Prof. Martin Hofmann, PhD Dr. Ulrich Schöpp Sabine Bauer Ludwig-Maximilians-Universität München Institut für Informatik 8. Dezember 2017

5. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 5-1 (Differentiation; 4 Punkte) Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion mit der Eigenschaft, dass f(x+1) = xf(x) für alle $x \in \mathbb{R}$ gilt.

Zeigen Sie, dass dann auch f'(x+1) = xf'(x) + f(x) für alle $x \in \mathbb{R}$ gilt.

Aufgabe 5-2 (Differentiationsregeln; 4 Punkte) Bilden Sie jeweils die Ableitung unter Verwendung der in der Vorlesung behandelten Differentiationsregeln:

a)
$$f(x) = 4x^3 \ln x$$

d)
$$f(x) = 3^{(x^2)}$$

b)
$$f(x) = \frac{1+4x^2}{1+x^2}$$

e)
$$f(x) = \frac{e^x + e^{-x}}{2}$$

c)
$$f(x) = (2x - 12)^6$$

f)
$$f(x) = \frac{\sin(x)}{x}$$

Aufgabe 5-3 (Gliedweise Differentiation) Sei $f: \mathbb{R} \to \mathbb{C}$ eine Funktion der Form $f(z) = \sum_{k=0}^{n} \frac{a_k}{k!} z^k$. Zeigen Sie, dass dann gilt: $a_0 = f(0)$, $a_1 = f'(0)$, $a_2 = f''(0)$, ..., $a_n = f^{(n)}(0)$, wobei $f^{(n)}$ die n-te Ableitung von f bezeichnet.

Aufgabe 5-4 (Extremwerte; 4 Punkte) Sei f die reellwertige Funktion $f(x) = x^{\frac{1}{x}}$.

- a) Was ist der Definitionsbereich von f?
- b) Bestimmen Sie die lokalen Minima und Maxima von f.

Abgabe: Sie können Ihre Lösung bis zum Freitag, den 20.12. um 10 Uhr über UniWorX abgeben. Es werden Dateien im txt-Format (reiner Text) oder im pdf-Format akzeptiert.