4 つの関数 $f_1(x)=x^2-2x, f_2(x)=x^2+2x, f_3(x)=-x^2, f_4(x)=4-x^2$ について以下の間に答えよ。ただし、解答用紙には計算過程も示せ。

- (1) $y \ge f_1(x)$ または $y \ge f_2(x)$ を満たし、なおかつ $y \le f_3(x)$ を満たす領域 D_1 を座標平面上に図示せよ。ただし、3 つの放物線 $y = f_1(x), y = f_2(x), y = f_3(x)$ について、各放物線と軸との交点の座標もかくこと。
- (2) 領域 D₁ の面積を求めよ。
- (3) $y \ge f_1(x)$ または $y \ge f_2(x)$ を満たし、なおかつ $y \le f_4(x)$ を満たす領域 D_2 を座標平面上に図示せよ。ただし、3 つの放物線 $y = f_1(x), y = f_2(x), y = f_4(x)$ について、各放物線と軸との交点の座標もかくこと。
- (4) 領域 D_2 の面積を求めよ。

(2019 東京都市大)

コメント:「または」と「かつ」を混同しないように。それ以外は典型的な積分問題。

(1)

(3)

ただし境界線を含む。

(2) 領域 D_1 の面積 S_1 は

ただし境界線を含む。

(4) 領域 D_2 の面積 S_2 は

$$S_{1} = \int_{-1}^{0} \{f_{3}(x) - f_{2}(x)\} dx + \int_{0}^{1} \{f_{3}(x) - f_{1}(x)\} dx + \int_{0}^{1} \{f_{3}(x) - f_{1}(x)\} dx + \int_{0}^{1} \{-x^{2} - (x^{2} + 2x)\} dx + \int_{0}^{1} \{-2x^{2} - 2x\} dx + \int_{0}^{1} (-2x^{2} + 2x) dx$$

$$= \left[-\frac{2}{3}x^{3} - x^{2} \right]_{-1}^{0} + \left[-\frac{2}{3}x^{3} + x^{2} \right]_{0}^{1}$$

$$= \frac{1}{3} + \frac{1}{3}$$

$$= \frac{2}{3}$$

$$\begin{split} S_1 &= \int_{-1}^0 \{f_3(x) - f_2(x)\} dx + \int_0^1 \{f_3(x) - f_1(x)\} dx & S_2 &= \int_{-2}^0 \{f_4(x) - f_2(x)\} dx + \int_0^2 \{f_4(x) - f_1(x)\} dx \\ &= \int_{-1}^0 \{-x^2 - (x^2 + 2x)\} dx + \int_0^1 \{-x^2 - (x^2 - 2x)\} dx &= \int_{-2}^0 \{(4 - x^2) - (x^2 + 2x)\} dx + \int_0^2 \{(4 - x^2) - (x^2 - 2x)\} dx \\ &= \int_{-1}^0 (-2x^2 - 2x) dx + \int_0^1 (-2x^2 + 2x) dx &= \int_{-2}^0 (-2x^2 - 2x + 4) dx + \int_0^2 (-2x^2 + 2x + 4) dx \\ &= \left[-\frac{2}{3}x^3 - x^2\right]_{-1}^0 + \left[-\frac{2}{3}x^3 + x^2\right]_0^1 &= \left[-\frac{2}{3}x^3 - x^2 + 4x\right]_{-2}^0 + \left[-\frac{2}{3}x^3 + x^2 + 4x\right]_0^2 \\ &= \frac{1}{3} + \frac{1}{3} &= \frac{20}{3} \\ &= \frac{20}{3} \end{split}$$

Addition 1/6 公式?

$$\int_{\alpha}^{\beta} (x - \alpha)(x - \beta)dx = -\frac{1}{6}(\beta - \alpha)^2 \tag{1}$$