Mean-field models of network dynamics

Advanced theory course Mario Dipoppa and Alessandro Sanzeni April 5, 2022

Outline

- Irregular activity in cortical circuits
- Spiking models of cortical circuits
- Computation of input statistics that each neuron receive
- Analysis of single neuron and network dynamics with different effective descriptions
- References using mean field models to understand network dynamics and computations

Neurons in cortical circuits fire irregularly

Rodgers et al. 2021

 Temporarlly irregular single cell firing pattern (CV of interspike interval~1)
 [Holt 1996]

What are the underlying mechanisms?

Network model

- Large randomly-connected networks of neurons
 - gJ synaptic efficacy;
 - the number of projections per neuron has mean K (\gg 1) and variance Δ K².
- External drive from an excitatory population firing with poisson statistics
 - firing rate r_x
 - J synaptic efficacy;
 - K projection per neuron.
- Leaky integrate-and-fire (LIF) single neuron model

Leaky integrate-and-fire (LIF) single neuron model

Single neuron activity described by its membrane potential V

• Membrane potential evolves in time according to $au rac{dV_i}{dt} = -V + RI_i$

- Spiking dynamics of single cell:
 - When V reaches firing threshold θ (=20mV), the neuron emits a spike and V to a reset value V_r (=10mV)

Statistical description of input current

 In the network, input current into a neuron is given by the sum of the presynaptic spikes

$$\tau \frac{dV_i}{dt} = -V + R I_i(t) = -V + R \left(I_i^{rec} + I^{ff} \right)$$

$$RI_i^{rec}(t) = \tau gJ \sum_j C_{ij} \sum_n \delta(t - t_j^n), \quad RI_i^{ff}(t) = \tau J \sum_j C_{ij} \sum_n \delta(t - t_j^n)$$

- Under the (biologically motivated) assumptions:
 - large K,
 - o small J,
 - sparse connectivity
 - asynchronous irregular activity

$$\mu = KJ\tau(r_X + g\bar{r})\,,\quad \sigma^2 = \tau J^2K\,(r_x + g^2\bar{r})\,,\quad \Delta^2 = \tau^2 g^2 J^2 \Delta_K^2\,(\bar{r}^2 + \Delta r^2)$$

 $RI_i(t) = \mu + \sigma\sqrt{\tau}\,\eta_i(t) + \Delta\,z_i$

the central limit theorem gives:

Derivation of statistical description of input current

Mean-field descriptions of input current

$$R I_i(t) = \mu + \sigma \sqrt{\tau} \, \eta_i(t) + \Delta z_i \,,$$

$$\mu = KJ\tau(r_X + g\bar{r}), \quad \sigma^2 = \tau J^2K(r_x + g^2\bar{r}), \quad \Delta^2 = \tau^2 g^2 J^2 \Delta_K^2(\bar{r}^2 + \Delta r^2)$$

What is a good effective description of the input into a single cell?

- In cortex, the mean μ is expected to dominate
- let's neglect the other contributions (σ and Δ) and see what happens
 - "Traditional mean-field"

μ mean-field: single neuron response

Single neuron dynamics

$$\tau \frac{dV_i}{dt} = -V + \mu$$

Looks nothing like the data!

Single neuron firing rate

$$r = \frac{1}{\tau \log \left(\frac{\mu - V_r}{\mu - \theta}\right)}$$

μ mean-field: network response

 Single neuron dynamics determined by activity of other neurons in the network

$$au rac{dV_i}{dt} = -V + \mu \,, \quad \mu = KJ\tau(r_X + gr) \,.$$

 Implicit equation defining network response

$$r = \frac{1}{\tau \log \left(\frac{\mu - V_r}{\mu - \theta}\right)}$$
$$\mu = KJ\tau(r_X + gr).$$

Mean-field descriptions of input current

$$R I_i(t) = \mu + \sigma \sqrt{\tau} \, \eta_i(t) + \Delta z_i \,,$$

$$\mu = KJ\tau(r_X + g\bar{r}), \quad \sigma^2 = \tau J^2K(r_x + g^2\bar{r}), \quad \Delta^2 = \tau^2 g^2 J^2 \Delta_K^2(\bar{r}^2 + \Delta r^2)$$

What is a good effective description of the input into a single cell?

- In cortex, the mean μ is expected to dominate
- let's neglect the other contributions (σ and Δ) and see what happens
 - "Traditional mean-field"

μ-σ mean-field: single neuron response

Single neuron dynamics

$$\tau \frac{dV_i}{dt} = -V + \mu + \sigma \,\eta_i(t)$$

Dynamics
resembles data
for θ-μ~σ but
requires fine
tuning

 Single neuron firing rate (first passage time OU process)

$$r = \left[au\sqrt{\pi}\int_{rac{V_r-\mu}{\sigma}}^{rac{ heta-\mu}{\sigma}} e^{u^2} \left(1+ ext{erf}(u)
ight) \, du
ight]^{-1}$$

μ - σ mean-field: network response

Single neuron dynamics neurons in the network

Single neuron dynamics determined by activity of other
$$au rac{dV_i}{dt} = -V + \mu + \sigma \sqrt{\tau} \eta_i(t) \,, \quad \mu = KJ\tau(r_X + gr) \,, \quad \sigma^2 = \tau J^2 K \left(r_x + g^2 \bar{r}\right)$$

Implicit equation defining network response

$$r = \left[au\sqrt{\pi}\int_{rac{V_r-\mu}{\sigma}}^{rac{ heta-\mu}{\sigma}} e^{u^2} \left(1+ ext{erf}(u)
ight)\,du
ight]^{-1}$$

$$\mu = KJ\tau(r_X + gr), \quad \sigma^2 = \tau J^2K(r_x + g^2\bar{r})$$

Robustness of fluctuation-driven regime

Agreement with numerical simulations

E-I balance implements fine tuning of inputs: signature in linearity of network transfer function

Network model fails to capture cortical distribution of rates

μ - σ - Δ mean-field

- Single neuron dynamics determined by activity of other neurons in the network
- MFT predicts the size of quenched disorder at which broad distribution of rates emerge

$$R I_i(t) = \mu + \sigma \sqrt{\tau} \, \eta_i(t) + \Delta z_i \,,$$
 $\mu = K J \tau (r_X + g \bar{r}) \,, \quad \sigma^2 = \tau J^2 K \left(r_x + g^2 \bar{r} \right) \,, \quad \Delta^2 = \tau^2 g^2 J^2 \Delta_K^2 \left(\bar{r}^2 + \Delta r^2 \right)$

Increasing ΔK generates broad (~lognormal) distribution of rates consistent with data

Fluctuation driven regime gives rise to skewed distribution

$$R I_i(t) = \mu + \sigma \sqrt{\tau} \, \eta_i(t) + \Delta \, z_i \,,$$

$$\mu = K J \tau (r_X + g \bar{r}) \,, \quad \sigma^2 = \tau J^2 K \left(r_x + g^2 \bar{r} \right) \,, \quad \Delta^2 = \tau^2 g^2 J^2 \Delta_K^2 \left(\bar{r}^2 + \Delta r^2 \right)$$

Summary

- Irregular activity observed in cortical circuits
- Mean field models of networks of spiking neurons
 - Derived a statistical description of inputs to cells in the network
 - Network models with only mean input fail to capture irregular activity
 - Network models with mean and temporal variance capture
 CV of interspike interval~1
 - Including quenched disorder of the correct size allows to capture distribution of rates in the network

References and other notable examples

- Dynamics of networks of spiking neurons
 - Amit and Brunel, Dynamics of a recurrent network of spiking neurons before and following learning.
 1997
 - Brunel, Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. 2000
- Models with more biophysical details
 - Mongillo et al, Bistability and Spatiotemporal Irregularity in Neuronal Networks with Nonlinear Synaptic Transmission. 2012
 - Ostojic and Brunel. From Spiking Neuron Models to Linear-Nonlinear Models. 2011
- Effects of disorder
 - Roxin et al, On the Distribution of Firing Rates in Networks of Cortical Neurons. 2011
 - Landau et al, The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks. 2016
- Mean-field for computations
 - Babadi and Sompolinsky. Sparseness and Expansion in Sensory Representations. 2014