Outils Mathématiques Année 2024-2025

Interrogation 1

6 Mars 2025 Durée : 1h

Attention : Lorsqu'un calcul est demandé, il est attendu que les étapes permettant d'aboutir au résultat soient détaillées. Plus généralement, toute réponse doit être justifiée.

Exercice 1 (Inversion matricielle)

1/ Soient
$$A = \begin{pmatrix} 2 & -2 \\ 1 & -2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$.

Inverser les matrices A et B en appliquant la méthode du pivot.

$$\mathbf{2}/ \text{ Soit } C = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

- a) Calculer C^2 puis $C^2 3C$.
- b) En déduire que C est inversible et donner l'expression de son inverse C^{-1} .

Exercice 2 (Diagonalisation)

Soit
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 2 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$
.

- 1/ Calculer le polynôme caractéristique de la matrice A en le laissant sous forme factorisée. En déduire l'ensemble des valeurs propres de la matrice A.
- 2/ Trouver une base de chacun des sous-espaces propres de la matrice A.
- $\mathbf{3}/$ La matrice A est-elle diagonalisable? Justifier.

Exercice 3 (Loi binomiale)

Rappel:

- On dit que la variable aléatoire X suit la **loi binomiale** de paramètres $n \in \mathbb{N}^*, p \in]0,1[$ et on note $X \sim \mathcal{B}(n,p)$ si X prend ses valeurs dans $\{0,1,...,n\}$ et si pour tout $k \in \{0,1,...,n\}, \mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- On rappelle la **formule du capitaine**. Pour $1 \le k \le n$, on a :

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

Soit $p \in [0, 1[$ et soit X une variable aléatoire suivant la loi Binomiale $\mathcal{B}(5; p)$.

- 1/ Calculer $\mathbb{E}(X)$.
- 2 / Calculer $\mathbb{E}(X(X-1))$.
- 3/ Calculer $\mathbb{V}(X)$.
- 4/ Pour quelle valeur de p la variance de X est-elle maximale?

Bonus (Loi uniforme)

À ne faire que si la totalité des exercices précédents ont été traités.

Définition:

Soit $n \in \mathbb{N}^*$. On dit que la variable aléatoire X suit la **loi uniforme** sur $\{1, 2, ..., n\}$ et on note $X \sim \mathcal{U}(\{1, 2, ..., n\})$ si X prend ses valeurs dans $\{1, 2, ..., n\}$ et si pour tout $k \in \{1, 2, ..., n\}$, $\mathbb{P}(X = k) = 1/n$.

On pose n = 19. Soit $X \sim \mathcal{U}(\{1, 2, ..., n\})$.

- 1/ Calculer $\mathbb{E}(X)$.
- $\mathbf{2}/$ On admet que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}.$ Calculer $\mathbb{V}(X).$