* DELHOMEL et al. U.S. National Phase of PCT/FR2004/001797

"AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-13 (Cancelled).

- 14. (New) A method for preparing 1,3-diphenylprop-2-en-1-one derivatives substituted by a carboxyalkyloxy or carboxyalkylthio group, comprising the following steps:
- (i) contacting at least one 1,3-diphenylprop-2-en-1-one derivative substituted on one of the two phenyl groups by a hydroxyl or thiol group with at least one halogenated compound represented by general formula (II):

in which Y represents a halogen atom, R is a C1-C24 alkyl chain and R' is an acid-labile protective group of carboxylic acid;

- (ii) acid hydrolysis of the ester obtained in step (i).
- 15. (New) The method according to claim 14, wherein the carboxylic acid protective group of the compound represented by formula (II) is selected from acid-labile groups of the C1 to C5 alkyl type substituted at the carbon atom linked to the carboxylic function by one or two linear or branched alkyl groups containing from 1 to 4 carbon atoms.

DELHOMEL et al.

U.S. National Phase of PCT/FR2004/001797

- "16. (New) The method according to claim 14, wherein the carboxylic acid protective group of the compound represented by formula (II) is selected from tert-butyl and isopropyl groups.
- 17. (New) The method according to claim 14, wherein R is a C1-C10 alkyl chain, optionally substituted by one or more hydrocarbon groups, saturated, linear or cyclic containing from 1 to 12 carbon atoms.
- 18. (New) The method according to claim 14, wherein step (i) is carried out at a temperature comprised between 25 and 120°C and more preferably between 80 and 120°C.
- 19. (New) The method according to claim 14, wherein step (i) is carried out in the presence of a catalyst.
- 20. (New) The method according to claim 14, wherein step (i) is carried out in the presence of cesium or potassium carbonate as catalyst.
- 21. (New) The method according to claim 14, wherein step (i) is repeated by several additions of the halogenated compound represented by general formula (II) and if necessary of the catalyst.

DELHOMEL et al. U.S. National Phase of PCT/FR2004/001797

- 122. (New) The method according to claim 14, wherein 1,3-diphenylprop-2-en-1-one derivative substituted by a hydroxyl or thiol group, which is used in step (i) is obtained by a Claisen-Schmidt reaction in acidic or basic medium of a compound of the type acetophenone with a thio- or hydroxy-benzaldehyde derivative, or of a thio- or hydroxy-acetophenone derivative with a compound of the benzaldehyde type.
- 23. (New) The method according to claim 14, wherein acid hydrolysis step (ii) is carried out by contacting a 1,3-diphenylprop-2-en-1-one derivative substituted by an alkyloxycarbonylalkyloxy or alkyloxycarbonylalkylthio group with trifluoroacetic acid.
- 24. (New) The method according to claim 14, wherein acid hydrolysis step (ii) is carried out by contacting a 1,3-diphenylprop-2-en-1-one derivative substituted by an alkyloxycarbonylalkyloxy or alkyloxycarbonylalkylthio group with trifluoroacetic acid in an amount from 1 to 20 equivalents, and preferably from 8 to 12 equivalents.
- 25. (New) The method according to claim 14, wherein step (ii) is carried out at a temperature of 0 to 100°C and more preferably 18 to 25°C.
- 26. (New) The method according to claim 14, wherein the product so prepared is represented by the following general formula:

DELHOMEL et al. U.S. National Phase of PCT/FR2004/001797

$$X_1$$
 X_2
 X_2
 X_3
 X_4
 X_5
 X_5
 X_5

in which:

X1 represents a halogen or a -R1 group or a group corresponding to the following formula: -G1-R1;

X2 represents a hydrogen atom or a thionitroso group or an alkyloxy group or an alkylcarbonyloxy group or an alkylthio group or an alkylcarbonylthio group;

X3 represents a -R3 group or a group corresponding to the following formula : -G3-R3;

X4 represents a halogen or a thionitroso group or a -R4 group or a group corresponding to the following formula : -G4-R4;

X5 represents a -R5 group or a group corresponding to the following formula : -G5-R5;

R1, R3, R4, R5, which are the same or different, represent a hydrogen atom or an alkyl group substituted or not by a carboxylic acid function;

DELHOMEL et al. U.S. National Phase of PCT/FR2004/001797

*G1, G3, G4, G5, which are the same or different, represent an oxygen or sulfur atom;

with one of the groups X1, X3, X4 or X5 corresponding to the formula -G-R, in which R is an alkyl group containing a carboxylic acid function.