasets
 - Image Data: Compressing high-resolution images for efficient storage and retrieval.
 - Audio Data: Simplifying speech recordings for speaker recognition.
 - Audio Data: Reducing music audio data for genre classification.
 - Video Data: Compressing video for faster processing in surveillance systems.
 - Video Data: Reducing video sequences to key frames for action recognition.
 - Time Series Data: Reducing the complexity of financial time series data to reveal major trends.
 - Spatial Data: Reducing GPS data to visualization or summarizing geographic locations.
 - o Graph Data: Reducing social network data to identify key communities.
 - Text Data: Efficient sentiment analysis.
 - Numerical Data: Reducing the number of variables in a dataset to predict housing prices.

www.sites.google.com/view/vsat2k

• Categorical and Ordinal Data: Reducing customer preferences for easier interpretation.

- PCA is unsupervised algorithms
- Used for data analysis, data compression, de-noising, reducing the dimension of data.
- It helps to reduce or eliminate similar data.
- PCA analysis reduces dimensionality without any data loss.
- It is a method of factor analysis.
- PCA is also called a dimensionality-reduction method.
- It helps you find out the most common dimensions of our dataset.
- It makes result analysis faster, easier and accurate.
- Dataset contains significant variables and dimensions.
- However, not all these variables will be critical.
- Some variables are primary key variables, whereas others are not.
- So, it helps to eliminate a few extra less important variables, without any data loss.
- Reduced data and dimensions help to achieve results faster and easy visualization.
- PCA helps to analyze all the dimensions and reducing them by maintaining the exact information.

6 Satishkum

Satishkumar L. Varma www.sites.google.com/view/vsat2k

Applications of PCA Analysis

- PCA in ML is used to visualize multidimensional data.
- Healthcare data: To explore the factors important in increasing the risk of any chronic disease.
- You can also use PCA to analyze patterns when you are dealing with high-dimensional data sets.
- PCA helps to resize an image.
- PCA is used to analyze stock data and forecasting data.

• Domain of PCA Applications:

- Data cleaning;
- Data preprocessing;
- Denoise the information
- Analyzing different dimensions.
- Visualize multidimensional data.
- o Compress the information and transmit the same without any loss in quality.
- Applied for face recognition, image identification, pattern identification.
- PCA in ML helps in simplifying complex business algorithms.

When to use PCA

- To reduce the number of dimensions in the dataset.
- To decide the critical variables.
- To categorize the dependent and independent variables in the dataset.
- o To eliminate the noise components in our dimension analysis.
- Principle components with greater amount of variance are grouped under one category.
- Principle components with smaller variance are grouped under the second category.
- Note:
 - Vectors calculated in the Principal Component Method of factor analysis are not calculated at random.
 - o All the calculated components can be combined as linear components and
 - o so a single straight vector of each component helps identify difference in features much easier than ever.

8

- Advantages of Principal Component Analysis
 - Easy to calculate and compute.
 - Prevents predictive algorithms from data overfitting issues.
 - Speeds up machine learning computing processes and algorithms.
 - PIncreases performance of ML algorithms by eliminating unnecessary correlated variables.
 - o Principal Component Analysis results in high variance and increases visualization.
 - Helps reduce noise that cannot be ignored automatically.
- Disadvantages of Principal Component Analysis
 - Sometimes, PCA is difficult to interpret.
 - Sometimes difficult to identify the most important features even after computing the PCs.
 - You may face some difficulties in calculating the covariances and covariance matrices.
 - Sometimes, the PCAs can be more difficult to read rather than the original set of components.

9

Satishkumar L. Varma www.sites.google.com/view/vsat2k

- Example: Steps to perform PCA
- 1. Standardize the range of continuous initial variables
- 2. Compute the covariance matrix to identify correlations
- 3. Compute the eigenvectors and eigenvalues of the covariance matrix to identify the Principal Components
- 4. Create a feature vector to decide the Principal Components
- 5. Recast the data along the Principal Components axes

• Example 1: Find the eigenvalues and eigenvectors of the matrix

The eigenvalues and eigenvectors are found by solving the eigenvalue probelm

$$AX = \lambda X$$
 $X = \begin{bmatrix} x \\ y \end{bmatrix}$ i.e. $(A - \lambda I)X = 0$.

Non-trivial solutions will exist if $\det (A - \lambda I) = 0$

that is,
$$\det \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} = 0, \qquad \therefore \qquad \left| \begin{array}{ccc} 1 - \lambda & 0 \\ 1 & 2 - \lambda \end{array} \right| = 0,$$

So we have found two values of λ for this 2×2 matrix A. Since these are unequal they are said to be distinct eigenvalues.

expanding this determinant: $(1-\lambda)(2-\lambda)=0$. Hence the solutions for λ are: $\lambda=1$ and $\lambda=2$.

To each value of λ there corresponds an eigenvector. We now proceed to find the eigenvectors.

 $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$

• Example 2: Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$

$$\lambda=1$$
 (smaller eigenvalue). Then our original eigenvalue problem becomes: $AX=X$.

$$egin{array}{lll} x &=& x & & {
m Simplifying} & x &=& x \ x+2y &=& y & & & & & & \\ x+y &=& 0 & & & & & & \end{array}$$

All we can deduce here is that
$$x=-y$$
 \therefore $X=\left[\begin{array}{c} x\\ -x \end{array}\right]$ for any $x\neq 0$

(We specify
$$x \neq 0$$
 as, otherwise, we would have the trivial solution.)

So the eigenvectors corresponding to eigenvalue
$$\lambda=1$$
 are all proportional to $\begin{bmatrix} 1\\-1 \end{bmatrix}$, e.g. $\begin{bmatrix} 2\\-2 \end{bmatrix}$, $\begin{bmatrix} -1\\1 \end{bmatrix}$ etc.

Sometimes we write the eigenvector in normalised form that is, with modulus or magnitude 1.

Here, the normalised form of
$$X$$
 is $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$ which is unique.

• Example 1: Find the eigenvalues and eigenvectors of the matrix

 $A = \left[\begin{array}{cc} 1 & 0 \\ 1 & 2 \end{array} \right]$

Now we consider the larger eigenvalue $\lambda = 2$. Our original eigenvalue problem $AX = \lambda X$ becomes AX = 2X which gives the following equations:

These equations imply that x=0 whilst the variable y may take any value whatsoever (except zero as this gives the trivial solution).

Thus the eigenvector corresponding to eigenvalue $\lambda=2$ has the form $\begin{bmatrix} 0 \\ y \end{bmatrix}$, e.g. $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ etc.

The normalised eigenvector here is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

In conclusion: the matrix $A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$ has two eigenvalues and two associated normalised eigen-

vectors:
$$\lambda_1=1, \qquad \lambda_2=2$$
 $X_1=rac{1}{\sqrt{2}}\left[egin{array}{c} 1 \\ -1 \end{array}
ight] \qquad X_2=\left[egin{array}{c} 0 \\ 1 \end{array}
ight]$

$$T_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

• Example 2: Obtain the eigenvalues and the eigenvectors of the symmetric 2 × 2 matrix

$$\begin{array}{c|c}
X & A = \begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix}
\end{array}$$

The characteristic equation for
$$A$$
 is

$$(4 - \lambda)(1 - \lambda) + 4 = 0 \qquad \text{or} \qquad \lambda^2 - 5\lambda = 0$$

giving $\lambda=0$ and $\lambda=5$, both of which are of course real and also unequal (i.e. distinct). For the larger eigenvalue $\lambda=5$ the eigenvector $X=\left[\begin{array}{c} x \\ y \end{array} \right]$ satisfy

$$\begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5x \\ 5y \end{bmatrix} \quad \text{i.e.} \quad -x - 2y = 0, \qquad -2x - 4y = 0$$

Both equations tell us that x=-2y so an eigenvector for $\lambda=5$ is $X=\begin{bmatrix} 2\\-1 \end{bmatrix}$ or any multiple of this. For $\lambda=0$ the associated eigenvectors satisfy

$$4x - 2y = 0$$
 $-2x + y = 0$

i.e.
$$y = 2x$$
 (from both equations) so an eigenvector is $Y = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ or any multiple.

• Example 3: Prove that the X and Y matrix are orthogonal.

$$X^{T}Y = [2, -1] \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2 \times 1 - 1 \times 2 = 2 - 2 = 0$$

 $X^TY = 0$ means are X and Y are **orthogonal**.

• Example 4: Show that these three eigenvectors X, Y,Z are mutually orthogonal.

$$X = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \qquad Y = \begin{bmatrix} 1 \\ -\sqrt{2} \\ 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 \\ \sqrt{2} \\ 1 \end{bmatrix}$$

$$X^{T}Y = \begin{bmatrix} 1, & 0, & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -\sqrt{2} \\ 1 \end{bmatrix} = 1 - 1 = 0$$

$$Y^{T}Z = \begin{bmatrix} 1, & -\sqrt{2}, & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \\ 1 \end{bmatrix} = 1 - 2 + 1 = 0$$

$$Z^{T}X = \begin{bmatrix} 1, & \sqrt{2}, & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 1 - 1 = 0$$

- It is a type of matrix that is used to represent the covariance values
 - o between pairs of elements given in a random vector.
- It can also be referred to as the variance covariance matrix.
- This is because the variance of each element is represented along the main diagonal of the matrix.
- It is always a square matrix.
- It is positive semi-definite, and symmetric.
- This matrix is very useful in stochastic modeling and principal component analysis.
- It displays the variance exhibited by elements of datasets and covariance between a pair of datasets.
- Variance is a measure of dispersion and can be defined as the spread of data from the mean of the given dataset.
- Covariance is calculated between two variables and is used to measure how the two variables vary together.
- It is a square matrix where diagonal elements represent the variance and the off-diagonal elements represent the covariance.
- The covariance between two variables can be positive, negative, and zero.
- A positive covariance indicates that the two variables have a positive relationship whereas negative covariance shows that they have a negative relationship.
- If two elements do not vary together then they will display a zero covariance.

• Example: Covariance Matrix 2 × 2

Covariance Matrix Example

Population Var: $var(x) = \frac{\sum_{1}^{n} (x_i - \mu)^2}{n}$ Sample Var: $var(x) = \frac{\sum_{1}^{n} (x_i - \overline{x})^2}{n-1}$ Population Cov: $cov(x, y) = \frac{\sum_{1}^{n}(x_i - \mu_x)(y_i - \mu_y)}{n}$ Sample Cov: $cov(x, y) = \frac{\sum_{1}^{n}(x_i - \overline{x})(y_i - \overline{y})}{n}$

 μ = mean of population data. n = number of observations in the dataset. \bar{x} = mean of sample data. x_i = observations in dataset x.

Dataset

 $Sum(\Sigma)$ Mean (\bar{x})

X	Υ
3	6
2	4
5	10
2.5	5

$\chi_i - \bar{\chi}$	$y_i - \bar{y}$	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i-\bar{x})^2$	$(y_i-\bar{y})^2$
0.5	1	0.5	0.25	1
-0.5	-1	0.5	0.25	1
0	0	1	0.5	2
			0.5	2

Sample Var Sample Cov

 $Sum(\Sigma)$

0.5

Covariance Matrix 2 - 2

Covariance	VIGUIA Z ^ Z
var(x)	cov(x, y)
cov(x, y)	var(x)

Covariance Matrix 2 x 2

0.5	1
1	2

- Example:
- Covariance Matrix 3 × 3

Sum (Σ) Sample Var Population Var: $var(x) = \frac{\sum_{1}^{n}(x_{i}-\mu)^{2}}{n}$ Sample Var: $var(x) = \frac{\sum_{1}^{n}(x_{i}-\overline{x})^{2}}{n-1}$ Population Cov: $cov(x, y) = \frac{\sum_{1}^{n}(x_{i}-\mu_{x})(y_{i}-\mu_{y})}{n}$ Sample Cov: $cov(x, y) = \frac{\sum_{1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})}{n-1}$ $\mu = \text{mean of population data}.$ n = number of observations in the dataset. $\overline{x} = \text{mean of sample data}.$ $x_{i} = \text{observations in dataset } x.$

Dataset	Math (X)	Science (Y)	English (Z)
1	70	80	50
2	65	30	40
3	90	70	60
Sum (Σ)	225	180	150
Mean (\bar{x})	75	60	50

$\chi_i - \bar{x}$	y _i -ȳ	z_i - \bar{z}	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i-\bar{x})(z_i-\bar{z})$	$(y_i-\bar{y})(z_i-\bar{z})$	$(\chi_i - \bar{\chi})^2$	$(y_i-\bar{y})^2$	$(z_i-\bar{z})^2$
-5	20	0	-100	0	0	25	400	0
-10	-30	-10	300	100	300	100	900	100
1 5	10	10	150	150	100	225	100	100
0	0	0	350	250	400	350	1400	200
						175	700	100

Sample Cov 175 125

Covariance Matrix 3 × 3

Covariance i	Covariance matrix 5 5		
var(x)	cov(x, y)	cov(x,z)	
cov(x, y)	var(y)	cov(y,z)	
cov(x,z)	cov(y,z)	var(z)	

Covariance Matrix 3 x

200

Covariance Matrix 3 × 3		
175	125	
700	200	
200	100	
	175 700	

- Properties of Covariance Matrix
- It is a very important tool used by data scientists to understand and analyze multivariate data.
- It depicts the variance of datasets and covariance of a pair of datasets in matrix format.
- The diagonal elements represent the variance of a dataset and
 - the off-diagonal terms give the covariance between a pair of datasets.
- The variance covariance matrix is always square, symmetric, and positive semi-definite.
- Extremely useful properties of Covariance Matrix:
 - o It is always a square matrix. That is # of rows of the matrix will be equal to the number of columns.
 - The matrix is symmetric. Suppose M is the cov.mat. then MT = M.
 - It is positive semi-definite.
 - Let u be a column vector, uT is the transpose of that vector and M be the cov.mat. then uTMu ≥ 0.
 - All eigenvalues of the variance covariance matrix are real and non-negative.

- Interpretation of the variance covariance matrix:
- 1) The diagonal elements 500, 340 and 800 indicate the variance in data sets X, Y and Z respectively.
 - Y shows the lowest variance whereas Z displays the highest variance.
- 2) The covariance for X and Y is 320.
 - As this is a positive number it means that when X increases (or decreases) Y also increases (or decreases)
- 3) The covariance for X and Z is -40.
 - As it is a negative number it implies that when X increases Z decreases and vice versa.
- 4) The covariance for Y and Z is O.
 - This means that there is no predictable relationship between the two data sets.

Covariance Matrix 3 x 3

Covariance	Matrix 3 × 3	5
var(x)	cov(x, y)	cov(x,z)
cov(x, y)	var(y)	cov(y,z)
cov(x,z)	cov(y,z)	var(z)

Covariance Matrix 3 x 3

COVALIDATION INTRACTOR OF			
320	-40		
340	0		
0	800		
	320		

21

References

Text books:

- 1. Ethem Alpaydin, "Introduction to Machine Learning, 4th Edition, The MIT Press, 2020.
- 2. Peter Harrington, "Machine Learning in Action", 1st Edition, Dreamtech Press, 2012."
- 3. Tom Mitchell, "Machine Learning", 1st Edition, McGraw Hill, 2017.
- 4. Andreas C, Müller and Sarah Guido, "Introduction to Machine Learning with Python: A Guide for Data Scientists", 1ed, O'reilly, 2016.
- 5. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", 1st Edition, MIT Press, 2012."

Reference Books:

- 6. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", 2nd Edition, Shroff/O'Reilly, 2019.
- 7. Witten Ian H., Eibe Frank, Mark A. Hall, and Christopher J. Pal., "Data Mining: Practical machine learning tools and techniques", 1st Edition, Morgan Kaufmann, 2016.
- 8. Han, Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012.
- 9. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, "Foundations of Machine Learning", 1ed, MIT Press, 2012.
- 10. H. Dunham, "Data Mining: Introductory and Advanced Topics", 1st Edition, Pearson Education, 2006.

Thank You.

