

Pesquisa Operacional

Prof. Msc. Aparecido Vilela Junior aparecido.vilela@unicesumar.edu.br

Revisão - PL

- Certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de R\$ 1.000 e o lucro unitário de P2 é de R\$ 1.800. A empresa precisa de 20 horas para fabricar uma unidade de P1 e de 30 horas para fabricar uma unidade de P2. O tempo anual de produção disponível para isso é de 1.200 horas. A demanda esperada para cada produto é de 40 unidades anuais de P1 e 30 unidades de anuais de P2.
- Qual é o plano de produção para que a empresa maximize o seu lucro nesses itens?
- Construa o modelo de programação linear para esse caso.

Revisão-PL

- Certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de R\$ 1.000 e o lucro unitário de P2 é de R\$ 1.800.
- Quais são as variáveis ?
 - x₁ quantidade a produzir de P1
 - x₂ quantidade a produzir de P2
- Qual a função Objetivo:
 - Max. Lucro = $1.000x_1 + 1.800x_2$

Revisão - PL

- Quais as restrições encontradas ?
- A empresa precisa de 20 horas para fabricar uma unidade de P1 e de 30 horas para fabricar uma unidade de P2. O tempo anual de produção disponível para isso é de 1.200 horas. A demanda esperada para cada produto é de 40 unidades anuais de P1 e 30 unidades de anuais de P2.

$$-20x_1 + 30x_2 \le 1.200$$

$$- x_1 \le 40$$

$$- x_2 \le 30$$

$$- x_1 \ge 0, x_2 \ge 0$$

Exercício 01

• Uma rede de televisão local tem o seguinte problema: foi descoberto que o programa "A" com 20 minutos de música e 1 minuto de propaganda chama a atenção de 30.000 telespectadores, enquanto o programa "B" com 10 minutos de música e 1 minuto de propaganda chama a atenção de 10.000 telespectadores. No decorrer de uma semana, o patrocinador insiste no uso de no mínimo, 5 minutos para sua propaganda e que na há verba para mais de 80 minutos de música. Quantas vezes por semana cada programa deve ser levado ao ar para obter o número máximo de telespectadores ? Construa o modelo do sistema.

Resolução

Resposta:

- x₁ → frequência semanal do programa A
- x₂ → frequência semanal do programa B

- Max. T =
$$30.000x_1 + 10.000x_2$$

- s.a
 - $1x_1 + 1x_2 \ge 5$
 - $20x_1 + 10x_2 \le 80$
 - $x_1 \ge 0$, $x_2 \ge 0$

Ferramentas p/ Resolução

Excel - Solver

- O Solver faz parte de um conjunto de programas algumas vezes chamado de ferramentas de análise hipotética
- Com o Solver você pode localizar um valor ideal para uma fórmula em uma célula (destino)
- Trabalha com um grupo de células relacionadas direta ou indiretamente com a fórmula na célula de destino.

- Ajusta os valores nas células variáveis que você especificar células ajustáveis.
- Aplicar restrições para restringir os valores que o Solver poderá usar no modelo.
- As restrições podem se referir a outras células que afetem a fórmula da célula de destino
- No nosso curso usaremos o SOLVER para resolver Problemas de Programação Linear

- Existem dois modos de se formular um problema em programação linear: o modo tradicional, onde se usa o método gráfico (até duas variáveis) e o método Simplex (3 ou mais variáveis), ou o método computacional, onde existem programas prontos para resolver problemas de LP (como por ex. o programa "LINDO") ou então, utilizando as planilhas eletrônicas como EXCEL, LOTUS 1-2-3 ou Quattro Pró.
- O objetivo do presente texto é fornecer um roteiro para a resolução de um problema típico de LP utilizando o software EXCEL.

- Dados de Entrada: são os dados fornecidos no problema, isto é, os dados da função objetivo e os dados das equações de restrição (maior igual ou menor igual, incluindo as condições de não-negatividade). Esses dados devem aparecer em algum lugar na planilha..
- Células variáveis: Ao invés de usarmos nomes de variáveis como x1 ou y1, utilizamos um conjunto de células pré-definidas que fazem o papel das variáveis de decisão. Os valores nessas células podem ser mudados a fim de otimizar a função objetivo.

- Célula destino: essa célula irá acumular o valor calculado da função objetivo. A ferramenta SOLVER sistematicamente varia os valores das células variáveis a fim de otimizar o valor da célula destino.
- Restrições ou vínculos: no EXCEL, as restrições não aparecem diretamente na planilha. Ao invés disso, iremos especificar as desigualdades diretamente num quadro de diálogo da ferramenta SOLVER. Deve-se entrar todas as desigualdades, inclusive os vínculos de não-negatividade

- Em geral, a solução completa do problema envolve dois estágios:
- 1) é a entrada de todos os dados fornecidos no problema, os valores iniciais das células variáveis (que adotaremos como sendo 1) e as fórmulas que relacionam essas células com os dados de entrada e cujo resultado é armazenado na célula destino.
- 2) Ferramenta SOLVER no do Excel, que irá pedir a localização das células variáveis e da célula destino, bem como uma lista de todas as restrições envolvidas no problema, que são escritas em termos de endereços de células. Ao final é só pedir para que o SOLVER ache a solução otimizada

Resolvendo Problemas

Usando Solver do Excel

Considere o Problema

Max
$$z = 3x_1 + 2x_2$$

st
 $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 8$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1; x_2 \ge 0$

Usando Solver do Excel Entrando os Parâmetros do Modelo

Max
$$z = 3x_1 + 2x_2$$

st
 $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 8$
 $-x_1 + x_2 \le 1$
 $x_2 \le 2$
 $x_1; x_2 \ge 0$

	А	В	С	D	Е
1	Função	Coef.da	Variável		
2	Objetivo	X1	X2		
3		3	2		
4	Variaveis				
5	<u>Z</u> =				
6					
7	Restrições	Coef.da	Variável		Constantes
8	N _o	X1	X2		
9	1	1	2		6
10	2	2	1		8
11	3	-1	1		1
12	4	0	1		2
13					

Usando Solver do Excel Definindo a Célula do Valor Ótimo

_							
	B5	▼	= (B3*B4)+(C3*C4)				
	А	В	्र	D	E		
1	Função	Coef.da	Variavel				
2	Objetivo	X1	/ X2				
3		3	2				
4	Variaveis						
5	Z=	0					
6							
7	Restrições	Coef.da	Variável		Constantes		
8	No.	X1	X2				
9	1	1	2		6		
10	2	2	1		8		
11	3	-1	1		1		
12	4	0	1		2		

Definindo as variáveis de Folga ou Excesso

	D9	▼ =	= =B9*\$B\$4+C9*\$C\$4			L
	Α	В	С)	Е
1	Função	Coef.da	Variável			
2	Objetivo	X1	X2			
3		3	2			
4	Variaveis					
5	Z=	0				
6						
7	Restrições	Coef.da	Variável			Constantes
8	No	X1	X2]		,	
9	1	1	2		0	6
10	2	2	1		0	8
11	3	-1	1		0	1
12	4	0	1		0	2
13						

Iniciando o Solver

Usando Solver do Excel Definindo a Célula Ótima (Z)

Definindo as Células Variáveis

GRADUAÇÃO

Usando Solver do Excel unicesumar Definindo as Restrições

Definindo Condições de Não Negatividade

Condições de Não Negatividade

Opções do Solver						
<u>T</u> empo máximo:	empo máximo: 100 segundos			ОК		
<u>I</u> terações:	100			Cancelar		
<u>P</u> recisão:	0,0000	001		Carregar modeļo		
Tol <u>e</u> rância:	5	•	%	<u>S</u> alvar modelo		
Con <u>v</u> ergência:	0,000	L		A <u>ju</u> da		
Presu <u>m</u> ir mod	elo linea	r 🗆	Us <u>a</u> r escala	automática		
Presumir <u>n</u> ão	negativo	os [Most <u>r</u> ar resu	ultado de iteração		
Estimativas		Derivadas		Pesquisar		
Tangente Tangente		Adiante		Newton		
© <u>Q</u> uadrática		© <u>C</u> entral		C C <u>o</u> njugado		

Definindo o Problema de Programação Linear

Opções do Solver ? 🔀						
<u>T</u> empo máximo:	100	segundos	ОК			
<u>I</u> terações:	100		Cancelar			
<u>P</u> recisão:	0,000	001	Carregar mode <u>l</u> o			
Tol <u>e</u> rância:	5	%	<u>S</u> alvar modelo			
Con <u>v</u> ergência:	0,000	1	A <u>ju</u> da			
✓ Presu <u>m</u> ir mod	elo linea	r Us <u>a</u> r es	cala automática			
Presumir <u>n</u> ão	negativ	os Most <u>r</u> ar	resultado de iteração			
Estimativas		Derivadas	Pesquisar			
Tangente		Adiante	Newton			
O Quadrática		© <u>C</u> entral	C C <u>o</u> njugado			

Usando Solver do Excel Obtendo a Solução

Usando Solver do Excel Verificando a Resposta

Exercício 01

- Uma empresa fabrica dois produtos, A e B. O volume de vendas de A
 é de, no mínimo, 80% do total de vendas de ambos (A e B). Contudo,
 a empresa não pode vender mais do que 100 unidades de A por dia.
- Ambos os produtos usam uma matéria prima cuja disponibilidade máxima diária é de 240 kg.
- As taxas de utilização da matéria prima são 2 kg por unidade de A e 4 kg por unidade de B.
- Os lucros unitários para A e B são R\$ 20,00 e R\$ 50,00, respectivamente.
- Determine o mix de produtos ótimo para a empresa.

Solução

Função objetivo: $\mathbf{Max} \ \mathbf{z} = \mathbf{20} \mathbf{x}_1 + \mathbf{50} \mathbf{x}_2$

PA: $x_1 \ge 0$

PB: $x_2 \ge 0$

Disponibilidade de M1: $2x_1 + 4x_2 \le 240$

Demanda: $x_1 \ge 0.8(x_1 + x_2)$

Demanda: $x_1 \le 100$

Solução ótima: $(x_1, x_2) = (80, 20), z = R$ 2.600,00$

Exercício 02

- Em uma fazenda deseja-se fazer 10.000 kilos de ração com o menor custo possível. De acordo com as recomendações do veterinário dos animais da fazenda, a mesma deve conter:
- 15% de proteína
- Um mínimo de 8% de fibra
- No mínimo 1100 calorias por kilo de ração e no máximo 2250 calorias por kilo. Para se fazer a ração, estão disponiveis 4 ingredientes cujas características técnico-econômicas estão mostradas abaixo: (Dados em %, exceto calorias e custo).
- A ração deve ser feita contendo no mínimo 20% de milho e no máximo 12% de soja. Formule um modelo de P. Linear para o problema:

	Proteína	Fibra	Caloria/Kg	Custo/Kg
Cevada	6,9	(1760	30
Aveia	8,5	1	1700	48
Soja	9	1	1056	44
Milho	27,1	14	1400	56

Resolução

- Xi -> Kilos do ingrediente i a serem usados na ração (i = 1 (cevada), i= 2 (Aveia), i=3(Soja), i=4 (Milho)).
- Min Z = 30x1 + 48x2 + 44x3 + 56x4
- s a

```
x1 + x2 + x3 + x4 = 10000 (Quantidade de ração)

0,069x1 + 0,085x2 + 0,09 x3 + 0,271x4 = 0,15 x 10000 (Proteína)

0,06x1 + 0,11x2 + 0,11x3 + 0,14x4 >= 0,08 x 10000 (Fibras)

1760x1 + 1700x2 + 1056x3 + 1400x4 >= 1100 x 10000 (Calorias)

1760x1 + 1700x2 + 1056x3 + 1400x4 <= 2250 x 10000 (Calorias)

X4 >= 0,20 x 10000 (Milho)

X3 <= 0,12 x 10000 (Soja)

Xi >= 0
```

Exercício 03

 Uma companhia deseja obter uma nova liga metálica com 30% de chumbo, 20% de zinco e 50% de estanho a partir de alguns minérios tendo as seguintes propriedades:

	MINÉRIOS					
Propriedades	1 2 3 4 5					
% – Chumbo	30	10	50	10	50	
% – Zinco	60	20	20	10	10	
% – Estanho	10	70	30	80	40	
Custo (\$/kg)	8,5	6	8,9	5,7	8,8	

- O objetivo é determinar as proporções destes minérios que deveriam ser misturados para produzir a nova liga com o menor custo possível.
- Formule este problema como um modelo de P.Linear

Resolução 03

 $x_i\Rightarrow$ fração de 1 kilo do minério i usada na produção de 1 kilo da nova liga. (MIN) $Z=8,5x_1+6x_2+8,9x_3+5,7x_4+8,8x_5$ s.a.

$$x_1 + x_2 + x_3 + x_4 + x_5 = 1 \ 0, 3x_1 + 0, 1x_2 + 0, 5x_3 + 0, 1x_4 + 0, 5x_5 = 0, 3 \ 0, 6x_1 + 0, 2x_2 + 0, 2x_3 + 0, 1x_4 + 0, 1x_5 = 0, 2 \ 0, 1x_1 + 0, 7x_2 + 0, 3x_3 + 0, 8x_4 + 0, 4x_5 = 0, 5 \ x_i > 0$$

Observe que a 1ª restrição é redundante pois é a soma das outras 3.

Exercício 04

Uma fábrica descontinuou a produção de um produto que não estava dando lucro. Isto criou uma considerável capacidade de produção ociosa. A gerência está considerando em usar esta capacidade ociosa em um ou mais, de 3 produtos, os quais chamaremos de produtos 1, 2 e 3. A capacidade disponível das máquinas que poderiam limitar a saída está dada na tabela abaixo:

	Tempo disponível		
Tipo de Máquina	(em máquinas-hora por semana)		
A	500		
В	350		
C	150		

O número de máquinas-hora necessárias para cada produto é:

Tipo de Máquina	Produto 1	Produto 2	Produto 3	
A	9	3	5	
В	5	4	0	
C	3	0	2	

O Departamento de Vendas indicou que o potencial de vendas para os produtos 1 e 2 excedem a taxa máxima de produção e que o potencial de vendas para o produto 3 é de 20 unidades por semana. O lucro unitário seria de \$30, \$12 e \$15 respectivamente para os produtos 1, 2 e 3. Quanto se deve fabricar dos produtos 1, 2 e 3 de maneira que o lucro seja máximo.

Formule o problema como um modelo de P.Linear.

Resolução 04

$$S_{3} = 30x_{1} + 12x_{2} + 15x_{3} \ S_{3} = 3x_{1} + 3x_{2} + 5x_{3} \leq 500 \ S_{4} + 4x_{2} \leq 350 \ S_{4} + 2x_{3} \leq 150 \ x_{3} \leq 20 \ x_{i} \geq 0$$

Exercício 05

Uma família de fazendeiros possui 100 acres de terra e tem \$30.000 em fundos disponíveis para investimento. Seus membros podem produzir um total de 3.500 homens-hora de trabalho durante os meses de inverno e 4.000 homenshoras durante o verão. Se todos estes homens-horas não são necessários, os membros mais jovens da família podem ir trabalhar em uma fazenda da vizinhança por \$4,00 por hora durante o inverno e \$4,50 por hora durante o verão. A família obtém renda com 3 colheitas e 2 tipos de criação de animais: vacas leiteiras e galinhas (para obter ovos). Nenhum investimento é necessário para as colheitas mas no entanto cada vaca necessita de um investimento de \$900 e cada galinha de \$7. Cada vaca necessita de 1,5 acre de terra, 100 homens-hora de trabalho no inverno e outros 50 homens-hora no verão. Cada vaca produzirá uma renda líquida anual de \$800 para a família. Por sua vez cada galinha não necessita de área, requer 0,6 homens-hora durante o inverno e 0,3 homens-hora no verão. Cada galinha produzirá uma renda líquida de \$5 (anual). O galinheiro pode acomodar um máximo de 3.000 galinhas e o tamanho dos currais limita o rebanho para um máximo de 32 vacas. As necessidades em homens-hora e a renda líquida anual, por acre plantado, em cada uma das 3 colheitas estão mostradas abaixo:

	Soja	Milho	Feijão
Homens-hora no inverno	20	35	10
Homens-hora no verão	50	75	40
Renda anual líquida (\$)	375	550	250

A família deseja maximizar sua renda anual.

Resolução 05

```
\begin{array}{l} x_i \, (i=1,2,3) \Rightarrow \text{acres plantados com soja, milho e feijão, respectivamente.} \\ x_i \, (i=4,5) \Rightarrow \text{n}^{\circ} \text{ de vacas e galinhas, respectivamente.} \\ x_i \, (i=6,7) \Rightarrow \text{excesso de homens-hora no inverno e verão, respectivamente.} \\ \text{(MAX)} \, Z = 375x_1 + 550x_2 + 250x_3 + 800x_4 + 5x_5 + 4x_6 + 4, 5x_7 \\ \text{s.a.} \\ x_1 + x_2 + x_3 + 1, 5x_4 \leq 100 \\ 900x_4 + 7x_5 \leq 30000 \\ 20x_1 + 35x_2 + 10x_3 + 100x_4 + 0, 6x_5 + x_6 = 3500 \\ 50x_1 + 75x_2 + 40x_3 + 50x_4 + 0, 3x_5 + x_7 = 4000 \\ x_4 \leq 32 \\ x_5 \leq 3000 \\ x_i \geq 0 \end{array}
```