Definimos un nuevo grafo H donde tenemos z veces cada punto de la ciudad, codificando si llegamos a ese punto en bici o en tren. De esta forma podemos aplicar la penalidad de esperar el tren solo wando se sube y no en estaciones intermedias del viaje en tren.

Υρερ: pg ε V(H) Λ pr ε V(H)

Llegó a p en Bici Llegó a p en tren

Ajustamos el peso de las aristas en el modelo teniendo en cuenta la espera del tren y también convirtiendo las distancias en tiempo de viaje según el transporte (bici o tren) asociado a la arista. Recordemos que queremos minimizar tiempo, no distancia recorrida.

Bici - Bici: llega en bici, se va en bici $\forall e_G = (u, v) \in C: e_H = (M_B, V_B) \in E(H)$

 $d_{H}(e_{H}) = d_{G}(e_{G})/15$ Velocidad bici

Bici-Tren: llega en bici, se va en tren

Ye6 = (U,V) ∈ C: eH = (MB, VT) ∈ E(H)

 $d_{H}(e_{H}) = d_{G}(e_{G})/60 + \frac{1}{6}$ Velocidad fren + espera

Tren-Tren: llega en tren, se va en tren

 $\forall e_T = (u, v) \in C': e_H = (u_T, v_T) \in E(H)$

 $d_{H}(e_{H}) = d_{T}(e_{T})/60$ Velocidad fren

	: Ilega e					
∀e _T =(u,v)	E C1:					
		94(64)	=d_(e_)/15	Veloci	dad bici
Una vez a	.rmado el	modelo	o. COFFE	emos al	aún alaoritm	o para calcular
					os los otros	·
del modelo						
		1		Llega	mos en tren	
La solució	in es: mi	v ≥ 9 ^r (\	AR BR), dh(A	8. BT)}	
			1			
		So	n distin	tor R.	Bes el punt	ociainal
					nunciado. Br	
			'	'		•
			TAUD U	e liegai	a Ben bio	
Complejida	d:					
V(H)) = 0		(4)				
)E(H)) = C)(c+c'):	$= O(P^2)$) Asu	mimos (syT conexos	
Construir	el modelo	: O(P	t bs) =	$O(P^2)$		
Dijkstra	can vect	ΛT : (7	(P ²)			
0111121120	CON VECT					
$\Rightarrow O(P^2)$						
, , ,						