Pattern name and classification	A unique, descriptive identifier for the pattern
Attack prerequisites	Which conditions must exist or which
	functionality and which characteristics must
	the target software have, or which behavior
	must it exhibit, for this attack to succeed?
Description	A description of the attack, including the chain
	of actions taken.
Related vulnerabilities or weaknesses	Which specific vulnerabilities or weaknesses
	does this attack leverage? Specific
	vulnerabilities should reference industry-
	standard identifiers such as common
	vulnerabilities and exposures (CVE) number or
	USE-CERT number.
	Specific weaknesses (underlying issues that
	may cause vulnerabilities) should reference
	industry-standard identifiers such as Common
	Weaknesses Enumeration (CWE).
Method of attack	What is the vector of attack used (e.g.,
	malicious data entry, maliciously crafted file,
	protocol corruption)?
Attack motivation consequences	What is the attacker trying to achieve by using
	this attack? This is not the end
	business/mission goal of the attack within the
	target context, but rather the specific
	technical result desired that could be used to
	achieve the end business/mission objective.
	This information is useful for aligning attack
	patterns to threat models and for determining
	which attack patterns from the broader set
	available are relevant for a given context.
Attacker skill or knowledge required	What level of skill or specific knowledge must
	the attacker have to execute such an attack?
	This should be communicated on a rough scale
	(e.g., low, moderate, high) as well as in
	contextual detail of which type of skills or
Base was ind	knowledge are required.
Resources required	Which resources (e.g., CPU cycles, IP address,
	tools, time) are required to execute the
	attack?

Adapted from Software Security Engineering: *A guide for Project Managers* by Julia Allen, Sean Barnum, Robert Ellison, Gary McGraw, Nancy Mead

Solutions and mitigations	Which actions or approaches are
	recommended to mitigate this attack, either
	through resistance or through resiliency?
Context description	In which technical contexts (e.g., platform,
	operating system, language, and architectural
	paradigm) is this pattern relevant? This
	information is useful for selecting a set of
	attack patterns that are appropriate for a
	given context.
References	What other sources of information are
	available to describe this attack.

Example of an attack Pattern

Pattern name and classification	Make a client invisible
Attack prerequisites	The application must have a multi-tiered
	architecture with a division between the client
	and the server.
Description	This attack pattern exploits client-side trust
	issues that are apparent in the software
	architecture. The attacker removes the client
	from the communication loop by
	communicating directly with the server. This
	could be done by bypassing the client or by
	creating a malicious impersonation of the
	client.
Related vulnerabilities or weaknesses	Man-in-the-Middle (MITM)(CWE #300), Origin
	Validation Error (CWE #346), Authentication
	Bypass by Spoofing (CWE #290), No
	Authentication for Critical Function (CWE
	#306), Reflection Attack in an Authentication
	Protocol (CWE #301).
Method of attack	Direct protocol communication with the
	server
Attack motivation-consequences	Potentially information leak, data
	modification. Arbitrary code execution and so
	on. These can all be achieved by bypassing
	authentication and filtering accomplished with
	this attack pattern.

Adapted from Software Security Engineering: *A guide for Project Managers* by Julia Allen, Sean Barnum, Robert Ellison, Gary McGraw, Nancy Mead

Attacker skill or knowledge required	Finding and initially executing this attack requires a moderate skill level and knowledge of client/server communications protocol. Once the vulnerability is found, the attack can be easily automated for execution by far less skilled attackers. Skill levels for follow-on attacks can vary widely depending on the nature of the attack.
Resources required	None, although protocol analysis tools and client impersonation tools such as netcat can greatly increase the ease and effectiveness of the attack.
Solutions and mitigations	Increase attack resistance. Use strong two-way authentication for all communication between the client and the server. This option could have significant performance implications. Increase attack resilience: Minimize the amount of logic and filtering present on the client; place it on the server instead. Use white lists on the server to filter and validate client input.
Context description	"Any raw data that exist outside the server software cannot and should not be trusted. Client-side security is an oxymoron. Simply put, all clients will be hacked. Of course, the real problem is one of client-side trust. Accepting anything blindly from the client and trusting it through and through is a bad idea, and yet this often the case in server-side design."
Reference	Exploiting Software: How to Break Code, p.150