Designing Polymeric Cardiovascular Biomaterials for Hemocompatibility and Mechanical Performance

Mary Jialu Chen¹, Georgios Pappas¹, Daniele Massella¹, Arthur Schlothauer¹, Nikola Cesarovic^{2,3}, Volkmar Falk^{2,3}, and Paolo Ermanni¹ ¹Laboratory of Composite Materials and Adaptive Structures, ETH Zürich, jichen@ethz.ch ²Translational Cardiovascular Technologies, ETH Zürich ³Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum Berlin

Cardiovascular implantable devices increasingly use polymeric materials such as polyetheretherketone (PEEK) for higher durability and flexibility (Fig. 1).[1,2] Flexible thin ply carbon fiber/PEEK materials – with superior crystallinity (Fig. C1) - can be used as a transcatheter heart valve stent.[3,4]

How does the PEEK crystallinity affect hemocompatibility and mechanical performance?

Introduction

Fig. 1: Top (left) and side (right) view of PEEK based heart valve prototype

Hypothesis

Fig 2: Schematic diagram depicting how higher crystallinity causes conformational changes and increased exposure of polar, oxygen-containing functional groups (Fig. C2) on lamellar edges. Negative surface charge on small, uniform spherulites results in a negatively charged polymer surface that repels similarly charged platelets, red blood cells, and coagulation proteins.

Hemocompatibility and Mechanical Characterization

Fig 3: SEM images of maximum platelet adhesion on a) amorphous (4.2% crystallinity), b) crystalline (33.7% crystallinity), and c) carbon fiber/PEEK (41.2% crystallinity). crystallinity) composite samples, with platelets manually coloured in blue

Hemocompatibility: 95% reduction in platelet adhesion (Fig. 3), 50% reduction in hemolysis (Fig. C3a), and 75% reduction in thrombin generation rate (Fig. C3b) following crystallization.

Mechanical properties: 50% increase in Young's Modulus and 64% decrease in maximum elongation after annealing (Fig. C4). Higher crystallite order causes increased stiffness and decreased ductility.

Supplementary Information

Crystallinity Characterization

Fig C1: Differential scanning calorimetry melting curves obtained for amorphous (aPEEK), semi-crystalline (sPEEK), and crystalline (cPEEK) PEEK, as well as the carbon fiber/PEEK composite (CFPEEK)

Chemical Characterization

Fig C2: Absorbance values of the characteristic absorption bands obtained from ATR-FTIR analysis. Error bars are mean \pm SD (n = 3). All significance comparisons were made to aPEEK: * p < 0.05, ** p < 0.01

Effect of Crystallinity on Hemocompatibility

Fig C3: a) Percent hemoglobin released for PEEK samples after incubation in erythrocytes for 24 hours. b) Maximum thrombin generation rate determined for PEEK samples incubated in thrombin for 30 minutes. Error bars are mean \pm SD (n = 3). All significance comparisons were made to aPEEK: * p < 0.05, ** p < 0.01, unpaired t-test (two-tailed), black dotted lines indicate average value of negative control.

Effect of Crystallinity on Stress-Strain Behavior

Fig C4: Stress-strain curves obtained for a) amorphous, b) semicrystalline, and c) crystalline PEEK films through tensile testing. Error bars are mean \pm SD (n=5). All significance comparisons were made to aPEEK: * p < 0.05, ** p < 0.05, unpaired t-test (two-tailed).

References

[1] P. Zilla, et al., Biomaterials. 29, 4 (2008).

[2] D. Bezuidenhout, et al., Mechanobiol. Tissue Eng. Biomater. 15 (2014).

[3] A. Schlothauer, et al., Sci. Rep. 9 (2019).

[4] A. Schlothauer, et al., Compos. Sci. Technol. 199 (2020).

Molecular reorientation during polymer crystallization results in generally improved hemocompatibility and mechanical performance

