Command	Explanation
pnorm(x)	$P(Z \le x) \text{ for } Z \sim \mathcal{N}(0, 1)$
$\int \operatorname{pt}(x, n-1)$	$P(T_{n-1} \le x)$ for $T_{n-1} \sim T(n-1)$
qnorm(p)	gives x such that $P(Z \le x) = p$ for $Z \sim \mathcal{N}(0, 1)$
$\operatorname{qt}(p, n-1)$	gives x such that $P(T_{n-1} \le x) = p$ for $T_{n-1} \sim T(n-1)$
pnorm(x, lower.tail = FALSE)	$P(Z \ge x)$ for $Z \sim \mathcal{N}(0, 1)$
pt(x, n-1, lower.tail = FALSE)	$P(T_{n-1} \ge x)$ for $T_{n-1} \sim T(n-1)$
qnorm(p, lower.tail = FALSE)	gives x such that $P(Z \ge x) = p$ for $Z \sim \mathcal{N}(0, 1)$
qt(p, n-1, lower.tail = FALSE)	gives x such that $P(T_{n-1} \ge x) = p$ for $T_{n-1} \sim T(n-1)$
t.test()	uh, it performs a t-test

Notice that the lower.tail = FALSE option switches around the inequality in the probabilities. Hence it considers the upper tail instead of the lower tail, explaining its name.

FIGURE 1: The green area is given by pt(-1, n-1), and the pink area is given by pt(-1, n-1, lower.tail = FALSE).

FIGURE 2: The number p is the number such that the probability of being below it is 0.84, and likewise the probability of being above it is 0.16. Apropos R commands, qt(0.84, n-1) and qt(0.16, n-1, lower.tail = FALSE).

t.test(x, alternative = c("greater"), mu = 5, conf.level = 0.95) Performs a t-test using data in x for $H_0: \mu \leq 5$ against $H_1: \mu > 5$ at 5% significance.