

Flexible-Size Batched Inversion and Factorization Routines for Block-Jacobi Preconditioning on GPUs

Goran Flegar

Joint work with Hartwig Anzt and Enrique S. Quintana-Ortí.

Overview:

Goran Flegar

Joint work with Hartwig Anzt and Enrique S. Quintana-Ortí.

Problem setting

$$Ax = b, \ A \in \mathbb{R}^{n \times n}$$

- Sparse linear system
 - The majority of coefficients is 0
 - Fluid dynamics, circuit simulation, graph analytics

Solve it using an iterative Krylov method

```
i \Leftarrow 0
r \Leftarrow b - Ax
d \Leftarrow r
\delta_{new} \Leftarrow r^T r
\delta_0 \Leftarrow \delta_{new}
While i < \underline{i_{max}} and \delta_{new} > \varepsilon^2 \delta_0 do
         x \Leftarrow x + \alpha d
         If i is divisible by 50
                   r \Leftarrow b - Ax
         else
                   r \Leftarrow r - \alpha q
         \delta_{old} \Leftarrow \delta_{new}
          \delta_{new} \Leftarrow r^T r
         d \Leftarrow r + \beta d
         i \Leftarrow i + 1
```


Preconditioning

- Improve convergence by solving a preconditioned system
 - Explicitly computing the matrix product causes fill-in
 - Avoid it by decomposing the application of the product into two steps:
 - Sparse matrix-vector product
 - Preconditioner application

$$M^{-1}Ax = M^{-1}b$$

$$M^{-1}A$$

$$\begin{split} i &\Leftarrow 0 \\ r &\Leftarrow b - Ax \\ d &\Leftarrow M^{-1}r \\ \delta_{new} &\Leftarrow r^T d \\ \delta_0 &\Leftarrow \delta_{new} \\ \text{While } i &< i_{max} \text{ and } \delta_{new} > \varepsilon^2 \delta_0 \text{ do} \\ q &\Leftarrow Ad \\ \alpha &\Leftarrow \frac{\delta_{new}}{d^T q} \\ x &\Leftarrow x + \alpha d \\ \text{If } i \text{ is divisible by } 50 \\ r &\Leftarrow b - Ax \\ \text{else} \\ r &\Leftarrow r - \alpha q \\ s &\Leftarrow M^{-1}r \\ \delta_{old} &\Leftarrow \delta_{new} \\ \delta_{new} &\Leftarrow r^T s \\ \beta &\Leftarrow \frac{\delta_{new}}{\delta_{old}} \\ d &\Leftarrow s + \beta d \\ i &\Leftarrow i + 1 \end{split}$$

Preconditioning

- Preconditioning split into two steps
 - Preconditioner setup
 - Preconditioner application
- Trade-off: faster convergence, but more work per iteration

$$A \leadsto M$$
$$y = M^{-1}x$$

GPU programming 101

- NVIDIA P100 GPU
 - 4.7 TFLOPs DP performance
 - Up to 740 GB/s (1 : 51)
 - s56 SMs x 64 cores = 3584 cores!
- Programming model:
 - Thread
 - Basic building block, assigned to 1 core
 - Warp
 - Group of 32 threads
 - Perfectly synchronized execution
 - Can share values directly from the registers (1KB / thread)
 - Cannot execute different instructions (warp divergence)

source: devblogs.nvidia.com/parallelforall/

GPU programming 101

- NVIDIA P100 GPU
 - 4.7 TFLOPs DP performance
 - Up to 740 GB/s (1 : 51)
 - s56 SMs x 64 cores = 3584 cores!
- Programming model:
 - Thread
 - Basic building block, assigned to 1 core
 - Warp
 - Group of 32 threads
 - Perfectly synchronized execution
 - Can share values directly from the registers (1KB / thread)
 - Cannot execute different instructions (warp divergence)

source: devblogs.nvidia.com/parallelforall/

GPU programming 101

- Programming model:
 - Block
 - Group of several warps (≤ 64)
 - Can be explicitly synchronized
 - Can share data via shared memory (64KB)
 - Grid
 - Group of blocks
 - Cannot synchronize!
 - Global memory (12 or 16GB)
 - Simple caches
 - Atomics

source: devblogs.nvidia.com/parallelforall/

Batched routines

Block-Jacobi preconditioning

- Scalar Jacobi
 - Scale with inverse of main diagonal
- Block-Jacobi
 - Scale with inverses of diagonal blocks (possibly of different sizes!)
 - Can reflect the block structure of the problem
 - Often superior to scalar Jacobi
- Setup: invert / factorize blocks
- Application: GEMM / triangular solve
- Can process each block independently! (Batched routine)

Benefits of block-Jacobi

- 40 matrices from SuiteSparse
- MAGMA-sparse open source library
 - IDR solver
 - Scalar Jacobi preconditioner
 - Supervariable blocking
 - Detects block structure of the matrix
- Improves the robustness of the solver
 - More problems converge
- Decreases time-to-solution

General Ideas

- Restrict block size to 32x32
 - Large block sizes require more memory to store the preconditioner matrix

General Ideas

- Restrict block size to 32x32
 - Large block sizes require more memory to store the preconditioner matrix
- Use a single warp to process the whole block (one thread per row / column)
 - No need for explicit synchronization

General Ideas

- Restrict block size to 32x32
 - Large block sizes require more memory to store the preconditioner matrix
- Use a single warp to process the whole block (one thread per row / column)
 - No need for explicit synchronization
- Use the large register file to store the entire block
 - Read/write from mem. once
 - Comm. via warp shuffles
 - Avoids load/store instructions
- Do pivoting implicitly (without swapping the rows)

Block-Jacobi setup & application ecosystem

Setup

H. Anzt et al. "Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioner Generation on GPUs", PMAM'17

LU factorization

Decomposition-based 2/3n³ + 2n² FLOPS

Gauss-Huard solve

2x triangular solve

H. Anzt et al. "Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning", ICCS"17

H. Anzt et al. "Flexible-Size Batched LU for Small Matrices and its Integration into Block-Jacobi Preconditioning", ICPP'17 (to appear)

- read

Inversion?!

Factorization & inversion performance

1.5

Batch size

2.5

Block size 32

6

0.5

3.5

 $\times 10^4$

Application (GEMV / solve) performance

Complete solver runtime

Flexible-size batched routines & future research

- Problems can be to small to effectively use one warp
 - Solution: assign multiple problems per warp

- Allow batches where problems are of different sizes (flexible-size)
 - Currently supported, but not yet optimized
 - How to combine this with multiple problems per warp?
 - Remember: entire warp executes the same instruction!
 - Current solution: padding

Thank you! Questions?

All functionalities are part of the MAGMA-sparse project.

MAGMA SPARSE

ROUTINES BiCG, BiCGSTAB, Block-Asynchronous Jacobi, CG,

CGS, GMRES, IDR, Iterative refinement, LOBPCG,

LSQR, QMR, TFQMR

PRECONDITIONERS ILU / IC, Jacobi, ParlLU, ParlLUT, Block Jacobi, ISAI

KERNELS SpMV, SpMM

DATA FORMATS CSR, ELL, SELL-P, CSR5, HYB

http://icl.cs.utk.edu/magma/

github.com/gflegar/talks/mpi magdeburg 2017 06

This research is based on a cooperation between Hartwig Anzt, Jack Dongarra (University of Tennessee), Goran Flegar and Enrique S. Quintana-Ortí (Universidad Jaume I).

