Programmieren und Software-Engineering Theorie

2. März 2023

Der Algorithmus von Dijkstra berechnet die kürzesten Wege in einem gewichteten Graphen mit $w_{ij} \geq 0$, für alle $[i,j] \in E$.

Grundidee:

POS (Theorie)

- Ähnlichkeit zu BFS, jedoch andere Regeln für die Auswahl des nächsten Knoten.
- Ein Aufruf von Dijkstra berechnet die kürzesten Wege von einem Startknoten zu allen anderen Knoten des Graphen.
- In jedem Schritt werden **Zwischenergebnisse** δ_k , $k \in V$ berechnet, bzw. aktualisiert.
- Diese Zwischenergebnisse sind die Länge des kürzesten bisher gefundenen Weges bis zu diesem Knoten.
- Wiederhole (bis alle Knoten abgeschlossen):
 - **1** Wähle Knoten k mit minimalem δ_k und schließe diesen ab.

Graphentheorie

- Speichere Verweis auf direkten Vorgänger.
- 3 Aktualisiere die Werte δ_k für noch nicht abgeschlossene Nachbarknoten von k

Algorithm 1: DIJKSTRA

```
Data: Graph G mit w_{ij} \geq 0 für alle (i,j) \in E(G)
Data: Startknoten s

1 \forall v \in V : \delta_v \leftarrow \infty;

2 \delta_s \leftarrow 0;

3 Prioritätswarteschlange \mathbb Q befüllt mit allen Knoten ;

4 while Q \neq \emptyset do

5 u \leftarrow \mathbb Q.getMin(); // entnimmt Knoten u mit kleinstem \delta_u

Fertigstellung von Knoten u;

7 Speichere Verweis auf direkten Vorgänger von u;

8 for all (u, v) \in E, v noch nicht fertiggestellt do

9 if \delta_v > \delta_u + w_{uv} then

10 \delta_v \leftarrow \delta_u + w_{uv};
```

Anmerkung: Die Prioritätswarteschlange Q kann durch ein einfaches Array umgesetzt werden. Um u mit kleinstem δ_u zu finden, muss es zur Gänze durchlaufen werden. Dies ist nachteilig für die Performance des Algorithmus, weshalb die Prioritätswarteschlange meist anhand eines Heaps umgesetzt wird.

Wir suchen den kürstesten Weg vom Knoten *A* **zum Knoten** *H*. Im ersten Schritt wird der Startknoten "fertiggestellt".

Im nächsten Schritt werden die Nachbarknoten B, C, D und E entdeckt. Die Zwischenwerte werden wie folgt berechnet:

$$\delta_A = 0, \delta_B = \delta_A + 1 = 1, \delta E = \delta_A + 6 = 6, \delta_D = \delta_A + 10 = 10, \delta_C = \delta_A + 6 = 6.$$

Nun wird der Knoten v mit kleinstem δ_v fertiggestellt. Im konkreten Beispiel ist dies Knoten B.

Ausgehend vom letzten fertiggestellten Knoten (B) werden nun neue Zwischenergebnisse für C, E und G berechnet. Wir erhalten $\delta_G=1+13=14, \delta_E=1+2=3, \delta_C=1+4=5$. Für die Knoten C und E erhalten wir kleinere Werte als die bisher gefundenen.

Knoten *E* wird fertiggestellt. Bei fertiggestellten Knoten merkt man sich wo man hergekommen ist (daher die blaue Kante).

Berechnung neuer Zwischenergebnisse für D, G und H.

Knoten C wird fertiggestellt, da er nun den kleinsten Zwischenwert δ hat.

Ausgehend von C werden die Werte δ_D und δ_F berechnet. Da 5+7>6 kommt es bei δ_D zu keiner Änderung.

Fortgefahren wird mit Knoten D, da kleinstes δ .

 δ_H wird aktualisiert.

H wird fertiggestellt.

Update von δ_F und δ_G , wobei nur δ_F tatsächlich geändert wird.

F wird fertiggestellt.

G wird fertiggestellt (Vorgänger E).

- Die blauen Kanten bilden einen Wurzelbaum¹, der die kürzesten Wege vom Startknoten zu jedem Knoten enthält.
- Die Berechnung des kürzesten Weges von einem Startknoten zu einem Zielknoten beinhaltet also die Berechnung der kürzesten Wege vom Startknoten zu allen anderen Knoten.
- Ist nur der kürzeste Weg zu einem Zielknoten von Interesse, kann die Berechnung abgebrochen werden sobald dieser fertiggestellt wird.

POS (Theorie) Graphentheorie

5/6

¹streng genommen bilden die umgedrehten blauen Kanten einen Wurzelbaum

Algorithmus von Dijkstra - Laufzeitanalyse

Mit n = |V| und m = |E| können wir die Laufzeiteigenschaften angeben. Diese hängen von der konkreten Umsetzung der Prioritätswarteschlange Q ab.

Operation		Queue Implementierung		
Name	Anzahl	Liste	Неар	Fibonacci Heap ²
decreaseKey [10]	m	O(1)	$O(\log n)$	O(1)
getMin [5]	n	O(n)	$O(\log n)$	$O(\log n)$
create [3]	1	O(n)	O(n)	O(n)
Gesamt		$O(n^2+m)$	$O((n+m)\log n)$	$O(n \log n + m)$
		$= O(n^2)$		

Anmerkung: In der Spalte ganz links ist in eckigen Klammern auf die Zeile der jeweiligen Operation im Pseudocode verwiesen!

²amortisierte Laufzeit