# УНИВЕРСИТЕТ ИТМО

#### УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

| Группа М3105                              | _ К работе допущен | 08.06.2020, 21:47 |  |  |
|-------------------------------------------|--------------------|-------------------|--|--|
| Студент Клишевич Вадим Александрович      | _ Работа выполнена | 12.06.2020 06:09  |  |  |
| Преподаватель Зинчик Александр Адольфович | Отчет принят       |                   |  |  |

# Рабочий протокол и отчет по лабораторной работе № 1.03V

# ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА И ЭНЕРГИИ В ПРОЦЕССАХ СТОЛКНОВЕНИЯ

### 1. Цель работы.

Исследование упругого и неупругого центрального соударения тел на примере соударения тележек, движущихся с малым трением.

#### 2. Задачи, решаемые при выполнении работы.

- 1) Провести серию измерений времени прохождения оптических ворот для тел разной массы (от 200г до 300г) при абсолютно упругом соударении
- 2) Провести серию измерений времени прохождения оптических ворот для тел разной массы (от 200г до 300г) при абсолютно неупругом соударении

#### 3. Объект исследования.

Упругое и неупругое соударение тел.

#### 4. Метод экспериментального исследования.

Виртуальное моделирование

#### 5. Рабочие формулы и исходные данные.

$$\begin{cases} v_i = 25 \text{mm}/t_i \\ v_{1x} = \frac{(m_1 - m_2)v_{10}}{m_1 + m_2}; \\ v_{2x} = \frac{2m_1v_{10}}{m_1 + m_2}. \end{cases}$$

$$v = \frac{m_1 v_{10}}{m_1 + m_2}$$

$$W_{ ext{ iny IOT}} = rac{m_1 m_2 v_{10}^2}{2(m_1 + m_2)}$$

$$\frac{W_{\text{пот}}}{\frac{m_1 v_{10}^2}{2}} = \frac{m_2}{m_1 + m_2}$$

$$X = \frac{2 \cdot m_1}{m_1 + m_2}$$
 
$$Y = \frac{\upsilon_2}{\upsilon_{10}} = \frac{2 \cdot m_1}{m_1 + m_2}$$

$$\delta W_i^{(\flat)} = \frac{\Delta W}{W_0} = 1 - \frac{\left(m_1 + m_2\right)}{m_1} \frac{v^2}{v_{10}^2} = 1 - \frac{m_1 + m_2}{m_1} \left(\frac{t_1}{t_2}\right)^2.$$
 
$$\delta W_i^{(\dagger)} = \frac{m_2}{m_1 + m_2}.$$

# 6. Измерительные приборы.

| № п/п | Наименование     | Тип<br>прибора | Используемый<br>диапазон | Погрешность<br>прибора |
|-------|------------------|----------------|--------------------------|------------------------|
| 1     | Цифровой счетчик | Элек.          | 2-6 c                    | 1 мс                   |

#### 7. Схема установки.



- 1. Рельс, на котором создается воздушная подушка (длина 180 см)
- 2. Генератор воздушного потока
- 3. Рамки с фотоэлементами (оптические ворота)
- 4. Дополнительные грузы
- 5. Сталкивающиеся тележки с собственной массой 200 г, каждая из которых снабжена флажком шириной 25 мм.
- 6. Цифровой счетчик (1 единица = 10 мс)
- 7. Пусковой механизм

# 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

# 1) Упругое соударение:

| Таблица 1.1 |       |     |     |     |     |     |     |  |  |
|-------------|-------|-----|-----|-----|-----|-----|-----|--|--|
|             | m1(g) |     |     |     |     |     |     |  |  |
|             |       | 200 | 220 | 240 | 260 | 280 | 300 |  |  |
|             | 200   | 2,0 | 2,4 | 2,4 | 2,8 | 2,9 | 2,7 |  |  |
|             | 200   | 2,0 | 2,3 | 2,2 | 2,5 | 2,5 | 2,3 |  |  |
|             | 220   | 2,1 | 2,1 | 2,6 | 2,4 | 3,0 | 2,9 |  |  |
|             |       | 2,2 | 2,1 | 2,5 | 2,2 | 2,7 | 2,5 |  |  |
|             | 240   | 2,0 | 2,3 | 2,4 | 2,5 | 2,9 | 3,2 |  |  |
|             |       | 2,2 | 2,4 | 2,4 | 2,4 | 2,7 | 2,9 |  |  |
|             | 2/2   | 1,9 | 2,3 | 2,4 | 2,4 | 2,7 | 3,0 |  |  |
|             | 260   | 2,2 | 2,5 | 2,5 | 2,4 | 2,6 | 2,8 |  |  |
|             | 202   | 1,9 | 2,0 | 2,2 | 2,7 | 2,9 | 2,9 |  |  |
|             | 280   | 2,3 | 2,3 | 2,3 | 2,8 | 2,9 | 2,8 |  |  |
|             | 000   | 2,1 | 2,0 | 2,4 | 2,3 | 3,0 | 2,9 |  |  |
| m2(g)       | 300   | 2,6 | 2,3 | 2,7 | 2,5 | 3,1 | 2,9 |  |  |

Где  $t_1$  – верхняя ячейка на пересечении строки и столбца

 $t_{\scriptscriptstyle 2}$  - нижняя ячейка на пересечении строки и столбца

Единицы измерения – [с]

# 2) Неупругое соударение:

|       |     |     | Табли | ща 1.2 |     |     |     |
|-------|-----|-----|-------|--------|-----|-----|-----|
|       |     |     |       | m1(g)  |     |     |     |
|       |     | 200 | 220   | 240    | 260 | 280 | 300 |
|       | 200 | 1,8 | 2,0   | 2,2    | 2,4 | 2,5 | 3,2 |
|       | 200 | 3,6 | 3,9   | 4,1    | 4,2 | 4,3 | 5,4 |
|       | 220 | 1,9 | 2,3   | 2,3    | 2,8 | 2,7 | 3,1 |
|       |     | 3,9 | 4,6   | 4,3    | 5,1 | 4,8 | 5,4 |
|       | 240 | 2,1 | 2,1   | 2,5    | 2,3 | 3,0 | 3,1 |
|       |     | 4,5 | 4,3   | 5,0    | 4,5 | 5,6 | 5,5 |
|       | 240 | 1,8 | 2,0   | 2,2    | 2,6 | 2,5 | 3,2 |
|       | 260 | 4,2 | 4,4   | 4,6    | 5,2 | 4,9 | 6,0 |
|       | 000 | 2,1 | 2,0   | 2,4    | 2,8 | 2,6 | 3,0 |
| 28    | 280 | 5,0 | 4,5   | 5,1    | 5,8 | 5,2 | 5,7 |
|       | 300 | 1,8 | 2,3   | 2,6    | 2,3 | 2,7 | 3,1 |
| m2(g) | 300 | 4,5 | 5,5   | 5,9    | 5,0 | 5,7 | 6,2 |

# 9. Результаты косвенных измерений и их обработки (таблицы, примеры расчетов).

# 1) Упругое соударение:

| Таблица 2.1 |       |      |      |      |      |      |      |  |  |
|-------------|-------|------|------|------|------|------|------|--|--|
|             | m1(g) |      |      |      |      |      |      |  |  |
|             |       | 200  | 220  | 240  | 260  | 280  | 300  |  |  |
|             | 200   | 1,00 | 1,05 | 1,09 | 1,13 | 1,17 | 1,20 |  |  |
|             | 200   | 1,00 | 1,04 | 1,09 | 1,12 | 1,16 | 1,17 |  |  |
|             | 220   | 0,95 | 1,00 | 1,04 | 1,08 | 1,12 | 1,15 |  |  |
|             |       | 0,95 | 1,00 | 1,04 | 1,09 | 1,11 | 1,16 |  |  |
|             | 240   | 0,91 | 0,96 | 1,00 | 1,04 | 1,08 | 1,11 |  |  |
|             |       | 0,91 | 0,96 | 1,00 | 1,04 | 1,07 | 1,10 |  |  |
|             | 2/0   | 0,87 | 0,92 | 0,96 | 1,00 | 1,04 | 1,07 |  |  |
| 20          | 260   | 0,86 | 0,92 | 0,96 | 1,00 | 1,04 | 1,07 |  |  |
|             | 280   | 0,83 | 0,88 | 0,92 | 0,96 | 1,00 | 1,03 |  |  |
| 2           | 200   | 0,83 | 0,87 | 0,96 | 0,96 | 1,00 | 1,04 |  |  |
|             | 300   | 0,80 | 0,85 | 0,89 | 0,93 | 0,97 | 1,00 |  |  |
| m2(g)       | 300   | 0,81 | 0,87 | 0,89 | 0,92 | 0,97 | 1,00 |  |  |

где 
$$X_i = \frac{2\,m_1}{m_1 + m_2}$$
 – верхняя ячейка на пересечении строки и столбца

$$Y_i \! = \! rac{v_1}{v_{01}} \! = \! rac{t_1}{t_2}$$
 – нижняя ячейка на пересечении строки и столбца

Зависимость  $Y_i = Y_i$  ( $X_i$ ):

Чтобы узнать угловой коэффициент данной зависимости, найдем среднее значение экспериментальных точек по следующим формулам:

$$\acute{x} = \frac{1}{n} \sum x_i = \frac{36.00}{36.00} = 1.00$$

$$\dot{y} = \frac{1}{n} \sum y_i = \frac{35.99}{36.00} = 1.00$$

Найдем коэффициенты прямой по следующим формулам:

$$b = \frac{\sum (x_i - \dot{x})(y_i - \dot{y})}{\sum (x_i - \dot{x})^2} = 0.96$$

$$a = \dot{y} - b \dot{x} = 0.04$$

Следовательно, y = 0.96 \* x + 0.04

#### График Ү<sub>і</sub>(Х<sub>і</sub>) для упругого соударения





# 2) Неупругое соударение:

| Таблица 2.2 |      |      |      |       |      |      |      |  |
|-------------|------|------|------|-------|------|------|------|--|
|             |      |      |      | m1(g) |      |      |      |  |
|             |      | 200  | 220  | 240   | 260  | 280  | 300  |  |
|             | 200  | 0,50 | 0,52 | 0,55  | 0,57 | 0,58 | 0,60 |  |
|             | 200  | 0,50 | 0,51 | 0,54  | 0,57 | 0,58 | 0,59 |  |
|             | 220  | 0,48 | 0,50 | 0,52  | 0,54 | 0,56 | 0,58 |  |
|             |      | 0,49 | 0,50 | 0,53  | 0,55 | 0,56 | 0,57 |  |
|             | 240  | 0,45 | 0,48 | 0,50  | 0,52 | 0,54 | 0,56 |  |
|             |      | 0,47 | 0,49 | 0,50  | 0,51 | 0,54 | 0,56 |  |
|             | 260  | 0,43 | 0,46 | 0,48  | 0,50 | 0,52 | 0,54 |  |
| 260         | 0,43 | 0,45 | 0,48 | 0,50  | 0,51 | 0,53 |      |  |
|             | 000  | 0,42 | 0,44 | 0,46  | 0,48 | 0,50 | 0,52 |  |
|             | 280  | 0,42 | 0,44 | 0,47  | 0,48 | 0,50 | 0,53 |  |
|             | 300  | 0,40 | 0,42 | 0,44  | 0,46 | 0,48 | 0,50 |  |
| m2(g)       | 300  | 0,40 | 0,42 | 0,44  | 0,46 | 0,47 | 0,50 |  |

где 
$$X_i = \frac{m_1}{m_1 + m_2}$$
 – верхняя ячейка на пересечении строки и столбца

$$Y_i = \frac{v}{v_{01}} = \frac{t_1}{t_2}$$
 – нижняя ячейка на пересечении строки и столбца

# Зависимость $Y_i = Y_i$ ( $X_i$ ):

Чтобы узнать угловой коэффициент данной зависимости, найдем среднее значение экспериментальных точек по следующим формулам:

$$\acute{x} = \frac{1}{n} \sum x_i = \frac{18.00}{36.00} = 0.50$$

$$\dot{y} = \frac{1}{n} \sum y_i = \frac{18.01}{36.00} = 0.50$$

Найдем коэффициенты прямой по следующим формулам:

$$b = \frac{\sum (x_i - \acute{x})(y_i - \acute{y})}{\sum (x_i - \acute{x})^2} = 0.97$$

$$a = \dot{y} - b\dot{x} = 0.03$$

Следовательно, y=0.97\*x+0.03

# График $Y_i(X_i)$ для неупругого соударения





| Таблица 3 |       |      |      |      |      |      |      |  |  |
|-----------|-------|------|------|------|------|------|------|--|--|
|           | m1(g) |      |      |      |      |      |      |  |  |
|           |       | 200  | 220  | 240  | 260  | 280  | 300  |  |  |
|           | 200   | 0,50 | 0,50 | 0,47 | 0,42 | 0,42 | 0,41 |  |  |
|           | 200   | 0,50 | 0,48 | 0,45 | 0,43 | 0,42 | 0,40 |  |  |
|           | 220   | 0,50 | 0,50 | 0,45 | 0,44 | 0,43 | 0,43 |  |  |
|           |       | 0,52 | 0,50 | 0,48 | 0,46 | 0,44 | 0,42 |  |  |
|           | 240   | 0,52 | 0,50 | 0,50 | 0,50 | 0,47 | 0,43 |  |  |
|           |       | 0,55 | 0,52 | 0,50 | 0,48 | 0,46 | 0,44 |  |  |
|           | 2/2   | 0,58 | 0,55 | 0,52 | 0,50 | 0,50 | 0,47 |  |  |
| '         | 260   | 0,57 | 0,54 | 0,52 | 0,50 | 0,48 | 0,46 |  |  |
|           | 280   | 0,58 | 0,55 | 0,52 | 0,52 | 0,50 | 0,46 |  |  |
|           | 200   | 0,58 | 0,56 | 0,54 | 0,52 | 0,50 | 0,48 |  |  |
|           | 300   | 0,60 | 0,59 | 0,56 | 0,54 | 0,54 | 0,50 |  |  |
| m2(g)     | 300   | 0,60 | 0,58 | 0,56 | 0,54 | 0,52 | 0,50 |  |  |

где 
$$\delta W_i^{(9)} = \frac{\Delta W}{W_0} = 1 - \frac{m_1 + m_2}{m_1} \left(\frac{t_1}{t_2}\right)^2$$
 – верхняя ячейка на пересечении строки и столбца

$$\delta W_{_{i}}^{^{[m]}} = rac{m_{_{2}}}{m_{_{1}} + m_{_{2}}}$$
 – нижняя ячейка на пересечении строки и столбца

Зависимость  $\delta W_i^{(9)} = \delta W_i^{(9)} (\delta W_i^{(m)})$ :

Чтобы узнать угловой коэффициент данной зависимости, найдем среднее значение экспериментальных точек по следующим формулам:

$$\delta \dot{W}^{(m)} = \frac{1}{n} \sum_{i} \delta W_{i}^{(m)} = \frac{18.00}{36.00} = 0.50$$
$$\delta \dot{W}^{(9)} = \frac{1}{n} \sum_{i} \delta W_{i}^{(9)} = \frac{17.98}{36.00} = 0.50$$

Найдем коэффициенты прямой по следующим формулам:

$$b = \frac{\sum (\delta W_{i}^{(m)} - \delta \dot{W}^{(m)})(\delta W_{i}^{(9)} - \delta \dot{W}^{(9)})}{\sum (\delta W_{i}^{(m)} - \delta \dot{W}^{(m)})^{2}} = 0.97$$

$$a = \delta \dot{W}^{(9)} - b \delta \dot{W}_{i}^{(m)} = 0.03$$

Следовательно,  $W_i^{(9)} = 0.97 * W_i^{(m)} + 0.03$ 

# График $\delta W_i^{(i)}(\delta W_i^{(t)})$ для неупругого соударения





- 10. Расчет погрешностей измерений (для прямых и косвенных измерений). Погрешность углового коэффициента b:
  - 1) Упругое соударение:

$$d_i = y_i - (a + bx_i);$$
  $D = \sum (x_i - \bar{x})^2$   
 $\sum d_i^2 = 0.004$   
 $D = 0.34$ 

СКО коэффициента b:

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2} = \frac{\frac{1}{0.34} *0.004}{34} = i \cdot 0.001$$

2) Неупругое соударение:

$$d_i = y_i - (a + bx_i);$$
  $D = \sum (x_i - \bar{x})^2$   
 $\sum d_i^2 = 0.017$   
 $D = 0.09$ 

СКО коэффициента b:

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2} = \frac{\frac{1}{0.09} *0.017}{34} = 0.006$$

11. Окончательные результаты.

$$Y_i(X_i) = 0.96*X_i + 0.04$$
 – для абсолютно упругого столкновения  $Y_i(X_i) = 0.95*X_i + 0.05$  – для абсолютно неупругого столкновения  $W_i^{(s)} = 0.97*W_i^{(t)} + 0.03$  – для абсолютно неупругого столкновения

12. Выводы и анализ результатов работы.

В ходе работы были получены:

- Линейная зависимость величин, выведенных по ЗСИ и ЗСЭ, что доказывает их справедливость при упругом соударении.
- Аналогично для абсолютно неупругого удара, только в случае неупругого соударения часть механической энергии теряется при столкновении.
- Для неупругого соударения: линейная зависимость экспериментальной относительной потери механической энергии от теоретической относительной потери, что доказывает справедливость представленных выше формул.

| 15. Выполнение дополнительных заданий.                                                                        |    |
|---------------------------------------------------------------------------------------------------------------|----|
| 16. Замечания преподавателя (исправления, вызванные замечаниями преподавател<br>также помещают в этот пункт). | я, |
|                                                                                                               |    |
|                                                                                                               |    |
|                                                                                                               |    |
|                                                                                                               |    |