(1번~20번)

(7급)

- 1. Y결선의 3상 60[Hz] 동기 발전기가 선간 실효전압 1,200[V] 를 발전한다. 이 발전기가 50[Hz]의 전압을 발전한다면, 이때 동일 계자 전류조건에서 선간 실효 발전 전압[V]의 값은?
 - ① 1,500
 - 2 1,000
 - ③ 800
 - ④ 500
- 2. 동일정격의 단상 변압기 2대를 V결선하여 3상부하에 전력을 공급한다. 이때, 동일정격 1대의 변압기를 증설하여 △결선을 하고, 지금보다 2배의 전류를 부하에 공급한다. △결선된 변압기는 V결선 변압기에 비해 동손이 전체 몇 배가 되는가?

 - $\bigcirc \sqrt{3}$
 - 3 2
 - $4 2\sqrt{3}$
- 3. 동기 조상기를 부족여자로 운전할 때 가장 옳은 것은?
 - ① 콘덴서로 작용한다.
 - ② 리액터로 작용한다.
 - ③ 저항으로 작용한다.
 - ④ 일반 부하의 뒤진 전류를 보상한다.
- 4. 무부하에서 200[V]의 단자전압을 발생시키는 타여자 직류 발전기가 있다. 자속을 1.4배로, 회전속도를 1/2배로 하고, 부하전류를 100[A]로 흘릴 때 단자전압[V]의 값은?
 (단, 전기자 권선의 저항값은 0.1[Ω]으로 하며, 온도에 따라 변화하지 않는다. 전기자 반작용과 브러시에 의한 전압강하는 무시한다.)
 - ① 120
 - 2 130
 - ③ 140
 - 4 150
- 5. 1,000[kVA], 3,300[V], 동기 임피던스 5[Ω]인 2대의 3상 교류 발전기를 병렬운전하는 중 한 발전기의 계자를 강화해서 두 유도기전력(상전압) 사이에 200[V]의 전압차를 생기게 했을 경우, 두 발전기 사이에 흐르는 무효 횡류[A]의 값은?
 - ① 40
 - ② 30
 - 3 20
 - 4 10

- 6. 용량 10[kVA]의 단권 변압기 3대를 Y결선하여 3상 3,000[V] 를 3,300[V]로 승압한다면, 3상 부하용량[kVA]의 값은? (단, 변압기의 손실은 없다.)
 - ① 100
 - 2 110
 - 3 220
 - 4) 330
- 7. 전기자 단자전압 220[V], 전기자 전류 50[A], 회전속도 1,540[rpm]으로 운전하는 타여자 직류 전동기의 발생 토크[N·m]의 값은? (단, 전기자 저항은 0.2[Ω]이고 브러시 전압강하 및 기계 손실은 무시한다.)
 - ① 58.9
 - 2 62.0
 - 3 65.1
 - 4 68.2
- 8. 크로우링(crawling) 현상이 일어나는 것으로 가장 옳은 것은?
 - ① 유도 전동기
 - ② 직류 직권 전동기
 - ③ 수은 정류기
 - ④ 3상 변압기
- 9. 공급전압 610[V], 전기자 전류 45[A]일 때 직류 직권 전동기의 회전속도가 1,500[rpm]이고, 공급전압이 500[V]일 때 회전 속도가 1,200[rpm]이라면 전기자 전류[A]의 값은? (단, 전기자 권선 및 계자권선의 전저항은 0.1[Ω]이다.)
 - 102
 - 2 126
 - 3 156
 - 4 162
- 10. 3상 유도 전동기가 슬립 5[%]로 운전을 하고 있다. 한 상당
 2차 전류가 12[A]일 때, 한 상당 전동기 1차 입력[W]의
 근삿값은? (단, 이 전동기의 한 상당 2차 저항은 0.08[Ω],
 한 상당 철손은 10[W], 1차 동손은 2차 동손의 2배이다.)
 - 1 219
 - ② 230
 - 3 240
- 4 263

- 11. 직류 분권 발전기의 특성 곡선에 대한 설명 중 가장 옳은 것은? (단, E: 유기기전력, V: 단자전압, I_f : 계자전류, I_a : 전기자 전류, I: 부하전류이다.)
 - ① 무부하 특성 곡선: 정격 회전속도이고 무부하 상태일 때, I_{t} 와 V의 관계 곡선
 - ② 부하 특성 곡선: 정격속도에서 I를 정격값으로 유지할 때, I_f 와 E의 관계 곡선
 - ③ 외부 특성 곡선: 정격속도에서 정격전압 V가 되도록 I_f 를 조정했을 때, I와 V의 관계 곡선
 - ④ 계자 조정 곡선: 정격속도에서 V를 일정하게 유지할 때, V와 E의 관계 곡선
- 12. 동기 전동기에 대한 설명으로 가장 옳지 않은 것은?
 - ① 정격주파수와 정격전압으로 기동 중 동기속도의 95% 정도 에서 토크를 공칭 인입 토크라 한다.
 - ② 여자 전류의 조정에 따라 역률을 조정할 수 있다.
 - ③ 난조를 방지하는 방법 중의 하나로 제동권선을 설치한다.
 - ④ 안정도를 증진하기 위하여 설계상 회전자의 관성은 작게 한다.
- 13. 변압기 무부하 시험에 대한 설명으로 가장 옳지 않은 것은?
 - ① 2차측에는 전류가 흐르지 않는다.
 - ② 1차측의 여자 전류는 매우 큰 값을 갖는다.
 - ③ 권선 저항에 의한 전력손실은 매우 작은 값을 갖는다.
 - ④ 철손을 측정하기 위한 시험이다.
- 14. 단중 중권으로 감긴 정류자 권선을 가진 4극 직류기가 있다. 권회수가 2이며 코일이 120개로 이루어져 있다. 극당 자속은 0.01 [Wb] 이다. 이 직류기가 1,500 [rpm] 으로 회전하고 있다면, 브러시 양단에 나타나는 직류 전압[V]의 값은? (단, 브러시는 횡축에 위치해 있다.)
 - ① 120
 - 2 220
 - 3 240
 - 4 320
- 15. 4극 60[Hz], 3상 권선형 유도전동기에서 전부하시의 회전수는 1,710[rpm]이다. 동일 토크로 속도를 1,350[rpm]으로하기 위해 2차 회로에 삽입하여야 하는 외부저항[Ω]의 값은?
 (단, 2차 회로는 Y결선이고, 각 상의 저항은 0.2[Ω]이다.)
 - ① 0.4
 - 2 0.6
 - ③ 0.8
 - 4 1.0

- 16. 단상 변압기가 정격 2차 전압 200[V]에서 2차 전류 250[A]일 때의 전체손실이 1,525[W]이고, 2차 전류가 150[A]일 때 전체손실이 1,125[W]이다. 이 변압기의 무부하 손실[W]의 값은?
 - ① 400
 - 2 525
 - ③ 576
 - 4 900
- 17. 내부상차각(부하각) 45°, 1,000[kW]의 출력으로 운전하고 있는 동기 전동기가 있다. 내부상차각이 60°가 된다면 이때의 출력[kW] 값은? (단, 단자 전압과 계자 전류는 변하지 않는다.
 - 1 820
 - 2 965
 - ③ 1,225
 - 4 1,310
- 18. 저항 $10[\Omega]$, 유도성 리액턴스 $10[\Omega]$ 및 용량성 리액턴스 $5[\Omega]$ 이 직렬 연결된 회로에 전류 $i(t)=14.14\sin wt$ [A]가 흐르고 있다. 회로에 인가된 전압 V(t)[V]의 값은? (단, $\tan^{-1}(0.5)=26$ °이다.)
 - ① $\sqrt{2} \times 111.18 \sin(wt + 26)$
 - ② $\sqrt{3} \times 111.18 \sin(wt + 26)$
 - $3 2 \times 111.18 \sin(wt + 26)$
 - $4 3 \times 111.18 \sin(wt + 26)$
- 19. 농형 유도 전동기의 2중 슬롯 회전자에 대한 설명으로 가장 옳지 않은 것은? (단, 공극에서 가까운 도체를 A도체, 공극에서 먼 도체를 B도체라 한다.)
 - ① A도체는 B도체보다 저항률이 낮다.
 - ② A도체는 B도체보다 누설리액턴스가 작다.
 - ③ 기동 시에 대부분의 전류는 A도체로 흐른다.
 - ④ 기동 시 높은 토크를 얻기 위한 방법이다.
- 20. 단권 변압기의 특징에 대한 설명으로 가장 옳지 않은 것은?
 - ① %임피던스가 크기 때문에 단락 전류가 작다.
 - ② 권선을 적게 사용하여 크기와 중량을 줄일 수 있고, 조립 및 수송에 유리하다.
 - ③ 고압측과 저압측이 직접 접촉되어 있으므로 저압측도 고압측과 동일한 수준의 절연이 필요하다.
 - ④ 철손이 작고, 동손이 작아 효율이 좋다.