Word2vec:

当我们分析图片或者语音的时候,我们通常都是在分析密集的,高纬度的数据集。我们所需的全部信息都储存在原始数据中。

[[0.65337904	0.96147407	0.89736144	0.97613636	0.53563182	0.65046753]
[0.22471787	0.67623082	0.29457548	0.54820279	0.25811241	0.10811792]
[0.15491558	0.4922566	0.94136616	0.18930393	0.43129747	0.0312585]
[0.32249593	0.13105882	0.55929974	0.60043924	0.09488365	0.93599279]
[0.18468721	0.80349133	0.77069437	0.34970681	0.04205231	0.07288426]
[0.9713573	0.31079413	0.60528272	0.24704021	0.82908679	0.78950803]
[0.92664684	0.77715744	0.55786552	0.85356888	0.19111345	0.20953576]
[0.02344845	0.57778919	0.65908075	0.4059088	0.0907254	0.06996104]
[0.72560051	0.91087261	0.66252184	0.06852047	0.56545598	0.40305866]
[0.80040794	0.60398618	0.07660456	0.22238826	0.65349584	0.53116871]
[0.41366496	0.30961498	0.78078967	0.21373827	0.11872793	0.13299166]
[0.73777544	0.13902513	0.48004225	0.683896	0.20811546	0.30064903]
[0.76508436	0.85263635	0.16590127	0.18754474	0.86105624	0.41046465]
[0.37545851	0.02911257	0.27524078	0.00883495	0.53383195	0.72747815]
[0.27355726	0.85399793	0.70522708	0.86964774	0.31380896	0.14360617]
[0.92621366	0.81976771	0.34924696	0.11268561	0.15834104	0.25493069]
[0.86482453	0.66849716	0.81176577	0.73482012	0.72419957	0.61101592]
[0.65271702	0.22533039	0.25093796	0.90895525	0.56729463	0.15508486]
[0.3398385	0.43496739	0.0772549	0.38408786	0.06412806	0.8306255]
[0.63361307	0.20169828	0.36050179	0.38680661	0.63106815	0.03255401]

当我们处理自然语言问题的时候,我们通常会做分词,然后给每一个词一个编号,比如猫的编号是120,狗的编号是343。比如女生的编号是1232,女王的编号是2329。这些编号是没有规律,没有联系的,我们从编号中不能得到词与词之间的相关性。

例如: How are you?

How: 234

Are:7

you: 987

000...1000000... 0000001000... 000...0000010

CBOW和Skip-Gram:

连续词袋模型(CBOW):

根据词的上下文词汇来预测目标词汇,例如上下文词汇是"今天早餐吃_",要预测的目标词汇可能是"面包"。

Skip-Gram模型:

Skip-Gram模型刚好和CBOW相反,它是通过目标词汇来预测上下文词汇。例如目标词汇是"早餐",上下文词汇可能是"今天"和"吃面包"。

对于这两种模型的训练,我们可能容易想到,使用softmax作为输出层来训练网络。这个方法是可行的,只不过使用softmax作为输出层计算量将会是巨大的。假如我们已知上下文,需要训练模型预测目标词汇,假设总共有50000个词汇,那么每一次训练都需要计算输出层的50000个概率值。

所以训练Word2vec模型我们通常可以选择使用噪声对比估计(Noise Contrastive Estimation)。 NCE使用的方法是把上下文h对应地正确的目标词汇标记为正样本(D=1),然后再抽取一些错误的词汇作为负样本(D=0)。然后最大化目标函数的值。

$$J_{\mathrm{NEG}} = \log Q_{\theta}(D = 1 | w_t, h) + k \underset{\tilde{w} \sim P_{\mathrm{noise}}}{\mathbb{E}} \left[\log Q_{\theta}(D = 0 | \tilde{w}, h) \right]$$

当真实的目标单词被分配到较高的概率,同时噪声单词的概率很低时,目标函数也就达到最大值了。计算这个函数时,只需要计算挑选出来的k个噪声单词,而不是整个语料库。所以训练速度会很快。

CNN在自然语言处理中的应用:

说到CNN我们首先可能会想到CNN在计算机视觉中的应用。近几年CNN也开始应用于自然语言处理,并取得了一些引人注目的成绩。

CNN应用于NLP的任务,处理的往往是以矩阵形式表达的句子或文本。矩阵中的每一行对应于一个分词元素,一般是一个单词,也可以是一个字符。也就是说每一行都是一个词或者字符的向量(比如前面说到的word2vec)。假设我们一共有10个词,每个词都用128维的向量来表示,那么我们就可以得到一个10×128维的矩阵。这个矩阵就相当于是一副"图像"。

开源项目:

https://github.com/dennybritz/cnn-text-classification-tf

微信公众号:深度学习与神经网络

Github: https://github.com/Qinbf

优酷视频: http://i.youku.com/sdxxqbf