Corso di Eccellenza 2025

Mattia Garatti

10 giugno 2025 – Pomeriggio

1 Matematica e Dimostrazioni

Uno dei bias in cui ci si può incorrere durante il percorso scolastico è il seguente:

Matematica = Conti.

Tuttavia, un approccio maturo alla disciplina permette di apprezzare di più un aspetto più profondo: la Logica. Più corretto è infatti dire che *La matematica è la disciplina dei ragionamenti*. Ma cosa sono questi "ragionamenti"? Altro non sono che l'insieme dei processi logici che permettono, partendo da una o più *Proposizioni*, di dedurne delle altre: stiamo parlando delle *Dimostrazioni*.

(1.1) Esempio Dimostrare che

$$\forall n \in \mathbb{N} : (4n+1)^2$$
è dispari.

Dimostrazione. Sviluppando il quadrato di binomio, otteniamo

$$(4n+1)^2 = 16n^2 + 8n + 1 = 2(8n^2 + 4n) + 1,$$

da cui la tesi.

Non tutte le dimostrazioni sono uguali, anzi, ciò che rende un matematico capace è proprio la sua creatività nell'inventare eleganti strategie dimostrative sempre nuove. Durante il corso di Teoria degli insiemi avete iniziato a lavorare con la *Logica del Primo ordine* grazie alla quale è possibile costruire le principali tecniche dimostrative utilizzate dai matematici di tutto il mondo e di tutti i tempi.

Dimostrazioni per assurdo

(1.2) Definizione Consideriamo due frasi aperte \mathcal{P}, \mathcal{Q} e la frase aperta $\mathcal{P} \implies \mathcal{Q}$. Chiamiamo contronominale di $\mathcal{P} \implies \mathcal{Q}$, la frase aperta

$$non \mathcal{Q} \implies non \mathcal{P}$$
.

(1.3) Proposizione Consideriamo due frasi aperte \mathcal{P}, \mathcal{Q} . Sono fatti equivalenti:

$$(a) \mathcal{P} \implies \mathcal{Q},$$

$$(b) \operatorname{non} \mathcal{Q} \Longrightarrow \operatorname{non} \mathcal{P}.$$

Dimostrazione. È sufficiente verificare che abbiano le stesse tavole di verità. Avete visto a lezione che la tavola di verità dell'implicazione è la seguente.

$$\begin{array}{cccc} \mathcal{P} & \mathcal{Q} & \mathcal{P} \Longrightarrow \mathcal{Q} \\ \hline V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \end{array}$$

Se calcoliamo la tavola di verità della contronominale di $\mathcal{P} \implies \mathcal{Q}$ otteniamo invece

\mathcal{P}	Q	$\mathrm{non}\mathcal{Q}$	$\mathrm{non}\mathcal{P}$	$non \mathcal{P} \implies non \mathcal{Q}$
V	V	F	F	V
V	F	V	F	F
F	V	F	V	V
F	F	V	V	V

da cui la tesi.

La precedente Proposizione è alla base di una tecnica dimostrativa detta dimostrazione per assurdo che già avete utilizzato ieri per dimostrare che $\sqrt{3}$ è irrazionale. Dimostrare "per assurdo" significa supporre che la tesi sia falsa e cercare, mediante la logica e deduzioni successive, di arrivare ad un'affermazione incoerente, una contraddizione. Vediamo altri semplici esempi di dimostrazioni per assurdo.

(1.4) Esempio Dimostrare che non esiste alcun $\overline{q} \in \mathbb{Q}$ tale che

$$(\overline{q} > 0)$$
 e $(\forall q \in \mathbb{Q} : q > 0 \implies \overline{q} \le q)$.

Dimostrazione. Supponiamo, per assurdo, che un tale \overline{q} esista. L'assurdo segue se consideriamo $q=\frac{\overline{q}}{2}$.

- (1.5) **Definizione** Un numero $p \in \mathbb{Z} \setminus \{0\}$ si dice primo se $p \neq \pm 1$ e p non ha divisori propri, ossia divisori diversi da $\pm 1, \pm p$.
- (1.6) Teorema (di Euclide) I numeri primi sono infiniti.

Dimostrazione. Supponiamo, per assurdo, che i numeri primi siano un numero finito $n \in \mathbb{N}$. In altre parole, tutti e soli i numeri primi sono p_1, \ldots, p_n . Consideriamo $N = p_1 \ldots p_n + 1$. Poiché p_1, \ldots, p_n non dividono N (in quanto, se così fosse, dovrebbero dividere 1), allora N deve essere un numero primo, assurdo.

Dimostrazioni per induzione

Una tecnica dimostrativa che è molto spendibile quando si vogliono dimostrare delle proprietà dei numeri naturali è l'*induzione*. Nel corso di Teoria degli insiemi approfondirete la tecnica dal punto di vista teorico. Noi ci limitiamo a richiamarne i punti salienti e ad utilizzarla per qualche interessante applicazione.

(1.7) Proposizione (Principio di induzione) Consideriamo una frase aperta $\mathcal{P}(n)$, dipendente dalla variabile $n \in \mathbb{N}$. Supponiamo di sapere che le affermazioni seguenti sono vere:

$$\mathcal{P}(0), \qquad \forall n \in \mathbb{N} : \mathcal{P}(n) \implies \mathcal{P}(n+1).$$

Allora

$$\forall n \in \mathbb{N} : \mathcal{P}(n).$$

Dimostrazione. Omettiamo la dimostrazione.

In sostanza, dimostrare per induzione significa utilizzare il principio delle tessere del domino: se sappiamo che la prima tessera cade e che il fatto che una tessera cada provochi la caduta della successiva, allora tutte le tessere cadono.

(1.8) Osservazione Se sostituiamo $\mathcal{P}(0)$ con $\mathcal{P}(k)$ per qualche $k \in \mathbb{N}$, otteniamo

$$\forall n \in \mathbb{N} : n > k \implies \mathcal{P}(n).$$

Vediamo alcuni esempi di dimostrazioni per induzione.

(1.9) Esempio Dimostrare che per ogni $n \in \mathbb{N}$ tale che $n \geq 3$ si ha $2n + 1 \leq n^2$.

Dimostrazione. Osserviamo innanzitutto che, se n=3, abbiamo $7 \le 9$, che è vero. Ora, supponiamo che la tesi valga per un qualche n, ossia $2n+1 \le n^2$. Dobbiamo mostrare che $2(n+1)+1 \le (n+1)^2$, ossia che $2n+3 \le n^2+2n+1$. Siccome $n \ge 3$, allora $2 \le 2n+1$ che sommata all'ipotesi induttiva restituisce $2n+3 \le n^2+2n+1$, da cui la tesi. \blacksquare

(1.10) Esempio Dimostrare che per ogni $n \in \mathbb{N}$ tale che $n \geq 4$ si ha $n^2 \leq 2^n$.

Dimostrazione. Osserviamo innanzitutto che, se n=4, abbiamo $4^2 \le 2^4$, che è vero. Ora, supponiamo che la tesi valga per un qualche n, ossia $n^2 \le 2^n$. Dobbiamo mostrare che $(n+1)^2 \le 2^{n+1}$, ossia che $n^2+2n+1 \le 2\cdot 2^n$. Dall'Esempio (1.9), sappiamo che $2n+1 \le n^2$ quindi, sommando ad entrambi i membri n^2 ed usando l'ipotesi induttiva, $n^2+2n+1 \le 2n^2 \le 2\cdot 2^n$, da cui la tesi. \blacksquare

2 Successioni infinitesime e questioni collegate

Avete visto, durante il corso di Applicazioni della Matematica alla Fisica, il concetto di successione infinitesima. Vediamo ancora qualche esempio e proprietà interessanti.

(2.1) Esempio La successione $x_n = \frac{1}{\sqrt{n}}$ è infinitesima.

Dimostrazione.Fissiamo $\varepsilon>0$ e consideriamo $N>\frac{1}{\varepsilon^2}.$ Se $n\geq N,$ allora

$$|x_n| = \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}} < \varepsilon,$$

da cui la tesi.

Una comoda proprietà è la seguente.

(2.2) Teorema (dei carabinieri) Consideriamo una successione (x_n) in \mathbb{R} . Se esistono $N_0 \in \mathbb{N}$ ed (y_n) una successione in \mathbb{R} infinitesima tale che per ogni $n \geq \mathbb{N}_0$

$$0 \le x_n \le y_n$$

allora (x_n) è infinitesima.

Dimostrazione. Fissiamo $\varepsilon > 0$. Siccome (y_n) è infinitesima, esiste $N \in \mathbb{N}$ tale che $|y_n| < \varepsilon$. In particolare, se $n \ge \max\{N_0, N\}$, allora

$$|x_n| = x_n \le y_n < \varepsilon,$$

da cui la tesi.

In altre parole, il Teorema precedente fornisce un utile modo alternativo per dimostrare velocemente che una successione è infinitesima: basta trovare un'altra successione, che già sappiamo essere infinitesima, che soddisfa la catena di disuguaglianza riportata per un qualche $N_0 \in \mathbb{N}$.

3 Algebra lineare

L'Algebra Lineare è quella parte della Matematica che si occupa di studiare i vettori e le loro trasformazioni lineari. Durante la lezione di stamattina del corso di Vettori e Matrici ne avete conosciuto gli strumenti principali: le matrici. Cerchiamo di familiarizzare meglio con questi nuovi oggetti e con le operazioni che su di essi avete definito: faremo un po' di conti, ma saranno molto semplici.

(3.1) Esempio Data

$$H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

dimostrare che tutti e soli gli elementi dell'insieme

$$U = \{ A \in \operatorname{Mat}_2(\mathbb{R}) : A + HA = \mathbf{0} \}$$

sono del tipo

$$\begin{pmatrix} a & b \\ -a & -b \end{pmatrix}$$

per qualche $a, b \in \mathbb{R}$.

Dimostrazione. Gli elementi di $Mat_2(\mathbb{R})$ sono tutte e sole le matrici quadrate con 2 righe e 2 colonne a coefficienti reali, quindi del tipo

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

per qualche $a, b, c, d \in \mathbb{R}$. Scrivendo esplicitamente la proprietà caratteristica dell'insieme U otteniamo

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

da cui

$$\begin{pmatrix} a+c & b+d \\ a+c & b+d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

che può essere riscritto nella forma

$$\begin{cases} a+c=0, \\ b+d=0, \end{cases}$$

ossia

$$\begin{cases} c = -a, \\ d = -b. \end{cases}$$

In definitiva,

$$U = \left\{ \begin{pmatrix} a & b \\ -a & -b \end{pmatrix} : a, b \in \mathbb{R} \right\}. \blacksquare$$

(3.2) Esempio Consideriamo le matrici

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Dimostriamo che l'insieme di tutte e sole le combinazioni lineari di A,B e C è

$$W = \{ M \in \text{Mat}_2(\mathbb{R}) : 2a - b = 0 \}.$$

Dimostrazione. Procediamo al rovescio, scrivendo esplicitamente gli elementi dell'insieme W: dalla proprietà caratteristica otteniamo che

$$W = \left\{ \begin{pmatrix} a & 2a \\ c & d \end{pmatrix} : a, c, d \in \mathbb{R} \right\}.$$

A questo punto,

$$\begin{pmatrix} a & 2a \\ c & d \end{pmatrix} = aA + cB + dC$$

per qualche $a, c, d \in \mathbb{R}$, da cui la tesi.

4 Esercizi

(4.1) Esercizio Dimostrare che la somma di tre numeri naturali dispari consecutivi è un multiplo di 3.

Soluzione. Basta osservare che

$$(2n+1) + (2n+3) + (2n+5) = 6n + 9 = 3(2n+3)$$
.

- (4.2) Esercizio Consideriamo due frasi aperte P,Q. Dimostrare che sono fatti equivalenti:
- (a) $\mathcal{P} \in (\mathcal{P} \circ \mathcal{Q}),$
- (b) \mathcal{P} .

Soluzione. Si tratta di scrivere le tavole di verità di entrambe.

- (4.3) Esercizio Consideriamo due frasi aperte \mathcal{P}, \mathcal{Q} . Dimostrare che sono fatti equivalenti:
- (a) \mathcal{P} o (\mathcal{P} e \mathcal{Q}),
- $(b) \mathcal{P}.$

Soluzione. Si tratta di scrivere le tavole di verità di entrambe.

- (4.4) Esercizio (Prima legge di De Morgan) Consideriamo due frasi aperte \mathcal{P}, \mathcal{Q} . Dimostrare che sono fatti equivalenti:
- $(a) \operatorname{non}(\mathcal{P} \in \mathcal{Q}),$
- (b) $\operatorname{non}\mathcal{P} \circ \operatorname{non}\mathcal{Q}$.

Soluzione. Si tratta di scrivere le tavole di verità di entrambe.

- (4.5) Esercizio (Seconda legge di De Morgan) Consideriamo due frasi aperte \mathcal{P}, \mathcal{Q} . Dimostrare che sono fatti equivalenti:
- $(a) \operatorname{non}(\mathcal{P} \circ \mathcal{Q}),$

(b) $non\mathcal{P} e non\mathcal{Q}$.

Soluzione. Si tratta di scrivere le tavole di verità di entrambe.

(4.6) Esercizio Su un'isola ci sono tre naufraghi: Arthur, Martin e Raymond. Una voce fuori campo chiede ad Arthur se è un cavaliere, ossia dice sempre la verità, oppure se è un furfante, ossia mente sempre. A causa del forte rumore delle onde non è possibile sentire la sua risposta. Dopo che i naufraghi si sono spostati, Martin dice: "Arthur ha detto di essere un furfante" e Raymond ribatte: "Non credete a Martin, sta mentendo!".

Supponendo valga il principio del terzo escluso, quanti sono i furfanti sull'isola?

Soluzione. Innanzitutto, osserviamo che nessuno sull'isola può dichiarare di essere un furfante: se, per assurdo, un cavaliere dichiarasse di esserlo, starebbe mentendo, da cui l'assurdo; al contrario, se, per assurdo, fosse un furfante a dichiararlo, starebbe dicendo la verità, un'altra contraddizione.

Schematizziamo gli unici casi rimasti nel seguente modo.

Μ	R	A	Conclusione
V	V	Furfante onesto	Assurdo
F	V	Cavaliere o Furfante	Coerente

Concludiamo quindi che i furfanti sono 1 oppure 2.

(4.7) Esercizio (Teorema di Russell) Dimostrare che per ogni X esiste x tale che $x \notin X$.

Soluzione. Dato un qualunque insieme X, sia

$$x = \{y \in X : y \notin y\}.$$

Supponiamo, per assurdo, che $x \in X$. Se $x \notin x$, allora $x \in x$, che è assurdo; altrimenti $x \in x$, da cui $x \notin x$, ancora assurdo.

(4.8) Esercizio Dimostrare che per ogni $n \in \mathbb{N}$ tale che $n \geq 4$ si ha $2n + 1 \leq 2^n$.

Soluzione. Si tratta di combinare gli Esempi (1.9) e (1.10).

(4.9) Esercizio Dimostrare che per ogni $n \in \mathbb{N}$ si ha $n \leq 2^n$.

Soluzione. Suddividiamo la dimostrazione in due casi: se n=0, abbiamo $0 \le 2^0=1$, che è vero. Se invece $n \ge 1$, procediamo per induzione. Se n=1, abbiamo $1 \le 2$, che è vero. Ora, supponiamo che la tesi valga per un qualche $n \ge 1$, ossia $n \le 2^n$. Dobbiamo mostrare che $n+1 \le 2^{n+1}$. Combinando l'ipotesi induttiva con il fatto che, per $n \ge 1$, $2n \ge n+1$, otteniamo

$$2^{n+1} = 2 \cdot 2^n \ge 2n \ge n+1,$$

da cui la tesi.

(4.10) Esercizio (Formula di Gauss) Dimostrare che per ogni $n \in \mathbb{N} \setminus \{0\}$ si ha

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Soluzione. Osserviamo, innanzitutto, che se n=1, abbiamo $1=\frac{2}{2}$, vero. Ora, supponiamo che la tesi valga per un certo n, ossia

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Dobbiamo mostrare che

$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}.$$

Dall'ipotesi induttiva abbiamo che

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2},$$

da cui la tesi.

(4.11) Esercizio Dimostrare che per ogni $n \in \mathbb{N} \setminus \{0\}$ si ha

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Soluzione. Osserviamo, innanzitutto, che se n=1, abbiamo $1=\frac{6}{6}$, vero. Ora, supponiamo che la tesi valga per un certo n, ossia

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Dobbiamo mostrare che

$$\sum_{i=1}^{n+1} i^2 = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Dall'ipotesi induttiva abbiamo che

$$\begin{split} \sum_{i=1}^{n+1} i &= \sum_{i=1}^n i^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \\ &= \frac{(n+1)[2n^2 + 7n + 6]}{6} = \frac{(n+1)[2n^2 + 4n + 3n + 6]}{6} = \frac{(n+1)(n+2)(2n+3)}{6}, \end{split}$$

da cui la tesi.

(4.12) Esercizio Date le matrici

$$A = \begin{pmatrix} 2 & 4 \\ 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & 1 \\ 6 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

stabilire se la matrice

$$M = \begin{pmatrix} 43 & 23 \\ 51 & 25 \end{pmatrix}$$

può essere scritta come combinazione lineare di A, B e C. In caso affermativo stabilire quale combinazione lineare produce M.

Soluzione. La richiesta conduce al sistema

$$\begin{cases} 2a + 5b = 43, \\ 4a + b = 23, \\ 6b + c = 51, \\ a + 3b = 25, \end{cases}$$

che ha come sola soluzione (a, b, c) = (4, 7, 9).

(4.13) Esercizio Consideriamo i vettori

$$\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \qquad \mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

Dimostrare che l'insieme di tutte e sole le combinazioni lineari di v e w è

$$U = \left\{ \mathbf{u} \in \mathbb{R}^4 : u_1 = u_4, u_2 = u_1 + u_3 \right\}.$$

Soluzione. Procediamo al rovescio, scrivendo esplicitamente gli elementi dell'insieme U: dalla proprietà caratteristica otteniamo che

$$U = \left\{ \begin{pmatrix} a \\ a+b \\ b \\ a \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

A questo punto,

$$\begin{pmatrix} a \\ a+b \\ b \\ a \end{pmatrix} = a\mathbf{v} + b\mathbf{w}$$

per qualche $a,b\in\mathbb{R}$, da cui la tesi. \blacksquare

(4.14) Esercizio Dimostrare che per ogni $A \in Mat_2(\mathbb{R})$, tale che

$$A = \begin{pmatrix} a & 1 \\ 0 & 1 \end{pmatrix}$$

per qualche $a \in \mathbb{R}$, e per ogni $n \in \mathbb{N} \setminus \{0\}$ si ha

$$A^n = \begin{pmatrix} a^n & \sum_{j=0}^{n-1} a^j \\ 0 & 1 \end{pmatrix}.$$

Soluzione. Fissiamo A. Osserviamo, innanzitutto, che se n=1 la tesi è vera. Ora, supponiamo che la tesi valga per un certo n, ossia

$$A^n = \begin{pmatrix} a^n & \sum_{j=0}^{n-1} a^j \\ 0 & 1 \end{pmatrix}.$$

Allora,

$$A^{n+1} = A^n A = \begin{pmatrix} a^n & \sum_{j=0}^{n-1} a^j \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a^{n+1} & \sum_{j=0}^{n} a^j \\ 0 & 1 \end{pmatrix},$$

da cui la tesi.

(4.15) Esercizio Dimostrare che la successione $x_n = \frac{1}{n+n^2}$ è infinitesima.

Soluzione. Basta osservare che

$$0 \le \frac{1}{n+n^2} \le \frac{1}{n}$$

ed applicare il Teorema dei carabinieri: avete infatti dimostrato ieri che $y_n=\frac{1}{n}$ è infinitesima. \blacksquare