INDEX

D W. A.D. II. I. A. Lei, G 44 - W1	PAGE
BOCHER, M., A Problem in Analytic Geometry, with a Moral,	44
, Introduction to the Theory of Fourier's Series,	81
—, Another Proof of the Theorem Concerning Artificial Singularities,	163
CARMICHAEL, R. D., Note of Multiply Perfect Numbers,	153
Curtiss, D. R., A Proof of the Theorem Concerning Artificial Singu-	
larities,	161
HEDRICK, E. R., On a function which Occurs in the Law of the Mean,	177
HUNTINGTON, E. V., The Continuum as a Type of Order: An Exposi-	
tion of the Modern Theory. V-VI. With an Appendix on the	
Transfinite Numbers. (See erratum on next page.)	15
KENNELLY, A. E., The Harmonic Analysis of the Semi-Circle and of	
the Ellipse,	49
MACNEISH, H. F., On the Determination of a Catenary with Given	
Directrix and Passing Through Two Given Points,	65
-, Concerning the Discontinuous Solution in the Problem of the	
Minimum Surface of Revolution,	72
MASCHKE, H., A Geometrical Problem Connected with the Continua-	
tion of a Power-Series, ,	61
Mason, M., Curves of Minimum Moment of Inertia with Respect to a	
Point,	165
MILLER, G. A., Note on the Possible Number of Operators of Order 2	
in a Group of Order 2 ^m ,	55
PORTER, M. B., Concerning Green's Theorem and the Cauchy-	00
Riemann Differential Equations,	1
SAUREL, P., On the Singularities of Tortuous Curves,	3
T	10
	10
WHITE, H. S., Triangles and Quadrilaterals Inscribed to a Cubic and	170
Circumscribed to a Conic,	172
WILSON, E. B., Note on Integrating Factors,	155

ERRATUM

E. V. HUNTINGTON, The Continuum as a Type of Order, etc.

Page 20. In §62, 3) the statement: "If a series is dense, it will be also dense-in-itself" is erroneous, as has been pointed out by O. Veblen in his review of this paper (Bull. Amer. Math. Soc., vol. 12, p. 302; 1906).

An example of a dense series which is not dense-in-itself may be constructed in the following manner. First, take Cantor's normal series of Type Ω (see §83), and connect each element with the next following element by a linear continuous series (§54); the series thus obtained, which may be called Veblen's series, V, will be continuous but not linear (§54). Then form the series V, 1, *V (where *V denotes the series V in reverse order). This series V, 1, *V will be dense but not dense-in-itself. For, every progression in V has a limit in V, and every regression in *V has a limit in *V, so that the element 1 is not the limit of any fundamental sequence (§62). In view of this correction, the reasoning in the footnote † on page 21 is erroneous; it remains true, however, that the first part of condition A in §62, 7) is redundant, as stated.

