

SISTEMAS EMBARCADOS

PROF. JOSENALDE OLIVEIRA

ADS-UFRN

SOFT-PROCESSOR: ALTERA'S NIOSII – NOÇÕES SOC

- Consiste num PROCESSADOR completo, cujos componentes são implementados com a estrutura lógica (blocos, elementos, tabelas etc.) do Cl FPGA, daí ser chamado "soft-processor", portanto, herda a característica REPROGRAMÁVEL do FPGA
- Ou seja, é possível sintetizar uma CPU baseada em FPGA para tarefa X ou Y
- Custom-made ou User-made PROCESSOR (memórias, periféricos, etc.)
- Características NIOSII
 - 32-bit RISC (barramentos de instrução, dados, endereçamento)
 - 32 registradores de uso geral, 32 interrupções externas
 - Multiplicadores/Divisores em hardware (32, 64, 128 bit): acelerar cálculos
 - MMU opcional (para SOs que suportam)

NIOS II Processor Core [3]

SOFT-PROCESSOR: ALTERA'S NIOSII

- Desenvolvimento de software em C/C++ no NIOSII Software Build Tools (SBT) integrado ao ECLIPSE
- Permite expandir de 01 CPU à várias CPUs

Processor Core Variations

	Nios II/f Fast Core	Nios II/s Standard Core	Nios II/e Economy Core	
Pipeline	6 stage	5 stage	None	
Hardware Multiplier and Barrel Shifter	1 cycle	3 cycle	Emulated in software	
Branch Prediction	Dynamic	Static	None	
Instruction Cache	Configurable	Configurable	None	
Data Cache	Configurable	None	None	
Logic Elements (LEs)	1,800 without MMU 3,200 with MMU	1,200	600	
Custom	Up to 256			
Instructions 8 2010 Alberta Corporation—Public ALTERA, ARRIA CYCLONE, HARDCOPY, MA and Altera marks in and outside the U.S.	9400000000	DO-254 Certifiable Core Based on		

FAMILIAS NIOSII

- Fast, standard, economy
- Fast: voltado para o desempenho (maior consumo de espaço no FPGA);
- Standard: equilíbrio entre consumo de lógica e velocidade
- Economy: voltado para a economia de lógica.
- O software compilado é compatível com as 3 variações
- Na versão Economy, não há royalties nem requer licença comercial do Quartus para embarcar nas soluções
- Nas demais, exige licença comercial do Quartus

Nios II Processor Performance (MIPS*)

Device Family	Nios II/f Core	
Standard-cell ASIC (~90 nm)	>500	
Stratix IV	340	
Stratix III	340	
Stratix II	250	
HardCopy IV	345	
HardCopy III	260	
Hardcopy II	230	
Arria II GX	283	
Cyclone IV GX	186	
Cyclone III LS	158	
Cyclone III	195	
Cyclone II	145	

* Dhrystones 2.1 benchmark

© 2010 Altera Corporation-Public

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS & STRATIX are Reg. U.S. Pat. & Tm. Off. and Altera marks in and outside the U.S.

PERFORMANCE

- Core i7 7700K: >33000MIPS
- ATMEGA328P: 8-bit RISC, até
 20 MIPS
- dsPIC33: 100 MIPS 16-bit
- Broadcom BCM2711B0 quadcore A72 (ARMv8-A) 64-bit @
 1.5GHz (Raspberry Pi 4): (748-2037) MIPS

Nios II HAL

- Provides run-time services and device drivers which interface to the hardware
- Allows you to change your hardware without having to change your software code
- Creates a matching custom software BSP automatically when hardware is generated

HAL API

_exit() open() close() opendir closedir() read() fstat() readdir() getpid() rewinddir() gettimeofday() sbrk() ioctl() settimeofday() isatty() stat() kill() usleep() Iseek() wait() write()

© 2010 Altera Corporation-Public

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS & STRATIX are Reg. U.S. Pat. & Tm. Off. and Altera marks in and outside the U.S.

HARDWARE ABSTRACTION LAYER

 Abstrai HARDWARE para o desenvolvedor

SOFT-PROCESSOR

 ullet BSP (Board Support Package): link software/target (real) hardware

DE2: CYCLONE II EP2C35F672CN6 / DE2-115 (CYCLONE IV EP4CE115F29C7N)

- LINUX EMBARCADO: uC LINUX / FREE RTOS
 - Preparar HARDWARE para receber um SO
- O Nios II se comunica com os periféricos
- e componentes internos por meio do
- Qsys (platform designer), ambiente
- para criação de SOPC
- (System on a Programmable Chip)

HARDWARE/SOFTWARE CO-DESIGN

Esta placa da Arrow (BeMicro SDK) já tem um design de hardware com todos os dispositivos IO integrados, sendo focada na programação em C para o Niosll, e não tão simples para VHDL, embora possível de posse das pinagens etc. Tem 512 MB LPDDR (Low Power); Cyclone IV (32 MB RAM é suficiente para portar Linux)

Nios II System Hardware Design Flow Start Nios II Cores Use Platform Designer to and Standard design a Nios II based system Components Generate Platform Designer Design Integrate Platform Designer System with Quartus Prime Project Assign Pin Locations, Timing Requirements, and Other **Design Constraints** Compile Hardware for Target Device in Quartus Prime Ready to Download

HARDWARE DESIGN

- 1. novo
- 2. criar Sistema de hardware no asys (platform designer)
- 3. gerar Sistema (há opção de criar block symbol file .bsf associado
- 4. integrar ao projeto no quartus
- 5. incluir .qip no projeto
- 6. atribuir pinos (seja manualmente, seja importando .qsf da placa)
- 7. compilar

HARDWARE DESIGN

Arquitetura de computadores: o que necessita um computador num CHIP?

a) CPU (a qual necessita de um CLOCK); Memória (neste caso interna); Uma interface de comunicação UART

Adicionalmente:

- a) PIO (leds)
- o) Chaves
- c) Display
- d) Botões
- e) ID
- f) Timer
- g) SDRAM
- h) SRAM
- i) Ethernet
-) VGA
- <) Áudio
-) etc.

- Uma vez o hardware especificado no platform designer (qsys) e devidamente compilado, desenvolve-se o software em C/C++ que irá rodar na CPU especificada (Nios II)
- O Quartus possui um IDE Eclipse integrado, o qual tem suas versões atualizadas conforme a versão do Quartus!
 - Acessível em Tools->Nios II Software Build Tools for Eclipse O workspace pode ser a pasta principal do projeto

- Um dos arquivos gerados no QSYS, .sopcinfo, possui a descrição do hardware e identificação da CPU
- O mesmo deve ser informado no campo SOPC Information File name
- Há a opção de criar um projeto em branco (blank Project) ou a partir de templates. Recomenda-se iniciar com um simples template de HELLO WORLD SMALL

- Na tela seguinte é solicitado o nome do projeto para criação do BSP; por default é o nome do projeto_bsp

- O próximo passo é clicar com o botão direito do mouse no nome do projeto BSP, opção Nios II->Generate BSP

- O próximo passo é clicar com o botão direito do mouse no nome do projeto BSP, opção Build Project
- O mesmo deve ser realizado para a pasta do projeto em si (acima do BSP)

- Ao construir (build) o projeto, é criado um arquivo .elf (ELF), o qual será transferido para o soft processor
- Menu Run-> Run Configurations

- Ao alterar o código .c (ou .cpp se o BSP inclui esta possibilidade), basta clicar com o botão direito no nome do projeto e Ruas as-> Nios II Hardware

