

Olimpiada Naţională de Matematică Etapa Naţională, Craiova, 11 aprilie 2023

${\bf CLASA}$ a XI-a – soluții și bareme

Problema 1.	Determinați	funcțiile de	două ori	derivabile	f:	$\mathbb{R} o$	\mathbb{R} care	e verifică	relația
$(f'(x))^2 + f''(x) \le$	0, pentru ori	$ce \ x \in \mathbb{R}.$							

Soluție.
Varianta 1.
Fie $f:\mathbb{R}\to\mathbb{R}$ o funcție care satisface condițiile din enunț. Definim funcția $g:\mathbb{R}\to\mathbb{R}$
prin $g(x) = e^{f(x)}, x \in \mathbb{R}$. Funcția g este de două ori derivabilă. Avem $g'(x) = f'(x)e^{f(x)}$ și
$g''(x) = e^{f(x)} \left((f'(x))^2 + f''(x) \right)$, pentru orice $x \in \mathbb{R}$
Din ipoteză deducem $g''(x) \leq 0$, $\forall x \in \mathbb{R}$. Atunci funcția g' este descrescătoare, deci există
limitele $\ell_1 = \lim_{x \to -\infty} g'(x)$ şi $\ell_2 = \lim_{x \to \infty} g'(x)$, cu $\ell_1, \ell_2 \in \overline{R}$
Cu regula lui l'Hôpital obţinem $\lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} g'(x) = \ell_1$ şi $\lim_{x \to \infty} \frac{g(x)}{x} = \lim_{x \to \infty} g'(x) = \ell_2$
Din $g(x) > 0$, $\forall x \in \mathbb{R}$, rezultă $\ell_1 \leq 0$ și $\ell_2 \geq 0$
Cum g' este descrescătoare, cu $\ell_1 \leq 0$ și $\ell_2 \geq 0$, deducem $g'(x) = 0$, $\forall x \in \mathbb{R}$. Atunci g este
o funcție constantă, strict pozitivă, deci și $f=\ln(g)$ este o funcție constantă. Reciproc, orice
funcție constantă f satisface condițiile din enunț
Fie $f:\mathbb{R}\to\mathbb{R}$ o funcție care satisface condițiile din enunț. Definim funcția $g:\mathbb{R}\to\mathbb{R}$
prin $g(x) = e^{f(x)}$, $x \in \mathbb{R}$. Funcția g este de două ori derivabilă. Avem $g'(x) = f'(x)e^{f(x)}$ și
$g''(x) = e^{f(x)} \left((f'(x))^2 + f''(x) \right)$, pentru orice $x \in \mathbb{R}$
Din ipoteză rezultă $g''(x) \leq 0$, $\forall x \in \mathbb{R}$. Atunci g este concavă pe \mathbb{R} , deci satisface inegalitatea
$\frac{g(y) - g(x)}{y - x} \ge \frac{g(z) - g(y)}{z - y}, \text{ pentru oricare } x, y, z \in \mathbb{R}, \text{ cu } x < y < z \dots \mathbf{1p}$
$y-x$ $\geq \frac{1}{z-y}$, pentru oficare $x,y,z \in \mathbb{R}$, cu $x < y < z$
$\operatorname{constant} g(a) \neq g(b)$ 1p
Cazul 1. $g(a) < g(b)$. Din inegalitatea $\frac{g(a) - g(x)}{a - x} \ge \frac{g(b) - g(a)}{b - a}$, pentru oricare $x < a$, obţinem
$g(x) \le \frac{g(b) - g(a)}{b - a}(x - a) + g(a)$, pentru oricare $x \in (-\infty, a)$. Rezultă $\lim_{x \to -\infty} g(x) = -\infty$.
Cazul 2. $g(a) > g(b)$. Din inegalitatea $\frac{g(b) - g(a)}{b - a} \ge \frac{g(x) - g(b)}{x - b}$, pentru oricare $x > b$, obţinem
$g(x) \le \frac{g(b) - g(a)}{b - a}(x - b) + g(b)$, pentru oricare $x \in (b, \infty)$. Rezultă $\lim_{x \to \infty} g(x) = -\infty$.
În ambele cazuri este contrazisă inegalitatea $g(x)>0, \ \forall x\in\mathbb{R}$. Prin urmare, g este o funcție
constantă, strict pozitivă, deci și $f=\ln(g)$ este o funcție constantă. Reciproc, orice funcție
constantă f satisface condițiile din enunț

Problema 2. Fie $A, B \in \mathcal{M}_n(\mathbb{R})$. Arătaţi că rang(A) = rang(B) dacă şi numai dacă există matricele inversabile $X, Y, Z \in \mathcal{M}_n(\mathbb{R})$ astfel încât AX + YB = AZB.

Solutie.

Problema 3. Fie un număr natural $n \geq 2$ și matricele $A, B \in \mathcal{M}_n(\mathbb{C})$, cu proprietatea $A^2B = A$.

- a) Demonstrați că $(AB BA)^2 = O_n$.
- b) Arătați că pentru oricare număr natural $k \leq n/2$ există matricele $A, B \in \mathcal{M}_n(\mathbb{C})$ cu proprietatea din enunț astfel încât rang(AB BA) = k.

Solutie.

a) Varianta 1.

Dacă A este inversabilă sau $A = O_n$ atunci $AB - BA = O_n$. Fie $A \neq O_n$, cu $\det(A) = 0$, iar $P \in \mathbb{C}[X]$ polinomul său minimal. Cum P(0) = 0 și $P \neq X$, polinomul P este de forma $P = X^k + a_{k-1}X^{k-1} + \ldots + a_1X$, unde $2 \leq k \leq n$. Din relația $P(A)B = O_n$ și ipoteză, obținem

$$A^{k-1} + a_{k-1}A^{k-2} + \dots + a_2A + a_1AB = O_n.$$
(1)

$$A^{k-1} + a_{k-1}A^{k-2} + \ldots + a_2A + a_1AB^2A = O_n.$$
 (2)

Din (1) şi (2) rezultă $a_1(AB^2A - AB) = O_n$. Cum $a_1 \neq 0$, obținem $AB^2A = AB \dots 2p$ Ca urmare,

$$(AB - BA)^{2} = (ABA)B - AB^{2}A - B(A^{2}B) + B(ABA) = AB - AB - BA + BA = O_{n}.$$

......1p

a) Varianta 2.

Din rang $(A) = \operatorname{rang}(A^2B) \le \operatorname{rang}(A^2) \le \operatorname{rang}(A)$, obţinem rang $(A) = \operatorname{rang}(A^2) \dots 1$ Fie $r = \operatorname{rang}(A)$. Există matricele $X \in \mathcal{M}_{n,r}(\mathbb{C})$ şi $Y \in \mathcal{M}_{r,n}(\mathbb{C})$, cu rang $(X) = \operatorname{rang}(Y) = r$, astfel încât A = XY. Avem $YX \in \mathcal{M}_r(\mathbb{C})$ şi

$$r = \operatorname{rang}(A) = \operatorname{rang}(A^2) = \operatorname{rang}((XY)^2) = \operatorname{rang}(X(YX)Y) \le \operatorname{rang}(YX).$$

$$(AB - BA)^{2} = (AB)^{2} + (BA)^{2} - AB^{2}A - BA^{2}B = (ABA)B + B(ABA) - AB^{2}A - B(A^{2}B)$$
$$= AB + BA - AB^{2}A - BA = AB(I_{n} - BA)$$

Utilizând relațiile ABA = A și $(AB - BA)^2 = AB(I_n - BA)$, demonstrate anterior, obținem

$$(AB - BA)^{3} = AB(I_{n} - BA)(AB - BA) = AB(AB - BA - BA^{2}B + (BA)^{2})$$

$$= AB(AB - BA - B(A^{2}B) + B(ABA)) = AB(AB - BA - BA + BA) = AB(AB - BA)$$

$$= (ABA)B - AB^{2}A = AB - (AB)(BA) = AB(I_{n} - BA).$$

Remarcă. Reciproc, pentru oricare $A, B \in \mathcal{M}_n(\mathbb{C})$ astfel ca $A^2B = A$, are loc inegalitatea rang $(AB - BA) \leq n/2$.

Problema 4. Considerăm o funcție $f : \mathbb{R} \to \mathbb{R}$ pentru care există o funcție derivabilă $g : \mathbb{R} \to \mathbb{R}$ şi există un şir $(a_n)_{n\geq 1}$ de numere reale strict pozitive, convergent la 0, astfel încât

$$g'(x) = \lim_{n \to \infty} \frac{f(x + a_n) - f(x)}{a_n},$$

pentru orice $x \in \mathbb{R}$.

- a) Dați un exemplu de o astfel de funcție f care nu este derivabilă în niciun punct $x \in \mathbb{R}$.
- b) Arătați că dacă f este continuă pe \mathbb{R} atunci f este derivabilă pe \mathbb{R} .

Soluție.

a) Considerăm $f: \mathbb{R} \to \mathbb{R}$ definită prin $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Fie şirul $(a_n)_{n \geq 1}$, cu termenii strict pozitivi $a_n = 1/n, \ \forall \ n \in \mathbb{N}^*$, convergent la 0. Pentru $n \in \mathbb{N}^*$, avem $x + a_n \in \mathbb{Q}, \ \forall \ x \in \mathbb{Q}$ şi $x + a_n \in \mathbb{R} \setminus \mathbb{Q}, \ \forall \ x \in \mathbb{R} \setminus \mathbb{Q}$. Astfel, $f(x + a_n) = f(x), \ \forall \ x \in \mathbb{R}, \ \forall \ n \in \mathbb{N}^*$. Rezultă

$\lim_{n\to\infty}\frac{f(x+a_n)-f(x)}{a_n}=0=g'(x),\ \forallx\in\mathbb{R},\ \text{unde }g\ \text{este o funcție constantă arbitrară. Funcția}$
f este discontinuă în orice punct $x \in \mathbb{R}$, deci nederivabilă în orice punct $x \in \mathbb{R}$ 2p
b) Considerăm funcția $h: \mathbb{R} \to \mathbb{R}, \ h=f-g$. Funcția h este continuă ca diferență de funcții
continue
$\lim_{n\to\infty} \frac{h(x+a_n)-h(x)}{a_n} = \lim_{n\to\infty} \frac{f(x+a_n)-f(x)}{a_n} - g'(x) = 0, \text{ pentru orice } x \in \mathbb{R} \dots \mathbf{1p}$ Fie $x,y \in \mathbb{R}$, cu $x < y$. Fie $c > 0$ şi $A(c) = \{z \in [x,y] h(z) - h(x) \le c(z-x)\}$. Cum
Fie $x, y \in \mathbb{R}$, cu $x < y$. Fie $c > 0$ şi $A(c) = \{z \in [x, y] h(z) - h(x) \le c(z - x)\}$. Cum
$x \in A(c) \subset [x,y]$, există $s = \sup A(c) \in [x,y]$. Din continuitatea lui h rezultă $s \in A(c)$.
Presupunem, prin absurd, $s < y$. Atunci există $n_1 \in \mathbb{N}^*$ astfel ca $s + a_n < y$, $\forall n \ge n_1$. Din $\lim_{n \to \infty} \frac{h(s + a_n) - h(s)}{a_n} = 0$, rezultă că există $n_2 \ge n_1$ astfel ca $\left \frac{h(s + a_{n_2}) - h(s)}{a_{n_2}} \right < c$. Atunci
$s < s + a_{n_2} < y$ și au loc inegalitățile
$ h(s + a_{n_2}) - h(x) \le h(s) - h(x) + h(s + a_{n_2}) - h(s) < c(s - x) + ca_{n_2} = c[(s + a_{n_2}) - x].$
Rezultă $s+a_{n_2}\in A(c)$, în contradicție cu $s=\sup A(c)$. Prin urmare $y=s\in A(c)$, deci
$ h(y)-h(x) \leq c(y-x)$. Cum $c>0$ este arbitrar, deducem $h(x)=h(y)$. Rezultă că h este o
funcție constantă
Atunci $f = g + h$ este derivabilă pe \mathbb{R} , cu $f' = g'$