

Structure Learning

Scenario 1

Consider an experiment where we toss two standard coins C_1 and C_2 independently. We are given a data set with 100 instances of this experiment. We would like to **learn a model for this** scenario.

- 27 times the result was C_1 = head C_2 = head
- 22 times the result was C_1 = head C_2 = tail
- 25 times the result was C_1 = tail C_2 = head
- 26 times the result was C_1 = tail C_2 = tail

Assessing Empirical Independence

- Given a dataset of observations can we decide if two variables X and Y are independent?
 - Consider the empirical distributions p(X), p(Y) and p(X, Y), the mutual information (MI) as the "difference" between p(X, Y) and p(X)p(Y) is defined as

$$MI \equiv \sum_{x,y \in dom(X,Y)} P(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

This is known as the Kullback-Leibler divergence (also called relative entropy)

If the MI is equal to 0 then X and Y are independent

- 1. Are the two coins independent in the empirical distribution?
 Is this expected?
- 2. How does a BN for this scenario would look like?

• 27 times the result was
$$C_1$$
= head C_2 = head

• 22 times the result was
$$C_1$$
= head C_2 = tail

• 25 times the result was
$$C_1$$
= tail C_2 = head

• 26 times the result was
$$C_1$$
= tail C_2 = tail

Scenario 2

We scan the sports section of our news feed for 100 days and choose an article at random each day. We mark X=1 if the word "rain" appears in the article, and X=0. Similarly, Y=1 will indicate whether the word "football" appears in the article, and Y=0 if this is not the case.

- Suppose that we have similar results as before:
- 27 times the result was X = 1 Y = 1
- 22 times the result was X = 1 Y = 0
- 25 times the result was X = 0 Y = 1
- 26 times the result was X = 0 Y = 0

??

Are the X and Y independent?

Does the model underlying this scenario contains an edge between X and Y?

Assessing Empirical Independence

- Given a dataset of observations can we decide if two variables X and Y are independent?
 - Consider the empirical distributions p(X), p(Y) and P(X,Y), the *mutual information (MI)* as the "difference" between P(X,Y) and p(X)p(Y) is defined as

$$\sum_{x,y \in dom(X,Y)} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

If the MI is equal to 0 then X and Y are independent

Problem: Since we formed P(X) and P(Y) based on a set of observations. It is likely hat even when $X \perp Y$ holds in the true distribution p* the MI will not be zero

Finding Dependencies and Correlations in Data

Example: the presence or absence of a disease in a human being has a direct influence on whether a test for that disease turns out positive or negative.

Correlations between variables can be revealed, for example, using statistical independence tests.

But we might want to get more...

A BN structure can distinguish between direct and indirect dependencies (both of which lead to correlation in the resulting distribution).

Learning

True distribution P^{*} (corresponding to a BN G^{*})

Dataset of instances sampled from P^*

$$D = \{\mathbf{d}_1, ..., \mathbf{d}_m\}$$

Data

Network G

Unknown Structure and Complete Data

Learning

$P(Y_2)$	$ X_1 $
----------	---------

X_1	$Y_2 = 0$	$Y_2 = 1$
0	0	1
1	0.5	0.5

 $P(Y_1 \mid X_1, X_2)$

X_1	X_2	$Y_1 = 0$	$Y_1 = 1$
0	0	0	1
0	1	0.5	0.5
1	0	0.7	0.3
1	1	0.25	0.75

The importance of correctly reconstructing the network structure depends on our learning goal

- Goal 1: Understanding the domain structure
- Goal 2: Use the learned model for reasoning about new instances

Learning the Structure of the Model (from Data)

For knowledge discovery: by examining the dependencies in the learned network, we can learn the dependency structure relating variables in our domain.

- ullet There can be many perfect maps for a distribution P^*
 - \rightarrow G^* is not identifiable from the data
- ullet Learning G^* is hard to achieve
 - The sample data are noisy and do not reconstruct the underlying distribution perfectly
 - Difficult to detect which independencies are present in the underlying distribution

Learning the Structure of the Model (from Data)

Density estimation: Estimate a statistical model of the underlying distribution.

generalise to new instances

Because G^* captures the true dependencies and independencies in the domain, it seems is intuitively reasonable that the best generalisation will be obtained if we recover the structure G^*

What happens if we make mistakes in the structure? How does a more complex model (one with more edges) behave with respect to the true distribution P^st ?

Back to Scenario 1

Assume 20 instances as follows:

3 times: X = heads Y = heads

6 times: X = heads Y = tails

5 times: X = tails Y = heads

6 times: X = tails Y = tails

What is of estimation of (using MLE)?

- 1. p(X = heads)?
- 2. p(Y = heads | X = heads)?
- 3. p(Y=heads | X= tails)?

Back to Scenario 1

Assume 20 instances as follows:

```
3 times: X = heads Y = heads
```

6 times: X = heads Y = tails

5 times: X = tails Y = heads

6 times: X = tails Y = tails

```
p(X = heads)= 0.45
p(Y = heads | X= heads)= 1/3
p(Y=heads | X= tails)= 5/11
```


Back to Scenario 1

Assume 20 instances as follows:

```
3 times: X = head Y = head
```

6 times:
$$X = head$$
 $Y = tails$

5 times:
$$X = tails$$
 $Y = head$

6 times:
$$X = tails$$
 $Y = tails$

$$p(Y = heads) = 8/20 = 0.4$$

When doing density estimation from limited data, it is often better to prefer a sparser structure.

Importance of Accurate Structure

True model

Missing Edge

- Incorrect Dependencies
- Correct distribution P* cannot be learned
- Can generalise better

- Spurious dependencies
- Can correctly learn P*
- Increases the number of parameters
- Worse generalisation

Structure Learning Approaches

- Score-based:
 - Define a scoring function that evaluates how well a structure matches the data
 - Search for a structure that maximises the score
 - It amounts to an optimisation problem over the space of network structures

SEARCHING OVER STRUCTURES (I)

Learning as an Optimisation Problem

Input:

- Training data
- Scoring function
- Set of possible structures

Output:

- A network that maximises the score
- Key property property for computational efficiency is the decomposability of the score function:

$$score(G) = \sum_{i} score(X_i | pa(X_i))$$

Learning simple Structures

- At most one parent per variable: trees and forest
- Why?
 - Mathematically elegant
 - Efficient optimisation
 - Sparse parametrisation
 - → Reducing the possibility of overfitting the data

Learning Forest

Provided that the score function enjoys decomposability

Score = sum of edge scores + constant

Let us define weight of edge $X_i \to X_j$ as

$$w(i \rightarrow j) = \text{score}((X_j | X_i)) - \text{score}(X_j)$$

A score satisfies score equivalence if is assigns the same score to graphs satisfying the same conditional independency assumptions.

For a score satisfying score equivalence it holds that:

$$w(i \to j) = w(j \to i)$$

We can use an undirected graph

Recall

- Different graphs can represent the same conditional independence assumptions.
- Using the notion of Markov equivalence we can tell whether this is indeed the case.
- As a recall exercise, test whether the BN above represent the same conditional independence assumptions.

Learning Forest (algorithm)

• Define undirected graph with a node for each variable $X_1, ..., X_n$

- Set $w(i, j) = \max[\operatorname{score}(X_j | X_i) \operatorname{score}(X_j), 0]$
- Find forest with maximal weight
 - We can use any standard algorithm for maximum weight spanning tree (e.g. Prim's or Kruskal's) in $O(n^2)$ time
 - Remove all edges of weight 0 to produce a forest

We consider 0 to eliminate negative edges. (Some scoring functions might penalise edges with a negative score)

Summary

- Structure learning can be reduced to an optimisation problem over the combinatorial space of graph structures.
- For score-based approaches, decomposability of the scoring function allows us to consider scores of each family (i.e., a node and its parents) separately.
- For tree structures, we can use standard maximum weight spanning tree algorithms and solve the problem efficiently in quadratic time.

Summary

- The problem of learning a BN structure can be seen as an optimisation problem consisting of two parts:
 - 1. Define a scoring function
 - 2. Come up with an algorithm optimising the scoring function
- For trees we can apply a greedy algorithm for finding de maximum weight spanning tree.

SEARCHING OVER STRUCTURES (II)

Learning as an Optimisation Problem

Input:

- Training data
- Scoring function
- Set of possible structures

Output:

- A network that maximises the score

Greedy Hill Climbing

• Initial G:

- Empty Network
- Best tree
- A random network
- A network constructed using prior knowledge

At each iteration:

- Consider score for all possible changes (based on the operator we have defined)
- Apply change that maximally improve the score
- Stop when no modification improves the score

We have then reached a local maximum

Beyond Trees

Finding maximal scoring network structures with at most K parents for each variable is **NP-hard** for k>1.

- Thus, using the simple greedy algorithm is not longer guaranteed to work e.g. on structures allowing two parents.
- No efficient algorithm is likely to be found for this problem

Heuristic Search

 To tackle this problem we can use heuristic hill climbing search

Given a BN G, we can consider **changes** to the network and see whether these changes **improve its** score.

For example: add/remove edges, reverse an edge

Design Choices

Search operators:

- Local step
- Global steps

Search techniques:

- Greedy hill-climbing
- Best first search
- Simulated Annealing,
- **>**

??

Which of the following might pose problems for learning the correct structure?

- 1. Discrete steps in the score while changing the structure
- 2. Small changes of the network lead to no or very small changes in the score
- 3. Local maxima
- 4. The inability to express edge deletion as an atomic operation on the network structure

Pitfalls

- Greedy hill-climbing can get stuck in :
 - Local maxima
 - Plateau: changes on the network do not affect the score
 - Equivalent networks are often neighbours in the search space

Simple Algorithm to avoid Pitfalls

Greedy hill-climbing

► Random restarts

Take a number of random steps when stuck, and then start climbing again

► Forbidden list

- Keep a list of the last N steps taken
- Search cannot reverse any of the steps in the list

Summary

- BN structure learning is useful for building better predictive models
 - Domain experts don't know the structure well
 - For Knowledge discovery
- Finding highest-scoring structures is NP-hard for structures beyond trees
 - Unlikely to find efficient algorithms
 - → We can resort to simple heuristic search
 - Local steps: edge addition, deletion and reversal
 - Augmented hill climbing algorithms to avoid local maxima
 - → There are better algorithms
 - Make larger progress on the search space
 - Computationally more expensive and harder to implement