12 A student carried out an experiment to determine the Young modulus of constantan.

The student had a constantan wire with cross-sectional area A of 3.97×10^{-7} m².

The unstretched length x of the wire was $4.00 \,\mathrm{m}$.

(a) The student had enough slotted masses to apply a weight of up to 150N to the wire.

The breaking stress for constantan is about 420 MPa.

Deduce whether the wire could support a weight of 150 N.

(3)

(b) The student added slotted masses to the wire and determined the corresponding extensions. The student plotted a graph of force against extension, as shown.

(ii)	The relationship between the stiffness k of the wire and the Young modulus E is given by	
	$k = \frac{EA}{x}$	
	where x is the unstretched length of the wire and A is the cross-sectional area of the wire.	
	Determine a value for the Young modulus of constantan using the student's data.	(2)

Young modulus =

(Total for Question 12 = 7 marks)