Table 1: Characteristics of bridge circuit used by the authors

Property	Value
Analog input voltage range	0 V to 5 V
Analog input resolution	1024
Analog output type	PWM
Analog output voltage range	0 V to 5 V
Analog output resolution	256
Baud rate for RS232 protocol	$115200{ m bits^{-1}}$

- 1 Tables
- 2 Figures

Figure 1: Bridge and RC circuit

```
1: Initialize USB CDC
   while 1 do
 2:
      Receive from USB and store in A
3:
      if A[0] == 1 then
 4:
          Set A[1] as PWM out
 5:
      end if
 6:
      if A[0] == 2 then
 7:
          Read Analog input and store in B
 8:
          Send B to USB
9:
      end if
10:
11: end while
```

Figure 2: Bridge device's firmware

Figure 3: Android App home screen

Figure 4: Android App running closed loop control system with PID controller when bridge circuit is connected to a low pass filter

```
1: Initialize USB CDC
   while 1 do
 2:
      Receive from USB and store in A
3:
      if A[0] == 1 then
4:
          Set A[1] as PWM out
 5:
      end if
 6:
 7:
      if A[0] == 2 then
          Read Analog input and store in B
 8:
          Send B to USB
 9:
10:
      end if
11: end while
```

Figure 5: Android app implementation of the real-time algorithm

Figure 6: Open loop system

Figure 7: Closed loop system

Figure 8: First order low pass filter

Figure 9: Second order low pass filter.

Figure 10: Closed loop system with a PID Controller $\,$

Figure 11: Adaptive control