Analiza datelor în R

Curs 4

Variabile aleatoare

- ▶ discrete
 - → tablou de repartiţie

$$X\leftrightarrow egin{pmatrix} x_1 & x_2 & \dots & x_n & \dots \\ p_1 & p_2 & \dots & p_n & \dots \end{pmatrix}$$
 cu $\sum_i p_i=1$

$$P(X \in I) = \sum_{x_i \in I} P(X = x_i) = \sum_{x_i \in I} p_i$$

continue

$$\longrightarrow$$
 densitate de repartiţie $f: \mathbb{R} \to [0, \infty)$ cu $\int\limits_{-\infty}^{\infty} f(t)dt = 1$.

$$P(X \in [a,b]) = \int_{a}^{b} f(t)dt, \quad \forall a,b \in [-\infty,\infty]$$

► Funcţia de repartiţie a variabilei aleatoare X este

$$F : \mathbb{R} \to [0, 1], F(x) = P(X < x).$$

Distribuţia uniformă discretă

Fie $n \in \mathbb{N}^*$. Vom spune că variabila aleatoare X are distribuţie uniformă discretă pe [1, n] (notaţie: $X \sim U(n)$) dacă

$$P(X = k) = \frac{1}{n}, \ \forall k \in \{1, 2, ..., n\}$$

Dacă
$$X \sim U(n)$$
, atunci $M(X) = \frac{n+1}{2}$ şi $D^2(X) = \frac{n^2-1}{12}$.

Figura 1 : Funcţia de probabilitate a unei variabile aleatoare U(10)

Distribuţia binomială

Fie $n \in \mathbb{N}^*$, $p \in (0,1)$. Vom spune că X are distribuţie binomială de parametri n şi p (notaţie: $X \sim B(n,p)$) dacă

$$P(X = k) = \begin{cases} C_n^k p^k (1 - p)^{n - k}, & k \in \{0, 1, \dots, n\} \\ 0, & \text{in rest} \end{cases}$$

Distribuţia binomială modelează numărul de realizări ale unui eveniment ("succese") în n repetări independente ale unui experiment, dacă la fiecare repetare probabilitatea de realizare a evenimentului este p.

Dacă
$$X \sim B(n, p)$$
, atunci $M(X) = np$ și $D^2(X) = np(1 - p)$.

Figura 2 : Funcţia de probabilitate $\overset{k}{a}$ unei variabile aleatoare B(20,0.25)

Distribuţia geometrică

Fie $p \in (0,1)$. Vom spune că X are distribuţie geometrică de parametru p (notaţie: $X \sim Geom(p)$) dacă

$$P(X=k) = egin{cases} (1-
ho)^{k-1}
ho, & k \in \mathbb{N}^* \ 0, & ext{in rest} \end{cases}$$

Distribuţia geometrică modelează numărul de repetări independente ale unui experiment până la prima realizare a evenimentului de interes ("succes"), dacă la fiecare repetare probabilitatea de succes este p.

Dacă
$$X \sim Geom(p)$$
, atunci $M(X) = \frac{1}{p}$ şi $D^2(X) = \frac{1-p}{p^2}$.

Figura 3 : Funcţia de probabilitate $\overset{k}{a}$ unei variabile aleatoare Geom(0.3)

Distribuţia Poisson

Fie $\lambda > 0$. Variabila aleatoare X are distribuţie Poisson de parametru λ (notaţie: $X \sim Po(\lambda)$) dacă

$$P(X = k) = \begin{cases} \frac{\lambda^k}{k!} e^{-\lambda}, & k \in \mathbb{N} \\ 0, & \text{in rest} \end{cases}$$

Dacă $X \sim Po(\lambda)$, atunci $M(X) = \lambda$ și $D^2(X) = \lambda$.

Figura 4 : Funcţia de probabilitate a unei variabile aleatoare *Po*(10)

Distribuţia uniformă

Fie $a, b \in \mathbb{R}$, a < b. Variabila aleatoare X are distribuţie uniformă pe [a, b] (notaţie: $X \sim U[a, b]$) dacă densitatea de repartiţie a lui X este

$$f_X(t) = \begin{cases} \frac{1}{b-a}, & t \in [a,b] \\ 0, & t \notin [a,b] \end{cases}$$

Dacă
$$X \sim U[a,b]$$
, atunci $M(X) = \frac{a+b}{2}$ şi $D^2(X) = \frac{(b-a)^2}{12}$.

Figura 5 : Densitatea de repartiţie $\overset{\times}{a}$ unei variabile aleatoare U[0,1]

Distribuţia normală

Fie $\mu \in \mathbb{R}, \sigma > 0$. O variabilă aleatoare X având densitatea de repartiţie

$$f_X(t) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}} \quad (t \in \mathbb{R})$$

se numeşte variabilă aleatoare normală de parametri μ, σ^2 . (Notaţie: $X \sim N(\mu, \sigma^2)$)

- ▶ Dacă $X \sim N(\mu, \sigma^2)$, atunci $M(X) = \mu$ şi $D^2(X) = \sigma^2$.
- ▶ Dacă $\mu = 0$ şi $\sigma^2 = 1$, vom spune că X are distribuţie normală standard.
- ► $X \sim N(\mu, \sigma^2) \Leftrightarrow \frac{X \mu}{\sigma} \sim N(0, 1)$.

Distribuţia normală

- Densitatea de repartiţie este simetrică în raport cu media μ.
- ▶ $P(\mu \sigma \le X \le \mu + \sigma) = 0.68$
- ► $P(\mu 2\sigma \le X \le \mu + 2\sigma) = 0.95$
- ► $P(\mu 3\sigma \le X \le \mu + 3\sigma) = 0.997$

Figura 6 : Densitatea de repartiţie $\overset{\mathsf{x}}{a}$ unei variabile aleatoare N(0,1)

Distribuţia χ^2

Fie $n \in \mathbb{N}^*$. Spunem că o variabilă aleatoare X are distribuţie χ^2 cu n grade de libertate (notaţie: $X \sim \chi^2(n)$) dacă densitatea sa de repartiţie este

$$f_X(t) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{t}{2}} \quad (t \ge 0).$$

- $X \sim N(0,1) \Rightarrow X^2 \sim \chi^2(1)$.
- ► $X_1, X_2, ..., X_n \sim \chi^2(1)$ independente $\Rightarrow \sum_{i=1}^n X_i \sim \chi^2(n)$.

Figura 7 : Densitatea de repartiţie a unei variabile aleatoare $\chi^2(5)$

Distribuţia Student (t)

Fie $n \in \mathbb{N}^*$. Spunem că o variabilă aleatoare X are distribuţie t cu n grade de libertate (notaţie: $X \sim t(n)$) dacă densitatea sa de repartiţie este

$$f_X(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \quad (t \in \mathbb{R}).$$

- ► Dacă $X \sim t(n)$, atunci M(X) = 0 şi $D^2(X) = \frac{n}{n-2}$ (n > 2).
- Densitatea de repartiţie este simetrică în raport cu media.
- ► $X \sim N(0, 1), Y \sim \chi^2(n)$ independente $\Rightarrow \frac{X}{\sqrt{\frac{Y}{n}}} \sim t(n)$

Figura 8 : Densitatea de repartiție a unei variabile aleatoare t(5)

Distribuții de probabilitate în R

- ▶ d+numeDistributie → funcţie de probabilitate (cazul discret), respectiv densitate de repartiţie (cazul continuu)
- ightharpoonup p+numeDistributie ightharpoonup funcție de repartiție
- ▶ q+numeDistributie → quantile
- ► r+numeDistributie → generare de numere aleatoare care urmează distribuţia dată

unde numeDistributie= binom, geom, pois, unif, norm, chisq, t etc.

Dat $p \in (0,1)$, se numeşte p-quantila variabilei aleatoare X (sau a distribuţiei de probabilitate corespunzătoare) numărul real x cu proprietatea că P(X < x) = p.