PMATH 451: Measure and Integration

Professor Boyu Li LaTEXer Iris Jiang

Winter 2021

Contents

	Chapter 1	2			
	Lecture 2 Introduction to Sigma Algebra	2 3 4			
			1.3.1	Borel σ -algebra	5

1. Chapter 1

Lecture 1 A brief review of Riemann integrals

Limitations of Riemann Integration (R-int)

- (1) Heavily rely on the structure of real line \mathbb{R}
- (2) Not many functions are R-int

 $f[a,b] \to \mathbb{R}$ is R-int if and only if the set of discontinuity of f is Lebesgue null set (has Lebesgue measure 0). (i.e. $\exists (a_n,b_n)$ s.t. the set of discontinuities $\subseteq \bigcup_{n=1}^{\infty} (a_n,b_n)$, $\sum (b_n-a_n) < \epsilon$)

- Example 1.1 $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$, $x \in [0,1]$. f is nowhere continuous. f is NOT R-int
- (3) NOT well behaved under limits
 - Example 1.2 Let $\{r_k\}_{k=1}^{\infty}$ be all \mathbb{Q} in [0,1], $f_n(x) = \begin{cases} 1 & \text{if } x \in \{r_1,\ldots,r_n\} \\ 0 & \text{otherwise} \end{cases}$
 - f_n is R-int
 - $\lim_{n\to\infty} f_n(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1] \\ 0 & \text{if } x \notin \mathbb{Q} \cap [0,1] \end{cases} = f(x) \text{ (pointwise limit) is not R-int}$

Lebesgue's Idea

Ideally, define $m: \mathcal{P}(\mathbb{R}) \to [0, \infty]$

- m([a,b]) = b a
- m(A + x) = m(A)• $m(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m(A_n), A_n$ disjoint **Problem**: m does not exists

Proof. Define $x \sim y$ if $x - y \in \mathbb{Q}$, consider [0, 1].

Let $A = \text{pick one } x \text{ from each eq-class of } \sim$.

Let $\{r_k\}_{k=1}^{\infty}$ be all rationals in [-1, 1].

Let $A_k = A + r_k$

(1) A_k are disjoint. If $x \in A_k \cap A_\ell$, then

$$x = \underbrace{a}_{\in A} + r_k = \underbrace{b}_{\in A} + r_\ell \implies a - b = r_\ell - r_k \in \mathbb{Q}$$
$$\implies a \sim b, a \neq b$$

not possible

- $(2) [0,1] \subseteq \bigcup_{n=1}^{\infty} A_n \subseteq [-1,2]$

 - (a) $A \subseteq [0,1], -1 \le r_k \le 1, -1 \le a + r_k \le 2, A + r_k \subseteq [-1,2]$ (b) $\forall x \in [0,1], \exists a \in A, \ a \sim x, \ x a \in \mathbb{Q}, -1 \le x a \le 1, \implies x a = r_k$ for some $k, x = a + r_k \in A + r_k \subseteq \bigcup_{n=1}^{\infty} A_n$

(c)

$$1 = m([0,1]) \le m(\bigcup_{n=1}^{\infty} A_n) \le m([-1,2]) = 3$$
$$m(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m(A_n) = \sum_{n=1}^{\infty} m(A)$$

not possible

1.2 Lecture 2 Introduction to Sigma Algebra

Definition 1.1 — algebra.

Let X be a set. An **algebra** \mathcal{A} is a collection of subsets of X ($\mathcal{A} \subseteq (x)$) s.t.

- (1) $\omega \in \mathcal{A}$ (2) $X \setminus A \in \mathcal{A}$ for all $A \in \mathcal{A}$ (3) If $A_1, \dots, A_n \in \mathcal{A}$, then $\bigcup_{i=1}^n A_i \in \mathcal{A}$ We call \mathcal{A} a σ -algebra if

- (3') If $A_1, \ldots, A_n, \ldots \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- Example 1.3 (1) X be any set, $\{\emptyset, X\}$ is a σ -algebra

Note 1.1 If \mathcal{A} is a σ -algebra, then it's an algebra

- (2) $\overline{\mathcal{P}(X)}$ is a σ -algebra
- (3) Let X be an uncountable set (real line, Cantor set, etc.) Let $\mathcal{A} = \{E \subseteq X : A \in \mathcal{A} : A \in$ either E is countable, or $X \setminus E$ is countable.

Claim: \mathcal{A} is a σ -algebra

Proof. (a) $\varnothing \subseteq \mathcal{A}$, \varnothing is countable

- (b) Let $E \in \mathcal{A}$,
 - Case 1: E is countable, $X \setminus (X \setminus E) = E$ is countable, $\Longrightarrow X \setminus E \in \mathcal{A}$
 - Case 2: $X \setminus E$ is countable, $\implies X \setminus E \in \mathcal{A}$
- (c) Let $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$, consider $\bigcup_{n=1}^{\infty} E_n$
 - Case 1: If all E_n are countable, $\bigcup_{n=1}^{\infty} E_n$ is countable $\implies \bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$
 - Case 2: $\exists E_N$, s.t. $X \setminus E_N$ is countable.

$$X \setminus \left(\bigcup_{n=1}^{\infty} E_n\right) = \bigcap_{n=1}^{\infty} (X \setminus E_n) \subseteq X \setminus E_N \implies \bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$$

Hence \mathcal{A} is a σ -algebra.

Lecture 3 Properties of Sigma Algebra

Basic properties of Algebra and σ -algebra

Let \mathcal{A} be an algebra, \mathcal{B} be a σ -algebra

•
$$E, F \in \mathcal{A} \implies E \cap F, E \backslash F \in \mathcal{A}$$

•
$$\{E_n\} \subseteq \mathcal{B} \implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{B}$$

Proof.

$$\begin{split} X\backslash(E\cap F) &= \underbrace{(X\backslash E)}_{\in\mathcal{A}} \cup \underbrace{(X\backslash F)}_{\in\mathcal{A}} \in \mathcal{A} \\ E\cap F &= X\backslash(X\backslash(E\cup F)) \in \mathcal{A} \\ E\backslash F &= E\cap(X\backslash F) \in \mathcal{A} \end{split}$$

Exercise 1.1 $\bigcup_{n=1}^k E_n \in \mathcal{A}$, induction

$$X \setminus \left(\bigcap_{n=1}^{\infty} E_n\right) = \bigcup_{n=1}^{\infty} (X \setminus E_n) \in \mathcal{B}$$

Proposition 1.2

Let \mathcal{A} be an algebra, $\forall \{A_n\}_{n=1}^{\infty}$ disjoint $\implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. Then \mathcal{A} is a σ -algebra

Proof. Let $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$, goal is to show $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$. Consider

$$E_1: A_1 = E_1$$

$$E_2: A_2 = E_2 \backslash E_1$$

$$E_3: A_3 = E_3 \backslash (E_1 \cup E_2)$$

$$E_n: A_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right)$$

- (1) $\bigcup_{n=1}^{k} A_n = \bigcup_{n=1}^{k} E_n$ (exercise using induction)
- (2) A_n are disjoint.

$$A_n \cap \left(\bigcup_{i=1}^{n-1} E_i\right) = \emptyset$$

$$A_n \cap \left(\bigcup_{i=1}^{n-1} A_i\right) = \emptyset$$

$$(3) \ A_n \in \mathcal{A}.$$

By definition,
$$A_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right) \in \mathcal{A}$$

$$\implies \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \text{ (by assumption)}$$

 $\implies \mathcal{A}$ is σ -algebra

Proposition 1.3

Suppose $\{\mathcal{B}_{\lambda}\}_{{\lambda}\in\Lambda}$ are σ -algebras (on X). Then $\bigcap_{{\lambda}\in\Lambda}\mathcal{B}_{\lambda}$ is a σ -algebra

(1) $\varnothing \in \mathcal{B}_{\lambda}, \ \forall \lambda \implies \varnothing \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$

(2) Take

$$A \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \implies A \in \mathcal{B}_{\lambda} \ \forall \lambda$$

$$\implies X \backslash A \in \mathcal{B}_{\lambda} \ \forall \lambda$$

$$\implies X \backslash A \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \ \forall \lambda$$

(3) Take

$$\{A_n\}_{n=1}^{\infty} \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \implies \bigcup_{n=1}^{\infty} A_n \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \text{ (exercise)}$$

Definition 1.2

Let $\mathcal{F} \subseteq \mathcal{P}(X)$. Define σ -algebra generated by \mathcal{F} to be $\sigma(\mathcal{F}) = \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$, $\{\mathcal{B}_{\lambda}\}_{\lambda \in \Lambda}$ are all σ -algebra containing \mathcal{F}

- (1) $\mathcal{F} \subseteq \mathcal{P}(X)$, $\mathcal{P}(X)$ is a σ -algebra, so this intersection makes sense.
- (2) Since \mathcal{B}_{λ} is σ -algebra $\Longrightarrow \bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$ is a σ -algebra ($\sigma(\mathcal{F})$ is a σ -algebra)

Proposition 1.4

 $\sigma(\mathcal{F})$ is the smallest σ -algebra containing \mathcal{F} .

By smallest: if $\exists \mathcal{B} \ \sigma$ -algebra, $\mathcal{B} \supseteq \mathcal{F}$, then $\sigma(\mathcal{F}) \subseteq B$

Proof. By defn,
$$\sigma(\mathcal{F}) = \bigcap_{\lambda \in \Lambda} B_{\lambda}$$
, σ -alg $\mathcal{B} \supseteq \mathcal{F} \implies \mathcal{B} = \mathcal{B}_{\lambda_0}$ for some λ_0 . $\sigma(\mathcal{F}) = \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \subseteq \mathcal{B}_{\lambda_0} = \mathcal{B}$

Borel σ -algebra 1.3.1

Let X be a metric space, let $g = \{A \subseteq X : A \text{ open}\}\$

Definition 1.3 — Borel σ -algebra.

the Borel σ -alg on X is $\sigma(\mathcal{G})$. Denote by $\mathcal{B}_X = \sigma(\mathcal{G})$

Notation 1.1.

- G = set of open sets
- $\mathcal{F} = set of closed sets$
- $\mathcal{G}_{\delta} = \{\bigcap_{n=1}^{\infty} A_n : A_n \in \mathcal{G}\}$ $\mathcal{F}_{\sigma} = \{\bigcup_{n=1}^{\infty} A_n : A_n \ closed\}$ $\mathcal{G}_{\delta}, \mathcal{F}_{\sigma} \subseteq \mathcal{B}_{X}$
- $a \ set \ A \subseteq X \ is \ Borel \ if \ A \in \mathcal{B}_X$
 - open set
 - closed set
 - $-\mathcal{G}_{\delta}, \mathcal{F}_{\sigma}$
 - $-X=\mathbb{R}, (a,b]\in\mathcal{B}_X$