EE 473/538 Homework 4

Kevin Egedy

P8.7 – skip the part of the problem that deals with calculating the input referred noise.

P8.10

P10.1

P10.2

P10.3

P10.11 – please do parts a, b, c and d, but skip e.

Find Ao	$A_0 - 20\log_{10}\left(\frac{\omega}{\omega_2}\right) - 20\log_{10}\left(\frac{\omega}{\omega_2}\right) = 0$
	$A_0 \sim 20 \log_{10} \left(\frac{f}{f_1}\right) \sim 20 \log_{10} \left(\frac{f}{f_2}\right) \approx 0$
	$A_0 - 20 \left[\log_{10} \left(\frac{f}{f_1} \right) + \log_{10} \left(\frac{f}{f_2} \right) \right] = 0$
	$A_0 = 20 \left[\log_{10} \left(\frac{f}{f_1} \right) + \log_{10} \left(\frac{f}{f_2} \right) \right] \left f = \frac{2.89}{2.89} \frac{F_8}{F_8} \right 2.89 = 8 Hz$
	$A_0 = 20 \log_{10} \left(\frac{f}{f} \right)$
	A0 = 29.2 dB

	$\beta = 1 \qquad H(s) = \frac{A_{0}}{\left(1 + \frac{5}{\omega_{p}}\right)\left(1 + \frac{5}{\omega_{p}}\right) + \left[3A_{0}\right]}$
	$A_0 - 40 \log_{10} \left(\frac{\omega}{\omega_p} \right) = 0$ $\omega_p = 1 \text{ MHz}$
	Need 471+=-120 for 60° phase morgin
	$-\frac{1}{2} \tan \left(\frac{\omega}{\omega \rho} \right) - \tan \left(\frac{\omega}{\omega \rho} \right) = -\frac{1}{20}$
	$-2\tan^{2}\left(\frac{\omega}{\omega_{p}}\right)=120^{\circ}$ $\tan^{2}\left(\frac{\omega}{\omega_{p}}\right)=60^{\circ}$
	$f = ton(\frac{\pi}{3})$ $f = 1.73 \text{ MHz}$
	Ao - 40 logus (1.73 MHz) = C) Ao 9.52 dB
	1 = 4 -> Ao' = Ao' 1/B
•	Ao' = Ao [dB] + 20 log 10 (=)
	$A_0^1 = 9.52 dB + 20 \log_{10} (4)$ $A_0^1 = 21.56 dB$

	10,3 W	P = 1 MHz			
•	wpz = 2wp	· Ao-zote	9(\(\overline{	.0 [1	09 = 109,0]
		Ao - 2010	$g\left(\frac{f}{f_i}\right)$ - $20\log\left(\frac{f}{2f_i}\right)$	=0 [1	cog s logic]
		60 - 20 [$\log(\frac{f}{f_1}) + \log(\frac{f}{2f_1})$	0 0	log = log 10]
		60 - Zole	$\operatorname{sgn}\left(\frac{f^{2}}{zf_{1}z}\right)=0$		
		60- 3,40	$\log_{10}\left(\frac{f}{\sqrt{2}f}\right) = 0$		
		10910	$\frac{f}{\sqrt{2}}f_{1}$) $<\frac{3}{2}$		
•			$\frac{\log(f_i) - \log(2)}{\log(10)} = \frac{3}{2}$	Γι	ogs (n]
		(09(f) =	3 log (10) + log(f,)+1	2	[log = In]
		log(f) = 1	7.62		
		f = e ^{17.6}	2 = 44.7 MHz		
	*=	- tan (44.7 M)	$\left(\frac{44.7 \text{ MHz}}{2 \text{ MHz}}\right)$	tz)	
	5	- 3.07 · 180			
	2	-176.16°			
	PM =	180 - 176.16			
	c	3.84°			

	- Marian			*	
₩p ₂ =	10	g(f) - log(f,) - log(2) = -	3	
	log	g(f) = 3 (og (10) + 1	og(f,) + lo	9(2)	
	(0)	g(f) = 17.96			
		f = 63.2 MHz			
	¥=	tam (63.2 MHz)	- tan (63.2 MHZ)	
	4 5	- 3.06 · 180 =	- 175.47°		
	PM =	180 - 175.47 =	4.53°		
0					