13강

13강 일반화선형모형 (2)

정보통계학과 김성수교수

✓ 학습목차

1 로지스틱 회귀모형 해석

2 프로빗 모형

<u>로</u>그선형모형−개수형자료

4 로그선형모형-율(rate) 분석

로지스틱 회귀모형 해석

로지스틱 회귀모형: 이항자료

〈날다람쥐 Sugar Glider의 출현자료〉

p_no	occurr	con_metric	p_size_km	
1	1	0.650	130.9	
2	0	0.610	104.1	
3	0	0.744	132.3	
4	1	0.213	225.6	
5	1	0.723	83.0	
6	0	0.678	48.8	
7	0	0.733	61.0	
8	1	0.522	39.6	
9	1	0.552	193.1	
10	0	0.245	155.6	

반응변수 y=occur, 1=yes, 0=no 이므로 이항분포를 가정

로지스틱 회귀모형:
$$\eta = \log it(\pi) = \log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 x_1$$

$$\pi = E(Y \mid x) = \Pr(y = 1 \mid x)$$

로지스틱 회귀모형: 이항자료

```
> summary(logit_m2)
Deviance Residuals:
        10 Median 30
                                    Max
   Min
-1.5541 -0.8980 -0.5157 0.8075 2.0394
                                                    \rightarrow \log(\frac{\hat{\pi}(x)}{1 - \hat{\pi}(x)}) = -2.528 + 0.022 \times x
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.528298 0.820251 -3.082 0.00205 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 68.994 on 49 degrees of freedom
Residual deviance: 55.716 on 48 degrees of freedom
AIC: 59.716
Number of Fisher Scoring iterations: 3
```

로지스틱 회귀의 선형 근사적 해석

x의 변화에 따른 $\pi(x)$ 의 순간 변화량의 크기, 즉 x값에서의 작은 변화가 성공률 $\pi(x)$ 에 미치는 영향의 크기

$$\pi'(x) = \frac{d\pi(x)}{dx} = \beta_1 \pi(x) [1 - \pi(x)]$$

- $\pi(x)$ 를 0.5가 되게 하는 x값 근처에서 x값이 변화할 때 $\pi(x)$ 의 순간 변화량은 약 $\beta_1/4$ 이 되어 x의 변화가 주는 영향이 가장 큼.
- $\pi(x)$ 가 0 또는 1에 가까운 값이 되는 x값 근처에서의 $\pi(x)$ 의 순간 변화량은 거의 0이 되어 x의 변화에 따른 영향이 거의 없음.

〈로지스틱회귀모형 함수에서 x의 변화에 따른 $\pi(x)$ 의 순간 변화량〉

로지스틱 회귀의 선형 근사적 해석

로지스틱 회귀모형:
$$\log(\frac{\hat{\pi}(x)}{1-\hat{\pi}(x)}) = -2.528 + 0.022 \times x$$

-
$$\hat{\pi}(x) = 0.5$$
 를 만족하는 구획의 크기

$$x_1 = -\frac{\hat{\beta}_0}{\hat{\beta}_1} = \frac{2.528}{0.022} = 114.9(km)$$

즉, 구획의 크기가 114.9 km에서 115.9 km 로 증가하면 Sugar glider가 출현할 확률

$$\pi(x)$$
는 평균적으로 $\frac{\beta_1}{4} = \frac{0.022}{4} = 0.006$ (0.6%p) 증가하는 것으로 추정.

참고:
$$\log(\frac{\hat{\pi}(x)}{1-\hat{\pi}(x)}) = \hat{\beta}_0 + \hat{\beta}_1 x$$
$$\hat{\pi}(x) = 0.5$$
$$\log(\frac{0.5}{1-0.5}) = \hat{\beta}_0 + \hat{\beta}_1 x = 0$$
$$x = -\frac{\hat{\beta}_0}{\hat{\beta}}$$

로지스틱 회귀와 승산비 및 성공확률

설명변수X 가 x 일 때의 성공률 : $\pi(x) = P(Y=1|X=x)$

$$X=x$$
 일 때 성공일 승산(odds) : $\frac{\pi(x)}{1-\pi(x)}$

로지스틱회귀모형
$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \beta_0 + \beta_1 x$$
 --- ①

: 로그-승산(log-odds)을 설명변수의 선형함수로 모형화 한 것

$$x$$
가 $x+1$ 로 증가하는 경우 :

$$\log \left(\frac{\pi(x+1)}{1-\pi(x+1)} \right) = \beta_0 + \beta_1(x+1) \quad --- \quad (2)$$

로지스틱 회귀와 승산비 및 성공확률

②-① 에서

$$\log\left(\frac{\pi(x+1)\times(1-\pi(x))}{\pi(x)\times(1-\pi(x+1))}\right) = \beta_1$$

양변에 로그의 역함수를 취하면

$$\frac{\pi(x+1)\times(1-\pi(x))}{\pi(x)\times(1-\pi(x+1))} = \frac{\pi(x+1)/(1-\pi(x+1))}{\pi(x)/(1-\pi(x))} = e^{\beta_1}$$

즉, e^{eta_1} 은 x가 x+1로 증가할 때 성공일 승산이 증가하는 비를 의미.

R 활용: 승산비

결과해석: 구획의 크기가 1km 증가할 때 Sugar Glider가 출현할 승산은 약 1.022배 증가하는 것으로 추정되며, 95% 신뢰수준에서 승산은 1.009~1.038배 사이에서 증가할 것으로 추정됨.

R 활용: π(x) 의 추정

$$\log(\frac{\hat{\pi}(x)}{1 - \hat{\pi}(x)}) = -2.528 + 0.022 \times x$$

$$\hat{\pi}(x) = \frac{\exp(\hat{\beta_0} + \hat{\beta_1}x)}{1 + \exp(\hat{\beta_0} + \hat{\beta_1}x)} = \frac{\exp(-2.528 + 0.022x)}{1 + \exp(-2.528 + 0.022x)}$$

$$x=150$$
 에서 $\pi(x)$ 추정값 구하기

- - st $\pi(x)$ 의 신뢰구간 구하기 : 교재 참조

승산, 승산비 그리고 상대위험도

 2×2 분할표의 확률분포

		Y			
		1	0		
<i>X</i>	1	π_1	$1-\pi_1$		
	2	π_2	$1-\pi_2$		

$$OR = \frac{odds_1}{odds_2} = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_1(1-\pi_2)}{\pi_2(1-\pi_1)}$$

OR 값과 π_1 과 π_2 관계

- ① $OR = 1 \Leftrightarrow \pi_1 = \pi_2$
- ② $OR > 1 \Leftrightarrow \pi_1 > \pi_2$
- **③** $OR < 1 \Leftrightarrow \pi_1 < \pi_2$

승산, 승산비 그리고 상대위험도

2×2 분할표의 확률분포 (예)

		Y		
		1(폐암)	0(정상)	
Χ -	1(흡연군)	π_1	$1\!-\!\pi_1$	
	2(비흡연군)	π_2	$1-\pi_2$	

$$OR = \frac{odds_1}{odds_2} = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_1(1-\pi_2)}{\pi_2(1-\pi_1)}$$

상대위험도(RR; relative risk): 성공률의 비(위 예에서 관심질병의 발생률의 비)

$$RR=rac{\pi_1}{\pi_2}$$
 \longrightarrow 예) $RR=2$ 라는 의미 : $X=1$ 에서의 관심질병의 발생률($=\pi_1$)이

여기서 $\pi_1 \approx 0, \pi_2 \approx 0$ 인 경우

 $OR \approx RR$

OR=2 라는 의미 : X=1 에서 관심질병이 발생할 승산이 X=2 에서의 승산보다 2배 높다 라는 의미.

X=2 에서의 발생률($=\pi_2$) 보다 2배 높다 라는 의미

따라서 RR 보다는 해석이 명료하지는 않음.

즉, 승산비를 상대위험도 처럼 해석이 가능

※(예제 7.2) 사례-대조 연구의 예 를 살펴보기 바람.

로지스틱 회귀모형 적합도의 시각적 효과

구획의 크기가 104~185km 사이에서는 모형의 적합도가 매우 높음을 알 수 있고, 205km 근처에서는 표본비율이 1이며 적합도가 높지 않음을 알 수 있다. 반면에 구획의 크기가 23.5~64.2 km 에서는 적합도가 어느 정도 있음을 알 수 있음.

R 코드: 교재 참조

2 프로빗 모형

프로빗 모형

이항자료분석 : 로지스틱 회귀모형 , 프로빗 모형

프로빗(Probit) 모형

- ① 반응변수의 확률분포: Y_{\sim} 이항분포 또는 베르누이분포
- ② 선형예측자: $\eta = x'\beta = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$
- ③ 연결함수: $g(\pi) = \Phi^{-1}(\pi) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$
- , π : 이항분포의 성공확률
 - $\Phi(\cdot)$: 표준정규분포의 누적분포함수

R 활용: 프로빗 모형

- > glider <- read.csv('c:/data/reg/sugar_glider_binomial.csv')
- > attach(glider)
- > probit_m <- glm(occurr~p_size_km, family=binomial(link=probit))

R 활용: 프로빗 모형

```
> summary(probit_m)
Deviance Residuals:
                                     Max
    Min 1Q Median 3Q
-1.5586 -0.9211 -0.5186 0.8041 2.0341
                                               \rightarrow \Phi^{-1}(\hat{\pi}(x)) = \hat{\beta}_0 + \hat{\beta}_1 x = -1.493 + 0.013x
Coefficients:
Estimate Std. Error z value \Pr(>|z|) \hat{\pi}(x) = \Phi(\hat{\beta_0} + \hat{\beta_1}x) = \Phi(-1.493 + 0.013x) (Intercept) \hat{\pi}(x) = 0.460250 -3.244 \ 0.001181 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
(Dispersion parameter for binomial family taken to be 1)
     Null deviance: 68.994 on 49 degrees of freedom
                                                                        모형이 적합
Residual deviance: 55.797 on 48 degrees of freedom -
AIC: 59.797
Number of Fisher Scoring iterations: 5
```

프로빗 모형과 로지스틱회귀모형 적합 결과

프로빗모형에서 X=150km **일때**, Sugar Glider**가 출현할** 확률: 67.7%

3 로그선형모형-개수형자료

로그선형모형

로그선형모형: 개수형 자료(count data)를 분석할 때 자주 이용되는 모형

- 반응변수의 확률분포: Y~ 포아송분포
- ② 선형예측자: $\eta = x'\beta = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$
- ③ 연결함수: $g(\mu) = \log(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$

 $\mu = E(Y)$: 포아송분포의 평균으로 사건의 평균발생건수를 나타냄.

- 로그연결함수를 평균에 대해 정리하면

$$\mu = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)$$

- 가 되어 평균에 대한 승법모형(multiplicative model)이 됨.
- 그러므로 e^{β_i} 는 x_i 를 제외한 나머지 변수 $x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_p$ 들이 고정되었을 때, x_i 가 1단위 증가함으로써 발생하는 평균이 변화하는 비율(ratio)를 의미

< 고속도로 속도제한여부와 교통사고 건수 >

year	day	limit	у	year	day	limit	у
1961	1	no	9	1962	1	no	9
1961	2	no	11	1962	2	no	20
1961	3	no	9	1962	3	no	15
1961	4	no	20	1962	4	no	14
1961	5	no	31	1962	5	no	30
1961	6	no	26	1962	6	no	23
	ŧ	:	÷	:	Ē	:	:

- > library(MASS)
- > data(Traffic)
- > head(Traffic, 3)
 year day limit y
- 1 1961 1 no 9
- 2 1961 2 no 11
- 3 1961 3 no 9

주요관심 내용 : 고속도로의 속도제한이 평균 사고건수에 어떤

영향을 주는가

분석모형 : $\log(\mu) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{92} x_{92} + \beta_{93} x_{93}$

$$x_1 = egin{cases} 0 & no \\ 1 & yes \end{cases} \; x_i = egin{cases} 1 & day = i \\ 0 & \daggerightarrow 1 = 2, 3, \cdots, 92, \; x_{93} = egin{cases} 0 & year = 1961 \\ 1 & year = 1962 \end{cases}$$

Number of Fisher Scoring iterations: 4

```
> Traffic$day <- as.factor(Traffic$day)</pre>
> Traffic$year <- as.factor(Traffic$year)</pre>
> log_m <- glm(y~limit+day+year, family=poisson(link=log), data=Traffic)
> summary(log m)
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.20984
                     0.23632 9.351 < 2e-16 ***
                                                          유의하지 않음
limityes
         0.54362 0.29633 1.834 0.066584 .
day2
day3 0.28768
                     0.31180 0.923 0.356197
     0.37539
dav91
                     0.31528 1.191 0.233800
     0.64109
                     0.29876 2.146 0.031888 *
day92
                     0.03458 - 0.734 \ 0.462927
year 1962 -0.02539
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 625.25 on 183 degrees of freedom
                                                           107.11/90 = 1.19 로 모형 적합
Residual deviance: 107.11 on 90 degrees of freedom
AIC: 1185.1
```

```
> log m1 <- glm(y~limit+day, family=poisson(link=log), data=Traffic)
> summary(log m1)
                                \log(\hat{\mu}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_{02} x_{02} = 2.20 - 0.30 x_1 + 0.54 x_2 + \dots + 0.65 x_{02}
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
                                                                   최종모형
(Intercept) 2.19722
                          0.23570 9.322 < 2e-16 ***
            -0.29627
                          0.03978 -7.448 9.46e-14 ***
limitves
day2
              0.54362
                          0.29633 1.834 0.066584 .
              0.38232
dav91
                          0.31515 1.213 0.225077
day92
              0.64803
                          0.29862
                                     2.170 0.030004 *
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 625.25 on 183 degrees of freedom
                                                                        107.64/91 = 1.18 로 더 작아짐
Residual deviance: 107.64 on 91 degrees of freedom
AIC: 1183.6
                                                                        AIC 값도 더 작아짐
Number of Fisher Scoring iterations: 4
```

로그선형모형의 해석

속도제한여부(limit)의 회귀계수 추정치 $\hat{eta_1}$ 에 대한 해석

특정일
$$(x_i, j=2, ..., 92)$$
에

속도제한을 하지 않은 경우($x_1 = 0$)

평균사고건수(= μ_0)의 로그추정치 :

$$\log(\hat{\mu_0}) = \hat{\beta_0} + 0 + \hat{\beta_j} x_j = 2 \cdot 20 + 0 + \hat{\beta_j} x_j$$

속도제한을 한 경우($x_1 = 1$) 평균사고건수($= \mu_1$)의 로그추정치 :

$$\log(\hat{\mu_1}) = \hat{\beta_0} + \hat{\beta_1} + \hat{\beta_j} x_j = 2 \cdot 20 - 0 \cdot 30 + \hat{\beta_j} x_j$$

$$\Rightarrow \log \left(\frac{\widehat{\mu_1}}{\widehat{\mu_0}} \right) = \widehat{\beta_1} = -0.30$$

$$\Rightarrow \frac{\mu_1}{\widehat{\mu}_0} = e^{-0.30} = 0.74$$

⇒ 즉, 고속도로에서 속도제한을 했을 때의 평균사고건수는 속도제한을 하지 않았을 때의 평균사고건수의 74% 수준으로 감소

$$\frac{\mu_{\rm l}}{\mu_{\rm 0}} = e^{\beta_{\rm l}}$$
 의 추정치와 95% 신뢰구간

- > exp(coef(log_m1, parm="limit"))
 (Intercept) limityes day2
 9.0000000 0.7435897 1.7222222
 ...
 > exp(confint(log_m1_parm="limityes"))
- > exp(confint(log_m1, parm="limityes", level=0.95))

Waiting for profiling to be done... 2.5 % 97.5 % 0.6877111 0.8037687

고속도로에서 속도제한을 실시하면 평균사고건수 가 26% 정도 감소하며 95% 신뢰수준에서 많게는 31% 적게는 20% 정도 감소하는 것으로 추정됨

로그선형모형의 잔차진단

- > par(mfrow=c(2,2))
- > plot(log_m1)

네 가지 잔차 그림 모두 잔차 분포가 정규성을 크게 위배하지 않음을 보여주고 있음.

4 로그선형모형-율(rate) 분석

로그선형모형 - 율(rate) 분석

- 관심사건의 발생률이 매우 작은 경우, 전체 관측건수가 매우 많아 야 관심사건을 일정 수 이상 관측할 수 있음. 이 경우, 관심사건의 수 Y는 <u>포아송분포에</u> 근사한다고 가정.
- λ 를 관심사건의 <u>발생율</u>, λ 을 전체 관측건수, Y를 관심사건의 수 라고 할 때, λ 의 분석 모형
 - ① 반응변수의 확률분포: $Y \approx poisson(N\lambda)$
 - ② 선형예측자: $\eta = x'\beta = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$
 - ③ 연결함수: $g(\mu) = \log(N\lambda) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$, 즉 $\log(\lambda) = -\log(N) + \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$
 - , $\log(N)$ 은 모형에 주어지는 상수이며 이와 같은 항을 상쇄항(오프셋:offset) 이라 함.

R 활용: 율(rate) 분석

나이와 지역별 흑생종 발병 자료

region	cases	total	age	region	cases	total
south	64	1074246	-35	north	61	2880262
south	75	220407	35-44	north	76	564535
south	68	198119	45-54	north	98	592983
south	63	134084	55-64	north	104	450740
south	45	70708	65-74	north	63	270908
south	27	34233	75+	north	80	161850
	south south south south south	south 64 south 75 south 68 south 63 south 45	south 64 1074246 south 75 220407 south 68 198119 south 63 134084 south 45 70708	south 64 1074246 -35 south 75 220407 35-44 south 68 198119 45-54 south 63 134084 55-64 south 45 70708 65-74	south 64 1074246 -35 north south 75 220407 35-44 north south 68 198119 45-54 north south 63 134084 55-64 north south 45 70708 65-74 north	south 64 1074246 -35 north 61 south 75 220407 35-44 north 76 south 68 198119 45-54 north 98 south 63 134084 55-64 north 104 south 45 70708 65-74 north 63

관심 내용 : 흑색종 발병률이 나이(age)와 거주지역(region)에 따라 차이가 있는가

분석모형 λ_x : 흑색종 발병률, N_x : 전체 조사건수

$$\begin{split} \log(\lambda_x) = &-\log(N_x) + \beta_0 + \beta_1 x_1 + \dots + \beta_5 x_5 + \beta_6 x_6 \\ , \ x_1 = \begin{cases} 1 & age = 35 - 44 \\ 0 & \downarrow \cdot \text{마지} \end{cases}, x_2 = \begin{cases} 1 & age = 45 - 54 \\ 0 & \downarrow \cdot \text{마지} \end{cases}, \\ x_3 = \begin{cases} 1 & age = 55 - 64 \\ 0 & \downarrow \cdot \text{마지} \end{cases}, x_4 = \begin{cases} 1 & age = 65 - 74 \\ 0 & \downarrow \cdot \text{마지} \end{cases}, \\ x_5 = \begin{cases} 1 & age = 75 + \\ 0 & \downarrow \cdot \text{마지} \end{cases}, x_6 = \begin{cases} 1 & region = south \\ 0 & region = north \end{cases} \end{split}$$

```
> melanoma <- read.csv('c:/data/reg/melanoma.csv')</pre>
> melanoma
    age region cases
                       total
  35-44 south
                  75
                      220407
  45-54 south
                  68
                      198119
  55-64 south
                  63
                      134084
  65-74 south
                  45
                       70708
                       34233
5
    75+
        south
    <35
         south
                 64 1074246
                  76
                      564535
  35-44 north
  45-54 north
                  98
                      592983
  55-64 north
                 104
                      450740
10 65-74 north
                  63
                      270908
11
    75+
                      161850
        north
                  80
12
     35 north
                  61 2880262
> log.rt <- glm(cases~age+region-offset(log(total)),</pre>
           family=poisson(link=log), data=melanoma)
```

Number of Fisher Scoring iterations: 4

```
> summary(log.rt)
Deviance Residuals:
0.4780 \quad -0.4273 \quad -0.5302 \quad 0.7469 \quad -1.3610
                                           0.8686 - 0.4581
     9
             10
                     11
                              12
0.4279 - 0.5932
                0.8904 - 0.8283
                                                         \log(\widehat{\lambda_x}) = -\log(N_x) + \widehat{\beta_0} + \widehat{\beta_1}x_1 + \dots + \widehat{\beta_5}x_5 + \widehat{\beta_6}x_6 
Coefficients:
                                                                   =-\log(N_x)-10.66+1.80x_1+...+2.94x_5+0.82x_6
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.65831
                          0.09518 -111.97 <2e-16 ***
age35-44
               1.79737
                          0.12093
                                    14.86 <2e-16 ***
age45-54 1.91309
                          0.11844
                                    16.15 <2e-16 ***
                                    18.94 <2e-16 ***
age55-64 2.24180
                          0.11834
                          0.13152
                                    17.99 <2e-16 ***
age65-74
           2.36572
                                    22.30 <2e-16 ***
age75+
              2.94468
                          0.13205
                          0.07103
                                    11.54
                                              <2e-16 ***
regionsouth
              0.81948
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 895.8197 on 11 degrees of freedom
Residual deviance: 6.2149 on 5 degrees of freedom
AIC: 92.44
```

로그선형모형의 해석

거주지역 효과인 β_6 추론 : e^{β_6} 의 추정치와 95% 신뢰구간

```
> exp(coef(log_rt))
(Intercept) age35-44 age45-54 age55-64 age65-74 age75+
2.350472e-05 6.033788e+00 6.773973e+00 9.410278e+00 1.065175e+01 1.900457e+01 regionsouth
2.269330e+00
> exp(confint(log_rt, parm="regionsouth",level=0.95))
Waiting for profiling to be done...
2.5 % 97.5 %
1.973244 2.607037
```

남쪽지역의 흑색종 발병률은 북쪽지역 보다 $e^{\hat{\beta}_6} = 2.27$ 배 높은 것으로 추정되며, 95% 신뢰수준에서 작게는 1.97배 크게는 2.61배 높은 것으로 추정됨.

● 다음시간 안내

14강. SAS와 SPSS 활용 (일반화선형모형)