Q&A (2.11-2.20)

骆挺宇 蒋慧

2019年12月2日

Exercise 2.11: (Eigenedecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X, Y, Z.

Answer:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Due to $c(\lambda) \equiv \det |A - \lambda I|$, When $c(\lambda) = 0$, we can get $\det |A - \lambda I| = 0$.

Firstly, we discuss X, thus $det|X - \lambda I| = 0$, then

$$\begin{vmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{vmatrix} = 0, \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = 0.$$

The solutions of λ are 1 and -1.

When $\lambda_1 = 1$, $(X - \lambda_1 I)|\lambda_1\rangle = 0$,

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus we get the solution $x_1 = x_2$.

We assume that $x_1 = 1$, thus $x_2 = 1$.

After normalization, the following eigenvector is obtained:

$$|\lambda_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1 \end{bmatrix} = |+\rangle.$$

When $\lambda_2 = -1$, $(X - \lambda_2 I)|\lambda_2\rangle = 0$,

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus we get the solution $x_1 = -x_2$.

We assume that $x_1 = 1$, thus $x_2 = -1$.

After normalization, the following eigenvector is obtained:

$$|\lambda_2\rangle = \tfrac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \tfrac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \tfrac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |-\rangle.$$

So the diagonal representations of X is $X = |+\rangle\langle +|-|-\rangle\langle -|$. Secondly, we discuss Y, thus $\det |Y - \lambda I| = 0$, then

$$\begin{vmatrix} \begin{bmatrix} 1 & -i \\ i & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \end{vmatrix} = 0, \begin{vmatrix} -\lambda & -i \\ i & -\lambda \end{vmatrix} = 0.$$

The solutions of λ are 1 and -1.

When
$$\lambda_1 = 1$$
, $(Y - \lambda_1 I)|\lambda_1\rangle = 0$,

$$\begin{bmatrix} -1 & -i \\ i & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So we get the solution $x_1 = -ix_2$.

We assume that $x_1 = 1$, thus $x_2 = i$.

After normalization, the following eigenvector is obtained:

$$|\lambda_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\i \end{bmatrix}.$$

When
$$\lambda_2 = -1$$
, $(Y - \lambda_2 I)|\lambda_2\rangle = 0$,

$$\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So we get the solution $x_1 = ix_2$. We assume that $x_1 = 1$, thus $x_2 = -i$. After normalization, the following eigenvector is obtained:

$$|\lambda_{2}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -i \end{bmatrix}.$$
So $Y = \begin{bmatrix} \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2}i \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}i \end{bmatrix} - \begin{bmatrix} \frac{\sqrt{2}}{2}\\ -\frac{\sqrt{2}}{2}i \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}i \end{bmatrix}$

$$= \frac{1}{2} \begin{bmatrix} 1\\ i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix} - \begin{bmatrix} 1\\ -i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix}.$$

Thirdly, we discuss Z, thus $det|Z - \lambda I| = 0$, then

$$\begin{vmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = 0, \begin{vmatrix} 1 - \lambda & 0 \\ 0 & -1 - \lambda \end{vmatrix} = 0.$$

The λ solutions are 1 and -1.

When
$$\lambda_1 = 1$$
, $(Z - \lambda_1 I)|\lambda_1\rangle = 0$,

$$\begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The solution $x_2 = 0$.

We assume that $x_1 = 1$, thus $\lambda_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

When
$$\lambda_2 = -1$$
, $(Z - \lambda_2 I)|\lambda_2\rangle = 0$,

$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The solution $x_1 = 0$.

We assume that $x_2 = 1$,

thus
$$\lambda_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

So the diagonal representations of Z is $Z = |0\rangle\langle 0| - |1\rangle\langle 1|$.

Exercise 2.12: Prove that the matrix $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is not diagonalizable.

Answer:

The necessary and sufficient condition for diagonalization is that there are n linearly independent eigenvectors for n-order square matrices. According to the knowledge of linear algebra elementary transformation,

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \xrightarrow{first \ line \ minus \ second \ line} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$
 They have same eigenvalue $\lambda = 1$ and the eigenvector that
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 So the eigenvector is
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Only have one eigenvalue and eigenvector of the matrix does not satisfy the necessary and sufficient conditions, so the matrix is not diagonalizable.

Exercise 2.13: If $|w\rangle$ and $|v\rangle$ are any two vectors, show that $(|w\rangle\langle v|)^{\dagger} = |v\rangle\langle w|$.

Answer:

Suppose A is any linear operator on a Hilbert space V. It turns out that there exists a unique linear operator A^{\dagger} on V such that for all vectors $|w\rangle, |v\rangle \in V$.

Since
$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$
 and $|v\rangle^{\dagger} \equiv \langle v|, (|v\rangle\langle w|)^{\dagger} = \langle w|^{\dagger}|v\rangle^{\dagger} = |w\rangle\langle v|.$

Exercise 2.14:(Anti-linearity of the adjoint) Show that the adjoint operation is anti-

linear,
$$\left(\sum_{i} a_{i} A_{i}\right)^{\dagger} = \sum_{i} a_{i}^{*} A_{i}^{\dagger}$$
.

Answer:

Suppose A is any linear operator on a Hilbert space V. It turns out that there exists a unique linear operator A^{\dagger} on V such that for all vectors $|w\rangle, |v\rangle \in V$. According to inner product is linear in the second argument and conjugate-linear in the first argument, we can make the following derivation:

Exercise 2.15: Show that $(A^{\dagger})^{\dagger} = A$.

Answer

Suppose A is any linear operator on a Hilbert space V. It turns out that there exists a unique linear operator A^{\dagger} on V such that for all vectors $|w\rangle, |v\rangle \in V$.

Since
$$(|v\rangle, A^{\dagger}|w\rangle) = (A^{\dagger}|w\rangle, |v\rangle)^* = (|w\rangle, A|v\rangle)^* = (A|v\rangle, |w\rangle)$$
 and $(|v\rangle, A^{\dagger}|w\rangle) = [(A^{\dagger})^{\dagger}|v\rangle, |w\rangle]$.
Thus $(A^{\dagger})^{\dagger} = A$.

Exercise 2.16: Show that any projector P satisfies the equation $P^2 = P$ Answer:

Suppose V is a Hermite space, W be the k-dimensional subspace of d-dimensional vector space V. Using the gram Schimdt process, we can construct $|1\rangle |2\rangle \dots |d\rangle$ is a set of standard orthogonal basis of V, so that $|1\rangle |2\rangle \dots |k\rangle$ is a standard orthogonal basis of W, $P \equiv \sum_{i=1}^k |i\rangle \langle i|$

$$P^{2} = \left(\sum_{i=1}^{k} |i\rangle\langle i|\right)\left(\sum_{j=1}^{k} |j\rangle\langle j|\right) = \sum_{i=1}^{k} \sum_{j=1}^{k} |i\rangle\langle i|j\rangle\langle j|$$
$$= \sum_{i=1}^{k} \sum_{j=1}^{k} |i\rangle\delta_{ij}\langle j| = \sum_{i=1}^{k} |i\rangle\langle i| = P.$$

Exercise 2.17: Show that a normal matrix is Hermitian if and only if it has real eigenvalues.

Answer:

Suppose $P \equiv \sum_i \lambda_i |i\rangle\langle i|$, thus $P^{\dagger} = \sum_i \lambda_i^* |i\rangle\langle i|$. Since P is a Hermitian operators, we have $P = P^{\dagger}$, then $\sum_i \lambda_i |i\rangle\langle i| = \sum_i \lambda_i^* |i\rangle\langle i|$. Thus $\lambda_i = \lambda_i^*$, $\lambda_i \in R$.

Exercise 2.18: Show that all eigenvalues of a unitary matrix have modulus 1, that is, can be written in the form $e^{i\theta}$ for some real θ .

Answers

Suppose U is a unitary matrix, $U \equiv \sum_i \lambda_i |i\rangle\langle i|$, thus $U^\dagger = \sum_i \lambda_i^* |i\rangle\langle i|$ and U satisfies $U^\dagger U = I, I \equiv \sum_i |i\rangle\langle i|$.

$$UU^{\dagger} = \left(\sum_{i} \lambda_{i} |i\rangle\langle i|\right) \left(\sum_{i} \lambda_{i} |i\rangle\langle i|\right)^{\dagger} = \sum_{i} \lambda_{i} \lambda_{i}^{*} |i\rangle\langle i| = I$$

$$\sum_{i} \lambda_{i} \lambda_{i}^{*} |i\rangle \langle i| = \sum_{i} |i\rangle \langle i| \Rightarrow \forall i, \lambda_{i} \lambda_{i}^{*} = 1$$
Because $\lambda_{i} \lambda_{i}^{*} = 1$, thus $\|\lambda_{i}\| = 1$.

Let $\lambda_{i} = e^{i\theta} = \cos \theta + i \sin \theta$, then $\lambda_{i}^{*} = e^{-i\theta} = \cos \theta - i \sin \theta$.

$$e^{i\theta} * e^{-i\theta} = (\cos \theta + i \sin \theta) * (\cos \theta - i \sin \theta) = 1$$

Exercise 2.19: (Pauli matrices: Hermitian and unitary) Show that the Pauli matrices are Hermitian and unitary. Answer:

For Y be an example,

Hermitian:

$$Y^{\dagger} = (Y^*)^{\mathrm{T}} = \left(\begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}^* \right)^{\mathrm{T}}$$
$$= \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = Y.$$

Unitary:

$$Y^{\dagger}Y = (Y^*)^T Y = \left(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}^* \right)^T \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}^T \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

So Y is Hermite operator and unitary matrix.

Other cases will also reach corresponding conclusions according to the above calculations.

Exercise 2.20: (Basis changes) Suppose A' and A'' are matrix representations of an operator A on a vector space V with respect to two different orthonormal bases, $|v_i\rangle$ and $|w_j\rangle$. Then the elements of A' and A'' are $A'_{ij} = \langle v_i | A | v_j \rangle$ and $A''_{ij} = \langle w_i | A | w_j \rangle$. Characterize the relationship between A' and A''.

Answer:

$$\begin{split} U &\equiv \sum_{i} \left| w_{i} \right\rangle \left\langle v_{i} \right| \\ A'_{ij} &= \left\langle v_{i} \middle| A \middle| v_{j} \right\rangle \\ &= \left\langle v_{i} \middle| U U^{\dagger} A U U^{\dagger} \middle| v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} \middle| w_{p} \right\rangle \left\langle v_{p} \middle| v_{q} \right\rangle \left\langle w_{q} \middle| A \middle| w_{r} \right\rangle \left\langle v_{r} \middle| v_{s} \right\rangle \left\langle w_{s} \middle| v_{j} \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_{i} \middle| w_{p} \right\rangle \delta_{pq} A''_{qr} \delta_{rs} \left\langle w_{s} \middle| v_{j} \right\rangle \\ &= \sum_{p,r} \left\langle v_{i} \middle| w_{p} \right\rangle \left\langle w_{r} \middle| v_{j} \right\rangle A''_{pr} \end{split}$$