Homework 2 – Tandon Bridge

Names: Patrick Cormier, Leah Del Giudice, Ted Hilger, Chelsea Hudson

Question 5

- A. Solve the following questions from the Discrete Math zyBook:
- 1. Exercise 1.12.2, sections b, e b.

$$\begin{array}{c} p & \longrightarrow (q \wedge r) \\ & \neg q \\ & \vdots & \neg p \end{array}$$

1	$\neg q$	Hypothesis
2	$\neg q \lor \neg r$	Addition, 1
3	$\neg (q \land r)$	De Morgan's Law, 2
4	$p \to (q \land r)$	Hypothesis
5	$\neg p$	Modus tollens, 3, 4

e.

$$p \lor q$$

$$\neg p \lor r$$

$$\underline{\neg q}$$

$$\therefore r$$

1	p V q	Hypothesis
2	¬p V r	Hypothesis
3	qVr	Resolution, 1, 2
4	¬q	Hypothesis
5	r	Disjunctive syllogism, 3, 4

2. Exercise 1.12.3, section c

C.

$$p \lor q$$

$$\underline{\neg p}$$

$$\therefore q$$

1	p V q	Hypothesis
2	¬p -→ q	Conditional Laws, 1
3	¬р	Hypothesis
4	q	Modus ponens, 2, 3

3. Exercise 1.12.5, section c, d

С

j: I get a new job

c: I will buy a new car

h: I will buy a new house

$$(c \land h) \to j$$

$$\exists j$$

$$\vdots = c$$

С	h	j	$\neg c$	$\neg j$	$(c \wedge h)$
					$\rightarrow j$
Т	Т	T	F	F	Т
Т	F	T	F	F	Т
Т	Т	F	F	T	F
Т	F	F	F	Т	Т
F	Т	Т	T	F	Т
F	F	T	T	F	Т
F	Т	F	T	Т	Т
F	F	F	T	Т	Т

The argument is invalid as there is a case where the hypotheses, $(c \land h) \rightarrow j$ and $\neg j$ are true, and the conclusion, $\neg c$, is false.

d.

j: I get a new job

c: I will buy a new car

h: I will buy a new house

$$(c \land h) \to j$$

$$\neg j$$

$$\underline{h}$$

С	h	j	$\neg c$	$\neg j$	$c \wedge h$	$(c \wedge h)$
						$\rightarrow j$
Т	T	T	F	F	T	T
Т	F	T	F	F	F	T
Т	T	F	F	T	T	F
Т	F	F	F	T	F	Т
F	T	Т	T	F	F	Т
F	F	Т	T	F	F	Т
F	Т	F	Т	Т	F	Т
F	F	F	T	Т	F	Т

The argument is valid as there is a case where the hypotheses, $(c \land h) \rightarrow j$, $\neg j$, and h are true, and the conclusion, $\neg c$, is true.

1.	$(c \land h) \rightarrow j$	Hypothesis
2.	eg j	Hypothesis
3.	$\neg(c \land h)$	Modus tollens, 1, 2

4.	$\neg c \lor \neg h$	De Morgan's Laws, 3
5.	h	Hypothesis
6.	$\neg c$	Disjunctive syllogism, 4, 5

- B. Solve the following questions from the Discrete Math zyBook:
- 1. Exercise 1.13.3, section b

b.

$$\exists x \big(P(x) \vee Q(x) \big)$$

 $\exists x \neg Q(x)$

 $\therefore \exists x P(x)$

		Р	Q	PVQ	-Q
į	a	F	Т	Т	F
Ī	b	F	F	F	Т

The argument above is invalid. Under the values of P and Q given in the table, $\exists x \ (P(x) \ V \ Q(x))$ is true as Q(a) is True. Additionally, $\exists x \ \neg Q(x)$ is True as $\neg Q(b) = True$. However, $\exists x \ P(x)$ is False as neither P(a) nor P(b) is True.

2. Exercise 1.13.5, section d, e

d.

M(x): Student missed class

D(x): Student had detention

$$\forall x \big(M(x) \to D(x) \big)$$

Penelope is a student in the class

 $\neg M(Penelope)$

 $\therefore \neg D(Penelope)$

M(x)	D(x)	$\neg M(x)$	$\neg D(x)$	$M(x) \to D(x)$
Т	Т	F	F	Т
Т	F	F	T	F
F	Т	Т	F	Т
F	F	Т	T	Т

The argument is invalid as if all of the hypotheses, $\forall x (M(x) \rightarrow D(x))$, Penelope is a student in the class, and $\neg M(Penelope)$, the conclusion, $\neg D(Penelope)$, can be false.

e.

M(x): Student missed class

D(x): Student had detention

A(x): Student had an A in the class

$$\forall x \left(\left(M(x) \lor D(x) \right) \to \neg A(x) \right)$$

Penelope is a student in the class

A(Penelope)

 $\neg D(Penelope)$

M(x)	D(x)	A(x)	$\neg D(x)$	$\neg A(x)$	M(x)	(M(x))
					$\vee D(x)$	$\vee D(x)$
						$\rightarrow \neg A(x)$
Т	Т	Т	F	F	Т	F
T	F	Т	T	F	Т	F
T	T	F	F	Т	Т	Т
T	F	F	Т	Т	Т	Т
F	Т	Т	F	F	Т	F
F	F	Т	T	F	F	Т
F	Т	F	F	Т	Т	Т
F	F	F	T	Т	F	Т

The argument is valid as there is no case where the hypotheses, $\forall x \left(\left(M(x) \lor D(x) \right) \to \neg A(x) \right)$, *Penelope is a student in the class*, and A(Penelope), are true and the conclusion, $\neg D(x)$ is false.

1.	$\forall x \left(\left(M(x) \lor D(x) \right) \to \neg A(x) \right)$	Hypothesis
2.	Penelope is a student in the class	Hypothesis
3.	$(M(Penelope) \lor D(Penelope)) \rightarrow \neg A(Penelope)$	Universal instantiation, 1, 2
4.	$\neg (M(Penelope) \lor D(Penelope)) \lor \neg A(Penelope)$	Conditional Laws, 3
5.	$(\neg M(Penelope) \land \neg D(Penelope)) \lor \neg A(Penelope)$	De Morgan's Laws, 4
6.	A(Penelope)	Hypothesis
7.	$\neg M(Penelope) \land \neg D(Penelope)$	Disjunctive syllogism, 5, 6
8.	$\neg D(Penelope)$	Simplification, 7

Exercise 2.4.1

d.

Theorem: The product of two odd integers is an odd integer.

Proof:

Let x and y be odd integers. We shall prove that the product of xy is equal to an odd integer.

Since x is odd, there is an integer k such that x = 2k + 1. Since y is odd, there is an integer j such that y = 2j + 1.

$$xy = (2k+1)(2j+1)$$

$$xy = 4kj + 2k + 2j + 1$$

$$xy = 2(2kj + k + j) + 1$$

Since k and j are integers, then kj is also an integer

Since xy = 2m + 1, where m = 2kj + k + j is an integer, xy is odd.

Exercise 2.4.3

b.

Theorem: If x is a real number and $x \le 3$, then $12 - 7x + x^2 \ge 0$

Proof:

Assume x is a real number and $x \le 3$. We shall prove that $12 - 7x + x^2 \ge 0$.

Since $x \le 3$, then $x - 3 \le 0$

Since
$$x - 3 \le 0$$
, $x - 4 < 0$

Since x-3 and x-4 are either less than or equal to zero or less than zero, respectively, they are both negative numbers or one is a negative number and the other is zero.

Since when two negative numbers are multiplied together it makes a positive number and since when we multiply any number by zero it makes zero, if we multiply (x-4)(x-3) together, it will be ≥ 0

Since
$$(x-4)(x-3) \ge 0$$
, we can multiply it out to $12-7x+x^2 \ge 0$

Therefore, if x is a real number and $x \le 3$, then $12 - 7x + x^2 \ge 0$.

Exercise 2.5.1, section d

d.

Theorem: For every integer n, if $n^2 - 2n + 7$ is even, then n is odd.

Contrapositive: For every integer n, if n is even, then $n^2 - 2n + 7$ is odd.

Proof:

Let n be an integer, such that n is even

We will prove that $n^2 - 2n + 7$ is odd

Since n is even, n = 2k

Plugging n = 2k into $n^2 - 2n + 7$ results in $(2k)^2 - 2(2k) + 7$

$$(2k)^2 - 2(2k) + 7 = 4k^2 - 4k + 7 = 2(2k^2 - 2k + 3) + 1$$

Therefore, n^2-2n+7 is odd as 2m+1 signifies an odd number and $m=2k^2-2k+3$ given that n is even. \blacksquare

Exercise 2.5.4, sections a, b

a.

Theorem: For every pair of real numbers x and y, if $x^3 + xy^2 \le x^2y + y^3$, then $x \le y$.

Contrapositive: For every pair of real numbers x and y, if x > y, then $x^3 + xy^2 > x^2y + y^3$.

Proof:

Assume that x > y, where x and y are real numbers.

We will prove that $x^3 + xy^2 > x^2y + y^3$.

Since x > y, $x(x^2 + y^2) > y(x^2 + y^2)$

This means $x^3 + xy^2 > x^2y + y^3$

Therefore, we can conclude that $x^3 + xy^2 > x^2y + y^3$.

b.

Theorem: For every pair of real numbers x and y, if x + y > 20, then x > 10 or y > 10.

Contrapositive: For every pair of real numbers x and y, if $x \le 10$ and $y \le 10$ then $x + y \le 20$.

Proof: Assume that $x \le 10$ and $y \le 10$, where x and y are real numbers.

We will prove that $x + y \le 20$.

Since $y \le 10$, $x + y \le x + 10$

 $x + y - 10 \le x$ and since $x \le 10$

$$x + y - 10 \le 10$$

Therefore, this implies that $x + y \le 20$, which makes the contrapositive and the theorem true.

Exercise 2.5.5, section c

c.

Theorem: For every real number x where $x \neq 0$, if x is irrational, then $\frac{1}{x}$ is also irrational.

Contrapositive: For every real number x where $x \neq 0$, if $\frac{1}{x}$ is also rational, then x is rational

Proof:

Assume $\frac{1}{x}$ is rational, where x is a non-zero real number.

We will prove that x is rational.

There is a number b, where $b = \frac{1}{x}$

We will plug b into $\frac{1}{x}$

$$\frac{1}{b} = \frac{1}{\frac{1}{x}} = \chi$$

Therefore, x is also a rational number.

Exercise 2.6.6

c.

Theorem: The average of three real numbers—x, y, and z—is greater than or equal to at least one of the numbers.

Contradiction: The average of three real numbers—x, y, and z—is less than or equal to all three numbers.

Proof:

Assume
$$\frac{x+y+z}{3} < x$$
, $\frac{x+y+z}{3} < y$, and $\frac{x+y+z}{3} < z$, where x , y , and z are all real numbers.

Since
$$\frac{x+y+z}{3} < x$$
, y , and z , $3\left(\frac{x+y+z}{3}\right) < x+y+z$.

$$x + y + z < x + y + z$$
, which cannot be.

Therefore, since x + y + z cannot be less than itself, the statement that x, y, and z can all three be larger than the average of x, y, and z is false.

d.

Theorem: There is no smallest integer.

Contradiction: There is a smallest integer.

Proof.

Assume there is a smallest integer r, where $\neg \exists s (s \le r)$

If we divide r by 2, we get $\frac{r}{2}$

 $\frac{r}{2}$ would be smaller than r, and would fulfill the existence of s. This can't be true, because we already established that r was the smallest integer. Thus, we have established a contradiction and we must conclude that the assumption that there exists a smallest integer, is false.

Exercise 2.7.2, section b

Theorem: If integers x and y have the same parity, then x + y is even. The parity of a number tells whether the number is odd or even. If x and y have the same parity, they are both either even or both odd.

Proof:

Case 1: x and y are both even. Since x is even, x = 2k for some integer k. Since y is even, y = 2j for some integer j. x + y = 2k + 2j = 2(k + j). Since x + y is equivalent to 2 times an integer, we know that it must be even.

Case 2: x and y are both odd. Since x is odd, x = 2k + 1 for some integer k. Since y is odd, y = 2j + 1 for some integer j. x + y = 2k + 1 + 2j + 1 = 2k + 2j + 2 = 2(k + j + 1). Since x + y is equivalent to 2 times an integer, we know that it must be even. \blacksquare