# mui\_240a2\_pset1\_ipynb

October 25, 2015

ECON-240A, Problem Set 1 Preston Mui

```
In [1]: # Python stuff
    import numpy as np
    import pandas as pd
    import math, random
    from scipy.special import comb
    from scipy.stats import norm, beta
    %matplotlib inline
    import matplotlib.pyplot as plt
    random.seed(813558889)
```

# 1 The Binomial Distribution

1. Derive a formula that can be used to calculate the ex ante probability of  $Z_N < z$  for any  $z \in \{1, 2, \dots, N\}$ :

$$P(Z_N < z) = \sum_{k=0}^{z-1} \binom{n}{k} \theta^k (1 - \theta)^{N-k}$$
 (1)

For any given  $k \in 0, 1, \dots, N$ ,  $P(Z_N = k) = \binom{n}{k} \theta^k (1 - \theta)^{N-k}$ . Since the support of the binomial distribution is the positive integers from 0 to N, the cumulative distribution function of  $Z_N$  is the sum of  $\binom{n}{k} \theta^k (1 - \theta)^{N-k}$  for k = 0 through k = z.

2. Provide an expression that can be used to calculate the ex ante probability of the event  $\frac{\sqrt{N}(\bar{Y}_N-\theta)}{\sqrt{\theta(1-\theta)}} < c$ :

$$P\left(\frac{\sqrt{N}(\bar{Y}_N - \theta)}{\sqrt{\theta(1 - \theta)}} < c\right) = P\left(\bar{Y}_N < \theta + \frac{\sqrt{\theta(1 - \theta)}c}{\sqrt{N}}\right)$$
(2)

$$=P\bigg(Z_N < N\theta + \sqrt{N\theta(1-\theta)}c\bigg) \tag{3}$$

$$= \sum_{k=0}^{\left\lceil N\theta + \sqrt{N\theta(1-\theta)}c \right\rceil} \binom{n}{k} \theta^k (1-\theta)^{N-k} \tag{4}$$

3. Plot  $P\bigg(\frac{\sqrt{N}(\bar{Y}_N-\theta)}{\sqrt{\theta(1-\theta)}} < c\bigg)$  as a function of c for N=5,10,100,1000 and  $\theta=1/2$ ., and 4. Plot the normal cdf on top:

```
In [2]: c = np.linspace(-3,3,1000)
        Nvalues = [5,10,100,1000]
        def binomialMeanCdf(N,theta,c):
            cdf = 0
            upperLimit = int(math.ceil(N * theta + np.sqrt(N * theta * (1-theta)) * c))
            for k in range(upperLimit):
                cdf = cdf + comb(N,k) * theta**k * (1-theta)**(N-k)
            return cdf
        CDFvalues50 = np.zeros((len(Nvalues),len(c)))
        for i in range(len(Nvalues)):
            for j in range(len(c)):
                CDFvalues50[i,j] = binomialMeanCdf(Nvalues[i],0.5,c[j])
In [3]: normCdf = norm.cdf(c)
        plt.close('all')
        f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row')
        ax1.set_ylabel('Probability from Q2')
        ax1.plot(c,CDFvalues50[0,:])
        ax1.plot(c,normCdf)
        ax1.set_title('N = 5')
        ax2.plot(c,CDFvalues50[1,:])
        ax2.plot(c,normCdf)
        ax2.set_title('N = 10')
        ax3.set_xlabel('c')
        ax3.set_ylabel('Probability from Q2')
        ax3.plot(c,CDFvalues50[2,:])
        ax3.plot(c,normCdf)
        ax3.set_title('N = 100')
        ax4.set_xlabel('c')
        ax4.plot(c,CDFvalues50[3,:])
        ax4.plot(c,normCdf)
        ax4.set_title('N = 1000')
        plt.suptitle(r'$\theta = 0.5$', size = 16)
       plt.show()
```



### 5. Repeat the above with $\theta = 1/20$ :

```
In [4]: CDFvalues05 = np.zeros((len(Nvalues),len(c)))
        for i in range(len(Nvalues)):
            for j in range(len(c)):
                CDFvalues05[i,j] = binomialMeanCdf(Nvalues[i],0.05,c[j])
       plt.close('all')
        f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row')
        ax1.set_ylabel('Probability from Q2')
        ax1.plot(c,CDFvalues05[0,:])
        ax1.plot(c,normCdf)
        ax1.set_title('N = 5')
        ax2.plot(c,CDFvalues05[1,:])
        ax2.plot(c,normCdf)
        ax2.set_title('N = 10')
        ax3.set_xlabel('c')
        ax3.set_ylabel('Probability from Q2')
        ax3.plot(c,CDFvalues05[2,:])
        ax3.plot(c,normCdf)
        ax3.set_title('N = 100')
        ax4.set_xlabel('c')
```

```
ax4.plot(c,CDFvalues05[3,:])
ax4.plot(c,normCdf)
ax4.set_title('N = 1000')

plt.suptitle(r'$\theta = 0.05$', size = 16)
plt.show()
```



Comments: With both  $\theta=0.5$  and  $\theta=0.05$ , the normal c.d.f is a good approximation to the binomial distribution the larger N is. In particular, it seems to start being a good approximation at N=100. However, for any given N, the normal distribution is a better approximation when  $\theta=0.5$  rather than  $\theta=0.05$ .

6. What is the approximate ex ante probability that the interval  $\bar{Y}_N \pm \frac{\bar{Y}_N(1-\bar{Y}_N)}{\sqrt{N}}z^{1-\alpha/2}$  contains the  $\theta$ ? The probability that the interval will contain  $\theta$  is approximately  $\alpha$ . In the questions above I found that the distribution of  $\frac{\sqrt{N}(\bar{Y}_N-\theta)}{\theta(1-\theta)}$  is approximated by the standard normal distribution; that is,

$$Pr\left(\bar{Y}_N - \theta < \sqrt{\frac{\theta(1-\theta)}{N}}z^{1-\alpha/2}\right) \approx \Phi(z^{1-\alpha/2})$$
 (5)

$$\implies Pr\left(\theta \in \bar{Y}_N \pm \sqrt{\frac{\theta(1-\theta)}{N}} z^{1-\alpha/2}\right) \approx \Phi(z^{1-\alpha/2}) - \Phi(-z^{1-\alpha/2}) = \alpha \tag{6}$$

Since  $\bar{Y}_N$  tends towards  $\theta$  when N is reasonable large, substituting  $\bar{Y}_N$  for  $\theta$  in the last expression yields  $Pr\left(\theta \in \bar{Y}_N \pm \sqrt{\frac{\bar{Y}_N(1-\bar{Y}_N)}{N}}z^{1-\alpha/2}\right) \approx \alpha$ .

- 8: The Clopper Pearson proposal The proposal will set a lower bound on the likelihood that the observed sample mean differs from the theoretical mean of any  $\theta \in [\underline{\theta}, \overline{\theta}]$  at  $\alpha$ . The likelihood that the observed mean is below the expected mean for any  $\theta$  in the confidence interval is bounded by  $\frac{\alpha}{2}$  because of the construction of  $\overline{\theta}$ . Likewise, the likelihood that the observed mean is above the expected mean for any  $\theta$  in the confidence interval is bounded by  $\frac{\alpha}{2}$  by the construction of  $\underline{\theta}$ .
- 9. Argue that  $F_B^{-1}(\frac{\alpha}{2}; Z_N, N-Z_N+1) < \theta < F_B^{-1}(\frac{1-\alpha}{2}; Z_N+1, N-Z_N)$  closely approximates Clopper's interval: The lower bound of this interval is  $F_B^{-1}(\frac{\alpha}{2}; Z_N, N-Z_N+1)$  which is  $\theta$  such that

$$\int_0^t f_B(\theta) d\theta = \frac{\alpha}{2}$$
$$\sum_{i=Z_N}^N {N \choose i} t^i (1-t)^{N-i} = \frac{\alpha}{2}$$
$$P(\hat{Z}_N \ge Z_N) = \frac{\alpha}{2}$$

By similar reasoning, the upper bound of this interval is  $F_B^{-1}(1-\frac{\alpha}{2};Z_N+1,N-Z_N)$  which is  $\theta$  such that

$$\int_0^t f_B(\theta)d\theta = 1 - \frac{\alpha}{2}$$

$$\sum_{i=Z_N+1}^N {N \choose i} t^i (1-t)^{N-i} = 1 - \frac{\alpha}{2}$$

$$P(\hat{Z}_N \ge Z_N + 1) = 1 - \frac{\alpha}{2}$$

$$P(\hat{Z}_N \le Z_N) = \frac{\alpha}{2}$$

Like Clopper-Pearson, this interval chooses the upper and lower bounds of  $\theta$  so that the likelihoods of drawing a  $\hat{Z}_N$  lower or higher than the observed  $Z_N$  are bounded by  $\frac{\alpha}{2}$ , so the likelihood of  $Z_N$  differing from the true  $\theta$  for all  $\theta$  in the confidence interval is bounded by  $\alpha$ .

#### 10. Find a confidence interval using Hoeffding's Inequality

$$Pr(|\bar{Y}_N - \theta| > \epsilon) \le 2\exp\{-2N\epsilon^2\} \tag{7}$$

$$Pr(\theta \notin CI) \le 2\exp\{-2N\epsilon^2\}$$
 (8)

$$Pr(\theta \in CI) \ge 1 - (2\exp\{-2N\epsilon^2\}) \tag{9}$$

$$\implies \alpha = (2\exp\{-2N\epsilon^2\}) \tag{10}$$

$$\implies \epsilon = \sqrt{-\frac{\log(\frac{\alpha}{2})}{2N}} \tag{11}$$

## 11. Generate 1,000 samples of Bernoulli random variables.

In [5]: NValues = (5,10,100,1000)

```
# Function to calculate CP CI
       def normCI(samples,N,alpha):
           lb = samples - np.sqrt((samples * (1 - samples)) / N) * norm.ppf(1 - alpha/2)
           ub = samples + np.sqrt((samples * (1 - samples)) / N) * norm.ppf(1 - alpha/2)
           return lb. ub
        # Function to calcualte Beta Distribution CI
       def betaCI(samples,N,alpha):
           nsamples = len(samples)
           lb = np.zeros(nsamples)
           ub = np.zeros(nsamples)
           for i in range(0,nsamples-1):
               lb[i] = beta.ppf(alpha/2,int(N*samples[i]),N - int(N*samples[i]) + 1)
               ub[i] = beta.ppf(1 - alpha/2,int(N*samples[i]) + 1,N - int(N*samples[i]))
           return 1b, ub
       for N in NValues:
           for theta in thetaValues:
               # Draw 1000 samples
               sample = np.random.binomial(N,theta,size=1000) / float(N)
               for alpha in alphaValues:
                   # Normal Appx. CI
                   normLB, normUB = normCI(sample,N,alpha)
                   normCIOutside = (sum(theta < normLB) + sum(theta > normUB)) / float(1000)
                   # Beta CI
                   betaLB, betaUB = betaCI(sample,N,alpha)
                   betaCIOutside = (sum(theta < betaLB) + sum(theta > betaUB)) / float(1000)
                   # Hoeffding CI
                   hLB = sample - np.sqrt(-np.log(alpha/2)/(2*N))
                   hUB = sample + np.sqrt(-np.log(alpha/2)/(2*N))
                   hCIOutside = (sum(theta < hLB) + sum(theta > hUB)) / float(1000)
                   results = results.append({"N": N, "theta": theta, "alpha": alpha, "Normal Approx.":
                                             "CP": betaCIOutside, "Hoeffding": hCIOutside}, ignore_ind
                   # Compute confidence interval from (6)
       print("Fraction of samples where theta lies outside the confidence interval")
       print(results)
Fraction of samples where theta lies outside the confidence interval
      N theta alpha Normal Approx.
                                      CP Hoeffding
0
      5 0.05 0.05
                               0.774 0.020
                                                 0.000
      5 0.05 0.10
                                0.774 0.020
                                                 0.002
1
      5 0.50 0.05
2
                               0.053 0.001
                                                 0.000
      5 0.50 0.10
                               0.362 0.054
3
                                                0.000
4
     10 0.05 0.05
                                0.593 0.014
                                                 0.000
     10 0.05 0.10
5
                                0.606 0.014
                                                 0.000
6
     10
          0.50 0.05
                                0.101 0.017
                                                 0.002
7
          0.50 0.10
                                0.101 0.017
     10
                                                 0.016
    100
          0.05 0.05
                                0.122 0.021
                                                 0.000
```

results = results[['N', 'theta', 'alpha', 'Normal Approx.', 'CP', 'Hoeffding']]

| 9  | 100  | 0.05 | 0.10 | 0.144 | 0.067 | 0.000 |
|----|------|------|------|-------|-------|-------|
| 10 | 100  | 0.50 | 0.05 | 0.064 | 0.038 | 0.005 |
| 11 | 100  | 0.50 | 0.10 | 0.101 | 0.102 | 0.009 |
| 12 | 1000 | 0.05 | 0.05 | 0.061 | 0.045 | 0.000 |
| 13 | 1000 | 0.05 | 0.10 | 0.097 | 0.084 | 0.000 |
| 14 | 1000 | 0.50 | 0.05 | 0.055 | 0.047 | 0.004 |
| 15 | 1000 | 0.50 | 0.10 | 0.106 | 0.092 | 0.010 |

Comments on the Table When N is small, the normal approximation approach to constructing a confidence interval is very poor. When N=5 or N=5, the true value of  $\theta$  is outside the confidence interval far more often than  $\alpha$  fraction of the time, and is an especially poor approximation for  $\theta=0.05$ . However, when N is large, the normal approximation provides a fairly good confidence interval, as the true value lies outside the confidence interval approximately  $\alpha$  fraction of the time.

With the Clopper-Pearson interval, the true value of  $\theta$  lies outside the confidence interval less than  $\alpha$  fraction of time time (that is,  $\alpha$  is an upper bound on  $\theta \notin CI$ . The Hoeffding intervals are much more generous and it is rarely the case that  $\theta \notin CI$  using the Hoeffding method.

12. What is the probability that the interval [0.48, 0.72] contains  $\theta$ ? Without some prior on the distribution of  $\theta$ , I cannot really say anything about the probability that the interval contains  $\theta$ . The previous section only dealt with likelihoods (the ex ante probabilities) of the observed data given a particular  $\theta$ . Luckily, the next section deals with priors. What a coincidence.