Appl. No. 09/964,364

Art Unit 1764

February 26, 2004

Supplemental to the Reply of December 4, 2003

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the present application.

Listing of Claims:

- 1. (Currently Amended) A process of separating or purifying 1,1,1,3,3-pentafluoropropane in which a mixture comprising at least 1,1,1,3,3-pentafluoropropane and hydrogen fluoride is subjected to a distillation step so that a distillate is obtained which comprises an 1, 1, 1, 3, 3 essentially of azeotropic mixture consisting pentafluoropropane and hydrogen fluoride, wherein under a pressure in a range of 2.95 kg/cm²-gauge to 9.60 kg/cm²-gauge, the azeotropic mixture has a at the temperature of about 40°C to about 80°C, the azeotropic mixture has a 1,1,1,3,3-pentafluoropropane/hydrogen fluoride molar ratio in a range of about 34.5/65.5 to about bottom product is obtained which comprises 48.5/51.5, and a hydrogen 1,1,1,3,3-pentafluoropropane substantially free from fluoride.
- 2. (Currently Amended) A process of separating or purifying hydrogen fluoride in which a mixture comprising at least 1,1,1,3,3-pentafluoropropane and hydrogen fluoride is subjected to a distillation step so that a distillate is obtained which comprises an

Appl. No. 09/964,364

Art Unit 1764

February 26, 2004

Supplemental to the Reply of December 4, 2003

azeotropic mixture consisting essentially of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride, wherein under a pressure in a range of 2.95 kg/cm²-gauge to 9.60 kg/cm²-gauge, the azeotropic mixture has a temperature of about 40°C to about 80°C, 80°C and has a 1,1,1,3,3-pentafluoropropane/hydrogen fluoride molar ratio in a range of about 34.5/65.5 to about 48.5/51.5, and a bottom product is obtained which comprises hydrogen fluoride substantially free from 1,1,1,3,3-pentafluoropropane.

3. (Currently Amended) A process of treating a feed mixture comprising at least 1,1,1,3,3-pentafluoropropane and hydrogen fluoride, which process comprises the steps of:

subjecting the feed mixture to a first distillation stage, whereby

- a first distillate is obtained which comprises an azeotropic mixture consisting essentially of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride, wherein under a pressure in a range of 2.95 kg/cm²-gauge to 9.60 kg/cm²-gauge, the azeotropic mixture of the first distillate has a temperature of about 40°C to 80°C,—and about 80°C and a 1,1,1,3,3-pentafluoropropane/hydrogen fluoride molar ratio in a range of about 34.5/65.5 to about 48.5/51.5, and
- a first bottom product is obtained which comprises 1,1,1,3,3-pentafluoropropane substantially free from hydrogen fluoride when a

Appl. No. 09/964,364 Art Unit 1764
February 26, 2004
Supplemental to the Reply of December 4, 2003

1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the feed mixture is larger than the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the first distillate, or a first bottom product is obtained which comprises hydrogen fluoride substantially free from 1,1,1,3,3-pentafluoropropane when the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the feed mixture is smaller than the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the first distillate, and

subjecting the first distillate to a second distillation stage which is operated at a pressure which is different from that of the first distillation stage, whereby

a second distillate is obtained which comprises an azeotropic mixture consisting essentially of 1,1,1,3,33-pentafluoropropane and hydrogen fluoride, wherein under a pressure in a range of 2.95 kg/cm²-gauge to 9.60 kg/cm²-gauge, the azeotropic mixture of the second distillate has a temperature of about 40°C to 80°C, and about 80°C and a 1,1,1,3,3-pentafluoropropane/hydrogen fluoride molar ratio in a range of about 34.5/65.5 to about 48.5/51.5, and

a second bottom product is obtained which comprises 1,1,1,3,3-pentafluoropropane substantially free from hydrogen fluoride when the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the first distillate is larger than the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the second distillate, or a second bottom product

Appl. No. 09/964,364 ~

Art Unit 1764

February 26, 2004

Supplemental to the Reply of December 4, 2003

is obtained which comprises hydrogen fluoride substantially free from 1,1,1,3,3-pentafluoropropane when the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the first distillate is smaller than the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the second distillate.

- 4. (Previously Presented) The process according to claim 3, wherein the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the feed mixture islarger than the 1,1,1,3,33pentafluoropropane/hydrogen fluoridc ratio of the first distillate 1,1,1,3,3-pentafluoropropane/hydrogen and also larger than the second distillate, and the 1,1,1,3,3ratio of the pentafluoropropane/hydrogen fluoride ratio of the first distillate is smaller than the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the second distillate.
- (Previously Presented) The process according to claim 3, wherein the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of smaller than the 1,1,1,3,3the feed mixture is pentafluoropropane/hydrogen fluoride ratio of the first distillate 1,1,1,3,3-pentafluoropropane/hydrogen and also smaller than the the 1, 1, 1, 3, 3second distillate, and fluoride ratio of the pentafluoropropane/hydrogen fluoride ratio of the first distillate is

Appl. No. 09/964,364 Art Unit 1764 February 26, 2004 Supplemental to the Reply of December 4, 2003

larger than the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the second distillate.

- (Previously Presented) The process according to claim 3, wherein the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the feed mixture is between the 1,1,1,3,3-pentafluoropropane/hydrogen the first distillate and the R-1, 1, 1, 3, 3fluoride ratio of pentafluoropropane/hydrogen fluoride ratio of the second distillate, and the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the 1,1,1,3,3first distillate is larger than the pentafluoropropane/hydrogen fluoride ratio of the second distillate.
- 7. (Previously Presented) The process according to claim 3, wherein the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the feed mixture is between the 1,1,1,3,3-pentafluoropropane/hydrogen distillate the 1,1,1,3,3fluoride ratio of the first and pentafluoropropane/hydrogen fluoride ratio of the second distillate, and the 1,1,1,3,3-pentafluoropropane/hydrogen fluoride ratio of the distillate iş smaller than the 1, 1, 1, 3, 3 first pentafluoropropane/hydrogen fluoride ratio of the second distillate.
- 8. (Previously Presented) The process according to claim 4, wherein the first distillation stage is operated at a pressure in the

Appl. No. 09/964,364 Art Unit 1764 February 26, 2004 Supplemental to the Reply of December 4, 2003

range between 1 kg/cm²-G and 4 kg/cm²-G or in the range between 8 kg/cm²-G and 20 kg/cm²-G, and the second distillation stage is operated at a pressure in the range between 4 kg/cm²-G and 8 kg/cm²-G.

- 9. (Previously Presented) The process according to claim 5, wherein the first distillation stage is operated at a pressure in the range between 4 kg/cm²-G and 8 kg/cm²-G, and the second distillation stage is operated at a pressure in the range between 1 kg/cm²-G and 4 kg/cm²-G or in the range between 8 kg/cm²-G and 20 kg/cm²-G.
- 10. (Previously Presented) The process according to claim 6, wherein the first distillation stage is operated at a pressure in the range between 4 kg/cm²-G and 8 kg/cm²-G, and the second distillation stage is operated at a pressure in the range between 1 kg/cm²-G and 4 kg/cm²-G or in the range between 8 kg/cm²-G and 20 kg/cm²-G.
- 11. (Previously Presented) The process according to claim 7, the first distillation stage is operated at a pressure in the range between 1 kg/cm²-G and 4 kg/cm²-G or in the range between 8 kg/cm²-G and 20 kg/cm²-G, and the second distillation stage is operated at a pressure in the range between 4 kg/cm²-G and 8 kg/cm²-G.

12. (Canceled)