README.md

Practical Machine Learning - Course Project

Using devices such as *Jawbone Up*, *Nike FuelBand*, and *Fitbit* it is now possible to collect a large amount of data about personal activity relatively inexpensively. These types of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how *much* of an activity they do, but they rarely quantify *how well they do it*. In this project, our goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

The goal of this project is to predict the manner in which they did the exercise. This is the "classe" variable in the training set. Here we are describing the way in which we have built three different models. We have performed cross validation along with the out of sample error is. At the end we have uses the best prediction model to predict 20 different test cases.

Finally, we are thankful to the authors of the paper:

"Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human '13). Stuttgart, Germany: ACM SIGCHI, 2013."

for allowing us to use the WLE dataset.