FYS4411 - Computational Physics II Project 1

Dorthea Gjestvang Even Marius Nordhagen

February 8, 2018

Abstract

Write the abstract here

• Github repository containing programs and results are in: https://github.com/evenmn/FYS4411/tree/master/Project%201

1 Introduction

Introduction

2 Theory

Describe the physics here, including wavefunction and Hamiltonian

We study a system of N bosons trapped in a harmonic oscillator with the Hamiltonian given by

$$\hat{H} = \sum_{i}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{ext}(\vec{r}_i) \right) + \sum_{i < j}^{N} V_{int}(\vec{r}_i, \vec{r}_j)$$
 (1)

with V_{ext} as the external potential, given by the harmonic oscillator potential, and V_{int} as the interaction term, which can be ignored when developing the benchmarks.

The wavefunction is on the form

$$\Psi_T(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N, \alpha, \beta) = \prod_{i=1}^{N} g(\alpha, \beta, \vec{r}_i) \prod_{i < j} f(a, r_{ij})$$
 (2)

where g is assumed to be an exponential

$$g(\alpha, \beta, \vec{r_i}) = \exp[-\alpha(x_i^2 + y_i^2 + \beta z_i^2)]$$
(3)

which is practicle since

$$\prod_{i}^{N} g(\alpha, \beta, \vec{r_i}) = \exp[-\alpha(x_1^2 + y_1^2 + \beta z_1^2 + \dots + x_N^2 + y_N^2 + \beta z_N^2)]$$
 (4)

Present most important results form exercise a

- 3 Methods
- 3.1 Variational Monte Carlo
- 3.2 Metropolis algorithm
- 3.2.1 Brute force
- 3.2.2 Importance sampling
- 4 Results
- 5 Discussion
- 6 Conclusion