Applying ML Algorithms on DStreams

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand how the k-means clustering algorithm is used to find patterns

Understand the nuances of applying kmeans clustering to streaming data

Implement the algorithm in Python on a real world dataset using

- Spark streaming
- MLLib

Patterns in Data

Patterns in Data

Group them based on some common

attributes

Patterns in Data

Clustering

Products sold on Amazon

People on Facebook

Websites indexed by Google

What if you want to group more complex entities?

Products sold on Amazon

People on Facebook

Websites indexed by Google

Too many entities, too many attributes per entity

Huge complexity

Anything can be represented by a set of numbers

Product ID, Timestamp, Amount

Age, Height, Weight

Length, word frequencies

Age, Height, Weight

Age, Height, Weight

Age, Height, Weight

A set of N numbers represents a point in an N-dimensional Hypercube

The K-Means Clustering Algorithm

A set of points, each representing a Facebook user

Same group = similar

Different group = different

Same group = similar Different group = different

Users in a Cluster

May like the same kind of music

May have gone to the same high school

May have kids of the same age

The distance between users in a cluster indicates how similar they are

Maximize intra-cluster similarity

Minimize inter-cluster similarity

Clustering Objective

Maximize intra-cluster similarity

Minimize inter-cluster similarity

The **K-Means Clustering** algorithm is a famous Machine Learning algorithm to achieve this

Initialize K centroids i.e means

Recalculate the mean for each cluster

K-Means Clustering

Re-assign the points to clusters

Iterate until points are in their final clusters

K-Means Clustering

Applying K-Means Clustering to Streams

K-Means Clustering on Streams

First batch of data

Is new data more relevant than older data?

Recent Data More Relevant

Trending topics on Twitter

- Tweets from a year ago are useless today
- The clustering should be entirely based on recent tweets

All Data Equally Relevant

Most active users by location

- Active users from a year ago are still relevant
- Newer users should have a higher weight

A forgetfulness metric can be specified on the Streaming K-Means Clustering algorithm

Forgetfulness in Streaming K-Means Clustering

Recent data Older data

An average of numbers in this stream = 7

What if the most recent integers are more important?

Apply higher weights to recent numbers in the stream

The weighted average of numbers in this stream will be >7

The weight for older data can be progressively reduced to 0

Older data will be forgotten

Forgetfulness

Makes the algorithm adaptive to changing datasets

Balance the importance of new data versus old

- All data from the beginning of time treated equally

OR

 Use only the most recent data, discard the rest

Decay factor

A scalar quantity which determines how much of the old data is considered

Half-life

A time at which old data contributes to only half the model

Decay Factor

Value ranges from 0 to 1

- Decay factor = 1: Use all data from the beginning
- Decay factor = 0: Use only the most recent data

Decay Factor

The values 0 and 1 make sense

Other values in the range are not intuitive

Decay factor

A scalar quantity which determines how much of the old data is considered

Half-life

A time at which old data contributes to only half the model

Half-life

Past data should progressively contribute less to the current model

Define a time at which a batch contributes to only half of the current model

Half-life

The same element gets older

Half-life

The half-life can be specified in one of 2 ways

- number of batches (each batch is a fixed unit of time)
- number of data points (each batch has a variable number of data points)

Forgetfulness

Makes the algorithm adaptive to changing datasets

K=2

Effect of Half-life

half-life = 1 batch

half-life = 5 batches

Shorter half-life

Longer half-life

Cluster centers

Shorter half-life

Longer half-life

Shorter half-life

Longer half-life

The algorithm adapts faster to changes in data when half life is shorter

Demo

Work with streaming data in the form of files saved in a directory

Apply the Streaming K-Means Clustering algorithm to find where tweets come from i.e. location clusters

Demo

Tweak the decay factor to see how the cluster centers change

Overview

Understood the basic k-means clustering algorithm and how it works on streaming data

Understood the decay factor and half-life which let you tweak the forgetfulness of the algorithm

Implemented the streaming k-means algorithm on a real world Twitter dataset to determine tweet location patterns