

NGO 머신러닝: 1주차

2020.12.16 ~ 2020.12.31

빅데이터 응용학과 석사 1기 양선욱

1. 표준 선형 회귀분석

2. 릿지 선형 회귀분석

3. 라쏘 선형 회귀분석

4. K-NN

5. SVM

6. 인공신경망

7. 심층신경망

분석의 목적

* 분석 목적

- 이탈 고객을 복귀시키기 위한 프로젝트가 구상 중이다.

프로젝트의 유효성 여부를 결정하기 위해 이탈 고객이 복귀 했을 때 얻을 실리적 이익과 프로젝트에 들어가는 비용을 비교할 필요가 있다. 따라서, 현재 고객 데이터를 바탕으로 총납입금액을 추론하는 학습 모델을 개발한다.

이 모델에 이탈 고객의 데이터를 삽입시켜 이탈 고객이 이탈하지 않았을 때 발생할 잠재 총납입금액을 도출한다.

* 분석에 앞서

구분		총납입금액(원)	비율(%)
비이탈 고객 701명	총액	225,935,000	84%
80.9%	평균	322,303	
이탈 고객 165명	총액	42,751,100	16%
19.1%	평균	259,097	
총합 866명	총액	268,686,100	100%

비이탈 고객의 총납입금액

이탈 고객의 총납입금액

이탈 고객의 잠재 총납입금액

이탈 고객이 이탈하지 않았을 때 발생했을 것이라 예측되는 추가 납입금액

분석 과정

* 사용 데이터

- 독립변수 : 나이, 가입나이, 성별, 가입일수, 납부횟수, 미납율

- 종속 변수 : 총납입금액

* 데이터 전처리

- 종속 변수인 총납입금액의 분포가 한쪽으로 하게 치우쳐져 있어서 로그 변환을 사용
- 독립변수 표준화와 명목형에 대한 원핫인코딩

df1['PAY_SUM_PAYMENTAMOUNT'] = np.log1p(df1['PAY_SUM_PAYMENTAMOUNT'])

2/22 머신러닝 실습 1주차

분석 과정

* 분석 과정

① 데이터 분할

비이탈 고객 701명 80.9%

이탈 고객 165명 19.1%

Train Data

7:3

Test Data

④ 이탈 고객 데이터 삽입

② 모델 학습

③ 모델 평가

완성된 모델

⑥ 프로젝트 경비와 비교

프로젝트 수행 비용

⑤ 이탈 고객의 잠재 총납입금액 도출

이탈 고객의 잠재 총납입금액

1. 표준 선형 회귀분석

* 분석 결과

학습용 데이터 세트 결정계수 : 0.42 평가용 데이터 세트 결정계수 : 0.3

RMSE: 0.5451

절편	12.468
나이	2.046
가입나이	-2.06
가입 일수	-0.639
미납율	-0.112
납부횟수	0.396
남성	0.021
여성	-0.021

구분		총납입금액(원)	증감률(%)
기조 이타 그개 165명	총액	42,751,100	
기존 이탈 고객 165명	평균	259,097	
	총액	44,381,774	. 2.00/
이탈 -> 비이탈 고객 165명	평균	268,980	+3.8%
1038	잠재	+1,630,674	
기존 모든 고객 866명	총액	268,686,100	
예측된 모든 고객 866명	총액	270,316,774	+0.6%

* 실무적 인사이트

- 현재까지의 모든 이탈 고객의 잠재 총납입금액의 총액은 163만원 가량으로 기존 이탈고객의 총납입금액의 3.8%에 해 당하는 수치이다.
- 이탈->비이탈 총납입금액 총액의 상승량이 있다고 해도 이탈 고객의 수가 전체의 19.8%이기 때문에 전체 고객의 총납입금액에 대한 상승폭은 0.6%에 그친다.
- 이탈한 고객의 복귀에 대한 효과는 미비한 것으로 사료되며 해당 프로젝트에 대한 결정을 재차 확인할 필요가 있다.
- 학습용 데이터 세트의 결정계수가 평가용에 비해 높게 나타 났다. 과잉적합이 의심되며 다른 선형 회귀분석을 통한 확인 이 필요하다.

2&3. 릿지&라쏘 선형 회귀분석

* 릿지 분석 결과

학습용 데이터 세트 결정계수 : 0.42

평가용 데이터 세트 결정계수 : 0.3

alpha = 1

RMSE: 0.5439

절편	12.467
나이	0.18
가입나이	-0.197
가입 일수	-0.006
미납율	-0.112
납부횟수	0.396
남성	0.019
여성	-0.019

구분		총납입금액(원)	증감률(%)	
기존 이탈 고객 165명	총액	42,751,100		
기준 이글 고객 100명	평균	259,097		
	총액	44,381,774	. 2.00/	
이탈 -> 비이탈 고객 165명	평균	268,980	+3.8%	
1036	잠재	+1,630,674		
기존 모든 고객 866명	총액	268,686,100		
예측된 모든 고객 866명	총액	270,316,774	+0.6%	

* 라쏘 분석 결과

학습용 데이터 세트 결정계수 : 0.42

평가용 데이터 세트 결정계수 : 0.3

alpha = 0.001

max_iter=10000

RMSE: 0.5439

절편	12.451
나이	0
가입나이	-0.017
가입 일수	0.054
미납율	-0.111
납부횟수	0.396
남성	0.033
여성	0

구분		총납입금액(원)	증감률(%)
기존 이탈 고객 165명	총액	42,751,100	
기는 이글 보역 103명	평균	259,097	
	총액	44,381,774	+3.8%
이탈 -> 비이탈 고객 165명	평균	268,980	+3.0%
103 0	잠재	+1,630,674	
기존 모든 고객 866명	총액	268,686,100	
예측된 모든 고객 866명	총액	270,316,774	+0.6%

선형 회귀분석 모델 비교

*회귀분석 모델 비교

회귀분석 모델	RMSE
표준	0.5451
릿지 a=1	0.5439
라쏘 a=0.001	0.5439

- 매우 근소하지만 표준 모델보다 릿지, 라쏘 모델이 우수하다.
- 대신 최적의 alpha값을 찾는 것에 노력과 시간이 소모된다.

* 회귀분석 가중치 비교

표준		릿ㅈ	l a=1	라쏘 (n=0.001
절편	12.468	절편	12.467	절편	12.451
나이	2.046	나이	0.18	나이	0
가입나이	-2.06	가입나이	-0.197	가입나이	-0.017
가입 일수	-0.639	가입 일수	-0.006	가입 일수	0.054
미납율	-0.112	미납율	-0.112	미납율	-0.111
납부횟수	0.396	납부횟수	0.396	납부횟수	0.396
남성	0.021	남성	0.019	남성	0.033
여성	-0.021	여성	-0.019	여성	0

- 릿지 모형과 라쏘 모형의 가중치를 보아 총납부금액을 예측함에 있어서 나이는 중요한 변수가 아니라고 판단된다.
- 릿지 모형의 경우 alpha값이 작아 독립변수의 영향력을 대부분 유지시켰다.
- 반대로 라쏘 모형의 경우 alpha값이 작아 독립 변수의 영향력을 대부분 유지시켰다.
- 릿지 모형과 라쏘 모형의 alpha값에 의하여 데이터에 과잉적합은 없다고 판단된다.

* 전처리 추가 사항

- k-nn의 특성을 고려해 독립변수를 정규화

학습용 데이터의 결정계수 최대

거리	유클리드
K개수	3
학습용 결정계수	0.7
평가용 결정계수	0.24
RMSE	0.5662

- 결정계수 차이가 큼
- 평가용 결정계수는 0.2를 겨우 넘는 수준이다.

* 최적의 k 구하기

학습용, 평가용 데이터의 결정계수 차 최소

거리	맨해튼
K개수	13
학습용 결정계수	0.46
평가용 결정계수	0.33
RMSE	0.5316

- 결정계수 간의 차이는 작으나 결정 계수 값이 타 모델 보다 낮다.
- RMSE가 특별히 낮은 것은 아니다.

RMSE	최소

거리	유클리드
K개수	10
학습용 결정계수	0.54
평가용 결정계수	0.37
RMSE	0.5180

모델 채택

4. K-NN

* 비교된 모델

거리	k	학습용 결정계수	평가용 결정계수	RMSE
	2	0.78	0.18	0.58998217
	3	0.7	0.24	0.56622018
	4	0.67	0.29	0.54850826
	5	0.65	0.3	0.54608442
	6	0.62	0.31	0.54170081
	7	0.59	0.33	0.53131338
유클리드	8	0.57	0.32	0.53532843
	9	0.55	0.35	0.52270401
	10	0.54	0.37	0.51800690
	11	0.52	0.36	0.52191192
	12	0.5	0.36	0.52226683
	13	0.48	0.34	0.52777000
	14	0.47	0.34	0.52865997

거리	k	학습용 결정계수	평가용 결정계수	RMSE
	2	0.79	0.13	0.60703542
	3	0.7	0.27	0.55751011
	4	0.67	0.29	0.54721227
	5	0.64	0.28	0.55089895
	6	0.6	0.33	0.53160273
	7	0.59	0.31	0.52727019
맨해튼	8	0.56	0.34	0.52736761
	9	0.55	0.36	0.52135391
	10	0.52	0.35	0.52327505
	11	0.5	0.35	0.52404317
	12	0.49	0.34	0.52785328
	13	0.46	0.33	0.53161142
	14	0.45	0.32	0.53636331

4. K-NN

* 분석 결과

K = 10

거리 : 유클리드

학습용 데이터 세트 결정계수 : 0.54

평가용 데이터 세트 결정계수: 0.37

RMSE: 0.5180

구분		총납입금액(원)	증감률(%)
기존 이탈 고객 165명	총액	42,751,100	
기는 이글 고객 100명	평균	259,097	
	총액	44,011,400	. 2.00/
이탈 -> 비이탈 고객 165명	평균	266,735	+2.9%
103 0	잠재	+1,260,300	
기존 모든 고객 866명	총액	268,686,100	
예측된 모든 고객 866명	총액	269,946,400	+0.4%

* 실무적 인사이트

- 현재까지의 모든 이탈 고객의 잠재 총납입금액의 총액은 126만원 가량으로 기존 이탈고객의 총납입금액의 2.9%에 해 당하는 수치이다.
- 이탈->비이탈 총납입금액 총액의 상승량이 있다고 해도 이탈 고객의 수가 전체의 19.8%이기 때문에 전체 고객의 총납입금액에 대한 상승폭은 0.4%에 그친다.
- 이탈한 고객의 복귀에 대한 효과는 없는 것으로 사료되며 해당 프로젝트의 취소를 고려할 것을 추천한다.

* 최적의 모델 구하기

C	degree 🔻	epsilon 🔻	학결 ▼	평결 ▼	rmse 🔻
2	1	0	0.45	0.34	0.529883
2	1	0.1	0.47	0.36	0.518585
2	1	0.2	0.47	0.37	0.517354
2	1	0.3	0.49	0.38	0.511817
2	1	0.4	0.49	0.37	0.515368
2	1	0.5	0.45	0.32	0.536612
2	1	0.6	0.41	0.26	0.557968
2	1	0.7	0.4	0.23	0.571952
2	1	0.8	0.35	0.16	0.597256
2	1	0.9	0.28	0.09	0.620019
2	2	0	0.45	0.34	0.529883
2	2	0.1	0.47	0.36	0.518585
2	2	0.2	0.47	0.37	0.517354
2	2	0.3	0.49	0.38	0.511817
2	2	0.4	0.49	0.37	0.515368
2	2	0.5	0.45	0.32	0.536612
2	2	0.6	0.41	0.26	0.557968
2	2	0.7	0.4	0.23	0.571952
2	2	0.8	0.35	0.16	0.597256
2	2	0.9	0.28	0.09	0.620019
2	3	0	0.45	0.34	0.529883
2	3	0.1	0.47	0.36	0.518585

* 모델 조건

Polynomial kernel로 한정

C: 2~30 / 간격 1

degree : 1~5 / 간격 1

epsilon: 0~0.9 / 간격 0.1

gamma: 0.01

- * 이상 징후
- C의 값이 커질 수록 무조건 감 소하는 RMSE
- 이론적으로는 당연하지만 최적 의 C에 대한 결정 기준 마련 필요
- degree에 영향을 안 받는 RMSE

RMSE 최소			
커널	다항식		
degree	1~5		
gamma	0.01		
С	30		

0.3

0.58

0.45

0.48187

epsilon

RMSE

학습용 결정계수

평가용 결정계수

모델 채택

5. SVM

* 분석 결과

다항식 커널

학습용 데이터 세트 결정계수 : 0.58

C:30

평가용 데이터 세트 결정계수: 0.45

degree = 2

RMSE: 0.48187

gamma = 0.01

epsilon = 0.3

구분		총납입금액(원)	증감률(%)
기존 이탈 고객 165명	총액	42,751,100	
기준 이글 꼬역 103명	평균	259,097	
	총액	54,443,854	. 27 20/
이탈 -> 비이탈 고객 165명	평균	329,962	+27.3%
103 0	잠재	+11,692,754	
기존 모든 고객 866명	총액	268,686,100	
예측된 모든 고객 866명	총액	269,946,400	+4.3%

* 실무적 인사이트

- 현재까지의 모든 이탈 고객의 잠재 총납입금액의 총액은 1169만원 가량으로 기존 이탈고객의 총납입금액의 27.3%에 해당하는 수치이다.
- 전체 고객의 총납입금액 총액이 4.3% 상승할 것으로 전망된다.
- 기존의 분석 결과가 너무나도 상이한 결과였기에 C=10으로 도 똑같은 분석을 해보았으나 결과에 변화는 없었다.
- 분석 결과로만 본다면 이탈 고객을 복귀 시키면 유의미한 후원금 상승이 있다고 판단된다. 따라서 이탈 고객 복귀 프로 젝트의 진행을 긍정적으로 고려해본다.

6. 인공신경망

* 최적의 모델 구하기

hidden	alpha	학결	평결	rmse
[50, 50]	0	0.5	0.66	0.460205
[50, 50]	0.001	0.51	0.67	0.454114
[50, 50]	0.002	0.51	0.67	0.453172
[50, 50]	0.003	0.52	0.69	0.452166
[50, 50]	0.004	0.51	0.67	0.453673
[50, 50]	0.005	0.51	0.68	0.456935
[50, 50]	0.006	0.51	0.68	0.457456
[50, 50]	0.007	0.49	0.67	0.462557
[50, 50]	0.008	0.5	0.67	0.461519
[50, 50]	0.009	0.5	0.67	0.461172
[50, 50]	0.01	0.49	0.67	0.462513
[50, 50]	0.011	0.49	0.67	0.464385
[50, 50]	0.012	0.49	0.67	0.46543
[50, 50]	0.013	0.49	0.67	0.46367
[50, 50]	0.014	0.49	0.67	0.463226
[50, 50]	0.015	0.49	0.66	0.4651
[50, 50]	0.016	0.48	0.66	0.469182
[50, 50]	0.017	0.48	0.66	0.470839
[50, 50]	0.018	0.48	0.66	0.470976
[50, 50]	0.019	0.48	0.66	0.471122

* 모델 조건 MLP 모형 alpha: 0~1 / 간격 0.001 hidden size = [50,50]* 한계점 제한 했다.

- 모델 탐구에 시간이 오래 걸려 서 hidden layer를 [50,50]으로만

MLP	
alpha	0.003
hidden layer	50,50
학습용 결정계수	0.69
평가용 결정계수	0.52
RMSE	0.452166

모델 채택

머신러닝 실습 1주차 14/18

6. 인공신경망

* 분석 결과

MLP

학습용 데이터 세트 결정계수: 0.69

alpha: 0.003

평가용 데이터 세트 결정계수: 0.52

hidden layer : [50,50]

RMSE: 0.452166

구분		총납입금액(원)	증감률(%)
기조 이타 그개 165명	총액	42,751,100	
기존 이탈 고객 165명	평균	259,097	
	총액	34,239,802	10 00/
이탈 -> 비이탈 고객 165명	평균	207,513	-19.9%
103 0	잠재	-8,511,297	
기존 모든 고객 866명	총액	268,686,100	
예측된 모든 고객 866명	총액	260,174,803	-3.1%

* 실무적 인사이트

- 현재까지의 모든 이탈 고객의 잠재 총납입금액의 총액은 -851만원 가량으로 기존 이탈고객의 총납입금액의 19.9%에 해당하는 수치이다.
- 이탈고객이 비이탈 고객이었다면 전체 고객의 총납입금액 총액이 3.1% 하락할 것으로 전망된다.
- 기존의 분석 결과가 너무나도 상이한 결과이지만 분석 결과 로만 본다면 이탈 고객들이 이탈을 하지 않았다면 이탈을 결 정한 시기보다 소극적인 후원을 하였을 것이다.

7. 심층신경망

* 최적의 모델 구하기

심층신경망의 특성을 고려해 독립변수를 정규화

* 모델 조건

DNN

input layer : 7

hidden layer : 3~10

output layer: 1

epochs : 5~100 / 간격 1

가중치 업데이트 : MSE

optimizer = 경사하강법(SGD)

activation = relu

* 한계점

- 학습에 lelu모델을 사용하여 마이너스 값을 0으로 도출했다.

DNN
epochs
Hidden

MSE 최소				
DNN				
epochs	20			
Hidden layer	6			
학습용 MSE	0.35			
평가용 MSE	0.46			

모델 채택

7. 심층신경망

* 분석 결과

DNN

학습용 데이터 MSE: 0.35

epochs: 20

평가용 데이터 MSE: 0.46

hidden layer: 6

Activation = relu

구분		총납입금액(원)	증감률(%)
기존 이탈 고객 165명	총액	42,751,100	
	평균	259,097	
이탈 -> 비이탈 고객 165명	총액	44,524,543	
	평균	269,719	+4.1%
	잠재	1,773,443	
기존 모든 고객 866명	총액	268,686,100	
예측된 모든 고객 866명	총액	270,459,543	+0.6%

* 실무적 인사이트

- 현재까지의 모든 이탈 고객의 잠재 총납입금액의 총액은 177만원 가량으로 기존 이탈고객의 총납입금액의 4.1%에 해 당하는 수치이다.
- 이탈고객이 비이탈 고객이었다면 전체 고객의 총납입금액 총액이 0.6% 상승할 것으로 전망된다.
- 이탈고객이 복귀 했을 때 얻을 이득이 현저히 낮다. 이것이 이탈고객 복귀 프로젝트 수행 지출보다 이득일지에 대한 의 사결정이 재차 요구된다.

모델비교

분석 방법	학습용 결정계수	평가용 결정계수	RMSE	잠재 총납입금액 총액
표준 선형 회귀분석	0.42	0.3	0.5451	+1,630,674
릿지 선형 회귀분석	0.42	0.3	0.5439	+1,630,674
라쏘 선형 회귀분석	0.42	0.3	0.5439	+1,630,674
K-NN	0.54	0.37	0.5180	+1,260,300
SVM	0.58	0.45	0.4818	+11,692,754
인공신경망	0.69	0.52	0.4521	-8,511,297
DNN	MSE: 0.35	MSE: 0.46	-	+1,773,443

- 회귀 분석 간의 특별한 차이 없음
- SVM과 인공신경망의 잠재 총납입금액 총액의 차이
- RMSE가 가장 낮은 인공신경망이 가장 적합한 것인가
- MSE를 사용한 DNN과 타 모델과의 비교는 어떻게 하는 것이 적합한가