Table 1: el_id ttBar Zltau Zlljet Wlnu LH_Ztautau RH_Ztautau							
$SR_{-}OS$	udai	Zltau	Zlljet	willu	LII_Ztautau	nn_Ztauta	
$\sigma_{-}up$	0.2456	0.3327	0.3344	0.6534	1.6007	1.434	
$\sigma_{-}down$	0.2456	0.3327	0.3344	0.6534	1.6007	1.434	
down,up	0.992,1.008	0.994,1.006	0.992,1.008	0.992, 1.008	0.991,1.009	0.990, 1.01	
SR_SS	0.332,1.000	0.554,1.000	0.552,1.000	0.552,1.000	0.551,1.005	0.550,1.01	
$\sigma_{-}up$	0.1073	0.0549	0.3314	0.4090	0.2035	0.184	
$\sigma_{-}down$	0.1073	0.0549	0.3314	0.4090	0.2035	0.184	
down,up	0.992,1.008	0.995,1.005	0.992,1.008	0.992,1.008	0.990,1.010	0.990,1.01	
WCR_OS	,	,		,	,		
$\sigma_{-}up$	0.3669	0.1346	0.2009	1.5007	0.1110	0.075	
$\sigma_{-}down$	0.3668	0.1346	0.2009	1.5009	0.1110	0.075	
down,up	0.992,1.008	0.992,1.008	0.992,1.008	0.994,1.006	0.994,1.006	0.994,1.00	
WCR_SS	·	•	·	•	·		
$\sigma_{-}up$	0.1364	0.0327	0.1995	0.8900	0.0634	0.048	
$\sigma_{-}down$	0.1364	0.0327	0.1995	0.8899	0.0634	0.045	
down,up	0.992, 1.008	0.988, 1.012	0.992, 1.008	0.994, 1.006	0.992, 1.008	0.991, 1.00	
QCD_OS							
$\sigma_{-}up$	0.1037	0.1394	0.1465	0.2626	0.6748	0.591	
$\sigma_{-}down$	0.1037	0.1394	0.1465	0.2626	0.6747	0.591	
down,up	0.992, 1.008	0.993, 1.007	0.991, 1.009	0.992, 1.008	0.990, 1.010	0.989, 1.01	
QCD_SS							
$\sigma_{-}up$	0.0465	0.0323	0.1411	0.1540	0.1101	0.129	
σ _down	0.0465	0.0323	0.1411	0.1540	0.1101	0.129	
down,up	0.992, 1.008	0.991, 1.009	0.991, 1.009	0.991, 1.009	0.989, 1.011	0.990, 1.01	

	${ m ttBar}$	Table 2: Zltau	el_iso Zlljet	Wlnu	LH_Ztautau	RH_Ztautau
$SR_{-}OS$	ou D ai	Zitad	Zije	vv iliu	211_20aa0aa	1011_2000000
$\sigma_{-}up$	0.2161	0.4098	0.3107	0.5867	1.3884	1.1888
$\sigma_{-}down$	0.2161	0.4098	0.3107	0.5867	1.3884	1.1888
down,up	0.993, 1.007	0.993,1.007	0.993, 1.007	0.993,1.007	0.992,1.008	0.992,1.008
SR_SS	,	,	,	,	•	,
$\sigma_{-}up$	0.0913	0.0722	0.3101	0.3486	0.1620	0.1447
$\sigma_{-}down$	0.0913	0.0722	0.3101	0.3486	0.1620	0.1447
down,up	0.993, 1.007	0.993, 1.007	0.993, 1.007	0.993, 1.007	0.992, 1.008	0.992, 1.008
WCR_OS						
$\sigma_{-}up$	0.3047	0.0985	0.1556	1.6089	0.1235	0.0808
$\sigma_{-}down$	0.3047	0.0985	0.1556	1.6087	0.1235	0.0808
down,up	0.993, 1.007	0.994, 1.006	0.994, 1.006	0.993, 1.007	0.993, 1.007	0.993, 1.007
WCR_SS						
$\sigma_{-}up$	0.1103	0.0163	0.1545	0.9892	0.0568	0.0374
$\sigma_{-}down$	0.1104	0.0163	0.1545	0.9890	0.0568	0.0374
down,up	0.993, 1.007	0.994, 1.006	0.994, 1.006	0.993, 1.007	0.993, 1.007	0.992, 1.008
QCD_OS						
$\sigma_{-}up$	0.0975	0.1476	0.1286	0.2386	0.5369	0.4534
$\sigma_{-}down$	0.0975	0.1476	0.1286	0.2386	0.5369	0.4534
down,up	0.993, 1.007	0.992, 1.008	0.992, 1.008	0.992, 1.008	0.992, 1.008	0.992, 1.008
QCD_SS						
$\sigma_{\text{-}}up$	0.0443	0.0299	0.1194	0.1373	0.0824	0.1016
$\sigma_{-}down$	0.0443	0.0299	0.1194	0.1373	0.0824	0.1016
down,up	0.993, 1.007	0.992, 1.008	0.992, 1.008	0.992, 1.008	0.992, 1.008	0.992, 1.008

		Table 3:	mu_id			
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$SR_{-}OS$						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ_down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$_{ m down,up}$	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
SR_SS						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _ $down$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$_{ m down,up}$	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
WCR_OS						
σ _ up	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _ $down$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$_{ m down,up}$	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
WCR_SS						
σ _ up	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ_down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\sigma_{-}down$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000

Table 4: mu_iso						
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$SR_{-}OS$						
σ _ up	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ_down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
SR_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\sigma_{-}down$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
WCR_OS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
WCR_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\sigma_{-}down$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000

		Table 5: ta	${ m u_id_sys}$			
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
SR_OS						
$\sigma_{ extsf{-}}up$	0.4659	0.0000	0.0000	0.0028	4.3459	3.6950
$\sigma_{-}down$	0.4659	0.0000	0.0000	0.0028	4.3459	3.6951
$_{ m down,up}$	0.986, 1.014	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.975, 1.025	0.975, 1.025
SR_SS						
$\sigma_{ extsf{-}}up$	0.0127	0.0000	0.0000	0.0002	0.2734	0.2678
σ _down	0.0127	0.0000	0.0000	0.0002	0.2734	0.2678
$_{ m down,up}$	0.999, 1.001	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.987, 1.013	0.985, 1.015
WCR_OS						
$\sigma_{ extsf{-}}up$	0.7757	0.0000	0.0000	0.0021	0.4102	0.2758
σ _down	0.7757	0.0000	0.0000	0.0021	0.4102	0.2758
$_{ m down,up}$	0.983, 1.017	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.978, 1.022	0.977, 1.023
WCR_SS						
$\sigma_{ extsf{-}}up$	0.0263	0.0000	0.0000	0.0004	0.0176	0.0154
$\sigma_{-}down$	0.0263	0.0000	0.0000	0.0004	0.0176	0.0154
$_{ m down,up}$	0.998, 1.002	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.998, 1.002	0.997, 1.003
QCD_OS						
$\sigma_{ extsf{-}}up$	0.1920	0.0000	0.0000	0.0247	1.6339	1.3829
σ _down	0.1920	0.0000	0.0000	0.0247	1.6338	1.3829
$_{ m down,up}$	0.986, 1.014	1.000, 1.000	1.000, 1.000	0.999, 1.001	0.975, 1.025	0.975, 1.025
QCD_SS						
$\sigma_{ extsf{-}}up$	0.0399	0.0000	0.0000	0.0128	0.1818	0.2882
σ _down	0.0400	0.0000	0.0000	0.0128	0.1818	0.2882
down,up	0.994, 1.006	1.000, 1.000	1.000, 1.000	0.999, 1.001	0.982, 1.018	0.978, 1.022

		Table 6: tai				
	${ m ttBar}$	Zltau	Zlljet	Wlnu	LH_Ztautau	$RH_Ztautau$
$SR_{-}OS$						
$\sigma_{ extsf{-}}up$	0.2595	0.0000	0.0000	0.0016	2.4708	2.1037
$\sigma_{-}down$	0.2595	0.0000	0.0000	0.0016	2.4708	2.1038
$_{ m down,up}$	0.992, 1.008	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.986, 1.014	0.986, 1.014
SR_SS						
$\sigma_{ ext{-}}up$	0.0073	0.0000	0.0000	0.0001	0.1626	0.1621
σ _down	0.0073	0.0000	0.0000	0.0001	0.1626	0.1621
down,up	0.999, 1.001	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.992, 1.008	0.991, 1.009
WCR_OS						
$\sigma_{ ext{-}}up$	0.4322	0.0000	0.0000	0.0012	0.2340	0.1591
σ _ $down$	0.4324	0.0000	0.0000	0.0012	0.2340	0.1591
down,up	0.991, 1.009	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.987, 1.013	0.987, 1.013
WCR_SS						
$\sigma_{ ext{-}}up$	0.0149	0.0000	0.0000	0.0002	0.0105	0.0084
$\sigma_{-}down$	0.0149	0.0000	0.0000	0.0002	0.0105	0.0084
down,up	0.999, 1.001	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.999, 1.001	0.998, 1.002
QCD_OS						
$\sigma_{ ext{-}}up$	0.1067	0.0000	0.0000	0.0145	0.9270	0.7882
σ _down	0.1067	0.0000	0.0000	0.0145	0.9270	0.7882
down,up	0.992, 1.008	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.986, 1.014	0.986, 1.014
QCD_SS						
$\sigma_{ ext{-}}up$	0.0221	0.0000	0.0000	0.0071	0.1076	0.1711
$\sigma_{ extsf{-}}down$	0.0221	0.0000	0.0000	0.0071	0.1075	0.1711
down,up	0.996, 1.004	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.989, 1.011	0.987, 1.013

Table 7: tau_el ttBar Zltau Zlljet Wlnu LH_Ztautau RH_Ztautau								
$SR_{-}OS$	осВаг	21000	211100	Willia	LII_Zuaduad	1011_20000000		
$\sigma_{-}up$	0.0306	14.1128	0.0000	0.0000	0.0216	0.0112		
$\sigma_{-}down$	0.0306	14.1128	0.0000	0.0000	0.0216	0.0112		
down,up	0.999,1.001	0.755,1.245	1.000,1.000	1.000,1.000	1.000,1.000	1.000,1.000		
SR_SS	,	,	,	,	,	,		
$\sigma_{-}up$	0.0069	2.6586	0.0000	0.0000	0.0000	0.0000		
$\sigma_{-}down$	0.0069	2.6586	0.0000	0.0000	0.0000	0.0000		
down,up	0.999, 1.001	0.740, 1.260	1.000,1.000	1.000,1.000	1.000, 1.000	1.000,1.000		
WCR_OS								
$\sigma_{-}up$	0.0707	3.8009	0.0000	0.0000	0.0000	0.0000		
$\sigma_{-}down$	0.0707	3.8009	0.0000	0.0000	0.0000	0.0000		
down,up	0.998, 1.002	0.760, 1.240	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000		
WCR_SS								
$\sigma_{-}up$	0.0146	0.6384	0.0000	0.0000	0.0000	0.0000		
$\sigma_{-}down$	0.0146	0.6384	0.0000	0.0000	0.0000	0.0000		
down,up	0.999, 1.001	0.758, 1.242	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000		
QCD_OS								
$\sigma_{-}up$	0.0150	4.7059	0.0000	0.0422	0.0017	0.0000		
$\sigma_{-}down$	0.0150	4.7059	0.0000	0.0422	0.0017	0.0000		
down,up	0.999, 1.001	0.760, 1.240	1.000, 1.000	0.999, 1.001	1.000, 1.000	1.000, 1.000		
QCD_SS								
$\sigma_{-}up$	0.0000	1.0134	0.0000	0.0000	0.0000	0.0000		
$\sigma_{-}down$	0.0000	1.0134	0.0000	0.0000	0.0000	0.0000		
down,up	1.000, 1.000	0.725, 1.275	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000,1.000		

Table 8: tau_fake						
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$SR_{-}OS$						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ_down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$_{ m down,up}$	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
SR_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\sigma_{-}down$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
WCR_OS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
WCR_SS						
σ _ up	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ_down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\sigma_{-}down$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000	1.000, 1.000

		Table 9: ElE					
	${ m ttBar}$	Zltau	Zlljet	Wlnu	LH_Ztautau	$RH_Ztautau$	
$SR_{-}OS$							
$\sigma_{ extsf{-}}up$	0.1033	0.0645	0.5933	0.1983	0.8053	0.0191	
$\sigma_{-}down$	0.1411	0.0645	0.6763	0.2176	0.8230	0.0175	
down,up	1.004, 1.003	1.001, 1.001	1.016, 1.014	1.003, 1.002	1.005, 1.005	1.000, 1.000	
SR_SS							
$\sigma_{ extsf{-}}up$	0.0474	0.1484	0.1218	0.2649	0.0250	0.3469	
$\sigma_{-}down$	0.0192	0.1484	0.0722	0.6961	0.0250	0.3469	
down,up	0.999, 0.997	0.985, 0.985	0.998, 0.997	1.014, 1.005	0.999, 0.999	1.019, 1.019	
WCR_OS							
$\sigma_{ ext{-}}up$	0.1299	0.3327	0.2588	0.7698	0.0316	0.5049	
σ _down	0.1465	0.3798	0.1827	1.0056	0.0970	0.5049	
down,up	1.003, 1.003	1.024, 1.021	0.993, 0.989	1.004, 1.003	1.005, 0.998	1.042, 1.042	
WCR_SS							
$\sigma_{ ext{-}}up$	0.0789	0.0000	0.1442	0.0217	0.0116	0.1396	
σ_down	0.1022	0.0000	0.2632	0.0410	0.0116	0.1396	
down,up	1.006, 1.005	1.000, 1.000	1.011, 1.006	1.000, 1.000	0.999, 0.999	1.028, 1.028	
QCD_OS							
σ _ up	0.1619	1.0887	0.4232	0.4891	0.2993	0.1299	
σ_down	0.1619	1.0887	0.4220	0.4507	0.2993	0.1299	
down,up	0.988, 0.988	1.056, 1.056	0.975, 0.975	0.986, 0.984	1.005, 1.005	0.998, 0.998	
QCD_SS							
$\sigma_{ ext{-}}up$	0.0097	0.0278	0.1179	1.7732	0.1696	0.0593	
σ _ $down$	0.0097	0.0278	0.1179	1.7732	0.1696	0.0593	
down,up	1.002, 1.002	0.992, 0.992	1.008, 1.008	1.098, 1.098	0.983, 0.983	0.995, 0.995	

	Table 10: ElES_PS						
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$	
$SR_{-}OS$							
σ _ up	0.1958	0.0652	0.7084	0.3036	1.0582	0.2579	
σ_down	0.0811	0.0534	0.5713	0.0885	0.6884	0.1860	
$_{ m down,up}$	1.003, 1.006	1.001, 1.001	1.013, 1.016	1.001, 1.004	1.004, 1.006	0.999, 1.002	
SR_SS							
σ _ up	0.0279	0.1484	0.0683	0.7632	0.0250	0.3469	
σ _ $down$	0.0625	0.1484	0.1618	0.6414	0.0253	0.3442	
$_{ m down,up}$	0.995, 1.002	0.985, 0.985	0.996, 0.998	1.013, 1.016	0.999, 0.999	1.019, 1.019	
WCR_OS							
$\sigma_{ ext{-}}up$	0.0907	0.2694	0.2538	1.0651	0.1080	0.6209	
σ _down	0.1457	0.4404	0.1866	0.8266	0.0241	0.5056	
$_{ m down,up}$	1.003, 1.002	1.028, 1.017	0.992, 0.990	1.004, 1.005	0.999, 0.994	1.042, 1.051	
WCR_SS							
$\sigma_{ extsf{-}}up$	0.0898	0.0000	0.1108	0.0316	0.0032	0.1396	
σ_down	0.1023	0.0000	0.1821	0.0353	0.0116	0.1396	
down,up	1.006, 1.005	1.000, 1.000	1.008, 1.005	1.000, 1.000	0.999, 1.000	1.028, 1.028	
QCD_OS							
σ _ up	0.1015	1.0864	0.4214	0.4565	0.4116	0.0168	
σ _ $down$	0.1939	1.0911	0.4226	0.4590	0.1656	0.2986	
down,up	0.986, 0.993	1.056, 1.055	0.975, 0.975	0.985, 0.985	1.003, 1.006	0.995, 1.000	
QCD_SS							
$\sigma_{ ext{-}}up$	0.0532	0.0278	0.1447	1.8436	0.1696	0.0593	
σ _ $down$	0.0091	0.0278	0.1575	1.6186	0.1701	0.0593	
down,up	1.001, 1.009	0.992, 0.992	1.010, 1.009	1.089, 1.102	0.983, 0.983	0.995, 0.995	

		Table 11: E	${ m lES_R12}$			
	ttBar	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$\mathrm{SR}_{ ext{-}}\mathrm{OS}$						
σ _ up	0.0223	0.1186	0.4723	0.1238	0.1307	0.6367
σ_down	0.2733	0.1069	0.8172	0.4515	1.6929	0.9896
down,up	1.008, 0.999	1.002, 0.998	1.019, 1.011	1.006, 0.998	1.010, 1.001	1.007, 0.996
SR_SS						
$\sigma_{ ext{-}}up$	0.0889	0.1733	0.2384	0.5233	0.0505	0.2743
σ _down	0.1022	0.0311	0.0594	1.2006	0.0352	0.5391
down,up	1.007, 0.994	0.997, 0.983	1.001, 0.994	1.025, 1.011	1.002, 0.998	1.029, 1.015
WCR_OS						
$\sigma_{ ext{-}}up$	0.1942	0.5076	0.0260	0.6629	0.0772	0.5041
σ _ $down$	0.0058	0.1926	0.4532	1.1370	0.0157	0.5139
down,up	1.000, 1.004	0.988, 1.032	0.981, 1.001	1.005, 1.003	1.001, 1.004	1.043, 1.042
WCR_SS						
$\sigma_{ ext{-}}up$	0.1076	0.0000	0.3440	0.0505	0.0112	0.4082
$\sigma_{-}down$	0.0301	0.1560	0.1125	0.1749	0.0009	0.1396
down,up	1.002, 1.006	0.941, 1.000	0.995, 1.014	1.001, 1.000	1.000, 0.999	1.028, 1.083
QCD_OS						
$\sigma_{ ext{-}}up$	0.2494	1.0882	0.5039	0.6080	0.0606	0.3939
σ _down	0.0361	1.1209	0.3843	0.4443	0.4737	0.6255
down,up	0.997, 0.982	1.057, 1.056	0.977, 0.970	0.986, 0.981	1.007, 0.999	1.011, 0.993
QCD_SS						
$\sigma_{ ext{-}}up$	0.0077	0.0176	0.0768	1.4801	0.2445	0.0585
σ _down	0.0890	0.0264	0.1665	1.6523	0.2229	0.1602
down,up	1.014, 1.001	0.993, 0.995	1.011, 1.005	1.091, 1.082	0.978, 0.976	1.012, 0.995

	Table 12: ElES_Zee						
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_{-}Ztautau$	$RH_Ztautau$	
$SR_{-}OS$							
$\sigma_{ extsf{-}}up$	0.0612	0.3123	0.5124	0.6781	1.6193	1.1083	
σ_down	0.2792	0.6120	0.3930	1.0530	0.0374	0.8594	
down,up	1.009, 0.998	1.011, 0.995	1.009, 1.012	1.013, 0.992	1.000, 1.009	0.994, 1.008	
SR_SS							
$\sigma_{ ext{-}}up$	0.1425	0.1176	0.2879	0.6346	0.0987	0.6652	
$\sigma_{-}down$	0.1037	0.0901	0.2282	0.0215	0.0836	0.0226	
down,up	1.008, 0.990	1.009, 0.988	0.995, 1.007	1.000, 1.013	0.996, 0.995	0.999, 1.036	
WCR_OS							
$\sigma_{ ext{-}}up$	0.5225	0.5552	0.1231	4.3116	0.7557	1.4437	
σ _down	0.2263	0.4050	0.4442	2.8004	0.3166	0.2188	
down,up	0.995, 1.011	0.974, 1.035	0.982, 0.995	0.988, 1.019	0.983, 1.040	1.018, 1.119	
WCR_SS							
σ _ up	0.1744	0.0000	0.4299	1.7231	0.0022	0.4082	
σ_down	0.1441	0.0000	0.0170	1.6839	0.0198	0.2596	
down,up	0.991, 1.010	1.000, 1.000	0.999, 1.018	0.988, 1.012	0.998, 1.000	0.947, 1.083	
QCD_OS							
$\sigma_{ ext{-}}up$	0.1531	1.1951	0.4354	0.8402	0.3775	0.6244	
$\sigma_{-}down$	0.1298	0.9464	0.5060	0.3213	0.1035	0.7072	
down,up	0.991, 0.989	1.048, 1.061	0.970, 0.974	0.990, 0.973	0.998, 1.006	0.987, 1.011	
QCD_SS							
$\sigma_{ ext{-}}up$	0.0013	0.1087	0.1929	1.3033	0.2259	0.1569	
σ _down	0.0601	0.0091	0.0041	1.8337	0.2452	0.4684	
down,up	1.010, 1.000	1.002, 0.971	1.000, 1.012	1.101, 1.072	0.976, 0.978	0.964, 1.012	

Table 13: ElEnResSys							
	ttBar	Zltau	Zlljet	Wlnu	$LH_{-}Ztautau$	$RH_{-}Ztautau$	
SR_OS							
$\sigma_{ extsf{-}}up$	0.0026	0.0059	0.2906	0.1398	0.1681	0.2635	
$\sigma_{-}down$	0.0888	0.4858	0.3025	0.0710	0.4592	0.2139	
$_{ m down,up}$	1.003, 1.000	1.008, 1.000	1.007, 1.007	1.001, 0.998	1.003, 1.001	1.001, 0.998	
SR_SS							
$\sigma_{ extsf{-}}up$	0.0148	0.8622	0.1362	0.5425	0.2568	0.1434	
σ _down	0.0097	0.1143	0.0472	0.0298	0.3296	0.3712	
$_{ m down,up}$	0.999, 1.001	1.011, 1.084	0.999, 0.997	1.001, 1.011	1.016, 1.012	1.020, 1.008	
WCR_OS							
$\sigma_{ extsf{-}}up$	0.1641	0.2239	0.5953	0.1583	0.4706	0.1006	
σ _down	0.2329	0.5326	0.0717	0.7288	0.0838	0.4219	
$_{ m down,up}$	1.005, 1.004	1.034, 1.014	1.003, 0.976	1.003, 1.001	1.004, 1.025	1.035, 1.008	
WCR_SS							
$\sigma_{ ext{-}}up$	0.0386	0.0016	0.0157	0.0193	0.0079	0.2844	
σ _down	0.0404	0.0003	0.0700	0.1066	0.0016	0.1392	
$_{ m down,up}$	1.002, 0.998	1.000, 0.999	1.003, 0.999	1.001, 1.000	1.000, 1.001	1.028, 1.058	
QCD_OS							
$\sigma_{ extsf{-}}up$	0.0156	1.1942	0.4512	0.1537	0.1664	0.3344	
σ _ $down$	0.1488	0.5146	0.5306	0.5330	0.5479	0.4236	
$_{ m down,up}$	0.989, 0.999	1.026, 1.061	0.968, 0.973	0.983, 0.995	1.008, 0.997	0.992, 1.006	
QCD_SS							
$\sigma_{ extsf{-}}up$	0.1001	0.8210	0.1577	1.1993	0.0983	0.1444	
$\sigma_{ ext{-}}down$	0.0622	0.1560	0.2621	1.7837	0.1733	0.2606	
down,up	1.010, 1.016	0.958, 0.777	1.017, 1.010	1.098, 1.066	0.983, 0.990	0.980, 0.989	

Table 14: MuSys							
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_{-}Ztautau$	$RH_{-}Ztautau$	
$SR_{-}OS$							
$\sigma_{ ext{-}}up$	0.0960	0.0639	0.0039	0.0420	0.0933	0.1829	
$\sigma_{-}down$	0.0960	0.0639	0.0039	0.0420	0.0933	0.1829	
down,up	1.003, 1.003	1.001, 1.001	1.000, 1.000	1.001, 1.001	1.001, 1.001	0.999, 0.999	
SR_SS							
$\sigma_{ ext{-}}up$	0.0027	0.0000	0.0154	0.3224	0.0353	0.0483	
σ _down	0.0027	0.0000	0.0154	0.3224	0.0353	0.0483	
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.993, 0.993	0.998, 0.998	0.997, 0.997	
WCR_OS							
$\sigma_{ ext{-}}up$	0.0876	0.0512	0.2309	0.3141	0.1640	0.1152	
σ _down	0.0876	0.0512	0.2309	0.3141	0.1640	0.1152	
down,up	1.002, 1.002	1.003, 1.003	1.009, 1.009	1.001, 1.001	1.009, 1.009	1.010, 1.010	
WCR_SS							
$\sigma_{ ext{-}}up$	0.0363	0.0000	0.0577	0.0626	0.0000	0.0000	
σ _down	0.0363	0.0000	0.0577	0.0607	0.0000	0.0000	
down,up	1.002, 1.002	1.000, 1.000	1.002, 1.002	1.000, 1.000	1.000, 1.000	1.000, 1.000	
$\overline{\mathrm{QCD}}$ -OS							
$\sigma_{ ext{-}}up$	0.0788	0.2518	0.0063	0.0290	0.2281	0.1295	
σ _down	0.0788	0.2518	0.0063	0.0290	0.2281	0.1295	
down,up	1.006, 1.006	1.013, 1.013	1.000, 1.000	1.001, 1.001	1.004, 1.004	1.002, 1.002	
QCD_SS							
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.1020	0.0020	0.0000	0.0978	
σ _down	0.0000	0.0000	0.1020	0.0020	0.0000	0.0978	
down,up	1.000, 1.000	1.000, 1.000	0.993, 0.993	1.000, 1.000	1.000, 1.000	1.008, 1.008	

		Table 15:				
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$SR_{-}OS$						
$\sigma_{ extsf{-}}up$	0.3989	0.2027	0.1836	0.0813	0.5616	1.3528
$\sigma_{-}down$	0.3989	0.2027	0.1836	0.0813	0.5616	1.3528
down,up	0.988, 0.988	0.996, 0.996	0.996, 0.996	0.999, 0.999	0.997, 0.997	0.991, 0.991
SR_SS						
$\sigma_{ ext{-}}up$	0.2583	0.0655	0.6757	1.7832	0.0867	0.3338
σ _down	0.2583	0.0655	0.6757	1.7832	0.0867	0.3338
down,up	1.019, 1.019	0.994, 0.994	0.984, 0.984	0.963, 0.963	1.004, 1.004	0.982, 0.982
WCR_OS						
$\sigma_{ ext{-}}up$	0.5521	0.4417	0.4885	0.3409	0.7621	0.7349
σ _ $down$	0.5521	0.4417	0.4885	0.3409	0.7621	0.7349
down,up	1.012, 1.012	1.028, 1.028	1.020, 1.020	1.001, 1.001	1.041, 1.041	1.061, 1.061
WCR_SS						
$\sigma_{ ext{-}}up$	0.1001	0.5800	0.6930	0.1264	0.1797	0.8269
$\sigma_{-}down$	0.1001	0.5800	0.6930	0.1264	0.1797	0.8269
down,up	1.006, 1.006	0.780, 0.780	1.029, 1.029	1.001, 1.001	0.978, 0.978	1.169, 1.169
QCD_OS						
$\sigma_{ ext{-}}up$	0.3664	0.3363	0.0819	0.1016	0.4180	0.0408
σ _ $down$	0.3664	0.3363	0.0819	0.1016	0.4180	0.0408
down,up	1.027, 1.027	1.017, 1.017	0.995, 0.995	0.997, 0.997	0.994, 0.994	0.999, 0.999
QCD_SS						
$\sigma_{ ext{-}}up$	0.2096	0.0000	0.3085	1.4552	0.1943	0.1896
$\sigma_{ extsf{-}}down$	0.2096	0.0000	0.3085	1.4552	0.1943	0.1896
down,up	1.034,1.034	1.000, 1.000	0.980, 0.980	1.080, 1.080	0.981, 0.981	0.985, 0.985

		Table 16: J	$\mathbf{ES_BJet}$			
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$\mathrm{SR}_{ ext{-}}\mathrm{OS}$						
σ _ up	0.2584	0.0639	0.0039	0.0479	0.0963	0.1946
$\sigma_{-}down$	0.1433	0.0491	0.0039	0.0283	0.0933	0.1829
down,up	0.996, 1.008	1.001, 1.001	1.000, 1.000	1.000, 1.001	1.001, 1.001	0.999, 0.999
SR_SS						
$\sigma_{ ext{-}}up$	0.1725	0.0000	0.0154	0.3224	0.0353	0.0483
σ _down	0.2058	0.0000	0.0226	0.3266	0.0353	0.0483
down,up	0.985, 1.013	1.000, 1.000	0.999, 1.000	0.993, 0.993	0.998, 0.998	0.997, 0.997
WCR_OS						
$\sigma_{ ext{-}}up$	0.3086	0.0512	0.2309	0.3158	0.1251	0.1152
σ _down	0.5858	0.0512	0.2074	0.3141	0.1640	0.1152
down,up	1.013, 0.993	1.003, 1.003	1.008, 1.009	1.001, 1.001	1.009, 1.007	1.010, 1.010
WCR_SS						
σ _ up	0.1906	0.0000	0.0577	0.0704	0.0000	0.0000
$\sigma_{-}down$	0.0039	0.0000	0.0577	0.0607	0.0000	0.0000
down,up	1.000, 0.989	1.000, 1.000	1.002, 1.002	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ ext{-}}up$	0.0526	0.2518	0.0063	0.0290	0.2281	0.1295
$\sigma_{-}down$	0.0112	0.2518	0.0063	0.0290	0.2281	0.1295
down,up	0.999, 1.004	1.013, 1.013	1.000, 1.000	1.001, 1.001	1.004, 1.004	1.002, 1.002
QCD_SS						
$\sigma_{ ext{-}}up$	0.0107	0.0000	0.1020	0.0020	0.0000	0.0978
σ _down	0.0287	0.0000	0.1020	0.0020	0.0000	0.0978
down,up	1.005, 1.002	1.000, 1.000	0.993, 0.993	1.000, 1.000	1.000, 1.000	1.008, 1.008

Table 17: JES_Detector1							
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$	
$SR_{-}OS$							
σ _ up	0.2437	0.1657	0.3451	0.7619	0.1192	0.2746	
σ_down	0.0827	0.0064	0.2266	0.4775	0.1088	0.1237	
down,up	0.997, 1.008	1.000, 1.003	0.995, 1.008	0.994, 1.009	1.001, 1.001	0.999, 0.998	
SR_SS							
$\sigma_{ extsf{-}}up$	0.0716	0.0029	0.2696	0.0239	0.0133	0.0483	
σ _down	0.0898	0.0249	0.3142	0.5964	0.1428	0.0414	
down,up	0.993, 1.005	0.998, 1.000	0.993, 1.006	0.988, 1.000	0.993, 1.001	1.002, 0.997	
WCR_OS							
$\sigma_{ ext{-}}up$	0.2199	0.2930	0.1507	0.0068	0.1108	0.1123	
σ _down	0.3729	0.3464	0.5135	0.6638	0.1860	0.1671	
down,up	1.008, 0.995	1.022, 0.982	1.021, 0.994	1.003, 1.000	1.010, 1.006	1.014, 0.991	
WCR_SS							
$\sigma_{ ext{-}}up$	0.1803	0.0000	0.1373	0.1020	0.0000	0.0000	
σ _ $down$	0.1374	0.0000	0.2269	0.4099	0.0000	0.0000	
down,up	1.008, 0.989	1.000, 1.000	1.009, 0.994	1.003, 0.999	1.000, 1.000	1.000, 1.000	
QCD_OS							
$\sigma_{ ext{-}}up$	0.0671	0.2071	0.1188	0.1717	0.1930	0.0037	
σ _ $down$	0.0123	0.2518	0.0894	0.0065	0.2031	0.1666	
down,up	0.999, 1.005	1.013, 1.011	0.995, 1.007	1.000, 1.005	1.003, 1.003	1.003, 1.000	
QCD_SS							
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0231	0.0142	0.0000	0.0978	
$\sigma_{-}down$	0.0636	0.0000	0.0853	0.0782	0.0000	0.0699	
down,up	0.990, 1.000	1.000, 1.000	0.994, 0.999	0.996, 1.001	1.000, 1.000	1.005, 1.008	

		able 18: JES _				
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$SR_{-}OS$						
$\sigma_{ extsf{-}}up$	0.1482	0.1334	0.2460	0.5425	0.0429	0.2407
σ_down	0.0376	0.0339	0.1252	0.2259	0.1657	0.1614
down,up	1.001, 1.005	1.001, 1.002	0.997, 1.006	0.997, 1.007	1.001, 1.000	0.999, 0.998
SR_SS						
$\sigma_{ ext{-}}up$	0.0126	0.0029	0.2491	0.2088	0.0217	0.0483
σ _down	0.0510	0.0000	0.2898	0.4403	0.1428	0.0414
down,up	0.996, 0.999	1.000, 1.000	0.993, 1.006	0.991, 0.996	0.993, 1.001	1.002, 0.997
WCR_OS						
$\sigma_{ ext{-}}up$	0.0738	0.2235	0.0513	0.1204	0.0551	0.0918
σ _ $down$	0.2332	0.3461	0.3647	0.5519	0.1635	0.0505
down,up	1.005, 0.998	1.022, 0.986	1.015, 0.998	1.002, 1.001	1.009, 1.003	0.996, 1.008
WCR_SS						
$\sigma_{ ext{-}}up$	0.0325	0.0000	0.1180	0.0067	0.0000	0.0000
σ _down	0.0650	0.0000	0.1187	0.2741	0.0000	0.0000
down,up	1.004, 0.998	1.000, 1.000	1.005, 0.995	1.002, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ ext{-}}up$	0.0957	0.2071	0.0385	0.1474	0.1692	0.0446
σ _ $down$	0.0311	0.2518	0.0201	0.0016	0.2303	0.1666
down,up	1.002, 1.007	1.013, 1.011	0.999, 1.002	1.000, 1.005	1.004, 1.003	1.003, 1.001
QCD_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0915	0.1054	0.0000	0.0978
$\sigma_{-}down$	0.0000	0.0000	0.1541	0.1021	0.0000	0.0699
down,up	1.000, 1.000	1.000, 1.000	0.990, 0.994	0.994, 1.006	1.000, 1.000	1.005, 1.008

Table 19: JES_EtaModelling								
	ttBar	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$		
SR_OS								
$\sigma_{ extsf{-}}up$	0.3198	0.2166	1.1338	1.6801	0.0811	0.4836		
$\sigma_{-}down$	0.0571	0.0799	1.3959	1.3705	0.2107	0.1488		
$_{ m down,up}$	0.998, 1.010	1.001, 1.004	0.968, 1.026	0.983, 1.021	1.001, 1.000	0.999, 0.997		
SR_SS								
$\sigma_{ extsf{-}}up$	0.0533	0.1877	1.4081	0.5502	0.2253	0.1357		
σ _down	0.0455	0.2139	1.3821	1.3957	0.1061	0.1194		
$_{ m down,up}$	0.997, 0.996	1.021, 1.018	0.968, 1.033	0.971, 1.011	0.995, 1.011	1.006, 0.993		
WCR_OS								
$\sigma_{ extsf{-}}up$	0.3349	0.3582	0.2732	0.6238	0.0020	0.3118		
$\sigma_{-}down$	0.6081	0.4550	0.6785	1.3128	0.3219	0.3432		
$_{ m down,up}$	1.013, 0.993	1.029, 0.977	1.028, 0.989	1.006, 0.997	1.017, 1.000	0.972, 0.974		
WCR_SS								
$\sigma_{ extsf{-}}up$	0.2914	0.1560	0.5384	0.4863	0.0000	0.0000		
σ _down	0.2940	0.0000	0.6703	1.1297	0.0000	0.3009		
$_{ m down,up}$	1.018, 0.983	1.000, 0.941	1.028, 0.978	1.008, 0.997	1.000, 1.000	1.061, 1.000		
QCD_OS								
$\sigma_{ extsf{-}}up$	0.0382	0.1585	0.2978	0.4390	0.2521	0.0977		
σ _down	0.1514	0.2229	0.4195	0.2379	0.3253	0.3029		
$_{ m down,up}$	0.989, 1.003	1.011, 1.008	0.975, 1.018	0.992, 1.014	1.005, 1.004	1.006, 1.002		
QCD_SS								
$\sigma_{ extsf{-}}up$	0.0047	0.0000	0.2618	0.5010	0.0000	0.2157		
σ _down	0.0545	0.0000	0.3644	0.3852	0.0000	0.0699		
down,up	0.991, 1.001	1.000, 1.000	0.976, 1.017	0.979, 1.028	1.000, 1.000	1.005, 1.017		

Table 20: JES_FlavComp								
	ttBar	Zltau	$\overline{\mathrm{Zlljet}}$	Wlnu	$LH_{-}Ztautau$	$RH_Ztautau$		
SR_OS								
σ _ up	0.3064	0.4105	0.9895	1.8457	0.0414	0.2762		
σ _down	0.1406	0.1706	1.3098	1.6770	0.1539	0.0633		
down,up	0.996, 1.010	0.997, 1.007	0.970, 1.023	0.979, 1.023	1.001, 1.000	1.000, 0.998		
SR_SS								
$\sigma_{ ext{-}}up$	0.0894	0.0147	1.0344	1.1973	0.2119	0.0434		
σ_down	0.0127	0.7867	0.9593	1.8286	0.0364	0.0347		
down,up	1.001, 0.993	1.077, 1.001	0.978, 1.024	0.962, 1.025	1.002, 1.010	0.998, 1.002		
WCR_OS								
$\sigma_{ ext{-}}up$	0.1364	0.5779	0.7319	1.1864	0.0951	0.1822		
σ _ $down$	0.3476	0.8087	0.9601	1.5988	0.3435	0.3254		
down,up	1.007, 0.997	1.051, 0.964	1.039, 0.970	1.007, 0.995	1.018, 0.995	0.973, 0.985		
WCR_SS								
$\sigma_{ extsf{-}}up$	0.3660	0.1560	0.5746	0.5308	0.0000	0.2685		
σ _down	0.2585	0.0000	0.5630	1.6197	0.1085	0.0000		
down,up	1.015, 0.978	1.000, 0.941	1.023, 0.976	1.011, 0.996	0.987, 1.000	1.000, 0.945		
QCD_OS								
σ _ up	0.1464	0.2003	0.1812	0.3080	0.2154	0.0055		
σ _ $down$	0.0572	0.4937	0.2948	0.3989	0.3752	0.2492		
down,up	0.996, 1.011	1.025, 1.010	0.982, 1.011	0.987, 1.010	1.006, 1.003	1.005, 1.000		
QCD_SS								
$\sigma_{ extsf{-}}up$	0.1011	0.0000	0.1938	0.5144	0.1177	0.0000		
σ _down	0.0668	0.0000	0.3081	0.3446	0.0000	0.0244		
down,up	0.989, 1.016	1.000, 1.000	0.980, 1.013	0.981, 1.028	1.000, 0.988	0.998, 1.000		

Table 21: JES_FlavResp								
	${ m ttBar}$	Zltau	$\overline{\mathrm{Zlljet}}$	Wlnu	$LH_{-}Ztautau$	$RH_Ztautau$		
SR_OS								
σ _ up	0.1924	0.3643	0.7056	1.1937	0.1376	0.2841		
$\sigma_{-}down$	0.0210	0.1535	0.6530	0.9026	0.1672	0.1045		
down,up	0.999, 1.006	0.997, 1.006	0.985, 1.016	0.989, 1.015	1.001, 1.001	0.999, 0.998		
SR_SS								
σ _ up	0.0592	0.0409	0.5479	0.8311	0.1278	0.0483		
$\sigma _down$	0.1024	0.2283	0.4664	1.1935	0.0326	0.0111		
down,up	1.007, 0.996	1.022, 1.004	0.989, 1.013	0.975, 1.017	0.998, 1.006	1.001, 0.997		
WCR_OS								
$\sigma_{ ext{-}}up$	0.0302	0.5142	0.2969	0.3590	0.0359	0.1945		
σ _down	0.2695	0.6170	0.7239	1.1372	0.0689	0.0650		
down,up	1.006, 0.999	1.039, 0.968	1.030, 0.988	1.005, 0.998	1.004, 0.998	0.995, 0.984		
WCR_SS								
σ _ up	0.2296	0.1560	0.3714	0.1812	0.0000	0.0000		
σ _down	0.2096	0.0000	0.3711	0.9694	0.0000	0.0000		
down,up	1.013, 0.986	1.000, 0.941	1.015, 0.985	1.007, 0.999	1.000, 1.000	1.000, 1.000		
QCD_OS								
σ _ up	0.0165	0.2071	0.1500	0.1663	0.1753	0.0517		
σ _down	0.0416	0.2518	0.2213	0.1909	0.3751	0.2038		
down,up	0.997, 1.001	1.013, 1.011	0.987, 1.009	0.994, 1.005	1.006, 1.003	1.004, 0.999		
QCD_SS								
$\sigma_{ extsf{-}}up$	0.0427	0.0000	0.0375	0.3054	0.0000	0.0978		
$\sigma_{-}down$	0.0940	0.0000	0.1614	0.1608	0.0000	0.0699		
down,up	0.985, 1.007	1.000, 1.000	0.990, 1.002	0.991, 1.017	1.000, 1.000	1.005, 1.008		

	Ta	able 22: JES _				
	ttBar	Zltau	Zlljet	Wlnu	$LH_{-}Ztautau$	$RH_Ztautau$
$SR_{-}OS$						
$\sigma_{ ext{-}}up$	0.4527	0.3808	1.1515	1.6944	0.0967	0.2784
σ _down	0.1600	0.1710	1.2280	1.5154	0.1449	0.0683
down,up	0.995, 1.014	0.997, 1.007	0.972, 1.027	0.981, 1.021	1.001, 1.001	1.000, 0.998
SR_SS						
$\sigma_{ ext{-}}up$	0.1827	0.0409	1.1423	0.9662	0.2353	0.0434
σ _ $down$	0.1772	0.7867	0.9404	1.6324	0.0105	0.1199
down,up	0.987, 1.013	1.077, 1.004	0.978, 1.026	0.966, 1.020	1.001, 1.011	0.994, 1.002
WCR_OS						
$\sigma_{ ext{-}}up$	0.6427	0.4608	0.6436	0.9043	0.0331	0.1822
σ _ $down$	0.8390	0.6463	0.7940	1.4730	0.3078	0.3254
down,up	1.018, 0.986	1.041, 0.971	1.033, 0.974	1.006, 0.996	1.016, 0.998	0.973, 0.985
WCR_SS						
$\sigma_{ ext{-}}up$	0.4075	0.1560	0.5665	0.3741	0.0000	0.0000
$\sigma_{-}down$	0.5066	0.0000	0.4628	1.2753	0.0128	0.0000
down,up	1.030, 0.976	1.000, 0.941	1.019, 0.977	1.009, 0.997	1.002, 1.000	1.000, 1.000
$\overline{\mathrm{QCD}}$ -OS						
$\sigma_{ ext{-}}up$	0.1300	0.2003	0.1812	0.4587	0.2573	0.0517
σ _down	0.0453	0.2522	0.2494	0.3642	0.3853	0.2481
down,up	0.997, 1.009	1.013, 1.010	0.985, 1.011	0.988, 1.015	1.006, 1.004	1.005, 0.999
QCD_SS						
$\sigma_{ extsf{-}}up$	0.0448	0.0000	0.1839	0.5508	0.1177	0.2157
σ _down	0.0045	0.0000	0.3401	0.2118	0.0000	0.0538
down,up	1.001, 1.007	1.000, 1.000	0.978, 1.012	0.988, 1.030	1.000, 0.988	0.996, 1.017

			***	T. T. 72	DII G
ttBar	Zltau	Zlljet	Wlnu	LH_Ztautau	RH_Ztautau
					0.2050
0.0809	0.0364	0.0572	0.1211	0.1568	0.1190
1.003, 1.004	1.001, 1.002	0.999, 1.001	0.999, 1.003	1.001, 1.000	0.999, 0.999
0.0490	0.1911	0.0925	0.3180	0.0208	0.0483
0.0310	0.0000	0.0111	0.3676	0.1063	0.0488
1.002, 0.996	1.000, 1.019	1.000, 1.002	0.992, 0.993	0.995, 1.001	0.997, 0.997
0.0384	0.0320	0.1173	0.2081	0.1139	0.2070
0.0770	0.1800	0.2013	0.2702	0.1832	0.0406
1.002, 1.001	1.011, 1.002	1.008, 1.005	1.001, 1.001	1.010, 1.006	1.003, 1.017
0.0129	0.1560	0.1923	0.0122	0.0000	0.0000
0.0425	0.0000	0.1528	0.2311	0.0000	0.0000
1.003, 0.999	1.000, 0.941	1.006, 0.992	1.002, 1.000	1.000, 1.000	1.000, 1.000
0.0204	0.2674	0.0013	0.1445	0.2040	0.0708
0.0527	0.2518	0.2439	0.0160	0.2281	0.2184
1.004, 1.001	1.013, 1.014	0.985, 1.000	0.999, 1.005	1.004, 1.003	1.004, 1.001
0.0022	0.0000	0.1341	0.0924	0.0000	0.0978
0.0000	0.0000	0.0719	0.0438	0.0000	0.0978
1.000, 1.000	1.000, 1.000	0.995, 0.991	0.998, 1.005	1.000, 1.000	1.008, 1.008
	0.0490 0.0310 1.002,0.996 0.0384 0.0770 1.002,1.001 0.0129 0.0425 1.003,0.999 0.0204 0.0527 1.004,1.001 0.0022 0.0000	ttBar Zltau 0.1376 0.1260 0.0809 0.0364 1.003,1.004 1.001,1.002 0.0490 0.1911 0.0310 0.0000 1.002,0.996 1.000,1.019 0.0384 0.0320 0.0770 0.1800 1.002,1.001 1.011,1.002 0.0129 0.1560 0.0425 0.0000 1.003,0.999 1.000,0.941 0.0204 0.2674 0.0527 0.2518 1.004,1.001 1.013,1.014 0.0022 0.0000 0.0000 0.0000	0.1376 0.1260 0.0303 0.0809 0.0364 0.0572 1.003,1.004 1.001,1.002 0.999,1.001 0.0490 0.1911 0.0925 0.0310 0.0000 0.0111 1.002,0.996 1.000,1.019 1.000,1.002 0.0384 0.0320 0.1173 0.0770 0.1800 0.2013 1.002,1.001 1.011,1.002 1.008,1.005 0.0129 0.1560 0.1923 0.0425 0.0000 0.1528 1.003,0.999 1.000,0.941 1.006,0.992 0.0204 0.2674 0.0013 0.0527 0.2518 0.2439 1.004,1.001 1.013,1.014 0.985,1.000 0.0022 0.0000 0.1341 0.0002 0.0000 0.0719	ttBar Zltau Zlljet Wlnu 0.1376 0.1260 0.0303 0.2595 0.0809 0.0364 0.0572 0.1211 1.003,1.004 1.001,1.002 0.999,1.001 0.999,1.003 0.0490 0.1911 0.0925 0.3180 0.0310 0.0000 0.0111 0.3676 1.002,0.996 1.000,1.019 1.000,1.002 0.992,0.993 0.0384 0.0320 0.1173 0.2081 0.0770 0.1800 0.2013 0.2702 1.002,1.001 1.011,1.002 1.008,1.005 1.001,1.001 0.0129 0.1560 0.1923 0.0122 0.0425 0.0000 0.1528 0.2311 1.003,0.999 1.000,0.941 1.006,0.992 1.002,1.000 0.0204 0.2674 0.0013 0.1445 0.0527 0.2518 0.2439 0.0160 1.004,1.001 1.013,1.014 0.985,1.000 0.999,1.005 0.0022 0.0000 0.01341 0.0924	ttBar Zltau Zlljet Wlnu LH_Ztautau 0.1376 0.1260 0.0303 0.2595 0.0778 0.0809 0.0364 0.0572 0.1211 0.1568 1.003,1.004 1.001,1.002 0.999,1.001 0.999,1.003 1.001,1.000 0.0490 0.1911 0.0925 0.3180 0.0208 0.0310 0.0000 0.0111 0.3676 0.1063 1.002,0.996 1.000,1.019 1.000,1.002 0.992,0.993 0.995,1.001 0.0384 0.0320 0.1173 0.2081 0.1139 0.0770 0.1800 0.2013 0.2702 0.1832 1.002,1.001 1.011,1.002 1.008,1.005 1.001,1.001 1.010,1.006 0.0129 0.1560 0.1923 0.0122 0.0000 0.0425 0.0000 0.1528 0.2311 0.0000 1.003,0.999 1.000,0.941 1.006,0.992 1.002,1.000 1.000,1.000 0.0204 0.2674 0.0013 0.1445 0.2040

Table 24: JES_PUNPV							
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$	
$SR_{-}OS$							
$\sigma_{ extsf{-}}up$	0.2065	0.1345	0.2767	0.4745	0.1069	0.1293	
σ_down	0.0414	0.0423	0.2262	0.3017	0.1677	0.2045	
down,up	1.001, 1.006	1.001, 1.002	0.995, 1.006	0.996, 1.006	1.001, 1.001	0.999, 0.999	
SR_SS							
$\sigma_{ ext{-}}up$	0.0382	0.0923	0.3948	0.1055	0.0804	0.0483	
σ _down	0.0073	0.2443	0.3123	0.8096	0.0437	0.0106	
down,up	1.001, 1.003	1.024, 0.991	0.993, 1.009	0.983, 1.002	1.002, 1.004	1.001, 0.997	
WCR_OS							
$\sigma_{ ext{-}}up$	0.0432	0.1043	0.1984	0.0889	0.0714	0.2070	
σ _down	0.2131	0.1818	0.2239	0.6209	0.1935	0.0061	
down,up	1.005, 0.999	1.011, 0.993	1.009, 0.992	1.003, 1.000	1.010, 1.004	1.001, 1.017	
WCR_SS							
$\sigma_{ ext{-}}up$	0.1102	0.1560	0.2060	0.1261	0.0000	0.0000	
$\sigma_{-}down$	0.0982	0.0000	0.2822	0.4385	0.1921	0.0000	
down,up	1.006, 0.993	1.000, 0.941	1.012, 0.991	1.003, 0.999	0.976, 1.000	1.000, 1.000	
QCD_OS							
$\sigma_{ ext{-}}up$	0.0023	0.1847	0.1832	0.2428	0.1821	0.0550	
σ _down	0.0283	0.6698	0.1725	0.1029	0.4254	0.2454	
down,up	0.998, 1.000	1.034, 1.009	0.990, 1.011	0.997, 1.008	1.007, 1.003	1.004, 0.999	
QCD_SS							
$\sigma_{ ext{-}}up$	0.0022	0.0000	0.0950	0.1616	0.0000	0.0978	
σ _down	0.0234	0.0000	0.1033	0.0898	0.0000	0.0699	
down,up	0.996, 1.000	1.000, 1.000	0.993, 0.994	0.995, 1.009	1.000, 1.000	1.005, 1.008	

Table 25: JES_PURho						
	${ m ttBar}$	Zltau	Zlljet	Wlnu	$LH_Ztautau$	$RH_Ztautau$
$SR_{-}OS$						
σ _ up	0.2639	0.2602	0.3834	1.0606	0.1226	0.2941
σ_down	0.0264	0.0406	0.4219	0.6841	0.1807	0.0412
down,up	1.001, 1.008	0.999, 1.005	0.990, 1.009	0.992, 1.013	1.001, 1.001	1.000, 0.998
SR_SS						
$\sigma_{ ext{-}}up$	0.0373	0.0409	0.3798	0.6829	0.1735	0.0483
σ _down	0.0917	0.2283	0.2762	1.1333	0.0326	0.0111
down,up	0.993, 1.003	1.022, 1.004	0.994, 1.009	0.976, 1.014	0.998, 1.008	1.001, 0.997
WCR_OS						
$\sigma_{ ext{-}}up$	0.2264	0.3726	0.2132	0.1126	0.0101	0.0467
σ _down	0.3710	0.3906	0.4330	0.9395	0.0070	0.3317
down,up	1.008, 0.995	1.025, 0.977	1.018, 0.991	1.004, 1.000	1.000, 0.999	0.973, 0.996
WCR_SS						
$\sigma_{ ext{-}}up$	0.1682	0.1560	0.1782	0.0260	0.0000	0.0000
$\sigma_{-}down$	0.0923	0.0000	0.1951	0.6510	0.0000	0.0000
down,up	1.006, 0.990	1.000, 0.941	1.008, 0.993	1.005, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ ext{-}}up$	0.0685	0.2071	0.1231	0.1835	0.1707	0.0280
σ _down	0.0243	0.2518	0.1873	0.0829	0.4421	0.2031
down,up	0.998, 1.005	1.013, 1.011	0.989, 1.007	0.997, 1.006	1.007, 1.003	1.004, 0.999
QCD_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0434	0.1861	0.1177	0.0978
σ _down	0.0234	0.0000	0.0637	0.0832	0.0000	0.0699
$_{\rm down,up}$	0.996, 1.000	1.000, 1.000	0.996, 1.003	0.995, 1.010	1.000, 0.988	1.005, 1.008

	${ m Ta} \ { m ttBar}$	able 26: JES _Zltau	Statistical1 Zlljet	Wlnu	LH_Ztautau	RH_Ztautau
$SR_{-}OS$			J			
$\sigma_{ ext{-}}up$	0.1324	0.1032	0.1917	0.5108	0.0887	0.2586
σ_down	0.0708	0.0236	0.2165	0.1414	0.1425	0.1362
down,up	1.002, 1.004	1.000, 1.002	0.995, 1.004	0.998, 1.006	1.001, 1.001	0.999, 0.998
SR_SS						
σ _ up	0.0136	0.0029	0.1055	0.2057	0.0217	0.0483
σ _ $down$	0.0247	0.0000	0.2038	0.4640	0.1428	0.0414
down,up	0.998, 0.999	1.000, 1.000	0.995, 1.002	0.990, 0.996	0.993, 1.001	1.002, 0.997
WCR_OS						
$\sigma_{ ext{-}}up$	0.0234	0.1210	0.0724	0.1649	0.1442	0.2070
σ _down	0.1897	0.3426	0.3432	0.4780	0.1635	0.0110
down,up	1.004, 0.999	1.022, 0.992	1.014, 1.003	1.002, 1.001	1.009, 1.008	0.999, 1.017
WCR_SS						
σ _ up	0.0349	0.0000	0.0043	0.0203	0.0000	0.0000
σ_down	0.0233	0.0000	0.0608	0.2609	0.0000	0.0000
$_{ m down,up}$	1.001, 1.002	1.000, 1.000	1.003, 1.000	1.002, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
σ _ up	0.0914	0.2071	0.0722	0.0169	0.1646	0.0439
σ _ $down$	0.0155	0.2518	0.0553	0.0049	0.2040	0.1666
$_{ m down,up}$	1.001, 1.007	1.013, 1.011	0.997, 1.004	1.000, 1.001	1.003, 1.003	1.003, 1.001
QCD_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0577	0.0399	0.0000	0.0978
σ _down	0.0000	0.0000	0.1390	0.0005	0.0000	0.0978
down,up	1.000, 1.000	1.000, 1.000	0.991, 0.996	1.000, 1.002	1.000, 1.000	1.008, 1.008

	u D	Table 27:		XX71	T II 7	DII 7
ar oa	ttBar	Zltau	Zlljet	Wlnu	$LH_{-}Ztautau$	RH_Ztautau
$SR_{-}OS$						
$\sigma_{ extsf{-}}up$	0.0960	0.0639	0.0039	0.0420	0.0933	0.1829
σ _ $down$	0.0960	0.0639	0.0039	0.0420	0.0933	0.1829
$_{ m down,up}$	1.003, 1.003	1.001, 1.001	1.000, 1.000	1.001, 1.001	1.001, 1.001	0.999, 0.999
SR_SS						
$\sigma_{ extsf{-}}up$	0.0027	0.0000	0.0154	0.3224	0.0353	0.0483
σ _down	0.0027	0.0000	0.0154	0.3224	0.0353	0.0483
down,up	1.000, 1.000	1.000, 1.000	1.000, 1.000	0.993, 0.993	0.998, 0.998	0.997, 0.997
WCR_OS						
$\sigma_{ ext{-}}up$	0.0876	0.0512	0.2309	0.3141	0.1640	0.1152
σ _ $down$	0.0876	0.0512	0.2309	0.3141	0.1640	0.1152
down,up	1.002, 1.002	1.003, 1.003	1.009, 1.009	1.001, 1.001	1.009, 1.009	1.010, 1.010
WCR_SS						
$\sigma_{ ext{-}}up$	0.0363	0.0000	0.0577	0.0607	0.0000	0.0000
σ _down	0.0363	0.0000	0.0577	0.0607	0.0000	0.0000
down,up	1.002, 1.002	1.000, 1.000	1.002, 1.002	1.000, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ ext{-}}up$	0.0788	0.2518	0.0063	0.0290	0.2281	0.1295
σ_down	0.0788	0.2518	0.0063	0.0290	0.2281	0.1295
down,up	1.006, 1.006	1.013,1.013	1.000, 1.000	1.001, 1.001	1.004, 1.004	1.002,1.002
QCD_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.1020	0.0020	0.0000	0.0978
σ _ $down$	0.0000	0.0000	0.1020	0.0020	0.0000	0.0978
down,up	1.000, 1.000	1.000, 1.000	0.993, 0.993	1.000, 1.000	1.000, 1.000	1.008, 1.008

		Table 28: MI				
	ttBar	Zltau	Zlljet	Wlnu	$LH_{-}Ztautau$	$RH_{-}Ztautau$
SR_OS						
σ _ up	0.0503	0.1661	0.0735	0.0787	0.2830	0.0072
σ _down	0.0976	0.1430	0.2578	0.0828	0.0136	0.0361
down,up	1.003, 1.002	1.002, 0.997	0.994, 1.002	0.999, 0.999	1.000, 1.002	1.000, 1.000
SR_SS						
σ _ up	0.0582	0.3466	0.0093	0.1309	0.2372	0.1101
σ_down	0.0558	0.1853	0.1820	0.5079	0.0187	0.3431
down,up	0.996, 1.004	1.018, 1.034	1.004, 1.000	0.989, 0.997	0.999, 1.011	1.019, 1.006
WCR_OS						
$\sigma_{ extsf{-}}up$	0.1052	0.1929	0.2153	0.4301	0.2809	0.1735
σ _down	0.0352	0.0794	0.4025	0.5800	0.3214	0.1058
down,up	1.001, 1.002	1.005, 1.012	1.016, 1.009	1.002, 1.002	1.017, 1.015	0.991, 0.986
WCR_SS						
$\sigma_{ extsf{-}}up$	0.0671	0.0000	0.1736	0.3925	0.0000	0.0000
$\sigma_{-}down$	0.0290	0.1560	0.0829	0.2300	0.2342	0.0000
down,up	1.002, 1.004	0.941, 1.000	0.997, 1.007	1.002, 1.003	0.971, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ ext{-}}up$	0.1617	0.4907	0.2192	0.2395	0.1782	0.0534
σ_down	0.0587	0.3365	0.0459	0.0763	0.3879	0.0278
down,up	0.996, 1.012	1.017, 1.025	0.997, 0.987	1.002, 0.992	1.006, 1.003	0.999, 1.001
QCD_SS						
$\sigma_{ extsf{-}}up$	0.0357	0.0000	0.0290	0.1814	0.0000	0.1357
$\sigma_{-}down$	0.0670	0.0000	0.0003	0.2923	0.1181	0.0380
down,up	1.011, 0.994	1.000, 1.000	1.000, 1.002	0.984, 0.990	0.988, 1.000	1.003, 1.011

Table 29: METScaleSys						
	ttBar	Zltau	Zlljet	Wlnu	$LH_{-}Ztautau$	$RH_{-}Ztautau$
SR_OS						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\sigma_{-}down$	0.1296	0.0956	0.1012	0.2428	0.2992	0.1717
$_{ m down,up}$	1.004, 1.000	1.002, 1.000	0.998, 1.000	1.003, 1.000	1.002, 1.000	0.999, 1.000
SR_SS						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0204	0.1580	0.2188	0.2906	0.0113	0.0483
$_{ m down,up}$	0.999, 1.000	1.015, 1.000	0.995, 1.000	0.994, 1.000	0.999, 1.000	0.997, 1.000
WCR_OS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.1696	0.1677	0.3589	0.4344	0.3256	0.1187
$_{ m down,up}$	1.004, 1.000	1.011, 1.000	1.015, 1.000	1.002, 1.000	1.017, 1.000	1.010, 1.000
WCR_SS						
$\sigma_{ ext{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0699	0.0000	0.0520	0.1819	0.0000	0.0000
$_{ m down,up}$	1.004, 1.000	1.000, 1.000	1.002, 1.000	1.001, 1.000	1.000, 1.000	1.000, 1.000
QCD_OS						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _ $down$	0.1138	0.5957	0.0122	0.0203	0.4257	0.1206
$_{ m down,up}$	1.008, 1.000	1.030, 1.000	1.001, 1.000	1.001, 1.000	1.007, 1.000	1.002, 1.000
QCD_SS						
$\sigma_{ extsf{-}}up$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
σ _down	0.0402	0.0000	0.1244	0.0433	0.0000	0.0978
down,up	0.994, 1.000	1.000, 1.000	0.992, 1.000	0.998, 1.000	1.000, 1.000	1.008,1.000