线性递推关系与矩阵乘法

致远学院 2011 级计算机科学班 郭晓旭 杨宽

March 2, 2013

Abstract

对于一般的具有常系数线性递推关系的递推数列,若需要很快算出某一项的精确值,一般的方法是求出特征方程的解然后解出这个递推关系的通项公式。可是随着递推关系阶数的升高,解特征方程的难度也逐渐增大,甚至在递推关系阶数大于 5 之后,特征方程的次数随之超过 5,根本没有代数解法。本文利用矩阵乘法,提出了一个在 $O(k^3\lceil\log n\rceil)$ 的时间复杂度内算出 k 阶常系数线性递推数列第 n 项的精确值的算法,并利用转移矩阵和特征方程的联系,把这个算法的时间复杂度优化到了 $O(k^2\lceil\log n\rceil)$.

1 常系数线性递推关系的特征方程解法

1.1 常系数线性递推关系

对于一个数列 $\{a_n\}$, 如果 $\{a_n\}$ 满足一个递推关系:

$$a_n = c_k a_{n-1} + c_{k-1} a_{n-2} + \dots + c_1 a_{n-k} + c_0 \qquad \forall n \in \mathbb{N}, n > k$$

其中 $\forall i \in \mathbb{N}, i < k, c_i$ 是常数.

则称数列 $\{a_n\}$ 满足 k 阶常系数线性递推关系。

特别地, 若 $c_0 = 0$, 则称 $\{a_n\}$ 满足 k 阶常系数线性齐次递推关系。

1.2 齐次线性递推关系的特征方程

设数列 $\{h_n\}(n \ge 0)$, 且存在 a_1, a_2, \ldots, a_k 满足:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k}$$

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k}$$

的解的充分必要条件是: q 是多项式方程 $x^k-a_1x^{k-1}-a_2x^{k-2}-\cdots-a_k=0$ 的一个根。该多项式方程 称为对应的递推关系的特征方程,q 称为特征方程的一个特征根。 若该多项式方程有 k 个不同的特征根 q_1,q_2,q_3,\cdots,q_k ,则:

$$h_n = c_1 q_1^n + c_2 q_2^n + c_3 q_3^n + \dots + c_k q_k^n$$

是下述意义下的一般解:

无论给定 $h_0, h_1, h_2, \ldots, h_{k-1}$ 什么初始值,都存在常数 $c_1, c_2, c_3, \ldots, c_k$ 使得该通项公式是满足其递推关系和初始条件的唯一序列。

然而当某个递推关系的特征方程有重根时,我们会发现无法应用以上定理求得该数列的通项公式,这时候我们需要将定理加强为有重根的形式:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k}$$

的特征方程中的 s 个等根,设其余部分特征根的一般解为 T_n ,则:

$$c_1q^n + c_2nq^n + c_3n^2q^n + \cdots + c_sn^{s-1}q^n + T_n$$

是原递推关系的一般解。

1.3 非齐次线性递推关系的特解和通项公式

在常系数线性递推关系:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + a_3 h_{n-3} + \dots + a_k h_{n-k} + b_n$$

中,如果 $b_n \neq 0$ 为常数,那么这个递推关系称为常系数线性非齐次递推关系。 事实上,若或 b_n 是与 n 有关的函数这个递推关系也是可以解出通项公式的。

定理 1.3: 常系数线性非齐次递推关系:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + a_3 h_{n-3} + \dots + a_k h_{n-k} + b_n$$

的一般解可以写成如下形式:

$$h_n = T_n + p_n$$

其中 T_n 是递推关系

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + a_3 h_{n-3} + \dots + a_k h_{n-k}$$

的一般解。

而 p_n 是一个常数 (或关于 n 的函数),满足

$$p_n = a_1 p_{n-1} + a_2 p_{n-2} + a_3 p_{n-3} + \dots + a_k p_{n-k} + b_n$$

称为原递推关系的一个特解。

若 b_n 为常数,则 p_n 为常数或 n 的一次多项式,这取决于方程

$$p_n = \sum_{i=1}^k a_i \cdot p_n + b_n$$

是否有解。

- 一般地, p_n 可以由待定系数法求得。常见的 b_n 和特解 p_n 的对应关系如下:
 - 1. b_n 是 n 的 k 次多项式,那么特解 p_n 也应当是 n 的 k 次多项式;
 - 2. b_n 是 n 的指数形式,那么 p_n 是 n 的多项式与指数形式的乘积,例如 $b_n = d^n$,那么 p_n 应当具有 $r \cdot d^n$ 或 $r \cdot n \cdot d^n$ 的形式。

2 利用矩阵乘法计算递推数列的某一项

2.1 构造递推矩阵

设数列 $\{h_n\}$ 满足 k 阶常系数线性递推关系:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + a_3 h_{n-3} + \dots + a_k h_{n-k}$$

构造矩阵

$$\mathbf{M} = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_{k-2} & a_{k-1} & a_k \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix}_{k \times k}$$

与初始值向量

$$\mathbf{X} = \begin{pmatrix} h_{k-1} \\ h_{k-2} \\ h_{k-3} \\ \vdots \\ h_2 \\ h_1 \\ h_0 \end{pmatrix}_{k \times 1}$$

易见

$$\mathbf{Y} = \mathbf{M}\mathbf{X} = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_{k-2} & a_{k-1} & a_k \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} h_{k-1} \\ h_{k-2} \\ h_{k-3} \\ \vdots \\ h_2 \\ h_1 \\ h_0 \end{pmatrix} = \begin{pmatrix} h_k \\ h_{k-1} \\ h_{k-2} \\ \vdots \\ h_3 \\ h_2 \\ h_1 \end{pmatrix}$$

对于非齐次的线性递推关系

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + a_3 h_{n-3} + \dots + a_k h_{n-k} + b_n$$

若 b_n 为常数,则构造转移矩阵:

$$\mathbf{M} = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_{k-1} & a_k & b_n \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix}_{(k+1)\times(k+1)}$$

与初始向量

$$\mathbf{X} = \begin{pmatrix} h_{k-1} \\ h_{k-2} \\ h_{k-3} \\ \vdots \\ h_2 \\ h_1 \\ h_0 \\ 1 \end{pmatrix}_{(k+1)\times 1}$$

易见

$$\mathbf{Y} = \mathbf{M}\mathbf{X} = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_{k-1} & a_k & b_n \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h_{k-1} \\ h_{k-2} \\ h_{k-3} \\ \vdots \\ h_2 \\ h_1 \\ h_0 \\ 1 \end{pmatrix} = \begin{pmatrix} h_k \\ h_{k-1} \\ h_{k-2} \\ \vdots \\ h_3 \\ h_2 \\ h_1 \\ 1 \end{pmatrix}$$

事实上我们可以发现,对于任意的 k 阶常系数线性递推关系,我们总可以构造一个 $k \times k$ 或 $(k+1) \times (k+1)$ 的转移矩阵 M, 对于初始值向量

$$\mathbf{X} = \begin{pmatrix} h_{k-1} \\ h_{k-2} \\ h_{k-3} \\ \vdots \\ h_2 \\ h_1 \\ h_0 \end{pmatrix}_{k*1} \quad or \begin{pmatrix} h_{k-1} \\ h_{k-2} \\ h_{k-3} \\ \vdots \\ h_1 \\ h_0 \\ b_n \end{pmatrix}_{(k+1)*1}$$

使得 $\mathbf{Y} = \mathbf{M}^{n-k+1}\mathbf{X}$, \mathbf{Y} 第一行第一列的元素恰好为 h_n 。

2.2 矩阵乘法的快速幂

根据以上分析,我们可以知道如果已知 $h_0, h_1, h_2, \ldots, h_k$ 和递推关系,对于任意 $n \geq k$,我们都可以很快计算出 h_n 的值。

我们计算一下这个算法的时间复杂度,对于 $k \times k$ 的矩阵,一次矩阵乘法的时间复杂度为 $O(k^3)$,我们一共需要做 n-k 次矩阵乘法,于是整个算法的时间复杂度为 $O((n-k)k^3)$.

可以看到,整个算法的时间瓶颈在于矩阵乘法的次数,当 n 很大时,这个算法就完全失去了优势,那么对算法的优化势必先从矩阵乘法的次数入手。

定理 2.1: 矩阵乘法满足结合律.

定理 **2.2**: 设 **A** 为一 $k \times k$ 的矩阵, $n \in \mathbb{N}$, 则有如下公式成立:

$$\mathbf{A}^n = \begin{cases} (\mathbf{A}^{\frac{n}{2}})^2 & n \text{ 为偶数} \\ (\mathbf{A}^{\frac{n-1}{2}})^2 \mathbf{A} & n \text{ 为奇数} \end{cases}$$

显然定理 2.2 是定理 2.1 的直接推论。

于是我们可以利用 $\mathbf{A}^{\frac{n}{2}}$ 的结果做一次自乘得到 \mathbf{A}^{n} 的结果。

这个算法称为快速幂。

2.3 时间复杂度计算

现在我们可以考虑这个算法的时间复杂度了,只需要计算快速幂算法一共做了多少次矩阵乘法即可。

定理 **2.3**: 设 **A** 为任意矩阵, $n \in \mathbb{N}$,则快速幂算法计算 **A**ⁿ 至多需要 $(\lfloor \log n \rfloor + 1) \times 2$ 次矩阵乘法。

定理的证明非常简单,直接利用数学归纳法即可。

现在我们已经从计算次数的角度上对算法进行了优化,那么是否可以考虑从矩阵乘法本身的复杂度上对算法进行优化呢?因为事实上 $O(k^3)$ 并不是矩阵乘法时间复杂度的下限,而且这类问题中转移矩阵的形式又很特殊,于是答案是显然存在优化方法。

3 矩阵乘法的算法优化

考虑矩阵
$$\mathbf{M}$$
 的特征多项式, $f(\lambda) = |\lambda \mathbf{E} - \mathbf{M}| = \begin{pmatrix} \lambda - a_1 & -a_2 & a_3 & \cdots & -a_{k-2} & -a_{k-1} & -a_k \\ -1 & \lambda & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & \lambda & \cdots & 0 & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & \lambda & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & \lambda \end{pmatrix}_{k \times k},$

按第一行展开,得 $f(\lambda) = \lambda^k - a_1 \lambda^{k-1} - a_2 \lambda^{k-2} - \dots - a_k$.

根据 Cayley-hamilton 定理, $f(\lambda)$ 是化零多项式, 即有 $f(\mathbf{M}) = \mathbf{0}$.

下面我们断言,对于 $\forall i$, \mathbf{M}^i 都可以表示成 \mathbf{E} , \mathbf{M} , \mathbf{M}^2 ,..., \mathbf{M}^{k-1} 的线性组合。

当 0 < i < k - 1 时,结论显然。

用数学归纳法,当 i=k 时,因为 $f(\mathbf{M})=\mathbf{0}$,即有 $\mathbf{M}^k=a_1\mathbf{M}^{k-1}+a_2\mathbf{M}^{k-2}+\cdots+a_k\mathbf{E}$,所以结论成立。

现在假设当 $i < k_0$ 时结论成立,于是当 $i = k_0$ 时,我们取 $1 \le j \le i - 1$,从而 $\mathbf{M}^i = \mathbf{M}^j \mathbf{M}^{i-j}$,因为 \mathbf{M}^j 和 \mathbf{M}^{i-j} 都可以由 $\mathbf{E}, \mathbf{M}, \mathbf{M}^2, \ldots, \mathbf{M}^{k-1}$ 的线性组合得到,所以 \mathbf{M}^i 是 $\mathbf{E}, \mathbf{M}, \mathbf{M}^2, \ldots, \mathbf{M}^{2k-2}$ 的线性组合。

注意到 $f(\mathbf{M}) = 0$ 可以得到 $\mathbf{M}^i f(\mathbf{M}) = 0$,展开来写即是

$$\mathbf{M}^{i+k} = \sum_{j=1}^{k} a_j \mathbf{M}^{i+k-j}$$

,也就是说, \mathbf{M}^{i+k} 可以表示为 $\mathbf{M}^i, \mathbf{M}^{i+1}, \dots, \mathbf{M}^{i+k-1}$ 的线性组合。反复利用这个式子,结论就证到

容易观察到,上面证明的过程也给出了求线性组合的方法,而这个过程实质上是一个多项式的乘法, 因为多项式乘法也满足结合律,不妨利用和上面类似的技术,取 $j = \lceil i/2 \rceil$,于是只需要 $O(\log n)$ 次乘法 即可,每次乘法的代价是 $O(k^2)$,总的复杂度是 $O(k^2\log n)$. 此时离最终结果尚有一步之遥,我们知道 $\mathbf{M}^n=b_1\mathbf{M}^{k-1}+b_2\mathbf{M}^{k-2}+\cdots+b_k\mathbf{E}$,两端右乘 \mathbf{X} ,于是有

$$\mathbf{M}^{n}\mathbf{X} = b_{1}\mathbf{M}^{k-1}\mathbf{X} + b_{2}\mathbf{M}^{k-2}\mathbf{X} + \dots + b_{k}\mathbf{X}$$
,而我们又有 $\mathbf{M}^{i}\mathbf{X} = \begin{pmatrix} h_{i+k-1} \\ h_{i+k-2} \\ \vdots \\ h_{i} \end{pmatrix}$,直接求得 $h_{0}, h_{1}, \dots, h_{2k-2}$

的值代入即可。

至此,问题完整解决。