CS144 An Introduction to Computer Networks

Congestion

Basic Approaches

Outline

Where to put congestion control?

- Example: Fair Queueing at every router
- In the network
- At the end host

Sliding windows and AIMD

Example: FQ at every router

Network-based

End-host based

TCP Congestion Control

TCP implements congestion control at the end-host.

- Reacts to events observable at the end host (e.g. packet loss).
- Exploits TCP's sliding window used for flow control.
- Tries to figure out how many packets it can safely have outstanding in the network at a time.

Sliding Window

TCP Sliding Window

TCP Congestion Control

TCP varies the number of outstanding packets in the network by varying the window size:

How do we decide the value for cwnd?

AIMD

Additive Increase, Multiplicative Decrease

If packet received OK: $W \leftarrow W + \frac{1}{W}$ If a packet is dropped: $W \leftarrow \frac{W}{2}$

Leads to the AIMD "sawtooth"

Summary

Choice: In the network, or at the end host? TCP controls congestion from the end-host.

- Reacts to events observable at the end host (e.g. packet loss).
- Exploits TCP's sliding window used for flow control.
- Tries to figure out how many packets it can safely have outstanding in the network at a time.
- Varies window size according to AIMD.

<end>