Summary of Theory

Miaoyan Wang, Oct 4, 2020

Assumption 1 (Lipschitz).

$$|\Theta(\omega) - \Theta(\omega')| \le \frac{|\omega - \omega'|}{d}$$
, for all $\omega, \omega' \in [d]^m$.

Assumption 2 (Inverse Lipschitz in indices).

$$\frac{|i-j|}{d} \le \deg(i) - \deg(j), \quad \text{for all } i > j \in [d].$$

Assumption 3 (Inverse Lipschitz in tensors).

$$\frac{\|\Theta(i,:) - \Theta(j,:)\|_F}{d^{(m-1)/2}} \le |\deg(i) - \deg(j)|, \quad \text{for all } i, j \in [d].$$

Algorithm:

- Step 1: compute empirical degree $\widehat{\deg(i)} = \frac{1}{d^{m-1}} \mathcal{Y}(i, \mathbf{1}, \dots, \mathbf{1})$.
- Step 3: define estimate

$$\hat{\Theta}(i,:) = \frac{1}{|\mathcal{N}_i|} \sum_{i' \in \mathcal{N}_i} \mathcal{Y}(i',:).$$

Algorithm 1 Partition of [d] based on critical radius r

Input: a length-d vector \mathbf{v} , and critical radius r.

Output: a partition σ over [d].

- 1: Set S = [d] and r = 1
- 2: while $S \neq \emptyset$ do
- 3: Randomly select $i \in \mathcal{S}$
- 4: Find a neighborhood of i based on critical radius $\mathcal{N}_i := \{i' : |\boldsymbol{v}(i) \boldsymbol{v}(i')| \le r\}$
- 5: label $\sigma(i') = r$ for all $i' \in \mathcal{N}_i$
- 6: Update $S \leftarrow S/N_i$ and $r \leftarrow r + 1$.
- 7: end while

Assumption 4. Define neighborhood

$$\frac{\frac{1}{d^m} \|\hat{\mathcal{P}} - \mathcal{P}\|_F \le \frac{1}{d^m} \|\sum_{\omega \in \mathcal{N}} \mathcal{A}(\omega) - \mathcal{P}(\omega)}{|\mathcal{N}_i| \|_F}$$

1