Peşu Mihai Alexandru Student 2 – nume şi prenume 412D 03.04.2021 Grupa Data

# Fișă laborator 2 - online rev. 1

ID = 61

#### 1. Vizualizarea semnalului sinusoidal

**a**)  $f_i = 500 Hz$ 

 $T_i = 2ms$ 

 $A_i = 2V$ 

Stop = 4ms





schemă montaj

grafic Vout

**b)**  $A_{mas} = [4-(-4)]/2 = 4V$ 

 $T_{mas} = 0.00299 - 0.00101 = 0.00198 = 1.98 ms$ 



grafic V<sub>out</sub> cu markeri

**c)**  $\Delta t_1 = 0.000242$ s



 $\Delta t_2 = 0.000485$ s



grafic  $V_{out}$  cu faza = -45 grade relație  $\Delta t_I$ ,  $T_i$ :  $\Delta t_{I=}Ti*\phi/360$ Explicații imagine

In prima imagine putem vedea faptul ca semnalul este deplasat putin spre dreapta din cauza faptului ca avem faza=-45 de grade, sinusoida fiind in continuare cuprinsa intre -4 si 4.

 $\Delta t_{1\_calculat} = 0.000250$ s

**d)**  $N_x = 5 \text{ div}$ 

 $C_x = 4 \text{ms/div}$ 

C -Ama/div

**e)**  $Stop = T_1 = 0.002s$ 

Step = 0.0002s



 $N_x = 10 \text{ div}$ 

 $C_x = 0.2 \text{ms/div}$ 

 $T_{i m \check{a} s} = 2 \text{ms}$ 

grafic  $V_{out}$  cu faza = -90 grade relație  $\Delta t_2$ ,  $T_i$ :  $\Delta t_2 = Ti * \phi/360$  Explicații imagine:

In a doua imagine putem vedea faptul ca semnalul este deplasat mai mult spre dreapta din cauza faptului ca avem faza=-90 de grade, sinusoida fiind in continuare cuprinsa intre -4 si 4.

 $\Delta t_{2\_calculat} = 0.000500s$ 

 $T_{i m \breve{a} s} = 20 \text{ms}$ 

 $Stop = T_1/2 = 0.001s$  Step = 0.0001s



 $N_x = 20 \text{div } C_x = 0.1 \text{ms/div } T_{\text{i mas}} = 2 \text{ms}$ 

**f**)  $f_2 = 5000 Hz$ 



 $A_2 = 10V$ 



### 2. Setarea și măsurarea unui semnal sinusoidal cu componentă continuă

a) 
$$f_1$$
=20kHz

$$U_V=2V$$
  $U_{CC1}=-1V$ 





schemă

$$U_{max} = 0.988V$$
  $U_{min} = -2.87V$ 

grafic u(t) cu cursori

$$\mathbf{b)} \qquad U_{\text{CC2}} = 0 \text{V}$$



$$U_{\text{CC3}}=1\text{V}$$



$$U_{max} = 1.99 \text{V}$$

$$U_{min} = -1.87 \text{V}$$

$$U_{max} = 2.99 \text{V}$$
  $U_{min} = -0.868 \text{V}$ 

Explicați efectul c.c. asupra graficelor:

Prin efectul c.c. putem observa faptul ca intregul grafic se deplaseaza in sus cu o singura diviziune, fapt ilustrat si comparand cele 2 imagini de mai sus.

## Explicație comutare AC $\rightarrow$ DC cînd $U_{CC}$ = +1V:

Cand butonul de cuplaj este trecut de pe pozitia AC(fara c.c) pe pozitia DC(cu c.c.) semnalul sinusoidal se deplaseaza pe verticala in sus cu Ny=1div.componenta continua are valoare pozitiva)

c) 
$$U_{\text{CC2}} = 0\text{V}$$



$$U_{\text{CC3}} = 1\text{V}$$



## 3. Setarea unui semnal dreptunghiular; factorul de umplere

a) 
$$A_i = 6V$$

$$f_i = 50Hz$$

$$T_i = 0.02s$$

Stop 
$$=40$$
ms





schemă

$$\tau_I = 0.01$$
s

$$T_1 = 0.02s$$

$$\eta_{m1} = 50\%$$

**b**) 
$$\eta_i = 25$$



$$\tau_2 = 0.005$$
s

$$T_2 = 0.01s$$

$$\eta_{m2} = 50\%$$

Explicație valori extreme  $\eta$ :

**Daca**  $\eta = 100\%$  atunci raportul  $\tau/T=1 => \tau = T$  ceea ce este eronat, iar in cazul in care  $\eta = 0\%$ inseamna ca  $\tau$ =0 ceea ce din nou este eronat.

#### 4. Generarea unui semnal modulat în amplitudine

**a**) 
$$U_1 = 5V$$

$$f_1 = 20 \text{ kHz}$$

$$m=1$$

$$U_2 = 1V$$

$$m=1$$
  $U_2 = 1$ V  $f_2 = 1 kHz$ 

Stop = 5 ms

$$Step = 0.5 ms$$





schema

 $A(t) = A(1+f(t)) = A(1+A\sin(\omega t)) = U(1+U\sin(2\pi f))$ 

 $u(t) = U(1 + U\sin(2\pi f))\sin(2\pi f)$ 

limitele u(t): măsurate

 $A_{min} = -10V$ 

 $A_{max} = 10V$ 

calculate:

 $A_{min\_calc} = -9.92$ 

 $A_{max\_calc} = 9.92$ 

**b**) m = 0.5

Stop = 5ms

Step = 0.5 ms



 $A_{min} = -7V$ 

 $A_{max} = 7V$ 

 $A_{min\_calc} = -6.95 \text{V}$ 

 $A_{max\_calc} = 6.95 \text{V}$ 

Explicație m: Cand m scade, A scade.

Explicație m=0:A(t)=A