

Conceptos Computación

Algoritmos

Ciencias de la computación

Es la disciplina que estudia como resolver problemas con computadoras

Deriva de las Matemáticas

- Resolución de problemas
- Algoritmos

Qué es un Algoritmo?

Informalmente: "una serie de reglas que definen en forma precisa una secuencia de operaciones"

Qué es un algoritmo?

Un algoritmo puede ser especificado

- En inglés, español, francés, etc.
- En un lenguaje formal: matemático, o de programación
 - o C, Java, Perl, Python 🐍
 - En forma de un diseño de hardware

A qué se parece?

- A una receta de cocina
 - Input = ingredientes + materiales
 - Algoritmo = receta (instrucciones, pasos, operaciones, parámetros)
 - Output = comida

Programas vs Algoritmos

Un algoritmo es nuestra *receta* para resolver un problema. Si escribimos esa receta en Python, tenemos un *programa*. Si escribimos esa receta en Java, tenemos *otro programa*. Si re-escribimos nuestro programa en Python para mejorarlo, tenemos *otro programa*.

Un *programa* es una implementación de un algoritmo! Puede haber varias implementaciones!

Problemas computacionales

Tienen que cumplir con las siguientes condiciones

- Tiene que estar bien definido
- Tiene que tener una solución
- Tiene que ser genérico

Un problema es una colección infinita de instancias, junto con una solución para cada una de esas instancias

Ejemplo: ordenar números en forma creciente

- Input: una secuencia de n números (a1, a2, ..., an)
- Output: una permutación de la secuencia original (a1', a2', ..., an') tal que a1' > a2' > ... > an'

Una instancia del problema:

- Input: (31, 41, 59, 26, 41, 58)
- Output: (26, 31, 41, 41, 58, 59)

Hay muchas maneras de ordenar datos!

Algoritmos para ordenar:

- Insertion sort
- Merge sort
- Selection sort
- Bubble sort
- ...

Cuál es el mejor?

Hay que analizar el algoritmo!

Wikipedia es un libro de algoritmos!

Complejidad de algoritmos

- Es una métrica para comparar algoritmos
- Mide relación entre cantidad de datos de entrada (input) y alguna otra variable relacionada al costo computacional
 - tiempo
 - espacio
 - CPU
 - RAM

Complejidad

- Además de la relación con la cantidad de datos (input)
 - o $n, log n, n^2, n^3, 2^n, n!$
- Normalmente se especifica para
 - \circ θ , mejor caso (best case)
 - □, caso promedio (average case)
 - O, peor caso (worst case)

Problema ejemplo

Dado un conjunto de números, existe algún subconjunto cuya suma sea **N?**

Una instancia del problema:

- **Conjunto:** [1, 2, 4, 5, 8, 9, 10, 11, 23, 76, 89]
- N: 119

Qué hacemos?

Evaluar y Analizar

1. Viabilidad

- a. Existen impedimentos teóricos?
- b. Responder SI/NO

2. Solución (algoritmo)

- a. Tomar subconjuntos y evaluar la suma
- b. Responder SI/NO

3. Complejidad

a. Cómo escala con el input?

