Geometric probability. Conditional probability Probability theory

Anton Afanasev

Higher School of Economics

DSBA 221 September 15, 2023

Seminar Overview

- Quiz
- Geometric probability Problems Properties
- 3 Conditional probability Definition Independence Bayes' theorem

Quiz

Remember BlackJack?

You're given 2 random cards from the same deck of 52.

What's the probability of getting

- 1 21 pts,
- 20 pts,
- **3** 12 pts,
- **4** 10 pts?

Figure: Card values.

Note: the value of an ace maximizes the score if it does not exceed 21.

Two points, X and Y, are randomly chosen on an interval OA = [0, 1]. Find the probability of each of the following events:

- **1** A distance between *X* and *O* is less than $\frac{1}{10}$.
- 2 A distance between *X* and *O* is between 0.7 and 0.705.
- **3** A distance between *X* and *O* is equal to 0.7
- 4 A distance between *X* and *Y* is less than 0.5
- **6** A distance between *X* and *Y* is equal to $\frac{1}{3}$.
- **6** Length of *XY* is less than the distance between *O* and the closest point to it.

Consider a round shooting target with a radius of R. Someone is shooting at it with bullets of radius B. Find the probability that a hole made by the shot entirely lies within an interior circle with a radius of r. Assume R > r > B.

A stick of length L is broken in two places. The break points are independent of each other and are chosen at random (uniformly) on the stick. What is the probability that a triangle can be formed using these three pieces of stick?

Properties of geometric probability

• Notion of the cardinality of an event |A| from classical probability expands to the measure of an event $\mu(A)$:

$$\mathsf{P}_{\mathsf{class}}(A) = \frac{|A|}{|\Omega|} \qquad \Longrightarrow \qquad \mathsf{P}_{\mathsf{geom}}(A) = \frac{\mu(A)}{\mu(\Omega)}.$$

• Impossible ≠ Improbable:

$$\mathsf{P}_{\mathsf{geom}}(\omega) = \mu(\omega) = 0.$$

- Comparison with a classical probability:
- **1** $P_{class}(A) \in [0,1]$,
- 3 $\mathsf{P}_{\mathsf{class}}\left(\overline{A}\right) = 1 \mathsf{P}_{\mathsf{class}}(A)$,
- 4 closed under ∩ and \ J.

1
$$P_{geom}(A) \in [0, 1],$$

3
$$P_{\text{geom}}(\overline{A}) = 1 - P_{\text{geom}}(A)$$
,

4 closed under \bigcap and \bigcup .

There are two children in a family. It is known that at least one of them is a boy. Find the probability that the other child is also a boy.

Conditional probability

$$\mathsf{P}(A\mid B) = \frac{\mathsf{P}(A\cap B)}{\mathsf{P}(B)} = \frac{\mu(A\cap B)/\mu(\Omega)}{\mu(B)/\mu(\Omega)} = \frac{\mu(A\cap B)}{\mu(B)}.$$

(b) Narrowed sample space $\Omega \rightarrow B$

Figure: Geometric interpretation of conditional probability.

Independence

Definition

Two events *A* and *B* are independent iff:

$$\mathsf{P}(A \cap B) = \mathsf{P}(A) \cdot \mathsf{P}(B).$$

• If *A* and *B* are independent then:

$$\mathsf{P}(A\mid B) = \frac{\mathsf{P}(A\cap B)}{\mathsf{P}(B)} = \frac{\mathsf{P}(A)\cdot\mathsf{P}(B)}{\mathsf{P}(B)} = \mathsf{P}(A).$$

Don't confuse independence with mutual exclusion:

$$A \cap B = \emptyset$$
 \Longrightarrow $P(A \cup B) = P(A) + P(B)$.

Pairwise and collective independence

Definition

Events A_1, \ldots, A_n are pairwise independent iff:

$$\forall i \neq j \in \overline{1,n}$$
 $\mathsf{P}(A_i \cap A_j) = \mathsf{P}(A_i) \cdot \mathsf{P}(A_j).$

Definition

Events A_1, \ldots, A_n are collectively (mutually) independent iff:

$$\forall I \subset \overline{1,n}$$
 $\mathsf{P}\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} \mathsf{P}(A_i).$

• For three events *A*, *B* and *C*:

pairwise: P(A | B) = P(A), P(C | A) = P(C), ...

collective: $P(A \mid B, C) = P(A), P(C \mid A, B) = P(C), \dots$

Two coins are tossed. Let's denote events *A*, *B* and *C* the following way:

 $A = \{1^{st} \text{ coin is heads}\},$ $B = \{2^{nd} \text{ coin is heads}\},$ $C = \{\text{only one coin is heads}\}.$

Are these events collectively independent? Are they pairwise independent? Will the situation change if the coin is not fair?

Total probability

Figure: Set A in terms of intersections with sets B_i .

• Total probability of *A*:

$$\mathsf{P}(A) = \sum_{i=1}^n \mathsf{P}(A \cap B_i) = \sum_{i=1}^n \mathsf{P}(A \mid B_i) \cdot \mathsf{P}(B_i).$$

• If you care about specific *B*_i:

$$\mathsf{P}(A) = \mathsf{P}(A \mid B_i) \cdot \mathsf{P}(B_i) + \mathsf{P}(A \mid \overline{B}_i) \cdot \mathsf{P}(\overline{B}_i).$$

• Set of $\{B_1, \ldots, B_n\}$ should be collectively exhaustive and mutually exclusive.

Bayes' theorem

Using definition of conditional probability twice:

$$\mathsf{P}(A \cap B) = \mathsf{P}(A \mid B) \cdot \mathsf{P}(B) = \mathsf{P}(B \mid A) \cdot \mathsf{P}(A).$$

Theorem (Bayes')

$$\mathsf{P}(B \mid A) = \frac{\mathsf{P}(A \mid B) \cdot \mathsf{P}(B)}{\mathsf{P}(A)}$$

- P(B) *prior*, the initial degree of belief in B.
- $P(B \mid A)$ *posterior*, the degree of belief after incorporating news that A is true.
- When there are several priors:

$$\mathsf{P}(B_i \mid A) = \frac{\mathsf{P}(A \mid B_i) \cdot \mathsf{P}(B_i)}{\sum\limits_{j=1}^{n} \mathsf{P}(A \mid B_j) \cdot \mathsf{P}(B_j)}.$$

There are three cards.

- The letter A is written on both sides of the 1st card.
- The letter \mathbb{A} is written on both sides of the 2^{nd} card.
- Letters \mathbb{A} and \mathbb{B} are written on different sides of the 3^{rd} card.

A random card has been put on the table in such a way that the letter \mathbb{A} is visible. What is the probability that the letter \mathbb{A} is written on the other side of the card?

A system consists of two parallel elements and is operational if at least one of them is working. At a random time, the 1st element is out of order with a probability of 0.1, and the 2nd element is out of order with a probability of 0.2. Someone has informed us that the system is currently operational. What is the probability that the 2nd element is out of order?

