Software Information

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- LATEXpackages required are:
 - graphicx
 - float
 - hyperref
 - booktabs
 - amsmath
 - units
 - cleveref
- To supress these messages, call the model documentation with the keyword draft=False.

TESPy Version: 0.4.3-002 - Grassmann's Graph Commit: $4149348f@feature/result_report$

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

Documentation generated: May 15, 2021

1 Connections in design mode

1.1 Specified connection parameters

label	$\mathrm{m~in~kg/s}$	p in bar (1)	h in $^{\rm kJ/kg}$	T in °C (2)	v in ^{m3} / _s	vol in ^{m3} / _{kg}	s in kJ/kgK	x in –
0	1177.78	250.00	1094.69	600.00	8.17	0.01	2.77	-1.00
1	857.31	75.00	397.67	35.00	3.14	0.00	1.65	-1.00
2	857.31	258.40	450.33	123.23	1.68	0.00	1.67	-1.00
3	1177.78	257.00	885.84	433.69	6.28	0.01	2.50	-1.00
4	1177.78	250.00	1094.69	600.00	8.17	0.01	2.77	-1.00
5	1177.78	77.95	934.37	457.14	20.92	0.02	2.79	-1.00
6	857.31	75.15	558.65	128.23	7.48	0.01	2.12	-1.00
10	320.47	75.15	558.65	128.23	2.80	0.01	2.12	-1.00
11	320.47	257.51	670.11	264.14	1.18	0.00	2.15	-1.00
12	857.31	257.51	670.11	264.14	3.17	0.00	2.15	-1.00
13	1177.78	257.51	670.11	264.14	4.35	0.00	2.15	-1.00
14	1177.78	76.94	718.63	269.14	15.17	0.01	2.45	-1.00
15	1177.78	75.15	558.65	128.23	10.28	0.01	2.12	-1.00

Table 1: Specified connection parameters

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

1.3 Specified fluids

label	CO2 (3)
0	1.00
1	1.00
2	1.00
3	1.00
4	1.00
5	1.00
6	1.00
10	1.00
11	1.00
12	1.00
13	1.00
14	1.00
15	1.00

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\text{CO2}} - x_{\text{CO2,spec}} \tag{3}$$

1.5 Referenced values for temperature

label	reference	factor in -	delta in °C
11	12	1	0

Table 3: Referenced values for temperature

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (4)

2 User defined equations in design mode

3 Components in design mode

3.1 Components of type HeatExchangerSimple

3.1.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(6)

3.1.2 Component parameters

label	Q	pr	zeta
Heater	245974293.29	0.97	101.53
Water cooler	-138014256.36	1.00	4.06

Table 4: Parameters of components of type HeatExchangerSimple

3.2 Components of type CycleCloser

3.2.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1] \tag{7}$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{8}$$

3.3 Components of type Compressor

3.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(10)

3.3.2 Component parameters

label	P	eta_s (11)	pr
Compressor 1	45145931.33	0.85	3.45
Compressor 2	35720359.99	0.85	3.43

Table 5: Parameters of components of type Compressor

3.3.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(11)

3.4 Components of type HeatExchanger

3.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2] \tag{12}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(13)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(14)

3.4.2 Component parameters

label	Q	kA	td_log	$ttd_{-}u$	ttd_l (15)	pr1	pr2	zeta1	zeta2
*	-188427545.84			5.00				14.73	
Recuperator 2	-254083168.77	21284060.29	11.94	23.45	5.00	0.99	1.00	5.86	10.05

Table 6: Parameters of components of type HeatExchanger

3.4.3 Equations applied

$$0 = ttd_{l} - T_{\text{out},1} + T_{\text{in},2} \tag{15}$$

3.5 Components of type Turbine

3.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(17)

3.5.2 Component parameters

label	P	eta_s (18)	pr
Turbine	-188826328.26	0.90	0.31

Table 7: Parameters of components of type Turbine

3.5.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) + (h_{\text{out,s}} - h_{\text{in}}) \cdot \eta_{\text{s}}$$
(18)

3.6 Components of type Splitter

3.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
(19)

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (20)

$$0 = h_{in} - h_{\text{out}, j} \,\forall j \in \text{outlets} \tag{21}$$

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(22)

3.7 Components of type Merge

3.7.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (23)

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot x_{fl,\text{in},i} - \dot{m}_{\text{out}} \cdot x_{fl,\text{out}} \,\forall fl \in \text{network fluids}, \,\forall i \in \text{inlets}$$
 (24)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \dot{m}_{\text{out}} \cdot h_{\text{out}} \,\forall i \in \text{inlets}$$
(25)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(26)

4 Busses in design mode

4.1 Bus "total output power"

Specified total value of energy flow: $\dot{E}_{\rm bus} = -100000000.000 \, {\rm W}$

$$0 = \dot{E}_{\text{bus}} - \sum_{i} \dot{E}_{\text{bus},i} \tag{27}$$

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
Turbine	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	0.980
Compressor 1	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\frac{\dot{E}_{\mathrm{comp}}}{\eta}$	0.951
Compressor 2	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\frac{\dot{E}_{\mathrm{comp}}}{\eta}$	0.951

Table 8: total output power

4.2 Bus "heat input"

This bus is used for postprocessing only.

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
Heater	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\frac{\dot{E}_{\mathrm{comp}}}{\eta}$	1.000

Table 9: heat input