學號:B04901138 系級:電機三 姓名:張景程

◆ 一到五題當中所有 model 皆只有使用 user_ID 和 movie_ID 兩項 feature

◆ optimizer 皆為 Adam

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize.

(Collaborators:無)

latent dimension: 256

normalize 方式:

取出 training data rating 的 mean 和 std,以(training data rating – mean) / std 來進行訓練,而 model predict 出的結果則是先乘 std 後再加上 mean 來還原。

	epochs	public	private
有 normalized	40	0.85412	0.85367
無 normalized	109	0.84804	0.84856

雖然做 normalized 的結果沒有比較好,但是可以大幅減低訓練次數。

2. (1%)比較不同的 latent dimension 的結果。

(Collaborators:無)

無 normalized

latent dim	epochs	public	private
4	385	0.88522	0.88219
8	330	0.87484	0.87266
16	290	0.86311	0.86202
32	275	0.85459	0.85497
64	211	0.85065	0.84956
128	134	0.85003	0.84949
256	109	0.84804	0.84856
512	47	0.84897	0.85406
1024	38	0.85202	0.85460

由上表可以觀察出 latent dimension=256 的時候結果最好,且當 dim 越大, training 時所需的 epochs 數量也隨之減少。

3. (1%)比較有無 bias 的結果。

(Collaborators:無)

latent dimension: 256

	public	private
有 bias	0.84804	0.84856
無 bias	0.85075	0.85145

有加了 bias 的成果比較好,這其實也很 make sense,舉例來說,每位 user 的喜好都不同、評分標準也不一樣,可能有些 user 習慣會把電影的評分給高一點,有些可能習慣會給低一點等等,同時每部電影背後的屬性也不相同,所以加了 bias 之後表現比較好是可以預期的。

4. (1%)請試著用 DNN 來解決這個問題,並且說明實作的方法(方法不限)。並 比較 MF 和 NN 的結果,討論結果的差異。

(Collaborators:無)

latent dimension: 256、無 bias

DNN 架構:

按照助教的方式,將 user_ID 和 movie_ID 分別做 dimension 為 256 的 embedding 後 Concat 起來,再通過三層 units = 128, 64, 32 的 Dense,最後 output layer 為 Dense(1),得到預測的評分結果。

	public	private
DNN	0.88735	0.88975
MF	0.85075	0.85145

DNN 的結果比 MF 差 0.03~0.04 左右,且疊的層數越多越容易 overfit。

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作圖。

(Collaborators:無)

Legends:

紅色: Adventure, Animation, Children's, Comedy, Fantasy

米色: Action, Crime, Film-Noir, Horror, Thriller, War, Western

藍色:Documentary, Drama, Musical, Mystery, Romance, Sci-Fi

這是由 latent dim=32 的 model 的 movie_emb 得到的圖,由圖中可以觀察到藍色大多位於右邊,米色大多位於左側,而紅色雖然跟藍/米色都有混雜,但主要都分佈在中間偏左的區域,算是分得蠻開的。

6. (BONUS)(1%)試著使用除了 rating 以外的 feature,並說明你的做法和結果, 結果好壞不會影響評分。

(Collaborators:無)

- 額外使用的 feature: user 的性別、年齡、職業,以及 movie 的類別
- 讀檔時將 user 職業和 movie 類別這兩項分別做成 dimension 為 21 和 18 的 one-hot 形式。其中,movie genres 每一個 entry 分別代表 ['Action', 'Adventure', 'Animation', 'Children\'s', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western']

- 將 user 性別、年齡如同 ID 也各自做一個 dim=256 的 Embedding,職業和 電影類別則分別通過 units=latent dim 的 Dense
- 將 user_ID, movie_ID, movie_genres 分別對其他五項做內積,共有
 3*5-3(重複) = 12項。
- 將這 12 項內積的結果 Concat 起來,形成一個 12 維的向量。
- 最後通過一層 unit=1 的 Dense layer,再加上 user、movie 的 bias,即得到 預測的評分。

• 實驗結果:

kaggle public: 0.84686

kaggle private: 0.84829

使用額外的資料得到的結果有好一些些,但相差不大。