딥러닝 모델 구현해 보기

학습 내용

- 첫번째 데이터 셋: 자전거 공유 업체 시간대별 데이터
- 두번째 데이터 셋 : 타이타닉 데이터 셋

```
In [1]:
                                                                                                  M
import tensorflow as tf
import keras
In [2]:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
In [3]:
                                                                                                  M
print("tf version : {}".format(tf.__version__))
print("keras version : {}".format(keras.__version__))
print("numpy version : {}".format(np.__version__))
print("matplotlib version : {}".format(matplotlib.__version__))
print("pandas version : {}".format(pd.__version__))
tf version: 2.4.0
keras version: 2.4.3
numpy version: 1.19.4
```

데이터 셋 불러오기

matplotlib version : 3.3.3 pandas version : 1.1.5

```
In [4]:

## train 데이터 셋 , test 데이터 셋

## train 은 학습을 위한 입력 데이터 셋

## test 은 예측을 위한 새로운 데이터 셋(평가)

## parse_dates : datetime 컬럼을 시간형으로 불러올 수 있음

train = pd.read_csv("./bike/bike_mod_tr.csv", parse_dates=['datetime'])

test = pd.read_csv("./bike/bike_mod_test.csv", parse_dates=['datetime'])
```

데이터 탐색

In [5]: ▶

```
train.columns
```

Out [5]:

In [6]:

```
test.columns
```

Out[6]:

In [7]:

```
print(train.info())
print()
print(test.info())
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10886 entries, 0 to 10885 Data columns (total 19 columns):

	Cordinas (total 19 Cordinas).				
#	Column	Non-Null Count	Dtype		
0		10886 non-null			
1	season	10886 non-null	int64		
2	holiday	10886 non-null	int64		
3	workingday	10886 non-null	int64		
4	weather	10886 non-null	int64		
5	temp	10886 non-null	float64		
6	atemp	10886 non-null	float64		
7	humidity	10886 non-null	int64		
8	windspeed	10886 non-null	float64		
9	casual	10886 non-null	int64		
10	registered	10886 non-null	int64		
11	count	10886 non-null	int64		
12	year	10886 non-null	int64		
13	month	10886 non-null	int64		
14	day	10886 non-null	int64		
15	hour	10886 non-null	int64		
16	minute	10886 non-null	int64		
17	second	10886 non-null	int64		
18	dayofweek	10886 non-null	int64		
dtype	es: datetime@	64[ns](1), floate	64(3), int64(15)		
	rv usage: 1 6				

memory usage: 1.6 MB

None

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6493 entries, 0 to 6492 Data columns (total 16 columns):

	0010111110 (101				
#	Column	Non-Null Count	Dtype		
0	datetime	6493 non-null	datetime64[ns]		
1	season	6493 non-null	int64		
2	holiday	6493 non-null	int64		
3	workingday	6493 non-null	int64		
4	weather	6493 non-null	int64		
5	temp	6493 non-null	float64		
6	atemp	6493 non-null	float64		
7	humidity	6493 non-null	int64		
8	windspeed	6493 non-null	float64		
9	year	6493 non-null	int64		
10	month	6493 non-null	int64		
11	day	6493 non-null	int64		
12	dayofweek	6493 non-null	int64		
13	hour	6493 non-null	int64		
14	minute	6493 non-null	int64		
15	second	6493 non-null	int64		
dtypes: datetime64[ns](1), float64(3), int64(12)					

memory usage: 811.8 KB

None

모델을 위한 데이터 선택

```
• X: hour, temp: 시간, 온도
```

• y: count - 자전거 시간대별 렌탈 대수

```
In [8]:
                                                                                                   H
input_col = [ 'hour', 'temp']
labeled_col = ['count']
In [9]:
                                                                                                   H
X = train[ input_col ]
y = train[ labeled_col ]
X_val = test[input_col]
In [10]:
                                                                                                   M
from sklearn.model_selection import train_test_split
In [11]:
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                random_state=0)
In [12]:
print(X_train.shape)
print(X_test.shape)
(8164, 2)
(2722, 2)
In [13]:
                                                                                                   M
### 난수 발생 패턴 결정 0
seed = 0
np.random.seed(seed)
```

딥러닝 구조 결정

- 케라스 라이브러리 중에서 Sequential 함수는 딥러닝의 구조를 한층 한층 쉽게 쌓아올릴 수 있다.
- Sequential() 함수 선언 후, 신경망의 층을 쌓기 위해 model.add() 함수를 사용한다
- input dim 입력층 노드의 수
- activation 활성화 함수 선언 (relu, sigmoid)
- Dense() 함수를 이용하여 각 층에 세부 내용을 설정해 준다.

```
In [14]:

from keras.models import Sequential
from keras.layers import Dense
```

In [15]:

```
model = Sequential()
model.add(Dense(30, input_dim=2, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(11))
```

In [16]:

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 30)	90
dense_1 (Dense)	(None, 15)	465
dense_2 (Dense)	(None, 15)	240
dense_3 (Dense)	(None, 1)	16

Total params: 811 Trainable params: 811 Non-trainable params: 0

미니배치의 이해

- 이미지를 하나씩 학습시키는 것보다 여러 개를 한꺼번에 학습시키는 쪽이 효과가 좋다.
- 많은 메모리와 높은 컴퓨터 성능이 필요하므로 일반적으로 데이터를 적당한 크기로 잘라서 학습시킨다.
 - 미니배치라고 한다.

딥러닝 실행

In [17]:

```
model.compile(loss = 'mean_squared_error', optimizer='rmsprop')
model.fit(X_train, y_train, epochs=20, batch_size=10)
```

```
Epoch 1/20
817/817 [==
                         =======] - 2s 1ms/step - loss: 37887.6405
Epoch 2/20
                         =======] - 1s 1ms/step - loss: 21847.4204
817/817 [==
Epoch 3/20
                          =======] - 1s 1ms/step - loss: 19810.8053
817/817 [==
Epoch 4/20
817/817 [====
                     =========] - 1s 1ms/step - loss: 19286.4294
Epoch 5/20
817/817 [==
                       ========] - 1s 1ms/step - loss: 19343.9147
Epoch 6/20
                        ========] - 1s 1ms/step - loss: 19551.1116
817/817 [==
Epoch 7/20
817/817 [==
                         =======1 - 1s 1ms/step - loss: 19431.3754
Epoch 8/20
817/817 [==
                        ========] - 1s 1ms/step - loss: 19198.9661
Epoch 9/20
817/817 [===
                         ========] - 1s 1ms/step - loss: 19314.0901
Epoch 10/20
                      ========= 1 - 1s 1ms/step - loss: 18990.2614
817/817 [===
Epoch 11/20
817/817 [===
                         =======] - 1s 1ms/step - loss: 19914.4727
Epoch 12/20
817/817 [===
                         =======] - 1s 1ms/step - loss: 19304.6384
Epoch 13/20
817/817 [===
                        =======] - 1s 1ms/step - loss: 19344.8415
Epoch 14/20
                           ======] - 1s 1ms/step - loss: 19145.9743
817/817 [==
Epoch 15/20
817/817 [===
                        ========] - 1s 1ms/step - loss: 18711.6729
Epoch 16/20
817/817 [=====
                   Epoch 17/20
817/817 [===
                       ========] - 1s 1ms/step - loss: 18284.5546
Epoch 18/20
817/817 [===
                     ==========] - 1s 1ms/step - loss: 18992.3267
Epoch 19/20
Epoch 20/20
817/817 [======] - 1s 1ms/step - loss: 18641.1440
```

Out [17]:

<tensorflow.python.keras.callbacks.History at 0x250e89ce4f0>

점수: 1.04514

실습

- 변수를 추가를 통해 성능을 향상시켜보자(5-10분) epoch수도 증가
- (예) ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather']
- (예) 100epoch, ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather'] => 0.82071
- (예) 300epoch, ['hour', 'temp', 'dayofweek', 'workingday', 'season', 'weather'] => 0.70710
- input_col = ['hour', 'temp', 'weather', 'season', 'holiday', 'temp', 'workingday', 'windspeed'] 300epoch