Two tubes model of miscible displacement: travelling waves and normal hyperbolicity

Sergey Tikhomirov
University of Duisburg-Essen
Germany

Yulia Petrova

Instituto de Matemática Pura e Aplicada – IMPA Rio de Janeiro, Brazil

yulia-petrova@github.io

Multiscale Analysis and Methods for Quantum and Kinetic Problems IMS at NUS

Yalchin Efendiev
Texas A&M
USA

Outline

- 1. General phenomenon
 - Viscous fingers
 - Gravitational fingers
- 2. Motivation of the statement of the problem
 - Why we believe that our setting is important
 - Introduce the "toy model"
- 3. Theorem and Conjectures

Two settings (Incompressible porous medium eqs - IPM)

1. Viscosity-driven fingers: 2d

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div u = 0$$
$$u = -k \cdot m(c) \nabla p$$

- c concentrations of viscous spices (transport equation) $c \in [0, 1]$
- u velocity of fluid (incompressibility condition)
- p pressure velocity is defined by Darcy law and mobility of liquid m(c); m(c) – decreasing function, e.g. $m(c) = e^{-ac}$

We did a lot of numerical simulations. Motivation of statement of the problem.

2. Gravity-driven fingers: 2d

$$c_t + u \cdot \nabla c = \varepsilon \, \Delta c$$
$$div \, u = 0$$
$$u = -\nabla p - (0, c)$$

- c concentrations of heavy spices (transport equation) $c \in [-1, 1]$
- u velocity of fluid (incompressibility condition)
- p pressure.

velocity is defined by Darcy law and gravitation

We have some theorems for "toy model"

Questions of interest

1. Well-posedness:

- $\varepsilon = 0$: incompressible porous medium (IPM) active scalar: u = A(c) singular integral operator (like in SQG)
 - existence of a global solution vs finite-time blow-up:
 A. Castro, D. Cordoba, D. Lear (2018), T. Elgindi (2017), A. Kiselev, Y. Yao (2023)
 - non-uniqueness of solutions (convex integration technique):
 D. Córdoba, D. Faraco, F. Gancedo (2011), R. Shvydkoy (2011), L. Szekelyhidi Jr. (2012)
- related: generalized Buckley-Leverett equation N. Chemetov, W. Neves (2014)
 Muskat problem & Hele-Shaw (free boundary) A. Cordoba, D. Cordoba, F. Gancedo (2011) etc.

2. Dynamics of mixing zone: $\varepsilon > 0$

- many laboratory and numerical experiments show linear growth of the mixing zone ¹
- the only mathematically rigorous result on estimates of speed of the linear growth
 - Simplified model of Darcy's law: Transverse flow equilibrium (TFE)²

¹ Nijjer J., Hewitt D., and Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. Journal of Fluid Mechanics 837 (2018): 520-545.

² Menon, G. and Otto, F., 2006. Diffusive slowdown in miscible viscous fingering. Communications in Mathematical Sciences, 4(1), pp.267-273.

TFE model and comparison theorem (gravity-driven)

• TFE model: assumption $p(x,y) \sim p(y)$, $p_y(x,y) \sim p_y(y)$

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div u = 0$$
$$u = (u^x, u^y)$$
$$u^y = \bar{c} - c$$

Consider 1d equations (viscous Burgers equation)

$$c_t^{max} + (1 - c^{max})c_y^{max} = \varepsilon (c^{max})_{yy}$$

$$c_t^{min} + (1 - c^{min}) c_y^{min} = \varepsilon (c^{min})$$

$$c_t^{min} + (-1 - c^{min}) \cdot c_y^{min} = \varepsilon \left(c^{min} \right)_{yy}$$

Comparison theorem (Otto-Menon, 2005)

- If $c(0, x, y) < c^{max}(0, y)$ then $c(t, x, y) \le c^{max}(t, y)$
- If $c(0, x, y) > c^{min}(0, y)$ then $c(t, x, y) \ge c^{min}(t, y)$

1. It gives upper bound for the faster finger

$$v^f \leq 1$$

2. It gives upper bound for the back front

$$v^b \ge -1$$

- 3. Estimate is sharp if
 - 1. There is no transverse flow
 - 2. Drop of concentration on a finger tip is -1 -> +1
- 4. Numerics shows that estimate is far from sharp
- 5. We want to get better estimate

Numerics for viscous fingers

F. Bakharev, A. Enin, A. Groman, A. Kalyuzhnyuk, S. Matveenko, **Yu. Petrova**, I. Starkov, S. Tikhomirov "Velocity of viscous fingers in miscible displacement: Comparison with analytical models" Journal of Computational and Applied Mathematics, 2022

Possible mechanism: intermediate concentration

Two-tubes model (with gravity)

Original equations

$$c_t + div(uc) = \varepsilon \, \Delta c$$
$$div \, u = 0$$

Two-tube equations

$$\begin{aligned} \partial_t c_1 + \partial_y (u_1 c_1) - \varepsilon \, \partial_{yy} c_1 &= 0 \\ \partial_t c_2 + \partial_y (u_2 c_2) - \varepsilon \, \partial_{yy} c_2 &= 0 \end{aligned}$$

Two-tubes model (with gravity)

Original equations

$$c_t + div(uc) = \varepsilon \, \Delta c$$
$$div \, u = 0$$

Two-tube equations: inclusion of transverse flow

$$\partial_t c_1 + \partial_y (u_1 c_1) - \varepsilon \, \partial_{yy} c_1 = -(-1)^{1,2} \partial_y u_{1,2} \cdot c_{1,2}$$
$$\partial_t c_2 + \partial_y (u_2 c_2) - \varepsilon \, \partial_{yy} c_2 = (-1)^{1,2} \partial_y u_{1,2} \cdot c_{1,2}$$

$$(-1)^{1,2}\partial_{y}u_{1,2}\cdot c_{1,2} = \begin{cases} -\partial_{y}u_{1}\cdot c_{1}, & \partial_{y}u_{1}<0, \\ +\partial_{y}u_{2}\cdot c_{2}, & \partial_{y}u_{1}>0 \end{cases}$$

Model for velocities is different for IPM and TFE:

• TFE:
$$u = \bar{c} - c$$
, $u_1 = \frac{c_1 + c_2}{2} - c_1$, $u_2 = \frac{c_1 + c_2}{2} - c_2$

• IPM: we need to introduce pressure, we will do this later

Initial condition:

$$c_{1,2}(y,0) = -1, y < 0$$

 $c_{1,2}(y,0) = +1, y > 0$

Main result (TFE model, gravity-driven fingers)

Theorem (Efendiev, P., Tikhomirov, 2022+)

Consider a two-tube model with gravity.

Then there exists unique (up to swap) c_1^* , c_2^* such that TFE two-tubes system has travelling waves

$$(-1,-1) \rightarrow (c_1^*,c_2^*) \rightarrow (1,1)$$

Moreover,

$$c_1^* = -\frac{1}{2}, \quad c_2^* = \frac{1}{2},$$
 $v^b = -\frac{1}{4}, \quad v^f = \frac{1}{4}.$

Including in the system crossflow automatically creates intermediate concentration

Travelling waves. Equations.

Original system:

Travelling wave ansatz:
$$\xi = y - vt, \quad c_{1,2}(y,t) = c_{1,2}(\xi),$$

$$c_{1,2}(\pm \infty) = c_{1,2}^{\pm}$$
 4d system:

$$\dot{c}_1 = g_1,
\dot{g}_1 = g_1(u_1 - v),
\dot{c}_2 = g_2,
\dot{g}_2 = (u_2 - v)g_2 + (c_1 - c_2)\dot{u}_1.$$

Conservation laws – 3d dynamical system:

$$\dot{c}_1 = g_1,
\dot{g}_1 = g_1(u_1 - v),
\dot{c}_2 = -v(c_1 + c_2 - c_1^+ - c_2^+) +
(u_1c_1 + u_2c_2 - u_1^+c_1^+ - u_2^+c_2^+) - g_1.$$

Connection between $c_{1,2}^{\pm}$ and \boldsymbol{v} : (Rankine-Hugoniot condition)

$$v[c_1 + c_2]\Big|_{-\infty}^{+\infty} = [u_1c_1 + u_2c_2]\Big|_{-\infty}^{+\infty}.$$

TFE velocity model:

$$u_1 = \frac{c_1 + c_2}{2} - c_1,$$
 $u_2 = \frac{c_1 + c_2}{2} - c_2$

Travelling waves. Phase portrait.

Substitute $u_{1,2}$, get:

$$\dot{c}_1 = g_1,
\dot{g}_1 = g_1 \left(\frac{c_2 - c_1}{2} - v \right),
\dot{c}_2 = -v(c_1 + c_2 - c_1^+ - c_2^+) - \frac{1}{2} ((c_1 - c_2)^2 - (c_1^+ - c_2^+)^2) - g_1.$$

Rankine-Hugoniot condition

$$v(c_2^- + c_1^- - c_2^+ - c_1^+) = -\frac{1}{2}((c_1^- - c_2^-)^2 - (c_1^+ - c_2^+)^2).$$

3d dynamical system on (c_1, g_1, c_2)

Fix: (c_1^-, c_2^-) or (c_1^+, c_2^+)

Parameter: v

- For each v expected a travelling wave
- This generates a curve of possible c_1 , c_2
- We apply this procedure for travelling wave to (+1, +1) and from (-1, -1)

Two tubes. Invariant surface.

Equations

$$\dot{c}_1 = g_1,
\dot{g}_1 = g_1 \left(\frac{c_2 - c_1}{2} - v \right),
\dot{c}_2 = -v(c_1 + c_2 - c_1^+ - c_2^+) - \frac{1}{2} ((c_1 - c_2)^2 - (c_1^+ - c_2^+)^2) - g_1.$$

Travelling wave speed

$$v(c_2^- + c_1^- - c_2^+ - c_1^+) = -\frac{1}{2}((c_1^- - c_2^-)^2 - (c_1^+ - c_2^+)^2).$$

There exists 2dim invariant surface

$$g_1 = \frac{3}{4}(-v(c_2 + c_1 - c_2^+ - c_1^+) - \frac{1}{2}((c_1 - c_2)^2 - (c_1^+ - c_2^+)^2)),$$

On all (for any $c_{1,2}^+$) heteroclinic holds

$$3(c_2 - c_2^+) = c_1 - c_1^+,$$

We have solved our "heteroclinic" problem analytically

Finally answer.

Admissible curves on the plane

Speed and concentration

$$v^{b} = -\frac{1}{4}$$

$$v^{f} = \frac{1}{4}$$

$$c_{1}^{*} = -1/2$$

$$c_{2}^{*} = 1/2$$

Two-tubes model. IPM.

Original equations

$$c_t + div(uc) = \varepsilon \Delta c$$
$$div u = 0$$

$$\begin{split} \partial_t c_1 + \partial_y (u_1 c_1) - \varepsilon \, \partial_{yy} c_1 &= - (-1)^{1,2} \partial_y u_{1,2} \cdot c_{1,2} \\ \partial_t c_2 + \partial_y (u_2 c_2) - \varepsilon \, \partial_{yy} c_2 &= (-1)^{1,2} \partial_y u_{1,2} \cdot c_{1,2} \end{split}$$

$$(-1)^{1,2}\partial_{y}u_{1,2}\cdot c_{1,2} = \begin{cases} -\partial_{y}u_{1}\cdot c_{1}, & \partial_{y}u_{1}<0, \\ +\partial_{y}u_{2}\cdot c_{2}, & \partial_{y}u_{1}>0 \end{cases}$$

Velocity model for IPM: add p_1 and p_2

$$u_1 = -\partial_{\nu} p_1 - c_1,$$

$$\partial_{\mathcal{Y}}u_1=\frac{p_2-p_1}{l},$$

$$u_2 = -\partial_y p_2 - c_2,$$
$$\partial_y u_2 = -\frac{p_2 - p_1}{l}.$$

Parameter l – distance between tubes

Main result (IPM model, gravity-driven fingers)

Conjecture (Efendiev, P., Tikhomirov, 2022+)

Consider a two-tube model with gravity.

For small enough l>0 there exists unique (up to swap) $c_1^*(l)$, $c_2^*(l)$ such that IPM two-tubes system has travelling waves

$$(-1,-1) \rightarrow (c_1^*,(l) c_2^*(l)) \rightarrow (1,1)$$

Moreover,

$$c_1^*(l) \rightarrow c_1^*, \quad c_2^*(l) \rightarrow c_2^* \quad \text{as} \quad l \rightarrow 0.$$
 $v^b(l) \rightarrow v^b, \quad v^f(l) \rightarrow v^f \quad \text{as} \quad l \rightarrow 0.$

l=0: travelling wave dyn system for IPM coincides with the system for TFE

Main technical ingredient: geometric singular perturbation theory and normal hyperbolicity

What's next?

- 1. How to obtain similar results for "viscous" model?
- 2. Does the n-tube model posses a system of n travelling waves? How to determine their constant states? Can we go to the limit as the number of tubes $n \to \infty$?

What's next?

3. Otto-Menon suggested that after time t fingers have length $\sim \sqrt{t}$ What is the mechanism of merging of fingers?

4-tubes model. What is more stable:

- Two thin fingers?
- One thick finger?
- 4. TFE as a limit of IPM when $\frac{k_y}{k_x} \to \infty$?

Can we use the connection to prove the linear growth in IPM?

Peaceman model

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$

$$div u = 0$$

$$u = -\begin{pmatrix} k_x & 0 \\ 0 & k_y \end{pmatrix} \nabla p - (0, c)$$

TFE model

$$c_t + u \cdot \nabla c = \varepsilon \Delta c$$
$$div u = 0$$
$$u = (u^x, u^y)$$
$$u^y = \bar{c} - c$$

References

Own works:

- 1. Bakharev, F., Enin, A., Groman, A., Kalyuzhnyuk, A., Matveenko, S., Petrova, Y., Starkov, I. and Tikhomirov, S., 2022. Velocity of viscous fingers in miscible displacement: Comparison with analytical models. Journal of Computational and Applied Mathematics, 402, p.113808.
- 2. Efendiev Ya., Petrova Yu., Tikhomirov S., 2022+, A cascade of two travelling waves in a two-tube model of gravitational fingering. In preparation.

Other references:

Dynamics of viscous fingering:

- 1. Nijjer J., Hewitt D., and Neufeld J. The dynamics of miscible viscous fingering from onset to shutdown. Journal of Fluid Mechanics 837 (2018): 520-545.
- 2. Menon, G. and Otto, F., 2006. Diffusive slowdown in miscible viscous fingering. Communications in Mathematical Sciences, 4(1), pp.267-273.
- 3. Menon, G. and Otto, F., 2005. Dynamic scaling in miscible viscous fingering. Communications in mathematical physics, 257, pp.303-317.
- 4. Homsy, G.M., 1987. Viscous fingering in porous media. Annual review of fluid mechanics, 19(1), pp.271-311.

References

Thank you very much!

Well-posedness for IPM:

- 1. Kiselev, A. and Yao, Y., 2023. Small scale formations in the incompressible porous media equation. Archive for Rational Mechanics and Analysis, 247(1), p.1.
- 2. A. Castro, D. Cordoba and D. Lear, Global existence of quasi-stratified solutions for the confined IPM equation, Arch. Ration. Mech. Anal. 232 (2019), no. 1, 437–471.
- 3. T. Elgindi, On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation, Arch. Ration. Mech. Anal. 225 (2017), no. 2, 573–599.

Non-uniqueness for IPM:

- 1. D. Cordoba, D. Faraco and F. Gancedo, Lack of uniqueness for weak solutions of the incompressible porous media equation, Arch. Ration. Mech. Anal. 200 (2011), no. 3, 725–746.
- 2. Shvydkoy, R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011).
- 3. L. Szekelyhidi, Jr. Relaxation of the incompressible porous media equation, Ann. Sci. de l'Ecole Norm. Superieure (4) 45 (2012), no. 3, 491–509.

Related:

- 1. Chemetov, N. and Neves, W., 2013. The generalized Buckley–Leverett system: solvability. Archive for Rational Mechanics and Analysis, 208, pp.1-24.
- 2. Córdoba, A., Córdoba, D. and Gancedo, F., 2011. Interface evolution: the Hele-Shaw and Muskat problems. Annals of mathematics, pp.477-542.