Crossflow Instability

Justin Jarmer

Outline

- What is the Crossflow Instability?
- Sensitivity to Surface Roughness
- Transition to Turbulence
- Flight Testing

What is the Crossflow Instability?

Significance

- Occures in swept wing flows
- Swept wing designs came of interest towards the end of WWII
- Delays effects of compressibility
- Can improve longitudinal stability of tailess aircraft

Understanding the Pressure Gradient on an Airfoil

- Favorable pressure gradient until pressure minimum -> then adverse pressure gradient to tailing edge
- Shape of Cp curve changes with angle of attack
- This is pressure measured at the surface of the airfoil
- NACA 64(3) 618 airfoil

Meersman (2021)

Meersman (2021)

Pressure gradient perpendicular to free stream flow

- When the wing is swept a Pressure gradient perpendicular to free stream flow appears
- Two fluid elements travelling parallel to each other in the free stream will be at different x/c values and as a result will be experiencing different pressures

Meersman (2021)

Resulting Flow Profile

- This pressure gradient perpendicular to the free stream flow direction results in a component of the boundary layer flow in the same direction
- Pressure gradient is strongest at the surface of the airfoil, but velocity is forced to zero at the wall
- Results in an inflection point in the flow profile

Resulting Flow Profile

- Re-adapted from Reed (1988)
- Believed that about 3% of the free stream velocity is typical of the order of magnitude of the crossflow component velocity

Reed, Saric (1989)

Inviscid Streamline

- This diagram is just a visualization tool and is not based on calculations
- It shows an inboard velocity profile where a favorable pressure gradient is expected and then an outboard flow where we would expect an adverse pressure gradient

Cross-Flow Vortices

- Co-rotating vortices
- Aligned in freestream direction
- Vortices show periodicity in the spanwise direction
- This periodic structure is typically on the same order of magnitude as the boundarylayer thickness

CROSSFLOW VORTICES

Reed, Saric (1989)

Cross-Flow Vortices

- Depending on the freestream turbulence/vorticity, these CFVs can either be stationary or traveling (in spanwise direction)
- Low turbulence leads to stationary and is expected in most flight testing conditions

Serpieri (2018)

Cross-Flow Vortices

- Flow is from right to left
- Darker areas show the turbulent regions of the boundary layer
- Transition to turbulence results in a jagged, "saw-tooth" pattern in the location of the beginning of the turbulent BL
- Florescent oil visualization on a 45-degree swept wing at Re = 1.3*10^6
- TU Delft LTT facility

Serpieri (2018)

Stability Equations

- Follows Reibert (1996)
- Begin by assuming a parallel basic state given by:

$$U = U(y), \quad V = 0, \quad W = W(y),$$
 (3.4)

 Total field quantities include both the basic state plus small, 3-D disturbances written as:

$$u = U + u'(x, y, z, t)$$
 (3.5a)

$$v = v'(x, y, z, t) \tag{3.5b}$$

$$w = W + w'(x, y, z, t) \tag{3.5c}$$

$$p = P + p'(x, y, z, t)$$
 (3.5d)

Stability Equations (cont.)

 Previous equations are used in the incompressible Navier-Stokes equations. The basic state is removed, and products of the small disturbance quantities are neglected resulting in the following linear disturbance equations

$$u_x' + v_y' + w_z' = 0 (3.6)$$

$$u'_t + Uu'_x + U_y v' + Wu'_z + p'_x - \nabla^2 u'/R = 0$$
(3.7)

$$v'_t + Uv'_x + Wv'_z + p'_y - \nabla^2 v'/R = 0$$
(3.8)

$$w'_t + Uw'_x + W_y v' + Ww'_z + p'_z - \nabla^2 w'/R = 0$$
(3.9)

• The above equations can be reduced to ordinary differential equations with the introduction of the normal mode:

$$q'(x, y, z, t) = q(y) e^{i(\alpha x + \beta z - \omega t)} + C.C.,$$
 (3.10)

• Where q' represents any one of the disturbance quantities and with chordwise wavenumber α (complex), spanwise wavenumber β (complex), and frequency ω .

Stability Equations (cont.)

 Substituting the normal mode into the system of linear disturbance equations and combining them, a single 4th – order equation can be found (Orr-Sommerfeld Eq.):

$$\left\{ \left(D^2 - k^2 \right)^2 - iR \left[\left(\alpha U + \beta W - \omega \right) \left(D^2 - k^2 \right) - \alpha \left(D^2 U \right) - \beta \left(D^2 W \right) \right] \right\} \phi = 0, \tag{3.11}$$

- Where $k^2 = \alpha^2 + \beta^2$, D = d/dy, and ϕ = v represents the normal-mode amplitude function for the v' disturbance.
- The disturbances must go to zero at the wall and in the free-stream, this gives the BC's

$$\phi(0) = D\phi(0) = 0$$
 and $\phi \xrightarrow[y \to \infty]{} 0.$ (3.12)

- This results in a linear, homogeneous system which defines an eigenvalue problem.
- R (Reynolds number) is known, ω is specified, β_i is assumed = 0, and β is often specified when calculating, leaving α_r and α_i to be solved for.

Paths to Turbulence

- There are many paths to turbulence
- This presentation focuses on path A

Serpieri (2018)

Sensitivity to Surface Roughness

Sensitivity to isolated roughness elements

- Radeztsky, Reibert, and Saric (1999)
- The model has a pressure minimum on the upper surface at approximately x/c = 0.71
- With a 45-deg sweep and a small negative angle of attack.
- Produces a boundary-layer flow that is subcritical to T-S waves at moderate chord Reynolds numbers, but produces considerable crossflow

Fig. 1 NLF(2)-0415 upper-surface pressure distribution in wind tunnel at $\alpha = -4$ deg.

Radeztsky, Reibert, and Saric (1999)

Base Surface Roughness

20 15 10 5 M -5 -10 -15

1000

1500

z (µm)

2000

-20 L

500

Three base surface roughness levels were tested:

- Painted
- Paint removed, sanded, and machined polished (0.5 um rms)
- Hand polished (0.1-0.25 um rms)

Base Surface Roughness

- Using naphthalene flow visualization, the transition location based on chord Reynolds number was found for all three base roughness conditions
- These results show that the surface finish has a significant effect on the transition location

Radeztsky, Reibert, and Saric (1999)

Location of Isolated roughness Element

- Hand polished surface is used
- Roughness element size D = 3.7 mm, H = 6 um
- Important to note that the attachment line is at x/c = 0.007
- Also, the calculated neutral stability point for the most unstable stationary modes is at x/c = 0.02

Radeztsky, Reibert, and Saric (1999)

Size of Roughness Element

- (x/c) point for transition is affected by both the roughness element diameter and height
- For the point of smallest diameter, both a height of 6um and a height of 18um were tested but both did not result in transition earlier than that of the unaffected flow

Radeztsky, Reibert, and Saric (1999)

Hot wire scans

- Four different chord locations and three different heights in the boundary layer are chosen for hot-wire scans
- Following the streamline, the isolated roughness element is associated with the spanwise z location of 25mm
- D = 3.7mm, H = 6 um, x/c = 0.023

Radeztsky, Reibert, and Saric (1999)

Effect on Wavelength

- Peak is associated with a wavelength of 9.5mm which, when gives the critical wavelength of 8mm when projected in the direction of the crossflow vector
- The addition of a disturbance amplifies the already most unstable frequency
- x/c = 0.4 and u/U = 0.75

Radeztsky, Reibert, and Saric (1999)

Effect on Critical Wavelength

 Shows the amplification of the critical wavelength is increased with the addition of a roughness element

Radeztsky, Reibert, and Saric (1999)

Transition to Turbulence

Transition to Turbulence

- Wassermann and Kloker (2002)
- Sought to understand the secondary instability and how to delay the onset of turbulence
- Performed a numerical study on the system shown here

FIGURE 1. (a) Integration box. (b) Top view of the swept flat plate with the vortex-oriented coordinate system ((ξ, ζ) , rotated by $\psi = 39^{\circ}$ versus the chordwise system).

Characteristics of the Baseflow

- The laminar base flow was designed to resemble the flow in the front region on a swept wing. Taken from Spalart et al. (1994)
- The spanwise component relative to the chordwise component of the velocity decreases

Stability Diagram

- For steady crossflow vortices from LST.
- LST analysis was done using the special model. $\alpha_i = 0$ forms the neutral loop
- The fundamental spanwise wavenumber was chosen to be $\gamma_1 = 45$

Wassermann and Kloker (2002)

Amplitude Development

- Downstream amplitude develop ment of the crossflow vortex packet
- Notation (h,k) where h is the frequency and k is the spanwise wavenumber k*γ1.
- Note that here (0,2) mode is dominant and eventually suppresses the growth of the other modes

Flow Field Distortion

- Distortion to the flow field by nonlinearly saturated crossflowvortex-mode packet
- Notice second vortex that forms in the up-welling region. This weak vortex is considered to have small relevance

Periodic Background Pulses

- Previously only a steady disturbance has been discussed but to get transition to turbulence, an unsteady disturbance must be added.
- Periodically pulsed lowamplitude disturbances are added to simulate the natural disturbance background

Periodic Background Pulses

- Contours of normalized amplitude for unsteady disturbances
- (a) $\beta = 20$ (low frequency)
- (b) β = 160 (high frequency)

Wassermann and Kloker (2002)

Visualization of Vortex Formation

- Shows the formation of the secondary instability
- From (a) to (d): t/T = 0.5, 0.75, 0,
 0.25; T is the period of the background pulses

Convective Nature of Secondary Instability

- Crossflow-vortex-mode packet plus periodic background pulses.
- The background pulses are turned off at t = t₀.
- From (a) to (d): $t/T = t_0 + 0.85T$, $t_0 + 1.45T$, $t_0 + 2.05T$, $t_0 + 2.65T$

Flight Testing

Experiment Setup

- Saric, Reed, and Banks (2003)
- IR camera was used to visualize flow transition
- Downwash from F-15 was more invasive than expected. Sweep angle of the flow varies from 35 degrees at the base to 30 degrees in the outboard region

Theoretical Amplification

 Legend on both charts is cut off, however the paper reports that the most unstable crossflow vortices had a wavelength of 4mm (in both the midspan and outboard regions)

Subsonic Flight Test

- Roughness elements placed 2mm apart
- In this case, flight speed is at Mach 0.911
- Nearly full cord laminar flow
- In this case dark regions show turbulence

Supersonic Flight Test

- Mach 1.85
- There was a higher-thanexpected suction peak and inboard sweep angle made the inboard flow control useless
- In this case the lighter regions show turbulence

Summary

- The crossflow instabillity is highly sensitive to surface roughness
- The secondary instability is caused by disturbances in the free stream and are most heavily amplified in the low momentum region of the flow field
- Distributed roughness elements can delay the transition to turbulance in subsonic and supersonic flows

Questions?

Sources

- Meersman M. 2021. Free-flight Experiments on Swept Laminar Separation Bubbles
- Radeztsky RH Jr, Reibert MS, Saric WS. 1999. Effect of isolated micron-sized roughness on transition in swept-wing flows
- Reed HL, Saric WS. 1989. Annual Review of Fluid Mechanics
- Reibert MS. 1996. Nonlinear Stability, Saturation, and Transition in Crossflow-dominated Boundary Layers
- Saric WS, Reed HL, White EB. 2003. Annual Review of Fluid Mechanics
- Saric WS, Reed HL, Banks DW. 2003. Flight Testing of Laminar Flow Control in High-Speed Boundary Layers
- Serpieri J. 2018. Cross-Flow Instability, Flow diagnostics and control of swept wing boundary layers
- Wassermann P, Kloker M. 2002. Mechanisms and control of crossflow-vortex induced transition in a 3-D boundary layer