Kontextfreie Sprachen

Definition Definition

Eine **Grammatik** ist ein Tupel (N, T, S, P) wobei

 $N: Alphabet \ der \ \mathbf{nichtterminalen} \ Symbole$

 $T: Alphabet \ der \ \mathbf{terminalen} \ Symbole \ (mit \ T \cap N = \varnothing)$

 $S: Startsymbol \in N$

 $P: Produktionen \subset (N \cup T)^+ \times (N \cup T)^*$

Definition Chomsky Hierarchie

Typ 0: Keine Bedingung

Typ 1: Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha, \beta \in (N \cup T)^+$ und $|\alpha| \le |\beta|$

Typ 2: Für alle Produktionen $\alpha \to \beta$ gilt: $\beta \in (N \cup T)^+$ und $\alpha \in N$

Typ 3: Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha \in N$ und $\beta = tB$, wobei $t \in T^*$ und $B \in N \cup \{\epsilon\}$ und $\beta \neq \epsilon$.

Sonderregel Leeres Wort:

Zusätlich wird die Produktion

$$S_{neu} \to \epsilon | S_{alt}$$

erlaubt um das Leere Wort zuzulassen.

Definition Normalformen

Тур	3	2	1	0
$A \to \epsilon$				×
$A \to t$	×	×	×	×
$A \to tB$	×			×
$A \to BC$		×	×	×
$AB \rightarrow CD$			×	×

Aufgabe 1

Geben sie die Produktionen einer Typ-2 Grammatik G an, mit L(G) =

a)
$$\{a^nb^nc^md^m\mid n,m\in\mathbb{N}\}$$

b)
$$\{a^n b^m c^m d^n \mid n, m \in \mathbb{N}\}$$

$$\{a^n b^m a^n \mid n, m \in \mathbb{N}\}$$

$$\{a^{2n}b^n \mid n \in \mathbb{N}\}$$

e)
$$\{a^m b^n \mid m \in \mathbb{N}, n \in \mathbb{N}_0, m > n\}$$

f)
$$\{a^m b^n c^i \mid m \in \mathbb{N}_0, n, i \in \mathbb{N}, m+n=i\}$$

$$\{a^m c^i b^n \mid m \in \mathbb{N}_0, n, i \in \mathbb{N}, m+n=i\}$$

h)
$$\{a^{m}b^{n}c^{i}d^{m+n+k+i+j}e^{k} \mid m, n, i, j, k \in \mathbb{N}\}$$

Aufgabe 2

Sei L =
$$\{a^n b^{2n} c^m \mid n \in \mathbb{N}, m \in \mathbb{N}_0\}.$$

- a) Geben sie eine Typ-2 Grammatik G an, mit L(G) = L.
- b) Leiten sie untere Angabe aller Verfahrensschritte die Normalform von G ab.

Aufgabe 3

Sei L =
$$\{a^n b^{m+n} c^k (de)^{m+k} | n, w, k \in \mathbb{N}\}.$$

- a) Geben sie eine Typ-2 Grammatik G an, mit L(G) = L.
- b) Leiten sie untere Angabe aller Verfahrensschritte die Normalform von G ab.

Aufgabe 4

Sei L =
$$\{a^{2m}b^nd^ne^mf^l \mid m, n \in \mathbb{N}, l \in \mathbb{N}_0\}.$$

- a) Geben sie eine Typ-2 Grammatik G an, mit L(G) = L.
- b) Leiten sie untere Angabe aller Verfahrensschritte die Normalform von G ab.

Aufgabe 5

Sei L =
$$\{(ab)^m c^n | m \in \mathbb{N}, n \in \mathbb{N}_0, m > n\}.$$

- a) Geben sie eine Typ-2 Grammatik G an, mit L(G) = L.
- b) Leiten sie untere Angabe aller Verfahrensschritte die Normalform von G ab.

Aufgabe 6

Für ein Wort
$$w \in X^*$$
 mit $w = w_0, w_1, \dots w_n$ sei $rev(w) := w_n, \dots, w_1, w_0$.
Sei $L = \{a^i w a^k rev(w) | i \in \mathbb{N}_0, k \in \mathbb{N}, w \in \{b, c\}^+\}$.

- a) Geben sie eine Typ-2 Grammatik G an, mit L(G) = L.
- b) Leiten sie untere Angabe aller Verfahrensschritte die Normalform von G ab.