

AIエンジニアリング講義 第3回

2025/4/30

松尾・岩澤研特任助教 河野 慎

アジェンダ

- 事例を交えた開発サイクルの概要
- ・デプロイ
- ・モデル開発
- データ収集
- ・モデル改善

MLプロジェクトのライフサイクル

・ 基本的には一定方向だが, 時には戻る必要あり

・ 車載カメラに映る道路表示の損傷を検出する[河野, 2017]

- 点検は、自治体の職員が別の用事があった時に目視で確認する程度
- 自治体の管理区域全てを目視で確認するのは大変
- ・ 職員の高齢化が進んでおり, 年々人手不足問題

M

- プロジェクトスコープを決める
 - ・ 車載カメラ映像を用いて, 自動で損傷箇所を発見
 - ・ 機械学習の問題としては、物体検出問題として定義

 ${\mathcal X}$

車載カメラ映像

損傷箇所の バウンディングボックス

- 通信費や計算機資源コストの観点から,エッジデバイスで実行
- ・ 自車の走行速度や取り付けるカメラの画角等から1FPS以上の処理速度が必要

- データ収集
 - ・ 実際のドライブレコーダ映像10時間分(18FPS)
 - 25フレーム毎に1枚間引く
 - 対象とする道路標示は,5種類
 - アノテーションはバウンディングボックスで囲む

データセットの種類	画像数	白線	白色道路標示	黄色線	黄色道路標示	横断歩道
訓練用	1,807	963	726	249	37	209
テスト用	1,821	1,065	635	137	55	424

- モデル開発
 - 当時,物体検出器としてはSSD/YOLOv2の2強
 - 結果的に大きい対象を検出しやすいSSDを採用
 - ・ データ拡張は, 色調変化と左右反転*を適用

クラス閾値	mAP	白線	白色道路標示	黄色線	黄色道路標示	横断歩道
5.0×10^{-3}	48.80	49.12	51.71	33.77	51.31	63.04
1.0×10^{-2}	48.65	49.07	51.42	33.77	51.17	62.63
5.0×10^{-2}	46.95	48.57	49.74	32.33	50.50	57.16
1.0×10^{-1}	45.75	46.39	49.67	32.33	46.51	57.16
5.0×10^{-1}	39.13	41.02	40.31	29.02	34.87	50.68

*今考えると、日本の道路事情的に微妙だったかもしれない

- モデル開発時にデータ収集(アノテーション)に戻る
 - ガードレールが白の区画線として検出されてしまう
 - ・ 検出対象として, ガードレールを追加
 - もう一度, SSDの学習/評価を実施

データセットの種類		画像数	白線	白色道路標	示 黄色約	腺 黄色道路標示	横断歩道	ガードレール	
訓練用		1,807	963	726	249	37	209	709	
テスト用		1,821	1,065	635	137	55	424	588	
クラス閾値	mAP	白線	白色	道路標示	黄色線	黄色道路標示	横断歩道	ガードレール	
5.0×10^{-3}	48.80	49.12		51.71	33.77	51.31	63.04	43.85	
1.0×10^{-2}	48.65	49.07		51.42	33.77	51.17	62.63	43.85	
5.0×10^{-2}	46.95	48.57		49.74	32.33	50.50	57.16	43.42	
1.0×10^{-1}	45.75	46.39		49.67	32.33	46.51	57.16	42.42	
5.0×10^{-1}	39.13	41.02		40.31	29.02	34.87	50.68	38.88	

- デプロイ
 - JetsonでSSDが動作するようにシステムを設計・実装
 - ハードウェア・ソフトウェア
 - モニタリングシステムも同時に実装し、精度を目視で確認

デプロイ

デプロイもPDCAサイクルが必要

- ・ モデル開発も、1回目の学習評価で終わることはまずない
- →デプロイも同様に,1回のデプロイで終わることはない

ソフトウェア開発における課題

- ・ 道路点検の場合
 - 推論はエッジで実行?サーバに動画を送信して実行?
 - ・バッチ処理?ストリーミング/リアルタイム処理?
 - スループット/レイテンシは?
 - 何ミリ秒以内に1フレーム処理をしないといけない?
 - ・ 映像に映る個人情報はどうする?
 - ・謎の条例への対応
 - ・ドライブレコーダのストレージの"半分"までしか保存してはいけない

これらの疑問/課題は、大体のアプリケーションで当てはまる話

デプロイしたモデルの劣化

システムを運用していくと、モデルの精度が下がっていってしまうことがある。

モデルの学習に利用したデータ # 運用時のデータ

データドリフト

xが変わってしまうこと

道路標示の損傷検出に使用して いたカメラのメーカーを変更

コンセプトドリフト

 $f: x \to y$ が変わってしまうこと

Deepseek-R1の登場により, NVIDIA株が急落

- ・ 段階的な変化(流行語のようなもの)
- ・ 突然の変化(疫病や経済的事件)

など様々な要因がありうる

モニタリングするべきものは?

ソフトウェア指標 リソースの使用量,遅延,スループット

入力指標

入力長の平均,入力量,欠損値,例外,画像の明度など

出力指標

nullの回数,再試行回数,精度など

• ダッシュボード

MLモデルのパイプライン処理

自動運転システム(AD1.0*)

*最近は、基盤モデルを用いたEnd-to-EndなAD2.0に移行が始まっている

MLモデルのパイプライン処理

・ 道路点検の例

• チャットbot

前のモジュールが変われば、データドリフトが起き、精度が変化する

実データで性能が出たとしてもシステムの性能としてはわからないケース

M

- 自動運転やロボットのプランニング
 - Open-loop vs Closed-loop 評価

• 異常検出

- 1%の異常を検出することが可能なモデルができたとして...
- ・ 実運用していて、"その時"きちんと検出ができるのか?

モデル開発

AI/MLシステムをデプロイする

AIシステム =

論文などで研究・開発される技術

実応用を目指したシステム開発

データ中心開発

MLモデルの開発は、サイクルを回して実施

・1回の学習プロセスで完了することはない

データセットの部分集合における性能

- 特定の属性や特徴を用いたことによる評価指標の解釈も重要
- 例1:ローンの審査
 - 性別や宗教, 出身地など保護属性によって審査基準が設けられないようにする
- 例2: 顔認識モデル
 - 年齢が高い被写体, 暗い照明条件下での画像, 特定の人種や性別グループでの精度検証

データセットの構成によって、モデルがバイアスを持っている可能性が高い エッジケースや特定のユースケースでの性能を保証するためにも重要

偏りがあるデータセット

- 異常検出やレアクラスを含む問題も重要
 - ・ 99%が"正常"クラス, 1%が"異常"となっているデータセット
 - ・ モデルが全て"正常"クラスと出力すれば精度は99%
 - 胸部レントゲン画像から所見の発見
 - ヘルニアは稀であるため, 無視しがち

所見	データ数	性能
胸水貯留	10,000<	0.901
肺水腫		0.924
腫瘍		0.909
ヘルニア	<100	0.851

テストデータにおける評価指標の解釈

- ・ 道路標示の点検の例: 評価指標としてmAPを利用
 - 損傷した道路標識もガードレールも等しくAPを計算する

実際の利用状況を考えるとどれが正解なのだろうか? →唯一解はなく,現場でのトライ/エラーで検証するしかない

実際によくある話として...

・よくある例1: 論文やプレスリリース

「弊社/本論文で開発した深層学習モデルが〇〇タスクにおいて, 精度98%のパフォーマンスを出すことに成功しました」

- 一見性能が高く,有用そうに思われる
- ただし、システムとして使うとうまくいかないことも多い

 - 評価指標とユースケースがあっていないベンチマークにoverfitされすぎている = 実データと異なりすぎている

実際によくある話として...

・よくある例2: プロダクトオーナーと開発者の会話

▲ 開発者:「新たなタスクのテストケースで90%出せました」

○ PO: 「99%じゃないとプロダクトにできないよ」

■ 開発者:「いやそもそも難しいタスクだから…」

どうやってそのタスク「難易度」について合意を得るか?

合理的なベースラインを設けることが重要

目標とするベースラインをどうやって設けるか?

- ・例:自動運転システム
 - ・ (残念ながら)100%の誤検出や不適切な予測・計画が行われてしまう
 - →100kmあたりの事故率が人間より低かったら良い?
- ・例:音声認識システム
 - 人間の認識精度と同等以上になれば良い?

利用環境	モデル精度	Human Level Performance	改善幅
静かな場所	94%	95%	1%
大通り	89%	93%	4%
カフェ	87%	89%	2%
工事現場	70%	70%	0%

非構造データ

構造データ

画像/動画

2017/46/11 133/20

音声

テキスト

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	0	34.5	0	0	330911	7.8292	NaN	2
1	893	3	Wilkes, Mrs. James (Ellen Needs)	1	47.0	1	0	363272	7.0000	NaN	0
2	894	2	Myles, Mr. Thomas Francis	0	62.0	0	0	240276	9.6875	NaN	2
3	895	3	Wirz, Mr. Albert	0	27.0	0	0	315154	8.6625	NaN	0
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	1	22.0	1	1	3101298	12.2875	NaN	0
5	897	3	Svensson, Mr. Johan Cervin	0	14.0	0	0	7538	9.2250	NaN	0
6	898	3	Connolly, Miss. Kate	1	30.0	0	0	330972	7.6292	NaN	2
7	899	2	Caldwell, Mr. Albert Francis	0	26.0	1	1	248738	29.0000	NaN	0
8	900	3	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	1	18.0	0	0	2657	7.2292	NaN	1
9	901	3	Davies, Mr. John Samuel	0	21.0	2	0	A/4 48871	24.1500	NaN	0

ベースラインの設け方

- 大体どれくらいの精度が出せるか見積もるためにも必要
 - Human Level Performance
 - ベイズ誤り確率の大体の目安にもなる
 - SOTAやOSSの精度を見る
 - SOTA + ノイジーなデータ << シンプルな手法+綺麗なデータ
 - フルスクラッチ実装
 - シンプルなものならいいが、最近のSOTA系はあまり動かないイメージ
 - 旧MLシステムの性能
 - すでに動いているものがあれば

評価方針

- 精度や公平性/バイアス, その他の問題を評価する必要がある
 - システムがうまくいっているか判断する指標の洗い出し
 - 一部のデータでの性能(性別や宗教, 特定のドメインなど)
 - FalsePositive/FalseNegative/F1スコアの解釈
 - 不均衡タスクでの性能
 - これらの問題を確認するためのサブセットと指標の定義
 - 異なる環境下での平均精度
 - 異なる属性値ごとの平均精度
 - アプリケーションでのユーザの利用状況(時間や頻度)

モデル開発で苦労しないために

- 一発で精度が出るモデルができることは少ない
 - ・ 本質的な課題に直面しているのであれば, (問題はあるが)問題はない
 - ・ 一方で、自身で実装したコードやOSSを持ってきているときは要注意

解決策

- 小さいデータに過剰適合させる
- 例: 画像生成 -> 1枚だけ訓練させて, 生成させる
 - 訓練データを生成できるはず
 - もしできないならば、学習コードもしくは可視化周りでバグを仕込んでいる可能性が高い

デプロイ時の制約の扱い

- モデルの選定/開発するときに、デプロイの時の要件をどこまで考えるか?
 - エッジデバイスに乗るのか/スループットはどれくらいか?
 - 個人情報/プライバシー保護はどうするのか?

→ 考えるべき

・ すでにベースラインとしてある程度動くことがわかっていて, デプロイが目標の場合

→ 考えなくて良い

まだベースラインができていない場合

各段階でのポイント

• 開発/Proof of Concept時

目的 その「タスク」が実現可能であること,そして十分に性能が出ることを示す

体制 とにかくプロトタイピングに注力する

コツ 前処理も綺麗に書かなくても良い(ただし後々見返すためにコメントは残す)

• デプロイ時

体制

設計からきちんと見直し,リファクタリングに努める

コツ メンテナンスされている/プロダクションレディなツールを採用する

各段階でのデータパイプライン

データ収集

データ定義

- 基本的に, すでに「データセット」ができていることはない
 - 自分自身でデータセットを構築することが大事
 - 入力データxは?
 - 非構造データなら:
 - カメラ解像度 / 明るさ / 画角
 - ・表記揺れ / 系列長
 - ・ 構造データなら:
 - 含めるべき / 外すべき属性値は?
 - 正解ラベルyは?
 - どうやって、アノテータに一貫したラベルをつけてもらうか

道路標示の場合

ラベル付けのルール: 「損傷した道路標示を枠で囲む」

ラベルの一貫性の重要性

- 少数データ
- ノイズありラベル

- 大量データ
- ノイズありラベル

- 少数データ
- ノイズなしラベル

ラベル一貫性の向上

- 複数人のアノテータ間で合意形成を得るようにする
 - ・ 数人でやる時は、特定のデータについてしっかりと議論する
 - もしくは多数決でラベルを決定させる
- 表記揺れ:統一にする
- クラス:ラベルの種類を増やす
 - 0 / ボーダーライン / 1

データにおけるよくある問題

	非構造データ	構造データ	T	綺麗なデータを 作ることが重要
少量	点検データ	家賃データ	<=10000	
多量	Webのテキストデータ	ECサイトの購買履歴	10000<	データ収集時点で
	ラベル付けしやすい(HLP) データ拡張しやすい	データ合成や データ拡張しにくい		気を付ける

データの収集期間の見積もり

・ 可能な限り早く, サイクルを回せるようになることが重要

- サイクルとしては7日間でいける

「m個のデータを集めるのにどれくらいかかるか?」

「k日データを収集したらどれくらい集まるか?」

アノテーションのトレードオフ

- 時間と費用のバランスが重要
 - データがテキストや画像なのか,動画なのかでも変わる
 - 動画だとアノテーションするために再生が大変
 - ・ 他の要因もある:データの質,プライバシーの観点,規制周りの観点など

• 専門家に依頼するかどうかもかなり重要

				早くサイクルに入るためには、
ソース	データ量	時間	費用	自前/購入が良さそう
自前/自作	1,000	3日	0円	
クラウドソーシング	10,000	14日	10万F	円
業者ラベリング依頼	3,000	7日	7万円	
データ購入	10,000	1日	15万F	9

生データからデータセットへ

- ・データのフォーマット
 - 動画(.mp4) / (.hdf5) / numpy.array (.npy)
 - テキスト(.txt) / json (.jsonl) / csv(.csv)
- ファイル構造
 - 用途 > クラス > ファイル / クラス > 用途 > ファイル / メタデータ + ファイル
- 事前処理
 - ・ 匿名化加工 / コーデック / 特徴量変換(抽出)

データセットの分割

• 2値分類問題: 100サンプルのうち, 30サンプルが陽クラスとする

訓練:検証:評価 = 60%:20%:20%

大規模データセットの場合は あまり気にしなくて良い (ことが多い)

悪い例

各分割に含まれる陽クラス

21:2:7 -> 55%:10%:35%

良い例

各分割に含まれる陽クラス

18:6:6 > 30%:30%:30%

sklearn.train_test_split では、引数 stratify=y を使うことで分布を維持できる

モデル改善

モデルのエラー分析

- 道路標示検出
 - 一部の画像に映り込みが誤検出を誘引
 - 帽子屋やワイパーなど
 - 雨の日の検出精度が悪い
 - 晴れの日に比べるとデータ件数が少ない
- 音声認識
 - 車の走行音や街の騒音
 - (他の)人の声が混ざってしまっている
 - 声が小さい

エラー分析を踏まえた次の施策をどうするか?

• モデルの改善をした時に、一番インパクトがあるのは何か検証する

利用環境	モデル精度	Human Level Performance	改善幅	データの 比重	
静かな場所	94%	95%	1%		0.6%
大通り	89%	93%	4%		0.16%
カフェ	87%	89%	2%		0.6%
工事現場	70%	70%	0%		0%

「大通り」より、「静かな場所」「カフェ」での精度改善に取り組むのが良い

次の施策の決め方

- どのカテゴリに注力していくか?
 - 改善幅がどれくらいあるか
 - そのカテゴリの出現頻度はどれくらいか?
 - ・ 精度改善は容易に可能か?

- 特定のカテゴリにおけるデータの追加・改善
 - もっとデータを収集する
 - データ拡張を利用する
 - ラベルやデータの精度・質を高める

目標

- (1)人間(やその他のベースライン)がうまくいく 本物っぽいデータを作る

チェックリスト

- 本当に本物っぽいデータになっているか?
- タスクとして成立しているか = $x \rightarrow y$ の写像は明らかか
 - 人間が本当にできるのか

元の画像

画像加工

損傷を追加

データ中心開発

- ・モデルを中心に開発
 - 論文ではベンチマークを利用するため

- ・データを中心に開発
 - モデルは固定
 - データ拡張をしたときの性能を検証
 - サイクルを回して改善していく

講義まとめ

- MLプロジェクトにおいて, 大規模データは大事だが, その質も大事
 - MLプロジェクトの各段階で一貫性のある高品質データを用意すること

- 高品質データとは
 - 入力される可能性があるデータを網羅すること
 - 入力xのカバレッジをあげる
 - 一貫性のある定義
 - ラベルyのルールにおける曖昧性の排除
 - デプロイ後の即時フィードバック
 - データ/コンセプトドリフトの検知

実データに注目して,サイクルを回すことがプロジェクト成功の秘訣