DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING COMP232 MATHEMATICS FOR COMPUTER SCIENCE

Fall 2020

Assignment 4. Due date: Friday December 4 SOLUTION

- 1. Use mathematical induction to solve the following:
 - (a) Find a formula for $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$ by examining the values of this expression for small values of n.
 - (b) Show that $7^n 1$ is a multiple of 6 for all $n \in \mathbb{N}$

SOLUTION

(a) By computing the first few sums and getting the answers 1/2, 2/3, and 3/4, we can conjuncture that the sum is n/(n+1).

Proof

Let P(n) denotes that the sum is n/(n+1)

Basis step, P(1) = 1/2, the reader can verify that the conjecture is valid.

Inductive hypothesis, suppose P(k) represented by $\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$ is true

show that
$$P(k+1)$$
 represented by $\left[\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{k(k+1)}\right] + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$ is true

Starting from the left, we replace the quantity in brackets by k/(k+1) (by the inductive hypothesis), and then do the algebra:

$$\frac{k}{(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k^2 + 2k + 1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$

yielding the desired expression.

(b) Let P(n) denotes that $7^n - 1$ is a multiple of 6 for all $n \in \mathbb{N}$ Basis step, $P(1) = 7^1 - 1 = 6$, true since 6 is multiple of 6, $(6 = 1 \times 6)$.

Inductive hypothesis, suppose P(k) represented by : $7^k - 1$ is a multiple of 6 for all $k \in \mathbb{N}$ is true.

1

show that P(k+1) represented by : $7^{k+1}-1$ is a multiple of 6 for all $k \in \mathbb{N}$ is true.

From the inductive hypothesis $7^k - 1$ is a multiple of 6 for all $k \in \mathbb{N}$.

Then $7^k - 1 = 6 \times C$, for some $C \in \mathbb{N}$ and $7^k = 6 \times C + 1$

P(k+1) can be written as: $7^{k+1} - 1 = 7 \times 7^k - 1$, substitute $(6 \times C + 1)$ for 7^k yields: $7^{k+1} - 1 = 7(6 \times C + 1) - 1 = 7 \times 6 \times C + 6 = 6 (7 \times C + 1)$. This shows that $7^{k+1} - 1$ is multiple of 6 and P(k+1) is true.

Thus, P(n) is true, for all $n \in \mathbb{N}$

2. Suppose that a bank machine can dispense money in either 3\$ or 10\$ bills. Show that any amount over 17\$ could be dispensed with combinations of only the 3\$ or the 10\$ bills

SOLUTION

P(18): Eighteen dollars can be made using six 3-dollar bills. $P(k) \rightarrow P(k+1)$: Suppose that k dollars can be formed, for some $k \ge 18$.

- If at least two 10-dollar bills are used, replace them by seven 3-dollar bills to form k+1 dollars.
- Otherwise (that is, at most one 10-dollar bill is used), at least three 3-dollar bills are being used, and three of them can be replaced by one 10-dollar bill to form k + 1 dollars.
- 3. Use mathematical induction to show that n lines in the plane passing through the same point divide the plane to 2n parts.

SOLUTION

The basis step follows since one line divides the plane into 2 regions. Now assume that k lines passing through the same point divide the plane into 2k regions. Adding the (k+1)st line splits exactly two of these regions into two parts each. Hence, the k+1 lines split the plane into 2k+2=2(k+1) regions.

4. Let $a_1 = 2$, $a_2 = 9$, and $a_n = 2a_{n-1} + 3a_{n-2}$ for $n \ge 3$. Use strong induction to show that $a_n \le 3^n$ for all positive integer n.

SOLUTION

Let P(n) be the proposition that $a_n \leq 3^n$.

Basis step: $a_1 = 2 \le 3 = 3^1$ and $a_2 = 9 \le 9 = 3^2$.

Inductiove step: assume P(j) is true for $1 \le j \le k$.

Then $a_j \leq 3^j$ for $1 \leq j \leq k$.

Hence $a_{k+1} = 2a_k + 3a_{k-1} \le 2.3^k + 3.3^{k-1} = 2.3^k + 3^k = 3.3^k = 3^{k+1}$.

5. Give an example of the following relations:

- (a) A relation on $\{a, b, c\}$ that is reflexive and transitive, but not antisymmetric
- (b) A relation on $\{1,2\}$ that is symmetric and transitive, but not reflexive.
- (c) A relation on $\{1,2,3\}$ that is reflexive and transitive, but not symmetric.

SOLUTION

- (a) $\{(a,a),(b,b)(c,c),(a,b),(b,a)\}$
- (b) $\{(1,1)\}$
- (c) $\{(1,1),(2,2),(3,3),(1,2)\}$
- 6. Give a recursive definition of the sequence $\{a_n\}$, where $n=1,2,3,\ldots$ if
 - a) $a_n = 4n 2$
 - b) $a_n = 1 + (-1)^n$
 - c) $a_n = n(n+1)$

In all parts of this question you must proof and verify your answer.

SOLUTION

- a) Each term is 4 more than the term before it. We can therefore define the sequence by $a_1 = 2$ and $a_{n+1} = a_n + 4$ for all $n \ge 1$.
- b) We note that the terms alternate: 0, 2, 0, 2, and so on. Thus we could define the sequence by $a_1 = 0$, $a_2 = 2$, and $a_n = a_{n-2}$ for all $n \ge 3$.
- c) The sequence starts out 2, 6, 12, 20, 30, and so on. The differences between successive terms are 4, 6, 8, 10, and so on. Thus the n^{th} term is 2n greater than the term preceding it; in symbols: $a_n = a_{n-1} + 2n$. Together with the initial condition $a_1 = 2$, this defines the sequence recursively.
- 7. Consider the following relations on the set of positive integers.

$$R_1 = \{(x, y) \mid x + y > 10\}$$

$$R_2 = \{(x, y) \mid y \text{ divides } x\}$$

$$R_3 = \{(x,y) \mid gcd(x,y) = 1\}$$

 $R_4 = \{(x, y) \mid x \text{ and } y \text{ have the same prime divisors } \}$

Which of these relations are: reflexive, symmetric, antisymmetric or transitive? Justify your answer.

SOLUTION

Reflexive:

 R_1 is not reflexive since 1 + 1 < 10, so (1, 1) is not in R_1

 R_2 is reflexive since x|x for every positive integer x.

 R_3 is not reflexive since gcd(2,2) = 2, so (2,2) is not in R_3 .

 R_4 is reflexive since x and x have the same prime divisors for every integer x, so $(x,x) \in R_4$ for all x.

Symmetric:

 R_1 is symmetric, since x + y > 10 implies y + x > 10.

 R_2 is not symmetric since $1 \mid 2$, but $2 \mid 1$.

 R_3 is symmetric since gcd(x,y) = 1 implies gcd(y,x) = 1.

 R_4 is symmetric since x any y have the same prime divisors if and only if y and x have the same prime divisors.

Antisymmetric:

 R_1 is not antisymmetric, since (2,9) and (9,2) both belong to R_1 .

 R_2 antisymmetric since $x \mid y$, and $y \mid x$. imply that x = y if x and y are positive integers.

 R_3 is not antisymmetric since gcd(2,1) = gcd(1,2) = 1.

 R_4 is not antisymmetric since 12 any 18 have the same prime divisors, namely 2 and 3, and 18 and 12 have the same prime divisors.

Transitive:

 R_1 is not transitive since $(2,9) \in R_1$ and $(9,3) \in R_1$ but $(2,3) \notin R_1$.

 R_2 is transitive since $x \mid y$ and $y \mid z$ imply that $x \mid z$.

 R_3 is not transitive since gcd(4,5) = 1 and gcd(5,6) = 1 but gcd(4,6) = 2.

 R_4 is transitive, for if x and y have the same prime divisors and y and z have the same prime divisors, then x and z have the same prime divisors.

8. Suppose A is the set composed of all ordered pairs of positive integers. Let R be the relation defined on A where (a, b)R(c, d) means that ad = bc. Show that R is an equivalence relation.

SOLUTION

A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

R is reflexive: $((a,b),(a,b)) \in R$ since ab = ba.

R is symmetric: if $((a,b),(c,d)) \in R$ then ad = bc, which also means that cb = da, so $((c,d),(a,b)) \in R$.

R is transitive: if $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$ then ad = bc and cf = de. Multiplying these equations gives acdf = bcde, and since all these numbers are nonzero, we have af = be, so $((a,b),(e,f)) \in R$.

Thus, R is an equivalence relation.