Varianta 27

Subjectul I.

$$\mathbf{a)} \quad \left| \frac{3+2i}{3-2i} \right| = 1.$$

b)
$$DE = 3\sqrt{3}$$
.

c) Evident.

d) Punctele de intersecție sunt
$$A\left(\frac{6\sqrt{13}}{13}, -\frac{6\sqrt{13}}{13}\right)$$
 și $B\left(-\frac{6\sqrt{13}}{13}, \frac{6\sqrt{13}}{13}\right)$.

e)
$$V_{ABCD} = \frac{35}{6}$$
.

f)
$$a = 1$$
 și $b = 0$.

Subjectul II.

1

a)
$$\log_2 3 < 2 \iff 3 < 2^2$$
, adevărat.

b) Probabilitatea căutată este
$$p = \frac{2}{5}$$

c)
$$g(8)=1$$
.

d)
$$x = 1$$
.

2

a)
$$f'(x) = \frac{2x^2 + 1}{1 + x^2}, x \in \mathbf{R}$$
.

b)
$$\int_{0}^{1} f'(x) dx = 2 - \frac{\pi}{4}$$
.

c)
$$f'(x) > 0$$
, $\forall x \in \mathbf{R}$, deci funcția f este strict crescătoare pe \mathbf{R} .

d)
$$\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = \frac{3}{2}$$
.

e)
$$\int_{0}^{1} \frac{2x^{2}}{x^{3}+1} dx = \frac{2}{3} \cdot \ln 2$$
.

Subjectul III.

- a) Evident.
- **b**) $\det(A) = 0$, rang(A) = 1.

$$\mathbf{c}) \quad C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in M \setminus N .$$

d) Considerăm
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in N$$
. Atunci $X^2 = O_2 \iff \begin{cases} a^2 + bc = 0 & (1) \\ b(a+d) = 0 & (2) \\ c(a+d) = 0 & (3) \\ d^2 + bc = 0 & (4) \end{cases}$, de unde

obținem a+d=0, sau $X=O_2$.

e) Se demonstrează prin calcul direct.

$$\mathbf{f)} \ \ V \cdot D \cdot V^{-1} = \begin{pmatrix} a + d & \frac{bc^2 - acd}{d^2} \\ \frac{d^2}{c} & 0 \end{pmatrix}.$$

g) Considerăm matricea $E = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in M$.

Avem $a \cdot c \neq 0$ și pentru $V = \begin{pmatrix} \frac{-c}{a} & 1\\ 0 & -\frac{a}{c} \end{pmatrix}$ obținem, utilizând **f**), că

$$V \cdot E \cdot V^{-1} = F + G$$
, cu $F = \begin{pmatrix} 0 & 0 \\ \alpha & 0 \end{pmatrix}$ și $G = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$.

Cum $F^2 = G^2 = O_2$, rezultă că $F, G \in N$.

Mai mult, $E = V^{-1} \cdot F \cdot V + V^{-1} \cdot G \cdot V \in N$, de unde rezultă concluzia.

Subjectul IV.

a)
$$f'(x)=1-\cos x$$
, $\forall x \in \mathbf{R}$.

b) Dacă
$$x \ge \frac{\pi}{2}$$
, evident $x > 1 \ge \sin x$.

Dacă $x \in \left(0, \frac{\pi}{2}\right)$, pe cercul trigonometric, considerăm punctele $M(\cos x, \sin x)$ și

A(1,0). Deoarece lungimea arcului mic de cerc de extremități A și M este mai mare decât distanța de la M la Ox, deducem $x \ge y_M$, adică $x \ge \sin x$, $\forall x \in \left(0, \frac{\pi}{2}\right)$.

c)
$$I_1 = 1 - \cos 2006$$
.

d) Pentru orice $n \in \mathbb{N}^*$ şi $x \in [0,1]$, aplicând **b**) obținem $0 \le \sin(x^n) \le x^n$, de unde, integrând pe intervalul [0,1] şi trecând la limită în inegalitatea obținută, deducem concluzia.

- e) Se arată prin calcul direct.
- f) Pentru orice $n \in \mathbb{N}^*$ și x > 0 $\frac{-1}{x^n} \le \frac{\cos(x^n)}{x^n} \le \frac{1}{x^n}$. Integrând această inegalitate pe intervalul [1, 2006] și trecând apoi la limită, obținem

concluzia.

 ${f g}$) Se trece la limită în egalitatea de la ${f e}$). Ținând cont de ${f f}$) și de ${f d}$) deducem concluzia.