

Security in Industry – When is Good Good Enough?

28 November 2013 Mathias Wagner, Fellow, Chief Security Technologist

NXP Semiconductors

Content

- Introduction
- When is Good Good Enough?
 - Common Criteria a Primer
 - JHAS JIL Hardware Attack Subgroup
 - Strategies
- Summary

Introduction

Security Landscape...

Value of an Attack Depends on Market

Security Roadmap

Attacks on Smart Cards

And what is next...?

How Many Scientific Papers are out there?

- Academic papers published on attacks (& countermeasures) in the field of secure embedded devices...
- A recent survey showed that
 - In 2000 about 20 papers
 - In 2010 about 100 papers
- Estimate as of beginning of 2012:
 - In excess of 700 papers have been published since '96!!!
- ▶ OK, not all are new ②, and there is a lot of redundancy, but still!

Security is a Moving Target

- There is no 100% security systems can always be successfully attacked, but
 - What type of attackers do I need to consider?
 - How bad is it?
 - How much does it cost?
 - Does it scale?
 - ...
- → I need a metric to measure the level of security
- → I need a strategy to reduce risk and impact

Metrics to Measure Security

Overview...

Security Evaluation Schemes – An Overview

Proprietary versus Standardized

Security Evaluation Schemes Non standardized **Standardized Criteria** (proprietary) Criteria ZKA CAST FIPS 140-2 Common Criteria VISA (ISO 15408) **EMVCo**

FIPS 140 versus Common Criteria

Two fundamentally different approaches...

FIPS 140-2 versus Common Criteria

• FIPS 140-2

- Levels 1 4
- Not dedicated to smart cards, so it may also describe physical security measures of a secure letter box... ©
- Based on Do's and Don'ts
- Based on Checklists

Common Criteria

- In practice levels EAL 3 5+
- (Levels 6 & 7 require formal modeling and proofs)
- Variant dedicated to smart cards available
- Based on Assets that need to be protected like secret keys, user data, user SW

Common Criteria

A high-level introduction

Common Criteria Scheme for Smart Cards

Security Evaluation Common Criteria – Mission Statement

CC Evaluation rates

Correctness

and

Effectiveness

of implemented Security Functions

Covering the whole development and production process

Involving independent accredited security labs

Assurance Levels:

EAL1 - EAL7

Security Evaluation Common Criteria – "EAL" Assurance Levels

Security Evaluation *Common Criteria V3.1 - Assurance Levels*

- EALn: Predefined Packages...
- Difference is in the component level
 - The higher the number
 - the more formal the description has to be
 - the more details are requested
- ▶ EAL5+
 - What is the '+'?
- '+' = Augmentation
 - At least one component from a higher level has been taken (which one is defined in PP)

Assurance	Assurance	Assurance Components by Evaluation Assurance Level						
class	Family	EAL1	EAL2	EAL3	EAL4	RALS	EAL6	EAL7
	ADV ARC	2.02.	1	1	1	1	1	1
	ADV FSP	1	2	3	4	85	5	6
l	ADV IMP	_	_		1	1	2	2
Development	ADV INT					2.	3	3
	ADV SPM					lan 1000 tan 1001 tan 1000 tan 1	1	1
	ADV TDS		1	2	3	4.	5	6
Guidance	AGD OPE	1	1	1	1	1	1	1
documents	AGD_PRE	1	1	1	1	1	1	1
	ALC CMC	1	2	3	4	4	5	5
	ALC CMS	1	2	3	4	5	5	5
Tifo anala	ALC DEL		1	1	1	genel	1	1
Life-cycle support	ALC_DVS			1	1	1	2	2
support	ALC FLR							
	ALC LCD			1	1	į	1	2
	ALC_TAT				1	2.	3	3
	ASE_CCL	1	1	1	1	9	1	1
	ASE ECD	1	1	1	1	g	1	1
Security	ASE_INT	1	1	1	1	gul.	1	1
Target	ASE_OBJ	1	2	2	2	2	2	2
evaluation	ASE REQ	1	2	2	2	2	2	2
	ASE_SPD		1	1	1	P. A.	1	1
	ASE_TSS	1	1	1	1	1	1	1
	ATE COV		1	2	2	2	3	3
Tests	ATE_DPT			1	2	3	3	4
	ATE_FUN		1	1	1	1	2	2
	ATE IND	1	2	2	2	2	2	3
Vulnerability assessment	AVA_VAN	1	2	2	3	4	5	5

A Helicopter View on a CC Evaluation

- Typically, a two-stage approach...
 - HW manufacturer gets the HW platform evaluated
 - Card manufacturer gets the final card with OS evaluated

JHAS JIL Hardware Attack Subgroup

Security Evaluation Common Criteria – JHAS Mission Statement

The JHAS group

- Meets bi-monthly and consists of a wide variety of members
- State-of-the Art: Assess all HW and SW attacks (new and old) that may apply to smart cards and maintain a rating of those that is consistent with the advancements of attacks (published in a confidential document available to all members)
- Quality Assurance: Support evaluating labs to perform & assess attacks uniformly across all members, thereby helping to create a level playing field for all
- Promote the use of CC methodology for vulnerability analysis

JHAS group in CC Scheme – ~36 Members

TUVII

Ministerie van Binnenlandse Zaken en Koninkrijksrelaties

Security Evaluation Common Criteria – JHAS Documents

Application of Attack Potential to Smartcards

- Status: Public
- Rating tables and methodology

JIL Attack Methods for Smartcards

- Status: Confidential
- List of all attack classes
- Description of many attacks (not exhaustive, though!)
- Example ratings
- Serves as guideline for CBs, evaluation labs and vendors

Security Evaluation Common Criteria – JHAS Attack Classification

Major attack classes are:

- Physical Attacks (e.g. Reverse Engineering)
- Overcoming Sensors and Filters
- Perturbation Attacks
- Side-channel Attacks
- Exploitation of Test Features
- Attacks on RNG
- Ill-formed Java Card Applications
- Software Attacks
- ...

Security Evaluation Common Criteria – JHAS Attack Phases

Identification Phase:

 Perform the attack once to demonstrate its feasibility and / or achieve a one-time benefit (learning phase)

Exploitation Phase:

Perform the attack multiple times for commercial exploitation

Information Flow between these Phases:

 One of the outcomes of the Identification Phase is a virtual script that tells the attacker of the Exploitation Phase how to perform the attack

Common Criteria for Smart Cards – Rating Tables

Range of values	TOE resistant to attackers with attack	
CC 3.x	potential of:	
0-15	No rating	
16-20	Basic	
21-24	Enhanced-Basic	
25-30	Moderate	
31 and above	High	

We need to achieve 31 points for VLA.4 / VAN.5 (part of EAL 4+, 5+, 6+) for each and every attack path!

"Application of Attack Potential to Smartcards" (developed for JIL by JHAS group)

Factors	Identification	Exploitation
Elapsed time		
< one hour	0	0
< one day	1	3
< one week	2	4
< one month	3	6
> one month	5	8
Not practical	*	*
Expertise		
Layman	0	0
Proficient	2	2
Expert	5	4
Multiple Expert	7	6
Knowledge of the TOE		
Public	0	0
Restricted	2	2
Sensitive	4	3
Critical	6	5
Very critical hardware design	9	NA
Access to TOE		
< 10 samples	0	0
< 30 samples	1	2
< 100 samples	2	4
> 100 samples	3	6
Not practical	*	*
Equipment		
None	0	0
Standard	1	2
Specialized	3	4
Bespoke	5	6
Multiple Bespoke	7	8
Open samples		
Public	0	NA
Restricted	2	NA
Sensitive	4	NA
Critical	6	NA 24

Bellcore Attack on RSA w/ Countermeasures

		-	
Factor	Comment	Identification	Exploitation
Elapsed Time	A glitch perturbation is induced. No sample preparation is needed and a straightforward setup is sufficient to obtain an error.	< 1 day (1)	< 1 hour (0)
Expertise	Without any logical countermeasures, considering the chip can be relatively easily disturbed, a proficient could apply the attack in identification, as well in exploitation.	Proficient (2)	Proficient (2)
Knowledge of TOE	According to the protocol, no specific knowledge of the TOE is required.	Public (0)	Public (0)
Access to TOE (number of samples)	Access to TOE will in practice always be of the order of less than 10 samples.	< 10 (0)	< 10 (0)
Open Samples/ Known Key	Samples with known key won't ease this attack.	NA	NA
Equipment	Fault injection equipment based on glitch induction.		Specialized (4)
Sub Total		6	6
Total	VAN.1 – "No Rating"	12	

Bellcore Attack on RSA: Countermeasures

Countermeasures in Hardware

- Redundancy, check sums, etc. on the chip level
- Example Secure Fetch (NXP)

Countermeasures in Software

- A guidance on suitable countermeasures in SW may be given in the User Guidance Manual of the HW platform
- The implementation in the customer SW will then have to be tested in the Composite Evaluation
- Example: SW Verification of RSA (and much more...)

Both approaches can lead to an EAL5+ in HW (!)

It is "simply" a question of where to make the cut in the HW-SW co-design of security features.

HW - SW Co-design

- ▶ Reaching EAL5+ is always a HW/SW co-design effort in CC, so...
 - EAL5+!= EAL5+... The User Guidance Manual (UGM) does count!

Strategies to Mitigate Risks Example...

Strategies

- Make sure the value attached to a single smart card / token is not so large as to make it financially attractive to attack it. This is a system property and not a property of the smart card. Payment systems are a good example for this, with their strong plausibility analysis of financial transactions in the backend.
- Develop architectures that defend against entire classes of attacks and not just a single attack (see next slides as an example)

UMABASA – PUFs Next Gen

Forging an inseparable link between chip and card...

Preparation of Chip Backside for Fault Attack

UMABASA Security – Forging the Link

PUF Analyzer & Smart Card Plastic Body are "bound" to each other

UMABASA Security – Forging the Link

PUF Analyzer & Smart Card Plastic Body are "bound" to each other

Summary Security in Industry – When is Good Good Enough...

