	Dercipa 16/5/22 16" Scale Jy: Vorkings 8"
	MH CPAMMIKA EYETHMATA - MEGODOS NEWTON - RAPHSON RA EYETHMATA
	()(
	$ \begin{cases} f_1(x_1, x_2, \dots x_n) = 0 \\ f_2(x_1, x_2, \dots x_n) = 0 \end{cases} $ $ \begin{cases} f_1(x_1, x_2, \dots x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots x_n) = 0 \end{cases} $ $ \begin{cases} f_1(x_1, x_2, \dots x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots x_n) = 0 \end{cases} $ $ \begin{cases} f_1(x_1, x_2, \dots x_n) = 0 \\ \vdots \\ f_n(x_1, x_2, \dots x_n) = 0 \end{cases} $
My	074- 1 ordinor 1/2 f(x, x2)= x,2-sinx===
	12 (X), X21 - X1 (X2
	41) n xeorg: \(\frac{\frac{1}{\times}}{\times} \)
	$f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \times u \times = \begin{pmatrix} \times_1 \\ \times_2 \\ \times n \end{pmatrix}$
1	De la l'éjoupe oùploso y bold yea va ouplo) joupe to d'avrogea, la to katalabairoupe
· } =	από το πρόβλημα.
	Eon QCR" avoirie, f: Q - R". Av fi, i=1,,n
	exour pipikis rapazingors reinters tafus to Xt2
	$f_{X}(x) = \begin{cases} \frac{\partial f_{1}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{1}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \end{cases} $ $\int_{X} (x) = \begin{cases} \frac{\partial f_{1}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \end{cases}$ $\int_{X} (x) = \begin{cases} \frac{\partial f_{1}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \end{cases}$ $\int_{X} (x) = \begin{cases} \frac{\partial f_{1}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \end{cases}$ $\int_{X} (x) = \begin{cases} \frac{\partial f_{1}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{2}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \end{cases}$ $\int_{X} (x) = \begin{cases} \frac{\partial f_{1}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{2}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \end{cases}$ $\int_{X} (x) = \begin{cases} \frac{\partial f_{1}(x)}{\partial x_{1}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \\ \frac{\partial f_{2}(x)}{\partial x_{2}}(x) & \frac{\partial f_{2}(x)}{\partial x_{2}}(x) \end{cases}$
	The (A) $\frac{\partial f_n}{\partial x_2}(x) - \dots = \frac{\partial f_n(x)}{\partial x_n}$
	the desire the second of the s

Newton Eaghson qua ovoriguata:

Oswensea Eorw x ma Join row ovorguares
$f(x) = 0$ κω · μια νόρμα στο \mathbb{R}^n Υποθέτουμε ότι f είναι παραχωχίσημη κοντά στο \overline{x} , ∂f_i συνεχείς στο \overline{x} και ο $f_{\overline{x}}(\overline{x})$ αντιστρέψημος.
f rivar rapaguzionen Korra oro X, Oxi ouvex ris oro X
vai o fx(x) arisoipi 4 pros.
Tou yea kale xo aprira korra oro x, y pilodos N-R
ouxlive or 8.
Av survivor y 7 EC2 vova oro × tote y organion
Evan respayments by $ x _{c+1} - x \le c \cdot x _{c} - x ^2$
Με αυτή το μέδοδο θα Ιυθούν οι εξισώστις ρούς φορτίου σε μεχαλύτερα εξάμηνα.
Telos Kepalaios
Nèo Kryalaro?
1020 [294100]
MOBAHMATA APXIKON TIMON FIA EYNHOUS
DIAPOPIKES EZIZZEIZ
f: [a, b] * R - R pea ovraier on, yock
(01 T) y'(x) = f(x, y(x)), asxsb
y(a)=yo
0
OEWenpea: f ourexis [a, B] XR Kou unaexe orabre à L=0:
Vxe[a, 8], Vyinz cR: f(x,y)-f(x,y2) = y1-y2/-L
1 , cx, y, +(x, y2) = (y1 - y2/-1
Tozz yea kále yock zo (P.A.T) Exce povadiky Svoy
Journal Journal and

	Da pas du dour report xions un repur ros dions
	Oa pas du doir report xions un repur uns dions
	Apropyrusis Midodol
	Moro Baparixis Rolo Baparixis
	yk -> yk+1 yk-1, yk -> yk
	Χρησημοποιούμε μόνο Χρησιμοποιούριε και προηχούμετες την αμέτους προηχούμενη τιμίς.
_	Un aprècos reonxoupery
	Upry
_	Movolypauxès Milodoi
	y'= f(x,y), a=x=6
	y'= f(x,y), a=x=B y(a)=yo
	· brodinous ou liveren poro organia
	σωνεί τουμε ου λύνετου μονοσήμαντα $ \alpha = x_0 < x_1 < < x_n = \theta, M = \frac{M-a}{n} $
	• y = y (xx), }=0,1,?
_	La Médodos Euler or neoorgjions y diverseu
	α πο τον τύπο:
	9k+1=9k+hf(xk,yk), k=0,1,n-1
	J. σοσμενο
	y1 = y0 + h f(x0, y0)
	y2= y1 + h f(x1, y1) V
	U- J, U.

Napadeuxpea: $\|y'=y, 0 \le x \le 1$

Χρησιμοποιώντας τη μεθοδο Euler να προσδιορίσετε προσιχχιστικές τιμές στο [0,1] μι h=0,2 Ψο μ, μ2 μ3 μ4 μ5 ο 0,2 0,4 0,6 0,8 1 χο χ, χ2 χα χμ χς

yk+1 = yk + h f(xk, yk) yk+1 = yk (1+h) f