东南大学机械工程学院

设计原理与方法 I 实验报告

实验	名称:					
专	۱l.					
~	≟ાં •					
姓	名:	学	号:	成	绩:	

预习报告

1.1 实验目的

- (1) 掌握运用游标卡尺测定渐开线直齿圆柱齿轮基本参数的方法;
- (2)通过测量和计算,熟练掌握齿轮各参数之间的相互关系和渐开线性质。

1.2 实验仪器设备

- (1) 一对齿轮(齿数为奇数和偶数的各一个);
- (2) 游标卡尺。

1.3 实验原理(简述)

(1) 确定齿轮的模数和压力角

通过测量齿轮的跨齿数公法线 l_n 和 l_{n+1} 来计算得到齿轮基圆齿距 P_b ,再根据

$$m = \frac{p_b}{\pi \cos \alpha}$$

因为 α 可能是 15° ,也可能是 20° ,故分别用 15° 和 20° 代入上式算出模数,取模数最接近标准值的一组m和 α ,即为所求齿轮的模数和压力角。

(2) 确定齿轮的变位系数

根据齿轮的齿厚公式, 化简即可得到。

(3) 确定齿轮的齿顶高系数和顶隙系数

通过测量,确定齿根圆直径 df 可用游标卡尺测定,因此可求出齿根高 hf,
而 $h_f = m(h_a^* + c^* - x)$,由于不同齿制的 h_a^* 和 c^* 均为已知标准值,故分别用正常齿制 $h_a^* = 1$ 、 $c^* = 0.25$ 和短齿制 $h_a^* = 0.8$ 、 $c^* = 0.3$ 两组标准值代入,符合测量值的一组即为所求的值。

(4) 确定一对互相啮合的齿轮的啮合角和中心距

可用游标卡尺直接测定这对齿轮的中心距a',然后与公式计算结果想对比,一对互相啮合的齿轮,用上述方法分别确定其模数m、压力角 α 和变位系数 x_1 、 x_2 后,可用下式计算啮合角 α' 和中心距a':

$$\operatorname{inv} \alpha' = \frac{2(x_1 + x_2)}{z_1 + z_2} \operatorname{tg} \alpha + \operatorname{inv} \alpha$$

$$a' = \frac{m}{2}(z_1 + z_2) \frac{\cos \alpha}{\cos \alpha'}$$

1.4 实验内容

1.4.1 操作过程

- (1) 数出齿轮的齿数。
- (2) 由式(4.3)计算或查表确定跨齿数。
- (3)测量公法线长度 和 及齿根圆直径 、中心距 ,读数精度至 0.01mm。注意,每个尺寸应测量三次,记入实验报告附表,取其平均值作为测量结果。
- (4)逐个计算齿轮的参数,记入实验报告附表。最后将计算的中心距与实 测中心距进行比较。

1.4.2 实验结果记录

齿轮编号									
	齿数 <i>z</i>								
测	跨齿数n		T	T			1	1	
	测量次数	1	2	3	平均值	1	2	3	平均值
量	n 齿公法线长度 l_n								
数	$n+1$ 齿公法线长度 l_{n+1}								
t.m	孔径 $d_{\it k}$								
据	尺寸 b								
	齿根圆直径 d_{f}								
	基圆齿距 p_{b}								
	模数 m								
	压力角 $lpha$								
计	齿顶高系数 $oldsymbol{h}_a^*$								
算	顶隙系数 c^*								
	基圆齿厚 S_b								
数	分度圆直径 d								
据	变位系数 x								
	啮合角 $lpha'$								
	中心距 <i>a</i>								
	中心距相对误差								

1.5 实验思考

(1)通过两个齿轮的参数测定,试判别该对齿轮能否互相啮合。如能,则进一步判别其传动类型是什么?

(2) 在测量齿根圆直径 时,对齿数为偶数 同?	和奇数的齿轮在测量方法上有何不
(3) 公法线长度的测量是根据渐开线的什么	4性质?
(4) 如何分析跨齿数的计算公式	