Chapter 8 Parameter Estimation and Evaluation

- **Problem:** Consider a random sample X_1, \dots, X_n from some unknown population distribution $f_X(x)$. A realization x_1, \dots, x_n of random sample X_1, \dots, X_n is observed. We want to make inference of the population distribution $f_X(x)$ using the observed data.
- **Distribution Model:** To make inference of $f_X(x)$, we often consider a class of parametric candidate distributions

$$\mathbb{F} = \{ f(x; \theta) : \theta \in \Theta \}.$$

Each value of $\theta \in \Theta$ gives a distribution model for $f_X(x)$. If the true population distribution

$$f_X(x) = f(x; \theta_0) \in \mathbb{F},$$

we call that \mathbb{F} is correctly specified and θ_0 is called the true parameter value. In contrast, \mathbb{F} is said to be misspecified for the population distribution $f_X(x)$ if there exists no value for $\theta \in \Theta$ such that $f_X(x) = f(x; \theta)$.

- **Definition: Point Estimator.** Let X_1, \dots, X_n be a random sample of size n from the population $f(x; \theta)$ with parameter θ . A point estimator of θ is any function $T(X_1, \dots, X_n)$ of the random sample, that is, any statistic is a point estimator.
- **Definition: Interval Estimator.** An interval estimator of θ is a pair of statistics $L(X_1, \dots, X_n)$ and $U(X_1, \dots, X_n)$ that satisfy $L(x_1, \dots, x_n) \leq U(x_1, \dots, x_n)$ for any x_1, \dots, x_n .
- **Remark:** When a realization x_1, \dots, x_n is observed, we make the inference that $\theta = T(x_1, \dots, x_n)$ by point estimation and $L(x_1, \dots, x_n) \leq \theta \leq U(x_1, \dots, x_n)$ by interval estimation.

• Remarks:

- Compared to interval estimation, the point estimator provides a single value as the estimation of the parameter.
- Sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is a point estimator of the true mean $E(X_i)$.
- Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X}_n)^2$ is a point estimator of the true variance $\text{Var}(X_i)$.
- There can be many different point estimators of the same parameter.

• **Example:** Suppose that we take a random sample X_1, \dots, X_n from the $U[0, \theta]$ distribution so that

$$f(x; \theta) = \begin{cases} 1/\theta & \text{if } 0 \le x \le \theta, \\ 0 & \text{otherwise.} \end{cases}$$

The objective is to estimate θ .

• **ANS:** Let $X_{(1)}, \dots, X_{(n)}$ be the order statistics of X_1, \dots, X_n , we have $E(X_{(k)}) = \frac{k}{n+1}\theta$. Some different estimators of θ are as follows.

$$-T_1 = X_{(n)}.$$

$$-T_2 = \frac{n+1}{n} X_{(n)}.$$

$$-T_3 = X_{(1)} + X_{(n)}.$$

$$-T_4 = (n+1)X_{(1)}$$

$$-T_5 = 2\overline{X}_n.$$

• **Example:** Let X_1, \dots, X_n be a random sample from U(0,1). Then the pdf of $X_{(k)}$ is

$$f_{X_{(k)}}(u) = \frac{n!}{(k-1)!(n-k)!} u^{k-1} (1-u)^{n-k}, \quad 0 < u < 1,$$

and $X_{(k)}$ follows a Beta(k, n - k + 1) distribution.

$$-E(X_{(k)}) = \frac{k}{n+1}.$$

$$-\operatorname{Var}(X_{(k)}) = \frac{k(n-k+1)}{(n+1)^2(n+2)}.$$

$$-\rho_{X_{(1)}X_{(n)}} = \frac{\operatorname{Cov}(X_{(1)}, X_{(n)})}{\sqrt{\operatorname{Var}(X_{(1)})\operatorname{Var}(X_{(n)})}} = 1/n.$$

• Order Statistics

• Definition: Maximum Likelihood Estimators (MLE). Let X_1, \dots, X_n be a random sample of size n from the population $f(x; \theta)$ with parameter θ . Given $(X_1, \dots, X_n) = (x_1, \dots, x_n)$, the value $\widehat{\theta}$ that maximizes the likelihood function

$$L(\theta) = L(\theta; x_1, \dots, x_n) \stackrel{\triangle}{=} \prod_{i=1}^n f(x_i; \theta),$$

over $\theta \in \Theta$ is called the maximum likelihood estimate of θ .

• Remarks:

- The MLE is the value of θ which makes the observed data x_1, \dots, x_n most likely to occur.
- It is often convenient to maximize the log likelihood function

$$\log[L(\theta)] = \sum_{i=1}^{n} \log[f(x_i; \theta)].$$

• Theorem: Existence of MLE. Suppose that with probability one, $\hat{L}(\theta|\mathbf{X}^n)$ is a continuous function of $\theta \in \Theta$, and Θ is a compact set. Then there exists a global maximizer $\hat{\theta}_n$ that solves the problem,

$$\hat{\theta}_n \equiv \hat{\theta}(\mathbf{X}^n) = \arg\max_{\theta \in \Theta} \hat{L}(\theta|\mathbf{X}^n).$$

- **Remarks:** Assume $L(\theta; x_1, \dots, x_n)$ is twice continuously differentiable about θ .
 - The MLE $\widehat{\theta}$ must satisfy the *first order condition* (FOC) $\frac{\partial L(\theta; x_1, \dots, x_n)}{\partial \theta}|_{\theta = \widehat{\theta}} = 0$ if $\widehat{\theta}$ is in the interior of Θ. The boundary need to be checked separately.
 - Suppose θ is a $p \times 1$ vector. If $\widehat{\theta}$ satisfies the FOC, and the $p \times p$ Hessian matrix

$$H(\widehat{\theta}) = \frac{\partial^2 L(\theta; x_1, \cdots, x_n)}{\partial \theta \partial \theta'} \Big|_{\theta = \widehat{\theta}}$$

is negative definite, then $\widehat{\theta}$ is a local maximum estimator of $L(\theta; x_1, \dots, x_n)$.

• Remark

- If the Hessian matrix $H(\theta)$ is negative definite for all $\theta \in \Theta$, then $\widehat{\theta}$ is the global maximum estimator.
- Given different initial values, computer softwares may find different local maximum solutions of the likelihood function.
- **Example:** In five independent Bernoulli trials with probability of success θ , three successes and two failures were observed. Find the MLE of the probability of success θ .

• Solution:

- The likelihood function is

$$L(\theta) = \prod_{i=1}^{5} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^3 (1 - \theta)^2.$$

- The log-likelihood function is $\log[L(\theta)] = 3\log(\theta) + 2\log(1-\theta)$.
- The MLE is $\theta = \sum_{i=1}^{n} x_i/n = 3/5$. The MLE is a function of the sufficient statistic $\sum_{i=1}^{n} X_i$ of θ .
- **Remark:** If a **unique** MLE of θ exists, then it is a function of any sufficient statistic of θ .

• **Example:** Suppose that we observe values x_1, \dots, x_n from a $N(\mu, \sigma^2)$ distribution. Find the MLE of μ and σ^2 .

• Solution:

- The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}.$$

- The log-likelihood function is

$$\log[L(\theta)] = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}.$$

- The MLE is

$$\widehat{\mu} = \overline{X}_n, \quad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

• **Example:** Given the sample x_1, \dots, x_n from $U[0, \theta]$, the likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} \frac{1}{\theta^n} & \text{if } \theta \ge x_i \text{ for all } i, \\ 0 & \text{otherwise.} \end{cases}$$

The MLE is $\theta = X_{(n)}$.

• **Example:** Let X_1, \dots, X_n be a random sample from a $U[\theta-1/2, \theta+1/2]$ distribution. Find the MLE of θ .

• Solution.

- The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = \begin{cases} 1 & \text{if } x_{(n)} - 1/2 \le \theta \le x_{(1)} + 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

- All values between $X_{(n)} - 1/2$ and $X_{(1)} + 1/2$ are the MLE's of θ .

- **Example:** To estimate parameter λ in the EXP(λ) distribution with pdf $f(x;\lambda) = \lambda e^{-\lambda x}$ for x > 0, a typical experiment consists of putting n pieces of the equipment to test and observing the lifetimes X_1, X_2, \dots, X_n .
 - Suppose that the experiment is interrupted after some time T.
 - We can only observe the lifetimes x_1, \dots, x_m of m equipments.
 - About the remaining equipments we only know that $X_{m+1}, \dots, X_n > T$.
 - We observe $X_i^* = \min\{X_i, T\}, i = 1, \dots, n$.

• Solution:

- The likelihood function is

$$L(\lambda) = \prod_{i=1}^{m} f(x_i; \lambda) \prod_{i=m+1}^{n} P(X_i > T) = \lambda^m e^{-\lambda(x_1 + \dots + x_m)} e^{-(n-m)\lambda T}.$$

- The MLE is
$$\widehat{\lambda} = \frac{m}{x_1 + \cdots x_m + (n-m)T}$$
.

• Example: Linear Regression. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random sample from a population, where $X_i = (X_{i,1}, \dots, X_{i,p})'$ is a random vector. Suppose

$$\boldsymbol{X}_i \sim f_X(\boldsymbol{x}), \quad Y_i = \boldsymbol{X}_i' \boldsymbol{\beta} + \varepsilon_i,$$

where $\beta = (\beta_1, \dots, \beta_p)'$ is a constant vector, $\varepsilon_i \sim N(0, \sigma^2)$ is independent with \mathbf{X}_i . Find the MLE of β and σ^2 .

• Solution:

- Because $Y_i = \mathbf{X}_i'\beta + \varepsilon_i$, $f_{Y|X}(y_i \mid \mathbf{x}_i) \sim N(\mathbf{x}_i'\beta, \sigma^2)$.
- $-f_{XY}(\boldsymbol{x}_{i}, y_{i}) = f_{X}(\boldsymbol{x}_{i}) f_{Y|X}(y_{i} \mid \boldsymbol{x}_{i}) = f_{X}(\boldsymbol{x}_{i}) \frac{1}{\sqrt{2\pi}\sigma} exp\{-\frac{1}{2\sigma^{2}}(y_{i} \boldsymbol{x}_{i}'\beta)^{2}\}.$
- The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f_X(\mathbf{x}_i) \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} exp\{-\frac{1}{2\sigma^2} (y_i - \mathbf{x}_i'\beta)^2\}.$$

• The log-likelihood function is

$$\log[L(\theta)] = \sum_{i=1}^{n} \log[f_X(\boldsymbol{x}_i)] - \frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i'\beta)^2.$$

– The MLE of β satisfies

$$\partial \log[L(\theta)]/\partial \beta_1 = -\frac{1}{\sigma^2} \sum_{i=1}^n x_{i,1}(y_i - \boldsymbol{x}_i'\beta) = 0,$$

:

$$\partial \log[L(\theta)]/\partial \beta_p = -\frac{1}{\sigma^2} \sum_{i=1}^n x_{i,p} (y_i - \boldsymbol{x}_i'\beta) = 0.$$

Let
$$X = (X'_1, \dots, X'_n)', Y = (Y_1, \dots, Y_n)',$$
 then

$$X'(Y - X\beta) = 0.$$

- MLE of
$$\beta$$
 is $\widehat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y})$.

- MLE of
$$\sigma^2$$
 is $\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (y_i - \boldsymbol{x}_i' \widehat{\beta})^2$.

- Theorem: Invariance property of the MLE. Suppose $\widehat{\theta}$ is the MLE of θ ; and $g(\theta)$ is a one-to-one function over Θ . Then $g(\widehat{\theta})$ is also the MLE of $g(\theta)$.
- **Example:** Suppose we observe x_1, \dots, x_n from $N(0, \sigma^2)$. Find the MLE of σ^2 and σ ($\sigma > 0$).
- Solution:
 - The log-likelihood function is

$$\log[L(\theta)] = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \sum_{i=1}^{n} \frac{x_i^2}{2\sigma^2}.$$

- The MLE is

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n X_i^2 \text{ and } \widehat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^n X_i^2}.$$

• Theorem: Sufficiency of the MLE. Suppose \mathbf{X}^n is a random sample with the likelihood function $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$, and $T(\mathbf{X}^n)$ is a sufficient statistic for θ , where $\theta \in \Theta$ is a parameter. Then the MLE $\widehat{\theta}$ that maximizes the likelihood function $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$ of the random sample \mathbf{X}^n is also the MLE that maximizes the likelihood function $f_{T(\mathbf{X}^n)}(T(\mathbf{x}^n), \theta)$ of the sufficient statistic $T(\mathbf{X}^n)$.

• Solution:

$$-f_{\mathbf{X}^n}(\mathbf{x}^n, \theta) = f_{T(\mathbf{X}^n)}(T(\mathbf{x}^n), \theta) f_{T(\mathbf{X}^n|\mathbf{X}^n)}(\mathbf{x}^n|T(\mathbf{x}^n)) = f_{T(\mathbf{X}^n)}(T(\mathbf{x}^n), \theta) h(\mathbf{x}^n),$$

$$-\ln f_{\mathbf{X}^n}(\mathbf{x}^n, \theta) = \ln f_{T(\mathbf{X}^n)}(T(\mathbf{x}^n), \theta) + \ln h(\mathbf{x}^n),$$

$$-\widehat{\theta} = \arg\max_{\theta \in \Theta} \ln f_{\mathbf{X}^n}(\mathbf{x}^n, \theta) = \arg\max_{\theta \in \Theta} \ln f_{T(\mathbf{X}^n)}(T(\mathbf{x}^n), \theta).$$

• Assumptions:

- $-\mathbf{A.1:}\ X_1,X_2,\cdots$ are i.i.d. from some population distribution.
- -A.2:
- (1). There exists a parameter value θ_0 in the **interior** of Θ such that $f(x; \theta_0)$ coincides with the population distribution.
- (2). For each $\theta \in \Theta$, $f(x; \theta)$ is a probability pdf/pmf with $f(x; \theta) > 0$ for all $x \in \mathcal{X} = \{x : f(x; \theta_0) > 0\}$.
- (3). θ_0 is the **unique** maximizer of $\max_{\theta \in \Theta} E\{\log[f(X_1, \theta)]\}$. Here

$$E\{\log[f(X_1,\theta)]\} = \int_{\mathcal{X}} \log(f(x,\theta))f(x,\theta_0) dx.$$

- (4). The function $\log[f(x;\theta)]$ is continuous on $\mathcal{X} \times \Theta$, and its absolute value is bounded by a nonnegative function b(x) with $E[b(X_1)] < \infty$.
- **A.3:** Θ is closed and bounded (Θ is a compact set).

- **A.4:** θ_0 is the unique maximizer of $E\{\log[f(X_1,\theta)]\}$.
- **A.5:** θ_0 is in the interior of parameter space Θ .
- **A.6:** For each interior point $\theta \in \Theta$, $f(x, \theta)$ is twice continuously differentiable with respect to θ such that
- (1). The functions $\frac{\partial}{\partial \theta} \log[f(x;\theta)]$, $\frac{\partial^2}{\partial \theta^2} \log[f(x;\theta)]$ are continuous in (x,θ) , and their absolute values are bounded by a nonnegative function b(x) with $\int_{-\infty}^{\infty} b(x) f(x;\theta_0) dx < \infty$.
- (2). The absolute value of the function $H(\theta) = \int_{-\infty}^{\infty} \frac{\partial^2}{\partial \theta^2} \{ \log[f(x;\theta)] \} f(x,\theta) dx$ is bounded by some constant and is nonzero.

• Lemma: Extrema Estimator Lemma. Suppose

- (1) $Q(\theta)$ is a nonstochastic function continuous in $\theta \in \Theta$, and $\theta_0 \in \Theta$ is the unique maximizer of $Q(\theta)$ over Θ , where Θ is a compact set;
- (2) with probability one, $\hat{Q}(\theta)$ is a sequence of random functions continuous in $\theta \in \Theta$;
- (3) $\lim_{n\to\infty} \sup_{\theta\in\Theta} |\hat{Q}(\theta) Q(\theta)| = 0$ almost surely.

Then $\hat{\theta}_{\theta} = \arg \max_{\theta \in \Theta} \hat{Q}(\theta)$ exists and $\hat{\theta}_n \to \theta_0$ almost surely as $n \to \infty$.

• Theorem: Consistency of MLE. Suppose Assumptions A.1-A.4 hold, $\widehat{\theta}_n$ is the MLE of θ . Then as $n \to \infty$,

$$\widehat{\theta}_n \xrightarrow{a.s.} \theta_0.$$

• **Lemma.** Suppose $f(x, \theta)$ is a PDF model and $f(x, \theta)$ is continuously differentiable with respect to $\theta \in \Theta$, where θ is an interior point in parameter space Θ . Then for all θ in the interior of Θ ,

$$\int_{-\infty}^{\infty} \left[\frac{\partial \ln f(x,\theta)}{\partial \theta} \right] f(x,\theta) dx = 0.$$

• Lemma: Information Matrix Equality. Suppose a PDF model $f(x,\theta)$ is twice continuously differentiable respect to $\theta \in \Theta$, where θ is an interior point in parameter space Θ . Define

$$I(\theta) = \int_{-\infty}^{\infty} \infty \left[\frac{\partial \ln f(x, \theta)}{\partial \theta} \right]^{2} f(x, \theta) dx,$$

$$H(\theta) = \int_{-\infty}^{\infty} \left[\frac{\partial^{2} \ln f(x, \theta)}{\partial \theta^{2}} \right] f(x, \theta) dx.$$

Then for all θ in the interior of Θ ,

$$I(\theta) + H(\theta) = 0.$$

A similar result holds for a PMF model.

• Proof.

$$H(\theta) = \int_{-\infty}^{\infty} \frac{\partial^{2}}{\partial \theta^{2}} \{ \log[f(x;\theta)] \} f(x,\theta) dx$$

$$= \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} \left\{ \frac{1}{f(x;\theta)} \frac{\partial f(x;\theta)}{\partial \theta} \right\} f(x,\theta) dx$$

$$= -\int_{-\infty}^{\infty} \frac{1}{f^{2}(x;\theta)} \left[\frac{\partial f(x;\theta)}{\partial \theta} \right]^{2} f(x,\theta) dx + \int_{-\infty}^{\infty} \frac{1}{f(x;\theta)} \frac{\partial^{2} f(x;\theta)}{\partial \theta^{2}} f(x,\theta) dx$$

$$= -\int_{-\infty}^{\infty} \left[\frac{\partial}{\partial \theta} \log[f(x,\theta)] \right]^{2} f(x,\theta) dx + \int_{-\infty}^{\infty} \frac{\partial^{2} f(x;\theta)}{\partial \theta^{2}} dx$$

$$= -I(\theta) + 0.$$

• Theorem: Asymptotic Normality of MLE. Suppose Assumptions A.1-A.6 hold, $\widehat{\theta}_n$ is the MLE of θ . Then

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\to} N[0, -H^{-1}(\theta_0)] \stackrel{d}{=} N[0, I^{-1}(\theta_0)],$$

where

$$I(\theta) = \int_{-\infty}^{\infty} \left[\frac{\partial}{\partial \theta} \log[f(x, \theta)] \right]^{2} f(x, \theta) dx$$

is called the Fisher information matrix for $f(x, \theta)$.

• Remarks:

- The Fisher information matrix $I(\theta_0)$ measures the degree of the curvature of the log-likelihood function at θ_0 . If $I(\theta_0)$ is large, it is easy to estimate θ , if $I(\theta_0)$ is small, it is difficult to estimate θ .
- Asymptotic normality of MLE can be used to construct confidence interval or test of parameter θ .
- When X_1, X_2, \cdots are not independent, e.g., when $\{X_t\}$ is a time series, the consistency of MLE also holds under certain conditions, but its asymptotic efficiency can be different.

8.4 Method of Moments and Generalized Method of Moments

8.4.1 Method of Moments Estimation

- Method of Moments Estimator(MME): Suppose X_1, \dots, X_n is a random sample from the population distribution $f_X(x;\theta)$, where $\theta \in \Theta$ is a $p \times 1$ vector.
 - First find a $p \times 1$ vector $W(X_i)$, and compute its expectation $M(\theta) = E_{\theta}[W(X_i)]$.
 - Then solve equations

$$M(\widehat{\theta}) = \frac{1}{n} \sum_{i=1}^{n} W(X_i).$$

The solution $\widehat{\theta} = \widehat{\theta}(X_1, \dots, X_n)$ is called the *method of moments estimator*.

• **Remark:** Usually, we will choose $W(X_i) = (X_i, \dots, X_i^p)'$, then $M(\theta) = (E(X_i), \dots, E(X_i^p))'$.

8.4.1 Method of Moments Estimation

- **Example:** Let X_1, \dots, X_n be a random sample from the $\text{EXP}(\lambda)$ distribution with the pdf $f(x) = \lambda e^{-\lambda x}$ for x > 0.
 - The first moment is $E_{\lambda}(X_1) = 1/\lambda$. Solving equation

$$\frac{1}{n} \sum_{i=1}^{n} X_i = 1/\widehat{\lambda}_1,$$

we obtain $\widehat{\lambda}_1 = 1/\overline{X}_n$.

- The second moment is $E_{\lambda}(X_1^2) = 2/\lambda^2$. Solving equation

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = 2/\widehat{\lambda}_2^2,$$

we obtain $\widehat{\lambda}_2 = \sqrt{2n/\sum_{i=1}^n X_i^2}$.

• **Remark:** In this example, the estimator obtained by using the first moment is the same as the MLE. But in many cases, the MME is not as *efficient* as the MLE (*i.e.*, MME has a larger MSE).

8.4.1 Method of Moments Estimation

• **Example:** Suppose that we want to estimate both μ and σ^2 based on a random sample X_1, \dots, X_n from some distribution with mean μ and variance σ^2 .

• Solution:

- Solve equations

$$\frac{1}{n} \sum_{i=1}^{n} X_i = \widehat{\mu},$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \widehat{\mu}^2 + \widehat{\sigma}^2.$$

- We obtain $\widehat{\mu} = \overline{X}_n$ and $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$.
- **Remark:** In this example, we do not require any knowledge on the functional form of the population distribution $f(x; \theta)$.

8.4.1 Method of Moments Estimation

• **Example:** Suppose X_1, \dots, X_n is a random sample from uniform distribution $U[-\theta, \theta]$. Find the estimator for θ .

• Solution:

- Because E(X) = 0, we can not obtain an estimator from the first moment.
- The second moment is

$$E(X_i^2) = \int_{-\theta}^{\theta} \frac{1}{2\theta} x^2 \, dx = \frac{1}{3} \theta^2,$$

which gives the estimator

$$\widehat{\theta} = \sqrt{\frac{3}{n} \sum_{i=1}^{n} X_i^2}.$$

• Generalized Method of Moments Estimator(GMM): In econometrics, $E_{\theta}[W(X_i)]$ can not be computed in some cases, due to the fact that the population distribution of X_i is unknown. However, some constraints

$$E[m(X_i, \theta_0)] = 0$$

must hold for the true parameter θ_0 . This may follow from some economic and financial theory. We can obtain an estimator $\hat{\theta}$ for θ_0 by solving equation

$$\frac{1}{n}\sum_{i=1}^{n}m(X_{i},\widehat{\theta})=0$$

without assuming the population distribution of X_i .

• Example: An investor who maximizes an intertemporal utility function

$$\max_{\{c_t\}} U(c_t, c_{t+1}) = \max_{\{c_t\}} \{u(c_t) + \beta E_t[u(c_{t+1})]\}$$

subject to an intertemporal budget constraint will choose a sequence of consumptions $\{c_t\}$ that satisfies the first order condition

$$P_t = \beta E \left[\frac{u'(c_{t+1})}{u'(c_t)} Y_{t+1} \mid I_t \right],$$

where Y_{t+1} is the payoff of an asset at time t+1, P_t is the price of the asset at time t, and $E_t(\cdot) = E(\cdot \mid I_t)$ is the conditional expectation given the information set I_t available at time t. Then

$$E[m(X_{t+1}, \theta)] = E\left\{ \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} Y_{t+1} - P_t \right] Z_t \right\} = 0$$

where $X_{t+1} = (c_t, c_{t+1}, P_t, Y_{t+1}, Z_t)$, Z_t is the *instrumental variable*, which is a function of I_t . θ denotes the parameter in $u(\cdot)$ and the discount factor β .

• **GMM:** Suppose the parameter $\theta \in \Theta$ is a $p \times 1$ vector. We can use q > p constraints and obtain the estimator from solving the optimization problem

$$\widehat{\theta} = \arg\min_{\theta \in \Theta} \{ \widehat{m}_n(\theta)' \, \widehat{W}_n^{-1} \, \widehat{m}_n(\theta) \},$$

where $\widehat{m}_n(\theta) = \frac{1}{n} \sum_{i=1}^n m(X_i, \theta), \ \widehat{W}_n \xrightarrow{p} W$, a positive definite matrix.

• Remarks:

- We can choose $\widehat{W}_n \equiv I_q$, the identity matrix.
- There exists some optimal choice of Σ , which can give an asymptotically most efficient estimator.
- MME is a special case of GMM estimator with q = p constraints.
- Under certain conditions, MLE can also be considered as a special case of GMM estimator with q = p constraints (FOC).

• Remarks:

- In GMM, it does not require any knowledge on the functional form of the population distribution $f(x; \theta)$.
- GMM estimator may be less efficient than MLE if MLE assumes the correct functional form of $f(x;\theta)$.

• Theorem: Existence of GMM Estimator. Suppose that with probability one, $\widehat{m}_n(\theta)'\widehat{W}_n\widehat{m}_n(\theta)$ is continuous over Θ and Θ is a compact set. Then there exists a global minimizer $\widehat{\theta}$ that solves the problem

$$\widehat{\theta} = \arg\min_{\theta \in \Theta} \{ \widehat{m}_n(\theta)' \widehat{W}_n^{-1} \widehat{m}_n(\theta) \}.$$

Assumptions:

- A.1: X_1, X_2, \cdots are i.i.d. from some population distribution.
- **A.2:** The $q \times 1$ vector function $m(x, \theta)$ is continuous in (x, θ) and the absolute value of each dimension is bounded by a nonnegative function b(x) with $E[b(X)] < \infty$, where the expectation $E(\cdot)$ is taken under the unknown population distribution.
- **A.3:** There exists a **unique** $p \times 1$ parameter value θ_0 in the interior of Θ such that $E[m(X_i, \theta_0)] = 0$, where the expectation $E(\cdot)$ is taken under the population distribution.
- **A.4:** Θ is closed and bounded (Θ is a compact set).

- **A.5:** $\widehat{W}_n \xrightarrow{a.s.} W$, where \widehat{W}_n^{-1} is bounded, \widehat{W}_n and Σ are positive definite and nonsingular.
- **A.6:** The parameter value θ_0 is an interior point of the parameter space Θ .

• A.7:

- (1) The functions $\frac{\partial}{\partial \theta} m(x;\theta)$, $\frac{\partial^2}{\partial \theta^2} m(x;\theta)$ are continuous in (x,θ) , and the absolute values of their component functions are bounded by a nonnegative function b(x) with $\int_{-\infty}^{\infty} b(x) f(x;\theta_0) dx < \infty$.
- (2) The $q \times q$ matrix $V \stackrel{\triangle}{=} E[m(X_1, \theta_0)'m(X_1, \theta_0)]$ is bounded and nonsingular.
- (3) The $q \times p$ matrix $G(\theta_0) \stackrel{\triangle}{=} E\left[\frac{\partial}{\partial \theta} m(x; \theta_0)\right]$ is of full rank.

- Theorem: Consistency of GMM. Suppose Assumptions A.1-A.5 hold, $\widehat{\theta}_n$ is the GMM estimation of θ . Then $\widehat{\theta}_n \xrightarrow{a.s.} \theta_0$.
- Theorem: Asymptotic Normality. Suppose Assumptions A.1-A.7 hold, $\widehat{\theta}_n$ is the GMM estimation of θ . Then

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, \Psi V \Psi'),$$

where $V = E[m(X_1, \theta_0)m(X_1, \theta_0)']$, $\Phi = [G(\theta_0)'W^{-1}G(\theta_0)]^{-1}G(\theta_0)'W^{-1}$. Moreover, if W = V, then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, [G(\theta_0)V^{-1}G(\theta_0)']^{-1}).$$

8.5 Asymptotic Properties of GMM

• Theorem: Asymptotic Efficiency. Put $\Omega_0 = [G(\theta_0)V^{-1}G(\theta_0)']^{-1}$. Then

$$\Omega - \Omega_0$$
 is positive semi-definite (PSD)

for all finite and nonsingular matrix W.

8.6 Mean Squared Error Criterion

• **Definition:** Mean Squared Error(MSE). Let θ be a population parameter. The MSE of an estimator $\hat{\theta}_n = \hat{\theta}(\mathbf{X}^n)$ of the parameter θ is defined as

$$MSE(\hat{\theta}_n) = E_{\theta}(\hat{\theta}_n - \theta)^2,$$

where $E_{\theta}(\cdot)$ denotes the expectation which is taken under the joint distribution $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$ of the random sample \mathbf{X}^n , or equivalently under the sampling distribution of \mathbf{X}^n .

• **Definition:** Bias. The bias of a point estimator $\hat{\theta}_n$ of parameter θ is defined as

$$Bias_{\theta}(\hat{\theta}_n) = E_{\theta}(\hat{\theta}_n) - \theta.$$

An estimator $\hat{\theta}_n$ for θ is called an *unbiased* estimator for θ if the bias $E_{\theta}(\hat{\theta}_n) - \theta = 0$.

8.6 Mean Squared Error Criterion

- **Example.** Suppose \mathbf{X}^n is an IID random sample from some population with mean μ and variance σ^2 . Find an unbiased estimator for $var_{\theta}(\bar{X}_n)$.
- Theorem: MSE Decomposition.

$$E_{\theta}(\hat{\theta}_n - \theta)^2 = \operatorname{var}_{\theta}(\hat{\theta}_n) + [\operatorname{Bias}_{\theta}(\hat{\theta})]^2.$$

• **Definition: Relative Efficiency.** An estimator $\hat{\theta}_n$ for parameter θ is said to be more efficient than another estimator $\tilde{\theta}_n$ for the same parameter in terms of MSE if

$$MSE(\hat{\theta}_n) \le MSE(\tilde{\theta}_n).$$

• **Example.** Let (X_1, X_2) be an IID random sample. Two estimators for μ are $\hat{\mu}_1 = \bar{X}_n = \frac{1}{2}(X_1 + X_2)$, $\hat{\mu}_2 = \frac{1}{3}(X_1 + 2X_2)$. Which estimator is better?

8.7 Best Unbiased Estimators

- **Problem:** We want to find the best estimator that has the smallest MSE.
 - Unfortunately, such a best estimator is very difficult to obtain, because the class of estimators we have to compare is very huge.
 - For simplicity, we focus on the class of all *unbiased estimators* and find the best estimator within this class.
- Definition: Generalized Unbiased Estimator. $\hat{\gamma}_n = \gamma(\mathbf{X}^n)$ is an unbiased estimator for the parameter $\tau(\theta)$ if

$$E_{\theta}(\hat{\gamma}_n) = \tau(\theta)$$
, for all $\theta \in \Theta$.

When $\tau(\theta) = \theta$, we return to the previous definition of the unbiased estimator for parameter θ .

• **Remark:** If $\hat{\gamma}_n$ is an unbiased estimator of θ , $\tau(\hat{\gamma}_n)$ is **not** necessary to be an unbiased estimator of $\tau(\theta)$.

8.7 Best Unbiased Estimators

- Definition: Uniform Best Unbiased Estimator. Let Γ be a class of unbiased estimators of parameter $\tau(\theta)$, where $\theta \in \Theta$, Θ is a known parameter space. An estimator $\hat{\gamma}_n \in \Gamma$ is a uniformly best unbiased estimator for $\tau(\theta)$ within the class Γ if
 - (1) $E_{\theta}(\hat{\gamma}_n^*) = \tau(\theta)$ for all $\theta \in \Theta$,
 - (2) For any estimator $\hat{\gamma}_n \in \Gamma$ of $\hat{\gamma}_n$, $\operatorname{var}_{\theta}(\hat{\gamma}_n^*) \leq \operatorname{var}_{\theta}(\hat{\gamma}_n)$ for all $\theta \in \Theta$.

• Remarks:

- $-\hat{\gamma}_n^*$ is the "best" in terms of variance (or MSE), it is also called the uniform minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$.
- In some cases, we can use some other criteria instead of MSE to measure the performance of estimators.

8.7 Best Unbiased Estimators

• **Example.** Let \mathbf{X}^n be a random sample from a $N(\mu, \sigma^2)$ distribution. The sample variance $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ and the MLE estimator $\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ are two estimators for σ^2 . Which is more efficient in terms of MSE?

• Solution.

$$MSE(S_n^2) = E_{\theta}(S_n^2 - \sigma^2)^2 = var_{\theta}(S_n^2) + [Bias_{\theta}(S_n^2)]^2 = \frac{2\sigma^4}{n-1}.$$

$$MSE(\hat{\sigma}_n^2) = (1 - \frac{1}{n})^2 \frac{2\sigma^4}{n - 1} + \frac{\sigma^4}{n^2} = \frac{n - 1}{n} \frac{2n - 1}{2n} \frac{2\sigma^4}{n - 1}$$
$$< \frac{2\sigma^4}{n - 1} = MSE(S_n^2).$$

• Theorem: Cramer-Rao Lower Bound; Cramer-Rao Inequality; Information Inequality. Let \mathbf{X}^n be a random sample with joint PMF/PDF $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$, and let $\hat{\gamma}_n = \gamma(\mathbf{X}^n)$ be any estimator of parameter $\tau(\theta)$ where $E_{\theta}(\hat{\gamma}_n)$ is a differentiable function of θ . Suppose the joint PMF/PDF $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$ of the random sample \mathbf{X}^n satisfies the condition that

$$\frac{d}{d\theta} \int_{\mathcal{R}^n} h(\mathbf{x}^n) f_{\mathbf{X}^n}(\mathbf{x}^n, \theta) d\mathbf{x}^n = \int_{\mathcal{R}^n} h(\mathbf{x}^n) \frac{\partial f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)}{\partial \theta} d\mathbf{x}^n,$$

for any function $h: \mathbb{R}^n \to \mathbb{R}$ with $E_{\theta}|h(\mathbf{X}^n)| < \infty$, where $E_{\theta}(\cdot)$ is taken over $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$. Then for all n > 0 and all $\theta \in \Theta$,

$$\operatorname{var}_{\theta}(\hat{\gamma}_n) \ge B_n(\theta) \equiv \frac{\left[\frac{dE_{\theta}(\hat{\gamma}_n)}{d\theta}\right]^2}{E_{\theta}\left[\frac{\partial \ln f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)}{\partial \theta}\right]^2}.$$

In particular, when $E_{\theta}(\hat{\gamma}_n)$ is unbiased for parameter $\tau(\theta)$, we have

$$B_n(\theta) = \frac{[\tau'(\theta)]^2}{E_{\theta}\left[\frac{\partial \ln f_{\mathbf{X}^n(\mathbf{x}^n,\theta)}}{\partial \theta}\right]^2}.$$

• Theorem: Cramer-Rao Lower Bound Under IID Random Samples. Let \mathbf{X}^n be an IID random sample from population PMF/PDF $f(x,\theta)$, and let $\hat{\gamma}_n = \gamma(\mathbf{X}^n)$ be any estimator of $\tau(\theta)$, where $E_{\theta}(\gamma(\mathbf{X}^n))$ is a differentiable function of $\theta \in \Theta$. Suppose

$$\frac{d}{d\theta} \int_{-\infty}^{\infty} h(x) f(x,\theta) dx = \int_{-\infty}^{\infty} h(x) \frac{\partial f(x,\theta)}{\partial \theta} dx$$

for all h(x) with $E_{\theta}|h(X)| < \infty$. Then for all n,

$$\operatorname{var}_{\theta}(\hat{\gamma}_n) \ge B_n(\theta) \stackrel{\triangle}{=} \frac{\left[\frac{d}{d\theta} E_{\theta}(\hat{\gamma}_n)\right]^2}{nI(\theta)},$$

where $I(\theta) = E_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1; \theta) \right]$ is called the *Fisher information matrix*. When $E_{\theta}(\hat{\gamma}_n)$ is unbiased for $\tau(\theta)$, then

$$\geq B_n(\theta) = \frac{[\tau'(\theta)]^2}{nE_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1; \theta)\right]^2} = \frac{[\tau'(\theta)]^2}{nI(\theta)},$$

• Proof.

$$-\operatorname{var}_{\theta}(\hat{\gamma}_n) \geq \frac{\operatorname{cov}_{\theta}^2[\hat{\gamma}_n, \frac{\partial}{\partial \theta} \log f(\boldsymbol{X}_n; \theta)]}{\operatorname{var}_{\theta}[\frac{\partial}{\partial \theta} \log f(\boldsymbol{X}_n; \theta)]} \text{ (why?)}.$$

- Because

$$E_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1; \theta) \right] = \int \left[\frac{\partial}{\partial \theta} \log f(x; \theta) \right] f(x; \theta) dx$$
$$= \int \left[\frac{\partial}{\partial \theta} f(x; \theta) \right] dx = \frac{\partial}{\partial \theta} \int f(x; \theta) dx = 0,$$

SO

$$\operatorname{var}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(\boldsymbol{X}_n; \theta) \right] = n \operatorname{var}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1; \theta) \right] = n E_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1; \theta) \right]^2.$$

$$-\operatorname{cov}_{\theta}\left[\hat{\gamma}_{n}, \frac{\partial}{\partial \theta} \log f(\boldsymbol{X}_{n}; \theta)\right] = E_{\theta}\left[\hat{\gamma}_{n} \frac{\partial}{\partial \theta} \log f(\boldsymbol{X}_{n}; \theta)\right] = \frac{d}{d\theta} E_{\theta}(\hat{\gamma}_{n}).$$

- Hence,
$$\operatorname{var}_{\theta}(\hat{\gamma}_n) \geq B_n(\theta)$$
.

• Remarks:

- Usually, $\operatorname{var}_{\theta}(\hat{\gamma}_n) = B_n(\theta)$ does not imply that $\hat{\gamma}_n$ is the estimator with the smallest variance, because the value of $B_n(\theta)$ depends on $\hat{\gamma}_n$.
- In the class of unbiased estimators, $B_n(\theta)$ does not depend on $\hat{\gamma}_n$. If $\hat{\gamma}_n$ is an unbiased estimator of $\tau(\theta)$ and $MSE_{\hat{\gamma}_n}(\theta) = var_{\theta}(\hat{\gamma}_n) = B_n(\theta)$, then $\hat{\gamma}_n$ is UMVUE.
- For biased estimator of $\tau(\theta)$, it is possible that the MSE is less than $B_n(\theta) = \frac{[\tau'(\theta)]^2}{nI(\theta)}$.
- MLE approximately achieves the Cramer-Rao lower bound of unbiased estimators when n is large. (MLE may be biased.)

- **Example:** Let X_1, \dots, X_n be an i.i.d random sample from Poisson(λ) distribution with pmf $f(x; \lambda) = e^{-\lambda} \lambda^x / x!$, $x = 0, 1, \dots$. (For Poisson(λ) distribution, $E_{\lambda}(X_1) = \lambda$, $E_{\lambda}(X_1^2) = \lambda^2 + \lambda$.)
 - Consider the unbiased estimator \overline{X}_n of λ , we have $\operatorname{Var}_{\lambda}(\overline{X}_n) = \lambda/n$.
 - The Cramer-Rao lower bound of unbiased estimators is

$$\frac{1}{nI(\lambda)} = \frac{1}{nE_{\lambda} \left[\frac{\partial}{\partial \lambda} \log f(X_1; \lambda)\right]^2}$$

$$= \frac{1}{nE_{\lambda} \left[\frac{X_1}{\lambda} - 1\right]^2}$$

$$= \lambda/n.$$

 $-\overline{X}_n$ is UMVUE of λ .

• **Example:** Let X_1, \dots, X_n be an i.i.d. $N(\mu, \sigma^2)$ random sample. Show that S_n^2 does not attain the Carmer-Rao lower bound.

• Solution:

- $\operatorname{var}(S_n^2) = 2\sigma^4/(n-1).$ $\log f(x,\theta) = -\log \sqrt{2\pi} \frac{1}{2}\log(\sigma^2) \frac{(x-\mu)^2}{2\sigma^2}.$ $\frac{\partial}{\partial(\sigma^2)}\log f(x,\theta) = -\frac{1}{2\sigma^2} + \frac{(x-\mu)^2}{2\sigma^4}.$
- The Cramer-Rao lower bound of unbiased estimators of σ^2 is

$$\frac{1}{nE_{\theta} \left[\frac{\partial}{\partial (\sigma^2)} \log f(X_1; \theta) \right]^2} = \frac{2\sigma^4}{n}.$$

 $-\operatorname{Var}(S_n^2) = \frac{2\sigma^4}{n-1} > B_n(\theta)$. Because S_n^2 is UMVUE of σ^2 (it is a function of complete statistic), the Carmer-Rao lower bound is not attainable in this case.

• **Theorem.** Suppose $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$ is the joint PMF/PDF of the random sample \mathbf{X}^n and $\hat{\gamma}_n = \gamma(\mathbf{X}^n)$ is an unbiased estimator for parameter $\tau(\theta)$, where $f_{\mathbf{X}^n}(\mathbf{x}^n, \theta)$ and $\hat{\gamma}_n$ satisfy the conditions in the Cramer-Rao lower bound theorem. Then the estimator $\hat{\gamma}_n$ attains the Cramer-Rao lower bound if and only if

$$\hat{\gamma} - \tau(\theta) = a(\theta) \frac{\partial \ln L_n(\theta | \mathbf{X}^n)}{\partial \theta}$$

for some function $a:\Theta\to\mathbb{R}$.

• **Theorem: Rao-Blackwell.** Let $\hat{\gamma}$ be any unbiased estimator of $\tau(\theta)$, and let $T_n = T(\mathbf{X}^n)$ be a sufficient statistic for θ . Define $\phi(T_n) = E_{\theta}(\hat{\gamma} \mid T_n)$, then $\phi(T_n)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

• Proof.

- Because T_n is a sufficient statistic for θ , $P(X_1, \dots, X_n \mid T_n)$ does not depend on θ . Hence $\phi(T_n) = E_{\theta}(\hat{\gamma} \mid T_n)$ also does not depend on θ , it is an estimator.
- Because $E_{\theta}[\phi(T_n)] = E_{\theta}[E(\hat{\gamma} \mid T_n)] = E_{\theta}(\hat{\gamma}) = \tau(\theta), \ \phi(T_n)$ is unbiased.
- Because

$$\operatorname{var}_{\theta}(\hat{\gamma}) = \operatorname{var}_{\theta}[E(\hat{\gamma} \mid T_n)] + E_{\theta}[\operatorname{var}(\hat{\gamma} \mid T_n)],$$

so
$$\operatorname{var}_{\theta}[\phi(T_n)] \leq \operatorname{var}_{\theta}(\hat{\gamma}).$$

• Remarks: If the best unbiased estimator exists, it must be a function of any sufficient statistic.

- **Definition:** Complete Statistic. Statistic $T_n = T(X^n)$ is called a complete statistic for distribution family $f(x,\theta)$ if $E_{\theta}[g(T_n)] = 0$ for all $\theta \in \Theta$ implies $P_{\theta}[g(T_n) = 0] = 1$ for all $\theta \in \Theta$.
- Theorem: Complete Statistics in the Exponential Family. Let \boldsymbol{X}^n be IID random variables from an exponential family with PMF/PDF of the form

$$f(x,\theta) = h(x)c(\theta) \exp \left\{ \sum_{j=1}^{k} w_j(\theta)t_j(x) \right\}, \text{ for } -\infty < x < \infty,$$

where $\theta = (\theta_1, \dots, \theta_k)'$. Then the statistic

$$T(X^n) = \left(\sum_{i=1}^n t_1(X_i), \cdots, \sum_{i=1}^n t_k(X_i)\right)$$

is complete if $\{(w_1(\theta), \cdots, w_k(\theta)) : \theta \in \Theta\}$ contains an open set in \mathbb{R}^k .

- Theorem: Let T_n be a complete sufficient statistic for a parameter θ , and let $\phi(T_n)$ be a function of T_n . Then $\phi(T_n)$ is the uniform best unbiased estimator (or UMVUE) of $\tau(\theta) = E_{\theta}[\phi(T)]$.
- **Remark:** If $\hat{\gamma}$ is an unbiased estimator of $\tau(\theta)$ and T_n is a complete sufficient statistic for a parameter θ , then $E(\hat{\gamma} \mid T_n)$ is the uniform best unbiased estimator of $\tau(\theta)$.

- Example: Suppose X_1, \dots, X_n are i.i.d. $\sim N(\mu, \sigma^2)$.
 - $-\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$ is a complete sufficient statistic for (μ, σ^{2}) .
 - $-\overline{X}_n$ is the UMVUE of μ .
 - $-S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i \overline{X}_n \right)^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 n \overline{X}_n^2 \right) \text{ is the UMVUE}$ of σ^2 . However, S_n^2 is not the best among all estimators.
 - $-\operatorname{MSE}_{S_n^2}(\sigma^2) = E\left(S_n^2 \sigma^2\right)^2 = \frac{2\sigma^4}{n-1}. \left(\frac{n-1}{\sigma^2}S_n^2 \text{ follows a } \chi_{n-1}^2 \text{ distribution.}\right)$
 - Let $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$. Then

$$MSE_{\widehat{\sigma^2}}(\sigma^2) = Bias_{\widehat{\sigma^2}}^2(\sigma^2) + Var(\widehat{\sigma^2})$$

$$= \frac{1}{n^2}\sigma^4 + \left(\frac{n-1}{n}\right)^2 \frac{2\sigma^4}{n-1}$$

$$= \frac{2n-1}{n^2}\sigma^4 < MSE_{S_n^2}(\sigma^2).$$

- **Example:** Let X_1, \dots, X_n be i.i.d. random variables from $N(\theta, 1)$. Then \overline{X}_n is an unbiased estimator of θ .
 - $-\operatorname{Var}_{\theta}(\overline{X}_n) = 1/n.$
 - Let $\phi = E_{\theta}(\overline{X}_n \mid X_1)$, then $\phi = \frac{1}{n}X_1 + \frac{n-1}{n}\theta$.
 - $-E(\phi) = \theta$, $Var_{\theta}(\phi) = 1/n^2$.
 - However, ϕ is not an estimator because it depends on θ .

• Conlusion

- **Problem:** How to evaluate the performance of different estimators?
- **Definition:** Loss Function. A loss function $\mathcal{L}(\widehat{\theta}, \theta)$ is a nonnegative function that measures the difference between the estimated value $\widehat{\theta}$ and the true value θ . Usually, $\mathcal{L}(\widehat{\theta}, \theta)$ is a non-decreasing function of $|\widehat{\theta} \theta|$.
- **Example:** Suppose $\widehat{\theta} = T(X_1, \dots, X_n)$. The loss function can be
 - Absolute error loss:

$$\mathcal{L}[T(X_1,\cdots,X_n),\theta]=|T(X_1,\cdots,X_n)-\theta|.$$

- Squared error loss:

$$\mathcal{L}[T(X_1,\cdots,X_n),\theta]=[T(X_1,\cdots,X_n)-\theta]^2.$$

• **Definition: Risk Function.** The performance of an estimator $T(X_1, \dots, X_n)$ can be evaluated as the average loss

$$R_{T}(\theta) = E_{\theta}\{\mathcal{L}[T(X_{1}, \dots, X_{n}), \theta]\}$$

$$= \int \mathcal{L}[T(x_{1}, \dots, x_{n}), \theta] dF(x_{1}, \dots, x_{n}; \theta)$$

$$= \begin{cases} \sum_{x_{1}, \dots, x_{n}} \mathcal{L}[T(x_{1}, \dots, x_{n}), \theta] f(x_{1}, \dots, x_{n}; \theta) & \text{for d.r.v.,} \\ \int \dots \int \mathcal{L}[T(x_{1}, \dots, x_{n}), \theta] f(x_{1}, \dots, x_{n}; \theta) dx_{1} \dots dx_{n}, & \text{for c.r.v..} \end{cases}$$

 $R_T(\theta)$ is called a risk function.

• **Definition:** The estimator T_1 is R-dominating estimator T_2 , or is R-better than T_2 , if we have

$$R_{T_1}(\theta) \leq R_{T_2}(\theta)$$
 for all $\theta \in \Theta$.

• **Remark:** There are cases that two estimators are *not comparable*: the two risk functions cross each other, *i.e.*, one is below the other for some θ , and above it for some other θ .

• **Definition:** The mean squared error (MSE) of an estimator T is

$$MSE_T(\theta) = E_{\theta}[T(X_1, \cdots, X_n) - \theta]^2.$$

• **Definition:** The difference

$$B_T(\theta) = E_{\theta}(T) - \theta$$

is called the *bias* of estimator T. An estimator T such that $B_T(\theta) = 0$ for every θ will be called *unbiased*.

• Theorem: MSE Decomposition. The mean squared error of an estimator is the sum of its variance and square of the bias, that is

$$MSE_T(\theta) = Var_{\theta}(T) + B_T^2(\theta).$$

• **Example:** Suppose that we take a random sample X_1, \dots, X_n from the $U[0, \theta]$ distribution. Find the MSE of different estimators of θ .

• ANS:

$$-X_{(k)}/\theta \sim \text{Beta}(k, n - k + 1).$$

$$-T_1 = X_{(n)}, \text{ then } E_{\theta}(T_1) = \frac{n\theta}{n+1}, \text{ and}$$

$$\text{Var}_{\theta}(T_1) = \frac{n\theta^2}{(n+1)^2(n+2)},$$

$$\text{MSE}_{T_1}(\theta) = \frac{2\theta^2}{(n+1)(n+2)}.$$

$$-T_2 = \frac{n+1}{n}X_{(n)}$$
, then $E_{\theta}(T_2) = \theta$, and

$$MSE_{T_2}(\theta) = Var_{\theta}(T_2) = \frac{\theta^2}{n(n+2)}.$$

 T_2 is MSE-better than T_1 .

•
$$-T_3 = X_{(1)} + X_{(n)}$$
, then $E_{\theta}(T_3) = \theta$, and
$$MSE_{T_3}(\theta) = Var_{\theta}(T_3)$$

$$= Var(X_{(1)}) + Var(X_{(n)}) + 2Cov(X_{(1)}, X_{(n)})$$

$$= \frac{n\theta^2}{(n+1)^2(n+2)} + \frac{n\theta^2}{(n+1)^2(n+2)} + 2\frac{1}{n}\frac{n\theta^2}{(n+1)^2(n+2)}$$

$$= \frac{2\theta^2}{(n+1)(n+2)}.$$

$$-T_4 = (n+1)X_{(1)}$$
, then $E_{\theta}(T_4) = \theta$, and
$$\mathrm{MSE}_{T_4}(\theta) = \mathrm{Var}_{\theta}(T_4) = \frac{n\theta^2}{n+2}.$$

•
$$-T_5 = 2\overline{X}_n$$
, then $E_{\theta}(T_5) = \theta$, and

$$MSE_{T_5}(\theta) = Var_{\theta}(T_5) = \frac{\theta^2}{3n}.$$

$$-T_6 = \frac{n+2}{n+1}X_{(n)}$$
, then $E_{\theta}(T_6) = \frac{n(n+2)\theta}{(n+1)^2}$, and

$$\operatorname{Var}_{\theta}(T_6) = \frac{n(n+2)\theta^2}{(n+1)^4},$$

$$MSE_{T_6}(\theta) = \frac{\theta^2}{(n+1)^2}.$$

- $-T_6$ is MSE-better than T_1, T_2, \cdots, T_5 .
- **Remark:** Unbiased estimators are not necessary MSE-better than biased estimators.

- Bayes Estimators: In classical statistical methods (for example, in MME and MLE), θ is considered as a fixed value in the parameter space Θ . In the Bayesian method, the parameter θ is considered as a random variable $\theta: S \to \Theta$, following some distribution $\pi(\theta)$. Here S is the sample space.
- **Remark:** Suppose $\pi(\theta)$ is the *prior* distribution of the parameter θ . Given the i.i.d. observations x_1, \dots, x_n from the population $f(x \mid \theta)$, the conditional pdf/pmf of θ given x_1, \dots, x_n , referred to as the *posterior* distribution, is

$$f(\theta \mid x_1, \dots, x_n) = \frac{f(x_1, \dots, x_n, \theta)}{f(x_1, \dots, x_n)}$$
$$= \frac{\pi(\theta) \prod_{i=1}^n f(x_i \mid \theta)}{\int_{\Theta} \pi(\theta) \prod_{i=1}^n f(x_i \mid \theta) d\theta}.$$

• **Example:** Suppose random variables X_1, \dots, X_n are from independent Bernoulli trials with the same probability of success θ , and suppose θ follows a beta distribution with parameters α and β , that is,

$$\pi(\theta) = C\theta^{\alpha - 1}(1 - \theta)^{\beta - 1}, \quad 0 < \theta < 1,$$

where C is the normalizing constant. If a realization x_1, \dots, x_n is observed, find the posterior distribution of θ .

• ANS:

- We have

$$f(x_1, \dots, x_n, \theta) = C\theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i}.$$

- Conditional on x_1, \dots, x_n , the posterior distribution of θ follows a beta distribution with parameters $\alpha + \sum_{i=1}^{n} x_i$ and $\beta + n - \sum_{i=1}^{n} x_i$.

• Average Risk: In Bayesian methods, the performance of an estimator $\widehat{\theta} = T(\boldsymbol{X}_n) = T(X_1, \dots, X_n)$ can be measured by the average risk

$$E[R_T(\theta)] = \int_{\Theta} R_T(\theta) \pi(\theta) d\theta.$$

• Remarks:

- Estimators are always comparable under Bayesian setup because the average risk is a real value.
- We can rewrite the average risk as

$$\int_{\Theta} R_{T}(\theta) \pi(\theta) d\theta = \int_{\Theta} \left[\int_{\mathcal{X}} L(T, \theta) f(\boldsymbol{x}_{n} \mid \theta) d\boldsymbol{x}_{n} \right] \pi(\theta) d\theta$$
$$= \int_{\mathcal{X}} \left[\int_{\Theta} L(T, \theta) f(\theta \mid \boldsymbol{x}_{n}) d\theta \right] f(\boldsymbol{x}_{n}) d\boldsymbol{x}_{n},$$

where $L(T, \theta)$ is the loss function. $\int_{\Theta} L(T, \theta) f(\theta \mid \boldsymbol{x}_n) d\theta$ is called the posterior expected loss.

- **Theorem:** Consider point estimator T for a real value θ .
 - For squared error loss, the posterior expected loss is

$$\int_{\Theta} (T - \theta)^2 f(\theta \mid \boldsymbol{x}_n) d\theta = E[(T - \theta)^2 \mid \boldsymbol{X}_n = \boldsymbol{x}_n],$$

it is minimized for any given \boldsymbol{x} if $T = E(\theta \mid \boldsymbol{X}_n)$. So $T = E(\theta \mid \boldsymbol{X}_n)$ is the estimator with the smallest average risk.

- For absolute error loss, the posterior expected loss is

$$\int_{\Theta} |T - \theta| f(\theta \mid \boldsymbol{x}_n) d\theta = E[|T - \theta| \mid \boldsymbol{X}_n = \boldsymbol{x}_n].$$

The posterior expected loss and the average risk are minimized if T is the median of $f(\theta \mid \mathbf{X}_n)$.

Additional 8.9 Interval Estimation: Bayesian Intervals

• **Bayesian Intervals:** Suppose given the observation x_1, \dots, x_n , the posterior density of θ is $\pi(\theta \mid x_1, \dots, x_n)$. We can compute the probability that θ lies between two values a and b as

$$P(a \le \theta \le b \mid x_1, \cdots, x_n) = \int_a^b \pi(\theta \mid x_1, \cdots, x_n) d\theta.$$

Additional 8.9 Interval Estimation: Bayesian Intervals

• **Example:** Suppose that we observe n = 3 Bernoulli trials with unknown probability of success θ , where θ has the prior distribution beta(2,2). Assume that we record 2 successes. Then the posterior density is

$$C\theta^3(1-\theta)^2 = 60\theta^3 - 120\theta^4 + 60\theta^5, \quad 0 < \theta < 1.$$

The probability that the true value of θ lies in interval (0, 0.2) equals

$$\int_0^{0.2} 60\theta^3 - 120\theta^4 + 60\theta^5 d\theta = 0.017.$$

• **Remark:** For a given probability p, there are many different choices of Bayesian interval (a, b) such that $P(a \le \theta \le b) = p$. Usually, we want the Bayesian interval with the shortest length.

Additional 8.9 Interval Estimation: Confidence Intervals

• Definition: Confidence Intervals (CI). A pair of statistics $L = L(\mathbf{X}_n)$, $U = U(\mathbf{X}_n)$ is an level $1 - \alpha$ confidence interval for the parameter θ if for all $\theta \in \Theta$,

$$P_{\theta}[L(\boldsymbol{X}_n) \leq \theta \leq U(\boldsymbol{X}_n)] = 1 - \alpha.$$

Additional 8.9 Interval Estimation: Confidence Intervals

• Remarks:

- $-\theta$ is a fixed (nonstochastic) parameter, the end points of the interval $L(\boldsymbol{X}_n)$ and $U(\boldsymbol{X}_n)$ are random.
- When a realization $\boldsymbol{x}_n = (x_1, \dots, x_n)$ is observed, θ is either in $[L(\boldsymbol{x}_n), U(\boldsymbol{x}_n)]$ or not. There is no uncertainty.
- On the contrary, Bayesian setup allows us to say that θ is inside $[L(\boldsymbol{x}_n), U(\boldsymbol{x}_n)]$ with a certain probability for a given realization \boldsymbol{x}_n .
- For a given confidence level 1α , there are many different level 1α confidence intervals. Usually, we want to find the confidence interval with the shortest length.

• **Definition:** A random variable W is called *pivotal* for θ if it depends on the sample $\mathbf{X}_n = (X_1, \dots, X_n)$ and on the unknown parameter θ , while its distribution does not depend on θ .

• General steps of finding the confidence interval:

- Find a pivotal random variable $W(\boldsymbol{X}_n; \theta)$.
- Determine the values q_{α}^* and q_{α}^{**} (not depend on θ) such that

$$P[q_{\alpha}^* \le W(\boldsymbol{X}_n; \theta) \le q_{\alpha}^{**}] = 1 - \alpha.$$

- Convert the inequality $q_{\alpha}^* \leq W(\boldsymbol{X}_n; \theta) \leq q_{\alpha}^{**}$ into the form

$$L(\boldsymbol{X}_n; q_{\alpha}^*, q_{\alpha}^{**}) \le \theta \le U(\boldsymbol{X}_n; q_{\alpha}^*, q_{\alpha}^{**}).$$

• **Example:** Consider the random sample X_1, \dots, X_n from the distribution $N(\mu, \sigma^2)$, where μ is the unknown parameter while σ^2 is known. Find a $(1 - \alpha)$ -level confidence interval for μ .

• ANS:

- Because $\overline{X}_n \mu$ follows a $N(0, \sigma^2/n)$ distribution, it is a pivotal random variable.
- We have

$$P\left[-z_{\alpha/2} \le \frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu) \le z_{\alpha/2}\right] = 1 - \alpha,$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ -quantile of N(0,1).

- Therefore,

$$P\left[\overline{X}_n - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} \le \mu \le \overline{X}_n + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right] = 1 - \alpha.$$

• **Example:** Let X_1, \dots, X_n be a random sample from the distribution $N(\mu, \sigma^2)$. Find a $(1 - \alpha)$ -level confidence interval for σ^2 under the cases (1) μ is known; (2) μ is unknown.

• ANS:

- (1) When μ is known, the pivotal random variable is

$$U = \sum_{i=1}^{n} (X_i - \mu)^2 / \sigma^2,$$

which follows a chi squared distribution with degrees of freedom n. Thus

$$P\left[\chi_{1-\alpha/2,n}^2 \le \sum_{i=1}^n (X_i - \mu)^2 / \sigma^2 \le \chi_{\alpha/2,n}^2\right] = 1 - \alpha,$$

where $\chi^2_{\alpha,n}$ is the upper α -quantile of $\chi^2_{\alpha,n}$.

• Therefore the $(1 - \alpha)$ -level confidence interval is

$$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\alpha/2,n}^2} \le \sigma^2 \le \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\alpha/2,n}^2}.$$

- (2) When μ is unknown, the pivotal random variable is

$$V = \sum_{i=1}^{n} (X_i - \overline{X}_n)^2 / \sigma^2,$$

which follows a chi squared distribution with degrees of freedom n-1. The $(1-\alpha)$ -level confidence interval is

$$\frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{\chi_{\alpha/2, n-1}^2} \le \sigma^2 \le \frac{\sum_{i=1}^{n} (X_i - \overline{X}_n)^2}{\chi_{1-\alpha/2, n-1}^2}.$$

- Example: Construct asymptotic confidence interval (or hypothesis testing) using the asymptotic normality of MLE.
 - Let $\widehat{H}_n(\widehat{\theta}_n) = \frac{1}{n} \sum_{i=1}^n \frac{\partial^2}{\partial \theta^2} \log[f(X_i, \widehat{\theta}_n)]$, we can show that $\widehat{H}_n(\widehat{\theta}_n) \stackrel{p}{\to} H(\theta)$.
 - According to the asymptotic normality of MLE,

$$\sqrt{-n\widehat{H}_n(\widehat{\theta}_n)}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, 1).$$

- Let $z_{\alpha/2}$ be the upper $\alpha/2$ -quantile of N(0,1). As $n \to \infty$,

$$P\left(-z_{\alpha/2} < \sqrt{-n\widehat{H}_n(\widehat{\theta}_n)}(\widehat{\theta}_n - \theta_0) < z_{\alpha/2}\right) \to 1 - \alpha,$$

which can be rewritten as

$$\lim_{n\to\infty} P\left(\widehat{\theta}_n - \frac{z_{\alpha/2}}{\sqrt{-n\widehat{H}_n(\widehat{\theta}_n)}} < \theta_0 < \widehat{\theta}_n + \frac{z_{\alpha/2}}{\sqrt{-n\widehat{H}_n(\widehat{\theta}_n)}}\right) \to 1 - \alpha.$$