Übungsblatt Ana 4

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen den Begriff uneigentliches Integral und dessen wichtigste Eigenschaften.
- > Sie können die Existenz eines uneigentlichen Integrals beurteilen und gegebenenfalls seinen Wert berechnen.

1. Aussagen über uneigentliche Integrale

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Alle uneigentlichen Integrale müssen über eine		
	Grenzwertbildung bestimmt werden.		
b)	Alle uneigentlichen Integrale erkennt man daran, dass		
	mindestens eine der Grenzen $-\infty$ oder ∞ ist.		
c)	Falls das uneigentliche Integral $I = \int_0^\infty f(x) dx$ existiert, dann gilt:		
	$I = \lim_{t \to \infty} \int_0^t f(x) dx.$		
d)	Falls der Grenzwert $I = \lim_{t \to \infty} \int_0^t f(x) dx$ konvergiert, dann gilt:		
	$I = \int_0^\infty f(x) dx.$		

2. Uneigentliche Integrale

Berechnen Sie, sofern möglich, den Wert der folgenden Integrale.

a)
$$\int_0^\infty e^{-x} dx$$

b)
$$\int_0^\infty 2^{-x} dx$$

c)
$$\int_{1}^{\infty} \frac{1}{x} dx$$

d)
$$\int_1^\infty \frac{1}{x^2} dx$$

b)
$$\int_0^\infty 2^{-x} dx$$

e)
$$\int_0^1 \frac{1}{x} dx$$

h)
$$\int_{-\infty}^\infty \frac{1}{x^2} dx$$

f)
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

d)
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx$$
g)
$$\int_{-\infty}^{\infty} e^{-|x|} dx$$

h)
$$\int_{-\infty}^{\infty} \frac{1}{x^2} dx$$

i)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

3. Uneigentliche Integrale mit Python/Sympy

Berechnen Sie die uneigentlichen Integrale aus Aufgabe 2 mit Python/Sympy.

1

4. Aussagen über 2 Integrale

$$I = \int_{a}^{\infty} \frac{1}{x^2} dx$$
 und $J = \int_{a}^{\infty} \frac{1}{x} dx$.

Gegeben seien die beiden Integrale $I=\int_a^\infty \frac{1}{x^2} dx$ und $J=\int_a^\infty \frac{1}{x} dx$. Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Integrale / und / sind uneigentliche Integrale.		
b) Für $a = 1$ gilt $I = 1$.		
c) Für $a > 0$ ist J konvergent.		
d) Für $a \le 0$ sind I und J beide divergent.		
e) Für jedes $a > 0$ gilt: $I > J$.		
f) Es gibt ein $a > 1$, so dass gilt: $I = 10$.		

5. Aussagen über 2 Integrale

Gegeben seien die beiden Integrale

$$I = \int_0^a (1 + (\tan x)^2) dx$$
 und $J = \int_0^{2\pi} (\sin x)^2 dx$.
Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Integrale / und / sind uneigentliche Integrale.		
b) Es gilt: $J = -\cos(2\pi)^2 + \cos 0^2$.		
c) Es gilt: $J = 0$.		
d) Für $-\frac{\pi}{2} < a < 0$ gilt: $I > 0$.		
e) Für $0 < a < \frac{\pi}{2}$ gilt: $I > 0$.		
f) Es gilt: $J = \int_{-\pi}^{\pi} (\sin x)^2 dx.$		