The physical 'chained' matrix panel wiring (example)

(example with 4 x (64w x 32h px) LED matrix panels chained in series)

Note: No 'Virtual Display' class usage is required for a simple horizontal only chain / display.

#define PANEL_RES_X 64 #define PANEL_RES_X 32 #define PANEL_CHAIN 4 HUB75_I2S_CFG mxconfig (PANEL_RES_X, PANEL_RES_Y, PANEL_CHAIN);

'Virtual Display' class to create a matrix of LED matrix panels

(refer to the 'ChainedPanels' example sketch in the examples folder)

Top-right DOWN serpentine 'S' chain

#define NUM_ROWS 2
#define NUM_COLS 2
#define PANEL_RES_X 64
#define PANEL_RES_Y 32

/* Create physical dma output class AND virtual (chained) display class. */
#include <ESP32-VirtualMatrixPanel-I2S-DMA.h>
RGB64x32MatrixPanel_I2S_DMA dma_display;
VirtualMatrixPanel
virtualDisp(dma_display, NUM_ROWS, NUM_COLS, PANEL_RES_X, PANEL_RES_Y, true, true);

Bottom-left UP serpentine 'S' chain

2 x 2 (128x64)

Vertical serpentine 'S' chain / stack


```
#define NUM_ROWS 4
#define NUM_COLS 1
#define PANEL_RES_X 64
#define PANEL_RES_Y 32

/* Create physical dma output class AND virtual (chained) display class. */
#include <ESP32-VirtualMatrixPanel-I2S-DMA.h>
RGB64x32MatrixPanel_I2S_DMA dma_display;
VirtualMatrixPanel
virtualDisp(dma_display, NUM_ROWS, NUM_COLS, PANEL_RES_X, PANEL_RES_Y, true);
```

