第二节 摩擦

光滑接触面 约束是一个理想 模型,是对实际 情况的抽象和简 化。

摩擦分类

按运动形式分类:滑动摩擦;滚动摩擦(滚动摩阻)

按有无相对运动:静摩擦;动摩擦

两物体之间是否有润滑剂:干摩擦;湿摩擦

•摩擦问题的两重性:

- 有利:制动、传动
- 不利:产生阻力、消耗能量、降低效率

2-1 滑动摩擦

两个相互接触的物体,如果彼此之间有相对滑动或相对滑动的趋势,在接触面上就产生彼此阻碍滑动的切向力,这种阻力称为滑动摩擦力。

//静滑动摩擦力——在仅有相对滑动趋势而尚未滑动时 产生的摩擦力。

// 动滑动摩擦力——在物体接触面间已经滑动时产生的摩擦力。

一、静、动滑动摩擦定律

方向: 与物体滑动趋势的方向相反。

大小: 由平衡方程决定 ($F = F_T$)。

静摩擦力是一范围值: $0 \le F \le F_{m}$

✓最大静摩擦力——物体将动还未动时,摩擦力达到最大值。

$$F_{\text{max}} = f_S F_N$$
 (到达临界状态)

 f_s ——静摩擦因数, F_N ——法向压力。

最大静摩擦力: $F_{\text{max}} = f_{\text{s}} F_{\text{N}}$ 。

静滑动摩擦定律

静摩擦因数(系数): 无量纲,与两接触物体的材料性质及接触面的粗糙程度有关,可用实验方法确定。

在一般情况下(非临界状态)

$$0 \le F < F_{\text{max}}$$

临界平衡状态

$$F = F_{\text{max}}$$

动滑动摩擦力: $F_{d}=f_{d}F_{N}$

动滑动摩擦定律

动摩擦因数(系数) f_d : 无量纲,可用实验方法确定,略小于静摩擦因数(系数)。

袅 5-1 常用材料的摩擦系数

材料名称		摩 擦	系 数	
	静 摩 擦 系 数 (f)		动 摩 擦 系 数 (f')	
	无润滑剂	有润滑剂	无润滑剂	有润滑剂
钢钢	0.15	0.10~0.12	0. 15	0.05~0.10
钢——铸铁	0.30		0.18	0.05~0.15
钢——青铜	0.15	0.10~0.15	0.15	0.10~0.15
诗铁——诗铁		0.18	0. 15	0.07~0.12
诗铁——青铜			0.15~0.20	0.07~0.15
青铜——青铜		0. 10	0. 20	0.07~0.10
皮革——铸铁	0.30~0.50	0.15	0.60	0.15
橡皮——铸铁		1.1	0.80	0.50
木木	0.40~0.60	0.10	0.20~0.50	0.07~0.15

此表摘自<机械设计手册>(燃料化学工业出版社)

二、摩擦角与自锁

摩擦力F: 广义的约束反力

摩擦角:

 F_R ——约束全反力

φ ——约束全反力与法线的夹角

摩擦角和自锁现象

1. 摩擦角

约束全反力与法线间的夹角的最大值(临界情况下约束力全反力与法线间的夹角)称为摩擦角。

摩擦角和自锁现象

 $\phi_{\rm m}$ 与静滑动摩擦因数 $f_{\rm s}$ 的关系为:

$$\tan \varphi_{\rm m} = \frac{F_{\rm max}}{F_{\rm N}} = \frac{f_{\rm s} F_{\rm N}}{F_{\rm N}} = f_{\rm s}$$

摩擦角的正切等于静摩擦因数

与主动力的大小无关

2 自锁现象 为中人? 为束全反力的作用线一定在摩擦角之内

物块平衡时,静摩擦力不一定达到最大值,可在零与最大值 F_{max} 之间变化,所以约束全反力与法线间的夹角 φ 也在零与摩擦 角 φ 之间变化,即

$$0 < \varphi \leq \varphi_m$$

由于静摩擦力不可能超过最大值,因此 约束全反力的作用线也不可能超出摩擦角之 外,即约束全反力必在摩擦角之内。

要保持静止(平衡),全部主 动力的合力的作用线在摩擦角 之内,即

全部主动力的合力与接触面法线间的夹角也要满足:

$$0 < \varphi \leq \varphi_m$$

反之,如果全部主动力的合力 F_R 的作用线在摩擦角之外,则无论这个力怎样小,都不能与约束全反力保持平衡,物块一定会滑动。

自锁:

当主动力合力的作用线位于摩擦角范围内时,不论主动力多大,物体部动力多大,物体都保持平衡,这种现象称为自锁。(刚体)

- 1. 摩擦角是静摩擦力取值范围的几何表示。
- 2. 三维受力状态下,摩擦角变为摩擦锥。

斜面上的重物

自锁的应用

自锁在工程中的应用

黄沙输送带的锥角值α

$$\alpha \leq \varphi_m$$

螺旋千斤顶 三十 J6千斤顶, avi

锥体摩擦离合器自锁条件

自锁条件: $\alpha \leq \rho$

小 结

- Γ 最大静摩擦力: $F_{\text{max}} = f_S F_N$ 由静滑动摩擦定律确定
- 与 动摩擦力: $F' = f F_N$ 由动滑动摩擦定律确定

思考题

 \vec{F} \vec{F} F=300N 静滑动摩擦力多大? 120N? 静摩擦因数为0.4

物块A重为P,放在粗糙的水平面上,其摩擦角 $\rho_m = 20^\circ$ 。若一力F作用于摩擦角之外并已知 $\theta = 30^\circ$,F = P,试问物块能否保持平衡?为什么?

例:图示一均质矩形块,高度为a,重为P,与地面间的静滑动摩擦因数为f,其上作用水平力F。若矩形块处于平衡状态,试问图示受力图是否正确?并说明理由。

三、考虑摩擦时物体的平衡问题

按静摩擦力的性质,常见的考虑摩擦的平衡问题大致分为如下4类:

- (1)物体处于临界平衡状态时,求解有关未知量的值。即求解物体处于临界状态下的平衡问题。
 - (2) 已知物体所受的主动力,判断物体处于静止还是滑动。
- (3) 对应于静摩擦力可取值的范围,物体的平衡同样具有一定的范围,如何来确定这个平衡范围。
 - (4) 倾覆问题。

考虑摩擦时物体的平衡问题与不考虑摩擦时的平衡问题解题方法、步骤大致相同,区别如下:

- (1) 分析物体受力时,要考虑摩擦力,未知量个数增加了;
- (2) 为确定增加的未知量,必须建立补充方程:

$$0 < F_S \le F_{\text{max}} = f_s N$$

补充方程的数目等于摩擦力的个数。

- (3) 由于物体平衡时摩擦力有一定的范围,(0<F_s≤F_{max} = f_sN),因此在一般情况下,问题的解也是一个范围值,而不是一个确定值。只有在<mark>临界情况下,补充方程取等号,解才可能是个确定值。在一般情况下,常常先在临界情况下计算,求得结果后再分析、讨论其平衡范围。</mark>
- (4) <u>在临界情况下求解有摩擦的平衡问题时,摩擦力方向必须</u>根据物体相对滑动的趋势正确判定,不能任意假设。而在非临界状态时,摩擦力方向可以任意假设。

习题1

重G 的物体放在倾角为 β 的斜面上,物体与斜面间的摩擦角为 Φ ,如在物体上作用力F,此时与斜面的交角为 θ ,求拉动物体上行时的F 值,并问当角 θ 为何值时,此力最小。

如图建立坐标系,拉动物体时, $F_f = F_N \cdot f_s = F_N \cdot tg\phi$

$$F_f = F_N \cdot f_s = F_N \cdot tg\phi$$

$$\sum_{i=1}^{n} F_{iy} = 0$$

$$F\sin\theta + F_N - G\cos\beta = 0$$

$$\theta = \phi$$

$$\sum_{i=1}^{n} F_{ix} = 0$$

$$F\cos\theta - F_f - G\sin\beta = 0$$

$$F = G\sin(\beta + \phi)$$

 $F\cos\theta\cos\phi - G\cos\beta\sin\phi + F\sin\theta\sin\phi - G\sin\beta\cos\phi = 0$

$$F = G \frac{\sin(\beta + \phi)}{\cos(\theta - \phi)}$$

分母最大,F 为极小值

例:人重为P,不计重量的梯子放在粗糙的地面、墙面上,梯长L,求:人到达<u>最大高度</u>时的 x_{\min} 。 $f = f_A = f_B$

解:
$$\Sigma F_{ix} = 0$$
, $F_{BN} - F_{Am} = 0$ (1)
 $\Sigma F_{iy} = 0$, $F_{AN} + F_{Bm} - P = 0$ (2)
 $\Sigma M_{iB} = 0$,
 $F_{Am} L \sin\alpha + Px_{min} - F_{AN} L \cos\alpha = 0$ (3)
 $F_{Am} = f_A F_{AN}$ (4) , $F_{Bm} = f_B F_{BN}$ (5)
 $x_{min} = \frac{(\cos\alpha - f_A \sin\alpha)L}{1 + f_A f_B}$
 $f = f_A = f_B$
 $x_{min} = \frac{(\cos\alpha - f \sin\alpha)L}{1 + f^2}$

 x_{\min} 与P无关。

[例3] 均质杆OC 长 l = 4m,重 P = 500N;轮重 W = 300N,与杆OC及水平面的摩擦系数 $f_A = 0.4$, $f_B = 0.2$,滚动摩擦不计。求**拉动**圆轮所需力 Q 的**最小值**。

解: (一) 研究 *OC* 杆 受力分析如图, 列平

衡方程求解:

$$\sum m_O(\overline{F}) = 0,$$

$$N_A' \cdot \frac{3l}{4} - P \cdot \frac{l}{2} = 0 \qquad (1)$$

解得:

$$N'_A = N_A = \frac{2}{3} \cdot 500 = 333 \,\text{N}$$

 $N'_A = -N_A = -\frac{2}{3} \cdot 500 = -333 \,\text{N}$

(\Box) 研究轮 O_1

$$\sum Y = 0, \ N_B - N_A - W = 0$$
 2

解得:
$$N_R = 633 \,\mathrm{N}$$

(1) 若
$$A$$
 点不动, $F_B = F_{B \max}$

$$\sum m_A(\overline{F}) = 0, \ Q_1 \cdot 0.2 - F_{B \text{max}} \cdot 0.5 = 0$$
 3

$$F_{B \max} = f_B \cdot N_B = 0.2 \cdot 633 = 127 \text{ N}$$

解得:
$$Q_1 = 317 \,\mathrm{N}$$

(2) 若
$$B$$
 点不动, $F_A = F_{A \max}$

$$\sum m_B(\overline{F}) = 0, \ F_{A \max} \cdot 0.5 - Q_2 \cdot 0.3 = 0$$
 5

$$F_{A \max} = f_A \cdot N_A = 0.4 \cdot 333 = 133 \,\text{N}$$
 6 $Q_{\min} = Q_2 = 222 \,\text{N}$

解得:

$$Q_2 = 222 \,\mathrm{N}$$

因此取:

$$Q_{\min} = Q_2 = 222 \,\mathrm{N}$$

注意: 本例题与前面两个摩擦面例题(梯子)的区别。

[例]图示一折叠梯放在地面上,与地面的夹角 $\theta = 60^{\circ}$ 。脚端A = B和地面的摩擦因数分别为 $f_{sA} = 0.2$, $f_{sB} = 0.6$ 。在折叠梯的AC侧的中点处有一重为500N的重物。不计折叠梯的重量,问它是否平衡?如果平衡,计算两脚

与地面的摩擦力。

处理此类问题时首先假定系统为平衡。由于系统不一定处于静摩擦的临界情况,可通过平衡方程求得这些未知的静摩擦力。所得的结果必须与最大静摩擦力进行比较,以确认上述系统平衡的假定是否成立。

令脚端A与B的法向约束力分别为

静摩擦力分别为

以整体为对象,令等边三角形的边长为b,建立坐标系如图,有平衡方程

$$\sum_{i=1}^{n} M_A(\vec{F}_i) = 0$$

$$\longrightarrow bF_{By} - 0.25bG = 0$$

$$F_{By} = 0.25G = 125 \,\mathrm{N}$$

$$\sum_{i=1}^{n} F_{iy} = 0$$

$$\longrightarrow F_{Ay} + F_{By} - G = 0$$

以杆 BC 为对象,由于不计杆件的重量,该杆为二力杆,即摩擦力与法向约束力的合力与铰 C 的约束力均沿杆的轴线。由图b 的矢量几何,有:

$$F_{Bx} = F_{By} \tan 30^\circ = 72.17 N$$

(或者以BC为研究对象对C点取矩)

再以整体为对象,有平衡方程

$$\sum_{i=0}^{n} F_{ix} = 0 \qquad F_{Ax} - F_{Bx} = 0$$

$$F_{Ax} = F_{Bx} = 72.17 \text{ N}$$

下面判断系统是否处于静平衡

脚端A 与B 的极限静摩擦力分别为:

$$F_{\mathrm{m}A} = f_{\mathrm{s}A}F_{Ay} = 75\,\mathrm{N}$$

$$F_{\mathrm{m}B} = f_{\mathrm{s}B}F_{\mathrm{By}} = 75\,\mathrm{N}$$

脚端A与B的摩擦力均小于极限静摩擦力,可见 折梯处于平衡的假定成立。

例

 φ , 物块与斜面间的 摩擦因数为 f_s 。 **: 能使A块保持平 衡的 F_0 的值。

解:取A块,分析受力

摩擦力的方向?

○设有上滑趋势。

此时,摩擦力方向如图。 建立坐标系如图。

$$\sum X = 0$$

$$F_T \cos \varphi - F_P \sin \theta - F_S = 0$$

$$\sum Y = 0$$

 $F_N + F_T \sin \varphi - F_P \cos \theta = 0$

设达到临界状态,则有:
$$F_s = f_s F_N$$

解出:
$$F_T = \frac{\sin\theta + f_s \cos\theta}{\cos\varphi + f_s \sin\varphi} F_P$$

记为:
$$=F_{Q \max}$$

○设有下滑趋势

这时,摩擦力方向向上。

$$\sum X = 0 \quad F_T \cos \varphi - F_P \sin \theta + F_s = 0$$

$$\sum Y = 0$$

$$F_N + F_T \sin \varphi - F_P \cos \theta = 0$$

设达到临界状态,则有: $F_s = f_s F_N$

解出:
$$F_T = \frac{\sin \theta - f_s \cos \theta}{\cos \varphi - f_s \sin \varphi} F_P$$

记为:
$$=F_{Q \min}$$

结论: 平衡时, F_O 的值为: $F_{Q \min} \leq F_Q \leq F_Q$

$$F_{Q \min} \le F_Q \le F_{Q \max}$$

倾覆问题 (翻倒问题)

例6: 矩形柜如图,柜重G,重心C在其几何中心,柜与地面间的静摩擦因数是 f_s ,施加水平向右的力F,求能使柜**运动**所需推力F的最小值。

解: 〔矩形柜〕

1.假设其处于滑动的临界平衡状态。

$$\sum F_{x} = 0 \qquad F - F_{A} - F_{B} = 0$$

$$\sum F_{y} = 0 \quad F_{NA} + F_{NB} - G = 0$$

补充方程:

$$F_A = f_S F_{NA}$$
, $F_B = f_S F_{NB}$

$$F_{\parallel} \equiv Gf_{s_s}$$

2. 假设矩形柜处于即将绕 B点倾覆的临界平衡状态。

$$\sum M_{B} = 0 \qquad G \times \frac{a}{2} - F \times h - F_{NA} \times a = 0$$

即将绕 B点倾覆的临界状态: $F_{NA}=0$

$$F \leq \frac{Ga}{2h}$$

使柜翻倒的最小推力为:

$$F_{\text{m}} = \frac{Ga}{2h}$$

能使柜运动所需推力

$$F \equiv \min\{F_{\mathbb{R}}, F_{\mathbb{R}}\}$$

通过以上各例分析,现将考虑摩擦时物体的平衡问题的解题要点归纳如下:□

- (1) 在临界情况下求解有摩擦的平衡问题时,摩擦力方向必须根据物体相对滑动的趋势正确判定,不能任意假设。
- (2) 在判断物体是否处于静止时,可以先假定物体处于静止而分别计算物体接触面上的静摩擦力F和可能达到的最大静摩擦力F_{max},然后比较F和F_{max}的大小。

- (3)在求解临界平衡问题时,除列出平衡方程外,还要列出补充方程 $F_{max}=f_sN$,将其与平衡方程联立求解未知量。
- (4) 在求解平衡范围问题时,常常先在临界情况下计算,求得结果后再分析、讨论其平衡范围。
- (5) 对于多个摩擦面的临界平衡问题要注 意区分是所有摩擦力都达到最大值物体才会运 动还是部分摩擦力达到最大值物体就会运动。

性 约 東 假 设 所 带 来 的 问

刚

2-1 滚动摩擦(滚动摩阻)

滚动摩擦又称为滚动摩阻,是指一物体沿另一物体表面相对滚动(或有相对滚动趋势)时接触面产生的一种作用,这种作用阻碍物体的相对滚动。

滚动摩阻力偶矩是怎样产生的?

滚子与支承面事实上均非刚体, 在受力后会发生变形,因而滚 子与支承面为面接触,分布在 接触面上的约束反力,严格讲 是一个空间力系。

与静滑动摩擦力相似,滚动摩阻力偶矩 M_f 随主动力偶矩(F_T ,F)的增大而增大,当滚子处于将动未动的临界状态时,滚动摩阻力偶矩达到最大值 M_{max} ,称为最大滚动摩阻力偶矩。在滚子滚动后,滚动摩阻力偶矩近似等于 M_{max} 。

在一般情况(非临界情况)下,滚动摩阻力偶矩介于0和 M_{max} 之间,即 $0 \le M_f < M_{f max}$

 $M_{f \max} = F_N \delta$ (滚动摩阻定律)

其中比例常数 δ 称为滚动摩阻系数(长度单位)。

滚动摩阻系数由接触面材料确定,单位一般为mm。

对比: $在一般情况下(非临界状态) <math>0 \le F < F_{\text{max}}$ 临界平衡状态 $F = F_{\text{max}}$

// 最大静摩擦力——物体将动还未动时,摩擦力达到最大值。

$$F_{\text{max}} = f_S F_N$$

 f_s ——静摩擦因数, F_N ——法向压力。

例 轮胎半径为r=40cm,载重W=2000N,轴传来的推力为P,设滑动摩擦系数f=0.6,滚动摩阻系数 δ =2.4mm,试求推动此轮胎前进的力P.

解: (1)选轮子为研究对象,画出轮子的受力图. 轮子受力有载重W、推力P、法向反力N、滑动摩擦力F、滚动摩擦力偶矩m,这是一个平面任意力系.

轮子前进有两种可能: 一.向前滚动 二.向前滑动 (a).分析向前滚动的临界状态:列平衡方程(P、N、F、m共4个未知量,需要1个补充方程):

$$\sum X=0$$
 $P-F=0$ $P=F$

$$\sum Y = 0$$
 $N = W = 0$ $N = W$

$$\sum m_A = 0$$
 m-Pr=0 m=Pr

轮子刚要开始向前滚动时,滚动摩擦力偶矩为 $m=m_{max}=\delta N$. (补充方程) $\rightarrow Pr=\delta N$ $\rightarrow P=\delta W/r=0.24\times2000/40=12N$,所以只要12N的力就可以使轮子向前滚动. (注意:此时静滑动摩擦力F=12N并未达到最大值,故轮胎未滑动。这种只滚不滑的运动称为<u>纯滚动</u>)。

b).分析向前滑动的临界状态::如果轮子刚要开始滑动,3个静力平衡方程不变,则摩擦力F等于最大摩擦力,补充方程变为 $F=F_{max}=fN$,同理求解可得,

• (3)分析讨论. 一般情况下, $\frac{\delta}{r} << f$ 说明滚动要比滑动省力得多.所以工程中通常以滚动代替滑动.

由于在工程实践中滚动摩阻力偶矩 通常比较小。因此以后除非特别说明 (滚动摩阻力偶矩或滚动摩阻系数), 一般情况下,滚动摩阻力偶可忽略不计。