Question	Answer		Mark
Number 20(a)	(For simple harmonic motion the) acceleration is:		
20(a)	 (directly) proportional to <u>displacement</u> from equilibrium position 	(1)	
	 acceleration is in the opposite direction to displacement Or (always) acting towards the equilibrium position 	(1)	
	OR		
	(For simple harmonic motion the resultant) force is:(directly) proportional to <u>displacement</u> from equilibrium position	(1)	
	 force is in the opposite direction to displacement Or (always) acting towards the equilibrium position (An equation with symbols defined correctly is a valid response for both marks For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position) 	(1)	2
20(b)	Use of $F = k\Delta x$	(1)	
	Use of $T = 2\pi \sqrt{\frac{m}{k}}$	(1)	
	Use of $v_{max} = \omega A$ with $\omega = \frac{2\pi}{T}$	(1)	
	Use of $E_k = \frac{1}{2}mv^2$	(1)	
	$E_{\rm k} = 9.1 \times 10^{-3} \rm J$	(1)	
	OR		
	Use of $F = k\Delta x$	(1)	
	Statement that $E_k \max = \Delta E_{el}$	(1)	
	Because energy is conserved	(1)	
	Use of $\Delta E_{el} = \frac{1}{2} F \Delta x$ with $F = k \Delta x$	(1)	
	$E_{\rm k} = 9.1 \times 10^{-3} \rm J$	(1)	5
	Example of calculation		
	$k = \frac{F}{\Delta x} = \frac{0.25 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{0.165 \text{ m}} = 14.9 \text{ N m}^{-1}$		
	$T = 2\pi \sqrt{\frac{0.25 \text{ kg}}{14.9 \text{ N m}^{-1}}} = 0.814 \text{ s}$		
	$E_{\rm k} = \frac{1}{2} \times 0.25 \text{ kg} \times \left(\frac{2\pi \times 3.5 \times 10^{-2} \text{ m}}{0.814 \text{ s}}\right)^2 = 9.13 \times 10^{-3} \text{J}$		

Question Number	Answer		Mark
20(c)	Sinusoidal curve with twice the frequency of displacement graph	(1)	
	Always positive and maximum E_k at $t = 0$	(1)	2
	Example of graph		
	E _k		
	time		
20(d)	There would be viscous/drag forces on the mass as it moved through the water	(1)	
	This would remove energy (from the oscillation)		
	Or this causes damping	(1)	
	The amplitude would decrease over time (dependent on MP2)	(1)	3
	Total for question 20		12