Discretización de procesos con interpolación lineal de entradas entre muestras

Antonio Sala

Control de Sistemas Complejos

DISA – Universitat Politècnica de València

Introducción

Motivación:

El control de sistemas complejos requiere implementación por computador, que toma medidas de las señales a intervalos regulares. Algunas señales tienen retenedor (acciones de control constantes entre muestras), otras no.

Objetivos:

Comprender la teoría de discretización aproximada por interpolación lineal de entradas.

Contenido:

Revisión de control por computador mediante discretización de procesos. Discretización por interpolación lineal entre muestras.

Discretización de procesos + control discreto

- ① Discretización inicial de G(s) a G(z).
- 2 Diseño posterior K(z) en discreto.

- Proceso lineal: A partir de respuesta ante escalón, se puede calcular de forma exacta la secuencia de salidas ante →[reten]→G(s)→[muestreo]→... pero:
 - Las entradas de perturbación no son constantes entre muestras.
 - Los objetivos de control "entre muestras" son descartados.

Interpolación lineal entre muestras

Para **aproximar** el efecto de **perturbaciones**, puede discretizarse *interpolándolas linealmente entre muestras*, mejorando a la aproximación constante 'zoh' (ojo: no válido para actuador, cuyo hardware es zoh).

Interpolación lineal \Leftrightarrow pendiente constante entre muestras.

Supongamos un modelo con entrada w

$$\dot{x} = A_c x + B_c w, \qquad y = C_c x + D_c w$$

que verifica $\dot{w}=\delta$, siendo δ una pendiente constante. Como $\dot{\delta}=0$, eso se puede expresar como:

$$\frac{d}{dt} \begin{pmatrix} x \\ w \\ \delta \end{pmatrix} = \begin{pmatrix} A_c & B_c & 0 \\ 0 & 0 & l \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ w \\ \delta \end{pmatrix}$$

Solución mediante exponencial de matrix

La solución en t = T de

$$\frac{d}{dt} \begin{pmatrix} x \\ w \\ \delta \end{pmatrix} = \begin{pmatrix} A_c & B_c & 0 \\ 0 & 0 & I \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ w \\ \delta \end{pmatrix}$$

es, usando la exponencial de matriz:

$$\begin{pmatrix} x(T) \\ w(T) \\ \delta(T) \end{pmatrix} = e^{\begin{pmatrix} A_c & B_c & 0 \\ 0 & 0 & I \\ 0 & 0 & 0 \end{pmatrix} \cdot T} \cdot \begin{pmatrix} x(0) \\ w(0) \\ \delta(0) \end{pmatrix}$$

Discretización:

si denotamos:

$$e^{\begin{pmatrix} A_c & B_c & 0\\ 0 & 0 & I\\ 0 & 0 & 0 \end{pmatrix} \cdot T} = \begin{pmatrix} \Xi_{11} & \Xi_{12} & \Xi_{13}\\ 0 & I & T \cdot I\\ 0 & 0 & I \end{pmatrix}$$

y sustituimos la pendiente $\delta(0) = \frac{1}{T}(w(T) - w(0))$ obtendríamos:

$$x(T) = \Xi_{11} \cdot x(0) + \left(\Xi_{12} - \frac{1}{T}\Xi_{13}\right) \cdot w(0) + \frac{1}{T}\Xi_{13} \cdot w(T)$$

que ya se podría programar si w(T) fuera conocida para simular... pero no está en forma normalizda de representación interna $\psi(T) = A_d \psi(0) + B_d w(0)$.

Representación interna normalizada

A partir de

$$\hat{x}_{k+1} = \Xi_{11} \cdot x_k + \left(\Xi_{12} - \frac{1}{T}\Xi_{13}\right) \cdot w_k + \frac{1}{T}\Xi_{13} \cdot w_{k+1}$$

con el cambio de variable:

$$\psi_k = \mathsf{x}_k - \frac{1}{\mathsf{T}} \Xi_{13} \cdot \mathsf{w}_k$$

escribimos la ecuación de estado normalizada discreta:

$$\psi_{k+1} = \Xi_{11} x_k + \left(\Xi_{12} - \frac{1}{T} \Xi_{13}\right) \cdot w_k$$

$$= \Xi_{11} \left(\psi_k + \frac{1}{T} \Xi_{13} \cdot w_k\right) + \left(\Xi_{12} - \frac{1}{T} \Xi_{13}\right) \cdot w_k$$

con lo que la ecuación de estado normalizada discreta es:

$$\psi_{k+1} = \Xi_{11} \cdot \psi_k + \left(\Xi_{12} + \frac{1}{T}(\Xi_{11} - I)\Xi_{13}\right) \cdot w_k$$

Ecuación de salida

$$y_k = C_c x_k + D_c w_k = C_c \left(\psi_k + \frac{1}{T} \Xi_{13} \cdot w_k \right) + D_c w_k$$
$$= C_c \cdot \psi_k + \left(\frac{1}{T} C_c \Xi_{13} + D_c \right) \cdot w_k$$

Ejemplo: $\dot{x} = 0x + 1w$, y = x, con FdT G(s) = 1/s resulta en

$$e^{egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{pmatrix} \cdot au} = egin{pmatrix} 1 & T & T^2/2 \ 0 & 1 & T \ 0 & 0 & 1 \end{pmatrix}$$

con lo que $A_d=1$, $B_d=T$, $C_d=1$, $D_d=T/2$. Su función de transferencia $G(z)=C_d(zI-A_d)^{-1}B_d+D_d=\frac{T}{2}\frac{z+1}{z-1}$.

*cf. Tustin

Conclusiones

El problema de control por computador tiene entradas manipuladas con retenedor **zoh**, pero perturbaciones que **no** son *constantes entre muestras*.

Usando exponenciales de matrices, se puede discretizar asumiendo interpolación lineal entre muestras* para aproximar el efecto de las perturbaciones.
 *La idea se conoce como retenedor de orden 1 no causal.

El comando Matlab® que la realiza es sysd=c2d(sys,Ts,'foh').

^{*}Si período de muestreo suficientemente pequeño, da resultados parecidos a la opción zoh.

^{*}La discretización sería **exacta** si las entradas fueran realmente de pendiente constante entre muestras. Preserva estabilidad: polos discretos= exp(polos continuos*T).

^{*}Para el integrador puro, coincide con la discretización bilineal (Tustin), pero no así con otros procesos.