基礎コンピュータ工学 第5章 機械語プログラミング (パート12)

TeC の構成を思い出してみる

入出力装置を操作するにはどうしたら良いのか?

メモリ領域とI/O領域

メモリ領域とは別に, 入出力インタフェースを配置した I/O 領域がある.

メモリ領域

番地	内容
00	
01	
	RAM
	自由に使用可能
DA	
DB	
DC	
	システム領域
FF	

LD, ST, ADD... 命令で使用 (プログラムもここに置いた)

I/O 領域

	1/ 0 膜域				
番地	内容				
0	Data-Sw/b0:Beep				
1	Data-Sw/b0:Spk				
2	SIO-Data				
3	SIO-Clt/Stat				
F	空き/空き				

IN, OUT 命令で使用

I/Oマップ(I/O 領域内の配置を書いたもの)

I/O 領域の内容を表す *I/O* マップがある.

•						
	I/O マップ					
番地	Read	Write				
0	データスイッチ	ブザー				
1	データスイッチ	スピーカ				
2	SIO 受信データ	SIO 送信データ				
3	SIO ステータス	SIO コントロール				
4	タイマ現在値	タイマ周期				
5	タイマステータス	タイマコントロール				
6	空き	INT3 コントロール				
7	PIO 入力ポート	PIO 出力ポート				
8	ADC CH0	空き				
9	ADC CH1	空き				
Α	ADC CH2	空き				
В	ADC CH3	空き				
С	空き	PIO コントロール				
D	空き	空き				
E	空き	空き				
F	空き	空き				

IN(Input)命令(入力命令)

I/O 領域からデータを**入力(Read)**し結果をレジスタに格納する.

フラグ:変化しない.

 $=-\pm 2$: IN GR,P (GR \leftarrow IO[P])

命令フォーマット: 2バイトの長さを持つ.

第1	バイト	第2バイト	
OP	GR XR	月 弗 2 ハイト	
1100_{2}	$GR 00_2$	0000_2 $pppp$	

フローチャート: 平行四辺形の中に説明を書く.

IN(Input)命令の使用例

データスイッチの値をデータランプに表示する.

	番地	機材	或語	ラベル	ニーモニック	
	00	CO	00	START	IN	G0,0
ĺ	02	AO	00		JMP	START

- 無限ループになっているので停止しない。
- IN 命令は I/O の 0 番地 (データスイッチ) を読む.
- IN 命令は即座に次の命令に進む(入力待はしない).
- プログラムは全速力でループをまわる.
- G0 を表示した状態でプログラムを実行すると, データスイッチの値がデータランプに表示され続ける.

IN(Input)命令の応用

入力したデータの合計を G0 に求める.

ラベル	ニーモニック		
START	LD	GO,#O	
LOOP	IN	G1,00H	
	ST	G1,TMP	
	ADD	GO,TMP	
	HALT		
	JMP	LOOP	

- 1. プログラムを入力
- PC に実行開始番地をセット (0番地なら RESET でも良い)
- 3. G0 を表示した状態にする
- 4. データスイッチにデータをセット
- **5.** RUN ボタンを押す
- 6. データ分, 4, 5を繰り返す
- 7. データランプに合計表示中

OUT(Output)命令(出力命令)

I/O 領域ヘレジスタのデータを**出力(Write)**する.

フラグ:変化しない.

 $=-\pm 2$ OUT GR,P (IO[P] \leftarrow GR)

命令フォーマット: 2バイトの長さを持つ.

第1	バイト	第2バイト	
OP	GR XR	月 界 2 ハイト	
1100_{2}	GR 11 ₂	0000_2 $pppp$	

フローチャート: 平行四辺形の中に説明を書く (IN と同じ).

OUT(Output)命令の応用

データスイッチ(D0)の操作でブザーを鳴らしたり止めたりする.

• TeC のブザーの仕組み

I/Oアドレス 0 番地

ブザーを鳴らすプログラム

番地	機械語		ラベル	ニーモニック	
00	CO	00	START	IN	GO,0
02	СЗ	00		OUT	GO,0
04	AO	00		JMP	START

ブザーが鳴り続けて困ったら RESET を押す.

まとめ

学んだこと

- 「入出力命令」=「IN 命令と OUT 命令」
- I/O領域と I/Oマップ
- IN 命令と応用 データスイッチの値をデータランプに表示する. データスイッチから入力した値の合計を求める.
- OUT 命令と応用 ブザーを鳴らす。

演習

- 0 で終わるデータ列を入力し合計を X 番地に求める.
- データスイッチのビット7(D7)でブザーを制御する。