Jerrold E. Marsden and Anthony J. Tromba

Vector CalculusFifth Edition

Chapter 2: Differentiation

2.1 The Geometry of Real-Value Functions

2.1 Functions, Graphs, and Level Surfaces

Key Points in this Section.

- 1. A mapping or function $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ sends each point $\mathbf{x} \in A$ (the domain of f) to a specific point $f(\mathbf{x}) \in \mathbb{R}^m$. If m = 1, we call f a real valued function.
- 2. The **graph** of $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ is the set of all points of the form (x, y, z) where $(x, y) \in U$ and z = f(x, y). More generally, for $f: U \subset \mathbb{R}^n \to \mathbb{R}$ the graph is the subset of \mathbb{R}^{n+1} consisting of points of the form (x_1, \ldots, x_n, z) , where $(x_1, \ldots, x_n) \in U$ (the domain of f) and $z = f(x_1, \ldots, x_n)$.
- 3. A **level set** of a real valued function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ obtained by picking a constant c and forming the set of points (x_1, \ldots, x_n) in U such that $f(x_1, \ldots, x_n) = c$. For n = 3 we speak of them as **level** surfaces and for n = 2, **level** curves.

- 4. A **section** of a graph is obtained by intersecting the graph with a vertical plane. For instance, for z = f(x, y), setting y = 0 produces the section z = f(x, 0) which is the graph of one function of one variable.
- 5. Level sets and sections are useful tools in constructing and visualizing graphs.

DEFINITION: Graph of a Function Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Define the *graph* of f to be the subset of \mathbb{R}^{n+1} consisting of all the points

$$(x_1,\ldots,x_n,f(x_1,\ldots,x_n))$$

in \mathbb{R}^{n+1} for (x_1, \ldots, x_n) in U. In symbols,

graph
$$f = \{(x_1, \dots, x_n, f(x_1, \dots, x_n)) \in \mathbb{R}^{n+1} \mid (x_1, \dots, x_n) \in U\}.$$

$$h = 50$$

$$h = 100$$

$$h = 150$$

$$h = 200$$

DEFINITION: Level Curves and Surfaces Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ and let $c \in \mathbb{R}$. Then the *level set of value* c is defined to be the set of those points $\mathbf{x} \in U$ at which $f(\mathbf{x}) = c$. If n = 2, we speak of a *level curve* (of value c); and if n = 3, we speak of a *level surface*. In symbols, the level set of value c is written

$$\{\mathbf{x} \in U \mid f(\mathbf{x}) = c\} \subset \mathbb{R}^n.$$

Note that the level set is always in the domain space.

Level curves of $f(x,y)=x^2+y^2$ 3D view

The Method of Sections: By a section of the graph of f we mean the intersection of the graph and a (vertical) plane.

Exercise:

The graph of the quadratic function

$$f: R^2 \to R$$

$$(x, y) \to x^2 - y^2$$

is called a hyperbolic paraboloid, or saddle, centered at the origin. Sketch the graph. (Hint: Consider the values $c = 0, \pm 1, \pm 4$)

Level curves of $f: \mathbb{R}^2 \to \mathbb{R}$

$$f: R^2 \to R$$

$$(x, y) \to x^2 - y^2$$

Computer-generated graph of $z = (x^2 + 3y^2) \exp (1 - x^2 - y^2)$ represented in three ways: (a) by sections, (b) by level curves on a graph, and (c) by level curves in the xy plane.

