1 Teoremas sin demostracion

1.1 Teorema del valor intermedio para funciones continuas

Sea f
 una funcion continua en [a,b] sea d
 entre f(a) y f(b) entonces existe $c \in [a,b]$ tal que
 f(c)=d

1.2 Teorema del valor medio

Sea f una funcion continua en [a,b] y derivable en (a,b). Entonces para cada $x,c\in[a,b]$ se cumple que $\left(\frac{f(x)-f(c)}{x-c}\right)=f'(\xi)$, para algún ξ entre x y c

1.3 Teorema del Taylor

Sea $f \in C^{(n)}[a,b]$ y existe $f^{(n+1)}$ en (a,b), entonces $\forall x,c \in [a,b]$ se tiene: $f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c) (x-c)^k + E_n(x) \text{ donde}$ $E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-c)^{n+1} \text{ con } \xi \text{ entre x y c}$

1.4 Metodo Newton Global

Sea una función, tal que f" continua, f convexa, creciente y tiene un raíz, entonces
raíz es único y el metodo de Newton converge $\forall x_0 \in \mathbb{R}$

1.5 Unicidad de conjunto linealmente independiente

Si $\{\phi_0(x),...,\phi_n(x)\}$ es un conjunto LI(linealmente independiente) en el espacio de polinomio de grado $\leq n$, entonces todo polinomio de grado $\leq n$ puede escribirse de manera única como combinación lineal de $\{\phi_0(x),...,\phi_n(x)\}$

1.6 Aproximación por mínimos cuadrados

Si $\{\phi_0,...,\phi_n\}$ es un conjunto ortogonal de funciones en [a,b] respecto de w, entonces la aproximación de cuadrados mínimos a f en [a,b] es

$$P(x) = \sum_{k=0}^{n} a_k \phi_k(x)$$
, para $k = 0, ..., n$, donde

$$a_k = \frac{\int_a^b w(x)f(x)\phi_k(x)dx}{\int_a^b w(x)(\phi_k(x))^2 dx}$$

1.7 Relación de recurrencia

El conjunto de funciones polinomiales $\{\phi_0, ..., \phi_n\}$ definido de la siguiente forma ortogonal en [a,b], respecto de la función de w(x)

$$\phi_0(x) = 1, \ \phi_1(x) = x - B_1, \ x \in [a, b], \ donde$$

$$B_1 = \frac{\int_a^b w(x)x(\phi_0(x))^2 dx}{\int_a^b w(x)(\phi_0(x))^2 dx},$$

Para
$$k \ge 2$$

$$\phi_k(x) = (x - B_k)\phi_{k-1}(x) - C_k\phi_{k-2}(x), x \in [a, b], \text{ donde}$$

$$B_k = \frac{\int_a^b w(x)x(\phi_{k-1}(x))^2 dx}{\int_a^b w(x)(\phi_{k-1}(x))^2 dx}, y$$

$$C_k = \frac{\int_a^b w(x)x(\phi_{k-2}(x))^2 dx}{\int_a^b w(x)(\phi_{k-2}(x))^2 dx}$$

1.8 Corolario

Para todo n > 0 el conjunto de funciones gemeradas en el teorema de Relación de recurrencias(anterior) es LI en [a,b] y $\int_a^b w(x)\phi_n(x)\phi_k(x)dx = 0$ con k < n

1.9 Regla compuesta de simpson

Sean $f \in C^4[a,b]$, n par, $h = \frac{b-a}{n}$, $x_j = a+jh$, con j = 0,...,n, entonces existe $\mu \in (a,b)$ talque la regla compuesta de Simpson para n subintervalos puede escribirse

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{\frac{n}{2}-1} f(x_{2j}) + 4 \sum_{j=1}^{\frac{n}{2}} f(x_{2j} - 1) + f(b) \right] - \frac{b-a}{180} h^{4} f^{(4)}(\mu)$$

1.10 Regla del trapecio compuesta

Sean $f \in C^2[a,b]$, $h = \frac{b-a}{n}$, $x_j = a+jh$, con j = 0,...,n, entonces existe $\mu \in (a,b)$ talque la regla compuesta del Trapecio para n subintervalos puede escribirse

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right] - \frac{b-a}{12} h^2 f''(\mu)$$

1.11 Regla del punto medio compuesta

Sean $f \in C^2[a,b]$, npar, $h = \frac{b-a}{n+2}$, $x_j = a + (j+1)h$, con j = -1,...,n+1, entonces existe $\mu \in (a,b)$ talque la regla del punto medio compuesta para (n+2) subintervalos es:

$$\int_{a}^{b} f(x)dx = 2h \sum_{j=0}^{\frac{n}{2}} f(x_{2j}) + \frac{b-a}{6} h^{2} f''(\mu)$$

2 Teoremas con demostracion

2.1 Metodo Biseccion (convergencia)

Si $[a_0, b_0]$, $[a_1, b_1]$,...., $[a_n, b_n]$,.... denotan los sucesivos intervalos del método de bisección, entonces $\exists \lim_{n\to\infty} a_n$, $\lim_{n\to\infty} b_n$ donde son iguales representan una raíz de f.

Si
$$C_n = \left(\frac{a_n + b_n}{2}\right)$$
 y $r = \lim_{n \to \infty} C_n$ entonces $\frac{a_n + b_n}{2}$ $|r - C_n| \le \left|\frac{1}{2^{(n+1)}}(b_0 - a_0)\right|$

Dem: Si $[a_0, b_0], [a_1, b_1], \dots$ son los intervalos del algoritmo de bisección. Entonces

- (1) $a_0 \le a_1 \le \dots \le b_0$
- (2) $b_0 \le b_1 \le \dots \le a_0$
- (3) $b_{n+1} a_{n+1} = \frac{1}{2}(b_n a_n)$

Como sabemos que $\{a_n\}$ es acotada superiormente, además es no decreciente, entonces es convergente (1)

Luego como $\{b_n\}$ es acotada inferiormente, además es no creciente, entonces es convergente (2)

Ademas

$$b_{n+1} - a_{n+1} = \left(\frac{1}{2}\right)(b_n - a_n) = \left(\frac{1}{2^2}\right)(b_{n-1} - a_{n-1}) = \dots = \left(\frac{1}{2^{n+1}}\right)(b_0 - a_0)$$

Entonces

$$\lim_{n \to \infty} (b_{n+1} - a_{n+1}) = (\lim_{n \to \infty} b_{n+1}) - (\lim_{n \to \infty} a_{n+1})$$
$$= \lim_{n \to \infty} \left(\frac{b_0 - a_0}{2^{n+1}}\right) = 0$$

Luego
$$(\lim_{n\to\infty} b_{n+1}) - (\lim_{n\to\infty} a_{n+1}) = 0$$
 entonces $\lim_{n\to\infty} b_{n+1} = \lim_{n\to\infty} a_{n+1} = r$

Veamos que ambos limites tiende a una raíz de f, es decir, veamos que r es una raíz f. Sabemos que $f(a_n)^*f(b_n) \leq 0$

Entonces si tomamos limite, como f es continua, obtenemos que

$$\lim_{n\to\infty} f(a_n) \lim_{n\to\infty} f(b_n) = f(\lim_{n\to\infty} a_n) f(\lim_{n\to\infty} b_n) = f(r)^2 \le 0$$

Entonces f(r) = 0, por ende r es una raíz de f

Veamos que $|r - C_n| \le |2^{-(n+1)}(b_0 - a_0)|$

$$|r - C_n| \le \left| \left(\frac{1}{2} \right) (b_{n+1} - a_{n+1}) \right| \le \left| \left(\frac{1}{2^2} \right) (b_n - a_n) \right| \le \dots \le \left| \left(\frac{1}{2^{n+1}} \right) (b_0 - a_0) \right|$$

Metodo Newton (convergencia)

Sea $f: \mathbb{R} \to \mathbb{R}$ una funcion tal que f" es continua y $f'(r) \neq 0$ donde r es raíz de f, entonces existe δ tal que, si el punto inicial de método de Newton X_0 satisface $|r-X_0| \leq \delta$, luego todas las aproximaciones generadas por el algoritmo $\{X_n\}$ satisfacen $|r - X_n| \leq \delta$, la sucesión $\{X_n\}$ converge a r y la convergencia es cuadrática.

$$|X_{n+1} - r| \le C(\delta) |X_n - r|^2$$
 (convergencia cuadrática)

Dem: Sea $e_n = r - X_n$ (error en la etapa n)

En la etapa n+1, tenemos:

En la etapa n+1, tenemos:
$$e_{n+1} = r - X_{n+1} = r - \left(X_n - \frac{f(X_n)}{f'(X_n)}\right) = r - X_n + \frac{f(X_n)}{f'(X_n)} = e_n + \frac{f(X_n)}{f'(X_n)}$$

$$= \left(\frac{e_n f'(X_n) + f(X_n)}{f'(X_n)}\right) (1)$$

Sabemos por Taylor que f
 alrededor de X_n tenemos:

f($X_n + h$) = $f(X_n) + f'(X_n)h + \frac{1}{2}f''(\xi_n)h$, luego si tomamos $h = e_n$ obtenemos $X_n + h = X_n + e_n = X_n + (r - X_n)$, por ende $0 = f(r) = (f(X_n) + f'(X_n)e_n + f''(\xi_n)e_n^2)$, ξ_n entre x y r Entonces $f(X_n) + f'(X_n)e_n = -\frac{1}{2}f''(\xi_n)e_n^2$, (2), de (1) y (2) se obtiene:

 $e_{n+1} = -\frac{1}{2} \frac{f''(\xi_n)}{f'(X_n)} e_n^2$ (3)

Para acotar (3), definimos

$$C(\delta) = \frac{1}{2} \left(\frac{\max_{\{|x-r| \le \delta\}} |f''(x)|}{\min_{\{|x-r| \le \delta\}} |f'(x)|} \right)$$

Como f' y f" son continuas alrededor de r, luego |f'(x)| y |f''(x)| alcanzan su mínimo y su máximo, respectivamente en el intervalo cerrado y acotado $[r-\delta,r+\delta]$. Luego dado $\delta>0$, para todo x y ξ talque $|x-r\le\delta|$ y $|\xi-r|\le\delta$. Se tiene que $\frac{1}{2}\frac{f''(\xi)}{f'(x)}\le C(\delta)$

Ahora elegimos un δ tan pequeño tal que $\delta C(\delta) < \rho$ Esto es posible si $\delta \to 0$, $C(\delta) \to \frac{1}{2} \frac{f''(r)}{f'(r)}$, bien definido, pues por hipótesis, $f'(r) \neq 0$, por lo tanto, $\delta C(\delta) \to 0$ Supongamos que X_n es tal que $|e_n| = |X_n - r| \leq \delta$ Como ξ_n esta entre X_n y r, $|\xi_n - r| \leq \delta$ Por def de $C(\delta)$ tenemos $\frac{1}{2} \frac{f''(\xi_n)}{f'(X_n)} \leq C(\delta)$. Luego por (3)

$$|e_{n+1}| = \frac{1}{2} \frac{|f''(\xi_n)|}{|f'(X_n)|} e_n^2 \le C(\delta) e_n^2 = C(\delta) |e_n| |e_n| \le C(\delta) \delta |e_n| \le \rho |e_n|$$

Luego $X_{n+1}-r=|e_{n+1}|\leq \rho|e_n|<|e_n|\leq \delta$ Por último si X_0 es talque $|X_0-r|\leq \delta$, luego por lo anterior $|e_n|\leq \rho|e_{n+1}|\leq \ldots \leq \rho^n|e_0|$ Como $0<\rho<1$ y $e_0\leq \delta$, $\lim_{n\to\infty}f^n=0$, $\lim_{n\to\infty}|e_n|=0$ y $\lim_{n\to\infty}X_n=r$

2.3 Propiedades de Punto Fijo

Sea g continua en [a,b]

(1) si $g(a) \in [a,b]$ y $g(b) \in [a,b]$ entonces existe $r \in [a,b]$ tal que g(r) = r (2) si ademas existe g' tal que $|g(x)| \le k \ \forall x \in (a,b)$ y para algún $k \in (0,1)$, entonces el punto fijo es único en (a,b) $\forall x \in (a,b)$

Dem:

- (1) Si g(a) = a ó g(b) = b, entonces nada que probar, si esta no existe, g(a) > a y g(b) < b. Definimos h(x) = g(x) x, h continua, en [a,b], tenemos h(a) = g(a) a > 0, h(b) = g(b) b < 0, por lo tanto por Teorema de Valor Intermedio sabemos que existe $r \in (a,b)$ tal que h(r) = 0, entonces g(r) = r
- (2) Supongamos que existen p y q en [a,b] tal que $g(p)=p,\ g(q)=q,\ \text{con}\ p\neq q$ Por Teorema de Valor Medio, $g(p)-g(q)=g'(\xi)(p-q),\ \text{con}\ \xi$ entre p y q, luego $|p-q|=|g(p)-g(q)|=|g'(\xi)||(p-q)|\leq k|p-q|<|p-q|,\ \text{absurdo,}$ entonces $p=q\blacksquare$

2.4 Convergenca de Punto Fijo

Sea g una función tal que $g(x) \in [a,b] \, \forall x \in [a,b]$, ademas supongamos |g'(x)| < k con $0 < k < 1 \, \forall x \in (a,b)$. Entonces para cualquier $p_0 \in [a,b]$, la sucesión definida por $p_n = g(p_{n-1})$, para $n \ge 1$, converge al unico punto fijo en [a,b]

Dem:

Por el teorema anterior sabemos que existe punto fijo p en [a,b]. Como la g transforma [a,b] en si mismo, la sucesión $\{p_n\}_n$ esta bien definida $\forall n \geq 0$ y $p_n \in [a,b] \forall n$.

Veamos la convergencia:

$$p_n - p = g(p_{n-1}) - g(p) = |g'(\xi_n)||p_{n-1} - p| \le k|p_{n-1} - p|$$
, luego $|p_n - p| \le k|p_{n-1} - p| \le \dots \le k^n|p_0 - p|$, como $0 < k < 1$, entonces $\lim_{n \to \infty} |p_n - p| = 0$

2.5 Unicidad Polinomio Interpolante

Sean $x_0, ..., x_n$ reales tal que $x_0 < ... < x_n$ con $y_0, ..., y_n$ arbitrarias asociadas, entoces existe un único polinomio P(x) tal que $gr(P) \le n$ que interpola a los puntos $x_0, ..., x_n$, es decir $P(x_i) = y_i$, con i = 0, ..., n

Dem:

(1) Interpolación

Veamos unicidad, para ello supongamos que existen dos polinomios de grado $\leq n$ tal que $P_n(x_i) = y_i$ y $Q_n(x_i) = y_i$, para i = 0, ..., n. Sea

$$h_n(x)=P_n(x)-Q_n(x),$$
luego es un polinomio de grado $\leq n$ Luego se observa que $h_n(x)=P_n(x)-Q_n(x)=0$ con $i=0,...,n,$ pero como h_n es un polinomio con (n+1) raíces, entonces $h_n(x)=0 \ \forall x,$ por lo tanto $P_n(x)=Q_n(x) \ \forall x$

Veamos existencia, vamos a demostrar su existencia mediante el metodo de lagrange y Newton, veamos primero el metodo de lagrange.

lagrange y Newton, veamos primero el metodo de lagrange.

$$\ell_i(x) = \left(\frac{(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1}...(x_i - x_n))}\right)$$

$$= \prod_{\substack{j=0 \ j \neq i}}^n \left(\frac{(x - x_i)}{(x_i - x_j)}\right)$$

Como sabemos que

$$\ell_i(x_j) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

Luego
$$P(x)=\sum\limits_{i=0}^nY_i\ell_i(x)$$

Por lo tanto $P(x_i)=\sum\limits_{i=0}^nY_i\ell_i(x_i)=Y_i$

2.6 Error Polinomio Interpolante

Sea $f \in C^{n+1}(a,b)$ y P
 un polinomio de grado
 $\leq n$ que interpola a f en (n+1) puntos distintos $x_0, ..., x_n$ en [a,b]. Entonces para cada $x \in [a, b]$ existe $\xi \in (a, b)$ tal que

$$f(X) - P(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

Dem:

Si $x = x_i$

$$0 = f(x_i) - P(x_i) = \frac{1}{(n+1)!} f^{(n+1)} \xi \prod_{i=0}^{n} (x_i - x_j) = 0, \text{ ya que } i \in \{0, ..., j, ..., n\},\$$

luego vale para $x = x_i$

Si $x \neq x_i$

Sea
$$w(t) = \prod_{i=0}^{n} (t - x_i)$$

$$C = \frac{f(x) - p(x)}{w(x)}$$
, (constante, con $w(t) \neq 0$)

$$\phi(t) = f(t) - P(t) - Cw(t)$$
 (función en t), Por lo tanto

Sea
$$w(t) = \prod_{i=0}^{n} (t - x_i)$$

 $C = \frac{f(x) - p(x)}{w(x)}$, (constante, con $w(t) \neq 0$)
 $\phi(t) = f(t) - P(t) - Cw(t)$ (función en t), Por lo tanto
Luego como $\phi(x_i) = 0$ para cada $i \in \{0, ..., n\}$ y
 $\phi(x) = f(x) - P(x) - Cw(x) = f(x) - P(x) - \frac{f(x) - P(x)}{w(x)}$, luego

 ϕ' tiene al menos n+1 raices en [a,b] ϕ'' tiene al menos n raices en [a,b]

 $\phi^{(n+1)}$ tiene al menos una raíz en [a,b]

Entonces sea ξ esa raíz de $\phi^{(n+1)}, \xi \in (a,b)$

$$(0 = \phi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - Cw^{(n+1)}(\xi))$$
(*)

Como
$$w(t) = \prod_{i=0}^{n} (t - x_i)$$
, entonces $w(t) = t^{(n+1)} + Q(x)$ $gr(Q) \le n$
Luego $w(t)^{(n+1)} = (n+1)!$, entonces $w^{(n+1)}(\xi) = (n+1)!$

Finalmente de (*)
$$0 = f^{(n+1)}(\xi) - C(n+1)! = f^{(n+1)}(\xi) - \frac{f(x) - P(x)}{w(x)}(n+1)! = 0$$

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i) \blacksquare$$

2.7 Diferencias Divididas

Las diferencias divididas satisfacen la ecuación $f[x_0,...,x_n] = \frac{f[x_1,...,x_n] - f[x_0,...,x_{n-1}]}{x_n - x_0}$

Dem:

Sea
$$P_{n-1}$$
 el polinomio que interpola a f en $x_0,...,x_{n-1}$, con $gr(P_{n-1}) \leq n-1$ Sea Q el polinomio que interpola a f en $x_1,...,x_n$, con $gr(Q) \leq n-1$ Sea P_n el polinomio dado por $P_n(x) = (Q(x) + \frac{x-x_n}{x_n-x_0}(Q(x) - P_{n-1}(x)))(*)$

Veamos que
$$P_n$$
 interpola a f en $x_0,...,x_n$, con $gr(P_n) \leq n$ Para $i=1,...,n-1$ $P_n(x_i)=f(x_i)$, ya que $Q(x_i)+\frac{x_i-x_n}{x_n-x_0}(Q(x_i)-P_{n-1}(x_i))$, como $Q(x_i)=f(x_i)=P_{n-1}(x_i)$, entonces $P_n=Q(x_i)$

Si
$$i = 0$$

 $P_n(x_0) = f(x_0)$, ya que $Q(x_0) + \frac{x_0 - x_n}{x_n - x_0}(Q(x_0) - P_{n-1}(x_0))$
Como $\frac{x_0 - x_n}{x_n - x_0} = -1$, entonces
 $Q(x_0) + \frac{x_0 - x_n}{x_n - x_0}(Q(x_0) - P_{n-1}(x_0)) = P_{n-1}(x_0) = f(x_0)$

Si
$$i = n$$
 $P_n(x_n) = f(x_n)$, ya que $Q(x_n) + \frac{x_n - x_n}{x_n - x_0} (Q(x_n) - P_{n-1}(x_n))$ Como $\frac{x_n - x_n}{x_n - x_0} = 0$, entonces $Q(x_n) + \frac{x_n - x_n}{x_n - x_0} (Q(x_n) - P_{n-1}(x_n)) = Q(x_n) = f(x_n)$

Luego P_n y (*) son pol de grado $\leq n$ que interpola a f en los (n+1) puntos $x_0, ..., x_n$, por unicidad del polinomio interpolante, P_n y (*) son los mismos polinomios.

Veamos cual es el coeficiente de
$$x^n$$
, como $P_n(x)=Q(x)+\frac{x-x_n}{x_n-x_0}(Q(x)-P_{n-1}(x))$, tenemos $f[x_0,...,x_n]=\frac{f[x_1,...,x_n]-f[x_0,...,x_{n-1}]}{x_n-x_0}$

2.8 Punto que no pertenece a los puntos de interpolación

Sea P el polinomio de grado $\leq n$ que interpola f en los (n+1) nodos $x_0, ..., x_n$ (distintos). Si t es un punto distinto de los nodos, entonces

$$f(t) - P(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i)$$

Dem: Sea Qel polinomio de grado $\leq n+1$ que interpola a f
 en los pintos $x_0,...,x_n,t.$ Entoces

$$Q(x) = P(x) + f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i)$$

Como
$$Q(t) = f(t)$$
, obtenemos $f(t) - P(t) = f[x_0, ..., x_n, t] \prod_{i=0}^{n} (t - x_i) \blacksquare$

2.9 Relacion Diferencias Divididas con derivada n-ésima

Si f es n veces continuamente diferenciable en (a,b) y $x_0,...,x_n$ nodos distintos en [a,b], entonces existe $\xi \in (a,b)$ tal que

$$f[x_0, ..., x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Dem:

Sea P el polinomio de grado $\leq n-1$ que interpola a f en $x_0,...,x_{n-1}$. Por el teorema del error en el polinomio interpolante tenemos

$$f(x_n) - P(x_n) = \frac{f^{(n)}(\xi)}{n!} \prod_{i=0}^{n-1} (x_n - x_i)$$
 (A)

Por el teorema anterior

$$f(x_n) - P(x_n) = f[x_0, ..., x_n] \prod_{i=0}^{n-1} (x_n - x_i)$$
 (B)

Por lo tanto de (A) y (B) se obtiene $f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$

2.10 Error en la interpolacion en un punto

Sea f definida en [a,b], n veces continuamente derivable en [a,b]. Sean $x_0, ..., x_n \in [a,b]$ distintos, $y \in [a,b]$. Entonces

$$\lim_{(x_0,...,x_n)\to(y,...,y)} f[x_0,...,x_n] = \frac{f^{(n)}(y)}{n!}$$

Sabemos que $\exists \xi \in (a, b)$ tal que

$$f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$$
 Por ende si $(x_0,...,x_n) \to (y,...,y)$, entonces $\xi \to y$

Luego tomamos el limite:

$$\lim_{(x_0,...,x_n)\to(y,...,y)} f[x_0,...,x_n] = \lim_{(x_0,...,x_n)\to(y,...,y)} \frac{f^{(n)}(\xi)}{n!} = \frac{f^{(n)}(y)}{n!}$$

Linealmente Indenpendiente 2.11

Si ϕ_j es un polinomio de grado j, j=0,...,n, entonces $\{\phi_0,...,\phi_n\}$ es LI en cualquier intervalo [a,b]

Dem:

Sean $C_0, ..., C_n \in \mathbb{R}$ tal que $P(x) = C_0 \phi_0(x) + ... + C_n \phi_n(x) = 0$, para cada $x \in$ [a,b]. Queremos ver que $C_j=0$, para j=0,...,n. Como P(x) se anula para cada $x \in [a, b]$, los coeficientes de cada potencia de x debe ser cero. En particular, el coeficiente de x^n es cero. Como el único término que x^n es $C_n\phi_n(x)$, entonces $C_n = 0$. Luego

$$P(x)=C_0\phi_0(x)+\ldots+C_{n-1}\phi_{n-1}(x)$$
. Repitiendo esto (n-1) veces obtenemos $C_1=\ldots=C_n=0$

2.12Regla de cuadratura

Supongamos que $x_1, ..., x_n$ son las raices de los polinomios de Legendre $P_n(x)$ y que para cada i=1,...,n los coeficientes c_i dados por

que para cada
$$i = 1, ...,$$

$$c_i = \int_{-1}^1 \prod_{\substack{j=1 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} dx$$

Si P(x) es un polinomio cualquiera de grado
$$\leq 2n-1$$
, entonces
$$\int_{-1}^{1} P(x) dx = \sum_{i=1}^{n} c_i P(x_i)$$

Esto dice que la regla de cuadratura integra exactamente a polinomios con grado $\leq 2n-1$, con n puntos (las n raices de $P_n(x)$)

Dem:

Consideraremos 2 casos

(1)
$$gr(P) \le n - 1$$
 y (2) $gr(P) \le 2n - 1$
Caso (1): $gr(P) \le n - 1$

Reescribiremos P(x), usando $x_1,...,x_n$, como un polinomio interpolante de lagrange, con nodos en las raices de $P_n(x)$ (n raices = n nodos de interpolación) Esta representación es exacta pues el término del error tiene derivada de orden (n+1) y $f = P_n$ que tiene grado n. Tambien esta representación es <u>exacta</u> por unicidad del polinomio interpolante

$$\int_{-1}^{1} P(x)dx = \int_{-1}^{1} \sum_{i=1}^{n} P(x_i) \prod_{\substack{j=1\\j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} dx = \sum_{i=1}^{n} P(x_i) \int_{-1}^{1} \prod_{\substack{j=1\\j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} dx$$
$$= \sum_{i=1}^{n} P(x_i)c_i \text{ prueba de caso (1)}$$

Caso (2) $n \leq gr(P) \leq 2n - 1$

Dividimos P(x) por $P_n(x)$. Por el algoritmo de la división existen 2 polinomios Q(x)yR(x) tal que

$$P(x) = P_n(x)Q(x) + R(x)$$
 donde $0 \le gr(Q) \le n - 1$ y $gr(R) \le n - 1$

$$\int_{-1}^1 P(x)dx = \int_{-1}^1 P_n(x)Q(x)dx + \int_{-1}^1 R(x)dx$$
Como $0 \le gr(Q) \le n-1$ por propiedad (2) de polinomio ortogonal de Legendre

$$\int_{-1}^{1} P(x)dx = 0 \text{ como } gr(R) \le n - 1$$

Por caso (1)
$$\int_{-1}^{1} R(x)dx = \sum_{i=1}^{n} c_i R(x_i)$$

Reescribiendo R(x), como un polinomio interpolante basado en $x_1, ..., x_n$. Ademas $x_1, ..., x_n$ son raices de $P_n(x)$

$$P(x_i) = P_n(x_i)Q(x_i) + R(x_i) = P(x_i)$$
, con $i = 1, ..., n$

Luego reemplazamos $R(x_i)$ por $P(x_i)$ y obtenemos

$$\int_{-1}^{1} P(x)dx = \sum_{i=1}^{n} c_{i} P(x_{i}) \blacksquare$$