

link	a:	di	di	£0°
1	0	-90°	di	0°
2	0	900	d2	-90°
3	0	0°	do	0 P

Input:-(i)
$$d_1^* = 5$$
 $d_2^* = 5$ $d_3^* = 5$ $(x, y, z) = (-5, 5, 5)$

(ii)
$$d_1^* = 6$$
 $d_2^* = 8$ $d_3^* = 4$ $(x, y, z) = (-4, 8, 6)$

For velocities

Input: (i)
$$d_1^* = 0.1$$
 $d_2^* = 0.5$ $d_3^* = 0.2$ $(\hat{x}, \hat{y}, \hat{z}) = (-0.2, 0.5, 0.1)$

(ii)
$$d_1^* = 1$$
 $d_2^* = 3$ $d_3^* = 7$ $(x, y, z) = (-7, 3, 1)$

1		0.2	0.3	04	1
	R =	0.6	0.7	0.8	1
		0-1	0.5	0.9	1

and output,
$$\theta_1 = 26.56^{\circ}$$
 $\theta_4 = -10.68^{\circ}$
 $\theta_2 = -60.79^{\circ}$ $\theta_5 = 64.68^{\circ}$
 $\theta_3 = 0$ $\theta_6 = 127.64^{\circ}$

The values are close to the ones calculated.

2. Same values for R and d were input as above

$$a_1 = 1$$
, $a_2 = 1.5$, $14 = 1.5$

Output: 0, = -0.68

The values are close to calculated ones.