編譯器設計

Languages and Their Representations

Alphabets and Languages

- A sentence over an alphabet
 - any string of finite length composed of symbols from the alphabet
 - Synonyms for sentence are string and word
- ◆ The empty sentence ∈
 - the sentence consisting of no symbols
- ♦ If Vis an alphabet, then
 - V* denotes the set of all sentences composed of symbols of V, including the empty sentence
 - V+=V*-{∈}
 - If $V = \{0,1\}$, then

$$V^* = \{ \in, 0, 1, 00, 01, 10, 11, 000, ... \}$$

Grammars

Grammars

編譯器設計

2

Alphabets and Languages

- Webster defines a language as
 - "the body of words and methods of combining words used and understood by a considerable community"
- The definition is not precise
 - A formal language will be defined
- An alphabet.
 - any finite set of symbols, e.g.
 - Latin alphabet {A, B, C, ..., Z}
 - Greek alphabet $\{\alpha, \beta, \gamma, ..., \omega\}$
 - binary alphabet {0, 1}

Alphabets and Languages

- A language
 - any set of sentences over an alphabet
 - e.g. {0, 1} is a language
- Three questions are raised
 - How do we represent a language?
 - It's simple if the language is finite
 - How to represent an infinite language with a finite representation
 - Does there exist a finite representation for every language?
 - What can be said about the structures of those languages for which there exist finite representation?

編譯器設計

Grammars

編譯器設計

2

4

Representations of Languages

- Two ways to represent a language
 - To give an algorithm which determines if a sentence is in the language or not
 - To give a procedure which halts with the answer "yes" for sentences in the language and either does not terminate or else halts with the answer "no" for sentences not in the language
 - To give a grammar that generates sentences in the language

Formal Notation of a Grammar

- Four concepts
 - Nonterminals (or Variables)
 - e.g. <sentence>, <adjective>, <verb phrase>, etc.
 - Terminals
 - e.g. words such as The, little, boy, etc.
 - Productions relationships between strings of variables and terminals
 - e.g. <sentence>→<noun phrase><verb phrase>
 - Start Symbol distinguished symbol that generates exactly those strings of terminals that are deemed in the language
 - e.g. <sentence>

Grammars 編譯器設計 Grammars

編譯器設計

Grammars

Example: "The little boy ran quickly"

<sentence> → <noun phrase> < verb phrase>

<noun phrase> → <adjective> < noun phrase>

<noun phrase> → <adjective> < noun>

<verb phrase> → <verb> <adverb>

<adiective> → The

<adjective> → little

<noun> → boy

<verb> → ran <adverb> → quickly

Grammars 編譯器設計

Formal Notation of a Grammar

 \bullet A grammar G can be denoted by (V_N, V_T, P, S)

■ V_N: nonterminals

• V_T : terminals $(V_N \cap V_T = \phi, V_N \cup V_T = V)$

■ P: productions

• $\alpha \rightarrow \beta \in P$

■ S: start symbol

Grammars

編譯器設計

Derivation

- Derivation by a production
 - If $\alpha \to \beta \in P$ and γ , $\delta \in V$, then $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$
 - i.e. γαδ directly derives γβδ
- Derivation by productions
 - If α_1 , α_2 ,..., α_m are strings in V^* , and $\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_m$ then we say $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_m$

Grammars

編譯器設計

9

Types of Grammars

- lacktriangle Let $G = (V_N, V_T, P, S)$ be a grammar
 - Type 0 grammar
 - Type 1 grammar (context-sensitive grammar)
 - For every production $\alpha \rightarrow \beta$ in P, $|\alpha| \leq |\beta|$
 - e.g. P = {S→aSBC, S→aBC, CB→BC, aB→ab, bB→bb, bC→bc, cC→cc}
 - Type 2 grammar (context-free grammar)
 - For every production $\alpha {\rightarrow} \beta$ in \emph{P} , $|\alpha|$ =1 and $\beta \neq \varepsilon$
 - e.g. $P = \{S \rightarrow 0S1, S \rightarrow 01\}$
 - Type 3 grammar (regular grammar)
 - Every production in P is of the form

 $A \rightarrow aB$, or

A →a

Grammars

編譯器設計

11

Derivation

- ♦ The language generated by G is defined $L(G) = \{w \mid w \in V_T^* \land S \stackrel{*}{\Rightarrow} w\}$
 - That is, a string is in *L(G)* if
 - The string consists solely of terminals
 - The string can be derived from S
 - Grammars G_1 and G_2 are equivalent if • $L(G_1) = L(G_2)$
 - Example $G = (V_N, V_T, P, S)$ $V_N = \{S\}, V_T = \{0, 1\}, P = \{S \to 0S1, S \to 01\}$ $S \to 0S1 \to 00S11 \to 0^3S1^3 \to ... \to 0^{n-1}S1^{n-1} \to 0^n1^n$ $\therefore L(G) = \{0^n1^n\}$
 - A string of terminals and nonterminals α is called a *sentential form* if $S \stackrel{*}{\Rightarrow} \alpha$

Grammars

編譯器設計

10