



Center for Research in Applied
Cryptography and Cyber Security

# DEFENCE AGAINST ADVERSARIAL EXAMPLES

Yishay Asher • Steve Gutfreund Instructor: Hanan Rosemarin

#### **Problem Description**

Building high accuracy DNN models which are sufficiently resistant to adversarial attacks



## Background and Goal

- ✓ An adversarial example is an instance with small, intentional feature perturbations that cause a machine learning model to make a false prediction.
- ✓ The goal is to Find a way to train 'secured' models such that this sort of attacks should not affect them.
- ✓ Project based on the article <u>Bridging machine learning and cryptography in defence against adversarial attacks</u>



Figure 1: example of an adversarial image

#### Set-Up

- ✓ Mnist and Fashion-Mnist datasets
- ✓ Using well-known neural nets

## 1. Securing Models

Approach: training models on encrypted images.

Encryption techniques:

- ✓ Permutation
- ✓ AES in ECB, CBC and CTR modes



Figure 2: architecture for securing models

### 2. Cutting Loose Ends

Eliminated the models that did not learn well. Learning encrypted images is not very intuitive, as can be seen in figure 3.



Figure 3: Sample of the encrypted images. Interesting to see how for the human eye it's not easy to distinguish between various classes but a DNN model classifies quite well, as can be seen in table 1

## 3. Attacking

#### Attacks:

- ✓ Carlini & Wagner, CW
- ✓ Fast Gradient Sign Method, FGSM

'gray-box' scenario, i.e. the attacker knows the architecture of the model but has no access to the private key.



Figure 4: visualization of a CW and FGSM attack

#### Results

There's a slight tradeoff between accuracy on the original images and the accuracy on the adversarial images, but overall, accuracies are good. See table 1 for the detailed results.

| Classification error (%) on the first 1000 test samples |       |          |                           |               |          |                    |            |  |
|---------------------------------------------------------|-------|----------|---------------------------|---------------|----------|--------------------|------------|--|
|                                                         |       | mnist    |                           | fashion_mnist |          |                    |            |  |
|                                                         |       | original | iginal adversarial images |               | original | adversarial images |            |  |
|                                                         | model | images   | attack                    | gray-box      | images   | attack             | gray-box   |  |
| UNENCRYPTED                                             |       |          | CW I <sub>2</sub>         | 100.00        |          | CW I <sub>2</sub>  | 100.00     |  |
|                                                         | Α     | 1.49     | CW I <sub>0</sub>         | 100.00        | 8.30     | CW I <sub>0</sub>  | 100.00     |  |
|                                                         |       |          | CW I <sub>∞</sub>         | 100.00        |          | CW I <sub>∞</sub>  | 100.00     |  |
|                                                         | В     | 2.10     | FGSM                      | 39.50         | 9.50     | FGSM               | 77.20      |  |
| PERMUTATED                                              |       |          | CW I <sub>2</sub>         | 4.50          |          | CW I <sub>2</sub>  | 12.70      |  |
|                                                         | Α     | 3.70     | CW I <sub>0</sub>         | 7.30          | 12.30    | CW I <sub>0</sub>  | 12.50      |  |
|                                                         |       |          | CW I <sub>∞</sub>         | 5.40          |          | CW I <sub>∞</sub>  | 12.90      |  |
|                                                         | В     | 4.20     | FGSM                      | 8.60          | 12.00    | FGSM               | 29.80      |  |
| AES · ECB                                               | Α     | 18.40    | CW I <sub>2</sub>         | irrela        | 54.60    | CW I <sub>2</sub>  | irrela     |  |
|                                                         | В     | 19.30    | FGSM                      | irrelevant    | 55.30    | FGSM               | irrelevant |  |
| AES · CBC                                               | Α     | 67.60    | CW I <sub>2</sub>         | irrela        | 71.50    | CW I <sub>2</sub>  | irrela     |  |
|                                                         | В     | 87.40    | FGSM                      | irrelevant    | 90.30    | FGSM               | irrelevant |  |
| AES · CTR                                               | Α     | 3.70     | CW I <sub>2</sub>         | 4.20          | 17.40    | CW I <sub>2</sub>  | 17.20      |  |
|                                                         | В     | 2.70     | FGSM                      | 4.90          | 16.70    | FGSM               | 26.50      |  |

Table 1: table containing all the results

#### Success with Permutation, Coincidence?

To verify that the learning ability of a permutation model does not result from high density in small images, we trained models on padded images. See table 2 for results.

| Padding done with white pixels |            |            |  |  |  |
|--------------------------------|------------|------------|--|--|--|
|                                | image size | error rate |  |  |  |
|                                | 28x28      | 3.70       |  |  |  |
| mnist                          | 40x40      | 3.40       |  |  |  |
|                                | 60x60      | 3.30       |  |  |  |
|                                | 28x28      | 12.30      |  |  |  |
| fashion_mnist                  | 40x40      | 14.40      |  |  |  |
|                                | 60x60      | 10.80      |  |  |  |

Table 2: results for training permutated data, various image dimensions

## **Future Work**

- ✓ Improve accuracy on AES-ECB model
- ✓ Nicholas Carlini (the 'C' in CW attack) believes we still might defeat these defenses. (we contacted him)
- ✓ Test on more complicated datasets; i.e. Cifar-10





















