Hodina 15. decembra 2023

Program:

- 1. Domáca úloha (z minula)
- 2. Niekoľko príkladov na zahriatie a pozdvihnutie mysli: Komplexné čísla a goniometria
- 3. Afínny priestor
- 4. Domáca úloha (nová)
- 5. Program na budúci týždeň

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://g ithub.com/PKvasnick/Erik. Odporúčam Github Desktop (na Windows) pre uloženie a synchronizáciu repozitára.

Videohovor Používame SpeakApp, link postnem vždy pred hodinou, *je možné, že sa bude týždeň od týždňa líšiť*.

1. Domáca úloha

Príklad 1

Vypočítajte limitu

$$\lim_{n o\infty}\sqrt{rac{1}{n}+\sqrt{rac{1}{n}+\dots}}$$

Riešenie

Táto limita sú v skutočnosti dve limity:

$$\lim_{n o \infty} \lim_{m o \infty} \sqrt{rac{1}{n} + \sqrt{rac{1}{n} + \dots}}$$

Intuitívne je toto poradie limít to správne, pretože najskôr adresujeme otázku hodnoty nekonečného radikálového výrazu pre fixné n ako limitu pre $m \to \infty$, a potom skúmame, čo sa stane s touto limitou, keď $n \to \infty$. Naopak, pri opačnom poradí vchádzame s limitou v n do potenciálne zle definovaného výrazu a nemôžeme si byť istí, čo vlastne robíme.

Vyšetríme najskôr toto poradie limít a ukážeme, ako veci fungujú, a potom vyšetríme opačné poradie, a ukážeme, že vôbec nefunguje.

Začnime výrazom

$$S_{m,n} = \underbrace{\sqrt{rac{1}{n} + \sqrt{rac{1}{n} + \dots}}}_{m \ kr cup t}$$

Rekurencia je

$$S_{m,n} = \sqrt{rac{1}{n} + S_{m-1,n}}, \quad S_{1,n} = rac{1}{n}$$

Limitu rekurencie nájdeme ľahko, stačí nájsť stacionárny bod rekurzie:

$$S_n = \sqrt{rac{1}{n} + S_n} \ S_n^2 - S_n - 1/n = 0 \ S_{n|1,2} = rac{1 + \sqrt{1 + 4/n}}{2}$$

a záporný koreň zahadzujeme z očividných dôvodov.

Táto limita je stacionárny bod funkčnej iterácie, ale nevieme, či to je stabilný stacionárny bod - teda či sa k nemu iterácie približujú alebo sa od neho vzďaľujú. Pre úplný dôkaz konvergencie potrebujeme typicky dve veci:

- ullet hornú hranicu $S_{m,n} \leq D \quad orall m \in N$
- monotónnosť, teda že platí $S_{m,n} > S_{m-1,n} \quad orall m, n \in N.$

Monotónnosť

$$S_{m+1,n}=\sqrt{rac{1}{n}+\sqrt{rac{1}{n}+\cdots+\sqrt{rac{1}{n}}}}>\sqrt{rac{1}{n}+\sqrt{rac{1}{n}}+\cdots+\sqrt{rac{1}{n}+0}}=S_{m,n}$$

Postupnosť $\{S_{m,n}\}, \ m=1,2,\ldots$ (pre fixné n) je teda rastúca.

Horná hranica

Pre fixné m je zjavne $S_{m,1}>S_{m,2}>\dots$ Ukážeme, že pre ľubovoľné m, n je $S_{m,n}\leq \phi$, kde ϕ je pomer zlatého rezu,

$$\phi = \frac{1 + \sqrt{5}}{2}$$

Prečo potrebujeme zlatý rez? Pre rovnicu, ktorou je definovaný a vlastnosť, ktorá z nej vyplýva: $\phi^2=\phi+1$. Teraz nám stačí dôkaz indukciou:

1.
$$S_{1,n} < S_{1,1} = 1 < \phi$$

2. Ak
$$S_{n,n} \leq \phi$$
, potom $S_{m+1,n} = \sqrt{1 + S_{m,n}} \leq \sqrt{1 + \phi} = \phi$

čím je tvrdenie dokázané: dvojnásobná limita sa rovná 1:

$$\lim_{n o \infty} \lim_{m o \infty} \underbrace{\sqrt{rac{1}{n} + \sqrt{rac{1}{n} + \dots}}}_{m \, kr \acute{a}t} = 1$$

Opačná limita:

$$\lim_{m o\infty}\lim_{n o\infty} \underbrace{\sqrt{rac{1}{n}+\sqrt{rac{1}{n}+\dots}}}_{m\,krcute{tt}} = \lim_{m o\infty} 0 = 0$$

a teda v tomto prípade nemôžeme vymeniť poradie, v ktorom počítame limity. Toto je varovný prípad, pretože tento postup často používame - napríklad implicitne pri zmene poradia integrovania.

Príklad 2

Dokážte, že riešenia Pellovej rovnice typu $(3+2\sqrt{2})^n, n \to \infty$ dávajú racionálne aproximácie $\sqrt{2}$.

Riešenie

Potrebujeme rekurentný vzťah pre riešenia Pellovej rovnice. Označme

$$A_n = a_n + b_n \sqrt{2} = (3 + 2\sqrt{2})^n$$

Potom

$$A_{n+1} = (a_n + b_n\sqrt{2})(3 + 2\sqrt{2}) = 3a_n + 4b_n + (3b_n + 2a_n)\sqrt{2}$$

Odtiaľ

$$a_{n+1} = 3a_n + 4b_n$$

 $b_{n+1} = 2a_n + 3b_n$

Vyjadríme z prvej rovnice b_n a dosadíme do druhej rovnice

$$b_n = rac{1}{4} a_{n+1} - rac{3}{4} a_n \quad \Longrightarrow \quad b_{n+1} = 2 a_n + rac{3}{4} a_{n+1} - rac{9}{4} a_n = rac{3}{4} a_{n+1} - rac{1}{4} a_n$$

Posunieme v tomto vzťahu n+1 o n a dosadíme za b_n v prvom vzťahu:

$$b_n=rac{3}{4}a_n-rac{1}{4}a_{n-1}$$
 $a_{n+1}=3a_n+4b_n=3a_n+3a_n-a_{n-1}=6a_n-a_{n-1}$

To znamená, že máme samostatný vzťah pre a_n a vzťah pre b_n v termínoch a_n . Stačí teda vyriešiť rekurziu pre a_n a máme kompletné riešenie. Riešenie je ľahké a známe: položíme $a_n=\lambda^n$ a dosadíme:

$$\lambda^{n+1} = 6\lambda^n - \lambda^{n-1} \ \lambda^2 - 6\lambda + 1 = 0 \ \lambda_{1,2} = rac{6 \pm \sqrt{32}}{2} = 3 \pm 2\sqrt{2} \ a_n = c_1\lambda_1^n + c_2\lambda_2^n$$

Konštanty c_1, c_2 určíme z počiatočných podmienok:

$$a_0 = 1 \implies c_1 + c_2 = 1$$

 $a_1 = 3 \implies c_1\lambda_1 + c_2\lambda_2 = 3$

a teda

$$c_1 = rac{2}{\lambda_1 - \lambda_2} = rac{2}{4\sqrt{2}} = rac{\sqrt{2}}{2}, \quad c_2 = 1 - rac{\sqrt{2}}{2}$$

Konečne máme výraz pre a_n :

$$a_n = rac{\sqrt{2}}{2}(3+2\sqrt{2})^n + \left(1-rac{\sqrt{2}}{2}
ight)(3-2\sqrt{2})^n$$

Ako som písal vyššie, ľahko získame aj výraz pre b_n :

$$b_n = \frac{3}{4}a_n - \frac{1}{4}a_{n-1} = \frac{3}{4}(c_1\lambda_1^n + c_2\lambda_2^n) - \frac{1}{4}(\frac{c_1}{\lambda_1}\lambda_1^n + \frac{c_2}{\lambda_2}\lambda_2^n)$$

$$= \left(\frac{3}{4} - \frac{1}{4\lambda_1}\right)c_1\lambda_1^n + \left(\frac{3}{4} - \frac{1}{4\lambda_2}\right)c_2\lambda_1^n$$

$$= \frac{1}{2}(3 + 2\sqrt{2})^n - \frac{\sqrt{2}}{2}\left(1 - \frac{\sqrt{2}}{2}\right)(3 - 2\sqrt{2})^n$$

Uvedomme si, že $\lambda_1=3+2\sqrt{2}\approx 5.828$, zatiaľčo $\lambda_2=3-2\sqrt{2}\approx 0.172$. Inak povedané, o hodnotách a_n a b_n s rastúcim n dominujú členy s λ_1 a pre pomer a_n/b_n bude rozhodujúci pomer koeficientov pri λ_1^n , teda

$$rac{a_n}{b_n}
ightarrow \sqrt{2}$$

čo sme mali dokázať. Podobný výsledok by sme získali jednoduchšie aj inou cestou, priamo z (nerozpletenej) rekurzie:

$$a_{n+1}=3a_n+4b_n \ b_{n+1}=2a_n+3b_n \ q_{n+1}\equiv rac{a_{n+1}}{b_{n+1}}=rac{3a_n+4b_n}{2a_n+3b_n}=rac{3q_n+4}{2q_n+3}$$

a pohľadáme stacionárny bod:

$$q = \frac{3q+4}{2q+3} \implies 2q^2 - 4 = 0 \implies q^2 - 2 = 0$$

Toto skrátené riešenie má ale tú nevýhodu, že nevieme, či hodnoty q_n skutočne konvergujú k $\sqrt{2}$ a ako rýchlo. Naopak naše explicitné vyjadrenie pre a_n,b_n dáva presný obraz o konvergencii a jej rýchlosti:

$$a_n = A\sqrt{2}\lambda_1^n + B\sqrt{2}\lambda_2^n \ b_n = A\lambda_1^n - B\lambda_2^n \ rac{a_n}{b_n} = rac{A\sqrt{2}\lambda_1^n + B\lambda_2^n}{A\lambda_1^n + C\lambda_2^n} = \sqrt{2}rac{1 + rac{B}{A}\left(rac{\lambda_2}{\lambda_1}
ight)^n}{1 - rac{B}{A}\left(rac{\lambda_2}{\lambda_1}
ight)^n}$$

Pretože $\lambda_2/\lambda_1 pprox 0.029$, zlomok bude veľmi rýchlo konvergovať k 1 a celý výraz k $\sqrt{2}$.

Tu je niekoľko prvých iterácií:

1	a[n]	b[n]	a[n]/b[n]	a[n]/b[n] - √2
2 3	1	0	inf	 inf
4	3	2	1.500000000000000	0.08578643762690
5	17	12	1.41666666666667	0.00245310429357
6	99	70	1.41428571428571	0.00007215191262
7	577	408	1.41421568627451	0.00000212390141
8	3363	2378	1.41421362489487	0.00000006252177
9	19601	13860	1.41421356421356	0.0000000184047
10	114243	80782	1.41421356242727	0.0000000005418
11	665857	470832	1.41421356237469	0.0000000000159
12	3880899	2744210	1.41421356237314	0.0000000000005

Získavame asi 1.5 rádu presnosti na iteráciu, čo nie je zlé, ale tiež nie oslnivé.

2. Príklady na zahriatie

Moivrova veta

$$(\cos\phi + i\sin\phi)^n = \cos n\phi + i\sin n\phi$$

Dôkaz je triviálny: $e^{i\phi} = \cos \phi + i \sin \phi$.

Použitie: goniometrické funkcie násobkov argumentu:

$$\cos 2\phi + i \sin 2\phi = (\cos \phi + i \sin \phi)^2 = \cos^2 \phi + 2i \cos phi \sin \phi - \sin^2 \phi$$

$$\therefore$$

$$\cos 2\phi = \cos^2 \phi - \sin^2 \phi \quad \sin 2\phi = 2 \sin \phi \cos \phi$$

Podobne môžeme odvodiť celý rad ďalších goniometrických vzťahov:

$$e^{ilpha}e^{ieta}=e^{i(lpha+eta)}$$
 a teda
$$\cos(lpha+eta)+i\sin(lpha+eta)=(\coslpha+i\sinlpha)(\coseta+i\sineta) \\ =\coslpha\coseta-\sinlpha\sineta+i(\sinlpha\coseta+\coslpha\sineta) \\ dots \\ \cos(lpha+eta)=\coslpha\coseta-\sinlpha\sineta \\ \sin(lpha+eta)=\sinlpha\coseta+\coslpha\sineta$$

Ďalšie goniometrické vzťahy

Vzťahy pre polovičný uhol

$$\cos \frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{2}}$$
$$\sin \frac{\alpha}{2} = \sqrt{\frac{1 - \cos \alpha}{2}}$$

Súčty goniometrických funkcií

Domáca úloha

$$\sin \alpha + \sin \beta = ?$$
$$\cos \alpha + \cos \beta = ?$$

Afinne transformácie

Rotácia

Otáčame bod P=[x,y] okolo bodu O o uhol ϕ . Aké sú nové súradnice bodu? Uhol rotácie ϕ meriame podľa konvencie proti smeru hodinových ručičiek.

Začneme s tým, že vyjadríme súradnice bodu P v polárnych súradniciach, $x=r\cos\alpha, y=r\sin\alpha$. Podobne súradnice bodu P' budú $x'=r\cos\left(\alpha+\phi\right), y'=r\sin\left(\alpha+\phi\right)$ a pretože sme sa práve naučili súčtové vzorce, vieme, ako pokračovať:

$$x' = r\cos(\alpha + \phi) = r\cos\alpha\cos\phi - r\sin\alpha\sin\phi = x\cos\phi - y\sin\phi$$
$$y' = r\sin(\alpha + \phi) = r\cos\alpha\sin\phi + r\sin\alpha\cos\phi = x\sin\phi + y\cos\phi$$

a krajšie:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Afínne rozšírenie

Pridajme k bodom v rovine tretiu súradnicu, ktorá bude konštantná a bude 1.

$$\begin{pmatrix} x \\ y \end{pmatrix}
ightarrow \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Pre väčšinu účelov to neruší, napríklad

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Vyskúšajme takúto transformáciu:

$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ 1 \end{pmatrix}$$

Inak povedané, vieme aj posunutie napísať ako maticovú operáciu. Všimneme si tiež, že to nie je zadarmo: Body a vektory už nie sú rovnaké objekty a translácia nie je lineárna operácia.

$$\begin{pmatrix} x+a \\ y+b \\ 1 \end{pmatrix}
eq \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} + \begin{pmatrix} a \\ b \\ 1 \end{pmatrix}$$

Už vieme, že horná ľavá submatica 2x2 je rotačná matica, pravá submatica 2x1 je vektor posunutia, prvok (3, 3) musí byť 1, takže nám ostáva zistiť, akú úlohu má matica 1x2 vľavo dole:

$$egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ s & t & 1 \end{pmatrix} egin{pmatrix} x \ y \ 1 \end{pmatrix} = egin{pmatrix} x \ y \ 1+sx+yt \end{pmatrix}$$

Čo sme to tu spravili? Vektor sa nezmenil, ale pôvodná 1 sa zmenila. Aby sme pochopili, čo sa deje, musíme sa pozrieť do 3D priestoru.

Geometria afínneho priestoru

V afínnom 3D priestore žijú všetky rovinné objekty na rovine z = 1. Bod X=[a,b] je teda v skutočnosti priesečníkom priamky $\vec{0}+(a,b,1)t$ s rovinou z=1. Priamka, prechádzajúca počiatkom tak predstavuje ten istý bod, len posunutý do rôznych rovín. Bod Y=[a,b,c] teda zodpovedá bodu $Y_1=[a/c,b/c,1]$ v rovine z=1 a teda bodu [a/c,b/c] v kartézskej rovine.

Body sú teda priamky, a čo sú potom priamky? Priamky žijú v rovine z=0, majú súradnice [a,b,0] a v 3D priestore sú to roviny:

Preto bod [a,b,1] leží na priamke [a,b,0]. Kým priesečníkom priamky [a,b,0] s rovinami z=w zodpovedajú body [aw,bw,w] v týchto rovinách, pre priamku nemáme operáciu pozdvihnutia do inej roviny.

Posunutie je v Euklidovskej rovine lineárna operácia. Čo môže byť lineárnejšie ako pripočítať k polohovému vektoru iný vektor? V afínnom priestore to ale nie je lineárna operácia: Posunutie je vlastne deformácia 3D priestoru, kedy súradnicový vektor \vec{z}_0 nahradzujeme jeho lineárnou kombináciou $a\vec{x}_0+b\vec{y}_0+\vec{z}_0$.

Takže aj keď na povrchu vyzerá afínny priestor jednoducho, je to fundamentálne iná vec a treba sa v ňom správať opatrne.

Domáca úloha (nová) v

1. Nájdite všetky $y \in C$, spĺňajúce rovnicu

$$\sqrt{+y} + \sqrt{-y} = 4$$

Návod: U reálnej odmocniny berieme ako hodnotu nezáporné riešenie rovnice $w^2=y,w,y\in R_+$. U V komplexných číslach takúto konvenciu nemáme a odmocnina je viacznačná (preto sa znak odmocniny pre komplexné čísla prakticky nepoužíva).

2. Nájdite r

- 3. Nájdite $\tan{(\alpha + \beta)}$ v termínoch $\tan{\alpha}$, $\tan{\beta}$.
- 4. Je daný bod Q=[-3,1]. Vypočítajte polohy stredov všetkých kružníc o polomere $r=\sqrt{20}$, ktoré prechádzajú počiatkom O=[0,0] a bodom Q.

5. Program na budúci týždeň

Afínne a projektívne súradnice.

Viac komplexných čísel.