HOJA DE AYUDA pandas

Link a la documentación de Pandas

El módulo pandas brinda herramientas para el análisis y manipulación de datos.

import pandas as pd

Comando	Concepto
df = pd.read_csv ("archivo.csv")	Lee un archivo CSV convirtiendo su contenido en un DataFrame que es guardado en la variable df .
df .describe()	Genera estadísticas descriptivas de df , como media, desviación estándar, entre otras, aplicadas a las columnas numéricas.
df .head()	Devuelve las primeras 5 filas de df .
df .tail()	Devuelve las últimas 5 filas de df .
df .shape	Devuelve una tupla con el tamaño de df , en el formato (filas, columnas)
df .columns.tolist()	Devuelve la lista de nombres de columnas de df .
df[" columna "].unique().tolist()	Devuelve una lista con el conjunto de valores que toman los datos en la columna elegida del DataFrame, sin repetir

FILTRADO Y FUNCIONES	
Comando	Concepto
df_columna = df [" columna "]	Guarda en df_columna a la serie de valores correspondiente a la columna elegida del DataFrame df .
df[" columna "].mean()	Devuelve el valor promedio de la columna .
df[" columna "].min()	Valor mínimo de la columna .
df[" columna "].max()	Valor máximo de la columna .
df[" columna "].count()	Conteo del total de valores a lo largo de la columna . Por defecto ignorará los valores faltantes (NaN).
df[" columna "].value_counts()	Conteo del total de valores en cada categoría presente en la columna . Por defecto ignorará los valores faltantes (NaN). La columna debe corresponder a una variable categórica.
df_filtrado = df[df ["columna"] == valor]	Guarda en df _filtrado al DataFrame formado por las filas de df que cumplen tener un valor determinado para la columna elegida.
filtro_a = df["columna1"] >= valor_a filtro_b = df["columna2"] != valor_b df_filtrado = df[(filtro_a) & (filtro_b)]	Une varios filtros, incluso si provienen de columnas diferentes. conectores: & (and) (or)
df.groupby(by=" columna "). funcion ()	Agrupa los datos de df en cada una de las distintas categorías en la columna elegida, y aplica la funcion de resumen deseada (por ejemplo, función podría ser mean, count, min o max).
df.groupby([" col1 ", " col2 "]). funcion ()	Agrupa los datos de df por orden jerárquico (primero " col1 ", luego " col2 ") finalmente aplica la función de resumen elegida (por ejemplo, función podría ser mean, count, min o max).

HOJA DE AYUDA Matplotlib

Link a la DOCUMENTACIÓN

El módulo matplotlib.pyplot se usa para crear gráficos, diagramas, histogramas y más.

import matplotlib.pyplot as plt

Comando Concepto Genera un gráfico de líneas utilizando los valores de x como plt.plot(x, y, forma) coordenadas en el eje horizontal y los valores de y en el eje vertical. plt.title("Título del Agrega un título al gráfico") gráfico. Agrega etiquetas al plt.xlabel / plt.ylabel eje x o al y, según ("Título del eje x / y") corresponda. Muestra el gráfico en plt.show() pantalla.

Matplotlib for beginners

Matplotlib is a library for making 2D plots in Python. It is designed with the philosophy that you should be able to create simple plots with just a few commands:

1 Initialize

```
import numpy as np
import matplotlib.pyplot as plt
```

2 Prepare

```
X = np.linspace(0, 10*np.pi, 1000)
Y = np.sin(X)
```

3 Render

```
fig, ax = plt.subplots()
ax.plot(X, Y)
plt.show()
```

4 Observe

Choose

Matplotlib offers several kind of plots (see Gallery):

```
X = np.random.uniform(0, 1, 100)
Y = np.random.uniform(0, 1, 100)
ax.scatter(X, Y)
```

X = np.arange(10)Y = np.random.uniform(1, 10, 10)ax.bar(X, Y)

Z = np.random.uniform(0, 1, (8, 8))ax.imshow(Z)


```
Z = np.random.uniform(0, 1, (8, 8))
ax.contourf(Z)
```


Z = np.random.normal(0, 1, 100)

ax.hist(Z)

Tweak

X = np.arange(5)Y = np.random.uniform(0, 1, 5)ax.errorbar(X, Y, Y/4)

Z = np.random.normal(0, 1, (100, 3))

ax.boxplot(Z)

Organize

You can plot several data on the same figure, but you can also split a figure in several subplots (named Axes):

```
X = np.linspace(0, 10, 100)
Y1, Y2 = np.sin(X), np.cos(X)
ax.plot(X, Y1, X, Y2)
```



```
fig, (ax1, ax2) = plt.subplots(2, 1)
ax1.plot(X, Y1, color="C1")
ax2.plot(X, Y2, color="C0")
```


Label (everything)

```
ax.plot(X, Y)
fig.suptitle(None)
ax.set_title("A Sine wave")
```


Explore

Figures are shown with a graphical user interface that allows to zoom and pan the figure, to navigate between the different views and to show the value under the mouse.

Save (bitmap or vector format)

```
fig.savefig("my-first-figure.png", dpi=300)
fig.savefig("my-first-figure.pdf")
```


Matplotlib 3.7.4 handout for beginners. Copyright (c) 2021 Matplotlib Development Team. Released under a CC-BY 4.0 International License. Supported by NumFOCUS.

You can modify pretty much anything in a plot, including limits, colors, markers, line width and styles, ticks and ticks labels, titles, etc.

X = np.linspace(0, 10, 100)Y = np.sin(X)ax.plot(X, Y, color="black")

X = np.linspace(0, 10, 100)Y = np.sin(X)ax.plot(X, Y, linestyle="--")

X = np.linspace(0, 10, 100)Y = np.sin(X)ax.plot(X, Y, linewidth=5)

X = np.linspace(0, 10, 100)Y = np.sin(X)ax.plot(X, Y, marker="o")