

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2022.2) Prof. Msc. Thais Oliveira Almeida

AULA 8:

INTERPRETAÇÃO DE FÓRMULAS QUANTIFICADAS

Interpretação de Fórmulas Quantificadas

- ❖Se H é uma fórmula, "x" uma variável, I uma interpretação sobre um domínio U:

 - \circ I[(\forall x)H]=F \leftrightarrows ∃ d ∈ U; <x ← d>I[H]=F
 - I[($\exists x$)H] =T $\leftrightarrows \exists d \in U$; <x ← d>I[H]=T
 - I[($\exists x$)H] =F $\leftrightarrows \forall d \in U$; <x ← d>I[H]=F
 - Onde <x ← d> significa "interpretação de x como d" ou
 - \circ <x ← d> I[x]=d.

Exemplo

- ❖I é uma interpretação sobre o conjunto de alunos-CC, tal que:
 - $I[p(x)]=T \leftrightarrows x_1$ é inteligente
- Arrow H₁= (\forall x)p(x). O que é I[H₁]=T?
 - Todo aluno de Ciência da Computação é inteligente.

$$I[H_1]=T \Rightarrow I[(\forall x)p(x)]=T$$

- ⋄ ≒ ∀ d ∈ aluno-CC; d é inteligente
- \circ \leftrightarrows \forall d ∈ aluno-CC; $p_I(d)$ =T
- \circ \leftrightarrows \forall d ∈ aluno-CC; <x \leftarrow d>I[p(x)]=T
- $\diamond \forall d \in \text{aluno-CC}$, se x é interpretado como d, então p(x) é interpretado como T.

Exemplo

- $| \cdot | [H_1] = F?$
 - Significa dizer que é falso que todo aluno de CC é inteligente. Isto significa que existe algum aluno burro.
- $I[H_1]=F \leftrightarrows I[(\forall x)p(x)]=F$

 - \circ \leftrightarrows ∃ d ∈ aluno-CC; $p_I(d)=F$
 - \circ \leftrightarrows ∃ d ∈ aluno-CC; <x \leftarrow d>l[p(x)]=F
- Nem todo aluno-Cln é inteligente
 - ∘ \exists d ∈ aluno-CC; $\langle x \leftarrow d \rangle I[p(x)] = F$
- ❖∃ d ∈ aluno-CC, se x é interpretado como d, então p(x) é interpretado como F.

- Seja I uma interpretação sobre domínio dos números naturais N, tal que:
 - I[x]=3, I[a]=5, I[y]=4, I[f]=+, I[p]=<
 - Considere: $G=(\forall x)p(x,y)$
 - Prove que I[G]=F, para todo número natural x, x<4.

- ❖Seja I uma interpretação sobre domínio dos números naturais N, tal que:
 - I[x]=3, I[a]=5, I[y]=4, I[f]=+, I[p]=
 - Considere: $G=(\forall x)p(x,y)$
 - Prove que I[G]=F, para todo número natural x, x<4.

∜I[G]=F

- $\circ \leftrightarrows I[(\forall x)p(x,y)]=F$
- $\circ \leftrightarrows \exists d \in N; \langle x \leftarrow d \rangle I[p(x,y)] = F$
- \circ \leftrightarrows ∃ d ∈ N; **d<4 é F**, que é verdadeira
- ⋄ ≒ I[G]=F é verdadeira
- ❖A interpretação de G segundo I é falsa. Não foi usada I[x]=3, e sim a versão estendida $\langle x \leftarrow d \rangle$.

- ❖Não é preciso usar as interpretações I[x]=3, pois x é uma variável ligada;
 - Usa-se a interpretação estendida:
 - <x <- d>I[p(x,y)] que não usa I[x].

- Seja I uma interpretação sobre os números naturais N, tal que I[a] = 1, I[x] = 1, I[p] = <, I[f] = f_I , onde $f_I(d) = d + 1$, I[q(x)] = T $\longleftrightarrow x_I$ é par. Além disso, o valor de I[y] é desconhecido.
- Seja J uma interpretação sobre os números inteiros Z, tal que: J[a] = 0, J[x] = -1, J[y] = 0, $J[p] = < e J[f] = f_i(d) = d + 1$.
- Determine, quando for possível, as interpretações da fórmula a seguir conforme I e J.

$$(\forall y)(p(y, a) \lor p(f(y), y))$$