INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A01N 37/40, 31/14, 35/04 A01N 35/10, 37/10, 37/18 A01N 37/34

(11) International Publication Number:

WO 94/05153

(43) International Publication Date:

17 March 1994 (17.03.94)

(21) International Application Number:

PCT/US93/08096

(22) International Filing Date:

2 September 1993 (02.09.93)

(72) Inventor; and

(75) Inventor/Applicant (for US only): PATEL, Kanu, Maganbhai [US/US]; 149 Fairhill Drive, Wilmington, DE 19808

(74) Agents: GREGORY, Theodore, C. et al.; E.I. du Pont de Nemours and Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(30) Priority data:

07/942,539

9 September 1992 (09.09.92) US

> (81) Designated States: JP, KR, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE).

(60) Parent Application or Grant (63) Related by Continuation

US Filed on

07/942,539 (CIP) 9 September 1992 (09.09.92)

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(71) Applicant (for all designated States except US): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(54) Title: HERBICIDAL BENZENE COMPOUNDS

(57) Abstract

Herbicidal compositions and method of use involving effective amounts of substituted benzene compounds to control the growth of undesired vegetation.

Doc. Type:

Rec'd attached to:

Date Rec'd/Mailed:

BNS page 1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Grecce	NO	Norway
BG	Bulgaria	AU	Hungary	NZ	New Zealand
BJ	Benin	(E	Ireland	PL	Poland
BR	Brazil	1T	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Солдо	KR	Republic of Korea	SE	Sweden
CH	Switzerland	K2	Kazakhstan	SI	Slovenia
C)	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LÜ	Luxembourg	TD	Chad
CS	Czechoslovakia	ĹŸ	Latvia	TG	Togo
cz	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	ÜZ	Uzbekistan
ES	Spain	MN	Mongolia	VN	Vict Nam
E1	Einland	17317		***	1 100

BNSDOCID: <WO

9405153A1 | >

10

15

20

25

TITLE HERBICIDAL BENZENE COMPOUNDS.

BACKGROUND OF THE INVENTION

This invention relates to agriculturally suitable compositions of certain herbicidal benzene compounds and a method for their use as selective preemergent or postemergent herbicides for controlling the growth of undesired vegetation in crops such as rice.

New compounds effective for controlling the growth of undesired vegetation are in constant demand. In the most common situation, such compounds are sought to selectively control the growth of weeds in useful crops such as cotton, rice, corn, wheat and soybeans, to name a few. Unchecked weed growth in such crops can cause significant losses, reducing profit to the farmer and increasing costs to the consumer. In other situations, herbicides are desired which will control all plant growth. There are many products commercially available for these purposes, but the search continues for products which are more effective, less costly and environmentally safe.

SUMMARY OF THE INVENTION

This invention comprises agriculturally suitable compositions wherein the active compounds are the compounds of Formulas I and II, and their method-of-use as preemergent and/or postemergent herbicides or plant growth regulants. Accordingly, the compositions of the invention comprise compounds of the formula

30

II

BNSDQCID: <WO 9405153A1 | >

10

15

20

25

2

wherein

R¹ is Cl, Br, I, OCH₃, OCHF₂, OCF₃ or NO₂;
R² is CN, CO₂R⁴, CHO, C(X)NR¹⁷R¹⁸, C(S)OR⁶, C≡CH,
CHR¹⁹OR²⁰, CH=NOR⁷, CH=CR²¹R²², C(halogen)=NOR⁷,
C(NH₂)=NOR⁷, C(CN)=NOR⁷, CHR¹⁹(halogen),
CHR¹⁹CN, CHR¹⁹C(=O)NH₂, CHR¹⁹CO₂H, or a fivemembered heterocyclic ring containing one or
more nitrogen, sulfur, or oxygen atoms and
optionally substituted with one or more CH₃,
CF₃, OCH₃, SCH₃, or halogen;

R³ is n-propyl; C₄-C₁₀ alkyl; n-propyl or C₄-C₇ alkyl each substituted with one or more halogen, OR⁸, SR⁹ or NR¹⁰R¹¹; C₁-C₂ alkyl substituted with OR¹⁶, SR⁹, NR¹⁴R¹⁵, CO₂(C₁-C₂ alkyl) or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₃-C₆ cycloalkyl; CH₂(C₃-C₆ cycloalkyl); phenyl, pyridyl, thienyl, furyl, pyrazolyl or thiazolyl, each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₂-C₆ alkenyl optionally substituted with one or more halogen or CO₂(C₁-C₂ alkyl); OR¹²; SR¹³; NR¹⁴R¹⁵;

(H,
$$C_1$$
- C_2 alkyl) (H, C_1 - C_2 alkyl)

 CH_2
 CH_2
 CH_2

or

C (=X) R¹²; O-N=CR³⁰R³¹;

 R^4 is H, C_1-C_2 alkyl,

2

BN\$DOCID: <WO 9405153A1 | >

10

15

20

25

30

 R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are independently H or C_1-C_2 alkyl;

- and R¹³ are independently C₁-C₁₀ alkyl optionally substituted with one or more halogen, OR⁸, SR⁹, CO₂R²³, C(0)NR²⁴R²⁵, CN, Si(CH₃)₃, C(R²⁶) (OR²⁷) (OR²⁸) or NR¹⁰R¹¹; C₁-C₃ alkyl substituted with a five- or six-membered heterocyclic ring containing 1-2 heteroatoms selected from the group 1-2 nitrogens, 1 oxygen and 1 sulfur, each ring optionally substituted with 1-2 substituents selected from F, Cl, Br, CH₃, CF₃, OCH₃ and CN; C₃-C₆ alkenyl; or phenyl or benzyl, each ring optionally substituted with one or more CH₃, CF₃, OCH₃, OR²⁹, SCH₃ or halogen;
- R¹⁴ and R¹⁵ are independently H or C₁-C₂ alkyl, or may be taken together along with the nitrogen to which they are attached to form a pyrrolyl, piperidinyl, morpholinyl, pyrazolyl, or imidazolyl ring, each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen;
- R¹⁶ is H, C₁-C₈ alkyl; benzyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen;
- R^{17} is H, C_1-C_2 alkyl or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 or halogen;
- R^{18} is H, C_1-C_2 alkyl, C_3-C_6 cycloalkyl, $CH_2(C_3-C_6$ cycloalkyl), $O(C_1-C_4$ alkyl), O-allyl or may be taken together with R^{17} as $-(CH_2)_4-$, $-(CH_2)_5-$ or $-(CH_2CH_2OCH_2CH_2)-$;
- 35 R^{19} is H or C_1-C_2 alkyl;

15

20

25

30

 \mathbb{R}^{20} is H or C(O)CH₃;

 R^{21} and R^{22} are independently H, CN, CO_2R^4 , $C(X)NR^{17}R^{18}$ or halogen;

 R^{23} , R^{24} , R^{25} and R^{26} are independently H; C_1 - C_3 alkyl; or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 , or halogen;

 R^{27} and R^{28} are independently C_1-C_3 alkyl or may be taken together as $-(CH_2)_2-$ or $-(CH_2)_3-$ optionally substituted with 1-2 CH_3 's;

10 X is 0 or S;

R²⁹ is phenyl, pyridyl, thiazolyl, pyrazolyl or pyrrolyl each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen; and

R³⁰ and R³¹ are each independently H; C₁-C₁₀ alkyl; or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen; and agriculturally suitable salts thereof.

In the above definitions, the term "alkyl" includes straight chain or branched alkyl, e.g., methyl, ethyl, n-propyl, isopropyl or the different butyl isomers, etc. Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "halogen" means fluorine, chlorine, bromine or iodine.

The agriculturally suitable composition of the invention for controlling the growth of undesired vegetation comprises an effective amount of a compound of Formula I or II as defined above and at least one of the following: surfactant, solid or liquid diluent.

The preferred compositions of the invention for reasons including ease of synthesis and/or greater herbicidal efficacy involve:

 A compound of Formula I or II wherein R¹ is Cl, Br or I;

10

15

20

30

 R^2 is CN, CO_2H , CO_2CH_3 , $CO_2CH_2CH_3$, CHO, $C(O)NH_2$, $C(O)NHCH_3$, $C(O)N(CH_3)_2$, CH_2OH or $CH=NOR^7$ or $C(NH_2)=NOR^7$;

R³ is n-propyl; C₄-C₇ alkyl; C₂ alkyl substituted with phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; CH₂(C₃-C₆ cycloalkyl); phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; or OR¹²;

 R^{12} is C_2-C_4 alkyl;

2. A compound of Preferred 1 wherein R¹ is Cl or Br; R² is CN, CO₂H or C(O)NH₂;

 R^3 is C_4-C_7 alkyl, $CH_2(C_3-C_6$ cycloalkyl) or OR^{12} .

Specifically preferred is the compound 2-chloro-4-(2-methylpropoxy)benzamide.

Another embodiment of the invention is a method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a composition comprising a compound of Formula I or II as defined above.

The preferred method of use involves the compositions wherein the above preferred compounds are utilized.

DETAILED DESCRIPTION OF THE INVENTION

The compounds of Formulae I and II can be readily prepared by one skilled in the art by using the reactions and techniques described in Schemes 1 to 17 below. Many of the compounds disclosed herein are known in the art or can be prepared by well known literature procedures.

In some of the schemes, compounds of Formulae I and 35 II are represented by formulae with a floating R³

substituent wherein \mathbb{R}^3 is attached at the 4- and 5-position, respectively (see Formula A below). The definitions of \mathbb{R}^{1} - \mathbb{R}^{31} and X are the same as defined for Formulae I and II above.

5

 $4-R^3 = Formula I$ $5-R^3 = Formula II$

In cases where the substituent of a starting material is not compatible with the reaction conditions described for any of the reaction schemes, it can be assumed that the substituent is converted to a protected form prior to the described reaction scheme and then deprotected after the reaction using commonly accepted protecting/ deprotecting techniques (as an example, see T. W. Greene and P. G. M. Wuts, "Protective Groups in Organic Synthesis", 2nd Edition, John Wiley and Sons, Inc., New York, 1991). Otherwise alternative approaches known to one skilled in the art are available.

The compounds of this invention are made by the following processes.

Introduction of \mathbb{R}^1

Scheme 1 illustrates the preparation of compound 1, a compound of Formula I or II wherein R¹=NO₂. Many nitrobenzenes are commercially available or can be prepared by literature methods. A variety of methods are known in the literature, for example, see J. March, Advanced Organic Chemistry, 3rd Ed., John Wiley and Sons, New York (1985) and references cited therein.

BN\$DOCID: <WO 9405153A1 1 >

25

Scheme 1

5 Anilines of Formula 2 can be prepared from nitro compounds of Formula 1 by reduction with tin II chloride (Scheme 2). Processes of this type are well known in the literature. For example, see T. Ho and C. M. Hong, Synthesis 1974 45. The aniline of Formula 10 2 can be converted to the halobenzene of Formula 3 (W=Cl, Br, or I) using the Sandmeyer reaction. Alternatively, the phenol of Formula 4 can be obtained from the aniline by preparation of the diazonium salt followed by hydrolysis. Methods of these types are 15 described in Sandler S. R.; Karo W., Organic Functional Group Preparations, Academic: New York, (1983); Chapters 13 and 17.

Scheme 2

20

Compounds of Formulae I and II wherein \mathbb{R}^1 is OCH₃, OCHF₂ or OCF₃ can be prepared by the methods illustrated in Scheme 3.

Scheme 3

5

20

25

Phenols of Formula 4 can be treated with a methylating agent, such as iodomethane or methyl
sulfate, and a base such as potassium carbonate, potassium hydroxide, potassium hydride, potassium t-butoxide, sodium hydride, sodium hydroxide or sodium carbonate in an inert solvent such as N,N-dimethyl-formamide, benzene, toluene, xylene or tetrahydrofuran.

The reaction temperature ranges from 0-140°C and reaction time is between 30 minutes and 200 hours.

Upon completion of the reaction, the reaction mixture is concentrated under reduced pressure. Water is then added to the residue and extracted with organic solvent. The organic extract is dried over sodium sulfate or magnesium sulfate and concentrated to provide the crude anisole of Formula 5.

The crude product can be further purified by crystallization, distillation and flash column-chromatography if needed.

Compounds of Formula 6 and 7 are prepared by treating the phenol of Formula 4 with chlorodi-fluoromethane or chlorotrifluoromethane, respectively,

BNSDOCID: <WO 9405153A1 I >

under literature conditions (K. Morimoto, K. Makino, S. Yamamoto and G. Sakata, J. Heterocycl. Chem., 1990, 27, 807 and Fuss A.; Koch V., Synthesis, 1990, 604 and 681-685).

5 Introduction of R²

Benzonitriles of Formula 9 can be prepared from the corresponding halobenzenes of Formula 8 by treatment with potassium cyanide or cuprous cyanide (Scheme 4). The halobenzene is dissolved or dispersed in a solvent such as N,N-dimethylformamide or N-methyl-2-pyrrolidone and treated with the cyanide salt at temperatures of 120-180°C for 1 to 24 hours. Aqueous work-up followed by purification by distillation, recrystallization, or column chromatography affords the desired material.

15 Scheme 4

$$R^3$$
 R
 $CuCN$
 R^3
 R^3
 R^3

20

25

10

Alternatively, benzonitriles of Formula 9 can be prepared from nitrobenzenes of Formula 10 as illustrated in Scheme 4. The nitrobenzene is reduced to the aniline of Formula 11 by hydrogenation or methods described above. The aniline of Formula 11 can then be converted to the benzonitrile by formation of the diazonium salt followed by treatment with cuprous cyanide (see Sandler S. R.; Karo W., Organic Functional

Group Preparations, Academic: New York, (1983); Chapters 13 and 17).

The benzonitriles of Formula 9 can be converted to compounds of the present invention wherein $R^2=CO_2R^4$, $C(X)NR^{17}R^{18}$, $C(halogen)=NOR^7$ and $C(S)OR^6$ as illustrated in Scheme 5.

Scheme 5

CN
$$30\% \text{ H}_2\text{O}_2$$
 R^1
 R^2
 R^2
 R^3
 R^3

10

BNS page 12

9405153A1 | >

The cyano compound can be converted to the amide of Formula 10 according to Youngdale G. A.; Oglia T. F., J. Med. Chem. 1985, 28, 1790-96 using 30% aqueous hydrogen peroxide, methanol and sodium hydroxide or A. Katritzky; B. Pilarski and L. Urogdi, Synthesis 1989, 950 using 30% aqueous hydrogen peroxide, potassium carbonate and dimethylsulfoxide. addition, the cyano group in compounds of Formula 9 can be converted to carboxylic acids of Formula 11 using 10 about 5-20% aqueous base such as sodium hydroxide or potassium hydroxide (preferably 5%) at about 25 to 100°C for 1 to 24 hours. The carboxylic acid can be converted to the acid chloride of Formula 12 using thionylchloride or phosphorus oxychloride. chloride may be treated with R4OH to provide the 15 corresponding ester of Formula 13 under conditions well known to those versed in the art. In an analogous fashion the acid chloride may be treated with NHR17R18 to provide the corresponding amide of Formula 14.

The thioesters of Formula 15 and the thioamides of Formula 16 can be synthesized by treatment of the aforementioned esters and amides, respectively, with Lawesson's reagent (see Pedersen, B. S., Lawesson, S. O., Tetrahedron 1979, 2433-2437 and references cited therein).

The compounds of Formula 17 can be prepared from the amides of Formula 14 (Scheme 6). The amide is treated with a tetrahalomethane/triphenylphosphine reagent as described in the art (T. Sakamoto et al., Synthesis, 1991, 9, 950-952 and E. C. Taylor et al., J. Org. Chem., 1971, 36, 253).

BNSDOCID: <WO 9405153A1 1 >

30

Scheme 6

5 The anilines of Formula 11 can be converted to the benzaldehydes of Formula 18 by following the methods taught in H. E. Baumgarten, Ed. Organic Syntheses V, John Wiley, New York (1973) 139-142 or using obvious modifications thereof (Scheme 7).

10 Scheme 7

The benzaldehyde can be oxidized to the

corresponding carboxylic acid of Formula 19 using the methods disclosed in Dalcandle, E.; Montanari, F. J. Org. Chem. 1986, 51, 567-569 and Srivastava R. G., Venkataramani Synth. Commun. 1988, 18, 2193-2200. The carboxylic acid functionality can in turn be converted into the R² groups of the present invention as described above and illustrated in Scheme 5.

The benzaldehydes of Formula 18 can also be used to prepare other compounds of the present invention as illustrated in Scheme 8.

Scheme 8

The benzaldehyde of Formula 18 can be converted to the oxime of Formula 20 by reacting it with NH₂OR⁷. The aldehyde of Formula 18 can also be reacted with active methylene compounds of the type CH₂R²¹R²² and a base such as pyridine and potassium carbonate to 10 provide the olefin of Formula 21. The secondary alcohol of Formula 22 (R²=CH(C₁-C₂ alkyl)OH) can be prepared by treatment of the benzaldehyde with (C₁-C₂ alkyl)MgBr. Alcohols of Formulae I and II wherein R²=CH₂OH can be prepared by conventional

BNSDOCID: <WO 9405153A1 1 >

10

reduction of benzaldehydes of Formula 18. These benzylic alcohols and the alcohols of Formula 22 can be treated with acetyl chloride or acetic anhydride under standard conditions to prepare compounds wherein R^{20} is C(0) CH₃.

The terminal alkyne of Formula 24 can be synthesized from the benzaldehyde of Formula 18 by the Corey-Fuchs homologation by treating the aldehyde first with carbon tetrabromide/triphenylphosphine to form the dibromoolefin of Formula 23, followed by treatment with n-butyllithium, rearrangement and quench with aqueous acid according to Corey, E. J., Fuchs, P. L., Tetrahedron Lett. 1972, 3769-3772 and references cited therein.

Cyanooximes of Formula 26 wherein R² = C(CN)=NOR⁷ can be prepared as illustrated in Scheme 9. The phenylacetonitrile of Formula 25 is treated with an alkylnitrite under basic conditions using the procedures described in Noland, W. E., ed., Organic Syntheses VI, John Wiley: New York (1988), pp 199-203.

Scheme 9

$$CH_2$$
 CN (alkyl) ONO base R^3 25 R^3 26

Compounds of Formula I and II wherein $R^2 = CHR^{19}(halogen)$, $CHR^{19}CN$, $CHR^{19}C(=0)NH_2$, and $CHR^{19}CO_2H$ can be prepared using the methods illustrated in Scheme 10. The alcohol of Formula 27 can be prepared using the method described in Scheme 8

 $(R^{19}=C_1-C_2 \text{ alkyl})$ or by conventional reduction of the benzaldehyde as described previously $(R^{19}=H)$.

Scheme 10

Treatment of the benzylic alcohol with a thionyl10 halide (e.g., thionylchloride) at 25-100°C in an inert
solvent such as benzene, toluene or dichloromethane for

15

2-12 hours produces the halide of Formula 28.

Displacement of the halide with a cyanide salt, for example potassium cyanide, produces the nitrile of Formula 29. This method is described in Sandler, S. R., Karo, W. in Organic Functional Group Preparations, Academic: New York (1983); Chapter 17. The nitrile can be converted to the amide of Formula 30 or the carboxylic acid of Formula 31 using conditions described above for the coversion of nitriles to amides

Introduction of R3

and acids (see Scheme 5).

Scheme 11 illustrates the preparation of compounds of Formula II wherein $R^3 = OR^{12}$ or $O-N=CR^{30}R^{31}$. In order for the nucleophilic aromatic substitution to occur, R^2 must be a powerful electron-withdrawing substituent such as cyano or nitro. The halobenzenes of Formulae 23 and 24 are either commercially available or can be prepared by one skilled in the art using well known methods.

20 Scheme 11

The halobenzene 32 is treated with R¹²OH or

25 HO-N=CR³⁰R³¹ and one equivalent of a base such as sodium hydride, potassium hydride, potassium hydroxide, potassium t-butoxide and sodium hydroxide in an inert solvent such as N,N-dimethylformamide, benzene, toluene, xylene and tetrahydrofuran. The reaction

15

20

temperature ranges from 0 to 140°C and reaction time is between 30 minutes and 120 hours.

Upon completion of the reaction, the reaction mixture is concentrated under reduced pressure. Water is then added to the residue and extracted with organic solvent. The organic extract is dried and concentrated to provide crude product. The crude phenylether of Formula 33 or 34 can be further purified by flash column chromatography if needed.

In a similar fashion, $R^{13}SH$ and $R^{14}R^{15}NH$ can be used instead of $R^{12}OH$ or $HO-N=CR^{30}R^{31}$ in the process illustrated in Scheme 11 to afford compounds of Formula II wherein $R^3=R^{13}S$ and $R^{14}R^{15}N$, respectively.

Compounds of Formula I wherein R³=OR¹² can be synthesized as illustrated in Scheme 12. The anisoles of Formula 35 are commercially available or can be synthesized by one skilled in the art by following literature methods or slight modifications thereof. Alternatively, the phenols of Formula 36 can be prepared from the nitro compounds as described above (see Scheme 2).

Scheme 12

25

The complete demethylation of the methylether can be accomplished using boron tribromide (BBr₃) or other

reagents described in a review by M. V. Bhatt and S. U. Kulkarni, *Synthesis* **1983**, 248-282. The phenol then can be alkylated to produce the R¹² ether of Formula 37.

The thiols can be prepared using the well-known methods four step procedure for converting anilines to thiols illustrated in Scheme 13. These synthetic steps are described in detail in Sandler, S. R.; Karo, W., Organic Functional Group Preparations, Academic: New York (1983), Chapters 16, 13, 4 and 18, respectively. Alkylation of the sulfur with $R^{13}L$ wherein L is a typical leaving group such as bromide, under standard conditions affords compounds of Formulae I and II wherein $R^3 = SR^{13}$.

Scheme 13

15

20

25

10

5

Compounds of Formulae I and II wherein \mathbb{R}^3 is a mono- or disubstituted amino group and \mathbb{R}^{14} and \mathbb{R}^{15} are separate substituents can be prepared as illustrated in Scheme 14. Treatment of the aniline of Formula 38 with acetic anhydride affords the monoacetyl compound of Formula 39. N-Alkylation with $(C_1-C_2 \text{ alkyl})L$, wherein L is a leaving group such as iodide, affords compounds of Formula 40. Hydrolysis of the acetyl group with base affords the monoalkyl compound. A second

alkylation with $(C_1-C_2 \text{ alkyl})L$ affords the disubstituted compound of Formula 41.

Scheme 14

5

Compounds of Formulae I and II wherein R¹⁴ and R¹⁵ are taken together to form a ring can be prepared by nucleophilic aromatic substitution as described above (Scheme 11). Alternatively, the aniline of Formula 38 in Scheme 14 may be alkylated with L-(CH₂)₄-L, L-(CH₂)₅-L or L-(CH₂)₂O(CH₂)₂-L to form the pyrrolidinyl, piperidinyl, and morpholinyl compounds, respectively.

Compounds of Formulae I and II wherein R^3 = CH_2OR^{16} , CH_2SR^9 , and $CH_2NR^{14}R^{15}$ can be prepared starting from toluenes as illustrated in Scheme 15. The starting toluenes are commercially available or can be prepared

BNS page 21

by one skilled in the art following literature methods or obvious modifications thereof.

Scheme 15

5

10

15

20

25

Toluenes of Formula 42 can be converted to bromomethyl compounds of Formula 43 using one equivalent of N-bromosuccinimide (NBS) in a solvent such as dichloromethane or carbon tetrachloride at a temperature between 25-100°C for 1 to 48 hours. The bromo compound can be converted to ethers of Formula 44 using R¹⁶OH and a base such as triethylamine, pyridine or potassium carbonate in an inert solvent such as N, N-dimethylformamide, benzene, toluene, xylene or tetrahydrofuran. The reaction temperature ranges from 0 to 140°C and reaction time is between 1 hour and 120 hours.

The bromo compound of Formula 43 can be reacted with R^9SH or $R^{14}R^{15}NH$ instead of $R^{14}OH$ using the same procedure outlined in Scheme 15 to prepare compounds of Formulae I and II wherein $R^3=CH_2SR^9$ or $CH_2NR^{14}R^{15}$.

Scheme 16 illustrates the synthesis of compounds of Formulae I and II wherein R^3 is n-propyl; C_4 - C_{10} alkyl; n-propyl or C_4 - C_7 alkyl substituted with one or more halogen, OR^8 , SR^9 or $NR^{10}R^{11}$; C_1 - C_3 alkyl substituted

BNSDOCID: <WO 9405153A1 | >

BNS page 22

10

15

with OR^{16} , SR^9 , $NR^{14}R^{15}$, $CO_2(C_1-C_2 \text{ alkyl})$, or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 or halogen; $CH_2(C_3-C_6 \text{ cycloalkyl})$, or $C_3-C_6 \text{ alkenyl}$ optionally substituted with one or more halogen or $CO_2(C_1-C_2 \text{ alkyl})$.

The R^{32} group in the Formulae of Scheme 16 can be n-ethyl; C_3 - C_9 alkyl; n-ethyl or C_3 - C_6 alkyl substituted with one or more halogen, OR^8 , SR^9 or $NR^{10}R^{11}$; C_1 - C_2 alkyl substituted with OR^{16} , SR^9 , $NR^{14}R^{15}$, CO_2 (C_1 - C_2 alkyl), or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 or halogen; C_3 - C_6 cycloalkyl; or C_2 - C_5 alkenyl optionally substituted with one or more halogen or CO_2 (C_1 - C_2 alkyl).

The acid chlorides of Formula 45 are commercially available or can be prepared using the methods disclosed herein or commonly known to one skilled in the art.

Scheme 16

20

25

The acid chlorides of Formula 45 can be converted to ketones of Formula 46 using the methods described in Sandler S.R.; Karo W.; Organic Functional Group Preparation; Academic; New York, (1983); Chapter 8.

The ketones of Formula 46 can be reduced to the

BNSDOCID: <WO 9405153A1 1 >

10

methylene compounds of Formula 47 using a variety of reducing agents, for example sodium borohydride/ aluminum chloride, as described in Hudlicky, M., Reductions in Organic Chemistry, Eillis Horwood: New York; (1984) 107-132.

Compounds of Formulae I and II wherein R³ = alkyl or optionally substituted phenyl, pyridyl, thienyl, furyl, pyrazolyl, or thiazolyl can be prepared using a palladium-catalyzed cross-coupling reaction as illustrated in Scheme 17.

Scheme 17

- Treatment of a phenyl bromide with an organozinc reagent of Formula R³Zn(halide) in the presence of tetrakis(triphenylphosphine)palladium (0) affords the R³ substituted compounds of Formulae I and II. Examples of this well-known procedure can be found in: 20 Y. Okamoto et al., J. Organomet. Chem. 1989, 369, 285-290; E. Erdik, Tetrahedron, 1992, 48, 9577-9648; Heathcock, C. H., ed. Organic Syntheses, Vol. 66, John Wiley: New York (1987), pp 67-74; and E. Negishi et al., J. Org. Chem., 1977, 42, 1821-1823.
- 25 Compounds of Formulae I and II wherein R³ is optionally substituted phenyl, furyl, thienyl or pyridyl can also be prepared by palladium-catalyzed cross-coupling with arylboronates using the procedures described in N. Miyaura et al., Synth. Commun., 1981, 11, 513, M. A. Siddiqui, V. Snieckus, Tetrahedron Lett., 1988, 5463, and W. J. Thompson et al., J. Org. Chem., 1988, 53, 2052.

In addition, compounds of Formulae I and II wherein R³ is optionally substituted pyridyl, thiazolyl, pyrrolyl, thienyl or furyl can be prepared by palladium-catalyzed cross-coupling with heteroaryl trialkylstannanes. Examples of the this procedure are also known in the literature. For example, see T. R. Bailey, Tetrahedron Lett., 1986, 4407 and A. Minato et al., Tetrahedron Lett., 1981, 5319.

EXAMPLE 1

10 Step A: Preparation of methyl 2-chloro-4-hydroxy benzoate

Under nitrogen, 6 g of thionyl chloride was added dropwise to ice cold (0°C) methanol (50 mL). mixture was stirred at ambient temperature for 30 15 minutes. To this solution was then added 8.6 g of 2-chloro-4-hydroxy benzoic acid. The resulting mixture was heated at reflux for ~12 hours and then concentrated under reduced pressure. The residual solid was suspended in 100 mL of a mixture of hexane: 20 diethyl ether (90:10) and the solid precipitate was collected by filtration, washed with hexane, air dried and then dried in a vacuum oven to provide 6 q of the title product of Step A as a solid, m.p. 126-129°C; NMR $(CDCl_3): ppm \delta 7.84 (d, 1H); 6.96 (s, 1H); 6.78 (d of$ 25 d, 1H); 6.35 (b, s, 1H); 3.9 (s, 3H); IR (Nujol): 3300 cm⁻¹, 1700 cm⁻¹ (C=O).

Step B: Preparation of Methyl 2-chloro-4-(2-methyl-propyloxy)benzoate

To 3 g of methyl 2-chloro-4-hydroxy benzoate in

N,N-dimethyl formamide (25 mL), a solution of 3 g of
2-methyl-1-bromo propane in N,N-dimethylformamide
(5 mL) and 3 g of potassium carbonate was added. The
mixture was then heated at 90-95°C for 2 hours. After
heating the mixture was cooled to room temperature and
poured into water (100 mL). The mixture was then

extracted with diethylether (2 times with 50 mL). The diethylether extracts were combined, dried over magnesium sulfate and concentrated under reduced pressure to provide crude product. The isolated crude product was purified by silica gel flash column chromatography (Hexane: ethyl-acetate 8:2) to provide after evaporation of eluant 3 g of the title compound of Step B as a clear oil; NMR (CDCl₃): ppm δ 7.88 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H); 3.89 (s, 3H); 3.74 (d, 2H); 2.0 (m, 1H); 1.035 (d, 6H); IR (Neat): 1730 cm⁻¹ (C=O).

EXAMPLE 2

<u>Preparation of 2-chloro-4-(2-methyl-propyloxy)benzoic acid</u>

15 A mixture of 5 g of methyl 2-chloro-4-hydroxy benzoate, and 1.6 g potassium hydroxide in methanol (30 mL) was heated at reflux for ~3 hours and allowed to stir at ambient temperature for 12 hours. reaction mixture was concentrated under reduced pressure. The residue was dissolved in water (50 mL) 20 and extracted with diethyl ether (25 mL) and the diethyl ether extracts were discarded. The aqueous extract was acidified with concentrated hydrochloric acid to pH ~4 and the resulting solids were collected by filtration, washed with water (50 mL), hexane 25 (50 mL) and dried under vacuum overnight to provide 4.5 g of title compound as a white solid, m.p. 82-84°C; NMR (CDC1₃): ppm δ 8.0 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H); 3.78 (d, 2H); 2.1 (m, 1H); 1.02 (d, 6H); IR (Nujol): $1700 \text{ cm}^{-1} \text{ (C=O)}$. 30

EXAMPLE 3

<u>Preparation of 2-chloro-4-(2-methylpropyl-oxy)benzamide</u>

Under nitrogen, 2.6 g of 2-chloro-4-(2-methyl-35 propyloxy)benzoic acid was dissolved in benzene (25 mL)

and thionyl chloride (5 mL) was added. The resulting solution was heated at reflux for 3 hours and concentrated under reduced pressure to provide an oil. The oil was dissolved in tetrahydrofuran (20 mL) and cooled to 0°C (ice bath) and 4 mL of aqueous ammonium hydroxide (30%) was added and stirred for 30 minutes. The mixture was concentrated under reduced pressure. To the residue, water (100 mL) was added and the resulting precipitate was collected by filtration, washed with water and dried under vacuum to provide 10 1.4 g of the title compound as a white solid, m.p. 129-130°C; NMR (CDCl₃): ppm δ 7.85 (d, 1H); 6.92 (s, 1H); 6.86 (d, 1H); 6.6 (b,s, 1H); 6.5 (b,s, 1H); 3.74 (d, 2H); 2.2 (m, 1H); 1.03 (d, 6H); IR (Nujol): 3360, $3170 \text{ cm}^{-1} \text{ (NH}_2), 1635 \text{ cm}^{-1} \text{ (C=O)}.$ 15

EXAMPLE 4

Step A: Preparation of 2-bromo-5-hydroxy-benzoic acid Under nitrogen, 4.62 g of 2-bromo-5-methoxy benzoic acid was suspended in dichloromethane (50 mL). 20 mixture was cooled to 0°C and boron tribromide (60 mL, 1M solution in dichloromethane) was added dropwise. The clear solution was stirred at ambient temperature for 12 hours, cooled to 5°C. Water (25 mL) was subsequently added dropwise, the mixture stirred for 30 25 minutes and extracted with diethylether (2 times with The diethylether extracts were dried over magnesium sulfate and concentrated under reduced pressure to provide 2.2 g of the title compound of Step A as a solid, m.p. $179-181^{\circ}$ C; NMR (Me₂SO-d₆): δ 10.0 (b,s, 1H); 7.48 (d, 1H); 7.13 (s, 1H); 6.8 (m, 30 1H); IR (Nujol): 1705 cm^{-1} (C=0).

Step B: Preparation of methyl 2-bromo-5-hydroxybenzoate

By the procedure of Example 1, Step A, 1.67 g of 2-bromo-5-hydroxy-benzoic acid was reacted with 5 mL

thionyl chloride in methanol (20 mL). The isolated crude product was washed with hexane and dried under vacuum to provide 1.8 g of title compound of Step B as a white solid, m.p. 92-95°C; NMR (CDCl₃): ppm δ 7.5 (d, 1H); 7.3 (m, 1H); 6.8 (m, 1H); 3.94 (s, 3H); IR (Nujol): 3400 cm⁻¹ (OH); 1700 cm⁻¹ (C=O).

Step C: Preparation of Methyl 2-bromo-5-(2-methyl-propyloxy)benzoate

By the procedure of Example 1, Step B, 1.2 g of

methyl 2-bromo-5-hydroxy-benzoate was reacted with

0.816 g potassium carbonate and 0.816 g of 2-methyl-1
bromopropane in N,N-dimethylformamide (20 mL). The

isolated crude product was purified by silica gel flash

column chromatography (hexane: ethylacetate 8:2) to

provide after evaporation of eluant 1 g of the title

compound of Step C as an oil. NMR (CDCl₃): ppm & 7.53

(d, 1H); 7.31 (m, 1H); 6.8 (d of d, 1H); 3.92 (s, 3H);

3.7 (d, 2H); 2.0 (m, 1H); 1.03 (d, 6H); IR (neat):

1740 cm⁻¹ (C=0).

20 EXAMPLE 5

Preparation of Methyl 2-bromo-5-(2-methyl-propyloxy)benzoic acid

2-bromo-5-(2-methylpropyloxy)-benzoate was reacted with 25 1.7 g of potassium-hydroxide in methanol (50 mL) to provide 5 g of title compound as a white solid mp 105-109°C. NMR (CDCl₃): ppm & 7.57 (d, 1H); 7.52 (s, 1H); 6.95 (m, 1H); 3.74 (d, 2H); 2.1 (m, 1H); 1.04 (d, 6H); IR (Nujol): 1665 cm⁻¹ (C=O).

EXAMPLE 6

Preparation of 2-Bromo-5-(2-methyl-

propyloxy)benzamide

By the procedure of Example 3, 1.36 g of product of Example 5 was reacted first with thionylchloride 5 mL, and then 1.7 mL of aqueous ammonium hydroxide to

30

provide 1 g title compound as a white solid mp NMR (CDCl₃): ppm δ 7.47 (d, 1H); 7.21 (s, 1H); 6.8 (d of d, 1H); 6.2 (b,s, 1H); 6.0 (b,s, 1H); 3.72 (d, 2H); 2.0 (m, 1H); 1.02 (d, 6H); IR (Nujol): $3350 \text{ cm}^{-1} \text{ (NH}_2) 1640 \text{ cm}^{-1} \text{ (C=O)}$.

EXAMPLE 7

Preparation of 2-Chloro-4-(3-trifluoromethylphenyl)benzonitrile

To 5.4 g of 2-chloro-4-bromo-benzonitrile in 8 mL 10 of ethylene glycol dimethyl ether, 0.01 g of (Ph3P)2PdCl2 was added and stirred at ambient temperature for 15 minutes. To this mixture 5.23 g of 3-trifluoromethylbenzeneboronic acid and 6.38 g of sodium bicarbonate in 40 mL water were added and heated 15 at reflux for 2.5 h. The mixture was then cooled to ambient temperature and extracted two times with 50 mL ethyl acetate. The combined ethyl acetate extracts were washed with 150 mL of 0.5 N aqueous sodium hydroxide and 50 mL of brine. The ethyl acetate 20 extracts were dried over magnesium sulfate and concentrated under reduced pressure to provide the title compound as a white solid, m.p. 92-98°C. 1H-NMR $(CDCl_3): ppm \delta 7.73 (m, 5H); 7.58 (m, 2H); 7.59 (m,$ IR (Nujol): 2227 (C \equiv N) cm⁻¹. 1H).

25 EXAMPLE 8

Preparation of 2-Chloro-4-(3-trifluoromethylphenyl)benzamide

To a solution of 1.41 g of the compound of Example 7 in dimethylsulfoxide (8 mL), 1.12 mL of 30% aqueous hydrogen peroxide and 0.28 q of potassium 30 carbonate were added. The mixture exothermed to ~35°C; and was then heated to 60°C for 1 h. The mixture was allowed to come to room temperature and poured into water (50 mL). The resulting solid was collected, washed with 50 mL of water and hexanes and dried under

BNS page 29

35

vacuum overnight to provide the title compound as a white solid, m.p. 138-145°C. ¹H NMR (CDCl₃): ppm δ 7.95 (d, 1H); 7.75 (m, 2H); 7.66 (m, 4H); 6.5 (bs, 1H); 6.0 (bs, 1H). IR (Nujol): 3367 (NH₂) cm⁻¹, 1649 (C=O) cm⁻¹.

EXAMPLE 9

<u>Preparation of 2-Chloro-4-(2-methyl-propyl)benzonitrile</u>

Under nitrogen, isobutylmagnesium chloride (8.6 mL, 10 2.0 M solution in diethyl ether) was added to a suspension of 2.3 g of zinc chloride in 40 mL of tetrahydrofuran. The mixture was stirred at ambient temperature for 45 minutes. To this mixture was then added 3.6 g of 2-chloro-4-bromo benzonitrile and 0.4 g of tetrakis(triphenylphosphine) palladium (0). 15 resulting mixture was stirred at ambient temperature for 12 h, and then heated at reflux for 2 h. mixture was then cooled to room temperature and acidified with 1 N aqueous hydrochloric acid. 20 mixture was then extracted two times with 50 mL of diethyl ether. The organic layer was washed each with 20 mL of saturated aqueous NaHCO3, water and brine. The diethyl ether extract was dried over magnesium sulfate and concentrated under reduced pressure to 25 provide crude product. The isolated crude product was purified by silica gel flash column chromatography (hexane:ethyl acetate 9:1) to provide after evaporation of eluant 2.12 g of the title compound as a clear oil; ¹H NMR (CDC1₃): ppm δ 7.57 (d, 1H); 7.3 (s, 1H); 7.15 30 (d, 1H); 2.51 (d, 2H); 1.9 (m, 1H); 0.91 (d, 6H); IR (Neat): $2210 (C = N) cm^{-1}$.

BNSDOCID: <WO 9405153A1 1 >

EXAMPLE 10

Preparation of 2-Chloro-4-(2-methyl-

propyl)benzamide

Using the same procedure described in Example 8, 0.97 g of product of Example 9 was reacted with 1.12 mL 30% aqueous hydrogen peroxide and 0.28 g potassium carbonate in dimethylsulfoxide (8 mL). The isolated crude product was washed with hexanes and dried under vacuum to provide 0.8 g of the title compound as a white solid, m.p. 97-107°C. ¹H NMR (CDCl₃): ppm δ 7.74 (d, 1H); 7.2 (s, 1H); 7.125 (d, 1H); 6.43 (bs, 1H); 6.05 (bs, 1H); 2.48 (d, 2H); 1.9 (m, 1H); 0.91 (d, 6H). IR (Neat): 3375 (NH₂) cm⁻¹, 1647 (C=O) cm⁻¹.

Using the general procedures described in Schemes 15 1-17 and Examples 1-10 or by obvious modifications thereof, one skilled in the art can prepare the compounds of Tables 1-2.

BNS page 31

TABLE 1

 $R^1=C1$, $R^2=C(0)NH_2$ R^3 (CH₂)₂CH₃ (CH₂) 3CH₃ (CH₂)₄CH₃(CH₂)₅CH₃ (CH₂) 6CH₃ (CH₂)₇CH₃ (CH₂) 8CH₃ (CH₂) ₉CH₃ CH2CH (CH3) 2 CH2C (CH3)3 CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CF2CH3 CH2~cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl

cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 CH2OCH2 (C6H5) CH_2OCH_2 (3 $CF_3-C_6H_4$) $CH_2OCH_2(2C1-C_6H_4)$ CH_2OCH_2 (3SCH₃-C₆H₄) $CH_2OCH_2(4C1-C_6H_4)$ $CH_2OCH_2(2, 4F-C_6H_3)$ CH2CH2OCH2CH2CH3 $CH_2O(C_6H_5)$ $CH_{2}O(3CF_{3}-C_{6}H_{4})$ CH₂O(4CF₃-C₆H₄) CH2O (2C1-C6H4) $CH_2O(3SCH_3-C_6H_4)$ CH2O (2CH3-C6H4) CH20 (4C1-C6H4) $CH_{2}O(2,4C1-C_{6}H_{3})$ CH2SCH2CH3 CH2SCH2CH2CH3 СH₂SCH₂CH (СН₃) 2 CH₂SCH₂ (C₆H₅) CH_2SCH_2 (3 CF_3 - C_6H_4) CH₂S (2C1-C₆H₄) CH2S (4CH3-C6H4)

 $CH_2S(2, 4C1-C_6H_3)$

CH2S (3SCH3-C6H4) CH2S (2,6C1-C6H3) CH2S (C6H5) $CH_2S(3CF_3-C_6H_4)$ CH2S (2C1-C6H4) CH2S (4CH3-C6H4) CH2S (2,6C1-C6H3) $CH_2S(2,4C1-C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 $CH_2NHCH_2C(C_6H_5)$ CH2NHCH2CH(CH3)2 CH_2NHCH_2 (3 $CF_3-C_6H_4$) $CH_2NHCH_2 (2C1-C_6H_4)$ CH2NH (C6H5) $CH_2NH(2C1-C_6H_4)$ $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH2 (CH2) 2CH3 OCH₂ (CH₂) 3CH₃ OCH₂ (CH₂) 5CH₃ OCH2C (C6H5) OCH2CH2CH(CH3)2 OCH2-Si(CH3)3 OCH2 CH 0-CH2 $OCH_2(3CF_3-C_6H_4)$ OCH2 (2C1-C6H4) OCH2CH (CH3) 2

cyclopropyl

•
о (С ₆ н ₅)
O(3CF3-C6H4)
O(2C1-C6H4)
O(4SCH3-C6H4)
O(2,4C1-C ₆ H ₃)
SCH2CH2CH3
SCH ₂ (CH ₂) ₂ CH ₃
SCH ₂ (CH ₂) 3CH ₃
SCH ₂ (CH ₂) ₅ CH ₃
SCH ₂ (C ₆ H ₅)
SCH2 (3SCH3-C6H4)
SCH2 (20CH3-C6H4)
SCH ₂ (2C1-C ₆ H ₄)
SCH ₂ (2,4-C ₆ H ₃)
SCH ₂ (4CF ₃ -C ₆ H ₄)
S (CH ₃) 3
SCH ₂ CH (CH ₃) ₂
s (C ₆ H ₅)
S (3CF3-C6H4)
S (2C1-C6H4)
S (40CH3-C6H4)
s (2,4C1-C6H3)
S (2, 6F-C ₆ H ₃)
2 (3CH ₃ -C ₆ H ₄)
NHCH2CH2CH3
NHCH ₂ (CH ₂) ₂ CH ₃
NHCH ₂ (CH ₂) ₄ CH ₃
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH2CH (CH3) 2
NHCH ₂ (C ₆ H ₅)
$NHCH_2$ (3CF ₃ -C ₆ H ₄)
NHCH ₂ (2C1-C ₆ H ₄)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
$NHCH_2(2, 4C1-C_6H_3)$
$NHCH_2(2,6C1-C_6H_3)$

ин (C ₆ н ₅)
NH (3CF 3-C6H4)
ин (2C1-C ₆ H ₄)
NH (3CH3-C6H4)
NH(2,4C1-C6H3)
NH (2,6Cl-С ₆ H ₃)
N(CH ₃) (3CF ₃ -C ₆ H ₄)
и (Сн ₃) Сн ₂ Сн ₂ Сн ₃
ท (CH ₂) ₄
n (CH ₂) ₅
N(CH ₂) ₆
N (CH2CH2-OCH2CH2) 2
сн ₂ со ₂ сн ₃
сн ₂ сн ₂ со ₂ сн ₂ сн ₃
СH ₂ CH ₂ CO ₂ CH ₃
CH2CH2OCH2CH3
СH ₂ CH ₂ SCH ₂ CH ₃
CH ₂ CH ₂ -NHCH ₂ CH ₃
CH2CH2N (CH3) CH2CH3
CH=CH (CH ₃) ₂
CH2CH2CH=CH2
сн ₂ сн=сн-сн ₃
CH=CH-CH ₂ CH ₂ -Cl
CH ₂ CH ₂ CH-C1CH ₂ -C1
C ₆ H ₅
3CF ₃ -C ₆ H ₄
2C1-C ₆ H ₄
3СH ₃ -С ₆ H ₄
30CH ₃ -C ₆ H ₄
2CF3-C6H4
2,4C1-C ₆ H ₃
2,6C1-C ₆ H ₃
2SCH ₃ -C ₆ H ₄
CH ₂ (C ₆ H ₅)
CH ₂ (3CF ₃ -C ₆ H ₄)

```
CH2 (2C1-C6H4)
 CH<sub>2</sub> (4C1-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (2, 4C1-C<sub>6</sub>H<sub>3</sub>)
 CH<sub>2</sub> (3SCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (30CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (3C1-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (2, 6F-C<sub>6</sub>H<sub>3</sub>)
 СH<sub>2</sub> (2, 6С1-С6H<sub>3</sub>)
CH<sub>2</sub> (3, 4F-C<sub>6</sub>H<sub>3</sub>)
CH2-S1 (CH3) 3
ON=C (CH<sub>3</sub>)<sub>2</sub>
ON=CH (C6H5)
ON=C (CH3) C6H5
OCH_2(2,6-C1-C_6H_3)
OCH<sub>2</sub> (C=CH<sub>2</sub>) CH<sub>3</sub>
4F-C6H4
4C1-C6H4
4Br-C<sub>6</sub>H<sub>4</sub>
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2 (3CF3-C5H3N)
0-2C1-6CF3-C6H3
      R^{1}=Br, R^{2}=C(0)NH_{2}
\mathbf{R}^{\mathbf{3}}
(CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>
(CH<sub>2</sub>) 3CH<sub>3</sub>
(CH<sub>2</sub>) 4CH<sub>3</sub>
(CH<sub>2</sub>) 5CH<sub>3</sub>
(CH<sub>2</sub>) 6CH<sub>3</sub>
(CH2) 7CH3
```

(CH ₂) 8CH ₃
(CH ₂) ₉ CH ₃
CH ₂ CH (CH ₃) ₂
CH2CH2CH(CH3)2
$\mathrm{CH_2CH_2CH_2CH}$ ($\mathrm{CH_3}$) 2
$\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}$ (CH_3) $\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3$
CH2CH(CH3)CH2CH2CH3
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃
CH2CH2CH2OCH2CH3
CH2CH2CH2CH3
CH2CH2CH2-S-CH2CH3
CH2CH2CH2CH3
CH2CH2CH2NHCH2CH3
CH2CF2CH (CH3)2
CH2CH2CH2CF2CH3
CH2-cyclopropyl
CH ₂ -cyclobutyl
CH2-cyclopentyl
CH2-cyclohexyl
cyclopropyl
cyclobuty1
cyclopentyl
cyclohexylene comment of the
сн ₂ осн ₂ сн ₃
CH2OCH2CH2CH3
CH2OCH2CH (CH3)2
CH ₂ OCH ₂ (C ₆ H ₅)
CH2OCH2 (3CF3-C6H4)
CH2OCH2 (2C1-C6H4)
CH2OCH2 (ЗВСН3-С6Н4)
CH_2 OC H_2 (4C1-C $_6H_4$)
CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)
CH2CH2OCH2CH2CH3
СH ₂ ○ (С ₆ H ₅)
CH ₂ O (3CF ₃ -C ₆ H ₄)

CH ₂ O(4CF ₃ -C ₆ H ₄)
СH ₂ O (2C1-C ₆ H ₄)
СH ₂ O (3SCH ₃ -C ₆ H ₄)
СH ₂ O (2СH ₃ -С ₆ H ₄)
CH20 (4C1-C6H4)
CH ₂ O(2,4C1-C ₆ H ₃)
сн ₂ scн ₂ cн ₃
CH ₂ SCH ₂ CH ₂ CH ₃
СH ₂ SCH ₂ CH (СН ₃) 2
сн ₂ sсн ₂ (с ₆ н ₅)
CH2SCH2 (3CF3-C6H4)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S(2,4C1-C ₆ H ₃)
СH ₂ \$ (3SCH ₃ -С ₆ H ₄)
CH ₂ S(2,6C1-С ₆ H ₃)
CH ₂ S (C ₆ H ₅)
CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
СH ₂ S (2, 6С1-С ₆ H ₃)
CH ₂ S (2, 4C1-C ₆ H ₃)
CH ₂ NHCH ₂ CH ₃
CH ₂ NHCH ₂ CH ₂ CH ₃
CH ₂ NHCH ₂ C (C ₆ H ₅)
CH ₂ NHCH ₂ CH (CH ₃) ₂
CH ₂ NHCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ NHCH ₂ (2C1-C ₆ H ₄)
CH ₂ NH (C ₆ H ₅)
CH ₂ NH (2C1-C ₆ H ₄)
$CH_2N(CH_3)$ (2C1-C ₆ H ₄)
OCH ₂ CH ₂ CH ₃
OCH ₂ (CH ₂) ₂ CH ₃
OCH ₂ (CH ₂) ₃ CH ₃
осн ₂ (сн ₂) ₅ сн ₃

```
осн<sub>2</sub>с (с<sub>6</sub>н<sub>5</sub>)
  OCH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
  OCH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
  OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
  O(C<sub>6</sub>H<sub>5</sub>)
  O(3CF3-C6H4)
  0 (2C1-C<sub>6</sub>H<sub>4</sub>)
 O(4SCH3-C6H4)
 O(2,4C1-C6H3)
 scн<sub>2</sub>cн<sub>2</sub>cн<sub>3</sub>
 SCH2 (CH2) 2CH3
 scн<sub>2</sub> (сн<sub>2</sub>) <sub>з</sub>сн<sub>3</sub>
 SCH2 (CH2) 5CH3
 SCH<sub>2</sub> (C<sub>6</sub>H<sub>5</sub>)
SCH2 (3SCH3-C6H4)
 SCH<sub>2</sub> (20CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
SCH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
SCH<sub>2</sub> (2, 4-C<sub>6</sub>H<sub>3</sub>)
SCH2 (4CF3-C6H4)
s (CH<sub>3</sub>) 3
SCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
s (C<sub>6</sub>H<sub>5</sub>)
S(3CF3=C6H4)
S (2C1-C6H4)
S (40CH3-C6H4)
S (2,4C1-C6H3)
S(2,6F-C6H3)
2 (3CH3-C6H4)
NHCH2CH2CH3
NHCH<sub>2</sub> (CH<sub>2</sub>) <sub>2</sub>CH<sub>3</sub>
NHCH<sub>2</sub> (CH<sub>2</sub>) 4CH<sub>3</sub>
NHCH<sub>2</sub> (CH<sub>2</sub>) 5CH<sub>3</sub>
NHCH2CH (CH3) 2
NHCH<sub>2</sub> (C<sub>6</sub>H<sub>5</sub>)
NHCH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
```

alogy later application is

 $NHCH_2 (2C1-C_6H_4)$ $NHCH_2(4CH_3-C_6H_4)$ $NHCH_2$ (2, $4C1-C_6H_3$) $NHCH_2(2,6C1-C_6H_3)$ NH (C6H5) $NH(3CF_3-C_6H_4)$ NH (2C1-C6H4) $NH (3CH_3-C_6H_4)$ $NH(2,4C1-C_6H_3)$ NH (2,6C1-C6H3) $N(CH_3)(3CF_3-C_6H_4)$ N (CH3) CH2CH2CH3 N (CH2) 4 N (CH2) 5 N (CH2) 6 $N(CH_2CH_2-OCH_2CH_2)_2$ CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH3) 2 CH2CH2CH=CH2 СН₂СН=СН-СН₃ CH=CH-CH₂CH₂-Cl CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4

2,6C1-C6H3 2SCH3-C6H4 CH₂ (C₆H₅) CH2 (3CF3-C6H4) CH2 (2C1-C6H4) CH2 (4C1-C6H4) $CH_2(2,4C1-C_6H_3)$ CH2 (3SCH3-C6H4) $CH_2 (30CH_3 - C_6H_4)$ $CH_2 (3C1-C_6H_4)$ CH₂ (2, 6F-C₆H₃) CH₂ (2,6C1-C₆H₃) $CH_2(3, 4F-C_6H_3)$ CH2-Si(CH3)3 ON=C (CH3)2 ON=CH (C6H5) ON=C (CH3) C6H5 $OCH_2(2, 6-C1-C_6H_3)$ OCH_2 (C=CH₂) CH₃ оси₂-сң 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl 0-2 (3CF₃-C₅H₃N) O-2C1-6CF3-C6H3 $R^{1}=I$, $R^{2}=C(0)NH_{2}$ R3 (CH₂) 2CH₃ (CH₂) 3CH₃

(CH₂)₄CH₃ (CH₂)₅CH₃ (CH₂) 6CH₃ (CH₂) 7CH₃ (CH₂) 8CH₃ (CH₂) 9CH₃ CH₂CH (CH₃)₂ СH₂CH₂CH (СH₃)₂ CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH₂-cyclohexyl cyclopropyl cyclobutyl cyclopenty1 cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3)2 CH2OCH2 (C6H5) CH_2OCH_2 (3 $CF_3-C_6H_4$) $CH_2OCH_2 (2C1-C_6H_4)$ СH₂OCH₂ (3SCH₃-С₆H₄) $CH_2OCH_2 (4C1-C_6H_4)$

2,4C1-C6H3

		•
	CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)	OCH2CH2CH3
	CH2CH2OCH2CH2CH3	осн ₂ (сн ₂) ₂ сн ₃
•	CH ₂ O (C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃
	CH ₂ O(3CF ₃ -C ₆ H ₄)	осн ₂ (сн ₂) ₅ сн ₃
	CH ₂ O (4CF ₃ -C ₆ H ₄)	осн ₂ с (с ₆ н ₅)
	CH ₂ O (2C1-C ₆ H ₄)	OCH ₂ (3CF ₃ -C ₆ H ₄)
	CH2O (3SCH3-C6H4)	OCH ₂ (2C1-C ₆ H ₄)
	CH ₂ O (2CH ₃ -C ₆ H ₄)	осн ₂ сн (сн ₃) ₂
	CH ₂ O (4C1-C ₆ H ₄)	о (С ₆ н ₅)
	CH ₂ O(2,4Cl-C ₆ H ₃)	O(3CF3-C6H4)
	CH2SCH2CH3	0 (2C1-C ₆ H ₄)
	CH2SCH2CH2CH3	0 (45CH3-C6H4)
	CH2SCH2CH (CH3) 2	O(2,4C1-C6H3)
	CH2SCH2 (C6H5)	scн ₂ cн ₂ cн ₃
	CH2SCH2 (3CF3-C6H4)	SCH ₂ (CH ₂) ₂ CH ₃
	CH ₂ S (2C1-C ₆ H ₄)	scн ₂ (сн ₂) ₃ сн ₃
	CH2S (4CH3-C6H4)	scн ₂ (сн ₂) ₅ сн ₃
	CH ₂ S (2, 4C1-C ₆ H ₃)	scн ₂ (С ₆ н ₅)
	CH ₂ S (3SCH ₃ -C ₆ H ₄)	SCH ₂ (3SCH ₃ -C ₆ H ₄)
	CH ₂ S (2,6C1-C ₆ H ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)
	CH ₂ S (C ₆ H ₅)	SCH ₂ (2Cl-C ₆ H ₄)
	CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2, 4-C ₆ H ₃)
1 -	.CH ₂ S.(2C1 _x C ₆ H ₄)	SCH2 (4CF3=C6H4)
	CH ₂ S (4CH ₃ -C ₆ H ₄)	S (CH ₃) 3
	$CH_2S(2,6C1-C_6H_3)$	SCH2CH(CH3)2
	CH ₂ S (2, 4C1-C ₆ H ₃)	s (C ₆ H ₅)
	CH ₂ NHCH ₂ CH ₃	s (3CF ₃ -C ₆ H ₄)
	CH2NHCH2CH2CH3	S (2C1-C ₆ H ₄)
	CH2NHCH2C (C6H5)	\$ (40CH3-C6H4)
	CH2NHCH2CH (CH3)2	s(2,4C1-C6H3)
	$CH_2NHCH_2 (3CF_3-C_6H_4)$	s(2,6F-C ₆ H ₃)
	CH2NHCH2 (2C1-C6H4)	2 (3CH ₃ -C ₆ H ₄)
	CH ₂ NH (C ₆ H ₅)	NHCH2CH2CH3
	CH ₂ NH (2C1-C ₆ H ₄)	инсн ₂ (сн ₂) ₂ сн ₃
	CH ₂ N(CH ₃) (2C1-C ₆ H ₄)	NHCH ₂ (CH ₂) ₄ CH ₃

```
NHCH<sub>2</sub> (CH<sub>2</sub>) <sub>5</sub>CH<sub>3</sub>
 NHCH2CH (CH3)2
 инсн<sub>2</sub> (с<sub>6</sub>н<sub>5</sub>)
 NHCH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
NHCH2 (2C1-C6H4)
NHCH<sub>2</sub> (4CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
NHCH_2(2, 4C1-C_6H_3)
NHCH<sub>2</sub> (2,6C1-C<sub>6</sub>H<sub>3</sub>)
NH (C<sub>6</sub>H<sub>5</sub>)
NH (3CF3-C6H4)
NH (2C1-C6H4)
NH (3CH3-C6H4)
NH (2, 4C1-C6H3)
NH (2, 6C1-C6H3)
N(CH<sub>3</sub>) (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
N(CH3)CH2CH2CH3
N (CH<sub>2</sub>) 4
N (CH<sub>2</sub>) 5
N (CH<sub>2</sub>) 6
n(CH2CH2-OCH2CH2)2
CH2CO2CH3
CH2CH2CO2CH2CH3
сн<sub>2</sub>сн<sub>2</sub>со<sub>2</sub>сн<sub>3</sub>
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH2CH2-NHCH2CH3
CH2CH2N (CH3) CH2CH3
СH=СH (СН3) 2
CH2CH2CH=CH2
CH2CH=CH-CH3
CH=CH-CH2CH2-C1
CH2CH2CH-C1CH2-C1
C6H5
3CF3-C6H4
2C1-C6H4
```

3CH ₃ -С ₆ Н ₄
30CH3-C6H4
2CF3-C6H4
2,4C1-C6H3
2,6C1-C6H3
2SCH3-C6H4
CH ₂ (С ₆ H ₅)
CH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ (2C1-C ₆ H ₄)
CH ₂ (4C1-C ₆ H ₄)
CH ₂ (2,4Cl-C ₆ H ₃)
CH ₂ (3SCH ₃ -C ₆ H ₄)
CH ₂ (30CH ₃ -C ₆ H ₄)
CH ₂ (3C1-C ₆ H ₄)
CH ₂ (2, 6F-C ₆ H ₃)
CH ₂ (2,6C1-C ₆ H ₃)
CH ₂ (3, 4F-C ₆ H ₃)
CH2-Si (CH3)3
ON=C (CH ₃) 2
ON=CH (C ₆ H ₅)
$ON=C(CH_3)C_6H_5$
$OCH_2(2, 6-C1-C_6H_3)$
OCH ₂ (C=CH ₂) CH ₃
OCH ₂ -CH CH ₂
4F-C ₆ H ₄
4C1-C ₆ H ₄
4Br-C ₆ H ₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2 (3CF ₃ -C ₅ H ₃ N)

$R^1 = OCH_3$, $R^2 = C(0)NH_2$
R ³
(CH ₂) ₂ CH ₃
(СH ₂) ₃ СH ₃
(CH ₂) 4CH ₃
(СH ₂) ₅ СH ₃
(CH ₂) 6CH ₃
(CH ₂) 7CH ₃
(CH ₂) ₈ CH ₃
(CH ₂) ₉ CH ₃
СH ₂ CH (СH ₃) ₂
Сн ₂ Сн ₂ Сн (Сн ₃) ₂
Сн ₂ Сн ₂ Сн ₂ Сн (Сн ₃) ₂
сн ₂ сн ₂ сн (сн ₃) сн ₂ сн ₂ сн ₃
Сн ₂ Сн (Сн ₃) Сн ₂ Сн ₂ Сн ₃
сн ₂ сн (сн ₂ сн ₃) сн ₂ сн ₃
CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
СH ₂ CH ₂ CH ₂ CH ₂ OCH ₃
CH2CH2CH2-S-CH2CH3
CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃
СH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃
CH ₂ CF ₂ CH (CH ₃) ₂
CH2CH2CH2CF2CH3
CH ₂ -cyclopropyl
CH ₂ -cyclobutyl
CH ₂ -cyclopentyl
CH ₂ -cyclohexyl
cyclopropyl
cyclobutyl
cyclopentyl
cyclohexyl
CH ₂ OCH ₂ CH ₃
CH ₂ OCH ₂ CH ₂ CH ₃
СH ₂ OСH ₂ CH (СH ₃) ₂
СH ₂ ОСH ₂ (С ₆ H ₅)

4
СH ₂ ОСH ₂ (ЗСF ₃ -С ₆ H ₄)
СH ₂ OCH ₂ (2С1-С ₆ H ₄)
CH2OCH2 (3SCH3-C6H4)
CH ₂ OCH ₂ (4C1-С ₆ H ₄)
CH ₂ OCH ₂ (2, 4F-С ₆ H ₃)
СH ₂ CH ₂ OCH ₂ CH ₂ CH ₃
Сн ₂ 0 (С ₆ н ₅)
СH ₂ O (ЭСF ₃ -С ₆ H ₄)
CH ₂ O (4CF ₃ -C ₆ H ₄)
СН ₂ О (2С1-С ₆ Н ₄)
CH ₂ O(3SCH ₃ -C ₆ H ₄)
CH ₂ O (2CH ₃ -C ₆ H ₄)
CH ₂ O(4Cl-C ₆ H ₄)
CH ₂ O(2,4Cl-C ₆ H ₃)
CH ₂ SCH ₂ CH ₃
CH ₂ SCH ₂ CH ₂ CH ₃
CH ₂ SCH ₂ CH (CH ₃) 2
CH ₂ SCH ₂ (C ₆ H ₅)
CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S (2, 4C1-C ₆ H ₃)
CH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ S (2,6C1-C ₆ H ₃)
CH ₂ S (C ₆ H ₅)
CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S (2, 6C1-C ₆ H ₃)
CH ₂ S (2, 4Cl-C ₆ H ₃)
CH ₂ NHCH ₂ CH ₃
CH ₂ NHCH ₂ CH ₂ CH ₃
CH ₂ NHCH ₂ C (C ₆ H ₅)
CH ₂ NHCH ₂ CH (CH ₃) ₂
CH ₂ NHCH ₂ (3CF ₃ -C ₆ H ₄)

0-2C1-6CF3-C6H3

 $CH_2NHCH_2(2C1-C_6H_4)$ CH2NH (C6H5) CH2NH (2C1-C6H4) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH₂ (CH₂)₂CH₃ OCH2 (CH2) 3CH3 OCH2 (CH2) 5CH3 OCH2C (C6H5) $OCH_2 (3CF_3 - C_6H_4)$ $OCH_2(2C1-C_6H_4)$ OCH2CH (CH3) 2 O(C6H5) O(3CF3-C6H4) O(2C1-C6H4) O (4SCH3-C6H4) O(2,4C1-C6H3) SCH2CH2CH3 SCH2 (CH2) 2CH3 SCH2 (CH2) 3CH3 SCH2 (CH2) 5CH3 SCH2 (C6H5) SCH2 (3SCH3-C6H4). SCH2 (20CH3-C6H4) SCH2 (2C1-C6H4) SCH2 (2, 4-C6H3) SCH2 (4CF3-C6H4) S (CH3) 3 SCH2CH (CH3) 2 S (C₆H₅) S (3CF3-C6H4) S (2C1-C6H4) S (40CH3-C6H4) S(2,4C1-C6H3)

2 (3CH3-C6H4) NHCH2CH2CH3 NHCH₂ (CH₂) ₂CH₃ NHCH2 (CH2) 4CH3 инсн₂ (сн₂) ₅сн₃ NHCH₂CH (CH₃)₂ $NHCH_2(C_6H_5)$ NHCH₂ (3CF₃-C₆H₄) NHCH₂ (2C1-C₆H₄) $NHCH_2(4CH_3-C_6H_4)$ NHCH₂ (2, 4Cl-C₆H₃) $NHCH_2$ (2, 6C1-C₆H₃) ин (С_бн₅) $NH(3CF_3-C_6H_4)$ NH (2C1-C6H4) NH (3CH3-C6H4) NH (2, 4C1-C6H3) NH (2, 6C1-C₆H₃) $N(CH_3)(3CF_3-C_6H_4)$ N(CH3)CH2CH2CH3 N (CH₂) 4 $N(CH_2)_5$ N (CH₂) 6 - - * * * * * * * * n (Ch₂Ch₂-OCh₂Ch₂) ₂ CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH₂CH₂-C1

CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6Cl-C6H3 2SCH3-C6H4 CH₂ (C₆H₅) $CH_2 (3CF_3 - C_6H_4)$ CH₂ (2C1-C₆H₄) CH₂ (4C1-C₆H₄) CH₂ (2, 4C1-C₆H₃) CH2 (3SCH3-C6H4) CH₂ (30CH₃-C₆H₄) $CH_2 (3C1-C_6H_4)$ CH₂ (2, 6F-C₆H₃) CH₂ (2,6C1-C₆H₃) CH₂ (3, 4F-C₆H₃) CH2-S1 (CH3) 3 ON=C (CH₃):20-70-51-10-11 $ON=CH(C_6H_5)$ ом=С (СH₃) С₆H₅ OCH₂ (2, 6-C1-C₆H₃) OCH₂ (C=CH₂) CH₃ осн₂-сң 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl

BNS page 38

 $s(2,6F-C_6H_3)$

1...

2-imidazolyl	CH ₂ OCH ₂ CH ₃	CH2NHCH2CH2CH3
$O-2 (3CF_3-C_5H_3N)$	CH2OCH2CH2CH3	CH2NHCH2C(C6H5)
0-2C1-6CF ₃ -C ₆ H ₃	СH ₂ ОСH ₂ CH (СH ₃) ₂	CH2NHCH2CH (CH3) 2
	СH ₂ OCH ₂ (С ₆ H ₅)	CH2NHCH2 (3CF3-C6H4)
$R^1 = OCF_2H$, $R^2 = C(0)NH_2$	CH ₂ OCH ₂ (3CF ₃ -C ₆ H ₄)	CH2NHCH2 (2C1-C6H4)
R ³	CH ₂ OCH ₂ (2C1-C ₆ H ₄)	СH ₂ NH (С ₆ H ₅)
(CH ₂) ₂ CH ₃	сн ₂ осн ₂ (зѕсн ₃ -с ₆ н ₄)	CH2NH (2C1~C6H4)
(CH ₂) ₃ CH ₃	CH2OCH2 (4C1-C6H4)	CH ₂ N (CH ₃) (2C1-C ₆ H ₄)
(CH ₂) 4CH ₃	CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)	OCH2CH2CH3
(CH ₂) 5CH ₃	CH2CH2OCH2CH2CH3	осн ₂ (сн ₂) ₂ сн ₃
(CH ₂) 6CH ₃	CH ₂ O (C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃
(CH ₂) ₇ CH ₃	CH ₂ O (3CF ₃ -C ₆ H ₄)	осн ₂ (сн ₂) ₅ сн ₃
(CH ₂) 8CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)	осн ₂ с (с ₆ н ₅)
(CH ₂) ₉ CH ₃	CH ₂ O (2C1-C ₆ H ₄)	осн ₂ (3СF ₃ -С ₆ H ₄)
СH ₂ CH (СH ₃) ₂	CH ₂ O (3SCH ₃ -C ₆ H ₄)	OCH ₂ (2C1-C ₆ H ₄)
CH2CH2CH(CH3)2	CH2O (2CH3-C6H4)	осн ₂ сн (сн ₃) ₂
CH2CH2CH2CH(CH3)2	CH ₂ O(4C1-C ₆ H ₄)	o(C ₆ H ₅)
$CH_2CH_2CH(CH_3)CH_2CH_2CH_3$	CH ₂ O(2,4Cl-C ₆ H ₃)	O(3CF3-C6H4)
$\mathrm{CH_2CH}\left(\mathrm{CH_3}\right)\mathrm{CH_2CH_2CH_3}$	CH2SCH2CH3	0 (2C1-C ₆ H ₄)
$\mathrm{CH}_2\mathrm{CH}(\mathrm{CH}_2\mathrm{CH}_3)\mathrm{CH}_2\mathrm{CH}_3$	CH2SCH2CH2CH3	O(4SCH3-C6H4)
CH2CH2CH2OCH2CH3	CH2SCH2CH (CH3) 2	O(2,4C1-C6H3)
CH2CH2CH2CH2OCH3	CH ₂ SCH ₂ (C ₆ H ₅)	SCH2CH2CH3
CH2CH2CH2-S-CH2CH3	CH2SCH2 (3CF3-C6H4)	SCH ₂ (CH ₂) ₂ CH ₃
CH2CH2CH2CH3	CH ₂ S (2C1-C ₆ H ₄)	scн ₂ (сн ₂) ₃ сн ₃
CH2CH2CH2NHCH2CH3	CH2S (4CH3-C6H4)	SCH ₂ (СН ₂) ₅ СН ₃
CH2CF2CH (CH3)2	CH ₂ S(2,4C1-C ₆ H ₃)	SCH ₂ (C ₆ H ₅)
CH2CH2CH2CF2CH3	СH ₂ S (3SCH ₃ -С ₆ H ₄)	SCH ₂ (3SCH ₃ -C ₆ H ₄)
CH2-cyclopropyl	сн ₂ s(2,6с1-с ₆ н ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)
CH ₂ -cyclobutyl	сн ₂ s (с ₆ н ₅)	SCH ₂ (2C1-C ₆ H ₄)
CH ₂ -cyclopentyl	CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2,4-C ₆ H ₃)
CH ₂ -cyclohexyl	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)
cyclopropyl	CH2S (4CH3-C6H4)	s (СH ₃) ₃
cyclobutyl	CH ₂ S(2,6C1-C ₆ H ₃)	SCH ₂ CH (CH ₃) ₂
cyclopentyl	CH ₂ S(2,4C1-C ₆ H ₃)	s (C ₆ H ₅)
cyclohexyl	CH2NHCH2CH3	s (3CF ₃ -C ₆ H ₄)

S (2C1-C6H4)
S (40CH3-C6H4)
s(2,4C1-C6H3)
$S(2,6F-C_6H_3)$
2 (3CH ₃ -C ₆ H ₄)
NHCH2CH2CH3
NHCH ₂ (CH ₂) ₂ CH ₃
$\mathrm{NHCH_2}\left(\mathrm{CH_2}\right)_4\mathrm{CH_3}$
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH2CH (CH3)2
NHCH ₂ (C ₆ H ₅)
$\mathrm{NHCH}_{2}\left(\mathrm{3CF}_{3}\mathrm{-C}_{6}\mathrm{H}_{4}\right)$
NHCH ₂ (2C1-C ₆ H ₄)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
$NHCH_2(2, 4C1-C_6H_3)$
$NHCH_2$ (2, 6C1-C ₆ H ₃)
ин (С ₆ н ₅)
NH (3CF ₃ -C ₆ H ₄)
NH (2C1-C ₆ H ₄)
NH (3CH ₃ -C ₆ H ₄)
$NH(2,4C1-C_6H_3)$
NH $(2,6C1-C_6H_3)$
N(CH ₃) (3CF ₃ -C ₆ H ₄) ···
N(CH ₃)CH ₂ CH ₂ CH ₃
N (CH ₂) 4
N (CH ₂) 5
N (CH ₂) 6
N (CH ₂ CH ₂ -OCH ₂ CH ₂) ₂
CH ₂ CO ₂ CH ₃
CH2CH2CO2CH2CH3
СH ₂ CH ₂ CO ₂ CH ₃
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH ₂ CH ₂ -NHCH ₂ CH ₃
OU OU M (OU) OU OU

CH2CH2N (CH3) CH2CH3

СH=СH (СH ₃) ₂
CH2CH2CH=CH2
сн ₂ сн=сн-сн ₃
CH=CH-CH ₂ CH ₂ -Cl
CH2CH2CH-C1CH2-C1
с ₆ н ₅
3CF3-C6H4
2C1-C6H4
3CH3-C6H4
30CH3-C6H4
^{2CF} 3-C ₆ H ₄
2,4C1~C6H3
2,6C1-С ₆ H3
2SCH3-C6H4
СH ₂ (С ₆ H ₅)
CH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ (2C1-C ₆ H ₄)
CH ₂ (4C1-C ₆ H ₄)
CH ₂ (2, 4C1-C ₆ H ₃)
СH ₂ (3SCH ₃ -С ₆ H ₄)
CH ₂ (30CH ₃ -C ₆ H ₄)
CH ₂ (3C1-C ₆ H ₄)
CH ₂ (2, 6F-C ₆ H ₃)
CH ₂ (2,6C1-C ₆ H ₃)
CH ₂ (3, 4F-C ₆ H ₃)
CH ₂ -Si (CH ₃) 3
ON=C (CH ₃) ₂
ON=CH (C ₆ H ₅)
ON=C (CH ₃) C ₆ H ₅
OCH ₂ (2,6-C1-C ₆ H ₃)
осн ₂ (С=Сн ₂) Сн ₃
осн ₂ -сң Г ² сн ₂
4F-C ₆ H ₄
4C1-C6H4

```
4Br-C6H4
  2-pyridyl ....
  2-furyl
  2-thiazolyl
  2-imidazolyl
  O-2 (3CF<sub>3</sub>-C<sub>5</sub>H<sub>3</sub>N)
  O-2C1-6CF3-C6H3
       R^1=NO_2, R^2=C(0)NH_2
 R3
  (CH_2)_2CH_3
  (CH<sub>2</sub>) 3CH<sub>3</sub>
  (CH<sub>2</sub>)<sub>4</sub>CH<sub>3</sub>
  (CH<sub>2</sub>) 5CH<sub>3</sub>
 (CH<sub>2</sub>) 6CH<sub>3</sub>
 (CH<sub>2</sub>) 7CH<sub>3</sub>
  (CH<sub>2</sub>) 8CH<sub>3</sub>
 (CH<sub>2</sub>) 9CH<sub>3</sub>
 Сн<sub>2</sub>Сн (Сн<sub>3</sub>) <sub>2</sub>
СH<sub>2</sub>С (СH<sub>3</sub>) 3
 СH<sub>2</sub>CH<sub>2</sub>CH (СH<sub>3</sub>)<sub>2</sub>
CH2CH2CH2CH(CH3)2
сн<sub>2</sub>сн<sub>2</sub>ен (сн<sub>3</sub>) ен<sub>2</sub>ен<sub>2</sub>ен<sub>3</sub>
СH<sub>2</sub>CH (СH<sub>3</sub>) СH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
сн<sub>2</sub>сн (сн<sub>2</sub>сн<sub>3</sub>) сн<sub>2</sub>сн<sub>3</sub>
CH2CH2CH2OCH2CH3
CH2CH2CH2CH2OCH3
сн<sub>2</sub>сн<sub>2</sub>сн<sub>2</sub>-s-сн<sub>2</sub>сн<sub>3</sub>
CH2CH2CH2CH2SCH3
CH2CH2CH2NHCH2CH3
CH<sub>2</sub>CF<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH2CF2CH3
CH2-cyclopropyl
CH<sub>2</sub>-cyclobutyl
CH<sub>2</sub>-cyclopentyl
```

CH2-cyclohexyl
cyclopropyl
cyclobutyl
cyclopentyl
cyclohexyl
CH2OCH2CH3
сн ₂ осн ₂ сн ₂ сн ₃
сн ₂ осн ₂ сн (сн ₃) 2
сн ₂ осн ₂ (С ₆ н ₅)
CH2OCH2 (3CF3-C6H4)
CH2OCH2 (2C1-C6H4)
CH2OCH2 (35CH3-C6H4)
CH2OCH2 (4C1-C6H4)
$CH_2OCH_2(2, 4F-C_6H_3)$
CH2CH2OCH2CH2CH3
сн ₂ о (С ₆ н ₅)
$CH_2O(3CF_3-C_6H_4)$
$CH_2O(4CF_3-C_6H_4)$
CH ₂ O (2C1-C ₆ H ₄)
CH2O (3SCH3-C6H4)
CH ₂ O(2CH ₃ -C ₆ H ₄)
CH ₂ O (4C1-C ₆ H ₄)
CH ₂ O(2,-4C1-C ₆ H ₃)
CH2SCH2CH3
CH2SCH2CH2CH3
CH ₂ SCH ₂ CH (CH ₃) 2
CH ₂ SCH ₂ (C ₆ H ₅)
CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
$CH_2S(4CH_3-C_6H_4)$
CH ₂ S (2, 4C1-C ₆ H ₃)
CH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ S (2,6C1-C ₆ H ₃)
$CH_2S(C_6H_5)$

	33
CH ₂ S	(2C1-C ₆ H ₄)
CH ₂ S	(4CH ₃ -C ₆ H ₄)
1	(2,6C1-C ₆ H ₃)
CH ₂ S	(2,4C1-C ₆ H ₃)
CH ₂ NI	юн ₂ сн ₃
CH ₂ NE	ICH ₂ CH ₂ CH ₃
CH ₂ NE	ICH ₂ C (С ₆ H ₅)
Сн2ин	ICH ₂ CH (СН ₃) ₂
CH ₂ NE	ICH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ NE	існ ₂ (2С1-С ₆ н ₄)
CH ₂ NH	(C ₆ H ₅)
CH ₂ NE	(2C1-C ₆ H ₄)
Сн ₂ и (CH ₃) (2C1-C ₆ H ₄)
осн ₂ с	H ₂ CH ₃
OCH ₂	CH ₂) ₂ CH ₃
осн ₂ (CH ₂) ₃ CH ₃
осн ₂ (CH ₂) ₅ CH ₃
осн ₂ с	(C ₆ H ₅)
осн ₂ с	H ₂ CH (CH ₃) ₂
OCH ₂ -	Si (CH ₃) ₃
осн ₂	CH CH ₂
осн ₂ (3CF ₃ -C ₆ H ₄)
ľ	2C1-C ₆ H ₄)
осн2с	H (CH ₃) ₂
о (С ₆ н	(5)
0 (3CF	3-C6H4)
O (2C1	-C ₆ H ₄)
O (4SC	H ₃ -C ₆ H ₄)
0(2,4	C1-C ₆ H ₃)
SCH ₂ C	н ₂ сн ₃
SCH ₂ (СH ₂) ₂ СH ₃
SCH ₂ (СH ₂) _З СH ₃
scн ₂ (СH ₂) ₅ СH ₃
1	

	scн ₂ (С ₆ н ₅)
	SCH ₂ (3SCH ₃ -C ₆ H ₄)
	SCH ₂ (20СН ₃ -С ₆ Н ₄)
	SCH2 (2C1-C6H4)
	SCH ₂ (2,4-C ₆ H ₃)
	SCH2 (4CF3-C6H4)
	s (СН ₃) ₃
	SCH ₂ CH (CH ₃) ₂
	s(C ₆ H ₅)
	s (3CF ₃ -C ₆ H ₄)
	S(2C1-C6H4)
	s (40CH3-C6H4)
	S(2,4C1-C6H3)
	s(2,6F-C ₆ H ₃)
-	2 (3CH ₃ -C ₆ H ₄)
	nhch ₂ ch ₂ ch ₃
-	NHCH ₂ (CH ₂) ₂ CH ₃
1	NHCH ₂ (CH ₂) ₄ CH ₃
ı	инсн ₂ (Сн ₂) ₅ Сн ₃
Ì	NHCH ₂ CH (CH ₃) ₂
	инсн ₂ (С ₆ н ₅)
l	NHCH ₂ (3CF ₃ -C ₆ H ₄)
	инсн ₂ (2С1—С ₆ н ₄) —
	NHCH ₂ (4CH ₃ -C ₆ H ₄)
l	NHCH ₂ (2, 4C1-C ₆ H ₃
ı	инсн ₂ (2, 6С1-С ₆ н ₃
1	NH (С ₆ Н ₅)
ı	NH (3CF ₃ -C ₆ H ₄)
ı	NH (2C1-C ₆ H ₄)
ı	NH (3CH ₃ -C ₆ H ₄)
1	NH (2, 4C1-C ₆ H ₃)
1	NH (2, 6C1-C ₆ H ₃)
ı	N(CH ₃) (3CF ₃ -C ₆ H ₄
ı	N (CH ₃) CH ₂ CH ₂ CH ₃
١	N(CH ₂) ₄

 $\mathrm{CH_2S}\left(3\mathrm{CF_3-C_6H_4}\right)$

CH2-Si (CH3) 3

N (CH₂) 5 N(CH₂)6 $N(CH_2CH_2-OCH_2CH_2)_2$ CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH3)2 CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH₂CH₂-Cl CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6C1-C6H3 2SCH3-C6H4 CH2 (C6H5) $CH_2 (3CF_3 - C_6H_4)$ CH2 (2C1-C6H4) CH2 (4C1-C6H4) $CH_2(2, 4C1-C_6H_3)$ CH2 (3SCH3-C6H4) CH_2 (30 $CH_3 - C_6H_4$) $CH_2(3C1-C_6H_4)$ $CH_2(2, 6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$

ON=C (CH₃)_{2...} ON=CH(C6H5) $ON=C(CH_3)C_6H_5$ $OCH_2(2, 6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 OCH2-CH 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl O-2 (3CF3-C5H3N) 0-2C1-6CF3-C6H3 $R^1=C1$, $R^2=C=N$ R3 (CH₂) 2CH₃ (CH₂) 3CH₃ (CH₂) 4CH₃ (CH₂) 5CH₃ (CH₂) 6CH₃ (CH₂)₇CH₃ (CH₂) 8CH₃ (CH₂) 9CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3

CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2 CH2OCH2 (C6H5) CH_2OCH_2 (3 $CF_3-C_6H_4$) CH_2OCH_2 (2C1- C_6H_4) CH_2OCH_2 (3SCH₃-C₆H₄) $CH_2OCH_2(4C1-C_6H_4)$ CH_2OCH_2 (2, 4E= C_6H_3)-CH2CH2OCH2CH2CH3 CH2O (C6H5) $CH_2O(3CF_3-C_6H_4)$ CH2O (4CF3-C6H4) CH20 (2C1-C6H4) CH20 (3SCH3-C6H4) CH2O (2CH3-C6H4) CH2O (4C1-C6H4) $CH_2O(2, 4C1-C_6H_3)$ CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH(CH3)2

 $CH_2(3, 4F-C_6H_3)$

CH2SCH2 (C6H5)
CH2SCH2 (3CF3-C6H4)
CH2S (2C1-C6H4)
CH2S (4CH3-C6H4)
CH ₂ S(2,4C1-C ₆ H ₃)
CH2S (3SCH3-C6H4)
CH2S(2,6C1-C6H3)
CH ₂ S (С ₆ H ₅)
CH ₂ S (3CF ₃ -C ₆ H ₄)
CH2S (2C1-C6H4)
CH2S (4CH3-C6H4)
CH ₂ S(2,6C1-C ₆ H ₃)
CH ₂ S(2,4C1-C ₆ H ₃)
CH2NHCH2CH3
CH2NHCH2CH2CH3
CH2NHCH2C(C6H5)
CH2NHCH2CH (CH3)2
$CH_2NHCH_2(3CF_3-C_6H_4)$
CH2NHCH2 (2C1-C6H4)
CH ₂ NH (C ₆ H ₅)
CH ₂ NH (2C1-C ₆ H ₄)
$CH_2N(CH_3)(2C1-C_6H_4)$
OCH2CH2CH3
OCH ₂ (CH ₂) ₂ CH ₃
OCH ₂ (CH ₂) ₃ CH ₃
OCH ₂ (CH ₂) ₅ CH ₃
OCH ₂ C(C ₆ H ₅)
$OCH_2(3CF_3-C_6H_4)$
$OCH_2(2C1-C_6H_4)$
OCH ₂ CH (CH ₃) ₂
O(C ₆ H ₅)
O(3CF ₃ -C ₆ H ₄)
0 (2C1-C ₆ H ₄)
O(4SCH3-C6H4)
O(2,4C1-C6H3)

	SCH2CH2CH3	
	sсн ₂ (сн ₂) ₂ сн ₃	
	scн ₂ (сн ₂) ₃ сн ₃	
	scн ₂ (сн ₂) ₅ сн ₃	
	scн ₂ (с _б н ₅)	
i	scн ₂ (эsсн ₃ -с ₆ н ₄)	
	SCH2 (20CH3-C6H4)	
	SCH ₂ (2C1-C ₆ H ₄)	
i	SCH ₂ (2,4-C ₆ H ₃)	
	SCH2 (4CF3-C6H4)	
	s (CH ₃) ₃	
١	sсн ₂ сн (сн ₃) ₂	
	S (C ₆ H ₅)	
I	s(3CF ₃ -C ₆ H ₄)	
l	s (2C1-C ₆ H ₄)	
l	s (40CH3-C6H4)	
l	s (2, 4C1-C ₆ H ₃)	
l	S(2,6F-C ₆ H ₃)	
ŀ	2 (3CH ₃ -C ₆ H ₄)	
ŀ	NHCH ₂ CH ₂ CH ₃	
ŀ	NHCH ₂ (CH ₂) ₂ CH ₃	
ŀ	NHCH ₂ (CH ₂) ₄ CH ₃	
ŀ	NHCH ₂ (CH ₂) ₅ CH ₃	
ŀ	nhch ₂ ch (ch ₃) ₂	
1	NHCH ₂ (C ₆ H ₅)	
ļ	NHCH ₂ (3CF ₃ -C ₆ H ₄)	
	NHCH ₂ (2C1-C ₆ H ₄)	
1	NHCH ₂ (4CH ₃ -C ₆ H ₄)	
ľ	NHCH ₂ (2, 4C1-C ₆ H ₃)	
1	NHCH ₂ (2,6C1-C ₆ H ₃)	
ı	NH (С ₆ Н ₅)	
ı	NH (3CF ₃ -C ₆ H ₄)	
ı	NH (2C1-C ₆ H ₄)	
ı	NH (3CH ₃ -C ₆ H ₄)	
1	NH (2, 4C1-C ₆ H ₃)	
	•	

```
NH (2,6C1-C6H3)
  N(CH<sub>3</sub>) (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 N (CH<sub>3</sub>) CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
 N (CH<sub>2</sub>) 4
 N (CH<sub>2</sub>) 5
  N(CH<sub>2</sub>)6
 N(CH2CH2-OCH2CH2)2
 CH2CO2CH3
 CH2CH2CO2CH2CH3
 CH2CH2CO2CH3
 CH2CH2OCH2CH3
 CH2CH2SCH2CH3
 CH2CH2-NHCH2CH3
 CH2CH2N(CH3)CH2CH3
 CH=CH (CH<sub>3</sub>)<sub>2</sub>
 Сн<sub>2</sub>Сн<sub>2</sub>Сн=Сн<sub>2</sub>
 CH2CH=CH-CH3
 CH=CH-CH2CH2-C1
 CH2CH2CH-C1CH2-C1
 C<sub>6</sub>H<sub>5</sub>
 3CF3-C6H4
2C1-C6H4
 3CH3-C6H4
30CH3-C6H4
2CF3-C6H4
2,4C1-C6H3
2,6C1-C<sub>6</sub>H<sub>3</sub>
25CH3-C6H4
CH<sub>2</sub> (C<sub>6</sub>H<sub>5</sub>)
CH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
CH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
CH<sub>2</sub> (4C1-C<sub>6</sub>H<sub>4</sub>)
CH<sub>2</sub> (2, 4C1-C<sub>6</sub>H<sub>3</sub>)
СН<sub>2</sub> (3SCH<sub>3</sub>-С<sub>6</sub>Н<sub>4</sub>)
CH2 (30CH3-C6H4)
```

CH₂ (3C1-C₆H₄)
CH₂ (2, 6F-C₆H₃)
CH₂ (2, 6C1-C₆H₃)
CH₂ (3, 4F-C₆H₃)
CH₂-Si (CH₃) 3
ON=C (CH₃) 2
ON=CH (C₆H₅)
ON=C (CH₃) C₆H₅
OCH₂ (2, 6-C1-C₆H₃)
OCH₂ (C=CH₂) CH₃
OCH₂-CH
CH₂
CH₂
4F-C₆H₄

4C1-C₆H₄
4Br-C₆H₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2(3CF₃-C₅H₃N)
0-2C1-6CF₃-C₆H₃

R¹=Bf, R²=C≡N

R³
(CH₂)₂CH₃
(CH₂)₃CH₃
(CH₂)₄CH₃
(CH₂)₅CH₃
(CH₂)₆CH₃
(CH₂)₇CH₃
(CH₂)₈CH₃
(CH₂)₉CH₃
CH₂CH₂CH₂CH₂CH₂CH₂CH₃)₂
CH₂CH₂CH₂CH₂CH₂CH₃)₂

CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH_2CH (CH_2CH_3) CH_2CH_3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH₂CH₂CH₂CH₂SCH₃ CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 CH2OCH2 (C6H5) CH_2OCH_2 (3CF.3-C6H4) CH_2OCH_2 (2C1-C₆H₄) CH_2OCH_2 (3SCH₃-C₆H₄) CH_2OCH_2 (4C1- C_6H_4) CH_2OCH_2 (2, 4F-C₆H₃) $CH_2CH_2OCH_2CH_2CH_3$ CH2O (C6H5) $CH_2O(3CF_3-C_6H_4)$ $CH_2O(4CF_3-C_6H_4)$ CH20 (2C1-C6H4)

CH20 (3SCH3-C6H4)

CH₂O (2CH₃-C₆H₄)

CH20 (4C1-C6H4)

 $CH_2O(2,4C1-C_6H_3)$ CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH (CH3) 2 CH2SCH2 (C6H5) CH_2SCH_2 (3 $CF_3-C_6H_4$) CH2S (2C1-C6H4) CH2S (4CH3-C6H4) $CH_2S(2,4C1-C_6H_3)$ CH₂S (3SCH₃-C₆H₄) CH₂S (2,6C1-C6H₃) CH₂S (C₆H₅) $CH_2S(3CF_3-C_6H_4)$ CH2S (2C1-C6H4) CH₂S (4CH₃-C₆H₄) CH₂S (2, 6C1-C₆H₃) CH₂S (2, 4C1-C₆H₃) CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C(C6H5) CH2NHCH2CH (CH3) 2 CH_2NHCH_2 (3CF₃-C₆H₄) CH2NHCH2.(2C1-C6H4). CH2NH (C6H5) CH2NH (2C1-C6H4) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH₂ (CH₂) ₂CH₃ OCH2 (CH2) 3CH3 OCH2 (CH2) 5CH3 OCH2C (C6H5) $OCH_2 (3CF_3-C_6H_4)$ OCH₂ (2C1-C₆H₄) OCH2CH(CH3)2 O(C6H5)

O(3CF3-C6H4)
O(2C1-C6H4)
O(4SCH3-C6H4)
O(2,4C1-C6H3)
SCH2CH2CH3
SCH2 (CH2) 2CH3
SCH ₂ (CH ₂) 3CH ₃
SCH ₂ (CH ₂) 5CH ₃
SCH ₂ (C ₆ H ₅)
SCH2 (3SCH3-C6H4)
SCH2 (20CH3-C6H4)
SCH ₂ (2C1-C ₆ H ₄)
SCH ₂ (2, 4-C ₆ H ₃)
SCH ₂ (4CF ₃ -C ₆ H ₄)
s (CH ₃) 3
SCH2CH(CH3)2
s (C ₆ H ₅)
S(3CF3-C6H4)
S(2C1-C6H4)
S (40CH3-C6H4)
S(2,4C1-C6H3)
$S(2,6F-C_6H_3)$
2.(3CH ₃ -C ₆ H ₄)
NHCH2CH2CH3
NHCH ₂ (CH ₂) ₂ CH ₃
NHCH ₂ (CH ₂) ₄ CH ₃
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH ₂ CH (CH ₃) ₂
NHCH ₂ (C ₆ H ₅)
$NHCH_2(3CF_3-C_6H_4)$
$\mathrm{NHCH}_2\left(2\mathrm{C1-C}_6\mathrm{H}_4\right)$
NHCH2 (4CH3-C6H4)
NHCH ₂ (2, 4C1-C ₆ H ₃)
$NHCH_2$ (2,6C1-C ₆ H ₃)

NH (3CF ₃ -C ₆ H ₄)
NH (2C1-C ₆ H ₄)
NH (3CH3-C6H4)
NH(2,4C1-C ₆ H ₃)
NH(2,6C1-C ₆ H ₃)
N(CH ₃) (3CF ₃ -C ₆ H ₄)
n (CH ₃) CH ₂ CH ₂ CH ₃
N (CH ₂) ₄
N (CH ₂) 5
N (CH ₂) 6
N(CH2CH2-OCH2CH2)2
СH ₂ CO ₂ CH ₃
CH2CH2CO2CH2CH3
CH ₂ CH ₂ CO ₂ CH ₃
сн ₂ сн ₂ осн ₂ сн ₃
сн ₂ сн ₂ sсн ₂ сн ₃
CH ₂ CH ₂ -NHCH ₂ CH ₃
CH ₂ CH ₂ N (CH ₃) CH ₂ CH ₃
CH=CH (CH ₃) ₂
CH2CH2CH-CH2
CH ₂ CH=CH-CH ₃
CH-CH-CH ₂ CH ₂ -C1
CH ₂ CH ₂ CH-C1CH ₂ -C1
C ₆ H ₅
3CF ₃ -C ₆ H ₄
2C1-C6H4
3CH3-C6H4
30CH ₃ -С ₆ H ₄
CCF3-C6H4
2,4C1-C ₆ H ₃
2,6C1-C ₆ H ₃
2SCH3-C6H4
CH ₂ (C ₆ H ₅)
CH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ (2C1-C ₆ H ₄)

```
CH<sub>2</sub> (4C1-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (2,4C1-C<sub>6</sub>H<sub>3</sub>)
 CH<sub>2</sub> (35CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (30CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (3C1-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (2, 6F-C<sub>6</sub>H<sub>3</sub>)
 CH<sub>2</sub> (2,6Cl-C<sub>6</sub>H<sub>3</sub>)
 CH<sub>2</sub> (3, 4F-C<sub>6</sub>H<sub>3</sub>)
CH2-Si (CH3) 3
ON=C (CH<sub>3</sub>)<sub>2</sub>
ON=CH (C6H5)
ON=C (CH3) C6H5
OCH_2(2,6-C1-C_6H_3)
OCH<sub>2</sub> (C=CH<sub>2</sub>) CH<sub>3</sub>
4F-C6H4
4C1-C6H4
4Br-C<sub>6</sub>H<sub>4</sub>
2-pyridyl
2-furyl
2-thiazolyl
2-imidazólýl
0-2 (3CF<sub>3</sub>-C<sub>5</sub>H<sub>3</sub>N)
|0-2C1-6CF3-C6H3
              R^1=I, R^2=C=N
RЗ
(CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>
(CH<sub>2</sub>) 3CH<sub>3</sub>
 (CH<sub>2</sub>) 4CH<sub>3</sub>
(CH<sub>2</sub>) 5CH<sub>3</sub>
 (CH<sub>2</sub>) 6CH<sub>3</sub>
 (CH<sub>2</sub>) 7CH<sub>3</sub>
(CH<sub>2</sub>) 8CH<sub>3</sub>
```

NH (C6H5)

(CH₂) 9CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH₂OCH₂CH₃.... CH2OCH2CH2CH3 CH2OCH2CH (CH3)2 $CH_2OCH_2 (C_6H_5)$ CH_2OCH_2 (3CF₃-C₆H₄) CH_2OCH_2 (2C1- C_6H_4) CH_2OCH_2 (3SCH₃-C₆H₄) CH_2OCH_2 (4C1-C6H4) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 CH2O (C6H5) CH20 (3CF3-C6H4) CH2O (4CF3-C6H4)

CH2O (2C1-C6H4) CH2O (3SCH3-C6H4) CH2O(2CH3-C6H4) $CH_{2}O(4C1-C_{6}H_{4})$ $CH_2O(2, 4C1-C_6H_3)$ CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH(CH3)2 CH2SCH2 (C6H5) $CH_2SCH_2(3CF_3-C_6H_4)$ CH2S (2C1-C6H4) CH₂S (4CH₃-C₆H₄) $CH_2S(2, 4C1-C_6H_3)$ СH₂S (3SCH₃-C₆H₄) $CH_2S(2,6C1-C_6H_3)$ CH₂S (C₆H₅) CH₂S (3CF₃-C₆H₄) CH2S (2C1-C6H4) CH2S (4CH3-C6H4) CH₂S (2, 6C1-C₆H₃) $CH_2S(2,4C1-C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C(C6H5) CH2NHCH2CH (CH3) 2 CH_2NHCH_2 (3CF₃-C₆H₄) $CH_2NHCH_2(2C1-C_6H_4)$ CH2NH (C6H5) CH2NH (2C1-C6H4) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH₂ (CH₂) ₂CH₃ OCH2 (CH2) 3CH3 OCH2 (CH2) 5CH3 OCH2C(C6H5)

OCH2 (3CF3-C6H4) $OCH_2 (2C1-C_6H_4)$ OCH2CH (CH3)2 O(C6H5) $O(3CF_3-C_6H_4)$ 0 (2C1-C6H4) O(4SCH3-C6H4) O(2,4C1-C6H3) SCH2CH2CH3 SCH2 (CH2) 2CH3 scн₂ (сн₂) ₃сн₃ SCH2 (CH2) 5CH3 SCH2 (C6H5) SCH2 (3SCH3-C6H4) SCH2 (20CH3-C6H4) SCH2 (2C1-C6H4) SCH₂ (2, 4-C₆H₃) SCH₂ (4CF₃-C₆H₄) S (CH₃) 3 SCH2CH (CH3)2 s (C₆H₅) S (3CF3-C6H4) S (2C1-C6H4) S (40CH3-C6H4) |s (2, 4C1-C₆H₃) S (2, 6F-C6H3) 2 (3CH3-C6H4) NHCH2CH2CH3 NHCH2 (CH2) 2CH3 NHCH₂ (CH₂) ₄CH₃ NHCH₂ (CH₂) ₅CH₃ NHCH2CH (CH3) 2 NHCH₂ (C₆H₅) NHCH₂ (3CF₃-C₆H₄)NHCH₂ (2C1-C₆H₄)

NHCH₂ (4CH₃-C₆H₄) $NHCH_2$ (2, $4C1-C_6H_3$) $NHCH_2(2,6C1-C_6H_3)$ NH (C6H5) NH $(3CF_3-C_6H_4)$ NH (2C1-C6H4) NH (3CH3-C6H4) NH (2, 4C1-C6H3) $NH(2,6C1-C_6H_3)$ $N(CH_3)(3CF_3-C_6H_4)$ N (CH3) CH2CH2CH3 N(CH2)4 N (CH₂) 5 N (CH₂) 6 N(CH2CH2-OCH2CH2)2 CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH_2CH_2N (CH_3) CH_2CH_3 CH=CH (CH₃).2 ... CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH₂CH₂-C1 CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 · 2CF3-C6H4 2,4C1-C6H3

2SCH3-C6H4 СH₂ (С₆H₅) CH₂ (3CF₃-C₆H₄) CH₂ (2C1-C₆H₄) $CH_2(4C1-C_6H_4)$ CH₂ (2, 4C1-C₆H₃) CH2 (3SCH3-C6H4) CH₂ (30CH₃-C₆H₄) CH2 (3C1-C6H4) $CH_2(2,6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$ CH_2 -Si(CH_3)3 ON=C (CH₃)₂ ON=CH (C6H5) $ON=C(CH_3)C_6H_5$ $OCH_2(2,6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 осн₂-сң 4F-C6H4 4C1-C6H4 4Br-C₆H₄ 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl O-2 (3CF₃-C₅H₃N) 0-2C1-6CF3-C6H3 $R^1 = OCH_3$, $R^2 = C = N$ (CH₂) 2CH₃ (CH₂) 3CH₃ (CH₂) 4CH₃

(CH₂) 5CH₃ (CH₂) 6CH₃ (CH₂) 7CH₃ (CH₂) 8CH₃ (CH₂) 9CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 сн₂сн (сн₃) сн₂сн₂сн₃ сн₂сн (сн₂сн₃) сн₂сн₃ CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 СH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2~cyclopentyl CH2-cyclohexyl cyclopropyl --cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 сн₂осн₂сн₂сн₃ CH2OCH2CH(CH3)2 CH₂OCH₂ (C₆H₅) $CH_2OCH_2 (3CF_3 - C_6H_4)$ CH2OCH2 (2C1-C6H4) СH₂ОСH₂ (ЭSCH₃-С₆H₄) CH2OCH2 (4C1-C6H4) CH_2OCH_2 (2, 4F-C₆H₃)

2,6C1-C6H3

	CH2CH2OCH2CH2CH3	OCH ₂ (CH ₂) ₂ CH ₃
	CH ₂ O(C ₆ H ₅)	осн ₂ (сн ₂) ₃ сн ₃
	CH ₂ O(3CF ₃ -C ₆ H ₄)	осн ₂ (сн ₂) ₅ сн ₃
	CH ₂ O (4CF ₃ -C ₆ H ₄)	осн ₂ с (с ₆ н ₅)
	CH ₂ O(2C1-C ₆ H ₄)	OCH ₂ (3CF ₃ -C ₆ H ₄)
	CH2O(3SCH3-C6H4)	OCH ₂ (2C1-C ₆ H ₄)
	CH2O (2CH3-C6H4)	осн ₂ сн (сн ₃) ₂
	CH ₂ O(4C1-C ₆ H ₄)	о(С ₆ н ₅)
	CH ₂ O(2,4C1-C ₆ H ₃)	O(3CF3-C6H4)
	CH2SCH2CH3	O(2C1-C6H4)
	CH2SCH2CH2CH3	O (4SCH3-C6H4)
	CH2SCH2CH (CH3) 2	O(2,4C1-C6H3)
	CH2SCH2 (C6H5)	sch ₂ ch ₂ ch ₃
	CH2SCH2 (3CF3-C6H4)	SCH2 (CH2) 2CH3
	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (СН ₂) _З СН ₃
	CH2S (4CH3-C6H4)	scн ₂ (сн ₂) ₅ сн ₃
	CH ₂ S (2, 4C1-C ₆ H ₃)	sсн ₂ (с ₆ н ₅)
	CH ₂ S (3SCH ₃ -C ₆ H ₄)	SCH2 (3SCH3-C6H4)
	CH ₂ S(2,6C1-C ₆ H ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)
	CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)
	CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2,4-C ₆ H ₃)
	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)
1 -	CH ₂ S (4CH ₃ =C ₆ H ₄)	S (CH ₃)-3
	CH ₂ S (2,6Cl-C ₆ H ₃)	SCH ₂ CH (CH ₃) ₂
	CH ₂ S (2, 4C1-C ₆ H ₃)	s (C ₆ H ₅)
	CH2NHCH2CH3	s (3CF ₃ -C ₆ H ₄)
	CH2NHCH2CH2CH3	s (2C1-C ₆ H ₄)
	CH2NHCH2C(C6H5)	s (40CH3-C6H4)
	CH2NHCH2CH (CH3)2	S(2,4C1-C ₆ H ₃)
	CH_2NHCH_2 (3CF ₃ -C ₆ H ₄)	s(2,6F-C ₆ H ₃)
	CH_2NHCH_2 (2C1- C_6H_4)	2 (3CH ₃ -C ₆ H ₄)
	сн ₂ ин (с ₆ н ₅)	NHCH2CH2CH3
	CH ₂ NH (2C1-C ₆ H ₄)	инсн ₂ (Сн ₂) ₂ Сн ₃
	$CH_2N(CH_3)$ (2C1-C ₆ H ₄)	NHCH ₂ (CH ₂) ₄ CH ₃
	OCH2CH2CH3	инсн ₂ (сн ₂) ₅ сн ₃

```
NHCH2CH (CH3) 2
 NHCH<sub>2</sub> (C<sub>6</sub>H<sub>5</sub>)
 инсн<sub>2</sub> (3СF<sub>3</sub>-С<sub>6</sub>H<sub>4</sub>)
 NHCH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
 NHCH<sub>2</sub> (4CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 NHCH<sub>2</sub> (2, 4C1-C<sub>6</sub>H<sub>3</sub>)
 NHCH_2(2,6C1-C_6H_3)
NH (C6H5)
NH (3CF3-C6H4)
NH (2C1-C6H4)
NH (3CH3-C6H4)
 NH (2, 4C1-C6H3)
ин (2,6Cl-C<sub>6</sub>H<sub>3</sub>)
N(CH_3)(3CF_3-C_6H_4)
n (CH<sub>3</sub>) CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
N (CH<sub>2</sub>) 4
N(CH<sub>2</sub>)<sub>5</sub>
N(CH<sub>2</sub>)6
N(CH_2CH_2-OCH_2CH_2)_2
 CH2CO2CH3
 CH2CH2CO2CH2CH3
CH2CH2CO2CH3
сн<sub>2</sub>сн<sub>2</sub>осн<sub>2</sub>сн<sub>3</sub> ....
CH2CH2SCH2CH3
CH2CH2-NHCH2CH3
CH<sub>2</sub>CH<sub>2</sub>N (CH<sub>3</sub>) CH<sub>2</sub>CH<sub>3</sub>
CH=CH(CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH=CH2
CH2CH=CH-CH3
CH=CH-CH<sub>2</sub>CH<sub>2</sub>-C1
CH2CH2CH-ClCH2-Cl
C<sub>6</sub>H<sub>5</sub>
3CF3-C6H4
2C1-C6H4
3CH3-C6H4
```

30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6C1-C6H3 2SCH3-C6H4 $CH_2(C_6H_5)$ $CH_2 (3CF_3 - C_6H_4)$ CH2 (2C1-C6H4) CH2 (4C1-C6H4) $CH_2(2,4C1-C_6H_3)$ CH2 (3SCH3-C6H4) CH2 (30CH3-C6H4) CH2 (3C1-C6H4) $CH_2(2,6F-C_6H_3)$ CH₂ (2, 6Cl-C₆H₃) CH_2 (3, $4F-C_6H_3$) CH2-Si (CH3) 3 ON=C (CH₃)₂ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ $OCH_2(2, 6-C1-C_6H_3)$ OCH₂ (C=CH₂) CH₃ 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl 0-2 (3CF3-C5H3N) 0-2C1-6CF3-C6H3

 $R^1 = OCF_3$, $R^2 = C = N$ \mathbb{R}^3 (CH₂)₂CH₃(CH₂) 3CH₃ (CH₂) 4CH₃ (CH₂) 5CH₃ (CH₂) 6CH₃ (CH₂) 7CH₃ (CH₂) 8CH₃ (CH₂) 9CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 CH_2CH (CH_3) $CH_2CH_2CH_3$ CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH₂-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 $CH_2OCH_2(C_6H_5)$

 CH_2OCH_2 (3CF3- C_6H_4) CH2OCH2 (2C1-C6H4) СH₂OCH₂ (3SCH₃-С₆H₄) CH_2OCH_2 ($4C1-C_6H_4$) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 CH20 (C6H5) $CH_2O(3CF_3-C_6H_4)$ CH2O(4CF3-C6H4) CH2O (2C1-C6H4) CH2O (3SCH3-C6H4) CH2O (2CH3-C6H4) CH20 (4C1-C6H4) $CH_2O(2, 4C1-C_6H_3)$ CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH (CH3) 2 CH2SCH2 (C6H5) CH_2SCH_2 (3 $CF_3-C_6H_4$) CH2S (2C1-C6H4) $CH_2S(4CH_3-C_6H_4)$ CH₂S (2, 4C1-C₆H₃) $CH_2S(3SCH_3-C_6H_4)$ CH2S (2, 6C1-C6H3) CH₂S (C₆H₅) CH₂S (3CF₃-C₆H₄) CH₂S (2C1-C₆H₄) CH2S (4CH3-C6H4) CH2S (2, 6C1-C6H3) $CH_2S(2, 4C1-C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C(C6H5) CH2NHCH2CH (CH3) 2 CH2NHCH2 (3CF3-C6H4)

 CH_2NHCH_2 (2C1-C6H4) Сн₂ин (С₆н₅) . $CH_2NH(2C1-C_6H_4)$ $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH2 (CH2) 2CH3 OCH2 (CH2) 3CH3 OCH2 (CH2) 5CH3 $OCH_2C(C_6H_5)$ $OCH_2 (3CF_3 - C_6H_4)$ $OCH_2(2C1-C_6H_4)$ OCH2CH (CH3) 2 O(C6H5) $O(3CF_3-C_6H_4)$ O(2C1-C6H4) O(4SCH3-C6H4) O(2,4C1-C6H3) SCH2CH2CH3 SCH2 (CH2) 2CH3 SCH2 (CH2) 3CH3 SCH2 (CH2) 5CH3 SCH2 (C6H5) SCH2 (3SCH3+C6H4). $SCH_2(2OCH_3-C_6H_4)$ $SCH_2 (2C1-C_6H_4)$ $SCH_2(2, 4-C_6H_3)$ SCH_2 (4CF₃-C₆H₄) S (CH3) 3 SCH2CH (CH3) 2 S (C6H5) S (3CF3-C6H4) S (2C1-C6H4) S (40CH3-C6H4) $s(2,4C1-C_6H_3)$

2 (3CH3-C6H4) NHCH2CH2CH3. NHCH₂ (CH₂) ₂CH₃ NHCH₂ (CH₂) ₄CH₃ NHCH2 (CH2) 5CH3 NHCH₂CH (CH₃)₂ NHCH₂ (C₆H₅) NHCH₂ (3CF₃-C₆H₄)NHCH₂ (2C1-C₆H₄) $NHCH_2(4CH_3-C_6H_4)$ $NHCH_2(2, 4C1-C_6H_3)$ $NHCH_2(2,6C1-C_6H_3)$ ин (C₆H₅) NH (3CF3-C6H4) NH (2C1-C6H4) NH (3CH3-C6H4) NH (2, 4C1-C6H3) NH (2,6C1-C6H3) $N(CH_3)(3CF_3-C_6H_4)$ N (CH₃) CH₂CH₂CH₃ N (CH₂) 4 N (CH₂) 5 N (CH₂) 6 $N(CH_2CH_2-OCH_2CH_2)_2$ CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH2CH2-C1

CH2CH2CH-ClCH2-Cl C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6Cl-C6H3 2SCH3-C6H4 CH₂ (C₆H₅) CH_2 (3CF₃-C₆H₄) CH2 (2C1-C6H4) CH2 (4C1-C6H4) CH₂ (2, 4Cl-C₆H₃) CH2 (3SCH3-C6H4) CH₂ (30CH₃-C₆H₄) CH2 (3C1-C6H4) $CH_2(2,6F-C_6H_3)$ CH₂ (2,6C1-C6H₃) CH₂ (3, 4F-C₆H₃) CH2-S1 (CH3) 3 $ON=C(CH_3)_2$ on=ch (c₆H₅) ON=C (CH3) C6H5 $OCH_2(2,6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 och2-ch 4F-C6H4 4Cl-C6H4 $4Br-C_6H_4$ 2-pyridyl 2-furyl 2-thiazolyl

S(2,6F-C6H3)

2-imidazolyl		
0-2 (3CF3-C5H3N)		
0-2C1-6CF3-C6H3		
$R^1 = OCF_2H$, $R^2 = C = N$		
R ³		
(CH ₂) ₂ CH ₃		
(CH ₂) ₃ CH ₃		
(CH ₂) ₄ CH ₃		
(CH ₂) ₅ CH ₃		
(CH ₂) ₆ CH ₃		
(CH ₂) ₇ CH ₃		
(CH ₂) ₈ CH ₃		
(CH ₂) ₉ CH ₃		
CH ₂ CH (CH ₃) ₂		
CH2CH2CH (CH3)2		
CH2CH2CH2CH(CH3)2		
$\mathrm{CH_2CH_2CH}$ ($\mathrm{CH_3}$) $\mathrm{CH_2CH_2CH_3}$		
CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃		
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃		
CH2CH2CH2OCH2CH3		
CH2CH2CH2CH3		
CH2CH2CH2=S=CH2CH3		
сн ₂ сн ₂ сн ₂ сн ₂ scн ₃		
CH2CH2CH2NHCH2CH3		
CH2CF2CH (CH3) 2		
CH2CH2CH2CF2CH3		
CH2-cyclopropyl		
CH2-cyclobutyI		
CH ₂ -cyclopentyl		
CH2-cyclohexyl		
cyclopropyl		
cyclobutyl		
cyclopentyl		
cyclohexyl		

сн ₂ осн ₂ сн ₃
CH2OCH2CH2CH3
СH2ОСH2СH (СH3)2
сн ₂ осн ₂ (с ₆ н ₅)
СH ₂ OCH ₂ (3СF ₃ -С ₆ H ₄
СH ₂ OCH ₂ (2C1-С ₆ H ₄)
сн ₂ осн ₂ (зѕсн ₃ -с ₆ н,
СH ₂ ОСH ₂ (4C1-С ₆ H ₄)
СH ₂ ОСН ₂ (2, 4F-С ₆ H ₃)
CH2CH2OCH2CH2CH3
СH ₂ O (С ₆ H ₅)
CH ₂ O (3CF ₃ -C ₆ H ₄)
CH ₂ O (4CF ₃ -C ₆ H ₄)
CH ₂ O (2C1-C ₆ H ₄)
СH ₂ O (3SCH ₃ -С ₆ H ₄)
CH ₂ O (2CH ₃ -C ₆ H ₄)
CH ₂ O (4C1-C ₆ H ₄)
СH ₂ O (2, 4С1-С ₆ H ₃)
СH ₂ SCH ₂ CH ₃
сн ₂ scн ₂ cн ₂ cн ₃
CH ₂ SCH ₂ CH (CH ₃) 2
CH ₂ SCH ₂ (C ₆ H ₅)
CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S(2,4C1-C ₆ H ₃)
CH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ S(2,6C1-C ₆ H ₃)
Сн ₂ S (С ₆ н ₅)
CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S (2,6C1-C ₆ H ₃)
CH ₂ S (2, 4C1-C ₆ H ₃)
CH ₂ NHCH ₂ CH ₃

сн ₂ инсн ₂ сн ₂ сн ₃
CH ₂ NHCH ₂ C (C ₆ H ₅)
CH2NHCH2CH (CH3) 2
CH2NHCH2 (3CF3-C6H4)
CH ₂ NHCH ₂ (2C1-C ₆ H ₄)
Сн ₂ NH (С ₆ н ₅)
CH ₂ NH (2C1-C ₆ H ₄)
CH ₂ N (CH ₃) (2C1-C ₆ H ₄)
OCH ₂ CH ₂ CH ₃
осн ₂ (сн ₂) ₂ сн ₃
осн ₂ (сн ₂) _з сн ₃
осн ₂ (сн ₂) ₅ сн ₃
осн ₂ с (с ₆ н ₅)
осн ₂ (3СF ₃ -С ₆ H ₄)
OCH ₂ (2C1-C ₆ H ₄)
осн ₂ сн (сн ₃) ₂
(C ₆ H ₅)
(3CF ₃ -C ₆ H ₄)
(2C1-C ₆ H ₄)
(4SCH ₃ -C ₆ H ₄)
(2,4C1-C ₆ H ₃)
CH ₂ CH ₂ CH ₃
CH ₂ (CH ₂) ₂ CH ₃
СH ₂ (СH ₂) ₃ СH ₃
СH ₂ (СH ₂) ₅ СH ₃
CH ₂ (C ₆ H ₅)
CH ₂ (3SCH ₃ -C ₆ H ₄)
CH ₂ (20CH ₃ -C ₆ H ₄)
CH ₂ (2C1-С ₆ H ₄)
CH ₂ (2, 4-С ₆ H ₃)
CH ₂ (4CF ₃ -C ₆ H ₄)
(CH ₃) 3
СH ₂ СH (СH ₃) ₂
(C ₆ H ₅)
(3CF ₃ -C ₆ H ₄)

s(2C1-C ₆ H ₄)
s (40CH3-C6H4)
$s(2,4C1-C_6H_3)$
S(2,6F-C ₆ H ₃)
2 (3CH ₃ -C ₆ H ₄)
NHCH2CH2CH3
NHCH ₂ (СН ₂) ₂ СН ₃
NHCH ₂ (CH ₂) ₄ CH ₃
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH ₂ CH (CH ₃) ₂
NHCH ₂ (C ₆ H ₅)
NHCH ₂ (3CF ₃ -C ₆ H ₄)
NHCH ₂ (2C1-C ₆ H ₄)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
$NHCH_2(2,4C1-C_6H_3)$
$NHCH_2(2,6C1-C_6H_3)$
NH (C ₆ H ₅)
NH (3CF3-C6H4)
NH (2C1-C ₆ H ₄)
NH (3CH ₃ -С ₆ H ₄)
NH (2, 4Cl-C ₆ H ₃)
$NH(2,6C1-C_6H_3)$
N(CH ₃) (3CF ₃ C ₆ H ₄)
n(CH ₃)CH ₂ CH ₂ CH ₃
N (CH ₂) ₄
N (CH ₂) 5
и (CH ₂) 6
N(CH ₂ CH ₂ -OCH ₂ CH ₂) ₂
CH ₂ CO ₂ CH ₃
CH2CH2CO2CH2CH3
CH2CH2CO2CH3
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH ₂ CH ₂ -NHCH ₂ CH ₃
$\mathrm{CH_2CH_2N}$ ($\mathrm{CH_3}$) $\mathrm{CH_2CH_3}$

СH=СH (СН ₃) 2
сн ₂ сн ₂ сн=сн ₂
Сн ₂ сн=сн-сн ₃
сн=сн-сн ₂ сн ₂ -с1
сн ₂ сн ₂ сн-с1сн ₂ -с1
С ₆ н ₅
3CF3-C6H4
2C1-C6H4
3CH ₃ -С ₆ H ₄
30CH ₃ -С ₆ H ₄
2CF3-C6H4
2,4C1-C6H3
2,6C1-C6H3
2SCH3-C6H4
CH ₂ (C ₆ H ₅)
CH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ (2Cl-C ₆ H ₄)
CH ₂ (4Cl-C ₆ H ₄)
CH ₂ (2, 4C1-C ₆ H ₃)
CH ₂ (3SCH ₃ -C ₆ H ₄)
СН ₂ (ЗОСН ₃ -С ₆ Н ₄)
CH ₂ (3C1-C ₆ H ₄)
CH ₂ (2,6F-C ₆ H ₃)
CH ₂ (2,6C1-C ₆ H ₃)
CH ₂ (3, 4F-C ₆ H ₃)
CH ₂ -Si (CH ₃) 3
ON=C (CH ₃) ₂
on=ch (c ₆ h ₅)
on=c (ch ₃) c ₆ h ₅
OCH ₂ (2, 6-Cl-C ₆ H ₃)
OCH ₂ (C=CH ₂) CH ₃
осн ₂ -сн Сн ₂
CH ₂
4F-C ₆ H ₄
4C1-C ₆ H ₄

2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl O-2(3CF3-C5H3N) O-2Cl-6CF3-C6H3 Rl=NO2, R2=C=N R3 (CH2)2CH3 (CH2)3CH3 (CH2)4CH3 (CH2)6CH3 (CH2)6CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH3 CH2CH3 CH2CH3 CH3 CH2 CH2CH3 CH3 CH2CH3 CH3 CH2CH3 CH3 CH2CH3 CH3 CH2CH3 CH3 CH2CH3 CH2CH3 CH3 CH2CH3 C		4Br-C ₆ H ₄
2-thiazolyl 2-imidazolyl O-2(3CF3-C5H3N) O-2C1-6CF3-C6H3 R1=NO2, R2=C=N R3 (CH2)2CH3 (CH2)3CH3 (CH2)4CH3 (CH2)5CH3 (CH2)6CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH3 CH2CH2CH3 CH2CH3 CH2CH3 CH3 CH2CH3 CH3 CH2CH3 CH3 CH2CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3		2-pyridyl
2-imidazolyl O-2(3CF3-C5H3N) O-2Cl-6CF3-C6H3 R1=NO2, R2=CMN R3 (CH2)2CH3 (CH2)3CH3 (CH2)4CH3 (CH2)5CH3 (CH2)6CH3 (CH2)7CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 (CH2)CH(CH3)2 CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH3 CH2CH2CH3 CH2CH3 CH2CH3 CH3CH3		2-furyl
O-2(3CF3-C5H3N) O-2C1-6CF3-C6H3 R1=NO2, R2=C=N R3 (CH2)2CH3 (CH2)3CH3 (CH2)4CH3 (CH2)5CH3 (CH2)6CH3 (CH2)7CH3 (CH2)9CH3 (CH2)9CH3 CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH2CH2CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH2CH2CH3 CH2CH(CH2CH3)CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH3 CH2CH2CH3 CH2CH3 CH2CH3 CH3CH3		2-thiazolyl
O-2C1-6CF3-C6H3 R1=NO2, R2=C=N R3 (CH2)2CH3 (CH2)3CH3 (CH2)4CH3 (CH2)5CH3 (CH2)6CH3 (CH2)6CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 (CH2)9CH3 CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH2CH2CH2CH3 CH2CH2CH(CH3)CH2CH3 CH2CH2CH2CH2CH2CH3 CH2CH2CH2CH2CH3 CH2CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH2CH3 CH2CH3 CH2CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH3 CH3 CH2CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	-	2-imidazolyl
R ¹ =NO ₂ , R ² =C=N R ³ (CH ₂) ₂ CH ₃ (CH ₂) ₃ CH ₃ (CH ₂) ₄ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂ CH ₂		0-2 (3CF ₃ -C ₅ H ₃ N)
R ³ (CH ₂) ₂ CH ₃ (CH ₂) ₃ CH ₃ (CH ₂) ₄ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₇ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂ CH ₂		0-2C1-6CF ₃ -С ₆ H ₃
R ³ (CH ₂) ₂ CH ₃ (CH ₂) ₃ CH ₃ (CH ₂) ₄ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₇ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂ CH ₂		
(CH ₂) ₂ CH ₃ (CH ₂) ₃ CH ₃ (CH ₂) ₄ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₇ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂) ₉ CH ₃ CH ₂		-
(CH ₂) ₃ CH ₃ (CH ₂) ₄ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂) ₉ CH ₃ CH ₂		R ³
(CH ₂) ₄ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₇ CH ₃ (CH ₂) ₇ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂) ₉ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃	l	(CH ₂) ₂ CH ₃
(CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃ (CH ₂) ₇ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₃ CH ₂ CH ₂ CH ₂ CH ₃) ₄ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	Į	(CH ₂) ₃ CH ₃
(CH ₂) ₆ CH ₃ (CH ₂) ₇ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂) ₉ CH ₃ CH ₂	l	(CH ₂) ₄ CH ₃
(CH ₂) ₇ CH ₃ (CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ (CH ₂) ₉ CH ₃ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH(CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH(CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH(CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃	١	(CH ₂) ₅ CH ₃
(CH ₂) ₈ CH ₃ (CH ₂) ₉ CH ₃ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃	İ	(CH ₂) 6CH ₃
(CH ₂) ₉ CH ₃ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	ĺ	(CH ₂) ₇ CH ₃
CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH(CH ₃) ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃	l	(CH ₂) 8CH ₃
CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃	l	(CH ₂) ₉ CH ₃
CH2CH2CH2CH(CH3)2 CH2CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH2CH3)CH2CH3 CH2CH2CH2CH2CH3 CH2-cyclopentyl	ŀ	CH ₂ CH (CH ₃) ₂
CH2CH2CH(CH3)CH2CH2CH3 CH2CH(CH3)CH2CH2CH3 CH2CH(CH2CH3)CH2CH3 CH2CH2CH2CH2CH3	ŀ	Сн ₂ Сн ₂ Сн (Сн ₃) ₂
CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃ CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclopentyl	ŀ	CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂
CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclopentyl	ŀ	CH2CH2CH (CH3) CH2CH2CH3
CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃ CH ₂ CF ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclopentyl	ŀ	CH ₂ CH (CH ₃) CH ₂ CH ₂ CH ₃
CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ MHCH ₂ CH ₃ CH ₂ CF ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclopentyl CH ₂ -cyclopentyl	ŀ	CH ₂ CH (CH ₂ CH ₃) CH ₂ CH ₃
CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃ CH ₂ CF ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclopentyl	ŀ	CH ₂ CH ₂ CH ₂ OCH ₂ CH ₃
CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ MHCH ₂ CH ₃ CH ₂ CF ₂ CH (CH ₃) ₂ CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclobutyl CH ₂ -cyclopentyl	ŀ	CH ₂ CH ₂ CH ₂ CH ₂ OCH ₃
CH ₂ CH ₂ CH ₂ NHCH ₂ CH ₃ CH ₂ CF ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclobutyl CH ₂ -cyclopentyl	ľ	CH ₂ CH ₂ CH ₂ -S-CH ₂ CH ₃
CH ₂ CF ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclobutyl CH ₂ -cyclopentyl	١	CH ₂ CH ₂ CH ₂ CH ₂ SCH ₃
CH ₂ CH ₂ CH ₂ CF ₂ CH ₃ CH ₂ -cyclopropyl CH ₂ -cyclobutyl CH ₂ -cyclopentyl	(Сн ₂ сн ₂ сн ₂ инсн ₂ сн ₃
CH ₂ -cyclopropyl CH ₂ -cyclobutyl CH ₂ -cyclopentyl	١	CH ₂ CF ₂ CH (CH ₃) ₂
CH ₂ -cyclobutyl CH ₂ -cyclopentyl	ľ	CH ₂ CH ₂ CH ₂ CF ₂ CH ₃
CH ₂ -cyclopentyl	(CH ₂ -cyclopropyl
	4	CH ₂ -cyclobutyl
CH ₂ -cyclohexyl	(CH ₂ -cyclopentyl
	k	CH ₂ -cyclohexyl

• • • • • •
cyclopropyl
cyclobutyl
cyclopentyl
cyclohexyl
сн ₂ осн ₂ сн ₃
сн ₂ осн ₂ сн ₂ сн ₃
СH ₂ OCH ₂ CH (СH ₃) ₂
СH ₂ ОСH ₂ (С ₆ H ₅)
CH_2OCH_2 (3CF ₃ - C_6H_4)
CH ₂ OCH ₂ (2C1-C ₆ H ₄)
СH ₂ OCH ₂ (3SCH ₃ -C ₆ H ₄)
CH2OCH2 (4C1-C6H4)
CH ₂ OCH ₂ (2, 4F-C ₆ H ₃)
СH ₂ CH ₂ ОСH ₂ CH ₂ СH ₃
СH ₂ O (С ₆ H ₅)
CH ₂ O (3CF ₃ -C ₆ H ₄)
CH ₂ O (4CF ₃ -C ₆ H ₄)
CH ₂ O(2C1-C ₆ H ₄)
CH ₂ O(3SCH ₃ -C ₆ H ₄)
СH ₂ O (2СH ₃ -С ₆ H ₄)
CH ₂ O(4C1-C ₆ H ₄)
CH ₂ O(2,4C1-С ₆ H ₃)
СH ₂ SCH ₂ CH ₃
сн ₂ scн ₂ cн ₂ сн ₃
Сн ₂ SСн ₂ Сн (Сн ₃) 2
CH ₂ SCH ₂ (C ₆ H ₅)
CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S(2,4C1-C ₆ H ₃)
CH ₂ S (3SCH ₃ -C ₆ H ₄)
CH ₂ S (2,6C1-C ₆ H ₃)
CH ₂ S (C ₆ H ₅)
CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)

- -
CH2S (4CH3-C6H4)
сн ₂ s(2,6с1-С ₆ н ₃)
CH ₂ S (2, 4C1-C ₆ H ₃)
сн ₂ инсн ₂ сн ₃
сн ₂ инсн ₂ сн ₂ сн ₃
сн ₂ инсн ₂ с (с ₆ н ₅)
CH ₂ NHCH ₂ CH (CH ₃) ₂
CH2NHCH2 (3CF3-C6H4)
CH2NHCH2 (2C1-C6H4)
сн ₂ NH (С ₆ Н ₅)
CH ₂ NH (2C1-C ₆ H ₄)
CH ₂ N (CH ₃) (2C1-C ₆ H ₄)
осн ₂ сн ₂ сн ₃
осн ₂ (сн ₂) ₂ сн ₃
осн ₂ (сн ₂) ₃ сн ₃
осн ₂ (сн ₂) ₅ сн ₃
осн ₂ с (с ₆ н ₅)
OCH ₂ (3CF ₃ -C ₆ H ₄)
OCH ₂ (2Cl-C ₆ H ₄)
осн ₂ сн (сн ₃) ₂
o(C ₆ H ₅)
o(3CF3-C ₆ H ₄)
O (2C1-C ₆ H ₄ -) ·
O(4SCH3-C6H4)
O(2,4C1-C ₆ H ₃)
sch ₂ ch ₂ ch ₃
SCH ₂ (CH ₂) ₂ CH ₃
SCH ₂ (CH ₂) ₃ CH ₃
SCH ₂ (CH ₂) ₅ CH ₃
SCH ₂ (C ₆ H ₅)
SCH ₂ (3SCH ₃ -C ₆ H ₄)
SCH ₂ (20CH ₃ -C ₆ H ₄)
SCH ₂ (2C1-C ₆ H ₄)
SCH ₂ (2, 4-C ₆ H ₃)
SCH ₂ (4CF ₃ -C ₆ H ₄)

	s(CH3)3
	SCH2CH(CH3)2
	s (c ₆ H ₅)
	s(3CF3-C6H4)
	s (2C1-C ₆ H ₄)
	s (40CH3-C6H4)
	s(2,4C1-C ₆ H ₃)
	s(2,6F-C ₆ H ₃)
	2 (3CH3-C6H4)
	NHCH ₂ CH ₂ CH ₃
	NHCH ₂ (CH ₂) ₂ CH ₃
	NHCH ₂ (CH ₂) 4CH ₃
	инсн ₂ (сн ₂) ₅ сн ₃
	инсн ₂ сн (сн ₃) ₂
	инсн ₂ (С ₆ н ₅)
1	NHCH ₂ (3CF ₃ -C ₆ H ₄)
	NHCH ₂ (2C1-C ₆ H ₄)
ı	инсн ₂ (4Сн ₃ -С ₆ н ₄)
١	NHCH ₂ (2, 4C1-C ₆ H ₃)
١	инсн ₂ (2, 6С1-С ₆ н ₃)
l	ин (С ₆ н ₅)
1	NH (3CF ₃ -C ₆ H ₄)
١	NH (2C1-C ₆ H ₄)
- 1	NH (3CH ₃ -C ₆ H ₄)
	NH (2, 4C1-C ₆ H ₃)
l	NH (2,6C1-C ₆ H ₃)
-1	N(CH ₃) (3CF ₃ -C ₆ H ₄)
- 1	n (CH ₃) CH ₂ CH ₂ CH ₃
-1	N(CH ₂) ₄
- 1	N(CH ₂) ₅
	N(CH ₂)6
	N(CH ₂ CH ₂ -OCH ₂ CH ₂) ₂
1	СH ₂ CO ₂ CH ₃
1	CH ₂ CH ₂ CO ₂ CH ₂ CH ₃
Ì	Сн ₂ Сн ₂ СО ₂ Сн ₃

	• • • •	52	* **
	CH2CH2OCH2CH3	OCH2-CH	CH2-cyclopropyl
	CH2CH2SCH2CH3	CH ₂	CH2-cyclobutyl
	CH2CH2-NHCH2CH3	4F-C6H4	CH2-cyclopentyl
	CH2CH2N (CH3) CH2CH3	4C1-C6H4	CH2-cyclohexyl
	CH=CH (CH ₃) ₂	4Br-C ₆ H ₄	cyclopropyl
	CH2CH2CH=CH2	2-pyridyl	cyclobutyl
	CH ₂ CH=CH-CH ₃	2-furyl	cyclopentyl
	CH=CH-CH ₂ CH ₂ -C1	2-thiazolyl	cyclohexyl
	CH2CH2CH-C1CH2-C1	2-imidazolyl	сн ₂ осн ₂ сн ₃
	C ₆ H ₅	0-2 (3CF ₃ -C ₅ H ₃ N)	сн ₂ осн ₂ сн ₂ сн ₃
	3CF3-C6H4	0-2C1-6CF3-C6H3	СH2ОСH2СH (СН3) 2
	2C1-C6H4	,	СH ₂ ОСH ₂ (С ₆ H ₅)
	3CH3-C6H4	$R^1=C1, R^2=CO_2H$	CH2OCH2 (3CF3-C6H4)
	30CH3-C6H4	R ³	CH2OCH2 (2C1-C6H4)
	2CF3-C6H4	(CH ₂) ₂ CH ₃	СH ₂ OCH ₂ (3SCH ₃ -C ₆ H ₄
	2,4Cl-C6H3	(CH ₂) ₃ CH ₃	CH2OCH2 (4C1-C6H4)
	2,6C1-C6H3	(CH ₂) ₄ CH ₃	CH ₂ OCH ₂ (2, 4F-С ₆ H ₃)
	2SCH3-C6H4	(CH ₂) ₅ CH ₃	сн ₂ сн ₂ осн ₂ сн ₂ сн ₃
	CH ₂ (C ₆ H ₅)	(CH ₂) 6CH ₃	СH ₂ O (С ₆ H ₅)
	CH ₂ (3CF ₃ -C ₆ H ₄)	(CH ₂) ₇ CH ₃	CH ₂ O(3CF ₃ -C ₆ H ₄)
	$CH_2 (2Cl-C_6H_4)$	(CH ₂) ₈ CH ₃	CH ₂ O (4CF ₃ -C ₆ H ₄)
	$CH_2 (4C1-C_6H_4)$	(CH ₂) 9CH ₃	СH ₂ O (2С1-С ₆ H ₄)
. ,	CH ₂ (2, 4C1-C ₆ H ₃)	сн ₂ сн (сн ₃)-2	сн ₂ о (засн ₃ -с ₆ н ₄)
	CH ₂ (3SCH ₃ -C ₆ H ₄)	сн ₂ сн ₂ сн (сн ₃) ₂	СH ₂ O (2СH ₃ -С ₆ H ₄)
	$CH_2 (30CH_3 - C_6H_4)$	CH ₂ CH ₂ CH ₂ CH (CH ₃) ₂	CH ₂ O(4C1-C ₆ H ₄)
	CH ₂ (3C1-C ₆ H ₄)	Сн ₂ сн ₂ сн (сн ₃) сн ₂ сн ₂ сн ₃	CH ₂ O(2,4C1-C ₆ H ₃)
	$CH_2(2,6F-C_6H_3)$	Сн ₂ Сн (Сн ₃) Сн ₂ Сн ₂ Сн ₃	сн ₂ sсн ₂ сн ₃
	$CH_2(2,6C1-C_6H_3)$	СH ₂ CH (СH ₂ CH ₃) СH ₂ CH ₃	сн ₂ scн ₂ cн ₂ cн ₃
	CH ₂ (3, 4F-C ₆ H ₃)	сн ₂ сн ₂ сн ₂ осн ₂ сн ₃	CH ₂ SCH ₂ CH (CH ₃) 2
	CH ₂ -Si (CH ₃) ₃	сн ₂ сн ₂ сн ₂ сн ₂ осн ₃	сн ₂ scн ₂ (с ₆ н ₅)
	ON=C (CH ₃) ₂	сн ₂ сн ₂ сн ₂ -s-сн ₂ сн ₃	CH ₂ SCH ₂ (3CF ₃ -C ₆ H ₄)
	ON=CH (C ₆ H ₅)	сн ₂ сн ₂ сн ₂ сн ₂ scн ₃	CH ₂ S (2C1-C ₆ H ₄)
	ON=C (CH ₃) C ₆ H ₅	Сн ₂ Сн ₂ Сн ₂ NнСн ₂ Сн ₃	CH ₂ S (4CH ₃ -C ₆ H ₄)
	OCH ₂ (2,6-Cl-C ₆ H ₃)	CH ₂ CF ₂ CH (CH ₃) ₂	CH ₂ S(2,4C1-C ₆ H ₃)
	OCH ₂ (C=CH ₂) CH ₃	сн ₂ сн ₂ сн ₂ сг ₂ сн ₃	сн ₂ s (зѕсн ₃ -с ₆ н ₄)

•	$CH_2S(2,6C1-C_6H_3)$	SCH ₂ (20CH ₃ -C ₆ H ₄)	и (СH ₂ CH ₂ -ОСH ₂ CH ₂) ₂
	CH ₂ S (C ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	сн ₂ со ₂ сн ₃
	CH ₂ S (3CF ₃ -C ₆ H ₄)	SCH ₂ (2, 4-C ₆ H ₃)	сн ₂ сн ₂ со ₂ сн ₂ сн ₃
	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)	сн ₂ сн ₂ со ₂ сн ₃
	CH ₂ S (4CH ₃ -C ₆ H ₄)	s (Сн ₃) ₃	сн ₂ сн ₂ осн ₂ сн ₃
	CH ₂ S (2,6C1-C6H ₃)	SCH ₂ CH (CH ₃) ₂	сн ₂ сн ₂ scн ₂ сн ₃
	CH ₂ S (2, 4Cl-C ₆ H ₃)	s (C ₆ H ₅)	CH2CH2-NHCH2CH3
	CH2NHCH2CH3	s (3CF3-C6H4)	сн ₂ сн ₂ и (сн ₃) сн ₂ сн ₃
	CH2NHCH2CH2CH3	s (2C1-C6H4)	СH=СH (СH ₃) ₂
	CH2NHCH2C (C6H5)	s (40CH3-C6H4)	сн ₂ сн ₂ сн=сн ₂
	CH2NHCH2CH (CH3)2	S(2,4C1-C6H3)	сн ₂ сн-сн-сн ₃
	CH2NHCH2 (3CF3-C6H4)	s(2,6F-C ₆ H ₃)	сн=сн-сн ₂ сн ₂ -с1
	CH ₂ NHCH ₂ (2C1-C ₆ H ₄)	2 (3CH ₃ -C ₆ H ₄)	CH2CH2CH-ClCH2-Cl
	CH ₂ NH (C ₆ H ₅)	NHCH2CH2CH3	С ₆ н ₅
	CH ₂ NH (2C1-C ₆ H ₄)	инсн ₂ (сн ₂) ₂ сн ₃	3CF ₃ -C ₆ H ₄
	$CH_2N(CH_3)(2C1-C_6H_4)$	NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C6H4
	OCH2CH2CH3	инсн ₂ (сн ₂) ₅ сн ₃	эсн ₃ -с ₆ н ₄
	OCH ₂ (CH ₂) ₂ CH ₃	инсн ₂ сн (сн ₃) ₂	30CH ₃ -С ₆ Н ₄
	OCH2 (CH2) 3CH3	NHCH ₂ (C ₆ H ₅)	2CF ₃ -C ₆ H ₄
	OCH ₂ (CH ₂) 5CH ₃	NHCH ₂ (3CF ₃ -C ₆ H ₄)	2,4C1-C ₆ H ₃
	OCH ₂ C (C ₆ H ₅)	NHCH ₂ (2C1-C ₆ H ₄)	2,6C1-С ₆ H ₃
	OCH ₂ (3CF ₃ -C ₆ H ₄)	NHCH ₂ (4CH ₃ -C ₆ H ₄)	2SCH3-C6H4
	OCH ₂ (2C1-C ₆ H ₄)	NHCH ₂ (2, 4C1-C ₆ H ₃)	CH ₂ (C ₆ H ₅)/ ************************************
	OCH ₂ CH (CH ₃) ₂	NHCH ₂ (2,6C1-C ₆ H ₃)	Сн ₂ (ЗСF ₃ -С ₆ н ₄)
	o(C ₆ H ₅)	NH (C ₆ H ₅)	СН ₂ (2С1-С ₆ Н ₄)
	O(3CF3-C6H4)	NH (3CF ₃ -C ₆ H ₄)	CH ₂ (4Cl-C ₆ H ₄)
	O(2C1-C6H4)	NH (2C1-C ₆ H ₄)	CH ₂ (2, 4C1-C ₆ H ₃)
	O(4SCH3-C6H4)		СH ₂ (3SCH ₃ -С ₆ H ₄)
	o(2,4C1-C ₆ H ₃)	NH (2, 4C1-C6H3)	CH ₂ (30CH ₃ -C ₆ H ₄)
	SCH ₂ CH ₂ CH ₃		CH ₂ (3C1-C ₆ H ₄)
	SCH ₂ (CH ₂) ₂ CH ₃		СH ₂ (2, 6F-С ₆ H ₃)
	SCH ₂ (CH ₂) 3CH ₃	n (CH ₃) CH ₂ CH ₂ CH ₃	СH ₂ (2, 6С1-С ₆ H ₃)
	- _ •		CH ₂ (3, 4F-C ₆ H ₃)
	= : :	-" -	CH ₂ -S1 (CH ₃) 3
	SCH ₂ (3SCH ₃ -C ₆ H ₄)	N (CH ₂) 6	ON=C (CH ₃) ₂

ON=CH (C_6H_5) ON=C (CH_3) C_6H_5 OCH₂ (2, 6-C1- C_6H_3) OCH₂ (C=CH₂) CH_3 OCH₂ - CH CH_2

4F-C₆H₄
4Cl-C₆H₄
4Br-C₆H₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2(3CF₃-C₅H₃N)

O-2C1-6CF3-C6H3

R¹=Br, R²=CO₂H

R³

(CH₂)₂CH₃

(СH₂) ₃СH₃

(CH₂)₄CH₃

(CH₂) 5CH₃

(CH₂) 6CH₃

(CH₂)₇CH₃

(CH₂) 8CH₃

(CH₂) ₉CH₃

CH2CH (CH3) 2

CH2CH2CH(CH3)2

CH2CH2CH2CH(CH3)2

CH2CH2CH (CH3) CH2CH2CH3

CH2CH (CH3) CH2CH2CH3

CH₂CH (CH₂CH₃) CH₂CH₃

CH2CH2CH2OCH2CH3

CH2CH2CH2CH2OCH3

CH2CH2CH2-S-CH2CH3

CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH₂-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 CH2OCH2 (C6H5) CH_2OCH_2 (3 $CF_3-C_6H_4$) CH_2OCH_2 (2C1- C_6H_4) CH2OCH2 (3SCH3-C6H4) CH_2OCH_2 (4C1-C₆H₄) $CH_2OCH_2(2, 4F-C_6H_3)$ CH2CH2OCH2CH2CH3 CH₂O (C₆H₅) CH2O (3CF3-C6H4) CH2O (4CF3-C6H4) CH20 (2C1-C6H4) CH2O(3SCH3-C6H4)

CH2O(2CH3-C6H4)

CH20 (4C1-C6H4)

CH2SCH2CH2CH3

CH2SCH2 (C6H5)

CH₂SCH₂CH (CH₃) 2

 CH_2SCH_2 (3 $CF_3-C_6H_4$)

CH2SCH2CH3

 $CH_2O(2, 4C1-C_6H_3)$

CH2S (2C1-C6H4) $CH_2S(4CH_3-C_6H_4)$ $CH_2S(2, 4C1-C_6H_3)$ CH2S (3SCH3-C6H4) $CH_2S(2,6C1-C_6H_3)$ CH₂S (C₆H₅) $CH_2S(3CF_3-C_6H_4)$ CH2S (2C1-C6H4) CH2S (4CH3-C6H4) CH₂S (2,6C1-C₆H₃) CH₂S (2, 4C1-C₆H₃) CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C (C6H5) CH2NHCH2CH (CH3) 2 CH_2NHCH_2 (3CF3-C6H4) CH_2NHCH_2 (2C1-C₆H₄) CH₂NH (C₆H₅) CH2NH (2C1-C6H4) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH₂ (CH₂) ₂CH₃ OCH2 (CH2).3CH3. OCH2 (CH2) 5CH3 OCH₂C (C₆H₅) OCH₂ (3CF₃-C₆H₄) OCH₂ (2C1-C₆H₄) OCH2CH (CH3) 2 O(C6H5) O(3CF3-C6H4)

O(2C1-C6H4)

O (4SCH3-C6H4)

O(2,4C1-C6H3)

SCH2 (CH2) 2CH3

SCH2CH2CH3

SCH ₂ (CH ₂) 3CH ₃	м (СН ₃) СН ₂ СН ₂ СН ₃	CH ₂ (2, 6C1-C ₆ H ₃)
SCH ₂ (CH ₂) 5CH ₃	N (CH ₂) 4	CH ₂ (3, 4F-C ₆ H ₃)
SCH ₂ (C ₆ H ₅)	N (CH ₂) 5	CH2-Si (CH3) 3
SCH2 (3SCH3-C6H4)	N (CH ₂) 6	ON=C (CH ₃) ₂
SCH ₂ (20CH ₃ -C ₆ H ₄)	N(CH2CH2-OCH2CH2)2	ON=CH (C ₆ H ₅)
SCH ₂ (2C1-C ₆ H ₄)	Сн ₂ со ₂ сн ₃	ON=C (CH ₃) C ₆ H ₅
SCH ₂ (2, 4-C ₆ H ₃)	сн ₂ сн ₂ со ₂ сн ₂ сн ₃	OCH ₂ (2, 6-C1-C ₆ H ₃)
SCH2 (4CF3-C6H4)	сн ₂ сн ₂ со ₂ сн ₃	осн ₂ (с=сн ₂) сн ₃
S (CH ₃) 3	CH2CH2OCH2CH3	OCH ₂ -CH CH ₂
SCH2CH (CH3) 2	CH2CH2SCH2CH3	CH ₂
s (C ₆ H ₅)	CH2CH2-NHCH2CH3	4F-C ₆ H ₄
S (3CF3-C6H4)	сн ₂ сн ₂ и (сн ₃) сн ₂ сн ₃	4C1-C6H4
S (2C1-C ₆ H ₄)	СH=СH (СH ₃) 2	4Br-C ₆ H ₄
S (40CH3-C6H4)	CH2CH2CH=CH2	2-pyridyl
s(2,4C1-C ₆ H ₃)	CH2CH=CH-CH3	2-furyl
S(2,6F-C ₆ H ₃)	CH=CH-CH ₂ CH ₂ -C1	2-thiazolyl
2 (3CH ₃ -C ₆ H ₄)	CH2CH2CH-C1CH2-C1	2-imidazolyl
NHCH2CH2CH3	C ₆ H ₅	0-2 (ЭСГ _З -С ₅ Н _З N)
NHCH ₂ (CH ₂) ₂ CH ₃	3CF3-C6H4	0-2C1-6CF3-C6H3
NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C6H4	
NHCH ₂ (CH ₂) 5CH ₃	зсн ₃ -с ₆ н ₄	R ¹ =I, R ² =CO ₂ H
NHCH2CH (CH3) 2	30СH ₃ -С ₆ H ₄	R ³
NHCH ₂ .(C ₆ H ₅)	2CF3-C6H4	(CH ₂) ₂ CH ₃ (1) 11 (1) 2 (1)
NHCH ₂ (3CF ₃ -C ₆ H ₄)	2,4C1-C ₆ H ₃	(CH ₂) ₃ CH ₃
NHCH ₂ (2C1-C ₆ H ₄)	2,6C1-C6H3	(CH ₂) ₄ CH ₃
NHCH ₂ (4CH ₃ -C ₆ H ₄)	2SCH3-C6H4	(CH ₂) ₅ CH ₃
$NHCH_2(2, 4C1-C_6H_3)$	СH ₂ (С ₆ H ₅)	(CH ₂) 6CH ₃
NHCH ₂ (2, 6C1-С ₆ H ₃)	CH ₂ (3CF ₃ -C ₆ H ₄)	(CH ₂) ₇ CH ₃
ин (С ₆ н ₅)	CH ₂ (2C1-C ₆ H ₄)	(CH ₂) 8CH ₃
NH (3CF ₃ -C ₆ H ₄)	CH ₂ (4C1-C ₆ H ₄)	(CH ₂) ₉ CH ₃
NH (2C1-C ₆ H ₄)	CH ₂ (2, 4C1-C ₆ H ₃)	СH ₂ CH (СH ₃) ₂
	CH ₂ (3SCH ₃ -C ₆ H ₄)	CH ₂ CH ₂ CH (CH ₃) 2
NH (2, 4C1-C ₆ H ₃)	CH ₂ (30CH ₃ -C ₆ H ₄)	СH ₂ CH ₂ CH ₂ CH (CH ₃) ₂
NH (2, 6C1-C ₆ H ₃)	CH ₂ (3C1-C ₆ H ₄)	сн ₂ сн ₂ сн (сн ₃) сн ₂ сн ₂ сн ₃
$N(CH_3)(3CF_3-C_6H_4)$	CH ₂ (2, 6F-C ₆ H ₃)	Сн ₂ Сн (Сн ₃) Сн ₂ Сн ₂ Сн ₃
		— — -

CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 сн₂осн₂ (С₆н₅) CH_2OCH_2 (3CF3-C6H4) CH_2OCH_2 (2C1- C_6H_4) CH_2OCH_2 (3SCH3= C_6H_4) CH_2OCH_2 (4C1-C6H4) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3 CH2O (C6H5) $CH_2O(3CF_3-C_6H_4)$ $CH_2O(4CF_3-C_6H_4)$ $CH_2O(2C1-C_6H_4)$ $CH_2O(3SCH_3-C_6H_4)$ $CH_2O(2CH_3-C_6H_4)$ $CH_2O(4C1-C_6H_4)$ $CH_2O(2,4C1-C_6H_3)$

CH2SCH2CH2CH3 CH2SCH2CH (CH3) 2 $CH_2SCH_2(C_6H_5)$ CH_2SCH_2 (3CF₃-C₆H₄) $CH_2S(2C1-C_6H_4)$ CH2S (4CH3-C6H4) $CH_2S(2,4C1-C_6H_3)$ $CH_2S(3SCH_3-C_6H_4)$ $CH_2S(2,6C1-C_6H_3)$ CH₂S (C₆H₅) CH2S (3CF3-C6H4) CH2S (2C1-C6H4) CH2S (4CH3-C6H4) CH₂S (2, 6C1-C₆H₃) $CH_2S(2,4C1-C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C(C6H5) CH2NHCH2CH (CH3) 2 CH_2NHCH_2 (3CF₃-C₆H₄) CH_2NHCH_2 (2C1- C_6H_4) CH₂NH (C₆H₅) CH₂NH (2C1-C₆H₄) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH₂ (CH₂) ₂CH₃ OCH2 (CH2) 3CH3 OCH2 (CH2) 5CH3 OCH2C (C6H5) $OCH_2(3CF_3-C_6H_4)$ $OCH_2(2C1-C_6H_4)$ OCH₂CH (CH₃)₂ O(C6H5) $O(3CF_3-C_6H_4)$ O(2C1-C6H4)

O(2,4C1~C6H3) SCH2CH2CH3 SCH2 (CH2) 2CH3 SCH2 (CH2) 3CH3 SCH2 (CH2) 5CH3 SCH₂ (C₆H₅) SCH2 (3SCH3-C6H4) SCH2 (20CH3~C6H4) SCH2 (2C1-C6H4) SCH2 (2, 4-C6H3) SCH2 (4CF3-C6H4) S (CH3) 3 SCH2CH (CH3) 2 S (C6H5) S (3CF3-C6H4) S (2C1-C6H4) S (40CH3-C6H4) S (2, 4C1-C6H3) S (2, 6F-C₆H₃) 2 (3CH3-C6H4) NHCH2CH2CH3 NHCH2 (CH2) 2CH3 NHCH2 (CH2) 4CH3 NHCH₂ (CH₂) ₅CH₃ NHCH2CH (CH3) 2 $NHCH_2 (C_6H_5)$ $NHCH_2$ (3CF3-C6H4) NHCH₂ (2C1-C₆H₄) NHCH₂ (4CH₃-C₆H₄) NHCH₂ (2, 4C1-C₆H₃) NHCH₂ (2,6C1-C₆H₃) NH (C₆H₅) NH (3CF3-C6H4) NH (2C1-C6H4)

O(4SCH3-C6H4)

СH₂SCH₂CH₃

NH (3CH3-C6H4) $NH(2,4C1-C_6H_3)$ $NH(2,6C1-C_6H_3)$ $N(CH_3)(3CF_3-C_6H_4)$ N (CH3) CH2CH2CH3 N (CH₂) 4 N(CH2)5 N(CH₂)6 $N(CH_2CH_2-OCH_2CH_2)_2$ CH2CO2CH3 CH2CH2CO2CH2CH3 CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH₂CH₂-C1 CH2CH2CH-C1CH2-C1 C₆H₅ 3CF3-C6H4 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 $2,6C1-C_6H_3$ 2SCH3-C6H4 CH₂ (C₆H₅) CH2 (3CF3-C6H4) $CH_2 (2C1-C_6H_4)$ CH2 (4C1-C6H4) $CH_2(2,4C1-C_6H_3)$

CH2 (3SCH3-C6H4) $CH_2 (30CH_3 - C_6H_4)$ $CH_2 (3C1-C_6H_4)$ $CH_2(2,6F-C_6H_3)$ СH₂ (2, 6С1-С6H₃) $CH_2(3, 4F-C_6H_3)$ CH_2 -Si(CH_3)₃ $ON=C(CH_3)_2$ $ON=CH(C_6H_5)$ $ON=C(CH_3)C_6H_5$ $OCH_2(2,6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 осн₂-сң 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl 0-2 (3CF₃-C₅H₃N) 0-2C1-6CF₃-C₆H₃ $R^1 = OCH_3$, $R^2 = CO_2H$ R3 (CH₂)₂CH₃ (CH₂) 3CH₃ (CH₂) ₄CH₃ (CH₂)₅CH₃ (CH2) 6CH3 (CH₂) 7CH₃ (CH₂) ₈CH₃ (CH₂) ₉CH₃

CH₂CH (CH₃)₂

CH2CH2CH (CH3) 2 CH2CH2CH2CH(CH3)2 CH₂CH₂CH (CH₃) CH₂CH₂CH₃ CH2CH (CH3) CH2CH2CH3 СH₂CH (СH₂CH₃) СH₂CH₃ CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 сн₂сн₂сн₂сн₂sсн₃ CH2CH2CH2NHCH2CH3 CH2CF2CH(CH3)2 CH2CH2CH2CF2CH3 CH2-cyclopropyl CH₂-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 Сн₂осн₂сн (Сн₃) ₂ — СH₂ОСH₂ (С₆H₅) CH_2OCH_2 (3 $CF_3-C_6H_4$) CH_2OCH_2 (2C1- C_6H_4) СH₂ОСH₂ (3SCH₃-С₆H₄) CH2OCH2 (4C1-C6H4) CH_2OCH_2 (2, 4F- C_6H_3) CH2CH2OCH2CH2CH3 CH₂O (C₆H₅) $CH_2O(3CF_3-C_6H_4)$ $CH_{2}O(4CF_{3}-C_{6}H_{4})$ CH₂O (2C1-C₆H₄) CH2O (3SCH3-C6H4)

CH2O (2CH3-C6H4)	OCH ₂ CH (CH ₃) ₂	NHCH ₂ (2, 6Cl-C ₆ H ₃)
CH20(4C1-C6H4)	o(c ₆ H ₅)	NH (С ₆ H ₅)
CH ₂ O(2,4Cl-C ₆ H ₃)	O(3CF3-C6H4)	NH (3CF3-C6H4)
сн ₂ scн ₂ cн ₃	0(2C1-C ₆ H ₄)	NH (2C1-C ₆ H ₄)
CH2SCH2CH2CH3	O(4SCH3-C6H4)	ин (3CH ₃ -C ₆ H ₄)
CH2SCH2CH (CH3)2	O(2,4C1-C ₆ H ₃)	NH (2, 4C1-C ₆ H ₃)
CH2SCH2 (C6H5)	SCH2CH2CH3	NH(2,6C1-C6H3)
CH2SCH2 (3CF3-C6H4)	SCH ₂ (CH ₂) ₂ CH ₃	N(CH ₃) (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)	SCH2 (CH2) 3CH3	n(CH3)CH2CH2CH3
CH ₂ S (4CH ₃ -C ₆ H ₄)	SCH ₂ (CH ₂) ₅ CH ₃	N (CH ₂) ₄
CH ₂ S (2, 4C1-C ₆ H ₃)	scн ₂ (С _б н ₅)	N (CH ₂) ₅
CH2S (3SCH3-C6H4)	SCH2 (3SCH3-C6H4)	N (CH ₂) 6
CH ₂ S (2, 6C1-C ₆ H ₃)	SCH2 (20CH3-C6H4)	и (Сн ₂ Сн ₂ -оСн ₂ Сн ₂) ₂
СH ₂ S (С ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)	сн ₂ со ₂ сн ₃
CH ₂ S (3CF ₃ -C ₆ H ₄)	scн ₂ (2, 4-С ₆ н ₃)	сн ₂ сн ₂ со ₂ сн ₂ сн ₃
CH ₂ S (2C1-C ₆ H ₄)	SCH2 (4CF3-C6H4)	CH2CH2CO2CH3
CH ₂ S (4CH ₃ -C ₆ H ₄)	s (CH ₃) ₃	сн ₂ сн ₂ осн ₂ сн ₃
$CH_2S(2,6C1-C_6H_3)$	SCH ₂ CH (CH ₃) ₂	CH ₂ CH ₂ SCH ₂ CH ₃
CH ₂ S (2, 4Cl-C ₆ H ₃)	S (C ₆ H ₅)	сн ₂ сн ₂ -инсн ₂ сн ₃
CH2NHCH2CH3	s (3CF ₃ -C ₆ H ₄)	CH ₂ CH ₂ N (CH ₃) CH ₂ CH ₃
CH2NHCH2CH2CH3	s (2C1-C ₆ H ₄)	CH=CH (CH ₃) ₂
CH ₂ NHCH ₂ C (C ₆ H ₅)	S (40CH3-C6H4)	Сн ₂ Сн ₂ Сн - Сн ₂
сн ₂ инсн ₂ сн (сн ₃).2	S (2, 4C1-C6H3)	сн ₂ сн=сн-сн ₃
CH_2NHCH_2 (3 $CF_3-C_6H_4$)	S(2,6F-C ₆ H ₃)	CH=CH-CH ₂ CH ₂ -Cl
CH2NHCH2 (2C1-C6H4)	2 (3CH ₃ -C ₆ H ₄)	СH ₂ CH ₂ CH-С1СH ₂ -С1
CH ₂ NH (C ₆ H ₅)	NHCH2CH2CH3	С ₆ н ₅
CH ₂ NH (2C1-C ₆ H ₄)	NHCH ₂ (CH ₂) ₂ CH ₃	3CF ₃ -C ₆ H ₄
$CH_2N(CH_3)$ (2C1- C_6H_4)	NHCH ₂ (CH ₂) ₄ CH ₃	2C1-C ₆ H ₄
осн ₂ сн ₂ сн ₃	NHCH ₂ (CH ₂) ₅ CH ₃	3CH ₃ -С _б Н ₄
OCH ₂ (CH ₂) ₂ CH ₃	NHCH ₂ CH (CH ₃) ₂	30CH ₃ -С ₆ Н ₄
осн ₂ (сн ₂) ₃ сн ₃	NHCH ₂ (C ₆ H ₅)	2CF ₃ -C ₆ H ₄
	NHCH ₂ (3CF ₃ -C ₆ H ₄)	2,4C1-C6H3
	NHCH ₂ (2C1-C ₆ H ₄)	2,6C1-C6H3
	NHCH ₂ (4CH ₃ -C ₆ H ₄)	2SCH3-C6H4
OCH ₂ (2C1-C ₆ H ₄)	NHCH ₂ (2, 4Cl-C ₆ H ₃)	СH ₂ (С ₆ H ₅)

种组织形式

 $CH_2 (3CF_3 - C_6H_4)$ CH2 (2C1-C6H4) $CH_2 (4C1-C_6H_4)$ $CH_2(2,4C1-C_6H_3)$ CH2 (3SCH3-C6H4) CH2 (30CH3-C6H4) CH2 (3C1-C6H4) $CH_2(2, 6F-C_6H_3)$ CH_2 (2, 6C1-C₆H₃) $CH_2(3, 4F-C_6H_3)$ CH2-Si (CH3) 3 ON=C (CH3) 2 ON=CH (C6H5) ON=C (CH3) C6H5 $OCH_2(2,6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 OCH2-CH 4F-C6H4 4C1-C6H4 4Br-C6H4

4Cl-C₆H₄
4Br-C₆H₄
2-pyridyl
2-furyl
2-thiazolyl
2-imidazolyl
0-2(3CF₃-C₅H₃N)

0-2C1-6CF3-C6H3

R¹=OCF₃, R²=CO₂H

(CH₂)₂CH₃ (CH₂)₃CH₃ (CH₂)₄CH₃

(CH₂) 5CH₃

(CH₂) 6CH₃

(CH₂) 7CH₃ (CH₂) 8CH₃ (CH₂) 9CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH2CH2CH (CH3) CH2CH2CH3 CH2CH (CH3) CH2CH2CH3 CH₂CH (CH₂CH₃) CH₂CH₃ CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH (CH3) 2 CH2CH2CH2CF2CH3 CH₂-cyclopropyl CH2-cyclobutyl CH2-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl. cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH(CH3)2 $CH_2OCH_2(C_6H_5)$ CH_2OCH_2 (3CF3-C6H4) CH_2OCH_2 (2C1- C_6H_4) CH2OCH2 (3SCH3-C6H4) CH2OCH2 (4C1-C6H4) CH_2OCH_2 (2, 4F-C₆H₃) CH2CH2OCH2CH2CH3

 $CH_2O(C_6H_5)$

CH₂O (3CF₃-C₆H₄) $CH_2O(4CF_3-C_6H_4)$ CH2O (2C1-C6H4) CH2O (3SCH3-C6H4) CH2O (2CH3-C6H4) CH20 (4C1-C6H4) СH₂O (2, 4С1-С₆H₃) CH2SCH2CH3 CH2SCH2CH2CH3 CH2SCH2CH(CH3)2 CH2SCH2 (C6H5) CH₂SCH₂ (3CF₃-C₆H₄) CH2S (2C1-C6H4) CH2S (4CH3-C6H4) CH₂S (2, 4C1-C₆H₃) CH₂S (3SCH₃-C₆H₄) $CH_2S(2,6C1-C_6H_3)$ CH2S (C6H5) $CH_2S(3CF_3-C_6H_4)$ CH₂S (2C1-C₆H₄) $CH_2S(4CH_3-C_6H_4)$ CH2S (2, 6C1-C6H3) $CH_2S(2,4C1+C_6H_3)$ CH2NHCH2CH3 CH2NHCH2CH2CH3 CH2NHCH2C(C6H5) CH2NHCH2CH (CH3) 2 $CH_2NHCH_2(3CF_3-C_6H_4)$ CH_2NHCH_2 (2C1- C_6H_4) CH2NH(C6H5) CH2NH (2C1-C6H4) $CH_2N(CH_3)(2C1-C_6H_4)$ OCH2CH2CH3 OCH2 (CH2) 2CH3 OCH2 (CH2) 3CH3

OCH ₂ (CH ₂) 5CH ₃
OCH ₂ C(C ₆ H ₅)
OCH ₂ (3CF ₃ -C ₆ H ₄)
OCH ₂ (2C1-C ₆ H ₄)
осн ₂ сн (сн ₃) ₂
o(C ₆ H ₅)
O(3CF3-C6H4)
O(2C1-C6H4)
O(4SCH3-C6H4)
O(2,4C1-C6H3)
SCH2CH2CH3
SCH_2 (CH_2) $_2CH_3$
SCH ₂ (CH ₂) 3CH ₃
SCH ₂ (CH ₂) ₅ CH ₃
SCH ₂ (C ₆ H ₅)
SCH ₂ (3SCH ₃ -C ₆ H ₄)
SCH ₂ (20CH ₃ -C ₆ H ₄)
SCH ₂ (2C1-C ₆ H ₄)
SCH ₂ (2, 4-C ₆ H ₃)
SCH ₂ (4CF ₃ -C ₆ H ₄)
s (CH ₃) 3
SCH ₂ CH (CH ₃) ₂
.S.(C ₆ H ₅),
s (3CF3-C6H4)
S (2C1-C ₆ H ₄)
s (40CH ₃ -C ₆ H ₄)
s(2,4C1-C ₆ H ₃)
S(2,6F-C ₆ H ₃)
2 (3CH ₃ -C ₆ H ₄)
NHCH ₂ CH ₂ CH ₃
NHCH ₂ (CH ₂) ₂ CH ₃
NHCH ₂ (CH ₂) ₄ CH ₃
NHCH ₂ (CH ₂) ₅ CH ₃
NHCH ₂ CH (CH ₃) ₂
NHCH2 (C6H5)

NHCH ₂ (3CF ₃ -C ₆ H ₄)
NHCH ₂ (2C1-C ₆ H ₄)
NHCH ₂ (4CH ₃ -C ₆ H ₄)
NHCH ₂ (2, 4C1-C ₆ H ₃)
NHCH ₂ (2, 6C1-C ₆ H ₃)
ин (С ₆ н ₅)
NH (3CF ₃ -C ₆ H ₄)
NH (2C1-C ₆ H ₄)
NH (3CH3-C6H4)
NH (2, 4C1-C ₆ H ₃)
NH (2,6C1-C6H3)
N(CH ₃) (3CF ₃ -C ₆ H ₄)
и (Сн ₃) Сн ₂ Сн ₂ Сн ₃
N (CH ₂) 4
N (CH ₂) ₅
N (CH ₂) ₆
N (CH ₂ CH ₂ -OCH ₂ CH ₂) ₂
CH ₂ CO ₂ CH ₃
CH2CH2CO2CH2CH3
CH ₂ CH ₂ CO ₂ CH ₃
CH ₂ CH ₂ OCH ₂ CH ₃
CH ₂ CH ₂ SCH ₂ CH ₃
CH ₂ CH ₂ -NHCH ₂ CH ₃
CH2CH2N (CH3) CH2CH3
CH=CH (CH ₃) ₂
CH ₂ CH ₂ CH=CH ₂
CH ₂ CH=CH-CH ₃
CH=CH-CH ₂ CH ₂ -C1
CH ₂ CH ₂ CH-ClCH ₂ -Cl
^C 6 ^H 5
BCF3-C6H4
2C1-C ₆ H ₄
CH ₃ -C ₆ H ₄
30CH ₃ -С ₆ H ₄
CF ₃ -C ₆ H ₄

```
2,6C1-C6H3
  2SCH3-C6H4
  CH<sub>2</sub> (C<sub>6</sub>H<sub>5</sub>)
  CH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
  CH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
  CH<sub>2</sub> (4C1-C<sub>6</sub>H<sub>4</sub>)
  CH<sub>2</sub> (2, 4C1-C<sub>6</sub>H<sub>3</sub>)
  СH<sub>2</sub> (3SCH<sub>3</sub>-С<sub>6</sub>H<sub>4</sub>)
 СH<sub>2</sub> (30СH<sub>3</sub>-С<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (3C1-C<sub>6</sub>H<sub>4</sub>)
 CH<sub>2</sub> (2, 6F-C<sub>6</sub>H<sub>3</sub>)
 CH<sub>2</sub> (2,6C1-C<sub>6</sub>H<sub>3</sub>)
 CH<sub>2</sub> (3, 4F-C<sub>6</sub>H<sub>3</sub>)
 CH2-Si (CH3) 3
 ON=C(CH_3)_2
 on=ch (c<sub>6</sub>H<sub>5</sub>)
 ON=C (CH<sub>3</sub>) C<sub>6</sub>H<sub>5</sub>
 OCH<sub>2</sub> (2, 6-C1-C<sub>6</sub>H<sub>3</sub>)
 OCH2 (C=CH2) CH3
 осн<sub>2</sub>-сң
 4F-C6H4
 4C1-C6H4
 4Br-C6H4
 2-pyridyl
 2-furyl
 2-thiazolyl
2-imidazolyl
O-2 (3CF3-C5H3N)
0-2C1-6CF3-C6H3
       R^1 = OCF_2H, R^2 = CO_2H
R3
(CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>
```

2,4C1-C6H3

(CH ₂) ₃ CH ₃	CH2OCH2 (4C1-C6H4)	CH ₂ N (CH ₃) (2C1-C ₆ H ₄)
(CH ₂) 4CH ₃	CH2OCH2 (2, 4F-C6H3)	OCH2CH2CH3.
(CH ₂) ₅ CH ₃	сн ₂ сн ₂ осн ₂ сн ₂ сн ₃	осн ₂ (сн ₂) ₂ сн ₃
(CH ₂) 6CH ₃	CH ₂ O(C ₆ H ₅)	осн ₂ (сн ₂) зсн ₃
(CH ₂) 7 ^{CH} 3	CH ₂ O(3CF ₃ -C ₆ H ₄)	осн ₂ (сн ₂) ₅ сн ₃
(CH ₂) 8CH ₃	CH ₂ O(4CF ₃ -C ₆ H ₄)	осн ₂ с (с ₆ н ₅)
(CH ₂) ₉ CH ₃	CH ₂ O (2C1-C ₆ H ₄)	OCH ₂ (3CF ₃ -C ₆ H ₄)
СH ₂ CH (СH ₃) 2	CH2O(3SCH3-C6H4)	OCH ₂ (2C1-C ₆ H ₄)
СH ₂ СH ₂ СH (СH ₃) ₂	CH ₂ O (2CH ₃ -C ₆ H ₄)	осн ₂ сн (сн ₃) ₂
CH2CH2CH2CH(CH3)2	CH ₂ O (4C1-C ₆ H ₄)	O(C ₆ H ₅)
$\text{сн}_2\text{сн}_2\text{сн}$ (сн $_3$) сн $_2$ сн $_2$ сн $_3$	CH ₂ O(2,4C1-C ₆ H ₃)	O(3CF3-C6H4)
сн ₂ сн (сн ₃) сн ₂ сн ₂ сн ₃	сн ₂ scн ₂ сн ₃	O(2C1-C6H4)
СH ₂ CH (СH ₂ CH ₃) СH ₂ CH ₃	CH2SCH2CH2CH3	O(4SCH3-C6H4)
CH2CH2CH2OCH2CH3	СH2SCH2CH (СН3) 2	O(2,4C1-C6H3)
СH ₂ СH ₂ СH ₂ СH ₂ ОСH ₃	СH ₂ SCH ₂ (С ₆ H ₅)	sch2ch2ch3
ch2ch2ch2-s-ch2ch3	CH2SCH2 (3CF3-C6H4)	scн ₂ (сн ₂) ₂ сн ₃
сн ₂ сн ₂ сн ₂ сн ₂ sсн ₃	CH ₂ S (2C1-C ₆ H ₄)	sсн ₂ (сн ₂) ₃ сн ₃
CH2CH2CH2NHCH2CH3	CH2S (4CH3-C6H4)	sch ₂ (сн ₂) ₅ сн ₃
CH2CF2CH (CH3)2	CH ₂ S(2,4C1-C ₆ H ₃)	SCH ₂ (C ₆ H ₅)
CH2CH2CH2CF2CH3	CH2S (3SCH3-C6H4)	SCH ₂ (3SCH ₃ -C ₆ H ₄)
CH ₂ -cyclopropyl	CH ₂ S (2,6C1-C ₆ H ₃)	SCH ₂ (20CH ₃ -C ₆ H ₄)
CH ₂ -cyclobutyl	СH ₂ S (С ₆ H ₅)	SCH ₂ (2C1-C ₆ H ₄)
CH ₂ -cyclopentyl	CH2S (3CF3-C6H4)	SCH ₂ (2, 4-C ₆ H ₃)
CH2-cyclohexyl	CH ₂ S (2C1-C ₆ H ₄)	SCH ₂ (4CF ₃ -C ₆ H ₄)
cyclopropy1	CH ₂ S (4CH ₃ -C ₆ H ₄)	s (CH ₃) ₃
cyclobutyl	СH ₂ S (2, 6С1-С ₆ H ₃)	SCH ₂ CH(CH ₃) ₂
cyclopentyl	CH ₂ S (2, 4C1-C ₆ H ₃)	s (C ₆ H ₅)
cyclohexyl	CH2NHCH2CH3	S (3CF ₃ -C ₆ H ₄)
CH ₂ OCH ₂ CH ₃	CH2NHCH2CH2CH3	S (2C1-C6H4)
CH ₂ OCH ₂ CH ₂ CH ₃	СH ₂ NHCH ₂ С (С ₆ H ₅)	S (40CH3-C6H4)
CH ₂ OCH ₂ CH (CH ₃) ₂	CH2NHCH2CH (CH3) 2	s(2,4C1-C ₆ H ₃)
CH ₂ OCH ₂ (C ₆ H ₅)	СH ₂ NHCH ₂ (ЗСF ₃ -С ₆ H ₄)	S(2,6F-C ₆ H ₃)
CH_2OCH_2 (3CF ₃ -C ₆ H ₄)	CH2NHCH2 (2C1-C6H4)	2(3CH ₃ -C ₆ H ₄)
CH_2OCH_2 (2C1-C ₆ H ₄)	CH ₂ NH (C ₆ H ₅)	NHCH2CH2CH3
CH2OCH2 (3SCH3-C6H4)	CH2NH (2C1-C6H4)	NHCH ₂ (CH ₂) ₂ CH ₃

NHCH2 (CH2) 4CH3 $\mathrm{NHCH_2}$ ($\mathrm{CH_2}$) $\mathrm{_5CH_3}$ NHCH2CH (CH3) 2 NHCH2 (C6H5) NHCH₂ (3CF₃-C₆H₄) $NHCH_2 (2C1-C_6H_4)$ $NHCH_2(4CH_3-C_6H_4)$ $NHCH_2(2, 4C1-C_6H_3)$ $NHCH_2$ (2, 6C1-C₆H₃) NH (C6H5) $NH(3CF_3-C_6H_4)$ NH (2C1-C6H4) NH (3CH3-C6H4) $NH(2,4C1-C_6H_3)$ $NH(2,6C1-C_6H_3)$ $N(CH_3)(3CF_3-C_6H_4)$ $N(CH_3)CH_2CH_2CH_3$ N (CH₂) 4 N (CH₂) 5 N(CH₂)6 $N(CH_2CH_2-OCH_2CH_2)_2$ CH2CO2CH3 CH2CH2CO2CH2CH3~ CH2CH2CO2CH3 CH2CH2OCH2CH3 CH2CH2SCH2CH3 CH2CH2-NHCH2CH3 CH2CH2N (CH3) CH2CH3 CH=CH (CH₃)₂ CH2CH2CH=CH2 CH2CH=CH-CH3 CH=CH-CH₂CH₂-Cl CH2CH2CH-ClCH2-C1 C₆H₅

2C1-C6H4 3СH₃-С₆H₄ 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6C1-C6H3 25CH3-C6H4 $CH_2(C_6H_5)$ $CH_2 (3CF_3 - C_6H_4)$ CH2 (2C1-C6H4) CH2 (4C1-C6H4) $CH_2(2,4C1-C_6H_3)$ CH2 (3SCH3-C6H4) CH₂ (30CH₃-C₆H₄) $CH_2 (3C1-C_6H_4)$ CH₂ (2, 6F-C₆H₃) $CH_2(2,6C1-C_6H_3)$ CH₂ (3, 4F-C₆H₃) CH2-Si (CH3) 3 ON=C (CH3) 2 ON=CH (C6H5) ON=C (CH3) C6H5 $OCH_2(2,6-C1-C_6H_3)$ OCH2 (C=CH2) CH3 осн₂-сн 4F-C6H4 4C1-C6H4 4Br-C6H4 2-pyridyl 2-furyl 2-thiazolyl 2-imidazolyl 0-2 (3CF₃~C₅H₃N) 0-2C1-6CF3-C6H3

 $R^1 = NO_2$, $R^2 = CO_2H$ R3 (CH₂)₂CH₃ (CH₂) 3CH₃ (CH₂) 4CH₃ (CH₂) 5CH₃ (CH₂) 6CH₃ (CH2)7CH3 (CH₂) 8CH₃ (CH₂) 9CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2CH2CH2CH(CH3)2 CH_2CH_2CH (CH_3) $CH_2CH_2CH_3$ СH₂CH (СH₃) СH₂CH₂CH₃ CH2CH (CH2CH3) CH2CH3 CH2CH2CH2OCH2CH3 CH2CH2CH2CH2OCH3 CH2CH2CH2-S-CH2CH3 CH2CH2CH2CH2SCH3 CH2CH2CH2NHCH2CH3 CH2CF2CH.(CH3) 2-CH2CH2CH2CF2CH3 CH2-cyclopropyl CH2-cyclobutyl CH₂-cyclopentyl CH2-cyclohexyl cyclopropyl cyclobutyl cyclopentyl cyclohexyl CH2OCH2CH3 CH2OCH2CH2CH3 CH2OCH2CH (CH3) 2

BNS page 64

3CF3-C6H4

cH_2ocH_2 (c_6H_5)
CH2OCH2 (3CF3-C6H4)
CH2OCH2 (2C1-C6H4)
CH2OCH2 (3SCH3-C6H4)
CH_2OCH_2 (4C1-C6H4)
CH2OCH2 (2, 4F-C6H3)
$\mathrm{CH_2CH_2OCH_2CH_2CH_3}$
CH ₂ O(C ₆ H ₅)
CH ₂ O(3CF ₃ -C ₆ H ₄)
$CH_2O(4CF_3-C_6H_4)$
CH ₂ O (2C1-C ₆ H ₄)
CH2O (3SCH3-C6H4)
$CH_2O(2CH_3-C_6H_4)$
CH ₂ O(4C1-C ₆ H ₄)
CH ₂ O(2,4C1-C ₆ H ₃)
CH2SCH2CH3
CH2SCH2CH2CH3
CH ₂ SCH ₂ CH (CH ₃) 2
CH2SCH2 (C6H5)
CH_2SCH_2 (3CF3- C_6H_4)
$CH_2S(2C1-C_6H_4)$
CH ₂ S (4CH ₃ -C ₆ H ₄)
CH ₂ S _(2,4C1-C6H₃)
CH ₂ S (3SCH ₃ -C ₆ H ₄)
$CH_2S(2,6C1-C_6H_3)$
CH ₂ S (C ₆ H ₅)
CH ₂ S (3CF ₃ -C ₆ H ₄)
CH ₂ S (2C1-C ₆ H ₄)
CH ₂ S (4CH ₃ -C ₆ H ₄)
$CH_2S(2,6C1-C_6H_3)$
$CH_2S(2, 4C1-C_6H_3)$
CH2NHCH2CH3
CH2NHCH2CH2CH3
$CH_2NHCH_2C(C_6H_5)$
ALL MILAN AND LATE \

сн ₂ инсн ₂ (зсг ₃ -с ₆ н ₄)
CH2NHCH2 (2C1-C6H4)
СH ₂ NH (С ₆ H ₅)
CH ₂ NH (2C1-C ₆ H ₄)
CH ₂ N (CH ₃) (2C1-C ₆ H ₄)
OCH ₂ CH ₂ CH ₃
осн ₂ (сн ₂) ₂ сн ₃
осн ₂ (сн ₂) ₃ сн ₃
осн ₂ (сн ₂) ₅ сн ₃
осн ₂ с (с ₆ н ₅)
och ₂ (3cf ₃ -c ₆ h ₄)
OCH ₂ (2C1-C ₆ H ₄)
осн ₂ сн (сн ₃) ₂
o(c ₆ H ₅)
0(3CF ₃ -C ₆ H ₄)
0(2C1-C ₆ H ₄)
o(4SCH3-C6H4)
O(2,4C1-C ₆ H ₃)
sch ₂ ch ₂ ch ₃
SCH ₂ (CH ₂) ₂ CH ₃
sch ₂ (сн ₂) ₃ сн ₃
SCH ₂ (CH ₂) ₅ CH ₃
sch ₂ (c ₆ H ₅)
SCH ₂ (3SCH ₃ -C ₆ H ₄)
SCH ₂ (20CH ₃ -C ₆ H ₄)
SCH ₂ (2C1-C ₆ H ₄)
SCH ₂ (2,4-C ₆ H ₃)
SCH ₂ (4CF ₃ -C ₆ H ₄)
S (CH ₃) ₃
sch ₂ ch (сн ₃) ₂
S(C ₆ H ₅)
S(3CF ₃ -C ₆ H ₄)
S(2C1-C ₆ H ₄)
S(40CH3-C6H4)
S(2,4C1-C ₆ H ₃)
•

```
S(2,6F-C6H3)
  2 (3CH3-C6H4)
  NHCH2CH2CH3
  NHCH<sub>2</sub> (CH<sub>2</sub>) <sub>2</sub>CH<sub>3</sub>
  NHCH2 (CH2) 4CH3
 инсн<sub>2</sub> (сн<sub>2</sub>) <sub>5</sub>сн<sub>3</sub>
 инси<sub>2</sub>си (си<sub>3</sub>) 2
 NHCH<sub>2</sub> (C<sub>6</sub>H<sub>5</sub>)
 NHCH<sub>2</sub> (3CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 NHCH<sub>2</sub> (2C1-C<sub>6</sub>H<sub>4</sub>)
 NHCH<sub>2</sub> (4CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>)
 инсн<sub>2</sub> (2, 4С1-С<sub>6</sub>н<sub>3</sub>)
 NHCH<sub>2</sub> (2,6C1-C<sub>6</sub>H<sub>3</sub>)
 NH (C<sub>6</sub>H<sub>5</sub>)
 NH (3CF3-C6H4)
 NH (2C1-C6H4)
 NH (3CH3-C6H4)
NH (2, 4Cl-C6H3)
NH (2,6C1-C6H3)
N(CH_3)(3CF_3-C_6H_4)
N (CH<sub>3</sub>) CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
N (CH<sub>2</sub>) 4
N (CH<sub>2</sub>) 5 .....
N (CH<sub>2</sub>) 6
N(CH_2CH_2-OCH_2CH_2)_2
CH2CO2CH3
сн<sub>2</sub>сн<sub>2</sub>со<sub>2</sub>сн<sub>2</sub>сн<sub>3</sub>
CH2CH2CO2CH3
CH2CH2OCH2CH3
CH2CH2SCH2CH3
CH2CH2-NHCH2CH3
CH2CH2N (CH3) CH2CH3
CH=CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH=CH2
CH2CH=CH-CH3
```

CH2NHCH2CH (CH3) 2

CH=CH-CH2CH2-Cl CH2CH2CH-ClCH2-Cl C₆H₅ $3CF_3-C_6H_4$ 2C1-C6H4 3CH3-C6H4 30CH3-C6H4 2CF3-C6H4 2,4C1-C6H3 2,6C1-C6H3 2SCH3-C6H4 CH₂ (C₆H₅) CH2 (3CF3-C6H4) $CH_2 (2C1-C_6H_4)$ CH_2 (4C1-C6H4) CH₂ (2, 4C1-C₆H₃) CH_2 (3SCH3-C6H4) CH_2 (30 CH_3 - C_6H_4) $CH_2 (3C1-C_6H_4)$ $CH_2(2, 6F-C_6H_3)$ $CH_2(2,6C1-C_6H_3)$ $CH_2(3, 4F-C_6H_3)$

R¹=Cl, R²=CO₂CH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂

3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=CO_2CH_3$ вЭ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C6H5 3CF3-C6H4 2C1-C6H4 $R^{1}=I$, $R^{2}=CO_{2}CH_{3}$ R³ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃) _{2} CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1 = OCH_3$, $R^2 = CO_2CH_3$ \mathbb{R}^3 $(CH_2)_3CH_3$ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH₂CH (CH₃)₂ C6H5 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_3$, $R^2 = CO_2CH_3$ RЗ (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃).2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CO₂CH₃ \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3) 2

CH2CH2CH(CH3)2

C₆H₅

 $\begin{array}{l} \text{CH}_2\text{-cyclopentyl} \\ \text{CH}_2\text{O}\left(\text{C}_6\text{H}_5\right) \\ \text{CH}_2\text{SCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{CH}_2\text{NHCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{OCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{NHCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{C}_6\text{H}_5 \\ \text{3CF}_3\text{-C}_6\text{H}_4 \\ \text{2Cl}\text{-C}_6\text{H}_4 \end{array}$

 R^{1} =C1, R^{2} =CO₂CH₂CH₃ R^{3} (CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=CO_2CH_2CH_3$ в^З (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH20(C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CO_2CH_2CH_3$ R3 (CH₂) 3CH₃ СH₂CH (СH₃) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O(C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅

3CF3-C6H4

2C1-C6H4

 $R^1 = OCH_3$, $R^2 = CO_2CH_2CH_3$ R3 (CH₂) 3CH₃ CH2CH (CH3)2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R^2 =CO₂CH₂CH₃ в^З (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2..... CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R¹ ⇒OCF₂H, R² = CO₂CH₂CH₃ (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2

CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃) 2
CH₂NHCH₂CH(CH₃) 2
OCH₂CH(CH₃) 2
NHCH₂CH(CH₃) 2
C₆H₅
3CF₃-C₆H₄
2Cl-C₆H₄

R1=NO₂, R²=CO₂CH₂CH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃=C₆H₄
2C1-C₆H₄

 $R^1=C1$, $R^2=CHO$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂

NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=CHO$ \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^{1}=I$, $R^{2}=CHO$ RЗ (CH2) 3CH3 CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 R^1 =OCH₃, R^2 =CHO ВЗ (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R¹=OCF₃, R²∞CHO ВЗ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CHO ВЗ (CH₂) 3CH₃ CH2CH (CH3) 2

CH2CH2CH(CH3)2

67

CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃) 2
CH₂NHCH₂CH(CH₃) 2
OCH₂CH(CH₃) 2
NHCH₂CH(CH₃) 2
NHCH₂CH(CH₃) 2
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=NO₂, R²=CHO

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄

R¹=Cl, R²=CmCH R³ (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅) CH₂SCH₂CH(CH₃)₂ CH₂NHCH₂CH(CH₃)₂ OCH₂CH(CH₃)₂ NHCH₂CH(CH₃)₂

2C1-C6H4

C6H5 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=C=CH$ <u>R</u>3 (CH₂) 3CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=C=CH$ $\mathbf{R}^{\mathbf{3}}$ (CH₂) 3CH₃ CH₂CH (CH₃)₂ ... CH2CH2CH (CH3) 2 CH2-cyclopentyl СH₂O (С6H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

2C1-C6H4

 R^1 =OCH₃, R^2 =C=CH \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopenty1 CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2 OCH2CH(CH3)2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R^2 =C=CH R³ $(CH_2)_3CH_3$ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3)2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 = C = CH$ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2

CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃) 2
CH₂NHCH₂CH (CH₃) 2
OCH₂CH (CH₃) 2
NHCH₂CH (CH₃) 2
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=NO₂, R²=C=CR R³ (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅) CH₂SCH₂CH(CH₃)₂ CH₂NHCH₂CH(CH₃)₂ OCH₂CH(CH₃)₂ NHCH₂CH(CH₃)₂ C₆H₅ 3CF₃-C₆H₄

R¹=Cl, R²=CH=N-OH

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂

NHCH2CH (CH3) 2 C_6H_5 3CF3-C6H4 2C1-C6H4 R^1 =Br, R^2 =CH=N-OH \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CH=N-OH$ R3 (CH2).3CH3 ----CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C6H4

 $R^1 = OCH_3$, $R^2 = CH = N - OH$ RЗ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R1=OCF3, R2=CH=N-OH RЗ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O(C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CH=N-OH (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH (CH3)2

CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃) 2
CH₂NHCH₂CH(CH₃) 2
OCH₂CH(CH₃) 2
NHCH₂CH(CH₃) 2
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=NO₂, R²=CH=N-OH
R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopenty1
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R¹=C1, R²=CH=N-OCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =Br, R^2 =CH=N-OCH₃ \mathbf{R}^{3} (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CH=N-OCH_3$ RЭ (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅

3CF3-C6H4

2C1-C6H4

 R^1 =OCH₃, R^2 =CH=N-OCH₃ **R**3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) ₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R^2 =CH=N-OCH₃ \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3)-2-CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) ₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CH=N-OCH₃ ВЗ (CH₂) 3CH₃

CH₂CH (CH₃)₂

CH2CH2CH(CH3)2

```
NHCH2CH (CH3) 2
 CH2-cyclopentyl
                                        C<sub>6</sub>H<sub>5</sub>
 CH2O(C6H5) ...
                                                                              <sub>R</sub>3
 CH2SCH2CH (CH3) 2
                                        3CF3-C6H4
                                        2C1-C6H4
 CH2NHCH2CH (CH3) 2
 OCH2CH (CH3) 2
                                        R^1=Br, R^2=CH=N-OCH<sub>2</sub>CH<sub>3</sub>
 NHCH2CH (CH3) 2
                                        \mathbb{R}^3
 C6H5
                                        (CH<sub>2</sub>) 3CH<sub>3</sub>
 3CF3-C6H4
 2C1-C6H4
                                        CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
                                        CH2CH2CH(CH3)2
   R^1=NO_2, R^2=CH=N-OCH_3
                                        CH2-cyclopentyl
\mathbb{R}^3
                                        CH<sub>2</sub>O (C<sub>6</sub>H<sub>5</sub>)
                                        CH2SCH2CH (CH3) 2
 (CH<sub>2</sub>) 3CH<sub>3</sub>
                                                                              C<sub>6</sub>H<sub>5</sub>
                                        CH2NHCH2CH (CH3) 2
CH2CH (CH3) 2
CH2CH2CH(CH3)2
                                        OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
                                                                              2C1-C6H4
                                        NHCH2CH (CH3) 2
CH2-cyclopentyl
CH20 (C6H5)
                                        C<sub>6</sub>H<sub>5</sub>
                                        3CF3-C6H4
CH2SCH2CH(CH3)2
                                                                             RЗ
                                        2C1-C6H4
CH2NHCH2CH (CH3) 2
OCH2CH (CH3) 2
                                         R^1=I, R^2=CH=N-OCH_2CH_3
NHCH2CH (CH3) 2
                                       R3
C6H5
                                        (CH<sub>2</sub>) 3CH<sub>3</sub>
3CF3-C6H4
2C1-C6H4
                                       CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
                                       CH2CH2CH(CH3)2
 R^1=C1, R^2=CH=N-OCH<sub>2</sub>CH<sub>3</sub>
                                       CH2-cyclopentyl
\mathbb{R}^3
                                       CH2O (C6H5)
                                       CH2SCH2CH(CH3)2
(CH<sub>2</sub>) 3CH<sub>3</sub>
                                                                              C6H5
                                       CH2NHCH2CH (CH3) 2
CH2CH (CH3) 2
                                       OCH2CH (CH3) 2
CH2CH2CH(CH3)2
                                                                             2C1-C6H4
                                       NHCH2CH (CH3) 2
CH2-cyclopentyl
CH2O (C6H5)
                                       C<sub>6</sub>H<sub>5</sub>
CH2SCH2CH (CH3) 2
                                       3CF3-C6H4
CH2NHCH2CH (CH3) 2
                                       2C1-C6H4
```

```
R^1=OCH<sub>3</sub>,
        R2=CH=N-OCH2CH3
  (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
 CH2CH (CH3) 2
 CH2CH2CH(CH3)2
 CH2-cyclopentyl
 CH<sub>2</sub>O(C<sub>6</sub>H<sub>5</sub>)
 CH2SCH2CH(CH3)2
 CH2NHCH2CH (CH3)2
 OCH2CH (CH3) 2
 NHCH2CH (CH3) 2
 3CF3-C6H4
              R^1=OCF<sub>3</sub>,
        R2=CH=N-OCH2CH3
 (CH<sub>2</sub>) 3CH<sub>3</sub>
 CH2CH (CH3) 2
 CH2CH2CH (CH3) 2
 CH2-cyclopentyl
 СH<sub>2</sub>O (С<sub>6</sub>H<sub>5</sub>)
 CH2SCH2CH (CH3) 2
 CH2NHCH2CH (CH3) 2
OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
NHCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
3CF3-C6H4
            R1=OCF2H,
       R2=CH=N-OCH2CH3
R3
(CH<sub>2</sub>) 3CH<sub>3</sub>
```

OCH2CH (CH3) 2

 ${
m CH_2CH\,(CH_3)_2}$ ${
m CH_2CH_2CH\,(CH_3)_2}$ ${
m CH_2-cyclopentyl}$ ${
m CH_2O\,(C_6H_5)}$ ${
m CH_2SCH_2CH\,(CH_3)_2}$ ${
m CH_2NHCH_2CH\,(CH_3)_2}$ ${
m OCH_2CH\,(CH_3)_2}$ ${
m NHCH_2CH\,(CH_3)_2}$ ${
m C6H_5}$ ${
m 3CF_3-C_6H_4}$ ${
m 2Cl-C_6H_4}$

 $R^1=NO_2$, $R^2=CH=N-OCH_2CH_3$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 R^1 =C1, R^2 =C(NH₂)=N-OH R^3 (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅)

CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=C(NH_2)=N-OH$ \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3)2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

R¹=1, R²=C(NH₂)=N-OH

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅

3CF3-C6H4 2C1-C6H4 . $R^1 = OCH_3$, $R^2 = C(NH_2) = N - OH$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R1=OCF3,

R²=C(NH₂)=N-OH

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄

2C1-C6H4

The first state of the state of

R¹=OCF₂H,

R²=C(NH₂)=N-OH

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C6H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=NO₂, R²=C(NH₂)=N-OH B³ (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅) CH₂SCH₂CH(CH₃)₂ CH₂NHCH₂CH(CH₃)₂ OCH₂CH(CH₃)₂ NHCH₂CH(CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

 $R^1=C1$, $R^2=C=N-OCH_3$ R3 (CH₂) 3CH₃ CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R¹=Br, R3 $(CH_2)_3CH_3$ CH2CH (CH3)2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH2CH (CH3) 2 C6H5

3CF₃-C₆H₄ 2C1-C₆H₄

R²-C=N-ОСН₃ вЗ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl СH₂O (С₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3)2 осн₂сн (сн₃) ₂: NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCH₃, R²=Ç=N-ОСН₃ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅

3CF3-C6H4

2C1-C6H4

 R^1 =OCF₃, R^2 = φ =N-OCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 R^1 =OCF₂H, R^2 = Γ =N-OCH₃
C1

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^1=NO_2$, $R^2=\varphi=N-OCH_3$ C1

C1

R³

(CH₂)₃CH₃

CH₂CH (CH₃)₂

CH₂CH₂CH (CH₃)₂

CH₂-cyclopentyl

CH₂O (C₆H₅)

CH₂SCH₂CH (CH₃)₂

CH₂NHCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂

3CF₃-C₆H₄ 2C1-C₆H₄

 $R^1=C1$, $R^2=C$ (CN)=N-OH

C6H5

 \mathbb{R}^3 $(CH_2)_3CH_3$ $CH_2CH_3(CH_3)_2$ $CH_2CH_2CH_3CH_3)_2$ $CH_2-cyclopentyl$ $CH_2O_3(C_6H_5)$ $CH_2SCH_2CH_3(CH_3)_2$

CH₂NHCH₂CH (CH₃) ₂ OCH₂CH (CH₃) ₂ NHCH₂CH (CH₃) ₂

C₆H₅ 3CF₃-C₆H₄

2C1-C6H4

 R^1 =Br, R^2 =C(CN)=N-OH R^3

(CH₂) 3CH₃

CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂

С₆н₅ ЗСГ₃-С₆н₄ 2С1-С₆н₄

NHCH2CH (CH3) 2

 $R^{1}=I$, $R^{2}=C$ (CN)=N-OH R^{3} (CH₂)₃CH₃ CH₂CH (CH₃)₂

CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl

СH₂O (С₆H₅)

СН₂SCH₂CH (СН₃) 2 СН₂NHCH₂CH (СН₃) ₂

осн₂сн (сн₃) ₂ инсн₂сн (сн₃) ₂

инсн₂сн (сн₃) С₆н₅

3CF₃-C₆H₄ 2C1-C₆H₄

 R^{1} =OCH₃, R^{2} =C (CN)=N-OH R^{3}

(CH₂) 3CH₃

СH₂СH (СH₃) 2

сн₂сн₂сн (сн₃) ₂

CH₂-cyclopentyl

СH₂O (С₆H₅)

CH2SCH2CH(CH3)2

R1=Br, R2=CH2CN 3CF3-C6H4 CH2NHCH2CH(CH3)2 \mathbb{R}^3 OCH2CH (CH3) 2 2C1-C6H4 (CH₂)₃CH₃ NHCH2CH (CH3) 2 $R^1=NO_2$, $R^2=C$ (CN)=N-OH CH₂CH (CH₃)₂ C₆H₅ \mathbb{R}^3 CH2CH2CH(CH3)2 3CF3-C6H4 2C1-C6H4 (CH₂) 3CH₃ CH2-cyclopentyl CH2CH (CH3) 2 CH2O (C6H5) $R^1 = OCF_3$, $R^2 = C(CN) = N - OH$ CH2CH2CH(CH3)2 CH2SCH2CH (CH3) 2 \mathbb{R}^3 CH2-cyclopentyl CH2NHCH2CH (CH3) 2 CH20 (C6H5) OCH₂CH (CH₃)₂ (CH₂)₃CH₃ CH2SCH2CH(CH3)2 NHCH2CH (CH3) 2 CH₂CH (CH₃)₂ CH2NHCH2CH(CH3)2 C6H5 CH2CH2CH(CH3)2 OCH₂CH (CH₃)₂ 3CF3-C6H4 CH2-cyclopentyl 2C1-C6H4 СH₂O (С₆H₅) NHCH2CH (CH3) 2 CH2SCH2CH (CH3) 2 C₆H₅ $R^1=I$, $R^2=CH_2CN$ CH2NHCH2CH (CH3) 2 3CF3-C6H4 ВЗ 2C1-C6H4 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 (CH₂) 3CH₃ R^1 =C1, R^2 =CH₂CN CH₂CH (CH₃)₂ C₆H₅ R3 CH2CH2CH(CH3)2 3CF3-C6H4 (CH₂) 3CH₃ CH2-cyclopentyl 2C1-C6H4 CH2CH (CH3) 2 CH₂O (C₆H₅) R1=OCF2H, CH2CH2CH(CH3)2 CH2SCH2CH(CH3).2 $R^2 = C(CN) = N - OH$ CH2NHCH2CH (CH3) 2 CH2-cyclopentyl R³ СH₂O (С₆H₅) OCH₂CH (CH₃)₂ CH2SCH2CH (CH3) 2 NHCH2CH (CH3) 2 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 C₆H₅ CH2CH2CH(CH3)2 OCH2CH (CH3) 2 3CF3-C6H4 CH2-cyclopentyl NHCH2CH (CH3) 2 2C1-C6H4 CH20 (C6H5) C₆H₅ R^1 =OCH₃, R^2 =CH₂CN CH2SCH2CH(CH3)2 3CF3-C6H4 \mathbb{R}^3 2C1-C6H4 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 (CH₂) 3CH₃ CH₂CH (CH₃)₂ NHCH2CH (CH3) 2

CH2CH2CH(CH3)2

C₆H₅

 ${\rm CH_2-cyclopentyl}$ ${\rm CH_2O\,(C_6H_5)}$ ${\rm CH_2SCH_2CH\,(CH_3)\,2}$ ${\rm CH_2NHCH_2CH\,(CH_3)\,2}$ ${\rm OCH_2CH\,(CH_3)\,2}$ ${\rm NHCH_2CH\,(CH_3)\,2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2Cl-C_6H_4}$ ${\rm R^1=OCF_3,\ R^2=CH_2CN\ R^3}$

R²=OCF₃, R²=CH₂CI R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₂H, R²=CH₂CN R³ (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅) CH₂SCH₂CH(CH₃)₂ CH₂NHCH₂CH(CH₃)₂ OCH₂CH(CH₃)₂

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=NO_2$, $R^2=CH_2CN$ B3 (CH₂) 3CH₃ CH2CH(CH3)2 СH₂СH₂СH (СH₃)₂ CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CH_2C(0)NH_2$ R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O(C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2

OCH2CH (CH3) 2

NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C6H4

 $R^1 = Br$, $R^2 = CH_2C(0)NH_2$ \mathbb{R}^3 (CH₂)₃CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O(C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃) 2 NHCH2CH (CH3)2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CH_2C(0)NH_2$ R³ (CH₂) 3CH₃ сн₂сн (сн₃) ₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 осн₂сн (сн₃) ₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCH_3$, $R^2 = CH_2C(0)NH_2$ R3 (CH₂) 3CH₃ CH2CH (CH3) 2

Сн₂Сн₂Сн (Сн₃) 2

CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)2
CH₂NHCH₂CH(CH₃)2
OCH₂CH(CH₃)2
NHCH₂CH(CH₃)2
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₃, R²=CH₂C(O)NH₂

B³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃+C₆H₄

 R^{1} =OCF₂H, R^{2} =CH₂C(O)NH₂ R^{3} (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyI CH₂O(C₆H₅) CH₂SCH₂CH(CH₃)₂

CH2NHCH2CH (CH3) 2

осн₂сн (сн₃) ₂ NHCH2CH (CH3)2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=NO_2$, $R^2=CH_2C(O)NH_2$ R3 (CH₂)₃CH₃ СH₂СH (СH₃) ₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) СH₂SCH₂CH (СH₃) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R¹=Cl,

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂

 ${
m CH_2SCH_2CH\,(CH_3)\,2}$ ${
m CH_2NHCH_2CH\,(CH_3)\,2}$ ${
m OCH_2CH\,(CH_3)\,2}$ ${
m NHCH_2CH\,(CH_3)\,2}$

C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=Br,

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{2}=$$
 N
 CF_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{2} = N \qquad CF_{3}$$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂

 $OCH_2CH (CH_3)_2$ $NHCH_2CH (CH_3)_2$ C_6H_5 $3CF_3-C_6H_4$ $2C1-C_6H_4$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH(CH₃)₂
CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂

 ${\rm CH_2NHCH_2CH~(CH_3)_2}$ ${\rm OCH_2CH~(CH_3)_2}$ ${\rm NHCH_2CH~(CH_3)_2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2C1-C_6H_4}$

$$R^{1}=C1$$
,

 $R^{2}=$
 CH_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)

 $\begin{array}{l} \text{CH}_2\text{SCH}_2\text{CH} \, (\text{CH}_3) \, 2 \\ \text{CH}_2\text{NHCH}_2\text{CH} \, (\text{CH}_3) \, 2 \\ \text{OCH}_2\text{CH} \, (\text{CH}_3) \, 2 \\ \text{NHCH}_2\text{CH} \, (\text{CH}_3) \, 2 \\ \text{C}_6\text{H}_5 \\ \text{3CF}_3\text{-C}_6\text{H}_4 \\ \text{2C1-C}_6\text{H}_4 \end{array}$

$$R^{1}=I$$
,
 $O-N$
 $R^{2}=$
 N
 CH_{3}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^{1}=OCH_{3}$$
, CH_{2}

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl

 ${
m CH_{2}O\,(C_{6}H_{5})}$ ${
m CH_{2}SCH_{2}CH\,(CH_{3})\,2}$ ${
m CH_{2}NHCH_{2}CH\,(CH_{3})\,2}$ ${
m OCH_{2}CH\,(CH_{3})\,2}$ ${
m NHCH_{2}CH\,(CH_{3})\,2}$ ${
m C_{6}H_{5}}$ ${
m 3CF_{3}-C_{6}H_{4}}$ ${
m 2C1-C_{6}H_{4}}$

$$R^1 = OCF_3$$
,
 CH_3

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³ (CH₂) ₃CH₃ CH₂CH (CH₃) ₂ CH₂CH₂CH (CH₃) ₂ CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃) 2
CH₂NHCH₂CH(CH₃) 2
OCH₂CH(CH₃) 2
NHCH₂CH(CH₃) 2
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1=NO_2$$
,
 CH_3

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^{1}$$
=Cl, R^{2} =CH $_{2}$ Cl R^{3}
(CH $_{2}$) $_{3}$ CH $_{3}$
CH $_{2}$ CH (CH $_{3}$) $_{2}$
CH $_{2}$ CH $_{2}$ CH (CH $_{3}$) $_{2}$
CH $_{2}$ -cyclopentyl
CH $_{2}$ O (C $_{6}$ H $_{5}$)

 $\begin{array}{l} {\rm CH_2SCH_2CH\ (CH_3)\ 2} \\ {\rm CH_2NHCH_2CH\ (CH_3)\ 2} \\ {\rm OCH_2CH\ (CH_3)\ 2} \\ {\rm NHCH_2CH\ (CH_3)\ 2} \\ {\rm C_6H_5} \\ {\rm 3CF_3-C_6H_4} \\ {\rm 2C1-C_6H_4} \end{array}$

R¹=Br, R²=CH₂Cl R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2Cl-C₆H₄

R¹=I, R²=CH₂Cl R³ (CH₂)₃CH₃ CH₂CH(CH₃)₂ CH₂CH₂CH(CH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅) CH₂SCH₂CH(CH₃)₂ CH₂NHCH₂CH(CH₃)₂ OCH₂CH(CH₃)₂ NHCH₂CH(CH₃)₂ C₆H₅

3CF3-C6H4 2C1-C6H4 $R^1=OCH_3$, $R^2=CH_2C1$ RЗ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R^2 =CH₂C1 R³ $(CH_2)_3CH_3$ CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅

3CF₃-C₆H₄

2C1-C6H4

 R^1 =OCF₂H, R^2 =CH₂Cl R³ (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O(C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3)2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=NO_2$, $R^2=CH_2C1$ \mathbb{R}^3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

$$R^{2}=C1,$$

$$R^{2}=/$$

$$N = 0$$

$$H$$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH(CH₃)₂
CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

$$R^{1}=I,$$

$$R^{2}=\bigvee_{N=0}^{N-0}$$

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C6H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂

OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C_6H_5 3CF₃- C_6H_4 2C1- C_6H_4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{1}=C1$$
, $N\longrightarrow NH$

B³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂

 ${\rm CH_2NHCH_2CH\,(CH_3)_2}$ ${\rm OCH_2CH\,(CH_3)_2}$ ${\rm NHCH_2CH\,(CH_3)_2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2C1-C_6H_4}$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)

 ${
m CH_2SCH_2CH\,(CH_3)\,2}$ ${
m CH_2NHCH_2CH\,(CH_3)\,2}$ ${
m OCH_2CH\,(CH_3)\,2}$ ${
m NHCH_2CH\,(CH_3)\,2}$ ${
m C_6H_5}$ ${
m 3CF_3-C_6H_4}$ ${
m 2C1-C_6H_4}$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH(CH₃)₂
CH₂-cyclopentyl

 ${\rm CH_2O\,(C_6H_5)}$ ${\rm CH_2SCH_2CH\,(CH_3)\,2}$ ${\rm CH_2NHCH_2CH\,(CH_3)\,2}$ ${\rm OCH_2CH\,(CH_3)\,2}$ ${\rm NHCH_2CH\,(CH_3)\,2}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2C1-C_6H_4}$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂

CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH(CH3)2 OCH2CH (CH3) 2 NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CH_2OH$ RЗ (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH2O(C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R¹=Br, R²=CH₂OH _R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ СH₂CH₂CH (СH₃)₂ CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂ C₆H₅ 3CF3~C6H4 2C1-C6H4 $R^1=I$, $R^2=CH_2OH$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3~C6H4 2C1-C6H4 R^1 =OCH₃, R^2 =CH₂OH R3 (CH2.),3CH3 CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

法律以及"作品。"

R¹=OCF₃, R²=CH₂OH

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₂H, R²=CH₂OH R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^{1}=NO_{2}$, $R^{2}=CH_{2}OH$ R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$

CH2-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH(CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^{1}=C1,$ $\mathbb{R}^{2_{\infty}}$ R³ (CH₂) 3CH₃ СH₂CH (СH₃) ₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

2C1-C6H4

R1=Br, R²- \mathbb{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$,

 ${\rm OCH_2CH\,(CH_3)_{\,2}}$ ${\rm NHCH_2CH\,(CH_3)_{\,2}}$ ${\rm C_6H_5}$ ${\rm 3CF_3-C_6H_4}$ ${\rm 2Cl-C_6H_4}$

R¹=OCH₃,

R²= 0

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂

CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

2C1-C6H4

СH₂CH (СH₃) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1=OCF_2H$, $R^2=$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C6H5 3CF3-C6H4

2C1-C6H4

 $R^1=NO_2$, $R^2=$ RЭ (CH₂) 3CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C6H5 3CF3-C6H4 2C1-C6H4 $R^2 =$ CO RЗ (CH₂) 3CH₃ СH₂CH (СH₃)₂ CH₂CH₂CH (CH₃)₂ CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2

9405153A1 1 >

OCH2CH(CH3)2

NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C6H4

$$R^{1}=OCH_{3}$$
,
 $R^{2}=CO$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂

OCH2CH (CH3) 2

CH₂SCH₂CH (CH₃) 2

CH2NHCH2CH (CH3)2

OCH2CH (CH3) 2

NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=Br, R²=CH₂-O-C-CH₃

R³
(CH₂) 3CH₃
CH₂CH (CH₃) 2
CH₂CH₂CH (CH₃) 2
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃) 2
CH₂NHCH₂CH (CH₃) 2
OCH₂CH (CH₃) 2
NHCH₂CH (CH₃) 2
NHCH₂CH (CH₃) 2
C6H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=I, R²=CH₂-O-C-C R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅

3CF3-C6H4 2C1-C6H4 R^1 =OCH₃, $R^2 = CH_2 - O - C - CH_3$ R^3 (CH₂)₃CH₃ СH₂СH (СH₃) ₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^2 =CH₂-O-C-CH₃ R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH (CH3) 2 CH2-cyclopentyl

СH₂O (С₆H₅)

CH2SCH2CH (CH3) 2

OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂

C₆H₅

CH2NHCH2CH (CH3) 2

3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CH₂-C-OCH₃ \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1=NO_2$, $R^2=CH_2-O-C-CH_3$ R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) ₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

R¹=C1, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄

والمراجع والمراجع المحادثين والمرتباني والمستعلقات

R¹=Br, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂

NHCH₂CH (CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

2C1-C6H4

R¹=1, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R¹=OCH₃, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄

2C1-C6H4

R¹=OCF₃, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₂H, R²=C-OCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

2C1-C6H4

R1=C1, R2=C-NHCH3 RЗ (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2~cyclopentyl CH20(C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

 $R^1=Br$, $R^2=C-NHCH_3$ RЗ (CH₂)₃CH₃ CH2CH(CH3)2 CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = I$. R²=C-NHCH₂ $_{\mathbf{R}}$ 3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

2C1-C6H4

 R^{1} =OCH₃, R^{2} =C-NHCH₃ R3 (CH₂) 3CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R^1 =OCF₃, R^2 =C-NHCH₃ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

R¹=OCF₂H, R²=C-NHCH

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=NO₂, R²=C-NHC R³ (CH₂)₃CH₃ CH₂CH₂(CH₃)₂ CH₂CH₂CH₂(CH₃)₂ CH₂-cyclopentyl CH₂O₄(C₆H₅) CH₂SCH₂CH₂CH₃(CH₃)₂ CH₂NHCH₂CH₃(CH₃)₂ OCH₂CH₂CH₃(CH₃)₂ NHCH₂CH₃(CH₃)₂ C6H₅ 3CF₃-C6H₄ 2C1-C₆H₄

 \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) ₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 ВЗ (CH₂) 3CH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹= I, R²=CH=C

C=N

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2Cl-C₆H₄

R¹=OCH₃, R²=CH=C

C=N

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

CH2) 3CH3
CH2CH (CH3) 2
CH2CH2CH (CH3) 2
CH2-Cyclopentyl
CH2O(C6H5)
CH2SCH2CH(CH3) 2
CH2NHCH2CH(CH3) 2
OCH2CH(CH3) 2
NHCH2CH(CH3) 2

CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)

2C1-C6H4

CH₂SCH₂CH (CH₃) 2 CH₂NHCH₂CH (CH₃) 2 OCH₂CH (CH₃) 2 NHCH₂CH (CH₃) 2 C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄ R¹=OCH₃,

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

91 CH2CH (CH3) 2 СH₂СH₂CH (СH₃)₂ CH₂-cyclopentyl CH₂O(C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2O (C6H5) CH2SCH2CH (CH3) 2

(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

CH₂)₃CH₃

CH₂CH (CH₃)₂

CH₂CH₂CH (CH₃)₂

CH₂-cyclopentyl

CH₂O (C₆H₅)

CH₂SCH₂CH (CH₃)₂

CH₂NHCH₂CH (CH₃)₂

OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂

C₆H₅

3CF₃-C₆H₄

2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅

(CH₂) 3CH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂

CH2CH2CH(CH3)2

CH2-cyclopentyl

CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
R³
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{1}$$
=Cl,

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 $R^1=Bx$, R²=CH=CHC-N \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R²=CH=CHC- N B3 (CH₂) 3CH₃ CH2CH (CH3)2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2

CH2NHCH2CH (CH3) 2

OCH2CH (CH3) 2

NHCH2CH (CH3)2

C₆H₅

3CF3-C6H4

2C1-C6H4

R¹=OCH₃, R²=CH=CHC- N R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl $CH_{2}O(C_{6}H_{5})$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R²=CH=CHC-N R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
,
$$R^2 = CH = CHC - N$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅

3CF3-C6H4 $2C1-C_{6}H_{4}$ R1=C1, R2=CH=CHCOCH3 \mathbf{R}^3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R¹=Br, R²=CH=CHCOCH₃ (CH₂) 3CH3 CH2CH (CH3) 2 СH₂CH₂CH (СH₃)₂ CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅

3CF3-C6H4

2C1-C6H4

 $R^1 = I$, $R^2 = CH = CHCOCH_3$ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R²=CH=CHCOCH₃ \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C6H5 3CF3-C6H4 2C1-C6H4

```
R<sup>2</sup>=CH=CHCOCH<sub>3</sub>
 ß3
 (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
 CH2CH (CH3) 2
 CH2CH2CH(CH3)2
 CH2-cyclopentyl
 CH2O (C6H5)
 CH2SCH2CH (CH3) 2
CH2NHCH2CH (CH3) 2
OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
NHCH2CH (CH3)2
C<sub>6</sub>H<sub>5</sub>
3CF3-C6H4
2C1-C_6H_4
         R1=OCF2H,
         R<sup>2</sup>=CH=CHCOCH<sub>3</sub>
R3
 (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
CH2CH (CH3) 2
CH2CH2CH (CH3) 2
CH2-cyclopentyl
CH2O (C6H5)
CH2SCH2CH (CH3) 2
CH2NHCH2CH (CH3) 2
OCH2CH (CH3) 2
NHCH2CH (CH3) 2
C<sub>6</sub>H<sub>5</sub>
3CF3-C6H4
2C1-C6H4
```

```
R^1 = NO_2, R^2 = CH = CHCOCH_3
 \mathbb{R}^3
  (CH<sub>2</sub>) 3CH<sub>3</sub>
  CH2CH (CH3) 2
 CH2CH2CH(CH3)2
 CH2-cyclopentyl
 CH<sub>2</sub>O (C<sub>6</sub>H<sub>5</sub>)
 CH<sub>2</sub>SCH<sub>2</sub>CH (CH<sub>3</sub>) 2
 CH2NHCH2CH(CH3)2
 OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
 NHCH2CH (CH3) 2
 C<sub>6</sub>H<sub>5</sub>
 3CF3-C6H4
 2C1-C6H4
       R^1=C1, R^2=CH=CH_2
<sub>R</sub>3
 (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
CH2CH (CH3) 2
CH2CH2CH(CH3)2
CH2-cyclopentyl
CH<sub>2</sub>O(C<sub>6</sub>H<sub>5</sub>)
CH2SCH2CH(CH3)2
CH2NHCH2CH (CH3) 2
OCH2CH(CH3)2
NHCH2CH (CH3) 2
C_6H_5
3CF3-C6H4
2C1-C6H4
      R1=Br, R2=CH=CH2
RЗ
(CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub>
СH<sub>2</sub>СH (СH<sub>3</sub>) 2
```

```
CH2CH2CH(CH3)2
  CH<sub>2</sub>-cyclopentyl
  CH2O(C6H5)
  CH2SCH2CH(CH3)2
  CH2NHCH2CH (CH3)2
 осн<sub>2</sub>сн (сн<sub>3</sub>) <sub>2</sub>
 NHCH2CH (CH3)2
 C<sub>6</sub>H<sub>5</sub>
 3CF3-C6H4
 2C1-C6H4
        R^1=I, R^2=CH=CH_2
R3
 (CH<sub>2</sub>) 3CH<sub>3</sub>
 CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
 CH2CH2CH(CH3)2
 CH<sub>2</sub>-cyclopentyl
 CH<sub>2</sub>O (C<sub>6</sub>H<sub>5</sub>)
 CH2SCH2CH (CH3) 2
CH2NHCH2CH (CH3) 2
OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
NHCH<sub>2</sub>CH (CH<sub>3</sub>) <sub>2</sub>
C6H5
3CF3-C6H4
2C1-C6H4
    R^1=OCH<sub>3</sub>, R^2=CH=CH<sub>2</sub>
 (CH<sub>2</sub>) 3CH<sub>3</sub>
CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH(CH3)2
CH2-cyclopentyl
CH20 (C6H5)
CH2SCH2CH (CH3) 2
CH2NHCH2CH (CH3) 2
```

OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₃, R²=CH=CH₂
R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₂H, R²=CH=CH₂

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄

R¹=NO₂, R²=CH=CH,

R³

(CH₂)₃CH₃

CH₂CH(CH₃)₂

CH₂CH₂CH(CH₃)₂

CH₂-cyclopentyl

CH₂O(C₆H₅)

CH₂SCH₂CH(CH₃)₂

CH₂NHCH₂CH(CH₃)₂

OCH₂CH(CH₃)₂

NHCH₂CH(CH₃)₂

CH₅

3CF₃-C₆H₄

2C1-C₆H₄

 R^1 =C1, R^2 =CH=C CNH_2 CNH_2 CNH_2 CNH_2 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=Br, R²=CH=C CNH₂

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^1 = I$, $R^2 = CH = C$ CNH_2 CNH_2

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
, $R^2 = CH = C$

$$CN$$

$$CN$$

$$CN$$

$$CN$$

$$CN$$

$$CN$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^1=I$$
, $R^2=CH=C$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopenty¹
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1$$
=OCF₃, R^2 =CH=C

CN

 R^3
(CH₂)₃CH₃

CH₂)₃CH₃

CH₂CH (CH₃)₂

CH₂CH₂CH (CH₃)₂

CH₂-cyclopentyl

CH₂O (C₆H₅)

CH₂SCH₂CH (CH₃)₂

CH₂NHCH₂CH (CH₃)₂

OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂

C₆H₅

3CF₃-C₆H₄

2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
, $R^2 = CH = C$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

```
R^1=OCH<sub>3</sub>,
       R<sup>2</sup>=C-NH-OCH<sub>2</sub>CH=CH<sub>2</sub>
 \mathbb{R}^3
  (CH<sub>2</sub>) 3CH<sub>3</sub>
 CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
 CH2CH2CH(CH3)2
 CH<sub>2</sub>-cyclopentyl
 CH2O(C6H5)
 CH2SCH2CH(CH3)2
 CH2NHCH2CH(CH3)2
 OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
 NHCH2CH (CH3) 2
 C<sub>6</sub>H<sub>5</sub>
 3CF3-C6H4
 2C1-C6H4
     R1=OCF3,
      R<sup>2</sup>=C-NH-OCH<sub>2</sub>CH=CH<sub>2</sub>
R3
 (CH<sub>2</sub>) 3CH<sub>3</sub>
CH2CH (CH3) 2
CH2CH2CH(CH3)2
CH2-cyclopentyl
CH<sub>2</sub>O (C<sub>6</sub>H<sub>5</sub>)
CH2SCH2CH (CH3) 2
CH2NHCH2CH (CH3) 2
OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
NHCH2CH (CH3) 2
C<sub>6</sub>H<sub>5</sub>
3CF3-C6H4
2C1-C6H4
```

```
R<sup>1</sup>=OCF<sub>2</sub>H,
       R<sup>2</sup>="-NH-OCH<sub>2</sub>CH=CH<sub>2</sub>
 \mathbb{R}^3
  (CH<sub>2</sub>) 3CH<sub>3</sub>
 CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
 CH2CH2CH(CH3)2
 CH2-cyclopentyl
 CH<sub>2</sub>O (C<sub>6</sub>H<sub>5</sub>)
 CH2SCH2CH (CH3) 2
 CH2NHCH2CH (CH3) 2
осн<sub>2</sub>сн (сн<sub>3</sub>) <sub>2</sub>
NHCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
C<sub>6</sub>H<sub>5</sub>
 3CF3-C6H4
 2C1-C6H4
     R^1 = NO_2
      R^2=C-NH-OCH<sub>2</sub>CH=CH<sub>2</sub>
R3
 (CH<sub>2</sub>) 3CH<sub>3</sub>
 CH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
CH2CH2CH(CH3)2
CH2-cyclopentyl
CH20 (C6H5)
CH2SCH2CH (CH3) 2
CH2NHCH2CH (CH3) 2
OCH<sub>2</sub>CH (CH<sub>3</sub>)<sub>2</sub>
NHCH2CH (CH3) 2
C_6H_5
3CF3-C6H4
2C1-C6H4
```

2C1-C6H4

$$R^1$$
-C1, R^2 -CNH-OCH₃

R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

RЗ (CH₂)₃CH₃ CH2CH (CH3)2 CH2CH2CH (CH3) 2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

100

R²=CNH-OCH₃ R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl сн₂о (с₆н₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 R^1 =OCH₃, R^2 =CNH-OCH₃ R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅

3CF3-C6H4

2C1-C6H4

 R^1 =OCF₃, R^2 =CNH-OCH₃ R3 (CH₂) 3CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

R1=OCF2H, R2=CNH-OCH3 R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1 = NO_2$, $R^2 = CNH - OCH_3$ _R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1=C1$, $R^2=CNHCH_2$ \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3)2

CH2CH2CH (CH3) 2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2

OCH2CH (CH3) 2 NHCH2CH (CH3) 2

C₆H₅ 3CF3-C6H4

2C1-C6H4

R¹=Br, R²=CNHCH₂ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl сн₂0 (С₆н₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 R¹=I, R²=CNHCH₂ R³ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5

3CF3-C6H4

2C1-C6H4

101

R1=OCH3, R²=CNHCH₂

R³ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4

> R1-OCF3, r²≕Cnhch₂

R3 (CH₂) 3CH₃ СH₂CH (СH₃) ₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂

C₆H₅ 3CF3-C6H4 2C1-C6H4

Mark Stylen Co. Life

102

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹= NO₂, R²=CNHCH₂

R³
(CH₂)'₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl

 $\begin{array}{l} {\rm CH_{2}O\,(C_{6}H_{5})} \\ {\rm CH_{2}SCH_{2}CH\,(CH_{3})\,2} \\ {\rm CH_{2}NHCH_{2}CH\,(CH_{3})\,2} \\ {\rm OCH_{2}CH\,(CH_{3})\,2} \\ {\rm NHCH_{2}CH\,(CH_{3})\,2} \\ {\rm C_{6}H_{5}} \end{array}$

3CF₃-C₆H₄ 2C1-C₆H₄ R¹=C1, R²=C-NH R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

R¹-Br, R²-C-NH-

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=1, R²=C-NH
R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCH₃, R²=C-NH R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

$$R^1$$
=OCF₃, R^2 =C-NH

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopenty1
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃C₆H₄
2C1-C₆H₄

103 R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O(C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CN(CH_3)_2$ <u>в</u>3 (CH₂) 3CH₃ СH₂CH (СH₃) ₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

C₆H₅

3CF3-C6H4

2C1-C6H4

 $R^1=Br$, $R^2=CN(CH_3)_2$ RЗ (CH₂) 3CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=I$, $R^2=CN(CH_3)_2$ R3 (CH₂) 3CH₃ СH₂СH (СH₃) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1 = OCF_3$, $R^2 = CN(CH_3)_2$ ß3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

 $R^1 = OCF_2H$, $R^2 = CN(CH_3)_2$ R3 (CH₂) 3CH₃ СH₂СH (СH₃) ₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = CN (CH_3)_2$ вЗ (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2

C6H5

3CF3-C6H4

2C1-C6H4

R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R1=Br, R2=C-NHCH3 R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4

2C1-C6H4

R¹=I, R²=C-NHCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
CCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C6H₅
3CF₃-C₆H₄
2C1-C₆H₄

105 $|_{\mathbb{R}^3}$ (CH₂)₃CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl CH2O(C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R1=OCF2H, R2=C-NHCH3 R³. (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅

3CF3-C6H4

2C1-C6H4

> $R^1 = NO_2$, $R^2 = C - NHCH_3$ \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3)2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = OCH_3$$
,

 CF_3
 $R^2 = C - NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

$$R^{1}=OCF_{2}H$$
, CF_{3}
 $R^{2}=C-NH$

R³
(CH₂) 3CH₃
CH₂CH (CH₃) 2
CH₂CH₂CH (CH₃) 2
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃) 2
CH₂NHCH₂CH (CH₃) 2
NHCH₂CH (CH₃) 2
NHCH₂CH (CH₃) 2
NHCH₂CH (CH₃) 2
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^1 = NO_2$$
,

 $R^2 = C - NH$
 CF_3

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅

$$R^1=C1$$
, $R^2=C-NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

$$R^{1}$$
=Br, R^{2} =C-NH- $\langle \bigcirc \rangle$

B³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

3CF3-C6H4

2C1-C6H4

3CF3-C6H4

2C1-C6H4

2C1-C6H4

$$R^1 = NO_2$$
, $R^2 = C - NH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
CH₆H₅
3CF₃-C₆H₄

2C1-C6H4

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
SCH₃CH₄
2C1-C₆H₄

3CF3-C6H4

2C1-C6H4

109.

TABLE 2

$$R^{1}$$
=C1, R^{2} =CN
 R^{3}
 $(CH_{2})_{3}CH_{3}$
 $CH_{2}CH_{2}(CH_{3})_{2}$
 $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$
 CH_{2} -cyclopentyl
 $CH_{2}O_{3}(C_{6}H_{5})$
 $CH_{2}SCH_{2}CH_{3}(CH_{3})_{2}$
 $CH_{2}NHCH_{2}CH_{3}(CH_{3})_{2}$
 $OCH_{2}CH_{3}(CH_{3})_{2}$
 $NHCH_{2}CH_{3}(CH_{3})_{2}$

$$CH_2SCH_2CH (CH_3) 2$$
 $CH_2NHCH_2CH (CH_3) 2$
 $OCH_2CH (CH_3) 2$
 $NHCH_2CH (CH_3) 2$
 C_6H_5
 $3CF_3-C_6H_4$
 $2C1-C_6H_4$
 R^1-OCF_3, R^2-CN
 R^3
 $(CH_2) 3CH_3$

CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₂H, R²=CN

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^{1}=NO_{2}$, $R^{2}=CN$ R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}-cyclopenty1$ $CH_{2}O_{3}(C_{6}H_{5})$ $CH_{2}SCH_{2}CH_{3}(CH_{3})_{2}$

CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=C1$, $R^2=CNH_2$ R3 (CH₂)₃CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ $3CF_3-C_6H_4$ 2C1-C6H4

R¹=Br, R²=CNH₂

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
3CF₃-C₆H₄
2C1-C₆H₄

 $R^1 = OCF_3$, $R^2 = CNH_2$ R3 (CH₂) 3CH₃ СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH₂NHCH₂CH (CH₃)₂ осн₂сн (сн₃) ₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 = OCF₂H, R^2 = CNH₂ ВЭ (CH₂) 3CH₃ CH₂CH (CH₃)₂ СН₂СН₂СН.(СН₃).₂-. CH₂-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

R¹= NO₂, R²=CNH₂

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 R^{1} =Br, R^{2} =C\(\text{CH}\) R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{3}(CH_{3})_{2}$

CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_3$, $R^2 = C^{\infty}CH$ RЗ (CH₂)₃CH₃ СH₂CH (СH₃)₂ CH2CH2CH (CH3) 2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 = C = CH$ R3

(CH₂) 3CH₃

СH₂CH (СH₃) ₂

CH20 (C6H5)

CH2CH2CH(CH3)2

CH2-cyclopentyl

CH2SCH2CH (CH3) 2

CH2NHCH2CH(CH3)2

OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = C = CH$ \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4

2C1-C6H4

R¹=Br, R²=COH

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

 $R^1 = OCF_3$, $R^2 = COH$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹= OCF₂H, R²=COH

R³

(CH₂) ₃CH₃

CH₂CH (CH₃) ₂

CH₂CH₂CH (CH₃) ₂

CH₂C (C₆H₅)

CH₂SCH₂CH (CH₃) ₂

CH₂SCH₂CH (CH₃) ₂

CH₂CH(CH₃) ₂

CH₂CH(CH₃) ₂

OCH₂CH(CH₃) ₂

NHCH₂CH(CH₃) ₂

SCF₃-C₆H₄

2C1-C₆H₄

 $R^{1} = NO_{2}, R^{2} = COH$ R^{3} $(CH_{2})_{3}CH_{3}$ $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}CH_{2}CH_{3}(CH_{3})_{2}$ $CH_{2}NHCH_{2}CH_{3}(CH_{3})_{2}$ $OCH_{2}CH_{3}(CH_{3})_{2}$ $NHCH_{2}CH_{3}(CH_{3})_{2}$ $C_{6}H_{5}$

3CF3-C6H4

2C1-C6H4

R¹=C1, R²=COCH₃

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C6^H5
3CF₃-C₆H₄
2C1-C₆H₄

R¹-Br, R²-COCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄

2C1-C6H4

R¹= OCF₃, R²=COCH₃

R³

(CH₂)₃CH₃

CH₂CH(CH₃)₂

CH₂CH₂CH(CH₃)₂

CH₂-cyclopentyl

CH₂O(C₆H₅)

CH₂SCH₂CH(CH₃)₂

CH₂NHCH₂CH(CH₃)₂

OCH₂CH(CH₃)₂

NHCH₂CH(CH₃)₂

NHCH₂CH(CH₃)₂

C₆H₅

3CF₃-C₆H₄

2C1-C₆H₄

R¹=OCF₂H, R²=COCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
SCF₃-C₆H₄
2C1-C₆H₄

 $R^1 = NO_2$, $R^2 = COCH_3$ _R3 (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 осн₂сн (сн₃) ₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 RЗ (CH₂) 3CH₃ CH₂CH (CH₃)₂ СH₂CH₂CH (СH₃) ₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4

l_R3

(CH₂) 3CH₃

CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_3$, $R^2 = CH$ R3 (CH₂)₃CH₃ CH2CH (CH3)2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3)2 OCH2CH (CH3) 2 NHCH₂CH (CH₃)₂ C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 =$ \mathbb{R}^3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH₂-cyclopentyl

 $\begin{array}{c} \text{CH}_2\text{O}\left(\text{C}_6\text{H}_5\right) \\ \text{CH}_2\text{SCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{CH}_2\text{NHCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{OCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{NHCH}_2\text{CH}\left(\text{CH}_3\right) 2 \\ \text{C}_6\text{H}_5 \\ \text{3CF}_3\text{-C}_6\text{H}_4 \\ \text{2Cl}\text{-C}_6\text{H}_4 \end{array}$

R¹= NO₂, R²=CH

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄

R²=C1, R²=COCH

R³

(CH₂)₃CH₃

CH₂CH(CH₃)₂

CH₂CH₂CH(CH₃)₂

CH₂-cyclopentyl

CH₂O(C₆H₅)

CH₂SCH₂CH(CH₃)₂

CH₂NHCH₂CH(CH₃)₂

2C1-C6H4

OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=Br$, $R^2=COCH_3$ ВЗ (CH2) 3CH3 CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl CH2O (C6H5) CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3)2 CH2CH2CH(CH3)2

CH2-cyclopentyl

CH2SCH2CH (CH3) 2

CH2NHCH2CH (CH3) 2

OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2

C₆H₅

CH2O (C6H5)

3CF3-C6H4 2C1-C6H4 $R^1 = OCF_2H$, $R^2 = COCH_3$ \mathbb{R}^3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH2O(C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH(CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1 = NO_2$, $R^2 = COCH_3$ R3 (CH2) 3CH3... СH₂CH (СH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl CH20 (C6H5) CH2SCH2CH (CH3) 2 CH2NHCH2CH (CH3) 2 OCH2CH (CH3) 2 NHCH2CH (CH3) 2 C6H5 3CF3-C6H4 2C1-C6H4

R¹=C1, R²=CH₂OH

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=Br, R²=CH₂OH R³ (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂ CH₂-cyclopentyl CH₂O (C₆H₅) CH₂SCH₂CH (CH₃)₂ CH₂NHCH₂CH (CH₃)₂ OCH₂CH (CH₃)₂ NHCH₂CH (CH₃)₂ C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

 R^{1} =OCF₃, R^{2} =CH₂OH R^{3} (CH₂)₃CH₃ CH₂CH (CH₃)₂ CH₂CH₂CH (CH₃)₂

CH2-cyclopentyl CH₂O (C₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =OCF₂H, R^2 =CH₂OH R³ (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH2-cyclopentyl СH₂O (С₆H₅) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 $R^1=NO_2$, $R^2=CH_2OH$

R-MO₂, R-MCH₂
R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂

NHCH2CH (CH3) 2 C₆H₅ 3CF3-C6H4 2C1-C6H4 R^1 =C1, R^2 =CNHCH₂ R3 (CH₂) 3CH₃ CH₂CH (CH₃)₂ CH2CH2CH(CH3)2 CH2-cyclopentyl $CH_2O(C_6H_5)$ CH₂SCH₂CH (CH₃) 2 CH2NHCH2CH (CH3)2 OCH₂CH (CH₃)₂ NHCH2CH (CH3) 2 C_6H_5 3CF3-C6H4 2C1-C6H4 R1=Br, R2=CNHCH3 R3 (CH₂) 3CH₃ CH2CH (CH3) 2 CH2CH2CH(CH3)2 CH₂-cyclopentyl CH20 (C6H5) CH2SCH2CH(CH3)2 CH2NHCH2CH (CH3) 2 OCH₂CH (CH₃)₂

NHCH2CH(CH3)2

C6H5

3CF3-C6H4

2C1-C₆H₄

O
R¹= OCF₃, R²=CNHCH₃

R³
(CH₂)₃CH₃
CH₂CH₂(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂

CH₂SCH₂CH (CH₃) 2 CH₂NHCH₂CH (CH₃) 2 OCH₂CH (CH₃) 2 NHCH₂CH (CH₃) 2 C₆H₅ 3CF₃-C₆H₄ 2C1-C₆H₄

R¹= OCF₂H, R²=CNHCH₃

R³
(CH₂)₃CH₃
CH₂CH(CH₃)₂
CH₂CH₂CH(CH₃)₂
CH₂-cyclopentyl
CH₂O(C₆H₅)
CH₂SCH₂CH(CH₃)₂
CH₂NHCH₂CH(CH₃)₂
OCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
NHCH₂CH(CH₃)₂
C₆H₅
3CF₃-C₆H₄

R¹= NO₂, R²=CNHCH₃

R³

(CH₂) ₃CH₃

CH₂CH (CH₃) ₂

CH₂CH₂CH (CH₃) ₂

CH₂-cyclopentyl

CH₂O (C₆H₅)

CH₂SCH₂CH (CH₃) ₂

CH₂NHCH₂CH (CH₃) ₂

OCH₂CH (CH₃) ₂

NHCH₂CH (CH₃) ₂

C₆H₅

R³

3CF₃-C₆H₄

2C1-C₆H₄

R¹=C1,

CN

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=Br, CN R²=C=C CNH₂ 0

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
OCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

R¹=OCF₃, CN R²=C=C

CH₂)₃CH₃

CH₂CH (CH₃)₂

CH₂CH₂CH (CH₃)₂

CH₂-cyclopentyl

CH₂O (C₆H₅)

CH₂SCH₂CH (CH₃)₂

CH₂NHCH₂CH (CH₃)₂

OCH₂CH (CH₃)₂

NHCH₂CH (CH₃)₂

CG₆H₅

3CF₃-C₆H₄

2C1-C6H4

$$2C1-C_6H_4$$

$$R^1=OCF_2H,$$

$$CN$$

$$R^2=C=C$$

$$CNH_2$$

R³
(CH₂)₃CH₃
CH₂CH (CH₃)₂
CH₂CH₂CH (CH₃)₂
CH₂-cyclopentyl
CH₂O (C₆H₅)
CH₂SCH₂CH (CH₃)₂
CH₂NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
NHCH₂CH (CH₃)₂
C₆H₅
3CF₃-C₆H₄
2C1-C₆H₄

Formulation

5

10

Compositions of this invention comprising the active compounds of Formula I or II will generally be used in formulation with an agriculturally suitable carrier comprising a liquid or solid diluent or an organic solvent. Useful formulations may be in the form that includes dusts, granules, pellets, solutions, suspensions, emulsions, wettable powders, emulsifiable concentrates, dry flowables and the like, consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred

BNSDQCID: <WO 9405153A1 F >

liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up 100 weight percent.

	We	ight Perce	ent
Wettable Powders	<u>Active</u> Ingredient 25-90	Diluent 0-74	Surfactant
Oil Suspensions, Emulsions, Solutions, (including Emulsifiable Concentrates)	5-50	40-95	0-15
Dusts	1-25	70-99	0-5
Granules and Pellets	0.01-99	5-99.99	0-15
High Strength Compositions	90-99	0-10	0-2

et al., Handbook of Insecticide Dust Diluents and
Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey.
Typical liquid diluents and solvents are described in
Marsden, Solvents Guide, 2nd Ed., Interscience, New
York, 1950. McCutcheon's Detergents and Emulsifiers

Annual, Allured Publ. Corp., Ridgewood, New Jersey, as
well as Sisely and Wood, Encyclopedia of Surface Active
Agents, Chemical Publ. Co., Inc., New York, 1964, list
surfactants and recommended uses. All formulations can
contain minor amounts of additives to reduce foam,
caking, corrosion, microbiological growth, etc.

Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer mill or fluid energy mill. Water-dispersible granules can be produced be agglomerating a fine powder composition; see for example, Cross et al., Pesticide Formulations,

10

119

Washington, D.C., 1988, pp 251-259. Suspensions are prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can also be prepared as taught in DE 3,246,493.

For further information regarding the art of formulation, see U.S. 3,235,361, Col. 6, line 16

15 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4;

20 Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by
25 weight and all formulations are worked up in
conventional ways. Compound numbers refer to compounds
in Index Table A.

EXAMPLE A

30 Compound 1 98.5% silica aerogel 0.5% synthetic amorphous fine silica 1.0% EXAMPLE B

Wettable Powder

High Strength Concentrate

35 Compound 1 65.0%

	dodecylphenol polyethylene glycol ether	2.0%
	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%
5	EXAMPLE C	
	<u>Granule</u>	
	Compound 1	10.0%
	attapulgite granules (low volative	
	matter, 0.71/0.30 mm; U.S.S. No.	
10	25-50 sieves)	90.0%
	EXAMPLE D	
	Extruded Pellet	
	Compound 1	25.0%
	anhydrous sodium sulfate	10.0%
15	crude calcium ligninsulfonate	5.0%
	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%
	Tests results indicate that the compounds	of the
	present invention are highly active preemerge	ent and/or
20	postemergent herbicides and/or plant growth r	egulants.
	Many of them have utility for broad-spectrum	pre-
	and/or postemergence weed control in areas wh	ere
. de . d	-complete-control-of-all-vegetation-is-desired	
	around fuel storage tanks, industrial storage	
25	parking lots, drive-in theaters, around billb	
	highway and railroad structures. Some of the	_
	are useful for the control of selected grass	
	broadleaf weeds with tolerance to important a	-
	crops which include but are not limited to ba	- -
30	cotton, wheat, corn, soybeans and rice. Thos	
	in the art will appreciate that not all compo	
	equally effective against all weeds. Alterna	
	the subject compounds are useful to modify pl	ant
	arout h	

In certain instances, combinations with other herbicides having a similiar spectrum of control but a different mode of action will be particularly advantageous for resistance management.

5 UTILITY

10

15

20

Test results indicate that compositions of this invention are herbicidally active postemergence and preemergence. The compositions of this invention are particularly useful for the control of barnyardgrass (Echinochloa crus-galli) in crops especially upland and rice (Oryza sativa).

A herbicidal effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general terms, a herbicidally effective amount is a rate from 0.005 to 10 kg/ha with a preferred rate range of 0.01 to 1 kg/ha. One skilled in the art can easily determine effective application rates for desired level of weed control.

The compositions of this invention may include as active compounds the compounds of Formulas I or II alone or in combination with other commercial 25 herbicides, insecticides, or fungicides. list exemplifies some of the herbicides suitable for use in mixtures. A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control. 30 of other herbicides with which compounds of this invention can be formulated are: acetochlor, acifluorfen, acrolein, 2-propenal, alachlor, ametryn, amidosulfuron, ammonium sulfamate, amitrole, anilofos, asulam, atrazine, barban, benefin, bensulfuron methyl, bensulide, bentazon, benzofluor, benzoylprop, bifenox, 35

BN\$DOCID: <WO 9405153A1 | >

bromacil, bromoxynil, bromoxynil heptanoate, bromoxynil octanoate, butachlor, buthidazole, butralin, butylate, cacodylic acid, 2-chloro-N, N-di-2-propenylacetamide, 2-chloroallyl diethyldithiocarbamate, chloramben,

- 5 chlorbromuron, chloridazon, chlorimuron ethyl, chlormethoxynil, chlornitrofen, chloroxuron, chlorpropham, chlorsulfuron, chlortoluron, cinmethylin, cinosulfuron, clethodim, clomazone, cloproxydim, clopyralid, calcium salt of methylarsonic acid,
- 10 cyanazine, cycloate, cycluron, cyperquat, cyprazine, cyprazole, cypromid, dalapon, dazomet, dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate, desmedipham, desmetryn, dicamba, dichlobenil, dichlorprop, diclofop, diethatyl, difenzoquat,
- diflufenican, dimepiperate, dinitramine, dinoseb, diphenamid, dipropetryn, diquat, diuron, 2-methyl-4,6-dinitrophenol, disodium salt of methylarsonic acid, dymron, endothall, S-ethyl dipropylcarbamothicate, esprocarb, ethalfluralin, ethametsulfuron methyl,
- 20 ethofumesate, fenac, fenoxaprop, fenuron, salt of fenuron and trichloroacetic acid, flamprop, fluazifop, fluazifop-P, fluchloralin, flumesulam, flumipropyn, fluometuron, fluorochloridone, fluorodifen, fluoroglycofen, flupoxam, fluridone, fluroxypyr,
- 25 fluzasulfuron, fomesafen, fosamine, glyphosate, haloxyfop, hexaflurate, hexazinone, imazamethabenz, imazapyr, imazaquin, imazamethabenz methyl, imazethapyr, imazosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, karbutilate, lactofen,
- lenacil, linuron, metobenzuron, metsulfuron methyl, methylarsonic acid, monoammonium salt of methylarsonic acid, (4-chloro-2-methylphenoxy)acetic acid, S,S'-dimethyl-2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridimedicarbothicate, mecoprop,
- 35 mefenacet, mefluidide, methalpropalin, metha-

BNSDOCID: <WO 9405153A1 1 >

benzthiazuron, metham, methazole, methoxuron, metolachlor, metribuzin, 1,2-dihydropyridazine-3,6-dione, molinate, monolinuron, monuron, monuron salt and trichloroacetic acid, monosodium salt of methylarsonic acid, napropamide, naptalam, neburon, nicosulfuron, nitralin, nitrofen, nitrofluorfen, norea, norflurazon, oryzalin, oxadiazon, oxyfluorfen, paraquat, pebulate, pendimethalin, perfluidone, phenmedipham, picloram, 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-

nitroacetophenone oxime-O-acetic acid methyl ester, pretilachlor, primisulfuron, procyazine, profluralin, prometon, prometryn, pronamide, propachlor, propanil, propazine, propham, prosulfalin, prynachlor, pyrazolate, pyrazon, pyrazosulfuron ethyl, quinchlorac,

quizalofop ethyl, rimsulfuron, secbumeton, sethoxydim, siduron, simazine, 1-(a,a-dimethylbenzyl)-3-(4-methylphenyl)urea, sulfometuron methyl, trichloroacetic acid, tebuthiuron, terbacil, terbuchlor, terbuthylazine, terbutol, terbutryn, thifensulfuron

20 methyl, thiobencarb, triallate, trialkoxydim, triasulfuron, tribenuron methyl, triclopyr, tridiphane, trifluralin, trimeturon, (2,4-dichlorophenoxy)acetic acid, 4-(2,4-dichlorophenoxy)butanoic acid, vernolate, and xylachlor.

Compositions comprising a combination of a compound of Formula I or II with one or more of the following herbicides may be particularly useful for weed control in rice: bensulfuron methyl, N-[2-(2-methoxyethoxyphenyl sulfonyl]-N'-4,6-dimethoxy-1,3,5-triazin-2-ylurea, N-[{(4,6-dimethoxypyrimidin-2-yl)amino}carbonyl]-1-methyl-4-(2-methyl-2H-tetrazol-5-yl)-1H-pyrazole-5-sulfonamide, mefenacet, metsulfuron methyl, molinate, pyrazosulfuron ethyl, quinclorac, N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]-3-

methyl-5-(2,2,2-trifluoroethyl)-4-isothiazole-

BNSDOCID: <WO 9405153A1 I >

sulfonamide, 3-chloro-N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]imidazo-[1,2-a]pyridine-3-sulfonamide, S,S-dimethyl 2-(difluoromethyl)-4-(2-methylpropyl)-6-(trifluoromethyl)-3,5-pyridine-carbothioate, and butachlor.

Selective herbicidal properties of compositions comprising the compounds of Formulas I or II were discovered in greenhouse tests as described below.

INDEX TABLE A

$$R^3$$
 R^2

Compounds of Formula II wherein:

CMPD	R1	\mathbb{R}^2	R ³	mp (°C)
1	Cl	CO2CH3	OCH ₂ CH (CH ₃) ₂	oil
2	Cl	со2н	OCH ₂ CH (CH ₃) ₂	82-84
3	Cl	C (O) NH ₂	OCH ₂ CH (CH ₃) ₂	129-30
4	NO_2	C≡N	C ₆ H ₅	117-118
5	NO_2	C (O) NH ₂	С ₆ н ₅	193.5-195.5
· · · · 6	NO2		~-C ₆ H ₅	203-206
7	NO2	CO ₂ CH ₃	C ₆ H ₅	58-60.5
8	Cl	C (O) NH ₂	OCH ₂ C ₆ H ₅	137-140
9	Cl	C (O) NH ₂	OCH ₂ CH ₂ CH (CH ₃) ₂	137-139
10	Cl	CO ₂ CH ₃	och ₂ c ₆ h ₅	47-51
11	Cl	CO ₂ H	OCH ₂ C ₆ H ₅	135-138
12	Cl	со ₂ н	OCH ₂ CH ₂ CH (CH ₃) ₂	76-82
13	Cl	CO2CH3	OCH ₂ CH ₂ CH (CH ₃) ₂	oil
14	C1	со ₂ сн ₃	OCH ₂ CH CH ₂	oil
15	Cl	со ₂ н	OCH ₂ CH CH ₂	123-127

BNSDOCID: <WO . 9405153A1 | >

	16	Cl	со2сн3	OCH ₂ C (CH ₃) (OCH ₃) ₂	ā1	113-118
	17 ·	C1	СНО	OCH ₂ CH (CH ₃) ₂ · · · · ·		oil
	18	Cl	C (O) NH ₂	OCH ₂ CH CH ₂	ů:	134-136
	19	Cl	со ₂ сн ₃	OCH ₂ (2, 6F-C ₆ H ₃)	÷ 1	82-86
	20	Cl	CO ₂ CH ₃	CH ₂ OCH ₂ -C-CH ₃	28	oil
	21	Cl	со ₂ сн ₃	осн ₂ со ₂ сн ₃	*	oil
	22	C1	CH ₂ OH	OCH ₂ CH (CH ₃) ₂	**	oil
	23	Cl	со ₂ сн ₃	OCH ₂ CH $< CH_2$ CH ₂	<u> </u>	oil
	24	Cl	CH=N-OH	OCH ₂ CH (CH ₃) ₂	3.	79-81
	25	Cl	CO ₂ H	OCH ₂ (2, 6-FC ₆ H ₃)	2 -	167-171
	26	Cl	CO ₂ H	Сн ₂ 	120	89-92
				осн ₂ -ё-сн ₃		
	27	Cl	C (0) NH ₂	OCH ₂ (2, 6-FC ₆ H ₃)		175-176
	28	Cl	C (O) NH ₂	$\operatorname{och_2ch} \subset \operatorname{ch_2}^{\operatorname{CH_2}}$	· ·	149-151
	29	сı	C (O) NH ₂	CH ₂ CH ₂ OCH ₂ -C-CH ₃		115-117
	43	Cl	CO ₂ CH ₂ CH (CH ₃) ₂	OCH ₂ CH (CH ₃) ₂	, I.	105-107
	44	Cl	C=N	OCH ₂ CH (CH ₃) ₂	~. <u>.</u> .	37-41
•	45	C1	C(NH ₂)=N-OH(trans)	OCH2CH (CH3)2		81-84
	46	CI	$C(NH_2) = NOH(cis)$	OCH ₂ CH (CH ₃) ₂	- 1	110-124
	47	Cl	C (O) NHCH ₂ CF ₃	OCH ₂ CH (CH ₃) ₂	1.1	94-97
	48	Cl	C (O) NHOCH ₃	OCH ₂ CH (CH ₃) ₂		82-85
	49	NO2	C=N	CH=CHCO2CH3	40	160-165
	50	NO ₂	С (O) NH ₂	сн=снсо ₂ сн ₃	37.	150-177
	51	Cl	$C(NH_2) = N - OC(O)OCH_3$	OCH ₂ CH (CH ₃) ₂	÷	98-101
	52	Cl	$C(C1)=N-OCH_3$	OCH ₂ CH (CH ₃) ₂	*	oil
	53	C1	CH=CBr ₂	OCH ₂ CH (CH ₃) ₂		oil
	54	Cl	C≡N	3-CF ₃ C ₆ H ₄		92-98
	55	Cl	C (O) NH ₂	3-CF ₃ C ₆ H ₄	-	138-145
	56	Cl	C (O) NH ₂	3-C1C6H4		122-128
	57	C1	C (0) NH ₂	С ₆ н ₅	•	166-170

58	Cl	C (0) NH ₂	4-0CH ₃ C ₆ H ₄	180-184
59	Cl	C (0) NH ₂	4-C1C6H4	198-2 02
60	Cl	C (O) NH ₂	4-FC ₆ H ₄	167-170
61	Cı	C (0) NH ₂	4-BrC ₆ H ₄	>250
62	Cl	C (O) NH ₂	(4-CH ₂ CH ₂ CH ₂ CH ₃)C ₆ H ₄	196-200
63	Cl	C≡N	C≡CCH ₂ CH ₂ CH ₃	oil
64	Br	СНО	CH2CH2CH3	oil
65	Cl	C=N	сн ₂ сн ₂ сн ₂ сн ₂ сн ₃	oil
66	Cl	C=N	CH ₂ CH ₂ CH ₂ CH ₃	oil
67	C1	C≡N	CH ₂ CH (CH ₃) ₂	oil
68	Cl ,	C≡N	CH ₂ CH ₂ CH (CH ₃) ₂	oil
69	Cl	C=N	CH ₂ Si (CH ₃) 3	oil
70	Cl	C (O) NH ₂	CH2CH2CH2CH3	91-99
71	Cl	C (O) NH ₂	СH ₂ CH ₂ CH ₂ CH ₃	118-121
72	Cl	C (O) NH ₂	CH2CH2CH(CH3)2	88-107
73	Cl	C (O) NH ₂	CH ₂ CH (CH ₃) ₂	97-107
74	Cl	C=N	C=C-Si(CH ₃) ₃	106-109
75	Cl	$C(NH_2) = N - OH$	CH ₂ CH ₂ CH (CH ₃) ₂	gum
76	Çl	C=N	2-С ₄ н ₃ О	79-83
77	C1	C (O) NH ₂	2-C ₄ H ₃ O	86-125
78	Cl	Call		116-131
		. Per la region del 10 de la composition della c	and the second of the second o	
79	C1	C≖N		120-135
80	Cl	C (O) NH ₂		164-174
81	Cl	(CO) NH ₂	s	168-172

BNS-page 128

82	cı 	C≡N	CH ₃	111-112
83	Cl	C=N	CH ₃	130-141
84	Cl	C=N	CH ₃	112-1 15
			_nn	
85	Cl	C (O) NH ₂	-n n	60-83
		•	сн3	
86	Br .	CH=N-OH	сн ₂ сн ₂ сн ₂ сн ₃	oil
87	Cl	C (O) NH ₂	C ₆ H ₅	135-150
.88.	. C1	. (со) ин2	—N	,,83 - 98.,
89	CI	C=N		oil
90	Cl	C≡N	~ CF ₃	117-1 21

91	Cl	C≡N	CI	oil
92	Cl	C (O) NH ₂		>250
93	Cl	C≌N	-0 C1 N	163-168
			CH ₃ S	
94	CI	C (O) NH ₂	CH ₃	151-164
95	C1	C=N	-O-N≈CH-CHe	oil
95 96	C1 C1	C=N C=N	-0-N=CH-C ₆ H ₅ -0-N=C (CH ₂) 2	oil 125-128
96	Cl	CmN	-0-N=CH-C ₆ H ₅ -0-N=C (CH ₃) ₂	125-128
	Cl		-0-N=C (CH ₃) ₂	
96 .97	C1_	С=N С (О) NH ₂	-0-N=C (CH ₃) ₂	125-128 161-163
96 97 98	C1 C1	C=N C (O) NH ₂ C (O) NH ₂	-0-N=C (CH ₃) ₂ N C ₆ H ₅ C ₁ C ₇ C ₇ C ₈ C ₇ C ₈ C ₇ C ₈ C ₇ C ₈ C ₈ C ₇ C ₈ C ₈ C ₈ C ₈ C ₈ C ₈ C ₉	125-128 161-163 163-172
96 97 98	C1 C1	C=N C (0) NH ₂ C (0) NH ₂ C (0) NH ₂	-O-N=C (CH ₃) ₂ N C ₆ H ₅ C ₁ C _{F₃} -O-N=C (CH ₃) ₂	125-128 161-163 163-172
96 97 98 99	C1 C1 C1	C=N $C(0) \text{NH}_2$ $C(0) \text{NH}_2$ $C(0) \text{NH}_2$ $C=N$	-O-N=C (CH ₃) ₂ N C ₆ H ₅ C ₁ C _{F₃} -O-N=C (CH ₃) ₂ CH=CHOCH ₃	125-128 161-163 163-172 129-130 62-70
96 97 98 99 100 101	C1 C1 C1 C1	C=N $C(0) NH_2$ $C(0) NH_2$ $C(0) NH_2$ $C=N$ $C=N$	-O-N=C (CH ₃) ₂ N C ₆ H ₅ C ₁ C _{F₃} -O-N=C (CH ₃) ₂ CH=CHOCH ₃ -OCH ₂ C (O) N (CH ₃) C ₆ H ₅	125-128 161-163 163-172 129-130 62-70 105-109

105	cı	C≡N	N CT	58-69
		· and a person encourage of	o()-c _F ₃	
106	CI	Č≡N	CH ₃	170-172
107	NO2	C=N	C (O) CH2CH (CH3) 2	oil
108	NO ₂	C=N	-C (O) CH CH ₂	106-117
109	CI	CH ₂ -N	-осн ₂ сн (сн ₃) ₂	55-64
110	Cl	N CF3	-осн ₂ сн (сн ₃) ₂	oil
111	Cl	N NH	-осн ₂ сн (сн ₃) ₂	124-127
112	Cl	C (O) NHNHC (CH ₃) ₃	-осн ₂ сн (сн ₃) ₂	50-64
J. 113	.Cl	с (о) ини-с (о) инсн ₂ сн ₃ с (сн ₃) ₃	-осн ₂ сн (сн ₃) ₂	oil
114	CJ	CEN	C (O) CH (OCH ₃) ₂	135-141
115	Cl	C≡CH	осн ₂ сн (сн ₃) ₂	oil
116	Cl	CH ₂ Cl	OCH ₂ CH (CH ₃) ₂	oil
117	Cl	CH ₂ CN	OCH ₂ CH (CH ₃) ₂	oil
118	Cl	CH ₂ C (O) NH ₂	OCH ₂ CH (CH ₃) ₂	102-110
119	I	C (O) OH	CH2CH2CH2CH3	82-89
121	Br	C≡N	OCH ₂ CH (CH ₃) ₂	oil
122	Br	C (O) NH ₂	OCH ₂ CH (CH ₃) ₂	98-111
123	NO ₂	C≡N	OCH ₂ CH (CH ₃) ₂	oil
124	NQ_2	C (O) NH ₂	OCH2CH (CH3)2	123-125

INDEX TABLE B

$$R^3$$
 R^2

Compounds of Formula I wherein:

CMPD	R ¹	R ²	R ³	mp (°C)
30	Br	CO ₂ CH ₃	OCH ₂ CH (CH ₃) ₂	oil
31	Br	со ₂ н	OCH ₂ CH (CH ₃) ₂	105-109
32	Br	C (0) NH ₂	OCH ₂ CH (CH ₃) ₂	135-137
38	NO_2	CO2CH2CH (CH3)2	OCH ₂ CH (CH ₃) ₂	38-42
39	NO ₂	CO ₂ H	OCH2CH (CH3)2	oil
40	NO ₂	CHO	осн ₂ сн (сн ₃)- ₂	45-48
41	NO ₂	нс=и-он	осн ₂ сн (сн ₃) ₂	96-102
42	NO_2	C≡N	OCH2CH (CH3) 2	68-77
120	NO ₂	CH=C (CN) ₂	OCH2CH (CH3)2	78-85

INDEX TABLE C

Spectral Data

CMPD

1 NMR (CDCl₃): ppm δ 7.88 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H);
3.89 (s, 3H); 3.74 (d, 2H); 2.0 (m, 1H); 1.035
(d, 6H)

IR (Neat): 1730 cm⁻¹ (C∞O)

BNS page 132

```
13 NMR (CDC13):
                       ppm \delta 7.87 (d, 1H); 6.96 (s, 1H); 6.8 (d, 1H);
                       4.0 (m, 2H); 3.89 (s, 3H); 1.8 (m, 1H); 1.67
      (m, 2H); 0.97 (d, 6H)
                       1725 cm<sup>-1</sup> (C=O)
      IR (Neat):
                       ppm \delta 7.88 (d, 1H); 7.0 (s, 1H); 6.8 (d, 1H);
  14 NMR (CDC13):
                       5.3 (m, 1H); 4.07 (m, 4H); 4.06 (m, 2H); 3.89
                       (s, 3H)
                       1720 cm<sup>-1</sup> (C=0)
      IR (Neat):
                       ppm \delta 10.5 (s, 1H); 7.88 (d, 1H); 6.93 (s,
  17 NMR (CDC13):
                       1H); 6.8 (d of d, 1H); 3.86 (d, 2H); 2.1 (m,
                       1H); 1.05 (d, 6H)
                       1680 \text{ cm}^{-1} \text{ (C=O)}
      IR (Neat):
                       ppm \delta 7.87 (d, 1H); 6.98 (s, 1H); 6.8 (d of d,
  20 NMR (CDC13):
                       1H); 5.0 (s, 2H); 4.64 (s, 2H); 3.9 (s, 3H);
                       1.82 (s, 3H)
                       1725 cm<sup>-1</sup> (C=O)
      IR (Neat):
  21 NMR (CDCl3):
                       ppm \delta 7.89 (d, 1H); 6.98 (s, 1H); 6.8 (d of d,
                       1H); 4.68 (s, 2H); 3.9 (s, 3H); 3.88 (s, 3H)
                       1755; 1720 cm<sup>-1</sup> (C=O)
      IR (Neat):
  22 NMR (CDC13):
                       ppm \delta 7.34 (d, 1H); 6.93 (s, 1H); 6.8 (d of d,
                       1H); 4.77 (d, 2H); 3.71 (d, 2H); 2.15 (m, 1H);
                       1.8 (s, 1H); 1.026 (d, 6H)
                      3400 cm<sup>-1</sup> (C=O)
IR (Neat):
                       ppm \delta 7.87 (d, 1H); 6.98 (s, 1H); 6.8 (m, 1H);
  23 NMR (CDC13):
                       5.0 (d, 2H); 4.64 (s, 2H); 3.9 (s, 3H); 1.82
                       (s, 3H)
      IR (Neat):
                       1725 cm<sup>-1</sup> (C=O)
  30 NMR (CDC13):
                      ppm \delta 7.53 (d, 1H); 7.31 (m, 1H); 6.8 (d of d,
                       1H); 3.92 (s, 3H); 3.7 (d, 2H); 2.0 (m, 1H);
                       1.03 (d, 6H)
                      1740 \text{ cm}^{-1} \text{ (C=Q)}
      IR (Neat):
 39 NMR (CDCl3):
                      ppm \delta 8.0 (d, 1H); 7.5 (b, s, 1H); 7.2 (s,
                      1H); 6.8 (d, 1H); 3.8 (d, 2H); 2.0 (m, 1H);
                       1.02 (d, 6H)
                      3400, 1712 cm<sup>-1</sup>
     IR (Neat):
```

```
ppm \delta 7.37 (d, 1H); 6.95 (s, 1H); 6.8 (d, 1H);
       52 NMR (CDCl3):
                            4.0 (s, 3H); 3.73 (d, 2H); 2.1 (m, 1H); 1.02
                            (d, 6H
           IR (Neat):
                            1601 (C=N) cm<sup>-1</sup>
                            ppm \delta 7.6 (d, 1H); 7.5 (s, 1H); 6.93 (s, 1H);
       53 NMR (CDCla):
                            6.8 (d, 1H); 3.71 (d, 2H); 2.08 (m, 1H); 1.01
                            (d, 6H)
       63 NMR (CDCl3):
                           ppm \delta 7.568 (m, 2H); 7.52 (d, 1H); 2.413 (m,
                            2H); 1.64 (m, 2H); 1.047 (t, 3H)
                           2229 (C≡N) cm<sup>-1</sup>
           IR (Neat):
                           ppm \delta 10.4 (s, 1H); 7.84 (d, 1H); 7.468 (s,
       64 NMR (CDCl3):
                           1H); 7.25 (d, 1H); 2.63 (m, 2H); 1.37 (m, 2H);
                           0.94 (m, 3H)
                           2748; 1692 (C=O) cm<sup>-1</sup>
           IR (Neat):
                           ppm \delta 7.55 (d, 1H); 7.32 (s, 1H); 7.19 (d,
       65 NMR (CDCl3):
                           1H); 2.62 (t, 2H); 1.62 (m, 2H); 1.32 (m, 4H);
                           0.89 (t, 3H)
                           2231 (C≡N) cm<sup>-1</sup>
           IR (Neat):
       66 NMR (CDCl3):
                           ppm \delta 7.56 (d, 1H); 7.32 (s, 1H); 7.198 (d,
                           1H); 2.64 (t, 2H); 1.602 (m, 2H); 1.38 (m,
                           2H); 0.93 (t, 3H)
                           2231 cm<sup>-1</sup> (C≡N)
           IR (Neat):
1H); 2.51 (d, 2H); 1.9 (m, 1H); 0.91 (d, 6H)
                           2210 (C≡N) cm<sup>-1</sup>
           IR (Neat):
       68 NMR (CDCl3):
                           ppm \delta 7.55 (d, 1H); 7.32 (s, 1H); 7.198 (d,
                           1H); 2.646 (t, 2H); 1.5-1.6 (m, 3H); 0.93 (d,
                           6H)
                           2231 (C≡N) cm<sup>-1</sup>
           IR (Neat):
      69 NMR (CDC13):
                           ppm \delta 7.48 (d, 1H); 7.1 (s, 1H); 6.95 (d, 1H);
                           2.14 (s, 2H); 0.006 (s, 9H)
                           2210 cm<sup>-1</sup> (C≡N)
           IR (Neat):
      75 NMR (CDC13):
                           ppm \delta 7.41 (d, 1H); 7.23 (s, 1H); 7.08 (d,
                           1H); 6.5 (bs, 1H); 4.94 (bs, 2H); 2.6 (t, 2H);
                           1.6 (m, 1H); 1.49 (m, 2H); 0.93 (d, 6H)
```

```
IR (Nujol):
                        1649 (C≡N) cm<sup>-1</sup>
  86 NMR (CDC13):
                       ppm \delta 8.5 (s, 1H); 8.4 (s, 1H); 7.7 (d, 1H);
                        7.4 (s, 1H); 2.6 (m, 2H); 1.6 (m, 2H); 1.27
                        (m, 2H); .97 (m, 3H)
                       ppm \delta 7.8 (s, 1H); 7.6 (m, 2H); 7.26 (m, 1H);
  89 NMR (CDCl3):
                        7.0 (s, 1H); 6.8 (d, 1H)
                       2232 cm<sup>-1</sup> (C≡N)
      IR (Neat):
                       ppm \delta 7.6 (d, 1H); 7.53 (s, 1H); 7.32 (d, 1H);
  91 NMR (CDCl3):
                       7.11 (d, 1H); 7.09 (s, 1H); 6.83 (d, 1H)
                       2230 cm<sup>-1</sup> (C=N)
      IR (Neat):
 95 NMR (CDC13):
                       ppm δ 7.65 (m, 4H); 7.48 (m, 3H); 7.26 (m,
                       1H); 7.1 (t, 1H) + isomer
      IR (Neat):
                       2229 \text{ cm}^{-1} \text{ (C=N)}, 1631 \text{ (C=N)} \text{ cm}^{-1}
                       ppm \delta 7.42 (d, 1H); 6.99 (s, 1H); 6.83 (m,
102 NMR (CDCl2):
                       1H); 3.74 (d, 2H); 2.08 (m, 1H); 1.02 (d, 6H)
                       3313 cm<sup>-1</sup> (OH), 2195 cm<sup>-1</sup> (C=N)
      IR (Neat):
                       ppm \delta 8.82 (s, 1H); 8.34 (d, 1H); 8.05 (d,
107 NMR (CDC13):
                       1H); 2.92 (d, 2H); 2.3 (m, 1H); 1.03 (d, 6H)
     IR (Neat):
                       2234 (C=N); 1695 (C=O) cm<sup>-1</sup>
                       ppm δ 7.55 (d, 1H); 7.0 (s, 1H); 6.85 (d, 1H);
110 NMR (CDC13):
                       3.76 (d, 2H); 2.1 (m, 1H); 1.04 (d, 6H)
     IR (Neat):
                       1599, 1556 (C=N) cm<sup>-1</sup>
                      ppm δ 9.125 (s, 1H); 7.4 (d, 1H); 6.866 (s, ....
113 - NMR (CDC13):
                       1H); 6.8 (d, 1H); 5.3 (t, 1H); 3.72 (d, 2H);
                       3.01 (m, 2H); 2.08 (m, 1H); 1.4 (s, 9H); 1.0
                       (m, 9H)
                       1700, 1602 (C=O) cm<sup>-1</sup>
     IR (Neat):
                       ppm \delta 7.4 (d, 1H); 6.95 (s, 1H); 6.78 (d, 1H);
115 NMR (CDC13):
                       3.7 (d, 2H); 3.27 (s, 1H); 2.08 (m, 1H); 1.01
                       (d, 6H)
     IR (Neat):
116 NMR (CDCl3):
                       ppm \delta 7.33 (d, 1H); 6.945 (s, 1H); 6.8 (d,
                       1H); 4.67 (s, 2H); 3.7 (d, 2H); 2.04 (m, 1H);
                       1.01 (d, 6H)
```

BNSDOCID: <WO 9405153A1 1 >

117 NMR (CDCl₃): ppm δ 7.38 (d, 1H); 6.95 (s, 1H); 6.83 (d,

...1H); 3.76.(s, 2H); 3.7 (d, 2H); 2.08 (m, 1H);

1.02 (d, 6H)

IR (Neat): 2251 (C≡N) cm⁻¹

121 NMR (CDCl₃): ppm δ 7.55 (d, 1H); 7.18 (s, 1H); 6.9 (d, 1H);

3.75 (d, 2H); 2.05 (m, 1H); 1.03 (d, 6H)

IR (Neat): 2229 (C≡N) cm⁻¹

123 NMR (CDC1₃): ppm δ 7.79 (d, 2H); 7.27 (m, 1H); 3.87 (d,

2H); 2.1 (m, 1H); 1.06 (d, 6H)

IR (Neat): 2229 (C=N) cm⁻¹

9405153A1 I >

TEST A

Seeds of barley (Hordeum vulgare), barnyardgrass (Echinochloa crus-galli), bedstraw (Galium aparine), blackgrass (Alopecurus myosuroides), bush bean (Phaseolus vulgaris), cheatgrass (Bromus secalinus), 5 chickweed (Stellaria media), cocklebur (Xanthium pensylvanicum), corn (Zea mays), cotton (Gossypium hirsutum), crabgrass (Digitaria spp.), giant foxtail (Setaria faberii), lambsquarters (Chenopodium album), 10 morningglory (Ipomoea hederacea), rape (Brassica napus), rice (Oryza sativa), sicklepod (Cassia obtusifolia), sorghum (Sorghum bicolor), soybean (Glycine max), sugar beet (Beta vulgaris), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), wild 15 buckwheat (Polygonum convolvulus), wild oat (Avena fatua) and purple nutsedge (Cyperus rotundus) tubers were planted and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. the same time, these crop and weed species were also 20 treated with postemergence applications of test chemicals. Plants ranged in height from two to eighteen cm (one to four leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for twelve to sixteen days, 25 after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table A, are based on a scale of 0 to 10 where 0 is no effect and 10 is complete control. A dash (-) response means no test result.

Table A		CO	MPOU	IND.		Table A		CO	MPO	JND	
Rate 2000 g/ha	1	4	5	6	7	Rate 2000 g/ha	1	4	5	6	7
POSTEMERGENCE						PREEMERGENCE					
Barley	0	-	_	-	-	Barley	0	-	-	-	-
Barnyardgrass	1	10	10	8	6	Barnyardgrass	0	10	10	8	8
Bedstraw	2	-	_	-	-	Bedstraw	0	_	_	-	-
Blackgrass	0	-	-	-	-	Blackgrass	0	-	_	-	_
Bush bean	-	0	1	6	2	Cheatgrass	0	-	-	-	-
Cheatgrass	0	-	-	_	-	Chickweed	-	-	-	-	-
Chickweed	4	-	-	-	-	Cocklebur	0	0	10	-	0
Cocklebur	O	0	1	1	1	Corn	0	0	9	2	0
Corn	0	0	0	0	1	Cotton	0	_	-	-	-
Cotton	0	0	1	1	2	Crabgrass	0	0	0	0	4
Crabgrass	1	0	0	5	1	Giant foxtail	0	-	-	_	-
Giant foxtail	0	-	-	-	-	Lambsquarter	-	_	-	-	-
Lambsquarter	-	-	-	-	_	Morningglory	0	0	10	0	0
Morningglory	2	0	0	1	2	Nutsedge	0	0	0	0	0
Nutsedge	0	0	0	0	0	Rape	0	-	-	-	_
Rape	0	-	-	_	-	Rice	0	0	3	1	0
Rice	0	0	0	0	1	Sicklepod	-	0	1	0	0
Sicklepod	_	0	0	1	1	Sorghum	0	0	0	0	0
Sorghum	0	· • O-	0.	0	· 1 · ·	Soybean	0.	···0 ·	0	0	0.
Soybean	0	0	0	1	1	Sugar beet	-	-	-	-	_
Sugar beet	0	-	-	-	-	Velvetleaf	0	-	-		-
Velvetleaf	0	-	-	-	-	Wheat	0	0	0	0	0
Wheat	0	0	0	0	1	Wild buckwheat	0	-	-	-	-
Wild buckwheat	0	-	-	-	-	Wild oat	0	0	0	0	0
Wild oat	2	0	0	0	1						

Table A												Ī	Š	COMPOUNT	₽											
Rate 400 g/ha	т С	œ	σ	10	1	12	13	14	15	16	17	18	19	20 2		22 2	2	4 2	5 2	6 27	28	29	30	31	32	
POSTEMERGENCE								· · ·													l	!	•		ļ	
Barley						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Barnyardgrass	4 10		σ.			0	0	0	0	0	4	0	0	0	0	m		8					0	0	a	
Bedstraw						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Blackgrass	0					0	0	<u>.</u>	0	0	0	0	0	8	0	0							0	0	ო	
Bush bean						1	•	1	i	•	ı	•	•	ı		•							. 1	J		
Cheatgrass						0	0	0	0	0	t	ı				1							0	0	0	
Chickweed						0	0	0	ŧ	0	•	ı	ı										0	0	0	
Cocklebur						0	0	0	0	0	0	0	0	0	0	0							0	0	٥	
Corn						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Cotton						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Crabgrass						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Giant foxtail						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Lambsquarter						t	0	0	0	0	L		1		ı								0	0	0	
Morningglory						0	0	0	0	0	0	0	0	0	٥	0							0	0	0	
Nutsedge						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Rape						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Rice						0	0	0	0	0	0	0	0	٥	0	0							0	0	0	
Sicklepod						•	4		ı	1	ı	ľ		ŧ	1	ı							1	, 1) E	
Sorghum	0	0	0	0	0	0	0	, 0 ,	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	
Soybean						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Sugar beet						0	ო	0	0	0	0	0	0	٥	0	0							0	0	0	
Velvetleaf						0	0	ó	0	0	0	0	ı	0	0	0							0	0	0	
Wheat						0	0	0	0	0	0	0	0	0	0	0							0	0	0	
Wild buckwheat						0	0	0	1	0	0	0	0	9	0	0							0	0		
140 T. 73						<	c	•	¢	<	¢	c	•	<	•	•							٠	•	,	

Table A								. · ·					ဦ	COMPOUND	ğ				~-					
Rate 400 g/ha	38	39 4	404	41 4	42 44	4 45	3 46	47	48	49	50	51	52	53	54	55	99	57	58	59 6	9 09	9 19	62 63	m
POSTEMERGENCE																			•••					
Barley	0	0	0	0	0	_	7		5	0	0	0	0	0	0	0	0	0		0	0	0	0	0
Barnyardgrass	0	0	0	0	m	6) 10	_	α0 _	-	0	9	4	N	~	10	6	o,	 00	9	9	m		r.
Bedstraw	0	0	0	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	ö		0	0		0
Blackgrass	0	0	0	0	0	0	0		_	0	0	0	0	0	0	0	0	0	~ O	0	0	0	0	0
Bush bean	1	ı	1	ı	,	1			•	•	1	. 1	1	ı	ı	1	1	•	1,	ł	ı			
Cheatgrass	0	0	0	0	•	0	0	٠., .		0	0	0	0	0	0	0	0	0	ò	0	0	0	0	0
Chickweed	0	0	0	0				*		°	0	0	0	0	0	0	0	0	·0	0	0	0		0
Cocklebur	0	0	0	0	0	0	0	ser .	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corn	0	0	0	0				٠.				0	0	0	0	0	0	0	0	0	0	0		0
Cotton	0	0	٥	0								0	0	0	0	0	0	0	ö	0	0	0		0
Crabgrass	0	0	0	0				•		0		O	0	0	8	0	0	0	0	0	0	0		0
Giant foxtail	0	0	0	0								0	0	0	0	0	0	0	0	0	0	0		0
Lambsquarter	0	0	0	0		0				0		0	0	0	0	0	0	0	0	0	0	0		0
Morningglory	0	0	o .	0			0	<u>.</u>				0	0	0	0	0	0	0	0	0	0	0		0
Nutsedge	0	o	0	0				,				i	0	0	0	0	0	0	0	0	0	0		0
Rape	0	0	0	0						0		0	0	0	0	0	٥	0	0	0	0	0		0
Rice	0	0	0	0		0						0	0	0	N	0	0	0	0	N	0	0		0
Sicklepod	ì	ı	•	ı		•	1					•	•	ı	ı	•	ŧ	:		ŧ	1	ı		
Sorghum	0	0	0	0	0	0			0		0	0	0	0	-	0	0	0	0	0	0	0	0	0
Soybean	0	0	0	0						0		0	0	0	0	0	0	0	0	0	0	0		0
Sugar beet	0	0	0	0								0	0	0	0	0	0	0	0	0	o	0		0
Velvetleaf	0	0	0	0		0	0	1 25 7				0	0	m	4	0	0	0	0	0	0	0		. 0
Wheat	0	0	0	0						0		0	0	0	0	0	0	0	0	0	0	0		
Wild buckwheat	0	0	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	٥	0		
Wild oat	0	0	0	0	0	0		-	<u>د</u>	°	0	0	0	0	0	0	0	0	0	0	0	0		

rapte A													_	ğ		9												•	
Rate 400 g/ha POSTEMERGENCE	64	65	99	2	68	69	2	71	72	73	74	75 7	76 7	77 7	78 7	79 80	0 81	1 82	₩.	3 84	4 85	98 9	87	88	68	90	91	95	
Barley	0	0	0	0	0	0	0	0	0	0	0	0	0	0													ന	c	
Barnyardgrass	ហ	4	6	œ	∞	4	0	O	Q	∞	0	10	н	-													m	N	
Bedstraw	0	0	0	0	0	0	1	0	0	0	0	0	0	0													4	0	
Blackgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0													. ~	m	
Bush bean	•	1	1	ı	ı	ı	1	ı	ı	1	i	1	1	•													r	· ' 6	
Cheatgrass	0	0	0	0	0	0	0	0	Φ.	0	0	0	0	0													-	N	
Chickweed	0	0	0	0	0	0	0	0	0	0	0	0	0	0													0	0	
Cocklebur	0	0	0	0	0	0	0	0	0	0	0	0	0	0													-	0	
Corn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	ກ	-	C)	ò	
Cotton	0	0	0	0	0	0	0	0	0	0	0	0	0	0													<u></u>	0	
Crabgrass	0	0	0	0	0	0	0	0	0	0	0	0	0	0													4	0	
Giant foxtail	0	0	0	0	0	0	0	0	Φ.	0	0	0	0	0													(A)	0	
Lambsquarter	0	0	0	0	0	0	0	0	0	0	0	0	4	0													4		
Morningglory	0	0	0	0	0	0	0	0	0	O	0	0	0	0													9	0	
Nutsedge	ı	0	0	0	0	0	Ö	ı	0	0	0	0	0	0													æ	0	
Rape	0	0	0	0	0	0	0	0	0	0	0	0	0	0													4	0	
Rice	0	0	0	0	0	0	0	0	0	0	0	0	0	0													N	c	
Sicklepod	ı	i	ı	ı	•	1	1	ı		1	1	ı	,	ı													•	. 1	
Sorghum	0	0	0	0	0	0	0	0	0	0	0	0	0	0													m	0	
Soybean	0	0	0	0	0	0	0	0	0	0	0	0	0	0													m	0	
Sugar beet	0	0	0	0	0	0	0	0	0	0	0	0	m	0													φ	-	
Velvetleaf	0	0	0	0	0	0	0	0	0	0	0	0	0	0													m	. 0	
Wheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0													N	0	
Wild buckwheat	0	0	0	0	0	0	0	0	0	0	0	0	0	0													æ	~ ~	
Wild oat	0	0	0	0	0	0	0	0	0	0	0	0	c	c													• •		

S Direct								***				ខ		ę									
Rate 400 g/ha	93	94	95	96	97	86	99 1	1001	101	103	104	105	106	107	108	109	110	111	112	113	114	7.	116
POSTEMERGENCE) 			
Barley	0	0	0	0	0	0	0	0	0	0	-	N	0	0	0	0	0	0	0	0	0	0	C
Barnyardgrass	0	0		ന	0	63	80	რ	മ	0	æ	N	0	8	m	-	9	φ	, 6 1	ı.	0	(*)	•
Bedstraw	0	0	0	0	0	N	0	6	-1	0	0	ı	0	0	0	0	0	0	0	0	0) C	
Blackgrass	0	0	0	0	0	0	0	0	-	-	-1	н	0	0	0	0	0	0	0	0	0	0	~
Bush bean	ı	ı	•	•	•	1	,		1	ı	ŧ	1	ı	1	1	•	1	•		. 1		• •	•
Cheatgrass	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	C	C	C	7
Chickweed	0	0	0	0	0	0	0	0	0	N	0	0	0	0	0	0	0	0	0	0	0	· c	* C
Cocklebur	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Corn	0	0	0	0	0	-	0	o	0	0	0	-	0	7	~	0	0	0	0	m	0	o O	0
Cotton	0	0	0	0	0	4	0	0	0	0	0	N	0	0	-	0	0	0	0	0	0	0	0
Crabgrass	0	0	o	0	0	~	o	0	0	0	0	7	0	0	N	0	~	0	0	m	0	0	•
Glant fortail	0	0	0	0	0	N	0	0	0	0	0	7	0	0		0	0	0	0	0	0	· C	
Lambsquarter	0	0	0	0	0	8	0	ô	1	0	0	-	0	0	0	0	0	0	0	0	0	0	0
Morningglory	0	0	0	0	0		0	ı.	7	0	0	н	0	0	0	0	0	0	0	0	0	· -	· c
Nutsedge	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1	1	0	0	0	0	• 0	• 0
Rape	0	0	0	0	0	0	0	0	0	0	0	0	0	0	m	0	0	0	0	0	0	0	• 0
Rice	1.	1	1	1	0	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	~ ~	0	· C	~
Sicklepod	ı	ı	ı	ı	1	ŧ	1	ı	ı	1	1	1	į	ı	•	ı	1	1		ı	• •)	1
Sorghum	0	0	0	0	0	N	0	0	0	0	0	7	0	0	-	0	0	0	0	0	C	0	~
Soybean	0	0	0	0	0	7	0	Ö	0	N	0	N	0	0	0	4	0	0	0	·	0	-	ıc
Sugar beet	0	0	~	0	~	ო	0	Ö	0	m	0	0	0	0	ო	0	0	0	0		· C	• •	
Velvetleaf	0	0	0	0	0	m	0	0	0	0	0	ო	0	0	ო	0	0	0	0		• •	· c	· c
Wheat	0	0	0	0	0	0	0	0	0	=	0	0	0	0	0	0	0	0	· c	• •	· c	· c	• •
Wild buckwheat	0	0	0	0	0	4	0	0	0	0	0	4	0	0	0	•	0	0	• 0	· c	· c	· c	~
Wild oat	0	0	0	0	0	7	0	0	0	8	0	0	0	.0	0	C	· c	· C	· c	• •	, c	> C	, ,

.141

Table A	CO	MPO	UND	Table A	C	OMPOT	DND
Rate 400 g/ha	117	118	120	Rate 400 g/ha	117	118	120
Postemergence				Postemergence			
Barley	0	0	0	Morningglory	0	0	0
Barnyardgrass	2	2	2	Nutsedge	0	0	0
Bedstraw	2	0	0	Rape	0	0	0
Blackgrass	1	0	Q	Rice	0	0	2
Bush bean	_	-	-	Sicklepod	_	_	_
Cheatgrass	0	0	0	Sorghum	0	0	2
Chickweed	3	0	0	Soybean	0	0	1
Cocklebur	. O	0	0	Sugar beet	0	_	0
Corn	0	0	0	Velvetleaf	0	0	0
Cotton	0	0	0	Wheat	0	0	0
Crabgrass	0	Ó	1	Wild buckwheat	2	0	0
Glant foxtail	0	0	1	Wild oat	0	0	0
Lambsquarter	6	_	3				

Table A															ģ	COMPOUND	E											
Rate 400 g/ha	/6 001	4	~	m	60	9 1	0 11	-	2 13	77	115	3 16	5 17	18	13	20	21	22	23	24 2	25 2	26 2	27 2	82	9 30	3	32	
PREEMERGENCE	GENCE																											
Barley									0							0	0	0	0	0	Ö	0			0	0		
Barnyardgrass	dgras		Н			_		0								0	0	m	m	9	0	0						
Bedstraw	A1	_						•								0	0	0	0	0	0	0						
Blackgrass	:888	_			0	-	_		0	0	0					0	0	0	0	0	0	0						
Cheatgi	ass	-														0	0	0	0	0	0	0						
Chickwe	pec	_								*						0	Φ	0	0	0	0	0						
Cocklebur	nr	7	0	0	0	•	-	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0		0	•	0	
Corn		_														0	0	0	0	0	0	0						
Cotton										** *						0	0	0	0	0	0	0						
Crabgra	355															0	0	0	0	0	0	0						
Giant foxtail	foxtai															0	0	0	0	0	0	0						
Lambsquarter	arter															0	0	0	0	0	0	0						
Morning	glory															0	0	0	0	0	0	0						
Nutsedge	je je	_														0	0	0	0	0	0	0						
Rape		_														0	0	0	0	0	0	0						
Rice		_														0	•	0	0	0	0	0						
Sickler	poc	•							•	!						ŀ	ı	ı	ı	ì		ı						
Sorghum	E	_		0	0									0		0	0	0	0	0	0	0			0	0		
Soybear	<i>-</i> 4								0		0					0	0	0	0	0	0	0						
Sugar 1	seet	_								. , .						0	0	0	0	0	0	0						
Velvetleaf	Leaf															0	0	0	0	0	0	0						
Wheat																0	0	0	0	0	0	0						
Wild br	sckwhe								0							0	0	0	0	0	0	0						
1								•	'							,	1											

BNS page 144

Table A								•					8	COMPOUND	2									
Rate 400 g/ha	38 3	39 4	404	41 4	42 4	44 4	45 4	46 4	47 48	8 49	50	51	52	53	54	55	56	57	58	59	09	919	62	63
PREEMERGENCE															-									
Barley	0	0	0	0	0		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barnyardgrass	0	0	0	0	-		~					80	(4)		-	σ	۵	φ	ń	80	ക	0	~	m
Bedstraw	0	0	0	0	0	0	0	0	0	0	0 0		0	0		0	0	0	Ó	0	0	0	0	• •
Blackgrass	0	0	0	0	ო											0	0	0	0	0	0	0	0	0
Cheatgrass	0	0	0	0	0			٠.								0	0	ŧ	0	0	0	ന	0	
Chickweed		0	0	0	0							0			0	0	0	ı	0	0	0	0	0	0
Cocklebur	0	0	0	0	0											0	0	0	0	0	0	0	0	0
Corn		0	0	0	0											0	0	0	0	0	0	0	0	0
Cotton		0	0	0	0											0	0	0	0	0	0	0	0	0
Crabgrass		0	0	0	0											0	0	0	0	0	0	8	0	0
Giant foxtail		0	0	0	0											0	0	0	0	0	0	. 0	0	0
Lambsquarter		0	0	0	0											0	0	0	0	0	0	0		0
Morningglory		0	0	0	0											0	0	0	0	0	0	0	0	0
Nutsedge		0	0	0	0											0	0	0	0	0	0	f	0	0
Rape		0	0	0	0											0	0	0	0	0	0	0	0	0
Rice		0	0	0				٠.								0	0	0	0	0	0	0	0	0
Sicklepod		ŧ		1													1	1	ł	1	1			
Sorghum		0	0	0		0					0			0	0	0	0	0	0	0	0	0	0	0
Soybean		0	0	0													0	0	0	0	0	0		
Sugar beet		0	0	•								-					0	0	0	0	0	0	0	
Velvetleaf		0	0	0													0	0	0	0	0	0	0	· c
Wheat		0	0	0				•									0	0	0	0	0	0	0	· c
Wild buckwheat		0	0	0				•									0	0	0	0	0	0		
大きつ でに 説		_	~	_				,									<	•	•	• •	•	, ,	, ,	, ,

Table A													8	COMPOUND														
Rate 400 g/ha PREEMERGENCE	64 65	65	99	67	89	69 7	7 07	1	7	3 74	~	5 76	•	78	79	80	81	82	83	84	85	96	87	88	83	06	91	92
Barley	0	0	0	0	0	0	0								0		0	0	Ö	0	0	0	0	0	~	0	0	c
Barnyardgrass	7	H	9	e	9	0	7	ക						-			m	~	0	0	49	_	Ö	0	N)		0	
Bedstraw	0	0	0	0	0	ŧ	0	0							0		0	0	0	0	0	0	0	0	0	0	~~	0
Blackgrass	0	0	0	0	0	0	0	0							0		0	0	Ō	0	0	0	0	0	-	0	-	0
Cheatgrass	ı	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	7	0	~	0
Chickweed	0	0	0	0	0	0	0	0						_	0		0	0	Ö	0	0	0	0	0	0	0	0	0
Cocklebur	0	0	0	0	0	0	0	 O							0		0	0	0	0	0	0	0	0	0	0	0	0
Corn	0	0	0	0	0	0	0	 0							0		0	0	0	0	0	0	0	0	0	0	0	0
Cotton	ı	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	0	0	0	
Crabgrass	0	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	4	4	0	
Giant foxtail	0	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	မ	0	0	0
Lambsquarter	0	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	ı	0	0	0
Morningglory	0	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	0	0	6	0
Nutsedge	0	•	0	0	0	ŧ		1							0		0	0	0	0	0	0	0	0	0	0	0	0
Rape	0	0	0	0	0	0	0								0		0	0	0	0	0	0	0	0	~	0	ന	0
Rice	0	0	8	-	0	0	0	 O							0		0	0	0	0	0	0	0	0	O	0	0	0
Sicklepod	ŧ	•	ı	· 1	F	ι	ı	1							ı		1	1	Ţ	ı	ı	1	1	1	ı	J	1	
Sorghum	0	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	0	0	0	
Soybean	0	0	0	0	0	0	0								0		0	0	0	0	0	0	0	ı	N	1	0	0
Sugar beet	0	0	0	0	0	0	0	0							0		0	0	Ò	0	0	0	0	0	80	0	0	-
Velvetleaf	0	0	0	0	0	0	0								0		0	0	<u></u>	0	0	0	0	0	ص	0	0	0
Wheat	0	0	0	0	0	0	0								0		0	0	0	0	0	0	0	0	М	0	0	0
Wild buckwheat	0	0	0	0	0	0	0		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
Wild oat	0	0	0	0	0	0	0	0							0		0	0	0	0	0	0	0	0	7	0	0	0

Table A												COMPOUND				•						
Rate 400 g/ha PREEMERGENCE	93	94	95	96	97 9	6 86	6	100 101	1 103	3 104	4 105	5 106	107	108	109	110	111	112	113	114	115	116
Barley	0	0	0	0	0		0	0						0	٥	0	0	0	Ó	0	0	0
Barnyardgrass	0	0	0	0	0	0	4	ო	e	•	-	0	0	7	0		4	7	4	0	8	00
Bedstraw	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Blackgrass	0	0	0	m	0		0	0						0	0	0	0	0	0	0	0	0
Cheatgrass	0	0	0	8	0		8	0						0	0	0	٥	0	0	0	0	0
Chickweed	0	0	~	~	0		0	0						0	0	0	0	0	0	1	0	0
Cocklebur	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Corn	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Cotton	0	0	0	0	0			0						0	0	0	0	0	0	0	0	0
Crabgrass	0	•	ı	4	0		0	0						0	0	0	0	0	0	0	0	0
Giant fortail	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Lambsquarter	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Morningglory	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Nutsedge	0	0	0	0	0		0	0						0	0	0	0	0	1	0	ţ	0
Rape	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Rice	0	0	0	0	0		0	0						0	8	0	0	0	0	0	0	0
Sicklepod		ŧ	1	•			ı	1						1	i	j		ı	ı	•	ŧ	1
Sorghum	0	0	0	0	0		0	<u>.</u>						0	0	0	0	Ç	0	0	0	0
Soybean	0	0	0	0	0		0	0						٥	0	0	0	0	0	, 0	0	0
Sugar peet	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Velvetleaf	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0
Wheat	0	0	0	0	0		0	O						0	0	0	0	•	0	0	0	0
Wild buckwheat	0	0	0	0	0		0							m	0	0	0	0	0	0	0	, ,
Wild oat	0	0	0	0	0		0	0						0	0	0	0	0	0	0	0	0

Table A	co	MPO	JND	Table A	COMPO	D UN D
Rate 400 g/ha	117	118	120	Rate 200 g/ha	102	1 19
PREEMERGENCE				POSTEMERGENCE		
Barley	0	0	0	Barley	0	0
Barnyardgrass	4	4	1	Barnyardgrass	7	3
Bedstraw	0	0	0	Bedstraw	0	0
Blackgrass	0	0	0	Blackgrass	0	0
Cheatgrass	0	0	0	Bush bean	-	-
Chickweed	0	-	0	Cheatgrass	0	0
Cocklebur	0	0	0	Chickweed	0	2
Corn	0	0	. 0	Cocklebur	0	Ō
Cotton	0	0	0	Corn	0	0
Crabgrass	0	0	0	Cotton	0	0
Giant foxtail	0	0	0	Crabgrass	0	2
Lambsquarter	0	-	0	Giant foxtail	0	3
Morningglory	0	0	0	Lambsquarter	0	4
Nutsedge	0	0	0	Morningglory	0	0
Rape	0	0	0	Nutsedge	0	0
Rice	0	0	1	Rape	0	2
Sicklepod	-	-	-	Rice	0	0
Sorghum	0	0	0	Sicklepod	-	-
Soybean	0	. 0	0.	Sorghum		0
Sugar beet	0	0	0	Soybean	0	0
Velvetleaf	0	0	0	Sugar beet	0	2
Wheat	0	0	0	Velvetleaf	0	3
Wild buckwheat	0	0	0	Wheat	0	0
Wild oat	0	0	0	Wild buckwheat	0	0
				Wild oat	0	0

Table A	COMPOUND	Table A	COMPOUND
Rate 200 g/ha	102 119	Rate 200 g/ha	102 119
PREEMERGENCE		PREEMERGENCE	
Barley	0 0	Morningglory	0 0
Barnyardgrass	7 2	Nutsedge	0 0
Bedstraw	0 3	Rape	0 0
Blackgrass	0 0	Rice	0 0
Cheatgrass	0 0	Sicklepod	
Chickweed	0 3	Sorghum	0 Q
Cocklebur	0 0	Soybean	0 0
Corn	0 0	Sugar beet	0 0
Cotton	0 0	Velvetleaf	0 0
Crabgrass	0 0	Wheat	0 0
Giant foxtail	0 0	Wild buckwheat	0 0
Lambsquarter	0 0	Wild oat	0 0

TEST B

Seeds of barnyardgrass (Echinochloa crus-galli), cheatgrass (Bromus secalinus), cocklebur (Xanthium pensylvanicum), crabgrass (Digitaria spp.), giant foxtail (Setaria faberii), morningglory (Ipomoea spp.), sorghum (Sorghum bicolor), velvetleaf (Abutilon theophrasti), and wild oat (Avena fatua) were planted into a sandy loam soil and treated preemergence with test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were also 10 treated postemergence with test chemicals. Plants ranged in height from two to eighteen cm and were in the two to three leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately eleven 15 days, after which all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table B, are based on a 0 to 10 scale where 0 is no effect and 10 is complete control. A dash (-) response means no test 20 results.

Table	B , who was		(OME	OUI	4D	the second second second	Table	B		.	MO	OUI	1D - "	
Rate	2000	g/ha	2	3	43	45		Rate	2000	g/ha	2	3	43	45	
POSTEN	ÆRG E N	CE						PREEM	ergeno	Œ					
Barnya	ardgra	ss	6	10	3	10		Barnya	ardgra	ass	9	10	0	9	
Cheato	grass		0	0	0	0		Cheat	grass		0	0	0	0	
Cockle	bur		0	0	1	0		Cockle	bur		0	0	0	0	
Crabgi	ass		2	1	2	0		Crabgi	ass		0	0	0	0	
Giant	foxta	il	1	1	1	0		Giant	foxta	11	0	D	0	0	
Mornin	gglor	У	1	0	1	0		Mornin	199101	FY.	0	0	0	0	
Sorghu	ım		1	1	1	0		Sorghu	m		0	0	0	0	
Velvet	leaf		1	1	1	0		Velvet	leaf		0	0	0	0	
Wild o	ats		1	1	1	0		Wild o	ats		0	0	0	0	

8NSDOCID: <WO 9405153A1 | >

Table B	COMPOUND	Table B COM	POUND
Rate 1000 g/ha	2 3	Rate 1000 g/ha	2
POSTEMERGENCE		PREEMERGENCE	
Barnyardgrass	2 10	Barnyardgrass	9
Cheatgrass	0 0	Cheatgrass	0
Cocklebur	0 0	Cocklebur	0
Crabgrass	1 0	Crabgrass	0
Giant foxtail	0 0	Giant foxtail	0
Morningglory	0 0	Morningglory	0
Sorghum	0 1	Sorghum	0
Velvetleaf	0 0	Velvetleaf	0
Wild oats	0 0	Wild oats	0

TEST C

The test chemicals were formulated in a nonphytoxic solvent and applied to water that covered the
soil surface (flood application). Seeds of
barnyardgrass (Echinochloa crus-galli), and rice (Oryza
sativa) were planted in silt loam soil in separate
containers. Containers of barnyardgrass and rice were
grown for ten days (barnyardgrass at 2 leaf stage) and
flooded one day prior to treatment. Water depth was
maintained at approximately 2.5 cm for the duration of
the test.

All plant species were grown using normal greenhouse practices. Treated plants were compared to untreated controls and visually evaluated eleven to fifteen days after treatment. Plant response ratings, summarized in Table C, were recorded on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

20

	Table C	COMPO	UND			
·	Rate . 250 g/ha	_28	:		. 1 22 1	
	POSTEMERGENCE					
	Barnyardgrass 2	100				
5	Rice Japonica	0				
	Table C		CO	MPOU	ND	
	Rate 62 g/ha	3	9	28	46	55
	POSTEMERGENCE					
10	Barnyardgrass 2	100	90	100	100	100
	Rice Japonica	0	30	0	15	0
	Table C		COM	POUNI)	
	Rate 16 g/ha	3	9	28	46	55
15	POSTEMERGENCE					
	Barnyardgrass 2	100	40	95	95	95
	Rice Japonica	0	0	0	0	0
	Table C			POUN		
20	Rate 4 g/ha	3	9	28	46	55
	POSTEMERGENCE					
	Barnyardgrass 2					
er er er	Rice Japonica -	• 0	• 0	0	0	0
25					-	
25	Table C	3	9 9	POUN	_	
	Rate 1 g/ha POSTEMERGENCE	3	9	40	55	
	-	65	0	65	60	
	Barnyardgrass 2 Rice Japonica	0	0	0	0	
30	kice daponica	Ų	v	v	U	
J 0						

TEST D

Plastic pots were partially filled with silt loam soil then saturated with water. Japonica rice (Oryza sativa) seedlings, barnyardgrass (Echinochloa crusgalli) and watergrass (Echinochloa walteri) were grown

to the 1, 2 and 3 leaf stages and planted. After planting, water levels were raised to 3 cm above the soil surface and maintained at this level throughout the test. Chemical treatments were formulated in a 5 non-phytotoxic solvent and applied directly to the paddy water. Treated plants and controls were maintained in a greenhouse for approximately 21 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table D, are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table D	COMPOUND	Table D	COMPOUND
Rate 500 g/ha	3 46	Rate 250 g/ha	3 46
FLOOD		FLOOD	
Barnyardgrass 2	- 100	Barnyardgrass 2	- 100
Barnyardgrass 3	100 100	Barnyardgrass 3	100 100
Japonica 1	0 35	Japonica 1	0 20
Japonica 2	- 0	Japonica 2	- 0
Watergrass 2	- 0	Watergrass 2	- 0
Watergrass 3	85 -	Watergrass 3	90 -

Table D	COM	POUN	D	Table D CO	MPOUND
Rate 125 g/ha	3	46		Rate 32 g/ha 3	28 46
FLOOD				FLOOD	
Barnyardgrass 2	-	100		Barnyardgrass 2 -	85 100
Barnyardgrass 3	100	100		Barnyardgrass 3 98	85 100
Japonica 1	0	0		Japonica 1 0	0 0
Japonica 2	-	0		Japonica 2 -	0 0
Watergrass 2	-	0		Watergrass 2 -	0 0
Watergrass 3	80	-		Watergrass 3 75	
Rate 64 g/ha	3	28	46	Rate 16 g/ha 3	28 46
FLOOD				FLOOD	
Barnyardgrass 2	_	98	100	Barnyardgrass 2 -	60 98
Barnyardgrass 3	100	98	100	Barnyardgrass 3 75	70 95
Japonica 1	0	0	10	Japonica 1 0	0 0
Japonica 2	_	0	0	Japonica 2 -	0 0
Watergrass 2	_	0	0	Watergrass 2 -	0 0
Watergrass 3	80	-	-	Watergrass 3 50	
Rate 8 g/ha	3	28	46	Rate 4 g/ha 28	46
FLOOD				FLOOD	
Barnyardgrass 2	_	35	80	Barnyardgrass 2 25	70
Barnyardgrass 3	75	40	85	Barnyardgrass 3 30	70
Japonica 1	0	0	0	Japonica 1 0	0
Japonica 2	-	0	0	Japonica 2 0	0
Watergrass 2	-	.0	0	Watergrass 2 0	0
Watergrass 3	45	_	_	Watergrass 3 -	_

10

15

TEST E

Plastic pots were partially filled with clay loam soil. Transplanted seedlings of Japonica rice (Oryza sative) and seeds of barnyardgrass (Echinoghloa oryzicola) were planted in flooded pots. Plants were then grown to the 2 leaf, 2.5 leaf and 3 leaf stages for testing. At test, water levels for all plantings were kept to 3 cm above the soil surface. Chemical treatments were formulated in a non-phytotoxic solvent and applied directly to the paddy water. Treated plants and controls were maintained in a greenhouse for approximately 21 to 28 days, after which all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E are reported on a 0 to 100 scale where 0 is no effect and 100 is complete control.

Table E C	OMPOUND	Table E C	OMPOUND
Rate 1000 g/ha	3	Rate 250 g/ha	3
Barnyardgrass 2	50	Barnyardgrass 2	50
Rice 1	10	Rice 1	25
Rice 2	10	Rice 2	10
man and the state of the state			
Rate 500 g/ha	3	Rate 125 g/ha	3
Barnyardgrass 2	50	Barnyardgrass 2	40
Rice 1	15	Rice 1	0
Rice 2	10	Rice 2	0

NSDOCID: <WO 9405153A1 I >

25

30

What is claimed is:

1. A composition for controlling the growth of undesired vegetation comprising an effective amount of a compound of Formula I or II

$$R^3$$
 R^2
 R^2
 R^3
 R^3
 R^3
 R^3

wherein

R¹ is C1, Br, I, OCH₃, OCHF₂, OCF₃ or NO₂;

R² is CN, CO₂R⁴, CHO, C(X)NR¹⁷R¹⁸, C(S)OR⁶, C=CH,

CHR¹⁹OR²⁰, CH=NOR⁷, CH=CR²¹R²², C(halogen)=NOR⁷,

C(NH₂)=NOR⁷, C(CN)=NOR⁷, CHR¹⁹(halogen),

CHR¹⁹CN, CHR¹⁹C(=O)NH₂, CHR¹⁹CO₂H, or a five
membered heterocyclic ring containing one or

more nitrogen, sulfur, or oxygen atoms and

optionally substituted with one or more CH₃,

CF₃, OCH₃, SCH₃, or halogen;

R³ is n-propyl; C₄-C₁₀ alkyl; n-propyl or C₄-C₇

alkyl each substituted with one or more

halogen, OR⁸, SR⁹ or NR¹⁰R¹¹; C₁-C₂ alkyl

alkyl each substituted with one or more halogen, OR⁸, SR⁹ or NR¹⁰R¹¹; C₁-C₂ alkyl substituted with OR¹⁶, SR⁹, NR¹⁴R¹⁵, CO₂(C₁-C₂ alkyl) or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₃-C₆ cycloalkyl; CH₂(C₃-C₆ cycloalkyl); phenyl, pyridyl, thienyl, furyl, pyrazolyl or thiazolyl, each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; C₂-C₆ alkenyl optionally substituted with one or more halogen or CO₂(C₁-C₂ alkyl); OR¹²; SR¹³; NR¹⁴R¹⁵; C(=X)R¹²:

BNS page 156

$$(H, C_1-C_2 \text{ alkyl})$$
 $(H, C_1-C_2 \text{ alkyl})$ OCH_2C CH_2 CH_2 CH_2

or $O-N=CR^{30}R^{31}$; R^4 is H, C_1-C_2 alkyl,

5

 R^6 , R^7 , R^8 , R^9 , R^{10} and R^{11} are independently H or $C_1\text{-}C_2$ alkyl;

10

15

R¹² and R¹³ are independently C₁-C₁₀ alkyl optionally substituted with one or more halogen, OR⁸, SR⁹, CO₂R²³, C(O)NR²⁴R²⁵, CN, Si(CH₃)₃, C(R²⁶) (OR²⁷) (OR²⁸) or NR¹⁰R¹¹; C₁-C₃ alkyl substituted with a five- or six-membered heterocyclic ring containing 1-2 heteroatoms selected from the group 1-2 nitrogens, 1 oxygen and 1 sulfur, each ring optionally substituted with 1-2 substituents selected from F, Cl, Br, CH₃, CF₃, OCH₃ and CN; C₃-C₆ alkenyl; or phenyl or benzyl, each ring optionally substituted with one or more CH₃, CF₃, OCH₃, OR²⁹, SCH₃ or halogen;

20

R¹⁴ and R¹⁵ are independently H or C₁-C₂ alkyl, or may be taken together along with the nitrogen to which they are attached to form a pyrrolyl, piperidinyl, morpholinyl, pyrazolyl, or imidazolyl ring, each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen;

25

BNSDOCID: <WO

9405153A1 1 >

10

R16	is H, C ₁ -C ₈ alkyl; benzyl optionally
-	substituted with one or more CH3, CF3, OCH3,
	SCH ₃ or halogen; or phenyl optionally
	substituted with one or more CH3, CF3, OCH3,
	SCH ₃ or halogen;

- R^{17} is H, C_1-C_2 alkyl or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 or halogen;
- R^{18} is H, C_1-C_2 alkyl, C_3-C_6 cycloalkyl, $CH_2(C_3-C_6$ cycloalkyl), $O(C_1-C_4$ alkyl), O-allyl or may be taken together with R^{17} as $-(CH_2)_4-$, $-(CH_2)_5-$ or $-(CH_2CH_2OCH_2CH_2)-$;
 - \mathbb{R}^{19} is H or \mathbb{C}_1 - \mathbb{C}_2 alkyl;
 - \mathbb{R}^{20} is H or C(O)CH₃;
- 15 R^{21} and R^{22} are independently H, CN, CO_2R^4 , $C(X)NR^{17}R^{18}$ or halogen;
 - R^{23} , R^{24} , R^{25} and R^{26} are independently H; C_1 - C_3 alkyl; or phenyl optionally substituted with one or more CH_3 , CF_3 , OCH_3 , SCH_3 , or halogen;
- 20 R^{27} and R^{28} are independently C_1-C_3 alkyl or may be taken together as $-(CH_2)_2-$ or $-(CH_2)_3-$ optionally substituted with 1-2 CH_3 's;
 - X is O or S;
 - R²⁹ is phenyl, pyridyl, thiazolyl, pyrazolyl or pyrrolyl each optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen; and
 - R³⁰ and R³¹ are each independently H; C₁-C₁₀ alkyl; or phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃, or halogen;
- 30 and agriculturally suitable salts thereof and at least one of the following: surfactant, solid or liquid diluent.
 - 2. The composition of Claim 1 wherein \mathbb{R}^1 is Cl. Br or I;

 R^2 is CN, CO_2H , CO_2CH_3 , $CO_2CH_2CH_3$, CHO, C(O)NH₂, C(O)NHCH₃, C(O)N(CH₃)₂, CH₂OH or CH=NOR⁷;

R³ is n-propyl; C₄-C₇ alkyl; C₂ alkyl substituted with phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; CH₂(C₃-C₆ cycloalkyl); phenyl optionally substituted with one or more CH₃, CF₃, OCH₃, SCH₃ or halogen; or OR¹²;

 R^{12} is C_2-C_4 alkyl;

10 3. The compositions of Claim 2 wherein

R1 is Cl or Br;

 \mathbb{R}^2 is CN, $\mathbb{CO}_2\mathbb{H}$ or $\mathbb{C}(0)\mathbb{NH}_2$;

 R^3 is C_4-C_7 alkyl, $CH_2(C_3-C_6$ cycloalkyl) or OR^{12} .

- 4. The composition of Claim 1 where the compound 15 is 2-chloro-4-(2-methylpropoxy)benzamide.
 - 5. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 1.
- 20 6. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 2.
- 7. A method for controlling the growth of
 25 undesired vegetation which comprises applying to the
 locus to be protected an effective amount of the
 composition of Claim 3.
- A method for controlling the growth of undesired vegetation which comprises applying to the
 locus to be protected an effective amount of the composition of Claim 4.
- 9. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of the composition of Claim 4.

Internatio Application No

PCT/US 93/08096

A. CLASSI IPC 5	FICATION OF SUBJECT A01N37/40	T MATTER A01N3
	A01N37/18	A01N37

1/14 A01N37/34 A01N35/04

A01N35/10

A01N37/10

. A

٠.

9

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 **A01N**

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DO	CUM	IENTS	CONSIDI	ERED	LO BE	: REL	EVANT
	_						-

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A,3 776 715 (R.J. THEISSEN) 4 December 1973 see column 1, line 19 - line 34	1,5
A	GB,A,900 561 (HOOKER) 11 July 1962	
A	GB,A,901 553 (VELSICOL) 18 July 1962	
A	FR,A,1 216 998 (PHILIPS) 29 April 1960	
A	US,A,3 169 849 (A.J. LEMIN) 16 February 1965	
A	US,A,3 982 931 (E. ARSURA ET AL.) 28 September 1976	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- E. eartier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or Other means
- document published prior to the international filing date but later than the priority date claimed
- "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of mailing of the international search report

Date of the actual completion of the international search

Fax: (+31-70) 340-3016

5 January 1984

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Authorized officer

Decorte, D

Form PCT/ISA/218 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

t tional application No

PCT/US 93/08096

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(2) for the following reasons:
1.	Claims Nos.; because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.:
	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	Claims searched completely: : 2-4, 6-9 Claims searched incompletely: 1, 5; only their subject matter as defined in claims 2-4, and 6-9 has been searched completely.
	(see attached sheet)
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
_	
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
Į	
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is
	restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark (on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/

In accordance with the last paragraph of Chapter III, Point 3.6 of the PCT Search Guidelines, the subject matter of claims 1 and 5 has not been exhaustively searched. Only its subject matter as further defined in the compositions claims 2, 3 and 4 as well as in the corresponding use claims 6-9 has been exhaustively searched.

発達組む。こ

Additional arguments for limiting the scope of the search could be found in the following considerations:

Each of the claimed compounds comprised in the Markush Formula I and II, is a compound resulting from the variation of the values of each of the three substituents (which embrace a vast array of independently varying radicals which are heterogeneous in structure - in particular RI - on an 1,2,4 tri-substituted nucleus which represents a special istructural) technical feature of the herbicide derivatives according to the invention.

It appears from e.g. US-A- 3.776.715 (see column 1 , line 19 - line 34) that herbicidal compounds comprising this structural element are known in the prior art.

In this perspective it is not possible (starting from the plethora of individual compounds and without making assumptions having no basis in the application documents) to unambiguously determine a (or a plurality of) GENERALISED set(s) of distinct features which could be considered as special technical features of a solution or of a plurality of alternative solutions to an accordingly formulated problem underlying the invention as a whole.

Consequently the wording of claims 1 and 5 does not comply with Art 5, and Rule 6.3(a), which require that an invention should be clearly defined in terms of the features supported by the invention. These should be identifiable from an appropriate technical statement, supported by the description of the problem and the solution thereto proposed.

The application does not comply with rule 5.1(a) ii and iii in that the description does not provide the common feature(s) of the compounds embraced by the breadth of the definition of claim 1 in a useful manner for understanding the invention and carrying out the search.

BNS page 162

ľ

Patent document	Publication	Patent family	Publication
cited in search report	date	member(s)	date
US-A-3776715	04-12-73	US-A- 3929455	30-12-75
		US-A- 3873302	25-03-75
		US-A- 3873303	25-03-75
		BE-A- 749444	23-10-70
		CA-A- 971973	29-07-7 5
		DE-A,B,C 2019821	12-11-70
		FR-A- 2040235	22-01-71
		GB-A- 1232368	19-05-71
		NL-A- 7005783	27 -10- 70
		US-E- RE32550	24-11-87
		US-E- RE32316	30-12-86
		US-E- RE31831	12-02-85
		US-A,B 3652645	28-03-72
		US-A- 3784635	08-01-74
		US-E- RE32243	09-09-86
		US-E- RE32216	29-07-86
GB-A-900561		NONE	
GB-A-901553		AT-A- 224976	
		AU-B- 250929	
		BE-A- 589221	
		CH-A- 410517	
		FR-A- 1240715	
		IT-A- 615450	
		LU-A- 37507	
		LU-A- 37509	
		NL-C- 122754	
		NL-A- 241973	
		NL-A- 6510535	25-10-65
		US-A- 3013050	
		US-A- 3013051	
		US-A- 3013052	
		US-A- 3013053	
		US-A- 3013054	
		US-A- 3013055	
		US-A- 3013056	
		US-A- 3013057	
		US-A- 3013058	
		US-A- 3013059	

INTERNATIONAL SEARCH REPORT

Info...ation on patent family members

Internatio Application N

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
GB-A-901553		US-A-	3013060		
•		US-A-	3013061		
•		us-a-	3013062		
· - · -		US-A-	3130205	A .	
		US-A-	3138446		
FR-A-1216998	,	BE-A-	572662		
		CH-A-	427405		
		OE-B-	1133176		
		GB-A-	862863		
		NL-C-	97486		
		NL-A-	222165		
		0A-A-	793	15-11-67	
		US-A-	3027248		
US-A-3169849		NONE			
US-A-3982931	28-09-76	BE-A-	723592	08-05-69	
		CH-A-	511557	31-08-71	
		DE-A-	180750 9	17-07-69	
		FR-A-	1593132	25-05-70	
		GB-A-	1242579	11-08-71	
		Nr-4-	6815727	13-05-69	
		0A-Y-	2924	15-12-70	
	•	SE-B-	355929	14-05-73	
	-	US-A-	3835189	10-09-74	