

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 February 2002 (28.02.2002)

PCT

(10) International Publication Number WO 02/16649 A2

(51) International Patent Classification7:

C12Q 1/68

- (21) International Application Number: PCT/US01/26519
- (22) International Filing Date: 27 August 2001 (27.08.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/227,948 60/228,854 25 August 2000 (25.08.2000) US 29 August 2000 (29.08.2000) US

- (71) Applicant: ILLUMINA, INC. [US/US]; Suite 200, 9390 Towne Centre Drive, San Diego, CA 92121 (US).
- (72) Inventor: GUNDERSON, Kevin; 1543 Juniper Hill Drive, Encinitas, CA 92024 (US).
- (74) Agents: BREZNER, David, J. et al.; Flehr, Hohbach, Test, Albritton & Herbert LLP, Suite 3400, 4 Embarcadero Center, San Francisco, CA 94111-4187 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

2/16649

(54) Title: PROBES AND DECODER OLIGONUCLEOTIDES

PROBES AND DECODER OLIGONUCLEOTIDES

This application claims the benefit of U.S.S.N.s 60/227,948 filed August 25, 2000 and 60/228,854, filed August 29, 2001, both of which are expressly incorporated herein by reference.

5

10

15

FIELD OF THE INVENTION

The present invention is directed to methods and compositions for the use of adapter sequences on arrays in a variety of nucleic acid reactions, including synthesis reactions, amplification reactions, and genotyping reactions.

BACKGROUND OF THE INVENTION

The detection of specific nucleic acids is an important tool for diagnostic medicine and molecular biology research. Gene probe assays currently play roles in identifying infectious organisms such as bacteria and viruses, in probing the expression of normal and mutant genes and identifying mutant genes such as oncogenes, in typing tissue for compatibility preceding tissue transplantation, in matching tissue or blood samples for forensic medicine, and for exploring homology among genes from different species.

20

25

30

Ideally, a gene probe assay should be sensitive, specific and easily automatable (for a review, see Nickerson, Current Opinion in Biotechnology 4:48-51 (1993)). The requirement for sensitivity (i.e. low detection limits) has been greatly alleviated by the development of the polymerase chain reaction (PCR) and other amplification technologies which allow researchers to amplify exponentially a specific nucleic acid sequence before analysis (for a review, see Abramson et al., Current Opinion in Biotechnology, 4:41-47 (1993)).

Specificity, in contrast, remains a problem in many currently available gene probe assays. The extent of molecular complementarity between probe and target defines the specificity of the interaction. Variations in the concentrations of probes, of targets and of salts in the hybridization medium, in the reaction temperature, and in the length of the probe may alter or influence the specificity of the

probe/target interaction.

5

10

15

20

25

30

35

It may be possible under some circumstances to distinguish targets with perfect complementarity from targets with mismatches, although this is generally very difficult using traditional technology, since small variations in the reaction conditions will alter the hybridization. New experimental techniques for mismatch detection with standard probes include DNA ligation assays where single point mismatches prevent ligation and probe digestion assays in which mismatches create sites for probe cleavage.

Recent focus has been on the analysis of the relationship between genetic variation and phenotype by making use of polymorphic DNA markers. Previous work utilized short tandem repeats (STRs) as polymorphic positional markers; however, recent focus is on the use of single nucleotide polymorphisms (SNPs), which occur at an average frequency of more than 1 per kilobase in human genomic DNA. Some SNPs, particularly those in and around coding sequences, are likely to be the direct cause of therapeutically relevant phenotypic variants and/or disease predisposition. There are a number of well known polymorphisms that cause clinically important phenotypes; for example, the apoE2/3/4 variants are associated with different relative risk of Alzheimer's and other diseases (see Cordor et al., Science 261(1993). Multiplex PCR amplification of SNP loci with subsequent hybridization to oligonucleotide arrays has been shown to be an accurate and reliable method of simultaneously genotyping at least hundreds of SNPs; see Wang et al., Science, 280:1077 (1998); see also Schafer et al., Nature Biotechnology 16:33-39 (1998). The compositions of the present invention may easily be substituted for the arrays of the prior art.

There are a variety of particular techniques that are used to detect sequence, including mutations and SNPs. These include, but are not limited to, ligation based assays, cleavage based assays (mismatch and invasive cleavage such as Invader™), single base extension methods (see WO 92/15712, EP 0 371 437 B1, EP 0317 074 B1; Pastinen et al., Genome Res. 7:606-614 (1997); Syvänen, Clinica Chimica Acta 226:225-236 (1994); and WO 91/13075), and competitive probe analysis (e.g. competitive sequencing by hybridization; see below).

Oligonucleotide ligation amplification ("OLA", which is referred as the ligation chain reaction (LCR) when two-stranded reactions or nested reactions are done) involves the ligation of two smaller probes into a single long probe, using the target sequence as the template. See generally U.S. Patent Nos. 5,185,243, 5,679,524 and 5,573,907; EP 0 320 308 B1; EP 0 336 731 B1; EP 0 439 182 B1; WO 90/01069; WO 89/12696; WO 97/31256 and WO 89/09835, all of which are incorporated by reference.

Invasive cleavage technology is based on structure-specific nucleases that cleave nucleic acids in a site-specific manner. Two probes are used: an "invader" probe and a "signalling" probe, that adjacently hybridize to a target sequence with a non-complementary overlap. The enzyme cleaves at the overlap due to its recognition of the "tail", and releases the "tail" with a label. This can then be

detected. The Invader[™] technology is described in U.S. Patent Nos. 5,846,717; 5,614,402; 5,719,028; 5,541,311; and 5,843,669, all of which are hereby incorporated by reference.

5

10

15

20

25

30

35

An additional technique utilizes sequencing by hybridization. For example, sequencing by hybridization has been described (Drmanac et al., Genomics 4:114 (1989); Koster et al., Nature Biotechnology 14:1123 (1996); U.S. Patent Nos. 5,525,464; 5,202,231 and 5,695,940, among others, all of which are hereby expressly incorporated by reference in their entirety).

Sensitivity, i.e. detection limits, remain a significant obstacle in nucleic acid detection systems, and a variety of techniques have been developed to address this issue. Briefly, these techniques can be classified as either target amplification or signal amplification. Target amplification involves the amplification (i.e. replication) of the target sequence to be detected, resulting in a significant increase in the number of target molecules. Target amplification strategies include the polymerase chain reaction (PCR), strand displacement amplification (SDA), and nucleic acid sequence based amplification (NASBA).

Alternatively, rather than amplify the target, alternate techniques use the target as a template to replicate a signalling probe, allowing a small number of target molecules to result in a large number of signalling probes, that then can be detected. Signal amplification strategies include the ligase chain reaction (LCR), cycling probe technology (CPT), invasive cleavage techniques such as Invader technology, Q-Beta replicase (QβR) technology, and the use of "amplification probes" such as "branched DNA" that result in multiple label probes binding to a single target sequence.

The polymerase chain reaction (PCR) is widely used and described, and involves the use of primer extension combined with thermal cycling to amplify a target sequence; see U.S. Patent Nos. 4,683,195 and 4,683,202, and PCR Essential Data, J. W. Wiley & sons, Ed. C.R. Newton, 1995, all of which are incorporated by reference. In addition, there are a number of variations of PCR which also find use in the invention, including "quantitative competitive PCR" or "QC-PCR", "arbitrarily primed PCR" or "AP-PCR", "immuno-PCR", "Alu-PCR", "PCR single strand conformational polymorphism" or "PCR-SSCP", allelic PCR (see Newton et al. Nucl. Acid Res. 17:2503 91989); "reverse transcriptase PCR" or "RT-PCR", "biotin capture PCR", "vectorette PCR". "panhandle PCR", and "PCR select cDNA subtraction", among others.

Strand displacement amplification (SDA) is generally described in Walker et al., in Molecular Methods for Virus Detection, Academic Press, Inc., 1995, and U.S. Patent Nos. 5,455,166 and 5,130,238, all of which are hereby incorporated by reference.

Nucleic acid sequence based amplification (NASBA) is generally described in U.S. Patent No. 5,409,818 and "Profiting from Gene-based Diagnostics", CTB International Publishing Inc., N.J., 1996,

both of which are incorporated by reference.

5

10

15

20

25

30

35

Cycling probe technology (CPT) is a nucleic acid detection system based on signal or probe amplification rather than target amplification, such as is done in polymerase chain reactions (PCR). Cycling probe technology relies on a molar excess of labeled probe which contains a scissile linkage of RNA. Upon hybridization of the probe to the target, the resulting hybrid contains a portion of RNA:DNA. This area of RNA:DNA duplex is recognized by RNAseH and the RNA is excised, resulting in cleavage of the probe. The probe now consists of two smaller sequences which may be released, thus leaving the target intact for repeated rounds of the reaction. The unreacted probe is removed and the label is then detected. CPT is generally described in U.S. Patent Nos. 5,011,769, 5,403,711, 5,660,988, and 4,876,187, and PCT published applications WO 95/05480, WO 95/1416, and WO 95/00667, all of which are specifically incorporated herein by reference.

The oligonucleotide ligation assay (OLA) involve the ligation of at least two smaller probes into a single long probe, using the target sequence as the template for the ligase. See generally U.S. Patent Nos. 5,185,243, 5,679,524 and 5,573,907; EP 0 320 308 B1; EP 0 336 731 B1; EP 0 439 182 B1; WO 90/01069; WO 89/12696; and WO 89/09835, all of which are incorporated by reference.

Invader™ technology is based on structure-specific polymerases that cleave nucleic acids in a site-specific manner. Two probes are used: an "invader" probe and a "signalling" probe, that adjacently hybridize to a target sequence with overlap. For mismatch discrimination, the invader technology relies on complementarity at the overlap position where cleavage occurs. The enzyme cleaves at the overlap, and releases the "tail" which may or may not be labeled. This can then be detected. The Invader™ technology is described in U.S. Patent Nos. 5,846,717; 5,614,402; 5,719,028; 5,541,311; and 5,843,669, all of which are hereby incorporated by reference.

"Branched DNA" signal amplification relies on the synthesis of branched nucleic acids, containing a multiplicity of nucleic acid "arms" that function to increase the amount of label that can be put onto one probe. This technology is generally described in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference.

Similarily, dendrimers of nucleic acids serve to vastly increase the amount of label that can be added to a single molecule, using a similar idea but different compositions. This technology is as described in U.S. Patent No. 5,175,270 and Nilsen et al., J. Theor. Biol. 187:273 (1997), both of which are incorporated herein by reference.

U.S.S.N.s 09/189,543; 08/944,850; 09/033,462; 09/287,573; 09/151,877; 09/187,289 and 09/256,943; and PCT applications US98/09163 and US99/14387; US98/21193; US99/04473 and US98/05025, all

of which are expressly incorporated by reference, describe novel compositions utilizing substrates with microsphere arrays, which allow for novel detection methods of nucleic acid hybridization.

The use of adapter-type sequences that allow the use of universal arrays has been described in limited contexts; see for example Chee et al., Nucl. Acid Res. 19:3301 (1991); Shoemaker et al., Nature Genetics 14:450 (1996); U.S. Patent Nos. 5,494,810, 5,830,711, 6,027,889, 6,054,564, and 6,268,148; and EP 0 799 897 A1; WO 97/31256, all of which are expressly incorporated by reference.

Accordingly, it is an object of the present invention to provide methods for detecting nucleic acid reactions, and other target analytes, on arrays using adapter sequences.

5

10

15

20

25

30

35

SUMMARY OF THE INVENTION

In accordance with the above objects, the invention also provides a method of detecting a target nucleic acid. The method comprises contacting the target nucleic acid with an adapter sequence such that the target nucleic acid is joined to the adapter sequence to form a modified target nucleic acid. In addition, the method comprises contacting the modified target nucleic acid with an array comprising a substrate with a surface comprising discrete sites and a population of microspheres comprising at least a first subpopulation comprising a first capture probe, such that the first capture probe and the modified target nucleic acid form a complex, wherein the microspheres are distributed on the surface, and detecting the presence fo the target nucleic acid. In addition the method comprises adding at least one decoding binding ligand to the array such that the identity of the target nucleic acid is determined. Preferably the adapter nucleic acids include a sequence as set forth in Table Table II, Table III or Table IV.

In addition the invention provides a method of making an array. The method comprises forming a surface comprising individual sites on a substrate, distributing microspheres on the surface such that the individual sites contain microspheres, wherein the microspheres comprise at least a first and a second subpopulation each comprising a capture probe, wherein the capture probe is complementary to an adapter sequence, the adapter sequence joined to a target nucleic acid, and an identifier binding ligand that will bind at least one decoder binding ligand such that the identification of the target nucleic acid is elucidated. Preferably the adapter nucleic acids include a sequence as set forth in Table I, Table III or Table IV.

In addition the invention provides a kit comprising at least one nucleic acid selected from the group consisting of the sequences set forth it Table I, Table II, Table III or Table IV. In one embodiment the invention provides a kit that includes a nucleic acid that includes a sequence as set forth in Table I, Table III or Table IV and at least a first universal priming sequence.

In addition the invention includes an array composition comprising a first population of microspheres comprising first and second subpopulations, wherein the first subpopulation includes a first nucleic acid selected from the sequences set forth in Table II, Table III or Table IV and the second subpopulation includes a second sequence selected from the sequences set forth in Table II, Table III, Table III or Table IV.

In addition the invention includes an array composition comprising a first sequence at a known location on a substrate, wherein the first sequence is selected from the sequences set forth in Table I, Table II, Table III or Table IV.

10

15

20

5

In addition the invention includes a method for making an array. The method includes distributing a population of microspheres on an substrate, wherein the population includes first and second subpopulations, wherein the first subpopulation includes a first sequence selected from the group consisting of the sequences set forth in Table I, Table III, Table III or Table IV and the sequences set forth in Table I, Table II, Table III, Table III or Table IV.

In addition the method includes a method of immobilizing a target nucleic acid. The method includes hybridizing a first adapter probe with a first target nucleic acid, wherein the first adapter probe comprises a first domain that is complementary to the first target nucleic acid and a second domain, comprising a first sequence selected from the sequences set forth in Table I, Table II, Table III or Table IV to form a first hybridization complex. In addition the method includes contacting the first hybridization complex with a first capture probe immobilized on a first substrate, wherein the first capture probe is substantially complementary to the second domain of the first adapter probe.

25

30

In addition the invention includes a method of decoding an array composition comprising providing an array composition that includes a substrate with a surface comprising discrete sites and a population of microspheres comprising at least a first and a second subpopulation, wherein each subpopulation comprises a bioactive agent. The microspheres are distributed on the surface. The method further includes adding a plurality of decoding binding ligands to the array composition to identify the location of at least a plurality of the bioactive agents wherein at least a first decoder binding ligand comprises a sequence selected from the group consisting of the sequences of Table I, Table III or Table IV.

35

A method of detecting a target nucleic acid sequence, said method comprising attaching a first adapter nucleic acid to a first target nucleic acid sequence to form a modified first target nucleic acid sequence, wherein the first adapter nucleic acid includes a sequence selected from the sequences set forth in Table I, Table II, Table III or Table IV. The method further includes contacting the modified first target nucleic acid sequence with an array comprising a substrate with a patterned surface

comprising discrete sites and a population of microspheres comprising at least a first subpopulation comprising a first capture probe, such that the first capture probe and the modified first target nucleic acid sequence form a hybridization complex; wherein the microspheres are distributed on the surface and detecting the presence of the modified first target nucleic acid sequence.

5

DETAILED DESCRIPTION OF THE FIGURES

Figure 1 depicts a method of selecting oligonucleotide sequences.

10

Figure 2 depicts a scheme for selection of probes and decoder oligonucleotides.

Figure 3 demonstrates hybridization intensity comparison of immobilized beads using non-purified oligonucleotides with HPLC purified oligonucleotides.

15

Figure 4 depicts different oligonucleotide sequences immobilized onto silica beads at various salt concentration. Average intensity indicates hybridization intensity of beads in a BeadArray.

Figure 5 depicts immobilization of oligonucleotides in increasing salt concentrations.

20

25

DETAILED DESCRIPTION OF THE INVENTION

This invention is directed to the use of adapter sequences, and optionally capture extender probes, that allow the use of "universal" arrays. That is, a "universal" array is an array with a set of capture probes that will hybridize to adapter sequences, for use in any number of different reactions, including the binding of nucleic acid reactions and other target analytes comprising a nucleic acid adapter sequence that can hybridize to the array. In this way, a manufacturer of arrays can make one type of array that may be used in a variety of applications, thus reducing the manufacturing costs associated with the array. In addition, in the case of bead arrays, the decoding steps as outlined below can be simplified, as one set of decoding probes can be made.

30

In general, the use of adapter sequences can be described as follows for nucleic acid reactions. An adapter sequence can be added exogenously to a target nucleic acid sequence using any number of different techniques, including, but not limited to, amplification reactions as described in U.S.S.N. 09/425,633, filed October 22, 1999; 09/513,362, filed February 25, 2000; 09/517,945, filed March 3, 2000; 09/535,854, filed March 27, 2000; 09/553,993, filed April 20, 2000; 09/556,463, filed April 21, 2000; 60/135,051, filed May 20, 1999; 60/135,053, filed May 20, 1999; 60/135,123, filed May 20, 1999; 60/130,089, filed April 20, 1999; 60/160,917, filed October 22, 1999; 60/160,927, filed October 22,

35

1999; 60/161,148, filed October 22, 1999; and 60/244,119, filed October 26, 2000 all of which are hereby incorporated by reference. In addition, the adapter can be added to an extension probe. The adapter sequence can then be used to target to its complementary capture probe on the surface.

Alternatively, the adapter sequences can be added to other target analytes, to generate unique and reproducible arrays of target analytes in a similar manner. By adding the nucleic acid to the target analyte (for example to an antibody in an immunoassay), the target analytes may then be arrayed.

5

10

15

20

25

30

35

Accordingly, the present invention provides methods for the detection of target analytes, particularly nucleic acid target sequences, in a sample. As will be appreciated by those in the art, the sample solution may comprise any number of things, including, but not limited to, bodily fluids (including, but not limited to, blood, urine, serum, lymph, saliva, anal and vaginal secretions, perspiration and semen, of virtually any organism, with mammalian samples being preferred and human samples being particularly preferred); environmental samples (including, but not limited to, air, agricultural, water and soil samples); biological warfare agent samples; research samples; purified samples, such as purified genomic DNA, RNA, proteins, etc.; raw samples (bacteria, virus, genomic DNA, etc.; As will be appreciated by those in the art, virtually any experimental manipulation may have been done on the sample.

The present invention provides methods for the detection of target analytes, particularly nucleic acid target sequences, in a sample. By "target analyte" or "analyte" or grammatical equivalents herein is meant any molecule, compound or particle to be detected. As outlined below, target analytes preferably bind to binding ligands, as is more fully described below. As will be appreciated by those in the art, a large number of analytes may be detected using the present methods; basically, any target analyte for which a binding ligand, described below, may be made may be detected using the methods of the invention.

Suitable analytes include organic and inorganic molecules, including biomolecules. In a preferred embodiment, the analyte may be an environmental pollutant (including pesticides, insecticides, toxins, etc.); a chemical (including solvents, polymers, organic materials, etc.); therapeutic molecules (including therapeutic and abused drugs, antibiotics, etc.); biomolecules (including hormones, cytokines, proteins, lipids, carbohydrates, cellular membrane antigens and receptors (neural, hormonal, nutrient, and cell surface receptors) or their ligands, etc); whole cells (including procaryotic (such as pathogenic bacteria) and eukaryotic cells, including mammalian tumor cells); viruses (including retroviruses, herpesviruses, adenoviruses, lentiviruses, etc.); and spores; etc. Particularly preferred analytes are environmental pollutants; nucleic acids; proteins (including enzymes, antibodies, antigens, growth factors, cytokines, etc.); therapeutic and abused drugs; cells; and viruses.

In a preferred embodiment, the target analyte is a protein. As will be appreciated by those in the art,

there are a large number of possible proteinaceous target analytes that may be detected using the present invention. By "proteins" or grammatical equivalents herein is meant proteins, oligopeptides and peptides, derivatives and analogs, including proteins containing non-naturally occurring amino acids and amino acid analogs, and peptidomimetic structures. The side chains may be in either the (R) or the (S) configuration. In a preferred embodiment, the amino acids are in the (S) or L-configuration. As discussed below, when the protein is used as a binding ligand, it may be desirable to utilize protein analogs to retard degradation by sample contaminants.

5

10

15

20

25

30

35

Suitable protein target analytes include, but are not limited to, (1) immunoglobulins, particularly IgEs, lgGs and lgMs, and particularly therapeutically or diagnostically relevant antibodies, including but not limited to, for example, antibodies to human albumin, apolipoproteins (including apolipoprotein E). human chorionic gonadotropin, cortisol, α-fetoprotein, thyroxin, thyroid stimulating hormone (TSH), antithrombin, antibodies to pharmaceuticals (including antieptileptic drugs (phenytoin, primidone, carbariezepin, ethosuximide, valproic acid, and phenobarbitol), cardioactive drugs (digoxin, lidocaine, procainamide, and disopyramide), bronchodilators (theophylline), antibiotics (chloramphenicol, sulfonamides), antidepressants, immunosuppresants, abused drugs (amphetamine, methamphetamine, cannabinoids, cocaine and opiates) and antibodies to any number of viruses (including orthomyxoviruses, (e.g. influenza virus), paramyxoviruses (e.g respiratory syncytial virus. mumps virus, measles virus), adenoviruses, rhinoviruses, coronaviruses, reoviruses, togaviruses (e.g. rubella virus), parvoviruses, poxviruses (e.g. variola virus, vaccinia virus), enteroviruses (e.g. poliovirus, coxsackievirus), hepatitis viruses (including A, B and C), herpesviruses (e.g. Herpes simplex virus, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus), rotaviruses, Norwalk viruses, hantavirus, arenavirus, rhabdovirus (e.g. rabies virus), retroviruses (including HIV, HTLV-I and -ll), papovaviruses (e.g. papillomavirus), polyomaviruses, and picornaviruses, and the like), and bacteria (including a wide variety of pathogenic and non-pathogenic prokaryotes of interest including Bacillus; Vibrio, e.g. V. cholerae; Escherichia, e.g. Enterotoxigenic E. coli, Shigella, e.g. S. dysenteriae; Salmonella, e.g. S. typhi; Mycobacterium e.g. M. tuberculosis, M. leprae; Clostridium, e.g. C. botulinum, C. tetani, C. difficile, C. perfringens; Cornyebacterium, e.g. C. diphtheriae; Streptococcus, S. pyogenes, S. pneumoniae; Staphylococcus, e.g. S. aureus; Haemophilus, e.g. H. influenzae; Neisseria, e.g. N. meningitidis, N. gonorrhoeae; Yersinia, e.g. G. lambliaY: pestis, Pseudomonas, e.g. P. aeruginosa, P. putida; Chlamydia, e.g. C. trachomatis; Bordetella, e.g. B. pertussis; Treponema, e.g. T. palladium; and the like); (2) enzymes (and other proteins), including but not limited to, enzymes used as indicators of or treatment for heart disease, including creatine kinase, lactate dehydrogenase. aspartate amino transferase, troponin T, myoglobin, fibrinogen, cholesterol, triglycerides, thrombin, tissue plasminogen activator (tPA); pancreatic disease indicators including amylase, lipase, chymotrypsin and trypsin; liver function enzymes and proteins including cholinesterase, bilirubin, and alkaline phosphotase; aldolase, prostatic acid phosphatase, terminal deoxynucleotidyl transferase, and bacterial and viral enzymes such as HIV protease; (3) hormones and cytokines (many of which serve as ligands for cellular receptors) such as erythropoietin (EPO), thrombopoietin (TPO), the interleukins

(including IL-1 through IL-17), insulin, insulin-like growth factors (including IGF-1 and -2), epidermal growth factor (EGF), transforming growth factors (including TGF- α and TGF- β), human growth hormone, transferrin, epidermal growth factor (EGF), low density lipoprotein, high density lipoprotein, leptin, VEGF, PDGF, ciliary neurotrophic factor, prolactin, adrenocorticotropic hormone (ACTH), calcitonin, human chorionic gonadotropin, cotrisol, estradiol, follicle stimulating hormone (FSH), thyroid-stimulating hormone (TSH), leutinzing hormone (LH), progeterone, testosterone, ; and (4) other proteins (including α -fetoprotein, carcinoembryonic antigen CEA.

5

10

15

20

25

30

35

In addition, any of the biomolecules for which antibodies may be detected may be detected directly as well; that is, detection of virus or bacterial cells, therapeutic and abused drugs, etc., may be done directly.

Suitable target analytes include carbohydrates, including but not limited to, markers for breast cancer (CA15-3, CA 549, CA 27.29), mucin-like carcinoma associated antigen (MCA), ovarian cancer (CA125), pancreatic cancer (DE-PAN-2), and colorectal and pancreatic cancer (CA 19, CA 50, CA242).

in a preferred embodiment, the target analyte (and various adapters and other probes of the invention), comprise nucleic acids. By "nucleic acid" or "oligonucleotide" or grammatical equivalents herein means at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below, nucleic acid analogs are included that may have alternate backbones, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Patent No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Patent Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580. "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S.

Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within the definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp169-176). Several nucleic acid analogs are described in Rawls, C & E News June 2, 1997 page 35. All of these references are hereby expressly incorporated by reference. These modifications of the ribose-phosphate backbone may be done to facilitate the addition of labels, alter the hybridization properties of the nucleic acids, or to increase the stability and half-life of such molecules in physiological environments.

5

15

20

25

30

35

As will be appreciated by those in the art, all of these nucleic acid analogs may find use in the present Invention. In addition, mixtures of naturally occurring nucleic acids and analogs can be made.

Alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (Tm) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in Tm for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. This allows for better detection of mismatches. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xathanine hypoxathanine, isocytosine, isoguanine, etc. A preferred embodiment utilizes isocytosine and isoguanine in nucleic acids designed to be complementary to other probes, rather than target sequences, as this reduces non-specific hybridization, as is generally described in U.S. Patent No. 5,681,702. As used herein, the term "nucleoside" includes nucleotides as well as nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occuring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

In general, probes of the present invention (including adapter sequences and capture probes, described below) are designed to be complementary to a target sequence (either the target sequence of the sample or to other probe sequences, for example adapter sequences) such that hybridization of the target and the probes of the present invention occurs. This complementarity need not be perfect;

there may be any number of base pair mismatches that will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under the selected reaction conditions.

When nucleic acids are to be detected, they are referred to herein as "target nucleic acids" or "target sequences". The term "target sequence" or "target nucleic acid" or grammatical equivalents herein means a nucleic acid sequence on a single strand of nucleic acid. The target sequence may be a portion of a gene, a regulatory sequence, genomic DNA, cDNA, RNA including mRNA and rRNA, or others. As is outlined herein, the target sequence may be a target sequence from a sample, or a derivative target such as a product of a reaction such as a detection sequence from an Invader™ reaction, a ligated probe from an OLA reaction, an extended probe from an SBE reaction, etc. It may be any length, with the understanding that longer sequences are more specific. As will be appreciated by those in the art, the complementary target sequence may take many forms. For example, it may be contained within a larger nucleic acid sequence, i.e. all or part of a gene or mRNA, a restriction fragment of a plasmid or genomic DNA, among others. As is outlined more fully below, probes are made to hybridize to target sequences to determine the presence or absence of the target sequence in a sample. Generally speaking, this term will be understood by those skilled in the art. The target sequence may also be comprised of different target domains; for example, a first target domain of the sample target sequence may hybridize to a capture probe, a second target domain may hybridize to a portion of a label probe, etc. The target domains may be adjacent or separated as indicated. Unless specified, the terms "first" and "second" are not meant to confer an orientation of the sequences with respect to the 5'-3' orientation of the target sequence. For example, assuming a 5'-3' orientation of the complementary target sequence, the first target domain may be located either 5' to the second domain, or 3' to the second domain. In addition, as will be appreciated by those in the art, the probes on the surface of the array (e.g. attached to the microspheres) may be attached in either orientation, either such that they have a free 3' end or a free 5' end.

30

35

5

10

15

20

25

As is more fully outlined below, the target sequence may comprise a position for which sequence information is desired, generally referred to herein as the "detection position" or "detection locus". In a preferred embodiment, the detection position is a single nucleotide, although in some embodiments, it may comprise a plurality of nucleotides, either contiguous with each other or separated by one or more nucleotides. By "plurality" as used herein is meant at least two. As used herein, the base which basepairs with a detection position base in a hybrid is termed a "readout position" or an "interrogation position".

In some embodiments, as is outlined herein, the target sequence may not be the sample target

sequence but instead is a product of a reaction herein, sometimes referred to herein as a "secondary" or "derivative" target sequence. Thus, for example, in SBE, the extended primer may serve as the target sequence; similarly, in invasive cleavage variations, the cleaved detection sequence may serve as the target sequence.

5

If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification as needed, as will be appreciated by those in the art.

10

Once prepared, the target sequence can be used in a variety of reactions for a variety of reasons. For example, in a preferred embodiment, genotyping reactions are done. Similarly, these reactions can also be used to detect the presence or absence of a target sequence. Sequencing or amplification reactions are also preferred. In addition, in any reaction, quantitation of the amount of a target sequence may be done.

15

Furthermore, as outlined below for each reaction, many of these techniques may be used in a solution based assay, wherein the reaction is done in solution and a reaction product is bound to the array for subsequent detection, or in solid phase assays, where the reaction occurs on the surface and is detected.

20

25

In general, the present invention provides pairs of capture probes (nucleic acids that are attached to addresses on arrays) and adapter sequences (sequences that are either perfectly or substantially complementary to the capture probe sequences) that can be used in a wide variety of ways, to immobilize target nucleic acids (either primary targets, such as genomic DNA, mRNA or cDNA, or secondary targets such as amplicons from a nucleic acid amplification or extension reaction, as outlined herein) to the addresses of the array. Thus, all the sequences in the Tables include their complements, and either sequence can be used as a capture probe (e.g. spotted onto a surface or attached to a microsphere of an array) or as the adapter sequence that binds to the capture probe.

30

Accordingly, by "adapter sequences" or "adapters" or grammatical equivalents is meant a nucleic acid segment generally non-native or exogenous to a target molecule that is used to immobilize the target molecule to a solid support via binding to a capture probe sequence. In a preferred embodiment the adapter sequences and capture probes are selected from the sequences set forth in Table I, Table II, Table III or Table IV.

35

Table I includes the sequence of the preferred 4000 sequences labeled "Decoder (5'-3')", and inherent in this table are the complementary sequences as well. In addition, the invention includes oligonucleotides that are complementary to those depicted in Table 1.

Table II includes the sequence of the preferred adapter/capture probe sequences and their complementary sequence. Table 2 depicts a preferred subset of 3172 decoder oligonucleotides and their complementary probe oligonucleotides. Accordingly, the invention provides compositions comprising a sequence as outlined in Table 2. In addition, the invention provides a composition comprising a complementary binding pair as outlined in Table 2.

5

10

15

20

25

30

35

Table 3 includes a preferred subset of 768 decoder oligonucleotides and complementary probe sequences. In some embodiments it may be desirable to include a uniform base at a terminus of the oligonucleotide, such as a T at the 5' end as depicted in Table 4. The inclusion of this uniform or constant base facilitates uniform labeling of the oligonucleotides.

These sequences are used as decoder probes, capture probes or adapter sequences as outlined in U.S.S.N. 09/344,526 and PCT/US99/14387, and U.S.S.N.s 60/160,917 and 09/5656,463 all of which are expressly incorporated by reference in their entirety.

As will be appreciated by those in the art, the length of the capture probe/adapter sequences will vary, depending on the desired "strength" of binding and the number of different adapters desired. In a preferred embodiment, adapter sequences range from about 5 to about 500 basepairs in length, with from about 8 to about 100 being preferred, and from about 10 to about 50 being particularly preferred.

As will be appreciated by those in the art, it is desirable to have adapter sequences that do not have significant homology to naturally occurring target sequences, to avoid non-specific or erroneous binding of target sequences to the capture probes. Accordingly, preferred embodiments utilize some method to select useful adapter sequences. In a preferred embodiment the method is outlined in Figure 1. Briefly, random 24-mer (or could be any desired length as outlined herein), sequences were assembled and subjected to certain defined screening procedures including such steps as requiring that the Tm of each of the sequence be within a pre-defined range. In addition the GC content must be balanced with the AT content and the self-complementarity must be minimized. In addition GC runs should be minimized, that is, runs of Gs or Cs should be reduced. In addition, decoder (adapter) to decoder (adapter) complementarity should be reduced so that the adapters do not hybridize with each other. Finally, the sequences are screened against a specified genomic database. In a preferred embodiment the adapters comprise at least one sequence selected from the sequences in Table II, Table III or Table IV.

In a preferred embodiment, the adapter sequences are chosen on the basis of a decoding step. As is more fully outlined below, a decoding step is used to decode random bead arrays. In this embodiment, a set of candidate capture probes is chosen; this may be done in a variety of ways. In a preferred embodiment, the sequences are generated randomly, each of a sufficient length to ensure a

low probability of occurring naturally. In some embodiments, for example when the array will be used with a particular organism's genome (e.g. the human genome, the Drosophila genome, etc.), the sequences are compared to the genome as a first filter, for example to remove sequences that would cross hybridize. Additionally, further filtering may be done using well-known methods, such as known methods for selecting good PCR primers. These techniques generally include steps that remove sequences that may have a propensity to form secondary structures or otherwise to cross-hybridize. Additionally, sequences that have extremes of melting temperatures can be optionally discarded, depending on the planned assay conditions.

5

10

15

20

25

30

35

Once a set of candidate capture probes is obtained, an array comprising the capture probes is made, and a matching set of decoding probes comprising the adapter sequences (e.g. the complements of the capture probes), as more fully outlined below, is made. Decoding then proceeds. Probes that do not hybridize well, for whatever reason, will not decode well, generally due to weak signals, and are generally discarded. Probes that cross-hybridize will also not decode well, as they will give ambiguous or mixed decoding signals. Only probes that hybridize sufficiently strongly and specifically will decode. Thus, by setting suitable thresholds for signal strength and signal purity, adapter sequences that perform according to specified criteria are identified. Additionally, by setting a range on signal strength, capture probe/adapter sequence pairs that perform similarly (but hybridize specifically) are identified. In a preferred embodiment, decoding reactions are repeated, under a variety of conditions, to test the robustness of the sequence pair.

Once identified, the adapter sequences are added to target sequences in a variety of ways, as will be appreciated by those in the art. In a preferred embodiment, nucleic acid amplification reactions are done, as is generally outlined in "Detection of Nucleic Acid Amplification Reactions Using Bead Arrays" and "Sequence Determination of Nucleic Acids using Arrays with Microspheres", both of which were filed on October 22, 1999, (U.S.S.N.'s 60/161,148 and 09/425,633, respectively), both of which are hereby incorporated by reference in their entirety. These may be either target amplification or signal amplification. In general, the techniques can be described as follows. Most amplification techniques require one or more primers hybridizing to all or part the target sequence (e.g. that hybridize to a target domain). The adapter sequences can be added to one or more of the primers (depending on the configuration/orientation of the system and need) and the amplification reactions are run. Thus, for example, PCR primers comprising at least one adapter sequence (and preferably one on each PCR primer) may be used; one or both of the ligation probes of an OLA or LCR reaction may comprise an adapter sequence; the sequencing primers for pyrosequencing, single-base extension, reversible chain termination, etc., reactions may comprise an adapter sequence; either the invader probe or the signalling probe of invasive cleavage reactions can comprise an adapter sequence; etc. Similarly, for signal detection techniques, the probes may comprise adapter sequences, with preferred methods utilizing removal of the unreacted probes. In addition, primers may include universal priming \cdot sequences. That is, the adapters may additionally contain universal priming sequences for universal

amplification of products of any of the reactions described herein. Universal priming sequences are further outlined in 09/779376, filed February 7, 2001; 09/779202, filed February 7, 2001; 09/915231, filed July 24, 2001; 60/180810, filed February 7, 2000; and 60/297609, filed June 11, 2001; and 60/311194 filed August 9, 2001, all of which are expressly incorporated herein by reference.

5

10

In an alternative embodiment, non-nucleic acid reactions are used to add adapter sequences to the nucleic acid targets. For example, for the direct detection of non-amplified target sequences (e.g. genomic DNA samples, etc.) on universal arrays, non-amplification methods are required. In this embodiment, binding partner pairs or chemical methods may be used. For example, one member of a binding partner pair may be attached to the adapter sequence and the other member attached to the target sequence. For example, the binding partner be a hapten or antigen, which will bind its binding partner. For example, suitable binding partner pairs include, but are not limited to: antigens (such as proteins (including peptides)) and antibodies (including fragments thereof (FAbs, etc.)); proteins and small molecules, including biotin/streptavidin and digoxygenin and antibodies; enzymes and substrates or inhibitors; other protein-protein interacting pairs; receptor-ligands; and carbohydrates and their binding partners, are also suitable binding pairs. Nucleic acid - nucleic acid binding proteins pairs are also useful. In general, the smaller of the pair is attached to the NTP (or the probe) for incorporation into the extension primer. Preferred binding partner pairs include, but are not limited to, biotin (or imino-biotin) and streptavidin, digeoxinin and Abs, and Prolinx™ reagents.

20

25

15

In a preferred embodiment, chemical attachment methods are used. In this embodiment, chemical functional groups on each of the target sequences and adapter sequences are used. As is known in the art, this may be accomplished in a variety of ways. Preferred functional groups for attachment are amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the two sequences are joined together; for example, amino groups on each nucleic acid may be attached, for example using linkers as are known in the art; for example, homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200, incorporated herein by reference).

30

In a preferred embodiment, aptamers are used in the system. Aptamers are nucleic acids that can be made to bind to virtually any target analyte; see Bock et al., Nature 355:564 (1992); Femulok et al., Current Op. Chem. Biol. 2:230 (1998); and U.S. Patents 5,270,163, 5,475,096, 5,567,588, 5,595,877, 5,637,459, 5,683,867,5,705,337, and related patents, hereby incorporated by reference.

35

In a preferred embodiment, an array comprising capture probes that hybridize to adapter sequences is made, as outlined herein. In one embodiment aptamers, comprising adapter sequences, can be added. As will be appreciated by those in the art, the aptamers may be preassociated with their binding partners, e.g. target analytes, prior to introduction to the array, or not. In addition, the association between the adapter sequences on the aptamers and the capture probes can be made

covalent, for example through the use of reactive groups (e.g. psoralen) and appropriate activation.

In addition, the present invention is directed to the use of adapter sequences to assemble arrays comprising other target analytes.

5

The adapter sequences may be chosen as outlined above. Preferably the adapters are selected from the sequences set forth in Table II, Table III or Table IV. These adapter sequences can then be added to the target analytes using a variety of techniques. In general, as described above, non-covalent attachment using binding partner pairs may be done, or covalent attachment using chemical moieties (including linkers).

10

15

Advantages of using adapters include but are not limited to, for example, the ability to create universal arrays. That is, a single array is utilized with each capture probe designed to hybridize with a specific adapter. The adapters are joined to any number of target analytes, such as nucleic acids, as is described herein. Thus, the same array is used for vastly different target analytes. Furthermore, hybridization of adapters with capture probes results in non-covalent attachment of the target nucleic acid to the address of the array (e.g. a microsphere in some embodiments). As such, the target nucleic/adapter hybrid is easily removed, and the microsphere/capture probe can be re-used. In addition, the construction of kits is greatly facilitated by the use of adapters. For example, arrays or microspheres can be prepared that comprise the capture probe; the adapters can be packaged along with the microspheres for attachment to any target analyte of interest. Thus, one need only attach the adapter to the target analyte and disperse on the array for the construction of an array of target analytes.

25

20

Accordingly the present invention provides kits comprising adapters. Preferably the kits include at least 1 nucleic acid sequence as set forth in Table 1. More preferably the kits include at least 10-25 nucleic acids, with at least 50 nucleic acids more preferred. Even more preferable are kits that include at least 100 nucleic acids with more than 1000 even more preferred and more than 2000 even more preferred.

30

It should also be noted that the sequences defined herein can also be used in "sandwich" assay formats, wherein a capture extender probe comprising a first domain that will hybridize to the capture probe and a second domain that has a target specific domain is used. The capture extender probe hybridizes both to the target sequence and the capture probe, thereby immobilizing the target sequence on the array.

35

Once the adapter sequences are associated with the target analyte, including target nucleic acids, the compositions are added to an array comprising addresses comprising capture probes. In one embodiment a plurality of hybrid adapter sequence/target analytes are pooled prior to addition to an

array. All of the methods and compositions herein are drawn to compositions and methods for detecting the presence of target analytes, particularly nucleic acids, using adapter arrays.

5

10

15

20

25

30

35

Accordingly, the present invention provides array compositions comprising at least a first substrate with a surface comprising individual sites. The present system finds particular utility in array formats, i.e. wherein there is a matrix of capture probes (herein generally referred to "pads", "addresses" or "micro-locations"). By "array" or "biochip" herein is meant a plurality of nucleic acids in an array format; the size of the array will depend on the composition and end use of the array. Nucleic acids arrays are known in the art, and can be classified in a number of ways; both ordered arrays (e.g. the ability to resolve chemistries at discrete sites), and random arrays are included. Ordered arrays include, but are not limited to, those made using photolithography techniques (Affymetrix GeneChip™), spotting techniques (Synteni and others), printing techniques (Hewlett Packard and Rosetta), three dimensional "gel pad" arrays, etc. In one embodiment the ordered arrays include arrays that contain nucleic acids at known locations. That is, the adapters or capture probes described herein are immobilized at known locations on a substrate. By "known" locations is meant a site that is known or has been known.

In addition, adapters find use "liquid arrays". By "liquid arrays" is meant an array in solution for analysis, for example, by flow cytometry.

A preferred embodiment utilizes microspheres on a variety of substrates including fiber optic bundles, as are outlined in PCTs US98/21193, PCT US99/14387 and PCT US98/05025; WO98/50782; and U.S.S.N.s 09/287,573, 09/151,877, 09/256,943, 09/316,154, 60/119,323, 09/315,584; all of which are expressly incorporated by reference. While much of the discussion below is directed to the use of microsphere arrays on fiber optic bundles, any array format of nucleic acids on solid supports may be utilized.

Arrays containing from about 2 different bioactive agents (e.g. different beads, when beads are used) to many millions can be made, with very large arrays being possible. Generally, the array will comprise from two to as many as a billion or more, depending on the size of the beads and the substrate, as well as the end use of the array, thus very high density, high density, moderate density, low density and very low density arrays may be made. Preferred ranges for very high density arrays are from about 10,000,000 to about 2,000,000,000, with from about 100,000,000 to about 1,000,000 being preferred (all numbers being in square cm). High density arrays range about 100,000 to about 10,000,000, with from about 1,000,000 to about 5,000,000 being particularly preferred. Moderate density arrays range from about 10,000 to about 100,000 being particularly preferred, and from about 20,000 to about 5,000 being especially preferred. Low density arrays are generally less than 10,000, with from about 1,000 to about 5,000 being preferred. Very low density arrays are less than 1,000, with from about 10 to about 1000 being preferred, and from about 100 to about 500 being particularly preferred. In some embodiments, the compositions of the invention may

not be in array format; that is, for some embodiments, compositions comprising a single bioactive agent may be made as well. In addition, in some arrays, multiple substrates may be used, either of different or identical compositions. Thus for example, large arrays may comprise a plurality of smaller substrates.

5

10

15

20

25

30

35

In addition, one advantage of the present compositions is that particularly through the use of fiber optic technology, extremely high density arrays can be made. Thus for example, because beads of 200 μ m or less (with beads of 200 nm possible) can be used, and very small fibers are known, it is possible to have as many as 40,000 or more (in some instances, 1 million) different elements (e.g. fibers and beads) in a 1 mm² fiber optic bundle, with densities of greater than 25,000,000 individual beads and fibers (again, in some instances as many as 50-100 million) per 0.5 cm² obtainable (4 million per square cm for 5 μ center-to-center and 100 million per square cm for 1 μ center-to-center).

By "substrate" or "solid support" or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate for the attachment or association of beads and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates is very large. Possible substrates include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, optical fiber bundles; and a variety of other polymers. In general, the substrates allow optical detection and do not themselves appreciably fluoresce.

Generally the substrate is flat (planar), although as will be appreciated by those in the art, other configurations of substrates may be used as well; for example, three dimensional configurations can be used, for example by embedding the beads in a porous block of plastic that allows sample access to the beads and using a confocal microscope for detection. Similarly, the beads may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Preferred substrates include optical fiber bundles as discussed below, and flat planar substrates such as glass, polystyrene and other plastics and acrylics.

In a preferred embodiment, the substrate is an optical fiber bundle or array, as is generally described in U.S.S.N.s 08/944,850 and 08/519,062, PCT US98/05025, and PCT US98/09163, all of which are expressly incorporated herein by reference. Preferred embodiments utilize preformed unitary fiber optic arrays. By "preformed unitary fiber optic array" herein is meant an array of discrete individual fiber optic strands that are co-axially disposed and joined along their lengths. The fiber strands are generally individually clad. However, one thing that distinguished a preformed unitary array from other fiber optic formats is that the fibers are not individually physically manipulatable; that is, one strand

generally cannot be physically separated at any point along its length from another fiber strand.

5

10

15

20

25

30

35

At least one surface of the substrate is modified to contain discrete, individual sites for later association of microspheres. These sites may comprise physically altered sites, i.e. physical configurations such as wells or small depressions in the substrate that can retain the beads, such that a microsphere can rest in the well, or the use of other forces (magnetic or compressive), or chemically altered or active sites, such as chemically functionalized sites, electrostatically altered sites, hydrophobically/ hydrophilically functionalized sites, spots of adhesive, etc.

The sites may be a pattern, i.e. a regular design or configuration, or randomly distributed. A preferred embodiment utilizes a regular pattern of sites such that the sites may be addressed in the X-Y coordinate plane. "Pattern" in this sense includes a repeating unit cell, preferably one that allows a high density of beads on the substrate. However, it should be noted that these sites may not be discrete sites. That is, it is possible to use a uniform surface of adhesive or chemical functionalities, for example, that allows the attachment of beads at any position. That is, the surface of the substrate is modified to allow attachment of the microspheres at individual sites, whether or not those sites are contiguous or non-contiguous with other sites. Thus, the surface of the substrate may be modified such that discrete sites are formed that can only have a single associated bead, or alternatively, the surface of the substrate is modified and beads may go down anywhere, but they end up at discrete sites.

In a preferred embodiment, the surface of the substrate is modified to contain wells, i.e. depressions in the surface of the substrate. This may be done as is generally known in the art using a variety of techniques, including, but not limited to, photolithography, stamping techniques, molding techniques and microetching techniques. As will be appreciated by those in the art, the technique used will depend on the composition and shape of the substrate.

In a preferred embodiment, physical alterations are made in a surface of the substrate to produce the sites. In a preferred embodiment, the substrate is a fiber optic bundle and the surface of the substrate is a terminal end of the fiber bundle, as is generally described in 08/818,199 and 09/151,877, both of which are hereby expressly incorporated by reference. In this embodiment, wells are made in a terminal or distal end of a fiber optic bundle comprising individual fibers. In this embodiment, the cores of the individual fibers are etched, with respect to the cladding, such that small wells or depressions are formed at one end of the fibers. The required depth of the wells will depend on the size of the beads to be added to the wells.

Generally in this embodiment, the microspheres are non-covalently associated in the wells, although the wells may additionally be chemically functionalized as is generally described below, cross-linking agents may be used, or a physical barrier may be used, i.e. a film or membrane over the beads.

In a preferred embodiment, the surface of the substrate is modified to contain chemically modified sites, that can be used to attach, either covalently or non-covalently, the microspheres of the invention to the discrete sites or locations on the substrate. "Chemically modified sites" in this context includes, but is not limited to, the addition of a pattern of chemical functional groups including amino groups, carboxy groups, oxo groups and thiol groups, that can be used to covalently attach microspheres, which generally also contain corresponding reactive functional groups; the addition of a pattern of adhesive that can be used to bind the microspheres (either by prior chemical functionalization for the addition of the adhesive or direct addition of the adhesive); the addition of a pattern of charged groups (similar to the chemical functionalities) for the electrostatic attachment of the microspheres, i.e. when the microspheres comprise charged groups opposite to the sites; the addition of a pattern of chemical functional groups that renders the sites differentially hydrophobic or hydrophilic, such that the addition of similarly hydrophobic or hydrophilic microspheres under suitable experimental conditions will result in association of the microspheres to the sites on the basis of hydroaffinity. For example, the use of hydrophobic sites with hydrophobic beads, in an aqueous system, drives the association of the beads preferentially onto the sites. As outlined above, "pattern" in this sense includes the use of a uniform treatment of the surface to allow attachment of the beads at discrete sites, as well as treatment of the surface resulting in discrete sites. As will be appreciated by those in the art, this may be accomplished in a variety of ways.

In a preferred embodiment, the compositions of the invention further comprise a population of microspheres. By "population" herein is meant a plurality of beads as outlined above for arrays. Within the population are separate subpopulations, which can be a single microsphere or multiple identical microspheres. That is, in some embodiments, as is more fully outlined below, the array may contain only a single bead for each capture probe; preferred embodiments utilize a plurality of beads of each type.

By "microspheres" or "beads" or "particles" or grammatical equivalents herein is meant small discrete particles. The composition of the beads will vary, depending on the class of capture probe and the method of synthesis. Suitable bead compositions include those used in peptide, nucleic acid and organic moiety synthesis, including, but not limited to, plastics, ceramics, glass, polystyrene, methylstyrene, acrylic polymers, paramagnetic materials, thoria sol, carbon graphite, titanium dioxide, latex or cross-linked dextrans such as Sepharose, cellulose, nylon, cross-linked micelles and Teflon may all be used. "Microsphere Detection Guide" from Bangs Laboratories, Fishers IN is a helpful guide.

35

5

10

15

20

25

30

The beads need not be spherical; irregular particles may be used. In addition, the beads may be porous, thus increasing the surface area of the bead available for either capture probe attachment or tag attachment. The bead sizes range from nanometers, i.e. 100 nm, to millimeters, i.e. 1 mm, with beads from about 0.2 micron to about 200 microns being preferred, and from about 0.5 to about 5

micron being particularly preferred, although in some embodiments smaller beads may be used.

It should be noted that a key component of this embodiment of the invention is the use of a substrate/bead pairing that allows the association or attachment of the beads at discrete sites on the surface of the substrate, such that the beads do not move during the course of the assay.

Each microsphere comprises a capture probe, although as will be appreciated by those in the art, there may be some microspheres which do not contain a capture probe, depending on the synthetic methods. Alternatively, some have more than one capture probe.

10

15

5

Attachment of the nucleic acids may be done in a variety of ways, as will be appreciated by those in the art, including, but not limited to, chemical or affinity capture (for example, including the incorporation of derivatized nucleotides such as AminoLink or biotinylated nucleotides that can then be used to attach the nucleic acid to a surface, as well as affinity capture by hybridization), cross-linking, and electrostatic attachment, etc. In a preferred embodiment, affinity capture is used to attach the nucleic acids to the beads. For example, nucleic acids can be derivatized, for example with one member of a binding pair, and the beads derivatized with the other member of a binding pair. Suitable binding pairs are as described herein for IBL/DBL pairs. For example, the nucleic acids may be biotinylated (for example using enzymatic incorporate of biotinylated nucleotides, for by photoactivated cross-linking of biotin). Biotinylated nucleic acids can then be captured on streptavidincoated beads, as is known in the art. Similarly, other hapten-receptor combinations can be used, such as digoxigenin and anti-digoxigenin antibodies. Alternatively, chemical groups can be added in the form of derivatized nucleotides, that can them be used to add the nucleic acid to the surface.

25

20

Preferred attachments are covalent, although even relatively weak interactions (i.e. non-covalent) can be sufficient to attach a nucleic acid to a surface, if there are multiple sites of attachment per each nucleic acid. Thus, for example, electrostatic interactions can be used for attachment, for example by having beads carrying the opposite charge to the bioactive agent.

30

Similarly, affinity capture utilizing hybridization can be used to attach nucleic acids to beads. For example, as is known in the art, polyA+RNA is routinely captured by hybridization to oligo-dT beads; this may include oligo-dT capture followed by a cross-linking step, such as psoralen crosslinking). If the nucleic acids of interest do not contain a polyA tract, one can be attached by polymerization with terminal transferase, or via ligation of an oligoA linker, as is known in the art.

35

Alternatively, chemical crosslinking may be done, for example by photoactivated crosslinking of thymidine to reactive groups, as is known in the art.

In a preferred embodiment, each bead comprises a single type of capture probe, although a plurality of

individual capture probes are preferably attached to each bead. Similarly, preferred embodiments utilize more than one microsphere containing a unique capture probe; that is, there is redundancy built into the system by the use of subpopulations of microspheres, each microsphere in the subpopulation containing the same capture probe.

5

10

15

20

25

30

35

In an alternative embodiment, each bead comprises a plurality of different capture probes.

As will be appreciated by those in the art, the capture probes may either be synthesized directly on the beads, or they may be made and then attached after synthesis. In a preferred embodiment, linkers are used to attach the capture probes to the beads, to allow both good attachment, sufficient flexibility to allow good interaction with the target molecule, and to avoid undesirable binding reactions.

In a preferred embodiment, the capture probes are synthesized directly on the beads. As is known in the art, many classes of chemical compounds are currently synthesized on solid supports, such as peptides, organic moieties, and nucleic acids. It is a relatively straightforward matter to adjust the current synthetic techniques to use beads.

In a preferred embodiment, the capture probes are synthesized first, and then covalently attached to the beads. As will be appreciated by those in the art, this will be done depending on the composition of the capture probes and the beads. The functionalization of solid support surfaces such as certain polymers with chemically reactive groups such as thiols, amines, carboxyls, etc. is generally known in the art. Accordingly, "blank" microspheres may be used that have surface chemistries that facilitate the attachment of the desired functionality by the user. Some examples of these surface chemistries for blank microspheres include, but are not limited to, amino groups including aliphatic and aromatic amines, carboxylic acids, aldehydes, amides, chloromethyl groups, hydrazide, hydroxyl groups, sulfonates and sulfates.

In a preferred embodiment the attachment of nucleic acids to substrates includes contacting the oligonucleotide and the solid support in the presence of high salt concentrations. As is appreciated by those skilled in the art, salt includes, but is not limited to sodium chloride, potassium chloride, calcium chloride, magnesium chloride, lithium chloride, rubidium chloride, cesium chloride, barium chloride and the like. In a preferred embodiment, salt as used in the invention includes sodium chloride.

By high salt concentrations is meant salt that is more concentrated than about 0.1 M salt. In a preferred embodiment, by high salt concentrations is meant greater than about 0.2 M salt. In a particularly preferred embodiment, high salt concentrations include from about 0.5 to 3M salt, with about 1M to 2M being most preferred.

By solid support or other grammatical equivalents herein is meant any material that can be modified

to contain oligonucleotides. As will be appreciated by those in the art, the number of possible solid supports is very large. Possible solid supports include, but are not limited to beads, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, optical fiber bundles, and a variety of other polymers.

5

10

15

20

25

30

35

Once formed, the support containing the oligonucleotides finds use in a variety of systems including decoding arrays as described in more detail in U.S.S.N. 09/344,526, and U.S.S.N. 09/574, 117, both of which are expressly incorporated herein by reference. In addition, the support containing the oligonucleotides finds use in microfluidic systems as described in U.S.S.N. 09/306,369 which is expressly incorporated herein by reference. In addition, the support containing the oligonucleotides finds use in composite array systems as described in U.S.S.N. 09/606,369, which is expressly incorporated herein by reference. In addition the support containing the oligonucleotides finds use in a variety of assays as outlined in more detail in U.S.S.N.s 09/513,362, 09/517,945, 09/535,854, 60/160,917, 60/180,810, 60/182,955, and 09/566,463, all of which are expressly incorporated herein by reference in their entirety. In addition, the support containing the oligonucleotides finds use in array based sensors as described in more detail in 09/287,573, 09/260,963, 09/450,829, 09/151,877, 09/187,289 and 08/519,062, all of which are expressly incorporated herein by reference in their entirety.

Accordingly the invention provides a method of attaching oligonucleotides to a solid support. The method includes contacting the oligonucleotides with the support in the presence of high salt as described herein. Once attached, as discussed in the examples, the attached oligonucleotides readily hybridize to targets, probes and the like. Attachment of crude oligonucleotides in the presence of high salt is as efficient as attaching purified oligonucleotides. Thus, the invention also contemplates a method of attachment of oligonucleotides to a solid support without prior purification of the oligonucleotides. Again, the method includes contacting the crude oligonucleotides with a solid support in the presence of high salt as described herein.

The capture probes are designed to be substantially complementary to the adapter sequences, to allow for a minimum of cross reactivity.

When microsphere arrays are used, an encoding/decoding system must be used. That is, since the beads are generally put onto the substrate randomly, there are several ways to correlate the functionality on the bead with its location, including the incorporation of unique optical signatures, generally fluorescent dyes, that could be used to identify the chemical functionality on any particular bead. This allows the synthesis of the candidate agents (i.e. compounds such as nucleic acids and

antibodies) to be divorced from their placement on an array, i.e. the candidate agents may be synthesized on the beads, and then the beads are randomly distributed on a patterned surface. Since the beads are first coded with an optical signature, this means that the array can later be "decoded", i.e. after the array is made, a correlation of the location of an individual site on the array with the bead or candidate agent at that particular site can be made. This means that the beads may be randomly distributed on the array, a fast and inexpensive process as compared to either the in situ synthesis or spotting techniques of the prior art.

5

10

15

20

25

30

35

However, the drawback to these methods is that for a large array, the system requires a large number of different optical signatures, which may be difficult or time-consuming to utilize. Accordingly, the present invention provides several improvements over these methods, generally directed to methods of coding and decoding the arrays. That is, as will be appreciated by those in the art, the placement of the capture probes is generally random, and thus a coding/decoding system is required to identify the probe at each location in the array. This may be done in a variety of ways, as is more fully outlined below, and generally includes: a) the use a decoding binding ligand (DBL), generally directly labeled, that binds to either the capture probe or to identifier binding ligands (IBLs) attached to the beads; b) positional decoding, for example by either targeting the placement of beads (for example by using photoactivatible or photocleavable moieties to allow the selective addition of beads to particular locations), or by using either sub-bundles or selective loading of the sites, as are more fully outlined below; c) selective decoding, wherein only those beads that bind to a target are decoded; or d) combinations of any of these. In some cases, as is more fully outlined below, this decoding may occur for all the beads, or only for those that bind a particular target sequence. Similarly, this may occur either prior to or after addition of a target sequence. In addition, as outlined herein, the target sequences detected may be either a primary target sequence (e.g. a patient sample), or a reaction product from one of the methods described herein (e.g. an extended SBE probe, a ligated probe, a cleaved signal probe, etc.).

Once the identity (i.e. the actual agent) and location of each microsphere in the array has been fixed, the array is exposed to samples containing the target sequences, although as outlined below, this can be done prior to or during the analysis as well. The target sequences can hybridize (either directly or indirectly) to the capture probes as is more fully outlined below, and results in a change in the optical signal of a particular bead.

In the present invention, "decoding" may not rely on the use of optical signatures, but rather on the use of decoding binding ligands that are added during a decoding step. The decoding binding ligands will bind either to a distinct identifier binding ligand partner that is placed on the beads, or to the capture probe itself. In this embodiment the decoding binding ligand either is complementary to the capture probe. In this embodiment the decoding binding ligand has the sequence of the adapter that also binds to the capture probe. In a preferred embodiment the decoder binding ligand is a nucleic acid

that has the sequence of at least one of the nucleic acids set forth in Table 1.

5

10

15

20

25

30

35

The decoding binding ligands are either directly or indirectly labeled, and thus decoding occurs by detecting the presence of the label. By using pools of decoding binding ligands in a sequential fashion, it is possible to greatly minimize the number of required decoding steps.

In some embodiments, the microspheres may additionally comprise identifier binding ligands for use in certain decoding systems. By "identifier binding ligands" or "IBLs" herein is meant a compound that will specifically bind a corresponding decoder binding ligand (DBL) to facilitate the elucidation of the identity of the capture probe attached to the bead. That is, the IBL and the corresponding DBL form a binding partner pair. By "specifically bind" herein is meant that the IBL binds its DBL with specificity sufficient to differentiate between the corresponding DBL and other DBLs (that is, DBLs for other IBLs), or other components or contaminants of the system. The binding should be sufficient to remain bound under the conditions of the decoding step, including wash steps to remove non-specific binding. In some embodiments, for example when the IBLs and corresponding DBLs are proteins or nucleic acids, the dissociation constants of the IBL to its DBL will be less than about 10-4-10-6 M-1, with less than about 10-5 to 10-9 M-1 being preferred and less than about 10-7-10-9 M-1 being particularly preferred.

IBL-DBL binding pairs are known or can be readily found using known techniques. For example, when the IBL is a protein, the DBLs include proteins (particularly including antibodies or fragments thereof (FAbs, etc.)) or small molecules, or vice versa (the IBL is an antibody and the DBL is a protein). Metal ion- metal ion ligands or chelators pairs are also useful. Antigen-antibody pairs, enzymes and substrates or inhibitors, other protein-protein interacting pairs, receptor-ligands, complementary nucleic acids, and carbohydrates and their binding partners are also suitable binding pairs. Nucleic acid - nucleic acid binding proteins pairs are also useful. Similarly, as is generally described in U.S. Patents 5,270,163, 5,475,096, 5,567,588, 5,595,877, 5,637,459, 5,683,867,5,705,337, and related patents, hereby incorporated by reference, nucleic acid "aptamers" can be developed for binding to virtually any target; such an aptamer-target pair can be used as the IBL-DBL pair. Similarly, there is a wide body of literature relating to the development of binding pairs based on combinatorial chemistry methods.

In a preferred embodiment, the IBL is a molecule whose color or luminescence properties change in the presence of a selectively-binding DBL. For example, the IBL may be a fluorescent pH indicator whose emission intensity changes with pH. Similarly, the IBL may be a fluorescent ion indicator, whose emission properties change with ion concentration.

Alternatively, the IBL is a molecule whose color or luminescence properties change in the presence of various solvents. For example, the IBL may be a fluorescent molecule such as an ethidium salt whose

fluorescence intensity increases in hydrophobic environments. Similarly, the IBL may be a derivative of fluorescein whose color changes between aqueous and nonpolar solvents.

In one embodiment, the DBL may be attached to a bead, i.e. a "decoder bead", that may carry a label such as a fluorophore.

5

10

15

20

25

30

35

In a preferred embodiment, the IBL-DBL pair comprise substantially complementary single-stranded nucleic acids. In this embodiment, the binding ligands can be referred to as "identifier probes" and "decoder probes". Generally, the identifier and decoder probes range from about 4 basepairs in length to about 1000, with from about 6 to about 100 being preferred, and from about 8 to about 40 being particularly preferred. What is important is that the probes are long enough to be specific, i.e. to distinguish between different IBL-DBL pairs, yet short enough to allow both a) dissociation, if necessary, under suitable experimental conditions, and b) efficient hybridization.

In a preferred embodiment, as is more fully outlined below, the IBLs do not bind to DBLs. Rather, the IBLs are used as identifier moieties ("IMs") that are identified directly, for example through the use of mass spectroscopy.

Alternatively, in a preferred embodiment, the IBL and the capture probe are the same moiety; thus, for example, as outlined herein, particularly when no optical signatures are used, the capture probe can serve as both the identifier and the agent. For example, in the case of nucleic acids, the bead-bound probe (which serves as the capture probe) can also bind decoder probes, to identify the sequence of the probe on the bead. Thus, in this embodiment, the DBLs bind to the capture probes.

In one embodiment, the microspheres may contain an optical signature. That is, as outlined in U.S.S.N.s 08/818,199 and 09/151,877, previous work had each subpopulation of microspheres comprising a unique optical signature or optical tag that is used to identify the unique capture probe of that subpopulation of microspheres; that is, decoding utilizes optical properties of the beads such that a bead comprising the unique optical signature may be distinguished from beads at other locations with different optical signatures. Thus the previous work assigned each capture probe a unique optical signature such that any microspheres comprising that capture probe are identifiable on the basis of the signature. These optical signatures comprised dyes, usually chromophores or fluorophores, that were entrapped or attached to the beads themselves. Diversity of optical signatures utilized different fluorochromes, different ratios of mixtures of fluorochromes, and different concentrations (intensities) of fluorochromes.

In a preferred embodiment, the present invention does not rely solely on the use of optical properties to decode the arrays. However, as will be appreciated by those in the art, it is possible in some embodiments to utilize optical signatures as an additional coding method, in conjunction with the

present system. Thus, for example, as is more fully outlined below, the size of the array may be effectively increased while using a single set of decoding moieties in several ways, one of which is the use of optical signatures one some beads. Thus, for example, using one "set" of decoding molecules, the use of two populations of beads, one with an optical signature and one without, allows the effective doubling of the array size. The use of multiple optical signatures similarly increases the possible size of the array.

5

10

15

20

25

30

35

In a preferred embodiment, each subpopulation of beads comprises a plurality of different IBLs. By using a plurality of different IBLs to encode each capture probe, the number of possible unique codes is substantially increased. That is, by using one unique IBL per capture probe, the size of the array will be the number of unique IBLs (assuming no "reuse" occurs, as outlined below). However, by using a plurality of different IBLs per bead, n, the size of the array can be increased to 2ⁿ, when the presence or absence of each IBL is used as the indicator. For example, the assignment of 10 IBLs per bead generates a 10 bit binary code, where each bit can be designated as "1" (IBL is present) or "0" (IBL is absent). A 10 bit binary code has 2¹⁰ possible variants. However, as is more fully discussed below, the size of the array may be further increased if another parameter is included such as concentration or intensity; thus for example, if two different concentrations of the IBL are used, then the array size increases as 3ⁿ. Thus, in this embodiment, each individual capture probe in the array is assigned a combination of IBLs, which can be added to the beads prior to the addition of the capture probe, after, or during the synthesis of the capture probe, i.e. simultaneous addition of IBLs and capture probe components.

Alternatively, the combination of different IBLs can be used to elucidate the sequence of the nucleic acid. Thus, for example, using two different IBLs (IBL1 and IBL2), the first position of a nucleic acid can be elucidated: for example, adenosine can be represented by the presence of both IBL1 and IBL2; thymidine can be represented by the presence of IBL1 but not IBL2, cytosine can be represented by the presence of IBL2 but not IBL1, and guanosine can be represented by the absence of both. The second position of the nucleic acid can be done in a similar manner using IBL3 and IBL4; thus, the presence of IBL1, IBL2, IBL3 and IBL4 gives a sequence of AA; IBL1, IBL2, and IBL3 shows the sequence AT; IBL1, IBL3 and IBL4 gives the sequence TA, etc. The third position utilizes IBL5 and IBL6, etc. In this way, the use of 20 different identifiers can yield a unique code for every possible 10-mer.

In this way, a sort of "bar code" for each sequence can be constructed; the presence or absence of each distinct IBL will allow the identification of each capture probe.

In addition, the use of different concentrations or densities of IBLs allows a "reuse" of sorts. If, for example, the bead comprising a first agent has a 1X concentration of IBL, and a second bead comprising a second agent has a 10X concentration of IBL, using saturating concentrations of the

corresponding labelled DBL allows the user to distinguish between the two beads.

Once the microspheres comprising the capture probes are generated, they are added to the substrate to form an array. It should be noted that while most of the methods described herein add the beads to the substrate prior to the assay, the order of making, using and decoding the array can vary. For example, the array can be made, decoded, and then the assay done. Alternatively, the array can be made, used in an assay, and then decoded; this may find particular use when only a few beads need be decoded. Alternatively, the beads can be added to the assay mixture, i.e. the sample containing the target sequences, prior to the addition of the beads to the substrate; after addition and assay, the array may be decoded. This is particularly preferred when the sample comprising the beads is agitated or mixed; this can increase the amount of target sequence bound to the beads per unit time. and thus (in the case of nucleic acid assays) increase the hybridization kinetics. This may find particular use in cases where the concentration of target sequence in the sample is low; generally, for low concentrations, long binding times must be used.

15

20

25

30

35

10

5

In general, the methods of making the arrays and of decoding the arrays is done to maximize the number of different candidate agents that can be uniquely encoded. The compositions of the invention may be made in a variety of ways. In general, the arrays are made by adding a solution or slurry comprising the beads to a surface containing the sites for attachment of the beads. This may be done in a variety of buffers, including aqueous and organic solvents, and mixtures. The solvent can evaporate, and excess beads are removed.

In a preferred embodiment, when non-covalent methods are used to associate the beads with the array, a novel method of loading the beads onto the array is used. This method comprises exposing the array to a solution of particles (including microspheres and cells) and then applying energy, e.g. agitating or vibrating the mixture. This results in an array comprising more tightly associated particles, as the agitation is done with sufficient energy to cause weakly-associated beads to fall off (or out, in the case of wells). These sites are then available to bind a different bead. In this way, beads that exhibit a high affinity for the sites are selected. Arrays made in this way have two main advantages as compared to a more static loading: first of all, a higher percentage of the sites can be filled easily, and secondly, the arrays thus loaded show a substantial decrease in bead loss during assays. Thus, in a preferred embodiment, these methods are used to generate arrays that have at least about 50% of the sites filled, with at least about 75% being preferred, and at least about 90% being particularly preferred. Similarly, arrays generated in this manner preferably lose less than about 20% of the beads during an assay, with less than about 10% being preferred and less than about 5% being particularly preferred.

In this embodiment, the substrate comprising the surface with the discrete sites is immersed into a solution comprising the particles (beads, cells, etc.). The surface may comprise wells, as is described

herein, or other types of sites on a patterned surface such that there is a differential affinity for the sites. This differential affinity results in a competitive process, such that particles that will associate more tightly are selected. Preferably, the entire surface to be "loaded" with beads is in fluid contact with the solution. This solution is generally a slurry ranging from about 10,000:1 beads:solution (vol:vol) to 1:1. Generally, the solution can comprise any number of reagents, including aqueous buffers, organic solvents, salts, other reagent components, etc. In addition, the solution preferably comprises an excess of beads; that is, there are more beads than sites on the array. Preferred embodiments utilize two-fold to billion-fold excess of beads.

5

15

20

25

30

35

The immersion can mimic the assay conditions; for example, if the array is to be "dipped" from above into a microtiter plate comprising samples, this configuration can be repeated for the loading, thus minimizing the beads that are likely to fall out due to gravity.

Once the surface has been immersed, the substrate, the solution, or both are subjected to a competitive process, whereby the particles with lower affinity can be disassociated from the substrate and replaced by particles exhibiting a higher affinity to the site. This competitive process is done by the introduction of energy, in the form of heat, sonication, stirring or mixing, vibrating or agitating the solution or substrate, or both.

A preferred embodiment utilizes agitation or vibration. In general, the amount of manipulation of the substrate is minimized to prevent damage to the array; thus, preferred embodiments utilize the agitation of the solution rather than the array, although either will work. As will be appreciated by those in the art, this agitation can take on any number of forms, with a preferred embodiment utilizing microtiter plates comprising bead solutions being agitated using microtiter plate shakers.

The agitation proceeds for a period of time sufficient to load the array to a desired fill. Depending on the size and concentration of the beads and the size of the array, this time may range from about 1 second to days, with from about 1 minute to about 24 hours being preferred.

It should be noted that not all sites of an array may comprise a bead; that is, there may be some sites on the substrate surface which are empty. In addition, there may be some sites that contain more than one bead, although this is not preferred.

In some embodiments, for example when chemical attachment is done, it is possible to attach the beads in a non-random or ordered way. For example, using photoactivatible attachment linkers or photoactivatible adhesives or masks, selected sites on the array may be sequentially rendered suitable for attachment, such that defined populations of beads are laid down.

The arrays of the present invention are constructed such that information about the identity of the

capture probe is built into the array, such that the random deposition of the beads in the fiber wells can be "decoded" to allow identification of the capture probe at all positions. This may be done in a variety of ways, and either before, during or after the use of the array to detect target molecules.

Thus, after the array is made, it is "decoded" in order to identify the location of one or more of the capture probes, i.e. each subpopulation of beads, on the substrate surface.

In a preferred embodiment, pyrosequencing techniques are used to decode the array, as is generally described in "Nucleic Acid Sequencing using Microsphere Arrays", filed October 22, 1999 (no U.S.S.N. received yet), hereby incorporated by reference.

In a preferred embodiment, a selective decoding system is used. In this case, only those microspheres exhibiting a change in the optical signal as a result of the binding of a target sequence are decoded. This is commonly done when the number of "hits", i.e. the number of sites to decode, is generally low. That is, the array is first scanned under experimental conditions in the absence of the target sequences. The sample containing the target sequences is added, and only those locations exhibiting a change in the optical signal are decoded. For example, the beads at either the positive or negative signal locations may be either selectively tagged or released from the array (for example through the use of photocleavable linkers), and subsequently sorted or enriched in a fluorescence-activated cell sorter (FACS). That is, either all the negative beads are released, and then the positive beads are either released or analyzed in situ, or alternatively all the positives are released and analyzed. Alternatively, the labels may comprise halogenated aromatic compounds, and detection of the label is done using for example gas chromatography, chemical tags, isotopic tags mass spectral tags.

25

30

35

10

15

20

As will be appreciated by those in the art, this may also be done in systems where the array is not decoded; i.e. there need not ever be a correlation of bead composition with location. In this embodiment, the beads are loaded on the array, and the assay is run. The "positives", i.e. those beads displaying a change in the optical signal as is more fully outlined below, are then "marked" to distinguish or separate them from the "negative" beads. This can be done in several ways, preferably using fiber optic arrays. In a preferred embodiment, each bead contains a fluorescent dye. After the assay and the identification of the "positives" or "active beads", light is shown down either only the positive fibers or only the negative fibers, generally in the presence of a light-activated reagent (typically dissolved oxygen). In the former case, all the active beads are photobleached. Thus, upon non-selective release of all the beads with subsequent sorting, for example using a fluorescence activated cell sorter (FACS) machine, the non-fluorescent active beads can be sorted from the fluorescent negative beads. Alternatively, when light is shown down the negative fibers, all the negatives are non-fluorescent and the the postives are fluorescent, and sorting can proceed. The characterization of the attached capture probe may be done directly, for example using mass

spectroscopy.

5

10

15

20

25

30

35

Alternatively, the identification may occur through the use of identifier moieties ("IMs"), which are similar to IBLs but need not necessarily bind to DBLs. That is, rather than elucidate the structure of the capture probe directly, the composition of the IMs may serve as the identifier. Thus, for example, a specific combination of IMs can serve to code the bead, and be used to identify the agent on the bead upon release from the bead followed by subsequent analysis, for example using a gas chromatograph or mass spectroscope.

Alternatively, rather than having each bead contain a fluorescent dye, each bead comprises a non-fluorescent precursor to a fluorescent dye. For example, using photocleavable protecting groups, such as certain ortho-nitrobenzyl groups, on a fluorescent molecule, photoactivation of the fluorochrome can be done. After the assay, light is shown down again either the "positive" or the "negative" fibers, to distinguish these populations. The illuminated precursors are then chemically converted to a fluorescent dye. All the beads are then released from the array, with sorting, to form populations of fluorescent and non-fluorescent beads (either the positives and the negatives or vice versa).

In an alternate preferred embodiment, the sites of attachment of the beads (for example the wells) include a photopolymerizable reagent, or the photopolymerizable agent is added to the assembled array. After the test assay is run, light is shown down again either the "positive" or the "negative" fibers, to distinguish these populations. As a result of the irradiation, either all the positives or all the negatives are polymerized and trapped or bound to the sites, while the other population of beads can be released from the array.

In a preferred embodiment, the location of every capture probe is determined using decoder binding ligands (DBLs). As outlined above, DBLs are binding ligands that will either bind to identifier binding ligands, if present, or to the capture probes themselves, preferably when the capture probe is a nucleic acid or protein.

In a preferred embodiment, as outlined above, the DBL binds to the IBL.

In a preferred embodiment, the capture probes are single-stranded nucleic acids and the DBL is a substantially complementary single-stranded nucleic acid that binds (hybridizes) to the capture probe, termed a decoder probe herein. A decoder probe that is substantially complementary to each candidate probe is made and used to decode the array. In this embodiment, the candidate probes and the decoder probes should be of sufficient length (and the decoding step run under suitable conditions) to allow specificity; i.e. each candidate probe binds to its corresponding decoder probe with sufficient specificity to allow the distinction of each candidate probe.

In a preferred embodiment, the DBLs are either directly or indirectly labeled. In a preferred embodiment, the DBL is directly labeled, that is, the DBL comprises a label. In an alternate embodiment, the DBL is indirectly labeled; that is, a labeling binding ligand (LBL) that will bind to the DBL is used. In this embodiment, the labeling binding ligand-DBL pair can be as described above for IBL-DBL pairs.

Accordingly, the identification of the location of the individual beads (or subpopulations of beads) is done using one or more decoding steps comprising a binding between the labeled DBL and either the IBL or the capture probe (i.e. a hybridization between the candidate probe and the decoder probe when the capture probe is a nucleic acid). After decoding, the DBLs can be removed and the array can be used; however, in some circumstances, for example when the DBL binds to an IBL and not to the capture probe, the removal of the DBL is not required (although it may be desirable in some circumstances). In addition, as outlined herein, decoding may be done either before the array is used to in an assay, during the assay, or after the assay.

In one embodiment, a single decoding step is done. In this embodiment, each DBL is labeled with a unique label, such that the the number of unique tags is equal to or greater than the number of capture probes (although in some cases, "reuse" of the unique labels can be done, as described herein; similarly, minor variants of candidate probes can share the same decoder, if the variants are encoded in another dimension, i.e. in the bead size or label). For each capture probe or IBL, a DBL is made that will specifically bind to it and contains a unique tag, for example one or more fluorochromes. Thus, the identity of each DBL, both its composition (i.e. its sequence when it is a nucleic acid) and its label, is known. Then, by adding the DBLs to the array containing the capture probes under conditions which allow the formation of complexes (termed hybridization complexes when the components are nucleic acids) between the DBLs and either the capture probes or the IBLs, the location of each DBL can be elucidated. This allows the identification of the location of each capture probe; the random array has been decoded. The DBLs can then be removed, if necessary, and the target sample applied.

In a preferred embodiment, the number of unique labels is less than the number of unique capture probes, and thus a sequential series of decoding steps are used. In this embodiment, decoder probes are divided into **n** sets for decoding. The number of sets corresponds to the number of unique tags. Each decoder probe is labeled in **n** separate reactions with **n** distinct tags. All the decoder probes share the same **n** tags. The decoder probes are pooled so that each pool contains only one of the **n** tag versions of each decoder, and no two decoder probes have the same sequence of tags across all the pools. The number of pools required for this to be true is determined by the number of decoder probes and the **n**. Hybridization of each pool to the array generates a signal at every address. The sequential hybridization of each pool in turn will generate a unique, sequence-specific code for each candidate probe. This identifies the candidate probe at each address in the array. For example, if four

tags are used, then 4 X n sequential hybridizations can ideally distinguish 4ⁿ sequences, although in some cases more steps may be required. After the hybridization of each pool, the hybrids are denatured and the decoder probes removed, so that the probes are rendered single-stranded for the next hybridization (although it is also possible to hybridize limiting amounts of target so that the available probe is not saturated. Sequential hybridizations can be carried out and analyzed by subtracting pre-existing signal from the previous hybridization).

5

10

15

20

25

30

35

An example is illustrative. Assuming an array of 16 probe nucleic acids (numbers 1-16), and four unique tags (four different fluors, for example: labels A-D). Decoder probes 1-16 are made that correspond to the probes on the beads. The first step is to label decoder probes 1-4 with tag A, decoder probes 5-8 with tag B, decoder probes 9-12 with tag C, and decoder probes 13-16 with tag D. The probes are mixed and the pool is contacted with the array containing the beads with the attached candidate probes. The location of each tag (and thus each decoder and candidate probe pair) is then determined. The first set of decoder probes are then removed. A second set is added, but this time, decoder probes 1, 5, 9 and 13 are labeled with tag A, decoder probes 2, 6, 10 and 14 are labeled with tag B, decoder probes 3, 7, 11 and 15 are labeled with tag C, and decoder probes 4, 8, 12 and 16 are labeled with tag D. Thus, those beads that contained tag A in both decoding steps contain candidate probe 1; tag A in the first decoding step and tag B in the second decoding step contain candidate probe 2; tag A in the first decoding step and tag C in the second step contain candidate probe 3; etc. In one embodiment, the decoder probes are labeled in situ; that is, they need not be labeled prior to the decoding reaction. In this embodiment, the incoming decoder probe is shorter than the candidate probe, creating a 5' "overhang" on the decoding probe. The addition of labeled ddNTPs (each labeled with a unique tag) and a polymerase will allow the addition of the tags in a sequence specific manner, thus creating a sequence-specific pattern of signals. Similarly, other modifications can be done, including ligation, etc. ...

In addition, since the size of the array will be set by the number of unique decoding binding ligands, it is possible to "reuse" a set of unique DBLs to allow for a greater number of test sites. This may be done in several ways; for example, by using some subpopulations that comprise optical signatures. Similarly, the use of a positional coding scheme within an array; different sub-bundles may reuse the set of DBLs. Similarly, one embodiment utilizes bead size as a coding modality, thus allowing the reuse of the set of unique DBLs for each bead size. Alternatively, sequential partial loading of arrays with beads can also allow the reuse of DBLs. Furthermore, "code sharing" can occur as well.

In a preferred embodiment, the DBLs may be reused by having some subpopulations of beads comprise optical signatures. In a preferred embodiment, the optical signature is generally a mixture of reporter dyes, preferably flourescent. By varying both the composition of the mixture (i.e. the ratio of one dye to another) and the concentration of the dye (leading to differences in signal intensity), matrices of unique optical signatures may be generated. This may be done by covalently attaching the

dyes to the surface of the beads, or alternatively, by entrapping the dye within the bead.

5

10

15

20

25

30

35

In a preferred embodiment, the encoding can be accomplished in a ratio of at least two dyes, although more encoding dimensions may be added in the size of the beads, for example. In addition, the labels are distinguishable from one another; thus two different labels may comprise different molecules (i.e. two different fluors) or, alternatively, one label at two different concentrations or intensity.

In a preferred embodiment, the dyes are covalently attached to the surface of the beads. This may be done as is generally outlined for the attachment of the capture probes, using functional groups on the surface of the beads. As will be appreciated by those in the art, these attachments are done to minimize the effect on the dye.

In a preferred embodiment, the dyes are non-covalently associated with the beads, generally by entrapping the dyes in the pores of the beads.

Additionally, encoding in the ratios of the two or more dyes, rather than single dye concentrations, is preferred since it provides insensitivity to the Intensity of light used to interrogate the reporter dye's signature and detector sensitivity.

In a preferred embodiment, a spatial or positional coding system is done. In this embodiment, there are sub-bundles or subarrays (i.e. portions of the total array) that are utilized. By analogy with the telephone system, each subarray is an "area code", that can have the same tags (i.e. telephone numbers) of other subarrays, that are separated by virtue of the location of the subarray. Thus, for example, the same unique tags can be reused from bundle to bundle. Thus, the use of 50 unique tags in combination with 100 different subarrays can form an array of 5000 different capture probes. In this embodiment, it becomes important to be able to identify one bundle from another; in general, this is done either manually or through the use of marker beads, i.e. beads containing unique tags for each subarray.

In alternative embodiments, additional encoding parameters can be added, such as microsphere size. For example; the use of different size beads may also allow the reuse of sets of DBLs; that is, it is possible to use microspheres of different sizes to expand the encoding dimensions of the microspheres. Optical fiber arrays can be fabricated containing pixels with different fiber diameters or cross-sections; alternatively, two or more fiber optic bundles, each with different cross-sections of the individual fibers, can be added together to form a larger bundle; or, fiber optic bundles with fiber of the same size cross-sections can be used, but just with different sized beads. With different diameters, the largest wells can be filled with the largest microspheres and then moving onto progressively smaller microspheres in the smaller wells until all size wells are then filled. In this manner, the same dye ratio could be used to encode microspheres of different sizes thereby expanding the number of

different oligonucleotide sequences or chemical functionalities present in the array. Although outlined for fiber optic substrates, this as well as the other methods outlined herein can be used with other substrates and with other attachment modalities as well.

5

10

15

20

25

30

35

In a preferred embodiment, the coding and decoding is accomplished by sequential loading of the microspheres into the array. As outlined above for spatial coding, in this embodiment, the optical signatures can be "reused". In this embodiment, the library of microspheres each comprising a different capture probe (or the subpopulations each comprise a different capture probe), is divided into a plurality of sublibraries; for example, depending on the size of the desired array and the number of unique tags, 10 sublibraries each comprising roughly 10% of the total library may be made, with each sublibrary comprising roughly the same unique tags. Then, the first sublibrary is added to the fiber optic bundle comprising the wells, and the location of each capture probe is determined, generally through the use of DBLs. The second sublibrary is then added, and the location of each capture probe is again determined. The signal in this case will comprise the signal from the "first" DBL and the "second" DBL; by comparing the two matrices the location of each bead in each sublibrary can be determined. Similarly, adding the third, fourth, etc. sublibraries sequentially will allow the array to be filled.

In a preferred embodiment, codes can be "shared" in several ways. In a first embodiment, a single code (i.e. IBL/DBL pair) can be assigned to two or more agents if the target sequences different sufficiently in their binding strengths. For example, two nucleic acid probes used in an mRNA quantitation assay can share the same code if the ranges of their hybridization signal intensities do not overlap. This can occur, for example, when one of the target sequences is always present at a much higher concentration than the other. Alternatively, the two target sequences might always be present at a similar concentration, but differ in hybridization efficiency.

Alternatively, a single code can be assigned to multiple agents if the agents are functionally equivalent. For example, if a set of oligonucleotide probes are designed with the common purpose of detecting the presence of a particular gene, then the probes are functionally equivalent, even though they may differ in sequence. Similarly, an array of this type could be used to detect homologs of known genes. In this embodiment, each gene is represented by a heterologous set of probes, hybridizing to different regions of the gene (and therefore differing in sequence). The set of probes share a common code. If a homolog is present, it might hybridize to some but not all of the probes. The level of homology might be indicated by the fraction of probes hybridizing, as well as the average hybridization intensity. Similarly, multiple antibodies to the same protein could all share the same code.

In a preferred embodiment, decoding of self-assembled random arrays is done on the bases of pH titration. In this embodiment, in addition to capture probes, the beads comprise optical signatures, wherein the optical signatures are generated by the use of pH-responsive dyes (sometimes referred to

herein as "ph dyes") such as fluorophores. This embodiment is similar to that outlined in PCT US98/05025 and U.S.S.N. 09/151,877, both of which are expressly incorporated by reference, except that the dyes used in the present ivention exhibits changes in fluorescence intensity (or other properties) when the solution pH is adjusted from below the pKa to above the pKa (or vice versa). In a preferred embodiment, a set of pH dyes are used, each with a different pKa, preferably separated by at least 0.5 pH units. Preferred embodiments utilize a pH dye set of pKa's of 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11, and 11.5. Each bead can contain any subset of the pH dyes, and in this way a unique code for the capture probe is generated. Thus, the decoding of an array is achieved by titrating the array from pH 1 to pH 13, and measuring the fluorescence signal from each bead as a function of solution pH.

5

10

15

20

25

30

35

Thus, the present invention provides array compositions comprising a substrate with a surface comprising discrete sites. A population of microspheres is distributed on the sites, and the population comprises at least a first and a second subpopulation. Each subpopulation comprises a capture probe, and, in addition, at least one optical dye with a given pKa. The pKas of the different optical dyes are different.

In a preferred embodiment, "random" decoding probes can be made. By sequential hybridizations or the use of multiple labels, as is outlined above, a unique hybridization pattern can be generated for each sensor element. This allows all the beads representing a given clone to be identified as belonging to the same group. In general, this is done by using random or partially degenerate decoding probes, that bind in a sequence-dependent but not highly sequence-specific manner. The process can be repeated a number of times, each time using a different labeling entity, to generate a different pattern of singals based on quasi-specific interactions. In this way, a unique optical signature is eventually built up for each sensor element. By applying pattern recognition or clustering algorithms to the optical signatures, the beads can be grouped into sets that share the same signature (i.e. carry the same probes).

In order to identify the actual sequence of the clone itself, additional procedures are required; for example, direct sequencing can be done, or an ordered array containing the clones, such as a spotted cDNA array, to generate a "key" that links a hybridization pattern to a specific clone.

Alternatively, clone arrays can be decoded using binary decoding with vector tags. For example, partially randomized oligos are cloned into a nucleic acid vector (e.g. plasmid, phage, etc.). Each oligonucleotide sequence consists of a subset of a limited set of sequences. For example, if the limites set comprises 10 sequences, each oligonucleotide may have some subset (or all of the 10) sequences. Thus each of the 10 sequences can be present or absent in the oligonucleotide. Therefore, there are 2¹⁰ or 1,024 possible combinations. The sequences may overlap, and minor variants can also be represented (e.g. A, C, T and G substitutions) to increase the number of possible

combinations. A nucleic acid library is cloned into a vector containing the random code sequences. Alternatively, other methods such as PCR can be used to add the tags. In this way it is possible to use a small number of oligo decoding probes to decode an array of clones.

As will be appreciated by those in the art, the systems of the invention may take on a large number of different configurations, as is generally depicted in the Figures. In general, there are three types of systems that can be used: (1) "non-sandwich" systems (also referred to herein as "direct" detection) in which the target sequence itself is labeled with detectable labels (again, either because the primers comprise labels or due to the incorporation of labels into the newly synthesized strand); (2) systems in which label probes directly bind to the target analytes; and (3) systems in which label probes are indirectly bound to the target sequences, for example through the use of amplifier probes.

Detection of the reactions of the invention, including the direct detection of products and indirect detection utilizing label probes (i.e. sandwich assays), is preferably done by detecting assay complexes comprising detectable labels, which can be attached to the assay complex in a variety of ways.

15

20

30

35

In a preferred embodiment, an array of different and usually artificial capture probes are made; that is, the capture probes do not have complementarity to known target sequences. The adapter sequences can then be added to any target sequences, or soluble capture extender probes are made; this allows the manufacture of only one kind of array, with the user able to customize the array through the use of adapter sequences or capture extender probes. This then allows the generation of customized soluble probes, which as will be appreciated by those in the art is generally simpler and less costly.

When capture extender probes are used, in one embodiment, microsphere arrays containing a single type of capture probe are made; in this embodiment, the capture extender probes are added to the beads prior to loading on the array. The capture extender probes may be additionally fixed or crosslinked, as necessary.

Accordingly, the present invention provides compositions and methods for detecting the presence or absence of target analytes, including nucleic acid sequences, in a sample. As will be appreciated by those in the art, the sample solution may comprise any number of things, including, but not limited to, bodily fluids (including, but not limited to, blood, urine, serum, lymph, saliva, anal and vaginal secretions, perspiration and semen, of virtually any organism, with mammalian samples being preferred and human samples being particularly preferred); environmental samples (including, but not limited to, air, agricultural, water and soil samples); biological warfare agent samples; research samples (i.e. in the case of nucleic acids, the sample may be the products of an amplification reaction, including both target and signal amplification); purified samples, such as purified genomic DNA, RNA, proteins, etc.; raw samples (bacteria, virus, genomic DNA, etc.; As will be appreciated by those in the

art, virtually any experimental manipulation may have been done on the sample.

The present invention provides compositions and methods for detecting the presence or absence of target nucleic acid sequences in a sample.

5

10

15

20

25

30

35

In a preferred embodiment, several levels of redundancy are built into the arrays of the invention. Building redundancy into an array gives several significant advantages, including the ability to make quantitative estimates of confidence about the data and significant increases in sensitivity. Thus, preferred embodiments utilize array redundancy. As will be appreciated by those in the art, there are at least two types of redundancy that can be built into an array: the use of multiple identical sensor elements (termed herein "sensor redundancy"), and the use of multiple sensor elements directed to the same target analyte, but comprising different chemical functionalities (termed herein "target redundancy"). For example, for the detection of nucleic acids, sensor redundancy utilizes of a plurality of sensor elements such as beads comprising identical binding ligands such as probes. Target redundancy utilizes sensor elements with different probes to the same target; one probe may span the first 25 bases of the target, a second probe may span the second 25 bases of the target, etc. By building in either or both of these types of redundancy into an array, significant benefits are obtained. For example, a variety of statistical mathematical analyses may be done.

In addition, while this is generally described herein for bead arrays, as will be appreciated by those in the art, this techniques can be used for any type of arrays designed to detect target analytes.

Furthermore, while these techniques are generally described for nucleic acid systems, these techniques are useful in the detection of other binding ligand/target analyte systems as well.

In a preferred embodiment, sensor redundancy is used. In this embodiment, a plurality of sensor elements, e.g. beads, comprising identical bioactive agents are used. That is, each subpopulation comprises a plurality of beads comprising identical bioactive agents (e.g. binding ligands). By using a number of identical sensor elements for a given array, the optical signal from each sensor element can be combined and any number of statistical analyses run, as outlined below. This can be done for a variety of reasons. For example, in time varying measurements, redundancy can significantly reduce the noise in the system. For non-time based measurements, redundancy can significantly increase the confidence of the data.

In a preferred embodiment, a plurality of identical sensor elements are used. As will be appreciated by those in the art, the number of identical sensor elements will vary with the application and use of the sensor array. In general, anywhere from 2 to thousands may be used, with from 2 to 100 being preferred, 2 to 50 being particularly preferred and from 5 to 20 being especially preferred. In general, preliminary results indicate that roughly 10 beads gives a sufficient advantage, although for some applications, more identical sensor elements can be used.

Once obtained, the optical response signals from a plurality of sensor beads within each bead subpopulation can be manipulated and analyzed in a wide variety of ways, including baseline adjustment, averaging, standard deviation analysis, distribution and cluster analysis, confidence interval analysis, mean testing, etc.

5

10

15

20

25

30

35

In a preferred embodiment, the first manipulation of the optical response signals is an optional baseline adjustment. In a typical procedure, the standardized optical responses are adjusted to start at a value of 0.0 by subtracting the integer 1.0 from all data points. Doing this allows the baseline-loop data to remain at zero even when summed together and the random response signal noise is canceled out. When the sample is a fluid, the fluid pulse-loop temporal region, however, frequently exhibits a characteristic change in response, either positive, negative or neutral, prior to the sample pulse and often requires a baseline adjustment to overcome noise associated with drift in the first few data points due to charge buildup in the CCD camera. If no drift is present, typically the baseline from the first data point for each bead sensor is subtracted from all the response data for the same bead. If drift is observed, the average baseline from the first ten data points for each bead sensor is substracted from the all the response data for the same bead. By applying this baseline adjustment, when multiple bead responses are added together they can be amplified while the baseline remains at zero. Since all beads respond at the same time to the sample (e.g. the sample pulse), they all see the pulse at the exact same time and there is no registering or adjusting needed for overlaying their responses. In addition, other types of baseline adjustment may be done, depending on the requirements and output of the system used.

Once the baseline has been adjusted, a number of possible statistical analyses may be run to generate known statistical parameters. Analyses based on redundancy are known and generally described in texts such as Freund and Walpole, Mathematical Statistics, Prentice Hall, Inc. New Jersey, 1980, hereby incorporated by reference in its entirety.

In a preferred embodiment, signal summing is done by simply adding the intensity values of all responses at each time point, generating a new temporal response comprised of the sum of all bead responses. These values can be baseline-adjusted or raw. As for all the analyses described herein, signal summing can be performed in real time or during post-data acquisition data reduction and analysis. In one embodiment, signal summing is performed with a commercial spreadsheet program (Excel, Microsoft, Redmond, WA) after optical response data is collected.

Methods for signal summing and analyses are included in U.S.S.N, 08/944,850, filed October 6, 1997; 09/287,573, filed April 6, 1999; and 60/238,866, filed October 6, 2000; an PCT Nos. US98/21193, filed October 6, 1998; and US00/09183, filed April 6, 2000.

Once made, the methods and compositions of the invention find use in a number of applications. In a

preferred embodiment, the compositions are used to probe a sample solution for the presence or absence of a target sequence, including the quantification of the amount of target sequence present. The compositions and methods find utility in the detection of genotyping assays and sequencing assays, and in all sorts of target analyte assays, including immunoassays.

For SNP analysis, the ratio of different labels at a particular location on the array indicates the homozygosity or heterozygosity of the target sample, assuming the same concentration of each readout probe is used. Thus, for example, assuming a first readout probe comprising a first base at the readout position with a first detectable label and a second readout probe comprising a second base at the readout position with a second detectable label, equal signals (roughly 1:1 (taking into account the different signal intensities of the different labels, different hybridization efficiencies, and other reasons)) of the first and second labels indicates a heterozygote. The absence of a signal from the first label (or a ratio of approximately 0:1) indicates a homozygote of the second detection base; the absence of a signal from the second label (or a ratio of approximately 1:0) indicates a homozygote for the first detection base. As is appreciated by those in the art, the actual ratios for any particular system are generally determined empirically.

Generally, a sample containing a target analyte (whether for detection of the target analyte or screening for binding partners of the target analyte) is added to the array, under conditions suitable for binding of the target analyte to at least one of the capture probes, i.e. generally physiological conditions. The presence or absence of the target analyte is then detected. As will be appreciated by those in the art, this may be done in a variety of ways, generally through the use of a change in an optical signal. This change can occur via many different mechanisms. A few examples include the binding of a dye-tagged analyte to the bead, the production of a dye species on or near the beads, the destruction of an existing dye species, a change in the optical signature upon analyte interaction with dye on bead, or any other optical interrogatable event.

In a preferred embodiment, the change in optical signal occurs as a result of the binding of a target analyte that is labeled, either directly or indirectly, with a detectable label, preferably an optical label such as a fluorochrome. Thus, for example, when a proteinaceous target analyte is used, it may be either directly labeled with a fluor, or indirectly, for example through the use of a labeled antibody. Similarly, nucleic acids are easily labeled with fluorochromes, for example during PCR amplification as is known in the art. Alternatively, upon binding of the target sequences, a hybridization indicator may be used as the label. Hybridization indicators preferentially associate with double stranded nucleic acid, usually reversibly. Hybridization indicators include intercalators and minor and/or major groove binding moieties. In a preferred embodiment, intercalators may be used; since intercalation generally only occurs in the presence of double stranded nucleic acid, only in the presence of target hybridization will the label light up. Thus, upon binding of the target analyte to a capture probe, there is a new optical signal generated at that site, which then may be detected.

Alternatively, in some cases, as discussed above, the target analyte such as an enzyme generates a species that is either directly or indirectly optical detectable.

Furthermore, in some embodiments, a change in the optical signature may be the basis of the optical signal. For example, the interaction of some chemical target analytes with some fluorescent dyes on the beads may alter the optical signature, thus generating a different optical signal.

As will be appreciated by those in the art, in some embodiments, the presence or absence of the target analyte may be done using changes in other optical or non-optical signals, including, but not limited to, surface enhanced Raman spectroscopy, surface plasmon resonance, radioactivity, etc.

The assays may be run under a variety of experimental conditions, as will be appreciated by those in the art. A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in any order that provides for the requisite binding. Various blocking and washing steps may be utilized as is known in the art.

20

25

15

5

10

The following examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All references cited herein are incorporated by reference in their entirety.

Examples

Example 1

5

10

Immobilization of Crude Oligonucleotides to a Solid Support

1. Introduce chemical functional group (such as -NH2, -COOH, -NCO, -NHS, -SH, -CHO, etc.)onto solid support.

- 2. Activate the functional group before oligonucleotide attachment.
- 3. 5'-terminal modified oligonucleotide attachment.

Crude Oligonucleotides were attached to supports and compared to results from attachment of purified oligonucleotides. As demonstrated in Figure 3, in the presence of 2M salt, crude oligonucleotides were immobilized as efficiently as purified oligonucleotides.

IN addition, the improved attachment of oligonucleotides to a solid support in the presence of increased salt was sequence and length Independent. Thus, the method finds use in attachment of all oligonucleotides to a solid support (see Figure 4).

In addition, when 0.5 M to 3 M NaCl was used for attachment of oligonucleotides, non-purified oligonucleotides were attached with comparable efficiency when compared to purified oligonucleotides (see Figure 5).

TABLE 1

	Seq. ID No.	Decoder (5'-3")
	17	GGCTGGTTCGGCCCGAAAGCTTAG
	18	GTTCCCAGTGAAGCTGCGATCTGG
5	19	TACTTGGCATGGAATCCCTTACGC
	20	ACTAGCATATTTCAGGGCACCGGC
	21	GAACGGTCAATGAACCCGCTGTGA
	22	GCGGCCTTGGTTCAATATGAATCG
	23	GATCGTTAGAGGGACCTTGCCCGA
10	24	TGGACCTAGTCCGGCAGTGACGAA
	25	ATAAACTACCCAGGACGGGCGGAA
	26	CATCGGTTCGCGCCAATCCAGATA
	27	GTCGGGCATAGAGCCGACCACCCT
	28	CTTGGGTCATGATTCACCGTGCTA
15	29	TGCCTAACGTGCTAATCAGCAGCG
	30	CGCATGTTGGAGCATATGCCCTGA
	31	AGCCACTGCATCAGTGCTGTTCAA
	32	GGTTGTTTTGAGGCGTCCCACACT
	33	TCGACCAAGAGCAAGGGCGGACCA
20	34	GACATCGCTATTGCGCATGGATCA
	35	GAAATACGAAGTCTGCGGGAGTCG
	36	TGTCATGAATGATTGATCGCGCGA
	37	ATATCGGGATTCGTTCCCGGTGAA
	38	GCGAGCGTACCGAAGGGCCTAGAA
25	39	TTACCGGCAGCGGACTTCCGAATT
	40	GTAATCGAGAGCTGCGCGCCGTCT
	41	TCCCTGAGGTCGGAAGCTTCCGAC
	42	CCTGTTAGCGTAGGCGAGTCGATC
	43	TAGCGGACCGGCAGAATGAGTTCC
30	44	GGTACATGCACTACGCGCACTCGG
	45	AATTCATCTCGGACTCCCGCGGTA
	46	GCCAAATCTGGATTGGCAGGAATG
	47	TGCATTTTCGGTTGAGGCACATCC
	48	CCGCTCAATTCACCATGCTTCGCT
35	49 ·	CTCGGAAAGGTGCAACTTTGGTGT
	50	AATTCGACCAGCAGAACGTCCCAT
	51	GCCAGAGTCTCAACCTCACGGGAT
	52	CCAACAACTGGAACGGGAACCCGC
	-53	GAGAACTGATCGCTGAGGGGCATG
40	54	GGCACACTAGACTTGTGGCACCGA

	55	CTTGGGCAAACGCTTCAGCCACAA
	56	TCACATCCAAATATGGTCCGCGAA
	57	GTCTGCCGGTGTGACCGCTTCATT
	58	CATCGCAGAGCATAAACACCCTCA
5	59	GTTGGTATCTATGGCAGAGGCGGA
	60	ACGAGGTGCCGCTGAGGTTCCATT
	61	GGAATGAGTGGACCCAGGCACATT
	62	TGTCAATATGCGTCCGTGTCGTCT
	63	TGATGAGCCTCAGGGTACGAGGCA
10	64	CACCGCGGTGTTCCTACAGAATGA
	65	TTGTTGCCAATGGTGTCCGCTCGG
	66	TTAACCTGCGTCTGCCCCTTTCCT
	67	AGGCGCGTTCCTGCCTTAGTGACG
	68	TAGGGCGATGGCACGAAGCTTCAA
15	69	TGCATAGAGCCAAAGTCGGCGATG
	70	TTGAGAGGCAGGTGGCCACACGGA
_	71	TCCGCATTGTGAGAAAAAACGAGC
	72	GGCGGTTTCCGTAGCTATAGGTGC
	73	GGTGAAAATTTCGTAGCCACGGGC
20	74	CCGACGGAGGATGAAGACAATCAC
	75	CCAGTTTGGCCCAATTCGCCAAAA
_	76	GGATCTATTAGGCCGTGCGCACAG
	77 .	CGGATGTCACCGTTTGGACTTTCA
_	78	ATCGCAAATCCTGCTCGTCCCTAA
25	79	CAGGGCATGCAATAATCGAGGTTC
	80	CATGCGTTGATATATGGGCCCAAG
	81	CAGCTGCAGCTTGTGACCAACCAC
<u></u>	82	TTGTATGTCTGCCGACCGGCGACC
	83	GATGGCGCCGTTGATAGGTATGG
30	84	ATGAGAATCGCCGGCAATCTGCTA
	85	ATTTGCACTGACCGCAGGCTCGTG
	86	CAGGGAGAACGGTTAAGTTCCCGT
	87	AGGCCGGCGATCGAGGAGTTTGGT
	88	ACACGGTGGTCTCTGATAGCGACC
35	89	GTGCAACGCCGAGGACTTCCATCA
	90	TCGGTGCCTGATAGCCATTCCGAT
	91	TGAAATACCACACAGCCAATTGGC
<u></u>	92	GCATCGTGTACATGACTGCCGCGA
<u> </u>	93	CAGTGTTCTAACGGCGCGCGTGAA
40	94	CGCTTGCAACGTTGCACCTACTCT
<u> </u>	95	CGAAAAACTAGTGGGCTCGCCGCG
<u></u>	96	CTTTCAGGGGAACTGCCGGAGTCG

	97	TTGTGGCCTTCTTGTAAAGGCACG
	98	TCCACGAACGGCGACCCGTTGTCT
	99	CGACCTTGCACGAAACCTAACGAG
	100 .	GTGCAGCTTCACGAGCCAGCCTGA
5	101	CGCTTTCGTGCGAATAGACGATGA
	102	TGCGCTTACAGGCTCCTAGTGGTC
	103	CACGCGCTTAGTCGCGATCGCATA
	104	CGGAGGGAGGAGCTAGCCTTCGA
	105	GCATCCGGCCTGTTGATGACGCCT
10	106	AGGCCAATCGATCTTATTGCCGAG
	107	CCTTCCAATGATTGCATACGCCCA
	108	AACACTTGATCAGGCGGGTCGTCT
	109	TGGAATCAAGGCCGTAAAGGACAG
	110	GCTCCCGTAACCTGTCCACCAGTG
15	111	AGTGGTGAATGGCCGCTACCCTGA
ļ	112	TGTTGAAGCGAGCTAAAACGGCCA
	113	CAGCGCTCCAGAATTGACAGCAAT
1	114	AAGGTGGTGCCATTCATTTGGCTA
	115	CGTTAAACCGCAATCCGTTCGGCT
20	116	TGTCTTCCACCTCGAAGGTTTCCA
	117	CACGAGATACCGGCGTAAGGGTGG
	118	CTACGGCAAACGTGTGGAATGGGT
	119	GTAGGGCGATGACGGGCGAACTAC
	120	AATCGACCTCCGCACACATTCGCA
25	121	GAGTCAGCATGGCGGCGGAGATTC
	122	AGATAAAGACGCTGGCAACACGGG
	123	GGTACCTCAACGCGAACCACTTGT
	124	AAGCGATGGCTACCCAAGAGCGAT
	125	AGAGCTTATGCAGAACCAGGCGCC
30	126	ATCGGTCTCACGCAGGGTTGGATA
	127	TAGGTTGCCCGCCAGAAGAACAT
	128	CGGTGCTGTTGCAAAAGCCTGTAG
	129	TGATGAAAGTTTGCGGCAGGACAC
	130	GTTGAGTGCAGGATAG
35	131	AACATTGCGCGGTCCACCAGGGTT
	132	GGGCAGTTAGAGAGGCCCAGAAGT
	133	TCGAGCTGGTCCCCGTGAACGTGT
· · · .	134	GTCTTGGGGGCCGCTTAGTGAAAA
	135	ACTGTTGGCTTGCTCATGTCCA
40	136	AGGACCATTCGGAAGGCGAAGATA
	137	CTTGGGAGGCATCCGCTATAAGGA
	138	AATAAACGGAACGCACCGCTACAG

	139	TTGTACGTGCGGTCCCCATAAGCA
	140	CGCACCAAACTGAGTTTCCCAGAC
	141	ACCTGATCGTTCCCCTATTGGGAA
	142	GGAACAGAGGCGAGGGGACTGAGC
5	143	CCCTGCCTTGGCGTGTCGGCTTAT
	144	ACTCTGACACGCCAACTCCGGAAG
	145	CTGACGGTTTTCATTCGGCGTGCC
	146	TGCGGTGGTTCATTGGAGCTGGCC
	147	GCATGGCCAACTAGTGACTCGCAA
10	148	AGGCCGTAAAGCGAATCTCACCTG
	149	CGAATATTATGCCGAGAATCCGCG
	150	ACAGACGAGCTCCCAACCACATGA
	151	GGACGGTTTGTGCTGGATTGTCTG
}	152	AAAGGCTATTGAGTTGGTTGGGCG
15	153	GATGGCCTATTCGGAGATCGGGCC
	154	GATCCAGTAGGCAGCTTCATCCCA
	155	AATAACTCGCGCGGGTATGCTTCT
	156	GGAGGAGGTTTGTCTCGGAAAGCA
	157	CTTTGGTATGGCACATGCTGCCCG
20	158	AGAAAGGCTCGAGCAACGGGAACT
	159	AATCTACCGCACTGGTCCGCAAGT
	160	CGTGGCGGCCACAGTTTTTGGAGG
	161	TTGCAGTTCAATCCATACGCACGT
	162	GGCCCAAAGCCCCAGACCATTTTA
25	163	CGCCTGTCTTTGTCTCCGGACAAT
	164	TGAGGCAACAGGGGCCAAAAACTA
	165	AGCGGAAGTAGTCCTCGGCTCGTC
	166	GGCCCCAAGGCTTAGAGATAGTGG
	167	GCACGTGAAGTTTAACCGCGATTC
30	168	AGCGGCAGAAACGTTCCTTGACGG
	169	TCGTCGAGCAGACGAGATTGCACG
	170	TCTTTGCCGCGTAACTGACTGCTT
	171	TTTATGTGCCAAGGGGTTAACCGA
	172	TGTTACTGTGGTTCACGGCAGTCC
35	173	CGCGCCTCGCTAGACCTTTTATTG
	174	ACAAATGCGTGAGAGCTCCCAACT
	175	CGCGCAGATTATAGACCCGAATGT
	176	CAAATAACGCCGCTGAATCGGCGT
	177	CCTTCGTGCATCGGTGATGATGTT
40	178	TGAACACGAGCAACACTCCAACGC
	179	CAGCAGATCCTTCGTAGCGGTCGT
	180	GGAACCTGGTGAGTTGTGCCTCAT

	181	TCATAAGCGACAATCGCGGGCTTA
	182	CCCAACGTCACTGAAGCTCACAGT
	183	TGTCAGAGCCCGCGACTCAGACGG
	184	TACACGAAGCCTCTCCGTGGTCCA
5	185	CTCAGAAGTCCTCGGCGAACTGGG
	186	ATCCTTTTATCTACTCCGCGGCGA
	187	AGGCGTGCAGCAACAGGATAAACC
	188	ACTCTCGAGGGAGTCTCTGGCACA
	189	TTGCCAGGTCCATCGAGACCTGTT
10	190	TCCACTATAACTGCGGGTCCGTGT
	191	GCCCAGTCGGCTCTAACAAGTTCG
	192	CGGAACGGATAATCGGCGTCAGGT
	193	TAAAATAAGCGCCTGGCGGGAGGA
	194	GCGCACTCGTGAAACCTTTCTCGC
15	195	AGTTTGCCAGGTACTGGCAAGTGC
	196	ACAACGAGGGATGTCCAGCGGCAT
Ì	197	TTCGCAGCACCCGCTAGGTACAGT
j	198	TAACCCGATTTTTGCGACTCTGCC
	199	CGTCGCATTGCAAGCGTAGGCTTG
20	200	GAGCTGACGTCACCATCAGAGGAA
·	201	GGAGGCTGGGGGTCGCGCTTAAGT
	202	TTGTGGGAACCGCACTAGCTGGCT
	203	CCCTCGCACTGTGTTCACCCTCTT
	204	TCATTGACTCGAATCCGCACAACG
25	205 .	ACAGGGGTTGGCCTTCGTACGTAC
	206	AGGCCGTGCAACATCACACAGGAT
·	207	GGGCCGTGGTCACGTAATATTGGC.
	208	GCGCGGACATGAAACGACAAGGCC
	209	CTTATTGGGTGCCGGTGTCGGATT
30	210	GGGGCGGTTACCAAAAAATCCGAT
	211	GCTAAAGCGTGCTCCGTAACTGCC
	212	ATCTCATGCATCTCGGTTCGTCGT
	213	ACGAAAAAGTGTGCGGATCCCCT
	214	CCAAGTACACCGCACGCATGTTTA
35	215	ATCGTGCGTGGAGTGTCGCATCTA
	216	TCCAGATACCGCCCGAACTTTGA
	217	TCTGCTGGCAGCACGTGAAGTGGC
	218	TTGAAATTGCTCTGCCGTCAGTCA
	219	AGTCAGGCGAGATGTTCAGGCAGC
40	220	ACAAGCCGACGTTAAGCCCGCCCA
	221	CCCTAATGAGGCCAGTAACCTGCA
	222	GTGAGACACACCCCCCCCAATG

Γ	202	
ŀ	223	CGACGGATGCAGAGTTCAGTGGTC
	224	CCCGCATGCCTGGCGGTATTACAA
	225	TTAGCAAAGCGGCGCCGTTAGCAA
	226	CCCGACACGGGTCAGCGTAATAAT
5	227	GCGACGCCCTGAGGTATGTCGTC
	228	CAAAAGTGTGTTCCCTTGCGCTTG
	229	TCTCGAAGCACAGCCCGGTTATTG
	230	ATGCTAACCGTTGGCCATGGAACT
	231	CTTGCGGAGTGTTAGCCCAGCGGT
10	232	TGCTCCCTAGGCGCTCGGAGGAGT
	233	CCAATGCCTTTGAGTAAGCGATGG
	234	AGCAGATAACGTCCCAATGACGCC
	235	TTGACCATTACGTGTTGCGCCCAT
	236	TCGCGTATTTGCGGAATTCGTCTG
15	237	CTGCGTGTCAACAATGTCCCGCAG
	238	TCTGGTGCCACGCAAGGTCCACAG
	239	CTCCGGGAGGTCACTTAATTGCGG
	240	TTTTCGTGATTGCCCGGAGGAGGC
	241	TCGGGATGTAGCTGGGGCTACCGG
20	242	CGAGCCAACGCAAACACGTCCTTG
	243	GCAAAGCCTTTGTGGGGCGGTAGT
	244	ATTCGACCGGAAATGAGGTCTTCG
	245	TTCGCTTGCTGAGTTGCTCTGTTC
	246	CGCGTGAAGACCCCATTCCCGAGT
25	247	AACCGTATTCGCGGTCACTTGTGG
	248	GGGGCCAACCGTTTCGAGGCGTAT
[249	TTCGGCTGGCAGTCCAAACGGCTT
	250	GGGTGTGGTTAGAATGCACGGTTC
	251	GCGAGGACCGAACTAGACAAACGG
30	252	ACGCACGCGTGACCGAAGTTGCTG
	253	TAAAAGGTCGCTTTGAAAGGGGGA
	254	TGCGATCGCTAACTGCTGGGACAA
	255	GGAGGTATAAGCGGAGCGGCCTCA
	256	ATGCTGACATGTCGTGCACCTCGT
35	257	TGTGGTTAAAGCGTCCGTTCAACG
	258	CGTTCACACCGGCGTAAGCTGCGT
	259	CCTATCCCGGCGAGAACTTCTGTG
ĺ	260	GTCTGCACTCACGCAGCGGAGGGA
	261	GCACGAGTTGGTGCTCGGCAGATT
40	262	AACGTCGCACGACACGTTCGTC
	263	ATGCGCGCTTATCCTAGCATGGTC
	264	TCACGTTTTCGTCTCGACATGAGG

	265	TGTGCCTCATCCTTAGGATACGGC
	266	AGGTGGTGGGTCAACCGCTTTA
	267	CTGGATCGAAGGGACTGCAAGCTC
	268	TAGATCAACTCGCGTACGCATGGA
5	269	GATCCTGCGGAGAAGAGAGTGCAG
	270	TACGTGTGGAGATGCCCCGAACCG
	271	GCGCTATGTCAATCGTGGGCGTAG
	272	AGCGAGGTTTCTAGCGTCGACACC
·	273	CGATGAAGACAGGTTTGCTGTTGC
10	274	ACCCAGGTTTTGCCGTTGTGGAAT
	275	CCCTGTTAACGGCTGCGTAGTCTC
ļ	276	AGGCCGATTTCACCCGCCAATTGC
	277	GAGCCCTCACTCCTTGCCCTTTGA
ĺ	278	GGGTGGACATCCGCCTCGCAGTCA
15	279	GATGGCTGAGAACCGTGCTACGAT
	280	TCGACGTTAGGAGTGCTGCCAGAA
	281	CGAATGGGTCTGGACCTTGCATAG
	282	GTGCACCAGACATTCGAACTCGGA
	283	AGAGGCCCCGTATATCCCATCCAT
20	284	AACGCCTGTTCAGAGCATCAGCGG
	285	AAGGCTCAACACGCCTATGTGCGC
	286	AGTCCGTGTTGCCAGATTGGCTCG
	287	ATGTCCCATGTAAAGACGCGTGTG
	288	ATGGAGTCTGCTCACGCCCAAAGG
25	289	CGGCCTCCAACAAGGAGCACTAAC
	290	CAGAGCCGTGGCAACATTGCGAGC
	291	TCATTTGAATGAGGTGCGCACCGG
ļ	292	GACGTACCGGAAGCGCCGTATAAA
	293	ATGCGAGCAATGGGATCCGGATTC
30	294	AGAGTGAGGCCTCCCTGACCAGTG
	295	CGCACCGTAAGTAGATTTGCCCGC
	296	AGGGTATCGGAGCCAGGGCTTACC
	297	TGAACCTTTGAGCACGTCGTGCGC
	298	TCCGCCTTTTTGGTTACCTCGAAG
35	299	GAACGCCAACGCCACTAACACATC
	300	CCGACAGCAGCCAAGACGTCCCAG
ļ	301	TTGTACACCTGGGCCACGCACAGG
	302	CATAAAAAACCTGGGGCTCTGCG
	303	TGCCAACTGTGCAGACCGGACTTA
40	304	GGCGAAAGAGCGAAACCGGCTCGT
	305	GGGATGCGTATTTTAGCGAACACG
!	306	TGGGATTCAGCGACCAGTACGCGA

	307	CCCGATATTCGCCCGGCCTATTCG
	308	CGAGAAGATGCCTCACGCAACCAA
	309	AACCTTGACCCGTGGATGACGCTA
	310	GGCTAGACGATGGATACCCGTGCC
5	311	GCCTCTTCTCGACGATGCGATTTT
	312	GCTTCCGGATGAACGGGATGGTTG
	313	CCCTCCATGTTCTTCGAACGGTTT
	314	TTGATGGGCGGCAATGCTCTTGCT
	315	ATTGTGAGATGCGCCAAATTCCCC
10	316	TCAGCACAGCCAGACGGTCAACTT
	317	ACTCCACTCCTCGGTGGCAAACTA
	318	TCTGGGCATGCCTGGACGGAGACG
	319	TCTCAACTCCGGTACGACGAAACA
	320	TTGCGTGGTCAAAGGCGCAACGTG
15	321	AGACAGCGATCCGCGGCTCATGAT
	322	CGCGTCTCTAACTGAGAGCAGCCA
	323	AGGCGCACATGTACGGACATTCAG
	324	GATGAGTGGCACGTCGGTGTGTAA
	325	TGATCCATATTGTCGGACGTTGCG
20	326	ACCTGCCGGGAGTTCATAGGCTAG
	327	AGCATTGGCGTTTTTCCGCAACGA
	328	GGTAATATTCAGCGCGACCGCTCA
	329	ATAGCGTACGACGAGGTGACGCGC
	330	GGGTGAGGGAAAGAGCACCTGCCT
25	331	TAGGTCACGATGCGTTTGACGCTA
	332	ACTGCCCGTACCTCTGGTTCTGGC
	333	CAAAAATCGGGTGAACATTGGCTG
	334	CCTTTGGCCTGAAGTTGTCGTAGC
	335	GTGCCCACGAGCGTATCGTTGTA
30	336	AGGCGCTACGTGGGCCTGGAGCAA
	337	GGGTGCTACCATTGCATTAGTCCG
	338	ACCACGCGCGTACGTGTAACCGAG
	339	CCATGATGCATTGGGTGCATTTAG
	340	GGTCCGGCCCTACGAAACGTTCGA
35	341	CCGTGTGGCTGGAGATTCGTGTGA
	342	GTTAGGGCGACGCATATTGGCACA
	343	GGGTCAGTCAGGTGCGTTAGGATC
	344	GCCGTGAAGTCGAATGCAGATCGA
	345	GCCACCACCCAGTGCATTCAGGTA
40	346	GAGCTTAGTTTGCGGTCATCGGGC
	347	TGTTTGCCGCCATTAGGGAGTAAC
	348	GCTCCGCTGGATGTGCCGGTTTAG

<i></i>		
	349	CGGTAGCATGCGAGATCCCTGTTA
	350	CTACGCTCTACCAGTTGCCTGCGA
	351	GTGCCTCCTGCTGTATTTGCCAAG
1	352	TTGCGACTCGACTTGGACGAGTAG
5	353	TCTGGGAGCTGTTTACTCCAGCCA
	354	TGCACGCGGAACTCCCTTTACCAT
	355	TGGCAGCAAATGAATCGAAAGCAC
	356	AACTGGTGACGCGGTACAGCGAAG
	357	AGACGATTACGCTGGACGCCGTCG
10	358	ATGCCCTCCTTCATGGAAAGGGTT
[359	ATTCTCGGAGCGTATGCGCCAGAA
	360	ATAGCGGAGTTTGGGTACGCGAAC
	361	ACCTACGCATACCGCTTGGCGAGG
	362	GATTACCTGAATGGCCAAGCGAGC
15	363	CCTGTTAGCATCACGGCGCTTAGG
	364	CGGAATGATGCGCTCGACAACGCT
	365	TGAGAGAGGCGTTGGTTAAGGCAA
	366	AAGCAGGCGAAGGGATACTCCTCG
	367	TCACGACAGACGGGCCGAGATTAC
20	368	AAGCAATTTGGCCTCGTTTTGTGA
	369	GCTGGTTGCGGTAGGATCGCATAT
	370	TTGTGAATCCGTTCTGTCCCCGAC
	371	CTCCGATGACAATTGTGGAGAGCA
	372	TGGGCTCCTCTGAGGCGAGATGGC
25	373	GGATAGAGTGAATCGACCGGCAAC
	374	TGCACCGAACGTGCACGAGTAATT
	375	GCCAGTATTCTCGGGTGTTGGACG
	376	TCGCTACCTAAGACCGGGCCATAC
	377	TGGCATTGACGAGCAGCAGTCAGT
30	378	CGCGTCCCAGCGCCCTTGGAGTAT
	379	ATGAAGCCTACCGGGCGACTTCGT
	380	CCAGACAGATGGCCTGGAACCATG
	381	TGGCGTGGGACCATCTCAAAGCTA
	382	CCGCATGGGAACACGTGTCAAGGT
35	383	GCCCACTCGTCAGCTGGACGTAAT
	384	ATTACGGTCGTGATCCAGAAAGCG
	385	TGCGAGGTGAGCACCTACGAGAGA
	386	GGGCCGCATTCTTGATGTCCATTC
	387	CCTCGGATGTGGGCTCTCGCCTAG
40	388	TAGGCATGTTGGCGTGAGCGCTAT
	389	CGATACGAACGAGGATGTCCGCCT
	390	TACGCCGGTTAGCACGGTGCGCTA
		•

	391	CATACGATGTCCGGGCCGTGTCGC
	392	ATCCGCAGTTGTATGGCGCGTTAT
	393	GGGTAAGGGACAAAGATGGGATGG
	394	ATTGGAGTGTTTTGGTGAATCCGC
5	395	GAACCGAGCCAACGTATGGACACG
٠	396	GCCGTCAAGCTTAAGGTTTTGGGC
	397	ACCTGCTTTTGGGTGGGTGATATG
	398	AATCGTGGGCGCAGCAAACGTATA
	399	GTCGCCGGATTGCTCAGTATAAGC
10	400	ACCCGTCGATGCTTCCTCCTCAGA
	401	ATCCGGGTGGGCGATACAAGAGAT
	402	TTCCGCATGAGTCAGCTTTGAAAA
	403	GCAAAGTCCCACTGGCAAGCCGAT
	404	CGACCTCGGCTTCATCGTACACAT
15	405	CTCATGAGCGCAGTTGTGCGTGAG
	406	CAGATGAAGGATCCACGGCCGGAG
	407	TCAAAGGCTCTTGGATACAGCCGT
	408	TCCGCTAATTTCCAATCAGGGCTC
	409	ACGCACGCCCTTTTGCCTTAATG
20	410	TGACAACGTCACAAGGAGCAGGAC
	411	CTTAGTTGGGGCGCGGTATCCAGA
	412	GCTCTAATGCCGTGGAGTCGGAAC
	413	CCGATTACAAATTGACTGACCGCA
	414	AGACGTACGTGAGCCTCCCGTGTC
25	415	AATGGAGCGATACGATCCAACGCA
	416	GGAGGCGCTGTACTGATAGGCGTA
	417	TGTTTTGAATTGACCACACGGGA
	418	CATGTCTGGATGCGCTCAATGAAG
	419	GCCCGCTAATCCGACACCCAGTTT
30	420	CCATTGACAGGAGAGCCATGAGCC
	421	GAATCACCGAATCACCGACTCGTT
	422	AACCAGCCGCAGTAGCTTACGTCG
	423	TTTTCTGAGGGACACGCGGGCGTT
	424	GGTGCTCCGTTTGATCGATCCTCC
35	425	CCGCTTAGGCCATACTCTGAGCCA
	426	TAAGACATACCGACGCCCTTGCCT
	427	GTTCCCGACGCCAGTCATTGAGAC
	428	TAAAAGTTTCGCGGAGGTCGGGCT
	429	CGGTCCAGACGAGCTGAGTTCGGC
40	430	CGGCGTAGCGGCTACGGACTTAAA
	431	GCTTGGATGCCCATGCGGCAAGGT
	432	AGCGGGATCCCAGAGTTTCGAAAA

	433	GAGCTTGAGAGCGAGGTCATCCTC
	434	GCATCGGCCGTTTTGACCATATTC
	435	CATAGCGCTGCACGTTTCGACCGC
[436	ACCCGACAACCACCAATTCAAAAA
5	437	GCGAACACTCATAAGAGCGCCCTG
	438	TTTTGGTGTGGCCGGTTGAAGCTC
	439	CCGCCGAGTGTAGAGAGACTCCGA
	440	GACATCGGGAGCCGGAAACATGAG
	441	TCGTGTAGACTCGGCGACAGGCGT
10	442	ATGCGCATATACTGACTGCGCAGG
	443	ACAAGCGAACCCGAGTTTTGATGA
	444	GCATGAGACTCCGCGAAGACATGT
	445	TCCTACATGTCGCGTCACGATCAC
	446	GACCGATCGCGAAGTCGTACACAT
15	447	GTCGCCAGGACTGGGCCGATGTGA
	448	ACCGATAAGACTTGCATCCGAACG
	449	TCCATAACCAGTCCGAAGTGCCGG
	450	ACGCGCCCTGCATCTCGTATTTAA
	451	AGACCGCATCAATTGGCGCGTACC
20	452	AGAGGCTTGGCAAGTAGGGACCCT
	453	GCAATGGACGCCAGACGATACCGG
	454	GCTGGACTTAGTCGTGTTCGGCGG
	455	GGGGCTCATGAACGAAAGGCCTTT
į	456	AGGCATCGTGCCGGATTGCTCCCT
25	457	TGCGCATGTCGACGTTGAACAAAG
	458	ATTGCATTATGCGGTCCCTCAAAC
	459	TTCGGGTCACATCCGATGCCATAC
ĺ	460	ACCCATCGCCGGAAAGCGATGTTG
ļ	461	AAGCGCTGACTCGGCTAAGAATCA
30	462	ACTTCCAAGTCCTTGACCGTCCGA
	463	TCTCAATATTCCCGTAGTCGCCCA
	464	AACAGTTCCTCTTTTTCCTGGCGC
	465	CGTCCTCCATGTTGTCACGAACAG
	466	TGCGCAGACCTACCTGTCTTTGCT
35	467	ATGGACGGCTTCGCAGTCCTCCTT
•	468	TGAACGCTTTCTATGGGCCACGTA
	469	TGAACCCTGCCGCGAGCGATAACC
	470	GTTCTTGCGCGATGAATCAGGACC
	471	AGGGTACGTGTCGCAGCTTCGCGT
40	472	ACCCTTGCTCCGCCATGTCTCTCA
	473	GGGACAAGGATTGAAGCTGGCGTC
	474	TGTCGTTGCTCCCGAGTACCATTG

475	GTGGTTATCTGCGAGGGCTTTTGA
476	GTTGTCCGAGACGTTTGTGTCAGC
477	GCTGGTGAACACTCACGAACCGCT
478	GCAGACAGGGCAAATCGGTGCAAA
479	CCCATCACAACGAGTGGCGACTTT
480	GCTTCTACAGCTGGCGTGCTAGCG
481	GAATGTGTGCCGACCATTCTAGCC
482	CCAGCGGAAGTTAGAGCTCTGTGG
483	TTTTTACCGACCACTCCATGTCGG
484	GCGGCTATGTGATGACGGCCTAGC
485	AGTACACGGGCGTGTTAGCGCTCC
486	TCCTGTGTGGTGGCGCACTCCCAC
487	CCAACTAACCAATCGCGCGGATGA
488	AGTGAGTGACCAAGGCAGGAGCAA
489	CATCTTTCGCGGAGTTTATTGCGG
490	CTTCGTCCGGTTAGTGCGACAGCA
491	CTCACGAAAACGTGGGCCCGAAAT
492	CGCAGCAGCTGAACTCTAGCATTG
493	AGGAGACATACGCCCAAATGGTGC
494	ATTGAGAACTCGTGCGGGAGTTTG
495	CTCTTTGTAGGCCCAGGAGGAGCA
496	GCCGCAGGGTCGATAATTGGTCTA
497	AAACGCCGCCCTGAGACTATTGGG
498	CTGAGTTGCCTGGAACGTTGGACT
499	CGGATGGGTTGCAGAGTATGGGAT
500	CTGACCTTTGGGGGTTAGTGCGGT
501	GGAAATGAGAACCTTACCCCAGCG
502	AACGCATCGTCCGTCAACTCATCA
503	TGGAGAGACTTCGGCCATTGTT
504	ACGGAAGTCACGGCGTCGCTCGAA
505	TTGCGCTCATTGGATCTTGTCAGG
506	AGCGCGTTAAAGCACGGCAACATT
507	AGCCAGTAAACTGTGGGCGGCTGT
508	CGACTGATGTGCAACCAGCAGCTG
509	GGTTGCTCATACGACGAGCGAGTG
510	GCGCAAATCCACGGAACCCGTACC
511	ACGCAGTTTATTCCCCTGGCTTCT
512	AGAACCTCCGCGCCTCCGTAGTAG
513	AAAGGAGCTTTCGCCCAACGTACC
514	AGTGATTGTGCCACTCCACAGCTC
515	GCGATCGTCGAGGGTTGAGCTGAA
516	GGGAGACAGCCATTATGGTCCTCG

40

;

0

<u>!</u>5

30

517	GAGACGCTGTCACTCCGGCAGAAC
518	CCACCGGTCGCTTAAGATGCACTT
519	CGGCATAACGTCCAGTCCTGGGAC
520	AAGCGGAACGGGTTATACCGAGGT
521	TGCACACTAGGTCCGTCGCTTGAT
522	AGGGAACCGCGTTCAAACTCAGTT
523	GAATTACAACCACCGCTCGTGTT
524	TTCAGTGCTCACGAAGCATGGATT
525	TTAGTTTGGCGTTGGGACTTCACC
526	AATGCGACCTCGACGAGCCTCATA
527	CCGAAACCGTTAACGTGGCGCACA
528	TAAAGTAACAAGGCGACCTCCCGC
	TAATGATTTTAGTCGCGGGGTGGG
529	GGCTACTCTAAGTGCCCGCTCAGG
531	TGGCGACGACTCAATATCTCACG
532	GGGCGTTAGGCGTAATAGACCGTC
532	GCCACCTTAGACGGCGGCTCTAG
	GAGATGTGAAACGTGCAGGCACC
534	CAACCTCGTTGTCGAGTTTCTCGG
	TAGCTCGTGGCCCTCCAAGCGTGT
536	GTGTCGCCGCTATTTGCCCTTACC
537	CCAGGGAAGCAACTGGTTGCCATT
538	TTCCGAAACTAAGCCAGAACCGCT
539	GCAAACCCGGTAACCCGAGAGTTC
540	GCAAATGGCGTCATGCACGAACGT
541	AGTACTTTCGCGCCCAGTTTAGGG
542	AAGATCTGCGAGGCATCCCGGCTT
543	GCAAGTGTATCGCACAGTGCGATT
544	CCGACAAGGCCTCAATTCATTCTG
545	GTCTCGTCTCAACTTTAAGGCGCG
546	ATCCAGAGATCCGTTTTGCAGCGT
547	GTCACCAGGAGGGAAGTTTCACCC
549	TATCTTACGCCCCACGGTCGAGCT
550	TTCCGTCAGGCGGATCAACGGAAT
551	ATGCCGGACACGCATTACACAGGC
	TGGGCCGCTTGGCGCTTTCATAGA
552	CCTAGCGCGAGCTTTACTGACCAG
553	TTGGCCAGGAATATGGTCTCGAGA
554	GTCTGCGGCCGACTTGCTATGCAT
555	AACTTGCTCATTCTCAAGCCGACG
556	ACCTCAGCGATTGTGGCGAAATAT
557	ACGCCTGCGTCAGCACATGCATC
558	ACGGCCTGCCTCTCCTCTCTCTCTCTCTCTCTCTCTCTCT

)

5

:**0** ·

25

30

35

560 AGTTCGCGGTCCACGATTCACTT 561 TGCTCAATTTGTGCAGAAAACGCC 562 TTATCGCGAGAGACGACCGTGTCC 563 GACGCACGTGAGTAGTGGAACGG 564 ATGGTAGGGGCATTGGGCTTTCCT 565 CCAAATATAGCCGCGCGGAGACAT 566 GCAAACCCTGATTGAATCGTGCCC 567 TAGCGTCTTGCGTGAAACCATGGG 568 CCACCCCGACAGCGCTGGACTTT 569 ACGAGCACTGATGAGCTTTACG 570 CATATCAGCGTCTAGACCATGGG 571 TGATCCCGGACAGCGTCTAGACCATAT 572 GGCCCGACAGTCATACAGGGTAATCA 573 GGCTCCAGGGCGAGAATTATGAATG 574 CAAAATCCGATGGGCGAAAATTA 575 CACAGGCGCATAGAGAACTA 576 TAGCTATTGCCCCGATAGCAAGCTA 577 TGGTACGCGGTCAAGCAGCTACT 578 GACGCTGTGCCCGCATAGCAAGCTA 579 CCTGGGTTCGCCGCATGACATAC 580 TTCCCGCGTAGCCAAACTATA 581 TTCGCGGATTGCCCCGCATAACA 582 AAAAATGGCACCAAACTATA 582 AAAAATGGCACCAAAACTAACA 584 ACGCACGTTTTTTTGAGGCA 585 TGTCCATGACGAGTTGAACCA 586 TCTCAGCGGACCGAATTACACA 587 CTCCAGACGCCAACACTACCA 588 TCCCATGACGACTTCTCTCGGT 588 TTCAACCAAGCGTTTTTTTTGCCACGA 589 GGTGTCGGAACTTCTCTCAG 589 GGTGTCGGAACTTCTCTCAGA 590 AGCGCTTTTTTTTGCACACACACACACACACACACACACA	559	ATACCTCCGCAGAACCATICCGTT
562 TTATCGCGAGAGACGACGTGTCC 563 GACGCACGTGAGTAGTGGAAGCG 564 ATGGTAGGGGCATTGGCTTTCCT 565 CCAAATATAGCCGCGCGGAGACAT 566 GCAAACCCTGATTGAATCGTGCCC 567 TAGCGTCTTGCGTGAAACCATGGG 568 CCACCCCGACAGCGCTGGACTCTT 569 ACGAGCACTGAAGCGTTTACG 570 CATATCAGCGTCTTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCGACATCAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGAAACTAT 575 CACAGGCGATAGGGAAACTAT 576 TAGCTATTGCCCCGATGGGCTAACT 577 TGGTACCGGTCATAGCAAGCTA 578 GACGCTGTAGCTAGCTAG 579 CCTGGGTTCGCCGAAACTGTC 579 CCTGGGTTCGCCGCTGGAAACTGTC 580 TTCCCGCGTAGCCAACAGCTAT 581 TTCCGCGTAGCCCAACAGCTATA 582 AAAATGCACCGAAGTTGAACA 583 CATTCCGGCGAGATTATGAGCA 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACCAGGTTAA 586 TCTCAGTCGGACCGAAGTTAA 587 CTCCAAACGCACATCAAGCATC 588 TTCACCAGCGCACATCCAGG 589 GGTGTCGGAGCTCGTAACCA 589 GGTGTCGGAGCTCGTAGCAACGCTCGA 590 AGCGCTTTTGGTCGCAGA 591 CCGAGGACTTAGGAACTC 592 GCCCAATCCAGTTCTTGCAA 593 AAGCTTTGGTCCCAGGA 594 CGGGTTAACCAAGCTTTTGCAA 595 TGTCCATGAGCACAAGCTTC 596 AGCGCTTTTTGGAAACTCCAG 597 GCGCCACAAAGGTTTAGA 598 GCCAATCCAGTTTTTTGCAC 599 AGCGCTTTTGGTCAGCAGGA 590 AGCGCTTTTGGTCAGAACTTTGCAA 591 CCGAGGACTTACGTTTGCAA 592 GCCCAATCCAGTTCTTTATGCGCCC 593 AAGCTTTGCGAAAGGTTGTTGCA 596 AGGGCAGACCTTTGGTTCGATGA 597 GCGCCACAAAGCTTTTTGAAA 598 GCCAATCCAGTTCTTTTTGACTGCCCCGTGAACTGAAGCTTTGAACAAGCAGCTTTTTTGAA 599 AGCGCTTTTGGTCAGAAGGTTGTTTGCAA 590 AGCGCTTTTGGTCAGAAGGTTGTTTGAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTTATGCGCCC 593 AAGCTTTGCGAAAGGTTGTTTGAA 596 AGGGCAGACCTTTGGTTCGATGAAGCTTTGAACAAGCAGAGAACAAGATTAAAACAAGCAGTG 599 AAGCTTTAGCGCACAAGAAGTTAAAACAAGCATGAAGATTAAAAATGAAGAGATTAAAAAAGAGAAAAAAA	560	AGTTCGCGGTCCCACGATTCACTT
563 GACGCGACGTGAGTAGTGGAAGCG 564 ATGGTAGGGGCATTGGCTTTCCT 565 CCAAATATAGCCGCGCGGAGACAT 566 GCAAACCCTGATTGAATCGTGCCC 567 TAGCGTCTTGCGTGAAACCATGGG 568 CCACCCCGACAGCGCTGGACTCTT 569 ACGAGCACTGAAGCGTGGACTCTT 569 ACGAGCACTGAAGCGTGTTACG 570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCGACAGTACAGAGTAATCA 573 GGCTCCAGGGCAGAGTAATCA 574 CAAAATCCGATGGGCGAAAATTA 575 CACAGGCGCATAGGAGCAACTAAT 576 TAGCTATTGCCCCGATGGGCTAACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCCCAACAGCTACT 579 CCTGGGTTCGCCGGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTCCCGCATAACA 582 AAAATGGCACCCAACAGCTATA 583 CATTCCGCGCAGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACCCAACAGCATC 587 CTCCAAACGCACACATCAAGCATC 588 TTCACCAGGCGACTTACCAGAGACTC 589 GGTGTCGGAGCCCAACAGCATC 589 GGTGTCGGAGCCCAACAGCATC 589 GGTGTCGGAGGCGAACAGCTCGAA 591 CCGAGGACTTTTTTGCAA 592 GCCCAATCCAGTTTTTTGCAA 593 AAGCTTTGCGAAAGGGTGTTGGCC 594 CGGGTTAACCACGCAAGTTTAGA 595 TGATTAGCGCTCAATACAGCATC 596 AAGGCAGACTTTTTTTGCAA 597 GCGCCACAAAGTTTTTTGCAACGCCC 599 AAGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	561	TGCTCAATTTGTGCAGAAAACGCC
564 ATGGTAGGGGCATTGGCTTTCCT 565 CCAAATATAGCCGCGCGGAGACAT 566 GCAAACCCTGATTGAATCGTGCCC 567 TAGCGTCTTGCGTGAAACCATGGG 568 CCACCCCGACAGCGCTGGACTCTT 569 ACGAGCACTGAAGGCTCTTTACG 570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCGACACTCACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGAGCAACTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGAAACTGT 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAACTGTACAG 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTTGT 586 TCTCAGTCGGACTCGTTTCTTGT 587 CTCCAAACGCACACACTCAAGCATC 588 TCAACCAAGCTGTTCCTGGT 589 GGTGTCGGAGGTTGAATCCAG 590 AGCGCTTTTGTGTCATGCAAG 591 CCGAGGACTTGATTGCAA 592 GCCCAATCCAGTTTTTGCAA 593 AAGCTTTGCCAAGGATTGAGCCC 593 AAGCTTTGCGAAAGGTTTGCAA 594 CGGGTTAACCAAGCATCTTAA 595 TGATTAGCGCACAAAGGTTTGGCC 596 AAGGGCAGACCTTTATTTGCACACCCCCAAGACTCTTTTTGCAACCCCCCAAGACTCTTTTTGCAACCCCCCCC	562	TTATCGCGAGAGACGACCGTGTCC
565 CCAAATATAGCCGCGCGGAGACAT 566 GCAAACCCTGATTGAATCGTGCCC 567 TAGCGTCTTGCGTGAAACCATGGG 568 CCACCCCGACAGCGCTGGACTCTT 569 ACGAGCACTGAAGGCTCTTTACG 570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTCACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGAGCAAATTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGAAACTGTT 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAACTGTAACA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTTGT 586 TCTCAGTCGGACTCGTAGCCAGA 587 CTCCAAACGCACACACTCAGA 588 TCAACCAAGCGTTTCTTCTGGT 588 TCAACCAAGCGGGTGTTCCTCGA 589 GGTGTCGGAGGGTGTACTCGAA 590 AGCGCTTTTGTCATAGACCCCAGA 591 CCGAGGACTTACGTTTCCTCGA 592 GCCCAATCCAGTTCTTATGCAC 593 AAGCTTTCGCAAAGGTTTTTGCAA 595 TGATTAGCGCCCAAAGGTTTTGCA 596 AGGGCACAAAAGTTATAGA 597 GCGCCACAAAGATTCAACACGCTG 598 GCCTATTACCCACGCAAGTTATAGA 599 GCGCCACAAAGATTCAACACGCTG 599 AAGCTTTTCCAAACCCACGCAAGTTATACACCCCCCCAGAACTCAACACCCCCCCC	563	GACGCGACGTGAGTAGTGGAAGCG
566 GCAAACCCTGATTGAATCGTGCCC 567 TAGCGTCTTGCGTGAAACCATGGG 568 CCACCCCGACAGCGCTGGACTCTT 569 ACGAGCACTGAAGGCTGCTTTACG 570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGAAACTGTTC 580 TTCCCGCGTAGCCCAACAGCTAA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACACTCAAGCATC 588 GGTGTCGGAGGTGGAACTC 590 AGCGCTTTTGGTCATGCAGA 591 CCGAGGACTTAGCAAGCATC 592 GCCCAATCCAGTTTTTTGCAA 593 AAGCTTTGGCAAGGTTGAA 594 CGGGTTAACCAGTTTTTTGCAA 595 TGATTAGCGCCC 596 AAGGCAGACTTATTTGGCCC 597 GCGCCACAAGATTCAACATTGA 598 GCCCTTTCAAGCGGGTTCAATTGCA 599 GCGCCACAAGATTCAACACTTTGCAACGCCTGGA 597 GCGCCACAAGATTCAACACTTTTGCAACGCCCTGGA 597 GCGCCACAAGATTCAACACTTTTGCAACGCCTTTCTTGGCCCCGGGACTTTTTTTT	564	ATGGTAGGGCATTGGGCTTTCCT
567 TAGCGTCTTGCGTGAAACCATGGG 568 CCACCCGACAGCGCTGGACTCTT 569 ACGAGCACTGAAGGCTGCTTTACG 570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACACTCAAGCATC 588 TTCAACCAAGCGGGTGTTCCTGA 590 AGCGCTTTGTCTGAA 591 CCGAGGACTTACTTTGCAA 592 GCCCAATCCAGTTTTTTGCAA 593 AAGCTTTGCGCAAGGTTTGAA 594 CGGGTTAACCAAGCGTGTTTCTCGA 595 TGATTAGCGCCC 596 AAGGCACATCAAGGATTTTGCAA 597 GCGCCACAAGATTCAACTGTTTGCAA 598 GCCATGTTCAAGCGCGTT 598 GCCCACAAGATTCAACACTT 598 GCCCACAAGACTCAATCAAGCTG 597 GCGCCACAAGATTCAACATTTGCAAC	565	CCAAATATAGCCGCGCGGAGAÇAT
568 CCACCCGACAGCGCTGGACTCTT 569 ACGAGCACTGAAGGCTGCTTTACG 570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGCAGACTACT 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTCCCCATAGCA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATCCAGA 587 CTCCAAACGCACACTCATACCAGA 588 GGTGTCGGAGCTCGTATCCCAGA 589 GGTGTCGGAGGTGGTACCTCGA 590 AGCGCTTTTGGTCATCACAGC 591 CCGAGGACTTACGTTTCTTGCAA 592 GCCCAATCCAGTTCTTATGCCCC 593 AAGCTTTGCGAAAGGTTTTGCAA 595 TGATTAGCGCCCCAGAACTTTTTTCACAC 596 AAGCGCACAACTCAAGCATC 597 GCGCCACAAGATTAACACTGCTTCGAAGCACCCCCACACTCAAGCACTGAACTCCTTTTTTTT	566	GCAAACCCTGATTGAATCGTGCCC
569 ACGAGCACTGAAGGCTGCTTTACG 570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGCAGAACTAC 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTTGGT 586 TCTCAGTCGGACTCGTATCCCAGA 587 CTCCAAACGCACACTCATAGCATC 588 GGTGTCGGAGGTGGTTCCTCGA 590 AGCGCTTTTGGTCAGACTCGA 591 CCGAGGACTTACGTTTGCAA 592 GCCCAATCCAGTTCTTATGCCC 593 AAGCTTTGCGAAAGGTTTTTGCA 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCCC 597 GCGCCACAAGATTAGATTTGCA 597 GCGCCACAAGATTCAATTAGA 598 GCCTTTTCAAGGGCCTTTCAAGCTTG 598 GCCCACAAGATTCAACATCAATTCAAGCTTG 598 GCCCACAAGATTCAACATCAATTCAAGCTTG 598 GCCCACAAGATTCAACATCAAGCTTG 598 GCCCACAAGATTCAACATCAATTCAACAGCTG 599 GCGCCACAAGATTCAACACGCGTG 599 GCGCCACAAGATTCAACACGCGTG 599 GCCCACAAGATTCAACACGCGTG 599 GCGCCACAAGATTCAACACGCGTG 599 GCGCCACAAGATTCAACACGCGTG 599 GCGCCACAAGATTCAACACGCGTG 599 GCGCCACAAGATTCAACACGCGTG 599 GCGCCACAAGATTCAACACGCGTG 599 GCCCACAAGATTCAACACACGCGTG 599 GCCCACAAGATTCAACACACGCGTG 599 GCGCCACAAGATTCAACACACGCGTG 599 GCGCCACAAGATTCAACACACGCGTG 599 GCGCCACAAGATTCAACACACGCGTG 599 GCGCCACAAGATTCAACACACGCGTG 599 GCGCCACAAGATTCAACACACGCGTG 599 GCCCACAAGATTCAACACACGCGTT	567	TAGCGTCTTGCGTGAAACCATGGG
570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACTCAAGCATC 588 TTCAACCAAGCGGGTGTACCCAGA 589 GGTGTCGGAGGTGGACCTCGA 590 AGCGCTTTTGGTCATGATTTCCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTTTGCA 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTACACTGCCCGG	568	CCACCCGACAGCGCTGGACTCTT
570 CATATCAGCGTCGTCTAGCTCGCG 571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGAAAAATTA 575 CACAGGCGCATAGGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGGGTGTAAATCA 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 GGTGTCGGAGGTGGTACCTCGA 590 AGCGCTTTTGGTCATGATTTCCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTTTTACCGCCC 593 AAGCTTTGCGAAAGGTGTTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAAGATTCACATGTCATT	569	ACGAGCACTGAAGGCTGCTTTACG
571 TGATCCCGGACCGGCTAGACTAAT 572 GGCCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGCAA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGTGTACCCAGA 590 AGCGCTTTTGGTCATGATTTCCAA 591 CCGAGGACTTCGTAGATTTCCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATTTCAACACGCGTG 599 GCGCCACAAGATTCACATGTCATT		CATATCAGCGTCGTCTAGCTCGCG
572 GGCCCGACACTACAGGGTAATCA 573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGGCGGAAAATTA 575 CACAGGCGCATAGGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAAATCCAG 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 GTGTCGGAGGTGGTACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCAGGA 592 GCCCAATCCAGTTCTTATGCCCC 593 AAGCTTTGCGAAAGGTGTTTGGC 594 CGGGTTAACCCACGCAGGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCAAGCTT 598 GCCATGTTCAAGGGCCTTTCGAAG 597 GCGCCACAAGATTCAAGGGCCTTTCGAAG	1	
573 GGCTCCAGGGCGAGATTATGAATG 574 CAAAATCCGATGGCGGAAAATTA 575 CACAGGCGCATAGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 GTGTCGGAGGTGGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCCCC 593 AAGCTTTGCGAAAGGTGTTTGCA 594 CGGGTTAACCCACGCAGGTTTAGC 595 TGATTAGCGCTCAATACACGCTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCAAGCTG 598 GCCATGTTCAAGGGCCTTTCGAAG 597 GCGCCACAAGATTCAAGCATG 598 GCCATGTTCAAGGGCCTTTCGAAG		GGCCCGACACTACAGGGTAATCA
575 CACAGGCGCATAGGGAGCAAGCTA 576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 590 AGCGCTTTTGGTCATGACTCGA 591 CCGAGGACTTACTTGCAA 592 GCCCAATCCAGTTCTTATGCGCC 593 AAGCTTTGCGAAAGGTGTTTGCA 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCAATGCTTCGAAG 597 GCGCCACAAGATTCAAGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG		GGCTCCAGGGCGAGATTATGAATG
576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCAGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 GTTCAGCGAGGGTGTACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCAGGA 592 GCCCAATCCAGTTCTTATGCGCC 593 AAGCTTTGCGAAAGGTGTTTGCA 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATCACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	574	CAAAATCCGATGGGCGGAAAATTA
576 TAGCTATTGCCCCGATGGGCTACT 577 TGGTACGCGGTCCATAGCAAGTCG 578 GACGCTGTGGCTCGGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 GTGTCGAGGGGTGTCGTGA 590 AGCGCTTTTGGTCATGACTCGA 591 CCGAGGACTTACGTCGAA 592 GCCCAATCCAGTTCTTATGCAC 593 AAGCTTTGCGAAAGGTGTTTGCA 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATCACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	575	CACAGGCGCATAGGGAGCAAGCTA
578 GACGCTGTGGCTCGGAAACTGTTC 579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCAGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGTTCGTGA 590 AGCGCTTTTGGTCATGACTCGA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG		TAGCTATTGCCCCGATGGGCTACT
579 CCTGGGTTCGCCGCGTGGTAACTG 580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 GTGTCGGAGGGTGTACCTCGA 589 GGTGTCGGAGGGTGTCGTA 590 AGCGCTTTTGTCTCGA 591 CCGAGGACTTACGTCTGCCAGA 592 GCCCAATCCAGTTCTTATGCGCC 593 AAGCTTTGCGAAAGGTGTTTGCA 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACTTCGAAG 598 GCCATGTTCAAGGGCCTTTCGAAG	577	TGGTACGCGGTCCATAGCAAGTCG
580 TTCCCGCGTAGCCCAACAGCTATA 581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGTGTTCGTGA 589 GGTGTCGGAGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGCAA 591 CCGAGGACTTACGTCTGCCAGGA 592 GCCCAATCCAGTTCTTATGCGCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	578	GACGCTGTGGCTCGGAAACTGTTC
581 TTCGCGGATTGCTGCCGCATAACA 582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	579	CCTGGGTTCGCCGCGTGGTAACTG
582 AAAAATGGCACCGAAGTTGAGGCA 583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	580	TTCCCGCGTAGCCCAACAGCTATA
583 CATTCCGCGCGAGTTGAAATCCAG 584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	581	TTCGCGGATTGCTGCCGCATAACA
584 ACGCACGTTTTTTGGCACGGTTAA 585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	582	AAAAATGGCACCGAAGTTGAGGCA
585 TGTCCATGACGTCGTTTCTCTGGT 586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	583	CATTCCGCGCGAGTTGAAATCCAG
586 TCTCAGTCGGACTCGTATGCCAGA 587 CTCCAAACGCACACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	584	ACGCACGTTTTTTGGCACGGTTAA
587 CTCCAAACGCACATCAAGCATC 588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	585	TGTCCATGACGTCGTTTCTCTGGT
588 TTCAACCAAGCGGGGTGTTCGTGA 589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	586	
589 GGTGTCGGAGGGTGGTGACCTCGA 590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	587	CTCCAAACGCACACATCAAGCATC
590 AGCGCTTTTGGTCATGATTTGCAA 591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	588	TTCAACCAAGCGGGGTGTTCGTGA
591 CCGAGGACTTACGTCTGCCCAGGA 592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA: 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	589	
592 GCCCAATCCAGTTCTTATGCGCCC 593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	590	
593 AAGCTTTGCGAAAGGTGTGTTGGC 594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	591	
594 CGGGTTAACCCACGCAAGTTATGA 595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	592	
595 TGATTAGCGCTCAATACACGCGTG 596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	593	
596 AAGGGCAGACCTTTGGTTCGACTG 597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	594	
597 GCGCCACAAGATTCACATGTCATT 598 GCCATGTTCAAGGGCCTTTCGAAG	595	
598 GCCATGTTCAAGGGCCTTTCGAAG	596	
- TOTAL CALCALLY AND A COLOR C	597	
TOTATOTACCTCCCC	598	
	599	CGCGGTGTTTTGTCTAGGTGCCGG
600 CAACATTGTGGTGGCACTCCATCC		CAACATTGTGGTGGCACTCCATCC

	601	CGATACGCGCCGGTTTGTTAAATC
	602	GGCTATAAACGTGCGGACTGCTCC
	603	TGGGTAAATCACTATTGCGCGGTT
	604	GTCTTCATCGGCCCGCGCAAGCTA
5	605	GCGACACCCTGTACTCTGATGC .
	606	GTAGCAGGGTCCGCAAGACCAAGC
	607	TCGCCAACGCAGGGTAACTGCCAT
	608	ACTCCGAAGCTTCGAGCGGCACGA
	609	TCCCGCCCACTAGACTGACTCGTA
0	610	ACCTTCTGGGGTCGCTCACCAATA
	611	ATCATCCCACGGCAGAGTGAAGAG
	612	CGCTGGACTGGCCTATCCGAGTCG
	613	CGGTCTCAGCAACACTGTCGCAAA
	614	CGAACGTTCTCCGATGTAATGGCC
15	615	ATACCGTGCGACAAGCCCCTCTGA
	616	AGCTCATTCCCGAGACGGAACACC
	617	TTTCATGCGGCCGTTGCAAATCAT
	618	ACTCGAACGGACGTTCAATTCCCA
	619	CTGCATGGTGTGGGTGAGACTCCC
20	620	CCGCGAGTGTGGATGGCGTGTTGA
	621	AATGTGTCGGTCCTAAGCCGGGTG
	622	TAAGACGAGCCTGCACAGCTTGCG
	623	GGCGTGGGAGGATAAGACGATGTC
	624	TGCTCCATGTTAGGAACGCACCAC
25	. 625	CGGTGTTGGTCGGACTGACGACTG
	626	CCGCGCGTATCTATCAGATCTGGG
	627	AAAGCATGCTCCACCTGGAGCGAG
	628	ACTTGCATCGCTGGGTAGATCCGG
	629	TGCTTACGCAGTGGATTGGTCAGA
30	630	ATGCAGATGAACAAATCGCCGAAT
	631	GCAATTCTGGGCCATGTATTCGTC
	632	AGGGTTCCTTACGCGTCGACATGG
	633	GTGGAGCTAATCGCGAGCCTCAGA
	634	TCGTAGTCTCACCGGCAATGATCC
35	635	TTATAGCAGTGCGCCAATGCTTCG
	636	CGAACAGTGCTGTCCGTCGCTCAA
	637	TCCGCGTGGACTGTTAGACGCTAT
	638	CATTAGCCCGCTGTCGGTAACTGT
	639	GGAAAGAAACTCAGACGCGCAATG
40	640	CGACTCGCTGGACAGGAGAATCGT
	641	CATGATCCTCTGTTTCACCCGCGG
	642	GGCGTAGCGCTCTAAAAGCTTCGG

•		
	643	AGTGATGCCATCAGGCCCGTATAC
	644	TATGGAAAGGGCAACAGCGCTATC
	645	CTGTGGTTGATGGAGGATCCACAC
	646	ACTCGCTGGAATTTGCGCTGACAC
5	647	CAGGCCCGAACCACGCGGTTACAG
	648	GGCGCAATGGGCGCATAAATACTA
	649	GGTCAATTCGCGCTACATGCCCTA
	650	TGAGGGCTGTTTGGTATTTGACCC
	651	GATGGTGGACTGGAGCCCTTCCGC
10	652	CCGCGCATAGCGCAATAGGGGAGA
	653	TCTTCTGGCTGTCCGGCACCCGAA
	654	GCGTTCGCAATTCACGGGCCCTTA
	655	TCGTTTCGGCCTTGGAGAGTATCG
	656	AGGTGCAAGTGCAAGGCGAGAGGC
15	657	CGCCAGTTTCGATGGCTGACGTTT
•	658	GCTTTACCGCCGATCCCAGATATC
	659	GTGCTTGACGAAGAGGCGAAATGT
	660	CAGTCCGTGCGCTTCATGTCCTCA
	661	TACGCGTAAGAGCCTACCCTCGCG
20 .	662	GGCGAGTCTTGTGGGGACATGTGT
	663	CCAAAGCGAAGCGAGCGTGTCTAT
	664	GCCGTAGGTTGCTCTTCACCGAAC
	665	AAATCCGCGATGTGCCGTGAGGCT
	666	GGCTTCGCACCCGTACCAATTTAG
25	667	TGTAGAGTCCCACGTAGCCGGCAT
	668	CACTAGTCTGGGGCAAGGTGCATT
	669	TGTACTCGGCAGGCGCAATAGATT
	670	AACGGGTATCGGAAGCGTAAAAGC
	671	CGGACTGCCCGTTTGCAAGTTGAG
30	672	ATCGTTCAGCACTGGAGCCCGTAA
	673	ATGCATCGAACTAGTCGTGACGGC
	674	TTCCAGGCATTAAGGAGAGGGAGC
	675	GTGCGACATCTACTCCACGATCCC
	676	CTCATCGTCCTAACACGAGAGCCC
35	677	AATGGCACTTCGGCGGTGATGCAA
	678	CCGTGGGAGGGAATCCAACCGAGG
	679	AAATTCTCGTTGGTGACGGCTCAT
	680	TTGCTCTTATCCTTGTCCTGGGCG
	681	TTAAGGATCAGGCGGAGCTTGCAG
40	682	CGCGACTAAGGTGCTGCAACTCGA
	683	GCTCGATTTCACGGCCCGTTGTTC
	684	AGCAGAGTGCGTTGCAGAGGCTAA

	685	TGGAGGTGAGGACGACGTGCACTA
	686	AACCGTTTAGGGTACATTCGCGGT
	687	TATGATCGCTCGGCTCACAGTTTG
	688	GACTTTTTGCGGAAACGTCATGGT
5	689	TGTCGGTTATTCCACCTGCAAGGA
	690	CTATGGTTTGCACTGCGCCGTCGA
	691	AGCAGGGAAATTCAATCGTTCGCA
	692	CCTAACCGAGCGCTTAGCATTTCC
	693	CCCGACCCTAACTCGCATTGAATA
0 .	· 694	TTGCTTAATGGTGACGCCACGGAT
	695	GATGCTCGCCGTGTTTAGTTCACG
	696	TCGGATGACGAGTTTCCATGACGG
	697	ATGCGGTCTACTTTCTCGATCGGG
	698	TTGCGAGGCTAAGCACACGGTAAA
5	699	AACTTAATTACCGCCTCTGGCGCC
	700	GTGACCGCGAACTTGTTCCGACAG
	701	TGCGGATTACCGATTCGCTCTTAA
	702	TGATAGGGGCCACGTTGATCAGA
	703	TCGCTCCGTAGCGATTCATCGTAG
20	704	TGTCAGCTGGTAGCCTCCGTTTGA
	705	AGCGTCGCATGACGCTTACGGCAC
	706	TCACTCAGCGCTGTGACTGCCTGA
	707	GTTTGCGCTATAGTGGGGGACCGT
	708	GTCGCATTCTGCACTGGCTTCGCC
25	709	TGATTAGGTGCGGTCCCGTAGTCC
	710	AAGGGACCTTGGGTGACGGCGAGA
	711	TCAAATGGCCACCGCGTGTCATTC
	712	CTCCGACGACCAATAAATAGCCGC
	713	GGCTATTCCCGTAGAGAGCGTCCA
30	714	TGGATAACCTCTCGGTCCATCCAC
	715	GACCGCTGTACGGGAGTGTGCCTT
	716	GCCACAGAGTTTTAGCAGGGACCC
	717	CCCACGCTTTCCGACCACTGACCT
	718	CATTGACACAATGCGGGGACTGAT
35	719	AGCCACTCGACAGGGTTCCAAAGC
	720	CAGGATGAGCAAAGCGACTCTCCA
	721	CAAGGTATGGTCTGGGGCCTAAGC
	722	GGTGTTCGGCCTAAACTCTTTCGG
	723	TTTAGTCGGACCCTGTGGCAATTC
40	724	CACACGTTTCCGACCAGCCTGAAC
	725	CTGGACGAACTGGCTTCCTCGTAC
	726	TTCACAATCCGCCGAAAACTGACC

	727	AACAGGATATCCGCGATCACGACA
	728	TACGTCGGATCCATTGCGCCGAGT
ſ	729	CATGGATCTCTCGGTTTGATCGCC
	730	AGCCAGGCGCGTATATACGCTCGG
5	731	ATTTGGCACGTGTCGTGCCATGTT
	732	CCGCGTTGCACCACTTTGAGGTGC
	733	TTGGACGTGACAAGCATGGCGCTC
	734	CTGAATCGCGCAAGTAAATGGGGG
	735	GATAAGGTCCACCAGATTGCGCGC
10	736	CTAACAATTGCCAACCGGGACGGC
{	737	GGTAACCTGGGTGCTTGCAGGTTA
	738	ATCGGAGCCACCATTCGCATTGGG
{	739	GTGAACTGGCTTGCCCCAGGATTA
	740	AGGCGATAGCATGGTCCCATATGA
15	741	AACGGTATCGTGGCTAATGCACGA
	742	AGTAGTGGTCCTCCAGATCGGCAA
	743	CCGTTGAATTGGACGGGAGGTTAG
	744	GCATAAGTGCGGCATCGCGAAGGG
	745	CGACAAGATGCAGCTGCTACATGC
20	746	TCGCAGTGATTCCCGACCGATAAG
	747	CAAGGCGAGTCCACTCGAGGGGAC
	748	GCAACTTGCACGGCATAAGTGGCC
	749	TCCGAGCTTGACGTTCGCGACGTC
	750	AGCGCTGGGCTGTGCCATCTC
25	751	TTCATGTCGCTGAGTAACCCTCGC
	752	CGAACCGCTAATGCCCATTGTCAG
	753	CACGGAAGGTGGGACAAATCGCCG
	754	CACAGATGGAGACAAACGCGCCTT
	755	TTTTCGCAACTCGCTCCATAACCC
30	756	ACGTTACGTTTCCGGCGCCTCTAA
	757	TATCGGATTGCGTGGGTTTCAATC
	758	CTTCCACAATTGTCTGCGACGCAC
	759	TGCACAAAGGTATGGCTGTCCGGC
	760	ACCGTGGCCGGGCCATAAGCTACG
35	761	TCCGATGCCAGTCCCATCTTAAGA
	762	CTGAAACCGTGCGAATCGAGGTGA
	763	CGGTGTTCCGCGTGTCGAAAAAAT
	764	TCTAGCAGGCCTTTTGAATCGCCA
	765	GAGTCACCTCTGAGACGGACGCCA
40	766	TCTTCTGTCATCCTGCAGCAGCAT
	767	GCGGATGAAACCTGAAAGGGGCCT
	768	GGGGCCCAAACTGGTATCAAGCC

	769	GCATTGGCTTCGGATTCTCCTACA
	770	AGGCGGCCCAACTGTGAGGTCTTG
	771	ACACCATGTGCTCCGCGCTGCAGT
Γ	772	ACGATGAACATGAATCGGGAGTCG
5	773	CTGCATCCCTGTAGCAGCGCTCCG
	774	GTGCCGTATTTCGACCTGTGCGTT
	775	GCAGTGCGCACTTCAGTTCAAAAG
	776	GCGATTITAAGCGATGCCTTGACG
,	777	TAGGTGACCTAGGCTTGCTTGCGG
10	778	CTGGATACCTTGCCTGTGCGGCGC
1	779	CCCCTTACGGCTCGTCGTCTATGC
	780	GCGCTTGCCCGATGCGATGCATTA
	781	TTTCTGTAAGCGGCCTGGGGTTCA
	782	GGCTGAGGTGAGCGGTAAGGATGA
15	783	TCTTGGCCTCCCCGATCTAATTTG
	784	GGAGGTAACGCCGTGTACGTAGGA
	785	GTAATCCATTTGTGGCTGCGTCAA
	786	CAAACCCATTCCAGCAGACGCCTG
	787	TAGGAGGAATTTGGCATGCGGGCG
20	788	ATAGGTAGGATGTGCCCGGCGTTG
	789	GCAAGTGCTTAGCTCGTCAGCCTC
	790	CTGGCTGTGTCGCATCTCGTTAAC
	791	CTAACGTCGTCTCGCGCAATCACT
Ĭ	792	TTTTCATAAACGTTGTCCCCGAGC
25	793	AGCAGGAGGACGAACCTCCGCTCC
	794	TTCAAGCACCATCGTGCAATCCAA
	795	AGCGTCGCCAGTGATCGCTAGTGG
	796	TACATTCCCTGCCTCCGTGGGCTT
	797	CGCTTCGCGTATTCAGTAGCGGTT
30	798 ·	TCGGACGCGTCGACACTCATTATA
	799	TCTGAGCAGGCCAGCTCCAGCT
	800	TTGAATTGCCAAGCCCTGAAAGCC
	801	AGTTTTCGCCTTGATGCGTCGGTG
	802	GTTTCATAGGCCACGCGTGCTAAA
35	803	GGAGCGAAGACTTCGTCTGCCCAA
	804	ATTGGCCGAGGGTGAATGCAGCCT
	805	TGATCCATCCGAATGCTTTTCCAT
•	806	GCACACAGTTGTCTTGGCCCATGA
	807	CTGGCGGCAGTGGAAAAAACAAC
40	808	ATCTCCATGCGTAAGACTGCTCCG
	809	TCTCCTCGTCGCAGTTCGTGGA
	810	TAGCGTATTCACTCTTGCCGAGCA

Γ	811	CAATCAAAAGCCACGGCGCGATGG
	812	AGCGTCACGGAATTCAGCAGATCT
	813	GACTCCCTGTTAATGCGCCCAAGG
	814	TAGGCACTGCCGGTTCAGATTCAA
5	815	AACAGGGTGATAACGGTGGCCAAT
	816	CGTGCGTACCATGTGTAAGTGCGT
	817	GACCAATTCTACTTCGGCAGCCCA
	818	ATCGGACCGATTTGCTTTTGGCTG
	819	TCCGCCGAAGCACACGCTTATTCG
0 .	820	AACGGTACGCATTGTGAGCAGTGT
	821	TGGCGACTACTGTTCCCCTGAATC
	822	CAGAGGGACAGCCGTATGCCTTA
-	823	CGGTGGTTTTATCGGAATCTGCGA
	824	TTGGCCTCCGACCTCACGACATAT
15	825	CGTTTCGCTAGCATCTGGCGCCGA
	826	ACTAAGCGGTGGAGCCGGTGGATG
Ī	827	ATATTGGCTGCGTTTACGGGCCGC
	828	CCGCTATGGTGGCAATCCCGATAC
Ī	829	GTTGCATGTGGCTCAGGCGGCATA
20	830	ATTCTGGGGAGTGACCCAGGGCTT
Ī	831	CTCTCCAAGGAGACGAGCCAATGT
Ţ	832	GAAAGGACGGGATTTGGGGGCTAA
	833	TATGTAGTACCTTGGCTCGCGCCA
	834	TCCCTTTCGATGAGCGGCTGTACT
25	835	TAGATCGGGCAGAGCCCGTATCTT
	836	GGAATGCTTTAGGCTGCCGAGCTG
	837	ATGGTAGCAACATTCAACGCCAGG
	838	CTATGAAACGTGTGGCCCAGCAAC
	839	ATGTTGCTAGTGCCTTTCGGGCCT
30	840	CCAATGTGCGCAGACTCAGTCATT
	841	GATAGTGCTCGCAAACGGGCCTTC
•	842	GCACCCTGTTGCCTCATTGAGCGT
	843	GGCGTGAATAGAGTGACCAGGCGG
	844	ACGTGCCAGCTGCGGGCACTTTAT
35	845	AGTGGAATAGTCGCGTCGTGCCGC
	846	ACTCGCCTATTACCGCTGGATTGG
i	847	GAGACCGGATTGAGATGATCCCGT
• •	848	AAAATGGCAGGCGGCAAGCAATTG
	849	CTGGCAGTTTACCACCGAACCAGT
40	850	TTACATTGCCGATTTCGCATGTGA
	851	TAAAACTGAAGGGTCGCCTCAGCA
	852	GGCTTCGCATGCCTTTGCAACATT

	853	AAGACCGAAGGTCTCTCTGAGGGC
	854	GCCTATGGCTCCAGCTCAGCAGTA
	855	CGTATCATAGCGTTCGGTGGACAA
	856	CATGCGCTCGCACTCTGCCTGTCT
5	857	TGGGCAATTCGGAAACGTCGGTCT
Ī	858	TTGCGGAGATGCGACGGTACATTG
Ī	859	ACTTTCGCACGTCGATCTGGACTG
Ī	860	CTAACTGCCGCGGCAAACTGATTA
	861	GGCCGCGATTTTATTCCTTGGAT
0	862	GAATTTGGAACGGTGTTCCGATGA
	863	GTCCATCCATCTACGGCATCAGGA
	864	TAAACGACCTGGCACATGTGCGTA
	865	CACCATCCAAGAGCCAATCCTAGG
	866	ACTCATATACGATCAGTCCGCCGC
5	867	GTGCCAACCGACGATCAACCGAAC
	868	TGGGGTTCGTACAGGTCGGTTCAT
	869	AACAGTAGAGGCGAGGCCTGCGGG
	870	TGCATCGAATCCGAGATGGATCTT
	871	GCGTCACGTTATGTCCGCTCTGTC
20	872	GGGACATGCGTAGCGCAATATCAC
	873	CACACGTCACACCATCCAAAGTGG
	874	ATGCTCAGGTGCTAAATACGGCCA
	875	AAAAATGTTTAGCGCGCTGACTGG
	876	ATAGTCCGTTTCCGTTCCCAACGA
25	877	TCGATCTTCTGGGTTGCAGACCAG
	878	GTCGGCGCAGCCGATCCTCATGTC
	879	GTTGCGGGGTGTCGAAAAGGATCT
	. 880	ATCTCTTCCTCGGGTGGATGCCAG
	881	TGATGTGCGTTTCAGCTTTTCGCG
30	882	GTTAAGGGGTGAGAACATCCGGCC.
	883	AAGTCGTCTCCCTGCGTCTCC
	884	CCGACCTAATAAGGCGCAACAATG
	885	CATCATTGGCACCGTACCAATGCC
	886	TGGAGAAAGGGAAGTGCAGCAACG
35	887	TGGTACTCCTTGTCATGCCTGCCA
	888	GGCACAGGTTCTCTTGCAGCGCGG
	889	GAATCTGGGCATTGCTACGAGACC
	890	CGAAATGGGAGCGTCCACTACCAC
	891	ACATATGAGCTCGCGTGCTTGCAT
40	892	TCGAGCACGGTCACTGATAAAGCC
	893	GAGGGTCCCTGCTCAGAGTTGGTT
	894	AAATGCGATCGCCCCTTATGGAAT

	895	CTACCGAATGGATTGCGGATGGC
	896	AGGGACTGGCAGGTCTCTGCGCGT
	897	TAACGATCCATTCCACGAATGCAG
	898	GGCCGCACGTACGATTACGCCTTG
5	899	TGGGGAATGCATCAGTTGTTGGCT
	900	TATCTGGGAGTAGCAGGCAGGGCC
	901	CCGAAGGTTTCACGCTCAGGTCGC
<u> </u>	902	GAACCCAGCTGGGACATCCTTCAG
Γ	903	TGCATGCGAGCAAATAACCCGGAC
10	904	AATTGTCCGCCAAACGCTTTTCAG
	905	GTCGGCTTCGAGCGATCGAGTGTG
	906	TCGCGTGCTCTACGTAGCCCATGA
	907	GGCTTCCGCGATAACGTAATTCGC
	908	TGTAGCCGACTAGGGCCGAAGCCC
15	909	AAGCGAACGCCCTGGCTGAATATT
	910	TGTCACGCGACGTGCTGCAGATTT
	911	CCGTGTCCGTGTTGTCGACAGGCG
	912	CCCCACACGTTGCGCCTATATGTG
	913	GGCGGGCACAACTCAACACAGATG
20	914	CGACTGCGGATCACCGGTGATTA
	915	TCGGGACATGACCGGTACGGAGTC
[916	TACCTCGAGTGGCCGTTGATCGGG
	917	TAATTCATGGGGCTAGCCGAACCA
	918	ACACTCTAAGCCGATTCCGTTCGA
25	919	GTGGGCGTGAGTGACACGCACAAA
	920	ACGACTCCTCGGGCAAAGTACGTA
	921	TGTGGTCATGGCGCTACTGTTTTC
	922	CTTTCGCTAGCCAGAGCGGGTTCC
	923	ACAGGGCGTGTTAGCGTGTGACAA
30	924 -	GGTACTTCCGGCGTATCGGGCCAC
	925	GTGGGTTTTGTTCACCCTTCTGGG
	926	ACGCAATTCCGCATTACTTACCCG
	927	CGCCTCGACTGCGGTCAAGCACAA
,	928	GTGAAATGGATCCAGAGAGGGCCA
35	929	TATAAACGCTGCAGGGCTCCGTTA
	930	GTTATTCAGGCGGCTTGTAACGGG
	931	GGGTTCTAGCGTGCGCGTTCAGTT
	932	TTGGGCTCGAGCGGTACACCACTA
	933	CCGTCTTCAGGACAACGGTATGCG
40	934	GGACCCTTTGACAGATTGCGGCAC
	935	TAAATTTTATCGCCAGGCGGCGCT
	936	GCCGAACGCAAGATCGCTTGAACT

	937	TAGGCCATTGGTGCCCTAAGACGG
	938	CAAACCACAGCTTACAGGCTGCGT
Γ	939	TAAACGGAGACTGGCACGGTAGCA
Γ	940	TAGCGCGCATCACACTTGGAATCG
5	941	TGCTGACACAACGAGCCGTTTCG
	942	CGCTTAACGGCATTGACTGTCCAC
	943	TTCCACGCCGTGTATTACGGATA
	944	TTTATGCCGTTGCCGAGGAAGACT
	945	AGTGCCGAGATAGGGGACTGGGCG
10	946	CTAGTCTCCACGCCCTCGGGACGA
	947	CCGCCATTCGGAAGATGGATGATG
Γ	948	TGACGGTGAAAGTCGATTGCGAAG
Ī	949	ATATGCGTCACCACCCGGTTCCGA
Γ	950	CCATCAGTGAAGGGGTTGCTGCCA
15	951	CATATGTGCTTGGCTTGCGATGAC
	952	TCTGCTTTGGAAGCCTGAACTGCT
	953	CGATTTGGTCAAGAAGGCGGAAAT
	954	ATCAGAGGCCTTCCCGCCTCGTTA
	955	ATTGTTGTCGTTGCCACATCGCAG
20	956	TGAAATGTGTCTGGACGCGAGTCT
Ī	957	GCGGGCGATGCTCCTTAAAGGGTA
	958	CCGCAATCTCCATGCGTCGACCGT
	959	TGCCGCGTAATCACCTGGAACTTG
	960	TTCCAGTAGCCAGCGGTAGTGTGA
25	961	CTGAATTCCGCCTATTGTTCGGCA
	962	GCTTGAACCTCGAGGCGATGTTCT
	963	CAAGCGTGGAAGTACGACCCGCCA
	964	GTGTGCACTGGATCCGAGCCCTAG
	965	TCCCTGGGCTAGCATTGCGAGGTT
30	966	AGAACCAAAGACGCTTGTTTGCCG
	967	CGTCACATGCAAACGTTCCCTCCC
	968	TGACCGCATGTGTATTGAGTCGCT
	969	GCGGGCCCAATGAGTATCCGTCAT
	970	TAGTGACTGTGAACGCCCCTGGTT
35	971	GGCACCGTCTGCCGCGCGTATATC
	972	TCGATGCAGTCTTTTTCCCGTCAA
	973	ACCCGTGGGGTTTCGCCATTTTT
	974	CTACACGCGCAGTTGTGACTTGTG
	975	CGCAGCGACCTCATCTCTGGAGCC
40	976	CGACCCAGCACTCCTAAAATCGGT
	977	ACGCGCCGCTCATCACTACAATCT
	978	CGCAACTTCCTGTGGCAAAGCCAG

	979	TCGTTGGGCACATAAGGCAACTGA
	980	CCGCTTGTAATTGCCATTCTCCGT
	981	GTAACCAGGGAGTCCTGGGCTGTG
	982	AGCGCAAGATCTGGGGGCAGTCAC
5	983	GCGTACATCTGCTCATCAGCATGG
	984	CCTCTGTGGCAGGAAAGAAACCGT
	985	CCTATGCAATGGACCTGCATCGGA
	986	CTCGGTGGATGGCGAATAAGGATA
	987	CCTCACTCGTGATGGCGTGACGCA
10	988	TACGCTCACAGAACGCCATACGCC
	989	CCGGAGAAGTTACGCGGATCGGAC
	990	GCGCCTCACTGCATTTTTGGTAT
	991	ACTTTCAGCACGCGAACAGCGCAA
	992	CTAAACGCCCTTGATGCATGAGCA
15	993	GCTTGCCTTTTACGATCGTCGCTA
	994	CAGACATCGTACGCACTCGGCATC
•	995	TAGCCGCGCGCTCCTATGCTCTT
	996	GATGCCCTTTTGGTCCCCATGCCA
	997	TGAGCTGCCTTGCCACGATGCCTC
20	998	CCGCCGTATACGTGCCATAGTTTG
	999	TAGTGCTCTCCGCGCTCATCCAAC
	1000	CCCTAGATAAGTTGGGGTGĢGACG
	1001	TGAAGGCCACCTGATATGGTTTC
	1002	GCCGCCTCCGACTGGTTAACCCGA
25	1003	CGCACGCTACTAACAGCGGATCA
	1004	CCGGACCAATTCCAACGAGCATCG
	1005	CATTGAGGTCCACCGTTCACATCC
	1006	AGGACGCAGCATGTCCCAGCCGAG
	1007	TAATCGCGGGCCATACTACCAACG
30	1008	CGCAAATTTCTCCGGTCGGCAAGC
•	1009	GTGGCTCGACTAATGCCTTGCGTG
	1010	TGTGGCGTGTTCCGGCTCACTGT
	1011	GTTCTTCCTTTTCTGCGGTGGGAA
	1012	ACCTCGAGTCAGATTGTGCGCCTT
35	1013	CAAGTGGACAGACGGTTTGTTCCG
	1014	TCCAGTTGAGTCGCGCCGACGAGG
	1015	CGCAACAGGTCAGCCCTTATTTGC
	1016	GCCGTGACTCCTGCAATGTCGGTA
	1017	ATCAGCGCAAGCTGGTCTGAAACA
40	1018	CCCTGGCCAGAACGAGAGGCCATG
	1019	ACGATCAAGGACTCGTCAGGGTTG
	1020	TTCATGGCACCAAGACCACCGTTA

1022 CGTAAATATCTGCGGCGGTGTGAA 1023 GGAAACACGTGTTCGTCTGTTGGC 1024 CGATGTTAGGATTCGGATAGGCCA 1025 ATCGGACAAGGACAAGTGGATGGT 1026 GCCCGGAGGACAAAGTTCGAGTTA 1027 AAATCCGACAAATGGGCACATGGA 1028 CAGTTAGGGGATGAGTGA 1029 CGGCAGGTGGAGATTCCGACATTG
1024 CGATGTTAGGATTCGGATAGGCCA 1025 ATCGGACAAGGACAAGTGGATGGT 1026 GCCCGGAGGACAAAGTTCGAGTTA 1027 AAATCCGACAAATGGGCACATGGA 1028 CAGTTAGGGGATGAGTGA
1025 ATCGGACAAGGACAAGTGGATGGT 1026 GCCCGGAGGACAAAGTTCGAGTTA 1027 AAATCCGACAAATGGGCACATGGA 1028 CAGTTAGGGGATGAGGAGTGA
1026 GCCCGGAGGACAAAGTTCGAGTTA 1027 AAATCCGACAAATGGGCACATGGA 1028 CAGTTAGGGGATGAGTGA
1027 AAATCCGACAAATGGGCACATGGA 1028 CAGTTAGGGGATGCGGATGAGTGA
1028 CAGTTAGGGGATGCGGATGAGTGA
CCCCACGTGGAGATTCCGACATTG
1029 CGGCAGGTGGAGATTCCGACATTG
1030 TAGGGCAGCCAGGTTCACTCATCT
1031 GCACCGTATTAGCAGTAGGCACGC
1032 ACGCATTACAGGTGTGCGAAGGGA
1033 CGTGACTGCACGTGTTCCACAGGG
1034 GCTGAACTACCGCCTAAAATCGCG
1035 AGCACGCCAGGGAGGATCGAGTTA
1036 ATGAGGGCAAGGAATGGGTCATGC
1037 GGGTCTCTCGTAATCAAAGGCCGA
1038 TATCTTGCGCAACGCCTCCATTTA
1039 GGTTACACCTACGGAATCCAGCGG
1040 ACACCGAGTTGGTCCGGTCAATAG
1041 TCCCAGATTAAACGCTAGCCACCG
1042 TTGGTGAAACTGGCCCGTCGGAAG
1043 CCAGGGGAGTTGACAATGAGGCTG
1044 TCTGCGTTATTGGACCGTTTGTCG
1045 TATGGGATGCTAAACCGGCGTACA
1046 CACAGACGTCTGTCGGGCTTGTGT
1047 AGAATGCCGTTCGCCTACTCCCGT
1048 CGACGGATAATGCAGGCCTCATGA
1049 ACCCTCTAAAGCAATAGGTCGGCG
1050 CACTCACGGCAGAAGCCTGCTTGT
1051 ATCAGCCCACATATTCTCGGCCGT
1052 CAAATCTGGGGTCGTCCTAAACGC
1053 TGTCGCCCATGGCAGGTTAAATAC
1054 GGGGCCCATCAATTCATTATCGA
1055 GTCGAGCAGCTTTAGTATCGCGGG
1056 CCGCTAAGCACCGAAGGCTCACAA
1057 TAGAATTAGCGAACGGTGATCCCG
1058 CACATGACATTTGGCAAAGGTCCA
1059 TCAACGCACTGGCGATGACTAGAT
1060 CGGGAAATGTCTTTAGCCGTCGAA
1061 ATCAGAGCAAATCTGCAGCGGGGA
1062 GGCCTGTTTCTGTCCAACTGGGCT

j

Э

5

30

25

30 .

35

	1063	ATTTCACCTCGCTGATCGCTTCCG
	1064	AGTGACGCCGAGTCGCGAGGGTTA
	1065	AGTTGTCTCATCCTGTCCGGGACC
	1066	CTTCTTTGTGCACACTTGCCAGGG
5	1067	CACCTCATCGGAGCATAGCAACCC
Γ	1068	ATGCGATCCATGACAAGGGTTGCT
	1069	CCCGTGGAGATGATGTGCGGCTTA
<u> </u>	1070	CCCAATAGACGCCACAGCCAGTGA
	1071	AACGACCACGACCTCGCCGAGTA
10	1072	GGTGCTTTGTCTGAGGCGAGTGAA
Γ	1073	CTGTCGGCGCTGCTCTCCGAATTT
	1074	CTCGCCGGAGTGTTGTAAGCATTG
Ţ	1075	AGCAATCATGAGAGGTGGCCGGTG
	1076	ATTTGCCACCGGCGACAAAAGAT .
15	1077	CCGCCGTGTTGGCATGTCTTTTG
	1078	ATCGGAAGTGCTGACTGACACG
	1079	CCTCAGACCCTATCTGGGTTGACG
	1080	стететестсестетте
	1081	GTCCCCATTATCGGTGAGTGCAAC
20	1082	ACAGGCACGTAAGTGCTCAATCGG
	1083	AGCAAGATAGCGGGAGTGCCCCTA
	1084	GGTTTACGCCATGACATCCCGTCA
	1085	GTGCAGGCCTTTGTGTGTGAATCG
	1086	CTTCGAGGGTAGGGCTTCGAAACG
25	1087	AGTCGACACTTGGGTTTACCACGG
	1088	ACATAAATCTCGCCCGCTGCACTC
	1089	GTTTGGTTTTCCACGGAGGTTTGA
	1090	GCAGGAACCAGATTAGTGTCCCGG
	1091	TTTGCTAGAGCGCGGAGCTAAAGC
30	1092	CTATGTGGCATCGCTGACATGCTC
·	1093	CCTAAGTCGGTTTGCAGCTGCTCT
	1094	GCGTTCGTCCACAGGAACGGAAGG
	1095	TAACCCGCGCCCGAGAAATTGTCT
	1096	TATGGTGCTCAGAGCTGTTGCCAA
35	1097	TCATCGACCCACTAACGTCAGGGC
	1098	TGCTCAAGCTACGCGTCACTTCCC
	1099	AGCGGGAAGGTCTGAGGAGGGAAA
	1100	CCGATGTAGCACCACCGCAGTGGC
	1101	AAGTTCTGGGAATCACACGGCGCG
40	1102	CACCAGCCTTACGTGCGGCGTTAA
	1103	CGTTTCGCCTCCTCTTCCGAATGC
	1104	GAGGAGGCCAATAGAGCAGCGCGC

-69-

	1105	AGTAATCTTGCGGCACACAAGCGG
	1106	TGAGGACAAACCGCGCGTAGGATA
Ţ	· 1107	TCGTAGAGACGCAGTGCCCATCTC
Γ	1108	CGAAGCTACACCCCGAGTGCGGTG
5	1109	ATGATGTGATCTTCCCATGGCTGG
	1110	TGTACACGTATCGCGTTCGCCTAG
	1111	GGTGTGCTTTTACGCATGTACGCA
Γ	1112	AGGCGGGATACGTGGATGCTAGCC
Γ	1113	AAATTAGGCACAGCCCTCCCACAG
10	1114	ATAAGTTTGGTGAGCCATTCGCGA
	1115	CCTATTTCGGCGGACCTCGATGCC
Ţ	1116	TTACCGGAATATGCACTTGGCCGC
	1117	CCTCTCGGACGGTCCCTTTGATCG
Ţ	1118	CAAGCGAATGCTGTATTACGGCCT
15	1119	GCATTTCCCATGCCAGAACGTTGA
Ī	1120	GTTTTGGCTAACCGTCCTGCCTTG
	1121	AGGTTTTGTCCGGGCGAATGATGT
	1122	ATGTCCACGAGTGCGTCCGATATC
	1123	AGACGCGTACGAGGGTTCTGCGCC
20	1124	AATACCGTTCCCATCTGTGCGAGG
	1125	ACACAAGGTGCCTCATCGAATGGT
[1126	GCCGGCAAAATCCTACAAAATCCA
	1127	CTTATCCCATGTGCCGGTCTGACT
	1128	GCGGCCATAATGCATAGCACGGAA
25	1129	TACGGTGCATCGCAGTATGGGTAA
	1130	CACCAGATGTCGAGGATCATCGCC
	1131	GCTCCTACGCCCAAAGAGGTATGG
	1132	AGAATATGGGCAGCAGCACTC
	1133	CTGCAGTCGCACGCAGTAGACCCG
30	1134	ATGTCCCTGACCGGAATCTTTCCA
	1135	TTCGCCACGAGGCATTAGTCCGAC
	1136	ACGTCGTTCCCGAGAATACGGTCT
	1137	ATCCGCTGGCGCTTTGACGAAGAA
	1138	TGAACCAAATTCTTACCGCGTGGA
35	1139	CACGCGTAGGCTGGTGTCATTC
	1140	TCGATCCCGCGATCTGGCCTATTG
	1141	GGAACACTCAACCACCGTGGATCT
	1142	TCACACCAACTGGCCACAGATG
	1143	TGTGCTTAGGACACCAGGCAACCC
40	1144	GACATTTAACCCGACCGATTGTGC
	1145	GGCACCGAGCCAGTAGGCCTCTGA
	1146	CTCAAGCGTGCATGTTGGTAACCA

WO 02/16649

	1189	GGTCGAAATGAGCCAGCAGCAGAT
	1190	CCATTGGAATACTGCGTGCGGCTT
	1191	GGAAGACTTCGCGAGGGCACAATG
	1192	AGGGTGACTTCGAAGGTCCGAACT
5	1193	TCGTCCCTCTGGTGGTCGAATCAC
	1194	TGTGCAAATTATGCTGGGCGTGAG
{	1195	GTCGCCAACTGTCATGTGTGCCCA
	1196	CCTCGAACCCTCAAGACGAAACGA
	1197	CTTCATCACGTGACCTTTGTTGCC
ا (0	1198	CCTTCATTCCCAGCAGGATGGCTT
	1199	CGGGGACCTCAATGGAGCGTCTTA
[1200	CGCCTCTAGCGCTTGTTACGTCGA
	1201	CTGCCAGACTCAAAACAGGGACGG
	1202	CTCCTTACACCGTGTGAGGGAACC
15	1203	TTTCATGCCATATCGCCTCGCGCA
	1204	TCTGGCTTTTCCTCGATCAATCGT
	1205	GTCTGACTGTCTGCCCTGTATGCG
	1206	GGTTAATGGAACGGCGTTAACGCG
	1207	CTTCGCACTGCGGAATCTCAAGCT
20	1208	TGCCAGAGGCGTAGGAGTCCTGGA
	1209	GACGGGCGAGCCAGTATTAACTCA
	1210	GACCTCCAAAGTCAGTCTTGGCGG
	1211	CGTTAGAGCATGACCGAACACGTC
	1212	GTGGGCTCAAAAATTGGGTACGCC
25	1213	GGGGCAGAGATCACGCGTTCCTCT
	1214	TTTCGCCCTACGAAGCGAAGTTTC
	1215	TACGGGGTGATGTTAAGCTACGCG
:	1216	CCTGTGAGTCTGAGATCGCCGTGT
•	1217	ACTGAAGCTGGAACAGGCCATTCG
30	1218	AGCACTGGTTCACATGGGAGTCCA
•	1219	TAAGGAAGATCACACTCCCTGCGC
	1220	CACCACACGCTAAAATTGAAGCCG
	1221	GCTGTCGCCAGGATCATGTATCGT
	1222	TTCGTTCGTGCACTGGATTCTTGA
35	1223	TCAGCTCTCCTTGTGCTTGCAGTG
	1224	ACGACGAGGTGAACTTCGTGGGAA
	1225	AGCATTGCCGCGGGCCTTGGTTTA
•	1226	CAGAGGCAGATGTGACTCCTCAA
	1227	CGATATTTCAGCCTCTCAAACGCG
40	1228	TGCCAGAAATGTTGCCGATTCGAA
	1229	TAGGCCACCCGGTGTTCACAATTC
	1230	GAGAGTCAGACCGAGGGACACGAG

1147	AGGAAGGCCACCATCCAATATICG
1148	TTGGAGCCCTGACTGAACCAAATC
1149	TACGAACGCCAAGGTTATGCCAAT
1150	CGCACCAGAGTTATGCAGGCTCAA
1151	CCAGCTTGGACGAGGAAGGATGTG
1152	GTCACGCCTTTCAAATGACCCACA
1153	TGCTAGACCCAGCCCGAGTCTCGG
1154	TATTGTGGCACTTGGGTCCAGTGC
1155	CACGTGTGAGACCGGAAGTGCATC
1156	AACCTCCAGCAAAACGTCGAGGTT
1157	GGCAGCCTGATGCTACAGCACCGT
1158	CGGTCCGTCCATCCTTCAGAGTTA
1159	CTATTCGCGGACCCTACGCAGTTT
1160	ACCTGTGCAGTCAGCACGAGTGCG
1161	GAGAACCACAGGTGGTCCACCCTA
1162	CCTCGCTAGAGAAATCCACGGGAT
1163	TAACATCGGTGCAAACCGTGGCGC
1164	ACCCAGAAGACATGGCATTCGCCT
1165	AAAAGCGCTGCTCTAACACCGCCG
1166	CAAGTCTGTCCATTTCCCAACGGT
1167	CCGACACATGGTGGGCTTTTTAAG
1168	ACAGACCAGCTTTTTGCGCAGATT
1169	CGGCGATCCATTTCACTTCAAAGT
1170	GACGTTATCATGACACAGGTCGCG
1171	GGCAGAGTTGGATCGGATCCTCAA
1172	TTGCTGGCAAACAGCTCCTGAAGA
1173	CCTCAATGCCACCGAATTCGGTAT
1174	GGAGTTAGCGTGATTAGTCGCCCA
1175	GAACTCGACGTGTCACGGAAGGGT
1176	CACAAGCGACATTTCTGGTGCACG
1177	CCAGAATGCGTGAATTCGCGTCCT
1178	CAAGGGAGCCCTGCGAATTAGAGT
1179	ATTCTTGCTTCGGACGACTAGCCG
1180	TGCCACTTTGATTTCCAGATTGCC
1181	GATGGTCGGCAGATAAGTGGTGGG
1182	GTTCACACGGGTTGACCAACATGT
1183	GATTCAATTGCCCCATTCCTGCAT
1184	TACCGGAAACTGAGCCTCGTGCTA
1185	GGATCTTTACTCAGGGGCAGAGCC
1186	CGCGAGTGCTTTGTTCTGTGGA
1187	GTCGTCGCGATGGCGTACATCCTT
1188	ACGGGAATCTCCCGAAGTGCGAGC
1	

)

5

!0

25

30

35

40

	1231	GAGGCGATCCTGGAACCACGCAAC
	1232	CCAGAGAGGCGGCTACTGACTCA
Γ	1233	CACACAGTCCCATCGTACGGCAGT
	1234	TTACGTTGCGGAAGCGTGCCTCTA
5	1235	ATGTACACGCTGCAATCGTGTCCC
	1236	ACTCGTCGGAAGCGCCCAGGT
Ţ	1237	ATGCGAGAGCAGAATTGAGCCGGT
	1238	AAGTTGGTTCGTATTCACGCGTGC
	1239	TGGGCTTATCGCCGAAGATTGCTA
10	1240	CAACGGCGAAGACCCAGAATTTTA
Ī	1241	AGCGTACGGCGAAAGTCTAGGGAC
Ī	1242	ATGCATCCAGCGTCCCCTTGATTA
Ī	1243	ACCGTCATCAGTCGCAGGCTTCTG
Ī	1244	TCTTGACGGCTGGGCATGATTGGA
15	1245	TTAACATTCGGACCCAGGACCTGG
	1246	TGGTGTCGAACTCCCTTGCGTGTT
	1247	TACTCCAGTCGCCTGCGCGCAAAC
	1248	CGCAATGCCGTAAGCATGCCAAGC
	1249	AGTCCGCGCGAAATACGAACAGTA
20	1250	ATGTTGCACGCGCACTGTATCACA
	1251	GGGATCAGCATCATTGGAAAGGAG
	1252	ATCGCCTAACTACCCGCGGCGTGC
	1253	TGGCCAGGGAACACAAGCTCGGTA
	1254	AAACATGGGTCGCGTCTGAGATCA
25	1255	GCGAGAGCTGCGATTCCCTTTTAG
	1256	CCGGCCAAACAAGAGACGAGCGGA
	1257	AATGGGGCACAGTCTCGCTTGACA
•	1258	TGTCTCGGGCCTTCAGGACACACT
	1259	TCCACCTTCATTAAGTGGTTCGGC
30	1260	GCTTCGGAATCATCCACCTGTCAT
	1261	GAGCCGATGGGCTATCGTCGTCGG
	1262	CACGAATTACGCACGCACAGAGGA
	1263	GCTGTGACGCTCCCCTCAACTAGG
	1264	CGCTCTGAAAACGCGGGCTACGTT
35	1265	GAGTGCTGGACACCGTAGCCAGGA
	1266	CCAACCCCAGTGTAGGCGCAAATG
	1267	GAAGTAGGGGATGTTGGCCGGCGG
	1268	CAACGTGGGCACCTGTTTTAGCAG
	1269	CTAGCTGCGATCCGAACCTCTACG
40	1270	CATTGAACCATCAGCCAAGCTGCG
	1271	AGACTGGCAATTTTTCGAGGCCAA
	1272	CTGGCCGTCCATGAGTTGGTCCAG

	1273	CATGCTGAAACACGGGATTGCCAT
	1274	CGATATGTAAGACAGCCGTCGCAA
	1275	AGCGTAACCTACTGGGAAGGCACC
	1276	GTGCTCGTGGCACGTACAGGCCTT
;	1277	GTTCGAACCCCGCGATGTTAAATG
•	1278	GTTGTTAGGAGGCTCGAGGCTGCT
	1279	ACTGGTGCTACGCGGGATATTTGA
	1280	CTGGGAGCTATCCTCAGCCGAATC
	1281	GAACTCGCCGCTGCCGAAGGGTAG
)	1282	TTCGATCGAGGAGCAAGGAGAGTC
	1283	GGGGAAAATTGAGGCCTTAGCCAT
	1284	CTAAGGTCAAAGCGCTGTCGCCAG
	1285	GTGAGGCTTACCCCGTGCTCTTGG
	1286	CCGTAGCGGTGCTCGACCAGGTTC
5	1287	TGGGGACGAATCCGAATGTAGTGA
	1288	GTCATGTAATTGCATCCCACGGGT
	1289	CTTTGCGCGGTGGTCAATAAAAAG
	1290	CACTCGAGATTCAATGGGCATGGT
	1291	CTCGGGGATGCCCTCTTGGCATTA
30	1292	CGAAACGTGGTGCAGAAACCTGAA
	1293	GGAGTTCACGAGTCGAGCAGTCGC
	1294	AGCCGTTTTCAAAGATCTCGACGA
	1295	TGGCTGGACATTGTCTGCAATGCA
	1296	ATCGGCTGCCTCAGTCCCTAATTT
25	1297	CCAGCATGGAGTTAAGTGAGCGCG
	1298	TTCATATTTACGAATGCCGGGTGC
	1299	CGAAATCGCACAGGAATTCGCGTC
	1300	GGCAATTTCGGGACACTCGTTTCA
	1301	TTTGTGATTGGGGGTATAACCCGA
30	1302	CCCAGCTAATCCAGCTTGGGCTGT
	1303	AAAATCGTTTGGCTGTAACGTCGC
	1304	AGGAGATTCATCGACTTCCGGGAA
	1305	GCACGGGTCTCAATGCTTAGGGT
	1306	GCGCAACAAGTAGCCTACCGAGGC
35	1307	TAGCAGGCTGATGCCGTCTACACA
	1308	GCAAGCGGCGATCGTACAACTTGT
	1309	GCACCTCTGGTAAGCCTGAAAGGG
	1310	CGAGGGCGGTGAGTGCATACCGTG
-	1311	GGATTAACCGGAACTGCCCTTCTG
40	1312	GATATTGGGTCCGGCGCGCATTAC
	1313	GGCCTTTAATCTCCGGTCGCAATG
	1314	AACCTTAGTGCGGCTAGGTGGGGT

-74-

	1315	CACGCTGACGCCAGTGTGGTGAGG
	1316	GGTTCCCTTGACCCACCGAATTGA
[1317	TTCTGACAACATCGACCCTGGCTC
<u> </u>	1318	GCGAGCGAAGATAATCCCCAAACT
5	1319	GTACTCTGTGCAACGGTCCCGAGT
	1320	ACACGCCAGGAACAGTGTCTGTGA
	1321	AAGGGAATTTAGCGCGCGTGACTT
	-1322	TGACGTACGCGTTTTAAGTGGGGA
	1323	CTTAGAGGGACGAGGCCATGAATG
10	1324	GGACGACTCCGCAAAAAAGGTCGT
	1325	TCAATCCCAACATCCAAAGCCTCA
	1326	GCACTGGTCTACCAAGCTTGTCCC
	1327	ACTTGTCGGAAACGAGACCGAGCA
	1328	TCAGGAAAGGCCTAAAGGCGAAAG
15	1329	GGAATGTAGTCAAGGAGGACGGGG
	1330	GCACGTGGTAAATGAATTGGCGAG
	1331	GATCATCAGGGGTTATGCGTCGCG
	1332	CTCACTCATTCTGATTGCCCGCGG
	1333	GGGGTGATCTCTCGAACGTCACCC
20	1334	AAGGTTGCTGCTAGCGTACCTCGA
	1335	TATAGATCGCCCAACAGGCAGGAG
	1336	GTTTGGACCTGTTGGGAGTGGGCA
	1337	ATTGGGGAAAACCCGGTCTCAAGG
	1338	TCGACGATAAAGTGCTCACGGGAC
25	1339	CGATAGAATTCAATGCAGGGCGGA
	1340	CGGTTCGCTACGGCGGCTGGTTTC
	1341	CCAGGTTTCGGTTAGTCGCGCTAG
	1342	ACGACCTTACACTCGGATCCGACG
	1343	TCGCGTTAAATGGACCAAGGGGCC
30	1344	CCAGAAAGAAATGGCGCCCGGAT
	1345	GATACATCGCCGCCTGCTAGGCAC
	1346	GAGATCACACTCGGAAACCGGATG
	1347	ACTTCGCGGAAAAAGGCTGGCATT
	1348	CCGAGCTGCACGAGCACACAAGT
35	1349	TTCCACAAGGCGGCATAGTGAGGC
	1350	AGCAAACTGGAATCCGGAAAAACC
	1351	CGCTATGTCGCAGCATGCATTTAC
• -	1352	AGTCACGCCCAACGTCGGTTCTTT
	1353	AGTGGGCGCACTTGGCCTTAAATA
40	1354	ACTTGCAACTTCGGCCGTTTGACT
	1355	CAAACATCAGGTTCATGCCGTACG
	1356	AGCGTGACCACCCTACAATGGCAA

-75-

	. 1357	GCAGGCATCCGGCAGAGATGTCTC
	1358	GAGCGGCTAAGAGGCCAGACCAAA
	1359	CACAGAACAGGGTGTTTCCCGCTA
	1360	ACTTTGCAGAAGGCCCAACACAAG
5	1361	CCTTCCTGGTACTTTGTGGGCGAC
	1362	CTACATGCTCACCCCACCAGAGTG
	1363	ATTTTCAGAATAGCCCCGCCTCGA
•	1364	CAATTGCTACGTTGACGCCCTCTG
	1365	CTGTCGCCTAATCCTCGGTGGCCG
10	1366	TTTGTGTTGGCTCCGTACATTGGA
	1367	ACGTGACGGGAAGGTGGTTGAATC
	1368	AGTTCTTGCGTTGCACGAAACAGA
	1369	GCTCGCCGCGCTCTTTATGTCTG
	1370	ATGAACATCGCGAGGCAAGCCTTT
15	1371	CAACCGCGCCCACCAACATTAAGG
	1372	TGATCGAGGACGGCTTGGTAGCCT
	1373	GGAGGCATGCCTTCCGAGAGCAAC
	1374	CACCGATCCTCAACGCAATTGCTA
	1375	GGCCATGAATTGGGAAATCCATGT
20	1376	CTGTTCCAGGCGTAACCAGCGGGC
	1377	TATGTCTGGCTCGCCATCAGAAGA
	1378	GGAGTGACCAGCACAAGCATCGAG
	1379	TCGGACTGGAAGTAACTCGCATGA
	1380	GTAGGGTCAAGCACGATTGAAGCC
25	1381	CACCGGCGTTCGACTAACGTGAC
	1382	GAATGACGCGCAGTGCATTTGAAC
	1383	GTGCTCGTCTAACCGCGGATAGAG
	1384	GCGGACCTGGGTTAATTGACGCGC
	1385	TTTTTGATGTTGCGCACCGGGCTA
30	1386	TTGCGTCAGCGCATCTGCTCGATT
	1387	ATGAGCACGCCAGTTCGTTCCTTT
	1388	TCAACGGTAAAGAATCGCCCCGCA
	1389	CGCGATTGACTGAACCACACCTCT
	1390	GCGTGAAAGATGACGGCCGGTATA
35	1391	CATGATTCCACCTCGATCGGCTAG
	1392	CTACGACAAGCAACCGTGCAAAA
	1393	ATGCCGTGTTCATCTTGATGGTCC
	1394	TTCGTGGAGGGACTTTGGAGATCC
	1395	GAAGCGCCGTAACGTACACCGTCG
40	1396	AGCGTGCGCTTGGCTATAAGGCTA
	1397	ACAGTCAGGAGTAACGCCGCTCAA
	1398	TTTAGCCGCTGCGACTGTAGGAAA

1399 ACTETGTCGCAATCAACCCGCAAA 1400 TGCAGCCAATGCAGGAACTTAGAGG 1401 CCCGCTATCCCGGTCTTGCAGTTC 1402 GAGGGCGAACATATGCAGTGCTG 1403 GGTACGGAACTGATGACGCCACCG 1404 AGTCTCCCGAGAAACGCATAAGGC 1405 AGGAAGTGATGATGACGCCACCG 1406 GGGTTGCTCACCGTCATCAGG 1407 TAGGAATGCAGTTCCGCGGTAA 1408 CTCCTCACTTCCAAGCTGCGGATA 1408 CTCCTCACTTCCAAGCTGCGGATA 1409 TCAATAGCACCTAGCATGCCGCGTAA 1409 TCAATAGCACCTAGCATGCTCCCG 1410 TGATTCCTGCGCTTTCACAGGTCG 1411 GTATTCCTGCGCTTTCACAGGTCG 1412 TACGGCAACTGCATCCCGC 1414 ATAGCGCGACTCCAGCATTCCCG 1414 ATAGCGCGCACACAGCTCCTCGC 1415 GAAAGTCGCCAACAGCTCCTCGC 1416 CGCTAATGCCTCATAGGCGTGTGC 1417 ATCCCCGCCCACAGGATACCAAG 1418 CACCTCCACAGCACTCCAGCA 1419 CTCTCCCCGTCGATCAGAGTACCAAG 1419 CTCTCCCCGTCGATTCAGAGTTC 1420 TCATGTGGGCCTCACAGATTCC 1421 GGCCTGAAAGCCGTAACAGATTCC 1422 AGCCTCCAAAGCCGGTAAGATTCC 1423 TTGTCGTAAGGGTAAGGTTACCTG 1424 GCCTGAAAGCCGGTAAGAATTCC 1425 GGCACTATACCGGTTGCGAACAGA 1426 GCCTGAATGCGGTAGAGATTCC 1427 CCCAAGGCAAAGTACCACG 1428 GGCATTAACGGGAAAGAA 1425 GGCACTATACCGGTTTGGAACGG 1426 CCGTGTATACGGAAAGGTACGCCA 1427 CCCAAGGCAAGTTGCCCAAGCCCAAGCCAAGATTCCGG 1428 GGACTTAACGGGAAAGGTACCACG 1429 CCATGTTACGGAAAGGTACGCCA 1430 GGCTTGAAGTTGCGCCACACAGG 1431 TTGGCACTCTGCAAGATCTGG 1432 GATCTGCACTGCAAGACTCTGG 1433 CGATCAACTTGCGCCACACAAGCACTAAGCAGCAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGACAACAGAACAACAACAACAACAACAACAACAACA	-		
1401		1399	ACTGTGTCGCAATCAACCCGCAAA
1402 GAGGGCGAACATATGCAGTGCTG 1403 CGTACGGACATCGATGACGCAACG 1404 AGTCTCCCGAGAAACGCATAAGGC 1405 AGGAAGTGATGACGCACG 1406 GGGTTGCTCACCCTCCATCATGAG 1407 TAGGAATGCAGTTCCGGCGGTA 1408 CTCCTCACTTCCAAGCTGCGGATA 1409 TCAATAGCACCTAGCATGCTCCCG 1410 TGATTCCTGCGCTTCAAGGTCG 1411 GTATTCTGCGGGATTGCACGGC 1412 TACGGCAACTGTCGATACAGGC 1413 GGTTCCTATCCAGGATGCATCCCG 1414 ATAACGCGGCCACAGGTATATCCC 1415 GAAAGTCGCCAACAGCTCCTCGC 1416 CGCTAATGCACTCCTAGCA 1417 ATCCCGCCGCACAGAGTATCACC 1418 GAAAGTCGCCAACAGACTCCAGGC 1419 CTCTCCCCGTGCTTCAAGAGT 1419 CTCTCCCGTGCTTCAAGAGT 1420 TCATGTGGGCGTTCAAGAGT 1421 GGCCTGAAGGTGAATGATAC 1422 AGCCTCCAAAGCCGTACAGTT 1423 TTGTCGAAGGTGAATGATACGT 1424 GCCTGAAGGTGAATGGTTACGT 1425 GGCACTAAAGCCGTTCACGTT 1426 GCCTGAAGGTGAATGGTTACGT 1427 AGCCTCCAAAGCCGTACAGTTC 1428 GGCTGAAGGTGAATGGTTACGTC 1429 CCATGTTACCGGAAAGAA 1429 GCTGATACCGTTCAGGAA 1429 CCATGTTACCGGAAAGAA 1429 CCATGTTACCGGAAAGAA 1429 CCATGTTACCGGAAAGAACAGAC 1430 GGCTTGAAGGTTCAAAGCACCAA 1431 TTGCCACTCCCAAAGCCGCT 1432 GATCTCCACTACAGGAACCACAG 1433 GGATCAACTTGCGACCACAG 1434 CGGCTGGAGTTACAGTTCCTGC 1435 GCGCTAACTTTACCGGCCCCC 1436 TCGTCACTTCAAGAGAACAGCGCT 1437 AGTGTCGTAAGCGCCTCCC 1438 AGGACGCAGGGATTCAAGTACCACCACCCCCCCCCCCCC		1400	
1403		1401	
1404 AGTCTCCCGAGAAACGCATAAGGC 1405 AGGAAGTGGATGAACGCGGCTGCA 1406 GGGTTGCTCACCCTCGTCATCAGG 1407 TAGGAAGTCCACCTCGTCATCAGG 1408 CTCCTCACTTCCAAGCTGCGGATA 1408 CTCCTCACTTCCAAGCTGCGCGATA 1409 TCAATAGCACCTAGCATGCTCCCG 1410 TGATTCCTCCAGGTTCCACAGGTCG 1411 GTATTCCTCCGCGTTTCACAGGTCG 1411 GTATTCTCCGCGTTTCACAGGTCG 1412 TACGGCAACTGCTCAGCATCCTCGC 1414 ATAGCGCGCCACAGGTATGACCC 1415 GAAAGTCCCCACACGCATCCTCGC 1414 ATAGCGCGCCACAGGTATGACC 1415 GAAAGTCGCCAACAGATCCAGCA 1416 CGCTAATGCCTCATAGGCGTGC 1417 ATCCCGCCGCACGAAGTACCAAG 1418 GACGCTCCTATAGGCGTTCC 1419 CTCTCCCCGTCGCTTCAGAGATTA 1420 TCATGTGGGCCGTCTATACAGTTT 1421 GGCCTGAAGGCGTTACAGTTT 1421 GGCCTGAAGGCGGTAGAGTTCC 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTCTCGTAGGCCGTCACCTTAGGA 1424 GCCTGAGTCCGGGTCGGAAAGAA 1425 GGCACTATACCGGTTCGGAAAGAA 1425 GGCACTATACCGGTTCGGACAGAA 1426 CCGTGTATACGGTTCCTGGACGCG 1426 CCGTGTATACGGTTCTGGACGCC 1427 CCCAAGGCAAGTACGAGCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTGTACAGTCC 1430 GGCGTTGAGCTTACAGGCCACAG 1431 TTGCCACTCTGCAAAGCAGCAC 1431 TTGCCACTCTGCAAAGCAGCAC 1433 CGATCACTTGCGGCCATCCTGC 1434 CGGCTGGGTTACAGATACCTGGG 1434 CGGCTGGGTTACAGAAACGAGTA 1435 GCGCTTAGTGACCTACAGAAAACGAGTA 1436 TCGTCACTGTAACAGAGCCTTCCGC 1437 AGTGTCGTCAAGAAACGAGTA 1437 AGTGTCGTAAGGCCCTACCGCGCTCCG 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGTGCGGGGTTCCATCCCGC 1439 ACCGATGTGAGCCCCTACCCTACCCGCAACCCTACCCAACACCACCACCACCACCACCACCACCAC		1402	
1405 AGGAAGTGATGAACGCGGCTCCA 1406 GGGTTGCTCACCCTCGTCATCAGG 1407 TAGGAATGCGAGTTCCGGCGGTAA 1408 CTCCTCACTTCCAAGCTGCGGATA 1409 TCAATAGCACCTAGCATGCTCCCG 1410 TGATTCCTGCGCTTTCACAGGTCG 1411 GTATGTGCGGGATGAAATCACGC 1412 TACGGCAACTGTCGAAAATCACGC 1413 GGTTCCCTATCCAGGACTCCTCGC 1414 ATAAGCGCGCCACAGGTATGTACC 1415 GAAAGTCGCCAACAGACTCGAGCA 1416 CGCTAATGCCTCATAGGCGTGG 1417 ATCCCGCCGCACAGAATACCAAG 1418 GACGCTGCTGATGAGCATGTACC 1419 CTCTCCCGTCGATGAGATACCAAG 1419 CTCTCCCGTCGATGAGATTA 1420 TCATGTGGGCCGTCAAGAATTA 1421 GGCCTGAAGGTGATACGTT 1421 GGCCTGAAGGTAATGAGTT 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCGCTCACCTTAGGA 1424 GCCTGAAGCCGGTAGAGTTCC 1425 GGCACTATACCGGTTCTGGACGCG 1426 CCGTGTATACCGGTTCTGGACGCG 1427 CCCAAGGCAAGTGCAAAACCAG 1428 GGAGTGATACTGGCCAAAACCGG 1429 CCATGTAACGCAAAACCAGACCA 1429 CCATGTTACGGAAAGCTACGTC 1429 CCATGTAACGCAAAACCAGACCA 1430 GGCTTGAACTTGCGCACCAACAG 1431 TTGGCACTCTCAAGAACCAGAC 1432 CATCTGACTCAAGAACCAGATA 1433 CGATCAACTTGCGGCCATCACGG 1434 CGGCTGGGGTCACAGAAACAGATA 1435 GCGGCTGACTTCATGCGCCCTCCG 1437 AGTGTCGTGAGCCCTTACCGCCCTCCG 1438 AGGACGAGGGATTCAAGTGCAAC 1439 ACCGATGCAGGGGTCTCATACCTCCTCCCCCCTACACCCCCCCC	5	1403	CGTACGGACATCGATGACGCAACG
1406 GGGTTGCTCACCCTCGTCATCAGG 1407 TAGGAATGCGAGTTCCGGCGGTAA 1408 CTCCTCACTTCCAAGCTGCGGATA 1409 TCAATAGCACCTAGCATGCTCCCG 1410 TGATTCCTGCGGTTTCACAGGTCG 1411 GTATGTGCGGGATGCAAATCACGC 1412 TACGGCAACTGTCGATACCAGGCC 1413 GGTTCCCTATCCAGCACTCCTCGC 1414 ATAGCGCGCCACAGGTATGTACC 1415 GAAAGTCGCCAACAGACTCCTCGC 1416 CGCTAATGCCTCATAGGCGTGTGC 1417 ATCCCCGCCGCACGAAGTACCAAG 1418 GACGCTGCTGATGCATTACCAAG 1419 CTCTCCCGTCGACGAAGTACCAAG 1419 CTCTCCCGTCGATGAGCTTTACGAT 1420 TCATGTGGGCCGTCTAACAGTT 1421 GGCCTGAAGGTGAATGCTAAGT 1422 AGCCTCCAAAGCCGGTAGTACCT 1423 TTGTCGTAAGCCGTAACGATT 1424 GCCTGAAGCTGAATGCTCAGA 1425 GGCACTATACCGGTACGAAG 1426 CCGTGATGCCGGTCGGAAAGAA 1427 CCCAAGGCAAGTTACCAGTC 1428 GGAGTCCTGGGAAAGAA 1429 CCATGTTACGGAAAGGTACCCA 1429 CCATGTTACGCAAATCTGG 1429 CCATGTTACGTTGCACACAATCTGG 1429 CCATGTTACGTTACAGTACCAG 1430 GGCGTTGAGCTTAAAGCAGCGAC 1431 TTGGCACTGCAAGATACCTGG 1432 GATCTGCAAGATACCTGGG 1433 GGACCACTCTGCAAGATACCTGG 1434 CGGCTGGAGTCACAAACCAGAGTA 1435 GCGCTTGTACAGAGACCAACCAGAGTA 1436 CGGCTTGCAAGAAACCAGAGTA 1437 AGTGTCGTGAGCCCTAACCGGCTG 1438 AGGACGCAGGGATTCAAGTCCAAC 1439 ACCGATGCGCGCTCGGTCCATACCTACCACCACCACCACCACCACCACCACCACCA		1404	AGTCTCCCGAGAAACGCATAAGGC
1407 TAGGAATGCGAGTTCCGGCGGTAA 1408 CTCCTCACTTCCAAGCTGCGGATA 1409 TCAATAGCACCTAGCATGCTCCCG 1410 TGATTCCTGCGCTTTCACAGGTCG 1411 GTATTCCTGCGCTTTCACAGGTCG 1412 TACGGCAACTGCATGCATCCCG 1413 GGTTCCCTATCCAGCACTCCTCGC 1414 ATAGCGCGCCACAGGTATGTACC 1415 GAAAGTCGCCAACAGACTCCAGCA 1416 CGCTAATGCCTCATAGGCGTGC 1417 ATCCCCGCCGCACAGATTACCAAG 1418 GACGCTGCTGATGGACTACGAT 1419 CTCTCCCCGTCAGCAATTA 1420 TCATGTGGCCTTCAGAGATTA 1421 GGCCTGAAGCTCAATGCTTT 1422 AGCCTCCAAAGCCGGTAGATTA 1422 AGCCTCCAAAGCCGGTAGATTA 1423 TTGTCGTAGGCGTTACCATTAGGA 1424 GCCTGAAGCTGAATTACGT 1425 GGCACTATACCGGTTACCAGT 1426 CCGTGATACCGGTTAGGAAAGAA 1427 CCCAAGGCAGTTCCCTAGGA 1428 GGCACTATACCGGTTCTGGACCCA 1429 CCATGTTACGGAAAGCTACAGTCC 1429 CCATGTTACGGCCAAATCTGG 1429 CCATGTTACGTCTGCACACACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGCG 1432 GATCTGCAAGGTCTTGCGGCCAATCTGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAAAGCAGATA 1435 GCGCTTGTTAAAAGCAGCGAT 1436 TCGTCACTGTTAAGAGAGCCTCCG 1437 AGTGTCGTGAGCCCTACCTGCGCCCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGACGCGCTCCTATAC		1405	AGGAAGTGGATGAACGCGGCTGCA
1408 CTCCTCACTTCCAAGCTGCGGATA		1406	GGGTTGCTCACCCTCGTCATCAGG
1409 TCAATAGCACCTAGCATGCTCCCG 1410 TGATTCCTGCGCTTTCACAGGTCG 1411 GTATGTCCTGCGCTTTCACAGGTCG 1411 GTATGTGCGGGATGGAAATCACGC 1412 TACGGCAACTGTCGATACGAGGGC 1413 GGTTCCTATCCAGCACTCCTCGC 1414 ATAAGCGCGCCACAGGTATGTACC 1415 GAAGTCGCCAACAGACTCGAGCA 1416 CGCTAATGCCTCATAGGCGTGTGC 1417 ATCCCCGCCGCACGAAGTACCAAG 1418 GACGCTGCTGATGGCTTTATCGAT 1419 CTCTCCCCGTCGCTTCAGAGATTA 1420 TCATGTGGGCCGTCAGAGATTA 1421 GGCCTGAAGGTGAATGGTTACGTG 1422 AGCCTCCAAAGCCGTAGAGATTCC 1423 TTGTCGTAGGCGTCACACTTAGGA 1424 GCCTGAGTCCGGGTCGGAAAGAA 1425 GGCACTATACCGGTTCTGGACCGG 1426 CCGTGTATACCGGTTCTGGACCCG 1427 CCCAAGGCAAGTGTCCATCACTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACCTGGG 1432 GATCTGCACTGCAAGATACCTGGG 1433 CGATCAACTTGCGCCATTCCTGC 1434 CGGCTGGGGTCAAAACGAGTA 1435 GCGCTAGTTGTACCTAGCGCTG 1436 TCGTCACTGTAAGAAACGAGTA 1437 AGTGTCGTGAGCCTAACCTACCGGCTT 1438 AGGACGCAGGATTCAAGTCCAC 1439 ACCGATGCGCGGTCGTCTCATAC		1407	TAGGAATGCGAGTTCCGGCGGTAA
1410 TGATTCCTGCGCTTTCACAGGTCG	٥,0	1408	CTCCTCACTTCCAAGCTGCGGATA
1411 GTATGTGCGGGATGGAAATCACGC 1412 TACGGCAACTGTCGATACGAGGGC 1413 GGTTCCCTATCCAGCACTCCTCGC 1414 ATAAGCGCGCCACAGGTATGTACC 1415 GAAAGTCGCCAACAGACTCCGAGCA 1416 CGCTAATGCCTCATAGGCGTGTGC 1417 ATCCCGCCGCACAAGATACCAAG 1418 GACGCTGCTGATGCATTACCAT 1419 CTCTCCCGTCGCTTCAGAGATTA 1420 TCATGTGGGCCGTCAGAGTTACGTT 1421 GGCCTGAAGGCGGTAGAGTTCC 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCGTCACCTTAGGA 1424 GCCTGAGGCCGTCACCTTAGGA 1425 GGCACTATACCGGTTCTGGACCGC 1426 CCGTGTATACGGGAAAGAA 1425 GGCACTATACCGGTTCTGGACCCG 1426 CCGTGTATACGGAAAGTACGCCA 1427 CCCAAGGCAAGTGCCAAATCTGG 1428 GGAGTGCATCATGCCACACAG 1430 GGCGTTGAGCTTACAGTCC 1430 GGCGTTGAGCTTACAGTCC 1431 TTGCACTCTCCAAGATACGTGGG 1432 GATCTGCACTGCAAGATACGTGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAAAACGAGTA 1435 GCGGCTAGTTGTACCTGCGGCCT 1436 TCGTCACTGTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTACACCCCCCCCCCCCCCCCCCCCC		1409	TCAATAGCACCTAGCATGCTCCCG
1412 TACGGCAACTGTCGATACGAGGGC 1413 GGTTCCCTATCCAGCACTCCTCGC 1414 ATAAGCGCGCCACAGGTATGTACC 1415 GAAAGTCGCCAACAGACTCGAGCA 1416 CGCTAATGCCTCATAGGCGTGTGC 1417 ATCCCCGCCGCACGAGTACCAAG 1418 GACGCTGCTGATGGCTTTATCGAT 1419 CTCTCCCCGTCGCTTCAGAGATTA 1420 TCATGTGGGCCGTCGATCAGTT 1421 GGCCTGAAGGTAATACGTT 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCCTTCAGAGATTC 1424 GCCTGAAGGTCACCTTAGGA 1425 GGCACTATACCGGTTCGGAAAGAA 1426 GCCTGAGTCCGGGTCGGAAAGAA 1427 GCCTGAGTCCGGGTCGGGAAAGAA 1428 GGCACTATACCGGTTCTGGACCGCG 1429 CCCAAGGCAAGTGTGCATCAGTCC 1429 CCATGTTACGTCTGCCAAATCTGG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGAAGATACGTGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCCT 1438 AGGACGCAGGGATTCAAGTCCAAC 1439 ACCGATGCGCGGTCCCTAACCAAC 1439 ACCGATGCGCGGTCCCTAACCAACC 1439 ACCGATGCGCGGTCCGTCTCATACCAACCAACCAACCAAC		1410	TGATTCCTGCGCTTTCACAGGTCG
1413 GGTTCCCTATCCAGCACTCCTCGC		1411	GTATGTGCGGGATGGAAATCACGC
1414 ATAAGCGCGCCACAGGTATGTACC 1415 GAAAGTCGCCAACAGACTCGAGCA 1416 CGCTAATGCCTCATAGGCGTGTGC 1417 ATCCCCGCCGCACGAAGTACCAAG 1418 GACGCTGCTGATGGCTTTATCGAT 1419 CTCTCCCCGTCGCTTCAGAGATTA 1420 TCATGTGGGCCGTATCAGTTT 1421 GGCCTGAAGGTGAATGGTTACGTG 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCGTCACCTTAGGA 1424 GCCTGAAGCCGGTAGAGTTCC 1425 GGCACTATACCGGTCTGGACAGA 1426 CCGTGTATACGGTGGAAAGAA 1425 GGCACTATACCGGTTCTGGACGCG 1426 CCGTGTATACGGAAAGGTACGCCA 1427 CCCAAGGCAAGTGTGCATCAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGATACGTGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTTACACAGAAACGAGTA 1436 TCGTCACTGTAGAGAAGCCTCCG 1437 AGTGTCGTGACCCTAGCGGCGTT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTTCCTATAC		1412	TACGGCAACTGTCGATACGAGGGC
1415 GAAAGTCGCCAACAGACTCGAGCA 1416 CGCTAATGCCTCATAGGCGTGTGC 1417 ATCCCCGCCGCACGAAGTACCAAG 1418 GACGCTGCTGATGGCTTTATCGAT 1419 CTCTCCCCGTCGCTTCAGAGATTA 1420 TCATGTGGGCCGTATCAGTTT 1421 GGCCTGAAGGTGAATGGTTACGTG 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCGTCACCTTAGGA 1424 GCCTGAAGCCGGTAGAGTCC 1425 GGCACTATACCGGTCTGGACGCG 1426 CCGTGTATACCGGTTCTGGACGCG 1427 CCCAAGGCAAGTGCCCAAAGCCAAGTACAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGGCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGATACGTGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTTACCTACCGGCTG 1436 TCGTCACTGTACAGAGACCACCGCGT 1437 AGTGTCGTGACCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAACTGCAAC 1439 ACCGATGCGCGGTCTCATACCTACCGGCTG 1439 ACCGATGCGCGGTCTCCTATCCTACCACCACCCCCCCCCC	15	1413	GGTTCCCTATCCAGCACTCCTCGC
1416		1414	ATAAGCGCGCCACAGGTATGTACC
1417 ATCCCGCCGCACGAAGTACCAAG		1415	GAAAGTCGCCAACAGACTCGAGCA
1418 GACGCTGCTGATGGCTTTATCGAT 1419 CTCTCCCCGTCGCTTCAGAGATTA 1420 TCATGTGGGCCGTCGTATCAGTTT 1421 GGCCTGAAGGTGAATGGTTACGTG 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCGCTCACCTTAGGA 1424 GCCTGAGTCCGGGTCGGAAAGAA 1425 GGCACTATACCGGTTCTGGACGCG 1426 CCGTGATACCGGTTCTGGACGCG 1427 CCCAAGGCAAGGTACGCCA 1428 GGAGTGCATCAGTCC 1429 CCATGTTACGTCATCAGTCC 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCCAAGATACGTGG 1432 GATCTGCACTGCAAGATACGTGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTGACCTAGCGGCTG 1436 TCGTCACTGTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCCGCCCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGTCTCATAC		1416	CGCTAATGCCTCATAGGCGTGTGC
1419		1417	ATCCCGCCGCACGAAGTACCAAG
1419	20	1418	GACGCTGCTGATGGCTTTATCGAT
1421 GGCCTGAAGGTGAATGGTTACGTG 1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCGCTCACCTTAGGA 1424 GCCTGAGTCCGGGTCGGAAAGAA 1425 GGCACTATACCGGTTCTGGACGCG 1426 CCGTGTATACCGGAAAGGTACGCCA 1427 CCCAAGGCAAGTGTGCATCAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGTCTCATAC		1419	CTCTCCCCGTCGCTTCAGAGATTA
1422 AGCCTCCAAAGCCGGTAGAGTTCC 1423 TTGTCGTAGGCGCTCACCTTAGGA 1424 GCCTGAGTCCGGGTCGGAAAGAA 1425 GGCACTATACCGGTTCTGGACGCG 1426 CCGTGTATACGGAAAGGTACGCCA 1427 CCCAAGGCAAGTGTGCATCAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCTCTTTTTT	,	1420	TCATGTGGGCCGTCGTATCAGTTT
1423		1421	GGCCTGAAGGTGAATGGTTACGTG
1424 GCCTGAGTCCGGGTCGGGAAAGAA 1425 GGCACTATACCGGTTCTGGACGCG 1426 CCGTGTATACGGAAAGGTACGCCA 1427 CCCAAGGCAAGTGTGCATCAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGTCTATATATATATATATATATATAT		1422	AGCCTCCAAAGCCGGTAGAGTTCC
1424 GCCTGAGTCCGGGTCGGGAAAGAA 1425 GGCACTATACCGGTTCTGGACGCG 1426 CCGTGTATACGGAAAGGTACGCCA 1427 CCCAAGGCAAGTGTGCATCAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCTCATACC 1439 ACCGATGCGCGGTCTCATACC 1430 ACCGATGCGCGGTCTCATACC 1431 ACCGATGCGCGGTCTCATACC 1432 ACCGATGCGCGGTCTCATACC 1433 ACCGATGCGCGGTCTCATACC 1434 ACCGATGCGCGGTCTCATACC 1435 ACCGATGCGCGGTCTCATACC 1436 TCGTCACTGTTATATACC 1437 ACCGATGCGCGGTCTCATACC 1438 ACCGATGCGCGGTCTCATACC 1439 ACCGATGCGCGGTCTCATACC 1439 ACCGATGCGCGGTCTCATACC 1430 ACCGATGCGCGGTCTCATACC 1431 ACCGATGCGCCGTCCATACC 1432 ACCGATGCGCGGTCTCATACC 1433 ACCGATGCGCGGTCTCATACC 1434 ACCGATGCGCGGTCTCATACC 1435 ACCGATGCGCGGTCTCATACC 1436 ACCGATGCGCGGTCCGTCTCATACC 1437 ACCGATGCGCCGTCCATACC 1438 ACCGATGCGCGGTCCGTCTCATACC 1439 ACCGATGCGCGGTCCGTCTCATACC 1439 ACCGATGCGCCGTCCGTCTCATACC 1437 ACCGATGCGCCGTCCGTCTCATACC 1438 ACCGATGCGCCGTCCGTCTCATACC 1439 ACCGATGCGCCGTCCGTCTCATACC 1430 ACCGATGCGCCCTACCGGCGCTCCGTCTCATACC 1430 ACCGATGCGCCCTACCGGCCCTCCGCGCTCCGTCTCATACC 1431 ACCGATGCGCCCTACCGCGCTCCGCTCCTCTCTCTTCTTTTTTTT	25	1423	TTGTCGTAGGCGCTCACCTTAGGA
1426 CCGTGTATACGGAAAGGTACGCCA 1427 CCCAAGGCAAGTGTGCATCAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGTCTTATAC	~-	1424	GCCTGAGTCCGGGTCGGGAAAGAA
1427 CCCAAGGCAAGTGTGCATCAGTCC 1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGTCTATAC		1425	GGCACTATACCGGTTCTGGACGCG
1428 GGAGTGCATCATGGCCAAATCTGG 1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCTCATAC		1426	CCGTGTATACGGAAAGGTACGCCA
1429 CCATGTTACGTCTGCGCACCACAG 1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGTCTCATAC		1427	CCCAAGGCAAGTGTGCATCAGTCC
1430 GGCGTTGAGCTTAAAAGCAGCGAC 1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC	30	1428	GGAGTGCATCATGGCCAAATCTGG
1431 TTGGCACTCTGCAAGATACGTGGG 1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGTCTATAC		1429	CCATGTTACGTCTGCGCACCACAG
1432 GATCTGCACTGCAAGGTCTTGGGG 1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC		· 1430	GGCGTTGAGCTTAAAAGCAGCGAC
1433 CGATCAACTTGCGGCCATTCCTGC 1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC		1431	TTGGCACTCTGCAAGATACGTGGG
1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC		1432	GATCTGCACTGCAAGGTCTTGGGG
1434 CGGCTGGGGTCACAGAAACGAGTA 1435 GCGGCTAGTTGTACCTAGCGGCTG 1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC	35	1433	CGATCAACTTGCGGCCATTCCTGC
1436 TCGTCACTGTTAGAGAGGCCTCCG 1437 AGTGTCGTGAGCCCTAGCGGCGCT 40 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC		1434	CGGCTGGGGTCACAGAAACGAGTA
40 AGTGTCGTGAGCCCTAGCGGCGCT 40 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC		1435	
40 1438 AGGACGCAGGGATTCAAGTGCAAC 1439 ACCGATGCGCGGTCGGTCTCATAC		1436	
1439 ACCGATGCGCGGTCGGTCTCATAC		1437	AGTGTCGTGAGCCCTAGCGGCGCT
1439 ACCGATGCGCGGTCTCATAC	40	1438	AGGACGCAGGGATTCAAGTGCAAC
1440 GGCAGAGGGTTAGGGGGTTTTTTT		1439	ACCGATGCGCGGTCGGTCTCATAC
		1440	GGCAGAGGGTTAGGGGGTTTTTTT

	1441	GGCAAAGGGTGTTTATGGGAGACC
	1442	ACAAGGCTTCGGCTGGCAGAATAC
-	1443	CATATCCGTTCCTATCGCCAGACG
	1444	AAGCCTTTGTGGCCAAGGCCGCGT
;	1445	CCGAACCATGGCTTTATCCAGTGT
<u> </u>	1446	GTTCAGCAGTAGCTCCCTCCTCGA
<u> </u>	1447	GCGCAGTGACACCATGATGCTTTC
	1448	ACGATCCATTTTGCCAGCATGCAA
-	1449	TCCCTTCATTTCGGGTTTTTAGCC
0	1450	TCTTCTTGCCCACATTCCCTTTTG
Ť	1451	TGCCTTTTGATTGGTGGTCACGGT
1	1452	GACCCTCACGGTCATCAGAGGGAG
	1453	CCGTTCAACACAGTGATACACGCG
	1454	CACCAGGGGATAGGTGCGGTACGC
5	1455	GGTCGGAACTGATCTGTGCGATCC
Ĭ	1456	TGCTCCTTCCTAGGGTCATCCGTG
ľ	1457	GTGGACTTTGACGCCGGCTACCGC
	1458	CTGATCTGTCGGCGGTTACTTGCC
	1459	AGAGGAGCGGAAAAAACCGGACGA
20	1460	GCGACGAAGATCCAGCAAGCTC
-0	1461	GGGACTTCCAGCTGAGGGACGAAA
	1462	GGCGCACTCCAATACCCACTGTTT
	1463	GCGCTTGGAGACTGTCAGGACGTG
	1464	CAAACCGCTGGTTTCTCCACCTGT
25	1465	GCGATTGCTTGGGATCGGTGACTA
	1466	CTCAGCGACATTTTTCTGGTGGCG
	1467	CAGCGGCGTCGTTTACTCAGGACT
	1468	GACAGCCGTGAACGCTCAGCCGTT
	1469	GGGCCGTAGAGGCATCGGGTAAAG
30	1470	CGCCGCTCACCTGCTTAAAGCATT
	1471	TGCCAAATCGCAACTCTTGAGACA
	1472	CCCCGATCGGGTGTAATTCTCCCT
	1473	CAAGGTCCAGGTGACGCAACCACT
	1474	CGAGCCTTCAGTGGTATGCATGCG
35	1475	CAGCAGCGTGCCCATCTCGACTTA
	1476	CGGACCAAGATGGCAGTAATCCAG
	1477	CTACCACGCTCTGCGCGGGCTGTA
	1478	ACGTGGTTAGGCATGAGCTGCGTC
	1479	CGACATATCCGACATGACCGGATG
40	1480	GCGCCCAGGCTGTGTTAGAAAATA
	1481	AGCTGGGACTCCGGACCTTGAGTG
	1482	CGGTCGTAACCGCTGCTACAACTT

-78-

[1483	TCGTTCCTCTGGAACAATTCAGCA
	1484	CGGCATCTCCGGACAAAGGTTAAC
	1485	TATCTTGTCGAGCGCCACTCGGAG
	1486	TGCAAGGGAGAAAGCCCCATGAGC
5	1487	ACTGCATAGCCCAGATCCGCTTGC
	1488	TGTGATTCAGTCGAAGCAAGGCCG
	1489	CATCCATCTACAATTCGGGCCAGT
Ī	1490	ATGAGCCGTTCAGAAAGCCAAAGA
	1491	ACACTGGAATTGCTAGACCCCGCG
0	1492	CTGAGCTGCGTGGGACAACTCCGC
	1493	CAGCTACTAGGGCGCGATGTACCC
	1494	ATAATGATGGGACGAGAAGGCCCC
<i>'</i>	1495	CGACCGAGTGTTACGACATGGTGC
	1496	TGCAGTACCCGCCGCTCCACTAGT
15	1497	ATGCTAGCGCGCCTGTCAACGTAC
	1498	AGACTCACTGCCGGCTGATCAAAT
	1499	GCCTGGTGCGAAGATAGGGATTCC
	1500	GGAAAGTTGGCGGATCCGAGCACT
	1501	GGCAGTGAGCAATGTGTGACGAGG
20	1502	TGAGGTCCTCCCGGCGGACTACGA
	1503	CTCGCCTTAGATCGTGGTTCCGCA
	1504	GTCGAGGAATATCATCGCAGCCAG
	1505	GCGAATGCAACGAGAAGAAGGA
	1506	TTCGCCACCAAGTCGGCATTTGTT
25	1507	CGGTGGCTGACACTTGCCGGATTC
	1508	CAAGGAGCAATCAGATGGTCGGAG
	1509	GTGACCCGGTCCGTTCTAGCTGTG
•	1510	CTCTCGCCCACATAACTGCACAAA
	1511	AAACCTGCCTAAGCAAGCACTGGA
30	1512	TTCCATATTGTACCCCGCGCATGC
	1513	TGCTTGCGATATCACGATACTGCG
	1514	TTAGTGTTCGAGCCTTGAGCCGGC
	1515	CTTGTTGCGCGAGTCCGTCTGGGA
	1516	GTCAGCTGCTGCTGCTCTTC
35	1517	CATCCCTCGAGGTGTAGGCAACAC
	1518	CAGATGCACTCCGACGGGATTCAG
	1519	CTGAGCCTCGCGAAGCTGTGGCAT
• •	1520	GCTATGCCACGCCGCAGATAGAGC
	1521	AACACCAACCATACCGTCCGTTCA
40	1522	GCCCAGAGCTAAAGCATGTCTGGG
	1523	AATGCTGCAATGCTAGCGTCGCTA
	1524	TCCGGACGCAGTATCCAATCCGGA

•	1525	TAAGACCATGTGGCACCAAGGTGC
	1526	ACAGCCACACACGCGCCCACTA
	1527	TAGAACCGAGCACGGCGCCTTGTA
Γ	1528	TTCGAGTAAGCTGGCAGGACCACT
5	1529	CTTTCGCAGGTTCGCAGACAATCC
	1530	TACGTCCTGTGCTGTTGACACCGG
Ī	1531	GTTCGGGTCAATGTTTCGGGGAGA
Ţ	1532	CCCTGTTGTGAAGGGGTTTTGTGA
	1533	GGCAGATTGGTGAACCCCAGATAA
0	1534	CCCTCGGTGTGTTCAAGCCAAATC
	1535	CCCGCGAACATTTGAACAGCTTAA
	1536	CCGTGTCAGTTGCTCCCTGGCACG
	1537	TCCGTCTCAGCCGCCTCCCTATCC
	1538	ATAGCTGGGTCACCACAGGCGGTC
15	1539	ATAGGCAAGCGGTGTAGCACAGCG
	1540	TTAGAAGCCGGTCTGGATTTGCGT
	1541	TGCCGACCTTTACCAGGATCCTCG
	1542	GCCCACACTATAACCAAGCTGGCA
	1543	TTGCGCCACTAGTACGGATCTCAA
20	1544	CTTGCAGTTTATGCTGACCCGTCC
	1545	TGCCTCCAAATTACTTACCGCCGT
	1546	CCCGTATGCGGAAGCTATGGGCTA
	1547	TCGTTCAACCCCACACTTCAGTTG
	1548	CAATGTGGGGGACATTTCAAGGTT
25	1549	TAGCGTCGCACAAATGGCTGACCG
	1550	GGTGGCTTCGTGACAATATCGGCC
	1551	CAGCGGCGTCCGAAATTGGCTCTC
	1552	GGCTTGCTCTCGTTTTTGATTGCA
	1553	ATGCGAGGAGGACACGACCGTTCC
30	1554	CCTGTTCACTACGACCCACGGGAA
	1555	GTGCCACGGAGTGCGACTGTTGCT
	1556	ACACATCCAAGTCTGACGATGGCC
	1557	CAGCCGAAAGGAAAGCCTCCGTG
	1558	AACTGAATGTAGGTGGGCCCCTGT
35	1559	ATTTTCGACGATAAGCTGGCCGGT
	1560	TGAGGGAGACCCGAAATCTGCTT
	1561	GGCGACTACATCCCCAATTGCTTG
• • •	1562	GCAGACGCGGCCTTCCATACTTTT
	1563	ACAACCACATGACGTGTAGCTGCA
40	1564	CTGCTGGGCGCGCAAAGCTTGTTG
	1565	AAGCCTTCTTTGGCTTGCTCCGCT
	1566	TACCTGCTGCCTGGAGCAAGGCAT

	1567	GACGCCGCAGCCATGAGTGAGTGT
	1568	AGTTGGCCGCTTATTTTGCTCACC
	1569	AGGCGCACGGAGAACATTTGCCAA
	1570	CCAGGCGCCTTCGACAGATCCTCA
5	1571	GTGTCCCCTCCAGCTAGCCAGTTT
	1572	GACAACAAGCCAAGGTGACACGTC
1	1573	CTACACCGCTCGTGACTCGGCAAA
	1574	TGGTGCCATCAAAGCACGTTGTAC
	1575	ACAATGCGTGTTGCGAAACGCATA
10	1576	TTGTCCAGCCATTGTATTTTGCGC
	1577	ACGAGAGATAGCGGACTCCTCCGA
	1578	AGCTTTGTCGTCAGGCGAGCTCTT
	1579	GACAGTCGGCGTGCAGTTTGTTGT
	1580	AGCTAGCGACGGCCAACTCACGTA
15	1581	CTCCTGTTCGGGGCCGTTACTGGT
	1582	ACTGACCGACGCAGTGCCACATAG
	1583	AGGTAGGGTCTGGTTTGACTCGCA
	1584	CCTCCATTTTAGCGCGTTGCCAAT
	1585	TTCTTAGGATCCGCGCACTCTTGG
20	1586	GTCGAAGGTGTCTACCGTGCGCAG
	1587	GTCACTCGGCGGCCCAATCACTCG
	1588	TCTCGGTCACCCGTCTTGACCCTT
	1589	GCCCTCGACGAACTCATCCTGAAC
	1590	TCCGGCGTACTCTGACACGGCGAT
25	1591	AGCCAAATGCTTTCGTGGTTCGGA
	1592	ACTCCACGCCGCATGTTGCTGTGA
i	1593	GCTTCGAGTCGGTGGCATCTGTAT
	1594	GGTCTTGGGCCATCGACTTGCTGC
	1595	GGTATCGGACTGCACTAAGGGCAA
30	1596	AGCCCATGCGTTCCGGATGATTTG
	1597	GCCAGGGTTAAAAGTGATGGGCTC
	1598	GACGACGTGCTGGCTACGAAGGGG
	1599	TCCTATTGACCGTGCATCGTGATC
	1600	ACCCGCCTCGACTCCACAACTAAA
35	1601	GATGTGGATCACGACCTGCCAGTA
	1602	GTGCCATTGCCACCCATAATGCGT
	1603	TTAGCCTGTGCACCCAGTCAGGAG
	1604	TCCGATGGGAGAGGCTGATCTCAC
	1605	CACTACTGAAGTGGCCTGGCGCTG
40	1606	TGCGGCCATAGCGATGTGATAGAT
	1607	GATTGCGCTTAACGGAGATGCACG
	1608	TCACGTTTGACAACGCCAAGCATT

Ī	1609	GCATTGTTTGCTAAAGGCGGCATT
Ī	1610	AGTCGCTCTACGCGTGCAACGCTG
	1611	TAGCTCCATGGAGGTCCGAAAGGG
	1612	GACCGGTTGGACCTCACTGGCTTC
5	1613	AAGCCGGACAGTCAATGTGCGTAT
	1614	TGCCTCGCTGAGTTCTTCACCGTG
	1615	TCGTAGACCTTGCTTTTGGGCTCA
1	1616	ACCGCTATGCGCCCTACAAAGCAT
	1617	TAGCGTCACCGTAGCTTGGGGCAG
10	1618	CTCTCAGCAACTGATGGCACCGGA
	1619	AAAGGAAATGTGGTGCTGGTCGGC
	1620	CCGGCTTAGATGGAGAACAAGTGC
	1621	AAGTAAATCGCCTCGCCCAAACCG
	1622	TGGGCTGTTCAGCCTACCGGACGT
15	1623	GTTTCGGTTCAGCCATGGGCCTAC
	1624	GGCCAACATTTCTAGGGGAGTGCC
	1625	TTCTTCGTTGGGATTGTCCTCACC
	1626	TGCACATTGGGGTACGGATCTGAC
	1627	GGCAGTTAGACGGCAAACTGCAGG
20	1628	CGCGTCAGGCTATGAATGGCTCTT
	1629	GCTGAATGCAAACCTCGGAGCCAT
	1630	CGCTCTGGCGGATTCATTGTTTTC
	1631	TTTTCAATCAACCCTCCGGACGTA
	1632	GTGGTGGAGTCTGAAGCACGACAG
25	1633	AAACAGGTCCGGATGATGTCTGGA
	1634	GTACCGCGTGTACGCCACCGTTAG
	1635	TCCAACCTACATTTGCGGAAGGAA
	1636	GACGTACCGTCGTCCCGTGAGTTG
	1637	GGCAATCCTACAACCGACGCTGAT
30	1638	GGCGGCTGCAGGGTCTACATCGAG
	1639	ATACTACGCTGCAGCTGCGCGGC
	1640	GGATCGCAATCCCTCCGATGACGA
	1641	TGGCCTTGCACGGGAGCCGAATCT
	1642	AGGTGCCGACGAAACGACGAATAT
35	1643	GCTGTTTCACCGTCGTCGTTGTTG
	1644	CGGTCCCAATGTTACAACCCAGAC
	1645	GCAATTCCAGCCACTTTTGACCAA
	1646	ACGGGCGAAAGCTCGGTACGGATA
	1647	CGACCCGACTTTTGCTTTCGAGTG
40	1648	AATTCAGTGTTTGCGTCATGGTCG
	1649	CCTGTATGAGGTTCTGGGTCGGCT
	1650	TGGCATACTTGGTGCAAACGCCGT

	1651	TCGCCAGTACAGAAACATGCGGGC
	1652	CCCGCTGTTGCTCTCATCGTGGAG
	1653	GCCACAATCTGACCCTGGGAATCA
	1654	GCTCAGTCTCGGAAGTTTCGGCTA
5	1655	CTTCACGGGCCAACGACGGTCGAG
Γ	1656	CGACAGTTCCGTCCGTCTTGAGGA
	1657	ACGGAGACGCAGTCGAAACGTCCC
·	1658	CATGCATCCGATTAAGGGGATCAC
	1659	ATTGCGGGAGTCCCTAGCTTTCTG
10	1660	GTGTGGAAGATGCAATTGGAACGG
·	1661	ATACAACGGTAGGTGACAGGGGCG
Ī	1662	GCCGTGGGAGTAAGGGTACAAAGG
	1663	GCACGTAGGTCGGCTACTACTCGG
	1664	ACTGTGATCTCTTGGGCAAAGGGC
15	1665	CATGCCTGAACAATCTCGCATCCC
	1666	GAGCCTGGCTCCACAGCTGTGCTC
	1667	CTTTCGATACCATCGTTGGCGATC
	1668	CCCGGAGGTGAGGCATTGAATATG
	1669	CTCATTCAGCTAAAAGCGGCTGGA
20	1670	GAAATGCCCTGGGGACTTTTTGCC
	1671	TTTGCCTTCACAACAGACGCAGCA
	1672	AAATCCCAAGACGTCGGGGCGTAT
	1673	CAACGGGCGGTAGCTAAACCGTAA
	1674	GGCCAACGACAATGCGAAACCTTC
25	1675	GACATCACGCAAAATCTCAGCGCA
	1676	ACGTTCCGTCCACAACCGTATGTT
	1677	GCTCATAGGTCTTCCGTAGCCCGT
	1678	GAAACGAGTCTCTCGCGCCCTAGA
	1679	CGGGACAGAAGCAAGTTACATCGG
30	1680	TGACCGCTCGATACCAGGAGGGTG
	1681	CTGGCAATAAAGACCTTCCGACCA
	1682	TGCGCGACGTCATGTTGGTGATTA
	1683	GTTGGTTGTGGGAACACACCCGCT
	1684	TGTGGGTTCGGAAACACAGGAAGT
35	1685	GGAAAAACGGCAATTAGCCGAGT
	1686	TGGTGCGGAGTGCCCTCTATTGGG
	1687	AACCAACAGGCTGCAGCCCAGACT
•	1688	AAACAGATCCATCTGCACGCCAGG
	1689	GGAATACCGCGGCGATTATGGCTT
40	1690	TACTGTTCGCGGCAAACCGTCACT
	1691	GATCTCTCGTGGAGCACGTTTTCC
	1692	GGCATAGCAAACCTTGACCTCCAA

	1693	ATCTGGGATTCGCGAGCCAATATC
<u>\</u>	1694	CGATCAGGATATCATTTACGCCCG
<u>[</u>	1695	ACGGTACCGAAACGGTCTCAGCGT
<u></u>	1696	CTCCCATACCTGCGTTCTTACCGA
5	1697	GCACGAGAACCTAATTGTCGCACA
	1698	GCCACACGATCAAGACAGCGCATG
	1699	CCCGTTAACTCACGAGCGGTCAAT
	1700	AGAGAAGGTCATTGCCTGTCGGTG
	1701	CGGGCCCTCTTAAAGTAGAGCAGG
10	1702	ACATCGCGTCCGAGGGAGTTAGCG
	· 1703	AATGCCTAATCGAGCCAGCGGATC
(1704	CTCGATCTTTTAAACCGGCGCTT
	1705	CGTTCCTGGAAGGCAGGGTCTCAC
	1706	CCTGTGCTTACTATCGGCGATCCA
15	1707	GTTAGTCGCCCTATTGGCCTGGTT
	1708	CCGGTGAGATGACTGTAAATGCCA
	1709	CGTGGTTTAAAACATCGCGCTTCG
· ·	1710	TAAGACGCAGAAGATGGGGTCCAC
{	1711	CACCACAGCTTCTTTGTTCGACCC
20	1712	TCGGGTCCGTACCACCACTTTTGC
	1713	CCAAGCCCCGAGTACCGAAGATTT
	1714	TCCGTGATATGGTCGTGGCGCGGT
	1715	TGTCTGTGTCATGGCACCTCGCAT
	1716	AGGACTGCACTGTGCACGTCTGAT
25	1717	CCATCCTCATGTACAGCGCCGCTG
	1718	GTACCCGCGCCTTCCTCGACACAG
	1719	ACGGGTCCTGGTCGACTAAGGCTT
	1720	CGTATCGAAGGCGTGTACAACCGG
	1721	TGCCCGCCTTTATGCAACGCTCA
30	1722	AAACTTACGAGACGGCGGCTGCCA
	1723	AAGTCTGACAAACGGAACGGGTGT
	1724	TAAGCGCAGACCAAAGTATGCGGC
	1725	GCAGTTTTTCAGATCCTCCGCAAA
	1726	TCGGAAGCATTTACGCGATCTCAG
35	1727	CACAGAAACGGTTGAACGAACGCC
	1728	GCATGCTCAGATGGTCGTGCTCAC
•	1729	AAGGATTCTCGCTTCCGGCATGAT
•	1730	GGTGGGGTAGCGCTGGTATGAAAA
	1731	ATTATTACGGGACCGAACCAACGG
40	1732	GCGCGAGTGTCATGATGTTCACGT
	1733	GACATTCGTGACTTGGTCGTCCGC
	1734	TCATTAGTGCAGGCACCGATCAAG

	1735	GAGTTGTGCGGAGTCATCGGAGTC
	1736	GCCTTTACAGATTTGGCGGGCTAT
	1737	ATGGCGTTTGCGAAGTCGATACAG
	1738	TGCATCGGCCTCAATCAGAGAACT
5	1739	ACAATCATGGCAATCTGGCAAATG
	1740	GACGTGGAAGAGTGCAGATCAGCA
	1741	AGGGCAGGGACGGACAGTAAGTC
	1742	GCATAGGGCGAATCTAGTACGGGC
	1743	TCCGGCGCATCCTCATTAGCAACT
10	1744	TGGCCGCTTCCACTAATATTGGAC
	1745	CCGGCGACGCTCTTGTCAATGA
	1746	CGAGCAACCCAAAAGGAAGCAGTA
	1747	GCGTATGATTCGGCAATCCGCCAG
	1748	AGTACCGCTACAACGCTGGTTCGC
15	1749	GGGCAGGCCAGGTCCACCTGAGAA
	1750	CCACTTCTGTGACCGAACCGTGCT
	1751	CCTGGTACCAGGCAGCAGTTGATT
	1752	TTAGGGTACCGTCGAGAGACGCCA
•	1753	GGTTGCTGCGCGTGAGGTAGT
20	1754	TGCTTCGACCGATGAAACTCGAAG
	1755	TGCCACCCATACTATGCCCAGTGG
	1756	TGTGCGGCAACGCGTGAAGACGTT
	1757	TGAGAGAAGCTGGCCTCGGATCAG
	1758	TATTGCGAATTCGAGTACGTGCCC
25	1759	CGAGAGGGGTTCCCCAGTGATCGA
	1760	TGCCTGGGGTGTCGTTCTAATTCT
	1761	GTGCGTCATTGTGGGTCATCCCAA
•	1762	AGGGCTCCCAGCATACCAACGTTG
	1763	AACTAGCCGCACCTTTGTGCAGAG
30	1764	TTAGCCCAGCCCTTCAATGGGAAC
	1765	CGGCCTCGGTTGTACGGGTAGTCT
	1766	TCTTTGAGGCGCGGACCCGCATAT
	1767	GATGGTTCGCCCTTGTGTCGCAGC
	1768	GAGATTCAATACAGGCCGCGGGTC
35	1769	AGGGCGAAGGAAGGTTCCGTTTTT
	1770	CTCGACCCCTGCCACTACTGGTTC
	1771	TGTTCCGCGGTCTACGCATTACTG
	1772	GAGACGACGTCCTACACCCGCTAA
	1773	AGATTGCGACAGCGACACGTGATT
40	1774	GATACCGTTGGGCATTTCTCGGTA
	1775	GATTGGGAGGCATTCAGCGACGGA
	1776	AGGAGGAAACGAGGGCGTAGGTTC

1777	GCCAAACAACGTCTGACGCCTAGC
1778	TTTAATGCGGAAAGGATGCACGCG
1779	TTATCGGCCGTTAAAATGGGATGG
1780	CCTTGGATTCGTTCATCGCTAGCA
1781	AAGTGAACGTGCAGTGGTCTTCGA
1782	TCCTTACCCCTCGTTCAAACGCCT
1783	ATTCCTGAACCATGCATGCCTGT
1784	AGCGAGACGCTCGATCACGAACTA
1785	GCTGGTCTGGCTCGCTGTTTAGAA .
1786	CGTGCGCGCATAAAGATAGGTCT
1787	TCTGGCACTCACATCGGACAGTCT
1788	ACCATTGGAGGACCACAGAGCTCC
1789	TCCAGGGTCGGAGTACATGGCGGG
1790	ATATGCCGTCGGATCGTACACGCA
1791	TGCTGGCGTCAACACTTCCCGATT
1792	CAGGGCGGTGCGGTGAACTAGCCA
1793	CATGGACTGCCGTACATCAGCTGG
1794	CCGGCCATACGCTGGCAAGATTAC
1795	AGCGGACACCTGTACTCTCCTCCA
1796	GGAGCCACACCAGTCGAAGATGGT
1797	CGCCACCGGAAATTGAAAAGACTG
1798	TGAAACGGATGTTGCTTCTTGACG
1799	TTGAAGCGGTGAAGAGCCTGTCCT
1800	CGAACCAAGCTGCATTGTCAGTGG
1801	GAGTCTGCGCTTGCAATCTTTGCG
1802	GCTGGGTATAGTTGCCTGGCAATG .
1803	GCAGGCGTTCCATATTCGCAACCC
1804	GCGCCAACTAATACCTCCACCGCG
1805	TGGCGTTCAGTGCAACGCTGGTTA
1806	CAAAACTGACGGGTATGGGAGCGC
1807	AGGTGTCGCTGGAACCCGACTTGT
1808	CTTCCAAAAGCGCAATTGGCTTTG
1809	TCGGGCTTCTCGCAATTCTGTCAG
1810	GCCAAAAGAATGCGCTGGGTAGGT
1811	TGGTGCCCGCACCGAGAGACTGTA
1812	CGAGGCCGTAGTGGGGACTGCTCT
1813	CGATCTGCGCATAGAGGGGACTTT
1814	TGTGCAATCGGCCTTCTCAGAGCC
1815	GATCACCTGGACCGCTACCGTTTT
1816	ATGGGGAGTTAAGGACCCTGCACC
1817	CATTGTGGACAGCCAATGGTGGCT
1818	CCATCACCATGCCACGGTAAGATC

Ĺ	1819	GCACCCGTGTCGTTGGTTAGCAAG
	1820	GGAGTGGGTTCCGCGAATTCACTG
	1821	GGGGATTTCCTTTCGCAGGCTCGA
1	1822	CATTGATCATGTGCACTTGCACCA
5	1823	AGCAGCGCTGCGCTTGTTTCGGAT
	1824	CGAGTAACGCGGTTGCTTTGCGAA
[1825	TGGCCTGGAACATAGGTGGAACTC
	1826	CGCACACCAAGCGTTTATTGAGAA
	1827	TCACCTTCACAGTGGGCATACAGC
10	1828	CAAATATCCCTGAGCCCTCGAGCT
	1829	GGGAGCTGGTGAGCAGATGTAACG
	1830	AGGATTGCTTTTGCGTTATGCGGA
	1831	ATCGTTTGGGCGCTACGCAATTGT
	1832	CCGATTTGTCCCAAATGCAACGTT
15	1833	AAGGGTCAAGCTCATGGAGCGGAA
	1834	TCTGACGTCGTTCAAGGGCTCGCT
	1835	CGCACCACTCCGAGGTATTTGTCT
	1836	AAGGGGTGAAAAAGGAGAAGCCGA
	1837	AAACCACGCAAATGGCGATACCAT
20	1838	CAGAAGGGATGACGCCTTAAGTCG
	1839	CATGACGAGAGCGGACCTGAAGTG
	1840	CTGGACATGTTTGTTTCGCCACTG
	1841	AAGACCGACTCTCGTCGTTTGCAC
	1842	GCGCGATTACATACCGTTTCCGTA
25	1843	CACTGACCGGACCCAACCTAACAT
	1844	AGTGCAAGTCTAGACACGCCCGAG
	1845	GGTTGGTGCGAGATCCTGGACTGT
	1846	GGTCGTCCCGAAACGTAAACGAGG
	1847	GACTAGTACGATCACGGGGCGGGT
30	1848	CCGACCTGACCCTGTGTACAGGTT
	1849	TGCTCACTGCCCACACTGTTATGG
	1850	CGAGGAAACACATTTCTTCGGGCC
	1851	TGGCACCGGGTGGATTCTTGTCTA
	1852	GAGGCACGGTGATAGTGGTTGTGC
35	1853	ATGCAGATGGATCTTTTTCGACGC
	1854	TGCGATAGCCAAAGAGTCGAGGAC
	1855	ATGGCGTGTCAGCGAACTGCCTGG
	1856	CAATGCAGCTCGGAAGTCAGGTCG
	1857	AGGATCAGTGCACATGTCCCCTCA
40	1858	CACATCTTGGCTGTCACCCGAGAA
	1859	CGCATTATCACCTCAATGCCAGTG
	1860	ACATCCGCAGACTCCCTATAGCCC

	1861	GTGAACCCGAACGAGGGGAGTCTC
	1862	GCGTAGGGAATTTGCCTCACGACT
	1863	TTTACGCGTCGCTCGGTTGTAGTG
	1864	GAGAGGCGTCTAGGCGGTTCTAGC
5	1865	GCATGCTGATAACGAATGCTTCCC
	1866	CTGAAGCTCGTGTGCGATGAGGGA
	1867	ACAACGGCATGAGGAGGCTTTTTC
	1868	TTTGGAGACGCCAGTACGCGTGGT
	1869	GCTATCATTTGGTGTAAGCCCGCC
0	1870	TCAACATCCAGGGCGGTGCTTGGT
	1871	TTCGATGTAATCCCCAAAGATGCC
	1872	GGACCTTCGGCAGGTTATCGCCGT
	1873	AGTAAGAAGAGGCAGGCCCCACCT
	1874	AACGGCTCCCCGTCGTACTGCTTA
15	1875	CCTATACCGTCGTGGTTCCACGTT
	1876	CCGCGCAGGCGCTAATACTCAAGG
	1877	AAATGGGCCAGTGAAATCCTTGGT
	1878	ACGGTTTCGAATACTGCTGGGCAG
	1879	CCGCTTGAGGTTCAGGTCAGAGCT
20	1880	ATCGTGCCCGAAGACACTTAAACG
•	1881	ACCTGAACCAGGGCGATTGCTTTA
	1882	ACCCTATACGCTGGGCTAAGCGGG
	1883	TGTTTCGCGACTAGAAGCCTTTGC
	1884	GAAGTTGGCGGCTCACCCGTATTA
25	1885	TGGCTACACCGCTTAGGAGGAACC
	1886	CCACAGTTGCGTGACTTACATCGC
	1887	ACTGCCACTGCGTCTGAAGAGTGG
	1888	GCGCCAGCAAATTTCGTGTGGTGT
	1889	TGCCTCCGTCGAGCCGAATAGCCA
30	1890	GTACAAACGGGCGCTATTTCGTCC
	1891	GCTTCCCTGGCTCTGAACGGAAAC
	1892	CGGCTACCCAGGCAGATAAGCTGA
	1893	GGTTGGACCCGACAGGGAATTTCC
	1894	GGGGAATACCCGGCGTTTGTAATA
35	1895	TGGTTCGGTGAGGTTATGTTCGGT
	1896	TCGGTAGGGTTCAGTCGCTGAGGA
	1897	TTCGGAGTGTGCCGGTGCTAGTAC
	1898	TCGTACTGGAATGATGGCCGGGCC
	1899	TCCGTCGACCGTCCAGCGAAGTTT
40	1900	AGGGAATATAACAACACCGCGCAC
	1901	ATGTCCCGGAAACCAGCTACCTCA
	1902	ACCAGCGACTTAGATAGCCGTCCG

Γ	1903	GGAAAACCTCCTTTGCGTCAACCA
Γ	1904	ACGTGCGTGCATACCCAAGAGGAC
	1905	ACGCCACTTTCCCTAGAACCAACG
Ī	1906	CGAAGTACGCAATAGTGCCACCCT
	1907	GATCCCGGCGGATCACCTATCAAT
Ī	1908	AGAAAGCGACCGTTTCAGGCTAGC
Ī	1909	CGCTCCCTTTCATAGTCCTCTCCG
	1910	GTGGGTGGTCATAACGACAGCAGA
Ī	1911	CTGGAGGCTGCATCGTTCGTAACA
	1912	CACCATGAGTTTCGGAGCGAGGAT
	1913	CAAGCTGCGTTCGATGAGAGATTG
•	1914	CCTGGGAGCAATGACCGCTCTGGT
	1915	TCCGGCGCTCTACCAAGATGAGAC
	1916	CGACCGCGTCGCGTATACTATCCG
	1917	AACATTCGCTAGTGGGGTCCAACA
	1918	TGTATGATCATCCGACCGAGCAGC
!	1919	AGTGCGCCGAGAGGGTGAATAGAC
	1920	AGGCTTGTTCTGGACCAGCACCAT
	1921	GGGGCCACATAAAGAATTCCGAAC
	1922	TGGTGAAGATAAATCCGCATGGCA
-	1923	ATTTCCACCACGCTCTTGCCAAAT
	1924	CGCGTAAAGCTGTCACCGATGACC
	1925	TCCCCAACCGGTAACAACAGCGAC
	1926	CCTCTGCTCGCCTTACACCCATGG
	1927	CAAGCTGCTCCTGTGCTGAAGGGC
	1928	AAACGAACGATGGTCGGTAGACCG
	1929	TCAGTTCGATGGCTATTGCGCCTC
	1930	GGCTCTCAACGGACGCAAATCATA
	1931	AGTAGAGTGTTGCGGCTGCCGATC
•	1932	AGACACTAGACCGCCGTGACCTGA
	1933	ACCGAGCACCGAATTTCCTTGTCC
	1934	CCGTGGCCAAGATACGAACGAATT
	1935	CCTCCTACAGCATCCACATGAGGG
	1936	CACTCGGCAAATACGTATGCGCAT
	1937	ACCGAGTTGAAGCACGAATTTGGG
	1938	GACCACCTCGGAAGATCGTTCTGC
	1939	TCAACTGGGCAAACGAAGAGCACA
	1940	GCTTAGCCTCACACGTGCATACCA
•	1941	CTGCGGTCTCCAAGTACCATTTCG
	1942	GTTCCGTATTACGGCGGCCATAAG
	1943	ATCGACGCAACCGGATAGTCTCTG
	1944	CGCAGATAAACCGGCATCTTTCAG
	_	

	1945	ACCTGCCAATACGGGTCTACGGTT
	1946	ACACCTGTTGCCATGCTGATCCGT
	1947	AAACTGTCTACTGCGCAATTCCGC
	1948	GCAACTAGCCCGTGCTAGGATCGT
5	1949	TCGTAGTGGTGGATTGTTGTGCGT
	1950	GGCTTACTCCTCAATTGCGACACG
	1951	CACGACTCCCTGCCAGATTTGATT
Ī	1952	CTTAGACGTCGGCAATGTCACGTC
	1953	CTCAGAGCACAATCTGCCCTGCCT
.0	1954	GCTAGGAAAGTCGGCATTCATGGG
	1955	AAAGCCCCAAAATTCCGCCTAACC
Ī	1956	GCGCAACGCTAAGGGACTATCAAG
	1957	CGTCCGCTGGGATGAGTCTCCTGC
Ī	1958	ACAGGCCTCGTGATTGGTGTGGGT
15	1959	CATTCTCCTTCCGGGACCACGCCT
	1960	TCGGAGTTGACCAAGCTCAGTGCG
	1961	ACGCGCCACTGCAATTGCAAACAC
	1962	AGTTCATGGAGCCGGCGTATTGTT
	1963	ACGTTTAATGCGGGGCCCGCCTAC
20	1964	TGAGGCTTTAGCCTACGCGCAGGT
	1965	CAGCGTTATGAGCGCGGAGTTTAT
Ī	1966	GTCCACGTGACCACGGATAGTTGG
Ī	1967	GATTATGCTCCTACGCCTGCTCCG
	1968	TCGTCAAGGGCATGATGTGTGGGA
25	1969	GATGGACCGCCAAAGACACCTTGA
	1970	TACACGAGGATGGGGTCAAGCTTT
	1971	ACACGCACAAAACGTTTGAAAGGC
	1972	GTTATCGTGGGCCGATGGTACTGA
	1973	ACATGACCGTATCCGCCTGCTTCG
30	1974	GAAGGCGAACCACTGAAACTACGC
	1975	TGACTTTTGCAACGGGTGGAACCA
	1976	TGAATTCGTAGGTTTTGGGTGCGG
	1977	AGCATTTATGAAGCGGCCATTGCG
	1978	TGCTCCTCGCGTTGGTACCGTGAG
35	1979	CGCAGCAAGAACAGCAACTGTTG
	1980	AGACGCTTGGAGTGAAAACTCGGA
	1981	CATTCGTAGAATGCCCCAAATGGA
•	1982	CCAGAAGGTTCGGGACCCGTCGTG
	1983	GAGAAGCCGGTTCTCAGAGCACAT
40	1984	TTGCGTTGCAAGATATCTGGCCCG
	1985	GGGTTGCATGTTCAGGCAAGACGA
	1986	CTCACGAAGGTGACATATCACGCC

Γ	1987	GCCCGAGATACGGGTTCAAAAAGA
	1988	CATCTTCGCGCTTCTTCACTCCGC
	1989	TTACACGGTAAGCGTACGGCCGCC
	1990	ACCTTCGGACAATGTGGCGTTCGC
5	1991	TGAATGGTTCTGCTAGGCCCACAC
Ţ	1992	CACGCCTGTCTGACATATGGATGC
	1993	CGCCTCAACCCAATCTGAGAACGT
	1994	TTACGCTTACTGCGAGCTGGGTCC
<u> </u>	1995	GGCTTGTGGGGCAATACGCATCTT
10	1996	CACTCTCTTTGGATGCGGAACAA
	1997	CTTCGAAGCACTTCAGACTTGGGC
·	1998	GACCAGCCATCACGTAACGGCCCT
	1999	AGGAACCGGATGTGGTTATGGAGC
	2000	ATCCATGGGCAACTGAGCCTATGC
15	2001	GGAACAGCACTTGTTACCGCCCAC
	2002	TGGCTCGCTTCAAGCCTGTTTGCT
	2003	CAAACGTGAGGTCATGACCACCAT
	2004	ACCGATGTCTTGAAGTCCGGAGGT
	2005	CGAAAATGCATGATGATCTCCCCT
20	2006	TTTGGTATTCTCGCTGCACCGTTG
	2007	GCGTACTCAACCACATTCCCGACC
	2008	AGCAAACAACAGCGGTCCGAGCAT
	2009	GGACTAGGAGCGGGGATAGCTGAG
	2010	CCTTAACGAAAACCTGTCGACCGC
25	2011	CTCGATCGCATAAGCAAGAAACCG
	2012	CCCGTTGTTTGGGCGACAAAAGT
	2013	CGGCGCTCTCGCATGATCTCGTT
	2014	CGGATGGAGAGGAGTCTACGTCCC
	2015	ACCAAATCAGACTAGCGACTGCGG
30	2016	CAGAACAATATCGTGCGTCAACCG
	2017	CCTTTGCGCGCTCCGAGTAAGGTA
	2018	GGAAACGGCACCTATCTGTCGTGA
	2019	CGACCGACAAACCAAATGCCGCC
	2020	CCAAGGGTGTGGGAGCTGAAGAGA .
35	2021	TTAAGTGCGCATAGTCCTCGTGGG
	2022	GCCTGGTGGGGTAAGTCATGATGC
	2023	GAGCAGCAGATTGATGCGCTTATG
	2024	TGCGCCAACTTCCGGAATATTTGC
	2025	AACCCCATCATGAAATGCTCTCCG
40	2026	GTCCAACGGTACTGGCGTGATGTT
•	2027	ACTCGGCTGATCGTGAGATGGTGA
	2028	ATTCGTGGGCGCATCTCGGAATGT

Ţ	2029	TCCCGTCCTGTAATCCAGGGAACA
	2030	CTTCGCTGCACCTACATTGCGCCA
	2031	GCGTGTAGATGACTGTGCTTTGGG
	2032	CTATGGTATCGAGACATCGGCGGA
;	2033	CCTCGTACTCCGTCGTATGCACAA
	2034	TGGTGCGTCGTAGTGCCTGCACT
	2035	CGCGATCCTAGTTGAAAGCTTTGC
	2036	ACGATCCAGGTGTTGGGCACTAAG
	2037	CCAATCTAGGATACACCACGCCCG
0	2038	GATACGTGGGGTATAGGCGGGCCC
	2039	CATGGAACAAACCGTCGTAGGGGA
	2040	ACACTCGCGCAGTATTCGAGTCGT
	2041	CTCAGTCTCGAAGGTGATCCGACC
	2042	TCCCAATCCCCGTGGTATCGTCGT
5	2043	AATCAACGTAGTTCCGGTGGTCCG
_	2044	CTTAACAACCCAGGGGTTTGGGCT
	2045	CCATCCTGAGAGTGACGGAGGTGC
	2046	CTACCGCTGCATGGCGTTAGATTG
	2047	TTATTGGTGGCGGACGGAGTGAGT
20	2048	TTAAGGGTGAACTCAACCGCGTGA
••	2049	TTTGATTGAAACGCTGCGCACTAC
•	2050	TCATGTGTAGGTCGCGGCCGTCAC
	2051	CTCCGAACCTTCTGGGCCTCTTTT
	2052	CTGTTGCCCATTGGCCCGACACTC
25	2053	CACGATCGCTGAGCAACACATCAC
	2054	CGGATCATAAGCGTCCGCCTTCGT
	2055	AGGTTAACGCAACATGTGATCCGC
	2056	GGGAAAAACAGCTAAGCCTTGCGA
	2057	ACTTATTGCCGGGATCCGTACACA
30	2058	TGCGGTCTGGAAAGGAAGGGAGGG
	2059	GCTGCCACCTGGACATCGCATACA
	2060	GCAGGCATGACAGTGGCGTAGTAC
	2061	GCGGCCCTGATGGTTTGGCTGAGC
	2062	TCCCCATTTAGTCCCCTCCATCAC
35	2063	GCAACACAAATGCGAGCGTAGGAG
	2064	GGCGTTTGTATTCGAGCCACGTAG
	2065	GGTAACGTCGCACGTGGAATTCCG
	2066	ACTTCACAACGCTCCGTTGGACAC
•	2067	CCGAATTATAAAGCGCAAGGCACA
40	2068	GGACCCGATAAGACTCTGACGCCG
•	2069	ACCCGTTTCTCGTAGGAACCTGCT
	2070	CACGTTCGACTGTATCTGGTTGCC

-92-

·	2071	CCTCGGATGGGCCCATGACCTTGA
,	2072	GGACGCCTGCTGTAGGGGTTTGAT
	2073	CTCGAGCGTGGGCTAAAAGAGCAT
	2074	TTTACTTCTTAGGGCGCGTTTGGG
5	2075	ACCACCAACATAGCGCGCACTAGT
	2076	TGGTTACACGGCAGCCCGCGTAAG
	2077	TTATGGTACGTTGCTGCGTGCGGG
	2078	ACCGCGGATCTAACGAATCCCATT
	2079	CATGATCCCGCCCTTAGGTTAAGC
0	2080	TACCGCTTCAAAGGGTTGCCGAAT
	2081	GCACCGCGTCAATATTACCGAGGA
	2082	GTGTCGCGGCTTTACAGAAGGAGA
	2083	GCAAGCCATACCGCAATAAACTCG
	2084	ATGAGGTCGTGCGTTCACGAG
!5	2085	CGAGACTAGTGCCGATGCAGGGTA
	2086	GCCTCATCATAGACGCTGGATGCA
	2087	GACAGGCGTCGGTAAGCTCTCAAG
	2088	GCTACGAATCTTCCCTGTCGCCAC
	2089	TTTGGCAGAACGTACCAGTGGGGT
20	2090	GGACAATAAGCACCGGAGAATGCG
	2091	TCATGAACCTTCTGATGCCGCGAA
	2092	CGCCGCATTACCTTAAAAACGTGC
	2093	ACGAGTCCAACCGCCTCATTGATT
	2094	GCGAAGAGTTGCTACTCTTCCGCC
25	2095	CGTCGGCAACAATCTTTTTCGTGA
	2096	AATCCTGTGCACCCGTGAGACGCG
	2097	AACCTATATGCATCAACGCGAGCC
	2098	GAACTTGGCAAAACAGCCCGGAAA
•	2099	CTCTATGGCCGTTTGCCGTCTGCA
30	2100	AGTGCACCGGGTTGTGGACACAAT
	2101	CCTGGCTTTTCACACGCCAAGAAA
	2102	CACTCAGCGTAGCCTGAAGCCTGG
	2103	GAATTATCGACCGCAGCGGTGTCG
	2104	GTGACATCACATGGTGGCCGAGCG
35	2105	AGCACCTTGCCGAGTCACCAGTGA
	2106	TAGGTTGCAGGAATGGTGGGCACC
	2107	GTCCCATACGTGTGGTACGCGGAT
	2108	TCGGATACTCTCGCGTGCCACGGG
	2109	CAACGTTCGCCCCTAAGCCCAAAT
40	2110	GTTAGGTCACCGCGGCATATCCTA
· ·	2111	GTTCACCGGCCTCTACTTGGGTTT
	2112	AATCCGCGTCTAGGTCATGTGGTC

	2113	GCTACGCCTCTGGAGGTGGTACCC
	2114	CAGGGAATGCTACAAAGGGTCCAA
	2115	AAGGGTTAGCTGCCCGGTTAACAG
	2116	CCTCGCAAGCGCGATATTTATGCC
5	2117	GCCTCCCGGTCATGGTCAAGGGAA
	2118	GCTGTTGAGCGGCGACCTGTGCAC
	2119	CGCTGACTTAGCTCTGATGTGCCG
	2120	TTCATGGCATTCATCACGAAGGAA
	2121	TAGTGTTATGCCCGCGTGTGAATG
10	2122	CATGTAAGGGCACGGTCGTGGGCA
	2123	CAGGAAGCTCGCTCCGTGATGCAC
	2124	CCTGCTGATAGCAACCTCACTGCA
•	2125	ACTACGAGGGCAGGGTCTAGGCG
	2126	CATAATGTGGGTGCTGACGCCGAT
15	2127	TAGCGAATCCACACAGAGCCGCTC
	2128	TCGCGAAATCCCTAAATCCTGTGC
	2129	TGGCACGAATCAAGCCACCAACTC
	2130	GCGGACCGTCTTTGCTATCTGACG
	2131	AGGCCCGCCTTGTAATTGGTCAT
20	2132	CTGGTCCCATACGCCGCTGACTAG
	2133	TGCTAACTGCGGCCCTACAGAGTC
	2134	TGGTTTTATGTTCGGTAGCGTCCG
,	2135	AGCTCAAACTTCTCCCACGGGATG
	2136	CGCGAAGATAGTGAAATCCGCATC
25	2137	GAGTGAAACCTCTCGCGGGTTGCA
	2138	TCGAATGCTCTGCAGTGACGTCAA
	2139	AGGTGGCAATGATCGACGACCCTG
	2140	ACCTTAACACAGCCGACCAGGTGA
	2141	GTCCGGAGCCGTGCAAAGCAATAA
30	2142	TCTGCCTGACTGCTACATGCTCCC
•	2143	CTTTTGGGGATTAGAGGCCGACAA
	2144	GGCATAAAGGCTTCCGTTCCTGTC
	2145	GCGGACCGTAAAGCGGGCAGATAG
	2146	TTTCAAGAGTGCATCGAATCCACG
35	2147	CCGGCATCCCTTCTCGCTGTTGCC
	2148	ACACAGAGACGCGAACGGAGTGCA
	2149	AGCGGCATTCTCCCACTCGTTACT
	2150	GGAGCGTACTGCGCCTCGCAAGTC
	2151	AAACCCGAATGACACGGCAGATAA
40	2152	GGTCGGGTCCATATCCAAGTAGGG
	2153	AACCAGCGGATCGATAAAACGACA
	2154	GGTGTCCACCCGTTAACGCCGGTA

2155 JA	AGCGCGACGTGGCTTGCCGTTAVA
2156 T	CCCACGGCTATAGGTCCAACGAC
2157 A	ATCAACGAACGATGCCGTTAGGTG
2158	SAGGCTAAGCCGTATGGCCGAGGC
2159	ACGGTCCGAAATGGTTAGAGGCAC
2160	ACGCAAACCATTCCTCGAGTAGGC
2161	TTACACGCTCGCTATTGGGCCATA
2162	CTCGGCACGGGTTTAGAACGCCGG
2163	ATTCGGTAAGGTATCGGGCTAGCG
2164	AGCACACCGTTATACATGACGGCG .
2165	AGTCCCTGCCGTTCGCTCATGGAA
2166	GGGCTTATGACCAGTCAGGTTGGA
2167	GGTCACCACGAGTGCCTGGTCT
2168	TTGATCGTGTCTCCCGAAACCCTC
2169	ATTGTCGCGATCGGCATTTCTTAA
2170	GGGTCCAACGACTTCTCGCTGCTG
2171	CAAATTCCTTGGGGGCCATAGTGG
2172	CCAGAGTATCCGCCGTTAGACGGT
2173	TCCTGCAGATCATCTCGTGTCTGG
2174	TGCGGGAGATTTGAACAAGCTGTA
2175	TTAGACGCCGAGCTAGGCAACGTC
2176	TTTCGGCAGAATCTCCGATTCAAC
2177	TGGCGAGCAGACCTACAAGACAGA
2178	GGCGACAGACCGGTACATCGGCCA
2179	TCTAGACCTGCGTTTCGTGGGACC
2180	GCCGAGCGTGGTACCATACGTTCA
2181	TAATCACACCCGCTTTCTGTGGCT
2182	GGCCGGAGCCATTGGACACTTCTT
2183	CCTGTAGACCTGCATGGATCGCTG
2184	GTGTGTGTCTGCGTTGGGGCAC
2185	ATCGCCGTTCCCGCAAAATAAGCA
2186	TGGATCAACGGGGTAGTGAAAACG
2187	AAGCGACGATGCTTTCTTGAGCTG
2188	CACGGGCACGTGTTCTACGCTTGC
2189	ACGGGCTGGGACAAGAGCTAGAAA
2190	GGTAACTGGCTCCGCTCTCACATC
2191	ACTCTGGCTGTTGGCGAACGTGAC
2192	GACCGAGGACCAGTCCTTGCTCTC
2193	AGTAGCTCTTGCGGCCTAACGGCA
2194	TTCTTGTCCTGGGGGAGAGCAGTG
2195	TTAGCAGGGAGGTTGTCGGCTCAT
2196	TCGGGAGAGGGCCTTACCAAAAGC

-95-

)

5

:0

25

30

35

40

	2197	AGAACGTGGATTGTACGCTCCGCC
	2198	CTTCACAGCCTGGAGCCACCAATG
Γ	2199	GAGATCGATGAAACGCACCAGCGG
<u> </u>	2200	GGGTCCAGAGTTGGTGTGGGATAA
5	2201	CCGTCCACCCAGATAGGAATCAC
	2202	TGCCTCGCTTCTGTGAATCTACGA
\ <u>\</u>	2203	GATCACAGCGTCCGCGCATAACGG
	2204	ATGACGCCTTACATGACGCACCTT
Γ	2205	GCGTGGAATAACGCCCTTAGTTCA
0	2206	GGTCTACCATTTCTCGCCCGACCG
Ī	2207	ACACCTCTCTGGCGTAGACGCTCA
Ţ	2208	GTAGAGGTGCTCAGGACTCGTCGC
ſ	2209	GTAAGCAGGAGGCGAA
	2210	TCTAAGGGCCGTTTCAATCGACCT
15	2211	AACCTGATTTCAGGGTCAGCCCGA
	2212	GTCACGCGATTGGCCCACCTATTA
·	2213	ACGATGCCGCGCATGTAACCTAGT
Ī	2214	TGAGAGATGTCTCGTCAACGCCTG
Ī	2215	GCATATCTCGCGGTGACAGACGAA
20	2216	TATCCTGGACCCAGCCTTGGAGGA
	2217	GACCCAACGTCGAAATTGTGCGAT
	2218	TGAAAATCGGGGCATCTAGTTTGG
	2219	CCGCGAAAAGGATTTGTGTACGCA
	2220	CATTCCATTTATCCGCAGTTCGCT
25	2221	CCTGTCTGTCGAGCCAGCGTCTAT
	2222	TCAGCGCGGCTAAACAAGTTATGC
	2223	ACGCCTACGAACGACCCAAGAGAG
	2224	TGCGCATCTACCATTGTGTGGATC
	2225	AAGTCCGCGCTCGCTCCTGTAATA
30	2226	GCTGGGTCATTGCTCGAGTAACCA
	2227	TGGAGCGTTCTGGCAATGACCGAC
•	2228	CAAGTCAATTCTTGGCCAATTCGG
	2229	CGTTCATGCAAGGATCCCAGGTTA
	2230	ATGCCAATAGAAGCTGGGGATGCT
35	2231	CCTAACTCTCCCTTGAGGCCGTTC
	2232	ATCTCGGCGAAGGTTCCAAACATT
	2233	GCGACAGATTACGCTGCGGTTTTC
	2234	AAGCCCAGACGCCAACACGTTAC
	2235	TCAAGTTCAAATCACATCCCGTGG
40	2236	GATTGTCGTTCTGTGAGGCG
	2237	ACCGAACTATGTTCCGGCATGGCA
	2238	CGTCATCGGGTGTGCAATGCCGTT

Γ	2239	CGGACGGAGTCACGTTTGTGCACT
Γ	2240	TAAACAAGTCGTGTGCCTTTGCCG
<u> </u>	2241	TAATTACTGGCCTGTGGAGCAGGC
Ţ	2242	GGAGCGGCCGAATGGTGCTCTTA
5	2243	ACTAAGCAAGGCTTGGATGTGCGT
	2244	GGCAGCTCAGCGGCAGTACGCTAC
	2245	GCGAGGCGAATTATCCGCGGATTT
	2246	CATACGACACCTTGGGGTGCTA
	2247	TGCTTGGGCTTTAAACCCCGTTTT
10	2248	CCGGTTGGAAAACGCAAATATCGG
	2249	AAACTAGCTAGCCGCACCCGCAAG
	2250	GTTGTTCCACCAGTGATCACGCAG
	2251	GCCGCTGACAAGATGATCATCGTT
Ī	2252	CTTTCATAAAGCCAACCGATGCCC
15	2253	CTGACTGCATCTCGAAAGCGGGTG
	2254	ATTTCTTCGGAGAATCGGCCACGT
	2255	CATTTCGGGCCCTAGCTACTGCGC
	2256	CCGATCCGCACATCCGTATCCTG
	2257	TATCACCGGGAGCGTCTTATCGTG
20	2258	TAGGGCTCGTGCACCGATTAGAGG
	2259	GCGTGGCACTCGCTTGTCTAGGTA
	2260	CTCAACGAACTCAAGGGCCGCTAC
	2261	AGCCTGGTATCGACCAATCCTGCA
	2262	TACGCGTTCTAGTTGGCCGGATCC
25	2263	TTTATGGGTTTGTGCCTGATGGGT
	2264	GGGACCCCTAGCAACGTCACCTTA
	2265	CTGCCTCCCCAGGAGTCATTGGAT
	2266	AACCCGCAAGACCAGTACCAATC
	2267	GGTCACATACGCGCTAAAAAGCGC
30	2268	AAATGGCTCCGACCAGTTAGGGAC
	2269	AACGCGGCACGCTTAAAGGTGCAT
	2270	GATCGCACGCCGATTAACCTTACA
	2271	CCTCCTGATTGGGAGTGCGGAATT
	2272	CGGAGGGTAATAGGCTCCTCTGCG
35	2273	ACAAGAACTGGACATTACCGCGGG
	2274	TGTCGTCTTAAAGGCCTTTGTGCG
	2275	GGTGACCATGTGGCGTTTTAGCTT
	· 2276	CACGGTTGCGCACGGTACCAGAAC
	2277	CCTTTATTGTTTGGTCCCCTGCCC
40	2278	GTGCGCCTGCATTCTACCGTCAAT
10	2279	GTTTACGTTGATGGCTTGCCGCCG
	2280	CCGTCGGTGGTAGGACGTGAATGT

	2281	TGATCGCCCAGAATCCCTGTGCT
	2282	AAGCAGCCAAAAATCGGTTGCTTT
	2283	CGACGGGACTTAGTAGCAGGGCCT
	2284	CCGATTCGCGAAACGACCAAGTAG
5	2285	CCACCCAACTCCAATCTTTCTCA
	2286	GTGCAGTAGACGACTACCGGCGTC
	2287	TTCGCCCATCGTATCAAGCAATTC
	2288	GAATCGCGACTACCCGTCGGGTCA
	2289	CCAGCACTCGCCATCGGTTATAAT
10	2290	CGAACCGTAGAACTCCGGTCGGTG
	2291	GCACCATGACAGAGCCCCAGGATG
	2292	TGGGCTACCGCAGAATAAGGGTGA
	2293	TGGCCTGTCGTGTCGAAGGAAACA
	2294	GCCTCACCGATAGCGAGCGTTTGC
15	2295	GTGCGCCGGCTAAAACGAGACA
	2296	CCGCAGACGAGTTTCTTGTGACAG
	2297	GTTCGCAATCGCGTGCTAGGAAGC
	2298	TGTTGTACACATGCATCCGGTGAA
	2299	CACTGAACACGATATAAGGGCGCG
20	2300	CGCGATGGTTCTTAGCAAGACGAT
	2301	TACACCAAGGAAGAAATGGGGACG
	2302	CGTGCCTTGCGTTTTAGGTGCAGC
	2303	GTCGTTTGTCTGGGCATTAACGGC
	2304	CAGGCTCTCGTTCGGTACAAACGT
25	2305	CGGACACTGTTTCACCAGAACCCA
	2306	TACCCATGATGCGGAAGAGCGTA
	2307	CTGTCCTTAAGCGGATGAGAACCG.
	2308	CGGGAGATGAGAACGGTTTTGTGC
	2309	TAGATCGCGACTGTACTCAGGCCG
30	2310	TAAAACAGTTCGCGCGACTGTCGT
	2311	CGAGGAGCTCCACATAAGCCCAAT
	2312	TGGCTAGGGATGGGGAATCATCTT
	2313	AGGATTGGGTGCCTGGATGCATTG
	2314	TGTATCTACCGGCCTGAAGCAGGT
35	2315	TCCCTACGCGCATGACTCGCTTAC
	2316	TGGTCGATCACCTGTGACAGACGC
	2317	TGGGGTAGTCCATGCATCAATTG
	2318	CCCTGCCAGGATTACTATTCCGGA
	2319	TCCCGCACGGGGAATTTAAGTAGA
40	2320	GTGATGTGCAGGAACTTCTGTCGC
	2321	ATTTAGGCATGCATGCGCTTCTCA
	2322	TTCGGCGCTAGTGGACGCCGTCAA

	2323	GAGCTTCATCTCATCAGTTCCGCG
	2324	GACAACTCCACTGCTCCAATCGCA
	2325	GGCCAAGGATGGACCTTACGATGG
	2326	GGTTCCGGAATTTGTCACCGCTTC
5	2327	GCGCTGGATAGTCTGCGAGAAGCC
	2328	TGAGTCCAGTGCTGCCACCATGAA
	2329	TTGAATTGGGTGTCGGAGCGTTCT
	2330	CGGCGGCAGACAATGCTTTGAAC
	2331	GGGTCTGTCAAAGAGGGTGTCTGG
10	2332	CTTTGTGCAAGACGAAGCACCCTT
	2333	ATCGAATTCCGAGGAGGTCTCCAT
3	2334	TCCGACCCTCAGAGTCGACTCATT
	2335	ATCAACGGCCACCTCCTCGCCGAG
,	2336	AGCCACGGAATAATTCCGTCCACC
15	2337	GATCGCTTGCGTATCGCAAAGACT
;	2338	TCCACGCCTTACCATCAACTGCAA
	2339	GCCAAGCGATAGGCCAGAACTCAG
	2340	AGCGTGTGGGTCATTTTAGCACGA
	2341	GTTATGCGCGGCTTACGAGTTCGA
20 .	2342	TCTGTCCACGTAACTTGCCTGCAG
	2343	TCGGCAGCCAATGATCATACCTCT
	2344	TAAGCCCGATCCGGTCCTGTGTTT
	2345	ACATGGCAGACTAACAGGCCTCGC
	2346	CATGGCTGCACTCTAAGTCGAACG
25	2347	TCTTCAACCCACGCGGAACGATTG
	2348	CTCGTGTCTCCAGAGGATTGTCCC
	2349	TGAAGGCATCAACCCAGAGGATTT
	2350	ACAGCTCGAAGGCAGCCACATTGG
	2351	ACAACGAGTACCGCGACAGAAGGG
30	2352	ATAACCGAAAAACCAGCCTGCGAT
	2353	ACAACTCAGCACTTTCGACGTCCA
	2354	CGGGTTACTGGGTATCACCAATGC
	2355	CATCGGTTATCGCTGCACGCGCGT
	2356	GAAGGAATCCCGGATAGTCCGTGG
35	2357	GCATGGTCTCAGCCAAAGAACCTG
	2358	AGCCTGCGACGTTTCCCGACAGAC
	2359	AAGAAAGGCGCACGGGATCGATAT
	2360	TGTCGCGAAGCCAACTTTCAGTAA
	2361	GCGGCATGCAAGGTAGGTCTGGAT
40	2362	GGTGGCCATCTCCTCGAATTGCAT
	2363	GCGTGCATAAGTTGCACATTGTGC
	2364	TTGAGGTAGCGTTTTCGCGCATAT

2366	r .		
2367 GCGTATCTTCGGGTCGAACACTTG 2368 ATGCCATTGAACTCGCACTTTGCG 2369 CGATTCCCATCATTATGTGGTCC 2370 CAATTTGGATATCCAGCCACCCC 2371 CGGCTTACCCTATGATTCCGTGCA 2372 GGTGGACCATCGTATGATTCCGTGCA 2373 TATTTGCAAGACCCGCC 2374 GTCAGTGAGTTTGAAGCCCCCA 2375 AGGGGTCGGAAATCCAACAAAA 2376 AGGGGTCGGGAAATCTGACAAAA 2376 TGCTTGCTATCCGAAAAAACAGG 2377 TTATCGGATCAAAATCGGCTTCGG 2378 TGCAGCAACGACGCC 2378 TGCAGCAACAAAACCAGG 2379 TATACATGTCCGAAAAAACACAG 2379 TATACATGTCCGGAGGGCACCA 2380 TGCAAAACCGAGGTTACCCGAACAC 2381 TCGGTCTAATTCCGCAGCACCC 2382 ATGTGTTTGCACGCAGACAC 2382 ATGTGTTTGCACGCGACCCT 2383 TGCGAAGCACCGAGCTCTATT 2383 TGGCGAGGCACCCAGCCCTATT 2384 GCGACGACCCGAGCGCTCCTATT 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCCTCGGGTCCCTCAGA 2387 GCAACGCCGGGCTCCTATT 2388 TGACTTGGGCGACACACAC 2388 TGACTTGGGCGACAAAAAACGC 2388 TGACTTGGGCGACAAAAAACGC 2389 AGATCATCCTGGGTCCTCAGA 2391 CGTGAGCCGTGGTCCTTATA 2392 TACCTTGGGCGCCCTTTTTACA 2393 TGCCGCAAAAACAACGC 2394 GAGTCAACCCAAGGAAAACACCC 2395 AAAGAACTTCCTGGATCCCTCAGA 2391 CGTGAGCCGTAAAAAACGC 2392 TACCTTGGGCGCCCTTTTTTTTTTTTTTTTTTTTTTTTT	Ì	2365	ATCCCACTTGTGAGAGGGCGCATT
2368 ATGCATTGAACTCGCACTTTGCG	}	2366	CGGTCAGCGAGCAGCATCAACCT
5 2369 CGATTCCCATCATAATGTGGGTCC 2370 CAATTTGGATAATCCAGCCACGCC 2371 CGGCTTACCCTATGATTCCGTGCA 2372 GGTGGACCATGCCTGTGGTATGA 2373 TATTTGTCGAAGATCGCAAGCGCC 10 2374 GTCAGTGGGTTTTGAGAGCCCGCA 2375 AGGGGTCGGAAAATCTGACAAAA 2376 TGCTTGCTATCCGAAAAAAGCAGG 2377 TTACGGATCAAATTCGGCTTCGG 2378 TGCAGCAACGAGTTACCCGGACTT 2379 TATACATGTCCGGAGGGGCACCCA 2380 TGCAAAACCGGAGGGACCCCA 2381 TCGGTCTAATGTCCACGCAGACAC 2382 ATGTGTTTGCCACGCAGCACCT 2383 TGGCGAGGCACCGAGCACTTTTACA 2384 GCGACCACCCGAGCGACTTAATTCGG 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAACAAAAAAAACGC 2388 TGACTTGGGCGGACAAAAGAAACGC 2389 ACATCATCGGGACCCTTCATGCTA 2390 CCCTTCTGGACCGAACACATAA 2391 CGTGAGCCGTGGGGTTCCTCTGTA 2392 TACCTTGGTCCGCTTTTGT 23		2367	GCGTATCTTCGGGTCGAACACTTG
2370 CAATTTGGATAATCCAGCCACGCC 2371 CGGCTTACCCTATGATTCCGTGCA 2372 GGTGGACCATGCGCTGTGGTATGA 2373 TATTTGTCGAAGACTCGCAGCC 2374 GTCAGTGGGTTTTGAAGCCCGCA 2375 AGGGGTCGGGAAATCTGACAAAA 2376 TGCTTGCTATCCGAAAAAAAAAAAAAAAAAAAAAAAAAA		2368	ATGCCATTGAACTCGCACTTTGCG
2371 CGGCTTACCCTATGATTCCGTGCA 2372 GGTGGACCATGCGCTGTGGTATGA 2373 TATTTGTCGAAGATCGCAAGCGCC 2374 GTCAGTGGGTTTTGAAGCCCGCA 2375 AGGGGTCGGGAAATCTGACAAAA 2376 TGCTTGCTATCCGAAAAAAGCAGG 2377 TTATCGGATCAAAAAAGCAGG 2377 TTATCGGATCAAAATTCGGCTTCGG 2378 TGCAGCAACGAGTTACCCGGACTT TGCAGCAACGAGTTACCCGGACTT TGCAGCAACGAGTTACCCGGACTT 2380 TGCAAAACCGGAGGATGAACCCTT 2381 TCGGTCTAATGTCCAGCAGACAC 2382 ATGTGTTTGCCACGCGGCTCCTATT 2383 TGGCGAGCCCGAGCGCTCTAATTCGG 2384 GCGACGACCCCGAGCGCTCTAATTCGG 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGAGATACTTACCGA 2387 GCAACGCAGGAAAAAAACGC 2388 AGATCATCGGAACACTTACCGGA 2389 AGATCATCGGAACGCTTCATGCTA 2390 CCCTTCTGACGGACCATAA 2391 CGTGAGCCGTAGGCCATAA 2391 CGTGAGCCGTAAGGCCATAA 2391 CGTGAGCCGTAAGGCCATAA 2392 TACCTTGGTCGTCCCGACT 2395 AAAGGAACTTGCCCGACT 2395 AAAGGAACTGGCCAACCCTATGG 2396 TGTTTTCGCACCCCTATGG 2396 TGTTTTCGCACCCCTATGG 2396 TGTTTTCGCACCCCTATCGC 2397 CAATGGGTTCCTCACCCTATCGC 2398 GCTAACACACAAGGGTCCCTCTG 2398 GCTAACACACAAGGGTCCCTCTG 2398 GCTAACACACAAGGGTCCCTCTG 2396 TGTTTTCGCACCCCTAATCGC 2397 CAATGGGTTTCATACGC 2397 CAATGGGTTTCATACGCC 2397 CAATGGGTTTCATAAGGGCAAGCACCTATTCGC 2396 GGTTATCGGGCCAACCCTATCGC 2397 CAATGGGTTTCATCAGGCAACCCTATCGC 2397 CAATGGGTTTCATAAGGGCAAGCACCCTATCGC 2397 CAATGGGTTTCATAAGGGCAAGCACCCTATCCC 2400 CCACACGGGACCAGACCCTATCC 2400 CCACACGGGACTCCACCCTATCGC 2400 CACACGGGACTCCACCCTATCCC 2401 CATCAGACATAGGTCCGCGCAG 2402 AGATGAACCAAGGGACGCACC 2403 GGCTACCCATAGGCTCCACCCTAGCCCACCCTAGCCCCACCCTAGGCACCCAACCCTAGGCACCCAACCCTAGGCACCCAACCCTAGGCACCCAACCCTAGGCACCCAACCCCTAGGCACCCAACCCCTAGGCACCCAACCCCTAGGCACCCAACCCTAGGCACCCAACCCCTAGGCACCCAACCCCAACCCCAACCCCAACCCCAACCCCAACCCC	5	2369	CGATTCCCATCATAATGTGGGTCC
2372 GGTGGACCATGCGCTGTGGTATGA 2373 TATTTGTCGAAGATCGCAAGCGCC 2374 GTCAGTGGGTTTTGAGAGCCCGCA 2375 AGGGGTCGGGAAATCTGACAAAA 2376 TGCTTGCTATCCGAAAAAAGCAGG 2377 TTATCGGATCAAATTCGGCTTCGG 2378 TGCAGCAGAGTTACCCGGACTT 15 2379 TATACATGTCCGGAGGGCACCCA 2380 TGCAAAACGGGTGAACCCTT 2381 TCGGTCTAATGTCCACGAGACAC 2382 ATGTTTTGCCACGCAGCACCC 2382 ATGTTTTGCCACGCGGTCTATT 2383 TGGCGAGGCACGCGTCTAATTCGG 2384 GCGACGACCCGAGCACTCT 2386 GGAACATCTCTGGGTCCCTCAGA 2387 GCAACGCAGGAGACTCTAATTCGG 2388 TGACTTGGGCGGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGACACTTACACGC 2388 TGACTTGGGCGACAAAAAACGC 2389 AGATCATCGGGACCATTACAC 2390 CCCTTCTGACCGCTTCTATTCA 2391 CGTGAGCCGTGGGTTCTCTTATACA 2391 CGTGAGCCGTGGGGTGTCTCTTATACA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 2394 GAGTGACCTAATGCTACGCAAAAAAAAAAAAAAAAAAAA	į	2370	CAATTTGGATAATCCAGCCACGCC
2373 TATTTGTCGAAGATCGCAAGCGCC		2371	CGGCTTACCCTATGATTCCGTGCA
10 2374 GTCAGTGGGTTTTGAGAGCCCGCA 2375 AGGGGGTCGGAAATCTGACAAAA 2376 TGCTTGCTATCCGAAAAAAGCAGG 2377 TTATCGGATCAAAATTCGGCTTCGG 2378 TGCAGCAACGAGTTACCCGGACTT 15 2379 TATACATGTCCGGAGGGCCACCA 2380 TGCAAAACCGGAGGAGCACCA 2381 TCGGTCTAATGTCCAGCAGCAC 2382 ATGTTTTGCACACGCGGCTCTATT 2383 TGGCGAGGCACGGGTCTAATTCGG 2384 GCGACGCCGGGCTCTAATTCGG 2385 CTCAGAGAGCACGGCTCTAATTCGG 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGAGCACTTTACA 2387 GCAACGCAGGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGAACAACAACGC 2388 TGACTTGGCGGACCATATCTAGCGA 2389 AGATCATCGGGACCCTTACTTCTA 2390 CCCTTCTGACCGCTTAGCTA 2391 CGTGAGCCGTGAGGCCATAA 2391 CGTGAGCCGTGAGACCCTATAG 2392 TACCTTGGTGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 2394 GAGTGACCTAATGGCTCCCGACT 2395 AAAGGAACTTGCCCGACT 2395 AAAGGAACTTGCCCGACT 2396 TGTTTTCGCACTCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAGAGGTCCCTCTG 2399 CGTCATGGGTTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGTCCGAGGATCCATC 2400 CCACACGGGCACGAGATCCATC 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGTACCACC 2403 GGCTACCCATAGGCTCACCCACCACCCACCCACCCACCCA		2372	GGTGGACCATGCGCTGTGGTATGA
2375 AGGGGTCGGGAAATCTGACAAAA 2376 TGCTTGCTATCCGAAAAAAGCAGG 2377 TTATCGGATCAAATTCGGCTTCGG 2378 TGCAGCAACGAGTTACCCGGACTT 2379 TATACATGTCCGGAGGGCACCCA 2380 TGCAAAACCGGAGGGCACCCA 2381 TCGGTCTAATGTCCACGAGACAC 2382 ATGTTTTGCCACGCGCTCTATT 2383 TGGCGAGGCACGGCTCTAATTCGG 2384 GCGACGACCCGAGCACC 2385 CTCAGAGAGTCTAATTCGG 2386 GGAACATCTCCTGGGTCCTAATACGG 2387 GCAACGCAGGACACTAAATCCGGACCCT 2388 TGACTTGGGCGAAAAAAACGC 2389 AGATCATCGGGAACACTAACAAAAACGC 2389 AGATCATCGGGACCCTTAATTCGGA 2390 CCCTTCTGACCGCTTCATGCTA 2391 CGTGAGCCGTGAGACACAAAAAACGC 2392 TACCTTGACCGCTAAGCCATAA 2391 CGTGAGCCGTGGGGTGTCTCTGTA 2393 TCGCCGCAAAATGCTACCGAAAA 2394 GAGTGACCTAATGCTACCGCAAAA 2395 AAAGGAACTTGCCCGACTTTTGT 2396 TGTTTTCGCACTCCACCTATCGC 2397 CAATGGGTTTCATAGGCACCCTATGG 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGGCAACACCCTATGG 2391 CGTCAGCGCTAAGGCAGCACCCTATGG 2392 CAATGGGTTTCATAAGGGCAGGCA 2393 GCTAACACACAAGGGTCCCTCTC 2394 GAGTGACCTAATGGCCAACCCTATGG 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTC 2399 CGTCATGCGCTCCGAGGATCCATC 2400 CCACACGGCACGAGGAACAATACT 2401 CATCAGACATAGGTCCGCTGCCGA 2402 AGATGAAACCAAGGGAGCACCCAAC 2403 GGCTACCCATAGGCTCAGCACCACCACCACCCACCACCACCACCACCACCCAC		2373	TATTTGTCGAAGATCGCAAGCGCC
2376 TGCTTGCTATCCGAAAAAAGCAGG 2377 TTATCGGATCAAATTCGGCTTCGG 2378 TGCAGCAACGAGTTACCCGGACTT 2379 TATACATGTCCGGAGGGGCACCCA 2380 TGCAAAACCGGAGGATGAACCCTT 2381 TCGGTCTAATGCACGCAGACAC 2382 ATGTGTTTGCCACGCAGACAC 2382 ATGTGTTTGCCACGCGCTCTATT 2383 TGGCGAGCACGGCTCTATT 2384 GCGACGACCGGCTCTAATTCGG 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAAGTACTTAGCGA 2388 TGACTTGGGCGGACAAAAACGC 2389 AGATCATCGGGACCCTAAGCCAA 2390 CCCTTCTGACCGCTAAGCCATAA 2391 CGTGAGCCGTGGGTCCTCTGTA 2392 TACCTTGGTCGTCCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 2394 GAGTGACCTAATGCTCCCGACT 2395 AAAGGAACTTGCCCGAACT 2396 TGTTTCCACCCTAATCGC 2397 CAATGGGTTCAAAACGC 2398 GCCTAACACAACAGGCCACCTTCTG 2399 CGTCATGGCGTCCCGAGT 2398 GCCTAACACAACAGGTCCCTCTG 2399 CGTCATGCGGTCCCGAGCACCCTATCGC 2397 CAATGGGTTCCAACCACACAGGCACCACCACCACACACAGGCACCACCA	10	2374	GTCAGTGGGTTTTGAGAGCCCGCA
2377 TTATCGGATCAAATTCGGCTTCGG 2378 TGCAGCAACGAGTTACCCGGACTT 15 2379 TATACATGTCCGGAGGGGCACCCA 2380 TGCAAAACCGGAGGATGAACCCTT 2381 TCGGTCTAATGTCCACGCAGACAC 2382 ATGTGTTTGCCACGCAGACAC 2383 TGGCGAGGCACGGCTCCTATT 2383 TGGCGAGGCACGGCTCTAATTCGG 20 2384 GCGACGACCCGAGCGACTTTACA 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAAGTACTTAGCGA 2388 TGACTTGGGCGACACAAAAAAACGC 2389 AGATCATCGGGACCCTAAGGCCATAA 2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGGGGTTCTTGT 2392 TACCTTGGTCGTCCCGATTTTT 2393 TCGCCGCAAAATGCTACGTGAAAA 2394 GAGTGACCTAATGGCTGCCCGACT 2395 AAAGGAACTTGGCCGACCT 2396 TGTTTTCGCACCCTAATCGC 2397 CAATGGTTTCATAAGGGCAGCA 2398 GCCTAACACAAAGGTCCCTCTG 2399 CGTCATGCGGTCCCACCTAATCCC 2397 CAATGGGTTCATAAAGGGCAGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGAGTAATATCT 2401 CATCAGACATAGGTCGCCGAC 2402 AGATGAAACCAAGGGTCCCACC 2403 GGCTACCCATAGGCTGCCCAC 2403 GGCTACCCATAGGCTCCACCACACACACACACACACACAC		2375	AGGGGTCGGGAAATCTGACAAAA
2378 TGCAGCAACGAGTTACCCGGACTT		2376	TGCTTGCTATCCGAAAAAAGCAGG
15		2377	TTATCGGATCAAATTCGGCTTCGG
2380 TGCAAAACCGGAGGATGAACCCTT		2378	TGCAGCAACGAGTTACCCGGACTT
2381 TCGGTCTAATGTCCACGCAGACAC 2382 ATGTGTTTGCCACGCGCTCCTATT 2383 TGGCGAGGCACGGCTCTAATTCGG 2384 GCGACGACCCGAGCGACTTTTACA 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAAGTACTTAGCGA 2388 TGACTTGGGCGGACAAAGAAACGC 2389 AGATCATCGGGACCATAA 2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGGGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 300 2394 GAGTGACCTAATGCCTCACCTAATGC 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCACCTAATCGC 2397 CAATGGGTTTCATAAGGCAGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGATCC 2399 CGTCATGCGTCCGAGATCC 2400 CCACACGGGCACGAGATAATTCT 2401 CATCAGACATAGGTCGCGAGA 2402 AGATGAACCAAGGGAGGACCAG 2403 GGCTACCCATAGGCTCACCACCACCACACCACCACCACCACCACCACCACCAC	15	2379	TATACATGTCCGGAGGGGCACCCA
2382 ATGTGTTTGCCACGCGCTCTATT 2383 TGGCGAGGCACGGCTCTAATTCGG 2384 GCGACGACCCGAGCGACTTTTACA 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAAGTACTTAGCGA 2388 TGACTTGGGCGGACAAAAGAAACGC 2389 AGATCATCGGGACGCTTCATGCTA 2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGAGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCGACT 2395 AAAGGAACTTGGCCACCCTAATGG 2396 TGTTTTCGCACTCACCTAATCGC 2397 CAATGGGTTTCATAAAGGCAGCA 2398 GCCTAACACAAAGGTCCCTCTG 35 2399 CGTCATGCGTCCGAGGATCATC 2400 CCACACGGCACAGAGTAATATCT 2401 CATCAGACATAGGTCGCCGAC 2402 AGATGAAACCAAGGGTCGCCGA 2403 GGCTACCCATAGGCTCACCACACCACACCACACCACACC		2380	TGCAAAACCGGAGGATGAACCCTT
2383 TGGCGAGGCACGGCTCTAATTCGG 2384 GCGACCGAGCGACCTTTTACA 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAAGTACTTAGCGA 2388 TGACTTGGGCGACACACACACACACACACACACACACACA		2381	TCGGTCTAATGTCCACGCAGACAC
2384 GCGACGACCCGAGCGACTTTTACA 2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAAGTACTTAGCGA 2388 TGACTTGGGCGACAAAGAAACGC 2389 AGATCATCGGGACCATAA 2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGGGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATC 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGAGATAATATCT 2401 CATCAGACATAGGTCGCGAG 2402 AGATGAAACCAAAGGGAGCAC 2403 GGCTACCCATAGGCTCACCACCACCACCACCACCACCACCACCACCCAC		2382	ATGTGTTTGCCACGCGCTCCTATT
2385 CTCAGAGAGTCTATCCGGCGCCCT 2386 GGAACATCTCCTGGGTCCCTCAGA 2387 GCAACGCAGGGAAGTACTTAGCGA 2388 TGACTTGGCGGACAAAGAAACGC 2389 AGATCATCGGGACGATCATGCTA 2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGAGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCGGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGCA 2398 GCCTAACACACAGAGGTCCCTCTG 35 2399 CGTCATGCGGTCCGAGGATC 2400 CCACACGGGCACGAGTAATATCT 2401 CATCAGACATAGGTCGCCGA 2402 AGATGAAACCAAGGGAGCAC 2403 GGCTACCCATAGGCTCACCACCACCACCACCACCACCACCACCACCACCACCA		2383	TGGCGAGGCACGGCTCTAATTCGG
2386	20	2384	GCGACGACCGAGCGACTTTTACA
2387 GCAACGCAGGGAAGTACTTAGCGA		2385	CTCAGAGAGTCTATCCGGCGCCCT
2388 TGACTTGGGCGGACAAAGAAACGC 2389 AGATCATCGGGACGCTTCATGCTA 2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGGGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATCATCT 2400 CCACACGGGCACGAGTAATATCT 2401 CATCAGACATAGGTCGCCGA 2402 AGATGAAACCAAGGGAGCCAG 2403 GGCTACCCATAGGCTCAGCACCAG 2403 GGCTACCCATAGGCTCAGCACCAC 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2386	GGAACATCTCCTGGGTCCCTCAGA
2389 AGATCATCGGGACGCTTCATGCTA 2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGGGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 35 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGAG 2402 AGATGAAACCAAGGGAGCAC 2403 GGCTACCCATAGGCTCAGCACC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2387	GCAACGCAGGGAAGTACTTAGCGA
2390 CCCTTCTGACCGCTAAGGCCATAA 2391 CGTGAGCCGTGGGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGCA 2398 GCCTAACACACAAGGGTCCCTCTG 35 2399 CGTCATGCGGTCCGAGGATCATCT 2400 CCACACGGGCACGAGTAATATCT 2401 CATCAGACATAGGTCGCGA 2402 AGATGAAACCAAGGGAGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2388	TGACTTGGGCGGACAAAGAAACGC
2391 CGTGAGCCGTGGGGTGTCTCTGTA 2392 TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGA 2402 AGATGAAACCAAGGGAGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATCCAACAGTC	25	2389	AGATCATCGGGACGCTTCATGCTA
TACCTTGGTCGTCTCCGCTTTTGT 2393 TCGCCGCAAAATGCTACGTGAAAA 30 2394 GAGTGACCTAATGGCTGCCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGAGTAATATCT 2401 CATCAGACATAGGTCGCGA 2402 AGATGAAACCAAGGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2390	CCCTTCTGACCGCTAAGGCCATAA
2393 TCGCCGCAAAATGCTACGTGAAAA 2394 GAGTGACCTAATGGCTGCCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 35 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGCACGAG 2403 GGCTACCCATAGGCTCAGCACC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2391	CGTGAGCCGTGGGGTGTCTCTGTA, .
2394 GAGTGACCTAATGGCTGCCGACT 2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGCACGAG 2403 GGCTACCCATAGGCTCAGCAGCAC 400 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2392	TACCTTGGTCGTCTCCGCTTTTGT
2395 AAAGGAACTTGGCCAACCCTATGG 2396 TGTTTTCGCACTCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 35 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2393	TCGCCGCAAAATGCTACGTGAAAA
2396 TGTTTTCGCACTCACCTAATCGC 2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCACC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC	30	2394	GAGTGACCTAATGGCTGCCCGACT
2397 CAATGGGTTTCATAAGGGCAGGCA 2398 GCCTAACACACAAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2395	AAAGGAACTTGGCCAACCCTATGG
2398 GCCTAACACACAGGGTCCCTCTG 2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2396	TGTTTTCGCACTCCACCTAATCGC
2399 CGTCATGCGGTCCGAGGATCGATC 2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2397	CAATGGGTTTCATAAGGGCAGGCA
2400 CCACACGGGCACGGAGTAATATCT 2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2398	GCCTAACACACAAGGGTCCCTCTG
2401 CATCAGACATAGGTCGCGTGCCGA 2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC	35	2399	CGTCATGCGGTCCGAGGATCGATC
2402 AGATGAAACCAAGGGAGGACGCAG 2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2400	CCACACGGGCACGGAGTAATATCT
2403 GGCTACCCATAGGCTCAGCAGCAC 40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC	•	2401	CATCAGACATAGGTCGCGTGCCGA
40 2404 GGCTTGTGAGGGTGTTCTCGAC 2405 TGTGTTACGGCGAATGCAACAGTC		2402 · ·	AGATGAAACCAAGGGAGGACGCAG
2405 TGTGTTACGGCGAATGCAACAGTC		2403	GGCTACCCATAGGCTCAGCAGCAC
	40	2404	GGCTTGTGAGGGTGTGTTCTCGAC
2406 CGATAACAGGTCGCGCCGTTACTA		2405	TGTGTTACGGCGAATGCAACAGTC
		2406	CGATAACAGGTCGCGCCGTTACTA

2407 TGATAAAGTGAGGCTCCAGCGCGCGCGCGCGCGCGCGCGC	3A
2408 AATTGTGCACGGATCTGCACGGC	
	:G
2409 GCCGATACTGAGCATTTCACTGC	С
2410 GCAATGTACTGTCACCAGTGGCG	SA.
5 2411 GGCATATCGGTAACACTTGGTCG	G
2412 GGGTCTCAAACCAGCGTGGCCG	CT
2413 GTCTCCGGGACCATTGAGCTGGA	∖G
2414 GGCCTTCGGCATTCAGACGGGTT	rg
2415 CGTGATAGGCCACAGCGCTCAAT	Т
10 2416 GGCAGGCCCGCGAGGATGATTA	AC
2417 CGGGTATGGTTGATAACAGCGTG	G G
2418 ACGACGTCCTTGGGACCGTATTG	T
2419 CTGATATCGAGCCTGAGCCTTTC	G
2420 TCCCATTGGCCTGTATGCTGGCC	T T
15 2421 GTGTCGTCGATTGTTTCATCGAC	G
2422 CGAAAGCCAGTAGCCGATTGCGT	G
2423 GGTTCGGCTTATTCCACTGCGAC	A
2424 AGCGAGGGCTAACTTTTTAACGC	G
2425 CGGCGCTGATGACGGGACTCGA	TT
20 2426 TCACAGTGCTCGGCGTAAGGACT	TA
2427 CCCATTACGAGCACACCATGG	C
2428 GGCCGCTAATCTTTACGCATCAC	G
2429 ACGGCTTCCTAGTGTCCAGCCCT	T
2430 CTGTCAGGTCCTACCCAATGGCT	C
25 2431 CACAGCCCATCCCACTGAACTGC	Т
2432 ACAAACGATACACGCAACGCTGT	G
2433 TGGCGGCCAGCTAGCAGGCGAA	GŢ.
2434 ATCTCGAAACGATGCGTGCCTAA	A
2435 ATCTCGAGAACAGCGTGCGTGCC	G
30 2436 GAAGAAATCCGCCGACATCTACG	G
2437 GCGGAGCAACCTTGGCTGTTTCT	
2438 CGCGTTCCGAAGACTTGTTGTTT	G
2439 TGACCTGAAGCCCATCCATAAGC	A
2440 TGGTATTCATTCCGGATAAGCGG	G
35 2441 GCGTTGCGGGTCATTGATGCAAA	C
2442 ACCGCTTTCTGTGTAGAGCCCTG	Α
2443 CAAATAGACAATCGCAGCTTCGG	G
2444 TGTCCTGACAAATCAAGGTGCAG	G .
2445 AAATTGCACTCGCGGAGATTTCC	Т
40 2446 TGACGCCCATTTCTATATGGTGC	A
2447 TGTTCCGACAGGGCACTGCTAGA	C
2448 TCGCTGGCTTGGGAAGGCCTTCC	€T

2450 CTCATTTGGGACCGATCGGGTTGC	
2451 GCCAGTGTCTGTCAATGGATGGGA	
2452 TTGCCCGGCAGGTTCTGTGTAATG	
5 2453 ACCCGCGAACCGAGACGCACTTCT	
2454 TCCGTGCGATTGGTCAAGGTTGAT	
2455 AGGGCGTCTCGGTTGAACCTCGGT	
2456 TGACCGTTCAAAGAGCAAGCCAAC	
2457 ACACTCACCTGCTGCTGA	
10 2458 GCGTTTAACTCCTTGGGTGGT	
2459 CGCCTGCGCAGGTAACTCTCCGCA	
2460 AATCGAATTTCCCAGCGGCTGTTT	
2461 AAGCAGGTGGGATCCTGGGGATCA	
2462 AATCCCAGACTCGCTCTTCGTGCT	
15 2463 ACGGTTATAAGGGCCGGCTGCGAC	
2464 TACGAGAGCGGGCTTAGACGTCGC	
2465 GCGATTTTGACCCACGGTTATCGA	
2466 AGCTGTATAATTTGGATGGCGCGA	
2467 TCCGCGAGTCTTAGCCGATTGAAC	
20 2468 GGCATCAGCTCCGTAAGCCGATAG	
2469 TGTTATTGGCAGTTCGAGCGACAG	
2470 GCGAGCCTTTTTGCTTGGGAAGAG	
2471 AGAAGAAAAGGTCAGCGTCGACGA	
2472 CGGGTCGACCCTTGAAGCATAACC	
25 2473 CTCGGTTTTCACAAACTTACCGCG	
2474 GCAGTCCTATCCGGAGCCTGACAA	
2475 AAGGTGCGCTATTTGTTGTCGGTC	
2476 AGTGGAATCCATGCCGACACCTGA	
2477 TACAGGCGTAATTCCTGCGAGGGA	
30 2478 CCGAAGTGCGAGAAGCACGTTGTT	
2479 AAGGACTGGTATGGCCGGAGCTTT	
2480 GGACACCGCCAACCTCATAGTTGC	
2481 AATGGTGTTCGCCTGGACTACCAC	
2482 TAGGAAAGCGTACACGGGAATCCG	
35 2483 TCTCACCCCAATGATGAGGACGTC	
2484 CGTGTCCGTGTGACACTGTCCATG	
2485 TCCAGGCTGTTGCGGATACGGTAG	
2486 GTAGGCAAAATGGTCGCGATCAAT	
2487 ATCTCCGTGGACCCGATTGTGACA	
40 2488 GAATATGCCGTCAACGCTATGGGC	
2489 TTCCGGAAGCGTTTGGTAACTTTG	
2490 TTCGATAGGAATACCAGGGCCTGG	

•	2491	GGCCATTTGAGGAGGATTATGCAA
	2492	ACCTTCTGACCTGGACTTTTGGCG
	2493	GACCAATCCGCAGTTGAGCAACAG
	2494	TCGGCCACTCACCATGAGTGTAGG
5 .	2495	AGCGCTCACATGTTCGAAAACGGG
	2496	TAACGCAAAGGCGCGATCCTCGCT
	2497	TGGGTGGGCCAAATATTACTGCAA
	2498	GTCCTCGAAAGGGGCATCCAAACA
	2499	CCCATCTGGTGGGAGGCGTTATCA
10	2500	GTGCGCGGTCTGCAAACTCGCCAT
	2501	TGTGTTGCCAACCCTAGGTCATCA
	2502	CTGATGCTGTTCTCGTCGGTTGAC
	2503	AAGCTGCAAAAGGTGAGCGTGGCA
	2504	TCTGACGCGTGCTTGGGAGTCTAT
15	2505	GAATTACTTGGAGGCGCCGTGCAA
•	2506	GATTCTTCCCGACCTAGGTTGGCC
	2507	CGCAGCGTATCCCATGTTGCTTGA
	2508	GAGATGGAATTGTTCGCCCAAAGA
	2509	GATGCCTGGATCGGTCTAGCGTCA
20	2510	GCAGCGACTGCTAAGCTATCTCGG
	2511	AGGGCTAATTTACATCGCCTTGCC
	2512	AAGTGCACATCCTCACGAAGCGAT
	2513	TCAGGCAGCCGTAATTAAATGCGC
	2514	CCACTGGGGAAATCGCACTGTTGG
25	2515	TTGTCCAAAGCCACCTACGACAGA
,	2516	TGGGCGGAATAGATTGGGTGTCTT
	2517	TAGAATTCGCCTCTTCTAGCCGCC
	2518	CATTACTTCCTGCAGATGCGATGC
	2519	GGAAATGCTAGCTGGGGTAATCGC
30	2520	GCCGCCACTTGCGAATCTACATCT
	2521	ACAATAGCGGACAGCTCGCCAGAT
	2522	AGTTAGGCTCTCGGTGCGGTCCAT
	2523	TGGGCCTGAGAAGCGGTTAATAGG
	2524	ACGCTCTGAGCGACGCCTATCGTA
35	2525	CCTGGTGATCGTGTCCCAGACTCA
	2526	GCGTGTCCATTCGCTTGAGGTTTC
	2527	ATCCTGAACGGCGATGACCACCAC
	2528	TTACGTTTCTCACCGATCAACGCC
	2529	GCCGTCTTGAGTGGCTAAAAGGCA
40	2530	ATCTACGATGCGGCTCGAAGTGTT
	2531	AACCAAGACTCGTCCCCAAACGAA
	2532	AACTGCGGTGGTGGAGGCAGGTGC

	2533	CCTGAGTGGTCGGGCTGGAAAAAT
	2534	TGCGATCTTCTCCACCTACAGCGC
	2535	AGGCGCTTAGAACCGTGAAGGCAG
	2536	TGGAAAATTTTGGGAAACGCTGGA
5	2537	CCAGCGCCGCACCTTCTCCAATAG
	2538	TAGACGGCTGGCGAATCTTACGGT
	2539	TACCATACAAGAGAACGAGCCGCA
	2540	GTAGCCGAGAGCAATTTTCACCGC
	2541	GCAAACTCCCCTGCCCTTTAGCCT
10	2542	ATCCCGCTGATAACCGCCAGGATA
	2543	AGTCTCAGTTCGGCGCAACGGTAG
	2544	AACCTACAGTCGCCGCAATGCATT
•	2545	ATACACGTTTCAGCCGGCAACAAT
	2546	ACGACGGGACGTGCCCTCGTTGAT
15	2547	AAGTCCAAACTCGAATGGGGCAGT
	2548	GATTTATTGGCGCGGTAACGACCT .
	2549	TGTTTTCAGAGGCTACCCTGCCAT
	2550	ACGGTCTCAGGGAAATGCGATCTC
,	2551	GACTTGAAACCGCCTATGCCCACA
20	2552	CGATCGGTTGTGTGCTGTCTTACC
	2553	AGTAGCACAATGCCTCATTTCCGC
	2554	CTCGCTATCTACGCGTCTCCGAAA
	2555	AGCCCGTTACGGCATCTAGGATTC
	2556	TCGCGATGGCGAGAGTTCAGAATA
25	2557	TTACAGGATTCCAAAACCCGCAAA
	2558	CGGTACCAACGCGCGGGCATATGA
	2559	TGCCAGTATTATCCGTGCCAGCCG
· .	2560	ATTTCAGACCTCGGGACAACCTGG
	2561	GAAGTGCGCGTAACTTAGGGAGCC .
30	2562	TTGGCCAGGTCATCACTCTGCCAT
	2563	ATCGGCCGGTATTAGCTGCCCTCC
	2564	CGCAGGTAAGGCCGAGCAATGTTT
	2565	TTGGGAACGTGCTAGGCGGCCCTC
	2566	CCGCAAAAGTAGAACAGCCTGGGT
35	2567	CATCTCGGCACACTGGTGCTGTAT
	2568	ACGCGTAAATCAACGACGTGGTCG
	2569	CGTAGGTGGTAAATGTTGGCCCAG
	2570	GTTGGGATGCTGCTTCACTTTGGG
	2571	TTCGAGCCAGAATAAAACGGTTGG
40	2572	AGAGATATTCGGCCTCGGTCGAGA
	2573	CGACAAAGTTTCTCGCGAGCAACT
	2574	ATTGCCGCGTCTCGTATCAAAAGA

İ	2575	CGGAGAATGGATGCAGGTTCTTCG
	2576	TATAATCATTTGCGACTCGCCCCA
	2577	AATTTTCCCCGATTTGAAGAAGCG
	2578	TCGCATACTTCGTCGGCGAGTATT
5	2579	CGTGAGCCGTTCTCATCCAAGCGG
	2580	GCAGAATCGAATTGGGGTGGGTTT
	2581	CTCTCGGTTTCTCAACCGAGCTCG
	2582	GACCAGTTAGTGCAATGGTTGGCG
	2583	TTCTCGCACAGCTAGTCAGCCGAT
10	2584	CCAAGTCTTGCGTGAGCGATCCTG
	2585	GCGAAAGTGGCTCGTATTTCTCCA
	2586	CCTCGGGACTGTCCGACTGAAAAA
	2587	AGGCGAGTGTACGGCTCATCCATG
	2588	GCGGCTCTGCCTACGATATTCACA
15	2589	TGCACCTGTCTGTAGATTTGCGGT
	2590	CATAAAGCACGGACGCGACTTGAT
,	2591	CCCTCAACGTAGGGCGTGACTTTC
	2592	GGGTCATCGTGCAGTTATGCCGTA
	2593	CCCGGATAATCCTTTGTCCAGCCG
20	2594	TCCGATAAGCGAACTCACATGGGT
	2595	CCTGCTGGTTCGGTCGTAAGCGAA
	2596	GAGGCACCAATCGGTCTGAAAATG
	2597	TACGAAAATGGTTGCGCCGGGTCT
	2598	CCCAAAGATCGTATCACCACCCAA
25	2599	AATTGCCGGAAGCAGTCAGAATCG
	2600	CCGAATCAGCCGTATTTGCTGGAA
	2601	CCCGCTTATCTGTACTCGATCGCA.
	2602	TTTTGGGGATCCCTATTAGGCGCA
	2603	AGTGACAGCGCTCACCACGGTCCC
30	2604	CCATGAGTGTTTCGGGACATCGTA
	2605	GCCACATTCTGCTACCTCCGTGTT
	2606	TCCTGTGCTTTGTGACGTGCTAGG
	2607	GACCGCATATACACCTGATGGGCC
	2608	GTAGGCCCGTCGTTAACCATCTCA
35	2609	CGGCTCGCGAAATGGAGTTTAGCG
	2610	GCTGATCGGCTTTTCACCGCTATA
	2611	TATCAAATCGTTGGCACGCGACTA
	2612	TTGGCGAGGATCCCTAGGCGTACT
	2613	AAGTCCTGAGGCCGTTCGGTTTCT
40	2614	ACTCCGGACATCTCGGCCAGAGAT
	2615	CCAAGGGAACACAGGATCGTAGA
	2616	GTGGCCTAAATCCGCCTTCTCAAC

	261.7	CACTCCGTCTCGTCCATTAATGCG
	2618	TCAAGAACCCAGTGCCGGTCAGCA
	2619	GAATCAATTTTCCAGGGACGGGAC
	2620	GAGAGCATACGCAATGTTCCCTCC
5	2621	ATCGGTGTGCTGGAGCGCCAGAGT
	2622	GCCTCTCCTATGACGATGACCCAC
	2623	TGGGCGCGCTTTTAAGACTACATC
	2624	CGTTGGGTACCGTTCTATCAACCG
	2625	GCAGTGAGCTGGGTTCAATGCTTC
10	2626	CATCATCCACACAGGCAGGTGTGT
	2627	AGACAAAGGTCCCCATTGCGAAAT
	2628	ATACTCGTCGACGAGAGCGGAAA
·	2629	GCAGAATGTGTTGTCTTCGCAGCC
	2630	CACCATGCCTTCATCTTGGCCTAG
15	2631	ACTCTTCAACGCCAGGTTAAGCCA
	2632	GCGACCTGCGGCGTGTGTATTCTC
•	2633	TCGGTGTATGCACCCTTTCTCCAT
	2634	ACCGTCGAATCTTGCGGCCAATGT
	2635	TAATGCATGCTCCCGGCTCACGTT
20	2636	TCTGTACACACCACGTCGTGCACA
	2637	CATGGGGTTGTCAGACGACACCTA
	2638	AATCTGATGCTCGCTGTAGGACGG
	2639	TCGAAACCGCGGGAAAGGGTAAAA
	2640	CGCTAGGGCCTAGGGGCACAGACA
25	2641	TGGGGACGGCGTCTAATCCTCC
	2642	AGGCATGCACCCATGCTGCCAGAG
	2643	TCCCAATGGCCTGTCAAGCATAAA,
	2644	GAACCTGAGCCTTTGCTAGCACGA
	2645	CGAATTGATAGCGTTACGGGCGAA
30	2646	TTGCACGCGCGCGAACGACTATTC
	2647	TGCGGTGAAGCAGTCCAAGGTCAG
	2648	TGAGGACCATCCAATGGATCGGTT
	2649	TCGGTGATTGGTAATTTGGATCCG
	2650	GCGGGCAGGTAGTTTGACTGGATG
35	2651	CAAGCACAAGCCCATGAAATTTCA
	2652	CGGTACAGCGATAGCCAAGGATA
	2653	CCATGCTCTTCGCTGCAGCATACT
· .	2654	CGCGGCAAAGATTAATTCCCGGCG
	2655	GAAGACCCGTCCGGGTTTCCATAC
40	2656	CTGGCAAGGAGGATGTGGCTCGTG
	2657	CTGTGCAGGGGGTGGCTCTGTTGA
	2658	TTCAATAATGATCACGAGGCCCCA

-		
	2659	TGGTGATGCGAAGCCTTACCTTTG
	2660	CTGCCACCATCTACGGCGCAGTCT
	2661	TTTGCCCAGCTCTCGCAGAAGTTA
	2662	AATTCAGACGCCACATCGACGGTC
5	2663	CCGTGGTCTGCCTCGATTACCTAC
	2664	GGCGAGGAATTTCGGAACCTTATG
	2665	ATCCGATGATCAGATACCGGCTGG
	2666	CCATAGACTAGCGCCAGAGTGCCC
•	2667	TGTGGACCTAGAAAATTGCCAGCC
10	2668	GAATAATCATCGCGGTCCTCATGG
	2669	GGGATTGGCTCTTGGTTGGAAGAA
	2670	ATTGTGCTTCCTCGAACTGGGAAA
	2671	TGCCCCACCCGTAAGTCAATAAT
	2672	TCAGGACCGACGGTGCACTTAGTG
15	2673	CCAGCCGTCACAGTGCAATTTCCG
	2674	CTTAAAGAGGCGCGAAGCACA
	2675	TACCGCTCGCGCATCACAATGA
	2676	CCGAGTGCGCGAAGTGTCTATGTG
	2677	GCACCAGTGCCCGATCAAAACGTA
20	2678	TGCAGGCTTCTCAACGGCTGGGAG
	2679	CTCCGTACGTATCCCGCGTGATAC
	2680	GGAAGTGCAACTTAAAGCCCCGCC
	2681	CGAACCGGCAGTCGATCGTTGCAT
	2682	CCGTTAGTGGTCGACAGTTCGGTT
25	2683	TCAGGCTACGCCCTCAGCACTACA
	2684	TATACGGGCCGAGGTCCGTATTCG
	2685	CCAACGTGTGACGAAGGGCCATTG
	2686	CTGCTCAGCGGTGCTTGAAAGACA
	2687	GGAGATTGACTTCGCGTTTCACCA
30	2688	ATGGTTCAGAAGGTTCGTCGGGTT
	2689	GAGTGGAGCATTCTCGGCCCTCAA
	2690	TGGATTGGAACCAATCCCGCACAA
	2691	TGCTCTTGTGGTCACTCGAGAGGA
	2692	TTGGGAGCACGGTTACCGCCTGTG
35	2693	CAACGCGAGCTAACGGTAGTTTCG
	2694	AACGCTGAGCGCTCACCTTCACCT
	2695	CCGTCGTAGATCTGGAGGCTTCAA
• •	2696	GGATGGCATGGCACACTGTAACC
	2697	TCGCTCGTAGATATCCTTCACGCC
40	2698	GGAGCAATACCGCGTCCAAAACAC
	2699	CGGTGTGCTTCAAATGCCAAAGGA
	2700	TTGTTCAGACTTAGGCGCTGCCCA

	2701	CGGCGGTACTCTTTCCACTGTCCT
	2702	AAGACGATTGCCCACGTGCCAGAG
	2703	AGGTGAGCGCAGGCATATTGCAGT
	2704	CTCGGGCCTGTACAGCAAAGCCGT
5	2705	TGCGCGCTAGTGCTGCCTATGATC
•	2706	CCATCCTTTGCCTTGAGGGTAAGG
	2707	AACAACAGCGTAAGACGGACAGGG
	2708	GAGGCGGTCGAGGCTCACAATATT
·	2709	CGAGGTTAGACGCCTATGACCCAC
10	2710	AACTTGCTATACCGGGCGCAGCAA
	2711	CGCGGTGAATCGCATACACAGCGC
	2712	CACCGAATCAAGCCATATGGCTCT
1	2713	TTCACAGCTATCCTAGGCGCTGCC
:	2714	AGAAGCGCGAAGTGTACCCCGCAT
15	2715	TGCATGGTATTTGCGTGCGATAGG
	2716	GGCCGGACCTATGTGAGATGGAAA
	2717	TCAACCTGAGTCCTGATCCCAAGC
	2718	TGCTTACCGTTCAGGGAGGCGTGT
	2719	GGAGAGTTACGCGATGAGCCACCT
20	2720	CGGTATGCGGTGTACAGCTTTCGT
	2721	GTAAGCCGGGTCTCGTGTCGCCGT
	2722	GCGTAGTGCGAACGCCCCGACCTA
	2723	TCCTCGCGGCTTACGTCAAATTCG
	2724	CGACGTTCAAAGCGGGAGAGGAGG
25	2725	CGAGGCACCCGACATGTTGAGAT
	2726	CTATTTCGTGCCGCGTCGGACAAG
	2727	GGCTGCTCAGTGACGTGTCAACTG.
	2728	ATCACTCGTGCGTACCCGACCGTC
	2729	CGAGATGTCCTATACCGTGGCGAA
30	2730	TCACACCGAGCCCCATAAATGAAA
	2731	AGCTACGTGTCTCGAGCAAAAGCG
	2732	TCAGGGCGAGTTTTTTCAGCGGCG
	2733	TTCGTTCTGTCTATTTTTGCCCCG
	2734	TGGTATGCCCAGGATCCAGCCTAC
35	2735	TCTCAGTCGTTAGGCCAATGGCGG
	2736	AAAGATCACCGTGGAGCGATCGGC
	2737	TAGCAGGACTTGCACTCGTGATGC
	2738	TGCCCACGGTACCGTTCAAGGCTG
	2739	TGAGGTGCGTCGCCTAAGTAATG
40	2740	AGCAAGGGTTACAACCCGCAACCC
	2741	CACAACAGCCAGTATTCGCCACAA
	2742	GGCAACACCATACTCGACGAGCTC

•	2743	GGCTGGATTGACAATTTAGCCCCT
	2744	CGTGAGAAATGCTACACGCGTCAG
	2745	CGCATCTGCCCCATTTTGTTCCTT
	2746	GTCGGCCTAGTCGGCAGAACGGTG
5	2747	TCGACACGCGTAGCAGCGTGGACA
	2748	TCCCTCACCTTCCAAAAATGTGCT
	2749	GGGCAAGAACATGAGAACAGACCG
	2750	TCGTCCTGGTACGACTTGCGTAGA
•	2751	TGGCGGTTGCATGTGATCAAG
10	2752	CCTCGCGTGAGTAAAAACCGTCCG
	2753	ACTTCCGCCACAGAATGCGGCCAG
	2754	GTGTAGAGCTTGGGTAGCCCCGTT
	2755	CGCAGCATCCGAGTTAACACACAT
	2756	ATGAGCCTGGGATGATCCGCTGGT
15	2757	CCTGGCATAAGTGCCGACATGCTT
	2758	GCGCATGAAAAACTACGACGGACG
	2759	AAAGATGGGTCGATGGGAGCGTCT
	2760	ATCCTGGGCACGAGCGGATTTATC
	2761	TCACCGCATTTGATAGTTACGCGA
20	2762	TGGTGGAGCGGACTCTGGTGTTAT
	2763	CACAATGAAAAAACAATGGCCCCA
	2764	CCTTGCCGCGCTTGTGGTACCAAC
	2765	CCGAGACCTTTGCCACACGAAAGA
	2766	ACCGCGGTGTACACCTGAGCAGGC
25	2767	GTCGTACGCTTACCGCAGCGGAGA
	2768	TCGTAATTTGACCGACACACGCAG
	2769	CCTAGACGGATACCCTGAGCGGAA
	2770	AAGCGACAGCAGAGGTTCAGTCGC
•	2771	GCGTGGACGATATCACCTGGGCGT
30	2772	GTCGGAGAGCCAGTGGTACGGCTT
	2773	TACCCTCCGGACCAGCTGTAATGA
	2774	TATCCGCACGGTATAGCAGTTGCA
	2775	CATCAGTCGGGCTACCTTCAGCCT
	2776	CGGATTAATGCCTTTCCTCGGAAT
35	2777	TTCGTCGTGCCAAGCTAATGCAAG
	2778	CCACTACGGATCAGCACAGGTGTC
	2779	GGCCGAGACCACCAGTAACAGGTT
	2780	CGCGCGAAGCATTGAAGTTACTA
	2781	TCGGCTTACCGCTTCGTCTGACTT
40	2782	GACTGACGTCAAGGCAAGCACAC
	2783	AGAGGAAGGAGGGCTGTGACAGA
	2784	TTCCAATGCGAGAGATGGCAGGCT

	2785	AAATGGGGTGCTTCGAATATGTCG
	2786	GCTGTCGGATTATTGCACGCCTGT
	2787	CCGACTTTGTTTATGTTGCTGGCG
	2788	GCTGCGATATAACCCGTCCCAGAA
5	2789	TGAGCTGGGCGTCAACTCCGAAGA
	2790	CCCAAGCATCCTAAATCTCCCTCG
	2791	CGACAGCAATCCACATGCATTCTT
•	2792	TGAATGGTCGGGAAACCAATGCAT
	2793	CTTTGCATCGAGATGCGGGGTAGC
10	2794	TCCATTTCCTCCGCAACTCTCAGG
	2795	CCACTACGCCATCCTGACAACGAG
	2796	TAGTAAGGCCAATGTACGCCGTCC
	2797	GTCATGCATATGGGGCCTGTTTTC
	2798	ACCGGTAGACGTTAGCGGGTTCAA
15	2799	TTGGTTCAAACGGCCACACGTCTC
	2800	GACACAAACTGCAAGGGAGGCATG
	2801	CTCGAGCGCTGTCATCATATCGGC
	2802	GCGGCTAAGGCACAAGTAGACGTG
	2803	ACAGCCTAAATGGCGCAAGACCGA
20	2804	GCCAAATGCTTGGAATTTGCTTCG
	2805	CCGATGATGTAAGCCGTCGGCCCT
	2806	AGGAGCAAACAACGCCAGTGACA
	2807	ACGAATTGGGTAGCCGGACTGAGA
	2808	CTGTTCCAGTTCGGCAAGTGCGGC
25	2809	AGACAAGTCAGGAACGCGTTTCCG
	2810	AGACGACGGCCAGATACGCTGCCA
	2811	AGGAAGCGCTTCTTCCGGTTCTTC
	2812	GATGGACGCAAACACAAGGCGATC
	2813	CGCATAGCAGTCTCCGCATCTTGG
30	2814	TGGTTCCGGTGTGCAACAGATAAA
	2815	CCGTATGCCACCTCCAGAACTCAA
	2816	GTAAAGGAACCCCTCGGGAATCCT
	2817	GCCTGATGCTCGTTAAAATTGCGT
	2818	TCGCACTTGGACCATGAGATCTGA
35	2819	TTCTCAGGCTGGGCAAGAGTCTGT
	2820	CGGACCTGGGGATGCTGGGATTAC
	2821	TCGAGCCGATAGGGTTGGCATTGC
•	2822	TACGTGTCCCACACACGTCGTA
	2823	TGTGAAATTCGCGTTTCGCATCTT
40	2824	TTGCAATGCTCCAAAAAAACTGCC
	2825	TCTCATCATGGCTGTGGCTTTGAC
	2826	ATTACACCGCTTGGTTTGGAGTGG

WO 02/16649

2828 GAGATCAGACCGTGTCGGATGCTG		2827	GCCGTGCAATGCACAGAGTTCAAG
2830 CCGATCGCCGTTTATGTCTACGGC		2828	GAGATCAGACCGTGTCGGATGCTG
5 2831 GAAAATCACGGTAAGGCACGTTCG 2832 GATTCTCGCTTCCCAACGAGCATA 2833 CCAGAGCAGCATTCCACAATGGTG 2834 TGTGAAATGTGGCAGTCTCAGGGA 2835 CGATCCTGCGTGCTCATCCAGGC 2836 CCCTCAAGTGGGCAGGGTTTTCA 2837 TCGCCTCCGCCTCGTGTGTAGAAG 2838 TTCGCTTTCAGCTCATTGGAACGA 2839 TGTAATCTGAACAAGCGGACCCCT 2840 TGGAATCTTTCATGTTAACCGCTCGGT 2841 GGCTTTCATCTTTAACCGCTCGGT 2842 TGATCCGAGCCATTCCTAATCACC 2843 TGGTAGGCGTAGTCCTAACACC 2844 AGGCATCGGTAAGAAGGCCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGAGCCTAGCGT 2848 AGGCTTGCAACATGGGTAGCC 2849 GCGTGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCC 2851 GCGACTCATATGCGTCGCCATTG 2852 GGTGCACTCATATTCCGATCCATTA 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCCGAGCGTATC 2855 <t< td=""><td></td><td>2829</td><td>CCACCTATCTTGATGCGACCTGGA</td></t<>		2829	CCACCTATCTTGATGCGACCTGGA
2832 GATTCTCGCTTCCCAACGAGCATA 2833 CCAGAGCAGCATTCCACAATGGTG 2834 TGTGAAATGTGGCAGTCTCAGGGA 2835 CGATCCTGCGTGCCTCATCCAGGC 2836 CCCTCAAGTGGGCGAGGGTTTTCA 2837 TCGCCTCCGCCTCGTGTGTAGAAG 2838 TTCGCTTTCAGCTCATTGGAACGA 2839 TGTAATCTGAACAACGGGACCCT 2840 TGGAATCTTTCTTGAGCGCCCTGGT 2841 GGCTTTCATCTTTAACCGCTCGGT 2842 TGATCCGAGCCATTCCTAATCACC 2843 TGGTAGGCGTGATGTCCTAACCA 2844 AGGCATCGGTAAGAAGACCAA 2844 AGGCATCGGTAAGAAGACCAACAA 2845 CGCCGCGAACACATCCTTATTATT 2846 ACATGGACAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGAGCCTATGCCAACAACAAATTACGCCCGTCAA 2848 AGGCTTGCGAACAATGCGTCAGCACAACAATGCACCACCACACACA		2830	CCGATCGCCGTTTATGTCTACGGC
2833 CCAGAGCAGCATTCCACAATGGTG 2834 TGTGAAATGTGGCAGTCTCAGGGA 2835 CGATCCTGCGTGCCTCATCCAGGC 2836 CCCTCAAGTGGGCGAGGGTTTCA 2837 TCGCCTCCGCCTCGTGTGTAGAAG 2838 TTCGCTTCAACCCGTCCTCATGTAGAAG 2839 TGTAATCTGAACAAGCGGACCCCT 2840 TGGAATCTTTCTTTGAGCGCCTGGT 2841 GGCTTCATCTTTAACCGCTCGGT 2842 TGATCCGAGCCATTCCTAATCACC 2843 TGGTAGGCGTGATGTCCTAACCAC 2844 AGGCATCGGTAAGAAGGCCCTTATTATT 20 2846 ACATGGACGAACTCTTATTATT 20 2846 ACATGGACGAAATTACGCCCGTCA 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGGCC 2851 GCGACTCGTAAGGAGAGCCCCCC 2852 GGTGCACTCATATGCGCCGATAT 2853 CTGTCCCACGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAACCGC 2855 GCACTCATTTCCGCAACCTGCCCCC 2855 GCACTCATTTCCGCAACCTGCCCCCCCCCCCCCCCCCCC	5	2831	GAAAATCACGGTAAGGCACGTTCG
2834 TGTGAAATGTGGCAGTCTCAGGGA 2835 CGATCCTGCGTGCCTCATCCAGGC 2836 CCCTCAAGTGGGCAGGGTTTTCA 2837 TCGCCTCCGCCTCGTGTGTAGAAG 2838 TTGGCTTTCAGCTCATTGGAACGA 2839 TGTAATCTGAACAAGCGGACCCCT 2840 TGGAATCTTTTAACCGCTCGGT 2841 GGCTTCATCTTTAACCGCTCGGTA 2842 TGATCCGAGCGATTCCTAATCACC 2843 TGGTAGGCGTGATTCCTAATCACC 2844 AGGCATGGGTAAGAAGGCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGCAC 2849 GCGTGGGCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTATGGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCATCGT 2855 GCACTCAGTTTCCGCATCGT 2855 GCACTCAGTTTCCGCATCGT 2855 GCACTCAGTTTCCGCATCGT 2856 GTGAGGTTCACGTAAGGCACCGCTTATTATTCGAGACCCTTGCTCCTTGTCCCCTTGTCCCTTGTCCCCTTGTCCCCTTGTCCCCTTGTCCCCTTGTCCCCTTGTCCCCTTGTCCCCTTGTCCCCTTGTCCCCTTGTCCCCAGCGTATT 2856 GCACTCAGTTTCCGCAACCTGCCTACTTCCCCAGCGTATTCCCCTTGTCCCCAGCGTATTCCCCTTGTCCCCAGCGTATTCCCCTTGTCCCCTTGTCCCCAGCGTATTCCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCCTTGTCCCCAGCGTATTCCTTGTCCCAGCGTACCTCCCCTCCCCCCCC		2832	GATTCTCGCTTCCCAACGAGCATA
2835		2833	CCAGAGCAGCATTCCACAATGGTG
10		2834	TGTGAAATGTGGCAGTCTCAGGGA
2837 TCGCCTCGGCTCGTGTGTAGAAG 2838 TTCGCTTTCAGCTCATTGGAACGA 2839 TGTAATCTGAACAAGCGGACCCCT 2840 TGGAATCTTTCTTGAGCGCCGTGA 2841 GGCTTTCATCTTTAACCGCTCGGT 2842 TGATCCGAGCCATTCCTAATCACC 2843 TGGTAGGCGTGATGTCCTACGCAA 2844 AGGCATCGGTAAGAAGGCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGTACAC 2849 GCGTGGGCCTTGCTCTGTTTAAC 2850 GAATACAGAGCGTCCGATAT 2850 GAATACAGAGCGTCCGATAT 2851 GCGACTCTGTAGGACACCTGCCCCCCCCCCCCCCCCCCC		2835	CGATCCTGCGTGCCTCATCCAGGC
2838 TTCGCTTTCAGCTCATTGGAACGA 2839 TGTAATCTGAACAAGCGGACCCCT 2840 TGGAATCTTTCTTGAGCGCCGTGA 15 2841 GGCTTCATCTTTAACCGCTCGGT 2842 TGATCCGAGCCATTCCTAATCACC 2843 TGGTAGGCGTGATGTCCTACGCAA 2844 AGGCATCGGTAAGAAGGCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 20 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGTGAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTTATGACGCCGTCA 2852 GGTGCACTCATATGGTCCCC 2853 CTGTCCCACGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 30 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGCCCAGCGTAT 2858 GCATTGATATGGTCGCATCTAGGCC 2859 GTGGGTTTAAGTGACAACCGGACGC 2859 GTGGGTTTAAGTGACAACCGGACGC 2859 GTGGGTTTAAGTGACAACCGACGC 2859 GTGGGTTTAAGTGACAACCGACCC 2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGAACCTGCTACC 2862 CGGGGAAGAACGACCACC 2864 ACGCGTCGATGAGGCACACC 2864 ACGCGTCGATGAAGCCACCC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA	10	2836	CCCTCAAGTGGGCGAGGGTTTTCA
2839 TGTAATCTGAACAAGCGGACCCCT 2840 TGGAATCTTTCTTGAGCGCCGTGA TGGAATCTTTCTTGAGCGCCGTGA 2841 GGCTTCATCTTTAACCGCTCGGT 2842 TGATCCGAGCCATTCCTAATCACC 2843 TGGTAGGCGTGATGTCCTAACCCC 2844 AGGCATCGGTAAGAAGGCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGCCC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGGCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCCGCATCGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 2850 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATCGCACC 2864 ACGCGTCGATAATGCGCAACCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACCACGACTGGGG 2866 TCCGCGGTTGCCGGTTTGTTAAGAACACGAACGAACCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACCAGTAACGCACTGCGC 2866 TCCGCGGTTGCCGGTTTGTTAAGAACACGAACGAACCACCACC 2866 TCCGCGGTTGCCGGTTTGTTAAGAACCACGAACCACCACCACCACCACCACCACCACCAC		2837	TCGCCTCGCCTCGTGTGTAGAAG
2840 TGGAATCTTTCTTGAGCGCCGTGA		2838	TTCGCTTTCAGCTCATTGGAACGA
15		2839	TGTAATCTGAACAAGCGGACCCCT
2842 TGATCCGAGCCATTCCTAATCACC 2843 TGGTAGGCGTGATGTCCTACGCAA 2844 AGGCATCGGTAAGAAGGCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGTGAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGGCC 2851 GCGACTCTGTAGGGAGCCGATAT 2852 GGTGCACTCATAGGCC 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCCATCG 2855 GCACTCAGTTCCGCATCGCC 2855 GCACTCAGTTCCCATCG 2856 GTGAGGTTCACGTAAGGCC 2857 GTAACGCCTTTGTCCCAGCGTAT 2858 GCATTGATAGGTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2850 CAAAACCCTGCCGAAGATGTTGGT 2850 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATCCCACC 2864 ACGCGTCGATGAACTAAGCCTCGC 2865 TTCTCCTGACGAGTACGAGTGGG 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2866 TCCGCGGTTGCCGGTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG		2840	TGGAATCTTTCTTGAGCGCCGTGA
2844 AGGCATCGGTAAGAAGGCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGAACCTAGCGT 2848 AGGCTTGCGAACATGGGTAGCGT 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCATCTACTT 2855 GCACTCAGTTTCCGATATCCCATG 2857 GTAACGCCTTTGTCCCATGGCA 2858 GCATTGATATGGTCGCATCTACTT 2858 GCATTGATATGGTCGCATCTACTT 2859 GTGGGTTTAAGGCACAGCG 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACCTGAACTACCC 2862 CGGGAAGAACCTGAACT 2863 TGGTTACGTTATGCGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGAGTGGG 40 2866 TCCGCGGTTGCCGGTTTTTAGGA 2867 TGGCGATCTTTCAGGGGATGATG	15	2841	GGCTTTCATCTTTAACCGCTCGGT
2844 AGGCATCGGTAAGAAGGCCCTATG 2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGAACCTAGCGT 2848 AGGCTTGCGAACATGGTAGTGAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTATCCCATG 2859 GTGGGTTTAAGTGACAACGGACGC 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACCTGAACTAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGATCTTCAGGGGATGATCGCATGAACTGCAGTGGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA		2842	TGATCCGAGCCATTCCTAATCACC
2845 CGCCGCGAGACGATCCTTATTATT 2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGTGAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 25 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT. 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG		2843	TGGTAGGCGTGATGTCCTACGCAA
2846 ACATGGACGAAATTACGCCCGTCA 2847 ACAGAAAGGTGGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGTGAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGACGGATTCGCTACAT 2863 TGGTTAGCTTATGTCGGAGCACCC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 40 2867 TGGCGCATCTTTCAGGGGATGATC		2844	AGGCATCGGTAAGAAGGCCCTATG
2847 ACAGAAAGGTGGGGAGCCTAGCGT 2848 AGGCTTGCGAACATGGGTAGTGAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGATTCCCATG 30 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGACCGATCCTACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTAAGGA 40 2866 TCCGCGGTTGCCGGTTTAAGGA 40 2866 TCCGCGGTTGCCGGTTTAAGGA 40 2867 TGGCGCATCTTTCAGGAGATGATG		2845	CGCCGCGAGACGATCCTTATTATT
2848 AGGCTTGCGAACATGGGTAGTGAC 2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT. 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 30 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 40 2867 TGGCGCATCTTTCAGGGGATGATG	20	2846	ACATGGACGAAATTACGCCCGTCA
2849 GCGTGGGCCTTGCTCCTGTTTAAC 2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGAAGAACCGGATTCGCTACAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG		2847	ACAGAAAGGTGGGGAGCCTAGCGT
2850 GAATACAGAGCGTCCGATGTGCCC 2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT. 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 30 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTACAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA		2848	AGGCTTGCGAACATGGGTAGTGAC
2851 GCGACTCTGTAGGGAGCGCGATAT 2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTACAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA		2849	GCGTGGGCCTTGCTCCTGTTTAAC
2852 GGTGCACTCATATGCGTCGCATCG 2853 CTGTCCCACGGGGAAACCTTACTT	,	2850	GAATACAGAGCGTCCGATGTGCCC
2853 CTGTCCCACGGGGAAACCTTACTT 2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG	25	2851	GCGACTCTGTAGGGAGCGCGATAT
2854 TGGCTTACTGTCGCAATCTAGGCC 2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATCCCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGGATGATG		2852	GGTGCACTCATATGCGTCGCATCG
2855 GCACTCAGTTTCCGGTATCCCATG 2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG		2853	CTGTCCCACGGGGAAACCTTACTT
2856 GTGAGGTTCACGTAAGGCACAGCG 2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 35 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGGATGATG		2854	TGGCTTACTGTCGCAATCTAGGCC
2857 GTAACGCCTTTGTCCCCAGCGTAT 2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGGATGATG		2855	GCACTCAGTTTCCGGTATCCCATG
2858 GCATTGATATGGTCGGTCTCGCCT 2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGGATGATG	30	2856	GTGAGGTTCACGTAAGGCACAGCG
2859 GTGGGTTTAAGTGACAACGGACGC 2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGGATGATG		2857	GTAACGCCTTTGTCCCCAGCGTAT
2860 CAAAACCCTGCCGAAGATGTTGGT 2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG		2858	GCATTGATATGGTCGGTCTCGCCT
2861 TCCGAGGAGACTGAACCTGCTACC 2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGGATGATG		2859	GTGGGTTTAAGTGACAACGGACGC
2862 CGGGGAAGAACGGATTCGCTAAAT 2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGGATGATG		2860	CAAAACCCTGCCGAAGATGTTGGT
2863 TGGTTAGCTTATGTCGGAGCCACC 2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG	35	2861	TCCGAGGAGACTGAACCTGCTACC
2864 ACGCGTCGATGAACTAAGGCTCGC 2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG		2862	CGGGGAAGAACGGATTCGCTAAAT
2865 TTCTCCTGACGAGTACGCAGTGGG 40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG		2863	TGGTTAGCTTATGTCGGAGCCACC
40 2866 TCCGCGGTTGCCGGTTTGTTAGGA 2867 TGGCGCATCTTTCAGGGGATGATG	•	2864	ACGCGTCGATGAACTAAGGCTCGC
2867 TGGCGCATCTTTCAGGGGATGATG		2865	TTCTCCTGACGAGTACGCAGTGGG
	40 .	2866	TCCGCGGTTGCCGGTTTGTTAGGA
2868 TCTTTGGTCCTTGGTGTTTACGCG		2867	TGGCGCATCTTTCAGGGGATGATG
		2868	TCTTTGGTCCTTGGTGTTTACGCG

	2869	GAGAACTCCCGCTACAAAGGAGCC
	2870	TTAACGTGGGAACCGTTGGTGAAT
	2871	GGGACACCATCCTTGGGTTTGTTA
	2872	CAACAAACCGCCTTGGGAAGTGAC
5	2873	TTGAAGGCCACCGATACTGATCGC
	2874	TCGTAATAGAACTGCGCCCAATGC
	2875	GGCACGTTGCCCAAGTTGGATCCA
	2876	ACATAGCTTGGCCGGACACCCACC
	2877	CTTGCCGCCTTGCGAGTGGCTAAA
10	2878	AGTTCCGCGTCCTACTTCAACGCT
	2879	AATGGCTCGCCAGATACCGCAGCC
	2880	CAAAAGGCGTGTCCGAACTTTTCA
	2881	CGTCCACTTAGGTGGAGATACGCC
	2882	GAGCCTCTTCGTCCTGAAGACCGA
15	2883	AACATCAAGCGGCAATCTCCCTTC
	2884	CGTCCTGACATTATTAGCGCGTGC
,	2885	TGTGCAGACCTAACGACCTACGG
	2886	TTAGGTCGGCCTAGACCCTCCGTA
	2887	TCACATCGCTTAACTGAGCGCATT
20	2888	AGACCTTCCCACGCGAGATGCTAC
	2889	TTCTTGCCAAAATGTGTCCAACCA
	2890	CAGTTTTCATTGCAGCGAAAGCAA
	2891	GTGCCGATCCCGAGACAAGTTCCG
	2892	CATCCGGCCTCAGTGATTCTTACC
25	2893	TGCTGGAAGCCACAAACGTTACGT
	2894	GAACGGCCAGGGGACAACTATCGT
	2895	TCATCTAGGTCGAAGCGCAAGACA
	2896	TTTGGTTACCAGCACCCATGTTCC
	2897	GACAACAGTCTGTCCGCCACATCC
30	2898	GCCAACAGGAGATGCTTGCACCAT
	2899	CTAAGGACGCATTGACCCCTGAAC
	2900	GGTCGCGTAGTGAGTCAGAGGCGT
	2901	TTACCTCATGAACCCTTCGCGGCG
	2902	TATACAGCATCGTCGCCGGGCATA
35	2903	GCTTAGTGGCGTCTTCGTCGTAGG
	2904	TGCACTCCGCAACCTTGTGAAATC
	2905	AACCCGTCATGCCGACTCCATCTA
•••	2906	AGCACTAGTGGCGTGCGACTTTGC
	2907	TAAAAAGTGCCGCTAACCACGGAG
40	2908	CGCGGAATATTTGTCGTCCGATTC
	2909	TTCTGCTATGCGTATGGGGGCCCG
	2910	CGAACTACTGCGTCAGCCTCTCCC

·	2911	AGATGACGAATTAGCGGGGTTGGG
	2912	AATAACAGTGGCAATGAGCGGGAA
	2913	ATATGTTGATTCCCGTGCTGCACA
	2914	AGAGTGGGCACCACCAGGCAGACA
5	2915	AGGCCTGGGTTTCTGCGTCTTAGT
	2916	ATGACTTCAGGCACCTCAGCACCT
	2917	CGGACGTGACAAACGGACATACCC
	2918	CAAGTGTTTCGGCCCAACTCTCGA
	2919	GAACCCTTATCGGGATAGGCCCAA
10	2920	CAGGACGATACCAAGCAGAACGCC
	2921	GCGTCTTGTGATTCTGCCCTAACC
	2922	AAACAACCATCAATGTCGGGTCCA
	2923	TGTAAAGACCAGTTGGCGGCTCTC
	2924	GCGTTTTGACTCGGTGGTCAGTCC
15	2925	TGTATGGAGGCACGGCAAAGTCTT
	2926	TTACCTAGGTTCCCGCTGACACGC
	2927	CGGCTCGTGGGAATCCTCTGAAGA
	2928	CCGGCTCGGGCATTTCTTGGACCT
	2929	CAACGATGGAATTGTCTCCTTGGG
20	2930	CGGGCTATTATCGGGATTATGGGG
	2931	ACGTACCTGAAGATGCAACGGCGG
	2932	CATGGTGCAGCACGCACAAGTAAC
	2933	CGTCGATATGTCGGGCTATTGCCT
	2934	AAATGCAGGGTTAAGAGGAGGCCC
25	2935	TGCAAGGACTGATTCTCCCGCTGT
	2936	GTTTTCGGAACGCCGCAGAGTTCA
	2937	CCCTCGATGGTTCATTGGGAAGAC
	2938	CCTGTTCGCTCATAATGGTGGGGT
	2939	GAAAGAACGATCGCGGAATAGCTG
30	2940	TCCACCTGTGTGCCTTTATCCTCA
	2941	TCCTCCGTGAACCGCTGTAGCGCA
	2942	GCCCCAGAGAGTCCCTGCTCCCTA
	2943	TTGAGATTTTTACGGTTTCCCCGC
	2944	CGATAGGACGTGGGCATGTCCCAG
35	2945	CCCGAACTTTGAGATCCGAGAACA
	2946	TCACGCAGCTAGAGTCGCGTTACC
	2947	AGATAACGCCCACTGACGACATGC
•	2948	ACGCTTAGAGCTCCGATGCCGAAT
	2949	GGGCGATAACTTAAATTGTGCCGC
40	2950	AGGACGTTCATGCGTCTCTTTGCA
	2951	CGGCTGGTAGAACTGTGCATCGTA
	2952	TTCGAAATGTACTTCCCACGCGGA

_	2953	GCAGGTTGGCTGTCTTGTGGAGTC
	2954	CGTTTGGTTGCTTCAAGAACCGGT
	2955	CATACTTGGTTGTTGCCCACGC
	2956	GGGGTCGGCTGAAGTGTTTTATCC
5	2957	GTGACGGTTGATTAACGACCGTGG
	2958	CTTATGGCAGCGCCAGGGGCACTC
	2959	GTTAGGGGACCCACCTCGTTTGAT
	2960	CAATATAAATGCCGCGCATCGAGT
	2961	TTCTTCATCAGCAGTCCCCGAGAA
10	2962	AGTTGCGTCCCTTGATGGCATTTT
	2963	CCGACTTTCGTCCACGATTCCTCT
	2964	ACTTGGCCGGACGACAGCAAAGAC
	2965	CACCGCGGTAGATGTATCCCTTCC
	2966	GTTAGCTTTAGCTCGGCACGCCTG
15	2967	GCGCATAAGAAGGTCCGCTAAAGC
	2968	ACATCATCACGCCTGGCGTGACCA
	2969	CCGGCGAAGTTTGGTGTGATTAGA
	2970	TGGGAAGGCAACATGAAAGTCCTT
,	2971	TGCACCGCCAGATTGTGCTGAGTC
20	2972	ACATGTGAAGTGAGTGCCGTCCAA
	2973	CCTCTGGAGGGGATTAGCCACGCT
	2974	CAATAGCCATGTCACTGGCAACGG
	2975	ACCCATGGTTCCAACGTTCTTTCG
	2976	AATCTGGTCTTGGCATCCTCCAAA
25	2977	GTATACCGGTGCATGCTGAAGCAA
	2978	AGTGTTCTGGTTCGAGTCGACCCG
	2979	CGGGTATTCGACACACGAGGAC
	2980	AGTGCAACAGAGCGCTTGGTCACG
	2981	TGCACCTATAGTTTGGTGCCGGTG
30	2982	TGCTCACGTACCAGGACACTCGAG
·	2983	AGTCCACACCTCGAACGACAGGCG
	2984	CGCCGACCTGGTCAAAGAGCGCTA
	2985	GCCTAAGGGCCTGTCGTTTTCCGA
	2986	TGTGCGTGCTTATGTTCCGGTCTC
35	2987	CAACCGTTGGCCGTAACAAAAATC
	2988	CGAGAATCAAGGCGTACCATCTCG
	2989	GCGTAGGCAGCCTCCAGGGAATGG
	2990	GATGGTGTTTTCGCCAAGACCAAT
	2991	CAAGCTAGGGACAGAATTGCCCAC
40	2992	TAAATAGGCGAAACCGTTCGTGGC
	2993	TCAAGACCCGCAATGTGTTCATGT
	2994	GCGGCTGGTAGACTCTTTGCACAA

	2995	CAGGCGTAAACCTGAACCAAACGG
	2996	GCCGATCTGTGCTGAGGTTCATCA
[2997	GATATCGCGTCGCAATATCACGCG
	2998	CCCTGCACGATTAAGCCACCTGTA
5	2999	TGACATACAGATTTGTGTGGCCCC
	3000	GTTTGCGGCCGGTATTCACGATGT
<u> </u>	3001	TTTTACCTGGCCATTGGTGAGCTC
	3002	CTCTACTCAATCAGGGTGGGAGCG
[. 3003	GGGTTGGAGGGAGTCTTGACCATT
10	3004	CGAGGTCGGTAAGGAAAAGCTTGC
	3005	CTTTACGCAGGCACCTCCGAGCTG
	3006	CATTGTATGGCCACGTGATTGACG
	3007	GTACGGTGCGAGAGCGCCTAAGCG
	3008	TTCCATATGCCGAAATGGACACAA
15	3009	TACGCCTTCCGCTATAGCTCGTGA
	3010	CTGGCCGCTCGGCTAGCCATCAAT
[3011	CTGTACGCCACGCATGAAGGGTGA
	3012	CTTACGCGTCCAATGACTGCCACC
	3013	CACATGGTAGAACTCGATCGGCAG
20	3014	CGCACCGGAAACTAGTGGATGTGT
	3015	ACTATGGCAACCGACACTTGGTCC
	3016	CTAGTTTGCGCTACCCACCTGCAA
	3017	TAGTATCGCCCGACAATAGCCTGG
	3018	CCAATATTTACGGCCTGATCAGCG
25	3019	ATGGCTATCCCTTACTGGCTCGCC
	3020	CAAAACTTGGCAGGCTTGGGACTT
	3021	AATGACCGAGGCTGCAAGATTGAC
	3022	ATCATCTTTCGCCACCAGACATGG
	3023	CGTTATTACCGATGCACACGTTGC
30	3024	CACACTGGCAATCGCCTCCCTCGT
	3025	AGGTTGGTAGGAAATCGGAGCGCT
	3026	GCTGAACCACTGTGGTCAAGATGC
	3027	CGTTGAGTACGACACGGTCGAGGT
	3028	TTTTTCCGCCGCAATGTGATCTAA
35	3029	ACAATACCTCGACCGCTCAGCATC
	3030	AGTATCCCTGCTGGCATACACGGG
	3031	TCTTGGGCTCGGTAGTTCAGCACT
	3032	CCCTATATCGAGCCCATAGGGCGA
•	3033	CACGAGTGGCATCAACGGCCTACT
40	3034	TGCAGGGTCCGATGTGTTCAAGTA
	3035	GCTTGACCGCTGCTAACCTCGTAC
	3036	TTTTGCATCTCCACCATCCAGA

3037 AGAATGTGCACCGGCTTCCATCTT	_
3039 GGAGCTCCTGTTTCATCGAGGCTA	
3040 CATTTTGCTGTTTGGGGGTCCCAT	
3041	
3042 GCGCTCAAGTCGATTGCCACAACC	
3043 CGGTTGACGGAGACCGCAGTACTT 3044 ACTCAAGACCGGTGCACCTCCAGC 3045 TGGATGTCGAGCGTGTCTGAGTTT 10 3046 TTTCGTGTGCATGCAAGTAATGGC 3047 GCGGCGTTAGCTCGAGCTAACAAA 3048 GGGTATCCTGCCCGAGCAGTAATT 3049 GGCTCCGAATCTCTTGTCCGGTCT 3050 AGGATGGCCACGCCGAATCAAAGT 15 3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3044 ACTCAAGACCGGTGCACCTCCAGC 3045 TGGATGTCGAGCGTGTCTGAGTTT 10 3046 TTTCGTGTGCATGCAAGTAATGGC 3047 GCGGCGTTAGCTCGAGCTAACAAA 3048 GGGTATCCTGCCCGAGCAGTAATT 3049 GGCTCCGAATCTCTTGTCCGGTCT 3050 AGGATGGCCACGCCGAATCAAAGT 3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3045 TGGATGTCGAGCGTGTCTGAGTTT	
10 3046 TTTCGTGTGCATGCAAGTAATGGC 3047 GCGGCGTTAGCTCGAGCTAACAAA 3048 GGGTATCCTGCCCGAGCAGTAATT 3049 GGCTCCGAATCTCTTGTCCGGTCT 3050 AGGATGGCCACGCCGAATCAAAGT 3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 2061 CTCGTCAAACTTGGCCGAGGAGTC	
3047 GCGGCGTTAGCTCGAGCTAACAAA 3048 GGGTATCCTGCCCGAGCAGTAATT 3049 GGCTCCGAATCTCTTGTCCGGTCT 3050 AGGATGGCCACGCCGAATCAAAGT 3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3048 GGGTATCCTGCCGAGCAGTAATT 3049 GGCTCCGAATCTCTTGTCCGGTCT 3050 AGGATGGCCACGCCGAATCAAAGT 3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3049 GGCTCCGAATCTCTTGTCCGGTCT 3050 AGGATGGCCACGCCGAATCAAAGT 3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3050 AGGATGGCCACGCGAATCAAAGT 3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3051 GTGCGGGGACGTTTACATAACGAG 3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3052 ACTTTTGACCTGAGGCCGCTTGCA 3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3053 ACTCCGCTTCAATGGAGACCGTTG 3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3054 GATCGGAATTCGCCGCCATATTGA 3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3055 ATGCGTGCCCATGGAATGACTTTT 20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
20 3056 CCGCATCGCACGAAGGCAGGTCAT 3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3057 CACCCTATGCGTCTCCAATTCCTG 3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3058 TGATATGCATCGCTGAGCCTCTGT 3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3059 AGCTTCACACGCTCACTGAACCTG 3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3060 AACCCGGAACCTCCTCTCACTCGG 25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
25 3061 CTCGTCAAACTTGGCCGAGGAGTC	
3062 GTAGCTGGCAACAGGCAATCAGGA	
3002 GIAGO IGGOANONGGOAN TONGGA	·
3063 CTTGTCACGAATATTCGCCAAGCG	·
3064 CAGTATCTGAAACACGGGGTGCTG	
3065 GGCTAAAATGGGCGCCCACGTGTA	
30 3066 ATGAGAGCCAAGCGCCTCAACTCC	
3067 TATTGTTAGGCACCGCTTCGCGCT	
3068 GGAACTAGATTGCCAGTGCTCGCC	
3069 AGTCGACCCAAGGCAACTGGGTC	
3070 GGTACTGTTAGCTCGACGATGGCC	
35 3071 CCGCAATACTTGACGGTAACAGGG	
3072 AATTCCGGGTTTGAACGGTTGGAA	
3073 GACACGCAATCGGGTCTATGCGAA	
3074 GATTTTGGCGTCATTGCGTGAT	
3075 TGCCATAGGGAGGAAACGCAATTA	
40 3076 GAGGTGCCCATGTTAGTGGTGTCC	
3077 GCTTTAGCGGTCATACGACCACCA	
3078 CCGCTACCAACAATCCGATTAACG	

	3079	CATAGTGGGCTGAAACCCCAGGAA
Ī	3080	GAGGATCTGGCCACATCGAGAAAG
	3081	CTCGTTTGGTACCACGTTTTGCCG
	3082	AATACACGCGGCGTAAACAGACGA
5	3083	TGTCATGGGCCAAATGACAGTGGC
	3084	ACAGCACTTCCGACCCGTGTACGA
	3085	CTCCGTAAAGAGCACAGCTTTGCC
	3086	ACGAACAGGTAGGGATCGGTCCTC
	3087	TGGATCCACCTTACCGCGCCATCG
10	3088	AGTATCAAATAGCGGCGCGCAAG
	3089	GAATTACATTGTGGATGGAGGCGG
	3090	CTCCTCGGGGAGTCGAGGAGTACG
	3091	AGTGTCGAGCCAACTCCCACCAAT
	3092	AAATGACATCCGTTTGGCCACAGC
15	3093	CGAATCATATCGCCATCGAACTGG
	3094	TATAATGCACTCGCTTGGTGCGCA
Į	3095	GCCAAGCAGATGGTAATTATGGCG
	3096	CACGCGGGAAGAGCACGTAGAACT
	3097	TACCCGAGAATTTGGAGAACAGCG
20	3098	TGACGGCAAACTGTGGCATCTATC
	3099	CACAGTGTTCCAGCCCTTGACGAT
	3100	TACCCGCCCACACATGAAAGTTGG
	3101	TGGCATATTTAAGATTCGGCGACG
	3102	ACTGAAAAAAGAACGGGTAGCGGG
25	3103	TCTGACCGCAATAGGTGGTCATTG
	3104	ACTITITGGCGGGCCCTCTCTCGT
	3105	CTGCCCAGATCATTGCGCGATCCG.
	3106	CGGAGGTTAAATGCTTTAACCGGC
	3107	AGGCGTCTCCAAACGTCCTTCTGT
30	3108	AGATGCTATCCTGAGTGGGCCTGC
	3109	ACAGGGTGAAGAGACCGTGGGATG
,	3110	GACTGTCTAACGGACGACGACG
	3111	AGCTGTTAGGACCCGACAACCGGT
	3112	TTGCGTAGTGTGGGCATTTCCTCT
35	3113	ATGCGCGCTTCTTTCCTTGATGTA
	3114	TTAAGGGCGTCCGCGTCTATTCAG
	3115	ACCTTTAAACTTGTACCGCGGCCC
	3116	AGGGATGCAGAGGCACCACATGTT
	3117	CGGTTCGACGTATGAGCATCCGCA
40	3118	CAGGGCGATAGTCACATGGAGGTT
	3119	GCTTGACTGCCCCGTTTCATATGT
	3120	CGAAGGGTTGTGCAATTACCCGA

	3121	AAAACGCACCGCAATGACAAAATT
	3122	ATTCCTGGACAAGACCCTCAACCG
	3123	CCTACCTGCCTGCTAGCGGTGAGG
	3124	GCTCGTAAATGGGGAGGAATTGGA
5	3125	ACATGAAAACAGGCTCAATTGGGG
	3126	GTTCCGCACATGGATTGAGGTCTC
	3127	GGCACCCAATACCACGAAGAAGAA
1	3128	AGGGGCATTTCGAACTCCATCTTT
	3129	CATCATCACAAAGGAACGTCGGTG
10	3130	TAAAGACCCACCGTCAGCAGCAGC
	3131	CCCCAGGCGTAATGCACCACATAG
	3132	GCAGGTCGAACGCTAGTGGTTGAA
	3133	GGAACTTAGGAGTTCACGTCGCCA
	3134	GCAGATACGGCTAGCTGAGGTGGC
15	3135	CACAGGCCTAGAGCCTCGGCGTTC
	. 3136	GTTTTGCGCGCATGAGGTTCATTA
	3137	TTGCGCCTGATGCCAGCAGTACTA
	3138	GATATCAGGCTTTCCCACTGCCGC
	3139	TGCGCGGAGACGGAGATCTATGAA
20	3140	CATTGGTGTTGGCTGAGAGTGGAC
	3141	GTCGGCACTTGGGCACCATTAATA
	3142	ATCGATCGGTGTCTCACCACGGAG
	3143	CGTAGCCTTCCACCGTGTCGATAG
	3144	CGCTCTCCGTCTGAGGAAAAGGGG
25	3145	TCGCCCCAGCCAAGGATATATTGC
	3146	TCTCTTGCAAGGAACTCTGCCGTC
	3147	GTCCTGGACAGACGGAGGGTGTTA
	3148	GCCAAATTAAGCGGGCTCGTAATC
	3149	CCATTTGTTGACCGATGGGAGGGG
30	3150	TGGTCAAAAGAGCACGATCCAGGA
	3151	CGCTACTAAGACGCCCCTGTCCAC
	3152	CATACCTCCCGCTTGGATTCACTG
	3153	CCGCGGAAGGAATGTCATCTACAA
	3154	CACGGGACATTCATTCACAGGACG
35	3155	ACTAGTGAGGCGTGAGGCGGCGT
	3156	AGGAGTCACCCACTCCGCACAAAA
	3157	TCATGACAGCGCACCCCATACCAT
•	3158	GGTAGGGGACTATCGATCGTGCTG
	31.59	ATGTCTCACTACCGCACGTAGCGG
40	3160	TACTGCTCCGGTCTTCCGCAGCTT
	3161	ACGGAGGAGCGACTCGTTCGCTGC
	3162	GAAGTCTGTCGCCGGTGGACGGAC

	3163	CCGTAACGTGTATTCGGACGAGCG
	3164	CGTGGAAGCGACTTAACCAATCGT
	3165	GGCATGGGCTATGCCTCACACTAG
	3166	GGGTCGTATTTCAGCATCGTTCGT
5	3167	AATGGTCGCGCAAACCGTAAGAAT
	3168	CTGGATTCGGTACGTCCAACGTTT
į	3169	CGCAAAAACACCCGTAGCCAAGAA
	3170	TATGGATACGCTTTTGGACTGGGC
	3171	GCTTCAAACGCGCTTCACGCTGGT
10	3172	TACAGCCGCTCTACCTCGCCACC
	3173	TCAACCGATGTCAAAATGCACGTT
•	3174	AGCTCTCCGAAGTAGGGCGGTA
	3175	ACGCACACATGGAGACTTGGCTCC
	3176	TTCTTGAAAGCTAGTGGGGCGCTA
15	3177	CAATCACGGCTGGGCTATTCTGTG
	3178	GTGGCGACCCGTCGGTGAAAGAGT
	3179	CGTCGAATGCCGAACCAGTTAAGT
•	3180	TGCGTATTTGCATGCTCACAGCTG
	3181	CGCAGTTGGTTTGTGCACGGCTGC
20	3182	GTTTTTCCGTGAAAACTGGCATCG
	3183	ACAGGTTCCTCCACCACGATTTGA
	3184	CTAGCGCGCTTTTAGGTCCTTGCG
	3185	CAAAATCAAAGGGATCAACCGGTG
	3186	AACGTAACCCCAGTGAGTCAGGCA
25	3187	TCAACCGGTGCACTTTAGAACGCC
	3188	ATCGCAAAGTTGCAGGCGAATACT
	3189	ATATGTCCCTGGGTGCTGCACAAC.
	3190	TGGCACTTTGTAGTGCTGCGGTGG
	3191	ACGCACGACGTCCTTCTAAGCTCG
30	3192	CCCACGTGCACTATAGGGATTTCG
	3193	CCGCGCTTGGTCAGTCATCCTTGC
	3194	AGCGGCTCAGGGAATAACAACAGG
	3195	ACAACGCGATCGGAGGCAACCAGT
	3196	AGCAATTGCCTCCGTAGAAACCCA
35	3197	GAGTCGTGGCATCGCCTGCTATCG
	3198	TCTATGCAAATACTGCGCTTGCGA
	3199	TCAGCTTAAGTTACGGTGTGGCCG
•	3200	TCCAAGGTCGAACAGGGATCAGAA
	3201	GTTAGGCTGGCGTCAATAGCGCTT
40	3202	GGTGTCATAAGGAAGAGGGCATCG
	3203	CCGGCGGCTAGATCAATATTTCT
	3204	CTAACGTCAAGTTTTACGCCCCGA

	3205	GCAGCACAGTTTTCCGATTTGCGG
	3206	CGCACGCAAGGGGAGGGATGACTG
	3207	CGGGGCCGAAAAGGACGTCACAAG
	3208	TTCTCCAACACGGCTAACCGGTAG
5	3209	TTACAGCCTGGCCCGAGGTAGTTG
	3210	TTTCGGGCAGCATGAGTTATCGAA
	3211	CTACTGGACGCCCTGCTTCGAAGT
	3212	GGTCGTCCGACGTGAAAAGACCAA
	3213	GTTTTCGAGCTCTTTCTCCGCAGG
10	3214	GCGTGAAGGTACCCAGTGTCACAG
	3215	TTTCTGAACGCTTCGACGCAACAC
	3216	TGCTAATAAGCACGCCTAGCCCGT
	3217	AAATTAATTGTGGTGGCTCCGGCG
	3218	TTACAATCCTCGGGCTCACTGACA
15	3219	GCTGAAGGACAAGGCGTGGGCAAC
	3220	GGGATAGGAGACCCTCGCAATGGT
	3221	TTGCAGTACGTCCTTGCGCATGAA
	3222	TTGATCACTGGATTGGGTGCGAAC
	3223	TCTGCAGACGTTGCGAGAGATGAT
20	3224	AGTCTAGCAGGGATCGAAGCGGAT
	3225	GGGGTCCCGCAACAACTAATGAAG
	3226	CAACCTCTTATGTGGTGTGCGCGA
	3227	CTCGCTGGGTTGCTGGAGTAGCAC
	3228	CGTTGTATTGTGCAACGCGAAGTT
25	3229	GGGCTCAAAGTGCCTGAGTCGAAA
	3230	CTGCTGTGCCCTCTCAGTGAGAGC
	3231	CGGACGTACTGTTCGGAGTCCTCA
	3232	GTATACCACCATACCGGGACCGCA
	3233	CTGCTGCGAAGGGAGACACGTCCG
30	3234	AAAGAACGTGGAGGATCCATTGGG
	3235	TCGATTGGCTGATCTCCAGCCTAC
	3236	CTGCGAATTCGAAGGTTGTTACGG
	3237	GCAGGAGGTCAGGAGTACGTGAG
	3238	ACCAACGGAAGGGAACTTAAGGGC
35	3239	ATGATGGAGGCTGCGTTTTGGTCG
	3240	AAGCCCAATTTACCGCTCCGAATA
	3241	CTAGGCTGTGCGGGACTAGAGGTG
	3242	TGCCATCTGACCTGGTGATTGCGT
	3243	GTCGTCAACTTTTATCGCGCACCT
40	3244	TTGAATGTAGGCTGCTGCAAGCGC
	3245	CACCTATCGTGGCCTCTGTCCCAG
	3246	GGAGCGCCCAGTATAATGAACGTG

3247 AATGGGGTTCTTAGGGTGCCGTA 3248 GCCATGAGGAAAAGCACTGGGTCT 3249 TCCGGGTCGTACTGTGTATGATCG 3250 GGAGGTTATGTGCTGCTGATGACG 3251 CTTCAGCCGTGAATGGTGTGAAAG 3252 CTTCAAGGGGTTCGTCTGCTCGTG 3253 TCAGGGGTCACCGATTGGGTTCA 3254 ACGGTCCTCGCATAGTGGTTCA 3255 AGGCGTAAACGCCGGTCATAGTGT 10 3256 GATCTGGTCGGAAACGACACT 3257 CCCATCGATAATTCGACGACA 3258 TGTTTCTCGGACAAACACAGAACGCA 3258 TGTTTCTCGGATAAACAGCACGAT 3259 CGGACCCGGATCAAGTACCGAT 3250 AGCCAAACACAGAACGACGAC 3251 TGAACCCCGATCAATACACCGAT 3252 CGGACCCAGATCAACTGACACAC 3260 AGCCACAGACAAGTAACTCA 3261 TGGAGTTTACATCGGAACACACAGACAC 3262 TCGACCACCGGTACCAACACACACACACACACACACACAC			
3249 TCCGGGTCGTACTGTGTATGATCG	ſ	3247	AATGGGGGTTCTTAGGGTGCCGTA
3250 GGAGGTTATGTGCTGATGACG	,	3248	GCCATGAGGAAAAGCACTGGGTCT
5 3251 CTTCAGCCGTGAATGGTGAAAG 3252 CTTCAAGGGCTTCGTCGCTGGTG 3253 TCAGGGGTCACGCATTGGGTTTCA 3254 ACGGTCCTCGCATAATGGACCACT 3255 AGGCTCACGCATAATGCACACT 3256 GATCTGGTCGGAAAACAGGAGGCC 3257 CCCATCGATGTTATTTCCGACGCA 3258 TGTTTCTCCGCATCAGTACCGCAT 3259 CGCACCGGATCGACAAGTAGTCA 3260 AGCCCAGGATGGACCAGGGG 3261 TGGAGTTACATCGGAACGCAGGG 3262 TCGACCACCGGTACGATACAATCA 3263 GCTTGTGGAATCCGACGGGTCCA 3264 CACATCCACCGTACTGAGGCACAA 3265 GCCGGATGAATCCGCCGGGATTAAA 3266 GCTGGATTACCCCGGGATTAAA 3267 ATTTCCTCGCAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGTTTCAACACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACCGA 3272 GTTGACCCTCCGGATTTAGCACGAACCGA 3273 TACCTCCGGTCTTCACCTGAGAATCTGCTC 3274 GGCGTTCCACATGTATATTGGGTCT 3275		3249	TCCGGGTCGTACTGTGTATGATCG
3252 CTTCAAGGGCTTCGTCGTGGTG	5	3250	GGAGGTTATGTGCTGCTGATGACG
3253 TCAGGGGTCACGCATTGGGTTTCA	5	3251	CTTCAGCCGTGAATGGTGTGAAAG
3254 ACGGTCCTCGCATAATGGACCACT 3255 AGGCGTAAACGCCGGTCATAGTCT 3256 GATCTGGTCGGAAAACAGGAGCGC 3257 CCCATCGATGTTTTTCCGACGCA 3258 TGTTTCTCCGCATCAGTACTCAT 3259 CGGACCCGGATCAGTACCGCAT 3259 CGGACCCGGATCGACAAGTACCGCAT 3259 CGGACCCGGATCGACAAGTACCACAT 3260 AGCCAGAGCATGAACTGGAGCGTC 3261 TGGAGTTTACATCGGAACGCAGGG 3262 TCGACCACCGGTACGATACAATCA 3263 GCTTGTGGAATTCCGACGGTTCCA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACACCCTACTGAGGCACAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATCGACGTTTA 3269 AGGGTTGTCGAAACATGGGGTGA 3270 ACGCGACCTGCTGTCACGGATGGACACA 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTATTGACTCTTCCCG 3274 GGCGTCCACGTGTTAATTGGGTCT 3275 CGCATCACGATCGTAATTGGGTCT 3276 GGGCATTAAGCACGACATCTCCTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGTTTTCTTCCCC 3279 CGCGTCGTCCTCAGAGAATGTTC 3280 TGCTGTGACGATGGTCCTACCCG 3279 CGCGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGTCCTACCCG 3279 CGCGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGTCCTACCCG 3281 GGCGAATGCTCTTCTCCCG 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGACCGACGGG 3284 CATTGAACTCTTTCCCGTCTGGGCA 3285 CTTTCAACCGTAGTGGCTTGGGCA 3286 CCGGTAGGTCGCTTAGGAGCCTA 3287 GGATTGAACACTGACCACCACACACACACACACACACACA		3252	CTTCAAGGGCTTCGTCTGCTCGTG
3255 AGGCGTAAACGCCGGTCATAGTCT	Ī	3253	TCAGGGGTCACGCATTGGGTTTCA
10 3256 GATCTGGTCGGAAAACAGGAGCGC 3257 CCCATCGATGTTATTTCCGACGCA 3258 TGTTTCTCCGCATCAGTACCGCAT 3259 CGGACCCGGATCGACAAGTAGTCA 3260 AGCCAGAGCATGAACAGGAGCGTC 3261 TGGAGTTTACATCGGAACGCAGGG 3262 TCGACCACCGGTACGATACAACAC 3263 GCTTGTGGAATCCGACAATCA 3263 GCTTGTGGAATCCGACAACACAACACA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTCCCTCCGTACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTTGGTG 3271 CGCCTAACTAGGGGAGTAACAGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGGATTTGCTCACGA 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATGTAATTGGGTCT 3276 GGCGATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACCGCGG 3278 GACCATGAGTGTTTAGGAGGGAG 3279 CGCGGTCGTCTCACACATGTTCACCA 3279 CGCGGTCGTCTCACACAGGAATGTTG 3280 TGCTGTGACACTCTTCCCCG 3281 GGCGAATGCTTCTCCCCCG 3281 GGCGAATGCTTCTCCCCG 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAAACACGACCACACA 3283 TATCGACCTGGAACACGACCACACA 3283 TATCGACCTGGAACACGACCACACA 3283 TATCGACCTGGAACACGACCACACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGACCACA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3254	ACGGTCCTCGCATAATGGACCACT
3257 CCCATCGATGTTATTTCCGACGCA	Ī	3255	AGGCGTAAACGCCGGTCATAGTCT
3258 TGTTTCTCGGATCAGTACCGCAT 3259 CGGACCCGGATCACAAGTAGTCA 3260 AGCCAGAGCATGAACTGGAGCGTC 3261 TGGAGTTTACATCGGAACGCAGGG 3262 TCGACCACCGGTACGATACAATCA 3263 GCTTGTGGAATTCCACCGGTTCCA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACCCCGGATTCAA 3267 ATTTCCTCGCAATCGTCTGGTG 3268 GCTCTACGCAATCGTCTGGTG 3269 AGGGTTGCAAATCGTCTGGGTG 3270 ACGCGACCTGCTGCACGGTTA 3269 AGGGTTGCAAACATGGGGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTCCACATGTAATTGGGTCT 3275 CGCATCACGATGATTAGGAGGAA 3276 GGGCATTAAGCACGACTTCGTCA 3277 TTTCCATAATTCGACACCACCACGCGG 3278 GACCATGAGATGCTTTTCTCCCC 3279 CGCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCTACCCC 3281 GGCGAATGCTTCTCCCCG 3282 AAATGCACAGAGGAACTGACCACA 3283 TATCGACCTGGAACACCACCACG 3284 CATTGAAGTCATGAAGCCTGGTG 3285 CTTTCAACCGTAGTGGCTTGGGCA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	10	3256	GATCTGGTCGGAAAACAGGAGCGC
3259	·	3257	CCCATCGATGTTATTTCCGACGCA
3260 AGCCAGAGCATGAACTGGAGCGTC	}	3258	TGTTTCTCCGCATCAGTACCGCAT
15 3261 TGGAGTTTACATCGGAACGCAGGG 3262 TCGACCACCGGTACGATACAATCA 3263 GCTTGTGGAATTCCGACGGTTCCA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGACCTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTCGCC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACACACACA 3283 TATCGACCTGGAACACACACA 3284 CATTGAAGTCATGAAGCCTGGTG 3285 CTTTCAACCGTAGAGACCTTGGCA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAAATCGCCGGAAGATC		3259	CGGACCCGGATCGACAAGTAGTCA
3262 TCGACCACCGGTACGATACAATCA	1	3260	AGCCAGAGCATGAACTGGAGCGTC
3263 GCTTGTGGAATTCCGACGGTTCCA 3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTCACACTGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACCACGCGT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCCGGAAGATC	15	3261	TGGAGTTTACATCGGAACGCAGGG
3264 CACATCCACCCTACTGAGGCACAA 3265 GCCGGATGAATCTGCCTCGCTACA 3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGGTGA 3270 ACGCGACCTGCTGCAGCGTGGTG ACGCGACCTGCTGCAGCGTGGTG ACGCGACCTGCTGCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAAGGAGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TITCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTCTTCTCCACAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3262	TCGACCACCGGTACGATACAATCA
3265 GCCGGATGAATCTGCCTCGCTACA		3263	GCTTGTGGAATTCCGACGGTTCCA
3266 GGTTGCAATTACGCCGGGATTAAA 3267 ATTTCCTCGCAAATCGTCTGGGTG 3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACCACGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAAATCGCCGGAAGATC		3264	CACATCCACCCTACTGAGGCACAA
3267 ATTTCCTCGCAAATCGTCTGGGTG		3265	GCCGGATGAATCTGCCTCGCTACA
3268 GCTCCTACGCCATGTGCACGTTTA 3269 AGGGTTGTCGAAACATGGGGGTGA 3270 ACGCGACCTGCTGTCAGCGTGGTG 3271 CGCCTAACTAGGGGAGTGAACGGA 3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCCTA 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	20	3266	GGTTGCAATTACGCCGGGATTAAA
3269 AGGGTTGTCGAAACATGGGGGTGA	•	3267	ATTTCCTCGCAAATCGTCTGGGTG
3270 ACGCGACCTGCTGTCAGCGTGGTG		3268	GCTCCTACGCCATGTGCACGTTTA
3271 CGCCTAACTAGGGGAGTGAACGGA		3269	AGGGTTGTCGAAACATGGGGGTGA
3272 GTTGACCTCCGGATTTGCTCACGA 3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3270	ACGCGACCTGCTGTCAGCGTGGTG
3273 TACCTCCGTCATTCACTCTTCCCG 3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	25	3271	CGCCTAACTAGGGGAGTGAACGGA
3274 GGCGTTCCACATGTAATTGGGTCT 3275 CGCATCACGATCGTTAGGAGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTT 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3272	GTTGACCTCCGGATTTGCTCACGA
3275 CGCATCACGATCGTTAGGAGGAG 3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3273	TACCTCCGTCATTCACTCTTCCCG
3276 GGGCATTAAGCACGCACTTCGTCA 3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTAGGACA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3274	GGCGTTCCACATGTAATTGGGTCT
3277 TTTCCATAATTCGACACCACGCGG 3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3275	CGCATCACGATCGTTAGGAGGGAG
3278 GACCATGAGATGCTTTTCTTGCGC 3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCCTA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	30	3276	GGGCATTAAGCACGCACTTCGTCA
3279 CGCGGTCGTCCTCAGAGAATGTTG 3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3277	TTTCCATAATTCGACACCACGCGG
3280 TGCTGTGACGATGGCTCCTACCCG 3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3278	GACCATGAGATGCTTTTCTTGCGC
3281 GGCGAATGCTTCTTCGCATCAAGT 3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3279	CGCGGTCGTCCTCAGAGAATGTTG
3282 AAATGCACAGCGGAACTGACCACA 3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3280	TGCTGTGACGATGGCTCCTACCCG
3283 TATCGACCTGGAACACGATCGGTT 3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC	35	3281	GGCGAATGCTTCTTCGCATCAAGT
3284 CATTGAAGTCATGAAGCCTGGTGG 3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3282	AAATGCACAGCGGAACTGACCACA
3285 CTTTCAACCGTAGTGGCTTGGGCA 40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3283	TATCGACCTGGAACACGATCGGTT
40 3286 CCGGTAAGGTCGAATTGGAGCCTA 3287 GGATTGAAAAATCGCCGGAAGATC		3284	CATTGAAGTCATGAAGCCTGGTGG
3287 GGATTGAAAAATCGCCGGAAGATC		3285	CTTTCAACCGTAGTGGCTTGGGCA
	40	3286	CCGGTAAGGTCGAATTGGAGCCTA
3288 TGAAATTGTGAGGGAGCCTTAGCG		3287	GGATTGAAAAATCGCCGGAAGATC
		3288	TGAAATTGTGAGGGAGCCTTAGCG

	3289	AGCGGGATCCCAGAGTTTCGAAAA
	3290	CGAGTGTCACTGGTCGGTTGCTCA
,	3291	GCAGCATCCGTTCCCCTATAGTGG
	3292	GTATTCCTGACCGGCTGAGTGTCG
5	3293	GCAGCGTATGGGGTTAGCCAATGA
-	3294	CGCCCTGGTGGAGTTGTATGATGA
	3295	AGGTAGACTGCCCGCGGCAGAGCA
	3296	ATGCGTGAGGAACTGACTTCGGAC
	3297	ACGGGAGAGGACATGCATTTTCAA
10	3298	ATTCATGCAGGAAGTCCGAGGGAA
	3299	AGCTCTCCGAAGTAGGGCGGTA
•	3300	TGGCCCACATGATTGGAGCTCCAA
	3301	GCCCTTTGCTTGCATTGATTGATC
	3302	AGGAGATTCTTCGGCTCATCTCGC
15	3303	GCAGCTCCGCCAACGAACTTATAG
	3304	TGGGTCAGCTTCGGCCAGGCTGAT
	3305	ACGCTCAGCGTGCGCTAGATACGA
	3306	GCAACGAGAGCGAACGGTTAACTC
	3307	GAACACAAACAGAGGTCGTCAGCG
20	3308	CGTGCGTTAGCGTCGGCGTATGTT
	3309	GTGCTAGCCGAAAGTAGCGTGCGA
	3310	CGCGGAGGTTTGCAAGTTGTTAAC
	3311	TACTGCCCGGCCTGAAATGACTTA
	3312	CATGCGCACATGAGGGTCACCTTT
25	3313	CTCGGGTTCTGAAAGCGATGCTTC
	3314	GGCACACGAAGGCTGATGATA
	3315	GGAGGCCGAGTAACCTTGAGGGTC
	3316	ATTCCTATCGCGCGTGCTTCTAGC
	3317	TTGCCGGTGTGTTCGTGAGCTGTT
30	3318	TTATGGGAATCTACAAAGGGCCGG
	3319	GGGTGATCCAAAATCCACGGAGGC
	3320	GCGAGATGAGCAAATTGTATCCCG
	3321	CCTGCACACATCATGTCTCAATGC
	3322	GGCAGCGTAGGGATTTCCTAGGGG
35	3323	AGAGATTGCTCCTATGTCGGCAGC
	3324	CCAATACCCTGGTGACCACTCCAA
	3325	GACGTCTGTTATGTCGTCGCAAGG
•	3326	CCACAACGTCGAAATGACCTACCA
	3327	CTTGGTGGCATGCATGCCTTGCCC
40	3328	TACGTTCGCCCGACGTGGAATAAA
	3329	GGAAGAGAAACCGACAGTCGCGA
	3330	GACGAACAAGAATTTGGGGCAACC

[3331	CGTGCCCGCGAGTTCATGGTGCTA
	3332	AAGAGAAACCCTTTCCGGAGCTCA
Ī	3333	TTTTAAATCTGCCGCCCTTCCATG
	3334	TCTGAAGCAATTTGGCCTCCTCAA
5	3335	GATGCGCAAGAGGGTATTATGGGC
	3336	GTGAAAATCTCGCAACTTCCTGGC
	3337	ACGGGAAGCGGTGAATTGTTGGTA
,	3338	GCCCTACTATTGCCTTGGCAATGA
	3339	GTAAATGGCAGGAAGCGGCTCTCG
10	3340	AGGTGCCAAATAGTGGACTGCGGT
	3341	TCGGATGGTAGGAGGCGAGATCGG
	3342	GAGGTGAAGGAACAGCGACGCTAA
	3343	ACCGTCGTTACCGCTCTGGTGTCG
	3344	TTCCAATGTCCGACATGCTATGCC
15	3345	CGGCTTTATAGGTCCAACATGGCG
	3346	CCGGCCTGGAAAGCAGAGTTATTG
	3347	TTTATCGTTCAACGCTCACGTCCC
	3348	AGACCCGCTGAACGGAGCTTGGAT
	3349	ATCCATCAGGAGAAAGCTGGCTCA
20	3350	TTGCCAATGCGTAAATCGGTTCTC
	3351	GCTTGGCAGAAGGCGTACACTAGG
	3352	AGGCTCCAATGCTTTAGCCGCAAA
	3353	GATACTAGGAGCGAGCCCCTTTGG
	3354	GTCGTGTGCAGCCGCATATGGAGG
25	3355	TACCCCTGTTGCGGATAGATGTCG
	3356	TAGGGTAACAGAATGAGGGGCGCT
	3357	ATCGTGTCGGGGATCGAATTTGAG
	3358	ATCTCTCGTGCGGTCTTGCAGAAG
	3359	AGAAGCCACATGTTAGTGCGGGAG
30	3360	ATCTGCGTTAACTGTCCCGACTGG
	3361	CGCTCACAACGAGCTTACTCATGG
• •	3362	TCTACGCTACGATCCGTTGCATCA
	3363	TTTAACACCGAAATGGGAGCGTCC
	3364	ACAGGCCTAGTAGGCCGCTTTCC
35	3365	GTCGACCGTGTTTGTGGGGGATAT
	3366	AGAAGACCTTGGCAATCCGAGTCA
	3367	TTGGGTGCTTAAAATGCGGTCTGA
	3368	AGCGAAGTCGTATTGACGTGCGGT
	3369	ACTTTCAGCTCCCAGTAGCACGCA
40	3370	GCGCATGGTGAGTCCGTATTGCCG
	3371	GGGTCGTGTCAGAGGACAAACACC
	3372	ACAAGAGGACCTCCGGGTGAAAAT

3373 GCTCTATGCCATGCCTCACC	ſ	3373	TAGCGGGGACCTATCCGCCTCAGT
3375 AGCTCATAATGCGCGTTGACCCCG 3376 ACAGTGGAAACGTTTCATGCCGAG 3377 GGTTTCGACGAAAAGGATGGTCGT 3378 GCGGTACGATATCTAACCCGACGG 3379 GGTATTCGACGATTCTAACCCGACGG 3379 GGTATTCGCCATGCTTGGTCTCTG 3380 GACCCTCTCCGATTCTGGCCCAGA 3381 TGGAACGTATACAACGCCGAAC 3381 TGGAACGTATACGAACGCCGAAC 3382 GGCAGAAGTGGAACTGACCTCGAT 3383 CGGGTAGGCCTTCAGGGTACAGGT 3385 CACCAGGTTGGACCCGCACGAT 3386 GATGTCTTAGACGCCGCACGAT 3387 TGAGGCGCACCATTAGGAGCTGCT 3388 CACCTTACATCCCGAATCCGCGTA 3389 CCAAACATAAGGTGTTCTGGTCCAA 3390 GCGTTTGCTAATGGTTGCGATCCA 3391 CCCTTGCCCTCAATCTGGATTGCA 3392 ATAGTCCCGGACTGATTACCA 3393 GAACTTCCCGGCACGATAACATA 3394 GGGAACTCCAGCGCACACACACACACACACACACACACAC	}		
3376 ACAGTGGAAACGTTTCATGCCGAG			
10 3377 GGTTTCGACGAAAAGGATGGTCGT 3378 GCGGTACGTATTCTAACCCGACGG 3379 GGTATTCGCCATGCTTGGTCTCTG 3380 GAGCCTCTCCGATTCTGGCCCAGA 3381 TGGAACGTAATACGAACGCCGAAC 3382 GGCAGAAGTGGAACTCAGGT 3383 CGGGTAGGCCTTCAGGGTACAGGT 3384 AGCGATCTTGGACGCGCACGAT 3385 GACCAGGTTGGTACAACGCCTTAGG 3386 GATGTGCTACAACGCCTTAGG 3387 TGAGGCGCACTCATTAGAAGGCTTGG 3388 CACCTTACATCCCGAATCCGCGTA 3389 CCAAACATAAGGTGTCCCAG 3389 CCCAACATAAGGTGTGCCATAGAGGTG 3391 CCCTTGCCCTCAATCTGTATTGCA 3391 CCCTTGCCCTCAATCTGTATTGCA 3392 ATAGTCCCGGCACTGATACATA 3394 GGGAGCACGACTAGAGACTCCTAGG 3395 CTGACTCTTACGAACGCTCGC 3396 AGGTATACGGGGGACTCTAGG 3397 TAAGACGCATTGCTTAGCAAA 3396 AGGTATACCGGGCGCACTCGC 3398 GCCTAGTAGCACACACAGAGCTCCTAGG 3399 CGTGCCTAGCACACACAGGCTCTAGC 3399 CGTGCCTAGCACACAGAGCTCCTAGC 3400 GGGAATGCGCCACGGCTTCATGC 3401 GTTGAAATACTGGCCCCGCGGGAC 3402 CGGACAGGAGCCCCCCCCCGGGAC 3403 CAACAGCCCGCTCCTTTGAACACTT 3403 CAACAGCCCGCTCCTTTGATATAA 3404 TTAAAGGAATCAGGGGGACCCCCCC 3405 CGGGTTGTAACGCTTTTGACAAA 3406 GGTACGCAGCGCTCCTTTGATATAA 3406 GGTACGCAGCGCTCCTTTGATAAAA 3407 ACTGCAAGCCTCTTTGATCCTCC 3408 TCAATACCACCCAGAAACTCGCCCCCCCCCCCCCCCCCC			
3378 GCGGTACGTATTCTAACCCGACGG			
3379 GGTATTCGCCATGCTTGGTCTCTG	5		
3380 GAGCCTCTCCGATTCTGGCCCAGA			
3381 TGGAACGTAATACGAACGCCGAAC		3379	
10 3382 GGCAGAAGTGGAACTGAGCTCGAT 3383 CGGTAGGCCTTCAGGGTACAGGT 3384 AGCGATCTTGGACGCCGGCACGAT 3385 GACCAGGTTGGTACAACGCCTTGG 3386 GATCTGCTACAGGACCGCCTACGC 3387 TGAGGCGCACTACTACAGCGCTTACGC 3388 CACCTTACATCCCGAATCCCGCTA 3389 CCAAACATAAGGTGTGCGATTGC 3390 GCGTTTGCTAATGGTTGCGATTGC 3391 CCCTTGCCCTCAATCTGTATTGCA 3392 ATAGTCCCGTGACACTCCTAGTACCC 3393 GAAGTTCCCGGCCCGAGTAACATA 3394 GGGAGCCACGACAGAGCTCCTAGG 3395 CTGACTCTTACGAAGCGCACTCGC 3396 AGGTATAGCGGGGGGTCTAGCAAA 3397 TAAGACGCATTGCACAACA 3398 GCCTAGTAGGCCACGCCTCATGC 3398 GCCTAGTAGGCCACGGCTTCATGC 3399 CGTGCCCTAGCACAACACTCC 3399 CGTGCCTAGCACACACGTTGGG 3400 GGGAATGCGGCAGCTCTTCTCC 3401 GTTGAAATACTGGCCCCGCGGGAC 3402 CGGACAGGTGAACCATT 3403 CAACAGCCCGCTCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGAACCACTTTTTTAACACCCTTTTTTTTTTTTT			
3383 CGGGTAGGCCTTCAGGGTACAGGT		3381	
3384 AGCGATCTTGGACGCCGGCACGAT 3385 GACCAGGTTGGTACAACGCCTTGG 3386 GATGTGCTACAGGACCGCCTACGC 3387 TGAGGCGCACTCATTAGGAGGTGT 3388 CACCTTACATCCCGAATCCGCGTA 3389 CCAAACATAAGGTGTGCGATTGC 3390 GCGTTTGCTAATGGTTGCGATTGC 3391 CCCTTGCCCTCAATCTGTATTGCA 3392 ATAGTCCCGTGCGACTGTGATCC 3393 GAAGTTCCCGGCACTGTAACATA 3394 GGGAGCCACGACAGAGCTCCTAGG 3395 CTGACTCTTACGAAGCGCACTCGC 3396 AGGTATAGCGGGCGCTTAGCAAA 25 3397 TAAGACGCATTGCTTGGACCATC 3398 GCCTAGTAGGACCACGCCTCGC 3399 CGTGCCTAGCATACAACGTTGGG 3400 GGGAATGCGGCAGTCTGTCTACCT 3401 GTTGAAATACTGGCCCGGGGAC 3402 CGGACAGGTCAACCACTT 3403 CAACAGCCCGCTCTTGATAAA 3404 TTAAAGGAATCAGGGGGACCCCC 3405 CGGGTTGTAACCACTTT 3406 GGTACGCAGCGGGACCATAAAA 35 3407 ACTGCAAGCCTTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACCATCCACCACCACCACCACCACCACCACCACCACCACC	10	·3382	<u> </u>
3385 GACCAGGTTGGTACAACGCCTTGG		3383	
3386 GATGTGCTACAGGACCGCCTACGC 3387 TGAGGCGCACTCATTAGGAGGTGT 3388 CACCTTACATCCCGAATCCGCGTA 3389 CCAAACATAAGGTGTGTCGGTCCA 3390 GCGTTTGCTAATGGTTGCGATTGC 3391 CCCTTGCCCTCAATCTGTATTGCA 3392 ATAGTCCCGTGGCGACTGTGATCC 3393 GAAGTTCCCGGCCCAGGTAACATA 3394 GGGAGCCACGACAGAGCTCCTAGG 3395 CTGACTCTTACGAAGCGCACTCGC 3396 AGGTATAGCGGGGCGTTAGCAAA 3397 TAAGACGCATTGCTTGGACCATCC 3398 GCCTAGTAGGCACCGCCTCATGC 3399 CGTGCCCTAGCATACAACGTTGGG 3399 CGTGCCCTAGCATACAACGTTGGG 3400 GGGAATGCGGCATCCCT 3401 GTTGAAATACTGGCCCCGCGGGAC 3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATCACTGCAAA 3411 TCCACAATGTCAGCTGCAAA 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACCGGCC 3413 AGGGCACTCGAAGATCCCACCGACACCCCACCCCACACCCCCACCCCCCCC		3384	
15 3387 TGAGGCGCACTCATTAGGAGGTGT 3388 CACCTTACATCCCGAATCCGCGTA 3389 CCAAACATAAGGTGTGTCGGTCCA 3390 GCGTTTGCTAATGGTTGCGATTGC 3391 CCCTTGCCCTCAATCTGTATTGCA 3392 ATAGTCCCGTGGCGACTGTGATCC 3393 GAAGTTCCCGGCCCAAGAACATA 3394 GGGAGCCACGACAGAGCTCCTAGG 3395 CTGACTCTTACGAAGCGCACTCGC 3396 AGGTATAGCGGGGCGTCTAGCAAA 25 3397 TAAGACGCATTGCTTGACCAC 3399 GCTAGTAGGCCACGGCTCAACAC 3399 GCTAGTAGGCCACGGCTTCATGC 3399 CGTGCCCTAGCATACAACGTTGGG 3400 GGGAATGCGGCAGTCTCATCC 3401 GTTGAAATACTGGCCCCCGCGGAC 3402 CGGACAGGTGAACCCATTCACCT 3403 CAACAGCCCGCTCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACAAA 3406 GGTACGCAGCCGCTCTTGGACAAA 3406 GGTACGCAGCGGCACTCTTGCCG 3409 GGCAGTTGACACCTCTTCGCG 3409 GCAGTTGACACCTCATCCACAC 3410 TAGCACGCCCATCACACCTC 3411 TCCACAATGTCAGCTCACTAC 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGAC		3385	<u></u>
3388 CACCTTACATCCCGAATCCGCGTA 3389 CCAAACATAAGGTGTGTCGGTCCA 3390 GCGTTTGCTAATGGTTGCGATTGC 3391 CCCTTGCCCTCAATCTGTATTGCA 3392 ATAGTCCCGTGGCGACTGTGATCC 3393 GAAGTTCCCGGCCCGAGTAACATA 3394 GGGAGCCACGACAGAGCTCCTAGG 3395 CTGACTCTTACGAAGCGCACTCGC 3396 AGGTATAGCGGGGCGTCTAGCAAA 25 3397 TAAGACGCATTGCTTGGACCATCC 3398 GCCTAGTAGGCCACGGCTTCATGC 3399 CGTGCCCTAGCATACAACGTTGGG 3400 GGGAATGCGGCAGTCTCTACCT 3401 GTTGAAATACTGGCCCGCGGGAC 3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 35 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGCC		3386	GATGTGCTACAGGACCGCCTACGC
3389 CCAAACATAAGGTGTGTCGGTCA	15	3387	
3390 GCGTTTGCTAATGGTTGCGATTGC		3388	
3391 CCCTTGCCTCAATCTGTATTGCA		3389	CCAAACATAAGGTGTGTCGGTCCA
3392 ATAGTCCCGTGGCGACTGTGATCC		3390	
3393 GAAGTTCCCGGCCCGAGTAACATA 3394 GGGAGCCACGACAGAGCTCCTAGG 3395 CTGACTCTTACGAAGCGCACTCGC 3396 AGGTATAGCGGGGCGTCTAGCAAA 25 3397 TAAGACGCATTGCTTGGACCATCC 3398 GCCTAGTAGGCCACGGCTTCATGC 3399 CGTGCCCTAGCATACAACGTTGGG. 3400 GGGAATGCGGCAGTCTGTCTACCT 3401 GTTGAAATACTGGCCCCGCGGGAC 3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACCTA 3412 CAGGCGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGAGTCCGACGGCC		3391	CCCTTGCCCTCAATCTGTATTGCA
3394 GGGAGCCACGACAGAGCTCCTAGG	20	3392	
3395 CTGACTCTTACGAAGCGCACTCGC		3393	GAAGTTCCCGGCCCGAGTAACATA
3396 AGGTATAGCGGGGCGTCTAGCAAA	,	3394	GGGAGCCACGACAGAGCTCCTAGG
3397 TAAGACGCATTGCTTGGACCATCC		3395	CTGACTCTTACGAAGCGCACTCGC
3398 GCCTAGTAGGCCACGGCTTCATGC 3399 CGTGCCCTAGCATACAACGTTGGG. 3400 GGGAATGCGGCAGTCTGTCTACCT 3401 GTTGAAATACTGGCCCCGCGGGAC 3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3507 ACTGCAAGCCTCTTAGTTCCTGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCAAA 40 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGCC		3396	AGGTATAGCGGGGCGTCTAGCAAA
3399 CGTGCCCTAGCATACAACGTTGGG. 3400 GGGAATGCGGCAGTCTGTCTACCT 3401 GTTGAAATACTGGCCCCGCGGGAC 3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 35 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGCC	25	3397	TAAGACGCATTGCTTGGACCATCC
3400 GGGAATGCGGCAGTCTGTCTACCT 3401 GTTGAAATACTGGCCCCGCGGAC 3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGAGCGGCC	•	3398	GCCTAGTAGGCCACGGCTTCATGC
3401 GTTGAAATACTGGCCCGGGGAC 3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACA 3411 TCCACAATGTCAGCTGAAA 40 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGCC		3399	CGTGCCCTAGCATACAACGTTGGG.
3402 CGGACAGGTGAACCCAGTCACCTT 3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACCGAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGCC		3400	GGGAATGCGGCAGTCTGTCTACCT
3403 CAACAGCCCGCTCCTTGGATATAA 3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACCAAA 40 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC		3401	GTTGAAATACTGGCCCCGCGGGAC
3404 TTAAAGGAATCAGGGGGACCCGCC 3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC	30	3402	CGGACAGGTGAACCCAGTCACCTT
3405 CGGGTTGTAACGCTGTTGGACGAA 3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC		3403	CAACAGCCCGCTCCTTGGATATAA
3406 GGTACGCAGCGGGACCAATAGAAA 3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC	• •	3404	TTAAAGGAATCAGGGGGACCCGCC
3407 ACTGCAAGCCTCTTAGTTCCTGCG 3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC		3405	CGGGTTGTAACGCTGTTGGACGAA
3408 TCAATACCACCCAGAAACTGGGCG 3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC		3406	GGTACGCAGCGGACCAATAGAAA
3409 GGCAGTTGACACTCATCGACCATC 3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC	35	3407	ACTGCAAGCCTCTTAGTTCCTGCG
3410 TAGCACGGCCATAAGACGGTTGAA 3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGGC		3408	TCAATACCACCCAGAAACTGGGCG
3411 TCCACAATGTCAGCTCACTGCAAA 40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGC		3409	GGCAGTTGACACTCATCGACCATC
40 3412 CAGGCGGAGGGGTTTTACATCCTA 3413 AGGGCACTCGAAGATCCGACGGGC		3410	TAGCACGGCCATAAGACGGTTGAA
3413 AGGGCACTCGAAGATCCGACGGGC		3411	TCCACAATGTCAGCTCACTGCAAA
	40	3412	CAGGCGGAGGGGTTTTACATCCTA
3414 CGCAATGCCTTTTGCTGTGGTAAT		3413	AGGGCACTCGAAGATCCGACGGGC
		3414	CGCAATGCCTTTTGCTGTGGTAAT

[3415	AGAAACGCAGACGTGGCGTTTTGT
	3416	TGAGCACGAATGTCGAACAGTCAA
	3417	CTCGTTTCCATGGGGTAACCGACT
	3418	CCTCATAGCTACGGGTGGACGACG
5	3419	GTACGCCGTGTATCACCCCATTCA
Ì	3420	ACCCATAGTTCGTCGATAGCGCGA
	3421	TCTGCAGTGTTGCCCCTCCGACGC
	3422	TGCACATGCAACTAATAGGTGCGC
	3423	CAGCGCAGTGCCTTACCAATATGA
10	3424	TTACGCGCCGAAAACACCTGAACA
10	3425	CTCCCTCGCTTTATATAGGCGGCG
	3426	GTCGGACCCCGAGAGTCCTGTTAA
	3427	ATCGACGAACAGGGCCTCCGGCTT
•	3428	TGGTTTTTCACCTCCGTCCTCAAG
15	3429	GGAGGGGCCAACTCCTTGACTTG
10	3430	TCCTGTCTCGGCCTTTGGGAACTT
	3431	CAAGCCATTACCCGCTAGCTGAAA
	3432	CGCAACCGACATTATATTTCGGCC
	3433	TTGAGGGCGACTGCAACACACAGG
20	3434	GCTCGAGTAACACGGTTGACCCGA
20	3435	CAGCCCTAGCGCCACGGTAAAATC
	3436	GTCATTAGCGACTTACCCGCCGTA
	3437	CCCAGTGGCCGGCCCTAGATAATA
	3438	CATTCCGTATGCTACTCGCGAACA
25	3439	AAGTTTTAACGCTCAAGGGGGCCT
	3440	TTGGCGGTTTCGGTACAGGATCCT
	3441	TACTGCGATGATGGGGATTTGACA,
	3442	CGGTGAGCGAAGATCATCCCCTTA
	3443	ATGCAAGTCACCGACCGGCACCTC
30	3444	CAAGTGCCGCAATTGGCCTTTTAT
	3445	CCCGTGGTGGATACCTGGGTAAGC
• •	3446	CCGTCAGGGTCTAAGGACCAGGGT
	3447	CTTTCCGTAGGCGGTGATTTCCAA
	3448	GCTGAAACTGAGATGGTATCCGGC
35	3449	CCAACGAGACAGCATGAAGCTCCT
	3450	ATAAGTTCGTGGGCCGGCAAGGTC
	3451	GTGGCCAGGCCATAACTGGTCACT
	3452	CGCTTAGCGCGAGACTCTGAGGGC
	3453	AAGAGCGGCGCCCTAGAACCCAAC
40	3454	CCACGGGAACGTCTACGAAATGAT
	3455	AGTCGTGTATCAGGTGCCGAGAGG
	3456	TGAAGCGGCTGGCGATAAGTAGAT

	3457	CTGAGGACGTGCGGTTCATGCTGA
	3458	GAAGGCGTTCGGAAAGTTTTTCGT
	3459	AAGAAAACCACGGCTGAGACCTGA
	3460	TCAGCCGCTGTTGCAGGGAGAAAA
5	3461	TTCTGGAAATGGATCGGATAGGCA
	3462	GGGAAATGGTCTTGTTGGCGACCA
	3463	GGTGTCGAAGCCACGATGTATCCC
	3464	CCCGACTCCCTTCGGGCATAAGT
	3465	CCAAATGCGATAACGCAGCGTGAT
10	3466	GCTCGCCAACGTACGAGGCTCAGA
į	3467	GGCTTATCAGTCGCCACCAGAGAC
	3468	GATGTGACCCATCCATTCCTGGGA
	3469	TCCTGGTTTGGTATCCCCGAATCA
	3470	CGCCCGTATATAGCCGGTAAGAG
15	3471	GGTTCACTGTAACGATCGCGGCAC
	3472	CCGGTATAGAGGAAACCCGGACGT
	3473	CCTCCCAGGAGATCCTACGCAATT
	3474	TGAAACTCGTCACGCTCCTTGCAG
	3475	TGTTGCGTAACCACCAACCCTCCT
20	3476	GCAGCGCAACCTTGTACTTCTTGC
	3477	CGCAAGTGGGAGCCCAAGAGTTTG
	3478	TGCAGGGTAACGAGGGTAAGTGGG
	3479	GAACTGTAGGGTCTCGCCGGTCAA
	3480	CGAGATGTCCAGCAGCGGTTGTTA
25	3481	TTGTGGTTGCTCCGGGTAAAAGGA
	3482	TCTACGCATCCCTGGGTAATTTGC
٠.	3483	AGAAGCTGCGAGTCACCGTGACTC
	3484	GGGCGGTGTTGAAGGGCTCTATAC
	3485	TTCCACAACGGGTGAGTAGGACGG
30	3486	GCAGCCAGACTGGCCTACCGATCG
	3487	CCCGCCGAGTTGGTTGGCTAAACA
* #	3488	GCTAGGGTGGTCCTTTCAGTGGGT
	3489	CGTGACTCTCTTCTTTCGGCAG
	3490	ACTGCCCATGGCCACTAGGCTTG
35	3491	GGCGTACGAAAAGGCCAATCACTT
	3492	ACTTGTGGTCGACAACGATGTGGC
!	3493	CCACCACCCTGACCCGAAAAAAT
• • • •	3494	TGTTGTGCATCACAACATCAGGCC
	3495	GACCACCGGTAAAGAGGGATGGT
40	3496	GCCACCCTGAAGCACTCGTTATG
	3497	GCTACCAGTTGGAAGACGGGTTGC
;	3498	CAACGTTCGCATCCCACAGTTGTA

i		
	3499	TATCGGGTCGTAATGGGCAAAGAG
	3500	TCGGTGTGATTGATGGATAACGCC
	3501	AGAGGTCGAGAGCCCGATAACCTG
	3502	GTAGTTAGGCGCGGCCCTGGCTCA
5	3503	TGATTCTCGATGTCACGCCGAACA
	3504	GATGGTTCGCCCTTGTGTCGCAGC
	3505	GCGCAGTTACGTCCATTGTCCCAC
	3506	CCGCCTGATTTAACAAGCCAAGGT
	3507	GACCAAGTGCAGGCGTCAGTCTGG
10	3508	CAAAAAGCAATTCGCCCTGGACG
	3509	ACTGACCTTCTCGCTCTCCGTG
	3510	CTCGCCGTGTATCGCTAACCCTCT
	3511	CGGCATTTTTCACATGCTGTGTTG
	3512	ACGTAACGCCTGATGGGGTACACC
15	3513	CCCTGTGACCGTGGGAGACACACA
	3514	GCGCATACTCTGGGTAGTCGGCAC
	3515	TCCCCTGCCCATCTCTGAGTTAGG
	3516	TGCAGCGCTAACATAGCGGGTGCA
	3517	GCAGCGTCCACAGGAAACCGCAGC
20	3518	AGCGTACCATCGATGGGGATTCGA
	3519	TGGCCTCGCGATCACCACGATGTT
	3520	TTGGTAATCACTCGGCCAGCGCTA
•	3521	CGTTAGTAACGATCGTCGGTGCAA
	3522	AATCGCAGATGGTTCGTGGCACAA
25	3523	TAAAGCGTCTAGAGGCCGGCTGTG
	3524	TGGCTAAACGAAACTGGGAATCGG
	3525	CCTATGCAGCCACTGGTGTCCTTC
	3526	ACGTGAGATCCAAGGGTGGCTCCT
	3527	TAAACGCCAAAAACCACGAGCAGG
30	3528	CCATGGAATGGAAAGCATTGGACG
	3529	ATGATCCCTGGGCTTAGTCGCCTT
• .•	3530	ACCGTATGCCTCAACAGAGTGGCT
	3531	CCACCAAATCGCATAAGCTCCACC
	3532	TCTCAGTTTAATCCCGTGATCGGG
35	3533	AAAGGACTACGCCCATCGCTCACA
	3534	CGGGAAGAAGGCCTAAAGCTTTG
	3535	TTTTGGACATTTTTCTGCATCGGG
-	3536	GCAGGGGTCCTTTTCCACGGTAAT
	3537	TCAAATAGGGCGTAGGCAAGCTTG
40	3538	ATGAAGTTCCATCCTGTCCGGGCC
	3539	AGAATGATTAAGCGCAAACGCAGC
	3540	GGCAGCAGAGAGTGGCCTAGTTCC

	3541	GTGCAGAGCCGGCCTTATGTAAGA
	3542	CATACGGGTATGGCGATGGTTACC
Ī	3543	AAGAACAGGAACCGCTGACAAGGA
Ī	3544	GATGTGTCGCGTCCTTAAGGGC
5	3545	TATCCATGTAAGGCTCCTGAGGCG
	3546	AGTTTTTCCTAAACGATCCGCGC
	3547	CTGACCGGACGACCCAGAATGTAT
	3548	GCATGTGGTCAAAGCTTGTCGATG
	3549	CAGAAGTGCATGGGTTCGGATGAA
10	3550	ATAGCGTACCGGAGGGCTTACCAG
	3551	AAGACTTGGCGCTTGTGGGTAAGG
	3552	TATTGTGGCGCCTCACGCGCAATC
	3553	TCGGCCATGGGATTTCACAAAGTC
	3554	TGGTCGGTGCCGTTTCACCTTTAC
15	3555	CATTTCCGCGGGCAGGAGAAGAT
	3556	CCTGAGTCGCGATACGACTCAACA
	3557	AGGTGTACCGCCGTCGGGTTATAC
	3558	TCCTTGTACGAGCCAAGCCTGGGT
	3559	AGAAGCCCGAAGTCCCGTGTAGAC
20	3560	AGAGGGCCCTTAGGCAAATACGT
	3561	ATGCGGCAACATCCGATCGTAGAT
	3562	CGCAGTGGGCAGTAAAGACAGAGG
	3563	TCGGGTAGTGCAAACCTCAATCGT
	3564	TCTTCACTGTGGTGGACTTGGGG
25	3565	GTCCCAGGGCGATTGGTACTAAGG
	3566	GGTAGATCCAGCCATTGGGACCTC
	3567	GGGGATTGTGCGCTCCAAGGACCC.
	3568	CTCTGTCCTAGACTGAGCCGTCGC
	3569	CGATGAACAAATGAGTGCGTGTGA
30	3570	GAGGTCGAGCTGCCTGAGAGGAGT
	3571	CAGTGGGACTGCTAACGTGGGTCA
,	3572	GAGTCGCTCGAGGAACTACGGCCG
	3573	CGGCTACGGAATGATGCAGGATGG
	3574	TCGCTCTCGCTATGGCAATTCTGG
35	3575	TGAATCACGGCCCTCTCTGGTACA
•	3576	CAGGTGCCATCGAGCGCTTTAGTG
	3577	TGGGAAAATCGAAATCGTCAGGAA
٠	3578	CGGGGAGGAAGATGTTCCAGCGGT
	3579	TGTGGACCGGTGGTCACGTCTTTT
40	3580	GCACGTCTCGCAATCTGCGATCAG
	3581	CCTAATGCCGTATCAGCGACCAGA
	3582	ATAACGCGGGTGAAGGATTCGTCT

ſ	3583	TTCAACCTTGTGGGGCGTCCCACT
	3584	CTACTTCCAAATCTCCGCGTCGGT
	3585	AGCGAACGCACTGCCAGTGGATAC
	3586	GAAAGTGGCGGCGAGGAAAAACAC
5	3587	CAGGGGGCGCATATTTGACAGATT
·	3588	TAACTCGCTGCCCTCAACTCAGGG
	3589	TCGATTGTTGGGTCTACCGTGGTT
	3590	GCTGGGATTAGTGCCGGGTAACCG
•	3591	TGGTTGCAACATCGCGCTATTACG
10	3592	GGGCGTGCTTTGAGCTGAAGCGTG
	3593	ATGTTGAGGTTAGTCCCCGACCGT
	3594	GACCGCGTAGTTAGCAATGTTGCG
	3595	CCAACCACTGACATCGATGGAAA
	3596	TGCTGCTATTGTCGCACCGATATG
15	3597	TACAAAGAATCGGGACCTGCGACT
	3598	GCGCCTCATCCCGCATCGAATTAT
	3599	CGAGGGATTTTGACCAGTGGATGA
	3600	TGATAGGCATACGCGGAGAAGTCC
	3601	CGAGTTGTCAACGGCCATCGAATT
20	3602	CCCGCACCGGATTATTAACGAACC
	3603	TCGTCCTTGGGTCCCATGTAGAAA
	3604	TCACGAAGCATCTTTGCGACGTAA
	3605	TGTAAGTTGCCAACTTTGCGGGTT
	3606	GCACACCACCGGCAGATATCAAGA
25	3607	GTGTGGTTTGTGAATGCGTGGTGA
	3608	CAGCTGCGGCCCCACCTTCGATAC
	3609	CAGCGAAGGACGACTACTGTGCAC
	3610	CAGCAGTTCGTTGCTTCCTGATTG
	3611	AAACAATGGAGTGTACCTCCCGCA
30	3612	ACTATACGAGCATCATGAGCCGGC
	3613	CTTGATAAGGTGGGATTCCGGGCA
· • .	3614	TTTAGTAGAACGCTGCGCGCGGTG
	3615	AACTGACGTTGAATAAAACCGGCG
	3616	GCTTTGTTCTACCGCGGATCATCA
35	3617	TGATATGCAGCGGCTCGGCCTTAT
	3618	CGGGAGTGCGTTTATGTCCATGAT
	3619	CAAATACCGGGAACGGATCGAAGC
	3620	GATCAAGCCGAATGCTTTGCAAAG
	3621	AGAGAGGATGCGCTCCGGTTAGAG
40	3622	CTTAGTCAGCATACCCGCGGGCAG
	3623	GTGTCTCGGGGCGCAGGACCTGTA
	3624	AACGCTCCACTGCCGTGATTCACT

1	3625	GATCGTTGAGTCATCCCGTGGAGT
	3626	CCTGGCCGGGTGCAATACTACAGT
	3627	CGTAGCCCGAACGTAAGGGTCAGC
	3628	CTGTGGCTTCAAGAGGATCCGTTG
5	3629	CTTGGGTCGGTGTAATGTCCTCGA
	3630	GCCGTTGTGCGCTATTCTTACGGA
	3631	TCGCACGATGGCTAGAACGAGTAA
{	3632	ATTTGTTGCAATGGGATGGCTCTG
	3633	CGAATATCCGCTCGAACCTGACAA
10	3634	AAGTGGCGTGCGTCATAGCGCGAC
}	3635	TGATGTCCCTCCACACCGTGAACT
	3636	CAAATGAAGTCGGGGCCAATATTG
	3637	GATGCATAGCGTGATTCCGGTGTA
	3638	GTGACCGTAGAAGCTCACCAGGGC
15	3639	ATAAGGACATATTCGGCCTGGGGA
	3640 ·	AGATCTCACAACCGGAACCGGACG
	3641	GTTGCGTTTGGGGGCGTCATACAA
	3642	TGTGAGGTTTTCCTAAGGCGAACG
	3643	CATCTTGGTTTGCGAACGAACTCA
20	3644	TTCCTGTCACAGATTCGTGGCCTT
	3645	AACTTACCGATCCCTGAACGTGCA
•	3646	CCTATTCTGGACATGCGGCCACAT
	3647	GTCGATGGGGAGCTCCAGTTGCAT
	3648	CGACCGTGAGGGTCCATACGTAGA
25	3649	TCTCGTTTGCACGCAACTGGGCCA
	3650	ACTCCGCCGAATGAAGGAATAGCT
	3651	CCTCGACCTGGCGTGATGGAAGGC
	3652	TAACAGCCGTTTTGCGGTTCACAA
	3653	GCCTCCTGCAGTACGGTGTCTGTT
30	3654	GGCAGTCGGTCCCACTTAGTTCGA
	3655	TAATCCACGGCTTTGGTGGAAGTC
t ar .	3656	CGGTGCAAGATCCTGGTTGTGTGA
	3657	TTTCACCACTACCTTAGGTCGGCG
	3658	CATCCCGTACCGGGAGGACAAGTC
35	3659	ACGAGGTAAAGGGATCCGTGCTGG
	3660	CTAATAGTTTGGCAGAGGGGCGCT
	3661	AGCATGGTAACCCTGAGCCAGCAG
•	3662	GGAATCCTTGTGGGAACAGCCGAT
	3663	CTGATGTGGGAAAGAGGGTGGGAC
40	3664	ACTITTGCAATCCCGGCGTTGTA
	3665	GCGATGACGTGACGAGTTCTCACC
	3666	CCAGGTATTGAGCCCCGCCATATA

	3667	TTGGACGTCCTCCGAATATTGGCA
	3668	GGTAAGTGCGGGAAGTACGCTGAC
[3669	CCGCCTGAACCGTCGTAGGGATTA
	3670	CGTTTTTGAGTAAGGATTGGGCGA
5	3671	TGTGGTATTGAGGCATAGGTGGCA
	3672	TCCGGAAGGAAGGCGCGATATGGC
{	3673	GTTGAGCGAATCGGACGGCTTTAC
	3674	TGAGTCTCCGAACGACAAGCGATC
	3675	AGTGAAGAGGGAGAGTCCAACCCG
10	3676	GTGAAGCCTGACGAATCCAACGTG
	3677	GTGCAGGCCTGTATCCCCATGACT
	3678	GTGGGTTTCCTACACACCGGATGA
	3679	GCGCCGTCGACTCTCTTCAGCTGC
	3680	CTAGGCCTGCCATCACTGAGCAAT
15	3681	TTGGTGATGACTCATGGCCAGACC
·	3682	TATCTCCCGCGGGGTATATTACCG
	3683	CCGAGGGACACGTATCCCTGTTCG
	3684	TATCCCGCAGCACGCATTCGATCT
	3685	TGATGATAGAGCAGGGTGCCGTCA
20 :	3686	GTAGGAGCACACATTCGGATTCGG
	3687	CCCTTACTACGCCCAGCCCTTTTG
	3688	GTACCAGGGGTGTGCTCCAAGGG
	3689	TGACCAGGCGGACCAGACGGTTTT
	3690	CGTAAGCGGCGGTAGGTGTGCTAC
25	3691	CGCGGGAGGGATCAGCAGTTTTG
	3692	AAAGCGTATCCAGAAAGGCCATGG
	3693	AAGAAGAGACGCATGCTTGGACGT
	3694	TGGCCATTTGCGGGAGGTGGCTTA
	3695	AACGCCGAATTGAGGAGGCGGTTA
30	3696	GCCTCATTACGACATTGGCAGCAT
	3697	TCGAACGCGATTTTGGAAATGCCC
· ~ .	3698	AGGAATTCTAGCCGAAAGCCCTGC
	3699	TCCGCTGGTTGGGTGCTCTGGTTG
	3700	GTCGCGCTCCGTCCGATAGTATGA
35	3701	TGTGCAAGGACGGATGATTGCACT
	3702	GGACAAGCGGCAACCTGGGAGAAG
	3703	ATGCGGTGGCTACGGACTAATCCA
	3704	TGCACGCAGGTGGAAAGCAGGCTT
	3705.	AGATTGTGGGAGTTGTCACGCTCC
40	3706	AACAGCAGTGAGGGCTGAAGCTTG
	3707	CTGCCTGTTTCCTTCACGCTCCAT
	3708	CCAATCCACTTGAGTCAACTTGCG

r		
_	3709	CATTCTACCGCCCAACTTTTGCAA
	3710	CGGAGAACCATGCTGAGCAGTCCA
	3711	GACTGTTCCTCCAGAAAGGCGCAT
	3712	AAATAATTGCTCCACGCGAAGCGC
5	3713	GGGCCTGGAAGACCAACCAAATAC
	3714	ACGACGCGAGCACGTAGATATCAA
	3715	TACGGGATCCTCGTGGCTACATCT
	3716	CAAAGTCTCCCCGACCGAGTTGAC
	3717	CCCGAGGCGAAGATCTCTAGGCAC
10	3718	CAAAATTCTCGCCACGAGACCCTA
Ţ	3719	CTGTGCGCATTCCAAACACATCAC
	3720	CATGGAAATGCCAGCTGCCTCCAT
\	3721	CGCGAAACCACAGTCCTCGTCGGG
Ī	3722	GTCCGCAGCTGTCCCGACATTGGT
15	3723	GTCTCATTGGGACGATCGTCTCGA
Ī	3724	AGAGCGTTGCATGCTTGGCTGCGG
	3725	CTTCCGCCCTGTTCGCAATGAGG
	3726	TTGCGGTTCATACCGAAGCCAACA
	3727	TGCGCGAGAATCGTTCGTACGACG
20	3728	TGTATACCGTAGGCGTCCGTGGGG
	3729	TGCGGGGTATAGGGCTTCCTTATG
	3730	ATCCCAGCCCAAGCAGCAGACGCA
	3731	GTTCTTGGCCACAGGAATGGCCGT
}	3732	CACATGGGCATTAATTGCTACGGC
25	3733	ATAAGTCGGTCTGCCTGGCAATGA
	3734	ACCTCGAGGCTGAGAACGTCAAAA
	3735	GCGGAACGCTAGCCCCTTATGGTT
	3736	TGCGAGGCTCCTGGAGCAATCCAA
	3737	ACAGAAGGCCGATCGCTCTGGCTG
30	3738	GGTTGGCAAGGGGCCAGCTCCTAC
	3739	ATCGCTTCGCTCTATGGAGTCCGA
· .	3740	CGTCCCGATAGGCCGCCTTGATCT
	3741	GAATTCTGAGGCGGCATTGTCCAC
	3742	CAGCCCATCAGTATCGGCTGCGTA
35	3743	TGGAGAGTCGGATCCGTAGCGTCA
	3744	TGGATCCAGTGCGAGTCTTGGCCG
	3745	ATGCGGTCGTGCTTGGAATCCTCT
	3746	ATCGCACTGCCGCGTCATAACAGC
	3747	CACGTCTCCGCCGGAACACAACTG
40	3748	AAGACAGTGGGTGAACGCACGGTA
	3749	ACGCGCATAGGTGGTCAAACATCG
	3750	CCCGGCGGTAGAAATTGACAACCT

	3751	AAGGGATACTCAGGCGCCTGTTTT
	3752	CTTCTCTTGTGCGGGCTCCCGT
	3753	TTGAAGGGACCTGCCAAATGGCGA
	3754	ACGCATGACGACGTCCAGTACGGG
5	3755	AAATGGATGTTACGCCGGCAAGCT
	3756	TCGTGCGAGGCCTCTTCGGCATAC
	3757	TACATCGCGTCGAGTCATTCTTGG
ĺ	3758	TCACACCACATAATGGCACCACGT
	3759	CAGGTTCACGGTTGAGGAGTGCGA
0	3760	GGTGTTACACCGCTTCGTTGTCCT
	3761	ACAATAATAAGGGAGCATCGGCCG
	3762	TCGGGTCCTATGATCCAGTCCCAA
	3763	ACCCATTCCTCCTGCGGCGATCAA
	3764	TCGCAGGTGTAGACGGACGAAAAG
5	3765	CTCTTGCGTAGTAATCGGCCCGCA
	3766	TTCCGTGTCACGCGAGCCTGCTTT
	3767	ACTCTAAGTAGGGCTGGGTCGCGA
	3768	TTGGTGGCTGTAAAGGTGCTTGGC
	3769	CCGAATTACCCATTCATACGGCAC
:0	3770	GATGGATAGGTTCGCTTCCCGCAA
	3771	ATGACGGAAAGAATGTGATTCGGC
	3772	ACGGTTCGGCTTCTGTTAGTCACG
	3773	GGATCCCGTAATTGAGGCGGCCAC
	3774	ACCCGTTAAGTCGACGCCTGCGGG
25	3775	TTCGATGTGAACGGTTGGCCAACC
	3776	TCGATCGGGAGTCTACCGCCATGT
	3777	AGCAACGAGTTTATGAGCGCAGGA
	3778	TGGGAAACGAATGGGTGGCGGTTG
	3779	TCTGTGTTGCCCCACCTACAGCAA
30	3780	CCTGCATTGGATGTACCCGCGGGT
	3781	GAACGAGGTCCGGGTTTGCATCTC
t mark a	3782	GGCGCCGAAGCAGACGACCATAT
	3783	AGGCATCACGCATCAGGTACTTGG
	3784	TTTACAAAAGCATCGGCCCTGGGA
35	3785	CCCAGGCGGTCAACCAATTGTAGA
	3786	CTGCAGCACGTGCCTGAAATTCGT
	3787	CCGTTTTGCTCCAGCTATGAGCGT
	3788	ATTTGTGCCGCATTGGGGTTATTC
	3789	TAAGCAGAAAGCCGCAACTCCGGT
40	3790	GCGACTGATATAGTGCTCGGACCG
	3791	AACTCTATTCTGACACCGCCCGAA
	3792	GTGCGCTCCAAGAAGAAACACACC

Γ	3793	ACGACCAGCGGTCTGAGATCTAGG
Ţ	3794	ATCCCCTCCTCAGGTCGACGCTGT
	3795	TGACATACGCGTCACCCAGCACAG
	3796	TAACCGCGACTCTGACTCCCTTGT
5	3797	AAGCGGTTTGATCTGTGCAATCGG
	3798	CTGTCAACTCGGTCGTCCGCACAG
Ţ	3799	AACTTTGCCGTTTAGGGCAGGTGA
Ī	3800	GCTGAAGAACTCCCAATTCGCTGG
Ī	3801	AAGATGCGATGGGTCAGTCCTCGT
0	3802	ACCCACCTCTGAAGGTTGAGACGG
	3803	AGGCTACGCACCCTCGAGAGTGAC
·	3804	CGGTCACGAACGTGGTCCAGTTTT
	3805	CAAAGCAACGCGCGCCACTTAAAA
	3806	ACGAGGAAGGAACTGATCCCCAGT
15	3807	TTCGCCACTATGGGCTCAGCATTA
•	3808	CGCTCGGCAGAGGAGTCCACTCAC
	3809	TGTTGGCACGACTCCGTCCATGAA
	3810	TGCCTACCCGGTGATTGCGACATC
	3811	CAACGGTCGGATCTGAGGAGATCT
20	3812	CGTTACGAAGCGAAGTTCCCGAGT
	3813	AGTGACGCCAAAGTCGCCATTCT
	3814	ATTCAGCTGGGCATAGGCGATGGG
	3815	TAGGACAGCGTGGCTACACA
	3816	AATTTGTCCAGCTCTGCACGACCG
25	3817	TGAGTGGGCTGTGATCCGTTCCAC
	3818	TGTGGTGACACGCCAGAGCTGGTT
	3819	CCTCACAGGTGTGAGAGGAGCCGC
	3820	AGTCCCGCTTCTGCAAATTCCGAA
	. 3821	TCTGCGCCTACCCGTAAGCTGAAC
30	3822	GCCTCCTGAGTTGATTCATGCATG
	3823	CCTAACGGTTGGTTCGCCGTTTTT
· · ·	3824	TCGCAAACCCACGAATGAGTCCCG
	3825	AGTGCTAAGGTGGGCGAGCAGAGG
	3826	CTGGAGACTGCGATGGCAGGGTTG
35	3827	AAGGGATAGTGATGGCGATGGACG
	3828	CTATCCACGGTGATGTCCGCCATT
	3829	CGGACTAGAACTTGCCAAGCACGA
	3830	AGAGCCGGATGGCATTGCATGAAC
	3831	AGTTGGCTAGCGGTCGAATGAGCA
40	3832	GCATGCGGTCACCGCTTCATCTAA
	3833	GTGAGATTCCAAGCTCGCCGGTGA
	3834	GCCATCCACCGCACAATGAACGCT

٢	3835	GGGTGGTCCTCACTGTGGTTGGCA
	3836	AGGCGGCTACGACGAGCGTCGTTA
	3837	GCCAAGTGATCGTGCTTCCGCGTA
	3838	TAGCCGTTTATTCCCTTGATGCGC
5	3839	ACTATGTGGGACGAGCGTCTGCGA
	3840	GCACCTTCGAGAACCCATCAGATG
	3841	ATTITCTGTACCGATGCTCACCGG
<u> </u>	3842	CACTGGAGCAATAAATGGCCAGGC
	3843	GGGTTCACGTATCTCATGGATGCG
0	3844	GCACGCTCCCAGTATGCTCCTTCA
Ī	3845	GAAGGGACTTAGTCCGCGGCCCTC
	3846	TTCGTTACCCTAAGGGCGTTTGCA
Ţ	3847	GTTCCAGGTCACGACGAGCTGCGC
[3848	TCGTACGTAGTCACACCGCGACTT
15	3849	GGGCTGGAGTAGCGGTCTGCTATG
Ī	3850	TAGCGGCACTCGTGTTGCGAGTGG
	3851	ACGTTGGGTTCTGACACGGCGATT
Ī	3852	TGTTGCTGCGCCCCAAGTGATCTT
Ţ	3853	CCCAGGTCGTTACGGTGCATCACA
20	3854	CCTAGTGCACAGGCAAATCGGGCT
	3855	GGCGTTCTCCAAGATAAGGCCAAA
	3856	ACTTCGATACCGTGGACCTCGCCA
	3857	CTGAGCGCGCTAAACGTCCCTAGC
ĺ	3858	ATCAGATAAACGATCCGACGCGTC
25 .	3859	CATGGCTGAATTTGTCGACCCTCT
	3860	CGAAAGCGAGCAAATAGAATCCCC
	3861	AGATTGCCCTGCGGCAGGTTGAAT
	3862	AAGAGGCGGCCGATCAGTTAGAAA
	3863	CTGATGCCTGTAAGGAGGCGCTCG
30	3864	AATCGCGAGGTTCGGCAGACAAAG
	3865	CGTTGGGACACGGACCGTTCACTC
,	3866	AGATGTGCACTCGCGGTCATTT
,	3867	CAACTCGAGTGGCGGTAACATCTG
	3868	ACCAAGGTTGCGATTACGGGAAGC
35	3869	CGAAGCGGTAGACGGCTCGCGTTA
	3870	TCTCGCGAACAGGAGGGAAGGCGT
	3871	GTCCCGATTTGCGCTGTGAGGAAA
•	3872	TACCACGCGTCGGCACGGAAATGG
	3873	AAATGCTACCCGATTGCGCGGGAT
40	3874	TCGATTCAGGTTTGTGCTGCGGAG
	3875	CCATCTCATCCCACTATGGCATGC
	3876	CTGGCCGTGTTTGGTTGAGTCGA

	3877	GACACACGTTGCAGGGCTTCCC
	3878	TCGAATCGAGTCGATCGTGAAGGT
	3879	GAAAGCACTCGATCGCGTTGGATT
	3880	AATTACGCGAACATGGGGCGTCAA
5	3881	GTGCTAACACTGTGGTCGTTCCCA
	3882	GGTAAGCGCCAGCCAGGAGTTGTC
	3883	GGCGATCGTTCAGGAATCGCGTCA
	3884	CTGGCTAGACCTCCGACACAGGCT
	3885	CGGGTTAAACGCCAACTGGCCTAG
0	3886	ATCGCAGCCTGGCCGCCTAGTTTT
	3887	GGCGTAGCCTAGCAAATTATGCCA
	3888	ATGACGCGACGAGACAATACGGC
	3889	GTTGCATCACGAAAATGCCGTCTT
	3890	GAGTCATGCGTTCCTCGCTTTACC
5	3891	TCTGAACCGGTTATCCCCAACCTC
	3892	TGCCTCTGGTAGGCGCCCAGTTAC
	3893	CTGACGGTTTTCATTCGGCGTGCC
	3894	TGAACACGAGCAACACTCCAACGC
	3895	CGGCGCGAAAGACTTGAACTTG
:0	3896	GCTACGAGTACCCGTCGGAAACGC
	3897	ATACCCAACAGCATGGAGCGACCA
	3898	ATCGCATCGCATCGTATTCACGGG
	3899	CGGCCTAGAGGTGCGAAAGCTATC
	3900	TAACGCTTTTCCGAGGCCGATTCT
25	3901	TCTGTCCTAGCACGCCGACCTGCT
	3902	CTCATCGTTCAGTCGGTCGTCGTA
	3903	TCGTCGAGCAGATAGCGGGGTAGG
	3904	TCGACCACAGTCAGGACACTACCG
	3905	TGCGATTCTATGATGTCCGAACGC
30	3906	CAAATGCAATGGCAAGCACTCACC
	3907	TCTAATCCATCGTTTTTTGGGCGA
rapid.	3908	TCTCAACTCCGGTACGACGAAACA
	3909	CTGAAGAGGGTAGCCTGGGAGCGG
	3910	GGCACAATTAAAACGCGCCGCGTT
35	3911	CAAAGGAGGTCAAAGGCCAGAAA
	3912	TTTGCGGCCGTGACGAGCAAAAAT
	3913	AGGAATGTGCGTGGCACCTGTGGA
••	3914	TCGTGATGACTGCCTTCCGAATCA
	3915	CACGTCGACATGTTTGGTACCTCG
40	3916	TTGCGGTAGTTTGGTTACCACCGT
	3917	GCAGTGGCGACAAATACAGCTGAG
	3918	ACGGCATGATGGAGGGATAAACGT

		3919	TGGGATAATCCGCAAGCGCATAGC
		3920	CCTAGCTCTGCGCTCTTTGCGC
		3921	TCCTGGAACTGCTGAAGGCGACTT
		3922	CGAAGGCGCATGGTGTAGTCTCC
5		3923	AACATTGTTCCCATCCCAGAGCAC
		3924	CCAGGCAAGAACAACCACGCGCT
		3925	AAATCCACAGGCGCGCCAAAGCTG
	<u> </u>	3926	GCTCACCGCAGACTCCGCGCGATA
		3927	TAGGTGGCGAGAGAGCGCCCACAA
D		3928	GGCGTTGGTGTCGGGACCATGA
-		3929	TCTGAATGCTTCCGTGCTTTCGTG
		3930	ACGCTCTGGACCTCGCTCATTCGA
	<u> </u>	3931	TCCTTTATGCGCAGCGCTCGTGTT
		3932	TTGCCGTCCTGCAGCAGGTAGCTC
5		3933	GGTCTAGTGGCAGCAAGGAGCGAT
	Γ	3934	GGTAACGCGACCAGCTTAGACACC
	<u> </u>	3935	GTGGCGATTGGCTTCCTATGCATA
	Ī	3936	TCAAAATACGGCCAGGAAGGGCAA
	Ţ	3937	TGCCATGCAGTCAGGTACGATGGT
<u> 10</u>	Ī	3938	ACAGGTTACGTCGTGTTCCCGT
	Ţ	3939	CTCATGACGAACGAGCGGTCTGCA
	• [3940	GTCGTGCGAGAGGCCAAGACCTTA
		3941	GCTGGCTGACGCTGTTGTCAGAGG
	Ţ	3942	GCTACAGTGCTGCGTCCCGTGCCT
25	j	3943	TTTACGAGCACCAAGCTGGCGTAG
	Ì	3944	ACGAGTTGACGGTCGTAGGGACCG
		3945	TCGGATGGTAGGAGGCGAGATCGG
		3946	ATTATGCAGATCCTGTGCATCCGC
		3947	AGGGATGGAGACGAAGGAAGCATT
30		3948	ACCCAGGACCCGTATTCCCTAGC
		3949	GCACCATCCTGGGGCTTCTCAATG
		3950	TACAATCCGTGGACGTTTGCTCAG
		3951	GGTAGGCGAATCCGACTGGCATAG
		3952	AGGACCGAACCCATGTGCAGCATC
35		3953	ATACACCGCACAGAAGCACAGCTG
		3954	TCCTTGGCGGCCGTGTGTTTATTG
		3955	CTCCACGCGAAGGGCGCTTGTAAC
		3956	TGGCCCTGCCATCCTCGGATTCAG
		3957	TGTCTATTCGCCAGCGTGAGCATC
40		3958	TGTTGTTGGCACGCCTCTACGGCA
		3959	GTGCCTCAACCGTATCGTGGCGGT
		3960	TCCTCGAAGTAGCGTGACCGAACC

-137-

		3961	AAACAATTTCCTGCACTCTCGGCC
	Γ	3962	CACAAACTCGTCGAGGCACACAGT
		3963	GACGAAACGCTCGGCAGAAAGCCT
	Ī	3964	TCAACTCACACGGGACAGCAGTTC
	Γ	3965	TCACGTGGATGGGCTTAGCTGGGC
	Γ	3966	AGGTGTTTGTTCCGACTGGCCACA
	Γ	3967	TCAACCCTCTATTCCCGAGCATTG
		3968	ACCTCACACAGCGTTCTCGTCGA
	Γ	3969	AACAGCATGCGGTCGCTGGCTTTC
•	<u> </u>	3970	CACGGACACGTGTTACATCCGATG
	ſ	3971	CTGGGAGCCTGCTGATACATGGTG
	Γ	3972	CGTCCTATGGGCCATGGCCAGGAT
	Ī	3973	GTCCCCAAATCTCGCTTTACAGGC
		3974	TCACAAACCTGTGCGTGCATTGTC
		3975	CACACTCGTGGCCTGCGTTGGGAA
		3976	GCCTGCACTTACGGCTATCTCGCC
		3977	TTGGCGTGGCGATTACCTGTTATT
		3978	TTTGCGGCTGAAGTTTACAGGGTG
	Ţ.	3979	CACTTAAGGGGCTGACCGAGCAAC
l	ſ	3980	AGAAAACGTCAATCCGCCACCTTT
	1	3981	AACAAAACGGCGCTCCAACAAACG
	Ī	3982	GCCTCAATATCTGGTTGCCGCCTG
		3983	TTCCACAGTCAATGATGGGCGTGC
		3984	GATTCCCAGTCTACCCGCGAGCAT
5		3985	AGGCCAATTACGACCCTGTCACGG
		3986	CATGCGAACGTTCCGAGGAGACGG
		3987	CACACGCGATGGGTTGTGACGC
		3988	TCCGGTATTGCGCAGGAACCATAG
		3989	AAGATTAGGTGTGCCCGCCTCAGG
3		3990	TCGTTACGCCCCGACTCGACGATG
		3991	ACTAAAATCGCCAGGTTGCTCCCT
	******	3992	AGGATGGCCACGCCGAATCAAAGT
		3993	TGATGAAGCAGCTCATCGCTGGCG
		3994	CCCCGATGGGTCTTTGTTGGACTC
5		3995	ACACGAGGGCTGCTGGTGAGGGCT
		3996	TGGTCACCAATTTGATGATCCGAG
		3997	AAGGCCGCTTGCATGCGACAAATT
		3998	CCAGTGTTCGTTCATCGGTGGCGT
		3999	CCGACCGCTACATAGGTGTGCGAA
.0		4000	TGTTGAAGCCGTTCCCAGATGACA

-138-

5

0

5

:0

<u>2</u>5

30

35

40

TABLE 2

Seq. ID No.	Decoder Sequence (5'-3')	Probe Sequence (5'-3')
1	TTCGCCGTCGTGTAGGCTTTTCAA	TTGAAAAGCCTACACGACGGCGAA
2	TTCGAAGCGCACGTCCCTTTTCAA	TTGAAAAGGGACGTGCGCTTCGAA
3	AACGCGTGGGGAATGGGACATCAA	TTGATGTCCCATTCCCCACGCGTT
4	CCGTCGCATACCGGCTACGATCAA	TTGATCGTAGCCGGTATGCGACGG
5	ATGGCCGTGCTGGGGACAAGTCAA	TTGACTTGTCCCCAGCACGGCCAT
6	TTGCAACGGGCTGGTCAACGTCAA	TTGACGTTGACCAGCCCGTTGCAA
7	CGCATAGGTTGCCGATTTCGTCAA	TTGACGAAATCGGCAACCTATGCG
8	CCGTTTGCGGTCGTCCTTGCTCAA	TTGAGCAAGGACGACCGCAAACGG
9	TTCGCTTTCGTGGCTGCACTTCAA	TTGAAGTGCAGCCACGAAAGCGAA
10	GTCCAACGCGCAACTCCGATTCAA	TTGAATCGGAGTTGCGCGTTGGAC
11	TTGCCGCACCGTCCGTCATCTCAA	TTGAGATGACGGACGGTGCGGCAA
12	CATCGTCCCTTTCGATGGGATCAA	TTGATCCCATCGAAAGGGACGATG
13	GCACGGGAGCTGACGACGTGTCAA	TTGACACGTCGTCAGCTCCCGTGC
14	AGACGCACCGCAACAGGCTGTCAA	TTGACAGCCTGTTGCGGTGCGTCT
15	CGTGTAGGGGTCCCGTGCTGTCAA	TTGACAGCACGGGACCCCTACACG
16	CATCGCTGCAAGTACCGCACTCAA	TTGAGTGCGGTACTTGCAGCGATG
17	GGCTGGTTCGGCCCGAAAGCTTAG	CTAAGCTTTCGGGCCGAACCAGCC
18	GTTCCCAGTGAAGCTGCGATCTGG	CCAGATCGCAGCTTCACTGGGAAC
19	TACTTGGCATGGAATCCCTTACGC	GCGTAAGGGATTCCATGCCAAGTA
20	ACTAGCATATTTCAGGGCACCGGC	GCCGGTGCCCTGAAATATGCTAGT
21	GAACGGTCAATGAACCCGCTGTGA	TCACAGCGGGTTCATTGACCGTTC
22	GCGGCCTTGGTTCAATATGAATCG	CGATTCATATTGAACCAAGGCCGC
23	GATCGTTAGAGGGACCTTGCCCGA	TCGGGCAAGGTCCCTCTAACGATC
24	TGGACCTAGTCCGGCAGTGACGAA	TTCGTCACTGCCGGACTAGGTCCA
25	ATAAACTACCCAGGACGGGCGGAA	TTCCGCCCGTCCTGGGTAGTTTAT
26	CATCGGTTCGCGCCAATCCAGATA	TATCTGGATTGGCGCGAACCGATG
-27	GTCGGGCATAGAGCCGACCACCCT	AGGGTGGTCGGCTCTATGCCCGAC
28	CTTGGGTCATGATTCACCGTGCTA	TAGCACGGTGAATCATGACCCAAG
29	TGCCTAACGTGCTAATCAGCAGCG	CGCTGCTGATTAGCACGTTAGGCA
30	CGCATGTTGGAGCATATGCCCTGA	TCAGGGCATATGCTCCAACATGCG
31	AGCCACTGCATCAGTGCTGTTCAA	TTGAACAGCACTGATGCAGTGGCT
32	GGTTGTTTTGAGGCGTCCCACACT	AGTGTGGGACGCCTCAAAACAACC
33	TCGACCAAGAGCAAGGGCGGACCA	TGGTCCGCCCTTGCTCTTGGTCGA
34	GACATCGCTATTGCGCATGGATCA	TGATCCATGCGCAATAGCGATGTC
35	GAAATACGAAGTCTGCGGGAGTCG	CGACTCCCGCAGACTTCGTATTTC
36	TGTCATGAATGATTGATCGCGCGA	TCGCGCGATCAATCATTCATGACA
37	ATATCGGGATTCGTTCCCGGTGAA	TTCACCGGGAACGAATCCCGATAT

	38	GCGAGCGTACCGAAGGGCCTAGAA	TTCTAGGCCCTTCGGTACGCTCGC
	39	TTACCGGCAGCGGACTTCCGAATT	AATTCGGAAGTCCGCTGCCGGTAA
	40	GTAATCGAGAGCTGCGCGCCGTCT	AGACGGCGCGCAGCTCTCGATTAC
	41	CCTGTTAGCGTAGGCGAGTCGATC	GATCGACTCGCCTACGCTAACAGG
5	42	TAGCGGACCGGCAGAATGAGTTCC	GGAACTCATTCTGCCGGTCCGCTA
	43	GGTACATGCACTACGCGCACTCGG	CCGAGTGCGCGTAGTGCATGTACC
	44	AATTCATCTCGGACTCCCGCGGTA	TACCGCGGGAGTCCGAGATGAATT
	45	GCCAAATCTGGATTGGCAGGAATG	CATTCCTGCCAATCCAGATTTGGC
	46	TGCATTTTCGGTTGAGGCACATCC	GGATGTGCCTCAACCGAAAATGCA
10	47	CCGCTCAATTCACCATGCTTCGCT	AGCGAAGCATGGTGAATTGAGCGG
	48	CTCGGAAAGGTGCAACTTTGGTGT	ACACCAAAGTTGCACCTTTCCGAG
	49	AATTCGACCAGCAGAACGTCCCAT	ATGGGACGTTCTGCTGGTCGAATT
	50	GCCAGAGTCTCAACCTCACGGGAT	ATCCCGTGAGGTTGAGACTCTGGC
	51	CCAACAACTGGAACGGGAACCCGC	GCGGGTTCCCGTTCCAGTTGTTGG
15	52	GAGAACTGATCGCTGAGGGGCATG	CATGCCCCTCAGCGATCAGTTCTC
	53	GGCACACTAGACTTGTGGCACCGA	TCGGTGCCACAAGTCTAGTGTGCC
	54	TCACATCCAAATATGGTCCGCGAA	TTCGCGGACCATATTTGGATGTGA
	• 55	GTCTGCCGGTGTGACCGCTTCATT	AATGAAGCGGTCACACCGGCAGAC
	56	CATCGCAGAGCATAAACACCCTCA	TGAGGGTGTTTATGCTCTGCGATG
<u></u> 20	57	GTTGGTATCTATGGCAGAGGCGGA	TCCGCCTCTGCCATAGATACCAAC
	58	ACGAGGTGCCGCTGAGGTTCCATT	AATGGAACCTCAGCGGCACCTCGT
	59	GGAATGAGTGGACCCAGGCACATT	AATGTGCCTGGGTCCACTCATTCC
	60	TGTCAATATGCGTCCGTGTCGTCT	AGACGACACGGACGCATATTGACA
	61	TGATGAGCCTCAGGGTACGAGGCA	TGCCTCGTACCCTGAGGCTCATCA
? 5	62	CACCGCGGTGTTCCTACAGAATGA	TCATTCTGTAGGAACACCGCGGTG
	63	TTGTTGCCAATGGTGTCCGCTCGG	CCGAGCGGACACCATTGGCAACAA
	64	TTAACCTGCGTCTGCCCCTTTCCT	AGGAAAGGGGCAGACGCAGGTTAA
	65	AGGCGCGTTCCTGCCTTAGTGACG	CGTCACTAAGGCAGGAACGCGCCT
	66	TAGGGCGATGGCACGAAGCTTCAA	TTGAAGCTTCGTGCCATCGCCCTA
:0	67	TGCATAGAGCCAAAGTCGGCGATG	CATCGCCGACTTTGGCTCTATGCA
	68	TTGAGAGGCAGGTGGCCACACGGA	TCCGTGTGGCCACCTGCCTCTCAA
	69	TCCGCATTGTGAGAAAAAACGAGC	GCTCGTTTTTTCTCACAATGCGGA
	70	GGCGGTTTCCGTAGCTATAGGTGC	GCACCTATAGCTACGGAAACCGCC
	71	GGTGAAAATTTCGTAGCCACGGGC	GCCCGTGGCTACGAAATTTTCACC
i 5	72	CCGACGGAGGATGAAGACAATCAC	GTGATTGTCTTCATCCTCCGTCGG
	73	CCAGTTTGGCCCAATTCGCCAAAA	TTTTGGCGAATTGGGCCAAACTGG
	74	GGATCTATTAGGCCGTGCGCACAG	CTGTGCGCACGGCCTAATAGATCC
	75	CGGATGTCACCGTTTGGACTTTCA	TGAAAGTCCAAACGGTGACATCCG
	76	ATCGCAAATCCTGCTCGTCCCTAA	TTAGGGACGAGCAGGATTTGCGAT
.0	77	CAGGGCATGCAATAATCGAGGTTC	GAACCTCGATTATTGCATGCCCTG
	78	CATGCGTTGATATATGGGCCCAAG	CTTGGGCCCATATATCAACGCATG

	79	CAGCTGCAGCTTGTGACCAACCAC	GTGGTTGGTCACAAGCTGCAGCTG
	80	TTGTATGTCTGCCGACCGGCGACC	GGTCGCCGGTCGGCAGACATACAA
	81	GATGGCGCCCGTTGATAGGTATGG	CCATACCTATCAACGGGCGCCATC
	82	ATGAGAATCGCCGGCAATCTGCTA	TAGCAGATTGCCGGCGATTCTCAT
5	83	ATTTGCACTGACCGCAGGCTCGTG	CACGAGCCTGCGGTCAGTGCAAAT
	84	CAGGGAGAACGGTTAAGTTCCCGT	ACGGGAACTTAACCGTTCTCCCTG
	85	AGGCCGGCGATCGAGGAGTTTGGT	ACCAAACTCCTCGATCGCCGGCCT
	86	ACACGGTGGTCTCTGATAGCGACC	GGTCGCTATCAGAGACCACCGTGT
	87	GTGCAACGCCGAGGACTTCCATCA	TGATGGAAGTCCTCGGCGTTGCAC
10	88	TCGGTGCCTGATAGCCATTCCGAT	ATCGGAATGGCTATCAGGCACCGA
	89	TGAAATACCACACAGCCAATTGGC	GCCAATTGGCTGTGTGGTATTTCA
	90	GCATCGTGTACATGACTGCCGCGA	TCGCGGCAGTCATGTACACGATGC
	91	CAGTGTTCTAACGGCGCGCGTGAA	TTCACGCGCGCCGTTAGAACACTG
	92	CGCTTGCAACGTTGCACCTACTCT	AGAGTAGGTGCAACGTTGCAAGCG
15	93	CGAAAAACTAGTGGGCTCGCCGCG	CGCGGCGAGCCCACTAGTTTTCG
	94	CTTTCAGGGGAACTGCCGGAGTCG	CGACTCCGGCAGTTCCCCTGAAAG
	95	TTGTGGCCTTCTTGTAAAGGCACG	CGTGCCTTTACAAGAAGGCCACAA
	96	TCCACGAACGGCGACCCGTTGTCT	AGACAACGGGTCGCCGTTCGTGGA
	97	CGACCTTGCACGAAACCTAACGAG	CTCGTTAGGTTTCGTGCAAGGTCG
20	98	GTGCAGCTTCACGAGCCAGCCTGA	TCAGGCTGGCTCGTGAAGCTGCAC
	99	CGCTTTCGTGCGAATAGACGATGA	TCATCGTCTATTCGCACGAAAGCG
	100	TGCGCTTACAGGCTCCTAGTGGTC	GACCACTAGGAGCCTGTAAGCGCA
	101	CACGCGCTTAGTCGCGATCGCATA	TATGCGATCGCGACTAAGCGCGTG
	102	CGGAGGGAGGGAGCTAGCCTTCGA	TCGAAGGCTAGCTCCCTCCG
25	103	GCATCCGGCCTGTTGATGACGCCT	AGGCGTCATCAACAGGCCGGATGC
	104	AGGCCAATCGATCTTATTGCCGAG	CTCGGCAATAAGATCGATTGGCCT
	105	CCTTCCAATGATTGCATACGCCCA	TGGGCGTATGCAATCATTGGAAGG
	106	AACACTTGATCAGGCGGGTCGTCT	AGACGACCCGCCTGATCAAGTGTT
	107	TGGAATCAAGGCCGTAAAGGACAG	CTGTCCTTTACGGCCTTGATTCCA
30	108	GCTCCCGTAACCTGTCCACCAGTG	CACTGGTGGACAGGTTACGGGAGC
	109	AGTGGTGAATGGCCGCTACCCTGA	TCAGGGTAGCGGCCATTCACCACT
	110	TGTTGAAGCGAGCTAAAACGGCCA	TGGCCGTTTTAGCTCGCTTCAACA
	111	CAGCGCTCCAGAATTGACAGCAAT	ATTGCTGTCAATTCTGGAGCGCTG
	112	AAGGTGGTGCCATTCATTTGGCTA	TAGCCAAATGAATGGCACCACCTT
35	113	CGTTAAACCGCAATCCGTTCGGCT	AGCCGAACGGATTGCGGTTTAACG
	114	CACGAGATACCGGCGTAAGGGTGG	CCACCCTTACGCCGGTATCTCGTG
	115	CTACGGCAAACGTGTGGAATGGGT	ACCCATTCCACACGTTTGCCGTAG
	116	GTAGGGCGATGACGGGCGAACTAC	GTAGTTCGCCCGTCATCGCCCTAC
	117	AATCGACCTCCGCACACATTCGCA	TGCGAATGTGTGCGGAGGTCGATT
40	118	GAGTCAGCATGGCGGCGGAGATTC	GAATCTCCGCCGCCATGCTGACTC

r		_	
ļ	120	GGTACCTCAACGCGAACCACTTGT	ACAAGTGGTTCGCGTTGAGGTACC
	121	AAGCGATGGCTACCCAAGAGCGAT	ATCGCTCTTGGGTAGCCATCGCTT
	122	AGAGCTTATGCAGAACCAGGCGCC	GGCGCCTGGTTCTGCATAAGCTCT
	123	ATCGGTCTCACGCAGGGTTGGATA	TATCCAACCCTGCGTGAGACCGAT
5	124	TAGGTTGCCCGCCAGAAGAACAT	ATGTTTCTTCTGGCGGGCAACCTA
	125	CGGTGCTGTTGCAAAAGCCTGTAG	CTACAGGCTTTTGCAACAGCACCG
	126	TGATGAAAGTTTGCGGCAGGACAC	GTGTCCTGCCGCAAACTTTCATCA
:	127	GTTGAGTGCAGGATGCAGCGATAG	CTATCGCTGCATCCTGCACTCAAC
	128	AACATTGCGCGGTCCACCAGGGTT	AACCCTGGTGGACCGCGCAATGTT
10	129	GGGCAGTTAGAGAGGGCCAGAAGT	ACTTCTGGCCCTCTCTAACTGCCC
	130	TCGAGCTGGTCCCCGTGAACGTGT	ACACGTTCACGGGGACCAGCTCGA
	131	GTCTTGGGGGCCGCTTAGTGAAAA	TTTTCACTAAGCGGCCCCCAAGAC
	132	ACTGTTGGCTTGCTCTCATGTCCA	TGGACATGAGAGCAAGCCAACAGT
	133	AGGACCATTCGGAAGGCGAAGATA	TATCTTCGCCTTCCGAATGGTCCT
15	134	CTTGGGAGGCATCCGCTATAAGGA	TCCTTATAGCGGATGCCTCCCAAG
	135	AATAAACGGAACGCACCGCTACAG	CTGTAGCGGTGCGTTCCGTTTATT
	136	TTGTACGTGCGGTCCCCATAAGCA	TGCTTATGGGGACCGCACGTACAA
	137 .	CGCACCAAACTGAGTTTCCCAGAC	GTCTGGGAAACTCAGTTTGGTGCG
	138	ACCTGATCGTTCCCCTATTGGGAA	TTCCCAATAGGGGAACGATCAGGT
20	139	GGAACAGAGGCGAGGGGACTGAGC	GCTCAGTCCCCTCGCCTCTGTTCC
	140	CCCTGCCTTGGCGTGTCGGCTTAT	ATAAGCCGACACGCCAAGGCAGGG
Ĺ	141	ACTCTGACACGCCAACTCCGGAAG	CTTCCGGAGTTGGCGTGTCAGAGT
	142	CTGACGGTTTTCATTCGGCGTGCC	GGCACGCCGAATGAAAACCGTCAG
	143	TGCGGTGGTTCATTGGAGCTGGCC	GGCCAGCTCCAATGAACCACCGCA
25	144	GCATGGCCAACTAGTGACTCGCAA	TTGCGAGTCACTAGTTGGCCATGC
	145	AGGCCGTAAAGCGAATCTCACCTG	CAGGTGAGATTCGCTTTACGGCCT
	146	CGAATATTATGCCGAGAATCCGCG	CGCGGATTCTCGGCATAATATTCG
	147	ACAGACGAGCTCCCAACCACATGA	TCATGTGGTTGGGAGCTCGTCTGT
	148	GGACGGTTTGTGCTGGATTGTCTG	CAGACAATCCAGCACAAACCGTCC
30	149	AAAGGCTATTGAGTTGGTTGGGCG	CGCCCAACCAACTCAATAGCCTTT
].	150	GATGGCCTATTCGGAGATCGGGCC	GGCCCGATCTCCGAATAGGCCATC
1	151	GATCCAGTAGGCAGCTTCATCCCA	TGGGATGAAGCTGCCTACTGGATC
1	152	AATAACTCGCGCGGGTATGCTTCT	AGAAGCATACCCGCGCGAGTTATT
	153	GGAGGAGGTTTGTCTCGGAAAGCA	TGCTTTCCGAGACAAACCTCCTCC
35	154	CTTTGGTATGGCACATGCTGCCCG	CGGGCAGCATGTGCCATACCAAAG
. [155	AGAAAGGCTCGAGCAACGGGAACT	AGTTCCCGTTGCTCGAGCCTTTCT
	156	AATCTACCGCACTGGTCCGCAAGT	ACTTGCGGACCAGTGCGGTAGATT
	157	CGTGGCGGCCACAGTTTTTGGAGG	CCTCCAAAAACTGTGGCCGCCACG
	158	TTGCAGTTCAATCCATACGCACGT	ACGTGCGTATGGATTGAACTGCAA
40	159	GGCCCAAAGCCCCAGACCATTTTA	TAAAATGGTCTGGGGCTTTGGGCC
Ĺ	160	CGCCTGTCTTTGTCTCCGGACAAT	ATTGTCCGGAGACAAGACAGGCG

;	161	TGAGGCAACAGGGGCCAAAAACTA	TAGTTTTTGGCCCCTGTTGCCTCA
	162	AGCGGAAGTAGTCCTCGGCTCGTC	GACGAGCCGAGGACTACTTCCGCT
	163	GGCCCAAGGCTTAGAGATAGTGG	CCACTATCTCTAAGCCTTGGGGCC
	164	GCACGTGAAGTTTAACCGCGATTC	GAATCGCGGTTAAACTTCACGTGC
5	165	AGCGGCAGAAACGTTCCTTGACGG	CCGTCAAGGAACGTTTCTGCCGCT
	166	TCGTCGAGCAGACGAGATTGCACG	CGTGCAATCTCGTCTGCTCGACGA
	167	TCTTTGCCGCGTAACTGACTGCTT	AAGCAGTCAGTTACGCGGCAAAGA
	168	TTTATGTGCCAAGGGGTTAACCGA	TCGGTTAACCCCTTGGCACATAAA
	169	TGTTACTGTGGTTCACGGCAGTCC	GGACTGCCGTGAACCACAGTAACA
10	170	CGCGCCTCGCTAGACCTTTTATTG	CAATAAAAGGTCTAGCGAGGCGCG
	171	ACAAATGCGTGAGAGCTCCCAACT	AGTTGGGAGCTCTCACGCATTTGT
	172	CGCGCAGATTATAGACCCGAATGT	ACATTCGGGTCTATAATCTGCGCG
	173	CAAATAACGCCGCTGAATCGGCGT	ACGCCGATTCAGCGGCGTTATTTG
	174	CCTTCGTGCATCGGTGATGATGTT	AACATCATCACCGATGCACGAAGG
15	175	TGAACACGAGCAACACTCCAACGC	GCGTTGGAGTGTTGCTCGTGTTCA
ļ	176	CAGCAGATCCTTCGTAGCGGTCGT	ACGACCGCTACGAAGGATCTGCTG
	177	GGAACCTGGTGAGTTGTGCCTCAT	ATGAGGCACAACTCACCAGGTTCC
	178	TCATAAGCGACAATCGCGGGCTTA	TAAGCCCGCGATTGTCGCTTATGA
	179	CCCAACGTCACTGAAGCTCACAGT-	ACTGTGAGCTTCAGTGACGTTGGG
20	180	TGTCAGAGCCCGCGACTCAGACGG	CCGTCTGAGTCGCGGGCTCTGACA
	181	TACACGAAGCCTCTCCGTGGTCCA	TGGACCACGGAGAGGCTTCGTGTA
!	182	CTCAGAAGTCCTCGGCGAACTGGG	CCCAGTTCGCCGAGGACTTCTGAG
	183	ATCCTTTTATCTACTCCGCGGCGA	TCGCCGCGGAGTAGATAAAAGGAT
	184	AGGCGTGCAGCAACAGGATAAACC	GGTTTATCCTGTTGCTGCACGCCT
25	185	ACTCTCGAGGGAGTCTCTGGCACA	TGTGCCAGAGACTCCCTCGAGAGT
-	186	TTGCCAGGTCCATCGAGACCTGTT	AACAGGTGTCGATGGACCTGGCAA
	187	TCCACTATAACTGCGGGTCCGTGT	ACACGGACCCGCAGTTATAGTGGA
	188	GCCCAGTCGGCTCTAACAAGTTCG	CGAACTTGTTAGAGCCGACTGGGC
	189	CGGAACGGATAATCGGCGTCAGGT	ACCTGACGCCGATTATCCGTTCCG
30	190	TAAAATAAGCGCCTGGCGGGAGGA	TCCTCCCGCCAGGCGCTTATTTTA
	191	GCGCACTCGTGAAACCTTTCTCGC	GCGAGAAAGGTTTCACGAGTGCGC
	192	AGTTTGCCAGGTACTGGCAAGTGC	GCACTTGCCAGTACCTGGCAAACT
	193	ACAACGAGGGATGTCCAGCGGCAT	ATGCCGCTGGACATCCCTCGTTGT
•	194	TTCGCAGCACCCGCTAGGTACAGT	ACTGTACCTAGCGGGTGCTGCGAA
35	195	TAACCCGATTTTTGCGACTCTGCC	GGCAGAGTCGCAAAAATCGGGTTA
	196	CGTCGCATTGCAAGCGTAGGCTTG	CAAGCCTACGCTTGCAATGCGACG
	197	GAGCTGACGTCACCATCAGAGGAA	TTCCTCTGATGGTGACGTCAGCTC
	198	GGAGGCTGGGGGTCGCGCTTAAGT	ACTTAAGCGCGACCCCAGCCTCC
	199	TTGTGGGAACCGCACTAGCTGGCT	AGCCAGCTAGTGCGGTTCCCACAA
40	200	CCCTCGCACTGTGTTCACCCTCTT	AAGAGGGTGAACACAGTGCGAGGG
	201	TCATTGACTCGAATCCGCACAACG	CGTTGTGCGGATTCGAGTCAATGA

	202	ACAGGGGTTGGCCTTCGTACGTAC	GTACGTACGAAGGCCAACCCCTGT
	203	AGGCCGTGCAACATCACACAGGAT	ATCCTGTGTGATGTTGCACGGCCT
	204	GGGCCGTGGTCACGTAATATTGGC	GCCAATATTACGTGACCACGGCCC
	205	GCGCGACATGAAACGACAAGGCC	GGCCTTGTCGTTTCATGTCCGCGC
5	206	CTTATTGGGTGCCGGTGTCGGATT	AATCCGACACCGGCACCCAATAAG
	207	GGGGCGGTTACCAAAAAATCCGAT	ATCGGATTTTTTGGTAACCGCCCC
	208	GCTAAAGCGTGCTCCGTAACTGCC	GGCAGTTACGGAGCACGCTTTAGC
	209	ATCTCATGCATCTCGGTTCGTCGT	ACGACGAACCGAGATGCATGAGAT
	210	ACGAAAAAGTGTGCGGATCCCCT	AGGGGATCCGCACACTTTTTCGT
10	211	CCAAGTACACCGCACGCATGTTTA	TAAACATGCGTGCGGTGTACTTGG
	212	ATCGTGCGTGGAGTGTCGCATCTA	TAGATGCGACACTCCACGCACGAT
	213	TCCAGATACCGCCCGAACTTTGA	TCAAAGTTCGGGGCGGTATCTGGA
	214	TCTGCTGGCAGCACGTGAAGTGGC	GCCACTTCACGTGCTGCCAGCAGA
	215	TTGAAATTGCTCTGCCGTCAGTCA	TGACTGACGGCAGAGCAATTTCAA
15	216	AGTCAGGCGAGATGTTCAGGCAGC	GCTGCCTGAACATCTCGCCTGACT
	217	ACAAGCCGACGTTAAGCCCGCCCA	TGGGCGGCTTAACGTCGGCTTGT
	218	CCCTAATGAGGCCAGTAACCTGCA	TGCAGGTTACTGGCCTCATTAGGG
	219	GTGAGACACACATCCCCTCCAATG	CATTGGAGGGGATGTGTCTCAC
	220	CGACGGATGCAGAGTTCAGTGGTC	GACCACTGAACTCTGCATCCGTCG
20	221	CCCGCATGCCTGGCGGTATTACAA	TTGTAATACCGCCAGGCATGCGGG
	222	TTAGCAAAGCGGCGCCGTTAGCAA	TTGCTAACGGCGCCGCTTTGCTAA
	223	CCCGACACGGGTCAGCGTAATAAT	ATTATTACGCTGACCCGTGTCGGG
	224	GCGACGGCCCTGAGGTATGTCGTC	GACGACATACCTCAGGGCCGTCGC
	225	CAAAAGTGTGTTCCCTTGCGCTTG	CAAGCGCAAGGGAACACACTTTTG
25	226	TCTCGAAGCACAGCCCGGTTATTG	CAATAACCGGGCTGTGCTTCGAGA
	227	ATGCTAACCGTTGGCCATGGAACT	AGTTCCATGGCCAACGGTTAGCAT
	228	CTTGCGGAGTGTTAGCCCAGCGGT	ACCGCTGGGCTAACACTCCGCAAG
	229	TGCTCCCTAGGCGCTCGGAGGAGT	ACTCCTCCGAGCGCCTAGGGAGCA
	230	CCAATGCCTTTGAGTAAGCGATGG	CCATCGCTTACTCAAAGGCATTGG
30	231	AGCAGATAACGTCCCAATGACGCC	GGCGTCATTGGGACGTTATCTGCT
	232	TTGACCATTACGTGTTGCGCCCAT	ATGGGCGCAACACGTAATGGTCAA
	233	TCGCGTATTTGCGGAATTCGTCTG	CAGACGAATTCCGCAAATACGCGA
	234	CTGCGTGTCAACAATGTCCCGCAG	CTGCGGGACATTGTTGACACGCAG
	235	TCTGGTGCCACGCAAGGTCCACAG	CTGTGGACCTTGCGTGGCACCAGA
35	236	CTCCGGGAGGTCACTTAATTGCGG	CCGCAATTAAGTGACCTCCCGGAG
	237	TTTTCGTGATTGCCCGGAGGAGGC	GCCTCCTCCGGGCAATCACGAAAA
	238	TCGGGATGTAGCTGGGGCTACCGG	CCGGTAGCCCCAGCTACATCCCGA
	239	CGAGCCAACGCAAACACGTCCTTG	CAAGGACGTGTTTGCGTTGGCTCG
	240	GCAAAGCCTTTGTGGGGCGGTAGT	ACTACCGCCCCACAAAGGCTTTGC
40	241	ATTCGACCGGAAATGAGGTCTTCG	CGAAGACCTCATTTCCGGTCGAAT
	242	TTCGCTTGCTGAGTTGCTCTGTTC	GAACAGAGCAACTCAGCAAGCGAA
		······································	

244 AACCGTATTCGGGGTCACTTGTGG CCACAAGTGACCGCGAATACGGTT 245 GGGGCCAACCGTTTCGAGGCGTAT ATACGCCTCGAAACGGTTGGCCCC 246 TTCGGCTGGCAGTCCAAACGGCTT AAGCCGTTTGGACTGCCACCCCACC				
245 GGGGCCAACCGTTTCGAGGCGTAT ATACGCCTCGAAACGGTTGGCCCCC 246		243	CGCGTGAAGACCCCATTCCCGAGT	ACTCGGGAATGGGGTCTTCACGCG
246 TITGGCTGGCAGTCCAAACGGCTT AAGCCGTTTGGACTGCCAGCCGAAC 248 GCGAGGACCGAACTAGACAACGG 249 ACGCAGCGTGCATTCTAACCACACCC 248 GCGAGGACCGAACTAGACAAACGG CCGTTTGTCTAGTTCGGTCCTGCGCAGACTTCGGCTCAGCGCGCACTTCGGTCACGCGCTGCGTTTGAAAGGGGGACACTTCGGTCACGCGCTGCGTCAGCGCTTTGAAAGGGGGACACTTCGGTCACGCGCTGCGTCAGCGCTTTTAAAAGGTCGCTTTGAAAGGGGGACACTTCCGGTCAGCGCTTCAACTCCCCACACTTCAGACCACCTCCACACTTCAGACCACCTCTTAAACTCCCACACTTCAGACCACCTCCACACTTCAAACGCACCTTTTAA 251 TGCGATCGCTAACTGCTGGACAA TTGTCCCAGCAGTTAGCGACCCACACTTCAACCCCACACTTCAACCCCACACTTCAACCCCACACTTCAACCCCACACTTCAACCCCACACTTCAACCCCACACTTCAACCCCACACTTCAACCCCACACTCCACCA		244	AACCGTATTCGCGGTCACTTGTGG	CCACAAGTGACCGCGAATACGGTT
5 247 GGGTGTGTTAGAATGCACGGTTC GAACCGTGCATTCTAACCACACCC 248 GCGAGGACCGAACTAGACAAACGG CCGTTTGTCTAGTTCGGTCCTCGC 249 ACGCACGCGTGACCGAAGTTGCTG CAGCAACTTCGGTCACGCGTGCCT 250 TAAAAGGTCGCTTAGACGAAGTTGCTG CAGCAACTTCGGTCACGCGTGCCT 251 TAGAAAGGTCGCTTAGACGGACTTTCAACCAACCGACCTTTTA 251 TGCGATCGCTAACTGCTGGGACAA TTGTCCCAGCAGTTAGCGATCGCA 252 GGAGGTATAAGCGGACGGCCTCA TGAGGCCGCTCCGCT	•	245	GGGGCCAACCGTTTCGAGGCGTAT	ATACGCCTCGAAACGGTTGGCCCC
248 GCGAGGACCGAACTAGACAAACGG CCGTTTGTCTAGTTCGGTCCTCGC 249 ACGCACGCGTGACCGAAGTTGCTG CAGCAACTTCGGTCACGCGTGCGT 250 TAAAAGGTCGCTTTGAAAAGGGGGA TCCCCCTTTCAAAAGCGACCTTTTA 251 TGCGATCGCTAACTGCTGGGACAA TTGTCCCAGCAGTTAGCGATCGGT 252 GGAGGTATAACCGGAGCGGCCTCA TGAGGCCGCTCAGCTTAACCTCC 253 ATGCTGACATGTCGTGCACCTCGT ACGAGCCGCTCCGCT		246	TTCGGCTGGCAGTCCAAACGGCTT	AAGCCGTTTGGACTGCCAGCCGAA
249 ACGCACGCGTGACCGAAGTTGCTG CAGCAACTTCGGTCACGCGTGCGT 250 TAAAAGGTCGCTTTGAAAGGGGA TCCCCCTTTCAAAGCGACCTTTTA 251 TGCGATCGCTAACTGCTGGGACAA TTGTCCCAGCAGTTAGCGATCGCA 252 GGAGGTATAAGCGGAGCGGCCTCA TGAGGCCGCTCCGCT	5	247	GGGTGTGGTTAGAATGCACGGTTC	GAACCGTGCATTCTAACCACACCC
250 TAAAAGGTCGCTTTGAAAGGGGGA TCCCCCTTTCAAAGCGACCTTTTA 251 TGCGATCGCTAACTGCTGGGACAA TTGTCCCAGCAGTTAGCGACCGAC 252 GGAGGTATAAGCGGAGCGGCCTCA TGAGGCCGCTCCGCT		248	GCGAGGACCGAACTAGACAAACGG	CCGTTTGTCTAGTTCGGTCCTCGC
251 TGCGATCGCTAACTGCTGGGACAA TTGTCCCAGCAGTTAGCGATCGCA 252 GGAGGTATAAGCGGAGCGGCCTCA TGAGGCCGCTCCGCT		249	ACGCACGCGTGACCGAAGTTGCTG	CAGCAACTTCGGTCACGCGTGCGT
10 252 GGAGGTATAAGCGGAGCGGCCTCA TGAGGCCGCTCCGCT		250	TAAAAGGTCGCTTTGAAAGGGGGA	TCCCCCTTTCAAAGCGACCTTTTA
253 ATGCTGACATGTCGTGCACCTCGT ACGAGGTGCACGACATGTCAGCAT 254 TGTGGTTAAAGCGTCCGTTCAACG CGTTGAACGACACTGTCACCAC 255 CGTTCACACCGGCGTAAGCTGCGT ACGCAGCTTTAACCACA 256 CCTATCCCGGCGAGAACTTCTGTG CACAGAAGTTCTCGCCGGGATAGG 257 GTCTGCACTCACGCAGCGGAGGGA TCCCTCCGCTGCGTGAGTGCACC 258 GCACGAGTTGGTGCTCGGCAGATT AATCTGCCGACGACTCCTGC 259 AACGTCGCACCACACACACGTTCGTC GACGAACGTGTGTCGTGCGACACT 260 ATGCGCGCTTATCCTAGCATGGTC GACCAACGTGTGTCGTGCGACACT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGCTAGGATAAGCGCGCAT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGCTAGGATAAGCGCGCAT 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGACACA 263 AGGTGGTGGGGTCAACCCGCTTTA TAAAGCGGTTGACCCACACCACCT 264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGACATGAGGACCACACACCACCT 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGAGGACGAACACGTTGATCTAA 266 GATCCTGCGGAGAAGAAGATGCAG CTGCACTCTCTTCTCCCACAGATA 266 GATCCTGCGGAGAAGAAGATGCAG CTGCACTCTCTTCTCCCACAGATA 267 TACGTGTGGAGATGCCCCAACCC GCGTTCGGGCCATCTCCACACCACA		251	TGCGATCGCTAACTGCTGGGACAA	TTGTCCCAGCAGTTAGCGATCGCA
254 TGTGGTTAAAGCGTCCGTTCAACG CGTTGAACGACGCTTTAACCACA 255 CGTTCACACCGGCGTAAGCTGCGT ACGCAGCTTACGCCGGTGTGAACG 256 CCTATCCCGGCGAGAACTTCTGTG CACAGAAGTTCTCGCCGGGATAGCG 257 GTCTGCACTCACGCAGCGGAGGGA TCCCTCCGCTGCGTGAGTGCAGAC 258 GCACGAGTTGGTGCTCGGCAGATT AATCTGCCGAGCACCAACTCGTGC 259 AACGTCGCACGACACACGTTCGTC GACGAACGTGTGTCCCGCTGCGTGAGTGCAGCAC 260 ATGCGCGCTTATCCTAGCATGGTC GACCATGCTAGGACACACACGTGTGTC 261 TCACGTTTTCGTCTCGACATGAGG CCTCATTGTCGAGACGAAAACCGTGA 262 TGTGCCTCATCCTTAGGATACGGC CCCTATTGTCGAGACGAAAACCGTGA 263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCACACCACCT 264 CTGGATCGAAGGGACGAAACGTGA TCCATGCTAAGGATGAGGCACA 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGAGCGCAGTCCACACCACC 266 GATCCTGCGGAGAAGAGAGTGCAG CTGCACTCTCTTCCCCACGGATC 267 TACGTGTGGAGATACCCCCCAACCG CGGTTCGGGCGATTCCCACACGTA 268 GCGCTATGTCAATCGTGGCGTAG CTACCCCCACACGACCACCACCACCACCACCACCACCACCAC	10	252	GGAGGTATAAGCGGAGCGGCCTCA	TGAGGCCGCTCCGCTTATACCTCC
255 CGTTCACACCGGCGTAAGCTGCGT ACGCAGCTTACGCCGGTGTGAACG 256 CCTATCCCGGCGAGAACTTCTGTG CACAGAAGTTCTCGCCGGGATAGG 257 GTCTGCACTCACGCAGCGAGGGA TCCCTCCGCTGCGTGAGTGCAGAC 258 GCACGAGTTGGTGCTCGGCAGATT AATCTGCCGAGCACCAACTCGTGC 259 AACGTCGCACGACACACGTTCGTC GACGAACGTGTGTCGTGCGACGAT 260 ATGCGCGCTTATCCTAGCATGGTC GACCATGCTAGGATAAGCGCGCAT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGTCGAGACGAAAACCTGA 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGCACCA 263 AGGTGGTGTGGGTCAACCGCTTTA 264 CTGGATCGAAGGGACTGCAACCGC GCCGTATCCTAAGGATGAGGCACCA 265 TAGATCAACTCGCGTAGGATACGGC GACGTTGCAGTCCATCCAGC 266 GATCCTGCGGAGAAGAGAGTGCAG 267 TACGTGTGGGAGAAGAGAGTGCAG 268 GCGCTATGTCAACTCGCGTAGGA TCCATGCGGAGTTGATCTA 268 GCGCTATGTCAACTCGCGTAGGA TCCATGCGGAGTTGATCTA 269 AGCGAGGTTTCAACCGCGAACCG CGGTTCGAGCACACCACCACCACCACCACCACCACCACCACCACC	1	253	ATGCTGACATGTCGTGCACCTCGT	ACGAGGTGCACGACATGTCAGCAT
256 CCTATCCCGGCGAGAACTTCTGTG CACAGAAGTTCTCGCCGGGATAGG 257 GTCTGCACTCACGCAGCGAGGGA TCCCTCCGCTGCGTGAGTGCAGAC 258 GCACGAGTTGGTGCTCGGCAGATT AATCTGCCGAGCACCAACTCGTGC 259 AACGTCGCACGACACACGTTCGTC GACGAACGTGTGTCGTGCGACGATT 260 ATGCGCGCTTATCCTAGCATGGTC GACCAACGTGTGTCGTGCGACGTT 261 TCACGTTTTCGTCCGACATGAGG CCTCATGCTAGAACACGTGAA 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGACAAAACGTGA 263 AGGTGGTGTGGTGTAACCGCTTTA TAAAGCGGTTCACCCAACCACCT 264 CTGGATCGAAGGGACTGCAACGCTTTA TAAAGCGGTTCATCCAACACCACCT 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGAGGAGTACCACACCAC		254	TGTGGTTAAAGCGTCCGTTCAACG	CGTTGAACGGACGCTTTAACCACA
15 257 GTCTGCACTCACGCAGCGGAGGGA TCCCTCCGCTGCGTGAGTGCAGAC 258 GCACGAGTTGGTCCTCGGCAGATT AATCTGCCGAGCACCAACTCGTGC 259 AACGTCGCACGACCACGTTCGTC GACGAACGTGTGTCGTCCGCGAGCACCACTCGTGC 260 ATGCGCGCTTATCCTAGCATGGTC GACCATCAGGATAAGCGCGCAT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGTCGAGACCGAAAACGTGA 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGCACA 263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCACCACCACCT 264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGCAGTACCCACCACCACCT 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGAGAGGAGTTGATCTA 266 GATCCTGCGGAGAAGAGAGTGCAG CTGCACTCTCTCTCCCCAGGATC 267 TACGTGTGGAGATGCCCCGAACCG CGTTCGGAGCACTCTCCACACGTA 268 GCGCTATGTCAATCGTGGGCGTAG CTACGCCACCACCACCAC 269 AACGAGGTTTCAACCGCCTAACC GGTTCGGAGCATCACCACCACCACCACCACCACCACCACCACCACCACC		255	CGTTCACACCGGCGTAAGCTGCGT	ACGCAGCTTACGCCGGTGTGAACG
258 GCACGAGTTGGTGCTCGGCAGATT AATCTGCCGAGCACCAACTCGTGC 259 AACGTCGCACGACACACGTTCGTC GACGAACCGTGTGTCGTCGACGTT 260 ATGCGCGCTTATCCTAGCATGGTC GACCAACGTGTGTCGTCGACGATT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGCTAGGATAAGCGCGCAT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGTCGAGACGAAAACGTGA 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGCACA 263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCACCACCACCT 264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGCAGTCCAGCCACCACCACC 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGTACGCGAGTTGATCTA 266 GATCCTGCGGAGAAGAAGAGTGCAG CTGCACTCTCTCTCCCCAGGATC 267 TACGTGTGGAGATGCCCCGAACCG CGTTCGGGGCATTCCCACACGTA 268 GCGCTATGTCAATCGTGGACACC GGTTCGACGCATCACACCTA 269 AGCGAGGTTTCAACGGTCAACCC GGTTCGACCCACCAACCTACCACCACCACCACCACCACCACCACCA		256	CCTATCCCGGCGAGAACTTCTGTG	CACAGAAGTTCTCGCCGGGATAGG
259 AACGTCGCACGACACACGTTCGTC GACGAACGTGTGTCGTGCGACGTT 260 ATGCGCGCTTATCCTAGCATGGTC GACCATGCTAGGATAAGCGCGCAT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGTCGAGACGAAAACGTGA 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGCACA 263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCACACCACCT 264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGCAGTCCCTTCGATCCAG 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGAGCCGAGTTGATCTA 266 GATCCTGCGGAGAAGAGAGTGCAG CTGCACTCTCTTCTCCCCAGGATC 267 TACGTGTGGAGATGCCCCGAACCG CGGTTCGACCCACCACCACCACCACCACCACCACCACCACCACCA	15	257	GTCTGCACTCACGCAGCGGAGGGA	TCCCTCCGCTGCGTGAGTGCAGAC
260 ATGCGCGCTTATCCTAGCATGGTC GACCATGCTAGGATAAGCGCGCAT 261 TCACGTTTTCGTCTCGACATGAGG CCTCATGTCGAGACGAAAACGTGA 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGCACA 263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCCACCACCAC 264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGCAGTCCCAGCCACCACCACCACCACCACCACCACCACCACCACC		258	GCACGAGTTGGTGCTCGGCAGATT	AATCTGCCGAGCACCAACTCGTGC
261 TCACGTTTTCGTCTCGACATGAGG CCTCATGTCGAGACGAAAACGTGA 262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGCACA 263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCACACCACCT 264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGCAGTCCAGCTC 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGTACGCAGGTGATCTA 266 GATCCTGCGGAGAAGAGAGTGCAG CTGCACTCTCTCTCCGCAGGATC 267 TACGTGTGGAGATGCCCCGAACCG CGGTTCGGGGCATCTCCACACGTA 268 GCGCTATGTCAATCGTGGGCGTAG CTACGCCCACGATTGACATAGCGC 269 AGCGAGGTTTCACCGTCGACACC GGTGCGACGCACACACACACACACACACACACACACACAC		259	AACGTCGCACGACACGCTTCGTC	GACGAACGTGTGTCGTGCGACGTT
262 TGTGCCTCATCCTTAGGATACGGC GCCGTATCCTAAGGATGAGGCACA 263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCACACCACCT 264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGCAGTCCAGCACCACCACCACCACCACCACCACCACCACCACCAC		260	ATGCGCGCTTATCCTAGCATGGTC	GACCATGCTAGGATAAGCGCGCAT
263 AGGTGGTGTGGGTCAACCGCTTTA TAAAGCGGTTGACCCACCACCACCACCACCACCACCACCACCACCACCAC		261	TCACGTTTTCGTCTCGACATGAGG	CCTCATGTCGAGACGAAAACGTGA
264 CTGGATCGAAGGGACTGCAAGCTC GAGCTTGCAGTCCCTTCGATCCAG 265 TAGATCAACTCGCGTACGCATGGA TCCATGCGTACGCAGGTTGATCTA 266 GATCCTGCGGAGAAGAGAGTGCAG CTGCACTCTCTTCTCCGCAGGATC 267 TACGTGTGGAGATGCCCCGAACCG CGGTTCGGGGCATCTCCACACGTA 268 GCGCTATGTCAATCGTGGGCGTAG CTACGCCGACGATTGACATAGCGC 269 AGCGAGGTTTCTAGCGTCGACACC GGTGTCGACGCTAGAAACCTCGCT 270 ACCCAGGTTTTGCCGTTGTGGAAT ATTCCACAACGGCAAAACCTGGGT 271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 30 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGAGGTGAGGGCTG 274 GGGTGGACATCCGCCTGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCCTGCAGTA ATCGTAGCAGGCGGATGTCCACCC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAACGTCGACCCATTCG 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCACCAGCG CCGCTGATGCTCTAACAGGCGTTCAACAGGGCCTCT 281 AAGGCTCAACACGCCTATGTGCCC 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGGTTTGAACACGGCTTT	20	262	TGTGCCTCATCCTTAGGATACGGC	GCCGTATCCTAAGGATGAGGCACA
265 TAGATCAACTCGCGTACGCATGGA TCCATGCGTACGCGAGTTGATCTA 266 GATCCTGCGGAGAAGAGAGTGCAG CTGCACTCTCTTCTCCGCAGGATC 267 TACGTGTGAGAGTGCCCCGAACCG CGGTTCGGGGCATCTCCACACGTA 268 GCGCTATGTCAATCGTGGGCGTAG CTACGCCCACGATTGACATAGCGC 269 AGCGAGGTTTCTAGCGTCGACACC GGTGTCGACGCTAGAAACCTCGCT 270 ACCCAGGTTTTGCCGTTGTGGAAT ATTCCACAACGGCAAAACCTGGGT 271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 30 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGAGGAGTGAGGGCTC 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 35 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCCC GCGCACATCTGGCAACACCGGACT		263	AGGTGGTGGGTCAACCGCTTTA	TAAAGCGGTTGACCCACACCACCT
256 GATCCTGCGGAGAAGAGAGTGCAG CTGCACTCTCTCTCCGCAGGATC 267 TACGTGTGGAGATGCCCCGAACCG CGGTTCGGGGCATCTCCACACGTA 268 GCGCTATGTCAATCGTGGGCGTAG CTACGCCGACGATTGACATAGCGC 269 AGCGAGGTTTCTAGCGTCGACACC GGTGTCGACGCTAGAAACCTCGCT 270 ACCCAGGTTTTGCCGTTGTGGAAT ATTCCACAACGGCAAAACCTGGGT 271 CCCTGTTAACGGCTGCGAATTCC GAGACTACGCAGCCGTTAACAGGG 30 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTC 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATCCGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCCC GCGCACATAGGCGTGTTGAGCCTT 282 AGTCCGTGTTGCCAGATTTGGCTCC CGAGCCCAATCTGGCACCCTTTCGAACACGCGTTTCAACAGGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCCTTTCAACACGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCGTTTCAACACGCCTTTCAACACGCGTTTCAACACGCGTTTCAACACGCCTTTCAACACGCCTTTCAACACGCCTTTCAACACGCGTTTCAACACGCGTTTCAACACGCCTTTCAACACCCCTTTCAACACGCCTTTCAACACCGCCTTTTCAACACGCGTTTCAACACGCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTTCAACACCCCTTCTAACACCCCTTCATCA		264	CTGGATCGAAGGGACTGCAAGCTC	GAGCTTGCAGTCCCTTCGATCCAG
267 TACGTGTGGAGATGCCCCGAACCG CGGTTCGGGGCATCTCCACACGTA 268 GCGCTATGTCAATCGTGGGCGTAG CTACGCCGACGATTGACATAGCGC 269 AGCGAGGTTTCTAGCGTCGACACC GGTGTCGACGCTAGAAACCTCGCT 270 ACCCAGGTTTTGCCGTTGTGGAAT ATTCCACAACGGCAAAACCTGGGT 271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 30 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTG 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCG CCGCTGATGCTCTGAACAGGCCTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCCAATCTGGCAACACGGACT 40 282 AGTCCGTGTTGCAGATTGGCTCG CGAGCCCATCTGGCAACACACGGACT		265	TAGATCAACTCGCGTACGCATGGA	TCCATGCGTACGCGAGTTGATCTA
268 GCGCTATGTCAATCGTGGGCGTAG CTACGCCGACGATTGACATAGCGC 269 AGCGAGGTTTCTAGCGTCGACACC GGTGTCGACGCTAGAAACCTCGCT 270 ACCCAGGTTTTGCCGTTGTGGAAT ATTCCACAACGGCAAAACCTGGGT 271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 30 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTC 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATCTGGCAACACGGACT		266	GATCCTGCGGAGAGAGAGAGTGCAG	CTGCACTCTCTTCTCCGCAGGATC
269 AGCGAGGTTTCTAGCGTCGACACC GGTGTCGACGCTAGAAACCTCGCT 270 ACCCAGGTTTTGCCGTTGTGGAAT ATTCCACAACGGCAAAACCTGGGT 271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTC 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACCCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT	25	267	TACGTGTGGAGATGCCCCGAACCG	CGGTTCGGGGCATCTCCACACGTA
270 ACCCAGGTTTTGCCGTTGTGGAAT ATTCCACAACGGCAAAACCTGGGT 271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 30 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTC 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCCAATCTGGCAACACGGCACT		268	GCGCTATGTCAATCGTGGGCGTAG	CTACGCCCACGATTGACATAGCGC
271 CCCTGTTAACGGCTGCGTAGTCTC GAGACTACGCAGCCGTTAACAGGG 272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTC 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACCATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT		269	AGCGAGGTTTCTAGCGTCGACACC	GGTGTCGACGCTAGAAACCTCGCT-
272 AGGCCGATTTCACCCGCCAATTGC GCAATTGGCGGGTGAAATCGGCCT 273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTG 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCCATCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		270	ACCCAGGTTTTGCCGTTGTGGAAT	ATTCCACAACGGCAAAACCTGGGT
273 GAGCCCTCACTCCTTGCCCTTTGA TCAAAGGGCAAGGAGTGAGGGCTG 274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		271	CCCTGTTAACGGCTGCGTAGTCTC	GAGACTACGCAGCCGTTAACAGGG
274 GGGTGGACATCCGCCTCGCAGTCA TGACTGCGAGGCGGATGTCCACCC 275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 35 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT	30	272	AGGCCGATTTCACCCGCCAATTGC	GCAATTGGCGGGTGAAATCGGCCT
275 GATGGCTGAGAACCGTGCTACGAT ATCGTAGCACGGTTCTCAGCCATC 276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		273	GAGCCCTCACTCCTTGCCCTTTGA	TCAAAGGGCAAGGAGTGAGGGCTC
276 TCGACGTTAGGAGTGCTGCCAGAA TTCTGGCAGCACTCCTAACGTCGA 277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		274	GGGTGGACATCCGCCTCGCAGTCA	TGACTGCGAGGCGGATGTCCACCC
277 CGAATGGGTCTGGACCTTGCATAG CTATGCAAGGTCCAGACCCATTCG 278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		275	GATGGCTGAGAACCGTGCTACGAT	ATCGTAGCACGGTTCTCAGCCATC
278 GTGCACCAGACATTCGAACTCGGA TCCGAGTTCGAATGTCTGGTGCAC 279 AGAGGCCCCGTATATCCCATCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		276	TCGACGTTAGGAGTGCTGCCAGAA	TTCTGGCAGCACTCCTAACGTCGA
279 AGAGGCCCCGTATATCCCATCCAT ATGGATGGGATATACGGGGCCTCT 280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT	35	277	CGAATGGGTCTGGACCTTGCATAG	CTATGCAAGGTCCAGACCCATTCG
280 AACGCCTGTTCAGAGCATCAGCGG CCGCTGATGCTCTGAACAGGCGTT 281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		278	GTGCACCAGACATTCGAACTCGGA	TCCGAGTTCGAATGTCTGGTGCAC
281 AAGGCTCAACACGCCTATGTGCGC GCGCACATAGGCGTGTTGAGCCTT 40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		279	AGAGGCCCCGTATATCCCATCCAT	ATGGATGGGATATACGGGGCCTCT
40 282 AGTCCGTGTTGCCAGATTGGCTCG CGAGCCAATCTGGCAACACGGACT		280	AACGCCTGTTCAGAGCATCAGCGG	CCGCTGATGCTCTGAACAGGCGTT
		281	AAGGCTCAACACGCCTATGTGCGC	GCGCACATAGGCGTGTTGAGCCTT
283 ATGTCCCATGTAAAGACGCGTGTG CACACGCGTCTTTACATGGGACAT	40	282	AGTCCGTGTTGCCAGATTGGCTCG	CGAGCCAATCTGGCAACACGGACT
The food to the food for the fo		283	ATGTCCCATGTAAAGACGCGTGTG	CACACGCGTCTTTACATGGGACAT

	284	ATGGAGTCTGCTCACGCCCAAAGG	CCTTTGGGCGTGAGCAGACTCCAT
	285	CGGCCTCCAACAAGGAGCACTAAC	GTTAGTGCTCCTTGTTGGAGGCCG
ĺ	286	CAGAGCCGTGGCAACATTGCGAGC	GCTCGCAATGTTGCCACGGCTCTG
	287	TCATTTGAATGAGGTGCGCACCGG	CCGGTGCGCACCTCATTCAAATGA
5	288	GACGTACCGGAAGCGCCGTATAAA	TTTATACGGCGCTTCCGGTACGTC
	289	ATGCGAGCAATGGGATCCGGATTC	GAATCCGGATCCCATTGCTCGCAT
	290	AGAGTGAGGCCTCCCTGACCAGTG	CACTGGTCAGGGAGGCCTCACTCT
	291	CGCACCGTAAGTAGATTTGCCCGC	GCGGGCAAATCTACTTACGGTGCG
	292	TGAACCTTTGAGCACGTCGTGCGC	GCGCACGACGTGCTCAAAGGTTCA
10	293	TCCGCCTTTTTGGTTACCTCGAAG	CTTCGAGGTAACCAAAAAGGCGGA
	294	GAACGCCAACGGCACTAACACATC	GATGTGTTAGTGCCGTTGGCGTTC
	295 .	CCGACAGCAGCCAAGACGTCCCAG	CTGGGACGTCTTGGCTGCTGTCGG
	296	CATAAAAAACCTGGGGCTCTGCG	CGCAGAGCCCCAGGTTTTTTATG
	297	TGCCAACTGTGCAGACCGGACTTA	TAAGTCCGGTCTGCACAGTTGGCA
15	298	GGCGAAAGAGCGAAACCGGCTCGT	ACGAGCCGGTTTCGCTCTTTCGCC
	299	GGGATGCGTATTTTAGCGAACACG	CGTGTTCGCTAAAATACGCATCCC
	300	TGGGATTCAGCGACCAGTACGCGA	TCGCGTACTGGTCGCTGAATCCCA
	301	CCCGATATTCGCCCGGCCTATTCG	CGAATAGGCCGGGCGAATATCGGG
	302	CGAGAAGATGCCTCACGCAACCAA	TTGGTTGCGTGAGGCATCTTCTCG
20	303	AACCTTGACCCGTGGATGACGCTA	TAGCGTCATCCACGGGTCAAGGTT
	304	GGCTAGACGATGGATACCCGTGCC	GGCACGGGTATCCATCGTCTAGCC
	305	GCCTCTTCTCGACGATGCGATTTT	AAAATCGCATCGTCGAGAAGAGGC
	306	GCTTCCGGATGAACGGGATGGTTG	CAACCATCCCGTTCATCCGGAAGC
	307	CCCTCCATGTTCTTCGAACGGTTT	AAACCGTTCGAAGAACATGGAGGG
25	308	TTGATGGGCGGCAATGCTCTTGCT	AGCAAGAGCATTGCCGCCCATCAA
	309	ATTGTGAGATGCGCCAAATTCCCC	GGGGAATITGGCGCATCTCACAAT
	310	TCAGCACAGCCAGACGGTCAACTT	AAGTTGACCGTCTGGCTGTGCTGA
	311	ACTCCACTCCTCGGTGGCAAACTA	TAGTTTGCCACCGAGGAGTGGAGT
	312	TCTGGGCATGCCTGGACGGAGACG	CGTCTCCGTCCAGGCATGCCCAGA
30	313	TCTCAACTCCGGTACGACGAAACA	TGTTTCGTCGTACCGGAGTTGAGA
	314	TTGCGTGGTCAAAGGCGCAACGTG	CACGTTGCGCCTTTGACCACGCAA
	315	AGACAGCGATCCGCGGCTCATGAT	ATCATGAGCCGCGGATCGCTGTCT
	316	CGCGTCTCTAACTGAGAGCAGCCA	TGGCTGCTCTCAGTTAGAGACGCG
	317	AGGCGCACATGTACGGACATTCAG	CTGAATGTCCGTACATGTGCGCCT
35	318	GATGAGTGGCACGTCGGTGTGTAA	TTACACACCGACGTGCCACTCATC
	319	TGATCCATATTGTCGGACGTTGCG	CGCAACGTCCGACAATATGGATCA
·	320	ACCTGCCGGGAGTTCATAGGCTAG	CTAGCCTATGAACTCCCGGCAGGT
	321	AGCATTGGCGTTTTTCCGCAACGA	TCGTTGCGGAAAAACGCCAATGCT
	322	GGTAATATTCAGCGCGACCGCTCA	TGAGCGGTCGCGCTGAATATTACC
40	323	ATAGCGTACGACGAGGTGACGCGC	GCGCGTCACCTCGTCGTACGCTAT
	324	TAGGTCACGATGCGTTTGACGCTA	TAGCGTCAAACGCATCGTGACCTA

	325	ACTGCCCGTACCTCTGGTTCTGGC	GCCAGAACCAGAGGTACGGGCAGT
	326	CCTTTGGCCTGAAGTTGTCGTAGC	GCTACGACAACTTCAGGCCAAAGG
	327	GTGCCCCACGAGCGTATCGTTGTA	TACAACGATACGCTCGTGGGGCAC
	328	AGGCGCTACGTGGGCCTGGAGCAA	TTGCTCCAGGCCCACGTAGCGCCT
5	329	GGGTGCTACCATTGCATTAGTCCG	CGGACTAATGCAATGGTAGCACCC
	330	ACCACGCGCGTACGTGTAACCGAG	CTCGGTTACACGTACGCGCGTGGT
	331	CCATGATGCATTGGGTGCATTTAG	CTAAATGCACCCAATGCATCATGG
	332	GGTCCGGCCCTACGAAACGTTCGA	TCGAACGTTTCGTAGGGCCGGACC
	333	CCGTGTGGCTGGAGATTCGTGTGA	TCACACGAATCTCCAGCCACACGG
10	334	GTTAGGGCGACGCATATTGGCACA	TGTGCCAATATGCGTCGCCCTAAC
	335	GGGTCAGTCAGGTGCGTTAGGATC	GATCCTAACGCACCTGACTGACCC
	336	GCCGTGAAGTCGAATGCAGATCGA	TCGATCTGCATTCGACTTCACGGC
	337	GCCACCACCAGTGCATTCAGGTA	TACCTGAATGCACTGGGTGGTGGC
	338	GAGCTTAGTTTGCGGTCATCGGGC	GCCCGATGACCGCAAACTAAGCTC
15	- 339	TGTTTGCCGCCATTAGGGAGTAAC	GTTACTCCCTAATGGCGGCAAACA
	340	GCTCCGCTGGATGTGCCGGTTTAG	CTAAACCGGCACATCCAGCGGAGC
	341	CGGTAGCATGCGAGATCCCTGTTA	TAACAGGGATCTCGCATGCTACCG
	342	CTACGCTCTACCAGTTGCCTGCGA	TCGCAGGCAACTGGTAGAGCGTAG
	343	GTGCCTCCTGCTGTATTTGCCAAG	CTTGGCAAATACAGCAGGAGGCAC
20 .	344	TTGCGACTCGACTTGGACGAGTAG	CTACTCGTCCAAGTCGAGTCGCAA
	345	TCTGGGAGCTGTTTACTCCAGCCA	TGGCTGGAGTAAACAGCTCCCAGA
	346	TGCACGCGGAACTCCCTTTACCAT	ATGGTAAAGGGAGTTCCGCGTGCA
	347	TGGCAGCAAATGAATCGAAAGCAC	GTGCTTTCGATTCATTTGCTGCCA
	348	AACTGGTGACGCGGTACAGCGAAG	CTTCGCTGTACCGCGTCACCAGTT
25	349	AGACGATTACGCTGGACGCCGTCG	CGACGGCGTCCAGCGTAATCGTCT
	350	ATGCCCTCCTTCATGGAAAGGGTT	AACCCTTTCCATGAAGGAGGGCAT
	351	ATTCTCGGAGCGTATGCGCCAGAA	TTCTGGCGCATACGCTCCGAGAAT
	352	ATAGCGGAGTTTGGGTACGCGAAC	GTTCGCGTACCCAAACTCCGCTAT
	353	ACCTACGCATACCGCTTGGCGAGG	CCTCGCCAAGCGGTATGCGTAGGT
30	354	GATTACCTGAATGGCCAAGCGAGC	GCTCGCTTGGCCATTCAGGTAATC
	355	CCTGTTAGCATCACGGCGCTTAGG	CCTAAGCGCCGTGATGCTAACAGG
	356	CGGAATGATGCGCTCGACAACGCT	AGCGTTGTCGAGCGCATCATTCCG
	357	TGAGAGAGGCGTTGGTTAAGGCAA	TTGCCTTAACCAACGCCTCTCTCA
	358	AAGCAGGCGAAGGGATACTCCTCG	CGAGGAGTATCCCTTCGCCTGCTT
35	359	TCACGACAGACGGGCCGAGATTAC	GTAATCTCGGCCCGTCTGTCGTGA
	360	AAGCAATTTGGCCTCGTTTTGTGA	TCACAAAACGAGGCCAAATTGCTT
	361	GCTGGTTGCGGTAGGATCGCATAT	ATATGCGATCCTACCGCAACCAGC
	362	TTGTGAATCCGTTCTGTCCCCGAC	GTCGGGACAGAACGGATTCACAA
	363	TGGGCTCCTCTGAGGCGAGATGGC	GCCATCTCGCCTCAGAGGAGCCCA
40	364	GGATAGAGTGAATCGACCGGCAAC	GTTGCCGGTCGATTCACTCTATCC
	365	TGCACCGAACGTGCACGAGTAATT	AATTACTCGTGCACGTTCGGTGCA

	366	GCCAGTATTCTCGGGTGTTGGACG	CGTCCAACACCCGAGAATACTGGC
	367	TCGCTACCTAAGACCGGGCCATAC	GTATGGCCCGGTCTTAGGTAGCGA
	368	TGGCATTGACGAGCAGCAGTCAGT	ACTGACTGCTGCTCAATGCCA
	369	CGCGTCCCAGCGCCCTTGGAGTAT	ATACTCCAAGGGCGCTGGGACGCG
5	370	ATGAAGCCTACCGGGCGACTTCGT	ACGAAGTCGCCCGGTAGGCTTCAT
	371	CCAGACAGATGGCCTGGAACCATG	CATGGTTCCAGGCCATCTGTCTGG
	372	TGGCGTGGGACCATCTCAAAGCTA	TAGCTTTGAGATGGTCCCACGCCA
	373	CCGCATGGGAACACGTGTCAAGGT	ACCTTGACACGTGTTCCCATGCGG
	374	GCCCACTCGTCAGCTGGACGTAAT	ATTACGTCCAGCTGACGAGTGGGC
10	375	ATTACGGTCGTGATCCAGAAAGCG	CGCTTTCTGGATCACGACCGTAAT
	376	TGCGAGGTGAGCACCTACGAGAGA	TCTCTCGTAGGTGCTCACCTCGCA
	377	GGGCCGCATTCTTGATGTCCATTC	GAATGGACATCAAGAATGCGGCCC
	378	CCTCGGATGTGGGCTCTCGCCTAG	CTAGGCGAGAGCCCACATCCGAGG
	379	TAGGCATGTTGGCGTGAGCGCTAT	ATAGCGCTCACGCCAACATGCCTA
15	380	CGATACGAACGAGGATGTCCGCCT	AGGCGGACATCCTCGTTCGTATCG
	381	TACGCCGGTTAGCACGGTGCGCTA	TAGCGCACCGTGCTAACCGGCGTA
	382	CATACGATGTCCGGGCCGTGTCGC	GCGACACGGCCCGGACATCGTATG
	383	ATCCGCAGTTGTATGGCGCGTTAT	ATAACGCGCCATACAACTGCGGAT
	384	GGGTAAGGGACAAAGATGGGATGG	CCATCCCATCTTTGTCCCTTACCC
20	385	ATTGGAGTGTTTTGGTGAATCCGC	GCGGATTCACCAAAACACTCCAAT
	386	GAACCGAGCCAACGTATGGACACG	CGTGTCCATACGTTGGCTCGGTTC
	387	GCCGTCAAGCTTAAGGTTTTGGGC	GCCCAAAACCTTAAGCTTGACGGC
	388	ACCTGCTTTTGGGTGGGTGATATG	CATATCACCCACCCAAAAGCAGGT
	389	AATCGTGGGCGCAGCAAACGTATA	TATACGTTTGCTGCGCCCACGATT
25	390	GTCGCCGGATTGCTCAGTATAAGC	GCTTATACTGAGCAATCCGGCGAC
	391	ACCCGTCGATGCTTCCTCCTCAGA	TCTGAGGAGGAAGCATCGACGGGT
	392	ATCCGGGTGGGCGATACAAGAGAT	ATCTCTTGTATCGCCCACCCGGAT
	393	TTCCGCATGAGTCAGCTTTGAAAA	TTTTCAAAGCTGACTCATGCGGAA
	394	GCAAAGTCCCACTGGCAAGCCGAT	ATCGGCTTGCCAGTGGGACTTTGC
30	395	CGACCTCGGCTTCATCGTACACAT	ATGTGTACGATGAAGCCGAGGTCG
	396	CTCATGAGCGCAGTTGTGCGTGAG	CTCACGCACAACTGCGCTCATGAG
	397	CAGATGAAGGATCCACGGCCGGAG	CTCCGGCCGTGGATCCTTCATCTG
	398	TCAAAGGCTCTTGGATACAGCCGT	ACGGCTGTATCCAAGAGCCTTTGA
	399	TCCGCTAATTTCCAATCAGGGCTC	GAGCCCTGATTGGAAATTAGCGGA
35	400	ACGCACGGCGCTTTTGCCTTAATG	CATTAAGGCAAAAGCGCCGTGCGT
	401.	TGACAACGTCACAAGGAGCAGGAC	GTCCTGCTCCTTGTGACGTTGTCA
	402	CTTAGTTGGGGCGCGGTATCCAGA	TCTGGATACCGCGCCCCAACTAAG
	403	GCTCTAATGCCGTGGAGTCGGAAC	GTTCCGACTCCACGGCATTAGAGC
	404	CCGATTACAAATTGACTGACCGCA	TGCGGTCAGTCAATTTGTAATCGG
40	405	AGACGTACGTGAGCCTCCCGTGTC	GACACGGGAGGCTCACGTACGTCT
	406	AATGGAGCGATACGATCCAACGCA	TGCGTTGGATCGTATCGCTCCATT

		······································	
	407	GGAGGCGCTGTACTGATAGGCGTA	TACGCCTATCAGTACAGCGCCTCC
	408	TGTTTTGAATTGACCACACGGGA	TCCCGTGTGGTCAATTCAAAAACA
	409	CATGTCTGGATGCGCTCAATGAAG	CTTCATTGAGCGCATCCAGACATG
	410	GCCCGCTAATCCGACACCCAGTTT	AAACTGGGTGTCGGATTAGCGGGC
5	411	CCATTGACAGGAGAGCCATGAGCC	GGCTCATGGCTCTCCTGTCAATGG
	412	GAATCACCGAATCACCGACTCGTT	AACGAGTCGGTGATTC
	413	AACCAGCCGCAGTAGCTTACGTCG	CGACGTAAGCTACTGCGGCTGGTT
	414	TTTCTGAGGGACACGCGGGCGTT	AACGCCCGCGTGTCCCTCAGAAAA
	415	GGTGCTCCGTTTGATCGATCCTCC	GGAGGATCGATCAAACGGAGCACC
10	416	CCGCTTAGGCCATACTCTGAGCCA	TGGCTCAGAGTATGGCCTAAGCGG
	417	TAAGACATACCGACGCCCTTGCCT	AGGCAAGGGCGTCGGTATGTCTTA
	418	GTTCCCGACGCCAGTCATTGAGAC	GTCTCAATGACTGGCGTCGGGAAC
	419	TAAAAGTTTCGCGGAGGTCGGGCT	AGCCCGACCTCCGCGAAACTTTTA
	420	CGGTCCAGACGAGCTGAGTTCGGC	GCCGAACTCAGCTCGTCTGGACCG
15	421	CGGCGTAGCGGCTACGGACTTAAA	TTTAAGTCCGTAGCCGCTACGCCG
	422	GCTTGGATGCCCATGCGGCAAGGT	ACCTTGCCGCATGGGCATCCAAGC
	423	AGCGGGATCCCAGAGTTTCGAAAA	TTTTCGAAACTCTGGGATCCCGCT
	424 .	GAGCTTGAGAGCGAGGTCATCCTC	GAGGATGACCTCGCTCTCAAGCTC
	425	GCATCGGCCGTTTTGACCATATTC	GAATATGGTCAAAACGGCCGATGC
20	426	CATAGCGCTGCACGTTTCGACCGC	GCGGTCGAAACGTGCAGCGCTATG
	427	ACCCGACAACCACCAATTCAAAAA	TTTTGAATTGGTGGTTGTCGGGT
	428	GCGAACACTCATAAGAGCGCCCTG	CAGGGCGCTCTTATGAGTGTTCGC
	429	CCGCCGAGTGTAGAGAGACTCCGA	TCGGAGTCTCTCTACACTCGGCGG
	430	GACATCGGGAGCCGGAAACATGAG	CTCATGTTTCCGGCTCCCGATGTC
25	431	TCGTGTAGACTCGGCGACAGGCGT	ACGCCTGTCGCCGAGTCTACACGA
	432	ATGCGCATATACTGACTGCGCAGG	CCTGCGCAGTCAGTATATGCGCAT
	433	ACAAGCGAACCCGAGTTTTGATGA	TCATCAAAACTCGGGTTCGCTTGT
	434	GCATGAGACTCCGCGAAGACATGT	ACATGTCTTCGCGGAGTCTCATGC
	435	TCCTACATGTCGCGTCACGATCAC	GTGATCGTGACGCGACATGTAGGA
30	436	GACCGATCGCGAAGTCGTACACAT	ATGTGTACGACTTCGCGATCGGTC
	437	GTCGCCAGGACTGGGCCGATGTGA	TCACATCGGCCCAGTCCTGGCGAC
	438	ACCGATAAGACTTGCATCCGAACG	CGTTCGGATGCAAGTCTTATCGGT
	439	TCCATAACCAGTCCGAAGTGCCGG	CCGGCACTTCGGACTGGTTATGGA
	440	ACGCGCCCTGCATCTCGTATTTAA	TTAAATACGAGATGCAGGGCGCGT
35	441	AGACCGCATCAATTGGCGCGTACC	GGTACGCGCCAATTGATGCGGTCT
	442	AGAGGCTTGGCAAGTAGGGACCCT	AGGGTCCCTACTTGCCAAGCCTCT
	443	GCAATGGACGCCAGACGATACCGG	CCGGTATCGTCTGGCGTCCATTGC
	444	GCTGGACTTAGTCGTGTTCGGCGG	CCGCCGAACACGACTAAGTCCAGC
	445	AGGCATCGTGCCGGATTGCTCCCT	AGGGAGCAATCCGGCACGATGCCT
40	446	TGCGCATGTCGACGTTGAACAAAG	CTTTGTTCAACGTCGACATGCGCA
	447	TTCGGGTCACATCCGATGCCATAC	GTATGGCATCGGATGTGACCCGAA

		The state of the s	
	448	ACCCATCGCCGGAAAGCGATGTTG	CAACATCGCTTTCCGGCGATGGGT
	449	AAGCGCTGACTCGGCTAAGAATCA	TGATTCTTAGCCGAGTCAGCGCTT
	450	ACTTCCAAGTCCTTGACCGTCCGA	TCGGACGGTCAAGGACTTGGAAGT
	451	TCTCAATATTCCCGTAGTCGCCCA	TGGGCGACTACGGGAATATTGAGA
5	452	AACAGTTCCTCTTTTTCCTGGCGC	GCGCCAGGAAAAAGAGGAACTGTT
	453	CGTCCTCCATGTTGTCACGAACAG	CTGTTCGTGACAACATGGAGGACG
	454	TGCGCAGACCTACCTGTCTTTGCT	AGCAAAGACAGGTAGGTCTGCGCA
•	455	ATGGACGGCTTCGCAGTCCTCCTT	AAGGAGGACTGCGAAGCCGTCCAT
	456	TGAACGCTTTCTATGGGCCACGTA	TACGTGGCCCATAGAAAGCGTTCA
10	457	TGAACCCTGCCGCGAGCGATAACC	GGTTATCGCTCGCGGCAGGGTTCA
	458	GTTCTTGCGCGATGAATCAGGACC	GGTCCTGATTCATCGCGCAAGAAC
	459	AGGGTACGTGTCGCAGCTTCGCGT	ACGCGAAGCTGCGACACGTACCCT
	460	ACCCTTGCTCCGCCATGTCTCTCA	TGAGAGACATGGCGGAGCAAGGGT
	461	GGGACAAGGATTGAAGCTGGCGTC	GACGCCAGCTTCAATCCTTGTCCC
15	462	TGTCGTTGCTCCCGAGTACCATTG	CAATGGTACTCGGGAGCAACGACA
	463	GTTGTCCGAGACGTTTGTGTCAGC	GCTGACACAAACGTCTCGGACAAC
	464	GCTGGTGAACACTCACGAACCGCT	AGCGGTTCGTGAGTGTTCACCAGC
	465	GCAGACAGGGCAAATCGGTGCAAA	TTTGCACCGATTTGCCCTGTCTGC
	466	CCCATCACAACGAGTGGCGACTTT	AAAGTCGCCACTCGTTGTGATGGG
20	467	GCTTCTACAGCTGGCGTGCTAGCG	CGCTAGCACGCCAGCTGTAGAAGC
	468	GAATGTGTGCCGACCATTCTAGCC	GGCTAGAATGGTCGGCACACATTC
	469	CCAGCGGAAGTTAGAGCTCTGTGG	CCACAGAGCTCTAACTTCCGCTGG
	470	TTTTTACCGACCACTCCATGTCGG	CCGACATGGAGTGGTCGGTAAAAA
	471	GCGGCTATGTGATGACGGCCTAGC	GCTAGGCCGTCATCACATAGCCGC
25	472	AGTACACGGGCGTGTTAGCGCTCC	GGAGCGCTAACACGCCCGTGTACT
	473	TCCTGTGTGGTGGCGCACTCCCAC	GTGGGAGTGCGCCACCACACAGGA
	474	CCAACTAACCAATCGCGCGGATGA	TCATCCGCGCGATTGGTTAGTTGG
	475	AGTGAGTGACCAAGGCAGGAGCAA	TTGCTCCTGCCTTGGTCACTCACT
	476	CATCTTTCGCGGAGTTTATTGCGG	CCGCAATAAACTCCGCGAAAGATG
30	477	CTTCGTCCGGTTAGTGCGACAGCA	TGCTGTCGCACTAACCGGACGAAG
	478	CTCACGAAAACGTGGGCCCGAAAT	ATTTCGGGCCCACGTTTTCGTGAG
	479	CGCAGCAGCTGAACTCTAGCATTG	CAATGCTAGAGTTCAGCTGCTGCG
	480	AGGAGACATACGCCCAAATGGTGC	GCACCATTTGGGCGTATGTCTCCT
	481	ATTGAGAACTCGTGCGGGAGTTTG	CAAACTCCCGCACGAGTTCTCAAT
35	482	CTCTTTGTAGGCCCAGGAGGAGCA	TGCTCCTCCTGGGCCTACAAAGAG
	483	GCCGCAGGGTCGATAATTGGTCTA	TAGACCAATTATCGACCCTGCGGC
	484	AAACGCCGCCCTGAGACTATTGGG	CCCAATAGTCTCAGGGCGGCGTTT
	485	CTGAGTTGCCTGGAACGTTGGACT	AGTCCAACGTTCCAGGCAACTCAG
	486	CGGATGGGTTGCAGAGTATGGGAT	ATCCCATACTCTGCAACCCATCCG
40	487	CTGACCTTTGGGGGTTAGTGCGGT	ACCGCACTAACCCCCAAAGGTCAG
	488	GGAAATGAGAACCTTACCCCAGCG	CGCTGGGGTAAGGTTCTCATTTCC

489 AACGCATGGTCGACTCATCAT TGATGAGTGAGGAGGATGCGTT 490 TGGAGAGAGACTTCGGCCATTGTT AACAATGGCCGAAGTCTCTCTCCA 491 TTGCGCTCATTGGATCTTGTCAGG CCTGACAAGATCCAATGAGCGCAA 492 AGCCGCTTAAAGCACGGCAACATT AATGTTGCCGTCTTTAACGCGCT 494 CGACTGATGTGCAACCAGCAGCTG CACTCGCTCGTGTTAACGCGCT 495 GGTTGCTCAACCAGCAGCAGCTG CACTCGCTCGTGTAGACAACACACACTCAGTCG 496 GCGCAAATCCACGGAACCCGCTACC GGTACGGGGTTCCGTGAGAACC 497 ACGCAGTTATTCCCCTGGCTTCT AGAAGCCAGGGGGAGTTCCGTGAGAACC 498 AGAACCTCCGCGCCTCCGTAGTAG GTACGGGGAGTTCCGTGAGAACC 499 AAGAGCTTCCCGGGCCTCGTAGTAG CTACCGGGGAACACCCGTACC 499 AAAGAGCTTCCCCGGCCTCCGTAGTAG CTACCGGGGGAATAAACTGCGT 499 AAAGAGCTTCCCCGCGCCTCCGTAGTAG CTACCGGGGGAAGCTCCTTT 500 AGTGATTGTGCCCCACACGTC GAGCAGCGGGGGAACAACCACT 501 GCGATCGTCGAGGGGTTGAGTAG CTACCACCGGGGAACACCCCTTT 500 AGGACAGCCATTATGGTCTTCC GAGCGTGGAGTGGCACAACCACT 501 GCGATCGTCGAGGGTTGAGCTGA TTCAGCTCAACCCTCGACGATCGC 502 GGGAACAGCCATTATGGTCTTCC CGAGGACCATAATGGCTGTCTCCC 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACACCCTTGCGCT 504 CCACCGGTCGCTTAAAGTGCACTT AAGTGCACCTTAAGCGACCGTTCTC 505 CGGCATAACGTCCAGTCCTGGGAC GTCCCAGGACCATAATGCTGTCTCCC 506 AAGCGGAACAGCGTTAAACTCCAGTT AACTGCAGTAACCCCTTCGGTT 507 TGCACACTAGGTCCGTCGTTGAT ATCAAGCGACGACCTATATGCCACCGTTCCGCT 508 AAGCGGAACCGCTTTAACCCAGGT ACCTCGGAACCACTAATGCCT 509 GAATTACAACCACCCCCTCGTGTT AACTGCAGACCCATAGTGCA 501 TTCAGTTTGGCGTTAACCCAGGT ACCTCGGTATTAACCCAGTTCCCT 502 GGAACACCCGTTCCAAACTCAGTT AACCAGCACCGACCTAATTGCA 503 AGGGAACCGCGTTCAAACTCAGTT AACCAGCACCGACCTAACTAA 504 AGGGAACCGCGTTCAACTCCGCC GCGGGAAGTCCCAACCACCCCAACCAACTAA 505 AAGCGGAACCACCTAACTCAACTCAGTT AACCAGCCCCCCAACCACCAACTAA 507 AATCGAACCGTTAACCTGGGCCTCATA TATGAGGCTCGAACTCAAACTAATTTTC 508 GAATTACAACCACCCCCCCCCAACCACCAACCTAA 509 GAATTACAACCACCCCCCCCCCCCCAACCTAAACTATTT 510 TTCAGTTTTGCGCACAGCCCCCAACCTAAACTACTATT 511 TAATGATTTTAGTCCTGGGACTCCCGC GCGGAAGTCCCTAAAACTACTTC 512 AATCGGACCACTAAACTCAACCCCCGCTCAACGCCCCCAACCAA				
491 TITGCGCTCATTGGATCTTGTCAGG CCTGACAAGATCCAATGAGCGCAA 492 AGCGCGTTAAAGCACGGCAACATT AATGTTGCCGTGCTTTAACGCGCT 493 AGCCAGTAAAACTGTGGGCGGCTGT ACAGCCGCCCCACAGTTTACTGGCT 494 CGACTGATGTGCAACCAGCAGCTG CAGCTGCTGGTTGCACATCAGTCG 495 GGTTGCTCATACGACGAGCAGCTG CAGCTGCTGGTTGCACACACCACAGCAGTG 496 GCGCAAATCCACGGAACCCGTACC GGTACGGGTTCGTATGAGCAACC 497 ACGCAGTTTATTCCCCTGGCTTCT AGAAGCCAGGGGAATAAACTGCGT 498 AGAACCTCCGCGCCTCCGTAGTAG CTACTACGAGGGGAATAAACTGCGT 499 AAAGGAGCTTTCGCCCAACGTAC GGTACGTGGGGGAAAGCTCCTTT 500 AGTGATTTGCCCCACAGCTC GAGCAGCGCGGGGAATAAACTGCGT 501 GCGATCGTCGAGGGTTGAGCTG GAGCAGCGCGGGGAACACCCTTT 501 GCGATCGTCGAGGGTTGAGCTGAACCCCTGAGAACCCCTTGAGAGCAGCAGCAGAACCACTTGCCCACAGCTC GAGCAGCAGCACAACCACTC 501 GCGATCGTCGAGGGTTGAGCTGAA TTCAGCTCACCCTCGACGATCGC 502 GGGAACAGCCATTATGGTCCTCG CGAGGACCATAATGGCTGTCTCC 503 GAGACGCTGTCACTCCCGCAGAAC GTTCTGCCCGAGGATCACCTTTGCGCCAAGAAC 504 CCACCGGTCGCTTAAAGTGCACTT AAGTGCACTTAAGCGACCGTTCTC 505 CGGCATAACGTCCAGTCCTGGGAC GTCCCAGGACTGACGCTTCTCCCC 506 AAGCGGAACAGCGTTAAACTGCACTT AACTGCAGCAGCACTTCCCCTT 507 TGCACACTAGGTCCGTGGTTGAT ACCTCGGTATAACCCGTTCCGCTT 507 TGCACACTAGGTCCGTGGTTGAT ACCTCGGTATAACCCGTTCCGCTT 508 AAGCAGACGCGTTAAACTCAGTT AACTGAGTTTAACCGGTTCCCT 509 GAATTACAACCACCCCGCTGTGTT AACACACAGCAGCACTAATTGTCCC 509 GAATTACAACCACCCCGCTGTGTT AACACACAGCGGGTTGTAATTC 510 TTCAGTGCTCACACACCCCGCTCGTGTT AACACCACCGGGTTGTAATTC 511 TTAGTTTGCGCTTGGGACTTCACC GGTGAAGTCCCAACCCAA		489	AACGCATCGTCCGTCAACTCATCA	TGATGAGTTGACGGACGATGCGTT
492 AGCGCGTTAAAGCACGGCAACATT AATGTTGCCGTGCTTTAACGCGCT 494 AGCCAGTAAACTGTGGGCGGCTGT ACAGCCGCCCACAGTTTACTGGCT 494 AGCAGTGAACCAGCAGCTG CAGCTGCTTGGTTGCACATCAGTCG 495 AGGTGCTCATACGAACCAGCAGCTG CACTCGCTCGTTGTTGCACATCAGTCG 496 GCGCAAATCCACGGAACCCGTTACC GGTACGGGTTCCGTTGGATTTTGCGC 497 ACGCAGTTTATTCCCCTGGCTTCT AGAAGCCAGGGGAATAAACTGCGT 498 AGAACCTCCGCGCCTCCGTAGTAG CTACTACGGAGGCGCGGAGGTTCT 499 AAAGGAGCTTCGCGCAACGTACC GGTACGGGGGCAAACCCCTTCAGCTGC 501 GCGATCGTCGAAGGTTGAAC GTCATAGGGAGGCCGGAAACCCCT 501 GCGATCGTCGAAGGTTGAAC TTCAGGTGGCGAAAACCCCTTCAAGCTC 502 GGGAGACAGCCATTATGGTCCTC CAGCTGTGGAGTGCACAATCACT 503 GAGACGCTGTCAACTCCACAGCTC CAGCTGTCGACGATCGCC 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCACTTAAGGCGCCGAAGTCCCC 505 GAGAACGCTGTAACATCCACGTAC GTTCCTGCGGAGTGACAGCGTTCC 506 CACCGGTCGCTTAAGATGCACTT AAGTGCACTTAAGCGACCCGTGG 507 TGCACACTAGGTCCAGGCT ACCTCGGAACTGAACGTTTATGCCG 508 AAGGGAACGGGTTAAACTCAGTT AACTGAGACCGACCTAGTGTGCC 509 GAATTACACCACCCGCTCGCTTGAT ATCAAGCGACCGACCTAGTGTGCC 509 GAATTACAACCACCCGCTCGTTGAT AACTGAGATTGAACCCGTTCCCT 509 GAATTACAACCACCCGCTCGTTT AACAGCAGCGGGACCTAATTTCCCT 509 GAATTACAACCACCCGCTCGTTT AACAGCAGCGGGTGGTTTCATT 510 TTCAGTGCTCACGAAGCATGAATT AACACGAACCGGTTGTAATTC 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAAGCCAAACTAA 512 AATGCAACTCGACGACCCTCCAA TATGAGGCTCTGCAGCACAACTAA 513 ACGCAACCGTTAACGTGGCCCACA TCTCAGGCCCACGAACTAA 514 TAAAGTAACAAGGCGACCCCCCCC GCGGCAAGCTAAAATCATTA 516 GCCTACTCTAAGTGCCCGCCCAATA TCTCAGGCCCACGTTTAACGTTTCCGC 517 TGCCGGACCTCAATATTCACC GCTGAGCGGCCACTTAACGGTTTCCGC 518 GGCGCTTAGCGCCACA TCTCAGCCCCCGCTCTAACGCCCC 519 GCCACCTTTAAGGTGCCCCCC GCGGCAGGTCGCCTTTAACGTTTCCCC 520 GAGATGTGTAACGTGCCCCCC GCGGCAGGTCCCTTTAACGCCCCC 521 TACCTCGCCCCCCCACACCTTAACGCCCC GCGCCACCTTAACGGCCCACTTAACGCCCCCCCCCACCCCCCACCCCCCCACCCCTAACCCCCCCC		490	TGGAGAGAGACTTCGGCCATTGTT	AACAATGGCCGAAGTCTCTCCA
493 AGCCAGTANACTGTGGGCGGCTGT ACAGCCGCCCACAGTTTACTGGCT 494 CGACTGATGTGCAACCAGCAGCTG CAGCTGCTTGCTTGACCATCAGTCG 495 GGTTGCTCATACGACGAGCGAGTG CACTCGCTTGGTTGCACCATCAGTCG 496 GCGCAAATCCACGGAACCCGTACC GGTACGGGTTCCGTTGTAGACCAACC 497 ACGCAGTTTATTCCCCTGGCTTCT ASAAGCCAGGGGAATAAACTGCGT 498 AGAACCTCCGCGCCTCCGTAGTAG CTACTACGGGAGCGCGGAGGTTCT 499 AAAGGAGCTTTCGCCCAACGTAC GGTACGTTGGGCGAAACCTCTTT 500 AGTGATTGTGCCCAACGTAC GGTACGTTGGGCGAAACCTCTTT 501 GCGATCGTCAGAGGTTGAA TTCAACCCTCGACACCTC 501 GCGATCGTCAGAGGTTGAACC GGTACGTTGGAGGTGCACAATCACT 502 GGGACACACCACTCCACACGTC GAGCTGTGGAGTGGCACAATCACT 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACCACACCCTCGACGATCGC 504 CCACCGGTCGCTTAAGATGCACT AAGTGCACATATGGCTTCCCC 505 CAGCACACACCTCCAGACCT AAGTGCACACACCCTCGACGATCGC 506 AACCGGAACAGCCATTAAGATGCACTT AAGTGCACCATCAGCGTTGCC 507 TGCACACACGGGTTAACACCAGGT ACCTCCGGAGTGACGTTATGCCG 508 AGGGAACCGCGTTCAACCCAGGGAC 509 GAATTACAACCGACGTT AACTCCGGACTGACGTTAACCCGTTCCCCT 509 GAATTACAACCACCCGCTCGTGTT ATCAACCGACGGACCTAAGTGCAC 500 GAACCGGTTCAACCCAGGT AACTCAGTT AACCAGCGACCTAAGTGCAC 510 TTCAGTGCTCAGCCCGCCTTGAT AACCAGAGCGGACCTAACCGCACACCAAACCACACAACCACAACCACAACCAAACCAACAC		491	TTGCGCTCATTGGATCTTGTCAGG	CCTGACAAGATCCAATGAGCGCAA
494 CGACTGATGTGCAACCAGCAGCTG CAGCTGGTTGCACATCAGTCG 495 GGTTGCTCATACGACGAGCGAGTG CACTCGCTCGTCGTATGAGCAACC 496 GCGCAAATCCACGGAACCCGTACC GGTACGGGTTCCGTGGATTTGCGC 497 ACGCAGTTTATTCCCCTGGCTTCT AGAAGCCAGGGGAATAAACTGCGT 498 AGAACCTCCGGGCCTCCGTAGTAG CTACTACGGAGGGGAATAAACTGCGT 499 AAAGGAGCTTTCGCCCAACGTACC GGTACGTTGGGCGAAAGCTCTTT 500 AGTGATTGTCCCCACAGCTC GAGCTTGGGCGAAAGCTCCTTT 501 GCGATCGTCGAGGGTTGAGCTGAA 501 GCGATCGTCGAGGGTTGAGCTGAA 502 GGGAGACAGCCATTATGGTCCTCG 503 GAGACGCTGTCACTCCGGCAACACCCTCGACGATCGC 504 CCACCGGTCGCTTAAGATGCACT 505 GAGACAGCTGTCACTCCGGCAACACCTTCACCCTTGACGATCGC 506 AAGCGGACAACGCTTTAAGATGCACTT 507 TGCACAACTCGTCAGCATCGGAC 508 AAGCGGAACAGGGTTAACCGAGGT 509 GAATTACAACCCCTCGACAGGT 509 GAATTACAACCCCTCGTGGAT 509 GAATTACAACCACCCGCTTGAT 510 TTCAGTGCTCAACTCGTTGAT 510 TTCAGTGCTCAACTCAGTT 511 TTTAGTTGCGAGAGAGATTAACCAGCGGACTGACGCCAAACTAA 511 TTAGTTTGCGTTTGAT 511 TTTAGTTTGCGAGACTTCACC 512 AATGCGACCTGAGAGCATTCACC 513 CCGAAACCGTTCAACTCACT 514 TAAAGTAACAACGCCCCCCCCCGCACTTAACCCCACCCC		492	AGCGCGTTAAAGCACGGCAACATT	AATGTTGCCGTGCTTTAACGCGCT
495 GGTTGCTCATACGACGAGCGAGTG CACTCGCTCGTTGTAGAGCAACC 496 GCGCAAATCCACGGAACCCGTACC GGTACGGGTTCCGTGGATTTGCGC 497 ACGCAGTTTATTCCCCTGGCTTCT AGAAGCCAGGGGAATAAACTGCGT 498 AGAACCTCCGCGCCTCCGTACTAG CTACTACGGAGGCGCGGAGGTCT 499 AAAGGAGCTTTCGCCCAACGTACC GGTACGTTGGGGCGAAAGCTCCTTT 500 AGTGATTGTGCCCACACGTAC GACCTTGGAGGGCAAAGCTCCTTT 501 GCGATCGTCGAGGGTTGAGA TTCAGCCCACACGTACC 502 GGGAGACAGCCATTATGGTCCTCG CAGCGTGACGTGGAGTGGCCACAATCACT 503 GAACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACCAGCGTCTC 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCACTTAACCGACGGTCTC 505 CGGCATAACGTCCAGTCCTGGGAGTGACAGCGTTTC 506 CACCGGTCGCTTAAGATGCACTT AAGTGCATCTTAACCGACGTCTC 507 TGCACACTAGGTCCTGGGAGAC GTTCCAGGAGACGGTTATGCCG 508 AAGCGGAACGGGTTAAACTCAGTT ACCGACGGACCTAATTGCCA 509 GAATTACAACCACCGCTCGTGTT ACCGAGGACGGACCTAGTGTCCA 509 GAATTACAACCACCCGCTCGTTT 507 TGCACACTAGGTCCGTCGGTTGAT ACCGAGGGACGACCTGATTACCC 509 GAATTACAACCACCCGCTCGTTT 509 GAATTACAACCACCCGCTCGTTT 510 TTCAGTGCTCACGAAGCATGGATT ACCGAGGGTGGTTCCCT 501 TTCAGTGCTCACGAAGCATGGATT ACCGAGCGGGTGGTTCCCT 502 GAATACAACCACCCGCTCGTGTT ACCGAGCGGGGTGGTTCCCT 503 GAATCAAACCACCCGCTCGTGTT ACCGAGCGGGTGGTTCCCT 504 ATGCGACCTCACAGGCAGCCTCATA TATGAGGCCCGCAAACTAA 511 TTAGTTTGGCGTTGGGACCTCATA TATGAGGCTCGAGGCCCAAACTAA 512 AATGCGACCTCACGAGCCTCCATA TATGAGGCTCGCAGGTCCATTTCGG 514 TAAAGTAACAAGGGGACCTCCAC GCGGGAGTCCCTTTAACGTTTCGGGGCACTTTAACGTTTCGGGGCACTTTAACGTTTCGGGGCCACTTTAACGTTTCCGGGGCACTTTAACGTTTCCGGGGCACTTTAACGTTTACGGTTCGGCCACGCCACACACA	5	493	AGCCAGTAAACTGTGGGCGGCTGT	ACAGCCGCCCACAGTTTACTGGCT
496 GCGCANATCCACGGAACCCGTACC 497 ACGCAGTTTATTCCCCTGGCTTCT AGAAGCCAGGGAATAAACTGCGT 498 AGAACCTCCGGGCTCCGTAGTAG CTACTACGGAGGCGCGGAGGTTCT 499 AAAGGAGCTTTCGCCCAACGTCC GGTACGTTGGGCGAAAGCTCCTTT 500 AGTGATTGTGCCACACGCTC GAGCTGTGGAGGTGGCAAAACCACT 501 GCGATCGTCGAGGGTTGAGCTGAA TTCAGCTCAACCCTCGACGATCGC 502 GGGAGACAGCCATTATGGTCCTCC CGAGGACCATAATGGCTGTCTCCC 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGAGAGTGGCACAATCACT 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCACTTAAGCGACCGGTGG 505 CGGCATAACCTCCAGCAGAC GTTCACCAGGACCTTATGGCG 506 AAGCGGATCCAGTCCTGGGAC GTCCAGGACCTTAACCCGGTCGTT 507 TGCACACAGAGCTGCATGCAGGT ACCTCAGGACCTAGATGCCG 508 AGGGAACCGCGTTCAAACTCAGTT ACCAGGACCTAGTGTGCA 509 GAATTACAACCACCCGCTCGTTTA ACCAGGACCAGACTGACGTTCCCT 509 GAATTACAACCACCCGCTCGTTT AACACGAGCGGGTGGTTCCCT 509 GAATTACAACCACCCGCTCGTGTT AACACGAGCGGGTGGACACTAACTCAGTT 510 TTCAGTGCTCACGAAGCATGGATT AACCAGGCGGGTGGACACTAAA 511 TTAGTTTGGCGTTGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 511 ATAGGTACCACGCACCCCCCCCCCCACACTACACTACAC		494	CGACTGATGTGCAACCAGCAGCTG	CAGCTGCTGGTTGCACATCAGTCG
497 ACGCAGTITATTCCCCTGGCTTCT AGAAGCCAGGGGAATAAACTGCGT 498 AGAACCTCCGCGCCTCCGTAGTAG CTACTACGGAGGCGCGGAGGTTCT 499 AAAGGAGCTTTCGCCCAACGTAC GGTACGTTGGGCGAAAGCTCCTTT 500 AGTGATTGTGCCCACTCCACAGCTC GGTACGTTGGGCGAAAGCTCCTTT 501 GCGATCGTCGAGGGTTGAGCTGAA TTCAGCTCAACCCCTCGACGATCGC 502 GGGAGACAGCCATTATGGTCCTCG CGAGGACCATTAATGGCTGTCCCC 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACAGCGTCTC 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCATCTAACCCGTTCGC 505 CGGCATAACGTCCAGTCCTGGGAC GTCCCAGGACTGACGTTATGCCG 506 AGCGGAACGGGTTATACCGAGGT ACCTCGGATAACCCGTTCCGTT		495	GGTTGCTCATACGACGAGCGAGTG	CACTCGCTCGTCGTATGAGCAACC
10 498 AGAACCTCCGCGCCTCCGTAGTAG CTACTACGGAGGCGCGGAGGTTCT 499 AAAGGAGCTTTCGCCCAACGTAC GGTACGTTGGGCAAAGCTCCTTT 500 AGTGATTGTGCCCACACGTC GAGCTGGAGTGGCAAAGCTCCTTT 501 GCGATCGTCGAGGGTTGAGCTGAA TTCAGCTCAACCCTCGACGATCGC 502 GGGACACAGCCATTATGGTCCTC CAGAGCACCCTCGACGATCGC 503 GAGACCCTGTCACTCCGCCACACC CTACCCTGACCGTTCCC 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCATCTTAAGCGACCGGTTG 505 CGGCATAACGTCCAGTCCTTTAAGCACCTTTAAGCGACCGGTTG 506 AAGCGGAACGGGTTATACCGAGAT ACTCCAGGACTTTAAGCGACCGGTTG 507 TGCACACTAGGTCCAGTCCTGGGAC ACCTCGGACATTAACCGTTCCGCTT 508 AGGGAACCGCGTTCAAACTCAGTT AACTGAGTTTAACCGGTTCCCT 509 GAATTACAACCACCCCTCTGTT AACACGACCGGTGGTTCCCT 509 GAATTACAACCACCCCTCTGTT AACACGACCGGTTGTAATTC 510 TTCAGTGCTCACGAAGCATGATT AACCAGACCGGTGGACATTATCC 511 TTAGTTTGGCGTTGGGACTTCACC 512 AATGCGACCTCGAAGCACTCAGTT AACCAGACCCAAACCTCAA 512 AATGCGACCTCGACGACCTCATA TATGAGGCTCCTCAGAGCCCAAACTAA 514 TAAAGTAACAAGGCGACCTCCCCC GCGGGAGGTCGCTTTACCTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGGACCTAAAATCATTA 516 GGCTACTCTAAGTGCCCCCCCC GCGGGAGGTCGCCTTGTACCTTTA 517 TGGCGGACGACCACAACCCCCCCCCCCCCCCCCCCCCCC		496	GCGCAAATCCACGGAACCCGTACC	GGTACGGGTTCCGTGGATTTGCGC
499 AAAGGAGCTTTCGCCCAACGTACC GGTACGTTGGGCGAAAGCTCCTTT 500 AGTGATTGTGCCACTCCACAGCTC GAGCTGTGGAGTGGCACAATCACT 501 GCGATCGTCGAGGGTTGAGCTCAAA TTCAGCTCAACCCTCGACGATCGC 502 GGGAGACAGCCCATTATGGTCCTCG CGAGGACCCATAATGGCTGTCTCCC 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACCCGTCTCC 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCATTAAGCGACCGGTTGC 505 CGGCATAACGTCCAGGCAGAAC GTTCTGCCGGAGTGACACCGGTTGC 506 AAGCGGAACGGGTTATACCGAGGT ACCTCGGACTGACCGTTTATGCCG 507 TGCACACTAGGTCCTGGGAC GTCCAGGACTGGACGTTATGCCG 508 AAGCGGAACCGGTTCAAACTCAGTT ACCAGCACGGACCTAGTGTGCA 509 GAATTACAACCACCGCTCGTTTT AACCAGACCGGACCTGATTTCC 509 GAATTACAACCACCCGCTCGTTT AACCAGACCGGGTGGTTGATTC 510 TTCAGTGCTCACGAACACTCAGTT AACCAGACCGGGTGGTTGATTC 511 TTAGTTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACCAACTAA 512 AATGCGACCTCACAGAGACTCACTCACC 513 CCGAAACCGTTAACCTCATT ATTGAGGGCTCCTGAGGACTGAAT 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCCCATTTTAC 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGGGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCCACCCGGGACTAAAATCATTA 517 TGGCGGACGACACCACACGCCAACCGCCAACTCAA 518 GGCCGCTTAAGGGCCGCCTCCCGC GCGGGAGGTCGCCTTGTACCTTTA 519 GCCACCTTTAGACGGCGGCTCAGG CCTCAGCGGGACCACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTCAGCGGGACCACTAAAATCATTA 517 TGGCGGACGACCACAAATATCTCACG 517 TGGCGGACGACCACAAATATCTCACG 519 GCCACCTTTAGACGGCGCTCTAG 520 GAGATGTGTAACGTGCAGCCCTCCGC GTGAGGAGTCACCTAAAGGTCGCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCCTCTAAAGGTGGC 520 GAGATGTGTAACGTGCAGGCCCTCCAGC GGTGCCTGACAGTCACCCCC 521 TAGCTCGTGGCCCTCCAAGCGTT CTAGAGCCCACCTTTAACGCCCAACCCC 522 GTGCCGGCAAACACGCT 523 CCAGGGAAGCACCACACACACACACACACACACACACAC		497	ACGCAGTTTATTCCCCTGGCTTCT	AGAAGCCAGGGGAATAAACTGCGT
500 AGTGATTGTGCCACTCCACAGCTC 501 GCGATCGTCGAGGGTTGAGCTGAA 501 GCGATCGTCGAGGGTTGAGCTGAA 502 GGGAGACAGCCATTATGGTCCTCG 502 GGGAGACAGCCATTATGGTCCTCG 503 GAGACGCTGTCACTCCGGCAGAAC 504 CCACCGGTCGCTTAAGATGCACTT 504 CCACCGGTCGCTTAAGATGCACTT 505 CGGCATAACGTCCAGTCCTGGGCAGAAC 505 CGGCATAACGTCCAGTCCTGGGCA 506 AAGCGGACCGGTTAACACGTCCAGTCTTAAGCGACCGGTTGC 507 TGCACACTAGGTCCTGGGCAT 508 AGCGGAACCGGTTCAACCTCAGTC 509 GAATTACAACCACCTCAGTCT 509 GAATTACAACCACCCGCTTGAT 510 TTCAGTGCTCAGACCTCAGTT 511 TTAGTTTGGCGTTGGAACTTCACC 511 TTAGTTTGGCGTTGGAACTTCACC 512 AATGCGACCTCAGACACTCAGTT 513 CCGAAACCGTTCACC 514 TAAAGTAACAAGCGCGCTCATA 515 TAAAGTAACAAGCGGACCTCATA 516 GGCTACTCTAAAGCGAGGTGCCCCGC 517 TGGCGGACGACCTCCCCC 518 GGCTACTCTAAGCTCAGC 518 GGCTACTCTAAGCTCAGC 519 GCCACCTCGAGGAGCTCAGA 519 GCCACCTTTAAGTGCCGCGCTCAGCAGCCCCAACTTAACCGCCAACCCCCCCC	10	498	AGAACCTCCGCGCCTCCGTAGTAG	CTACTACGGAGGCGCGGAGGTTCT
501 GCGATCGTCGAGGGTTGAGCTGAA TTCAGCTCAACCCTCGACGATCGC 502 GGGAGACAGCCATTATGGTCCTCG CGAGGACCATAATGGCTGTCTCCC 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACAGCGTTT 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCATCTTAAGCGACCGGTGG 505 CGGCATAACGTCCAGTCCTGGGAC GTCCCAGGACTGAGCGTTATGCCG 506 AAGCGGAACGGGTTATACCAGT ACCTCGGTATAACCCGTTCCGCTT 507 TGCACACTAGGTCCGTCGCTTGAT ACCTCGGTATAACCCGTTCCCCT 509 GAATTACAACCACCCGCTCGTTTA AACTGAGTTTGAACGCGGTTCCTCT 500 GAATTACAACCACCCGCTCGTTT AACTGAGTTGAACGCGGTTCCTCT 501 TTCAGTGCTCACGAACACTCAGTT AACTCAGCTTCGACACGCCAACCTAA 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCAACGCCAACCTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGCAACGCCAACCTAA 512 AATGCGACCTCACGACGACCCCCCCC GCGGGAGGTCGCCTTTTGTACTTTC 516 TAAAGTAACAAGCGCGACCTCCCC GCGGGAGGTCGCCTTTGTACTTTA 517 TAAAGTAACAAGGCGACCTCCCCC GCGGGAGGTCGCCTTTGTACTTTA 518 GGCTACTCTAAGTGCCGCGCCCCCCCCGCGACTAAAATCATTA 519 GCCACCTCTAAGTGCCCGCTCAGG 517 TGGCGGACGACTCAATATCTCACG CTGAGGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CTGAGGGGCACTTAGAGTAGCC 518 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 519 GCCACCTTTAGACGGCGCTCAGG CTGAGGATATTAACGCCCAC 519 GCCACCTTTAGACGGCGCCTCAGG CTGAGAGCTCAACGCCC 519 GCCACCCTCAACGCTC 520 GAGATGTGTAAACGTGCAGCCCC GGTGACATTTACGCCTAACGCCC 521 TAGCTCGTGGCCCTCAAGCGTT ACACGCTTGAGGGCCACACTCC 522 GTGTCGGCGCTCAAGCGTT ACACGCTTGAGGGCCACACACTCC 523 CCAGGGAACCACTAAGACCACT GGTAAGACCAGTTTACACATCTC 524 TAGCTCGTGGCCCTCCAAGCGTT ACACGCTTGAGGGCCACACACACCACCCCGCGACACACAC		499	AAAGGAGCTTTCGCCCAACGTACC	GGTACGTTGGGCGAAAGCTCCTTT
502 GGGAGACAGCCATTATGGTCCTCG CGAGGACCATAATGGCTGTCTCCC 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACAGCGTCTC 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCATCTTAAGCGACCGGTGG 505 CGGCATAACGTCCAGTCCTGGGAC GTCCCAGGACTGGACGTTATGCCG 506 AAGCGGAACGGGTTATACCGAGGT ACCTCGGTATAACCCGTTCCGCTT 507 TGCACACTAGGTCCGTCGCTTGAT ATCAAGCGACGGACCTAGTGTGCA 508 AGGGAACCGGTTCAAACTCAGTT AACTGAGTTTGAACGCGGTTCCCT 509 GAATTACAACCACCGCTCGTGTT AACACACAGAGCGGTGGTTCAATTC 510 TTCAGTGCTCAGAACCAGACTGATT AATCAAGCACGGGTGGTTGTAATTC 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCAGAACCATATA TATGAGGCTCGTCGAGAGTCGAATA 513 CCGAAACCGTTAACGTGGCGACAA TGTGGCCCAACGCCAAACTAA 514 TAAAGTAACAAGGCGACCTCCCGC GCGGAGGTCGCCTTTTAC 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGGCGCACTTAAAATCATTA 517 TGGCGGACGACCTCCAGG CCTCAGGCGGCACTTAAAATCATTA 518 GGCCGTTAGGCGTAATATCTCACG CGTGAAGTATTGAGGCCCAA 30 518 GGCCGTTAGGCGTAATATCTCACG CGTGAGATATTGAGGCCCCA 519 GCCACCTTTAGACGGCGCACTAG CTGAGGCCGCCTCAACACCCC 519 GCCACCTTTAGACGGCGCACCTCAGG CTGAGAGTATTTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGCACC GTGAGATTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGCACCTCAGG CTGAGACCGCTCAACACCCC 519 GCCACCTTTAGACGGCCGCTCTAG CTAGAGCCGCCGCTCTAACGCCC 511 TAGCTCGTGGCCTCCAAGCGTG ACACGCTTCAACGCCC 520 GAGATGTTAACACGTGCAGGCACC GGTGCCTGCAACTTTACACACTCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGAAGGCCCAACTACCCCC 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGAACA 523 CCAGGGAAGCAACTGGTTGCCTTACC GGTAAGGCCAAATAGCGCCGAACA 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTACCGGGTTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCCGGGGTTTCCCTGG 525 GCAAACCCGGTAACCCGAGAACCGCT AGCGGTTACCGGGCTTTTCCCTGG 526 GCAAATGGCGCCCACGTTTAGGG CCCTAAACTGGGCCGAAATGCCCGAACACGGTTGCCTTCCCGGGTTTACCGGGTTTCCCGGGTTTCCCGGGGCAACTAGGCCCAAATAGGCCCGAAACCGGTTACACGCCCAACCGCT AGCGGTTACCGGGGTTTCCCGGGTTTCCCGGGTTTCCCGGGTTTCCCGGGTTTCCGAGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGAGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTTCCGGGGTTA		500	AGTGATTGTGCCACTCCACAGCTC	GAGCTGTGGAGTGGCACAATCACT
15 503 GAGACGCTGTCACTCCGGCAGAAC GTTCTGCCGGAGTGACAGCGTCTC 504 CCACCGGTCGCTTAAGATGCACTT AAGTGCATCTTAAGCGACCGGTGG 505 CGGCATAACGTCCAGTCCTGGGAC GTCCCAGGACTGGACGTTATGCCG 506 AAGCGGAACGGGTTATACCGAGGT ACCTCGGTATAACCCGTTCCGCTT 507 TGCACACTAGGTCCGTCGCTTGAT ATCAAGCGACCGGTGCCT 508 AGGGAACCGCGTTCAAACTCAGTT AACTGAGTTTGAACGCGGTTCCCT 509 GAATTACAACCACCGCTCGTGTT AACACGAGCGGGTGGTTGATTC 510 TTCAGTGCTCACGAAGCATGGATT AACCAGGCGGGTGGTTGAATTC 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGCAGAGCATT 25 513 CCGAAACCGTTAACGTGGCGACA TGTGGCCCACGTTAACGGTTTCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGAGGTCGCCTTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCGGGTGGG CCCACCCCGCGACTAAAATCATTA 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGGTAGCC 518 GGCGCTTAGGGGTAATAGACCGTC GACGGTCTAAAGTAGCCCAC 519 GCCACCTTTAACGGCGGCTCTAG CATGAGACCGACCTAAAGGCAC 519 GCCACCTTTAGACGGCGGCTCTAG CATGAGACCGACCTAAAGGCCAC 519 GCCACCTTTAGACGGCGGCTCTAG CATGAGACCGCCTAAAGGGGC 520 GAGATGTAAACGTGCAGGCCCCGCGCGCTTTAAAGGTGGC 521 TAGCTCGTGGCCCTCCAAGCGTT ACACGCTTGAGGGCCACTAAAGGTGGC 522 GTGTCGGCCCTCCAAGCGTT ACACGCTTGAGGGCCACCTAAAGGTGGC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCACAACAATTCCCTGG 524 TTCCGAAACCAGTTTGCCTTACC GGTAAGCCAACAATAGCCCCAAC 525 GCAAACCCGGTAACCCAACACGTT AATGGCACCAACTTTCCCTGG 526 GCAAACCCGGTAACCCAACACGTT AATGGCACCAACACAGTTTCCCTGG 527 AGTACTTCGCGCCCACGACCTTAAACCGCCCAACCAACCA		501	GCGATCGTCGAGGGTTGAGCTGAA	TTCAGCTCAACCCTCGACGATCGC
504 CCACCGGTCGCTTAAGATGCACTT AAGTGCATCTTAAGCGACCGGTGG 505 CGGCATAACGTCCAGTCCTGGGAC GTCCCAGGACTGGACGTTATGCCG 506 AAGCGGAACGGGTTATACCGAGGT ACCTCGGTATAACCCGTTCCGCTT 507 TGCACACTAGGTCCGTCGCTTGAT ATCAAGCGACGGACCTAGTGTGCA 20 508 AGGGAACCGCGTTCAAACTCAGTT AACTGAGTTTGAACGCGGTTCCCT 509 GAATTACAACCACCCGCTCGTGTT AACACGAGCGGGTGGTTGAATTC 510 TTCAGTGCTCACGAAGCATGGATT AATCCATGCTTCGTGAGACACTGAA 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGCAACGCCAAACTAA 512 AATGCGACCTGACGAGCCTCCACC GCGGGAGGTCGCCTTT 6515 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 516 GGCTATCTCAAGTGCCGCACA CCCACCCCGCGACTAAAATCATTA 517 TGGCGGACGACTCACAGC CCTCAGCGGACACTAAAATCATTA 518 GGGCTTAGGCGTAATATCTCACC GTGAGATATTGAGTGACCC 519 GCCACCTCAACTCCACC CCTCAGCGGCACTTAACGCCC 519 GCCACCTTTAAGACGCGCGCTCATC CTCAAGCCGCCCTTAACGCCC 519 GCCACCTTTAAGACGCGCGCTCAC CTCAAGCCGCCCTTAACGCCC 519 GCCACCTTTAAGACGCGCGCTCAC CTCAAGCCGCCCTTAACGCCC 520 GAGATGTGAAACGGCGCCTCAC CTCAAGCCGCCCTTAACGCCC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCCCCCCGCACTAAAGCTCTC 522 GTGTCGGCCCTCCAAGCGTGT ACACGCTCGAAGGCCACCGACCT 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT ACGGGTTTACACGCCCAACCAGCTTACCCCTCAACGCCCC 525 GCAAACCCGGTAACCCGAAACCAGTT AATGGCAACCAGTTTCCCTGG 526 GCAAATGGCGTCATGCCAGAACCAGT ACGCTTTACGCTTACCGCTAACGCCCC 527 AGTACTTTCGCCCCAGGTTTAAGGCCCCAACTTTGCCCTAACGCCCAACCAGATTACCCGCCAACCAGATTCCCGCAAATAGCCCCAACCAGATTCCCCGCAAACCAGATTCCCCGGCTTTACACCATCTCCCCAACCAGCTTTACACCATCTCCCCAACCAGTTTCCCCTGG 524 TTCCGAAACTAAGCCAGAACCAGT ACGCTTCGGCTTAACCGCCAATTTCCCTGG 526 GCAAACCCGGTAACCCAGAACCAGT ACGTCTCGGGTTACCCGGTTTACCCCTTTCCCTGG 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCCGCAAATTTCCCCGGCTTTACCCCTTTTCCCTGG 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCCGCGAAAGTACT 40 528 AAGATCTGCGGAGCATCCCGGCTT AAGGCCGAGATCTT		502	GGGAGACAGCCATTATGGTCCTCG	CGAGGACCATAATGGCTGTCTCCC
505 CGGCATAACGTCCAGTCCTGGGAC 506 AAGCGGAACGGGTTATACCGAGGT 507 TGCACACTAGGTCCGTCGCTTGAT 507 TGCACACTAGGTCCGTCGCTTGAT 508 AGGGAACCGCGTTCAAACTCAGTT 509 GAATTACAACCACCCGCTCGTGTT 509 GAATTACAACCACCCGCTCGTGTT 510 TTCAGTGCTCACGAAGCATGGATT 511 TTAGTTTGGCGTTGGGACTTCACC 512 AATGCGACCTCGACGAGCCTCATA 513 CCGAAACCGTTAACGTGGACACGGAGCTCGACGTTCACC 514 TAAAGTAACAAGGCGACCTCCGC 515 TAATGATTTTAGTCGCGGGGTGGGCCCCACACTCAAACTCATA 515 TAATGATTTTAGTCGCGGGGTTGGGCCCCACGCCACGCTTAACGTTCACT 516 GGCTACTCTAAGTGCCCGCTCAGG 517 TGGCGGACGACCTCACG 518 GGGCGTTAGGCGTAATATCTCACG 519 GCCACCTTTAGACGTGCCCCC 519 GCCACCTTTAGACGTGCCCCC 520 GAGATGTGAAACGTGCACCCCCCCCCCCCGCGCTTAAAGTCCCCCCCC	15	503	GAGACGCTGTCACTCCGGCAGAAC	GTTCTGCCGGAGTGACAGCGTCTC
506 AAGCGGAACGGTTATACCGAGGT ACCTCGGTATAACCCGTTCCGCTT 507 TGCACACTAGGTCCGTCGCTTGAT ATCAAGCGACGGACCTAGTGTGCA 508 AGGGAACCGCGTTCAAACTCAGTT AACTGAGTTTGAACGCGGTTCCCT 509 GAATTACAACCACCGCTCGTGTT AACACGAGCGGGTGGTTGAATTC 510 TTCAGTGCTCACGAAGCATGGATT AATCCATGCTTCGTGAGCACTGAA 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGTCGAGGTTCGCAT 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTTACCTTTA 515 TAATGATTTTAGTCGCGGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGCACATTAGAGTAGCCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGCCCA 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATACGCCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGACGCCCT 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGAAGGTGGC 522 GTGTCGGCGCTCTAACGTGCCGTAACACCTC 523 CCAGGGAAGCACTCCAAGCGTGT ACACGCTTGGAGGGCCACACAC 524 TTCCGAAACTAGCCGAGACCGCT AGCGGTTCTGGCTTACCTGGG 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTTACCGGGTTTCCCTGG 526 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTCCCTGG 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGCCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAAGATCTT		504	CCACCGGTCGCTTAAGATGCACTT	AAGTGCATCTTAAGCGACCGGTGG
507 TGCACACTAGGTCCGCTGGTT ATCAAGCGACGGACCTAGTGTGCA 508 AGGGAACCGCGTTCAAACTCAGTT AACTGAGTTTGAACGCGGTTCCCT 509 GAATTACAACCACCGCTCGTGTT AACACGAGCGGGTGGTTGAATTC 510 TTCAGTGCTCACGAAGCATGGATT AATCCATGCTTCGTGAGCACTGAA 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGAGGGTCGCATA 513 CCGAAACCGTTAACGTGGCGCACA TGTGCGCCACGTTAACGGTTTCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACATAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAAAATCATTA 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGCCCA 518 GGCCGTTAGGCGTAATAGACCGTC GACGGTCAACTAACGCCC 519 GCCACCTTTAGACGCGCGCTCAGG CTTAGAGTCGCCCA 519 GCCACCTTTAGACGCGCGCTCAGC CTAGAGCCGCCGTCTAAAGGCCC 520 GAGATGTAAACGTGCAGCACC GGTGCCTTGAACGCCC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGAGGGCACACACCCC 522 GTGTCGGCCCTCCAAGCGTGT ACACGCTTGAGGGCCACACAC 523 CCAGGGAAGCAACTGGTTGCCATT 524 TTCCGAAACTAGCCCGCTTACC GGTAAGGCCAAATAGCGCCGACAC 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTTACCGGTTTGC 526 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTTACCGGTTTGC 527 AGTACTTTCGCGCCCCAGTTTAGGG CCCTAAACTGGCCCAAATTGCC 527 AGTACTTTCGCGCCCCAGTTTAGGG CCCTAAACTGGCCCGAAACTACTT		505	CGGCATAACGTCCAGTCCTGGGAC	GTCCCAGGACTGGACGTTATGCCG
20 508 AGGGAACCGCGTTCAAACTCAGTT AACTGAGTTTGAACGCGGTTCCCT 509 GAATTACAACCACCGCTCGTGTT AACACGAGCGGGTGGTTGAATTC 510 TTCAGTGCTCACGAAGCATGGATT AATCCATGCTTCGTGAGCACTGAA 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGAGGTCGCATT 25 513 CCGAAACCGTTAACGTGGCGCACA TGTGCGCCACGTTAACGGTTTCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGCACTTAAAATCATTA 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCCCCCA 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCATTAACGCCCC 519 GCCACCTTTAGACGCGCGCTCTAG CTAGAGCCGCCCTTAAAGTGCCC 519 GCCACCTTTAGACGCGCGCTCTAG CTAGAGCCGCCCTTAAAGTGCC 520 GAGATGTTAAACGTGCAGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGAAGGCCACACAC 522 GTGTCGGCCCTCCAAGCGTGT ACACGCTTGAGGGCCACACAC 523 CCAGGGAAGCAACTGGTTGCCATT 524 TTCCGAAACTAAGCCAGAACCGCT AATGGCACCAATTACCGCCGAACAC 525 GCAAACCCGGTAACCCAGAACCGCT AGCGGTTCTGCCTTACTTCCCTGG 526 GCAAACCCGGTAACCCAAAACCGCT AGCGGTTCACCGCGTTTACCGGGTTTGC 527 AGTACTTTCGCGCCCCAGTTTAGGG CCCTAAACTGGCCCAAATTGCCCCAATTTGC 527 AGTACTTTCGCGCCCCAGTTTAGGG CCCTAAACTGGCCCGAAACTACT		506	AAGCGGAACGGGTTATACCGAGGT	ACCTCGGTATAACCCGTTCCGCTT
509 GAATTACAACCACCGCTCGTGTT AACACGAGCGGGTGGTTGTAATTC 510 TTCAGTGCTCACGAAGCATGGATT AATCCATGCTTCGTGAGCACTGAA 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGTCGAGGTCGCATT 25 CCGAAACCGTTAACGTGGCGACA TGTGCGCCACGTTAACGGTTCCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGCCCA 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCCTGCACGTTACACGCCC 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTAGTTTCCCTGG 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGTTTGC 526 GCAAATGGCGTCATGCACGAACCGCT AGCGGTTACCGGGTTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGCCCAAATTGCC 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGAAGCAATTGC		507	TGCACACTAGGTCCGTCGCTTGAT	ATCAAGCGACGGACCTAGTGTGCA
510 TTCAGTGCTCACGAAGCATGGATT AATCCATGCTTCGTGAGCACTGAA 511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGAGGTCGCATT 25 513 CCGAAACCGTTAACGTGGCGCACA TGTGCGCCACGTTAACGGTTTCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGCCCAC 518 GGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTTACCCTTGC 526 GCAAATGGCGTCATGCACGAACCGT ACGTTCGCATGACGCCATTTTGC 527 AGTACTTTCGCGCCCCAGTTTAGGG CCCTAAACTGGCCCGAAACTACCCGAACTTTCCCTGGCGCGCAAACTGCCCCCAAGTTTTCCCTTGCCTTTCCCTTGCCAAACTGCGCCGAAACTAGCCCCAAACTAGCCCCAAACTAGCCCCAAACTAGCCCCAAACTAGCCCCAAACCCGGTAACCCGGAACCACTTTGCCTTCCCTGGAAACTAAGCCCAAACCCGAACCACTTTGCCAAACTAGCCCCCAAACTAGCCCCAAACTAGCCCCAAACTAGCCCCAAACTAGCCCCAAACTAGCCCCAAACTAGACCCCCAAACTAGACCCCAAACTACCCGAACCTAAACTGGGCCCCAAACTACTTAAACTGGCCCCCAAACTACTACCCGAACCTTAAACTGGCCCCCAAACTACTTAAACTGGCCCCCAAACTACTTAAACTAGCCCCCAAACTACTTAAACTAGCCCCAAACTACTTAAACTAGCCCCAAACTACTAAACTAGCCCCCAAACTACTTAAACTAGCCCAAACTACTAAACTAGCCCAAACTACTAAACTAGCCCAAACTACTAAACTAGCCCAAACTACTAAACTAGCCAAACTACTAAAAC	20	508	AGGGAACCGCGTTCAAACTCAGTT	AACTGAGTTTGAACGCGGTTCCCT
511 TTAGTTTGGCGTTGGGACTTCACC GGTGAAGTCCCAACGCCAAACTAA 512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGTCGAGGTCGCATT 25 513 CCGAAACCGTTAACGTGGCGCACA TGTGCGCCACGTTAACGGTTTCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGTCCGCCA 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 35 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACCT ACGTTCGTGCATGATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		509	GAATTACAACCACCGCTCGTGTT	AACACGAGCGGGTGGTTGTAATTC
512 AATGCGACCTCGACGAGCCTCATA TATGAGGCTCGTCGAGGTCGCATT 25 513 CCGAAACCGTTAACGTGGCGCACA TGTGCGCCACGTTAACGGTTTCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGTCCGCCA 30 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 35 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCCATTTGC 527 AGTACTTTCGCGCCCCAGTTTAGGG CCCTAAACTGGCCGAGATCTT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		510	TTCAGTGCTCACGAAGCATGGATT	AATCCATGCTTCGTGAGCACTGAA
25 513 CCGAAACCGTTAACGTGGCGCACA TGTGCGCCACGTTAACGGTTTCGG 514 TAAAGTAACAAGGCGACCTCCCGC GCGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGTCCGCCA 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCCGGGTTTACC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCCATTTGC 527 AGTACTTTCGCGCCCAGTTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		511	TTAGTTTGGCGTTGGGACTTCACC	GGTGAAGTCCCAACGCCAAACTAA
514 TAAAGTAACAAGGCGACCTCCCGC GCGGGAGGTCGCCTTGTTACTTTA 515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGTCCGCCA 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTACTTCCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		512	AATGCGACCTCGACGAGCCTCATA	TATGAGGCTCGTCGAGGTCGCATT
515 TAATGATTTTAGTCGCGGGGTGGG CCCACCCGCGACTAAAATCATTA 516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGCCCA 30 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTACGTTCCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACCCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGATGCCTCGCAGATCTT	25	. 513	CCGAAACCGTTAACGTGGCGCACA	TGTGCGCCACGTTAACGGTTTCGG
516 GGCTACTCTAAGTGCCCGCTCAGG CCTGAGCGGGCACTTAGAGTAGCC 517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGTCCGCCA 30 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 35 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		514	TAAAGTAACAAGGCGACCTCCCGC	GCGGGAGGTCGCCTTGTTACTTTA
517 TGGCGGACGACTCAATATCTCACG CGTGAGATATTGAGTCGTCCGCCA 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		515	TAATGATTTTAGTCGCGGGGTGGG	CCCACCCGCGACTAAAATCATTA
30 518 GGGCGTTAGGCGTAATAGACCGTC GACGGTCTATTACGCCTAACGCCC 519 GCCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		516	GGCTACTCTAAGTGCCCGCTCAGG	CCTGAGCGGGCACTTAGAGTAGCC
519 GCACCTTTAGACGGCGGCTCTAG CTAGAGCCGCCGTCTAAAGGTGGC 520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 35 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		517	TGGCGGACGACTCAATATCTCACG	CGTGAGATATTGAGTCGTCCGCCA
520 GAGATGTGTAAACGTGCAGGCACC GGTGCCTGCACGTTTACACATCTC 521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 35 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT	30	518	GGGCGTTAGGCGTAATAGACCGTC	GACGGTCTATTACGCCTAACGCCC
521 TAGCTCGTGGCCCTCCAAGCGTGT ACACGCTTGGAGGGCCACGAGCTA 522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 35 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		519	GCCACCTTTAGACGGCGGCTCTAG	CTAGAGCCGCCGTCTAAAGGTGGC
522 GTGTCGGCGCTATTTGGCCTTACC GGTAAGGCCAAATAGCGCCGACAC 523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		520	GAGATGTGTAAACGTGCAGGCACC	GGTGCCTGCACGTTTACACATCTC
523 CCAGGGAAGCAACTGGTTGCCATT AATGGCAACCAGTTGCTTCCCTGG 524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		521	TAGCTCGTGGCCCTCCAAGCGTGT	ACACGCTTGGAGGGCCACGAGCTA
524 TTCCGAAACTAAGCCAGAACCGCT AGCGGTTCTGGCTTAGTTTCGGAA 525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		522	GTGTCGGCGCTATTTGGCCTTACC	GGTAAGGCCÁAATAGCGCCGACAC
525 GCAAACCCGGTAACCCGAGAGTTC GAACTCTCGGGTTACCGGGTTTGC 526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT	35	523	CCAGGGAAGCAACTGGTTGCCATT	AATGGCAACCAGTTGCTTCCCTGG
526 GCAAATGGCGTCATGCACGAACGT ACGTTCGTGCATGACGCCATTTGC 527 AGTACTTTCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		524	TTCCGAAACTAAGCCAGAACCGCT	AGCGGTTCTGGCTTAGTTTCGGAA
527 AGTACTITCGCGCCCAGTTTAGGG CCCTAAACTGGGCGCGAAAGTACT 40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		525	GCAAACCCGGTAACCCGAGAGTTC	GAACTCTCGGGTTACCGGGTTTGC
40 528 AAGATCTGCGAGGCATCCCGGCTT AAGCCGGGATGCCTCGCAGATCTT		526	GCAAATGGCGTCATGCACGAACGT	ACGTTCGTGCATGACGCCATTTGC
		527	AGTACTTTCGCGCCCAGTTTAGGG	CCCTAAACTGGGCGCGAAAGTACT
529 GCAAGTGTATCGCACAGTGCGATT AATCGCACTGTGCGATACACTTGC	40	528	AAGATCTGCGAGGCATCCCGGCTT	AAGCCGGGATGCCTCGCAGATCTT
		529	GCAAGTGTATCGCACAGTGCGATT	AATCGCACTGTGCGATACACTTGC

	530	CCGACAAGGCCTCAATTCATTCTG	CAGAATGAATTGAGGCCTTGTCGG
	531	GTCTCGTCTCAACTTTAAGGCGCG	CGCGCCTTAAAGTTGAGACGAGAC
	532	ATCCAGAGATCCGTTTTGCAGCGT	ACGCTGCAAAACGGATCTCTGGAT
	533	GTCACCAGGAGGGAAGTTTCACCC	GGGTGAAACTTCCCTCCTGGTGAC
5	534	TTCCGTCAGGCGGATCAACGGAAT	ATTCCGTTGATCCGCCTGACGGAA
	535	ATGCCGGACACGCATTACACAGGC	GCCTGTGTAATGCGTGTCCGGCAT
	536	TGGGCCGCTTGGCGCTTTCATAGA	TCTATGAAAGCGCCAAGCGGCCCA
	537	CCTAGCGCGAGCTTTACTGACCAG	CTGGTCAGTAAAGCTCGCGCTAGG
	538	TTGGCCAGGAATATGGTCTCGAGA	TCTCGAGACCATATTCCTGGCCAA
10	539	GTCTGCGGCCGACTTGCTATGCAT	ATGCATAGCAAGTCGGCCGCAGAC
	540	AACTTGCTCATTCTCAAGCCGACG	CGTCGGCTTGAGAATGAGCAAGTT
	541	ACGTCAGCGATTGTGGCGAAATAT	ATATTTCGCCACAATCGCTGACGT
	542	ACGGCCTGCGTCAGCACATGCATC	GATGCATGTGCTGACGCAGGCCGT
	543	ATACCTCCGCAGAACCATTCCGTT	AACGGAATGGTTCTGCGGAGGTAT
15	544	AGTTCGCGGTCCCACGATTCACTT	AAGTGAATCGTGGGACCGCGAACT
	545	TGCTCAATTTGTGCAGAAAACGCC	GGCGTTTTCTGCACAAATTGAGCA
	546	TTATCGCGAGAGACGACCGTGTCC	GGACACGGTCGTCTCTCGCGATAA
	547	GACGCGACGTGAGTAGTGGAAGCG	CGCTTCCACTACTCACGTCGCGTC
	548	ATGGTAGGGCATTGGGCTTTCCT	AGGAAAGCCCAATGCCCCTACCAT
20	549	CCAAATATAGCCGCGCGGAGACAT	ATGTCTCCGCGCGGCTATATTTGG
	550	GCAAACCCTGATTGAATCGTGCCC	GGGCACGATTCAATCAGGGTTTGC
	551	TAGCGTCTTGCGTGAAACCATGGG	CCCATGGTTTCACGCAAGACGCTA
	552	CCACCCGACAGCGCTGGACTCTT	AAGAGTCCAGCGCTGTCGGGGTGG
	553	ACGAGCACTGAAGGCTGCTTTACG	CGTAAAGCAGCCTTCAGTGCTCGT
25	554	CATATCAGCGTCGTCTAGCTCGCG	CGCGAGCTAGACGACGCTGATATG
	555	TGATCCCGGACCGGCTAGACTAAT	ATTAGTCTAGCCGGTCCGGGATCA
	556	GGCCCGACACTACAGGGTAATCA	TGATTACCCTGTAGTGTCGGGGCC
	557	GGCTCCAGGGCGAGATTATGAATG	CATTCATAATCTCGCCCTGGAGCC
	558	CAAAATCCGATGGGCGGAAAATTA	TAATTTTCCGCCCATCGGATTTTG
30	559	CACAGGCGCATAGGGAGCAAGCTA	TAGCTTGCTCCCTATGCGCCTGTG
	560	TAGCTATTGCCCCGATGGGCTACT	AGTAGCCCATCGGGGCAATAGCTA
	561	TGGTACGCGGTCCATAGCAAGTCG	CGACTTGCTATGGACCGCGTACCA
	562	GACGCTGTGGCTCGGAAACTGTTC	GAACAGTTTCCGAGCCACAGCGTC
	563	CCTGGGTTCGCCGCGTGGTAACTG	CAGTTACCACGCGGCGAACCCAGG
35	564	TTCCCGCGTAGCCCAACAGCTATA	TATAGCTGTTGGGCTACGCGGGAA
	565	TTCGCGGATTGCTGCCGCATAACA	TGTTATGCGGCAGCAATCCGCGAA
	566	AAAAATGGCACCGAAGTTGAGGCA	TGCCTCAACTTCGGTGCCATTTTT
	567	CATTCCGCGCGAGTTGAAATCCAG	CTGGATTTCAACTCGCGCGGAATG
	568	ACGCACGTTTTTTGGCACGGTTAA	TTAACCGTGCCAAAAAACGTGCGT
40	569	TGTCCATGACGTCGTTTCTCTGGT	ACCAGAGAAACGACGTCATGGACA
	570	TCTCAGTCGGACTCGTATGCCAGA	TCTGGCATACGAGTCCGACTGAGA

571 CTCCAAACGACAATCAAGCATC 572 TITCAACCAAGCGGGTGTTCGTCA 573 GGTGTCGGAGGGTGTTCGTCA 574 AGCGGTTGTGTGAATCACCACCCCCCTCGACACC 574 AGCGGTTTGGTGAATTTGCAA 575 CCGAGGACTTCGCAGGA TCCAGAGCACCCCCCCCCACCC 576 GCCCAATCCAGTTCTTATCGCCAC 577 CCGGGTTAACCACAGTTCTTATCGCCC 577 CCGGGTTAACCACCACCCCCCCGGAATCCACTTTGATCAGCCAAAAGCCGCT 578 TGATTAGCGCCCAGGATTATGA TCATAACTTGACCAAAAGCCGCT 579 AAGGGCAGACCTTTGGTTCGACTG CAGCGCTTATTGAGCCCTAATCA 579 AAGGGCAGACCTTTGGTTCGACTG CAGCTGTATTGAGCCCTAATCA 579 AAGGCAGACCTTTGGTTCGACTG CAGCTGGAACCCAAGGTCTGCCCTT 580 GCCCCACAAGATTCACATGCATT AATGACATGGATCATCACAGCCGTG 581 GCCATGTTCAAGGCCCTTTCGAACG 582 CCCGGTGTTTTTGTCTAAGGTCCCGG 583 CAACATTGTGTTTTAATC GCCCCC 584 CCGATACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC				
573 GGTGTCGGAGGGTGGTGACCTCGA TCGAGGTCACCACCCTCGACACC 574 AGCGCTTTTGGTCATGATTTGCAA TTGCAAATCATGACCAAAAGCGCT 575 CGGAGGACTTACGTCTGCCCAGGA TCCTGGGCAGACCGTAAGTCCTCGG 576 GCCCAATCCAGTTCTTATGCCCC GGGCGCATAAGACTGGATTGGGC 577 CGGGTTAACCCACGCAAGTTATGA TCATAACTTGCGTGGGTTAACCCG 578 TGATTAGCGCTCAATACACGCGTG CACGCGTGTATTGAGCCCTATCA 579 AAGGGCAGACCTTTGGTTCGACTG CAGTCGAACCCAAAGGTCTGCCCTT 580 GCGCCACAAGATTCACATGTCATT AATGACATGACATAGACCGTG 581 GCCATGTTCAAGGGCCTTTTCGAACG CTTCGAAAGGCCCTTGAACATGGC 582 CGCGGTTTTTGTCTAAGTGCCGG CAGTCGAACCAAAGGTCTGCCCTT 584 CCATAGTTCAAGGGCCTTTCGAAG CTTCGAAAAGCCCGCGCG 583 CAACATTGTGGTGGCACCCACCACAATGTC 584 CGATACCGCGCGGTTTTAATC GATTTAACAAACCGGCGCGTATCG 585 GGCTATAAACGTGCGACTCCCTCC GGAGACCCACACAATGTC 586 TGGGTAAATCACTATTGCGCGGTT AACCGGCGCAATAGCAAAAACCCGCGCG 587 GTCTTCATCGGCCCGCGCAAAACACACCGCGCGTATCG 588 GCGACACACCCTGTACTCTCATCC GGATGGAGTCCGACCACAATAGCC 587 GTCTTCATCGGCCCGCGCAAAACCACACGCGCGTTATAACCATATTGCCCAAGATACACCGGCGCGTTTCAACATTCGCCCGCC		571	CTCCAAACGCACACATCAAGCATC	GATGCTTGATGTGTGCGTTTGGAG
574 AGCGCTITTGGTCATGATTTGCAA 575 CCGAGGACTTACGTCTGCCCAGGA 576 GCCCAATCCAGTTCTTATGCGCCC 576 GCCCAATCCAGTTCTTATGCGCCC 577 CGGGTTAACCCACGCAGATTATGA 578 TGATTAGCGCTCAGATTATGA 579 AAGGGCAGACTTACATCTGCCCAGGA 579 AAGGGCAGACCTTAGTTCATCATCCACCAGGTTATGAGCCTATTGAGCGCTAATCAACTTGCGTTGGCGCAGAGCTTATGAACATGCACTATTTGAGCGCTATTAACACTGCCATTTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTTGAGCGCTATTCAACATGTCATT 10 580 GCGCCACAAGATTCACATGTCATT AATGACATGTGAATCTTGTGGCGC 581 GCCATGTTCAAGGGCCTTTCGAAG 582 CGCGGTGTTTTGTAGGTGCCGG 583 CAACATTGTGGTGCCGG 584 CGATACCGCCGGTTTGTTAAATC 585 GCATAGACGGCCGGTTTGTTAAATC 586 TGGGTAAATCACTATTGCGCGGT 587 GTCTTCATCGGCCGCGAGCTACTCC 588 GCGACACACCCTGTACTCATCC 589 GTCTTCATCGGCCCGCCAAGCTA 589 GTCTTCATCGGCCCGCCAAGCTA 589 GTCTTCATCGGCCCGCCAAGCTA 589 GTAGCCAAGCCAAGCCAAGCCAAGCCAAGCCACATTGTTGCCC 589 GTAGCCAAGCCAAGCCAAGCCAAGC 589 GTAGCCAAGCCAAGCCAAGCCAAGCCAAGC 589 TCCCCCCCAAGCCAAGCCAAGCCAAGCCAAGCCACCCTGCTAC 589 TCCCCCCCAACGCAAGCCAATA 589 ACTCCTGCAAGCCAAGCCAATA 589 ACTCCTGCAAGCTAACCAAGC 589 TCCCGCCCACTAGACTACCAATA 589 TCCCGCCCACTAGACTACTCCATA 589 TCCCGCCCACTAGACTACCAATA 589 TCCCGCCCACTAGACTACCAATA 589 TCCCGCCCACTAGACTACCAATA 589 ACTCCTGCGAAGCCAAGCCAATA 589 TCCCGCCCACTAGACTACCAATA 589 ACCTTTCTGGGGTCGCTCACCAATA 589 ACCTTCTGGGGTCGCTCACCAATA 589 ACCTTCTCGGGGTCGCTCACCAATA 589 ACCTTCTGCGGGGAAGCAAGCCAAGCC 589 ACCTTCCAGCAAGCCAAGCCAATA 589 CGGTGCAAGCCAAGCCAAGCC 589 ATCCCGCCAAGCCAAGCCAAGCC 589 ATCCCGCCAAGCCAAGCCAAGCC 589 ATCCCGCCCAAGCCAAGCCAAGCC 589 ATCCCGCCCAAGCCAAGCC 589 ATCCCGCCCATTCCGAACCACCCTTCACCAATA 589 ACCTTCCAGCAAGCCACCCTTCCAACACCCCCCCCAGAAGGT 589 ACCTTCCAGCAAGCCCCCTCTCAA 589 CGGTCCAAGCCAAGCCCCCCCCCAAAGCCCCCCCCAGAAGCC 589 ATCCCGCCAGCAAGCCCCCCCCCAAACCCCCCCCCAAGCACACTCCCCCCCACACCATGCACACCCCCCCC		572	TTCAACCAAGCGGGGTGTTCGTGA	TCACGAACACCCCGCTTGGTTGAA
5 575 CCGAGGACTTACGTCTGCCCAGGA 576 GCCCAATCCAGTTCTTATGCGCCC 577 GGGTTAACCCAGCAGAGTTATGA 578 TGATTAGCCGCCAGCAAGTTATGA 579 AAGGCCAGCAAGTTATGA 579 AAGGCCAGCAAGTTATGA 579 AAGGCCAGCAAGTTCGCTC 580 GCGCCACAAGATTCACATGCATT 580 GCGCCACAAGATTCACATGTCATT 581 GCCATGTTCAAGGGCCTTTCGAAG 582 GCGCACAAGATTCACATGTCATT 582 GCCATGTTCAAGGGCCTTTCGAAG 582 CGCGGTGTTTTGTAGGTGCCGG 583 CAACATTGTGGTGCACTCC 584 GCGATTTTGTAGGTGCCGG 585 GACAATTGTGGTGCACTCC 586 GGCTATAAACCGCGGG 587 GATTTAACAAGGCCCTTCC 588 GCGCACACAAGATTCACATGTCATC 589 GGCTATAAACGGCCGGGTTTGTAAATC 580 GGCTATAAACGTGCGACTCCCTCC 580 GGCTATAAACGTGCGGACTCCCC 580 TGGGTAAATCACTATTGCGCGGTTTACC 580 GGCTATAAACGTGCGGACTTCCCC 580 GTCTTCATCGGCCCGCCAAGCTA 581 GTCTTCATCGGCCCGCCAAGCTA 582 GCGACACACCCTGTATCTCTGATCC 583 GACACAACCTTGATCC 584 GCGACACACCCTGTACTCTGATCC 585 GTAGCAGGGGTAACTGCC 586 GTAGCAGGGGTCCGCAAGACCAAAGGGCTCCCCCCCACGTTTATACCCA 587 GTCTTCATCGGCCCGCCAAGACCAACG 589 GTAGCAGGGGTCCGCAAGACCAAAGC 589 GTAGCAGGGGTCCGCAAGACCAAACC 589 TCCCCGCCACATGACTCCATCC 580 TCCCCAACGCAGGGTAACTGCCAT 581 ACTCCGAAGCTTCGAGCGGACCATA 581 ACCTCTGAGCTGACTCCATCCTATC 581 ACCTCCGCCACTAGACTCAACTCCAT 581 ACCTCCGCCACTAGACTCAACTCCATC 581 ACCTCCGCCCACTAGACTCAACTCCATC 581 ACCTCCGCCCACTAGACTCAACTCCATC 581 ACCTCCGCCCACTAGACTCAACTCCATCCTAC 582 CGCTGGACTGCCCCACAACAT 583 ACCTTTCGGGGTCGCCCAACAACTTCTCCTCCCCCCCTCGAAGCTTCCGCGC 584 ATCACTCCACGGCAGACTGAAGACCACTCTTACCTCTGCCGTGGGAGGTAAT 584 ATCACTCCACGGCAGACTGAAGACCCCCCAAAGGGT 585 CGCTGGACTGGCCTATCCGAGTCG 586 GGGTCTCAGCAAACACTGTCCGAAA 587 CGAACGTTCCCACAATA 588 ATCACCTGCCACTATCCAATA 589 AACCTTTCCCAGACACCTGTCCC 600 TTCATGGGGCCGCTTCCACCAATA 601 ACTCGAACAGGCCCCTCTGA 602 CTGCACGTTCCAACAACTTCCCACATTCAACTCCGCGCGAACCTTTCCGACCACCCCACACCTGCGCGAACACCTCGCCGAACACTTCCCACCCA		573	GGTGTCGGAGGGTGGTGACCTCGA	TCGAGGTCACCACCCTCCGACACC
576 GCCCAATCCAGTTCTTATGCGCCC 577 CGGGTTAACCCACGCAAGTTATGA 578 TGATTAGCGCTCAATACACGCGCTG 578 TGATTAGCGCTCAATACACGCGCTG 578 AGGGCAGACCTTTGGTTCGACTC 579 AAGGGCAGACCTTTGGTTCGACTC 579 AAGGGCAGACCTTTTGGTTCGACTC 580 GCGCCACAGATTCACATGTCATT AATGACATGTGAATCTTTGTTGGCCGC 581 GCCATGTTCAAGGGCCTTTCGAAG 582 CGCGGTGTTTTGTCTAGGTGCCGG 583 CAACATTGTGTGTATC 584 CGATACCCGCGGTTTTTAACACCGCGG 583 CAACATGTGGCACCCCACACAATTGTT 586 GGCTAAAACGTGCGGGCCGCACCACAATGTTG 587 GATTAAACGTGCGGACTCCATCC 588 GGCTATAAACGTGCGGACTGCTC 588 GGCTATAAACGTGCGGACTGCTC 588 TGGGTAAAACGTGCCGGTTTAACACCGGCCGCTTTTACCCC 586 TGGGTAAAACGTGCCGGTTTATAACCACCGCGCGTTTTACCCC 587 GTCTTCATCGGCCGCGCAAGCTA 587 GTCTTCATCGGCCGGCGCAAGCTA 588 GCGACACACCCTGTATCCTC 589 GTAGCAGGGCCGCAAGCCACCCTTTGCGCCGCTTTTATACCCA 589 GTAGCAGGGCCGCAAGCCACCCTTTGCGCCGCCGTTTTACCCCA 589 GTAGCAAGCACCCTGTACTCTCATTCC 589 GTAGCAAGCACCCAGCACCCACACCCCTGCTAC 589 TCGCCAACGCAAGCCACCACCACCCTTTACCCCCACCGTTCACCCACC		574	AGCGCTTTTGGTCATGATTTGCAA	TTGCAAATCATGACCAAAAGCGCT
577 CGGGTTAACCCACGCAAGTTATGA 578 TGATTAGCGCTCAATACACGCGTG 578 TGATTAGCGCTCAATACACGCGTG 579 AAGGGCAGACCTTTGGTTCGACTG 580 GCGCCACAAGATTCACATGCATT 581 GCCATGTTCAAGGGCCTTTCGAAG 582 CGCGGTGTTTTGTAGGTGCCAG 583 CAACATTGTGATGCATG 584 CGATTCAAGGGCCTTTCGAAG 585 CACCATGTTCAAGATGCAG 586 CGGCACCACAAGATTCACATGCAG 587 CAACATTGTGGTGCAGG 588 CAACATTGTGGTGCAGG 588 CAACATTGTGGTGCAGG 589 CAACATTGTGGTGCAGG 580 CAACATTGTGGTGCAGG 581 CAACATTGTGGTGCACTCC 584 CGATACAGCGCGGGTTTGTTAAATC 585 GGCTATAAACGTGCGGACTGCTCC 586 TGGGTAAATCACTATTGCGCGGTT AACCGCGCAATAGTAGTTACCCA 587 GTCTTCATCGGCCCGCGCAAGACTA 588 GCGACACACCCTGTACTCTGATGC 589 GTAGCAGGGTCCGCAAGACCAAGC 589 GTAGCAGGGTCCGCAAGACCAAGC 589 GTAGCAAGACCAAGC 589 GTAGCAAGCAGGGTAACTGCCAT 589 ACCTCCGACACACACAGC 589 TCCCCACACGCAGGGTAACTGCCAT 589 ACCTTCTGGACCGGCAAGACCAAGC 589 ACCTCCAACCCAGGGTAACTGCCAT 589 ACCTTCTGGACCGGCAAGACCAAGC 589 ACCTTCTGGACCGGCAAGACCAAGC 589 ACCTTCTGAACGACGACCAAGC 589 ACCTTCTGGACCGGCAAGACCAAGC 589 ACCTTCTGGACCGGCAAGACCAAGC 589 ACCTTCTGGACCGGCAAGACCAAGC 589 ACCTTCTGGACCGGCAAGACCAACC 589 ACCTTCTGGACCTGCAATA TAGTGCAGTTAAGCCCGAGGT 589 ACCTTCTGGGGCCGCAAGACCAACACCCCCCAAAGGT 589 ACCTTCTGGGGCGCGAAGCCAAACACCCCCCAAAGGT 589 ACCTTCTGGGGCGCGAAGCACAACCCCCCCAAAGGT 589 ACCTTCTGGGCTCACCAATA TATTGGTGAAGCGACCCCCAAAGGT 589 ACCTTCTGGGCTCACCAATA TATTGGTGAAGCGACCCCCAAAGGT 589 ATCACCGGCAAACCTGTCCCAACTTCCAACTTACATCGAAGAGACCCCCCAGAAGGT 589 ATCACCTCCCAACACCTGTCCCAACTTCCAACACCTTTCCCACCTTTCCCACCTTTCCCACCTTTCCCACCA	5	575	CCGAGGACTTACGTCTGCCCAGGA	TCCTGGGCAGACGTAAGTCCTCGG
578 TGATTAGCGCTCAATACACGCGTG CACGCGTGTATTGAGCGCTAATCA 579 AAGGGCAGACCTTTGGTTCGACTG CAGTCGAACCAAAGGTCTGCCCTT 580 GCGCCACAAGATTCACATGTCATT AATGACATGTGAATCTTGTGGCGC 581 GCCATGTTCAAGGGCCTTTCGAAG CTTCGAAAGGCCCTTGACATGGC 582 CGCGGTGTTTGTTCAGGTGCCGG CCGGCACCTAGACAAAACACCCGCG 583 CAACATTGTGGTGGCACTCCATCC GGATGGAGTGCCACCACAATGTTG 584 CGATACGCGCCGGGTTTGTTAAATC GATTTAACAAACCGGCGCGTATCG 585 GGCTATAAACGTGCGGACTGCTCC GGAGCAGTCCGCACCACAATGTTG 586 TGGGTAAATCACTATTGCGCGGTT AACCGGCGACATAGTGAATTACCCA 587 GTCTTCATCGGCCCGCGCAAGCTA TAGCTTGCGCGGCCGATGAAGAC 588 GCGACACACCCTGTACTCTGATC GCATCTCTGAGC 589 GTAGCAAGGGCGCGCAAGCTA TAGCTTGCGCGGCCGATGAAGAC 589 GTAGCAAGGCCGCAAGCTA TAGCTTTGCGGGCCCGCATGAAGAC 589 GTAGCAAGGCCGCAAGCAAGC GCTTGGTCTTGCGGACCCTGCTAC 590 TCGCCAACGCAGGGTAACTGCCAT ATGCAGTTACAGGGTGTTGCC 591 ACTCCGAAGCTTCGAACGA TCGTCTTGCGGACCTGCTAC 592 TCCCGCCCACTAGACTGACTCGTA TAGCAGTTACAGGTTTGGGGAGGA 593 ACCTTTCTGGGGTCCCTCACCAATA TATTGGTCAGCGACCCCCCACAAGGT 594 ATCATCCCACGGCCAGATGAACAAAAC 25 S96 CGGTCTCAGCAGATGAACACAAGC CTCTTCACTTCCCCTGGGGGA 597 CGAACGTTCCGAGTGAAGAG CTCTTCCCTTCCCCTGCTAGACCG 598 CGGTCTCAGCAACACTGTCCGAAA TTTTGCGACAGTCTAGACCG 599 CGGTCTCAGCAAACACTGTCCGAAAA TTTTGCGACAGGTGAACCG 599 CGGTCTCAGCAAACACTGTCCGAAA TTTTGCAACAGGCCAGTCCAGCG 599 CGGTCTCAGCAAACACTGTCCGAAAA TTTTGCAACAGGCCAGTCCAGCGG 599 CGGTCTCAGCAAAACACCCCTCTGA TCAGAGGGGCTTTGCCACAGCGTAT 599 AGCTATTCCCGAAGCCCCTCTGA TCAGAGGGGCTTTTCCACCTGCAGAACGTTCACCCACACCATTCAGACGC 600 TTTCATCCCGAGACGGAACACCC GGTGTTCCGTCTGCGAAAACCCCCCACACCATTCAGACGG 601 ACTCGAACGGACGTTCAATCAT ATGATTTCCAACAGCCCCCCACACCATTCAAC 602 CTGCATGGTTGGAAGAGCCCCCCCGGAGAACCCCCCACACCATTCCACACCCCCACACCATTCCACACCCTCCCACACCCTTCCACACCCTCCCACACCATTCCACACCCTCCCACACCATTCCACACCCCCC		576	GCCCAATCCAGTTCTTATGCGCCC	GGGCGCATAAGAACTGGATTGGGC
579 AAGGGCAGACCTTTGGTTCGACTG 580 GCGCCACAAGATTCACATGTCATT AATGACATGTGAATCTTGTGGCCGC 581 GCCATGTTCAAGGGCCTTTCGAAG 582 CGCGGTGTTTTGTCTAAGGTGCCGG CGGCACCTAGACAAACACCGCG 583 CAACATTGTGGTGCACTCCATCC GGATGGAGTGCCACCACAATGTTG 584 CGATACGCGCGGGTTGTTAAATC GATTTAACAACCGGCGGTATCG 585 CGCGTATAAACGTGCGACTCCATCC GGATGGAGTGCCACCACAATGTTG 586 TGGGTAAATCACTATTGCGCGGTT AACCGCGCACGTTATAACCGGCGCGCGCAAGCTA 587 GTCTTCATCGCGCGCGCGCAAGCTA 588 GCGACACCCCTGTACTCTCATCC 588 GCGACACCCCTGTACTCTATCC 589 GTAGCAAGGCCCGCGCGAAGCTA 589 GTAGCAGGGCCGCGCGCAAGCTA 589 GTAGCAAGGCCCCTGTACTCTATCC 589 GTAGCAAGGTCCCCAAGC 589 TCGCCAACCCCTGTACTCTCATCC 580 TCGCCAACCACCCTGTACTCTCATCC 580 TCGCCAACCCCTGTACTCTCATCC 581 ACTCCCAAGCTTCAAGCCCAAGC 582 TCCCGCCCACTAGACCAAGC 583 ACCTTCTGGGGCCCCAAACCAAGC 584 ATCATCCCAAGCTTCAACCAAGC 585 TCCCGCCCACTAGACTAACTACCATA 587 ACCTTCTGGGGTCCCATA 589 ATCATCCCAAGCTTCAACCAAGA 580 TCCCGCCCACTAGACTAACTACCATA 581 ACCTTCTGGGGTCCCCAATA 581 ACCTTCTGGGGTCCCCAATA 582 TCCCGCCCACTAGACTAGACCAAGA 583 ACCTTCTGGGGTCCCCAATA 584 ATCATCCCACGGCAGAGTGAAGAC 585 CGCTTCAACCAATA 584 ATCATCCCACGGCAGAATGAAGAC 585 CGGTCTCACCAATA 586 TGGGATTACACTGGAGCCCCCAGAAGGT 587 CGAACGTTCCCACGATCCGAAT 588 ATACCGTGCACAACACTGTCCGAAT 588 CGGTCTCAGCAACACTGTCCGAAGTTTCCCTGCCGTGGGAATCAT 589 ATCATCCCACGCCAACCTGTCCGAAT 589 ATCATCCCACGCCAACCCCCCTCTGA 580 ATACCGTGCCACAACCTGTCCGAAT 589 ATACCGTGCCACAACCTGTCCGCAAA 587 CGAACGTTCCCGATGTAATGGCC 588 ATACCGTGCGACAAGCCCCCTCTGA 588 ATACCGTGCGACAAGCCCCCTCTGA 589 ATACCGTGCGACAAGCCCCCCCCAAA 589 ATACCGTGCGACAAGCCCCCTCTGA 589 ATACCGTGCGACAAGCCCCCCTCGA 589 ATACCGTGCGACAAGCCCCCCCCGAACCATTCCACACCCCCCCC		577	CGGGTTAACCCACGCAAGTTATGA	TCATAACTTGCGTGGGTTAACCCG
10 580 GCGCCACAAGATTCACATGTCATT AATGACATGTGAATCTTGTGGCGC 581 GCCATGTTCAAGGGCCTTTCGAAG CTTCGAAAGGCCCTTGAACATGGC 582 CGCGGTGTTTTGTCTAGGTGCCGG CCGGCACCTAGACAAAACACCGCG 583 CAACATTGTGGTGGCACTCCATCC GGATGAGGTGCCACCACAATGTTG 584 CGATACGCGCCGGTTTAAATC GATTTAACAAACCGGCGCGTATCG 585 GGCTATAAACGTGCGGACTGCTCC GGAGCAGTCCCACCACAATGTTG 586 TGGGTAAATCACTATTGCGCGGTT AAACCGGCGCACTAGAGAAACACCCGC 587 GTCTTCATCGGCCCGCCAAGCTA TAGCTTGCCGAGCCACCACAATGTTAACC 588 GCGACACACCCTGTACTCTGATGC GCATCAGAGTACAAGGGTGTCCCA 589 GTAGCAGGGTCCGCAAGCCA TAGCTTGCCGGGCCCATGAAGAC 589 GTAGCAGGGTCCGCAAGACCAAGC GCTTGGTCTTCCGAGT 591 ACTCCGAACGCAGGGTAACTGCCAT ATGCCAGTTACCCTGCGTTGCGA 592 TCCCGCCCACTAGACTGACTCAT TACGCAGTTACCCTGCGTTGGCGA 593 ACCTTCTGGGGTCGCAAACACCAATA TATTGGTGAGCCGAACCACAGG 594 ATCATCCCACGGCAGAGTAAACAG 595 CGCTGGACTGACCAATA TATTGGTGAACCCACCAAGAGT 594 ATCATCCCACGGCAGATGAAGAG 595 CGCTGGACTGCACCAATA TATTGGTGACCCCCCACAAGGT 596 CGGTCTCAGCAACACTGTCGCAAA TTTTGCGTGACCCCCACAAGGT 597 CGAACGTTCCGAAGTTCAGACGC 598 AGCTTCTCCGAGTCGCAAAA TTTTGCGACAGTTTGCTGAGCC 599 AGCCTTCCGACACACCCCTCTGA TTCCGAGTTTGCTGAGACCCC 599 AGCCTTCCGAACACCCCCTCTGA TTCAGAGGGCCATCAGACCGC 599 AGCCTTCCGACACACCCCCTCTGA TTACGCACGTTTTCCGAGTTCG 599 AGCTCATCCCAGACACCCCCTCTGA TTACGCACGACACGGTTCCGCGGAACACC 599 AGCCTATTCCCGAGCACACCCCCTCTGA TTACGCACGGCACCACAGGT 599 AGCTCATCCCAGACACACCCCCTCTGA TTACGCACGGCATCCACCACTGAAA 601 ACTCGAACGGACACACCCCCTCTGA TCAGACGGCCCCCATGAAA 601 ACTCGAACGGACACCC GGGGATTCACCCCACACCACTGCAG 602 CTGCATGGTGGGTGAACACC GGGAATTGAACGCCCCTTCGACT 603 CCGCGAGTTGGATGGCTGCAACACCC GGGAATTGAACGCCCCCTCGAA 604 AATGTTCCGGAGCGACACCCCCCCCCAGAACACCC 605 CACCGCGTTGGAACACC GGGAACACCC 606 GGCGTGGGAGCACCCCCCCCAGACACCCCCCCCACACCACCCCCC		578	TGATTAGCGCTCAATACACGCGTG	CACGCGTGTATTGAGCGCTAATCA
581 GCCATGTTCAAGGGCCTTTGAAG 582 CGCGGTGTTTTGTCTAGGTGCCGG CCGGCACCTAGACAAACACCGCG 583 CAACATTGTGGTGGCACTCCATCC GGATGGAGTGCCACCACAATGTTG 584 CGATACGCGCCGGTTTGTTAAATC GATTTAACAAACCGCGCGCGTATCG 585 GGCTATAAACGTGCGGACTGCTCC GGACGACGCGCGCGTATCG 586 TGGGTAAACCGTGCGGACTTCCC GGACGACGTCCGCACGTTTATAGCC 587 GTCTTCATCGGCCCGCCAAGCTA ACCCGCGCACGTTTATAGCCA 588 GCGACACACCCTGTACTCTGATGC GCATCAGAGTACAGGGCGCATGAAGAC 589 GTAGCAGGGTCCGCAAGACCAAGC GCTTGGTCTTCGGACCCTGCTAC 590 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTTGGCGA 591 ACTCCGAACGCTGGACACGAC TCGTCCGCGCAAGCTTACGAGGTACCCTGCTAC 592 TCCCGCCCACTAGACTGACCAGAC TCGTCAGAGTACAGCTTCGGAGGT 593 ACCTTCTGGGGTCGCTCAACCAATA TATTGGCAGTTACCCTAGAGAGAC 594 ATCATCCCACGGCAGACTGAACGAC TCCTTCACTCTGACGGAAGGT 595 CGCTGGACTGACCTGAA TATTGGCAGTCAGCACACACACGC 596 CGGTCTCACCAGACACACTGTCCCATA TATTGGTGAGCACCCCCAGAAGGT 597 CGAACGTTCTCCGAGTCGCAAA TTTTGCGACCACCCCAGAAGGT 598 ATCATCCCCACGGCAGACTGAACAC GGCCACTTGACCAGCG 599 CGACCGTTCCGAACACCTTTCCGAGTCG GGCCATTACATCGGAGACCCC 599 AGCCTTCCCGAGACACCCTTCGAA TTTTGCGACAGTTCGTCGGACCGC 599 AGCCTTCCCGAGACACACCTTCCCAAA TTTTGCGACAGTTCGCAGCCG 599 AGCCTTCCCGAGACACCCCTCTGA TCACAGGGGAAACACCG 599 AGCCTTCCCGAGACGACCCCTCTGA TCACAGGGGAAACACCG 599 AGCCCATTCCCGAGACGACCCCTCTGA TCACAGGGGAATGACCC 599 AGCCCTCCCACACACACTTCCCAAA ATGATTTGCACCCACGCGATT 599 AGCCCATTCCCGAGACGGAACACC GTGTCCCCCCCACACCATGAAA 601 ACTCGAACGGACACACCCTCTGA TCACACGCCGCATGAAA 601 ACTCGAACGGACACCCC GGGGTTCCAACCACCACCACCACCACCACCACCACCACCACCAC		579	AAGGGCAGACCTTTGGTTCGACTG	CAGTCGAACCAAAGGTCTGCCCTT
582 CGCGGTGTTTTGTCTAGGTGCCGG CCGGCACCTAGACAAAACACCGCG 583 CAACATTGTGGTGGCACTCCATCC GGATGGAGTGCCACCACAATGTTG 584 CGATACGCGCCGGTTTGTTAAATC GATTTACAAACCGGCGCGTATCG 585 GGCTATAAACGTGCGGACTGCTCC GGAGCAGTCCGCACGTTTATAGCC 586 TGGGTAAATCACTATTGCGCGGTT AACCGCGCACGTTTATAGCC 587 GTCTTCATCGGCCCGCGCAAGCTA TAGCTTGCGCGGCCGATGAAGAC 588 GCGACACCCCTGTACTCTGATGC GCATCAAGAGTACACGGGGCCGATGAAGAC 589 TCGCCAACGCAGGGTAACTGCC GCTTGGTCTTGCGGACCCTGCTAC 590 TCGCCAACGCAGGGTAACTGCCAT ATGCTATTGCGGAACCTTCGAGG 591 ACTCCGAACGCTGGACCAAGC GCTTGGTCTTGCGGAACCTTCGAGT 592 TCCCGCCCACTAGACTGACTCGTA TACGAGTCAGTCTTGGAGGT 593 ACCTTCTGGGGTCGCCAAGACCAACG TCGTCCGAAGCTTCGGAGT 594 ATCATCCCACGGCAGAAGACCAACG TCTTCACTCTGCGTTGGGCAGAGCT 595 CGCTGGACTGGCCTACCAATA TATTGGTGAGCCGCAGAAGGT 596 CGGTCTCAGCACAACTGTCCCAAA TATTGCGACAGGTCCAGCG 596 CGGTCTCAGCACAACTGTCCCAAA TTTTCCACTCTGCGTTGGGAACACTCCGACAACTGTCCGAAA TTTTCCACTCTGCGTTGGGAACACTTCCGAAGTTCCGAACACTTCCGAAACGTTCCGAAACGTTCCGAAACGTTCCGAAACGTTCCGAAACGTTCCGAAACGTTCCGAAACACACTCTCCGAAAA TAACAGAGGGCTTTGGAGACCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAACACTCGTCAAA TTTCCGAACGGTTTGGCACACGGTAT 599 AGCTCATTCCCGAGGAACACCCCTCTGA TCAGAGGGGCTTTGCGAACACGTTCG 599 AGCTCATTCCCGAGACAGACCCCTCTGA TCAGAGGGGCTTTGCGAACACGT 599 AGCTCATTCCCGAGACGAACACC GGTGTTCCACCCACACCATCAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGGTGAAATCAT ATGATTTGCAACAGCCCCATCAAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGGTGAAGACCCCCTTTGA TCAACACGCCACCACCACCATCCAAC 603 CCGCGAGTTGTGAGACGCCCTTCGA TCAACACCCCACCACCACCACCACCACCACCACCACCACC	10	580	GCGCCACAAGATTCACATGTCATT	AATGACATGTGAATCTTGTGGCGC
583 CAACATTGTGGTGGCACTCCATCC GGATGGAGTGCCACCACAATGTTG 584 CGATACGCGCCGGTTTGTTAAATC GATTTAACAAACCGGCGCGTATCG 585 GGCTATAAACGTGCGGACTGCTCC GGAGCAGTCCGCACGTTTATAGCC 586 TGGGTAAATCACTATTGCGCGGTT AACCGCGCAATAGTGATTTACCCA 587 GTCTTCATCGGCCCGCGCAAGCTA TAGCTTGCGCGGGCCGATGAAGAC 588 GCGACACACCCTGTACTCTGATGC GCATCAGAGTACAGGGTGTCGCC 589 GTAGCAGGGTCACCACAGCC GCTTGGCTCTGCGCGACCCTGCTAC 590 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTAGC 591 ACTCCGAACGCTGGAACTGCCAT ATGGCAGTTACCCTGCGTTGGCGA 592 TCCCGCCCACTAGACTCACTA TACGAGTCAGTCTTGGAGGT 593 ACCTTCTGGGGTCGCCAACACTA TATGGTCAGCGACCCTCGAAGCTTCGGAGT 594 ATCATCCCACGGCAGACTGACTCGTA TACGAGTCAGTCTAGTGGGCGGA 595 ACCTTCTGGGGTCGCCACACAATA TATTGGTGAGCGACCCCCAGAAGGT 596 CGCTGGACTGGCCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 597 CGAACGTTCTCGAGTCGAAC TCTTCACTCTGCCGTGGGAGTAGAT 598 ATACCGTGGCCACACACTGTCCCAAA TTTGCGACACAGTTGCAGCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGACCGTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGCTTGCGACCGGTG 599 AGCTCATTCCCGATGTAATGGCC GGCCATTACATCGGAAACGTTCG 599 AGCTCATTCCCGAGAGCGAACACC GGTGTTCCGTCTCGGGAATGACCT 599 AGCTCATTCCCGAGGAACACCC GGTGTTCCGTCCACGGTAT 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGACCTCCTGCGG 602 CTGCATGGTTGGGTGAGACCCC GGGGATTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGACTCCC GGGAGTCTCACCCACACCATGCAG 604 CATCGAGGGCGTTCCAAGCCTTCCA GGCGTTTACACCCACACCACTGCAG 605 CCGCGAGTGTGGATGGCGTGTCA 606 GGCGTGGGAGGACACCC GTGGGTCCTAACACCCCACACCATTCAC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTCCTAACACGCCACACACTT 608 CGGTTTGGGAGAGCACCAC GTGGTCCTAACACGCC 607 TGCTCCATGTTAGGAACGACCCAC GTGGTCCTAACACCGC 608 CGGTTTGGTCGGACTACCACCACCACCACCAC 609 CCGCGCGTATCATCACACCCACCACCACCACCACCAC 609 CCGCGCGTATCATCACACCCACCACCACCACCACCACCACCACCACC		581	GCCATGTTCAAGGGCCTTTCGAAG	CTTCGAAAGGCCCTTGAACATGGC
584 CGATACGCGCGGTTTGTTAAATC GATTTAACAAACCGGCGCGTATCG 585 GGCTATAAACGTGCGACTGCTCC GGAGCAGTCCGACGTTTATAGCC 586 TGGGTAAATCACTATTGCGCGGTT AACCGCGCAATAGTGATTTACCCA 587 GTCTTCATCGGCCCGCGCAAGCTA TAGCTTGCGCGGGCCGATGAAGAC 588 GCGACACACCCTGTACTCTGATGC GCATCAGAGTACAGGGTGTGCGC 589 GTAGCAGGGTCCGCAAGACCAAGC GCTTGGTCTTGCGGACCCTGCTAC 590 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTTGGCGA 591 ACTCCGAAGCTTCGAGCGACACAGA TCGTCGCAGCAGCTTACGAGGT 592 TCCCGCCCACTAGACTCGTA TACGAGTCAGAGCTTCGGAGT 593 ACCTTCTGGGGTCGCTCACAATA TATTGGTGAGCGACCCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAACAGA TCTTCACTCTGCGTTGGGAGT 595 CGCTGGACTGGCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 596 CGGTCTCAGCAGACTGACTCGA TCTTCACTCTGCGTTGGAACGG 597 CGAACGTTCTCCGAGTCGAAA TTTTGCGACAGGTTGCTAGCGG 598 ATACCGTGCGCAACACTGTCGCAAA TTTTGCGACAGGTTTGCTGAGACCG 599 CGACCGTTCCGAACACCTGTCGAAA TTTTGCAACAGGCCAGCAGCGGACCCCCGGAAGGTAT 599 AGCTCATTCCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAGAGCCCCTCTGA TCAGAGGGGCTTTGCGACGGTTACATCCGAGAACACTGTCCGAAAA 601 ACTCGAACGGCAGAGAACACC GGTGTTCCGTCTGGGAATGAGCT 599 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAAC 601 ACTCGAACGGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 602 CTGCATGGTGGAATACATCAT ATGATTTGCAACAGGCCCCATCCAGTCAGC 603 CCGCGAGTGTGGAAATCAT ATGATTTGCAACAGGCCCCACCATGCAG 604 AATGTGTCGGTCCTAAGCCGGGTTG ACACACCCCACCC		582	CGCGGTGTTTTGTCTAGGTGCCGG	CCGGCACCTAGACAAAACACCGCG
15 585 GGCTATAAACGTGCGGACTGCTCC GGAGCAGTCCGCACGTTTATAGCC 586 TGGGTAAATCACTATTGCGCGGTT AACCGCGCAATAGTGATTTACCCA 587 GTCTTCATCGGCCCGCGCAAGCTA TAGCTTGCGCGGGCCGATGAAGAC 588 GCGACACACCCTGTACTCTGATGC GCATCAGAGTACAGGGTGTGTCGC 589 GTAGCAGGGTCCGCAAGACCAAGC GCTTGGTCTTGCGGACCCTGCTAC 589 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTTGGCGA 591 ACTCCGAAGCTTCGAGCGGCACGA TCGTGCCGTCGAAGCTTCGGAGT 592 TCCCGCCCACTAGACTGACTCGTA TACGAGTCAGTGTGGGGCGGGA 593 ACCTTCTGGGGTCGCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAAGAG CTCTTCACTCTGCCGTGGGATGAT 595 CGCTGGACTGCCTATCCGAGTCG CGACTCGGATGACTCAGCG 596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGGTTCGCAGCG 597 CGAACGTTCTCCGAGTCG CGACTCGGATAGCCCAGTCCAGCG 598 ATACCGTGCGCTATCCGAATA TTTGCGACAGGTTTCGCAGCGG 599 AGCCATTCCCGATGTAATGCC GGCCATTACATCCGAGAACCGTTCG 599 AGCCATTCCCGAGGACCCCCTTGAA TCAGAGGGGCTTTGCACACGGTAT 599 AGCCATTCCCGAGCACACACC GGTGTTCCGTCTCGGGAATGACCT 599 AGCCATTCCCGAGCACACACC GGTGTTCCGTCTCGGGAATGACCT 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGAGACACC GGGGAGTCCACCACCACCATCCAC 603 CCGCGAGTTGGAATCCC GGGAGTCTCACCACACCACCAGCGG 604 AATGTGTCGGTCCTAAGCCGGTT CAACACGCCATCCACACTCGCGG 605 CAGCGTGGGAGCGTTCAATCCC GCGAAGCTTGCACGCCCCCCACACCATT 35 605 TAAGACGAGCCTGCACAGCTTCCA 606 GGCGTGGGAGCTTCAACCGCCGTTGCG 607 TGCTCCATGTTAGGAACGACCCCC 607 TGCTCCATGTTAGGAACGACCCCC 607 TGCTCCATGTTAGGAACGACCCCCCC 607 TGCTCCATGTTAGGAACGACCCCC 608 CGGTGTTGGTCGGACTGCCCCCCCACACCACCCGC 609 CCGCGCGTATCTATCAGATCTGG CCCAGATCTGATACATCCCGCG 609 CCGCGCGTATCTATCAGATCTGG CCCAGATCTGATAGAACACCCG 609 CCGCGCGTATCTATCAGATCTGG CCCAGATCTGATAGAACACCCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGCG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGCG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGCG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGCGG 600 CCGCGCGTATCTATCCACCTGGAGCGAGCCTCCACACCTCGGGG 600 CCGCGCGTATCTATCCACCTGGAGCGAGCCTCCACACCCCG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATAC		583	CAACATTGTGGTGGCACTCCATCC	GGATGGAGTGCCACCACAATGTTG
586 TGGGTAAATCACTATTGCGCGGTT AACCGCGCAATAGTGATTTACCCA 587 GTCTTCATCGGCCCGCGCAAGCTA TAGCTTGCGCGGGCCGATGAAGAC 588 GCGACACACCCTGTACTCTGATGC GCATCAGAGTACAGGGTGTGTCGC 589 GTAGCAGGGTCCGCAAGACCAAGC GCTTGGTCTTGCGGACCCTGCTAC 20 590 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTTGGCGA 591 ACTCCGAAGCTTCGAGCGGCACGA TCGTGCCGCTCGAAGCTTCGGAGT 592 TCCCGCCCACTAGACTGCAT TACGAGTCAGTCTAGTGGGCGGGA 593 ACCTTCTGGGGTCGCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAAGAG CTCTTCACTTGCCGTGGGATGAT 595 CGCTGGACTGGCCTATCCCGAATA TATTGGTGAGCCAGCCCCAGAAGGT 596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGTGTCAGCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGACCG 598 ATACCGTGCGACAACACTGTCGCAAA TTTGCGACAGGGTTGCACCG 599 AGCTCATTCCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 599 AGCTCATTCCCGAGACACACCCTCTGA TCAGAGGGGCTTGTCGGAACAGTTCG 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGGAACAGTTCG 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGGAACAGTTCG 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGGAGACACCC GGGAGTTCACCCCACACCATGCAG 603 CCGCGAGTTGGATGGCGTGTTGA TCAACACGCCATCCACCTTGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGACCTTCCAAGCTTGCG CGCAAGCTGTCAAGCCTGCCG 607 TGCTCCATGTTAGGAACGACTTCC GACATCGTTCTAACCCCCACACCATGCAGC 608 CGGTGTGGAGAACACCAC GTGGTGCAGTCCTAACACCGCC 607 TGCTCCATGTTAGGAACGACCACCAC GTGGTGCAGCACACACCG 608 CGGTGTTGGTCGGACCACCAC GTGGTGCATCCACACACCG 609 CCGCGCGTATCTATCAGATCTGGC CCAGACTTCCAACACCCG 609 CCGCGCGTATCTATCAGATCTGGC CCAGACTTCAAACACCCG 609 CCGCGCGTATCTATCAGACTCGGC 600 CCGCGCGTATCTATCAGACTCGGC 600 CCGCGCGTATCTATCAGACTCGGC 600 CCGCGCGTATCTATCAGACTCGGC 601 AAAGCATGCTCCACCTGGAGCGAGC 602 CCGCGCGTATCTATCAGACTGGC 603 CCGCGCGTATCATCACACTCGGC 604 AAAGCATGCTCCACCTGGAGCGAGC 605 CCAGACTTGATAGACGACCGC 606 CCGCGCGTATCTATCAGACTGGGC 607 TGCTCCATGGTACGACGACCACCAC 608 CGGTGTGGACGACTGCCACCACCACCACCACCACCACCACCACCACCACCACCA		584	CGATACGCGCCGGTTTGTTAAATC	GATTTAACAAACCGGCGCGTATCG
587 GTCTTCATCGGCCCGCGCAAGCTA 588 GCGACACACCCTGTACTCTGATGC 589 GTAGCAGGGTCCGCAAGACCAAGC 589 GTAGCAGGGTCCGCAAGACCAAGC 580 GTAGCAGGGTCCGCAAGACCAAGC 591 TCGCCAACGAGGGTAACTGCCAT 591 ACTCCGAAGCTTCGAGCGGCACGA TCATCGCGTTGGCGA 592 TCCCGCCCACTAGACTGCAT 593 ACCTTCTGGGGTCGCTCACCAATA 594 ATCATCCCACGGAGGTGAAGAG 595 ACCTTCTGGGGTCGCTCACCAATA 596 CGGTCTCAGCAGAGTTAACTGCAT 597 CGAACGTTCCGAGTCGCCAATA 598 ATCATCCCACGGCAGAGTGAAGAG 599 CGGTCTCAGCAAAA 590 CGGTCTCAGCAAGATGAAGAG 591 ATCATCCCACGGCAGAGTGAAGAG 592 TCCCGCCCACTAGACTGACCAATA 593 ACCTTCTGGGGTCGCTCACCAATA 594 ATCATCCCACGGCAGAGTGAAGAG 595 CGCTGGACTGGCCTATCCGAGTCG 596 CGGTCTCAGCAACACTGTCGCAAA 597 CGAACGTTCTCCGATGTAATGGCC 598 ATACCGTGCGACAAGCCCCTCTGA 599 AGCTCATTCCCGATGAATAGGCC 599 AGCTCATTCCCGAGACAGCCCCTCTGA 599 AGCTCATTCCCGAGACAGCCCCTCTGA 599 AGCTCATTCCCGAGACAGCCCCTCTGA 590 AGCTCATTCCCGAGACAGCCCCTCTGA 591 ACTCGAACGGCCGTTGCAAATCAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA 590 CCGCGAGTGTGGAAACACC 600 TTTCATGCGGCCCGTTGCAAATCAT 601 ACTCGAACGGACGTCCAATCAT 602 CTGCATGGTGTGGGTGGAGACTCCC 603 CCGCGAGTGTGGATGGCGTGTTGA 604 AATGTGTCGGTCCTAAGCCGGGTG 605 TAAGACGAGCTTCAACTCCC 606 GGCGTGGGAGGATAAGACGACTGC 607 TGCTCCATGTAAGCCGGGTG 608 CGGTGTGGACAACCCACCACCACCCACCCCCCCCCCCCC	15	585	GGCTATAAACGTGCGGACTGCTCC	GGAGCAGTCCGCACGTTTATAGCC
588 GCGACACACCCTGTACTCTGATGC GCATCAGAGTACAGGGTGTGTCGC 589 GTAGCAGGGTCCGCAAGACCAAGC GCTTGGTCTTGCGGACCCTGCTAC 590 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTTGCGAA 591 ACTCCGAAGCTTCGAGCGGCACGA TCGTGCCGCTCGAAGCTTCGGAGT 592 TCCCGCCCACTAGACTGACTCGTA TACGAGTCAGTCTAGTGGGCGGA 593 ACCTTCTGGGGTCGCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAAGAG CTCTTCACCTGCGTGGGATGAT 595 CGCTGGACTGGCCTATCCGAGTCG CGACTCGGATAGGCCAGTCCAGCG 596 CGGTCTCAGCACACATA TTTTGCGACAGTTTGCTGAGACCG 597 CGAACGTTCTCCGATGTAATGGCC CGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 601 ACTCGAACGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATCCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACCATCCAG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTAACCGCCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCAGTCCTAACATGGAGCA 608 CGGTGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGAACACCCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGAACACCCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGAACACCCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGAACACCCGGGG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGAACACCCGGGGGAGAACACCCTGCAGACCATCCACACCCGGGGGGAGAACACCCGGGGGGGAGAACACCCGGGGGG		586	TGGGTAAATCACTATTGCGCGGTT	AACCGCGCAATAGTGATTTACCCA
589 GTAGCAGGGTCCGCAAGACCAAGC GCTTGGTCTTGCGGACCCTGCTAC 590 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTTGCCGA 591 ACTCCGAAGCTTCGAGCGGCACGA TCGTGCCGAAGCTTCGGAGT 592 TCCCGCCCACTAGACTGACTCGTA TACGAGTCAGTCTAGTGGCGGAG 593 ACCTTCTGGGGTCGCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAAGAG CTCTTCACTCTGCCGTGGGATGAT 595 CGCTGGACTGGCCTATCCAGTCG CGACTCGGATAGCCAGTCAGCG 596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGTGTTGCTGAGACCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGCTTGTCGCACAGTT 599 AGCTCATTCCCGAGACGGACACACC GGTGTTCCGTCGGAATAGACT 599 AGCTCATTCCCGAGACGGACACACC GGTGTTCCGTCGGAATA 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGACACCC GGGGATTCAACCGCCGCATGAAA 602 CTGCATGGTGGGAGACTCCC GGGAGTCTCACCACACCA		587	GTCTTCATCGGCCCGCGCAAGCTA	TAGCTTGCGCGGGCCGATGAAGAC
20 590 TCGCCAACGCAGGGTAACTGCCAT ATGGCAGTTACCCTGCGTTGGCGA 591 ACTCCGAAGCTTCGAGCGGCACGA TCGTGCCGCTCGAAGCTTCGGAGT 592 TCCCGCCCACTAGACTGACTCGTA TACGAGTCAGTCTAGTGGGCGGGA 593 ACCTTCTGGGGTCGCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAAGAG CTCTTCACTCTGCCGTGGGATGAT 595 CGCTGGACTGGCCTATCCGAGTCG CGACTCGGATAGGCCAGTCCAGCG 596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGTGTTGCGAGACCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 590 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACCATGCAG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTTTACCTCCCACGCC 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTTACCTCCCACGCC 607 TGCTCCATGTTAGGAACGACCAC 608 CGGTGTTGGTCGGACTGACCACC 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 609 CCGCGCGTATCTATCAGCTTGGG CCCAGATCTGATAGATACGCGCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGGG 601 AAAGCATGCTCCACCTGGAGCGAG CTCCCCAGGTGGAGCATGCTTTT		588	GCGACACCCTGTACTCTGATGC	GCATCAGAGTACAGGGTGTGTCGC
591 ACTCCGAAGCTTCGAGCGGCACGA TCGTGCCGCTCGAAGCTTCGGAGT 592 TCCCGCCACTAGACTGACTCGTA TACGAGTCAGTCTAGTGGGCGGGA 593 ACCTTCTGGGGTCGCTCACCAATA TATTGGTGAGCGACCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAAGAG CTCTTCACTCTGCCGTGGGATGAT 595 CGCTGGACTGGCCTATCCGAGTCG CGACTCGGATAGGCCAGCCAGCG 596 CGGTCTCAGCACACACTGTCGCAAA TTTGCGACAGTTGCTGAGACCG 597 CGAACGTTCTCCGATTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGACCAC GTGGTGCGTTCTAACATGGAGCA 608 CGGTGTTGGTCGGACCACCAC GTGGTGCGTTCCTAACATGGAGCA 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTAACATCGCGCGG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAACACCGCCGG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAACACCGCCGG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAACATCGCGCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAACATCGCGCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAACATACGCCCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAACATACGCCCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAACATACGCCGCGG 600 CCGCCGCTATCTATCAGATCTGGG CCCAGATCTGATAACATACGCCCGG 600 CCGCCGCTATCTATCAGATCTGGG CCCAGATCTCAACACTCGTTTT		589	GTAGCAGGGTCCGCAAGACCAAGC	GCTTGGTCTTGCGGACCCTGCTAC
592 TCCCGCCCACTAGACTGACTCGTA 593 ACCTTCTGGGGTCGCTCACCAATA 594 ATCATCCCACGGCAGAGTGAAGAG 595 CGCTGGACTGGCCTATCCGAGTCG 596 CGGTCTCAGCACAAA 597 CGAACGTTCTCGCGTGGATAGGCCAGCCGGGATAGTCG 598 ATACCGTGGCACACACTGTCGCAAA 599 AGCTCATTCCGAGTGAGAGCC 599 AGCTCATTCCGAGTGATAATGGCC 599 AGCTCATTCCCGAGACACCCCTCTGA 599 AGCTCATTCCCGAGACACCCCTCTGA 599 AGCTCATTCCCGAGACACCC 591 ACCCGGGCCGTTGCAAAATCAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA 590 TTTCATGCGGCCGTTGCAAATCAT 590 AGCTCATTCCCGAGACAGCCCCTCTGA 600 TTTCATGCGGCCGTTGCAAATCAT 601 ACTCGAACGGACGGTACACCC 602 CTGCATGGTGGGTGAGACTCCC 603 CCGCGAGTGTGGATGAGACTCCC 604 AATGTGTCGGTCCTAAGCCGGGTG 605 CCGCGAGTGTGGATGGCGTTTGA 590 ACCCGCGAGTGTGGATGGCCGTTTGA 606 CGCGTGGGAGACACCCC 607 TCAACACCGCCATCCACACCATCCAGC 608 CGCGTGGGAGGATAAGACGACTGC 609 CCGCGCGTTTCGACTCCACCCCCGCGG 609 CCGCGCGTATCTATCAGACTCGGG 609 CCGCGCGTATCTATCAGACTCGGG 600 CCGCGCGTATCTATCAGACTCGGG 601 AAAGCATGCTCCACCTCGAGCCGCC 602 CCCAGATCTTAGCACCCACCCACCCACCCACCCACCCCCCCC	20	590	TCGCCAACGCAGGGTAACTGCCAT	ATGGCAGTTACCCTGCGTTGGCGA
593 ACCTTCTGGGGTCGCTCACCAATA TATTGGTGAGCGACCCCAGAAGGT 594 ATCATCCCACGGCAGAGTGAAGAG CTCTTCACTCTGCCGTGGGATGAT 25 595 CGCTGGACTGGCCTATCCGAGTCG CGACTCGGATAGGCCAGTCCAGCG 596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGTGTTGCTGAGACCG 597 CGAACGTTCTCCGATTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGCTTGTCGCACAGTAT 599 AGCTCATTCCCGAGACAGCACCC GGTGTTCCGTCTCGGGAATGAGCT 30 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGGTGAGACTCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACCATGCAG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTCAGACCACCCC 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACACCCC CAGCTCCAACACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGCG 40 AAAGCATGCTCCGACCTTGACGACCGC CCCAGATCTGATACATGGAGCA 608 CGGTGTTGGTCCGACTGACGACTG CAGCCTCAACACCCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCCGG 601 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		591	ACTCCGAAGCTTCGAGCGGCACGA	TCGTGCCGCTCGAAGCTTCGGAGT
25 ATCATCCACGGCAGAGTGAAGAG CTCTTCACTCTGCCGTGGGATGAT 25 595 CGCTGGACTGGCCTATCCGAGTCG CGACTCGGATAGGCCAGTCCAGCG 596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGTGTTGCTGAGACCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 30 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGAGACTCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTCAGACCGCC 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCCTAACATGGAGCA 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGGG 40 AAAGCATGCTCCACCTTGGAGCGAG CTCGCTCCAGGCTGGACCAACACCCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCGCGG 600 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCCCGGG 601 AAAGCATGCTCCACCTTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTTT		592	TCCCGCCCACTAGACTGACTCGTA	TACGAGTCAGTCTAGTGGGCGGGA
25 595 CGCTGGACTGGCCTATCCGAGTCG CGACTCGGATAGGCCAGTCCAGCG 596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGTGTTGCTGAGACCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCCCTCTGA TCAGAGGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACAGCCC GGTGTTCCGTCTCGGGAATGAGCT 30 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCTAACATGGAGCA 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGGTCGTCATAGATACGCGCGG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGGG 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		593	ACCTTCTGGGGTCGCTCACCAATA	TATTGGTGAGCGACCCCAGAAGGT
596 CGGTCTCAGCAACACTGTCGCAAA TTTGCGACAGTGTTGCTGAGACCG 597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 590 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 590 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 590 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGAGACCTCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGACCACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 400 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		594	ATCATCCCACGGCAGAGTGAAGAG	CTCTTCACTCTGCCGTGGGATGAT
597 CGAACGTTCTCCGATGTAATGGCC GGCCATTACATCGGAGAACGTTCG 598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 599 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACCGACCAC GTGGTGCGTCCTAACATGGAGCA 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT	25	595	CGCTGGACTGGCCTATCCGAGTCG	CGACTCGGATAGGCCAGTCCAGCG
598 ATACCGTGCGACAAGCCCCTCTGA TCAGAGGGGCTTGTCGCACGGTAT 599 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 30 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		596	CGGTCTCAGCAACACTGTCGCAAA	TTTGCGACAGTGTTGCTGAGACCG
30 AGCTCATTCCCGAGACGGAACACC GGTGTTCCGTCTCGGGAATGAGCT 30 600 TTTCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGGTGAGACTCCC GGGAGTCTCACCACACCA		597	CGAACGTTCTCCGATGTAATGGCC	GGCCATTACATCGGAGAACGTTCG
30 600 TITCATGCGGCCGTTGCAAATCAT ATGATTTGCAACGGCCGCATGAAA 601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTCGAGCATGCTTT		598	ATACCGTGCGACAAGCCCCTCTGA	TCAGAGGGGCTTGTCGCACGGTAT
601 ACTCGAACGGACGTTCAATTCCCA TGGGAATTGAACGTCCGTTCGAGT 602 CTGCATGGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		599	AGCTCATTCCCGAGACGGAACACC	GGTGTTCCGTCTCGGGAATGAGCT
602 CTGCATGGTGTGGGTGAGACTCCC GGGAGTCTCACCCACACCATGCAG 603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT	30	600	TTTCATGCGGCCGTTGCAAATCAT	ATGATTTGCAACGGCCGCATGAAA
603 CCGCGAGTGTGGATGGCGTGTTGA TCAACACGCCATCCACACTCGCGG 604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 35 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		601	ACTCGAACGGACGTTCAATTCCCA	TGGGAATTGAACGTCCGTTCGAGT
604 AATGTGTCGGTCCTAAGCCGGGTG CACCCGGCTTAGGACCGACACATT 605 TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		602	CTGCATGGTGTGGGTGAGACTCCC	GGGAGTCTCACCCACACCATGCAG
TAAGACGAGCCTGCACAGCTTGCG CGCAAGCTGTGCAGGCTCGTCTTA 606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		603	CCGCGAGTGTGGATGGCGTGTTGA	TCAACACGCCATCCACACTCGCGG
606 GGCGTGGGAGGATAAGACGATGTC GACATCGTCTTATCCTCCCACGCC 607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		604	AATGTGTCGGTCCTAAGCCGGGTG	CACCCGGCTTAGGACCGACACATT
607 TGCTCCATGTTAGGAACGCACCAC GTGGTGCGTTCCTAACATGGAGCA 608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT	35	605	TAAGACGAGCCTGCACAGCTTGCG	CGCAAGCTGTGCAGGCTCGTCTTA
608 CGGTGTTGGTCGGACTGACGACTG CAGTCGTCAGTCCGACCAACACCG 609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		606	GGCGTGGGAGGATAAGACGATGTC	GACATCGTCTTATCCTCCCACGCC
609 CCGCGCGTATCTATCAGATCTGGG CCCAGATCTGATAGATACGCGCGG 40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		607	TGCTCCATGTTAGGAACGCACCAC	GTGGTGCGTTCCTAACATGGAGCA
40 610 AAAGCATGCTCCACCTGGAGCGAG CTCGCTCCAGGTGGAGCATGCTTT		608	CGGTGTTGGTCGGACTGACGACTG	CAGTCGTCAGTCCGACCAACACCG
		609	CCGCGCGTATCTATCAGATCTGGG	CCCAGATCTGATAGATACGCGCGG
611 ACTTGCATCGCTGGGTAGATCCGG CCGGATCTACCCAGCGATGCAAGT	40	610	AAAGCATGCTCCACCTGGAGCGAG	CTCGCTCCAGGTGGAGCATGCTTT
		611	ACTTGCATCGCTGGGTAGATCCGG	CCGGATCTACCCAGCGATGCAAGT

	612	TGCTTACGCAGTGGATTGGTCAGA	TCTGACCAATCCACTGCGTAAGCA
	613	ATGCAGATGAACAAATCGCCGAAT	ATTCGGCGATTTGTTCATCTGCAT
	614	GCAATTCTGGGCCATGTATTCGTC	GACGAATACATGGCCCAGAATTGC
	615	AGGGTTCCTTACGCGTCGACATGG	CCATGTCGACGCGTAAGGAACCCT
5	616	GTGGAGCTAATCGCGAGCCTCAGA	TCTGAGGCTCGCGATTAGCTCCAC
	617	TCGTAGTCTCACCGGCAATGATCC	GGATCATTGCCGGTGAGACTACGA
	618	TTATAGCAGTGCGCCAATGCTTCG	CGAAGCATTGGCGCACTGCTATAA
	619	CGAACAGTGCTGTCCGTCGCTCAA	TTGAGCGACGGACAGCACTGTTCG
	620	TCCGCGTGGACTGTTAGACGCTAT	ATAGCGTCTAACAGTCCACGCGGA
10	621	CATTAGCCCGCTGTCGGTAACTGT	ACAGTTACCGACAGCGGGCTAATG
	622	GGAAAGAAACTCAGACGCGCAATG	CATTGCGCGTCTGAGTTTCTTTCC
	623	CGACTCGCTGGACAGGAGAATCGT	ACGATTCTCCTGTCCAGCGAGTCG
	624	CATGATCCTCTGTTTCACCCGCGG	CCGCGGGTGAAACAGAGGATCATG
	625	GGCGTAGCGCTCTAAAAGCTTCGG	CCGAAGCTTTTAGAGCGCTACGCC
15	626	AGTGATGCCATCAGGCCCGTATAC	GTATACGGGCCTGATGGCATCACT
	627	TATGGAAAGGGCAACAGCGCTATC	GATAGCGCTGTTGCCCTTTCCATA
	628	CTGTGGTTGATGGAGGATCCACAC	GTGTGGATCCTCCATCAACCACAG
	629	ACTCGCTGGAATTTGCGCTGACAC	GTGTCAGCGCAAATTCCAGCGAGT
	.630	CAGGCCCGAACCACGCGGTTACAG	CTGTAACCGCGTGGTTCGGGCCTG
20	631	GGCGCAATGGGCGCATAAATACTA	TAGTATTTATGCGCCCATTGCGCC
	632	GGTCAATTCGCGCTACATGCCCTA	TAGGGCATGTAGCGCGAATTGACC
	633	GATGGTGGACTGGAGCCCTTCCGC	GCGGAAGGGCTCCAGTCCACCATC
	634	CCGCGCATAGCGCAATAGGGGAGA	TCTCCCCTATTGCGCTATGCGCGG
	635	TCTTCTGGCTGTCCGGCACCCGAA	TTCGGGTGCCGGACAGCCAGAAGA
25	636	GCGTTCGCAATTCACGGGCCCTTA	TAAGGCCCGTGAATTGCGAACGC
	637	TCGTTTCGGCCTTGGAGAGTATCG	CGATACTCTCCAAGGCCGAAACGA
	638	AGGTGCAAGTGCAAGGCGAGAGGC	GCCTCTCGCCTTGCACTTGCACCT
	639	CGCCAGTTTCGATGGCTGACGTTT	AAACGTCAGCCATCGAAACTGGCG
	640	GCTTTACCGCCGATCCCAGATATC	GATATCTGGGATCGGCGGTAAAGC
30	641	GTGCTTGACGAAGAGGCGAAATGT	ACATTTCGCCTCTTCGTCAAGCAC
	642	CAGTCCGTGCGCTTCATGTCCTCA	TGAGGACATGAAGCGCACGGACTG
	643	TACGCGTAAGAGCCTACCCTCGCG	CGCGAGGGTAGGCTCTTACGCGTA
	644	GGCGAGTCTTGTGGGGACATGTGT	ACACATGTCCCCACAAGACTCGCC
	645	CCAAAGCGAAGCGAGCGTGTCTAT	ATAGACACGCTCGCTTCGCTTTGG
35	646	GCCGTAGGTTGCTCTTCACCGAAC	GTTCGGTGAAGAGCAACCTACGGC
	647	AAATCCGCGATGTGCCGTGAGGCT	AGCCTCACGGCACATCGCGGATTT
	648	GGCTTCGCACCCGTACCAATTTAG	CTAAATTGGTACGGGTGCGAAGCC
	649	TGTAGAGTCCCACGTAGCCGGCAT	ATGCCGGCTACGTGGGACTCTACA
	650	CACTAGTCTGGGGCAAGGTGCATT	AATGCACCTTGCCCCAGACTAGTG
40	651	TGTACTCGGCAGGCGCAATAGATT	AATCTATTGCGCCTGCCGAGTACA
	652	AACGGGTATCGGAAGCGTAAAAGC	GCTTTTACGCTTCCGATACCCGTT

	653	CGGACTGCCCGTTTGCAAGTTGAG	CTCAACTTGCAAACGGGCAGTCCG
	654	ATCGTTCAGCACTGGAGCCCGTAA	TTACGGGCTCCAGTGCTGAACGAT
	655	ATGCATCGAACTAGTCGTGACGGC	GCCGTCACGACTAGTTCGATGCAT
	656	TTCCAGGCATTAAGGAGAGGGAGC	GCTCCCTCCTTAATGCCTGGAA
5	657	GTGCGACATCTACTCCACGATCCC	GGGATCGTGGAGTAGATGTCGCAC
	658	CTCATCGTCCTAACACGAGAGCCC	GGGCTCTCGTGTTAGGACGATGAG
	659	AATGGCACTTCGGCGGTGATGCAA	TTGCATCACCGCCGAAGTGCCATT
	660	CCGTGGGAGGGAATCCAACCGAGG	CCTCGGTTGGATTCCCTCCCACGG
	661	AAATTCTCGTTGGTGACGGCTCAT	ATGAGCCGTCACCAACGAGAATTT
10	662	TTGCTCTTATCCTTGTCCTGGGCG	CGCCCAGGACAAGGATAAGAGCAA
	663	TTAAGGATCAGGCGGAGCTTGCAG	CTGCAAGCTCCGCCTGATCCTTAA
	664	CGCGACTAAGGTGCTGCAACTCGA	TCGAGTTGCAGCACCTTAGTCGCG
	665	GCTCGATTTCACGGCCCGTTGTTC	GAACAACGGGCCGTGAAATCGAGC
	666	AGCAGAGTGCGTTGCAGAGGCTAA	TTAGCCTCTGCAACGCACTCTGCT
15	667	TGGAGGTGAGGACGACGTGCACTA	TAGTGCACGTCGTCCTCACCTCCA
	668	AACCGTTTAGGGTACATTCGCGGT	ACCGCGAATGTACCCTAAACGGTT
	669	TATGATCGCTCGGCTCACAGTTTG	CAAACTGTGAGCCGAGCGATCATA
	670	GACTTTTGCGGAAACGTCATGGT	ACCATGACGTTTCCGCAAAAAGTC
	671	TGTCGGTTATTCCACCTGCAAGGA	TCCTTGCAGGTGGAATAACCGACA
20	672	CTATGGTTTGCACTGCGCCGTCGA	TCGACGCCCAGTGCAAACCATAG
	673	AGCAGGGAAATTCAATCGTTCGCA	TGCGAACGATTGAATTTCCCTGCT
	674	CCTAACCGAGCGCTTAGCATTTCC	GGAAATGCTAAGCGCTCGGTTAGG
	675	CCCGACCCTAACTCGCATTGAATA	TATTCAATGCGAGTTAGGGTCGGG
	676	TTGCTTAATGGTGACGCCACGGAT	ATCCGTGGCGTCACCATTAAGCAA
25	677	GATGCTCGCCGTGTTTAGTTCACG	CGTGAACTAAACACGGCGAGCATC
	678	TCGGATGACGAGTTTCCATGACGG	CCGTCATGGAAACTCGTCATCCGA
,	679	ATGCGGTCTACTTTCTCGATCGGG	CCCGATCGAGAAAGTAGACCGCAT
	680	TTGCGAGGCTAAGCACACGGTAAA	TTTACCGTGTGCTTAGCCTCGCAA
	681	AACTTAATTACCGCCTCTGGCGCC	GGCGCCAGAGGCGGTAATTAAGTT
30	682	GTGACCGCGAACTTGTTCCGACAG	CTGTCGGAACAAGTTCGCGGTCAC
	683	TGCGGATTACCGATTCGCTCTTAA	TTAAGAGCGAATCGGTAATCCGCA
	684	TGATAGGGGCCACGTTGATCAGA	TCTGATCAACGTGGCCCCCTATCA
	685	TCGCTCCGTAGCGATTCATCGTAG	CTACGATGAATCGCTACGGAGCGA
	686	TGTCAGCTGGTAGCCTCCGTTTGA	TCAAACGGAGGCTACCAGCTGACA
35	687	AGCGTCGCATGACGCTTACGGCAC	GTGCCGTAAGCGTCATGCGACGCT
	688	TCACTCAGCGCTGTGACTGCCTGA	TCAGGCAGTCACAGCGCTGAGTGA
	689	GTTTGCGCTATAGTGGGGGACCGT	ACGGTCCCCCACTATAGCGCAAAC
	690	GTCGCATTCTGCACTGGCTTCGCC	GGCGAAGCCAGTGCAGAATGCGAC
	691	TGATTAGGTGCGGTCCCGTAGTCC	GGACTACGGGACCGCACCTAATCA
40	692	AAGGGACCTTGGGTGACGGCGAGA	TCTCGCCGTCACCCAAGGTCCCTT
	693	TCAAATGGCCACCGCGTGTCATTC	GAATGACACGCGGTGGCCATTTGA
			·

			· · · · · · · · · · · · · · · · · · ·
	694	CTCCGACGACCAATAAATAGCCGC	GCGGCTATTTATTGGTCGTCGGAG
	695	GGCTATTCCCGTAGAGAGCGTCCA	TGGACGCTCTCTACGGGAATAGCC
	696	TGGATAACCTCTCGGTCCATCCAC	GTGGATGGACCGAGAGGTTATCCA
	697	GACCGCTGTACGGGAGTGTGCCTT	AAGGCACACTCCCGTACAGCGGTC
5	698	GCCACAGAGTTTTAGCAGGGACCC	GGGTCCCTGCTAAAACTCTGTGGC
	699	CCCACGCTTTCCGACCACTGACCT	AGGTCAGTGGTCGGAAAGCGTGGG
	700	CATTGACACAATGCGGGGACTGAT	ATCAGTCCCCGCATTGTGTCAATG
	701	AGCCACTCGACAGGGTTCCAAAGC	GCTTTGGAACCCTGTCGAGTGGCT
	702	CAGGATGAGCAAAGCGACTCTCCA	TGGAGAGTCGCTTTGCTCATCCTG
10	703	CAAGGTATGGTCTGGGGCCTAAGC	GCTTAGGCCCCAGACCATACCTTG
	704	GGTGTTCGGCCTAAACTCTTTCGG	CCGAAAGAGTTTAGGCCGAACACC
	705	TTTAGTCGGACCCTGTGGCAATTC	GAATTGCCACAGGGTCCGACTAAA
	706	CACACGTTTCCGACCAGCCTGAAC	GTTCAGGCTGGTCGGAAACGTGTG
	707	CTGGACGAACTGGCTTCCTCGTAC	GTACGAGGAAGCCAGTTCGTCCAG
15	708	TTCACAATCCGCCGAAAACTGACC	GGTCAGTTTTCGGCGGATTGTGAA
	709	AACAGGATATCCGCGATCACGACA	TGTCGTGATCGCGGATATCCTGTT
	710	TACGTCGGATCCATTGCGCCGAGT	ACTCGGCGCAATGGATCCGACGTA
	711	CATGGATCTCTCGGTTTGATCGCC	GGCGATCAAACCGAGAGATCCATG
	712	AGCCAGGCGCGTATATACGCTCGG	CCGAGCGTATATACGCGCCTGGCT
20	713	ATTTGGCACGTGTCGTGCCATGTT	AACATGGCACGACACGTGCCAAAT
	714	CCGCGTTGCACCACTTTGAGGTGC	GCACCTCAAAGTGGTGCAACGCGG
	715	TTGGACGTGACAAGCATGGCGCTC	GAGCGCCATGCTTGTCACGTCCAA
	716	CTGAATCGCGCAAGTAAATGGGGG	CCCCATTTACTTGCGCGATTCAG
	717	GATAAGGTCCACCAGATTGCGCGC	GCGCGCAATCTGGTGGACCTTATC
25	718	CTAACAATTGCCAACCGGGACGGC	GCCGTCCCGGTTGGCAATTGTTAG
	719	GGTAACCTGGGTGCTTGCAGGTTA	TAACCTGCAAGCACCCAGGTTACC
	720	ATCGGAGCCACCATTCGCATTGGG	CCCAATGCGAATGGTGGCTCCGAT
	721	GTGAACTGGCTTGCCCCAGGATTA	TAATCCTGGGGCAAGCCAGTTCAC
	722	AGGCGATAGCATGGTCCCATATGA	TCATATGGGACCATGCTATCGCCT
30	723	AACGGTATCGTGGCTAATGCACGA	TCGTGCATTAGCCACGATACCGTT
	724	AGTAGTGGTCCTCCAGATCGGCAA	TTGCCGATCTGGAGGACCACTACT
	725	CCGTTGAATTGGACGGGAGGTTAG	CTAACCTCCCGTCCAATTCAACGG
	726	GCATAAGTGCGGCATCGCGAAGGG	CCCTTCGCGATGCCGCACTTATGC
	727	CGACAAGATGCAGCTGCTACATGC	GCATGTAGCAGCTGCATCTTGTCG
35	728	TCGCAGTGATTCCCGACCGATAAG	CTTATCGGTCGGGAATCACTGCGA
	729	CAAGGCGAGTCCACTCGAGGGGAC	GTCCCCTCGAGTGGACTCGCCTTG
	730	GCAACTTGCACGGCATAAGTGGCC	GGCCACTTATGCCGTGCAAGTTGC
	731	TCCGAGCTTGACGTTCGCGACGTC	GACGTCGCGAACGTCAAGCTCGGA
	732	AGCGCTGGGCTGTGCCATCTC	GAGATGGCAGCACAGCCCAGCGCT
40	733	TTCATGTCGCTGAGTAACCCTCGC	GCGAGGGTTACTCAGCGACATGAA
	734	CGAACCGCTAATGCCCATTGTCAG	CTGACAATGGGCATTAGCGGTTCG

735 CACGAGAGGTGGGACAAATCGCCG CGGCGATTTGTCCCACCTTCCGTG 736 CACAGATGGAGACAAAGCGCCTTT AAGGCGCGTTTTGTCTCCATCTGTG 737 TITTTGGAAACTCGCTCCATAACCC GGGTTATGGAGCGAGACAA 738 ACGTTACGTTTCCGGGCCCTCTAA TTAGAGGCGCGGAACACTCAGATA 739 TATCGGATTGCGTGGGGTTTCAATC GATTGAAACCCACGCAATCCGATA 740 CTTCCACAATTGTCTGCGACGCAC GTGCGTGCGAGACAATCCGATA 740 CTTCCACAATTGTCTGCGACGCAC GTGCGTGCCAGACAATTCTGGAAC 741 TGCACAAAGGTATGGCTGCGGCG 742 TCCGATGCCAGTCCCATCTTAAGA TCTTAAGAGGCCCCGAACCGTATCCTTTGTGCA 743 CTGAAACCGTGCGAATCGAGGTGA TCACCTCGATTCGCACCGGTTTCAG 744 CGGTGTTCCGCGTGTCCAAAAAAT ATTTTTTCGACACGCGGAACACCGCA 745 TCTTAGCACGGGCTTTTGAATCGCCA TGCGCATCCTGTACG 746 GAGTCACCTCTGAGACGGCCCA TGCCCTTCAGAGGTGAACACCG 747 TCTTCTGTCATCCTGCACCAGCAT ATCCTCCTCAGAGGTGACACCG 748 GCGGATGAAACCTGAAAGGGCCCA TGCCCTTCCAGAGGTGACACACG 749 GGGGCCCCAAACTGGTATCAAGCC GGCTTTCAGAGGTGACACACG 750 GCATTGGCTTCGCAACAGGGCCCA TGCCCTTTCAGGTTTCATCCGC 750 GCATTGGCTTCGCAACAGGGCCCA TGCCCTTTCAGGTTTCATCCGC 751 AGGCGCCCCAACTGTGAAGGGGCCT AGCCCCTTTCAGGTTTCATCCGC 751 AGGCGCCCCAACTGTGAGGTCTT CAAGACCTGCAAGGCCCCCT 752 ACACCAATGTGCTACCACGTTGAAGCCCACGAGCACAATGC 753 ACGATGACACTGTGAAGGTCTT CAAGACCTGAAAGCCCAATGCC 754 CTGCATCCCTGTAGCAGCGCGCACCAATGCTGTTCAAAGC 755 GTGCCCTATTTCGACCACGTTCACA TGTAGGAGAATACCAGTTTCATCCT 756 GCAGTCCCCTGTAGCACCCCCCC 757 GCGATTTTCAACCCC 758 TAGGTGACCTTTCCTACA TGTAGAGAGCCCCCCT 759 CTGGATACCTTGCACCCCCCCCCCCCCCCCCCCCCCCCC				
737 TITTCGCAACTCGCTCCATAACCC GGGTTATGGAGCGAGTTGCGAAAA 738 ACGTTACGTTTCCGGCGCCTCTAA TTAGAGGCGCCGGAAACGTAACGT		735	CACGGAAGGTGGGACAAATCGCCG	CGGCGATTTGTCCCACCTTCCGTG
738 ACGTTACGTTTCCGGCGCCTCTAA TTAGAGGCGCCGGAAACGTAACGT		736	CACAGATGGAGACAAACGCGCCTT	AAGGCGCGTTTGTCTCCATCTGTG
TATCGGATTGCGTGGGTTTCAATC TATCCACAATTGTCTGCGACGCAC TATCCACAATTGTCTGCGACGCAC TATCCCACAATTGTCTGCGACGCAC TATCCCACAATTGTCTGCGACGCAC TATCCCACAATTGTCTGCGACGCAC TATCCCACAATTGTCTGCGACGCAC TATCCCACAATTGTCTGCGACGCAC TATCCCACAATTGTCTGCGACGCAC TATCCCACATTGCCCATCTTTAAGA TCTTAAGATTGGGACTGGCATCGGAT TATCCGATTCCCACGTTTCAGA TCTAAGATTGGGACTGGCACCGGATCCACGTTTCAGACGCGCACCGGTTCAGACCGGCGAACACCCG TATCCCACGCGTGTCGAAAAAAT TCTTTCTCACACGGCGTGCAAAAAAT TATTTTTCCACACGCGGAACCCCA TATCCTCTGCAGCAGGACCCA TATCCTCTGCAGCAGCACCA TATCCTCTCTGCAGCAGCACCA TATCCTCTCTCACACAGCACCCA TATCCTCTCTCACACAGCACCCA TATCCTCTCTCCACACAGCACCA TATCCTCTCACACAGCACCCA TATCCTCTCTCACACAGCACCCA TATCCTCTCACACAGCACCCA TATCCTCTCACACAACCCCCACCACTCCCACCCCTTTCACACGCCCCCCCC		737	TTTTCGCAACTCGCTCCATAACCC	GGGTTATGGAGCGAGTTGCGAAAA
740 CTTCCACAATTGTCTGCGACGCAC 741 TGCACAAATGTCTGCGACGCAC 742 TCCGATGCCAGTCCATCTTAAGA 743 CTGAAACCGTGCGATCCATCTTAAGA 744 TCGATGCCAGTCCATCTTAAGA 745 TCTAGCAGGATCGCATCGAGTGA 746 CAGTTCCCACGTTTGAATCAGA 747 TCTTAGCAGGCCTTTGAATCACA 748 GCGATGCCAGTCTGAAAAAAT 747 TCTTCTGTCATCCTGCAGCAGCAT 749 GCGATGCAAACACT 740 TCTTCTGTCATCCTGCAGCAGCAT 741 TCTTCTTCTACACTGAACAGGCCA 742 TCTTCTGCAGCAGCACAC 743 TCTTCTGTCACCTGAACAGGCCA 744 GCGAGTGAAACCTGACAGAGCAT 745 TCTTCTGCAGCAGCACAC 746 GAGTCACCTCTGAAGAGGGCCCA 747 TCTTCTGTCATCCTGCAGCAGCAT 748 GCGGATGAAACCTGAACAGGGCCCA 749 GGGGCCCCAAACTGGTATCAAGGGCCCC 750 GCATTGACTCAAAAGGGCCC 751 AGGCGCCCAAACTGGTATCACAC 751 AGGCGCCCAAACTGGTATCACAC 752 ACACCATGTGCTCCGCAGTCACA 753 ACGATGAACATGAAGCC 754 CTGCATCCCGATCACAC 755 GTGCCGTTTCAGATCCCCACT 756 GCAGTGCACCACTTCAGTCACAC 757 GCGATTCACTCCCACT 757 GCGATTTCACCCTTGCACC 758 TAGGTGACCTTCAGCTTCACAC 759 CTGCATTCACTTCACACCCCTTCCACCCCCCTTCCAAGGCCACCCCCCTTCACCCCCCCC		738	ACGTTACGTTTCCGGCGCCTCTAA	TTAGAGGCGCCGGAAACGTAACGT
741 TGCACAAAGGTATGGCTGTCCGGC GCCGGACAGCCATACCTTTGTGCA 742 TCCGATGCCAGTCCCATCTTAAGA TCTTAAGATGGGACTGCATCGGA 743 CTGAAACCGTGCGAATCGAGGTGA TCACCTCGATTCGCAGGATTCAGA 744 CGGTGTTCCGCGTGTCGAAAAAAAT ATTTTTTCGACACGCGGAACACCG 745 TCTAGCAGGCCTTTTGAATCGCCA TGGCGATTCAAAAGGCCTGCTAGA 746 GAGTCACCTCTGAGACGGACGCCA TGGCGTCCAAAAGGCCTCGTAGA 747 TCTTCTGTCATCCTGCAGCAGACGCAT ATGCTGCTGCTCCAGAGGTGACTA 748 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAGGTTTCATCCGC 750 GCATTGGCTTCCGATCTCACA TGTAGAAACCCAGTTTGAGACCAGAAGA 751 AGGCGGCCCAAACTGGTATCAAGCC GCCTTGATACCAGTTTGGGCCCC 752 ACACCATGTGCTCCGAGCTTCC 753 ACGATGACATGCTACA TGTAGGAGATCCAAGTTGC 754 CTGCATCCTGTAGCAGCTTC 755 ACGATGACATGCTACA ATGCTCACACACTTTGGGGCCCC 756 GCACTGCCGATTCCTCACA TGTAGGAAACCCAATGCT 757 ACGATGCCTCAGATCCCGCCTGCAGT ACTGCAGACACACAGTGGTT 758 ACGATGAACATGAATCGGGAGTCC CGACTCCCGATTCATGTTCATCGT 759 GTGCCTTATTCACCCTGTGCGTT ACCACGCCGCGCTCCACACTGGTGTG 757 GCATTTTCACCTTGTCCTTA 758 TAGGTGACCTAGGTTCAAAAC CTTTTTGAACAGGTCCAAATCCCACACGCCCACTGC 758 TAGGTGACCTAGGTTCAAAAC CTTTTTGAACTGAAGTGCGCACTGC 759 CTGGATACCTTGACCTTTGACC 758 TAGGTGACCTAGGTTCAAAAC CTTTTTGAACTGAAGTGCGCACTGC 759 CTGGATACCTTGCCTGTGCGG CCGCCACAAGCAAGCCTAAAATCGC 758 TAGGTGACCTAGGCTTGCTTGCG CCGCAAGCAAGCCTAAAATCGC 759 CTGGATACCTTGCCTGTGCGGC CCGCAAAGCAAGCCTAAAATCGC 750 CCCCTTACGGCTCGTCTATTCC GCAAGCAAAGCCTAAGGGGA 760 CCCCTTACGGCTCGTCTATTCC 760 CCCCTTACAGGCTTGCTTATAC 760 CCCCTTACAGGCTTGCTTATAC 761 GCGCTTGCCCGATTGATTTTTC 762 GAAGCCCCAAGGCAAGCAACGCCTAAACGAC 763 GGCTGAGGTAGGATTA TAATGCATCGGACAAGGCAAAGGCAAAGGCAAAACAAACA	5	739	TATCGGATTGCGTGGGTTTCAATC	GATTGAAACCCACGCAATCCGATA
742 TCCGATGCCAGTCCATCTTAAGA TCTTAAGATGGGACTGGCATCGGA 743 CTGAAACCGTGCGAATCGAGGTGA TCACCTCGATTCGCACGGTTTCAG 744 CGGTGTTCCGCGTGTCGAAAAAAT ATTTTTCGACACGCGGAACACCG 745 TCTAGCAGGCCTTTTGAATCGCCA TGGCGATTCAAAAGGCCTGCTAGA 746 GAGTCACCTCTGAGACGGACGCCA TGGCGATTCAAAAGGCCTGCTAGA 747 TCTTCTGTCATCCTGCAGCAGCACA TGGCGTCCTCCAGAGGTGACTC 747 TCTTCTGTCATCCTGCAGACGCACCA TGCGCTCCTCAGAGGTGACTC 748 GCGGATGAAACCTGAAAAGGGCCT AGCCCCCTTTCAGGTTTCATCCGC 750 GCATTGGCTTCCGAAACGGGCCT AGCCCCCTTTCAAGTTTCATCCGC 751 AGGCGGCCCAACTGGTATCAAGCC GGCTTGATACCAGTTTGGGGCCCCC 752 ACACCATGTGAGATCTCCTCACA TGTAGGAGAATCCGAAGCCAATGC 753 ACCATGAGACTCCGCGCTGCAGT ACTGCAGCGAGACCAATGC 754 CTGCATCCCTGTAGACAGCGCTCC GGACTCCCGATTCATCATGTT 755 ACCATGAGAATCGGGAGTCG CGACTCCCGATTCATCATGT 756 GCAGTGCCCTTTCAGACCGCTGCGT 757 GCGATTTTCAACAGCCTGTCCG CGGAGCGCTGCTACAGGGATGCAG 757 GCGATTTTCAACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 758 TAGGTGACCTTGAGTTCAAAAG CTTTTGAACTGAAGTGCCACCTA 759 CTGGATACCTTGCTGCTGCGC CCGCAAGCAAGCCCATACACGCACGCCTGC 750 CCCCTTACGGCTGCTTCATCC CCCCAAGCAAGCCAAGC		740	CTTCCACAATTGTCTGCGACGCAC	GTGCGTCGCAGACAATTGTGGAAG
T43 CTGAAACCGTGCGAATCGAGGTGA T44 CGGTGTTCCGCGTGTCGAAAAAAT ATTTTTTCGACACGGTTTCAG T45 TCTAGCAGGCCTTTTGAATCGCCA TGGCGATTCAAAAGGCCTGCTAGA T46 GAGTCACCTCTGAGACGGACGCCA TGGCGTCCGTCAAGAGGTGACTC T47 TCTTCTGTCATCCTGCAGCAGCAT ATGCTGCTGCAAGGGTGACTC T48 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAAGGGTGACCAGAAAA T48 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAAGGTTTCATCCGC GCATTGGCTTCCGGATTCCAACACGGGTTTCAAGCAGAAGA T48 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAAGGTTTCATCCGC T50 GCATTGGCTTCCGAGTAACCC GGCTTGATACCAGTTTGAGGCCCCC T50 GCATTGGCTCCGCGCTGCAGT ACTGCAAGCCAATGC T51 AGGCGGCCCAACTGTGAGGTCTTG CAAGACCTCACAGTTTGGGGCCCCCT T52 ACACCATGTGCTCCGCCTGCAGT ACTGCAGCGCGAGCACATGTGT T53 ACGATGAACATGAATCGGGAGTCC CGACTCCCGATTCATGTGTACACGT T55 GTGCCGTATTTCGACCTGTGCGGT AACGCACGGGAGCACATGCAGGT T56 GCAGTTCCTGTAGCAGCGCTCCG CGGAGCCACGTCACAGGGATCCAC T57 GCGATTTTAAGCACTGTCAAAAG CTTTTGAACTGAAATACGGCAC T57 GCGATTTTAAGCGATGCCTTGACC CGGACCAAGCCAAG		741	TGCACAAAGGTATGGCTGTCCGGC	GCCGGACAGCCATACCTTTGTGCA
10 744 CGGTGTTCGCGTGTCGAAAAAAT ATTTTTCGACAGGGGAACACCG 745 TCTAGCAGGCCTTTTGAATCGCA TGGCGATTCAAAAGGCCTGCTAGA 746 GAGTCACCTCTGAGACGGACGCA TGGCGTTCAGAAGGCCTGCTAGA 747 TCTTCTGTCATCCTGCAGCAGCAT ATGCTGCTGAGAGTGACAGAGA 748 GCGGATGAAACCTGAAAGGGCCCT AGCCCCTTTCAGGTTTCATCCGC 759 GGATTGGCTTCGGATTCACAGCC GGCTTGATACAGCC GGCTTGATCAAGTTTGGCGCCCC 750 AGCCCCAACTGGTATCAAGCC GGCTTGATCCAAGTTTGGGCCGCC 751 AGGCGGCCCAACTGGTAGTACAGCC GGCTTGATCCAAGTTTGGGCCGCCT 752 ACACCATGTGATTCTCCTACA TGTAGGAGAATCCGAAGCCAATGC 753 ACGATGACATGTGAGTCTTG CAAGACCTCACAGTTTGGGCCGCCT 754 CTGCATCCCTGTAGCAGCGCTCCG GGAGCGCTGCAATGCTTGCTTCCTACA 755 GTGCCGTATTTCGACTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTTCCATGTAGCAGCGCTCCG GGAGCGCTGCAAAGACAAGAACACTCACAGTTCAAGGAATACGGCAC 757 GCGATTTTAAGCGATGCCTTGACG 758 TAGGTGACCTAGGTTCAAAAG CTTTTGAACTGGCATGCATGAAAG 759 CTGGATACCTTGCCTTGCCGC CCCCAAGCAAGCCAAGGCACACGC 750 CCCCTTACGGCTCGTCTTGCCG CCCCAAGCAAGCCAAGGCAAGCCAAGGGA 760 CCCCTTACGGCTCGTCTTGCCG CCCCAAGCAAGCCAAGC		742	TCCGATGCCAGTCCCATCTTAAGA	TCTTAAGATGGGACTGGCATCGGA
745 TCTAGCAGGCCTTTTGAATCGCCA TGGCGATTCAAAAGGCCTGCTAGA 746 GAGTCACCTCTGAGACGGACGCCA TGGCGTCCGTCTCAGAGGTGACTC 747 TCTTCTGTCATCCTGCAGCAGCAT ATGCTGCAGGATGACAGAAGA 748 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAGGTTTCATCCGC 749 GGGCCCCAAACTGGTATCAAGCC GGCTTGATACAGGTTTCATCCGC 750 GCATTGGCTTCCGATTCACACC GGCTTGATACAGGTTGATCCAACTGC 751 AGGCGGCCCAAACTGGTATCAAGCC GGCTTGATACCAGTTTGGGCCCCC 752 ACACCATGTGCTCCGCGCTGCAGT ACTGCAGGTTGGGCCCCC 753 ACGATGACATGATCCGCGCTGCAGT ACTGCAGGTTGGGCCCGCT 754 CTGCATCCCTGTAGCAGCGCTCCG CGGAGCACATGGTGT 755 GTGCCGTATTTCGACTGCGTT ACGCCAGCTGCAAATACGGCAC 756 GCAGTCCCTGTAGCAGCGCTCCG CGGAGCACATCAGTTCACGT 757 GCGATTTTAAGCACTGTTCAAAA CTTTTTGAACTGAAATCAGGCAC 758 TAGGTGACCTTGCGTTGCGT ACGCACACAAGCCAAGCC		743	CTGAAACCGTGCGAATCGAGGTGA	TCACCTCGATTCGCACGGTTTCAG
746 GAGTCACCTCTGAGACGGACGCCA TGGCGTCTCAGAGGGTGACTC 747 TCTTCTGTCATCCTGCAGCAGCAT ATGCTGCTGCAGGATGACAGAAGA 748 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAGGTTTCATCCGC 749 GGGGCCCCAAACTGGTATCAAGCC GGCTTGATACCAGTTTGGGGCCCC 750 GCATTGGCTTCGAGTTCTCCTACA TGTAGGAGAATCCGAAGCCAATGC 751 AGGCGGCCCAACTGTGAGGTCTTG CAAGACCTCACAGTTGGGCCGCCT 752 ACACCATGTGCTCCGGGCTGCAGT ACTGCAGGGGGGGAGCACATGGT 753 ACGATGAACATGAATCGGGAGTTCG CGACTCCCGATTCATGTTCATCGT 754 CTGCATCCCTGTAGCACGCTCCG CGGAGCGCTGCACAGTGGTTACAGGATTCATCGT 755 GTGCCGTATTTCGACCTGTCGCT ACAGCCAGGAGCACATGGTGT 756 GCAGTGCCGCACTTCAGTTCAAAAG CTTTTGAACTGAAATACGGCAC 757 GCGATTTTAGCGATCCTTGACG CGTCAAGGCATGCAATACCGCAC 758 TAGGTGACCTTGACTTCCTTGCGG CGCCCAAAGCAAGCTAAATCGC 758 TAGGTGACCTTGCTTGCGG CGCCAAAGCAAGCTAAGATCAC 760 CCCCTTACGGCTTGCTTGCGG CGCCAAAGCAAGCAAGCTACCAA 760 CCCCTTACGGCTGCTCTATGC 761 GCGCTTGCCGGATGCATTAA 762 TTTCTGTAAGCGGCTGCATTAATACCATCCAGCGCAAAGAAA 763 GGCTGAGGTGAGCATTAA 764 TCTTGGCCCGATGCGATGCATTAA 765 GGAGGTAACGCCTGCGATGCATTAA 766 GTAATCCATTTGGGCTGC 766 GTAATCCATTTTTTGGCTCTAGAAA 767 CAAACCCATTCAGGATGCATTAA 768 TAGGAGGAGCGCTTAAATTTG CAAATTAGATCGGGAGGCCCAAGAA 768 TCTTGGCCCGATGCATCATTTT TGAACCCCAGGCCGCTTACCGCC 766 GTAATCCATTTTTTGGCTCTCAAAATTTTG 767 CAAACCCATTCAGCAAAA 767 CAAACCCATTCAGCAAAAAAAAAAAAAAAAAAAAAAAAA	10	744	CGGTGTTCCGCGTGTCGAAAAAAT	ATTITTCGACACGCGGAACACCG
747 TCTTCTGTCATCCTGCAGCAGCAT 748 GCGGATGAAACCTGAAAGGGGCCT 749 GGGGCCCCAAACTGGTATCAAGCC 750 GCATTGGCTTCGGATTCCTCACA 751 AGGCGGCCCCAACTGTGAGTTCCTCACA 752 ACACCATTGTCCTCGCAGCTCTTG 753 ACGATGAACCTGAGAGTCTTG 754 CTGCATCCCTGCAGTTCACATTCACACTTTCACACTTTCACGCCCCTT 755 ACACCATGTGCTCCGCGCTGCAGT 756 CTGCATCCCTGTAGCATCTTG 757 ACGATGAACATGAACCTGGAGTCC 758 CTGCATCCCTGTAGCACCTCCGCCGCATTCATGTTCATCGT 759 CTGCATCCCTGTAGCACCTCCCCCCCCGCATTCATGTTCATCGT 750 GCATTTTAGACCTGTGCGTT 751 ACGATGAACATGAACCTGTGCGTT 752 ACCACTGCCAGTTCATGTTCATCGT 753 ACGATGAACATGAACCTGTGCGTT 754 CTGCATCCCTGTAGCACCCCTCCC 755 GTGCCGTATTTCGACCTGTGCGTT 756 GCAGTTTTAGCCCTGTGCGTT 757 GCGATTTTAGCGCTTCACACC 757 GCGATTTTAGCGCTTCACCC 758 TAGGTGACCTTGCTGCGCCC 759 CTGGATACCTTGCTTTGCGC 750 CCCCTTACGGCTTGCTTGCGCCC 750 CCCCTTACGGCTCCTTCATCC 750 CCCCTTACGGCTTCATTCC 750 CCCCTTACGGCTCCTCTTACCCCCCCAAGCAAGCCAAGC		745	TCTAGCAGGCCTTTTGAATCGCCA	TGGCGATTCAAAAGGCCTGCTAGA
748 GCGGATGAAACCTGAAAGGGGCCT AGGCCCCTTTCAGGTTTCATCCGC 749 GGGGCCCCAAACTGGTATCAAGCC GGCTTGATACCAGTTTGGGCCCCC 750 GCATTGGCTTCCGATTCTCCTACA TGTAGGAGAATCCGAAGCCAATGC 751 AGGCGGCCCAACTGTGAGGTCTTG CAAGACCTCACAGTTGGGCCGCCT 752 ACACCATGTGCTCCGCGCTGCAGT ACTGCACGGGGGAGCACATGGTGT 753 ACGATGAACATGAATCGGGAGTCG CGACTCCCGATTCATGTTCATCGT 754 CTGCATCCCTGTAGCAGCGCTCCG CGGAGCGCTGCAACTGCAAGGAATACCAGGATGCAG 755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACCGCAC 756 GCAGTGCGCACTTCAGCTTCAAAAG CTTTTGAACTGAAACTGCCACCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCACTGCCACTGC 758 TAGGTGACCTAGGCTTGCTTGCGG CCGCAAGGCAAGCCTAAAATCGC 759 CTGGATACCTTGCCTGTGCGG CCGCAACGCAAGCCTAACATCCAC 760 CCCCTTACGGCTCGTCTATGC GCACCACAGGCAAGCCTAAGGGG 761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGACTACAGGAA 763 GGCTGACGTAGCGATGCATTA TAATGCATCGACTACAGAAA 763 GGCTGAGGTGAGCGTAAGAAG TCATCCTACCGCCTAACACACAC 764 TCTTGGCCTCCCCGATCTAATTT CAACCCCAGGCCGCCTAACGAAA 765 GGAGGTAACCCTTGACGTAAGAAAAAAAAAAAAAAAAAA		746	GAGTCACCTCTGAGACGGACGCCA	TGGCGTCCGTCTCAGAGGTGACTC
15 749 GGGGCCCAAACTGGTATCAAGCC GGCTTGATACCAGTTTGGGGCCCC 750 GCATTGGCTTCGGATTCTCCTACA TGTAGGAGAATCCGAAGCCAATGC 751 AGGCGGCCCAACTGTGAGGTCTTG CAAGACCTCACAGTTGGGCCGCCT 752 ACACCATGTGCTCCGCGCTGCAGT ACTGCAGCGCGAGCCACTGGTGT 753 ACGATGAACATGAATCGGGAGTCG CGACTCCCGATTCATGTTCATCGT 754 CTGCATCCCTGTAGCAGCGCTCCG CGGAGCGCTGCTACAGGGATGCAG 755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTGCGCACTTCAGTTCAAAAG CTTTTGAACTGAAGTGCGCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATGCAGCACTGC 758 TAGGTGACCTAGGCTTGCTTGCGG CCGCAAGCAAGCCTAAGATCCCTA 25 759 CTGGATACCTTGCTTGCTGCGG CGCCCGACAGGCAAGGCTACCCTA 760 CCCCTTACGGCTCGTCTCTATGC GCATAGACGACGCAAGCGAAGCG		747	TCTTCTGTCATCCTGCAGCAGCAT	ATGCTGCTGCAGGATGACAGAAGA
750 GCATTGGCTTCGGATTCTCCTACA TGTAGGAGAATCCGAAGCCAATGC 751 AGGCGGCCCAACTGTGAGGTCTTG CAAGACCTCACAGTTGGGCCGCCT 752 ACACCATGTGCTCCGCGCTGCAGT ACTGCAGCGCGGAGCACATGGTGT 753 ACGATGAACATGAATCGGGAGTCG CGACTCCCGATTCATGTTCATCGT 754 CTGCATCCCTGTAGCAGCGCTCCG CGGAGCGCTGCTACAGGGATGCAG 755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTTCAGGTTCAAAAG CTTTTGAACTGAAGTGCGCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTGCGG CCGCAAGCAAGCCTAGGTTACACGC 759 CTGGATACCTTGCTGCGG CCGCAAGCAAGCCTAAGGGG 760 CCCCTTACGGCTCGTCTATGC GCATAGACGACAGCCGTAAGGGG 761 GCGCTTGCCCGATGCGATTCAATTAC GCATAGACCACAGGCAAGCACGCAAAAA 762 TTTCTGTAAGCGGCTCGTCATTCA TAATGCATCGCACCCAGCCCGTTACAGACA 763 GGCTGAGCGCATGCATTAA TAATGCATCGCATCAGCC 764 TCTTGGCCTCCCCGATCTAATTTG CAAATTACATCGGGGAGGCCAAGAA 765 GGAGGTAACGCCTGAACAAA TCATCCTTACCGCTCACCTCAC		748	GCGGATGAAACCTGAAAGGGGCCT	AGGCCCCTTTCAGGTTTCATCCGC
751 AGGCGCCCAACTGTGAGGTCTTG CAAGACCTCACAGTTGGGCCGCCT 752 ACACCATGTGCTCCGCGCTGCAGT ACTGCAGCGGGAGCACATGGTGT 753 ACGATGAACATGAATCGGGAGTCG CGACTCCCGATTCATGTTCATCGT 754 CTGCATCCCTGTAGCAGCGCTCCG CGGAGCGCTGCTACAGGGATGCAG 755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTGCGCACTTCAGTTCAAAAG CTTTTGAACTGAAAGTGCGCACCTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTGGG CCGCAAGCAAGCCTAGGTCACCTA 25 CTGGATACCTTGCCTGTGCGGC CGCCCGCACAGGCAAGGCA	.15	749	GGGGCCCCAAACTGGTATCAAGCC	GGCTTGATACCAGTTTGGGGCCCC
752 ACACCATGTGCTCCGCGCTGCAGT ACTGCAGCGCGGAGCACATGGTGT 753 ACGATGAACATGAATCGGGAGTCG CGACTCCCGATTCATGTTCATCGT 754 CTGCATCCCTGTAGCAGCGCTCCG CGGAGCGCTGCTACAGGGATGCAG 755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTGCGCACTTCAGTTCAAAAG CTTTTGAACTGAAGTGCGCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTGCGG CGCCAAGCAAGCCTAGGTCACCTA 25 759 CTGGATACCTTGCCTGTGCGGCG CGCCGCACAGGCAAGCTACCTA 26 760 CCCCTTACGGCTCGTCTCATGC GCATAGACGACGAGCCTAAGGGG 761 GCGCTTGCCCGATGCATTA TAATGCATCGCATCAGGCAAGCCTAAGGGG 762 TTTCTGTAAGCGGCCTGGGGTTCA TGAACCCCAGGCCGCTTACAGAAA 763 GGCTGAGGTGAGCGTAAGGATGA TCATCCTTACCGCTCACCTCAGCC 764 TCTTGGCCTCCCCGATCTAATTTG CAAATTAGATCGGGGAGGCCAAGA 765 GGAGGTAACGCCGTGTACGTAGGA TCCTACCGTCACCTCAGCC 766 GTAATCCATTTGTGGCTGCGTCAA TTGACGCAGCCACAAATGGATTAC 767 CAAACCCATTCCAGCAGACGCCTG CAGGCGTCTGCTGGGAATGGATTAC 768 TAGGAGGAATTTGGCATGCGGGG CGCCCGCATGCCAAAATCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTTG CAAGCCCGGGCACAAATCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTT CAACGCCGGGCACAAATCCTCCTA 770 GCAAGTGCTTAGCTCGTCAGCCT GAGGCTGACGAGACCACAATCCTTCC 771 CTGGCTGTGCACTCTCGTTAAC GTTAACGAGATGCACTTGC 772 CTAACGTCGTCACCTCACTTAAC 773 TTTTCATAAACGTTGCCCCGAGC GCTCGCGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGACCCTCC GGAGCGAAGGTTCGTCCTCCTGTTA		750	GCATTGGCTTCGGATTCTCCTACA	TGTAGGAGAATCCGAAGCCAATGC
753 ACGATGAACATGAATCGGGAGTCG CGACTCCCGATTCATGTTCATCGT 754 CTGCATCCCTGTAGCAGCGCTCCG CGGAGCGCTGCTACAGGGATGCAG 755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTGCGCACTTCAGTTCAAAAG CTTTTGAACTGAAGTGCGCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTGCG CGCCAAGCCATGCCTAAAATCGC 759 CTGGATACCTTGCCTGTGCGGC CGCCAAGCCAAGCCTAGGTCACCTA 760 CCCCTTACGGCTCGTCTATGC GCATAGACGAGCCGAAGGCAAGGTATCCAG 761 GCGCTTGCCCGATGCATTAA TAATGCATCGCATCAGGCG 762 TTTCTGTAAGCGGCCTGGGGTTCA TGAACCCCAGGCAGCCGTAAGAGAA 763 GGCTGAGGTGAGCGGTAAGGATGA TCATCCTTACCGCTCACCTCAGCC 30 764 TCTTGGCCTCCCCGATCTAATTTG CAAATTAGATCGGGGAGGCCAAGA 765 GGAGGTAACGCCGTGTACGTAGGA TCCTACCGTCACCTCAGCC 766 GTAATCCATTTGTGGCTGCGTCAA TTGACGCAGCACAAATGGATTAC 767 CAAACCCATTCCAGCAGACGCCTG CAGCCGCACAAATGGATTAC 768 TAGGAGGAATTTGGCATGCGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGACCTCGGGCGC CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGCCCGGCGTTG CAACGCCGGCACAAATCCTCCCTA 770 GCAAGTGCTTAGCTCGCGCCTC GAGGCTGACGAACACCTTGC 771 CTGGCTGTCGCAACTCTAATCAC GTTAACCAACACACCCAG 772 CTAACGTCTCCCCGCAATCACT AGTGATTGCGCGAACACCCAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGACCCTCCGCTCC GGAGCGAGGTTCCTCCTCTGTT		. 751	AGGCGGCCCAACTGTGAGGTCTTG	CAAGACCTCACAGTTGGGCCGCCT
20 754 CTGCATCCTGTAGCAGCGCTCCG CGGAGCGCTGCTACAGGGATGCAG 755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTGCGCACTTCAGTTCAAAAG CTTTTGAACTGAAGTGCGCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTGCGG CCGCAAGCCATGGCTAAAATCGC 759 CTGGATACCTTGCCTGTGCGGCGC CCGCAAGCCAAGCC		752	ACACCATGTGCTCCGCGCTGCAGT	ACTGCAGCGCGGAGCACATGGTGT
755 GTGCCGTATTTCGACCTGTGCGTT AACGCACAGGTCGAAATACGGCAC 756 GCAGTGCGCACTTCAGTTCAAAAG CTTTTGAACTGAAGTGCGCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTTGCGG CCGCAAGCAAGCCTAGGTCACCTA 759 CTGGATACCTTGCCTGTGCGGCGC GCGCCGCACAGGCAAGGTATCCAG 760 CCCCTTACGGCTCGTCTATGC GCATAGACGACGAGCCGTAAGGGG 761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGCATC		753	ACGATGAACATGAATCGGGAGTCG	CGACTCCCGATTCATGTTCATCGT
756 GCAGTICGCACTTCAGTTCAAAAG CTTTTGAACTGAAGTIGCGCACTGC 757 GCGATTTTAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTTGCGG CCGCAAGCAAGCCTAGGTCACCTA 759 CTGGATACCTTGCCTGTGCGGC GCGCCGCACAGGCAAGGTATCCAG 760 CCCCTTACGGCTCGTCTATGC GCATAGACGACGAGCCGTAAGGGG 761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGCATC	20	754	CTGCATCCCTGTAGCAGCGCTCCG	CGGAGCGCTGCTACAGGGATGCAG
757 GCGATTITAAGCGATGCCTTGACG CGTCAAGGCATCGCTTAAAATCGC 758 TAGGTGACCTAGGCTTGCTTGCGG CCGCAAGCAAGCCTAGGTCACCTA 759 CTGGATACCTTGCCTGTGCGCGC GCGCCGCACAGGCAAGGTATCCAG 760 CCCCTTACGGCTCGTCTATGC GCATAGACGACGACGCCGTAAGGGG 761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGCATC		755	GTGCCGTATTTCGACCTGTGCGTT	AACGCACAGGTCGAAATACGGCAC
758 TAGGTGACCTAGGCTTGCTTGCGG CCGCAAGCAAGCCTAGGTCACCTA 759 CTGGATACCTTGCCTGTGCGGCGC GCGCCGCACAGGCAAGGTATCCAG 760 CCCCTTACGGCTCGTCTATGC GCATAGACGACGACGACGCGTAAGGGG 761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGCATC		756	GCAGTGCGCACTTCAGTTCAAAAG	CTTTTGAACTGAAGTGCGCACTGC
25 759 CTGGATACCTTGCCTGTGCGGCGC GCGCCGCACAGGCAAGGTATCCAG 760 CCCCTTACGGCTCGTCTATGC GCATAGACGACGAGCCGTAAGGGG 761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGCATC		757	GCGATTTTAAGCGATGCCTTGACG	CGTCAAGGCATCGCTTAAAATCGC
760 CCCCTTACGGCTCGTCGTCTATGC GCATAGACGACGAGCCGTAAGGGG 761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGCATC		758	TAGGTGACCTAGGCTTGCTTGCGG	CCGCAAGCAAGCCTAGGTCACCTA
761 GCGCTTGCCCGATGCGATGCATTA TAATGCATCGCATC	25	759	CTGGATACCTTGCCTGTGCGGCGC	GCGCCGCACAGGCAAGGTATCCAG
762 TTTCTGTAAGCGGCCTGGGGTTCA TGAACCCCAGGCCGCTTACAGAAA 763 GGCTGAGGTGAGCGGTAAGGATGA TCATCCTTACCGCTCACCTCAGCC 764 TCTTGGCCTCCCCGATCTAATTTG CAAATTAGATCGGGGAGGCCAAGA 765 GGAGGTAACGCCGTGTACGTAGGA TCCTACGTACACGGCGTTACCTCC 766 GTAATCCATTTGTGGCTGCGTCAA TTGACGCAGCCACAAATGGATTAC 767 CAAACCCATTCCAGCAGACGCCTG CAGGCGTCTGCTGGAATGGGTTTG 768 TAGGAGGAATTTGGCATGCGGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTTG CAACGCCGGGCACATCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGACCTCCCCC GGAGCGAGGTTCGTCCTCCTGCT		760	CCCCTTACGGCTCGTCGTCTATGC	GCATAGACGACGAGCCGTAAGGGG
763 GGCTGAGGTGAGCGGTAAGGATGA TCATCCTTACCGCTCACCTCAGCC 764 TCTTGGCCTCCCCGATCTAATTTG CAAATTAGATCGGGGAGGCCAAGA 765 GGAGGTAACGCCGTGTACGTAGGA TCCTACGTACACGGCGTTACCTCC 766 GTAATCCATTTGTGGCTGCGTCAA TTGACGCAGCCACAAATGGATTAC 767 CAAACCCATTCCAGCAGACGCCTG CAGGCGTCTGCTGGAATGGGTTTG 768 TAGGAGGAATTTGGCATGCGGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTTG CAACGCCGGGCACATCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGACCTCCCCTCC GGAGCGAGGTTCGTCCTCCTGCT		761	GCGCTTGCCCGATGCGATGCATTA	TAATGCATCGCATCGGGCAAGCGC
TCTTGGCCTCCCGATCTAATTTG CAAATTAGATCGGGGAGGCCAAGA 765 GGAGGTAACGCCGTGTACGTAGGA TCCTACGTACACGGCGTTACCTCC 766 GTAATCCATTTGTGGCTGCGTCAA TTGACGCAGCCACAAATGGATTAC 767 CAAACCCATTCCAGCAGACGCCTG CAGGCGTCTGCTGGAATGGGTTTG 768 TAGGAGGAATTTGGCATGCGGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGTCCCGGCGTTG CAACGCCGGGCACACTCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGCCAATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGAGGTTCGTCCTCCTGCT		762	TTTCTGTAAGCGGCCTGGGGTTCA	TGAACCCCAGGCCGCTTACAGAAA
765 GGAGGTAACGCCGTGTACGTAGGA TCCTACGTACACGGCGTTACCTCC 766 GTAATCCATTTGTGGCTGCGTCAA TTGACGCAGCCACAAATGGATTAC 767 CAAACCCATTCCAGCAGACGCCTG CAGGCGTCTGCTGGAATGGGTTTG 768 TAGGAGGAATTTGGCATGCGGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTTG CAACGCCGGGCACATCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGAGGTTCGTCCTCCTGCT		763	GGCTGAGGTGAGCGGTAAGGATGA	TCATCCTTACCGCTCACCTCAGCC
766 GTAATCCATTTGTGGCTGCGTCAA TTGACGCAGCCACAAATGGATTAC 767 CAAACCCATTCCAGCAGACGCCTG CAGGCGTCTGCTGGAATGGGTTTG 768 TAGGAGGAATTTGGCATGCGGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTTG CAACGCCGGGCACATCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGAGGTTCGTCCTCCTGCT	30	764	TCTTGGCCTCCCCGATCTAATTTG	CAAATTAGATCGGGGAGGCCAAGA
767 CAAACCCATTCCAGCAGACGCCTG CAGGCGTCTGCTGGAATGGGTTTG 768 TAGGAGGAATTTGGCATGCGGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTTG CAACGCCGGGCACATCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGAGGTTCGTCCTCCTGCT		765	GGAGGTAACGCCGTGTACGTAGGA	TCCTACGTACACGGCGTTACCTCC
768 TAGGAGGAATTTGGCATGCGGGCG CGCCCGCATGCCAAATTCCTCCTA 769 ATAGGTAGGATGTGCCCGGCGTTG CAACGCCGGGCACATCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGAGGTTCGTCCTCCTGCT		766	GTAATCCATTTGTGGCTGCGTCAA	TTGACGCAGCCACAAATGGATTAC
769 ATAGGTAGGATGTGCCCGGCGTTG CAACGCCGGGCACATCCTACCTAT 770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGAGGTTCGTCCTCCTGCT		767	CAAACCCATTCCAGCAGACGCCTG	CAGGCGTCTGCTGGAATGGGTTTG
770 GCAAGTGCTTAGCTCGTCAGCCTC GAGGCTGACGAGCTAAGCACTTGC 771 CTGGCTGTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGGAGGTTCGTCCTCCTGCT		768	TAGGAGGAATTTGGCATGCGGGCG	CGCCCGCATGCCAAATTCCTCCTA
771 CTGGCTGTCGCATCTCGTTAAC GTTAACGAGATGCGACACAGCCAG 772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGGAGGTTCGTCCTCCTGCT	35	769	ATAGGTAGGATGTGCCCGGCGTTG	CAACGCCGGGCACATCCTACCTAT
772 CTAACGTCGTCTCGCGCAATCACT AGTGATTGCGCGAGACGACGTTAG 773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGGAGGTTCGTCCTCCTGCT		770	GCAAGTGCTTAGCTCGTCAGCCTC	GAGGCTGACGAGCTAAGCACTTGC
773 TTTTCATAAACGTTGTCCCCGAGC GCTCGGGGACAACGTTTATGAAAA 40 774 AGCAGGAGGACGAACCTCCGCTCC GGAGCGGAGGTTCGTCCTCCTGCT		771	CTGGCTGTGTCGCATCTCGTTAAC	GTTAACGAGATGCGACACAGCCAG
40 774 AGCAGGAGGACCTCCGCTCC GGAGCGGAGGTTCGTCCTCCTGCT		772	CTAACGTCGTCTCGCGCAATCACT	AGTGATTGCGCGAGACGACGTTAG
		773	TTTTCATAAACGTTGTCCCCGAGC	GCTCGGGGACAACGTTTATGAAAA
775 TTCAAGCACCATCGTGCAATCCAA TTGGATTGCACGATGGTGCTTGAA	40	774	AGCAGGAGGACGAACCTCCGCTCC	GGAGCGGAGGTTCGTCCTCCTGCT
		775	TTCAAGCACCATCGTGCAATCCAA	TTGGATTGCACGATGGTGCTTGAA

[776	AGCGTCGCCAGTGATCGCTAGTGG	CCACTAGCGATCACTGGCGACGCT
	777	TACATTCCCTGCCTCCGTGGGCTT	AAGCCCACGGAGGCAGGGAATGTA
	778	CGCTTCGCGTATTCAGTAGCGGTT	AACCGCTACTGAATACGCGAAGCG
	779	TCGGACGCGTCGACACTCATTATA	TATAATGAGTGTCGACGCGTCCGA
5	780	TCTGAGCAGGCCAGCTCCAGCT	AGCTGGAGCGCTGGCCTGAGA
	781	TTGAATTGCCAAGCCCTGAAAGCC	GGCTTTCAGGGCTTGGCAATTCAA
į	782	AGTTTCGCCTTGATGCGTCGGTG	CACCGACGCATCAAGGCGAAAACT
	783	GTTTCATAGGCCACGCGTGCTAAA	TTTAGCACGCGTGGCCTATGAAAC
	784	GGAGCGAAGACTTCGTCTGCCCAA	TTGGGCAGACGAAGTCTTCGCTCC
10	785	ATTGGCCGAGGGTGAATGCAGCCT	AGGCTGCATTCACCCTCGGCCAAT
	786	TGATCCATCCGAATGCTTTTCCAT	ATGGAAAAGCATTCGGATGGATCA
	787	GCACACAGTTGTCTTGGCCCATGA	TCATGGGCCAAGACAACTGTGTGC
	788	CTGGCGGCAGTGGAAAAAACAAC	GTTGTTTTTTCCACTGCCCGCCAG
	789	ATCTCCATGCGTAAGACTGCTCCG	CGGAGCAGTCTTACGCATGGAGAT
15	790	TCTCCTCGTCGCAGTTCGTGGA	TCCACGAACTGCGACGAGAGGAGA
	791	TAGCGTATTCACTCTTGCCGAGCA	TGCTCGGCAAGAGTGAATACGCTA
	792	CAATCAAAAGCCACGGCGCGATGG	CCATCGCGCCGTGGCTTTTGATTG
	793	AGCGTCACGGAATTCAGCAGATCT	AGATCTGCTGAATTCCGTGACGCT
	794	GACTCCCTGTTAATGCGCCCAAGG	CCTTGGGCGCATTAACAGGGAGTC
20	795	TAGGCACTGCCGGTTCAGATTCAA	TTGAATCTGAACCGGCAGTGCCTA
	796	AACAGGGTGATAACGGTGGCCAAT	ATTGGCCACCGTTATCACCCTGTT
	797	CGTGCGTACCATGTGTAAGTGCGT	ACGCACTTACACATGGTACGCACG
	798	GACCAATTCTACTTCGGCAGCCCA	TGGGCTGCCGAAGTAGAATTGGTC
	799	ATCGGACCGATTTGCTTTTGGCTG	CAGCCAAAAGCAAATCGGTCCGAT
25	800	TCCGCCGAAGCACACGCTTATTCG	CGAATAAGCGTGTGCTTCGGCGGA
	801	AACGGTACGCATTGTGAGCAGTGT	ACACTGCTCACAATGCGTACCGTT
	802	TGGCGACTACTGTTCCCCTGAATC	GATTCAGGGGAACAGTAGTCGCCA
	803	CAGAGGGGACAGCCGTATGCCTTA	TAAGGCATACGGCTGTCCCCTCTG
	804	CGGTGGTTTTATCGGAATCTGCGA	TCGCAGATTCCGATAAAACCACCG
30	805	TTGGCCTCCGACCTCACGACATAT	ATATGTCGTGAGGTCGGAGGCCAA
	806	CGTTTCGCTAGCATCTGGCGCCGA	TCGGCGCCAGATGCTAGCGAAACG
	807	ACTAAGCGGTGGAGCCGGTGGATG	CATCCACCGGCTCCACCGCTTAGT
	808	ATATTGGCTGCGTTTACGGGCCGC	GCGGCCGTAAACGCAGCCAATAT
	809	CCGCTATGGTGGCAATCCCGATAC	GTATCGGGATTGCCACCATAGCGG
35	810	GTTGCATGTGGCTCAGGCGGCATA	TATGCCGCCTGAGCCACATGCAAC
	811	ATTCTGGGGAGTGACCCAGGGCTT	AAGCCCTGGGTCACTCCCCAGAAT
	812	CTCTCCAAGGAGACGAGCCAATGT	ACATTGGCTCGTCTCCTTGGAGAG
	813	GAAAGGACGGGATTTGGGGGCTAA	TTAGCCCCCAAATCCCGTCCTTTC
	814	TATGTAGTACCTTGGCTCGCGCCA	TGGCGCGAGCCAAGGTACTACATA
40	815	TCCCTTTCGATGAGCGGCTGTACT	AGTACAGCCGCTCATCGAAAGGGA
	816	TAGATCGGGCAGAGCCCGTATCTT	AAGATACGGGCTCTGCCCGATCTA

	817	GGAATGCTTTAGGCTGCCGAGCTG	CAGCTCGGCAGCCTAAAGCATTCC
	818	ATGGTAGCAACATTCAACGCCAGG	CCTGGCGTTGAATGTTGCTACCAT
	819	CTATGAAACGTGTGGCCCAGCAAC	GTTGCTGGGCCACACGTTTCATAG
	820	ATGTTGCTAGTGCCTTTCGGGCCT	AGGCCGAAAGGCACTAGCAACAT
5	821	CCAATGTGCGCAGACTCAGTCATT	AATGACTGAGTCTGCGCACATTGG
Ĭ	822	GATAGTGCTCGCAAACGGGCCTTC	GAAGGCCGTTTGCGAGCACTATC
	823	GCACCTGTTGCCTCATTGAGCGT	ACGCTCAATGAGGCAACAGGGTGC
	824	GGCGTGAATAGAGTGACCAGGCGG	CCGCCTGGTCACTCTATTCACGCC
	825	ACGTGCCAGCTGCGGGCACTTTAT	ATAAAGTGCCCGCAGCTGGCACGT
10	826	AGTGGAATAGTCGCGTCGTGCCGC	GCGCACGACGCGACTATTCCACT
	827	ACTCGCCTATTACCGCTGGATTGG	CCAATCCAGCGGTAATAGGCGAGT
	828	GAGACCGGATTGAGATGATCCCGT	ACGGGATCATCTCAATCCGGTCTC
	829	CTGGCAGTTTACCACCGAACCAGT	ACTGGTTCGGTGGTAAACTGCCAG
	830	TTACATTGCCGATTTCGCATGTGA	TCACATGCGAAATCGCCAATGTAA
15	831	TAAAACTGAAGGGTCGCCTCAGCA	TGCTGAGGCGACCCTTCAGTTTTA
	832	GGCTTCGCATGCCTTTGCAACATT	AATGTTGCAAAGGCATGCGAAGCC
}	833	AAGACCGAAGGTCTCTCTGAGGGC	GCCTCAGAGAGACCTTCGGTCTT
	834	GCCTATGGCTCCAGCTCAGCAGTA	TACTGCTGAGCTGGAGCCATAGGC
	835	CGTATCATAGCGTTCGGTGGACAA	
20	836	CATGCGCTCGCACTCTGCCTGTCT	AGACAGGCAGAGGCGAGCGCATG
20	837	TGGGCAATTCGGAAACGTCGGTCT	
	838	TTGCGGAGATGCGACGTACATTG	AGACCGACGTTTCCGAATTGCCCA CAATGTACCGTCGCATCTCCGCAA
. }	839	ACTITCGCACGTCGATCTGGACTG	CAGTCCAGATCGCCACTCTCCGCAA
	840	CTAACTGCCGCGGCAAACTGATTA	TAATCAGTTTGCCGCGGCAGTTAG
25	841	GGCGCGGATTTTATTCCTTGGAT	ATCCAGGATTAGATCCGCGGCC
20	842	GAATTTGGAACGGTGTTCCGATGA	TCATCGGAACACCGTTCCAAATTC
	843	GTCCATCCATCTACGGCATCAGGA	TCCTGATGCCGTAGATGGATGGAC
	844	TAAACGACCTGGCACATGTGCGTA	
	845	CACCATCCAAGAGCCAATCCTAGG	TACGCACATGCCCAGGTCGTTTA
30	846	ACTCATATACGATCAGTCCGCCGC	CCCCCCACTCATCCTATATCACT
	847	GTGCCAACCGACGATCAACCGAAC	GCGGCGGACTGATCGTATATGAGT GTTCGGTTGATCGTCGGTTGGCAC
	848	TGGGGTTCGTACAGGTCGGTTCAT	ATGAACCGACCTGTACGAACCCCA
	849	AACAGTAGAGGCGAGGCCTGCGGG	CCCGCAGGCCTCGCCTCTACTGTT
	850	TGCATCGAATCCGAGATGGATCTT	
35	851	 	AAGATCCATCTCGGATTCGATGCA
33	852	GCGTCACGTTATGTCCGCTCTGTC	GACAGAGCGGACATAACGTGACGC
		GGGACATGCGTAGCGCAATATCAC	GTGATATTGCGCTACGCATGTCCC
	853	CACACGTCACACCATCCAAAGTGG	CCACTITIGGATGGTGTGACGTGTG
ŀ	854	ATGCTCAGGTGCTAAATACGGCCA	TGGCCGTATTTAGCACCTGAGCAT
40	855	AAAAATGTTTAGCGCGCTGACTGG	CCAGTCAGCGCGCTAAACATTTTT
40	856	ATAGTCCGTTTCCGTTCCCAACGA	TCGTTGGGAACGGAAACGGACTAT
Į	857	TCGATCTTCTGGGTTGCAGACCAG	CTGGTCTGCAACCCAGAAGATCGA

858 GTCGGCGAGCCGATCCTCATGTC GACATGAGGATCGGCTGCGCCGAC 859 GTTGCGGGTGTCGAAAAGGATCT AGATCCTTTTCGACACCCCGCAAC 860 ATCTCTTCCTCGGGTGGATGCCAG CTGGCATCACCCCGAGAGAGAGAGAT 861 TGATGTGCGTTTCAGCTTTTCGCG CGCGAAAAGCTGAAACGCACATCA 861 TGATGTGCGTTTCAGCTTTTCGCG CGCGAAAAGCTGAAACGCACATCA 862 GTTAAGGGGTGAGAACATCCGGCC GGCCGGATGTTCTCACCCTTAAC 863 AAGTCGTCTCCTTGCGTCTCGTCC GGACGAGACGCAGAGAGAGACGACATCA 864 CCGACCTAATAAGGCGCAACAATG CATTGTTGCGCCTTATATGGTCGG 865 CATCATTGGCACCGTACCAATGCC GGCCTTATTAGGTCGG 866 TGGAGAAAGGGAAGTGCAACATG CATTGTTGCGCCTTATTAGGTCGG 867 TGGTAACCCTTGTCATGCCTGCCA TGGCAGGCATGACAAGGAGTACCA 868 GGCACAGGTTCTTTCTAGCCCGCG CGCCTGCAAGAGAACCTGTGTGC 869 GAATCTGGGCATTGCAGCAGC GGTTCTGTAGCACTTCCCTTTCTCCA 869 GAATCTGGGCATTGCAGCAGC GGTCTGGAAGAAACCACTGTGTGC 871 ACATATGAGCTCGCGTGCAATGCC GGTTCGTAGCAATGCCCAATTC 872 TCGAGCACGGTCCATTACAAAGCC GGTTTTCAGACACGCACGCAAGTTC 873 CAGAGGTCCCTGCAAATGCC GGTTTTACAGTGACCACTTTCG 874 AAATGCGATCCCCTTATGAAAGCC GGCTTTTACAGTGACCAGTTCTGCAGCAATGACCAAGGAACCTCTGCACACACA				
860 ATCTCTTCCTCGGGTGGATGCCAG CTGGCATCCACCCGAGGAAGAGAT 861 TGATGTGCGTTTCAGCTTTTCGCG CGCGAAAAGCTGAAACGCACATCA 862 GTTAAGGGGTGAGAACATCCGGCC GGCCGGATGTTCTCACCCTTTAGC 863 AAGTCGTCTCCTGCGTCTCGTCC GGACGAGAGCGAGAGAGACTGA 864 CCGACCTAATAAGGCGCAACAATG CATTGTTGCGCTTTATTAGGTCGG 865 CATCATTGGCACCGTACCAATGC GGCCGGATGTTCCACCTTTATTAGGTCGG 866 TGGAGAAAGGGAAGTGCAGCAACG CGTTGCTCACTTTCTCCA 867 TGGTACTCCTTTGTCATGCCTCCA TGCCAGCTGACAATGACCAGGAAACCTTTCTCCA 868 GGCACAGGTTTCTTTGCAGCCGCG CCGCCTGCAAGAAACCTGTGCC 869 GAATCTGGGCATTTCTTACGAGACC GGTTCTGAACAATGCCCAATTATTC 870 CGAAATGGGAGCTCACTACCAC GTGTAGCAAGAACCTGTGCC 871 ACATATGAGCTCGCGTGCTA TATCACAAGCACCGCAGCTCCATTTCG 871 ACATATGAGCTCGCGTGCTATAAAGCC GGTTTCTTAGCAATGCCCAGATTC 872 TCGAGCACGGTCCACTACCAC GTGTAGCAATGCCCAGATTC 873 GAAGGTCCCTGCTCAGAATGGAT ATCCAAGCACCGCGACCTCATTCGT 874 AAATGCGATCGCCCCTTATGGAAT ATCCAAGCACGCAGCTCCATTTCGT 875 CTACCCGAATGGATTGCGGATGGC GCCATCCCAATTCGGGTAGCAATGCCCCAGATTCCACCAC GTGTAGAACCACTTCGGGTAGACAAGCACCTGCCATTCGGAATGCACCAGAATGCACCAGAATGCACCAGAATGCACCAGAATGCACCAGAATGCACTCCACT 876 AGGGACTGCACGAATGCATTCCACCAGAATGCACCAACCA		858	GTCGGCGCAGCCGATCCTCATGTC	GACATGAGGATCGGCTGCGCCGAC
861 TGATGTGCGTTTCAGCTTTTCGCG CGCGAAAAGCTGAAACGCACATCA 862 GTTAAGGGGTGAGAACATCCGGCC GGCCGGATGTTCTCACCCCTTAAC 863 AAGTCGTCTCCCTGCGTCTCGTCC GGACGAGACGACGGAGAGACGCATG 864 CCGACCTAATAAGGCGCAACAATG CATTGTTGGTCCCTTTATTAGGTCGG 865 CATCATTGGCACCGTACCAATGC GGCATTGGTACGCTTCCCTTTCTCCATTGTATGGTCGCC 866 TGGAGAAAGGGAAGTGCACCAC CGTGCACACACACTCCCCTTTCCCATTCCCA 867 TGGTACTCCTTGTCATGCCTGCCA TGGCAGGCATGACAAGGAGACCTTGTCCCA 868 GGCACAGGTTCTCTTGCAGCGCG CCGCGCTGCAAGAGAACCTGTGCC 870 CGAAATGGGAGCGTCCACTACCAC GTGGTAGGAAGACCCCCATTTCG 871 ACATATGAGCTCGGGTGCTTGCAT ATGCAAGCACGGAGACTCCATATGT 872 TCGAGCACGGTCACTGATAAAGCC GTGTTGAGCACGGTCCCATATGT 873 GAGGGTCCCTGCACTGAATAAGCC GCCTTTACACACCTCACACACTTCACACACTTCACACGCATTCCCTATTCACTCAC		859	GTTGCGGGGTGTCGAAAAGGATCT	AGATCCTTTTCGACACCCCGCAAC
SE2 GTTAAGGGGTGAGAACATCCGGCC GGCCGGATGTTCTCACCCCTTAAC 863 AAGTCGTCTCCCTGCGTCTCGTCC GGACGAGACGCAGGGAGACGACTT 864 CCGACCTAATTAAGGCGCAACCAATGC CATTGTTGCGCCTTTATTAAGTCGG 866 TGGACAAAAGGCGAACGACC CATTGTTGCGCCTTTATTAAGTCGG 866 TGGACAAAAGGCAACGACC CGTTGCTCACATTCCCTTTCTCCA 867 TGGTACTCCTTGTCATGCCTGCCA TGGCAGGCATGACAAGGAGTACCA 868 GGCACAGGTTCTTTGCAGCGCGG CCGCGCTGCAAGGAGACCCTGTGCC 870 CGAAATGGGAGCCCCACTACCAC GTGGTAGCAAGGAGTACCA 871 ACATATGAGCTCCGCGTA TGGCAGGCATGACAAGGAGTACCA 872 TCGAGCACGGTCACTAACACA GTGGTAGTGACGCTCCCATTTCT 873 GAGGGTCCACTGACTAAAGCC GTGGTTATCAGGAGCCCCCCTTATGGAT 874 AAATGCAATCGCCGTGGTT AACCACTCTGAGCAGCTCCATATGT 875 CTACCCGAATGGAATTCCACGAGTT AACCACTCTGAGCAGGCGATCGCATTT 876 CTACCCGAATGGAATTCCACGAGTT AACCAACTCTGAGCAGGGACCCTC 877 TAACGATCCACTCACAAATCCAC GCCATTCCGCAATCCATTCCGCTGT 878 GGCCGCACGTACGATTACGCCTT ACCCAACCACTCACCATTCCACTACCAC 879 TGGGGAATGCATCCACTGAATACGCC CCCATTCCGCAATCCATTCCCCA 880 TATCTGGGATGCACCATTCCACGAATTCCACCACTCCCCATTCCCCAATCCCATTCCCCAC 879 TGGGGATTGCATCACGTTGTGGCT CAAGGCGTAATCGTTACCCCAC 881 TATCTGGGATGCACCACTTCTCACGAATCCACTCCCCACTCCCCACTCCCCACTCCCCACCACCCCTTCCCCACACCCCTTCCCCACACCCCTTCCCCACCA		860	ATCTCTTCCTCGGGTGGATGCCAG	CTGGCATCCACCCGAGGAAGAGAT
863 AAGTCGTCTCCCTGCGTCTCGTCC 864 CCGACCTAATAAGGCGCAACAATG 865 CATCATTGGCACCGTACCAATGC 865 CATCATTGGCACCGTACCAATGC 866 TGGAGAAAGGGAAGGCAACAGC 866 TGGAGAAAGGGAAGGCAACAGC 867 GGCACAGGCATGCATGCCATGCCATGCCCTTTCTCCATTCCCTTTCTCCA 868 GGCACAGGTTCTCTTGCAGCGCGG 869 GAATCTGGGCATCCATTGCACGCGG 870 CGAAATGGGAGCGTCCACTACCAC 871 ACATATGAGCTCGCTGCCA 871 ACATATGAGCTCGCTGCTA 872 TCGAGCACGGTCCACTACCAC 873 GAGGGTCCCTGCTAATAAGCC 874 AAATGCGATCGCTGCTAATAAGCC 875 CTACCCGAATGGATTGCTACGAGAT 876 CAACACCTCGCTGCTAATAAGCC 877 ACATATGAGCTCCTGCTAATAAGCC 878 GAGGGTCCCTGCTCAAGATTGCTACGAAGCACCGCGAGCTCATATGT 875 CTACCCGAATGGAATTGCTACGAAT 876 AAGGAACTGGCACCTTATGGAAT 877 TAACGATCACTCACGAATTGCTACGAATCCATTCCATCAGCACGCGAGCTCATATTGT 878 GGCCGCACGTACGATTACGCAT 879 TGAGGAACTGGCAGGTCCTTGCGCCT 880 TATCTGGGAATCCATCACGAATTCCACGAATCCATTCGTGCAATCCATTCGAGCAGGCACCTCCATTTCGAGCAGGAACCTCCATTCGGTAGAAT 878 GGCCGCACGTACGATTACGCCTTG 879 TGAGGAATCCATTCCACGAATGCAG 879 TGAGGAATCCATCACGAATGCAG 880 TATCTGGGAATGCATCAGTTGTTGGCT AGCCAACAACTGTATGCATTCCCCAA 880 TATCTGGGAATGCATCAGTTGTTGGCT AGCCAACAACTGATTCCCCAA 881 CCGAAGGTTTCACGCATGCAG 882 GAACCCAGCTGGGACATCCTTCAG 883 TGCATGCGAGCACACCCTTTCAG 884 AATTGTCAGGCAAGCCCTTCAG 885 GCCGCCCTCCTCTCAGATTCCCCCAATCCCCAATCCCCAATCCCCAATCCCCAATCCCAATCCCAATCCCCAATCCCAATCCCCAATCCCCAATCCCAATCCCCAATCCCAATCCCCAATCCCAATCCCCAATCCCAATCCCCAATCCCAATCCCCAATCCCAATCCCCAATCCCAATCCCAACCCTTCAACCCAACCCCTTCCAACCCCAACCCCTTCCCCAATCCCAACCCCTTCCAACCCCAACCCCTTCCCAACCCCTACCCCAACCCCTTCCAACCCCAACCCCTTCCAACCCCAACCCCTTCCAACCCCAACCCCTTCCCAACCCCAACCCCTTCCAACCCCAACCCCTTCCAACCCCAACCCCTTCCAACCCCAACCCCTTCCCAACCCCAACCCCTTCCAACCCCAACCCCTTCAACCCCAACCCCTTCAACCCCAACCCCTTCAACCCCAACCCCTTCAACCCCAACCCCTTCAACCCCAACCCCTACCCAACCCCTTCAACCCCAACCCCTTCAACCCCAACCCCTACCCAACCCCCAACCCCCAACCCCCAACCCCTTCAACCCCAACCCCAACCCCCAACCCCCAACCCCCAACCCC		861 .	TGATGTGCGTTTCAGCTTTTCGCG	CGCGAAAAGCTGAAACGCACATCA
864 CCGACCTAATAAGGCCAACAATG CATTGTTGCGCCTTATTAGGTCGG 865 CATCATTGGCACCGTACCAATGCC GGCATTGGTACGATGATG 866 TGGAGAAAAGGGAAGTGCAGCAACG CGTTGGTACCAATGACCA 867 TGGTACTCCTTGTCATGCCTGCCA TGCAGAGGAGAGACCTTCCCTTTCTCCA 868 GGCACAGGTTCTCTTGCAGCGCG CCGCGCTGCAAGAGAACCTGTGCC 869 GAACTGGGCATTGCTACGAGCGCG CCGCGCTGCAAGAGAACCTGTGCC 870 CGAAATGGGAGCCTCCACTACCAC GTGGTAGCAATGCCAAGATTC 871 ACATATGAGCTCGCGTGCATTACACAC GTGTAGCAATGCCCAAGATTC 872 TCGAGCACGGTCACTACAAC GTGGTAGTAAGCAGGAGCTCCATTTCG 873 GAGGGTCCTCTAGAATTAAGCC GGCTTTATCAGTGACCGTGCCCAATTGT 874 AAATGGATCGCCCTTATTGGAT 875 CTACCCGAATGGATTAGGATT AACCAACTCGAGCAGGCACCCTC 876 AGGGACTGCCCGTTTGCGAT AACCAACTCGAGCAGGACCCTCCATTTCG 877 TAACGATCCATTCCACGATTGGTT AACCAACTCGAGCAGGCACCCTC 877 TAACGATCCATTCCACGAATGCAC TGCATTCGTGGATAGAATAACCAGGAACCAGCAGAGAACCACGAATCCATTCGAGCAGGAACCACCCTC 877 TAACGATCCATTCCACGAATGCAC TGCATTCGTGGAATGAACCAGTCCATTCCACAACAACTGATACGACTGCAACCAAC	5	862	GTTAAGGGGTGAGAACATCCGGCC	GGCCGGATGTTCTCACCCCTTAAC
865 CATCATTGGCACCGTACCAATGCC 866 TGGAGAAAGGGAAGTGCAGCAACG 866 TGGAGAAAGGGAAGTGCAGCAACG 867 TGGTACTCCTTGTCATGCCTGCCA 868 GGCACAGGTTCTCTTGCAGCGCGG CGCGCGTGCAAGAGAACCTGTGCC 869 GAATCTGGGCATTGCATCACACC GTTCTGTAGACAAGGAGTACCA 870 CGAAATGGGAGCCACTACCACC GTGGTAGCAAGGAGTCCCAAGTTC 871 ACATATGAGCTCGCGTGCTTTGCAT ATGCAAGCACGCGAGCTCAATATCT 15 872 TCGAGCACGGTCACTACCAC GTGGTAGTGACACGGGACCTCCAATTCG 873 GAGGGTCCCTGCAAGAGTTGGTT AACCAACTCTGAGCAGGACCCTGAAAAACCCTGAAAAACCCTGAACCACGAATCCATACCAC 874 AAATGCGATCGCCCCTTATGGAAT ATTCCATAAGGACGGAGCACGCGAGCTCATTTT 875 CTACCCGAATGGATTGCGAT ACCACACACTCAATCCATTCGGATTA 876 AGGGACTGGCAGGTCCTTGCAGCATGCAATCCATTCGGATTAGAT 877 TAACCAATCCATTCCACGAATGCAG 878 GGCCGCACGTACCATTCCACCACATCCATCCATTCCGACAGGACACCTGCCATTT 878 GGCCGCACGTACCATTCCACGAATGCAG 879 TGGGGAATGCATGCACCTTC CAAGGCGTAATCGATCCCCC 879 TGGGGAATGCATCAGTTTTGGCT ACCCAACAACTGATGCATTCCCCA 880 TATCTGGAGATTACCACCTTC CAAGGCGTAATCCATCCCCACATCCATCCCACACACACAC		863	AAGTCGTCTCCCTGCGTCTCGTCC	GGACGAGACGCAGGGAGACGACTT
866 TGGAGAAAGGGAAGTGCAGCACG CGTTGCTGCACTTCCCTTTCTCCA 867 TGGTACTCCTTGTCATGCCTGCCA TGGCAGGCATGACAAGGAGTACCA 868 GGACAGGTTCTTTGCAGCGCGG CGGCGTGCAAGAGAACCTGTGCC 869 GAATCTGGGCATTGCTACCACC GTGGTAGCAAGGACCCCAGATTC 870 CGAAATGGGAGCGTCCACTACCAC GTGGTAGGACGCCCCCATTTCG 871 ACATATGAGCTCGCGTGCTTGCAT ATGCAAGCACGCGAGCTCCATATTCT 15 872 TCGAGCACGGTCACTACACAC GGCTTTACAGTACCGCGGGCTCCCACTATGT 873 GAGGGTCCCTGCTAGAGTTGGTT AACCAACTCTGAGCAGGGACCCTCCA 874 AAATGCGATCGCCCCTTATGGAAT ATGCAAGCACGCGAGGCACCTCCA 875 CTACCCGAATGGATTGCGAATTACACC GCCTTTACAGTAGGGACCCCCT 876 AGGGACTGGCCCCTTATGGAAT ATTCCATAAGGGGCGATCCCATTT 877 CTACCGAATGGATTCGCGATGCC CCCATCCATCCATCCGCAATCCATTCCGGTAGA 878 GGCCGCACGTACCATTCACGCAATGCAG CTGCAATCCATTCGGGTAG 879 TGGGGAATGCATCAGTTGTGGCT ACGCCAATCCATCCCCAATCCCT 880 TATCTGGGAATGCAGCCTTC CAAGGCGTAATCGTACGTGCGGCC 879 TGGGGAATGCATCAGTTGTTGGCT ACGCCAACAACTGATGCATTCCCCA 881 CCGAAGGTTTCACGCAATGCAG CTGCATTCGTGCAATGCATTCCCCA 881 CCGAAGGTTTCACGCAATGCAG CGCCCTGCCTGCTACTCCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCG CGCCCTGCCTGCTACTCCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCG CGCACCTGACGCTGAAACCTTCCGC 882 GAACCCAGCTGGACAATCCTTCAG CTGAAAGACGTTTGCCGATCCC 884 AATTGTCCGCAAACACCTTTCAG CTGAAAAGCGTTTGCCGAATCATT 885 GTCGGCTTCGAGCAACCACTTTCAG CTGAAAAGCGTTTGCCGCAACCAACTTTTCGCGAAGCACAACCAGTTTTCGCCGAATACCTACGAATAACCCGGAC GTCCGGGTTTTTTCGCTGCAAGCCCGAC 886 TGCGCTTCCAAGCACCAACCCTTTCAG CTGAAAAGCGTTTGCCGCACCAACCACCGCAC 887 GGCTTCCGCGATAACCTAATTCAG CTGAAAACCGTTACCGCACACCGCAC 888 TGCACCGGAACACCACACACACACCCCTGAATCATT AATATTCACCCGCAACCCCGAACCCCCTGAACCCCCCCCC		864	CCGACCTAATAAGGCGCAACAATG	CATTGTTGCGCCTTATTAGGTCGG
10 867 TGGTACTCCTTGTCATGCCTGCCA TGGCAGGCATGACAAGGAGTACCA 868 GGCACAGGTTCTCTTGCAGCGCGG CCGCGTGCAAGAGAACCTGTGCC 869 GAATCTGGCATTGCTACGAGACC GGTCTCGTAGCAATGCCCAGATTC 870 CGAAATGGAGCGTCCACTACCAC GTGGTAGCAATGCCCAGATTC 871 ACATATGAGCTCGCGTGCTTGCAT ATGCAAGCACCGCGAGCTCACTATGT 15 872 TCGAGCACGGTCACTAAAAGCC GGCTTTATCAGTGACCGTGCTCGA 873 GAGGGTCCCTCTATGGAAT ATGCAAGCACCGCGAGCTCCATTTGT 874 AAATGCGATCGCCCCCTTATGGAAT ATTCCATAAGGGGGCACCGTC 875 CTACCCGAATGGATTGCGAATTAGAAT 875 CTACCCGAATGGATTGCGAATTGGAT 876 AGGGACTGGCAGGTCTCTGCGCGT ACCCGCAATCCATTCGGGTAG 877 TAACGATCCATTCCACGAATGCAG 878 GGCCGCACGTACCATTCCACGAATGCAG 879 TGGGGAATGCATTCACGCATGCAGATTGTGTGTGAATGAA		865	CATCATTGGCACCGTACCAATGCC	GGCATTGGTACGGTGCCAATGATG
868 GGCACAGGTTCTCTTGCAGCGCGG CCGCGCTGCAGAGAGACCTTGTGCC 869 GAATCTGGCATTGCTACGAGACC GGTCTCGTAGCAATGCCCAGATTC 870 CGAAATGGGAGCGTGCTACCAC GTGGTAGCAATGCCCAGATTC 871 ACATATGAGCTCGCGTGCTTGCAT ATGCAGCACGCGCGCTCCATTTCG 871 ACATATGAGCTCGCGTGCTTGCAT ATGCAGCACGCGGAGCTCATATGT 15 872 TCGAGCACGGTGCTTAAAGCC GGCTTTATCAGTGACCGTGCTCGA 873 GAGGGTCCTCCAGAGTTGGTT AACCAACTCTGAGCAGGCGCACCTC 874 AAATGCGATCGCCCTTATGGAT ATTCCATAGAGGCGGACCCTC 875 CTACCCGAATGGATTGCGGATGGAT ATCCATAGAGGCGACCCTC 876 AGGGACTGGCAGGTCTCTGCGCGT ACCCGCAATCCATTCGGGTAG 877 TAACGATCCATTCCACGAATGCAG CCGCCTACTCCTCTCAGAGTTGGAT ACCCAACACTCTGGAATGCATCCCTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTGCGCC 879 TGGGAATGCATCACGTTGTGTGCT ACCCAACAACTGATGCGTGCCCC 879 TGGGGAATGCATCAGTTGTGGCT ACCCAACAACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGCAGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAAGGTTTCACGCTTGG CGCCTTGCCTGCAGTATCCTCAGATA 882 CAACCCAGCTGGGACATCCTTCAG GCCCTTGCCTGCAAAACCTTCCGG 883 TGCATGCGAGCAAATAACCCGGAC GTCCGGTTTTGCGCGACCAGATA 884 AATTGCCGCCAAACGCTTTTCAG CTGAAGAGATGTCCCAGATA 885 GTCGGCTTCGAGCGACAATAACCCGGAC GTCCGGGTTATTCCCCAAGAACCACACACACACACACACA		866	TGGAGAAAGGGAAGTGCAGCAACG	CGTTGCTGCACTTCCCTTTCTCCA
869 GAATCTGGGCATTGCTACGAGACC GGTCTCGTAGCAATGCCCAGATTC 870 CGAAATGGGAGCTCCACTACCAC GTGGTAGTGGACGCTCCCATTTCG 871 ACATATGAGCTCGCGTGCTTGCAT ATGCAAGCACGCGAGCTCATATGT 15 872 TCGAGCACGGTCACTGATAAAGCC GGCTTTATCAGTGACCGTGCTCGA 873 GAGGGTCCCTGCTCAGAATTGGTT AACCAACTCTGAGCAGGGACCCTC 874 AAATGCGATCGCCCCTTATGGAAT ATTCCATAAGGGGACCCTC 875 CTACCCGAATGGATTGCGGATGGC GCCATCCCAATCCATTTCGGTGA 876 AGGGACTGGCAGGTCTCTGCGCGT ACCGCAGAGCACCTCCCT 877 TAACGATCCATTCCACGAATGCAG CCCATCCCCAATCCATTCGGTGAG 878 GGCCGCACGTACGATTACGCCTT CAAGGCGAAGCACCTGCCAGTCCCT 879 TGGGGAATGCATTCCACGAATGCAG CTGCAATCGTACGTCCCA 880 TATCTGGGAGTACCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCA 881 CCGAAGGTTTCCACGCAGGCC GGCCCTGCCTGCACACCCCCA 882 GAACCCAGCTGGGACGACCCCCTTCAGGTCCC CGCACCTGCCTGCCAAACCTTCGG 883 TGCATGCGAGCAATACCCGGAC GTCCGGCTGAAACCTTCGG 884 AATTGCCCGCAAACGCTTTCAG CTGAAAGCGTTACTCCCCAGTTC 885 GTCGGCTTCGAGGCACATCCTTCAG CTGAAAACCGTTGCCCCACCTCCCAACCGTTGCACACCCCAACCACTTGCACCACCCCAACCCTTCAGCCCCAACCCTTCAGCCCCAACCCTTCCAGCACCCCCAACCCCTTCCAGCACCCCCAACCCCTTCCAGCACCCCCAACCCCTTCAGCCCCAACCCCTTCCAGCCCCAACCCCTTCCAGCCCCCAACCCCTTCAGCCCCAACCCCTTCAGCCCCAACCCCTTCAGCCCCAACCCCTTCAGCCCCAACCCCTTCAGCCCCAACCCCTTCAGCCCCAACCCCTTCAGCCCCAACCCCCCACCCCCCCC	10	867	TGGTACTCCTTGTCATGCCTGCCA	TGGCAGGCATGACAAGGAGTACCA
870 CGAAATGGGAGCGTCCACTACCAC GTGGTAGTGGACGCTCCCATTTCG 871 ACATATGAGCTCGCGTGCTTGCAT ATGCAAGCACGCGAGCTCATATGT 15 872 TCGAGCACGGTCACTGATAAAGCC GGCTTTATCAGTGACCGTGCTCGA 873 GAGGGTCCCTGCTCAGAGTTGGTT AACCAACTCTGAGCAGGGACCCTC 874 AAATGCGATCGCCCCTTATGGAAT ATTCCATAAGGGCGATCGCATTT 875 CTACCCGAATGGATTGCGGATTGC 876 AGGGACTGCCAGATTGCGGATTGC 877 TAACGATCCATTCCACGAATGCAG CCCATCCCCAATCCATTCAGTTAGGTAG 878 GGCCGCACGTACCATTACGCCTTG CACAGCAGAGACCTGCCAGTCCCT 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGGATCGTTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCCATCCCCA 880 TATCTGGGAGTAGCAGTTGTTGGCT AGCCACACACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGTCGCC GGCCCTGCCTGCCTGCACTCCCCA 881 CCGAAGGTTTCACGCTCAGGTCGC GCCCTGCCTGCACTCCCCA 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGAGCGTGAAACCTTCGG 883 TGCATGCGAGCAAAACCCGGAC GTCCGGGTTATTTGGCTGAAAAACCTTCGAC 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAAGCGTTTGGCGAACAAATTTTGGCGAACAACTGATGAGCAACAACTGATGCAACAACTGATGCAATGCAACAACTGATGCAACAACTGATGCAACAACTGATGCAACAACTGATGCAACAACTGATGCAACAACTGATGCAACAACTGATGCAACAACTGATGCAACAACTGATGCAACAACTGATTTCGGCGAACAACTGATTTCGCGAAGACAACTGATACTCCCAACAACTGATTATTTGCCCAACAACTGATTTCGCGAACAACTGATTTTCAGCAAAAACCGTTGCAACAACCGTTGCAACAACCGTTGCAACAACCGAACAACTGAATAACCCGAACAACTGAATAACCCGAACAACTGAACCGCGAACAACTGAACACAACAACAACACGAACCAACAACAACAACAACAAACCAACAA		868	GGCACAGGTTCTCTTGCAGCGCGG	CCGCGCTGCAAGAGAACCTGTGCC
871 ACATATGAGCTCGCTGCTTGCAT 872 TCGAGCACGGTACTGATAAAGCC GGCTTTATCAGTGACCGTGCTCGA 873 GAGGGTCCCTGCTCAGAGTTGGTT AACCAACTCTGAGCAGGGACCCTC 874 AAATGCGATCGCCCCTTATGGAAT ATTCCATAAGGGGCGATCGCATTT 875 CTACCCGAATGGATTGCGGATTGC 876 AGGGACTGCCAGTCTCTGCGCGT ACGCGCAATCCATTCGGGTAG 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGATCGTTAACGACTGCAGTTACAGCAGGAACCTGCCAGTCCCT 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGAATCGATTAACGCCTTG CAAGGCGTAATCGTACGTGCGCCC 879 TGGGGAATGCATCAGTTGTTGGCT ACGCACACAACTGATGCAGTCCCCA 880 TATCTGGGAGTACCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCAA 881 CCGAAGGTTTCACGCAGGCC GGCCCTGCCTGCACTCCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGCCTGCCTGCACTCCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAACCTTCGG 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTGGGTTC 883 TGCATGCGAGCAAATAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAGCGTTTGGCGGACACAACTTGAGCAGCAAAACACGCTTTCAG 885 GTCGGCTTCGAGCGATCGATTTCAG CTGAAAAGCGTTTGGCGGACAATT 886 GTCGGGTTCGAGCGATCGAGTGTG CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTTCGAGCGATCGATTTCAG CTGAAAAGCGTTTGCCGCACAAGCCGAA 887 GGCTTCCGCGATAACGTTATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGCCCATGA TCATGGGCTACAGAGCACGCGA 889 AACCGAACGCCTTGGCTCAAATTT AATATTCAGCCAGGGCGTTCCCTT 890 TGTCACGCGACTGGCTGAAATTT AATATTCAGCCAGGGCGTTCCCTT 890 TGTCACGCGACTGCGCTGAATATT AATATTCAGCCAGGCCGTCCCTT 891 CCGTGTCCGTGTTGTCGACAGGCC CGCCTGTCGACAACACGGACACAC 892 CCCCACACGTTGCGCCTAATTTGT CACACTACACACACACGGACACAC 893 GGCGGCACAACTCAACACACAGTG CACTCTGTGACAACACACGGACACAC 894 CGACTGCGGGATCACCGGTTAATTGT CACACTGTGTGACACACCGCCCCCCCCCC		869	GAATCTGGGCATTGCTACGAGACC	GGTCTCGTAGCAATGCCCAGATTC
15 872 TCGAGCACGGTCACTGATAAAGCC GGCTTTATCAGTGACCGTGCTCGA 873 GAGGGTCCCTGCTCAGAGTTGGTT AACCAACTCTGAGCAGGGACCCTC 874 AAATGCGATCGCCCCTTATGGAAT ATTCCATAAGGGGCATCGCATTT 875 CTACCCGAATGGATTGCGGATGGC GCCATCCGCAATCCATTCGGGTAG 876 AGGGACTGGCAGGTCTCTGCGCGT ACGCCAGAGCCTGCCAGTCCCT 20 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGGATCGTTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTGCGCC 879 TGGGGAATGCATCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCA 880 TATCTGGGAGTAGCATCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 882 GAACCCAGCTGGGACCAATAACCCGGAC GTCCGGGTTATTTGCTCAGCTCA		870	CGAAATGGGAGCGTCCACTACCAC	GTGGTAGTGGACGCTCCCATTTCG
873 GAGGGTCCTGCTCAGAGTTGGTT AACCAACTCTGAGCAGGGACCCTC 874 AAATGCGATCGCCCCTTATGGAAT ATTCCATAAGGGGCGATCGCATTT 875 CTACCCGAATGGATTGCGGATGGC GCCATCCGCAATCCATTCGGGTAG 876 AGGGACTGGCAGGTCTCTGCGCGT ACGCCAGAGACCTGCCAGTCCCT 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGGATCGTTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTGCGCC 879 TGGGGAATGCATCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCA 880 TATCTGGGAGTACAGCAGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGACGATACCTTCGG 882 GAACCCAGCTGGACAACACCTGATGCATTCCCCAGATA 883 TGCATGCGACCAACACCTTTCAG CTGAAGAGATGCCCAGGGTTC 884 AATTGTCCGCAACACCTTTTCAG CTGAAAACCGTTTGCCCAACAACTTGGGCTTC 885 GTCGGCTTCCACCAACCGCTTTCAG CTGAAAACCGTTTGCCCAACACACTTCGCAACACCATTTGCCCAACACCATTCCACCACCACCACCCAC		871	ACATATGAGCTCGCGTGCTTGCAT	ATGCAAGCACGCGAGCTCATATGT
874 AAATGCGATCGCCCCTTATGGAAT ATTCCATAAGGGGCGATCGCATTT 875 CTACCCGAATGGATTGCGGATGGC GCCATCCGCAATCCATTCGGGTAG 876 AGGGACTGGCAGGTCTCTGCGCGT ACGCGCAGACCCTGCCAGTCCCT 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGGATCGTTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTGCGCCC 879 TGGGGAATGCATCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGGCAGGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCCAGATA 883 TGCATGCGAGCAAACACTCTTCAG CTGAAGGATGTCCCAGCTGGGTTC 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGACACTGATTTCAG CTGAAAACGTTTTGCCGCATGCA 886 TCGCGTGCTCAGCCCATGA TCATGGGCTACGAGCCGAC 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTAGCGCGAAGCC 888 TGTAGCCGACTAGGGCCATGA TCATGGGCTACGATGCACCGAC 889 AAGCGAACGCCTTGCTGAAACGCCCTAGATTACGTTCAGCCCAACGC 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACTGGCCGAAGCCC GGCCTTCGACACACGGCACACGG 891 CCGTGTCGTGTTGTCGACAGGCC 892 CCCCACACGTTGCGCCTAATATT AATATCAGCCAGACACACGGACACGG 893 GGCGGGCACAACTCAACACAGATG CACATATAGGCGCAACACGGACACGG 894 CGACTGCGGGATCACCAGATTA TAATCACCGGTGATCCCGCACCCCCCCCCC	15	872	TCGAGCACGGTCACTGATAAAGCC	GGCTTTATCAGTGACCGTGCTCGA
875 CTACCCGAATGGATTGCGGATGGC GCCATCCGCAATCCATTCGGGTAG 876 AGGGACTGGCAGGTCTCTGCGCGT ACGCGCAGAGACCTGCCAGTCCCT 77 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGGATCGTTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTGCGGCC 879 TGGGGAATGCATCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGGCAGGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 25 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTGGGTTC 883 TGCATGCGACAAATAACCCGGAC GTCCGGGTTATTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCCGACCAATT 885 GTCGGCTTCGAGCGATCGAGTGT CACACTCGATCGCACGAC 886 TCGCGTGCTCTACGTAGGCCCATGA TCATGGGCTACGAGCCGAC 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGCAC 889 AAGCGAACGCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACACGGGCACAGG 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGCACACACGCGCACGG 892 CCCCACACGTTGCGCCTATATGTG CACATTATGGCGCAACACACGGACACGG 893 GGCGGGCACAACTCAACACAGATG CACTTGTTGAGTTGGCCCACCGCCCCCCCGGTGACAACACGGGACACGG CGCCTGCTGACAACACGGACACGG CGCCCCCCCCCC		873	GAGGGTCCCTGCTCAGAGTTGGTT	AACCAACTCTGAGCAGGGACCCTC
20 876 AGGGACTGGCAGGTCTCTGCGCGT ACGCGCAGAGACCTGCCAGTCCCT 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGGATCGTTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTCCGCA 879 TGGGGAATGCATCAGTTGTTGGCT AGCCAACACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGGCAGGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCCAGCTGGGTTC 883 TGCATGCGAGCAAAAACCCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCAACGCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGAAGCCGAC 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 889 AAGCGAACGCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACACGCGACACACGGGGGGGCACACACAC		874	AAATGCGATCGCCCCTTATGGAAT	ATTCCATAAGGGGCGATCGCATTT
20 877 TAACGATCCATTCCACGAATGCAG CTGCATTCGTGGAATGGATCGTTA 878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTCGGCC 879 TGGGGAATGCATCAGTTGTTGGCT AGCCAACACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGGCAGGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCCACCTGAGCGTGAAACCTTCGG 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTGGGTTC 883 TGCATGCGAGCAAAAAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCAACGCCGAC 886 TCGCGTGCTCACGTAGCCCATGA TCATGGGCTACGAAGCCCGAC 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACACGCGGACACACGGG 891 CCGTGTCCGTGTTGTCGACAGGCC CGCCTGCACAACACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCCAACACACGGACACGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTTGTGTGCCCGCC 894 CGACTGCGGGATCACCAGATTA TAATCACCCGGTGATCGCCCCCCCCCC		875	CTACCCGAATGGATTGCGGATGGC	GCCATCCGCAATCCATTCGGGTAG
878 GGCCGCACGTACGATTACGCCTTG CAAGGCGTAATCGTACGTGCGGCC 879 TGGGGAATGCATCAGTTGTTGGCT AGCCAACAACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGGCAGGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 25 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTGGGTTC 883 TGCATGCGAGCAAATAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGATGCACCGAC 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCTGGCTGAATATT AATATTCAGCCAGGGGGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTGGCACACGG 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTTGCACAACACGGACACGG 892 CCCCACACGTTGCGCCTAATATT CACATATAGGCGCAACGTGTGGGG 893 GGCGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 896 TACCTCGAGTGCCCTTGATCGGC CCCATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCCTAGCCGAACCA TGGTTCGGCCCCTTGAATTTA		876	AGGGACTGGCAGGTCTCTGCGCGT	ACGCGCAGAGACCTGCCAGTCCCT
879 TGGGAATGCATCAGTTGTTGGCT AGCCAACACTGATGCATTCCCCA 880 TATCTGGGAGTAGCAGGCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTTGGGTTC 883 TGCATGCGAGCAAATAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGT CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGATGAGCCGAC 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACACACGGGACACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACACACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACACGGACACGG 893 GGCGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCC 895 TCGGGACATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 896 TACCTCGAGTGCCGTTGATCGGG CCCCATCACACACGGCCCCCAGGGCGTACCACACACACGGCGCGTACCACACACA	20	877	TAACGATCCATTCCACGAATGCAG	CTGCATTCGTGGAATGGATCGTTA
880 TATCTGGGAGTAGCAGGCCC GGCCCTGCCTGCTACTCCCAGATA 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTTGGGTTC 883 TGCATGCGAGCAAATAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGT CACACTCGATCGACGCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGGCTACGAAGCCGAC 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACTGCAGATTT AAATCTGCAGCACACGGGACAC 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGCACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACACGGGCGCCC 894 CGACTGCGGGATCACCAGATTG CACATATAGGCGCAACGTGGGGG 895 TCGGGACATGACCGGTGATTA TAATCACCGGTGATCCCGCCCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGGC CCCGATCACCGGTCACACGGCCCCCCCCCC		878	GGCCGCACGTACGATTACGCCTTG	CAAGGCGTAATCGTACGTGCGGCC
25 881 CCGAAGGTTTCACGCTCAGGTCGC GCGACCTGAGCGTGAAACCTTCGG 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTGGGTTC 883 TGCATGCGAGCAAATAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGTAGAGCACGCGA 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACACTGGGCACAC 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACACTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCCGCAGTCG 896 TACCTCGAGTGCCCGTTGATCGGC CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCCGAACCA TGGTTCGGCCACTCGAGATTA 40 RTTCATGGGGCTAGCCCGAACCA TGGTTCGCCCCATGAATTA		879	TGGGGAATGCATCAGTTGTTGGCT	AGCCAACAACTGATGCATTCCCCA
25 882 GAACCCAGCTGGGACATCCTTCAG CTGAAGGATGTCCCAGCTGGGTTC 883 TGCATGCGAGCAAATAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGTAGAGCACGCGA 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGCCGAATTACGTACCGGTACACGGCCACTCGAGTCG 896 TACCTCGAGTGGCCGTTGATCGGC CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGAATTA		880	TATCTGGGAGTAGCAGGCAGGGCC	GGCCCTGCCTGCTACTCCCAGATA
883 TGCATGCGAGCAAATAACCCGGAC GTCCGGGTTATTTGCTCGCATGCA 884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGTAGAGCACGCGA 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGC CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGCCCCATGAATTA		881	CCGAAGGTTTCACGCTCAGGTCGC	GCGACCTGAGCGTGAAACCTTCGG
884 AATTGTCCGCCAAACGCTTTTCAG CTGAAAAGCGTTTGGCGGACAATT 885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGTAGAGCACGCGA 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGCACAACTCAACACAGATG CATCTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA	25	882	GAACCCAGCTGGGACATCCTTCAG	CTGAAGGATGTCCCAGCTGGGTTC
885 GTCGGCTTCGAGCGATCGAGTGTG CACACTCGATCGCTCGAAGCCGAC 886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGTAGAGCACGCGA 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTCATGATTA		883	TGCATGCGAGCAAATAACCCGGAC	GTCCGGGTTATTTGCTCGCATGCA
886 TCGCGTGCTCTACGTAGCCCATGA TCATGGGCTACGTAGAGCACGCGA 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA	•	884	AATTGTCCGCCAAACGCTTTTCAG	CTGAAAAGCGTTTGGCGGACAATT
30 887 GGCTTCCGCGATAACGTAATTCGC GCGAATTACGTTATCGCGGAAGCC 888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		885	GTCGGCTTCGAGCGATCGAGTGTG	CACACTCGATCGCTCGAAGCCGAC
888 TGTAGCCGACTAGGGCCGAAGCCC GGGCTTCGGCCTAGTCGGCTACA 889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTCACCCCATGAATTA		886	TCGCGTGCTCTACGTAGCCCATGA	TCATGGGCTACGTAGAGCACGCGA
889 AAGCGAACGCCCTGGCTGAATATT AATATTCAGCCAGGGCGTTCGCTT 890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA	30	887	GGCTTCCGCGATAACGTAATTCGC	GCGAATTACGTTATCGCGGAAGCC
890 TGTCACGCGACGTGCTGCAGATTT AAATCTGCAGCACGTCGCGTGACA 891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 35 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		888	TGTAGCCGACTAGGGCCGAAGCCC	GGGCTTCGGCCCTAGTCGGCTACA
891 CCGTGTCCGTGTTGTCGACAGGCG CGCCTGTCGACAACACGGACACGG 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		889	AAGCGAACGCCCTGGCTGAATATT	AATATTCAGCCAGGGCGTTCGCTT
35 892 CCCCACACGTTGCGCCTATATGTG CACATATAGGCGCAACGTGTGGGG 893 GGCGGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		890	TGTCACGCGACGTGCTGCAGATTT	AAATCTGCAGCACGTCGCGTGACA
893 GGCGGCACAACTCAACACAGATG CATCTGTGTTGAGTTGTGCCCGCC 894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		891	CCGTGTCCGTGTTGTCGACAGGCG	CGCCTGTCGACAACACGGACACGG
894 CGACTGCGGGATCACCGGTGATTA TAATCACCGGTGATCCCGCAGTCG 895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA	35	892	CCCCACACGTTGCGCCTATATGTG	CACATATAGGCGCAACGTGTGGGG
895 TCGGGACATGACCGGTACGGAGTC GACTCCGTACCGGTCATGTCCCGA 896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		893	GGCGGCACAACTCAACACAGATG	CATCTGTGTTGAGTTGTGCCCGCC
896 TACCTCGAGTGGCCGTTGATCGGG CCCGATCAACGGCCACTCGAGGTA 40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		894	CGACTGCGGGATCACCGGTGATTA	TAATCACCGGTGATCCCGCAGTCG
40 897 TAATTCATGGGGCTAGCCGAACCA TGGTTCGGCTAGCCCCATGAATTA		895	TCGGGACATGACCGGTACGGAGTC	GACTCCGTACCGGTCATGTCCCGA
		896	TACCTCGAGTGGCCGTTGATCGGG	CCCGATCAACGGCCACTCGAGGTA
898 ACACTCTAAGCCGATTCCGTTCGA TCGAACGGAATCGGCTTAGAGTGT	40	897	TAATTCATGGGGCTAGCCGAACCA	TGGTTCGGCTAGCCCCATGAATTA
		898	ACACTCTAAGCCGATTCCGTTCGA	TCGAACGGAATCGGCTTAGAGTGT

899 GTGGGCGTGAGTGACAGCACAAA TTTGTGCGTGTCACTCACGCCCAC 900 ACGACTCCTCGGGCAAAGTACGTA TACGTACTTTGCCCGAGGAGTGGT 1				
901 TGTGGTCATGGCGCTACTGTTTTC GAAAACAGTAGCGCCATGACCACA 902 CTTTCGCTAGCCAGAGCGGGTTCC GGAACCCGCTCTGGCTAGCCACAC 903 ACAGGGCGTGTTAGCGTGTACACA TTGTCACAGGCTAACACGCCCTGT 904 GGTACTTCCGGCGTATCGGGCCAC GTGGCCCCGATACGCCGGAAAGTACC 905 GTGGTTTTGTTCACCCTTCTGGG CCCAGAAGGGTGAACAAACCCAC 906 ACGCAATTCCGGCATTACTTACCCG CGGGTAAGTAATGCGGAATTCCGT 907 CGCCTCGACTGCGGTCAAGCACAA TTGTGCTTGACCGCAGTCGAGCCG 908 GTGAAATGGATCCAGAGCACAA TTGTGCTTGACCGCAGTCGAGCCG 909 TATAAACGCTGCCAGGAGCCCTGTTA TAACGGAGCCTTCAGACCACAC 909 TATAAACGCTGCAGGGCTCCGTTA TAACGGAGCCCTGCAGCGTTTATTA 910 GTTATTCAGCGGGCTCTGTAACGG CCCCTTACAAGCCGCCTGAATAAC 911 GGGTTCTAGCGGGGTCCATT TAACGGAGCCCTGCAGCGTTATAAC 912 TTGGGCTCGAGCGGTTCAACCACTA TAGTGGTGTACCGCTCGAACCCC 912 TTGGGCTCGAGCGGTACACCACTA TAGTGGTGTACCGGCTCGAGCCCTGAAACCC 914 GGACCCTTTGACAGCGGCACC GTGCCGCAATCTGTCCTGAAACCGC 915 TAAATTTTATCGCCAGCGGGCCCT ACGCCCCCTGGCGATAAAATTTA 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGGCACCATGCGCCAC 917 TAGGCCTTTGACAT AGTTCAAGCGATCTTGCGTTCGGC 917 TAGGCCTTTGACAT AGTTCAAGCGATCTTGCGTTCGGC 917 TAGGCCATTGCGCCTAAGACCG CCGTCTTAGGCACACATGCCTTTA 920 TAGCCCATCAGCACGC CCGTCTTAGGCCACACTTTCCGCCTAAGACCG CCGTCTTAAGCCGCCTTTAAGCCGCCTAGACCCG 921 TGCTGACACACACTTGGAATCC CGAATCCAGTTGCTCCACTTTCACCACCTTTTCACCAGCCCTTTAAGCCGCCTTTAACCGCCTTTAACCGCCTTTAACCGCCCTTTAACCGCCCTTTACGCCCTAACACCGTTTCCACCCCCTGGCCAATGCCCTTTAACCGCCCTTTACGCCCTAACACCGTTTCCACCCCCGTGCCAATGCCCTTTACGCCCTAACACCGTTTCCACCCCCTGGCAACACACGGCCTGTTTTCTCGCACACCCCTGTTACCACCCCTGTTCCACCCCCTTTCCTCACCACCCCGTTCCACCCCTTTCCTCACCACCCCGTTTCCACCCCCTTTCCTCACCACCCCGTTTCCACCCCCCTTTCCTCACCACCCCGTTTCCACCCCCCTTTCCTCACCACCCCCTTTCCTCACCAC		899	GTGGCGTGAGTGACACGCACAAA	TTTGTGCGTGTCACTCACGCCCAC
992 CTTTCGCTAGCCAGAGCGGGTTCC 903 ACAGGGCGTGTTAGCGTGACAA 1TGTCACACGCTAACACGCCCTGT 904 GGTACTTCCGGCGTATCAGCGCC 905 GTGGGTTTTGTTCACCCTTCTGGG CCCAGAAGGGTGAACAACCCCC 906 ACGCAATTCCGCATTACTCTCGGG CCCAGAAGGGTGAACAAACCCAC 907 CGCCTCGACTGCGGTCACACACA 1TGTGCTTGACCCGATACTGCGGCGAAGTACCCC 907 CGCCTCGACTGCGGTCAAGCACAA 1TGTGCTTGACCGCGTCAGGCCG 907 CGCCTCGACTGCGGTCAAGCACAA 1TGTGCTTGACCGCAGTCCAGGCC 908 GTGAAATGGATCACACAA 1TGTGCTTGACCGCAGTCCAGGCC 909 TATAAACGCTGCAGGCCAA 1TGTGCTTGACCCGAGTCCAGGCC 909 TATAAACGCTGCAGGGCCA 1TGCCCTTCTGGATCCATTTCAC 900 TATAAACGCTGCAGGGCCAA 1TGTGCTTACAGCGCGCTTACAACGCGCCCTGCAGACCA 911 GGGTTCTAGCGGGCCTTGTAACGGG CCCGTTACAAGCCGCCTGAATAAC 911 GGGTTCTAGCGGGCGTTCAAGTT AACTGAACGCGCCCTGAAACCC 912 TTGGGCTGAGCACACGATAACACGCGCCACGCTAGAACCC 913 CCGTCTTCAGGACAACCGGTACACCACTA 146 GGACCCTTTGACAGGGCCACCACTA 147 GGGCCGCAACACGGTACACCACTA 148 GGACCCTTTGACAGGAGCCACGCTAGAACCC 914 TAAATTTTATCGCCAGGCGCGCCC 146 GGCCGAACGCAAGATTGCCC 147 CAACACACAGGCGCACCACTA 148 GGACCCTTTGACACACACGACGCACCACTACACCCACACACGCCCCAACACACGCACACACA		900	ACGACTCCTCGGGCAAAGTACGTA	TACGTACTTTGCCCGAGGAGTCGT
5 903 ACAGGGCGTGTTAGCGTGTGACAA TTGTCACACGCTAACACGCCCTGT 904 GGTACTTCCGGCGTATCGGGCCAC GTGGCCCGATACGCCGGAAGTACC 905 GTGGGTTTTGTTCACCCTTCTGGG CCCAGAAGGGTGAACAAAACCCAC 906 ACGCAATTCCGCATTACTCCG CGGGTAAGTACTGCGGAATTGCGT 907 CGCCTGACTGCGGTCAAGACACAA TTGTGCTTGACCGCAGTCGAGGCGGAATTACCT 908 GTGAAATGGATCCAGAGAGGGCCA TGGCCTCTCTGGATCCAGTCAGAGCGC 909 TATAAACGCTGCAGGGCTCCGTTA TAACGGAGCCCTGCAGCGTTTATA 910 GTTATTCAGGCGGCTTTCAACGGG CCCGTTACACACGCCTGCAGCCTTATACA 911 GGGTTCTAGCGGGGTTCAGTT AACTGAACGCCCCTGAAGACCC 912 TTGGGCTGAGCGGTACACCACTA TAGTGGTGTCACAGCCCCTAAACAC 914 GGACCCTTTGACAGACGGACCACTA TAGTGGTGTCACCGCTCGAGCCCTAA 15 913 CCGTCTTCAGGACAACCACTA TAGTGGTGTACCGCTCGAGCCCAA 16 914 GGACCCTTTGACAGATTGCG CGCATACCGTTGCAGCCCAA 915 TAAATTTTATCGCCAGGCGGCCCT 916 GCCGAACGCAAGACTCGTTGAACT 917 TAGGCCATAGACCAGC 918 CAAACCACAGCTTACAGACTG CCGCTTACAGCGCAATTTGCGTCCGC 917 TAGGCCATTGGTGCCCTTAAGACGG CCGCTCTGCGCATAAAATTTA 920 TAGGCCAACGATCGCTTGAACT AGTTCAAGCGATCTTGCGTCCGC 918 CAAACCACAGCTTACAGGCTGCT ACGCCCCTGTGCCCAATTGCCTA 920 TAGCGCATTCACAGCTGCT ACGCCCGCTGGCAATTGCCTTA 921 TGCTGACACAACTGGCACGGTAGCA TGCTCAAGTTGTCATGCGCTA 922 TGCTGACACAACAGGCCTTTCCC CGAACCGCTCTGCATTGCACA 922 CCCTTAACGGCATCACCTTTGAACT 921 TGCTGACACAACAGGCCTTTCCC 0GAACGCCTGTTTGATCAGCCG 0GCCCGCCTTTTTTAACGCATCCCTTTCC 0GCCATTTTTAACGCATTTCCCCGCCCTTTTTTTTTTTTT		901	TGTGGTCATGGCGCTACTGTTTTC	GAAAACAGTAGCGCCATGACCACA
904 GGTACTTCCGGCGTATCGGGCCAC 905 GTGGGTTTTGTTCACCCTTCTGGG 906 ACGCAATTCCGCATTACTTCCCG 906 ACGCATTTCCGCATTACTTCCCG 907 CGCCTCGACTGCGGTCAAGCACAA 116 908 GTGAAATGGATCCAGAGGGGCCA 10 908 GTGAAATGGATCCAGAGGGGCCA 10 908 TATAAACGCTGCAGGGCCCATGCCTCTTGGATCCATTTCAC 10 909 TATAAACGCTGCAGGGCTCCGTTA 10 910 GTTATTCAGGCGGCTCTGTAACGGG 11 ACCGTACACACCCCCA 11 ACCGGACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		902	CTTTCGCTAGCCAGAGCGGGTTCC	GGAACCCGCTCTGGCTAGCGAAAG
905 GTGGGTTTTGTTCACCCTTCTGGG CCCAGAAGGGTGAACAAAACCCAC 906 ACGCAATTCCGCATTACTTACCCG CGGGTAAGTAATGCGGAATTGCGT 907 CGCCTCGACTGCGGTCAAGCACAA TTGTGCTTCACCGCAGTCGAGGCG 908 GTGAAATGGATCCAGAGAGGGCCA TGGCCCTCTCTGGATCCATTTCAC 909 TATAAACGCTGCAGGGCTCCGTTA TAACGGAGCCCTCCAGCGGTTTATA 910 GTTATTCAGCGGGCTTCTACAGGG 911 GGGTTCTAGCGGGCTTCAGTT AACGGAGCCCTGAAGACCC 912 TTGGGCTCAGCGGTTCAGTT AACTGAACGCGCCTGAAGACCC 913 CCGTCTTCAGGACAACGGTATAGC CCCGTTACAAGCCGCCTGAGACCC 914 GGACCCTTTCAGGACAACGGTATGCG CGCATACCGTTGTCCTGAAGACGG 915 TAAATTTTATCGCCAGGCACACTA TAGTGGTGTACCGCTCGAGCCCAA 916 GCCGAACGCAAGATTGCGGCAC GTGCCGCAATCTGTCAAGAGCGG 917 TAGGCCATTGGACAGATTGCGGCAC AGCGCCCCAATCTGTCAAGAGCGG 918 CCAAACCAAGATCGCTTGAACT AGCGCCCCCTGAGCCAATCTTC 919 TAGGCCATTGGTGCCCTAAGACGG CCGTTTAGGGCACCAATGCCTT 919 TAAACGGAGCTTGCAGCA AGCGCACCCTTTAGGGCACCAATGCCTT 919 TAAACGGAGACTGCCTTAAGACGG CCGTCTTAGGGCACCAATGCCTT 911 TAAACGGAGACTGCCTTAGACT AGCGCAGCCTGTAGACTTTC 912 TAAACGGAGACTGCCTTAAGACTG CCGTCTTAAGCTGTTCGTT 911 TAAACGGAGACTGGCACCGTAGCA TGCTACCAGTTTGCTTTGTTCAGCA 921 TGCTGCACACACACTTGGAATCG CGATTCCAAGTGTGTCCCGCTTAA 922 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGTCCCGCTTAA 921 TGCTGACACAAACGAGCCGTTTCCC GTGGACAGTCAATGCCGTTTAACCG 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCC 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCC 922 TTCCACGGCCCTTGTATTACGGATA ATTCCCTAATACACGGCCCTTGAACACAAACGAGCCGTTTCCACGCCCTTGGCAACCGCCCTTCGGCAACCGCCTTTCGGAACACACAC	5	903	ACAGGCGTGTTAGCGTGTGACAA	TTGTCACACGCTAACACGCCCTGT
906 ACGCATTICCGCATTACTTACCCG CGGGTAAGTAATGCGGAATTGCGT 907 CGCCTCGACTGCGGTCAAGCACAA TTGTGCTTGACCGCAGTCGAGGCG 908 GTGAAATGGATCCAGAGAGGGCCA TGGCCCTCTGGATCCATTTCAC 909 TATAAACGCTGCAGGGGCTCCGTTA TAACGGAGCCCTGCAGCGGTTTATA 910 GTTATTCAGCGTGCGGTTGAACGAG 911 TGGGTTCTAGCGGTTGAACCACTA TAACGAACCGCCTGAATAAC 912 TTGGGCTCGAGCGGTACCACTA TAACGAACCGCCACGATAAC 913 CCGTCTTCAGCAGCACACCACTA TAGTGAACCCCCCCAACCACCACA 914 GGACCCTTTGACAGACACGGTATGCC CGCATACCGTTGCAGACCCC 915 TAAATTTTATCCCCAGGCGGCGCC ACCCCAACCGTTGTCCTGAAGACCC 916 GCCGAACCACAGATTGCGC CGCATACCGTTGCAAGAGCGG 917 TAGGCCATTGACAACACACTA TAGTGCAGCGCCCAACCGTTGAACCACACACACACACACA		904	GGTACTTCCGGCGTATCGGGCCAC	GTGGCCCGATACGCCGGAAGTACC
997 CGCCTCGACTGCGGTCAAGCACAA TTGTGCTTGACCGAGTCGAGGCG 908 GTGAAATGGATCCAGAGAGGGCCA TGGCCCTCTCTGGATCCATTTCAC 909 TATAAACGCTGCAGGGCTCCGTTA TAACGGAGCCCTCGAGCGTTTATA 910 GTTATTCAGGCGCCTTGTAACGGG CCCGTTACAGCCCCCTGAATAAC 911 GGGTTCTAGCGGCGTTCAGTT AACTGAACGCCGCCTGAATAAC 912 TTGGGCTCGAGCGGTTCAGTT AACTGAACGCCGCCTGAATAAC 913 CCGTCTTCAGGACAACGCTAT TAGTGGTGTACCGCTCGAGCCCAA 15 913 CCGTCTTCAGGACAACGCTATGCG CGCATACCGTTGAAGACCC 914 GGACCCTTTGACAGATTGCGGCAC GTGCCGCATCCTGAAGACCG 915 TAAATTTTATCGCCAGGCGGCGCT AGCGCCGCATCCTGTCAAAGGGTCC 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTTGCGTTCGGC 917 TAGGCCATTGGTGCCCTAAAACGG CCGTCTTAAGGCTCCTCGAGCCCAA 917 TAGGCCATTGAGCTGCGC CCGCTTTAAGGCACCAATGGCCTA 918 CAAACCACAGCTTACAGCGT CCGCTTTAAGGCACCAATGGCCTA 920 TAGCGCGCATCACACTTGGATCG CGATTCCAAGTGTGGTTTG 920 TAGCGCGCATCACACTTGGATCG CGATTCCAAGTGTGATCCGGTTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTGTTAGCTG 922 CGCTTAACGGCTGCACCGGTTCCG GTGACACAGCCTTTTGACCA 922 TTCCACGGCCGTTTAACCGG CGGAACCGCTTTGATCACCA 922 TTCCACGGCCGTTTAACCGG CGGAACCGCTCTTTGTCACCA 924 TTTATGCCCTTGCCGAGGAAGACT ATCCCTAATACACGGCCGTGGAA 925 AGTGCCGAGAATAGGGATCACATTTCCCCGAGCACGGCATAAA 926 AGTGCCGAGAATAGGGGTTTCCCC GTGACACAATGCCGTTAAGCG 927 CCGCCATTCCGAGGAACAAC 927 CCGCCATTCCGAGACAGACC TCGCCATCCCCTATCTCGGCACT 928 TGACGGTGAAAGTCGATTGCAAC 927 CCGCCATTCCGAAGAGACC TCGCCAATCCACTTTCCCGCACCGGT 928 TGACGGTGAAAGTCGATTGCAA 927 CCGCCATTCCGAAGAGACCACCCCTTCCGAATGGCGG 928 TGACGGTGAAGTCGATTGCAA 929 ATATGCGTCACCACCCGGTTCCGA TCGCAACCGGTGGAACCACTATA 930 CCATCAGTGAAGCCGAATTCGAAT 931 CATATGTGCTTGCAAGAGCCGAATAA 1TTCCGCCTTCCCAAGCCACCCCTTCACTCTCCTCAAGCCAATGG 931 CATATGTGCTTGCAAGAGCCAACACATTTCAACACGGCCTTCAAACACAATTGGATTTCACCAAGCCAACAATTGGATTTCACCAAGCCAACAATTGGAATTCAACCACCCCTTCAAGCAACAATTGGAATTCACCACCCCTTCAAGCAACAATTGGAATTGCAACCACCCCTTCAAAGCAGAAATAGCAGAAACAAT 1TACCGCTTCTTGGAAGCCTTCAAAGCAGAACAATTTCAACAGGCGGAATGACTTTCAACAACAATCGAATTGCAATTCGAATTCAACCCCCTCTTCAAAGCAGAAACAAT 1TATCGCCTTTCTTGGAAGCCGAATTCAACAGCACAATTGGAGAATTGGAGCAACAATTTGAACAAGCAGAATTGGAGAATTGCAGAACAATTTCAACAGGCGAATGCAACAATTTCAACAGGCGAATGCAATTCAACAATCGAGCAATTTCAA		905	GTGGGTTTTGTTCACCCTTCTGGG	CCCAGAAGGGTGAACAAAACCCAC
10 908 GTGAAATGGATCCAGAGAGGGCCA TGGCCCTCTGGATCCATTTCAC 909 TATAAACGCTGCAGGGCTCCGTTA TAACGGAGCCCTGAGCGTTTATA 910 GTTATTCAGGCGGCGCTTGTAACGGG CCCGTTACAAGCCGCCTGAATAAC 911 GGGTTCTAGCGTGCGCGTTCAGTT AACTGAACGCGCACGCTAGAACCC 912 TIGGGCTCGAGCGGTACACCACTA TAGTGGTGTACCGCCCCAA 15 913 CCGTCTTCAGGACAACGGTATGCG CGCATACCGTTGAAGACCG 914 GGACCCTTTCAAGAACACACTA TAGTGGTGTACCGCTCGAAGACCG 915 TAAATTTTATCGCCAGGCGCCA GTGCCGCAATCTGTCAAAGAGGGC 916 GCCGAACGCAAGATTGCGCAC GTGCCGCAATCTGTCAAAGAGGGC 917 TAGGCCATTGGTGCCCTAAGACGG CGCTTTAAGCGATCTGTCAAAGAGGTC 918 CAAACCACAGCTTACAGCTGCAT AGCCGCCCCTTTAAGCGATCTGTCAAAGGGTCC 919 TAAACGGAGACTGGCCCTAAGACGG CCGTTTAAGCGATCTGTCACATTGGCTTCGGC 910 TAACGGAGACTGGCCCTAAGACGG CCGTTTAAGCTGTGGTTTG 911 TAACGGAGACTGGCACGGTAGCA TGCTACCGTTCAAGTGTGGTTTG 912 TAGCGCGCATCACACTTGGAATCC CGATTCCAAGTGTGATGCGCTTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTCGTTTTGTCACCA 922 CGCTTAACGGCATTGAACTGC CGATTCCAAGTGTAGTGCGCCTA 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTTAAGCG 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAA 925 AATGCCGAATAGGGAACTAG TCGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCCTATCTCCGCAATGCGC 927 CCGCCATTCCGAAGAGGATGATG CATCATCCACTCTCCCGAATGCGG 928 TGACCGGAAGAGATGAGTAG CTCGCCAATCCCACTTCACCGCACTGCAATGCGCGCATAAA 929 ATATGCGTCACACCCCGGTTCCGA TCGCAACCGGCTTCACCGTCA 929 ATATGCGTCACACCCCGGTTCCGA TCGCAACCAGCCAATATG 930 CCATCAGTGAAAGAGGATTGCCAC GTCAACCAGCCAAGCACATATG 931 CATTATGTCTTGGCTTGCGAACTGCT AGCAGTTCACACTCTCCCAAATCG 932 TCTCGCTTTGGAACCCCCCGGTTCCGA TCGCAACCACACCCCTTCACTGATGG 931 CATTATGTGCTTGCGAACTGCT AGCAGTCAAGCACAATATG 932 TCTGCTTTTGGAACCCTCCACTCGTAT TAACGAGGCAAGCCACAATATG 933 CCATCAGTGAAGACGCGGAATA TTAACGAGGCAAGCACAATATG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGAAGCCACAATTCA 935 ATTGTTTGCAAGAACGCGGAATT TAACGAGGCGAAGCCACAATTCA 936 TGAAATGTGTCTCCACATCGCAC CTGCGCTCCGATACTCCCTCTTAAAGGGAAACCATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCAACAATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATTGC		906	ACGCAATTCCGCATTACTTACCCG	CGGGTAAGTAATGCGGAATTGCGT
999 TATAAACGCTGCAGGGCTCCGTTA TAACGGAGCCCTGCAGCGTTTATA 910 GTTATTCAGGCGGCTTGTAACGGG CCCGTTACAAGCCGCCTGAATAAC 911 GGGTTCTAGCGTGCGCTTCAGTT AACTGAACCGCCCTGAATAAC 912 TTGGGCTCGAGCGGTACACCACTA TAGTGGTGTACCGCTCGAGCCCAA 913 CCGTCTTCAGACAGCGGTACACCACTA TAGTGGTGTACCGCTCGAGCCCAA 15 913 CCGTCTTCACAGACAACGGTATGCC CGCATACCGTTGCTGAAGACCG 914 GGACCCTTTGACAGATTGCGGCAC GTGCCGCAACTCTGTCAAAGACGG 915 TAAATTTTATCGCCAGGCGGCGCT AGCCGCCATCTGCAGACCGC 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGGATACAATTTA 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCCTGCGGCATAAAATTTA 917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGCACCAATGCCCTA 918 CAAACCACAGCTTACAGGCTGCGT ACGCAGCCTGTAAGCTGTGGTTTG 919 TAAACGGAGACTGGCACGGTAGCA TGCTACCGTGTCAGTTTG 920 TAGCGCGCATCACACTTGGAATCC CGATTCCAAGTGTGATGCGCCTA 921 TGCTGACACAAACGAGCCGTTTCC CGAAACGGCCTGTTTGTTCACCA 922 CGCTTAACGGCATTGCACTTCCAC GTGGACAGTCAATGCCGTTAAGCG 25 923 TTCCACGGCCGTGTATTACAGGATA TATCCGTATACACGGCCGTTGAGCA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACTGCACTAAA 925 AGTGCCGAATAGAGGGACTGGCG CGCCCAGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCCTATCTCCGGCAACTGCACT 927 CCGCCATTCGGAAGAGACT AGTCTTCCTCGGCAACGGCATAAA 927 CCGCCATTCGGAAGAGAGATAG TCGTCCCCGAGGCCGTGCAACTAG 927 CCGCCATTCGGAAGATGGAGATGA TCGTCCCCTATCTCCGAATGCGGT 928 TGACGGTGAAAGTGGATGT CATCATCCATCTTCCCAATGCGGC 929 ATATGCGTCACCACCCGGTTCCCA TCGCAACCGGCTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCCA TCGCAACCGGCTTCACCGTCA 930 CCATCAGTGAAGGGGTTGCTCCA TCGCAACCAGCCATATG 931 CATTATGTCTTGGCTTGCGATGC GTCGCAACCACCCCTTCACTGATGG 931 CATTATGTGCTTGGCTTGCGATGC TCGCAACCAACCCCTTCCACTGATGG 932 TTCGCTTTGGAACCCTCCTCGTTA ACCAGGCTTCCAAATCC 933 CGATTTGGTCAAGAAGGCGTTCCCAATTCCAAACTCA 934 ATCAGAGGCCTTCCCCCTCGTTA TAACGAGGCGTTCCCAATTCCAATCCA 935 ATTGTTTGCAAGAAGCCGGAAAT ATTACCCCTTCTTTGAACCAAATCC 936 TGAAATGTGTTCGCACTCCCCCTCGTTA TAACGAGGCGAAGCCAATTTCA 937 GCGGGCGATGCTCCTCTAAAGGGTA TACCCTTTTAAGGAGCCTTCAATGCCGCCTCGAT 936 TGAAATGTGTCTCCACATCGCAC CTGGGATGTGCCACACACAATTTCA 937 GCGGGCGATGCTCCTAAAGGGTA TACCCTTTAAGGAGCATTTCCA 937 GCGGGCGATGCTCCAATCCCGTCCGTCAACCCCTTCAAACCGCAACACATTTCCA 938 CCGCAATCTCCCATCC		907	CGCCTCGACTGCGGTCAAGCACAA	TTGTGCTTGACCGCAGTCGAGGCG
910 GTTATTCAGGCGGCTTGTAACGGG CCCGTTACAAGCCGCCTGAATAAC 911 GGGTTCTAGCGTGCGCTTCAGTT AACTGAACGCGCACGCTAGAACCC 912 TTGGGCTCGAGCGGTACACCACTA TAGTGGTGTACCGCTCGAGCCCAA 913 CCGTCTTCAGGACAACGGTATGCG CGCATACCGTTGTCCTGAAGACGG 914 GGACCCTTTGACAGATTGCGGCAC GTGCCGCAATCTGTCAAAGGGTCC 915 TAAATTTATCGCCAGGCGCGCCT AGCGCCGCATCTGTCAAAGGGTCC 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTTGCGTTCGGC 917 TAGGCCATTGGTGCCCTAAGACGG CCGTTTTAGGGCACCAATGGCCTA 918 CAAACCAAGCTTACAGGCTGCGT AGCGCCGCTGGCGATAAAATTTA 919 TAAACGGAGACTGGCACGGT ACGCACCTGTAAGCCGTTGGTTTG 919 TAAACGGAGACTTGCACGTTGAACT AGTTCAAGCGATCTCCGTTTG 920 TAGCGCGCATCACACTTGGAATCC CGATTCCAAGTGTGATGCCGCTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCCTGATGACCTA 922 CGCTTAACGGCATTGACTGCCAC GTGGACAGTCAATGCCGTTAAGCG 922 CGCTTACCGGCATTGACTGCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCATTGACTGCCAC GTGGACAGTCAATGCCGTTAAGCG 924 TTTATGCCGTTGCCAGGAAGACT AGTCTTCCTCGGCAACGCCATGAAA 925 AGTGCCGAGATAGGGGAAGACT AGTCTTCCTCGGCAACGCCATGAAA 926 CTAGTCTCCACGCCCTGGGACGAC TCGTCCCCTATCTCGGCACT 927 CCGCCATTCGGAAGACTGACTGCACCCCTTATCTCGGCACT 928 TGACGGTGAAAGTCGATTGCGAAG 927 CCGCCATTCGGAAGATGGCGCACTCCCCTATCTCGGCACT 928 TGACGGTGAAAGTCGATTGCGAAG 929 ATATGCGTCCACCCCCTCGGGACCAA TCGTCCCCAATCCACTTTCACCGTCA 929 ATATGCGTCACACCCCGGTTCCGA TCGCAACCCACTTCACTGATGG 931 CATCATGTGCTTGCAATGCAAGCAAGCAATATGCGGTGAACGCATATGCGTTCGAACGCATTCACCACCCCGTTTCCGAACCACCCCTTTCACTGATGG 931 CATCATGTGCAACACCCCGGTTCCGA TCGCAACCCCCTTCACTGATGG 932 TCTCGCTTTGGAAGCCTGAACTGCT AGCAGCTAACCACCAAATCGA 933 CGATTTGGTCAAGAGCCGGAAAT ATTCCGCCTTCTTGACCAAACCAG 934 ATCAGAAGGCCTTCACACTCGCACCCCTTTTAACGAGGCGGAAAGCACAATATG 935 ATTGTTTGTCAAGCAGACCTCTGTTA 936 TGAAATGTGTCTCGCACCCCCCTGTTTA 937 ATCAGAGGCCTTCCCACCCCCTGTTA 938 ATTGTTCCTTTGCACCACTCCGCCTCGTTA 937 GCGGGCGATGCTCCTTAAAGGGGTA TACCCTTTAAGGAGCACCACAATTCA 937 GCGGGCGATGCTCCTTAAAGGGGTA TACCCTTTAAGGAGCACCACACACTTTCA 937 GCGGGCGATGCTCCTTAAAGGGGTA TACCCTTTAAGGAGCACCACAATTTCA 937 GCGGGCGATGCTCCTTAAAGGGGTAACCCCTTTAAAGGAGCACCCCCCCC	10	908	GTGAAATGGATCCAGAGAGGGCCA	TGGCCCTCTCTGGATCCATTTCAC
911 GGGTTCTAGCGTGCGCGTTCAGTT ACTGAACCGCCACGCTAGAACCC 912 TTGGGCTCGAGCGGTACCACTA TAGTGGTGTACCGCTCGAGCCCAA 913 CCGTCTTCAGGACAACGGTATGCG CGCATACCGTTGTCCTGAAGACGG 914 GGACCCTTTGACAGATTGCGGCAC GTGCCGCAATCTGTCAAAGAGGGTC 915 TAAATTTTATCGCCAGGCGGCGCT ACCCGCCCTGGCGATAAAATTTA 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTTGCGTTCGGC 917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGGCACCAATGGCCTA 918 CAAACCACAGCTTACAGGCG CCGTCTTAGGGCACCAATGGCCTA 919 TAAACGGAGACTGGCACGGT ACGCAGCCTGTAAGCTGTTGGTTTG 919 TAAACGGAGACTGGCACGGTAGCA TGCTACCGTTCAGGTTTGG 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGATGCCGTTA 921 TGCTGACACAAACGAGCCGTTTCC CGAAACGGCTCGTTTGTTCACCA 922 CGCTTTACGGCATTTCCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTTATATCAGGATA TATCCGTAATACACGGCCGTTGAAC 924 TTTATGCCGTTGCCAC GTGGACAGTCAATGCCGTTAAGCG 925 AGTGCCGAGATAGGACT AGTCTTCCTCGGCACCGCCT 926 CTAGTTCCCAGGGGACACAC TGCTCCCCTATCTCGGCACT 927 CCGCCATTCGGAAGACT AGTCTTCCTCGGCACCGCCT 928 TGACGGTGAAAGTCGATTGCACAC 929 ATATGCGTCCACCCCTCGGGACCAA TCGTCCCCTATCTCGCACT 929 ATATGCGTCACACCCCGTTCCGA TCGCAACCGGCGTGGAACTAG 929 ATATGCGTCACACCCCGTTCCGA TCGCAACCGGTTGACCGCT 930 CCATCAGTGAAAGTCGATTGCAAG CTTCGCAATCGACTTTCACCGTCA 931 CATATGTGCTTGCATTGCAAG TCGCAACCCCTTCACTGATGG 931 CATATGTGCTTGCATTGCAATGC TCGCAACCCCTTCACTGATGG 931 CATATGTGCTTGCAATGCAATGC TCCACCCAATCGACTTTCACCGTCA 932 TCTCGCTTTGGAAGGCCTGAACTGCT AGCAGTTCAAGCCAAACCA 933 CGATTTGGAAGCCTGAACTGCT AGCAGTTCAAGCCAAACCA 934 ATCAGAGGCCTTCAGACTGCT AGCAGTTCAAGCCAAACCA 935 ATTGTTGTCTTGGAAGCCTGAACTGCT AGCAGTTCAAGCCAAACCA 936 TGAAATGTGTCTCGCACTCGCAT TAACCAGGCGGGAAGGCCTCTGAT 937 ATCAGAGGCCTTCCCGCCTCGTTA 7AACCAGAGCCTTCAAACCAACCAACCACCAACCACACAATTCA 937 GCGGGCGATGCTCCTTAAAAGGGTA TACCCTTTAAAGGAGCACACAATTCA 937 GCGGGCGATGCTCCTTAAAAGGGTA TACCCTTTAAAGGAGCACACAATTCA 937 GCGGGCGATGCTCCTTAAAAGGGTA TACCCTTTAAAGGAGCACACAATTTCA 937 GCGGGCGATGCTCCTTAAAAGGGTA TACCCTTTAAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCAGCTACCCCT ACGCTCCAAGCAACAATTTCA		909	TATAAACGCTGCAGGGCTCCGTTA	TAACGGAGCCCTGCAGCGTTTATA
912 TTGGGCTCGAGCGGTACACCACTA TAGTGGTGTACCGCTCGAGCCCAA 913 CCGTCTTCAGGACAACGGTATGCG CGCATACCGTTGTCCTGAAGACGG 914 GGACCCTTTGACAGATTGCGGCAC GTGCCGCATCTGTCAAAGACGG 915 TAAATTTTATCGCCAGGCGGCGCT AGCGCCGCCTGGCGATAAAATTTA 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTGCGTCGGC 917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGGCACCAATTGCCTA 918 CAAACCACAGCTTACAAGCGT CCGTCTTAGGGCACCAATTGCCTTA 919 TAAACGGAGCTTGCACT ACGCAGCCTGTAAGCTGTGTTTG 919 TAAACGGAGCTTGCACA TGCTACAGTGTCCGTTTA 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAGTGTCAGTTTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGTCTCATTTAGCGA 922 CGCTTAACGGCATCTCCAC GTGGAACGGTCAATTGCCATAACAG 922 CGCTTAACGGCATTGACTGCAC GTGGACAGTCAATTGCCGTTAAGCA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACTAAA 925 AGTGCCGAGATAGGGGACTGGGCG CGCCCAGTCCCCTTACTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGCGTGGAACTAG 927 CCGCCATTCGGAAGAGTGGATG CATCATCCATCTTCCGAATGCGG 928 TGACGGTGAAAGTGGATGT CATCATCCATCTTCCGAATGCGG 929 ATATGCGTTACCGATTCCGAAG CTTCGCAACCGGTTCACGTCA 920 ATATGCGTTCACCGCTCTCGGAAG CTTCGCAATCGACTTTCACGGTCA 921 TCACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACGGTCA 922 TCTGCTTTGGAAGATGGATG CATCATCCATCTTCCGAATGGCGG 923 TCACGTCACCACCCGGTTCCCA TCGGCACCCCTTCACTGATGG 921 TCACGTGAAGGGTTTCCCAA TCGGAACCCGGTTGACGCATAT 930 CCATCAGTGAAGGGTTTCCCAA TCGGAACCCGGTGGAACCAATTG 931 CATATGTGCTTGGCATGCA GTCATCGCAAGCCAACCACTTATGG 931 CATATGTGCTTGGATGCAA TTTCCGCATTCACTGATGGAAC 932 TCTGCTTTTGGAAGCCTGAACTGCT AGCAGTTCAGGCTTTCAAAGCAGA 35 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCTTTCTTCAAAGCAGA 36 TAAAATGTGTCAGACCCGCTCCGTTA TAACGAGGCGGAAAGGCCTTCAATGCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAACACACTTTCA 935 ATTGTTGTCGTTGCCACCCCTTCCTTAAAGGGGAACACAATTCA 936 TGAAATGTGTCGACCCGCTCCTTAAAGGGGTA TACCCTTTCAAGGACACAACAAT 936 TGAAATGTGTCGGACCCGTT AGACCCGTTCAGGACACACACTTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCGTCAACCCTT ACCGTTCAGACCACACCCCTTCATGATGCGACACACACAC		910	GTTATTCAGGCGGCTTGTAACGGG	CCCGTTACAAGCCGCCTGAATAAC
913 CCGTCTTCAGGACAACGGTATGCG CGCATACCGTTGTCCTGAAGACGG 914 GGACCCTTTGACAGATTGCGGCAC GTGCCGCAATCTGTCAAAGAGGGTCC 915 TAAATTTTATCGCCAGGCGGCGCT AGCGCCGCCTGGCGATAAAATTTA 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTTGCGTCGGC 917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGGCACCAATGGCCTA 20 918 CAAACCACAGCTTACAGGCTGCGT ACGCAGCCTGTAAGCTGTTGTG 919 TAAACGGAGACTGCACGGTAGCA TGCTACAGTGTGATGCGCTA 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGATGCGCGTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACAGGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACAGGAGCCGTTTCG CGAAACGGCTCGTTAGCGA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCCGCAACGGCATAAA 925 AGTGCCGAGGACGACTAGACT AGTCTCCCGCAACGGCATAAA 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCCTATCTCGGCACT 927 CCGCCATTCGGACGAGAGACT AGTCTTCCCGGAACGGCATAGA 927 CCGCCATTCGGACGATGAGTGATG CATCATCCATCTCAGCACGG 927 CCGCCATTCGGACGATGAGTGATG CATCATCCATCTCCGAATGGCGG 927 CCGCCATTCGGACGATGAGTGATG CATCATCCATCTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGTTGACGATAT 930 CCATCAGTGAAGGGGTTGCTGCA TGGCAGCACACCCCTTCACTGATGG 931 CATCATGTCTTGGCTTGCGATGAC TTCGCAACCCACTCCCTATTC 932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGCCAAGCCAA		911	GGGTTCTAGCGTGCGCGTTCAGTT	AACTGAACGCGCACGCTAGAACCC
914 GGACCCTTTGACAGATTGCGGCAC GTGCCGCAATCTGTCAAAGGGTCC 915 TAAATTTTATCGCCAGGCGGCGCT AGCGCCCCTGGCGATAAAATTTA 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTTGCGTCGGC 917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGGCACCAATGGCCTA 918 CAAACCACAGCTTACAGGCTGCGT ACGCAGCCTGTAAGCTGTGTTTG 919 TAAACGGAGACTGGCACGGTAGCA TGCTACCGTGCAGTTTCAGGCACGTTACAGCGGTAGCA TGCTACCGTGCAGTTTCAGGCCTAGACCAGCTTACAGCTTGCAACCGGTAGCA TGCTACCGTGCCAGTCTCCGTTTA 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGATGCGCGCAG 921 TGCTGACCACAACGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTGGAA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAA 925 AGTGCCGAGATACGAGGAAGACT AGTCTTCCTCGGCACTGCCAGCCCCTCGGGACGA TCGTCCCCATCTCCGGCACTGCCCTAGCACACACACACAC	,	912	TTGGGCTCGAGCGGTACACCACTA	TAGTGGTGTACCGCTCGAGCCCAA
915 TAAATTITATCGCCAGGCGGCGCT AGCGCCCCTGGCGATAAAATTTA 916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTTGCGTCGGC 917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGGCACCAATGGCCTA 918 CAAACCACAGCTTACAGGCTGCGT ACGCAGCCTGTAAGCTGTGTTG 919 TAAACGGAGACTGGCACGGTAGCA TGCTACCGTGCCAGTCTCCGTTTA 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGATGCGCCAG 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACGGCATTGACTGCCAC GTGGACAGTCAATGCCGTTAAGCG 922 CGCTTAACGGCATTGACTGCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTGGAA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAA 925 AGTGCCGAGATAGGGGACTGGGCG CGCCCAGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCCTATCTCCGCACT 927 CCGCCATTCGGAAGATGGATGATG CATCATCCATCTTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCA TGGCAGCAACCCCTTCACTGATGG 931 CATATGTGCTTGCGATGAC GTCATCGCAAGCCAAGCACATATG 932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGTTCAGCAGCAACCACTATG 933 CGATTTGGTAAGAGGCGGAAAT ATTCCGCCTTCAAAGCAGA 35 933 CGATTTGGTCAAGAAGGCGGAAAT ATTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAGGCCTCTGAT 935 ATTGTTGTCTTCCGCACTCGCAT TAACGAGGCGGAAGGCCTCTGAT 936 TGAAATGTGTCTGCACACCCGGTTCAAGCAGAACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCAACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCAACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCAACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGCCCCCCCCCC	.15	913	CCGTCTTCAGGACAACGGTATGCG	CGCATACCGTTGTCCTGAAGACGG
916 GCCGAACGCAAGATCGCTTGAACT AGTTCAAGCGATCTTGCGTTCGGC 917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGGCACCAATGGCCTA 918 CAAACCACAGCTTACAGGCTGCGT ACGCAGCCTGTAAGCTGTGTTTG 919 TAAACGGAGACTGGCACGGTAGCA TGCTACCGTGCAGTCTCCGTTTA 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGATGCGCGCTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTGGAA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAA 925 AGTGCCGAGATAGGGGACGA TCGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCCTATCTCGGCACT 927 CCGCCATTCGGAAGATGGATGGT CATCATCCATCTTCCGAATGCCG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGTGGACGATAT 930 CCATCAGTGAAGGGGTTGCTGCCA TGGCAGCCAAGCACCATATG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCACACCATTATG 932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGTTCAGCAGCAAGCACATATG 933 CGATTTGGTCAGAAGAGCGGAAAT ATTTCCGCCTTCACTGATGG 934 ATCAGAGGCCTGAACTGCT AGCAGTTCAGCGAACCACCTTGAT 935 ATTGTTGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAAGCACCATTTCA 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGGCAACCACACACATT 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACACATTCCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCGC 40 938 CCGCAATCTCCATGCGCTCAACCGCT ACGGTCGACACACACTTTCCA		914	GGACCCTTTGACAGATTGCGGCAC	GTGCCGCAATCTGTCAAAGGGTCC
917 TAGGCCATTGGTGCCCTAAGACGG CCGTCTTAGGGCACCAATGGCCTA 918 CAAACCACAGCTTACAGGCTGCGT ACGCAGCCTGTAAGCTGTGTTTG 919 TAAACGGAGACTGGCACGGTAGCA TGCTACCGTGCAGTCTCCGTTTA 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGATGCGCGCTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTGGAA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAAA 925 AGTGCCGAGAATAGAGGGACT AGTCTTCCTCGGCAACGGCATAAA 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGCGTGGAGACTAG 927 CCGCCATTCGGAAGATGGATG CATCATCCTCTCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGTGGACGATAT 930 CCATCAGTGAAGGGGTTGCCAA TCGGAACCGGTGGACCATAT 931 CATATGTGCTTGCGTTGCATGC 931 CATATGTGCTTGCGATGAC GTCATCGCAAGCACATATG 932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGTCAAGCACATATG 933 CGATTTGGTAAGAGCCTGAACTGCT AGCAGTTCAAGCAGA 35 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAAGACCTTTGACTGAT 935 ATTGTTGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAAGACCTTTGACTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGGCCAACCAACACAT 936 TGAAATGTGTCTGGACCGAGTCT AGACTCGCGCTCCAGACAACAAT 937 GCCGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGACTAGGAGATTGCGG		915	TAAATTTTATCGCCAGGCGGCGCT	AGCGCCGCCTGGCGATAAAATTTA
918 CAAACCACAGCTTACAGGCTGCGT ACGCAGCCTGTAAGCTGTGGTTTG 919 TAAACGGAGACTGGCACGGTAGCA TGCTACCGTGCCAGTCTCCGTTTA 920 TAGCGCGCATCACACTTGGAATCG CGATTCCAAGTGTGATGCGCGCTA 921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTGGAA 924 TITATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAA 925 AGTGCCGAGATAGGGGACTGGGCG CGCCCAGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGACGACTAGA 927 CCGCCATTCGGAAGATGTG CATCATCCATCTTCCGAATGGCG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGCAACCGCTTCACTGGCACT 930 CCATCAGTGAGGGGTTGCTGCA TCGGAACCCCTTCACTGATGG 931 CATATGTGCTTGCGATGAC GTCATCGCAACCCCTTCACTGATGG 932 TCTGCTTTGGAAGACTGCT AGCAGTCAACCCCTTCAATGG 933 CGATTTGGTCAAGAAGCCGGAAAT ATTCCGCTTCAAAGCAGA 35 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTCAAAGCAGA 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAAGCCCTTGAT 935 ATTGTTGTCAAGAAAGGCGGAAAT ATTTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAAGCCCTTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGGCAACCACTTTCA 936 TGAAATGTGTCTGGACCGAG CTGCGACGCACCACACACTTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGACTGGCCGC		916	GCCGAACGCAAGATCGCTTGAACT	AGTTCAAGCGATCTTGCGTTCGGC
919 TAAACGAGACTGGCACGGTAGCA 920 TAGCGCGCATCACACTTGGAATCG 921 TGCTGACACACACTTGGAATCG 921 TGCTGACACAAACGAGCCGTTTCG 922 CGCTTAACGGCATTCACCACTTGGAATCAC 922 CGCTTAACGGCATTGACTGTCCAC 923 TTCCACGGCCGTGTATTACGGATA 924 TTTATGCCGTTGCCGAGGAAGACT 925 AGTGCCGAGATAGGGGAAGACT 926 CTAGTCTCCACGCCCTCGGGACGA 927 CCGCCATTCGGAAGATGGATGACTGCCCTATCTCGGCACT 928 TGACGGTGAAAGTCGATGACTGCCAAGGCGTGGAA 929 ATATGCGTCACCACCCGGTTCCGA 920 ATATGCGTCACCACCCGGTTCCGA 930 CCATCAGTGAAGGGGTTGCCAA 931 CATATGTGCTTGGCATGAC 932 TCTGCTTTGGAAGCTTGCCAA 933 CGATTTGGAAGCCTGAACTGCT 934 ATCAGAGGCCTTCACACTGCT 935 ATTGTTTTCCCGCCTCGTTA 936 TGAAATGTGTCACACCCGCCTCGTTA 937 GCGGGCGATGCTCCTTAAAGGGTA 10 938 CCGCAATCTCCATGCGCCCGCCCGCCCCCCCCCCCCCCC		917	TAGGCCATTGGTGCCCTAAGACGG	CCGTCTTAGGGCACCAATGGCCTA
TAGCGCGCATCACACTTGGAATCG 921 TGCTGACACAACGAGCCGTTTCG 922 CGCTTAACGGCATTGACTGTCCAC 922 CGCTTAACGGCATTGACTGTCCAC 923 TTCCACGGCCGTGTATTACGGATA 924 TTTATGCCGTTGCCGAGGAAGACT 925 AGTGCCGAGATAGGGGAGAGACT 926 CTAGTCTCCACGCCCTCGGGACGA 927 CCGCCATTCGGAAGAGAGT 928 TGACGGTGAAAGTCGATTGCGAAG 929 ATATGCGTCACCACCCGGTTCCGA 920 CCATCAGTGAAGGGGTTCCGA 930 CCATCAGTGAAGGGGTTCCGA 931 CATATGTGCTTGCGATGAC 932 TCTGCTTTGGAAGCCTGCCA 933 CGATTTGGAAGCCTGAACTGCT 934 ATCAGAGGCCTGAACTGCT 935 ATTGTTGTCCACGCCTCGGTTA 936 TGAAATGTGTCACACACCCGGTTCCA 937 GCGGCGATTCCGACCACCCGGTTCA 938 CCGCATTCCGACCCCCTCGTTA 937 GCGGCGATGCCCACCCGCTCCGCCCCCCCCCCCCCCCCC	20	918	CAAACCACAGCTTACAGGCTGCGT	ACGCAGCCTGTAAGCTGTGGTTTG
921 TGCTGACACAAACGAGCCGTTTCG CGAAACGGCTCGTTTGTGTCAGCA 922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTGGAA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAA 925 AGTGCCGAGATAGGGGACTGGGCG CGCCCAGTCCCTTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCTATCTCGGCACT 927 CCGCCATTCGGAAGATGGATGG CATCATCCATCTTCCGAATGGCGG 927 CCGCCATTCGGAAGATGGATGG CATCATCCATCTTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCA TGGCAGCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCATGAC GTCATCGCAAGCCAAGCACATATG 932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGTTCAGGCTTCCAAAGCAGA 35 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAGGCCTCTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGTGGCAACCACACAT 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACACATTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		919	TAAACGGAGACTGGCACGGTAGCA	TGCTACCGTGCCAGTCTCCGTTTA
922 CGCTTAACGGCATTGACTGTCCAC GTGGACAGTCAATGCCGTTAAGCG 923 TTCCACGGCCGTGTATTACGGATA TATCCGTAATACACGGCCGTGGAA 924 TTTATGCCGTTGCCGAGGAAGACT AGTCTTCCTCGGCAACGGCATAAA 925 AGTGCCGAGATAGGGGGACTGGGCG CGCCCAGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGCGTGGAGACTAG 927 CCGCCATTCGGAAGATGGATGATG CATCATCCATCTTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGTGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCA TGGCAGCAACCCCTTCACTGATGG 931 CATATGTGCTTGCGATGAC GTCATCGCAAGCCAAGCACATATG 932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGTTCAGAGCAGA 35 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGGAAGGCCTCTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGTGGCAACCACATTTCA 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACACTTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCCACGCACACACTTGCGCGCGCAACCCGCCACCACCCCCCCC		920	TAGCGCGCATCACACTTGGAATCG	CGATTCCAAGTGTGATGCGCGCTA
TITCACGGCCGTGTATTACGGATA 924 TITATGCCGTTGCCGAGGAAGACT AGTCTTCGTCGCAACGGCATAAA 925 AGTGCCGAGATAGGGGACTGGGCG CGCCCAGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGCGTGGAGACTAG 927 CCGCCATTCGGAAGATGGATGATG CATCATCCATCTTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGTGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCCA TGGCAGCCACCCTTCACTGATGG 931 CATATGTGCTTGCGATGAC GTCATCGAAGCCAAGCACATATG 932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGTTCAGGCTTCCAAAGCAGA 35 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGGAAGGCCTCTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGTGGCAACCACATTTCA 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACACTTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGACATTGCGG		921	TGCTGACACAACGAGCCGTTTCG	CGAAACGGCTCGTTTGTGTCAGCA
924 TITATGCCGTTGCCGAGGAAGACT AGTCTTCGTCGGCAACGGCATAAA 925 AGTGCCGAGATAGGGGACTGGGCG CGCCCAGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGCGTGGAGACTAG 927 CCGCCATTCGGAAGATGGATGGT CATCATCCATCTTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGAGACCATAT 930 CCATCAGTGAAGGGGTTGCTGCCA TGGCAGCCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGAAGCCAAGCACATATG 932 TCTGCTTTGGAAGGCGTGAACTGCT AGCAGTTCAGGCTTCCAAAGCAGA 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGGAAGGCCTCTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGGCAACCACATTTCA 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACCACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		922	CGCTTAACGGCATTGACTGTCCAC	GTGGACAGTCAATGCCGTTAAGCG
925 AGTGCCGAGATAGGGGACTGGGCG CGCCCAGTCCCCTATCTCGGCACT 926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGCGTGGAGACTAG 927 CCGCCATTCGGAAGATGGATGATG CATCATCCATCTTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGTGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCA TGGCAGCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCCAAGC	25	923	TTCCACGGCCGTGTATTACGGATA	TATCCGTAATACACGGCCGTGGAA
926 CTAGTCTCCACGCCCTCGGGACGA TCGTCCCGAGGGCGTGGAGACTAG 927 CCGCCATTCGGAAGATGGATG CATCATCCATCTTCCGAATGGCGG 30 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGTGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCCA TGGCAGCCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCCAAGC		924	TTTATGCCGTTGCCGAGGAAGACT	AGTCTTCGTCGGCAACGGCATAAA
927 CCGCCATTCGGAAGATGGATGATG CATCATCTCCGAATGGCGG 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGTGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCA TGGCAGCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCCAAGC		925	AGTGCCGAGATAGGGGACTGGGCG	CGCCCAGTCCCCTATCTCGGCACT
30 928 TGACGGTGAAAGTCGATTGCGAAG CTTCGCAATCGACTTTCACCGTCA 929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGTGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCCA TGGCAGCCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCCAAGC		926	CTAGTCTCCACGCCCTCGGGACGA	TCGTCCCGAGGGCGTGGAGACTAG
929 ATATGCGTCACCACCCGGTTCCGA TCGGAACCGGGTGGTGACGCATAT 930 CCATCAGTGAAGGGGTTGCTGCA TGGCAGCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCCAAGC		927	CCGCCATTCGGAAGATGGATGATG	CATCATCCATCTTCCGAATGGCGG
930 CCATCAGTGAAGGGGTTGCTGCCA TGGCAGCAACCCCTTCACTGATGG 931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCCAAGC	30	928	TGACGGTGAAAGTCGATTGCGAAG	CTTCGCAATCGACTTTCACCGTCA
931 CATATGTGCTTGGCTTGCGATGAC GTCATCGCAAGCCAAGC		929	ATATGCGTCACCACCCGGTTCCGA	TCGGAACCGGGTGGTGACGCATAT
932 TCTGCTTTGGAAGCCTGAACTGCT AGCAGTTCAGGCTTCCAAAGCAGA 933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGGAAGGCCTCTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGTGGCAACGACAACAAT 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		930	CCATCAGTGAAGGGGTTGCTGCCA	TGGCAGCAACCCCTTCACTGATGG
933 CGATTTGGTCAAGAAGGCGGAAAT ATTTCCGCCTTCTTGACCAAATCG 934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGGAAGGCCTCTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGTGGCAACGACAACAAT 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		931	CATATGTGCTTGGCTTGCGATGAC	GTCATCGCAAGCCAAGCACATATG
934 ATCAGAGGCCTTCCCGCCTCGTTA TAACGAGGCGGAAGGCCTCTGAT 935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGTGGCAACGACAACAAT 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		932	TCTGCTTTGGAAGCCTGAACTGCT	AGCAGTTCAGGCTTCCAAAGCAGA
935 ATTGTTGTCGTTGCCACATCGCAG CTGCGATGTGGCAACGACAACAAT 936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACATTTCA 937 GCGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG	35	933	CGATTTGGTCAAGAAGGCGGAAAT	ATTTCCGCCTTCTTGACCAAATCG
936 TGAAATGTGTCTGGACGCGAGTCT AGACTCGCGTCCAGACACATTTCA 937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		934	ATCAGAGGCCTTCCCGCCTCGTTA	TAACGAGGCGGGAAGGCCTCTGAT
937 GCGGGCGATGCTCCTTAAAGGGTA TACCCTTTAAGGAGCATCGCCCGC 40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		935	ATTGTTGTCGTTGCCACATCGCAG	CTGCGATGTGGCAACGACAACAAT
40 938 CCGCAATCTCCATGCGTCGACCGT ACGGTCGACGCATGGAGATTGCGG		936	TGAAATGTGTCTGGACGCGAGTCT	AGACTCGCGTCCAGACACATTTCA
		937	GCGGCGATGCTCCTTAAAGGGTA	TACCCTTTAAGGAGCATCGCCCGC
939 TGCCGCGTAATCACCTGGAACTTG CAAGTTCCAGGTGATTACGCGGCA	40		CCGCAATCTCCATGCGTCGACCGT	ACGGTCGACGCATGGAGATTGCGG
		939	TGCCGCGTAATCACCTGGAACTTG	CAAGTTCCAGGTGATTACGCGGCA

	940	TTCCAGTAGCCAGCGGTAGTGTGA	TCACACTACCGCTGGCTACTGGAA
	941	CTGAATTCCGCCTATTGTTCGGCA	TGCCGAACAATAGGCGGAATTCAG
•	942	GCTTGAACCTCGAGGCGATGTTCT	AGAACATCGCCTCGAGGTTCAAGC
	943	CAAGCGTGGAAGTACGACCCGCCA	TGGCGGGTCGTACTTCCACGCTTG
5	944	GTGTGCACTGGATCCGAGCCCTAG	CTAGGGCTCGGATCCAGTGCACAC
	945	TCCCTGGGCTAGCATTGCGAGGTT	AACCTCGCAATGCTAGCCCAGGGA
	946	AGAACCAAAGACGCTTGTTTGCCG	CGGCAAACAAGCGTCTTTGGTTCT
	947	CGTCACATGCAAACGTTCCCTCCC	GGGAGGAACGTTTGCATGTGACG
	948	TGACCGCATGTGTATTGAGTCGCT	AGCGACTCAATACACATGCGGTCA
10	949	GCGGCCCAATGAGTATCCGTCAT	ATGACGGATACTCATTGGGCCCGC
	950	TAGTGACTGTGAACGCCCCTGGTT	AACCAGGGGCGTTCACAGTCACTA
	951	GGCACCGTCTGCCGCGCGTATATC	GATATACGCGCGGCAGACGGTGCC
	952	TCGATGCAGTCTTTTTCCCGTCAA	TTGACGGGAAAAAGACTGCATCGA
	953 .	ACCCCGTGGGGTTTCGCCATTTTT	AAAAATGGCGAAACCCCACGGGGT
15	954	CTACACGCGCAGTTGTGACTTGTG	CACAAGTCACAACTGCGCGTGTAG
	955	CGCAGCGACCTCATCTCTGGAGCC	GGCTCCAGAGATGAGGTCGCTGCG
	956	CGACCCAGCACTCCTAAAATCGGT	ACCGATTTTAGGAGTGCTGGGTCG
	957	ACGCGCCGCTCATCACTACAATCT	AGATTGTAGTGATGAGCGGCGCGT
	958	CGCAACTTCCTGTGGCAAAGCCAG	CTGGCTTTGCCACAGGAAGTTGCG
20	959	TCGTTGGGCACATAAGGCAACTGA	TCAGTTGCCTTATGTGCCCAACGA
•	960	CCGCTTGTAATTGCCATTCTCCGT	ACGGAGAATGGCAATTACAAGCGG
	961	GTAACCAGGGAGTCCTGGGCTGTG	CACAGCCCAGGACTCCCTGGTTAC
	962	AGCGCAAGATCTGGGGGCAGTCAC	GTGACTGCCCCAGATCTTGCGCT
	963	GCGTACATCTGCTCATCAGCATGG	CCATGCTGATGAGCAGATGTACGC
25	964	CCTCTGTGGCAGGAAAGAAACCGT	ACGGTTTCTTTCCTGCCACAGAGG
	965	CCTATGCAATGGACCTGCATCGGA	TCCGATGGAGGTCCATTGCATAGG
	966	CTCGGTGGATGGCGAATAAGGATA	TATCCTTATTCGCCATCCACCGAG
•	967	CCTCACTCGTGATGGCGTGACGCA	TGCGTCACGCCATCACGAGTGAGG
	968	TACGCTCACAGAACGCCATACGCC	GGCGTATGGCGTTCTGTGAGCGTA
30	969	CCGGAGAAGTTACGCGGATCGGAC	GTCCGATCCGCGTAACTTCTCCGG
	970	GCGCCCTCACTGCATTTTTGGTAT	ATACCAAAAATGCAGTGAGGGCGC
	971	ACTTTCAGCACGCGAACAGCGCAA	TTGCGCTGTTCGCGTGCTGAAAGT
	972	CTAAACGCCCTTGATGCATGAGCA	TGCTCATGCATCAAGGGCGTTTAG
	973	GCTTGCCTTTTACGATCGTCGCTA	TAGCGACGATCGTAAAAGGCAAGC
35	974	CAGACATCGTACGCACTCGGCATC	GATGCCGAGTGCGTACGATGTCTG
	. 975	TAGCCGCGCGCTCCTATGCTCTT	AAGAGCATAGGAGCCGCGCGCTA
	976	GATGCCCTTTTGGTCCCCATGCCA	TGGCATGGGGACCAAAAGGGCATC
	977	TGAGCTGCCTTGCCACGATGCCTC	GAGGCATCGTGGCAAGGCAGCTCA
	978	CCGCCGTATACGTGCCATAGTTTG	CAAACTATGGCACGTATACGGCGG
40	979	TAGTGCTCTCCGCGCTCATCCAAC	GTTGGATGAGCGCGGAGAGCACTA
	980	CCCTAGATAAGTTGGGGTGGGACG	CGTCCCACCCCAACTTATCTAGGG

982 GCCGCTCCGACTGGTTAACCCGA 983 CGCACGGCTACTAACAGCGGATCA 984 CCGACGCTACTAACAGCGGATCA 984 CCGACGCTACTAACAGCGGATCA 985 CCGACGCTACTAACAGCGGATCA 986 CATTGAGGTCCACCGTTCACATCC 986 AGGACGACATTCCAACCAGCATCC 987 TAATCGCGGGGCCATACTACCAACG 988 AGGACGCAGCATGTCCCAGCCGAG 987 TAATCGCGGGGCCATACTACCAACG 988 CGCAAATTTCTCCGGTCGGCAACG 989 GTGGCTCGACCATCTCCACCGAG 989 GTGGCTCGACCATCTCCACCGAG 989 GTGGCTCGACTACTACCAACG 980 TGTGGGGGCTATACTCACCAACG 981 GTTCTTCCTTTTCTGCGTCGGCAACGCAAGCAAGCCACCGCACACACGCACACACA				
983 CGCACGGCTACTAACAGCGGATCA 984 CCGGACCAATTCCAACGAGCATCG 985 CATTGAGGTCCACCGTTCACATCC 986 AGGACCAGTCCACCGTTCACATCC 986 AGGACCAGTCCACCGTCCAGC 987 TAATCCGCGGCCAGAC 988 CGCAAATTTCTCCGGTCGCAGC 988 CGCAAATTTCTCCGGTCGGCAGC 989 GTGGCTCGACTAGCCAGCC 989 GTGGCTCGACTATGCCAACC 989 GTGGCTCGACTATGCCAACC 989 GTGGCTCGACTATGCCAACC 989 GTGGCTCGACTATGCCTTGCATC 989 GTGGCTCGACTAATGCCTTGCATC 990 TGTGGGCGTGTTCCGGCTCACTGT 10 990 TGTGGGCGTGTTCCGGCTCACTGT 991 ACCTCCAGTCAGATTGTTCCGCTC 992 ACCTCCAGTCAGATTGTTCCGCTC 993 CAAGTGGACAGACCACCCACC 993 CAAGTGGACAGACTGTTTCCGCTC 994 TCCAGTTCAGATTGTGCCGCCTT AAGGCGCACAAATCTGACTCGAGT 995 CGCAACAGGTCACTGT 996 CCCCAACAGGTCAGCTTTTCCGCCTCCACCGCAGAAAAGGAACAC 997 ATCAGCGCAACGGTTTGTTCCC 996 CCCCAACAGGTCAGCCCTTATTTCC 996 CCCCAACAGGTCAGCCCTTATTTTCC 997 ATCAGCGCAAGAGCACCCCTTC 998 CCCTGGCCAGAAGGACGCCTTC 999 ACGATCAAGGACAGCCCCTTC 999 ACGATCAAGGACAGCCCCTTC 1000 TTCATGGCACCAAGAGGCCATC 1001 ACAGCAAGGACAGCACCACTGT 1001 ACAGCAAGGACAGCACCCGTTA 1001 ACAGCAAGGACAGCACCGTTA 1001 ACAGCAAGGACAGCACCGTTA 1002 CGTAAATATCTGCGCGCGGGTGGAA 1003 GGAAACACGTGTTCGTTTGGC 1004 CGATGTTAGGATTCGCTGTTTGGC 1005 ATCGGACAAGGACAACTGGATTA 1006 GCCCGGAGGACAAGGCCACCGTTA 1007 AAATCCGACCAAGGACAACCACCGTTA 1008 CCCGGAGGACAAGTGGATTGCACC 1009 CGCCAGGGACAAGTGGATTGCACCACTTTTCCTTGCCAGGC 1009 CCGCAGGGACAAGTGGATTGCACCACCACTTCCACTTTGCCTTTCCCACT 1000 CAGTGTTAGGATTCGGATAGGCCA 1001 TAAGGCACAAGGACAACTGGATTA 1002 CGAAGTTAAGGCCACACGACACACACACACACACACCACTGTTTCCCACCCCCCACACACA	•	981	TGAAGGCCACCTGATATGGTTTC	GAAACCATATCAGGTGGCCCTTCA
984 CCGGACCATTCCAACGAGCATCG CGATGCTCGTTGGAATTGGTCCGG 985 CATTGAGGTCCACCGTTCACATCC GGATGTGAACGGTGACCTCAATC 986 AGGACGCAGCATGTCCCAGCCGAG CTCGGCTGGACATGCTGCGTCCT 987 TAATCGCGGGCCATACTACCAACG CTTGGTAGTATGGCCCGCGATTTA 988 CGCAAATTTCTCCGGTGGCAAGC CGTTGGTAGTATGGCCCGCGATTTA 989 GTGGCTCGACTACTACCAACG CGTTGGTAGTATGGCCCGCATTTGCCG 989 GTGGCTCGACTACTACCACACG CGTTGCTAGCACAGCATTAGTCCACCGACCGACAATTTGCCCGGCCGACTAACTTCCCGGCCGACTAACTA		982	GCCGCCTCCGACTGGTTAACCCGA	TCGGGTTAACCAGTCGGAGGCGGC
5 985 CATTGAGGTCCACCGTTCACATCC 986 AGGACGCAGCAGCTCCACCGAG 987 TAATCGCGGGCCCATACTACCACCGAG 987 TAATCGCGGGCCATACTACCAACG 988 CGCAAATTTCCCGGTCGGCAAGC 988 CGCAAATTTCCCGGTCGGCAAGC 989 GTGGCTCGACTAATGCCTTGCGTG 989 GTGGCTCGACTAATGCCTTGCGTG 990 TETGGGCGTGTTCCGGCCAGG 991 GTTCTTCTTTTTTCTGCGGTGGAAA 992 ACCTCGAGTCAGATTGTCCGCTCACTGT 993 CAAGTGAACAGCGCTTACTGAAACA 992 ACCTCGAGTCAGATTGTCCGCCCCACAGCACAACAGGACAACAGGACCACA 991 TCCAGTGAGATTGTCCGCCCCACAAACAGGAAAAAGGAAGAAC 992 ACCTCGAGTCAGATTGTCCGCCCGCAACAACCGTCTGTCCACTGG 993 CAAGTGAACAGACGGTTTGTCCG GGAACAACCGTCTGTCCACTGT 994 TCCAGTGAGACGGCCGACGAAGG 995 GCCAACAGGTCAGACGCCTTATTTGC 996 GCCGTGACTCCTGCAATGTCGGTA 997 ATCAGCGCAAGACGGTTTGTCACACTGGA 998 CCCTGGCCAGAACAGGCCTTATTTGC 998 CCCTGGCCAGAACACGTTGCGCACGAAC 999 ACGATCAAGAGCAGGTCTGAACCA 999 ACGATCAAGAGACCACCGTTTG 999 ACGATCAAGAGACCACCGTTTA 1000 TTCATGGCACCAGAACACGCTTGCCCAGCA 1000 TTCATGGCACCAGAACCACCGTTGCCCAGCACACACGCTTGCCCCAGAACACGTTGCGCAGGACACACGTTGCCCAGCACACACGCTTGCCCAGCACACACA		983	CGCACGGCTACTAACAGCGGATCA	TGATCCGCTGTTAGTAGCCGTGCG
986 AGGACGCAGCATGTCCCAGCCGAG CTCGGCTGGGACATGTGCGTCC 987 TAATCGCGGGCCATACTACCAACG CGTTGGTAGTATGCCCGCGATTA 988 CGCAAATTTCTCGGTCGGCCAAGC GCTTGCCGACCGGAGAAATTTGCC 989 GTGGCTCGACTAATGCCTTGCGT CACGCAAGCCATTAGTCGACCCCCAC 989 GTGGCTCGACTAATGCCTTGCGT CACGCAAGCCATTAGTCGAGCCCAC 991 GTTCTTCCTTTTCTGCGGTGGGAA TCCCACGCCACACACGCCCCAC 992 ACCTCGAGTCAGCTT ACAGTGAGCCGGAAAAAGGAAGAAC 992 ACCTCGAGTCAGCTT ACAGTGAGCCGCACAAAAGGAAAAGAACACGTCTGTCCACTTG 993 CAAGTGGACAGACGGTTTGTTCCG CGGAACAAACCGTCTGTCCACTTG 994 TCCACTTCAGATCGCGCCGACGAGG CCTCGTCGGGCGCGACAAACCGTTGCACTTGC 995 CGCAACAGGTCAGCCCTTATTTCC 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCACTGCAC		984	CCGGACCAATTCCAACGAGCATCG	CGATGCTCGTTGGAATTGGTCCGG
987 TAATCGCGGGCCATACTACCAACG CGTTGGTAGTATGGCCCGCGATTA 988 CGCAAATTTCTCCGGTCGGCAAGC GCTTGCCGACCGGAGAAATTTGCC 989 GTGGCTCGACTAATGCCTTGCCTG CACGCAAGGCATTAGTCGAGCCAC 990 TGTGGGCTGTTCCGGCTCACTGT ACAGTGAGCCGGACAACGCCCCAC 991 GTTCTTCCTTTTCTGCGGTGGGAA TTCCCACCGCAGAAAAGGAAGAAC 992 ACCTCGAGTCAGATTGTGCGCCTT ACAGTGAGCCGGAACAAGGAAGAAC 992 ACCTCGAGTCAGATTGTTCCG 993 CAAGTGGACAGACGGTTTGTTCCG 994 TCCAGTTGAGTCGCGCCTT AAGGCGCACAATCTGACTCGAGT 995 CGCAACAGGTCAGCCCTTATTTGC 995 GCCGAACAAGCTCACTGGA 996 GCCGTGACTCCTGCAATGTCGGAT 1ACCGACATTGCAGCGAGCACACCGTTTTCCACCTGG 997 ATCAGCGCAAGACGAGTCACTGTCACTGA 998 CCCTGGCCAGAACAGACCACCGTTA 998 CCCTGGCCAGAACAGACCACCGTTA 999 ACGATCAAGGACACCCCTTATTTCCAGACCAGCTTCGGCCAGAG 999 ACGATCAAGGACTCGTCAGAGTTG 1000 TTCATGGCACCAAGACCACCGTTA 1001 ACAGCAAGGAGATGATTCCGACC 1001 ACAGCAAGGAGTGATTGCAGAC 1002 CGTAAATATCTGCGGCGGTGTGAA 1003 GGAAACACGTGTTCGTCTGTTGGC 1004 CGATGTTAGGATTCGGACACCCCTTACTCCTTTGCTGC 1004 CGATGTTAGGATTCGGATAGACCACCGTTACATCCATCCTTGCTTC 1005 ACCGGCAGAAAGGAGAGAGCACACCGTTA 1006 GCCCCGGAGAACAAGTCGATTGCACACCACCCCCCAGAATTCTACCACACCACCACCACCACCACCACCACCACCAC	5	- 985	CATTGAGGTCCACCGTTCACATCC	GGATGTGAACGGTGGACCTCAATG
988 CGCAAATTTCTCCGGTCGGCAAGC GCTTGCCGACGGAGAAATTTGCC 989 GTGGCTCGACTAATGCCTTGCGTG CACGCAAGGCATTAGTCGAGCCAC 991 TGTGGGCGTGTTCCGGCTCACTGT ACAGTGAGCCGGAACACGCCCAC/ 991 GTTCTTCCTTTTTCTGCGGTGGGAA TTCCCACCGCGAACAAGGAAAAG 992 ACCTCGAGTTGGCGCCTTAATTCCG 993 CAAGTGGACAGACGGTTTGTTCCG CGGAACAAACGGTCTGACTCGAGT 994 TCCAGTTGAGTCGGCCCGACGAGG CCTCGTCGGCGCGAACAAGGAAAAC 15 995 CGCAACAGGTCAGCCCTTATTTGC GCAACAAACCGTCTGTCCACTTG 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTCGAGCTGGCGAGGAGACAAACACGTCTGCACTGG 997 ATCAGCGCAAGACGAAGCAGTTCAACACACACACACACAC		986	AGGACGCAGCATGTCCCAGCCGAG	CTCGGCTGGGACATGCTGCGTCCT
989 GTGGCTCGACTAATGCCTTGCGTG 990 TGTGGGCGTGTTCCGGCTCACTGT ACAGTGAGCCGAACACGCCCACA 991 GTTCTTCCTTTTTCTGCGGTGGGAA TTCCCACCGCGAACACGCCCACA 992 ACCTCGAGTCAGATTGTCGGCTT ACAGTGAGCCGAACAAGGAAAAGAAACA 992 ACCTCGAGTCAGATTGTCGCGCTT ACGGACCACATCTGACTCGAGGT 993 CAAGTGGACAGACGGTTTGTTCC CGGAACAAACCGTCTGTCCACTTG 994 TCCAGTTGAGTCGCCCGACGAGG CCTCGTCGGCGCGACTCAACTGGA 995 CGCAACAGGTCAGCCCTTATTTGC GCAAATAAGGGCTGACCTGTTGCC 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCAGCGTGAGCAGACAGACGAGGTCACGGC 997 ATCAGCGCAAGCGAGGGCCATG AACACA GTTTTCAGACCAGCTTGGCCAGGC 998 ACCATCAAGAACGAAGAGAACA TGTTTCAGACCAGCTTGGCCAGGC 999 ACGATCAAGGACGAAGAGAGAGCCATG CAACCCTTCTTCTTGGCCAGGC 999 ACGATCAAGGACGAAGCAGAGCCATG 1001 TTCATGGCACCAAGACCAAGGCTTA 1002 CGTAAATATCTGCGGCGGTTGAA 1003 GGAAACAGATGGATTGCGACA 1004 CGATGTTAGGATTGCGACG 1004 CGATGTTAGGATTGCGCA 1005 ATCGGACAAGACGAAGGTGGT ACCACCGCCGCAGATATTTACG 1004 CGATGTTAGGATTCGGTTGTTGGC 1005 ATCGGACAAGACGAAGTGGATGGT 1006 GCCCGGAGGACAAGTTCGAGTGGT 1007 AAATCCGACAAATGGGCATGGT 1008 CAGTTAGGGGATCGATGGATTACACTCTTGCCGAT 1009 CGCCGGAGGACAAATGGGATGGT ACCATCCAACTTGTCCTTGTCCGGAT 1009 CGCCGGAGGACAAATGGGCAA TCCATACCACTTGCCCGATTACACTCG 1009 CGGCAGGTGGAAGTTCGAAGTTA TAACTCGAACTTTGTCCGCGCG 1010 TAGGGCACCACGGTTCCACCTACTT CAATTTCCCCCCCCTAACTG 1001 CACCCGAATTAGGAAGTTCCAACATTG 1002 CGGCAGGTGAAGATTCCAACATTG 1003 CAATCCGACCAATTCCAACTCTGCCCCCTAACTG 1004 CAGCTTACAGGGATTCCAACATTG 1005 ACACCCACGTTTCACCACTTGC 1010 TAGGGCACCCAGGTTCCACCTACTT 1010 CACCCGTATTAGCACGTTCCACCTCCCCCCCAACAGACACACGTGATTTGCGGATCCCCTAACTGG 1011 GCACCGTATTAGCACTACCACGGCCCCCTAACTGCGCCCCCTAACTGGTTCACCCCCCCC		987	TAATCGCGGGCCATACTACCAACG	CGTTGGTAGTATGGCCCGCGATTA
10 990 TGTGGGCGTGTTCCGGCTCACTGT ACAGTGAGCCGGACACGCCCAC/ 991 GTTCTTCTTTTCTGCGGTGGGAA TTCCCACCGCAGAAAAGGAAGAAC 992 ACCTCGAGTCAGATTGTGCGCCTT AAGGCGCACAATCTGACTCGAGGT 993 CAAGTGGACAGACGGTTTGTTCCG CGGAACAAACGTCTGTCCACTTG 994 TCCAGTTGAGTCCGCCCGACGAGG CCTCGTCGGCGCGACCAATCTGACTCGACTGG/ 995 CGCAACAGGTCAGCCCTTATTTGC CGAAATAAGGGCTGACCAACTGG/ 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCAGGGT 997 ATCAGCGCAAGCTGGTCTGAAACA TGTTTCAGACCAGCTTGCGCTGAT 998 CCCTGGCCAGAACCAGGGTCCACTGAACCA 999 ACGATCAAGGACTCGTCAGAGGTC 999 ACGATCAAGGACTCGTCAGGGTTG CAACCCTGACGAGTCCTTGATCGT 1001 TCATGGCACCAAGACCACCGTTA TAACCGTGGTGTTTCGGCCAGGA 1001 ACAGCAAGGAGATGCAACCACCGTTA TAACCGTGGCTCTTGGTCGTAGACA 1002 CGTAAATATCTGCGGCGGTTGAAACA TCACACCCGCAGAACAGACACAGTGTTTCCACACCGCGCAGAACAGACACACGTTTTCCACACCGCGCAGAACAGACACACGTTTTCCACACCGCGCAGAACAACACACGTTTTCCACACCGCGCAGAACAACACGTGTTTCCACACCGCGCAGAACAACACACGTTTTCCACACCGCGCAGAATATTACACACCGCGCAACAGACAACACACGTTTTCCACACCGCGCAGAATATTACACACCGCGCAAAACACACGTGTTTCCACACCGCGCAGAATCAACACCACGACAACACACAC		988	CGCAAATTTCTCCGGTCGGCAAGC	GCTTGCCGACCGGAGAAATTTGCG
991 GTTCTTCCTTTTCTGCGGTGGGAA TTCCCACCGCAGAAAAGGAAGAAC 992 ACCTCGAGTCAGATTGTGCGCCTT AAGGCGCACAATCTGACTCGAGGT 993 CAAGTGGACAGACGGTTTGTTCCG CGGAACAAACCGTCTGTCCACTTG 994 TCCAGTTGAGTCGCGCCGACGAGG CCTCGTCGGCGGACTCAACTGG/ 995 CGCAACAGGTCAGCCCTTATTTGC GCAAATAAGGCTGACCTGTTGCG 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCAGCAGCTGTTGCGCGCGAGAGAGACAACCGTTGACACTGG/ 997 ATCAGCGCAGACGAGGCCATG ATGTTTCAGACCAGCTTGCGCAGGC 998 ACGATCAAGGACGAGGGCCATG CATGGCCTCTGTTCTGGCCAGGC 999 ACGATCAAGGACGAGAGGCCATG CATGGCCTCTGTTCTGGCCAGGC 999 ACGATCAAGGACTCGTCAGAGAC 1000 TTCATGGCACCAGACCACCGTTA TAACGGTGGTCTTGGTGCCATGAA 1001 ACAGCAAGGAAGTGGATTGCAGCA CACCCTGACGAGTCCTTGGTTCT 1002 CGTAAATATCTGCGGCGGTTGAA TTCACACCGCCGCAGAATTTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGAACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTACACTCG 1005 ATCGGACAAGACGAAGTTGGATTA TAACTCGAACTCTTCCTGCGGC 1006 GCCCGGAGCACAAGTTCGAGTTA TAACTCGAACTCTTCCCGGC 1007 AAATCCGACAAAGTGGATTA TAACTCGAACTTTGTCCGGT 1008 CACGTTAGGGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCGGT 1009 CGCCAGGACAAATGGGCACATGGA TCCATCACCTTTGTCCGGTT 1009 CGCCAGGACAAATGGGCACATGGA TCCATCTCCCTTACCGG 1009 CGCAGGTGAGATTCCGACATTG CAATGTCGCATTTTCTCGGTT 1009 CGCCAGGTGAGATTCCGACATTG CAATGTCGCATTCCCCCTAACTG 1009 CGCCAGGTGAGATTCCGACATTG CAATGTCGGAATCCCACCTGCCG 1011 GCACCGTATTAGCAGTAGGCACG CCCTTACTGCAACCCTTTACCGTTCCCTAACTG 1012 ACGCATTACAGGTGTCCACATTG CAATGTCGGAATCCCCCTAACTG 1013 CGTGAACTACAGGTTCACCACTTCT AGATGAGACACACTGCACTCCCTAACTG 1014 GCTGAACTACACGCTTAAATCCCG CCCTTACTGCACCACTTCACCTTACCGGTGCTCCCTAACTG 1015 AGCACGCCAGGGAGGATCCACTGC CCCTGTGGAACACCTTGCACTTCACCTTCACCTGCGACTCACCCTTAACAGGTGTCACCTAAAATCCCG CCCTTTTAGCACCACTTTCACCCTTCACCTGCGACTCACCCTTAAACAGGCGC CCCTGTGGAACACACTGCACCCCTTAACCGATTCACCGACACCTTTAACCGGTGCTCACTCA		989	GTGGCTCGACTAATGCCTTGCGTG	CACGCAAGGCATTAGTCGAGCCAC
992 ACCTCGAGTCAGATTGTGCGCCTTT AAGGCGCACAATCTGACTCGAGGT 993 CAAGTGGACAGACGGTTTGTTCCG CGGAACAAACCGTCTGTCCACTTG 994 TCCAGTTGAGTCGCGCCGACGAGG CCTCGTCGGCGGCGACTCAACTGG/ 995 CGCAACAGGTCAGCCCTTATTTGC GCAAATTAAGGGCTGACCTGTTGCG 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCAGCAGCCGAGGGAGTCACAGGC 997 ATCAGCGCAAGCTGGTCTGAAACA TGTTTCAGACCAGCTTGCCGCGAGGGAACAACAACA TGTTTCAGACCAGCTTGCGCCAGGC 998 ACGATCAAGGACGAGGCCATG CATGGCCTTCTGTCTGCCCAGGC 999 ACGATCAAGGACTCGTCGAACACA TGTTTCAGACCAGCTTTGACGCTGAT 1000 TTCATGGCACCAAGACCACCGTTA TAACGGTGGTCTTGGCCCAGGC 1001 ACAGCAAGGAAGCACCACCGTTA TAACGGTGGTCTTGGTGCCATGAA 1001 ACAGCAAGGAAGTGGATTGCGACG CGTCGCAATCCATCTCCTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGAACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGCCCATCCCATCACACTCG 1005 ATCGGACAAGGACAAGTGGATGATA TAACTCGAACTCTGCCGGATTCCACCTGCGG 1006 GCCCGGAGGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCTTGCCGAT 1007 AAATCCGACAAATGGGCACATGGA TCCATCCGAATCCTACCACTG 1008 CAGTTAGGGGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCCTCGGGC 1009 CGCCAGGACAAATGGGCACCATGGA TCCATCTCCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGCATTCCCCCTAACTG 1009 CGCCAGGTGGAGATTCCGACATTG CAATGTCGGAATCCCCCTAACTG 1001 TAGGGCAGCCAGGTTCACTCATCT AGATGAGGAACCCTGCCCTAACTG 1011 GCACCGTATTAGCAGTAGGCAC GCGTGCCTACTGCACCTGCCG 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTACGGAATCCCCCTAACTG 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACCTGTAATGCGGT 1014 GCTGAACTACCGCCTAAAATCGCG CCCTGTGGAACACCTGTAATGCGT 1015 AGCACCCCAGGGAGGATCCACGCTTAATACCGGT 1016 ATGAGGGCAAGGAATGGGTCAGCTAATACCGC 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTTATCAGAGAGAGACCC 1018 TATCTTGCGCAACCCCTCCATTTA TAACTCGAACCCTTTCTTCGCCCTCACT 1019 GGTTCTCCTCAACAGGCCC CCCTGGATTTCAGCAGCAACCTTTCCCCCTCACT 1019 GGTTCTCCTCAACAGGCCCACCCTCCATTTA TAACTCGAACCCATTCCTTCGCCCTCAT 1019 GGTTACACCCAACCCTCCATTTA TAACTCGAACCCATTCCTTCGCCCTCAT 1019 GGTTACACCCAACCCTCCATTTA TAACTCGAACCCATTCCTTCGCCCTCAT 1019 GGTTACACCCAACCCTCCATTTA TAACTGAGCCCTTCCTTGCCCTCCATTCCTTGCCCTCATTACCCAACCCTTCCCTGGCGTGCTTAACCCATTTCATTCA	10	990	TGTGGGCGTGTTCCGGCTCACTGT	ACAGTGAGCCGGAACACGCCCACA
993 CAAGTGGACAGACGGTTTGTTCCG CGGAACAACCGTCTGTCCACTTG 994 TCCAGTTGAGTCGCGCCGACGAGG CCTCGTCGGCGCGACTCAACTGGA 995 CGCAACAGGTCAGCCCTTATTTGC GCAAATAAGGGCTGACCTGTTGCG 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCAGGAGTCACCGGC 997 ATCAGCGCAAGCTGGTCTGAAACA TGTTTCAGACCAGCTTGCGCTGAT 998 CCCTGGCCAGAACGAGAGGCCATG CATGGCCTCTGTTCTGGCCAGGG 999 ACGATCAAGGACTCGTCAGGGTTG CAACCCTGACGAGTCCTTGGTCATCGT 1000 TTCATGGCACCACAGCTGTA TAACGGTGCTCTTGTGTGCCATGAA 1001 ACAGCAAGGAGTGGATTGCGACG CGTCGCAATCCATCCTTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA 1003 GGAAACACGTGTTCGTCTGTTGGC 1004 CGATGTTAGGATTCGGCTGTGAA 1006 CCCGGAGGACAAGTGGATGGA TCCACCGCCGCAGAATATTACG 1007 AAATCCGACAAGTGGATGGA ACCATCCATCTTGCTGTT 1008 CGCCGGAGGACAAGTTGGATGGT ACCATCCACTTGCTGTTTCC 1009 CGGCAGGACAAAGTGGATGGA TCCATGTCCTTTGTCCGGT 1009 CGGCAGGTGGAATGCGATGAA TCCATCTGCCCTAACTG 1009 CGGCAGGTGGAATTCCGACTTG CAATGTCGCATTCCCTAACTG 1009 CGGCAGGTGGAATTCCGACATTG CAATGTCGCATTCCCCTAACTG 1009 CGGCAGGTGGAGTTCACTCATCT AGATGGAATCTCACCTCCCGGG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGATCACCTGCCCTAACTG 1011 GCACCGTATTAGCAGTAGGCA TCCCTTACTGCAATCCCCTAACTG 1012 ACGCATTACAGGTGGAAGTGA TCCATGTGACCCCTAACTG 1013 CGTGACTGCACGTTCACCACGG CCCTTGTGAACCCTGACCCTTAATGCGT 1014 GCCCGGTATTACAGGTGAACCCGCCCAACAGGGAACACCTGTAATCGGT 1015 AGCACCGTATACAGGTGCCACAGGG CCCTTGGAACACCTGACTCACCTAACCG 1014 GCTGAACTACCGCCTAAAATCGCG CCCTTGGAACACCTGCACCCTTAATGCGT 1016 ATGAGGGCAAGGAATGGGTCACGC CCCTTGGAACACCTGCACCCCTAACTG 1017 GGGTTCCCCTAAATCGAGC CCCTTGTGAACCCTTCAGCTAACCGTGCTCCCTAACTG 1016 ATGAGGGCAAGGAATGGGTCAACC 1017 GGGTTCCCCTAAATCAGAGCCGA TCCCCTTGCCCCTAACTG 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGACCCCTTGCCCCCAACCCCTGAACCCCTGAACCCTGCCCCAACCCCTGAACCCCTGCCCCAACCCCTGAACCCCTTGAATCAGGC 1018 TATCTTTCCGCCAAGGGAATCCACCCGCCCAACACCCTGCCCCAACCCCTGCCCCCAACACCCTGCAACCCCTGCCCCCAACACCCGCCCCAACAACCCGCCCCAACAACCCGCCTCAATAACCGGC CCCTTGGACCCATTCCCTCCCTGGCGGCCTAAAACCCTGCCCCAACACCCGCCCAACAACCCCCCCACCACCCCTGCAACCCCTCCATTAACCGGCCCACCCTCCATTAACCGGCCCCCCCAACAACCCCCCCC		991	GTTCTTCCTTTTCTGCGGTGGGAA	TTCCCACCGCAGAAAAGGAAGAAC
994 TCCAGTTGAGTCGCGCCGACGAGG CCTCGTCGGCGCGACTCAACTGGA 995 CGCAACAGGTCAGCCCTTATTTGC GCAAATAAGGGCTGACCTGTTGCG 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCAGGAGTCACGGC 997 ATCAGCGCAAGCTGGTCTGAAACA TGTTTCAGACCAGCTTGCGCTGAT 998 CCCTGGCCAGAACGAGAGGCCATG CATGGCCTCTGTTCTGGCCAGGG 999 ACGATCAAGGACTCGTCAGGGTTG CAACCCTGACGAGTCCTTGGTCCATGAGA 1001 TTCATGGCACCAAGGATTGCGACA TAACGGTGCTTCTTGTGCCATGAA 1001 ACAGCAAGGAGTGGATTGCGACA CGTCGCAATCCATCCTTCTTGTTG 1002 CGTAAATATCTGCGGCGGTGTGAA 1003 GGAAACACGTGTTCGTCTGTTGGC 1004 CGATGTTAGGATTCGGCTGTGAA 1006 CCCGGAGAACAGTGGATGAA TTCACACCGCCGCAGAATATTACG 1007 AAATCCGACAAGGACAAGTGGATGGA ACCATCCATCTTGCTGTT 1008 CGCCGGAGGACAAGTGGATGGA ACCATCCATCTTGCCGAT 1009 CGGCAGGAGACAAGTGGATGAA TCCATCCGACTTGTCCTGTGCCGAT 1009 CGGCAGGTGGAACACGTGAA TCCATCTGCCCTAACTG 1009 CGGCAGGTGGAACACGTGAATTCCGACTTGTCCCGAGTTTGTCCGGATTCCCACTTGCCCTAACTG 1009 CGGCAGGTGGAATTCCGACATTG CAATGTCGCATTCCCCACTGCCCTAACTG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTTGCCCCTAACTG 1011 GCACCGTATTACAGAGTAGGCAC GCGTGCCTACTGCTCACCTGCCGG 1011 GCACCGTATTACAGAGTAGGCACGC CCCTTACTGCTAATACGGTGC 1012 ACGCATTACAGGTTCCACAGGG CCCTTGGAACACCTGTAATCGGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTTGGAACACCTGTAATCGGT 1014 GCTGAACTACCGCCTAAAATCGCG CCCTTGGAACACCTGCACCCTTAACGGTGCTACACCCTGACACCTTTAACAGGTGCTACCCCTAACTGGAACCCTGCACCCTTAATCAGGTTAATCAGGTTAACACGTGCACCCCTAACTGCTACCCCCAACCCTGTAATCAGGTTAATCAGGAGAACACGTGCACCCCTAACTGCTACCCCCAACCCTGTAATCAGCTACCCCCCAACCCCTGAACCCCTGAACCCCTGAACCCCTGAACCCCTGAACCCCTGAACCCCTGAACCCCCCAACACCCCCCCC		992	ACCTCGAGTCAGATTGTGCGCCTT	AAGGCGCACAATCTGACTCGAGGT
15 995 CGCAACAGGTCAGCCCTTATTTGC GCAAATAAGGGCTGACCTGTTGCG 996 GCCGTGACTCCTGCAATGTCGGTA TACCGACATTGCAGGAGTCACGGC 997 ATCAGCGCAAGCTGGTCTGAAACA TGTTTCAGACCAGCTTGCGCTGAT 998 CCCTGGCCAGAACGAGGGCCATG CATGGCCTCCGTTCTGGCCAGGG 999 ACGATCAAGGACTCGTCAGGGTTG CAACCCTGACGAGTCCTTGATCGT 1000 TTCATGGCACCAAGACCACCGTTA TAACGGTGGTCTTGGTCCATGAA 1001 ACAGCAAGGAGTGGATTGCGACG CGTCGCAATCCATCTCCTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGAACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCATCCTACACTC 1005 ATCGGACAAGACAAGTGCGATGGT ACCATCCACTTGTCCTTGTCCGAT 1006 GCCCGGAAGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCTCGGGG 1007 AAATCCGACAAAAGTGCGATGAA TCCATCCACTTGTCCTCGGGGC 1008 CAGTTAGGGGAAAAGTTCGACTTA TAACTCGAACTTTGTCCTCGGGGC 1009 CGGCAGGTGAGATTCCGACATTG CAATGTCGCACTTCCCCAACTG 1009 CGGCAGGTGAGATTCCGACATTG CAATGTCGGAATCCCCTAACTG 1009 CGGCAGGTGAGATTCCGACATTG CAATGTCGGAATCCCCCTAACTG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGACCTGCCCCTA 1011 GCACCGTATTAGCACTAGGC GCGTGCCTACTGCCCTA 1012 ACGCATTACAGGTTGCACATGG TCCCTTCGCACCCTGCCCG 1013 CGTGACTGCACGTGTTCCACAGG CCCTGTGGAACCCTGCACGTGCC 1014 GCTGAACTACCGCCTAAAATCGC CGCGATTTTAGGCGGTGCCCTA 1015 AGCACGCCAGGGAGGATCCACGG CCCTGTGGAACCACGTGCACG 1016 ATGAGGGCAAGGAATGGGTCATCC GCCGATTTTAGGCGGTGCTCACT 1017 GGGTTCCCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAACTCGACCCATTCCTTGCCCTCAT 1019 GGTTACACCTACAGGAATCCAGCGG CCGCTGGATTCCGTAACAGAACCCTGCCCTAACAGAACAGGCCCCCCTAAAATCGCG CCCTGTGGAACCACCTTGCCCCTCAT 1017 GGGTCTCCCTAAAATCACAGGCCGA TCGGCCTTTGATTACGAGAACCC 1018 TATCTTGCCCAACGCCTCCATTTA TAAATGGAGGCGTTGCCCAAGAAA 1019 GGTTACACCTACGGAATCCAGCGG CCCCTGGATTCCGTAGGAGAACCC 1018 TATCTTGCCCAACGCCTCCATTTA TAAATGGAGGCGTTGCCCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCCCTGGATTCCGTAGGTGTAACCC 1019 GGTTACACCTACGGAATCCAGCGG CCCCTGGATTCCGTAGGTGTAACCCAGGAACAGGTGCAACCCAGCCCCCCAGGAACCCCCCCC		993	CAAGTGGACAGACGGTTTGTTCCG	CGGAACAAACCGTCTGTCCACTTG
996 GCCGTGACTCCTGCAATGTCGGTA 997 ATCAGCGCAAGCTGGTCTGAAACA 1GTTTCAGACCAGCTTGCGCTGAT 998 CCCTGGCCAGAACGAGGGCCATG CATGGCCTCTCGTTCTGGCCAGGG 999 ACGATCAAGGACTCGTCAGGGTTG CAACCCTGACGAGTCCTTGATCGT 1000 TTCATGGCACCAGACCACCGTTA TAACGGTGGTCTTGGTCCATGAA 1001 ACAGCAAGGAGTGGATTGCGACG CGTCGCAATCCATCTCCTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACACACGTGTTTCC 1004 CGATGTTAGGATTGGGACA TGGCCTATCCAATCCATCTCCTTGCTGT 1005 ATCGGACAAGGACAAGTGGATTGGT ACCATCCACTTGTCCTGATC 1006 GCCCGAAGACAAGTGGATGGT ACCATCCACTTGTCCTGATC 1007 AAATCCGACAAAGTGCGATTA TAACTCGAACTTTGTCCTCGGGG 1007 AAATCCGACAAAATGGGCACATGGA TCCATGTGCCCATTTGTCCGATT 1008 CAGTTAGGGGATGAGTGA TCCATGTGCCCATTTGTCCGATTT 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCCCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCCCCCTAACTG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGGACAGGG CCCTGTGGAACCACGTGCCCTA 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTACTGCGATTCCCACTGCCG 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACCACTGCACTG		994	TCCAGTTGAGTCGCGCCGACGAGG	CCTCGTCGGCGCGACTCAACTGGA
997 ATCAGCGCAAGCTGGTCTGAAACA 998 CCCTGGCCAGAACGAGAGGCCATG 999 ACGATCAAGGACTCGTCAGGGTTG 1000 TTCATGGCACCAAGACCACCGTTA 1001 ACAGCAAGGAGAGCCACCGTTA 1002 CGTAAATATCTGCGGCGGTGGAA 1003 GGAAACACGTGTTCGTTGGCGCAGAACCACCGCGCAACACACCACCGCGCAACACACCAC	15	995	CGCAACAGGTCAGCCCTTATTTGC	GCAAATAAGGGCTGACCTGTTGCG
998 CCCTGGCCAGAACGAGGGCCATG CATGGCCTCTCGTTCTGGCCAGGG 999 ACGATCAAGGACTCGTCAGGGTTG CAACCCTGACGAGTCCTTGATCGT 1000 TTCATGGCACCAAGACCACCGTTA TAACGGTGGTCTTGGTGCATGAA 1001 ACAGCAAGGAGTGGATTGCGACG CGTCGCAATCCATCTCCTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTAACATCG 1005 ATCGGACAAGGACAAGTGGATGGT ACCATCCACTTGTCCTTGTCCGAT 1006 GCCCGGAGGACAAGTTCGAGTTA TAACTCGAACTTTGTCCTCTGTCCGAT 1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCCGATT 1008 CAGTTAGGGGATGCGGATGAGTGA TCACTCATCCGCATCCCCTAACTG 1009 CGGCAGGTGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1009 CGGCAGGTGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATACGGTG 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGTGCTACTGCTGAATGCGT 1015 AGCACGCCAGGGAGGATCCACGGG CCCTGTGGAACACGTGCAGTCACG 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCGCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACCGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCAGTGCCCATTAGGCTGTTAACCGTGTAACCCGCTAACACCTTCGTTGCCCAAGATACCGCCTAAATCAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC		996	GCCGTGACTCCTGCAATGTCGGTA	TACCGACATTGCAGGAGTCACGGC
999 ACGATCAAGGACTCGTCAGGGTTG CAACCCTGACGAGTCCTTGATCGT 1000 TTCATGGCACCAAGACCACCGTTA TAACGGTGGTCTTGGTGCCATGAA 1001 ACAGCAAGGAGAGTGGATTGCGACG CGTCGCAATCCATCTCCTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGAACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTAACATCG 1005 ATCGGACAAGGACAAGTGGATAGT ACCATCCACTTGTCCTTGTCCGAT 1006 GCCCGGAGGACAAAGTTCGACTGA TCACTCCACTTGTCCTTGTCCGAT 1007 AAATCCGACAAATGGCACATGGA TCACTCACCCTTACCTGCGGC 1007 ACATCCGACAATGGCACATTGA TCACTCACCCCTTACCTG 1008 CAGTTAGGGGATGCGGATGAGTGA TCACTCATCCGCATCCCCTAACTG 1009 CGGCAGGTGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACAGTGTCCACAGGG CCCTGTGGAACACCTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGTGCCTA 1015 AGCACGCCAGGGAGGATCCACGG CCCTGTGGAACACGTGCAGTCACG 1016 ATGAGGGCAAGGAATGAGTCACCG 1017 GGGTCTCTCGTAATCACAGGCCGA TCGCCCTTTGATTACCGTGCT 1017 GGGTCTCTCGTAATCAAGGCCGA TCGCCCTTTTTATTACGAGAGACCCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACCGGAATCCACCGG CCGCTGGATTCCGTAAGAGACCC 1019 GGTTACACCTACCGGAATCCACCGG CCGCTGGATTCCGTAAGAGACCCC 1011 TACCTCGCACACCTTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACCGGAATCCACCGG CCGCTGGATTCCGTAGGTGTAACCC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCCAACTCGGTGTAACCC		997	ATCAGCGCAAGCTGGTCTGAAACA	TGTTTCAGACCAGCTTGCGCTGAT
1000 TTCATGGCACCAAGACCACCGTTA TAACGGTGGTCTTGGTGCCATGAA 1001 ACAGCAAGGAGATGGATTGCGACG CGTCGCAATCCATCTCCTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGC GCCAACAGACGACAACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTAACATCG 1005 ATCGGACAAGGACAAGTGGATGGT ACCATCCACTTGTCCTGAT 1006 GCCCGGAGGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCTCAGGC 1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCCGATT 1008 CAGTTAGGGGATGAGTGA TCCATGTGCCCATTTGTCGGATTT 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGCATCCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGCATCCCCTAACTG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTGCCCTA 1012 ACGCATTACAGGTGCGAAGGGA TCCCTTCCGCACACCTGTAATCCGT 1013 CGTGACTGCACGTGTCCACAGGG CCCTGTGGAACACCTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGATCGAGTTA TAACTCGATCCTCCTGCGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCCTGTAATCAAGGCCGA TCGCCTTTTTACGAGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCCCAAGATA 1019 GGTTACACCTACGGAATCCAGCG CCGCTTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCAGTCATAG CTATTGACCGGACCAACTCGGTGTAACCC 40 1020 ACACCGAGTTGGTCCAGTCAATAG CTATTGACCGGACCAACTCGGTGTAACCC		998	CCCTGGCCAGAACGAGAGGCCATG	CATGGCCTCTCGTTCTGGCCAGGG
1001 ACAGCAAGGAGATGGATTGCGACG CGTCGCAATCCATCTCCTTGCTGT 1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGAACACGTGTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTAACATCG 1005 ATCGGACAAGGACAAGTGGATGGT ACCATCCACTTGTCCTTGTCCGAT 1006 GCCCGGAGGACAAGTTCGAGTTA TAACTCGAACTTTGTCCTCCGGGC 1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCCTCCGGGC 1008 CAGTTAGGGGATGAGTGA TCCATGTGCCCATTTGTCGGATTT 1008 CAGTTAGGGGATGCGGATGAGTGA TCACTCATCCGCATCCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACCGTGTTCCACAGGG CCCTTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCC CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCCTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAACTCGATCTCCTTGCCCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		999	ACGATCAAGGACTCGTCAGGGTTG	CAACCCTGACGAGTCCTTGATCGT
1002 CGTAAATATCTGCGGCGGTGTGAA TTCACACCGCCGCAGATATTTACG 1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGACACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTAACATCG 1005 ATCGGACAAGGACAAGTGGATGGT ACCATCCACTTGTCCTTGTCCGAT 1006 GCCCGGAGGACAAGTTCGAGTTA TAACTCGAACTTTGTCCTCCGGGC 1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCGGATTT 1008 CAGTTAGGGGATGAGTGA TCCATGTGCCCATTTGTCGGATTT 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACAGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT	20	1000	TTCATGGCACCAAGACCACCGTTA	TAACGGTGGTCTTGGTGCCATGAA
1003 GGAAACACGTGTTCGTCTGTTGGC GCCAACAGACGAACACGTGTTTCC 1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTAACATCG 1005 ATCGGACAAGGACAAGTGGATGGT ACCATCCACTTGTCCTTGTCCGAT 1006 GCCCGGAGGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCTCCGGGC 1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCGGATTT 1008 CAGTTAGGGGATGCGGATGGA TCCATGTGCCCATTTGTCGGATTT 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1009 CGGCAGGTGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGAACCC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1001	ACAGCAAGGAGATGGATTGCGACG	CGTCGCAATCCATCTCCTTGCTGT
1004 CGATGTTAGGATTCGGATAGGCCA TGGCCTATCCGAATCCTAACATCG 1005 ATCGGACAAGGACAAGTGGATGGT ACCATCCACTTGTCCTGTCC		1002	CGTAAATATCTGCGGCGGTGTGAA	TTCACACCGCCGCAGATATTTACG
25 1005 ATCGGACAAGGACAAGTGGATGGT ACCATCCACTTGTCCTTGTCCGAT 1006 GCCCGGAGGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCTCCGGGC 1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCGGATTT 1008 CAGTTAGGGGATGCGGATGAGTGA TCACTCATCCGCATCCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACCC 40 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1003	GGAAACACGTGTTCGTCTGTTGGC	GCCAACAGACGAACACGTGTTTCC
1006 GCCCGGAGGACAAAGTTCGAGTTA TAACTCGAACTTTGTCCTCCGGGC 1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCGGATTT 1008 CAGTTAGGGGATGCGGATGAGTGA TCACTCATCCGCATCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1009 CGGCAGGTGCAGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACAGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACCC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1004	CGATGTTAGGATTCGGATAGGCCA	TGGCCTATCCGAATCCTAACATCG
1007 AAATCCGACAAATGGGCACATGGA TCCATGTGCCCATTTGTCGGATTT 1008 CAGTTAGGGGATGCGGATGAGTGA TCACTCATCCGCATCCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1009 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACCTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACCC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT	25	1005	ATCGGACAAGGACAAGTGGATGGT	ACCATCCACTTGTCCTTGTCCGAT
1008 CAGTTAGGGGATGCGGATGAGTGA TCACTCATCCGCATCCCCTAACTG 1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 30 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1006	GCCCGGAGGACAAAGTTCGAGTTA	TAACTCGAACTTTGTCCTCCGGGC
1009 CGGCAGGTGGAGATTCCGACATTG CAATGTCGGAATCTCCACCTGCCG 1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTAGTACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1007	AAATCCGACAAATGGGCACATGGA	TCCATGTGCCCATTTGTCGGATTT
1010 TAGGGCAGCCAGGTTCACTCATCT AGATGAGTGAACCTGGCTGCCCTA 1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1008	CAGTTAGGGGATGCGGATGAGTGA	TCACTCATCCGCATCCCCTAACTG
1011 GCACCGTATTAGCAGTAGGCACGC GCGTGCCTACTGCTAATACGGTGC 1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACCGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1009	CGGCAGGTGGAGATTCCGACATTG	CAATGTCGGAATCTCCACCTGCCG
1012 ACGCATTACAGGTGTGCGAAGGGA TCCCTTCGCACACCTGTAATGCGT 1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT	30	1010	TAGGGCAGCCAGGTTCACTCATCT	AGATGAGTGAACCTGGCTGCCCTA
1013 CGTGACTGCACGTGTTCCACAGGG CCCTGTGGAACACGTGCAGTCACG 1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 35 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1011	GCACCGTATTAGCAGTAGGCACGC	GCGTGCCTACTGCTAATACGGTGC
1014 GCTGAACTACCGCCTAAAATCGCG CGCGATTTTAGGCGGTAGTTCAGC 1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1012	ACGCATTACAGGTGTGCGAAGGGA	TCCCTTCGCACACCTGTAATGCGT
1015 AGCACGCCAGGGAGGATCGAGTTA TAACTCGATCCTCCCTGGCGTGCT 1016 ATGAGGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1013	CGTGACTGCACGTGTTCCACAGGG	CCCTGTGGAACACGTGCAGTCACG
1016 ATGAGGCAAGGAATGGGTCATGC GCATGACCCATTCCTTGCCCTCAT 1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1014	GCTGAACTACCGCCTAAAATCGCG	CGCGATTTTAGGCGGTAGTTCAGC
1017 GGGTCTCTCGTAATCAAAGGCCGA TCGGCCTTTGATTACGAGAGACCC 1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT	35	1015	AGCACGCCAGGGAGGATCGAGTTA	TAACTCGATCCTCCCTGGCGTGCT
1018 TATCTTGCGCAACGCCTCCATTTA TAAATGGAGGCGTTGCGCAAGATA 1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1016	ATGAGGGCAAGGAATGGGTCATGC	GCATGACCCATTCCTTGCCCTCAT
1019 GGTTACACCTACGGAATCCAGCGG CCGCTGGATTCCGTAGGTGTAACC 40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1017	GGGTCTCTCGTAATCAAAGGCCGA	TCGGCCTTTGATTACGAGAGACCC
40 1020 ACACCGAGTTGGTCCGGTCAATAG CTATTGACCGGACCAACTCGGTGT		1018	TATCTTGCGCAACGCCTCCATTTA	TAAATGGAGGCGTTGCGCAAGATA
		1019	GGTTACACCTACGGAATCCAGCGG	CCGCTGGATTCCGTAGGTGTAACC
4024 TOOOACATTAAACCCTACCCACCC CCCTACCCTACCCT	40	1020	ACACCGAGTTGGTCCGGTCAATAG	CTATTGACCGGACCAACTCGGTGT
		1021	TCCCAGATTAAACGCTAGCCACCG	CGGTGGCTAGCGTTTAATCTGGGA

	1022	TTGGTGAAACTGGCCCGTCGGAAG	CTTCCGACGGGCCAGTTTCACCAA
	1023	CCAGGGGAGTTGACAATGAGGCTG	CAGCCTCATTGTCAACTCCCCTGG
	1024	TCTGCGTTATTGGACCGTTTGTCG	CGACAAACGGTCCAATAACGCAGA
	1025	TATGGGATGCTAAACCGGCGTACA	TGTACGCCGGTTTAGCATCCCATA
5	1026	CACAGACGTCTGTCGGGCTTGTGT	ACACAAGCCCGACAGACGTCTGTG
	1027	AGAATGCCGTTCGCCTACTCCCGT	ACGGGAGTAGGCGAACGGCATTCT
	1028	CGACGGATAATGCAGGCCTCATGA	TCATGAGGCCTGCATTATCCGTCG
	1029	ACCCTCTAAAGCAATAGGTCGGCG	CGCCGACCTATTGCTTTAGAGGGT
	1030	CACTCACGGCAGAAGCCTGCTTGT	ACAAGCAGGCTTCTGCCGTGAGTG
10	1031	ATCAGCCCACATATTCTCGGCCGT	ACGGCCGAGAATATGTGGGCTGAT
	1032	CAAATCTGGGGTCGTCCTAAACGC	GCGTTTAGGACGACCCCAGATTTG
•	1033	TGTCGCCCATGGCAGGTTAAATAC	GTATTTAACCTGCCATGGGCGACA
	1034	GGGGCCCATCAATTCATTATCGA	TCGATAATGAATTGATGGGCCCCC
	1035	GTCGAGCAGCTTTAGTATCGCGGG	CCCGCGATACTAAAGCTGCTCGAC
15	1036	CCGCTAAGCACCGAAGGCTCACAA	TTGTGAGCCTTCGGTGCTTAGCGG
	1037	TAGAATTAGCGAACGGTGATCCCG	CGGGATCACCGTTCGCTAATTCTA
	1038	CACATGACATTTGGCAAAGGTCCA	TGGACCTTTGCCAAATGTCATGTG
	1039	TCAACGCACTGGCGATGACTAGAT	ATCTAGTCATCGCCAGTGCGTTGA
•	1040	CGGGAAATGTCTTTAGCCGTCGAA	TTCGACGGCTAAAGACATTTCCCG
20	1041	ATCAGAGCAAATCTGCAGCGGGGA	TCCCCGCTGCAGATTTGCTCTGAT
	1042	GGCCTGTTTCTGTCCAACTGGGCT	AGCCCAGTTGGACAGAAACAGGCC
	1043	ATTTCACCTCGCTGATCGCTTCCG	CGGAAGCGATCAGCGAGGTGAAAT
	1044	AGTGACGCCGAGTCGCGAGGGTTA	TAACCCTCGCGACTCGGCGTCACT
	1045	AGTTGTCTCATCCTGTCCGGGACC	GGTCCCGGACAGGATGAGACAACT
25	1046	CTTCTTTGTGCACACTTGCCAGGG	CCCTGGCAAGTGTGCACAAAGAAG
	1047	CACCTCATCGGAGCATAGCAACCC	GGGTTGCTATGCTCCGATGAGGTG
	1048	ATGCGATCCATGACAAGGGTTGCT	AGCAACCCTTGTCATGGATCGCAT
	1049	CCCGTGGAGATGATGTGCGGCTTA	TAAGCCGCACATCATCTCCACGGG
	1050	CCCAATAGACGCCACAGCCAGTGA	TCACTGGCTGTGGCGTCTATTGGG
30	1051	AACGACCACGACCCTCGCCGAGTA	TACTCGGCGAGGGTCGTGGTCGTT
	1052	GGTGCTTTGTCTGAGGCGAGTGAA	TTCACTCGCCTCAGACAAAGCACC
	1053	CTGTCGGCGCTGCTCCGAATTT	AAATTCGGAGAGCAGCGCCGACAG
	1054	CTCGCCGGAGTGTTGTAAGCATTG	CAATGCTTACAACACTCCGGCGAG
	1055	AGCAATCATGAGAGGTGGCCGGTG	CACCGGCCACCTCTCATGATTGCT
35	1056	ATTTGCCACCGGCGACAAAAAGAT	ATCTTTTGTCGCCGGTGGCAAAT
	1057	CCGCCCGTGTTGGCATGTCTTTTG	CAAAAGACATGCCAACACGGGCGG
	1058	ATCGGAAGTGCTGACTGACACACG	CGTGTGTCAGTCAGCACTTCCGAT
	1059	CCTCAGACCCTATCTGGGTTGACG	CGTCAACCCAGATAGGGTCTGAGG
	1060	стететестсестссестеттс	GAACAGCCGGACCAGACCACAG
40	1061	GTCCCCATTATCGGTGAGTGCAAC	GTTGCACTCACCGATAATGGGGAC
	1062	ACAGGCACGTAAGTGCTCAATCGG	CCGATTGAGCACTTACGTGCCTGT

	1063	AGCAAGATAGCGGGAGTGCCCCTA	TAGGGCACTCCCGCTATCTTGCT
	1064	GGTTTACGCCATGACATCCCGTCA	TGACGGGATGTCATGGCGTAAACC
	1065	GTGCAGGCCTTTGTGTGTGAATCG	CGATTCACACACAAAGGCCTGCAC
•	1066	CTTCGAGGGTAGGGCTTCGAAACG	CGTTTCGAAGCCCTACCCTCGAAG
5	1067	AGTCGACACTTGGGTTTACCACGG	CCGTGGTAAACCCAAGTGTCGACT
	1068	ACATAAATCTCGCCCGCTGCACTC	GAGTGCAGCGGGCGAGATTTATGT
	1069	GTTTGGTTTTCCACGGAGGTTTGA	TCAAACCTCCGTGGAAAACCAAAC
	1070	GCAGGAACCAGATTAGTGTCCCGG	CCGGGACACTAATCTGGTTCCTGC
	1071	TTTGCTAGAGCGCGGAGCTAAAGC	GCTTTAGCTCCGCGCTCTAGCAAA
10	1072	CTATGTGGCATCGCTGACATGCTC	GAGCATGTCAGCGATGCCACATAG
	1073	CCTAAGTCGGTTTGCAGCTGCTCT	AGAGCAGCTGCAAACCGACTTAGG
	1074	GCGTTCGTCCACAGGAACGGAAGG	CCTTCCGTTCCTGTGGACGAACGC
i	1075	TAACCCGCGCCCGAGAAATTGTCT	AGACAATTTCTCGGGCGCGGGTTA
	1076	TATGGTGCTCAGAGCTGTTGCCAA	TTGGCAACAGCTCTGAGCACCATA
15	1077	TCATCGACCCACTAACGTCAGGGC	GCCCTGACGTTAGTGGGTCGATGA
	1078	TGCTCAAGCTACGCGTCACTTCCC	GGGAAGTGACGCGTAGCTTGAGCA
	1079	AGCGGGAAGGTCTGAGGAGGGAAA	TTTCCCTCCTCAGACCTTCCCGCT
	1080	CCGATGTAGCACCACCGCAGTGGC	GCCACTGCGGTGGTGCTACATCGG
	1081	AAGTTCTGGGAATCACACGGCGCG	CGCGCCGTGTGATTCCCAGAACTT
20	1082	CACCAGCCTTACGTGCGGCGTTAA	TTAACGCCGCACGTAAGGCTGGTG
	1083	CGTTTCGCCTCCTCTTCCGAATGC	GCATTCGGAAGAGGAGGCGAAACG
	1084	GAGGAGGCCAATAGAGCAGCGCGC	GCGCGCTGCTCTATTGGCCTCCTC
	1085	AGTAATCTTGCGGCACACAAGCGG	CCGCTTGTGTGCCGCAAGATTACT
	1086	TGAGGACAAACCGCGCGTAGGATA	TATCCTACGCGCGGTTTGTCCTCA
25	1087	TCGTAGAGACGCAGTGCCCATCTC	GAGATGGGCACTGCGTCTCTACGA
	1088	CGAAGCTACACCCCGAGTGCGGTG	CACCGCA©TCGGGGTGTAGCTTCG
	1089	ATGATGTGATCTTCCCATGGCTGG	CCAGCCATGGGAAGATCACATCAT
	1090	TGTACACGTATCGCGTTCGCCTAG	CTAGGCGAACGCGATACGTGTACA
	1091	GGTGTGCTTTTACGCATGTACGCA	TGCGTACATGCGTAAAAGCACACC
30	1092	AGGCGGGATACGTGGATGCTAGCC	GGCTAGCATCCACGTATCCCGCCT
	1093	AAATTAGGCACAGCCCTCCCACAG	CTGTGGGAGGGCTGTGCCTAATTT
	1094	ATAAGTTTGGTGAGCCATTCGCGA	TCGCGAATGGCTCACCAAACTTAT
	1095	CCTATTTCGGCGGACCTCGATGCC	GGCATCGAGGTCCGCCGAAATAGG
	1096	TTACCGGAATATGCACTTGGCCGC	GCGGCCAAGTGCATATTCCGGTAA
35	1097	CCTCTCGGACGGTCCCTTTGATCG	CGATCAAAGGGACCGTCCGAGAGG
	1098	CAAGCGAATGCTGTATTACGGCCT	AGGCCGTAATACAGCATTCGCTTG
	1099	GCATTTCCCATGCCAGAACGTTGA	TCAACGTTCTGGCATGGGAAATGC
•	1100	GTTTTGGCTAACCGTCCTGCCTTG	CAAGGCAGGACGGTTAGCCAAAAC
	1101	AGGTTTTGTCCGGGCGAATGATGT	ACATCATTCGCCCGGACAAAACCT
40	1102	ATGTCCACGAGTGCGTCCGATATC	GATATCGGACGCACTCGTGGACAT
	1103	AGACGCGTACGAGGGTTCTGCGCC	GGCGCAGAACCCTCGTACGCGTCT

1104 AATACCGTTCCCATCTGTGCGAGG CCTCGCACAGATGGC 1105 ACACAAGGTGCCTCATCGAATGGT ACCATTCGATGAGGC 1106 GCCGGCAAAATCCTACAAAATCCA TGGATTTTGTAGGAT 1107 CTTATCCCATGTGCCGGTCTGACT AGTCAGACCGGCACA 1108 GCGGCCATAATGCATAGCACGGAA TTCCGTGCTATGCAT 1109 TACGGTGCATCGCAGTATGGGTAA TTACCCATACTGCGA 1110 CACCAGATGTCGAGGATCATCGCC GGCGATGATCCTCGA	CACCTTGTGT TTTGCCGGC ATGGGATAAG TATGGCCGC ATGCACCGTA
1106 GCCGGCAAAATCCTACAAAATCCA TGGATTTTGTAGGAT 1107 CTTATCCCATGTGCCGGTCTGACT AGTCAGACCGGCAC 5 1108 GCGGCCATAATGCATAGCACGGAA TTCCGTGCTATGCAT 1109 TACGGTGCATCGCAGTATGGGTAA TTACCCATACTGCGA 1110 CACCAGATGTCGAGGATCATCGCC GGCGATGATCCTCGA	TTTGCCGGC ATGGGATAAG TATGGCCGC TGCACCGTA
1107 CTTATCCCATGTGCCGGTCTGACT AGTCAGACCGGCACA 5 1108 GCGGCCATAATGCATAGCACGGAA TTCCGTGCTATGCAT 1109 TACGGTGCATCGCAGTATGGGTAA TTACCCATACTGCGA 1110 CACCAGATGTCGAGGATCATCGCC GGCGATGATCCTCGA	ATGGGATAAG TATGGCCGC ATGCACCGTA
5 1108 GCGGCCATAATGCATAGCACGGAA TTCCGTGCTATGCAT 1109 TACGGTGCATCGCAGTATGGGTAA TTACCCATACTGCGA 1110 CACCAGATGTCGAGGATCATCGCC GGCGATGATCCTCGA	TATGGCCGC TGCACCGTA
1109 TACGGTGCATCGCAGTATGGGTAA TTACCCATACTGCGA 1110 CACCAGATGTCGAGGATCATCGCC GGCGATGATCCTCGA	TGCACCGTA
1110 CACCAGATGTCGAGGATCATCGCC GGCGATGATCCTCGA	
	ACATOTOGTO
1111 GCTCCTACGCCCAAAGAGGTATGG CCATACCTCTTTGGG	IOATOTOGTO
TITI GCTCCTAGGCCCAAAGAGTATGG CCATACCTCTTTGGG	CGTAGGAGC
1112 AGAATATGGGCAGCAGCACTC GAGTGCTGCTGCTG	CCCATATTCT
10 1113 CTGCAGTCGCACGCAGTAGACCCG CGGGTCTACTGCGTC	GCGACTGCAG
1114 ATGTCCCTGACCGGAATCTTTCCA TGGAAAGATTCCGGT	CAGGGACAT
1115 TTCGCCACGAGGCATTAGTCCGAC GTCGGACTAATGCCT	CGTGGCGAA
1116 ACGTCGTTCCCGAGAATACGGTCT AGACCGTATTCTCGG	GAACGACGT
1117 ATCCGCTGGCGCTTTGACGAAGAA TTCTTCGTCAAAGCG	CCAGCGGAT
15 1118 TGAACCAAATTCTTACCGCGTGGA TCCACGCGGTAAGAA	ATTTGGTTCA
1119 CACGCGTAGGCTGGTGTCATTC GAATGACACACCAGG	CTACGCGTG
1120 TCGATCCCGCGATCTGGCCTATTG CAATAGGCCAGATCC	CGGGATCGA
1121 GGAACACTCAACCACCGTGGATCT AGATCCACGGTGGT	TGAGTGTTCC
1122 TCACACCACCACTGGCCACAGATG CATCTGTGGCCAGTT	GGTGTGTGA
20 1123 TGTGCTTAGGACACCAGGCAACCC GGGTTGCCTGGTGT	CCTAAGCACA
1124 GACATTTAACCCGACCGATTGTGC GCACAATCGGTCGG	GTTAAATGTC
1125 GGCACCGAGCCAGTAGGCCTCTGA TCAGAGGCCTACTGC	3CTCGGTGCC
1126 CTCAAGCGTGCATGTTGGTAACCA TGGTTACCAACATGC	ACGCTTGAG
1127 AGGAAGGCCACCATCCAATATTCG CGAATATTGGATGGT	GGCCTTCCT
25 1128 TACGAACGCCAAGGTTATGCCAAT ATTGGCATAACCTTG	GCGTTCGTA
1129 CGCACCAGAGTTATGCAGGCTCAA TTGAGCCTGCATAAC	TCTGGTGCG
1130 CCAGCTTGGACGAGGAAGGATGTG CACATCCTTCCTCGT	CCAAGCTGG
1131 GTCACGCCTTTCAAATGACCCACA TGTGGGTCATTTGAA	AGGCGTGAC
1132 TGCTAGACCCAGCCCGAGTCTCGG CCGAGACTCGGGCT	GGGTCTAGCA
30 1133 TATTGTGGCACTTGGGTCCAGTGC GCACTGGACCCAAG	TGCCACAATA
1134 CACGTGTGAGACCGGAAGTGCATC GATGCACTTCCGGTC	TCACACGTG
1135 GGCAGCCTGATGCTACAGCACCGT ACGGTGCTGTAGCA	CAGGCTGCC
1136 CGGTCCGTCCATCCTTCAGAGTTA TAACTCTGAAGGATG	GACGGACCG
1137 CTATTCGCGGACCCTACGCAGTTT AAACTGCGTAGGGTC	CGCGAATAG
35 1138 ACCTGTGCAGTCAGCACGAGTGCG CGCACTCGTGCTGAG	CTGCACAGGT
1139 GAGAACCACAGGTGGTCCACCCTA TAGGGTGGACCACC	IGTGGTTCTC
1140 CCTCGCTAGAGAAATCCACGGGAT ATCCCGTGGATTTCT	CTAGCGAGG
1141 TAACATCGGTGCAAACCGTGGCGC GCGCCACGGTTTGC	ACCGATGTTA
1142 ACCCAGAAGACATGGCATTCGCCT AGGCGAATGCCATG	CTTCTGGGT
40 1143 AAAAGCGCTGCTCTAACACCGCCG CGGCGGTGTTAGAG	CAGCGCTTTT
1144 CAAGTCTGTCCATTTCCCAACGGT ACCGTTGGGAAATGC	SACAGACTTG

Ĺ	1145	CCGACACATGGTGGGCTTTTTAAG	CTTAAAAAGCCCACCATGTGTCGG
	1146	ACAGACCAGCTTTTTGCGCAGATT	AATCTGCGCAAAAAGCTGGTCTGT
	1147	CGGCGATCCATTTCACTTCAAAGT	ACTTTGAAGTGAAATGGATCGCCG
	1148	GACGTTATCATGACACAGGTCGCG	CGCGACCTGTGTCATGATAACGTC
5	1149	GGCAGAGTTGGATCGGATCCTCAA	TTGAGGATCCGATCCAACTCTGCC
Ĺ	1150	CCTCAATGCCACCGAATTCGGTAT	ATACCGAATTCGGTGGCATTGAGG
1	1151	GGAGTTAGCGTGATTAGTCGCCCA	TGGGCGACTAATCACGCTAACTCC
	1152	GAACTCGACGTGTCACGGAAGGGT	ACCCTTCCGTGACACGTCGAGTTC
	1153	CACAAGCGACATTTCTGGTGCACG	CGTGCACCAGAAATGTCGCTTGTG
10	1154	CCAGAATGCGTGAATTCGCGTCCT	AGGACGCGAATTCACGCATTCTGG
	1155	CAAGGGAGCCCTGCGAATTAGAGT	ACTCTAATTCGCAGGGCTCCCTTG
	1156	ATTCTTGCTTCGGACGACTAGCCG	CGGCTAGTCGTCCGAAGCAAGAAT
	1157	TGCCACTTTGATTTCCAGATTGCC	GGCAATCTGGAAATCAAAGTGGCA
	1158	GATGGTCGGCAGATAAGTGGTGGG	CCCACCACTTATCTGCCGACCATC
15	1159	GTTCACACGGGTTGACCAACATGT	ACATGTTGGTCAACCCGTGTGAAC
1	1160	GATTCAATTGCCCCATTCCTGCAT	ATGCAGGAATGGGGCAATTGAATC
	1161	TACCGGAAACTGAGCCTCGTGCTA	TAGCACGAGGCTCAGTTTCCGGTA
	1162	GGATCTTTACTCAGGGGCAGAGCC	GGCTCTGCCCCTGAGTAAAGATCC
	1163	CGCGAGTGCTTTGTTCTGTGGA	TCCACACAGAACAAAGCACTCGCG
20	1164	GTCGTCGCGATGGCGTACATCCTT	AAGGATGTACGCCATCGCGACGAC
Ĺ	1165	ACGGGAATCTCCCGAAGTGCGAGC	GCTCGCACTTCGGGAGATTCCCGT
1	1166	GGTCGAAATGAGCCAGCAGCAGAT	ATCTGCTGCTGGCTCATTTCGACC
1	1167	CCATTGGAATACTGCGTGCGGCTT	AAGCCGCACGCAGTATTCCAATGG
	1168	GGAAGACTTCGCGAGGGCACAATG	CATTGTGCCCTCGCGAAGTCTTCC
25	1169	AGGGTGACTTCGAAGGTCCGAACT	AGTTCGGACCTTCGAAGTCACCCT
ļ	. 1170	TCGTCCCTCTGGTGGTCGAATCAC	GTGATTCGACCACCAGAGGGACGA
1	1171	TGTGCAAATTATGCTGGGCGTGAG	CTCACGCCCAGCATAATTTGCACA
-	1172	GTCGCCAACTGTCATGTGTGCCCA	TGGGCACACATGACAGTTGGCGAC
1	1173	CCTCGAACCCTCAAGACGAAACGA	TCGTTTCGTCTTGAGGGTTCGAGG
30	1174	CTTCATCACGTGACCTTTGTTGCC	GGCAACAAAGGTCACGTGATGAAG
-	1175	CCTTCATTCCCAGCAGGATGGCTT	AAGCCATCCTGCTGGGAATGAAGG
	1176	CGGGGACCTCAATGGAGCGTCTTA	TAAGACGCTCCATTGAGGTCCCCG
	1177	CGCCTCTAGCGCTTGTTACGTCGA	TCGACGTAACAAGCGCTAGAGGCG
	1178	CTGCCAGACTCAAAACAGGGACGG	CCGTCCCTGTTTTGAGTCTGGCAG
35	1179	CTCCTTACACCGTGTGAGGGAACC	GGTTCCCTCACACGGTGTAAGGAG
-	1180	TTTCATGCCATATCGCCTCGCGCA	TGCGCGAGGCGATATGGCATGAAA
	1181	GTCTGACTGTCTGCCCTGTATGCG	CGCATACAGGGCAGACAGTCAGAC
1	1182	GGTTAATGGAACGCGTTAACGCG	CGCGTTAACGCCGTTCCATTAACC
	1183	CTTCGCACTGCGGAATCTCAAGCT	AGCTTGAGATTCCGCAGTGCGAAG
40	1184	TGCCAGAGGCGTAGGAGTCCTGGA	TCCAGGACTCCTACGCCTCTGGCA
	1185	GACGGCGAGCCAGTATTAACTCA	TGAGTTAATACTGGCTCGCCCGTC

r			·
	1186	GACCTCCAAAGTCAGTCTTGGCGG	CCGCCAAGACTGACTTTGGAGGTC
<u> </u>	1187	CGTTAGAGCATGACCGAACACGTC	GACGTGTTCGGTCATGCTCTAACG
	1188	GTGGGCTCAAAAATTGGGTACGCC	GGCGTACCCAATTTTTGAGCCCAC
į	1189	GGGCAGAGATCACGCGTTCCTCT	AGAGGAACGCGTGATCTCTGCCCC
5	1190	TTTCGCCCTACGAAGCGAAGTTTC	GAAACTTCGCTTCGTAGGGCGAAA
	1191	TACGGGGTGATGTTAAGCTACGCG	CGCGTAGCTTAACATCACCCCGTA
	1192	CCTGTGAGTCTGAGATCGCCGTGT	ACACGGCGATCTCAGACTCACAGG
	1193	ACTGAAGCTGGAACAGGCCATTCG	CGAATGGCCTGTTCCAGCTTCAGT
	1194	AGCACTGGTTCACATGGGAGTCCA	TGGACTCCCATGTGAACCAGTGCT
10	1195	TAAGGAAGATCACACTCCCTGCGC	GCGCAGGGAGTGTGATCTTCCTTA
	1196	CACCACACGCTAAAATTGAAGCCG	CGGCTTCAATTTTAGCGTGTGGTG
	1197	GCTGTCGCCAGGATCATGTATCGT	ACGATACATGATCCTGGCGACAGC
	1198	TTCGTTCGTGCACTGGATTCTTGA	TCAAGAATCCAGTGCACGAACGAA
	1199	TCAGCTCTCCTTGTGCTTGCAGTG	CACTGCAAGCACAAGGAGAGCTGA
15	1200	ACGACGAGGTGAACTTCGTGGGAA	TTCCCACGAAGTTCACCTCGTCGT
[1201	AGCATTGCCGCGGGCCTTGGTTTA	TAAACCAAGGCCCGCGGCAATGCT
	1202	CAGAGGGCAGATGTGACTCCTCAA	TTGAGGAGTCACATCTGCCCTCTG
	1203	CGATATTTCAGCCTCTCAAACGCG	CGCGTTTGAGAGGCTGAAATATCG
	1204	TGCCAGAAATGTTGCCGATTCGAA	TTCGAATCGGCAACATTTCTGGCA
20	1205	TAGGCCACCGGTGTTCACAATTC	GAATTGTGAACACCGGGTGGCCTA
Į	1206	GAGAGTCAGACCGAGGGACACGAG	CTCGTGTCCCTCGGTCTGACTCTC
	1207	GAGGCGATCCTGGAACCACGCAAC	GTTGCGTGGTTCCAGGATCGCCTC
	1208	CCAGAGAGGCGGGCTACTGACTCA	TGAGTCAGTAGCCCGCCTCTCTGG
	1209	CACACAGTCCCATCGTACGGCAGT	ACTGCCGTACGATGGGACTGTGTG
25	1210	TTACGTTGCGGAAGCGTGCCTCTA	TAGAGGCACGCTTCCGCAACGTAA
	1211	ATGTACACGCTGCAATCGTGTCCC	GGGACACGATTGCAGCGTGTACAT
	1212	ACTCGTCGTCGGAAGCGCCCAGGT	ACCTGGGCGCTTCCGACGACGAGT
	1213	ATGCGAGAGCAGAATTGAGCCGGT	ACCGGCTCAATTCTGCTCTCGCAT
	1214	AAGTTGGTTCGTATTCACGCGTGC	GCACGCGTGAATACGAACCAACTT
30	1215	TGGGCTTATCGCCGAAGATTGCTA	TAGCAATCTTCGGCGATAAGCCCA
	1216	CAACGGCGAAGACCCAGAATTTTA	TAAAATTCTGGGTCTTCGCCGTTG
	1217	AGCGTACGGCGAAAGTCTAGGGAC	GTCCCTAGACTTTCGCCGTACGCT
	1218	ATGCATCCAGCGTCCCCTTGATTA	TAATCAAGGGGACGCTGGATGCAT
	1219	ACCGTCATCAGTCGCAGGCTTCTG	CAGAAGCCTGCGACTGATGACGGT
35	1220	TCTTGACGGCTGGGCATGATTGGA	TCCAATCATGCCCAGCCGTCAAGA
	. 1221	TTAACATTCGGACCCAGGACCTGG	CCAGGTCCTGGGTCCGAATGTTAA
	1222	TGGTGTCGAACTCCCTTGCGTGTT	AACACGCAAGGGAGTTCGACACCA
	1223	TACTCCAGTCGCCTGCGCGCAAAC	GTTTGCGCGCAGGCGACTGGAGTA
	1224	CGCAATGCCGTAAGCATGCCAAGC	GCTTGGCATGCTTACGGCATTGCG
40	1225	AGTCCGCGCGAAATACGAACAGTA	TACTGTTCGTATTTCGCGCGGACT
ĺ	1226	ATGTTGCACGCGCACTGTATCACA	TGTGATACAGTGCGCGTGCAACAT
-			

	1227	ATCGCCTAACTACCCGCGGCGTGC	GCACGCCGCGGGTAGTTAGGCGAT
	1228	TGGCCAGGGAACACAAGCTCGGTA	TACCGAGCTTGTGTTCCCTGGCCA
	1229	AAACATGGGTCGCGTCTGAGATCA	TGATCTCAGACGCGACCCATGTTT
	1230	GCGAGAGCTGCGATTCCCTTTTAG	CTAAAAGGGAATCGCAGCTCTCGC
5	1231	CCGGCCAAACAAGAGACGAGCGGA	TCCGCTCGTCTCTTGTTTGGCCGG
	1232	AATGGGGCACAGTCTCGCTTGACA	TGTCAAGCGAGACTGTGCCCCATT
	1233	TGTCTCGGGCCTTCAGGACACACT	AGTGTGTCCTGAAGGCCCGAGACA
	1234	TCCACCTTCATTAAGTGGTTCGGC	GCCGAACCACTTAATGAAGGTGGA
	1235	GCTTCGGAATCATCCACCTGTCAT	ATGACAGGTGGATGATTCCGAAGC
10	1236	GAGCCGATGGGCTATCGTCGTCGG	CCGACGACGATAGCCCATCGGCTC
	1237	CACGAATTACGCACGCACAGAGGA	TCCTCTGTGCGTGCGTAATTCGTG
	1238	GCTGTGACGCTCCCCTCAACTAGG	CCTAGTTGAGGGGAGCGTCACAGC
	1239	CGCTCTGAAAACGCGGGCTACGTT	AACGTAGCCCGCGTTTTCAGAGCG
	1240	GAGTGCTGGACACCGTAGCCAGGA	TCCTGGCTACGGTGTCCAGCACTC
15	1241	CCAACCCCAGTGTAGGCGCAAATG	CATTTGCGCCTACACTGGGGTTGG
	1242	GAAGTAGGGGATGTTGGCCGGCGG	CCGCCGGCCAACATCCCCTACTTC
	1243	CAACGTGGGCACCTGTTTTAGCAG	CTGCTAAAACAGGTGCCCACGTTG
	1244	CTAGCTGCGATCCGAACCTCTACG	CGTAGAGGTTCGGATCGCAGCTAG
e	1245	CATTGAACCATCAGCCAAGCTGCG	CGCAGCTTGGCTGATGGTTCAATG
20	1246	AGACTGGCAATTTTTCGAGGCCAA	TTGGCCTCGAAAAATTGCCAGTCT
	1247	CTGGCCGTCCATGAGTTGGTCCAG	CTGGACCAACTCATGGACGGCCAG
	1248	CATGCTGAAACACGGGATTGCCAT	ATGGCAATCCCGTGTTTCAGCATG
	1249	CGATATGTAAGACAGCCGTCGCAA	TTGCGACGGCTGTCTTACATATCG
	1250	AGCGTAACCTACTGGGAAGGCACC	GGTGCCTTCCCAGTAGGTTACGCT
25	1251	GTTCGAACCCCGCGATGTTAAATG	CATTTAACATCGCGGGGTTCGAAC
	1252	GTTGTTAGGAGGCTCGAGGCTGCT	AGCAGCCTCGAGCCTCCTAACAAC
	1253	ACTGGTGCTACGCGGGATATTTGA	TCAAATATCCCGCGTAGCACCAGT
	1254	CTGGGAGCTATCCTCAGCCGAATC	GATTCGGCTGAGGATAGCTCCCAG
	1255	GAACTCGCCGCTGCCGAAGGGTAG	CTACCCTTCGGCAGCGGCGAGTTC
30	1256	TTCGATCGAGGAGCAAGGAGAGTC	GACTCTCCTTGCTCCTCGATCGAA
	1257	GGGGAAAATTGAGGCCTTAGCCAT	ATGGCTAAGGCCTCAATTTTCCCC
	1258	CTAAGGTCAAAGCGCTGTCGCCAG	CTGGCGACAGCGCTTTGACCTTAG
	1259	CCGTAGCGGTGCTCGACCAGGTTC	GAACCTGGTCGAGCACCGCTACGG
	1260	TGGGGACGAATCCGAATGTAGTGA	TCACTACATTCGGATTCGTCCCCA
35	1261	GTCATGTAATTGCATCCCACGGGT	ACCCGTGGGATGCAATTACATGAC
	1262	CTTTGCGCGGTGGTCAATAAAAAG	CTTTTTATTGACCACCGCGCAAAG
	1263	CTCGGGGATGCCCTCTTGGCATTA	TAATGCCAAGAGGGCATCCCGAG
	1264	CGAAACGTGGTGCAGAAACCTGAA	TTCAGGTTTCTGCACCACGTTTCG
	1265	GGAGTTCACGAGTCGAGCAGTCGC	GCGACTGCTCGACTCGTGAACTCC
40	1266	AGCCGTTTTCAAAGATCTCGACGA	TCGTCGAGATCTTTGAAAACGGCT
	1267	TGGCTGGACATTGTCTGCAATGCA	TGCATTGCAGACAATGTCCAGCCA

	1268	ATCGGCTGCCTCAGTCCCTAATTT	AAATTAGGGACTGAGGCAGCCGAT
	1269	CCAGCATGGAGTTAAGTGAGCGCG	CGCGCTCACTTAACTCCATGCTGG
	1270	TTCATATTTACGAATGCCGGGTGC	GCACCCGGCATTCGTAAATATGAA
	1271	CGAAATCGCACAGGAATTCGCGTC	GACGCGAATTCCTGTGCGATTTCG
5	1272	GGCAATTTCGGGACACTCGTTTCA	TGAAACGAGTGTCCCGAAATTGCC
	1273	TTTGTGATTGGGGGTATAACCCGA	TCGGGTTATACCCCCAATCACAAA
•	1274	CCCAGCTAATCCAGCTTGGGCTGT	ACAGCCCAAGCTGGATTAGCTGGG
	1275	AAAATCGTTTGGCTGTAACGTCGC	GCGACGTTACAGCCAAACGATTTT
	1276	AGGAGATTCATCGACTTCCGGGAA	TTCCCGGAAGTCGATGAATCTCCT
10	1277	GCACGGGTCTCAATGCTTAGGGT	ACCCTAAGCATTGAGACCCCGTGC
	1278	GCGCAACAAGTAGCCTACCGAGGC	GCCTCGGTAGGCTACTTGTTGCGC
	1279	TAGCAGGCTGATGCCGTCTACACA	TGTGTAGACGGCATCAGCCTGCTA
	1280	GCAAGCGGCGATCGTACAACTTGT	ACAAGTTGTACGATCGCCGCTTGC
	1281	GCACCTCTGGTAAGCCTGAAAGGG	CCCTTTCAGGCTTACCAGAGGTGC
15	1282	CGAGGCGGTGAGTGCATACCGTG	CACGGTATGCACTCACCGCCCTCG
	1283	GGATTAACCGGAACTGCCCTTCTG	CAGAAGGCAGTTCCGGTTAATCC
	1284	GATATTGGGTCCGGCGCGCATTAC	GTAATGCGCGCCGGACCCAATATC
	1285	GGCCTTTAATCTCCGGTCGCAATG	CATTGCGACCGGAGATTAAAGGCC
	1286	AACCTTAGTGCGGCTAGGTGGGGT	ACCCCACCTAGCCGCACTAAGGTT
20	1287	CACGCTGACGCCAGTGTGGTGAGG	CCTCACCACACTGGCGTCAGCGTG
	1288	GGTTCCCTTGACCCACCGAATTGA	TCAATTCGGTGGGTCAAGGGAACC
	1289	TTCTGACAACATCGACCCTGGCTC	GAGCCAGGGTCGATGTTGTCAGAA
	1290	GCGAGCGAAGATAATCCCCAAACT	AGTTTGGGGATTATCTTCGCTCGC
	1291	GTACTCTGTGCAACGGTCCCGAGT	ACTCGGGACCGTTGCACAGAGTAC
25	1292	ACACGCCAGGAACAGTGTCTGTGA	TCACAGACACTGTTCCTGGCGTGT
	1293	AAGGGAATTTAGCGCGCGTGACTT	AAGTCACGCGCGCTAAATTCCCTT
	1294	TGACGTACGCGTTTTAAGTGGGGA	TCCCCACTTAAAACGCGTACGTCA
	1295	CTTAGAGGGACGAGGCCATGAATG	CATTCATGGCCTCGTCCCTCTAAG
	1296	GGACGACTCCGCAAAAAAGGTCGT	ACGACCTTTTTTGCGGAGTCGTCC
30	1297	TCAATCCCAACATCCAAAGCCTCA	TGAGGCTTTGGATGTTGGGATTGA
	1298	GCACTGGTCTACCAAGCTTGTCCC	GGGACAAGCTTGGTAGACCAGTGC
	1299	ACTTGTCGGAAACGAGACCGAGCA	TGCTCGGTCTCGTTTCCGACAAGT
	1300	TCAGGAAAGGCCTAAAGGCGAAAG	CTTTCGCCTTTAGGCCTTTCCTGA
	1301	GGAATGTAGTCAAGGAGGACGGGG	CCCCGTCCTCCTTGACTACATTCC
35	1302	GCACGTGGTAAATGAATTGGCGAG	CTCGCCAATTCATTTACCACGTGC
	1303	GATCATCAGGGGTTATGCGTCGCG	CGCGACGCATAACCCCTGATGATC
	1304	CTCACTCATTCTGATTGCCCGCGG	CCGCGGCAATCAGAATGAGTGAG
,	1305	GGGGTGATCTCTCGAACGTCACCC	GGGTGACGTTCGAGAGATCACCCC
]	1306	AAGGTTGCTGCTAGCGTACCTCGA	TCGAGGTACGCTAGCAGCAACCTT
40	1307	TATAGATCGCCCAACAGGCAGGAG	CTCCTGCCTGTTGGGCGATCTATA
Į	1308	GTTTGGACCTGTTGGGAGTGGGCA	TGCCCACTCCCAACAGGTCCAAAC

1309 ATTGGGGAAAACCCGGTCTCAAGG CCTTGAGACCGGGTTTTT 1310 TCGACGATAAAGTGCTCACGGGAC GTCCCGTGAGCACTTTAA 1311 CGATAGAATTCAATGCAGGGCGGA TCCGCCCTGCATTGAAT 1312 CGGTTCGCTACGGCGGCTGGTTTC GAAACCAGCCGCCGTAG 1313 CCAGGTTTCGGTTAGTCGGCTAG CTAGCGCGATCACCGA 1314 ACGACCTTACACTCGGATCCGAGC CGTCGGATCCGAGTGTA 1315 TCGCGTTAAATGGACCAAGGGGCC GGCCCCTTGGTCCATTTA 1316 CCAGAAAAAATGGCCCGGAT ATCCGGGCGCCATTTATA 1317 GATACATCGCCGCCTGCTAGGCAC GTGCCTAGCAGGGGGCGCA 1318 GAGATCAACTCGGAAACCGGAT ATCCGGGCGCCATTTACCTAGCAGCGCGCCT 1319 ACTTCGCGGAAAACGGATG CATCCGGTTTCCGAGTG 1320 CCGAGCTGCACGAGACACCAAAGT ACTTTGTGTCCTCTGGACAGCGCGCCCT 1321 TTCCACAAGGCGGCATAGTGAGCC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAACC GCTTTTCCGGATTCCAC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTCCGAT 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAACTGC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACA 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGCGCCGAAGT 1329 GCAGGCATCCGGCAGGATGTCTC GAGACACTGCGGAAGT 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACACTGCGGAAGT 1320 CAACAATCAGGTTCATGCCCTTACA TTGCCATTGTAGGGCTGGAACTG 1321 ACTTTGCAGAACGGCCCAAAAGCAC TTGGCCTTTACATGCGCCTTAAATA TATTTAAGGCCAAACTGCCTACAATGGCAACTGCCTTACAATGGCAACTGCCTTACAATGGCAACTGCCTTACAATGGCAACTGCCTTACAATGGCAACTGCCTTACAACTGCCGCACGAAGAACACCCTGCGAAGAACAACACCCTGCGAAGAACAACACCCTGCGAACAAAACACCCTGCGAACAAAAACACCCTGCGAACAAAAACACCCTGCAACAAAAACACCCTGCAAAAAAACACCCTGCAAAAAAACACCCTGCAAAAAAACACCCTGCAAAAAAACACCCTGCAAAAAAAA	
1311 CGATAGAATTCAATGCAGGGCGGA TCCGCCCTGCATTGAAT 1312 CGGTTCGCTACGGCGGCTGGTTTC GAAACCAGCCGCCGTAG 1313 CCAGGTTTCGGTTAGTCGCGCTAG CTAGCGGCGACTAACCGA 1314 ACGACCTTACACTCGGATCCGACG CGTCGGATCCGAGTGTA 1315 TCGCGTTAAATGGACCAAGGGGCC GGCCCCTTGGTCCATTT. 1316 CCAGAAAGAAAATGGCGCCCGGAT ATCCGGGCGCCATTTTC 1317 GATACATCGCCGCCTGCTAGGCAC GTGCCTAGCAGGCGCCC 1318 GAGATCACACTCGGAAACCGGATG CATCCGGTTTCCGAGTG 1319 ACTTCGCGGAAAACGGATG CATCCGGTTTCCGAGTG 1320 CCGAGCTGCACGAGACCACAAAGT ACTTTGTGTGCTCGTGC, 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTTCCGGATTCCAC 1323 CGCTATGTCGAGCACTTTAC GTAAATGCATGCTGCGA 1324 AGTCACGCCCAACGTCGGTTTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGCGGAG 1329 GCAGGCATCCGGCAGAGATGTCC GAGACATCTCTGCCGGA 1329 GCAGGCATCCGGCAGAGATGTCC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGGCCAACACAAA TTGCCATTGTAGCGGA 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCCGGAAACACCCTG 1332 ACTTTGCAGAAGGGCCAACACAAA TTGCCTTGCCGGAA 1333 CCTTCCTGGTACTTTGTGGGGCAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGTTGGGCCTTCTAC 1335 ATTTTCAGAATAGCCCCCACCAGAGTG CACTCTGGTGGGGAACACCCTG 1336 CAATTGCTACCTCCGCTCGA TCGAGGGGGGAAACACCTGG 1337 CTGTCGCCTAAATGCCCTCCGA TCGAGGGGGGAAACACCTGTACGTAGAACACCCTGGAACACACCACGAAGTGCCCACACACA	CCCCAAT
1312 CGGTTCGCTACGGCGGCTGGTTTC GAAACCAGCCGCCGTAC 1314 ACGACCTTCGGTTAGTCGCGCTAG CTAGCGGACTAACCGA 1314 ACGACCTTACACTCGGATCCGACG CGTCGGATCCGAGTGTA 1315 TCGCGTTAAATGGACCAAGGGGCC GGCCCCTTGGTCCATTT. 1316 CCAGAAAGAAAATGGCGCCCGGAT ATCCGGGCGCCATTTTC 1317 GATACATCGCCGCCTGCTAGGCAC GTGCCTAGCAGGCGCC 1318 GAGATCACACTCGGAAACCGGATG CATCCGGTTTCCGAGTG 1319 ACTTCGCGGAAAACGGATG CATCCGGTTTCCGAGTG 1320 CCGAGCTGCACGAGACACCAAAGT ACTTTGTGTGCTCGTGC, 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTTCCGGATTCCAC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGAT 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGGA 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTTGCG 1326 ACTTGCAACTTCGGCCGTTAAATA TATTTAAGGCCAAGTGCC 1327 CAAACATCAGGTTCATGCCGTACG CGTACCAGCACGAACGT 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGCTGGA 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACAATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAAAACCTTGACTTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCCGGGAAACCCCTG 1332 ACTTTCCAGAAGGGCCAACCAAA TTTGCCATTGTGCGGGAACACCAGTGGAACACAAGGAACAAAGGAACAACAAGGAACAACAAGGAACAAC	FCGTCGA
1313 CCAGGTTTCGGTTAGTCGCGCTAG CTAGCGGACTAACCGA 1314 ACGACCTTACACTCGGATCCGACG CGTCGGATCCGAGTGTA 1315 TCGCGTTAAATGGACCAAGGGGCC GGCCCCTTGGTCCATTT, 1316 CCAGAAAGAAATGGCGCCCGGAT ATCCGGGCGCCATTTTC 1317 GATACATCGCCGCCTGCTAGGCAC GTGCCTAGCAGGCGCC 1318 GAGATCACACTCGGAAACCGGATG CATCCGGTTTCCGAGTG 1319 ACTTCGCGGAAAAAGGCTGGCATT AATGCCAGCCTTTTTCCC 1320 CCGAGCTGCACGAGCACCACAAAGT ACTTTGTGTGCTCGTGC, 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTTCCGGATTCCAC 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACCGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAACCAAA TTTGCCATTGTAGGGTGG 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTCC 1333 CCTTCCTGGTACTTTTGTGGGCGAC GTCGCCCACAAAGTACCTG 1334 CTACATGCTCACCCCACCACAAG CTCGTGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGGCGGGCTATTCC 1336 CAATTGCTACCTCACCCCACCACAGAGT CACTCTGGTGGGGTGAG 1337 CTGTCGCCTAATCCTCGGTGGCCG CGCCCACCAAAGTACCATA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGCCCACCAGAGATTAG 1338 TTTGTGTTTGGCTCCGTACATTGGA TCCAATGACCACCTTCCCCCACAAGGTG CACTCTGCGGAGGCCAAACACCACAAG CACAAGTACCCTG CACACACAAGTACCCACCACACAAG CACAAGTACCCACCACACAAGTACCCACCACACACAAG CACAAGTACACACACAAG CACAACAAGTACCCACCACACACACAAG CACAACAACAAGTACCCCCCCCCC	CTATCG
1314 ACGACCTTACACTCGGATCCGACG CGTCGGATCCGAGTGTA 1315 TCGCGTTAAATGGACCAAGGGGCC GGCCCCTTGGTCCATTT, 1316 CCAGAAAGAAAATGGCGCCCGGAT ATCCGGGCGCCATTTTC 1317 GATACATCGCCGCCTGCTAGGCAC GTGCCTAGCAGGCGGCC 1318 GÁGATCACACTCGGAAACCGGATG CATCCGGTTTCCGAGTG 1319 ACTTCGCGGAAAAAGGCTGGCATT AATGCCAGCCTTTTTCCC 1320 CCGAGCTGCACGAGCACCAAAGT ACTTTGTGTGCTCGTGC, 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTCCGGATTCCAC 1323 CGCTATGTCGAGCATGCATTTAC GTAAATGCATGCTGCGAT 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTTGCG 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAACCAAA TTTGGTCTGGCCTTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTCC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAC 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGGGGGGCTATTCC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTACG 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGACCACCTTCCCCCAACACACCCACACCACA	CGAACCG
1315 TCGCGTTAAATGGACCAAGGGGCC GGCCCCTTGGTCCATTT, 1316 CCAGAAAGAAAATGGCGCCCGGAT ATCCGGGCGCCATTTTC 1317 GATACATCGCCGCCTGCTAGGCAC GTGCCTAGCAGCGGCGC 1318 GÀGATCACACTCGGAAACCGGATG CATCCGGTTTCCGAGTG 1319 ACTTCGCGGAAAAAGGCTGGCATT AATGCCAGCCTTTTCCG 1320 CCGAGCTGCACGAGCACACAAAGT ACTTTGTGTGCTCGTGC, 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTCCCGGATTCCAC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGAC 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTTGCG 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAAGTGCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAACCAAA TTTGCCATTGTAGGGTGG 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAAACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTTGGGCCTTCTTAC 1333 CCTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACCC 1334 CTACATGCTCACCCCACCAAGAGTG CACTCTGGGGGTGAC 1335 ATTTTCAGAATAGCCCCCCCCCACAAGTGC 1336 CAATTGCTACCCCCCCCCCCCACAAGTGCCGCCACAAAGTACCCTG 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAGG 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAGG 1338 TTTGTGTTGGGCTCCCCCCCCCCCCCCCCCCCCCCCCC	AACCTGG
1316 CCAGAAAGAAAATGGCGCCCGGAT ATCCGGGCGCCATTTTC 1317 GATACATCGCCGCCTGCTAGGCAC GTGCCTAGCAGGCGGCC 1318 GAGATCACACTCGGAAAACCGGATG CATCCGGTTTCCGAGTG 1319 ACTTCGCGGAAAAAGGCTGGCATT AATGCCAGCCTTTTTCCC 1320 CCGAGCTGCACGAGCACACAAAGT ACTTTGTGTGCTCGTGCC 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GCTTTTTCCGATTCCAC 1323 CGCTAGTCGCAGCATGCATTTAC GTAAATGCATCCTGCGAT 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGAA 1330 GAGCGGCTAAGAGGCCAACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAAACCCTG 1332 ACTTTGCAGAAGGCCCAACCAAA CTTGTTTTGGCCTTCTC 1333 CCTCCTGGTACTTTTTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCACAAG CTTGTGTTTGGGCTTCTC 1335 ATTTTCAGAATAGCCCCCCCCCCCACAAAGTACCT 1336 CAATTGCTACCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAC 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGTTACCTACGTACCTACCTACCTACCTAC	AGGTCGT
1317 GATACATCGCCGCTTGCTAGGCAC 1318 GAGATCACACTCGGAAACCGGATG 1319 ACTTCGCGGAAAAAGGCTGGCATT 1320 CCGAGCTGCACGAGCACACAAAGT 1321 TTCCACAAGGCGGCATGAGTGAGGCAGCCTTTTTCCGAGTGCAGCTTTTCCGAGTGAGAAAAGGCTGGCATT 1322 AGCAAACTGGAATCCGGAAAAACC GCTTTTTCCGAGTTCCACAGAGCAAACTGAAACCAGAAACTAGAACCAGAAACCAAAACCAGAAACCAAAACCAGAAACCAAAACCAAAACCAAAACCAAAACCAAAACCAAAACCAAAA	4ACGCGA
1318 GÁGATCACACTCGGAAACCGGATG CATCCGGTTTCCGAGTG 1319 ACTTCGCGGAAAAAGGCTGGCATT AATGCCAGCCTTTTTCCC 1320 CCGAGCTGCACGAGCACAAAGT ACTTTGTGTGCTCGCCT 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTTCCGGATTCCAC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGAC 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGGC 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACAAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGGGGTGAG 1335 ATTTTCAGAATAGCCCCCCCCCCCAC 1336 CAATTGCTACGTTGACGCCCTCGA TCGAGGGCGGACTAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCAGAGTTAG 1338 TTTGTGTTGGCCCCCCCCCCCCCCCCCCCACCACGGGATTAG 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCCCCCCCC	TTTCTGG
1319 ACTTCGCGGAAAAAGGCTGGCATT AATGCCAGCCTTTTCCCC 1320 CCGAGCTGCACGAGCACAAAGT ACTTTGTGTGCTCGTGCACTAGCAGGCGCATAGTGAGGC GCCTCACTATGCCGCCT 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTTCCGGATTCCACC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGAACACCGACGTTGGGCTTCTTT AAAGAACCGACGTTGGGC 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGGC 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGGC 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAACACAAA TTTGGTCTGGCCTCTTACC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTCC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACCC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGGGGGGTTATCC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCAGAGATTAGG 1338 TTTGTGTTGGCTCCCTACATTGGA TCCAATGTACCGAGCCAA	SATGTATC
1320 CCGAGCTGCACGAGCACACAAGT ACTTTGTGTGCTCGTGC/ 1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTTCCGGATTCCAC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGAA 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGCTTTGTGGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCCGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAGG 1338 TTTGTGTTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCAA	TGATCTC
1321 TTCCACAAGGCGGCATAGTGAGGC GCCTCACTATGCCGCCT 1322 AGCAACTGGAATCCGGAAAAACC GGTTTTCCGGATTCCAC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGAA 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACCC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGGCGGGGCTATTCC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAGG 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCAA	CGAAGT
1322 AGCAAACTGGAATCCGGAAAAACC GGTTTTTCCGGATTCCAC 1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGA 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACCC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCAGAGTTAGG 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCAA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	AGCTCGG
1323 CGCTATGTCGCAGCATGCATTTAC GTAAATGCATGCTGCGAG 1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCAGAGATAG 30 1338 TTTGTGTTGGGCTCCGTACATTGGA TCCAATGTACGAGCCACCTTCCCCCCCCCC	TGTGGAA
1324 AGTCACGCCCAACGTCGGTTCTTT AAAGAACCGACGTTGGG 1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAC 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGGCGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	STTTGCT
1325 AGTGGGCGCACTTGGCCTTAAATA TATTTAAGGCCAAGTGCC 1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 20 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTCC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	CATAGCG
1326 ACTTGCAACTTCGGCCGTTTGACT AGTCAAACGGCCGAAGT 1327 CAAACATCAGGTTCATGCCGTACG CGTACGGCATGAACCTG 20 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGAA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	CGTGACT
20 1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGGGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCAGAGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCACCACCTTCCCC	SCCCACT
1328 AGCGTGACCACCCTACAATGGCAA TTGCCATTGTAGGGTGG 1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAG 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTG 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCAA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	TGCAAGT
1329 GCAGGCATCCGGCAGAGATGTCTC GAGACATCTCTGCCGGA 1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	ATGTTTG
1330 GAGCGGCTAAGAGGCCAGACCAAA TTTGGTCTGGCCTCTTAGC 1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCAA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	TCACGCT
1331 CACAGAACAGGGTGTTTCCCGCTA TAGCGGGAAACACCCTG 1332 ACTTTGCAGAAGGCCCAACACAAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC. 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTCC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	TGCCTGC
25 ACTTGCAGAAGGCCCAACACAG CTTGTGTTGGGCCTTCTC 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	CCGCTC
25 1333 CCTTCCTGGTACTTTGTGGGCGAC GTCGCCCACAAAGTACC. 1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	TTCTGTG
1334 CTACATGCTCACCCCACCAGAGTG CACTCTGGTGGGGTGAGG 1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAGG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	SCAAAGT
1335 ATTTTCAGAATAGCCCCGCCTCGA TCGAGGCGGGGCTATTC 1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	AGGAAGG
1336 CAATTGCTACGTTGACGCCCTCTG CAGAGGGCGTCAACGTA 1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	CATGTAG
1337 CTGTCGCCTAATCCTCGGTGGCCG CGGCCACCGAGGATTAG 30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCAA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	TGAAAAT
30 1338 TTTGTGTTGGCTCCGTACATTGGA TCCAATGTACGGAGCCA 1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	GCAATTG
1339 ACGTGACGGGAAGGTGGTTGAATC GATTCAACCACCTTCCCC	GCGACAG
	ACACAAA
1240 ACTICITICACCAACACA TOTOTTTCCTCCAACCA	TCACGT
1340 AGTTCTTGCGTTGCACGAAACAGA TCTGTTTCGTGCAACGCA	AGAACT
1341 GCTCGCCGCGCGTCTTTATGTCTG CAGACATAAAGACGCGC	GGCGAGC
1342 ATGAACATCGCGAGGCAAGCCTTT AAAGGCTTGCCTCGCGA	TGTTCAT
35 1343 CAACCGCGCCCACCAACATTAAGG CCTTAATGTTGGTGGGCC	3CGGTTG
1344 TGATCGAGGACGGCTTGGTAGCCT AGGCTACCAAGCCGTCC	TCGATCA
1345 GGAGGCATGCCTTCCGAGAGCAAC GTTGCTCTCGGAAGGCA	TGCCTCC
1346 CACCGATCCTCAACGCAATTGCTA TAGCAATTGCGTTGAGGA	ATCGGTG
1347 GGCCATGAATTGGGAAATCCATGT ACATGGATTTCCCAATTC	ATGGCC
40 1348 CTGTTCCAGGCGTAACCAGCGGGC GCCCGCTGGTTACGCCT	GGAACAG
1349 TATGTCTGGCTCGCCATCAGAAGA TCTTCTGATGGCGAGCCA	AGACATA

1			
L	1350	GGAGTGACCAGCACAAGCATCGAG	CTCGATGCTTGTGCTGGTCACTCC
	1351	TCGGACTGGAAGTAACTCGCATGA	TCATGCGAGTTACTTCCAGTCCGA
	1352	GTAGGGTCAAGCACGATTGAAGCC	GGCTTCAATCGTGCTTGACCCTAC
	1353	CACCGGCGGTTCGACTAACGTGAC	GTCACGTTAGTCGAACCGCCGGTG
5	1354	GAATGACGCGCAGTGCATTTGAAC	GTTCAAATGCACTGCGCGTCATTC
	1355	GTGCTCGTCTAACCGCGGATAGAG	CTCTATCCGCGGTTAGACGAGCAC
	1356	GCGGACCTGGGTTAATTGACGCGC	GCGCGTCAATTAACCCAGGTCCGC
	1357	TTTTGATGTTGCGCACCGGGCTA	TAGCCCGGTGCGCAACATCAAAAA
	1358	TTGCGTCAGCGCATCTGCTCGATT	AATCGAGCAGATGCGCTGACGCAA
10	1359	ATGAGCACGCCAGTTCGTTCCTTT	AAAGGAACGAACTGGCGTGCTCAT
	1360	TCAACGGTAAAGAATCGCCCCGCA	TGCGGGCGATTCTTTACCGTTGA
	1361	CGCGATTGACTGAACCACACCTCT	AGAGGTGTGGTTCAGTCAATCGCG
	1362	GCGTGAAAGATGACGGCCGGTATA	TATACCGGCCGTCATCTTTCACGC
	1363	CATGATTCCACCTCGATCGGCTAG	CTAGCCGATCGAGGTGGAATCATG
15	1364	CTACGACAAAGCAACCGTGCAAAA	TTTTGCACGGTTGCTTTGTCGTAG
	1365	ATGCCGTGTTCATCTTGATGGTCC	GGACCATCAAGATGAACACGGCAT
	1366	TTCGTGGAGGGACTTTGGAGATCC	GGATCTCCAAAGTCCCTCCACGAA
	1367	GAAGCGCCGTAACGTACACCGTCG	CGACGGTGTACGTTACGGCGCTTC
	1368	AGCGTGCGCTTGGCTATAAGGCTA	TAGCCTTATAGCCAAGCGCACGCT
20	1369	ACAGTCAGGAGTAACGCCGCTCAA	TTGAGCGGCGTTACTCCTGACTGT
	1370	TTTAGCCGCTGCGACTGTAGGAAA	TTTCCTACAGTCGCAGCGGCTAAA
	1371	ACTGTGTCGCAATCAACCCGCAAA	TTTGCGGGTTGATTGCGACACAGT
	1372	TGCAGCCAATGCGGAACTTAGAGG	CCTCTAAGTTCCGCATTGGCTGCA
	1373	CCCGCTATCCCGGTCTTGCAGTTC	GAACTGCAAGACCGGGATAGCGGG
25	1374	GAGGCGCAACATATGCAGTGCTG	CAGCACTGCATATGTTGCGCCCTC
	1375	CGTACGGACATCGATGACGCAACG	CGTTGCGTCATCGATGTCCGTACG
	1376	AGTCTCCCGAGAAACGCATAAGGC	GCCTTATGCGTTTCTCGGGAGACT
	1377	AGGAAGTGGATGAACGCGGCTGCA	TGCAGCCGCGTTCATCCACTTCCT
	1378	GGGTTGCTCACCCTCGTCATCAGG	CCTGATGACGAGGGTGAGCAACCC
30	1379	TAGGAATGCGAGTTCCGGCGGTAA	TTACCGCCGGAACTCGCATTCCTA
	1380	CTCCTCACTTCCAAGCTGCGGATA	TATCCGCAGCTTGGAAGTGAGGAG
	1381	TCAATAGCACCTAGCATGCTCCCG	CGGGAGCATGCTAGGTGCTATTGA
	1382	TGATTCCTGCGCTTTCACAGGTCG	CGACCTGTGAAAGCGCAGGAATCA
	1383	GTATGTGCGGGATGGAAATCACGC	GCGTGATTTCCATCCCGCACATAC
35	1384	TACGGCAACTGTCGATACGAGGGC	GCCCTCGTATCGACAGTTGCCGTA
	1385	GGTTCCCTATCCAGCACTCCTCGC	GCGAGGAGTGCTGGATAGGGAACC
	1386	ATAAGCGCGCCACAGGTATGTACC	GGTACATACCTGTGGCGCGCTTAT
	1387	GAAAGTCGCCAACAGACTCGAGCA	TGCTCGAGTCTGTTGGCGACTTTC
	1388	CGCTAATGCCTCATAGGCGTGTGC	GCACACGCCTATGAGGCATTAGCG
40	1389	ATCCCGCCGCACGAAGTACCAAG	CTTGGTACTTCGTGCGGCGGGGAT
	1390	GACGCTGCTGATGGCTTTATCGAT	ATCGATAAAGCCATCAGCAGCGTC

,	1391	CTCTCCCGTCGCTTCAGAGATTA	TAATCTCTGAAGCGACGGGGAGAG
	1392	TCATGTGGGCCGTCGTATCAGTTT	AAACTGATACGACGGCCCACATGA
	1393	GGCCTGAAGGTGAATGGTTACGTG	CACGTAACCATTCACCTTCAGGCC
	1394	AGCCTCCAAAGCCGGTAGAGTTCC	GGAACTCTACCGGCTTTGGAGGCT
5	1395	TTGTCGTAGGCGCTCACCTTAGGA	TCCTAAGGTGAGCGCCTACGACAA
	1396	GCCTGAGTCCGGGTCGGGAAAGAA	TTCTTTCCCGACCCGGACTCAGGC
	1397	GGCACTATACCGGTTCTGGACGCG	CGCGTCCAGAACCGGTATAGTGCC
	1398	CCGTGTATACGGAAAGGTACGCCA	TGGCGTACCTTTCCGTATACACGG
	1399	CCCAAGGCAAGTGTGCATCAGTCC	GGACTGATGCACACTTGCCTTGGG
10	1400	GGAGTGCATCATGGCCAAATCTGG	CCAGATTTGGCCATGATGCACTCC
	1401	CCATGTTACGTCTGCGCACCACAG	CTGTGGTGCGCAGACGTAACATGG
	1402	GGCGTTGAGCTTAAAAGCAGCGAC	GTCGCTGCTTTTAAGCTCAACGCC
	1403	TTGGCACTCTGCAAGATACGTGGG	CCCACGTATCTTGCAGAGTGCCAA
	1404	GATCTGCACTGCAAGGTCTTGGGG	CCCCAAGACCTTGCAGTGCAGATC
15	1405	CGATCAACTTGCGGCCATTCCTGC	GCAGGAATGGCCGCAAGTTGATCG
	1406	CGGCTGGGGTCACAGAAACGAGTA	TACTCGTTTCTGTGACCCCAGCCG
	1407	GCGGCTAGTTGTACCTAGCGGCTG	CAGCCGCTAGGTACAACTAGCCGC
	1408	TCGTCACTGTTAGAGAGGCCTCCG	CGGAGGCCTCTCTAACAGTGACGA
	1409	AGTGTCGTGAGCCCTAGCGGCGCT	AGCGCCGCTAGGGCTCACGACACT
20	1410	AGGACGCAGGGATTCAAGTGCAAC	GTTGCACTTGAATCCCTGCGTCCT
	1411	ACCGATGCGCGGTCGGTCTCATAC	GTATGAGACCGACCGCGCATCGGT
•	1412	GGCAGAGGGTTAGGGGGTTTTTTT	AAAAAAACCCCCTAACCCTCTGCC
	1413	GGCAAAGGGTGTTTATGGGAGACC	GGTCTCCCATAAACACCCTTTGCC
	1414	ACAAGGCTTCGGCTGGCAGAATAC	GTATTCTGCCAGCCGAAGCCTTGT
25	1415	CATATCCGTTCCTATCGCCAGACG	CGTCTGGCGATAGGAACGGATATG
	1416	AAGCCTTTGTGGCCAAGGCCGCGT	ACGCGGCCTTGGCCACAAAGGCTT
	1417	CCGAACCATGGCTTTATCCAGTGT	ACACTGGATAAAGCCATGGTTCGG
	1418	GTTCAGCAGTAGCTCCCTCCGA	TCGAGGAGGGAGCTACTGCTGAAC
	1419	GCGCAGTGACACCATGATGCTTTC	GAAAGCATCATGGTGTCACTGCGC
30	1420	ACGATCCATTTTGCCAGCATGCAA	TTGCATGCTGGCAAAATGGATCGT
	1421	TCCCTTCATTTCGGGTTTTTAGCC	GGCTAAAAACCCGAAATGAAGGGA
	1422	TCTTCTTGCCCACATTCCCTTTTG	CAAAAGGGAATGTGGGCAAGAAGA
•	1423	TGCCTTTTGATTGGTGGTCACGGT	ACCGTGACCACCAATCAAAAGGCA
	1424	GACCCTCACGGTCATCAGAGGGAG	CTCCCTCTGATGACCGTGAGGGTC
35	1425	CCGTTCAACACAGTGATACACGCG	CGCGTGTATCACTGTGTTGAACGG
	1426	CACCAGGGGATAGGTGCGGTACGC	GCGTACCGCACCTATCCCCTGGTG
	1427	GGTCGGAACTGATCTGTGCGATCC	GGATCGCACAGATCAGTTCCGACC
	1428	TGCTCCTTCCTAGGGTCATCCGTG	CACGGATGACCCTAGGAAGGAGCA
	1429	GTGGACTTTGACGCCGGCTACCGC	GCGGTAGCCGGCGTCAAAGTCCAC
40	1430	CTGATCTGTCGGCGGTTACTTGCC	GGCAAGTAACCGCCGACAGATCAG
	1431	AGAGGAGCGGAAAAAACCGGACGA	TCGTCCGGTTTTTTCCGCTCCTCT

	1432	GCGACGAAGATCCAGCAAGCTC	GAGCTTGCTGGATCTCTTCGTCGC
	1433	GGGACTTCCAGCTGAGGGACGAAA	TTTCGTCCCTCAGCTGGAAGTCCC
	1434	GGCGCACTCCAATACCCACTGTTT	AAACAGTGGGTATTGGAGTGCGCC
	1435	GCGCTTGGAGACTGTCAGGACGTG	CACGTCCTGACAGTCTCCAAGCGC
5	1436	CAAACCGCTGGTTTCTCCACCTGT	ACAGGTGGAGAAACCAGCGGTTTG
	1437	GCGATTGCTTGGGATCGGTGACTA	TAGTCACCGATCCCAAGCAATCGC
	1438	CTCAGCGACATTTTTCTGGTGGCG	CGCCACCAGAAAAATGTCGCTGAG
	1439	CAGCGGCGTCGTTTACTCAGGACT	AGTCCTGAGTAAACGACGCCGCTG
	1440	GACAGCCGTGAACGCTCAGCCGTT	AACGGCTGAGCGTTCACGGCTGTC
10	1441	GGGCCGTAGAGGCATCGGGTAAAG	CTTTACCCGATGCCTCTACGGCCC
	1442	CGCCGCTCACCTGCTTAAAGCATT	AATGCTTTAAGCAGGTGAGCGGCG
	1443	TGCCAAATCGCAACTCTTGAGACA	TGTCTCAAGAGTTGCGATTTGGCA
	1444	CCCCGATCGGGTGTAATTCTCCCT	AGGGAGAATTACACCCGATCGGGG
	1445	CAAGGTCCAGGTGACGCAACCACT	AGTGGTTGCGTCACCTGGACCTTG
15	1446	CGAGCCTTCAGTGGTATGCATGCG	CGCATGCATACCACTGAAGGCTCG
	1447	CAGCAGCGTGCCCATCTCGACTTA	TAAGTCGAGATGGGCACGCTGCTG
	1448	CGGACCAAGATGGCAGTAATCCAG	CTGGATTACTGCCATCTTGGTCCG
	1449	CTACCACGCTCTGCGCGGGCTGTA	TACAGCCCGCGCAGAGCGTGGTAG
	1450	ACGTGGTTAGGCATGAGCTGCGTC	GACGCAGCTCATGCCTAACCACGT
20	1451	CGACATATCCGACATGACCGGATG	CATCCGGTCATGTCGGATATGTCG
	1452	GCGCCCAGGCTGTGTTAGAAAATA	TATTTTCTAACACAGCCTGGGCGC
	1453	AGCTGGGACTCCGGACCTTGAGTG	CACTCAAGGTCCGGAGTCCCAGCT
	1454	CGGTCGTAACCGCTGCTACAACTT	AAGTTGTAGCAGCGGTTACGACCG
	1455	TCGTTCCTCTGGAACAATTCAGCA	TGCTGAATTGTTCCAGAGGAACGA
25	1456	CGGCATCTCCGGACAAAGGTTAAC	GTTAACCTTTGTCCGGAGATGCCG
	1457	TATCTTGTCGAGCGCCACTCGGAG	CTCCGAGTGGCGCTCGACAAGATA
	1458	TGCAAGGGAGAAAGCCCCATGAGC	GCTCATGGGGCTTTCTCCCTTGCA
	1459	ACTGCATAGCCCAGATCCGCTTGC	GCAAGCGGATCTGGGCTATGCAGT
	1460	TGTGATTCAGTCGAAGCAAGGCCG	CGGCCTTGCTTCGACTGAATCACA
30	1461	CATCCATCTACAATTCGGGCCAGT	ACTGGCCCGAATTGTAGATGGATG
	1462	ATGAGCCGTTCAGAAAGCCAAAGA	TCTTTGGCTTTCTGAACGGCTCAT
	1463	ACACTGGAATTGCTAGACCCCGCG	CGCGGGGTCTAGCAATTCCAGTGT
	1464	CTGAGCTGCGTGGGACAACTCCGC	GCGGAGTTGTCCCACGCAGCTCAG
	1465	CAGCTACTAGGGCGCGATGTACCC	GGGTACATCGCGCCCTAGTAGCTG
35	1466	ATAATGATGGGACGAGAAGGCCCC	GGGGCCTTCTCGTCCCATCATTAT
	1467	CGACCGAGTGTTACGACATGGTGC	GCACCATGTCGTAACACTCGGTCG
	1468	TGCAGTACCCGCCGCTCCACTAGT	ACTAGTGGAGCGGCGGGTACTGCA
	1469	ATGCTAGCGCGCCTGTCAACGTAC	GTACGTTGACAGGCGCGCTAGCAT
	1470	AGACTCACTGCCGGCTGATCAAAT	ATTTGATCAGCCGGCAGTGAGTCT
40 .	1471	GCCTGGTGCGAAGATAGGGATTCC	GGAATCCCTATCTTCGCACCAGGC
	1472	GGAAAGTTGGCGGATCCGAGCACT	AGTGCTCGGATCCGCCAACTTTCC

	1473	GGCAGTGAGCAATGTGTGACGAGG	CCTCGTCACACATTGCTCACTGCC
	1474	TGAGGTCCTCCCGGCGGACTACGA	TCGTAGTCCGCCGGGAGGACCTCA
	1475	CTCGCCTTAGATCGTGGTTCCGCA	TGCGGAACCACGATCTAAGGCGAG
	1476	GTCGAGGAATATCATCGCAGCCAG	CTGGCTGCGATGATATTCCTCGAC
5	1477	GCGAATGCAACGAGACAAGAAGGA	TCCTTCTTGTCTCGTTGCATTCGC
	1478	TTCGCCACCAAGTCGGCATTTGTT	AACAAATGCCGACTTGGTGGCGAA
	1479	CGGTGGCTGACACTTGCCGGATTC	GAATCCGGCAAGTGTCAGCCACCG
	1480	CAAGGAGCAATCAGATGGTCGGAG	CTCCGACCATCTGATTGCTCCTTG
	1481	GTGACCCGGTCCGTTCTAGCTGTG	CACAGCTAGAACGGACCGGGTCAC
10	1482	CTCTCGCCCACATAACTGCACAAA	TTTGTGCAGTTATGTGGGCGAGAG
	1483	AAACCTGCCTAAGCAAGCACTGGA	TCCAGTGCTTGCTTAGGCAGGTTT
	1484	TTCCATATTGTACCCCGCGCATGC	GCATGCGCGGGGTACAATATGGAA
	1485	TGCTTGCGATATCACGATACTGCG	CGCAGTATCGTGATATCGCAAGCA
	1486	TTAGTGTTCGAGCCTTGAGCCGGC	GCCGGCTCAAGGCTCGAACACTAA
15	1487	CTTGTTGCGCGAGTCCGTCTGGGA	TCCCAGACGGACTCGCGCAACAAG
	1488	GTCAGCTGCTGCTGGTGCTCTTC	GAAGAGCACCAGCAGGCAGCTGAC
	1489	CATCCCTCGAGGTGTAGGCAACAC	GTGTTGCCTACACCTCGAGGGATG
	1490	CAGATGCACTCCGACGGGATTCAG	CTGAATCCCGTCGGAGTGCATCTG
	1491	CTGAGCCTCGCGAAGCTGTGGCAT	ATGCCACAGCTTCGCGAGGCTCAG
20	1492	GCTATGCCACGCCGCAGATAGAGC	GCTCTATCTGCGGCGTGGCATAGC
	1493	AACACCAACCATACCGTCCGTTCA	TGAACGGACGGTATGGTTGGTGTT
	1494	GCCCAGAGCTAAAGCATGTCTGGG	CCCAGACATGCTTTAGCTCTGGGC
	1495	AATGCTGCAATGCTAGCGTCGCTA	TAGCGACGCTAGCATTGCAGCATT
	1496	TCCGGACGCAGTATCCAATCCGGA	TCCGGATTGGATACTGCGTCCGGA
25	1497	TAAGACCATGTGGCACCAAGGTGC	GCACCTTGGTGCCACATGGTCTTA
	1498	ACAGCCACACACGCGCCCACTA	TAGTGGGGGCGTGTGTGTGGCTGT
	1499	TAGAACCGAGCACGGCGCCTTGTA	TACAAGGCGCCGTGCTCGGTTCTA
	1500	TTCGAGTAAGCTGGCAGGACCACT	AGTGGTCCTGCCAGCTTACTCGAA
	1501	CTTTCGCAGGTTCGCAGACAATCC	GGATTGTCTGCGAACCTGCGAAAG
30	1502	TACGTCCTGTGCTGTTGACACCGG	CCGGTGTCAACAGCACAGGACGTA
	1503	GTTCGGGTCAATGTTTCGGGGAGA	TCTCCCGAAACATTGACCCGAAC
	1504	CCCTGTTGTGAAGGGGTTTTGTGA	TCACAAAACCCCTTCACAACAGGG
	1505	GGCAGATTGGTGAACCCCAGATAA	TTATCTGGGGTTCACCAATCTGCC
	1506	CCCTCGGTGTGTTCAAGCCAAATC	GATTTGGCTTGAACACCCGAGGG
35	1507	CCCGCGAACATTTGAACAGCTTAA	TTAAGCTGTTCAAATGTTCGCGGG
	1508	CCGTGTCAGTTGCTCCCTGGCACG	CGTGCCAGGGAGCAACTGACACGG
	1509	TCCGTCTCAGCCGCCTCCCTATCC	GGATAGGGAGGCGGCTGAGACGGA
	1510	ATAGCTGGGTCACCACAGGCGGTC	GACCGCCTGTGGTGACCCAGCTAT
	1511	ATAGGCAAGCGGTGTAGCACAGCG	CGCTGTGCTACACCGCTTGCCTAT
40	1512	TTAGAAGCCGGTCTGGATTTGCGT	ACGCAAATCCAGACCGGCTTCTAA
	1513	TGCCGACCTTTACCAGGATCCTCG	CGAGGATCCTGGTAAAGGTCGGCA

	1514	GCCCACACTATAACCAAGCTGGCA	TGCCAGCTTGGTTATAGTGTGGGC
	1515	TTGCGCCACTAGTACGGATCTCAA	TTGAGATCCGTACTAGTGGCGCAA
	1516	CTTGCAGTTTATGCTGACCCGTCC	GGACGGGTCAGCATAAACTGCAAG
	1517	TGCCTCCAAATTACTTACCGCCGT	ACGGCGGTAAGTAATTTGGAGGCA
5	1518	CCCGTATGCGGAAGCTATGGGCTA	TAGCCCATAGCTTCCGCATACGGG
	1519	TCGTTCAACCCCACACTTCAGTTG	CAACTGAAGTGTGGGGTTGAACGA
	1520	CAATGTGGGGGACATTTCAAGGTT	AACCTTGAAATGTCCCCCACATTG
	1521	TAGCGTCGCACAAATGGCTGACCG	CGGTCAGCCATTTGTGCGACGCTA
	1522	GGTGGCTTCGTGACAATATCGGCC	GGCCGATATTGTCACGAAGCCACC
10	1523	CAGCGGCGTCCGAAATTGGCTCTC	GAGAGCCAATTTCGGACGCCGCTG
	1524	GGCTTGCTCTCGTTTTTGATTGCA	TGCAATCAAAAACGAGAGCAAGCC
	1525	ATGCGAGGAGGACACGACCGTTCC	GGAACGGTCGTGTCCTCCCCAT
	1526	CCTGTTCACTACGACCCACGGGAA	TTCCCGTGGGTCGTAGTGAACAGG
	1527	GTGCCACGGAGTGCGACTGTTGCT	AGCAACAGTCGCACTCCGTGGCAC
15	1528	ACACATCCAAGTCTGACGATGGCC	GGCCATCGTCAGACTTGGATGTGT
•	1529	CAGCCCGAAAGGAAAGCCTCCGTG	CACGGAGGCTTTCCTTTCGGGCTG
	1530	AACTGAATGTAGGTGGGCCCCTGT	ACAGGGGCCCACCTACATTCAGTT
	1531	ATTTTCGACGATAAGCTGGCCGGT	ACCGGCCAGCTTATCGTCGAAAAT
	1532	TGAGGGAGAACCCGAAATCTGCTT	AAGCAGATTTCGGGTTCTCCCTCA
20	1533	GGCGACTACATCCCCAATTGCTTG	CAAGCAATTGGGGATGTAGTCGCC
	1534	GCAGACGCGGCCTTCCATACTTTT	AAAAGTATGGAAGGCCGCGTCTGC
	1535	ACAACCACATGACGTGTAGCTGCA	TGCAGCTACACGTCATGTGGTTGT
	1536	CTGCTGGGCGCGCAAAGCTTGTTG	CAACAAGCTTTGCGCGCCCAGCAG
	1537	AAGCCTTCTTTGGCTTGCTCCGCT	AGCGGAGCAAGCCAAAGAAGGCTT
25	·1538	TACCTGCTGCCTGGAGCAAGGCAT	ATGCCTTGCTCCAGGCAGCAGGTA
	1539	GACGCCGCAGCCATGAGTGAGTGT	ACACTCAGTCATGGCTGCGGCGTC
	1540	AGTTGGCCGCTTATTTTGCTCACC	GGTGAGCAAAATAAGCGGCCAACT
	1541	CCAGGCGCCTTCGACAGATCCTCA	TGAGGATCTGTCGAAGGCGCCTGG
	1542	GTGTCCCCTCCAGCTAGCCAGTTT	AAACTGGCTAGCTGGAGGGGACAC
30	1543	GACAACAAGCCAAGGTGACACGTC	GACGTGTCACCTTGGCTTGTTGTC
	1544	CTACACCGCTCGTGACTCGGCAAA	TTTGCCGAGTCACGAGCGGTGTAG
	1545	TGGTGCCATCAAAGCACGTTGTAC	GTACAACGTGCTTTGATGGCACCA
	1546	ACAATGCGTGTTGCGAAACGCATA	TATGCGTTTCGCAACACGCATTGT
	1547	TTGTCCAGCCATTGTATTTTGCGC	GCGCAAAATACAATGGCTGGACAA
35	1548	ACGAGAGATAGCGGACTCCTCCGA	TCGGAGGAGTCCGCTATCTCTCGT
	1549	AGCTTTGTCGTCAGGCGAGCTCTT	AAGAGCTCGCCTGACGACAAAGCT
	1550	GACAGTCGGCGTGCAGTTTGTTGT	ACAACAAACTGCACGCCGACTGTC
	1551	AGCTAGCGACGGCCAACTCACGTA	TACGTGAGTTGGCCGTCGCTAGCT
	1552	CTCCTGTTCGGGGCCGTTACTGGT	ACCAGTAACGGCCCCGAACAGGAG
40	1553	ACTGACCGACGCAGTGCCACATAG	CTATGTGGCACTGCGTCGGTCAGT
	1554	AGGTAGGGTCTGGTTTGACTCGCA	TGCGAGTCAAACCAGACCCTACCT

			
	1555	CCTCCATTTTAGCGCGTTGCCAAT	ATTGGCAACGCGCTAAAATGGAGG
	1556	TTCTTAGGATCCGCGCACTCTTGG	CCAAGAGTGCGCGGATCCTAAGAA
į	1557	GTCGAAGGTGTCTACCGTGCGCAG	CTGCGCACGGTAGACACCTTCGAC
ļ	1558	GTCACTCGGCGGCCCAATCACTCG	CGAGTGATTGGGCCGCCGAGTGAC
5	1559	TCTCGGTCACCCGTCTTGACCCTT	AAGGGTCAAGACGGGTGACCGAGA
	1560	GCCCTCGACGAACTCATCCTGAAC	GTTCAGGATGAGTTCGTCGAGGGC
	1561	TCCGGCGTACTCTGACACGGCGAT	ATCGCCGTGTCAGAGTACGCCGGA
	1562	AGCCAAATGCTTTCGTGGTTCGGA	TCCGAACCACGAAAGCATTTGGCT
	1563	ACTCCACGCCGCATGTTGCTGTGA	TCACAGCAACATGCGGCGTGGAGT
10	1564	GCTTCGAGTCGGTGGCATCTGTAT	ATACAGATGCCACCGACTCGAAGC
	1565	GGTCTTGGGCCATCGACTTGCTGC	GCAGCAAGTCGATGGCCCAAGACC
	1566	GGTATCGGACTGCACTAAGGGCAA	TTGCCCTTAGTGCAGTCCGATACC
	1567	AGCCCATGCGTTCCGGATGATTTG	CAAATCATCCGGAACGCATGGGCT
	1568	GCCAGGGTTAAAAGTGATGGGCTC	GAGCCCATCACTTTTAACCCTGGC
15	1569	GACGACGTGCTGGCTACGAAGGGG	CCCCTTCGTAGCCAGCACGTCGTC
	1570	TCCTATTGACCGTGCATCGTGATC	GATCACGATGCACGGTCAATAGGA
	1571	ACCCGCCTCGACTCCACAACTAAA	TTTAGTTGTGGAGTCGAGGCGGGT
	1572	GATGTGGATCACGACCTGCCAGTA	TACTGGCAGGTCGTGATCCACATC
	1573	GTGCCATTGCCACCCATAATGCGT	ACGCATTATGGGTGGCAATGGCAC
20	1574	TTAGCCTGTGCACCCAGTCAGGAG	CTCCTGACTGGGTGCACAGGCTAA
	1575	TCCGATGGGAGAGGCTGATCTCAC	GTGAGATCAGCCTCTCCCATCGGA
	1576	CACTACTGAAGTGGCCTGGCGCTG	CAGCGCCAGGCCACTTCAGTAGTG
	1577	TGCGGCCATAGCGATGTGATAGAT	ATCTATCACATCGCTATGGCCGCA
	1578	GATTGCGCTTAACGGAGATGCACG	CGTGCATCTCCGTTAAGCGCAATC
25	1579	TCACGTTTGACAACGCCAAGCATT	AATGCTTGGCGTTGTCAAACGTGA
	1580	GCATTGTTTGCTAAAGGCGGCATT	AATGCCGCCTTTAGCAAACAATGC
	1581	AGTCGCTCTACGCGTGCAACGCTG	CAGCGTTGCACGCGTAGAGCGACT
	1582	TAGCTCCATGGAGGTCCGAAAGGG	CCCTTTCGGACCTCCATGGAGCTA
	1583	GACCGGTTGGACCTCACTGGCTTC	GAAGCCAGTGAGGTCCAACCGGTC
30	1584	AAGCCGGACAGTCAATGTGCGTAT	ATACGCACATTGACTGTCCGGCTT
	1585	TGCCTCGCTGAGTTCTTCACCGTG	CACGGTGAAGAACTCAGCGAGGCA
	1586	TCGTAGACCTTGCTTTTGGGCTCA	TGAGCCCAAAAGCAAGGTCTACGA
	· 1587	ACCGCTATGCGCCCTACAAAGCAT	ATGCTTTGTAGGGCGCATAGCGGT
	1588	TAGCGTCACCGTAGCTTGGGGCAG	CTGCCCAAGCTACGGTGACGCTA
35	1589	CTCTCAGCAACTGATGGCACCGGA	TCCGGTGCCATCAGTTGCTGAGAG
	1590	AAAGGAAATGTGGTGCTGGTCGGC	GCCGACCAGCACCACATTTCCTTT
	1591	CCGGCTTAGATGGAGAACAAGTGC	GCACTTGTTCTCCATCTAAGCCGG
	1592	AAGTAAATCGCCTCGCCCAAACCG	CGGTTTGGGCGAGGCGATTTACTT
	1593	TGGGCTGTTCAGCCTACCGGACGT	ACGTCCGGTAGGCTGAACAGCCCA
40	1594	GTTTCGGTTCAGCCATGGGCCTAC	GTAGGCCCATGGCTGAACCGAAAC
Ĺ	1595	GGCCAACATTTCTAGGGGAGTGCC	GGCACTCCCCTAGAAATGTTGGCC

	1596	TTCTTCGTTGGGATTGTCCTCACC	GGTGAGGACAATCCCAACGAAGAA
	1597	TGCACATTGGGGTACGGATCTGAC	GTCAGATCCGTACCCCAATGTGCA
	1598	GGCAGTTAGACGGCAAACTGCAGG	CCTGCAGTTTGCCGTCTAACTGCC
	1599	CGCGTCAGGCTATGAATGGCTCTT	AAGAGCCATTCATAGCCTGACGCG
5	1600	GCTGAATGCAAACCTCGGAGCCAT	ATGGCTCCGAGGTTTGCATTCAGC
	1601	CGCTCTGGCGGATTCATTGTTTTC	GAAAACAATGAATCCGCCAGAGCG
	1602	TTTTCAATCAACCCTCCGGACGTA	TACGTCCGGAGGGTTGATTGAAAA
	1603	GTGGTGGAGTCTGAAGCACGACAG	CTGTCGTGCTTCAGACTCCACCAC
	1604	AAACAGGTCCGGATGATGTCTGGA	TCCAGACATCATCCGGACCTGTTT
10	1605	GTACCGCGTGTACGCCACCGTTAG	CTAACGGTGGCGTACACGCGGTAC
	1606	TCCAACCTACATTTGCGGAAGGAA	TTCCTTCCGCAAATGTAGGTTGGA
	1607	GACGTACCGTCGTCCCGTGAGTTG	CAACTCACGGGACGACGGTACGTC
	1608	GGCAATCCTACAACCGACGCTGAT	ATCAGCGTCGGTTGTAGGATTGCC
	1609	GGCGGCTGCAGGGTCTACATCGAG	CTCGATGTAGACCCTGCAGCCGCC
15	1610	ATACTACGCTGCAGCTGCGCGGGC	GCCCGCGCAGCTGCAGCGTAGTAT
	1611	GGATCGCAATCCCTCCGATGACGA	TCGTCATCGGAGGGATTGCGATCC
	1612	TGGCCTTGCACGGGAGCCGAATCT	AGATTCGGCTCCCGTGCAAGGCCA
	1613	AGGTGCCGACGAAACGACGAATAT	ATATTCGTCGTTTCGTCGGCACCT
	1614	GCTGTTTCACCGTCGTCGTTGTTG	CAACAACGACGACGGTGAAACAGC
20	1615	CGGTCCCAATGTTACAACCCAGAC	GTCTGGGTTGTAACATTGGGACCG
	1616	GCAATTCCAGCCACTTTTGACCAA	TTGGTCAAAAGTGGCTGGAATTGC
	1617	ACGGCGAAAGCTCGGTACGGATA	TATCCGTACCGAGCTTTCGCCCGT
	1618	CGACCCGACTTTTGCTTTCGAGTG	CACTCGAAAGCAAAAGTCGGGTCG
	1619	AATTCAGTGTTTGCGTCATGGTCG	CGACCATGACGCAAACACTGAATT
25	1620	CCTGTATGAGGTTCTGGGTCGGCT	AGCCGACCCAGAACCTCATACAGG
	1621	TGGCATACTTGGTGCAAACGCCGT	ACGGCGTFTGCACCAAGTATGCCA
	1622	TCGCCAGTACAGAAACATGCGGGC	GCCCGCATGTTTCTGTACTGGCGA
	1623	CCCGCTGTTGCTCTCATCGTGGAG	CTCCACGATGAGAGCAACAGCGGG
	1624	GCCACAATCTGACCCTGGGAATCA	TGATTCCCAGGGTCAGATTGTGGC
30	1625	GCTCAGTCTCGGAAGTTTCGGCTA	TAGCCGAAACTTCCGAGACTGAGC
	1626	CTTCACGGGCCAACGACGGTCGAG	CTCGACCGTCGTTGGCCCGTGAAG
	1627	CGACAGTTCCGTCCGTCTTGAGGA	TCCTCAAGACGGACGGAACTGTCG
	1628	ACGGAGACGCAGTCGAAACGTCCC	GGGACGTTTCGACTGCGTCTCCGT
	1629	CATGCATCCGATTAAGGGGATCAC	GTGATCCCCTTAATCGGATGCATG
35 .	1630	ATTGCGGGAGTCCCTAGCTTTCTG	CAGAAAGCTAGGGACTCCCGCAAT
	. 1631	GTGTGGAAGATGCAATTGGAACGG	CCGTTCCAATTGCATCTTCCACAC
	1632	ATACAACGGTAGGTGACAGGGGCG	CGCCCTGTCACCTACCGTTGTAT
	1633	GCCGTGGGAGTAAGGGTACAAAGG	CCTTTGTACCCTTACTCCCACGGC
	1634	GCACGTAGGTCGGCTACTACTCGG	CCGAGTAGTAGCCGACCTACGTGC
40	1635	ACTGTGATCTCTTGGGCAAAGGGC	GCCCTTTGCCCAAGAGATCACAGT
	1636	CATGCCTGAACAATCTCGCATCCC	GGGATGCGAGATTGTTCAGGCATG

	1637	GAGCCTGGCTCCACAGCTGTGCTC	GAGCACAGCTGTGGAGCCAGGCTC
	1638	CTTTCGATACCATCGTTGGCGATC	GATCGCCAACGATGGTATCGAAAG
	1639	CCCGGAGGTGAGGCATTGAATATG	CATATTCAATGCCTCACCTCCGGG
	1640	CTCATTCAGCTAAAAGCGGCTGGA	TCCAGCCGCTTTTAGCTGAATGAG
5	1641	GAAATGCCCTGGGGACTTTTTGCC	GGCAAAAAGTCCCCAGGGCATTTC
	1642	TTTGCCTTCACAACAGACGCAGCA	TGCTGCGTCTGTTGTGAAGGCAAA
	1643	AAATCCCAAGACGTCGGGGCGTAT	ATACGCCCGACGTCTTGGGATTT
	1644	CAACGGGCGTAGCTAAACCGTAA	TTACGGTTTAGCTACCGCCCGTTG
	1645	GGCCAACGACAATGCGAAACCTTC	GAAGGTTTCGCATTGTCGTTGGCC
10	1646	GACATCACGCAAAATCTCAGCGCA	TGCGCTGAGATTTTGCGTGATGTC
	1647	ACGTTCCGTCCACAACCGTATGTT	AACATACGGTTGTGGACGGAACGT
	1648	GCTCATAGGTCTTCCGTAGCCCGT	ACGGGCTACGGAAGACCTATGAGC
	1649	GAAACGAGTCTCTCGCGCCCTAGA	TCTAGGGCGCGAGAGACTCGTTTC
	1650	CGGGACAGAAGCAAGTTACATCGG	CCGATGTAACTTGCTTCTGTCCCG
15	1651	TGACCGCTCGATACCAGGAGGGTG	CACCCTCCTGGTATCGAGCGGTCA
	1652	CTGGCAATAAAGACCTTCCGACCA	TGGTCGGAAGGTCTTTATTGCCAG
	1653	TGCGCGACGTCATGTTGGTGATTA	TAATCACCAACATGACGTCGCGCA
	1654	GTTGGTTGTGGGAACACACCCGCT	AGCGGGTGTGTTCCCACAACCAAC
• •	1655	TGTGGGTTCGGAAACACAGGAAGT	ACTTCCTGTGTTTCCGAACCCACA
20	1656	GGAAAAACGGCAATTAGCCGAGT	ACTCGGCTAATTGCCGTTTTTCC
	1657	TGGTGCGGAGTGCCCTCTATTGGG	CCCAATAGAGGGCACTCCGCACCA
	1658	AACCAACAGGCTGCAGCCCAGACT	AGTCTGGGCTGCAGCCTGTTGGTT
	1659	AAACAGATCCATCTGCACGCCAGG	CCTGGCGTGCAGATGGATCTGTTT
	1660	GGAATACCGCGGCGATTATGGCTT	AAGCCATAATCGCCGCGGTATTCC
25	1661	TACTGTTCGCGGCAAACCGTCACT	AGTGACGGTTTGCCGCGAACAGTA
	1662	GATCTCTCGTGGAGCACGTTTTCC	GGAAAACGTGCTCCACGAGAGATC
	1663	GGCATAGCAAACCTTGACCTCCAA	TTGGAGGTCAAGGTTTGCTATGCC
	1664	ATCTGGGATTCGCGAGCCAATATC	GATATTGGCTCGCGAATCCCAGAT
	1665	CGATCAGGATATCATTTACGCCCG	CGGCGTAAATGATATCCTGATCG
30	1666	ACGGTACCGAAACGGTCTCAGCGT	ACGCTGAGACCGTTTCGGTACCGT
	1667	CTCCCATACCTGCGTTCTTACCGA	TCGGTAAGAACGCAGGTATGGGAG
	1668	GCACGAGAACCTAATTGTCGCACA	TGTGCGACAATTAGGTTCTCGTGC
	1669	GCCACACGATCAAGACAGCGCATG	CATGCGCTGTCTTGATCGTGTGGC
	1670	CCCGTTAACTCACGAGCGGTCAAT	ATTGACCGCTCGTGAGTTAACGGG
35	1671	AGAGAAGGTCATTGCCTGTCGGTG	CACCGACAGGCAATGACCTTCTCT
	1672	CGGGCCCTCTTAAAGTAGAGCAGG	CCTGCTCTACTTTAAGAGGGCCCG
	1673	ACATCGCGTCCGAGGGAGTTAGCG	CGCTAACTCCCTCGGACGCGATGT
	1674	AATGCCTAATCGAGCCAGCGGATC	GATCCGCTGGCTCGATTAGGCATT
	1675	CTCGATCTTTTTAAACCGGCGCTT	AAGCGCCGGTTTAAAAAGATCGAG
40	1676	CGTTCCTGGAAGGCAGGGTCTCAC	GTGAGACCCTGCCTTCCAGGAACG
	1677	CCTGTGCTTACTATCGGCGATCCA	TGGATCGCCGATAGTAAGCACAGG

	1678	GTTAGTCGCCCTATTGGCCTGGTT	AACCAGGCCAATAGGGCGACTAAC
	1679	CCGGTGAGATGACTGTAAATGCCA	TGGCATTTACAGTCATCTCACCGG
	1680	CGTGGTTTAAAACATCGCGCTTCG	CGAAGCGCGATGTTTTAAACCACG
	1681	TAAGACGCAGAAGATGGGGTCCAC	GTGGACCCCATCTTCTGCGTCTTA
5	1682	CACCACAGCTTCTTTGTTCGACCC	GGGTCGAACAAAGAAGCTGTGGTG
	1683	TCGGGTCCGTACCACCACTTTTGC	GCAAAAGTGGTGGTACGGACCCGA
	1684	CCAAGCCCCGAGTACCGAAGATTT	AAATCTTCGGTACTCGGGGCTTGG
	1685	TCCGTGATATGGTCGTGGCGCGGT	ACCGCGCCACGACCATATCACGGA
	1686	TGTCTGTGTCATGGCACCTCGCAT	ATGCGAGGTGCCATGACACAGACA
10	1687	AGGACTGCACTGTGCACGTCTGAT	ATCAGACGTGCACAGTGCAGTCCT
	1688	CCATCCTCATGTACAGCGCCGCTG	CAGCGGCGCTGTACATGAGGATGG
	1689	GTACCCGCGCCTTCCTCGACACAG	CTGTGTCGAGGAAGGCGCGGGTAC
	1690	ACGGGTCCTGGTCGACTAAGGCTT	AAGCCTTAGTCGACCAGGACCCGT
	1691	CGTATCGAAGGCGTGTACAACCGG	CCGGTTGTACACGCCTTCGATACG
15	1692	TGCCCGCCCTTTATGCAACGCTCA	TGAGCGTTGCATAAAGGGCGGGCA
	1693	AAACTTACGAGACGGCGGCTGCCA	TGGCAGCCGCCGTCTCGTAAGTTT
	1694	AAGTCTGACAAACGGAACGGGTGT	ACACCCGTTCCGTTTGTCAGACTT
	1695	TAAGCGCAGACCAAAGTATGCGGC	GCCGCATACTTTGGTCTGCGCTTA
	1696	GCAGTTTTCAGATCCTCCGCAAA	TTTGCGGAGGATCTGAAAAACTGC
20	1697	TCGGAAGCATTTACGCGATCTCAG	CTGAGATCGCGTAAATGCTTCCGA
	1698	CACAGAAACGGTTGAACGAACGCC	GGCGTTCGTTCAACCGTTTCTGTG
	1699	GCATGCTCAGATGGTCGTGCTCAC	GTGAGCACGACCATCTGAGCATGC
	1700	AAGGATTCTCGCTTCCGGCATGAT	ATCATGCCGGAAGCGAGAATCCTT
	· 1701	GGTGGGGTAGCGCTGGTATGAAAA	TTTTCATACCAGCGCTACCCCACC
25	1702	ATTATTACGGGACCGAACCAACGG	CCGTTGGTTCGGTCCCGTAATAAT
	1703	GCGCGAGTGTCATGATGTTCACGT	ACGTGAAGATCATGACACTCGCGC
	1704	GACATTCGTGACTTGGTCGTCCGC	GCGGACGACCAAGTCACGAATGTC
	1705	TCATTAGTGCAGGCACCGATCAAG	CTTGATCGGTGCCTGCACTAATGA
	1706	GAGTTGTGCGGAGTCATCGGAGTC	GACTCCGATGACTCCGCACAACTC
30	1707	GCCTTTACAGATTTGGCGGGCTAT	ATAGCCCGCCAAATCTGTAAAGGC
	1708	ATGGCGTTTGCGAAGTCGATACAG	CTGTATCGACTTCGCAAACGCCAT
	1709	TGCATCGGCCTCAATCAGAGAACT	AGTTCTCTGATTGAGGCCGATGCA
	1710	ACAATCATGGCAATCTGGCAAATG	CATTTGCCAGATTGCCATGATTGT
	1711	GACGTGGAAGAGTGCAGATCAGCA	TGCTGATCTGCACTCTTCCACGTC
35	1712	AGGGCAGGGGACGGACAGTAAGTC	GACTTACTGTCCGTCCCCTGCCCT
	1713	GCATAGGGCGAATCTAGTACGGGC	GCCCGTACTAGATTCGCCCTATGC
•	1714	TCCGGCGCATCCTCATTAGCAACT	AGTTGCTAATGAGGATGCGCCGGA
	1715	TGGCCGCTTCCACTAATATTGGAC	GTCCAATATTAGTGGAAGCGGCCA
	1716	CCGGCGGACGGCTCTTGTCAATGA	TCATTGACAAGAGCCGTCCGCCGG
	4747	CCACCAACCCAAACCAACCACTA	TACTGCTTCCTTTTGGGTTGCTCG
40	1717	CGAGCAACCCAAAAGGAAGCAGTA	TACTOCTTCCTTTTGGGTTGCTCG

	1719	AGTACCGCTACAACGCTGGTTCGC	GCGAACCAGCGTTGTAGCGGTACT
	1720	GGGCAGGCCAGGTCCACCTGAGAA	TTCTCAGGTGGACCTGCCC
	1721	CCACTTCTGTGACCGAACCGTGCT	AGCACGGTTCGGTCACAGAAGTGG
	1722	CCTGGTACCAGGCAGCAGTTGATT	AATCAACTGCTGCCTGGTACCAGG
5	1723	TTAGGGTACCGTCGAGAGACGCCA	TGGCGTCTCTCGACGGTACCCTAA
	1724	GGTTGCTTGTGCGCGTGAGGTAGT	ACTACCTCACGCGCACAAGCAACC
	1725	TGCTTCGACCGATGAAACTCGAAG	CTTCGAGTTTCATCGGTCGAAGCA
	1726	TGCCACCCATACTATGCCCAGTGG	CCACTGGGCATAGTATGGGTGGCA
	1727	TGTGCGGCAACGCGTGAAGACGTT	AACGTCTTCACGCGTTGCCGCACA
10	1728	TGAGAGAAGCTGGCCTCGGATCAG	CTGATCCGAGGCCAGCTTCTCTCA
	1729	TATTGCGAATTCGAGTACGTGCCC	GGGCACGTACTCGAATTCGCAATA
	1730	CGAGAGGGGTTCCCCAGTGATCGA	TCGATCACTGGGGAACCCCTCTCG
	1731	TGCCTGGGGTGTCGTTCTAATTCT	AGAATTAGAACGACACCCCAGGCA
	1732	GTGCGTCATTGTGGGTCATCCCAA	TTGGGATGACCCACAATGACGCAC
15	1733	AGGGCTCCCAGCATACCAACGTTG	CAACGTTGGTATGCTGGGAGCCCT
	1734	AACTAGCCGCACCTTTGTGCAGAG	CTCTGCACAAAGGTGCGGCTAGTT
	1735	TTAGCCCAGCCCTTCAATGGGAAC	GTTCCCATTGAAGGGCTGGGCTAA
	1736	CGGCCTCGGTTGTACGGGTAGTCT	AGACTACCCGTACAACCGAGGCCG
	1737	TCTTTGAGGCGCGGACCCGCATAT	ATATGCGGGTCCGCGCCTCAAAGA
20	1738	GATGGTTCGCCCTTGTGTCGCAGC	GCTGCGACACAAGGGCGAACCATC
	1739	GAGATTCAATACAGGCCGCGGGTC	GACCCGCGGCCTGTATTGAATCTC
	1740	AGGGCGAAGGAAGGTTCCGTTTTT	AAAAACGGAACCTTCCTTCGCCCT
	1741	CTCGACCCCTGCCACTACTGGTTC	GAACCAGTAGTGGCAGGGGTCGAG
	1742	TGTTCCGCGGTCTACGCATTACTG	CAGTAATGCGTAGACCGCGGAACA
25	1743	GAGACGACGTCCTACACCCGCTAA	TTAGCGGGTGTAGGACGTCGTCTC
	1744	AGATTGCGACAGCGACACGTGATT	AATCACGTGTCGCTGTCGCAATCT
	1745	GATACCGTTGGGCATTTCTCGGTA	TACCGAGAAATGCCCAACGGTATC
	1746	GATTGGGAGGCATTCAGCGACGGA	TCCGTCGCTGAATGCCTCCCAATC
	1747	AGGAGGAAACGAGGGCGTAGGTTC	GAACCTACGCCCTCGTTTCCTCCT
30	1748	GCCAAACAACGTCTGACGCCTAGC	GCTAGGCGTCAGACGTTGTTTGGC
	1749	TTTAATGCGGAAAGGATGCACGCG	CGCGTGCATCCTTTCCGCATTAAA.
	1750	TTATCGGCCGTTAAAATGGGATGG	CCATCCCATTTTAACGGCCGATAA
	1751	CCTTGGATTCGTTCATCGCTAGCA	TGCTAGCGATGAACGAATCCAAGG
	1752	AAGTGAACGTGCAGTGGTCTTCGA	TCGAAGACCACTGCACGTTCACTT
35	1753	TCCTTACCCCTCGTTCAAACGCCT	AGGCGTTTGAACGAGGGGTAAGGA
	1754	ATTCCTGAACCATGCATGGCCTGT	ACAGGCCATGCATGGTTCAGGAAT
	1755	AGCGAGACGCTCGATCACGAACTA	TAGTTCGTGATCGAGCGTCTCGCT
	1756	GCTGGTCTGGCTCGCTGTTTAGAA	TTCTAAACAGCGAGCCAGACCAGC
	1757	CGTGCGCGCATAAAGATAGGTCT	AGACCTATCTTTATGCCGCGCACG
40	1758	TCTGGCACTCACATCGGACAGTCT	AGACTGTCCGATGTGAGTGCCAGA
	1759	ACCATTGGAGGACCACAGAGCTCC	GGAGCTCTGTGGTCCTCCAATGGT

	1760	TCCAGGGTCGGAGTACATGGCGGG	CCCGCCATGTACTCCGACCCTGGA
	1761	ATATGCCGTCGGATCGTACACGCA	TGCGTGTACGATCCGACGGCATAT
	1762	TGCTGGCGTCAACACTTCCCGATT	AATCGGGAAGTGTTGACGCCAGCA
	1763	CAGGGCGGTGCGGTGAACTAGCCA	TGGCTAGTTCACCGCACCGCCCTG
5	1764	CATGGACTGCCGTACATCAGCTGG	CCAGCTGATGTACGGCAGTCCATG
	1765	CCGGCCATACGCTGGCAAGATTAC	GTAATCTTGCCAGCGTATGGCCGG
	1766	AGCGGACACCTGTACTCTCCA	TGGAGGAGAGTACAGGTGTCCGCT
	1767	GGAGCCACACCAGTCGAAGATGGT	ACCATCTTCGACTGGTGTGGCTCC
	1768	CGCCACCGGAAATTGAAAAGACTG	CAGTCTTTTCAATTTCCGGTGGCG
10	1769	TGAAACGGATGTTGCTTCTTGACG	CGTCAAGAAGCAACATCCGTTTCA
	1770	TTGAAGCGGTGAAGAGCCTGTCCT	AGGACAGGCTCTTCACCGCTTCAA
	1771	CGAACCAAGCTGCATTGTCAGTGG	CCACTGACAATGCAGCTTGGTTCG
	1772	GAGTCTGCGCTTGCAATCTTTGCG	CGCAAAGATTGCAAGCGCAGACTC
	1773	GCTGGGTATAGTTGCCTGGCAATG	CATTGCCAGGCAACTATACCCAGC
15	1774	GCAGGCGTTCCATATTCGCAACCC	GGGTTGCGAATATGGAACGCCTGC
	1775	GCGCCAACTAATACCTCCACCGCG	CGCGGTGGAGGTATTAGTTGGCGC
	1776	TGGCGTTCAGTGCAACGCTGGTTA	TAACCAGCGTTGCACTGAACGCCA
	1777	CAAAACTGACGGGTATGGGAGCGC	GCGCTCCCATACCCGTCAGTTTTG
	1778	AGGTGTCGCTGGAACCCGACTTGT	ACAAGTCGGGTTCCAGCGACACCT
20	1779	CTTCCAAAAGCGCAATTGGCTTTG	CAAAGCCAATTGCGCTTTTGGAAG
	1780	TCGGGCTTCTCGCAATTCTGTCAG	CTGACAGAATTGCGAGAAGCCCGA
	1781	GCCAAAAGAATGCGCTGGGTAGGT	ACCTACCCAGCGCATTCTTTTGGC
	1782	TGGTGCCCGCACCGAGAGACTGTA	TACAGTCTCTCGGTGCGGGCACCA
	1783	CGAGGCCGTAGTGGGGACTGCTCT	AGAGCAGTCCCCACTACGGCCTCG
25	1784	CGATCTGCGCATAGAGGGGACTTT	AAAGTCCCCTCTATGCGCAGATCG
	1785	TGTGCAATCGGCCTTCTCAGAGCC	GGCTCTGAGAAGGCCGATTGCACA
	1786	GATCACCTGGACCGCTACCGTTTT	AAAACGGTAGCGGTCCAGGTGATC
	1787	ATGGGGAGTTAAGGACCCTGCACC	GGTGCAGGGTCCTTAACTCCCCAT
	1788	CATTGTGGACAGCCAATGGTGGCT	AGCCACCATTGGCTGTCCACAATG
30	1789	CCATCACCATGCCACGGTAAGATC	GATCTTACCGTGGCATGGTGATGG
	1790	GCACCCGTGTCGTTGGTTAGCAAG	CTTGCTAACCAACGACACGGGTGC
	1791	GGAGTGGGTTCCGCGAATTCACTG	CAGTGAATTCGCGGAACCCACTCC
	1792	GGGGATTTCCTTTCGCAGGCTCGA	TCGAGCCTGCGAAAGGAAATCCCC
	1793	CATTGATCATGTGCACTTGCACCA	TGGTGCAAGTGCACATGATCAATG
35	1794	AGCAGCGCTGCGCTTGTTTCGGAT	ATCCGAAACAAGCGCAGCGCTGCT
	1795	CGAGTAACGCGGTTGCTTTGCGAA	TTCGCAAAGCAACCGCGTTACTCG
	1796	TGGCCTGGAACATAGGTGGAACTC	GAGTTCCACCTATGTTCCAGGCCA
	1797	CGCACACCAAGCGTTTATTGAGAA	TTCTCAATAAACGCTTGGTGTGCG
	1798	TCACCTTCACAGTGGGCATACAGC	GCTGTATGCCCACTGTGAAGGTGA
40	1799	CAAATATCCCTGAGCCCTCGAGCT	AGCTCGAGGGCTCAGGGATATTTG
	1800	GGGAGCTGGTGAGCAGATGTAACG	CGTTACATCTGCTCACCAGCTCCC

	1801	AGGATTGCTTTTGCGTTATGCGGA	TCCGCATAACGCAAAAGCAATCCT
	1802	ATCGTTTGGGCGCTACGCAATTGT	ACAATTGCGTAGCGCCCAAACGAT
	1803	CCGATTTGTCCCAAATGCAACGTT	AACGTTGCATTTGGGACAAATCGG
	1804	AAGGGTCAAGCTCATGGAGCGGAA	TTCCGCTCCATGAGCTTGACCCTT
5	1805	TCTGACGTCGTTCAAGGGCTCGCT	AGCGAGCCCTTGAACGACGTCAGA
	1806	CGCACCACTCCGAGGTATTTGTCT	AGACAAATACCTCGGAGTGGTGCG
	1807	AAGGGGTGAAAAAGGAGAAGCCGA	TCGGCTTCTCCTTTTTCACCCCTT
	1808	AAACCACGCAAATGGCGATACCAT	ATGGTATCGCCATTTGCGTGGTTT
	1809	CAGAAGGGATGACGCCTTAAGTCG	CGACTTAAGGCGTCATCCCTTCTG
10	1810	CATGACGAGAGCGGACCTGAAGTG	CACTTCAGGTCCGCTCTCGTCATG
	1811	CTGGACATGTTTGTTTCGCCACTG	CAGTGGCGAAACAACATGTCCAG
	1812	AAGACCGACTCTCGTCGTTTGCAC	GTGCAAACGACGAGAGTCGGTCTT
	1813	GCGCGATTACATACCGTTTCCGTA	TACGGAAACGGTATGTAATCGCGC
	1814	CACTGACCGGACCCAACCTAACAT	ATGTTAGGTTGGGTCCGGTCAGTG
15	1815	AGTGCAAGTCTAGACACGCCCGAG	CTCGGGCGTGTCTAGACTTGCACT
	1816	GGTTGGTGCGAGATCCTGGACTGT	ACAGTCCAGGATCTCGCACCAACC
	1817	GGTCGTCCCGAAACGTAAACGAGG	CCTCGTTTACGTTTCGGGACGACC
	1818	GACTAGTACGATCACGGGGCGGGT	ACCCGCCCGTGATCGTACTAGTC
	1819	CCGACCTGACCCTGTGTACAGGTT	AACCTGTACACAGGGTCAGGTCGG
20	1820	TGCTCACTGCCCACACTGTTATGG	CCATAACAGTGTGGGCAGTGAGCA
	1821	CGAGGAAACACATTTCTTCGGGCC	GGCCCGAAGAAATGTGTTTCCTCG
	1822	TGGCACCGGGTGGATTCTTGTCTA	TAGACAAGAATCCACCCGGTGCCA
	1823	GAGGCACGGTGATAGTGGTTGTGC	GCACAACCACTATCACCGTGCCTC
	1824	ATGCAGATGGATCTTTTTCGACGC	GCGTCGAAAAAGATCCATCTGCAT
25	1825	TGCGATAGCCAAAGAGTCGAGGAC	GTCCTCGACTCTTTGGCTATCGCA
	1826	ATGGCGTGTCAGCGAACTGCCTGG	CCAGGCAGTTCGCTGACACGCCAT
	1827	CAATGCAGCTCGGAAGTCAGGTCG	CGACCTGACTTCCGAGCTGCATTG
	1828	AGGATCAGTGCACATGTCCCCTCA	TGAGGGGACATGTGCACTGATCCT
	1829	CACATCTTGGCTGTCACCCGAGAA	TTCTCGGGTGACAGCCAAGATGTG
30	1830	CGCATTATCACCTCAATGCCAGTG	CACTGGCATTGAGGTGATAATGCG
	1831	ACATCCGCAGACTCCCTATAGCCC	GGGCTATAGGGAGTCTGCGGATGT
	1832	GTGAACCCGAACGAGGGGAGTCTC	GAGACTCCCCTCGTTCGGGTTCAC
	1833	GCGTAGGGAATTTGCCTCACGACT	AGTCGTGAGGCAAATTCCCTACGC
	1834	TTTACGCGTCGCTCGGTTGTAGTG	CACTACAACCGAGCGACGCGTAAA
35	1835	GAGAGGCGTCTAGGCGGTTCTAGC	GCTAGAACCGCCTAGACGCCTCTC
	1836	GCATGCTGATAACGAATGCTTCCC	GGGAAGCATTCGTTATCAGCATGC
	1837	CTGAAGCTCGTGTGCGATGAGGGA	TCCCTCATCGCACACGAGCTTCAG
	1838	ACAACGCATGAGGAGGCTTTTTC	GAAAAAGCCTCCTCATGCCGTTGT
	1839	TTTGGAGACGCCAGTACGCGTGGT	ACCACGCGTACTGGCGTCTCCAAA
40	1840	GCTATCATTTGGTGTAAGCCCGCC	GGCGGGCTTACACCAAATGATAGC
	1841	TCAACATCCAGGGCGGTGCTTGGT	ACCAAGCACCGCCCTGGATGTTGA

	1842	TTCGATGTAATCCCCAAAGATGCC	GGCATCTTTGGGGATTACATCGAA
	1843	GGACCTTCGGCAGGTTATCGCCGT	ACGGCGATAACCTGCCGAAGGTCC
	1844	AGTAAGAAGAGGCAGGCCCCACCT	AGGTGGGGCCTGCCTCTTCTTACT
	1845	AACGGCTCCCCGTCGTACTGCTTA	TAAGCAGTACGACGGGGAGCCGTT
5	1846	CCTATACCGTCGTGGTTCCACGTT	AACGTGGAACCACGACGGTATAGG
	1847	CCGCGCAGGCGCTAATACTCAAGG	CCTTGAGTATTAGCGCCTGCGCGG
	1848	AAATGGGCCAGTGAAATCCTTGGT	ACCAAGGATTTCACTGGCCCATTT
•	1849	ACGGTTTCGAATACTGCTGGGCAG	CTGCCCAGCAGTATTCGAAACCGT
	1850	CCGCTTGAGGTTCAGGTCAGAGCT	AGCTCTGACCTGAACCTCAAGCGG
10	1851	ATCGTGCCCGAAGACACTTAAACG	CGTTTAAGTGTCTTCGGGCACGAT
	1852	ACCTGAACCAGGGCGATTGCTTTA	TAAAGCAATCGCCCTGGTTCAGGT
	1853	ACCCTATACGCTGGGCTAAGCGGG	CCCGCTTAGCCCAGCGTATAGGGT
	1854	TGTTTCGCGACTAGAAGCCTTTGC	GCAAAGGCTTCTAGTCGCGAAACA
	1855	GAAGTTGGCGGCTCACCCGTATTA	TAATACGGGTGAGCCGCCAACTTC
15	1856	TGGCTACACCGCTTAGGAGGAACC	GGTTCCTCCTAAGCGGTGTAGCCA
	1857	CCACAGTTGCGTGACTTACATCGC	GCGATGTAAGTCACGCAACTGTGG
	1858	ACTGCCACTGCGTCTGAAGAGTGG	CCACTCTTCAGACGCAGTGGCAGT
	1859	GCGCCAGCAAATTTCGTGTGGTGT	ACACCACACGAAATTTGCTGGCGC
	1860	TGCCTCCGTCGAGCCGAATAGCCA	TGGCTATTCGGCTCGACGGAGGCA
20	1861	GTACAAACGGGCGCTATTTCGTCC	GGACGAAATAGCGCCCGTTTGTAC
	1862	GCTTCCCTGGCTCTGAACGGAAAC	GTTTCCGTTCAGAGCCAGGGAAGC
	1863	CGGCTACCCAGGCAGATAAGCTGA	TCAGCTTATCTGCCTGGGTAGCCG
	1864	GGTTGGACCCGACAGGGAATTTCC	GGAAATTCCCTGTCGGGTCCAACC
	1865	GGGGAATACCCGGCGTTTGTAATA	TATTACAAACGCCGGGTATTCCCC
25	1866	TGGTTCGGTGAGGTTATGTTCGGT	ACCGAACATAACCTCACCGAACCA
	1867	TCGGTAGGGTTCAGTCGCTGAGGA	TCCTCAGCGACTGAACCCTACCGA
	1868	TTCGGAGTGTGCCGGTGCTAGTAC	GTACTAGCACCGGCACACTCCGAA
	1869	TCGTACTGGAATGATGGCCGGGCC	GGCCGGCCATCATTCCAGTACGA
	1870	TCCGTCGACCGTCCAGCGAAGTTT	AAACTTCGCTGGACGGTCGACGGA
30	1871	AGGGAATATAACAACACCGCGCAC	GTGCGCGGTGTTGTTATATTCCCT
	1872	ATGTCCCGGAAACCAGCTACCTCA	TGAGGTAGCTGGTTTCCGGGACAT
	1873	ACCAGCGACTTAGATAGCCGTCCG	CGGACGCTATCTAAGTCGCTGGT
	1874	GGAAAACCTCCTTTGCGTCAACCA	TGGTTGACGCAAAGGAGGTTTTCC
	1875	ACGTGCGTGCATACCCAAGAGGAC	GTCCTCTTGGGTATGCACGCACGT
35	1876	ACGCCACTTTCCCTAGAACCAACG	CGTTGGTTCTAGGGAAAGTGGCGT
	1877	CGAAGTACGCAATAGTGCCACCCT	AGGGTGGCACTATTGCGTACTTCG
	1878	GATCCCGGCGGATCACCTATCAAT	ATTGATAGGTGATCCGCCGGGATC
	1879	AGAAAGCGACCGTTTCAGGCTAGC	GCTAGCCTGAAACGGTCGCTTTCT
	1880	CGCTCCCTTTCATAGTCCTCTCCG	CGGAGAGGACTATGAAAGGGAGCG
40	1881	GTGGGTGGTCATAACGACAGCAGA	TCTGCTGTCGTTATGACCACCCAC
•	1882	CTGGAGGCTGCATCGTTCGTAACA	TGTTACGAACGATGCAGCCTCCAG

			
	1883	CACCATGAGTTTCGGAGCGAGGAT	ATCCTCGCTCCGAAACTCATGGTG
	1884	CAAGCTGCGTTCGATGAGAGATTG	CAATCTCTCATCGAACGCAGCTTG
	1885	CCTGGGAGCAATGACCGCTCTGGT	ACCAGAGCGGTCATTGCTCCCAGG
	1886	TCCGGCGCTCTACCAAGATGAGAC	GTCTCATCTTGGTAGAGCGCCGGA
5	1887	CGACCGCGTCGCGTATACTATCCG	CGGATAGTATACGCGACGCGGTCG
	1888	AACATTCGCTAGTGGGGTCCAACA	TGTTGGACCCCACTAGCGAATGTT
	1889	TGTATGATCATCCGACCGAGCAGC	GCTGCTCGGTCGGATGATCATACA
	1890	AGTGCGCCGAGAGGGTGAATAGAC	GTCTATTCACCCTCTCGGCGCACT
	1891	AGGCTTGTTCTGGACCAGCACCAT	ATGGTGCTGGTCCAGAACAAGCCT
10	1892	GGGGCCACATAAAGAATTCCGAAC	GTTCGGAATTCTTTATGTGGCCCC
	1893	TGGTGAAGATAAATCCGCATGGCA	TGCCATGCGGATTTATCTTCACCA
	1894	ATTTCCACCACGCTCTTGCCAAAT	ATTTGGCAAGAGCGTGGTGGAAAT
	1895	CGCGTAAAGCTGTCACCGATGACC	GGTCATCGGTGACAGCTTTACGCG
	1896	TCCCCAACCGGTAACAACAGCGAC	GTCGCTGTTGTTACCGGTTGGGGA
15	1897	CCTCTGCTCGCCTTACACCCATGG	CCATGGGTGTAAGGCGAGCAGAGG
	1898	CAAGCTGCTCCTGTGCTGAAGGGC	GCCCTTCAGCACAGGAGCAGCTTG
	1899	AAACGAACGATGGTCGGTAGACCG	CGGTCTACCGACCATCGTTCGTTT
	1900	TCAGTTCGATGGCTATTGCGCCTC	GAGGCGCAATAGCCATCGAACTGA
	1901	GGCTCTCAACGGACGCAAATCATA	TATGATTTGCGTCCGTTGAGAGCC
20	1902	AGTAGAGTGTTGCGGCTGCCGATC	GATCGGCAGCCGCAACACTCTACT
	1903	AGACACTAGACCGCCGTGACCTGA	TCAGGTCACGGCGGTCTAGTGTCT
	1904	ACCGAGCACCGAATTTCCTTGTCC	GGACAAGGAAATTCGGTGCTCGGT
	1905	CCGTGGCCAAGATACGAACGAATT	AATTCGTTCGTATCTTGGCCACGG
	1906	CCTCCTACAGCATCCACATGAGGG	CCCTCATGTGGATGCTGTAGGAGG
25	1907	CACTCGGCAAATACGTATGCGCAT	ATGCGCATACGTATTTGCCGAGTG
	1908	ACCGAGTTGAAGCACGAATTTGGG	CCCAAATTCGTGCTTCAACTCGGT
	1909	GACCACCTCGGAAGATCGTTCTGC	GCAGAACGATCTTCCGAGGTGGTC
	1910	TCAACTGGGCAAACGAAGAGCACA	TGTGCTCTTCGTTTGCCCAGTTGA
	1911	GCTTAGCCTCACACGTGCATACCA	TGGTATGCACGTGTGAGGCTAAGC
30	1912	CTGCGGTCTCCAAGTACCATTTCG	CGAAATGGTACTTGGAGACCGCAG
	1913	GTTCCGTATTACGGCGGCCATAAG	CTTATGGCCGCCGTAATACGGAAC
	1914	ATCGACGCAACCGGATAGTCTCTG	CAGAGACTATCCGGTTGCGTCGAT
	1915	CGCAGATAAACCGGCATCTTTCAG	CTGAAAGATGCCGGTTTATCTGCG
	1916	ACCTGCCAATACGGGTCTACGGTT	AACCGTAGACCCGTATTGGCAGGT
35	1917	ACACCTGTTGCCATGCTGATCCGT	ACGGATCAGCATGGCAACAGGTGT
	1918	AAACTGTCTACTGCGCAATTCCGC	GCGGAATTGCGCAGTAGACAGTTT
	1919	GCAACTAGCCCGTGCTAGGATCGT	ACGATCCTAGCACGGGCTAGTTGC
	. 1920	TCGTAGTGGTGGATTGTTGTGCGT	ACGCACAACAATCCACCACTACGA
	1921	GGCTTACTCCTCAATTGCGACACG	CGTGTCGCAATTGAGGAGTAAGCC
40	1922	CACGACTCCCTGCCAGATTTGATT	AATCAAATCTGGCAGGGAGTCGTG
	1923	CTTAGACGTCGGCAATGTCACGTC	GACGTGACATTGCCGACGTCTAAG
,			

	1924	CTCAGAGCACAATCTGCCCTGCCT	AGGCAGGCAGATTGTGCTCTGAG
	1925	GCTAGGAAAGTCGGCATTCATGGG	CCCATGAATGCCGACTTTCCTAGC
	1926	AAAGCCCCAAAATTCCGCCTAACC	GGTTAGGCGGAATTTTGGGGCTTT
	1927	GCGCAACGCTAAGGGACTATCAAG	CTTGATAGTCCCTTAGCGTTGCGC
5	1928	CGTCCGCTGGGATGAGTCTCCTGC	GCAGGAGACTCATCCCAGCGGACG
	1929	ACAGGCCTCGTGATTGGTGTGGGT	ACCCACACCAATCACGAGGCCTGT
	1930	CATTCTCCTTCCGGGACCACGCCT	AGGCGTGGTCCCGGAAGGAGAATG
	1931	TCGGAGTTGACCAAGCTCAGTGCG	CGCACTGAGCTTGGTCAACTCCGA
	1932	ACGCGCCACTGCAATTGCAAACAC	GTGTTTGCAATTGCAGTGGCGCGT
10	1933	AGTTCATGGAGCCGGCGTATTGTT	AACAATACGCCGGCTCCATGAACT
	1934	ACGTTTAATGCGGGGCCCGCCTAC	GTAGGCGGGCCCCGCATTAAACGT
	1935	TGAGGCTTTAGCCTACGCGCAGGT	ACCTGCGCGTAGGCTAAAGCCTCA
	1936	CAGCGTTATGAGCGCGGAGTTTAT	ATAAACTCCGCGCTCATAACGCTG
	1937	GTCCACGTGACCACGGATAGTTGG	CCAACTATCCGTGGTCACGTGGAC
15	1938	GATTATGCTCCTACGCCTGCTCCG	CGGAGCAGGCGTAGGAGCATAATC
	1939	TCGTCAAGGGCATGATGTGTGGGA	TCCCACACATCATGCCCTTGACGA
	1940	GATGGACCGCCAAAGACACCTTGA	TCAAGGTGTCTTTGGCGGTCCATC
	1941	TACACGAGGATGGGGTCAAGCTTT	AAAGCTTGACCCCATCCTCGTGTA
	1942	ACACGCACAAAACGTTTGAAAGGC	GCCTTTCAAACGTTTTGTGCGTGT
20	1943	GTTATCGTGGGCCGATGGTACTGA	TCAGTACCATCGGCCCACGATAAC
	1944	ACATGACCGTATCCGCCTGCTTCG	CGAAGCAGGCGGATACGGTCATGT
	1945	GAAGGCGAACCACTGAAACTACGC	GCGTAGTTTCAGTGGTTCGCCTTC
	1946	TGACTTTTGCAACGGGTGGAACCA	TGGTTCCACCCGTTGCAAAAGTCA
	1947	TGAATTCGTAGGTTTTGGGTGCGG	CCGCACCCAAAACCTACGAATTCA
25	1948	AGCATTTATGAAGCGGCCATTGCG	CGCAATGGCCGCTTCATAAATGCT
	1949	TGCTCCTCGCGTTGGTACCGTGAG	CTCACGGTACCAACGCGAGGAGCA
	1950	CGCAGCAAGAAACAGCAACTGTTG	CAACAGTTGCTGTTTCTTGCTGCG
	1951	AGACGCTTGGAGTGAAAACTCGGA	TCCGAGTTTTCACTCCAAGCGTCT
	1952	CATTCGTAGAATGCCCCAAATGGA	TCCATTTGGGGCATTCTACGAATG
30	1953	CCAGAAGGTTCGGGACCCGTCGTG	CACGACGGGTCCCGAACCTTCTGG
	1954	GAGAAGCCGGTTCTCAGAGCACAT	ATGTGCTCTGAGAACCGGCTTCTC
	1955	TTGCGTTGCAAGATATCTGGCCCG	CGGGCCAGATATCTTGCAACGCAA
	1956	GGGTTGCATGTTCAGGCAAGACGA	TCGTCTTGCCTGAACATGCAACCC
	1957	CTCACGAAGGTGACATATCACGCC	GGCGTGATATGTCACCTTCGTGAG
35	1958	GCCCGAGATACGGGTTCAAAAAGA	TCTTTTGAACCCGTATCTCGGGC
	1959	CATCTTCGCGCTTCTTCACTCCGC	GCGGAGTGAAGAGCGCGAAGATG
	1960	TTACACGGTAAGCGTACGGCCGCC	GGCGGCCGTACGCTTACCGTGTAA
	1961	ACCTTCGGACAATGTGGCGTTCGC	GCGAACGCCACATTGTCCGAAGGT
	1962	TGAATGGTTCTGCTAGGCCCACAC	GTGTGGGCCTAGCAGAACCATTCA
40	1963	CACGCCTGTCTGACATATGGATGC	GCATCCATATGTCAGACAGGCGTG
	1964	CGCCTCAACCCAATCTGAGAACGT	ACGTTCTCAGATTGGGTTGAGGCG

	1965	TTACGCTTACTGCGAGCTGGGTCC	GGACCCAGCTCGCAGTAAGCGTAA
	1966	GGCTTGTGGGGCAATACGCATCTT	AAGATGCGTATTGCCCCACAAGCC
	1967	CACTCTCTTTGGATGCGGAACAA	TTGTTCCGCATCCAAAGGAGAGTG
	1968	GACCAGCCATCACGTAACGGCCCT	AGGGCCGTTACGTGATGGCTGGTC
5	1969	AGGAACCGGATGTGGTTATGGAGC	GCTCCATAACCACATCCGGTTCCT
	1970	ATCCATGGGCAACTGAGCCTATGC	GCATAGGCTCAGTTGCCCATGGAT
	1971	GGAACAGCACTTGTTACCGCCCAC	GTGGGCGGTAACAAGTGCTGTTCC
	1972	TGGCTCGCTTCAAGCCTGTTTGCT	AGCAAACAGGCTTGAAGCGAGCCA
	1973	CAAACGTGAGGTCATGACCACCAT	ATGGTGGTCATGACCTCACGTTTG
10	1974	ACCGATGTCTTGAAGTCCGGAGGT	ACCTCCGGACTTCAAGACATCGGT
	1975	CGAAAATGCATGATGATCTCCCCT	AGGGGAGATCATCATGCATTTTCG
	1976	TTTGGTATTCTCGCTGCACCGTTG	CAACGGTGCAGCGAGAATACCAAA
	1977	GCGTACTCAACCACATTCCCGACC	GGTCGGGAATGTGGTTGAGTACGC
	1978	AGCAAACAACAGCGGTCCGAGCAT	ATGCTCGGACCGCTGTTGTTTGCT
15	1979	GGACTAGGAGCGGGGATAGCTGAG	CTCAGCTATCCCCGCTCCTAGTCC
	1980	CCTTAACGAAAACCTGTCGACCGC	GCGGTCGACAGGTTTTCGTTAAGG
	1981	CTCGATCGCATAAGCAAGAAACCG	CGGTTTCTTGCTTATGCGATCGAG
	1982	CCCGTTGTTTGGGCGACAAAAGT	ACTTTTTGTCGCCCAAACAACGGG
	1983	CGGCGGCTCTCGCATGATCTCGTT	AACGAGATCATGCGAGAGCCGCCG
20	1984	CGGATGGAGAGGAGTCTACGTCCC	GGGACGTAGACTCCTCTCCATCCG
	1985	CAGAACAATATCGTGCGTCAACCG	CGGTTGACGCACGATATTGTTCTG
	1986	CCTTTGCGCGCTCCGAGTAAGGTA	TACCTTACTCGGAGCGCGCAAAGG
	1987	GGAAACGGCACCTATCTGTCGTGA	TCACGACAGATAGGTGCCGTTTCC
	1988	CGACCGACAAAACCAAATGCCGCC	GGCGGCATTTGGTTTTGTCGGTCG
25	1989	CCAAGGGTGTGGGAGCTGAAGAGA	TCTCTTCAGCTCCCACACCCTTGG
	1990	TTAAGTGCGCATAGTCCTCGTGGG	CCCACGAGGACTATGCGCACTTAA
	1991	GCCTGGTGGGGTAAGTCATGATGC	GCATCATGACTTACCCCACCAGGC
	1992	GAGCAGCAGATTGATGCGCTTATG	CATAAGCGCATCAATCTGCTGCTC
	1993	TGCGCCAACTTCCGGAATATTTGC	GCAAATATTCCGGAAGTTGGCGCA
30	1994	AACCCCATCATGAAATGCTCTCCG	CGGAGAGCATTTCATGATGGGGTT
	1995	GTCCAACGGTACTGGCGTGATGTT	AACATCACGCCAGTACCGTTGGAC
	1996	ACTCGGCTGATCGTGAGATGGTGA	TCACCATCTCACGATCAGCCGAGT
	1997	ATTCGTGGGCGCATCTCGGAATGT	ACATTCCGAGATGCGCCCACGAAT
	1998	TCCCGTCCTGTAATCCAGGGAACA	TGTTCCCTGGATTACAGGACGGGA
35	1999	CTTCGCTGCACCTACATTGCGCCA	TGGCGCAATGTAGGTGCAGCGAAG
	2000	GCGTGTAGATGACTGTGCTTTGGG	CCCAAAGCACAGTCATCTACACGC
	2001	CTATGGTATCGAGACATCGGCGGA	TCCGCCGATGTCTCGATACCATAG
	2002	CCTCGTACTCCGTCGTATGCACAA	TTGTGCATACGACGAGTACGAGG
	2003	TGGTGCGTCCGTAGTGCCTGCACT	AGTGCAGGCACTACGGACGCACCA
40	2004	CGCGATCCTAGTTGAAAGCTTTGC	GCAAAGCTTTCAACTAGGATCGCG
	2005	ACGATCCAGGTGTTGGGCACTAAG	CTTAGTGCCCAACACCTGGATCGT

_			
	2006	CCAATCTAGGATACACCACGCCCG	CGGGCGTGGTGTATCCTAGATTGG
	2007	GATACGTGGGGTATAGGCGGGCCC	GGGCCCGCCTATACCCCACGTATC
	2008	CATGGAACAAACCGTCGTAGGGGA	TCCCCTACGACGGTTTGTTCCATG
ĺ	2009	ACACTCGCGCAGTATTCGAGTCGT	ACGACTCGAATACTGCGCGAGTGT
5	2010	CTCAGTCTCGAAGGTGATCCGACC	GGTCGGATCACCTTCGAGACTGAG
	2011	TCCCAATCCCCGTGGTATCGTCGT	ACGACGATACCACGGGGATTGGGA
	2012	AATCAACGTAGTTCCGGTGGTCCG	CGGACCACCGGAACTACGTTGATT
	2013	CTTAACAACCCAGGGGTTTGGGCT	AGCCCAAACCCCTGGGTTGTTAAG
	2014	CTACCGCTGCATGGCGTTAGATTG	CAATCTAACGCCATGCAGCGGTAG
10	2015	TTATTGGTGGCGGACGGAGTGAGT	ACTCACTCCGTCCGCCACCAATAA
	2016	TTAAGGGTGAACTCAACCGCGTGA	TCACGCGGTTGAGTTCACCCTTAA
	2017	TTTGATTGAAACGCTGCGCACTAC	GTAGTGCGCAGCGTTTCAATCAAA
	2018	TCATGTGTAGGTCGCGGCCGTCAC	GTGACGGCCGCGACCTACACATGA
	2019	CTCCGAACCTTCTGGGCCTCTTTT	AAAAGAGGCCCAGAAGGTTCGGAG
15	2020	CTGTTGCCCATTGGCCCGACACTC	GAGTGTCGGGCCAATGGGCAACAG
	2021	CACGATCGCTGAGCAACACATCAC	GTGATGTGTTGCTCAGCGATCGTG
	2022	CGGATCATAAGCGTCCGCCTTCGT	ACGAAGGCGGACGCTTATGATCCG
	2023	AGGTTAACGCAACATGTGATCCGC	GCGGATCACATGTTGCGTTAACCT
	2024	GGGAAAAACAGCTAAGCCTTGCGA	TCGCAAGGCTTAGCTGTTTTTCCC
20	2025	ACTTATTGCCGGGATCCGTACACA	TGTGTACGGATCCCGGCAATAAGT
	2026	TGCGGTCTGGAAAGGAAGGGAGGG	CCCTCCCTTCCTTTCCAGACCGCA
ì	2027	GCTGCCACCTGGACATCGCATACA	TGTATGCGATGTCCAGGTGGCAGC
	2028	GCAGGCATGACAGTGGCGTAGTAC	GTACTACGCCACTGTCATGCCTGC
	2029	GCGGCCCTGATGGTTTGGCTGAGC	GCTCAGCCAAACCATCAGGGCCGC
25	2030	TCCCCATTTAGTCCCCTCCATCAC	GTGATGGAGGGGACTAAATGGGGA
	2031	GCAACACAAATGCGAGCGTAGGAG	CTCCTACGCTCGCATTTGTGTTGC
	2032	GGCGTTTGTATTCGAGCCACGTAG	CTACGTGGCTCGAATACAAACGCC
	2033	GGTAACGTCGCACGTGGAATTCCG	CGGAATTCCACGTGCGACGTTACC
	2034	ACTTCACAACGCTCCGTTGGACAC	GTGTCCAACGGAGCGTTGTGAAGT
30	2035	CCGAATTATAAAGCGCAAGGCACA	TGTGCCTTGCGCTTTATAATTCGG
	2036	GGACCCGATAAGACTCTGACGCCG	CGGCGTCAGAGTCTTATCGGGTCC
	2037	ACCCGTTTCTCGTAGGAACCTGCT	AGCAGGTTCCTACGAGAAACGGGT
	2038	CACGTTCGACTGTATCTGGTTGCC	GGCAACCAGATACAGTCGAACGTG
	2039	CCTCGGATGGCCCATGACCTTGA	TCAAGGTCATGGGCCCATCCGAGG
35	2040	GGACGCCTGCTGTAGGGGTTTGAT	ATCAAACCCCTACAGCAGGCGTCC
	2041	CTCGAGCGTGGGCTAAAAGAGCAT	ATGCTCTTTTAGCCCACGCTCGAG
	2042	TTTACTTCTTAGGGCGCGTTTGGG	CCCAAACGCGCCCTAAGAAGTAAA
	2043	ACCACCAACATAGCGCGCACTAGT	ACTAGTGCGCGCTATGTTGGTGGT
	2044	TGGTTACACGGCAGCCCGCGTAAG	CTTACGCGGGCTGCCGTGTAACCA
40	2045	TTATGGTACGTTGCTGCGTGCGGG	CCCGCACGCAGCAACGTACCATAA
	2046	ACCGCGGATCTAACGAATCCCATT	AATGGGATTCGTTAGATCCGCGGT
			

2048 TACCGCTTCAAAGGGTTGCCGAAT ATTCGGCAACCCTTTGAAGCGG 2049 GCACGCGTCAATATTACCGAGGA TCCTCGGTAATATTTGACGCGGTC 2050 GTGTCGCGGCTTTACAGAAGGAA TCTCCTTCTGTAAAGCCGCGACC 2051 GCAAGCCATACCGCCAATAAACTCG CGAGTTTATTGCGGTATGGCTTC 2052 ATGAGGTGTGCTGGGTTCACGAG TCCTGTAACGCAGCACGACCTC 2053 CGAGACTAGTGCCGGATGCAGGGTA TACCCTGCATCGGCACGACCTC 2054 GCCTCATCATAGACGCTGGATGCA TGCATCCAGCGTCTATGATGAGC 2055 GACAGGCGTCGGTAAGCTCTCAAG TGCATCCAGCGTCTAGATGAGC 2056 GCTACGAATCTTCCCTGTCGCCAC CTTGAGAGCTTACCGACGCCTG 2057 TTTGGCAGAACGTTACCTGTCGCCAC CTTGAGAGCTTACCGACGGCTTG 2058 GGACAATAAGCACGGAGAATGCG CTTGAGAGCTTACCGACGGCTTG 2059 TCATGAAACCTTCTGATGCCGCGAA TTCGCGGCATCAGAGGGTTAGTCATC 2050 CGCCGCATTACCTTGATGCCGCGAA TTCGCGGCATCAGAAGGTTCATC 2050 CGCCGCATTACCTTGATGCCGCGAA TTCGCGGCATCAGAAGGTTCATC 2060 CGCCGCATTACCTTACAAACGTCC GCCGGAAGAAGTAGCAACTCTTC 2061 ACGAGTCCAACCGCCCTCATTGATT AATCAATGAAGGCGGTTGGACTC 2062 GCGAAGAGTTGCTTACTTCCGCC GCCGGAAGAGTAGCACCTCTTC 2063 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAGATTGTTGCCGAC 2064 AATCCTGTGCACCCGTGAAACGCC GCCTCTCACCGGTGCAACAGCC 2065 AACCTATATGCATCAACCCGGACAC TTCACGGGTTGAACAGCTC 2066 GAACTTGGCAAAAACAGCCCGGAAA TTTTCCGGGCTGTTTTTGCCAACGC 2067 CTCTATGGCCGTTAAGACCCGGAAA TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT				
2049 GCACCGCGTCAATATTACCGAGGA TCTCGGTAATATTGACGCGGTC 2050 GTGTCGCGGCTTTACAGAAGGAGA TCTCCTTCTGTAAAGCCGCGACA 2051 GCAAGCCATACCGCAATAAACTCG CGAGTTTATTGCGTATGGCTTC 2052 ATGAGGTCGTGCTGTCACGAG CTCGTGAACGCAGCACCACCTCC 2053 CGAGACTAGTGCCGGTTCACGAG TTACCCTGCATCGGCACCTACCTCC 2054 GCCTCATCATAGACGCTGGATGCA TACCCTGCATCGGCACTAGCTCTC 2055 GACAGGCGTGAGCAGGATGCA TGCATCCAGCGTCTAGTAGACGCCGCCTGCCACC GCTACGAACGTCTCCACG CTCGAGAGCTTACCGACGCCTGCCACC CTCGAGAGCTTACCGACGCCTGCCACC CTCGAGAGCTTACCGACGCCTGCCACC CTCGAGAGCTTACCGACGCCTGCCACC CTCGAGAGCTTACCGACGCCTGCCACC CTCGAGAGCTTACCGACGCCTGCCACC CTCGAGAGCTTACCGACGCCTGCCACC CTCGAGAGCTTACCGACGCCTCACCCACCCGCCCACTGTACCACCGCCACCCCCCCC		2047	CATGATCCCGCCCTTAGGTTAAGC	GCTTAACCTAAGGGCGGGATCATG
2050 GTGTCGCGGCTTTACAGAAGGAGA TCTCCTTCTGTAAAGCCGCGACAC 2051 GCAAGCCATACCGCAATAAACTCG CGAGTTTATTGCGGTATGGCTTC 2052 ATGAGGTCGTGCGTCGCGTTCACGAG CTCGTGAACGCAGCACCGCCTC 2053 CGAGACTAGTGCCGGATGCAGGAG CTCGTGAACGCAGCACCGCCTC 2053 CGAGACTAGTGCCGGATGCAGTCA TACCCTGCATCGGGCACTAGTCTC 2054 GCCTCATCATAGACGTGGATGCA TGCATCCAGCGGTCTATGATGAGC 2055 GACAGGCGTCGGTAAGCCTTCAAG CTTCAGAGCTTACGACGACGCTGGTAAGCCTCCAACCCGCACCTC 2056 GCTACGAACTTTCCCTGTCGCCAC CTTGAGAGCTTACCGACGCCTGCT 2057 TTTGGCAGAACGTACCAGTGGGGT ACCCCACTGGTACGTTCTGCCAC 2058 GGACAATAAGCACCGGAGAATGCC CGCATTCTCCGGTGCTATTGTC 2059 TCATGGAACCTTCTGATGCCGACA TTCGCGGCATCAGAGGTTCATC 2059 TCATGAACCTTCTGATGCCGCAA TTCGCGGCATCAGAGGTTCATC 2060 CGCCGCATTACCTTTAAAACGTGC GCCGGCATCAGAGGTTCATC 2061 ACGAGTCCAACCGCCTCATTGATT AATCAATGAGGCGGTTGGACTCTC 2063 CGTCGGCAACAATCTTTTCCGCC GGCGGAAGAGTAGCAACTCTTC 2063 CGTCGGCAACAATCTTTTCCGCC GGCGGAAAGAATGGCACCACGACAACCACCTCTTCACCACCACAACAATCTTTTCCGCC GGCGGAAAAAAAAATGTTGCCGAC 2066 GAACTTATGCACCAGGAGCC GGCTCTCACGGGTGCACAGGA 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTTCAACGGGGACACAGACCACCACAATCATCTTTCCACACCCGGAAC 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTTTAATGGCCATAGCCCACACACACACACCACGCACAAACAGCCCACAAACAGCCCAAACAAC	•	2048	TACCGCTTCAAAGGGTTGCCGAAT	ATTCGGCAACCCTTTGAAGCGGTA
5 2051 GCAAGCCATACCGCAATAAACTCG 2052 ATGAGGTCGTGCTGCGTTCACGAG 2053 CGAGACTAGTGCGGTTCACGAG 2053 CGAGACTAGTGCGGTTCACGAG 2054 GCCTCATCATAGACGCTGGATGCA 2055 GACAGCGTGCAGCGTAGCAGGGTA 2056 GCTACGAATCTCCTGCCACAGCCTTCAGGCACTCAGCCTC 2056 GCTACGAATCTTCCTGTCACCAC 2057 TTTGGCAGAACGTTGCAGGTAGCCTTGAGAGCTTACCGACGCCTG 2058 GGACAATAGCCACGGAGGATA 2059 TCATGACACCTGGAATGCAGGGTAACCTCTCAGG 2059 TCATGACACCTGGAGATGCAGGGTACACTCTCCCAC 2059 TCATGACACCTTCAGAGCCTGGAATACCACCGGGAAGATTCTCCCACACCGCTGTACGTTCTTCCCACACCGCTTATATATTCACACACCGCACATTCCAGGAAACAGTACCAATACCTTAAAAACGTGC 2050 CGCCGCATTACCTTTAAAAACGTGC 2051 ACGAATCATCTTCTAGTGCCGCAA 2052 GCGAAGAGTTGCACCAGTGAGAACACTCTTCCCACACCGCAACACCGCCTCATTGATT 2052 GCGAAGAGTTGCTACCTTTCCGCC 2053 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAAGATTGTTGCCGACACACACACACACACAC		2049	GCACCGCGTCAATATTACCGAGGA	TCCTCGGTAATATTGACGCGGTGC
2052 ATGAGGTCGTGCGTTCACGAG CTCGTGAACGCACCACCACCTC 2053 CGAGACTAGTGCCGATGCAGGGTA TACCCTGCATCGCACCACCACCTC 2054 GCCTCATCATAGACGCTGGATGCA TGCATCCAGCGTCTATGATCAG 2055 GACAGGCGTCGATAGCTCTCAAG CTTGAGAGCTTACCCACCGCTCTATGATCAGC 2056 GCTACGAATCTTCCCTGTCGCCAC GTGGCGACAGGGAAGATTACCCACGCCTGT 2057 TTTGGCAGAACGTACCAGTGGGGT ACCCACTGGTACGTTCTGCCAA 2058 GGACAATAAGCACCGGAGAATGCG CGCATTCTCCGGTGCTTATGTC 2059 TCATGAACCTTCTGATGCCGCGAA TCCGCGCATCAGAAGGTTCATC 2059 TCATGAACCTTCTGATGCCGCGAA TTCGCGGCATCAGAAGGTTCATC 2060 CGCCGCATTACCTTTAAAAACGTGC CACCGTTTATTAGGTAATTGCGC 2061 ACGAGTCCAACCCGCTCATTGATT 2062 CGCGAAGAGTTGCTTTCCGCC GGCGAAAGAGATTGCTTC 2063 CGTCGGCAACAATCTTTTTCGTCA 2064 AATCCTGTGCACCCGTGAGACGC GGCGAAGAGAGTTGACCTTC 2065 ACCCTATTGCACCCGTGAGACGC GGCTCGCGTTGATCTCCCAC 2066 GAACTATGCATCAACGCGAGAC 2066 GAACTTGGCAACAACCCGCGAAA TTTCGCGGCTTGATCACACCACAC		2050	GTGTCGCGGCTTTACAGAAGGAGA	TCTCCTTCTGTAAAGCCGCGACAC
2053 CGAGACTAGTGCCGATGCAGGGTA 2054 GCCTCATCATAGACGCTGGATGCA 2055 GACAGGCGTCGGTAAGCTCTCAAG 2055 GACAGGCGTCGGTAAGCTCTCAAG 2056 GCTACGAATCTTCCCTGTCGCCAC GTGGCGACAGGGAAGATTCGTA 2057 TTTGGCAGACCGTGCGGTAAGCTCTCAAG 2057 TTTGGCAGACCGTACCAGTGGGGT 2058 GGACAATAAGCACCGGAGAATCCG 2059 TCATGAACCTTCTGATGCCGCAC GTGGCGACAGGGAAGATTCGTA 2059 TCATGAACCTTCTGATGCCGCGAA 2050 CGCCGCATTACCTTAAAAACGTGC CGCATTCTCCGCACAGAGGTTCATCA 2060 CGCCGCATTACCTTAAAAACGTGC GCACGTTTTAAGGTAATGCGGC 2061 ACGAGTCCAACCGGCCTCATTGATT AATCAATGAGGCGGTTGGACTCACACAGCACCGCCTCATTGATT 2062 GCGAAGAATTCTTTCCGCC GGCGAAGAGATGGCACCATCCTCC 2063 CGTCGGCAACAATCTTTTCGTGA TCACGAAAAAAGATTGTTGCCCCGC 2063 CGTCGGCAACAATCTTTTCGTGA TCACGAAAAAAGATTGTTGCCACAGAAAAAACATCTTTCAACACGCAGCC GGCTCCACGGGTTGAACACAGCACACACACACACACACAC	5	2051	GCAAGCCATACCGCAATAAACTCG	CGAGTTTATTGCGGTATGGCTTGC
2054 GCCTCATCATAGACGCTGGATGCA 2055 GACAGGCGTCGGTAAGCTCTCAAG 2056 GCTACGAATCTTCCCTGTCGCCAC 2057 TITTGGCAGAACGTACCAGTGGGGT 2058 GGACAATAAGCACCGGAGAATGCG 2058 GGACAATAAGCACCGGAGAATGCG 2059 TCATGAAACGTTCCTGATGCGCAC 2058 GGACAATAAGCACCGGAGAATGCG 2059 TCATGAAACGTTCTGATGCCGCGAA 2050 CGCCGCATTACCTTAAAAACGTGC 2050 CGCCGCATTACCTTAAAAACGTGC 2051 ACGAGTCCAACCGCCTCATTGATT 2052 GCGAAGAGTTGCTACCTTCCGCC 2053 CGTCGGCAACATCTTTTTTCTCGCC 2053 CGTCGGCAACATCTTTTTTTTTTCCAAAAACGTGC 2054 AATCCTGTGCACCCGTGAAGACGCC 2055 AACCTATATGCATCACCGCCTCATTGATT 2066 GAACTTGGCAACAACCTCTTCCGCC 2067 CTCTATGGCAACAACCGCCTCATTGATT 2067 CTCTATGGCAAAACAGCCCGGAAA 2068 GAACTTGGCAACAACCGCCGGAAA 2069 CCTGGCTTTCACGACGCAACAATCTTTCCGCC 2068 AACCTATATGCATCAACGCCGGAAA 2069 CCTGGCTTTTCACACGCCGAAAA 2070 CACTCAGGCTGCAACAACAATCTTTCTTGCCAACGCCGTGCAACACCCGGTGCAAAACAACGCCCGGAAA 2070 CACTCAGGCTACCCGAACAAAA 2070 CACTCAGGCTAAGCCCGAACAAA 2070 CACTCAGCGTTACCCTGAAGCCCG 2071 GAATTATCCACCGCAACAAAA 2070 CACTCAGCGTAAGCCTGAAGCCTG 2072 GTGACATCACATGGTGGCCCAACAAA 2073 AGCACCTTGCCGAGCGCG CGCTCGAGCTACGCTAAGACCAC 2074 TAGGTTGCACGCAGCGGTGTGC CACACCCCGTGCGATAAAT 2075 GTCCCATACGGCAGCGCGTGTGC 2076 TCGGATACTCTCCGGAGCCGCGCGCACCACTTCCTGCAACCC 2077 CAACGTTCGCGAGCTACCCAGGAA 2076 TCGGATACTCTCCGCGCCCAACAA 2077 CAACGTTCGCGCCCAACAAA 2077 CAACGTTCGCGCCCAACAAA 2077 CAACGTTCCCGCAGCGCGTTTCCAAGCCCAACCCACTTCCTGCAACCC 2077 CAACGTTCCCGCGCCCAACAAA 2077 CAACGTTCCCCGCGCCAACAAA 2077 CAACGTTCCCCGCGCCAACAAA 2077 CAACGTTCCCCGCGCCAACAAAAAAAAAAAAAAAAAAAA		2052	ATGAGGTCGTGCTGCGTTCACGAG	CTCGTGAACGCAGCACGACCTCAT
2055 GACAGGCGTCGGTAAGCTCTCAAG CTTGAGAGCTTACCGACGCCTG 2056 GCTACGAATCTTCCCTGTCGCCAC GTGGCGACAGGGAAGATTCGTA 2057 TTTGGCAGAACGTACCAGTGGGGT ACCCCACTGGTACGTTCTGCCAA 2058 GGACAATAAGCACCGGAGAATGCG CGCATTCTCCGGTGCTTATTGTC 2059 TCATGAACCTTTCTGATGCCGCGAA TTCGCGGCATCAGAAGGTTCATC 2060 CGCCGCATTACCTTTAAAAACGTGC GCACGTTTTAAGGTAATGCGGC 4060 CGCCGCATTACCTTAAAAACGTGC GCACGTTTTAAGGTAATGCGGC 4061 ACGAGTCCAACCGCCTCATTGATT AATCAATGAGGCGGTTGGACTCTC 4062 GCGAAGAGTTGCTACTCTTCCGCC GCGCGAAGAGATAGCAACTCTTC 4063 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAGATTGTTGCCGAC 4064 AATCCTGTGCACCCGTGAGACGCC GCCTCTCACGGGTGCAACAGGA 4064 AATCCTGTGCACCCGTGAGACGCC GCCTCTCACGGGTGCAACAGGA 4065 AACCTATATGCATCAACGCGAGCC GCCTCTCACGGGTGCAACAGGA 4066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTTGCCAAGTT 4066 GAACTTGCCGTTTTGCATCTCCGC TGCAGACAGGCCATAGGACGCCAACAGCCCATAGACAGCCCATAGACAGCCCGTTCAACAGCACAGCACAACAGCCCATAGACACAGCCCATAGACACAGCCCATAGACAACAGCCCATAGACACAGCCCATAGACACAGCCCATAGACACAGCACAACAGCCCATAGACACACAC		2053	CGAGACTAGTGCCGATGCAGGGTA	TACCCTGCATCGGCACTAGTCTCG
10 2056 GCTACGAATCTTCCCTGTCGCCAC GTGGCGACAGGGAAGATTCGTA 2057 TTTGGCAGAACGTACCAGTGGGGT ACCCCACTGGTACGTTCTGCCAA 2058 GGACAATAAGCACCGGAGAATGCG GCATTCTCCGGTGCTTATTGTC 2059 TCATGAACCTTCTGATGCCGGAA TTCGCGGGCATCAGAAGGTTCATC 2060 CGCCGCATTACCTTTAAAACGTGC GCACGTTTTTAAGGTATTGCGGC 2061 ACGAGTCCAACCGCCTCATTGATT ATCAATGAGGCGGTTGGACTCC 2062 GCGAAGAGTTGCTACTCTTCTGGCT 2063 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAGATTGTTGCCGAC 2064 AATCCTGTGCACCCGTGAGACGC GCCGGCTCACAGGAGACACTCTTC 2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGATAAGG 2066 GAACTTGGCAACAACGCCGGAAA TTCCGGGCTGTGATGCAATAAGG 2067 CTCTATGGCCGTTTGCCAGCTGCAAAAAAAAATTTCCGGACCAAGAAAAAAAA		2054	GCCTCATCATAGACGCTGGATGCA	TGCATCCAGCGTCTATGATGAGGC
2057 TITGGCAGAACGTACCAGTGGGGT ACCCCACTGGTACGTTCTGCCAA 2058 GGACAATAAGCACCGGAGAATGCG CGCATTCTCCGGTGCTTATTGTC 2059 TCATGAACCTTCTGATGCCGCGAA TTCGCGGCATCAGAAGGTTCATC 2060 CGCCGCATTACCTTAAAAACGTGC GCACGTTTTTAAGGTAATGCGGC 2061 ACGAGTCCAACCGCCTCATTGATT AATCAATGAGGCGGTTGGACTCI 2062 GCGAAGAGTTGCTACTCTCCGCC GGCGGAAGAAGAATGCCGCCT 2063 CGTCGGCAACAATCTTTTCCGCC GGCGGAAGAAAAAGATTGTTGCCGAC 2064 AATCCTGTGCACCCGTGAGACGCG CGCGTCTCACGGGTGCACAGGA 2065 AACCTATATGCATCAACGCCGAGCC GGCTCGCGTTGATGCATATAGG 2066 GAACTTGGCCAAAACAGCCCGGAAA TTTCCGGGCTTTGATGCATATAGG 2067 CTCTATGGCCGTTTGCCGTCTCCA TGCAGACCGCGATCACGGACCAGGAAAGAATATTCTTGCCAACT 2068 AGTGCACCGGGTTGTGCACACAGAAA TTTCTTGGCGTGTTAAAACGCCAGTCACCAGGAAACAACCCCGGTTGAAGCCAACACCCGGTGCAACACCCGGTGCAACACCCAGTGCAACACCCGGTTCACGGCAAAACACCCCGGTTCACGCTAAGACCACCCGTTCACGCTAAGACCACCCGTTGAAGCCAACACCCGGTGCAACACCCAGTGCAACACCCAGTGCAACACCCAGTGCAACACCCAGTGCAACACCCAGTGCAACACCCAGTGCACACCACCACCACCACCACCACCACCACCACCACCACC		2055	GACAGGCGTCGGTAAGCTCTCAAG	CTTGAGAGCTTACCGACGCCTGTC
2058 GGACAATAAGCACCGGAGAATGCG CGCATTCTCCGGTGCTTATTGTC 2059 TCATGAACCTTCTGATGCCGCGAA TTCGCGGCATCAGAAGGTTCATC 2060 CGCCGCATTACCTTAAAAACGTGC GCACGTTTTTAAGGTAATGCGGC 2061 ACGAGTCCAACCGCCTCATTGATT AATCAATGAGGCGGTTGGACTCC 2062 GCGAAGAGTTGCTTACTTTCCGCC GGCGGAAGAATAGCACTCTTC 2063 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAGATTGTTGCCGAC 2064 AATCCTGTGCACCCGTGAGACGCG CGCGTCCACGGGTGCACACGAC 2065 AACCTATATGCATCAACGCGAGCC GGCTCCACGGGTGCACACGAC 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCGGGGCTGTTTTTGCCAAC 2067 CTCTATGGCCGTTTGCCGTCCA TGCAGAACAGGCCAATTAGGC 2068 AGTGCACCGGGTTGGCAAAACAGCCCGGAAA TTTCTTGGCGAGCCAACTAGC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTGTGAAAACAGCCCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGCGTTCACGCTGAGC 2071 GAATTATCGACGCCAAGAAA TTTCTTGGCGTGTGAAAAGCCAC 2072 GTGACATCACATGGTGCCGTCGCA CCATGGTGAAACCCAC 2073 AGCACCTTGCCGAGCGGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATTGATGTATC 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACCCACACGTGAAGCC 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTTCCTGCAACC 2075 GTCCCATACGTGTGGTACCGCGAAT ATCCGCGTACCACACGTATGGG 2076 TCGGATACTCCGCGTGCACGGG CCCGTGCCACCACGTTAGGG 2077 CAACGTTCGCCGTAGCCCAAAT ATTTGGGCTTAGGGCAACGT 2078 GTTCACAGTGTGGTACCCCAAAT ATTTGGGCTTAGGGCGAACGT 2079 GTTCACCGCCCTAAGCCCAAAT ATTTGGGCTTAGGGCGAACGT 2079 GTTCACCGCCCTTACTTGGGTTT AAACCCAACTAGAGGCCGAACGT 2079 GTTCACCGCCCTTAGTGTGTT TAACCCAACTAGAGGCCGAACGT 2080 AATCCGCGTCTCACTTGGGTTT AAACCCAACTAACCCGGGCAACGT 2080 AATCCGCGTCTCAGTGTGGTACCC GGGTACCACCTCCAGAGCCTAA 2080 AATCCGCGTCTCACTTGGGTTCAATGTGGTC 2081 CCAGGGAATGCTCAAAAGGGTCCAA TTGGGACCCTTTTGTAGCATGCCCCACACTTCCTCCAAGCCCAAT 2082 CAGGGAATGCTCAAAAGGGTCCAA TTGGACCCTTTTGTAGCATGCCCCACACTTCCAGAGGCGTAA 2083 AAGGGTTAACCTGGCCGGTTAACAG CTGTTAACCGGGCAACCTACCCCGGCAACACACCCCGCGCCTTACCCCCGGTTAACAGGCCGAAA AAGGGTTAACCTGCCCGGTTAACAG CTGTTAACCGGGCAACCACCTCCAGAGCCTAACCCCCGAACACACCCCGGCAACACACCCCGGCAACACACCCCCGCCCCCC	10	2056	GCTACGAATCTTCCCTGTCGCCAC	GTGGCGACAGGGAAGATTCGTAGC
2059 TCATGAACCTTCTGATGCCGCGAA TTCGCGGCATCAGAAGGTTCATC 2060 CGCCGCATTACCTTAAAAACGTGC GCACGTTTTTAAGGTAATGCGGC CGCCGCATTACCTTAAAAACGTGC GCACGTTTTTAAGGTAATGCGGC 2061 ACGAGTCCAACCGCCTCATTGATT AATCAATGAGGCGGTTGGACTCC 2062 GCGAAGAGTTGCTACTCTTCCGCC GGCGGAAGAGTAGCAACTCTTC 2063 CGTCGGCAACAATCTTTTCGTGA TCACGAAAAAGATTGTTGCCGAC 2064 AATCCTGTGCACCGGTGAGACGCG CGCGTCTCACGGGTGCACAGGA 2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGCATATAGC 2066 GAACTTGGCAAAACAGCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTCCA TGCAGACGGCAAACCGGCCAATA 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGTCCACAACCCGGTGCA 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTGTGAAAACCCAG 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTGAG 2071 GAATTATCGACCGCAGCGGTTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACCCCGCACACGTGCACCCTTGCCGAACCCCCGTGCGCACCACTTCCTGCAACCC 2074 TAGGTTGCAGGAATGGTGGCCACCGGTGCACCATTCCTGCAACCC 2075 GTCCCATACGTGGTGACCCAGGG CCCCTGGGCCACCATTCCTGCAACC 2076 TCGGATACTCTCGCGTGCCACGGG CCCCTGGCCACCACTTCCTGCAACC 2077 CAACGTTCCGCCCTAAGCCCAACG TATTGGGCTTACGGCAACGTA 2079 GTCACCGCGCCTCTACTTGGGTTT AACCCAAGTAGGCGGAACGT 2079 GTTCACCGGCCTCTACTTGGGTTT AACCCAAGTAGCCCGGAACCTA 2079 GTTCACCGGCCTCTACTTGGGTTT AACCCAAGTAGACCCGGAACCCTA 2079 GTTCACCGGCCTCTACTTGGGTTT AACCCAAGTAGACCCGGAACCCTA 2080 AATCCGCCTCTAGGTCATGTGGTC 2081 GCTACGCCTCTAGGTCAACCCCAATTCCTTCAACCCCTAACCCCAAGTAGACCCCTAACCCCTAACCCCAAGGGCGCGTAACCCC 2082 CAGGGAATGCTACAAAGGGTCCAA TTTGGACCTTTGACCACCGGAACCCTA 2083 AAGGGTTAGCTCCCCGGGTTAACAC CTGTTTAACCGGGCAGCTTAACCCC 2084 CCTCGCAAGCGCGATATTTTATGCC GGCATAAATATCCGCGCTCAACCCTAACCCCTACCCGGGCAACCCCCCCGGTTAACACCCTTACTTGACCCAAGGGCAACCCTAACCCCTACCCGGGCAACCCTAACCCCCGGCAACGCGAACGCGAACCCTACCCCCGAAGCGCGAACCCCAATGACCCTAACCCCTACCCGGGCAACCCCAATGACCCCAACGCGCAACCCCAACGCGCAACCCCAATGACCCTAACCCCCGAACCGCGCAACCCCAATGACCCCCAACGCGCAACCCCAACCCCAACCCCAACCCCAACCCCCAACCCCAACCCC		2057	TTTGGCAGAACGTACCAGTGGGGT	ACCCCACTGGTACGTTCTGCCAAA
2060 CGCCGCATTACCTTAAAAACGTGC GCACGTTTTTAAGGTAATGCGGC 2061 ACGAGTCCAACCGCCTCATTGATT AATCAATGAGGCGGTTGGACTCC 2062 GCGAAGAGTTGCTACTCTTCCGCC GGCGGAAGAGTAGCAACTCTTTC 2063 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAGATTGTTGCCGAC 2064 AATCCTGTGCACCCGTGAGACGCG CGCGTCTCACGGGTGCACAGGA 2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGCATATAGG 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACCGGCCATAG 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGTCCACAACCCGGTGCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTTGAAAACCCAG 2070 CACTCAGCGTAGCCTGAAGCCTGG CCACGCTTCAGGCTACACCCAG 2071 GAATTATCGACCGCAGCAGCAAA TTTCTTGGCGTTGAAAACCCAG 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGCGCACCATGTGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGAT 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACCCACACGTGCAGTGA 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCACCATTCTGCAACC 2075 GTCCCATACGTGGTACGCGGAT 2076 TCGGATACTCTCGCGGGTCACCAGGG 2077 CAACGTTCGCCGAGTCACCAGGG 2078 GTTCACCGGGCCCCCAAAT ATTGGGCTTAGGGGCGAACGT 2078 GTTCACCGGCGCCCCAAAT ATTGGGCTTAGGGGCGAACGT 2079 GTTCACCGGCGCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2079 GTTCACCGGCCCTTACTTGGGTTT AAACCCAACGTAGGCGGAACGTA 2079 GTTCACCGGCCCTCTACTTGGGTTT AAACCCAACGTAGAGCCGGAACGTA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACACTTAGACCCACACGTAACCCACCGCGAACACGTAGACCCACACGCGAACGTACCCCCACATTCCCTCAACCCACACGTAACCCCACACCACACCACCTTCCAGACGCGAACACCCCCACACTTTGAACCCCGCGAAAACCCCCCACACTTTGAACCCCGCGAAACCCCCCACACTTTGAACCCCCACACCACCTTCCAGACCCCCACACCACCTCCAAGACCCCCACACCACCCCCCCACACCACCCCCCCC		2058	GGACAATAAGCACCGGAGAATGCG	CGCATTCTCCGGTGCTTATTGTCC
15 2061 ACGAGTCCAACCGCCTCATTGATT AATCAATGAGGCGGTTGGACTCC 2062 GCGAAGAGTTGCTACTCTCCGCC GGCGGAAGAGTAGCAACTCTTCC 2063 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAGAGTTGTTGCCGAC 2064 AATCCTGTGCACCCGTGAGACGCG CGCTCTCACGGGTGCACAGGAC 2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGCATATAGG 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACGGCCATAG 2068 AGTGCACCGGGTTGTGCACACAAT ATTGTGTCCACAACCCGGTGCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTTGAAAAAGCCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTAGACCAC 2071 GAATTATCGACCGCAGCAGCA CGCCCACCATGTGAGC 2072 GTGACATCACATGGTGGCCCAGCG CGCCCCCCATCGTAGATCCACCCACCATGCACCACCATGCACCACCATGCACCACCATGCACCACCACCATGCACCACCACCATGCACCACCATGCACCACCACCATGCACCACCACCATGCACCACCACCACCATCCACCACCACCACCACCATCCACCA		2059	TCATGAACCTTCTGATGCCGCGAA	TTCGCGGCATCAGAAGGTTCATGA
2062 GCGAAGAGTTGCTACTCTTCCGCC GGCGGAAGAGTAGCAACTCTTCC 2063 CGTCGGCAACAATCTTTTTCGTGA TCACGAAAAAGAATTGTTGCCGAC 2064 AATCCTGTGCACCCGTGAGACGCG CGCGTCTCACGGGTGCACAGGA 2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGCATATAGG 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACGGCCATAG 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTTCCACAACCCGGTGCAA 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTTGGAAAAAGCCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTGAG 2071 GAATTATCGACCGCAGCGGTGCC CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC, 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACCCGCAGCGAGCG CGCTCGCCACCATTCCTGCAACCC 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCACCATTCCTGCAACCC 2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGG, 2076 TCGGATACTCTCGCGTGCCACGGG CCCCGTGCGACGCGAACGTT 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGCCAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGAACGTT 2079 GTTCACCGGCCCTTACTTGGGTTT AAACCCAAGTAGAGGCCGGAA 2080 AATCCGCGTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2081 GCTACGCCTCTGGAGGTGACCC GGCTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCAA TTGGACCCTTTGAGCACTCCT 2083 AAGGGTTAGCTGCCGGTTAACAG CTGTTAACCGGGCAGCTTACCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTTACCCT 2084 CCTCGCAAGCCGGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAC GTGCACAGGTCGCCGCTCAACAC		2060	CGCCGCATTACCTTAAAAACGTGC	GCACGTTTTTAAGGTAATGCGGCG
2063 CGTCGGCAACATCTTTTCGTGA TCACGAAAAAGATTGTTGCCGAC 2064 AATCCTGTGCACCGTGAGACGCG CGCGTCTCACGGGTGCACAGGA 2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGCATATAGG 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACGGCCATAG 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGTCCACAACCCGGTGCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTTGAAAAGCCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACAGCCAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC, 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGCAAGCC 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCACCACTTCCTGCAACC 2075 GTCCCATACGTGGTACCGCGGAT ATCCGCGTACCACACGTATGGG, 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACCACCATTCCTGCAACC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTAA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGTGTGTC GACCACACTTGAGCGCGGA 2081 GCTACGCCTCTAGTGGTCC GGGTACCACCTTCAGACGCGGA 2082 CAGGGAATGCTCACAAGGGTCCAA TTGGACCCTTCAGAGCGCGAA 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTTAACCCT 2084 CCTCGCAAGCGCGATATTTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAACGGGAA TTCCCTTTGACCATGACCGGGAGCTAACCCT 2086 GCTGTTGAGCGCGGATATTTTATGCC GGCATAAATATCCGCGCTTGCGAC 2087 CCTCGCAAGCGCGATATTTTATGCC GGCATAAATATCCGCGCTTGCGAC 2088 GCTCCCGGTCATGGTCAAGGGAAA TTCCCTTTGACCATGACCGGGAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTTATGCC GGCATAAATATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAACGGGAAA TTCCCTTTGACCATGACCGGGAGCTAACCCT 2086 GCTGTTGAGCGGCGACCTTGCACC GTGCACAGGTCGCCCCTCACACACGTTGCGAC 2086 GCTGTTGAGCGGGAACCTTGCACC GTGCACAGGTCGCCGCTCACACA	15	2061	ACGAGTCCAACCGCCTCATTGATT	AATCAATGAGGCGGTTGGACTCGT
2064 AATCCTGTGCACCGTGAGACGCG CGCGTCTCACGGGTGCACAGGA 2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGCATATAGG: 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACGGCCATAG 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGTCCACACCCGGTCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTTGAAAAACCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTGAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGCACC 2074 TAGGTTGCAGGATCACCAGTGA TCACTGGTGACTCGCAACC 2075 GTCCCATACGTGGTACCCGGGT ATCCGCTACCACCACACTTCCTGCAACC 2076 TCGGATACTCTCGCGTGCCACCGG CCCGTGGCACCACACTTCTGCAACC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCAACGT 2078 GTTAGGTCACCCGGGCATATCCTA TAGGATATGCCGCGGAACGT 2079 GTTCACCGCGCCTTACTTGGGTT AAACCCAAGTAGAGGCCGTGA 2080 AATCCGCGTCTACTTGGGTT AAACCCAAGTAGAGCCGGGA 35 Q81 GCTACGCCTCTAGGTCATGTGC GACCACCTTTGTAGCGCTAA 2081 AATCCGCGTCTAGGTCACAG TTGGACCCTTAGAGCCCGGAA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCGTTAACCCCTCAGAGGCGTAA 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTTAGCC GGCATAAATATCCGCGTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGAGATATCCCT 2086 GCTGTTGAGCGGGCGAACTTTATCCC GGCATAAAATATCCGCGCTTGCGAC 2087 CCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGAGTTCCCT 2088 GCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGAGAATTCCCT 2088 GCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGAGAATCCCT 2088 GCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCCTTGCGAC 2089 GCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGAGAAAAAAAAAA		2062	GCGAAGAGTTGCTACTCTTCCGCC	GGCGGAAGAGTAGCAACTCTTCGC
2065 AACCTATATGCATCAACGCGAGCC GGCTCGCGTTGATGCATATAGGC 2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACGGCCATAG 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGTCCACAACCCGGTGCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTGTGAAAAGCCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTAGAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC. 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCAGCCCACACTGTGAGTGCACCCCACACTTCCTGCAACCCCCCACACACTCTGCAACCCCCCACACACA		2063	CGTCGGCAACAATCTTTTTCGTGA	TCACGAAAAAGATTGTTGCCGACG
2066 GAACTTGGCAAAACAGCCCGGAAA TTTCCGGGCTGTTTTGCCAAGTT 2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACGGCCATAG 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGTCCACAACCCGGTGCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTTGAAAAGCCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACAGCTGAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC. 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTG 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACCGCGGAT ATCCGCGTACCACACGTATGGG. 2076 TCGGATACTCTCGCGTGCCACAGG CCCGTGGCACGCGAGAGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGAC 2079 GTTCACCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGGACCTAA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA. 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGAA 35 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTCAGAGGCGTA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTTCAGAGGCGGAA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCCCAAGCCGGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAAGAAA 40 2086 GCTGTTGAGCGGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAA		2064	AATCCTGTGCACCCGTGAGACGCG	CGCGTCTCACGGGTGCACAGGATT
2067 CTCTATGGCCGTTTGCCGTCTGCA TGCAGACGGCAAACGGCCATAG 2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGCACACCCGGTGCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTTGAAAAGCCAG 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTGAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC. 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTG 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACCGCGGAT ATCCGCGTACCACACGTATGGG. 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAGAGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGAC 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA. 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTCAGAGGCGGAA 35 CAGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCCGATATTTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCCGGGAAGACCTACACCCTCCAGAGCGCGAAGTATTTCCCT 2084 CCTCGCAAGCCGCGATATTTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCCGGGAAGACCCCGGGAACAACCCTTGACCCGGGCAACAACACCCTTGACCCGGGAAGACCTTAACAGCCGGGAAGACTTAACAG CTGTTAACCAGGCCTTGCGAC 2086 GCTGTTGAGCGGCGAACCTGTGCAC GTGCACAGGCCGCCCCCCCACACACACACACACACACACA		2065	AACCTATATGCATCAACGCGAGCC	GGCTCGCGTTGATGCATATAGGTT
2068 AGTGCACCGGGTTGTGGACACAAT ATTGTGTCCACAACCCGGTGCAC 2069 CCTGGCTTTTCACACGCCAAGAAA TTTCTTGGCGTGTGAAAAGCCAC 2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTGAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTCC 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTG 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGGC 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAAGGTGCCACACGTATGCGCACCT 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTACACCGGCCTCACACGCGTAGCCCACACTTAGCCCCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGACCTACACGCGCTCTACTTGGGTCCACGCGCACCTTCAGACCCCGCGCACCTCACACGCGCACACTCCACACTCCAGAGCCCTACACCCCTCAGAGCCCACATGACCTCCAGAGCCCTACCCCCCCC	20	2066	GAACTTGGCAAAACAGCCCGGAAA	TTTCCGGGCTGTTTTGCCAAGTTC
2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTGAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTG 2074 TAGGTTGCAGGAATGGTGGCCACCGGTGCGTCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACCCGGGT 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCCACCATTCCTGCAACC 2077 CAACGTTCGCCGTGCCACGGG CCCGTGCCACCGCGAGAGTATCC 2078 GTTAGGTCACCCCCAAAT ATTTGGGCTTAGGGGCACCTACCTACCTGCAACCTTCACCCGGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGCCGAACGTT 2079 GTTCACCGGCCCTAAGCCCAAAT ATTTGGGCTTAGACCCGGGTGACCTACCCGGCCTCTACTTGGGTTT AAACCCAAGTAGACGCCGGTGAACCTACCCTCAGAGGCCTCTACTTGGGTCCCCCGGTACCACCTCCAGAGGCCGTAACCCTCCAGAGGCCTACCCCCCGCGCAATGCCCAAAT ATTTGCCCCTTCAGACCCCGGAACGTACCCCCCCGCGCAACCTCACCCTCCAGAGGCCGTAACCCTCCAGAGGCCGTAACCCTCCAGAGGCCGTAACCCTCCAGAGGCCGTAACCCTCCAGAGGCCGTAACCCTCCAGAGGCCGTAACCCTCCAGAGGCCGTAACCCTCCAGAGGCCGTAACCCTCCAGAGGCCTACCCCCCCC		2067	CTCTATGGCCGTTTGCCGTCTGCA	TGCAGACGGCAAACGGCCATAGAG
2070 CACTCAGCGTAGCCTGAAGCCTGG CCAGGCTTCAGGCTACGCTGAG 2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAAT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTG 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGG 2076 TCGGATACTCTCGCGTGCCACGG CCCGTGGCACGCGAGAGGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTACAGACGCGGA 2081 GCTACGCCTCTGGAGGTGACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTTACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAACGGGAA TTCCCTTGACCATGACCGGGAGCACACCTCCAGAGCGCGAACGTCACCCTCCAGAGCGCGAACGTTACCCTCCAGAGCGCGAACGTCACCCTCCAGAGCGCGAACGTCACCCTCCAGAGCGCGAACGTAACCCTTCCCAGACGCGCAACCTTCCCAGACGCGCAACCCTCCAGAGCGCGAACGTTACCCTTCCAGACGCGCAACCCTCCAGAGCGCAACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTCCCAGACCCTTCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTTCCCAGACCCTCCAGACCCTTCCAGACCCTTCCAGACCCTTCCAGACCCTCCAGACCCTTCCAGACCCTTCCAGACCCTTCCAGACCCTTCCAGACCCTTCCAGACCCTTCCAGACCCTTCCAGACCTTCCCTCAGACCCTCCAGACCTTCCCCCGCTTCACAATTTATTATGCC GGCATAAATATCCGCCTTCCAACCCTCCAGACCTTCCCCCGCTTCACAAATATCCCCTCCAGACCAGATACCCTCAGACCAGATCACCTCCAGACCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCTCAACCACACACACACA		2068	AGTGCACCGGGTTGTGGACACAAT	ATTGTGTCCACAACCCGGTGCACT
2071 GAATTATCGACCGCAGCGGTGTCG CGACACCGCTGCGGTCGATAATT 2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTC. 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTGG 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGG. 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAGAGTATCCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA. 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA. 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGCACACACACGGAACGCGCGAACGCCACACACACACACACACACACACACACACACACACACAC		2069	CCTGGCTTTTCACACGCCAAGAAA	TTTCTTGGCGTGTGAAAAGCCAGG
2072 GTGACATCACATGGTGGCCGAGCG CGCTCGGCCACCATGTGATGTCA 2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTG 2074 TAGGTTGCAGGAATGGTGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGGA 30 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAGAGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTAA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGACGCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAACGGGAA TTCCCTTGACCATGACCGGGAGCAACCCTTGCGACGCGCACTTGCGACCGGCACCTTGCGACCGGCACCTTGCGACCGGGCACCTTGCGACCGGTCAACCCTCCGGTCAACCCTTGCACCGGGCACCTTGCGACCGGCACCTTGCGACCGGCACCTTGCGACCGTTGAGCCGGGACCTAACCCTTGCACCGGCACCTTGCGACCGCGCACCTTGCGACCGGCACCTTGCGACCGCGCACCTTGCGACCGGCACCTTGCGACCGGCACCTTGCGACCGGGCACCTTGCGACCGCGCACCTTGCGACCGGCACCTTGCGACCGGGACCTAACCCTTGCACCGGGACCTAACCCTTGCACCACCGGGACCTAACCCTTGCGACCGGGACCTAACCCTTGCGACCGGGACCTAACCCTTGCGACCGCGCACCTTGCGACCGGCACCTTGCGACCGCGCACCTTGCGACCGCGCACCTTGCGACCGCGCTCAACAACCCTTGCACCGGGACCTGTGCACCGGGACCTGCACCCTCAACAACCCTTGCACCGGGACCTGTGCACCGGGACCTGCACCCTCAACAACCCTTGCACCGGGACCTGTGCACCGGGACCTGACCACCGGGACCTGTGCACCGGGACCTGACCACCGGCGACCTCAACACCGGGACCTGTGCACCGGACCTGACCACCGGCACCTCAACACCGGGACCTGTGCACCGGGACCTGACCACCGGCACCTGTGCACCGGCACCTGACCACCGGCACCTCAACACCGGCACCTGTGCACCGGCACCTGACCACCGCGCACCTGTGCACCGGCACCTGTGCACCGGCACCTGACCACCGCGCACCTGACCACCGCGCACCTGTGCACCGCGCACCTGTGCACCGCGCACCTGACCACCGCGCACCTGTGCACCGCGCACCTGTGCACCGCGCACCTGACCACCGCGCACCTGTGCACCGCGCACCTGTGCACCGCGCACCTGACCACCCTCAACACCCTCACACCCTCAACACCCTCAACACCTCACCAC		2070	CACTCAGCGTAGCCTGAAGCCTGG	CCAGGCTTCAGGCTACGCTGAGTG
2073 AGCACCTTGCCGAGTCACCAGTGA TCACTGGTGACTCGGCAAGGTG 2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGG 30 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAGAGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGGAGCACACCTCCAGAGGCGTCACCCTCCAGAGGCGTCACCCTCCAGAGGCGCACTTTCCCTTCCGACGGCACCTCCCAGAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGACCCTCCAGAGGCGCACCTTGCGACCCTCCAGAGCGCGCACCTTGCGACCCTCCAGAGCGCCGCTCAACACCCTCCAGAGCGCCGCCCCCCCC	25	2071	GAATTATCGACCGCAGCGGTGTCG	CGACACCGCTGCGGTCGATAATTC
2074 TAGGTTGCAGGAATGGTGGGCACC GGTGCCCACCATTCCTGCAACC 2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGG, 30 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAGAGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA, 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGGAGAA 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC		2072	GTGACATCACATGGTGGCCGAGCG	CGCTCGGCCACCATGTGATGTCAC
2075 GTCCCATACGTGTGGTACGCGGAT ATCCGCGTACCACACGTATGGG, 2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAGAGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGCAACCCTGGACGCGAACCCTCCGGTCATGGTCAACGGGAACCCTTGGACCGGGAGCAACCCTGGACGCGAACCCTGGACGGAACCCTGGACGGAACCCTGGACGGAACCCTGGACGGAACCCTGGACGGAACCCTGGACGGAACCCTGGACGAACCCTGGACGGAACCCTGGACGAACCCTGGACGAACCCTGGACCGGGAACCCTGGACCAACACACAC		2073	AGCACCTTGCCGAGTCACCAGTGA	TCACTGGTGACTCGGCAAGGTGCT
2076 TCGGATACTCTCGCGTGCCACGGG CCCGTGGCACGCGAGAGTATCC 2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGG 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC		2074	TAGGTTGCAGGAATGGTGGGCACC	GGTGCCCACCATTCCTGCAACCTA
2077 CAACGTTCGCCCCTAAGCCCAAAT ATTTGGGCTTAGGGGCGAACGT 2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGG 40 2086 GCTGTTGAGCGGCGACCTGTGCAC		2075	GTCCCATACGTGTGGTACGCGGAT	ATCCGCGTACCACACGTATGGGAC
2078 GTTAGGTCACCGCGGCATATCCTA TAGGATATGCCGCGGTGACCTA/ 2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 35 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGC 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC	30	2076	TCGGATACTCTCGCGTGCCACGGG	CCCGTGGCACGCGAGAGTATCCGA
2079 GTTCACCGGCCTCTACTTGGGTTT AAACCCAAGTAGAGGCCGGTGA. 2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGAA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGGAGCTAACCCT 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC		2077	CAACGTTCGCCCCTAAGCCCAAAT	ATTTGGGCTTAGGGGCGAACGTTG
2080 AATCCGCGTCTAGGTCATGTGGTC GACCACATGACCTAGACGCGGA 2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGC 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC		2078	GTTAGGTCACCGCGGCATATCCTA	TAGGATATGCCGCGGTGACCTAAC
2081 GCTACGCCTCTGGAGGTGGTACCC GGGTACCACCTCCAGAGGCGTA 2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGC 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC		2079	GTTCACCGGCCTCTACTTGGGTTT	AAACCCAAGTAGAGGCCGGTGAAC
2082 CAGGGAATGCTACAAAGGGTCCAA TTGGACCCTTTGTAGCATTCCCT 2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGC 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC		2080	AATCCGCGTCTAGGTCATGTGGTC	GACCACATGACCTAGACGCGGATT
2083 AAGGGTTAGCTGCCCGGTTAACAG CTGTTAACCGGGCAGCTAACCCT 2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGC 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAC	35	2081	GCTACGCCTCTGGAGGTGGTACCC	GGGTACCACCTCCAGAGGCGTAGC
2084 CCTCGCAAGCGCGATATTTATGCC GGCATAAATATCGCGCTTGCGAC 2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGG 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAG		2082	CAGGGAATGCTACAAAGGGTCCAA	TTGGACCCTTTGTAGCATTCCCTG
2085 GCCTCCCGGTCATGGTCAAGGGAA TTCCCTTGACCATGACCGGGAGG 40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACAG		2083	AAGGGTTAGCTGCCCGGTTAACAG	CTGTTAACCGGGCAGCTAACCCTT
40 2086 GCTGTTGAGCGGCGACCTGTGCAC GTGCACAGGTCGCCGCTCAACA		2084	CCTCGCAAGCGCGATATTTATGCC	GGCATAAATATCGCGCTTGCGAGG
		2085	GCCTCCCGGTCATGGTCAAGGGAA	TTCCCTTGACCATGACCGGGAGGC
2087 CGCTGACTTAGCTCTGATGTGCCG CGGCACATCAGAGCTAAGTCAGC	40	2086	GCTGTTGAGCGGCGACCTGTGCAC	GTGCACAGGTCGCCGCTCAACAGC
100000000000000000000000000000000000000		2087	CGCTGACTTAGCTCTGATGTGCCG	CGGCACATCAGAGCTAAGTCAGCG

	2088	TTCATGGCATTCATCACGAAGGAA	TTCCTTCGTGATGAATGCCATGAA
	2089	TAGTGTTATGCCCGCGTGTGAATG	CATTCACACGCGGGCATAACACTA
	2090	CATGTAAGGGCACGGTCGTGGGCA	
	2090		TGCCCACGACCGTGCCCTTACATG
E		CAGGAAGCTCGCTCCGTGATGCAC	GTGCATCACGGAGCGAGCTTCCTG
5	2092	CCTGCTGATAGCAACCTCACTGCA	TGCAGTGAGGTTGCTATCAGCAGG
	2093	ACTACGAGGGGCAGGGTCTAGGCG	CGCCTAGACCCTGCCCCTCGTAGT
	2094	CATAATGTGGGTGCTGACGCCGAT	ATCGGCGTCAGCACCCACATTATG
	2095	TAGCGAATCCACACAGAGCCGCTC	GAGCGGCTCTGTGTGGATTCGCTA
	2096	TCGCGAAATCCCTAAATCCTGTGC	GCACAGGATTTAGGGATTTCGCGA
10	2097	TGGCACGAATCAAGCCACCAACTC	GAGTTGGTGGCTTGATTCGTGCCA
	2098	GCGGACCGTCTTTGCTATCTGACG	CGTCAGATAGCAAAGACGGTCCGC
	2099	AGGCCCCGCCTTGTAATTGGTCAT	ATGACCAATTACAAGGCGGGGCCT
	2100	CTGGTCCCATACGCCGCTGACTAG	CTAGTCAGCGGCGTATGGGACCAG
	2101	TGCTAACTGCGGCCCTACAGAGTC	GACTCTGTAGGGCCGCAGTTAGCA
15	2102	TGGTTTTATGTTCGGTAGCGTCCG	CGGACGCTACCGAACATAAAACCA
	2103	AGCTCAAACTTCTCCCACGGGATG	CATCCCGTGGGAGAAGTTTGAGCT
	2104	CGCGAAGATAGTGAAATCCGCATC	GATGCGGATTTCACTATCTTCGCG
	2105	GAGTGAAACCTCTCGCGGGTTGCA	TGCAACCCGCGAGAGGTTTCACTC
	2106	TCGAATGCTCTGCAGTGACGTCAA	TTGACGTCACTGCAGAGCATTCGA
20	2107	AGGTGGCAATGATCGACGACCCTG	CAGGGTCGTCGATCATTGCCACCT
	2108	GTCCGGAGCCGTGCAAAGCAATAA	TTATTGCTTTGCACGGCTCCGGAC
	2109	CTTTTGGGGATTAGAGGCCGACAA	TTGTCGGCCTCTAATCCCCAAAAG
	2110	GGCATAAAGGCTTCCGTTCCTGTC	GACAGGAACGGAAGCCTTTATGCC
	2111	GCGGACCGTAAAGCGGGCAGATAG	CTATCTGCCCGCTTTACGGTCCGC
25	2112	TTTCAAGAGTGCATCGAATCCACG	CGTGGATTCGATGCACTCTTGAAA
	2113	CCGGCATCCCTTCTCGCTGTTGCC	GGCAACAGCGAGAAGGGATGCCGG
	2114	ACACAGAGACGCGAACGGAGTGCA	TGCACTCCGTTCGCGTCTCTGTGT
	2115	AGCGGCATTCTCCCACTCGTTACT	AGTAACGAGTGGGAGAATGCCGCT
	2116	GGAGCGTACTGCGCCTCGCAAGTC	GACTTGCGAGGCGCAGTACGCTCC
30	2117	AAACCCGAATGACACGGCAGATAA	TTATCTGCCGTGTCATTCGGGTTT
	2118	AACCAGCGGATCGATAAAACGACA	TGTCGTTTTATCGATCCGCTGGTT
	2119	GGTGTCCACCCGTTAACGCCGGTA	TACCGGCGTTAACGGGTGGACACC
	2120	AGCGCGACGTGGCTTGCCGTTAAA	TTTAACGGCAAGCCACGTCGCGCT
	2121	TCCCACGCTATAGGTCCAACGAC	GTCGTTGGACCTATAGCCGTGGGA
35	2122	ATCAACGAACGATGCCGTTAGGTG	CACCTAACGGCATCGTTCGTTGAT
	2123	GAGGCTAAGCCGTATGGCCGAGGC	GCCTCGGCCATACGGCTTAGCCTC
	2124	ACGGTCCGAAATGGTTAGAGGCAC	GTGCCTCTAACCATTTCGGACCGT
	2125	ACGCAAACCATTCCTCGAGTAGGC	GCCTACTCGAGGAATGGTTTGCGT
	2126	TTACACGCTCGCTATTGGGCCATA	TATGGCCCAATAGCGAGCGTGTAA
40	2127	CTCGGCACGGGTTTAGAACGCCGG	CCGCCTTCTAAACCCGTGCCGAG
=	2128	ATTCGGTAAGGTATCGGGCTAGCG	CGCTAGCCCGATACCTTACCGAAT
	2120	IN 1000 IMOUTH 10000CIAGCO	CCCIAGOCCATACCTIACCGAAT

	2129	AGCACACCGTTATACATGACGGCG	CGCCGTCATGTATAACGGTGTGCT
	2130	AGTCCCTGCCGTTCGCTCATGGAA	TTCCATGAGCGAACGGCAGGGACT
	2131	GGGCTTATGACCAGTCAGGTTGGA	TCCAACCTGACTGGTCATAAGCCC
	2132	GGTCACCACACGAGTGCCTGGTCT	AGACCAGGCACTCGTGTGGTGACC
5	2133	TTGATCGTGTCTCCCGAAACCCTC	GAGGGTTTCGGGAGACACGATCAA
	2134	ATTGTCGCGATCGGCATTTCTTAA	TTAAGAAATGCCGATCGCGACAAT
	2135	GGGTCCAACGACTTCTCGCTGCTG	CAGCAGCGAGAAGTCGTTGGACCC
	2136	CAAATTCCTTGGGGGCCATAGTGG	CCACTATGGCCCCCAAGGAATTTG
	2137	CCAGAGTATCCGCCGTTAGACGGT	ACCGTCTAACGGCGGATACTCTGG
10	2138	TCCTGCAGATCATCTCGTGTCTGG	CCAGACACGAGATGATCTGCAGGA
	2139	TGCGGGAGATTTGAACAAGCTGTA	TACAGCTTGTTCAAATCTCCCGCA
	2140	TTAGACGCCGAGCTAGGCAACGTC	GACGTTGCCTAGCTCGGCGTCTAA
	2141	TTTCGGCAGAATCTCCGATTCAAC	GTTGAATCGGAGATTCTGCCGAAA
	2142	TGGCGAGCAGACCTACAAGACAGA	TCTGTCTTGTAGGTCTGCTCGCCA
15	2143	GGCGACAGACCGGTACATCGGCCA	TGGCCGATGTACCGGTCTGTCGCC
	2144	TCTAGACCTGCGTTTCGTGGGACC	GGTCCCACGAAACGCAGGTCTAGA
	2145	GCCGAGCGTGGTACCATACGTTCA	TGAACGTATGGTACCACGCTCGGC
	2146	TAATCACACCCGCTTTCTGTGGCT	AGCCACAGAAAGCGGGTGTGATTA
	2147	GGCCGGAGCCATTGGACACTTCTT	AAGAAGTGTCCAATGGCTCCGGCC
20	2148	CCTGTAGACCTGCATGGATCGCTG	CAGCGATCCATGCAGGTCTACAGG
	2149	ATCGCCGTTCCCGCAAAATAAGCA	TGCTTATTTTGCGGGAACGGCGAT
	2150	TGGATCAACGGGGTAGTGAAAACG	CGTTTTCACTACCCCGTTGATCCA
	2151	AAGCGACGATGCTTTCTTGAGCTG	CAGCTCAAGAAAGCATCGTCGCTT
	2152	CACGGGCACGTGTTCTACGCTTGC	GCAAGCGTAGAACACGTGCCCGTG
25	2153	ACGGGCTGGGACAAGAGCTAGAAA	TTTCTAGCTCTTGTCCCAGCCCGT
	2154	GGTAACTGGCTCCGCTCTCACATC	GATGTGAGAGCGGAGCCAGTTACC
	2155	ACTCTGGCTGTTGGCGAACGTGAC	GTCACGTTCGCCAACAGCCAGAGT
	2156	GACCGAGGACCAGTCCTTGCTCTC	GAGAGCAAGGACTGGTCCTCGGTC
	2157	AGTAGCTCTTGCGGCCTAACGGCA	TGCCGTTAGGCCGCAAGAGCTACT
30	2158	TTCTTGTCCTGGGGGAGAGCAGTG	CACTGCTCTCCCCAGGACAAGAA
	2159	TTAGCAGGGAGGTTGTCGGCTCAT	ATGAGCCGACAACCTCCCTGCTAA
	2160	AGAACGTGGATTGTACGCTCCGCC	GGCGGAGCGTACAATCCACGTTCT
	2161	CTTCACAGCCTGGAGCCACCAATG	CATTGGTGGCTCCAGGCTGTGAAG
	2162	GAGATCGATGAAACGCACCAGCGG	CCGCTGGTGCGTTTCATCGATCTC
35	2163 ·	GGGTCCAGAGTTGGTGTGGGATAA	TTATCCCACACCAACTCTGGACCC
	2164	CCGTCCACCCCAGATAGGAATCAC	GTGATTCCTATCTGGGGTGGACGG
•••	2165	TGCCTCGCTTCTGTGAATCTACGA	TCGTAGATTCACAGAAGCGAGGCA
	2166	GATCACAGCGTCCGCGCATAACGG	CCGTTATGCGCGGACGCTGTGATC
	2167	ATGACGCCTTACATGACGCACCTT	AAGGTGCGTCATGTAAGGCGTCAT
40	2168	GCGTGGAATAACGCCCTTAGTTCA	TGAACTAAGGGCGTTATTCCACGC
	2169	GGTCTACCATTTCTCGCCCGACCG	CGGTCGGCCGAGAAATGGTAGACC

	2170	ACACCTCTCTGGCGTAGACGCTCA	TGAGCGTCTACGCCAGAGAGGTGT
	2171	GTAGAGGTGCTCAGGACTCGTCGC	GCGACGAGTCCTGAGCACCTCTAC
	2172	GTAAGCAGGAGGCGAAGGCGCGAA	TTCGCGCCTTCGCCTCCTGCTTAC
	2173	TCTAAGGGCCGTTTCAATCGACCT	AGGTCGATTGAAACGGCCCTTAGA
5	2174	AACCTGATTTCAGGGTCAGCCCGA	TCGGGCTGACCCTGAAATCAGGTT
	2175	GTCACGCGATTGGCCCACCTATTA	TAATAGGTGGGCCAATCGCGTGAC
	2176	ACGATGCCGCGCATGTAACCTAGT	ACTAGGTTACATGCGCGGCATCGT
	2177	TGAGAGATGTCTCGTCAACGCCTG	CAGGCGTTGACGAGACATCTCTCA
	2178	GCATATCTCGCGGTGACAGACGAA	TTCGTCTGTCACCGCGAGATATGC
10	2179	GACCCAACGTCGAAATTGTGCGAT	ATCGCACAATTTCGACGTTGGGTC
	2180	TGAAAATCGGGGCATCTAGTTTGG	CCAAACTAGATGCCCCGATTTTCA
	2181	CCGCGAAAAGGATTTGTGTACGCA	TGCGTACACAAATCCTTTTCGCGG
	2182	CATTCCATTTATCCGCAGTTCGCT	AGCGAACTGCGGATAAATGGAATG
	2183	CCTGTCTGTCGAGCCAGCGTCTAT	ATAGACGCTGGCTCGACAGACAGG
15	2184	TCAGCGCGGCTAAACAAGTTATGC	GCATAACTTGTTTAGCCGCGCTGA
	2185	ACGCCTACGAACGACCCAAGAGAG	CTCTCTTGGGTCGTTCGTAGGCGT
	2186	TGCGCATCTACCATTGTGTGGATC	GATCCACACAATGGTAGATGCGCA
	2187	AAGTCCGCGCTCGCTCCTGTAATA	TATTACAGGAGCGAGCGCGGACTT
	2188	GCTGGGTCATTGCTCGAGTAACCA	TGGTTACTCGAGCAATGACCCAGC
20	2189	TGGAGCGTTCTGGCAATGACCGAC	GTCGGTCATTGCCAGAACGCTCCA
	2190	CAAGTCAATTCTTGGCCAATTCGG	CCGAATTGGCCAAGAATTGACTTG
	2191	CGTTCATGCAAGGATCCCAGGTTA	TAACCTGGGATCCTTGCATGAACG
	2192	ATGCCAATAGAAGCTGGGGATGCT	AGCATCCCCAGCTTCTATTGGCAT
•	2193	CCTAACTCTCCCTTGAGGCCGTTC	GAACGGCCTCAAGGGAGAGTTAGG
25	2194	ATCTCGGCGAAGGTTCCAAACATT	AATGTTTGGAACCTTCGCCGAGAT
	2195	GCGACAGATTACGCTGCGGTTTTC	GAAAACCGCAGCGTAATCTGTCGC
	2196	AAGCCCAGACGGCCAACACGTTAC	GTAACGTGTTGGCCGTCTGGGCTT
	2197	TCAAGTTCAAATCACATCCCGTGG	CCACGGGATGTGATTTGAACTTGA
	2198	GATTGTCGTTCTGTCTGAGGCG	CGCCTCACAGACAGAACGACAATC
30	2199	ACCGAACTATGTTCCGGCATGGCA	TGCCATGCCGGAACATAGTTCGGT
	2200	CGTCATCGGGTGTGCAATGCCGTT	AACGGCATTGCACACCCGATGACG
	2201	CGGACGGAGTCACGTTTGTGCACT	AGTGCACAAACGTGACTCCGTCCG
	2202	TAAACAAGTCGTGTGCCTTTGCCG	CGGCAAAGGCACACGACTTGTTTA
	2203	TAATTACTGGCCTGTGGAGCAGGC	GCCTGCTCCACAGGCCAGTAATTA
35	2204	GGAGCGGCCCGAATGGTGCTCTTA	TAAGAGCACCATTCGGGCCGCTCC
-	2205	ACTAAGCAAGGCTTGGATGTGCGT	ACGCACATCCAAGCCTTGCTTAGT
	2206	GGCAGCTCAGCGGCAGTACGCTAC	GTAGCGTACTGCCGCTGAGCTGCC
	2207	GCGAGGCGAATTATCCGCGGATTT	AAATCCGCGGATAATTCGCCTCGC
	2208	CATACGACACCTTGGGGTGCTA	TAGCACCCCAAGGTGTGTCGTATG
40	2209	TGCTTGGGCTTTAAACCCCGTTTT	AAAACGGGGTTTAAAGCCCAAGCA
	2210	CCGGTTGGAAAACGCAAATATCGG	CCGATATTTGCGTTTTCCAACCGG

	2211	AAACTAGCTAGCCGCACCCGCAAG	CTTGCGGGTGCGGCTAGCTAGTTT
	2212	GTTGTTCCACCAGTGATCACGCAG	CTGCGTGATCACTGGTGGAACAAC
	2213	GCCGCTGACAAGATGATCATCGTT	AACGATGATCATCTTGTCAGCGGC
	2214	CTTTCATAAAGCCAACCGATGCCC	GGGCATCGGTTGGCTTTATGAAAG
5	2215	CTGACTGCATCTCGAAAGCGGGTG	CACCCGCTTTCGAGATGCAGTCAG
	2216	ATTTCTTCGGAGAATCGGCCACGT	ACGTGGCCGATTCTCCGAAGAAAT
	2217	CATTTCGGGCCCTAGCTACTGCGC	GCGCAGTAGCTAGGGCCCGAAATG
	2218	CCGATCCGCACATCCGTATCCTG	CAGGATACGGATGTGCGGGATCGG
	2219	TATCACCGGGAGCGTCTTATCGTG	CACGATAAGACGCTCCCGGTGATA
10	2220	TAGGGCTCGTGCACCGATTAGAGG	CCTCTAATCGGTGCACGAGCCCTA
	2221	GCGTGGCACTCGCTTGTCTAGGTA	TACCTAGACAAGCGAGTGCCACGC
•	2222	CTCAACGAACTCAAGGGCCGCTAC	GTAGCGGCCCTTGAGTTCGTTGAG
	2223	AGCCTGGTATCGACCAATCCTGCA	TGCAGGATTGGTCGATACCAGGCT
	2224	TACGCGTTCTAGTTGGCCGGATCC	GGATCCGGCCAACTAGAACGCGTA
15	2225	TTTATGGGTTTGTGCCTGATGGGT	ACCCATCAGGCACAAACCCATAAA
	2226	GGGACCCCTAGCAACGTCACCTTA	TAAGGTGACGTTGCTAGGGGTCCC
	2227	CTGCCTCCCAGGAGTCATTGGAT	ATCCAATGACTCCTGGGGAGGCAG
	2228	AACCCCGCAAGACCAGTACCAATC	GATTGGTACTGGTCTTGCGGGGTT
	2229	GGTCACATACGCGCTAAAAAGCGC	GCGCTTTTTAGCGCGTATGTGACC
20	2230	AAATGGCTCCGACCAGTTAGGGAC	GTCCCTAACTGGTCGGAGCCATTT
	2231	AACGCGGCACGCTTAAAGGTGCAT	ATGCACCTTTAAGCGTGCCGCGTT
	2232	GATCGCACGCCGATTAACCTTACA	TGTAAGGTTAATCGGCGTGCGATC
	2233	CCTCCTGATTGGGAGTGCGGAATT	AATTCCGCACTCCCAATCAGGAGG
	2234	CGGAGGGTAATAGGCTCCTCTGCG	CGCAGAGGAGCCTATTACCCTCCG
25	2235	ACAAGAACTGGACATTACCGCGGG	CCCGCGGTAATGTCCAGTTCTTGT
	2236	TGTCGTCTTAAAGGCCTTTGTGCG	CGCACAAAGGCCTTTAAGACGACA
	2237	GGTGACCATGTGGCGTTTTAGCTT	AAGCTAAAACGCCACATGGTCACC
	2238	CACGGTTGCGCACGGTACCAGAAC	GTTCTGGTACCGTGCGCAACCGTG
	2239	CCTTTATTGTTTGGTCCCCTGCCC	GGGCAGGGGACCAAACAATAAAGG
30	2240	GTGCGCCTGCATTCTACCGTCAAT	ATTGACGGTAGAATGCAGGCGCAC
	2241	GTTTACGTTGATGGCTTGCCGCCG	CGGCGGCAAGCCATCAACGTAAAC
	2242	CCGTCGGTGGTAGGACGTGAATGT	ACATTCACGTCCTACCACCGACGG
	2243	TGATCGCCCCAGAATCCCTGTGCT	AGCACAGGGATTCTGGGGCGATCA
	. 2244	AAGCAGCCAAAAATCGGTTGCTTT	AAAGCAACCGATTTTTGGCTGCTT
35	2245	CGACGGGACTTAGTAGCAGGGCCT	AGGCCCTGCTACTAAGTCCCGTCG
	2246	CCGATTCGCGAAACGACCAAGTAG	CTACTTGGTCGTTTCGCGAATCGG
	2247	CCACCCAACTCCAATCTTTCTCA	TGAGAAAGATTGGAGTTGGGGTGG
	2248	GTGCAGTAGACGACTACCGGCGTC	GACGCCGGTAGTCGTCTACTGCAC
	2249	TTCGCCCATCGTATCAAGCAATTC	GAATTGCTTGATACGATGGGCGAA
40	2250	GAATCGCGACTACCCGTCGGGTCA	TGACCCGACGGGTAGTCGCGATTC
	2251	CCAGCACTCGCCATCGGTTATAAT	ATTATAACCGATGGCGAGTGCTGG

L	2252	CGAACCGTAGAACTCCGGTCGGTG	CACCGACCGGAGTTCTACGGTTCG
	2253	GCACCATGACAGAGCCCCAGGATG	CATCCTGGGGCTCTGTCATGGTGC
	2254	TGGGCTACCGCAGAATAAGGGTGA	TCACCCTTATTCTGCGGTAGCCCA
	2255	TGGCCTGTCGTGTCGAAGGAAACA	TGTTTCCTTCGACACGACAGGCCA
· 5	2256	GCCTCACCGATAGCGAGCGTTTGC	GCAAACGCTCGCTATCGGTGAGGC
	2257	GTGCGCCCGGCTAAAACGAGACA	TGTCTCGTTTTAGCCGGCGCGCAC
	2258	CCGCAGACGAGTTTCTTGTGACAG	CTGTCACAAGAAACTCGTCTGCGG
	2259	GTTCGCAATCGCGTGCTAGGAAGC	GCTTCCTAGCACGCGATTGCGAAC
	2260	TGTTGTACACATGCATCCGGTGAA	TTCACCGGATGCATGTGTACAACA
10	2261	CACTGAACACGATATAAGGGCGCG	CGCGCCCTTATATCGTGTTCAGTG
	2262	CGCGATGGTTCTTAGCAAGACGAT	ATCGTCTTGCTAAGAACCATCGCG
Ĺ	2263	TACACCAAGGAAGAAATGGGGACG	CGTCCCCATTTCTTCCTTGGTGTA
	2264	CGTGCCTTGCGTTTTAGGTGCAGC	GCTGCACCTAAAACGCAAGGCACG
	2265	GTCGTTTGTCTGGGCATTAACGGC	GCCGTTAATGCCCAGACAAACGAC
15	2266	CAGGCTCTCGTTCGGTACAAACGT	ACGTTTGTACCGAACGAGAGCCTG
	2267	CGGACACTGTTTCACCAGAACCCA	TGGGTTCTGGTGAAACAGTGTCCG
	2268	TACCCATGATGCGGAAGAAGCGTA	TACGCTTCTTCCGCATCATGGGTA
	2269	CTGTCCTTAAGCGGATGAGAACCG	CGGTTCTCATCCGCTTAAGGACAG
	2270	CGGGAGATGAGAACGGTTTTGTGC	GCACAAAACCGTTCTCATCTCCCG
20	2271	TAGATCGCGACTGTACTCAGGCCG	CGGCCTGAGTACAGTCGCGATCTA
	2272	TAAAACAGTTCGCGCGACTGTCGT	ACGACAGTCGCGCGAACTGTTTTA
	2273	CGAGGAGCTCCACATAAGCCCAAT	ATTGGGCTTATGTGGAGCTCCTCG
	2274	TGGCTAGGGATGGGGAATCATCTT	AAGATGATTCCCCATCCCTAGCCA
	2275	AGGATTGGGTGCCTGGATGCATTG	CAATGCATCCAGGCACCCAATCCT
25	2276	TGTATCTACCGGCCTGAAGCAGGT	ACCTGCTTCAGGCCGGTAGATACA
1	2277	TCCCTACGCGCATGACTCGCTTAC	GTAAGCGAGTCATGCGCGTAGGGA
1	2278	TGGTCGATCACCTGTGACAGACGC	GCGTCTGTCACAGGTGATCGACCA
	2279	TGGGGTAGTCCATGCATCAATTG	CAATTGATGCATGGACTACCCCCA
!	2280	CCCTGCCAGGATTACTATTCCGGA	TCCGGAATAGTAATCCTGGCAGGG
30	2281	TCCCGCACGGGGAATTTAAGTAGA	TCTACTTAAATTCCCCGTGCGGGA
-	2282	GTGATGTGCAGGAACTTCTGTCGC	GCGACAGAAGTTCCTGCACATCAC
].	2283	ATTTAGGCATGCATGCGCTTCTCA	TGAGAAGCGCATGCATGCCTAAAT
	2284	TTCGGCGCTAGTGGACGCCGTCAA	TTGACGCCGTCCACTAGCGCCGAA
	2285	GAGCTTCATCTCATCAGTTCCGCG	CGCGGAACTGATGAGATGAAGCTC
35	2286	GACAACTCCACTGCTCCAATCGCA	TGCGATTGGAGCAGTGGAGTTGTC
	2287	GGCCAAGGATGGACCTTACGATGG	CCATCGTAAGGTCCATCCTTGGCC
	2288	GGTTCCGGAATTTGTCACCGCTTC	GAAGCGGTGACAAATTCCGGAACC
<u> </u>	2289 .	GCGCTGGATAGTCTGCGAGAAGCC	GGCTTCTCGCAGACTATCCAGCGC
	2290	TGAGTCCAGTGCTGCCACCATGAA	TTCATGGTGGCAGCACTGGACTCA
40	2291	TTGAATTGGGTGTCGGAGCGTTCT	AGAACGCTCCGACACCCAATTCAA
L	2292	CGGCGGCAGACAATGCTTTGAAC	GTTCAAAGCATTGTCTGCCCGCCG

{	2293	GGGTCTGTCAAAGAGGGTGTCTGG	CCAGACACCCTCTTTGACAGACCC
	2294	CTTTGTGCAAGACGAAGCACCCTT	AAGGGTGCTTCGTCTTGCACAAAG
ļ	2295	ATCGAATTCCGAGGAGGTCTCCAT	ATGGAGACCTCCTCGGAATTCGAT
	2296	TCCGACCCTCAGAGTCGACTCATT	AATGAGTCGACTCTGAGGGTCGGA
5	2297	ATCAACGGCCACCTCCTCGCCGAG	CTCGGCGAGGAGGTGGCCGTTGAT
	2298	AGCCACGGAATAATTCCGTCCACC	GGTGGACGGAATTATTCCGTGGCT
	2299	GATCGCTTGCGTATCGCAAAGACT	AGTCTTTGCGATACGCAAGCGATC
	2300	TCCACGCCTTACCATCAACTGCAA	TTGCAGTTGATGGTAAGGCGTGGA
	2301	GCCAAGCGATAGGCCAGAACTCAG	CTGAGTTCTGGCCTATCGCTTGGC
0	2302	AGCGTGTGGGTCATTTTAGCACGA	TCGTGCTAAAATGACCCACACGCT
	2303	GTTATGCGCGGCTTACGAGTTCGA	TCGAACTCGTAAGCCGCGCATAAC
	2304	TCTGTCCACGTAACTTGCCTGCAG	CTGCAGGCAAGTTACGTGGACAGA
	2305	TCGGCAGCCAATGATCATACCTCT	AGAGGTATGATCATTGGCTGCCGA
	2306	TAAGCCCGATCCGGTCCTGTGTTT	AAACACAGGACCGGATCGGGCTTA
5	2307	ACATGGCAGACTAACAGGCCTCGC	GCGAGGCCTGTTAGTCTGCCATGT
	2308	CATGGCTGCACTCTAAGTCGAACG	CGTTCGACTTAGAGTGCAGCCATG
	2309	TCTTCAACCCACGCGGAACGATTG	CAATCGTTCCGCGTGGGTTGAAGA
	2310	CTCGTGTCTCCAGAGGATTGTCCC	GGGACAATCCTCTGGAGACACGAG
	2311	TGAAGGCATCAACCCAGAGGATTT	AAATCCTCTGGGTTGATGCCTTCA
<u>20</u>	2312	ACAGCTCGAAGGCAGCCACATTGG	CCAATGTGGCTGCCTTCGAGCTGT
	2313	ACAACGAGTACCGCGACAGAAGGG	CCCTTCTGTCGCGGTACTCGTTGT
	2314	ATAACCGAAAAACCAGCCTGCGAT	ATCGCAGGCTGGTTTTTCGGTTAT
	2315	ACAACTCAGCACTTTCGACGTCCA	TGGACGTCGAAAGTGCTGAGTTGT
	2316	CGGGTTACTGGGTATCACCAATGC	GCATTGGTGATACCCAGTAACCCG
25	2317	CATCGGTTATCGCTGCACGCGCGT	ACGCGCGTGCAGCGATAACCGATG
	2318	GAAGGAATCCCGGATAGTCCGTGG	CCACGGACTATCCGGGATTCCTTC
	2319	GCATGGTCTCAGCCAAAGAACCTG	CAGGTTCTTTGGCTGAGACCATGC
	2320	AGCCTGCGACGTTTCCCGACAGAC	GTCTGTCGGGAAACGTCGCAGGCT
	2321	AAGAAAGGCGCACGGGATCGATAT	ATATCGATCCCGTGCGCCTTTCTT
30	2322	TGTCGCGAAGCCAACTTTCAGTAA	TTACTGAAAGTTGGCTTCGCGACA
	2323	GCGGCATGCAAGGTAGGTCTGGAT	ATCCAGACCTACCTTGCATGCCGC
	2324	GGTGGCCATCTCCTCGAATTGCAT	ATGCAATTCGAGGAGATGGCCACC
	2325	GCGTGCATAAGTTGCACATTGTGC	GCACAATGTGCAACTTATGCACGC
	2326	TTGAGGTAGCGTTTTCGCGCATAT	ATATGCGCGAAAACGCTACCTCAA
35	2327	ATCCCACTTGTGAGAGGGCGCATT	AATGCGCCCTCTCACAAGTGGGAT
	2328	CGGTCAGCGAGCAGACATCAACCT	AGGTTGATGTCTGCTCGCTGACCG
	2329	GCGTATCTTCGGGTCGAACACTTG	CAAGTGTTCGACCCGAAGATACGC
	2330	ATGCCATTGAACTCGCACTTTGCG	CGCAAAGTGCGAGTTCAATGGCAT
	2331	CGATTCCCATCATAATGTGGGTCC	GGACCCACATTATGATGGGAATCG
40	2332	CAATTTGGATAATCCAGCCACGCC	GGCGTGGCTGGATTATCCAAATTG
	2333	CGGCTTACCCTATGATTCCGTGCA	TGCACGGAATCATAGGGTAAGCCG

	2334	GGTGGACCATGCGCTGTGGTATGA	TCATACCACAGCGCATGGTCCACC
	2335	TATTTGTCGAAGATCGCAAGCGCC	GGCGCTTGCGATCTTCGACAAATA
	2336	GTCAGTGGGTTTTGAGAGCCCGCA	TGCGGGCTCTCAAAACCCACTGAC
	2337	AGGGGTCGGGAAATCTGACAAAA	TTTTGTCAGATTTCCCGACCCCCT
5	2338	TGCTTGCTATCCGAAAAAAGCAGG	CCTGCTTTTTCGGATAGCAAGCA
	2339	TTATCGGATCAAATTCGGCTTCGG	CCGAAGCCGAATTTGATCCGATAA
	2340	TGCAGCAACGAGTTACCCGGACTT	AAGTCCGGGTAACTCGTTGCTGCA
	2341	TATACATGTCCGGAGGGGCACCCA	TGGGTGCCCCTCCGGACATGTATA
	2342	TGCAAAACCGGAGGATGAACCCTT	AAGGGTTCATCCTCCGGTTTTGCA
10	2343	TCGGTCTAATGTCCACGCAGACAC	GTGTCTGCGTGGACATTAGACCGA
	2344	ATGTGTTTGCCACGCGCTCCTATT	AATAGGAGCGCGTGGCAAACACAT
	2345	TGGCGAGGCACGGCTCTAATTCGG	CCGAATTAGAGCCGTGCCTCGCCA
	2346	GCGACGACCGAGCGACTTTTACA	TGTAAAAGTCGCTCGGGTCGTCGC
	2347	CTCAGAGAGTCTATCCGGCGCCCT	AGGGCGCCGGATAGACTCTCTGAG
15	2348	GGAACATCTCCTGGGTCCCTCAGA	TCTGAGGGACCCAGGAGATGTTCC
	2349	GCAACGCAGGGAAGTACTTAGCGA	TCGCTAAGTACTTCCCTGCGTTGC
	2350	TGACTTGGGCGGACAAAGAAACGC	GCGTTTCTTTGTCCGCCCAAGTCA
	2351	AGATCATCGGGACGCTTCATGCTA	TAGCATGAAGCGTCCCGATGATCT
	2352	CCCTTCTGACCGCTAAGGCCATAA	TTATGGCCTTAGCGGTCAGAAGGG
20	2353	CGTGAGCCGTGGGGTGTCTCTGTA	TACAGAGACACCCCACGGCTCACG
	2354	TACCTTGGTCGTCTCCGCTTTTGT	ACAAAAGCGGAGACGACCAAGGTA
	2355	TCGCCGCAAAATGCTACGTGAAAA	TTTTCACGTAGCATTTTGCGGCGA
	2356	GAGTGACCTAATGGCTGCCCGACT	AGTCGGGCAGCCATTAGGTCACTC
	2357	AAAGGAACTTGGCCAACCCTATGG	CCATAGGGTTGGCCAAGTTCCTTT
25	2358	TGTTTTCGCACTCCACCTAATCGC	GCGATTAGGTGGAGTGCGAAAACA
	2359	CAATGGGTTTCATAAGGGCAGGCA	TGCCTGCGCTTATGAAACCCATTG
	2360	GCCTAACACACAAGGGTCCCTCTG	CAGAGGGACCCTTGTGTGTTAGGC
	2361	CGTCATGCGGTCCGAGGATCGATC	GATCGATCCTCGGACCGCATGACG
	2362	CCACACGGGCACGGAGTAATATCT	AGATATTACTCCGTGCCCGTGTGG
30	2363	CATCAGACATAGGTCGCGTGCCGA	TCGGCACGCGACCTATGTCTGATG
	2364	AGATGAAACCAAGGGAGGACGCAG	CTGCGTCCTCCCTTGGTTTCATCT
	2365	GGCTACCCATAGGCTCAGCAGCAC	GTGCTGCTGAGCCTATGGGTAGCC
	2366	GGCTTGTGAGGGTGTGTTCTCGAC	GTCGAGAACACACCCTCACAAGCC
	2367	TGTGTTACGGCGAATGCAACAGTC	GACTGTTGCATTCGCCGTAACACA
35	2368	CGATAACAGGTCGCGCCGTTACTA	TAGTAACGGCGCGACCTGTTATCG
	2369	TGATAAAGTGAGGCTCCAGCGCGA	TCGCGCTGGAGCCTCACTTTATCA
	2370	AATTGTGCACGGATCTGCACGGCG	CGCCGTGCAGATCCGTGCACAATT
	2371	GCAATGTACTGTCACCAGTGGCGA	TCGCCACTGGTGACAGTACATTGC
	2372	GGCATATCGGTAACACTTGGTCGG	CCGACCAAGTGTTACCGATATGCC
40	2373	GGGTCTCAAACCAGCGTGGCCGCT	AGCGGCCACGCTGGTTTGAGACCC
	2374	GTCTCCGGGACCATTGAGCTGGAG	CTCCAGCTCAATGGTCCCGGAGAC

	2375	GGCCTTCGGCATTCAGACGGGTTG	CAACCCGTCTGAATGCCGAAGGCC
	2376	CGTGATAGGCCACAGCGCTCAATT	AATTGAGCGCTGTGGCCTATCACG
	2377	GGCAGGCCCGCGAGGATGATTAAC	GTTAATCATCCTCGCGGGCCTGCC
	2378	CGGGTATGGTTGATAACAGCGTGG	CCACGCTGTTATCAACCATACCCG
5	2379	ACGACGTCCTTGGGACCGTATTGT	ACAATACGGTCCCAAGGACGTCGT
	2380	CTGATATCGAGCCTGAGCCTTTCG	CGAAAGGCTCAGGCTCGATATCAG
	2381	TCCCATTGGCCTGTATGCTGGCCT	AGGCCAGCATACAGGCCAATGGGA
	2382	GTGTCGTCGATTGTTTCATCGACG	CGTCGATGAAACAATCGACGACAC
	2383	CGAAAGCCAGTAGCCGATTGCGTG	CACGCAATCGGCTACTGGCTTTCG
10	2384	GGTTCGGCTTATTCCACTGCGACA	TGTCGCAGTGGAATAAGCCGAACC
	2385	AGCGAGGGCTAACTTTTTAACGCG	CGCGTTAAAAAGTTAGCCCTCGCT
	2386	CGGCGCTGATGACGGGACTCGATT	AATCGAGTCCCGTCATCAGCGCCG
	2387	TCACAGTGCTCGGCGTAAGGACTA	TAGTCCTTACGCCGAGCACTGTGA
	2388	CCCATTACGAGCACACACCATGGC	GCCATGGTGTGTGCTCGTAATGGG
15	2389	GGCCGCTAATCTTTACGCATCACG	CGTGATGCGTAAAGATTAGCGGCC
	2390	ACGGCTTCCTAGTGTCCAGCCCTT	AAGGGCTGGACACTAGGAAGCCGT
	2391	CTGTCAGGTCCTACCCAATGGCTC	GAGCCATTGGGTAGGACCTGACAG
	2392	CACAGCCCATCCCACTGAACTGCT	AGCAGTTCAGTGGGATGGGCTGTG
	2393	ACAAACGATACACGCAACGCTGTG	CACAGCGTTGCGTGTATCGTTTGT
20	2394	TGGCGGCCAGCTAGCAGGCGAAGT	ACTTCGCCTGCTAGCTGGCCGCCA
	2395	ATCTCGAAACGATGCGTGCCTAAA	TTTAGGCACGCATCGTTTCGAGAT
	2396	ATCTCGAGAACAGCGTGCGTGCGG	CCGCACGCACGCTGTTCTCGAGAT
	2397	GAAGAAATCCGCCGACATCTACGG	CCGTAGATGTCGGCGGATTTCTTC
	2398	GCGGAGCAACCTTGGCTGTTTCTA	TAGAAACAGCCAAGGTTGCTCCGC
25	2399	CGCGTTCCGAAGACTTGTTGTTTG	CAAACAACAAGTCTTCGGAACGCG
	2400	TGACCTGAAGCCCATCCATAAGCA	TGCTTATGGATGGGCTTCAGGTCA
	2401	TGGTATTCATTCCGGATAAGCGGG	CCCGCTTATCCGGAATGAATACCA
	2402	GCGTTGCGGGTCATTGATGCAAAC	GTTTGCATCAATGACCCGCAACGC
	2403	ACCGCTTTCTGTGTAGAGCCCTGA	TCAGGGCTCTACACAGAAAGCGGT
30	2404	CAAATAGACAATCGCAGCTTCGGG	CCCGAAGCTGCGATTGTCTATTTG
	2405	TGTCCTGACAAATCAAGGTGCAGG	CCTGCACCTTGATTTGTCAGGACA
	2406	AAATTGCACTCGCGGAGATTTCCT	AGGAAATCTCCGCGAGTGCAATTT
	2407	TGACGCCCATTTCTATATGGTGCA	TGCACCATATAGAAATGGGCGTCA
	2408	TGTTCCGACAGGGCACTGCTAGAC	GTCTAGCAGTGCCCTGTCGGAACA
35	2409	TCGCTGGCTTGGGAAGGCCTTCGT	ACGAAGGCCTTCCCAAGCCAGCGA
	2410	GTGCACCTCCGTTGGCGTAGAATG	CATTCTACGCCAACGGAGGTGCAC
	2411	CTCATTTGGGACCGATCGGGTTGC	GCAACCCGATCGGTCCCAAATGAG
	2412	GCCAGTGTCTGTCAATGGATGGGA	TCCCATCCATTGACAGACACTGGC
	2413	TTGCCCGGCAGGTTCTGTGTAATG	CATTACACAGAACCTGCCGGGCAA
40	2414	ACCCGCGAACCGAGACGCACTTCT	AGAAGTGCGTCTCGGTTCGCGGGT
	2415	TCCGTGCGATTGGTCAAGGTTGAT	ATCAACCTTGACCAATCGCACGGA

	2416	AGGGCGTCTCGGTTGAACCTCGGT	ACCGAGGTTCAACCGAGACGCCCT
	2417	TGACCGTTCAAAGAGCAAGCCAAC	GTTGGCTTGCTCTTTGAACGGTCA
	2418	ACACTCACCTGCTGTCCCTGCTGA	TCAGCAGGGACAGCAGGTGAGTGT
	2419	GCGTTTAACTCCTTGGGTGGTGGT	ACCACCACCAAGGAGTTAAACGC
5	2420	CGCCTGCGCAGGTAACTCTCCGCA	TGCGGAGAGTTACCTGCGCAGGCG
	2421	AATCGAATTTCCCAGCGGCTGTTT	AAACAGCCGCTGGGAAATTCGATT
	2422	AAGCAGGTGGGATCCTGGGGATCA	TGATCCCAGGATCCCACCTGCTT
	2423	AATCCCAGACTCGCTCTTCGTGCT	AGCACGAAGAGCGAGTCTGGGATT
	2424	ACGGTTATAAGGGCCGGCTGCGAC	GTCGCAGCCGGCCCTTATAACCGT
10	2425	TACGAGAGCGGGCTTAGACGTCGC	GCGACGTCTAAGCCCGCTCTCGTA
	2426	GCGATTTTGACCCACGGTTATCGA	TCGATAACCGTGGGTCAAAATCGC
	2427	AGCTGTATAATTTGGATGGCGCGA	TCGCGCCATCCAAATTATACAGCT
	2428	TCCGCGAGTCTTAGCCGATTGAAC	GTTCAATCGGCTAAGACTCGCGGA
	2429	GGCATCAGCTCCGTAAGCCGATAG	CTATCGGCTTACGGAGCTGATGCC
15	2430	TGTTATTGGCAGTTCGAGCGACAG	CTGTCGCTCGAACTGCCAATAACA
	2431	GCGAGCCTTTTTGCTTGGGAAGAG	CTCTTCCCAAGCAAAAAGGCTCGC
	2432	AGAAGAAAGGTCAGCGTCGACGA	TCGTCGACGCTGACCTTTTCTTCT
	2433	CGGGTCGACCCTTGAAGCATAACC	GGTTATGCTTCAAGGGTCGACCCG
	2434	CTCGGTTTTCACAAACTTACCGCG	CGCGGTAAGTTTGTGAAAACCGAG
20	2435	GCAGTCCTATCCGGAGCCTGACAA	TTGTCAGGCTCCGGATAGGACTGC
	2436	AAGGTGCGCTATTTGTTGTCGGTC	GACCGACAACAAATAGCGCACCTT
	2437	AGTGGAATCCATGCCGACACCTGA	TCAGGTGTCGGCATGGATTCCACT
	2438	TACAGGCGTAATTCCTGCGAGGGA	TCCCTCGCAGGAATTACGCCTGTA
	2439	CCGAAGTGCGAGAAGCACGTTGTT	AACAACGTGCTTCTCGCACTTCGG
25	2440	AAGGACTGGTATGGCCGGAGCTTT	AAAGCTCCGGCCATACCAGTCCTT
	2441	GGACACCGCCAACCTCATAGTTGC	GCAACTATGAGGTTGGCGGTGTCC
	2442	AATGGTGTTCGCCTGGACTACCAC	GTGGTAGTCCAGGCGAACACCATT
	2443	TAGGAAAGCGTACACGGGAATCCG	CGGATTCCCGTGTACGCTTTCCTA
	2444	TCTCACCCCAATGATGAGGACGTC	GACGTCCTCATCATTGGGGTGAGA
30	2445	CGTGTCCGTGTGACACTGTCCATG	CATGGACAGTGTCACACGGACACG
	2446	TCCAGGCTGTTGCGGATACGGTAG	CTACCGTATCCGCAACAGCCTGGA
	2447	GTAGGCAAAATGGTCGCGATCAAT	ATTGATCGCGACCATTTTGCCTAC
	2448	ATCTCCGTGGACCCGATTGTGACA	TGTCACAATCGGGTCCACGGAGAT
	2449	GAATATGCCGTCAACGCTATGGGC	GCCCATAGCGTTGACGGCATATTC
35	2450	TTCCGGAAGCGTTTGGTAACTTTG	CAAAGTTACCAAACGCTTCCGGAA
	2451	TTCGATAGGAATACCAGGGCCTGG	CCAGGCCCTGGTATTCCTATCGAA
	2452	GGCCATTTGAGGAGGATTATGCAA	TTGCATAATCCTCCTCAAATGGCC
	2453	ACCTTCTGACCTGGACTTTTGGCG	CGCCAAAAGTCCAGGTCAGAAGGT
	2454	GACCAATCCGCAGTTGAGCAACAG	CTGTTGCTCAACTGCGGATTGGTC
40	2455	TCGGCCACTCACCATGAGTGTAGG	CCTACACTCATGGTGAGTGGCCGA
	2456	AGCGCTCACATGTTCGAAAACGGG	CCCGTTTTCGAACATGTGAGCGCT

	2457	TAACGCAAAGGCGCGATCCTCGCT	AGCGAGGATCGCGCCTTTGCGTTA
	2458	TGGGTGGCCAAATATTACTGCAA	TTGCAGTAATATTTGGCCCACCCA
	2459	GTCCTCGAAAGGGGCATCCAAACA	TGTTTGGATGCCCCTTTCGAGGAC
	2460	CCCATCTGGTGGGAGGCGTTATCA	TGATAACGCCTCCCACCAGATGGG
5	2461	GTGCGCGGTCTGCAAACTCGCCAT	ATGGCGAGTTTGCAGACCGCGCAC
	2462	TGTGTTGCCAACCCTAGGTCATCA	TGATGACCTAGGGTTGGCAACACA
	2463	CTGATGCTGTTCTCGTCGGTTGAC	GTCAACCGACGAGAACAGCATCAG
	2464	AAGCTGCAAAAGGTGAGCGTGGCA	TGCCACGCTCACCTTTTGCAGCTT
	2465	TCTGACGCGTGCTTGGGAGTCTAT	ATAGACTCCCAAGCACGCGTCAGA
10	2466	GAATTACTTGGAGGCGCCGTGCAA	TTGCACGGCGCCTCCAAGTAATTC
	2467	GATTCTTCCCGACCTAGGTTGGCC	GGCCAACCTAGGTCGGGAAGAATC
	2468	CGCAGCGTATCCCATGTTGCTTGA	TCAAGCAACATGGGATACGCTGCG
	2469	GAGATGGAATTGTTCGCCCAAAGA	TCTTTGGGCGAACAATTCCATCTC
	2470	GATGCCTGGATCGGTCTAGCGTCA	TGACGCTAGACCGATCCAGGCATC
15	2471	GCAGCGACTGCTAAGCTATCTCGG	CCGAGATAGCTTAGCAGTCGCTGC
	2472	AGGGCTAATTTACATCGCCTTGCC	GGCAAGGCGATGTAAATTAGCCCT
	2473	AAGTGCACATCCTCACGAAGCGAT	ATCGCTTCGTGAGGATGTGCACTT
	2474	TCAGGCAGCCGTAATTAAATGCGC	GCGCATTTAATTACGGCTGCCTGA
	2475	CCACTGGGGAAATCGCACTGTTGG	CCAACAGTGCGATTTCCCCAGTGG
20	2476	TTGTCCAAAGCCACCTACGACAGA	TCTGTCGTAGGTGGCTTTGGACAA
	2477	TGGGCGGAATAGATTGGGTGTCTT	AAGACACCCAATCTATTCCGCCCA
	2478	TAGAATTCGCCTCTTCTAGCCGCC	GGCGGCTAGAAGAGGCGAATTCTA
	2479	CATTACTTCCTGCAGATGCGATGC	GCATCGCATCTGCAGGAAGTAATG
	2480	GGAAATGCTAGCTGGGGTAATCGC	GCGATTACCCCAGCTAGCATTTCC
25	2481	GCCGCCACTTGCGAATCTACATCT	AGATGTAGATTCGCAAGTGGCGGC
	2482	ACAATAGCGGACAGCTCGCCAGAT	ATCTGGCGAGCTGTCCGCTATTGT
	2483	AGTTAGGCTCTCGGTGCGGTCCAT	ATGGACCGCACCGAGAGCCTAACT
	2484	TGGGCCTGAGAAGCGGTTAATAGG.	CCTATTAACCGCTTCTCAGGCCCA
·	2485	ACGCTCTGAGCGACGCCTATCGTA	TACGATAGGCGTCGCTCAGAGCGT
30	2486	CCTGGTGATCGTGTCCCAGACTCA	TGAGTCTGGGACACGATCACCAGG
	2487	GCGTGTCCATTCGCTTGAGGTTTC	GAAACCTCAAGCGAATGGACACGC
	2488	ATCCTGAACGGCGATGACCACCAC	GTGGTGGTCATCGCCGTTCAGGAT
	2489	TTACGTTTCTCACCGATCAACGCC	GGCGTTGATCGGTGAGAAACGTAA
	2490	GCCGTCTTGAGTGGCTAAAAGGCA	TGCCTTTTAGCCACTCAAGACGGC
35	2491	ATCTACGATGCGGCTCGAAGTGTT	AACACTTCGAGCCGCATCGTAGAT
	2492	AACCAAGACTCGTCCCCAAACGAA	TTCGTTTGGGGACGAGTCTTGGTT
	2493	AACTGCGGTGGTGGAGGCAGGTGC	GCACCTGCCTCCACCACCGCAGTT
	2494	TGCGATCTTCTCCACCTACAGCGC	GCGCTGTAGGTGGAGAAGATCGCA
	2495	AGGCGCTTAGAACCGTGAAGGCAG	CTGCCTTCACGGTTCTAAGCGCCT
40	2496	TGGAAAATTTTGGGAAACGCTGGA	TCCAGCGTTTCCCAAAATTTTCCA
	2497	CCAGCGCCGCACCTTCTCCAATAG	CTATTGGAGAAGGTGCGGCGCTGG

	2498	TAGACGGCTGGCGAATCTTACGGT	ACCGTAAGATTCGCCAGCCGTCTA
	2499	TACCATACAAGAGAACGAGCCGCA	TGCGGCTCGTTCTCTTGTATGGTA
	2500	GTAGCCGAGAGCAATTTTCACCGC	GCGGTGAAAATTGCTCTCGGCTAC
	2501	GCAAACTCCCCTGCCCTTTAGCCT	AGGCTAAAGGGCAGGGGAGTTTGC
5	2502	ATCCCGCTGATAACCGCCAGGATA	TATCCTGGCGGTTATCAGCGGGAT
	2503	AGTCTCAGTTCGGCGCAACGGTAG	CTACCGTTGCGCCGAACTGAGACT
	2504	AACCTACAGTCGCCGCAATGCATT	AATGCATTGCGGCGACTGTAGGTT
	2505	ATACACGTTTCAGCCGGCAACAAT	ATTGTTGCCGGCTGAAACGTGTAT
	2506	ACGACGGGACGTGCCCTCGTTGAT	ATCAACGAGGGCACGTCCCGTCGT
10	2507	AAGTCCAAACTCGAATGGGGCAGT	ACTGCCCCATTCGAGTTTGGACTT
	2508	GATTTATTGGCGCGGTAACGACCT	AGGTCGTTACCGCGCCAATAAATC
	2509	TGTTTCAGAGGCTACCCTGCCAT	ATGGCAGGGTAGCCTCTGAAAACA
	2510	ACGGTCTCAGGGAAATGCGATCTC	GAGATCGCATTTCCCTGAGACCGT
	2511	GACTTGAAACCGCCTATGCCCACA	TGTGGGCATAGGCGGTTTCAAGTC
15	2512	CGATCGGTTGTGTGCTGTCTTACC	GGTAAGACAGCACAACCGATCG
	2513	AGTAGCACAATGCCTCATTTCCGC	GCGGAAATGAGGCATTGTGCTACT
	2514	CTCGCTATCTACGCGTCTCCGAAA	TTTCGGAGACGCGTAGATAGCGAG
	2515	AGCCCGTTACGGCATCTAGGATTC	GAATCCTAGATGCCGTAACGGGCT
	.~2516	TCGCGATGGCGAGAGTTCAGAATA	TATTCTGAACTCTCGCCATCGCGA
20	2517	TTACAGGATTCCAAAACCCGCAAA	TTTGCGGGTTTTGGAATCCTGTAA
	2518	CGGTACCAACGCGCGGGCATATGA	TCATATGCCCGCGCGTTGGTACCG
	2519	TGCCAGTATTATCCGTGCCAGCCG	CGGCTGGCACGGATAATACTGGCA
	2520	ATTTCAGACCTCGGGACAACCTGG	CCAGGTTGTCCCGAGGTCTGAAAT
	2521	GAAGTGCGCGTAACTTAGGGAGCC	GGCTCCCTAAGTTACGCGCACTTC
25	2522	TTGGCCAGGTCATCACTCTGCCAT	ATGGCAGAGTGATGACCTGGCCAA
	2523	ATCGGCCGGTATTAGCTGCCCTCC	GGAGGCAGCTAATACCGGCCGAT
	2524	CGCAGGTAAGGCCGAGCAATGTTT	AAACATTGCTCGGCCTTACCTGCG
	2525	TTGGGAACGTGCTAGGCGGCCCTC	GAGGGCCGCCTAGCACGTTCCCAA
	2526	CATCTCGGCACACTGGTGCTGTAT	ATACAGCACCAGTGTGCCGAGATG
30	2527	ACGCGTAAATCAACGACGTGGTCG	CGACCACGTCGTTGATTTACGCGT
	2528	CGTAGGTGGTAAATGTTGGCCCAG	CTGGGCCAACATTTACCACCTACG
	2529	TTCGAGCCAGAATAAAACGGTTGG	CCAACCGTTTTATTCTGGCTCGAA
	2530	AGAGATATTCGGCCTCGGTCGAGA	TCTCGACCGAGGCCGAATATCTCT
	2531	CGACAAAGTTTCTCGCGAGCAACT	AGTTGCTCGCGAGAAACTTTGTCG
35	2532	ATTGCCGCGTCTCGTATCAAAAGA	TCTTTTGATACGAGACGCGGCAAT
	2533	CGGAGAATGGATGCAGGTTCTTCG	CGAAGAACCTGCATCCATTCTCCG
	2534	TATAATCATTTGCGACTCGCCCCA	TGGGGCGAGTCGCAAATGATTATA
	2535	AATTTTCCCCGATTTGAAGAAGCG	CGCTTCTTCAAATCGGGGAAAATT
	2536	TCGCATACTTCGTCGGCGAGTATT	AATACTCGCCGACGAAGTATGCGA
40	2537	CGTGAGCCGTTCTCATCCAAGCGG	CCGCTTGGATGAGAACGGCTCACG
	2538	GCAGAATCGAATTGGGGTGGGTTT	AAACCCACCCCAATTCGATTCTGC

	2539	CTCTCGGTTTCTCAACCGAGCTCG	CGAGCTCGGTTGAGAAACCGAGAG
	2540	GACCAGTTAGTGCAATGGTTGGCG	CGCCAACCATTGCACTAACTGGTC
	2541	TTCTCGCACAGCTAGTCAGCCGAT	ATCGGCTGACTAGCTGTGCGAGAA
	2542	CCAAGTCTTGCGTGAGCGATCCTG	CAGGATCGCTCACGCAAGACTTGG
5	2543	GCGAAAGTGGCTCGTATTTCTCCA	TGGAGAAATACGAGCCACTTTCGC
	2544	CCTCGGGACTGTCCGACTGAAAAA	TTTTCAGTCGGACAGTCCCGAGG
	2545	AGGCGAGTGTACGGCTCATCCATG	CATGGATGAGCCGTACACTCGCCT
	2546	GCGGCTCTGCCTACGATATTCACA	TGTGAATATCGTAGGCAGAGCCGC
	2547	TGCACCTGTCTGTAGATTTGCGGT	ACCGCAAATCTACAGACAGGTGCA
10	2548	CATAAAGCACGGACGCGACTTGAT	ATCAAGTCGCGTCCGTGCTTTATG
	2549	CCCTCAACGTAGGGCGTGACTTTC	GAAAGTCACGCCCTACGTTGAGGG
	2550	GGGTCATCGTGCAGTTATGCCGTA	TACGGCATAACTGCACGATGACCC
	2551	CCCGGATAATCCTTTGTCCAGCCG	CGGCTGGACAAAGGATTATCCGGG
	2552	TCCGATAAGCGAACTCACATGGGT	ACCCATGTGAGTTCGCTTATCGGA
15	2553	CCTGCTGGTTCGGTCGTAAGCGAA	TTCGCTTACGACCGAACCAGCAGG
	2554	GAGGCACCAATCGGTCTGAAAATG	CATTTTCAGACCGATTGGTGCCTC
	2555	TACGAAAATGGTTGCGCCGGGTCT	AGACCCGGCGCAACCATTTTCGTA
	2556	AATTGCCGGAAGCAGTCAGAATCG	CGATTCTGACTGCTTCCGGCAATT
	2557	CCGAATCAGCCGTATTTGCTGGAA	TTCCAGCAAATACGGCTGATTCGG
20	2558	CCCGCTTATCTGTACTCGATCGCA	TGCGATCGAGTACAGATAAGCGGG
	2559	TTTTGGGGATCCCTATTAGGCGCA	TGCGCCTAATAGGGATCCCCAAAA
	2560	AGTGACAGCGCTCACCACGGTCCC	GGGACCGTGGTGAGCGCTGTCACT
	2561	CCATGAGTGTTTCGGGACATCGTA	TACGATGTCCCGAAACACTCATGG
	2562	GCCACATTCTGCTACCTCCGTGTT	AACACGGAGGTAGCAGAATGTGGC
25	2563	TCCTGTGCTTTGTGACGTGCTAGG	CCTAGCACGTCACAAAGCACAGGA
	2564	GACCGCATATACACCTGATGGGCC	GGCCCATCAGGTGTATATGCGGTC
	2565	GTAGGCCCGTCGTTAACCATCTCA	TGAGATGGTTAACGACGGGCCTAC
	2566	CGGCTCGCGAAATGGAGTTTAGCG	CGCTAAACTCCATTTCGCGAGCCG
	2567	GCTGATCGGCTTTTCACCGCTATA	TATAGCGGTGAAAAGCCGATCAGC
30	2568	TATCAAATCGTTGGCACGCGACTA	TAGTCGCGTGCCAACGATTTGATA
	2569	TTGGCGAGGATCCCTAGGCGTACT	AGTACGCCTAGGGATCCTCGCCAA
	2570	AAGTCCTGAGGCCGTTCGGTTTCT	AGAAACCGAACGGCCTCAGGACTT
_	2571	ACTCCGGACATCTCGGCCAGAGAT	ATCTCTGGCCGAGATGTCCGGAGT
	2572	CCAAGGGAACACAGGATCGTAGA	TCTACGATCCTGTGTTCCCCTTGG
35	2573	GTGGCCTAAATCCGCCTTCTCAAC	GTTGAGAAGGCGGATTTAGGCCAC
<u>L</u>	. 2574	CACTCCGTCTCGTCCATTAATGCG	CGCATTAATGGACGAGACGGAGTG
	2575	TCAAGAACCCAGTGCCGGTCAGCA	TGCTGACCGGCACTGGGTTCTTGA
	2576	GAATCAATTTTCCAGGGACGGAC	GTCCCGTCCCTGGAAAATTGATTC
	2577	ATCGGTGTGCTGGAGCGCCAGAGT	ACTCTGGCGCTCCAGCACACCGAT
40	2578	GCCTCTCCTATGACGATGACCCAC	GTGGGTCATCGTCATAGGAGAGGC
 			

	2580	CGTTGGGTACCGTTCTATCAACCG	CGGTTGATAGAACGGTACCCAACG
	2581	GCAGTGAGCTGGGTTCAATGCTTC	GAAGCATTGAACCCAGCTCACTGC
	2582	CATCATCCACACAGGCAGGTGTGT	ACACACCTGCCTGTGTGGATGATG
	2583	AGACAAAGGTCCCCATTGCGAAAT	ATTTCGCAATGGGGACCTTTGTCT
5	2584	ATACTCGTCGACGAGAAGCGGAAA	TTTCCGCTTCTCGTCGACGAGTAT
	2585	GCAGAATGTGTTGTCTTCGCAGCC	GGCTGCGAAGACAACACATTCTGC
	2586	CACCATGCCTTCATCTTGGCCTAG	CTAGGCCAAGATGAAGGCATGGTG
	2587	ACTCTTCAACGCCAGGTTAAGCCA	TGGCTTAACCTGGCGTTGAAGAGT
	2588	GCGACCTGCGGCGTGTGTATTCTC	GAGAATACACACGCCGCAGGTCGC
10	2589	TCGGTGTATGCACCCTTTCTCCAT	ATGGAGAAAGGGTGCATACACCGA
	2590	ACCGTCGAATCTTGCGGCCAATGT	ACATTGGCCGCAAGATTCGACGGT
	2591	TAATGCATGCTCCCGGCTCACGTT	AACGTGAGCCGGGAGCATGCATTA
	2592	TCTGTACACACCACGTCGTGCACA	TGTGCACGACGTGGTGTACAGA
	2593	CATGGGGTTGTCAGACGACACCTA	TAGGTGTCGTCTGACAACCCCATG
15	2594	AATCTGATGCTCGCTGTAGGACGG	CCGTCCTACAGCGAGCATCAGATT
	2595	TCGAAACCGCGGGAAAGGGTAAAA	TTTTACCCTTTCCCGCGGTTTCGA
	2596	TGGGGGACGGCGTCTAATCCTCC	GGAGGATTAGACGCCCGTCCCCA
	2597	AGGCATGCACCCATGCTGCCAGAG	CTCTGGCAGCATGGGTGCATGCCT
	2598	TCCCAATGGCCTGTCAAGCATAAA	TTTATGCTTGACAGGCCATTGGGA
20	2599	GAACCTGAGCCTTTGCTAGCACGA	TCGTGCTAGCAAAGGCTCAGGTTC
	2600	CGAATTGATAGCGTTACGGGCGAA	TTCGCCCGTAACGCTATCAATTCG
	2601	TTGCACGCGCGCGAACGACTATTC	GAATAGTCGTTCGCGCGCGTGCAA
	2602	TGCGGTGAAGCAGTCCAAGGTCAG	CTGACCTTGGACTGCTTCACCGCA
	2603	TGAGGACCATCCAATGGATCGGTT	AACCGATCCATTGGATGGTCCTCA
25	2604	TCGGTGATTGGTAATTTGGATCCG	CGGATCCAAATTACCAATCACCGA
	2605	GCGGCAGGTAGTTTGACTGGATG	CATCCAGTCAAACTACCTGCCCGC
	2606	CAAGCACAAGCCCATGAAATTTCA	TGAAATTTCATGGGCTTGTGCTTG
	2607	CGGTACAGCGGATAGCCAAGGATA	TATCCTTGGCTATCCGCTGTACCG
	2608	CCATGCTCTTCGCTGCAGCATACT	AGTATGCTGCAGCGAAGAGCATGG
30	2609	CGCGGCAAAGATTAATTCCCGGCG	CGCCGGGAATTAATCTTTGCCGCG
	2610	GAAGACCCGTCCGGGTTTCCATAC	GTATGGAAACCCGGACGGGTCTTC
	2611	CTGGCAAGGAGGATGTGGCTCGTG	CACGAGCCACATCCTCCTTGCCAG
	2612	CTGTGCAGGGGGTGGCTCTGTTGA	TCAACAGAGCCACCCCTGCACAG
	2613	TTCAATAATGATCACGAGGCCCCA	TGGGGCCTCGTGATCATTATTGAA
35	2614	TGGTGATGCGAAGCCTTACCTTTG	CAAAGGTAAGGCTTCGCATCACCA
	2615	CTGCCACCATCTACGGCGCAGTCT	AGACTGCGCCGTAGATGGTGGCAG
	2616	TTTGCCCAGCTCTCGCAGAAGTTA	TAACTTCTGCGAGAGCTGGGCAAA
	2617	AATTCAGACGCCACATCGACGGTC	GACCGTCGATGTGGCGTCTGAATT
	2618	CCGTGGTCTGCCTCGATTACCTAC	GTAGGTAATCGAGGCAGACCACGG
40	2619	GGCGAGGAATTTCGGAACCTTATG	CATAAGGTTCCGAAATTCCTCGCC
	2620	ATCCGATGATCAGATACCGGCTGG	CCAGCCGGTATCTGATCATCGGAT

2621 CCATAGACTAGCGCCAGAGTGCCC GGGCACTCTGGCGCTAGTCTATGG				
2623 GAATAATCATCGCGGTCCTCATGG CCATGAGGACCGCGATGATTATTC		2621	CCATAGACTAGCGCCAGAGTGCCC	GGGCACTCTGGCGCTAGTCTATGG
2624 GGGATTGGCTCTTGGTTGGAAGAA TTCTTCCAGCCAGAGGCCAATCCC 2625 ATTGTGCTTCCTCGAACTGGGAAA TTTCCCAGTTCGAGGAAGCACAAT 2628 TGCCCCACCCGTAAGTCAATAAT ATTATTGACTTACGGGGTGGGGCA 2627 TCAGGACCGACGTGGCACTTAGTG CACTAAGTGCACCGTCGGTCCTGA 2628 CCAGCCGTCACAGTGCAATTTCCG CGGAAATTGCACCGTCGGTCCTGA 2629 CTTAAAGAGGCGCGAAGCACAACA TGTTGTGACCGGCTTGACGGGCTGG 2629 CTTAAAGAGGCGCGAAGCACAACA TGTTTGTGACCGGCCTCTTTAAG 2630 TACCGCTCGTGCGCGATCACAATGA TCATTGTGATCGCGACCGAGCGGTA 2631 CCGAGTGCGCGATCACAATGA TCATTTGTGATCGCGACCGAGCGGTA 2631 CCGAGTGCCCGATCAAAACGTA TACGTTTTGATCGGCACCTGCGG 2629 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGCACCTGCGG 2633 TGCAGGCTTCTCAACGGCTGGAG 2634 CTCCGTACGATCAAAACGTA TACGTTTTGATCGGCACTGCGGC 2633 TGCAGGCTTCTCAACGGCTGGAG 2634 CTCCGTACGTATACCGCCTGGAG 2635 CGAACCGGCAGTCGATACA TTCACCGCGGGATACGTACGAG 2636 CGAACCGGCAGTCGATCAAAACGTA ATGCAACCAATCGACTGCACACTACCGCGCCCCCCCCCC		2622	TGTGGACCTAGAAAATTGCCAGCC	GGCTGGCAATTTTCTAGGTCCACA
5 2625 ATTGTGCTTCCTCGAACTGGGAAA TTTCCCAGTTCGAGGAAGCACAAT 2628 TGCCCCACCCGTAAGTCAATAAT ATTATTGACTTACGGGTGGGCCA 2627 TCAGGACCGACGGTGCACTTAGTG CACTAAGTGCACCGTCGGTCCTGA 2628 CCAGCCGTCACAGTGCAATTTCCG CGGAAATTGCACCGTTGGGTCCTGA 2628 CCTAAAGAGGCGCGAAGCAACA TGTTGCGCGCTTGTCAGGGCTGG 2629 CTTAAAGAGGCGCGAAGCACACA TGTTGCTGCGCCCTCTTTAAG 2630 TACCGCTCGTCGCGATCACAATGA TCATTGTGTCTCGCCGCCTCTTTAAG 2631 CCGAGTGCCGGAAGCACACA TGTTTGTGATCGCGACGAGCGGTA 2631 CCGAGTGCCGGATCACAATGA TCATTGTGATCGCGCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGGCACTGGGC 2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAGCCTGC 2634 CTCCGTACGATTCCCGCGTGATAC GTATCACGCGGGATACGTACGGAG 2634 CTCCGTACGACCGTTGAAAACGTA TACGTTTTAATTGACGCGGGAATCGTCCG 2636 CGAACCGGCAACTAACGGC GGCGGGGCTTTAAGTTGCACCACTACGG 2636 CGAACCGGCAATCACGGCTGATCACTTCC 2636 CGAACCGGCAACTACAGG ACCTTCCACCACTACAG ACCTTCCACCACTACAG 2639 CCATTAGTGGTCGACCACTACA TGTAAGTGCACCACTAACGG 2639 TATACGGGCCAACTACAAC TGTAAGTGCTCGACCACTAACGG 2639 TATACGGGCCAACACTACAA TGTAAGTGCTGACCACTAACGG 2639 TATACGGGCCCAACACTACAA TGTAAGTGCTGACCACTACAG 2639 TATACGGGCCCAACACTACAA TGTAAGTGCCTCACCACTACAA 2639 TATACGGGCCCAAGAGGCCATTCC CAATACGGACCTTCGACCACTTACG 2641 CTGCTCAACCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2641 CTGCTCAACAGGTTCGTCACCA TGGTGAAACACCTTCGAACCACT 2641 CTGCTCAACAGGTTCGTCACCA TGGTGAAACACCTTCTCAACCAT 2644 GAGTGGAACCATTCTCGCGCCTCAA TTGAAGCACCCTTCGAACCAT 2644 GAGTGGAACCATTCTCGGCCCTCAA TTGAAGCACCCTTCAACCAT 2644 GAGTGGAACCATTCTCGGCCCTCAA TTGAAGCACCCTTCTCAACCAT 2644 TGCTCTTGGAACCAATCCCGCCCTCAA TTGAAGCACCATCTCCACCAC 2645 TGGATTGGAACCAATCCCGCCTCAA TTGAAGCACCACACACACCTTCCACCAC 2644 TTGTGGACCACATTCCTCGGCCCTCAA TTGAAGCACCTTCTCAACCAC 2644 TTGGGAGCACACTTCTCACCA TGGGCAACACCTTCCACCC 2644 TTGGAGCACCATTCTGAACCAA TCCTCCACGAGAA ACCCGACGAATCCTCCACCC CAACACACCTTTCACCT AGGTCAACACCTTTCCACCC 2644 TTGGAGCACGAATACCTGGAGCACACTTCAAC GGTTTCCACCC GGCGTAACCCTTCACCC 2652 TCGCTCAAAACAC GTTTTCACCT AGGTCAACACACTTCCACCC 2652 TCGCTCAAAACAC GTTTTCACCT AGGCACACTTCCACCC 2652 TCGCTCAAAACAC GTTTTCAACCACACACCTTTCAACCAACACACTTTCAACCACACACACACTTTCAACCAACACACTTT		2623	GAATAATCATCGCGGTCCTCATGG	CCATGAGGACCGCGATGATTATTC
Teccocaccestages and a transfer and a transfer access and a transf		2624	GGGATTGGCTCTTGGTTGGAAGAA	TTCTTCCAACCAAGAGCCAATCCC
2627 TCAGGACCGACGGTGCACTTAGTG 2628 CCAGCCGTCACAGTGCAATTTCCG 2628 CCAGCCGTCACAGTGCAATTTCCG 2629 CTTAAAGAGGCGCGAAGCACACA 1GTTGTGCTTCGGCCTCTTTAAG 2630 TACCGCTCGTCGCGATCACAATGA 2631 TACCGCTCGTCGCGATCACAATGA 2631 TCATGTGTGCGCGCACACGC 2632 GCACCAGTGCCGAATGAT 2631 TCATGTGTGATCGCGCACACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA 2633 TGCAGGCTTCTCACACAGTA 2634 CTCCCGAGCGTGGAG 2634 CTCCCGCGTGGAG 2634 CTCCGTACGTATCCCGCGTGGAG 2635 GGAACCGGCAACTTCACACACTC 2636 CGAACCGGCAGTCACACACC 2636 CGAACCGGCAGTCACACACCCGCC 2636 CGAACCGGCAGTCGATCCCCGCC 2636 CGAACCGGCAGTCGATCCT 2637 CCGTTAGTGGTCGACAGTTCCGT 2638 TCAGGCTACGTACCCCGCC 2638 TCAGGCTACGTACCTCCACCACCACCACCACCACCACCACCACCACCACC	5	2625	ATTGTGCTTCCTCGAACTGGGAAA	TTTCCCAGTTCGAGGAAGCACAAT
2628 CCAGCCGTCACAGTGCAATTTCCG 2629 CTTAAAGAGGCGCGAAGCACACA 2629 CTTAAAGAGGCGCGAAGCACACACA 2630 TACCGGTTGTGGCGATCACAATGA 2631 CCGAGTGCCGCGACGATGACACAATGA 2631 CCGAGTGCCGGAAGTGTCTATGTG 2632 GCACCAGTGCCGGACGACGATGA 2632 GCACCAGTGCCCGATCAAAACGTA 2632 TGCAGGCTTCTCAAAGCGTA 2634 CTCCGTACGTATCCCGCGTGATAC 2635 GGAAGTGCACGTATAC 2636 CGAACCGGACGACCGTGATAC 2637 CCGTTACGTATCCCGCGTGATAC 2638 TCAGGGCTGGTGCATAC 2638 TCAGGGCTGGTGCATAC 2638 TCAGGCTTCGAACGTTGGAT 2638 TCAGGCTTCGACAGTTCGGT 2638 TCAGGCTACGTCGATCATTACACCCCGC 2638 TCAGGCTACGACTTCACA 2639 TATACGGCCCGACCAGTACA 2639 TATACGGCCCGACCATACA 2630 TATACGGCCGAGTGCATTCC 2630 CCAACGTGTGACCACTACA 2630 TATACGGCCCGACCATACA 2631 TCAGGCTCACGCACTACA 2632 TATACGGCCCGACGTTCGATACA 2634 CTGCTCAGCGTTGCAT 2641 CTGCTCAGCGTTCGATACA 2641 CTGCTCAGCGTTCGACACTACA 2642 GGAGATTGACTTCGCGCTTTGCAT 2643 ATGGTTCAGAGGTCCGCTTTCACCA 2643 ATGGTTCAGAAGGTTCGTCGGGTT 2644 GAGTGGACCATTCGCGCTTTCACCA 2644 GAGTGGACCATTCGCGCCTCAA 2644 TGGTTCAGAAGGTTCGTCGGGTT 2644 GAGTGGACCATTCCGCCCTCAA 2646 TGCTCTTGTGGTCACCACATTCACCATTTTGAGGCCCGAACCTTCTCAACCAT 2646 TGCTCTTTGGTCACCACATTCCGCCCCCAA 2647 TTGGGAGCACGGTACCGCCCTCAA 2648 CAACGCGAGCATTCCGCCCCTCAA 2648 CAACGCGAGCTAACCGCCCCCAA 2649 ACCGCAGACCTTCTCACCCCCCCACA 2649 ACCGCAGACCTCTCACCCCCCCAA 2649 ACCGCAGGCTAACCGCTCACA 2649 ACCGCAGACCTCTCACCCCCCCAA 2649 ACCGCAGGCTAACCGCTCACCTCACCCCCCCAA 2649 ACCGCTAGCGCCTCACCTTCACCT CACCCCCCCACCCCCCCCCC		2626	TGCCCACCCGTAAGTCAATAAT	ATTATTGACTTACGGGGTGGGGCA
2629 CTTAAAGAGGCGCAAGCACAACA 16TTGTGCTTCGCGCCTCTTTAAG 2630 TACCGCTCGTCGCGATCACAATGA 2631 CCGAGTGCGCGAAGTGTCTATGTG 2632 GCACCAGTGCCCGATCACAACGTA 2633 TGCAGGCTGCGCGAAGTGTCTATGTG 2633 TGCAGGCTCTCCAACGGCTGGGAG 2633 TGCAGGCTTCTCAACGGCTGGGAG 2634 CTCCCGTACCGTATCCCGCCGTGGAGC 2635 GGAAGTGCAACTTAAAGCCCCGC 2636 CGAACCGGCAGTTCCAACGGCTGGAG 2637 CCGTTAAGTGCCCGCC 2636 CGAACCGGCAGTCGATCGTTGCAT 2637 CCGTTAAGTGCTCGAACGTTCGAT 2638 TCAGGCTAGCCCTCACCACTACA 2639 TATACGGCCGAACTTCAACGGCTGGATCCTCAACGG 2639 TATACGGCCCCTCACACATCAA 2639 TATACGGCCCCTCACACATCAA 2639 TATACGGCCGAAGGTCCGATTCG 2641 CTGCTCAGCGGTGCATTCG 2642 GGAGATTGACCTTCCACCATCAA 2643 ATGGTTCAGCAGTTCGGCTT 2643 ATGGTCAGAAGGTCCGTTTCACCA 2644 GAGTGGAACGAAGGTCCGTTTCACCA 2645 TGGATTGAAGACAATCCCCCCCAAA 2646 TGCTCTTGTGAACAACACATTCCAA 2647 TTGGGAACCAATCCCGCACAAA 2647 TTGGGAACCAATCCCGCACAAA 2647 TTGGGAACCAATCCCGCACAAA 2647 TTGGGAACCAGTTCCGCCTCAACA 2648 CAACGCGAGCTACCGCCTCAACA 2649 AACGCGAGCAACGTTCGCCCTCAAC 2648 CAACGCGAGCTACCGCCCCAAA 2649 AACGCGAGCAACCTCGCACAAA 2640 TGCTCTTGTGGTCACCTCGACAAGAA 2641 TTGGGAACCAATCCCGCACAAA 2642 TTTGGGAGCACAGGTTACCGCCCCAAA 2643 TGGTCTTGGTCACCTCGACAAGAA 2646 TGCTCTTGTGGTCACCTCGACAAGAA 2647 TTGGGAACCAAGGCAACTCCCGCACAAA 2648 CAACGCGAGCTAACGGTTACCGCCTCAA 2648 CAACGCGAGCTAACGGTTACCGCCTCAA 2648 CAACGCGAGCTAACGGTTACCGCCTCAA 2649 AACGCTGAGCCACAACTCCCGCACAAA 2640 TTGTCTGGTCACTCACCT AGGTAACGTGTACCCGCTCCCAA 2641 GAGTGGAACCACATCTCACCT AGGTAACGGTTAGCTCCCCAA 2642 GAGTGAACCTCGCCCCCAAA 2643 TTGTCAGACCACAGGCACACTTCAACC GGTTACAGTCTACCACCGCCCCAA 2650 CCGTCGTAACTCTGCACCTCACCT TGAACCACCACAAGAGCA 2651 GGATGGCATCGCCCTCAACACAC GGTTACAGTGAACGCGCTTAACCGGTTACCCCCTCAACCACAAGACCACACACA		2627	TCAGGACCGACGGTGCACTTAGTG	CACTAAGTGCACCGTCGGTCCTGA
10 2630 TACCGCTCGCGATCACAATGA TCATTGTGATCGCGACGAGCGGTA 2631 CCGAGTGCCGAAGTGTCTATGTG CACATAGACACTTCGCGCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGGCACTGGGC 2633 TGCAGGCTTCTCAACGGCTGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC 2635 GGAAGTGCACATTAAAGCCCCGCC GGCGGGGGTTAAGTGTACCTACGACCACTTCC 2636 CGAACCGGCAGTCGATCCCGCC GGCGGGGGTTAAGTGTACCTCC 2637 CCGTTAGTGGTCACACTTCGGTT AACCAACGATCGACTGCCGTTCC 2638 TCAGGCTACCCCCCCCACACTACA TGTAGTGCTACGACCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCC CGAATACGGACCTCGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCC CGAATACGGACCTCGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTCGCCCGTATA 2641 CTGCTCAGCGGTGTTGAAAAACAA TGTTTCAACACACCGGTGACCAC 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAACTCACCTC 2643 ATGGTTCAGAAGGTTCCTCGGGGTT 2644 GAGTGGAACCACTCCGCCCCAA TTGGAAACCCGGTACCACT 2644 GAGTGGAACCAATCCCCCCCAA TTGGAGAACCCGTCTGAACCAT 2644 GAGTGGAACCAATCCCGCACAA TTGTGCGGGACAG 2645 TGGATTGGACCAACTCCCGCACAA TTGTGCGGGTTTCAACACCTTC 2646 TGCTCTTGTGGTCACCACCTCAA TTGAGGGCCGAGAATGCTCCACTC 2647 TTGGGAGCACTACCGCCCTCAA TTGAGGGCCGAGAATGCTCCACCTC 2648 CAACGCGAGCAATCCCGCACAA TTGTGCGGGTTAACCCGTCCCAA 2648 CAACGCGAGCAATCCCGCCCTCTAC CAACGCGGAAACCACCGTCCCCAA 2649 AACGCTAACGGTTACCCGCCTTCTA CCTCCCGACCAAACCACGTCCCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACCGTCCCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACCGTCCCCCAA 2641 TTGGAGACCACTGTAACC GGTTAACCTCCGCCTCCAA 2652 TCGCTCGTAGATCTGGAGGCTTCAACCGTTAACTCCCCCCACACAGAGCA 2651 GGATGGCATACGGTAGTTCCA TTGAACCGCGCTTAACCTCCCGCTCCAA 2652 TCGCTCGTAGATCTGGAGCCTCACCTTCACCT AGGTGAACCGTTAACCTCCCAACCGTTACCTCCCAACCGTACCCTTCACCTCCAACACCACAAGAGACAACACCGTACCCTTCAACACCGTACCCTTCAACACCGCCCTCAAACACAC GGGTTAACCGTACCCTTCAACACCGCC GGCGTAAACCATTCCCCCAACACACACACACACACACACA		2628	CCAGCCGTCACAGTGCAATTTCCG	CGGAAATTGCACTGTGACGGCTGG
2631 CCGAGTGCGCAAGTGTCTATGTĢ CACATAGACACTTCGCGCACTCGG 2632 GCACCAGTGCCCGATCAAAACGTA TACGTTTTGATCGGGCACTGGGC 2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGGTTTAAGTTGCACTTCC 2636 CCGACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACGATCGACTGCCGGTTCG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCACCACTACACGG 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGCCGTTATA 2639 TATACGGGCCGAGGGCCATTAC CGAATACGGACCTCGCCCGTATA 2639 TATACGGGCCGAGGGCCATTG CAATGCCCCTCGACCACTACA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGCCCCTCGACCACTACA 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTTTTCAAGCACCGCTGAGCAG 2642 GGAGATTTCCGTTTCACCA TGTGGAAACACCCGCTGAGCAG 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACTCAATCTCC 2644 GAGTGGAGCATTTCTCGGCCCTCAA TTGAGGGCCGAAGTCAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAAACCAATCTCC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGGGGCCTAACCAT 2646 TGCTCTTGTGGTCACTCGACGAGA 2647 TTGGGAGCACGGTTACCCGCCCACA TTGTGGGGCCTAACCATCCA 2648 CAACGCGAGCATACCGGCACAA TCCTCCCACACACAAGAGCA 2647 TTGGGAGCACGGTTACCCGCCTCTG CACAGGCGGTAACCGTCCCCAA 2648 CAACGCGAGCTAACCGTTACCCT CAAGGCGGTAACCGTTCCCCAA 2649 AACGCTGACCGTCACCTTCACCT AGGTGAACGACCACTTACGACCGGT 2659 GGATGGCATGGGCCTCAACCTTCACCT AGGTGAAGGTAACCGTTTACCACCGTT 2659 GGATGGCATGGGCCTCAACCTTCACCT AGGTGAAGGATATCTACGACCGG 2651 GGATGGCATGGGCCTCAACCTTCACCT AGGTGAAGGATATCTACGACCGA 2652 TCGCTCGTAGATCTTGACCC GGCTTAACCTTTGCACCAC 2653 GGAGCAATACCGCCTCCAAACACA GTGTTTTGCACCAC 2654 TTGTTCAGACTTTCACCC GGCGTAAGGATATCTACGACCGA 2655 CGGCGGTAACCGTTCAAC GGTTTTGACCT AGGACGATTTACGACCGA 2656 AAGACGATTACCGCCTGCCCA AGGCCCTTAAGTTCTGAACAA 35 CGGCGCTAACCGTTTGACCT AGGACAGTGGAAACAACAC 2656 AAGACGATTTGCCCCACACCTTCACCT AGGACAGTGGAAACAACAC 2657 AGGTGAGCGCAACAGAAGCCGT ACCGTTGCCCAA 2658 CTCGGCCTTAACCGTTGCCCA ACCGCTTGCCCCAACCACGGGCAACCACAAGACCACAAGACCACAAGACCACAAGACCACAAGACCACAAGACCACAAGACCACAAGACCACAACA		2629	CTTAAAGAGGCGCGAAGCACAACA	TGTTGTGCTTCGCGCCTCTTTAAG
2632 GCACCAGTGCCGATCAAAACGTA TACGTTTTGATCGGGCACTGGTGC 2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACCGCGGGATACGTACGAGAG 2635 GGAAGTGCAACTTAAAGCCCCGC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGTCGACAGTTCGGTT AACCGAACTGTCGAGTGCCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCCTGAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACAGAGGCCATTACA TGTAGTGCTGAGAGGCCAGTACA 2641 CTGCTCAGCGGTGCTTTTCG CGAATACGGACCTCGGCCCGTATA 2642 GGAGATTGACTTCGCGTTTCACCA TGTGTAAACCACCGCTGAGCAG 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAACCATTCCGGCCTCAA TTGAGGCCCGAGATCTATCCA 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGAATTGTTCCACTCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCAGAGGACCACAACACA 2647 TTGGGAGCACGGTTACCGCCTCAA TTGTGCGGGATACCGTTCCAACA 2648 CAACGCGAGCCACACAA TTGTGCGGGTTACCACCACAACACAC 2649 AACGCTGAGCGCTCCACATTCCC CACAGGCGGTAACCCTCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACCACCAAGAGCA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACCACCAAGCAC 2650 CCGTCGTAGATCTGGAGGCTTCAC TGGAACGAGTGACCCTCCCGCGTT 2651 GGATGGCATGGGCACCGTTCACC TGGACGAGGTTACCGGTTACCGCTTC 2652 TCGCTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACCACGG 2651 TGGTCGTAGATATCCTTCACCC GGCGTGAAGGATATCTACGACGG 2652 TCGCTCGTAGATCTGCGCC GGCGTGAAGGATATCTACGACGG 2653 GGACCAATACCGTCCAAACAC GTGTTTTTGACCCACTCC 2654 TTGTTCAAGCATTAGCGCCCCA TGGCACCACAAGACCAC 2655 CCGCGGGAACTTATCCTTCACCC AGGCACCAAAGACCACACACAC 2656 TTGTTCAACCACTTCACCT AGGACAAGACACACCACAAGACCACACACACACACAC GTGTTTTTCAACCACACACACACACACACACACACACACA	10	2630	TACCGCTCGTCGCGATCACAATGA	TCATTGTGATCGCGACGAGCGGTA
2633 TGCAGGCTTCTCAACGGCTGGGAG CTCCCAGCCGTTGAGAAGCCTGCA 2634 CTCCGTACGTATCCCGCGTGATAC GTATCACGCGGGATACGTACGGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGCACTAACGG 2639 TATACGGGCCGAGGTCCGTATTCG CGATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGCCCATTG CAATACGGACCTCGGCCCGTATA 2641 CTGCTCAGCGGTGCTTTGAAAGACA TGTCTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACCACCGCTGAGCAG 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGACCATCTCGGCCTCAA TTGAGGGCCGAGACCTTCTGAACCAT 2645 TGGATTGGAACCAATCCCGCACAA TTGTGGGGCCGAGAACTTCTCAACCAT 2646 TGCTCTTGTGGACACAATCCCGCACAA TTGTGGGGCCGAGAACTTCCCACTC 2647 TTGGGAGCACGGTTACCGCCCTGTG CACAGGGCGATACCGTTCCAACACACACACACACACACAC		2631	CCGAGTGCGCGAAGTGTCTATGTG	CACATAGACACTTCGCGCACTCGG
2634 CTCCGTACGTATCCGCGTGATAC GTATCACGCGGGATACGTACGGAG 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACACAGACA TGTAGTGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCAGAGGCCCATTG CAATGGCCCTTCGTCACACGTTGG 2642 GGAGATTGACTTCGCGTTTCAACACA TGTCTTTCAAGCACCCCTGAGCCAG 2643 ATGGTTCAGAAGACA TGTCTTCAACCACGTTGGACCAG 2644 GAGTGGAGCTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCTCAA TTGAGGGCCGAAATGCTCCACTC 2645 TGGATTGGACCCACAA TTGTGCGGGAATTGCTCCACTC 2646 TCCTCTTGTGGTCACTCGACACA TTGTGCGGGAATGCTCCAATCCA 2646 TGCTCTTTGTGTCACTCGACACA TCCTCCGAGGAACTACCGTGCCCCCAA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCCCCAA 2648 CAACGCGAGCTAACCGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAACCACCAAGACCA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTAGCGCCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGAGTCACCGG 2651 GGATGGCACACATGCCCTCAA TTGAAGCCTCCAGAGCGTTCCCCAA 2652 TCGCTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGAGCCATCCC 2652 TCGCTCGTAGATCTGACCGC GGCGTGAAGGATATCACCAGGCA 2654 TTGTTCAGACTTACCTCCAAAACAC GTGTTTACAGTGCCCATGCCATCC 2655 CGGCGGTAACTTTCCCCCAAACACA GTGTTTTGACCAGGCGAAATACCGCGTCCAAACAACAC GTGTTTTTGACCAGAGCAAAAAAACAC GTGTTTTTGAACAAA 35 2655 CGGCGGTAACTTTTCCACTGTCCT AGGACAAGGATATCTCACACGC 2656 AAGACAATTACCGCGTCCAAAACAC GTGTTTTGACCGCCGGTAACACAAAAAACAC GTGTTTTGAACAAA 36 2656 CGGCGGTAACTTTTCCACTGTCCT AGGACAAGGATACCGCCG 2657 AGGTGAACATTACCGCCTCCAAAACAC GTGTTTTTGAACAAA 36 2656 CGGCGGTACCTTTTCCACTGTCCT AGGACAAGGATACCGCCCAAGCACTGTAACAAAAAAACAC GTGGTTAAAAAAAAAA		2632	GCACCAGTGCCCGATCAAAACGTA	TACGTTTTGATCGGGCACTGGTGC
15 2635 GGAAGTGCAACTTAAAGCCCCGCC GGCGGGGCTTTAAGTTGCACTTCC 2636 CGAACCGGCAGTCGATCGTTGCAT ATGCAACGATCGACTGCCGGTTCG 2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGCGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAAGCCATCTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACAGTTACCGCCTGTG CACAGGCGGTAACCGTCCCCAA 2648 CAACGCGAGCTAACGGTAGCTTC CACAGGCGGTAACCGTCCCCAA 2649 AACGCTGAGCGTTACCGCCTGTG CACAGGCGGTAACCGTCCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGACGCCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGGCTTCAA 2651 GGATGGCATGGGCACACTGTAACC GGTTACACTCCAGACGC 2652 TCGCTCGTAGATCTGAAGCGTTCAA 30 2650 CCGTCGTAGATCTGAAGCGCTCAAA 35 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGCTCACCTC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGACGG 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTTGGACCGCTTAACCACGCGAACCACAAGAGTACCGCCCAAACACAC 2654 TTGTTCAGACTTTCCACTCC AGGCCGCCCAAGTCTCCCCCCCAGACCTTAACCACGCGAACCACTTCCCCCCCAAACACAC GTGTTTTTTTTTT		2633	TGCAGGCTTCTCAACGGCTGGGAG	CTCCCAGCCGTTGAGAAGCCTGCA
2636 CGAACCGGCAGTCGATCGTTGCAT 2637 CCGTTAGTGGTCGACCGTTCGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGCGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATCCTCCACTC 2645 TGGATTGGAACCAATCCCGCACCAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCAGACAGACAA 2647 TTGGGAGCACCGTTACCGCCCTGTG CACAGGCGGTAACCCTTCCCAA 2648 CAACGCCGAGCTAACGGTAGTTTCG 2649 AACGCTGAGCGTTACCGCCTGTG CACAGGCGGTAACCGTTCCCAA 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGCGCTCAGCGGTT 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGCGCTCAGCGGT 2650 CCGTCGTAGATCTGGAGGGTTTCAA TTGAAGCCTCCAGAGCGCTCAGCGGT 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCATCC 2652 TCGCTCGTAGATATCCTTCACCC GGCTGAAGGATATCTACGACGG 2653 GGAGCAATACCGCGTCCCAA 35 CGGCGGTAACGGTTCACAC GGTTTTCGACCACACAAGAGCAA 36 CGGCGGTACTCTTTCACCT AGGCAGCGCCTAAGTCTCCCCACCTTCCCCACATTCCCCCCCC		2634	CTCCGTACGTATCCCGCGTGATAC	GTATCACGCGGGATACGTACGGAG
2637 CCGTTAGTGGTCGACAGTTCGGTT AACCGAACTGTCGACCACTAACGG 2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2639 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGAATGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCATACCGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGAGTCTACCGCGT 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGGCCCATCC 2652 TCGCTCGTAGATCTTCACCC GGCGTAACGTTGCCCATCC 2653 GGAGCAATACCGCGTCCAAACAC GTGTTTTGGACGAGCGA 2654 TTGTTCAGACTTAGGCGCTCCCA TGGGCAGCGCTAAGCACA 35 2655 CGGCGGTACTCTTTCCACTT AGGACAGTGGAAAGAATACCGCGTAACCAA 36 CGGCGTCAAACAC GTGTTTTGACGCC GCGTTAACAA 36 AGACGATTGCCCACGTCCCAAACAC GTGTTTTGGACGGCGTAATCTCCCCC 2654 TTGTTCAGACTTAGGCGCTCCCA TGGCAACGTGGAAAGAACAC 2655 CGGCGGTACTCTTTCCACTTTCCCCT AGGACAGTGGAAAGAATACCGCCG 2656 AAGACGATTGCCCACGTGCCCA TGGCCACGTGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACCGCTGGCAACGTTGCCACCT 2658 CTCGGCCCTGTACACGCAAACCCT ACCGCTTGCCACCT 2658 CTCGGCCCTGTACACGCAAACCC TCTGCCATTGCTCCCCCCCCCC	15	2635	GGAAGTGCAACTTAAAGCCCCGCC	GGCGGGGCTTTAAGTTGCACTTCC
2638 TCAGGCTACGCCCTCAGCACTACA TGTAGTGCTGAGGGCGTAGCCTGA 2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATTA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCAACCTGTCGACCAG 2643 ATGGTTCAGAAGGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCCGAGAATCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAACCAT 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCCGTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATCTGCAGCG GGCGTAAGGATATCTACGACGG 2653 GGAGCAATACCGCGTCCCAAAACAC GTGTTTTGGACGACGAACTACCGTTGACCA 2654 TTGTTCAGACTTAGGCGCTCCCA TGGGCAGCGCTAAGTCTGACAA 35 2655 CGGCGGTACTCTTTCCACTC AGGACAGCGCCTAAGTCTGAACAA 36 2656 AAGACGATTGCCCACGTGCCCA TGGCCACGGGCAACAACACACACACAACACA		2636	CGAACCGGCAGTCGATCGTTGCAT	ATGCAACGATCGACTGCCGGTTCG
2639 TATACGGGCCGAGGTCCGTATTCG CGAATACGGACCTCGGCCCGTATA 2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTCTCGAACCAT 2644 GAGTGGAGCATTCTCGGCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGCAGACCTTCCAACCAT 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGGTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATCTGAGGCCCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTCCCA 2655 CGGCGGTACCTTTCACCT AGGACAGTGGAACACACA 35 CGGCGGTACCTTTCACCT AGGACAGTGGAACACACAC 2656 AAGACCATTAGGCGCTCCCAAACACC GTGTTTTGGACGCGGTATTGCTCC 2657 AGGTGACCTTTCACCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACCATTGCCCACGTCCCAAACACC GTGTTTTGGACGCGCTCACCT 2657 AGGTGAGCGCAGCATATTGCAGT ACTGGACAGTGGCAATCGTCTT 2657 AGGTGAGCGCAGCATATTGCAGT ACTGCACTTGCCCCCGCCCACCT 2658 CTCGGGCCTGACACAAACCC TCTGGCACGTGCCCACCT 2659 TGCGCCTTACAGCAAAAGCCGT ACTGCATATGCCTGCGCCCACCT 2659 TGCGCCTTACAGCAAAAGCCGT ACTGCATAAGGCAGCACATAGGCCCGAG 2659 TGCGCCTTACAGCAAAAGCCGT ACTGCATAAGGCAGCACATAGGCCCGAG 2659 TGCGCCTTACAGCAAAAGCCGT ACTGCATAAGGCAGCACATAGGCCCGAA 40 CCATCCTTTGCCTTTGAGGGTAAGG CCTTACCCTCAAAGGCAAAAGGAGTAGC		2637	CCGTTAGTGGTCGACAGTTCGGTT	AACCGAACTGTCGACCACTAACGG
2640 CCAACGTGTGACGAAGGGCCATTG CAATGGCCCTTCGTCACACGTTGG 2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGCTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGCGACACACAGAGGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTCCCAAACACA GTGGTTTTTGGACGCGTAACAA 35 CGCGCGGTACTGTTCACCT AGGACAGTGGAAAGAATACCGCGCG 2656 AAGACCATTGCCCACTTCCCC TGGGCACGCCCTAAGTCTGAACAA 36 AGACCATTGCCCACGTCCCAAACACC CTCTGGCACGTGGAACAACACAC 37 AGGTGAGCGCACACTGTCCCAAACACAC GTGTTTTGGACGCCGCGCAACACACACACACACACACACA		2638	TCAGGCTACGCCCTCAGCACTACA	TGTAGTGCTGAGGGGGTAGCCTGA
2641 CTGCTCAGCGGTGCTTGAAAGACA TGTCTTTCAAGCACCGCTGAGCAG 2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATCTTCACGCC GGCGTGAAGGATATCTACGACGGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAAAACAC GTGTTTTGGACGCCTTAACCACACACACGCGCGTAACCGTTTCCACTGCCACTTCCCCCCCC		2639	TATACGGGCCGAGGTCCGTATTCG	CGAATACGGACCTCGGCCCGTATA
2642 GGAGATTGACTTCGCGTTTCACCA TGGTGAAACGCGAAGTCAATCTCC 2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACCGCGTAGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGCACAA 35 CGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCTTTACCGAGCCCAG 2659 TGCGCGCTACAGCAAAGCCGT ACGCCTTTACAGGCCCCAG 2659 TGCGCGCTACAGCAAAGCCGT ACGCCTTCAAGGCACAAAGGCCCCAAGCCCAAGCCCAAAGCCGT ACGCCTTTACCAAGGCCCCAAGCCCCAAGCCCAAAGCCGT ACGCCTTTACCAAGGCCCCAAGCCCCAAGCCCAAAGCCGT ACGCCTTTACCACACAAACCCT ACGCCTTTACCACCTTCACAGCCAAAACCCAAAACCCGT ACGCCTTTACCACCACAAAACCCGT ACGCCTTTACCACCTCAAGGCCCCAAGCCCAAAACCCGT ACGCCTTTACCCTCAAGGCCACAAAAAAACCCGT ACGCCTTTACCCTTCAAGGCAAAAAAAAAA	20	2640	CCAACGTGTGACGAAGGGCCATTG	CAATGGCCCTTCGTCACACGTTGG
2643 ATGGTTCAGAAGGTTCGTCGGGTT AACCCGACGAACCTTCTGAACCAT 2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACCGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGAGTCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGGCGTAACTCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGCCT AGGACAGTGGAAAGAGATACCGCCG 2656 AAGACGATTGCCCACGTGCCAAGC CTCTGGCACGTGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGACAGCCGT ACTGCAATATGCCTGCGCTCACCT 2659 TGCGCCCTAGTCCCATGATC GATCATAGGCAGCACA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCCAAAGGATGGCAAAGGATGGCCCAA		2641	CTGCTCAGCGGTGCTTGAAAGACA	TGTCTTTCAAGCACCGCTGAGCAG
2644 GAGTGGAGCATTCTCGGCCCTCAA TTGAGGGCCGAGAATGCTCCACTC 2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACACAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGACGGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTCCCA 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGACAC 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGATACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCCTTTTCCTGCGCCCAGG 2659 TGCGCGCTAGTGCCCTATGATC GATCATAGGCAGCACAAGGCCCAAAGGATGG 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2642	GGAGATTGACTTCGCGTTTCACCA	TGGTGAAACGCGAAGTCAATCTCC
2645 TGGATTGGAACCAATCCCGCACAA TTGTGCGGGATTGGTTCCAATCCA 2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACTGCAATATGCCTGCGCAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAGGCCCAAAGGATGG 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2643	ATGGTTCAGAAGGTTCGTCGGGTT	AACCCGACGAACCTTCTGAACCAT
2646 TGCTCTTGTGGTCACTCGAGAGGA TCCTCTCGAGTGACCACAAGAGCA 2647 TTGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCCGA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCACAAGGATGG 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCACAAGGATGG		2644	GAGTGGAGCATTCTCGGCCCTCAA	TTGAGGGCCGAGAATGCTCCACTC
TIGGGAGCACGGTTACCGCCTGTG CACAGGCGGTAACCGTGCTCCCAA 2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCTTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAAGGCCCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG	25	2645	TGGATTGGAACCAATCCCGCACAA	TTGTGCGGGATTGGTTCCAATCCA
2648 CAACGCGAGCTAACGGTAGTTTCG CGAAACTACCGTTAGCTCGCGTTG 2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 30 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAAGGCCCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2646	TGCTCTTGTGGTCACTCGAGAGGA	TCCTCTCGAGTGACCACAAGAGCA
2649 AACGCTGAGCGCTCACCTTCACCT AGGTGAAGGTGAGCGCTCAGCGTT 2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACATAGCGCGCA 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2647	TTGGGAGCACGGTTACCGCCTGTG	CACAGGCGGTAACCGTGCTCCCAA
2650 CCGTCGTAGATCTGGAGGCTTCAA TTGAAGCCTCCAGATCTACGACGG 2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATGCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGACAGAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAAGGATGG 40 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2648	CAACGCGAGCTAACGGTAGTTTCG	CGAAACTACCGTTAGCTCGCGTTG
2651 GGATGGCATGGGCACACTGTAACC GGTTACAGTGTGCCCATCC 2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2649	AACGCTGAGCGCTCACCTTCACCT	AGGTGAAGGTGAGCGCTCAGCGTT
2652 TCGCTCGTAGATATCCTTCACGCC GGCGTGAAGGATATCTACGAGCGA 2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACAAGGCCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG	30	2650	CCGTCGTAGATCTGGAGGCTTCAA	TTGAAGCCTCCAGATCTACGACGG
2653 GGAGCAATACCGCGTCCAAAACAC GTGTTTTGGACGCGGTATTGCTCC 2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 35 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2651	GGATGGCATGGGCACACTGTAACC	GGTTACAGTGTGCCCATGCCATCC
2654 TTGTTCAGACTTAGGCGCTGCCCA TGGGCAGCGCCTAAGTCTGAACAA 2655 CGGCGGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2652	TCGCTCGTAGATATCCTTCACGCC	GGCGTGAAGGATATCTACGAGCGA
2655 CGGCGTACTCTTTCCACTGTCCT AGGACAGTGGAAAGAGTACCGCCG 2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACATAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2653	GGAGCAATACCGCGTCCAAAACAC	GTGTTTTGGACGCGGTATTGCTCC
2656 AAGACGATTGCCCACGTGCCAGAG CTCTGGCACGTGGGCAATCGTCTT 2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2654	TTGTTCAGACTTAGGCGCTGCCCA	TGGGCAGCGCCTAAGTCTGAACAA
2657 AGGTGAGCGCAGGCATATTGCAGT ACTGCAATATGCCTGCGCTCACCT 2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG	35	2655	CGGCGGTACTCTTTCCACTGTCCT	AGGACAGTGGAAAGAGTACCGCCG
2658 CTCGGGCCTGTACAGCAAAGCCGT ACGGCTTTGCTGTACAGGCCCGAG 2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2656	AAGACGATTGCCCACGTGCCAGAG	CTCTGGCACGTGGGCAATCGTCTT
2659 TGCGCGCTAGTGCTGCCTATGATC GATCATAGGCAGCACTAGCGCGCA 40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2657	AGGTGAGCGCAGGCATATTGCAGT	ACTGCAATATGCCTGCGCTCACCT
40 2660 CCATCCTTTGCCTTGAGGGTAAGG CCTTACCCTCAAGGCAAAGGATGG		2658	CTCGGGCCTGTACAGCAAAGCCGT	ACGGCTTTGCTGTACAGGCCCGAG
		2659	TGCGCGCTAGTGCTGCCTATGATC	GATCATAGGCAGCACTAGCGCGCA
2661 AACAACAGCGTAAGACGGACAGGG CCCTGTCCGTCTTACGCTGTTGTT	40	2660	CCATCCTTTGCCTTGAGGGTAAGG	CCTTACCCTCAAGGCAAAGGATGG .
		2661	AACAACAGCGTAAGACGGACAGGG	CCCTGTCCGTCTTACGCTGTTGTT

	2662	GAGGCGGTCGAGGCTCACAATATT	AATATTGTGAGCCTCGACCGCCTC
	2663	CGAGGTTAGACGCCTATGACCCAC	GTGGGTCATAGGCGTCTAACCTCG
	2664	AACTTGCTATACCGGGCGCAGCAA	TTGCTGCGCCCGGTATAGCAAGTT
	2665	CGCGGTGAATCGCATACACAGCGC	GCGCTGTGTATGCGATTCACCGCG
5	2666	CACCGAATCAAGCCATATGGCTCT	AGAGCCATATGGCTTGATTCGGTG
	2667	TTCACAGCTATCCTAGGCGCTGCC	GGCAGCGÇCTAGGATAGCTGTGAA
	2668	AGAAGCGCGAAGTGTACCCCGCAT	ATGCGGGGTACACTTCGCGCTTCT
	2669	TGCATGGTATTTGCGTGCGATAGG	CCTATCGCACGCAAATACCATGCA
	2670	GGCCGGACCTATGTGAGATGGAAA	TTTCCATCTCACATAGGTCCGGCC
10	2671	TCAACCTGAGTCCTGATCCCAAGC	GCTTGGGATCAGGACTCAGGTTGA
	2672	TGCTTACCGTTCAGGGAGGCGTGT	ACACGCCTCCCTGAACGGTAAGCA
	2673	GGAGAGTTACGCGATGAGCCACCT	AGGTGGCTCATCGCGTAACTCTCC
	2674	CGGTATGCGGTGTACAGCTTTCGT	ACGAAAGCTGTACACCGCATACCG
	2675	GTAAGCCGGGTCTCGTGTCGCCGT	ACGGCGACACGAGACCCGGCTTAC
15	2676	GCGTAGTGCGAACGCCCCGACCTA	TAGGTCGGGGCGTTCGCACTACGC
	2677	TCCTCGCGGCTTACGTCAAATTCG	CGAATTTGACGTAAGCCGCGAGGA
	2678	CGACGTTCAAAGCGGGAGAGGAGG	CCTCCTCCCGCTTTGAACGTCG
	2679	CGAGGCACCCCGACATGTTGAGAT	ATCTCAACATGTCGGGGTGCCTCG
	2680	CTATTTCGTGCCGCGTCGGACAAG	CTTGTCCGACGCGCACGAAATAG
20	2681	GGCTGCTCAGTGACGTGTCAACTG	CAGTTGACACGTCACTGAGCAGCC
	2682	ATCACTCGTGCGTACCCGACCGTC	GACGGTCGGGTACGCACGAGTGAT
	2683	CGAGATGTCCTATACCGTGGCGAA	TTCGCCACGGTATAGGACATCTCG
	2684	TCACACCGAGCCCCATAAATGAAA	TTTCATTTATGGGGCTCGGTGTGA
	2685	AGCTACGTGTCTCGAGCAAAAGCG	CGCTTTTGCTCGAGACACGTAGCT
25	2686	TCAGGGCGAGTTTTTTCAGCGGCG	CGCCGCTGAAAAAACTCGCCCTGA
	2687	TTCGTTCTGTCTATTTTTGCCCCG	CGGGGCAAAAATAGACAGAACGAA
	2688	TGGTATGCCCAGGATCCAGCCTAC	GTAGGCTGGATCCTGGGCATACCA
	2689	TCTCAGTCGTTAGGCCAATGGCGG	CCGCCATTGGCCTAACGACTGAGA
	2690	AAAGATCACCGTGGAGCGATCGGC	GCCGATCGCTCCACGGTGATCTTT
30	2691	TAGCAGGACTTGCACTCGTGATGC	GCATCACGAGTGCAAGTCCTGCTA
	2692	TGCCCACGGTACCGTTCAAGGCTG	CAGCCTTGAACGGTACCGTGGGCA
	2693	TGAGGTGCGTCGCCCTAAGTAATG	CATTACTTAGGGCGACGCACCTCA
	2694	AGCAAGGGTTACAACCCGCAACCC	GGGTTGCGGGTTGTAACCCTTGCT
	2695	CACAACAGCCAGTATTCGCCACAA	TTGTGGCGAATACTGGCTGTTGTG
35	2696	GGCAACACCATACTCGACGAGCTC	GAGCTCGTCGAGTATGGTGTTGCC
	2697	GGCTGGATTGACAATTTAGCCCCT	AGGGGCTAAATTGTCAATCCAGCC
	2698	CGTGAGAAATGCTACACGCGTCAG	CTGACGCGTGTAGCATTTCTCACG
	2699	CGCATCTGCCCCATTTTGTTCCTT	AAGGAACAAAATGGGGCAGATGCG
	2700	GTCGGCCTAGTCGGCAGAACGGTG	CACCGTTCTGCCGACTAGGCCGAC
40	2701	TCCCTCACCTTCCAAAAATGTGCT	AGCACATTTTTGGAAGGTGAGGGA
	2702	GGGCAAGAACATGAGAACAGACCG	CGGTCTGTTCTCATGTTCTTGCCC

	2703	TCGTCCTGGTACGACTTGCGTAGA	TCTACGCAAGTCGTACCAGGACGA
	2704	TGGCGGTTGCATGTGATGATCAAG	CTTGATCATCACATGCAACCGCCA
	2705	CCTCGCGTGAGTAAAAACCGTCCG	CGGACGGTTTTTACTCACGCGAGG
	2706	ACTTCCGCCACAGAATGCGGCCAG	CTGGCCGCATTCTGTGGCGGAAGT
5	2707	GTGTAGAGCTTGGGTAGCCCCGTT	AACGGGGCTACCCAAGCTCTACAC
	2708	CGCAGCATCCGAGTTAACACACAT	ATGTGTGTTAACTCGGATGCTGCG
	2709	ATGAGCCTGGGATGATCCGCTGGT	ACCAGCGGATCATCCCAGGCTCAT
	2710	CCTGGCATAAGTGCCGACATGCTT	AAGCATGTCGGCACTTATGCCAGG
	2711	GCGCATGAAAAACTACGACGGACG	CGTCCGTCGTAGTTTTTCATGCGC
10	2712	AAAGATGGGTCGATGGGAGCGTCT	AGACGCTCCCATCGACCCATCTTT
	2713	ATCCTGGGCACGAGCGGATTTATC	GATAAATCCGCTCGTGCCCAGGAT
	2714	TCACCGCATTTGATAGTTACGCGA	TCGCGTAACTATCAAATGCGGTGA
	2715	TGGTGGAGCGGACTCTGGTGTTAT	ATAACACCAGAGTCCGCTCCACCA
	2716	CACAATGAAAAAACAATGGCCCCA	TGGGCCATTGTTTTTCATTGTG
15	2717	CCTTGCCGCGCTTGTGGTACCAAC	GTTGGTACCACAAGCGCGGCAAGG
	2718	CCGAGACCTTTGCCACACGAAAGA	TCTTTCGTGTGGCAAAGGTCTCGG
	2719	ACCGCGGTGTACACCTGAGCAGGC	GCCTGCTCAGGTGTACACCGCGGT
	2720	GTCGTACGCTTACCGCAGCGGAGA	TCTCCGCTGCGGTAAGCGTACGAC
	2721	TCGTAATTTGACCGACACACGCAG	CTGCGTGTGTCGGTCAAATTACGA
20	2722	CCTAGACGGATACCCTGAGCGGAA	TTCCGCTCAGGGTATCCGTCTAGG
	2723	AAGCGACAGCAGAGGTTCAGTCGC	GCGACTGAACCTCTGCTGTCGCTT
	2724	GCGTGGACGATATCACCTGGGCGT	ACGCCCAGGTGATATCGTCCACGC
	2725	GTCGGAGAGCCAGTGGTACGGCTT	AAGCCGTACCACTGGCTCTCCGAC
	2726	TATCCGCACGGTATAGCAGTTGCA	TGCAACTGCTATACCGTGCGGATA
25	2727	CATCAGTCGGGCTACCTTCAGCCT	AGGCTGAAGGTAGCCCGACTGATG
	2728	CGGATTAATGCCTTTCCTCGGAAT	ATTCCGAGGAAAGGCATTAATCCG
	2729	TTCGTCGTGCCAAGCTAATGCAAG	CTTGCATTAGCTTGGCACGACGAA
	2730	GGCCGAGACCACCAGTAACAGGTT	AACCTGTTACTGGTGGTCTCGGCC
	2731	CGCGCGGAAGCATTGAAGTTACTA	TAGTAACTTCAATGCTTCCGCGCG
30	2732	TCGGCTTACCGCTTCGTCTGACTT	AAGTCAGACGAAGCGGTAAGCCGA
	2733	GACTGACGTCAAGGCAAGCACAC	GTGTTGCTTGCCTTGACGTCAGTC
	2734	AGAGGAAGGAGGGCTGTGACAGA	TCTGTCACAGCCCCTCCTTCCTCT
	2735	TTCCAATGCGAGAGATGGCAGGCT	AGCCTGCCATCTCTCGCATTGGAA
	2736	AAATGGGGTGCTTCGAATATGTCG	CGACATATTCGAAGCACCCCATTT
35	2737	GCTGTCGGATTATTGCACGCCTGT	ACAGGCGTGCAATAATCCGACAGC
	2738	CCGACTTTGTTTATGTTGCTGGCG	CGCCAGCAACATAAACAAAGTCGG
	2739	GCTGCGATATAACCCGTCCCAGAA	TTCTGGGACGGGTTATATCGCAGC
	2740	TGAGCTGGGCGTCAACTCCGAAGA	TCTTCGGAGTTGACGCCCAGCTCA
	2741	CCCAAGCATCCTAAATCTCCCTCG	CGAGGGAGATTTAGGATGCTTGGG
40	2742	CGACAGCAATCCACATGCATTCTT	AAGAATGCATGTGGATTGCTGTCG
	2743	TGAATGGTCGGGAAACCAATGCAT	ATGCATTGGTTTCCCGACCATTCA

	2744	CTTTGCATCGAGATGCGGGGTAGC	GCTACCCGCATCTCGATGCAAAG
	2745	TCCATTTCCTCCGCAACTCTCAGG	CCTGAGAGTTGCGGAGGAAATGGA
	2746	CCACTACGCCATCCTGACAACGAG	CTCGTTGTCAGGATGGCGTAGTGG
	2747	TAGTAAGGCCAATGTACGCCGTCC	GGACGGCGTACATTGGCCTTACTA
5	2748	GTCATGCATATGGGGCCTGTTTTC	GAAAACAGGCCCCATATGCATGAC
	2749	ACCGGTAGACGTTAGCGGGTTCAA	TTGAACCCGCTAACGTCTACCGGT
	2750	TTGGTTCAAACGGCCACACGTCTC	GAGACGTGTGGCCGTTTGAACCAA
	2751	GACACAAACTGCAAGGGAGGCATG	CATGCCTCCCTTGCAGTTTGTGTC
	2752	CTCGAGCGCTGTCATCATATCGGC	GCCGATATGATGACAGCGCTCGAG
10	2753	GCGGCTAAGGCACAAGTAGACGTG	CACGTCTACTTGTGCCTTAGCCGC
	2754	ACAGCCTAAATGGCGCAAGACCGA	TCGGTCTTGCGCCATTTAGGCTGT
v	2755	CCGATGATGTAAGCCGTCGGCCCT	AGGGCCGACGGCTTACATCATCGG
•	2756	AGGAGCAAACAAACGCCAGTGACA	TGTCACTGGCGTTTGTTTGCTCCT
	2757	ACGAATTGGGTAGCCGGACTGAGA	TCTCAGTCCGGCTACCCAATTCGT
15	2758	CTGTTCCAGTTCGGCAAGTGCGGC	GCCGCACTTGCCGAACTGGAACAG
	2759	AGACAAGTCAGGAACGCGTTTCCG	CGGAAACGCGTTCCTGACTTGTCT
	2760	AGACGACGCCAGATACGCTGCCA	TGGCAGCGTATCTGGCCGTCGTCT
	2761	AGGAAGCGCTTCTTCCGGTTCTTC	GAAGAACCGGAAGAAGCGCTTCCT
	2762	GATGGACGCAAACACAAGGCGATC	GATCGCCTTGTGTTTGCGTCCATC
20	2763	CGCATAGCAGTCTCCGCATCTTGG	CCAAGATGCGGAGACTGCTATGCG
	2764	TGGTTCCGGTGTGCAACAGATAAA	TTTATCTGTTGCACACCGGAACCA
	2765	CCGTATGCCACCTCCAGAACTCAA	TTGAGTTCTGGAGGTGGCATACGG
	2766	GTAAAGGAACCCCTCGGGAATCCT	AGGATTCCCGAGGGGTTCCTTTAC
	2767	GCCTGATGCTCGTTAAAATTGCGT	ACGCAATTTTAACGAGCATCAGGC
25	2768	TCGCACTTGGACCATGAGATCTGA	TCAGATCTCATGGTCCAAGTGCGA
	2769	TTCTCAGGCTGGGCAAGAGTCTGT	ACAGACTCTTGCCCAGCCTGAGAA
	2770	CGGACCTGGGGATGCTGGGATTAC	GTAATCCCAGCATCCCCAGGTCCG
	2771	TCGAGCCGATAGGGTTGGCATTGC	GCAATGCCAACCCTATCGGCTCGA
	2772	TACGTGTGTCCCACACGCGTCGTA	TACGACGTGTGTGGGACACACGTA
30	2773	TGTGAAATTCGCGTTTCGCATCTT	AAGATGCGAAACGCGAATTTCACA
	2774	TTGCAATGCTCCAAAAAAACTGCC	GGCAGTTTTTTTGGAGCATTGCAA
	2775	TCTCATCATGGCTGTGGCTTTGAC	GTCAAAGCCACAGCCATGATGAGA
	2776	ATTACACCGCTTGGTTTGGAGTGG	CCACTCCAAACCAAGCGGTGTAAT
	2777	GCCGTGCAATGCACAGAGTTCAAG	CTTGAACTCTGTGCATTGCACGGC
35	2778	GAGATCAGACCGTGTCGGATGCTG	CAGCATCCGACACGGTCTGATCTC
	2779	CCACCTATCTTGATGCGACCTGGA	TCCAGGTCGCATCAAGATAGGTGG
	2780	CCGATCGCCGTTTATGTCTACGGC	GCCGTAGACATAAACGGCGATCGG
	2781	GAAAATCACGGTAAGGCACGTTCG	CGAACGTGCCTTACCGTGATTTTC
	2782	GATTCTCGCTTCCCAACGAGCATA	TATGCTCGTTGGGAAGCGAGAATC
40	2783	TGTGAAATGTGGCAGTCTCAGGGA	TCCCTGAGACTGCCACATTTCACA
	2784	CGATCCTGCGTGCCTCATCCAGGC	GCCTGGATGAGGCACGCAGGATCG

	2785	CCCTCAAGTGGGCGAGGGTTTTCA	TGAAAACCCTCGCCCACTTGAGGG
	2786	TCGCCTCGCCTCGTGTGTAGAAG	CTTCTACACACGAGGCGAGGCGA
	2787	TTCGCTTTCAGCTCATTGGAACGA	TCGTTCCAATGAGCTGAAAGCGAA
	2788	TGTAATCTGAACAAGCGGACCCCT	AGGGGTCCGCTTGTTCAGATTACA
5	2789	TGGAATCTTTCTTGAGCGCCGTGA	TCACGGCGCTCAAGAAGATTCCA
	2790	GGCTTTCATCTTTAACCGCTCGGT	ACCGAGCGGTTAAAGATGAAAGCC
	2791	TGATCCGAGCCATTCCTAATCACC	GGTGATTAGGAATGGCTCGGATCA
	2792	TGGTAGGCGTGATGTCCTACGCAA	TTGCGTAGGACATCACGCCTACCA
	2793	AGGCATCGGTAAGAAGGCCCTATG	CATAGGGCCTTCTTACCGATGCCT
10	2794	CGCCGCGAGACGATCCTTATTATT	AATAATAAGGATCGTCTCGCGGCG
	2795	ACATGGACGAAATTACGCCCGTCA	TGACGGCGTAATTTCGTCCATGT
	2796	ACAGAAAGGTGGGGAGCCTAGCGT	ACGCTAGGCTCCCCACCTTTCTGT
	2797	AGGCTTGCGAACATGGGTAGTGAC	GTCACTACCCATGTTCGCAAGCCT
	2798	GCGTGGGCCTTGCTCCTGTTTAAC	GTTAAACAGGAGCAAGGCCCACGC
15	2799	GAATACAGAGCGTCCGATGTGCCC	GGGCACATCGGACGCTCTGTATTC
	. 2800	GCGACTCTGTAGGGAGCGCGATAT	ATATCGCGCTCCCTACAGAGTCGC
•	2801	GGTGCACTCATATGCGTCGCATCG	CGATGCGACGCATATGAGTGCACC
	2802	CTGTCCCACGGGGAAACCTTACTT	AAGTAAGGTTTCCCCGTGGGACAG
	2803	TGGCTTACTGTCGCAATCTAGGCC	GGCCTAGATTGCGACAGTAAGCCA
20	2804	GCACTCAGTTTCCGGTATCCCATG	CATGGGATACCGGAAACTGAGTGC
	2805	GTGAGGTTCACGTAAGGCACAGCG	CGCTGTGCCTTACGTGAACCTCAC
	2806	GTAACGCCTTTGTCCCCAGCGTAT	ATACGCTGGGGACAAAGGCGTTAC
	2807	GCATTGATATGGTCGGTCTCGCCT	AGGCGAGACCGACCATATCAATGC
	2808	GTGGGTTTAAGTGACAACGGACGC	GCGTCCGTTGTCACTTAAACCCAC
25	2809	CAAAACCCTGCCGAAGATGTTGGT	ACCAACATCTTCGGCAGGGTTTTG
	2810	TCCGAGGAGACTGAACCTGCTACC	GGTAGCAGGTTCAGTCTCCTCGGA
	2811	CGGGGAAGAACGGATTCGCTAAAT	ATTTAGCGAATCCGTTCTTCCCCG
	2812.	TGGTTAGCTTATGTCGGAGCCACC	GGTGGCTCCGACATAAGCTAACCA
	2813	ACGCGTCGATGAACTAAGGCTCGC	GCGAGCCTTAGTTCATCGACGCGT
30	2814	TTCTCCTGACGAGTACGCAGTGGG	CCCACTGCGTACTCGTCAGGAGAA
	2815	TCCGCGGTTGCCGGTTTGTTAGGA	TCCTAACAAACCGGCAACCGCGGA
	2816	TGGCGCATCTTTCAGGGGATGATG	CATCATCCCCTGAAAGATGCGCCA
	2817	TCTTTGGTCCTTGGTGTTTACGCG	CGCGTAAACACCAAGGACCAAAGA
	2818	GAGAACTCCCGCTACAAAGGAGCC	GGCTCCTTTGTAGCGGGAGTTCTC
35	2819	TTAACGTGGGAACCGTTGGTGAAT	ATTCACCAACGGTTCCCACGTTAA
	2820	GGGACACCATCCTTGGGTTTGTTA	TAACAAACCCAAGGATGGTGTCCC
	2821	CAACAAACCGCCTTGGGAAGTGAC	GTCACTTCCCAAGGCGGTTTGTTG
	2822	TTGAAGGCCACCGATACTGATCGC	GCGATCAGTATCGGTGGCCTTCAA
	2823	TCGTAATAGAACTGCGCCCAATGC	GCATTGGGCGCAGTTCTATTACGA
40	2824	GGCACGTTGCCCAAGTTGGATCCA	TGGATCCAACTTGGGCAACGTGCC
	2825	ACATAGCTTGGCCGGACACCCACC	GGTGGGTGTCCGGCCAAGCTATGT
	,		

	2826	CTTGCCGCCTTGCGAGTGGCTAAA	TTTAGCCACTCGCAAGGCGGCAAG
	2827	AATGGCTCGCCAGATACCGCAGCC	GGCTGCGGTATCTGGCGAGCCATT
	2828	CAAAAGGCGTGTCCGAACTTTTCA	TGAAAAGTTCGGACACGCCTTTTG
	2829	CGTCCACTTAGGTGGAGATACGCC	GGCGTATCTCCACCTAAGTGGACG
5	2830	GAGCCTCTTCGTCCTGAAGACCGA	TCGGTCTTCAGGACGAAGAGGCTC
	2831	AACATCAAGCGGCAATCTCCCTTC	GAAGGGAGATTGCCGCTTGATGTT
	2832	CGTCCTGACATTATTAGCGCGTGC	GCACGCGCTAATAATGTCAGGACG
	2833	TGTGCAGACCCTAACGACCTACGG	CCGTAGGTCGTTAGGGTCTGCACA
	2834	TTAGGTCGGCCTAGACCCTCCGTA	TACGGAGGGTCTAGGCCGACCTAA
10	2835	TCACATCGCTTAACTGAGCGCATT	AATGCGCTCAGTTAAGCGATGTGA
	2836	AGACCTTCCCACGCGAGATGCTAC	GTAGCATCTCGCGTGGGAAGGTCT
	2837	TTCTTGCCAAAATGTGTCCAACCA	TGGTTGGACACATTTTGGCAAGAA
	2838	CAGTTTCATTGCAGCGAAAGCAA	TTGCTTTCGCTGCAATGAAAACTG
	2839	GTGCCGATCCCGAGACAAGTTCCG	CGGAACTTGTCTCGGGATCGGCAC
15	2840	CATCCGGCCTCAGTGATTCTTACC	GGTAAGAATCACTGAGGCCGGATG
	2841	TGCTGGAAGCCACAAACGTTACGT	ACGTAACGTTTGTGGCTTCCAGCA
	2842	GAACGGCCAGGGGACAACTATCGT	ACGATAGTTGTCCCCTGGCCGTTC
	2843	TCATCTAGGTCGAAGCGCAAGACA	TGTCTTGCGCTTCGACCTAGATGA
	. 2844	TTTGGTTACCAGCACCCATGTTCC	GGAACATGGGTGCTGGTAACCAAA
20	2845	GACAACAGTCTGTCCGCCACATCC	GGATGTGGCGGACAGACTGTTGTC
	2846	GCCAACAGGAGATGCTTGCACCAT	ATGGTGCAAGCATCTCCTGTTGGC
	2847	CTAAGGACGCATTGACCCCTGAAC	GTTCAGGGGTCAATGCGTCCTTAG
	2848	GGTCGCGTAGTGAGTCAGAGGCGT	ACGCCTCTGACTCACTACGCGACC
	2849	TTACCTCATGAACCCTTCGCGGCG	CGCCGCGAAGGGTTCATGAGGTAA
25	2850	TATACAGCATCGTCGCCGGGCATA	TATGCCCGGCGACGATGCTGTATA
	2851	GCTTAGTGGCGTCTTCGTCGTAGG	CCTACGACGAAGACGCCACTAAGC
	2852	TGCACTCCGCAACCTTGTGAAATC	GATTTCACAAGGTTGCGGAGTGCA
	2853	AACCCGTCATGCCGACTCCATCTA	TAGATGGAGTCGGCATGACGGGTT
	2854	AGCACTAGTGGCGTGCGACTTTGC	GCAAAGTCGCACGCCACTAGTGCT
30	2855	TAAAAAGTGCCGCTAACCACGGAG	CTCCGTGGTTAGCGGCACTTTTTA
	· 2856	CGCGGAATATTTGTCGTCCGATTC	GAATCGGACGACAAATATTCCGCG
	2857	TTCTGCTATGCGTATGGGGGCCCG	CGGGCCCCCATACGCATAGCAGAA
	2858	CGAACTACTGCGTCAGCCTCTCCC	GGGAGAGGCTGACGCAGTAGTTCG
	2859	AGATGACGAATTAGCGGGGTTGGG	CCCAACCCCGCTAATTCGTCATCT
35	2860	AATAACAGTGGCAATGAGCGGGAA	TTCCCGCTCATTGCCACTGTTATT
	2861	ATATGTTGATTCCCGTGCTGCACA	TGTGCAGCACGGGAATCAACATAT
	2862	AGAGTGGGCACCACCAGGCAGACA	TGTCTGCCTGGTGGTGCCCACTCT
	2863	AGGCCTGGGTTTCTGCGTCTTAGT	ACTAAGACGCAGAAACCCAGGCCT
	2864	CGGACGTGACAACGGACATACCC	GGGTATGTCCGTTTGTCACGTCCG
40	2865	CAAGTGTTTCGGCCCAACTCTCGA	TCGAGAGTTGGGCCGAAACACTTG
	2866	GAACCCTTATCGGGATAGGCCCAA	TTGGGCCTATCCCGATAAGGGTTC

			·
	2867	CAGGACGATACCAAGCAGAACGCC	GGCGTTCTGCTTGGTATCGTCCTG
	2868	GCGTCTTGTGATTCTGCCCTAACC	GGTTAGGGCAGAATCACAAGACGC
	2869	AAACAACCATCAATGTCGGGTCCA	TGGACCCGACATTGATGGTTGTTT
	2870	TGTAAAGACCAGTTGGCGGCTCTC	GAGAGCCGCCAACTGGTCTTTACA
5	2871	GCGTTTTGACTCGGTGGTCAGTCC	GGACTGACCACCGAGTCAAAACGC
	2872	TGTATGGAGGCACGGCAAAGTCTT	AAGACTTTGCCGTGCCTCCATACA
	2873	TTACCTAGGTTCCCGCTGACACGC	GCGTGTCAGCGGGAACCTAGGTAA
	2874	CGGCTCGTGGGAATCCTCTGAAGA	TCTTCAGAGGATTCCCACGAGCCG
	2875	CCGGCTCGGGCATTTCTTGGACCT	AGGTCCAAGAAATGCCCGAGCCGG
10	2876	CAACGATGGAATTGTCTCCTTGGG	CCCAAGGAGACAATTCCATCGTTG
	2877	CGGGCTATTATCGGGATTATGGGG	CCCCATAATCCCGATAATAGCCCG
	2878	ACGTACCTGAAGATGCAACGGCGG	CCGCCGTTGCATCTTCAGGTACGT
	2879	CATGGTGCAGCACGCACAAGTAAC	GTTACTTGTGCGTGCTGCACCATG
	2880	CGTCGATATGTCGGGCTATTGCCT	AGGCAATAGCCCGACATATCGACG
15	2881	AAATGCAGGGTTAAGAGGAGGCCC	GGGCCTCCTCTTAACCCTGCATTT
	2882	TGCAAGGACTGATTCTCCCGCTGT	ACAGCGGGAGAATCAGTCCTTGCA
	2883	GTTTTCGGAACGCCGCAGAGTTCA	TGAACTCTGCGGCGTTCCGAAAAC
	2884	CCCTCGATGGTTCATTGGGAAGAC	GTCTTCCCAATGAACCATCGAGGG
	2885	CCTGTTCGCTCATAATGGTGGGGT	ACCCCACCATTATGAGCGAACAGG
20	2886	GAAAGAACGATCGCGGAATAGCTG	CAGCTATTCCGCGATCGTTCTTTC
	2887	TCCACCTGTGTGCCTTTATCCTCA	TGAGGATAAAGGCACACAGGTGGA
	2888	TCCTCCGTGAACCGCTGTAGCGCA	TGCGCTACAGCGGTTCACGGAGGA
	2889	TTGAGATTTTTACGGTTTCCCCGC	GCGGGAAACCGTAAAAATCTCAA
	2890	CGATAGGACGTGGGCATGTCCCAG	CTGGGACATGCCCACGTCCTATCG
25	2891	CCCGAACTTTGAGATCCGAGAACA	TGTTCTCGGATCTCAAAGTTCGGG
	2892	TCACGCAGCTAGAGTCGCGTTACC	GGTAACGCGACTCTAGCTGCGTGA
	2893	AGATAACGCCCACTGACGACATGC	GCATGTCGTCAGTGGGCGTTATCT
	2894	ACGCTTAGAGCTCCGATGCCGAAT	ATTCGGCATCGGAGCTCTAAGCGT
	2895	GGGCGATAACTTAAATTGTGCCGC	GCGGCACAATTTAAGTTATCGCCC
30	2896	AGGACGTTCATGCGTCTCTTTGCA	TGCAAAGAGACGCATGAACGTCCT
	2897	CGGCTGGTAGAACTGTGCATCGTA	TACGATGCACAGTTCTACCAGCCG
	2898	TTCGAAATGTACTTCCCACGCGGA	TCCGCGTGGGAAGTACATTTCGAA
	2899	GCAGGTTGGCTGTCTTGTGGAGTC	GACTCCACAAGACAGCCAACCTGC
	2900	CGTTTGGTTGCTTCAAGAACCGGT	ACCGGTTCTTGAAGCAACCAAACG
35	2901	CATACTTGGTTGTTGCCCACGC	GCGTGGGCACAACAACCAAGTATG
	2902	GGGGTCGGCTGAAGTGTTTTATCC	GGATAAAACACTTCAGCCGACCCC
	2903	GTGACGGTTGATTAACGACCGTGG	CCACGGTCGTTAATCAACCGTCAC
	2904	CTTATGGCAGCGCCAGGGGCACTC	GAGTGCCCCTGGCGCTGCCATAAG
	2905	GTTAGGGGACCCACCTCGTTTGAT	ATCAAACGAGGTGGGTCCCCTAAC
40	2906	CAATATAAATGCCGCGCATCGAGT	ACTCGATGCGCGGCATTTATATTG
	2907	TTCTTCATCAGCAGTCCCCGAGAA	TTCTCGGGGACTGCTGATGAAGAA

	2908	AGTTGCGTCCCTTGATGGCATTTT	AAAATGCCATCAAGGGACGCAACT
	2909	CCGACTTTCGTCCACGATTCCTCT	AGAGGAATCGTGGACGAAAGTCGG
	2910	ACTTGGCCGGACGACAGCAAAGAC	GTCTTTGCTGTCGTCCGGCCAAGT
	2911	CACCGCGGTAGATGTATCCCTTCC	GGAAGGGATACATCTACCGCGGTG
5	2912	GTTAGCTTTAGCTCGGCACGCCTG	CAGGCGTGCCGAGCTAAAGCTAAC
	2913	GCGCATAAGAAGGTCCGCTAAAGC	GCTTTAGCGGACCTTCTTATGCGC
	2914	ACATCATCACGCCTGGCGTGACCA	TGGTCACGCCAGGCGTGATGATGT
	2915	CCGGCGAAGTTTGGTGTGATTAGA	TCTAATCACACCAAACTTCGCCGG
	2916	TGCACCGCCAGATTGTGCTGAGTC	GACTCAGCACAATCTGGCGGTGCA
10	2917	ACATGTGAAGTGAGTGCCGTCCAA	TTGGACGGCACTCACTTCACATGT
	2918	CCTCTGGAGGGGATTAGCCACGCT	AGCGTGGCTAATCCCCTCCAGAGG
	2919	CAATAGCCATGTCACTGGCAACGG	CCGTTGCCAGTGACATGGCTATTG
	2920	ACCCATGGTTCCAACGTTCTTTCG	CGAAAGAACGTTGGAACCATGGGT
	2921	AATCTGGTCTTGGCATCCTCCAAA	TTTGGAGGATGCCAAGACCAGATT
15	2922	GTATACCGGTGCATGCTGAAGCAA	TTGCTTCAGCATGCACCGGTATAC
	2923	AGTGTTCTGGTTCGAGTCGACCCG	CGGGTCGACTCGAACCAGAACACT
	2924	CGGGTATTCGACACACACGAGGAC	GTCCTCGTGTGTGTCGAATACCCG
	2925	AGTGCAACAGAGCGCTTGGTCACG	CGTGACCAAGCGCTCTGTTGCACT
	2926	TGCACCTATAGTTTGGTGCCGGTG	CACCGGCACCAAACTATAGGTGCA
20	2927	TGCTCACGTACCAGGACACTCGAG	CTCGAGTGTCCTGGTACGTGAGCA
	2928	AGTCCACACCTCGAACGACAGGCG	CGCCTGTCGTTCGAGGTGTGGACT
	2929	CGCCGACCTGGTCAAAGAGCGCTA	TAGCGCTCTTTGACCAGGTCGGCG
	2930	GCCTAAGGGCCTGTCGTTTTCCGA	TCGGAAAACGACAGGCCCTTAGGC
	2931	TGTGCGTGCTTATGTTCCGGTCTC	GAGACCGGAACATAAGCACGCACA
25	2932	CAACCGTTGGCCGTAACAAAAATC	GATTTTTGTTACGGCCAACGGTTG
	2933	CGAGAATCAAGGCGTACCATCTCG `	CGAGATGGTACGCCTTGATTCTCG
	2934	GCGTAGGCAGCCTCCAGGGAATGG	CCATTCCCTGGAGGCTGCCTACGC
	2935	GATGGTGTTTTCGCCAAGACCAAT	ATTGGTCTTGGCGAAAACACCATC
	2936	CAAGCTAGGGACAGAATTGCCCAC	GTGGCAATTCTGTCCCTAGCTTG
30	2937	TAAATAGGCGAAACCGTTCGTGGC	GCCACGAACGGTTTCGCCTATTTA
	2938	TCAAGACCCGCAATGTGTTCATGT	ACATGAACACATTGCGGGTCTTGA
	2939	GCGGCTGGTAGACTCTTTGCACAA	TTGTGCAAAGAGTCTACCAGCCGC
	2940	CAGGCGTAAACCTGAACCAAACGG	CCGTTTGGTTCAGGTTTACGCCTG
:	2941	GCCGATCTGTGCTGAGGTTCATCA	TGATGAACCTCAGCACAGATCGGC
35	2942	GATATCGCGTCGCAATATCACGCG	CGCGTGATATTGCGACGCGATATC
	. 2943	CCCTGCACGATTAAGCCACCTGTA	TACAGGTGGCTTAATCGTGCAGGG
•	2944	TGACATACAGATTTGTGTGGCCCC	GGGGCCACACAAATCTGTATGTCA
	2945	GTTTGCGGCCGGTATTCACGATGT	ACATCGTGAATACCGGCCGCAAAC
	2946	TTTTACCTGGCCATTGGTGAGCTC	GAGCTCACCAATGGCCAGGTAAAA
40	2947	CTCTACTCAATCAGGGTGGGAGCG	CGCTCCCACCCTGATTGAGTAGAG
	2948	GGGTTGGAGGGAGTCTTGACCATT	AATGGTCAAGACTCCCTCCAACCC

	2949	CGAGGTCGGTAAGGAAAAGCTTGC	GCAAGCTTTTCCTTACCGACCTCG
	2950	CTTTACGCAGGCACCTCCGAGCTG	CAGCTCGGAGGTGCCTGCGTAAAG
	2951	CATTGTATGGCCACGTGATTGACG	CGTCAATCACGTGGCCATACAATG
	2952	GTACGGTGCGAGAGCGCCTAAGCG	CGCTTAGGCGCTCTCGCACCGTAC
5	2953	TTCCATATGCCGAAATGGACACAA	TTGTGTCCATTTCGGCATATGGAA
	2954	TACGCCTTCCGCTATAGCTCGTGA	TCACGAGCTATAGCGGAAGGCGTA
	2955	CTGTACGCCACGCATGAAGGGTGA	TCACCCTTCATGCGTGGCGTACAG
	2956	CTTACGCGTCCAATGACTGCCACC	GGTGGCAGTCATTGGACGCGTAAG
	2957	CACATGGTAGAACTCGATCGGCAG	CTGCCGATCGAGTTCTACCATGTG
10	2958	CGCACCGGAAACTAGTGGATGTGT	ACACATCCACTAGTTTCCGGTGCG
	2959	ACTATGGCAACCGACACTTGGTCC	GGACCAAGTGTCGGTTGCCATAGT
	2960	CTAGTTTGCGCTACCCACCTGCAA	TTGCAGGTGGGTAGCGCAAACTAG
	2961	TAGTATCGCCCGACAATAGCCTGG	CCAGGCTATTGTCGGGCGATACTA
	2962	CCAATATTTACGGCCTGATCAGCG	CGCTGATCAGGCCGTAAATATTGG
15	2963	ATGGCTATCCCTTACTGGCTCGCC	GGCGAGCCAGTAAGGGATAGCCAT
	2964	CAAAACTTGGCAGGCTTGGGACTT	AAGTCCCAAGCCTGCCAAGTTTTG
	2965	AATGACCGAGGCTGCAAGATTGAC	GTCAATCTTGCAGCCTCGGTCATT
	2966	ATCATCTTTCGCCACCAGACATGG	CCATGTCTGGTGGCGAAAGATGAT
	2967	CGTTATTACCGATGCACACGTTGC	GCAACGTGTGCATCGGTAATAACG
20	2968	CACACTGGCAATCGCCTCCCTCGT	ACGAGGGAGGCGATTGCCAGTGTG
	2969	AGGTTGGTAGGAAATCGGAGCGCT	AGCGCTCCGATTTCCTACCAACCT
	2970	GCTGAACCACTGTGGTCAAGATGC	GCATCTTGACCACAGTGGTTCAGC
	2971	CGTTGAGTACGACACGGTCGAGGT	ACCTCGACCGTGTCGTACTCAACG
	2972	TTTTTCCGCCGCAATGTGATCTAA	TTAGATCACATTGCGGCGGAAAAA
25	2973	ACAATACCTCGACCGCTCAGCATC	GATGCTGAGCGGTCGAGGTATTGT
	2974	AGTATCCCTGCTGGCATACACGGG	CCCGTGTATGCCAGCAGGGATACT
	2975	TCTTGGGCTCGGTAGTTCAGCACT	AGTGCTGAACTACCGAGCCCAAGA
	2976	CCCTATATCGAGCCCATAGGGCGA	TCGCCCTATGGGCTCGATATAGGG
	2977	CACGAGTGGCATCAACGGCCTACT	AGTAGGCCGTTGATGCCACTCGTG
30	2978	TGCAGGGTCCGATGTGTTCAAGTA	TACTTGAACACATCGGACCCTGCA
	2979	GCTTGACCGCTGCTAACCTCGTAC	GTACGAGGTTAGCAGCGGTCAAGC
	2980	TTTTGCATCTCTCCACCATCCAGA	TCTGGATGGTGGAGAGATGCAAAA
	2981	AGAATGTGCACCGGCTTCCATCTT	AAGATGGAAGCCGGTGCACATTCT
	· 2982	TGTTATGACCCGCTCTGTGGCGTG	CACGCCACAGAGCGGGTCATAACA
35	2983	GGAGCTCCTGTTTCATCGAGGCTA	TAGCCTCGATGAAACAGGAGCTCC
	2984	CATTTTGCTGTTTGGGGGTCCCAT	ATGGGACCCCCAAACAGCAAAATG
	2985	CCCGCTCCTTCACGTGAGACGAGA	TCTCGTCTCACGTGAAGGAGCGGG
	2986	GCGCTCAAGTCGATTGCCACAACC	GGTTGTGGCAATCGACTTGAGCGC
	2987	CGGTTGACGGAGACCGCAGTACTT	AAGTACTGCGGTCTCCGTCAACCG
40	2988	ACTCAAGACCGGTGCACCTCCAGC	GCTGGAGGTGCACCGGTCTTGAGT
	2989	TTTCGTGTGCATGCAAGTAATGGC	GCCATTACTTGCATGCACACGAAA

	2990	GCGGCGTTAGCTCGAGCTAACAAA	TTTGTTAGCTCGAGCTAACGCCGC
	2991	GGGTATCCTGCCCGAGCAGTAATT	AATTACTGCTCGGGCAGGATACCC
	2992	GGCTCCGAATCTCTTGTCCGGTCT	AGACCGGACAAGAGATTCGGAGCC
	2993	AGGATGGCCACGCCGAATCAAAGT	ACTTTGATTCGGCGTGGCCATCCT
5	2994	GTGCGGGACGTTTACATAACGAG	CTCGTTATGTAAACGTCCCCGCAC
	2995	ACTTTTGACCTGAGGCCGCTTGCA	TGCAAGCGGCCTCAGGTCAAAAGT
	2996	ACTCCGCTTCAATGGAGACCGTTG	CAACGGTCTCCATTGAAGCGGAGT
	2997	GATCGGAATTCGCCGCCATATTGA	TCAATATGGCGGCGAATTCCGATC
	2998	ATGCGTGCCCATGGAATGACTTTT	AAAAGTCATTCCATGGGCACGCAT
10	2999	CCGCATCGCACGAAGGCAGGTCAT	ATGACCTGCCTTCGTGCGATGCGG
	3000	CACCCTATGCGTCTCCAATTCCTG	CAGGAATTGGAGACGCATAGGGTG
	3001	TGATATGCATCGCTGAGCCTCTGT	ACAGAGGCTCAGCGATGCATATCA
	3002	AGCTTCACACGCTCACTGAACCTG	CAGGTTCAGTGAGCGTGTGAAGCT
	3003	AACCCGGAACCTCCTCTCACTCGG	CCGAGTGAGAGGAGGTTCCGGGTT
15	3004	CTCGTCAAACTTGGCCGAGGAGTC	GACTCCTCGGCCAAGTTTGACGAG
	3005	GTAGCTGGCAACAGGCAATCAGGA	TCCTGATTGCCTGTTGCCAGCTAC
	3006	CTTGTCACGAATATTCGCCAAGCG	CGCTTGGCGAATATTCGTGACAAG
•	3007	CAGTATCTGAAACACGGGGTGCTG	CAGCACCCCGTGTTTCAGATACTG
	3008	GGCTAAAATGGGCGCCCACGTGTA	TACACGTGGGCGCCCATTTTAGCC
20	3009	ATGAGAGCCAAGCGCCTCAACTCC	GGAGTTGAGGCGCTTGGCTCTCAT
	3010	TATTGTTAGGCACCGCTTCGCGCT	AGCGCGAAGCGGTGCCTAACAATA
	3011	GGAACTAGATTGCCAGTGCTCGCC	GGCGAGCACTGGCAATCTAGTTCC
	3012	AGTCGACCCCAAGGCAACTGGGTC	GACCCAGTTGCCTTGGGGTCGACT
	3013	GGTACTGTTAGCTCGACGATGGCC	GGCCATCGTCGAGCTAACAGTACC
25	3014	CCGCAATACTTGACGGTAACAGGG	CCCTGTTACCGTCAAGTATTGCGG
	3015	AATTCCGGGTTTGAACGGTTGGAA	TTCCAACCGTTCAAACCCGGAATT
	3016	GACACGCAATCGGGTCTATGCGAA	TTCGCATAGACCCGATTGCGTGTC
	3017	GATTTTGGCGTCTCATTGCGTGAT	ATCACGCAATGAGACGCCAAAATC
	3018	TGCCATAGGGAGGAAACGCAATTA	TAATTGCGTTTCCTCCCTATGGCA
30	3019	GAGGTGCCCATGTTAGTGGTGTCC	GGACACCACTAACATGGGCACCTC
	3020	GCTTTAGCGGTCATACGACCACCA	TGGTGGTCGTATGACCGCTAAAGC
	3021	CCGCTACCAACAATCCGATTAACG	CGTTAATCGGATTGTTGGTAGCGG
	3022	GAGGATCTGGCCACATCGAGAAAG	CTTTCTCGATGTGGCCAGATCCTC
	3023	CTCGTTTGGTACCACGTTTTGCCG	CGGCAAAACGTGGTACCAAACGAG
35	3024	AATACACGCGGCGTAAACAGACGA	TCGTCTGTTTACGCCGCGTGTATT
	3025	TGTCATGGGCCAAATGACAGTGGC	GCCACTGTCATTTGGCCCATGACA
	3026	ACAGCACTTCCGACCCGTGTACGA	TCGTACACGGGTCGGAAGTGCTGT
	3027	CTCCGTAAAGAGCACAGCTTTGCC	GGCAAAGCTGTGCTCTTTACGGAG
	3028	ACGAACAGGTAGGGATCGGTCCTC	GAGGACCGATCCCTACCTGTTCGT
40	3029	TGGATCCACCTTACCGCGCCATCG	CGATGGCGCGGTAAGGTGGATCCA
	3030	AGTATCAAATAGCGGCGCGGCAAG	CTTGCCGCGCCGCTATTTGATACT
			

3031 GAATTACATTGTGGATGGAGGCGG CCGCCTCCATCCACAA 3032 CTCCTCGGGGAGTCGAGGAGTACG CGTACTCCTCGACTCC 3033 AGTGTCGAGCCAACTCCCACCAAT ATTGGTGGGAGTTGGC 3034 AAATGACATCCGTTTGGCCACAGC GCTGTGGCCAAACGGA 5 3035 CGAATCATATCGCCATCGAACTGG CCAGTTCGATGGCGAT 3036 TATAATGCACTCGCTTGGTGCGCA TGCGCACCAAGCGAGT 3037 GCCAAGCAGATGGTAATTATGGCG CGCCATAATTACCATC 3038 CACGCGGGAAGAGCACGTAGAACT AGTTCTACGTGCTCTTC 3039 TACCCGAGAATTTGGAGAACAGCG CGCTGTTCTCCAAATTC	CCCGAGGAG CTCGACACT ATGTCATTT TATGATTCG TGCATTATA TGCTTGGC CCCGCGTG
3033 AGTGTCGAGCCAACTCCCACCAAT ATTGGTGGGAGTTGGC 3034 AAATGACATCCGTTTGGCCACAGC GCTGTGGCCAAACGGA 5 3035 CGAATCATATCGCCATCGAACTGG CCAGTTCGATGGCGAT 3036 TATAATGCACTCGCTTGGTGCGCA TGCGCACCAAGCGAGT 3037 GCCAAGCAGATGGTAATTATGGCG CGCCATAATTACCATC 3038 CACGCGGGAAGAGCACGTAGAACT AGTTCTACGTGCTCTTC	ATGTCATTT FATGATTCG TGCATTATA TGCTTGGC CCCGCGTG
3034 AAATGACATCCGTTTGGCCACAGC GCTGTGGCCAAACGGA 5 3035 CGAATCATATCGCCATCGAACTGG CCAGTTCGATGGCGAT 3036 TATAATGCACTCGCTTGGTGCGCA TGCGCACCAAGCGAGT 3037 GCCAAGCAGATGGTAATTATGGCG CGCCATAATTACCATCT 3038 CACGCGGGAAGAGCACGTAGAACT AGTTCTACGTGCTCTTG	ATGTCATTT TATGATTCG TGCATTATA TGCTTGGC CCCGCGTG
5 3035 CGAATCATATCGCCATCGAACTGG CCAGTTCGATGGCGAT 3036 TATAATGCACTCGCTTGGTGCGCA TGCGCACCAAGCGAGT 3037 GCCAAGCAGATGGTAATTATGGCG CGCCATAATTACCATC 3038 CACGCGGGAAGAGCACGTAGAACT AGTTCTACGTGCTCTTC	TATGATTCG TGCATTATA TGCTTGGC CCCGCGTG
3036 TATAATGCACTCGCTTGGTGCGCA TGCGCACCAAGCGAGT 3037 GCCAAGCAGATGGTAATTATGGCG CGCCATAATTACCATC 3038 CACGCGGGAAGAGCACGTAGAACT AGTTCTACGTGCTCTTG	TGCATTATA TGCTTGGC CCCGCGTG
3037 GCCAAGCAGATGGTAATTATGGCG CGCCATAATTACCATC 3038 CACGCGGGAAGAGCACGTAGAACT AGTTCTACGTGCTCTTC	TGCTTGGC CCCGCGTG
3038 CACGCGGGAAGAGCACGTAGAACT AGTTCTACGTGCTCTTC	сссвсвтв
3039 TACCCGAGAATTTGGAGAACAGCG CGCTGTTCTCCAAATTC	CTCGGGTA
10 3040 TGACGGCAAACTGTGGCATCTATC GATAGATGCCACAGTT	TGCCGTCA
3041 CACAGTGTTCCAGCCCTTGACGAT ATCGTCAAGGGCTGGA	ACACTGTG
3042 TACCCGCCCACACATGAAAGTTGG CCAACTTTCATGTGTG	GGCGGGTA
3043 TGGCATATTTAAGATTCGGCGACG CGTCGCCGAATCTTAA	ATATGCCA
3044 ACTGAAAAAAGAACGGGTAGCGGG CCCGCTACCCGTTCTT	TTTTCAGT
15 3045 TCTGACCGCAATAGGTGGTCATTG CAATGACCACCTATTG	CGGTCAGA
.3046 ACTTTTGGCGGGCCCTCTCTCGT . ACGAGAGAGGGCCCG	CCAAAAAGT
3047 CTGCCCAGATCATTGCGCGATCCG CGGATCGCGCAATGAT	CTGGGCAG
3048 CGGAGGTTAAATGCTTTAACCGGC GCCGGTTAAAGCATTT	AACCTCCG
3049 AGGCGTCTCCAAACGTCCTTCTGT ACAGAAGGACGTTTGG	BAGACGCCT
20 3050 AGATGCTATCCTGAGTGGGCCTGC GCAGGCCCACTCAGG/	ATAGCATCT
3051 ACAGGGTGAAGAGACCGTGGGATG CATCCCACGGTCTCTT	CACCCTGT
3052 GACTGTCTAACGGACGACGACG CGTCGTGTCGTCCGTT	AGACAGTC
3053 AGCTGTTAGGACCCGACAACCGGT ACCGGTTGTCGGGTCC	CTAACAGCT
3054 TTGCGTAGTGTGGGCATTTCCTCT AGAGGAAATGCCCACA	ACTACGCAA
25 3055 ATGCGCGCTTCTTTCCTTGATGTA TACATCAAGGAAAGAA	GCGCGCAT
3056 TTAAGGGCGTCCGCGTCTATTCAG CTGAATAGACGCGGAC	GCCCTTAA
3057 ACCTTTAAACTTGTACCGCGGCCC GGGCCGCGGTACAAG	TTTAAAGGT
3058 AGGGATGCAGAGGCACCACATGTT AACATGTGGTGCCTCT	GCATCCCT
3059 CGGTTCGACGTATGAGCATCCGCA TGCGGATGCTCATACG	TCGAACCG
30 3060 CAGGGCGATAGTCACATGGAGGTT AACCTCCATGTGACTA	тсесссте
3061 GCTTGACTGCCCCGTTTCATATGT ACATATGAAACGGGGC	AGTCAAGC
3062 CGAAGGGTTGTGCAATTACCCGA TCGGGTAATTGCACAA	CCCCTTCG
3063 AAAACGCACCGCAATGACAAAATT AATTTTGTCATTGCGG	TGCGTTTT
3064 ATTCCTGGACAAGACCCTCAACCG CGGTTGAGGGTCTTGT	CCAGGAAT
35 3065 CCTACCTGCCTGCTAGCGGTGAGG CCTCACCGCTAGCAGG	CAGGTAGG
3066 GCTCGTAAATGGGGAGGAATTGGA TCCAATTCCTCCCCAT	TTACGAGC
3067 ACATGAAAACAGGCTCAATTGGGG CCCCAATTGAGCCTGT	TTTCATGT
3068 GTTCCGCACATGGATTGAGGTCTC GAGACCTCAATCCATG	TGCGGAAC
3069 GGCACCCAATACCACGAAGAAGAA TTCTTCTTCGTGGTATT	
40 3070 AGGGGCATTTCGAACTCCATCTTT AAAGATGGAGTTCGAA	ATGCCCCT
3071 CATCATCACAAAGGAACGTCGGTG CACCGACGTTCCTTTG	TGATGATG

	3072	TAAAGACCCACCGTCAGCAGCAGC	GCTGCTGACGGTGGGTCTTTA
	3073	CCCCAGGCGTAATGCACCACATAG	CTATGTGGTGCATTACGCCTGGGG
	3074	GCAGGTCGAACGCTAGTGGTTGAA	TTCAACCACTAGCGTTCGACCTGC
{	3075	GGAACTTAGGAGTTCACGTCGCCA	TGGCGACGTGAACTCCTAAGTTCC
5	3076	GCAGATACGGCTAGCTGAGGTGGC	GCCACCTCAGCTAGCCGTATCTGC
	3077	CACAGGCCTAGAGCCTCGGCGTTC	GAACGCCGAGGCTCTAGGCCTGTG
	3078	GTTTTGCGCGCATGAGGTTCATTA	TAATGAACCTCATGCGCGCAAAAC
	3079	TTGCGCCTGATGCCAGCAGTACTA	TAGTACTGCTGGCATCAGGCGCAA
	3080	GATATCAGGCTTTCCCACTGCCGC	GCGGCAGTGGGAAAGCCTGATATC
10	3081	TGCGCGGAGACGGAGATCTATGAA	TTCATAGATCTCCGTCTCCGCGCA
	3082	CATTGGTGTTGGCTGAGAGTGGAC	GTCCACTCTCAGCCAACACCCAATG
	3083	GTCGGCACTTGGGCACCATTAATA	TATTAATGGTGCCCAAGTGCCGAC
	3084	ATCGATCGGTGTCTCACCACGGAG	CTCCGTGGTGAGACACCGATCGAT
	3085	CGTAGCCTTCCACCGTGTCGATAG	CTATCGACACGGTGGAAGGCTACG
15	3086	CGCTCTCCGTCTGAGGAAAAGGGG	CCCCTTTTCCTCAGACGGAGAGCG
	3087	TCGCCCCAGCCAAGGATATATTGC	GCAATATATCCTTGGCTGGGGCGA
	3088	TCTCTTGCAAGGAACTCTGCCGTC	GACGGCAGAGTTCCTTGCAAGAGA
	3089	GTCCTGGACAGACGGAGGGTGTTA	TAACACCCTCCGTCTGTCCAGGAC
	3090	GCCAAATTAAGCGGGCTCGTAATC	GATTACGAGCCCGCTTAATTTGGC
20	3091	CCATTTGTTGACCGATGGGAGGGG	CCCCTCCCATCGGTCAACAAATGG
	3092	TGGTCAAAAGAGCACGATCCAGGA	TCCTGGATCGTGCTCTTTTGACCA
	3093	CGCTACTAAGACGCCCCTGTCCAC	GTGGACAGGGGCGTCTTAGTAGCG
	3094	CATACCTCCCGCTTGGATTCACTG	CAGTGAATCCAAGCGGGAGGTATG
	3095	CCGCGGAAGGAATGTCATCTACAA	TTGTAGATGACATTCCTTCCGCGG
25	3096	CACGGGACATTCATTCACAGGACG	CGTCCTGTGAATGAATGTCCCGTG
	3097	AGGAGTCACCCACTCCGCACAAAA	TTTTGTGCGGAGTGGGTGACTCCT
	3098	TCATGACAGCGCACCCCATACCAT	ATGGTATGGGGTGCGCTGTCATGA
	3099	GGTAGGGGACTATCGATCGTGCTG	CAGCACGATCGATAGTCCCCTACC
	3100	ATGTCTCACTACCGCACGTAGCGG	CCGCTACGTGCGGTAGTGAGACAT
30	3101	ACGGAGGAGCGACTCGTTCGCTGC	GCAGCGAACGAGTCGCTCCCGT
	3102	GAAGTCTGTCGCCGGTGGACGGAC	GTCCGTCCACCGGCGACAGACTTC
	3103	CCGTAACGTGTATTCGGACGAGCG	CGCTCGTCCGAATACACGTTACGG
	3104	CGTGGAAGCGACTTAACCAATCGT	ACGATTGGTTAAGTCGCTTCCACG
	3105	GGCATGGGCTATGCCTCACACTAG	CTAGTGTGAGGCATAGCCCATGCC
35	3106	GGGTCGTATTTCAGCATCGTTCGT	ACGAACGATGCTGAAATACGACCC
-	3107.	AATGGTCGCGCAAACCGTAAGAAT	ATTCTTACGGTTTGCGCGACCATT
	3108	CTGGATTCGGTACGTCCAACGTTT	AAACGTTGGACGTACCGAATCCAG
	3109	CGCAAAAACACCCGTAGCCAAGAA	TTCTTGGCTACGGGTGTTTTTGCG
·	3110	TATGGATACGCTTTTGGACTGGGC	GCCCAGTCCAAAAGCGTATCCATA
40	3111	GCTTCAAACGCGCTTCACGCTGGT	ACCAGCGTGAAGCGCGTTTGAAGC
	3112	TACAGCCCGCTCTACCTCGCCACC	GGTGGCGAGGTAGAGCGGGCTGTA

_			
[3113	TCAACCGATGTCAAAATGCACGTT	AACGTGCATTTTGACATCGGTTGA
	3114	AGCTCTCCGAAGTAGGGCGGTA	TACCGCCCTACTTCGGAGAGAGCT
	3115	ACGCACACATGGAGACTTGGCTCC	GGAGCCAAGTCTCCATGTGTGCGT
	3116	TTCTTGAAAGCTAGTGGGGCGCTA	TAGCGCCCCACTAGCTTTCAAGAA
5	3117	CAATCACGGCTGGGCTATTCTGTG	CACAGAATAGCCCAGCCGTGATTG
	3118	GTGGCGACCCGTCGGTGAAAGAGT	ACTCTTTCACCGACGGGTCGCCAC
	3119	CGTCGAATGCCGAACCAGTTAAGT	ACTTAACTGGTTCGGCATTCGACG
	3120	TGCGTATTTGCATGCTCACAGCTG	CAGCTGTGAGCATGCAAATACGCA
	3121	CGCAGTTGGTTTGTGCACGGCTGC	GCAGCCGTGCACAACCAACTGCG
10	3122	GTTTTTCCGTGAAAACTGGCATCG	CGATGCCAGTTTTCACGGAAAAAC
	3123	ACAGGTTCCTCCACCACGATTTGA	TCAAATCGTGGTGGAGGAACCTGT
	3124	CTAGCGCGCTTTTAGGTCCTTGCG	CGCAAGGACCTAAAAGCGCGCTAG
	3125	CAAAATCAAAGGGATCAACCGGTG	CACCGGTTGATCCCTTTGATTTTG
	3126	AACGTAACCCCAGTGAGTCAGGCA	TGCCTGACTCACTGGGGTTACGTT
15	3127	TCAACCGGTGCACTTTAGAACGCC	GGCGTTCTAAAGTGCACCGGTTGA
	3128	ATCGCAAAGTTGCAGGCGAATACT	AGTATTCGCCTGCAACTTTGCGAT
1	3129	ATATGTCCCTGGGTGCTGCACAAC	GTTGTGCAGCACCCAGGGACATAT
	3130	TGGCACTTTGTAGTGCTGCGGTGG	CCACCGCAGCACTACAAAGTGCCA
i	3131	ACGCACGACGTCCTTCTAAGCTCG	CGAGCTTAGAAGGACGTCGTGCGT
20	3132	CCCACGTGCACTATAGGGATTTCG	CGAAATCCCTATAGTGCACGTGGG
	3133	CCGCGCTTGGTCAGTCATCCTTGC	GCAAGGATGACTGACCAAGCGCGG
	3134	AGCGGCTCAGGGAATAACAACAGG	CCTGTTGTTATTCCCTGAGCCGCT
	3135	ACAACGCGATCGGAGGCAACCAGT	ACTGGTTGCCTCCGATCGCGTTGT
	3136	AGCAATTGCCTCCGTAGAAACCCA	TGGGTTTCTACGGAGGCAATTGCT
25	3137	GAGTCGTGGCATCGCCTGCTATCG	CGATAGCAGGCGATGCCACGACTC
į	3138	TCTATGCAAATACTGCGCTTGCGA	TCGCAAGCGCAGTATTTGCATAGA
	3139	TCAGCTTAAGTTACGGTGTGGCCG	CGGCCACACCGTAACTTAAGCTGA
	3140	TCCAAGGTCGAACAGGGATCAGAA	TTCTGATCCCTGTTCGACCTTGGA
ĺ	3141	GTTAGGCTGGCGTCAATAGCGCTT	AAGCGCTATTGACGCCAGCCTAAC
30	3142	GGTGTCATAAGGAAGAGGGCATCG	CGATGCCCTCTTCCTTATGACACC
	3143	CCGGCGGCTAGATCAATATTTCT	AGAAATATTGATCTAGCCCGCCGG
	3144	CTAACGTCAAGTTTTACGCCCCGA	TCGGGGCGTAAAACTTGACGTTAG
	3145	GCAGCACAGTTTTCCGATTTGCGG	CCGCAAATCGGAAAACTGTGCTGC
	3146	CGCACGCAAGGGGAGGGATGACTG	CAGTCATCCCTCCCCTTGCGTGCG
35	3147	CGGGGCCGAAAAGGACGTCACAAG	CTTGTGACGTCCTTTTCGGCCCCG
	3148	TTCTCCAACACGGCTAACCGGTAG	CTACCGGTTAGCCGTGTTGGAGAA
	3149	TTACAGCCTGGCCCGAGGTAGTTG	CAACTACCTCGGGCCAGGCTGTAA
	3150	TTTCGGGCAGCATGAGTTATCGAA	TTCGATAACTCATGCTGCCCGAAA
	3151	CTACTGGACGCCCTGCTTCGAAGT	ACTTCGAAGCAGGGCGTCCAGTAG
40	3152	GGTCGTCCGACGTGAAAAGACCAA	TTGGTCTTTTCACGTCGGACGACC
	3153	GTTTTCGAGCTCTTTCTCCGCAGG	CCTGCGGAGAAAGAGCTCGAAAAC
	_		

	<u>·</u>	
3154	GCGTGAAGGTACCCAGTGTCACAG	CTGTGACACTGGGTACCTTCACGC
3155	TTTCTGAACGCTTCGACGCAACAC	GTGTTGCGTCGAAGCGTTCAGAAA
3156	TGCTAATAAGCACGCCTAGCCCGT	ACGGGCTAGGCGTGCTTATTAGCA
3157	AAATTAATTGTGGTGGCTCCGGCG	CGCCGGAGCCACCACAATTAATTT
3158	TTACAATCCTCGGGCTCACTGACA	TGTCAGTGAGCCCGAGGATTGTAA
3159	GCTGAAGGACAAGGCGTGGGCAAC	GTTGCCCACGCCTTGTCCTTCAGC
3160	GGGATAGGAGACCCTCGCAATGGT	ACCATTGCGAGGGTCTCCTATCCC
3161	TTGCAGTACGTCCTTGCGCATGAA	TTCATGCGCAAGGACGTACTGCAA
3162	TTGATCACTGGATTGGGTGCGAAC	GTTCGCACCCAATCCAGTGATCAA
3163	TCTGCAGACGTTGCGAGAGATGAT	ATCATCTCTCGCAACGTCTGCAGA
3164	AGTCTAGCAGGGATCGAAGCGGAT	ATCCGCTTCGATCCCTGCTAGACT
3165	GGGGTCCCGCAACAACTAATGAAG	CTTCATTAGTTGTTGCGGGACCCC
3166	CAACCTCTTATGTGGTGTGCGCGA	TCGCGCACACCACATAAGAGGTTG
3167	CTCGCTGGGTTGCTGGAGTAGCAC	GTGCTACTCCAGCAACCCAGCGAG
3168	CGTTGTATTGTGCAACGCGAAGTT	AACTTCGCGTTGCACAATACAACG
3169	GGGCTCAAAGTGCCTGAGTCGAAA	TTTCGACTCAGGCACTTTGAGCCC
3170	CTGCTGTGCCCTCTCAGTGAGAGC	GCTCTCACTGAGAGGGCACAGCAG
3171	CGGACGTACTGTTCGGAGTCCTCA	TGAGGACTCCGAACAGTACGTCCG
3172	GTATACCACCATACCGGGACCGCA	TGCGGTCCCGGTATGGTGGTATAC

5

10

15

TABLE 3

Seq. ID No.	Decoder Sequence (5'-3')	Probe Sequence (5'-3')
17	TTCGCCGTCGTGTAGGCTTTTCAA	TTGAAAAGCCTACACGACGGCGA
18	GTTCCCAGTGAAGCTGCGATCTGG	CCAGATCGCAGCTTCACTGGGA
19	TACTTGGCATGGAATCCCTTACGC	GCGTAAGGGATTCCATGCCAAGT
20	ACTAGCATATTTCAGGGCACCGGC	GCCGGTGCCCTGAAATATGCTAG
21	GAACGGTCAATGAACCCGCTGTGA	TCACAGCGGGTTCATTGACCGTT
22	GCGGCCTTGGTTCAATATGAATCG	CGATTCATATTGAACCAAGGCCG
23	GATCGTTAGAGGGACCTTGCCCGA	TCGGGCAAGGTCCCTCTAACGA
24	TGGACCTAGTCCGGCAGTGACGAA	TTCGTCACTGCCGGACTAGGTCC
25	ATAAACTACCCAGGACGGGCGGAA	TTCCGCCCGTCCTGGGTAGTTTA
26	CATCGGTTCGCGCCAATCCAGATA	TATCTGGATTGGCGCGAACCGAT
27	GTCGGGCATAGAGCCGACCACCCT	AGGGTGGTCGGCTCTATGCCCG
28	CTTGGGTCATGATTCACCGTGCTA	TAGCACGGTGAATCATGACCCAA
29	TGCCTAACGTGCTAATCAGCAGCG	CGCTGCTGATTAGCACGTTAGG
30	CGCATGTTGGAGCATATGCCCTGA	TCAGGGCATATGCTCCAACATGC
31	AGCCACTGCATCAGTGCTGTTCAA	TTGAACAGCACTGATGCAGTGG
32	GGTTGTTTTGAGGCGTCCCACACT	AGTGTGGGACGCCTCAAAACAA
33	TCGACCAAGAGCAAGGGCGGACCA	тестссессттестсттестс
34	GACATCGCTATTGCGCATGGATCA	TGATCCATGCGCAATAGCGATGT
35	GAAATACGAAGTCTGCGGGAGTCG	CGACTCCCGCAGACTTCGTATTT
36	TGTCATGAATGATTGATCGCGCGA	TCGCGCGATCAATCATTCATGAC
37	ATATCGGGATTCGTTCCCGGTGAA	TTCACCGGGAACGAATCCCGATA
38	GCGAGCGTACCGAAGGGCCTAGAA	TTCTAGGCCCTTCGGTACGCTCG
39	TTACCGGCAGCGGACTTCCGAATT	AATTCGGAAGTCCGCTGCCGGT/
40	GTAATCGAGAGCTGCGCGCCGTCT	AGACGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
41	CCTGTTAGCGTAGGCGAGTCGATC	GATCGACTCGCCTACGCTAACAG
42	TAGCGGACCGGCAGAATGAGTTCC	GGAACTCATTCTGCCGGTCCGCT
43	GGTACATGCACTACGCGCACTCGG	CCGAGTGCGCGTAGTGCATGTA
44	AATTCATCTCGGACTCCCGCGGTA	TACCGCGGGAGTCCGAGATGAA
45	GCCAAATCTGGATTGGCAGGAATG	CATTCCTGCCAATCCAGATTTGG
46	TGCATTTTCGGTTGAGGCACATCC	GGATGTGCCTCAACCGAAAATGC
47	CCGCTCAATTCACCATGCTTCGCT	AGCGAAGCATGGTGAATTGAGCG
48	CTCGGAAAGGTGCAACTTTGGTGT	ACACCAAAGTTGCACCTTTCCGA
49	AATTCGACCAGCAGAACGTCCCAT	ATGGGACGTTCTGCTGGTCGAAT
50	GCCAGAGTCTCAACCTCACGGGAT	ATCCCGTGAGGTTGAGACTCTGG
51	CCAACAACTGGAACGGGAACCCGC	GCGGGTTCCCGTTCCAGTTGTTC
52	GAGAACTGATCGCTGAGGGGCATG	CATGCCCCTCAGCGATCAGTTCT
53	GGCACACTAGACTTGTGGCACCGA	TCGGTGCCACAAGTCTAGTGTG

ſ	54	TCACATCCAAATATGGTCCGCGAA	TTCGCGGACCATATTTGGATGTGA
	55	GTCTGCCGGTGTGACCGCTTCATT	AATGAAGCGGTCACACCGGCAGAC
	56	CATCGCAGAGCATAAACACCCTCA	TGAGGGTGTTTATGCTCTGCGATG
Ì	57	GTTGGTATCTATGGCAGAGGCGGA	TCCGCCTCTGCCATAGATACCAAC
5	58	ACGAGGTGCCGCTGAGGTTCCATT	AATGGAACCTCAGCGGCACCTCGT
	59	GGAATGAGTGGACCCAGGCACATT	AATGTGCCTGGGTCCACTCATTCC
· I	60	TGTCAATATGCGTCCGTGTCGTCT	AGACGACACGGACGCATATTGACA
	61	TGATGAGCCTCAGGGTACGAGGCA	TGCCTCGTACCCTGAGGCTCATCA
Ī	62	CACCGCGGTGTTCCTACAGAATGA	TCATTCTGTAGGAACACCGCGGTG
10	63	TTGTTGCCAATGGTGTCCGCTCGG	CCGAGCGGACACCATTGGCAACAA
	64	TTAACCTGCGTCTGCCCCTTTCCT	AGGAAAGGGCAGACGCAGGTTAA
ľ	65	AGGCGCGTTCCTGCCTTAGTGACG	CGTCACTAAGGCAGGAACGCGCCT
	66	TAGGGCGATGGCACGAAGCTTCAA	TTGAAGCTTCGTGCCATCGCCCTA
	67	TGCATAGAGCCAAAGTCGGCGATG	CATCGCCGACTTTGGCTCTATGCA
15	68	TTGAGAGGCAGGTGGCCACACGGA	TCCGTGTGGCCACCTGCCTCTCAA
	69	TCCGCATTGTGAGAAAAAACGAGC	GCTCGTTTTTTCTCACAATGCGGA
	70	GGCGGTTTCCGTAGCTATAGGTGC	GCACCTATAGCTACGGAAACCGCC
	71	GGTGAAAATTTCGTAGCCACGGGC	GCCCGTGGCTACGAAATTTTCACC
	72	CCGACGGAGGATGAAGACAATCAC	GTGATTGTCTTCATCCTCCGTCGG
20	73	CCAGTTTGGCCCAATTCGCCAAAA	TTTTGGCGAATTGGGCCAAACTGG
	74	GGATCTATTAGGCCGTGCGCACAG	CTGTGCGCACGGCCTAATAGATCC
	75	CGGATGTCACCGTTTGGACTTTCA	TGAAAGTCÇAAACGGTGACATCCG
	76	ATCGCAAATCCTGCTCGTCCCTAA	TTAGGGACGAGCAGGATTTGCGAT
	77	CAGGGCATGCAATAATCGAGGTTC	GAACCTCGATTATTGCATGCCCTG
25	78	CATGCGTTGATATATGGGCCCAAG	CTTGGGCCCATATATCAACGCATG
	79	CAGCTGCAGCTTGTGACCAACCAC	GTGGTTGGTCACAAGCTGCAGCTG
	80	TTGTATGTCTGCCGACCGGCGACC	GGTCGCCGGTCGGCAGACATACAA
	81	GATGGCGCCCGTTGATAGGTATGG	CCATACCTATCAACGGCCCCATC
.]	82	ATGAGAATCGCCGGCAATCTGCTA	TAGCAGATTGCCGGCGATTCTCAT
30	83	ATTTGCACTGACCGCAGGCTCGTG	CACGAGCCTGCGGTCAGTGCAAAT
ļ	84	CAGGGAGAACGGTTAAGTTCCCGT	ACGGGAACTTAACCGTTCTCCCTG
	85	AGGCCGGCGATCGAGGAGTTTGGT	ACCAAACTCCTCGATCGCCGGCCT
	86	ACACGGTGGTCTCTGATAGCGACC	GGTCGCTATCAGAGACCACCGTGT
	87	GTGCAACGCCGAGGACTTCCATCA	TGATGGAAGTCCTCGGCGTTGCAC
35	88	TCGGTGCCTGATAGCCATTCCGAT	ATCGGAATGGCTATCAGGCACCGA
	. 89	TGAAATACCACACAGCCAATTGGC	GCCAATTGGCTGTGTGGTATTTCA
	90	GCATCGTGTACATGACTGCCGCGA	TCGCGGCAGTCATGTACACGATGC
	91	CAGTGTTCTAACGGCGCGCGTGAA	TTCACGCGCGCCGTTAGAACACTG
	92	CGCTTGCAACGTTGCACCTACTCT	AGAGTAGGTGCAACGTTGCAAGCG
40	93	CGAAAAACTAGTGGGCTCGCCGCG	CGCGGCGAGCCCACTAGTTTTCG
	94	CTTTCAGGGGAACTGCCGGAGTCG	CGACTCCGGCAGTTCCCCTGAAAG

ſ	95	TTGTGGCCTTCTTGTAAAGGCACG	CGTGCCTTTACAAGAAGGCCACAA
	96	TCCACGAACGGCGACCCGTTGTCT	AGACAACGGGTCGCCGTTCGTGGA
	97	CGACCTTGCACGAAACCTAACGAG	CTCGTTAGGTTTCGTGCAAGGTCG
	98	GTGCAGCTTCACGAGCCAGCCTGA	TCAGGCTGGCTCGTGAAGCTGCAC
5	99	CGCTTTCGTGCGAATAGACGATGA	TCATCGTCTATTCGCACGAAAGCG
	100	TGCGCTTACAGGCTCCTAGTGGTC	GACCACTAGGAGCCTGTAAGCGCA
	101	CACGCGCTTAGTCGCGATCGCATA	TATGCGATCGCGACTAAGCGCGTG
	102	CGGAGGGAGGGAGCTAGCCTTCGA	TCGAAGGCTAGCTCCCTCCCT
	103	GCATCCGGCCTGTTGATGACGCCT	AGGCGTCATCAACAGGCCGGATGC
10	104	AGGCCAATCGATCTTATTGCCGAG	CTCGGCAATAAGATCGATTGGCCT
Ì	105	CCTTCCAATGATTGCATACGCCCA	TGGGCGTATGCAATCATTGGAAGG
	106	AACACTTGATCAGGCGGGTCGTCT	AGACGACCCGCCTGATCAAGTGTT
	107	TGGAATCAAGGCCGTAAAGGACAG	CTGTCCTTTACGGCCTTGATTCCA
	108	GCTCCCGTAACCTGTCCACCAGTG	CACTGGTGGACAGGTTACGGGAGC
15	109	AGTGGTGAATGGCCGCTACCCTGA	TCAGGGTAGCGGCCATTCACCACT
	110	TGTTGAAGCGAGCTAAAACGGCCA	TGGCCGTTTTAGCTCGCTTCAACA
	111	CAGCGCTCCAGAATTGACAGCAAT	ATTGCTGTCAATTCTGGAGCGCTG
	2	TTCGAAGCGCACGTCCCTTTCAA	TTGAAAAGGGACGTGCGCTTCGAA
	3	AACGCGTGGGGAATGGGACATCAA	TTGATGTCCCATTCCCCACGCGTT
20	114	CACGAGATACCGGCGTAAGGGTGG	CCACCCTTACGCCGGTATCTCGTG
	115	CTACGGCAAACGTGTGGAATGGGT	ACCCATTCCACACGTTTGCCGTAG
	116	GTAGGGCGATGACGGCGAACTAC	GTAGTTCGCCCGTCATCGCCCTAC
	117	AATCGACCTCCGCACACATTCGCA	TGCGAATGTGTGCGGAGGTCGATT
	118	GAGTCAGCATGGCGGCGGAGATTC	GAATCTCCGCCGCCATGCTGACTC
25	119	AGATAAAGACGCTGGCAACACGGG	CCCGTGTTGCCAGCGTCTTTATCT
Ĭ	120	GGTACCTCAACGCGAACCACTTGT	ACAAGTGGTTCGCGTTGAGGTACC
	121	AAGCGATGGCTACCCAAGAGCGAT	ATCGCTCTTGGGTAGCÇATCGCTT
	122	AGAGCTTATGCAGAACCAGGCGCC	GGCGCCTGGTTCTGCATAAGCTCT
	123	ATCGGTCTCACGCAGGGTTGGATA	TATCCAACCCTGCGTGAGACCGAT
30	124	TAGGTTGCCCGCCAGAAGAAACAT	ATGTTTCTTCTGGCGGGCAACCTA
	125	CGGTGCTGTTGCAAAAGCCTGTAG	CTACAGGCTTTTGCAACAGCACCG
	126	TGATGAAAGTTTGCGGCAGGACAC	GTGTCCTGCCGCAAACTTTCATCA
	127	GTTGAGTGCAGGATAG	CTATCGCTGCATCCTGCACTCAAC
	128	AACATTGCGCGGTCCACCAGGGTT	AACCCTGGTGGACCGCGCAATGTT
35	129	GGGCAGTTAGAGAGGGCCAGAAGT	ACTTCTGGCCCTCTCTAACTGCCC
	130	TCGAGCTGGTCCCCGTGAACGTGT	ACACGTTCACGGGGACCAGCTCGA
	131	GTCTTGGGGGCCGCTTAGTGAAAA	TTTTCACTAAGCGGCCCCCAAGAC
	132	ACTGTTGGCTTGCTCATGTCCA	TGGACATGAGAGCAAGCCAACAGT
	133	AGGACCATTCGGAAGGCGAAGATA	TATCTTCGCCTTCCGAATGGTCCT
40	134	CTTGGGAGGCATCCGCTATAAGGA	TCCTTATAGCGGATGCCTCCCAAG
	135	AATAAACGGAACGCACCGCTACAG	CTGTAGCGGTGCGTTCCGTTTATT

ſ	136	TTGTACGTGCGGTCCCCATAAGCA	TGCTTATGGGGACCGCACGTACAA
İ	137	CGCACCAAACTGAGTTTCCCAGAC	GTCTGGGAAACTCAGTTTGGTGCG
ľ	138	ACCTGATCGTTCCCCTATTGGGAA	TTCCCAATAGGGGAACGATCAGGT
	139	GGAACAGAGGCGAGGGGACTGAGC	GCTCAGTCCCCTCGCCTCTGTTCC
5	140	CCCTGCCTTGGCGTGTCGGCTTAT	ATAAGCCGACACGCCAAGGCAGGG
	141	ACTCTGACACGCCAACTCCGGAAG	CTTCCGGAGTTGGCGTGTCAGAGT
	142	CTGACGGTTTTCATTCGGCGTGCC	GGCACGCCGAATGAAAACCGTCAG
ľ	143	TGCGGTGGTTCATTGGAGCTGGCC	GGCCAGCTCCAATGAACCACCGCA
	144	GCATGGCCAACTAGTGACTCGCAA	TTGCGAGTCACTAGTTGGCCATGC
10	145	AGGCCGTAAAGCGAATCTCACCTG	CAGGTGAGATTCGCTTTACGGCCT
Ţ	146	CGAATATTATGCCGAGAATCCGCG	CGCGGATTCTCGGCATAATATTCG
ľ	147	ACAGACGAGCTCCCAACCACATGA	TCATGTGGTTGGGAGCTCGTCTGT
	148	GGACGGTTTGTGCTGGATTGTCTG	CAGACAATCCAGCACAAACCGTCC
ľ	149	AAAGGCTATTGAGTTGGTTGGGCG	CGCCCAACCAACTCAATAGCCTTT
15	150	GATGGCCTATTCGGAGATCGGGCC	GGCCGATCTCCGAATAGGCCATC
	151	GATCCAGTAGGCAGCTTCATCCCA	TGGGATGAAGCTGCCTACTGGATC
	152	AATAACTCGCGCGGGTATGCTTCT	AGAAGCATACCCGCGCGAGTTATT
	153	GGAGGAGGTTTGTCTCGGAAAGCA	TGCTTTCCGAGACAAACCTCCTCC
	154	CTTTGGTATGGCACATGCTGCCCG	CGGGCAGCATGTGCCATACCAAAG
20	155	AGAAAGGCTCGAGCAACGGGAACT	AGTTCCCGTTGCTCGAGCCTTTCT
	156	AATCTACCGCACTGGTCCGCAAGT	ACTTGCGGACCAGTGCGGTAGATT
	157	CGTGGCGGCCACAGTTTTTGGAGG	CCTCCAAAAACTGTGGCCGCCACG
	158	TTGCAGTTCAATCCATACGCACGT	ACGTGCGTATGGATTGAACTGCAA
	159	GGCCCAAAGCCCCAGACCATTTTA	TAAAATGGTCTGGGGCTTTGGGCC
25	160	CGCCTGTCTTTGTCTCCGGACAAT	ATTGTCCGGAGACAAGACAGGCG
	161	TGAGGCAACAGGGGCCAAAAACTA	TAGTTTTTGGCCCCTGTTGCCTCA
	162	AGCGGAAGTAGTCCTCGGCTCGTC	GACGAGCCGAGGACTACTTCCGCT
	163	GGCCCCAAGGCTTAGAGATAGTGG	CCACTATCTCTAAGCCTTGGGGCC
ļ	164	GCACGTGAAGTTTAACCGCGATTC	GAATCGCGGTTAAACTTCACGTGC
30	_165	AGCGGCAGAAACGTTCCTTGACGG	CCGTCAAGGAACGTTTCTGCCGCT
	166	TCGTCGAGCAGACGAGATTGCACG	CGTGCAATCTCGTCTGCTCGACGA
	167	TCTTTGCCGCGTAACTGACTGCTT	AAGCAGTCAGTTACGCGGCAAAGA
	168	TTTATGTGCCAAGGGGTTAACCGA	TCGGTTAACCCCTTGGCACATAAA
	169	TGTTACTGTGGTTCACGGCAGTCC	GGACTGCCGTGAACCACAGTAACA
35	170	CGCGCCTCGCTAGACCTTTTATTG	CAATAAAAGGTCTAGCGAGGCGCG
	171	ACAAATGCGTGAGAGCTCCCAACT	AGTTGGGAGCTCTCACGCATTTGT
	172_	CGCGCAGATTATAGACCCGAATGT	ACATTCGGGTCTATAATCTGCGCG
	173	CAAATAACGCCGCTGAATCGGCGT	ACGCCGATTCAGCGGCGTTATTTG
	174	CCTTCGTGCATCGGTGATGATGTT	AACATCATCACCGATGCACGAAGG
40	175	TGAACACGAGCAACACTCCAACGC	GCGTTGGAGTGTTGCTCGTGTTCA
Į	176	CAGCAGATCCTTCGTAGCGGTCGT	ACGACCGCTACGAAGGATCTGCTG

	177	GGAACCTGGTGAGTTGTGCCTCAT	ATGAGGCACAACTCACCAGGTTCC
	178	TCATAAGCGACAATCGCGGGCTTA	TAAGCCCGCGATTGTCGCTTATGA
	179	CCCAACGTCACTGAAGCTCACAGT	ACTGTGAGCTTCAGTGACGTTGGG
	180	TGTCAGAGCCCGCGACTCAGACGG	CCGTCTGAGTCGCGGGCTCTGACA
5	181	TACACGAAGCCTCTCCGTGGTCCA	TGGACCACGGAGAGGCTTCGTGTA
	182	CTCAGAAGTCCTCGGCGAACTGGG	CCCAGTTCGCCGAGGACTTCTGAG
	183	ATCCTTTTATCTACTCCGCGGCGA	TCGCCGCGGAGTAGATAAAAGGAT
	_184	AGGCGTGCAGCAACAGGATAAACC	GGTTTATCCTGTTGCTGCACGCCT
	185	ACTCTCGAGGGAGTCTCTGGCACA	TGTGCCAGAGACTCCCTCGAGAGT
10	186	TTGCCAGGTCCATCGAGACCTGTT	AACAGGTCTCGATGGACCTGGCAA
	187	TCCACTATAACTGCGGGTCCGTGT	ACACGGACCCGCAGTTATAGTGGA
	188	GCCCAGTCGGCTCTAACAAGTTCG	CGAACTTGTTAGAGCCGACTGGGC
	189	CGGAACGGATAATCGGCGTCAGGT	ACCTGACGCCGATTATCCGTTCCG
	190	TAAAATAAGCGCCTGGCGGGAGGA	TCCTCCCGCCAGGCGCTTATTTTA
15	191	GCGCACTCGTGAAACCTTTCTCGC	GCGAGAAAGGTTTCACGAGTGCGC
	192	AGTTTGCCAGGTACTGGCAAGTGC	GCACTTGCCAGTACCTGGCAAACT
	193	ACAACGAGGGATGTCCAGCGGCAT	ATGCCGCTGGACATCCCTCGTTGT
	194	TTCGCAGCACCCGCTAGGTACAGT	ACTGTACCTAGCGGGTGCTGCGAA
	195	TAACCCGATTTTTGCGACTCTGCC	GGCAGAGTCGCAAAAATCGGGTTA
20	196	CGTCGCATTGCAAGCGTAGGCTTG	CAAGCCTACGCTTGCAATGCGACG
:	197	GAGCTGACGTCACCATCAGAGGAA	TTCCTCTGATGGTGACGTCAGCTC
	198	GGAGGCTGGGGGTCGCGCTTAAGT	ACTTAAGCGCGACCCCAGCCTCC
	199	TTGTGGGAACCGCACTAGCTGGCT	AGCCAGCTAGTGCGGTTCCCACAA
	200	CCCTCGCACTGTGTTCACCCTCTT	AAGAGGGTGAACACAGTGCGAGGG
25	201	TCATTGACTCGAATCCGCACAACG	CGTTGTGCGGATTCGAGTCAATGA
	202	ACAGGGGTTGGCCTTCGTACGTAC	GTACGTACGAAGGCCAACCCCTGT
	203	AGGCCGTGCAACATCACACAGGAT	ATCCTGTGTGATGTTGCACGGCCT
	204	GGGCCGTGGTCACGTAATATTGGC	GCCAATATTACGTGACCACGGCCC
	205	GCGCGGACATGAAACGACAAGGCC	GGCCTTGTCGTTTCATGTCCGCGC
30	206	CTTATTGGGTGCCGGTGTCGGATT	AATCCGACACCGGCACCCAATAAG
	207	GGGCGGTTACCAAAAAATCCGAT	ATCGGATTTTTTGGTAACCGCCCC
	4		TTGATCGTAGCCGGTATGCGACGG
	5	ATGGCCGTGCTGGGGACAAGTCAA	TTGACTTGTCCCCAGCACGGCCAT
	210	ACGAAAAAGTGTGCGGATCCCCT	AGGGGATCCGCACACTTTTTCGT
35	211	CCAAGTACACCGCACGCATGTTTA	TAAACATGCGTGCGGTGTACTTGG
	212	ATCGTGCGTGGAGTGTCGCATCTA	TAGATGCGACACTCCACGCACGAT
	213	TCCAGATACCGCCCGAACTTTGA	TCAAAGTTCGGGGCGGTATCTGGA
i	214	TCTGCTGGCAGCACGTGAAGTGGC	GCCACTTCACGTGCTGCCAGCAGA
	215	TTGAAATTGCTCTGCCGTCAGTCA	TGACTGACGGCAGAGCAATTTCAA
40	216	AGTCAGGCGAGATGTTCAGGCAGC	GCTGCCTGAACATCTCGCCTGACT
	217	ACAAGCCGACGTTAAGCCCGCCCA	TGGGCGGCTTAACGTCGGCTTGT

ſ	218	CCCTAATGAGGCCAGTAACCTGCA	TGCAGGTTACTGGCCTCATTAGGG
	219	GTGAGACACACATCCCCTCCAATG	CATTGGAGGGGATGTGTGTCTCAC
	220	CGACGGATGCAGAGTTCAGTGGTC	GACCACTGAACTCTGCATCCGTCG
	. 221	CCCGCATGCCTGGCGGTATTACAA	TTGTAATACCGCCAGGCATGCGGG
5	222	TTAGCAAAGCGGCGCCGTTAGCAA	TTGCTAACGGCGCCGCTTTGCTAA
	223	CCCGACACGGGTCAGCGTAATAAT	ATTATTACGCTGACCCGTGTCGGG
	224	GCGACGCCCTGAGGTATGTCGTC	GACGACATACCTCAGGGCCGTCGC
	225	CAAAAGTGTGTTCCCTTGCGCTTG	CAAGCGCAAGGGAACACACTTTTG
	226	TCTCGAAGCACAGCCCGGTTATTG	CAATAACCGGGCTGTGCTTCGAGA
10	227	ATGCTAACCGTTGGCCATGGAACT	AGTTCCATGGCCAACGGTTAGCAT
	228	CTTGCGGAGTGTTAGCCCAGCGGT	ACCGCTGGGCTAACACTCCGCAAG
	229	TGCTCCCTAGGCGCTCGGAGGAGT	ACTCCTCCGAGCGCCTAGGGAGCA
	230	CCAATGCCTTTGAGTAAGCGATGG	CCATCGCTTACTCAAAGGCATTGG
	231	AGCAGATAACGTCCCAATGACGCC	GGCGTCATTGGGACGTTATCTGCT
15	232	TTGACCATTACGTGTTGCGCCCAT	ATGGGCGCAACACGTAATGGTCAA
	233	TCGCGTATTTGCGGAATTCGTCTG	CAGACGAATTCCGCAAATACGCGA
	234	CTGCGTGTCAACAATGTCCCGCAG	CTGCGGGACATTGTTGACACGCAG
	235	TCTGGTGCCACGCAAGGTCCACAG	CTGTGGACCTTGCGTGGCACCAGA
	236	CTCCGGGAGGTCACTTAATTGCGG	CCGCAATTAAGTGACCTCCCGGAG
20	237	TTTTCGTGATTGCCCGGAGGAGGC	GCCTCCTCCGGGCAATCACGAAAA
	238	TCGGGATGTAGCTGGGGCTACCGG	CCGGTAGCCCCAGCTACATCCCGA
	239	CGAGCCAACGCAAACACGTCCTTG	CAAGGACGTGTTTGCGTTGGCTCG
	240	GCAAAGCCTTTGTGGGGCGGTAGT	ACTACCGCCCCACAAAGGCTTTGC
	241	ATTCGACCGGAAATGAGGTCTTCG	CGAAGACCTCATTTCCGGTCGAAT
25	242	TTCGCTTGCTGAGTTGCTCTGTTC	GAACAGAGCAACTCAGCAAGCGAA
	243	CGCGTGAAGACCCCATTCCCGAGT	ACTCGGGAATGGGGTCTTCACGCG
	244	AACCGTATTCGCGGTCACTTGTGG	CCACAAGTGACCGCGAATACGGTT
,	245	GGGGCCAACCGTTTCGAGGCGTAT	ATACGCCTCGAAACGGTTGGCCCC
	246	TTCGGCTGGCAGTCCAAACGGCTT	AAGCCGTTTGGACTGCCAGCCGAA
30	247	GGGTGTGGTTAGAATGCACGGTTC	GAACCGTGCATTCTAACCACACCC
	248	GCGAGGACCGAACTAGACAAACGG	CCGTTTGTCTAGTTCGGTCCTCGC
	249	ACGCACGCGTGACCGAAGTTGCTG	CAGCAACTTCGGTCACGCGTGCGT
	250	TAAAAGGTCGCTTTGAAAGGGGGA	TCCCCCTTTCAAAGCGACCTTTTA
	251	TGCGATCGCTAACTGCTGGGACAA	TTGTCCCAGCAGTTAGCGATCGCA
35	252	GGAGGTATAAGCGGAGCGGCCTCA	TGAGGCCGCTCCGCTTATACCTCC
İ	253	ATGCTGACATGTCGTGCACCTCGT	ACGAGGTGCACGACATGTCAGCAT
ĺ	254	TGTGGTTAAAGCGTCCGTTCAACG	CGTTGAACGGACGCTTTAACCACA
ļ	255	CGTTCACACCGGCGTAAGCTGCGT	ACGCAGCTTACGCCGGTGTGAACG
	256	CCTATCCCGGCGAGAACTTCTGTG	CACAGAAGTTCTCGCCGGGATAGG
40	257	GTCTGCACTCACGCAGCGAGGGA	TCCCTCCGCTGCGTGAGTGCAGAC
Į	258	GCACGAGTTGGTGCTCGGCAGATT	AATCTGCCGAGCACCAACTCGTGC

	259	AACGTCGCACGACACGTTCGTC	GACGAACGTGTGTCGTGCGACGTT
	260	ATGCGCGCTTATCCTAGCATGGTC	GACCATGCTAGGATAAGCGCGCAT
	261	TCACGTTTTCGTCTCGACATGAGG	CCTCATGTCGAGACGAAAACGTGA
	262	TGTGCCTCATCCTTAGGATACGGC	GCCGTATCCTAAGGATGAGGCACA
5	263	AGGTGGTGTGGGTCAACCGCTTTA	TAAAGCGGTTGACCCACACCACCT
[264	CTGGATCGAAGGGACTGCAAGCTC	GAGCTTGCAGTCCCTTCGATCCAG
	265	TAGATCAACTCGCGTACGCATGGA	TCCATGCGTACGCGAGTTGATCTA
	266	GATCCTGCGGAGAAGAGAGTGCAG	CTGCACTCTCTTCTCCGCAGGATC
	267	TACGTGTGGAGATGCCCCGAACCG	CGGTTCGGGGCATCTCCACACGTA
10	268	GCGCTATGTCAATCGTGGGCGTAG	CTACGCCCACGATTGACATAGCGC
	269	AGCGAGGTTTCTAGCGTCGACACC	GGTGTCGACGCTAGAAACCTCGCT
	270	ACCCAGGTTTTGCCGTTGTGGAAT	ATTCCACAACGGCAAAACCTGGGT
	271	CCCTGTTAACGGCTGCGTAGTCTC	GAGACTACGCAGCCGTTAACAGGG
	272	AGGCCGATTTCACCCGCCAATTGC	GCAATTGGCGGGTGAAATCGGCCT
15	273	GAGCCCTCACTCCTTGCCCTTTGA	TCAAAGGGCAAGGAGTGAGGGCTC
	274	GGGTGGACATCCGCCTCGCAGTCA	TGACTGCGAGGCGGATGTCCACCC
	275	GATGGCTGAGAACCGTGCTACGAT	ATCGTAGCACGGTTCTCAGCCATC
	276	TCGACGTTAGGAGTGCTGCCAGAA	TTCTGGCAGCACTCCTAACGTCGA
	277	CGAATGGGTCTGGACCTTGCATAG	CTATGCAAGGTCCAGACCCATTCG
20	278	GTGCACCAGACATTCGAACTCGGA	TCCGAGTTCGAATGTCTGGTGCAC
	279	AGAGGCCCCGTATATCCCATCCAT	ATGGATGGGATATACGGGGCCTCT
	280	AACGCCTGTTCAGAGCATCAGCGG	CCGCTGATGCTCTGAACAGGCGTT
	281	AAGGCTCAACACGCCTATGTGCGC	GCGCACATAGGCGTGTTGAGCCTT
	282	AGTCCGTGTTGCCAGATTGGCTCG	CGAGCCAATCTGGCAACACGGACT
25	283	ATGTCCCATGTAAAGACGCGTGTG	CACACGCGTCTTTACATGGGACAT
	284	ATGGAGTCTGCTCACGCCCAAAGG	CCTTTGGGCGTGAGCAGACTCCAT
	285	CGGCCTCCAACAAGGAGCACTAAC	GTTAGTGCTCCTTGTTGGAGGCCG
	286	CAGAGCCGTGGCAACATTGCGAGC	GCTCGCAATGTTGCCACGGCTCTG
	287	TCATTTGAATGAGGTGCGCACCGG	CCGGTGCGCACCTCATTCAAATGA
30	288	GACGTACCGGAAGCGCCGTATAAA	TTTATACGGCGCTTCCGGTACGTC
	289	ATGCGAGCAATGGGATCCGGATTC	GAATCCGGATCCCATTGCTCGCAT
	290	AGAGTGAGGCCTCCCTGACCAGTG	CACTGGTCAGGGAGGCCTCACTCT
	291	CGCACCGTAAGTAGATTTGCCCGC	GCGGCAAATCTACTTACGGTGCG
	292	TGAACCTTTGAGCACGTCGTGCGC	GCGCACGACGTGCTCAAAGGTTCA
35	293	TCCGCCTTTTTGGTTACCTCGAAG	CTTCGAGGTAACCAAAAAGGCGGA
	294	GAACGCCAACGGCACTAACACATC	GATGTGTTAGTGCCGTTGGCGTTC
	295	CCGACAGCAGCCAAGACGTCCCAG	CTGGGACGTCTTGGCTGCTGTCGG
	296	CATAAAAAACCTGGGGCTCTGCG	CGCAGAGCCCCAGGTTTTTTATG
	297	TGCCAACTGTGCAGACCGGACTTA	TAAGTCCGGTCTGCACAGTTGGCA
40	298	GGCGAAAGAGCGAAACCGGCTCGT	ACGAGCCGGTTTCGCTCTTTCGCC
Į	299	GGGATGCGTATTTTAGCGAACACG	CGTGTTCGCTAAAATACGCATCCC

ſ	300	TGGGATTCAGCGACCAGTACGCGA	TCGCGTACTGGTCGCTGAATCCCA
Ī	301	CCCGATATTCGCCCGGCCTATTCG	CGAATAGGCCGGGCGAATATCGGG
	302	CGAGAAGATGCCTCACGCAACCAA	TTGGTTGCGTGAGGCATCTTCTCG
	303	AACCTTGACCCGTGGATGACGCTA	TAGCGTCATCCACGGGTCAAGGTT
5	6	TTGCAACGGGCTGGTCAACGTCAA	TTGACGTTGACCAGCCCGTTGCAA
	7	CGCATAGGTTGCCGATTTCGTCAA	TTGACGAAATCGGCAACCTATGCG
	306	GCTTCCGGATGAACGGGATGGTTG	CAACCATCCCGTTCATCCGGAAGC
	307	CCCTCCATGTTCTTCGAACGGTTT	AAACCGTTCGAAGAACATGGAGGG
	308	TTGATGGGCGGCAATGCTCTTGCT	AGCAAGAGCATTGCCGCCCATCAA
10	309	ATTGTGAGATGCGCCAAATTCCCC	GGGGAATTTGGCGCATCTCACAAT
	310	TCAGCACAGCCAGACGGTCAACTT	AAGTTGACCGTCTGGCTGTGCTGA
	311	ACTCCACTCCTCGGTGGCAAACTA	TAGTTTGCCACCGAGGAGTGGAGT
	312	TCTGGGCATGCCTGGACGGAGACG	CGTCTCCGTCCAGGCATGCCCAGA
	313	TCTCAACTCCGGTACGACGAAACA	TGTTTCGTCGTACCGGAGTTGAGA
15	314	TTGCGTGGTCAAAGGCGCAACGTG	CACGTTGCGCCTTTGACCACGCAA
	315	AGACAGCGATCCGCGGCTCATGAT	ATCATGAGCCGCGGATCGCTGTCT
	316	CGCGTCTCTAACTGAGAGCAGCCA	TGGCTGCTCTCAGTTAGAGACGCG
	317	AGGCGCACATGTACGGACATTCAG	CTGAATGTCCGTACATGTGCGCCT
	318	GATGAGTGGCACGTCGGTGTGTAA	TTACACACCGACGTGCCACTCATC
20	319	TGATCCATATTGTCGGACGTTGCG	CGCAACGTCCGACAATATGGATCA
	320	ACCTGCCGGGAGTTCATAGGCTAG	CTAGCCTATGAACTCCCGGCAGGT
	321	AGCATTGGCGTTTTTCCGCAACGA	TCGTTGCGGAAAAACGCCAATGCT
ĺ	322	GGTAATATTCAGCGCGACCGCTCA	TGAGCGGTCGCGCTGAATATTACC
ļ	323	ATAGCGTACGACGAGGTGACGCGC	GCGCGTCACCTCGTCGTACGCTAT
25	324	TAGGTCACGATGCGTTTGACGCTA	TAGCGTCAAACGCATCGTGACCTA
	325	ACTGCCCGTACCTCTGGTTCTGGC	GCCAGAACCAGAGGTACGGGCAGT
	326	CCTTTGGCCTGAAGTTGTCGTAGC	GCTACGACAACTTCAGGCCAAAGG
	327	GTGCCCACGAGCGTATCGTTGTA	TACAACGATACGCTCGTGGGGCAC
	328	AGGCGCTACGTGGGCCTGGAGCAA	TTGCTCCAGGCCCACGTAGCGCCT
30	329	GGGTGCTACCATTGCATTAGTCCG	CGGACTAATGCAATGGTAGCACCC
Ì	330	ACCACGCGCGTACGTGTAACCGAG	CTCGGTTACACGTACGCGCGTGGT
1	331	CCATGATGCATTGGGTGCATTTAG	CTAAATGCACCCAATGCATCATGG
	332	GGTCCGGCCCTACGAAACGTTCGA	TCGAACGTTTCGTAGGGCCGGACC
	333	CCGTGTGGCTGGAGATTCGTGTGA	TCACACGAATCTCCAGCCACACGG
35	334	GTTAGGGCGACGCATATTGGCACA	TGTGCCAATATGCGTCGCCCTAAC
	335	GGGTCAGTCAGGTGCGTTAGGATC	GATCCTAACGCACCTGACTGACCC
ļ	336	GCCGTGAAGTCGAATGCAGATCGA	TCGATCTGCATTCGACTTCACGGC
Ì	337	GCCACCACCAGTGCATTCAGGTA	TACCTGAATGCACTGGGTGGTGGC
İ	338	GAGCTTAGTTTGCGGTCATCGGGC	GCCCGATGACCGCAAACTAAGCTC
40	339	TGTTTGCCGCCATTAGGGAGTAAC	GTTACTCCCTAATGGCGGCAAACA
l	340	GCTCCGCTGGATGTGCCGGTTTAG	CTAAACCGGCACATCCAGCGGAGC

	341	CGGTAGCATGCGAGATCCCTGTTA	TAACAGGGATCTCGCATGCTACCG
	342	CTACGCTCTACCAGTTGCCTGCGA	TCGCAGGCAACTGGTAGAGCGTAG
	343	GTGCCTCCTGCTGTATTTGCCAAG	CTTGGCAAATACAGCAGGAGGCAC
	344	TTGCGACTCGACTTGGACGAGTAG	CTACTCGTCCAAGTCGAGTCGCAA
5	345	TCTGGGAGCTGTTTACTCCAGCCA	TGGCTGGAGTAAACAGCTCCCAGA
·	346	TGCACGCGGAACTCCCTTTACCAT	ATGGTAAAGGGAGTTCCGCGTGCA
	347	TGGCAGCAAATGAATCGAAAGCAC	GTGCTTTCGATTCATTTGCTGCCA
	348	AACTGGTGACGCGGTACAGCGAAG	CTTCGCTGTACCGCGTCACCAGTT
	349	AGACGATTACGCTGGACGCCGTCG	CGACGCGTCCAGCGTAATCGTCT
10	350	ATGCCCTCCTTCATGGAAAGGGTT	AACCCTTTCCATGAAGGAGGCAT
	351	ATTCTCGGAGCGTATGCGCCAGAA	TTCTGGCGCATACGCTCCGAGAAT
	352	ATAGCGGAGTTTGGGTACGCGAAC	GTTCGCGTACCCAAACTCCGCTAT
	353	ACCTACGCATACCGCTTGGCGAGG	CCTCGCCAAGCGGTATGCGTAGGT
	354	GATTACCTGAATGGCCAAGCGAGC	GCTCGCTTGGCCATTCAGGTAATC
15	355	CCTGTTAGCATCACGGCGCTTAGG	CCTAAGCGCCGTGATGCTAACAGG
	356	CGGAATGATGCGCTCGACAACGCT	AGCGTTGTCGAGCGCATCATTCCG
	357	TGAGAGAGGCGTTGGTTAAGGCAA	TTGCCTTAACCAACGCCTCTCTCA
	358	AAGCAGGCGAAGGGATACTCCTCG	CGAGGAGTATCCCTTCGCCTGCTT
	359	TCACGACAGACGGGCCGAGATTAC	GTAATCTCGGCCCGTCTGTCGTGA
20	360	AAGCAATTTGGCCTCGTTTTGTGA	TCACAAAACGAGGCCAAATTGCTT
	361	GCTGGTTGCGGTAGGATCGCATAT	ATATGCGATCCTACCGCAACCAGC
ĺ	362	TTGTGAATCCGTTCTGTCCCCGAC	GTCGGGACAGAACGGATTCACAA
	363	TGGGCTCCTCTGAGGCGAGATGGC	GCCATCTCGCCTCAGAGGAGCCCA
	364	GGATAGAGTGAATCGACCGGCAAC	GTTGCCGGTCGATTCACTCTATCC
25	365	TGCACCGAACGTGCACGAGTAATT	AATTACTCGTGCACGTTCGGTGCA
	366	GCCAGTATTCTCGGGTGTTGGACG	CGTCCAACACCCGAGAATACTGGC
ĺ	367	TCGCTACCTAAGACCGGGCCATAC	GTATGGCCCGGTCTTAGGTAGCGA
	368	TGGCATTGACGAGCAGCAGTCAGT	ACTGACTGCTGCTCAATGCCA
	369	CGCGTCCCAGCGCCCTTGGAGTAT	ATACTCCAAGGGCGCTGGGACGCG
30	370	ATGAAGCCTACCGGGCGACTTCGT	ACGAAGTCGCCCGGTAGGCTTCAT
	371	CCAGACAGATGGCCTGGAACCATG	CATGGTTCCAGGCCATCTGTCTGG
[372	TGGCGTGGGACCATCTCAAAGCTA	TAGCTTTGAGATGGTCCCACGCCA
	373	CCGCATGGGAACACGTGTCAAGGT	ACCTTGACACGTGTTCCCATGCGG
	374	GCCCACTCGTCAGCTGGACGTAAT	ATTACGTCCAGCTGACGAGTGGGC
35	375	ATTACGGTCGTGATCCAGAAAGCG	CGCTTTCTGGATCACGACCGTAAT
	376	TGCGAGGTGAGCACCTACGAGAGA	TCTCTCGTAGGTGCTCACCTCGCA
	377	GGGCCGCATTCTTGATGTCCATTC	GAATGGACATCAAGAATGCGGCCC
	378	CCTCGGATGTGGGCTCTCGCCTAG	CTAGGCGAGAGCCCACATCCGAGG
	379	TAGGCATGTTGGCGTGAGCGCTAT	ATAGCGCTCACGCCAACATGCCTA
40	380	CGATACGAACGAGGATGTCCGCCT	AGGCGGACATCCTCGTTCGTATCG
	381	TACGCCGGTTAGCACGGTGCGCTA	TAGCGCACCGTGCTAACCGGCGTA
•			

5	382 383 384 385 386 387 388	CATACGATGTCCGGGCCGTGTCGC ATCCGCAGTTGTATGGCGCGTTAT GGGTAAGGGACAAAGATGGGATGG	GCGACACGGCCCGGACATCGTATG ATAACGCGCCATACAACTGCGGAT CCATCCCATC
5	384 385 386 387	GGGTAAGGGACAAAGATGGGATGG ATTGGAGTGTTTTGGTGAATCCGC	CCATCCCATCTTTGTCCCTTACCC GCGGATTCACCAAAACACTCCAAT
5	385 386 387	ATTGGAGTGTTTTGGTGAATCCGC	GCGGATTCACCAAAACACTCCAAT
5	386 387		
	387	GAACCGAGCCAACGTATGGACACG	CCTCTCCATACCTTCCCTCCCTTC
			Ollobolicolicolicolic
	388	GCCGTCAAGCTTAAGGTTTTGGGC	GCCCAAAACCTTAAGCTTGACGGC
		ACCTGCTTTTGGGTGGGTGATATG	CATATCACCCACCCAAAAGCAGGT
	389	AATCGTGGGCGCAGCAAACGTATA	TATACGTTTGCTGCGCCCACGATT
10	390	GTCGCCGGATTGCTCAGTATAAGC	GCTTATACTGAGCAATCCGGCGAC
	391	ACCCGTCGATGCTTCCTCCTCAGA	TCTGAGGAGGAAGCATCGACGGGT
	392	ATCCGGGTGGCGATACAAGAGAT	ATCTCTTGTATCGCCCACCCGGAT
	393	TTCCGCATGAGTCAGCTTTGAAAA	TTTTCAAAGCTGACTCATGCGGAA
	394	GCAAAGTCCCACTGGCAAGCCGAT	ATCGGCTTGCCAGTGGGACTTTGC
	395	CGACCTCGGCTTCATCGTACACAT	ATGTGTACGATGAAGCCGAGGTCG
15	396	CTCATGAGCGCAGTTGTGCGTGAG	CTCACGCACAACTGCGCTCATGAG
	397	CAGATGAAGGATCCACGGCCGGAG	CTCCGGCCGTGGATCCTTCATCTG
	398	TCAAAGGCTCTTGGATACAGCCGT	ACGGCTGTATCCAAGAGCCTTTGA
	399 ·	TCCGCTAATTTCCAATCAGGGCTC	GAGCCCTGATTGGAAATTAGCGGA
	8	CCGTTTGCGGTCGTCCTTGCTCAA	TTGAGCAAGGACGACCGCAAACGG
20	9	TTCGCTTTCGTGGCTGCACTTCAA	TTGAAGTGCAGCCACGAAAGCGAA
	402	CTTAGTTGGGGCGCGGTATCCAGA	TCTGGATACCGCGCCCCAACTAAG
	403	GCTCTAATGCCGTGGAGTCGGAAC	GTTCCGACTCCACGGCATTAGAGC
	404	CCGATTACAAATTGACTGACCGCA	TGCGGTCAGTCAATTTGTAATCGG
	405	AGACGTACGTGAGCCTCCCGTGTC	GACACGGGAGGCTCACGTACGTCT
25	406	AATGGAGCGATACGATCCAACGCA	TGCGTTGGATCGTATCGCTCCATT
<u>:</u>	407	GGAGGCGCTGTACTGATAGGCGTA	TACGCCTATCAGTACAGCGCCTCC
	408	TGTTTTGAATTGACCACACGGGA	TCCCGTGTGGTCAATTCAAAAACA
	409	CATGTCTGGATGCGCTCAATGAAG	CTTCATTGAGCGCATCCAGACATG
	410	GCCCGCTAATCCGACACCCAGTTT	AAACTGGGTGTCGGATTAGCGGGC
30	411	CCATTGACAGGAGAGCCATGAGCC	GGCTCATGGCTCTCCTGTCAATGG
	412	GAATCACCGAATCACCGACTCGTT	AACGAGTCGGTGATTC
	413	AACCAGCCGCAGTAGCTTACGTCG	CGACGTAAGCTACTGCGGCTGGTT
	414	TTTTCTGAGGGACACGCGGGCGTT	AACGCCCGCGTGTCCCTCAGAAAA
	415	GGTGCTCCGTTTGATCGATCCTCC	GGAGGATCGATCAAACGGAGCACC
35	416	CCGCTTAGGCCATACTCTGAGCCA	TGGCTCAGAGTATGGCCTAAGCGG
	417	TAAGACATACCGACGCCCTTGCCT	AGGCAAGGCCGTCGGTATGTCTTA
	418	GTTCCCGACGCCAGTCATTGAGAC	GTCTCAATGACTGGCGTCGGGAAC
	419	TAAAAGTTTCGCGGAGGTCGGGCT	AGCCCGACCTCCGCGAAACTTTTA
	420	CGGTCCAGACGAGCTGAGTTCGGC	GCCGAACTCAGCTCGTCTGGACCG
40	421	CGGCGTAGCGGCTACGGACTTAAA	TTTAAGTCCGTAGCCGCTACGCCG
	422	GCTTGGATGCCCATGCGGCAAGGT	ACCTTGCCGCATGGGCATCCAAGC

	423	AGCGGGATCCCAGAGTTTCGAAAA	TTTTCGAAACTCTGGGATCCCGCT
,	424	GAGCTTGAGAGCGAGGTCATCCTC	GAGGATGACCTCGCTCTCAAGCTC
	425	GCATCGGCCGTTTTGACCATATTC	GAATATGGTCAAAACGGCCGATGC
	426	CATAGCGCTGCACGTTTCGACCGC	GCGGTCGAAACGTGCAGCGCTATG
5	427	ACCCGACAACCACCAATTCAAAAA	TTTTTGAATTGGTGGTTGTCGGGT
	428	GCGAACACTCATAAGAGCGCCCTG	CAGGGCGCTCTTATGAGTGTTCGC
	429	CCGCCGAGTGTAGAGAGACTCCGA	TCGGAGTCTCTCTACACTCGGCGG
	430	GACATCGGGAGCCGGAAACATGAG	CTCATGTTTCCGGCTCCCGATGTC
	431	TCGTGTAGACTCGGCGACAGGCGT	ACGCCTGTCGCCGAGTCTACACGA
10	432	ATGCGCATATACTGACTGCGCAGG	CCTGCGCAGTCAGTATATGCGCAT
	433	ACAAGCGAACCCGAGTTTTGATGA	TCATCAAAACTCGGGTTCGCTTGT
	434	GCATGAGACTCCGCGAAGACATGT	ACATGTCTTCGCGGAGTCTCATGC
	435	TCCTACATGTCGCGTCACGATCAC	GTGATCGTGACGCGACATGTAGGA
	436	GACCGATCGCGAAGTCGTACACAT	ATGTGTACGACTTCGCGATCGGTC
15	437	GTCGCCAGGACTGGGCCGATGTGA	TCACATCGGCCCAGTCCTGGCGAC
	438	ACCGATAAGACTTGCATCCGAACG	CGTTCGGATGCAAGTCTTATCGGT
	439	TCCATAACCAGTCCGAAGTGCCGG	CCGGCACTTCGGACTGGTTATGGA
İ	440	ACGCGCCCTGCATCTCGTATTTAA	TTAAATACGAGATGCAGGGCGCGT
	441	AGACCGCATCAATTGGCGCGTACC	GGTACGCGCCAATTGATGCGGTCT
20	442	AGAGGCTTGGCAAGTAGGGACCCT	AGGGTCCCTACTTGCCAAGCCTCT
	443	GCAATGGACGCCAGACGATACCGG	CCGGTATCGTCTGGCGTCCATTGC
	444	GCTGGACTTAGTCGTGTTCGGCGG	CCGCCGAACACGACTAAGTCCAGC
	445	AGGCATCGTGCCGGATTGCTCCCT	AGGGAGCAATCCGGCACGATGCÇT
	446	TGCGCATGTCGACGTTGAACAAAG	CTTTGTTCAACGTCGACATGCGCA
25	447	TTCGGGTCACATCCGATGCCATAC	GTATGGCATCGGATGTGACCCGAA
	448	ACCCATCGCCGGAAAGCGATGTTG	CAACATCGCTTTCCGGCGATGGGT
	449	AAGCGCTGACTCGGCTAAGAATCA	TGATTCTTAGCCGAGTCAGCGCTT
	450	ACTTCCAAGTCCTTGACCGTCCGA	TCGGACGGTCAAGGACTTGGAAGT
	451 .	TCTCAATATTCCCGTAGTCGCCCA	TGGGCGACTACGGGAATATTGAGA
30	452	AACAGTTCCTCTTTTTCCTGGCGC	GCGCCAGGAAAAAGAGGAACTGTT
	453	CGTCCTCCATGTTGTCACGAACAG	CTGTTCGTGACAACATGGAGGACG
	454	TGCGCAGACCTACCTGTCTTTGCT	AGCAAAGACAGGTAGGTCTGCGCA
	455	ATGGACGGCTTCGCAGTCCTCCTT	AAGGAGGACTGCGAAGCCGTCCAT
	456	TGAACGCTTTCTATGGGCCACGTA	TACGTGGCCCATAGAAAGCGTTCA
35	457	TGAACCCTGCCGCGAGCGATAACC	GGTTATCGCTCGCGGCAGGGTTCA
	458	GTTCTTGCGCGATGAATCAGGACC	GGTCCTGATTCATCGCGCAAGAAC
	459	AGGGTACGTGTCGCAGCTTCGCGT	ACGCGAAGCTGCGACACGTACCCT
	460	ACCCTTGCTCCGCCATGTCTCTCA	TGAGAGACATGGCGGAGCAAGGGT
	461	GGGACAAGGATTGAAGCTGGCGTC	GACGCCAGCTTCAATCCTTGTCCC
40	462	TGTCGTTGCTCCCGAGTACCATTG	CAATGGTACTCGGGAGCAACGACA
	463	GTTGTCCGAGACGTTTGTGTCAGC	GCTGACACAAACGTCTCGGACAAC

,				
	464		GCTGGTGAACACTCACGAACCGCT	AGCGGTTCGTGAGTGTTCACCAGC
	465		GCAGACAGGGCAAATCGGTGCAAA	TTTGCACCGATTTGCCCTGTCTGC
	466		CCCATCACAACGAGTGGCGACTTT	AAAGTCGCCACTCGTTGTGATGGG
	467		GCTTCTACAGCTGGCGTGCTAGCG	CGCTAGCACGCCAGCTGTAGAAGC
5	468		GAATGTGTGCCGACCATTCTAGCC	GGCTAGAATGGTCGGCACACATTC
	469		CCAGCGGAAGTTAGAGCTCTGTGG	CCACAGAGCTCTAACTTCCGCTGG
ĺ	470		TTTTTACCGACCACTCCATGTCGG	CCGACATGGAGTGGTCGGTAAAAA
	471		GCGGCTATGTGATGACGGCCTAGC	GCTAGGCCGTCATCACATAGCCGC
	472		AGTACACGGCCGTGTTAGCGCTCC	GGAGCGCTAACACGCCCGTGTACT
10	·473		TCCTGTGTGGTGGCGCACTCCCAC	GTGGGAGTGCGCCACCACACAGGA
	474		CCAACTAACCAATCGCGCGGATGA	TCATCCGCGCGATTGGTTAGTTGG
	475		AGTGAGTGACCAAGGCAGGAGCAA	TTGCTCCTGCCTTGGTCACTCACT
	476		CATCTTTCGCGGAGTTTATTGCGG	CCGCAATAAACTCCGCGAAAGATG
	477		CTTCGTCCGGTTAGTGCGACAGCA	TGCTGTCGCACTAACCGGACGAAG
15	478		CTCACGAAAACGTGGGCCCGAAAT	ATTTCGGGCCCACGTTTTCGTGAG
	479		CGCAGCAGCTGAACTCTAGCATTG	CAATGCTAGAGTTCAGCTGCTGCG
	480		AGGAGACATACGCCCAAATGGTGC	GCACCATTTGGGCGTATGTCTCCT
	481		ATTGAGAACTCGTGCGGGAGTTTG	CAAACTCCCGCACGAGTTCTCAAT
	482		CTCTTTGTAGGCCCAGGAGGAGCA	TGCTCCTCGGGCCTACAAAGAG
20	483		GCCGCAGGGTCGATAATTGGTCTA	TAGACCAATTATCGACCCTGCGGC
	484		AAACGCCGCCCTGAGACTATTGGG	CCCAATAGTCTCAGGGCGGCGTTT
	485		CTGAGTTGCCTGGAACGTTGGACT	AGTCCAACGTTCCAGGCAACTCAG
	486		CGGATGGGTTGCAGAGTATGGGAT	ATCCCATACTCTGCAACCCATCCG
	487		CTGACCTTTGGGGGTTAGTGCGGT	ACCGCACTAACCCCCAAAGGTCAG
25	488		GGAAATGAGAACCTTACCCCAGCG	CGCTGGGGTAAGGTTCTCATTTCC
	489		AACGCATCGTCCGTCAACTCATCA	TGATGAGTTGACGGACGATGCGTT
	490		TGGAGAGAGACTTCGGCCATTGTT	AACAATGGCCGAAGTCTCTCCCA
	491		TTGCGCTCATTGGATCTTGTCAGG	CCTGACAAGATCCAATGAGCGCAA
	492		AGCGCGTTAAAGCACGGCAACATT	AATGTTGCCGTGCTTTAACGCGCT
30	493		AGCCAGTAAACTGTGGGCGGCTGT	ACAGCCGCCCACAGTTTACTGGCT
	494		CGACTGATGTGCAACCAGCAGCTG	CAGCTGCTGGTTGCACATCAGTCG
	495		GGTTGCTCATACGACGAGCGAGTG	CACTCGCTCGTCGTATGAGCAACC
		10	GTCCAACGCGCAACTCCGATTCAA	TTGAATCGGAGTTGCGCGTTGGAC
		11	TTGCCGCACCGTCCGTCATCTCAA	TTGAGATGACGGACGGTGCGGCAA
35	498		AGAACCTCCGCGCCTCCGTAGTAG	CTACTACGGAGGCGCGGAGGTTCT
[499		AAAGGAGCTTTCGCCCAACGTACC	GGTACGTTGGGCGAAAGCTCCTTT
1	500		AGTGATTGTGCCACTCCACAGCTC	GAGCTGTGGAGTGGCACAATCACT
	501		GCGATCGTCGAGGGTTGAGCTGAA	TTCAGCTCAACCCTCGACGATCGC
	502		GGGAGACAGCCATTATGGTCCTCG	CGAGGACCATAATGGCTGTCTCCC
40	503		GAGACGCTGTCACTCCGGCAGAAC	GTTCTGCCGGAGTGACAGCGTCTC
	504		CCACCGGTCGCTTAAGATGCACTT	AAGTGCATCTTAAGCGACCGGTGG
•				·

ſ	505	CGGCATAACGTCCAGTCCTGGGAC	GTCCCAGGACTGGACGTTATGCCG
	506	AAGCGGAACGGGTTATACCGAGGT	ACCTCGGTATAACCCGTTCCGCTT
•	507	TGCACACTAGGTCCGTCGCTTGAT	ATCAAGCGACGGACCTAGTGTGCA
}	508	AGGGAACCGCGTTCAAACTCAGTT	AACTGAGTTTGAACGCGGTTCCCT
5	509	GAATTACAACCACCGCTCGTGTT	AACACGAGCGGGTGGTTGTAATTC
· .	510	TTCAGTGCTCACGAAGCATGGATT	AATCCATGCTTCGTGAGCACTGAA
}	511	TTAGTTTGGCGTTGGGACTTCACC	GGTGAAGTCCCAACGCCAAACTAA
	512	AATGCGACCTCGACGAGCCTCATA	TATGAGGCTCGTCGAGGTCGCATT
	513	CCGAAACCGTTAACGTGGCGCACA	TGTGCGCCACGTTAACGGTTTCGG
10	514	TAAAGTAACAAGGCGACCTCCGC	GCGGGAGGTCGCCTTGTTACTTTA
10	515	TAATGATTITAGTCGCGGGGTGGG	CCCACCCGCGACTAAAATCATTA
	516	GGCTACTCTAAGTGCCCGCTCAGG	CCTGAGCGGGCACTTAGAGTAGCC
	517	TGGCGGACGACTCAATATCTCACG	CGTGAGATATTGAGTCGTCCGCCA
		GGGCGTTAGGCGTAATAGACCGTC	GACGGTCTATTACGCCTAACGCCC
45	518	GCCACCTTTAGACGCGGCTCTAG	CTAGAGCCGCCGTCTAAAGGTGGC
15	519	GAGATGTGTAAACGTGCAGGCACC	GGTGCCTGCACGTTTACACATCTC
,	520		
	521	TAGCTCGTGGCCCTCCAAGCGTGT	ACACGCTTGGAGGGCCACGAGCTA
	522	GTGTCGGCGCTATTTGGCCTTACC	GGTAAGGCCAAATAGCGCCGACAC
	523	CCAGGGAAGCAACTGGTTGCCATT	AATGGCAACCAGTTGCTTCCCTGG
20	524	TTCCGAAACTAAGCCAGAACCGCT	AGCGGTTCTGGCTTAGCCCTTCGGAA
	525	GCAAACCCGGTAACCCGAGAGTTC	GAACTCTCGGGTTACCGGGTTTGC
	526	GCAAATGGCGTCATGCACGAACGT	ACGTTCGTGCATGACGCCATTTGC
	527	AGTACTITCGCGCCCAGTITAGGG	CCCTAAACTGGGCGCGAAAGTACT
	528	AAGATCTGCGAGGCATCCCGGCTT	AAGCCGGGATGCCTCGCAGATCTT
25	529	GCAAGTGTATCGCACAGTGCGATT	AATCGCACTGTGCGATACACTTGC
	530	CCGACAAGGCCTCAATTCATTCTG	CAGAATGAATTGAGGCCTTGTCGG
	531	GTCTCGTCTCAACTTTAAGGCGCG	CGCGCCTTAAAGTTGAGACGAGAC
	532	ATCCAGAGATCCGTTTTGCAGCGT	ACGCTGCAAAACGGATCTCTGGAT
	533	GTCACCAGGAGGGAAGTTTCACCC	GGGTGAAACTTCCCTCCTGGTGAC
30	534	TTCCGTCAGGCGGATCAACGGAAT	ATTCCGTTGATCCGCCTGACGGAA
	535	ATGCCGGACACGCATTACACAGGC	GCCTGTGTAATGCGTGTCCGGCAT
	536	TGGGCCGCTTGGCGCTTTCATAGA	TCTATGAAAGCGCCAAGCGGCCCA
	537	CCTAGCGCGAGCTTTACTGACCAG	CTGGTCAGTAAAGCTCGCGCTAGG
	538	TTGGCCAGGAATATGGTCTCGAGA	TCTCGAGACCATATTCCTGGCCAA
35	539	GTCTGCGGCCGACTTGCTATGCAT	ATGCATAGCAAGTCGGCCGCAGAC
	540	AACTTGCTCATTCTCAAGCCGACG	CGTCGGCTTGAGAATGAGCAAGTT
	541	ACGTCAGCGATTGTGGCGAAATAT	ATATTTCGCCACAATCGCTGACGT
	542	ACGGCCTGCGTCAGCACATGCATC	GATGCATGTGCTGACGCAGGCCGT
	543	ATACCTCCGCAGAACCATTCCGTT	AACGGAATGGTTCTGCGGAGGTAT
40	544	AGTTCGCGGTCCCACGATTCACTT	AAGTGAATCGTGGGACCGCGAACT
	545	TGCTCAATTTGTGCAGAAAACGCC	GGCGTTTTCTGCACAAATTGAGCA

	546	TTATCGCGAGAGACGACCGTGTCC	GGACACGGTCGTCTCTCGCGATAA
	547	GACGCGACGTGAGTAGTGGAAGCG	CGCTTCCACTACTCACGTCGCGTC
	548	ATGGTAGGGCATTGGGCTTTCCT	AGGAAAGCCCAATGCCCCTACCAT
	549	CCAAATATAGCCGCGCGGAGACAT	ATGTCTCCGCGCGGCTATATTTGG
5	550	GCAAACCCTGATTGAATCGTGCCC	GGGCACGATTCAATCAGGGTTTGC
ĺ	551	TAGCGTCTTGCGTGAAACCATGGG	CCCATGGTTTCACGCAAGACGCTA
	552	CCACCCGACAGCGCTGGACTCTT	AAGAGTCCAGCGCTGTCGGGGTGG
	553	ACGAGCACTGAAGGCTGCTTTACG	CGTAAAGCAGCCTTCAGTGCTCGT
	554	CATATCAGCGTCGTCTAGCTCGCG	CGCGAGCTAGACGACGCTGATATG
10	555	TGATCCCGGACCGGCTAGACTAAT	ATTAGTCTAGCCGGTCCGGGATCA
	556	GGCCCGACACTACAGGGTAATCA	TGATTACCCTGTAGTGTCGGGGCC
	557	GGCTCCAGGGCGAGATTATGAATG	CATTCATAATCTCGCCCTGGAGCC
	558	CAAAATCCGATGGGCGGAAAATTA	TAATTTTCCGCCCATCGGATTTTG
	559	CACAGGCGCATAGGGAGCAAGCTA	TAGCTTGCTCCCTATGCGCCTGTG
15	560	TAGCTATTGCCCCGATGGGCTACT	AGTAGCCCATCGGGGCAATAGCTA
	561	TGGTACGCGGTCCATAGCAAGTCG	CGACTTGCTATGGACCGCGTACCA
	562	GACGCTGTGGCTCGGAAACTGTTC	GAACAGTTTCCGAGCCACAGCGTC
	563	CCTGGGTTCGCCGCGTGGTAACTG	CAGTTACCACGCGGCGAACCCAGG
	564	TTCCCGCGTAGCCCAACAGCTATA	TATAGCTGTTGGGCTACGCGGGAA
20	565	TTCGCGGATTGCTGCCGCATAACA	TGTTATGCGGCAGCAATCCGCGAA
	566	AAAAATGGCACCGAAGTTGAGGCA	TGCCTCAACTTCGGTGCCATTTTT
	567	CATTCCGCGCGAGTTGAAATCCAG	CTGGATTTCAACTCGCGCGGAATG
	568	ACGCACGTTTTTTGGCACGGTTAA	TTAACCGTGCCAAAAAACGTGCGT
[569	TGTCCATGACGTCGTTTCTCTGGT	ACCAGAGAAACGACGTCATGGACA
25	570	TCTCAGTCGGACTCGTATGCCAGA	TCTGGCATACGAGTCCGACTGAGA
	571	CTCCAAACGCACACATCAAGCATC	GATGCTTGATGTGTGCGTTTGGAG
	572	TTCAACCAAGCGGGGTGTTCGTGA	TCACGAACACCCCGCTTGGTTGAA
	573	GGTGTCGGAGGGTGGTGACCTCGA	TCGAGGTCACCACCCTCCGACACC
	574	AGCGCTTTTGGTCATGATTTGCAA	TTGCAAATCATGACCAAAAGCGCT
30	575	CCGAGGACTTACGTCTGCCCAGGA	TCCTGGGCAGACGTAAGTCCTCGG
	576	GCCCAATCCAGTTCTTATGCGCCC	GGGCGCATAAGAACTGGATTGGGC
	577	CGGGTTAACCCACGCAAGTTATGA	TCATAACTTGCGTGGGTTAACCCG
	578	TGATTAGCGCTCAATACACGCGTG	CACGCGTGTATTGAGCGCTAATCA
	579	AAGGGCAGACCTTTGGTTCGACTG	CAGTCGAACCAAAGGTCTGCCCTT
35	580	GCGCCACAAGATTCACATGTCATT	AATGACATGTGAATCTTGTGGCGC
	581	GCCATGTTCAAGGGCCTTTCGAAG	CTTCGAAAGGCCCTTGAACATGGC
	582	CGCGGTGTTTTGTCTAGGTGCCGG	CCGGCACCTAGACAAAACACCGCG
[583	CAACATTGTGGTGGCACTCCATCC	GGATGGAGTGCCACCACAATGTTG
	584	CGATACGCGCCGGTTTGTTAAATC	GATTTAACAAACCGGCGCGTATCG
40	585	GGCTATAAACGTGCGGACTGCTCC	GGAGCAGTCCGCACGTTTATAGCC
	586	TGGGTAAATCACTATTGCGCGGTT	AACCGCGCAATAGTGATTTACCCA

_			
	587	GTCTTCATCGGCCCGCGCAAGCTA	TAGCTTGCGCGGGCCGATGAAGAC
	588	GCGACACCCCTGTACTCTGATGC	GCATCAGAGTACAGGGTGTGTCGC
	589	GTAGCAGGGTCCGCAAGACCAAGC	GCTTGGTCTTGCGGACCCTGCTAC
	590	TCGCCAACGCAGGGTAACTGCCAT	ATGGCAGTTACCCTGCGTTGGCGA
5	591	ACTCCGAAGCTTCGAGCGGCACGA	TCGTGCCGCTCGAAGCTTCGGAGT
[12	CATCGTCCCTTTCGATGGGATCAA	TTGATCCCATCGAAAGGGACGATG
	13	GCACGGGAGCTGACGACGTGTCAA	TTGACACGTCGTCAGCTCCCGTGC
ĺ	594	ATCATCCCACGGCAGAGTGAAGAG	CTCTTCACTCTGCCGTGGGATGAT
	595	CGCTGGACTGGCCTATCCGAGTCG	CGACTCGGATAGGCCAGTCCAGCG
10	596	CGGTCTCAGCAACACTGTCGCAAA	TTTGCGACAGTGTTGCTGAGACCG
	597	CGAACGTTCTCCGATGTAATGGCC	GGCCATTACATCGGAGAACGTTCG
	598	ATACCGTGCGACAAGCCCCTCTGA	TCAGAGGGGCTTGTCGCACGGTAT
:	599	AGCTCATTCCCGAGACGGAACACC	GGTGTTCCGTCTCGGGAATGAGCT
	600	TTTCATGCGGCCGTTGCAAATCAT	ATGATTTGCAACGGCCGCATGAAA
15	601	ACTCGAACGGACGTTCAATTCCCA	TGGGAATTGAACGTCCGTTCGAGT
	602	CTGCATGGTGTGGGTGAGACTCCC	GGGAGTCTCACCCACACCATGCAG
	603	CCGCGAGTGTGGATGGCGTGTTGA	TCAACACGCCATCCACACTCGCGG
	604	AATGTGTCGGTCCTAAGCCGGGTG	CACCGGCTTAGGACCGACACATT
:	605	TAAGACGAGCCTGCACAGCTTGCG	CGCAAGCTGTGCAGGCTCGTCTTA
20	606	GGCGTGGGAGGATAAGACGATGTC	GACATCGTCTTATCCTCCCACGCC
	607	TGCTCCATGTTAGGAACGCACCAC	GTGGTGCGTTCCTAACATGGAGCA
	608	CGGTGTTGGTCGGACTGACGACTG	CAGTCGTCAGTCCGACCAACACCG
	609	CCGCGCGTATCTATCAGATCTGGG	CCCAGATCTGATAGATACGCGCGG
	610	AAAGCATGCTCCACCTGGAGCGAG	CTCGCTCCAGGTGGAGCATGCTTT
25	611	ACTTGCATCGCTGGGTAGATCCGG	CCGGATCTACCCAGCGATGCAAGT
	612	TGCTTACGCAGTGGATTGGTCAGA	TCTGACCAATCCACTGCGTAAGCA
	613	ATGCAGATGAACAAATCGCCGAAT	ATTCGGCGATTTGTTCATCTGCAT
	614	GCAATTCTGGGCCATGTATTCGTC	GACGAATACATGGCCCAGAATTGC
	615	AGGGTTCCTTACGCGTCGACATGG	CCATGTCGACGCGTAAGGAACCCT
30	616	GTGGAGCTAATCGCGAGCCTCAGA	TCTGAGGCTCGCGATTAGCTCCAC
	617	TCGTAGTCTCACCGGCAATGATCC	GGATCATTGCCGGTGAGACTACGA
•	618	TTATAGCAGTGCGCCAATGCTTCG	CGAAGCATTGGCGCACTGCTATAA
	619	CGAACAGTGCTGTCCGTCGCTCAA	TTGAGCGACGGACAGCACTGTTCG
	620	TCCGCGTGGACTGTTAGACGCTAT	ATAGCGTCTAACAGTCCACGCGGA
35	621	CATTAGCCCGCTGTCGGTAACTGT	ACAGTTACCGACAGCGGGCTAATG
	622	GGAAAGAAACTCAGACGCGCAATG	CATTGCGCGTCTGAGTTTCTTTCC
	623	CGACTCGCTGGACAGGAGAATCGT	ACGATTCTCCTGTCCAGCGAGTCG
	624	CATGATCCTCTGTTTCACCCGCGG	CCGCGGGTGAAACAGAGGATCATG
	625	GGCGTAGCGCTCTAAAAGCTTCGG	CCGAAGCTTTTAGAGCGCTACGCC
40	626	AGTGATGCCATCAGGCCCGTATAC	GTATACGGGCCTGATGGCATCACT
	627	TATGGAAAGGGCAACAGCGCTATC	GATAGCGCTGTTGCCCTTTCCATA

ſ	628	CTGTGGTTGATGGAGGATCCACAC	GTGTGGATCCTCCATCAACCACAG
Ī	629	ACTCGCTGGAATTTGCGCTGACAC	GTGTCAGCGCAAATTCCAGCGAGT
Ī	630	CAGGCCCGAACCACGCGGTTACAG	CTGTAACCGCGTGGTTCGGGCCTG
[631	GGCGCAATGGGCGCATAAATACTA	TAGTATTTATGCGCCCATTGCGCC
5 [632	GGTCAATTCGCGCTACATGCCCTA	TAGGGCATGTAGCGCGAATTGACC
	633	GATGGTGGACTGGAGCCCTTCCGC	GCGGAAGGGCTCCAGTCCACCATC
.[634	CCGCGCATAGCGCAATAGGGGAGA	TCTCCCCTATTGCGCTATGCGCGG
[635	TCTTCTGGCTGTCCGGCACCCGAA	TTCGGGTGCCGGACAGCCAGAAGA
	636	GCGTTCGCAATTCACGGGCCCTTA	TAAGGCCCGTGAATTGCGAACGC
10	637	TCGTTTCGGCCTTGGAGAGTATCG	CGATACTCTCCAAGGCCGAAACGA
	638	AGGTGCAAGTGCAAGGCGAGAGGC	GCCTCTCGCCTTGCACTTGCACCT
[639	CGCCAGTTTCGATGGCTGACGTTT	AAACGTCAGCCATCGAAACTGGCG
	640	GCTTTACCGCCGATCCCAGATATC	GATATCTGGGATCGGCGGTAAAGC
	641	GTGCTTGACGAAGAGGCGAAATGT	ACATTTCGCCTCTTCGTCAAGCAC
15	642	CAGTCCGTGCGCTTCATGTCCTCA	TGAGGACATGAAGCGCACGGACTG
	643	TACGCGTAAGAGCCTACCCTCGCG	CGCGAGGGTAGGCTCTTACGCGTA
	644	GGCGAGTCTTGTGGGGACATGTGT	ACACATGTCCCCACAAGACTCGCC
	645	CCAAAGCGAAGCGAGCGTGTCTAT	ATAGACACGCTCGCTTCGCTTTGG
	646	GCCGTAGGTTGCTCTTCACCGAAC	GTTCGGTGAAGAGCAACCTACGGC
20	647	AAATCCGCGATGTGCCGTGAGGCT	AGCCTCACGGCACATCGCGGATTT
	648	GGCTTCGCACCCGTACCAATTTAG	CTAAATTGGTACGGGTGCGAAGCC
	649	TGTAGAGTCCCACGTAGCCGGCAT	ATGCCGGCTACGTGGGACTCTACA
]	650	CACTAGTCTGGGGCAAGGTGCATT	AATGCACCTTGCCCCAGACTAGTG
	651	TGTACTCGGCAGGCGCAATAGATT	AATCTATTGCGCCTGCCGAGTACA
25	652	AACGGGTATCGGAAGCGTAAAAGC	GCTTTTACGCTTCCGATACCCGTT
	653	CGGACTGCCCGTTTGCAAGTTGAG	CTCAACTTGCAAACGGGCAGTCCG
	654	ATCGTTCAGCACTGGAGCCCGTAA	TTACGGGCTCCAGTGCTGAACGAT
ļ	655	ATGCATCGAACTAGTCGTGACGGC	GCCGTCACGACTAGTTCGATGCAT
	656	TTCCAGGCATTAAGGAGAGGGAGC	GCTCCCTCCTTAATGCCTGGAA
30	657	GTGCGACATCTACTCCACGATCCC	GGGATCGTGGAGTAGATGTCGCAC
	658	CTCATCGTCCTAACACGAGAGCCC	GGGCTCTCGTGTTAGGACGATGAG
	659	AATGGCACTTCGGCGGTGATGCAA	TTGCATCACCGCCGAAGTGCCATT
	660	CCGTGGGAGGGAATCCAACCGAGG	CCTCGGTTGGATTCCCTCCCACGG
	661	AAATTCTCGTTGGTGACGGCTCAT	ATGAGCCGTCACCAACGAGAATTT
35	662	TTGCTCTTATCCTTGTCCTGGGCG	CGCCCAGGACAAGGATAAGAGCAA
	. 663	TTAAGGATCAGGCGGAGCTTGCAG	CTGCAAGCTCCGCCTGATCCTTAA
	664	CGCGACTAAGGTGCTGCAACTCGA	TCGAGTTGCAGCACCTTAGTCGCG
	665	GCTCGATTTCACGGCCCGTTGTTC	GAACAACGGGCCGTGAAATCGAGC
	666	AGCAGAGTGCGTTGCAGAGGCTAA	TTAGCCTCTGCAACGCACTCTGCT
40	667	TGGAGGTGAGGACGTGCACTA	TAGTGCACGTCGTCCTCACCTCCA
l	668	AACCGTTTAGGGTACATTCGCGGT	ACCGCGAATGTACCCTAAACGGTT

	669	TATGATCGCTCGGCTCACAGTTTG	CAAACTGTGAGCCGAGCGATCATA
	670	GACTTTTTGCGGAAACGTCATGGT	ACCATGACGTTTCCGCAAAAAGTC
	671	TGTCGGTTATTCCACCTGCAAGGA	TCCTTGCAGGTGGAATAACCGACA
	672	CTATGGTTTGCACTGCGCCGTCGA	TCGACGCCCAGTGCAAACCATAG
5	673	AGCAGGGAAATTCAATCGTTCGCA	TGCGAACGATTGAATTTCCCTGCT
	674	CCTAACCGAGCGCTTAGCATTTCC	GGAAATGCTAAGCGCTCGGTTAGG
	675	CCCGACCCTAACTCGCATTGAATA	TATTCAATGCGAGTTAGGGTCGGG
	676	TTGCTTAATGGTGACGCCACGGAT	ATCCGTGGCGTCACCATTAAGCAA
	677	GATGCTCGCCGTGTTTAGTTCACG	CGTGAACTAAACACGGCGAGCATC
10	678	TCGGATGACGAGTTTCCATGACGG	CCGTCATGGAAACTCGTCATCCGA
	679	ATGCGGTCTACTTTCTCGATCGGG	CCCGATCGAGAAAGTAGACCGCAT
	680	TTGCGAGGCTAAGCACACGGTAAA	TTTACCGTGTGCTTAGCCTCGCAA
1	681	AACTTAATTACCGCCTCTGGCGCC	GGCGCCAGAGGCGGTAATTAAGTT
	682	GTGACCGCGAACTTGTTCCGACAG	CTGTCGGAACAAGTTCGCGGTCAC
15 .	683	TGCGGATTACCGATTCGCTCTTAA	TTAAGAGCGAATCGGTAATCCGCA
	684	TGATAGGGGGCCACGTTGATCAGA	TCTGATCAACGTGGCCCCCTATCA
	685	TCGCTCCGTAGCGATTCATCGTAG	CTACGATGAATCGCTACGGAGCGA
	686	TGTCAGCTGGTAGCCTCCGTTTGA	TCAAACGGAGGCTACCAGCTGACA
:	687	AGCGTCGCATGACGCTTACGGCAC	GTGCCGTAAGCGTCATGCGACGCT
20 '		14 AGACGCACCGCAACAGGCTGTCAA	TTGACAGCCTGTTGCGGTGCGTCT
		15 CGTGTAGGGGTCCCGTGCTGTCAA	TTGACAGCACGGGACCCCTACACG
	690	GTCGCATTCTGCACTGGCTTCGCC	GGCGAAGCCAGTGCAGAATGCGAC
	691	TGATTAGGTGCGGTCCCGTAGTCC	GGACTACGGGACCGCACCTAATCA
	692	AAGGGACCTTGGGTGACGGCGAGA	TCTCGCCGTCACCCAAGGTCCCTT
25	693	TCAAATGGCCACCGCGTGTCATTC	GAATGACACGCGGTGGCCATTTGA
	694	CTCCGACGACCAATAAATAGCCGC	GCGGCTATTTATTGGTCGTCGGAG
	695	GGCTATTCCCGTAGAGAGCGTCCA	TGGACGCTCTCTACGGGAATAGCC
	696	TGGATAACCTCTCGGTCCATCCAC	GTGGATGGACCGAGAGGTTATCCA
	697	GACCGCTGTACGGGAGTGTGCCTT	AAGGCACACTCCCGTACAGCGGTC
30	698	GCCACAGAGTTTTAGCAGGGACCC	GGGTCCCTGCTAAAACTCTGTGGC
	699	CCCACGCTTTCCGACCACTGACCT	AGGTCAGTGGTCGGAAAGCGTGGG
	700	CATTGACACAATGCGGGGACTGAT	ATCAGTCCCCGCATTGTGTCAATG
	701	AGCCACTCGACAGGGTTCCAAAGC	GCTTTGGAACCCTGTCGAGTGGCT
	702	CAGGATGAGCAAAGCGACTCTCCA	TGGAGAGTCGCTTTGCTCATCCTG
35	703	CAAGGTATGGTCTGGGGCCTAAGC	GCTTAGGCCCCAGACCATACCTTG
	704	GGTGTTCGGCCTAAACTCTTTCGG	CCGAAAGAGTTTAGGCCGAACACC
	705	TTTAGTCGGACCCTGTGGCAATTC	GAATTGCCACAGGGTCCGACTAAA
]	706	CACACGTTTCCGACCAGCCTGAAC	GTTCAGGCTGGTCGGAAACGTGTG
	707	CTGGACGAACTGGCTTCCTCGTAC	GTACGAGGAAGCCAGTTCGTCCAG
40	708	TTCACAATCCGCCGAAAACTGACC	GGTCAGTTTTCGGCGGATTGTGAA
ļ	709	AACAGGATATCCGCGATCACGACA	TGTCGTGATCGCGGATATCCTGTT

	710	TACGTCGGATCCATTGCGCCGAGT	ACTCGGCGCAATGGATCCGACGTA
	711	CATGGATCTCTCGGTTTGATCGCC	GGCGATCAAACCGAGAGATCCATG
	712	AGCCAGGCGCGTATATACGCTCGG	CCGAGCGTATATACGCGCCTGGCT
	713	ATTTGGCACGTGTCGTGCCATGTT	AACATGGCACGACACGTGCCAAAT
5	714	CCGCGTTGCACCACTTTGAGGTGC	GCACCTCAAAGTGGTGCAACGCGG
	715	TTGGACGTGACAAGCATGGCGCTC	GAGCGCCATGCTTGTCACGTCCAA
	716	CTGAATCGCGCAAGTAAATGGGGG	CCCCATTTACTTGCGCGATTCAG
	717	GATAAGGTCCACCAGATTGCGCGC	GCGCGCAATCTGGTGGACCTTATC
	718	CTAACAATTGCCAACCGGGACGGC	GCCGTCCCGGTTGGCAATTGTTAG
10	719	GGTAACCTGGGTGCTTGCAGGTTA	TAACCTGCAAGCACCCAGGTTACC
	720	ATCGGAGCCACCATTCGCATTGGG	CCCAATGCGAATGGTGGCTCCGAT
	721	GTGAACTGGCTTGCCCCAGGATTA	TAATCCTGGGGCAAGCCAGTTCAC
	722	AGGCGATAGCATGGTCCCATATGA	TCATATGGGACCATGCTATCGCCT
	723	AACGGTATCGTGGCTAATGCACGA	TCGTGCATTAGCCACGATACCGTT
15	724	AGTAGTGGTCCTCCAGATCGGCAA	TTGCCGATCTGGAGGACCACTACT
	725	CCGTTGAATTGGACGGGAGGTTAG	CTAACCTCCCGTCCAATTCAACGG
	726	GCATAAGTGCGGCATCGCGAAGGG	CCCTTCGCGATGCCGCACTTATGC
	727	CGACAAGATGCAGCTGCTACATGC	GCATGTAGCAGCTGCATCTTGTCG
	728	TCGCAGTGATTCCCGACCGATAAG	CTTATCGGTCGGGAATCACTGCGA
20	729	CAAGGCGAGTCCACTCGAGGGGAC	GTCCCCTCGAGTGGACTCGCCTTG
	730	GCAACTTGCACGGCATAAGTGGCC	GGCCACTTATGCCGTGCAAGTTGC
	731	TCCGAGCTTGACGTTCGCGACGTC	GACGTCGCGAACGTCAAGCTCGGA
	732	AGCGCTGGGCTGTGCCATCTC	GAGATGGCAGCACAGCCCAGCGCT
	733	TTCATGTCGCTGAGTAACCCTCGC	GCGAGGGTTACTCAGCGACATGAA
25	734	CGAACCGCTAATGCCCATTGTCAG	CTGACAATGGGCATTAGCGGTTCG
	735	CACGGAAGGTGGGACAAATCGCCG	CGGCGATTTGTCCCACCTTCCGTG
	736	CACAGATGGAGACAAACGCGCCTT	AAGGCGCGTTTGTCTCCATCTGTG
	737	TTTTCGCAACTCGCTCCATAACCC	GGGTTATGGAGCGAGTTGCGAAAA
	738	ACGTTACGTTTCCGGCGCCTCTAA	TTAGAGGCGCCGGAAACGTAACGT
30	739	TATCGGATTGCGTGGGTTTCAATC	GATTGAAACCCACGCAATCCGATA
	740	CTTCCACAATTGTCTGCGACGCAC	GTGCGTCGCAGACAATTGTGGAAG
	741	TGCACAAAGGTATGGCTGTCCGGC	GCCGGACAGCCATACCTTTGTGCA
	742	TCCGATGCCAGTCCCATCTTAAGA	TCTTAAGATGGGACTGGCATCGGA
	743	CTGAAACCGTGCGAATCGAGGTGA	TCACCTCGATTCGCACGGTTTCAG
35	744	CGGTGTTCCGCGTGTCGAAAAAAT	ATTTTTCGACACGCGGAACACCG
•	745	TCTAGCAGGCCTTTTGAATCGCCA	TGGCGATTCAAAAGGCCTGCTAGA
	746	GAGTCACCTCTGAGACGGACGCCA	TGGCGTCCGTCTCAGAGGTGACTC
	747	TCTTCTGTCATCCTGCAGCAGCAT	ATGCTGCTGCAGGATGACAGAAGA
	748	GCGGATGAAACCTGAAAGGGGCCT	AGGCCCCTTTCAGGTTTCATCCGC
40	749	GGGGCCCAAACTGGTATCAAGCC	GGCTTGATACCAGTTTGGGGCCCC
	750	GCATTGGCTTCGGATTCTCCTACA	TGTAGGAGAATCCGAAGCCAATGC

	751	AGGCGGCCCAACTGTGAGGTCTTG	CAAGACCTCACAGTTGGGCCGCCT
	752	ACACCATGTGCTCCGCGCTGCAGT	ACTGCAGCGCGGAGCACATGGTGT
	753	ACGATGAACATGAATCGGGAGTCG	CGACTCCCGATTCATGTTCATCGT
	754	CTGCATCCCTGTAGCAGCGCTCCG	CGGAGCGCTGCTACAGGGATGCAG
5	755	GTGCCGTATTTCGACCTGTGCGTT	AACGCACAGGTCGAAATACGGCAC
	756 ·	GCAGTGCGCACTTCAGTTCAAAAG	CTTTTGAACTGAAGTGCGCACTGC
	757	GCGATTTTAAGCGATGCCTTGACG	CGTCAAGGCATCGCTTAAAATCGC
	758	TAGGTGACCTAGGCTTGCTTGCGG	CCGCAAGCAAGCCTAGGTCACCTA
	759	CTGGATACCTTGCCTGTGCGGCGC	GCGCCGCACAGGCAAGGTATCCAG
10	760	CCCCTTACGGCTCGTCGTCTATGC	GCATAGACGACGAGCCGTAAGGGG
	761	GCGCTTGCCCGATGCGATGCATTA	TAATGCATCGCATCGGGCAAGCGC
	762	TTTCTGTAAGCGGCCTGGGGTTCA	TGAACCCCAGGCCGCTTACAGAAA
	763	GGCTGAGGTGAGCGGTAAGGATGA	TCATCCTTACCGCTCACCTCAGCC
	764	TCTTGGCCTCCCCGATCTAATTTG	CAAATTAGATCGGGGAGGCCAAGA
15	765	GGAGGTAACGCCGTGTACGTAGGA	TCCTACGTACACGGCGTTACCTCC
	766	GTAATCCATTTGTGGCTGCGTCAA	TTGACGCAGCCACAAATGGATTAC
	767	CAAACCCATTCCAGCAGACGCCTG	CAGGCGTCTGCTGGAATGGGTTTG
	768	TAGGAGGAATTTGGCATGCGGGCG	CGCCGCATGCCAAATTCCTCCTA
	769	ATAGGTAGGATGTGCCCGGCGTTG	CAACGCCGGGCACATCCTACCTAT
20	770	GCAAGTGCTTAGCTCGTCAGCCTC	GAGGCTGACGAGCTAAGCACTTGC
	771	CTGGCTGTGTCGCATCTCGTTAAC	GTTAACGAGATGCGACACAGCCAG
	772	CTAACGTCGTCTCGCGCAATCACT	AGTGATTGCGCGAGACGACGTTAG
	773	TTTTCATAAACGTTGTCCCCGAGC	GCTCGGGGACAACGTTTATGAAAA
	774	AGCAGGAGGACGAACCTCCGCTCC	GGAGCGGAGGTTCGTCCTCCTGCT
25	775	TTCAAGCACCATCGTGCAATCCAA	TTGGATTGCACGATGGTGCTTGAA
	776	AGCGTCGCCAGTGATCGCTAGTGG	CCACTAGCGATCACTGGCGACGCT
	777	TACATTCCCTGCCTCCGTGGGCTT	AAGCCCACGGAGGCAGGGAATGTA
	778	CGCTTCGCGTATTCAGTAGCGGTT	AACCGCTACTGAATACGCGAAGCG
	779 ·	TCGGACGCGTCGACACTCATTATA	TATAATGAGTGTCGACGCGTCCGA
30	780	TCTGAGCAGGCCAGCTCCAGCT	AGCTGGAGCGCTGGCCTCAGA
	781	TTGAATTGCCAAGCCCTGAAAGCC	GGCTTTCAGGGCTTGGCAATTCAA
	782	AGTTTTCGCCTTGATGCGTCGGTG	CACCGACGCATCAAGGCGAAAACT
	783	GTTTCATAGGCCACGCGTGCTAAA	TTTAGCACGCGTGGCCTATGAAAC
•	16	CATCGCTGCAAGTACCGCACTCAA	TTGAGTGCGGTACTTGCAGCGATG

TABLE 4

	Seq. ID No.	Decoder Sequence (5'-3') + 5' T	Probe Sequence (5'-3') + 5' T
	17	TTTCGCCGTCGTGTAGGCTTTTCAA	TTTGAAAAGCCTACACGACGGCGAA
	18	TGTTCCCAGTGAAGCTGCGATCTGG	TCCAGATCGCAGCTTCACTGGGAAC
5	19	TTACTTGGCATGGAATCCCTTACGC	TGCGTAAGGGATTCCATGCCAAGTA
	20	TACTAGCATATTTCAGGGCACCGGC	TGCCGGTGCCCTGAAATATGCTAGT
	21	TGAACGGTCAATGAACCCGCTGTGA	TTCACAGCGGGTTCATTGACCGTTC
	22	TGCGGCCTTGGTTCAATATGAATCG	TCGATTCATATTGAACCAAGGCCGC
	23	TGATCGTTAGAGGGACCTTGCCCGA	TTCGGGCAAGGTCCCTCTAACGATC
10	24	TTGGACCTAGTCCGGCAGTGACGAA	TTTCGTCACTGCCGGACTAGGTCCA
	25	TATAAACTACCCAGGACGGGCGGAA	TTTCCGCCCGTCCTGGGTAGTTTAT
	26	TCATCGGTTCGCGCCAATCCAGATA	TTATCTGGATTGGCGCGAACCGATG
	27	TGTCGGGCATAGAGCCGACCACCCT	TAGGGTGGTCGGCTCTATGCCCGAC
	28	TCTTGGGTCATGATTCACCGTGCTA	TTAGCACGGTGAATCATGACCCAAG
15	29	TTGCCTAACGTGCTAATCAGCAGCG	TCGCTGCTGATTAGCACGTTAGGCA
	30	TCGCATGTTGGAGCATATGCCCTGA	TTCAGGGCATATGCTCCAACATGCG
	31	TAGCCACTGCATCAGTGCTGTTCAA	TTTGAACAGCACTGATGCAGTGGCT
	32	TGGTTGTTTTGAGGCGTCCCACACT	TAGTGTGGGACGCCTCAAAACAACC
	33	TTCGACCAAGAGCAAGGGCGGACCA	TTGGTCCGCCCTTGCTCTTGGTCGA
20	34	TGACATCGCTATTGCGCATGGATCA	TTGATCCATGCGCAATAGCGATGTC
	35	TGAAATACGAAGTCTGCGGGAGTCG	TCGACTCCCGCAGACTTCGTATTTC
	36	TTGTCATGAATGATTGATCGCGCGA	TTCGCGCGATCAATCATTCATGACA
	37	TATATCGGGATTCGTTCCCGGTGAA	TTTCACCGGGAACGAATCCCGATAT
	38	TGCGAGCGTACCGAAGGGCCTAGAA	TTTCTAGGCCCTTCGGTACGCTCGC
25	39	TTTACCGGCAGCGGACTTCCGAATT	TAATTCGGAAGTCCGCTGCCGGTAA
	40	TGTAATCGAGAGCTGCGCGCCGTCT	TAGACGGCGCGCAGCTCTCGATTAC
	41	TCCTGTTAGCGTAGGCGAGTCGATC	TGATCGACTCGCCTACGCTAACAGG
,	42	TTAGCGGACCGGCAGAATGAGTTCC	TGGAACTCATTCTGCCGGTCCGCTA
	43	TGGTACATGCACTACGCGCACTCGG	TCCGAGTGCGCGTAGTGCATGTACC
30	44	TAATTCATCTCGGACTCCCGCGGTA	TTACCGCGGGAGTCCGAGATGAATT
	45	TGCCAAATCTGGATTGGCAGGAATG	TCATTCCTGCCAATCCAGATTTGGC
•	46	TTGCATTTTCGGTTGAGGCACATCC	TGGATGTGCCTCAACCGAAAATGCA
	47	TCCGCTCAATTCACCATGCTTCGCT	TAGCGAAGCATGGTGAATTGAGCGG
	48	TCTCGGAAAGGTGCAACTTTGGTGT	TACACCAAAGTTGCACCTTTCCGAG
35	49	TAATTCGACCAGCAGAACGTCCCAT	TATGGGACGTTCTGCTGGTCGAATT
	50	TGCCAGAGTCTCAACCTCACGGGAT	TATCCCGTGAGGTTGAGACTCTGGC
	51	TCCAACAACTGGAACGGGAACCCGC	TGCGGGTTCCCGTTCCAGTTGTTGG
•	52	TGAGAACTGATCGCTGAGGGGCATG	TCATGCCCCTCAGCGATCAGTTCTC
	53	TGGCACACTAGACTTGTGGCACCGA	TTCGGTGCCACAAGTCTAGTGTGCC

	54	TTCACATCCAAATATGGTCCGCGAA	TTTCGCGGACCATATTTGGATGTGA
	55	TGTCTGCCGGTGTGACCGCTTCATT	TAATGAAGCGGTCACACCGGCAGAC
	56	TCATCGCAGAGCATAAACACCCTCA	TTGAGGGTGTTTATGCTCTGCGATG
	57	TGTTGGTATCTATGGCAGAGGCGGA	TTCCGCCTCTGCCATAGATACCAAC
5	58	TACGAGGTGCCGCTGAGGTTCCATT	TAATGGAACCTCAGCGGCACCTCGT
	59	TGGAATGAGTGGACCCAGGCACATT	TAATGTGCCTGGGTCCACTCATTCC
	60	TTGTCAATATGCGTCCGTGTCGTCT	TAGACGACACGGACGCATATTGACA
[61	TTGATGAGCCTCAGGGTACGAGGCA	TTGCCTCGTACCCTGAGGCTCATCA
[62	TCACCGCGGTGTTCCTACAGAATGA	TTCATTCTGTAGGAACACCGCGGTG
10	63	TTTGTTGCCAATGGTGTCCGCTCGG	TCCGAGCGGACACCATTGGCAACAA
	64	TTTAACCTGCGTCTGCCCCTTTCCT	TAGGAAAGGGGCAGACGCAGGTTAA
	65	TAGGCGCGTTCCTGCCTTAGTGACG	TCGTCACTAAGGCAGGAACGCGCCT
	66	TTAGGGCGATGGCACGAAGCTTCAA	TTTGAAGCTTCGTGCCATCGCCCTA
<u> </u>	67	TTGCATAGAGCCAAAGTCGGCGATG	TCATCGCCGACTTTGGCTCTATGCA
15	68	TTTGAGAGGCAGGTGGCCACACGGA	TTCCGTGTGGCCACCTGCCTCTCAA
	69	TTCCGCATTGTGAGAAAAAACGAGC	TGCTCGTTTTTTCTCACAATGCGGA
	70	TGGCGGTTTCCGTAGCTATAGGTGC	TGCACCTATAGCTACGGAAACCGCC
	71	TGGTGAAAATTTCGTAGCCACGGGC	TGCCCGTGGCTACGAAATTTTCACC
	72	TCCGACGGAGGATGAAGACAATCAC	TGTGATTGTCTTCATCCTCCGTCGG
20	73	TCCAGTTTGGCCCAATTCGCCAAAA	TTTTTGGCGAATTGGGCCAAACTGG
	74	TGGATCTATTAGGCCGTGCGCACAG	TCTGTGCGCACGGCCTAATAGATCC
	.75	TCGGATGTCACCGTTTGGACTTTCA	TTGAAAGTCCAAACGGTGACATCCG
1	76	TATCGCAAATCCTGCTCGTCCCTAA	TTTAGGGACGAGCAGGATTTGCGAT
	77	TCAGGGCATGCAATAATCGAGGTTC	TGAACCTCGATTATTGCATGCCCTG
25	78	TCATGCGTTGATATATGGGCCCAAG	TCTTGGGCCCATATATCAACGCATG
	79	TCAGCTGCAGCTTGTGACCAACCAC	TGTGGTTGGTCACAAGCTGCAGCTG
	80	TTTGTATGTCTGCCGACCGGCGACC	TGGTCGCCGGTCGGCAGACATACAA
	81	TGATGGCGCCCGTTGATAGGTATGG	TCCATACCTATCAACGGGCGCCATC
1	82	TATGAGAATCGCCGGCAATCTGCTA	TTAGCAGATTGCCGGCGATTCTCAT
30	83	TATTTGCACTGACCGCAGGCTCGTG	TCACGAGCCTGCGGTCAGTGCAAAT
}	84	TCAGGGAGAACGGTTAAGTTCCCGT	TACGGGAACTTAACCGTTCTCCCTG
]	85	TAGGCCGGCGATCGAGGAGTTTGGT	TACCAAACTCCTCGATCGCCGGCCT
	86	TACACGGTGGTCTCTGATAGCGACC	TGGTCGCTATCAGAGACCACCGTGT
	87	TGTGCAACGCCGAGGACTTCCATCA	TTGATGGAAGTCCTCGGCGTTGCAC
35	88	TTCGGTGCCTGATAGCCATTCCGAT	TATCGGAATGGCTATCAGGCACCGA
1	89	TTGAAATACCACACAGCCAATTGGC	TGCCAATTGGCTGTGTGGTATTTCA
	90	TGCATCGTGTACATGACTGCCGCGA	TTCGCGGCAGTCATGTACACGATGC
1	91	TCAGTGTTCTAACGGCGCGCGTGAA	TTTCACGCGCGCCGTTAGAACACTG
	92	TCGCTTGCAACGTTGCACCTACTCT	TAGAGTAGGTGCAACGTTGCAAGCG
40	93	TCGAAAAACTAGTGGGCTCGCCGCG	TCGCGGCGAGCCCACTAGTTTTTCG
	94	TCTTTCAGGGGAACTGCCGGAGTCG	TCGACTCCGGCAGTTCCCCTGAAAG

97 TCGACCTTGCACGAAACCTAACGAG TCTCGTTAGGTTTCGTGCAAGGTCG 98 TGTGCAGCTTCACGAGCCAGCCTGA TTCAGGCTGGCTCGTGAAGCTGCAC 99 TCGCTTTCGTGCGAATAGACGATGA TTCATCGTCTATTCGCACGAAAGCG 100 TTGCGCTTACAGGCTCCTAGTGGTC TGACCACTAGGAGCCTGTAAGCGCA 101 TCACGCGCTTAGTCGCGATCGCATA TTATGCGATCGCGACTAAGCGCGTG 102 TCGGAGGGAGGGAGCTAGCCTTCGA TTCGAAGGCTAGCTCCCTCCCG 103 TGCATCCGGCCTGTTGATGACGCCT TAGGCGTCATCAACAGGCCGGATGC 104 TAGGCCAATCGATCTTATTGCCGAG TCTCGGCAATAAGATCGATTGGCCT 105 TCCTTCCAATGATTGCATACCCCA TTGGGCGTATGCAATCATTGGAAGG 106 TAACACTTGATCAGGCGGGTCGTCT TAGACGACCCGCCTGATCAAGTGTT 107 TTGGAATCAAGGCCGTAAAGGACAG TCTGTCCTTTACGGCCTTGATTCCA				
97 TCGACCTTGCACGAAACCTAACGAG TCTCGTTAGGTTTCGTGCAAGGTCG 98 TGTGCAGCTTCACGAGCCAGCCTGA TTCAGGCTGGCTGGAAGCTGCAC 100 TTGCGCTTACAGGCACACCTGA TTCATGGTCTATTCGCACGAAAGCG 100 TTGCGCTTACAGGCTCCTAGTGGTC TGACCACTAGGAGCCTGTAAGCGCCAC 101 TCACGGGCTTCATGTGGTC TGACCACTAGGAGCCTGTAAGCGCCGACTAAGCGCCGTGTCCACTAGGAGCCTTACAGGAGCGTGAAGCCTGACCACTAGAAGCACCTGACACCACTAGAAGCACCTGACACCACCACCACCACCACCACCACCACCACCACCACCA		95	TTTGTGGCCTTCTTGTAAAGGCACG	TCGTGCCTTTACAAGAAGGCCACAA
98 TGTGCAGCTTCACGAGCCAGCCTGA TTCAGGCTGGAGCTCGAC 99 TCGCTTTCGTGCGAATAGACGATGA TTCATCGTCTATTCGCACGAAAGCG 100 TTGCGCTTACAGGCTCCTAGTGGTC TGACCACTAGGAGCCTGTAAAGCCGATGCCACTAGTGGTCATTCCACGCGATAGCACCACTAGGAGCCTTCAACGCGCATGCTCACTAGTGCGCACTAGTAGCCCACTAGTAGCCCACTAGTAGCACCACTAGAGACCCTTCAGTGGTC TTATGCACTCGCGACTAAGCACCACTAGCACCACTAGCACCACTAGCACCACTAGTAGCACCACTACCACCACTAGCACCACTAGCACCACTACCACCACTAGCACCACTACCACCACTAGCACCACTACCACCACTAGCACCACTACCACCACTACCACCACTACCACCACTACCACC		96	TTCCACGAACGCCGACCCGTTGTCT	TAGACAACGGGTCGCCGTTCGTGGA
99 TCGCTTTCGTGCGAATAGACGATGA 100 TTGCGCTTACAGGCTCCTAGTGGTC 101 TCACGCGCTTACAGGCTCCTAGTGGTC 102 TCGGAGGGAGGGAGCTAGCCTTCGA 103 TGCATCCGGCCTTGTGTGTGTC 103 TGCATCCGGCCTGTTGATGACGCCT 104 TAGGCCATCGGATCGCAT 105 TCCTTCCAATGATTGCATCCTTCGA 105 TCCTTCCAATGATTGCATCGCGATTCGCATTAGCGCGATGCCTCCCTC		97	TCGACCTTGCACGAAACCTAACGAG	TCTCGTTAGGTTTCGTGCAAGGTCG
100 TIGGCCTTACAGGCTCCTAGTGGTC 101 TCACGCGCTTAGTCGCGATCGCATA 102 TCGGAGGGAGGGAGCTAGCCTTCGA 103 TGCATCCGGCCTTGTAGTGCGCATTAGTCGCGACTAAGCCGCGTG 104 TAGGCCAATCGACTTTGATGCCGCATTAGTCCTCCCCTCCG 105 TCCTTCCAATGATTGCATAGCGCCCA 106 TACACCTTGATGCATCCTATTGCCGAG 107 TIGGAATCCAGCCCGATTGCATCACACAGCCCGGATGAGGCT 108 TACACCTTGATCAGCGCCA 109 TAGGCCAATCAGATCGATCTTATTGCCGAG 100 TACACCTTGATCAGCGCCA 100 TAGGCCAATCAGATCGCCCA 101 TIGGAATCAAGGCCGATCATAGGATCGCCCA 101 TIGGAATCAAGGCCGATACAGCCCCATTTAGGCCCTTAATGATCAGGCTTAGATCGTT 107 TIGGAATCAAGGCCGCTAACAGGCTCCTTACAGCACCGCCTGATCAAGTGTT 108 TGCTCCCGTAACCTGTCCACCAGTG 109 TAGTGGTGAATGGCCGCTACCCTGA 110 TIGTTGAAGCGAGCCTACACCTGT 110 TIGTTGAAGCGAGCCTACACCTGT 111 TCAGCGCTCCAGAATTGACAGCCAT 111 TCAGCGCTCCAGAATTGACAGCAAT 111 TCAGCGCTCCAGAATTGACAGCAAT 111 TCAGCGCTCCAGAATTGACAGCAAT 111 TCAGCGCTCCAGAATTGACAGCAAT 111 TCAGCGCGTACAGATTGCAACAAT 111 TCAGCGCTCCAGAATTGACAGCAAT 111 TCAGCGCTCCAGAATTGACAGCAAT 111 TCAGCGCGTAAGGGTGGT 112 TACACGAGAATACCGGCGTAAGGGTGG 113 TCACCACCTTCCCCCACCATTCCCCATTCCCCCACCGCTT 114 TCACCGCAAACCGTGTGGAATGGGT 115 TCTACGGCCAACACGTGTGGAATGGGT 116 TGTAGGGCCAACACGTGTGGAATGGGT 117 TAATCGACCTCCCGCACACATTCGCA 118 TGAATCAACCAGCGGCGCAACATCA 119 TAGATCAACACCAGCGGCGCAACATCC 119 TAGACCACCACCACCATTCGCA 111 TAACCACCCTCCCCCACACACCTTGT 112 TAAGCACCACCACCACCACCACCACCTTCT 112 TAAGCCACCACCACCACCACCACCACCACCACCACCACCAC		98	TGTGCAGCTTCACGAGCCAGCCTGA	TTCAGGCTGGCTCGTGAAGCTGCAC
101 TCACGCGCTTAGTCGCATA TTATGCGATCGCACTAAGCGCGTG 102 TCGGAGGGAGGAGCTAGCCTTCGA TTCGAAGGCTAGCTCCCTCCCCG 103 TGCATCCGGCCTGTTGATGACGCCT TAGGCGTCATCAACAGGCCGATGC 104 TAGGCCAATCGATCTTATTGCCGAG TCCGGCAATAAGATCGATTGGCCT 105 TCCTTCCAATGATTGCATACGCCCA TTGGGCGTATGCAATCAATTGGCATGGCT 106 TAACACTTGATCATCGACCCA TTGGGCGTATCAACAGGCCGAAGG 107 TTGGAATCAAGGCCGGTAAAGGACAG TCTGTCCTTTACGCCCTTGATCAAGTTGT 107 TTGGAATCAAGGCCGTAAAGGACAG TCTGTCCTTTACGGCCTTGATCCA 108 TGCTCCCGTAACCTGCACCAGTG TCAACTGGTGGACAGGTTACGGCGAG 109 TAGTGGTGAATGGCCGCTACCCTGA TTCAACGGTGACAAGGTTACGACACT 110 TTGTTAAGCGAGCTAAAACAGGCCA TTGGCCGTTTTAGCTCGCCTTCAACAC 111 TCAACGCGTCCAGAATTGACAGCAAT TATTGCTGTCAATTCTGGAGGGCT 2 TTTCGAAGGGAATGACAGGCCA TTTGACACGGCGCATTCCCCACCCTT 114 TCAACGCGTGAGAATGACAGCAAT TATTGCTGTCAATTCTGGAGGGCTG 115 TCTACGGCAAACATGGGACATCA TTTGATGTCCCATTCCCCACCCGTT 116 TGTAGGGCGATGACGGGCGAACTCA TTTGATCCCCATCCCCCGCGTAT 117 TAATCGACCTCCGCACACATTCCCA TCACCCTTACCCACGCGTTTCCCCACCCGTT 118 TGAGGCGATGACGGGCGAACTAC TGCACCTTACCCACCGTTTGCCCGTAG 119 TAGATAAAGACGCTGCGACACATTCCCA TGCACCTTACCCACCGTTTGCCCACCCCTAC 110 TGGTAACCCACCGGACCACCATTCCCA TGCACACCGTTGCCCACCCCTAC 111 TAACCGACATGCCGCACACATTCCCACCGTTTGCCCGTCCACCCCTAC 112 TAGAGCTTACCCAACACGAGCGT TCACCACGTTTGCCCGTCCACCCCTAC 112 TAGAGCTTACCCAACACGGG TCCCCTTTTCGCCACCCGCTTTATCT 120 TGGTACCTCAACCGGAACACACGGG TCCCCTTTGCCGCCGCCATGCTGACTC 121 TAGAGCTTACCCAACACACGGG TCCCCTTTGCCGCCGCCATGCTGACTC 122 TAGAGCTTACCCAACACACGGG TCCCCTTTGCCGCGCCAACCTTTGT 122 TAGAGCTTACCCAACACGGG TCCCCTTGGTCCCGCCGCCATCGCTT 123 TATCGGTCTCACCCAAGAGCACAT TATCGTCTTGCGTTAGGGTACC 124 TTAGGTTGCACGAACCACGGG TCCCCTTGGCGCCTTCACCCGCCAACACTTGCTGACTCCCCTGCACCACACACTTGT TACAAGTGGTTCCCGTTACGCCGTACACCCGG 123 TATCGGTCTCACCAAGACCATGTTACTCTCCCACCCGCAACCTTACACCCTTGCACCCAACACCTTGACTCCCCTGCACCAACACCTGTAGTTTCCACCCAGGGCAACCTTTTCCACCCAGGGCAACCTTTTCCACCCGCCCCAACACACCTGTAGTTCACCCAGCGCAACCTTTTCCACCCCCCCC	. 5	99	TCGCTTTCGTGCGAATAGACGATGA	TTCATCGTCTATTCGCACGAAAGCG
102 TCGGAGGGAGGGAGCTAGCCTTCGA 103 TGCATCCGGCCTGTTGATGACGCCT 104 TAGGCCAATCGATCTTATTGCCGAG 105 TCCTTCCAATGATTGCATAGCGCCCA 106 TACACACTTGATCAACAGGCCGAATCAACAAGGCCGGATGC 107 TAGGACTCAATGATTGCATAGCGCCCA 108 TCCTTCCAATGATTGCATAGCGCCCA 109 TAACACTTGATCAGGCGGGTCT 107 TTGGAATCAAGGCCGGAACAGACG 108 TGCTCCCGTAAACGGCGGATGCT 109 TAGTGGATCAAGGCCGCTAAAGGACAG 100 TAGTGGATCAAGGCCGCTAACACGGCTGATCAAGGTTTCACCACT 110 TTGGTAACGACCGCCTCACCCTGA 1110 TTGTTGAAGGCGGCTCCCCTGA 1111 TCAGGGTAGCGACCACTTTAGCTGCGCCTTCAACA 1111 TCAGGCTCCACAACTTGCACACAAT 1111 TCAGGCGCTCCAGAATTGACACCAAT 1111 TCAGGCGCCCCCAGAATTGACACCAAT 1111 TCAGGCGCCCCCCCTTTTCAA 1111 TCAGGCGCACACTCCCTTTTCAA 1111 TCAGGCGCACACTCCCTTTTCAA 1112 TCACGACGCCACGTCCCTTTTCAA 1114 TCACGACGCACATCCAATTGACACCAAT 1115 TCACGACAACACGCGCAAACGCGCAATGACCACTTTTGAAAAGGGACGTGCCCTTCGAA 116 TGTAGGGCGAACACGTGCGTAAGGGTGG 117 TAATCGACCTCCGCACACATTCCCA 117 TAATCGACCTCCGCACACATTCCCA 118 TGAGTCACCACGGGCGAACCACTTCTCTTCCACCACCGTTTTACCT 118 TGAGTCACCACGGCGCAACACATTCCCACCGTTTCCGCCCCTAC 119 TAGATAAAGACGCTGGCAACACACGGG 110 TGAGTCCCCACCACATCCTCTTTTCATCT 110 TGGTACCTCAACGCGAACACACGGG 1111 TAGACCACCTCCCCACACACTTCCTCTCCCCCCCCCCCC		100	TTGCGCTTACAGGCTCCTAGTGGTC	TGACCACTAGGAGCCTGTAAGCGCA
103 TGCATCCGGCCTGTTGATGACGCCT 104 TAGGCCAATCGATCTTATTGCCGAG TCTCGGCAATAAGATCGATTGCCT 105 TCCTTCCAATGATTGCTATGCCCAA TTGGCGCATTAGACGACCCCTTGATCAACAGGCCGATGCTT 106 TAACACTTGATCAGGCGGGTCTCT TAGACGACCCGCCTGATCAAGTGTT 107 TTGGAATCAAGGCCGAAAGGACAG TCTGCGCTTACAGTGTT 108 TGCTCCCGTAACCTGTCCACCAGTG TCACTGGTGGACCAGGTTACACGGCAC 108 TGCTCCCGTAACCTGTCCACCAGTG TCACTGGTGGACCAGGTTACACGGCACAC 109 TAGTGGTGAATGGCCGCTACCCTGA TCACTGGTGGACCAGGTTACACACACT 110 TTGTTGAAGGCAGCCACCAGTG TCACTGGTGGACCAGGTACCACACT 111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTGCAATTCTGACACACACACACACACACACACAC		101	TCACGCGCTTAGTCGCGATCGCATA	TTATGCGATCGCGACTAAGCGCGTG
10 TAGGCCAATCGATCTTATTGCCGAG TCTCGGCAATAAGATCGATTGGCCT 105 TCCTTCCAATGATTGCATACGCCCA TTGGGCGTATGCAATCATTGGAAGG 106 TAACACTTGATCAGGCGGGTCGTCT TAGACGACCCGCCTGATCAAGTGTT 107 TTGGAATCAAGGCCGGTAAAGGACAG TCTGTCCTTTACGGCGTGTT 108 TGCTCCCGTAACCTGTCCACCAGTG TCACTGGTGGACAGGTTACCGCACAGTG 108 TGCTCCCGTAACCTGTCCACCAGTG TCACTGGTGGACAGGTTACGGGAGC 109 TAGTGGTGAATGGCCGCTACCCTGA TTCAGGGTAGCGCCATTCACCACT 110 TTGTTGAAGCGAGCTAAAACGGCCA TTGGCCGTTTAGCCACCACT 111 TCAGCGCTCCAGAATTGACAGCCAAT TATTGCTGCAATTCTGGAGCGCTG 2 TTTCGAAGCGACCGTCCCTTTTCAA TTTGAAAAAGGGACGTGCGCTTCGAA 3 TAACGCGTGGGGAATTGACAGCAAT TATTGCTGCAATTCCCCACGCGTT 115 TCACGGAATACCGGCGAACTACA TTTGAAAAGGGACGTGCCGTTCGAA 3 TAACGCGTGGGGAATGGGACATCAA TTTGATGTCCCCATCCCCACGCGTT 115 TCTACGGCAAACCTGTGGAATTGGCT TACCCATTCCCCACGCGTT 116 TGTAGGGCCAACACTGTGGAATTGGCA TTGAGTTCCACAACGTTTGCCGTAG 117 TAATCGACCTCCCCACACATTCGCA TTGCACACGTTTGCCCTAC 117 TAATCGACCTCCCCACACATTCGCA TTGCGAATGGTTCCACACGTTTGCCGTAG 118 TGAGTCAGCATGGCGGCGAACTAC TGAATCTCCCCACGCCTTACTCCCCTAC 119 TAGATAAAGACCCTGGCAACACTTGT TACAAATGTTGCCGTAGTCCCTACCCTTACGCCGCCACACTTCGCCTACCCTTACGCCGCCCTACCCTCACCCCTACCCCTACCCCCTACCCCCTACCCCCTACCCCCC		102	TCGGAGGGAGGAGCTAGCCTTCGA	TTCGAAGGCTAGCTCCCTCCG
105 TCCTTCCAATGATTGCATACGCCCA 106 TAACACTTGATCAGGCGGGTCGTCT TAGACGACCCGCCTGATCAAGTGTT 107 TTGGAATCAAGGCCGTAAAGGACAG TCTGTCCTTTACGGCCTTGATTCCA 108 TGCTCCCGTAACCTGTCCACCAGTG TCACTGGTGGACAGGGTTACGGGAGC 110 TTGTTGAAGGCCGCTACCCTGA TCACTGGTGGACAGGGTTACGGGAGC 1110 TTGTTGAAGCGAGCTAAAACGGCCA TTCACTGGTGGACAGGCTTACACACA 1111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTGTCATTCTGAACA 1111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTGTCAATTCTGGAGCGCT 2 TTTCGAAAGCGACCTCCTTTTCAA TTTGAAAAAGGGACGTGCGCTTCGAA 3 TAACGCGTGGGGAATGGACAATCAA TTTGATGTCCCACCGCGTT 115 TCACGGAAAACCGGCGAATGGACTACAA TTTGAAGAAGGACGTGCGCTTCGAA 116 TGTACGGCAAACCGGCGAATGGATTGCACACTTTCCCCACCGCGTT 117 TAATCGACCTCCGCACACATTCGCA TTGCCACACGTTTGCCCCTAC 117 TAATCGACCTCCCCACACATTCGCA TTGCGAATGTGTGCCCCTACC 118 TGAGTCAGCAGACTAC TGAATCTCCGCCGCCTACCTCCCCTACC 119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCCCTACCCCTACCCTA		103	TGCATCCGGCCTGTTGATGACGCCT	TAGGCGTCATCAACAGGCCGGATGC
106 TAACACTTGATCAGGCGGGTCGTCT TAGACGACCCGCCTGATCAAGTGTT 107 TTGGAATCAAGGCCGTAAAGGACAG TCTGTCCTTTACGGCCTTGATTCCA 108 TGCTCCCGTAACCTGTCCACCAGTG TCACTGGTGGACAGGTTACCGGAGC 109 TAGTGGTGAATGGCCGCTACCCTGA TTCAGGGTAGCGGCCATTCACCACT 110 TTGTTGAAGCGAGCTAAAACGGCCA TTGACGGTTAGCTCACCACT 111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTGCAATTCTGGAGCGCTG 2 TTTCGAAGCGCACGTCCCTTTTCAA TTTGAAAAGGGACGTGCGCTTCGAA 3 TAACGCGTGGGGAATGGGACATCAA TTTGAAAAAGGACGTGCCGCTTGAACA 115 TCTACGAGATACCGGCGTAAAGGGTGG TCCACCCTTACGCCCGGGTT 116 TCTACGGCAAACCGTGTGGAATGGGT TACCCATTCCCACACGGTT 117 TAATCGACCTCCGCCACACATTCGCA TGTGATTCCGCCACGCGTT 118 TGAGTCAGCACACACTTCGCA TGCAATGTGTGCGGAGGTCGATT 118 TGAGTCAGCACACACACTTGT TGCAATGTGTGCGAGCGTAACTC 119 TAGATAAAGACGCTGGCAACACACGGG TCCCGTTTACCC 120 TGGTACCTCAACCCGAACCACTTTT TACAAAGTGGTTCCCGTAGCTCT 121 TAGACGATGGCTACCCAACACGGG TCCCGTTTACCT 122 TAGAGCGTTAGCCAACACGGG TCCCGTTTGCCAGCGTTTTACCT 122 TAGAGCGTTAGCCAACACGGG TCCCGTTTGCCATCGCTT 123 TATCGGTCTCACCCAGAACCACTTTT TACAAAGTGGTTCCGCTTTAGCCTT 124 TAGACCTTAGCAGAACCAGGGGC TGGCGCCTTGCTGATCCCTT 125 TCGGTGCTTAGCAGAACCAGGGGC TGGCGCCTTGCTGCATAAGCCTT 126 TAGACCTACGCAGAACCAAGTGGAT TATCGCTCTTGGCTAGAGACCCGT 127 TGTTGAAAGATTTGCAGCAACCAGGGGC TGGCGCCTTGCTGCATAAGCCTCT 128 TACCGTTTGCAAAAGCCTGTAG TTATCCCACCCGGGGCAACCTTA 129 TGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTTGCCTGCCCCAACACCTTCAAC 127 TGTTGAAGTGCAGAACACAT TATCTTCTTCTGCCGGGAACCCCA 128 TAACATTGCGCGGTCAACACGGGT TCACACCCTGCGTGAACCACCCG 129 TGGGCGCTGGTAGCAACACGTTTACCCCCCCCAAACACTTTCATCA 129 TGGCGCTTGGAAAAGCTTTACCTTCTGCCCCCCAAACCTTCAAC 129 TGGGCGTTAGAAAAGCCTGTAG TCTACACCCTGCGTGAACCTCCAAC 130 TTCGAGCTGGTCCCCGTGAACGTTT TACACCTTGGCACTCAACCCCGCAACTTTCACAC 131 TGCTTTGGGGGGCCCCCAAGAGT TACTTCTTGCCCCCCAACACCTTCAAC 132 TACTGTTGGCGGGCCCCCTAGGAAAAA TTTTTCACTAAACCCCCCCAAACACTTCAAC 131 TGCTTTGGGGGGCCCCCAAGAGT TACTTCTGGCCCCCCAAACACCTGGAACACATGTCTTCAACGGGGGCCCCCAAACACTTCAACCCCTGGAACCACACATGTTTCAACCCTTCCGAACCCCCCCAACACTTCAACCCCTTCCGAAGCCAACACATGTCTTCAAGCCGCCCCCAAGACCACACATGTTCTGCAACCCTTCCGAAGCCAACACATGTCTTCAAGGGGCCCCCCAA	10	104	TAGGCCAATCGATCTTATTGCCGAG	TCTCGGCAATAAGATCGATTGGCCT
107 TTGGAATCAAGGCCGTAAAAGGACAG 108 TGCTCCCGTAACCTGTCCACCAGTG 109 TAGTGGTGAATGGCCGCTACCCTGA 110 TTGTTGAAGCGAGCCCACCTGA 1110 TTGTTGAAGCGAGCTAAAACGGCCA 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCAGCGCTCCAGAATTGACAGCAAT 1111 TCACGCGCTCCAGAATTGACAGCAAT 1111 TCACGCGCTCCAGAATTGACAGCAAT 1111 TCACGCGCTCCAGAATTGACAGCAAT 1111 TCACGAGCAATACCGGCGTAAGGGTGG TCCACCCCTTACCCCACGCGTT 112 TCACCGGCAAACGTGTGGAATGGGT TCCCCCCTCACCCGCGTATCTCCGTG 113 TCACCGGCAAACACGTGGGAATGGGT TACCCCATTCCACACGTTTGCCCGTAC 114 TCACGGCAAACACGGGGTGGAACTAC TGTAGTTCGCCCCTACCCTA		105	TCCTTCCAATGATTGCATACGCCCA	TTGGGCGTATGCAATCATTGGAAGG
108 TGCTCCCGTAACCTGTCCACCAGTG TCACTGGTGGACAGGTTACGGGAGC 109 TAGTGGTGAATGGCCGCTACCTGA TTCAGGGTAGCGGCCATTCACCACT 110 TTGTTGAAGCGAGCTAAAACGGCCA TTGGCCGTTTTAGCTCGCTTCAACA 111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTGTCAATTCTGGAGCGCTG 2 TTTCGAAGCGCACGTCCCTTTTCAA TTTGAAAAGGGACGTGCGCTTCGAA 3 TAACGCGTGGGGAATGGGACATCAA TTTGATGTCCCATTCCCCACGCGTT 114 TCACGAGAATACCGGCGTAAGGGTTGG TCCACCCTTACGCCGGTATCTCGTG 115 TCTACGGCAAACGTTGGAATGGG TACCCATTCCCCACGCGTTT 116 TGTAGGGCAAACGTTGGAATGGG TACCCATTCCCCACGCGTATCTCCGTG 117 TAATCGACCTCCGCACACATTCGCA TTGAGTTCGCCCGTACCCCCTAC 117 TAATCGACCTCCGCACACATTCGCA TTGAGTTCGCCCGTCACTCCCCTAC 118 TGAGTCAGCATGGCGGGCGAGATTC TGAATCTCCGCCGCAAGCTCGATT 118 TGAGTCACCATGGCGGGCGAGATTC TGAATCTCCGCCGCAAGCTCTACTC 120 TGGTACCTCAACGCGGACCACTTGT TACCATTCCCGCCGCCATGCTGACTC 121 TAAGCGATGGCTGCCAACACGGG TCCCCTTTGGGCTGAGTCC 122 TAGAGCTTATGCAGAACCAGGGG TCCCCTTTTGGGTAGGTACC 123 TATCGGTCTCACGCAGACCACTTGT TACCAGCCTTGGGTAGCCCTT 124 TTAGGTTGCCACAGAGCGAT TATCCACCCTGCGTTAAGCTCT 125 TCGGTCTCTACGCAGAGACACAT TATCTTTTCTTCTGCAACAGCCTCTT 126 TTGATGAAAGTTTGCAGAAACCATTGTA TTATCCAACCCTGCGTGAGACCCGAT 127 TGTTGAGTGCCCCCCAGAAGAAACAT TATGTTTCTTCTGCGCGGAACCTTA 125 TCGGTGCTGTTGCAAAAGCCTTGAT TCTACCAGCCTTTTTCCAACAGCACCCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTTTCTCTCCGCCGCAAACTTTACCA 127 TGTTGAGTGCAGAAGCCTGTAG TCTAACCCCTGCCGCAACCTTTACCA 128 TAACATTGCGGCGGCAGCACAC TGTTGCCCGCAAACTTTACCAAC 129 TGGGCAGTTAGAGAGGCCACCAGGGTT TAACCCTGGTGGACCCGCAAACTTTACCAAC 129 TGGGCAGTTAGAGAGGGCCAGAACT TACCCTCGCGCAACCTTTACCAC 129 TGGGCAGTTAGAGAGGCCACACGTT TAACCCTGGTGGACCCGCCAAACTTT 129 TGGGCAGTTAGAGAGGGCCAGAACT TACCTCTGCCCGCAACCTTCAAC 129 TGGGCAGTTAGAGAGGCCAACACTT TACCCCTGGGGGACCAACCTTCAAC 129 TGGGCCGTTCACCAGGGTT TAACCCTGGGGGACCAGCCCCAACCTTCAAC 130 TTCGAGCTGGTCCCCCTGAACGTT TACCCTGGGGGACCAGCCCCAACCTTCAAC 131 TGTCTTGGGGGCCCCCAGAACTT TACCCTGGCGCACCCCCAACACTT 132 TACTGTTGGCTTCCTCTCTCTCCACTCCACCAACCTTCCACCCCCAACACTTCACCCCCC		106	TAACACTTGATCAGGCGGGTCGTCT	TAGACGACCCGCCTGATCAAGTGTT
109 TAGTGGTGAATGGCCGCTACCCTGA TTCAGGGTAGCGGCCATTCACCACT 110 TTGTTGAAGCGAGCTAAAACGGCCA TTGGCCGTTTTAGCTCGCTTCAACA 111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTGTCAATTCTGGAGCGCTG 2 TTTCGAAGCGCACGTCCCTTTTCAA TTTGAAAAGGGACGTGCGCTTCGAA 3 TAACGCGTGGGGAATGGGACATCAA TTTGATGTCCCATTCCCCACGCGTT 114 TCACGAGATACCGGCGTAAGGGTGG TCCACCCTTACCCCACGCGTT 115 TCTACGGCAAACGTGTGGAATGGGT TACCCATTCCACACGTTTGCCGTAG 116 TGTAGGGCGATGACGGGCGAACTAC TGTAGTTCGCCGTACGCCCTAC 117 TAATCGACCTCCGCACACATTCGCA TTGCGAATGTGTGCGGAGGTCGATT 118 TGAGTCAGCATGCGGCGGAGATTC TGAATCTCCGCCGCCATCGCCCTAC 119 TAGATAAAGACGCTGGCGAACACGGG TCCCGTGTTGCCGCCATCTTACTC 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTGCCGTTAGCTC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTTACCT 122 TAGAGCTTATGCAGAACCAGGGGT TACCACCTTGGGTAACCCTT 123 TATCGGTCTCACGCAGAGACCACTTTT TACAAGTGGTTCGCATAAGCCTCT 124 TTAGGTTGCCGCCAGAAGAAACAT TATGTTTCTTGGCGGGAACCCGT 125 TCGGTGCTTTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCAGAAAGAAACAT TATGTTTCTTGGCGGGAAACCTA 127 TGTTGAGTGCAGAAGAACAT TATGTTTCTTGGCGGGAACCTAAC 128 TAACATTGCGGCAGGAGAACAT TATGTTTCTTGGCGGGAACCTCAAC 128 TAACATTGCGGCAGGAGAACAT TATCTCTGGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGAGGGGTT TAACCCTGGTGGACCCGCAACTTACCACCAGCGGTTTTGCAACAGCACCG 128 TAACATTGCGGCAGGAGAACAT TATCTTCTGGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGAAGGAGAACAT TATCTTCTGGCCGCAAACTTTCATCA 128 TAACATTGCGGCAGGAGCAC TGTGTCCTGCCACCACCACC 128 TAACATTGCGGCAGGAGCAC TTACTCTGCCCCCAACACTTCACC 128 TAACATTGCGGCGGTCCACCAGGGTT TAACCCTGGTGGACCCGCCAATGTT 30 TTCGAGCTGTCCCCGTGAACGTGT TACCACGTCCTCCTCTAACTGCCC 130 TTCGAGCTGTCCCCGTGAACGTGT TACCACGTCCACCCCGGCAAACTT 131 TGTCTTGGGGGCCCCCTTAGTGAAAA TTTTTTCACTAACGCGCCCCCCAAGAC 132 TACTGTTGGGCTTCCTCTAGTGCAAA TTTTTTCCCCTAACCGGCCCCCCAAGAC 132 TACTGTTGGCTTCCTCTCTCTCCATGTCCA 133 TAGGACCATTCGGAAGGCAACATA TTTTTTCCCCACCGGAACCCCCCAAGAC 133 TAGGACCATTCGGAAGGCCAACAGAT TTTTTTCTCGCCTTCCGAATGGTCCT 130 TTCGGGGGGCCCCCAAGGCTCCCCCAAGAC TTTTTTTCTCGCCTTCCGAATGGTCCT		107	TTGGAATCAAGGCCGTAAAGGACAG	TCTGTCCTTTACGGCCTTGATTCCA
110 TIGTTGAAGCGAGCTAAAACGGCCA TIGGCCGTTTTAGCTCGCTTCAACA 111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTTGCAATTCTGGAGCGCTG 2 TITCGAAGCGCACGTCCCTTTTCAA TITTGAAAAGGGACGTGCGCTTCGAA 3 TAACGCGTGGGGAATGGGACATCAA TITTGATGTCCCATCCCCACGCGTT 114 TCACGAGATACCGGCGTAAGGGTG TCCACCCTTACGCCGGTATCTCGTG 115 TCTACGGCAAACGTGTGGAATGGGT TACCCATTCCACACGTTTGCCCTAG 116 TGTAGGGCGATGACGGGCGAACTAC TGTAGTTCGCCCACCCCTAC 117 TAATCGACCTCCGCACACATTCGCA TTGCGAATGTGTGCCGTAG 118 TGAGTCAGCACGGCGGAACACTC TGAATCTCCGCCGCCATGCTGACTC 119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCAGCGTTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCAGTGACTC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGAGGTACCC 122 TAGAGCTTATGCAGAACCAGGGC TGGCGCCTGGTTGACTC 123 TATCGGTCTCACGCAGAGCGAT TATCGCTCTTGGAGACCCAT 124 TTAGGTTGCCCGCCAGAAGAACAAT TATCCAACCCTGGGGAGACCCAT 125 TCGGTGCTGTGCAAAAGCCTGTAG TCTACAAGCTTTTCGCAGCGCAACCCTA 126 TTGGTGCAGAGAACAAT TATCTTCTTCTGGCGGGCAACCTA 127 TGTTGAAAGTTTGCGGCAGAGAACAAT TATCTTTCTTCTGGCGGGCAACCCTA 128 TAACATTGCGGCAGAGAACAAT TATCTTCTTCTGCCGCCAAACCTTACAAC 129 TGGTGCAGAGGAGAACAA TCTATCGCTGCAACACCCACCCAACACTTACAACCTTGCCCCCAACACTTACAACACCACCGCGCAAACTTTCATCA 127 TGTTGAGTGCAGAGAGAACAT TACTTCTGCCCGCAAACTTTCATCA 128 TAACATTGCGGCAGGAGAACAAT TACTTCTGCCCGCAAACTTTCATCA 129 TGGGCAGTTAGAAGAGGCCAACAT TAACCCTGGGGGAACCCCC 130 TTCGAGCTGTCCCCCGTGAACGTT TAACCCTGGGGAACCACCCCC 130 TTCGAGCTGTCCCCCTGAACGTT TAACCCTGGCGCAAACTTTCATCA 131 TGTCTTGGGGGCCCCCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCCAAGAC 132 TACTGTTGGCTTCCCCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCCAAGAC 133 TAGGACCATTCGGAAGGCGAAGATA TACTTCTGCCCTTCCAACACACACACACT 133 TAGGACCATTCGGAAGGCGAAGATA TTACTTCGCCTTCCGAACACACACACACACACACACACAC		108	TGCTCCCGTAACCTGTCCACCAGTG	TCACTGGTGGACAGGTTACGGGAGC
111 TCAGCGCTCCAGAATTGACAGCAAT TATTGCTGTCAATTCTGGAGCGCTG 2 TTTCGAAGCGCACGTCCCTTTTCAA TTTGAAAAGGGACGTGCGCTTCGAA 3 TAACGCGTGGGGAATGGGACATCAA TTTGATGTCCCACCCGCGTT 20 114 TCACGAGATACCGGCGTAAGGGTG TCCACCCTTACGCCGGTATCTCGTG 115 TCTACGGCAAACGTGTGGAATGGGT TACCCATTCCACACGTTTGCCGTAG 116 TGTAGGGCGACACGTGGGAATGGGT TACCCATTCCACACGTTTGCCGTAG 117 TAATCGACCTCCGCACCACATTCGCA TGTAGTTCGCCCGTCATCGCCCTAC 117 TAATCGACCTCCGCACCACATTCGCA TGCGAATGTGTGCGGAGGTCGATT 118 TGAGTCAGCATGGCGGCGGAGATTC TGAATCTCCGCCGCACTGCTGACTC 120 TGGTACCTCAACGCGAACCACGGG TCCCGTGTTGCCAGCGTCTTTATCT 120 TGGTACCTCAACGCGAACCACGGG TCCCGTGTTGCCAGCGTCTTTATCT 121 TAAGCGATGGCTACCCAAGAGCGAT TACCACTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGGGCC TGGCGCCTTGTGAGGTACC 123 TATCGGTCTCACCGAGAGCGAT TATCGCTCTTGGGTAGCCATCGCTT 124 TTAGGTTGCCGCAGAGAACAAT TATGTTTCTTCTGCACACCCTGCTGAGCCCTT 125 TCGGTGCTGTGCAAAAGCCTGTAG TCTACAGCCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGAACCAGGGGT TAACCCTGCCGCAAACTTTCATCA 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGCGCAAACTTTCATCA 129 TGGGCAGTTAGAGAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCCCAAACTTT 228 TACCATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 35 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTTAACTGCCC 130 TTCGAGCTGTCCCCGTGAACGTGT TAACCCTGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTTAGTGAAAA TTTTCCACCGGGGACCAGCTCGA 132 TACTGTTGGCTTCCCTCTATGTCCA TTGGACATGAGAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCCAAACACACGT 134 TCTTTGGGGGCCGCTTTAGTGCAA TTTTCTTCGCCTTCCCGAATGGTCCT 40 134 TCTTGGGAGGCAACCCCCTTAAAGGA TTTCCTTATAGCGGATGCCTCCCAAGC	15	109	TAGTGGTGAATGGCCGCTACCCTGA	TTCAGGGTAGCGGCCATTCACCACT
2 TTTCGAAGCGCACGTCCCTTTTCAA 3 TAACGCGTGGGGAATGGACATCAA 3 TAACGCGTGGGGAATGGACATCAA 1TTGATGTCCCATTCCCCACGCGTT 114 TCACGAGATACCGGCGTAAGGGTGG TCCACCCTTACGCCGGTATCTCGTG 115 TCTACGGCAAACGTGTGGAATGGGT TACCCATTCCACACGTTTGCCGTAG 116 TGTAGGGCGATGACGGGCGAACTAC TGTAGTTCGCCCGTCATCGCCCTAC 117 TAATCGACCTCCGCACACATTCGCA TTGCGAATGTGTGCGAGGTCGATT 118 TGAGTCAGCATGGCGGCGAGATTC TGAATCTCCGCCGCATGCTGACTC 119 TAGATAAAGACGCTGGCGAACACACGG TCCCGTGTTGCCAGCGTCTTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAAGTGGTTCGCGTTGAGGTACC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTTGGGTAGCCATCGTT 122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGAGGTAGATAATTATCCAACCCTGCGTGAGACCCGT 124 TTAGGTTGCCCGCCAGAAGAAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACACGCGG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCAGCAACCTGAC 127 TGTTGAGTGCAGAAGAACAC TGTGTCCTGCAGCAACCTTCAAC 127 TGTTGAGTGCAGAAGAACAT TATCGCTGCATCACCCCGCAAACTTTCATCA 127 TGTTGAGTGCAGAGGATAG TCTACAGGCTTTTGCAACACCCGG 128 TAACATTGCGGCAGGATAG TCTACCGTGCACCCTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCCAAACTTTCATCA 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCCCGA 131 TGTCTTGGGGGGCCCCCTAGACACTTTCATCACGGGGACCACCTGA 131 TGTCTTGGGGGGCCGCTTAGTGAAAA TTTTCACTAAGCGGCCCCCCAAGAC 132 TACTGTTGGCTTCCTCTATGTCCA TTGGACATGAGAGCAACGCCACAGT 133 TAGGACCATTCGGAAGGCGAAGAT TTATCTTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGGAGGCAACCCGCTATAAGGA TTCCTTTATAGCGGATGCCTCCCAAG		110	TTGTTGAAGCGAGCTAAAACGGCCA	TTGGCCGTTTTAGCTCGCTTCAACA
20 114 TCACGAGATACCGGCGTAAGGGTGG TCCACCCTTACGCCGGTATCTCGTG 115 TCTACGGCAAACGTGTGGAATGGGT TCCCCACACGTTTGCCGTAG 116 TGTAGGGCGATGACGGGCGAACTAC TGTAGTTCGCCCGTACGCCCTTAC 117 TAATCGACCTCCGCACACATTCGCA TGCGAATGTGTGCGCGTAG 118 TGAGTCAGCATGGCGGCGGAGATTC TGCGAATGTGTGCGCGTGACT 118 TGAGTCAGCATGGCGGCGGAGATTC TGCGAATGTGTGCGCGCGTACTC 119 TAGATAAAGACGCTGGCGACACACTTGT TGAATCTCCGCCGCCCATGCTGACTC 120 TGGTACCTCAACGCGAACCACGG TCCCGTGTTGCCAGCGTCTTTATCT 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTAGCCATCCCTT 122 TAGAGCTTATGCAGAACCAGGCGC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGAAGCACAGGTT TAACCCTGGTGGACCCACCAC 128 TAACATTGCGGGATGCAGCAGAAC TGTTACGCTGCATCCTCACCCCCACACCTTACCGCAGGATAG TCTACCGCGCGCAAACTTTCATCA 129 TGGGCAGTTAGAGAGGGCCAACAT TACTCTCGCCGCAAACTTTCATCA 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTCTTGGCCGCCAAACTTTCACCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACCACGTTCACGGGGACCCCCAACCTCAAC 131 TGTCTTGGGGGGCCCGCTTAGTGAAAA TTTTCACAGGCTTCACAGCCCCCAAGAC 132 TACTGTTGGCTTCCCCTTCAACGTGT TACCACGTTCACGGGGACCACCCGAACTTGGACCCCCCAAGAC 133 TAGGACCATTCGGAAGGCGAAGAT TTTTCTTCGCCTTCCGAATGGTCCT 133 TAGGACCATTCGGAAGGCGAAGAT TTTTCTTTTCGCCTTCCGAATGGTCCT 133 TAGGACCATTCGGAAGGCGAAGAT TTTTCTTTTTCGCCTTCCGAATGGTCCT 134 TCTTTGGGGAGGCCAACGTT TACCCCTTCCGAATGGTCCT 135 TACTGTTGGCTTCCCCTTAATAGGA TTCCTTTATAGCGGATGCCTCCCCAAGC 136 TACTGTTGGCTTCCCCTTATAGGAAA TTTTCCTTCGCCTTCCGAATGGTCCT 137 TACTGTTGGGAGGCCAACGTT TACCCTTCCGAATGGTCCT 137 TACTGTTGGGAGGCCAACAGT TTACCCTTCCGAATGGTCCT 137 TACTGTTGGGAGGCCAACAGT TTACCCTTCCCAAGCCAACAGT 137 TACTGTTGGGAGGCCAACAGT TTACCCTTCCCAAGCCAACAGT 137 TACTGTTGGGAGGCAAGATA TTTTCTTTCGCCTTCCGAATGGTCCT 137 TACTGTTGGGAGGCCAACAGTA TTTTCTTTTTTCCCCTTCCCAAGCCAACAGT 131 TACTTTGGGAGGCCAACAGTA TTTTTTTTTTTTTTTTT		111	TCAGCGCTCCAGAATTGACAGCAAT	TATTGCTGTCAATTCTGGAGCGCTG
114 TCACGAGATACCGGCGTAAGGGTGG TCCACCCTTACGCCGGTATCTCGTG 115 TCTACGGCAAACGTGTGGAATGGGT TACCCATTCCACACGTTTGCCGTAG 116 TGTAGGGCGATGACGGGCGAACTAC TGTAGTTCGCCCGTACGCCCTAC 117 TAATCGACCTCCGCACCACATTCGCA TGGCGAATGTGTGCGAGGTCGATT 118 TGAGTCAGCATGGCGGCGGAGATTC TGAATCTCCGCCGCCATGCTGACTC 119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCAGCGTCTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACC 121 TAAGCGATGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACC 122 TAGAGCTTATGCAGAACCAGGCGCT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAACACT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCACCAACCACCG 127 TGTTGAGTGCAGCAGAGACAC TGTGTCCTGCACCACCACCG 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCCAACTTT 129 TGGGCAGTTAGAGAGCCAACGT TACCTCTGCACCCCCCAACCTCAAC 129 TGGGCAGTTAGAGAGGCCACAAGT TACTTCTGGCCCCCCAACTCTTGCACCCCC 130 TTCGAGCTGTCCCCGTGAACGTGT TACACGTTCACGGGGACCACCCCCCAAGAC 131 TGTCTTGGGGGCCCCCTTAACGGGT TACACGTTCACGGGGACCACCCCCAAGAC 132 TACTGTTGGCTTCCCCTTGAACTGCCC TTCACACGGGCCCCCCAAGAC 133 TAGGACCATTCGGAAGGCGAAGATA TTTTTCACTAAGCGGCCCCCCAAGAC 134 TCTTTGGGGAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCCGAATGGTCCT 134 TCTTTGGGGAGGCGAAGGATA TTATCTTCCGCCTTCCCGAATGGTCCT 135 TACTGTTGGCTTCCCATTAAGGA TTTTTCACCTCCCAAGCCTCCCAAGC			2 TTTCGAAGCGCACGTCCCTTTTCAA	TTTGAAAAGGGACGTGCGCTTCGAA
115 TCTACGGCAAACGTGTGGAATGGGT TACCCATCCACACGTTTGCCGTAG 116 TGTAGGGCGATGACGGGCGAACTAC TGTAGTTCGCCCTACCCCTAC 117 TAATCGACCTCCGCACACATTCGCA TTGCGAATGTGTGCGGAGGTCGATT 118 TGAGTCAGCATGGCGGCGGAGATTC TGAATCTCCGCCGCCATGCTGACTC 119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCAGCGTCTTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACCC 121 TAAGCGATGGCTACCCAAGAGGCGAT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGGGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAAACAT TATGTTTCTTCTGGCGGGGAACCGAT 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACACGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCACCACACCCG 127 TGTTGAGAAAGTTTGCGGCAGGATAG TCTATCGCTGCACCTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCCAAACTTTCATCA 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCCCCAACACTTGT 130 TTCGAGCTGGTCCCCCGTGAACGTGT TACACCGTGCACCCGCAAATGTT 131 TGTCTTGGGGGCCCCCTTAGTGAAAA TTTTCACCAGGGGACCAGCCCGAAGCCCCGAAGCACCTCGACTCAGCCCCCAAGACCCCCCCC			3 TAACGCGTGGGGAATGGGACATCAA	TTTGATGTCCCATTCCCCACGCGTT
116 TGTAGGGCGATGACGGGCGAACTAC TGTAGTTCGCCCGTCATCGCCCTAC 117 TAATCGACCTCCGCACACATTCGCA TTGCGAATGTGTGCGGAGGTCGATT 118 TGAGTCAGCATGGCGGCGGAGATTC TGAATCTCCGCCGCCATGCTGACTC 119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCAGCGTCTTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGGGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGCAGAGACAC TGTGTCCTGCCGCAAACTTTCATCA 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCCGCCAACTTT 35 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCCCCCAACCTCGA 131 TGCTTGGGGGCCCCCTGAACGTGT TACACGTTCACGGGGACCAGCCCG 132 TACTGTTGGCTCCCCTTGAACATTTTCACACCGCCCCCAAGAC 133 TACGACCATTCCTCCATGTCAAA TTTTTCACTAAGCGGCCCCCCAAGAC 134 TCTTGGGGAGGCCAAAGATA TTTTTCACTAAGCGGCCCCCCAAGAC 137 TACTGTTGGCTTCCTCTCTATGTCCA TTGGACATGAGAGCAACCCAACAGT 138 TAGGACCATTCGGAAGGCGAAGATA TTTTTCACCTAAGCGGCCCCCCAAGAC 139 TACTGTTGGCTTCCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 131 TACTGTTGGGAGGCGAAGATA TTTTTCACCTAACCGGGATGCCTCCCAAGAC 131 TACTGTTGGCTTCCTCTATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTTTTCGCCTTCCGAATGGTCCT 134 TCTTTGGGAGGCCATCCGCTATAAAGGA TTCCTTTATAGCGGATGCCTCCCAAG	20	114	TCACGAGATACCGGCGTAAGGGTGG	TCCACCCTTACGCCGGTATCTCGTG
117 TAATCGACCTCCGCACACATTCGCA TTGCGAATGTGTGCGGAGGTCGATT 118 TGAGTCAGCATGGCGGCGGAGATTC TGAATCTCCGCCGCCATGCTGACTC 119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCAGCGTCTTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGCAGATGAACACT TACTCTGCCCGCAAACTTTCATCA 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 35 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAACGCACCGT 133 TAGGACCATTCGGAAGGCGAAGATA TTACTTCCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCCATCACAGGA TITACCTTACCGGGATGCCTCCCAAG		115	TCTACGGCAAACGTGTGGAATGGGT	TACCCATTCCACACGTTTGCCGTAG
118 TGAGTCAGCATGGCGGCGGAGATTC TGAATCTCCGCCGCCATGCTGACTC 119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCAGCGTCTTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAAACAT TATGTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCACCACCACCACCACCACCACCACCACCACCACCAC		116	TGTAGGGCGATGACGGGCGAACTAC	TGTAGTTCGCCCGTCATCGCCCTAC
119 TAGATAAAGACGCTGGCAACACGGG TCCCGTGTTGCCAGCGTCTTTATCT 120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGAGACAC TCTATCGCTGCACTCCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 35 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGCCCCCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCCGCTTAGTGAAAA TTTTCACTAAGCGGCCCCCCAAGAC 132 TACTGTTGGCTTCCTCTCATGTCCA TTGGACATGAGAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCGAAGGCATACGATTTCCTCCAAGC		117	TAATCGACCTCCGCACACATTCGCA	TTGCGAATGTGTGCGGAGGTCGATT
120 TGGTACCTCAACGCGAACCACTTGT TACAAGTGGTTCGCGTTGAGGTACC 121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGACCTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGACCGCGCAATGTT 35 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCGATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		118	TGAGTCAGCATGGCGGCGGAGATTC	TGAATCTCCGCCGCCATGCTGACTC
121 TAAGCGATGGCTACCCAAGAGCGAT TATCGCTCTTGGGTAGCCATCGCTT 122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 35 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACCGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTCTCATGTCCA TTGGACATGAGAGCAACGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG	25	119	TAGATAAAGACGCTGGCAACACGGG	TCCCGTGTTGCCAGCGTCTTTATCT
122 TAGAGCTTATGCAGAACCAGGCGCC TGGCGCCTGGTTCTGCATAAGCTCT 123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGACCGCGCAATGTT 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 134 TCTTGGGAGGCGAAGGCAACGAGT TTATCTTCGCCTTCCGAATGGTCCT 134 TCTTGGGAGGCGAAGGCAACGAGT TTATCTTCGCCTTCCCAAG		120	TGGTACCTCAACGCGAACCACTTGT	TACAAGTGGTTCGCGTTGAGGTACC
123 TATCGGTCTCACGCAGGGTTGGATA TTATCCAACCCTGCGTGAGACCGAT 124 TTAGGTTGCCCGCCAGAAGAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 134 TCTTGGGAGGCGAAGCAAGAA TTCCTTATAGCGGATGCCTCCCAAGAC 137 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 138 TAGGACCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAGAC 139 TCTTGGGAGGCCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAGAC 130 TCTTGGGAGGCCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAGAC 131 TCTTGGGAGGCCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAGAC 131 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAGAC 131 TCTTGGGAGGCATCCCCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAGAC 131 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAGAC 131 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCCAAGAC 131 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCCAAGAC 110 TCTTGGACATGCTCCCCTATAAGGA TTCCTTATAGCGGATGCCTCCCCAAGAC 111 TCTTGGACATGCTCTCCCAAGACTAAGGA TTCCTTATAGCGGATGCCTCCCCAAGAC 111 TCTTGGACATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCCAAGAC 111 TCTTGGACATGCTCCCCCAAGACACATTCCTCCCAAGACACACAC		121	TAAGCGATGGCTACCCAAGAGCGAT	TATCGCTCTTGGGTAGCCATCGCTT
124 TTAGGTTGCCCGCCAGAAGAAACAT TATGTTTCTTCTGGCGGGCAACCTA 125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 129 TGGGCAGTTAGAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCGAAGATA TTCCTTATAGCGGATGCCTCCCAAG		122	TAGAGCTTATGCAGAACCAGGCGCC	TGGCGCCTGGTTCTGCATAAGCTCT
125 TCGGTGCTGTTGCAAAAGCCTGTAG TCTACAGGCTTTTGCAACAGCACCG 126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAACGCTAACGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		123	TATCGGTCTCACGCAGGGTTGGATA	TTATCCAACCCTGCGTGAGACCGAT
126 TTGATGAAAGTTTGCGGCAGGACAC TGTGTCCTGCCGCAAACTTTCATCA 127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG	30	124	TTAGGTTGCCCGCCAGAAGAAACAT	TATGTTTCTTCTGGCGGGCAACCTA
127 TGTTGAGTGCAGGATGCAGCGATAG TCTATCGCTGCATCCTGCACTCAAC 128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		125	TCGGTGCTGTTGCAAAAGCCTGTAG	TCTACAGGCTTTTGCAACAGCACCG
128 TAACATTGCGCGGTCCACCAGGGTT TAACCCTGGTGGACCGCGCAATGTT 129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG	,	126	TTGATGAAAGTTTGCGGCAGGACAC	TGTGTCCTGCCGCAAACTTTCATCA
129 TGGGCAGTTAGAGAGGGCCAGAAGT TACTTCTGGCCCTCTCTAACTGCCC 130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		127	TGTTGAGTGCAGGATGCAGCGATAG	TCTATCGCTGCATCCTGCACTCAAC
130 TTCGAGCTGGTCCCCGTGAACGTGT TACACGTTCACGGGGACCAGCTCGA 131 TGTCTTGGGGGCCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		128	TAACATTGCGCGGTCCACCAGGGTT	TAACCCTGGTGGACCGCGCAATGTT
131 TGTCTTGGGGGCCGCTTAGTGAAAA TTTTTCACTAAGCGGCCCCCAAGAC 132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG	35	129	TGGGCAGTTAGAGAGGGCCAGAAGT	TACTTCTGGCCCTCTCTAACTGCCC
132 TACTGTTGGCTTGCTCTCATGTCCA TTGGACATGAGAGCAAGCCAACAGT 133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		130	TTCGAGCTGGTCCCCGTGAACGTGT	TACACGTTCACGGGGACCAGCTCGA
133 TAGGACCATTCGGAAGGCGAAGATA TTATCTTCGCCTTCCGAATGGTCCT 40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		131	TGTCTTGGGGGCCGCTTAGTGAAAA	TTTTCACTAAGCGGCCCCCAAGAC
40 134 TCTTGGGAGGCATCCGCTATAAGGA TTCCTTATAGCGGATGCCTCCCAAG		132	TACTGTTGGCTTGCTCTCATGTCCA	TTGGACATGAGAGCAAGCCAACAGT
		133	TAGGACCATTCGGAAGGCGAAGATA	TTATCTTCGCCTTCCGAATGGTCCT
135 TAATAAACGGAACGCACCGCTACAG TCTGTAGCGGTGCGTTCCGTTTATT	40	134	TCTTGGGAGGCATCCGCTATAAGGA	TTCCTTATAGCGGATGCCTCCCAAG
	l	135	TAATAAACGGAACGCACCGCTACAG	TCTGTAGCGGTGCGTTCCGTTTATT

136	_			
138 TACCTGATCGTTCCCCTATTGGGAA 139 TGGAACAGAGGGGAGGGACTGAGC TGCTCAGTCCCCTCGCCTCTGTTCC 140 TCCCTGCCTTGGCGTTGTTT TATAAGCCGACACGCCAAGGCAGGGAGGAGGAGGAGGAGGAGG	[136	TTTGTACGTGCGGTCCCCATAAGCA	TTGCTTATGGGGACCGCACGTACAA
139 TGGAACAGAGGCGAGGGGACTGAGC TGCTCAGTCCCTCGCCTTGTTCC 140		137	TCGCACCAAACTGAGTTTCCCAGAC	TGTCTGGGAAACTCAGTTTGGTGCG
140 TCCCTGCCTTGGCGTGTCCGCTAT TATAAGCCGACACGCCAAGGCAGGG 141 TACTCTGACACGCCAACTCCGGAAG 142 TCTGACGGTTTTCATTCGGCGTGCC TGGCACGCCGAATTGACAACCGTCAGAGT 143 TTGCGGTGGTTCATTGAGCTGCCC TGGCCACGCCCAATGAACACCGCCGCA 144 TGCATGGCCAACTAGTGACTCGCAA TTTTGGCAGTCACTAGACCACCGCA 144 TGCATGGCCAACTAGTGACTCGCAA TTTTGGCAGTCACTAGACCACCGCA 145 TAGGCCGAACTAGTGACTCGCAA TTTTGCGAGTTACACTAGACCACCGCA 146 TCGAATATTATGCCGAGAATCCACCT TCAGGCAATCCAGTCATAATTCG 147 TACAGACGAGCTCCCAACCACATGA TCAGTCGACAATCCAGCACAAACCGTTCTG 148 TGGACGGTTTGTGTTGTGTTGTCTT TCAGACAATCCAGCACAAAACCGTTCTG 149 TAAAAGCTATTGAGTTGGTTGGGCC TCGCCAACCAACTAATATTCG 149 TAAAAGCTATTGAGTTGGTTGGCC TCGCCAACCAACTAAAAACCGTTT 150 TGATGCCTATTCGGAGATCGGCC TGGCCCAACCAACTAACAAACCCTTT 151 TGATCCAGTAAGGCAGCTTCATCCCA TTGGGATGAAGCTTCCGGAATAGGCCATC 152 TAATAACTCGCGCGGGTATTGCTTCT TAGAAGCATACCCGCGCGAGTTTT 153 TGGAGGAGGTTTGTCTCCCA TTGGGTAAAGCATCCCCGCCGAGTTTC 154 TCTTTTGGTATGGCAAAGCA TTGCTTTCCGAGACAAACCTCCTCCC 155 TAGAAAAGGCTCGCACAAGCA TTGCTTTCCGAGACAAACCTCCTCCC 156 TAATCACCGCACTGGTCCCCCC TCGGGCCACAAAACTCCTCTCC 156 TAATCACCGCACTGGTCCGCAAGT TACTTTCCGAGACAAACCTTCCTCC 157 TCGTGGCGCCACAAGTTTTTGGAGG TCCTCCAAAACTGTGCCATACCAAAG 157 TCGTGGCGCCACAAGCCATTTTTA 157 TCGTGGCGCCCACAAGCCATTTTTG 158 TTGCAGTTCAATCCAACACTTTTTGGAGG 159 TGGCCCAAAGCCCCAGACCATTTTTA 159 TGGCGCAAAGCCCCAGACCATTTTTA 151 TGAGGGAACAAGCGCGCAAAAACTT 151 TGAGGGAACAAGGGGCCAAAAACTT 152 TGGCGCAAGCCCCAGACCATTTTTA 153 TGCCCCAAGCCCCAGACCATTTTTA 154 TGCCCCAAGCCCCAGACCATTTTTA 155 TGCCCCAAGCCCTGTTCCCCCG TCGCCAGGCCTTTGCCCA 166 TGCCCCAAGCCCTAGAACTTTTTGCCCCCTTCTCCACAAACCTGTCCCCAAGCCCTGTGCCCCAAGCCCTTTTGCCCCCCAAGCCCTTTTGCCCCCCCAAGCCCTTTTGCCCCCCCC		138	TACCTGATCGTTCCCCTATTGGGAA	TTTCCCAATAGGGGAACGATCAGGT
141 TACTCTGACACGCCAACTCCGGAAG 142 TCTGACGGTTTCATTCGGCGTGCC 143 TTGCGGTGTTCATTCGGCGTGCC 144 TGCATGGACACTAGACCACCAA 144 TGCATGGCAACTAGTGACTCGCAA 145 TAGGCCGTAAAGCGAATCACACA 146 TCGAATATTATGCCGAACTAGTGCCTAACTTTGCACTGTTGCCATGC 146 TCGAATATTATGCCGAGAATCCACCGC 147 TACAGACGACTACTCCCAA 147 TACAGACGAACTCCCCAACTAGACTCGCCGC 148 TGGACGGTTAAGCGAATCCACCG 149 TACAGACGACCACCACTGA 149 TGAAGGCTTTGACTGGCT 149 TACAGACGACTCCCAACCACATGA 149 TGAACGGTTTGTGCTGGATTGTCTG 149 TACAGACGATCTCTCGGATTGTCTG 149 TACAGACCATCAGACTAGA 149 TGAACGGTTTGTGTTGGGCGC 150 TGATGCCCTATTCGGAACTCCCAACTCAATAGCCTTT 151 TGATCCAGTAGGCAGCTTCATCCCA 152 TAATAACTCGCGGGGTATGCTTCT 153 TGGAGGAGGTTGTTCCCA 154 TCTTTGGAACAGCCACACCACTGA 155 TGGACGGAGGTTGTTCT 156 TAATCTACCGCGGGGTATGCTTCT 157 TCGTGGCGCCAACCACACACCACTGCCCGCCGGAGTTATT 158 TGGAGAGGGTTTGTCCGGAAAGCA 159 TAATACCTCGCGGGGGAACCACTCCTCCGACCACCACCACCACCACCACCACCACCACCACCACCA		139	TGGAACAGAGGCGAGGGGACTGAGC	TGCTCAGTCCCCTCGCCTCTGTTCC
142 TCTGACGGTTTTCATTCGGCGTGCC TGGCCAGATGAAAACCGTCAG 143 TTGCGGTGGTTCATTGGAGCTGGCC TGGCCAGCTCCAATGAACACCACCGCA 144 TGCATGGCCAACTAGTGACTCGCAA TTTTGCGAGTCACTAGTTGGCCATGC 145 TAGGCCGTAAAGCGAATCTCACCTG TCAGGTGAGATTCCGTTAGTGGCCATGC 146 TCGAATATTATGCCGAGAATCCGCG TCAGGGGATTCTCGGCATAATATTCG 147 TACAGACGAGCTCCCAACCACTGA TCATGTGGTTGGGAGCTCGTTGT 148 TGGACGGTTTGTGCTGGATTGTCTG TCAGACAATCCAGCACAAACCGTCC 149 TAAAGGCTATTGAGTTGGTTGGGGC TCGCCCAACCAACCAATGACCTTGT 150 TGATGCCTATTCGGAGATCGGGCC TGGCCCAACCAACTCAATAGCCTTT 151 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCTGCCATC 152 TAATAACTCGCGCGGGTATGCTTCT TAGAAGCATACCCGCGCGAGTTATT 153 TGGAGGAGGTTTGTCTCT TAGAAGCATACCCGCGCGGAGTTATT 154 TCTTTGGTATGGCACAACGGGAACC TTGCTTCCGAAAACCTCCCCC 155 TAGAAAAGCTCGAGCAACGGGAACT TAGTTCCCGAACAAACCTCCCCC 156 TAATAACTCGCCAGGACAACGGGAACT TAGTTCCCGTTGCTCAAAACCTTCCTCC 157 TAGAAAAGCTCGACAACGGGAACT TAGTTCCCGTTGCTCAAACCTTCCTCC 158 TTTTGCAGTACACCAACGACAACGGCAACTTTTTTGAACACCAAGCAAACCTCCCCCC 158 TTTTGCAGTCAACACACGGAACAACTTTTTGAACTCCGACCAAGTTCTTT 157 TCGTGGCGGCACAACTTTTTTGAACTTCGCGACCAAGTTGGCCTTCCT 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGACCAATGGCCCCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGGTAAGTTGGCCCACG 159 TGGCCCAAAGCCCCAGACCATTTTA TAAAATGGTCTGGGGCCTACGACAAACTA 159 TGGCCCCAAAGCCCCAGACCATTTTA TAAAATGGTCTGGGGCTTTGGGCC 161 TTGGAGGCAACAGGGGCCAAAAACTA TATTGTCCGGAACAAAACACAGCGC 162 TACGGGAAGTAGTCCTCGGCACATTTTA TAAAATGGTCTGGGGCTTTCCGCCT 163 TGGCCCCAAGGCTTAAACGGCCAAAAACTA TATTGTCCGCAGAACAAAACACAGCGCG 164 TGCACCGAAGACATTTTACCGCGCTCTC TGACCAGACCA	5	140	TCCCTGCCTTGGCGTGTCGGCTTAT	TATAAGCCGACACGCCAAGGCAGGG
143 TTGCGTGGTTCATTGGAGCTGGCC TGGCCAGCTCCAATGAACCACCGCA 144 TGCATGGCCAACTAGTGACTCGCAA TTTGCGAGCTCCAATGAACCACCGCA 145 TAGGCCGTAAAGCGAATCTCACCTG TCAGGTGAGATTCGCTTTACGGCCT 146 TCGAATATTATGCCGAGAATCCACCTG TCAGGTGAGATTCGCTTTACGGCCT 147 TACAGACGAGCTCCCAACCAATGA TTCATGTGGTTGGGAGCTCTGCTGTAAAGACGAGCTCCCAACCAA		141	TACTCTGACACGCCAACTCCGGAAG	TCTTCCGGAGTTGGCGTGTCAGAGT
144 TGCATGGCCAACTAGTGACTCGCAA TTTGCGAGTCACTAGTTGGCCATGC 145 TAGGCCGTAAAGCGAATCTCACCTG TCAGGTGAGATTCGCTTTACGGCCT 146 TCGAATATTATGCCGAGAATCCGCG TCGCGGATTCTCGGCATAATATTCG 147 TACAGACGAGCTCCCAACCACATGA TCAGTGGTTGGGAGCTCGTCTT 148 TGGACGGTTTGTGCTGT TCAGTGGTTTGGGAGCACAACCACTCATGA 149 TAAAGGCTATTGAGTTGGTGTGT TCAGACAATCCAGCACAAACCGTCC 149 TAAAGGCTATTGAGTTGGTGGGCC TCGCCCAACCAACCAACCAACTCAATGCCTTT 151 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCCATC 152 TAATAACTCGCGCGGGTATGCTTCT TAGAAGCATACCCGCGCAGTTATT 153 TGGAGGAGGTTTGTCTCGGAAAGCA TTGCTTCCGAACAAACCTCCC 154 TCTTTTGGTATGGCACATGCTCCCG TCGGCAACAAACCTCCCC 155 TAGAAAGGCTCGAGCAAGCAAT TAGTTCCCGAGACAAAACCTTCCTC 156 TAATCTACCGCACTGGTCCGCAAGT TACTTCCGAGACAAACCTTCCTC 157 TCGTGGCGGCACACGGGAACT TAGTTCCCGTTGCTCGAGACTATCCAAAC 159 TGGCCCAAGCCCCAAGCTTTTTGAAACTGTGCCCACGGTAGATT 157 TCGTGGCGGCCCACAGTTTTTGAGG 158 TTTGCAGTTCAATCCAAACCACGT TACTTCCGGACCATGCCAAC 159 TGGCCCAAGCCCCCAGACCATTTAA TATGTCCCGTTGGTCGAGCCTTTCT 150 TGGCCCCAAGCCCCCAGACCATTTAACCACAACT TACGTGCGGACAAAACTGTGGCCC 151 TTGGCGCAACAGCCCCCAGACCATTTAACCAAACTGTGGGCCCCACG 158 TTTGCAGTTCATCCCAGACCATTTAA TATTGTCCGGAACAAAACTGTGGCCC 150 TCGCCTGTTTTGTCCGGACAAT TATTGTCCGGACAAAACTGCCCAA 159 TGGCCCCAAGGCCCCAGACCATTTAA TATTGTCCGGAACAAAACAGACGCC 161 TTGAGGCAACAGGGGGCAAAAACTA TATTGTCCGGAACAAAACAGACGCC 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGAACGACCAAGAACACGCCCCGAACAACACTACGCCCCTGTTTGCCCTCA 162 TAGCGGAAGAACGTTCCTCGGCTCGTC TGAACCACAGGAACACTTCCACGTC 163 TGCCCCAAGGCTTAGAGATAGGCC 164 TGCACGTGAAGTTTAACCCCGATTC TAAACACGACCAACGTTACCACGACCACT TACACCACTAAACTTCCGCTCCACACT 165 TAGCGGCAGAAAACCTTCCTTCTCGCGCTCTTCCGCCCACT 166 TTCGTCCGACCAACTACTACCCACT TAAACCCCCTTGGCCACAAAACTA 169 TTTTATTGTCCGAGCAAGACCACTTTTATTTTCCCGTCTCCACCAACTTTTCACGCGCCTTTTCCCCCACCAACTACACTTTCACGGCCCCACTACACTTTATTTTTTTT		142	TCTGACGGTTTTCATTCGGCGTGCC	TGGCACGCCGAATGAAAACCGTCAG
10 145 TAGGCCGTAAAGCGAATCTCACCTG TCAGGTGAGATTCGCTTTACGGCCT 146 TCGAATATTATGCCGAGAATCCGCG TCGCGGATTCTCGGCATAATATTCG 147 TACAGACGACCCCCAACCACATGA TTCATGTGTTGGGAGCTCGTCTGT 148 TGGACGGTTTGTGCTGGATTGTCTG TCAGACAATCCAGCACAACCGTGC 149 TAAAGGCTATTGAGTTGGTTGGGCG TCGCCCAACCAACCAATCCAAT		143	TTGCGGTGGTTCATTGGAGCTGGCC	TGGCCAGCTCCAATGAACCACCGCA
146 TCGAATATTATGCCGAGAATCCGCG TCGCGGATTCTCGGCATAATATTCG 147 TACAGACGAGCTCCCAACCACATGA TTCATGGGTTGGGAGCTCGTCTGT 148 TGGACGGTTTGTGCTGGATTGTCTG TCAGACAATCCAGCACAAACCGTCC 149 TAAAGGCTATTGAGTTGGTTGGCTGGCTTGTCGCCCAACCCAACCAA		144	TGCATGGCCAACTAGTGACTCGCAA	TTTGCGAGTCACTAGTTGGCCATGC
147 TACAGACGAGCTCCCAACCACATGA TTCATGTGGTTGGAGCTCGTCTGT 148 TGGACGGTTTGTGCTGGATTGTCTG TCAGACAATCCAGCACAAACCGTCC 149 TAAAGGCTATTGAGTTGGTTGGTGGCG TCGCCCAACCAACCAACCAACCGTCC 149 TAAAGGCTATTCGGAGATCGGGCC TCGCCCAACCAACCAACCAATAGCCTTT 150 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCTGCCTACTGGATC 151 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCCTCCTCGGATTC 152 TAATAACTCGCGGCGGTATGCTTCT TAGAAGCATACCCGCGGGAGTTATC 153 TGGAGGAGGTTTGCTCGGAAAGCA TTGCTTTCCGAGACAAACCTCCTCC 154 TCTTTGGTATGGCACATGCTGCCCG TCGGGCAGCAATACCACACAG 155 TAGAAAGGCTCGAGCAACGGGAACT TAGTTCCCGTTGCTCGAGCCTTTCT 156 TAATCTACCGCACTGGTCCGCAAGT TACTTCCGGACCAATACCAACAG 157 TCGTGGCGGCCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTACGAAAACCTGTGGCCCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATTGACACACA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGCGCTTCGACCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTGCCTCA 160 TCGCCTGTTTTGTCTCCGGACAAT TATTGTCCGGAGAAAAAAAACAAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TATTGTCCGGAGAAAAAAAACAAGGCG 162 TAGCGGAAAGTAGTCCTCGGCTCGTC TGACGAGCCCAGAGAACTACTCCGCT 163 TGGCCCCAAAGCTTAAACATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGACGAGCCCAAGGAACATTCCGCT 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGAAACTTTCCGCGT 166 TTCGTCGAGCAGAACGTTCCTTGACGG TCCGTCAAGGAACCATTCCGCCT 166 TTCGTTGGCCCAAGGGGTTAAACCTTCACGGCTTTTAACCGCGGTTAAACTTCACGTGC 167 TTCTTTTGCCGCGTAACTGACTGCTT TAAGCACTCAGTTACGCGGCAAAAAAAAAA	10	145	TAGGCCGTAAAGCGAATCTCACCTG	TCAGGTGAGATTCGCTTTACGGCCT
148 TGGACGGTTTGTGCTGGATTGTCTG TCAGACAATCCAGCACAAACCGTCC 149 TAAAAGCTATTGAGTTGGTTGGCG TCGCCCAACCAACTCAATAGCCTTT 150 TGATGGCCTATTCGGAGAGTCGGCC TCGCCCAACCAACTCAATAGCCTTT 151 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCTGCCTACTGGATC 152 TAATAACTCGCGCGGGGTATGCTTCT TAGAAGCATACCCGCGCGAGTTATT 153 TGGAGGAGGTTTGTCTCGGAAAGCA TTGCTTTCCGAAAACCTCCTCC 154 TCTTTGGTATGGCACATGCTGCCCG TCGGGCAGCATGTGCCATACCAAAG 155 TAGAAAGGCTCGAGCAACCGGAACT TAGTTCCCGTTGCCTGAGCCTTTCT 156 TAATCTACCGCACTGGTCCGCAAGT TACTTGCGGACCATTTCT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGTAGATT 157 TCGTGGCGCCCACAGTTTTTA TTAAAATGGTCTGGGCCGCACG 158 TTTGCAGTTCAATCCATACGCACGT TACTTGCGGACCATTGGACTACCAAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTGGACC 25 160 TCGCCTGTCTTTGTCCCGGACAAT TATTGCCGGAGACAAAACACAGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TATTGCCGGAGAAAACAAGACAGCG 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCCAGGGACAAAACACAGCGG 163 TGGCCCCAAGGCTTAGAGAAACTA TTAGTTTTTGCCCCCTGTTGCCTCA 164 TGCACGTGAAGTTTAACCGCGATTC TGACGAGCCGAGGACTACTTCCGCT 165 TAGCGGCAGAAACGTTCCTTGACG TCCACTATCTCTAAGCCTTGGGGCC 166 TCGCCGAAGACATTCACGCGCATTC TGAATCGCGGTTAAACTTCCACGTGC 166 TTCGTCGAGCAGACAATGCACG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCTTTTGCCGCGTAACCACACTTCTTAACCACTCGTCTCACGCATACACACAC		146	TCGAATATTATGCCGAGAATCCGCG	TCGCGGATTCTCGGCATAATATTCG
149 TAAAGGCTATTGAGTTGGTGGGCG TCGCCCAACTCAATAGCCTTT 150 TGATGGCCTATTCGGAGATCGGGCC TGGCCCGATCTCCGAATAGGCCATC 151 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCTGCCTACTGGATC 152 TAATAACTCGCGCGGGTATGCTTCT TAGAAGCATACCCGCGCGAGTTATT 153 TGGAGGAGGTTTGTCTCGGAAAGCA TTGCTTTCCGAGACAAACCTCCTCC 154 TCTTTGGTATGGCACATGCTGCCC TCGGGCAGCATGTGCCATACCAAAG 155 TAGAAAGGCTCGACAACGGGAACT TAGTTCCCGTTGCAGCCTTTCT 156 TAATCTACCGCACTGGTCCCAAGT TACTTCCGAGCCATGCGAGCATTCT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCAAAAACTGTGGCCGCACGG 158 TTTGCAGTTCAATCCATACGCACGT TACTTGCGGACCAGTGGCGACAGT 159 TGGCCCAAAGCCCCAGACCATTTAT 159 TGGCCCAAAGCCCCAGACCATTTTA 150 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGACAAAACACGCG 161 TTGAAGCAACAGGGGCCAAAAACTA TATTGTCCGGAGACAAAACAGGCG 162 TAGCGGAACAAGGGGCCAAAAACTA TATTGTCCGGAGACAAAAACAGGCG 163 TGGCCCCAAGGCTTAGAGAATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAACGAGCCGAGGACTACTTCCGCT 165 TAGCGGCAGAAACGTTCCTTGACGG TCCACTATCTCTAAGCCTTGGGGCC 166 TTCGTCGAGCAGACGATTCCTTGACGG TCCACTATCTCTAAGCCTTGGGGCC 166 TTCGTCGAGCAGAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGAACGATTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 167 TTCTTTTGCCGCGTAACTGACTGCTT TAAGCAGCAGCAGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TCCGTCAAGGAACCTTTCGCCGCT 169 TTGTTACTGTGGTTCACGGGATTC TGAACCACTAGTTACCGCGCAAAAAA 169 TTGTTACTGTGGTTCACGGAGTCC TGGACTGCCTTGGCAACCAACAAAAAAAAAGTTCACGGGCAAAAAAAA		147	TACAGACGAGCTCCCAACCACATGA	TTCATGTGGTTGGGAGCTCGTCTGT
150 TGATGGCCTATTCGGAGATCGGGCC TGGCCCGATCTCCGAATAGGCCATC 151 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCTGCCTACTGGATC 152 TAATAACTCGCGCGGGGTATGCTTCT TAGAAGCATACCCGCGCGAGTTATT 153 TGGAGGAGGTTTGTCTCGGAAAGCA TTGCTTTCCGAGACAAACCTCCTCC 154 TCTTTGGTATGGCACATGCTGCCCG TCGGGCAGCATGTGCCATACCAAAG 155 TAGAAAGGCTCGAGCAACGGGAACT TAGTTCCGGTGCAGCCATTCT 156 TAATCTACCGCACTGGTCCGCAGT TACTTGCGGACCAGTGCGCTTTCT 157 TCGTGGGGGGCCACAGGTTTTTGAGG TCCTCCAAAAACTGTGGCCGCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTAGATTGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTGGGCC 160 TCGCCTGTCTTGCTCCGGACAAT TATTGTCCGGAGCAAAGACACGCG 161 TTGAGGCAACAAGCACATTTTA TTAAAATGGTCTGGGGCCTCACA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCCAGGACAAAGACAAGCAGCG 163 TGGCCCCAAGGCTTAGAGAAAACTA TATTGTCCGGAGACAAAGACAGCGT 164 TGCACGTGAAGTTTAACCGCGATTC TGACGAGCCGAGGACATACTTCCGCT 165 TAGCGGAAGATTAACCGCATTC TGAATCGCGGTTAAACTTCACGTGC 166 TTCGTCGAGCAGAACGATTCCTTGACGG TCCACTATCTCTAAGCCTTGGGGCC 166 TTCGTCGAGCAGAACGATTCCACGG TCCGTCAAGGAACGATCTCACGTGC 166 TTCGTCGAGCAGAACGATTCCACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGAACGATTCCACG TCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGAACGATTCCACG TCCGTCAAGGAACGTTTCACCGGC 167 TTCTTTGCCCCGTAACCACG TCGTCCAAGGAACGTTTCACCGGC 168 TTTTATGTCCCAAGGGGTTAACCGA TCCGTCAAGGAACGTTTCACGCGCAAAGA 169 TTGTTACTGGTCACGGCAGCCC TCGTCAAGCAACCACAAGAACA 169 TTGTTACTGGTCACGGCAGTCC TGGACTCACCACAAGAACA 169 TTGTTACTGGGTCACGGAGCCCCAACT TAAAAAAGGTCTACCCGGCACAAAA 169 TTGTTACTGGGTCACCGAACCACTTTTATTG TCAATAAAAAGGTCTACCGGACCAAAACACACTTTTATTG TCAATAAAAAGGTCTACCGCGCAACAAACACTTTTATTG TCAATAAAAAGGTCTACCGCGCAACAAAACAA		148	TGGACGGTTTGTGCTGGATTGTCTG	TCAGACAATCCAGCACAAACCGTCC
151 TGATCCAGTAGGCAGCTTCATCCCA TTGGGATGAAGCTGCCTACTGGATC 152 TAATAACTCGCGCGGGTATGCTTCT TAGAAGCATACCCGCGCGAGTTATT 153 TGGAGGAGGTTTGTCTCGGAAAGCA TTGCTTTCCGAGACAAACCTCCTCC 154 TCTTTGGTATGGCACATGCTGCCCG TCGGGCAGCATGTGCCATACCAAAG 155 TAGAAAGGCTCGAGCAACGGGAACT TAGTTCCCGTTGCTCGAGCCTTTCT 156 TAATCTACCGCACTGGTCCGCAAGT TACTTGCGGACCAGTGCGGTAGATT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATTGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTGGGCC 160 TCGCCTGTTTTGTCTCCGGACAAT TATTGTCCGGAGCAAAAACTAGCACAG 161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTTGCCCCTTTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCCAGGACAAAACTACCCTTAGCCCTGGTCCTCA 164 TGCACGTGAAGATAGTGG TCCACTATCTCTAACCCTTGGGGCC 164 TGCACGTGAAGATTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 166 TCCGTCGAGCAGACGATTCTTGACGG TCCGTCAAGACACTTCCGCT 166 TCCGTCGAGCAGACGACATTCTTAACGCGGTTAAACTTCACGTGC 166 TTCCTCGAGCAGACGAGATTGCACG TCCGTCAAGGAACGTTCTCGCCCT 166 TTCCTCGAGCAGACGACATTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCCTTGAGCGCAGACGACTTCTTTAACCCCTTGGCGCC 167 TTCTTTTGCCGCGTAACTGACTTT TAAGCAGTCAGTTACCGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TCCGGTCAACACACAAGA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTACCCCTTTGCCACGA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTCCCTTGCCACGA 170 TCCCCCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGCCGCG 171 TACAAATGCGTGAGACCTTTTATTTG TCAATAAAAGGTCTAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TAGATTCACCGGGCCATTTGT 172 TCCCGCAGATTATAGACCCGAATGT TACATTCAGCGGCCTTAAATTCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACACTCACCGATGCACGAAGGA 174 TCCTTCCGTGCATCGGTGATCGGCGT TACACTCACCGATGCACGAAGG 175 TTGAACACGAGCAACACTCCAACCT TAACATCACCCGATGCACGAAGGG 176 TTGAACACCGAGCAACACTCCCAACCT TAACATCACCCGATGCACGAAGGG 177 TCAAAAAACGCCGCTGAATCGGCGT TACACTCACCCGATGCACGAAGG 177 TCAAAAAACGCCGCTGAATCGGCGT TACACTCACCGATGCACGAAGGG 177 TCAAAAAACGCCGCTGAATCGGCGT TACACTCACCGATGCACGAAGG		149	TAAAGGCTATTGAGTTGGTTGGGCG	TCGCCCAACCAACTCAATAGCCTTT
152 TAATAACTCGCGCGGGTATGCTTCT TAGAAGCATACCCGCGCGAGTTATT 153 TGGAGGAGGTTTGTCTCGGAAAGCA TTGCTTTCCGAGACAAACCTCCTCC 154 TCTTTGGTATGGCACATGCTGCCG TCGGGCAGCATGTGCCATACCAAAG 155 TAGAAAGGCTCGAGCAACGGGAACT TAGTTCCCGTTGCTCGAGCCTTTCT 156 TAATCTACCGCACTGGTCCGCAAGT TACTTGCGGACCAGTGCGGTAGATT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCCCACG 160 TCGCCTGTCTTTGCTCCGGACAAT TATTGTCCGGAGCAAAGCAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TATTGTCCGGAGCAAAGCAGGCG 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAACGTTCCTTGACGG TCCGTCAAGGAACGTTCTCGCGCT 166 TTCGTCGAGCAGAACGTTCCTTGACGG TCCGTCAAGGAACGTTCTTCGCCCT 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCACGTTCCGCCGACGA 168 TTTTATGTGCCAAGGGGTTAACCGA TCCGTCAAGGAACCGTTCTCGCCCT 169 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCACGTTCCGCCGCAAGAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGGGCGCG 171 TACAAATGCGTGAGACCTTTTATTG TCAATAAAAGGTCTCACGCAGTTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACACTCACCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATCGTGTT TAACATCACCCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTTACACCACGAAGGGAAG	15	150	TGATGGCCTATTCGGAGATCGGGCC	TGGCCGATCTCCGAATAGGCCATC
153 TGGAGGAGGTTTGTCTCGGAAAGCA TTGCTTTCCGAGACAAACCTCCTCC 154 TCTTTGGTATGGCACATGCTGCCG TCGGGCAGCATGTGCCATACCAAAG 155 TAGAAAGGCTCGAGCAACGGGAACT TAGTTCCCGTTGCTCGAGCCTTTCT 156 TAATCTACCGCACTGGTCCGCAAGT TACTTGCGGACCAGTGCGGTAGATT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATTGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTA TTAAAATGGTCTGGGGCTTTGGGCC 25 160 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGACAAAGACAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTTGGCCCCTGTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACAACAGACAGGCG 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGACTGCTTC TAAGCAGTCAGTTCCGCCT 167 TTCTTTGCCGCGTAACTGACTGCT TAAGCAGTCAGTTACCGCGCAAAGA 168 TTTTATTGTGCCAAGGGGTTAACCGA TCGTGCAATCTCGTCTGCACGA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TAACTCAGCGGTCATTTGT 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCAGCGGCGTTAATTTG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCACGCATTTTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCACCCGATGCACGAAGGG 175 TTGAACACGAGCAACACTCCAACGC TGCGCTTGGACCACGAGGGAGAGAGA 175 TTGAACACGAGCAACACTCCAACGC TGCGCTTGGACCAAGGGGTTCACGAAGGG 175 TTGAACACGAGCAACACCTCCAACGC TGCGCTTGGACCAAGGGGTTCACGAAGGGAGAACACTCCAACGC TGCGCTTGGACCAAGGGTTCACGAAGGGTTCACGAAGGGTTCACGAAGGGTTTCACGAAGGGTTAATTTGGACCCGATGCACGAAGGGTTCACGAAGGGTTCACGAAGGGTTCACGAAGGGTTCAACAACAGAGAGAG		151	TGATCCAGTAGGCAGCTTCATCCCA	TTGGGATGAAGCTGCCTACTGGATC
154 TCTTTGGTATGGCACATGCTGCCCG TCGGGCAGCATGTGCCATACCAAAG 155 TAGAAAGGCTCGAGCAACGGGAACT TAGTTCCCGTTGCTCGAGCCTTTCT 156 TAATCTACCGCACTGGTCCGCAAGT TACTTGCGGACCAGTGCGGTAGATT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATTGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTTGGGCC 25 160 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGCAAAGACAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTTGCCCCTGTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTCAAAGAACGTTTCTGCCGCT 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACCGCGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTTGGCACAAAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGAAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTTGGGAGCTCTCACGCATTTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACAATCAGCGGCGTTATATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGGTTATAATCTGCGCG 174 TCCTTCGTGCATCGGTGATGATGTT TAACCATCACCGATGCACGAAGG 40 175 TTGAACACCGAGCAACACTCCAACGC TGCGTTGGAGTGTTCCCGTGTTCA		152	TAATAACTCGCGCGGGTATGCTTCT	TAGAAGCATACCCGCGCGAGTTATT
155 TAGAAAGGCTCGAGCAACGGGAACT TAGTTCCCGTTGCTCGAGCCTTTCT 156 TAATCTACCGCACTGGTCCGCAAGT TACTTGCGGACCAGTGCGGTAGATT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATTGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTTGGGCC 25 160 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGCAAAGACAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTTGCCCCCTGTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACAACAGACGCG 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGAGTTGCACG TCGTCAAGGAACGTTTCTGCCGCT 167 TTCTTTGCCGCGGTAACTGACTGCTT TAAGCAGTCAGTTACCGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTTGGCACAAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACACAAAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACACAACAA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGGTTATAACTTGCGCGC 174 TCCTTCGTGCATCGGTGATGATGT TACAATCACCGATGCACGAAGG 40 175 TTGAACACCGAGCAACACTCCAACGC TGCGTTGGAGTTTCCTCGTTTCAC		153	TGGAGGAGGTTTGTCTCGGAAAGCA	TTGCTTTCCGAGACAAACCTCCTCC
156 TAATCTACCGCACTGGTCCGCAAGT TACTTGCGGACCAGTGCGGTAGATT 157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATTGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTTGGCCC 160 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGACAAGACA		154	TCTTTGGTATGGCACATGCTGCCCG	TCGGGCAGCATGTGCCATACCAAAG
157 TCGTGGCGGCCACAGTTTTTGGAGG TCCTCCAAAAACTGTGGCCGCCACG 158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGATTGACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTA TTAAAATGGTCTGGGGCTTTGGGCC 160 TCGCCTGTCTTTGCTCCCGGACAAT TATTGTCCGGAGACAAAGACAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TATTGTCCGGAGACAAAGACAGGCG 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTGCAATCTCGTCTGCACGA 167 TTCTTTGCCGCGTAACTGCTT TAAGCAGTCAGTTACCGCGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTCAACCACTTACAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGCGT TACGTCGAGTGCACCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCACCGATGTTCACCGATGTTCACCGATGCACCAAAGGG 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTGCTCGTGTTCACCGATGTTCACCGATGTTTCACCGATGCACCAAAGGG 175 TTGAACACCGAGCAACACTCCCAACGC TGCGTTGGAGTGTTTGCTCGTTTTCACCGATGCACCAAAGGG 175 TTGAACACCGAGCAACACTCCCAACGC TGCGTTGGAGTGTTTCACCGATGTTCACCGATGTTCACCGATGTTCACCGATGTTTCACCGATGCACCAAAGGG 175 TTGAACACCGAGCAACACTCCCAACGC TGCGTTGGAGTGTTTGCTCGTTTTCACCGATGCACCAAAGGGAGAACACTTCCAACGC TGCGTTGGAGTGTTTGCTCGTTTTCACCGATGCACCAAAGGAACACTTCCAACGC TGCGTTGGAGTGTTTGCTCGTGTTTCACGGTTTTTCACCGATGACACACAC	20	155	TAGAAAGGCTCGAGCAACGGGAACT	TAGTTCCCGTTGCTCGAGCCTTTCT
158 TTTGCAGTTCAATCCATACGCACGT TACGTGCGTATGGATTGAACTGCAA 159 TGGCCCAAAGCCCCAGACCATTTTA TTAAAATGGTCTGGGGCTTTTGGCCC 160 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGACAAAGACAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTTGGCCCCTGTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTCAAGGAACGTTTCTGCCGCT 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACCGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACAATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACACTCACCGATTCAGCGAGGGCGCG 174 TCCTTCGTGCATCGGTGATGATGT TAACATCACCCGATGCACCACAGAGA 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTGCTCGTGTTCA		156	TAATCTACCGCACTGGTCCGCAAGT	TACTTGCGGACCAGTGCGGTAGATT
159 TGGCCCAAAGCCCCAGACCATTITA TTAAAATGGTCTGGGGCTTTGGGCC 160 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGACAAAGACAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTTGCCCCCTGTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCCGTCAAGGAACGTTTCTGCCGCT 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCAGCGGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATCGGCGT TACACTCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCCTCGTGTTCA		157	TCGTGGCGGCCACAGTTTTTGGAGG	TCCTCCAAAAACTGTGGCCGCCACG
160 TCGCCTGTCTTTGTCTCCGGACAAT TATTGTCCGGAGACAAAGACAGGCG 161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTGGCCCCTGTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTGCAATCTCGTCTGCTCGACGA 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACACCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCACCCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCCTCGTGTTCA		158	TTTGCAGTTCAATCCATACGCACGT	TACGTGCGTATGGATTGAACTGCAA
161 TTGAGGCAACAGGGGCCAAAAACTA TTAGTTTTTGGCCCCTGTTGCCTCA 162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTCAAGGAACGTTTCTGCCGCT 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCCTCGTGTTCA	•	159	TGGCCCAAAGCCCCAGACCATTTTA	TTAAAATGGTCTGGGGCTTTGGGCC
162 TAGCGGAAGTAGTCCTCGGCTCGTC TGACGAGCCGAGGACTACTTCCGCT 163 TGGCCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTGCAATCTCGTCTGCTCGACGA 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGT TAACATCACCCGATGCACGAAGG 40 175 TTGAACACCGAGCAACACTCCAACGC TGCGTTGGAGTGTTCCA	25	160	TCGCCTGTCTTTGTCTCCGGACAAT	TATTGTCCGGAGACAAGACAGGCG
163 TGGCCCAAGGCTTAGAGATAGTGG TCCACTATCTCTAAGCCTTGGGGCC 164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTGCAATCTCGTCTGCTCGACGA 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATCTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCAC		161	TTGAGGCAACAGGGGCCAAAAACTA	TTAGTTTTTGGCCCCTGTTGCCTCA
164 TGCACGTGAAGTTTAACCGCGATTC TGAATCGCGGTTAAACTTCACGTGC 165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTGCAATCTCGTCTGCTCGACGA 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCAC		162	TAGCGGAAGTAGTCCTCGGCTCGTC	TGACGAGCCGAGGACTACTTCCGCT
165 TAGCGGCAGAAACGTTCCTTGACGG TCCGTCAAGGAACGTTTCTGCCGCT 166 TTCGTCGAGCAGACGAGATTGCACG TCGTGCAATCTCGTCTGCTCGACGA 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGTTCAC		163	TGGCCCCAAGGCTTAGAGATAGTGG	TCCACTATCTCTAAGCCTTGGGGCC
166 TTCGTCGAGCAGACGAGATTGCACG TCGTGCAATCTCGTCTGCTCGACGA 167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGAGGGCGCG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCAC		164	TGCACGTGAAGTTTAACCGCGATTC	TGAATCGCGGTTAAACTTCACGTGC
167 TTCTTTGCCGCGTAACTGACTGCTT TAAGCAGTCAGTTACGCGGCAAAGA 168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 35 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCA	30	165	TAGCGGCAGAAACGTTCCTTGACGG	TCCGTCAAGGAACGTTTCTGCCGCT
168 TTTTATGTGCCAAGGGGTTAACCGA TTCGGTTAACCCCTTGGCACATAAA 169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCA		166	TTCGTCGAGCAGACGAGATTGCACG	TCGTGCAATCTCGTCTGCTCGACGA
169 TTGTTACTGTGGTTCACGGCAGTCC TGGACTGCCGTGAACCACAGTAACA 170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCA		167	TTCTTTGCCGCGTAACTGACTGCTT	TAAGCAGTCAGTTACGCGGCAAAGA
170 TCGCGCCTCGCTAGACCTTTTATTG TCAATAAAAGGTCTAGCGAGGCGCG 171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCA		168	TTTTATGTGCCAAGGGGTTAACCGA	TTCGGTTAACCCCTTGGCACATAAA
171 TACAAATGCGTGAGAGCTCCCAACT TAGTTGGGAGCTCTCACGCATTTGT 172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCA		169	TTGTTACTGTGGTTCACGGCAGTCC	TGGACTGCCGTGAACCACAGTAACA
172 TCGCGCAGATTATAGACCCGAATGT TACATTCGGGTCTATAATCTGCGCG 173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTCA	3 5 .	170	TCGCGCCTCGCTAGACCTTTTATTG	TCAATAAAAGGTCTAGCGAGGCGCG
173 TCAAATAACGCCGCTGAATCGGCGT TACGCCGATTCAGCGGCGTTATTTG 174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTGCTCGTGTTCA		171	TACAAATGCGTGAGAGCTCCCAACT	TAGTTGGGAGCTCTCACGCATTTGT
174 TCCTTCGTGCATCGGTGATGATGTT TAACATCATCACCGATGCACGAAGG 40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTGCTCGTGTTCA		172	TCGCGCAGATTATAGACCCGAATGT	TACATTCGGGTCTATAATCTGCGCG
40 175 TTGAACACGAGCAACACTCCAACGC TGCGTTGGAGTGTTGCTCGTGTTCA		173	TCAAATAACGCCGCTGAATCGGCGT	
		174	TCCTTCGTGCATCGGTGATGATGTT	TAACATCATCACCGATGCACGAAGG
176 TCAGCAGATCCTTCGTAGCGGTCGT TACGACCGCTACGAAGGATCTGCTG	40	175	TTGAACACGAGCAACACTCCAACGC	
		176	TCAGCAGATCCTTCGTAGCGGTCGT	TACGACCGCTACGAAGGATCTGCTG

	177		TGGAACCTGGTGAGTTGTGCCTCAT	TATGAGGCACAACTCACCAGGTTCC
	178		TTCATAAGCGACAATCGCGGGCTTA	TTAAGCCCGCGATTGTCGCTTATGA
	179		TCCCAACGTCACTGAAGCTCACAGT	TACTGTGAGCTTCAGTGACGTTGGG
	180		TTGTCAGAGCCCGCGACTCAGACGG	TCCGTCTGAGTCGCGGGCTCTGACA
5	181		TTACACGAAGCCTCTCCGTGGTCCA	TTGGACCACGGAGAGGCTTCGTGTA
	182		TCTCAGAAGTCCTCGGCGAACTGGG	TCCCAGTTCGCCGAGGACTTCTGAG
ĺ	183		TATCCTTTTATCTACTCCGCGGCGA	TTCGCCGCGGAGTAGATAAAAGGAT
	184		TAGGCGTGCAGCAACAGGATAAACC	TGGTTTATCCTGTTGCTGCACGCCT
	185		TACTCTCGAGGGAGTCTCTGGCACA	TTGTGCCAGAGACTCCCTCGAGAGT
10	186		TTTGCCAGGTCCATCGAGACCTGTT	TAACAGGTCTCGATGGACCTGGCAA
	187		TTCCACTATAACTGCGGGTCCGTGT	TACACGGACCCGCAGTTATAGTGGA
	188		TGCCCAGTCGGCTCTAACAAGTTCG	TCGAACTTGTTAGAGCCGACTGGGC
	189		TCGGAACGGATAATCGGCGTCAGGT	TACCTGACGCCGATTATCCGTTCCG
	190		TTAAAATAAGCGCCTGGCGGGAGGA	TTCCTCCCGCCAGGCGCTTATTTA
15	191		TGCGCACTCGTGAAACCTTTCTCGC	TGCGAGAAAGGTTTCACGAGTGCGC
	192		TAGTTTGCCAGGTACTGGCAAGTGC	TGCACTTGCCAGTACCTGGCAAACT
,	193		TACAACGAGGGATGTCCAGCGGCAT	TATGCCGCTGGACATCCCTCGTTGT
	194		TTTCGCAGCACCCGCTAGGTACAGT	TACTGTACCTAGCGGGTGCTGCGAA
	195		TTAACCCGATTTTTGCGACTCTGCC	TGGCAGAGTCGCAAAAATCGGGTTA
20	196		TCGTCGCATTGCAAGCGTAGGCTTG	TCAAGCCTACGCTTGCAATGCGACG
	197		TGAGCTGACGTCACCATCAGAGGAA	TTTCCTCTGATGGTGACGTCAGCTC
	198		TGGAGGCTGGGGGTCGCGCTTAAGT	TACTTAAGCGCGACCCCAGCCTCC
	199		TTTGTGGGAACCGCACTAGCTGGCT	TAGCCAGCTAGTGCGGTTCCCACAA
	200		TCCCTCGCACTGTGTTCACCCTCTT	TAAGAGGGTGAACACAGTGCGAGGG
25	201		TTCATTGACTCGAATCCGCACAACG	TCGTTGTGCGGATTCGAGTCAATGA
	202		TACAGGGGTTGGCCTTCGTACGTAC	TGTACGTACGAAGGCCAACCCCTGT
•	203		TAGGCCGTGCAACATCACACAGGAT	TATCCTGTGTGATGTTGCACGGCCT
	204		TGGGCCGTGGTCACGTAATATTGGC	TGCCAATATTACGTGACCACGGCCC
	205		TGCGCGGACATGAAACGACAAGGCC	TGGCCTTGTCGTTTCATGTCCGCGC
30	206		TCTTATTGGGTGCCGGTGTCGGATT	TAATCCGACACCGGCACCCAATAAG
	207		TGGGCGGTTACCAAAAAATCCGAT	TATCGGATTTTTTGGTAACCGCCCC
		4	TCCGTCGCATACCGGCTACGATCAA	TTTGATCGTAGCCGGTATGCGACGG
		5	TATGGCCGTGCTGGGGACAAGTCAA	TTTGACTTGTCCCCAGCACGGCCAT
	210		TACGAAAAAGTGTGCGGATCCCCT	TAGGGGATCCGCACACTTTTTTCGT
35	211		TCCAAGTACACCGCACGCATGTTTA	TTAAACATGCGTGCGGTGTACTTGG
	. 212		TATCGTGCGTGGAGTGTCGCATCTA	TTAGATGCGACACTCCACGCACGAT
	213		TTCCAGATACCGCCCGAACTTTGA	TTCAAAGTTCGGGGCGGTATCTGGA
	214		TTCTGCTGGCAGCACGTGAAGTGGC	TGCCACTTCACGTGCTGCCAGCAGA
	215		TTTGAAATTGCTCTGCCGTCAGTCA	TTGACTGACGGCAGGCAATTTCAA
40	216		TAGTCAGGCGAGATGTTCAGGCAGC	TGCTGCCTGAACATCTCGCCTGACT
	217		TACAAGCCGACGTTAAGCCCGCCCA	TTGGGCGGGCTTAACGTCGGCTTGT

		T	
	218	TCCCTAATGAGGCCAGTAACCTGCA	TTGCAGGTTACTGGCCTCATTAGGG
	219	TGTGAGACACACATCCCCTCCAATG	TCATTGGAGGGGATGTGTGTCTCAC
	220	TCGACGGATGCAGAGTTCAGTGGTC	TGACCACTGAACTCTGCATCCGTCG
	221	TCCCGCATGCCTGGCGGTATTACAA	TTTGTAATACCGCCAGGCATGCGGG
5	222	TTTAGCAAAGCGGCGCCGTTAGCAA	TTTGCTAACGGCGCCGCTTTGCTAA
	223	TCCCGACACGGGTCAGCGTAATAAT	TATTATTACGCTGACCCGTGTCGGG
	224	TGCGACGGCCCTGAGGTATGTCGTC	TGACGACATACCTCAGGGCCGTCGC
	225	TCAAAAGTGTGTTCCCTTGCGCTTG	TCAAGCGCAAGGGAACACACTTTTG
	226	TTCTCGAAGCACAGCCCGGTTATTG .	TCAATAACCGGGCTGTGCTTCGAGA
10	227	TATGCTAACCGTTGGCCATGGAACT	TAGTTCCATGGCCAACGGTTAGCAT
	228	TCTTGCGGAGTGTTAGCCCAGCGGT	TACCGCTGGGCTAACACTCCGCAAG
	229	TTGCTCCCTAGGCGCTCGGAGGAGT	TACTCCTCCGAGCGCCTAGGGAGCA
	230	TCCAATGCCTTTGAGTAAGCGATGG	TCCATCGCTTACTCAAAGGCATTGG
	231	TAGCAGATAACGTCCCAATGACGCC	TGGCGTCATTGGGACGTTATCTGCT
15	232	TTTGACCATTACGTGTTGCGCCCAT	TATGGGCGCAACACGTAATGGTCAA
	233	TTCGCGTATTTGCGGAATTCGTCTG	TCAGACGAATTCCGCAAATACGCGA
	234	TCTGCGTGTCAACAATGTCCCGCAG	TCTGCGGGACATTGTTGACACGCAG
	235	TTCTGGTGCCACGCAAGGTCCACAG	TCTGTGGACCTTGCGTGGCACCAGA
	236	TCTCCGGGAGGTCACTTAATTGCGG	TCCGCAATTAAGTGACCTCCCGGAG
20	237	TTTTCGTGATTGCCCGGAGGAGGC	TGCCTCCTCCGGGCAATCACGAAAA
	238	TTCGGGATGTAGCTGGGGCTACCGG	TCCGGTAGCCCCAGCTACATCCCGA
	239	TCGAGCCAACGCAAACACGTCCTTG	TCAAGGACGTGTTTGCGTTGGCTCG
	240	TGCAAAGCCTTTGTGGGGCGGTAGT	TACTACCGCCCCACAAAGGCTTTGC
	241	TATTCGACCGGAAATGAGGTCTTCG	TCGAAGACCTCATTTCCGGTCGAAT
25	242	TTTCGCTTGCTGAGTTGCTCTGTTC	TGAACAGAGCAACTCAGCAAGCGAA
•	243	TCGCGTGAAGACCCCATTCCCGAGT	TACTCGGGAATGGGGTCTTCACGCG
	. 244	TAACCGTATTCGCGGTCACTTGTGG	TCCACAAGTGACCGCGAATACGGTT
	245	TGGGGCCAACCGTTTCGAGGCGTAT	TATACGCCTCGAAACGGTTGGCCCC
	246	TTTCGGCTGGCAGTCCAAACGGCTT	TAAGCCGTTTGGACTGCCAGCCGAA
30	247	TGGGTGTGGTTAGAATGCACGGTTC	TGAACCGTGCATTCTAACCACACCC
	248	TGCGAGGACCGAACTAGACAAACGG	TCCGTTTGTCTAGTTCGGTCCTCGC
	249	TACGCACGCGTGACCGAAGTTGCTG	TCAGCAACTTCGGTCACGCGTGCGT
	250	TTAAAAGGTCGCTTTGAAAGGGGGA	TTCCCCCTTTCAAAGCGACCTTTTA
	251	TTGCGATCGCTAACTGCTGGGACAA	TTTGTCCCAGCAGTTAGCGATCGCA
35	252	TGGAGGTATAAGCGGAGCGGCCTCA	TTGAGGCCGCTCCGCTTATACCTCC
	253	TATGCTGACATGTCGTGCACCTCGT	TACGAGGTGCACGACATGTCAGCAT
	254	TTGTGGTTAAAGCGTCCGTTCAACG	TCGTTGAACGGACGCTTTAACCACA
	255	TCGTTCACACCGGCGTAAGCTGCGT	TACGCAGCTTACGCCGGTGTGAACG
	256	TCCTATCCCGGCGAGAACTTCTGTG	TCACAGAAGTTCTCGCCGGGATAGG
40	257	TGTCTGCACTCACGCAGCGAGGGA	TTCCCTCCGCTGCGTGAGTGCAGAC
	258	TGCACGAGTTGGTGCTCGGCAGATT	TAATCTGCCGAGCACCAACTCGTGC

	259	TAACGTCGCACGACACGCTTCGTC	TGACGAACGTGTGTGCGACGTT
	260	TATGCGCGCTTATCCTAGCATGGTC	TGACCATGCTAGGATAAGCGCGCAT
	261	TTCACGTTTTCGTCTCGACATGAGG	TCCTCATGTCGAGACGAAAACGTGA
	262	TTGTGCCTCATCCTTAGGATACGGC	TGCCGTATCCTAAGGATGAGGCACA
5	263	TAGGTGGTGTGGGTCAACCGCTTTA	TTAAAGCGGTTGACCCACACCACCT
	264	TCTGGATCGAAGGGACTGCAAGCTC	TGAGCTTGCAGTCCCTTCGATCCAG
	265	TTAGATCAACTCGCGTACGCATGGA	TTCCATGCGTACGCGAGTTGATCTA
	266	TGATCCTGCGGAGAAGAGAGTGCAG	TCTGCACTCTCTTCTCCGCAGGATC
	267	TTACGTGTGGAGATGCCCCGAACCG	TCGGTTCGGGGCATCTCCACACGTA
10	268	TGCGCTATGTCAATCGTGGGCGTAG	TCTACGCCCACGATTGACATAGCGC
	269	TAGCGAGGTTTCTAGCGTCGACACC	TGGTGTCGACGCTAGAAACCTCGCT
	270	TACCCAGGTTTTGCCGTTGTGGAAT	TATTCCACAACGGCAAAACCTGGGT
	271	TCCCTGTTAACGGCTGCGTAGTCTC	TGAGACTACGCAGCCGTTAACAGGG
	272	TAGGCCGATTTCACCCGCCAATTGC	TGCAATTGGCGGGTGAAATCGGCCT
15	273	TGAGCCCTCACTCCTTGCCCTTTGA	TTCAAAGGCAAGGAGTGAGGCTC
	274	TGGGTGGACATCCGCCTCGCAGTCA	TTGACTGCGAGGCGGATGTCCACCC
	275	TGATGGCTGAGAACCGTGCTACGAT	TATCGTAGCACGGTTCTCAGCCATC
	276	TTCGACGTTAGGAGTGCTGCCAGAA	TTTCTGGCAGCACTCCTAACGTCGA
	277	TCGAATGGGTCTGGACCTTGCATAG	TCTATGCAAGGTCCAGACCCATTCG
20	278	TGTGCACCAGACATTCGAACTCGGA	TTCCGAGTTCGAATGTCTGGTGCAC
	279	TAGAGGCCCCGTATATCCCATCCAT	TATGGATGGGATATACGGGGCCTCT
	280	TAACGCCTGTTCAGAGCATCAGCGG	TCCGCTGATGCTCTGAACAGGCGTT
	281	TAAGGCTCAACACGCCTATGTGCGC	TGCGCACATAGGCGTGTTGAGCCTT
	282	TAGTCCGTGTTGCCAGATTGGCTCG	TCGAGCCAATCTGGCAACACGGACT
25	283	TATGTCCCATGTAAAGACGCGTGTG	TCACACGCGTCTTTACATGGGACAT
	284	TATGGAGTCTGCTCACGCCCAAAGG	TCCTTTGGGCGTGAGCAGACTCCAT
	285	TCGGCCTCCAACAAGGAGCACTAAC	TGTTAGTGCTCCTTGTTGGAGGCCG
	286	TCAGAGCCGTGGCAACATTGCGAGC	TGCTCGCAATGTTGCCACGGCTCTG
	287	TTCATTTGAATGAGGTGCGCACCGG	TCCGGTGCGCACCTCATTCAAATGA
30	288	TGACGTACCGGAAGCGCCGTATAAA	TTTTATACGGCGCTTCCGGTACGTC
	289	TATGCGAGCAATGGGATCCGGATTC	TGAATCCGGATCCCATTGCTCGCAT
	290	TAGAGTGAGGCCTCCCTGACCAGTG	TCACTGGTCAGGGAGGCCTCACTCT
	291	TCGCACCGTAAGTAGATTTGCCCGC	TGCGGCAAATCTACTTACGGTGCG
	292	TTGAACCTTTGAGCACGTCGTGCGC	TGCGCACGACGTGCTCAAAGGTTCA
35 .	293	TTCCGCCTTTTTGGTTACCTCGAAG	TCTTCGAGGTAACCAAAAAGGCGGA
	294	TGAACGCCAACGGCACTAACACATC	TGATGTGTTAGTGCCGTTGGCGTTC
	295	TCCGACAGCAGCCAAGACGTCCCAG	TCTGGGACGTCTTGGCTGCTGTCGG
	296	TCATAAAAAACCTGGGGCTCTGCG	TCGCAGAGCCCCAGGTTTTTTATG
	297	TTGCCAACTGTGCAGACCGGACTTA	TTAAGTCCGGTCTGCACAGTTGGCA
40	298	TGGCGAAAGAGCGAAACCGGCTCGT	TACGAGCCGGTTTCGCTCTTTCGCC
	299	TGGGATGCGTATTTTAGCGAACACG	TCGTGTTCGCTAAAATACGCATCCC
`			

{	300	TTGGGATTCAGCGACCAGTACGCGA	TTCGCGTACTGGTCGCTGAATCCCA
	301	TCCCGATATTCGCCCGGCCTATTCG	TCGAATAGGCCGGGCGAATATCGGG
	302	TCGAGAAGATGCCTCACGCAACCAA	TTTGGTTGCGTGAGGCATCTTCTCG
Ì	303	TAACCTTGACCCGTGGATGACGCTA	TTAGCGTCATCCACGGGTCAAGGTT
5	6	TTTGCAACGGGCTGGTCAACGTCAA	TTTGACGTTGACCAGCCCGTTGCAA
	7	TCGCATAGGTTGCCGATTTCGTCAA	TTTGACGAAATCGGCAACCTATGCG
	306	TGCTTCCGGATGAACGGGATGGTTG	TCAACCATCCCGTTCATCCGGAAGC
	307	TCCCTCCATGTTCTTCGAACGGTTT	TAAACCGTTCGAAGAACATGGAGGG
	308	TTTGATGGGCGGCAATGCTCTTGCT	TAGCAAGAGCATTGCCGCCCATCAA
10	309	TATTGTGAGATGCGCCAAATTCCCC	TGGGGAATTTGGCGCATCTCACAAT
	310	TTCAGCACAGCCAGACGGTCAACTT	TAAGTTGACCGTCTGGCTGTGCTGA
	311	TACTCCACTCCTCGGTGGCAAACTA	TTAGTTTGCCACCGAGGAGTGGAGT
	312	TTCTGGGCATGCCTGGACGGAGACG	TCGTCTCCGTCCAGGCATGCCCAGA
	313	TTCTCAACTCCGGTACGACGAAACA	TTGTTTCGTCGTACCGGAGTTGAGA
15	314	TTTGCGTGGTCAAAGGCGCAACGTG	TCACGTTGCGCCTTTGACCACGCAA
	315	TAGACAGCGATCCGCGGCTCATGAT	TATCATGAGCCGCGGATCGCTGTCT
	316	TCGCGTCTCTAACTGAGAGCAGCCA	TTGGCTGCTCTCAGTTAGAGACGCG
	317	TAGGCGCACATGTACGGACATTCAG	TCTGAATGTCCGTACATGTGCGCCT
	318	TGATGAGTGGCACGTCGGTGTGTAA	TTTACACACCGACGTGCCACTCATC
20	319	TTGATCCATATTGTCGGACGTTGCG	TCGCAACGTCCGACAATATGGATCA
	320	TACCTGCCGGGAGTTCATAGGCTAG	TCTAGCCTATGAACTCCCGGCAGGT
	321	TAGCATTGGCGTTTTTCCGCAACGA	TTCGTTGCGGAAAAACGCCAATGCT
	322	TGGTAATATTCAGCGCGACCGCTCA	TTGAGCGGTCGCGCTGAATATTACC
	323	TATAGCGTACGACGAGGTGACGCGC	TGCGCGTCACCTCGTCGTACGCTAT
25	324	TTAGGTCACGATGCGTTTGACGCTA	TTAGCGTCAAACGCATCGTGACCTA
	325	TACTGCCCGTACCTCTGGTTCTGGC	TGCCAGAACCAGAGGTACGGGCAGT
	326	TCCTTTGGCCTGAAGTTGTCGTAGC	TGCTACGACAACTTCAGGCCAAAGG
	327	TGTGCCCCACGAGCGTATCGTTGTA	TTACAACGATACGCTCGTGGGGCAC
	328	TAGGCGCTACGTGGGCCTGGAGCAA	TTTGCTCCAGGCCCACGTAGCGCCT
30	329	TGGGTGCTACCATTGCATTAGTCCG	TCGGACTAATGCAATGGTAGCACCC
	330	TACCACGCGCGTACGTGTAACCGAG	TCTCGGTTACACGTACGCGCGTGGT
	331	TCCATGATGCATTGGGTGCATTTAG	TCTAAATGCACCCAATGCATCATGG
	332	TGGTCCGGCCCTACGAAACGTTCGA	TTCGAACGTTTCGTAGGGCCGGACC
	333	TCCGTGTGGCTGGAGATTCGTGTGA	TTCACACGAATCTCCAGCCACACGG
35	334	TGTTAGGGCGACGCATATTGGCACA	TTGTGCCAATATGCGTCGCCCTAAC
	335	TGGGTCAGTCAGGTGCGTTAGGATC	TGATCCTAACGCACCTGACTGACCC
	336	TGCCGTGAAGTCGAATGCAGATCGA	TTCGATCTGCATTCGACTTCACGGC
	337	TGCCACCACCAGTGCATTCAGGTA	TTACCTGAATGCACTGGGTGGTGGC
	338	TGAGCTTAGTTTGCGGTCATCGGGC	TGCCCGATGACCGCAAACTAAGCTC
40	339	TTGTTTGCCGCCATTAGGGAGTAAC	TGTTACTCCCTAATGGCGGCAAACA
	340	TGCTCCGCTGGATGTGCCGGTTTAG	TCTAAACCGGCACATCCAGCGGAGC

	341	TCGGTAGCATGCGAGATCCCTGTTA	TTAACAGGGATCTCGCATGCTACCG
	342	TCTACGCTCTACCAGTTGCCTGCGA	TTCGCAGGCAACTGGTAGAGCGTAG
	343	TGTGCCTCCTGCTGTATTTGCCAAG	TCTTGGCAAATACAGCAGGAGGCAC
	344	TTTGCGACTCGACTTGGACGAGTAG	TCTACTCGTCCAAGTCGAGTCGCAA
5	345	TTCTGGGAGCTGTTTACTCCAGCCA	TTGGCTGGAGTAAACAGCTCCCAGA
	346	TTGCACGCGGAACTCCCTTTACCAT	TATGGTAAAGGGAGTTCCGCGTGCA
	347	TTGGCAGCAAATGAATCGAAAGCAC	TGTGCTTTCGATTCATTTGCTGCCA
	348	TAACTGGTGACGCGGTACAGCGAAG	TCTTCGCTGTACCGCGTCACCAGTT
	349	TAGACGATTACGCTGGACGCCGTCG	TCGACGCGTCCAGCGTAATCGTCT
10	350	TATGCCCTCCTTCATGGAAAGGGTT	TAACCCTTTCCATGAAGGAGGGCAT
	351	TATTCTCGGAGCGTATGCGCCAGAA	TTTCTGGCGCATACGCTCCGAGAAT
	352	TATAGCGGAGTTTGGGTACGCGAAC	TGTTCGCGTACCCAAACTCCGCTAT
	353	TACCTACGCATACCGCTTGGCGAGG	TCCTCGCCAAGCGGTATGCGTAGGT
	354	TGATTACCTGAATGGCCAAGCGAGC	TGCTCGCTTGGCCATTCAGGTAATC
15	355	TCCTGTTAGCATCACGGCGCTTAGG	TCCTAAGCGCCGTGATGCTAACAGG
	356	TCGGAATGATGCGCTCGACAACGCT	TAGCGTTGTCGAGCGCATCATTCCG
	357	TTGAGAGAGGCGTTGGTTAAGGCAA	TTTGCCTTAACCAACGCCTCTCTCA
	358	TAAGCAGGCGAAGGGATACTCCTCG	TCGAGGAGTATCCCTTCGCCTGCTT
	359	TTCACGACAGACGGGCCGAGATTAC	TGTAATCTCGGCCCGTCTGTCGTGA
20	360	TAAGCAATTTGGCCTCGTTTTGTGA	TTCACAAAACGAGGCCAAATTGCTT
	361	TGCTGGTTGCGGTAGGATCGCATAT	TATATGCGATCCTACCGCAACCAGC
	362	TTTGTGAATCCGTTCTGTCCCCGAC	TGTCGGGGACAGAACGGATTCACAA
	363	TTGGGCTCCTCTGAGGCGAGATGGC	TGCCATCTCGCCTCAGAGGAGCCCA
	364	TGGATAGAGTGAATCGACCGGCAAC	TGTTGCCGGTCGATTCACTCTATCC
25	365	TTGCACCGAACGTGCACGAGTAATT	TAATTACTCGTGCACGTTCGGTGCA
	366	TGCCAGTATTCTCGGGTGTTGGACG	TCGTCCAACACCCGAGAATACTGGC
	367	TTCGCTACCTAAGACCGGGCCATAC	TGTATGGCCCGGTCTTAGGTAGCGA
	368	TTGGCATTGACGAGCAGCAGTCAGT	TACTGACTGCTGCTCAATGCCA
٠	369 ·	TCGCGTCCCAGCGCCCTTGGAGTAT	TATACTCCAAGGGCGCTGGGACGCG
30	370	TATGAAGCCTACCGGGCGACTTCGT	TACGAAGTCGCCCGGTAGGCTTCAT
	371	TCCAGACAGATGGCCTGGAACCATG	TCATGGTTCCAGGCCATCTGTCTGG
	372	TTGGCGTGGGACCATCTCAAAGCTA	TTAGCTTTGAGATGGTCCCACGCCA
	373	TCCGCATGGGAACACGTGTCAAGGT	TACCTTGACACGTGTTCCCATGCGG
	374	TGCCCACTCGTCAGCTGGACGTAAT	TATTACGTCCAGCTGACGAGTGGGC
35	375	TATTACGGTCGTGATCCAGAAAGCG	TCGCTTTCTGGATCACGACCGTAAT
- (376	TTGCGAGGTGAGCACCTACGAGAGA	TTCTCTCGTAGGTGCTCACCTCGCA
	377	TGGGCCGCATTCTTGATGTCCATTC	TGAATGGACATCAAGAATGCGGCCC
	378	TCCTCGGATGTGGGCTCTCGCCTAG	TCTAGGCGAGAGCCCACATCCGAGG
	379	TTAGGCATGTTGGCGTGAGCGCTAT	TATAGCGCTCACGCCAACATGCCTA
40	380	TCGATACGAACGAGGATGTCCGCCT	TAGGCGGACATCCTCGTTCGTATCG
	381	TTACGCCGGTTAGCACGGTGCGCTA	TTAGCGCACCGTGCTAACCGGCGTA

_		_		<u></u>
	382		TCATACGATGTCCGGGCCGTGTCGC	TGCGACACGGCCCGGACATCGTATG
	383		TATCCGCAGTTGTATGGCGCGTTAT	TATAACGCGCCATACAACTGCGGAT
	384		TGGGTAAGGGACAAAGATGGGATGG	TCCATCCCATCTTTGTCCCTTACCC
	385		TATTGGAGTGTTTTGGTGAATCCGC	TGCGGATTCACCAAAACACTCCAAT
5	386		TGAACCGAGCCAACGTATGGACACG	TCGTGTCCATACGTTGGCTCGGTTC
	387		TGCCGTCAAGCTTAAGGTTTTGGGC	TGCCCAAAACCTTAAGCTTGACGGC
	388		TACCTGCTTTTGGGTGGGTGATATG	TCATATCACCCACCCAAAAGCAGGT
ĺ	389		TAATCGTGGGCGCAGCAAACGTATA	TTATACGTTTGCTGCGCCCACGATT
	390		TGTCGCCGGATTGCTCAGTATAAGC	TGCTTATACTGAGCAATCCGGCGAC
10	391		TACCCGTCGATGCTTCCTCCTCAGA	TTCTGAGGAGGAAGCATCGACGGGT
	392		TATCCGGGTGGGCGATACAAGAGAT	TATCTCTTGTATCGCCCACCCGGAT
	393		TTTCCGCATGAGTCAGCTTTGAAAA	TTTTCAAAGCTGACTCATGCGGAA
	394		TGCAAAGTCCCACTGGCAAGCCGAT	TATCGGCTTGCCAGTGGGACTTTGC
`	395		TCGACCTCGGCTTCATCGTACACAT	TATGTGTACGATGAAGCCGAGGTCG
15	396		TCTCATGAGCGCAGTTGTGCGTGAG	TCTCACGCACAACTGCGCTCATGAG
	397		TCAGATGAAGGATCCACGGCCGGAG	TCTCCGGCCGTGGATCCTTCATCTG
	398		TTCAAAGGCTCTTGGATACAGCCGT	TACGGCTGTATCCAAGAGCCTTTGA
	399		TTCCGCTAATTTCCAATCAGGGCTC	TGAGCCCTGATTGGAAATTAGCGGA
		8	TCCGTTTGCGGTCGTCCTTGCTCAA	TTTGAGCAAGGACGACCGCAAACGG
20		9	TTTCGCTTTCGTGGCTGCACTTCAA	TTTGAAGTGCAGCCACGAAAGCGAA
	402		TCTTAGTTGGGGCGCGGTATCCAGA	TTCTGGATACCGCGCCCCAACTAAG
	403		TGCTCTAATGCCGTGGAGTCGGAAC	TGTTCCGACTCCACGGCATTAGAGC
	404		TCCGATTACAAATTGACTGACCGCA	TTGCGGTCAGTCAATTTGTAATCGG
	405		TAGACGTACGTGAGCCTCCCGTGTC	TGACACGGGAGGCTCACGTACGTCT
25	406		TAATGGAGCGATACGATCCAACGCA	TTGCGTTGGATCGTATCGCTCCATT
	407		TGGAGGCGCTGTACTGATAGGCGTA	TTACGCCTATCAGTACAGCGCCTCC
	408		TTGTTTTTGAATTGACCACACGGGA	TTCCCGTGTGGTCAATTCAAAAACA
	409		TCATGTCTGGATGCGCTCAATGAAG	TCTTCATTGAGCGCATCCAGACATG
	410		TGCCCGCTAATCCGACACCCAGTTT	TAAACTGGGTGTCGGATTAGCGGGC
30	411		TCCATTGACAGGAGAGCCATGAGCC	TGGCTCATGGCTCTCCTGTCAATGG
	412		TGAATCACCGAATCACCGACTCGTT	TAACGAGTCGGTGATTC
	413		TAACCAGCCGCAGTAGCTTACGTCG	TCGACGTAAGCTACTGCGGCTGGTT
	414		TTTTCTGAGGGACACGCGGGCGTT	TAACGCCCGCGTGTCCCTCAGAAAA
	415		TGGTGCTCCGTTTGATCGATCCTCC	TGGAGGATCGATCAAACGGAGCACC
35	416		TCCGCTTAGGCCATACTCTGAGCCA	TTGGCTCAGAGTATGGCCTAAGCGG
	.417		TTAAGACATACCGACGCCCTTGCCT	TAGGCAAGGGCGTCGGTATGTCTTA
	418		TGTTCCCGACGCCAGTCATTGAGAC	TGTCTCAATGACTGGCGTCGGGAAC
	419		TTAAAAGTTTCGCGGAGGTCGGGCT	TAGCCCGACCTCCGCGAAACTTTTA
	420		TCGGTCCAGACGAGCTGAGTTCGGC	TGCCGAACTCAGCTCGTCTGGACCG
40	421		TCGGCGTAGCGGCTACGGACTTAAA	TTTTAAGTCCGTAGCCGCTACGCCG
	422		TGCTTGGATGCCCATGCGGCAAGGT	TACCTTGCCGCATGGGCATCCAAGC

	423	TAGCGGGATCCCAGAGTTTCGAAAA	TTTTCGAAACTCTGGGATCCCGCT
	424	TGAGCTTGAGAGCGAGGTCATCCTC	TGAGGATGACCTCGCTCTCAAGCTC
	425	TGCATCGGCCGTTTTGACCATATTC	TGAATATGGTCAAAACGGCCGATGC
	426	TCATAGCGCTGCACGTTTCGACCGC	TGCGGTCGAAACGTGCAGCGCTATG
5	427	TACCCGACAACCACCAATTCAAAAA	TTTTTGAATTGGTGGTTGTCGGGT
	428	TGCGAACACTCATAAGAGCGCCCTG	TCAGGGCGCTCTTATGAGTGTTCGC
	429	TCCGCCGAGTGTAGAGAGACTCCGA	TTCGGAGTCTCTCTACACTCGGCGG
	430	TGACATCGGGAGCCGGAAACATGAG	TCTCATGTTTCCGGCTCCCGATGTC
	431	TTCGTGTAGACTCGGCGACAGGCGT	TACGCCTGTCGCCGAGTCTACACGA
10	432	TATGCGCATATACTGACTGCGCAGG	TCCTGCGCAGTCAGTATATGCGCAT
	433	TACAAGCGAACCCGAGTTTTGATGA	TTCATCAAAACTCGGGTTCGCTTGT
	434	TGCATGAGACTCCGCGAAGACATGT	TACATGTCTTCGCGGAGTCTCATGC
	435	TTCCTACATGTCGCGTCACGATCAC	TGTGATCGTGACGCGACATGTAGGA
	436	TGACCGATCGCGAAGTCGTACACAT	TATGTGTACGACTTCGCGATCGGTC
15	437	TGTCGCCAGGACTGGGCCGATGTGA	TTCACATCGGCCCAGTCCTGGCGAC
!	438	TACCGATAAGACTTGCATCCGAACG	TCGTTCGGATGCAAGTCTTATCGGT
	439	TTCCATAACCAGTCCGAAGTGCCGG	TCCGGCACTTCGGACTGGTTATGGA
	440	TACGCGCCCTGCATCTCGTATTTAA	TTTAAATACGAGATGCAGGGCGCGT
	441	TAGACCGCATCAATTGGCGCGTACC	TGGTACGCGCCAATTGATGCGGTCT
20	442	TAGAGGCTTGGCAAGTAGGGACCCT	TAGGGTCCCTACTTGCCAAGCCTCT
	443	TGCAATGGACGCCAGACGATACCGG	TCCGGTATCGTCTGGCGTCCATTGC
	444	TGCTGGACTTAGTCGTGTTCGGCGG	TCCGCCGAACACGACTAAGTCCAGC
	445	TAGGCATCGTGCCGGATTGCTCCCT	TAGGGAGCAATCCGGCACGATGCCT
	446	TTGCGCATGTCGACGTTGAACAAAG	TCTTTGTTCAACGTCGACATGCGCA
25	447	TTTCGGGTCACATCCGATGCCATAC	TGTATGGCATCGGATGTGACCCGAA
	448	TACCCATCGCCGGAAAGCGATGTTG	TCAACATCGCTTTCCGGCGATGGGT
	449	TAAGCGCTGACTCGGCTAAGAATCA	TTGATTCTTAGCCGAGTCAGCGCTT
	450	TACTTCCAAGTCCTTGACCGTCCGA	TTCGGACGGTCAAGGACTTGGAAGT
	451	TTCTCAATATTCCCGTAGTCGCCCA	TTGGGCGACTACGGGAATATTGAGA
30	452	TAACAGTTCCTCTTTTTCCTGGCGC	TGCGCCAGGAAAAAGAGGAACTGTT
	453	TCGTCCTCCATGTTGTCACGAACAG	TCTGTTCGTGACAACATGGAGGACG
	454	TTGCGCAGACCTACCTGTCTTTGCT	TAGCAAAGACAGGTAGGTCTGCGCA
	455	TATGGACGGCTTCGCAGTCCTCCTT	TAAGGAGGACTGCGAAGCCGTCCAT
	456	TTGAACGCTTTCTATGGGCCACGTA	TTACGTGGCCCATAGAAAGCGTTCA
35	457	TTGAACCCTGCCGCGAGCGATAACC	TGGTTATCGCTCGCGGCAGGGTTCA
	458	TGTTCTTGCGCGATGAATCAGGACC	TGGTCCTGATTCATCGCGCAAGAAC
	459	TAGGGTACGTGTCGCAGCTTCGCGT	TACGCGAAGCTGCGACACGTACCCT
	460	TACCCTTGCTCCGCCATGTCTCTCA	TTGAGAGACATGGCGGAGCAAGGGT
	461	TGGGACAAGGATTGAAGCTGGCGTC	TGACGCCAGCTTCAATCCTTGTCCC
40	462	TTGTCGTTGCTCCCGAGTACCATTG	TCAATGGTACTCGGGAGCAACGACA
	463	TGTTGTCCGAGACGTTTGTGTCAGC	TGCTGACACAACGTCTCGGACAAC

	382		TCATACGATGTCCGGGCCGTGTCGC	TGCGACACGGCCCGGACATCGTATG
	383		TATCCGCAGTTGTATGGCGCGTTAT	TATAACGCGCCATACAACTGCGGAT
	384		TGGGTAAGGGACAAAGATGGGATGG	TCCATCCCATCTTTGTCCCTTACCC
	385		TATTGGAGTGTTTTGGTGAATCCGC	TGCGGATTCACCAAAACACTCCAAT
5	386		TGAACCGAGCCAACGTATGGACACG	TCGTGTCCATACGTTGGCTCGGTTC
	387		TGCCGTCAAGCTTAAGGTTTTGGGC	TGCCCAAAACCTTAAGCTTGACGGC
	388		TACCTGCTTTTGGGTGGGTGATATG	TCATATCACCCACCCAAAAGCAGGT
	389		TAATCGTGGGCGCAGCAAACGTATA	TTATACGTTTGCTGCGCCCACGATT
	390		TGTCGCCGGATTGCTCAGTATAAGC	TGCTTATACTGAGCAATCCGGCGAC
10	391		TACCCGTCGATGCTTCCTCCTCAGA	TTCTGAGGAGGAAGCATCGACGGGT
	392		TATCCGGGTGGGCGATACAAGAGAT	TATCTCTTGTATCGCCCACCCGGAT
	393		TTTCCGCATGAGTCAGCTTTGAAAA	TTTTCAAAGCTGACTCATGCGGAA
	394		TGCAAAGTCCCACTGGCAAGCCGAT	TATCGGCTTGCCAGTGGGACTTTGC
•	395		TCGACCTCGGCTTCATCGTACACAT	TATGTGTACGATGAAGCCGAGGTCG
15	396		TCTCATGAGCGCAGTTGTGCGTGAG	TCTCACGCACAACTGCGCTCATGAG
	397		TCAGATGAAGGATCCACGGCCGGAG	TCTCCGGCCGTGGATCCTTCATCTG
	398		TTCAAAGGCTCTTGGATACAGCCGT	TACGGCTGTATCCAAGAGCCTTTGA
-	399		TTCCGCTAATTTCCAATCAGGGCTC	TGAGCCCTGATTGGAAATTAGCGGA
:		8	TCCGTTTGCGGTCGTCCTTGCTCAA	TTTGAGCAAGGACGACCGCAAACGG
20		9	TTTCGCTTTCGTGGCTGCACTTCAA	TTTGAAGTGCAGCCACGAAAGCGAA
	402	_	TCTTAGTTGGGGCGCGGTATCCAGA	TTCTGGATACCGCGCCCCAACTAAG
	403		TGCTCTAATGCCGTGGAGTCGGAAC	TGTTCCGACTCCACGGCATTAGAGC
	404		TCCGATTACAAATTGACTGACCGCA	TTGCGGTCAGTCAATTTGTAATCGG
	405		TAGACGTACGTGAGCCTCCCGTGTC	TGACACGGGAGGCTCACGTACGTCT
25	406	_	TAATGGAGCGATACGATCCAACGCA	TTGCGTTGGATCGTATCGCTCCATT
	407	_	TGGAGGCGCTGTACTGATAGGCGTA	TTACGCCTATCAGTACAGCGCCTCC
	408		TTGTTTTGAATTGACCACACGGGA	TTCCCGTGTGGTCAATTCAAAAACA
	409	_	TCATGTCTGGATGCGCTCAATGAAG	TCTTCATTGAGCGCATCCAGACATG
	410		TGCCCGCTAATCCGACACCCAGTTT	TAAACTGGGTGTCGGATTAGCGGGC
30	411		TCCATTGACAGGAGAGCCATGAGCC	TGGCTCATGGCTCTCCTGTCAATGG
	412	_	TGAATCACCGAATCACCGACTCGTT	TAACGAGTCGGTGATTC
	413	_	TAACCAGCCGCAGTAGCTTACGTCG	TCGACGTAAGCTACTGCGGCTGGTT
}	414	_	TTTTCTGAGGGACACGCGGGCGTT	TAACGCCCGCGTGTCCCTCAGAAAA
	415	4	TGGTGCTCCGTTTGATCGATCCTCC	TGGAGGATCGATCAAACGGAGCACC
35	416	_	TCCGCTTAGGCCATACTCTGAGCCA	TTGGCTCAGAGTATGGCCTAAGCGG
	417	_	TTAAGACATACCGACGCCCTTGCCT	TAGGCAAGGGCGTCGGTATGTCTTA
	418	_	TGTTCCCGACGCCAGTCATTGAGAC	TGTCTCAATGACTGGCGTCGGGAAC
	419	_	TTAAAAGTTTCGCGGAGGTCGGGCT	TAGCCCGACCTCCGCGAAACTTTTA
	420	_	TCGGTCCAGACGAGCTGAGTTCGGC	TGCCGAACTCAGCTCGTCTGGACCG
40	421	-	TCGGCGTAGCGGCTTAAA	TTTTAAGTCCGTAGCCGCTACGCCG
Į	422	1	TGCTTGGATGCCCATGCGGCAAGGT	TACCTTGCCGCATGGGCATCCAAGC

WO 02/16649

	423	TAGCGGGATCCCAGAGTTTCGAAAA	TTTTTCGAAACTCTGGGATCCCGCT
	424	TGAGCTTGAGAGCGAGGTCATCCTC	TGAGGATGACCTCGCTCTCAAGCTC
	425	TGCATCGGCCGTTTTGACCATATTC	TGAATATGGTCAAAACGGCCGATGC
	426	TCATAGCGCTGCACGTTTCGACCGC	TGCGGTCGAAACGTGCAGCGCTATG
5	427	TACCCGACAACCACCAATTCAAAAA	TTTTTGAATTGGTGGTTGTCGGGT
	428	TGCGAACACTCATAAGAGCGCCCTG	TCAGGGCGCTCTTATGAGTGTTCGC
	429	TCCGCCGAGTGTAGAGAGACTCCGA	TTCGGAGTCTCTCTACACTCGGCGG
	430	TGACATCGGGAGCCGGAAACATGAG	TCTCATGTTTCCGGCTCCCGATGTC
	431	TTCGTGTAGACTCGGCGACAGGCGT	TACGCCTGTCGCCGAGTCTACACGA
10	432	TATGCGCATATACTGACTGCGCAGG	TCCTGCGCAGTCAGTATATGCGCAT
	433	TACAAGCGAACCCGAGTTTTGATGA	TTCATCAAAACTCGGGTTCGCTTGT
	434	TGCATGAGACTCCGCGAAGACATGT	TACATGTCTTCGCGGAGTCTCATGC
	435	TTCCTACATGTCGCGTCACGATCAC	TGTGATCGTGACGCGACATGTAGGA
	436	TGACCGATCGCGAAGTCGTACACAT	TATGTGTACGACTTCGCGATCGGTC
15	437	TGTCGCCAGGACTGGGCCGATGTGA	TTCACATCGGCCCAGTCCTGGCGAC
	438	TACCGATAAGACTTGCATCCGAACG	TCGTTCGGATGCAAGTCTTATCGGT
	439	TTCCATAACCAGTCCGAAGTGCCGG	TCCGGCACTTCGGACTGGTTATGGA
	440	TACGCGCCCTGCATCTCGTATTTAA	TTTAAATACGAGATGCAGGGCGCGT
	441	TAGACCGCATCAATTGGCGCGTACC	TGGTACGCGCCAATTGATGCGGTCT
20	442	TAGAGGCTTGGCAAGTAGGGACCCT	TAGGGTCCCTACTTGCCAAGCCTCT
	443	TGCAATGGACGCCAGACGATACCGG	TCCGGTATCGTCTGGCGTCCATTGC
	444	TGCTGGACTTAGTCGTGTTCGGCGG	TCCGCCGAACACGACTAAGTCCAGC
	445	TAGGCATCGTGCCGGATTGCTCCCT	TAGGGAGCAATCCGGCACGATGCCT
	446	TTGCGCATGTCGACGTTGAACAAAG	TCTTTGTTCAACGTCGACATGCGCA
25	447	TTTCGGGTCACATCCGATGCCATAC	TGTATGGCATCGGATGTGACCCGAA
	448	TACCCATCGCCGGAAAGCGATGTTG	TCAACATCGCTTTCCGGCGATGGGT
	449	TAAGCGCTGACTCGGCTAAGAATCA	TTGATTCTTAGCCGAGTCAGCGCTT
	450	TACTTCCAAGTCCTTGACCGTCCGA	TTCGGACGGTCAAGGACTTGGAAGT
	451	TTCTCAATATTCCCGTAGTCGCCCA	TTGGGCGACTACGGGAATATTGAGA
30	452	TAACAGTTCCTCTTTTTCCTGGCGC	TGCGCCAGGAAAAAGAGGAACTGTT
	453	TCGTCCTCCATGTTGTCACGAACAG	TCTGTTCGTGACAACATGGAGGACG
	454	TTGCGCAGACCTACCTGTCTTTGCT	TAGCAAAGACAGGTAGGTCTGCGCA
	455	TATGGACGGCTTCGCAGTCCTCCTT	TAAGGAGGACTGCGAAGCCGTCCAT
	456	TTGAACGCTTTCTATGGGCCACGTA	TTACGTGGCCCATAGAAAGCGTTCA
35	457	TTGAACCCTGCCGCGAGCGATAACC	TGGTTATCGCTCGCGGCAGGGTTCA
	458	TGTTCTTGCGCGATGAATCAGGACC	TGGTCCTGATTCATCGCGCAAGAAC
	459	TAGGGTACGTGTCGCAGCTTCGCGT	TACGCGAAGCTGCGACACGTACCCT
	460	TACCCTTGCTCCGCCATGTCTCTCA	TTGAGAGACATGGCGGAGCAAGGGT
	461	TGGGACAAGGATTGAAGCTGGCGTC	TGACGCCAGCTTCAATCCTTGTCCC
40	462	TTGTCGTTGCTCCCGAGTACCATTG	TCAATGGTACTCGGGAGCAACGACA
	463	TGTTGTCCGAGACGTTTGTGTCAGC	TGCTGACACAACGTCTCGGACAAC

	464		TGCTGGTGAACACTCACGAACCGCT	TAGCGGTTCGTGAGTGTTCACCAGC
	465		TGCAGACAGGGCAAATCGGTGCAAA	TTTTGCACCGATTTGCCCTGTCTGC
	466		TCCCATCACAACGAGTGGCGACTTT	TAAAGTCGCCACTCGTTGTGATGGG
	467		TGCTTCTACAGCTGGCGTGCTAGCG	TCGCTAGCACGCCAGCTGTAGAAGC
5	468		TGAATGTGTGCCGACCATTCTAGCC	TGGCTAGAATGGTCGGCACACATTC
	469		TCCAGCGGAAGTTAGAGCTCTGTGG	TCCACAGAGCTCTAACTTCCGCTGG
	470		TTTTTACCGACCACTCCATGTCGG	TCCGACATGGAGTGGTCGGTAAAAA
	471		TGCGGCTATGTGATGACGGCCTAGC	TGCTAGGCCGTCATCACATAGCCGC
	472		TAGTACACGGGCGTGTTAGCGCTCC	TGGAGCGCTAACACGCCCGTGTACT
10	473		TTCCTGTGTGGTGGCGCACTCCCAC	TGTGGGAGTGCGCCACACACAGGA
	474		TCCAACTAACCAATCGCGCGGATGA	TTCATCCGCGCGATTGGTTAGTTGG
	475		TAGTGAGTGACCAAGGCAGGAGCAA	TTTGCTCCTGCCTTGGTCACTCACT
	476		TCATCTTTCGCGGAGTTTATTGCGG	TCCGCAATAAACTCCGCGAAAGATG
	477		TCTTCGTCCGGTTAGTGCGACAGCA	TTGCTGTCGCACTAACCGGACGAAG
15	478		TCTCACGAAAACGTGGGCCCGAAAT	TATTTCGGGCCCACGTTTTCGTGAG
	479		TCGCAGCAGCTGAACTCTAGCATTG	TCAATGCTAGAGTTCAGCTGCTGCG
	480		TAGGAGACATACGCCCAAATGGTGC	TGCACCATTTGGGCGTATGTCTCCT
	481		TATTGAGAACTCGTGCGGGAGTTTG	TCAAACTCCCGCACGAGTTCTCAAT
	482		TCTCTTTGTAGGCCCAGGAGGAGCA	TTGCTCCTCCTGGGCCTACAAGAG
20	483		TGCCGCAGGGTCGATAATTGGTCTA	TTAGACCAATTATCGACCCTGCGGC
	484		TAAACGCCGCCCTGAGACTATTGGG	TCCCAATAGTCTCAGGGCGGCGTTT
	485		TCTGAGTTGCCTGGAACGTTGGACT	TAGTCCAACGTTCCAGGCAACTCAG
	486		TCGGATGGGTTGCAGAGTATGGGAT	TATCCCATACTCTGCAACCCATCCG
	487		TCTGACCTTTGGGGGTTAGTGCGGT	TACCGCACTAACCCCCAAAGGTCAG
25	488		TGGAAATGAGAACCTTACCCCAGCG	TCGCTGGGGTAAGGTTCTCATTTCC
	489		TAACGCATCGTCCGTCAACTCATCA	TTGATGAGTTGACGGACGATGCGTT
•	490		TTGGAGAGAGACTTCGGCCATTGTT	TAACAATGGCCGAAGTCTCTCCA
	491		TTTGCGCTCATTGGATCTTGTCAGG	TCCTGACAAGATCCAATGAGCGCAA
	492		TAGCGCGTTAAAGCACGGCAACATT	TAATGTTGCCGTGCTTTAACGCGCT
30	493		TAGCCAGTAAACTGTGGGCGGCTGT	TACAGCCGCCCACAGTTTACTGGCT
	494		TCGACTGATGTGCAACCAGCAGCTG	TCAGCTGCTGGTTGCACATCAGTCG
	495		TGGTTGCTCATACGACGAGCGAGTG	TCACTCGCTCGTCGTATGAGCAACC
		10	TGTCCAACGCGCAACTCCGATTCAA	TTTGAATCGGAGTTGCGCGTTGGAC
•		.11	TTTGCCGCACCGTCCGTCATCTCAA	TTTGAGATGACGGACGGTGCGGCAA
35	498		TAGAACCTCCGCGCCTCCGTAGTAG	TCTACTACGGAGGCGCGGAGGTTCT
	499		TAAAGGAGCTTTCGCCCAACGTACC	TGGTACGTTGGGCGAAAGCTCCTTT
	500		TAGTGATTGTGCCACTCCACAGCTC	TGAGCTGTGGAGTGGCACAATCACT
	501		TGCGATCGTCGAGGGTTGAGCTGAA	TTTCAGCTCAACCCTCGACGATCGC
	502		TGGGAGACAGCCATTATGGTCCTCG	TCGAGGACCATAATGGCTGTCTCCC
40	503		TGAGACGCTGTCACTCCGGCAGAAC	TGTTCTGCCGGAGTGACAGCGTCTC
	504		TCCACCGGTCGCTTAAGATGCACTT	TAAGTGCATCTTAAGCGACCGGTGG
'				

	505	TCGGCATAACGTCCAGTCCTGGGAC	TGTCCCAGGACTGGACGTTATGCCG
	506	TAAGCGGAACGGGTTATACCGAGGT	TACCTCGGTATAACCCGTTCCGCTT
	507	TTGCACACTAGGTCCGTCGCTTGAT	TATCAAGCGACGGACCTAGTGTGCA
	508	TAGGGAACCGCGTTCAAACTCAGTT	TAACTGAGTTTGAACGCGGTTCCCT
5	509	TGAATTACAACCACCGGCTCGTGTT	TAACACGAGCGGGTGGTTGTAATTC
	510	TTTCAGTGCTCACGAAGCATGGATT	TAATCCATGCTTCGTGAGCACTGAA
	511	TTTAGTTTGGCGTTGGGACTTCACC	TGGTGAAGTCCCAACGCCAAACTAA
	512	TAATGCGACCTCGACGAGCCTCATA	TTATGAGGCTCGTCGAGGTCGCATT
	513	TCCGAAACCGTTAACGTGGCGCACA	TTGTGCGCCACGTTAACGGTTTCGG
10	514	TTAAAGTAACAAGGCGACCTCCCGC	TGCGGGAGGTCGCCTTGTTACTTTA
	515	TTAATGATTTTAGTCGCGGGGTGGG	TCCCACCCGCGACTAAAATCATTA
	516	TGGCTACTCTAAGTGCCCGCTCAGG	TCCTGAGCGGGCACTTAGAGTAGCC
	517	TTGGCGGACGACTCAATATCTCACG	TCGTGAGATATTGAGTCGTCCGCCA
	518	TGGGCGTTAGGCGTAATAGACCGTC	TGACGGTCTATTACGCCTAACGCCC
15	519	TGCCACCTTTAGACGGCGGCTCTAG	TCTAGAGCCGCCGTCTAAAGGTGGC
	520	TGAGATGTGTAAACGTGCAGGCACC	TGGTGCCTGCACGTTTACACATCTC
	521	TTAGCTCGTGGCCCTCCAAGCGTGT	TACACGCTTGGAGGGCCACGAGCTA
	522	TGTGTCGGCGCTATTTGGCCTTACC	TGGTAAGGCCAAATAGCGCCGACAC
	523	TCCAGGGAAGCAACTGGTTGCCATT	TAATGGCAACCAGTTGCTTCCCTGG
20	524	TTTCCGAAACTAAGCCAGAACCGCT	TAGCGGTTCTGGCTTAGTTTCGGAA
	525	TGCAAACCCGGTAACCCGAGAGTTC	TGAACTCTCGGGTTACCGGGTTTGC
	526	TGCAAATGGCGTCATGCACGAACGT	TACGTTCGTGCATGACGCCATTTGC
	527	TAGTACTTTCGCGCCCAGTTTAGGG	TCCCTAAACTGGGCGCGAAAGTACT
	528	TAAGATCTGCGAGGCATCCCGGCTT	TAAGCCGGGATGCCTCGCAGATCTT
25	529	TGCAAGTGTATCGCACAGTGCGATT	TAATCGCACTGTGCGATACACTTGC
	530	TCCGACAAGGCCTCAATTCATTCTG	TCAGAATGAATTGAGGCCTTGTCGG
	531	TGTCTCGTCTCAACTTTAAGGCGCG	TCGCGCCTTAAAGTTGAGACGAGAC
	532	TATCCAGAGATCCGTTTTGCAGCGT	TACGCTGCAAAACGGATCTCTGGAT
	533	TGTCACCAGGAGGGAAGTTTCACCC	TGGGTGAAACTTCCCTCCTGGTGAC
30	534	TTTCCGTCAGGCGGATCAACGGAAT	TATTCCGTTGATCCGCCTGACGGAA
	535	TATGCCGGACACGCATTACACAGGC	TGCCTGTGTAATGCGTGTCCGGCAT
	536	TTGGGCCGCTTGGCGCTTTCATAGA	TTCTATGAAAGCGCCAAGCGGCCCA
	537	TCCTAGCGCGAGCTTTACTGACCAG	TCTGGTCAGTAAAGCTCGCGCTAGG
	538	TTTGGCCAGGAATATGGTCTCGAGA	TTCTCGAGACCATATTCCTGGCCAA
35	539	TGTCTGCGGCCGACTTGCTATGCAT	TATGCATAGCAAGTCGGCCGCAGAC
	540	TAACTTGCTCATTCTCAAGCCGACG	TCGTCGGCTTGAGAATGAGCAAGTT
	541	TACGTCAGCGATTGTGGCGAAATAT	TATATTTCGCCACAATCGCTGACGT
	542	TACGGCCTGCGTCAGCACATGCATC	TGATGCATGTGCTGACGCAGGCCGT
	543	TATACCTCCGCAGAACCATTCCGTT	TAACGGAATGGTTCTGCGGAGGTAT
40	544	TAGTTCGCGGTCCCACGATTCACTT	TAAGTGAATCGTGGGACCGCGAACT
	545	TTGCTCAATTTGTGCAGAAAACGCC	TGGCGTTTTCTGCACAAATTGAGCA

	546	TTTATCGCGAGAGACGACCGTGTCC	TGGACACGGTCGTCTCTCGCGATAA
	547	TGACGCGACGTGAGTAGTGGAAGCG	TCGCTTCCACTACTCACGTCGCGTC
	548	TATGGTAGGGGCATTGGGCTTTCCT	TAGGAAAGCCCAATGCCCCTACCAT
	549	TCCAAATATAGCCGCGCGGAGACAT	TATGTCTCCGCGCGGCTATATTTGG
5	550	TGCAAACCCTGATTGAATCGTGCCC	TGGGCACGATTCAATCAGGGTTTGC
	551	TTAGCGTCTTGCGTGAAACCATGGG	TCCCATGGTTTCACGCAAGACGCTA
	552	TCCACCCGACAGCGCTGGACTCTT	TAAGAGTCCAGCGCTGTCGGGGTGG
	553	TACGAGCACTGAAGGCTGCTTTACG	TCGTAAAGCAGCCTTCAGTGCTCGT
:	554	TCATATCAGCGTCGTCTAGCTCGCG	TCGCGAGCTAGACGACGCTGATATG
10	555	TTGATCCCGGACCGGCTAGACTAAT	TATTAGTCTAGCCGGTCCGGGATCA
	556	TGGCCCGACACTACAGGGTAATCA	TTGATTACCCTGTAGTGTCGGGGCC
-	557	TGGCTCCAGGGCGAGATTATGAATG	TCATTCATAATCTCGCCCTGGAGCC
	558	TCAAAATCCGATGGGCGGAAAATTA	TTAATTTTCCGCCCATCGGATTTTG
	559	TCACAGGCGCATAGGGAGCAAGCTA	TTAGCTTGCTCCCTATGCGCCTGTG
15	560	TTAGCTATTGCCCCGATGGGCTACT	TAGTAGCCCATCGGGGCAATAGCTA
•	561	TTGGTACGCGGTCCATAGCAAGTCG	TCGACTTGCTATGGACCGCGTACCA
	562	TGACGCTGTGGCTCGGAAACTGTTC	TGAACAGTTTCCGAGCCACAGCGTC
	563	TCCTGGGTTCGCCGCGTGGTAACTG	TCAGTTACCACGCGGCGAACCCAGG
	564	TTTCCCGCGTAGCCCAACAGCTATA	TTATAGCTGTTGGGCTACGCGGGAA
20	565	TTTCGCGGATTGCTGCCGCATAACA	TTGTTATGCGGCAGCAATCCGCGAA
	566	TAAAAATGGCACCGAAGTTGAGGCA	TTGCCTCAACTTCGGTGCCATTTTT
	567	TCATTCCGCGCGAGTTGAAATCCAG	TCTGGATTTCAACTCGCGCGGAATG
	568	TACGCACGTTTTTTGGCACGGTTAA	TTTAACCGTGCCAAAAAACGTGCGT
	569	TTGTCCATGACGTCGTTTCTCTGGT	TACCAGAGAAACGACGTCATGGACA
25	570	TTCTCAGTCGGACTCGTATGCCAGA	TTCTGGCATACGAGTCCGACTGAGA
	571	TCTCCAAACGCACACATCAAGCATC	TGATGCTTGATGTGTGCGTTTGGAG
	572	TTTCAACCAAGCGGGGTGTTCGTGA	TTCACGAACACCCCGCTTGGTTGAA
	573	TGGTGTCGGAGGGTGGTGACCTCGA	TTCGAGGTCACCACCCTCCGACACC
	574	TAGCGCTTTTGGTCATGATTTGCAA	TTTGCAAATCATGACCAAAAGCGCT
30	575	TCCGAGGACTTACGTCTGCCCAGGA	TTCCTGGGCAGACGTAAGTCCTCGG
	576	TGCCCAATCCAGTTCTTATGCGCCC	TGGGCGCATAAGAACTGGATTGGGC
	577	TCGGGTTAACCCACGCAAGTTATGA	TTCATAACTTGCGTGGGTTAACCCG
	578	TTGATTAGCGCTCAATACACGCGTG	TCACGCGTGTATTGAGCGCTAATCA
	579	TAAGGGCAGACCTTTGGTTCGACTG	TCAGTCGAACCAAAGGTCTGCCCTT
35	580	TGCGCCACAAGATTCACATGTCATT	TAATGACATGTGAATCTTGTGGCGC
	581	TGCCATGTTCAAGGGCCTTTCGAAG	TCTTCGAAAGGCCCTTGAACATGGC
	582	TCGCGGTGTTTTGTCTAGGTGCCGG	TCCGGCACCTAGACAAAACACCGCG
	583	TCAACATTGTGGTGGCACTCCATCC	TGGATGGAGTGCCACCACAATGTTG
	584	TCGATACGCGCCGGTTTGTTAAATC	TGATTTAACAAACCGGCGCGTATCG
40	585	TGGCTATAAACGTGCGGACTGCTCC	TGGAGCAGTCCGCACGTTTATAGCC
	586	TTGGGTAAATCACTATTGCGCGGTT	TAACCGCGCAATAGTGATTTACCCA

L	587		TGTCTTCATCGGCCCGCGCAAGCTA	TTAGCTTGCGCGGGCCGATGAAGAC
	588		TGCGACACCCTGTACTCTGATGC	TGCATCAGAGTACAGGGTGTGTCGC
	589		TGTAGCAGGGTCCGCAAGACCAAGC	TGCTTGGTCTTGCGGACCCTGCTAC
	590		TTCGCCAACGCAGGGTAACTGCCAT	TATGGCAGTTACCCTGCGTTGGCGA
5	591		TACTCCGAAGCTTCGAGCGGCACGA	TTCGTGCCGCTCGAAGCTTCGGAGT
ſ		12	TCATCGTCCCTTTCGATGGGATCAA	TTTGATCCCATCGAAAGGGACGATG
Į.		13	TGCACGGGAGCTGACGACGTGTCAA	TTTGACACGTCGTCAGCTCCCGTGC
	594		TATCATCCCACGGCAGAGTGAAGAG	TCTCTTCACTCTGCCGTGGGATGAT
	595		TCGCTGGACTGGCCTATCCGAGTCG	TCGACTCGGATAGGCCAGTCCAGCG
10	596		TCGGTCTCAGCAACACTGTCGCAAA	TTTTGCGACAGTGTTGCTGAGACCG
	597		TCGAACGTTCTCCGATGTAATGGCC	TGGCCATTACATCGGAGAACGTTCG
	598		TATACCGTGCGACAAGCCCCTCTGA	TTCAGAGGGGCTTGTCGCACGGTAT
	599		TAGCTCATTCCCGAGACGGAACACC	TGGTGTTCCGTCTCGGGAATGAGCT
	600		TTTTCATGCGGCCGTTGCAAATCAT	TATGATTTGCAACGGCCGCATGAAA
15	601		TACTCGAACGGACGTTCAATTCCCA	TTGGGAATTGAACGTCCGTTCGAGT
	602		TCTGCATGGTGTGGGTGAGACTCCC	TGGGAGTCTCACCCACACCATGCAG
	603		TCCGCGAGTGTGGATGGCGTGTTGA	TTCAACACGCCATCCACACTCGCGG
Ţ.	604		TAATGTGTCGGTCCTAAGCCGGGTG	TCACCCGGCTTAGGACCGACACATT
	605		TTAAGACGAGCCTGCACAGCTTGCG	TCGCAAGCTGTGCAGGCTCGTCTTA
20	606		TGGCGTGGGAGGATAAGACGATGTC	TGACATCGTCTTATCCTCCCACGCC
	607		TTGCTCCATGTTAGGAACGCACCAC	TGTGGTGCGTTCCTAACATGGAGCA
	608		TCGGTGTTGGTCGGACTGACGACTG	TCAGTCGTCAGTCCGACCAACACCG
	609		TCCGCGCGTATCTATCAGATCTGGG	TCCCAGATCTGATAGATACGCGCGG
	610		TAAAGCATGCTCCACCTGGAGCGAG	TCTCGCTCCAGGTGGAGCATGCTTT
25	611		TACTTGCATCGCTGGGTAGATCCGG	TCCGGATCTACCCAGCGATGCAAGT
	612		TTGCTTACGCAGTGGATTGGTCAGA	TTCTGACCAATCCACTGCGTAAGCA
	613		TATGCAGATGAACAAATCGCCGAAT	TATTCGGCGATTTGTTCATCTGCAT
	614		TGCAATTCTGGGCCATGTATTCGTC	TGACGAATACATGGCCCAGAATTGC
	615		TAGGGTTCCTTACGCGTCGACATGG	TCCATGTCGACGCGTAAGGAACCCT
30	616		TGTGGAGCTAATCGCGAGCCTCAGA	TTCTGAGGCTCGCGATTAGCTCCAC
L	617		TTCGTAGTCTCACCGGCAATGATCC	TGGATCATTGCCGGTGAGACTACGA
	618		TTTATAGCAGTGCGCCAATGCTTCG	TCGAAGCATTGGCGCACTGCTATAA
	619		TCGAACAGTGCTGTCCGTCGCTCAA	TTTGAGCGACGGACAGCACTGTTCG
Ĺ	620		TTCCGCGTGGACTGTTAGACGCTAT	TATAGCGTCTAACAGTCCACGCGGA
35	621		TCATTAGCCCGCTGTCGGTAACTGT	TACAGTTACCGACAGCGGGCTAATG
	622		TGGAAAGAAACTCAGACGCGCAATG	TCATTGCGCGTCTGAGTTTCTTTCC
	623		TCGACTCGCTGGACAGGAGAATCGT	TACGATTCTCCTGTCCAGCGAGTCG
	624		TCATGATCCTCTGTTTCACCCGCGG	TCCGCGGGTGAAACAGAGGATCATG
	625		TGGCGTAGCGCTCTAAAAGCTTCGG	TCCGAAGCTTTTAGAGCGCTACGCC
40	626		TAGTGATGCCATCAGGCCCGTATAC	TGTATACGGGCCTGATGGCATCACT
	627		TTATGGAAAGGGCAACAGCGCTATC	TGATAGCGCTGTTGCCCTTTCCATA

	628	TCTGTGGTTGATGGAGGATCCACAC	TGTGTGGATCCTCCATCAACCACAG
	629	TACTCGCTGGAATTTGCGCTGACAC	TGTGTCAGCGCAAATTCCAGCGAGT
	630	TCAGGCCCGAACCACGCGGTTACAG	TCTGTAACCGCGTGGTTCGGGCCTG
	631	TGGCGCAATGGGCGCATAAATACTA	TTAGTATTTATGCGCCCATTGCGCC
5	632	TGGTCAATTCGCGCTACATGCCCTA	TTAGGGCATGTAGCGCGAATTGACC
	633	TGATGGTGGACTGGAGCCCTTCCGC	TGCGGAAGGGCTCCAGTCCACCATC
	634	TCCGCGCATAGCGCAATAGGGGAGA	TTCTCCCCTATTGCGCTATGCGCGG
	635	TTCTTCTGGCTGTCCGGCACCCGAA	TTTCGGGTGCCGGACAGCCAGAAGA
	636	TGCGTTCGCAATTCACGGGCCCTTA	TTAAGGGCCCGTGAATTGCGAACGC
10	637-	TTCGTTTCGGCCTTGGAGAGTATCG	TCGATACTCTCCAAGGCCGAAACGA
	638	TAGGTGCAAGTGCAAGGCGAGAGGC	TGCCTCTCGCCTTGCACTTGCACCT
	639	TCGCCAGTTTCGATGGCTGACGTTT	TAAACGTCAGCCATCGAAACTGGCG
	640	TGCTTTACCGCCGATCCCAGATATC	TGATATCTGGGATCGGCGGTAAAGC
	641	TGTGCTTGACGAAGAGGCGAAATGT	TACATTTCGCCTCTTCGTCAAGCAC
15	642	TCAGTCCGTGCGCTTCATGTCCTCA	TTGAGGACATGAAGCGCACGGACTG
	643	TTACGCGTAAGAGCCTACCCTCGCG	TCGCGAGGGTAGGCTCTTACGCGTA
	644	TGGCGAGTCTTGTGGGGACATGTGT	TACACATGTCCCCACAAGACTCGCC
	645	TCCAAAGCGAAGCGAGCGTGTCTAT	TATAGACACGCTCGCTTCGCTTTGG
	646	TGCCGTAGGTTGCTCTTCACCGAAC	TGTTCGGTGAAGAGCAACCTACGGC
20	647	TAAATCCGCGATGTGCCGTGAGGCT	TAGCCTCACGGCACATCGCGGATTT
	648	TGGCTTCGCACCCGTACCAATTTAG	TCTAAATTGGTACGGGTGCGAAGCC
	649	TTGTAGAGTCCCACGTAGCCGGCAT	TATGCCGGCTACGTGGGACTCTACA
	650	TCACTAGTCTGGGGCAAGGTGCATT	TAATGCACCTTGCCCCAGACTAGTG
	651	TTGTACTCGGCAGGCGCAATAGATT	TAATCTATTGCGCCTGCCGAGTACA
25	652	TAACGGGTATCGGAAGCGTAAAAGC	TGCTTTTACGCTTCCGATACCCGTT
	653	TCGGACTGCCCGTTTGCAAGTTGAG	TCTCAACTTGCAAACGGGCAGTCCG
	654	TATCGTTCAGCACTGGAGCCCGTAA	TTTACGGGCTCCAGTGCTGAACGAT
	655	TATGCATCGAACTAGTCGTGACGGC	TGCCGTCACGACTAGTTCGATGCAT
	656	TTTCCAGGCATTAAGGAGAGGGAGC	TGCTCCCTCTCCTTAATGCCTGGAA
30	657	TGTGCGACATCTACTCCACGATCCC	TGGGATCGTGGAGTAGATGTCGCAC
	658	TCTCATCGTCCTAACACGAGAGCCC	TGGGCTCTCGTGTTAGGACGATGAG
	659	TAATGGCACTTCGGCGGTGATGCAA	TTTGCATCACCGCCGAAGTGCCATT
	660	TCCGTGGGAGGGAATCCAACCGAGG	TCCTCGGTTGGATTCCCTCCCACGG
	661	TAAATTCTCGTTGGTGACGGCTCAT	TATGAGCCGTCACCAACGAGAATTT
35	662	TTTGCTCTTATCCTTGTCCTGGGCG	TCGCCCAGGACAAGGATAAGAGCAA
	. 663	TTTAAGGATCAGGCGGAGCTTGCAG	TCTGCAAGCTCCGCCTGATCCTTAA
	664	TCGCGACTAAGGTGCTGCAACTCGA	TTCGAGTTGCAGCACCTTAGTCGCG
	665	TGCTCGATTTCACGGCCCGTTGTTC	TGAACAACGGGCCGTGAAATCGAGC
	666	TAGCAGAGTGCGTTGCAGAGGCTAA	TTTAGCCTCTGCAACGCACTCTGCT
40	667	TTGGAGGTGAGGACGACGTGCACTA	TTAGTGCACGTCGTCCTCACCTCCA
	668	TAACCGTTTAGGGTACATTCGCGGT	TACCGCGAATGTACCCTAAACGGTT

	669		TTATGATCGCTCGGCTCACAGTTTG	TCAAACTGTGAGCCGAGCGATCATA
	670		TGACTTTTTGCGGAAACGTCATGGT	TACCATGACGTTTCCGCAAAAAGTC
	671		TTGTCGGTTATTCCACCTGCAAGGA	TTCCTTGCAGGTGGAATAACCGACA
	672		TCTATGGTTTGCACTGCGCCGTCGA	TTCGACGGCGCAGTGCAAACCATAG
5	673		TAGCAGGGAAATTCAATCGTTCGCA	TTGCGAACGATTGAATTTCCCTGCT
	674		TCCTAACCGAGCGCTTAGCATTTCC	TGGAAATGCTAAGCGCTCGGTTAGG
	675		TCCCGACCCTAACTCGCATTGAATA	TTATTCAATGCGAGTTAGGGTCGGG
	676		TTTGCTTAATGGTGACGCCACGGAT	TATCCGTGGCGTCACCATTAAGCAA
	677		TGATGCTCGCCGTGTTTAGTTCACG	TCGTGAACTAAACACGGCGAGCATC
10	678		TTCGGATGACGAGTTTCCATGACGG	TCCGTCATGGAAACTCGTCATCCGA
	679		TATGCGGTCTACTTTCTCGATCGGG	TCCCGATCGAGAAAGTAGACCGCAT
	680		TTTGCGAGGCTAAGCACACGGTAAA	TTTTACCGTGTGCTTAGCCTCGCAA
	681		TAACTTAATTACCGCCTCTGGCGCC	TGGCGCCAGAGGCGGTAATTAAGTT
	682		TGTGACCGCGAACTTGTTCCGACAG	TCTGTCGGAACAAGTTCGCGGTCAC
15	683		TTGCGGATTACCGATTCGCTCTTAA	TTTAAGAGCGAATCGGTAATCCGCA
	684		TTGATAGGGGGCCACGTTGATCAGA	TTCTGATCAACGTGGCCCCCTATCA
	685		TTCGCTCCGTAGCGATTCATCGTAG	TCTACGATGAATCGCTACGGAGCGA
	686		TTGTCAGCTGGTAGCCTCCGTTTGA	TTCAAACGGAGGCTACCAGCTGACA
	687		TAGCGTCGCATGACGCTTACGGCAC	TGTGCCGTAAGCGTCATGCGACGCT
20		14	TAGACGCACCGCAACAGGCTGTCAA	TTTGACAGCCTGTTGCGGTGCGTCT.
		15	TCGTGTAGGGGTCCCGTGCTGTCAA	TTTGACAGCACGGGACCCCTACACG
	690		TGTCGCATTCTGCACTGGCTTCGCC	TGGCGAAGCCAGTGCAGAATGCGAC
	691		TTGATTAGGTGCGGTCCCGTAGTCC	TGGACTACGGGACCGCACCTAATCA
	692		TAAGGGACCTTGGGTGACGGCGAGA	TTCTCGCCGTCACCCAAGGTCCCTT
25	693		TTCAAATGGCCACCGCGTGTCATTC	TGAATGACACGCGGTGGCCATTTGA
	694		TCTCCGACGACCAATAAATAGCCGC	TGCGGCTATTTATTGGTCGTCGGAG
	695	<u>.</u>	TGGCTATTCCCGTAGAGAGCGTCCA	TTGGACGCTCTCTACGGGAATAGCC
	696		TTGGATAACCTCTCGGTCCATCCAC	TGTGGATGGACCGAGAGGTTATCCA
	697		TGACCGCTGTACGGGAGTGTGCCTT	TAAGGCACACTCCCGTACAGCGGTC
30	698		TGCCACAGAGTTTTAGCAGGGACCC	TGGGTCCCTGCTAAAACTCTGTGGC
	699		TCCCACGCTTTCCGACCACTGACCT	TAGGTCAGTGGTCGGAAAGCGTGGG
	700		TCATTGACACAATGCGGGGACTGAT	TATCAGTCCCCGCATTGTGTCAATG
	701		TAGCCACTCGACAGGGTTCCAAAGC	TGCTTTGGAACCCTGTCGAGTGGCT
	702		TCAGGATGAGCAAAGCGACTCTCCA	TTGGAGAGTCGCTTTGCTCATCCTG
35	703		TCAAGGTATGGTCTGGGGCCTAAGC	TGCTTAGGCCCCAGACCATACCTTG
	704		TGGTGTTCGGCCTAAACTCTTTCGG	TCCGAAAGAGTTTAGGCCGAACACC
	705		TTTTAGTCGGACCCTGTGGCAATTC	TGAATTGCCACAGGGTCCGACTAAA
	706		TCACACGTTTCCGACCAGCCTGAAC	TGTTCAGGCTGGTCGGAAACGTGTG
	707		TCTGGACGAACTGGCTTCCTCGTAC	TGTACGAGGAAGCCAGTTCGTCCAG
40	708		TTTCACAATCCGCCGAAAACTGACC	TGGTCAGTTTTCGGCGGATTGTGAA
Į.	709		TAACAGGATATCCGCGATCACGACA	TTGTCGTGATCGCGGATATCCTGTT

	710	TTACGTCGGATCCATTGCGCCGAGT	TACTCGGCGCAATGGATCCGACGTA
	711	TCATGGATCTCTCGGTTTGATCGCC	TGGCGATCAAACCGAGAGATCCATG
	712	TAGCCAGGCGCGTATATACGCTCGG	TCCGAGCGTATATACGCGCCTGGCT
	713	TATTTGGCACGTGTCGTGCCATGTT	TAACATGGCACGACACGTGCCAAAT
5	714	TCCGCGTTGCACCACTTTGAGGTGC	TGCACCTCAAAGTGGTGCAACGCGG
ı	715	TTTGGACGTGACAAGCATGGCGCTC	TGAGCGCCATGCTTGTCACGTCCAA
	716	TCTGAATCGCGCAAGTAAATGGGGG	TCCCCCATTTACTTGCGCGATTCAG
	717	TGATAAGGTCCACCAGATTGCGCGC	TGCGCGCAATCTGGTGGACCTTATC
	718	TCTAACAATTGCCAACCGGGACGGC	TGCCGTCCCGGTTGGCAATTGTTAG
10	719	TGGTAACCTGGGTGCTTGCAGGTTA	TTAACCTGCAAGCACCCAGGTTACC
	720	TATCGGAGCCACCATTCGCATTGGG	TCCCAATGCGAATGGTGGCTCCGAT
	721	TGTGAACTGGCTTGCCCCAGGATTA	TTAATCCTGGGGCAAGCCAGTTCAC
	722	TAGGCGATAGCATGGTCCCATATGA	TTCATATGGGACCATGCTATCGCCT
	723	TAACGGTATCGTGGCTAATGCACGA	TTCGTGCATTAGCCACGATACCGTT
15	724	TAGTAGTGGTCCTCCAGATCGGCAA	TTTGCCGATCTGGAGGACCACTACT
	725	TCCGTTGAATTGGACGGGAGGTTAG	TCTAACCTCCCGTCCAATTCAACGG
	726	TGCATAAGTGCGGCATCGCGAAGGG	TCCCTTCGCGATGCCGCACTTATGC
	727	TCGACAAGATGCAGCTGCTACATGC	TGCATGTAGCAGCTGCATCTTGTCG
	728	TTCGCAGTGATTCCCGACCGATAAG	TCTTATCGGTCGGGAATCACTGCGA
20	729	TCAAGGCGAGTCCACTCGAGGGGAC	TGTCCCCTCGAGTGGACTCGCCTTG
	730 -	TGCAACTTGCACGGCATAAGTGGCC	TGGCCACTTATGCCGTGCAAGTTGC
	731	TTCCGAGCTTGACGTTCGCGACGTC	TGACGTCGCGAACGTCAAGCTCGGA
	732	TAGCGCTGGGCTGTGCCATCTC	TGAGATGGCAGCACAGCCCAGCGCT
	733	TTTCATGTCGCTGAGTAACCCTCGC	TGCGAGGGTTACTCAGCGACATGAA
25	734	TCGAACCGCTAATGCCCATTGTCAG	TCTGACAATGGGCATTAGCGGTTCG
	735	TCACGGAAGGTGGGACAAATCGCCG	TCGGCGATTTGTCCCACCTTCCGTG
	736	TCACAGATGGAGACAAACGCGCCTT	TAAGGCGCGTTTGTCTCCATCTGTG
	737	TTTTTCGCAACTCGCTCCATAACCC	TGGGTTATGGAGCGAGTTGCGAAAA
	738	TACGTTACGTTTCCGGCGCCTCTAA	TTTAGAGGCGCCGGAAACGTAACGT
30	. 739	TTATCGGATTGCGTGGGTTTCAATC	TGATTGAAACCCACGCAATCCGATA
	740	TCTTCCACAATTGTCTGCGACGCAC	TGTGCGTCGCAGACAATTGTGGAAG
	741	TTGCACAAAGGTATGGCTGTCCGGC	TGCCGGACAGCCATACCTTTGTGCA
	742	TTCCGATGCCAGTCCCATCTTAAGA	TTCTTAAGATGGGACTGGCATCGGA
	743	TCTGAAACCGTGCGAATCGAGGTGA	TTCACCTCGATTCGCACGGTTTCAG
35	744	TCGGTGTTCCGCGTGTCGAAAAAAT	TATTTTTCGACACGCGGAACACCG
	745	TTCTAGCAGGCCTTTTGAATCGCCA	TTGGCGATTCAAAAGGCCTGCTAGA
	746	TGAGTCACCTCTGAGACGGACGCCA	TTGGCGTCCGTCTCAGAGGTGACTC
	747	TTCTTCTGTCATCCTGCAGCAGCAT	TATGCTGCTGCAGGATGACAGAAGA
	748	TGCGGATGAAACCTGAAAGGGGCCT	TAGGCCCCTTTCAGGTTTCATCCGC
40	749	TGGGCCCCAAACTGGTATCAAGCC	TGGCTTGATACCAGTTTGGGGCCCC
	750	TGCATTGGCTTCGGATTCTCCTACA	TTGTAGGAGAATCCGAAGCCAATGC

	751	TAGGCGGCCCAACTGTGAGGTCTTG	TCAAGACCTCACAGTTGGGCCGCCT
	752	TACACCATGTGCTCCGCGCTGCAGT	TACTGCAGCGCGGAGCACATGGTGT
	753	TACGATGAACATGAATCGGGAGTCG	TCGACTCCCGATTCATGTTCATCGT
	754	TCTGCATCCCTGTAGCAGCGCTCCG	TCGGAGCGCTGCTACAGGGATGCAG
5	755	TGTGCCGTATTTCGACCTGTGCGTT	TAACGCACAGGTCGAAATACGGCAC
	756	TGCAGTGCGCACTTCAGTTCAAAAG	TCTTTTGAACTGAAGTĞCGCACTGC
	757	TGCGATTTTAAGCGATGCCTTGACG	TCGTCAAGGCATCGCTTAAAATCGC
	758	TTAGGTGACCTAGGCTTGCTTGCGG	TCCGCAAGCAAGCCTAGGTCACCTA
•	759	TCTGGATACCTTGCCTGTGCGGCGC	TGCGCCGCACAGGCAAGGTATCCAG
10	760	TCCCCTTACGGCTCGTCGTCTATGC	TGCATAGACGACGAGCCGTAAGGGG
	761	TGCGCTTGCCCGATGCGATGCATTA	TTAATGCATCGCATCGGGCAAGCGC
	762	TTTTCTGTAAGCGGCCTGGGGTTCA	TTGAACCCCAGGCCGCTTACAGAAA
	763	TGGCTGAGGTGAGCGGTAAGGATGA	TTCATCCTTACCGCTCACCTCAGCC
	764	TTCTTGGCCTCCCCGATCTAATTTG	TCAAATTAGATCGGGGAGGCCAAGA
15	765	TGGAGGTAACGCCGTGTACGTAGGA	TTCCTACGTACACGGCGTTACCTCC
	766	TGTAATCCATTTGTGGCTGCGTCAA	TTTGACGCAGCCACAAATGGATTAC
	767	TCAAACCCATTCCAGCAGACGCCTG	TCAGGCGTCTGCTGGAATGGGTTTG
	768	TTAGGAGGAATTTGGCATGCGGGCG	TCGCCGCATGCCAAATTCCTCCTA
	769	TATAGGTAGGATGTGCCCGGCGTTG	TCAACGCCGGGCACATCCTACCTAT
20	770	TGCAAGTGCTTAGCTCGTCAGCCTC	TGAGGCTGACGAGCTAAGCACTTGC
	771	TCTGGCTGTGTCGCATCTCGTTAAC	TGTTAACGAGATGCGACACAGCCAG
	772	TCTAACGTCGTCTCGCGCAATCACT	TAGTGATTGCGCGAGACGACGTTAG
	773	TTTTTCATAAACGTTGTCCCCGAGC	TGCTCGGGGACAACGTTTATGAAAA
	774	TAGCAGGAGGACGAACCTCCGCTCC	TGGAGCGGAGGTTCGTCCTCCTGCT
25	775	TTTCAAGCACCATCGTGCAATCCAA	TTTGGATTGCACGATGGTGCTTGAA
	776	TAGCGTCGCCAGTGATCGCTAGTGG	TCCACTAGCGATCACTGGCGACGCT
	777	TTACATTCCCTGCCTCCGTGGGCTT	TAAGCCCACGGAGGCAGGGAATGTA
	778	TCGCTTCGCGTATTCAGTAGCGGTT	TAACCGCTACTGAATACGCGAAGCG
	779	TTCGGACGCGTCGACACTCATTATA	TTATAATGAGTGTCGACGCGTCCGA
30	780	TTCTGAGCAGGCCAGCGCTCCAGCT	TAGCTGGAGCGCTGCTCAGA
	781	TTTGAATTGCCAAGCCCTGAAAGCC	TGGCTTTCAGGGCTTGGCAATTCAA
	782	TAGTTTTCGCCTTGATGCGTCGGTG	TCACCGACGCATCAAGGCGAAAACT
	783	TGTTTCATAGGCCACGCGTGCTAAA	TTTTAGCACGCGTGGCCTATGAAAC
	16	TCATCGCTGCAAGTACCGCACTCAA	TTTGAGTGCGGTACTTGCAGCGATG

WO 02/16649

CLAIMS

We claim:

5

- An oligonucleotide array comprising an array of at least 25 different addresses, each address
 comprising a different capture probe selected from the group consisting of the sequences set forth
 in Table 1, Table 2, Table 3 and Table 4.
- An array according to claim 1, wherein said capture probes are microspheres.
 - 3. An array according to claim 1 or 2 wherein said array is a liquid array.
 - 4. An array according to claim 1, 2 or 3, wherein said array further comprises a solid support.

15

20

- 5. An array according to claim 1, 2, 3 or 4, wherein said addresses are microspheres and wherein said solid support comprises wells into which said microspheres are individually distributed.
- An array according to claim 1, 2, 3 or 4, wherein each address is a different known location, and said wherein each capture probe is attached to one of said known locations.
 - 7. An array according to claim 1, 2, 3, 4, 5 or 6, wherein said array comprises at least 50 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4.

25

- 8. An array according to claim 1,2, 3, 4, 5 or 6 wherein said array comprises at least 100 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4.
- 9. A kit comprising at least twenty-five nucleic acids selected from the group consisting of sequences substantially complementary to the sequences set forth in Table I, Table II, Table III and Table IV or their complement.
- 10. A kit according to claim 9, wherein said kit comprises at least 50 nucleic acids selected from the
 35 group consisting of the sequences substantially complementary to the sequences set forth in
 Table II, Table III and Table IV or their complement.

11. A kit according to claim 9 or 10, wherein said kit comprises at least 100 nucleic acids selected from the group consisting of the sequences substantially complementary to the sequences set forth in Table II, Table III and Table IV or their complement.

5 12. A kit according to claim 9, 10 or 11, wherein said nucleic acids further comprise at least a first universal priming sequence.

10

15

20

25

35

- 13. A kit according to claim 9, 10, 11 or 12, wherein said nucleic acid sequence further comprises a sequence substantially complementary to a target domain.
- 14. A method of immobilizing a target nucleic acid sequence, said method comprising:

 a) attaching a first adapter nucleic acid to a first target nucleic acid sequence to form a modified first target nucleic acid sequence, wherein said first adapter nucleic acid comprises a sequence substantially complementary to a sequence selected from the sequences set forth in Table I, Table III, and Table IV:
 - b) contacting said modified first target nucleic acid sequence with an array comprising an array of at least 25 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4, whereby said target nucleic acid sequence is immobilized.
- 15. A method of detecting a target nucleic acid sequence, said method comprising:

 a) attaching a first adapter nucleic acid to a first target nucleic acid sequence to form a modified first target nucleic acid sequence, wherein said first adapter nucleic acid comprises a sequence substantially complementary to a sequence selected from the sequences set forth in Table I, Table III, and Table IV;
 - b) contacting said modified first target nucleic acid sequence with an array comprising: an array of at least 25 different addresses, each address comprising a different capture probe selected from the group consisting of the sequences set forth in Table 1, Table 2, Table 3 and Table 4; and
- 30 c) detecting the presence of said modified first target nucleic acid sequence.
 - 16. A method of detecting a target nucleic acid, said method comprising:
 - a) hybridizing a first adapter probe with a first target nucleic acid, said first adapter probe comprising a first domain that is complementary to said first target nucleic acid and a second domain, said second domain comprising a first sequence substantially complementary to a selected from the group consisting of the sequences set forth in Table I, Table II, Table III and Table IV to form a first hybridization complex;

b) contacting said first hybridization complex with an enzyme such that when said first domain
of said adapter probe is perfectly complementary with said first target nucleic acid, said
first adapter probe is altered resulting in a modified first adapter probe;

- c) contacting said modified first adapter probe with a population of microspheres comprising at least a first subpopulation comprising a first capture probe, such that said first capture probe and said modified first adapter probe form a second hybridization complex; and
- d) detecting the presence of said modified first adapter probe as an indication of the presence of said target nucleic acid.

5

1/3

Description of algorithm to select "best" oligonucleotide adapter sequences.

Requirements for good sequences:

- Generates adequate hybridization signal intensity when employed in an experiment.
- Exhibits minimal cross-reactivity with other adapter sequences.
- Unique within the human genome sequence. This requirement can be extended to the genomic sequence of other organisms such as the fruit fly, the mouse, etc.

One method of generating sequences that meet the above requirements is to randomly generate sequences of given lengths and then pass these filters through a set of heuristic acceptance filters. In particular, the 24-mer Illumina Adapter sequences (IllumaCodes) were chosen as follows.

FIG._1

Flow diagram for selection of probes sequences Synthesize 768 oligo

FIG._2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.