TD application : oscillateurs en RSF

$oxed{\mid}$ Notation complexe

Écrire, sous forme complexe, les équations différentielles suivantes :

$$\tau \frac{\mathrm{d}u}{\mathrm{d}t} + u(t) = E_0 \sin \omega t$$

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x(t) = F_0 \cos \omega t$$

Condition de résonance

Le circuit ci-contre est alimenté par une source de tension sinusoïdale de f.é.m. $e(t) = E_0 \cos(\omega t)$. On s'intéresse à la tension u(t) aux bornes du résistor et de la capacité montés en parallèle.

On pose :
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
, $\xi = \frac{R}{2}\sqrt{\frac{C}{L}}$ et $x = \frac{\omega}{\omega_0}$.

- 1) Établir l'expression du signal complexe \underline{u} associé à u(t) en régime sinusoïdal forcé, en fonction de E_0 , x et ξ .
- 2) Étudier l'existence éventuelle d'une résonance pour la tension u(t).

$\left| \mathrm{II} ight|$ Modélisation d'un haut-parleur

On modélise la partie mécanique d'un haut-parleur comme une masse m, se déplaçant horizontalement le long d'un axe (Ox). Cette masse est reliée à un ressort de longueur à vide ℓ_0 et de raideur k et subit une force de frottement fluide : $\vec{f} = -\alpha \vec{v}$. Elle est par ailleurs soumise à une force $\vec{F}(t)$, imposée par le courant i(t) entrant dans le haut-parleur, qui vaut : $\vec{F}(t) = Ki(t)\vec{u}_x$ où K est une constante. On travaille dans le référentiel du laboratoire $(O, \vec{u}_x, \vec{u}_y)$. On suppose que le courant est de la forme $i(t) = I_m \cos(\omega t)$.

$$m = 10 \,\mathrm{g}, \; K = 200 \,\mathrm{N \cdot A^{-1}} \;\mathrm{et} \; I_m = 1.0 \,\mathrm{A}.$$

- 1) Écrire l'équation différentielle vérifiée par x(t), la position de la masse m.
- 2) La mettre sous forme canonique et identifier les expressions de la pulsation propre ω_0 et du facteur de qualité Q.
- 3) Justifier qu'en régime permanent : $x(t) = X_m \cos(\omega t + \phi)$

- 4) On pose $\underline{x}(t) = \underline{X}e^{\mathrm{j}\omega t}$. Déterminer l'expression de l'amplitude complexe \underline{X} .
- 5) Exprimer $X_m(\omega)$. Existe-t-il toujours une résonance?

On a tracé ci-dessous les courbes de $X_m(\omega)$ et de $\varphi(\omega)$.

6) Pour quelle pulsation le déplacement est-il en quadrature de phase avec la force excitatrice? Déterminer alors graphiquement la pulsation propre ω_0 .

* [

Résonance d'intensité dans un circuit RLC parallèle

L'antenne d'un émetteur radio peut être modélisée par un circuit électrique équivalent composé de l'association en parallèle d'une résistance R, d'une bobine d'inductance L et d'un condensateur de capacité C.

L'antenne est alimentée par une source idéale de courant dont l'intensité caractéristique varie de manière sinusoïdale dans le temps : $i(t) = I_0 \cos(\omega t)$.

On s'intéresse à la manière dont l'amplitude de la tension u(t) aux bornes de l'antenne, qui correspond au signal envoyé, dépend de ω .

- 1) Déterminer l'impédance complexe de l'association des dipôles R,L et C.
- 2) En déduire l'amplitude complexe \underline{U} de la tension u en fonction de ω , I_0 , R, L et C.
- 3) Pour quelle pulsation l'amplitude réelle U de u prend-elle sa valeur maximale notée U_{\max} ? Conclure sur la fréquence à utiliser.
- 4) Représenter le graphe donnant U en fonction de la pulsation réduite $x = \omega/\omega_0$ avec $\omega_0 = 1/\sqrt{LC}$.
- 5) Exprimer la largeur de la bande passante $\Delta\omega$.
- 6) On se place dans le cas $R = 7\Omega$, $L = 1.2 \times 10^{-8}\,\mathrm{H}$ et $C = 2.3 \times 10^{-10}\,\mathrm{F}$. Calculer la valeur de l'acuité $A_c = \omega_0/\Delta\omega$ de la résonance. Interpréter sa dépendance en R.