函数拟合实验报告

2252930 周进

1. 函数定义

本实验的目标函数为: $f(x) = x^2$

说明:该函数是一个连续、可导的凸函数,在数学上具有明确的解析解,是验证神经网络拟合能力的理想选择。

2. 数据采集

1. 训练数据:

输入范围: $x \in [-10, 10]$

样本数量: $n_{\text{train}} = 1000$

噪声添加:在目标函数值上叠加均值为0、标准差为0.5的高斯噪声:

$$y_{\text{train}} = f(x) + \mathcal{N}(0, 0.5^2)$$

生成方式: x 服从(-10, 10)内的均匀分布。

2. 测试数据:

输入范围: $x \in [-10, 10]$

样本数量: $n_{\text{test}} = 200$

生成方式: 均匀分布的无噪声数据: $y_{\text{test}} = f(x)$

数据生成说明:

均匀分布:输入 x 服从均匀分布,确保在[-10, 10]的整个范围内充分采样,避免局部过拟合。

噪声添加:通过高斯噪声模拟真实数据中的观测误差,测试模型对噪声的鲁棒性。

训练集与测试集分离:训练集用于模型学习,测试集用于评估泛化能力,避免过拟合。

3. 模型描述

3.1 网络结构

本实验采用两层前馈神经网络,具体结构如下:

输入层: 1个神经元(输入维度为1)。

隐藏层:

神经元数量: 128

激活函数: ReLU(z) = max(0, z)

输出层: 1个神经元(线性激活,直接输出预测值)。

3.2参数初始化

采用 He 初始化:

隐藏层权重
$$W_1$$
: $W_1 \sim \mathcal{N}(0, \sqrt{\frac{2}{输入维度}}) = \sqrt{2} \cdot \mathcal{N}(0, 1)$

输出层权重
$$W_2$$
: $W_2 \sim \mathcal{N}(0, \sqrt{\frac{2}{隐藏层维度}})$

偏置项 b1, b2 初始化为 0。

训练参数

学习率: $\eta = 0.001$

训练轮次: 5000 次迭代

优化策略: 动量优化 (动量系数 β = 0.9)

损失函数:均方误差(MSE):

$$\mathrm{Loss} = \frac{1}{2N} \sum_{i=1}^{N} (y_{\mathrm{pred}}^{(i)} - y_{\mathrm{true}}^{(i)})^2$$

4. 拟合效果

4.1 函数拟合可视化

4.2 损失曲线分析

训练与测试损失变化:

Epoch	Train Loss	Test Loss
0	699.4957	678.3618
500	2.4161	2.4635
1000	0.4846	0.4048
1500	0.2690	0.1699
2000	0.2004	0.0956
2500	0.1702	0.0629
3000	0.1553	0.0466
3500	0.1466	0.0360
4000	0.1403	0.0300
4500	0.1372	0.0262

训练损失下降趋势: 初始损失高达 700, 因随机初始化导致预测值与真实值差异极大; 500 轮后损失降至 2.4, 表明模型快速学习到函数的大致形状; 4500 轮后损失进一步降 至 0.137, 说明模型持续优化细节。

测试损失低于训练损失:测试损失始终比训练损失低(如第 4500 轮: 0.0262 > 0.1372),表明模型未过拟合,泛化能力良好。

收敛稳定性: 损失曲线逐渐平缓,说明模型已接近最优解。