Relaciones

Luis Eduardo Amaya Sede Guanacaste, Universidad de Costa Rica.

> MA-0320 - Matemáticas Discretas Octubre 2020

Contents

- Introducción
 - Justificación
- Relaciones
 - Conceptos básicos
 - Ejemplos
 - Operaciones entre relaciones
 - Ejemplos
- Formas de representar una relación
 - Matrices
 - Grafos
- Propiedades de las Relaciones
 - Definiciones
 - Formas de análisis
 - Por medio del gráfico
 - Implementación en Mathematica
 - Por medio de matrices
 - Por medio de grafos
 - Relaciones de Equivalencia
 - Relaciones de Orden

Definiciones
Formas de análisis
Relaciones de Equivalencia
Relaciones de Orden

Relaciones de Orden

Definición

Si \mathcal{R} es una relación sobre el conjunto A, se dice que la relación \mathcal{R} es de:

- Pre-Orden si y solo si es reflexiva y transitiva.
- Orden (parcial) si y solo si es reflexiva, antisimétrica y transitiva.
- Orden Total si y solo si es de orden y es total.

Relaciones de Orden

Ejemplo 27

Ejemplo

Se debe tener cuidado al "ordenar", no es lo mismo ordenar personas por estatura, que por edad o por peso. Sea $E = \{a, b, c, d, e, f, g\}$ y \mathcal{R} una relación definida sobre E, cuyo gráfico es

$$G_{\mathcal{R}} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (b, d), (b, e), (a, f), (b, f), (b, f), (c, f),$$

$$(b, f), (c, c), (c, d), (c, e), (d, d), (d, e), (e, e), (f, f), (g, g), (g, f)$$

Demuestre que $\mathcal R$ es una relación de orden, pero no de orden total.

Todos estos pares del tipo: (a,b), (a,c)... en donde ambas entradas son diferentes y además no existe (b,a), (c,a) entran en la siguiente lógica...

$$(xRy \wedge yRx) \Rightarrow (x \neq y)$$

$$(aRb \wedge bRa) \Rightarrow (a \neq b)$$

$$(xRy \wedge yRx) \Rightarrow (a \neq b)$$

$$(aRb \wedge f) \Rightarrow f$$

$$(x \neq b) \Rightarrow f$$

Por el razonamiento anterior R, es antisimétrica.

aRCACRD ARD aRCACRES ARE brandres 6Re

R es transitiva.

Como R es reflexiva, antisimétrica y transitiva, R es una relación de orden...!

c Orden total?, Raduloeso total: arb v b Ra No: a Ry v g Ra

Relaciones de Orden

Definiciones

Ejemplo

El gráfico del ejemplo anterior se puede representar mediante siguiente organigrama

Considerar, x está en un nivel inferior que y para cuando xRy; por ejemplo, en este organigrama se tiene que aRd y se verifica para cada uno de los elementos de su gráfico.

Definiciones
Formas de análisis
Relaciones de Equivalencia
Relaciones de Orden

Relaciones de Orden

Definiciones

Definición

Si \mathcal{R} es una relación de orden sobre E, se dice que E está \mathcal{R} – ordenado y se denota (E, \mathcal{R}).

Relaciones de Orden

Definiciones

Definición

Sea (E, \mathcal{R}) un conjunto ordenado. Sea $A \subseteq E$, con $A \neq \emptyset$ y sea $x \in A$. Se dice que x es:

- Un elemento minimal de A sii $\forall y \in A \ [yRx \Longrightarrow y = x]$. No tiene predecesores.
- Un primer elemento de A sii xRy, ∀y ∈ A. Precede a todos, además todo primer elemento será minimal, pero no a la inversa.
- Un elemento maximal de A sii $\forall y \in A \ [xRy \Longrightarrow x = y]$. No tiene sucesores
- Un último elemento de A sii yRx, ∀y ∈ A. Sucede a todos los demás, todo último elemento será maximal, pero no necesariamente a la inversa.

Ejemplo 28

Sea $E = \{a, b, c, d, e, f, g\}$ y \mathcal{R} una relación definida sobre E, cuyo gráfico es

$$G_{\mathcal{R}} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (b, d), (b, e), (b, f), (c, c), (c, d), (c, e), (d, d), (d, e), (e, e), (f, f), (g, g), (g, f)\}$$

se puede observar:

- a y g son minimales de E, pero E no tiene primer elemento
- e y f son elementos maximales de E, pero no hay último elemento.
- Si ahora se considera $A = \{a, b, c, d\}$ subconjunto de E, se tiene que
 - el elemento a es primer elemento de A.
 - el elemento d sería un último elemento de A.

Ejemplo 29

Sea $E = \{a, b, c, d, e, f\}$ y \mathcal{R} una relación definida sobre E, cuyo

organigrama es

- lacktriangle Determinar el gráfico de \mathcal{R} .
- $oldsymbol{ iny}$ Demostrar que ${\mathcal R}$ es una relación de orden, pero no de orden total. Ejercicio para el estudiante.
- Determinar los elementos minimales, primer y último elemento

- min.matia of C - no hay prime shouted - maximal y - itimo shouted

Ejemplo 30

Ejemplo

Defina la relación \mathcal{R} sobre \mathbb{Z}^* , por

$$aRb \iff (\exists k \in \mathbb{Z} \ tal \ que \ a = b^k)$$

Analice cuáles propiedades cumple la relación \mathcal{R} y determine si \mathcal{R} es una relación de equivalencia, de orden o de orden total.

a)
$$\mathbb{R}$$
 of \mathbb{R} or \mathbb{R} or \mathbb{R} of \mathbb

R es reflexiva, cuando k=1.

b) S.md. 08b = 680 Contraction of

Como R, no es simétrica descartamos que sea una relación de equivalencia.

c) Ant.s (aRb
$$\wedge$$
 bRa) \Rightarrow (a=b)
(a \Rightarrow b) \Rightarrow (aRb \vee bRa)
aRb: $a = b^{k_1}$, $k_1 \in \mathbb{Z}$ $\{ \Rightarrow a = b : \}$
bRa: $b = a^{k_2}$, $k_2 \in \mathbb{Z}$ $\{ \Rightarrow a = b : \}$
 $\alpha = (a^{k_2})^{k_1} = a^{k_2} =$

K,= 1/K2

Con esos valores de k, se garantiza que la relación es antisimetrica.

Ejemplo 31: ejercicio estudiantes

Sea $E = \{a, b, c, d, e, f\}$ y \mathcal{R} una relación definida sobre E, cuyo organigrama es:

Figure: Organigrama

- lacktriangle Determine el gráfico de \mathcal{R} .
- $oldsymbol{e}$ Verifique que \mathcal{R} es una relación de orden, pero no de orden total.
- Si existen, determine los elementos maximales, minimales, primero y último elemento.

Definiciones
Formas de análisis
Relaciones de Equivalencia
Relaciones de Orden

Para reflexionar...

Acá estamos, con un futuro lleno de maravillas tecnológicas y nosotros con el temor de aprender matemáticas a como es debido...

4□ b 4 = b 4 = b 9 Q C

MaLu