Data Analysis Stories

Casey Canfield

24 January, 2021

In this file, I will demonstrate how to perform the data analysis stories. This project uses data from:

Ludwig, J., Duncan, G. J., Gennetian, L. A., Katz, L. F., Kessler, R. C., Kling, J. R., and Sanbonmatsu, L. (2012). Neighborhood effects on the long-term well-being of low-income adults. *Science*, 337(6101), 1505–1510.

The data is available at the National Bureau of Economic Research website. You should download the Cell-Level PUF (Public Use Files) for the *Science* paper that was last updated on 9/21/2012.

First, I call any needed libraries.

```
# LIBRARIES
# install.packages() if needed

library(tidyverse) # always
library(haven) # for read_dta
library(car) # for qqPlot
library(Hmisc) # for rcorr
```

Then I import data.

```
# using results = 'hide' makes it so that this doesn't have an output
# when you knit to pdf

# IMPORT DATA
mto_data <- read_dta("Data/mto_sci_puf_cells_20130206.dta")
mto_data
# CLEAN
str(mto_data$ra_group)
mto_data$ra_group <- as_factor(mto_data$ra_group)
# ra_group needs to be a factor so that R
# understands it's a categorical variable
# SUMMARY STATS
#summary(mto_data)
#names(mto_data) # names of all the variables in order
#objects(mto_data) # names in alphabetical order</pre>
```

Now I can perform the data analysis stories!

Data Summary Story

Sometimes histograms are easier to see when they are separated. We want to understand the distributions of the data.

Using box plots, we can better understand medians and outliers.

```
# boxplot
ggplot(mto_data, aes(x = ra_group, y = mn_happy_scale123_z_ad)) +
  geom_boxplot() +
  theme_bw() +
  xlab("Experimental Group") + ylab("Subjective Happiness")
```


Bar plots are useful for understanding categorical variables.

```
ggplot(mto_data, aes(x = ra_group)) +
  geom_bar() +
  theme_bw() +
  xlab("Experimental Group") + ylab("Number of Observations")
```


Scatter plots help us understand the relationship between two variables

```
# scatter plot with regression line
ggplot(mto_data, aes(x = mn_f_ec_idx_z_ad, y = mn_happy_scale123_z_ad)) +
geom_point() +
geom_smooth(method='lm') +
theme_bw() +
xlab("Economic Self-Sufficiency Index") + ylab("Subjective Happiness")
```

`geom_smooth()` using formula 'y ~ x'

Conditional Distribution Story

```
# plot cumulative distribution
# compare data to Normal distribution
distribution info <- mto data %>%
  group_by(ra_group) %>%
  summarise(mean = mean(mn_happy_scale123_z_ad),
            sd = sd(mn_happy_scale123_z_ad))
set.seed(1) # Set seed for the random number generator, to reproduce results
n.experimental <- as_tibble(rnorm(10000,</pre>
                                   distribution_info$mean[1],
                                   distribution_info$sd[1]))
n.section8 \leftarrow rnorm(10000,
                    distribution_info$mean[2],
                    distribution_info$sd[2])
n.control <- rnorm(10000,</pre>
                   distribution_info$mean[3],
                   distribution_info$sd[3])
# just plot experimental group data for now
mto data %>%
  filter(ra_group == "1=Low-Poverty Voucher/Experimental") %>%
ggplot(aes(x = mn_happy_scale123_z_ad)) +
  stat_ecdf(geom = "point") +
  theme_bw() +
  xlab("Subjective Happiness (Experimental Group)") + ylab("Cumulative Probability") +
  stat_ecdf(aes(value), n.experimental)
```



```
mto_reg <- lm(mn_happy_scale123_z_ad ~ mn_f_ec_idx_z_ad, data = mto_data)
summary(mto_reg)</pre>
```

```
##
## Call:
## lm(formula = mn_happy_scale123_z_ad ~ mn_f_ec_idx_z_ad, data = mto_data)
##
## Residuals:
               1Q Median
##
      Min
                               3Q
                                      Max
## -1.0007 -0.1770 -0.0084 0.1605 0.7723
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    0.06596
                               0.02076
                                         3.178 0.00179 **
                               0.08558
## mn_f_ec_idx_z_ad 0.20334
                                         2.376 0.01871 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.259 on 156 degrees of freedom
## Multiple R-squared: 0.03492,
                                   Adjusted R-squared:
## F-statistic: 5.645 on 1 and 156 DF, p-value: 0.01871
# q-q plot
qqPlot(mto_reg)
```


[1] 10 110

Forecasting Story

```
# cross validation
complex <- c() # Create an empty vector</pre>
simple <- c()
set.seed(11)
for(i in 1:10){  # Loop i from 1 to 100
  train <- sample(mto_data$cell_id,</pre>
                   2*length(mto_data$cell_id)/3,
                   replace = FALSE)
  test <- mto_data$cell_id[ - train]</pre>
  train1 <- lm(mn_happy_scale123_z_ad ~ mn_f_ec_idx_z_ad,</pre>
                data = mto_data[mto_data$cell_id %in% train, ])
  train2 <- lm(mn_happy_scale123_z_ad ~ 1,</pre>
               data = mto_data[mto_data$cell_id %in% train, ])
  test1 <- (mto_data$mn_happy_scale123_z_ad[mto_data$cell_id %in% test] -</pre>
              predict(train1, mto_data[mto_data$cell_id %in% test, ]))^2
  test2 <- (mto_data$mn_happy_scale123_z_ad[mto_data$cell_id %in% test] -</pre>
              predict(train2,mto_data[mto_data$cell_id %in% test, ]))^2
  rMSEtest1 <- sqrt(sum(test1)/length(test1))</pre>
  rMSEtest2 <- sqrt(sum(test2)/length(test2))</pre>
  # Append the rMSE from this iteration to vectors
  complex <- append(complex, rMSEtest1)</pre>
  simple <- append(simple, rMSEtest2)</pre>
summary(complex)
      Min. 1st Qu. Median
                               Mean 3rd Qu.
## 0.2244 0.2482 0.2571 0.2607 0.2702 0.3103
summary(simple)
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
## 0.2248 0.2376 0.2635 0.2628 0.2747 0.3104
```

Statistical Inference Story

```
# correlation
rcorr(as.matrix(mto_data[,c("mn_happy_scale123_z_ad", "mn_f_ec_idx_z_ad")]))
##
                          mn_happy_scale123_z_ad mn_f_ec_idx_z_ad
## mn_happy_scale123_z_ad
                                            1.00
## mn_f_ec_idx_z_ad
                                                              1.00
                                            0.19
##
## n= 158
##
##
## P
##
                          mn_happy_scale123_z_ad mn_f_ec_idx_z_ad
                                                 0.0187
## mn_happy_scale123_z_ad
## mn_f_ec_idx_z_ad
                          0.0187
# hypothesis testing
# t.test
experimental <- mto_data %>%
  filter(ra_group == "1=Low-Poverty Voucher/Experimental")
control <- mto_data %>%
  filter(ra_group == "3=Control")
t.test(experimental$mn_happy_scale123_z_ad,
       control$mn_happy_scale123_z_ad)
##
## Welch Two Sample t-test
##
## data: experimental$mn_happy_scale123_z_ad and control$mn_happy_scale123_z_ad
## t = 1.8605, df = 116.23, p-value = 0.06535
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.005904634 0.188807160
## sample estimates:
   mean of x mean of y
## 0.093573791 0.002122528
# regression
mto_group_lm <- lm(mn_happy_scale123_z_ad ~ ra_group,</pre>
                    data = mto_data)
summary(mto_group_lm)
##
## Call:
## lm(formula = mn_happy_scale123_z_ad ~ ra_group, data = mto_data)
## Residuals:
##
                  1Q
                     Median
                                    3Q
        Min
## -0.99593 -0.16295 -0.00698 0.17397 0.64133
##
## Coefficients:
##
                                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                            0.093574 0.031637 2.958 0.00358
```

```
## ra_group2=Traditional Voucher/Section 8 -0.005756 0.054797 -0.105 0.91648
## ra_group3=Control
                                           -0.091451 0.047077 -1.943 0.05388
##
## (Intercept)
## ra_group2=Traditional Voucher/Section 8
## ra group3=Control
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2609 on 155 degrees of freedom
## Multiple R-squared: 0.0268, Adjusted R-squared: 0.01425
## F-statistic: 2.134 on 2 and 155 DF, p-value: 0.1218
mto_group_aov <- aov(mn_happy_scale123_z_ad ~ ra_group,</pre>
                    data = mto_data)
summary(mto_group_aov)
##
                Df Sum Sq Mean Sq F value Pr(>F)
## ra_group
                2 0.291 0.14527
                                    2.134 0.122
               155 10.549 0.06806
## Residuals
# post hoc test
TukeyHSD(mto_group_aov, which = 'ra_group')
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = mn_happy_scale123_z_ad ~ ra_group, data = mto_data)
##
## $ra_group
##
                                                                              diff
## 2=Traditional Voucher/Section 8-1=Low-Poverty Voucher/Experimental -0.005756045
## 3=Control-1=Low-Poverty Voucher/Experimental
                                                                      -0.091451263
## 3=Control-2=Traditional Voucher/Section 8
                                                                      -0.085695218
## 2=Traditional Voucher/Section 8-1=Low-Poverty Voucher/Experimental -0.1354297
## 3=Control-1=Low-Poverty Voucher/Experimental
                                                                      -0.2028571
## 3=Control-2=Traditional Voucher/Section 8
                                                                      -0.2199202
## 2=Traditional Voucher/Section 8-1=Low-Poverty Voucher/Experimental 0.12391758
## 3=Control-1=Low-Poverty Voucher/Experimental
                                                                      0.01995455
## 3=Control-2=Traditional Voucher/Section 8
                                                                      0.04852974
##
                                                                          p adj
## 2=Traditional Voucher/Section 8-1=Low-Poverty Voucher/Experimental 0.9939354
## 3=Control-1=Low-Poverty Voucher/Experimental
                                                                       0.1303044
## 3=Control-2=Traditional Voucher/Section 8
                                                                      0.2886327
# resampling with bootstrap
# jacknife residuals plot
ggplot(mto_data, aes(x = fitted(mto_reg), y = rstudent(mto_reg))) +
 geom_point() +
 geom hline(yintercept = 0)
```


Causal Inference Story

There's no R code for this story.