# (*Brevis*) Introducción al análisis de series temporales

Antonio J. Pérez-Luque

ajperez@ugr.es // ajperez@go.ugr.es

Análisis de datos de seguimiento en la Red de Parques Nacionales

## ¿Qué es una serie temporal?

- Conjunto de observaciones registradas a intervalos regulares de tiempo.
- En cada instante  $t_i$  la observación proviene de una variable que puede tener igual o diferente distribución
- El orden de llegada de los datos es importante



# ¿Por qué nos interesa analizar una serie temporal

- Para conocer como se repite a lo largo del tiempo (ciclo)
- Analizar si los datos se ajustan bien a un modelo teórico
- Analizar fenómenos espacio-temporales (avanzado)

# ¿Por qué nos interesa analizar una serie temporal

• Explicar la evolución de un fenómeno a lo largo del tiempo



# ¿Por qué nos interesa analizar una serie temporal

Predecir su valores en el futuro

#### Predicciones de la concentración de CO2



# Tipos de Series Temporales

 Falta de información sobre las distribuciones subyacentes (cada una con sus paráametros) de las variables que analizamos. Para cada variable solamente disponemos de un dato observado.



• Solución: Imponer condiciones a la serie de datos.

## Tipos: Estacionarias



- Los datos varían todo el tiempo alrededor del mismo valor medio y con la misma variabilidad
- La relación entre las observaciones en dos momentos del tiempo diferentes sólo depende del número de observaciones que distan entre ambas

## Tipos: No Estacionarias

No se cumplen las condiciones de estacionariedad



Serie no estacionaria estacional con tendencia

### No Estacionarias



 Aumenta la variabilidad con el tiempo (serie no estacionaria con tendencia y aumento de variabilidad)

- Existen diferentes funciones para analizar series temporales en R https://cran.r-project.org/web/views/TimeSeries.html
- Objeto ts: Tipo especial de objeto dentro de R para las series temporales

```
clima <- read.csv(here::here("/datos/temp_guadarrama.csv"),</pre>
                   header=TRUE, sep=";")
names(clima)[2] <- "YEAR"
# Seleccionar datos de la estacion Navacerrada
navacerrada <- subset(clima, NOMBRE == "NAVACERRADA, PUERTO")</pre>
# Seleccionar variables
tmin <- navacerrada[, c("YEAR", "TM MIN")]</pre>
# Crear un objeto de tipo ts
tmin.ts <- ts(data = tmin$TM MIN,
               start = min(tmin$YEAR),
              end = max(tmin$YEAR))
```

```
tmin.ts
```

Time Series:

```
Start = 1980

End = 2012

Frequency = 1

[1] -32 -8 -23 -8 14 68 99 126 116 39 -6 -43 -22 -39 0

[18] 97 102 117 87 40 34 -21 -14 -22 -25 5 36 78 108 113
```



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1980 -32 -8 -23 -8 14 68 99 126 116 39 -6 -43 1981 -22 -39 0 -10 13 97 102 117 87 40 34 -21 1982 -14 -22 -25 5 78 108 113 73 22 36 -4 -28 4 -51 0 -18 5 90 113 90 105 54 32 0 1983 1984 -38 -48 -45 28 -15 70 132 98 72 41 -1 -261985 -63 -7 -43 9 13 84 126 112 116 63 -11 -6 1986 -46 -48 -26 -39 51 83 123 100 87 46 4 -26 1987 -38 -34 -6 15 32 74 96 125 116 24 -2 2 1988 -22 -38 -18 -1 30 53 109 128 94 52 19 -9 1989 -23 -26 2 -32 53 82 136 126 76 52 5 -3 1990 -36 6 -11 -25 43 85 124 129 102 33 -4 -31 1991 -43 -50 -16 -17 13 87 119 138 93 12 -7 1 1992 -43 -9 -5 6 54 41 114 110 79 8 28 -28 71 107 111 1993 -5 -42 -18 -17 20 47 -2 -6 -15 1994 -41 -41 16 -27 33 77 138 127 45 42 31 -14 43 83 120 117 1995 -43 -18 -15 11 48 61 16 -20 1996 -27 -51 -23 6 26 86 108 94 59 40 4 -21 1997 -34 1 30 35 28 51 93 111 100 59 -2 -17 28 86 121 131 72 34 -7 -15 1998 -25 9 14 -24





# Aproximaciones al estudio de las series temporales

- Modelos lineales (deterministas)
- Alisados exponenciales
- Extracción de señales
  - Descomposicion de una serie temporal
  - LOESS (local polynomial regression fitting)
- Modelos paramétricos ARIMA (Autoregressive Integrated Moving Average):
  - modelos AR (Autoregressive)
  - MA (Moving Averages)
  - ARMA (Autoregressive Moving Averages) para series estacionarias
  - Modelos integrados para las series no estacionarias

Descomposición aditiva de una serie temporal (extracción de señales)

$$y_t = T_t + S_t + I_t$$

- Tendencia (T-t) representa un movimiento suave a lo largo del tiempo que puede ser constante o variable
- Estacionalidad  $\left(S_{t}\right)$  (Seasonality) supone una oscilación dependiente de la estación
- Componente irregular  $(I_t)$  lo componen variaciones aleatorias no explicadas por las otras componentes

#### Procedimiento:

- Se extrae la tendencia y se calculan los residuos (observaciones tendencia). Los residuos son la serie sin tendencia, que contiene la estacionalidad y el componente irregular.
- ② Se estima la estacionalidad de la serie y se resta a la serie sin tendencia, se obtiene la serie desestacionalizada. La serie desestacionalizada no debe contener ninguna estructura aparente y debe variar en torno a un valor constante, que es el componente irregular.
- 3 La predicción de la serie se realiza agregando al valor medio del componente irregular la predicción de tendencia y el componente estacional.

```
d.tmin <- decompose(tmin.ts2)</pre>
str(d.tmin)
List of 6
 $ x : Time-Series [1:385] from 1980 to 2012: -32 -8 -23 -
 $ seasonal: Time-Series [1:385] from 1980 to 2012: -62.8 -59.9
 $ trend : Time-Series [1:385] from 1980 to 2012: NA NA NA NA
 $ random : Time-Series [1:385] from 1980 to 2012: NA NA NA NA
 $ figure : num [1:12] -62.8 -59.9 -42.9 -33.1 1.8 ...
 $ type : chr "additive"
 - attr(*, "class")= chr "decomposed.ts"
```

- Valores predichos para la estacionalidad (\$seasonal), la tendencia (\$trend) y la componente irregular (\$random)
- Valores promedios estimados para la componente estacional (\$figure).

#### Decomposition of additive time series



- Es una aproximación determinista al tratamiento de series temporales
- Permiten predecir nuevos valores de la serie
- Están basados en modelos paramétricos deterministas que se ajustan a la evolución de la serie
- Estos modelos permiten ajustar niveles y comportamientos tendenciales y estacionales que evolucionan en el tiempo, de manera que las observaciones más recientes tienen más peso en el ajuste que las más alejadas
- Tipos:
  - Alisado exponencial simple (no tendencia; no estacionalidad)
  - Alisado de Holt (tendencia; no estacionalidad)
  - Alisado de Holt-Winters (tendencia; estacionalidad)

```
ordesa <- read.csv(file=here::here("datos/ordesa_ord.csv"))
# Selectionar un municipio
panticosa <- subset(ordesa, Municipio == "Panticosa")
head(panticosa)</pre>
```

|     | Codigo | Municipio | valle | year | Habitantes |
|-----|--------|-----------|-------|------|------------|
| 281 | 22170  | Panticosa | TEN   | 1998 | 647        |
| 282 | 22170  | Panticosa | TEN   | 1999 | 668        |
| 283 | 22170  | Panticosa | TEN   | 2000 | 709        |
| 284 | 22170  | Panticosa | TEN   | 2001 | 728        |
| 285 | 22170  | Panticosa | TEN   | 2002 | 726        |
| 286 | 22170  | Panticosa | TEN   | 2003 | 731        |

Holt-Winters exponential smoothing with trend and without season

Call:

```
HoltWinters(x = panticosa_ts, gamma = FALSE)
Smoothing parameters:
```

alpha: 1 beta : 0.7224186 gamma: FALSE

2 705 00000

Coefficients:

```
panticosa holt
Holt-Winters exponential smoothing with trend and without season
Call:
HoltWinters(x = panticosa_ts, gamma = FALSE)
Smoothing parameters:
 alpha: 1
 beta: 0.7224186
 gamma: FALSE
Coefficients:
       [,1]
a 795.00000
b 17.58844
```



#### Predicciones

```
Time Series:
Start = 2018
End = 2022
Frequency = 1
fit upr lwr
2018 812.5884 858.8794 766.2975
2019 830.1769 922.3730 737.9808
2020 847.7653 993.7395 701.7912
2021 865.3537 1072.2463 658.4612
2022 882.9422 1157.2139 608.6705
```

## **Predicciones**





# ¿Ha aumentado significativamente la población de Panticosa en los últimos 20 años?

|     | Codigo | Municipio | valle | year | Habitantes |
|-----|--------|-----------|-------|------|------------|
| 281 | 22170  | Panticosa | TEN   | 1998 | 647        |
| 282 | 22170  | Panticosa | TEN   | 1999 | 668        |
| 283 | 22170  | Panticosa | TEN   | 2000 | 709        |
| 284 | 22170  | Panticosa | TEN   | 2001 | 728        |
| 285 | 22170  | Panticosa | TEN   | 2002 | 726        |
| 286 | 22170  | Panticosa | TEN   | 2003 | 731        |

# ¿Ha aumentado significativamente la población de Panticosa en los últimos 20 años?



# ¿Ha aumentado significativamente la población de Panticosa en los últimos 20 años?

- 1 Análisis de tendencia (test de Mann-Kendall)
- Magnitud del cambio (Estimación de Theil-Sen Slope)

## 1. Análisis de tendencias: Mann-Kendall test

- Es un caso especial del test de correlación de Kendall  $(\tau)$
- Mide la asociación entre dos variables
- Basado en el ranking relativo de los datos (no sobre los datos en sí)
- Hipótesis:
  - $H_0$ : No existe una tendencia en los datos (los dataos son independientes y etán ordenados aleatoriamente)
  - $H_1$ : Existe una tendencia monótona (no necesariamente lineal)

# Construcción del estadístico y del test

Supongamos que tenemos un conjunto de observaciones de dos variable aleatorias, x (tiempo) e y (ej. Precipitación):

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

| year | prec |
|------|------|
| 1980 | 900  |
| 1981 | 875  |
| 1982 | 910  |
| 1983 | 725  |
| 1984 | 830  |
| 1985 | 730  |
| 1986 | 750  |
| 1987 | 710  |
| 1988 | 690  |
| 1989 | 715  |
|      |      |



### Construcción del estadístico y del test

• Se calcula el valor de un estadístico tau

$$\tau = \frac{(\text{n pares concordantes}) - (\text{n pares discordantes})}{\frac{1}{2}n(n-1)}$$

Clasificamos los pares de observaciones  $(x_i,y_i)$  y  $(x_i,y_i)$  en:

- concordantes si los rangos de ambos elementos concuerdan
  - $x_i > x_j$  y  $y_i > y_j$  o •  $x_i < x_j$  y  $y_i < y_j$
- discordantes cuando no concuerdan
  - $x_i > x_j$  y  $y_i < y_j$  o
  - $\bullet \ x_i < x_j \text{ y } y_i > y_j$

### Construcción del estadístico y del test

$$S = \sum_{i=1}^{n-1} \sum_{i+1}^{n} sign(x_{i+1} - x_i)$$

donde:

- $sign(x_{i+1} x_i) = 1$  cuando  $x_{i+1} x_i > 0$
- $\bullet \ sign(x_{i+1}-x_i)=0 \ \mathsf{cuando} \ x_{i+1}-x_i=0$
- $\bullet \ sign(x_{i+1}-x_i)=-1 \ {\rm cuando} \ x_{i+1}-x_i<0$

Un valor alto de  ${\cal S}$  indica una tendencia creciente, mientras que un valor negativo indica una tendencia decreciente

# Construcción del estadístico (demostración)

|    | year | prec |
|----|------|------|
| 6  | 1985 | 730  |
| 7  | 1986 | 750  |
| 8  | 1987 | 710  |
| 9  | 1988 | 690  |
| 10 | 1989 | 715  |
|    |      |      |

```
• 715 > 690 (1) // 715 > 710 (1) // 715 < 750 (-1) // 715 < 730 (-1)
```

- 690 < 710 (-1) // 690 < 750 (-1) // 690 < 730 (-1)
- 710 < 750 (-1) // 710 < 730 (-1)
- 750 > 730 (**1**)

# Construcción del estadístico (demostración)

$$\tau = \frac{S}{\frac{1}{2}n(n-1)}$$
 
$$\tau = \frac{-4}{\frac{1}{2}5(5-1)} = -0.4$$

library(trend)
mk.test(gg\$prec)

Mann-Kendall trend test

# Panticosa



#### Mann-Kendall trend test

data: panticosa\$Habitantes z=3.3111, n=20, p-value = 0.0009294 alternative hypothesis: true S is not equal to 0 sample estimates:

S varS tau 103.0000000 949.0000000 0.5435375

- Hipótesis  $H_0: \tau = 0$
- Calculamos el estadístico

$$z = \frac{S - sign(S)}{\sqrt{Var(S)}}$$

donde

$$Var(S) = \frac{n(n-1)(2n+5)}{18}$$

 Bajo la Hipótesis nula, el valor de z sigue aproximadamente una distribución normal

# Algunas ventajas de utilizar este test

- El valor de  $\hat{\tau}$  varía entre -1 y 1 (similar al coeficiente de correlación de Kendall)
- Informa de la dirección de la tendencia y de la magnitud
- Test estadístico muy utilizado en análisis de tendencias temporales para datos climatológicos, hidrológicos, evolución de población, etc.
- Es un test no-paramétrico que no requiere que los datos cumplan normalidad
- Se puede aplicar a datos estacionales, mensuales, etc (diferentes períodos de tiempo definidos por el usuario)
- Presenta una baja sensibilidad a los cambios abruptos en las series de datos no homogéneas

# 2. Theil-Sen Slope: Estimación de la tasa de cambio

- Estimación no paramétrica de la pendiente (tasa de cambio) para el intervalo analizado
- Método para ajustar una línea a un conjunto de puntos
- Mediana de las pendientes de todos los pares de puntos

$$\hat{\beta} = Median(\frac{Y_j - Y_i}{X_j - X_i})$$

Sen's slope

```
data: panticosa$Habitantes
z = 3.3111, n = 20, p-value = 0.0009294
alternative hypothesis: true z is not equal to 0
95 percent confidence interval:
    3.066667 10.214286
sample estimates:
Sen's slope
    5.755682
```

• Clasificación de tendencias. Ejemplo seguimiento de Aves (TRIM)

Table 9. Classification of the trend estimates. See text for details.

|                   | Greater than 20% | 6 change in a 20-    | Less than 20% change in a 20-year |                  |  |
|-------------------|------------------|----------------------|-----------------------------------|------------------|--|
|                   | year period      |                      | period                            |                  |  |
|                   | Significantly so | Not significantly so | Not significantly so              | Significantly so |  |
|                   |                  |                      |                                   |                  |  |
| Significantly     | (1) substantial  | (3) decline or       | (3) decline or                    | (2) non-         |  |
| different from    | decline or       | increase             | increase                          | substantial      |  |
| zero              | increase         |                      |                                   | decline or       |  |
|                   |                  |                      |                                   | increase         |  |
| Not significantly |                  |                      |                                   |                  |  |
| different from    | (impossible)     | (5) poorly known     | (5) poorly known                  | (4) stable       |  |
| zero              |                  |                      |                                   |                  |  |

#### Análisis de tendencias de parámetros climáticos en Sierra Nevada

• Variación temporal de la tendencia

Tabla 1

|                    |           | Píxeles |       | Píxeles significativos |       |
|--------------------|-----------|---------|-------|------------------------|-------|
| Variable           | Tendencia | n       | %     | n                      | %     |
| Precipitación      | Positiva  | 298     | 0,17  | 0                      | 0     |
|                    | Negativa  | 171.460 | 99,79 | 74.516                 | 43,37 |
| Temperatura máxima | Positiva  | 141.757 | 82,50 | 23.417                 | 13,63 |
|                    | Negativa  | 29.551  | 17,19 | 0                      | 0     |
| Temperatura mínima | Positiva  | 129.759 | 75,52 | 7                      | <0,01 |
|                    | Negativa  | 41.762  | 24,30 | 0                      | 0     |

Resultados del análisis de las tendencias (test de *Mann-Kendall*) anuales en los últimos 50 años para la precipitación, la media de las temperaturas máximas y la media de las temperaturas mínimas. Para cada variable se muestran el número de pixeles (n) con tendencias negativas (r < o) y positivas (r > o) así como el número de pixeles significativos (p-valor < 0,05).

... o sobre la importancia de realizar un Análisis exploratorio de los datos



- Precaución al analizar tendencias globales
- Comparación de periodos, Modelos GAM

¡Ojo con el análisis exploratorio de datos!



¡Ojo con el análisis exploratorio de datos!



### Ejemplos cómputo tendencias

 Análisis de tendencias cubierta de nieve y clima en SN https://sl.ugr.es/enebral\_dist



# Recursos (algunos)

- Falk M (2012). A First Course on Time Series Analysis Examples with SAS. Chair of Statistics, University of Wurzburg. http://www.statistik-mathematik.uni-wuerzburg.de/wissenschaftforschung/time\_series/the\_book/
- CRAN Task View: Time Series Analysis https://cran.r-project.org/web/views/TimeSeries.html
- Helsel, D.R., and R. M. Hirsch. (2002). Statistical Methods in Water Resources. Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. http://pubs.usgs.gov/twri/twri4a3/pdf/twri4a3-new.pdf.