Calibration d'un modèle à volatilité stochastique

et sauts dans Premia7

A. BEN HAJ YEDDER adel@freesurf.fr

J. DA FONSECA jose.da_fonseca@devinci.fr

Sauts : Modèle de Merton

Volatilité constante σ

Sauts: Modèle de Merton

- Volatilité constante σ
- Modèle de poisson pour le saut d'intensité constante λ

Sauts : Modèle de Merton

- Volatilité constante σ
- Modèle de poisson pour le saut d'intensité constante λ
- Loi log-normale pour l'amplitude des sauts

Sauts : Modèle de Merton

- Volatilité constante σ
- Modèle de poisson pour le saut d'intensité constante λ
- Loi log-normale pour l'amplitude des sauts

$$\begin{cases} \frac{dS_t}{S_t} &= (r-d)dt + \sigma dW_t + (e^J - 1)dN_t \\ S(t=0) &= S_0 \end{cases}$$

avec
$$J \sim \mathcal{N}(m, v)$$
.

Volatilité stochastique : Modèle de Heston

Dynamique de la volatilité en "racine carrée"

Volatilité stochastique : Modèle de Heston

- Dynamique de la volatilité en "racine carrée"
- Paramètres : κ (force de rappel), θ (valeur moyenne) et σ_v (volatilité de la volatilité)

Volatilité stochastique : Modèle de Heston

- Dynamique de la volatilité en "racine carrée"
- Paramètres : κ (force de rappel), θ (valeur moyenne) et σ_v (volatilité de la volatilité)

$$\begin{cases} \frac{dS_t}{S_t} &= (r-d)dt + \sqrt{V_t}dW_t^1 \\ dV_t &= \kappa(\theta - V_t)dt + \sigma_v\sqrt{V_t}dW_t^2 \\ S(t=0) &= S_0 \\ V(t=0) &= V_0 \end{cases}$$

avec
$$d < W^1, W^2 >_t = \rho dt$$
.

• Volatilité stochastique + sauts

Combinaison des modèles de Merton et Heston:

$$\begin{cases} \frac{dS_t}{S_t} &= (r-d)dt + \sqrt{V_t}dW_t^1 + (e^J - 1)dN_t \\ dV_t &= \kappa(\theta - V_t)dt + \sigma_v\sqrt{V_t}dW_t^2 \\ S(t=0) &= S_0 \\ V(t=0) &= V_0 \end{cases}$$

avec
$$d < W^1, W^2 >_t = \rho dt$$
 et $J \sim \mathcal{N}(m, v)$.

Paramètres à calibrer :

- Paramètres à calibrer :
 - Merton (4) : σ, λ, m, v

- Paramètres à calibrer :
 - Merton (4) : σ, λ, m, v
 - Heston (5) : $V_0, \kappa, \theta, \sigma_v, \rho$

- Paramètres à calibrer :
 - Merton (4) : σ, λ, m, v
 - Heston (5): $V_0, \kappa, \theta, \sigma_v, \rho$
 - Merton + Heston (8) : $V_0, \kappa, \theta, \sigma_v, \rho, \lambda, m, v$

- Paramètres à calibrer :
 - Merton (4) : σ, λ, m, v
 - Heston (5): $V_0, \kappa, \theta, \sigma_v, \rho$
 - Merton + Heston (8) : $V_0, \kappa, \theta, \sigma_v, \rho, \lambda, m, v$

• Algorithme d'optimisation : algorithme de BFGS avec contraintes de types bornes ($a_i \le x_i \le b_i$)

Pricing (1)

 Formules quasi-fermées pour les calls/puts européens [1] obtenues en applicant une transformée de Fourier à l'EDP par Feynman-Kac.

[1] Artur Sepp, *Pricing European-Style Options under Jump Diffusion Processes with Stochastic Volatility: Applications of Fourier Transform,* Proceedings of the 7th Tartu Conference on Multivariate Statistics, (2004).

Pricing (1)

- Formules quasi-fermées pour les calls/puts européens [1] obtenues en applicant une transformée de Fourier à l'EDP par Feynman-Kac.
- Avec la convention $\varphi=1$ (resp. -1) pour un call (resp. put) le prix est donné par :

$$F(S,t) = \varphi \left(e^{-d(T-t)} S_t P_1(\varphi) - e^{-r(T-t)} K P_2(\varphi) \right)$$

où
$$P_j(\varphi) = \frac{1-\varphi}{2} + \varphi \Pi_j$$
 pour $j \in \{1,2\}$ avec

$$\Pi_j = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \Re\left[\frac{\phi_j(k)}{ik}\right] dk.$$

[1] Artur Sepp, *Pricing European-Style Options under Jump Diffusion Processes with Stochastic Volatility: Applications of Fourier Transform,* Proceedings of the 7th Tartu Conference on Multivariate Statistics, (2004).

Pricing (2) : fonctions caractéristiques

Notations : $\begin{cases} X = ln(S_t/K) + (r - d)\tau & avec \quad \tau = T - t, \\ u = +1, \quad I = 1, \quad b = \kappa - \rho \sigma_v \quad si \quad \quad j = 1 \\ u = -1, \quad I = 0, \quad b = \kappa \quad \quad si \quad \quad j = 2 \end{cases}$

Pour $j \in \{1, 2\}$ l'expression des fonctions ϕ_j est :

Pricing (2) : fonctions caractéristiques

Notations:
$$\begin{cases} X = ln(S_t/K) + (r-d)\tau & avec & \tau = T - t, \\ u = +1, & I = 1, & b = \kappa - \rho\sigma_v & si & j = 1 \\ u = -1, & I = 0, & b = \kappa & si & j = 2 \end{cases}$$

Pour $j \in \{1,2\}$ l'expression des fonctions ϕ_j est :

Merton :
$$\phi_j(k) = e^{ikX + A(k, au) + B(k, au) V_0 + D(k, au) \lambda}$$

Avec:

- $A(k,\tau) = 0$
- $B(k,\tau) = -1/2(k^2 uik)\tau$
- $D(k,\tau) = \tau \Lambda(k) \text{ où}$ $\Lambda(k) = e^{(m+v^2/2)ik v^2k^2/2 + I(m+v^2/2)} 1 + (ik+I)(e^{m+v^2/2} 1).$

Pricing (2) : fonctions caractéristiques

Notations:
$$\begin{cases} X = ln(S_t/K) + (r - d)\tau & avec \quad \tau = T - t, \\ u = +1, \quad I = 1, \quad b = \kappa - \rho \sigma_v & si \quad j = 1 \\ u = -1, \quad I = 0, \quad b = \kappa & si \quad j = 2 \end{cases}$$

Pour $j \in \{1, 2\}$ l'expression des fonctions ϕ_j est :

Heston :
$$\phi_j(k) = e^{ikX + A(k, au) + B(k, au) V_0 + D(k, au) \lambda}$$

Avec:

$$A(k,\tau) = -\frac{\kappa\theta}{\sigma_v^2} \left[\psi_+ \tau + 2ln \left(\frac{\psi_- + \psi_+ e^{-\tau\zeta}}{2\zeta} \right) \right]$$

•
$$B(k,\tau) = -(k^2 - uik) \frac{1 - e^{-\tau\zeta}}{\psi_- + \psi_+ e^{-\tau\zeta}}$$

•
$$D(k,\tau) = 0$$

où
$$\psi_{\pm}=\mp(b-\rho\sigma_vik)+\zeta$$
 et $\zeta=\sqrt{(b-\rho\sigma_vik)^2+\sigma_v^2(k^2-iuk)}$.

• Fonction objective

• Soit un ensemble d'options, de prix observées $prix_i^{obs}$, on définit 3 types de fonctions à minimiser :

$$\begin{cases} f_1 &= \sum_i ||prix_i - prix_i^{obs}||^2 \\ f_2 &= \sum_i ||\frac{prix_i - prix_i^{obs}}{prix_i^{obs}}||^2 \\ f_3 &= \sum_i ||\sigma_{imp,i} - \sigma_{imp,i}^{obs}||^2 \end{cases}$$

Fonction objective

Soit un ensemble d'options, de prix observées $prix_i^{obs}$, on définit 3 types de fonctions à minimiser :

$$\begin{cases} f_1 &= \sum_i ||prix_i - prix_i^{obs}||^2 \\ f_2 &= \sum_i ||\frac{prix_i - prix_i^{obs}}{prix_i^{obs}}||^2 \\ f_3 &= \sum_i ||\sigma_{imp,i} - \sigma_{imp,i}^{obs}||^2 \end{cases}$$

- Pour chacun des 3 cas et pour les 3 modèles on calcule les gradients $\nabla_{\alpha} f_j$ par des formules quasi-fermées semblables aux formules de pricing.
 - L'indice α représente un paramètre du modèle à calibrer (Merton ou Heston ou Merton+Heston).

Allures des fonctions objectives (1)

Allures des fonctions objectives (2)

Allures des fonctions objectives (3)

Merton

Allures des fonctions objectives (4)

Merton

Allures des fonctions objectives (5)

Merton

Allures des fonctions objectives (6)

Heston

Allures des fonctions objectives (7)

La vallée

Allures des fonctions objectives (7)

La vallée

Allures des fonctions objectives (7)

La vallée

Etude des modèles et stratégies de calibration (1)

• On choisit un jeu de paramètres x_0 (= $(\sigma_0, \lambda_0, m_0, v_0)$ pour Merton par exemple).

Etude des modèles et stratégies de calibration (1)

• On choisit un jeu de paramètres x_0 (= $(\sigma_0, \lambda_0, m_0, v_0)$ pour Merton par exemple).

• On se donne un ensemble de maturités T_i et de strike K_i pour lesquels on calcules les prix des call ou put européens avec les paramètres x_0 . Ces prix représentent les observés $prix_i^{obs}$.

Etude des modèles et stratégies de calibration (1)

• On choisit un jeu de paramètres x_0 (= $(\sigma_0, \lambda_0, m_0, v_0)$ pour Merton par exemple).

• On se donne un ensemble de maturités T_i et de strike K_i pour lesquels on calcules les prix des call ou put européens avec les paramètres x_0 . Ces prix représentent les observés $prix_i^{obs}$.

• On part avec des paramètres $x (= (\sigma, \lambda, m, v))$ choisis aléatoirement, et on cherche à retrouver x_0 en minimisant la fonction objective f_i .

Etude des modèles et stratégies de calibration (2)

Algorithme de calibration

Premiers résultats

Calcul avec 1000 points de départ choisis aléatoirement.

Premiers résultats

Calcul avec 1000 points de départ choisis aléatoirement.

 Pour les modèles de Merton ou de Heston la solution est retrouvée dans 99% des cas.

Premiers résultats

Calcul avec 1000 points de départ choisis aléatoirement.

Pour les modèles de Merton ou de Heston la solution est retrouvée dans 99% des cas.

Pour le Modèle Heston+Merton, le taux de convergence n'est que de l'odre de 50% : problème de minimas locaux.