ROBEM I Let $S = (S_n : n \ge 0)$ be the one-dimensional symmetry simple random walk with $S_0 = c \ge 0$. Let $k \ge 1$ and τ be the time of the k-th downcrossing of 0. X_b is the times of $(S_{n \land \tau} : n \ge 0)$ downcrossing of b. Prove:

- 1. $(X_b:b\geq c-1)$ is branch process. And offspring distribution is $Geo(\frac{1}{2})$
- 2. $(X_{-a}: a \ge 1)$ is branch process. And offspring distribution is $Geo(\frac{1}{2})$
- 3. $(X_b: 0 \le b \le c-1)$ is migrating branch process. And offspring distribution is $Geo(\frac{1}{2})$ And the migrating distribution is concentrating on 1.

SOLUTION. For a random walk y, we let D(n,y) be the number of downcrossings of y over n.

- 1. Fix $b \geq c-1$. Let ϕ_0 be the journey from start point to b+1. Let e_n be n-th journey from b+1 to b. Let ε_n be n-th journey after ϕ_0 from b to b+1. Then we know that e_n, ε_n are independent. Easy to get that $D(e_n, b) = 1$ and $D(\varepsilon_n, b) = 0$, $D(\varepsilon_n, b+1=0)$. Easy to get that $D((S_{n \wedge \tau} : n \in \mathbb{N}), b+1) = \sum_{t=1}^{D((S_{n \wedge \tau} : n \in \mathbb{N}), b)} D(e_t, b+1)$. Noting that $\forall d : c-1 \leq d \leq b$, $D((S_{n \wedge \tau} : n \in \mathbb{N}), d) \in \sigma(\varepsilon_n : n \in \mathbb{N})$. We easily get that $D(e_t, b+1) \perp \sigma(\varepsilon_n : n \in \mathbb{N})$. So X_b is Markov process. And to prove it's branch process, we only need to prove that $D(e_t, b+1)$ are i.i.d. It has been proved that $D(e_t, b+1)$ are i.i.d and $Geo(\frac{1}{2})$. So the offspring distribution is $Geo(\frac{1}{2})$.
- 2. Fix $a \geq 1$. Let ϕ_0 be the journey from start point to -a. Let e_n be n-th journey from -a to -a-1, and ε_n be n-th journey from -a-1 to -a. Then easy to get that $X_{-a-1} = \sum_{t=1}^{X_{-a}} D(\varepsilon_t, -a-1)$. For the same reason we easily get that $D(\varepsilon_t, -a-1) \perp \sigma(e_n : n \in \mathbb{N})$. And by reflecting easy to get that $D(\varepsilon_t, -a-1) \sim Geo(\frac{1}{2})$, too. So $(X_{-a} : a \geq 1)$ is branch process and offspring distribution is $Geo(\frac{1}{2})$
- 3. Fix b < c 1. Let ϕ_0 be the journey from start point to b + 1. Let e_n be the n-th journey from b + 1 to b and ε_n be n-th journey from b to b + 1. Then easy to prove that $X_{b+1} = D(\phi_0, b+1) + \sum_{t=1}^{X_b} D(e_n, b+1)$. Noting that $D(\phi_0, b+1) = 1$. So for the same reason, we get that $(X_b : 0 \le b \le c 1)$ is migrating branch process, with offspring distribution $Geo(\frac{1}{2})$ and migrating distribution δ_1 .

ROBLEM II $c < b \in \mathbb{Z}_+$. Let $W = (W_n : n \ge 0)$ be the one-dimensional reflecting simple random walk with $W_0 = c \ge 0$ on $\mathbb{Z}^{0,b}$, whose transition matrix is $P^{0,b}$, where a = 0, p, q > 0, p + q = 1. Let $k \ge 1$ and τ be the time of the k-th downcrossing over 0 on (W_n) . $0 \le a \le b$, X_a is the times of $(S_{n \land \tau} : n \ge 0)$ downcrossing over a. Prove:

- 1. $(X_a: c-1 \le a \le b-1)$ is branch process. And offspring distribution is Geo(p).
- 2. $(X_a:0\leq a\leq c-1)$ is migrating branch process. And offspring distribution is Geo(p). And the migrating distribution is concentrating on 1.

SOLLION. For a random walk y, we let D(n,y) be the number of downcrossings of y over n.

- 1. Fix a such that $c-1 \le a < b-1$. Let ϕ_0 be the journey from start point to a. Let e_n be the *n*-th journey from a to a+1, and ε_n be the *n*-th journey from a+1 to a. For reflecting simple random walk, we can also prove that e_n, ε_n are independent. Noting that $X_{a+1} = \sum_{t=1}^{X_a} D(\varepsilon_t, a+1)$, we easily get the conclusion.
- 2. Fix $a:0 \le a < c-1$. Let ϕ_0 be the journey from start point to a+1. Let e_n be the n-th journey from a+1 to a and ε_n be n-th journey from a to a+1. Then easy to prove that $X_{a+1} = D(\phi_0, a+1) + \sum_{t=1}^{X_a} D(e_n, a+1)$. Noting that $D(\phi_0, a+1) = 1$. So for the same reason, we get that $(X_a:0 \le a \le c-1)$ is migrating branch process, with offspring distribution $Geo(\frac{1}{2})$ and migrating distribution δ_1 .

ROBEM III Let $W = (W_n : n \ge 0)$ be the one-dimensional simple random walk with $W_0 = 0$, whose transition matrix P given by equation (4.4.3) on textbook, $0 . <math>X_a$ is the times of $(W_{n \land \tau} : n \ge 0)$ downcrossing a. $r = \frac{p}{a}$. Prove:

- 1. $\mathbb{P}(X_0 = i) = r^i(1 r), i \ge 0;$
- 2. $a \ge 0$, $\mathbb{P}(X_a = 0) = 1 r^{a+1}$, $\mathbb{P}(X_a = i) = r^{a+1}(1 r)$, $i \ge 1$.

SOLTION. 1. Since p < q, then $W_n \to -\infty, n \to \infty$. Let $\tau_0 = 0, \forall k \ge 1, \ \sigma_k = \inf\{n \ge \tau_{k-1} : W_n = 1\}, \tau_k = \inf\{n \ge \sigma_k : W_n = 0\}.$

- (a) If i=0, then $\{X_0=i\}\stackrel{\text{a.s.}}{=} \{\sigma_1=\infty\}$. Then $\mathbb{P}(X_0=i)=\mathbb{P}(\sigma_1=\infty)=r$.
- (b) If $i \geq 1$, then $\{X_0 = i\} \stackrel{\text{a.s.}}{=} \{\sigma_i < \infty, \sigma_{i+1} = \infty\}$. Since $\{\tau_i < \infty\} \subset \{\sigma_i \infty\}, \mathbb{P}(\sigma_i < \infty, \tau_i = \infty) = 0$, then by strong markov property,

$$\mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty) = \mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty, \tau_i < \infty)$$

$$= \mathbb{P}(\sigma_{i+1} < \infty \mid \tau_i < \infty)$$

$$= \mathbb{P}(\sigma_{i+1} < \infty \mid \tau_i < \infty, W_{\tau_i} = 0)$$

$$= \mathbb{P}(\sigma_1 < \infty) = r$$

Therefore,

$$\mathbb{P}(\sigma_{i+1} < \infty) = \mathbb{P}(\sigma_{i+1} < \infty \mid \sigma_i < \infty) \mathbb{P}(\sigma_i < \infty)$$

Then $\mathbb{P}(\sigma_i < \infty) = r^i$. Therefore, $\mathbb{P}(X_0 = i) = \mathbb{P}(\sigma_i < \infty, \sigma_{i+1} = \infty) = \mathbb{P}(\sigma_i < \infty)\mathbb{P}(\sigma_{i+1} = \infty \mid \sigma_i < \infty) = r^i(1-r)$.

2. Let $D_a = \inf(n \geq 0 : W_n = a)$, then $\mathbb{P}(D_a < \infty) = r^a$. By strong markov property, $(W_{D_a+n-a:n\geq 0})$ is a random walk starting from 0 under $\mathbb{P}(\cdot \mid D_a < \infty) = \mathbb{P}(\cdot \mid D_a < \infty, W_{D_a} = a)$. By the conclusion in ??, $\mathbb{P}(X_a = i \mid D_a < \infty) = r^i(1-r), i \geq 0$. Then

$$\mathbb{P}(X_a = 0) = \mathbb{P}(D_a = \infty) + \mathbb{P}(D_a < \infty, X_a = 0)$$

$$= 1 - r^a + \mathbb{P}(D_a < \infty)\mathbb{P}(X_a = 0 \mid D_a < \infty)$$

$$= 1 - r^a + r^a(1 - r) = 1 - r^{a+1}$$

$$\forall i \geq 1,$$

$$\mathbb{P}(X_a = i) = \mathbb{P}(D_a < \infty, X_a = i)$$

$$= \mathbb{P}(D_a < \infty)\mathbb{P}(X_a = i \mid D_a < \infty)$$

$$= r^a r^i (1 - r) = r^{a+i} (1 - r)$$

ROBEM IV Let $W=(W_n:n\geq 0)$ be the one-dimensional simple random walk with $W_0=0$, whose transition matrix P given by equation (4.4.3) on textbook, 0< p< q<1. X_a is the times of $(W_{n\wedge\tau}:n\geq 0)$ downcrossing over a. $r=\frac{p}{q}$. Prove: if $a\leq -1$, then $X_a\sim G(1-r)$, i.e. $\mathbb{P}(X_a=i)=r^{i-1}(1-r), i\geq 1$.