Professor: Alexander Givental

Math 215A: Algebraic Topology

Homework 2 kdeoskar@berkeley.edu

Question 1: For the manifold of *complete* flags $V^1 \subset V^2 \subset \mathbb{C}^3$ in (say, complex) 3-space describe explicitly which flags belong to which Bruhat cell.

Solution:

The set $\mathbb{C}F(n;1,2,\cdots,n-1)$ is the set of complete flags i.e.

$$\mathbb{C}F(n;1,2,\cdots,n-1) = \{ \text{chains } (V_1 \subset V_2 \cdots \subset V_n) \mid \dim_{\mathbb{C}}(V_i) = i \}$$

In the Bruhat Cell Decomposition of a flag manifold, the Bruhat cells are characterized by the dimensions of intersections $d_{ij} = \dim (V_i \cup \mathbb{C}^j)$.

In our case, we're considering the manifold of complete flags $\mathbb{C}F(3;1,2)$ so we have a total of 6 Bruhat cells, corresponding to the six permutations of the sequence (1,2,3):

$$(1,2,3), (3,1,2), (2,3,1)$$

 $(1,3,2), (2,1,3), (3,2,1)$

The dimension of the cell $e[m_1, \dots, m_n]$ is equal to the number of pairs (i, j) for which $i < j, m_i > m_j$ So,

$$e[1,2,3]$$
 has dimension 0
 $e[1,3,2]$ and $e[2,1,3]$ have dimension 1
 $e[3,1,2]$ and $e[2,3,1]$ have dimension 2
 $e[3,2,1]$ has dimension 3

The flags in the cells are specified as below $(V_3 = \mathbb{C}^3 \text{ in all cases below})$:

(a) The flag contained in the 0-dimensional cell e[1,2,3] is $V_1=\mathbb{C}^1,V_2=\mathbb{C}^2,V_3=\mathbb{C}^3$.

- (b) The two flags in the 1-dimensional cells are
 - $V_1 = \mathbb{C}^1$ and $V_2 = \text{any 2-d}$ complex plane containing \mathbb{C}^1 other than the standard copy of \mathbb{C}^2 , $V_3 = \mathbb{C}^3$
 - $V_2 = \mathbb{C}^2$ and $V_1 = \text{any 1-d}$ complex line contained in \mathbb{C}^2 other than the standard copy of \mathbb{C}^1
- (c) The two flags in the 2-dimensional cells are:
 - V_1 being any line in \mathbb{C}^2 and V_2 being any 2d plane containing V_1 other than \mathbb{C}^2
 - $V^2 \neq \mathbb{C}^2$ and V_1 being any line contained in V^2 which is not \mathbb{C}^1
- (d) The one 3-dimensional flag is V_1 = any 1-d complex line other than \mathbb{C}^1 , V_2 = any 2-d complex plane other than \mathbb{C}^2

Question 2: Let c_k be the number of k-dimensional (in complex units) Bruhat cells in the manifold of complete flags in an n-dimensional complex space. Show that the generating function $c_0 + c_1q + c_2q^2 + \cdots$ of this sequence is equal to the "q-factorial": the product of $\frac{(1-q^k)}{(1-q)}$ over $k = 1, \dots, n$ and check this for your answer in (a).

Solution: (Collaborated with Finn Fraser Grathwol for this question)

Let's consider a finite field. The complete n-th flag manifold over finite field $\mathbb{F}_q = \{1, \dots, q\}$ is $\mathbb{F}F(n; 1, \dots, n-1) = \operatorname{GL}_n(\mathbb{F})/B$ where B is the subgroup of $\operatorname{GL}_n(\mathbb{F})$ formed by upper triangular matrices.

 \mathbb{F}_q^n contains q^n vectors, with q^n-1 of them being non-zero. Now, consider some 1-d subspace $V_1\subseteq \mathbb{F}_q^n$. The q-1 non-zero scalar multiples of the q^n-1 nonzero vectors span the same subspaces, so there are

$$\frac{q^n - 1}{q - 1}$$

vectors that could intersect V_1 . Similarly for a 2d subspace V_2 , since one dimension is already fixed, there are $\frac{q^{n-1}-1}{q-1}$ choices we can make, and so on for V_i until we hit V_n for which the number of choices is $\frac{q-1}{q-1}=1$.

Thus, we find that the number of complete flags is

$$\prod_{k=1}^{n} \frac{q^k - 1}{q - 1}$$

On the other hand, each Bruhat cell of dimension k is parametrized by k-points (from a k-dimensional affine space). Thus, if we denote the number of cells as c_k then we have the result.

This matches up with (a) wherein we have $f_3 = (q^3 - 1)(q^2 - 1)(q^2 - 1)/(q - 1)^3 = 1 + 2q + 2q^2 + 2q^3$.

Question 3: Prove that \mathbb{S}^{∞} is contractible.

Solution:

Let's denote the natural "equitorial" inclusion $x \mapsto (x,0)$ as $\iota : \mathbb{S}^n \hookrightarrow \mathbb{S}^{n+1}$. Consider the following map:

$$F: \mathbb{S}^n \times I \to \mathbb{S}^{n+1}$$
$$(x,t) \mapsto \left(\sqrt{1-t^2}x, t\right)$$

This is a continuous map since its components are continuous, and we notice that $F(x,0) = (x,0) = \iota(x)$ and F(x,1) = (0,1). Thus, F(x,t) is a homotopy between ι and the contant map $\mathbb{S}^n \ni x \mapsto (0,1) \in \mathbb{S}^{n+1}$. Thus, for every $n \in \mathbb{N}$, \mathbb{S}^n is contractible in \mathbb{S}^{n+1} .

This particular homotopy can be visualized as dragging \mathbb{S}^n from the equator to the north pole of \mathbb{S}^{n+1} , but an equivalent homotopy would be to imagine one point x_0 on the inclusion of \mathbb{S}^n to be fixed and to drag the rest of \mathbb{S}^n over the surface of \mathbb{S}^{n+1} , passing the nole pole, and collecting into the fixed point x_0 .

Now, to make \mathbb{S}^{∞} contractible we can extend homotopies between the finite-dimensional spheres to \mathbb{S}^{∞} using Borsuk's theorem.

For time-interval [0, 1/2) contract \mathbb{S}^1 to a point $x_0 \in \mathbb{S}^2$, and then extend the homotopy $F_1 : \mathbb{S}^1 \times I \to \mathbb{S}^2$ to a homotopy from $S^{\infty} \times I$ to \mathbb{S}^2 , for time-interval [1/2, 3/4) contract \mathbb{S}^2 to a point $x_0 \in \mathbb{S}^3$ (imagining this to be the same fixed point mentioned earlier) and similarly extend it to a homotopy on \mathbb{S}^{∞} using Borsuk's Theorem.

Doing this for all \mathbb{S}^n , and taking the composition of all the homotopies we get a map $\mathbb{S}^{\infty} \times [0,1) \to \mathbb{S}^{\infty}$ (we never actually hit t=1 in the description above since we keep going for infinitely many n), which we can extend to a map $\mathbb{S}^{\infty} \times [0,1] \to \mathbb{S}^{\infty}$ such that the map $\mathbb{S}^{\infty} \times 0 \to \mathbb{S}^{\infty}$ is just the identity and the map $\mathbb{S}^1 \times 1 \to \mathbb{S}^{\infty}$ is the constant map to x_0 .

Thus, we have \mathbb{S}^{∞} is contractible to a point.