Isothermal Batch Reactor

Prof. J. K Basu

Zero-order reaction

The zero-order kinetics is written as

$$-r_A = -\frac{1}{V} \frac{dN_A}{dt} = k \tag{34}$$

It may be written as $-\frac{dC_A}{dt}=k$ for constant volume batch reactor On integration from t=0, $C_A=C_{A0}$ to t=t, $C_A=C_A$, it results $C_A=C_{A0}-kt$, which is a straight line

At $t \to \infty$, C_A approaches to a negative value, which is never be possible as concentration cannot be negative.

Hence, the equation is valid up to $t=\mathcal{C}_{A0}/k$ at which $\mathcal{C}_A=0$.

Zero-order reaction

• The equation $C_A=C_{A0}-kt$ thus valid within the range $t\leq C_{A0}/k$ and at $t\geq C_{A0}/k$, $C_A=0$. This is shown in the Fig.8

Fig. 8 Zero order reaction

First order reaction

• Let us consider a first order the rate equation as, $-r_A = kC_A$. The mole balance can be given as.

$$-r_A = -\frac{1}{V} \frac{dN_A}{dt} = kC_A \tag{35}$$

$$-r_A = -\frac{dC_A}{dt} = kC_A$$

• On integration from t=0, $C_A=C_{A0}$ to t=t, $C_A=C_A$, it results

$$-\int_{C_{A0}}^{C_{A}} \frac{dC_{A}}{C_{A}} = k \int_{0}^{t} dt$$
 (36)

$$-ln\frac{C_A}{C_{A0}} = kt (37)$$

First order reaction in terms of conversion

 $-ln(C_A/C_{A0})$ is calculated for different 't' and plotted against t.

From the slope rate constant k is obtained.

The first-order rate equation in terms of conversion X_A is

$$-r_{A} = -\frac{d[C_{A0}(1 - X_{A})]}{dt} = kC_{A0}(1 - X_{A})$$

$$\frac{dX_{A}}{dt} = kC_{A0}(1 - X_{A})$$
(38)

• On integration of eq.(39) from t=0, $C_A=C_{A0}$ to t=t, $C_A=C_A$ we have $-\ln(1-X_A)=kt$

This equation may be used for finding k, if the batch reactor data are available as X_A versus t.

First order reaction

• $X_A = 1 - e^{-kt}$ or, $C_A = C_{A0}e^{-kt}$ if k is the rate constant

• so, at
$$t = \frac{1}{k}$$
, $C_A = \frac{C_{A0}}{e}$, $t = \frac{2}{k}$, $C_A = \frac{C_{A0}}{e^2}$

Second order reaction

The same procedure may be followed for an elementary second order reaction of type,

$$A + B \to C + D ,$$

$$-r_A = -\frac{dC_A}{dt} = kC_A C_B$$
(41)

Second order reaction

• Let the A and B are added with a molar ratio of $= C_{B0}/C_{A0}$,

$$C_A = C_{A0}(1 - X_A)$$
 and $C_B = C_{B0}(1 - X_B) = C_{A0}(M - X_A)$ as, $C_{A0}X_A = C_{B0}X_B$,

Eqn. (41) is written as a function of X_A ,

$$-r_A = C_{A0} \frac{dX_A}{dt} = kC_{A0}^2 (1 - X_A)(M - X_A)$$
 (42)

Integrating eq. (42) from t=0 , $X_A=0$ to t=t , $X_A=X_A$,

$$\int_0^{X_A} \frac{dX_A}{(1 - X_A)(M - X_A)} = \int_0^t kC_{A0} dt$$

$$ln[(M - X_A)/(M - 1)] = C_{A0}(M - 1)kt = (C_{B0} - C_{A0})kt$$
 (43)

Second order reaction

- In the above equation M > 1 value should be used to get finite solution.
- A straight line is obtained when $ln[(M-X_A)/(M-1)]$ is plotted against t. The slope of the straight line gives the value of rate constant.
- If the reactants are fed to the reactor in equal molar ratio, then =1. Equation (42) is written as

$$-r_A = -\frac{dC_A}{dt} = kC_A^2$$

The integrated form of equation is

$$\frac{1}{C_A^2} - \frac{1}{C_{A0}^2} = 2kt \tag{33}$$

• The eq(33) can be used for kinetic analysis. Again, if \mathcal{C}_A is replaced by X_A we have the rate as a function of conversion

Second order reaction

Or,
$$-r_A = C_{A0} \frac{dX_A}{dt} = C_{A0}^2 (1 - X_A)^2$$
 (41)

On integration, one can obtain

$$\frac{X_A}{1 - X_A} = C_{A0}kt \tag{42}$$

- In case of conversion-time data, $X_A/(1-X_A)$ versus t plot will be straight line.
- The rate constant k will be obtained again from the slope of this straight line plot.

Negative order or fractional order reaction

For nth order reaction
$$-r_A = kC_A^n$$

$$\frac{dC_A}{dt} = -kC_A^n$$

$$\int_{C_{A0}}^{C_A} C_A^{-n} dC_A = -\int_0^t k dt$$

$$\frac{1}{-n+1} (C_A^{-n+1} - C_{A0}^{-n+1}) = -kt$$

$$C_A = C_{A0} [1 + (n-1)kC_{A0}^{n-1}t]^{1/(1-n)}$$
 (43)

In the equation if 'n' is fraction or negative, second term is negative. Then as $t \to \infty$, $C_A \to -ve$ and for $C_A = 0$, $t \ge \frac{1}{(1-n)kC_{A0}^{n-1}}$

Application to n=1/2

•
$$C_A = C_{A0} [1 + (n-1)kC_{A0}^{n-1}t]^{1/(1-n)}$$

•
$$C_A = C_{A0} [1 + (1/2 - 1)kC_{A0}^{1/2-1}t]^{1/(1-1/2)}$$

•
$$C_A = C_{A0} [1 - 1/2ktC_{A0}^{-1/2}]^2$$

- If $1/2ktC_{A0}^{-1/2}$ is negative and as $t \rightarrow \infty$, C_A will be -ve
- C_A =0 for $1/2ktC_{A0}^{-1/2}$ equals to 1, $t = 2C_{A0}^{-1/2}/k$
- Similarly for nth-order(fractional or negative) $t = 1/(n-1)k{C_{\!A0}}^{n-1}$

$$t \ge 1/(n-1)kC_{A0}^{n-1}$$
, $C_A = 0$

Negative order or fractional order reaction

Overall Order of Irreversible Reaction by Half life period method

$$aA + bB \to cC + dD$$
$$-r_A = -\frac{dC_A}{dt} = kC_A^a C_B^b$$

Reaction is performed with a stoichiometric ratios throughout the reaction period.

$$\frac{C_B}{C_A} = \frac{b}{a} \text{ and } -\frac{dC_A}{dt} = kC_A^a \left(\frac{b}{a}C_A\right)^b = k\left(\frac{b}{a}\right)^b C_A^{a+b} = k'C_A^n$$

By integrating for n≠1 gives

$$(C_A^{1-n} - C_{A0}^{1-n}) = k(n-1)t$$

For half-life period:
$$t = \frac{1}{2}$$
, $C_A = \frac{C_{A0}}{2}$ and $t_{\frac{1}{2}} = \frac{0.5^{1-n} - 1}{k(n-1)}$ C_{A0}^{1-n} (44)
$$t_{\frac{1}{2}} = \frac{0.5^{1-n} - 1}{k(n-1)}$$
 C_{A0}^{1-n}

$ln(t_{1/2})$ versus $ln(C_{A0})$ plot gives a straight line with slope =1-n Seeing the slope this plot, we can decide about the order of the reaction

Irreversible parallel reaction

Let the reactions

$$A \xrightarrow{A_1} R$$

$$r_R = \frac{dC_R}{dt} = k_1 C_A$$

$$r_S = \frac{dC_S}{dt} = k_2 C_A$$

$$r_S = \frac{dC_A}{dt} = (k_1 + k_2) C_A$$

$$at \ t = 0, C_A = C_{A0}; C_{R0} = C_{S0} = 0$$

$$-\ln\frac{c_A}{c_{A0}} = (k_1 + k_2)t = k't$$
 where k

where k' is obtained from the plot of $-\ln \frac{c_A}{c_{A0}}$

vs. t. We know the sum of two constant $(k_1 + k_2)$.

$$\frac{r_R}{r_S} = \frac{dC_R}{dC_S} = \frac{k_1}{k_2} \Longrightarrow \frac{C_R - C_{R0}}{C_S - C_{S0}} = k''$$

If we know C_R and C_S at different time 't', C_R is to be plotted against C_S .

$$Slope = \frac{k_1}{k_2}, \qquad k_1 > k_2$$

Irreversible parallel reaction

From the slope $=\frac{k_1}{k_2}$ and $(k_1+k_2)=k'$,rate constants are to be determined.

Series Reaction of type $A \xrightarrow{k_1} R \xrightarrow{k_2} S$

This is a multiple reaction of consecutive form

$$A \xrightarrow{k_1} R \xrightarrow{k_2} S$$
 all steps are irreversible and elementary $r_A = \frac{dC_A}{dt} = -k_1 C_A$ or, $-\ln \frac{C_A}{C_{A0}} = k_1 t$ or, $C_A = C_{A0} e^{-k_1 t}$ $r_R = \frac{dC_R}{dt} = k_1 C_A - k_2 C_R$ $\frac{dC_R}{dt} + k_2 C_R = k_1 C_{A0} e^{-k_1 t}$ $\frac{dy}{dx} + Py = Q$ type differential equation

Solution:
$$ye^{\int Pdx} = \int Qe^{\int Pdx} dx + Const$$

Series Reaction

•
$$C_R e^{\int k_2 dt} = \int (k_1 C_{A0} e^{-k_1 t} e^{\int k_2 dt}) dt + Const$$

•
$$C_R e^{k_2 t} = C_{A0} k_1 \frac{e^{(k_2 - k_1)t}}{k_2 - k_1} + Const$$

• At
$$t = 0$$
, $C_{R0} = 0$, $Const = -\frac{k_1 C_{A0}}{k_2 - k_1}$

•
$$C_R = C_{A0}k_1 \left[\frac{e^{-k_1t}}{k_2 - k_1} + \frac{e^{-k_2t}}{k_1 - k_2} \right]$$

•
$$As$$
, $C_{A0} = C_A + C_R + C_S$

•
$$C_S = C_{A0} \left[1 + \frac{k_2}{k_1 - k_2} e^{-k_1 t} + \frac{k_1}{k_2 - k_1} e^{-k_2 t} \right]$$

• Neglecting,
$$k_1$$
 when $k_2\gg k_1$, $C_S=C_{A0}\big(1-e^{-k_1t}\big)$

• which is a first order , first step is controlling

Series Reaction

 $k_1 \gg k_2$, $C_S = C_{A0} (1 - e^{-k_2 t})$, the second step is the controlling one.

$$At, \frac{dC_R}{dt} = 0, \quad t_{max} = \frac{1}{k_{Log mean}} = \frac{\ln \frac{k_2}{k_1}}{k_2 - k_1}$$
 and
$$\frac{C_{R,max}}{C_{A0}} = \left(\frac{k_1}{k_2}\right)^{k_2/(k_2 - k_1)}$$

Concentration profile for $A \xrightarrow{k_1} R \xrightarrow{k_2} S$

Example-1 For reactions $A \xrightarrow{k_1} R \xrightarrow{k_2} S$, $k_1 = k_2 = 0.1 min^{-1}$. $C_{A0} = 10 \frac{mols}{L}$. Derive the expression for C_R as a function of time. Find $C_{R,max}$ and t_{max} .

Solution:

$$A \xrightarrow{0.1min^{-1}} R \xrightarrow{0.1min^{-1}} S$$

$$r_A = \frac{dC_A}{dt} = -k_1 C_A$$

$$r_R = \frac{dC_R}{dt} = k_1 C_A - k_1 C_R$$

$$C_R e^{\int k_1 dt}$$

$$= \int (k_1 C_{A0} e^{-k_1 t} e^{\int k_1 dt}) dt + I$$

$$C_R = k_1 C_{A0} e^{-k_1 t}$$

steps are elementary

or,
$$-\ln \frac{c_A}{c_{A0}} = k_1 t$$
 or, $C_A = C_{A0} e^{-k_1 t}$

$$\frac{dC_R}{dt} + k_1 C_R = k_1 C_{A0} e^{-k_1 t}$$

$$C_R e^{k_1 t} = \int (k_1 C_{A0}) dt + I,$$

$$at t = 0, C_R = 0 \text{ and } I = 0$$

Example-1

$$\frac{dC_R}{dt} = -k_1^2 C_{A0} e^{-k_1 t} t + k_1 C_{A0} e^{-k_1 t} = 0$$

$$k_1 C_{A0} e^{-k_1 t} (1 - k_1 t) = 0 \text{ or } t_{max} = 1/k_1$$

$$C_{R,max} = k_1 C_{A0} e^{\frac{1}{k_1}} = 3.679 \text{ moles/L}$$