MECH230 Dynamics - Fall 2024 Recommended Problems - Set 1

The problems are taken from J. L. Meriam, L. G. Kraige, and J. N. Bolton (MKB), Engineering Mechanics: Dynamics, Ninth Edition, Wiley, New York, 2018.

2/24 A particle moving along a straight line has an acceleration which varies according to position as shown. If the velocity of the particle at the position x = -5 ft is v = 4 ft/sec, determine the velocity when x = 9 ft.

PROBLEM 2/24

2/28 The 230,000-lb space-shuttle orbiter touches down at about 220 mi/hr. At 200 mi/hr its drag parachute deploys. At 35 mi/hr, the chute is jettisoned from the orbiter. If the deceleration in feet per second squared during the time that the chute is deployed is $-0.0003v^2$ (speed v in feet per second), determine the corresponding distance traveled by the orbiter. Assume no braking from its wheel brakes.

2/25 A model rocket is launched from rest with a constant upward acceleration of 3 m/s² under the action of a small thruster. The thruster shuts off after 8 seconds, and the rocket continues upward until it reaches its apex. At apex, a small chute opens which ensures that the rocket falls at a constant speed of 0.85 m/s until it impacts the ground. Determine the maximum height h attained by the rocket and the total flight time. Neglect aerodynamic drag during ascent, and assume that the mass of the rocket and the acceleration of gravity are both constant.

