

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

FOUNDATION

BATCH FOR CSIR-NET 2023

September 22

Enroll Now

DETAILED COURSE 2.0

GROUP THEORY FOR IIT JAM 2023

6th OCTOBER

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Sum of two subspace: Let W_1 and W_2 are two subspace then Sum of two subspace define as $W_1 + W_2 = \{ x + y | x \in W_1, y \in W_2 \}$

Example:
$$W_1 = \{ (x, 0) | x \in R \}$$
 and $W_2 = \{ (0, y) | y \in R \}$
then $W_1 + W_2 = \{ (x, y) | x, y \in R \} = R^2$

Note:

- (i) Sum of two subspace is also a subspace of vector space
- (ii) If $V = W_1 + W_2$ then V is linear sum of W_1 and W_2
- (iii) $W_1 + W_2$ is smallest subspace containing both W_1 and W_2 i.e. $W_1 \in W_1 + W_2$ and $W_2 \in W_1 + W_2$

Disjoint subspace: Let W_1 and W_2 are two subspace s.t. $W_1 \cap W_2 = \{0\}$ then Both subspace are called disjoint subspace

Direct Product of subspace :

Let V be a vector space then V is called direct product of W₁ and W₂ if

(i)
$$V = W_1 + W_2$$

(ii)
$$W_1 \cap W_2 = \{0\}$$

It is denoted by $V = W_1 \oplus W_2$

Result:

- (i) Intersection of any number of subspaces of a vector space
 V is always a subspace of V.
- (ii) Union of two subspaces is also a subspace iff one is contain in another.

Note: $W_1 + W_2$ and $W_1 \cup W_2$ are different term

Q.1. Let $W_1 = \{(a, 2a, 0) | a \in R\}, W_2 = \{(a, 0, -a) | a \in R\}.$ Then

- (a) W₁ + W₂ is a subspace of R₃ but W₁∪ W₂ is not
- (b) W₁+ W₂, W₁∪ W₂ are both subspaces of R³.
- (c) Neither $W_1 + W_2$ nor $W_1 \cup W_2$ is a subspace of \mathbb{R}^3 .
- (d) $W_1 \cup W_2$ is a subspace of R^3 but $W_1 + W_2$ is not.

Q.2. Let $V = \{[a_{ij}]_{m \times n}; a_{ij} \in F\}$ be a vector space

$$W_1 = \{A = [a_{ij}]_{m \times n} / A^k = 0; k \in N; A \text{ is diagonalizable matrix} \}$$

and $W_2 = \{A = [a_{ij}]_{m \times n} / A \text{ is diagonal matrix} \}$

then which of the following is true

- (a) W₁ is subspace of V
- (c) W₁∩ W₂ is non subspace of W

 (d) W₁∪W₂ is subspace of W

Q.3. Let $H_1 = \{(x, y) \mid y = x\}$ and $H_2 = \{(x, y) \mid y = -x\}$ be subspaces of a vector space $R^2(R)$.

Then which of the following statement is correct?

- (a) H₁ + H₂ is an improper subspace of R²
- (b) H₁ + H₂ is a proper subspace of R²
- (c) H₁ + H₂ is not a subspace of R²
- (d) H₁ + H₂ is a trivial subgroup of R².

Linear Combination, LI & LD set of vectors

Linear combination of a set of vectors: Let v1, v2,, vn are

vectors in a vector space V. A linear combination of vectors v1,

v₂,, v_n in V is a vector of the form

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$, where $\alpha_i \in F$ for all i = 1 to m.

Linear Span or Spanning set or Generating Set:

Let S be a non-empty subset of vector space then the set of all possible linear combination of elements of S is called linear span or spanning set of S and denoted by L(S) or <S> or span (S)

Result:

- (1) Let V(F) be a vector space and $S \subseteq V$ then L(S) is subspace of V called subspace spanned by S.
 - i.e. L(S) is subspace of V if S is subset of V.
- (2) Let S be a subspace of a vector space V then L(S) = S

We know that if S is subspace then S is closed i.e. all possible linear combination of elements of S belonging in S. So, Linear span of S is also S

- (3) Let $A \subseteq B \subseteq V$ then $L(A) \subseteq L(B)$
- $(4) \qquad L(\phi) = \{0\}$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Linear Dependent : A subset S of a vector space V is said to be dependent if $\exists x_1, x_2, ..., x_n$ in S and scalar $\alpha_1, \alpha_2, ..., \alpha_n$ in F, not all zero s.t. $\alpha_1x_1 + \alpha_2x_2 + ... \alpha_nx_n = 0$

Linear Independent : Any set containing the vectors $x_1, x_2, ..., x_n$ defined over a field F is said to be LI if $\alpha_1 x_1 + \alpha_2 x_2 + ...$ $\alpha_n x_n = 0 \Rightarrow \alpha_1 = \alpha_2 = ...$ $\alpha_n = 0$

Result:

- (1) Any set containing 0 vector is LD
- (2) The empty set is LI
- (3) Two vectors are LD, iff they are scalar multiple to each other.
- (4) Every subset of LI set is LI
- (5) Every superset of LD set is LD

Note: (i) If a matrix of order n and its rank is n then all columns/rows are LI

(ii) If $|A| \neq 0$ then all columns/rows are LI

Q.4. Which one of the following is correct?

- (a) $S = \{(1, 0, 0), (0, -1, 0), (1, 1, 0)\}$ is a linearly independent set of vectors in \mathbb{R}^3 .
- (b) $S = \{(1, 0, 0), (0, 2, 0), (1, 1, 0)\}$ is a linearly independent set of vectors in \mathbb{R}^3 .
- (c) A subset of a linearly dependent set of vectors is linearly independent.
- (d) A subset of a linearly independent set of vectors is linearly independent.

Q.5. If
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \alpha M_1 + \beta M_2 + \gamma M_3$$
, where

$$M_1 = I_{2\times 2}, M_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} & M_3 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 then

(a)
$$\alpha = \beta = 1$$
, $\gamma = 2$

(b)
$$\alpha = \beta = -1, \gamma = 2$$

(c)
$$\alpha = 1$$
, $\beta = -1$, $\gamma = 2$ (d) $\alpha = -1$, $\beta = 1$, $\gamma = 2$

(d)
$$\alpha = -1$$
, $\beta = 1$, $\gamma = 2$

Q.6. If the set
$$\begin{bmatrix} x & -x \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ x & x \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$
 is linearly

dependent in the vector space of all 2×2 matrices with real entries, then x is equal to

(a) 1

(b) -1

(c) 2

(d) -2

2 • Asked by Rishabh

Ye wala sir

Result:

Result: Let $V_1, V_2, ..., V_n$ are either column vector or row vector of a matrix A then $V_1, V_2, ..., V_n$ are LI or LD if $|A| \neq 0$ or |A| = 0.

Q.7. In vector space $R^3(R)$ over the field of real numbers R t hen the set $S = \{(-1, 2, 1), (3, 0, -1), (-5, 4, 3)\}$ is

(a) LI

(b) LD

(c) Data is insufficient

(d) None of these

Q.8. If α , β , γ are LI vector of V(F) then which of the following is LI.

(a)
$$2\alpha$$
, β , 2

(b)
$$\alpha + \beta$$
, $\alpha - \beta$, $\alpha - 2\beta + \gamma$

(c)
$$\alpha - \beta$$
, $\beta + \gamma$, $\gamma + \alpha$

(d)
$$\alpha + \beta$$
, $2\alpha + \gamma$, $\alpha - \beta + \gamma$

- Q.9. Let $p_n(x) = x^n$ for $x \in R$ and let $\mathfrak{S} = \operatorname{span}\{p_0, p_1, p_2, ...\}$. Then
 - (a) so is the vector space of all real valued continuous function on R.
 - (b) so is a subspace of all real valued continuous function on R.
 - (c) {p₀, p₁, p₃, ...} is a linearly independent set in the vector space of all continuous functions on R.
 - (d) Trignometric functions belong to so

FOUNDATION

BATCH FOR CSIR-NET 2023

September 22

Enroll Now

DETAILED COURSE 2.0

GROUP THEORY FOR IIT JAM 2023

6th OCTOBER

Gajendra Purohit

USE CODE

Enroll Now

GPSIR FOR 10% OFF

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR