Primer parcial

Tabla de contenidos

Sumatorias y productorias									
Sumatorias									
Propiedades de la sumatoria									
Algunas identidades importantes									
Errores por evitar (sumatorias)									
Productorias									
Propiedades de la productoria									
Errores por evitar (productorias)									
Ejercicio									
Optimización									
Optimización con restricción de igualdad .									
Optimización con restricción de desigualda	d .								

Listado de Figuras

Listado de Tablas

Recomendaciones generales

Lab 1: Sumatorias, productorias y optimización

Sumatorias y productorias

Considere una secuencia de objetos $\{x_i\}_{i=1}^n=\{x_1,x_2,\dots,x_n\}$ para los cuales están definidas la suma y la multiplicación.

Para trabajar con muchos términos se usan puntos suspensivos:

- $x_1 + x_2 + x_3 + \dots + x_{n-1} + x_n$,
- $x_1 \cdot x_2 \cdot x_3 \cdot \cdots \cdot x_{n-1} \cdot x_n$.

Cuando esta notación es poco conveniente, se usan las notaciones Σ (sumatoria) y Π (productoria).

Sumatorias

Sean $k, n \in \mathbb{N}$ tales que $k \leq n$. Definimos la notación Sigma (Σ) así:

$$\sum_{i=k}^{n} x_i = x_k + x_{k+1} + \dots + x_{n-1} + x_n.$$

i:Índice de la sumatoria k: Primer término

 x_i : Argumento de la sumatoria n: Último término

Propiedades de la sumatoria

Sean $\{x_i\}_{i=1}^n$, $\{y_i\}_{i=1}^n$ secuencias de objetos $j \in \mathbb{N}$ tal que $k \leq j \leq n$; y c una constante (cualquier objeto que no varíe conforme aumenta el contador).

1. Sumatoria de constantes

$$\sum_{i=k}^{n} c = \underbrace{c+c+\cdots+c}_{n-k+1 \text{ veces}} = (n-k+1)c.$$

2. Distributividad

$$\sum_{i=k}^n c \, x_i = c \sum_{i=k}^n x_i.$$

2

3. Eliminación de términos

$$\sum_{\substack{i=k\\i\neq j}}^n x_i \ = \ \sum_{i=k}^n x_i - x_j.$$

4. Cambio de índice

$$\sum_{i=k}^{n} x_i = \sum_{t=k}^{n} x_t.$$

5. Asociatividad (linealidad en la suma)

$$\sum_{i=k}^{n} (x_i + y_i) \ = \ \sum_{i=k}^{n} x_i \ + \ \sum_{i=k}^{n} y_i.$$

Algunas identidades importantes

1. Suma de Gauss

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

2. Suma de cuadrados

$$\sum_{i=1}^{n} i^2 \ = \ \frac{n(n+1)(2n+1)}{6}.$$

3. Suma de cubos

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

Errores por evitar (sumatorias)

No sobredefinir índices:

$$\sum_{i=k}^{n} \left(\sum_{i=k}^{n} x_{i\ell} \right) \quad \text{(incorrecto)} \qquad \sum_{i=k}^{n} \left(\sum_{\ell=k}^{n} x_{i\ell} \right) \quad \text{(correcto)}$$

En general, las siguientes no son ciertas:

• Recíprocos

$$\sum_{i=k}^{n} \frac{1}{x_i} \neq \frac{1}{\sum_{i=k}^{n} x_i}$$

• Productos

$$\sum_{i=k}^{n} x_i y_i \neq \Big(\sum_{i=k}^{n} x_i\Big) \Big(\sum_{i=k}^{n} y_i\Big),$$

• Potencias

$$\sum_{i=k}^{n} x_i^c \neq \left(\sum_{i=k}^{n} x_i\right)^c.$$

Productorias

Sean $k, n \in \mathbb{N}$ tales que $k \leq n$. Definimos la notación Pi (Π) así:

$$\prod_{i=k}^n x_i \ = \ x_k \cdot x_{k+1} \cdot \dots \cdot x_{n-1} \cdot x_n.$$

i:Índice de la productoria k: Primer término $x_i:$ Argumento de la productoria n: Último término

Propiedades de la productoria

Sean $\{x_i\}_{i=1}^n, \{y_i\}_{i=1}^n$ secuencias de objetos, j tal que $k \leq j \leq n$; y c constante (cualquier objeto que no varíe conforme aumenta el contador).

1. Productoria de constantes

$$\prod_{i=k}^{n} c = \underbrace{c \cdot c \cdots c}_{n-k+1 \text{ veces}} = c^{n-k+1}.$$

2. Constante por término

$$\prod_{i=k}^n (c\,x_i) \; = \; c^{\,n-k+1} \prod_{i=k}^n x_i.$$

3. Eliminación de un término

$$\prod_{\substack{i=k\\i\neq j}}^n x_i = \frac{\prod_{i=k}^n x_i}{x_j}.$$

4

4. Cambio de índice

$$\prod_{i=k}^{n} x_i = \prod_{t=k}^{n} x_t.$$

5. Conmutatividad (producto término a término)

$$\prod_{i=k}^n (x_iy_i) \ = \ \Big(\prod_{i=k}^n x_i\Big) \Big(\prod_{i=k}^n y_i\Big).$$

6. Cociente de productos (si $y_i \neq 0$ para todo i)

$$\prod_{i=k}^n \frac{x_i}{y_i} = \frac{\prod_{i=k}^n x_i}{\prod_{i=k}^n y_i}.$$

7. Potencia de productoria

$$\prod_{i=k}^n x_i^{\,c} \;=\; \Big(\prod_{i=k}^n x_i\Big)^c.$$

8. Base constante elevada a x_i

$$\prod_{i=k}^{n} c^{x_i} = c^{\sum_{i=k}^{n} x_i}.$$

Errores por evitar (productorias)

No sobredefinir índices:

$$\prod_{i=k}^{n} \left(\prod_{i=k}^{n} x_{i\ell} \right) \quad \text{(incorrecto)} \qquad \prod_{i=k}^{n} \left(\prod_{\ell=k}^{n} x_{i\ell} \right) \quad \text{(correcto)}$$

En general, las siguientes no son ciertas:

$$\prod_{i=k}^{n} (x_i + y_i) \neq \prod_{i=k}^{n} x_i + \prod_{i=k}^{n} y_i,$$

$$\prod_{i=k}^n (x_i-y_i) \ \neq \ \prod_{i=k}^n x_i - \prod_{i=k}^n y_i.$$

Tip

En caso de olvidar alguna propiedad, desarrolle la productoria o sumatoria para 2-3 elementos y observe si incumple alguna propiedad.

Ejercicio

Simplifique al máximo, usando las propiedades:

1.
$$\frac{\prod_{\substack{i=1\\i\neq j}}^{n} x_i}{\prod_{\substack{i=1\\i\neq k}}^{n} x_i}$$

2.
$$\sum_{i=1}^{n} \left[x_i \sum_{j=1}^{n} \left(\frac{1}{x_j} \right) \right]$$

$$3. \ x_j^2 \prod_{\substack{i=2\\i\neq j}}^n \frac{P_j x_j}{P_i}$$

4.
$$\prod_{j=2}^{n} \frac{P_j}{\prod_{i=1}^{n} P_i^{1/n}}$$

5.
$$\sum_{i=1}^{n} (i^2 + i + 1)$$

6.
$$\log \left(\prod_{i=1}^{n} \frac{x_i^{\alpha_i}}{i} \right)$$

Optimización

Optimización con restricción de igualdad

Encuentre el máximo de $f: \mathbb{R} \times \mathbb{R}_{>0} \to \mathbb{R}$,

$$f(x_1,x_2) = x_1 + 3\ln(x_2) \quad \text{sujeto a} \quad 100 = 2x_1 + x_2.$$

Optimización con restricción de desigualdad

Un consumidor obtiene utilidad de cerveza x_1 y limonada x_2 :

$$U(x_1, x_2) = x_1^{3/4} x_2^{1/4}.$$

Por recomendación médica, el individuo tiene estrictamente prohibido gastar más de una fracción $k \in [0,1]$ de su ingreso **en cervezas**. Encuentre el óptimo del consumidor y desarrolle los casos según el valor de k.

Lab 2