

```
In [48]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.svm import SVC
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model selection import train test split , cross val score ,Random
         from sklearn.metrics import classification report , confusion matrix ,accuracy
         from sklearn.naive bayes import GaussianNB
         from sklearn.preprocessing import StandardScaler
         from keras.callbacks import EarlyStopping
         from keras.models import Sequential
         from keras.layers import Dense
         import warnings
         warnings.filterwarnings('ignore')
```

Step 1 - Data Importing

```
In [49]: df = pd.read_csv(r"/Users/pvsairamsaketh/Desktop/projects/heart.csv")
    df.head()
```

Out[49]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	C
	0	52	1	0	125	212	0	1	168	0	1.0	2	
	1	53	1	0	140	203	1	0	155	1	3.1	0	
	2	70	1	0	145	174	0	1	125	1	2.6	0	
	3	61	1	0	148	203	0	1	161	0	0.0	2	
	4	62	0	0	138	294	1	1	106	0	1.9	1	

```
In [50]: #checking our dependant column
df['target'].value_counts()
```

Out[50]: target 1 526 0 499

Name: count, dtype: int64

step2 - basic data inspection

```
In [51]: df.head() #to print topp 5 rows
```

Out[51]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	C
	0	52	1	0	125	212	0	1	168	0	1.0	2	
	1	53	1	0	140	203	1	0	155	1	3.1	0	
	2	70	1	0	145	174	0	1	125	1	2.6	0	
	3	61	1	0	148	203	0	1	161	0	0.0	2	
	4	62	0	0	138	294	1	1	106	0	1.9	1	

In [52]: df.tail()#to print bottom 5 rows

Out[52]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slop
	1020	59	1	1	140	221	0	1	164	1	0.0	
	1021	60	1	0	125	258	0	0	141	1	2.8	
	1022	47	1	0	110	275	0	0	118	1	1.0	
	1023	50	0	0	110	254	0	0	159	0	0.0	;
	1024	54	1	0	120	188	0	1	113	0	1.4	

In [53]: df.sample(5) #to print random 5 sample

Out[53]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
	222	64	1	3	110	211	0	0	144	1	1.8	1
	816	70	1	1	156	245	0	0	143	0	0.0	2
	649	45	0	1	130	234	0	0	175	0	0.6	1
	933	38	1	3	120	231	0	1	182	1	3.8	1
	178	44	1	0	110	197	0	0	177	0	0.0	2

In [54]: #to check datatypes
df.dtypes

```
sex
                       int64
                       int64
         ср
         trestbps
                       int64
         chol
                       int64
         fbs
                       int64
         restecq
                       int64
         thalach
                       int64
         exang
                       int64
         oldpeak
                     float64
         slope
                       int64
         ca
                       int64
         thal
                       int64
         target
                       int64
         dtype: object
In [55]: #to check information
         df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1025 entries, 0 to 1024
       Data columns (total 14 columns):
        #
            Column
                      Non-Null Count Dtype
        - - -
        0
                      1025 non-null
                                      int64
            age
        1
            sex
                      1025 non-null
                                      int64
        2
                      1025 non-null int64
            ср
            trestbps 1025 non-null
        3
                                      int64
        4
                      1025 non-null int64
            chol
        5
            fbs
                      1025 non-null int64
        6
            restecg
                      1025 non-null
                                      int64
        7
            thalach
                      1025 non-null int64
        8
            exang
                      1025 non-null
                                      int64
        9
            oldpeak
                      1025 non-null
                                     float64
        10 slope
                      1025 non-null
                                      int64
                                      int64
        11 ca
                      1025 non-null
        12
            thal
                      1025 non-null
                                      int64
           target
                      1025 non-null
                                      int64
       dtypes: float64(1), int64(13)
       memory usage: 112.2 KB
In [56]: #to check mathematical information of dataset
         df.describe().T
```

Out[54]: age

int64

Out[56]:		count	mean	std	min	25%	50 %	75 %	max
	age	1025.0	54.434146	9.072290	29.0	48.0	56.0	61.0	77.0
	sex	1025.0	0.695610	0.460373	0.0	0.0	1.0	1.0	1.0
	ср	1025.0	0.942439	1.029641	0.0	0.0	1.0	2.0	3.0
	trestbps	1025.0	131.611707	17.516718	94.0	120.0	130.0	140.0	200.0
	chol	1025.0	246.000000	51.592510	126.0	211.0	240.0	275.0	564.0
	fbs	1025.0	0.149268	0.356527	0.0	0.0	0.0	0.0	1.0
	restecg	1025.0	0.529756	0.527878	0.0	0.0	1.0	1.0	2.0
	thalach	1025.0	149.114146	23.005724	71.0	132.0	152.0	166.0	202.0
	exang	1025.0	0.336585	0.472772	0.0	0.0	0.0	1.0	1.0
	oldpeak	1025.0	1.071512	1.175053	0.0	0.0	0.8	1.8	6.2
	slope	1025.0	1.385366	0.617755	0.0	1.0	1.0	2.0	2.0
	са	1025.0	0.754146	1.030798	0.0	0.0	0.0	1.0	4.0
	thal	1025.0	2.323902	0.620660	0.0	2.0	2.0	3.0	3.0
	target	1025.0	0.513171	0.500070	0.0	0.0	1.0	1.0	1.0

In [57]: df.shape

Out[57]: (1025, 14)

Step 3 - Data Cleaning

```
In [58]: #to check null values or not
         df.isnull().sum() #no null values
                      0
Out[58]: age
                      0
         sex
         ср
                      0
         trestbps
                      0
                      0
         chol
         fbs
                      0
         restecg
                      0
         thalach
                      0
         exang
                      0
         oldpeak
                      0
         slope
         ca
                      0
         thal
         target
                      0
         dtype: int64
```

```
In [59]: #Rename column names
        df = df.rename(columns={'cp':'ChestPainType','trestbps':'RestingBloodPressure')
        df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1025 entries, 0 to 1024
       Data columns (total 14 columns):
            Column
                                            Non-Null Count Dtype
            _ _ _ _ _
                                             ______
        0
                                             1025 non-null
                                                            int64
            age
        1
                                            1025 non-null int64
            sex
        2
                                            1025 non-null
           ChestPainType
                                                            int64
           RestingBloodPressure
                                            1025 non-null int64
                                            1025 non-null int64
        4
            Cholestrol
        5
            FastingBloodSugar
                                            1025 non-null int64
                                            1025 non-null int64
        6
           RestingEcg
                                            1025 non-null
        7
           MaxHeartRate
                                                            int64
          Exercise
                                            1025 non-null int64
                                            1025 non-null float64
        9
            oldpeak
        10 slope
                                            1025 non-null
                                                            int64
        11 NoOfBloodVesselsDuringFluroscopy 1025 non-null
                                                            int64
        12 Thalassemia
                                            1025 non-null
                                                            int64
        13 target
                                            1025 non-null
                                                            int64
       dtypes: float64(1), int64(13)
```

Step 4 - Data Analysis and Data Visualization

Grouping Thalassemia with Target and adding percentage

.agg(Count of Patients=('target', 'count'))

memory usage: 112.2 KB

In [62]: #grouping Thalassemia with Target

df.groupby(['Thalassemia', 'ChestPainType', 'NoOfBloodVesselsDuringFlurosc

In [63]: df2 # Most heart disease cases occur in patients with Thalassemia 2 or 3, ches

Out[63]:		Thalassemia	ChestPainType	NoOfBloodVesselsDuringFluroscopy	Count_of_F
	17	2	2	0	
	10	2	0	0	
	14	2	1	0	
	25	3	0	0	
	26	3	0	1	
	27	3	0	2	
	11	2	0	1	
	33	3	2	0	
	18	2	2	1	
	28	3	0	3	
	37	3	3	0	
	34	3	2	1	
	30	3	1	0	
	12	2	0	2	
	22	2	3	0	
	15	2	1	1	
	2	1	0	0	
	24	2	3	2	
	13	2	0	3	
	4	1	0	2	
	21	2	2	4	
	36	3	2	3	
	23	2	3	1	
	16	2	1	2	
	8	1	2	1	
	31	3	1	1	
	20	2	2	3	
	9	1	3	0	
	3	1	0	1	
	35	3	2	2	
	32	3	1	4	

	Thalassemia	ChestPainType	NoOfBloodVesselsDuringFluroscopy	Count_of_F
•	5 1	1	0	
5	5 1	0	3	
(0	0	0	
29	3	0	4	
19	2	2	2	
7	1	1	3	
1	L 0	2	0	

```
In [64]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1025 entries, 0 to 1024
        Data columns (total 14 columns):
             Column
                                                Non-Null Count Dtype
        - - -
         0
             age
                                                1025 non-null
                                                                int64
                                                1025 non-null
         1
             sex
                                                                int64
         2
                                                1025 non-null
             ChestPainType
                                                                int64
         3
             RestingBloodPressure
                                                1025 non-null
                                                                int64
         4
             Cholestrol
                                                1025 non-null
                                                                int64
         5
             FastingBloodSugar
                                                1025 non-null
                                                                int64
         6
             RestingEcg
                                                1025 non-null
                                                                int64
         7
             MaxHeartRate
                                                1025 non-null
                                                                int64
         8
             Exercise
                                                1025 non-null
                                                                int64
         9
             oldpeak
                                                1025 non-null
                                                                float64
         10 slope
                                                1025 non-null
                                                                int64
         11 NoOfBloodVesselsDuringFluroscopy
                                                1025 non-null
                                                                int64
         12
             Thalassemia
                                                1025 non-null
                                                                int64
         13 target
                                                1025 non-null
                                                                int64
        dtypes: float64(1), int64(13)
        memory usage: 112.2 KB
In [65]:
         import warnings
         warnings.filterwarnings('ignore')
In [66]:
         #to check target col count
         a = sns.countplot(x = 'target', data = df , palette = ['red', 'blue'])
         for ax in a.containers:
             a.bar_label(ax)
```



```
In [67]: #to check Thalassemia count
a = sns.countplot(x = 'Thalassemia', data = df , palette = ['green', 'blue', 'cya
for ax in a.containers:
    a.bar_label(ax)
```


In [68]: # to check thallasmia with target as hue
a = sns.countplot(x = 'Thalassemia', data = df ,hue = 'target',palette = ['orar
for ax in a.containers:
 a.bar_label(ax) #majority of them got thallasmia 2 and are prone to heart

In [69]: df.columns

In [70]: df.head()

Out[70]: age sex ChestPainType RestingBloodPressure Cholestrol FastingBloodSug

In [71]: df['Thalassemia'].value_counts()

```
Out[71]: Thalassemia
         3
              410
         1
               64
         Name: count, dtype: int64
In [72]: df['NoOfBloodVesselsDuringFluroscopy'].value counts()
Out[72]: NoOfBloodVesselsDuringFluroscopy
              578
         1
              226
         2
              134
         3
               69
               18
         Name: count, dtype: int64
In [73]: #chest pain type with target
         a = sns.countplot(x = 'ChestPainType',data = df ,hue = 'target',palette = ['or
         for ax in a.containers:
             a.bar label(ax)#people who got chesspaintype 0 , majority of them didnt go
                   375
                                                                          target
           350
           300
           250
                                                          219
           200
           150
                                          134
                         122
           100
                                                    65
                                                                           51
            50
                                    33
                                                                     26
             0
                                        1
                                                                         3
                                          ChestPainType
```

Step 5 - Outlier Detection

```
plt.figure(figsize=(40,40))
sns.boxplot(df)
```

```
Out[74]: <Axes: >
```



```
In [75]: #outliers are present in RestingBloodPressure , Cholestrol , FastingBloodSugar
# Columns with outliers
num_cols = ['RestingBloodPressure', 'Cholestrol', 'MaxHeartRate', 'oldpeak']
cat_ord_cols = ['FastingBloodSugar', 'NoOfBloodVesselsDuringFluroscopy', 'Thal
```

```
In [76]: #to solve the outliers

#for numerical columns
for col in num_cols:
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
```

```
IQR = Q3 - Q1
lower = Q1 - 1.5 * IQR
upper = Q3 + 1.5 * IQR
df[col] = df[col].clip(lower, upper)
#for categorical columns

# Example: FastingBloodSugar (0 or 1)
df['FastingBloodSugar'] = df['FastingBloodSugar'].clip(0, 1)

# Number of vessels (0-4)
df['NoOfBloodVesselsDuringFluroscopy'] = df['NoOfBloodVesselsDuringFluroscopy'
# Thalassemia (0-3)
df['Thalassemia'] = df['Thalassemia'].clip(0, 3)
```

In [77]: sns.boxplot(data=df[num_cols]) #outliers removed successfully

Out[77]: <Axes: >


```
In [78]: df.head()
```

```
age sex ChestPainType RestingBloodPressure Cholestrol FastingBloodSug
Out[78]:
         0
             52
                   1
                                   0
                                                        125
                                                                   212
         1
             53
                                                        140
                                                                   203
                   1
                                   0
                                                                   174
         2
             70
                   1
                                   0
                                                        145
         3
             61
                                   0
                                                        148
                                                                   203
                   1
         4
             62
                   0
                                   0
                                                                   294
                                                        138
In [79]: df['oldpeak'] = df['oldpeak'].astype('int64')
         df['oldpeak'].head()
Out[79]: 0
              1
         1
              3
         2
              2
         3
              0
         Name: oldpeak, dtype: int64
In [80]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1025 entries, 0 to 1024
       Data columns (total 14 columns):
            Column
                                               Non-Null Count
                                                               Dtype
        - - -
             -----
        0
            age
                                               1025 non-null
                                                               int64
        1
            sex
                                               1025 non-null
                                                               int64
        2
                                               1025 non-null
            ChestPainType
                                                               int64
        3
            RestingBloodPressure
                                               1025 non-null
                                                               int64
        4
            Cholestrol
                                               1025 non-null
                                                               int64
        5
            FastingBloodSugar
                                               1025 non-null
                                                               int64
                                               1025 non-null
        6
            RestingEcg
                                                               int64
        7
            MaxHeartRate
                                               1025 non-null
                                                               int64
        8
            Exercise
                                               1025 non-null
                                                               int64
        9
            oldpeak
                                               1025 non-null
                                                               int64
        10 slope
                                               1025 non-null
                                                               int64
        11 NoOfBloodVesselsDuringFluroscopy
                                               1025 non-null
                                                               int64
        12 Thalassemia
                                               1025 non-null
                                                               int64
        13 target
                                               1025 non-null
                                                               int64
        dtypes: int64(14)
       memory usage: 112.2 KB
```

Step 6 - Model Building

```
In [81]: #splitting dataset into Dependant and Independant columns
X = df.drop('target',axis = 1)
y = df['target']
```

```
In [82]: #split dataset into 20 % test and 80% train
         X_train, X_test, y_train, y_test = train_test_split(X,y,test_size= 0.2 , rando
In [83]: len(X train)
Out[83]: 820
In [84]: len(X test)
Out[84]: 205
In [85]: #standard scaler
         scaler = StandardScaler()
         X train= scaler.fit transform(X train)
         X test = scaler.transform(X test)
In [86]: #perform models
         models = [LogisticRegression(), DecisionTreeClassifier(), RandomForestClassifier
         results = {}
In [87]: # Loop through models
         for model in models:
             print(f"Model: {model. class . name }")
             # Fit model
             model.fit(X train, y train)
             # Predictions
             y pred = model.predict(X test)
             # Accuracy
             train score = model.score(X train, y train)
             test score = model.score(X test, y test)
             results[model.__class__.__name__] = test_score
             print(f"Training Accuracy: {train score:.4f}")
             print(f"Test Accuracy: {test_score:.4f}")
             # Overfitting check
             if train score > test score + 0.05:
                 print("A Possible Overfitting detected!")
             elif test_score > train_score + 0.05:
                 print("A Possible Underfitting detected!")
             else:
                 print("  Model seems balanced.")
             # Confusion Matrix
             cm = confusion matrix(y test, y pred)
             print("Confusion Matrix:")
             print(cm)
```

```
# Optional: visualize confusion matrix
    plt.figure(figsize=(5,4))
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
   plt.title(f"{model.__class__.__name__} Confusion Matrix")
    # Classification Report
    print("Classification Report:")
    print(classification_report(y_test, y_pred))
    print("-"*160)
# Optional: Compare model accuracies
plt.figure(figsize=(22,22))
\#models = [LogisticRegression(), DecisionTreeClassifier(), RandomForestClassifie
a = sns.barplot(x=list(results.keys()), y=list(results.values()),palette = ['r
for ax in a.containers:
    a.bar label(ax)
plt.ylabel("Test Accuracy")
plt.title("Comparison of Model Accuracies")
plt.ylim(0,1)
plt.show()
```

Model: LogisticRegression
Training Accuracy: 0.8634
Test Accuracy: 0.7951
△ Possible Overfitting detected!
Confusion Matrix:
[[73 29]
[13 90]]

Classification Report:

	precision	recall	fl-score	support
0	0.85 0.76	0.72 0.87	0.78 0.81	102 103
20011201	0.70	0.07		
accuracy macro avg	0.80	0.79	0.80 0.79	205 205
weighted avg	0.80	0.80	0.79	205

- -

Model: DecisionTreeClassifier
Training Accuracy: 1.0000
Test Accuracy: 0.9854
✓ Model seems balanced.

Confusion Matrix:

[[102 0] [3 100]]

DecisionTreeClassifier Confusion Matrix - 100 - 80 - 60 - 40 - 20 - 0

Classification	Report:
----------------	---------

	precision	recall	f1-score	support
0 1	0.97 1.00	1.00 0.97	0.99 0.99	102 103
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	205 205 205

Predicted

- -

Model: RandomForestClassifier
Training Accuracy: 1.0000
Test Accuracy: 0.9854
✓ Model seems balanced.

Confusion Matrix:

[[102 0] [3 100]]

RandomForestClassifier Confusion Matrix

Classification Report:

	precision	recall	f1-score	support
0 1	0.97 1.00	1.00 0.97	0.99 0.99	102 103
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	205 205 205

- -

Model: SVC

Training Accuracy: 0.9549 Test Accuracy: 0.8878

△ Possible Overfitting detected!

Confusion Matrix:

[[85 17] [6 97]]

		_		
$C1 \rightarrow c$	cifi	cation	Dono	rt.
Llas	$2 \pm 1 \pm$	Састоп	veno	ı

precision	recall	f1-score	support
0.93	0.83	0.88	102
0.85	0.94	0.89	103
		0.89	205
0.89 0.89	0.89 0.89	0.89 0.89	205 205
	0.93 0.85 0.89	0.93 0.83 0.85 0.94 0.89 0.89	0.93 0.83 0.88 0.85 0.94 0.89 0.89 0.89 0.89

_ _

Model: KNeighborsClassifier Training Accuracy: 0.9439 Test Accuracy: 0.8195

△ Possible Overfitting detected!

Confusion Matrix:

[[76 26] [11 92]]

KNeighborsClassifier Confusion Matrix

Classification Report:

		precision	recall	f1-score	support
	0	0.87	0.75	0.80	102
	1	0.78	0.89	0.83	103
accur	асу			0.82	205
macro weighted	_	0.83 0.83	0.82 0.82	0.82 0.82	205 205

- -

Model: GaussianNB

Training Accuracy: 0.8512 Test Accuracy: 0.7902

△ Possible Overfitting detected!

Confusion Matrix:

[[72 30] [13 90]]

Classific	catio	n Report:			
		precision	recall	f1-score	support
	0	0.85	0.71	0.77	102
	1	0.75	0.87	0.81	103
accui	racy			0.79	205
macro	avg	0.80	0.79	0.79	205
weighted	avg	0.80	0.79	0.79	205

- -

step 7 - Model Optimization Remove overfitting

```
In [88]: #define hyperparameters
# step 1 - Models defining
models = {
    'LogisticRegression': LogisticRegression(max_iter=10000),
    'SVC': SVC(),
    'KNeighborsClassifier': KNeighborsClassifier(),
    'GaussianNB': GaussianNB(),
    'DecisionTreeClassifier': DecisionTreeClassifier(),
    'RandomForestClassifier': RandomForestClassifier()
}
```

```
In [89]: #step 2 - defining hyperparameters
         param distributions = {
             'LogisticRegression': {
                  'C': [0.1, 0.5, 1, 2],
                  'penalty': ['l2','l1'],
                  'solver': ['lbfgs', 'liblinear']
             },
              'SVC': {
                 'C': [0.1, 0.5, 1, 2, 5],
                 'kernel': ['linear', 'rbf'],
                 'gamma': ['scale']
             },
              'KNeighborsClassifier': {
                  'n neighbors': list(range(5,16)),
                  'weights': ['distance'],
                 'p': [1,2]
             },
              'GaussianNB': {
                 'var smoothing': [1e-9, 1e-8, 1e-7, 1e-6]
             },
              'DecisionTreeClassifier': {
                  'max depth': list(range(3,9)),
                  'min samples split': list(range(2,9)),
                  'min samples leaf': list(range(1,5))
             },
              'RandomForestClassifier': {
                  'n estimators': list(range(50,151,10)),
                  'max depth': list(range(3,11)),
                  'min samples split': list(range(2,9)),
                 'min_samples_leaf': list(range(1,5))
             }
         }
In [90]: # step 3 - Dictionary to store test accuracies
         results = {}
In [91]: # step 4 - Hyperparameter tuning and evaluation loop
         for name, model in models.items():
             print(f" * Tuning {name}...")
             # step 5 - perform Randomised search and select best parameters
             rand_search = RandomizedSearchCV(estimator=model,param distributions=param
             rand search.fit(X train, y train)
             best model = rand search.best estimator
             # Predictions
             y pred = best model.predict(X test)
             # step 6 - Accuracy
             train score = best model.score(X train, y train)
             test score = best model.score(X test, y test)
             results[name] = test score
             print(f"Best Parameters: {rand search.best params }")
```

```
print(f"Training Accuracy: {train score:.4f}")
     print(f"Test Accuracy: {test score:.4f}")
     # step 7 - Overfitting check
     if train score > test score + 0.05:
         print("A Possible Overfitting detected!")
     else:
         print("  Model seems balanced.")
     # step 8 - Confusion Matrix
     cm = confusion matrix(y test, y pred)
     plt.figure(figsize=(5,4))
     sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
     plt.xlabel("Predicted")
     plt.ylabel("Actual")
     plt.title(f"{name} Confusion Matrix")
     plt.show()
     # Classification Report
     print("Classification Report:")
     print(classification report(y test, y pred))
     print("-"*60)
 # Compare model accuracies
 plt.figure(figsize=(23,23))
 a= sns.barplot(x=list(results.keys()), y=list(results.values()),palette = ['qr
 for ax in a.containers:
     a.bar label(ax)
 plt.xlabel("Machine Learning Models")
 plt.ylabel("Test Accuracy")
 plt.title("Comparison of Model Accuracies After Hyperparameter Tuning")
 plt.ylim(0,1)
 plt.show()

    Tuning LogisticRegression...

Best Parameters: {'solver': 'lbfgs', 'penalty': 'l2', 'C': 0.1}
Training Accuracy: 0.8659
Test Accuracy: 0.8000
△ Possible Overfitting detected!
```

LogisticRegression Confusion Matrix - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 70 - 20

	precision	recall	fl-score	support
0 1	0.86 0.76	0.72 0.88	0.78 0.82	102 103
accuracy macro avg weighted avg	0.81 0.81	0.80 0.80	0.80 0.80 0.80	205 205 205

Best Parameters: {'kernel': 'rbf', 'gamma': 'scale', 'C': 5}

Training Accuracy: 0.9915
Test Accuracy: 0.9610

Model seems balanced.

Tuning SVC...

C1	: 4		4.2	D	
แล	5511	าเดล	tion	Report:	

	precision	recall	f1-score	support
0 1	0.97 0.95	0.95 0.97	0.96 0.96	102 103
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	205 205 205

Best Parameters: {'weights': 'distance', 'p': 1, 'n_neighbors': 10}

Training Accuracy: 1.0000 Test Accuracy: 1.0000 ✓ Model seems balanced.

Tuning KNeighborsClassifier...

KNeighborsClassifier Confusion Matrix - 100 - 80 - 60 - 40 - 20

Classification Report:

0

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	102
	1	1.00	1.00	1.00	103
accur	асу			1.00	205
macro weighted	_	1.00 1.00	1.00 1.00	1.00 1.00	205 205

Predicted

1

Best Parameters: {'var_smoothing': 1e-09}

Training Accuracy: 0.8512 Test Accuracy: 0.7902

Tuning GaussianNB...

[△] Possible Overfitting detected!

Classification Report:

	precision	recall	f1-score	support
0 1	0.85 0.75	0.71 0.87	0.77 0.81	102 103
accuracy macro avg weighted avg	0.80 0.80	0.79 0.79	0.79 0.79 0.79	205 205 205

Best Parameters: {'min_samples_split': 4, 'min_samples_leaf': 1, 'max_depth':
8}

Training Accuracy: 0.9927
Test Accuracy: 0.9610
✓ Model seems balanced.

Tuning DecisionTreeClassifier...

Classif:	cation	Report:
----------	--------	---------

	precision	recall	f1-score	support
0 1	0.97 0.95	0.95 0.97	0.96 0.96	102 103
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	205 205 205

Best Parameters: {'n_estimators': 130, 'min_samples_split': 3, 'min_samples_lea

f': 1, 'max_depth': 10}
Training Accuracy: 1.0000
Test Accuracy: 0.9854

✓ Model seems balanced.

Tuning RandomForestClassifier...

Classificatio	n Report: precision	recall	f1-score	support
0 1	0.97 1.00	1.00 0.97	0.99 0.99	102 103
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	205 205 205

```
In [92]: #knn is the best method - test it

# Best KNN model
best_knn = KNeighborsClassifier(weights='distance', p=1, n_neighbors=10)
best_knn.fit(X_train, y_train)
y_pred = best_knn.predict(X_test)

print("Test Accuracy:", accuracy_score(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))
```

Test Accuracy: 1.0 Confusion Matrix: [[102 0] [0 103]]

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	102
1	1.00	1.00	1.00	103
accuracy			1.00	205
macro avg	1.00	1.00	1.00	205
weighted avg	1.00	1.00	1.00	205

step 8 - Deep Learning model metrics types

Metric	Туре	Description / What It Measures	Use Case / Example
accuracy	Classification	Overall fraction of correctly predicted samples.	General classification tasks.
binary_accuracy	Classification	Accuracy for binary classification (0 or 1).	Binary output (e.g., disease yes/no).
categorical_accuracy	Classification	Accuracy for multi-class with one-hot labels.	Multi-class (e.g., image classification).
sparse_categorical_accuracy	Classification	Accuracy for multi-class with integer labels.	Multi-class (without one-hot encoding).
Precision	Classification	% of correct positive predictions among all predicted positives.	When false positives are costly (e.g., spam detection).
Recall	Classification	% of actual positives correctly predicted.	When missing positives is costly (e.g., cancer detection).

Metric	Туре	Description / What It Measures	Use Case / Example
F1-Score	Classification	Harmonic mean of precision and recall.	Balanced measure for imbalanced data.
AUC (Area Under Curve)	Classification	Measures ability to distinguish between classes.	Evaluating model performance (ROC curve).
TruePositives	Classification	Number of correctly identified positive samples.	Model diagnostics.
TrueNegatives	Classification	Number of correctly identified negatives.	Model diagnostics.
FalsePositives	Classification	Incorrectly predicted positives.	Helps understand model errors.
FalseNegatives	Classification	Missed positive cases.	Important in medical or fraud detection.
MeanSquaredError (MSE)	Regression	Average squared difference between actual and predicted.	Continuous outputs (e.g., price prediction).
MeanAbsoluteError (MAE)	Regression	Average absolute difference between actual and predicted.	Regression — less sensitive to outliers.
RootMeanSquaredError (RMSE)	Regression	Square root of MSE; penalizes large errors more.	Regression with emphasis on large errors.
R ² (Coefficient of Determination)	Regression	Measures proportion of variance explained by model.	Regression performance measure.
MeanAbsolutePercentageError (MAPE)	Regression	Average % difference between prediction and actual value.	Forecasting models.
cosine_similarity	Similarity	Measures similarity between two	NLP, embeddings, recommendation

Metric	Туре	Description / What It Measures	Use Case / Example
		vectors (ranges -1 to 1).	systems.
log_cosh_error	Regression	Smooth alternative to MSE; robust to outliers.	Regression tasks requiring smooth gradients.

optimizer types -

Optimizer	Description
SGD	Stochastic Gradient Descent — updates weights using gradients; simple but may converge slowly.
SGD (with Momentum)	Adds momentum to accelerate learning and avoid local minima.
Nesterov	A variant of momentum that looks ahead before updating parameters for faster convergence.
Adagrad	Adapts learning rates for each parameter; good for sparse data but learning rate decays quickly.
RMSprop	Adapts learning rate using a moving average of squared gradients; good for non-stationary data.
Adam	Combines Momentum and RMSprop; most widely used optimizer in deep learning.
Adamax	Variant of Adam using the infinity norm for better stability in some cases.
Nadam	Adam + Nesterov Momentum; slightly faster convergence than Adam.
Ftrl	Useful for large-scale linear models; supports L1 and L2 regularization.
Adadelta	Extension of Adagrad that reduces its aggressive, monotonically decreasing learning rate.
Lion	New optimizer that uses sign-based gradient updates for faster and more stable training.

Loss types

Loss Function	Туре	Description	When to Use / Example
binary_crossentropy	Classification	Measures the difference between two probability distributions for binary (0/1) classification.	Binary classification (e.g., heart disease prediction).
categorical_crossentropy	Classification	Used for multi-class classification with one-hot encoded labels.	Multi-class classification (e.g., digit recognition with one-hot labels).
sparse_categorical_crossentropy	Classification	Same as above but for integer class labels (not one-hot).	Multi-class classification with integer targets.
<pre>mean_squared_error (MSE)</pre>	Regression	Measures average squared difference between actual and predicted values.	Regression tasks (e.g., predicting prices, continuous outputs).
<pre>mean_absolute_error (MAE)</pre>	Regression	Measures average absolute difference between actual and predicted values.	Regression, less sensitive to outliers than MSE.
hinge	Classification	Used for "maximum- margin" classification (like SVMs).	Binary classification with {-1, +1} labels.
squared_hinge	Classification	Square of hinge loss; penalizes larger margin	Similar to hinge, but smoother gradients.

Loss Function	Туре	Description	When to Use / Example
		violations more strongly.	
<pre>kullback_leibler_divergence (KL Divergence)</pre>	Probabilistic Models	Measures how one probability distribution diverges from another.	Variational autoencoders (VAEs), probabilistic models.
poisson	Regression / Count Data	Suitable for modeling count data (e.g., event counts).	When output represents count rates (e.g., number of calls, clicks).
cosine_similarity	Similarity- Based	Measures cosine similarity between predicted and true values.	NLP, embeddings, or recommendation systems.
huber	Regression	Combination of MSE and MAE — less sensitive to outliers.	Robust regression with outlier resistance.
log_cosh	Regression	Logarithm of hyperbolic cosine of prediction error; smooth alternative to MSE.	When you want smooth gradients and robustness.

Activation Functions

Activation Function	Formula	Range	Description	When to Use
Sigmoid (σ)	$\sigma(x) = 1 / (1 + e^{-(-x)})$	(0, 1)	Converts any real value into a probability-like output.	Output layer for binary classification.
Tanh	$tanh(x) = (e^(x)$	(-1, 1)	Zero-centered version	Hidden layers

Activation Function	Formula	Range	Description	When to Use
(Hyperbolic Tangent)	- e^(-x)) / (e^(x) + e^(-x))		of Sigmoid; stronger gradients.	when inputs are normalized .
ReLU (Rectified Linear Unit)	ReLU(x) = max(0, x)	[0, ∞)	Fast and efficient; avoids vanishing gradient problem.	Default choice for hidden layers .
Leaky ReLU	f(x) = x if x > 0 else 0.01x	(-∞, ∞)	Solves "dead neuron" issue by allowing a small negative slope.	When some neurons die with ReLU.
Parametric ReLU (PReLU)	f(x) = x if x > 0 else αx	(-∞, ∞)	Learns the slope (α) automatically for better performance.	Used in deep CNNs .
ELU (Exponential Linear Unit)	$f(x) = x \text{ if } x > 0$ else $\alpha^*(e^x - 1)$	(-α, ∞)	Helps achieve faster and more stable learning.	For deep networks .
SELU (Scaled ELU)	$f(x) = \lambda * (x \text{ if } x > 0 \text{ else } \alpha*(e^x - 1))$	(-∞, ∞)	Self-normalizing activation, stabilizes training.	When using Self- Normalizing Neural Nets.
Softmax	$f(x_i) = e^{(x_i)} / \Sigma$ $e^{(x_i)}$	(0, 1)	Converts logits to probabilities across multiple classes.	Output layer for multi-class classification.
Swish	f(x) = x * sigmoid(x)	(-∞, ∞)	Smooth and non- monotonic; better than ReLU in deep models.	For deep neural networks .
GELU (Gaussian Error Linear Unit)	$f(x) = x * \Phi(x)$	(-∞, ∞)	Used in Transformers; smooth like Swish.	NLP models (e.g., BERT, GPT).
Softplus	$f(x) = \ln(1 + e^x)$	(0, ∞)	Smooth approximation of ReLU; differentiable everywhere.	When smooth output is required.
Hard Sigmoid	f(x) = clip((x * 0.2) + 0.5, 0, 1)	(0, 1)	Fast, piecewise linear version of Sigmoid.	For mobile/low- power models.
Hard Swish	f(x) = x * ReLU6(x + 3) / 6	(-∞, ∞)	Lightweight and efficient; used in MobileNetV3.	For mobile and embedded models.
# Define ANN model # ====================================				
<pre>model = Sequential([Dense(64, input_dim=X_train.shape[1], activation='relu'), # Hidden laye</pre>				

```
Epoch 1/100
41/41 - 1s - 21ms/step - accuracy: 0.7820 - binary accuracy: 0.7820 - loss: 0.5
543 - recall: 0.7626 - val accuracy: 0.8171 - val binary accuracy: 0.8171 - va
l loss: 0.4691 - val recall: 0.8023
Epoch 2/100
41/41 - 0s - 1ms/step - accuracy: 0.8704 - binary accuracy: 0.8704 - loss: 0.36
01 - recall: 0.9050 - val accuracy: 0.8232 - val binary accuracy: 0.8232 - va
l loss: 0.4131 - val recall: 0.8721
Epoch 3/100
41/41 - 0s - 1ms/step - accuracy: 0.8918 - binary accuracy: 0.8918 - loss: 0.28
67 - recall: 0.9318 - val_accuracy: 0.8110 - val_binary accuracy: 0.8110 - va
l loss: 0.4079 - val recall: 0.8721
Epoch 4/100
41/41 - 0s - 1ms/step - accuracy: 0.9040 - binary accuracy: 0.9040 - loss: 0.25
31 - recall: 0.9318 - val accuracy: 0.8659 - val binary accuracy: 0.8659 - va
l loss: 0.3777 - val recall: 0.8837
Epoch 5/100
41/41 - 0s - 971us/step - accuracy: 0.9177 - binary accuracy: 0.9177 - loss:
0.2324 - recall: 0.9318 - val accuracy: 0.8232 - val binary accuracy: 0.8232 -
val loss: 0.3945 - val recall: 0.9070
Epoch 6/100
41/41 - 0s - 927us/step - accuracy: 0.9253 - binary accuracy: 0.9253 - loss:
0.2087 - recall: 0.9496 - val accuracy: 0.8659 - val binary accuracy: 0.8659 -
val loss: 0.3563 - val recall: 0.8837
Epoch 7/100
41/41 - 0s - 929us/step - accuracy: 0.9268 - binary accuracy: 0.9268 - loss:
0.1981 - recall: 0.9407 - val accuracy: 0.8780 - val binary accuracy: 0.8780 -
val_loss: 0.3499 - val_recall: 0.9070
Epoch 8/100
41/41 - 0s - 928us/step - accuracy: 0.9375 - binary accuracy: 0.9375 - loss:
0.1797 - recall: 0.9525 - val accuracy: 0.8841 - val binary accuracy: 0.8841 -
val loss: 0.3274 - val recall: 0.9070
Epoch 9/100
41/41 - 0s - 959us/step - accuracy: 0.9466 - binary accuracy: 0.9466 - loss:
0.1581 - recall: 0.9555 - val accuracy: 0.8902 - val binary accuracy: 0.8902 -
val loss: 0.3270 - val recall: 0.9070
Epoch 10/100
41/41 - 0s - 996us/step - accuracy: 0.9512 - binary accuracy: 0.9512 - loss:
0.1451 - recall: 0.9525 - val accuracy: 0.8841 - val binary accuracy: 0.8841 -
val loss: 0.3191 - val recall: 0.8953
Epoch 11/100
41/41 - 0s - 971us/step - accuracy: 0.9527 - binary accuracy: 0.9527 - loss:
0.1296 - recall: 0.9585 - val accuracy: 0.8902 - val binary accuracy: 0.8902 -
val loss: 0.3182 - val recall: 0.9070
Epoch 12/100
41/41 - 0s - 960us/step - accuracy: 0.9588 - binary accuracy: 0.9588 - loss:
0.1174 - recall: 0.9585 - val accuracy: 0.8963 - val binary accuracy: 0.8963 -
val loss: 0.3077 - val recall: 0.9186
Epoch 13/100
41/41 - 0s - 947us/step - accuracy: 0.9726 - binary accuracy: 0.9726 - loss:
0.1059 - recall: 0.9822 - val accuracy: 0.8963 - val binary accuracy: 0.8963 -
val loss: 0.2884 - val recall: 0.9186
Epoch 14/100
41/41 - 0s - 982us/step - accuracy: 0.9771 - binary accuracy: 0.9771 - loss:
```

```
0.0930 - recall: 0.9852 - val accuracy: 0.8902 - val binary accuracy: 0.8902 -
val loss: 0.2801 - val recall: 0.8837
Epoch 15/100
41/41 - 0s - 983us/step - accuracy: 0.9802 - binary accuracy: 0.9802 - loss:
0.0841 - recall: 0.9881 - val accuracy: 0.9024 - val binary accuracy: 0.9024 -
val loss: 0.2795 - val recall: 0.9302
Epoch 16/100
41/41 - 0s - 977us/step - accuracy: 0.9802 - binary accuracy: 0.9802 - loss:
0.0744 - recall: 0.9881 - val accuracy: 0.9024 - val binary accuracy: 0.9024 -
val loss: 0.2856 - val recall: 0.9302
Epoch 17/100
41/41 - 0s - 955us/step - accuracy: 0.9832 - binary accuracy: 0.9832 - loss:
0.0651 - recall: 0.9941 - val accuracy: 0.9085 - val binary accuracy: 0.9085 -
val loss: 0.2629 - val recall: 0.9419
Epoch 18/100
41/41 - 0s - 952us/step - accuracy: 0.9909 - binary accuracy: 0.9909 - loss:
0.0538 - recall: 0.9941 - val accuracy: 0.9146 - val binary accuracy: 0.9146 -
val loss: 0.2465 - val recall: 0.9070
Epoch 19/100
41/41 - 0s - 935us/step - accuracy: 0.9939 - binary accuracy: 0.9939 - loss:
0.0478 - recall: 0.9941 - val accuracy: 0.9329 - val binary accuracy: 0.9329 -
val loss: 0.2496 - val recall: 0.9419
Epoch 20/100
41/41 - 0s - 955us/step - accuracy: 0.9924 - binary accuracy: 0.9924 - loss:
0.0413 - recall: 0.9941 - val accuracy: 0.9329 - val binary accuracy: 0.9329 -
val loss: 0.2542 - val recall: 0.9419
Epoch 21/100
41/41 - 0s - 990us/step - accuracy: 0.9939 - binary accuracy: 0.9939 - loss:
0.0390 - recall: 0.9941 - val accuracy: 0.9329 - val binary accuracy: 0.9329 -
val loss: 0.2394 - val recall: 0.9419
Epoch 22/100
41/41 - 0s - 1ms/step - accuracy: 0.9939 - binary accuracy: 0.9939 - loss: 0.03
26 - recall: 0.9941 - val accuracy: 0.9268 - val binary accuracy: 0.9268 - va
l loss: 0.2372 - val recall: 0.9070
Epoch 23/100
41/41 - 0s - 1ms/step - accuracy: 0.9939 - binary accuracy: 0.9939 - loss: 0.02
84 - recall: 0.9941 - val accuracy: 0.9451 - val binary accuracy: 0.9451 - va
l loss: 0.2380 - val recall: 0.9419
Epoch 24/100
41/41 - 0s - 1ms/step - accuracy: 0.9954 - binary accuracy: 0.9954 - loss: 0.02
60 - recall: 0.9970 - val accuracy: 0.9451 - val binary accuracy: 0.9451 - va
l loss: 0.2221 - val recall: 0.9419
Epoch 25/100
41/41 - 0s - 1ms/step - accuracy: 0.9970 - binary accuracy: 0.9970 - loss: 0.02
15 - recall: 1.0000 - val accuracy: 0.9329 - val binary accuracy: 0.9329 - va
l_loss: 0.2247 - val_recall: 0.9419
Epoch 26/100
41/41 - 0s - 1ms/step - accuracy: 0.9970 - binary accuracy: 0.9970 - loss: 0.02
00 - recall: 1.0000 - val accuracy: 0.9329 - val binary accuracy: 0.9329 - va
l loss: 0.2317 - val recall: 0.9419
Epoch 27/100
41/41 - 0s - 1ms/step - accuracy: 0.9970 - binary accuracy: 0.9970 - loss: 0.01
66 - recall: 1.0000 - val accuracy: 0.9451 - val binary accuracy: 0.9451 - va
l loss: 0.2270 - val recall: 0.9419
```

```
Epoch 28/100
41/41 - 0s - 947us/step - accuracy: 0.9985 - binary accuracy: 0.9985 - loss:
0.0132 - recall: 1.0000 - val accuracy: 0.9451 - val binary accuracy: 0.9451 -
val loss: 0.2284 - val recall: 0.9419
Epoch 29/100
41/41 - 0s - 973us/step - accuracy: 0.9985 - binary accuracy: 0.9985 - loss:
0.0127 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2332 - val recall: 0.9419
Epoch 30/100
41/41 - 0s - 996us/step - accuracy: 0.9985 - binary accuracy: 0.9985 - loss:
0.0111 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val_loss: 0.2268 - val_recall: 0.9419
Epoch 31/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
97 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2308 - val recall: 0.9419
Epoch 32/100
41/41 - 0s - 991us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0083 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2410 - val recall: 0.9419
Epoch 33/100
41/41 - 0s - 970us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0072 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2376 - val recall: 0.9419
Epoch 34/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
61 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2432 - val recall: 0.9419
Epoch 35/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
61 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2446 - val recall: 0.9419
Epoch 36/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
49 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2463 - val recall: 0.9419
Epoch 37/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
44 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l_loss: 0.2500 - val_recall: 0.9419
Epoch 38/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
44 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2485 - val recall: 0.9419
Epoch 39/100
41/41 - 0s - lms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
35 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2565 - val recall: 0.9419
Epoch 40/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
31 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2617 - val recall: 0.9419
Epoch 41/100
41/41 - 0s - 993us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
```

```
0.0028 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2575 - val recall: 0.9419
Epoch 42/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
26 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2637 - val recall: 0.9419
Epoch 43/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
24 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2686 - val recall: 0.9419
Epoch 44/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
22 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2701 - val recall: 0.9419
Epoch 45/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
19 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l_loss: 0.2682 - val_recall: 0.9419
Epoch 46/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
19 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2731 - val recall: 0.9419
Epoch 47/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
17 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l loss: 0.2726 - val recall: 0.9419
Epoch 48/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 0.00
17 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 - va
l_loss: 0.2778 - val_recall: 0.9419
Epoch 49/100
41/41 - 0s - 971us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0015 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2796 - val recall: 0.9419
Epoch 50/100
41/41 - 0s - 949us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0014 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2798 - val recall: 0.9419
Epoch 51/100
41/41 - 0s - 967us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0013 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2818 - val recall: 0.9419
Epoch 52/100
41/41 - 0s - 941us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0012 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val_loss: 0.2826 - val_recall: 0.9419
Epoch 53/100
41/41 - 0s - 958us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0012 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2865 - val recall: 0.9419
Epoch 54/100
41/41 - 0s - 918us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0011 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2855 - val recall: 0.9419
```

```
Epoch 55/100
41/41 - 0s - 932us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
0.0010 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.2900 - val recall: 0.9419
Epoch 56/100
41/41 - 0s - 920us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
9.3919e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.2921 - val recall: 0.9419
Epoch 57/100
41/41 - 0s - 925us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
9.1104e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.2953 - val recall: 0.9419
Epoch 58/100
41/41 - 0s - 935us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
8.2235e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.2945 - val recall: 0.9419
Epoch 59/100
41/41 - 0s - 949us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
7.8962e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.2991 - val recall: 0.9419
Epoch 60/100
41/41 - 0s - 936us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
7.5271e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.2998 - val recall: 0.9419
Epoch 61/100
41/41 - 0s - 930us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
6.9982e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val_loss: 0.3002 - val recall: 0.9419
Epoch 62/100
41/41 - 0s - 946us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
6.8541e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3009 - val recall: 0.9419
Epoch 63/100
41/41 - 0s - 946us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
6.3750e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3064 - val recall: 0.9419
Epoch 64/100
41/41 - 0s - 949us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
5.8996e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3069 - val recall: 0.9419
Epoch 65/100
41/41 - 0s - 960us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
5.7487e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3097 - val recall: 0.9419
Epoch 66/100
41/41 - 0s - 934us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
5.5162e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3100 - val recall: 0.9419
Epoch 67/100
41/41 - 0s - 930us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
5.0438e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val_loss: 0.3123 - val recall: 0.9419
Epoch 68/100
41/41 - 0s - 944us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
```

```
4.8593e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3136 - val recall: 0.9419
Epoch 69/100
41/41 - 0s - 940us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
4.6734e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3128 - val_recall: 0.9419
Epoch 70/100
41/41 - 0s - 966us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
4.5426e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3164 - val recall: 0.9419
Epoch 71/100
41/41 - 0s - 940us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
4.2147e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3182 - val recall: 0.9419
Epoch 72/100
41/41 - 0s - 954us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
4.0427e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3206 - val recall: 0.9419
Epoch 73/100
41/41 - 0s - 943us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
3.8521e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3208 - val recall: 0.9419
Epoch 74/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 3.66
35e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.3230 - val recall: 0.9419
Epoch 75/100
41/41 - 0s - 967us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
3.5093e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3264 - val recall: 0.9419
Epoch 76/100
41/41 - 0s - 970us/step - accuracy: 1.0000 - binary_accuracy: 1.0000 - loss:
3.3336e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3260 - val recall: 0.9419
Epoch 77/100
41/41 - 0s - 949us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
3.2414e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3283 - val recall: 0.9419
Epoch 78/100
41/41 - 0s - 955us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
3.1382e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3311 - val recall: 0.9419
Epoch 79/100
41/41 - 0s - 954us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
3.0036e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3300 - val recall: 0.9419
Epoch 80/100
41/41 - 0s - 955us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
2.9856e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3343 - val recall: 0.9419
Epoch 81/100
41/41 - 0s - 968us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
2.7300e-04 - recall: 1.0000 - val_accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3333 - val recall: 0.9419
```

```
Epoch 82/100
41/41 - 0s - 968us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
2.5860e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3348 - val recall: 0.9419
Epoch 83/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 2.48
21e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.3361 - val recall: 0.9419
Epoch 84/100
41/41 - 0s - 972us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
2.4172e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3374 - val recall: 0.9419
Epoch 85/100
41/41 - 0s - 976us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
2.4022e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3377 - val recall: 0.9419
Epoch 86/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 2.20
60e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.3407 - val recall: 0.9419
Epoch 87/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 2.09
20e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.3417 - val recall: 0.9419
Epoch 88/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 2.08
10e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.3436 - val recall: 0.9419
Epoch 89/100
41/41 - 0s - 992us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
1.9952e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3440 - val recall: 0.9419
Epoch 90/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 1.97
34e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.3477 - val recall: 0.9419
Epoch 91/100
41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 1.83
83e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
val loss: 0.3458 - val recall: 0.9419
Epoch 92/100
41/41 - 0s - 957us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
1.7834e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3485 - val recall: 0.9419
Epoch 93/100
41/41 - 0s - 927us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
1.6843e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val loss: 0.3494 - val recall: 0.9419
Epoch 94/100
41/41 - 0s - 902us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
1.5997e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
3 - val_loss: 0.3509 - val recall: 0.9419
Epoch 95/100
41/41 - 0s - 2ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 1.56
```

```
15e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
       val loss: 0.3516 - val recall: 0.9419
       Epoch 96/100
       41/41 - 0s - 990us/step - accuracy: 1.0000 - binary_accuracy: 1.0000 - loss:
       1.5042e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
       3 - val loss: 0.3527 - val recall: 0.9419
       Epoch 97/100
       41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 1.47
       74e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
       val loss: 0.3552 - val recall: 0.9419
       Epoch 98/100
       41/41 - 0s - 1ms/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss: 1.39
       88e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.9573 -
       val loss: 0.3554 - val recall: 0.9419
       Epoch 99/100
       41/41 - 0s - 987us/step - accuracy: 1.0000 - binary accuracy: 1.0000 - loss:
       1.3613e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
       3 - val loss: 0.3561 - val recall: 0.9419
       Epoch 100/100
       41/41 - 0s - 982us/step - accuracy: 1.0000 - binary_accuracy: 1.0000 - loss:
       1.3084e-04 - recall: 1.0000 - val accuracy: 0.9573 - val binary accuracy: 0.957
       3 - val loss: 0.3584 - val recall: 0.9419
In [96]: # Predict on test data
         y pred prob = model.predict(X test)
         y pred = (y pred prob > 0.5).astype(int)
                      Os 3ms/step
In [97]: # Evaluate performance
         test acc = accuracy_score(y_test, y_pred)
         print(f"Test Accuracy: {test acc:.2f}")
       Test Accuracy: 0.96
In [98]: # Confusion Matrix
         cm = confusion matrix(y test, y pred)
         plt.figure(figsize=(6,5))
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
         plt.xlabel("Predicted")
         plt.ylabel("Actual")
         plt.title("ANN Confusion Matrix")
         plt.show()
```



```
In [99]: # Classification Report
print(classification_report(y_test, y_pred))
```

	precision	recall	fl-score	support
0 1	0.93 0.98	0.98 0.93	0.96 0.96	102 103
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	205 205 205

```
# Loss
plt.subplot(1,2,2)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Loss Over Epochs')
plt.legend()
plt.show()
```

