BIM2005 Fall 2021

Principal Component Analysis (PCA): Principle and Implementation

Haoran Sun (USTF)

November 24, 2021

CUHK-Shenzhen

Outline

Motivation

Mathematical background

 $Simple\ implementation$

Outline

Motivation

Mathematical background

Simple implementation

Why we reduce the dimension of a dataset?

- Curse of dimensionality
 - Difficult to understand: which dimension should we focus on? Where is the slow motion? How is the potential energy?
 - Noise exists: how to eliminate the meaningless fluctuation within a dataset?
 - Hard to visualize: how to understand them intuitively?

Why we reduce the dimension of a dataset?

- Dimensionality reduction
 - Find a discriptive low dimensional space.
 - Used for visualizing high-dimensional dataset, reduce the N-D data to 2-D or 3-D.
 - Identify low-dimensional space that contains information as much as possible (or, eliminate the noise).

Motivation: reduce the dimension by projection

 Assume that we are going to reduce a 2-D dataset to 1-D by projection (MAT2040).

Motivation: reduce the dimension by projection

 Assume that we are going to reduce a 2-D dataset to 1-D by projection (MAT2040).

Motivation: reduce the dimension by projection

- We want this low-dimensional representation contains information as much as possible.
- Which of these reduced datasets contains 'more' information?

Motivation: choose the standard

- ullet Intuitively, spanned widely o more information.
- How to verify 'spanned widely' quantitatively? By which standard?

Motivation: choose the standard

- In statistical inference, variance always used as an measurement that how data points spread around their mean value (STA2001).
- Thus, reduced dataset on left has higher variance, while the right has lower variance.

Motivation: choose the standard

- Therefore, we choose variance as the standard when choosing the direction which we are going to project data on.
- We want more information → we want to get reduced dataset large variance → we want to maximize variance.

Outline

Motivation

Mathematical background

Simple implementation

Notations: dataset

- We have a d-D dataset A contains N data points, represent this dataset as matrix A.
- Each column of a matrix represents a data point (vector).

$$A = \begin{bmatrix} \mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \cdots & \mathbf{a}^{(N)} \end{bmatrix} \in \mathbb{R}^{d \times N}$$

 a⁽ⁱ⁾ is the ith data point, it could be represented in column vector form.

$$\mathbf{a}^{(i)} = egin{bmatrix} a_1^{(i)} \\ a_2^{(i)} \\ \vdots \\ a_d^{(i)} \end{bmatrix} \in \mathbb{R}^{d imes 1}$$

Notations: projection vector

• We would like to project dataset A onto a unit vector \mathbf{x} , i.e., we project each $\mathbf{a}^{(i)}$ onto \mathbf{x} .

• Since x is an unit vector, i.e., $\|\mathbf{x}\| = 1$, then

$$\operatorname{proj}_{\mathbf{x}} \mathbf{a}^{(i)} = (\mathbf{x} \cdot \mathbf{a}^{(i)}) \mathbf{x}$$

where the inner product $\mathbf{x} \cdot \mathbf{a}^{(i)}$ is equivalent to

$$\mathbf{x} \cdot \mathbf{a}^{(i)} = \mathbf{x}^T \mathbf{a}^{(i)}$$

Also

$$\|\operatorname{proj}_{\mathbf{x}} \mathbf{a}^{(i)}\| = \mathbf{x} \cdot \mathbf{a}^{(i)} = \mathbf{x}^T \mathbf{a}^{(i)}$$

Notations: reduced dataset

 We can build an axis along the unit vector x, using the length of projected vector as coordinate value.

• Define reduced dataset \mathcal{B} with respect to coordinate b, using matrix B to represent \mathcal{B} .

$$B = \begin{bmatrix} b_1 & b_2 & \cdots & b_N \end{bmatrix} = \mathbf{x}^T A = \begin{bmatrix} \mathbf{x}^T \mathbf{a}^{(1)} & \cdots & \mathbf{x}^T \mathbf{a}^{(N)} \end{bmatrix}$$

Notations: reduced dataset

ullet By projection, we can obtain 1-D dataset ${\mathcal B}$ from 2-D dataset ${\mathcal A}$.

Notations: mean and variance

• Recall the definition of mean and variance, given a random variable X, the mean μ and variance σ^2 is defined as

$$\mu = E(X)$$

$$\sigma^2 = E[(X - \mu)^2]$$

Notations: sample variance

- Recall our goal: choosing appropriate unit vector x which maximize the variance of 1-D dataset B.
- Note that we would use sample variance $S_{\mathcal{B}}^2$, which is an approximate of variance $\sigma_{\mathcal{B}}^2$ (we assumed that $\mu_{\mathcal{A}} = \mathbf{0}$).

$$\sigma_{\mathcal{B}}^2 \approx S_{\mathcal{B}}^2 = \frac{1}{N-1} \sum_{i=1}^N (b^{(i)} - \bar{b})^2$$

$$= \frac{1}{N-1} \sum_{i=1}^N b^{(i)^2} \qquad (\bar{b} = 0 \text{ if } \mu_{\mathcal{A}} = \mathbf{0})$$

$$= \frac{1}{N-1} \mathbf{x}^T A A^T \mathbf{x} \approx \frac{1}{N} \mathbf{x}^T A A^T \mathbf{x} \qquad (\text{large } N)$$

• $\mathbf{S} = \frac{1}{N}AA^T$ is usually called the covariance matrix.

Notations: Lagrange multipliers

• Thus, our question becomes

Maximize
$$S_{\mathcal{B}}^2 = \frac{1}{N} \mathbf{x}^T A A^T \mathbf{x}$$

Constrained by $\|\mathbf{x}\| = 1 \Leftrightarrow \|\mathbf{x}\| - 1 = 0$

- Recall the knowledge in calculus. Generally, we solve extreme problem with constraint by the method of Lagrange multipliers.
- More specifically, we are going to solve

Minimize/maximize
$$f(\mathbf{x})$$

Constrained by $g(\mathbf{x}) = 0$

• We can solve this problem by define the Lagrange function \mathcal{L} , and solve the equation set $\nabla_{\mathbf{x},\lambda}\mathcal{L}=\mathbf{0}$.

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x}), \nabla_{\mathbf{x}, \lambda} \mathcal{L} = \mathbf{0}$$

Simplification

• To simplify calculation, we modify our problem to

$$\begin{aligned} &\text{Maximize} & &f(\mathbf{x}) = \mathbf{x}^T A A^T \mathbf{x} \\ &\text{Constrained by} & &g(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - 1 = 0 \end{aligned}$$

since N is a constant, $\mathbf{x}^T\mathbf{x}=1$ is equivalent to $\|\mathbf{x}\|=1$

• Therefore, the Lagrange function would be

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T A A^T \mathbf{x} - \lambda (\mathbf{x}^T \mathbf{x} - 1)$$

Calculate the gradient

Note that the gradient would be

$$\nabla_{\mathbf{x},\lambda} \mathcal{L} = \begin{bmatrix} \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{x}} \end{bmatrix}^T \\ 1 - \mathbf{x}^T \mathbf{x} \end{bmatrix} = \mathbf{0}$$

It could be shown that

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}} = \frac{\partial [\mathbf{x}^T A A^T \mathbf{x} - \lambda (\mathbf{x}^T \mathbf{x} - 1)]}{\partial \mathbf{x}}$$
$$= 2\mathbf{x}^T A A^T - 2\lambda \mathbf{x}^T = 0$$
$$\Rightarrow A A^T \mathbf{x} = \lambda \mathbf{x}$$

Therefore

$$\begin{cases} AA^T\mathbf{x} = \lambda\mathbf{x} \\ 1 - \mathbf{x}^T\mathbf{x} = 0 \end{cases}$$

Eigenvalue

• For a square matrix $M \in \mathbb{R}^{n \times n}$, nonzero vector \mathbf{x} , and real value λ , if

$$M\mathbf{x} = \lambda \mathbf{x}$$

then λ is a eigenvalue of matrix M and \mathbf{x} is the eigenvector corresponding to eigenvalue λ .

- Thus, λ is the eigenvalue of AA^T and ${\bf x}$ is the eigenvector of AA^T .
- Recall that the expression of sample variance could be rewritten as

$$\sigma_{\mathcal{B}}^2 \approx S_{\mathcal{B}}^2 = \frac{1}{N} \mathbf{x}^T A A^T \mathbf{x} = \mathbf{x}^T \lambda \mathbf{x} = \lambda \mathbf{x}^T \mathbf{x} = \lambda$$

Thus, the sample variance of reduced dataset \mathcal{B} is exactly λ .

Conclusion

- To find x, we
 - first find the largest eigenvalue λ of AA^T , then
 - find its corresponding eigenvector x.
- Project A onto x to obtain B.
- To represent \mathcal{B} on axis along \mathbf{x} , remap \mathcal{B} onto original data space by multiply \mathbf{x} by B.

$$B' = \mathbf{x}B = \begin{bmatrix} \mathbf{x}b^{(1)} & \mathbf{x}b^{(2)} & \cdots & \mathbf{x}b^{(N)} \end{bmatrix}$$

Outline

Motivation

Mathematical background

Simple implementation

Numpy implementation

• Please check PCA.ipynb for detailed instruction.