

Teo se duce la cantina lui favorită (cea de la ASE) ca să guste din noua gamă de alimente - răcituri cu pireu¹.

La bufetul de răcituri, el are la alegere R tipuri de răcituri. Al i-lea tip $(0 \le i < R)$ costă r_i lei. Pentru fiecare tip de răcitură, Teo, cu o probabilitate de $\frac{1}{2}$, își pune în farfurie o răcitură.

La bufetul de pireu, el are la alegere P tipuri de pireu. Pireul se vinde la volum, așa că pentru al i-lea tip de pireu ($0 \le i < P$), Teo se poate servi cu pireu în valoare de $0, 1, \ldots, p_i$ lei. Pentru fiecare tip de pireu, Teo se servește uniform aleatoriu cu o cantitate permisă de pireu.

Cantina oferă următoarea reducere: dacă prețul total al alimentelor alese de Teo este strict mai mare decât suma de X lei, atunci Teo primește o reducere de 50%.

Care este, în medie, prețul plătit de Teo?

Date de intrare

Pe prima linie din fișierul de intrare se află numerele R, P și X cu semnificația din enunț. Pe a doua linie se află R numere întregi: $r_0, r_1, \ldots, r_{R-1}$.

Pe a treia linie se află P numere întregi: $p_0, p_1, \ldots, p_{P-1}$.

Date de ieșire

Pe singura linie din fișierul de ieșire afișați răspunsul, modulo $10^9 + 7$. Dacă răspunsul este egal cu fracția $\frac{A}{B}$, afișați numărul $A*B^{-1}$ (modulo $10^9 + 7$).

Constrângeri

- $1 \le P, R \le 100$.
- $1 \le p_i, r_i \le 10^3$.

¹Teo știe că forma corectă este 'piure' dar din motive de marketing cantina continuă cu denumirea de 'pireu'.

• $1 \le X \le 2 * 10^5$.

Subtask-uri

- 1. (20 de puncte) $P=0, R\leq 20$ și $X=2\cdot 10^5$ (niciodată nu se aplică reducerea).
- 2. (20 de puncte) $P = 0, R \le 20$.
- 3. (20 de puncte) P = 0.
- 4. (20 de puncte) $\forall 0 \leq i < P, \quad p_i \leq 5.$
- 5. (20 de puncte) Nicio constrângere suplimentară.

Atașamente

În secțiunea "Downloads" a interfeței de concurs puteți descărca un fișier C++ care implementează operații de bază ale aritmeticii modulare. Acesta este util mai ales dacă nu ați mai lucrat cu noțiunea de invers modular.

Exemplu

Input Standard (cin)	Output Standard $(cout)$
5 3 10	142806425
2 7 6 2 6	
6 7 10	
10 10 100	413422235
26 27 72 11 6 30 60 90 28 15	
60 68 38 48 22 65 19 75 17 1	