Disjoint Sets Data Structure: Implementation and Applications

Anjeneya Swami Kare

Assistant Professor School of CIS University of Hyderabad

Table of contents

1 Disjoint Sets Data Structure

2 Implementation

3 Applications

Outline

1 Disjoint Sets Data Structure

2 Implementation

3 Applications

Disjoint Sets: definition

- Need to maintain a collection of sets.
- Sets are dynamic and disjoint.
- Each set has a representative (a member of the set).

Disjoint Sets: Operations

MAKE-SET(x)

- Create a new set S_x whose only member is x.
- *x* will be the representative of the set.

UNION(x, y)

- Unite the sets that contain x and y, (say S_x and S_y) into a new set S_x ∪ S_y.
- S_x and S_y will be destroyed.
- Representative of S_x (or S_y) will be the new representative of $S_x \cup S_y$.

FIND(x)

• Return the representative of the set containing x (S_x).

Disjoint Sets: Example

Disjoint Sets: Time Complexity

- n: The number of MAKE-SET operations.
- m: The total number of MAKE-SET, UNION and FIND operations.
- The number of UNION operations < *n*.
- The total number of operations $m \ge n$.
- We analyze time complexity with respect to n and m for a particular application.

Disjoint Sets Data Structure also known as UNION-FIND Data Structure.

Outline

1 Disjoint Sets Data Structure

2 Implementation

3 Applications

Disjoint Sets: Implementation

How do you Implement?

Disjoint Sets: Implementation

How do you Implement?

- · Using Linked Lists.
- Using Rooted Trees (Forests).
- Heuristics to improve the running time.

Implementation: Using Linked Lists

¹source: Introduction to algorithms, CLRS

Implementation: Using Linked Lists

Using Linked lists worst case time complexity is $\Theta(m + n^2)$.

Weighted Union Heuristic

- Append the smaller set to the larger set.
- Time complexity improves to $\Theta(m + n \log n)$.

We can make tree with smaller height points to the tree with larger height (Union by Rank)

Make all nodes in the FIND-PATH points to root (Path Compression)

MAKE-SET(x) 1 $p[x] \leftarrow x$

```
2 rank[x] \leftarrow 0
UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))
LINK(x, y)
1 if rank[x] > rank[y]
2 then p[y] \leftarrow x
3 else p[x] \leftarrow y
        if rank[x] = rank[y]
          then rank[y] \leftarrow rank[y] + 1
The FIND-SET procedure with path compression is quite simple.
FIND-SET(x)
1 if x \neq p[x]
    then p[x] \leftarrow \text{FIND-SET}(p[x])
3 return p[x]
```

Union by Rank and Path Compression

- Time complexity improves to $\Theta(m\alpha(n))$.
- $\alpha(n)$ is a very slow growing function.

Outline

1 Disjoint Sets Data Structure

2 Implementation

3 Applications

Application: Connected Components

Application: Connected Components Algorithm

```
CONNECTED-COMPONENTS(G)
1 for each vertex v \in V[G]
    do MAKE-SET(v)
3 for each edge (u, v) \in E[G]
     do if FIND-SET(u) \neq FIND-SET(v)
5
        then UNION(u, v)
SAME-COMPONENT(u, v)
1 if FIND-SET(u) = FIND-SET(v)
    then return TRUE
    else return FALSF
```

Application: Minimum Spanning Tree

Application: Minimum Spanning Tree Algorithm

```
\begin{aligned} & \text{MST-Kruskal}(G, w) \\ & 1 \quad A = \emptyset \\ & 2 \quad \text{for each vertex } v \in G.V \\ & 3 \quad & \text{Make-Set}(v) \\ & 4 \quad \text{sort the edges of } G.E \text{ into nondecreasing order by weight } w \\ & 5 \quad \text{for each edge } (u, v) \in G.E, \text{ taken in nondecreasing order by weight} \\ & 6 \quad & \text{if Find-Set}(u) \neq \text{Find-Set}(v) \\ & 7 \quad & A = A \cup \{(u, v)\} \\ & \text{Union}(u, v) \\ & 9 \quad \text{return } A \end{aligned}
```

Reference

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein

Thank you

Questions?