Mechatronics Systems Design Laboratory ECE 491

Igor Paprotny

Upcoming Checkout

- This week: soldering lab (lab 1)
- Next week: FRDM-KL25Z lab 2 (GPIO and ADC)

- Safety write-up on BB
- Project proposal due next Friday (project proposal guidelines on BB soon)

Igor Paprotny

Interests: EE, Robotics, MEMS

What I want to get out of ECE 491: Have an awesome time teaching it!

webpage: http://www1.ece.uic.edu/~paprotny/

Soldering Basics

- Clean area
- Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
- Add solder to the part not the iron
- Apply for ~ 5 sec.
 - Should wet part and pad clearly
- Clear the flux residue

Good!

BAD!

Review this:

http://store.curiousinventor.com/guides/how_to_solder/

Introduction of Mechatronic Systems Design

Review of Preliminaries - Soldering

Steps necessary for good soldering:

- Clean working area (if necessary)
- Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
- Add solder to the part not the iron
- Apply for ~ 5 sec.
 - Should wet part and pad clearly
- Clean the flux residue (if necessary)

Review of Preliminaries - Soldering

Steps necessary for good soldering:

- Clean working area (if necessary)
- Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
- Add solder to the part not the iron
- Apply for ~ 5 sec.
 - Should wet part and pad clearly
- Clean the flux residue (if necessary)

Review of Preliminaries - Soldering

Steps necessary for good soldering:

- Clean working area (if necessary)
- Pre-tin wires and tip
- Clamp your work
- Apply heat to the wire and the pad
- Add solder to the part not the iron
- Apply for ~ 5 sec.
 - Should wet part and pad clearly
- Clean the flux residue (if necessary)

FRDM-KL25Z Manual

MCU – I/O structure

GPIOs and ADCs

MCU I/Os

Figure 1: MCU's Internal Configuration (Conceptual)

General Purpose I/O's (GPIO)

- General Purpose Input Outputs (GPIO)
 - reconfigurable Input/Output
 - digital (1 (high) or 0 (low))
 - need to be configured in software (lab 2)

Analog to Digital Converters (ADCs)

- Analog to Digital Converter
 - Can read in the analog value
 - Input pins need to be configured
- FDM board uses:
 - 16-bit Successive Approximation (SARC) ADC
 - 12-bit DAC

Use processor Expert

ADCs

- Successive Approximation ADC
 - Allow the Microcontroller to sample an analog waveform
 - Common type of ADCs
 - S/N: Sample and hold register
 - SAR: Successive Approximation Register
 - DAC: Digital to Analog Converter
 - EOC: end of conversion

Timers and Interrupts

Interrupts:

- Allow code execution on an event.
- External interrupts or software interrupts (timers)

Timers:

- Allows code to be triggered after some elapsed time
- Can be used to trigger PWM
- Sleep timer (low power mode)

Set in processor Expert

Demo

Processor Expert