Sums and Sequences

Shirley Chu

De La Salle University

February 26, 2020

Sequences

- a discrete stucture to represent an ordered list.
 - finite sequence
 - infinite sequence

Definition

A sequence is a function from a subset of the set of integers.

The notation $\{a_n\}$ is used to describe a sequence, and a_n is the n^{th} term in the sequence.

Example

- $\{a_n\}$, where $a_n = \frac{1}{n}$. Give the first 5 terms in the sequence starting with a_1 .
- $\{b_n\}$, where $b_n = (-1)^n$. Give the first 8 terms in the sequence where n starts at 0.
- $\{c_n\}$, where $c_n = 1 + 3n$. Give the first 8 terms in the sequence where n starts at 0.

Geometric Progression

Definition

A geometric progression is a sequence of the form

$$a, ar, ar^2, \cdots, ar^n, \cdots$$

where *initial term a*, and *common ratio r* are both real numbers.

Examples are $\{b_n\}$ and $\{d_n\}$, where $d_n = 2 \cdot 5^n$

Arithmetic Progression

Definition

A artithmetic progression is a sequence of the form

$$a, a + d, a + 2d, \cdots, a + nd, \cdots$$

where *initial term a*, and *common difference d* are both real numbers.

Examples are $\{c_n\}$ and $\{t_n\}$, where $t_n = 4 - 5n$

Determine the next 3 terms and the formula for each of the following sequences.

- **1** 1, 3, 5, 7, · · ·
- 2 2, 4, 8, 16, ...
- [3] 2, -4, 8, -16, \cdots
- **4** 2, 3, 7, 25, 121, · · ·
- **5** 1, 3, 9, 27, · · ·

Recurrence Relations

Definition

A *recurrence relation* for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence.

A sequence that satisfies the recurrence relation is called a *solution*.

Example: $a_n = a_{n-1} + x$, $a_n = 3a_{n-1} + 2$

Determine the recurrence relation for each of the following sequences.

- **1** 1, 3, 5, 7, · · ·
- 2 2, 4, 8, 16, ...
- $0, 1, 1, 2, 3, 5, 8, \cdots$
- **4** 1, 1, 2, 6, 24, · · ·
- **5** 1, 3, 9, 27, · · ·

Determine the next term and the formula for a_n for each of the following sequences.

- 1 5, 11, 29, 83, · · ·
- **2** 1, 9, 17, 25, 33, · · ·
- $3 -1, 1, 9, 45, 237, \cdots$
- 4 2, 10, 24, 44, · · ·

Summation Notation

The sum of the terms $a_m, a_{m+1}, a_{m+2}, \dots, a_n$ may be written as

$$a_m + a_{m+1} + a_{m+2} + \cdots + a_n$$

may also be written as:

$$\sum_{j=m}^{n} a_{j} \qquad \qquad \sum_{m \leq j \leq n} a_{j}$$

Summation Notation

$$\sum_{j=m}^{n} a_{j}$$

- Greek letter for uppercase S, summation symbol
- summand, addend
- index of the summation
- lower limit
- upper limit

Read as: The summation of a_j where j is from m to n.

Examples

1
$$\sum_{j=1}^{50} j$$
 = 1 + 2 + 3 + ··· + 50
2 $\sum_{j=1}^{50} (j+1)$ = 2 + 3 + 4 + ··· + 51
3 $\sum_{j=1}^{50} 2j$ = 2 + 4 + 6 + ··· + 100
4 $\sum_{j=1}^{50} j^2$ = 1 + 4 + 9 + ··· + 2500

Summations and their Closed Form

$$\sum_{j=m}^{n} 1 = n - m + 1$$

$$\sum_{j=0}^{n} j = \frac{n(n+1)}{2}$$

$$\sum_{j=0}^{n} c = c(n-m+1)$$

$$\sum_{j=0}^{n} j^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{j=0}^{n} j^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{j=0}^{n} j^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

Summations and their Closed Form - Simplified

$$\sum_{j=m}^{n} 1 = n - m + 1$$

$$\sum_{j=0}^{n} j = \frac{n(n+1)}{2}$$

$$\sum_{j=0}^{n} r^{j} = \frac{r^{n+1} - 1}{r - 1}$$

$$\sum_{j=0}^{n} j^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{j=0}^{n} j^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{j=0}^{8} 4$$

$$\sum_{j=0}^{n} n$$

$$\sum_{i=0}^{\infty} n^3$$

3
$$\sum_{j=0}^{n} n^3$$
4 $\sum_{j=0}^{n} 2j$
5 $\sum_{j=0}^{n} 2j^2$

$$\sum_{i=0}^{n} 2j^{2}$$

$$\sum_{j=0}^{n+5} j^3$$

$$\sum_{j=1}^{2n} 3j$$

$$\int_{j=0}^{n} (k+3)^{2} = (k+3)^{2} \sum_{j=0}^{n} 1$$

Double Summation

To evaluate double (or multiple) summations, expand the inner (rightmost) summation first. Continue evaluating until all summations have been evaluated.

$$\sum_{j=1}^{n} \sum_{k=1}^{n} jk = \sum_{j=1}^{n} j \sum_{k=1}^{n} k = \sum_{j=1}^{n} j \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} \sum_{j=1}^{n} j$$

$$= \frac{n(n+1)}{2} \cdot \frac{n(n+1)}{2}$$

$$= \frac{n^{2}(n+1)^{2}}{4}$$

$$= \frac{n^{2}(n^{2} + 2n + 1)}{4}$$

$$= \frac{n^{4} + 2n^{3} + n^{2}}{4}$$

Find the next term and a_n where $n \ge 1$ of each sequence below.

- **1** 3, 5, 13, 49, 241, . . .
- 2 9, 24, 49, 84, 129, . . .
- **3** 2, 5, 10, 17, 26, . . .

Evaluate the following

$$\sum_{j=0}^{8} 2j$$

$$\sum_{k=2}^{n} (2k+n)^2$$

$$\sum_{j=1}^{4} \sum_{k=0}^{3n} (k+j)$$

$$\sum_{i=0}^{6} 3 \cdot 2^{i}$$

Practice Makes Perfect

Image courtesy of http://fridayreflections.typepad.com/weblog/2008/08/practice-makes.html

References

Rosen, 2007 Kenneth Rosen.

Discrete Mathematics and Its Applications 7th edition, 2007