Homework 5 for "Convex Optimization" Part. 1

1500010611 汪袆非

1 Problem 1

At first, we directly use CVX by calling solver *mosek*. It takes about 8.07s, and the optimal value is 0.0851. Then, we use CVX by calling solver *gurobi*. It takes about 7.51s, and the optimal value is 0.0851. The error of *cvx gurobi* to *cvx mosek* is 1.91×10^{-6} . We plot the exact solution and solutions from *cvx mosek* and *cvx gurobi*:

Figure 1 Solutions

From figure 1, both cvx mosek and cvx gurobi give exactly the exact solution.

2 Problem 2

The l_1 -regularized problem

$$\min_{x} \frac{1}{2} ||Ax - b||_{2}^{2} + \mu ||x||_{1} \tag{1}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\mu > 0$ are given.

It is equivalent to the following optimization problem

$$\begin{cases}
\min \frac{1}{2} ||A(x^{+} - x^{-}) - b||_{2}^{2} + \mu \mathbf{1}^{T} (x^{+} + x^{-}) \\
\text{s.t.} x^{+} \ge 0, \ x^{-} \ge 0,
\end{cases} \tag{2}$$

We can rewrite it into a quadratic optimization problem:

$$\begin{cases}
\min \frac{1}{2} \begin{bmatrix} x^+ \\ x^- \end{bmatrix}^T \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \end{bmatrix} + \begin{bmatrix} \mu \mathbf{1} - A^T b \\ A^T b + \mu \mathbf{1} \end{bmatrix}^T \begin{bmatrix} x^+ \\ x^- \end{bmatrix} + \frac{1}{2} b^T b \\
\text{s.t.} \quad x^+ \ge 0, \ x^- \ge 0,
\end{cases} \tag{3}$$

The problem 3 can be solved by *mosek* and *gurobi*. We randomly generate A and b again, so A and b in this section are not the same in Section 1. *mosek* takes 6.12s and the optimal value is 0.0759. The error of *mosek* to *cvx mosek* is 3.33×10^{-4} . *gurobi* takes 29.85s and the optimal value is 0.0735. The error of *gurobi* to *cvx mosek* is 1.98×10^{-6} . We plot the exact solution and solutions from *mosek* and *gurobi*:

From figure 2, both *mosek* and *gurobi* give exactly the exact solution.

3 Problem 3(a)

The problem 3 is a quadratic program with box constraints. We consider to use continuation method. Let $\mu_i = \alpha^{N-i}\mu$, i = 1, 2 ... N, where $\alpha > 1$ and N are parameters for continuation method. Then, $\mu_N = \mu$. Then the problem 3 with μ_i is equivalent to:

$$\begin{cases}
\min & \frac{1}{2}(x^{+} - x^{-})^{T} A^{T} A(x^{+} - x^{-}) + (\mu_{i} \mathbf{1} - A^{T} b)^{T} x^{+} + (\mu_{i} \mathbf{1} + A^{T} b)^{T} x^{-} + \frac{1}{2} b^{T} b \\
\text{s.t.} & x^{+} \geq 0, \quad x^{-} \geq 0
\end{cases} \tag{4}$$

We denote $f_i(x^+, x^-) = \frac{1}{2}(x^+ - x^-)^T A^T A(x^+ - x^-) + (\mu \mathbf{1} - A^T b)^T x^+ + (\mu_i \mathbf{1} + A^T b)^T x^- + \frac{1}{2} b^T b$. Then, $\nabla_{x^+} f_i = A^T A(x^+ - x^-) + \mu_i \mathbf{1} - A^T b$, $\nabla_{x^-} f_i = A^T A(x^- - x^+) + \mu_i \mathbf{1} + A^T b$.

Figure 2 Solutions

The projection on *C* is given by:

$$P_C(x^+)_j = \max\{x_j^+, 0\}, \quad P_C(x^-)_j = \max\{x_j^-, 0\}, \quad j = 1, 2 \dots n$$

The initial guess of x^+ , x^- is given by

$$(x^+)_j = \max\{(x_0)_j, 0\}, \quad (x^-)_j = \max\{-(x_0)_j, 0\}, \quad j = 1, 2 \dots n$$

The solution x is given by $x = x^+ - x^-$. Then we get the following projection gradient method with continuation method:

Algorithm 1 Projection gradient method with continuation method

```
Input: initial guess x_0, step size s, continuation parameter \alpha, N, K.

1: Let (x^+)_j = \max\{(x_0)_j, 0\}, \quad (x^-)_j = \max\{-(x_0)_j, 0\}, \quad j = 1, 2 \dots n.

2: for i = 1 : N do

3: for k = 1 : K do
```

4: $d^+ = A^T A(x^+ - x^-) + \mu_i \mathbf{1} - A^T b, d^- = A^T A(x^- - x^+) + \mu_i \mathbf{1} + A^T b$ 5: $x^+ = P_C(x^+ - sd^+), x^- = P_C(x^- - sd^-)$

6: **end for**

7: end for

8: $x = x^+ - x^-$

We take $s = 4 \times 10^{-4}$, $\alpha = 10$, N = 6, K = 180. The program is named *l1_projgrad.m*. Then,

we compare our solution with the solution from $cvx\ mosek$. Our algorithm 1 takes 7.77s, and the optimal value is 0.0758. $cvx\ mosek$ takes 8.07s, and the optimal value is 0.0758. The error of x between algorithm 1 to $cvx\ mosek$ is 2.8×10^{-6} and the error of the optimal value is -1.8992×10^{-7} . We plot the exact solution and solutions from algorithm 1 and $cvx\ mosek$:

Figure 3 Solutions

4 Problem 3(b)

Let us denote $F_{\mu}(x) = \frac{1}{2} ||Ax - b||_2^2 + \mu ||x||_1$. Then, the primal problem can be written as:

$$\min_{x \in \mathbb{D}^n} F_{\mu}(x) \tag{5}$$

We know that $g_{\mu}(x) = A^{T}(Ax - b) + \mu \operatorname{sign}(x)$ is a subgradient of $F_{\mu}(x)$, where

$$sign(x)_{j} = \begin{cases} 1, & x_{j} > 0 \\ 0, & x_{j} = 0 \quad j = 1, 2 \dots n \\ -1, & x_{j} < 0 \end{cases}$$

We apply continuation method in our implementation as well. Let $\mu_i = \alpha^{N-i}\mu$, i = 1, 2 ... N, where $\alpha > 1$ and N are parameters for continuation method. Then, $\mu_N = \mu$. Then, we get the following subgradient method with continuation method:

Algorithm 2 Subgradient method with continuation method

Input: initial guess x_0 , step size s, continuation parameter α , N, max iteration number for each stage K.

```
1: Let x = x_0.

2: for i = 1 : N do

3: for k = 1 : K do

4: x = x - s_i (A^T A x - A^T b + \mu_i \text{sign}(x))

5: end for

6: end for
```

We take $s = 2.8 \times 10^{-4}$, $\alpha = 10$, N = 6, K = 300. The program is named $l1_subgrad.m$. Then, we compare our solution with the solution from $cvx\ mosek$. Our algorithm 1 takes 6.47s, and the optimal value is 0.0728. $cvx\ mosek$ takes 10.56s, and the optimal value is 0.0728. The error of x between algorithm 2 to $cvx\ mosek$ is 2.34×10^{-6} and the error of the optimal value is 1.7117×10^{-7} . We plot the exact solution and solutions from algorithm 1 and $cvx\ mosek$:

Figure 4 Solutions

The whole test program is named *Test_hw05_01.m*.

5 Numerical result

This time we run all algorithms mentioned before with same *A* and *b*. The numerical result is given in the following table:

Table 1 Random seed is 4. The cpu time of cvx mosek is 1.18

Method	cpu time	objval to cvx mosek	error to cvx mosek
cvx gurobi	1.66	-1.19×10^{-7}	2.09×10^{-6}
mosek	3.41	2.14×10^{-5}	2.42×10^{-4}
gurobi	8.81	-1.20×10^{-7}	2.11×10^{-6}
projection gradient	1.13	-1.19×10^{-7}	1.99×10^{-6}
subgradient	0.94	-2.73×10^{-9}	1.49×10^{-6}