What exactly is astronomy research?

ASTR 2910 * Week 1

Inspiration for research questions comes from:

- Previous work
- Reading literature
- Collaborators

Astronomy research typically can't be conducted in a lab.*

Our "experiments":

- Gathering data with telescopes
- Running simulations
- Pen-and-paper calculations

Communicate your results!

No one knows you did the work if you don't share it. Write a paper, go to conferences, etc

Repeat the process with a new research question (maybe one that was inspired by your previous work).

Astronomers tend to specialize by **method** and **topic**.

Two main "flavors" of methods

Observational

Theoretical

Observational astronomy

Using telescopes and instruments to gather information from the universe.

Pros: Real data, fewer assumptions, possibility of discovering something new

Cons: Limited by time/detectability, hard to get telescope time, hard to get good data, hard to know what's going on behind the scenes

Observational astronomy

Additional specialization:

- By messenger (type of information that reaches us)
 - a. EM radiation, cosmic rays, gravitational waves, neutrinos, physical objects
 - b. By specific portion of the EM spectrum
- 2. By type of data
 - a. Spectroscopy, photometry, polarimetry, astrometry, etc.

Theoretical astronomy

Building models of the universe and studying the resulting behavior.

Pros: Control over experiment, ability to change conditions/assumptions, can study the unobservable

Cons: Requires assumptions about physics, limited resolution, can be expensive to build/run

Topics/subfields