such that $a_n = c$ for all $n \ge N$.

(1) Let (a_n) be a sequence in \mathbb{R} , and consider the bi-implication: " $\lim a_n = \infty \iff \lim \frac{1}{a_n} = 0$."

For each direction of this implication, either prove that direction if it is true, or else give a

Definition: A sequence (a_n) of real numbers is eventually constant if there is $c \in \mathbb{R}$ and $N \in \mathbb{N}$

Consider M==, then for some N>M,

So anzé = lance vhenever n >N

So lim a = lin = 0

But liman = -00

an >M wherever n>N

counterexample if it is false.

Forward direction:

Proof Suppose liman = 00

let 2 70

So lim on =0

Counterexample Consider an = -n

Backword direction:

(2) Let (a_n) and (b_n) be sequences of real numbers. Prove that if $\lim a_n = 0$ and (b_n) is bounded, then $\lim a_n b_n = 0$.

Let
$$(a_n)$$
 and (b_n) be sequences of real numbers. Prove that if $\lim a_n = 0$ and (b_n) is bounded, then $\lim a_n b_n = 0$.

Proof. Since lbn is bounded, (lbn) is also bounded.

Consider the constant squence $S_n = \sup\{bn\}$

Then $\lim_n S_n = \sup\{bn\}$

Since $\lim_n S_n = \sup\{bn\}$

Since
$$\lim(an) = 0 \implies \lim(an) = 0$$

So $\lim[ansn] = \lim[an] \cdot \lim[sn] = 0$

(3) Determine the limits (in $\mathbb{R} \cup \{\pm \infty\}$) of the following sequences, and prove your results: (a) $\lim_{n \to \infty} \frac{2^n}{n!}$ (b) $\lim_{n \to \infty} \frac{n^n}{n!}$ (c) $\lim_{n \to \infty} b_n$, where $b_1 = 2$ and $b_{n+1} = \frac{b_n^2 + 2}{2b}$ (a) $\lim_{n \to \infty} \frac{2}{n!} = 0$ (C) Assume limbn=1 then $|imb_{n+1} = |im\frac{bn+2}{2bn}$ Proof Consider an = 2 = lin on + lim on Take nel $\lim_{n\to\infty} \left(\frac{a_{n+1}}{a_n} \right) = \lim_{n\to\infty} \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n}$ コに北ナも 北= · 二年 = lin = 0<1 Since bn >0 for all So $\lim_{n\to\infty} \frac{2^n}{n!} = 0$ Therefore lim by con (b) $\lim_{n\to\infty} \frac{n^n}{n!} = t\infty$ only be Is it it exists. $\frac{p_{not}}{n'} = \frac{n}{n-1} - \frac{n}{n-2} \cdots \frac{n}{1}$ Now we prove that (by)
does converge let M70 Let NEW, brit = bn + bn Consider IV = TM7 let N >N ben n' >N >N >M $\Rightarrow 2 \frac{b_n}{h} = \sqrt{2}$ So lim M=+0 Since b1=2=>Ynepv, bn >12 So bong-lim (1+ b) <1 So for any NEW Therefore (bn) is decreasing and bounded below - (bn) converges and San. Therefore Tim(bn)=12

(4) Suppose A is a discrete² subset of \mathbb{R} , and let (a_n) be a convergent sequence of numbers in A. Prove that either (a_n) is eventually constant or $\lim a_n \notin A$.

hw3 D discrete A SR 中的作意 seq. 要在 eventually const 要在 lin(an) 在A 2.94

Proof. We prove it by contradiction

Write liman=L

Assume (an) is not eventually constant
and liman EA

Since A is discrete, there exists some $\varepsilon > 0$ such that $(l-\varepsilon, l+\varepsilon) \cap A(l) = \emptyset$

Since $\limsup_{n \to \infty} |a_n - U| < \varepsilon$, and since for all $n > \infty$, $|a_n - U| < \varepsilon$, and since (an) is not eventually constant, there exists $n > \infty$ st. an $\neq U$ and $|a_n - U| < \varepsilon$, i.e. an $e(U - \varepsilon)$ the So an $e(U - \varepsilon)$ the u = 0 for u = 0.

contradicting with Ct E, LtEJNAI(1) = po

This finishes the proof that (On) is either eventually constant or limbor EA

So an $\leq \frac{M}{M} = \epsilon$ S_0 $\lim_{n\to\infty} (a_n) = 0$

Since for each 9 = 2, there are only finitely many terms of (an) that has 9 as denominator Consider $N = \max \{ k : a_k = \frac{p}{q} \text{ for some } p \leq M \}$ Take arbitrary N>N+1 then $a_n = \frac{M}{q}$ where $q > \frac{M}{\epsilon}$

(5) For each positive integer M, let \mathbb{Q}_M be the set of all rational numbers m/n where $m,n\in\mathbb{Z}$

converges.

let 270

and $|m| \leq M$. Prove that for all $M \in \mathbb{N}$, every sequence of distinct numbers in \mathbb{Q}_M

Let (an) be an abitrary sequence in On

This finishes the proof that every sequence of distinct numbers in On converges

- (6) Let (a_n) and (b_n) be sequences of real numbers such that $a_n < b_n$ for all n. (a) Show that if $\lim a_n = \infty$, then $\lim b_n = \infty$.
 - (b) Given an example to show that (a_n) and (b_n) could converge to the same real number.

 - (a) Suppose liman = 00
 - Lot M>0 and fix it Then for some NEIN aN>M whenever N>N Since ancbn for all n]
 - bn > an > M for all n>N Therefore lim (bn)=00
 - Consider an = $\frac{1}{n}$, $bn = \frac{2}{n}$ for all $n \in \mathbb{N}$ So an con for all NEIN
 - But lim an = limbn = 0

(7) Let (a_n) be a sequence of positive real numbers. Show that if $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L > 1$, then $\lim a_n = \infty.$

hw3 ② if positive seq (an) p
$$\lim_{\Omega n} \frac{\partial n}{\partial n} = \lfloor 2 \rfloor$$
, where $\lim_{\Omega n} \frac{\partial n}{\partial n} = \lfloor 2 \rfloor$. Since $\lim_{\Omega n} \frac{\partial n}{\partial n} = \lfloor 1 \rfloor$, there is some $M \in M$ s.t. $|\frac{\partial n}{\partial n} - \lfloor 1 \rfloor \leq |\frac{\partial n}{\partial n}| = |\frac{\partial$

(a) $(a_n)_{n\geq 1}$, where $a_n=(-1)^{n+1}+\frac{(-1)^n}{n}$ | insup ($a_n=0$) = [, | ininf ($a_n=0$) = -[

(c) (c_n) , where $c: \mathbb{N} \to \mathbb{Q}$ is any bijection $\limsup LC_n = +\infty$, $\liminf (C_n) = -\infty$ (d) (d_n) , where $d_n = \ln n + \cos n$ limsup (dn) = liminf (dn) = +00

(b) $(b_n)_{n\geq 1}$, where $b_n=\sin\frac{1}{n}$ | insep $(b_n)=\lim_{n\to\infty}(b_n)=0$

$$(dn) = +\alpha$$

 $\lim_{n\to\infty} 5n = \frac{2}{3}b + \frac{1}{3}a$ $\lim_{n\to\infty} 5n = \frac{2}{3}b + \frac{1}{3}a$

(9) Let $a, b \in \mathbb{R}$ with a < b. Find the limit of the sequence (s_n) defined recursively by $s_1 = a$,

 $s_{n+2} = \frac{s_n + s_{n+1}}{2}.$

Froof
Let
$$dn = Snti-Sn$$
 for all $n \in \mathbb{N}$
Then $d_1 = S_2 - S_1 = b - a$

 $s_2 = b$, and for all $n \in \mathbb{N}$,

Prove your claim.

 $\frac{1}{2} dn = \frac{S_{n-1} + S_n}{2} - S_n, \text{ if } n \ge 2$ $= -\left(\frac{1}{2}S_n - \frac{1}{2}S_{n-1}\right) = -\frac{1}{2}d_{n-1}$ $\frac{1}{2}S_n - \frac{1}{2}S_{n-1} = -\frac{1}{2}d_{n-1}$

Note that for all
$$n \in \mathbb{N}$$
, $S_{n+1} = (\frac{2}{3} S_{n+1} - S_n) + S_1$

$$= S_1 + \frac{2}{3} dn = \alpha + \frac{1 - (-\frac{1}{2})^n}{1 - (-\frac{1}{2})^n} d_1 = \alpha + \frac{2}{3} (1 - (-\frac{1}{2})^n) (b - \alpha)$$

$$S_0 \lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{n+1} = \lim_{n \to \infty} (\alpha + \frac{2}{3} (b - \alpha) - \frac{2}{3} (-\frac{1}{2})^n (b - \alpha)$$

$$= \frac{2}{3} b + \frac{1}{3} \alpha - \frac{2}{3} (b - \alpha) \lim_{n \to \infty} (-\frac{1}{2})^n \text{ by limit law}$$

Since $|-\frac{1}{2}| < 1$, $\lim_{n \to \infty} (-\frac{1}{2}) = 1$ So $\lim_{n \to \infty} S_n = \frac{2}{3}b + \frac{1}{3}a$ (10) Give an example of a divergent sequence (a_n) in \mathbb{R} with a convergent subsequence such that all convergent subsequences of (a_n) converge to the same limit. Consider: an = $n^{(1)^n}$ i.e. $(a_n) = (1,2,\frac{1}{3},4,\frac{1}{5},\frac{1}{6},...)$ Then (an) diverges but every anvergent subsequence of (an) convergent to L=D Proof O Consider $(\Omega_{n_k}: k \text{ is odd}) = (1, 3, 5, ...) \rightarrow 0$ 2 Every convergent subsequence of (an) converges to 0 Let (any) a convergent subsequence of (an) Then kink is a strictly increasing function (i) Suppose there are infinitely KGIN s.t ye is even Now we show that (any divenes, so this is impossible Let LER. Take M=1. Let N EN and fix it. If there is no nk >N s.t. ank > L+L then there one only finitely many even nx Contradicts which indicates there must exists ME>N s.t Ank-U >M (Ank) diverges, contradicts Therefore there can only be finitely many KEN So we can cut the tail and then all remaining Mr (KENJONE odd =) Cank) converges to 0.

(11) Let
$$(a_n)$$
 and (b_n) be bounded sequences of positive real numbers.

(a) Show that $\limsup (a_n + b_n) \le \limsup \sup (a_n) + \limsup \sup (b_n)$.

(b) Give an example to show that $\limsup \sup \sup (a_n + b_n) \min \sup \sup (a_n) + \limsup \sup \sup \sup \sup (a_n) + \limsup \sup \sup \sup \sup (b_n)$.

(c) Show that if (a_n) converges, then $\limsup \sup (a_n + b_n) = \limsup \sup \sup (a_n) + \limsup \sup \sup \sup (b_n)$.

(a) Proof $\lim_{n \to \infty} \sup (a_n + b_n) = \lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $n \in \mathbb{N}$, Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k \ge n\}$

Let $\lim_{n \to \infty} \sup \{a_k + b_k \mid k$

(12) Prove that there exists a sequence (a_n) in \mathbb{R} such that for every $r \in \mathbb{R}$ there is a subsequence of (a_n) that converges to r. hw33 RPAE-t seq 使得 {all subseq, lim of (an)}=R Proof Since N & Q, there exists a surjective throther S: N - Q. Note that (Sn) is a sequence. Let rell be arbitrary real number Then there exists a sequence in Q (Gn) s.b. (9n) -> r Since S: N-D as surjective, consider the subsequence (Sn/L) of (Sn) defined by Snx = 9m for some MEN, for all kelly Then Take a monotonic subsequence of (Snx) as (Sm) (Sm) is a subsequence of (Snx), so it is also a subsequence of CSn) let 270. Then there is some NEIN s.t. |9n-r/ < E whenever n>N Since there is some term Sm st Sm = 9N and since (Sm) is monotonic, Isra-+ (< & whenever m>M Therefore (Sm) ->r

Consider $Sn = \sum_{k=1}^{n} \frac{1}{k}$, which is a partial Jum of harmonic series. $A = \{S_n : n \in \mathbb{N}\}$ There is no subsequential limit in S_n , S_n

(here is no subsequential limit in Sn) so

A has no limit point \Rightarrow A'CA \Rightarrow A is

clased

And for each Sn (ne N), consider

But there is no $\epsilon > 0$ s.t. $|a-b| > \epsilon$ for each pair of a, b $\epsilon + 0$, since if we take $\epsilon > 0$ $\epsilon + 0$ $\epsilon +$