

Error Correction and Assembly of Oxford Nanopore Sequencing

James Gurtowski

Assembly Complexity

Assembly Complexity

The advantages of SMRT sequencing

Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405

Oxford Nanopore MinION

- Thumb drive sized sequencer powered over USB
- Senses DNA by measuring changes to ion flow
- Reads both DNA Strands (2D)

Nanopore Basecalling

Basecalling currently performed at Amazon with frequent updates to algorithm

Our Data - Yeast W303

Nanopore Alignments

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average ~65% identity "2D base-calling" improves to ~77% identity

Nanopore Alignment Summary

Long Read Correction Algorithms

PBJelly

Gap Filling and Assembly Upgrade

English et al (2012) PLOS One. 7(11): e47768

PacBioToCA & ECTools

Hybrid Error Correction

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

HGAP & Quiver

Quiver Performance Results Comparison to Reference Genome (M. ruber; 3.1 MB; SMRT* Cells)		
Ça V	Initial Assembly	Quiver Consensus
QV	43.4	54.5
	00.005400	99.99964%
Accuracy	99.99540%	33.3330476

LR-only Correction & Polishing

Chin et al (2013)
Nature Methods. 10:563–569

NanoCorr: Nanopore-Illumina Hybrid Error Correction

- BLAST Miseq reads to all raw Oxford Nanopore reads
- 2. Select non-repetitive alignments
 - First pass scans to remove "contained" alignments
 - Second pass uses Dynamic Programming (LIS) to select set of highidentity alignments with minimal overlaps
- Compute consensus of each Oxford Nanopore read
 - o Currently using Pacbio's pbdagcon

https://github.com/jgurtowski/nanocorr

Post Correction Identity

ONT vs Illumina Assembly

ONT Assembly Completeness

ONT Assembly Completeness

Long Read Assembly

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

Illumina MiSeq 30x, 300bp PE (Flashed) Celera Assembler • 6953 non-redundant contigs • N50: 59kb >99.9% id

E. Coli K12 Single Contig Assembly with MinION

Nanocor Correction Results

145x Oxford Nanopore X 35x MiSeq

E. coli Error Correction with Nanocorr 35000 Uncorrected Corrected Corrected 15000 15000 5000 5000

50

60

Single Contig Assembly

99.99% Identity (Pilon polishing)

Sequencing Data From:

70

Percent Identity

80

A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer
Joshua Quick, Aaron R Quinlan and Nicholas J Loman

Future of Oxford Nanopore

Zamin Iqbal and 5 others retweeted

GenomeWeb InSequence @InSequence - Oct 20

Oxford Nanopore shows off Promethlon at ASHG. #ASHG14 #nanopore

Acknowledgements

Michael Schatz

Dick McCombie

Sara Goodwin

Schatz Lab

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Deshpande, Michael Schatz, W Richard McCombie doi: http://dx.doi.org/10.1101/013490