Cálculo de la Evapotranspiración Potencial mediante la fórmula de Hargreaves

La fórmula de Hargreaves (Hargreaves y Samani, 1985) para evaluar la Evapotranspiración Potencial¹ necesita solamente datos de **temperaturas** y de **Radiación Solar**.

La expresión general es la siguiente:

$$ET_0 = 0.0135 (t_{med} + 17.78) R_s$$
 (1)

donde:

 ET_0 = evapotranspiración potencial diaria, mm/día

 t_{med} = temperatura media, °C

 R_s = radiación solar incidente, convertida en mm/día

La radiación solar incidente, R_s , se evalúa a partir de la radiación solar extraterrestre (la que llega a la parte exterior de la atmósfera, que sería la que llegaría al suelo si no existiera atmósfera); ésta última aparece según los autores como R_0 ó R_a , y la leemos en tablas en función de la latitud del lugar y del mes. En este documento nos referiremos a ella como R_0

Obtención de la Radiación Solar Incidente (R_s)

Samani (2000) propone la siguiente fórmula:

$$R_s = R_0 * KT * (t_{\text{max}} - t_{\text{min}})^{0.5}$$
 (2)

donde: R_s = Radiación solar incidente

 R_0 = Radiación solar extraterrestre (tabla pág. 3)

KT = coeficiente

 t_{max} = temperatura diaria máxima

 t_{\min} = temperatura diaria mínima

Puesto que los valores de R_0 están tabulados y las temperaturas máximas y mínimas son datos empíricos relativamente fáciles de obtener, la dificultad para aplicar esta sencilla expresión la encontramos en el coeficiente KT.

Para evaluar la **Radiación Solar Extraterrestre** (R_{θ}) existen varias tablas, todas ellas en función de la latitud y del mes. Al final de este documento se incluye la tabla de R_{θ} de Alllen et al (1998). La tabla original está en **MJulio/m²/día**, aquí la presentamos en **mm./día** (de agua evaporada) ²

El **coeficiente** KT de la expresión (2) es un coeficiente empírico que se puede calcular a partir de datos de presión atmosférica, pero Hargreaves (citado en Samani, 2000) recomienda KT = 0,162 para regiones del interior y KT = 0,19 para regiones costeras.

Ejemplo 1: Mediante las ecuaciones (1) y (2).

Calcular la ET_0 diaria en Costa Rica para el mes de Octubre sabiendo que se encuentra a 10° de latitud norte, y que las temperaturas representativas de eses mes son:

t media=26,8 °C

t max diaria = 31,6 °C.

t min diaria = 23.0 °C

Valor de la **Radiación extraterrestre** (Tabla, para Octubre y 10º latitud Norte):

Para mayor exactitud, multiplicar por: 238,85 / (597,3 -0,57 T); donde T= temperatura media del periodo elegido

¹ En realidad es para calcular la "Evapotranspiración de Referencia". Para las diferencias entre ambos conceptos, ver Tema T040, pág 3

² Para efectuar esta conversión: 1 mm/dia= MJulio/m2/día

$$R_0 = 35,1 \text{ MJulios/m}^2/\text{día}$$

Para pasarlo a su equivalente en mm/día:

$$R_0 = 35,1 * 0,408 = 14,3 \text{ mm/día}$$

Tomando un valor de 0,17 para la constante KT, el valor de R_s sería [ecuación (2)]:

$$R_s = 14.3 * 0.20 * (31.6-23)^{0.5} = 7.13 \text{ mm/día}$$

Finalmente [ecuación (1)]:

$$ET_0 = 0.0135 * 8.38 * (26.8+17.8) = 4.29 \text{ mm/día}$$

Fórmula simplificada

Sustituyendo del valor de *Rs* de (2) en la expresión inicial (1), y tomando para el coeficiente *KT* el valor medio de 0,17, resulta la expresión citada con más frecuencia en la bibliografía:

$$ET_0 = 0.0023 (t_{med} + 17.78) R_0 * (t_{max} - t_{min})^{0.5}$$
(3)

donde: ET_0 = evapotranspiración potencial diaria, mm/día

 t_{med} = temperatura media diaria, °C

 R_0 = Radiación solar extraterrestre, en mm/día (tabulada)

 t_{max} = temperatura diaria máxima

 t_{\min} = temperatura diaria mínima

Ejemplo 2: Mediante las ecuación (3).

Calcular la ET_0 diaria en Salamanca para un día del mes de Julio sabiendo que se encuentra a 40° de latitud norte, y que las temperaturas de ese día son:

t media=24.2 °C

t max diaria = 29,8 °C.

t min diaria = 18,3 °C

Valor de la **Radiación extraterrestre** (Tabla, para Agosto y 40º latitud Norte):

$$R_0 = 36.7 \text{ MJulios/m}^2/\text{día}$$

Para pasarlo a su equivalente en mm/día:

$$R_0 = 36.7 * 0.408 = 15.0 \text{ mm/d/a}$$

Finalmente, aplicando la ecuación (3):

$$ET_0 = 0.0023 (t_{med} + 17.78) * R_0 * (t_{max} - t_{min})^{0.5}$$

 $ET_0 = 0.0023 (24.2 + 17.78) * 15.0 * (29.8 - 18.3)^{0.5} = 4.91 \text{ mm/día}$

Bibliografía

Allen, R.G.; L. S. Pereira; D. Raes y Smith, M. (1998).- *Crop evapotranspiration - Guidelines for computing crop water requirements* - FAO Irrigation and drainage paper **56** (http://www.fao.org/docrep/X0490E/X0490E00.htm#Contents)

Versión en español: http://www.fao.org/3/x0490s/x0490s00.htm

Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. *Applied Eng. in Agric.*, 1(2): 96-99.

Samani , Z. (2000).- Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data . *Journal of Irrigation and Drainage Engineering*, Vol. 126, No. 4, pp. 265-267

Tabla de Radiación solar extraterrestre en mm/día (Allen et al., 1998) (Original en MJ·m⁻²·dia⁻¹; 1 mm/dia = 2,45 MJ·m⁻²·dia⁻¹)

HEMISFERIO NORTE

HEMISFERIO SUR

										- - - - -										D				
Latitud	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
70	0.0	1.1	4.2	9.4	14.4	17.3	16.1	11.4	6.1	2.0	0.0	0.0	16.9	11.7	6.4	2.0	0.1	0.0	0.0	0.9	4.4	9.6	15.2	18.5
68	0.0	1.5	4.8	9.8	14.4	17.1	15.9	11.7	6.6	2.4	0.3	0.0	16.7	12.0	6.9	2.4	0.3	0.0	0.0	1.3	4.9	10.0	15.3	18.2
66	0.2	2.0	5.3	10.1	14.5	16.9	15.8	12.0	7.1	2.9	0.6	0.0	16.7	12.2	7.4	2.9	0.6	0.0	0.2	1.7	5.3	10.4	15.3	18.0
64	0.6	2.4	5.8	10.5	14.7	16.8	15.8	12.2	7.5	3.5	1.0	0.2	16.7	12.6	7.9	3.4	1.0	0.2	0.5	2.2	5.9	10.7	15.5	17.9
62	0.9	2.9	6.3	10.9	14.8	16.8	15.9	12.5	8.0	4.0	1.4	0.5	16.8	12.9	8.3	3.9	1.4	0.5	0.8	2.6	6.3	11.1	15.6	17.9
60	1.3	3.4	6.8	11.2	14.9	16.8	16.0	12.8	8.4	4.4	1.8	0.9	16.9	13.2	8.8	4.4	1.8	0.8	1.2	3.1	6.8	11.5	15.8	17.9
58	1.8	3.9	7.2	11.6	15.1	16.9	16.1	13.1	8.9	4.9	2.2	1.3	17.0	13.5	9.2	4.9	2.2	1.2	1.6	3.6	7.3	11.8	16.0	18.0
56	2.2	4.4	7.7	11.9	15.3	16.9	16.2	13.3	9.3	5.4	2.7	1.7	17.1	13.8	9.6	5.4	2.7	1.6	2.0	4.0	7.8	12.2	16.1	18.0
54	2.7	4.9	8.2	12.2	15.4	16.9	16.2	13.6	9.7	5.9	3.2	2.1	17.2	14.0	10.0	5.9	3.1	2.0	2.4	4.5	8.2	12.5	16.3	18.1
52	3.1	5.4	8.6	12.6	15.6	17.0	16.4	13.8	10.1	6.4	3.7	2.6	17.3	14.3	10.4	6.4	3.6	2.4	2.9	5.0	8.7	12.8	16.4	18.1
50	3.6	5.9	9.1	12.9	15.7	17.0	16.4	14.0	10.5	6.9	4.2	3.1	17.4	14.5	10.9	6.8	4.1	2.9	3.3	5.5	9.1	13.1	16.6	18.2
48	4.1	6.4	9.5	13.1	15.8	17.1	16.5	14.2	10.9	7.4	4.7	3.6	17.5	14.8	11.2	7.3	4.5	3.3	3.8	6.0	9.5	13.4	16.7	18.2
46	4.6	6.9	9.9	13.4	16.0	17.1	16.6	14.4	11.2	7.8	5.1	4.0	17.6	15.0	11.6	7.8	5.0	3.8	4.2	6.4	9.9	13.7	16.8	18.2
44	5.1	7.3	10.3	13.7	16.0	17.1	16.6	14.7	11.6	8.3	5.7	4.5	17.6	15.2	12.0	8.2	5.5	4.3	4.7	6.9	10.3	13.9	16.9	18.2
42	5.6	7.8	10.7	13.9	16.1	17.1	16.7	14.8	11.9	8.7	6.2	5.1	17.7	15.4	12.3	8.7	6.0	4.7	5.2	7.3	10.7	14.2	17.0	18.2
40	6.1	8.3	11.1	14.2	16.2	17.1	16.7	15.0	12.2	9.2	6.7	5.6	17.7	15.6	12.6	9.1	6.4	5.2	5.7	7.8	11.1	14.4	17.1	18.2
38	6.6	8.8	11.5	14.4	16.3	17.1	16.7	15.1	12.5	9.6	7.1	6.0	17.7	15.7	12.9	9.5	6.9	5.7	6.2	8.2	11.4	14.6	17.1	18.2
36	7.1	9.2	11.8	14.6	16.3	17.0	16.7	15.3	12.9	10.0	7.6	6.6	17.7	15.9	13.2	9.9	7.4	6.2	6.6	8.7	11.8	14.8	17.1	18.1
34	7.6	9.7	12.2	14.7	16.3	17.0	16.7	15.3	13.1	10.4	8.1	7.1	17.7	16.0	13.5	10.3	7.8	6.6	7.1	9.1	12.1	15.0	17.1	18.1
32	8.1	10.1	12.5	14.5	16.3	16.9	16.6	15.5	13.4	10.9	8.6	7.6	17.7	16.1	13.8	10.7	8.3	7.1	7.6	9.5	12.4	15.1	17.1	18.0
30	8.6	10.5	12.8	15.0	16.3	16.8	16.6	15.5	13.6	11.3	9.1	8.1	17.6	16.2	14.0	11.1	8.7	7.6	8.0	9.9	12.7	15.3	17.1	17.9
28	9.1	10.9	13.1	15.1	16.3	16.7	16.5	15.6	13.8	11.6	9.5	8.6	17.6	16.2	14.2	11.5	9.2	8.0	8.4	10.3	13.0	15.4	17.1	17.8
26	9.6	11.3	13.4	15.3	16.3	16.6	16.4	15.6	14.1	12.0	10.0	9.1	17.5	16.3	14.4	11.8	9.6	8.5	8.9	10.7	13.3	15.5	17.1	17.7
24	10.0	11.8	13.7	15.3	16.2	16.4	16.3	15.6	14.2	12.3	10.4	9.5	17.3	16.3	14.6	12.2	10.0	8.9	9.3	11.1	13.5	15.6	17.0	17.6
22	10.5	12.1	13.9	15.4	16.1	16.3	16.2	15.7	14.4	12.7	10.9	10.0	17.2	16.4	14.8	12.5	10.4	9.4	9.8	11.5	13.8	15.7	16.9	17.4
20	10.9	12.5	14.2	15.5	16.0	16.1	16.0	15.6	14.6	13.0	11.3	10.4	17.1	16.3	14.9	12.8	10.9	9.8	10.2	11.8	14.0	15.8	16.8	17.2
18	11.4	12.9	14.4	15.5	15.9	16.0	15.9	15.6	14.7	13.3	11.7	10.9	16.9	16.3	15.1	13.1	11.2	10.2	10.6	12.2	14.2	15.8	16.7	17.0
16	11.8	13.2	14.6	15.6	15.8	15.8	15.7	15.6	14.9	13.6	12.1	11.4	16.8	16.3	15.2	13.4	11.6	10.7	11.0	12.5	14.4	15.8	16.6	16.8
14	12.2	13.5	14.7	15.6	15.7	15.6	15.6	15.5	15.0	13.8	12.5	11.8	16.6	16.2	15.3	13.6	12.0	11.1	11.4	12.8	14.5	15.8	16.4	16.6
12	12.6	13.8	14.9	15.5	15.5	15.3	15.3	15.4	15.1	14.1	12.9	12.2	16.4	16.2	15.4	13.9	12.3	11.5	11.8	13.1	14.7	15.8	16.2	16.3
10	13.0	14.1	15.1	15.5	15.3	15.1	15.1	15.3	15.1	14.3	13.2	12.7	16.1	16.0	15.4	14.1	12.7	11.9	12.2	13.4	14.8	15.7	16.0	16.1
8	13.4	14.4	15.2	15.4	15.1	14.8	14.9	15.2	15.2	14.5	13.6	13.1	15.9	15.9	15.5	14.3	13.0	12.2	12.5	13.6	14.9	15.7	15.8	15.8
6	13.8	14.6	15.3	15.3	14.9	14.6	14.7	15.1	15.2	14.7	13.9	13.4	15.6	15.8	15.5	14.5	13.3	12.6	12.9	13.9	15.0	15.6	15.6	15.5
4	14.1	14.9	15.3	15.3	14.7	14.3	14.4	14.9	15.2	14.9	14.2	13.8	15.3	15.6	15.5	14.7	13.6	13.0	13.2	14.1	15.1	15.5	15.3	15.2
2	14.4	15.1	15.4	15.1	14.4	14.0	14.1	14.7	15.2	15.1	14.5	14.2	15.1	15.5	15.5	14.9	13.9	13.3	13.5	14.4	15.1	15.4	15.1	14.9
0	14.8	15.3	15.5	15.0	14.2	13.6	13.8	14.6	15.2	15.3	14.8	14.5	14.8	15.3	15.5	15.0	14.2	13.6	13.8	14.6	15.2	15.3	14.8	14.5
		1										-												