UNIVERSIDADE FEDERAL DE LAVRAS - UFLA

DAVI ALVES CARVALHO - 202010711 JOSÉ VICTOR AMORIM MORAIS - 202010163

REO 06 - Relatório de comparação entre ABB e AVL

LAVRAS-MG

Relatório de Comparação entre ABB e AVL

1. Introdução e Metodologia

- 1.1. Este relatório consiste na análise de eficiência, no que diz respeito ao acesso de nós, entre uma árvore binária de busca comum e uma árvore AVL. Como a atividade foi realizada em dupla, foram comparadas 30 inserções e 20 remoções distintas. Ademais, foram realizadas 30 buscas distintas.
- 1.2. A comparação foi feita entre uma Árvore Binária de Busca duplamente encadeada e uma AVL Recursiva, retirada do exercício 15 do Dredd.
- 1.3. A estratégia utilizada foi de não contar o acesso aos nós folhas recém inseridos, com exceção da raiz.
- 1.4. A contagem de nós foi baseada no site <u>VisuAlgo</u>, para fins de conferência e validação dos resultados obtidos na contagem de nós no programa.
- 1.5. O conjunto de números utilizados para testes foi obtido em uma <u>ferramenta</u> <u>aleatória de geração de números.</u>
- 1.6. Com base nos resultados obtidos, foram realizados as seguintes análises estatísticas:
 - 1.6.1. Média
 - 1.6.2. Moda
 - 1.6.3. Desvio Padrão
- 1.7. O tempo de execução utilizado para a comparação foi uma média amostral de 5 tempos calculados em execução, em todos os casos.
 - 1.7.1. Todas medidas de tempo foram obtidas à partir da biblioteca Chrono
 - 1.7.2. A unidade escolhida para a medida do tempo é milisegundos.

2. Inserção

2.1. Resultados Obtidos: ABB

Inserção	Nós Acessados ABB
53	1
85	1
45	1
75	2
27	2
97	2
12	3
86	3
98	3
19	4
26	5
9	4
13	5

8	5
74	3
46	2
81	3
16	6
55	4
71	5
10	5
68	6
69	7
91	4
94	5
88	5
35	3
80	4
2	6
77	5

2.1.1. Elementos Estatísticos dos nós acessados

2.1.1.1. <u>Média:</u> 3,8

2.1.1.2. <u>Desvio Padrão:</u> ~1,6

2.1.1.3. <u>Moda:</u> 5

2.1.2. Tempo médio de execução

2.1.2.1. O tempo médio obtido na inserção dos 30 elementos na Árvore Binária de Busca foi de 310,8 milissegundos

2.2. Resultados Obtidos: Árvore AVL

Inserção	Nós Acessados AVL
53	1
85	2
45	2
75	4
27	4
97	4
12	8
86	6
98	6

19	6
26	10
9	10
13	6
8	8
74	6
46	8
81	6
16	8
55	8
71	14
10	8
68	12
69	12
91	8
94	12
88	12
35	8
80	10
2	10
77	14

2.2.1. Elementos Estatísticos dos nós acessados

- 2.2.1.1. <u>Média:</u> ~7,8
- 2.2.1.2. <u>Desvio Padrão:</u> ~3,4
- 2.2.1.3. Moda: 8

2.2.2. Tempo médio de execução

2.2.2.1. O tempo médio de inserção dos 30 elementos na árvore AVL foi de 386,6 milissegundos.

2.3. Comparação

2.3.1. <u>Dos números de nós acessados</u>

2.3.1.1. Diante dos resultados obtidos quanto ao número bruto de nós acessados, concluímos que, para o conjunto de números utilizado, a Árvore Binária de Busca acessa 52% a menos que a Árvore AVL, uma vez que seu balanceamento não é realizado.

2.3.2. <u>Da média amostral</u>

2.3.2.1. Com base nas médias obtidas nas duas estruturas, observa-se que a Árvore AVL tem uma média de, aproximadamente, 4 nós a mais que a Árvore Binária de Busca, o que também se explica pelo fator de balanceamento presente nesta.

2.3.3. <u>Do desvio padrão amostral</u>

2.3.3.1. Analisando os resultados obtidos, notamos que a Árvore
Binária de Busca possui seu desvio padrão, aproximadamente,
53% menor que a Árvore AVL

2.3.4. Da moda amostral

2.3.4.1. A moda obtida no conjunto de nós acessados da Árvore Binária de Busca é 5, enquanto na Árvore AVL a moda é 8.

2.3.5. Do Tempo médio de execução

2.3.5.1. Quanto a comparação entre os tempos médios de execução das duas estruturas de dados, a Árvore Binária de Busca é, aproximadamente, 75,8 milissegundos mais rápida.

2.3.6. Conclusão

2.3.6.1. Dessa forma, concluímos, a partir dos resultados obtidos e das análise apresentadas acima, que, em termos de inserção, a Árvore Binária de Busca duplamente encadeada se mostra mais eficiente e rápida, uma vez que esta não realiza o balanceamento de sua estrutura, fato que reduz bastante o número de nós acessados na operação.

3. Remoção

3.1. Resultados Obtidos: ABB

Remoção	Nós Acessados ABB
19	6
45	3
97	4
12	6
86	5
91	5
26	6
13	5
8	7
74	5
81	5
16	5
10	5
69	7
68	6
77	5
2	5
35	4
94	5
53	4

3.1.1. Elementos Estatísticos dos nós acessados

- 3.1.1.1. <u>Média:</u> ~5.1
- 3.1.1.2. <u>Desvio Padrão:</u> ~0.9
- 3.1.1.3. <u>Moda:</u> 5
- 3.1.2. Tempo médio de execução
 - 3.1.2.1. O tempo médio obtido na remoção dos 20 elementos na ABB foi de 20 milissegundos Tempo médio de execução

3.2. Resultados Obtidos: Árvore AVL

Remoção	Nós Acessados AVL
19	9
45	13
97	9
12	7
86	9
91	13
26	9
13	9
8	9
74	9
81	9
16	7
10	7
69	9
68	7
77	9
2	7
35	9
94	7
53	7

3.2.1. Elementos Estatísticos dos nós acessados

- 3.2.1.1. <u>Média:</u> 8.7
- 3.2.1.2. <u>Desvio Padrão:</u> ~1,7
- 3.2.1.3. <u>Moda:</u> 9

3.2.2. Tempo médio de execução

3.2.2.1. O tempo médio obtido na remoção dos 20 elementos na Árvore AVL foi de 25,4 milissegundos.

3.3. Comparação

3.3.1. <u>Dos números de nós acessados</u>

3.3.1.1. Com base no número de nós acessado total, analisamos que a Árvore Binária de Busca acessa cerca de 41% de nós a menos que a Árvore AVL na operação de remoção. Acreditamos, novamente, que o balanceamento tem grande interferência nesse valor.

3.3.2. Da média amostral

3.3.2.1. Analisando os resultados de ambas as médias amostrais, percebe-se que a Árvore AVL tem uma média de, aproximadamente, 3,6 nós a mais que a ABB. Como comentado acima, também devido ao balanceamento.

3.3.3. <u>Do desvio padrão amostral</u>

3.3.3.1. Diante dos resultados individuais dos desvios padrões, analisamos que os resultados da ABB se aproximam de 52% do resultado da Árvore AVL, mostrando uma diferença considerável entre as duas estruturas nesse quesito.

3.3.4. Da moda amostral

3.3.4.1. A moda obtida no conjunto de nós acessados foi de 5 nós, na Árvore Binária de Busca, e de 9 nós na Árvore AVL.

3.3.5. <u>Do Tempo médio de execução</u>

3.3.5.1. Quanto a comparação entre os tempos médios de execução das duas Árvores, a ABB é, aproximadamente, 5,4 milissegundos mais rápida.

3.3.6. Conclusão

3.3.6.1. Dessa forma, concluímos que, com este conjunto de dados, a ABB ainda ganha, em eficiência (e velocidade), da Árvore AVL. O Balanceamento após a remoção tem grande influência para este fato. Entretanto, percebemos também que a AVL começa a diminuir a diferença entre as duas.

4. Busca

4.1. Resultados Obtidos: ABB

Buscas	Nós Acessados ABB
92	4
85	2
27	3
12	4
53	2
26	4
8	4
100	3
16	4
38	3
71	4

15	4
68	4
77	4
44	3
35	3
80	4
69	4
91	4
94	4
4	4
6	4
10	4
14	4
23	4
55	1
26	4
46	2
39	3
2	4
•	

4.1.1. Elementos Estatísticos dos Nós Acessados

- 4.1.1.1. <u>Média:</u> 3,5
- 4.1.1.2. <u>Desvio Padrão:</u> ~0,8
- 4.1.1.3. <u>Moda:</u> 4
- 4.1.2. Tempo médio de execução
 - 4.1.2.1. O tempo médio obtido na busca dos 30 elementos na ABB foi de 45 milissegundos.

4.2. Resultados Obtidos: Árvore AVL

Buscas	Nós Acessados AVL
92	4
85	2
27	3
12	4
53	4
26	4
8	4
100	3

16 4 38 4 71 3 15 4 68 3 77 3 44 4 35 4 80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4 2 4		
71 3 15 4 68 3 77 3 44 4 35 4 80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	16	4
15 4 68 3 77 3 44 4 35 4 80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	38	4
68 3 77 3 44 4 35 4 80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	71	3
77 3 44 4 35 4 80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	15	4
44 4 35 4 80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	68	3
35 4 80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	77	3
80 3 69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	44	4
69 3 91 4 94 4 4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	35	4
91 4 94 4 4 4 6 4 10 4 114 4 23 4 55 2 26 4 46 4 39 4	80	3
94 4 4 4 6 4 10 4 114 4 23 4 55 2 26 4 46 4 39 4	69	3
4 4 6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	91	4
6 4 10 4 14 4 23 4 55 2 26 4 46 4 39 4	94	4
10 4 14 4 23 4 55 2 26 4 46 4 39 4	4	4
14 4 23 4 55 2 26 4 46 4 39 4	6	4
23 4 55 2 26 4 46 4 39 4	10	4
55 2 26 4 46 4 39 4	14	4
26 4 46 4 39 4	23	4
46 4 39 4	55	2
39 4	26	4
	46	4
2 4	39	4
•	2	4

4.2.1. Elementos Estatísticos dos Nós acessados

4.2.1.1. <u>Média:</u> 3,6

4.2.1.2. <u>Desvio Padrão:</u> ~0,6

4.2.1.3. <u>Moda:</u> 4

4.2.2. Tempo médio de execução

4.2.2.1. O tempo médio obtido na busca dos 30 elementos na árvore AVL foi de 37,8 milissegundos.

4.3. Comparação

4.3.1. <u>Dos números de nós a</u>cessados

4.3.1.1. Diante dos resultados obtidos quanto ao número bruto de nós acessados, analisamos que a Árvore Binária de Busca acessa por volta de 4% a menos de nós que a Árvore AVL. Assim, percebemos que, com o conjunto de dados utilizado, o balanceamento não foi tão impactante.

4.3.2. <u>Da média amostral</u>

4.3.2.1. Com base nas médias obtidas nas duas estruturas, observa-se que a Árvore AVL tem uma média de, aproximadamente, apenas 0,1 a mais que a ABB. Dessa forma, a busca é a que

mostrou resultados mais parecidos nas duas estruturas de dados.

4.3.3. Do desvio padrão amostral

4.3.3.1. Analisando os resultados obtidos, notamos que a Árvore Binária de Busca possui desvio padrão 33% maior que a Árvore AVL, com ambos possuindo um desvio padrão inferior a 1.

4.3.4. Da moda amostral

4.3.4.1. A moda obtida no conjunto de nós acessados, tanto da ABB quanto da Árvore AVL foi a mesma: 4 nós acessados.

4.3.5. <u>Do tempo médio de execução</u>

4.3.5.1. Quanto à comparação entre os tempos médios de execução das duas estruturas, a Árvore AVL é, aproximadamente, 7,2 milissegundos mais rápida que a ABB.

4.3.6. Conclusão

4.3.6.1. Com base, então, nas análises realizadas e comentadas acima, concluímos que a Árvore Binária de Busca se mostrou mais eficiente no quesito acesso à nós, apesar da falta de balanceamento. Acreditamos que esse fato se deu devido ao conjunto de números utilizados, somado ao fato de a maioria das buscas terem sido realizadas em elementos já removidos, devido ao passo 2, que acabaram por favorecer a ABB. Entretanto, no quesito tempo de execução, a Árvore AVL tem vantagem.

5. Conclusão Final

5.1. Como conclusão geral de todas análises acima comentadas, entendemos que o conjunto de dados utilizado tem grande influência na eficiência, tanto da Árvore Binária de Busca quanto na Árvore AVL. Diante do conjunto utilizado, a ABB se saiu melhor na Inserção e na Remoção, além de ficar equivalente com a Árvore AVL na Busca. Entretanto, muito dessa equivalência se dá pelo fato das exclusões terem sido realizadas anteriormente à busca, o que acaba por deixar as árvores parecidas (novamente, no conjunto de dados que utilizamos). Além disso, o balanceamento é um fator determinante, que acaba por aumentar em grande quantidade o acesso à nós da Árvore AVL, elevando sua média tanto na inserção quanto na remoção. Todavia, essa "perda de eficiência" nas duas operações iniciais se mostra válida quando estudamos a operação de busca. Outro fator que encontramos durante o estudo para realizar este relatório é o fato de ambos trabalharem na memória real, que constantemente pode ser volátil e limitada, levando assim à preocupação quanto ao armazenamento permanente de grandes informações.