Observing the first galaxies

James S. Dunlop (2012)

Selection techniques

- Lyman break galaxies (LBGs)
 - HI absorption in IGM and ISM
- Lyman-alpha Emitters (LAEs)
 - HI emission from ISM
- 3. Balmer break galaxies
 - Quenched star formation, >0.5Gyr
 - None found!

Selection techniques

- Lyman break galaxies (LBGs)
 - HI absorption in IGM and ISM
- 2. Lyman-alpha Emitters (LAEs)
 - HI emission from ISM
- 3. Balmer break galaxies
 - Quenched star formation, >0.5Gyr
 - None found
- 4. Redshifted thermal dust
 - Sub-mm/mm
 - Completeness
- 5. AGN emission in radio and optical
 - Stellar populations in radio galaxies

6. Gamma Ray Bursts

- Follow up in optical and IR
- Mostly occur in dwarf galaxies

7. Radio spectroscopy

CO line detection

Lyman Break Galaxies

Lyman Break Galaxies

- LyC photons
 - Hydrogen edge in stellar photospheres
 - Neutral H absorption in ISM
- Ly-α forest between 912 Å-1216 Å
- Easier at higher redshifts (z>5)
 - Thicker Lyα forest- Gunn Peterson trough
 - Higher Ly α emission
- Broad band optical imaging!
 - SED fitting gives better z (sometimes alternative z)

Colour-colour selection

Contaminants

- Low-z dusty galaxies
 - Stricter Ly-break criteria
 - Multiband imaging
 - Confine to young, blue galaxies

Contaminants

- Low-z dusty galaxies
 - Stricter Ly-break criteria
 - Multiband imaging
 - Confine to young, blue galaxies
- Cool galactic stars
 - Deep HST imaging
 - Multiband infrared photometry
 - Still affects z>7
- Low-z Balmer break galaxies
 - Higher SNR
 - Deeper imaging shortward of Lyman-break

Lyman- α Emitters

LAE contaminants

- Other emission line galaxies
 - Spectroscopic follow-up
 - Image a different band- another emission line

Transients

- Narrow and broad-band images at the same time
- Deeper imaging at short wavelengths

Fitting Luminosity functions

$$\frac{dn}{dL} = \phi(L) = \left(\frac{\phi^*}{L^*}\right) \left(\frac{L}{L^*}\right)^{\alpha} e^{-(L/L^*)}$$

- LBG continuum luminosity
- LAE equivalent width

- Use simulations to correct for
 - Filter dependence of z
 - Incompleteness

Faint-end:

- Slope of the function
- Luminosity cut-off

Bright end:

- Small number statistics
- Contamination
- Eddington bias

Cosmic Variance

Size of your survey

LBG Luminosity function

LBG-- Luminosity function parameters

Most of the evolution is in M* with very small or no evolution in α or ϕ^*

LAE luminosity function

- Solid line- cumulative LF
 - Upper edge- include all samples (even potential contaminants)
 - Lower edge- only confirmed sources
- Red z~6.5
- Blue z~5.7
- Dashed lines- Best fit
- Green dashed- SXDS survey (larger area)
- Green dot-dashed- Hu et al