bincatmod

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

You are given an integer n.

Let s denote the string obtained by concatenating the binary representations of all the integers from 1 to n in order, without leading zeros.

For example, if n = 6, then s = 11011100101110.

Compute $s_{(10)}$ mod 998244353, where $s_{(10)}$ is the integer represented by viewing s in base 10, i.e, in decimal.

Input

The first line contains t ($1 \le t \le 1000$), the number of testcases. The second line contains t space-separated integers, each being a value of n ($1 \le n \le 10^{15}$).

Output

For each test case, output one integer: the value of $s_{(10)} \bmod 998244353.$

In layman's terms, the problem statement asks you to create a long string that is a binary representation concatenation of numbers and then read it as a decimal string and print it modulo 998244353.

Example

standard input	standard output
2	11011
3 7	703895966

Note

For n = 3 the binary string is s = 11011, now if we assume its a decimal string and then print it modulo 998244353, $11011 \mod 998244353 = 11011$

For n=7 the binary string is s=11011100101110111, now if we assume its a decimal string and then print it modulo 998244353, 11011100101110111 mod 998244353 = 703895966