Capítulo 5 - Estimação Pontual

Estatística

Definição (População)

Uma **população** consiste no conjunto de elementos sobre o qual incide o estudo estatístico.

Definição (Característica Estatística ou Atributo)

Característica Estatística ou Atributo é a característica que se observa nos elementos da população.

Observação: Numa população podemos ter mais que uma característica estatística ou atributo.

Definição (Parâmetro populacional)

Um parâmetro populacional é uma medida numérica que descreve uma característica da população.

Exemplos: a média, a variância e a proporção populacionais

Estatística

Definição (Amostra)

Uma amostra é um subconjunto da população.

Definição (Amostra aleatória)

Vamos admitir que cada valor observado x_i é a realização da variável aleatória X_i , com função de distribuição F. O vector (X_1, X_2, \ldots, X_n) constitui uma **amostra aleatória** se e só se as n variáveis aleatórias são independentes e têm todas a mesma distribuição. Os valores que se obtêm por concretização da amostra aleatória são representados por (x_1, x_2, \ldots, x_n) .

Estatística

Definição (Estatística)

Uma estatística é uma qualquer função da amostra aleatória, (X_1, X_2, \dots, X_n) , que não depende de qualquer parâmetro desconhecido.

Definição (Estimador)

Um **estimador** é uma estatística que estima um determinado parâmetro populacional desconhecido.

Um estimador diz-se **estimador pontual** quando estima pontualmente o parâmetro populacional desconhecido.

Exemplos: a média, a variância, o máximo, o mínimo, a mediana, a moda, ... amostrais

Estimação pontual

Definição (Estimativa)

Seja X_1, X_2, \ldots, X_n uma a.a. de uma população $X \sim F(\theta)$, com F a função de distribuição da população e θ um parâmetro populacional desconhecido (pode ser a média, a variância ou outro qualquer).

Sendo $\hat{\Theta}=h(X_1,\ldots,X_n)$ um estimador pontual de θ , uma vez observadas as concretizações x_1,\ldots,x_n da a.a. acima, o valor particular $\hat{\theta}=h(x_1,x_2,\ldots,x_n)$ diz-se uma **estimativa pontual** de θ .

Alguns parâmetros populacionais com respectivos estimadores e estimativas:

Parâmetro Populacional	Estimador	Estimativa
Média populacional	Média amostral	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
μ	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$x = \frac{1}{n} \sum_{i=1}^{n} x_i$
Proporção populacional	Proporção amostral	2 x
p	$\hat{P} = \frac{X}{n}$	$\hat{p} = \frac{x}{n}$
Variância populacional	Variância amostral	$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
σ^2	$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$	$s = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_i)$
Desvio padrão populacional	Desvio padrão amostral	$a = \sqrt{1 \sum_{n=1}^{n} (m - \bar{m})^2}$
σ	$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$	$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$

Estatística Descritiva

No $\bf R$ iremos agora gerar vários conjuntos de dados usando algumas das funções do $\bf R$ já mencionadas em capítulos anteriores, nomeadamente

```
rhyper(), rbinom(), rpois(), rexp() e rnorm().
```

Iremos depois utilizar o conjunto de instruções abaixo no estudo descritivo desses conjuntos de dados

- summary()
 indicadores estatísticos básicos (min, max, mediana, média e 1º e 3º quartis)
- var() e sd()variância e desvio padrão
- boxplot() diagrama de caixa e bigodes
- hist() histograma

Estatística Descritiva - Exemplo

Começamos por gerar uma amostra de tamanho 100 da população $X \sim N(0,1)$ que sabemos ser tal que

$$\bullet$$
 $\mu = 0$ (média)

•
$$\sigma^2 = 1 = \sigma$$
 (variância e desvio padrão)

$$Q_2 = 0$$
 (mediana)

•
$$Q_1 \simeq -0.6745$$
 e $Q_3 \simeq 0.6745$ (1^a e 3^a quartis)

```
# para podermos reproduzir a amostra que vamos gerar
set.seed(123)
x<-rnorm(100,0,1)</pre>
```

fixamos a semente dos números pseudo-aleatórios

Em seguida calculamos as estimativas dos valores populacionais acima descritos usando a amostra gerada:

```
# usando o summary(), var() e sd()
summary(x)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# -2.30900 -0.49390 0.06176 0.09041 0.69180 2.18700
var(x)
# 0.8332328
sd(x)
# 0.9128159
```

Estatística Descritiva - Exemplo

set.seed(123) x < -rnorm(100.0.1)

Voltamos agora à nossa amostra inicial de tamanho 100 e usamos a instrução hist() para desenhar os histrogramas de frequência e de densidade dos dados gerados

Histogramas da amostra da N(0,1)

Estatística Descritiva - Exemplo

Ainda usando a amostra inicial de tamanho 100 usamos a instrução boxplot() para desenhar o histrograma de caixa dos dados gerados

Boxplots da amostra da N(0,1)


```
par(mfrow=c(1,2),oma = c(0, 0, 2, 0))
set.seed(123)
x<-rnorm(100,0,1)
boxplot(x,col="grey",main = "")
boxplot(x,horizontal = T,col="grey",main = "")
mtext("Boxplots da amostra da N(0,1)",
outer = TRUE, cex = 1.5)</pre>
```

As linhas da caixa do diagrama representam, respectivamente, de baixo para cima (diag. esquerda) e da esquerda para a direita (diag. direita) o 1^{0} , 2^{0} e 3^{0} quartis.

Os bigodes do diagrama dizem respeito às barreiras inferior e superior. Sendo $IQR=Q_3-Q_1$ o intervalo interquartil, as barreiras inferior e superior são habitualmente dadas por $B_{inf}=Q1-1.5IQR$ e $B_{sup}=Q3+1.5IQR$, respectivamente. Os pontos amostrais que caírem fora destas barreiras são considerados suspeitos (outliers)!

Estatística Descritiva - Exercícios

Reproduza o exemplo anterior para amostras de tamanho n=50 e n=150 das populações $X\sim P(15)$ e $Y\sim Exp(1/4)$, respectivamente.

Ao nível gráfico, investigue os argumentos das funções hist() e boxplot() e verifique como pode alterar alguns aspectos gráficos como por exemplo, o tamanho de letra, côr, renomeação dos eixos, etc.

Verifique ainda no código fornecido acima para o display gráfico, como pode juntar mais do que dois gráficos numa única janela.

Definição (Estimador centrado)

Um estimador pontual $\hat{\Theta}$ diz-se centrado para o parâmetro θ se $E(\hat{\Theta}) = \theta$.

Observação: Caso $E(\hat{\Theta}) \neq \theta$, o estimador diz-se enviesado. A diferença $b(\hat{\Theta}) = E(\hat{\Theta}) - \theta$

corresponde ao valor do enviesamento ou viés de $\hat{\Theta}$.

Se $E(\hat{\Theta}) \neq \theta$, e $\lim_{n \to \infty} E(\hat{\Theta}) = \theta$, diz-se que o estimador é assintoticamente centrado.

Exemplo

Seja, X_1,\ldots,X_n uma a.a. de uma população X de média $E(X)=\mu$ e variância $V(X)=\sigma^2$. A média \bar{X} é um estimador centrado de μ .

Relembre que

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n} E(X_{i}) = \frac{1}{X_{i} i dent. dist.} \frac{1}{n}\sum_{i=1}^{n} E(X) = \frac{1}{n} \times n\mu = \mu$$

e logo temos que \bar{X} é um estimador centrado para μ .

Definição (Erro Padrão de um estimador)

Dado um estimador pontual $\hat{\Theta}$, centrado, define-se o seu erro padrão, que se designa $SE_{\hat{\Theta}}$, como a raiz quadrada da sua variância, caso exista:

$$SE_{\hat{\Theta}} = \sqrt{V(\hat{\Theta})}$$

Caso o erro padrão envolva parâmetros desconhecidos, que possam ser estimados dos dados, a substituição destes valores estimados no erro padrão produz o chamado erro padrão estimado, denotado por $\widehat{SE}_{\hat{\Theta}}$.

Exemplo

Seja, X_1,\ldots,X_n uma a.a. de uma população X de média $E(X)=\mu$ e variância $V(X)=\sigma^2$. Calcule o erro padrão do estimador \bar{X} de μ . Considerando uma concretização $4\ 7\ 5\ 7\ 8\ 2\ 5\ 8\ 5\ da$ a.a, estime o erro padrão do estimador.

Temos então o erro padrão dado por

$$SE(\bar{X}) = \sqrt{V(\bar{X})} = \sqrt{\frac{V(X)}{n}} = \sigma/\sqrt{n}$$

pelo que uma estimativa do erro padrão será dada por $\widehat{SE(X)} = \hat{\sigma}/\sqrt{10} = s/\sqrt{10} \simeq 0.6.$

Definição (Erro Quadrático Médio)

O erro quadrático médio de um estimador pontual $\hat{\Theta}$ de um parâmetro θ é definido por

$$EQM(\hat{\Theta}) = E[(\hat{\Theta} - \theta)^2] = V(\hat{\Theta}) + b^2(\hat{\Theta}).$$

Observação: Se o estimador for centrado, então $EQM(\hat{\Theta}) = V(\hat{\Theta})$. Como verificámos anteriormente que \bar{X} é um estimador centrado para μ então $EQM(\bar{X}) = V(\bar{X}) = \sigma^2/n$.

Definição (Estimador consistente em média quadrática)

Um estimador pontual $\hat{\Theta}$ de um parâmetro θ , diz-se consistente em média quadrática se

$$\lim_{n\to\infty} EQM(\hat{\Theta}) = 0.$$

Exemplo

Seja, X_1,\ldots,X_n uma a.a. de uma população X de média $E(X)=\mu$ e variância $V(X)=\sigma^2$. Tem-se que \bar{X} é um estimador consistente em média quadrática de μ .

Facilmente se observa que $\lim_{n\to\infty} EQM(\bar{X}) = \lim_{obs, n\to\infty} \sigma^2/n = 0$.

Definição (Eficiência)

Sejam $\hat{\Theta}_1$ e $\hat{\Theta}_2$ dois estimador pontuais de um parâmetro θ . Diz-se que $\hat{\Theta}_1$ é mais eficiente que $\hat{\Theta}_2$, se e só se,

$$EQM(\hat{\Theta}_1) \leq EQM(\hat{\Theta}_2).$$

No caso de ambos os estimadores serem centrados para θ esta condição simplifica para

$$V(\hat{\Theta}_1) \le V(\hat{\Theta}_2).$$

Consistência: Exemplo

Apresentamos abaixo os gráficos animados das estimativas \bar{x}_n obtidas de amostras de tamanhos n=1,...,200 das populações $N(\mu=0,\sigma=1)$ (esquerda) e $P(\lambda=5=\mu=\sigma^2)$ (direita), respectivamente. (para a correcta visualização do mesmo é necessário abrir este pdf com recurso ao software Adobe Reader).

Para qual das populações a média populacional converge mais depressa para o verdadeiro parâmetro?