Project 1: Python Truth Tables

Christian Johnson & Aidan Andersen February 12, 2024

Proof 1

$$\begin{array}{l} p\vee (\neg q)\\ (t\vee s) \implies (p\vee r)\\ (\neg r)\vee (t\vee s)\\ \underline{p} \implies (t\vee s)\\ \overline{(p\wedge r)} \implies (q\vee r) \end{array}$$

This simplifies to:

$$p \lor (\neg q)$$

$$p \implies (p \lor r)$$

$$p \implies (t \lor s)$$

$$(p \land r) \implies (q \lor r)$$

Given hypotheses:

- 1. $p \vee (\neg q)$
- $\mathbf{2.} \ (\mathbf{t} \vee s) \implies (p \vee r)$
- **3.** $(\neg r) \lor (t \lor s)$
- **4.** $p \implies (q \lor r)$

Claim: $(p \wedge r) \implies (q \vee r)$

Proof:

- Assume $p \wedge r$. (Claim)
- From 1., we have p. (Conjunction elimination)
- Apply hypothesis 4 to p, which implies $q \vee r$. (Modus Ponens)
- Since r is also true, $q \vee r$ holds. (Disjunctive Syllogism)
- Therefore, $(p \wedge r) \implies (q \vee r)$ is established

This conclusion can be shown in the truth table on the next 2 pages.

```
variables=['p', 'q', 'r', 's', 't']
expression1=lambda p,r: p and r
expression2=lambda q,r: q or r
expression3=lambda p,q,r: Implies(p&r,q|r)
data = []
for p in (True, False):
    for q in (True, False):
         for r in (True, False):
              for t in (True, False):
                   for s in (True, False):
                        result1=expression1(p,r)
                        result2 = expression2(q,r)
                        result3 = expression3(p,q,r)
                        data.append([p,q,r,t,s,result1,
                            result2, result3])
df=pd.DataFrame(data, columns=['p', 'q', 'r', 's', 't', 'p
   \exists and \exists r', 'q\exists or \exists r', '(p\exists and \exists r) \exists implies \exists (q\exists or \exists r)'])
ConvertToLatex (df)
```

					\mathbf{t}	p and r	q or r	(p and r) implies (q or r)
0	True	True	True	True	True	True	True	True
1	True	True	True	True	False	True	True	True
2	True	True	True	False	True	True	True	True
3	True	True	True	False	False	True	True	True
4	True	True	False	True	True	False	True	True
5	True	True	False	True	False	False	True	True
6	True	True	False	False	True	False	True	True
7	True	True	False	False	False	False	True	True
8	True	False	True	True	True	True	True	True
9	True	False	True	True	False	True	True	True
10	True	False	True	False	True	True	True	True
11	True	False	True	False	False	True	True	True
12	True	False	False	True	True	False	False	True
13	True	False	False	True	False	False	False	True
14	True	False	False	False	True	False	False	True
15	True	False	False	False	False	False	False	True
16	False	True	True	True	True	False	True	True
17	False	True	True	True	False	False	True	True
18	False	True	True	False	True	False	True	True
19	False	True	True	False	False	False	True	True
20	False	True	False	True	True	False	True	True
21	False	True	False	True	False	False	True	True
22	False	True	False	False	True	False	True	True
23	False	True	False	False	False	False	True	True
24	False	False	True	True	True	False	True	True
25	False	False	True	True	False	False	True	True
26	False	False	True	False	True	False	True	True
27	False	False	True	False	False	False	True	True
28	False	False	False	True	True	False	False	True
29	False	False	False	True	False	False	False	True
30	False	False	False	False	True	False	False	True
31	False	False	False	False	False	False	False	True

Proof 2

$$\begin{array}{l} p\vee (\neg q)\\ (t\vee s) \implies (p\vee r)\\ (\neg r)\vee (t\vee s)\\ \underline{p} \iff (t\vee s)\\ \overline{(q\vee r)} \implies (p\vee r) \end{array}$$

This can be simplified to:

$$\begin{array}{l} p \vee (\neg q) \\ p \implies (p \vee r) \\ \underline{(\neg r) \vee (t \vee s)} \\ (q \vee r) \implies (p \vee r) \end{array}$$

Given hypotheses:

- 1. $p \vee (\neg q)$
- $2. p \implies (p \lor r)$
- **3.** $(\neg r) \lor (t \lor s)$

Claim: $(q \lor r) \implies (p \lor r)$ Proof:

• Assume $q \vee r$. (Claim)

_