Sensor de Presión Barométrica ICP-

1 Documentación de Hardware

1.1 Descripción General

El módulo sensor de presión barométrica ICP-10111 es un sensor ambiental compacto con capacidades integradas de monitoreo ambiental, diseñado para aplicaciones IoT y mediciones atmosféricas precisas.

1.2 Características Principales

- Sensor de presión ICP-10111 (Alta precisión)
- Sensor ambiental BME688 (Temperatura, humedad, gas)
- Modos de bajo consumo energético
- Conectividad I2C/QWIIC
- Factor de forma compacto con orificios castellanos

2 Hardware

2.1 Technical Specifications Especificaciones Técnicas

2.1.1 Especificaciones del Sensor

Parámetro	Valor	Unidad	Notas
Rango de Presión	300-1250	hPa	Presión absoluta
Precisión de Presión	± 0.4	hPa	A 25°C
Rango de Temperatura	-40 a +85	°C	Rango de operación
Rango de Humedad	0-100	Interfaz	I2C
-	Compatible QWIIC		'

Table 1: Especificaciones técnicas

2.1.2 Especificaciones de Alimentación

Parámetro	Mín	Típ	Máx	Unidad	Condiciones
Voltaje de Alimentación	3.0	3.3	5.0	V	Operación Normal
Corriente Activa	-	1.2	2.0	mA	Medición continua
Corriente en Reposo	-	0.1	0.5	μ A	Modo standby
Salida del Regulador	-	1.8	-	V	LDO interno

Table 2: Especificaciones técnicas

PINOUT

Description:

Figure 1: Diagrama de Pines

Etiqueta	Función	Notas
VCC	Alimentación	3.3V o 5V
GND	Tierra	Tierra común para todos los componentes
SDA	Datos I2C	Línea de datos serie
SCL	Reloj I2C	Línea de reloj serie

Table 3: Especificaciones técnicas

2.3 Dimensions Dimensiones

Figure 2: Dimensiones

2.4 Topology Topología

JP1
Top View of Board Topology

Figure 3: Topología

Ref.	Descripción
IC1	Sensor de Presión Barométrica ICP-10111
IC2	Sensor Ambiental BME688
L1	LED de Encendido
U1	Regulador ME6206A18XG 1.8V
JP1	Orificios Castellanos de 2.54 mm
J1	Conector QWIIC (JST paso 1 mm) para I2C

Table 4: Especificaciones técnicas

2.5 Interfaces de Comunicación

2.5.1 Interfaz I2C

• **Dirección**: 0x63 (ICP-10111), 0x77 (BME688)

• Velocidad: Estándar (100 kHz), Rápido (400 kHz)

• Características: Conector compatible QWIIC

• Resistencias Pull-up: $4.7k\Omega$ integradas

2.5.2 Especificaciones de Interfaz Digital

• Niveles Lógicos: Compatible CMOS 3.3V

• Entrada Alta: 2.0V mínimo

• Entrada Baja: 0.8V máximo

• Corriente de Salida: 4mA típico

2.6 Características Físicas

2.6.1 Información del Encapsulado

Parámetro	Valor	Unidad
Tipo de Encapsulado	PCB Personalizado	-
Dimensiones	$25.4 \times 15.24 \times 3.2$	mm
Montaje	Orificios castellanos	Paso 2.54mm
Peso	2.1	g

Table 5: Especificaciones técnicas

2.6.2 Especificaciones Ambientales

Parámetro	Mín	Máx	Unidad	Condiciones
Temperatura de Operación	-40	+85	°C	Precisión completa
Temperatura de Almacenamiento	-55	+125	$^{\circ}\mathrm{C}$	-
Humedad	0	100	Rango de Presión	300
1250	hPa	Presión absoluta		'

Table 6: Especificaciones técnicas

2.7 Soporte de Software

2.7.1 Entorno de Desarrollo

• Arduino IDE: Soporte completo de librería

• ESP-IDF: Integración de driver nativo

• PlatformIO: Soporte multiplataforma

• CircuitPython: Librería Python disponible

2.7.2 Librerías Principales

• Driver del sensor de presión ICP-10111

• Librería del sensor ambiental BME688

• Protocolos de comunicación I2C

• Filtrado y calibración de datos

2.8 Aplicaciones

El módulo ICP-10111 es ideal para:

1. Monitoreo Meteorológico

- Medición de presión atmosférica
- Determinación de altitud
- Sistemas de predicción meteorológica

1. Sensores Ambientales IoT

- Automatización de edificios inteligentes
- Monitoreo agrícola
- Evaluación de calidad del aire

1. Dispositivos Portátiles

- Rastreadores de fitness
- Dispositivos de navegación al aire libre
- Control de altitud de drones

2.9 Seguridad y Cumplimiento

2.9.1 Certificaciones

- RoHS: Cumple con directiva de la UE
- REACH: Cumple con regulación de la UE
- CE: Compatibilidad electromagnética

2.9.2 Características de Seguridad

- Protección ESD: ±2kV HBM en todos los pines
- Protección de Polaridad Inversa: Integrada
- Protección Térmica: Monitoreo de rango de operación

2.10 Referencias

- Hoja de Datos ICP-10111
- Hoja de Datos BME688
- Hoja de Datos Regulador ME6206

2.11 Información de Pedidos

Número de Parte	Descripción	Empaque	MOQ
ICP10111-001	Módulo Estándar	Individual	1
ICP10111-DEV	Kit de Desarrollo	Caja de Kit	1
ICP10111-BULK	Pedido en Lote	Bandeja	100

Table 7: Especificaciones técnicas

2.12 Características Físicas

Figure 4: Dimensiones Físicas

Figure 5: Vista Superior

Figure 6: Vista Inferior

2.12.1 Información del Encapsulado

Parámetro	Valor	Unidad
Tipo de Encapsulado	QFN-48	-
Dimensiones	$6 \times 6 \times 0.9$	mm
Separación de Pines	0.4	$_{ m mm}$
Peso	0.5	g

Table 8: Especificaciones técnicas

2.12.2 Especificaciones Ambientales

Parámetro	Mín	Máx	Unidad	Condiciones
Temperatura de Operación	-40	+85	°C	Grado comercial
Temperatura de Almacenamiento	-55	+125	$^{\circ}\mathrm{C}$	-
Humedad	10	95	height	<u>'</u>

Table 9: Especificaciones técnicas

2.13 Soporte de Software

2.13.1 Entorno de Desarrollo

- Arduino IDE: Soporte completo con núcleo ESP32
- ESP-IDF: Framework nativo de Espressif
- PlatformIO: Soporte IDE multiplataforma
- MicroPython: Soporte Python para desarrollo rápido

2.13.2 Librerías Principales

- Conectividad WiFi Bluetooth
- Sistema operativo en tiempo real FreeRTOS
- Capa de abstracción de hardware (HAL)
- Soporte de actualización por aire (OTA)

2.14 Aplicaciones

El módulo DevLab es ideal para:

1. Sensores y Actuadores IoT

- Monitoreo ambiental
- Dispositivos domóticos
- Automatización industrial

1. Prototipado y Desarrollo

- Pruebas de concepto rápidas
- Proyectos educativos
- Aplicaciones de investigación

1. Productos Comerciales

- Electrodomésticos inteligentes
- Dispositivos vestibles
- Iluminación conectada

2.15 Seguridad y Cumplimiento

2.15.1 Certificaciones

• **FCC**: Parte 15.247 (USA)

• IC: RSS-210 (Canadá)

2.15.2 Características de Seguridad

• Protección ESD: ± 2 kV HBM en todos los pines

• Inmunidad Latch-up: $\pm 100 mA$

• Protección Térmica: Apagado térmico automático

2.16 Información de Pedidos

Número de Parte	Descripción	Empaque	MOQ
DEVLAB-001	Módulo Estándar	Bandeja	100
DEVLAB-001R	Compatible RoHS	Tape	Reel
1000		'	'
DEVLAB-DEV	Kit de Desarrollo	Caja Individual	1

Table 10: Especificaciones técnicas

2.17 Historial de Revisiones

Versión	Fecha	Cambios
1.0	2025-07-18	Lanzamiento inicial

Table 11: Especificaciones técnicas

2.18 Esquemáticos

Figure 7: Esquemático del Circuito

 $Para\ soporte\ t\'ecnico\ e\ informaci\'on\ adicional,\ visita\ nuestro\ sitio\ web\ o\ contacta\ a\ nuestro\ equipo\ de\ ingenier\'a.$