# A Practical Algorithm for Topic Modling with Provable Guarantees

Sanjeev Arora Rong Ge Yoni Halpern David Mimno Ankur Moitra David Sontag Yihcen Wu Michael Zhu

Presented by: Vanush Vaswani and Kristy Hughes

- Introduction
- 2 Topic Modelling
- Algorithm
- Efficiently Finding Anchor Words
- 6 Topic Recovery via Bayes' Rule
- 6 Experimental Results
- Conclusion

# Information Overload

THE UNIVERSITY OF SYDNEY



# Effective Organisation



## Topics

THE UNIVERSITY OF

SYDNEY



- Introduction
- 2 Topic Modelling
- Algorithm
- Efficiently Finding Anchor Words
- 6 Topic Recovery via Bayes' Rule
- 6 Experimental Results
- Conclusion

#### **Topics**

0.04

gene

```
dna
         0.02
genetic
         0.01
life
         0.02
evolve
         0.01
organism 0.01
brain
         0.04
         0.02
neuron
nerve
         0.01
```

0.02

0.02 computer 0.01 Topics are distributions over words

data

number

### Documents

Documents have distribution of topics



#### Topics

| gene    | 0.04 |
|---------|------|
| dna     | 0.02 |
| genetic | 0.01 |
| ***     |      |
|         |      |

| life     | 0.02 |
|----------|------|
| evolve   | 0.01 |
| organism | 0.01 |
|          | _    |

| brain  | 0.04 |
|--------|------|
| neuron | 0.02 |
| nerve  | 0.01 |
|        |      |

| data     | 0.02 |
|----------|------|
| number   | 0.02 |
| computer | 0.01 |
|          |      |
|          |      |



# Task

THE UNIVERSITY OF

- Assume documents are generated by probabilistic model with unknown variables
- Infer hidden structure onto document
- Situate new document into model



TODO: Redo pic

# Word-topic Matrix

THE UNIVERSITY OF

### Extracted: Word-topic matrix



Aim: Find document-topic matrix

### Anchor Words

- Word-topic distributions are separable
- There is a word unique to each topic
- Indicates document is partially about that topic
- Can learn parameters in polynomial time provided there is a large enough number of documents

## Approximate Inference & Provable Guarantees

- Document-topic inference:
  - NP-hard
- Approximate techniques
- Provably polynomial-time?



- SYDNEY
  - Introduction
  - 2 Topic Modelling
  - 3 Algorithm
  - Efficiently Finding Anchor Words
  - 6 Topic Recovery via Bayes' Rule
  - 6 Experimental Results
  - Conclusion

# Algorithm

THE UNIVERSITY OF

Input: Corpus  $\mathcal{D}$ , Number of topics K

Output: Word-topic matrix A, topic-topic matrix R

- Compute word-word co-occurrence matrix
- 2 Normalize the matrix
- 3 Find anchor words
- 4 Recover topics

### Assumptions:

- Topics may be correlated
- Word-topic distributions are separable

## Contributions

- Anchor Selection
  - Combinatorial rather than ILP
  - Stable in the presence of noise
  - polynomial sample complexity
- 2 Recovery step
  - Previous matrix-inversion approach sensitive to noise
  - Replaced with Gradient-based inference
- 3 Empirical comparison of algorithms

- Introduction
- 2 Topic Modelling
- Algorithm
- 4 Efficiently Finding Anchor Words
- 6 Topic Recovery via Bayes' Rule
- 6 Experimental Results
- Conclusion

# Word-word co-occurrence matrix

|               | bank | California | Canada | career | careers | employers | employment | federal | human | dot | jobs | listings | openings | opportunities | positions | recruiters | resources | resume | resumes | retirement | search | state | texas | unemployment | work |
|---------------|------|------------|--------|--------|---------|-----------|------------|---------|-------|-----|------|----------|----------|---------------|-----------|------------|-----------|--------|---------|------------|--------|-------|-------|--------------|------|
| bank          |      |            |        |        |         |           |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| California    |      |            |        |        |         |           |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| Canada        | 1    |            |        |        |         |           |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       | П            | П    |
| career        | 3    | 3          |        |        |         |           |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| careers       |      |            | 2      | 9      |         |           |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| employers     |      | 2          |        | 11     | 7       |           |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| employment    | 3    | 26         | 22     | 66     | 10      | 16        |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| federal       | 1    | 1          | 5      |        | 1       |           | 11         |         |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       | П            | П    |
| human         |      | 4          | 12     | 1      | 1       |           |            | 4       |       |     |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| job           | 34   | 14         | 2      | 49     | 8       | 13        | 92         | 13      | 2     |     |      |          |          |               |           |            |           |        |         |            |        |       |       | П            | П    |
| jobs          |      | 18         | 6      | 62     | 11      | 27        | 204        | 19      | 2     | 74  |      |          |          |               |           |            |           |        |         |            |        |       |       |              |      |
| listings      |      | 4          | 2      | 15     | 4       | 9         | 68         | 2       | 55    | 44  |      |          |          |               |           |            |           |        |         |            |        |       |       |              | П    |
| openings      |      | 4          |        | 7      | 2       | 9         | 28         |         |       | 49  | 30   |          |          |               |           |            |           |        |         |            |        |       |       |              |      |
| opportunities | 4    | 8          | 3      | 51     | 9       | 13        | 181        | 9       |       | 84  | 106  | 25       | 19       |               |           |            |           |        |         |            |        |       |       |              |      |
| positions     |      | 1          |        | 8      | 2       | 10        | 19         |         |       | 16  | 20   | 9        | 13       | 21            |           |            |           |        |         |            |        |       |       |              |      |
| recruiters    |      |            |        | 10     | 4       | 3         | 9          |         |       | 5   | 4    | 2        | 2        | 5             | 2         |            |           |        |         |            |        |       |       |              |      |
| resources     |      | 4          | 12     |        | 1       |           |            | 4       | 74    | 3   | 2    |          |          |               |           |            |           |        |         |            |        |       |       |              |      |
| resume        |      | 4          | 3      | 5      |         | 2         | 3          | 1       | 1     | 10  | 3    |          |          | 1             | 2         | 1          |           |        |         |            |        |       |       |              |      |
| resumes       |      |            |        | 8      | 3       | 3         | 11         |         |       | 5   | 16   | 1        |          | 8             | 5         |            |           | 15     |         |            |        |       |       |              |      |
| retirement    |      | 1          | 1      |        |         |           |            |         | 3     |     |      | 2        |          | 1             |           |            |           |        |         |            |        |       |       |              |      |
| search        |      |            | 3      | 4      | 6       |           |            | 10      |       |     | 18   | 6        |          | 6             | 2         |            |           | 3      | 1       |            |        |       |       |              |      |
| state         |      |            | 4      | 1      |         |           | 18         |         | 1     | 12  | 7    | 6        |          | 3             |           |            | 1         |        |         | 2          |        |       |       |              |      |
| texas         | 2    |            |        | 1      |         |           | 18         |         |       | 12  | 6    |          | 1        | 2             |           |            |           |        |         | 9          |        |       |       |              |      |
| unemployment  |      |            |        |        |         |           |            |         |       |     |      |          |          |               |           |            |           |        |         |            |        | 2     | 2     |              |      |
| work          |      |            | 2      | 1      |         | 3         | 3          | 2       |       | 2   | 8    | 2        | 4        | 7             | 5         |            |           |        | 1       |            |        | 1     | 2     |              |      |

SYDNEY

# Words as vertices

THE UNIVERSITY OF SYDNEY



# Convex Hull

THE UNIVERSITY OF SYDNEY



# Computing Convex Hull

- Efficient for 2 dimensions  $O(n \log n)$
- Inefficient for n > 2 dimensions
- Complexity depends on method and approximation used
- Previous method: ILP
- New method: Recursive greedy
  - 1 Compute subspace span of current convex hull
  - 2 Find point furthest from this sub-span
  - 3 Add point to convex hull
  - 4 Repeat until K points found

TODO: Work out how the whole convex hull - words as vertices work. I think what we have here is wrong because there is no approximation

- Introduction
- 2 Topic Modelling
- Algorithm
- Efficiently Finding Anchor Words
- 5 Topic Recovery via Bayes' Rule
- 6 Experimental Results
- Conclusion

# Topic Recovery Task

- Recovers the topics
- Represented as topic-word distributions
- Topic uniquely identified by anchor word

- 1 Discard rows not containing anchor words from word-word co-occurrence matrix (Q)
- 2 Permute matrix into a diagonal matrix
- **3** We know that  $Q = ARA^T$  where A is the word-topic matrix and R is the TODO matrix
- **4** Solve  $Q = ARA^T$  using matrix inversion

TODO: what the hell does R represent?!?!

# Word-word co-occurrence probability matrix

For an anchor word (row) in the co-ocurrence matrix

$$Q_{s_k,j} = \sum_{k'} p(z_1 = k'|w_1 = s_k) p(w_2 = j|z_1 = k')$$

= 1 because of the anchor word property

$$= p(w_2 = j|z_1 = k) = C_{i,k}$$

For any other row 
$$\bar{Q}_{i,j} = \sum_{k} p(z_1 = k|w_1 = i)p(w_2 = j|z_1 = k)$$

But this is clearly a convex combination of anchor words

$$\bar{Q}_{i,j} = \sum_{i} C_{i,k} \bar{Q}_{s,k}$$

THE UNIVERSITY OF

### New method

- Row normalize Q into Q
- Recover A and R using Bayes rule

$$p(w_1 = i|z_1 = k) = \frac{p(z_1 = k|w_1 = i)p(w_1 = i)}{\sum_i p(z_1 = k|w_1 = i')p(w_1 = i')}$$

- THE UNIVERSITY OF SYDNEY
  - Introduction
  - 2 Topic Modelling
  - Algorithm
  - Efficiently Finding Anchor Words
  - 6 Topic Recovery via Bayes' Rule
  - **6** Experimental Results
  - Conclusion

## Experiments

TODO: overview of the experiments run

## Metrics

SYDNEY

**TODO:** Metrics

### Documents

TODO: Talk about semi-synthetic documents, real documents and the need for both

### Results

TODO: describe results. Iterate through each experiment, and each document type, reporting the computed metrics for each. This may need to be split up into more slides by either experiment or document type

- Introduction
- 2 Topic Modelling
- Algorithm
- Efficiently Finding Anchor Words
- 6 Topic Recovery via Bayes' Rule
- 6 Experimental Results
- Conclusion

# Summary

TODO: Put the paper's conclusion into dot point form

### Comments

TODO: Do we need to comment on the paper? Are there things that we wish they had reported but didn't? Are there things that we really liked that they reported? Check the marking guidelines about what exactly we need here

### Future Work

TODO: They didn't have a future work section but they really should have. We can make one up and maybe comment that they didn't put a future work section

# Thanks!

Any questions please email either of us:

Vanush Vaswani

vvas\*\*\*\*@uni.sydney.edu.au

Kristy Hughes

khug2372@uni.sydney.edu.au