MATHÉMATIQUES

Section : Mathématiques Session de contrôle 2021

Exercice 1:

Soit $a \in \mathbb{Z}$.

1) On note r_1 et r_2 les restes possibles modulo 6 respectivement des entiers a et a^2 .

\mathbf{r}_1	0	1	2	3	4	5
\mathbf{r}_2	0	1	4	3	4	1

Donc les restes possibles modulo 6 de a² sont 0, 1, 3 et 4.

2) On note r_1 , r_2 et r_3 les restes possibles modulo 6 respectivement des entiers a, a^2 et a^3 .

\mathbf{r}_1	0	1	2	3	4	5
\mathbf{r}_2	0	1	4	3	4	1
$r_3 = r_1.r_2$	0	1	2	3	4	5

D'après le tableau on a : $r_3 = r_1$, par suite $a^3 \equiv a \pmod{6}$

- 3) a/* Pour n = 0 on $a: a^{2x0+1} \equiv a \pmod{6}$ donc la propriété est vraie pour n=0.
 - * Montrons que pour tout $n \in IN$, si $a^{2n+1} \equiv a \pmod{6}$ alors $a^{2n+3} \equiv a \pmod{6}$

On
$$a: a^{2n+3} = a^{2n+1}x \ a^2 \ donc \ a^{2n+3} \equiv a^{2n+1}xa^2 \pmod{6} \equiv a^3 \pmod{6} \equiv a \pmod{6}$$

Ainsi si la propriété est vraie pour n alors elle est vraie pour (n + 1).

Conclusion : Pour tout $n \in IN$, $a^{2n+1} \equiv a \pmod{6}$

b/ On
$$a: a^{2n} = axa^{2n-1}$$
.

Pour tout
$$n \ge 1$$
, $a^{2(n-1)+1} \equiv a \pmod{6}$ (d'après 3) a /)

D'où
$$a^{2n-1} \equiv a \pmod{6}$$
 par suite $a^{2n} \equiv a^2 \pmod{6}$

4) D'après 3) a/ on a : $x^{2x3+1} \equiv x \pmod{6}$ d'où $x^7 \equiv x \pmod{6}$

$$x^{2x_{1+1}} \equiv x \pmod{6}$$
 d'où $x^3 \equiv x \pmod{6}$

D'après 3) b/ on a : $x^{2x4} \equiv x^2 \pmod{6}$ d'où $x^8 \equiv x^2 \pmod{6}$

$$\begin{cases} x^7 - y^8 \equiv 0 \pmod{6} \\ x^3 \cdot y^2 \equiv 1 \pmod{6} \end{cases} \Leftrightarrow \begin{cases} x - y^2 \equiv 0 \pmod{6} \\ x \cdot y^2 \equiv 1 \pmod{6} \end{cases} \Leftrightarrow \begin{cases} x - y^2 \equiv 0 \pmod{6} \\ y^4 \equiv 1 \pmod{6} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{6} \\ y^2 \equiv 1 \pmod{6} \end{cases} \Leftrightarrow \begin{cases} x \equiv 1 \pmod{6} \\ y \equiv 1 \pmod{6} \end{cases} \text{ ou } \begin{cases} x \equiv 1 \pmod{6} \\ y \equiv 5 \pmod{6} \end{cases}$$

$$S_{Z^2} = \{(1+6k, 1+6k); (1+6k, 5+6k) k \in Z\}$$

Exercice 2:

1) On a : AB = AC et AC = AF d'où AB = AF.

$$(\overrightarrow{AB}, \overrightarrow{AF}) \equiv (\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{AC}, \overrightarrow{AF}) 2\pi$$

$$\equiv \frac{\pi}{2} + \frac{\pi}{3} 2\pi$$

D'où $(\overrightarrow{AB}, \overrightarrow{AF}) \equiv \frac{5\pi}{6} \ 2\pi$, par suite $r_1(B) = F$.

On a : AE = AB et AB = AC d'où AE = AC.

$$(\overrightarrow{AE}, \overrightarrow{AC}) \equiv (\overrightarrow{AE}, \overrightarrow{AB}) + (\overrightarrow{AB}, \overrightarrow{AC}) 2\pi$$

$$\equiv \frac{\pi}{3} + \frac{\pi}{2} 2\pi$$

D'où $(\overrightarrow{AE}, \overrightarrow{AC}) \equiv \frac{5\pi}{6} 2\pi$, par suite $r_1(E) = C$.

2) a/ On a : AB = AC et O milieu de [BC] donc (AO) est la médiatrice de [BC]. D'où S(B) = C.

On suppose que S(E) = E'.

On a:
$$(\overrightarrow{AB}, \overrightarrow{AE}) \equiv -(\overrightarrow{AC}, \overrightarrow{AE'}) \ 2\pi \ d$$
'où $(\overrightarrow{AC}, \overrightarrow{AE'}) \equiv \frac{\pi}{3} \ 2\pi$.

Or
$$(\overrightarrow{AC}, \overrightarrow{AF}) \equiv \frac{\pi}{3} 2\pi$$
 donc $(\overrightarrow{AC}, \overrightarrow{AE'}) \equiv (\overrightarrow{AC}, \overrightarrow{AF}) 2\pi$ d'où $(\overrightarrow{AF}, \overrightarrow{AE'}) \equiv 0 2\pi$ (1)

On a : S(E) = E' donc AE = AE', d'autre part AE = AB = AC = AF donc AF = AE'(2) D'après (1) et (2) on a : F = E', d'où S(E) = F.

On a : S(B) = C et S(E) = F donc s([BE]) = [CF].

b/ On a : (BE) \cap (CF) = { Ω } et S((BE)) = (CF), S((CF)) = (BE) Comme (BE) \cap (CF) = { Ω } alors S(Ω) = Ω .

Par suite $\Omega \in (OA)$.

- 3) a/ On a : f([BE]) = [CF] donc f(B) = C et f(E) = F ou f(B) = F et F(E) = C.
 - Si f(B) = F et f(E) = C alors $f = r_1$ car r_1 est l'unique déplacement qui envoi B en F et E en C.
 - Si (B) = C et f(E) = F alors f est un déplacement d'angle $\theta \equiv (\overrightarrow{BE}, \overrightarrow{CF}) \ 2\pi$.

Or on a
$$(\overrightarrow{BE},\overrightarrow{FC}) \equiv \frac{5\pi}{6} \ 2\pi \ (\text{car } r_1(B) = F \text{ et } r_1(E) = C) \ \text{donc} \ \theta \equiv \frac{5\pi}{6} - \pi \ 2\pi \equiv -\frac{\pi}{6} \ 2\pi$$

Comme $\theta \neq 2k\pi$, $k \in \mathbb{Z}$ alors f est une rotation d'angle $-\frac{\pi}{6}$

On considère la rotation r_2 de centre Ω et d'angle $-\frac{\pi}{6}$

✓ On a ΩB = ΩC (car Ω∈med([BC])) et (
$$\overrightarrow{\Omega}\overrightarrow{B}$$
, $\overrightarrow{\Omega}\overrightarrow{C}$) ≡ (\overrightarrow{BE} , \overrightarrow{CF}) 2π donc ($\overrightarrow{\Omega}\overrightarrow{B}$, $\overrightarrow{\Omega}\overrightarrow{C}$) ≡ $-\frac{\pi}{6}$ 2π par suite $r_2(B) = C$.

✓ On a ΩE = ΩF (car Ω∈med([EF])) et
$$(\overrightarrow{\Omega E}, \overrightarrow{\Omega F}) \equiv (\overrightarrow{BE}, \overrightarrow{CF})$$
 2π donc $(\overrightarrow{\Omega E}, \overrightarrow{\Omega F}) \equiv -\frac{\pi}{6}$ 2π par suite $r_2(E) = F$.

Par suite $f = r_2$ car r_2 est l'unique déplacement qui envoi B en C et E en F.

b/ On a : $r_2(B) = C$, $r_2(E) = F$ et $r_2(A) = A$ ' alors CA' = BA = CA donc A' est un point du cercle ζ de centre C et passant par A, et A' \neq A.

D'autre part on a : FA' = EA = FA donc A' est un point du cercle ζ' de centre F et passant par A et A' \neq A.

Conclusion: $(\zeta \cap \zeta') \setminus \{A\} = \{A'\}$ (Voir **Figure**)

On a : CA' = CA et FA' = FA et comme on a CA = FA alors CA' = CA = FA = FA' d'où le quadrilatère ACA'F est un losange.

- 4) On a g est antidéplacement tel que g(B) = F et g(E) = C.
 - a/ On a : med([BF]) ≠ med([EC]) car (BF) et (EC) ne sont pas parallèles, donc g n'est pas une symétrie orthogonale par suite g est une symétrie glissante.
 - b/ On a : AEB est un triangle équilatéral direct alors son image par g est un triangle équilatéral direct.

Comme on a g(B) = F, g(E) = C et A'CF est un triangle équilatéral direct alors g(A) = A'.

c/ Soit Δ l'axe de g et \vec{u} son vecteur, alors on a $g = t_{\vec{u}} \circ S_{\Lambda} = S_{\Lambda} \circ t_{\vec{u}}$

g(A) = A' et J milieu de [AA'] alors $J \in \Delta$ (d'après 3) b))

g(I) = J alors le milieu de [IJ] appartient à Δ d'où $\Delta = (IJ)$.

$$g(I) = J \Leftrightarrow t_{\vec{n}} oS_{\Delta}(I) = J \Leftrightarrow t_{\vec{n}}(I) = J \Leftrightarrow \vec{u} = \vec{IJ}$$

Figure

Exercice 3:

1) a/
$$\Delta = -\frac{1}{3} = (\frac{i}{\sqrt{3}})^2$$

 $z_1 = -\frac{1}{2} + \frac{1}{2\sqrt{3}}i$ et $z_2 = -\frac{1}{2} - \frac{1}{2\sqrt{3}}i$
 $S_C = \{z_1; z_2\}$
b/ $z_1 = -\frac{1}{2} + \frac{1}{2\sqrt{2}}i = \frac{1}{\sqrt{2}}e^{i\frac{5\pi}{6}}$

2) On a:
$$z_1 = -\frac{1}{2} + \frac{1}{2\sqrt{3}}i = \frac{1}{\sqrt{3}}e^{i\frac{5\pi}{6}}$$

Ainsi Ré $(z_1) = -\frac{1}{2}$ et arg $(z_1) \equiv arg(z_B)[2\pi] \equiv arg(z_C)[2\pi]$

Par suite $z_c = z_1$

3) a/
$$z_D = \frac{1}{\sqrt{3}}i$$

$$(z_1)^3 = (\frac{1}{\sqrt{3}}e^{i\frac{5\pi}{6}}) = \frac{1}{3\sqrt{3}}e^{i\frac{5\pi}{2}} = \frac{1}{3\sqrt{3}}i = z_D$$
b/ $\frac{z_D - 1}{z_1 - 1} = \frac{z_1^3 - 1}{z_1 - 1} = \frac{(z_1 - 1)(z_1^2 + z_1 + 1)}{(z_1 - 1)} = z_1^2 + z_1 + 1$

 z_1 est solution de l'équation (E) donc $z_1^2 + z_1 + 1 = z_1^2 + z_1 + \frac{1}{3} + \frac{2}{3} = \frac{2}{3}$

Par suite
$$\frac{z_{D}-1}{z_{1}-1} = \frac{2}{3}$$

c/ On a : $\frac{z_D - 1}{z_L - 1} = \frac{2}{3}$ donc les vecteurs \overrightarrow{AD} et \overrightarrow{AC} sont colinéaires d'où $D \in (AC)$.

D'autre part $z_D = \frac{1}{\sqrt{3}}i$ donc le point $D \in (O, \vec{v})$

Par suite (AC) \cap (O, \overrightarrow{v}) = {D}.

4)
$$z^2 + z \in \mathbb{R} \Leftrightarrow \overline{z^2} + \overline{z} = z^2 + z \Leftrightarrow (\overline{z} - z)(z + \overline{z} + 1) = 0 \Leftrightarrow \overline{z} = z \text{ ou } 2\operatorname{Re}(z) = -1$$

D'où $z^2 + z \in \mathbb{R} \Leftrightarrow z \in \mathbb{R} \text{ ou } \operatorname{Re}(z) = -\frac{1}{2}$

5) a/ M(z), $N(z^3)$.

 \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires $\Leftrightarrow \frac{z^3-1}{z-1} \in \mathbb{R} \Leftrightarrow (z^2+z+1) \in \mathbb{R} \Leftrightarrow (z^2+z) \in \mathbb{R}$

 \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires $\Leftrightarrow z \in \mathbb{R}$ ou $Re(z) = -\frac{1}{2}$

Par suite l'ensemble des point M tel que \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires est $\Delta \cup (O, \overrightarrow{u}) \setminus \{A\}$

b/ On a $P \in \Delta$ alors \overrightarrow{AP} et \overrightarrow{AQ} sont colinéaires.

De plus
$$\alpha \neq 0$$
 alors $(\vec{u}, \overrightarrow{OQ}) \equiv \arg(\alpha^3) \ 2\pi \equiv 3(\vec{u}, \overrightarrow{OP}) \ 2\pi$

Exercice 4:

Partie A

1) a/ On a: g'(x) < 0 pour tout x < -1 g'(x) > 0 pour tout x > -1g'(-1) = 0

X	-∞	-1		+∞
g'(x)	-	0	+	

$$\begin{array}{ll} b/\ g(x)\!<\!\frac{1}{2} \Leftrightarrow x\in -\infty, \beta\ \text{d'où }S_{_{I\!R}}=-\infty, \beta\\ g(x)\!<\!1 \Leftrightarrow x\in -\infty, \alpha\ \text{d'où }S_{_{I\!R}}=-\infty, \alpha \end{array}$$

2) On suppose que $\alpha \le \frac{1}{2}$ alors $e^{\alpha} \le \sqrt{e}$ d'où $\alpha e^{\alpha} \le \frac{1}{2} \sqrt{e}$ d'où $g(\alpha) \le \sqrt{\frac{e}{4}}$ ce qui est absurde car $g(\alpha) = 1$ et par suite $\alpha > \frac{1}{2}$.

Autrement: $g(\frac{1}{2}) = \frac{1}{2}e^{\frac{1}{2}} \approx 0.82 < 1$ d'après 1) b) On a : $\frac{1}{2} \in -\infty$, α

3) a/
$$f(\alpha) = 0$$
 et $f(\beta) = \beta e^{\beta} - (\beta e^{\beta})^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$

b/
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} [g(x) - (g(x))^2] = 0 - 0 = 0.$$

La droite d'équation : y = 0 est une asymptote horizontale à (ζ) au voisinage de $(-\infty)$

$$c/\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left[g(x) - (g(x))^2 \right] = \lim_{x\to +\infty} g(x) \left[1 - g(x) \right] = (+\infty) \times (-\infty) = -\infty.$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} e^{x} \left[1 - xe^{x} \right] = (+\infty) \times (-\infty) = -\infty.$$

La courbe (ζ) admet une branche infinie parabolique de direction celle de (O, \vec{j}) au voisinage de $(+\infty)$.

4) a/ On a
$$f(x) = g(x) - (g(x))^2$$
 donc $f'(x) = g'(x) - 2g'(x)g(x) = 2g'(x) \left[\frac{1}{2} - g(x) \right]$

b/ f'(x) = 0 sig g'(x) = 0 ou g(x) =
$$\frac{1}{2}$$

sig
$$x = -1$$
 ou $x = \beta$

c/

5)
$$a/\mathcal{A} = \int_0^\alpha |f(x) - g(x)| dx = \int_0^\alpha (g(x) - f(x)) dx = \int_0^\alpha (g(x))^2 dx = \int_0^\alpha x^2 e^{2x} dx.$$

On pose $U(x) = x^2 \to U'(x) = 2x$

$$V'(x) = e^{2x} \rightarrow V(x) = \frac{1}{2}e^{2x}$$

$$\mathcal{A} = \left[\frac{1}{2} x^2 e^{2x} \right]_0^{\alpha} - \int_0^{\alpha} x e^{2x} dx = \frac{1}{2} \alpha^2 e^{2\alpha} - \int_0^{\alpha} x e^{2x} dx.$$

On a :
$$g(\alpha) = 1$$
 donc $\frac{1}{2}\alpha^2 e^{2\alpha} = \frac{1}{2}(g(\alpha))^2 = \frac{1}{2}$

Par suite
$$\mathcal{A} = \frac{1}{2} - \int_0^{\alpha} xe^{2x} dx$$
.

b/ Par une intégration par parties de l'intégrale $\int_0^{\alpha} xe^{2x} dx$. on a :

$$\mathcal{A} = \frac{1}{2} - \left[\frac{1}{2} x e^{2x} \right]_0^{\alpha} + \int_0^{\alpha} \frac{1}{2} e^{2x} dx = \frac{1}{2} - \left[\frac{1}{2} x e^{2x} \right]_0^{\alpha} + \left[\frac{1}{4} e^{2x} \right]_0^{\alpha}$$

$$= \frac{1}{2} - \frac{1}{2} \alpha e^{2\alpha} + \frac{1}{4} e^{2\alpha} - \frac{1}{4}$$

$$= \frac{1}{4} - \frac{1}{2\alpha} \alpha^2 e^{2\alpha} + \frac{1}{4\alpha^2} \alpha^2 e^{2\alpha}$$

Comme
$$\alpha^2 e^{2\alpha} = 1$$
 alors $\mathcal{A} = \frac{1}{4} - \frac{1}{2\alpha} + \frac{1}{4\alpha^2}$

Partie B

1) a/ On a pour tout $x \in [0, \alpha]$, $1 \le e^{nx} \le e^{n\alpha}$ et $x^n \ge 0$ alors $0 \le x^n e^{nx} \le x^n e^{n\alpha}$

D'où
$$0 \le \int_0^\alpha x^n e^{nx} dx \le e^{n\alpha} \int_0^\alpha x^n dx$$

Ainsi
$$0 \le J_n \le \frac{\alpha^{n+1} e^{n\alpha}}{n+1}$$
 de plus $\alpha^{n+1} e^{n\alpha} = \alpha \left(\alpha e^{\alpha}\right)^n = \alpha \times 1 = \alpha$

Par suite
$$0 \le J_n \le \frac{\alpha}{n+1}$$

b/ On a
$$0 \le J_n \le \frac{\alpha}{n+1}$$
 et $\lim_{n \to +\infty} \frac{\alpha}{n+1} = 0$

Par suite
$$\lim_{n \to +\infty} J_n = 0$$

2) a/ Pour
$$n \ge 2$$
 on a $0 \le \alpha - \frac{1}{n}$ car $\alpha > \frac{1}{2}$

On a:
$$J_n = \int_0^{\alpha} (g(x))^n dx = \int_0^{\alpha - \frac{1}{n}} (g(x))^n dx + \int_{\alpha - \frac{1}{n}}^{\alpha} (g(x))^n dx$$

On a
$$0 \le \alpha - \frac{1}{n}$$
 et $(g(x))^n \ge 0$ pour tout $x \in \left[0, \alpha - \frac{1}{n}\right]$ donc $\int_0^{\alpha - \frac{1}{n}} (g(x))^n dx \ge 0$

Par suite
$$\int_{\alpha-\frac{1}{n}}^{\alpha} (g(x))^n dx \le J_n$$

b/ Pour
$$n \ge 2$$
 on a $\int_{\alpha - \frac{1}{n}}^{\alpha} (g(x))^n dx \le \int_0^{\alpha} (g(x))^n dx \le \frac{\alpha}{n+1}$

$$\bullet \quad \frac{\alpha}{n+1} < 1 \quad (1)$$

•
$$\int_{\alpha-\frac{1}{n}}^{\alpha} (g(x))^n dx \ge \int_{\alpha-\frac{1}{n}}^{\alpha} (g(\alpha-\frac{1}{n}))^n dx$$
, car g est croissante et positive sur

$$\left[\alpha - \frac{1}{n}, \alpha\right]$$
. De plus on a $\int_{\alpha - \frac{1}{n}}^{\alpha} \left(g(\alpha - \frac{1}{n})\right)^n dx = \frac{1}{n} \left(g(\alpha - \frac{1}{n})\right)^n (2)$

Par suite d'après (1) et (2) on a :
$$\frac{1}{n} \left(g(\alpha - \frac{1}{n}) \right)^n \le J_n \le 1$$

$$c/ \text{ On a } \ln(\sqrt[n]{n}) = \ln n^{\frac{1}{n}} = \frac{1}{n} \ln n \text{ donc } \lim_{n \to +\infty} (\sqrt[n]{n}) = \lim_{n \to +\infty} e^{\frac{\ln n}{n}} = e^0 = 1$$

$$\lim_{n\to +\infty}(\alpha-\frac{1}{n})=\alpha \text{ et g est continue en }\alpha \text{ alors }\lim_{n\to +\infty}g(\alpha-\frac{1}{n})=g(\alpha)=1$$

On a d'après 2) b/
$$\sqrt[n]{\frac{1}{n}} \left(g(\alpha - \frac{1}{n}) \right) \le \sqrt[n]{J_n} \le 1$$
 et $\lim_{n \to +\infty} \sqrt[n]{\frac{1}{n}} \left(g(\alpha - \frac{1}{n}) \right) = 1$

Par suite
$$\lim_{n \to +\infty} \sqrt[n]{J_n} = 1$$