$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

b₁(1235) MASS

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1229.	5± 3.2 OUF	RAVERAGE	Error includes	scale	factor c	of 1.6.	See the ideogram below.
1225	\pm 5		WEIDENAUER	93	ASTE		$\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}\pi^{0}$
1235	± 15		ALDE	92C	GAM2		38,100 $\pi^- p \to \omega \pi^0 n$
1236	± 16		FUKUI	91	SPEC		8.95 $\pi^- p \to \omega \pi^0 n$
1222	\pm 6		ATKINSON	84E	OMEG	\pm	25–55 $\gamma p \rightarrow \omega \pi X$
1237	± 7		ATKINSON	84E	OMEG	0	25–55 $\gamma p \rightarrow \omega \pi X$
1239	\pm 5		EVANGELIS	81	OMEG	_	12 $\pi^- p \rightarrow \omega \pi p$
1251	± 8	450	GESSAROLI	77	HBC	_	$11 \pi^- p \rightarrow \pi^- \omega p$
1245	± 11	890	FLATTE	76 C	HBC	_	4.2 $K^- p \rightarrow \pi^- \omega \Sigma^+$
1222	± 4	1400	CHALOUPKA	74	HBC	_	$3.9 \pi^{-} p$
1220	± 7	600	KARSHON	74 B	HBC	+	4.9 π^{+} p
• • •	We do not	use the follo	wing data for av	erage	s, fits, li	mits, e	tc. • • •
1190	± 10		AUGUSTIN	89	DM2	\pm	$e^+e^- o 5\pi$
1213	\pm 5		ATKINSON	84C	OMEG	0	20–70 γ <i>p</i>
1271	± 11		COLLICK	84	SPEC	+	200 $\pi^+ Z \rightarrow Z \pi \omega$

Created: 5/30/2017 17:20

$b_1(1235)$ WIDTH

VALUE (MeV) EVTS	DOCUMENT ID	TECN CHG	COMMENT			
142± 9 OUR AVERAGE	9 OUR AVERAGE Error includes scale factor of 1.2.					
113 ± 12	WEIDENAUER 93	ASTE	$\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}\pi^{0}$			
160 ± 30	ALDE 92C	GAM2	38,100 $\pi^- p \to \omega \pi^0 n$			
151 ± 31	FUKUI 91	SPEC	8.95 $\pi^- p \rightarrow \omega \pi^0 n$			
170 ± 15	EVANGELIS 81	OMEG -	$12 \pi^- p \rightarrow \omega \pi p$			
170 ± 50 225	BALTAY 78B	HBC +	15 $\pi^+ p \rightarrow p4\pi$			
155 ± 32 450	GESSAROLI 77	HBC –	$11 \pi^- p \rightarrow \pi^- \omega p$			
182 ± 45 890	FLATTE 76C	HBC –	4.2 $K^- p \rightarrow \pi^- \omega \Sigma^+$			
135 ± 20 1400	CHALOUPKA 74	HBC –	$3.9 \; \pi^- p$			
156 ± 22 600	KARSHON 74B	HBC +	4.9 π^{+} p			
• • • We do not use the f	following data for average	es, fits, limits, e	etc. • • •			
210 ± 19	AUGUSTIN 89	DM2 ±	$e^+e^- o 5\pi$			
231 ± 14	ATKINSON 84C	OMEG 0	20–70 γ <i>p</i>			
232 ± 29	COLLICK 84	SPEC +	200 $\pi^+ Z \rightarrow Z \pi \omega$			

$b_1(1235)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ ₁	$\omega\pi \ [D/S]$ amplitude ratio $=0.1$	dominant 277 \pm 0.027]	
Γ_2	$\pi^{\pm}\gamma$	$(1.6\pm0.4) imes$	10^{-3}
Γ_3	ηho	seen	
Γ_4	$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	< 50 %	84%
Γ ₅	K^* (892) $^\pmK^\mp$	seen	
Γ_6	$(K\overline{K})^{\pm}\pi^0$	< 8 %	90%
Γ_7	$K^0_SK^0_L\pi^\pm$	< 6 %	90%
Γ ₈	$K_S^0 K_L^0 \pi^\pm \ K_S^0 K_S^0 \pi^\pm$	< 2 %	90%
Γ ₉	$\phi\pi$	< 1.5 %	84%

$b_1(1235)$ PARTIAL WIDTHS

$\Gamma(\pi^{\pm}\gamma)$						Γ_2
VALUE (keV)	DOCUMENT ID		TECN	CHG	COMMENT	
230±60	COLLICK	84	SPEC	+	200 $\pi^+ Z \rightarrow$	
					$Z\pi\omega$	

$b_1(1235)$ *D*-wave/*S*-wave AMPLITUDE RATIO IN DECAY OF $b_1(1235) ightarrow \omega \pi$

VALUE 0.277±0.027 OUR AV	<i>EVTS</i> ERAGE	<u>DOCUMENT ID</u> Error includes sc		TECN ctor of 2.		COMMENT the ideogram below.
$0.269\pm0.009\pm0.010$		NOZAR	02	MPS	_	$18 \pi^- p \rightarrow \omega \pi^- p$
0.23 ± 0.03		AMSLER	94C	CBAR		$0.0 \; \overline{p} p \rightarrow \; \omega \eta \pi^0$
0.45 ± 0.04		AMSLER	93 B	CBAR		$0.0 \; \overline{p} p \rightarrow \; \omega \pi^0 \pi^0$
$0.235\!\pm\!0.047$		ATKINSON	84C	OMEG		20–70 γ <i>p</i>
HTTP://PDG.LBL	.GOV	Page 2		Cre	ated:	5/30/2017 17:20

0.4	$+0.1 \\ -0.1$		GESSAROLI	77	HBC	_	$11 \pi^- \rho \to \pi^- \omega \rho$
0.21	± 0.08		CHUNG	75 B	HBC	+	7.1 $\pi^+ p$
0.3	± 0.1		CHALOUPKA	74	HBC	_	$3.9-7.5 \pi^- p$
0.35	± 0.25	600	KARSHON	74 B	HBC	+	4.9 π^{+} p

 $b_1(1235)$ *D*-wave/*S*-wave amplitude ratio in decay of $b_1(1235)
ightarrow \omega \pi$

$b_1(1235)$ *D*-wave/*S*-wave AMPLITUDE PHASE DIFFERENCE IN DECAY OF $b_1(1235) \rightarrow \omega \pi$

VALUE (°)	DOCUMENT ID		TECN	CHG	COMMENT
$10.5 \pm 2.4 \pm 3.9$	NOZAR	02	MPS	_	18 $\pi^- p \rightarrow \omega \pi^- p$

b₁(1235) BRANCHING RATIOS

$\Gamma(\eta ho)/\Gamma(\omega\pi)$						Γ_3/Γ_1
VALUE	DOCUMENT ID		TECN	COMN	1ENT	
<0.10	ATKINSON	84D	OMEG	20-70) γ p	
$\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\omega\pi)$						Γ_4/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT	
<0.5	ABOLINS	63	HBC	+	3.5 π^{+} p	

 $\Gamma(n_0)/\Gamma(\omega\pi)$

Created: 5/30/2017 17:20

$\Gamma(K^*(892)^{\pm}K^{\mp})/\Gamma_{\text{total}}$				Γ ₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
seen	¹ ABLIKIM	10E	BES2	$J/\psi \rightarrow K^{\pm} K^{0}_{S} \pi^{\mp} \pi^{0}$

¹ From a fit including ten additional resonances and energy-independent Breit-Wigner width.

$\Gamma((\overline{K})^{\pm}\pi^{0})/\Gamma$	$(\omega\pi)$					Γ_6/Γ_1
VALUE	<u>CL%</u>	DOCUMENT	ID	TECN	CHG	COMMENT
<0.08	90	BALTAY	67	HBC	\pm	0.0 p p
$\Gamma(\kappa_S^0 \kappa_L^0 \pi^\pm)/\Gamma$	$(\omega\pi)$					Γ_7/Γ_1
VALUE	CL%	DOCUMENT	ID	TECN	CHG	COMMENT
<0.06	90	BALTAY	67	HBC	\pm	0.0 p p
$\Gamma (K_S^0 K_S^0 \pi^\pm)/\Gamma$	$(\omega\pi)$					Γ_8/Γ_1
VALUE	<u>CL%</u>	<u>DOCUMENT</u>	ID	TECN	CHG	COMMENT
<0.02	90	BALTAY	67	HBC	\pm	0.0 p p
$\Gamma(\phi\pi)/\Gamma(\omega\pi)$						Γ_9/Γ_1
<u>VALUE</u> <u>C</u>	<u>L%</u> <u>DOCUME</u>	NT ID	TECN (CHG CO	MMEN7	Г
<0.004 9	5 VIKTOI	ROV 96 S	SPEC (32	.5 π ⁻ μ	$p \rightarrow K^+ K^- \pi^0 n$
• • • We do not us	se the following	data for avera	iges, fits	, limits,	etc. •	• •
< 0.04 9	5 BIZZAF	RRI 69 H	HBC =	± 0.0) p p	
< 0.015	DAHL	67 H	НВС	1.6	5–4.2 π	p

$b_1(1235)$ REFERENCES

ABLIKIM	10E	PL B693 88	M. Ablikim et al.	(BES II Collab.)
NOZAR	02	PL B541 35	M. Nozar <i>et al.</i>	
VIKTOROV	96	PAN 59 1184	V.A. Viktorov et al.	(SERP)
		Translated from YAF 59		,
AMSLER	94C	PL B327 425	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	93B	PL B311 362	C. Amsler et al.	(Crystal Barrel Collab.)
WEIDENAUER	93	ZPHY C59 387	P. Weidenauer et al.	(ASTERIX Collab.)
ALDE	92C	ZPHY C54 553	D.M. Alde et al.	(BELG, SERP, KEK, LANL $+$)
FUKUI	91	PL B257 241	S. Fukui <i>et al.</i>	(SUGI, NAGO, KEK, KYOT+)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
ATKINSON	84C	NP B243 1	M. Atkinson et al.	(BONN, CÈRN, GLAS+) JP
ATKINSON	84D	NP B242 269	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
ATKINSON	84E	PL 138B 459	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
COLLICK	84	PRL 53 2374	B. Collick et al.	(MINN, ROCH, FNAL)
EVANGELIS	81	NP B178 197	C. Evangelista et al.	(BARI, BONN, CERN+)
BALTAY	78B	PR D17 62	C. Baltay et al.	(COLU, BING)
GESSAROLI	77	NP B126 382	R. Gessaroli <i>et al.</i>	(BGNA, FIRZ, GENO+) JP
FLATTE	76C	PL 64B 225	S.M. Flatte et al.	(CERN, AMST, NIJM+) JP
CHUNG	75B	PR D11 2426	S.U. Chung <i>et al.</i>	(BNL, LBL, UCSC) JP
CHALOUPKA	74	PL 51B 407	V. Chaloupka <i>et al.</i>	(CERN) JP
KARSHON	74B	PR D10 3608	U. Karshon <i>et al.</i>	(REHO) JP
BIZZARRI	69	NP B14 169	R. Bizzarri <i>et al.</i>	(CERN, CDEF)
BALTAY	67	PRL 18 93	C. Baltay et al.	(COLU)
DAHL	67	PR 163 1377	O.I. Dahl <i>et al.</i>	(LRL)
ABOLINS	63	PRL 11 381	M.A. Abolins <i>et al.</i>	(UCSD)
	-	11 001		(0000)

Created: 5/30/2017 17:20