COS 284 TUTORIAL 5 SEMESTER TEST 2 RECAP

$$(BD') + (ACD') + (B'C'D) + (A'B'C')$$

AB \ CD	00	01	11	10
00				
01				
11				
10				

$$(BD') + (ACD') + (B'C'D) + (A'B'C')$$

AB \ CD		00	01	11	10
00					
01		1			1
11		1			1
10					

$$(BD') + (ACD') + (B'C'D) + (A'B'C')$$

AB \ CD	00	01	11	10		
00						
01	1			1		
11	1			1		
10				1		

$$(BD') + (ACD') + (B'C'D) + (A'B'C')$$

AB \ CD	00	01	11	10		
00		1				
01	1			1		
11	1			1		
10		1		1		

$$(BD') + (ACD') + (B'C'D) + (A'B'C')$$

AB \ CD	00	01	11	10			
00	1	1					
01	1			1			
11	1			1			
10		1		1			

$$(BD') + (ACD') + (B'C'D) + (A'B'C')$$

AB \ CD	00	01	11	10	
00	1	1	0	0	
01	1	0	0	1	
11	1	0	0	1	
10	0	1	0	1	

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF IMMEDIATE ADDRESSING IS USED?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F 7d f6 40 93 38 8c c7 b4 70 82 3e a9 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 34 Index register : 12

Definition:

Immediate addressing is where the data is part of the instruction.

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF IMMEDIATE ADDRESSING IS USED?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F 7d f6 40 93 38 8c c7 b4 70 82 3e a9 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 34 Index register : 12

Definition:

Immediate addressing is where the data is part of the instruction.

Answer: 66

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF DIRECT ADDRESSING IS USED?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 12 Index register : 34

Definition:

Direct addressing is where the address of the data is given in the instruction.

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF DIRECT ADDRESSING IS USED?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E F 03 0f a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 12 Index register : 34

Definition:

Direct addressing is where the address of the data is given in the instruction.

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF DIRECT ADDRESSING IS USED?

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F 03 0f a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 e4 e4 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 12 Index register : 34

Definition:

Direct addressing is where the address of the data is given in the instruction.

Answer: b6

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF INDIRECT ADDRESSING IS USED?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34 Index register: 12

Definition:

Indirect addressing gives the address of the address of the data in the instruction.

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF INDIRECT ADDRESSING IS USED?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E F 03 0f a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd 75 5a 7d f7 8a 3e 52 da b6 0c 79 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34 Index register: 12

Definition:

Indirect addressing gives the address of the address of the data in the instruction.

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF INDIRECT ADDRESSING IS USED?

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F 03 0f a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34 Index register: 12

Definition:

Indirect addressing gives the address of the address of the data in the instruction.

Answer: ff

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF INDEXED ADDRESSING IS USED?

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E F 03 0f a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 e4 e4 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 34 Index register : 12

Definition:

Indexed addressing uses a register (implicitly or explicitly) as an offset, which is added to the address in the operand to determine the effective address of the data.

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF INDEXED ADDRESSING IS USED?

0 1 2 3 4 5 6 7 8 9 A B C D E F a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 34
Index register : 12

Definition:

Indexed addressing uses a register (implicitly or explicitly) as an offset, which is added to the address in the operand to determine the effective address of the data.

Load Address: 66+12 = 78

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF INDEXED ADDRESSING IS USED?

0 1 2 3 4 5 6 7 8 9 A B C D E F 03 0f a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 e4 e4 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd 5a 7d f7 8a 3e 52 da b6 0c 79 ec 03 4a 65 04 6b 5d 94 32 f4 52 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 34
Index register : 12

Definition:

Indexed addressing uses a register (implicitly or explicitly) as an offset, which is added to the address in the operand to determine the effective address of the data.

Load Address: 66+12 = 78

Answer: 27

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF BASED ADDRESSING IS USED?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34 Index register: 12

Definition:

Based addressing is similar except that a base register is used instead of an index register.

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF BASED ADDRESSING IS USED?

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 34 Index register : 12

Definition:

Based addressing is similar except that a base register is used instead of an index register.

Load Address: 66+34 = 9A

A COMPUTER EXECUTES THE INSTRUCTION LOAD 66. WHAT DATA WILL BE LOADED INTO THE ACCUMULATOR IF BASED ADDRESSING IS USED?

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 A B C D E F 03 0f a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 e4 e4 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register : 34 Index register : 12

Definition:

Based addressing is similar except that a base register is used instead of an index register.

Load Address: 66+34 = 9A

Answer: 6b

SUPPOSE THE COMPUTER EXECUTES ADD R1 USING REGISTER ADDRESSING. WHAT DATA VALUE WILL BE ADDED TO THE ACCUMULATOR?

_1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34
Index register: 12
R0 : 10
R1 : 01
R2 : AB
R3 : 22

Definition:

Register addressing is where the data is located in a register.

SUPPOSE THE COMPUTER EXECUTES ADD R1 USING REGISTER ADDRESSING. WHAT DATA VALUE WILL BE ADDED TO THE ACCUMULATOR?

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D E F 7d f6 40 93 38 8c c7 b4 70 82 3e a9 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34
Index register: 12
R0 : 10
R1 : 01
R2 : AB
R3 : 22

Definition:

Register addressing is where the data is located in a register.

Answer: 01

SUPPOSE THE COMPUTER EXECUTES ADD R1 USING REGISTER-INDIRECT ADDRESSING. WHAT IS THE EFFECTIVE ADDRESS OF THE OPERAND THAT WILL BE ADDED TO THE ACCUMULATOR?

1 2 3 4 5 6 7 8 9 A B C D E F a8 4f 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34
Index register: 12
R0 : 10
R1 : 01
R2 : AB
R3 : 22

Definition:

Register indirect addressing uses a register to store the address of the data.

SUPPOSE THE COMPUTER EXECUTES ADD R1 USING REGISTER-INDIRECT ADDRESSING. WHAT IS THE EFFECTIVE ADDRESS OF THE OPERAND THAT WILL BE

ADDED TO THE ACCUMULATOR?

4 5 6 7 8 9 A B C D E F 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34
Index register: 12
R0 : 10
R1 : 01
R2 : AB
R3 : 22

Definition:

Register indirect addressing uses a register to store the address of the data.

SUPPOSE THE COMPUTER EXECUTES ADD R1 USING REGISTER-INDIRECT ADDRESSING. WHAT IS THE EFFECTIVE ADDRESS OF THE OPERAND THAT WILL BE ADDED TO THE ACCUMULATOR?

0 1 2 3 4 5 6 7 8 9 A B C D E F 7d f6 40 93 38 8c c7 b4 70 82 3e a9 f3 32 b9 34 69 46 a7 0f 49 4d c1 c9 77 aa e4 c3 41 60 12 51 77 09 0d 7b ad 8f ac 5c d1 7b b0 de 87 53 7a 6a be 82 72 b8 fd 73 7c f0 a5 9d e1 ed 0e 0e 66 d8 ad eb c2 ef 0b 1b 8b 23 23 8b 95 aa 9f 11 d6 66 57 f1 f6 dc 6e bc e7 b5 2b 2c 65 8c 34 a1 eb 26 b6 d6 10 74 8e 1b 08 e6 66 49 19 63 0d 41 bd e5 79 6d 27 d3 c8 f8 d9 84 4c fd d0 fb ea b3 e3 75 5a 7d f7 8a 3e 52 da b6 0c 79 d9 87 72 c5 93 ec 03 4a 65 04 6b 5d 94 32 f4 52 ba e6 96 ef 63 dd f2 c0 3c 53 02 00 5a 9d 9f 0d fa 0e f1 77 1f f6 ff 50 6c 1b b0 8b 48 f9 d2 bc ec 64 7f fc 8e 7a e0 9b 83 6e 2f 2c 60 23 30 8e 1a fa e1 6b eb 10 b6 53 f2 85 db e4 48 e9 aa 67 ef 36 db 62 51 d8 7a d4 a0 b4 04 31 e0 1b 83 7e 8c e0 76 93 8d ab b0 6a 96 fe a3 ba eb e4 a7 5b

Base register: 34
Index register: 12
R0 : 10
R1 : 01
R2 : AB
R3 : 22

Definition:

Register indirect addressing uses a register to store the address of the data.

Answer: 01

REMARK ON REGISTER-INDIRECT ADDRESSING

	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_C	_D	_E	_F
0_	03	0f	a8	4f	7d	f6	40	93	38	8c	c 7	b4	70	82	3e	a9
1_	e4	e4	f3	32	b9	34	69	46	a7	0f	49	4d	c1	с9	77	aa
2_	e4	c 3	41	60	12	51	77	09	0d	7b	ad	8f	ac	5c	d1	7b
3_	b0	de	87	53	7a	6a	be	82	72	b8	fd	73	7c	f0	a5	9d
4_	e1	ed	0e	0e	66	d8	ad	eb	c 2	ef	0b	1b	8b	23	23	8b
5_	95	aa	9f	11	d6	66	57	f1	f6	dc	6e	bc	e7	b5	2b	2c
6_	65	8c	34	a1	eb	26	b6	d6	10	74	8e	1b	80	e6	66	49
7_	19	63	0d	41	bd	e5	79	6d	27	d3	c8	f8	d9	84	4c	fd
8_	d0	fb	ea	b3	e3	75	5a	7d	f7	8a	3e	52	da	b6	0c	79
9_	d9	87	72	c 5	93	ec	03	4a	65	04	6b	5d	94	32	f4	52
A_	ba	e6	96	ef	63	dd	f2	с0	3c	53	02	00	5a	9d	9f	0d
B_	fa	0e	f1	77	1f	f6	ff	50	6c	1b	b0	8b	48	f9	d2	bc
C_	ec	64	7f	fc	8e	7a	e0	9b	83	6e	2f	2c	60	23	30	8e
D_	1 a	fa	e1	6b	eb	10	b6	53	f2	85	db	e4	48	e9	aa	67
E_	ef	36	db	62	51	d8	7a	d4	a0	b4	04	31	e0	1b	83	7e
F_	8c	e0	76	93	8d	ab	b0	6a	96	fe	a3	ba	eb	e4	a7	5b

Base register: 34
Index register: 12
R0 : 10
R1 : 01
R2 : AB
R3 : 22

Correct Definition:

Register indirect addressing uses a register to store the address of the data.

Faulty Definition on Lecture Slides:

Register indirect addressing uses a register to store the address of the address of the data.

Instruction	Meaning
Load X	Load contents of address X into AC.
Store X	Store the contents of AC at address X.
Add X	Add the contents of address X to AC.
Subt X	Subtract the contents of address X from AC.
Input	Input a value from the keyboard into AC.
Output	Output the value in AC to the display.
Halt	Terminate program.
Skipcond	Skip next instruction on condition.
Jump X	Load the value of X into PC.

Skipcond 000: skip next instruction if AC is negative

Skipcond 400: skip next instruction if AC = 0

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 0
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

Meaning
Load contents of address X into AC.
Store the contents of AC at address X.
Add the contents of address X to AC.
Subtract the contents of address X from AC.
Input a value from the keyboard into AC.
Output the value in AC to the display.
Terminate program.
Skip next instruction on condition.
Load the value of X into PC.

Skipcond 000: skip next instruction if AC is negative

Skipcond 400: skip next instruction if AC = 0

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 0
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

Meaning
Load contents of address X into AC.
Store the contents of AC at address X.
Add the contents of address X to AC.
Subtract the contents of address X from AC.
Input a value from the keyboard into AC.
Output the value in AC to the display.
Terminate program.
Skip next instruction on condition.
Load the value of X into PC.

Skipcond 000: skip next instruction if AC is negative

Skipcond 400: skip next instruction if AC = 0

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 2
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

Instruction	Meaning
Load X	Load contents of address X into AC.
Store X	Store the contents of AC at address X.
Add X	Add the contents of address X to AC.
Subt X	Subtract the contents of address X from AC.
Input	Input a value from the keyboard into AC.
Output	Output the value in AC to the display.
Halt	Terminate program.
Skipcond	Skip next instruction on condition.
Jump X	Load the value of X into PC.

Skipcond 000: skip next instruction if AC is negative

Skipcond 400 : skip next instruction if AC = 0

Skipcond 800: skip next instruction if AC is positive

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 2
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

| AC : 4

Meaning
Load contents of address X into AC.
Store the contents of AC at address X.
Add the contents of address X to AC.
Subtract the contents of address X from AC.
Input a value from the keyboard into AC.
Output the value in AC to the display.
Terminate program.
Skip next instruction on condition.
Load the value of X into PC.

Skipcond 000: skip next instruction if AC is negative

Skipcond 400 : skip next instruction if AC = 0

Read	Input Store W
Quadrunla	Store W
Quadenala	i I
Quadruple	Add W
	Add W
	Add W
Compare	Subt X
	Skipcond 400
	Jump Else
Match	Load Y
	Output
	Halt
Else	Load Z
11	Output
	Halt
W	Dec 2
X	Dec 8
Y	Dec 1
Z	Dec 0
	Match Else W X Y

Meaning
Load contents of address X into AC.
Store the contents of AC at address X.
Add the contents of address X to AC.
Subtract the contents of address X from AC.
Input a value from the keyboard into AC.
Output the value in AC to the display.
Terminate program.
Skip next instruction on condition.
Load the value of X into PC.

Skipcond 000: skip next instruction if AC is negative

Skipcond 400 : skip next instruction if AC = 0

Hex address	Label	Instruction
100	Read	Input
101	ı	Store W
102	Quadruple	Add W
103	(c) (A)	Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107	1	Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 2
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

Instruction	Meaning		
Load X	Load contents of address X into AC.		
Store X	Store the contents of AC at address X.		
Add X	Add the contents of address X to AC.		
Subt X	Subtract the contents of address X from AC.		
Input	Input a value from the keyboard into AC.		
Output	Output the value in AC to the display.		
Halt	Terminate program.		
Skipcond	Skip next instruction on condition.		
Jump X	Load the value of X into PC.		
_	A Secretary Control of the Control o		

Skipcond 000: skip next instruction if AC is negative

Skipcond 400 : skip next instruction if AC = 0

Label	Instruction
Read	Input
	Store W
Quadruple	Add W
	Add W
	Add W
Compare	Subt X
	Skipcond 400
	Jump Else
Match	Load Y
	Output
	Halt
Else	Load Z
	Output
	Halt
W	Dec 2
X	Dec 8
Y	Dec 1
Z	Dec 0
	Read Quadruple Compare Match Else W X Y

Instruction	Meaning	
Load X	Load contents of address X into AC.	
Store X	Store the contents of AC at address X.	
Add X	Add the contents of address X to AC.	
Subt X	Subtract the contents of address X from AC.	
Input	Input a value from the keyboard into AC.	
Output	Output the value in AC to the display.	
Halt	Terminate program.	
Skipcond	Skip next instruction on condition.	
Jump X	Load the value of X into PC.	

Skipcond 000: skip next instruction if AC is negative

Skipcond 400 : skip next instruction if AC = 0

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 2
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

Instruction	Meaning		
Load X	Load contents of address X into AC.		
Store X	Store the contents of AC at address X.		
Add X	Add the contents of address X to AC.		
Subt X	Subtract the contents of address X from AC.		
Input	Input a value from the keyboard into AC.		
Output	Output the value in AC to the display.		
Halt	Terminate program.		
Skipcond	Skip next instruction on condition.		
Jump X	Load the value of X into PC.		

Skipcond 000: skip next instruction if AC is negative

Skipcond 400 : skip next instruction if AC = 0

Skipcond 800: skip next instruction if AC is positive

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 2
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

AC : 1

Instruction	Meaning		
Load X	Load contents of address X into AC.		
Store X	Store the contents of AC at address X.		
Add X	Add the contents of address X to AC.		
Subt X	Subtract the contents of address X from AC.		
Input	Input a value from the keyboard into AC.		
Output	Output the value in AC to the display.		
Halt	Terminate program.		
Skipcond	Skip next instruction on condition.		
Jump X	Load the value of X into PC.		
·			

Skipcond 000: skip next instruction if AC is negative

Skipcond 400 : skip next instruction if AC = 0

Skipcond 800: skip next instruction if AC is positive

Label	Instruction
Read	Input
	Store W
Quadruple	Add W
	Add W
	Add W
Compare	Subt X
	Skipcond 400
	Jump Else
Match	Load Y
	Output
	Halt
Else	Load Z
	Output
	Halt
W	Dec 2
X	Dec 8
Y	Dec 1
Z	Dec 0
	Read Quadruple Compare Match Else W X Y

AC : 1

Hex Instruction		Meaning	
1	Load X	Load contents of address X into AC.	
2	Store X	Store the contents of AC at address X.	
3	Add X	add X Add the contents of address X to AC.	
4	4 Subt X Subtract the contents of address X from		
5	Input	ut Input a value from the keyboard into AC.	
6	Output the value in AC to the display.		
7	Halt	Terminate program.	
8	Skipcond	Skip next instruction on condition.	
9	Jump X	Load the value of X into PC.	

	Hex address	Label	Instruction
	100	Read	Input
	101		Store W
	102	Quadruple	Add W
	103		Add W
	104		Add W
_	105	Compare	Subt X
	106		Skipcond 400
	107		Jump Else
	108	Match	Load Y
	109		Output
	10A		Halt
	10B	Else	Load Z
	10C		Output
	10D		Halt
	10E	W	Dec 0
	10F	X	Dec 8
	110	Y	Dec 1
1	111	Z	Dec 0

Hex	Instruction	Meaning
1	Load X	Load contents of address X into AC.
2	Store X	Store the contents of AC at address X.
3	Add X	Add the contents of address X to AC.
4	Subt X	Subtract the contents of address X from AC.
5	Input	Input a value from the keyboard into AC.
6	Output	Output the value in AC to the display.
7	Halt	Terminate program.
8	Skipcond	Skip next instruction on condition.
9	Jump X	Load the value of X into PC.

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 0
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0
		1/

Hex	Instruction	Meaning
1	Load X	Load contents of address X into AC.
2	Store X	Store the contents of AC at address X.
3	Add X	Add the contents of address X to AC.
4	Subt X	Subtract the contents of address X from AC.
5	Input	Input a value from the keyboard into AC.
6	Output	Output the value in AC to the display.
7	Halt	Terminate program.
8	Skipcond	Skip next instruction on condition.
9	Jump X	Load the value of X into PC.

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 0
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

Hex	Instruction	Meaning
1	Load X	Load contents of address X into AC.
2	Store X	Store the contents of AC at address X.
3	Add X	Add the contents of address X to AC.
4	Subt X	Subtract the contents of address X from AC.
5	Input	Input a value from the keyboard into AC.
6	Output	Output the value in AC to the display.
7	Halt	Terminate program.
8	Skipcond	Skip next instruction on condition.
9	Jump X	Load the value of X into PC.

Hex address	Label	Instruction
100	Read	Input
101		Store W
102	Quadruple	Add W
103		Add W
104		Add W
105	Compare	Subt X
106		Skipcond 400
107		Jump Else
108	Match	Load Y
109		Output
10A		Halt
10B	Else	Load Z
10C		Output
10D		Halt
10E	W	Dec 0
10F	X	Dec 8
110	Y	Dec 1
111	Z	Dec 0

Answer: opcode address: 310E