

Using step-like nonlinear magnets for beam uniformization at target in high intensity accelerarors

Zheng Yang, Jing-Yu Tang, IHEP, China P.A. Phi Nghiem, Nicolas Chauvin, CEA/Saclay/IRFU, France

Topics

- Introduction to CSNS C-ADS IFMIF accelerators
- Beam spot uniformization
- Introduction of the step-like magnet
- Application on the CSNS C-ADS IFMIF

CSNS high power proton accelerator

CSNS (China Spallation Neutron Source) is a highpower proton accelerator based multi-disciplinary facility for research, mainly relying on neutron scattering techniques.

Construction: 2011-2017

Site: Dongguan,

Guangdong

IHEP and **IOP**

Phase	I	II	II' or III
Beam power on target [kW]	100	200	500
Beam energy on target [GeV]	1.6	1.6	1.6
Ave. beam current [mA]	63	125	315
Pulse repetition rate [Hz]	25	25	25
Protons per pulse [10 ¹³]	1.6	3.1	7.8
Linac energy [MeV]	80	132	250
Linac type	DTL	DTL	+SCL

China ADS high power proton accelerator

- China is pursuing an ADS (Accelerator-Driven Subcritical System) program strongly, under CAS (IHEP, IMP, IPP and USTC)
- Accelerator: 10mA, CW proton beam

IFMIF: International Fusion Materials Irradiation Facility

The highest average current linac under developing in the world, pose many challenges

Beam spot uniformization

One of the critical issues concerning the interface between a highpower beam and its irradiation target is the spot uniformity to reduce the peak current density at the target and reduce the beam halo

CSNS

Beam footprint in rectangular shape: 12 cm (H) x 5cm (V)

Ratio of the peak current density to the average: <3

C-ADS

Beam footprint in rectangular shape: 4.4cm (H) x 4.4cm (V)

Ratio of the peak current density to the average: <2.5

IFMIF (to be revised)

Beam footprint in rectangular shape: 20 cm (H) x 5 cm (V)

Current density across the flat top is uniform ($\pm 5\%$)

Current density: $< 0.5 \mu A/cm^2$ (for |x|>11 cm)

Input beam of C-ADS beam transfer line

Input beam of IFMIF-HEBT

- Nonlinear magnets are needed for the beam spot uniformization at target
 - More conventional: single octupole or pair of octupole and dodecapole for each plane (horizontal or vertical)
 - New concept-1: step-like field magnets, initially proposed for ESS and CSNS
 - New concept-2: simplified multipole magnets including different combinations of anti-symmetric second-order, third-order, fourth-order and fifthorder field magnets, recently proposed at IHEP

Introduction of the step-like magnet

8 poles -r50 mm Field on pole 0.30 T Octupole

2 dipoles-r100 mm Field on pole 0.040 T **Step-like magnet**

Advantage

Flexibility

uniformization of beam core and beam halo can be done separately by two steps

Cheaper

standard multipoles: 100 thousand dollars

step-like magnets: 20-40 thousand dollars

Step-like field magnet prototyping

Optimization principle

- 1. Change the last four or six quadrupoles and the length of drift to get a larger beam spot on the target and fulfill the request of the flat beams and phase advances (linear optics)
- 2. Adjust the parameters of the step-like magnets to obtain a good beam spot on the target (nonlinear optics)
- 3. Repeat 1. and 2. several times to find the best result

Tests with beam for spot uniformization

 A test beam line using the ADS-RFQ is being set up for studies on both halo development and spot uniformization (plan under modification)

SFM can be steplike field magnets or simplified highorder magnets

Po=1.461 deg Wo=10.04227 MeV

Po=1.461 deg Wo=10.04227 MeV

"Classical" HEBT structure

Superconducting Linac

R. Duperrier, J. Payet, D. Uriot, Proc. of EPAC 2004

Beam losses

(to be optimised)

Beam distribution at Li Target

To be improved Tuning strategy to be defined

IFMIF - EVEDA BEAM DYNAMICS

18

Beam losses

(to be optimised)

Beam distribution at Li Target

To be improved **Larger Footprint**

Tuning strategy to be defined NAMICS

No beam loss

Density
Start-to-end with
errors

Thank you

