Na	nme:		
Da	ite:		F
M	ath 101: Assignment 10		
1.	What are the angles in Fig	ure 1?	D E
	What are the triangles in F	igure 1?	A Figure 1
	What are the line segment	s in Figure 1?	
	What is the circle in Figur	e 1?	
	What is the quadrilateral f	igure in Figure 1?	
2.	In Figure 1, if $\angle BAC = \angle$	ABCA and point B is the center	of circle DEF, then $\overline{DA} = \overline{EC}$.
Given:			
	Prove:		
	Statement	Reason	

С

3. If $\triangle BAC$ is an isosceles triangle, point B is the center of circle DEF and $\overline{GD} = \overline{EF}$, then $\triangle GEC = \triangle FDA$.

