DEPENDENCY IN REFINEMENT LOGICS

JONATHAN STERLING

Over the past four decades, there have been many incarnations of the *LCF* (Logic for Computable Functions) interface, but the one that will concern us here is its extension to *LCF* with *Validations* as found in Cambridge LCF, which outfits the proving activity with the synthesis of explicit evidence. The Cambridge LCF signature is as follows:

```
signature CAMBRIDGE_LCF =
sig
   type form
   type thm
   type proof = thm list \( \to \) thm
   type goal = form list \( \times \) form
   type tactic = goal \( \to \) goal list \( \times \) proof
end
```

The goal type represents sequents, where form represents logical propositions. The LCF methodology, however, may be used to give a refinement treatment to many kinds of judgments, not just sequents; therefore, it is better to not include this in the core signature at all, and make the type of judgments abstract; for clarity, we will replace the name thm with evidence.

```
signature LCF =
sig
  type judgment
  type evidence
  type proof = evidence list \( \to \) evidence
  type tactic = judgment \( \to \) judgment list \( \times \) proof
end
```

Then, a tactic is something that refines a judgment to a list of judgments (its subgoals), and synthesizes its evidence (provided the evidence of its subgoals). There are many different tactics which can be implemented generically over this signature; here are a few:

1

```
signature TACTICALS =
sig
structure Lcf : LCF
val ID : Lcf.tactic
val FAIL : Lcftactic
val THEN : Lcf.tactic \otimes Lcf.tactic \to Lcf.tactic
val THENL : Lcf.tactic \otimes Lcf.tactic list \to Lcf.tactic
end
```

1. MODERNIZED LCF: THE LOGIC OF TACTICS

In order to study the design space for LCF refiners, we would like to give a judgmental characterization of tactic systems. First, we will recognize that the type of validations (proof) in the ML implementation is essentially a HOAS (higher-order abstract syntax) encoding of a hypothetical proof or synthesis. Then, it is clear that the list of subgoals generated by a tactic are a context which explains the variables bound by the hypothetical synthesis.

To make the preceding observations precise, we can recover the character of an LCF refiner in a single form of judgment, $J \Vdash \tau \Rightarrow E \dashv \Psi$, where J is a judgment of the logical theory, τ is a tactic, Ψ is a context of judgments, representing the subgoals generated by the tactic τ , and E is the synthesis of the judgment J, binding variables $|\Psi|$ which represent the syntheses of the subgoals. The meaning of this assertion is that τ is applicable to demonstrating the judgment J, producing synthesis e under the assumptions that the judgments in Ψ can be demonstrated. In addition to the refinement judgment, there is also refinement failure $J \Vdash \tau \uparrow$, which expresses the inapplicability of τ to J. We require as a matter of policy that the applicability of a tactic be discrete, and in practice, we leave implicit the rules which explain the inapplicability of a tactic.

Remark 1.1. The refinement judgments $J \Vdash \tau \Rightarrow E \dashv \Psi$ and $J \Vdash \tau \uparrow$ are not higher-order judgments, because the variable J is ranges not over judgments of the refinement theory, but of the object theory.

Let \mathfrak{J} be the open-ended collection of judgments in our logical theory, and let \mathfrak{R} be a collection of rule names. Each rule $R \in \mathfrak{R}$ must be interpretable as a tactic, i.e. the meaning of the assertions $J \Vdash R \Rightarrow E \dashv \Psi$ and $J \Vdash R \uparrow$ must be explained for $J \in \mathfrak{J}$. We say τ *tactic* in case for all object-judgments $J \in \mathfrak{J}$, the assertion conditions for $J \Vdash \tau \Rightarrow E \dashv \Psi$ and $J \Vdash \tau \uparrow$ are disjoint, and moreover, if $J \Vdash \tau \Rightarrow E \dashv \Psi$, then $FV(E) \subseteq |\Psi|$.

In practice, we will explain only the assertion conditions for one of $J \Vdash \tau \Rightarrow E \dashv \Psi$ and $J \Vdash \tau \uparrow$, and take the other to be its complement.

Numerous general purpose tactics can be defined over a logical theory, including identity, failure, disjunction and sequencing:

$$\overline{J \Vdash \operatorname{id} \Rightarrow \alpha \dashv \alpha : J} \qquad \overline{J \Vdash \operatorname{fail} \, \uparrow}$$

$$\underline{J \Vdash \tau_1 \Rightarrow E \dashv \Psi}$$

$$\overline{J \Vdash \tau_1 | \tau_2 \Rightarrow E \dashv \Psi} \qquad \underline{J \Vdash \tau_1 \, \uparrow} \quad \underline{J \Vdash \tau_2 \Rightarrow E \dashv \Psi}$$

$$\underline{J \Vdash \tau_1 | \tau_2 \Rightarrow E \dashv \Psi}$$

$$\underline{J \Vdash \tau_1 \Rightarrow E \dashv \Phi} \quad |_{\alpha} \Phi(\alpha) \Vdash \tau_2 \Rightarrow F_{\alpha} \dashv \Psi_{\alpha} \quad (\alpha \in |\Phi|)$$

$$\underline{J \Vdash \tau_1; \tau_2 \Rightarrow [F / |\Phi|] E \dashv \bigoplus_{|\Phi|} \Psi}$$

Remark 1.2. The nominal treatment that we have given here allows for a much more economical presentation of the standard tacticals, which are quite ardruous to define in the HOAS treatment used in ML implementations.

Theorem 1.3. The above rules all define valid tactics:.

- (1) id tactic.
- (2) fail tactic.
- (3) If τ_1 tactic and τ_2 tactic, then $\tau_1|\tau_2$ tactic.
- (4) If τ_1 tactic and τ_2 tactic, then τ_1 ; τ_2 tactic.

Proof. It suffices to verify that the synthesis E of each tactical is well-scoped in Ψ ; in each case, this follows by induction.

- (1-2) Immediate.
 - (3) By induction on derivations of $J \Vdash \tau_1 | \tau_1 \Rightarrow \Psi \dashv E$. Case $J \Vdash \tau_1 \Rightarrow E \dashv \Psi$: Validity follows from the inductive hypothesis τ_1 tactic. Case $J \Vdash \tau_1 \uparrow$: Validity follows from the inductive hypothesis τ_2 tactic.
 - (4) We need to show that $FV([F/|\Phi|]E) \subseteq \bigoplus_{|\Phi|} \Psi$. From our inductive hypotheses, it is evident that $FV(E) \subseteq |\Phi|$ and that for each $\alpha \in \Phi$, $FV(F_{\alpha}) \subseteq |\Psi_{\alpha}|$; all of the free variables of the term got by substituting each F_{α} for $\alpha \in |\Phi|$ clearly reside in one of the fibres of the family of contexts Ψ , and so they must comprise a subset of the union $\bigoplus_{|\Phi|} \Psi$ of Ψ 's fibres.