

Introduction to Machine Learning (CS419M)

Lecture 10:

- Perceptron
- Convergence Proof
- Hinge Loss

Course Roadmap

Perceptron Learners	March 4
Neural Networks (I)	March 6 Project abstracts due
Neural Networks (II)	March 11
Neural Networks (III)	March 13
SVMs and Kernel methods	March 18 < Assignment 2 released
SVMs and Kernel methods	March 20
Clustering + EM	March 25
Clustering + EM	March 27
Nearest neighbour classifiers	April 1
Quiz 2	April 3
Generalization bounds	April 8 Assignment 2 due
Dimensionality Reduction	April 15
Ensemble learning	April 17 < Project preliminary
Ensemble learning	April 22 report due
Buffer	April 24

Perceptron Algorithm

Goal: To learn a weight vector \mathbf{w} such that $\operatorname{sign}(\mathbf{w}^T\mathbf{x})$ is correct for all $\mathbf{x} \in \mathcal{D}$.

$$\operatorname{sign}(\mathbf{w}^T \mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w}^T \mathbf{x} \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Algorithm:

- Start with zero-weights vector, $\mathbf{w} \leftarrow \bar{0}$
- For a fixed number of iterations
 - For a training instance, $(\mathbf{x}, \mathbf{y}) \in \mathcal{D}$
 - if $(y\mathbf{w}^T\mathbf{x} \le 0)$ - $\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

The perceptron weight update rule makes the classifier more correct on a misclassified example: $y\mathbf{w}_{\text{new}}^T\mathbf{x} = y(\mathbf{w}_{\text{old}} + y\mathbf{x})^T\mathbf{x}$ $= y\mathbf{w}_{\text{old}}^T\mathbf{x} + y^2||\mathbf{x}||_2^2$ $> y\mathbf{w}_{\text{old}}^T\mathbf{x}$

Mistake Bounds for the Perceptron Algorithm

Consider the case when data is linearly separable i.e. there exists a weight vector \mathbf{u} s.t. $y = \operatorname{sign}(\mathbf{u}^T\mathbf{x}) \ \forall \mathbf{x}, y \in \mathcal{D}$. Without loss of generality, we assume that \mathbf{u} is a unit-length vector. We also assume that data is scaled to lie in a Euclidean ball of radius 1, i.e., $|\mathbf{x}| \le 1 \ \forall \mathbf{x} \in \mathcal{D}$.

We define the margin of separation, $\gamma = \min_{\mathbf{x} \in \mathcal{D}} |\mathbf{u}^T \mathbf{x}|$

Theorem: If there exists a unit vector \mathbf{u} such that $y\mathbf{u}^T\mathbf{x} \geq \gamma$ for all \mathbf{x} , then the number of weight updates (or number of mistakes) made by the perceptron algorithm is at most $\frac{1}{\gamma^2}$.

Proof of the mistake bound

We will track two quantities: $\mathbf{w}^T \mathbf{u}$ and $||\mathbf{w}||^2$

Claim 1:
$$\mathbf{w}_{t+1}^T \mathbf{u} \ge \mathbf{w}_t^T \mathbf{u} + \gamma$$

For a positive example that is misclassified, $\mathbf{w}_{t+1}^T \mathbf{u} = (\mathbf{w}_t + \mathbf{x})^T \mathbf{u} \ge \mathbf{w}_t^T \mathbf{u} + \gamma$ (by definition of γ) (Similar argument holds for a negative example)

Claim 2:
$$||\mathbf{w}_{t+1}||^2 \le ||\mathbf{w}_t||^2 + 1$$

For a positive example that is misclassified,

$$\|\mathbf{w}_{t+1}\|_2 = (\mathbf{w}_t + \mathbf{x})^T (\mathbf{w}_t + \mathbf{x})$$

=
$$||\mathbf{w}_t||_2 + 2\mathbf{w}_t^T\mathbf{x} + ||\mathbf{w}||^2 \le ||\mathbf{w}_t||_2 + 1$$

(Similar argument holds for a negative example)

After k updates, we have
$$\mathbf{w}_k^T \mathbf{u} \ge k \gamma$$
 and $||\mathbf{w}_k||^2 \le k$ $\Rightarrow \sqrt{k} \ge ||\mathbf{w}_k|| \ge \mathbf{w}_k^T \mathbf{u} \ge k \gamma \to k \le \frac{1}{\gamma^2}$

Loss Function of the Perceptron Learner

Hinge Loss:
$$L_p(\mathbf{x}, y; \mathbf{w}) = \max(0, -y\mathbf{w}^T\mathbf{x})$$

A Stochastic Gradient Descent (SGD) weight update on $L_p(\mathbf{x}, y; \mathbf{w}) = \max(0, -y\mathbf{w}^T\mathbf{x})$ gives:

$$\mathbf{w} \leftarrow \mathbf{w} - \nabla_{\mathbf{w}} L_p(\mathbf{x}, y; \mathbf{w})$$
$$\leftarrow \mathbf{w} + y\mathbf{x}$$

which is exactly the perceptron update rule.