SLD-derivace

Petr Štěpánek

S využitím materiálu Krysztofa R. Apta

2006

Logické programování 5

1

Při systematickém studiu SLD-derivací je užitečné využít rezultanty a přiřadit je k SLD-derivačním krokům a posloupnostem takových kroků v SLD-derivacích.

Uvažujme SLD-derivační krok $Q = \theta => Q_1$ a položme si otázku, co vlastně bylo dokázáno provedením tohoto kroku. Odpověď je možné vyjádřit ve tvaru rezultanty $Q\theta \leftarrow Q_1$. Toto tvrzení je motivací ke studiu vztahu rezultant a SLD-derivací. Dokážeme ho později až budeme mít definovanou sémantiku logických programů a větu o korektnosti SLD-rezoluce.

Definice. (SLD-rezultantní kroky)

(i) Je-li dán SLD-derivační krok $Q = \theta => Q_1$, říkáme, že rezultanta $Q\theta \leftarrow Q_1$ je přiřazena k tomuto derivačnímu kroku.

(ii) Uvažujme rezultantu

$$Q \leftarrow A, B, C \tag{1}$$

a klauzulí *c* .

Necht' $H \leftarrow \mathbf{B}$ je varianta klauzule c, která je disjunktní v proměnných s rezultantnou (1) a necht' θ je mgu B a H. Potom rezultantu $(\mathbf{Q} \leftarrow \mathbf{A}, \mathbf{B}, \mathbf{C})\theta$ (2)

nazveme SLD-rezolventou rezultanty (1) a c vzhledem k B a mgu θ . Atom B nazýváme vybraným atomem rezultanty (1).

Píšeme
$$(Q \leftarrow \mathbf{A}, \mathbf{B}, \mathbf{C}) = \theta/c \Rightarrow (\mathbf{Q} \leftarrow \mathbf{A}, \mathbf{B}, \mathbf{C})\theta$$
 (3)

a nazýváme (3) SLD-rezultantním krokem. $H \leftarrow \mathbf{B}$ je pro tento krok vstupní klauzulí . Pokud klauzule c není v tomto kontextu důležitá, nemusíme ji ve výrazu (3) uvádět.

Logické programování 5

3

Definice. (Rezultanty přiřazené k SLD-derivacím)

Mějme SLD-derivaci

Nechť pro
$$i \ge 0$$

$$R_i = Q_0 = \theta_1/c_1 = \sum_i Q_i \dots Q_n = \theta_{n+1}/c_{n+1} = \sum_i Q_{n+1} \dots \qquad (1)$$

$$R_i = Q_0 = \theta_1\theta_2 \dots \theta_i \leftarrow Q_i \quad \text{ Kíkáme, že } R_i \text{ je}$$

$$rezultanta stupně i \quad \text{SLD-derivace (1)}.$$

Příklad. (SLD-derivace programu *SUMA*)

Úspěšná SLD-derivace programu SUMA a dotazu $suma(s^2(0), s^2(0), z))$ má tyto čtyři rezultantny:

stupeň 0:
$$suma(s^2(0), s^2(0), z)) \leftarrow suma(s^2(0), s^2(0), z))$$

stupeň 1: $suma(s^2(0), s^2(0), s(z_1)) \leftarrow suma(s^2(0), s(0), z_1))$
stupeň 2: $suma(s^2(0), s^2(0), s^2(z_2)) \leftarrow suma(s^2(0), 0, z_2)$
stupeň 3: $suma(s^2(0), s^2(0), s^4(0)) \leftarrow \Box$

V obecném případě derivace (1) je $R_0 = Q_0 \leftarrow Q_0$, R_1 je rezultanta přiřazená k derivačnímu kroku $Q_0 = \theta_1 = Q_0$ a je-li $Q_n = \square$, potom $R_n = Q_0\theta_1\theta_2 \dots \theta_n \leftarrow \square$.

Intuitivně řečeno, rezultanta R_i popisuje, co je dokázáno po provedení i SLD-derivačních kroků při zachování počátečního dotazu Q_0 a efektů použitých mgu.

Na začátku dostáváme tautologii $Q_0 \leftarrow Q_0$ a je-li $Q_n = \square$, potom je dokázána instance $Q_0\theta_1\theta_2\dots\theta_n$.

Při důkazech formálních vlastností SLD-derivací je často výhodnější pracovat s rezultantami přiřazenými těmto derivacím.

Potom je výhodné následující lemma, které také dává nahlédnout na roli standardizace proměnných.

Logické programování 5

5

Lemma. (Disjunktnost)

Mějme program P a dotaz Q a SLD-derivaci $P \cup \{Q\}$ s posloupností $d_1, \ldots, d_{n+1}, \ldots$ použitých vstupních klauzulí a s odpovídající posloupností rezultant $R_0, R_1, \ldots, R_n, \ldots$

Potom pro $i \ge 0$ platí $Var(R_i) \cap Var(d_{i+1}) = 0$.

Důkaz. Podle definice standardizace proměnných stačí indukcí podle *i* dokázat

$$Var(R_i) \subseteq Var(Q) \cup \bigcup_{j=1}^{i} (Var(\theta_j) \cup Var(d_j))$$
 (2)

kde $\theta_1, \dots, \theta_n, \dots$ jsou použité substituce.

Pro i = 0 je $Var(R_0) = Var(Q)$ a není co dokazovat.

Předpokládejme, že (2) platí pro nějaké $i \ge 0$.

Je-li
$$R_i = Q' \leftarrow \mathbf{A}, B, \mathbf{C}$$
 kde B je vybraný atom a $d_{i+1} = H \leftarrow \mathbf{B}$,

potom $R_{i+1} = (Q' \leftarrow \mathbf{A}, \mathbf{B}, \mathbf{C})\theta_{i+1}$

Odtud

$$Var(R_{i+1})$$

$$\subseteq Var(R_i) \cup Var(\theta_{i+1}) \cup Var(d_{i+1})$$

$$\subseteq \{\text{indukční hypotéza } (2)\}$$

$$\subseteq Var(Q) \cup \bigcup_{j=1}^{i+1} (Var(\theta_j) \cup Var(d_j))$$

Logické programování 5

Poznámka. Důkaz lemmatu o disjunktnosti naznačuje, že pro analýzu SLD-derivací stačí tvrzení tohoto lemmatu místo podmínky standardizace proměnných. Tím bychom získali silnější verze odvozených důsledků, ale za cenu komplikovanějších důkazů. Takovým způsobem

Lemma o disjunktnosti však dovoluje ke každé SLD-derivaci (1) přiřadit derivaci rezultant

$$R_0 = \theta_1/c_1 => R_1 \dots R_n = \theta_{n+1}/c_{n+1} => R_{n+1} \dots$$

nebudeme lemma o disjunktnosti používat.

tak, že každá rezultanta R_{i+1} vznikne ze své předchůdkyně R_i provedením jednoho rezultantního kroku

$$R_i = \theta_{i+1}/c_{i+1} => R_{i+1}$$

7

který se provádí stejným způsobem jako odpovídající SLD-derivační krok

$$Q_i = \theta_{i+1}/c_{i+1} => Q_{i+1} \tag{3}$$

v derivaci (1). To znamená, že v dotazu Q_i na pravé straně rezultanty R_i vybereme stejný atom jako v dotazu Q_i v SLD-rezolučním kroku (3) a použijeme stejnou vstupní klauzuli a stejnou mgu.

Nakonec dokážeme důležitou vlastnost rezultant a rezolvent (dotazů), která ukazuje, že za určitých předpokladů se vlastnost "být instancí" přenáší - propaguje - odvozováním rezultant.

Logické programování 5

9

Lemma. (Propagace)

Předpokládejme, že $R = \theta/c = >R_1$ a $R' = \theta'/c = >R_1'$ jsou dva rezultantní kroky takové, že

- R je instancí R',
- v obou rezultantách *R* a *R'* jsou vybrány atomy na stejných pozicích.

Potom také R_1 je instancí R_1 .

Důkaz. Nechť c_1 a c_1 ′ jsou odpovídající klauzule použité ke konstrukci rezultant R_1 a R_1 ′. Podle předpokladu je c_1 variantou c_1 ′ a

$$Var(R) \cap Var(c_1) = 0 \tag{1}$$

Přijmeme ještě dva pomocné předpoklady

$$Var(R') \cap Var(c_1) = Var(R) \cap Var(c_1') = 0$$
 (2)

Logické programování 5

Pro nějakou substituci η , $Var(\eta) \subseteq Var(R_1, R_1')$ platí $R = R'\eta$ a pro nějaké přejmenování γ , $Var(\gamma) \subseteq Var(c_1, c_1')$ platí $c_1 = c_1'\gamma$.

Necht'

$$R = Q \leftarrow \mathbf{A}, B, \mathbf{C}$$

$$R' = Q' \leftarrow \mathbf{A}', B', \mathbf{C}'$$

$$c_1 = H \leftarrow \mathbf{B}$$

$$c_1' = H' \leftarrow \mathbf{B}'$$

Potom

$$R_1 = (Q \leftarrow \mathbf{A}, \mathbf{B}, \mathbf{C})\theta$$
$$R_1' = (Q' \leftarrow \mathbf{A}', \mathbf{B}', \mathbf{C}')\theta'$$

Logické programování 5

11

kde θ je mgu B a H a θ' je mgu B' a H'.

Podle (1) a (2) platí $Var(\eta) \cap Var(\gamma) = 0$, takže sjednocení $\eta \cup \gamma$ je také substituce. Tedy

$$(Q' \leftarrow A', B', C')(\eta \cup \gamma) = Q'\eta \leftarrow A'\eta, B'\gamma, C'\eta = Q \leftarrow A, B, C$$

odkud

$$R_1 = (Q' \leftarrow \mathbf{A}', \mathbf{B}', \mathbf{C}')(\eta \cup \gamma)\theta \tag{3}$$

Použijeme-li (1) a dodatečný předpoklad (2) dostáváme

$$B'(\eta \cup \gamma) = B'\eta = B$$

$$H'(\eta \cup \gamma) = H'\gamma = H$$

To znamená, že $(\eta \cup \gamma)\theta$ unifikuje B' a H'. Protože θ' je mgu těchto atomů, pro nějakou substituci δ platí $(\eta \cup \gamma)\theta = \theta'\delta$ a podle (3) platí $R_1 = R_1'\delta$ a R_1 je instancí R_1' .

K dokončení důkazu je třeba ukázat, že dodatečný předpoklad (2) je možné vynechat.

K tomu vezměme variantu R'' rezultanty R takovou, že

$$Var(R'') \cap Var(c_1, c_1') = 0$$

a variantu c_1 '' klauzule c takovou, že

$$Var(c_1^{\prime\prime}) \cap Var(R, R^{\prime}, R^{\prime\prime}) = 0$$

Potom s použitím c_1 jako vstupní klauzule při výběru atomu v R na stejné pozici jako v R můžeme sestrojit rezolventu R_1 takovou, že při dvojím opakování předchozího důkazu (bez potřeby využití (2)) ukážeme, že R_1 je instance R_1 je instance R_1 .

Logické programování 5

13

Lemma o propagaci má základní význam, budeme ho používat v důkazech všech následujících vět o SLD-derivacích. Technika využívající rezultanty je ve většině případů výhodnější.

Bezprostředním důsledkem lemmatu o propagaci je následující lemma o SLD-derivacich.

Důsledek. (Propagace v SLD-derivacích)

Mějme dva SLD-derivační kroky

$$Q = \theta/c = Q_1$$
 a $Q' = \theta'/c = Q_1'$

takové, že

- Q je instancí Q_1
- atomy na stejných pozicích byly vybrány v Q a Q'.

Potom Q_1 je instancí Q_1' .

Jaké máme stupně volnosti při výpočtech logických programů?

Podle definice SLD-derivace máme v každém SLD-derivačním kroku čtyři volby:

- (A) volbu vybraného atomu z daného dotazu
- (B) volbu p<mark>rogramové klauzule použitelné k vybranému atomu</mark>
- (C) volb<mark>u přejmenování programové klauzule</mark>
- (D) volbu nejobecnější unifikace

Probereme důsledky těchto voleb. Nejprve (C) a (D).

Nejdříve si povšimneme vztahů mezi SLD-derivacemi. Následující definice dovoluje porovnání dvou SLD-derivací z nichž dotazy jedné jsou instancemi dotazů druhé.

Logické programování 5

15

Definice. (Lift derivace)

Mějme SLD-derivaci

$$\xi := Q_0 = \theta_1/c_1 => Q_1 \dots Q_n = \theta_{n+1}/c_{n+1} => Q_{n+1} \dots$$

Říkáme, že SLD-derivace

$$\xi' := Q_0' = \theta_1'/c_1 => Q_1' \dots Q_n' = \theta_{n+1}'/c_{n+1} => Q_{n+1}' \dots$$

je lift (pozvednutí) derivace ξ jestliže platí

- ξ je stejné délky jako ξ'
- Q_0 je instancí Q_0
- pro $i \ge 0$ je v Q_i a Q_i' vybrán atom na stejné pozici

Poznámka. Uvedená definice má smysl, protože v každém kroku je v obou derivacích použita stejná klauzule, takže odpovídající rezolventy mají stejný počet atomů.

Logické programování 5

Příklad.

Uvažujme program SUMA a tuto úspěšnou SLD-derivaci

$$suma(x,y,z) = \theta_1/2 => suma(x_1,y_1,z_1) = \theta_2/2 => suma(x_2,y_2,z_2) = \theta_3/1 => \square$$

kde $\theta_3 = \{x_2/x, y_2/0, z_2/x\}$. (1)

Derivace (1) je liftem derivace

$$suma(s(s(0)), s(s(0)), z) = \theta_1/2 => suma(s(s(0)), s(0), z_1) = \theta_2/2 => suma(s(s(0)), 0, z_2) = \theta_3/1 => \square$$
 (2) protože

- derivace (1) a (2) mají stejnou délku
- suma(s(s(0)), s(s(0)), z) je instancí atomu suma(x,y,z)
- v obou derivacích je na každém kroku vybrán atom na stejné pozici

Logické programování 5

17

Přitom derivace (1) není liftem derivace

 $suma(x,y,z) = \theta_1/2 => suma(x_1,y_1,z_1) = \theta_2/2 => suma(x_2,y_2,z_2) = \theta_3/2 => \dots$

protože obě derivace mají různou délku a ve třetím kroku jsou použity různé klauzule.

Věta. (Propagace instancí)

Uvažujme SLD-derivaci ξ a její lift ξ' . Potom pro $i \ge 0$, pokud existuje rezultanta R_i stupně i v ξ pak existuje rezultanta R_i stupně i v ξ' a R_i je instancí R_i .

Důkaz. Stačí uvažovat odpovídající si derivační kroky rezultant a tvrzení dokážeme indukcí podle *i* s využitím definice liftu a lemmatu o propagaci.

Větu o propagaci instancí využijeme k analýze párů SLD-derivací, jejichž odpovídající dotazy jsou navzájem svými variantami.

Definice. (Podobné SLD-derivace)

Mějme dvě SLD-derivace

$$\xi := Q_0 = \theta_1/c_1 => Q_1 \dots Q_n = \theta_{n+1}/c_{n+1} => Q_{n+1} \dots$$

$$\xi' := Q_0' = \theta_1'/c_1 => Q_1' \dots \ Q_n' = \theta_{n+1}'/c_{n+1} => Q_{n+1}' \dots$$

Říkáme, že tyto SLD-derivace jsou podobné jestliže platí

- ξ je stejné délky jako ξ'
- Q_0 a Q_0 jsou navzájem svými variantami
- pro $i \ge 0$ je v Q_i a Q_i vybrán atom na stejné pozici

Poznámka. Stejně jako v případě definice liftu má tato definice smysl, protože v každém kroku je v obou derivacích použita stejná klauzule, takže odpovídající rezolventy mají stejný počet atomů.

Logické programování 5

19

Poznámka. Dvě SLD-derivace jsou podobné, jestliže

- jejich počáteční dotazy jsou navzájem svými variantami
- obě derivace mají stejnou délku
- pro každý SLD-derivační krok platí
 - vstupní klauzule jsou navzájem svými variantami
 - vybrány jsou atomy na stejných pozicích

Věta. (Varianty)

Dvě podobné SLD-derivace mají v každém stupni *i* rezultanty, které jsou navzájem svými variantami.

Důkaz. Podobné SLD-derivace jsou liftem jedna druhé a naopak. Stačí tedy dvakrát použít Větu o propagaci instancí a připomenout si Lemma o variantách termů.

Důsledek. (Varianty vypočtených instancí)

Mějme dvě úspěšné podobné SLD-derivace dotazu Q s vypočtenými odpovědními substitucemi θ a η . Potom odpovědní instance $Q\theta$ a $Q\eta$ jsou navzájem svými variantami.

Důkaz. Důsledek plyne použitím Věty o variantách na poslední rezultany v obou derivacích.

Poznámka. Tento důsledek ukazuje, že volby přejmenování klauzulí z programu a volby nejobecnějších unifikací podle (C) a (D), nemají - až na přejmenování proměnných - žádný vliv na tvrzení dokázané úspěšnou SLD-derivací daného dotazu Q.

Logické programování 5

21

Lifting aneb jak sestrojit lifty úspěšných SLD-derivací.

Zatím jsme mluvili o liftech derivací spíš obecně, měli jsme k dispozici jen jeden příklad.

Ale ten ukazuje, že uspěšná derivace instance obecného dotazu má jako lift úspěšnou derivaci tohoto obecného dotazu, kde místo termů z instance jsou jen proměnné.

Začneme skromněji, nejprve budeme konstruovat lift jednoho SLD-derivačního kroku.

Definice. (Lifting v jednom kroku)

Mějme jeden SLD-derivační krok

$$Q = \theta/c \Rightarrow Q_1 \tag{1}$$

Říkáme, že SLD-derivační krok

$$Q' = \theta'/c \Rightarrow Q_1' \tag{2}$$

je lift kroku (1), jestliže platí

- Q je instancí Q
- v Q a Q' byly vybrány atomy na stejných pozicích
- Q_1 je instancí Q_1

Situaci zobrazuje následující diagram:

Logické programování 5

23

$$Q'=\theta'/c=>Q_1'$$

$$\downarrow \qquad \qquad \downarrow$$

$$Q=\theta/c=>Q_1$$

Šipky vedou <mark>od obecnějšího k méně obecnému atomu</mark>. V obou <mark>derivačních krocích je použita stejná klauzule.</mark>

Lemma. (Lifting v jednom kroku)

Mějme SLD-derivační krok $Q\eta = \theta/c \Rightarrow Q_1$ a variantu c' klauzule c disjunktní v proměnných s dotazem Q. Potom pro nějakou substituci θ' a atom Q_1' platí

- $Q = \theta'/c => Q_1'$ kde c' je použitá vstupní klauzule
- $Q = \theta'/c => Q_1'$ je lift $Q\eta = \theta/c => Q_1$

Důkaz. Nejprve dokážeme následující

Pozorování: Předpokládejme, že A a H jsou dva atomy disjunktní v proměnných, které se unifikují. Potom A se unifikuje s každou variantou H atomu H, která je disjunktní v proměnných s A.

Důkaz pozorování. Nechť H splňuje podmínky pozorování. Pro nějaké přejmenování γ , $Dom(\gamma) \subseteq Var(H)$ tedy platí $H = H' \gamma$.

Necht' θ je unifikace A a H. Potom

$$A\gamma\theta = A\theta = H\theta = H'\gamma\theta$$

a A se unifikuje s H.

[konec důkazu pozorování]

Dále, nechť c_1 je variantou c , která je disjunktní v proměnných s Q , $Q\eta$ a $Dom(\eta)$. Podle pozorování

$$Q\eta = \theta_1/c \Rightarrow Q_2 \tag{3}$$

pro nějakou unifikaci θ_1 a atom Q_2 , při použití c_1 jako vstupní klauzule. Předpokládáme také, že atom $A\eta$ byl vybrán v původním kroku a ve (3).

Logické programování 5

25

Necht' H je hlava c_1 .

Atomy A a H se unifikují, protože podle volby c_1 platí

$$A\eta\theta_1 = H\theta_1$$
 a $H = H\eta$

tedy opět podle pozorování

$$Q = \theta'/c => Q_1' \tag{4}$$

pro nějakou unifikaci θ ' a dotaz (rezolventu) Q_1 ', kde ve (4) je c' použitá vstupní klauzule a A je vybraný atom.

Nakonec podle Důsledku pro propagaci instancí v rezolventách dostáváme, že (4) je lift $Q\eta = \theta/c \Rightarrow Q_1$.

Věta. (Lifting)

Ke každé SLD-derivaci ξ pro $P \cup \{Q\eta\}$, existuje SLD-derivace, která je liftem ξ .

Důkaz. SLD-derivaci, která je liftem derivace ξ lze setrojit opakovaným použitím Lemmatu o liftingu v jednom kroku.

Důsledek. (Lifting)

Ke každé úspěšné SLD-derivaci ξ pro $P \cup \{Q\eta\}$ s vypočtenou odpovědní substitucí θ , existuje úspěšná SLD-derivace ξ' pro $P \cup \{Q\}$ s vypočtenou odpovědní substitucí θ' , taková, že platí:

- ξ' je liftem ξ a má stejnou délku
- $Q\theta'$ je obecnější než $Q\eta\theta$

Důkaz. Podle Věty o liftingu lze sestrojit lift ξ' derivace ξ . Výsledek potom plyne z Věty o instancích rezultant ξ a ξ' , kterou použijeme na poslední rezultantu ξ .

Logické programování 5

27