Distribuição de Energia Elétrica

Elemento Line do OpenDSS

Lucas Melo

Universidade Federal do Ceará

Julho 2022

Objetivos

- Descrever os principais parâmetros que o OpenDSS utiliza para definir as diferentes configurações de linhas aéreas através do elemento *Line*.
- ▶ Destacar as vantagens de se definir linhas com o auxílio do elemento genérico *LineCode* ou do par de elementos genéricos *WireData* e *LineGeometry*.
- Apresentar os principais parâmetros para algumas configurações de linha através de sua modelagem matemática.
- Apresentar exemplos de códigos na linguagem de programação do OpenDSS.

Por quê?

As linhas são elementos essenciais para definição de sistemas elétricos no OpenDSS. Elas podem apresentar diferentes configurações como, por exemplo:

- Linha Trifásica à 4 fios;
- Linha Trifásica à 3 fios;
- Linha Bifásica à 3 fios;

- Linha Bifásica à 2 fios;
- Linha Monofásica à 2 fios;
- Linha Monofásica à 1 fio.

Por esse motivo, é de grande importância que o usuário saiba como modelar e definir a configuração que se deseja. Alguns conceitos importantes aqui apresentados são:

- Utilização de componentes simétricas em definições de linhas;
- Correção de Carson;
- Redução de Kron.

Modelagem

Será utilizado na modelagem das linhas de distribuição o modelo π , como apresentado na imagem abaixo, em que $\overline{\mathbf{Z}}$ e C são as matrizes de impedância série e de capacitância nodal, respectivamente:

Modelagem

As configurações modeladas aqui são:

- Linha Trifásica à 4 fios;
- Linha Trifásica à 3 fios;
- Linha Monofásica à 2 fios.

Para a linha trifásica à 4 fios são calculadas as matrizes R, X e C considerando os dados dos condutores e sua configuração geométrica.

Para as outras configurações, considera-se que essas matrizes são conhecidas, isto é, já foram previamente calculadas pela mesma metodologia.

Linha Trifásica à 4 Fios

A imagem apresenta a geometria do poste que sustenta uma linha trifásica à 4 fios, constituída de 3 condutores de fase, A, B e C, e um condutor de neutro, N.

Nesse modelo, é possível observar 4 impedâncias próprias, 6 impedâncias mútuas, 8 capacitâncias próprias e 12 capacitâncias mútuas. A representação através do modelo π :

O cálculo da matriz de impedância série é realizado desconsiderando a presença das capacitâncias próprias e mútuas, como se pode observar na imagem.

Observando a imagem do slide anterior, é possível escrever a equação da segunda lei de Kirchhoff para cada malha que envolve um dos condutores e a referência, obtendo, portanto, a expressão 1, na forma matricial:

$$\begin{bmatrix} \Delta V_A \\ \Delta V_B \\ \Delta V_C \\ \Delta V_N \end{bmatrix} = \begin{bmatrix} V_A \\ V_B \\ V_C \\ V_N \end{bmatrix} - \begin{bmatrix} V_a \\ V_b \\ V_c \\ V_n \end{bmatrix} = \begin{bmatrix} \bar{Z}_{AA} & \bar{Z}_{AB} & \bar{Z}_{AC} & \bar{Z}_{AN} \\ \bar{Z}_{AB} & \bar{Z}_{BB} & \bar{Z}_{BC} & \bar{Z}_{BN} \\ \bar{Z}_{AC} & \bar{Z}_{BC} & \bar{Z}_{CC} & \bar{Z}_{CN} \\ \bar{Z}_{AN} & \bar{Z}_{BN} & \bar{Z}_{CN} & \bar{Z}_{NN} \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \\ I_C \\ I_N \end{bmatrix}$$
(1)

A matriz de impedância série, segundo a Equação 2, pode ser decomposta em uma matriz de resistência série e uma matriz de reatância série, para uma frequência f, específica.

Essas matrizes são simétricas, pois a linha está disposta no ar, um meio linear, com permeabilidade magnética constante. Portanto, pode-se escrever que $\bar{Z}_{IJ} = \bar{Z}_{JI}$.

$$\bar{\mathbf{Z}} = \mathbf{R} + j \times \mathbf{X} \tag{2}$$

$$\bar{\mathbf{Z}} = \mathbf{R} + j \times \mathbf{X} \tag{3}$$

$$\begin{bmatrix} \bar{Z}_{AA} & \bar{Z}_{AB} & \bar{Z}_{AC} & \bar{Z}_{AN} \\ \bar{Z}_{AB} & \bar{Z}_{BB} & \bar{Z}_{BC} & \bar{Z}_{BN} \\ \bar{Z}_{AC} & \bar{Z}_{BC} & \bar{Z}_{CC} & \bar{Z}_{CN} \\ \bar{Z}_{AN} & \bar{Z}_{BN} & \bar{Z}_{CN} & \bar{Z}_{NN} \end{bmatrix} = \begin{bmatrix} R_{AA} & R_{AB} & R_{AC} & R_{AN} \\ R_{AB} & R_{BB} & R_{BC} & R_{BN} \\ R_{AC} & R_{BC} & R_{CC} & R_{CN} \\ R_{AN} & R_{BN} & R_{CN} & R_{NN} \end{bmatrix}$$
(4)

$$+j \times \begin{bmatrix} X_{AA} & X_{AB} & X_{AC} & X_{AN} \\ X_{AB} & X_{BB} & X_{BC} & X_{BN} \\ X_{AC} & X_{BC} & X_{CC} & X_{CN} \\ X_{AN} & X_{BN} & X_{CN} & X_{NN} \end{bmatrix}$$
 (5)

Em (6) e (7) é apresentado como as impedâncias próprias e as impedâncias mútuas da expressão 3 são definidas considerando a correção de Carson modificada:

$$\bar{Z}_{II} = \bar{Z}_{ii} + \bar{Z}_g \tag{6}$$

$$\bar{Z}_{IJ} = \bar{Z}_{ij} + \bar{Z}_{g}, \quad I \neq J \tag{7}$$

As impedâncias próprias, \bar{Z}_{ii} , e mútuas, \bar{Z}_{ij} , não consideram a influência do solo e são calculadas de acordo com as expressões (9) e (10). O efeito do solo é representado pela impedância de Carson, \bar{Z}_g , calculada de acordo com a equação (8):

$$\bar{Z}_g = R_g + j \times X_g \tag{8}$$

$$\bar{Z}_{ii} = R_{ii} + j \times X_{ii} \tag{9}$$

$$\bar{Z}_{ij} = j \times X_{ij} \tag{10}$$

 R_{ii} corresponde ao valor da resistência do condutor i e R_g , X_g , X_{ii} e X_{ij} são calculados de acordo com as equações (11), (12), (13) e (14), abaixo:

$$R_g = \mu_o \times \frac{\omega}{8} [\Omega/m] \tag{11}$$

(12)

(14)

$$X_g = \mu_o \times \frac{\omega}{2 \times \pi} \times \ln \left(658.5 \times \frac{\rho}{f} \right) [\Omega/m]$$

$$X_{ii} = \mu_{\rm o} \times \frac{\omega}{2 \times \pi} \times \ln \left(\frac{I}{GMR_i} \right) [\Omega/m]$$
 (13)

$$X_{ij} = \mu_0 \times \frac{\omega}{2 \times \pi} \times \ln \left(\frac{I}{D_{ij}} \right) [\Omega/m]$$

Em que,

- fé a frequência da rede em *Hertz*
- $\omega = 2 \times \pi \times f$ é a frequência angular da rede em rad/s
- ► GMR_i é o raio médio geométrico do condutor i em m
- $ightharpoonup D_{ij}$ é a distância entre os condutores i e j em m
- $ightharpoonup \mu_0$ é a permeabilidade magnética do vácuo em H/m
- ho é a resistividade do solo, considerado uniforme, em $\Omega \times m$, considerada constante

O cálculo da matriz de capacitância nodal é realizado através do método das imagens, representado na imagem:

Aplicando esse método das imagens é possível escrever a Equação 15, que apresenta a relação entre as tensões dos condutores medidas a partir do solo e as suas cargas.

Essa relação é dada através de uma matriz P, chamada de matriz dos coeficientes de potenciais de Maxwell:

$$\begin{bmatrix} V_{\text{condutor }A} \\ V_{\text{condutor }B} \\ V_{\text{condutor }C} \\ V_{\text{condutor }N} \end{bmatrix} = \begin{bmatrix} P_{AA} & P_{AB} & P_{AC} & P_{AN} \\ P_{AB} & P_{BB} & P_{BC} & P_{BN} \\ P_{AC} & P_{BC} & P_{CC} & P_{CN} \\ P_{AN} & P_{BN} & P_{CN} & P_{NN} \end{bmatrix} \cdot \begin{bmatrix} Q_{\text{condutor }A} \\ Q_{\text{condutor }B} \\ Q_{\text{condutor }C} \\ Q_{\text{condutor }N} \end{bmatrix}$$
(15)

Os coeficientes de potenciais de Maxwell são obtidos através da Equação 17 e da Equação 18.

$$\frac{I}{2\pi\varepsilon} = \frac{I}{2 \times \pi \times 8.85 \times I0^{-12} F/m} = I7987, 4I6I5 [m/uF]$$
 (16)

$$P_{ii} = 17987, 41615 \times \ln\left(\frac{S_{ii}}{RD_i}\right) [\text{m/uF}]$$
 (17)

$$P_{ij} = 17987, 41615 \times \ln\left(\frac{S_{ij}}{D_{ii}}\right) [\text{m/uF}], i \neq j$$
 (18)

Em que,

- $ightharpoonup S_{ii}$ é a distância entre o condutor i e sua imagem, em m
- $ightharpoonup RD_i$ é o raio externo do condutor i, em m
- $ightharpoonup S_{ij}$ é a distância entre o condutor i e a imagem do condutor j, em m
- $ightharpoonup D_{ij}$ é a distância entre os condutores i e j, em m

Por fim, a matriz de capacitância nodal é a inversa da matriz dos coeficientes de potenciais de Maxwell, conforme Equação 19.

$$\mathbf{C} = \begin{bmatrix} P_{AA} & P_{AB} & P_{AC} & P_{AN} \\ P_{AB} & P_{BB} & P_{BC} & P_{BN} \\ P_{AC} & P_{BC} & P_{CC} & P_{CN} \\ P_{AN} & P_{BN} & P_{CN} & P_{NN} \end{bmatrix}^{-1} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{33} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix}$$
(19)

É importante entender que a matriz de capacitância nodal é uma matriz shunt, em que os elementos da diagonal principal são iguais à soma das capacitâncias conectadas ao respectivo condutor, e os elementos fora da diagonal principal são iguais a menos a capacitância mútua entre os respectivos condutores.

Assim, a relação entre as capacitâncias C_{ii} e C_{ij} da matriz (19) com as capacitâncias apresentadas no modelo elétrico π trifasico á 4 fios é dada por:

$$\mathbf{C} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix}$$
 (20)

Em que:

$$C_{12} = C_{21} = -C_{AB} \qquad (25)$$

$$C_{13} = C_{AA} + C_{AB} + C_{AC} + C_{AN} \qquad (21)$$

$$C_{22} = C_{BB} + C_{AB} + C_{BC} + C_{BN} \qquad (22)$$

$$C_{33} = C_{CC} + C_{AC} + C_{BC} + C_{CN} \qquad (23)$$

$$C_{44} = C_{NN} + C_{AN} + C_{BN} + C_{CN} \qquad (24)$$

$$C_{24} = C_{42} = -C_{BN} \qquad (29)$$

$$C_{34} = C_{43} = -C_{CN} \qquad (30)$$

Parâmetros Elétricos no OpenDSS

O OpenDSS manipula as matrizes R, X e C da linha para a construção de sua matriz de admitância nodal primitiva, que é utilizada em conjunto com as matrizes primitivas dos outros elementos que definem a rede para se obter a matriz de admitância nodal do sistema completo, essencial para a realização dos cálculos como, por exemplo, o fluxo de potência.

As matrizes responsáveis pela definição de uma linha podem ser especificadas de diferentes maneiras, incluindo a utilização de componentes simétricas.

Além disso, é possível utilizar dados de condutores e a geometria de uma linha e permitir que as matrizes sejam calculadas internamente pelo OpenDSS.

Parâmetros Elétricos no OpenDSS

Uma linha pode ser especificada através de 4 modos distintos:

- Diretamente através dos parâmetros rmatrix, xmatrix e cmatrix ou, utilizando componentes simétricas, através dos parâmetros R₀, R₁, X₀, X₁, C₀ e C₁: No caso da utilização de componentes simétricas, o OpenDSS converte internamente as impedâncias e as capacitâncias sequenciais em componentes de fase, assumindo que a linha é trifásica e equilibrada.
- Através do parâmetro *linecode*: Em sistemas de distribuição, diversas linhas possuem a mesma matriz de impedância série e capacitância nodal. Por esse motivo, o OpenDSS possui o elemento *LineCode*, responsável por armazenar um único conjunto dessas matrizes. Assim, toda vez que se deseja utilizar esse conjunto de matrizes, associa-se o respectivo *LineCode* à linha desejada, através do parâmetro *linecode*.

Parâmetros Elétricos no OpenDSS

- Através do parâmetro geometry: Esse método de especificação de uma linha deve ser utilizado quando se deseja que o OpenDSS calcule as matrizes de impedância série e capacitância nodal através dos dados e da geometria dos condutores, armazenados em um elemento LineGeometry. Assim, no parâmetro geometry, deve-se especificar um elemento LineGeometry previamente definido. Do mesmo modo como no caso anterior, um mesmo LineGeometry pode ser utilizado em diferentes linhas.
- Através dos parâmetros wires e spacing: É um método similar ao anterior, porém os dados dos condutores e a geometria da linha são especificados de modo independente, sendo que os primeiros devem ser especificados através do parâmetro wires, que deve conter um elemento WireData previamente definido, e o último deve ser especificado através do parâmetro spacing, que deve conter um elemento LineSpacing.

Em geral, a redução de Kron é aplicada para reduzir o condutor neutro, N. Um caso comum é quando se desejada simplificar o modelo de uma linha trifásica à 4 fios por uma linha trifásica à 3 fios.

A imagem apresenta o modelo matemático da linha trifásica à 4 fios reduzida.

Para aplicar a redução de Kron, os terminais do condutor a ser reduzido devem estar aterrados, ou seja, a queda de tensão sobre o mesmo é nula, ou, $V_N - V_n = 0$.

Entretanto, essa condição muitas vezes não é respeitada quando se utiliza esse método.

Nesse caso, é preciso ter em mente que um erro é introduzido na solução do fluxo de potência final.

As matrizes R', X' e C', que representam os parâmetros elétricos da linha trifásica à 4 fios reduzida, são obtidas através da aplicação da Equação 31 e da Equação 32 nas matrizes \overline{Z} e P:

$$\bar{Z}'_{IJ} = \bar{Z}_{IJ} - \frac{Z_{IN} \times Z_{JN}}{\bar{Z}_{NN}} \tag{31}$$

$$P'_{IJ} = P_{IJ} - \frac{P_{IN} \times P_{JN}}{P_{NN}} \tag{32}$$

Resultando nas matrizes reduzidas apresentadas nas equações (34) e (35).

$$\overline{\mathbf{Z}}' = \mathbf{R}' + j \times \mathbf{X}' \tag{33}$$

$$= \begin{bmatrix} R'_{AA} & R'_{AB} & R'_{AC} \\ R'_{AB} & R'_{BB} & R'_{BC} \\ R'_{AC} & R'_{BC} & R'_{CC} \end{bmatrix} + j \times \begin{bmatrix} X'_{AA} & X'_{AB} & X'_{AC} \\ X'_{AB} & X'_{BB} & X'_{BC} \\ X'_{AC} & X'_{BC} & X'_{CC} \end{bmatrix}$$
(34)

$$\mathbf{C}' = \begin{bmatrix} P'_{AA} & P'_{AB} & P'_{AC} \\ P'_{AB} & P'_{BB} & P'_{BC} \\ P'_{AC} & P'_{BC} & P'_{CC} \end{bmatrix}^{-1}$$
(35)

Como visto no , essas matrizes podem ser especificadas pelo usuário diretamente nos parâmetros do elemento Line ou nos parâmetros do elemento LineCode.

Entretanto, é ilustrado como o próprio OpenDSS é capaz de realizar a redução de Kron através da definição do elemento *LineGeometry*.

Linha Trifásica à 3 Fios

A imagem apresenta o modelo elétrico de uma linha trifásica à 3 fios.

Linha Trifásica à 3 Fios

As matrizes R, X e C que caracterizam esse modelo são definidas conforme as equações (37) e (38):

$$\overline{\mathbf{Z}} = \mathbf{R} + j \times \mathbf{X} \tag{36}$$

$$= \begin{bmatrix} R_{AA} & R_{AB} & R_{AC} \\ R_{AB} & R_{BB} & R_{BC} \\ R_{AC} & R_{BC} & R_{CC} \end{bmatrix} + j \times \begin{bmatrix} X_{AA} & X_{AB} & X_{AC} \\ X_{AB} & X_{BB} & X_{BC} \\ X_{AC} & X_{BC} & X_{CC} \end{bmatrix}$$
(37)

$$\mathbf{C} = \begin{bmatrix} C_{AA} + C_{AB} + C_{AC} & -C_{AB} & -C_{AC} \\ -C_{AB} & C_{BB} + C_{AB} + C_{BC} & -C_{BC} \\ -C_{AC} & -C_{BC} & C_{CC} + C_{AC} + C_{BC} \end{bmatrix}$$
(38)

Linha Trifásica Equilibrada

Quando a linha trifásica é completamente transposta, as matrizes R, X e C são apresentadas conforme as equações (39), (40) e (41).

$$\overline{\mathbf{Z}} = \mathbf{R} + j \times \mathbf{X} \tag{39}$$

$$= \begin{bmatrix} R_{p} & R_{m} & R_{m} \\ R_{m} & R_{p} & R_{m} \\ R_{m} & R_{m} & R_{p} \end{bmatrix} + j \times \begin{bmatrix} X_{p} & X_{m} & X_{m} \\ X_{m} & X_{p} & X_{m} \\ X_{m} & X_{m} & X_{p} \end{bmatrix}$$
(40)

$$\mathbf{C} = \begin{bmatrix} C_p & C_m & C_m \\ C_m & C_p & C_m \\ C_m & C_m & C_p \end{bmatrix} = \begin{bmatrix} P_p & P_m & P_m \\ P_m & P_p & P_m \\ P_m & P_m & P_p \end{bmatrix}^{-1}$$
(41)

Linha Trifásica Equilibrada

Onde as impedâncias e as capacitâncias próprias e mútuas são obtidas de acordo com as expressões abaixo:

$$R_{p} = \frac{R_{AA} + R_{BB} + R_{CC}}{3}$$
 (42)
$$X_{m} = \frac{X_{AB} + X_{BC} + X_{AC}}{3}$$
 (45)
$$R_{m} = \frac{R_{AB} + R_{BC} + R_{AC}}{3}$$
 (46)

$$X_p = \frac{X_{AA} + X_{BB} + X_{CC}}{3} \quad (44) \qquad P_m = \frac{P_{AB} + P_{BC} + P_{AC}}{3} \quad (47)$$

Componentes Simétricas

De forma geral, os parâmetros da linha em componentes simétricas podem ser obtidos aplicando-se a Equação 48, para a matriz de impedâncias série, e a Equação 49, para a matriz de capacitância nodal.

$$\overline{\mathbf{Z}}_{012} = \mathbf{A}^{-1} \times \overline{\mathbf{Z}} \times \mathbf{A} \tag{48}$$

$$\mathbf{C}_{012} = \mathbf{A}^{-1} \times \mathbf{C} \times \mathbf{A} \tag{49}$$

Em que,

$$\mathbf{A} = \begin{vmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \alpha^2 & \alpha \\ \mathbf{I} & \alpha & \alpha^2 \end{vmatrix}$$
 (50)

Componentes Simétricas

Entretanto, para o caso em que as matrizes R, X e C representam uma linha equilibrada, ou seja, apresentam a mesma forma vista nas equações (40) e (41). A aplicação de (48) e (49) resulta em (51) e (52), que é uma matriz diagonal.

$$\overline{\mathbf{Z}}_{012} = \begin{bmatrix} \bar{Z}_p + 2 \times \bar{Z}_m & 0 & 0 \\ 0 & \bar{Z}_p - \bar{Z}_m & 0 \\ 0 & 0 & \bar{Z}_p - \bar{Z}_m \end{bmatrix} = \begin{bmatrix} \bar{Z}_0 & 0 & 0 \\ 0 & \bar{Z}_1 & 0 \\ 0 & 0 & \bar{Z}_2 \end{bmatrix}$$
(51)

Nesse caso, em especial, $\bar{Z}_{\scriptscriptstyle \rm I}$ é igual a $\bar{Z}_{\scriptscriptstyle \rm 2}$. O fato da matriz $\overline{\mathbf{Z}}_{\scriptscriptstyle \rm OI2}$ ser diagonal, no nosso contexto, significa que não há acoplamento entre essas três sequências.

$$\mathbf{C_{012}} = \begin{bmatrix} C_p + 2 \times C_m & 0 & 0 \\ 0 & C_p - C_m & 0 \\ 0 & 0 & C_p - C_m \end{bmatrix} = \begin{bmatrix} C_0 & 0 & 0 \\ 0 & C_1 & 0 \\ 0 & 0 & C_2 \end{bmatrix}$$
(52)

Linha Monofásica à 2 Fios

A imagem nesse slide apresenta a geometria do poste que sustenta uma linha monofásica à 2 fios e a sua representação através do modelo π é exibida no slide seguinte. Essa linha é formada por um condutor de fase, B, e um condutor de neutro, N.

Linha Monofásica à 2 Fios

Modelo π :

Matrizes de Impedância Série e Capacitância Nodal

As matrizes R, X e C da linha monofásica à 2 fios são apresentadas em (53-4) e (55). Elas podem ser obtidas seguindo a mesma metodologia apresentada nos slides de Cálculo da Matriz de Impedância Série e Cálculo da Matriz de Capacitância Nodal.

$$\overline{\mathbf{Z}} = \mathbf{R} + j \times \mathbf{X} \tag{53}$$

$$= \begin{bmatrix} R_{BB} & R_{BN} \\ R_{BN} & R_{NN} \end{bmatrix} + j \times \begin{bmatrix} X_{BB} & X_{BN} \\ X_{BN} & X_{NN} \end{bmatrix}$$
 (54)

$$\mathbf{C} = \begin{bmatrix} C_{BB} + C_{BN} & -C_{BN} \\ -C_{BN} & C_{NN} + C_{BN} \end{bmatrix}$$
 (55)

Redução do Fio Neutro

A redução de Kron também pode ser aplicada na situação em que se deseja modelar uma linha à 2 fios por uma à 1 fio. A Figura 10 apresenta o modelo de uma linha monofásica à 2 fios reduzida.

Redução do Fio Neutro

A Equação 56-7 e a Equação 58 apresentam as matrizes R', X' e C' para essa linha após a redução de Kron.

$$\overline{\mathbf{Z}}' = \mathbf{R}' + j \times \mathbf{X}' \tag{56}$$

$$= \left[R'_{BB} \right] + j \times \left[X'_{BB} \right] \tag{57}$$

$$\mathbf{C}' = \left[C'_{BB} \right] = \left[P'_{BB} \right]^{-1} \tag{58}$$

Em que,

$$\bar{Z}'_{BB} = \bar{Z}_{BB} - \frac{\bar{Z}_{BN} \times \bar{Z}_{BN}}{\bar{Z}_{NN}} \tag{59}$$

$$\bar{Z}'_{BB} = \bar{Z}_{BB} - \frac{\bar{Z}_{BN} \times \bar{Z}_{BN}}{\bar{Z}_{NN}}$$

$$\bar{P}'_{BB} = \bar{P}_{BB} - \frac{\bar{P}_{BN} \times \bar{P}_{BN}}{\bar{P}_{NN}}$$
(60)

Exemplos de Códigos - Linha Trifásica á 4 fios

Informação geométrica do poste:

$$D_{AB} = 2.5 ft$$

$$D_{BC} = 4.5 ft$$

$$D_{CNx} = 3.0 ft$$

$$ightharpoonup D_{CNy} = 4.0 ft$$

►
$$H_N = 25.0 ft$$

Condutores de Fase: Area de 336,400 cmil; Numero de fios (Al/Aço) de 26/7; e material ACSR(336,40 26/7 ACSR).

- ightharpoonup GMR = 0.0244ft
- $ightharpoonup R = 0.306\Omega/mile$
- ightharpoonup RD = 0.03004 ft
- Capacidade do Condutor: 530 A

Exemplos de Códigos - Linha Trifásica á 4 fios

Condutor de Neutro: Área de 4/o AWG; Numero de fios (Al/Aço) de 6/1; e material ACSR(4/o 6/1 ACSR

- ightharpoonup GMR = 0.00814ft
- $ightharpoonup R = 0.592\Omega/mile$
- ightharpoonup RD = 0.02346 ft
- ► Capacidade do Condutor: 340 A

Nesse exemplo, a linha apresentada na Figura 3 é modelada no OpenDSS, conforme a Figura 11, de três formas distintas:

- Através do parâmetro geometry
- Através dos parâmetros *rmatrix*, *xmatrix* e *cmatrix*
- Através do parâmetro linecode

Linha Trifásica á 4 fios - Parâmetro geometry

Os dados dos condutores e a informação geométrica do poste podem ser utilizados diretamente nos elementos *WireData* e *LineGeometry*, respectivamente, para definir o elemento *Line*, conforme apresentado no código a seguir:

Linha Trifásica á 4 fios - Parâmetro geometriy

Clear

```
New Circuit.TheveninEquivalente bus1=A pu=1.0 basekv=13.8
~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
```

New Wiredata.CondutoFase GMR=0.0224 DIAM=0.721 RAC=0.306 ~ normamps=530

~ Runits=mi RADunits=in GMRunits=ft

New Wiredata.CondutoNeutro GMR=0.00814 DIAM=0.563 RAC=0.592

- ~ normamps=340
- ~ Runits=mi RADunits=in GMRunits=ft

New Linegeometry.Poste nconds=4 nphases=3 reduce=No

- ~ cond=1 wire=CondutorFase x=-4 h=29 units=ft
- ~ cond=2 wire=CondutorFase x=-1.5 h=29 units=ft
- ~ cond=3 wire=CondutorFase x=3 h=29 units=ft
- ~ cond=4 wire=CondutorNeutro x=0 h=25 units=ft

New Line.MinhaLinha bus1=A.1.2.3.0 bus2=B.1.2.3.4

- ~ geometry=Poste
- ~ length=1 units=km
- ~ earthmodel=Carson

Set voltagebases =[13.8] Calcvoltagebases

Solve

Comentários Importantes

- ▶ O elemento *WireData* é utilizado para armazenar as informações de cada tipo de condutor: CondutorFase e CondutorNeutro. Para isso, basta inserir diretamente os dados fornecidos no exemplo.
- ▶ O elemento LineGeometry é responsável por posicionar cada condutor no espaço, informar quantos condutores existem (nconds) e quais são os condutores de fase. No nosso caso, nphases=3 significa que 3 dos 4 condutores são de fase. O OpenDSS distingue os condutores de fase e de neutro pela ordem em que eles são definidos. Os primeiros condutores devem ser os de fase e os últimos devem ser os de neutro.
- A linha é definida através do elemento *Line*, o qual indica a configuração utilizada através do parâmetro *geometry*.

Comentários Importantes

- No OpenDSS, há 3 opções de correções de Carson disponíveis. O parâmetro EarthModel = Carson indica que a metodologia apresentada nos slides de cálculo da matriz de impedância série deve ser utilizada.
- Caso se deseje reduzir essa linha a uma linha trifásica à 3 fios, conforme apresentado anteriormente, basta alterar o parâmetro reduce do elemento LineGeometry para yes e os parâmetros busz e busz, do elemento Line, para A ou A.1.2.3 e B ou B.1.2.3, respectivamente.
- Sempre são reduzidos os últimos *nconds nphases* condutores declarados. Nesse caso, *nconds nphases* = 1 e, portanto, apenas o conndutor 4(cond=4) é reduzido.

Definição da Linha Trifásica à 4 Fios Através dos parâmetros rmatrix, xmatrix e cmatrix

As matrizes R, X e C, calculadas a partir da metodologia apresentada nos slides anteriores, podem ser utilizadas para definir o elemento *Line*. As propriedades *rmatrix*, *xmatrix* e *cmatrix* armazenam os elementos do triângulo inferior das matrizes R, X e C, respectivamente:

Clear

```
New Circuit.TheveninEquivalente bus1=A pu=1.0 basekv=13.8
~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
```

New Line.MinhaLinha bus1=A.1.2.3.0 bus2=B.1.2.3.4 phases=4 length=1 units=km

```
~ rmatrix = [0.2493624 |0.05921762 0.2493624 |0.05921762 0.05921762 0.2493624 |0.05921762 0.05921762 0.05921762 0.4270794] !ohm/km
```

Definição da Linha Trifásica à 4 Fios Através dos parâmetros rmatrix, xmatrix e cmatrix

```
~ xmatrix = [0.8781366 | 0.5290833 0.8781366 | 0.4514519 0.4847653
0.8781366 | 0.4675149 0.4886856 0.4768213 0.9609082] !ohm/km
~ cmatrix = [9.353608 | -3.028526 9.858712 | -1.160058 -1.928018
8.891634 | -1.393686 -1.772134 -1.782155 8.809299] !nF/km
Set voltagebases = [13.8]
Calcvoltagebases
```

Definição de uma Linha Trifásica á 4 Fios Através do parâmetro *linecode*

Esse elemento é capaz de armazenar os parâmetros elétricos de uma dada configuração de linha, em $\Omega/Unidades$ de Comprimento para as impedâncias série e em nF/Unidades de Comprimento para as capacitâncias.

Por exemplo, pode-se imaginar que uma rede é constituída por apenas duas configurações de linha.

Nesse caso, dois elementos *LineCode* podem ser definidos e cada linha deve ser associada a um desses elementos, economizando-se assim, uma grande quantidade de código.

Definição de uma Linha Trifásica á 4 Fios Através do parâmetro *linecode*

As matrizes R, X e C, calculadas a partir da metodologia apresentada nos primeiros slides de calculos, são utilizadas como parâmetros do elemento *LineCode*.

O nome desse elemento *LineCode* é utilizado como valor do parâmetro *linecode* do elemento *Line*, conforme apresentado no código a seguir:

Clear

```
New Circuit . TheveninEquivalente bus1=A pu=1.1 basekv =13.8
~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
```

```
New LineCode.MeuArrannjo nphases=4 basefreq=60 units=km
~ rmatrix = [0.2493624 |0.05921762 0.2493624 |0.05921762 0.05921762
0.2493624 |0.05921762 0.05921762 0.05921762 0.4270794] !ohm/km
```

```
~ xmatrix = [0.8781366 | 0.5290833 0.8781366 | 0.4514519 0.4847653
0.8781366 | 0.4675149 0.4886856 0.4768213 0.9609082] !ohm/km
~ cmatrix = [9.353608 | -3.028526 9.858712 | -1.160058 -1.928018
8.891634 | -1.393686 -1.772134 -1.782155 8.809299] !nF/km
```

~ neutral=4 kron=No

New Line.LineExample bus1=A.1.2.3.0 bus2=B.1.2.3.4 length=1 units=km linecode=MeuArranjo

```
Set voltagebases =[13.8]
Calcvoltagebases
```

Solve

Caso se deseje reduzir essa linha a uma linha trifásica à 3 fios, ou seja, reduzir o fio neutro especificado pela propriedade *neutral* = 4, basta alterar a propriedade *kron* do elemento *LineCode* para *yes*, e as propriedades *bust* e *busz*, do elemento *Line*, para A ou A.1.2.3 e B ou B.1.2.3, respectivamente.

Exemplos para uma Linha Trifásica à 3 Fios

Imaginando que na configuração geométrica de uma linha trifásica à 4 fios, o fio neutro não exista, pode-se considerar que há uma linha trifásica à 3 fios.

Nesse exemplo, a linha apresentada no modelo π dos slides sobre linha trifásica à 3 fios é modelada no OpenDSS de três formas distintas:

- Através do parâmetro geometry;
- Através dos parâmetros rmatrix, xmatrix e cmatrix;
- Através dos parâmetros Ro, RI, Xo, XI, Co, CI.

Definição de uma Linha Trifásica à 3 Fios Através parâmetro geometry

Os dados dos condutores e a informação geométrica do poste da configuração geométrica de uma linha trifásica à 4 fios visto nos slides de cálculo da matriz de impedância série sem a existência do fio neutro podem ser utilizados diretamente nos elementos *WireData* e *LineGeometry*, respectivamente, conforme apresentado no código a seguir:

Clear

```
New Circuit .TheveninEquivalente bus1=A pu=1.0 basekv =13.8
~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
```

New Wiredata.CondutoFase GMR=0.0224 DIAM=0.721 RAC=0.306 ~ normamps=530

~ Runits=mi RADunits=in GMRunits=ft

New Line Minhalinha bus1=A bus2=B

- ~ geometry=Poste
- ~ length=1 units=km
- ~ earthmodel=Carson

```
Set voltagebases =[13.8]
Calcvoltagebases
```

Solve

Definição de uma Linha Trifásica à 3 Fios através dos parâmetros *rmatrix*, *xmatrix* e *cmatrix*

As matrizes R, X e C, calculadas a partir da metodologia apresentada em cálculo da matriz de impedância série e da matriz de capacitância nodal, podem ser utilizadas:

Clear

```
New Circuit.TheveninEquivalente bus1=A pu=1.0 basekv=13.8
    Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]

New Line.MinhaLinha bus1=A bus2=B phases=3 length=1 units=km
    rmatrix = [0.2493624 | 0.05921762 0.2493624 | 0.05921762 0.05921762
0.2493624] !ohm/km
    xmatrix = [0.8781366 | 0.5290833 0.8781366 | 0.4514519 0.4847653
0.8781366] !ohm/km
    cmatrix = [9.133118 | -3.308889 9.502218 | -1.442006 -2.286527
8.531097] !nF/km
```

Definição de uma Linha Trifásica à 3 Fios Equilibrada através dos parâmetros *rmatrix*, *xmatrix* e *cmatrix* e dos parâmetros *Ro*, *R1*, *X1*, *X1*, *Co*, *C1*

Considerando a transposição completa dessa linha, comentada na Linha Trifásica Equilibrada, pode-se obter as matrizes R, X e C, como em (37) e (39). Observer o código a seguir:

Clear

```
New Line.MinhaLinha bus1=A bus2=B phases=3 length=1 units=km
~ rmatrix = [0.2493624 | 0.05921762 0.2493624 | 0.05921762 0.05921762
0.2493624] !ohm/km
```

New Circuit. The venin Equivalente bus1=A pu=1.0 basekv=13.8 ~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]

```
~ xmatrix = [0.8781366 | 0.4884335 0.8781366 | 0.4884335 0.8781366] !ohm/km
~ cmatrix = [8.9326856 | -2.290369 8.9326856 | -2.290369 -2.290369
```

8.9326856] !nF/km
Set voltagebases =[13.8]
Calcvoltagebases

Solve

Outra forma de se definir essa linha trifásica à 3 fios equilibrida é através da utilização dos parâmetros da linha em componentes simétricas, conforme metodologia apresentada nos componentes simétricos:

Clear

Solve

```
New Circuit. The venin Equivalente bus1=A pu=1.0 basekv=13.8
\sim 20 = [0.000000001, 0.000000001] = [0.000000001, 0.000000001]
New Line.MinhaLinha bus1=A bus2=B phases=3 length=1 units=km
\sim R0=0.36779764 R1=0.19014478 !ohm/km
\sim X0=1.8550036 X1=0.3897031 ! ohm/km
~ C0=4.3519476 C1=11.2230546 !ohm/km
Set voltagebases =[13.8]
Calcvoltagebases
```

Exemplo para uma Linha Monofásica à 2 Fios

Geometria do poste que sustenta uma linha monofásica à 2 fios e as suas distâncias:

- $D_{BNx} = 0.5 ft$
- $ightharpoonup D_{BNy} = 5.oft$
- $ightharpoonup H_N = 25.0 ft$

Dados dos condutores de Fase e Condutor de Neutro: Área de 336,400 cmil; Número de fios (Al/Aço) de 26/7; material ACSR(336, 40 26/7 ACSR).

- ightharpoonup GMR = 0.0244ft
- $ightharpoonup R = 0.306\Omega/mile$
- ightharpoonup RD = 0.03004 ft
- Capacidade do Condutor: 530 A

Nesse exemplo, a linha apresentada no modelo π de uma linha monofásica à 2 fios é modelada no OpenDSS, conforme a imagem seguinte, de três formas distintas:

- Através do parâmetro geometry
- Através dos parâmetros rmatrix, xmatrix e cmatrix
- Através do parâmetro linecode

Definição de uma Linha Monofásica à 2 Fios Através do parâmetro *geometry*

O código em linguagem de programação do OpenDSS é apresentado a seguir:

```
Clear
```

```
New Circuit.TheveninEquivalente bus1=A pu=1.0 basekv=13.8
    Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
New Wiredata.Conduto GMR=0.0224 DIAM=0.721 RAC=0.306
    normamps=530
    Runits=mi RADunits=in GMRunits=ft
New Linegeometry.Poste nconds=2 nphases=1 reduce=No
    cond=1 wire=Condutor    x=0.0 h=30 units=ft
```

~ cond=2 wire=Condutor x=0.5 h=25 units=ft

New Line.MinhaLinha bus1=A.2.0 bus2=B.2.4

- ~ geometry=Poste
- ~ length=1 units=km
- ~ earthmodel=Carson

Set voltagebases =[13.8] Calcvoltagebases

Solve

Caso se deseje reduzir essa linha a uma linha monofásica à 1 fio, conforme apresentado no slide redução do fio neutro por um modelo π de uma linha monofásica à 2 fios reduzida, basta alterar a propriedade reduce, do elemento LineGeometry, para yes e as propriedades busi e busi, do elemento Line, para A, 2 e B, 2, respectivamente.

Definição de uma Linha Monofásica à 2 Fios Através apenas do Elemento *Line*

O código é apresentado a seguir:

```
Clear
```

Solve

```
New Circuit.TheveninEquivalente bus1=A pu=1.0 basekv=13.8
~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
New Line.MinhaLinha bus1=A.2.0 bus2=B.2.4 phases=2 length=1 units=km
~ rmatrix = [0.2493624 |0.05921762 0.2493624] !ohm/km
~ xmatrix = [0.8781366 |0.4764462 0.8781366] !ohm/km
~ cmatrix = [8.148138 |-2.628782 8.348427] !nF/km
Set voltagebases =[13.8]
Calcvoltagebases
```

Definição de uma Linha Monofásica à 2 Fios Através do elemento LineCode

O código é apresentado a seguir:

```
Clear
```

```
New Circuit.TheveninEquivalente bus1=A pu=1.1 basekv =13.8
    Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
New Linecode.MinhaLinha nphases=2 basefreq=60 units=km
    rmatrix = [0.2493624 | 0.05921762 0.2493624] !ohm/km
    xmatrix = [0.8781366 | 0.4764462 0.8781366] !ohm/km
    cmatrix = [8.148138 | -2.628782 8.348427] !nF/km
    neutral=2 kron=No
```

New Line.LineExample bus1=A.2.0 bus2=B.2.4 length=1 units=km linecode=MeuArranjo

Set voltagebases =[13.8] Calcvoltagebases

Solve

Caso se deseje reduzir essa linha a uma linha monofásica à 1 fio, ou seja, reduzir o fio neutro especificado pela propriedade neutral = 2, basta alterar,a propriedade kron, do elemento linecode, para yes e as propriedades busi e bus2, do elemento line, para A.2 e B.2, respectivamente.