アルゴリズムとデータ構造

第12回 グラフの探索(2)

今日の内容

- 頂点の次数
- さまざまな グラフ
 - 完全グラフ
 - 路 (パス、道)、有向路
 - 閉路 (サイクル)、有向閉路
 - 二部グラフ
 - 完全二部グラフ
- 連結成分、連結成分分解
- 強連結成分、強連結成分分解

グラフ

頂点(vertex) の集合 $V \geq \overline{U}$ (edge) の集合 $E \subseteq V \times V$ の \underline{H} (V, \underline{E})

無向ネットワーク (重み付き無向グラフ)

有向ネットワーク (重み付き有向グラフ)

グラフの表現方法

隣接行列

隣接リスト

※ 無向グラフの場合は、各辺を両方向の2辺からなる有向グラフとみなして表現する

無向グラフの頂点の次数 (degree)

- 無向グラフG = (V, E)、頂点 $v \in V$
- vの次数: vに接続する辺の本数
 - $\deg_G(v)$ や $\deg(v)$ と表す

無向グラフ v_0 v_1 v_2 v_3 v_4 v_2 v_3 v_4

$$\deg_G(v_0) = 3$$

$$\deg_G(v_1) = 2$$

$$\deg_G(v_2) = 3$$

$$\deg_G(v_3) = 2$$

$$\deg_G(v_4) = 2$$

有向グラフの頂点の入次数、出次数

(indegree, outdegree)

- \blacksquare 有向グラフG=(V,A)、頂点 $v\in V$
- vの入次数: v を終点とする有向辺の本数
 - $\deg_G^-(v)$ や $\deg^-(v)$ と表す
- vの出次数: vを始点とする有向辺の本数
 - deg⁺_G(v) や deg⁺(v) と表す

v に入ってくる 有向辺の本数

v から出ていく 有向辺の本数

 $\deg_G^+(v_4) = 1$

$$\deg_G^-(v_0) = 1$$
 $\deg_G^+(v_0) = 2$
 $\deg_G^-(v_1) = 1$ $\deg_G^+(v_1) = 1$
 $\deg_G^-(v_2) = 2$ $\deg_G^+(v_2) = 1$
 $\deg_G^-(v_3) = 1$ $\deg_G^+(v_3) = 1$

 $\deg_G^-(v_4) = 1$

さまざまな グラフ

- 完全グラフ
- 路 (パス、道)、有向路
- 閉路 (サイクル)、有向閉路
- 二部グラフ
- 完全二部グラフ

完全グラフ (complete graph)

- \blacksquare 無向グラフG = (V, E)
- 定義: V の任意の 2 頂点が辺で結ばれている
- K_n : 頂点数nの完全グラフ ($n \ge 1$)

豆知識: 有向グラフでも同様に定義できるが、その場合には「有向」を付け、有向完全グラフと呼ぶことが多い

路 (パス、道) (path)

- 無向グラフG = (V, E)
- 定義: $V = \{v_1, v_2, ..., v_n\}$ として、E は i = 1, 2, ..., n - 1 の 辺 (v_i, v_{i+1}) のみからなる
- P_n : 頂点数 n のパス $(n \ge 1)$

$$P_1$$
 \circ

$$P_2 \circ \bigcirc \bigcirc$$

- *P_n* の端点: 次数1の頂点
- P_n の長さ: 辺の本数 $\sqrt{n-1}$
 - P_n は、端点と端点を結ぶ

有向路 (有向パス、有向道) (directed path)

- \blacksquare 有向グラフG = (V, A)
- 定義: $V = \{v_1, v_2, ..., v_n\}$ として、E は i = 1, 2, ..., n 1 の 有向辺 (v_i, v_{i+1}) のみからなる

- 有向路の端点: 入次数 or 出次数が1の頂点
- 有向路の長さ: 辺の本数
- 有向路は、入次数1の端点から 出次数1の端点へ結ぶ

閉路 (サイクル) (cycle)

- \blacksquare 無向グラフG = (V, E)
- 定義: $V = \{v_1, v_2, ..., v_n\}$ として、E は辺(v_n, v_1)と i = 1, 2, ..., n 1 の 辺(v_i, v_{i+1})のみからなる
- C_n : 頂点数nの閉路 $(n \ge 3)$

アルゴリズムとデータ構造#12

有向閉路 (有向サイクル) (directed cycle)

- 有向グラフG = (V, E)
- 定義: $V = \{v_1, v_2, ..., v_n\}$ として、E は 有向辺 (v_n, v_1) と i = 1, 2, ..., n-1 の 有向辺 (v_i, v_{i+1}) のみからなる

有向閉路

ではない

二部グラフ (bipartite graph)

- \blacksquare 無向グラフG = (V, E)
- 定義: V = V₁ ∪ V₂ かつ E ⊆ V₁ × V₂ つまり、V を V₁ と V₂ の2つに分割でき、 どの辺も V₁ の頂点と V₂ の頂点を結ぶ

完全二部グラフ (complete bipartite graph)

- \blacksquare 無向グラフG = (V, E)
- 定義: $V = V_1 \cup V_2$ かつ $E = V_1 \times V_2$ つまり、V を V_1 と V_2 の2つに分割でき、 V_1 の任意の頂点と V_2 の任意の頂点を結ぶ辺からなる
- $K_{m,n}$: $|V_1| = m$, $|V_2| = n$ の完全グラフ $(m, n \ge 1)$

 $K_{3,3}$

 $K_{2,3}$

休憩

■ ここで、少し休憩しましょう。

深呼吸したり、肩の力を抜いてから、 次のビデオに進んでください。

なんでグラフ?

モノとモノのつながりを簡潔に記述し、解析できる!

アルゴリズムとデータ構造#12

なんでグラフ?

有向グラフや無向グラフの 「つながり」って、何でしょうか?

モノとモノのつながりを簡潔に記述し、解析できる!

アルゴリズムとデータ構造#12

17

連結/非連結 (connected/disconnected)

- \blacksquare 無向グラフG = (V, E)
- 定義: *G* が連結である⇔ *V* の任意の 2 つの頂点の間にパスが存在する
- G が連結でないとき、G は非連結であるという

非連結

連結

連結成分 (connected component)

- \blacksquare 無向グラフG = (V, E)
- G を連結成分 $G_1 = (V_1, E_1), ..., G_k = (V_k, E_k)$ に分割する
 - $lacksymbol{\blacksquare}$ 2つの頂点 v_i,v_j が同じ連結成分に属す
 - $\Leftrightarrow v_i, v_j$ を結ぶパスが存在

連結成分は1個

連結成分 (connecte

「頂点vが属す連結成分」 =vから辺をたどって到達できる範囲 これは、vから深さ優先探索をすれば分かる

- \blacksquare 無向グラフG = (V, E)
- G を連結成分 $G_1 = (V_1, E_1), ..., G_k = (V_k, E_k)$ に分割する
 - $lacksymbol{=}$ 2つの頂点 v_i,v_j が同じ連結成分に属す
 - $\Leftrightarrow v_i, v_j$ を結ぶパスが存在

連結成分は1個

注意: 頂点1つでも、連結成分

前回の復習 (DFS) 「頂点vが属す連結成分」 =vから辺をたどって到達できる範囲 これは、vから深さ優先探索をすれば分かる

もう少し詳しく

- 1. 最初に、すべての頂点を"未訪問"にする
- 2. 未訪問の頂点vを pick up して、v から深さ優先探索をする(この時、訪問した頂点には同じID を振る)

Procedure Visit(v: 頂点)

2: 状態[v] ← 訪問済;

3: for each (vの隣接頂点u) do

4: if (状態[*u*] = 未訪問) then

5: Visit(*u*); //再帰呼び出し

6: end if

7: end for

注意:

無向辺 (u, v) を、2つの 有向辺 (u, v) と (v, u) と みなして実行する

アルゴリズムとデータ構造#12

- 1. 最初に、すべての頂点を"未訪問"にする
- 未訪問の頂点 v を pick up して、
 v から深さ優先探索をする
 (この時、訪問した頂点には同じ ID を振る)

Procedure CC (*G*: グラフ)

```
1: for each (v \in V) do 状態[v] \leftarrow 未訪問;
```

```
2: c ← 1; // ID として色 c を使う
```

```
3: for each (v \in V) do
```

```
4: if (状態[v] = 未訪問) then
```

```
5: Visit(v, c); // v から訪問できる全頂点を色 c で塗る
```

6:
$$c \leftarrow c + 1$$
; // 次の連結成分は別の色 $c + 1$ にする

7: end if

8: end for

Procedure Visit(v: 頂点, c: 色)

2: 状態[*v*] ← *c*;

3: for each (vの隣接頂点u) do

4: if (状態[*u*] = 未訪問) then

5: Visit(*u, c*); //再帰呼び出し

6: end if

7: end for

強連結成分 (strongly connected component)

- \blacksquare 有向グラフG = (V, A)
- G を強連結成分 $G_1 = (V_1, A_1), ..., G_k = (V_k, A_k)$ に分割
 - $lacksymbol{\bullet}$ 2つの頂点 v_i, v_i が同じ強連結成分に属す
 - $\Leftrightarrow v_i$ から v_j への有向パスが存在 \leftarrow $\land v_i$ から v_i への有向パスが存在 \leftarrow

 v_i から v_j へ 到達可能 v_j から v_i へ 到達可能

注意: 頂点1つでも、強連結成分

■ 強連結成分: 頂点集合で示すと{a, b, c}, {d, g}, {e, f, h, i} の3個

Step 1: 有向グラフ G = (V, A) に対し、DFS を実行この時、各頂点 v に最後に訪問した時間の順番をf[v] として記憶する

Step 2: G の有向辺を逆向きにしたグラフ G' に対し、 f[v] が大きい未探索の頂点から順に DFS を実行

メモ: この例での 頂点の隣接リストは、 アルファベット順とする

Step 1: 有向グラフ G = (V, A) に対し、DFS を実行この時、各頂点 v に最後に訪問した時間の順番をf[v] として記憶する

Step 2: G の有向辺を逆向きにしたグラフ G' に対し、 f[v] が大きい未探索の頂点から順に DFS を実行

Step 1

- 頂点 a から DFS を始めてみる
- $a \rightarrow b \rightarrow c \rightarrow d \rightarrow g$ ときて、行き止まり
- g から戻るタイミングで、f[g] ← 1
- dに戻って、ここも行き止まりなのでf[d] ← 2
- cに戻って、f → i → h → e ときて、 行き止まりなので、f[e] ← 3
- hに戻って、f[h] ← 4
- 以降、順に戻って、f[i] ← 5, f[f] ← 6, f[c] ← 7, f[b] ← 8, f[a] ← 9

アルゴリズムとデータ構造#12

Step 1: 有向グラフ G = (V, A) に対し、DFS を実行この時、各頂点 v に最後に訪問した時間の順番をf[v] として記憶する

Step 2: G の有向辺を逆向きにしたグラフ G' に対し、 f[v] が大きい未探索の頂点から順に DFS を実行

Step 2 に進む前に、G の有向辺を逆向きにする (各頂点 v の横の数字は、f[v] の値)

Step 1: 有向グラフ G = (V, A) に対し、DFS を実行この時、各頂点 v に最後に訪問した時間の順番をf[v] として記憶する

 Step 2: G の有向辺を逆向きにしたグラフ G' に対し、

 f[v] が大きい未探索の頂点から順に DFS を実行

Step 2

- f[]の値が最大の未探索頂点は a
- 頂点 a から DFS:
 a → c → b と進み、ここで再帰から戻ってくるこの回に探索済みにした {a, b, c} が強連結成分
- f[]の値が最大の未探索頂点は f
- 頂点 f から DFS:
 f → e → h → i と進み、ここで再帰から戻ってくる {e, f, h, i} が強連結成分
- 同様に、頂点 d から DFS で {d, g} が強連結成分

Step 1: 有向グラフ G = (V, A) に対し、DFS を実行この時、各頂点 v に最後に訪問した時間の順番をf[v] として記憶する

Step 2: G の有向辺を逆向きにしたグラフ G' に対し、 f[v] が大きい未探索の頂点から順に DFS を実行

「Step 2 で、頂点 u から開始して、 グラフ G' 上で頂点 v に行けた」 これは、何を意味する?

もとに戻すと、 グラフ G 上で、v から u に行ける Step 2 を頂点 u から開始したということは、 f[u] > f[v] だった

… 証明は省略するが、Step 1 の探索で、u が訪問されてから v が訪問されることを意味する

今日のまとめ

- 頂点の次数
- さまざまな グラフ
 - 完全グラフ
 - 路 (パス、道)、有向路
 - 閉路 (サイクル)、有向閉路
 - 二部グラフ
 - 完全二部グラフ
- 連結成分、連結成分分解
- 強連結成分、強連結成分分解