Self-Test 1, Pages 132-133

1. $\angle P \cong \angle T$; CPCT 2. \overline{KO} , \overline{MA} ; \overline{OP} , \overline{AT} ; \overline{KP} , \overline{MT} 3. $\triangle JKX \cong \triangle JKY$; SAS 4. No \cong can be deduced. 5. $\triangle TRP \cong \triangle TRS$; ASA 6. 1. $\angle 1 \cong \angle 2$; $\angle 3 \cong \angle 4$ (Given) 2. $\overline{DB} \cong \overline{DB}$ (Refl. Prop.) 3. $^*\triangle ADB \cong \triangle CBD$ (ASA Post.) 7. 1. $\overline{CD} \cong \overline{AB}$; $\overline{CB} \cong \overline{AD}$ (Given) 2. $\overline{DB} \cong \overline{DB}$ (Refl. Prop.) 3. $\triangle ADB \cong \triangle CBD$ (SSS Post.) 4. $\angle 1 \cong \angle 2$ (CPCT) 8. 1. $\overline{AD} \parallel \overline{BC}$ (Given) 2. $\angle 4 \cong \angle 3$ (If 2 \parallel lines are cut by a trans., then alt. int. \triangle are \cong .) 3. $\overline{AD} \cong \overline{CB}$ (Given) 4. $\overline{DB} \cong \overline{DB}$ (Refl. Prop.) 5. $\triangle ADB \cong \triangle CBD$ (SAS Post.) 6. $\angle 1 \cong \angle 2$ (CPCT) 7. $\overline{DC} \parallel \overline{AB}$ (If 2 lines are cut by a trans. and alt. int. \triangle are \cong , then the lines are \parallel .)

Written Exercises, Pages 137-139

3. 53 5. 5 7. 41 9. Answers may vary; c, d, b, a 11. 1. $\overline{AB} \cong \overline{AC}$ (Given) 2. Let the bis. of $\angle A$ int. \overline{BC} at D. (By the Protractor Post., an \angle has exactly one bis.) 3. $\angle BAD \cong \angle CAD$ (Def. of \angle bis.) 4. $\overline{AD} \cong \overline{AD}$ (Refl. Prop.) 5. $\triangle BAD \cong \triangle CAD$ (SAS Post.) 6. $\angle B \cong \angle C$ (CPCT) 13. 1. $\angle 1 \cong$ \angle 2 (Given) 2. $\overline{JG} \cong \overline{JM}$ (If 2 \angle of a \triangle are \cong , then the sides opp. those \angle are \cong .) 3. M is the midpt. of \overline{JK} . (Given) 4. $\overline{JM} \cong \overline{MK}$ (Def. of midpt.) 5. $\overline{JG} \cong \overline{MK}$ (Trans. Prop.) 15. 1, 3 17. 1. $\overline{XY} \cong \overline{XZ}$ (Given) 2. $\angle XYZ \cong \angle XZY$ or $m \angle XYZ = m \angle XZY$ (lsos. \triangle Thm.) 3. $m \angle XYZ = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle XZY = m \angle 1 + m \angle 2$; $m \angle 1$ $m \angle 3 + m \angle 4$ (\angle Add. Post.) 4. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$ (Substitution Prop.) 5. $\overline{OY} \cong \overline{OZ}$ (Given) 6. $\angle 2 \cong \angle 3$ or $m \angle 2 = m \angle 3$ (Isos. \triangle Thm.) 7. $m \angle 1 = m \angle 4$ (Subtr. Prop. of =) 19. 1. $\overline{AB} \cong \overline{AC}$ (Given) 2. $\angle B \cong \angle C$ (Isos. \triangle Thm.) 3. \overline{AL} and \overline{AM} trisect $\angle BAC$, so $\angle 1 \cong \angle 3$. (Given) 4. $\triangle BLA \cong \triangle CMA$ (ASA Post.) 5. $\overline{AL} \cong \overline{AM}$ (CPCT) 21. 1. $\overline{OP} \cong \overline{OO}$; $\angle 3 \cong \angle 4$ (Given) 2. $\angle POS \cong \angle OOR$ (Vert. \triangle are \cong .) 3. $\triangle POS \cong \triangle OOR$ (ASA Post.) 4. $\overline{OS} \cong \overline{OR}$ (CPCT) 5. $\angle S \cong \overline{OR}$ \angle 6 (Isos. \triangle Thm.) 23. a. 40, 40, 60 b. 2x, 2x, 3x 25. a. 90 b. 90 27. x = 2, y = 1**29.** x = 30, y = 1031. a. Key steps of proof: 1. $\triangle JKM \cong \triangle JKN$ and $\triangle LKM \cong \triangle LKN$ (SAS Post.) 2. $\overline{JM} \cong \overline{JN}$ and $\overline{LM} \cong \overline{LN}$ (CPCT) 3. $\triangle JMN$ and $\triangle LMN$ are isos. (Def. of isos. \triangle) b. No. They are \cong if and only if $\overline{KI} \cong \overline{KI}$. 33. $m \angle EAF = 9$, $m \angle AFD = 54$, $m \angle DAF = 45$

Written Exercises, Pages 143-145

1. 1. Given 2. Def. of rt. \triangle 3. Given 4. $\overline{XZ} \cong \overline{XZ}$ 5. $\triangle XYZ$; HL 6. $\overline{WZ} \cong \overline{YZ}$; CPCT 3. 1. $\overline{EF} \perp \overline{EG}$; $\overline{HG} \perp \overline{EG}$ (Given) 2. $\angle HGE$ and $\angle FEG$ are rt. \triangle . (Def. of \perp lines) 3. $\triangle HGE$ and $\triangle FEG$ are rt. \triangle . (Def. of rt. \triangle) 4. $\overline{EH} \cong \overline{GF}$ (Given) 5. $\overline{EG} \cong \overline{EG}$ (Refl. Prop.) 6. $\triangle HGE \cong \triangle FEG$ (HL) 7. $\angle H \cong \angle F$ (CPCT) 5. SAS 7. HL 9. a. 1. $\overline{PR} \cong \overline{PQ}$ (Given) 2. $\angle PQR \cong \angle PRQ$ (Isos. \triangle Thm.) 3. $\overline{SR} \cong \overline{TQ}$ (Given) 4. $\overline{RQ} \cong \overline{RQ}$ (Refl. Prop.) 5. $\triangle RQS \cong \triangle QRT$ (SAS Post.) 6. $\overline{QS} \cong \overline{RT}$ (CPCT) b. 1. $\overline{PR} \cong \overline{PQ}$ or PR = PQ; $\overline{SR} \cong \overline{TQ}$ or SR = TQ (Given) 2. PR = PS + SR; PQ = PT + TQ (Seg. Add. Post.) 3. PS + SR = PT + TQ (Substitution Prop.) 4. PS = PT or $\overline{PS} \cong \overline{PT}$ (Subtr. Prop. of =) 5. $\angle P \cong \angle P$ (Refl. Prop.) 6. $\triangle PQS \cong \triangle PRT$ (SAS Post.) 7. $\overline{QS} \cong \overline{RT}$ (CPCT) 11. $\overline{PR} \cong \overline{PS}$, $\overline{PQ} \cong \overline{PT}$, $\overline{QR} \cong \overline{TS}$; SSS 13. $\angle 3 \cong \angle 4$, $\overline{PQ} \cong \overline{PT}$, $\angle 6 \cong \angle 5$; AAS 15. 1. $\angle 1 \cong \angle 2 \cong \angle 3$ (Given) 2. $\overline{ME} \cong \overline{MD}$ (If 2 \triangle of a \triangle are \cong , then the sides opp. those \triangle are \cong .) 3. $\overline{EN} \cong \overline{DG}$ (Given) 4. $\triangle MEN \cong \triangle MDG$ (SAS Post.) 5. $\angle 4 \cong \angle 5$ (CPCT)

17. Given: Isos. $\triangle XYZ$ with $\overline{XY} \cong \overline{XZ}$; $\overline{ZA} \perp \overline{XY}$; $\overline{YB} \perp \overline{XZ}$

Prove: $\overline{ZA} \cong \overline{YB}$

Proof: 1. $\overline{ZA} \perp \overline{XY}$; $\overline{YB} \perp \overline{XZ}$ (Given) 2. $m \angle XBY = 90$; $m \angle XAZ = 90$ (Def. of \perp lines) 3. $\angle XBY \cong \angle XAZ$ (Def. of $\cong \triangle$) 4. $\angle X \cong \angle X$ (Refl. Prop.) 5. $\overline{XY} \cong \overline{XZ}$ (Given) 6. $\triangle XBY \cong \triangle XAZ$ (AAS Thm.) 7. $\overline{ZA} \cong \overline{YB}$ (CPCT)

Self-Test 2, Page 146

1. 70 2. 7 3. 30 4. $\overline{AB} \cong \overline{AC}$, $\angle A \cong \angle A$, $\angle ANB \cong \angle AMC$, so $\triangle ABN \cong \triangle ACM$ by AAS. 5. 1. $\overline{BN} \perp \overline{AC}$; $\overline{CM} \perp \overline{AB}$ (Given) 2. $\angle BMC$ and $\angle CNB$ are rt. \triangle . (Def. of \perp lines) 3. $\triangle BMC$ and $\triangle CNB$ are rt. \triangle . (Def. of rt. \triangle) 4. $\overline{MB} \cong \overline{NC}$ (Given) 5. $\overline{BC} \cong \overline{BC}$ (Refl. Prop.) 6. $\triangle BMC \cong \triangle CNB$ (HL) 7. $\overline{CM} \cong \overline{BN}$ (CPCT)