Problema do Trabalho Balanceado

Gustavo Delazeri

17 de Agosto de 2020

1 Introdução

O objetivo deste trabalho é implementar, calibrar e testar um algoritmo genético para resolver o problema do Trabalho Balanceado. O problema do Trabalho Balanceado é assim definido: dados um conjunto de n tarefas que precisam ser executadas em sequência, um conjunto de m operadores e uma matriz p, onde p_{ij} representa o tempo necessário para o operador j executar a tarefa i, encontre uma partição das n tarefas em m intervalos $[b_k, e_k] k \in [m]$ e uma permutação dos operadores π de forma que $T = max_{j \in [m]}T_j$ é minimizado, sendo que $T_j = \sum_{t \in [b_t, e_t]} p_{t\pi_j}$. Em outras palavras, encontre uma atribuição de tarefas a operadores de tal modo que operadores executem tarefas sequenciais e o tempo gasto pelo operador que gasta mais tempo trabalhando é minimizado.

2 Formulação do Problema como Programa Inteiro

Variáveis:

• $x_{ij} \in \{0, 1\}, \forall i, j \mid i \in [n] \land j \in [m], \text{ onde}$

$$x_{ij} = \begin{cases} 1, & \text{Caso tarefa i e executada pelo operador j} \\ 0, & \text{Caso contrario} \end{cases}$$

• $w_{ijk} \in \{0,1\}, \quad \forall i,j,k \mid i,j \in [n] \land k \in [m] \land i \neq j$, onde

$$w_{ijk} = \begin{cases} 1, & \text{Caso } x_{ik} \land x_{jk} \text{ \'e verdade} \\ 0, & \text{Caso contrario} \end{cases}$$

• $y \in \mathbb{R}$, onde

$$y = \max \left(\sum_{i \in [n]} p_{ij} \cdot x_{ij}, \forall j \in [m] \right)$$

Função Objetivo:

Min. y

Restrições:

$$\sum_{j \in [m]} x_{ij} = 1, \quad \forall i \in [n]$$
(1)

$$\sum_{i \in [n]} x_{ij} \ge 1, \quad \forall j \in [m]$$
 (2)

$$w_{ijk} \le (x_{ik} + x_{jk})/2, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j$$

$$(3)$$

$$w_{ijk} \ge x_{ik} + x_{jk} - 1, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j \tag{4}$$

$$w_{ijk} \le x_{j-1k}, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j \tag{5}$$

$$y \ge \sum_{i \in [n]} p_{ij} \cdot x_{ij}, \quad \forall j \in [m]$$
 (6)

A restrição (1) garante que toda tarefa é executada por exatamente 1 operador. A restrição (2) garante que todo operador executa pelo menos uma tarefa. Restrições (3) e (4) formam uma conjunção: se as tarefas i e j são executadas pelo mesmo operador k, então w_{ijk} é verdade. A restrição (5) garante que operadores só executam tarefas sequenciais. Por exemplo, um operador não pode executar as tarefas 1,2 e 4. A restrição (6) define um limite inferior para a variável y, a qual representa o tempo gasto pelo operador que trabalha por mais tempo.

3 O Algoritmo Genético

3.1 Parâmetros

A tabela abaixo apresenta os parâmetros do algoritmo e a notação adotada.

$\overline{\mu}$	Quantidade de indivíduos na população inicial
λ	Quantidade de novos individuos gerados
ϕ	Probabilidade de um indivíduo sofrer mutação
ω	Número máximo de gerações consecutivas que não alteram a melhor solução

3.2 Codificação de uma Solução

A codificação de uma solução para uma instância de n tarefas e m operadores segue diretamente da definição do problema. Uma lista de tamanho m é usada para armazenar a permutação dos operadores e uma lista de listas de tamanho m é usada para armazenar a partição das tarefas em intervalos. A figura abaixo ilustra o processo de codificação.

Operador	Tarefas
0	4, 5
1	3
2	0, 1
3	2

3.3 População Inicial

A população inicial é gerada aleatoriamente. Primeiro criam-se μ permutações e μ partições. Depois, associa-se a cada permutação uma partição, também de forma aleatória.

3.4 Seleção de Indivíduos para Crossover

A seleção de indivíduos para crossover implica na realização de λ k-torneios aleatórios, com k=3. Tal valor foi escolhido de forma empírica e o impacto da variação de k na qualidade das soluções não será analisado neste trabalho.

3.5 Crossover

O processo de crossover é aplicado primeiro na permutação de operadores e depois na partição das tarefas. Na permutação é aplicado o Order Crossover OX1 [1]: dados dois pais, p1 e p2, selecionamse dois pontos de corte c1 e c2. O filho 1 herda de p1 o segmento definido pelos pontos c1 e c2 e de p2 o restante dos elementos, preechidos a partir de c2 na mesma ordem que aparecem em p2. O filho 2 herda de p2 o segmento definido pelos pontos c1 e c2 e de p1 o restante dos elementos, preenchidos a partir de c2 na mesma ordem que aparecem em p1. Por exemplo, considere as permutações (013245) e (315240). Sejam c1 = 1 e c2 = 3. A primeira permutação é criada copiando-se o segmento de p1 definido por c1 e c2 ((x132xx)) e depois preenchendo os elementos que faltam, a partir de c2 usando a ordem de p2 ($(x13254) \rightarrow (013254)$). A segunda permutação é criada copiando-se o segmento de p2 definido por c1 e c2 ((x152xx)) e depois preenchendo os elementos que faltam, a partir de c2, usando a ordem de p1 ($(x15203) \rightarrow (415203)$).

Na partição das tarefas, o processo é baseado na observação de que todo intervalo de uma partição pode ser caracterizado pelo primeiro elemento. Dessa forma, dados pais p1 e p2, cria-se um conjunto U com todos os elementos $i \in 1, 2, ..., m-1$ tal que i é o primeiro elemento em algum intervalo da partição de p1 ou da partição de p2. A partição do filho 1 é criada escolhendo-se m-1 elementos distintos de U. A partição do filho 2 é criada da mesma forma que a do filho 1. O valor m-1 se deve ao fato de que 0 sempre é o primeiro elemento de algum intervalo em qualquer partição. Por exemplo, considere as partições [[0,1,2],[3,4],[5]] e [[0,1],[2],[3,4,5]. Nesse caso $U=\{3,5\}\cup\{2,3\}$. Se para o filho 1 os elementos 2 e 3 são escolhidos e para o filho 2 os elementos 2 e 5 são escolhidos, as partições [[0,1],[2],[3,4,5]] e [[0,1],[2,3,4],[5]] são criadas. A figura abaixo ilustra o processo de crossover completo.

3.6 Mutação

O processo de mutação tem duas etapas. A primeira consiste em gerar um número aleatório $k \in \{1,2,3,...,10\}$ e aplicar k pequenas perturbações na permutação da solução. A segunda etapa consiste em escolher dois operadores w_1 e w_2 aleatoriamente, sendo que w_1 terá seu intervalo l unidades maior e w_2 terá seu intervalo l unidades menor. O valor de l é um número aleatório maior ou igual a zero e menor ou igual à magnitude do intervalo de w_2 . A figura abaixo ilustra o processo para $k=2, w_1=1, w_2=3$ e l=1.

3.7 Seleção da Nova População

A seleção da nova população depende do parâmetro λ . Se λ novos indivíduos foram criados via crossover, então os λ piores indivíduos entre todos os indivíduos (geração atual e nova geração) são eliminados da população.

3.8 Critério de Parada

A execução do algoritmo para e retorna uma solução se ω gerações consecutivas foram geradas e o valor da função objetivo não diminuiu.

3.9 Pseudocódigo

Algorithm 1 Algoritmo Genético

```
populacao \leftarrow populacaoInicial(\mu)
M \leftarrow melhor Individuo(populacao)
geracoesSemMelhora \leftarrow 0
while geracoesSemMelhora < \omega do
  for i \in \left[\frac{\lambda}{2}\right] do
     pai \leftarrow torneioAleatorio(populacao, k)
     mae \leftarrow torneioAleatorio(populacao, k)
     filho1, filho2 \leftarrow crossover(pai, mae)
     if random[0,1) < \phi then
       filho1 \leftarrow mutacao(filho1)
     end if
     if random[0,1) < \phi then
        filho2 \leftarrow mutacao(filho2)
     end if
     populacao \leftarrow populacao \cup \{filho1, filho2\}
  end for
  populacao \leftarrow removePioresIndividuos(populacao, \lambda)
  N \leftarrow melhor Individuo(populacao)
  if N é pior ou igual a M then
     geracoesSemMelhora \leftarrow geracoesSemMelhora + 1
  else
     M \leftarrow N
     geracoesSemMelhora \leftarrow 0
  end if
end while
return M
```

3.10 Implementação

3.10.1 Plataforma e Linguagem de Programação

O algoritmo genético foi implementado em Python e usa somente bibliotecas padrão da linguagem. A plataforma utilizada possui sistema operacional macOS Catalina, versão 10.15.6, com um

processador Intel(R) Core(TM) i5, com 2 núcleos físicos de 2.3GHz, com cache L2 de 256KB (em cada núcleo) e 8GB de memória.

3.10.2 Estruturas de Dados

A representação de um indivíduo (cromossomo) segue diretamente da definição do problema apresentada na seção 1. Utiliza-se uma lista de inteiros não negativos de tamanho m, a qual representa a permutação dos operadores, e uma lista de listas de tamanho m, a qual representa a partição das tarefas em intervalos.

3.10.3 Cálculo do fitness de um indivíduo

Para calcular o fitness de um indivíduo é necessário percorrer a lista que representa a partição das tarefas em intervalos e retornar o intervalo de maior custo.

4 Resultados Numéricos

Os testes realizados dividem-se em duas categorias: teste de parâmetros e teste das instâncias. Os testes de parâmetros servem para calibrar o algoritmo genético. Os testes das instâncias servem para comparar o algoritmo genético com a resolução via programação inteira mista usando um solver. Todas as instâncias usadas nos testes podem ser encontradas em http://www.inf.ufrgs.br/~mrpritt/oc/trsp.zip

4.1 Teste de Parâmetros

A testagem de parâmetros é dividida em 5 etapas e faz uso das instâncias tba1, tba2 e tba3. As primeiras três etapas buscam validar o impacto dos operadores de crossover e mutação na qualidade da solução. As últimas duas etapas finalizam a calibragem do algoritmo. Na primeira etapa as soluções são totalmente aleatórias. Na segunda etapa um operador de crossover é introduzido. Na terceira etapa um operador de mutação é introduzido, junto com o operador de crossover da segunda etapa. Nas etapas 4 e 5 os parâmetros λ e ω são, respectivamente, calibrados. O valor final de uma execução é a media aritmética de 5 execuções usando sementes distintas. O gap de otimalidade é calculado usando a fórmula abaixo, onde v_1 é o valor da solução da instância e v_2 é o valor ótimo da instância. Detalhes adicionais sobre cada etapa e os resultados obtidos são apresentados nas seções abaixo.

$$\frac{v_1-v_2}{v_2}\cdot 100$$

4.1.1 Etapa 1

Nessa etapa cada geração é criada aleatoriamente, sem crossover nem mutação. O valor de ω foi fixado em 500 e o valor de ϕ não é relevante nessa etapa. O valor de λ é sempre igual ao valor de μ e o valor de μ é variado de 100 até 1000 com incrementos de 100. A figura abaixo apresenta os resultados

Analisando o gráfico observa-se a relação direta entre a qualidade da solução e valor de μ . No entanto, a taxa de aumento no tempo de execução do algoritmo é maior que a taxa de dimuição do gap de otimalidade, o que torna essa estratégia inviável na prática.

4.1.2 Etapa 2

Nessa etapa a geração inicial é criada aleatoriamente e as demais gerações são criadas usando o processo de crossover descrito na seção 3.5. Os valores de ω , λ e μ seguem o mesmo padrão da etapa 1. O valor de ϕ continua não sendo relevante. A figura abaixo apresenta os resultados.

A a taxa de aumento no tempo de execução do algoritmo continua maior que a taxa de diminuição no gap de otimalidade. No entanto pode-se notar uma melhora na qualidade das soluções. A tabela abaixo resume essa melhora em comparação com a etapa anterior, considerando $\mu = 1000$.

Instância	Soluções Aleatórias (SA)	Crossover (C)	Desvio de C em relação a SA
tba1	1.39	1.23	11.5%
tba2	1.11	1.04	6.3%
tba3	0.93	0.90	3.2%

4.1.3 Etapa 3

Nessa etapa um operador de mutação é introduzido ao algoritmo da etapa 2. Os valores de μ e λ são fixados em 1000 e o de ω em 500. O valor de ϕ é variado de 0.1 até 1 com incrementos de 0.1. A figura abaixo apresenta os resultados.

O aumento de ϕ escala bem em relação ao tempo, mas não tão bem em relação ao gap de otimalidade. A tabela abaixo resume o impacto dos operadores de crossover e mutação na qualidade da solução.

Instância	Soluções Aleatórias (SA)	Crossover (C)	Mutação (M)	Desvio de M em relação a SA	Valor de ϕ
tba1	1.39	1.23	1.17	15.8%	0.3
tba2	1.11	1.04	1.05	5.4%	0.1
tba3	0.93	0.90	0.85	8.6%	0.3

4.1.4 Etapa 4

Nessa etapa μ foi fixado em 1000, ϕ foi fixado em 0.25 , ω foi fixado em 500 e λ varia de 100 até 1000 com incrementos de 100. Os resultado são apresentados na figura abaixo.

4.1.5 Etapa 5

Nessa etapa μ foi fixado em 1000, λ foi fixado em 1000, ϕ foi fixado em 0.25 e ω varia de 100 até 1000 com incrementos de 100. Os resultados são apresentados na figura abaixo.

Junto com o valor de μ , o valor de ω é o que mais impacta a qualidade das soluções. Todavia, o crescimento no tempo de execução causado pelo aumento no valor de ω acaba por limitar esse impacto na prática.

4.2 Teste de instâncias

O algoritmo genético e o solver foram executados em todas as 10 instâncias disponibilizadas no enunciado do trabalho.

4.2.1 Algoritmo Genético

O algoritmo genético foi calibrado usando os resultados de cada parâmetro testado na seção 4.1. A configuração final após a calibragem tem $\mu=1000,~\lambda=1000,~\phi=0.25$ e $\omega=500$. A tabela abaixo apresenta os resultados obtidos.

Instância	Tempo de execução (segundos)	Número de gerações	Valor da Solução Inicial (SI)	Valor da Solução Final (SF)	Desvio da SF em Relação à SI (%)	Desvio da SF em Relação ao BKV (%)
tba1	213.32	1038.80	1.84	1.17	36.41	-108.93
tba2	178.95	1493.00	1.50	1.02	32.00	-96.15
tba3	132.10	1209.40	1.31	0.91	30.53	-89.5
tba4	124.92	1060.80	0.90	0.49	45.55	-58.06
tba5	117.68	1194.80	2.66	1.86	30.07	-24.83
tba6	123.28	1154.60	1.67	0.95	43.11	-66.67
tba7	121.75	1153.60	1.50	0.94	37.33	-59.32
tba8	105.37	1013.40	1.75	1.12	36.00	-31.76
tba9	96.50	1057.80	1.42	0.70	50.70	-20.69
tba10	154.98	1503.20	2.66	1.85	30.45	-39.10

4.2.2 Execução com o solver

O solver usado na resolução das instâncias foi o CPLEX, junto com um tempo limite de 1800 segundos para o retorno de uma solução. A figura abaixo apresenta os resultados

Instância	Tempo de Execução (segundos)	Valor Obtido	Desvio para BKV (%)
tba1	41.53	0.56	0
tba2	11.23	0.52	0
tba3	3.40	0.48	0
tba4	1.47	0.31	0
tba5	108.17	1.49	0
tba6	15.99	0.57	0
tba7	16.18	0.59	0
tba8	4.57	0.85	0
tba9	1.86	0.58	0
tba10	175.04	1.33	

5 Conclusão

A partir dos resultados apresentados na seção 4 fica claro que para o conjunto de instâncias usado a solução via solver é muito mais proveitosa. No entanto, é possível e provável que para instâncias maiores a solução via solver deixe de ser viável, fazendo com que o algoritmo genético seja uma alternativa.

Vale destacar também a evidência coletada na seção 4 de que os operadores de crossover e mutação realmente possuem utilidade, visto que a estratégia que gera somente soluções aleatórias apresentou resultados inferiores às estratégias que usam um ou ambos operadores.

Referências

[1] A.J. Umbarkar and P.D. Sheth. Crossover Operators in Genetic Algorithms: A Review. ICTACT Journal on Soft Computing, October 2015, Volume: 06, Issue: 01