Problem Statement

In this assignment students will build the random forest model after normalizing the variable to house pricing from boston data set.

Following the code to get data into the environment:

```
In [16]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn import datasets
    boston = datasets.load_boston()
    features = pd.DataFrame(boston.data, columns=boston.feature_names)
    targets = boston.target
```

In [17]: features.head()

Out[17]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	6.32e-03	18.0	2.31	0.0	0.54	6.58	65.2	4.09	1.0	296.0	15.3	396.90	4.98
1	2.73e-02	0.0	7.07	0.0	0.47	6.42	78.9	4.97	2.0	242.0	17.8	396.90	9.14
2	2.73e-02	0.0	7.07	0.0	0.47	7.18	61.1	4.97	2.0	242.0	17.8	392.83	4.03
3	3.24e-02	0.0	2.18	0.0	0.46	7.00	45.8	6.06	3.0	222.0	18.7	394.63	2.94
4	6.91e-02	0.0	2.18	0.0	0.46	7.15	54.2	6.06	3.0	222.0	18.7	396.90	5.33

```
In [18]: features.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 506 entries, 0 to 505
         Data columns (total 13 columns):
         CRIM
                     506 non-null float64
         ΖN
                     506 non-null float64
         INDUS
                     506 non-null float64
         CHAS
                     506 non-null float64
         NOX
                     506 non-null float64
         RM
                     506 non-null float64
         AGE
                     506 non-null float64
         DIS
                     506 non-null float64
         RAD
                     506 non-null float64
                     506 non-null float64
         TAX
         PTRATIO
                     506 non-null float64
                     506 non-null float64
         LSTAT
                     506 non-null float64
         dtypes: float64(13)
         memory usage: 51.5 KB
In [19]: features.isnull().sum()
Out[19]: CRIM
                     0
         ΖN
                     0
         INDUS
                     0
         CHAS
                     0
         NOX
                     0
         RM
                     0
                     0
         AGE
                     0
         DIS
                     0
         RAD
                     0
         TAX
         PTRATIO
                     0
         LSTAT
         dtype: int64
In [20]: targets.shape
Out[20]: (506,)
```

In [21]: # Combining the data
names = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV']
dataset = pd.DataFrame(data=np.c_[boston['data'], boston['target']], columns=names)
dataset.head()

Out[21]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	6.32e-03	18.0	2.31	0.0	0.54	6.58	65.2	4.09	1.0	296.0	15.3	396.90	4.98	24.0
1	2.73e-02	0.0	7.07	0.0	0.47	6.42	78.9	4.97	2.0	242.0	17.8	396.90	9.14	21.6
2	2.73e-02	0.0	7.07	0.0	0.47	7.18	61.1	4.97	2.0	242.0	17.8	392.83	4.03	34.7
3	3.24e-02	0.0	2.18	0.0	0.46	7.00	45.8	6.06	3.0	222.0	18.7	394.63	2.94	33.4
4	6.91e-02	0.0	2.18	0.0	0.46	7.15	54.2	6.06	3.0	222.0	18.7	396.90	5.33	36.2

Out[22]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
count	5.06e+02	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00
mean	3.59e+00	11.36	11.14	0.07	0.55	6.28	68.57	3.80	9.55	408.24	18.46	356.67	12.65	22.53
std	8.60e+00	23.32	6.86	0.25	0.12	0.70	28.15	2.11	8.71	168.54	2.16	91.29	7.14	9.20
min	6.32e-03	0.00	0.46	0.00	0.39	3.56	2.90	1.13	1.00	187.00	12.60	0.32	1.73	5.00
25%	8.20e-02	0.00	5.19	0.00	0.45	5.89	45.02	2.10	4.00	279.00	17.40	375.38	6.95	17.02
50%	2.57e-01	0.00	9.69	0.00	0.54	6.21	77.50	3.21	5.00	330.00	19.05	391.44	11.36	21.20
75%	3.65e+00	12.50	18.10	0.00	0.62	6.62	94.07	5.19	24.00	666.00	20.20	396.23	16.96	25.00
max	8.90e+01	100.00	27.74	1.00	0.87	8.78	100.00	12.13	24.00	711.00	22.00	396.90	37.97	50.00

In [23]: # descriptions
 pd.set_option('precision', 1)
 dataset.describe()

Out[23]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
count	5.1e+02	506.0	506.0	5.1e+02	506.0	506.0	506.0	506.0	506.0	506.0	506.0	506.0	506.0	506.0
mean	3.6e+00	11.4	11.1	6.9e-02	0.6	6.3	68.6	3.8	9.5	408.2	18.5	356.7	12.7	22.5
std	8.6e+00	23.3	6.9	2.5e-01	0.1	0.7	28.1	2.1	8.7	168.5	2.2	91.3	7.1	9.2
min	6.3e-03	0.0	0.5	0.0e+00	0.4	3.6	2.9	1.1	1.0	187.0	12.6	0.3	1.7	5.0
25%	8.2e-02	0.0	5.2	0.0e+00	0.4	5.9	45.0	2.1	4.0	279.0	17.4	375.4	6.9	17.0
50%	2.6e-01	0.0	9.7	0.0e+00	0.5	6.2	77.5	3.2	5.0	330.0	19.1	391.4	11.4	21.2
75%	3.6e+00	12.5	18.1	0.0e+00	0.6	6.6	94.1	5.2	24.0	666.0	20.2	396.2	17.0	25.0
max	8.9e+01	100.0	27.7	1.0e+00	0.9	8.8	100.0	12.1	24.0	711.0	22.0	396.9	38.0	50.0

In [24]: # descriptions
 pd.set_option('precision', 2)
 dataset.describe()

Out[24]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
count	5.06e+02	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00	506.00
mean	3.59e+00	11.36	11.14	0.07	0.55	6.28	68.57	3.80	9.55	408.24	18.46	356.67	12.65	22.53
std	8.60e+00	23.32	6.86	0.25	0.12	0.70	28.15	2.11	8.71	168.54	2.16	91.29	7.14	9.20
min	6.32e-03	0.00	0.46	0.00	0.39	3.56	2.90	1.13	1.00	187.00	12.60	0.32	1.73	5.00
25%	8.20e-02	0.00	5.19	0.00	0.45	5.89	45.02	2.10	4.00	279.00	17.40	375.38	6.95	17.02
50%	2.57e-01	0.00	9.69	0.00	0.54	6.21	77.50	3.21	5.00	330.00	19.05	391.44	11.36	21.20
75%	3.65e+00	12.50	18.10	0.00	0.62	6.62	94.07	5.19	24.00	666.00	20.20	396.23	16.96	25.00
max	8.90e+01	100.00	27.74	1.00	0.87	8.78	100.00	12.13	24.00	711.00	22.00	396.90	37.97	50.00

In [30]: #sns.pairplot(dataset)

In [26]: corr = dataset.corr() corr

Out[26]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
CRIM	1.00	-0.20	0.40	-5.53e-02	0.42	-0.22	0.35	-0.38	6.22e-01	0.58	0.29	-0.38	0.45	-0.39
ZN	-0.20	1.00	-0.53	-4.27e-02	-0.52	0.31	-0.57	0.66	-3.12e-01	-0.31	-0.39	0.18	-0.41	0.36
INDUS	0.40	-0.53	1.00	6.29e-02	0.76	-0.39	0.64	-0.71	5.95e-01	0.72	0.38	-0.36	0.60	-0.48
CHAS	-0.06	-0.04	0.06	1.00e+00	0.09	0.09	0.09	-0.10	-7.37e-03	-0.04	-0.12	0.05	-0.05	0.18
NOX	0.42	-0.52	0.76	9.12e-02	1.00	-0.30	0.73	-0.77	6.11e-01	0.67	0.19	-0.38	0.59	-0.43
RM	-0.22	0.31	-0.39	9.13e-02	-0.30	1.00	-0.24	0.21	-2.10e-01	-0.29	-0.36	0.13	-0.61	0.70
AGE	0.35	-0.57	0.64	8.65e-02	0.73	-0.24	1.00	-0.75	4.56e-01	0.51	0.26	-0.27	0.60	-0.38
DIS	-0.38	0.66	-0.71	-9.92e-02	-0.77	0.21	-0.75	1.00	-4.95e-01	-0.53	-0.23	0.29	-0.50	0.25
RAD	0.62	-0.31	0.60	-7.37e-03	0.61	-0.21	0.46	-0.49	1.00e+00	0.91	0.46	-0.44	0.49	-0.38
TAX	0.58	-0.31	0.72	-3.56e-02	0.67	-0.29	0.51	-0.53	9.10e-01	1.00	0.46	-0.44	0.54	-0.47
PTRATIO	0.29	-0.39	0.38	-1.22e-01	0.19	-0.36	0.26	-0.23	4.65e-01	0.46	1.00	-0.18	0.37	-0.51
В	-0.38	0.18	-0.36	4.88e-02	-0.38	0.13	-0.27	0.29	-4.44e-01	-0.44	-0.18	1.00	-0.37	0.33
LSTAT	0.45	-0.41	0.60	-5.39e-02	0.59	-0.61	0.60	-0.50	4.89e-01	0.54	0.37	-0.37	1.00	-0.74
MEDV	-0.39	0.36	-0.48	1.75e-01	-0.43	0.70	-0.38	0.25	-3.82e-01	-0.47	-0.51	0.33	-0.74	1.00

In [27]: sns.heatmap(corr)

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1ab758b23c8>

In []:

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1ab77561f28>


```
In [29]: print( boston.DESCR )
         Boston House Prices dataset
         Notes
         ____
         Data Set Characteristics:
             :Number of Instances: 506
             :Number of Attributes: 13 numeric/categorical predictive
             :Median Value (attribute 14) is usually the target
             :Attribute Information (in order):
                 - CRIM
                            per capita crime rate by town
                 - ZN
                            proportion of residential land zoned for lots over 25,000 sq.ft.
                 - INDUS
                            proportion of non-retail business acres per town
                 - CHAS
                            Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
                 - NOX
                            nitric oxides concentration (parts per 10 million)
                 - RM
                            average number of rooms per dwelling
                 - AGE
                            proportion of owner-occupied units built prior to 1940
                 - DIS
                            weighted distances to five Boston employment centres
                 - RAD
                            index of accessibility to radial highways
                 - TAX
                            full-value property-tax rate per $10,000
                 - PTRATIO pupil-teacher ratio by town
                            1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

    LSTAT

                            % lower status of the population

    MEDV

                            Median value of owner-occupied homes in $1000's
             :Missing Attribute Values: None
             :Creator: Harrison, D. and Rubinfeld, D.L.
         This is a copy of UCI ML housing dataset.
         http://archive.ics.uci.edu/ml/datasets/Housing (http://archive.ics.uci.edu/ml/datasets/Housing)
         This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
         The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
         prices and the demand for clean air', J. Environ. Economics & Management,
         vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
         ...', Wiley, 1980. N.B. Various transformations are used in the table on
         pages 244-261 of the latter.
```

The Boston house-price data has been used in many machine learning papers that address regression problems.

References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
 - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing) (http://archive.ics.uci.edu/ml/datasets/Housing))

```
In [35]: # Drawing the chart between Price vs average no of rooms.
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter( dataset['RM'], dataset['MEDV'], s=5 )
plt.xlabel( "Avg. # Rooms" )
plt.ylabel( "Housing Price (in $10,000)" )
plt.title( "Price vs. # Rooms")
```

Out[35]: Text(0.5,1,'Price vs. # Rooms')

This shows that increase in average no of rooms increase the price also

```
In [42]: # Drawing the chart between Price vs average no of rooms.
import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter( dataset['LSTAT'], dataset['MEDV'], s=5)
plt.xlabel( "Lower Status. # Population" )
plt.ylabel( "Housing Price (in $10,000)" )
plt.title( "Price vs. # Lower Status")
```

Out[42]: Text(0.5,1,'Price vs. # Lower Status')

More is the Lower Status of Populaton, lesser is the price

We are not plotting graph for others as its value are not co-related to the Price Negatively or Positively

Data Preprocessing

Splitting the data

```
In [61]: X = dataset.drop('LSTAT', axis=1)
y = dataset['LSTAT']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 10)
```

```
In [62]: from sklearn.ensemble import GradientBoostingRegressor

clf = GradientBoostingRegressor()
    clf.fit(X_train, y_train)

y_train_pred = clf.predict(X_train)

predicted = clf.predict(X_test)
    y_test_pred = predicted
    expected = y_test

plt.figure(figsize=(4, 3))
    plt.scatter(expected, predicted)
    plt.plot([0, 50], [0, 50], '--k')
    plt.axis('tight')
    plt.xlabel('True price ($1000s)')
    plt.ylabel('Predicted price ($1000s)')
    plt.tight_layout()
```


In [64]: import math from math import sqrt # Importing Regression Metrics - Performance Evaluation from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score print('GradientBoostingRegressor -', 'RMSE Train:', math.sqrt(mean_squared_error(y_train_pred, y_train))) print('GradientBoostingRegressor -', 'RMSE Test:' ,math.sqrt(mean_squared_error(y_test_pred, y_test))) print('GradientBoostingRegressor -', 'R2_score Train:', r2_score(y_train_pred, y_train)) print('GradientBoostingRegressor -', 'R2_score Test:' ,r2_score(y_test_pred, y_test))

```
GradientBoostingRegressor - RMSE Train: 1.6537539141392041
GradientBoostingRegressor - RMSE Test: 3.454942596221226
GradientBoostingRegressor - R2_score Train: 0.9372409354164829
GradientBoostingRegressor - R2_score Test: 0.6568459385504346
```

```
'''from sklearn.ensemble import RandomForestRegressor
In [65]:
             from sklearn.cross validation import cross val score, ShuffleSplit
             boston = load_boston()
             X = boston["data"]
             Y = boston["target"]
             names = boston["feature names"]
             rf = RandomForestRegressor(n estimators=20, max depth=4)
             scores = []
             for i in range(X.shape[1]):
                 score = cross val score(rf, X[:, i:i + 1],
                                         Y, scoring="r2", cv=ShuffleSplit(len(X), 3, .3))
                 scores.append((round(np.mean(score), 3), names[i]))
             print sorted(scores, reverse=True)
         from sklearn.ensemble import RandomForestRegressor
         clf = RandomForestRegressor(n estimators=20, max depth=4)
         clf.fit(X train, y train)
         y_train_pred = clf.predict(X_train)
         predicted = clf.predict(X_test)
         y test pred = predicted
         expected = y_test
         plt.figure(figsize=(4, 3))
         plt.scatter(expected, predicted)
         plt.plot([0, 50], [0, 50], '--k')
         plt.axis('tight')
         plt.xlabel('True price ($1000s)')
         plt.ylabel('Predicted price ($1000s)')
         plt.tight layout()
```



```
In [66]: print('Random Forest Regresson -', 'RMSE Train:', math.sqrt(mean_squared_error(y_train_pred, y_train)))
    print('Random Forest Regresson -', 'RMSE Test:' ,math.sqrt(mean_squared_error(y_test_pred, y_test)))
    print('Random Forest Regresson -', 'R2_score Train:', r2_score(y_train_pred, y_train))
    print('Random Forest Regresson -', 'R2_score Test:' ,r2_score(y_test_pred, y_test))

Random Forest Regresson - RMSE Train: 2.6275844186846284
    Random Forest Regresson - RMSE Test: 3.7783922769719287
    Random Forest Regresson - R2_score Train: 0.8164160478334849
    Random Forest Regresson - R2_score Test: 0.5632285769990709
In []:
```