

		Date
5.	V = 3 x i + 4y j -72 x	M(1,4,5).
	For streamline flow, $\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$	
	: dx = dy	1 dx dz / dz
	1 9	
	> 1 ln = = 1 lny + lnc /4	$\frac{1}{3} = \frac{1}{3} \ln x = -\frac{1}{7} \ln z + \ln c^{-1/7}$
	= 1 x 1/3 = (y.c) 1/4	$\Rightarrow \alpha^{V_8} = (z.c)^{-V_7}.$
	=> x4/3 = y.c	=> x ² /3 = 1
	for 2 = 1, y = 4	Z.c .
	⇒ c = 1/4 ∴ 4. × 4/3 = y.	for n=1, Z=5.
	:. 4. x 4/3 = y.	: c = 1/5
		·. Z = S
		2 ⁷ /3
	> - / 4) ? + / 4 y) ?	$A = 2m^2/s$. $(x_0, y_0) = (113)$
	$\vec{y} = \left(\frac{A}{2}\right)\hat{i} + \left(\frac{Ay}{NL}\right)\hat{j}$	Through A
	us vs	
	For a stroambne; dre dy	or - comp. of flow:
		$\dot{u} = (A/x)\hat{i}$.
	$\Rightarrow \frac{dx}{A/x} = \frac{dy}{Ay/x^2}.$	de d
	= x dn : m² dy	> 3/2 da . JA.dt.
		(naglecting constant.
	$3\int \frac{dx}{dx} = \int \frac{dy}{y}.$	$\frac{3}{2} \left[\frac{n^2}{2} \right]^2 = At$. for definite int).
	ina = lny + lne.	$\frac{1}{2} = \frac{9-1}{2} = 2(t)$.
_	» x = y.c	
	(n=1; y=3).	> t = 2sec
~	* c = V3.	
	: y=3x	

8. V= y2. - 22 + 2y.

u=0 at x=0.

For a sheady, in compressible flow, (in xxy).

> du (2y+2) =0.

Clearly, c=fly).

* Jdu = [(-2y-2) de.

* u = - 2my - 2x + c.

7 * u = - 2my - 2m + fly).

at u=0; x=0.

> 0 = 0 + 0 + flg) => fly)=0.

: | u = - 2y z - 2z

 $\begin{array}{c|c}
q. & V = \left(\begin{array}{c}
x \\
x^2 + y^2
\end{array}\right) \begin{array}{c}
\uparrow \\
2 \\
2 \\
1
\end{array}$

for am inempressible tow, dl = 0. (Since it is in two dimensions,

: du + du = 0 (the continuity equation; diff. form).

Now, $\frac{\partial u}{\partial x} = (x^2 + y^2) - \alpha (2\alpha)$ $y^2 - \alpha^2$ $(x^2 + y^2)^2$ $(x^2 + y^2)^2$.

Av = (n2+y2) - y (2y) = x2-y2 (n2+y2) = (n2+3)2

 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = \frac{y^2 - x^2 + x^2 - y^2}{(x^2 + y^2)^2} = 0$

: Continous.

