Relações Trigonométricas

Seno:
$$sen(\theta) = \frac{CO}{Hip}$$
;

Cosseno:
$$\cos(\theta) = \frac{CA}{Hip}$$
;

Tangente:
$$tg(\theta) = \frac{CO}{CA} = \frac{sen(\theta)}{cos(\theta)}$$
.

	30°	45°	60°
Seno	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
Cosseno	√3 2	$\frac{\sqrt{2}}{2}$	1/2
Tangente	<u>√3</u> 3	1	√3

Relações Trigonométricas:

1.
$$sen^{2}(\theta) + cos^{2}(\theta) = 1;$$

2.
$$tg^{2}(\theta) + 1 = sec^{2}(\theta)$$
;

3.
$$1+\cot^2(\theta) = \csc^2(\theta)$$
;

4.
$$\operatorname{sen}(a \pm b) = \operatorname{sen}(a) \cos(b) \pm \operatorname{sen}(b) \cos(a)$$
;

5.
$$cos(a \pm b) = cos(a)cos(b) \mp sen(a)sen(b)$$
;

6.
$$sen(2\theta) = 2 sen(\theta) cos(\theta)$$
;

7.
$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
;

8.
$$\operatorname{sen}^{2}(\theta) = \frac{1}{2} - \frac{1}{2}\cos(2\theta);$$

9.
$$\cos^2(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta);$$

Função Seno: f(x) = sen(x)

1 volta no círculo trigonométrico, sentido antihorário.

FUNÇÃO PERIÓDICA

Sejam A e B subconjuntos não vazios de \mathbb{R} . Uma função $f:A\to B$ é periódica se existir um número real p>0 tal que, para todo $x\in A$:

$$f(x+p) = f(x)$$

O menor valor de p que satisfaz a igualdade é chamado período de f.

Exemplo. Mostre que a função seno é uma função periódica e de período 2π .

Exemplo. Mostre que a função seno é uma função ímpar.

Função Seno: f(x) = sen(x)

INFORMAÇÕES SOBRE A FUNÇÃO SENO

- Dom f = ℝ
- Im f = [-1, 1]
- f é periódica de período 2π, ou seja, para todo x ∈ ℝ,

$$\operatorname{sen}(x+2\pi) = \operatorname{sen} x$$

f é ímpar, isto é, para todo x ∈ ℝ,

$$\operatorname{sen}(-x) = -\operatorname{sen}(x)$$

Função Cosseno: f(x) = cos(x)

INFORMAÇÕES SOBRE A FUNÇÃO COSSENO

- Dom f = ℝ
- Im f = [−1, 1]
- f é periódica de período 2π, ou seja, para todo x ∈ ℝ,

$$\cos(x + 2\pi) = \cos x$$

f é împar, isto é, para todo x ∈ ℝ,

$$\cos(-x) = \cos(x)$$

Função Tangente: $f(x) = tg(x) = \frac{sen(x)}{\cos(x)}$

Função Tangente:
$$f(x) = tg(x) = \frac{sen(x)}{\cos(x)}$$

FUNÇÃO TANGENTE

Seja

$$f(x) = \operatorname{tg} x$$

Temos que:

• Dom
$$f = \mathbb{R} - \left\{ \frac{(2k+1)\pi}{2} \middle| k \in \mathbb{Z} \right\}$$

- Im f = ℝ
- f é periódica de período π, ou seja, para todo x ∈ ℝ,

$$tg(x + \pi) = tgx$$

f é ímpar, isto é, para todo x ∈ ℝ,

$$tg(-x) = -tgx$$

 f possui assíntotas verticais em x da forma ^{(2k+1)π}/₂, com k ∈ Z

Função Cotangente:
$$f(x) = cotg(x) = \frac{cos(x)}{sen(x)}$$

FUNÇÃO COTANGENTE

Seja

$$f(x) = \cot x$$

Temos que:

- Dom f = ℝ − {kπ | k ∈ ℤ}
- $\operatorname{Im} f = \mathbb{R}$
- f é periódica de período π, ou seja, para todo x ∈ ℝ,

$$\cot g(x + \pi) = \cot gx$$

f é ímpar, isto é, para todo x ∈ ℝ,

$$\cot g(-x) = -\cot g x$$

 f possui assíntotas verticais em x da forma kπ, com k ∈ Z

Função Cossecante:
$$f(x) = \operatorname{cossec}(x) = \frac{1}{\operatorname{sen}(x)}$$

FUNÇÃO COSSECANTE

Seja

$$f(x) = \csc x$$

Temos que:

- Dom $f = \mathbb{R} \{k\pi | k \in \mathbb{Z}\}$
- $\text{Im } f = \mathbb{R} [-1, 1] = (-\infty, -1) \cup (1, +\infty)$
- f é periódica de período 2π, ou seja, para todo x ∈ ℝ,

$$cossec(x + 2\pi) = cossec x$$

f é ímpar, isto é, para todo x ∈ R,

$$cossec(-x) = -cossec x$$

 f possui assíntotas verticais em x da forma kπ, com k ∈ Z

Função Secante:
$$f(x) = \sec(x) = \frac{1}{\cos(x)}$$

FUNÇÃO SECANTE

Seja

$$f(x) = \sec x$$

Temos que:

• Dom
$$f = \mathbb{R} - \left\{ \frac{(2k+1)\pi}{2} \middle| k \in \mathbb{Z} \right\}$$

- $\text{Im} f = \mathbb{R} [-1, 1] = (-\infty, -1) \cup (1, +\infty)$
- f é periódica de período 2π, ou seja, para todo x ∈ ℝ,

$$\sec(x+2\pi) = \sec x$$

f é par, isto é, para todo x ∈ ℝ,

$$\sec(-x) = \sec x$$

 f possui assíntotas verticais em x da forma ^{(2k+1)π}/₂, com k ∈ Z