Machine Learning DA220

Soumitra Samanta <u>soumitra.samanta@gm.rkmvu.ac.in</u> Office: PB405

Classification

Recap

- What is ML?
- Some applications of ML
- Deductive vs Inductive inference
- Different types of data and their representation
- Data similarity: different types of distance metrics

K-nearest neighbour classifier

- Let X_1, X_2, \ldots, X_n be given feature (observation) vectors, $X_i \in \mathbb{R}^d$
- ullet Let Y_i denote the class Lebel of X_i
- Let the number of classes be C
 - $Y_i \in \{1,2,...,C\}$
- Let Y_i 's are known $\forall i = 1,2,...,n$
- Let X be a vector for which we don't know its class Lebel

k-nearest neighbour classifier (cont.)

- Let k be a (+)ve integer
- Find k- nearest neighbour of X among X_1, X_2, \ldots, X_n
- Let k_i of these nearest neighbours belong to i^{th} class for each i=1,2,...,C

$$\sum_{i=1}^{C} k_i = k$$

• Put X in the i^{th} class if $k_i > k_j$, $\forall i \neq j$

K-nearest neighbour classifier (cont.)

Remark

- lacktriangle When k=1, the rule is known as nearest neighbour classifies
- ► There is no universally acceptable way of choosing the value of *k*
- ► The value of *k* depends on data point dispersion not only depend on the number of data points
- \blacktriangleright For two different values of k, we may get different results

Classifier (model) evaluation

- Data partition
 - Training
 - Validation
 - Testing
- Model error/loss $[\bar{Y}_i := f(X_i)]$:
 - $\mathcal{L}(X_i, Y_i, \bar{Y}_i) := \begin{cases} 0 & if \ \bar{Y}_i = Y_i \\ 1 & otherwise \end{cases}$
 - $E\left[f(X,Y)\right] = \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(X_i, Y_i, \bar{Y}_i)$
 - Pointwise 0 1-loss

Recap

- What is ML?
- Some applications of ML
- Deductive vs Inductive inference
- Different types of data and their representation
- Data similarity: different types of distance metrics
- kNN rule classifier
- Classifier evaluation
 - data partition

Assignment-1

- Implement kNN classifier and test on MNIST digit data
 - Download the dataset from here: http://yann.lecun.com/exdb/mnist/
 - Strictly follow their data partition
 - There is no validation set!
 - Make your own validation set from the training set (20%)
 - ▶ Use different similarity metrics ($p=1,\,2,\,\infty$) and ($k=1,\,3,\cdots,\,25$) calculate the classifier errors
 - ightharpoonup Plot (3-D) the classification errors/accuraccy for different p's and k's
- Submission deadline: 21-02-2023