Cou	Course Code PAD21S01J Course Name MACHINE LEARNING FOR DATA SCIENCE					C	ours	se Ca	atego	ry	s	Sk	ill Er	han	cem	ent (Cou	rse	-	L 4	T 0	P 4	C 6		
	Pre-requisite Courses Nil Co-requisite Courses Nil								Progressive Courses Nil																
Course Offering Department Computer Applications Data Book / Codes/Standards Nil																									
Cour	Course Learning Rationale (CLR): The purpose of learning this course is to:						Learning Program Learning Outcomes (PLO)																		
CLR-	-1 : To	develop knowledg	e on Machine	Learning fundamentals	ĺ	1	2	3] [1	2 3	4	5	6	7	8	9	10	11	12	13	14	15		
CLR-	2 : To	understand and ar	nalyse variou	machine learning models – conce	ots and techniques				1		L	n		Ab			\neg								
CLR-	3 : To	understand super	vised and uns	upervised learning concepts		Le	Ex	Ex		Fu		Pr	Ski	ilit	- 1	An		Pr (Со			Pr	Lif		
CLR-	_	make decisions ar				vel	pe	pe		- 10	pli h	oc ed	lle	y to		975	Inv	obl	m	An		ote	e		
CLR-	- C. V U.			grow their business		Thi	12/5	cte d	1 1	am ent	ion IR	e , , , ,	ın	Uti	iis		est iga	em r	mu	aly	IC I	on l	Lo		
CLR-	0: 10	make use of predic	ctive causai a	nalytics, prescriptive analytics		nki	Pro	Att		al	of	al	Sp eci	117	Mo	er	tiv/	So r			l Ski	al	ng Le		
Cour	Course Learning Outcomes (CLO): At the end of this course, learners will be able to:				(BI 00	(BI 6	(BI 00	(BI 00	су	me nt) (%)		903-89	nc D	ae	zat ion	e Kn ow led ge		ot			on Ski IIs	Ski Ils	IIS	VIO	ar nin g
CLO				pts of Machine Learning			_	70			Table 1992	H H	Н	М	L	М	Н		-	Н		Н	М		
CLO		15		es suitable for a given problem nachine learning techniques		3	85	75 70			HH		H	M	뉘	M		M	-	H	H	H	M		
CLO	· .	ply Dimensionality	-			3	_	80		-	H	_	Н	M	뉩	M	H	_	-	Н		H	M		
CLO	.5 : De			earning techniques		3	85	75		_	Н	Н	Н	М	L	_	Н	_	-	Н	-	Н	М		
CLO	-6 : Int	erpret business mo	dels and scie	ntific computing paradigms		3	80	70		Н	Н	Н	Н	M	L	M	Н	М	-	Н	Н	Н	М		
	Duration (hour) 24 24					24				24															
	SLO-1	O-1 Introduction to Machine Learning Introduction to supervised Learning algorithms –LDA& SVM Ensemblemethods				ision Trees,			Multiclass					UnsupervisedLearningAlgorithms				ms							
S-1	SLO-2	Definition and type: Learning	s of Machine	Supervised Learning Algorithms	Stochastic Gradie							lgorithms				Clustering									

S-2	SLO-1	Machine Learning process		regression Stochastic gradient descent for sparse data	Feature selection	overview of Clustering methods	
	SLO-2	Stages		Complexity – stopping criterion – tips on practical use	Multilabel classification format	K-Means	
S-3	5455400-000 HS.	Machine Learning Development Lifecycle	IEVAILIATION OF NEST MODELS - MODEL	mathematical formulation – implementation details	One-vs-the-rest	affinity propagation	
	SLO-2	Machine Learning Workflow	1 3 3 3 V3	Nearest neighbours – classification	One-vs-one	mean shift spectral	
S4		Machine Learning Training Process	Bayesian Regression- Robust regression models	Nearest neighbours regression	error-correcting	hierarchical clustering	
	SLO-2	Machine Learning Platforms	Polynomial regression- Evaluation of best models- Model representation	nearest neighbour algorithms	output-codes	DBSCAN	
S5- 8		Collecting and Manipulating data	classify the iPhone purchase records data set. Print both correct and	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test datasets.		Implement Hierarchical Clustering	
S9	SLO-1	Machine Learning in data	Introduction to Random Forest- Auto selection of parameters	nearest centroid classifier	Multioutput regression	OPTICS	
	SLO-2	Data Modeling	55 5	nearest neighbours transformer -	Multioutput classification	birch – clustering	
S10	SLO-1	Data Processing		neighbourhood – components analysis	Classifier chain	performance evaluation	

	2		Evaluation of best models – Model representation				
	SLO-2	Architecture for ML in Enterprises	Linear and Quadratic Discriminant Analysis	naive bayes – gaussian naive bayes – multinomial naive bayes – complement naive bayes	regressor chain	introduction to – Unsupervised Learning	
S11	***************************************	Software		Bernoulli naive bayes – categorical naive bayes	feature selection	Auto selection	
	SLO-2	Architecture to Model ML Apps in Production	Mathematical formulation of the LDA and QDA classifiers	out-of-core naive bayes model fitting	removing features with low variance	evaluation of best model representation	
1	SLO-1	Model Machine Learning apps	Mathematical formulation of LDA	decision trees – classification – regression	univariate feature selection	introduction to dimensional reduction	
51	SLO-1	ML Reference Architecture	ISDRINKADE - ESTIMATION AIDORITHMS	multi-output problems- – complexity – tips on practical use	Recursive feature elimination	auto selection of parameters	
S13 -16		Implementing Data Preprocessing	classify the housing price data set. Print both correct and wrong predictions. Java/Python ML	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task Calculate the accuracy, precision, and recall for your data set.	Implement the Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs	Compare the results of two algorithms and comment on the quality of clustering	
S17	SLO-1	Building Blocks	Kernel ridge regression	tree algorithms – cart – mathematical formulation – minimal cost- complexity pruning	Feature selection using select from model	evaluation of best model	
	SLO-2	Evolvable Architectures	Support Vector Machines	ensemble methods – bagging meta- estimator	Univariate Selection	model representation	
C18	SLO-1	Migration	Classification	forests of randomized trees	Feature Importance	introduction to nearest neighbours	
010	SI O-2	Pitfalls of Evolutionary Architecture	Regression	AdaBoost – gradient tree boosting	Correlation Matrix with Heatmap	auto selection of parameters	
(C) (0)-0)		Anti patterns		histogram-based gradient boosting	Feature selection as part of a pipeline	evaluation of best models	
S19		Setting Up ML Solutions	Tips on Practical Use: Kernel functions	voting – classifier	Select K Best	Compute a distance value between the item to be classified	

·						and every item in the training data-set
000	SLU-1		Mathematical formulation	voting regressor	Select From Model	Euclidean distance
S20	SI O-2	.Architecture for Refinement and Production Readiness	Implementation details	9	Cross-Validation on Pipelines	Model representation
S21 -24		neighbourhoods	Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision,	[[[[[[[[[[[[[[[[[[[Demonstrate Feature Selection	To implement k-Nearest Neighbour algorithm to classify the iris data set.

Learning Resources	Introduction to Machine Learning with Python, By Andreas C. Muller and Sarah Guido, October 2016 Essential Machine Learning and Pragmatic Al, By Noah Gift, December 2018	 REFERENCE BOOKS/VIDEOS Stanford Lectures of Andrew Ng. Machine Learning Yearning by Andrew Ng, deeplearning.ai, 2018 Hands-On Unsupervised Learning Using Python, By Ankur A. Patel, March 2019 Clustering and Unsupervised Learning, By Angie Ma, Gary Willis and Alessandra Stagliano, August 2017
-----------------------	---	--

Learning A	Learning Assessment												
	Bloom's Level	4	75	Final Examination									
Level	of Thinking	CLA - 1 (10%)		CLA – 2 (10%)		CLA - 3 (20%)		CLA – 4	(10%)#	(50% weightage)			
	or miliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%		
Level	Understand	20 /0	2070	13/0	13 70	10/0	1370	1370	13 /0	1570	13 70		
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%		
LCVCI Z	Analyze		2070	2070	20 /0	20 /0	2070	20 /0	20 /0	2070	20 70		
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%		
Level 5	Create	10 /0	1070	13 /0	1370	13 /0	1370	10 /0	13 /0	1570	13 70		
	Total	100	100 %		100 %			100	%	100 %			

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers