ME 564, Fall 2014

L12: October 22,2014

Overview of Topics:

- 1) Linear ODEs w/ Forcing x+3x+2x = f(+)
 - Method 1: undetermined coefficients
 - Method 2: Variation of parameters (very powerful)
- 2 What does "Linear" mean
 - Linear superposition
 - convolution.

(*)
$$\ddot{x} + 3\dot{x} + 2x = 0$$
 homogeneous

(**)
$$\dot{x} + 3\dot{x} + 2x = f(t)$$
 inhomogeneous forcing

Example:
$$f(t) = e^{-3t}$$

Part I: Solution to the
$$(*)$$
 is called the homogeneous solⁿ

$$(*) \rightarrow x(t) = k_1 e^{-t} + k_2 e^{-2t}$$

$$k_1, k_2 \text{ determined by initial conditions...}$$

Pant 2: Find particular sol" to (**) using method of undetermined coefficients:

Assume
$$x_p(+) = ke^{-3t} \implies x = -3ke^{-3t}$$
, $x = 9ke^{-3t}$

$$[9ke-3k+2k]e^{-3t} = e^{-3t} \implies k = \frac{1}{2}e^{-3t}$$

$$x_p = \frac{1}{2}e^{-3t}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0 \\
\dot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 3 \dot{x} + 2 \dot{x} &= 0
\end{array}$$

$$\begin{array}{lll}
\ddot{x} + 4 \dot{x}_{2} e^{-2x} - \dot{x}_{1} e^{-x} + 2 \dot{x}_{2} e^{-2x} + (4 \dot{x}_{2} - 2 \dot{x}_{2$$

Linear ODE: $\dot{x} = \underline{A} \times$

In the absence of initial conditions, there may be many "solutions" (in fact, one for each $\lambda = eig(A)$).

Just as in $\ddot{x}+3\dot{x}+2\dot{x}=0$, both $x(t)=e^{-t}$ and $x(t)=e^{-2t}$ are solutions.

For a linear system, if X, and Xa are both solutions, then k,x,+kaxa is a solution for any real k, or k2 (or complex k, ka!):

First $\frac{d}{dt}(k_1x_1+k_2x_2)=k_1\dot{x}_1+k_2\dot{x}_2$

Next $A(k_1x_1 + k_2x_2) = k_1Ax_1 + k_2Ax_2$

So x= k, x, +k2×2 is a solution!

This is called the superposition principle.