東京大学 量子ソフトウェア寄付講座

第1回 量子ソフトウェア産学協同ゼミ

2022年 3月 2日

■本日のアジェンダ

- 1. はじめに
- 2. テンソルネットワークを使ったパラメータ圧縮
- 3. 演習課題と演習環境
- 4. RNN (Recurrent Neural Network) による時系列予測モデル
- 【演習】 テンソルネットワークによるパラメータ圧縮
 【討論】 パラメータ圧縮と予測結果の関係について
- 6. 結果共有、模範解答の確認・解説
- 7. 【演習】 発展課題
- 8. 結果共有、模範解答の確認・解説
- 9. 総評、まとめ

▋ 演習課題

- COVID-19の過去の新規感染者数の推移から、未来(7日後)の新規感染者数を予測する。
 - 日本国内の日次の新規感染者数を対象とする。
 - 2020年1月22日~2021年4月29日の期間で新規感染者数が既知である。(学習データ)
 - 2021年4月30日~2022年1月30日の期間の新規感染者数の推移を予測する。(テストデータ)
- 予測には、時系列データの扱いに適した機械学習モデルを活用する。

第1波〜第3波の感染者数の推移を元に 第4波〜第5波の感染者数の推移を予測

機械学習モデル

日付	感染者数
2020-01-22	143
2020-01-23	172
2021-04-29	33
2021-04-30	40

テストデータ (第4~5波)

第4波〜第5波の予測値(青)と実際 の値(橙)を比較し、モデルの予測 性能を評価

┗用するデータについて

- データソースは Johns Hopkins 大学が github で公開しているcsv形式のもの
- 演習では、これを Shad Reynolds 氏が国別に集計したものを使用

COVID-19 Dashboard

csvのイメージ

(参照URL)

 $\frac{\text{https://www.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6}}{\text{https://github.com/CSSEGISandData/COVID-19}} (\text{csv}\vec{\tau} - \beta)$ (Dashboard)

▋ ■ 演習環境

- 演習では Python を使って機械学習モデルを実装
- Google Collaboratory を使用することで環境構築作業が不要
- 事前に配布した Jupyter Notebook を Googleドライブに格納して開けばよい。

(参考)独自に環境を構築する場合 以下のパッケージをインストールしてください。 ※ バージョン指定は特になし

パッケージ名	用途
pandas	csv形式のファイルを読み込む
NumPy	行列・ベクトルの演算を行う
matplotlib	感染者数の推移等のグラフを描画する
TensorFlow	機械学習モデルを実装する
Keras	TensorFlowを使いやすくするライブラリ

■機械学習モデルについて

- 機械学習モデルは時系列予測に適したニューラルネットワークである RNN (Recurrent Neural Network) を使用
- RNN は Keras を用いて予め実装済(本演習の対象外)

 x_t : 時刻tの入力

y : 出力

 h_t : 隠れ層

 W_h, W_d, W_x : 重み行列(tに非依存)

RNNの推論(順伝播)

- 事前知識として新規感染者数は曜日に依存する点を踏まえ、時系列長を n=7 とする。
- 推論の計算は単純な行列・ベクトルの積和計算であり、実装が容易
- 本演習ではこの計算にテンソルネットワークを適用することにチャレンジする。

変数の詳細

変数	次元数	設定要領
x_t	1	日付tの新規感染者数
y	1	予測したい日付の新規感染者数
h_t	32	ネットワークの規模を決めるパラメータで、問題の複雑さに応じて調整。 $h_0=0$ で初期化。
W_h	32x32	重み行列。一様分布で初期化。
W_d , W_x	32	
b_r	32	RNNのバイアス項
b_d	1	全結合層のバイアス項

推論の計算

- $h_t = W_h h_{t-1} + W_x x_t + b_r$ $(t = 1, \dots, 7)$
- $y = W_d^T h_n + b_d$

■ RNNの学習(誤差逆伝播)

- 勾配降下法にて重みを更新していく。
- 実装が複雑となるため、本演習では学習済の重みを使用する前提とする。

重みの更新式(予測誤差:L、学習率: η 、バイアスは省略)

•
$$w_{ij}^{new} = w_{ij} - \eta \frac{\partial L}{\partial w_{ij}}$$

•
$$\frac{\partial L}{\partial w_{ij}} = \frac{\partial L}{\partial h_t^{(i)}} \frac{\partial h_t^{(i)}}{\partial w_{ij}} = \delta_t^{(i)} \frac{\partial}{\partial w_{ij}} \sum_j w_{ij} h_{t-1}^{(j)} = \delta_t^{(i)} h_{t-1}^{(j)}$$

•
$$\delta_t^{(i)} = \frac{\partial L}{\partial h_t^{(i)}} = \sum_j \frac{\partial L}{\partial h_{t+1}^{(j)}} \frac{\partial h_{t+1}^{(j)}}{\partial h_t^{(i)}} = \sum_j \delta_{t+1}^{(j)} \frac{\partial}{\partial h_t^{(i)}} \sum_i w_{ji} h_t^{(i)} = \sum_j \delta_{t+1}^{(j)} w_{ji}$$

RNNで学習~予測を実行

- データを読み込み、予め実装済のRNNを使って時系列予測モデルを学習
- 学習によって得られた重みを使って、推論の計算を実行
- 詳細は Jupyter Notebook を参照

Keras による実装の詳細については TensorFlow のチュートリアルを参照 https://www.tensorflow.org/guide/keras/rnn