1, HW 5 Ex 10. regard of Aut (G) as a bijevire may from G-G Then we have σ t Sym(G) Δ Sn, |G|=n, $G=Se=g_1,\ldots,g_m$? σ=1 chous σ is a produce of disjoint 2-cycle. G1 is those "fixed points" of Remark. don't forget

G1 is those "support points te" of E is in both set. G= (GIUGZ) and GINGZ=1 is obvious. Now YethEG JEG, if heq, then high EG, h E G_1 then 1° high=e => only when g=e 2° 5(h'gh) = h-1g-1h hgh-1 => h 2g h-2=g-1 $\sigma(h^2qh^{-2}) = \sigma(q^{-1}) = g^{-1}$

h-2 q-1 h => h-2 g-1 h g=1 =) g commotes with h2

Sime (G) odd, $\langle h^2 \rangle = \langle h \rangle \Rightarrow g$ communes with h =) \(\begin{align} -6 (\frac{1}{1} h^2) = 5 (9) = 9 \\ = 9^{-1} \end{align} \quad \ => Only possible condition: Y heb, high & G, => 6,46 => G= < 6,U6-1> = C1,G-1 Vilposent. Solvable. Series Def: A group G is said to be solvable if it has an abelian Series. | = God Gn, and Gn=G, GH/Gis abelian. Ref. If 6 is a solvable grap the length of a shortest abolion Series in 6 is called the derived length of G Eig. devied length 0 = 6 trivial derid length 2 (=)? Def. A grup 6 is called nilposent if it has a central series SA Git/6: = 2(6/6:) that is 1:60 & 6, 0 ... 4 6n = 6 shoreest correral ceries of Per. If G ril. the length of a 6 is vilpoeurce class of 6. nil => solvable. by def Sol may not wil 7.9. 0 ED $S_3 P C_7 P 1$ abelian series. but $C_3/2 \neq 2(S_3/2)$ since =1 53 is splnable but not not.

Def. derived series reach 1. => & sorvable. G=G(0) 77 G'') } --- DG(n)=1. Sime G(1)/G(i+1) is abelian 0150 G Solvette => durind sinces Jeach 1. Let 1= Go a Gi al --- & Gn= G is abolion series. then $G^{(i)} = G_{n-1}$ puf it by induction. when 1=0, 6(0) = G = Gn Supprose it's me for i Since Bulion. Then G'it') = (G') / (Gn-:) it shows (Gn-i) \(Gn-cin) Thurt ((iti) & Gn-(iti) done. Remark: The intuition here is devied seizes has the "factest" speed "lover & to 1" So the derived length of G = +he length of derived surices of G

Kennek: Sinne Tx.y] = [xt.y], G(i) & G for all i Thus we can say:

breng soluble group has a normal abilian series. i.e. an abilian series that all of those terms are normal in G The derived series is an example.

Ref. G=GBGB... if it reach 1, G is nilpoune. where C' = [G,G] $G^2 = [G,G']$ i.e. $G^2 = [G,G']$ This is called boner convol series. Gi/Ci+1 T Z(G/Gir) uhy? consider the commentor. Y Att and y C Gi [A.y7 e l' shows in G/Gitt all elements of G'/Git, (ie in the center. also he have upper control series: 2-206) 4 216)····· if 2n(6)=6 The G nil. where $\frac{2i\pi(6)}{2i(6)} = \frac{2(6)}{2i(6)}$ That let 1= Co & 6, A... & Gn=6 he a central series in a wil gry b. Then (i). G' € 6n-1 so Gⁿ ∠ Go = 1. By industion, i=0, G=6 Gn=6 G°=6n. Suppose. Gi & Con-i Gn-; / 6n-(:,+0= 2(G/Gn-f.+1) => [G, Gn.:] < Gn-(i+) $G^{i+1} = [G,G^i] \leq [G,G_{m-i}] \leq G_{m-(i+1)}$

(ii) $G_1 \leq 2_1(G) \Rightarrow 2_n(G) \Rightarrow G_n = G \Rightarrow 2_n(G) = 1$.

By indution. $G_0 = 1 \leq 2_0(G) = 1$.

Suppose. $G_1 \leq 2_1(G)$. $G_1 \neq G_2(G) = 1$.

=> Giti = Ziai (G). done.

(iii). hilpotence class of G = the length of apper series = the legth of lower series.

Suppred. Wil class of G is m.

by (i) lover spries length = m

they are also corrent series

by (ii) apper series length = m

```
Review \
class 1. Basic cornepus of grp. ring. field.
class 2. Extension of Q. A is algebraic. Means f(a)=0
       TRa): Q7 = dimension of Q4) reinved as a
           vever spene over Q.
                 = degf S.t flire pdy over Q
                                and flateo.
 e.g. [Q[Th): Q]=2. {1.729
         12-2-50 QCFN = Q TXD/CX2-27 basis 21-x4
    Cosve. lagrange thm. (Fermut. Fakt
Cyclic grups)
class 3. 3 isomorphic than of grup
           1°. 4: 6->H homo. 6/kery 2 im4.
          2°. H. KUG G/H/K/H = G/K.
HCK Correining H
         In other words. normal surgrap of G and G/H
             has 1 conspondence.
                                          |-1 /c
          3°. H. Ka6 Hily = 1/40K
```

diamed iso-

direve produre. Gyder grup. Dihedral grup. Syrveric grup (G)=p2 then G=Zp2 or zpxzp cleus C. 6 muss he obelien ring. field. 7 mire hefore. class b. Subving ideal. in them of ring field extension. fin field. class]. class 8. FT FAG deried series. Solvable. Classo Simplicity of An 1175, Cayley Thm. class (0. GA. Oybit - Stabilisen Thm. Sylow Ist Thm. W/m 2.3 +hm. clair 11.

Midterm 6 part. [20 full merks.

50 you point/4 ms final grade:

1° field. field extention, X how to show f is irred?

=) show not wet exist in your base field F

is not enough.

f= x42x2+1 is not ive eg: forty along it has no rarional mots.

take @ ous ligy.

if fis tedu. fis product of deg 1 or 2 pdy.

i.e. I f has no more but produce of dog 2 poly.

So. desf= 1 irr

deg f = 2. show no mot

degf=3. show no me * (f=gh, deg 5=1 degh=2 fredu => f has rue)

how po me

2° f ≠ gh. deg g.degh=2.

2° Ring. rocul. ideal. * prime ideal.

if a.bER StabGI then af I or hEI.

P.g. 2, (3), of ab (3), 3/a or 3/b.

Unit (has mulei. Tourse) Dens divisor: if a +0 and 670 pro all unit while division viny but aboo, a.b wheel sens divios.

Ring without Levo divisor called domerin.
() () () () () () () () () ()
X. muximi ident. Recomm. With ide.m. YER have I 4 Jak, R/I -> field. Since it has no non-mind fact. (an a mit i 6 I al R? now)
no (i)=R <1 Y.
3°. GA. Orbit - stab clars equireisen. vont aseful. Freall transitive. Semiregular regular.
teall transitive. semiregular regular.
4. Sylow. how to pune it (andersement the appropriate it)
application: some certain ordered grays is not shipl
F. FTFAG.
1. F 1796. 1. Eine you a order-idereiefy all type.
2º. Count dement in a cerein grap. Suhymp in a cerein grap
6. New Def.
Have the orbitry to prove new things are

where you have burned.