# Introductory Astronomy

Week 8: Cosmology

Clip 7: Big Bang Nucleosynthesis



## Alpher, Gamow 1948

- For a brief time universe was hot and dense as stellar interiors:
   Fusion everywhere
- Can Big Bang Nucleosynthesis explain abundances of the elements?
- Partially. Triple-alpha process not effective.
- Predict Helium abundance
- Assume: Thermal equilibrium in expanding flat universe
- High T: number densities of relativistic particles similar (Stefan-Boltzmann)  $n_A \sim (k_B T)^3$
- Low T: number densities of nonrelativistic particles  $n_A \sim e^{-m_A c^2/k_B T}$



## Who's Radiation?

| Particle   | Q      | $N_{\rm e}$ | $N_{\mu}$ | N <sub>τ</sub> | Mass  | Mc²/k <sub>B</sub>         | g |
|------------|--------|-------------|-----------|----------------|-------|----------------------------|---|
| p          | 1      | 0           | 0         | 0              | 935   | $10^{13}$                  | 2 |
| n          | 0      | 0           | 0         | 0              | 938   | $T_p + 1.5 \times 10^{10}$ | 2 |
| e          | -1     | 1           | 0         | 0              | 0.511 | $5.93\times10^{9}$         | 2 |
| $ u_e $    | 0      | 1           | 0         | 0              | ?     | 0?                         | 1 |
| $\mu$      | -1     | 0           | 1         | 0              | 106   | $1.22 \times 10^{12}$      | 2 |
| $ u_{\mu}$ | 0      | 0           | 1         | 0              | ?     | 0?                         | 1 |
| $\pi$      | 1,0,-1 | 0           | 0         | 1              | 1777  | $1.6 \times 10^{12}$       | 1 |
| $\gamma$   | 0      | 0           | 0         | 0              | 0     | 0                          | 2 |



### **Cosmic Neutrinos**

• At  $T > 10^{12} \,\mathrm{K}$ ;  $t \le 10^{-4} \,\mathrm{s}$  all species in thermal equilibrium with antiparticles present.

$$\frac{N_n}{N_p} = e^{-(m_n - m_p)c^2/k_B T} = e^{-1.5 \times 10^{10} \text{ K/T}} \sim 1$$

- By $T \sim 10^{11} \, \mathrm{K}; \ t \sim 10^{-3} \, \mathrm{s}$  muons annihilate  $N_n/N_p \sim 0.86$
- By  $T \sim 3 \times 10^{10} \, \mathrm{K}$ ;  $t \sim 0.1 \, \mathrm{s}$  neutrinos decouple  $N_n/N_p \sim 0.6$
- By  $T \sim 5 \times 10^9 \, {
  m K}; \ t \sim 10 \, {
  m s}$  electrons annihilate producing photons  $T_{\gamma}/T_{\nu} = 1.4$



# Alpher, Bethe, Gamow 1948

• In a hot  $10^{12}$  K dense early  $10^{-4}$  s universe, protons and neutrons in chemical equilibrium under  $\begin{array}{ccc} n+e^+ & \leftrightarrow & p+\overline{\nu}_e \\ n+\nu_e & \leftrightarrow & p+e^- \end{array}$ 

• Below 10<sup>10</sup> K these slow as neutrinos decouple and soon thereafter most electrons gone

$$N_n/N_p \sim 0.223$$



#### Nuclei

- Deuterium stable after  $T \sim 10^9 \, \mathrm{K}; \ t \sim 180 \, \mathrm{s}$
- Neutrons have decayed  $(t_{1/2} = 614 \,\mathrm{s}) N_n/N_p = 0.122$
- Essentially all remaining neutrons bind to form

```
deuterium and then Helium
```

$${}_{1}^{2}H + {}_{1}^{2}H \quad \leftrightarrow \quad {}_{1}^{3}H + {}_{1}^{1}H$$

$${}_{1}^{3}H + {}_{1}^{2}H \quad \leftrightarrow \quad {}_{2}^{4}He + n$$

$${}_{1}^{2}\mathrm{H} + {}_{1}^{2}\mathrm{H} \quad \leftrightarrow \quad {}_{2}^{3}\mathrm{He} + n$$
 ${}_{2}^{3}\mathrm{He} + {}_{1}^{2}\mathrm{H} \quad \leftrightarrow \quad {}_{2}^{4}\mathrm{He} + {}_{1}^{1}\mathrm{H}$ 



#### **Helium Fraction**

- Helium fraction is  $\frac{0.122/2}{1 (3/2) \times 0.122} = 0.0747$
- Helium mass fraction is  $4 \times 0.0747 = 0.299$
- Close to 0.24 observed. More refined calculation produces agreement
- Insensitive to details



## Other Nuclei

- Fusion beyond Helium inefficient
- Trace abundances of deuterium that failed to fuse sensitive to

$$\eta = \Omega_{Db,0}/\Omega_{R,0}$$

 BBN constrains cosmology and particle physics



Density of Ordinary Matter (Relative to Photons)

