Test Integraalrekening Substitutiemethode

Opgave 1. Welke substitutie gebruik je om $\int \frac{x^5}{\sqrt{1-x^3}} dx$ te herleiden tot een integraal die oplosbaar is zonder nogmaals substitutie te moeten toepassen?

 $a \ t = x^3$

 $b \ t = x^5$

 $c \ t = 1 - x^3$

Oplossing. c

Opgave 2. Welke substitutie gebruik je om $\int x^4 \sin(x^5) dx$ te herleiden tot een integraal die oplosbaar is zonder nogmaals substitutie te moeten toepassen?

 $a t = x^4$

 $b \ t = x^5$

 $c \ t = \sin(x^5)$

Oplossing. b

Opgave 3. Welke substitutie gebruik je om $\int \frac{\cos x}{1-\sin x} dx$ te herleiden tot een integraal die oplosbaar is zonder nogmaals substitutie te moeten toepassen?

 $a u = \sin x$

 $b u = \cos x$

 $c u = 1 - \sin x$

 $d u = \frac{1}{\sin x}$

Oplossing. c

Opgave 4. Welke substitutie gebruik je om $\int \frac{x^5}{1+x^4} dx$ te herleiden tot een integraal die oplosbaar is zonder nogmaals substitutie te moeten toepassen?

 $a v = 1 + x^4$

 $b v = x^2$

$$c \ v = x^4$$

$$d v = \sqrt{1 + x^4}$$

Oplossing. b

Opgave 5. Als je voor het oplossen van $\int x^3 \sqrt{1-x^2} dx$ substitutie $u=1-x^2$ gebruikt, welke integraal bekom je dan?

$$a - \frac{1}{2} \int u \sqrt{u} du$$

$$b - \frac{1}{2} \int (1-u)\sqrt{u}du$$

$$c - 2 \int (1-u)\sqrt{u}du$$

$$d-2\int u\sqrt{u}du$$

Oplossing. b

Opgave 6. Als je voor het oplossen van $\int \frac{e^{2\arctan x}}{1+x^2} dx$ substitutie $u = \arctan x$ gebruikt, welke integraal bekom je dan?

$$a \ 2 \int u du$$

$$b \int e^{2u} du$$

$$c \frac{1}{2} \int e^{2u} du$$

$$d \ 2 \int e^u du$$

Oplossing. b

Opgave 7. $\int \frac{xdx}{\sqrt[3]{1-x^2}} = a\sqrt[3]{(1-x^2)^b} + C$ Wat zijn de waarden van a en b?

$$a = \cdots, b = \cdots$$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$a = \frac{-3}{4}$$
; $b = 2$

Opgave 8. $\int x^2 \cos(4x^3) dx = a \cdot f(bx^3) + C$ Staat f voor de functie sin of cos? Wat zijn de waarden van a en b?

$$f$$
 is \cdots ; $a = \cdots$; $b = \cdots$.

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing. f is \sin ; $a = \frac{1}{12}$; b = 4

Opgave 9. $\int x^2 \sqrt[3]{1+5x} dx = a \sqrt[3]{(1+5x)^d} + b \sqrt[3]{(1+5x)^e} + c \sqrt[3]{(1+5x)^f} + C$ Wat zijn de waarden van a,b,c,d,e en f met d > e > f?

$$a = \cdots$$
; $b = \cdots$; $c = \cdots$; $d = \cdots$; $e = \cdots$; $f = \cdots$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$a = \frac{3}{1250}$$
; $b = \frac{-6}{875}$; $c = \frac{3}{500}$; $d = 10$; $e = 7$; $f = 4$

Opgave 10. $\int \frac{x^3 dx}{\sqrt{1-x^2}} = a\sqrt{(1-x^2)^c} + b\sqrt{(1-x^2)^d} + C$ Wat zijn de waarden van a; b; c en d met c < d?

$$a = \cdots$$
; $b = \cdots$; $c = \cdots$; $d = \cdots$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$a = -1$$
; $b = \frac{1}{3}$; $c = 1$; $d = 3$

Opgave 11. Om $\int_0^2 \frac{dx}{\sqrt[3]{1+4x}}$ te berekenen gebruik je de substitutie t=1+4x. Je bekomt in de veranderlijke t als integraal $\frac{1}{4}\int_a^b \frac{dt}{\sqrt[3]{t}}$. Wat zijn a en b?

$$a = \cdots$$
; $b = \cdots$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$a = 1$$
; $b = 9$

Opgave 12. Om $\int_1^2 \frac{xdx}{1+x^4}$ to be rekenen gebruik je de substitutie $u=x^2$. Je bekomt in de veranderlijke u als integraal $\frac{1}{2}\int_a^b \frac{du}{1+u^2}$. Wat zijn a en b?

$$a = \cdots : b = \cdots$$

Een aantal van deze getallen kunnen 0 en/of 1 zijn. Je mag enkel gehele getallen of breuken van gehele getallen ingeven en je moet zoveel mogelijk vereenvoudigen. Bij een breuk die negatief is plaats je het minteken in de teller.

Oplossing.
$$a = 1$$
; $b = 4$