Task 1. Will the conversion to BCNF be dependency preserving in any case? Proof your statement and give a reasoning for choosing BCNF design.

```
dept_advisor(s_ID, i_ID, department_name)
```

With function dependencies: i ID → dept_name

$$I_iD \rightarrow dept_name$$

 $s_iD_idept_name \rightarrow i_iD$

dept_advisor is not in BCNF

i ID is not a superkey.

Any decomposition of
$$dept_advisor$$
 will not include all the attributes in s ID , $dept$ $name \rightarrow i$ ID

Thus, the composition is NOT be dependency preserving

Task 2. Given table in 1NF, convert to 3NF if PK is UnitID:

UnitID	StudentID	Date	Tutor ID	Topic	Room	Grade	Book	TutEmail
U1	St1	23.02.03	Tut1	GMT	629	4.7	Deumlich	tut1@fhbb.ch
U2	St1	18.11.02	Tut3	Gln	631	5.1	Zehnder	tut3@fhbb.ch
U1	St4	23.02.03	Tut1	GMT	629	4.3	Deumlich	tut1@fhbb.ch
U5	St2	05.05.03	Tut3	PhF	632	4.9	Dümmlers	tut3@fhbb.ch
U4	St2	04.07.03	Tut5	AVQ	621	5.0	SwissTopo	tut5@fhbb.ch

UnitID	StudentID	Date	Tutor ID	Grade	Book
U1	St1	23.02.03	Tut1	4.7	Deumlich
U2	St1	18.11.02	Tut3	5.1	Zehnder
U1	St4	23.02.03	Tut1	4.3	Deumlich
U5	St2	05.05.03	Tut3	4.9	Dümmlers
U4	St2	04.07.03	Tut5	5.0	SwissTopo

Tutor ID	TutEmail	Book	UnitID	Topic
Tut1	tut1@fhbb.ch	Deumlich	U1	GMT
Tut3	tut3@fhbb.ch	Zehnder	U2	Gln
Tut5	tut5@fhbb.ch	Deumlich	U1	GMT
		Dümmlers	U5	PhF
		SwissTopo	U4	AVQ

Room
629
631
632
621

Task 3. Given table in 1NF, convert to 2NF if PK is {ProjectName, ProjectManager}, use decomposition:

ProjectName	ProjectManager	Position	Budget	TeamSize
Project1	Manager1	сто	1 kk \$	15
Project2	Manager2	СТО2	1.5 kk \$	12

ProjectName	ProjectManager	Budget	
Project1	Manager1	1 kk \$	
Project2	Manager2	1.5 kk \$	

ProjectManager	Position
Manager1	сто
Manager2	СТО2

ProjectName	TeamSize
Project1	15
Project2	12

Task 4. Given table, convert to 3NF if PK is Group, use decomposition:

Faculties have a number of specialities, each speciality consists of a set of particular groups.

Group	Faculty	Speciality
g1	f1	s1
g2	f2	s2

Group	Speciality
g1	s1
g2	s2

Speciality	Faculty
s1	f1
s2	f2

Task 5. Given table, convert to BCNF if PK is {ProjectID, Department}, use decomposition:

Curator depends on projectID and related departments, teamSize directly relates to project and related departments. ProjectGroupsNumber depends on TeamSize.

ProjectID	Department	Curator	TeamSizeID
p1	d1	e1	1
p2	d2	e2	2

TeamSizeID	TeamSize	ProjectGroupsNumber
1	100	5
2	120	6

Task 6. List the three design goals for relational databases, and explain why each is desirable. Give an example of both desirable and undesirable types of decompositions.

preserving decompositions, and minimization ofrepetition of information.

They are desirable so we can maintain an accurate database, check correctness of updates quickly, and use the smallest amount of space possible

The three design goals are lossless-join decompositions, dependency