Shenzhen Benway Technology Co.,Ltd

GPS Tracker Communication Protocol

(BW02/BW08/BW09/ET300)

Copyright

CONTENT

١.	COMMU	INICATION PROTOCOL	5				
II.	TERMS,	DEFINITIONS	5				
III.	II. BASIC RULES6						
V.	DATA PA	CKET FORMAT	8				
_	1.1.Start	Віт	8				
		r Length					
4	1.3. Ркото	COL NUMBER	8				
4	1.4.Infori	MATION CONTENTS	8				
4	1.5.Infor	MATION SERIAL NUMBER	8				
4	1.6.Error	Снеск	8				
4	1.7.STOP E	Віт	8				
v.		s about Data Packet sent by Server to Terminal					
5		Message Packet					
5	5.1.1.	Ferminal Sending Data Packet to Server					
	5.1.1.1.	Start Bit					
	5.1.1.2.	Packet Length					
	5.1.1.3.	Protocol Number					
	5.1.1.4.	Terminal ID					
	5.1.1.5.	Information Serial Number					
	5.1.1.6.	Error Check	9				
	5.1.1.7.	Stop Bit					
5	5.1.2.	Server Responds the Data Packet					
	5.1.2.1.	Start Bit					
	5.1.2.2.	Packet Length					
	5.1.2.3.	Protocol Number					
	5.1.2.4.	Information Serial Number					
	5.1.2.5.	Error Check					
	5.1.2.6.	·					
	5.1.3.	Examples					
		ON DATA PACKET (COMBINED INFORMATION PACKAGE OF GPS AND LBS)					
5		Ferminal Sending Location Data Packet to Server1					
	5.2.1.1.	Start Bit					
	5.2.1.2.	Packet Length					
	5.2.1.3.	Protocol Number					
	5.2.1.4.	Date Time					
	5.2.1.5.	Length of GPS information, quantity of positioning satellites					
	5.2.1.6.	Latitude					
	5.2.1.7.	Longitude					
	5.2.1.8.	Speed	2				

	5.2.1.9.	Course Status	. 12
	5.2.1.10.	MCC	13
	5.2.1.11.	MNC	14
	5.2.1.12.	LAC	14
	5.2.1.13.	Cell ID	14
	5.2.1.14.	ACC+Input2+ADC	14
	5.2.1.15.	Information Serial Number	15
	5.2.1.16.	Error Check	. 15
	5.2.1.17.	Stop Bit	15
5	.2.2. Ex	camples of Packet Sent from Terminal to Server	.15
	5.3.ALARM I	PACKET (GPS, LBS, COMBINED STATUS INFORMATION PACKET)	17
	5.3.1. Se	erver Sending Alarm Data Packet to Server	.17
	5.3.1.1.	Start Bit	. 17
	5.3.1.2.	Packet Length	. 17
	5.3.1.3.	Protocol Number	. 17
	5.3.1.4.	Date Time	. 17
	5.3.1.5.	Length of GPS information, quantity of positioning satellites	. 17
	5.3.1.6.	Latitude	17
	5.3.1.7.	Longitude	17
	5.3.1.8.	Speed	. 17
	5.3.1.9.	Status and Course	. 17
	5.3.1.10.	MCC	18
	5.3.1.11.	MNC	. 18
	5.3.1.12.	LAC	18
	5.3.1.13.	Cell ID	18
	5.3.1.14.	Terminal Information	. 18
	5.3.1.15.	Voltage Level	. 18
	5.3.1.16.	GSM Signal Strength Levels	
	5.3.1.17.	Alarm/Language	19
	5.3.1.18.	Information Serial Number	. 19
	5.3.1.19.	Error Check	
	5.3.1.20.	Stop Bit	
	5.3.2.	Examples	
		EAT PACKET (STATUS INFORMATION PACKET)	
		erminal Sending Heartbeat Packet to Server	
	5.4.1.1.	Start Bit	
	5.4.1.2.	Packet Length	21
	5.4.1.3.	Protocol Number	
	5.4.1.4.	Terminal Information	
	5.4.1.5.	Voltage Level	
	5.4.1.6.	GSM Signal Strength Levels	
	5.4.1.7.	Alarm/Language	
	5.4.1.8.	Information Serial Number	
	5.4.1.9.	Error Check	
			_

5.4.1.10.	Stop Bit	22
5.4.2.	Server Responds the Data Packet	23
5.4.2.1.	Start Bit	23
5.4.2.2.	Packet Length	23
5.4.2.3.	Protocol Number	23
5.4.2.4.	Information Serial Number	23
5.4.2.5.	Error Check	23
5.4.2.6.	Stop Bit	23
5.4.3.	Examples	23
/I. DATA PA	ACKET SENT FROM SERVER TO TERMINAL(GPRS COMMAND)	2 4
6.1. PACKE	T SENT BY SERVER	24
6.1.1.	Start Bit	24
6.1.2.	Packet Length	24
6.1.3.	Protocol Number	24
6.1.4.	Length of Command	24
6.1.5.	Server Flag Bit	24
6.1.6.	Command Content	2 4
6.1.7.	Language	25
6.1.8.	Information Serial Number	25
6.1.9.	Error Check	25
6.1.10.	Stop Bit	25
6.2. PACKE	T REPLIED BY TERMINAL	26
6.2.1.	Start Bit	26
6.2.2.	Packet Length	26
6.2.3.	Protocol Number	26
6.2.4.	Length of Command	26
6.2.5.	Server Flag Bit	26
6.2.6.	Command Content	26
6.2.7.	Language	26
6.2.8.	Information Serial Number	26
6.2.9.	Error Check	26
6.2.10.	Stop Bit	26
6.3.	Looking Up Location Information	27
6.4.	Cutting Oil and Electricity	27
6.5.	Connecting Oil and Electricity	27
6.6.	Address Querying Information Sent by the Server	27
6.7.GPS,	Phone Number Querying Address Information Package (0X1A)	29
6.7.1.	Information from Terminal to Server	29
6.7.1.1.	Start Bit	29
6.7.1.2.	Packet Length	29
6.7.1.3.	Protocol Number	29
6.7.1.4.	Date Time	29
6.7.1.5.	Length of GPS information, quantity of positioning satellites	29
6.7.1.6.	Latitude	29

	6.7.1.7.	Longitude
	6.7.1.8.	Speed
	6.7.1.9.	Course
	6.7.1.10.	Phone Number30
	6.7.1.11.	Language
	6.7.1.12.	Information Serial Number
	6.7.1.13.	Error Check
	6.7.1.14.	Stop Bit
	6.7.2.	Response of Server
	6.7.2.1.	Response package in Chinese
	6.7.2.2.	Response package in English
VI		ENDIX A: CODE FRAGMENT OF THE CRC-ITU LOOKUP TABLE ALGORITHM IMPLEMENTED BASED ON C
	MODAGE.	
VI	II. APP	ENDIX B: A FRAGMENT OF EXAMPLE OF DATA PACKET OF COMMUNICATION PROTOCOL 34
ΙX	. APPENDI	X C: COMPLETE FORMAT OF THE INFORMATION PACKAGE36

www.szbenway.com

GPS Tracker Communication Protocol

i. Communication Protocol

Introduction

This document defines instructions about interface protocol on application layer of vehicles GPS tracker and location-based service platform. Related interface protocol only applies in the interaction between the platform and the position terminal.

ii. Terms, Definitions

Terms, Abbreviation	Definition in English	Definition in Chinese				
CMPP	China Mobile Peer to Peer	中国移动点对点协议				
GPS	Global Positioning System	全球卫星定位系统				
GSM	Global System for Mobile Communication	全球移动通信系统				
GPRS	General Packet Radio Service	通用无线分组业务				
TCP	Transport Control Protocol	传输控制协议				
LBS	Location Based Services	辅助定位服务				
IMEI	International Mobile Equipment Identity	国际移动设备识别码				
MCC	Mobile Country Code	移动用户所属国家代号				
MNC	Mobile Network Code	移动网号码				
LAC	Location Area Code	位置区码				
Cell ID	Cell Tower ID	移动基站				
UDP	User Datagram Protocol	用户数据报协议				
SOS	Save Our Ship/Save Our Souls	遇难求救信号				
CRC	CRC Cyclic Redundancy Check					
NITZ	Network Identity and Time Zone,	时区				
GIS	Geographic Information System	地理信息系统				
CONFI						

iii. Basic Rules

- 1. If a GPRS connection is established successfully, the terminal will send a first login message packet to the server and, within five seconds, if the terminal receives a data packet responded by the server, the connection is considered to be a normal connection. The terminal will begin to send location information (i.e., GPS, LBS information package). A status information package will be sent by the terminal after three minutes to regularly confirm the connection.
- 2. If the GPRS connection is established unsuccessfully, the terminal will not be able to send the login message packet. The terminal will start schedule reboot in twenty minutes if the GPRS connection is failed three times. Within twenty minutes, if the terminal successfully connects to the server and receives the data packet from the server as the server's response to the login message packet sent by the terminal, the schedule reboot will be off and the terminal will not be rebooted; otherwise, the terminal will be rebooted automatically in twenty minutes.
- 3. After receiving the login message packet, the server will return a response data packet. If the terminal doesn't receive packet from the server within five seconds after sending the login message packet or the status information package, the current connection is regarded as an abnormal connection. The terminal will start a retransmission function for GPS tracking data, which will cause the terminal to disconnect the current GPRS connection, rebuild a new GPRS connection and send a login message packet again.
- 4. If the connection is regarded to be abnormal, and the data packet as a response from the server is failed to be received three times after a connection is established and a login message packet or status information package is sent, the terminal will start schedule reboot and the scheduled time is ten minutes. Within ten minutes, if the terminal successfully connects to the server and receives the data packet responded by the server, the schedule reboot will be off and the terminal will not be rebooted; otherwise, the terminal will be rebooted automatically in ten minutes.
- 5. In case of the normal connection, the terminal will send a combined information package of GPS and LBS to the server after the GPS information is changed; and the server may set a default protocol for transmission by using commands.
- 6. To ensure the effectiveness of the connection, the terminal will send status information to the server at regular intervals, and the server will return response data packets to confirm the connection.
- 7. For the terminal which doesn't register an IMEI number, the server will reply the terminal with a login request response and heartbeat packet response, rather than directly disconnect the connection. (If the connection is directly disconnected or the server doesn't reply to the terminal, it will lead to a continuous reconnected by the terminal and the GPRS traffic will be consumed heavily.

Data Flow Diagram

GPS Tracker Communication Protocol www.szbenway.com

iv. Data Packet Format

The communication is transferred asynchronously in bytes.

The total length of packets is (10+N) Bytes.

<u> </u>		
Format	Length(Byte)	
Start Bit	2	
Packet Length	1	
Protocol Number	1	
Information Content	N	
Information Serial	2	
Number	2	
Error Check	2	
Stop Bit	2	

4.1. Start Bit

Fixed value in HEX 0x78 0x78.

4.2. Packet Length

Length = Protocol Number + Information Content + Information Serial Number + Error Check, totally (5+N)Bytes, because the Information Content is a variable length field.

4.3. Protocol Number

Туре	Value	
Login Message	0x01	
Location Data	0x12	
Status information	0x13	
String information	0x15	
Alarm data	0x16	
GPS, query address information by	0x1A	
phone number	UXIA	
Command information sent by the	0x80	
server to the terminal	0.00	

4.4. Information Contents

The specific contents are determined by the protocol numbers corresponding to different applications.

4.5. Information Serial Number

The serial number of the first GPRS data (including status packet and data packet such as GPS, LBS) sent after booting is '1', and the serial number of data sent later at each time will be automatically added '1'.

4.6. Error Check

A check code may be used by the terminal or the server to distinguish whether the received information is error or not. To prevent errors occur during data transmission, error check is added to against data misoperation, so as to increase the security and efficiency of the system. The check code is generated by the CRC-ITU checking method.

The check codes of data in the structure of the protocol, from the Packet Length to the Information Serial Number (including "Packet Length" and "Information Serial Number"), are values of CRC-ITU.

CRC error occur when the received information is calculated, the receiver will ignore and discard the data packet.

4.7. Stop Bit

Fixed value in HEX 0x0D 0x0A.

Details about Data Packet sent by Server to Terminal

The commonly used information packages sent by the terminal and those sent by the server will be interpreted separately.

5.1. Login Message Packet

5.1.1. Terminal Sending Data Packet to Server

The login message packet is used to be sent to the server with the terminal ID so as to confirm the established connection is normal or not.

	Description	Bits	Example	
	Start Bit	2	<u>0x78 0x78</u>	
	Packet	1	00D	
	Length	1	<u>0x0D</u>	
	Protocol	1	0-01	
Login Message	Number	1	<u>0x01</u>	
Packet(18	Terminal ID	8	<u>0x01 0x23 0x45 0x67 0x89 0x01 0x23 0x45</u>	
Byte)	Information			
	Serial	2	<u>0x00 0x01</u>	
	Number			
	Error Check	2	<u>0x8C 0xDD</u>	
	Stop Bit	2	<u>0x0D 0x0</u>	

5.1.1.1. Start Bit

For details see Data Packet Format section 4.1.

5.1.1.2. Packet Length

For details see Data Packet Format section 4.2.

5.1.1.3. Protocol Number

For details see Data Packet Format section 4.3.

5.1.1.4. Terminal ID

The terminal ID applies IMEI number of 15 bits.

Example: if the IMEI is 123456789012345,

the terminal ID is 0x01 0x23 0x45 0x67 0x89 0x01 0x23 0x45.

5.1.1.5. Information Serial Number

For details see Data Packet Format section 4.5.

5.1.1.6. Error Check

For details see Data Packet Format section 4.6.

5.1.1.7. Stop Bit

For details see Data Packet Format section 4.7.

5.1.2. Server Responds the Data Packet

	Description	Bits	Example
Login	Start Bit	2	<u>0x78 0x78</u>
Message	Packet Length	1	<u>0x05</u>
Packet (18	Protocol	1	<u>0x01</u>

Byte)	Number		
	Information		
	Serial	2	<u>0x00 0x01</u>
	Number		
	Error Check	2	0xD9 0xDC
	Stop Bit	2	<u>0x0D 0x0A</u>

The response packet from the server to the terminal: the protocol number in the response packet is identical to the protocol number in the data packet sent by the terminal.

5.1.2.1. Start Bit

For details see Data Packet Format section 4.1.

5.1.2.2. Packet Length

For details see Data Packet Format section 4.2.

5.1.2.3. Protocol Number

For details see Data Packet Format section 4.3.

5.1.2.4. Information Serial Number

For details see Data Packet Format section 4.5.

5.1.2.5. Error Check

For details see Data Packet Format section 4.6.

5.1.2.6. Stop Bit

For details see Data Packet Format section 4.7.

5.1.3. Examples

Examples of the login message packet sent by the terminal to the server and the response packet sent by the server to the terminal are as follows: (in the examples the terminal ID is 123456789012345.

Example of data packet sent by the terminal 78 780 0D 01 01 23 45 67 89 01 23 45 00 01 8C DD 0D 0A								
Explain								
0x78 0x78	0x0D	0x01	<u>0x01 0x23 0x45 0x67 0x89</u>	9 0x01 0x23 0x45	0x00 0x01	<u>0x8C</u>	0x0D 0x0A	
<u>0X70 0X70</u>	<u>0x0D</u> <u>0x01</u>				<u>0X00 0X01</u>	<u>0xDD</u>	OXOD OXOA	
Start Bit	Length	Protocol	Terminal I	Terminal ID		Error	Stop Bit	
Start Dit	Lengui	No.	Terminar I		Serial No.	Check	Stop Bit	
Example of	response p	oacket retur	ned by the server					
78 78 05 01 0	00 01 D9 D	OC 0D 0A						
Explain	Explain							
<u>0x78 0x78</u>	<u>0x05</u>	<u>0x01</u>	<u>0x00 0x01</u>	<u>0xD9 0xDC</u>	<u>0x01</u>	D 0x0A		
Start Bit	Length	Protocol	Serial No.	Error Check	Sta	art Bit		
Start Dit	Lengui	No.	Serial 140.	Litor Check	50	iit Dit		

5.2. Location Data Packet (combined information package of GPS and LBS)

5.2.1. Terminal Sending Location Data Packet to Server

Format			Length(Byte)	Example
	Start Bit		2	0x78 0x78
	Packet Length		1	0x1F(31) or $0x21(33)$
	Protocol Number		1	0x12
		Date Time	6	0x0B 0x08 0x1D 0x11 0x2E 0x10
		Quantity of GPS information satellites	1	0xCF
	GPS Information	Latitude	4	0x02 0x7A 0xC7 0xEB
	miormation	Longitude	4	0x0C 0x46 0x58 0x49
Information		Speed	1	0x00
Content		Course, Status/ACC AC	2	0x14 0x8F
		MCC	2	0x01 0xCC
	LBS	MNC	1	0x00
	Information	LAC	2	0x28 0x7D
		Cell ID	3	0x00 0x1F 0xB8
	ACC+input2+ADC		0 or 2	0x10 0xB6
	Serial Number		2	0x00 0x03
	Error Check		2	0x80 0x81
	Stop Bit		2	0x0D 0x0A

5.2.1.1. Start Bit

For details see Data Packet Format section 4.1.

5.2.1.2. Packet Length

For details see Data Packet Format section 4.2.

5.2.1.3. Protocol Number

For details see Data Packet Format section 4.3.

5.2.1.4. Date Time

Format	Length(Byte)	Example
Year	1	0x0A
Month	1	0x03
Day	1	0x17
Hour	1	0x0F
Minute	1	0x32
Second	1	0x17

Example: 2010-03-23 15:30:23

Calculated as follows: 10(Decimal)=0A(Hexadecimal)

3 (Decimal)=03(Hexadecimal)

GPS Tracker Communication Protocol www	v.szbenway.com
23(Decimal)=17(Hexadecimal)	
15(Decimal)=0F(Hexadecimal)	
50(Decimal)=32(Hexadecimal)	
23(Decimal)=17(Hexadecimal)	

Then the value is: 0x0A 0x03 0x17 0x0F 0x32 0x17

5.2.1.5. Length of GPS information, quantity of positioning satellites

The field is 1 Byte displayed by two hex digits, wherein the first one is for the length of GPS information and the second one for the number of the satellites join in positioning.

Example: if the value is 0xCB, it means the length of GPS information is 12 and the number of the positioning satellites is 11.

(C = 12Bit Lenght, B = 11 satellites)

5.2.1.6. Latitude

Four bytes are consumed, defining the latitude value of location data. The range of the value is 0-162000000, indicating a range of $0^{\circ}-90^{\circ}$. The conversion method thereof is as follow:

converting the value of latitude and longitude output by GPS module into a decimal based on minute; multiplying the converted decimal by 30000; and converting the multiplied result into hexadecimal.

Example: 22°32.7658'=(22X60+32.7658)X30000=40582974, then converted into a hexadecimal number

40582974(Decimal)= 26B3F3E(Hexadecimal)

at last the value is 0x02 0x6B 0x3F 0x3E.

5.2.1.7. Longitude

Four bytes are consumed, defining the longitude value of location data. The range of the value is 0-324000000, indicating a range of $0^{\circ}-180^{\circ}$.

The conversion method herein is same to the method mentioned in Latitude (see section 5.2.1.6).

5.2.1.8. Speed

One byte is consumed, defining the running Speed of GPS. The value ranges from 0x00 to 0xFF indicating a range from 0 to 225km/h.

e.g. 0x00 represents 0 km/h. 0x10 represents 16km/h.

0xFF represents 255 km/h.

Two bytes are consumed, defining the running direction of GPS. The value ranges from 0° to 360° measured clockwise from north of 0° .

	Bit7	0:ACC OFF 1: ACC ON
	Bit6	0:input2 OFF 1:input2 ON
	Bit5	GPS real-time/differential positioning
BYTE_1	Bit4	1:GPS having been positioning or 0:not
DIIE_I	Bit3	0:East Longitude, 1:West Longitude
	Bit2	0:South Latitude, 1:North Latitude
	Bit1	
	Bit0	
	Bit7	
	Bit6	
	Bit5	C
DVTE 2	Bit4	Course
BYTE_2	Bit3	
	Bit2	
	Bit1	
	Bit0	

Note: The status information in the data packet is the status corresponding to the time bit recorded in the data packet.

For example: the value is 0x15 0x4C, the corresponding binary is 00010101 01001100,

which means GPS tracking is on, real time GPS, location at north latitude, east longitude and the course is 332°.

5.2.1.10. MCC

The country code to which a mobile user belongs, i.e., Mobile Country Code(MCC).

Example: Chinese MCC is 460 in decimal, or 0x01 0xCC in Hex (that is, a decimal value of 460 converting into a hexadecimal value, and 0 is added at the left side because the converted hexadecimal value is less than four digits).

GPS Tracker Communication Protocol www.szbenway.com

Herein the range is $0x0000 \sim 0x03E7$.

5.2.1.11. MNC

Mobile Network Code(MNC)

Example: Chinese MNC is 0x00.

5.2.1.12. LAC

Location Area Code (LAC) included in LAI consists of two bytes and is encoded in hexadecimal. The available range is 0x0001-0xFFFE, and the code group 0x0000 and 0xFFFF cannot be used. (see GSM specification 03.03, 04.08 and 11.11).

5.2.1.13. Cell ID

Cell Tower ID (Cell ID), which value ranges from 0x000000 to 0xFFFFFF.

5.2.1.14. ACC+Input2+ADC

Two bytes are combined for defining the ACC(on/off), INPUT2(on/off) and ADC value.

If you do not want those two bytes, then send sms command to device to disable this function, the sms command is :#6666#GT06#2#,then the gps packet is same with GT06 protocol. if you want those two bytes please send : #6666#GT06#3# then gps packet will increase those two bytes.

ADC can be used as voltage detection, oil percentage, temperature detection function, The factory default is voltage detection, You can send a text message to change the purpose of the ADC. the sms command is:

#6666#votselect#0# (0= voltage detection, 1= oil percentage,2= temperature detection)

When BYTE_1 Bit4 is 0 and if "BYTE_1 Bit5" is 0 then ADC value is for voltage, if "BYTE_1 Bit5" is 1 then ADC value is for Fuel Oil percentage. if "BYTE_1 Bit4" is 1 then ADC value is for temperature and BYTE_1 Bit1 is for +/- temperature. The server can judge the packet type based on these bits.

ADC for voltage detection:

voltage value=(10bit ADC value)/10, such as 10bits ADC value= 0001100010 in Binary= 98 in decimal mean 9.8V

ADC for oil percentage:

You can use this ADC for fuel oil detection, Due to the different height of fuel tank and fuel sensor specifications, tracker needs to be set appropriate zero rang value and full range value to detect the precise fuel percentage.

Zero calibration: Send "#6666#oilzero#" to tracker when the fuel tank is empty ,then tracker will adjust zero range automatically and reply "Getting oilzero ok! value=?.?V". you can also send sms command #6666#oilzero#0.1# to define the different voltage value when fuel tank is empty and it will reply "Setting oilzero ok! value=?.?V"

Full calibration: Send "#6666#oilfull#" to tracker when the fuel tank is full ,then tracker will adjust full range automatically and reply "Getting oilfull ok! value=?.?V". you can also send sms command #6666#oilfull#5.1# to define the different voltage value when fuel tank is full and it will reply "Setting oilfull ok! value=?.?V"

#6666#checkoil# is for SMS checking percentage, current voltage, oilzero, oilfull values.

If full calibration is set as 0.0V, then tracker does not give percentage value but ADC voltage value in GPS package.

ADC for temperature detection:

When you set the ADC to the temperature detection function, the device will write the temperature value into the two bytes of "ACC+Input2+ADC". Please parse the temperature value as defined below, if BYTE_1 Bit4 is 1,then ADC(9bits) value is for temperature value and BYTE_1 Bit1=1 for -temperature ,0: for +temperature

#6666#checktemperature# is the sms command for checking temperature value

For example: the value is 0xC3 0x15, the corresponding binary is 110000110101, it show ACC is ON,input2 is ON,the adc voltage is:78.9V BYTE_1 Bit7 1 0: ACC OFF 1: ACC ON BYTE 1 Bit6 0: input2 OFF 1: input2 ON 0:10bit ADC is voltage 1: 10bit ADC is percentage; This bit is useful only when BYTE_1 Bit4 is 0 BYTE_1 Bit5 BYTE 1 Bit4 0:unused 1: 10bit ADC is Temperature and BYTE_1 Bit1 is for +/- temperature and BYTE_1 Bit5 is unused 0 unused BYTE 1 Bit3 BYTE_1 Bit2 unused BYTE_1 Bit1 if BYTE_1 Bit4 is 1,then this bit:1 for -temperature ,0: for +temperature BYTE 1 Bit0 0 BYTE_2 Bit7 0 BYTE 2 Bit6 BYTE_2 Bit5 0 (ADC) (0001100010 in Binary, or 98 in decimal), mean 9.8V if BYTE_1 Bit5=0 BYTE_2 Bit4 1 → OR (ADC) (0001100010 in Binary, or 98 in decimal), mean 98% if BYTE_1 Bit5=1 BYTE_2 Bit3 OR (ADC) (0001100010 in Binary, or 98 in decimal), mean +98°C if BYTE_1 Bit4=1 0 BYTE_2 Bit2 1 BYTE 2 Bit1 0 BYTE_2 Bit0

5.2.1.15. Information Serial Number

For details 0.

5.2.1.16. Error Check

For details see Data Packet Format section 4.6.

5.2.1.17. Stop Bit

For details see Data Packet Format section 4.7.

5.2.2. Examples of Packet Sent from Terminal to Server

Example of se	Example of sending by the terminal						
New package	New package, more tow bytes, voltage=4.4V ACC=0, AC=1:						
78 78 21 12 0	00 00 00 08	00 00 c7 00	00 00 00 00 00 00 00 00 4	4 00 01 c	c 00 26 22 00 13	30 40 2c 00 5f db e	e6 0d 0a
Old package	:						
78 78 1F 12 0	OB 08 1D 1	1 2E 10 CC (02 7A C7 EB 0C 46 58 49	00 14 8F	01 CC 00 28 7D	00 1F B8 00 03 80	81 0D 0A
Explain							
<u>0x78 0x78</u>	<u>0x1F</u>	<u>0x12</u>	<u>0x0B 0x08 0x1D 0x11 0x</u>	2E 0x10	0xCC_	<u>0x02 0x7A</u>	0xC7 0xEB
Start Bit	Packet Length	Protocol No.	Da te Time		Quantity of GPS information satellites		iitude
0x0C 0x46 0x	x58 0x49	<u>0x00</u> <u>0</u>	0x01 0xCC	<u>0x00</u>	0x28 0x7D	0x00 0x1F 0xB8	<u>0x00 0x03</u>

GPS Tracker Communication Protocol	www.szbenway.com
------------------------------------	------------------

Longitude	Speed	Course Status	MCC	MNC	LAC	Cell ID	Serial No.
<u>0x80 0x81</u> <u>0x0D</u>	<u>0x0A</u>						
Error Check Stop	Bit						

5.3. Alarm Packet (GPS, LBS, combined status information packet)

5.3.1. Server Sending Alarm Data Packet to Server

	Format Length (Byte)						
		Start Bit	2				
		Packet Length	1				
		Protocol Number	1				
		Date Time	6				
		Quantity of GPS information satellites	1				
	GPS	Latitude	4				
	Information	Longitude	4				
	mormation	Speed	1				
		Course, Status	2				
3Information	LBS Information	LBS Length	1				
Content		MCC	2				
Content		MNC	1				
		LAC	2				
		Cell ID	3				
		Terminal Information Content	1				
	status	Voltage Level	1				
	Information	GSM Signal Strength	1				
		Alarm/Language	2				
		Serial Number	2				
		Error Check	2				
		2					

Alarm packet is consisted by adding status information to location packet, so does the encoding format of the protocol.

5.3.1.1. Start Bit

For details see Data Packet Format section 4.1.

5.3.1.2. Packet Length

For details see Data Packet Format section 4.2.

5.3.1.3. Protocol Number

For details see Data Packet Format section 4.3.

5.3.1.4. Date Time

For details see Location Data Packet Format section 5.2.1.4.

5.3.1.5. Length of GPS information, quantity of positioning satellites

For details see Location Data Packet Format section 5.2.1.5.

5.3.1.6. Latitude

For details see Location Data Packet Format section 5.2.1.6.

5.3.1.7. Longitude

For details see Location Data Packet Format section 5.2.1.7.

5.3.1.8. Speed

For details see Location Data Packet Format section 5.2.1.8.

5.3.1.9. Status and Course

For details see Location Data Packet Format section 5.2.1.9.

5.3.1.10. MCC

For details see Location Data Packet Format section 5.2.1.10.

5.3.1.11. MNC

For details see Location Data Packet Format section 5.2.1.11.

5.3.1.12. LAC

For details see Location Data Packet Format section 5.2.1.12.

5.3.1.13. Cell ID

For details see Location Data Packet Format section 5.2.1.13.

5.3.1.14. Terminal Information

One byte is consumed, defining various status information of the mobile phone.

В	it	Code Meaning
	D:47	1: oil and electricity disconnected
	Bit7	0: gas oil and electricity connected
	Bit6	1: GPS tracking is on
	DIIO	0: GPS tracking is off
		XX
		100: SOS
	Bit3~	011: Low Battery Alarm
BYTE	Bit5	010: Power Cut Alarm
DITE		001: Shock Alarm
		000: Normal
	Bit2	1: Charge On
	DIL2	0: Charge Off
	Bit1	1: ACC high
	DILI	0: ACC Low
	Bit0	1: Activated
	DIW	0: Deactivated

Example: 0x44, corresponding binary value is 01000100,

indicates that the status of the terminal is: oil and electricity connected, GPS tracking is on, normal without any alarm, charge on, ACC is low, and deactivated.

5.3.1.15. Voltage Level

The arrange is 0~6 defining the voltage is from low to high.

- 0: No Power (shutdown)
- 1: Extremely Low Battery (not enough for calling or sending text messages, etc.)
- 2: Very Low Battery (Low Battery Alarm)
- 3: Low Battery (can be used normally)
- 4: Medium
- 5: High
- 6: Very High

Example: 0x02 indicates very low battery and a Low Battery Alarm is sending.

5.3.1.16. GSM Signal Strength Levels

GPS Tracker Communication Protocol www.szbenway.com

0x00: no signal;

0x01: extremely weak signal;

0x02: very weak signal;

0x03: good signal; 0x04: strong signal.

Example: 0x03 indicates the GSM signal is good.

5.3.1.17. Alarm/Language

0x00 (former bit) 0x01 (latter bit)

former bit: terminal alarm status (suitable for alarm packet and electronic fence project)-our server read this byte as

alarm.

latter bit: the current language used in the terminal

tier bit: the current language used in the t				
	0x00: normal			
	0x01: SOS			
	0x02: Power Cut Alarm			
	0x03: Shock Alarm			
	0x04: Fence In Alarm			
	0x05: Fence Out Alarm			
former bit	0x06: no			
Tormer on	0x09: Move Alarm/位移			
	0x0A: no			
	0x10: Low battery Alarm			
	0x12: Over speed Alarm/超速			
	0x20: Light Alarm/见光报警			
	0x21:Off Line Alam			
1-441-4	0x01: Chinese			
latter bit	0x02: English			

Examples:

No Alarm and Language is Chinese: 0x00 0x01 No Alarm and Language is English: 0x00 0x02

To increase the reliability of alarm information, labeling the alarm information repeatedly; in most cases, the alarm information keeps consistent with information of former terminal, while the inconsistencies are as follows:

www.Low Battery Alarm occurred in the information of the terminal

A. Fence in and out Alarm in the Alarm/Language information

5.3.1.18. Information Serial Number

For details see Data Packet Format section 4.5.

5.3.1.19. Error Check

For details see Data Packet Format section 4.6.

5.3.1.20. Stop Bit

For details see Data Packet Format section 4.7.

5.3.2. **Examples**

Examples of terr	Examples of terminal transmission								
78 78 25 16 0B	0B 0F 0	E 24 1D C	F 02 7A C8 87	0C 46 57 E6	00 14 0	2 09 01 CC	00 28 71	0 00 1F 72 65	06 04 01 01 00 36
56 A4 0D 0A									
Explain									
<u>0x78 0x78</u>	<u>0x25</u>	<u>0x16</u>	0x0B 0x0B 0x	x0F 0x0E 0x24	x01D	0xCI	-	<u>0x02 0x</u>	x7A 0xC8 0x87
		Protocol				Quantity o			
Start Bit	Length	No.	D	ate Time		informa		1	Latitude
						satellit	es		
0x0C 0x46 0x57	0xE6	<u>0x00</u>	0x14 0x02	<u>0x09</u>	0x01	0xCC	<u>0x00</u>	<u>0x28 0x7D</u>	0x00 0x1F 0x72
Longitude		Speed	Course	LBS	М	CC	MNC	LAC	Cell ID
Longitude	<u> </u>	Бреси	Status	Length	1414		MITTE	Lite	CCH ID
<u>0x65</u>	<u>0</u>	<u>x06</u>	<u>0x04</u>	<u>0x01 0</u>	<u>x01</u>	<u>0x00 0x36</u>	0x56	0xA4_	0x0D 0x0A
Terminal			GSM Signal						
Information	Volta	ge Level	Strength	Alarm/Lai	nguage	Serial No.	Error	Check	Stop Bit
Content			Sueligui						

Note: The status information in the data packet is the status corresponding to the time bit recorded in the data packet.

5.4. Heartbeat Packet (status information packet)

Heartbeat packet is a data packet to maintain the connection between the terminal and the server.

5.4.1. Terminal Sending Heartbeat Packet to Server

	Length (Byte)		
		2	
	Pa	cket Length	1
	Prot	ocol Number	1
Information	Status Information	Terminal Information Content	1
		Voltage Level	1
Content		GSM Signal Strength	1
		Alarm/Language	2
	Se	2	
	Е	2	
		2	

5.4.1.1. Start Bit

For details see Data Packet Format section 4.1.

5.4.1.2. Packet Length

For details see Data Packet Format section 4.2.

5.4.1.3. Protocol Number

For details see Data Packet Format section 4.3.

5.4.1.4. Terminal Information

One byte is consumed defining for various status information of the mobile phone.

В	it	Code Meaning
	Bit7	1: oil and electricity disconnected
	BII /	0: gas oil and electricity
	Bit6	1: GPS tracking is on
	DIIO	0: GPS tracking is off
		100: SOS
	Bit3~	011: Low Battery Alarm
BYTE	Bit5	010: Power Cut Alarm
BILE		001: Shock Alarm
		000: Normal
	Bit2	1: Charge On
	DIL2	0: Charge Off
	Bit1	1: ACC high
	BILI	0: ACC Low
	Bit0	1: ActivatedAir Condition ON
	Ditt	0: DeactivatedAC OFF

Example: 0x44, corresponding binary value is 01000100,

indicates that the status of the terminal is: oil and electricity connected, GPS tracking is on, normal without any alarm, charge on, ACC is low, and deactivated.

5.4.1.5. Voltage Level

The arrange is 0~6 defining the voltage is from low to high.

- 0: No Power (shutdown)
- 1: Extremely Low Battery (not enough for calling or sending text messages, etc.)
- 2: Very Low Battery (Low Battery Alarm)
- 3: Low Battery (can be used normally)
- 4: Medium
- 5: High
- 6: Very High

Example: 0x02 indicates very low battery and a Low Battery Alarm is sending.

5.4.1.6. GSM Signal Strength Levels

0x00: no signal;

0x01: extremely weak signal;

0x02: very weak signal;

0x03: good signal;

0x04: strong signal.

Example: 0x03 indicates the GSM signal is good.

5.4.1.7. Alarm/Language

0x00 (former bit) 0x01 (latter bit)

former bit: terminal alarm status (suitable for alarm packet and electronic fence project)

latter bit: the current language of the terminal

	0x00: normal
	0x01: SOS
former bit	0x02: Power Cut Alarm
Tormer bit	0x03: Shock Alarm
	0x04: Fence In Alarm
	0x05: Fence Out Alarm
latter bit	0x01: Chinese
	0x02: English

Examples:

No Alarm and Language is Chinese: 0x00 0x01 No Alarm and Language is English: 0x00 0x02

5.4.1.8. Information Serial Number

For details see Data Packet Format section 4.5.

5.4.1.9. Error Check

For details see Data Packet Format section 4.6.

5.4.1.10. Stop Bit

For details see Data Packet Format section 4.7.

5.4.2. Server Responds the Data Packet

	Description	Bits	Example
	Start Bit	2	<u>0x78 0x78</u>
Login	Packet Length	1	<u>0x05</u>
Message	Protocol Number	1	<u>0x0<mark>13</mark></u>
Packet (18	Information Serial Number	2	<u>0x00 0x01</u>
Byte)	Error Check	2	0xD9 0xDC
	Stop Bit	2	<u>0x0D 0x0A</u>

The response packet from the server to the terminal: the protocol number in the response packet is identical to the

5.4.2.1. Start Bit

For details see Data Packet Format section 4.1.

5.4.2.2. Packet Length

For details see Data Packet Format section 4.2.

5.4.2.3. Protocol Number

For details see Data Packet Format section 4.3.

5.4.2.4. Information Serial Number

For details see Data Packet Format section 4.5.

5.4.2.5. Error Check

For details see Data Packet Format section 4.6.

5.4.2.6. Stop Bit

For details see Data Packet Format section 4.7.

5.4.3. Examples

Example of data packet sent by the terminal										
78 78 0A 13 4B 04 03 00 01 00 11 06 1F 0D 0A										
Explain										
<u>0x78 0x78</u>	<u>0x0A</u>	<u>0x13</u>	<u>0x4B 0x04 0x03</u>	<u>0x00 0x01</u>	<u>0x00 0x11</u>	<u>0x06 0x1F</u>	<u>0x0D 0x0A</u>			
Start Bit	Length	Protocol	Information Content	Reserved bit	Serial No.	Error Check	Stop Bit			
Start Dit	Start Bit Length		information Content	(Language)	Seriai No.	Lifor Check	Stop Bit			
Example of res	sponse packe	et returned by	the server							
78 78 05 13 00) 11 F9 70 0I	D 0A								
Explain	Explain									
Start Bit Length Protocol No. Serial No. Error Check Stop B										

v. Data Packet Sent From Server to Terminal (gprs command)

6.1. Packet Sent by Server

Format		Length
	Format	(Byte)
	Start Bit	2
Pa	acket length	1
Prot	tocol Number	1
	Length of Command	1
Information	Server Flag Bit	4
Content	Command Content	M
Content	Languaga	2change
	Language	to 0
Informat	2	
E	2	
	Stop Bit	2

6.1.1. Start Bit

For details see Data Packet Format section 4.1.

6.1.2. Packet Length

For details see Data Packet Format section 4.2.

6.1.3. Protocol Number

The Protocol Number of terminal transmission is 0x80.

6.1.4. Length of Command

Server Flag Bit + Length of Command Content

Example: measured in bytes, 0x0A means the content of command occupied ten bytes.

6.1.5. Server Flag Bit

It is reserved to the identification of the server. The binary data received by the terminal is returned without change.

6.1.6. Command Content

It is represented in ASC II of string, and the command content is compatible with benway text message command. Such as #0613#CF# the password must be "0613" not "6666" for gprs command.

SIMPLE GPRS COMMAND:

GPS Tracker Communication Protocol www.szbenway.com

DYD,000000# or DYD# This is for cuting engine

Example:

Server to device: 78 78 15 80 0f 00 53 01 27 44 59 44 2c 30 30 30 30 30 30 23 00 00 d6 7d 0d 0a

Device respond server(0x15package): 78 78 18 15 10 00 53 01 27 44 59 44 3d 53 75 63 63 65 73 73 21 00 02 00 4d 62 5d 0d 0a

HFYD,000000# or HFYD# This is for recovering engine

Server to device: 78 78 16 80 10 00 53 01 50 48 46 59 44 2c 30 30 30 30 30 30 23 00 00 dd 3e 0d 0a

Device respond server: 78 78 19 15 11 00 53 01 50 48 46 59 44 3d 53 75 63 63 65 73 73 21 00 02 00 54

f0 c6 0d 0a

STATUS# This is for checking parameter.

Server to device: 78 78 11 80 0b 00 53 01 75 53 54 41 54 55 53 23 00 00 50 f2 0d 0a

Also can use all benway standard sms commands ,but the password must be "0613" not "6666" for gprs command:

Server to device: 78 78 13 80 0d 00 02 18 25 23 30 36 31 33 23 63 66 23 00 02 00 00 9a 97 0d 0a

(this mean sever send command by gprs to device :#0613#cf#)

Device respond server: 78 78 18 15 10 00 02 18 25 23 30 36 31 33 23 63 66 23 2d 4f 4b 00 02 00 1e ad

79 0d 0a

6.1.7. Language

A bit indicates the current language used in the terminal. those two bytes

Chinese: 0x00 0x01 English: 0x00 0x02

6.1.8. Information Serial Number

For details see Data Packet Format section 4.5.

6.1.9. Error Check

For details see Data Packet Format section 4.6.

6.1.10. Stop Bit

For details see Data Packet Format section 4.7.

6.2. Packet Replied by Terminal

_		T .1	
	Length		
	Format	(Byte)	
	Start Bit	2	
Pa	cket Length	1	
Pro	tocol Number	1	
	Length of Command	1	
Information	Server Flag Bit	4	
Content	Command Content	M	
	Language	2	
Informat	Information Serial Number		
Е	2		
	Stop Bit	2	

6.2.1. Start Bit

For details see Data Packet Format section 4.1.

6.2.2. Packet Length

For details see Data Packet Format section 4.2.

6.2.3. Protocol Number

The terminal responds to the command sent by the server. The format of data packet is consistent with "the command sent by the server to the terminal", but the Protocol Number herein is different and is 0x15.

6.2.4. Length of Command

Server Flag Bit + Length of Command Content

Example: measured in bytes, 0x0A means the content of command occupied ten bytes.

6.2.5. Server Flag Bit

It is reserved to the identification of the server. The binary data received by the terminal is returned without change.

6.2.6. Command Content

It is represented in ASC II of string, and the command content is compatible with benway text message command.

6.2.7. Language

A bit indicates the current language used in the terminal.

Chinese: 0x00 0x01 English: 0x00 0x02

6.2.8. Information Serial Number

For details see Data Packet Format section 4.5.

6.2.9. Error Check

For details see Data Packet Format section 4.6.

6.2.10. Stop Bit

For details see Data Packet Format section 4.7.

6.3. Looking Up Location Information

Function Description: Obtain the command of tracking information. A mobile phone user or a short message server may obtain the tracking information by this command.

In an example, the transmitting and returning strings are converted into ASCII to generate command contents.

Sending by the server

DWXX,000000#

Returned by the terminal

if successful, return

DWXX=Lat:<North/South Latitude>,Lon:<East/West Longitude>,Course:<angle>,Speed:<speed>,DateTime:<time>

if failed, return

DWXX=Command Error!

if tracking unsuccessful, return

DWXX=Lat:,Lon:, Course:,Speed:,DateTime:-:

Example:

DWXX=Lat:N23d5.1708m,Lon: E114d23.6212m,Course:120,Speed:53.02;DateTime:08-09-12 14:52:36

Explain: which means: N23d5.1708m, E114d23.6212m, Course: 120, Speed: 53.02km/h, Date Time: 08-09-12 14:52:36.

6.4. Cutting Oil and Electricity

Function Description: cutting off the vehicle oil-electric control circuit

In an example, the transmitting and returning strings are converted into ASCII to generate command contents.

Sending by the server

DYD,000000#

Returned by the terminal

if successful, return

DYD=Success!

if failed, return

DYD=Unvalued Fix 或 DYD=Speed Limit, Speed 40km/h

Explain: the oil and electricity are not allowed to be disconnect when the GPS tracking is off or the running speed is higher than

20KM/H.

6.5. Connecting Oil and Electricity

Function Description: connecting the vehicle oil-electric control circuit

In an example, the transmitting and returning strings are converted into ASCII to generate command contents.

Sending by the server

HFYD,000000#

Returned by the terminal

if successful, return

HFYD=Success!

if failed, return

HFYD=Fail!

6.6. Address Querying Information Sent by the Server

In an example, the transmitting and returning strings are converted into ASCII to generate command contents.

In an example, the transmitting and returning strings are converted into ASCII to generate command contents.

ADDRESS, Address Content, Phone Number

GPS Tracker Communication Protocol	www.szbenway.com	
------------------------------------	------------------	--

Note: The address content in Chinese is sent in UNICODE.

6.7. GPS, Phone Number Querying Address Information Package (0X1A)

6.7.1. Information from Terminal to Server

The information is received by the terminal.

The format is basically same to the format mentioned as GPS information content, and the different is that phone number for querying address is added here.

1,	address is ac		Length		
	Format				
		Start Bit	(Byte)		
	Pa	cket Length	1		
	Prot	tocol Number	1		
		Date Time	6		
		Length of GPS information, quantity of positioning satellites	1		
T.C.	GPS Information	Latitude	4		
Information		Longitude	4		
Content		Speed	1		
		Course, Status	2		
		Phone Number	21		
		2			
	Information Serial Number				
	Е	rror Check	2		
		Stop Bit	2		

6.7.1.1. Start Bit

For details see Data Packet Format section 4.1.

6.7.1.2. Packet Length

For details see Data Packet Format section 4.2.

Example: measured in bytes, 0x2E means the content of command occupied 46 bytes.

6.7.1.3. Protocol Number

0x1A is utilized.

6.7.1.4. Date Time

For details see Location Data Packet Format section 5.2.1.4.

6.7.1.5. Length of GPS information, quantity of positioning satellites

For details see Location Data Packet Format section 5.2.1.5.

6.7.1.6. Latitude

For details see Location Data Packet Format section 5.2.1.6.

6.7.1.7. Longitude

For details see Location Data Packet Format section 5.2.1.7.

6.7.1.8. Speed

For details see Location Data Packet Format section 5.2.1.8.

6.7.1.9. Course

For details see Location Data Packet Format section 5.2.1.9.

6.7.1.10. Phone Number

The SOS phone number used for requesting address query, which is converted by ASCII and 0 is added at the right side if less than 21 bits.

6.7.1.11. Language

A bit indicates the current language used in the terminal.

Chinese: 0x00 0x01 English: 0x00 0x02

6.7.1.12. Information Serial Number

For details see Data Packet Format section 4.5.

6.7.1.13. Error Check

For details see Data Packet Format section 4.6.

6.7.1.14. Stop Bit

For details see Data Packet Format section 4.7.

6.7.2. Response of Server

The server replies Chinese address or English address based on the extended command, and the response data packet is inconsistent

6.7.2.1. Response package in Chinese or other language

The response data packet in Chinese is as follow:

		2		
		Length of data	bit	1
		Protocol Numl	ber	1
		Length o	of Command	1
		Serve	r Flag Bit	4
Command			ADDRESS	7
packet sent			&&	2
from the	Information Content	Command Content	Address	M
terminal			Content	IVI
(15+M+N			&&	2
Byte)			Phone	21
Byte)			Number	21
			##	2
	Infor	mation Serial Number		2
		Check Bit		2
		Stop Bit		2

The Protocol Number of request Chinese address response is 0X17.

Command Content: ADDRESS&&Address Content&&Phone Number## (ADDRESS, &&, ## are fixed strings)

Chinese address content is sent in UNICODE.

Example of Chinese address response information:

7878	//Start Bit
84	//Data Length

17 //Response Protocol Number

7E //Length of Command, i.e., length of the information of the transmitted content

 00000001
 //Server Flag Bit

 41444452455353
 //ADDRESS

 2626
 //&& Separator

624059044F4D7F6E0028 //Chinese address is sent in UNICODE

004C004200530029003A

5E7F4E1C77015E7F5DDE

5E0282B190FD533AFF17

FF15FF144E6190530028

004E00320033002E0033

00390035002C00450031

00310032002E00390038

0038002996448FD1

2626 //&&Separator

31333731303831393133350000000000000000000 //Phone Number

2323 //## terminator of content

 0106
 //Serial No.

 3825
 //Check Bit

 0D0A
 //Stop Bit

6.7.2.2. Response package in English

Considering the address or other foreign address in English is generally longer than that in Chinese, one data bit is not enough, so the data bit is occupied in 2 bytes. Note:

only the length of data bit corresponding to the protocol number of response address information is changed into two bytes.

,				1	_
Command		Start Bit		2	
packet sent	Length of data bit			2	
from the		Protocol Numb	oer	1	
server to the		Length o	of Command	2	
terminal		Serve	r Flag Bit	4	
(15+M+N			ADDRESS	7	
Byte)			&&	2	
	Information		Address		
	Content	Command	Content	M	
		Content	&&	2	
			Phone	21	
			Number	21	
			##	2	
	Infor	mation Serial I	Number	2	
		Check Bit		2	
		Stop Bit		2	

The Protocol Number of request Chinese address response is 0X97.

Command Content: ADDRESS&&Address Content&&Phone Number##(ADDRESS, &&, ## are fixed strings)

Example of I	English address	response information:	
7878	//Start Bit		
00D1	//Data Length		
97	//Response Proto	ocol Number	
00CA	//Length of Cor	mmand, i.e., length of the information of the transmitted cont	tent
00000001	//Server Flag B	it	
41444452455	353 //ADDRE	SS	
2626	//&& Se	eparator	
0053004F005	30028004C	//English address is sent in UNICODE	
0029003A005	5300680069		
006D0069006	5E00200046		
00610069007	20079006C		
0061006E006	400200057		
00650073007	400200052		
0064002C004	800750069		
00630068006	5006E0067		
002C0048007	50069007A		

00750061006E00670064 006F006E00670028004E

0068006F0075002C0047

00320033002E00310031

0031002C004500310031

0034002E003400310031

0029004E006500610072

00620079

 2626
 //&& Separator

 31323532303133373930373734303531000000000
 //Phone Number

 2323
 //## terminator of content

 0007
 // Serial No.

 72b5
 //Check Bit

 0D0A
 //Stop Bit

vi. Appendix A: code fragment of the CRC-ITU lookup table algorithm implemented based on C language

```
Code fragment of the CRC-ITU lookup table algorithm implemented based on C language is as follow:
static const U16 crctab16[] =
    0X0000, 0X1189, 0X2312, 0X329B, 0X4624, 0X57AD, 0X6536, 0X74BF,
    0X8C48, 0X9DC1, 0XAF5A, 0XBED3, 0XCA6C, 0XDBE5, 0XE97E, 0XF8F7,
    0X1081, 0X0108, 0X3393, 0X221A, 0X56A5, 0X472C, 0X75B7, 0X643E,
    0X9CC9, 0X8D40, 0XBFDB, 0XAE52, 0XDAED, 0XCB64, 0XF9FF, 0XE876,
    0X2102, 0X308B, 0X0210, 0X1399, 0X6726, 0X76AF, 0X4434, 0X55BD,
    0XAD4A, 0XBCC3, 0X8E58, 0X9FD1, 0XEB6E, 0XFAE7, 0XC87C, 0XD9F5,
    0X3183, 0X200A, 0X1291, 0X0318, 0X77A7, 0X662E, 0X54B5, 0X453C,
    0XBDCB, 0XAC42, 0X9ED9, 0X8F50, 0XFBEF, 0XEA66, 0XD8FD, 0XC974,
    0X4204, 0X538D, 0X6116, 0X709F, 0X0420, 0X15A9, 0X2732, 0X36BB,
    0XCE4C, 0XDFC5, 0XED5E, 0XFCD7, 0X8868, 0X99E1, 0XAB7A, 0XBAF3,
    0X5285, 0X430C, 0X7197, 0X601E, 0X14A1, 0X0528, 0X37B3, 0X263A,
    0XDECD, 0XCF44, 0XFDDF, 0XEC56, 0X98E9, 0X8960, 0XBBFB, 0XAA72,
    0X6306, 0X728F, 0X4014, 0X519D, 0X2522, 0X34AB, 0X0630, 0X17B9,
    0XEF4E, 0XFEC7, 0XCC5C, 0XDDD5, 0XA96A, 0XB8E3, 0X8A78, 0X9BF1,
    0X7387, 0X620E, 0X5095, 0X411C, 0X35A3, 0X242A, 0X16B1, 0X0738,
    0XFFCF, 0XEE46, 0XDCDD, 0XCD54, 0XB9EB, 0XA862, 0X9AF9, 0X8B70,
    0X8408, 0X9581, 0XA71A, 0XB693, 0XC22C, 0XD3A5, 0XE13E, 0XF0B7,
    0X0840, 0X19C9, 0X2B52, 0X3ADB, 0X4E64, 0X5FED, 0X6D76, 0X7CFF,
    0X9489, 0X8500, 0XB79B, 0XA612, 0XD2AD, 0XC324, 0XF1BF, 0XE036,
    0X18C1, 0X0948, 0X3BD3, 0X2A5A, 0X5EE5, 0X4F6C, 0X7DF7, 0X6C7E,
    0XA50A, 0XB483, 0X8618, 0X9791, 0XE32E, 0XF2A7, 0XC03C, 0XD1B5.
    0X2942, 0X38CB, 0X0A50, 0X1BD9, 0X6F66, 0X7EEF, 0X4C74, 0X5DFD,
    0XB58B, 0XA402, 0X9699, 0X8710, 0XF3AF, 0XE226, 0XD0BD, 0XC134,
    0X39C3, 0X284A, 0X1AD1, 0X0B58, 0X7FE7, 0X6E6E, 0X5CF5, 0X4D7C,
    0XC60C, 0XD785, 0XE51E, 0XF497, 0X8028, 0X91A1, 0XA33A, 0XB2B3,
    0X4A44, 0X5BCD, 0X6956, 0X78DF, 0X0C60, 0X1DE9, 0X2F72, 0X3EFB,
    0XD68D, 0XC704, 0XF59F, 0XE416, 0X90A9, 0X8120, 0XB3BB, 0XA232,
    0X5AC5, 0X4B4C, 0X79D7, 0X685E, 0X1CE1, 0X0D68, 0X3FF3, 0X2E7A,
    0XE70E, 0XF687, 0XC41C, 0XD595, 0XA12A, 0XB0A3, 0X8238, 0X93B1,
    0X6B46, 0X7ACF, 0X4854, 0X59DD, 0X2D62, 0X3CEB, 0X0E70, 0X1FF9,
    0XF78F, 0XE606, 0XD49D, 0XC514, 0XB1AB, 0XA022, 0X92B9, 0X8330,
    0X7BC7, 0X6A4E, 0X58D5, 0X495C, 0X3DE3, 0X2C6A, 0X1EF1, 0X0F78,
};
   calculate the 16-bit CRC of data with predetermined length.
U16 GetCrc16(const U8* pData, int nLength)
    U16 fcs = 0xffff:
                                // initialization
    while(nLength>0){
        fcs = (fcs >> 8) \land crctab16[(fcs \land *pData) & 0xff];
        nLength--;
        pData++;
    return ~fcs;
                           negated
```

vii. Appendix B: a fragment of example of data packet of communication protocol

The following data displayed in hexadecimal are intercepted from the communication between a terminal and a server, wherein transmission means sending by the terminal and reception means returned from the server:

Login packet:

transmission: 78 78 0D 01 03 53 41 35 32 15 03 62 00 02 2D 06 0D 0A

reception: 78 78 05 01 00 02 EB 47 0D 0A

GPS data packet (06 means adopting combined information package of GPS and LBS):

transmission: 78 78 1F 12 0B 08 1D 11 2E 10 CF 02 7A C7 EB 0C 46 58 49 00 14 8F 01 CC 00 28 7D 00 1F B8 00 03 80 81

0D 0A

Status packet:

transmission: 78 78 0A 13 44 01 04 00 01 00 05 08 45 0D 0A

reception: 78 78 05 13 00 05 AF D5 0D 0A

disconnect oil and electricity online:

reception: 78 78 15 80 0F 00 01 A9 58 44 59 44 2C 30 30 30 30 30 30 23 00 A0 DC F1 0D 0A

transmission: 78 78 18 15 10 00 01 A9 58 44 59 44 3D 53 75 63 63 65 73 73 21 00 02 00 18 91 77 0D 0A

the server sending DYD,000000#

reply: DYD=Success!

Command sent during disconnection of oil and electricity:

reception: 78 78 15 80 0F 00 01 A9 61 44 59 44 2C 30 30 30 30 30 30 23 00 A0 3E 10 0D 0A

transmission: 78 78 53 15 4B 00 01 A9 61 41 6C 72 65 61 64 79 20 69 6E 20 74 68 65 20 73 74 61 74 65 20 6F 66 20 66 75 65 6C

 $20\ 73\ 75\ 70\ 70\ 6C\ 79\ 20\ 63\ 75\ 74\ 20\ 6F\ 66\ 66\ 2C\ 74\ 68\ 65\ 20\ 63\ 6F\ 6D\ 6D\ 61\ 6E\ 64\ 20\ 69\ 73\ 20\ 6E\ 6F\ 74\ 20\ 72\ 75\ 6E\ 6E\ 69\ 6E$

67 21 00 02 00 1C F3 0D 0D 0A

the server sending DYD,000000#

reply: Already in the state of fuel supply cut off,the command is not running!

Connect oil and electricity online:

reception: 78 78 16 80 10 00 01 A9 63 48 46 59 44 2C 30 30 30 30 30 30 23 00 A0 7B DC 0D 0A

transmission: 78 78 19 15 11 00 01 A9 63 48 46 59 44 3D 53 75 63 63 65 73 73 21 00 02 00 1E F8 93 0D 0A

the server sending: HFYD,000000#

reply: HFYD=Success!

Command sent during connection of oil and electricity:

reception: 78 78 16 80 10 00 01 A9 64 48 46 59 44 2C 30 30 30 30 30 30 23 00 A0 8B 1B 0D 0A

 $transmission: 78\ 78\ 55\ 15\ 4D\ 00\ 01\ A9\ 64\ 41\ 6C\ 72\ 65\ 61\ 64\ 79\ 20\ 69\ 6E\ 20\ 74\ 68\ 65\ 20\ 73\ 74\ 61\ 74\ 65\ 20\ 6F\ 66\ 20\ 66\ 75\ 65\ 6C$

20 73 75 70 70 6C 79 20 74 6F 20 72 65 73 75 6D 65 2C 74 68 65 20 63 6F 6D 6D 61 6E 64 20 69 73 20 6E 6F 74 20 72 75 6E 6E

69 6E 67 21 00 02 00 1F DB BF 0D 0A the server sending: HFYD,000000#

reply: Already in the state of fuel supply to resume, the command is not running!

Querying address information online:

reception: 78 78 16 80 10 00 01 A9 67 44 57 58 58 2C 30 30 30 30 30 30 23 00 A0 06 2D 0D 0A

transmission: 78 78 64 15 5C 00 01 A9 67 44 57 58 58 3D 4C 61 74 3A 4E 32 33 2E 31 31 36 38 32 2C 4C 6F 6E 3A 45 31 31

 $34\ 2E\ 34\ 30\ 39\ 32\ 31\ 37\ 2C\ 43\ 6F\ 75\ 72\ 73\ 65\ 3A\ 30\ 2E\ 30\ 30\ 2C\ 53\ 70\ 65\ 65\ 64\ 3A\ 30\ 2E\ 33\ 35\ 31\ 38\ 2C\ 44\ 61\ 74\ 65\ 54\ 69\ 6D$

65 3A 31 31 2D 31 31 2D 31 35 20 20 31 31 3A 35 33 3A 34 33 00 02 00 23 07 AE 0D 0A

content sent by the terminal: DWXX=Lat:N23.111682,Lon:E114.409217,Course:0.00,Speed:0.3518,DateTime:11-11-15 11:53:43

the terminal obtains address information from the server:

Chinese:

GPS Tracker Communication Protocol www.szbenway.com

The content sent by the server is: Locating: Wenhua Rd. 1, Huizhou, Guangdong, about 32 meters from Huizhou Anzhong Accounting Firm, about 32 meters from Huizhou Foreign Investment Service Center.

English:

Mobile Phone Number is 66366.

The content sent by the server is: Precisely Locating:10 号 Yunshan West Rd,Huicheng,Huizhou,Guangdong,516003(N23.11177,E114.40922)

Mobile Phone Number is 66366.

Process of Alarm packet:

Short message in Chinese:

transmission: 78 78 25 16 0B 0B 0F 0E 24 1D CF 02 7A C8 87 0C 46 57 E6 00 14 02 09 01 CC 00 28 7D 00 1F 72 65 06 04 01 01 00 36 56 A4 0D 0A

reception: 78 78 05 16 00 36 95 70 0D 0A

reception: 78 78 BE 17 B8 00 00 00 01 41 4C 41 52 4D 53 4D 53 26 26 7D 27 60 25 54 7C 53 EB 00 3A 5E 7F 4E 1C 77 01 60 E0 5D DE 5E 02 4E 91 5C 71 89 7F 8D EF 00 2E 65 87 53 4E 4E 00 8D EF 00 2E 79 BB 4E 2D 88 4C 00 41 00 54 00 4D 7E A6 00 33 00 31 7C 73 00 2E 79 BB 4E 2D 88 4C 6C 5F 53 17 65 2F 88 4C 7E A6 00 33 00 31 7C 73 00 2E 00 2C 00 31 00 31 00 2D 00 31 00 3D 00 3

Content of Short message is: Emergency Call: Wenhua Rd. 1, Huizhou, Guangdong, about 31 meters away from ATM machine of Bank of China, about 31 meters away from Jiangbei branch of of Bank of China, 11-11-15 14:36:29.

The specific meanings of the above commands can be looked up in the protocol document.

viii. Appendix C: Complete Format of the Information Package

A. data packet sent by the terminal to the server

Login Message Packet (18 Byte)							
Start Bit	Packet length	Protocol Number	Terminal ID	Information Serial Number	Check Bit	Stop Bit	
2	1	1	8	2	2	2	

				GPS Informat	ion Pacl	kage (2	6+N By	rte)				
		P		Informati	on Cont	ent						
		r		GP:	S Inforn	nation						
		О										
S		t										
t		О										
a	Pack	c							Reserv	Inform		
r	et	О		Length of GPS	Lat	Lo			ed	ation	chec	stop
t	lengt	1	Date Time	information, quantity	itu	ngi	Spe	Course,	extende	serial	k bit	bit
В	h	N		of positioning	de	tud	ed	Status	d bit	number		
i		u		satellites	uc	e			d bit			
t		m										
		b										
		e										
		r										
2	1	1	6	1	4	4	1	2	N	2	2	2

				LE	BS information pac	kage (23+N Byte)					
					Information	Content			In		/
					LBS Info	rmation			fo		, A
S t a r t B i t	Pa ck et le ng th	Pr ot oc ol N u m be r	Dat e Tim e	MCC	MNC	LAC	Cell ID	R es er ve d ex te nd ed bit	r m at io n se ri al n u m b er	ch ec k bit	st op bi t
2	1	1	6	2	1	2	3	N	2	2	2

							LB	S coi	nple	te inf	form	ation	pack	age	(42+	N Ву	rte)							
Sta	Pac	Pro								Inf	orma	tion	Cont	ent								Inf	che	sto
rt	ket	toc	Dat							L	BS I	nforr	natio	n							Res	or	ck	p
Bit	len	ol	e	e MMLMMNNNNNNNNNNN											erv	mat	bit	bit						
	gth	Nu	Ti													ed	ion							
		mb	me	C	- - - - - - - - - -										ext	seri								
		er												end	al									
								S		S		S		S		S		S		S	ed	nu		
										1		2		3		4		5		6	bit	mb		
																						er		
2	1	1	6	2	1	2	2	1	2	1	2	1	2	1	2	1	2	1	2	1	N	2	2	2

						GPS、LI	3S inforn	nation pacl	kage (34+M	+N Byte)						
							Info	rmation Co	ontent								
						GPS Inform	ation			I	BS Info	rmation					
Star t Bit	Pack et lengt h	Protoc ol Numbe r	Dat e Tim e	Length of GPS informatio n, quantity of positionin g satellites	Latitud e	Longitu de	Spee d	Cours e, Status	Reserve d extende d bit	MC C	MN C	LA C	Cel 1 ID	Reserve d and extende d	Informati on serial number	chec k bit	sto p bit
2	1	1	6	1	4	4	1	2	M	2	1	2	3	M	2	2	2

				Status Pac	cket(13+N Byte)				
S				Information	Content		Informatio		
t a r t B i	Packet Length	Proto col Num ber	Terminal Information Content	Voltage Level	GSM Signal Strength Level	Reserved and Extended Bit (language)	n Serial Number	Check Bit	Stop Bit

GPS Tracker Communication Protocol www.szbenway.com

t									
2	1	1	1	1	1	2	2	2	2

			SNR informat	ion of satellite (1)	l+M+N Byte)			
				rmation Content				
Start Bit	Packet Length	Protocol Number	Quantity of positioning satellites	SNR of Satellite	Reserved and Extended Bit	Information Serial Number	Check Bit	Stop Bit
2	1	1	1	M	N	2	2	2

			termin	al responds to tl	ne command sent b	y server (15+M+N Byte)			
Chart	Dooleat	Dunta na 1			String Content		Information Serial	Charle	Cton
Start Bit	Packet Length	Protocol Number	Length of	Server Flag	Command	Reserved and Extended Bit	Number	Check Bit	Stop Bit
Dit	Lengui	Nullibel	Command	Bit	Content	(language)	Nullibel	DIL	DIL
2	1	1	1	4	M	2	2	2	2

						GPS	S, LE	S, Sta	atus Inf	orma	tion Pa	ckage	(40+M	+N+L	Byte)							
									Info	rmati	on Cor	itent							Res			
				C	GPS	Infor	matio	on			L	BS Inf	formati	on			Statu forma		erve d	Info		
Start Bit	Pac ket Len gth	Prot ocol Nu mbe r	e Tim e	Length of GPS informatio n, quantity of positionin g satellites	itu de	Lo ngi tud e	Spe ed	Cou rse, Stat us	Reser ved and Exten ded Bit	LB S Len gth	мсс	MNC	LAC	Cell ID	Res erve d and Exte nde d Bit	min al Info rmat	Volt age Lev el	GSM Signa 1 Stren gth Level	Exte nde d Bit (lan	rmat ion Seri al Nu mbe r	Che ck Bit	Stop Bit
2	1	1	6	1	4	4	1	2	M	1	2	1	2	3	N	1	1	1	2	2	2	2

B. Data Packet Sent by Server to Terminal

	Response of Server after receiving Status Packet from Terminal (10 Bytes)													
Start Bit	Packet Length	Protocol Number	Information Serial Number	Check Bit	Stop Bit									
2	1	1	2	2	2									

	Command Packet Sent by Server to Terminal (15+M+N Byte)														
Start	Packet	Protocol		Informa	tion Content		Information Serial	Check	Stop						
Bit	Length	Number	Length of	Server Flag	Command	Reserved extended	Number	Bit	Bit						
Dit	Length	rumber	Command	Bit	Content	bit	rumber	Dit	Dit						
2	1	1	1	4	M	N	2	2	2						