SUPERFLAT GRAPHS ARE DP-MINIMAL

ANTON BOBKOV

ABSTRACT. We show that the theory of superflat graphs is dp-minimal.

1. Preliminaries

We work with an infinite graph G and a subset of vertices $V \subset V(G)$. Say that V is n-connected if there aren't a set of n-1 vertices removing which disconnects every pair of vertices in V. Connectivity of V is the smallest n such that V are n-connected.

Definition 1.1. Suppose $V \subset V(G)$ has finite connectivity n+1. Let connectivity hull of V to be union of all n-point sets that disconnect it.

2. Connectivity hull is finite

Here we show our main technical lemma. This result is purely combinatorial, with no mention of model theory.

Lemma 2.1. Suppose $\{a,b\}$ in G have finite connectivity n+1. Then there are finitely many n-point sets that disconnect a from b.

Corollary 2.2. Suppose a finite $V \subset V(G)$ has finite connectivity n+1. Then there are finitely many n-point sets that disconnect V.

Corollary 2.3. Suppose a countable $V \subset V(G)$ has finite connectivity n+1. Then there are finitely many n-point sets that disconnect V.

3. Application to indiscernible sequences

In this section we work in a flat graph. It is stable so all the indiscernible sequences are totally indiscernible.

We need a refined notion of connectivity for the following argument to work. Suppose we have two points a, b distance n apart. Denote P(a, b) union of all paths of length n going from a to b. If we have a collection of vertices V such that every two have distance n between them, denote

$$P(V) = \bigcup_{a \neq b \in V} P(a, b)$$

Lemma 3.1. Let $(a_i)_{i\in I}$ be a countable indiscernible sequence over A. Let $n=d(a_i,a_j)$ for some (any) $i\neq j$. There exists a finite set B such that

$$\forall i \neq j \ d_B(a_i, a_j) > n$$

Proof. By a flatness result we can find an infinite $J \subset I$ and a finite set B' such that each pair from $(a_j)_{j \in J}$ have infinite distance over B'. Using total indiscernibility we have an automorphism sending $(a_j)_{j \in J}$ to $(a_i)_{i \in I}$. Image of B' under this automorphism is the required set B.

In other words, B disconnects $P(\{a_i\})$. This shows that $\{a_i\}$ has finite connectivity in $P(\{a_i\})$. Applying lemma from last section we obtain that connectivity hull of $\{a_i\}$ in $P(\{a_i\})$ is finite.

Lemma 3.2. Connectivity hull described above is definable.

Lemma 3.3. $\{a_i\}$ is indiscernible over the hull.

Corollary 3.4. Let $(a_i)_{i \in I}$ be a countable indiscernible sequence over A. Then there is a countable B such that (a_i) is indiscernible over $A \cup B$ and

$$\forall i \neq j \ d_B(a_i, a_j) = \infty$$

That is every indiscernible sequence can be upgraded to have infinite distance over its parameter set.

4. Superflat graphs are dp-minimal

Lemma 4.1. Suppose $a \equiv_A b$ and $d_A(a,c) = d_A(b,c) = \infty$. Then $a \equiv_{Ac} b$

Theorem 4.2. Let G be a flat graph with $(a_i)_{i\in\mathbb{Q}}$ indiscernible over A and $b\in G$. There exists $c\in\mathbb{Q}$ such that $(a_i)_{i\in\{\mathbb{Q}-c\}}$ is indiscernible over Ab.

Corollary 4.3. Flat graphs are dp-minimal.

E-mail address: bobkov@math.ucla.edu