UML for analysis

11/3/24

Outline

- UML for analysis
 - Use case diagrams
 - System Sequence Diagrams
 - Domain models
 - State diagrams
 - Activity diagrams

Use case diagrams

Use case diagrams

- Basic notation
- Relationship notation
- Advanced notation
 - Extension points in extends relationships
 - CRUD

Basic notation

Relationship notation

Relationships

- Include
- Extend
- Generalization-specialization

"include" relationship

- It is used to represent composition:
 - A use case *includes* of one or more sub use cases

El caso de uso base relacionado con include es dependiente de sus sub casos de uso

When to use "include" relationship?

- 1. A set of steps appear in several use cases
 - You want to avoid repeating those steps
- 2. A use case is too complex

1. A shared sub use case

• Factor out the common steps into a sub process

2. Complex use cases

- i.e. It has many steps
- Long processes are harder to understand

Example: Prepare pancakes

- 1. Gather the ingredients for the batter:
 - 1 cup of all-purpose flour
 - 1 cup of milk
 - 1 tablespoon of melted butter or vegetable oil
 - 1 teaspoon of baking powder
 - 1 teaspoon of vanilla extract
 - 1 egg
 - 1/3 cup of sugar
- 2. Gather the extras:
- Extras (optional)
 - 1 cup of chocolate chips
 - 1 cup of blueberries
- 3. Gather the toppings
- Toppings (optional)
 - 1 cup of diced mango
 - 1 cup of diced peach
 - Whipping cream

- 4. Mix the wet ingredients (milk, melted butter or vegetable oil, vanilla extract and the egg) in a large bowl. The sugar is considered a "wet" ingredient, so it dissolves well.
- 5. Mix the dry ingredients (all-purpose flour and baking powder) in another bowl.
- 6. Pour the dry ingredients into the wet ones
- 7. Mix them together slowly until the batter is smooth
- 8. Heat a thick pan in high heat for 2 minutes
- 9. Turn the heat down to medium
- 10. Rub some butter on the pan
- 11. Pour some batter onto the pan
- 12. Put some extras on the batter when bubbles show
- 13. Flip the pan cake
- 14. Let it cook for a minute or so
- 15. Set aside
- 16. Repeat steps 11-16 until you are done with the batter.
- 17. Dice the fruit for the toppings (optional)
- 18. Serve and add toppings if so desire.

Partial use case diagram (Option 1)

Example: Prepare pancakes

```
1. Gather the ngredients for the batter:
             of all-purpose flour
             of milk
              spoon of melted butter or vegetable oil
             oon of baking powder
             oon of vanilla extract
        To g
             p of sugar
2. Gathe the extras:
Extras (ottio II)
             of chocolate chips
             of blueberries
3. Gather the oppings
Toppings (od onal)
       1 cu of diced mango
       1 cu of diced peach
       While ing cream
```

- 4. Mix the wet ingredients (milk, melted butter or vegetable oil, the egg) in a large bowl. The sugar is considered a "wet" ingrediwell.
- 5. Mix the dry ingredients (all-purpose flour and baking powder)
- 6. Pour the dry ingredients into the wet ones
- 7. Mix them together slowly until the batter is smooth
- 8. Heat a thick pan in high heat for 2 minutes
- 9. Turn the heat down to medium
- 10. Rub some butter on the pan
- 11. Pour some batter onto the pan
- 12. Put some extras on the batter when bubbles show
- 13. Flip the pan cake
- 14. Let it cook for a minute or so
- 15. Set aside

Serve

- 16. Repeat steps 11-16 until you are done with the batter.
- 17. Dice the fruit for the toppings (optional)
- 18. Serve and add toppings if so desire.

nillextract and it, soit dissolves

an∰her bowl.

2. Prepar

Cook the pancakes

m

Factor out use cases

• To understand the use case "Prepare pancakes" much better

Prepare pancakes

- 1. Get ingredients
- 2. Prepare the batter
- 3. Cook the pancakes
- 4. Serve

Partial use case diagram (Option 2)

Prepare pancakes

- 1. Get ingredients
- 2. Prepare the batter
- 3. Cook the pancakes
- 4. Serve

Partial use case diagram (Option 2)

"Extend" relationship

What is the *extend* relationship?

When you want to add more behavior to a base use case

When do you use extend?

- 1. When the added behavior is optional
 - Not in all cases it occurs
- 2. When you want to represent a sequence of scenarios

Los casos de uso relacionados con extend son independientes

Sequences

Sequence of scenarios

• Sometimes you want to represent a sequence of scenarios

- Take lesson 1
- Take lesson 2
- Take lesson 3

Example

Notice the direction of the arrows

Notice the direction of arrow

Include Extend

Partial use case diagram

Extending "Prepare pancakes"

Partial use case diagram

Clase 2

Extension points

Advanced notation

Where in the base case are we extending?

We use "Extension points" to mark the places

They are optional

In which step do we add toppings?

Prepare pancakes

- 1. Get ingredients
- 2. Prepare the batter
- 3. Cook the pancakes
- 4. Serve

We specify it with extension points

A base case with an extension

Plain

With extension points

Process sale Basic Flow

7. Main Success Scenario (or Basic Flow)

Actor Action	System Response
 Customer arrives at POS checkout with goods and/or services to purchase. 	
Cashier starts a new sale.	
Cashier enters item identifier	 System records sale line item and presents item description, price,
Cashier repeats steps 3-4 until indicates done.	and running total. Price calculated from a set of price rules.
Cashier finalizes the sale	System presents total with taxes calculated
Cashier tells Customer the total and asks for payment.	
Customer pays and the Cashier introduces the payment	System handles the payment
	10. System logs completed sale and sends sale and payment information to the external Accounting system (for accounting and commissions) and Inventory system (to update inventory). 11. System presents receipt.
 Customer leaves with receipt and goods (if any). 	11. System presents receipt.

Specifying extension points

7. Main Success Scenario (or Basic Flow)

Extension Points: VIP Customer, step 1. Payment, step 7.

Actor Action	System Response
Customer arrives at POS checkout with goods and/or services to purchase.	
Cashier starts a new sale.	
Cashier enters item identifier Cashier repeats steps 3-4 until indicates done.	System records sale line item and presents item description, price, and running total. Price calculated from a set of price rules.
Cashier finalizes the sale	System presents total with taxes calculated
7. Cashier tells Customer the total and asks for payment.	
Customer pays and the Cashier introduces the payment	System handles the payment
	10. System logs completed sale and sends sale and payment information to the external Accounting system (for accounting and commissions) and Inventory system (to update inventory).
12. Customer leaves with receipt and goods (if any).	11. System presents receipt.

Extension point notation in (Larman, 2005)

UML notation:

- 1. The extending use case points to the base use case.
- 2. The condition and extension point can be shown on the line.

Extension point notation in (Larman, 2005)

Notation in the Standard 2.5.1 [5]

Notation in StarUML

Generalization-specialization

Generalization-specialization

 Just like with class diagrams where you can generalize families of classes into types, we can do the same with use cases

Generalization-specialization

- The sub use cases:
 - inherit behavior from the base use case
 - add behavior to the base use case if needed

Partial use case diagram

Base and addition use cases

Activity (Optional)

- Given a set of use cases, indicate how they relate
- Application example: A word processor

Microsoft Word use case diagram

CRUD

CRUD use cases [1]

• "A compound use case that collapses a create, retrieve, update, and delete use cases [1]":

Example: Manage campaigns

• Create: Add campaign

• Retrieve: View campaign

• **U**pdate: Edit campaign

• **D**elete: Delete campaign

Activity: Represent the use cases suggested by the screen below from django

Student questions

Includes (composición)

Mi "todo" incluye las partes

<include>>
A -----> A1

Extends (opcional/secuencias)

A A1
opcional

<<extend>> A <----- A1

Pregunta 1

Make a reservation

In a hotel reservation system, which relationship would be most appropriate for the following scenario: "Make Payment for Reservation"?

- A) Includes
- B) Extends
- C) Generalization-Specialization

Make payment

Pregunta 1

In a hotel reservation system, which relationship would be most appropriate for the following scenario: "Make Payment for Reservation"?

- A) Includes
- B) Extends
- C) Generalization-Specialization

Actividad

• Quiz E09-1 Repaso de diagramas de casos de uso

System Sequence Diagrams

UML process [1]

What is a System Sequence Diagram?

• It is a diagram where we depict the <u>steps</u> an actor goes through <u>in</u> <u>time</u> a use case or to achieve a goal

Systems are treated as a black box [2]

We don't show inner parts of the system, e.g database.

What is a system event?

• It is an interaction between an actor with the system

Basic notation system as black box the name could be "NextGenPOS" but "System" keeps it simple the ":" and underline imply an instance, and are explained in a later chapter on sequence diagram notation in the UML external actor to Process Sale Scenario system :System : Cashier makeNewSale a UML loop [more items] loop enterItem(itemID, quantity) interaction frame, with a boolean guard description, total expression a message with endSale parameters return value(s) associated with the it is an abstraction total with taxes previous message representing the system event of an abstraction that entering the makePayment(amount) ignores presentation payment data by and medium some mechanism change due, receipt the return line is optional if nothing is returned

Lifeline

Inter-system events [2]

Payment Authorization Service

Internal databases

Internal databases

They are part of the system

How to create an SSD?

- We derive them from basic or alternative flows
 - Specified in the Expanded Use Cases

Deriving SSDs from Expanded Ucs

Actor Action	System Response
 Customer arrives at POS checkout 	
with goods and/or services to	
purchase.	
Cashier starts a new sale.	
Cashier enters item identifier	 System records sale line item and
Cashier repeats steps 3-4 until indicates done.	presents item description, price, and running total. Price calculated from a set of price rules.
5. Cashier finalizes the sale	 System presents total with taxes calculated
Cashier tells Customer the total	
and asks for payment.	
Customer pays and the Cashier	System handles the payment
introduces the payment	
	10. System logs completed sale and sends sale and payment information to the external
	Accounting system (for
	accounting and commissions) and Inventory system (to update
	inventory).
	11. System presents receipt.
 Customer leaves with receipt and goods (if any). 	

Examples adapted from [1]

Note: Some steps happen in the physical world, hence they are not mapped to the SSD

Ejemplo:

Ejercicio

Interpretation of initial system event

Menu option

New sale View sales End sale Help makeNewSale()

Button

Interpretation of a system event with parameters

enterItem(itemID, quantity)

parameters in system events mean: data input

Item ID:			
Quantity:			
		OK	

Better system event names

Interaction frames

Interaction frames

- Loop
- Alt
- Opt
- Other

Loop

Figure 10.2 SSD for a Process Sale scenario.

Alt: if-else

Figure 8 from: http://ima.udg.edu/Docencia/3105200728/DiagSeq.pdf

Opt: switch

Figure 9 from: http://ima.udg.edu/Docencia/3105200728/DiagSeq.pdf

Actividad

• Quiz E09-2 Repaso de diagramas de secuencia de sistema

Domain models

UML process [1]

Interaction diagrams:

- Sequence Diagrams
- Communication Diagrams
- Time Diagrams

What are domain models?

 A type of diagram that shows relevant <u>concepts</u> or <u>objects</u> in a domain

Ejemplo: Conceptos en el dominio de hotelería

Sujetos

- Cliente
- Hotel
- Reservación
- Estatus
- Cuarto
- Pago
- Ticket
- Servicios
- Catálogo

Verbos

- Hacer reservación
- Pagar
- Ver cuartos disponibles
- Buscar

Domain model elements

- Concepts or objects
- Associations and their multiplicities
- Attributes of objects

Domain models

Previously called "conceptual models [2]"

notation

Partial domain model

SalesLineItem

quantity=3 Notebook

How to represent a concept

- A box symbolizing the concept
- Attributes
- No methods

A visual dictionary

A domain model can be viewed as a "visual dictionary"

Real-world concepts, not software classes

Avoid software classes/artifacts

Inspiration from domain models

Getting inspired from the domain model

A Payment in the Domain Model is a concept, but a Payment in the Design Model is a software class. They are not the same thing, but the former *inspired* the naming and definition of the latter.

This reduces the representational gap.

This is one of the big ideas in object technology.

UP Domain Model

Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model

The object-oriented developer has taken inspiration from the real world domain in creating software classes.

Therefore, the representational gap between how stakeholders conceive the domain, and its representation in software, has been lowered.

Advantages?

- Code easier to understand
- Code easier to maintain

UML process [1]

Concepts-classes relationship

Concepts in domain models inspire objects in communication diagrams

 Objects in communication diagrams are generalized as classes in design class diagrams

Not necessarily a 1-to-1 mapping

- Not all concepts in the domain model may suggest a software class
- Not all software classes have a mapped real-world concept

• The purpose of the domain model is to <u>understand</u> the problem better, visually

Not necessarily a 1-to-1 mapping

Not all concepts in the domain model suggest software classes

Not all software classes have a mapped real-world concept

How to identify concepts

Partial domain model in the store domain

 Register
 Item
 Store
 Sale

 Sales LineItem
 Cashier
 Customer
 Ledger

 Cash Payment
 Product Catalog
 Product Description

How to identify concepts in a domain?[2]

- 1. Use a list of conceptual categories
- 2. Identify nominal phrases in available documentation
- 3. Use of catalogs of partial domain models by experts

Conceptual categories [2]

#	Conceptual category	Examples	
1	physical or tangible objects	Register, Airplane	
	specifications, designs, or	E	 specificacionCuarto
2	descriptions of things	ProductSpecification, FlightDescription	
3	place	Store, Airport A	reaHotel
4	transactions	Sale, Payment, Reservation	
5	transaction line items	SalesLineItem	
6	roles of people	Cashier, Pilot	
7	containers of other things	Store, Bin, Airplane	
8	things in a container	Item, Passenger	
	other computer or electro-		
	mechanical systems external to	CreditPaymentAuthorizationSystem,	
9	the system	AirTrafficControl	
10	abstract noun concepts	Hunger, Acrophobia	

Conceptual categories [2]...

#	Conceptual category	Examples
11	organizations	SalesDepartment, AirlineCompany
		Sale, Payment, Meeting, Flight, Crash,
12	events	Landing
	processes (often not represented	
13	as a concept, but may be)	SellingAProduct, BookingASeat
14	rules and policies	RefundPolicy, CancellationPolicy
15	catalogs	ProductCatalog, PartsCatalog
	records of finance, work,	Receipt, Ledger, EmploymentContract,
16	contracts, legal matters	MaintenanceLog
17	financial instruments and services	LineOfCredit, Stock
	manuals, documents, reference,	
18	papers, books	DailyPriceChangeList, RepairManual

How to identify concepts in a domain?[2]

- 1. Use a list of conceptual categories
- 2. Identify nominal phrases in available documentation
- 3. Use of catalogs of partial domain models by experts

Nouns → Concepts/Ideas

Verbs → Associations between concepts/ideas

Documentation examples: Use cases, SRS, documentation provided by the customer

2. Extracting nominal phrases

- From documentation that you have
 - E.g. expanded use cases, SRS, manuals, etc.

Example: Process Sale UC

Main Success Scenario (or Basic Flow):

- Customer arrives at a POS checkout with goods and/or services to purchase.
- 2. Cashier starts a new sale.
- Cashier enters item identifier.
- System records sale line item and presents item description, price, and running total. Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.

- System presents total with taxes calculated.
- 6. Cashier tells Customer the total, and asks for payment.
- 7. Customer pays and System handles payment.
- System logs the completed sale and sends sale and payment information to the external Accounting (for accounting and commissions) and Inventory systems (to update inventory).
- System presents receipt.
- 10.Customer leaves with receipt and goods (if any).

Example: Process Sale UC

Extensions (or Alternative Flows):

7a. Paying by cash:

- 2. System presents the balance due, and releases the cash drawer.
- 3. Cashier deposits cash tendered and returns balance in cash to Customer.
- 4. System records the cash payment.

How to identify concepts in a domain?[2]

- 1. Use a list of conceptual categories
- 2. Identify nominal phrases in available documentation
- 3. Use of catalogs of partial domain models by experts

3. Catalogs of concepts

Created by experts (Fowler, 1996; Hay 1996)

Some domains (Fowler, 1996)

- Accountability
- Observations and measurements
- Inventory and accounting
- Planning
- Trading

How to make a domain model?

- 1.List candidate concepts using 1 or more strategies we mentioned
- 2. Draw them in a domain model
- 3. Add associations between concepts
- 4. Add attributes to concepts

How to make a domain model?

• 1.List candidate concepts using 1 or more strategies we mentioned

- 2. Draw them in a domain model
- 3. Add associations between concepts
- 4. Add attributes to concepts

We use a class diagram to create domain models

How to make a domain model?

- 1.List candidate concepts using 1 or more strategies we mentioned
- 2. Draw them in a domain model
 - 3. Add associations between concepts
 - 4. Add attributes to concepts

Associations

Example: Partial domain mode

Association categories [2]

#	Association category	Examples
		Drawer Register (or more specifically,
1	A is a physical part of B	a POST), Wing Airplane
		SalesLineItem Sale, FlightLeg
2	A is a logical part of B	FlightRoute
		Register Store, Item Shelf,
3	A is physically cotained in/on B	Passenger Airplane
		ItemDescription Catalog, Flight
4	A is logically contained in B	FlightSchedule
		ItemDescription Item,
5	A is a description for B	FlightDescription Flight
	A is a line item of a transaction or	SalesLineItem Sale, MaintenanceJob
6	report B	MaintenanceLog
	A is	
	known/logged/recorded/reporte	Sale Register, Reservation
7	d/captured in B	FlightManifest
8	A is a member of B	Cashier Store, Pilot Airline

Association categories [2] ...

#	Association category	Examples
		Department Store, Maintenance
9	A is an organizational subunit of B	Airline
10	A uses or manages B	Cashier Register, Pilot Airplane
		Customer Cashier, Reservation Agent -
11	A communicates with B	- Passenger
		Customer Payment, Passenger
12	A is related to a transaction B	Ticket
	A is a transaction related to	Payment Sale, Reservation
13	another transaction B	Cancellation
		SalesLineItem SalesLineItem, City
14	A is next to B	City
15	A is owned by B	Register Store, Plane Airline
		Sale Customer, Sale Store,
16	A is an event related to B	Departure Flight

Reading direction ">"

Multiplicity

Multiplicity

Activity: Identify associations for the class project

- Work in teams
- Use the same worksheet

How to make a domain model?

- 1.List candidate concepts using 1 or more strategies we mentioned
- 2. Draw them in a domain model
- 3. Add associations between concepts
 - 4. Add attributes to concepts

Example

No foreign keys

Make the relationships visual. Avoid relating concepts with foreign keys.

Complex concepts not as attributes

Actividad

• Quiz E09-3 Repaso de modelos de dominio

State diagrams

Outline

- State machine diagram notation
- Exercise

What is a State machine diagram?

• A state machine diagram shows the lifecycle of things [1] in time as they respond to events [5]

What is a State machine diagram?

• A state machine diagram shows the lifecycle of things [1] in time as they respond to events [5]

What kind of "things"?

When create state machine diagrams? [5]

"Things"

real-world concepts [5] transactions [1] use cases [1] people [1] software objects [5] classes [5] physical object

In which model?

- Domain model
- Domain model
- Use case model
- Domain model
- Design model
- Design model
- Domain model

For business information systems[1]

"Things"

In which model?

process controllers [1]

device controllers [1]

protocol handlers [1]

telecommunication objects [1]

Domain/Design model

Domain/Design model

Domain/Design model

Design model

State machine diagram for a telephone

Telephone initial state off hook state Active Idle on hook ^O. transition event

Figure 29.1 from [3]

Start and Final states

Transition action and guard notation

Nested states

Figure 29.3 from [3]

Applying a state machine to Web page navigation modeling

Use case state diagrams

Show legal sequence of use case operations

Figure 29.5 from [3]

Example: Lifecycle of a Bugzilla Bug

https://www.bugzilla.org/docs/2.20/html/lifecycle.html

Bugzilla bug states

Activity: Create a State Machine diagram for one of the following systems

- Bug tracker
 - Bug life-cycle (Domain Model)
- Help desk ticket system
 - Ticket life-cycle (Domain Model)
- Delivery notification system
 - Package life-cycle (Domain Model)
- Scrum Task Manager
 - Task life-cycle (Domain Model)
 - User story life-cycle (Domain Model)

Actividad

• Quiz E09-4 Repaso de diagramas de estado

Clase 10

Outline

- UML for analysis
 - Use case diagrams
 - System Sequence Diagrams
 - Domain models
 - State diagrams

Activity diagrams

Activity diagrams

• They "show a sequence of activities [1]"

Partitions

Process Sales of the POS system

More notation

• The rake symbol hused to convey hierarchy

More notation

• The rake symbol (h) used to convey hierarchy

Expansion of action with

the "rake" symbol (which represents a hierarchy) indicates this activity is expanded in a sub-activity diagram

Decision and Merge symbols

Decision: Any branch happens. **Deliver Order** Mutual exclusion [else] [rush] Deliver Regular **Deliver Rush**

Decision and Merge symbols

Comparison

Join

 Can't continue unless all inputs have arrived

Merge

"Any input leads to continuation [1]"

Send signal notation

Accept event action notations

Also: Accept signal

An accept event action with a time trigger

Receive video order

Uses of activity diagrams

- Modeling:
 - Use cases [5]
 - SSDs
 - Business processes
 - Data flows
 - Concurrent programming and parallel algorithms
 - Visualizing the steps of an algorithm [5]

What is a business process?

• "A business process or business method is a collection of related, structured <u>activities</u> or <u>tasks</u> that produce a specific <u>service</u> or <u>product</u> (serve a particular goal) for a particular customer or customers. [2]"

Concurrency

- Use of partitions for different processes
- Forks for starting processes

Activity (Optional)

 Create an activity diagram that illustrates the process when a campaign is created to the moment it is shared to customers

Actividad

• Quiz E10-1 Repaso de diagrama de actividades

References

- 1. Larman, Craig (2005). Applying UML and Patterns. Prentice Hall PTR, 3rd ed.
- 2. Larman, C. (2004). UML y patrones: Una introducción al análisis y diseño orientado a objetos y al proceso unificado, Pearson Educación, 2ª ed., España.
- 3. Larman, C (?). Educator Resources, URL: https://www.craiglarman.com/wiki/index.php?title=Educator Resources#Applying UML and Patterns, as of 9/4/20.
- 4. Valtech (1999). Chapter 6: Creating a Conceptual Model
- 5. Fowler Martin (1996). Analysis Patterns: Reusable Object Models, 1st Edition, Addison-Wesley.
- 6. Hay David C. (1996). Data Model Patterns: Conventions of Thought, Dorset House eBooks.

Appendix

