Science des données II : cours 2

Régression linéaire multiple

Philippe Grosjean & Guyliann Engels

Université de Mons, Belgique Laboratoire d'Écologie numérique des Milieux aquatiques

http://biodatascience-course.sciviews.org sdd@sciviews.org

Objectifs du cours

- Découvrir la régression linéaire multiple et polynomiale
- Bien analyser les résidus
- Connaître et savoir utiliser le critère d'Akaike

Régression linéaire multiple

$$y = \alpha_1.x_1 + \alpha_2.x_2 + \ldots + \alpha_n.x_n + \beta + \epsilon$$

- L'erreur ϵ suit une loi Normale de moyenne nulle et d'écart type constant σ : $\epsilon \sim N(0, \sigma)$
- La variance des résidus est constante (homoscedasticité)
- L'erreur est indépendante (problèmes des mesures répliquées dans le temps ou dans l'espace)
- L'analyse des résidus permet de vérifier ces différentes conditions, de détecter des valeurs aberrantes, et de mettre en évidence des relations non-linéaires

Régression linéaire multiple (2)

- La régression linéaire simple est apparentée à l'ANOVA à 1 facteur (même principe).
- De même, la régression linéaire multiple est apparentée à l'ANOVA à plusieurs facteurs.
- Une variable réponse qui dépend de plusieurs variables indépendantes simultanément.
- Dans R, la régression multiple est une extension naturelle de la régression linéaire simple. Les mêmes outils sont utilisables. Les snippets proposent des variantes pour régressions multiples

Exemple

Le jeu de données trees (ou son équivalent cerisiers), volume de bois en fonction de la hauteur et du diamètre de l'arbre.

Régression polynomiale

Rappel: un polynome est une expression du type (notez la ressemblance avec l'équation de la régression multiple):

$$a_0 + a_1.x + a_2.x^2 + ... + a_n.x^n$$

- Un polynome d'ordre 2 (x élevé jusqu'à la puissance 2) donne une parabole; un polynôme d'ordre 3 correspond à une courbe en S.
- En considérant les puissances successives de la même variable dans la régression multiple, on obtient une régression polynômiale.
- Ce qui est intéressant : on utilise alors la régression linéaire pour ajuster en réalité une courbe (parabole, etc.)

Exemple

Utilisons la régression polynomiale sur cerisiers.

Analyse des résidus

- Utiliser les différentes présentations graphiques pour visualiser graphiquement la distribution des résidus
 - Résidus en fonction des valeurs prédites: vue générale et détection de non linéarité et de valeurs extrêmes
 - Graphqiue quantile-quantile pour vérifier leur distribution nomale
 - Racine carré des résidus standardisés en fonction des valeurs prédites pour vérifier l'homoscédasticité.

Exemple

Illustration de l'utilisation de ces graphiques sur le jeu de données cerisiers

Critère d'Akaike

- Le R² peut servir à quantifier la qualité d'ajustement d'un **modèle linéaire** simple.
- Dans le cas d'un modèle multiple, la complexité du modèle est liée au nombre de paramètres à estimer
- Plus un modèle est complexe, plus il est flexible et donc, il s'ajuste bien sur les points. Donc, c'est normal que le R² augmente
- => mauvais critère pour comparer des modèles de complexité différente

Le critère d'Akaike

introduit un terme de pénalisation en fonction du nombre de paramètres (nbrpar) à prédire qui rétablit l'équilibre (et au lieu d'utiliser le \mathbb{R}^2 , il utilise une autre descripteur statistique qui quantifie le degré d'ajustement, la log-vraissemblance):

AIC = -2.log-vraisemblance +2.nbrpar

