МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ

ЛАБОРАТОРНАЯ РАБОТА

студентов 3 курса 331 группы
специальности 10.05.01 — Компьютерная безопасность
факультета КНиИТ
Стаина Романа Игоревича и Токарева Никиты Сергеевича
Проверил
аспирант

Цель работы:

Ознакомление с принципом работы и испытание интегрального 8-разрядного аналого-цифрового преобразователя.

Задание 1.

Построим схему для испытания аналого-цифрового преобразователя с ЦАП.

В схему включены:

Прибор	Тип прибора	Количество	
Генератор	E4	1	
Осциллограф	XSC1	1	
Функциональный	XFG1	1	
генератор			
Источник опорного	E1, E2	2	
напряжения			
Пробники	X0-X7	8	
Логический анализатор	XLA1	1	
ЦАП	DAC	1	
8-разрядный АЦП	ADC	1	

Задание 2. Таблица результатов измерений:

U_{BX}, B	U _{вых(цап)} , В	D ₍₂₎	D ₍₁₆₎	D _{(10)инв}	D ₍₁₀₎	D _{(10)расч}	$\Delta U\%$
0,1	0,0938	10000101	85	133	5	5,12	6,25
0,2	0,2042	10001010	8A	138	10	10,24	2,1
0,5	0,5158	10011010	9A	154	26	25,6	3,12
1	0,9645	10110011	В3	179	51	51,2	3,56
1,5	1,5042	11001101	CD	205	77	76,8	0,28
2	2,017	11100110	E6	230	102	102,4	0,85
2,4	2,393	11111011	FB	251	123	122,88	0,3
-0,5	-0,5042	01100110	66	102	-26	-25,6	1,5
-1	-0,9844	01001101	4D	77	-51	-51,2	3,56
-2	-2,009	00011010	1A	25	-102	-102,5	0,46

Задание 3. Осциллограммы и характеристики приборов:

Векторные и топографические диаграммы, графики:

Задание 4.

Вывод: ознакомились с принципами работы АЦП и испытали интегральный 8-разрядный аналого-цифровой преобразователь.

Тестовые задания к работе 36

1. Укажите назначение АЦП:

Ответ: для преобразования постоянного напряжения, заданного на тактовом интервале, в двоичный код.

2. Укажите формулу Котельникова, с помощью которой определяют шаг дискретизации Δt аналогового сигнала (f_m — максимальная частота спектра аналогового сигнала; $t_{\rm вx}$ — длительность аналогового сигнала; N — число уровней квантования):

Ответ: $\Delta t \leq 1/2 f_m$.

- 3. Определите понятие **«абсолютная разрешающая способность»** АЦП: Ответ: это среднее значение минимального изменения входного сигнала, обусловливающего увеличение или уменьшение выходного кода на единицу.
- 4. Укажите, можно ли подавать на входы $V_{\rm ref+}$ и $V_{\rm ref-}$ АЦП **разные** (по модулю) **напряжения**:

Ответ: да.

5. Укажите, можно ли **свести к нулю** погрешность квантования аналогового сигнала посредством выбора параметров устройства, например за счет увеличения разрядности АЦП:

Ответ: нет.

6. Укажите, какую **погрешность** квантования имеет 8-разрядный АЦП при напряжениях на входах $V_{\rm ref+}=2$ B, $V_{\rm ref-}=0$ и отсчете входного напряжения $u_{\rm BX}(k\Delta t)=1$ B:

Ответ: $\pm 3.9 \text{ мВ}$

7. Укажите десятичный эквивалент двоичного кода на выходе 8-разрядного АЦП, если опорные напряжения $V_{\rm ref+}=2$ B, $V_{\rm ref-}=-2$ B, а входное напряжение $u_{\rm BX}=0.5$ B:

Ответ: 32.

8. Выберите из приведенных ниже значений минимально необходимые значения опорных напряжений $\pm V_{\rm ref}$ для преобразования синусоидального напряжения $u_{\rm Bx}(t)=1.41\sin\omega t$:

Ответ: ± 2 В.

9. Укажите значение расчетного **шестнадцатеричного кода** 16-разрядного АЦП,если на его вход подано напряжение $u_{\rm BX}(k\Delta t)=0.25~{\rm B}$ при $\pm V_{\rm ref}=$

 ± 2 B:

Ответ: 1000.

10. Укажите выражение, с помощью которого определяют десятичный эквивалент двоичного кода на выходе 14-разрядного АЦП:

Otbet:
$$D = 4096u_{\text{BX}}/(V_{\text{ref+}} + |-V_{\text{ref-}}|)$$
.

11. Укажите, как изменится **выходной код** АЦП при неизменном входном $u_{\rm BX}$ и опорных напряжениях $V_{\rm ref+}=2$ В и $V_{\rm ref-}=-2$ В, если установить $V_{\rm ref-}=0$:

Ответ: его значение уменьшится в 2 раза.

12. Укажите характер изменения общей погрешности преобразования входного сигнала при увеличении разрядности АЦП:

Ответ: погрешность преобразования уменьшится.

13. Укажите перспективные направления развития АЦП:

Ответ:

- повышение быстродействия основных узлов АЦП, в частности компараторов;
- применение стабилизированных источников опорного напряжения;
- использование микропроцессоров в преобразователях.
- 14. Укажите, какие **операции** необходимо выполнить при аналого-цифровом преобразовании:

Ответ: дискретизацию по времени аналогового сигнала, квантования по уровню его отсчетов и кодирование квантованных уровней.

15. Укажите, обладает ли способ последовательного счета аналого-цифрового преобразования наибольшим быстродействием:

Ответ: да.