الببر

مذكرة رقم 5 : الترتيب في مجموعة الأعداد المقبقية مع تمارين وأمثلة محلولة

الأهداف القدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
- إن توظيف الترتيب في مقارنة بعض الأعداد وفي	- التمكن من مختلف تقنيات مقارنة عددين	 الترتيب و العمليات؛
إثبات بعض العلاقات يعتبر من المهارات التي ينبغي	(أو تعبيرين) واستعمال المناسب منها	 القيمة المطلقة وخاصياتها؛
الحرص على تنميتها وتثبيتها، كما أن تأويل علاقات	حسب الوضعية المدروسة؛	- المجالات؛
من الشكل $ x-a \le r$ وإنجاز بعض الإكبارات	- تمثيل مختلف العلاقات المرتبطة بالترتيب	- التأطير والتقريب، التقريبات العشرية.
باستعمال المتفاوتات المثلثية وخاصيات القيمة المطلقة،	على المستقيم العددي؛	
من التقنيات الأساسية التي ينبغي تمرين التلاميذ على	- إدراك وتحديد تقريب عدد (أو تعبير) بدقة	
استعمالها بشكل تدريجي.		
 ينبغي ربط مفهوم القيمة المطلقة بالمسافة بين نقطتين 	لتعابير جبرية؛	
على مستقيم مدرج.	- استعمال الألة الحاسبة لتحديد قيم مقربة	
- يمكن تقديم الخصائص المتعلقة بتأطير وتقريب	لعدد حقيقي.	
مجموع عددين أو فرق عددين في الحالة العامة أما		
تأطير وتقريب جداء وخارج عددين حقيقيين فينبغي		
دراستها من خلال أمثلة عددية مختارة تبين للتلاميذ		
الاحتياطات التي ينبغي اتخاذها وشروط صحة		
الاستدلالات.		
- تعتبر الأله الحاسبة أداة مساعدة في تناول المفاهيم		
السابقة (التأطير والتقريب) غير أنه ينبغي التحقق من		
أن التلاميذ ملمون بالكتابة العلمية لعدد ومدركون أن		
الألة الحاسبة تعطى في أغلب الأحيان تقريبا عشريا		
للنتيجة، لذا ينبغي إكساب التلاميذ التقنيات الخاصة		
بالألة الحاسبة العلمية (الأولويات في العمليات، وظائف		
الملامس)	1.5	

آ الترتيب و العمليات:

ایتعاریف: لیکن a و b عددین حقیقیین.

 $a \leq b$ إذا من أو يساوي $a \leq b$ و نكتب أصغر من أو يساوي $a \leq b$ إذا كان $a \leq b$

ي نقول إن $a \geq b$ نقول إن $a \geq b$ و نكتب $a \geq b$ إذا كان $a \geq b$ كان $a \geq b$

 $(b-a)\in\mathbb{R}^*_+$ نقول إن $a\prec b$ أصغر قطعا من b و نكتب $a\prec b$ إذا كان a

 $(a-b)\in\mathbb{R}_+^*$ اذا کان $a\succ b$ و نکتب b من a اکبر قطعا من a اکبر قطعا من a

ملحوظة : a و b عددان حقيقيان.

a=b أو $a\prec b$ يكافئ $a\leq b$

• مقارنة a و طيعني البحث عن التعبير الصحيح من بين التعابير التالية:

a = b, a > b, a < b

 $\pi > 2,14$, $-7 < -\frac{1}{3}$, $\sqrt{5} < 3$ أمثلة:

 $\frac{100}{101}$ و قارن بین فارن بین قارن عام تال :

الجواب:

 $\frac{101}{102} - \frac{100}{101} = \frac{101 \times 101 - 100 \times 102}{101 \times 102} = \frac{10201 - 10200}{101 \times 102} : \frac{101 \times 102}{101 \times 102}$ $\frac{101}{102} \ge \frac{100}{101} = \frac{100}{101} = \frac{1}{101 \times 102} \in \mathbb{R}^+ : \frac{100}{101} = \frac{1}{101 \times 102} = \frac{$

 $b=2\sqrt{3}$ و $a=2+\sqrt{3}$ و نضع $a=2+\sqrt{3}$ و أحواب:

 $a \succ b$ عدد حقیقی موجب قطعا لدینا $a \rightarrow b = 2 - \sqrt{3}$ و بما أن $a \succ b$ عدد حقیقی موجب قطعا $a \succ b$ فان: $a \succ b$

 a^2+1 و 2a: قارن $a\in\mathbb{R}$

 $(a^2+1)-2a=a^2-2a+1=(a-1)^2\geq 0$ الجواب:

 $a \in \mathbb{R}$: ومنه $a^2 + 1 \ge 2a$ مهما يكن

ينكن a و b و b أعدادا حقيقية. a

 $a \leq c$ فان $a \leq b$ و $b \leq c$

 $a \prec c$ فان $b \prec c$ و $a \leq b$ فان $a \leq b$

الخاصية (1) تعني أنه لمقارنة a و c يكفي مقارنة و مع نقس العدد d.

 $\frac{30}{31} \! \prec \! \frac{114,01}{114}$ و منه فان: $1 \! \prec \! \frac{30}{31} \! \prec \! 1$ و منه فان: 1 مثال الدينا: 1

خاصية الترتيب و الجمع:

 $a + c \le b + c$ يكافئ $a \le b$

- $a+c \leq b+d$ و $c \leq d$ و مان $a \leq b$ و المان $a \leq b$
- . $ab \ge 0$ و $a+b \ge 0$ فان $b \ge 0$ و $a \ge 0$ و الجاكان $a \ge 0$

خاصية الترتيب و الضرب:

- $ac \leq bc$ يكافئ $a \leq b$ غان: $a \leq b$ يكافئ
- $ac \geq bc$ يكافئ $a \leq b$ فان: $c \prec 0$ يكافئ
- $0 \leq ac \leq bd$ و $0 \leq c \leq d$ و $0 \leq a \leq b$ فان $0 \leq a \leq b$
- . $ab \ge 0$ و $a+b \le 0$ فان $b \le 0$ و $a \le 0$ و .

خاصية الترتيب و المقلوب:

 $(ab\succ 0)$ عددان حقیقیان غیر منعدمین و لهما نفس إشاره a

 $\frac{1}{b} \le \frac{1}{a}$ يکافئ $a \le b$

. $a+c \prec b+d$ فان $a \leq b$ و $a \leq b$ و

خاصية الترتيب و المربع- الترتيب و الجذر المربع:

و b عددان حقیقیان موجبان.

 $\sqrt{a} \le \sqrt{b}$ يكافئ $a \le b$ و $a \le b^2$ يكافئ $a \le b$

 $a^2 \ge 0 : \mathbb{R}$ لكل a من

ملحوظة: جميع الخاصيات السابقة تبقى صحيحة اذا عوضنا الرمز \geq بأحد الرموز \leq أو \succ أو \prec .

 $a^2 \ge b^2$ پکافی $a \le b$ و $b \le 0$ و $a \le 0$

 $b = \sqrt{3} + \sqrt{2} - 1$ و $a = \sqrt{6}$ قارن العددين: $a = \sqrt{6}$ و الجواب: نحسب الفرق:

 $a-b=\sqrt{6}-(\sqrt{3}+\sqrt{2}-1)=\sqrt{3}\times 2-(\sqrt{3}+\sqrt{2}-1)$

 $\sqrt{x+2}-\sqrt{x+1}$ و $\sqrt{x+1}-\sqrt{x}$. استنتج مقارنة العددين: 2 $\sqrt{3}$ التعميل ب $a-b=\sqrt{3}\times\sqrt{2}-\sqrt{3}-\sqrt{2}+1=\sqrt{3}\times\sqrt{2}-1$ $x \ge 0$ یعنی \mathbb{R}^+ عنصرا من $x \in \mathcal{X}$ یعنی $(\sqrt{2}-1)$ بالتعمیل ب $a-b=(\sqrt{2}-1)(\sqrt{3}-1)$ $(x+2)-x \ge 0$: لأن $x+2 \ge x$ لدينا $(\sqrt{2}-1) \in \mathbb{R}^{+*}$ لائن $(1)^2 = 1$ و $(1)^2 = 1$ و منه $\sqrt{2} > 1$ دينا اذن : $\sqrt{x+2} \ge \sqrt{x}$ واضافة $\sqrt{x+1}$ نجد النتيجة المطلوبة: $\sqrt{x+2} + \sqrt{x+1} \ge \sqrt{x} + \sqrt{x+1}$: أي أن $(\sqrt{3}-1) \in \mathbb{R}^{+*}$ و $(1)^2 = 1$ و $(\sqrt{3})^2 = 3$: لأن $(\sqrt{3}-1) \in \mathbb{R}^{+*}$ و الدينا (2) الاستنتاج a>b: ومنه $a-b=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\in\mathbb{R}^{+*}$ ومنه ومنه : بضربنا في المرافق نجد المتساوية التالية: $\sqrt{x+2} - \sqrt{x+1} = \frac{\left(\sqrt{x+2} - \sqrt{x+1}\right)\left(\sqrt{x+2} - \sqrt{x+1}\right)}{\left(\sqrt{x+2} - \sqrt{x+1}\right)}$ $b = \sqrt{5} + \sqrt{2} - 1$ و $a = \sqrt{10}$ قارن العددين: $\sqrt{x+2}-\sqrt{x+1}$ أي أن : $a-b=\sqrt{10}-(\sqrt{5}+\sqrt{2}-1)=\sqrt{5\times2}-(\sqrt{5}+\sqrt{2}-1)$ $\sqrt{x+2} - \sqrt{x+1} = \frac{\left(\sqrt{x+2}\right)^2 - \left(\sqrt{x+1}\right)^2}{\sqrt{x+2} - \sqrt{x+1}} = \frac{x+2-x-1}{\sqrt{x+2} - \sqrt{x+1}} = \frac{1}{\sqrt{x+2} - \sqrt{x+1}}$ $\sqrt{5}$ التعميل ب $a-b=\sqrt{5}\times\sqrt{2}-\sqrt{5}-\sqrt{2}+1=\sqrt{5}\times(\sqrt{2}-1)-(\sqrt{2}-1)$ $\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} - \sqrt{x}\right)}{\sqrt{x+1} - \sqrt{x}}$: ولدينا أيضا $(\sqrt{2}-1)$ بالتعمیل ب $a-b=(\sqrt{2}-1)(\sqrt{5}-1)$ $\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1}\right)^2 - \left(\sqrt{x}\right)^2}{\sqrt{x+1} - \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} - \sqrt{x}} = \frac{1}{\sqrt{x+1} - \sqrt{x}}$ $(\sqrt{2}-1) \in \mathbb{R}^{+*}$ لائن $(1)^2 = 1$ و $(\sqrt{2})^2 = 2$ لائن $\sqrt{2} > 1$ دينا $(\sqrt{5}-1) \in \mathbb{R}^{+*}$ ولدينا : 1< 5 لأن : 5> 1 وادينا : 1< 5: فان $\sqrt{x+2} + \sqrt{x+1} \ge \sqrt{x} + \sqrt{x+1}$: فان a>b: ومنه $a-b=(\sqrt{2}-1)(\sqrt{5}-1)\in\mathbb{R}^{+*}$: ومنه $\frac{1}{\sqrt{x+2} + \sqrt{x+1}} \le \frac{1}{\sqrt{x} + \sqrt{x+1}}$ $\frac{\sqrt{3}-1}{\sqrt{3}+1}$ و $\frac{2-\sqrt{3}}{\sqrt{3}-1}$:قارن العددين: $\sqrt{x+1} + \sqrt{x+2} \le \sqrt{x+1} + \sqrt{x}$: اذن نستنتج أن $\frac{2-\sqrt{3}}{\sqrt{3}-1}-\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left(2-\sqrt{3}\right)\!\left(\sqrt{3}+1\right)\!-\!\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}-1\right)\!\left(\sqrt{3}+1\right)}:\frac{1}{\sqrt{3}-1}$ الجواب: نحسب الفرق تمرین8: لیکن x عددا حقیقیا موجبا $2\sqrt{x}-1$ قارن العددين: x و $x-(2\sqrt{x}-1)=x-2\sqrt{x}+1=(\sqrt{x})^2-2\sqrt{x}\times 1+1^2=(\sqrt{x}-1)^2\geq 0$ الجواب: $\frac{2-\sqrt{3}}{\sqrt{3}-1} - \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{\left(2\sqrt{3}+2-\left(\sqrt{3}\right)^2-\sqrt{3}\right)-\left(\left(\sqrt{3}\right)^2-\sqrt{3}-\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^2-1^2}$ $x \in \mathbb{R}^+$: ومنه $x \ge (2\sqrt{x} - 1)$ ومنه $\frac{2-\sqrt{3}}{\sqrt{3}-1} - \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{2\sqrt{3}+2-3-\sqrt{3}-3+2\sqrt{3}-1}{\left(\sqrt{3}\right)^2-1^2}$ تمرين9 اليكن n عددا صحيحا طبيعيا. b = 2n + 1 و $a = \sqrt{4n^2 + 1}$ فارن العددين $a = \sqrt{4n^2 + 1}$ $\frac{2-\sqrt{3}}{\sqrt{3}-1} - \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{3\sqrt{3}-5}{3-1} = \frac{3\sqrt{3}-5}{2}$ الجواب: لمقارنة عددين موجبين نقارن مربعيهما $a^2 = \left(\sqrt{4n^2+1}\right)^2 = 4n^2+1$ لدينا : $3\sqrt{3} > 5$ لأن : $27 = (3\sqrt{3})^2 = 27$ ومنه $b^2 = (2n+1)^2 = 4n^2 + 4n + 1$ $b^2 - a^2 = 4n^2 + 4n + 1 - (4n^2 + 1) = 4n^2 + 4n + 1 - 4n^2 - 1$ $\frac{2-\sqrt{3}}{\sqrt{3}-1} > \frac{\sqrt{3}-1}{\sqrt{3}+1}$: ومنه $\frac{3\sqrt{3}-5}{2} \in \mathbb{R}^{+*}$: ومنه $x \in \mathbb{N}$: ومنه $b \ge a$ اذن نستنتج أن $b^2 \ge a^2$ مهما يكن \mathbb{R}_{+}^{*} اليكن a و b عنصرين من ax < y < 3: عددین حقیقی بحیث x < y < 3 $y = \frac{8b}{7a+2b}$ فارن العددين $y = \frac{8b}{7a+2b}$ و نضع: x + y - 6 < 0 بين أن: 1 $x-y = \frac{7a+2b}{7a} - \frac{8b}{7a+2b}$: الجواب: نحسب الفرق $b = y^2 - 6y + 1$ و $a = x^2 - 6x + 1$.2 $x - y = \frac{(7a + 2b)^2 - 7a \times 8b}{7a(7a + 2b)} = \frac{49a^2 + 14ab + 14ab + 4b^2 - 56a \times b}{7a(7a + 2b)}$ x+y<6 ومنه y<3 ومنه x<y<3 اذن x<y<3 اذن x + y - 6 < 0: وبالتالي $x - y = \frac{49a^2 - 28a \times b + 4b^2}{7a(7a + 2b)} = \frac{(7a)^2 - 2 \times 7a \times 2b + (2b)^2}{7a(7a + 2b)}$ $a-b=(x^2-6x+1)-(y^2-6y+1)$: نحسب الفرق: $a-b=x^2-6x+1-y^2+6y-1=x^2-y^2-6x+6y$ a-b=(x-y)(x+y)-6(x-y)=(x-y)(x+y-6) $x+y-6\in\mathbb{R}^-$ اذن x< y وسبق أن وجدنا أن x< y $a \ge b$: ومنه $a - b \in \mathbb{R}^+$: أي $(x - y)(x + y - 6) \in \mathbb{R}^+$ ومنه

 $7a(7a+2b) \in \mathbb{R}^+$ و $(7a-2b)^2 \in \mathbb{R}^+$: لأن $x-y=\frac{(7a-2b)^2}{7a(7a+2b)} \in \mathbb{R}^+$ $x \ge y$ وبالتالى \mathbb{R}^+ نمرین x عنصرا من \mathbb{R}^+ . $\sqrt{x+1} + \sqrt{x+2}$ و $\sqrt{x+1} + \sqrt{x}$ قارن العددين: 1. قارن العددين الأستاذ: عثماني نجيب ص 2

 $3\sqrt{3}-5\in\mathbb{R}^{+*}$

الجواب:نحسب الفرق:

[[المجالات و التأطير:

. $a \prec b$ المجالات: ليكن a و b عددين حقيقيين بحيث (1 ندرج في الجدولين التاليين جميع أنواع المجالات و تمثيلها على المستقيم العددي.

المتفاوتة	المجال
$a \le x \le b$	[a,b]
$a \prec x \leq b$]a,b]
$a \le x \prec b$	[a,b[
$a \prec x \prec b$]a,b[

المجالات غير المحدودة:

المتفاوتة	لمجال
$x \succ b$]b,+∞[
$x \ge b$	[<i>b</i> ,+∞[
$x \le a$]-∞, a]
$x \prec a$]-∞, a[

مصطلحات: الرمز ان ∞ + و ∞ ليسا بعددين

- ∞+تقرأ: زائد اللانهاية, ∞-تقرأ: ناقص اللانهاية.
- " b , a أو " القطعة a " أو " القطعة [a,b]
 - " b , a يقرأ " المجال المفتوح [a,b] •
 - " a يقرأ " المجال a , زائد اللانهاية, مفتوح من a

ملحوظة: $\mathbb{R}^*_+=\left[0,+\infty\right[$ و $\mathbb{R}^-=\left[-\infty,0\right]$ و $\mathbb{R}^+=\left[0,+\infty\right[$ $\mathbb{R}_{-}^{*}=]-\infty,0[$

> تمرين 11 : بعد التمثيل على مستقيم للمجالين I و J حدد اتحاد و تقاطع المجالين I و J في الحالات الآتية

$$I = \begin{bmatrix} -3.7 \end{bmatrix} \quad \text{g} \quad J = \begin{bmatrix} -1, +\infty \end{bmatrix}$$

$$I =]-\infty,5[$$
 $\mathcal{I} = [4;10](2)$

$$I = [0,10[$$
 y $J = [-5;-1](3)$

$$I = \left[\frac{-2}{3}, 2\right] \quad \mathcal{I} = \left]-1, \frac{3}{2}\right[(4$$

$$I \cup J =]-3; +\infty[$$
 $I \cap J =]-1,7](1$

$$I \cup J =]-\infty;10$$
] $I \cap J = [4,5]$ (2

$$I \cup J = [-5;10]$$
 $I \cap J = \emptyset$ (3)

$$I \cup J =]-1,2]$$
 $I \cap J = \left[-\frac{2}{3}; \frac{3}{2}\right] (4)$

تمرين12: حل في IR النظمات الآتية

$$\begin{cases} -3 \le x \le 0 \\ -7 \langle x \langle 10 \end{cases} \quad (4 \quad \begin{cases} x \rangle 7 \\ x \ge 0 \end{cases} \quad (3 \quad \begin{cases} x \ge -3 \\ x \rangle 2 \end{cases} \quad (2 \quad \begin{cases} x \rangle 5 \\ x \le 4 \end{cases} \quad (1)$$

الجواب: الرمز } يعني التقاطع

$$x \in]5,+\infty[$$
 يعني $x \geqslant 5$ (1

$$x \in]-\infty,4]$$
 يعني $x \le 4$

$$S = \left]5, +\infty\right[\, \cap \left]-\infty, 4\right] = \emptyset$$

 $x \in [-3, +\infty]$ يعنى $x \ge -3$ (2

$$S =]2, +\infty[\cap [-3, +\infty[=]2, +\infty[$$

$$x \in \left]7,+\infty\right[$$
 يعني $x > 7$ (3

$$x \in [0, +\infty[$$
يعني $x \ge 0$

$$S =]7, +\infty[\cap [0, +\infty[=]7, +\infty[$$

$$x \in]-7;10$$
 يعني $-7\langle x\langle 10(4$

$$x \in [-3;0]$$
 يعني $-3 \le x \le 0$

$$S =]-7,10[\cap [-3;0] = [-3;0]$$

xتأطير عدد حقيقى: تعريف: ليكن x عددا حقيقيا.

 $a \prec b$ و aمع a تأطير العدد x يعنى إيجاد عددين حقيقيين

 $a \prec x \prec b$ او $a \prec x \leq b$ او $a \leq x \prec b$ او $a \leq x \leq b$ العدد الحقيقي الموجب قطعا a يسمى سعة التأطير و العددان a و b هما محدات التأطبر

تمرين13 فنضع $x \in [1;3]$ و $y \in [2;4]$ اعط تأطيرا للأعداد التالية

-y و x^2 و y^2 و x^2 و x^2 و x^2 اعط تأطيرا للأعداد التالية :

$$\frac{x}{y}$$
 o $\frac{1}{y}$ o $\frac{1}{x}$

 $B = \frac{2x-1}{x+1}$ و $A = x^2 + y^2 + 2x - 3y$: B و $A = x^2 + y^2 + 2x - 3y$

 $1 \le x \le 3$ يعنى $x \in [1;3]$ (1:4)

 $2 \le y \le 4$ يعنى $y \in [2;4]$

 $1 \le x^2 \le 9$ يعني $2 \le x^2 \le 3^2$ يعني $1 \le x \le 3$

$$4 \le y^2 \le 16$$
 يعني $2^2 \le y^2 \le 4^2$ يعني $2 \le y \le 4$

$$2 \le 2x \le 6$$
 يعنى $2 \times 1 \le 2x \le 2 \times 3$

$$6 \le 3y \le 12$$
 يعني $2 \le 3 \times 2 \le 3 \times 4$ يعني $2 \le y \le 4$

$$\frac{1}{3} \le \frac{1}{r} \le 1$$
 يعني $\frac{1}{3} \le \frac{1}{r} \le \frac{1}{1}$ يعني $1 \le x \le 3$

$$\frac{1}{4} \le \frac{1}{y} \le \frac{1}{2}$$
 يعني يعني $2 \le y \le 4$

$$\frac{1}{4} \le \frac{x}{y} \le \frac{3}{2}$$
: اذن $\frac{1}{4} \le x \times \frac{1}{y} \le 3 \times \frac{1}{2}$: اذن $\frac{x}{y} = x \times \frac{1}{y}$

$$-12 \le -3y \le -6$$
 يعني $6 \le 3y \le 12$: A)

وحسب النتائج السابقة وبجمع المتفاوتات طرف لطرف نجد: $1+4+2-12 \le x^2+y^2+2x-3y \le 9+16+6-6$

 $-5 \le A \le 25$ وبالتالى :

$$r = 25 - (-5) = 30$$
 : وسعة التأطير هي

$$B = \frac{2x-1}{x+1} = (2x-1) \times \frac{1}{x+1} = \frac{1}{2}$$

 $2-1 \le 2x-1 \le 6-1$ لدينا $1 \le x \le 3$ يعني $1 \le x \le 3$ يعني الدينا

$$\frac{1}{4} \le \frac{1}{x+1} \le \frac{1}{2}$$
 لدينا $x \le 3$ يعني $1 \le x \le 3$ لدينا

وبضرب المتفاوتتين التاليتين $1 \le 2x - 1 \le 5$ و $1 \le 2x - 1 \le 5$ طرف

$$\frac{1}{4} \le B \le \frac{5}{2}$$
 يعني $1 \times \frac{1}{4} \le (2x-1) \times \frac{1}{x+1} \le 5 \times \frac{1}{2}$ وسعة التأطير هي $r = \frac{5}{2} - \frac{1}{4} = \frac{9}{4}$: وسعة التأطير

تمرين14: التأطير و العمليات

 $14^2 < 200 < 15^2$ تحقق من أن: $14^2 < 200 < 15^2$

 $1,4 < \sqrt{2} < 1,5$ ثم استنتج أن:

 $\sqrt{5}$ بنفس الطريقة أوجد تأطيرا للعدد $\sqrt{5}$

 $\sqrt{10}$ و $\sqrt{2}$ باستنتج تأطيرا للعددين $\sqrt{5}$

 $14^2 < 200 < 15^2$ ومنه $15^2 = 225$ و $14^2 = 196$ ادينا (1

 $\sqrt{14^2} < \sqrt{200} < \sqrt{15^2}$: اذن نستنتج أن $14^2 < 200 < 15^2$ لدينا

 $14 < \sqrt{2} \times 10 < 15$: $\sqrt{14^2} < \sqrt{2 \times 100} < \sqrt{15^2}$: اذن

$$14 \times \frac{1}{10} < \sqrt{2} \times 10 \times \frac{1}{10} < 15 \times \frac{1}{10}$$
 : في

 $1,4 < \sqrt{2} < 1,5$: اذن نستنتج أن

 $22^2 < 500 < 23^2$ ومنه $23^2 = 529$ و $22^2 = 484$ لدينا (2 $\sqrt{22^2} < \sqrt{500} < \sqrt{23^2}$: اذن نستنتج أن $22^2 < 500 < 23^2$ لدينا

 $22 < \sqrt{5} \times 10 < 23$: $\sqrt{14^2} < \sqrt{2 \times 100} < \sqrt{15^2}$: اذن

 $22 \times \frac{1}{10} < \sqrt{5} \times 10 \times \frac{1}{10} < 23 \times \frac{1}{10}$:

 $2,2 < \sqrt{5} < 2,3$: اذن نستنتج أن

 $2,2 < \sqrt{5} < 2,3$ و $1,4 < \sqrt{2} < 1,5$ لدينا (3

اذن : $1,4+2,2<\sqrt{2}+\sqrt{5}<1,5+2,3$ أي

 $3,6 < \sqrt{2} + \sqrt{5} < 3,8$

 $1.4 \times 2.2 < \sqrt{2} \times \sqrt{5} < 1.5 \times 2.3$ و أيضا بضرب طرف لطرف نجد: $3.08 < \sqrt{10} < 3.45$ أي

اال القيمة المطلقة و خاصياتها:

1)القيمة المطلقة لعدد حقيقى:

|x|=x فان: $x \ge 0$ اذا كان 1

|x| = -x فان: $x \le 0$ اذا کان 2

 $|\pi - 4| = -(\pi - 4) = -\pi + 4$ $|3 - \sqrt{5}| = 3 - \sqrt{5}$

تمرين15 : القيمة المطلقة لعدد حقيقي أكتب بدون رمز القيمة المطلقة الأعداد التالية:

 $|\sqrt{5}-\sqrt{2}|$ (3 $|3-2\sqrt{3}|$ (2 $|\sqrt{2}-2|$ (1

 $A = |4 - 2\sqrt{3}| - |5 - 3\sqrt{3}| + |9 - 5\sqrt{3}| (4$

ومنه $\sqrt{2} - 2 \in \mathbb{R}^-$ اذن : $\sqrt{2} < 2$ ومنه (1)

 $|\sqrt{2}-2| = -(\sqrt{2}-2) = -\sqrt{2}+2$

 $3^2 < (2\sqrt{3})^2$: لأن $3 < 2\sqrt{3}$ لاينا (2

 $|3-2\sqrt{3}|=-(3-2\sqrt{3})=-3+2\sqrt{3}$ ومنه $3-2\sqrt{3}\in\mathbb{R}^-$: اذن

لدينا $\sqrt{5} > \sqrt{2} \in \mathbb{R}^+$ اذن : $\sqrt{5} > \sqrt{2}$ ومنه (3 $|\sqrt{5}-\sqrt{2}| = \sqrt{5}-\sqrt{2}$

 $A = |4 - 2\sqrt{3}| - |5 - 3\sqrt{3}| + |9 - 5\sqrt{3}|$ (4)

 $A = 4 - 2\sqrt{3} - (5 - 3\sqrt{3}) + (5\sqrt{3} - 9)$

 $A = 4 - 2\sqrt{3} + 5 - 3\sqrt{3} + 5\sqrt{3} - 9 = 0$

 $|x| \le x \le |x|$ و $|x|^2 = |x|^2 = x^2$ و لكل $|x| \ge 0$ دينا $|x| \ge 0$ دينا $|x| \ge 0$

- $\sqrt{x^2} = |x|$ و |x| = |-x| لكل x من $\mathbb R$ لدينا:
- $|x+y| \le |x| + |y|$, |xy| = |x||y| د ين \mathbb{R} من \mathbb{R} من \mathbb{R} د لكل ع
 - $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$ فان: $y \neq 0$ فان •
 - x = -a أو x = a يكافئ |x| = a \mathbb{R}^* لكل a من ullet
- x = -y او x = y او x = y

تمرين16:

- $(3\sqrt{2}-5)^2$: أحسب . 1
- 5 قارن العددين: $2\sqrt{2}$ و 5
 - $\sqrt{43-30\sqrt{2}}$: بسط: 3

 $(3\sqrt{2}-5)^2 = (3\sqrt{2})^2 - 2\times 3\sqrt{2}\times 5 + (5)^2 = 18 - 30\sqrt{2}\times 5 + 25 (1)$

 $(3\sqrt{2}-5)^2 = (3\sqrt{2})^2 - 2 \times 3\sqrt{2} \times 5 + (5)^2 = 43 - 30\sqrt{2}$

 $(5)^2 = 25$ و $(3\sqrt{2})^2 = 18$: المقارنة العددين نقارن مربعيهما (2

 $3\sqrt{2}-5\in\mathbb{R}^-$ اذن $3\sqrt{2}>3\sqrt{2}$ ومنه $\sqrt{43 - 30\sqrt{2}} = \sqrt{(3\sqrt{2} - 5)^2} = |3\sqrt{2} - 5| (3$

لأن : 5€1 €3√2 €3√2 €3√2

 $=-(3\sqrt{2}-5)$

 $\sqrt{43-30\sqrt{2}} = -3\sqrt{2}+5$: e, litilizer \mathbb{R}^* فاصية: ليكن x من \mathbb{R} و r من

- $-r \le x \le r$ يکافئ $|x| \le r$
- $x \le -r$ أو $x \ge r$ يكافئ $x \ge r$

تطبيقات : (حل المعادلات)

|x-1| = 5 (1 : المعادلات التالية : 1) حل في \mathbb{R}

|2x+1| = |x-3| (3 |x+2| = -1 (2

x-1=-5 أو x-1=5

 $S = \{-4, 6\}$ اذن: x = -4 اف

المعادلة: |x+2|=-1| ليس لها حل في \mathbb{R} لأن القيمة المطلقة دائما موجبة |x+2|=-1|

 $S = \emptyset$: اذن

2x+1=-(x-3) أو 2x+1=x-3 إيعني 2x+1=|x-3|

 $x = \frac{2}{3}$ يعني x = -4 أو x = -x + 3 يعني x = -4

 $S = \left\{-4; \frac{2}{3}\right\}$: اذن

تطبيقات : (حل المتراجحات)

 $|x-1| \le 2$ (1: المتراجحات التالية $|x-1| \le 2$ حل في |x-1|

 $|2x+1| < 6 (3 | |x+2| \ge 3 (2$

الجواب:1) $|x-1| \le 2$ يعني $|x-1| \le 2$ يعني

 $-1 \le x \le 3$ يعنى $-2+1 \le x-1+1 \le 2+1$

S = [-1;3] : اذن

 $x+2 \le -3$ أو $x+2 \ge 3$

 $x \in]-\infty;-5]$ أو $x \in [1;+\infty]$ يعني $x \le -5$ أو $x \ge 1$

 $S =]-\infty; -5] \cup [1; +\infty[$: اذن

-6-1<2x+1-1<6-1 يعني -6<2x+1<6 يعني |2x+1|<6(3)

 $-7 \times \frac{1}{2} < 2x \times \frac{1}{2} < 5 \times \frac{1}{2}$ يعني -7 < 2x < 5 $S = \left[-\frac{7}{2}, \frac{5}{2} \right]$: $\frac{-7}{2} < x < \frac{5}{2}$ تمرين19: توظيف القيمة المطلقة x-y=3 و $y \le 1$ و $y \le 1$ و $x \ge 1$ لیکن x و x = 1 و x = 1 $E = \sqrt{(2x-1)^2} + \sqrt{(2y-2)^2}$: 4 حيث: $E = \sqrt{(2x-1)^2} + \sqrt{(2y-2)^2}$. 1 $-\frac{5}{2} \le y \le 1$ و أن $\frac{1}{2} \le x \le 4$.2 F = |x+y-5| + |x+y+2| 3. أحسب قيمة العدد $E = \sqrt{(2x-1)^2} + \sqrt{(2y-2)^2} = |2x-1| + |2y-2|$ (1 الجواب: 1) $2x-1 \ge 0$ لدينا $\frac{1}{2}$ يعني $1 \le 2x$ يعني $2y-2 \le 0$ يعني $y \le 2$ يعني $y \le 1$ E = |2x-1| + |2y-2| = 2x-1-(2y-2): ومنه x-y=3: ونعلم أن E=2x-2y+1=2(x-y)+1 $E = 2 \times 3 + 1 = 7$: ومنه $-\frac{5}{2} \le y \le 1$:نبين أن (2 x = y + 3: اذن x - y = 3: نعلم أن $y \ge \frac{1}{2} - 3$: اذن $x \ge \frac{1}{2}$ اذن $x \ge \frac{1}{2}$ اذن $x \ge \frac{1}{2}$ اذن $-\frac{5}{2} \le y \le 1$: فان $y \le 1$ وبما أن $y \le \frac{-5}{2}$ اذن $\frac{1}{2} \le x \le 4$: نبین أن y = x - 3: اذن x - y = 3: $-\frac{5}{2} \le y \le 1$: ووجنا سابقا أن $-\frac{5}{2} + 3 \le x - 3 + 3 \le 1 + 3$ اذن : $1 \ge 6 - \frac{5}{2} = x - 3 \le 1$ $\frac{1}{2} \le x \le 4$: F = |x+y-5| + |x+y+2| حساب قيمة العدد F حيث: (3 x+y-5 نبحث عن اشارة $\frac{1}{2} \le x \le 4$ ووجنا سابقا أن $x \le 1 \le y \le 1$ و أن $-2 \le x + y \le 5$ اذن $\frac{1}{2} - \frac{5}{2} \le x + y \le 1 + 4$: اذن $-7 \le x + y - 5 \le 0$ يعني $2 - 5 \le x + y - 5 \le 5 - 5$ يعني اأي أن : x+y-5 سالب x+y+2 نبحث عن اشارة $-2 \le x + y \le 5$: وجنا سابقا أن $0 \le x + y + 2 \le 7$ يعني $2 + 2 \le x + y + 2 \le 5 + 2$ يعني

2)التقريب العشري لعدد حقيقي:

 $(\sqrt{10} \simeq 3.16227766)$

الجزء الصحيح لعدد حقيقي: الجزء الصحيح لعدد حقيقي: لكل عدد حقيقي x يوجد عدد صحيح نسبي و حيد p بحيث:

E(x)=p يسمى الجزء الصحيح للعدد x يسمى الجزء الصحيح p , $p \le x \le p+1$

العدد $c = \frac{b-a}{2}$ يسمى مركز المجال [a,b] و العدد $c = \frac{a+b}{2}$ يسمى

 $|x-c| \le x \le c + r$ و منه $|x-c| \le r$ يكافئ $x \in [a,b]$ و منه

مثال: من أجل المجال $\left[-2,10\right]$ لدينا: العدد $\left[-2,10\right]$ هو طوله

والعدد 4 = $\frac{10-2}{2}$ = هو مركزه و العدد 4 = $\frac{12}{2}$ هو شعاعه

التقریبات: تعاریف: لبکن a و x عنصرین من \mathbb{R} عددا حقیقیا (1

r نقول إن a قيمة مقربة للعدد x بالدقة a نقول إن $a \le x \le a + r$ بالدقة a

r بعريت. x بعرية بعرية a بقول إن a قيمة مقربة للعدد x بالدقة a .2

x ينقول إن a قيمة مقربة (أو بالتقريب) للعدد , $\left|x-a\right| \leq r$.3

العدد a قيمة مقربة للعدد x بالدقة b-a بتغريط. و العدد b قيمة مقربة a

 $|x-4| \le 6$ يكافئ $x \in [-2;10]$ إذن:

IV التقريبات والتقريبات العشرية:

غان: $a \leq x$ فان: $a \leq x \leq b$ أطير اللعدد

. $\frac{b-a}{2}$ العدد $\frac{a+b}{2}$ قيمة مقربة للعدد $\frac{a+b}{2}$

مثال 1: من التأطير $2,646 \le \sqrt{7} \le 2,646$ نستنتج أن: العدد 0.645 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 0.645 بتفريط.

ه العدد 2,646 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 2,646 بإفراط.

والعدد 2.6455 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 2.6455 بتغريط

سؤال :حدد قيمة مقربة للعدد π بالدقة 10^{-2} بتفريط و بإفراط

أوجد التقريب العشري للعدد $\sqrt{10}$ بالدقة $^{-3}$ بتقريط (استعمل

العدد x بالدقة b-a بإفراط

مثال 2: لدينا 1415926....

تمرين 20: التقريب العشري لعدد

 $3.162 < \sqrt{10} < 3.163$ الجواب:

[a,b] شعاع المجال

بإفراط.

بالدقة r.

 $E\left(\sqrt{2}\right)=1$ مثال: الدينا: $2\leq\sqrt{2}\leq1$ و منه فان

ولدينا: $3.163 - 3.162 = 0.001 = 10^{-3}$ اذن

• العدد 3.162 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 3.162 بتفريط • العدد 3.163 قيمة مقربة للعدد $\sqrt{7}$ بالدقة 10^{-3} بإفراط.

تمرين21 أو مثال: أوجد التقريب العشري للعدد $\sqrt{3}$ بالدقة $^{-1}$ $(\sqrt{3} \approx 1.732050808...)$: أن علما أن المحسبة). علما أن

 $1,732 \le \sqrt{3} < 1,733$ الجواب : الدينا:

 $(1732) \cdot 10^{-3} \le \sqrt{3} \prec (1732 + 1) \cdot 10^{-3}$ أي

إذن: 1,732 هو تقريب عشري للعدد $\sqrt{3}$ بالدقة 10^{-3} بتفريط.

و 1,733 هو تقريب عشري للعدد $\sqrt{3}$ بالدقة $^{-1}$ بإفراط.

الأستاذ: عثماني نجيب

أي أن : x+y+2 موجب

[a,b] تسمى طول أو سعة المجال b-a

F = |x+y-5| + |x+y+2| = -(x+y-5) + x + y + 2: اذن

F = -x - y + 5 + x + y + 2 = -x - y + 5 + x + y + 2 = 7: اذن

 $a \prec b$: ليكن $a \prec b$ عنصرين من $\mathbb R$ بحيث $a \prec b$ عنصرين من