

TRANSFORMAÇÕES LINEARES

5.1 INTRODUÇÃO

Funções lineares descrevem o tipo mais simples de dependência entre variáveis. Muitos problemas podem ser representados por tais funções. Por exemplo: Se de um quilograma de soja, são extraídos 0,2 litros de óleo, de uma produção de x kg de soja, seriam extraídos 0,2x litros de óleo. Escrevendo na forma de função, teremos

$$Q(s) = 0.2s,$$

onde Q = quantidade em litros de óleo de soja e s = quantidade em kg de soja. Estes dados podem ser colocados graficamente:

Vamos analisar neste exemplo simples duas características importantes:

- 1) Para calcular a produção de óleo fornecida por $(s_1 + s_2)$ kg de soja, podemos tanto multiplicar $(s_1 + s_2)$ pelo fator de rendimento 0,2, como calcular as produções de óleo de cada uma das quantidades s_1 e s_2 e somá-las, isto é, $Q(s_1 + s_2) = 0.2(s_1 + s_2) = 0.2s_1 + 0.2s_2 = Q(s_1) + Q(s_2)$.
- 2) Se a quantidade de soja for multiplicada por um fator k, a produção de óleo será multiplicada por este mesmo fator, isto ϵ , $Q(ks) = 0.2(ks) = k(0.2s) = k \cdot Q(s)$.

Estas duas propriedades, que neste caso são óbvias, servirão para caracterizar o que denominaremos "transformação linear". Vejamos ainda um segundo exemplo de uma situação envolvendo mais fatores e que apresenta o mesmo comportamento.

A quantidade em litros de óleo extraída por quilograma de cereal segundo um determinado processo pode ser descrita pela tabela.

	Soja	Milho	Algodão	Amendoim
Öleo (الا)	0,2	0,06	0,13	0,32

A quantidade total de óleo produzido por x kg de soja, y kg de milho, z kg de algodão e w kg de amendoim é dada por Q = 0.2x + 0.06y + 0.13z + 0.32w. Observe que a quantidade de óleo pode ser dada pela multiplicação da "matriz rendimento" pelo vetor quantidade.

$$Q = \begin{bmatrix} 0.2 & 0.06 & 0.13 & 0.32 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0.2x + 0.06y + 0.13z + 0.32w$$

Formalmente, estamos trabalhando com a função $Q:A \subset \mathbb{R}^4 \to \mathbb{R}$

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \longrightarrow \begin{bmatrix} 0.2 & 0.06 & 0.13 & 0.32 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

que, como no exemplo anterior, goza das propriedades:

1)
$$Q\left(\begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{bmatrix}\right) = Q\begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{bmatrix} + Q\begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{bmatrix}$$

2)
$$Q\left(k\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}\right) = k \cdot Q\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Você deve verificar e interpretar estas propriedades.

Pensemos agora em termos de espaços vetoriais. Uma função entre espaços vetoriais, satisfazendo as condições 1 e 2, é a "mais natural possível", pois respeita toda a "estrutura" de espaço vetorial.

- **5.1.1 Definição:** Sejam V e W dois espaços vetoriais. Uma transformação tinear (aplicação linear) é uma função de V em W, $F: V \rightarrow W$, que satisfaz as seguintes condições:
- i) Quaisquer que sejam u e v em V,

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$$

 $i\hat{i}$) Quaisquer que sejam $k \in \mathbf{R}$ e $\mathbf{v} \in V$,

$$F(k\mathbf{v}) = kF(\mathbf{v})$$

5.1.2 Exemplos

Exemplo 1: As funções apresentadas ao introduzirmos este capítulo, uma vez que as variáveis são positivas, são restrições das seguintes aplicações lineares:

i)
$$V = W = \mathbf{R} \in Q : \mathbf{R} \to \mathbf{R}$$

$$x \mapsto 0,2x$$

ii)
$$V = \mathbb{R}^4$$
, $W = \mathbb{R} \in Q: \mathbb{R}^4 \to \mathbb{R}$

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \mapsto \begin{bmatrix} 0,2 & 0,06 & 0,13 & 0,32 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Exemplo 2:

$$V = \mathbf{R} \quad \mathbf{e} \quad W = \mathbf{R}$$

 $F: \mathbf{R} \to \mathbf{R}$ definida por $\mathbf{u} \mapsto \alpha \mathbf{u}$ ou $F(\mathbf{u}) = \alpha \mathbf{u}$

Como $F(\mathbf{u} + \mathbf{v}) = \alpha(\mathbf{u} + \mathbf{v}) = \alpha\mathbf{u} + \alpha\mathbf{v} = F(\mathbf{u}) + F(\mathbf{v})$, F satisfaz a primeira condição, e como $F(k\mathbf{u}) = \alpha(k\mathbf{u}) = k(\alpha\mathbf{u}) = kF(\mathbf{u})$, F satisfaz a segunda condição. Logo F é uma transformação linear.

Mais ainda, toda transformação linear de \mathbf{R} em \mathbf{R} só pode ser deste tipo. De fato, F(x) = F(x+1) e como F é uma transformação linear e x um escalar, $F(x+1) = x \cdot F(1)$. Chamando $F(1) = \alpha$, temos $F(x) = \alpha x$.

O nome transformação linear certamente foi inspirado neste caso, V = W = R, pois o gráfico de $F(x) = \alpha x$ é uma reta que passa pela origem.

Exemplo 3:

$$F: \mathbf{R} \to \mathbf{R}$$

 $\mathbf{u} \to \mathbf{u}^2$ ou $F(\mathbf{u}) = \mathbf{u}^2$.

Você já pode concluir que F não é linear pelo que foi mostrado no exemplo anterior. Se você desconhecesse o resultado dado, teria que mostrar a não linearidade de F diretamente:

$$F(\mathbf{u} + \mathbf{v}) = (\mathbf{u} + \mathbf{v})^2 = \mathbf{u}^2 + 2\mathbf{u}\mathbf{v} + \mathbf{v}^2$$

e $F(\mathbf{u}) + F(\mathbf{v}) = \mathbf{u}^2 + \mathbf{v}^2$

Portanto,

$$F(\mathbf{u} + \mathbf{v}) \neq F(\mathbf{u}) + F(\mathbf{v})$$

Exemplo 4:

$$V = \mathbb{R}^2$$
 e $W = \mathbb{R}^3$
 $F: \mathbb{R}^2 \to \mathbb{R}^3$

$$(x, y) \mapsto (2x, 0, x + y)$$
 ou $F(x, y) = (2x, 0, x + y)$.

Por exemplo, $F(1, 2) = (2, 0, 3) \in \mathbb{R}^3$.

Dados $u, v \in \mathbb{R}^2$, sejam $u = (x_1, y_1)$ e $v = (x_2, y_2)$ onde $x_i, y_i \in \mathbb{R}$. Temos:

$$F(\mathbf{u} + \mathbf{v}) = F((x_1, y_1) + (x_2, y_2)) = F(x_1 + x_2, y_1 + y_2)$$

$$= (2(x_1 + x_2), 0, (x_1 + x_2) + (y_1 + y_2))$$

$$= (2x_1, 0, x_1 + y_1) + (2x_2, 0, x_2 + y_2)$$

$$= F(\mathbf{u}) + F(\mathbf{v})$$

Logo, a primeira condição é satisfeita. Mais ainda,

$$F(k\mathbf{u}) = F(k(x, y)) = F(kx, ky)$$

= $(2kx, 0, kx + ky)$
= $k(2x, 0, x + y) = kF(\mathbf{u})$

e a segunda condição é satisfeita. Então F é uma transformação linear.

Observação: Decorre da definição que uma transformação linear $T:V \to W$ leva o vetor nulo de V no vetor nulo de W, isto é, se $\mathbf{0} \in V$, $T(\mathbf{0}) = \mathbf{0} \in W$. Isto nos ajuda a detectar transformações não lineares. Se $T(\mathbf{0}) \neq \mathbf{0}$, T não é linear (veja o Exercício 1 da secção 5.6). Mas cuidado $T(\mathbf{0}) = \mathbf{0}$ não é suficiente para que T seja linear (veja o Exemplo 3 acima). Assim, por exemplo, $T:\mathbf{R}^3 \to \mathbf{R}^2$ onde T(x, y, z) = (x + 1, y, z) não é linear.

Exemplo 5:

Sejam
$$V = W = P_n$$
 (polinômios de grau $\leq n$) e $D:P_n \to P_n$, a aplicação derivada $f \mapsto f'$

que a cada polinômio f associa sua derivada, a qual também é um polinômio (com l grau a menos). Como para quaisquer funções deriváveis,

$$D(f + g) = D(f) + D(g)$$

$$D(kf) = kD(f),$$

D é uma aplicação linear.

Exemplo 6: A aplicação nula

$$F: V \rightarrow V$$

 $u\mapsto 0$ é linear. Seria conveniente que você demonstrasse esta afirmação, pois assim você poderia compreender melhor a definição 5.1.1.

O próximo exemplo é muito importante. O que mostra este exemplo é que a toda matriz $m \times n$ está associada uma transformação linear de \mathbf{R}^n em \mathbf{R}^m . Em outras palavras, podemos dizer que uma matriz produz uma transformação linear. A implicação inversa também é verdadeira, isto é, uma transformação linear de \mathbf{R}^n em \mathbf{R}^m pode ser representada por uma matriz $m \times n$. Isto será mostrado posteriormente.

Exemplo 7:

$$V = \mathbb{R}^n$$
 e $W = \mathbb{R}^m$

Seja A uma matriz $m \times n$. Definimos

$$L_{\mathbf{A}}: \mathbf{R}^n \to \mathbf{R}^m$$
 por

$$\mathbf{v}\mapsto A\cdot\mathbf{v}$$

onde v é tomado como vetor coluna,
$$\mathbf{v} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$L_{\mathbf{A}}(\mathbf{v}) = \mathbf{A} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \dot{y}_1 \\ \vdots \\ y_m \end{bmatrix}$$

Das propriedades de operações de matrizes:

$$L_{\mathbf{A}}(\mathbf{u} + \mathbf{v}) = \mathbf{A}(\mathbf{u} + \mathbf{v}) = \mathbf{A}\mathbf{u} + \mathbf{A}\mathbf{v} = L_{\mathbf{A}}(\mathbf{u}) + L_{\mathbf{A}}(\mathbf{v})$$
 e $L_{\mathbf{A}}(k\mathbf{u}) = \mathbf{A}(k\mathbf{u}) = k(k\mathbf{u}) = k(k\mathbf{u}) = k(k\mathbf{u}) = k(k\mathbf{u}) = k(k\mathbf{u})$ e portanto $L_{\mathbf{A}}$ é uma transformação linear.

Como caso particular suponhamos que $A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$.

$$L_{\mathbf{A}}: \mathbb{R}^2 \to \mathbb{R}^3$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longmapsto \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 0 \\ x_1 + x_2 \end{bmatrix}$$

Então $L_{\mathbf{A}}(x_1, x_2) = (2x_1, 0, x_1 + x_2)$

Surpresa! Esta é a aplicação linear do Exemplo 4.

Seria interessante que você também notasse o relacionamento que existe entre o Exemplo 1, e o Exemplo 7.

5.2 TRANSFORMAÇÕES DO PLANO NO PLANO

Agora iremos apresentar uma visão geométrica das transformações lineares, dando alguns exemplos de transformações do plano (${\bf R}^2$) no plano. Você verá assim, que, por exemplo uma expansão, uma rotação e certas deformações podem ser descritas por transformações lineares.

5.2.1 Expansão (ou Contração) Uniforme:

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \ \alpha \in \mathbb{R}$$

$$\mathbf{v} \mapsto \alpha \cdot \mathbf{v}$$

Por exemplo: $T: \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{v} \mapsto 2\mathbf{v}$$
, ou $T(x, y) = 2(x, y)$

Esta função leva cada vetor do plano num vetor de mesma direção e sentido de v, mas de módulo maior.

Observe que, escrevendo na forma de vetores-coluna,

$$\begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow 2 \begin{bmatrix} x \\ y \end{bmatrix} \text{ ou } \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Se tomássemos $F: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $F(x, y) = \frac{1}{2}(x, y)$, F seria uma contração.

5.2.2 Reflexão em Torno do Eixo-x:

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x, y) \mapsto (x, -y)$$

Figura 5.2.2

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x \\ -y \end{bmatrix} \text{ ou } \begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

5.2.3 Reflexão na Origem:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\mathbf{v} \mapsto -\mathbf{v}$$
, ou seja, $T(x, y) = (-x, -y)$

Figura 5.2.3

Escrevendo na forma de vetores-coluna, temos

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

5.2.4 Rotação de um Ângulo θ : (no sentido anti-horário)

Figura 5.2.4

 $x' = r \cos(\alpha + \theta) = r \cos\alpha \cos\theta - r \sin\alpha \sin\theta$

Mas $r \cos \theta = x e r \sin \theta = y$.

Então $x' = x \cos \theta - y \sin \theta$.

Analogamente, $y' = r \operatorname{sen} (\alpha + \theta) = r (\operatorname{sen} \alpha \cos \theta + \cos \alpha \operatorname{sen} \theta) = y \cos \theta + x \operatorname{sen} \theta$.

Assim $\mathbf{R}_{\theta}(x, y) = (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta)$ ou na forma coluna,

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x \cos \theta - y \sin \theta \\ y \cos \theta + x \sin \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Consideremos o caso particular onde $\theta = \frac{\pi}{2}$. Neste caso, $\cos \theta = 0$ e sen $\theta = 1$.

Então,
$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} -y \\ x \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Figura 5.2.5

151

5.2.5 Cisalhamento horizontal:

$$T(x, y) = (x + \alpha y, y), \alpha \in \mathbb{R}$$

Por exemplo: T(x, y) = (x + 2y, y)

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} x + 2y \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Figura 5.2.6

Como já ressaltamos, as transformações do plano no plano apresentadas através dos exemplos anteriores são lineares, pois são dadas por $\mathbf{v}\mapsto\mathbf{A}\cdot\mathbf{v}$ onde \mathbf{A} é uma matriz 2×2 . A aplicação a seguir não é linear.

5.2.6 Translação:

$$T(x, y) = (x + a, y + b)$$

ou
$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

Esta é uma translação do plano segundo o vetor (a, b) e, a menos que a = b = 0, T $n\bar{a}o$ é linear. Por quê?

(Veja a observação depois do Exemplo 4.)

5.3 CONCEITOS E TEOREMAS

Separamos nesta secção os resultados que darão uma estrutura para um estudo mais fecundo das transformações lineares.

Um fato importante sobre aplicações lineares é que elas são perfeitamente determinadas conhecendo-se apenas seu valor nos elementos de uma base.

5.3.1 Teorema: Dados dois espaços vetoriais reais V e W e uma base de V, $\{v_1, ..., v_n\}$, sejam w_1 ..., w_n elementos arbitrários de W. Então existe uma única aplicação linear $T: V \to W$ tal que $T(v_1) = w_1$, ..., $T(v_n) = w_n$. Esta aplicação é dada por:

se $v = a_1 v_1 + ... + a_n v_n$,

$$T(\mathbf{v}) = a_1 T(\mathbf{v}_1) + \dots + a_n T(\mathbf{v}_n)$$

= $a_1 \mathbf{w}_1 + \dots + a_n \mathbf{w}_n$

Verifique que T assim definida é linear e que é a única que satisfaz as condições exigidas.

5.3.2 Problemas

Problema 1: Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 0) = (2, -1, 0) e T(0, 1) = (0, 0, 1)?

Solução: Temos neste caso $e_1 = (1, 0)$ e $e_2 = (0, 1)$ base de \mathbb{R}^2 e $w_1 = (2, -1, 0)$ e $w_2 = (0, 0, 1)$.

Dado $\mathbf{v} = (x_1, x_2)$ arbitrário,

$$\mathbf{v} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

$$\mathbf{e} \quad T(\mathbf{v}) = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2)$$

$$= x_1(2, -1, 0) + x_2(0, 0, 1)$$

$$= (2x_1, -x_1, x_2)$$

Problema 2: Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 1) = (3, 2, 1) e T(0, -2) = (0, 1, 0)?

Resolva o problema como exercício, mas, cuidado! Aqui não temos base canônica. Veja o Exercício 4a da secção 5.6.

Vamos analisar mais profundamente as transformações lineares, obtendo alguns resultados úteis e ao mesmo tempo interessantes. Para começar necessitamos definir imagem e núcleo, que são dois subconjuntos especiais dos espaços vetoriais envolvidos na definição da transformação linear.

5.3.3 Definição: Seja $T: V \to W$ uma aplicação linear. A *imagem* de T é o conjunto dos vetores $\mathbf{w} \in W$ tais que existe um vetor $\mathbf{v} \in V$, que satisfaz $T(\mathbf{v}) = \mathbf{w}$. Ou seja

$$Im(T) = \{ \mathbf{w} \in W; \ T(\mathbf{v}) = \mathbf{w} \ \text{para algum} \ \mathbf{v} \in V \}$$

Observe que Im(T) é um subconjunto de W e, além disso, é um subespaço vetorial de W. (Veja o Exercício 16 da secção 5.6.) As vezes Im(T) é escrito como T(V).

5.3.4 Definição: Seja $T: V \rightarrow W$ uma transformação linear. O conjunto de todos os vetores $v \in V$ tais que T(v) = 0 é chamado núcleo de T, sendo denotado por ker(T). Isto é

$$ker(T) = \{\mathbf{v} \in V; T(\mathbf{v}) = \mathbf{0}\}$$

Observe que $ker(T) \subset V$ é um subconjunto de V e, ainda mais, é um subespaco vetorial de V. (Veja o Exercício 16 da secção 5.6.)

Figura 5.3.1

5.3.5 Exemplos

Exemplo 1:

$$T: \mathbb{R}^2 \to \mathbb{R}$$

$$(x, y) \rightarrow x + y$$

Neste caso temos $ker T = \{(x, y) \in \mathbb{R}^2; x + y = 0\}$, isto é, ker T é a reta y = -x. Podemos dizer ainda que $ker T = \{(x, -x); x \in \mathbb{R}\} = \{x(1, -1);$ $x \in \mathbb{R}$ = [(1, -1)]. Im $T = \mathbb{R}$, pois dado $w \in \mathbb{R}$, w = T(w, 0).

Figura 5.3.2

Exemplo 2: Seja a transformação linear

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x, 2y, 0)Então a imagem de T

$$Im(T) = \{(x, 2y, 0): x, y \in \mathbb{R}\}\$$

$$= \{x(1, 0, 0) + y(0, 2, 0): x, y \in \mathbb{R}\}\$$

$$= \langle (1, 0, 0), (0, 2, 0) \rangle$$

Observe que $\dim Im(T) = 2$.

O núcleo de T é dado por:

$$ker(T) = \{(x, y, z): T(x, y, z) = (0, 0, 0)\}$$

$$= \{(x, y, z): (x, 2y, 0) = (0, 0, 0)\}$$

$$= \{(0, 0, z): z \in \mathbb{R}\}$$

$$= \{z(0, 0, 1): z \in \mathbb{R}\}$$

$$= [(0, 0, 1)]$$

Observe que dim ker(T) = 1.

Vamos recordar agora as noções de função injetora e sobrejetora e posteriormente estabelecer o relacionamento entre estes conceitos e os de núcleo e imagem quando a função é uma transformação linear.

5.3.6 Definição: Dada uma aplicação (ou função) $T: V \rightarrow W$, diremos que T é injetora se dados $\mathbf{u} \in V$, $\mathbf{v} \in V$ com $T(\mathbf{u}) = T(\mathbf{v})$ tivermos $\mathbf{u} = \mathbf{v}$. Ou equivalentemente, T é injetora se dados \mathbf{u} , $\mathbf{v} \in V$ com $\mathbf{u} \neq \mathbf{v}$, então $T(\mathbf{u}) \neq T(\mathbf{v})$.

Em outras palavras, T é injetora se as imagens de vetores distintos são distintas.

Figura 5.3.3

5.3.7 Definição: A aplicação $T: V \rightarrow W$ será sobrejetora se a imagem de T coincidir com W, ou seia T(V) = W.

Em outras palavras, T será sobrejetora se dado $\mathbf{w} \in W$, existir $\mathbf{v} \in V$ tal que $T(\mathbf{v}) = \mathbf{w}$.

Figura 5.3.4

Exemplo

$$T: \mathbf{R} \to \mathbf{R}^2$$

 $x \mapsto (x, 0)$

Mostremos agora que se T é injetora, então $ker\ T=\{0\}$. Seja $\mathbf{v}\in ker(T)$, isto. Então $(x,\ 0)=(y,\ 0)$ implicando que x=y. Logo T é injetora. Mas T não é sobrejetora uma vez que $Im(T)\neq \mathbb{R}^2$.

A transformação do Exemplo 1 de 5.3.5 é sobrejetora mas não é injetora, e a do Exemplo 2 de 5.3.5 não é nem injetora nem sobrejetora. Um bom exercício seria você examinar os exemplos de transformações lineares dados até aqui e decidir se são injetoras ou sobrejetoras.

O próximo teorema afirma que uma transformação linear injetora só tem o vetor nulo no seu núcleo. E, por outro lado, se uma transformação linear tiver somente 0 no núcleo, então quaisquer dois vetores distintos devem ter imagens distintas também.

5.3.8 Teorema: Seja $T: V \to W$, uma aplicação linear. Então $ker(T) = \{0\}$, se e somente se T é injetora.

Prova: Mostremos primeiro que se $ker\ T=\{0\}$, então T é injetora. Suponhamos que $u, v \in V$ tais que T(u) = T(v). Então T(u) - T(v) = T(u - v) = 0, isto é, $u - v \in ker(T)$. Mas por hipótese o único elemento do núcleo é $\mathbf{0}$. Então $\mathbf{u} - \mathbf{v} = \mathbf{0}$, isto é, $\mathbf{u} = \mathbf{v}$. Em resumo: como $T(\mathbf{u}) = T(\mathbf{v})$ implica que $\mathbf{u} = \mathbf{v}$, T é injetora.

Mostremos agora que se T é injetora, então $ker\ I = \{0\}$. Seja $\mathbf{v} \in ker(T)$, isto é, $T(\mathbf{v}) = \mathbf{0}$. Como necessariamente $T(\mathbf{0}) = \mathbf{0}$, $T(\mathbf{v}) = T(\mathbf{0})$. Logo $\mathbf{v} = \mathbf{0}$, pois T é injetora. Portanto, o único elemento do núcleo é $\mathbf{0}$, ou seja, $ker(T) = \{\mathbf{0}\}$.

Voltando ao Exemplo de 5.3.7, observe que podemos dizer se T é injetora simplesmente calculando o seu núcleo. Para que (x, 0) seja o vetor nulo, devemos ter x = 0 e portanto $ker T = \{0\}$, donde concluímos que T é injetora.

Uma consequência da proposição 5.3.8 é que uma aplicação linear injetora leva vetores LI em vetores LI. (Veja o Exercício 9 da secção 5.6.)

Um resultado importante, que relaciona as dimensões do núcleo e imagem de uma transformação linear $T: V \to W$, com a dimensão de V é dado pela seguinte proposição.

5.3.9 Teorema: Seja T:V → W uma aplicação linear.

Então $\dim \ker T + \dim \operatorname{Im} T = \dim V$.

Prova: Considere v_1 , ..., v_n uma base de ker T. Como $ker T \subset V$ é subespaço. de V, podemos completar este conjunto de modo a obter uma base de V.

Seja então $\{v_1, ..., v_n, w_1, ..., w_m\}$ a base de V. Queremos mostrar que $T(\mathbf{w}_1)$, ..., $T(\mathbf{w}_m)$ é uma base de $Im\ T$, isto é,

- i) $[T(\mathbf{w}_1), ..., T(\mathbf{w}_m)] = Im T$
- ii) $\{T(\mathbf{w}_1), ..., T(\mathbf{w}_m)\}\$ é linearmente independente.

Provemos i)

Dado $\mathbf{w} \in Im\ T$, existe $\mathbf{u} \in V$ tal que $T(\mathbf{u}) = \mathbf{w}$. Se $\mathbf{u} \in V$, então $\mathbf{u} = a_1\mathbf{v}_1 + ... + a_n\mathbf{v}_n + b_1\mathbf{w}_1 + ... + b_m\mathbf{w}_m$. Mas,

$$\mathbf{w} = T(\mathbf{u}) = T(a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n + b_1\mathbf{w}_1 + \dots + b_m\mathbf{w}_m)$$

= $a_1T(\mathbf{v}_1) + \dots + a_nT(\mathbf{v}_n) + b_1T(\mathbf{w}_1) + \dots + b_mT(\mathbf{w}_m)$

Como os vetores \mathbf{v}_1 , ..., \mathbf{v}_n pertencem ao $\ker T$, $T(\mathbf{v}_i) = \mathbf{0}$ para i = 1, ..., n. Assim,

$$\mathbf{w} = b_1 T(\mathbf{w}_1) + \dots + b_m T(\mathbf{w}_m)$$

e a imagem de T é gerada pelos vetores $T(\mathbf{w}_1)$, ..., $T(\mathbf{w}_m)$.

ii) Consideremos agora, a combinação linear

$$a_1T(\mathbf{w}_1) + a_2T(\mathbf{w}_2) + ... + a_mT(\mathbf{w}_m) = \mathbf{0}$$

e mostremos que os a_i são nulos.

Como T é linear, $T(a_1w_1 + a_2w_2 + ... + a_mw_m) = 0$.

Logo $a_1\mathbf{w}_1 + ... + a_m\mathbf{w}_m \in \ker T$.

Então $a_1\mathbf{w}_1 + ... + a_m\mathbf{w}_m$ pode ser escrito como combinação linear da base $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ de ker(T), isto é, existem $b_1, ..., b_n$ tais que

$$a_1 \mathbf{w}_1 + \dots + a_m \mathbf{w}_m = b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n$$
, ou ainda,
 $a_1 \mathbf{w}_1 + \dots + a_m \mathbf{w}_m - b_1 \mathbf{v}_1 - \dots - b_n \mathbf{v}_n = \mathbf{0}$.

Mas $\{v_1, ..., v_n, w_1, ..., w_m\}$ é uma base de V, e temos então $a_1 = a_2 = ... = ... = a_m = b_1 = ... = b_n = 0$.

Decorrem desta proposição dois resultados:

5.3.10 Corolário: Se dim $V = \dim W$, então T linear é injetora se e somente se T é sobrejetora.

Faça a demonstração como exercício.

5.3.11 Corolário: Seja $T: V \to W$ uma aplicação linear injetora. Se dim $V = \dim W$, então T leva base em base.

Prova: Considere $\{\mathbf v_1, ..., \mathbf v_n\}$ base de V. O conjunto $\{T(\mathbf v_1), ..., T(\mathbf v_n)\} \subset W$ é LI pois dados escalares $k_1, ..., k_n$ tais que $k_1T(\mathbf v_1) + ... + k_nT(\mathbf v_n) = \mathbf 0$, temos $T(k_1\mathbf v_1 + ... + k_n\mathbf v_n) = \mathbf 0$. Logo $k_1\mathbf v_1 + ... + k_n\mathbf v_n = \mathbf 0$. Mas $\{\mathbf v_1, ..., \mathbf v_n\}$ é LI. Logo $k_1 = ... = k_n = \mathbf 0$. Desde que dim $V = \dim W = n$, $\{T(\mathbf v_1), ..., T(\mathbf v_n)\}$ é base de W. (Veja 4.6.8.)

5.3.12 Quando uma transformação linear $T: V \to W$ for injetora e sobrejetora, ao mesmo tempo, dá-se o nome de *isomorfismo*. Quando há uma tal transformação entre dois espaços vetoriais dizemos que estes são *isomorfos*. Sob o ponto de vista de Álgebra Linear, espaços vetoriais isomorfos são, por assim dizer, idênticos. Observe que devido à proposição 5.3.9 espaços isomorfos devem ter a mesma dimensão. Portanto, pelo corolário 5.3.11, um isomorfismo leva base em base. Além disso, um isomorfismo $T: V \to W$ tem uma aplicação inversa $T^{-1}: W \to V$ que é linear, como você poderia provar, e também é um isomorfismo.

Exemplo: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x - 2y, z, x + y). Vamos mostrar que T é um isomorfismo, e calcular sua inversa T^{-1} .

Se pudermos mostrar que T é injetora, teremos que T é um isomorfismo pelo corolário 5.3.10. Isto equivale a mostrar que $ker T = \{(0, 0, 0)\}$. Mas $ker T = \{(x, y, z); T(x, y, z) = (0, 0, 0)\}$ e T(x, y, z) = (0, 0, 0) se e somente se (x - 2y, z, x + y) = (0, 0, 0). Resolvendo o sistema de equações lineares

$$x - 2y = 0$$
$$z = 0$$
$$x + y = 0$$

achamos que x = y = z = 0 é a única solução e portanto T é um isomorfismo. Tomando a base canônica de \mathbb{R}^3 , sua imagem pela T é $\{T(1,0,0),T(0,1,0)\}$ $\{(0,0,1)\}$ = $\{(1,0,1),(-2,0,1),(0,1,0)\}$ que é ainda uma base de \mathbb{R}^3 . É conveniente que você verifique isto. Calculemos agora a aplicação inversa de T. Como T(1,0,0)=(1,0,1), T(0,1,0)=(-2,0,1) e T(0,0,1)=(0,1,0), temos que $T^{-1}(1,0,1)=(1,0,0)$, $T^{-1}(-2,0,1)=(0,1,0)$ e $T^{-1}(0,1,0)=(0,0,1)$. Queremos calcular $T^{-1}(x,y,z)$. Para isto escrevemos (x,y,z) em relação à base $\{(1,0,1),(-2,0,1),(0,1,0)\}$, obtendo:

$$(x, y, z) = \frac{x+2z}{3}(1, 0, 1) + \frac{z-x}{3}(-2, 0, 1) + y(0, 1, 0).$$

Então $T^{-1}(x, y, z) = \frac{x + 2z}{3} T^{-1}(1, 0, 1) + \frac{z - x}{3} T^{-1}(-2, 0, 1) + yT^{-1}(0, 1, 0).$

Ou seja,

$$T^{-1}(x, y, z) = (\frac{x+2z}{3} \cdot \frac{z-x}{3}, y).$$

5.4 APLICAÇÕES LINEARES E MATRIZES

Nesta seção veremos que num certo sentido o estudo das transformações lineares pode ser reduzido ao estudo das matrizes. Você já viu no Exemplo 7 de 5.1 que a toda matriz $m \times n$ está associada uma transformação linear: $T: \mathbb{R}^n \to \mathbb{R}^m$. Vamos formalizar, a seguir, este resultado para espaços vetoriais $V \in W$ e também estabelecer o seu recíproco, isto é, veremos que uma vez fixadas as bases, a toda transformação linear $T: V \to W$ estará associada uma única matriz.

Inicialmente veremos como, dados dois espaços vetoriais V e W com bases β e β' e uma matriz A, podemos obter uma transformação linear.

5.4.1 Consideremos R² e as bases

$$\beta = \{(1, 0), (0, 1)\}\ e \ \beta' = \{(1, 1), (-1, 1)\}$$

e a matriz
$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Queremos associar a esta matriz A uma aplicação linear que depende de A e das bases dadas β e β' , isto é,

$$T_{\mathbf{A}}: \mathbf{R}^2 \to \mathbf{R}^2$$
$$\mathbf{v} \mapsto T_{\mathbf{A}}(\mathbf{v})$$

Considere
$$\mathbf{v} = (x, y)$$
. Seja $\mathbf{X} = [\mathbf{v}]_{\beta} = \begin{bmatrix} x \\ y \end{bmatrix}$,

$$\mathbf{AX} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ y \end{bmatrix} = [T_{\mathbf{A}}(\mathbf{v})]_{\beta'}$$

Figura 5.4.1

Então, $T_{\mathbf{A}}(\mathbf{v}) = 2x(1, 1) + y(-1, 1) = (2x - y, 2x + y)$. Por exemplo, se $\mathbf{v} = (2, 1)$, então $T_{\mathbf{A}}(2, 1) = (3, 5)$. Note que se tivéssemos partido de $\beta = \beta' = \{(1, 0), (0, 1)\}$, tenámos obtido $T_{\mathbf{A}}(\mathbf{v}) = (2x, y) = \mathbf{A}\mathbf{v}$.

Figura 5.4.2

De um modo geral, fixadas as bases $\beta = \{v_1, ..., v_n\}$ e $\beta' = \{w_1, ..., w_m\}$, à matriz

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

podemos associar

$$T_{\mathbf{A}}: \mathbf{R}^n \to \mathbf{R}^m$$
.
 $\mathbf{v} \mapsto T_{\mathbf{A}}(\mathbf{v})$ como:

Seja
$$\mathbf{X} = [\mathbf{v}]_{\beta} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$\mathbf{A} \cdot \mathbf{X} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Então, $T_{\mathbf{A}}(\mathbf{v}) = y_1 \mathbf{w}_1 + ... + y_m \mathbf{w}_m$ onde $y_i = \mathbf{A}_i \cdot \mathbf{X}$ e \mathbf{A}_i é a *i*-ésima linha de \mathbf{A} .

Em geral, dada uma matriz $A_{m \times n}$, ela é encarada como uma aplicação linear $T_A: \mathbb{R}^n \to \mathbb{R}^m$ em relação às bases canônicas de \mathbb{R}^n e \mathbb{R}^m .

Exemplo:

$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 5 \\ 2 & 4 & -1 \end{bmatrix}, \ \beta = \{(1, 0), (0, 1)\} \ \mathbf{e}$$

 $\beta' = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$

 $T_A: \mathbb{R}^3 \to \mathbb{R}^2$. Encontremos esta transformação linear.

Seja
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\mathbf{A} \cdot \mathbf{X} = \begin{bmatrix} 1 & -3 & 5 \\ 2 & 4 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 3y + 5z \\ 2x + 4y - z \end{bmatrix}$$

Então
$$T_{\mathbf{A}}(x, y, z) = (x - 3y + 5z)(1, 0) + (2x + 4y - z)(0, 1) =$$

= $(x - 3y + 5z, 2x + 4y - z)$

5.4.2 Agora iremos encontrar a matriz associada a uma transformação linear. Seja $T: V \to W$ linear, $\beta = \{v_1, ..., v_n\}$ base de V e $\beta' = \{w_1, ..., w_m\}$ base de W. Então $T(v_1), ..., T(v_n)$ são vetores de W e portanto

$$T(\mathbf{v}_1) = a_{11}\mathbf{w}_1 + \dots + a_{m1}\mathbf{w}_m$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T(\mathbf{v}_n) = a_{1n}\mathbf{w}_1 + \dots + a_{mn}\mathbf{w}_m$$

A transposta da matriz de coeficientes deste sistema, anotada por $[T]_{\beta'}^{\beta}$ é chamada matriz de T em relação às bases $\beta \in \beta'$.

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \mathbf{A}$$

Observe que T passa a ser a aplicação linear associada à matriz A e bases β e β' , isto é T = T_A .

5.4.3 Exemplos

Exemplo 1:

Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(x, y, z) = (2x + y - z, 3x - 2y + 4z). Sejam $\beta = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ e $\beta' = \{(1, 3), (1, 4)\}$.

Procuremos $[T]^{\beta}_{\beta'}$.

Calculando T nos elementos da base β , temos:

$$T(1, 1, 1) = (2, 5) = 3(1, 3) - 1(1, 4)$$

 $T(1, 1, 0) = (3, 1) = 11(1, 3) - 8(1, 4)$
 $T(1, 0, 0) = (2, 3) = 5(1, 3) - 3(1, 4)$

Então

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} 3 & 11 & 5 \\ -1 & -8 & -3 \end{bmatrix}$$

Observe que se fixarmos outras bases β e β' , teremos uma outra matriz para a transformação T.

Exemplo 2:

Seja T a transformação linear do Exemplo 1 e sejam $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ e $\beta' = \{(1, 0), (0, 1)\}$.

Calculemos $[T]^{\beta}_{\beta'}$.

$$T(1, 0, 0) = (2, 3) = 2(1, 0) + 3(0, 1)$$

 $T(0, 1, 0) = (1, -2) = 1(1, 0) - 2(0, 1)$
 $T(0, 0, 1) = (-1, 4) = -1(1, 0) + 4(0, 1)$

Então

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} 2 & 1 & -1 \\ 3 & -2 & 4 \end{bmatrix}$$

Observação: Usa-se denotar simplesmente por [T] à matriz de uma transformação linear $T: \mathbb{R}^m \to \mathbb{R}^n$ em relação às bases canônicas. Assim, no Exemplo 2 $[T]^{\beta}_{\beta'} = [T]$. Também é comum usar-se a notação simplificada: $T\mathbf{v} = T(\mathbf{v})$.

Exemplo 3: Seja $T: V \to V$

$$v \mapsto v$$

Isto é, T é a identidade.

Sejam $\beta = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ e $\beta' = \{\mathbf{v}_1', ..., \mathbf{v}_n'\}$ bases de V. Calculemos $[T]_{\beta'}^{\beta}$.

Como

$$T\mathbf{v}_{1} = \mathbf{v}_{1} = a_{11}\mathbf{v}'_{1} + \dots + a_{n1}\mathbf{v}'_{n}$$

 $\vdots \quad \vdots \quad \vdots \quad \vdots$
 $T\mathbf{v}_{n} = \mathbf{v}_{n} = a_{1n}\mathbf{v}'_{1} + \dots + a_{nn}\mathbf{v}'_{n},$

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} = [I]_{\beta'}^{\beta}$$

a matriz mudança de base. Veja 4.7.1.

Exemplo 4: Dadas as bases $\beta = \{(1, 1), (0, 1)\}$ de \mathbb{R}^2 e $\beta' = \{(0, 3, 0), (-1, 0, 0), (0, 1, 1)\}$ de \mathbb{R}^3 , encontremos a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ cuja matriz é

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 3 \end{bmatrix}$$

Interpretando a matriz, temos:

$$T(1, 1) = 0(0, 3, 0) - 1(-1, 0, 0) - 1(0, 1, 1) = (1, -1, -1)$$

 $T(0, 1) = 2(0, 3, 0) + 0(-1, 0, 0) + 3(0, 1, 1) = (0, 9, 3)$

Devemos encontrar agora T(x, y). Para isto escrevemos (x, y) em relação à base β :

$$(x, y) = x(1, 1) + (y - x)(0, 1)$$

Aplicando T e usando a linearidade, temos:

$$T(x, y) = xT(1, 1) + (y - x)T(0, 1)$$

= $x(1, -1, -1) + (y - x)(0, 9, 3)$
= $(x, 9y - 10x, 3y - 4x)$

O resultado a seguir dá o significado da matriz de uma transformação linear.

5.4.4 Teorema: Sejam V e W espaços vetoriais, α base de V, β base de W e $T:V\to W$ uma aplicação linear. Então, para todo $\mathbf{v}\in V$ vale:

$$[T(\mathbf{v})]_{\beta} = [T]_{\beta}^{\alpha} \cdot [\mathbf{v}]_{\alpha}$$

Para ficar mais fácil a compreensão faremos a demonstração no caso dim V=2 e dim W=3. O caso geral é totalmente análogo e pode ser feito como exercício.

Prova: Sejam $\alpha = \{\mathbf{v_1}, \mathbf{v_2}\}$ base de $V \in \beta = \{\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}\}$ base de $W \in \mathbb{R}$

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}. \text{ Sejam ainda } \mathbf{v} \in V \text{ e } [\mathbf{v}]_{\alpha} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ e } [T\mathbf{v}]_{\beta} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Da matriz $[T]^{\alpha}_{\beta}$ sabemos que

$$T\mathbf{v}_1 = a_{11}\mathbf{w}_1 + a_{21}\mathbf{w}_2 + a_{31}\mathbf{w}_3$$

 $T\mathbf{v}_2 = a_{12}\mathbf{w}_1 + a_{22}\mathbf{w}_2 + a_{32}\mathbf{w}_3$

Além disso, $\mathbf{v} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2$ e como T é linear,

$$T\mathbf{v} = x_1 T \mathbf{v}_1 + x_2 T \mathbf{v}_2$$

$$= x_1 (a_{11} \mathbf{w}_1 + a_{21} \mathbf{w}_2 + a_{31} \mathbf{w}_3) + x_2 (a_{12} \mathbf{w}_1 + a_{22} \mathbf{w}_2 + a_{32} \mathbf{w}_3)$$

$$= (a_{11} x_1 + a_{12} x_2) \mathbf{w}_1 + (a_{21} x_1 + a_{22} x_2) \mathbf{w}_2 + (a_{31} x_1 + a_{32} x_2) \mathbf{w}_3.$$

Mas $T\mathbf{v} = y_1\mathbf{w}_1 + y_2\mathbf{w}_2 + y_3\mathbf{w}_3$ e como as coordenadas em relação à base β são únicas, temos

$$y_1 = a_{11}x_1 + a_{12}x_2$$

$$y_2 = a_{21}x_1 + a_{22}x_2$$

$$y_3 = a_{31}x_1 + a_{32}x_2$$

ou seja,

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Isto é, $[T\mathbf{v}]_{\beta} = [T]_{\beta}^{\alpha} [\mathbf{v}]_{\alpha}$.

Através deste teorema, o estudo de transformações lineares entre espaços de dimensão finita é reduzido ao estudo de matrizes. Quando V = W e T = I, observe que o resultado é o mesmo da matriz de mudança de base dado em 4.7.1.

Exemplo: Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$$

onde $\alpha = \{(1, 0), (0, 1)\}$ é base de \mathbb{R}^2 , $\beta = \{(1, 0, 1), (-2, 0, 1), (0, 1, 0)\}$ é base de \mathbb{R}^3 . Queremos saber qual é a imagem do vetor $\mathbf{v} = (2, -3)$ pela aplicação T. Para isto, achamos as coordenadas do vetor \mathbf{v} em relação à base α ,

obtendo $[\mathbf{v}]_{\alpha} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, a seguir, usando o teorema, temos

$$[T\mathbf{v}]_{\beta} = [T]_{\beta}^{\alpha} [\mathbf{v}]_{\alpha} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ -13 \end{bmatrix}$$

ou seja,

$$T$$
v = 5(1, 0, 1) - 3(-2, 0, 1) - 13(0, 1, 0)
= (11, -13, 2)

O relacionamento entre as dimensões do núcleo e da imagem de uma transformação linear e o posto de uma matriz a ela associada é dado no teorema a seguir, cuja demonstração deixamos ao seu encargo.

5.4.5 Teorema: Seja $T: V \to W$ uma aplicação linear e α e β bases de V e W respectivamente. Então

$$\dim Im(T) = \text{posto de } [T]^{\alpha}_{\beta}$$

 $\dim ker(T) = \text{nulidade de } [T]^{\alpha}_{\beta}$
 $= \text{número de colunas - posto de } [T]^{\alpha}_{\beta}$.

5.4.6 Teorema: Sejam $T_1: V \to W$ e $T_2: W \to U$ transformações lineares e α , β , γ bases de V, W e U respectivamente. Então a composta de T_1 com T_2 , $T_2 \circ T_1: V \to U$, é linear e

$$[T_2 \circ T_1]_{\gamma}^{\alpha} = [T_2]_{\gamma}^{\beta} \cdot [T_1]_{\beta}^{\alpha}$$

A demonstração desse teorema é direta mas bastante trabalhosa. Por esta razão não a faremos aqui, indicando apenas suas etapas. Podemos efetuá-la simplesmente lembrando a construção das matrizes das transformações T_1 e T_2 , obtendo desta forma suas atuações sobre as bases respectivas. A seguir, por composição achamos o que $T_2 \circ T_1$ faz na base de V, e chegamos então à matriz $[T_2 \circ T_1]^{\alpha}_{\gamma}$, observando que esta é exatamente o produto das matrizes anteriores.

5.4.7 Exemplos

Exemplo 1: Consideremos uma expansão do plano \mathbb{R}^2 dada por $T_1(x, y) = 2(x, y)$, e um cisalhamento dado por $T_2(x, y) = (x + 2y, y)$. Ao efetuarmos primeiro a expansão e depois o cisalhamento, teremos a sequência

Figura 5.4.5

Transformações Lineares

As matrizes (em relação à base canônica de R², ξ) das transformações são

$$[T_1]_{\xi}^{\xi} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 e $[T_2]_{\xi}^{\xi} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

Então, a matriz (em relação à base canônica de R^2) da aplicação que expande e cisalha (que é justamente a composta $T_2 \circ T_1$) será

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix}$$

Exemplo 2: Sejam as transformações lineares $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ cujas matrizes são

$$[T_1]_{\beta}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \quad \text{e} \quad [T_2]_{\gamma}^{\beta} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

em relação às bases $\alpha = \{(1, 0), (0, 2)\}, \beta = \{(\frac{1}{3}, 0, -3), (1, 1, 15), (2, 0, 5)\}$ e $\gamma = \{(2, 0), (1, 1)\}$. Queremos encontrar a transformação linear composta $T_2 \circ T_1: \mathbb{R}^2 \to \mathbb{R}^2$, ou seja, precisamos achar $(T_2 \circ T_1)(x, y)$. Para isto, usamos o teorema anterior para achar a matriz da composta.

$$\begin{bmatrix} T_2 \circ T_1 \end{bmatrix}_{\gamma}^{\alpha} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

Escrevemos agora as coordenadas do vetor (x, y) em relação à base α .

$$[(x, y)]_{\alpha} = \begin{bmatrix} x \\ \frac{y}{2} \end{bmatrix}$$

Então, usando o teorema 5.4.6, temos

$$[(T_2 \circ T_1)(x, y)]_{\gamma} = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \frac{y}{2} \end{bmatrix} = \begin{bmatrix} x - y \\ 0 \end{bmatrix}$$

Portanto, $(T_2 \circ T_1)(x, y) = (x - y)(2, 0) + 0(1, 1) = (2x - 2y, 0)$.

5.4.8 Corolário: Se $T: V \to W$ é uma transformação linear inversível (T é um isomorfismo) e α e β são as bases de V e W, então $T^{-1}: W \to V$ é um operador linear e

$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$$

Figura 5.4.6

Prova: A matriz identidade, $[I]^{\alpha}_{\alpha} = [T^{-1} \circ T]^{\alpha}_{\alpha} = [T^{-1}]^{\beta}_{\alpha} [T]^{\alpha}_{\beta}$.

5.4.9 Corolário: Seja $T: V \to W$ uma transformação linear e α e β bases de V e W. Então T é inversível se e somente se det $|T|^{\alpha}_{\beta} \neq 0$.

Exemplo: Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear dada por

$$[T]\dot{\xi} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$

onde ξ é a base canônica de \mathbf{R}^2 . Como det $[T]_{\xi}^{\xi} = 1$, o corolário 5.4.9 afirma que T é inversível. Pelo corolário 5.4.8 sabemos que

$$[T^{-1}]_{\xi}^{\xi} = ([T]_{\xi}^{\xi})^{-1} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$$

Então
$$[T^{-1}(x, y)]_{\xi} = [T^{-1}]_{\xi}^{\xi} \begin{bmatrix} x \\ y \end{bmatrix}_{\xi} = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x - 4y \\ -2x + 3y \end{bmatrix},$$

ou seja,
$$T^{-1}(x, y) = (3x - 4y, -2x + 3y)$$
.

Se $T: V \to W$ é uma aplicação Jinear, α , α' bases de V e β , β' bases de W, podemos relacionar as matrizes $[T]^{\alpha}_{\beta}$ e $[T]^{\alpha'}_{\beta'}$ do seguinte modo:

5.4.10 Corolário:

$$[T]^{\alpha'}_{\beta'} = [I \circ T \circ I]^{\alpha'}_{\beta'} = [I]^{\beta'}_{\beta'} [T]^{\alpha}_{\beta} [I]^{\alpha'}_{\alpha}$$

Em palavras, conhecendo a matriz de uma transformação linear em relação a certas bases α e β e as matrizes de mudança de base para novas bases α' e β' , podemos achar a matriz da mesma transformação linear, desta vez em relação às novas bases α' e β' .

Como caso particular da situação anterior temos: Se $T: V \to V$ é uma transformação linear e α e β são bases de V, então

$$[T]_{\beta}^{\beta} = [I \circ T \circ I]_{\beta}^{\beta} = [I]_{\beta}^{\alpha} [T]_{\alpha}^{\alpha} [I]_{\alpha}^{\beta}.$$

Lembrando que $[I]^{\beta}_{\alpha} = ([I]^{\alpha}_{\beta})^{-1}$ e chamando $[I]^{\alpha}_{\beta} = A$, vem que

$$[T]^{\beta}_{\beta} = \mathbf{A} \cdot [T]^{\alpha}_{\alpha} \cdot \mathbf{A}^{-1}$$

Dizemos neste caso que as matrizes $[T]^{\alpha}_{\alpha}$ e $[T]^{\beta}_{\beta}$ são semelhantes.

Pelo corolário anterior, observamos através de mudanças convenientes de bases qual a modificação que a matriz de uma transformação linear sofre.

 $Exemplo\colon Seja$ a transformação linear $T\colon \mathbf{R}^3\to\mathbf{R}^3$ cuja matriz em relação à base canônica ξ é

$$[T]_{\xi}^{\xi} = \begin{bmatrix} -2 & 4 & -4 \\ 1 & -2 & 1 \\ 3 & -6 & 5 \end{bmatrix}$$

Calculemos a matriz desta transformação em relação à base $\beta = \{(0, 1, 1), (-1, 0, 1), (1, 1, 1)\}$. Para isto, usamos a relação $[T]_{\beta}^{\beta} = [I]_{\xi}^{\xi} [I]_{\xi}^{\beta}$ onde

$$[I]_{\xi}^{\beta} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{e} \quad ([I]_{\beta}^{\xi}) = [I]_{\beta}^{\xi})^{-1} = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$

Então

$$[T]^{\beta}_{\beta} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Isto nos sugere a pergunta: Dada uma transformação linear, há um procedimento prático para se calcular uma base em que a matriz desta transformação seja a "mais simples possível"? A resposta a esta pergunta será um dos nossos objetivos nos próximos dois capítulos.

*5.5 APLICAÇÕES À ÓPTICA

Consideraremos nesta secção o caso de um feixe de luz de raios paralelos (cuja direção pode, portanto, ser dada por um vetor) que se reflete em espelhos planos.

Iniciamos observando a situação mais simples possível: a propagação se dá no R² (isto é, estamos observando o fenômeno de perfil) e o espelho está colocado no eixo horizontal (veja a Figura 5.5.1)

Figura 5.5.1

Dado um raio de luz incidente na direção do vetor (a, b), perguntamos em que direção (c, d) estará o raio refletido?

Para responder a esta pergunta devemos recordar um pouco sobre as leis que regem a reflexão da luz em um espelho. São elas:

- i) O raio de luz incidente, a normal ao espelho no ponto de incidência e o raio refletido estão no mesmo plano.
- ii) O ângulo entre o raio incidente e a normal ao espelho é o mesmo que o ângulo entre a normal e o raio refletido.
- supondo que o espelho é perfeito, isto é, não há absorção da luz, a luz se reflete com a mesma intensidade que tinha na incidência.

No caso simples que temos, não precisamos nos preocupar com (i) pois as propagações se dão no mesmo plano. Se o comprimento do vetor indicar a intensidade da luz, (iii) indica que o vetor refletido terá o mesmo tamanho que o incidente. Estes resultados, juntamente com (ii), implicam que c = a e d = -b, ou, em forma de matriz

$$\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Podemos concluir, portanto, que um espelho plano atua sobre os raios luminosos como uma transformação linear E (compare com 5.2.2).

Passemos agora a estudar qual é a matriz associada a um espelho numa posição um pouco mais geral (veja a Figura 5.5.2), isto é, formando um ângulo θ com a horizontal.

Figura 5.5.2

Podemos fazer este caso cair na situação anterior considerando uma mudança de base. Tomamos a base $\beta = \{e_1, e_2\}$ onde $e_1 = (\cos \theta, \sin \theta)$ está na direção de x' (espelho) e $e_2 = (\cos (\frac{\pi}{2} + \theta), \sin (\frac{\pi}{2} + \theta)) = (-\sin \theta, \cos \theta)$ está na direção normal ao espelho. Em relação a esta base

$$[E]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Portanto, em relação à base canônica temos (verifique, calculando $[I]_{\rm can}^{eta},~[I]_{eta}^{\rm can})$

$$[E]_{\text{can}}^{\text{can}} = [I]_{\text{can}}^{\beta} [E]_{\beta}^{\beta} [I]_{\beta}^{\text{can}} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

e, portanto:

5.5.1
$$\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

A matriz $[E]_{\text{can}}^{\text{can}}$ poderia ser obtida diretamente simplesmente observando o que a transformação linear (o espelho) faz nos vetores da base canônica (raios luminosos na direção do eixo dos x e dos y). (Veja a Figura 5.5.3.)

Note que ao colocarmos as componentes dos vetores refletidos em coluna obteremos a mesma matriz que antes.

Como podemos tratar o problema em que hajam vários espelhos e, consequentemente, reflexões sucessivas? Simplesmente pela composição das transformações lineares associadas a cada espelho na ordem em que ocorrem as reflexões ou, em termos de matriz, pelo produto das matrizes na ordem correta (veja 5.4.6).

Vamos exemplificar analisando a situação seguinte: um feixe de luz se propagando na direção do vetor (1, -1) e refletindo nos espelhos da figura:

Em que direção estará o feixe após as reflexões?

Para responder a isto basta utilizar a matriz de 5.5.1 com $\theta = \frac{\pi}{6}$ para a primeira reflexão e $\theta = \frac{5\pi}{6}$ para a segunda. Temos então (verifique):

$$\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -(\frac{1+\sqrt{3}}{2}) \\ \frac{1-\sqrt{3}}{2} \end{bmatrix}$$

Concluímos, então, que o feixe estará na direção de $(\frac{-1+\sqrt{3}}{2}, \frac{1-\sqrt{3}}{2})$

O mesmo raciocínio poderá ser feito quando estamos com espelhos planos no espaço. Façamos um exemplo. Vamos mostrar que se tivermos 3 espelhos colocados dois a dois perpendiculares, qualquer feixe de luz de raios paralelos que incide sobre o conjunto sairá paralelo à direção de incidência após as reflexões (veja a Figura 5.5.4).

Figura 5.5.4

As matrizes associadas a cada espelho podem ser obtidas observando o que ele faz com cada um dos vetores da base canônica. Obtemos então:

$$\mathbf{M}_{1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \mathbf{M}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \mathbf{M}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

para os espelhos I, II e III respectivamente (verifique). Se o feixe de luz incidente está na direção (a, b, c) a direção do feixe refletido pelo conjunto será

$$\begin{bmatrix} d \\ e \\ f \end{bmatrix} = \mathbf{M}_3 \cdot \mathbf{M}_2 \cdot \mathbf{M}_1 \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -a \\ -b \\ -c \end{bmatrix}$$

O mesmo resultado será obtido se as reflexões se derem em outra ordem $(M_2M_3M_1, M_1M_2M_3)$ etc.). Podemos concluir, portanto, que a direção de saída é paralela e contrária à de entrada.

A reflexão da luz (ou som) feita em espelhos não planos não é descrita por transformações lineares. Você verá alguns exemplos de espelhos não planos em 11.7. Aguarde!

5.6 EXERCÍCIOS

- 1. Seja T: V → W uma função. Mostre que:
- a) Se T é uma transformação linear, então T(0) = 0.
- b) Se $T(0) \neq 0$, então T não é uma transformação linear.
- 2. Determine quais das seguintes funções são aplicações lineares:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \mapsto (x + y, x - y)$

b)
$$g: \mathbb{R}^2 \to \mathbb{R}$$

 $(x, y) \mapsto xy$

c)
$$h:M_2\to \mathbb{R}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \longmapsto \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

d)
$$k: P_2 \rightarrow P_3$$

 $ax^2 + bx + c \longmapsto ax^3 + bx^2 + cx$

e)
$$M: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \longmapsto (x, y, z) \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 1 \end{bmatrix}$$

$$f) \ N: \mathbf{R} \to \mathbf{R}$$
$$x \mapsto |x|$$

- 3. a) Ache a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1, 0, 0) = (2, 0), T(0, 1, 0) = (1, 1) e T(0, 0, 1) = (0, -1).
 - b) Encontre v de \mathbb{R}^3 tal que $T(\mathbf{v}) = (3, 2)$.
- 4. a) Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1, 1) = (3, 2, 1) e T(0, -2) = (0, 1, 0)?
 - b) Ache T(1, 0) e T(0, 1).
 - c) Qual é a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^2$ tal que S(3, 2, 1) = (1, 1), S(0, 1, 0) = (0, -2) e S(0, 0, 1) = (0, 0)?
 - d) Ache a transformação linear $P: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $P = S \circ T$.
- 5. a) Ache a transformação T do plano no plano que é uma reflexão em torno da reta x = y.
 - b) Escreva-a em forma matricial.
- 6. No plano, uma rotação anti-horária de 45° é seguida por uma dilatação de $\sqrt{2}$. Ache a aplicação A que representa esta transformação do plano.

- 8. Verifique qual o núcleo é imagem e suas respectivas dimensões das transformações dadas nos exemplos do parágrafo 5.1.
- 9. Dados $T:U \to V$ linear e injetora e u_1 , u_2 , ..., u_k , vetores LI em U, mostre que $\{T(u_1), ..., T(u_k)\}$ é LI.
- 10. Sejam R, S e T três transformações lineares de \mathbb{R}^3 em \mathbb{R}^3 .

Se
$$[R] = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$
 e

$$[S] = \begin{bmatrix} -2 & 1 & -1 \\ 3 & 1 & 2 \\ 1 & -2 & 0 \end{bmatrix}, \text{ ache}$$

T tal que $R = S \circ T$.

11. Sejam $\alpha = \{(1, -1), (0, 2)\}$ e $\beta = \{(1, 0, -1), (0, 1, 2), (1, 2, 0)\}$ bases de \mathbb{R}^2 e \mathbb{R}^3 respectivamente e

$$[T]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & -1 \end{bmatrix}$$

- a) Ache T.
- b) Se S(x, y) = (2y, x y, x), ache $[S]_{\beta}^{\alpha}$.
- c) Ache uma base γ de \mathbb{R}^3 tal que $[T]_{\gamma}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$.
- 12. Se $[R] = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ e $[S] = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \end{bmatrix}$, ache $R \circ S$.
- 13. Se R(x, y) = (2x, x y, y) e S(x, y, z) = (y z, z x),
 - a) Ache $[R \circ S]$.
 - b) Ache $[S \circ R]$.

14. Seja V o espaço vetorial de matrizes 2×2 com base

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Se $T: V \to \mathbb{R}^2$ é dada por $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a + d, b + c),$

a) Ache $[T]^{\beta}_{\alpha}$ onde α é a base canônica de \mathbb{R}^2 .

Se
$$S: \mathbb{R}^2 \to V$$
 e $[S]_{\beta}^{\alpha} = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}$

- b) Ache S e, se for possível, (a, b) tal que $S(a, b) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 15. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $[T] = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$. Ache os vetores **u**, **v** tal que
 - $a) T(\mathbf{u}) = \mathbf{u}$
 - b) $T(\mathbf{v}) = -\mathbf{v}$
- 16. Mostre que se $T: V \to W$ é uma transformação linear,
 - a) Im(T) é um subespaco de W.
 - b) ker(T) é um subespaço de V.
- 17. Sejam S e T aplicações lineares de V em W. Definimos S + T como $(S + T)\mathbf{v} = S(\mathbf{v}) + T(\mathbf{v})$ para todo $\mathbf{v} \in V$ e definimos αS como $(\alpha S)\mathbf{v} = \alpha \cdot S(\mathbf{v})$ para todo $\alpha \in \mathbf{R}$ e $\mathbf{v} \in V$.
 - a) Mostre que S + T é uma transformação linear de V em W.
 - b) Mostre que αS é uma transformação linear de V em W.
 - c) Mostre que $X = \{T \mid T : V \rightarrow W\}$ é um espaço vetorial sobre R.
 - d) Suponha que dim V = 2 e dim W = 3. Tente procurar dim X.
- 18. No Exercício 11 determine ker T, Im T, Im S, ker S e comprove a validade dos teoremas 5.3.9 e 5.4.5 para estas transformações.
- 19. Considere a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por $T(x, y, z) = (z, x - y, -z)$.

- a) Determine uma base do núcleo de T.
- b) Dê a dimensão da imagem de T.
- c) T é sobrejetora? Justifique.
- d) Faça um esboço de ker T e Im T.

- 20. Dê, quando possível, exemplos de transformações lineares T, S, L, M e H satisfazendo:
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ sobrejetora
 - b) $S: \mathbb{R}^3 \to \mathbb{R}^2$, com $ker S = \{(0, 0, 0)\}$
 - c) $L: \mathbb{R}^3 \to \mathbb{R}^2$, com $Im L = \{(0, 0)\}$
 - d) $M: \mathbb{R}^2 \to \mathbb{R}^2$, com $ker M = \{(x, y) \in \mathbb{R}^2; x = y\}$
 - e) $H: \mathbb{R}^3 \to \mathbb{R}^3$, com $ker H = \{(x, y, z) \in \mathbb{R}^3; z = -x\}$
- 21. Seja P_3 = conjunto dos polinômios com grau menor ou igual a 3, e

$$T: P_3 \to P_3$$

 $f \to f'$ (derivada)

- a) Mostre que P₃ é um espaço vetorial de dimensão 4.
- b) Mostre que T é uma transformação linear.
- c) Determine ker T e Im T e encontre uma base para cada um destes subespaços vetoriais.
- 22. Seja $D: P_3 \rightarrow P_3$ $f \mapsto f''$ (derivada segunda)

Mostre que D é linear e determine uma base para ker D.

23. Sejam $\alpha = \{(0, 2), (2, -1)\}$ e $\beta = \{(1, 1, 0), (0, 0, -1), (1, 0, 1)\}$ bases de \mathbb{R}^2 e \mathbb{R}^3 .

$$[S]^{\alpha}_{\beta} = \begin{bmatrix} 2 & 0 \\ 4 & 0 \\ 0 & -4 \end{bmatrix}$$

Dê a expressão para S(x, y).

24. Seja

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

Encontre $\ker T_A$, $\operatorname{Im} T_A$, $\ker T_B$, $\operatorname{Im} T_B$, $\ker (T_B \circ T_A) \operatorname{Im} (T_B \circ T_A)$. Determine bases para estes seis subespaços.

- 25. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma reflexão, através da reta y = 3x.
 - a) Encontre T(x, y).
 - b) Encontre a base α de \mathbb{R}^2 , tal que $[T]_{\alpha}^{\alpha} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- 26. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ onde $T(\mathbf{v})$ é a projeção do vetor \mathbf{v} no plano 3x + 2y + z = 0.
 - a) Encontre T(x, y, z).
 - b) Encontre uma base ordenada β de \mathbb{R}^3 , tal que

$$[T]^{\beta}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 27. Seja $L: \mathbb{R}^3 \to \mathbb{R}^3$ onde L é a reflexão através do plano 3x + 2y + z = 0.
 - a) Encontre L(x, y, z).
 - b) Encontre uma base ordenada γ de \mathbb{R}^3 , tal que

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- 28. Encontre a expressão da transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ que é uma rotação de $\pi/3$ em torno da reta que passa pela origem e tem a direção do vetor (1, 1, 0).
- *29. Um espelho plano está apoiado em uma parede vertical formando um ângulo de 30° com ela. Se um feixe de luz de raios paralelos for emitido verticalmente (do teto para o chão) determine a direção dos raios refletidos.

*30. Um espelho plano triangular é apoiado no canto de uma sala da forma descrita na figura abaixo.

Em que direção será refletido um feixe de luz de raios paralelos emitidos verticalmente de cima para baixo?

5.6.1 Respostas

- 3. a) T(x, y, z) = (2x + y, y z)
 - b) y = (x, 3 2x, 1 2x)
- 5. a) T(x, y) = (y, x)
- $b) \begin{bmatrix} x \\ y \end{bmatrix} \longmapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
- 7. $A(x, y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right)$
- 11. $T(x, y) = \left(\frac{x-y}{2}, \frac{x-y}{2}, 2x+y\right)$
- 13. a) $[R \circ S] = \begin{bmatrix} 0 & 2 & -2 \\ 1 & 1 & -2 \\ -1 & 0 & 1 \end{bmatrix}$ b) $[S \circ R] = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$

15. a) $\mathbf{v} = (x, -x)$

- b) y = (x, 0)
- 17. d) dim $X = 3 \times 2 = 6$
- 19. a) ker T = [(1, 1, 0)] base = $\{(1, 1, 0)\}$
 - b) dim Im T = 3 dim ker T = 2 Veja (5.3.9).
 - c) Não, dim Im T = 2.

- 21. a) (Veja Exemplo 4 de 4.2.2) base deste espaço: $\{1, x, x^2, x^3\}$
 - b) (Veia Exemplo 5 de 5.1.2)
 - c) $ker T = \{P(x) = k \text{ (constante)}\}$ base: $\{1\}$ $Im T = \{P(x) = ax^2 + bx + c, a, b, c \in \mathbb{R}\}$ base: $\{1, x, x^2\}$
- 23. $S(x, y) = (y \frac{3}{2}x, y + \frac{x}{2}, -3x 2y).$
- **24.** $ker T_B = \{x, y, z\} \in \mathbb{R}^3; x = 0 \text{ e } z = 2y\}$ base: $\{0, 1, -2\}$ $Im T_B = [(0, 1, 0), (0, 1, -1)]$ base: $\{(0, 1, 0), (0, 1, -1)\}$ $ker T_A = [(1, 0)]$ $Im T_A = [(1, 2, 1)]$ $ker T_R \circ T_A = [(1,0)] Im T_R \circ T_A = [(0,0,1)]$
- 25. a) $T(x, y) = \frac{1}{5}(-4x + 3y, 3x 4y)$
 - b) α pode ser qualquer base $\{v_1, v_2\}$ tal que v_1 pertença à reta e v_1 e v_2 sejam perpendiculares, por exemplo, $\alpha = \{(1, 3), (-3, 1)\}$
- 27. a) $T(x, y, z) = \frac{1}{7} (-2x 6y 3z, -6x + 3y 2z, -3x 2y + 6z)$
 - b) γ pode ser qualquer base $\{v_1, v_2, v_3\}$ do \mathbb{R}^3 tal que v_1 e v_2 pertençam ao plano e v_3 seja normal ao plano dado. Por exemplo, $\gamma = \{(1, 0, -3),$ (0, 1, -2), (3, 2, 1).

Leituras Sugeridas e Referências

¹Gelfand, I. M.; Lectures in Linear Algebra; Interscience Publishers, New York, 1961. ²Hoffman, K. e Kunze, R.; Algebra Linear; Editora Polígono, São Paulo, 1971.

