HOJA DE EJERCICIOS 8

Análisis Matemático. CURSO 2020-2021.

Problema 1. Dada la siguiente 2-forma en \mathbb{R}^3 :

$$\omega = dy \wedge dz - 2dz \wedge dx + 3dx \wedge dy,$$

calcular

$$\omega_{(x,y,z)}[(1,-1,0),(2,1,1)]$$
.

Problema 2. De una 2-forma ω en \mathbb{R}^3 se sabe que:

$$\omega_{(1,2,1)}\left(\left[\begin{smallmatrix} 1\\1\\0 \end{smallmatrix}\right],\left[\begin{smallmatrix} 0\\1\\1 \end{smallmatrix}\right]\right)=2\;,\quad \omega_{(1,2,1)}\left(\left[\begin{smallmatrix} 1\\0\\0\\1 \end{smallmatrix}\right],\left[\begin{smallmatrix} 1\\0\\0\\1 \end{smallmatrix}\right]\right)=-4\;,\quad \omega_{(1,2,1)}\left(\left[\begin{smallmatrix} 0\\1\\1\\0 \end{smallmatrix}\right],\left[\begin{smallmatrix} 1\\0\\1\\1 \end{smallmatrix}\right]\right)=-4\;.$$

Calcula $\omega_{(1,2,1)}\left(\left[\begin{array}{c}0\\2\\2\end{array}\right],\left[\begin{array}{c}1\\1\\0\end{array}\right]\right)$.

Problema 3. Consideramos las siguientes formas diferenciales en \mathbb{R}^3 :

$$\omega = dx - zdy$$
 , $\nu = (x^2 + y^2 + z^2)dx \wedge dz + (xyz)dy \wedge dz$.

Calcular

$$d\omega$$
, $\omega \wedge d\omega$, $d\nu$, $\omega \wedge \nu$.

Problema 4. Calcular los siguientes productos exteriores:

- a) $(dx + dy dz) \wedge (dx + dy + dz)$.
- b) $(xdx + ydy + zdz) \wedge (xdy + ydz + zdx)$.

Problema 5. Demuestra la siguiente identidad:

$$\left(\sum_{j=1}^n F_j dx_j\right) \wedge \left(\sum_{j=1}^n G_j dx_j\right) = \sum_{1 \le j < k \le n} (F_j G_k - F_k G_j) dx_j \wedge dx_k.$$

Problema 6. Hallar la diferencial exterior de las siguientes 1-formas:

(a) xdy + ydx;

(b) (u+v)(du+dv);

(c) f(x)dx + g(y)dy;

- (d) $2xydx + (x^2 y^2)dy$;
- (e) (x+z)dx + (y-z)dy + (x-y)dz;
- (f) xydz + xzdy + yzdx.

Problema 7. Sea $\omega = \sum_{j=1}^{n} P_j dx_j$, donde $P_j = P_j(x_1, \dots, x_n)$, $1 \le j \le n$. Demuestra que

$$d\omega = \sum_{1 \le j \le k \le n} \left(\frac{\partial P_j}{\partial x_k} - \frac{\partial P_k}{\partial x_j} \right) dx_j \wedge dx_k.$$

Problema 8. Halla la diferencial exterior de las siguientes formas

- 1. $(x^2 + y + z^2) dx \wedge dz + xyz dy \wedge dz \operatorname{sen}(yz) dx \wedge dy$,
- $2. \ \ x_3 \ dx_2 \wedge dx_3 \wedge dx_4 x_2 \ dx_1 \wedge dx_3 \wedge dx_4 + x_3 \ dx_1 \wedge dx_2 \wedge dx_4 x_4 \ dx_1 \wedge dx_2 \wedge dx_3.$

<u>Problema</u> 9. Decimos que una 2-forma ω es **exacta** si existe una 1-forma α tal que $d\alpha = \omega$. Comprueba si las siguientes 2-formas son exactas:

 $(a) \quad du \wedge dv \; ,$

- (b) $(x^2 + xy + y^2)dx \wedge dy$,
- (c) $xdy \wedge dz + ydz \wedge dx 2zdx \wedge dy$.

Problema 10. Consideramos las 1-formas diferenciales

$$\omega = xzdy - ydx , \ \nu = x^3dz + dx ,$$

y la aplicación $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$\phi(s,t) = (\cos s, \sin s, t).$$

Calcular los siguientes pullbacks

$$\phi^*(\omega)$$
, $\phi^*(d\omega)$, $\phi^*(\omega \wedge \nu)$, $\phi^*(\omega \wedge d\nu)$.

Problema 11. Comprueba que la siguiente 2-forma en \mathbb{R}^3

$$\omega \; = \; (1 - z \, e^{yz}) \, dx \wedge dy + (1 - y \, e^{yz}) \, dx \wedge dz + (2y + z + {\rm sen} \, z) \, dy \wedge dz$$

es cerrada. Concluye que es exacta y halla una 1-forma η tal que $\omega = d\eta$.

Problema 12. A cada campo de vectores \mathbf{F} , en un abierto $U \subseteq \mathbb{R}^3$, le asociamos la 1-forma \mathbf{F}^{\flat} dada por

$$\mathbf{F}_p^\flat(v) \; = \; <\mathbf{F}(p), v> \qquad \text{para cualesquiera} \;\; p \in U \;\; \mathbf{y} \;\; v \in \mathbb{R}^3 \; ,$$

y le asociamos la 2-forma \mathbf{F}^{\natural} dada por

$$\mathbf{F}_p^{\natural}(v,w) \ = \ \det \left[\ \mathbf{F}(p) \mid v \mid w \ \right] \qquad \text{para cualesquiera} \ \ p \in U \ \ \mathbf{y} \ \ v,w \in \mathbb{R}^3 \ .$$

Sean $\mathbf{F} = (F_1, F_2, F_3)$ y $\mathbf{G} = (G_1, G_2, G_3)$ dos campos de vectores en U.

- a) Expresa las formas \mathbf{F}^{\flat} y \mathbf{F}^{\natural} en términos de dx, dy, dz y las funciones F_1, F_2, F_3 .
- b) Demuestra que $(\mathbf{F} \times \mathbf{G})^{\sharp} = \mathbf{F}^{\flat} \wedge \mathbf{G}^{\flat}$.
- c) Estudia la relación entre el producto escalar $<{\bf F},{\bf G}>$ y la 3-forma ${\bf F}^{\flat}\wedge{\bf G}^{\natural}.$

Problema 13. Demuestra que si \vec{F}, \vec{G} son campos de vectores de clase C^2 en \mathbb{R}^3 se cumple

$$\operatorname{div}(\vec{F} \times \vec{G}) \equiv \langle \vec{G}, \operatorname{\mathbf{rot}} \vec{F} \rangle - \langle \vec{F}, \operatorname{\mathbf{rot}} \vec{G} \rangle$$