Report:

Overview of the analysis: Explain the purpose of this analysis:

• The assignment's purpose to predict the applicants' chance of success.

Data Preprocessing

What variable(s) are the target(s) for your model?

Target variable in the model is "IS SUCCESSFUL".

• What variable(s) are the features for your model?

APPLICATION_TYPE, AFFILIATION, CLASSIFICATION, USE_CASE, ORGANIZATION, INCOME_AMT, SPECIAL_CONSIDERATIONS.

 What variable(s) should be removed from the input data because they are neither targets nor features?

EIN, NAME.

Compiling, Training, and Evaluating the Model

 How many neurons, layers, and activation functions did you select for your neural network model, and why?

Started off the model with 2 layers and 80, 20 neurons, and used "relu".

Were you able to achieve the target model performance?

No, accuracy had a slight increase as I changed the number of layers in the model, but remained around 72-73%, but was unable to achieve the desired 75% accuracy.

• What steps did you take in your attempts to increase model performance?

I kept changing the layers of the model, I started off with two layers with 80 an 20 neurons, then increased to 4 layers with a range of neurons from 70 to 150, lastly I increased another 4 layers and neurons ranged from 180 to 40 and by 20 increments.

```
# Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
input_features = len(X_train[0])
nn = tf.keras.models.Sequential()
layer1_nodes = 80
layer2_nodes = 20
# Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
input_features = len(X_train[0])
nn = tf.keras.models.Sequential()
layer1 nodes = 150
layer2_nodes = 130
layer3_nodes = 100
layer4_nodes = 70
# Define the model - deep neural net, i.e., the number of input features and hidden nodes for each layer.
input_features = len(X_train[0])
nn = tf.keras.models.Sequential()
layer1_nodes = 180
layer2_nodes = 160
layer3 nodes = 140
layer4_nodes = 120
layer5_nodes = 100
layer6_nodes = 80
layer7 nodes = 60
layer8_nodes = 40
```

Summary: Summarize the overall results of the deep learning model. Include a recommendation for how a different model could solve this classification problem, and then explain your recommendation.

The accuracy of the model did not improve by much as I added more layers, I could also try to change up the increments of number of neurons between each layer and see if the result will be different.