Detectores de esquinas

Araguás, Gastón Redolfi, Javier

27 de mayo de 2020

Detectores

Bordes

- 1er derivada (Roberts, Prewitt, Sobel, Canny)
- 2da derivada (LoG)
- varios más ..

Detectores

Bordes

- 1er derivada (Roberts, Prewitt, Sobel, Canny)
- 2da derivada (LoG)
- varios más ..

Esquinas

- Moravec [Moravec 80]
- Harris & Stephens [Harris, Stephens 88]
- Laplaciano, DoG [Lindeberg 98][Lowe 99]
- Harris-affine [Mikolajczyk,Schmid]
- etc.

Detector de puntos característicos

Motivación

Determinar conjuntos de puntos correspondientes en forma automática para:

- Rectificación
- Estéreo
- Imagenes panorámicas
- Reconstrucción 3D
- Reconocimiento

Detector de puntos característicos Características locales

Las esquinas son características de tipo local, es decir que se definen con la información dentro de una vencindad pequeña.

Se prefieren porque: (en contraposición con la información global)

- son robustas ante oclusiones
- existen muchas en una imagen
- se encuentran en tiempo real

Detector de puntos característicos

Características locales

Las esquinas son características de tipo local, es decir que se definen con la información dentro de una vencindad pequeña.

Se prefieren porque: (en contraposición con la información global)

- son robustas ante oclusiones
- existen muchas en una imagen
- se encuentran en tiempo real

Se busca que:

- sean invariantes a transformaciones isométricas (traslación, rotación, escalado)
- sean invariantes a modificaciones fotométricas (brillo, exposición)
- sean robustas ante transformaciones afin.

Diseño del detector

Criterios de diseño

- El punto de interés debe ser reconocible observando una pequeña porción de imagen (localidad)
- La observación de porciones vecinas de la imagen deben ser muy diferentes (localizable)

Diseño del detector

Criterios de diseño

- El punto de interés debe ser reconocible observando una pequeña porción de imagen (localidad)
- La observación de porciones vecinas de la imagen deben ser muy diferentes (localizable)

Considerando una porción de imagen W, cuánto cambian los pixeles si se desplaza W una cantidad (u, v)?

Región plana
No hay cambios en
niguna dirección

Borde No hay cambios en la dirección del borde

Esquina Hay cambios en todas las direcciones

Detector de Harris y su matemática

Podemos medir haciendo la sumatoria de las diferencias al cuadrado (error cuadrático medio)

$$E(x,y) = \sum_{u,v \in W} w(u,v) \left(I(x+u,y+v) - I(x,y) \right)^2 \tag{1}$$

Detector de Harris y su matemática

Podemos medir haciendo la sumatoria de las diferencias al cuadrado (error cuadrático medio)

$$E(x,y) = \sum_{u,v \in W} w(u,v) (I(x+u,y+v) - I(x,y))^2$$
 (1)

Si consideramos pequeños desplazamientos, podemos aproximar por Taylor

$$E(x,y) \approx \sum_{x,y} (I_x(x+u,y+v)u + I_y(x+u,y+v)v)^2$$
 (2)

$$E(x, y) \approx A(x, y)u^{2} + 2B(x, y)uv + C(x, y)v^{2}$$
 (3)

donde

$$A(x,y) = \sum_{u \ v \in W} I_x^2(x+u, y+v)$$
 (4)

$$B(x,y) = \sum_{u,v \in W} I_x(x+u,y+v)(u,v)I_y(x+u,y+v),$$
 (5)

$$C(x,y) = \sum_{u,v \in W} I_y^2(x+u, y+v)$$
 (6)

Matriz de segundo momento

En forma matricial ...

$$E(x,y) \approx A(x,y)u^2 + 2B(x,y)uv + C(x,y)v^2 = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
 (7)

Interpretación de los autovalores

Recordar que un autovalor es tal que $det(H - \lambda I) = 0$, de donde

$$\det \begin{pmatrix} A - \lambda_1 & B \\ B & C - \lambda_2 \end{pmatrix} = (A - \lambda_1)(C - \lambda_2) - B^2 = 0$$
 (8)

con λ_1 y λ_2 autovalores de la matriz H.

Criterios de selección de esquinas

Criterio de Harris

$$f = \frac{det(H)}{traza(H)} \approx \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
 (9)

esquina si f > U.

O también:

$$f = det(H) - \alpha \left(traza(H)\right)^2 \tag{10}$$

 $\cos 0.04 < \alpha < 0.06$.

esquina si f > 0.

Criterio de Shi-Tomasi

esquina si $\lambda_{min} > U$