DUBBELINTEGRALER. POLÄRA KOORDINATER

POLÄRA KOORDINATER

Variabelbyte i dubbelintegraler från rektngulära (x,y) till polära koordinater (r, θ)

Om integrationsområde D är en del av en vinkel då är det lämpligt att beräkna integralen genom variabelbyte från rektangulära (x,y) till polära koordinater (r,θ) .

Samband mellan rektangulära och polära koordinater:

$$x=rcos\theta, \quad y=rsin\theta \quad , \qquad dxdy=rdrd\theta$$
 (därmed $x^2+y^2=r^2$)

$$\iint\limits_{D} f(x,y)dxdy = \int\limits_{\theta 1}^{\theta 2} d\theta \int\limits_{r_{1}(\theta)}^{r_{2}(\theta)} f(r\cos\theta, r\sin\theta) \cdot r \cdot dr$$

Anmärkning: Lägg märke till att dxdy ersätts med $r \cdot drd\theta$.

Exempel 1.

Beräkna dubbelintegral
$$\iint_D (x^2 + y^2)^2 dxdy$$

då D är sektorringen i Fig1.

Lösning:

Från figuren har vi gränserna för θ och r:

$$0 \le \theta \le \frac{\pi}{2}$$
 och $1 \le r \le 2$.

Vi byter till polära koordinater

$$x = rcos\theta$$
, $y = rsin\theta$, $dxdy = rdrd\theta$ (och därmed $x^2 + y^2 = r^2$),

$$\iint_{D} (x^{2} + y^{2})^{2} dx dy = \int_{0}^{\pi/2} d\theta \int_{1}^{2} r^{4} \cdot r \cdot dr = \int_{0}^{\pi/2} d\theta \int_{1}^{2} r^{5} dr$$
$$= \int_{0}^{\pi/2} d\theta \left[\frac{r^{6}}{6} \right]_{1}^{2} = \int_{0}^{\pi/2} \frac{21}{2} d\theta = \left[\frac{21}{2} \theta \right]_{0}^{\pi/2} = \frac{21\pi}{4}.$$

Exempel 2.

Beräkna dubbelintegral $\iint_D x dx dy$

då integrationsområdet D definieras i figuren Fig2.

Lösning:

Från figuren har vi gränserna för θ och r:

$$0 \le \theta \le \frac{\pi}{4}$$
 och $0 \le r \le 1$.

Vi byter till polära koordinater

$$x = rcos\theta$$
, $y = rdrd\theta$,

$$\iint\limits_{D} x dx dy = \int\limits_{0}^{\pi/4} d\theta \int\limits_{0}^{1} r \cos\theta \cdot r \cdot dr = \int\limits_{0}^{\pi/4} d\theta \int\limits_{0}^{1} \cos\theta \cdot r^{2} \cdot dr$$
$$= \int\limits_{0}^{\pi/4} \cos\theta \cdot \left[\frac{r^{3}}{3}\right]_{0}^{1} d\theta = \int\limits_{0}^{\pi/4} \frac{\cos\theta}{3} d\theta = \left[\frac{\sin\theta}{3}\right]_{0}^{\pi/4} = \frac{\sqrt{2}}{6}.$$

Uppgift 1. Ange gränserna för θ och r för nedanstående integrationsområden

Svar: a) $0 \le \theta \le \pi$ och $1 \le r \le 2$ b) $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$ och $1 \le r \le 2$

c)
$$0 \le \theta \le \frac{\pi}{2}$$
 och $0 \le r \le 3$ d) $0 \le \theta \le \pi$ och $0 \le r \le 2$

e)
$$\pi \le \theta \le \frac{3\pi}{2}$$
, $1 \le r \le 2$.

Uppgift 2. Rita nedanstående områden och ange gränserna för θ och (polära koordinater).

a)
$$D = \{(x, y): 0 \le x \le 2 \text{ och } 0 \le y \le x \}$$

b)
$$D = \{(x, y): 1 \le x \le 3 \ ch \ 0 \le y \le x \}$$

c)
$$D = \{(x, y): 1 \le x^2 + y^2 \le 4 \text{ och } x \le y \le 2x \}$$

d)
$$D = \{(x, y): x^2 + y^2 \ge 1, x \le 3 \text{ och } 0 \le y \le x \}$$

Lösning.

a) För θ gäller uppenbart $0 \le \theta \le \frac{\pi}{4}$

Vi beskriver randlinjen x = 2 i polära koordinater:

Genom att substituera x = rc i x=2 får vi

$$rcos\theta = 2 \Rightarrow r = \frac{2}{cos\theta}$$

Därmed har vi gränser för : $0 \le r \le \frac{2}{\cos\theta}$

Svar a: $0 \le \theta \le \frac{\pi}{4}$, $0 \le r \le \frac{2}{\cos \theta}$

Svar b)

$$0 \le \theta \le \frac{\pi}{4}$$
 , $\frac{1}{\cos \theta} \le r \le \frac{3}{\cos \theta}$

Svar c)

 $\frac{\pi}{4} \leq \theta \leq \theta_1$, där $\theta_1 = arctan2 \approx 1.1 \, rad \, (\, 63.4 \, ^{\circ})$,

$$1 \le r \le 2$$

Svar d)

$$0 \le \theta \le \frac{\pi}{4}$$
 , $1 \le r \le \frac{3}{\cos \theta}$

Uppgift3.

Beräkna dubbelintegral $\iint_D f(x, y) dx dy$ om

a)
$$f(x, y) = (x^2 + y^2)^2$$
 och D definieras genom $0 \le \theta \le \frac{\pi}{2}$ och $0 \le r \le 2$

b)
$$f(x, y) = \sqrt{x^2 + y^2}$$
 och D definieras genom $0 \le \theta \le \frac{\pi}{2}$ och $0 \le r \le 1$

c)
$$f(x, y) = 10 + x^2 + y^2$$
 och D definieras genom $x \le 0$, $y \le 0$, $1 \le x^2 + y^2 \le 4$

d)
$$f(x, y) = 2 + x^2 + y^2$$
 och D definieras genom $x \ge 0$, $y \ge 0$, $y \le x$, $x^2 + y^2 \le 4$

e)
$$f(x, y) = x$$
 och D definieras genom $x \ge 0$, $y \ge 0$, $x^2 + y^2 \le 9$

f)
$$f(x, y) = y$$
 och D definieras genom $x \ge 0$, $y \ge 0$, $x^2 + y^2 \le 9$

g)
$$f(x, y) = x + y$$
 och D definieras genom $x \ge 0$, $y \ge 0$, $x^2 + y^2 \le 9$

Svar:

a)
$$\frac{16\pi}{3}$$
, b) $\frac{\pi}{6}$

c) Tips:
$$1 \le x^2 + y^2 \le 4 \Rightarrow 1 \le r^2 \le 4 \Rightarrow 1 \le r \le 2$$

och
$$\leq 0$$
, $y \leq 0 \Rightarrow \pi \leq \theta \leq \frac{3\pi}{2}$

$$\iint_D (10 + x^2 + y^2) dx dy$$

$$= \int_{\pi}^{3\pi/2} d\theta \int_{1}^{2} (10 + r^{2}) \cdot r \cdot dr = \dots$$

. . .

Svar c:
$$\frac{75\pi}{8}$$

d) 2π e) 9 f) 9 g 18

Uppgift4.

Beräkna dubbelintegral $\iint_D f(x, y) dx dy$ om

$$f(x, y) = \ln(10 + x^2 + y^2)$$
 och D definieras genom $1 \le x^2 + y^2 \le 4$, $y \ge 0$

Lösning: Vi använder polära koordinater.

Från figuren har vi gränserna för θ och r:

$$0 \le \theta \le \pi$$
 och $1 \le r \le 2$.

Vi byter till polära koordinater

$$x = rcos\theta$$
, $y = rdrd\theta$,

$$\iint_{D} \ln(10 + x^{2} + y^{2}) dxdy = \int_{0}^{\pi} d\theta \int_{1}^{2} \ln(10 + r^{2}) \cdot r \cdot dr$$

(Lägg märke till att θ finns varken i integranden eller gränserna för andra integralen så att vi kan beräkna varje integral för sig och multiplicera resultat)

$$= \int_0^{\pi} d\theta \cdot \int_1^2 ln(10 + r^2) \cdot r \cdot dr = \pi \cdot \frac{1}{2} \left[14 ln(14) - 11 ln 11 - 3 \right]$$

Anmärkning: Den andra integralen beräknas med hjälp av substitutionen

$$\begin{split} 10 \ + r^2 &= t \;, \quad 2rdr = dt \\ \int \ln(10 \ + r^2) \cdot r \cdot dr &= \frac{1}{2} \int \ln(t) dt \; = \; (partiell \ integration) \; = \; \frac{1}{2} [t \ln t - t] \\ &= \frac{1}{2} [(10 \ + r^2) \ln(10 \ + r^2) - (10 \ + r^2)] \end{split}$$

Därför
$$\int_{1}^{2} \ln(10 + r^{2}) \cdot r \cdot dr = \frac{1}{2} [(10 + r^{2}) \ln(10 + r^{2}) - (10 + r^{2})]_{1}^{2}$$
$$= \frac{1}{2} [14 \ln(14) - 14] - \frac{1}{2} [11 \ln(11) - 11] = \frac{1}{2} [14 \ln(14) - 11 \ln 11 - 3]$$

Svar:
$$\frac{\pi}{2}$$
 [14 $ln(14) - 11ln11 - 3$]

Uppgift5.

Beräkna dubbelintegral $\iint_D f(x, y) dx dy$ om

$$f(x, y) = x$$
 och $D = \{(x, y): x^2 + y^2 \ge 1, x \le 3 \text{ och } 0 \le y \le x \}$

Lösning: Vi använder polära koordinater

Från figuren har vi gränserna för θ och r:

$$0 \le \theta \le \frac{\pi}{4}$$
, $1 \le r \le \frac{3}{\cos \theta}$ (För randen x=3 $\Rightarrow r \cos \theta = 3 \Rightarrow r = 3/\cos \theta$)

Vi byter till polära koordinater

$$x = rcos\theta$$
, $y = rdrd\theta$,

$$\iint_{D} x \, dx dy = \int_{0}^{\pi/4} d\theta \int_{1}^{3/\cos\theta} r \cos\theta \cdot r \cdot dr = \int_{0}^{\pi/4} d\theta \int_{1}^{3/\cos\theta} r^{2} \cos\theta dr =$$

$$= \int_{0}^{\pi/4} \left[\frac{r^{3}}{3} \cos\theta \right] \frac{r = 3/\cos\theta}{r = 1} \, d\theta = \int_{0}^{\pi/4} \left[\frac{9}{\cos^{2}\theta} - \frac{\cos\theta}{3} \right] \, d\theta =$$

$$\left[9 \tan(\theta) - \frac{\sin(\theta)}{3} \right] \frac{\theta = \pi/4}{\theta = 0} = 9 - \frac{1}{3\sqrt{2}}$$