Problemas

4. Sea X una variable aleatoria discreta que toma valores 0, 1, -1 con probabilidad p(X=0)=1/2, p(X=1)=a, p(X=-1)=1/2-a donde 0 < a < 1/2 es desconocido. Sea X_1, \ldots, X_n una muestra aleatoria de X y sea $\bar{X}=\frac{X_1+\ldots+X_n}{n}$ el promedio muestral. Definimos el estimador

$$T = \frac{\bar{X}}{2} + \frac{1}{4}$$

- (a) Calcula E(T) y var(T).
- (b) ¿Es T un estimador insesgado y consistente de a? Justifica tu respuesta.
- 7. Sea X una variable aleatoria. Hemos visto que \overline{X} (promedio muestral) es un estimador insesgado de E(X). \overline{X}^2 es un estimador insesgado de $(E(X))^2$? Justifica tu respuesta.
- 8. Sigui X_1, \ldots, X_n una mostra aleatòria simple d'una variable aleatòria X que té funció de densitat

$$f_X(x) = \begin{cases} (1+\theta)x^{\theta}, & 0 < x < 1\\ 0, & x \notin (0,1) \end{cases}$$

on $\theta > -1$. Una mostra aleatòria produeix les dades:

$$x_1 = 0.92; \ x_2 = 0.79; \ x_3 = 0.90; \ x_4 = 0.65; \ x_5 = 0.86.$$

- (a) Calculeu E(X), en funció del paràmetre θ .
- (b) Trobeu un estimador $\hat{\theta}$ del paràmetre θ pel mètode dels moments.
- (c) Quina és l'estimació del paràmetre θ corresponent a la mostra de cinc dades?
- 10. Sigui X_1, \dots, X_n una mostra aleatòria simple d'una variable aleatòria X que té funció de densitat

$$f_X(x) = \begin{cases} \frac{x}{\theta} e^{-x^2/(2\theta)}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Una mostra aleatòria produeix les dades:

$$x_1 = 16.88; \ x_2 = 10.23; \ x_3 = 4.59; \ x_4 = 6.66; \ x_5 = 13.68.$$

- (b) Trobeu un estimador $\hat{\theta}$ del paràmetre θ pel mètode de la màxima versemblança.
- (c) Quina és l'estimació del paràmetre θ segons la mostra de cinc dades?

12. El tiempo de vida útil (T) de un dispositivo es una variable aleatoria continua con la siguiente función de densidad:

$$f(t) = \begin{cases} \lambda e^{-\lambda(t-\tau)}, & t \ge \tau \\ 0, & \text{otros} \end{cases}$$

donde $\lambda > 0$ y τ son parámetros. Sabemos que su valor esperado es

$$E(T) = \tau + \frac{1}{\lambda}$$

Sea T_1, T_2, \dots, T_n una muestra aleatoria simple de T:

- (a) Supón τ conocida y determina el estimador $(\hat{\lambda}_V)$ de máxima verosimilitud del parámetro λ .
- (b) Supón τ conocida, determina el estimador $(\hat{\lambda}_M)$ de λ por el método de los momentos.
- (c) Supón λ conocida, determina el estimador $(\hat{\tau}_M)$ de τ por el método de los momentos.
- 14. Considera una variable aleatoria continua (X) con la siguiente función de densidad:

$$f(x) = \begin{cases} 2\alpha x e^{-\alpha x^2}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

donde α es un parámetro.

Sea X_1, X_2, \ldots, X_n una muestra aleatoria simple, determina el estimador $(\hat{\alpha})$ de máxima verosimilitud del parámetro α

- 16. Sea X_1, \dots, X_n una muestra aleatoria simple de una variable aleatoria exponencial de parámetro $1/\beta$, $X \hookrightarrow \epsilon$ $(1/\beta)$, que tiene por función de densidad $f(x) = \frac{1}{\beta}e^{-x/\beta}$, x > 0. Sabiendo que la esperanza de una variable aleatoria exponencial es el inverso de su parámetro $(E(X) = \beta)$, y la varianza este valor al cuadrado $(VAR(X) = \beta^2)$. Se pide:
 - (a) Encuentra un estimador $\hat{\beta}$ del parámetro β , por el método de la máxima verosimilitud.
 - (b) ¿Cuál es la estimación del parámetro β a partir de la muestra aleatoria siguiente: $x_1=0.81,\,x_2=0.68,\,x_3=0.89,\,x_4=0.54,\,x_5=0.75?$
 - (c) Calcula la esperanza y la varianza del estimador encontrado. Razona si es un estimador consistente.

18. Sea X una variable aleatoria continua que tiene por función de densidad:

$$f(x) = \frac{2(\theta - x)}{\theta^2}, 0 \le x \le \theta.$$

Sea X_1, \dots, X_n una muestra aleatoria simple de X. Encuentra un estimador $\hat{\theta}$ del parámetro θ , por el método de los momentos.