

Lycée BILLES Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Devoir de mathématiques N°4/TS1/Durée 4h

11 décembre 2021

Exercice 1 (3,75 points)

Soit le polynôme de la variable complexe z : $P(z) = z^3 - (3+2i)z^2 + (3+5i)z^2 - 2-6i$.

- a. Montrer que l'équation P(z) = 0 admet une solution imaginaire pure que l'on déterminera. (0,5 pt)
 b. Résoudre dans C l'équation P(z) = 0.
- 2. Dans le plan complexe muni d'un repère orthonormal direct (O, \vec{u} , \vec{v}), on considère les points A(2i), B(2 + i) et C(1-i).
 - a. Calculer le module et un argument de $\frac{z_A-z_B}{z_C-z_B}$. (0,25 pt+0,25 pt)
 - b. En déduire la nature du triangle ABC. (0,5 pt)
 - c. Soit le point D(-i). Démontrer que les points A, B, C et D appartiennent à un cercle dont on précisera le centre et le rayon. (0,75 pt)

Exercice 2 (3,5 points)

- 1. Résoudre dans $\mathbb C$ l'équation : $z^2-2e^{i\alpha}z+2e^{i2\alpha}=0$, $\alpha\in[0,\pi]$. (0,75 pt)
- 2. Ecrire les solutions sous forme exponentielle. (1 pt)
- 3. Dans le plan complexe muni d'un repère orthonormal direct (O, \vec{u} , \vec{v}), soit A et B les points d'affixes respectives z_A = (1-i) $e^{i\alpha}$ et z_B = (1+i) $e^{i\alpha}$.
- a. Montrer que A et B appartiennent à un cercle de centre O dont on précisera le rayon. (0,5 pt)
- b. Montrer que $(\vec{u}, \overrightarrow{AB}) = \alpha + \frac{\pi}{2}$ [2π] (0, 5 pt)
- c. Déterminer α pour que la droite (AB) soit parallèle à la droite (Δ) d'équation y = x. **(0,75 pt)**

Exercice 3 (3,5 points)

Soit la fonction f définie sur $\left[\frac{1}{2}; 1\right]$ par : $f(x) = \frac{1}{\cos \pi x}$

- 1. Etudier la dérivabilité de f. (0,5 pt)
- 2. Déterminer le sens de variation de f puis dresser son tableau de variation. (0,75 pt+0,25 pt)
- 3. Montrer que f est une bijection de $\left|\frac{1}{2};1\right|$ sur un intervalle J à préciser. (0, 25 pt)
- 4. a. Etudier la dérivabilité de f^{-1} , bijection réciproque de f. (0, 5 pt)
 - b. Montrer que $\forall \in]-\infty, -1[, (f^{-1})'(x) = \frac{-1}{\pi x \sqrt{x^2 1}}.$ (0, 75 pt)
 - c. Dresser le tableau de variation de f^{-1} . (0, 5 pt)

Problème (09,25 points)

Partie A (3 points)

Soit g la fonction définie par $g(x) = -x^3 + 3x-6$.

- 1. Etudier les variations de g puis dresser son tableau de variation. (1 pt + 0, 25 pt)
- 2. Montrer que l'équation g(x) = 0 admet une solution unique α . (0,5 pt)
- 3. Montrer que $\alpha \in]-3;-2[$ puis déterminer une valeur approchée de α à 10⁻¹ près. **(0,25pt +0,5 pt)**
- 4. Déterminer le signe de g(x). (0,5 pt)

Partie B (6,25 points)

Soit f la fonction définie par f(x) = $\frac{-x^3+3}{x^2-1}$.

- 1. Etudier la dérivabilité de f. (0,5 pt)
- 2. Calculer f'(x) pour tout x de l'ensemble de dérivabilité de f. Montrer que f'(x)= $\frac{xg(x)}{(x^2-1)^2}$. (0,75 pt)
- 3. Etudier le sens de variation de f puis dresser son tableau de variation. (0,5 pt + 0,25 pt)
- 4. Soit (C_f) la courbe représentative de f dans un plan muni du repère orthonormal $(O, \vec{\iota}, \vec{j})$.
 - a. Montrer que la droite (D) d'équation y = -x est asymptote à (C_f). (0,25 pt)
 - b. Préciser les autres asymptotes de (C_f). (0,5 pt)
 - c. Étudier la position relative de (C_f) par rapport à (D). (0,75 pt)
 - d. Déterminer l'équation de la tangente (T) à (C_f) au point d'abscisse 4. (0,25 pt)
 - e. Construire (C_f) , (D) et (T). (1, 5 pt)
- 4. Soit h la restriction de f à l'intervalle]1; $+\infty$ [.
 - a. Montrer que h est une bijection de]1; $+\infty$ [sur un intervalle J à déterminer. (0,5 pt)
 - b. Construire (C') la courbe représentative de h⁻¹dans le plan muni du repère (O, \vec{l} , \vec{j}). (0,5 pt)