Massively Multitask Networks for Drug Discovery

Ramsundar et al. (2015)

What is Drug Discovery?

- 1. Hit finding: screen drug-like compounds in an effort to find a few attractive molecules for further optimization
- 2. ML goal: predict interactions between targets and small molecules

Dataset	Actives	Inactives	Target Class	Target
dude-igf1r	148	9298	other receptor	Insulin-like growth factor I receptor
dude-inha	43	2300	other enzyme	Enoyl-[acyl-carrier-protein] reductase
dude-ital	138	8498	miscellaneous	Leukocyte adhesion glycoprotein LFA-1 alpha

Motivation & Problem

1. Highly imbalanced datasets

a. 1-2% of screened compounds are active against a given target

Group	Datasets	Data Points / ea.	% Active
PCBA	128	282K (122K)	1.8(3.8)
DUD-E	102	14K (11K)	1.6(0.2)
MUV	17	15K (1)	0.2(0)
Tox21	12	6K (500)	7.8(4.7)

Motivation & Problem

- 1. Highly imbalanced datasets
 - a. 1-2% of screened compounds are active against a given target
- Disparate sources of experimental data across multiple targets
 - a. 259 datasets
 - b. 37.8M experimental data points
 - c. 1.6M compounds
 - d. 249 tasks

Motivation & Problem

- 1. Highly imbalanced datasets
 - a. 1-2% of screened compounds are active against a given target
- 2. Disparate sources of experimental data across multiple targets
 - a. 259 datasets
 - b. 37.8M experimental data points
 - c. 1.6M compounds
 - d. 249 tasks
- 3. Prior work unclear whether multitask learning beneficial in drug discovery
 - a. Dahl (2012), Lowe (2012): Too small sample size and gains in predictive accuracy too small to justify increase in complexity
 - b. Unterthiner et al.: Performance gains due to multitask networks
 - c. Erhan et al. (2006): Multitask networks did not consistently outperform singletask networks

Method Overview

Method Overview

Figure 1. Multitask neural network.

Experiments

- 1) How do multitask neural nets perform relative to baselines?
- 2) How does adding more tasks effect accuracy?
- 3) Would we rather have more tasks or more examples?
- 4) How does adding more tasks effect pre-training accuracy?
- 5) When do datasets benefit from multitask training?

Experiment 1: How do multitask neural nets perform relative to baselines?

Model	$ \begin{array}{c} \text{PCBA} \\ (n = 128) \end{array} $	$ MUV \\ (n = 17) $	Tox21
Logistic Regression (LR) Random Forest (RF)	.801 .800	.752 $.774$.738 .790

.795

.809

.824

.842

.873

.732

.745

.781

.797

.841

.714

.740

.790

.785

.818

Single-Task Neural Net (STNN)

Max{LR, RF, STNN, PSTNN}

Pyramidal (2000, 100) STNN (PSTNN)

1-Hidden (1200) Layer Multitask Neural Net (MTNN)

Pyramidal (2000, 100) Multitask Neural Net (PMTNN)

Experiment 1: How do multitask neural nets perform relative to baselines?

Model	$ \begin{array}{c} \text{PCBA} \\ (n = 128) \end{array} $	$\begin{array}{c} \text{MUV} \\ (n = 17) \end{array}$	Tox21
Logistic Regression (LR)	.801	.752	.738
Random Forest (RF)	.800	.774	.790
Single-Task Neural Net (STNN)	.795	.732	.714

.809

.824

.842

.873

.740

.790

.785

.818

.745

.781

.797

.841

Pyramidal (2000, 100) STNN (PSTNN)

1-Hidden (1200) Layer Multitask Neural Net (MTNN)

Pyramidal (2000, 100) Multitask Neural Net (PMTNN)

Max{LR, RF, STNN, PSTNN}

Experiment 1: How do multitask neural nets perform relative to baselines?

Model	$ \begin{array}{c} \text{PCBA} \\ (n = 128) \end{array} $	$\begin{array}{c} {\rm MUV} \\ (n=17) \end{array}$	
Logistic Regression (LR)	.801	.752	.738
Random Forest (RF)	.800	.774	.790
Single-Task Neural Net (STNN)	.795	.732	.714
Pyramidal (2000, 100) STNN (PSTNN)	.809	.745	.740

.824

.842

.873

.781

.797

.841

.790

.785

.818

Max{LR, RF, STNN, PSTNN}

1-Hidden (1200) Layer Multitask Neural Net (MTNN)

Pyramidal (2000, 100) Multitask Neural Net (PMTNN)

Experiment 2: How does adding more tasks effect accuracy?

- Train models for 10 "held-in" tasks and variable number of additional randomly sampled tasks
- Observe accuracy as function of number of additional tasks
- Three possibilities

Experiment 2: How does adding more tasks effect accuracy?

Experiment 3: Would we rather have more tasks or more examples?

Experiment 4: How does adding more tasks effect pre-training accuracy?

Experiment 4: How does adding more tasks effect pre-training accuracy?

stronger as multitask networks were trained on more data. Large multitask networks exhibited better transferability, but the average effect even with 249 datasets was only $\sim .01$ AUC. We hypothesize that the extent of this generalizability is determined by the presence or absence of relevant data in the multitask training set.

Experiment 5: When do datasets benefit from multitask training?

$$AOR_{i,\alpha} = \sum_{d \neq i} \mathbb{1}(\alpha \in Actives(D_d))$$

Experiment 5: When do datasets benefit from multitask training?

Strengths

- 1. Empirical analysis on real world data
- 2. Challenging problem with extreme data skew (1-2% of screened compounds are activate against a given target)
- 3. Simple network for simple analysis
- Exploring under what conditions multitask learning produces positive and negative results
- 5. Achieve results outperforming other approaches to the task

Weaknesses

- 1. Confound between data size and number of tasks
- 2. No clear analysis of when not to use multitask learning
- 3. Could have explored other architectures

Potential Improvements

- 1. More theoretical results on task overlap, covariance analysis
- 2. Comparison of models trained on related categories of tasks vs all tasks
- 3. Control training set size vs. number of tasks
- 4. Compare different architectures
- 5. Have benchmark comparisons against models from related papers

Takeaways

- 1. Multitask learning can yield superior results to singletask learning
- 2. Limited transferability to tasks not contained in training set
- 3. Multitask effect stronger for some datasets than others
- 4. Presence of shared active compounds moderately correlated with multitask improvement
- 5. Efficacy of multitask learning directly related to availability of relevant data

Questions?