DS011 - Introdução à Arquitetura de Computadores

Aula 05 - Lógica digital

Sumário

- Lógica digital
- Portas lógicas
- Funções lógicas
- Exercícios

- Álgebra booleana
 - George Boole (1864)
 - Álgebra na qual há apenas dois valores válidos: falso ou verdadeiro.
 - Claude Shannon (1938)
 - Álgebra booleana para projetos de circuitos de comutação de relés
 - As técnicas sugeridas por Shannon foram subsequentemente utilizadas para projetos de circuitos eletrônicos digitais

George Boole (1815 - 1864). Matemático e filósofo inglês, "pai" da lógica digital moderna.

- Álgebra booleana
 - —Análise: forma econômica de descrever um circuito digital

- Álgebra booleana
 - —Análise: forma econômica de descrever um circuito digital
 - -Projeto: dada uma função a ser implementada, a álgebra booleana pode ser usada para simplificar essa função

- Álgebra booleana
 - -Variáveis
 - •1 (verdadeiro)
 - •0 (falso)

- Álgebra booleana
 - -Variáveis
 - •1 (verdadeiro)
 - •0 (falso)
 - –Operações básicas
 - •AND (E)
 - •OR (OU)
 - •NOT (NÃO)

- Álgebra booleana
 - -Variáveis
 - •1 (verdadeiro)
 - •0 (falso)
 - Operações básicas
 - •AND (E)
 - •OR (OU)
 - •NOT (NÃO)

- Representação simbólica
 - A **AND** B = A · B
 - A **OR** B = A + B
 - **NOT** $A = \bar{A}, A'$

•Assim como na álgebra comum, o resultado de uma operação booleana é obtido por meio de uma tabuada.

•Assim como na álgebra comum, o resultado de uma operação booleana é obtido por meio de uma tabuada.

•Na álgebra booleana, as tabuadas são chamada de tabelas verdade.

Mas antes... Portas Lógicas

- Portas lógicas são:
 - -Os blocos fundamentais dos circuitos lógicos digitais.
 - -Circuitos eletrônicos que produzem um sinal de saída que é o resultado de uma *operação booleana* entre os sinais de entrada.

Operação AND

-O resultado da operação é verdadeiro (valor binário 1) se e somente se todas as entradas forem verdadeiras (1)

$$S = A AND B = A \cdot B$$

Operação AND

 O resultado da operação é verdadeiro (valor binário 1) se e somente se todas as entradas forem verdadeiras (1)

 $S = A AND B = A \cdot B$

A	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1

AND - Analogia da Lampada

A	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1

AND – Analogia da Lampada

A	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1

AND – Analogia da Lampada

A	В	S = A AND B
0	0	0
0	1	0
1	0	0
1	1	1

AND – Analogia da Lampada

A	В	S = A AND B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Operação OR

-O resultado da operação é verdadeiro (valor binário 1) se qualquer uma das entradas, ou ambas, forem verdadeiras

$$S = A OR B = A + B$$

Operação OR

-O resultado da operação é verdadeiro (valor binário 1) se qualquer uma das entradas, ou ambas, forem verdadeiras

$$S = A OR B = A + B$$

A	В	S = A OR B
0	0	0
0	1	1
1	0	1
1	1	1

A	В	S = A OR B
0	0	0
0	1	1
1	0	1
1	1	1

A	В	S = A OR B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

A	В	S = A OR B
0	0	0
0	1	1
1	0	1
1	1	1

- Operação NOT
 - -Operação unária
 - -Inverte o valor do entrada

$$S = NOT A = \bar{A}$$

- Operação NOT
 - -Operação unária
 - -Inverte o valor do entrada

A	S = NOT Ā
0	1
1	0

$$S = NOT A = \bar{A}$$

- Como na álgebra comum, podemos combinar as operações, formando expressões lógicas.
- O resultado de uma expressão lógica pode ser calculado aplicando-se cada operação lógica, consultando-se as tabelas verdade correspondentes.
- Para indicar a ordem de aplicação das operações, usam-se parênteses como na álgebra comum.

•A operação AND tem precedência sobre a operação OR

$$S = A + \overline{B} \cdot C$$

A operação AND tem precedência sobre a operação OR

•A operação AND tem precedência sobre a operação OR

$$S = A + \overline{B} \cdot C$$

$$A$$

$$S = A + \overline{B} \cdot C$$

$$S = (A + \overline{B}) \cdot C$$

•A operação AND tem precedência sobre a operação OR

•A operação AND tem precedência sobre a operação OR

•A operação AND pode ser representada pela concatenação dos operandos: A · B = AB

Identidades básicas da álgebra booleana

Postulados Básicos			
$A \cdot B = B \cdot A$	A + B = B + A	Leis da comutatividade	
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Leis da distributividade	
1 · A = A	0 + A = A	Elemento identidade	
$A \cdot \bar{A} = 0$	A + Ā = 1	Elemento inverso	

Identidades básicas da álgebra booleana

Outras Identidades			
0 · A = 0	1 + A = 1		
$A \cdot A = A$	A + A = A		
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Leis de associatividade	
$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A} \cdot \overline{B}$	Teorema de DeMorgan	

NAND, NOR e XOR

*Outras operações lógicas importantes

-NAND - Complemento (NOT) da função AND •A NAND B = NOT(A AND B) = \overline{AB}

NAND, NOR e XOR

Outras operações lógicas importantes

- -NAND Complemento (NOT) da função AND •A NAND B = NOT(A AND B) = \overline{AB}
- -NOR Complemento (NOT) da Função OR •A NOR B = NOT (A OR B) = $\overline{A} + \overline{B}$

NAND, NOR e XOR

*Outras operações lógicas importantes

- -NAND Complemento (NOT) da função AND •A NAND B = NOT(A AND B) = \overline{AB}
- -NOR Complemento (NOT) da Função OR •A NOR B = NOT (A OR B) = $\overline{A} + \overline{B}$
- **XOR** Ou Exclusivo •A XOR $B = A \oplus B$

- Operação NAND
 - O resultado da operação é o complemento (NOT) da função
 AND.

$$S = A NAND B = A \cdot B$$

Operação NAND

- O resultado da operação é o complemento (NOT) da função
 AND.
- —Ou seja, o resultado é falso (valor binário 0) se e somente se todas as entradas forem verdadeiras.

$$S = A NAND B = A \cdot B$$

Operação NAND

- O resultado da operação é o complemento (NOT) da função
 AND.
- —Ou seja, o resultado é falso (valor binário 0) se e somente se todas as entradas forem verdadeiras.

 $S = A NAND B = A \cdot B$

A	В	S = A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Operação NOR

O resultado da operação é o complemento (NOT) da função
 OR.

$$S = A NOR B = A + B$$

Operação NOR

- O resultado da operação é o complemento (NOT) da função
 OR.
- —Ou seja, o resultado é falso (valor binário 0) se qualquer uma das entradas, ou ambas, forem verdadeiras.

$$S = A NOR B = A + B$$

Operação NOR

- O resultado da operação é o complemento (NOT) da função
 OR.
- —Ou seja, o resultado é falso (valor binário 0) se qualquer uma das entradas, ou ambas, forem verdadeiras.

$$S = A NOR B = A + B$$

A	В	S = A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

- Operação XOR (OU Exclusivo)
 - -O resultado da operação é verdadeiro (valor binário 1) se e somente se exatamente um dos operandos tem valor 1.

- Operação XOR (OU Exclusivo)
 - -O resultado da operação é verdadeiro (valor binário 1) se e somente se exatamente um dos operandos tem valor 1.

Α	В	S = A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Tabela Verdade

Р	Q	P AND Q	P OR Q	NOT P	P NAND Q	P NOR Q	P XOR Q
0	0						
0	1						
1	0						
1	1						

Tabela Verdade

Р	Q	P AND Q	P OR Q	NOT P	P NAND Q	P NOR Q	P XOR Q
0	0	0	0	1	1	1	0
0	1	0	1	1	1	0	1
1	0	0	1	0	1	0	1
1	1	1	1	0	0	0	0

Portas Lógicas

•Portas lógicas podem ter mais de 2 entradas (2, 3, 4, ...).

Função lógica: associação que nos "leva" de um conjunto de *n* variáveis booleanas, ao conjunto {0,1}.

$$F: \{0,1\}^n \to \{0,1\}$$

$$X_1, X_2, \dots, X_n \to Y = F(X_1, X_2, \dots, X_n)$$

Podemos descrever uma função lógica por meio de uma expressão ou pela sua tabela verdade.

$$F(A,B,C) = A + \overline{B} \cdot C$$

$$F(A,B,C) = A + \overline{B} \cdot C$$

A	В	С	B·C	$F(A,B,C) = A + \overline{B} \cdot C$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$F(A,B,C) = A + \overline{B} \cdot C$$

Α	В	С	B·C	$F(A,B,C) = A + \overline{B} \cdot C$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

$$F(A,B,C) = A + \overline{B} \cdot C$$

A	В	С	B ⋅ C	$F(A,B,C) = A + \overline{B} \cdot C$
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	0	

$$F(A,B,C) = A + \overline{B} \cdot C$$

A	В	С	B·C	$F(A,B,C) = A + \overline{B} \cdot C$
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	0	

$$F(A,B,C) = A + \overline{B} \cdot C$$

A	В	С	B ⋅ C	$F(A,B,C) = A + \overline{B} \cdot C$
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	0	

$$F(A,B,C) = A + \overline{B} \cdot C$$

A	В	С	B·C	$F(A,B,C) = A + \overline{B} \cdot C$		
0	0	0	0	0		
0	0	1	1	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	1	1		
1	1	0	0	1		
1	1	1	0	1		

Exercícios

- 1) Considere as seguintes funções booleanas:
 - •(a) $F(A,B,C) = A + (B' \cdot C)$
 - •(b) $F(A,B,C) = (B + C)' \cdot A \cdot C' + A' \cdot B'$
 - •(c) $F(A,B,C) = A' + A' + B \cdot B' \cdot C' + C$
- 2) Calcule F para:
 - A = 1, B = 1, C = 0
 - \bullet A = 1, B = 0, C = 0
 - A = 0, B = 1, C = 1
 - A = 0, B = 0, C = 1
- •Construa as tabelas verdade para as funções a, b e c do exercício 1.

Exercícios

- Desenhe o circuito lógico digital equivalente a função: D = A + (B · C')
- Construa a tabela verdade para as seguintes funções booleanas:
 - A) f(A,B,C) = ABC + A'B'C'
 - B) f(A,B,C) = A(BC' + B'C)
- Construa os circuitos lógicos dessas funções boleanas utilizando a representação gráfica.