Question Number	Answer		Mark
13(a)	X is the force (or pull or tension) of the <u>wire</u> (on the flagpole) (accept tension in the wire)	(1)	
	• Y is force (or reaction or push, ignore "normal") of the <u>hinge</u> (or <u>wall</u>) (on the flagpole).	(1)	3
	• Z is weight or force of gravity (of/on the flagpole)	(1)	
13(b)		(1)	
	• Use of moment of a force = Fx	(1)	
	Use of the principle of moments	(1)	
	• $T = 323$ (N) < 350 (N) so wire will not break Or		
	Moment of weight about hinge = 88.3 (Nm) < 95.8 (Nm), max poss from wire		
	Or Correct conclusion based on comparison of student's value with 350 N or 95.8 Nm		3
	MP3 depends on MP1 and MP2 being seen		
	Example of calculation $(15 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.6 \text{ m}) - (T \sin 20^{\circ} \times \frac{2}{3} \times 1.2 \text{ m}) = 0$		
	$T = (15 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.6 \text{ m}) \div (0.8 \text{ m} \times \sin 20^{\circ})$		
	$= 88.29 \text{ Nm} \div 0.2736$ $T = 322.7 \text{ N}$		
	max available moment = 350 N × 0.8 m × sin 20° = 95.77 Nm > 88.29 Nm		
	Total for question 13		6