$$\overline{Y} = \frac{\Sigma \ Y}{N} = \frac{406}{8} = 50.75 \ ; \ \overline{X} = \frac{\Sigma \ X}{N} = \frac{405}{8} = 50.625$$

$$r \frac{\sigma_Y}{\sigma_X} = \frac{N \Sigma \ d_X \ d_Y - (\Sigma \ d_X) \ (\Sigma \ d_Y)}{N \Sigma \ d_X^2 - (\Sigma \ d_X)^2} = \frac{(8) \ (1336) - (5) \ (6)}{(1737) - (5)^2} = \frac{10688 - 30}{13896 - 25} = 0.768$$

$$Y - 50.75 = 0.768 \ (X - 50.625)$$

$$Y - 50.75 = 0.768 \ X - 38.88 \ \text{or} \ Y - 11.87 + 0.768 \ X$$

$$Y_{49} = 11.87 + 0.768 \ (49) = 11.87 + 37.632 = 49.502$$
Seted blood pressure of a person who is 40.502

Thus the expected blood pressure of a person who is 49 years old shall be 49.5.

Illustration 8. In a correlation study the following values are obtained :

Y Mean 65 Standard Deviation 67 2.5 Coefficient of Correlation 3.5 0.8

Find the two regression equations that are associated with the above values. (B.Com., Kashmir Univ., 2006; MBA, HPU, 2007; M.Com., Madural Kamaraj Univ., 2009)

Solution. The two regression equations are :

Regression Equation of X on Y:
$$X - \overline{X} = r \frac{\sigma_X}{\sigma_Y} (Y - \overline{Y})$$

 $\overline{X} = 65$, $r = 0.8$, $\sigma_X = 2.5$, $\sigma_Y = 3.5$, $\overline{Y} = 67$
Substituting the values : $X - 65 = 0.8 \frac{2.5}{3.5} (Y - 67)$
 $X - 65 = 0.5714 (Y - 67)$
 $X - 65 = 0.5714 Y - 38.28$ or $X = 26.72 + 0.5714 Y$

Regression Equation of Y on X:
$$Y - \overline{Y} = r \frac{\sigma_Y}{\sigma_X} (X - \overline{X})$$

$$Y - 67 = 0.8 \frac{3.5}{2.5} (X - 65)$$

$$Y - 67 = 1.12 (X - 65)$$

$$Y - 67 = 1.12 X - 72.8 \text{ or } Y = -5.8 + 1.12X.$$

Illustration 9. In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible:

Variance of X = 9Regression equations: 8X - 10Y + 66 = 040 X - 18 Y = 214

Find on the basis of the above information

(i) The mean values of X and Y

(ii) Coefficient of correlation between X and Y, and

(iii) Standard deviation of Y. (M.Com., Vikram Univ., 2003; M.Com., Mysore Univ., 2004; M.Com., Garhwal Univ., 2012; BBA, GGSIP Univ., 2012)

Solution.

(i) Finding the Mean values of X and Y:
$$8X - 10 Y = -66$$

 $40 X - 18 Y = 214$
Multiplying equation (i) by 5
 $40 X - 50 Y = -330$
 $40 X - 18 Y = 214$
 $- + -$
 $-32 Y = -544$
 $Y = 17$ or $\overline{Y} = 17$
Substituting the value of Y in eq. (i): $8X - 10 \times 17 = -66$

Substituting the value of Y in eq. (i);
$$8X - 10 \times 17 = -66$$

 $8X = -66 + 170$

$$8X = 104 : X = 13 \text{ or } \overline{X} = 13$$

(ii) For finding out the correlation coefficient, we will have to find out the regression coefficient. Since we do not know which of the two regression equations is the equation of X on Y, we make an assumption. Let us take eq. (i) as the regression equation of X on Y

Solution. Let intelligence test score be denoted by X and weekly sales by Y.

CALCULATION	OF REGRESSION	FOLIATIONS
O' ILOOLA IIOI	OF DEGLESSION	CUUMIUNO

X	(X - 60)		Υ	(Y - 50)		
	X	x ²		У	v ²	xy
50	-10	100	30	-20	400	+200
60	0	0	60	+10	100	7200
50	-10	100	40	-10	100	+100
60	0	0	50	0	0	
80	+20	400	60	+10	100	0 +200
50	-10	100	30	-20	400	+200
80	+20	400	70	+20	400	+400
40	-20	400	50	0	0	7400
70	+10	100	60	+10	100	+100
$\Sigma X = 540$	$\Sigma x = 0$	$\Sigma x^2 = 1600$	$\Sigma Y = 450$	$\Sigma y = 0$	$\Sigma y^2 = 1600$	$\Sigma xy = 1200$

Regression equation of Y on X:
$$Y - \overline{Y} = r \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$

$$r \frac{\sigma_y}{\sigma_x} = \frac{\sum xy}{\sum x^2} = \frac{1200}{1600} = 0.75$$

$$\overline{X} = \frac{\sum X}{N} = \frac{540}{9} = 60, \ \overline{Y} = \frac{\sum Y}{N} = \frac{450}{9} = 50$$

 $Y - 50 = 0.75 \ (X - 60)$
 $Y - 50 = 0.75 \ X - 45$ or $Y = 5 + 0.75 \ X$

Expected weekly sales when intelligence test score of a salesman is 65

$$Y = 5 + 0.75 X$$
. Putting $X = 65$
 $Y = 0.75 \times (65) + 5 = 48.75 + 5 = 53.75$

Illustration 7. The following table shows the ages (X) and blood pressure (Y) of 8 persons. X: 52 63 45 36 72 65 47 25

 X:
 52
 63
 45
 36
 72
 65
 47
 25

 Y:
 62
 53
 51
 25
 79
 43
 60
 33

Obtain the regression equation of Y on X and find the expected blood pressure of a person who is 49 years old.

Solution. CALCULATION OF REGRESSION EQUATION OF YON X

X	(X - 50)		Y	(Y - 50)		
	d _x	d_x^2		d_{y}	d_y^2	$d_x d_y$
52	+2	4	62	+12	144	+24
63	+13	169	53	+3	9	+39
45	-5	25	51	+1	1	-5
36	-14	196	25	-25	625	+350
72	+22	484	79	+29	841	+638
65	+15	225	43	-7	49	-105
47	-3	9	60	+10	100	-30
25	-25	625	33	-17	289	+425
ΣX=405	$\Sigma d_x=5$	$\sum d_x^2 = 1737$	Σ Y=406	$\Sigma d_y=6$	$\Sigma d_y^2 = 2058$	$\sum d_x d_y = 1336$

$$Y - \overline{Y} = r \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$

NODS

$$8 X = -66 + 10 Y$$

 $X = -\frac{66}{8} + \frac{10}{8} Y$; or $b_{xy} = \frac{10}{8} = 1.25$

From eq. (ii) we can calculate b_{yx} 40 X-18 Y=214

-18 Y = 214 - 40 X

 $Y = -\frac{214}{18} + \frac{40}{18} X$ or $b_{yx} = 2.22$

Since both the regression coefficients are exceeding 1, our assumption is wrong. Hence the first equation is equation of Y on X.

From eq. (1)

From eq. (i)
$$-10Y = -8 X - 66$$

$$Y = -\frac{8}{10} X + 6.6 \quad \text{or} \quad b_{yx} = \frac{8}{10} = 0.8$$
From eq. (ii)
$$b_{xy} = \frac{18}{40} = 0.45$$

$$r = \sqrt{0.8 \times 0.45} = \sqrt{0.36} = 0.6$$
(iii) S.D. of Y:
$$\sigma_{x} = \sqrt{9} = 3 \; ; \; b_{xy} = r \frac{\sigma_{x}}{\sigma_{y}}$$

$$0.45 = 0.6 \frac{3}{\sigma_{y}} \quad \text{or} \quad 0.45 \; \sigma_{y} = 1.8 \quad \text{or} \quad \sigma_{y} = \frac{1.8}{0.45} = 4$$

Hence standard deviation of Y is 4

Illustration 10. For 50 students of a class the regression equation of marks in Statistics (X) on the marks in Accountancy (Y) is 3Y - 5X + 180 = 0. The mean marks in Account ancy is 44 and variance of marks in Statistics is 9/16th of the variance of marks in Accountancy. Find the mean marks in Statistics and the coefficient of correlation between (M.Com., Jamia Millia Univ., 2006; B.Com., Delhi Univ., 2007) marks in the two subjects.

Solution. We are given

$$3Y - 5X + 180 = 0$$
 or $3Y + 180 = 5X$

X represents marks in Statistics and Y marks in Accountancy. When Y = 44, X will be given by

$$5 X = (3) (44) + 180 = 0$$
; $5 X = 132 + 180$ or $X = \frac{312}{5} = 62.4$

Hence the mean marks in Statistics are 62.4

For calculating coefficient of correlation we know that

$$b_{xy} = r \frac{\sigma_x}{\sigma_y}$$

Regression coefficient of X on Y from the given equation is

$$5 X = 3 Y + 180$$
 or $X = 0.6 Y + 36$
 $b_{xy} = 0.6$; $r \frac{\sigma_x}{\sigma_y} = \frac{\sqrt{9}}{\sqrt{16}}$ given
 $0.6 = r \frac{\sqrt{9}}{\sqrt{16}}$ or $0.6 = r \frac{3}{4}$

$$3r = 2.4$$
 or $r = 0.8$

Illustration 11. You are given the following data:

Х Y Arithmetic Mean 36 85 Standard Deviation 11 8

Correlation coefficient between X and Y

0.66

(i) Find the two Regression Equations

(ii) Estimate the value of X when Y = 75.

(B.Com Garhwal Univ. 2010; B.Com., Bharthiar Univ., 2011)

Solution,

(I) Regression Equation of X on Y:
$$X - \overline{X} = r \frac{\sigma_X}{\sigma_Y} (Y - \overline{Y})$$

 $\overline{X} = 36, r = 0.66, \sigma_X = 11, \sigma_Y = 8, \overline{Y} = 85$
 $X - 36 = 0.66 \frac{11}{8} (Y - 85)$
 $X - 36 = 0.9075 (Y - 85)$
 $X = 0.9075 Y - 77.1375 + 36 \text{ or } X = -41.1375 + 0.9075 Y$

Regression Equation of Y on $X: Y - \overline{Y} = r \frac{\sigma_Y}{\sigma_X} (X - \overline{X})$

$$Y - 85 = 0.66 \frac{8}{11} (X - 36)$$

 $Y - 85 = 0.48 (X - 36)$

Y-85=0.48~X-17.28~ or Y=67.72+0.48~X(ii) From the regression equation of X on Y, we can find out the estimated value of X when Y=75; X=0.9075 (75) -41.1375

= 68.0625 - 41.1375 = 26.925 or $Y_{75} = 26.925$.

Illustration 12. For certain X and Y series which are correlated, the two lines of regression are:

$$5X-6Y+90=0$$

 $15X-8Y-130=0$

Find the mean of the two series and the correlation coefficient.

(BBM., Mysore Univ. 2007)

Solution: (i) Finding mean of the two series:

Multiplying eq. (i) by 3,

$$5 X - 6 Y = -90$$

$$15 X - 8 Y = 130$$

$$15 X - 18 Y = -270$$

$$15 X - 8 Y = 130$$

$$- + -$$

$$-10 Y = -400$$
...(i)

Putting the value of Y in eq. (i), 5X-6(40)=-90

5 X = -90 + 240

 $5 X = 150 \text{ or } X = 30 \text{ or } \overline{X} = 30$

(ii) Finding correlation coefficient. Let us assume that eq. (i) is the regression equation of X on Y;

$$X = \frac{6}{5} Y - 18 \text{ or } b_{xy} = \frac{6}{5}$$
Taking eq. (ii) as the eq. of Y on X;
$$-8 Y = -15 X + 130$$

$$8 Y = 15 X - 130$$

$$Y = \frac{15}{8} X - \frac{130}{8} \text{ or } b_{yx} = \frac{15}{8}$$

Since both the regression coefficients are exceeding one, our assumption is wrong. Hence eq. (i) is the regression eq. of Y on X

$$-6 Y = -5 X - 90 \text{ or } 6 Y = 5 X + 90$$
or
$$Y = \frac{5}{6} X + 15 \text{ or } b_{yx} = \frac{5}{6}$$

Eq. (ii) is the regression eq. of X on Y; 15 X = 130 + 8 Y

$$X = \frac{130}{15} + \frac{8}{15} Y$$
; $b_{xy} = \frac{8}{15}$

$$r = \sqrt{b_{xy} \times b_{yx}} = \sqrt{\frac{8}{15} \times \frac{5}{6}} = 0.666$$

Illustration 21. The following data give the experience of machine operators and their performance ratings as given by the number of good parts turned out per 100 pieces ;

3 Operator Experience (X) 16 12 18 3 10 5 12 87 Performance Ratings (Y) 88 89 68 78 80 75 83

Calculate the regression lines of performance ratings on experience and estimate the probable performance if an operator has 7 years experience. (MBA, Kumaun Untv., 2012)

Solution: Let performance ratings be denoted by Y and experience by X. We have to calculate the regression line of Y on X.

CALCULATING REGRESSION LINE OF YON X

Experience X	$\frac{(X - \overline{X})}{X = 10}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Performance Ratings	$(Y - \overline{Y})$ $Y = 81$		
X	X	x 2	Y	y	y ²	xy
16	+6	36	87	+6	36	+36
12	+2	4	88	+7	49	+14
18	+8	64	89	+8	64	+64
4	-6	36	68	-13	169	+78
3	-7	49	78	-3	9	+21
10	0	0	80	-1	1 ,-	0
5	-5	25	75	-6	36	+30
12	+2	4	83	+2	4	+4
$\Sigma X = 80$	$\Sigma x = 0$	$\Sigma x^2 = 218$	$\Sigma Y = 648$	$\Sigma y = 0$	$\Sigma y^2 = 368$	$\Sigma xy = 247$

Regression Equation of Y on X:
$$Y - \overline{Y} = b_{yx}(X - \overline{X})$$

 $b_{yx} = \frac{\sum xy}{\sum x^2} = \frac{247}{218} = 1.133$; $\overline{Y} = \frac{648}{8} = 81$; $\overline{X} = \frac{80}{8} = 10$

$$Y-81=1.133 (X-10)=1.133 X-11.33 \text{ or } Y=69.67+1.133 X$$

when $X=7$, Y will be $Y=69.67+1.133 (7)=69.67+7.931=77.601.$

Thus the probable performance of an operator who has 7 years experience = 77.601 or 78 good parts out of 100.