$$\pi^{AsianPut}(T) = f(S_T, M) = \left(\frac{1}{T} \int_{t_0}^T S_t dt - S_T\right)^+$$

bzw.

$$\pi^{AsianPut}(T) = f(S_T, M) = \left(\frac{1}{N} \sum_{i=1}^{N} S_{t_i} - S_T\right)^{+}$$

angeben.

Bewertung Die Bewertung der aktuellen Optionspreise

$$\pi^{AsianOption}(T_0) = \mathbb{E}\left[e^{-r(T-T_0)}f(S_T, M)\right]$$

erfolgt mit den Baumverfahren aus Abschnitt 6.12.3.

Pa	ar	a	m	ıe	te	r
----	----	---	---	----	----	---

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Call / Put
Bewertungstyp		diskret / stetig
Bewertungszeitpunkte	t_i	$t_0 < t_i < T$
Art des Mittels		arithmetisch / geometrisch
vergangene Bewertungszeitpunkte		$\forall t_i: t_i \leq T_0$
Währung		
Produkt ID		

6.2 Barriereoptionen

Barriere Optionen sind Termingeschäfte, die den Verkäufer der Option verpflichten dem Käufer am Laufzeitende T den Payoff zu bezahlen, sollte dieser positiv sein. Die Endauszahlung ist abhängig von einem Ausübungspreis (Strike) K, vom Endwert des Aktienkurses und vom Kursverlauf der Aktie S_t während der Laufzeit. Die Abhängigkeit besteht darin, dass der Aktienkurs Schranken nicht überschreiten darf oder sie überschreiten muss. Im ersten Fall spricht man von "Out"-Optionen und im zweiten von "In"-Optionen.

6.2.1 Down-and-out-Call

Beschreibung Ein Down-and-out-Call mit Barriere H und Ausübungspreis K hat als Auszahlungsprofil am Ende der (Gesamt-) Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Kurs des Basiswerts zum Laufzeitende und dem Ausübungspreis, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit größer als die Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{DoC}(T) := (S_T - K)^+ \cdot \mathbf{1}_{\{S_t > H, \forall t \in [t_0, T]\}}.$$

Bewertung Die Bewertung der genannten Barriereoptionen kann mithilfe geschlossener Formeln erfolgen:

Wurde die Barriere H bereits in der Vergangenheit unterschritten, gilt also $S_t \leq H$ für $t \in [t_0, T_0]$, so ist

$$\pi^{DoC}(T_0) = 0.$$

Anderenfalls ist für $K \geq H$ der heutige Wert des Down-and-out-Calls

$$\pi^{DoC}(T_0) = \left(S_{T_0} \exp(-q(T - T_0)) \Phi(d_+^{(1)}) - K \exp(-r(T - T_0)) \Phi(d_-^{(1)}) \right) - \left(\frac{H}{S_{T_0}} \right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T - T_0)) \Phi(d_+^{(3)}) - \frac{KS_{T_0}}{H} \exp(-r(T - T_0)) \Phi(d_-^{(3)}) \right).$$

Für K < H ist der heutige Wert gegeben durch

$$\pi^{DoC}(T_0) = \left(S_{T_0} \exp(-q(T - T_0)) \Phi(d_+^{(2)}) - K \exp(-r(T - T_0)) \Phi(d_-^{(2)}) \right) - \left(\frac{H}{S_{T_0}} \right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T - T_0)) \Phi(d_+^{(4)}) - \frac{KS_{T_0}}{H} \exp(-r(T - T_0)) \Phi(d_-^{(4)}) \right).$$

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H),$$

$$d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen sind folgende

- (1) $S_{T_0} = 0$, (2) H = 0,
- (3) $\sigma = 0$.

Im Fall (1) ist

$$\pi^{DoC}(T_0) = 0.$$

Im Fall (2) ist

$$\pi^{DoC}(T_0) = \pi^{EuropCall}(T_0).$$

Im Fall (3) ist falls r < q:

$$\pi^{DoC}(T_0) = (S_{T_0} \exp(-q(T - T_0)) - K \exp(-r(T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \exp(-q(T - T_0)) > H \exp(-r(T - T_0))\}}.$$

falls $r \geq q$:

$$\pi^{DoC}(T_0) = (S_{T_0} \exp(-q(T - T_0)) - K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} > H\}}.$$

Parameter Die Produktparameter eines Down-and-out-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Call
Barrieretyp		DownOut
Barriere	H	
Währung		
Produkt ID		

6.2.2 Down-and-in-Call

Beschreibung Ein Down-and-in-Call mit Barriere H und Ausübungspreis Khat als Auszahlungsprofil am Ende der (Gesamt-)Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Kurs des Basiswerts zum Laufzeitende und dem

Ausübungspreis K, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit mindestens einmal kleiner oder gleich der Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{DiC}(T) := (S_T - K)^+ \cdot \mathbf{1}_{\{\exists t \in [t_0, T], S_t \le H\}}.$$

Bewertung Wurde die Barriere H bereits in der Vergangenheit unterschritten, gilt also $S_t \leq H$ für ein $t \in [t_0, T_0]$, so ist

$$\pi^{DiC}(T_0) = \pi^{EuropCall}(T_0).$$

Anderenfalls ist für $K \geq H$ der heutige Wert des Down-and-in-Calls

$$\pi^{DiC}(T_0) = \left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T-T_0))\Phi(d_+^{(3)}) - \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(d_-^{(3)})\right).$$

Für K < H ist der heutige Wert gegeben durch

$$\pi^{DiC}(T_0) = \left(S_{T_0} \exp(-q(T - T_0)) \Phi(d_+^{(1)}) - K \exp(-r(T - T_0)) \Phi(d_-^{(1)}) \right)$$

$$- \left(S_{T_0} \exp(-q(T - T_0)) \Phi(d_+^{(2)}) - K \exp(-r(T - T_0)) \Phi(d_-^{(2)}) \right)$$

$$+ \left(\frac{H}{S_{T_0}} \right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T - T_0)) \Phi(d_+^{(4)}) - \frac{KS_{T_0}}{H} \exp(-r(T - T_0)) \Phi(d_-^{(4)}) \right).$$

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H),$$

$$d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen, sind folgende

- (1) $S_{T_0} = 0$,
- (2) H = 0,
- (3) $\sigma = 0$.

In den Fällen (1) und (2) ist

$$\pi^{DiC}(0) = 0.$$

Im Fall (3) ist falls r < q:

$$\pi^{DiC}(T_0) = \left(S_{T_0} \exp(-q(T-T_0)) - K \exp(-r(T-T_0))\right)^+ \cdot \mathbf{1}_{\left\{S_{T_0} \exp(-q(T-T_0)) \le H \exp(-r(T-T_0))\right\}},$$

falls $r \geq q$:

$$\pi^{DiC}(T_0) = \left(S_{T_0} \exp(-q(T - T_0)) - K \exp(-r(T - T_0))\right)^+ \cdot \mathbf{1}_{\left\{S_{T_0} \le H\right\}}.$$

Parameter Die Produktparameter eines Down-and-in-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \leq T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Call
Barrieretyp		DownIn
Barriere	H	
Währung		
Produkt ID		

Parität Es gilt stets

$$\pi^{DoC}(T_0) + \pi^{DiC}(T_0) = \pi^{EuropCall}(T_0),$$

wenn die Schranken der beiden Barriereoptionen identisch sind.

6.2.3 Down-and-out-Put

Beschreibung Ein Down-and-out-Put mit Barriere H und Ausübungspreis K hat als Auszahlungsprofil am Ende der (Gesamt-) Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Ausübungspreis und dem Kurs des Basiswerts zum Laufzeitende, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit größer als die Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{DoP}(T) := (K - S_T)^+ \cdot \mathbf{1}_{\{S_t > H, \forall t \in [t_0, T]\}}$$

Bewertung Wurde die Barriere H bereits in der Vergangenheit unterschritten, gilt also $S_t \leq H$ für $t \in [t_0, T_0]$, so ist

$$\pi^{DoP}(T_0) = 0.$$

Anderenfalls ist für $K \geq H$ der heutige Wert des Down-and-out-Calls

$$\pi^{DoP}(T_0) = \left(-S_{T_0} \exp(-q(T-T_0))\Phi(-d_+^{(1)}) + K \exp(-r(T-T_0))\Phi(-d_-^{(1)})\right)$$

$$-\left(-S_{T_0} \exp(-q(T-T_0))\Phi(-d_+^{(2)}) + K \exp(-r(T-T_0))\Phi(-d_-^{(2)})\right)$$

$$+\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(d_+^{(3)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(d_-^{(3)})\right)$$

$$-\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(d_+^{(4)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(d_-^{(4)})\right).$$

Für K < H ist der heutige Wert

$$\pi^{DoP}(T_0) = 0.$$

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H),$$

$$d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen, sind folgende

- (1) $S_{T_0} = 0$,
- (2) H = 0,
- (3) $\sigma = 0$.

Im Fall (1) ist

$$\pi^{DoP}(T_0) = 0.$$

Im Fall (2) ist

$$\pi^{DoP}(T_0) = \max(K - S_T, 0) \cdot \mathbf{1}_{\{S_{T_0} > H\}}.$$

Im Fall (3) ist falls r < q:

$$\pi^{DoP}(T_0) = (-S_{T_0} \exp(-q(T-T_0)) + K \exp(-r(T-T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \exp(-q(T-T_0)) > H \exp(-r(T-T_0)) \} + K \exp(-r(T-T_0)) \}}$$

falls $r \geq q$:

$$\pi^{DoP}(T_0) = (-S_{T_0} \exp(-q(T - T_0)) + K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} > H\}}.$$

Parameter Die Produktparameter eines Down-and-in-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Put
Barrieretyp		DownOut
Barriere	H	
Währung		
Produkt ID		

6.2.4 Down-and-in-Put

Bewertung Ein Down-and-in-Put mit Barriere H und Ausübungspreis K hat als Auszahlungsprofil am Ende der (Gesamt-) Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Ausübungspreis und dem Kurs des Basiswerts zum Laufzeitende, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit mindestens einmal kleiner oder gleich der Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{DiP}(T) := (K - S_T)^+ \cdot \mathbf{1}_{\{\exists t \in [t_0, T], S_t \le H\}}.$$

Wurde die Barriere H bereits in der Vergangenheit unterschritten, gilt also $S_t \leq H$ für ein $t \in [t_0, T_0]$, so ist

$$\pi^{DiP}(T_0) = \pi^{EuropPut}(T_0).$$

Anderenfalls ist für $K \geq H$ der heutige Wert des Down-and-in-Puts

$$\pi^{DiP}(T_0) = \left(-S_{T_0} \exp(-q(T-T_0))\Phi(-d_+^{(2)}) + K \exp(-r(T-T_0))\Phi(-d_-^{(2)})\right)$$

$$-\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(d_+^{(3)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(d_-^{(3)})\right)$$

$$+\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(d_+^{(4)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(d_-^{(4)})\right).$$

Für K < H ist der Wert

$$\pi^{DiP}(T_0) = -S_{T_0} \exp(-q(T - T_0))\Phi(-d_+^{(1)}) + K \exp(-r(T - T_0))\Phi(-d_-^{(1)}).$$

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H),$$

$$d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen, sind folgende

- (1) $S_{T_0} = 0$, (2) H = 0,
- (3) $\sigma = 0$.

Im Fall (1) ist

$$\pi^{DiP}(T_0) = K \exp(-r(T - T_0)).$$

Im Fall (2) ist

$$\pi^{DiP}(T_0) = \max(K - S_T, 0) \cdot \mathbf{1}_{\{S_{T_0} \le H\}}.$$

Im Fall (3) ist falls r < q:

$$\pi^{DiP}(T_0) = (-S_{T_0} \exp(-q(T - T_0)) + K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \exp(-q(T - T_0)) \le H \exp(-r(T - T_0))\}}.$$

falls $r \geq q$:

$$\pi^{DiP}(T_0) = (-S_{T_0} \exp(-q(T - T_0)) + K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \le H\}}.$$

Parameter Die Produktparameter eines Down-and-in-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Put
Barrieretyp		DownIn
Barriere	H	
Währung		
Produkt ID		

Parität Es gilt stets

$$\pi^{DoP}(T_0) + \pi^{DiP}(T_0) = \pi^{EuropPut}(T_0),$$

wenn die Schranken der beiden Barriere-Verkaufsoptionen gleich sind.

6.2.5 Up-and-out-Call

Bewertung Ein Up-and-out-Call mit Barriere H und Ausübungspreis K hat als Auszahlungsprofil am Ende der (Gesamt-) Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Kurs des Basiswerts zum Laufzeitende und dem Strike, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit kleiner als die Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{UoC}(T) := (S_T - K)^+ \mathbf{1}_{\{S_t < H, \forall t[t_0, T]\}}.$$

Wurde die Barriere H bereits in der Vergangenheit überschritten, gilt also $S_t > H$ für ein $t \in [t_0, T_0]$, so ist

$$\pi^{UoC}(T_0) = 0.$$

Anderenfalls ist für $K \ge H$ der heutige Wert des Up-and-out-Calls

$$\pi^{UoC}(T_0) = 0.$$

Für K < H ist der heutige Wert

$$\pi^{UoC}(T_0) = \left(S_{T_0} \exp(-q(T-T_0))\Phi(d_+^{(1)}) - K \exp(-r(T-T_0))\Phi(d_-^{(1)})\right)$$

$$- \left(S_{T_0} \exp(-q(T-T_0))\Phi(d_+^{(2)}) - K \exp(-r(T-T_0))\Phi(d_-^{(2)})\right)$$

$$+ \left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T-T_0))\Phi(-d_+^{(3)}) - \frac{KS_{T_0}}{H} \exp(-rT)\Phi(-d_-^{(3)})\right)$$

$$- \left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T-T_0))\Phi(-d_+^{(4)}) - \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(-d_-^{(4)})\right).$$

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H),$$

$$d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen, sind folgende

- (1) $S_{T_0} = 0$, (2) H = 0,
- (3) $\sigma = 0$.

In den Fällen (1) und (2) ist

$$\pi^{UoC}(T_0) = 0.$$

Im Fall (3) ist

falls
$$r < q$$
:

$$\pi^{UoC}(T_0) = (S_{T_0} \exp(-q(T - T_0)) - K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} < H\}}.$$

falls $r \geq q$:

$$\pi^{UoC}(T_0) = (S_{T_0} \exp(-q(T - T_0)) - K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \exp(-q(T - T_0)) < H \exp(-r(T - T_0))\}}.$$

Parameter Die Produktparameter eines Down-and-in-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Call
Barrieretyp		UpOut
Barriere	H	
Währung		
Produkt ID		

6.2.6 Up-and-in-Call

Bewertung Ein Up-and-in-Call mit Barriere H und Ausübungspreis K hat als Auszahlungsprofil am Ende der (Gesamt-) Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Kurs des Basiswerts zum Laufzeitende und dem Ausübungspreis, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit mindestens einmal größer oder gleich der Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{UiC}(T) := (S_T - K)^+ \cdot \mathbf{1}_{\{\exists t \in [t_0, T], S_t \ge H\}}.$$

Wurde die Barriere H bereits in der Vergangenheit überschritten, gilt also $S_t \geq H$ für ein $t \in [t_0, T_0]$, so ist

$$\pi^{UiC}(T_0) = \pi^{EuropCall}(T_0).$$

Anderenfalls ist für $K \ge H$ der heutige Wert des Up-and-in-Calls

$$\pi^{UiC}(T_0) = S_{T_0} \exp(-q(T - T_0))\Phi(d_+^{(1)}) - K \exp(-r(T - T_0))\Phi(d_-^{(1)}).$$

Für K < H ist der Wert

$$\pi^{UiC}(T_0) = \left(S_{T_0} \exp(-q(T-T_0))\Phi(d_+^{(2)}) - K \exp(-r(T-T_0))\Phi(d_-^{(2)})\right)$$

$$-\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T-T_0))\Phi(-d_+^{(3)}) - \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(-d_-^{(3)})\right)$$

$$+\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(H \exp(-q(T-T_0))\Phi(-d_+^{(4)}) - \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(-d_-^{(4)})\right).$$

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H),$$

$$d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen, sind folgende

- (1) $S_{T_0} = 0$, (2) H = 0,
- (3) $\sigma = 0.$

Im Fall (1) ist

$$\pi^{UiC}(T_0) = 0.$$

Im Fall (2) ist

$$\pi^{UiC}(T_0) = \pi^{EuropCall}(T_0).$$

Im Fall (3) ist

falls r < q:

$$\pi^{UiC}(T_0) = (S_{T_0} \exp(-q(T - T_0)) - K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \ge H\}}.$$

falls r > q:

$$\pi^{UiC}(T_0) = (S_{T_0} \exp(-q(T - T_0)) - K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \exp(-q(T - T_0)) \ge H \exp(-r(T - T_0))\}}.$$

Parameter Die Produktparameter eines Down-and-in-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Call
Barrieretyp		Upln
Barriere	H	
Währung		
Produkt ID		

Parität Es ist stets

$$\pi^{UoC}(T_0) + \pi^{UiC}(T_0) = \pi^{EuropCall}(T_0),$$

wenn die Schranken der Barriere-Kaufoptionen gleich sind.

6.2.7 Up-and-out-Put

Bewertung Ein Up-and-out-Put mit Barriere H und Ausübungspreis K hat als Auszahlungsprofil am Ende der (Gesamt-) Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Ausübungspreis und dem Kurs des Basiswerts am Laufzeitende, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit kleiner als die Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{UoP}(T) := (K - S_T)^+ \cdot \mathbf{1}_{\{S_t < H, \forall t \in [t_0, T]\}}.$$

Wurde die Barriere H bereits in der Vergangenheit überschritten, gilt also $S_t \geq H$ für ein $t \in [t_0, T_0]$, so ist

$$\pi^{UoP}(T_0) = 0.$$

Anderenfalls ist für $K \ge H$ der heutige Wert des Up-and-out-Puts

$$\pi^{UoP}(T_0) = \left(-S_{T_0} \exp(-q(T-T_0))\Phi(-d_+^{(2)}) + K \exp(-r(T-T_0))\Phi(-d_-^{(2)})\right)$$
$$-\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(-d_+^{(4)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(-d_-^{(4)})\right)$$

Für K < H ist der Wert

$$\pi^{UoP}(T_0) = \left(-S_{T_0} \exp(-q(T-T_0))\Phi(-d_+^{(1)}) + K \exp(-r(T-T_0))\Phi(-d_-^{(1)})\right) - \left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(-d_+^{(3)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(-d_-^{(3)})\right)$$

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H), d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen, sind folgende

- (1) $S_{T_0} = 0$, (2) H = 0,
- (3) $\sigma = 0$.

Im Fall (1) ist

$$\pi^{UoP}(T_0) = K \exp(-rv) \cdot \mathbf{1}_{\{S_{T_0} < H\}}.$$

Im Fall (2) ist

$$\pi^{UoP}(T_0) = 0.$$

Im Fall (3) ist

falls r < q:

$$\pi^{UoP}(T_0) = (-S_{T_0} \exp(-q(T - T_0)) + K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} < H\}}.$$

falls $r \geq q$:

$$\pi^{UoP}(T_0) = (-S_{T_0} \exp(-q(T - T_0)) + K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \exp(-q(T - T_0)) < H \exp(-r(T - T_0))\}}.$$

Parameter Die Produktparameter eines Down-and-in-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Put
Barrieretyp		UpOut
Barriere	H	
Währung		
Produkt ID		

6.2.8 Up-and-in-Put

Bewertung Ein Up-and-in-Put mit Barriere H und Ausübungspreis K hat als Auszahlungsprofil am Ende der (Gesamt-) Laufzeit von $t_0 \leq T_0$ bis T die Differenz zwischen dem Ausübungspreis und dem Kurs des Basiswerts zum Laufzeitende, insofern diese positiv ist und der Kurs des Basiswerts während der gesamten Laufzeit mindestens einmal größer oder gleich der Barriere war. Anderenfalls erfolgt keine Auszahlung an den Besitzer der Option. In Formeln lautet das Auszahlungsprofil

$$\pi^{UiP}(T) := (K - S_T)^+ \cdot \mathbf{1}_{\{\exists t \in [t_0, T], S_t \ge H\}}.$$

Wurde die Barriere H bereits in der Vergangenheit überschritten, gilt also $S_t \geq H$ für ein $t \in [t_0, T_0]$, so ist

$$\pi^{UiP}(T_0) = \pi^{EuropPut}(T_0).$$

Anderenfalls ist für $K \ge H$ der heutige Wert des Up-and-in-Puts

$$\pi^{UiP}(T_0) = \left(-S_{T_0} \exp(-q(T-T_0))\Phi(-d_+^{(1)}) + K \exp(-r(T-T_0))\Phi(-d_-^{(1)})\right)$$

$$-\left(-S_{T_0} \exp(-q(T-T_0))\Phi(-d_+^{(2)}) + K \exp(-r(T-T_0))\Phi(-d_-^{(2)})\right)$$

$$+\left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(-d_+^{(4)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(-d_-^{(4)})\right).$$

Für K < H ist der heutige Wert

$$\pi^{UiP}(T_0) = \left(\frac{H}{S_{T_0}}\right)^{2(r-q)/\sigma^2} \left(-H \exp(-q(T-T_0))\Phi(-d_+^{(3)}) + \frac{KS_{T_0}}{H} \exp(-r(T-T_0))\Phi(-d_-^{(3)})\right)$$

Aktienderivate

Hierbei ist stets

$$d_{\pm}(A,B) = \frac{\log(A/B) + (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}},$$

und

$$d_{\pm}^{(1)} = d_{\pm}(S_{T_0}, K), \qquad d_{\pm}^{(2)} = d_{\pm}(S_{T_0}, H),$$

$$d_{\pm}^{(3)} = d_{\pm}(H/S_{T_0}, K/H), \qquad d_{\pm}^{(4)} = d_{\pm}(H, S_{T_0}).$$

Ausnahmen Die Ausnahmen, die auf unbestimmte Ausdrücke führen, sind folgende

- (1) $S_{T_0} = 0$, (2) H = 0,
- (3) $\sigma = 0$.

Im Fall (1) ist

$$\pi^{UiP}(T_0) = K \exp(-r(T - T_0)) \cdot \mathbf{1}_{\{S_{T_0} \ge H\}}.$$

Im Fall (2) ist

$$\pi^{UiP}(T_0) = \pi^{EuropPut}(T_0).$$

Im Fall (3) ist falls r < q:

$$\pi^{UiP}(T_0) = (-S_{T_0} \exp(-q(T - T_0)) + K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} > H\}}.$$

falls $r \geq q$:

$$\pi^{UiP}(T_0) = (-S_{T_0} \exp(-q(T - T_0)) + K \exp(-r(T - T_0)))^+ \cdot \mathbf{1}_{\{S_{T_0} \exp(-q(T - T_0)) > H \exp(-r(T - T_0))\}}.$$

Parameter Die Produktparameter eines Down-and-in-Calls setzen sich folgendermaßen zusammen

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Put
Barrieretyp		UpOut
Barriere	H	
Währung		
Produkt ID		

Parität Es ist stets

$$\pi^{UoP}(T_0) + \pi^{UiP}(T_0) = \pi^{EuropPut}(T_0).$$

6.3 Basket-Optionen

Basket Optionen sind Termingeschäfte, in denen die gewichtete Summe verschiedener Basiswerte S_i mit dem Ausübungspreis K verglichen werden. Es gibt sowohl Kauf- als auch Verkaufoptionen, d.h. der Optionshalter erhält eine positive Auszahlung zum Laufzeitende T wenn der Wert des Basiswertportfolios größer bzw. kleiner als der Ausübepreis ist.

6.3.1 Basket-Kaufoption

Bewertung Das Auszahlungsprofil der Basket Kaufoption lautet

$$\pi^{Basket}(T) = \left(\sum_{i=1}^{n} w_i S_i(T) - K\right)^+,$$

also erhält der Optionsinhaber eine Auszahlung, wenn der Wert des Portfolios größer als der Ausübungspreis K ist. Die Bewertung erfolgt allgemein mithilfe von Monte-Carlo Simualtionen. Dabei werden die Kurse der Basiswerte simuliert und dann das arithmetische Mittel der Auszahlungen gebildet. Neben der Monte-Carlo Bewertungsmethode gibt es noch eine approximative Bewertung von Nengjiu Ju. Diese ist in der Matlab Routine basketbyju umgesetzt und wird in der Bewertung mithilfe von geschlossenen Formeln verwendet.

Parameter	Kürzel	Kürzel	Bedingung
Bewertungstag	valuationDate	T_0	
Laufzeitbeginn	startDate	t_0	$t_0 \leq T_0$
Laufzeitende	maturityDate	T	$T \geq T_0$
Ausübungspreis	strike	K	
Gewicht	weight	w_1, w_2	
Optionsart	callPutType		'Call', 'Put'
Währung	currency		
Produkt ID	productId		

6.11.2 Spread Verkaufsoption

Bewertung Für die Spread Verkaufsoption ist das Auszahlungsprofil gegeben durch

$$\pi^{Spread}(T) = (K - S_1(T) + S_2(T))^+.$$

Neben der Monte-Carlo Methode zur Optionspreisbestimmung gibt es auch eine geschlossene Formel, für die der Preis der Kaufoption $\pi^{SpreadCall}(T_0)$ benötigt wird. Dann ergibt sich der Preis der Verkaufsoption aus

$$\pi^{SpreadPut}(T_0) = \pi^{SpreadCall}(T_0) - S_1(T_0)w_1e^{-\delta_1(T-T_0)} + S_2(T_0)w_2e^{-\delta_2(T-T_0)} + Ke^{-r(T-T_0)}.$$

Hier sind r die Zins-, δ_i die Dividendenraten und w_i Gewichte.

Parameter Für die Bewetung der Spread Verkaufoption werden die Parameter der folgenden Tabelle benötigt.

Parameter	Kürzel	Kürzel	Bedingung
Bewertungstag	valuationDate	T_0	
Laufzeitbeginn	startDate	t_0	$t_0 \leq T_0$
Laufzeitende	maturityDate	T	$T \geq T_0$
Ausübungspreis	strike	K	
Optionsart	callPutType		'Call', 'Put'
Währung	currency		
Produkt ID	productId		

6.12.2 Europäischer Plain Vanilla Put

Beschreibung Eine europäische Verkaufsoption (Plain Vanilla Put) ist ein Termingeschäft, das dem Käufer der Option das Recht gibt, zu einem vorher festgelegten Laufzeitende T den Basiswert S_T dem Stillhalter zum festgelegten Ausübungspreis (Strike) K zu verkaufen. Der Stillhalter ist der Verkäufer der Option, ihm obliegt nach der Vereinbarung keine Entscheidungsgewalt über das Geschäft. Der Käufer entscheidet unabhängig, ob er die Option abhängig vom aktuellen Basiswert S_T verfallen lässt oder nicht.

Bewertung Da in der Realität zumeist die Abwicklung der Optionsgeschäfte auf monetärer Basis erfolgt, wird am Ende der Laufzeit die Differenz zwischen dem Ausübungspreis und dem Kurs des Basiswerts zum Laufzeitende ausbezahlt, insofern diese positiv ist. Anderenfalls erfolgt keine Zahlung, da es billiger wäre, den Basiswert direkt zu kaufen. Dies führt zum Auszahlungsprofil

$$\pi^{EuropPut}(T) := (K - S_T)^+.$$

Der heutige Wert der europäischen Verkaufsoption im Black Scholes Modell ist gegeben durch

$$\pi^{EuroPut}(T_0) = K \exp(-r(T - T_0))\Phi(d_-) - S_{T_0} \exp(-q(T - T_0))\Phi(d_+),$$

mit

$$d_{\pm} = \frac{\log(K/S_{T_0}) - (r - q \pm \sigma^2/2)(T - T_0)}{\sigma\sqrt{(T - T_0)}}.$$

Hier ist $\Phi(x)$ die Standardnormalverteilung, q die Dividenden- und r die Zinsrate.

Parameter Die Produktparameter eines Plain Vanilla Puts setzen sich zusammen aus

Parameter	Kürzel	Bedingung
Laufzeitbeginn	t_0	$t_0 \le T_0$
Laufzeitende	T	$T \geq T_0$
Strike	K	
Call-/Put-Typ		Call
Währung		
Produkt ID		

Parität Für europäische Kauf- und Verkaufsoptionen gilt die Call-Put Parität

$$\pi^{EuroCall}(t_0) - \pi^{EuroPut}(t_0) = S_{t_0} \exp(-q(T - t_0)) - K \exp(-r(T - t_0)).$$