Albert Bifet (@abifet)

Paris, 6 December 2016 albert.bifet@telecom-paristech.fr

Data Streams

Big Data & Real Time

Definition

Clustering is the distribution of a set of instances of examples into non-known groups according to some common relations or affinities.

Example

Market segmentation of customers

Example

Social network communities

Definition

Given

- a set of instances I
- a number of clusters K
- an objective function cost(I)

a clustering algorithm computes an assignment of a cluster for each instance

$$f: I \rightarrow \{1, \ldots, K\}$$

that minimizes the objective function *cost(I)*

Definition

Given

- a set of instances I
- a number of clusters K
- an objective function cost(C, I)

a clustering algorithm computes a set C of instances with |C| = K that minimizes the objective function

$$cost(C, I) = \sum_{x \in I} d^2(x, C)$$

where

- ightharpoonup d(x,c): distance function between x and c
- ► $d^2(x, C) = min_{c \in C}d^2(x, c)$: distance from x to the nearest point in C

k-means

- ▶ 1. Choose k initial centers $C = \{c_1, \dots, c_k\}$
- ▶ 2. while stopping criterion has not been met
 - ▶ For i = 1, ..., N
 - ▶ find closest center $c_k \in C$ to each instance p_i
 - assign instance p_i to cluster C_k
 - ▶ For k = 1, ..., K
 - ightharpoonup set c_k to be the center of mass of all points in C_i

k-means++

- ▶ 1. Choose a initial center c₁
- For $k = 2, \ldots, K$
 - ▶ select $c_k = p \in I$ with probability $d^2(p, C)/cost(C, I)$
- 2. while stopping criterion has not been met
 - ▶ For i = 1, ..., N
 - ▶ find closest center $c_k \in C$ to each instance p_i
 - assign instance p_i to cluster C_k
 - ▶ For k = 1, ..., K
 - ightharpoonup set c_k to be the center of mass of all points in C_i

Performance Measures

Internal Measures

- Sum square distance
- ▶ Dunn index $D = \frac{d_{min}}{d_{max}}$
- ▶ C-Index $C = \frac{S S_{min}}{S_{max} S_{min}}$

External Measures

- Rand Measure
- F Measure
- Jaccard
- Purity

BIRCH

BALANCED ITERATIVE REDUCING AND CLUSTERING USING HIERARCHIES

- ▶ Clustering Features CF = (N, LS, SS)
 - N: number of data points
 - LS: linear sum of the N data points
 - SS: square sum of the N data points
 - Properties:
 - Additivity: $CF_1 + CF_2 = (N_1 + N_2, LS_1 + LS_2, SS_1 + SS_2)$
 - Easy to compute: average inter-cluster distance and average intra-cluster distance
- Uses CF tree
 - Height-balanced tree with two parameters
 - B: branching factor
 - T: radius leaf threshold

BIRCH

BALANCED ITERATIVE REDUCING AND CLUSTERING USING HIERARCHIES

- Phase 1: Scan all data and build an initial in-memory CF tree
- Phase 2: Condense into desirable range by building a smaller CF tree (optional)
- Phase 3: Global clustering
- Phase 4: Cluster refining (optional and off line, as requires more passes)

Clu-Stream

Clu-Stream

- Uses micro-clusters to store statistics on-line
 - ► Clustering Features *CF* = (*N*, *LS*, *SS*, *LT*, *ST*)
 - N: numer of data points
 - LS: linear sum of the N data points
 - SS: square sum of the N data points
 - LT: linear sum of the time stamps
 - ST: square sum of the time stamps
- Uses pyramidal time frame

Clu-Stream

On-line Phase

- For each new point that arrives
 - the point is absorbed by a micro-cluster
 - the point starts a new micro-cluster of its own
 - delete oldest micro-cluster
 - merge two of the oldest micro-cluster

Off-line Phase

Apply k-means using microclusters as points

DBSCAN

- ϵ -neighborhood(p): set of points that are at a distance of p less or equal to ϵ
- ▶ Core object: object whose ϵ -neighborhood has an overall weight at least μ
- ► A point *p* is *directly density-reachable* from *q* if
 - p is in ε-neighborhood(q)
 - q is a core object
- ► A point *p* is *density-reachable* from *q* if
 - ▶ there is a chain of points $p_1, ..., p_n$ such that p_{i+1} is directly density-reachable from p_i
- A point p is density-connected from q if
 - there is point o such that p and q are density-reachable from o

DBSCAN

- ▶ A *cluster C* of points satisfies
 - ▶ if $p \in C$ and q is density-reachable from p, then $q \in C$
 - ▶ all points $p, q \in C$ are density-connected
- A cluster is uniquely determined by any of its core points
- A cluster can be obtained
 - choosing an arbitrary core point as a seed
 - retrieve all points that are density-reachable from the seed

DBSCAN

- select an arbitrary point p
- retrieve all points density-reachable from p
- ▶ if p is a core point, a cluster is formed
- If p is a border point
 - no points are density-reachable from p
 - DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

DenStream

- ϵ -neighborhood(p): set of points that are at a distance of p less or equal to ϵ
- ▶ Core object: object whose ϵ -neighborhood has an overall weight at least μ
- ▶ Density area: union of the ϵ -neighborhood of core objects

DenStream

For a group of points $p_{i_1}, p_{i_2}, \dots, p_{i_n}$, with time stamps $T_{i_1}, T_{i_2}, \dots, T_{i_n}$

- core-micro-cluster
 - $w = \sum_{i=1}^{n} f(t T_{i_i})$ where $f(t) = 2^{-\lambda t}$ and $w \ge \mu$
 - $c = \sum_{i=1}^{n} f(t T_{i_i}) p_{i_i} / w$
 - $ightharpoonup r = \sum_{j=1}^n f(t T_{i_j}) dist(p_{i_j}, c)/w$ where $r \leq \epsilon$
- potential core-micro-cluster
 - $w = \sum_{j=1}^{n} f(t T_{i_j})$ where $f(t) = 2^{-\lambda t}$ and $w \ge \beta \mu$
 - $CF^1 = \sum_{j=1}^n f(t T_{i_j}) p_{i_j}$
 - $ightharpoonup \overline{CF^2} = \sum_{j=1}^n f(t-T_{i_j}) p_{i_j}^2$ where $r \leq \epsilon$
- outlier micro-cluster: $w < \beta \mu$

DenStream

On-line Phase

- For each new point that arrives
 - try to merge to a p-micro-cluster
 - else, try to merge to nearest o-micro-cluster
 - if $w > \beta \mu$ then
 - convert the o-micro-cluster to p-micro-cluster
 - otherwise create a new o-microcluster

Off-line Phase

- for each p-micro-cluster c_p
 - if $w < \beta \mu$ then remove c_p
- for each o-micro-cluster c_o
 - if $w < (2^{-\lambda(t-t_o+T_p)}-1)/(2^{-\lambda T_p}-1)$ then remove c_o
- Apply DBSCAN using microclusters as points

ClusTree

ClusTree: anytime clustering

- Hierarchical data structure: logarithmic insertion complexity
- Buffer and hitchhiker concept: enable anytime clustering
- Exponential decay
- Aggregation: for very fast streams

StreamKM++: Coresets

Coreset of a set P with respect to some problem

Small subset that approximates the original set *P*.

Solving the problem for the coreset provides an approximate solution for the problem on P.

(k, ϵ) -coreset

A (k, ϵ) -coreset S of P is a subset of P that for each C of size k

$$(1 - \epsilon)cost(P, C) \le cost_w(S, C) \le (1 + \epsilon)cost(P, C)$$

StreamKM++: Coresets

Coreset Tree

- Choose a leaf I node at random
- Choose a new sample point denoted by q_{t+1} from P_t according to d²
- ▶ Based on q_l and q_{t+1} , split P_l into two subclusters and create two child nodes

StreamKM++

▶ Maintain $L = \lceil \log_2(\frac{n}{m}) + 2 \rceil$ buckets B_0, B_1, \dots, B_{L-1}

