

9

Range-Minimum Queries

14 December 2023

Sebastian Wild

Learning Outcomes

- **1.** Know the *RMQ problem* and its *connection* to longest common extensions in strings.
- **2.** Know and understand trivial RMQ solutions and *sparse tables*.
- **3.** Know and understand the *Cartesian trees* data structure.
- **4.** Know and understand the *exhaustive-tabulation technique* for RMQ with linear-time preprocessing.

Unit 9: Range-Minimum Queries

Outline

9 Range-Minimum Queries

- 9.1 Introduction
- 9.2 RMQ, LCP, LCE, LCA WTF?
- 9.3 Trivial Solutions & Sparse Tables
- 9.4 Cartesian Trees
- 9.5 Exhaustive Tabulation

9.1 Introduction

Range-minimum queries (RMQ)

array/numbers don't change

- ▶ **Given:** Static array A[0..n) of numbers
- ► Goal: Find minimum in a range;

A known in advance and can be preprocessed

- ► Nitpicks:
 - ► Report *index* of minimum, not its value
 - Report *leftmost* position in case of ties

Clicker Question

Given the array from the slides, what is $RMQ_A(1, 6)$

→ sli.do/comp526

Rules of the Game

- ► comparison-based → values don't matter, only relative order
- ► Two main quantities of interest:

- $\searrow \sim \text{space usage } \leq P(n)$
- **1. Preprocessing time**: Running time P(n) of the preprocessing step
- **2. Query time**: Running time Q(n) of one \underline{q} uery (using precomputed data)
- ▶ Write $\langle P(n), Q(n) \rangle$ time solution for short

Clicker Question

What do you think, what running times can we achieve? For a $\langle P(n), Q(n) \rangle$ time solution, enter "<P(n),Q(n)>".

→ sli.do/comp526

9.2 RMQ, LCP, LCE, LCA — WTF?

Recall Unit 6

Application 4: Longest Common Extensions

▶ We implicitly used a special case of a more general, versatile idea:

The *longest common extension (LCE)* data structure:

- ▶ **Given:** String T[0..n-1]
- ▶ **Goal:** Answer LCE queries, i. e., given positions i, j in T, how far can we read the same text from there? formally: LCE $(i, j) = \max\{\ell : T[i..i + \ell) = T[j..j + \ell)\}$
- \rightsquigarrow use suffix tree of T!

longest common prefix of *i*th and *j*th suffix

- ▶ In \mathfrak{I} : LCE $(i,j) = \text{LCP}(T_i, T_j) \rightsquigarrow \text{same thing, different name!}$ = string depth of lowest common ancester (LCA) of leaves i and j
- ▶ in short: $LCE(i, j) = LCP(T_i, T_j) = stringDepth(LCA(i, j))$

15

Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

- ► Could walk up the tree to find LCA \rightsquigarrow $\Theta(n)$ worst case
- ► Could store all LCAs in big table \rightsquigarrow $\Theta(n^2)$ space and preprocessing

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is **constant(!) time**.

- a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice

- \rightarrow for now, use O(1) LCA as black box.
- \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

16

Finally: Longest common extensions

- ▶ In Unit 6: Left question open how to compute LCA in suffix trees
- ▶ But: Enhanced Suffix Array makes life easier!

$$LCE(i,j) = LCP[RMQ_{LCP}(min\{R[i],R[j]\} + 1, max\{R[i],R[j]\})]$$

RMQ Implications for LCE

- ightharpoonup Recall: Can compute (inverse) suffix array and LCP array in O(n) time
- \rightarrow A $\langle P(n), Q(n) \rangle$ time RMQ data structure implies a $\langle P(n), Q(n) \rangle$ time solution for longest-common extensions

9.3 Trivial Solutions & Sparse Tables

► Two easy solutions show extreme ends of scale:

► Two easy solutions show extreme ends of scale:

1. Scan on demand

- no preprocessing at all
- ▶ answer RMQ(i, j) by scanning through A[i...j], keeping track of min

$$\rightsquigarrow \langle O(1), O(n) \rangle$$

► Two easy solutions show extreme ends of scale:

1. Scan on demand

- no preprocessing at all
- ▶ answer RMQ(i, j) by scanning through A[i...j], keeping track of min

$$\rightsquigarrow \langle O(1), O(n) \rangle$$

2. Precompute all

- ▶ Precompute all answers in a big 2D array M[0..n)[0..n)
- queries simple: RMQ(i, j) = M[i][j]

$$\rightsquigarrow \langle O(n^3), O(1) \rangle$$

► Two easy solutions show extreme ends of scale:

1. Scan on demand

- ▶ no preprocessing at all
- ▶ answer RMQ(i, j) by scanning through A[i...j], keeping track of min
- $\rightsquigarrow \langle O(1), O(n) \rangle$

2. Precompute all

- ▶ Precompute all answers in a big 2D array M[0..n)[0..n)
- queries simple: RMQ(i, j) = M[i][j]
- $\rightsquigarrow \langle O(n^3), O(1) \rangle$
- ▶ Preprocessing can reuse partial results \rightsquigarrow $\langle O(n^2), O(1) \rangle$

- ▶ **Idea:** Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k .
 - $\rightsquigarrow \le n \cdot \lg n \text{ entries}$
 - \rightsquigarrow Can be stored as M'[i][k]

- ▶ **Idea:** Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k . $Arr ext{ } \leq n \cdot \lg n \text{ entries }$ $Arr ext{ } \leftarrow \text{ Can be stored as } M'[i][k]$
- ► How to answer queries?

- ▶ **Idea:** Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k .
 - $\rightsquigarrow \le n \cdot \lg n \text{ entries}$
 - \rightsquigarrow Can be stored as M'[i][k]
- ► How to answer queries?

- **1.** Find k with $\ell/2 \le 2^k \le \ell$
- Cover range [i..j] by
 2^k positions right from i and
 2^k positions left from j
- 3. $RMQ(i, j) = \arg\min\{A[rmq_1], A[rmq_2]\}$

with
$$rmq_1 = \text{RMQ}(i, i+2^k-1)$$

 $rmq_2 = \text{RMQ}(j-2^k+1, j)$

- ▶ **Idea:** Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k .
 - $\rightsquigarrow \le n \cdot \lg n \text{ entries}$
 - \rightsquigarrow Can be stored as M'[i][k]
- ► How to answer queries?

- ▶ Preprocessing can be done in $O(n \log n)$ times
- $\rightsquigarrow \langle O(n \log n), O(1) \rangle$ time solution!

- **1.** Find k with $\ell/2 \le 2^k \le \ell$
- 2. Cover range [i..j] by 2^k positions right from i and 2^k positions left from j
- 3. $RMQ(i, j) = arg min\{A[rmq_1], A[rmq_2]\}$

with
$$rmq_1 = RMQ(i, i+2^k-1)$$

 $rmq_2 = RMQ(j-2^k+1, j)$

9.4 Cartesian Trees

Range-max queries on array A:

$$rmq_{A}(i, j) = arg \max_{i \le k \le j} A[k]$$
$$= index \text{ of max}$$

Range-max queries on array A:

$$rmq_A(i, j) = arg \max_{i \le k \le j} A[k]$$

= $index$ of max

Range-max queries on array A:

$$rmq_A(i, j) = arg \max_{i \le k \le j} A[k]$$

= $index$ of max

► **Task:** Preprocess *A*, then answer RMQs fast

Range-max queries on array A:

$$rmq_A(i, j) = arg \max_{i \le k \le j} A[k]$$

= $index$ of max

► Task: Preprocess *A*, then answer RMQs fast ideally constant time!

- ► Range-max queries on array A: rmq_A(i, j) = arg max A[k]
 - $\frac{i \le k \le j}{i = index \text{ of max}}$
- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down

► Range-max queries on array A: $\operatorname{rmq}_A(i,j) = \operatorname{arg\ max} A[k]$

- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down

► Range-max queries on array A: rmq_A(i, j) = arg max A[k]

- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down

► Range-max queries on array A: $\operatorname{rmq}_A(i,j) = \operatorname{arg\ max} A[k]$

- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down

► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max}_{i < k < i} A[k]$

- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down

- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- ► rmq(i, j) = lowest common ancestor (LCA)

- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- ▶ rmq(i, j) = lowest common ancestor (LCA)

RMQ & LCA

- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- rmq(i, j) = inorder of <u>lowest common ancestor</u> (LCA) of ith and jth node in inorder

Given the (max-oriented) Cartesian tree for A on the left, what is $RMQ_A(1,5)$?

→ sli.do/comp526

Cartesian Tree – Larger Example

Cartesian Tree – Larger Example

Cartesian Tree – Larger Example

Counting binary trees

► Given the Cartesian tree, all RMQ answers are determined and vice versa!

Counting binary trees

► Given the Cartesian tree, all RMQ answers are determined and vice versa!

- ▶ How many different Cartesian trees are there for arrays of length *n*?
 - ▶ known result: *Catalan numbers* $\frac{1}{n+1} \binom{2n}{n}$
 - easy to see: $\leq 2^{2n}$
- → many arrays will give rise to the same Cartesian tree

 Can we exploit that?

What binary string corresponds to the tree shown on the left?

(using the encoding just discussed)

→ sli.do/comp526

9.5 Exhaustive Tabulation

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" . . .

- ► The algorithmic technique was published 1970 by V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- ▶ all worked in Moscow at that time . . . but not even clear if all are Russians! (Arlazarov and Kronrod are Russian)

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" . . .

- ► The algorithmic technique was published 1970 by V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- ► all worked in Moscow at that time ... but not even clear if all are Russians! (Arlazarov and Kronrod are Russian)
- ► American authors coined the slightly derogatory "Method of Four Russians" ... name in widespread use

Bootstrapping

- ▶ We know a $\langle O(n \log n), O(1) \rangle$ time solution
- ▶ If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)$!

Bootstrapping

- ▶ We know a $\langle O(n \log n), O(1) \rangle$ time solution
- ▶ If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)$!
- ▶ Break *A* into blocks of $b = \lceil \frac{1}{4} \lg n \rceil$ numbers
- ► Create array of block minima B[0..m) for $m = \lceil n/b \rceil = O(n/\log n)$

Bootstrapping

- ▶ We know a $\langle O(n \log n), O(1) \rangle$ time solution
- ▶ If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)$!
- ▶ Break *A* into blocks of $b = \lceil \frac{1}{4} \lg n \rceil$ numbers
- ► Create array of block minima B[0..m) for $m = \lceil n/b \rceil = O(n/\log n)$

- \rightsquigarrow Use sparse tables for *B*.
- \rightsquigarrow Can solve RMQs in B[0..m) in $\langle O(n), O(1) \rangle$ time

• Query $RMQ_A(i, j)$ covers

• Query $RMQ_A(i, j)$ covers

• Query $RMQ_A(i, j)$ covers

▶ Query $RMQ_A(i, j)$ covers

if intrablock and interblock queries known

- Query RMQ $_A(i, j)$ covers
 - ▶ suffix of block $\ell = |i/m|$
 - ightharpoonup prefix of block r = |j/m|
 - ▶ blocks $\ell + 1, \ldots, r 1$ entirely

A[0..n]

query interblock query

M[0..m)

B[0..m)

 $\begin{cases} \operatorname{RMQ}_{\operatorname{block}\ell}(i-\ell b, (\ell+1)b-1), \\ b \cdot \operatorname{RMQ}_{M}(\ell+1, r-1) + \\ B \left[\operatorname{RMQ}_{M}(\ell+1, r-1)\right], \\ \operatorname{RMQ}_{\operatorname{block}r}(rb, j-rb) \end{cases}$ ► $RMQ_A(i, j) = arg min A[k]$ with K =

intrablock queries

→ only 3 possible values to check if intrablock and interblock queries known

 $k \in K$

16

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- ► Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- ► Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{h} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- ▶ many blocks, but just $b = \lceil \frac{1}{4} \lg n \rceil$ numbers long
 - \leadsto Cartesian tree of b elements can be encoded using $2b = \frac{1}{2} \lg n$ bits
 - \rightarrow # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = \left(2^{\lg n}\right)^{1/2} = \sqrt{n}$
 - → many equivalent blocks!

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- ► Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{h} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- ▶ many blocks, but just $b = \lceil \frac{1}{4} \lg n \rceil$ numbers long
 - \leadsto Cartesian tree of b elements can be encoded using $2b = \frac{1}{2} \lg n$ bits

$$\Rightarrow$$
 # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = \left(2^{\lg n}\right)^{1/2} = \sqrt{n}$

→ many equivalent blocks!

→ Exhaustive Tabulation Technique:

- **1.** represent each subproblem by storing its *type* (here: encoding of Cartesian tree)
- 2. enumerate all possible subproblem types and their solutions
- 3. use type as index in a large *lookup table*

Intrablock queries [2]

- **1.** For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time

Intrablock queries [2]

- **1.** For each block, compute 2*b* bit representation of Cartesian tree
 - ▶ can be done in linear time
- 2. Compute large lookup table

Block type	i	j	RMQ(i,j)
:			

Intrablock queries [2]

- **1.** For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time
- 2. Compute large lookup table

Block type	i	j	RMQ(i,j)
:			
:			

- $ightharpoonup \leq \sqrt{n}$ block types
- $ightharpoonup \leq b^2$ combinations for *i* and *j*
- \rightarrow $\Theta(\sqrt{n} \cdot \log^2 n)$ rows
- ► each row can be computed in $O(\log n)$ time
- \rightsquigarrow overall preprocessing: O(n) time!

Discussion

- $\blacktriangleright \langle O(n), O(1) \rangle$ time solution for RMQ
- \rightsquigarrow $\langle O(n), O(1) \rangle$ time solution for LCE in strings!

Discussion

- $\blacktriangleright \langle O(n), O(1) \rangle$ time solution for RMQ
- \rightsquigarrow $\langle O(n), O(1) \rangle$ time solution for LCE in strings!
- optimal preprocessing and query time!
- a bit complicated

Discussion

- \blacktriangleright $\langle O(n), O(1) \rangle$ time solution for RMQ
- \rightsquigarrow $\langle O(n), O(1) \rangle$ time solution for LCE in strings!
- optimal preprocessing and query time!
- a bit complicated

Research questions:

- Reduce the space usage
- ► Avoid access to *A* at query time