Supplementary Material for UDAE: Adaptive Uncertainty-Driven Reinforcement Learning for Safe and Efficient Autonomous Driving

Anonymous Author(s)

Affiliation Address email

1 1 Supplementary Materials Overview

- 2 This supplementary material provides additional details to support the reproducibility of the ex-
- 3 periments in the main paper. It includes code, data, hyperparameter tests, ablation studies, reward
- 4 formulations, baseline setups, and extra figures.

5 2 Code and Data

8

- 6 The code and data are available in a GitHub repository: https://github.com/ju-baer/UDAE.
- The repository is zipped as UDAE.zip (¡100 MB) and includes:
- Code: CARLA scripts, DQN ensemble implementation, and test setups.
- Data: CARLA settings for traffic and weather, plus sample logs.
- **Instructions**: A README md with setup and running instructions.

$_{ exttt{11}}$ 3 Hyperparameter Tests: eta and γ

- It tested the sensitivity of UDAE to the hyperparameters β (exploration scaling factor) and γ (dis-
- count factor). β was varied from 0.05 to 0.2, and γ from 0.3 to 0.7. Table 1 shows the success rates
- in the urban navigation task, and Figure 1 plots the reward curves.

Table 1: Success rates (%) for different values of β and γ in the urban navigation task.

β	γ	Success Rate (%)	Reward (Mean)	Std Dev
0.05	0.3	82	450	15
0.05	0.7	85	470	12
0.10	0.5	88	480	10
0.15	0.5	89	490	9
0.20	0.5	87	485	11

4 Ablation Studies: Additional Results

- 16 I conducted ablation studies to evaluate the impact of uncertainty-driven exploration. Table 2 shows
- success rates with and without the uncertainty module in UDAE.

Figure 1: Reward curves for different β and γ values in the urban navigation task.

Table 2: Ablation study: Success rates (%) with and without uncertainty-driven exploration.

Configuration	Urban Navigation	Emergency Avoidance
UDAE (with uncertainty)	89	92
UDAE (without uncertainty)	80	85

5 Reward Formulations and Settings

19 The reward function used in the experiments is defined as:

$$R(s_t, a_t) = w_1 \cdot r_{\text{safety}}(s_t, a_t) + w_2 \cdot r_{\text{efficiency}}(s_t, a_t) + w_3 \cdot r_{\text{progress}}(s_t, a_t)$$

20 where:

24

- $r_{\text{safety}}(s_t, a_t)$: +1 for avoiding collisions, -5 for collisions.
- $r_{\rm efficiency}(s_t,a_t)$: +0.5 for maintaining speed within 5% of the target.
 - $r_{\text{progress}}(s_t, a_t)$: +0.1 per meter progressed toward the goal.
 - Weights: $w_1 = 0.5$, $w_2 = 0.3$, $w_3 = 0.2$.

5 6 Baseline Setups

26 6.1 Epsilon-Greedy

The epsilon-greedy baseline uses a decaying ϵ :

$$\epsilon_t = \epsilon_{ ext{start}} - (\epsilon_{ ext{start}} - \epsilon_{ ext{end}}) \cdot \frac{t}{T}$$

where $\epsilon_{\mathrm{start}} = 0.5$, $\epsilon_{\mathrm{end}} = 0.05$, and T = 1000 timesteps.

29 6.2 SAC

Soft Actor-Critic (SAC) was configured with an entropy regularization coefficient $\alpha=0.2$, learning rate 3×10^{-4} , and a replay buffer size of 10^6 .

2 6.3 CPO

Constrained Policy Optimization (CPO) used a safety constraint threshold of 0.1, with a learning rate of 1×10^{-4} .

7 Additional Figures

Figure 2 shows the cumulative rewards over time, Figure 3 shows success rates across additional scenarios.

Figure 2: Cumulative rewards over time in the urban navigation task.

Figure 3: Success rates across additional test scenarios.