Logique et Théorie des Ensembles Série 08-B

Automne 2024 Série 08-B Buff Mathias

Exercice 1. Trouver les bornes supérieures et inférieures dans \mathbb{R} des ensembles suivants. (pour $a,b \in \mathbb{R}, [a,b] = \{x \in \mathbb{R} : a \leq x \leq b\}, [a,b) = \{x \in \mathbb{R} : a \leq x < b\}, (a,b] = \{x \in \mathbb{R} : a < x \leq b\}$, et $(a,b) = \{x \in \mathbb{R} : a < x < b\}$). Préciser lorsque ce sont des maximums et minimums. Vous justifierez toutes les réponses.

- 1. [2,3)
- 2. [2, 3]
- 3. (2,3)
- 4. (2,3]
- 5. $[-2,2] \cup (5,8)$
- 6. $[0,1] + [-3,7] = \{x+y : x \in [0,1], y \in [-3,7]\}$
- 7. $\{\frac{1}{n} : n \in \mathbb{N}^*\}$
- 8. $\{x^2: x \in [-1,4)\}$
- 9. $\{4 + \frac{1 + (-1)^n}{n} : n \in \mathbb{N}^*\}$

Montrons que l'infimum et le supremum d'un intervalle sont les bords de cet intervalle.

Soit $[a,b] \subset \mathbb{R}$ un intervalle (preuve similaire pour (a,b], [a,b), (a,b)). Par définition, $\forall x \in [a,b], a \leq x \leq b$, donc a est un minorant et b un majorant de [a,b].

Soit $\varepsilon > 0$. Supposons qu'il existe M, majorant de [a,b] tel que $M = b - \varepsilon$. Soit alors $x := \frac{b+M}{2}$, nous avons que x > M et x < b donc $x \in [a,b]$. Alors M ne peut pas être un majorant de [a,b] et on en déduit que b est le supremum de [a,b].

Par le même raisonnement, on peur montrer que a est l'infimum de [a, b].

- 1. $\inf[2,3) = \min[2,3) = 2$, $\sup[2,3) = 3$, [2,3) n'a pas de maximum
- 2. $\inf[2,3] = \min[2,3] = 2$, $\sup[2,3] = \max[2,3] = 3$
- 3. $\inf(2,3) = 2$, $\sup(2,3) = 3$, (2,3) n'a ni minimum ni maximum
- 4. $\inf(2,3] = 2$, $\sup(2,3] = \max(2,3] = 3$, (2,3] n'a pas de mimimum
- 5. $\inf[-2,2] \cup (5,8) = \min\inf[-2,2], \inf(5,8) = -2$ et c'est un minimum $\sup[-2,2] \cup (5,8) = \min\sup[-2,2], \sup(5,8) = 8$ et ce n'est pas un maximum
- 6. $\inf\{x+y:x\in[0,1],y\in[-3,7]\}=\inf[-3,8]=-3$ et c'est un minimum $\sup\{x+y:x\in[0,1],y\in[-3,7]\}=\sup[-3,8]=8$ et c'est un maximum

Exercice 2. (Relation d'ordre totale ou partielle, élément maximal) Une relation d'ordre \leq est dite totale si $\forall x, y \in E, x \leq y$ ou $y \leq x$, sinon la relation d'ordre est dite partielle. Soit F une partie de E.

- 1. Dire (en justifiant) si les relations d'ordre suivantes sont partielles ou totales :
 - (a) L'inclusion sur E
 - (b) La divisibilité sur N
 - (c) L'ordre usuel sur $\mathbb{R}: x \leq y$ ssi $y x \geq 0$
 - (d) L'ordre lexicographique sur \mathbb{R}^2 défini par $(x,y)\mathcal{R}(a,b)$ ssi x < a ou x = a et $y \leq b$
- 2. Un élément m est un élément m inimal de F si $m \in F$ et $\forall x \in F, [m \ge x \implies x = m]$. Montrer qu'un minorant de F qui est dans F est un élément minimal.
- 3. Quels sont les éléments minimaux de $\mathbb{N}\setminus\{0\}$ pour la divisibilité sur \mathbb{N} ? Même question avec $\mathbb{N}\setminus\{0,1\}$. Montrer qu'un élément minimal n'est pas forcément un minorant.
- 4. Montrer que si l'ordre est total, alors il existe au plus un élément minimal pour F.
 - 1. (a) partielle : Soient $F, G \in E$ t.q. $G = E \setminus F$. Alors $F \not\subset G$ et $G \not\subset F$
 - (b) partielle: 2 ne divise pas 3 et 3 ne divise pas 2.
 - (c) totale : Ou bien $y x \ge 0$, alors $x \le y$, ou bien y x < 0, alors y < x donc $y \le x$.
 - (d) totale:
 - Si x < a alors $(x, y)\mathcal{R}(a, b)$
 - Si a < x alors $(a, b)\mathcal{R}(x, y)$
 - Si x = a et $y \le b$ alors $(x, y)\mathcal{R}(a, b)$
 - Si x = a et $b \le y$ alors $(a, b)\mathcal{R}(x, y)$
 - 2. Par définition d'un minorant : $\forall x \in F, x \geq m$. Donc, si $x \in F \leq m$ alors x = m, et si $m \in F$ c'est donc un élément minimal.
 - 3. L'élément minimal de $\mathbb{N}\setminus\{0\}$ pour la divisibilité sur \mathbb{N} est 1, car 1 divise tous les éléments de cet ensemble, et son seul diviseur est lui-même.

Les éléments minimaux de $\mathbb{N} \setminus \{0,1\}$ pour la divisibilité sur \mathbb{N} sont les nombres premiers, car sur cet ensemble ils n'ont qu'eux-mêmes comme diviseur.

Il suit directement du deuxième exemple qu'un élément minimal n'est pas forcément un minorant.

4. Supposons m et m' deux éléments minimaux de F selon une relation d'ordre totale.

Exercice 3. Soit A un sous-ensemble borné non vide de \mathbb{R} . Soit $B = \{|x - y|, x \in A \text{ et } y \in A\}$. Montrer que

$$\sup B = \sup A - \inf A$$

Sans perte de généralité, supposons x > y. Alors, pour $x, y \in A$,

 $|x-y|=x-y \le \sup A-y \le \sup A$ inf A. Donc $\sup A$ inf A est un majorant de B (*)

Soit $m < \sup A - \inf A$ de sorte que $m = |s - \inf A|, s \in A < \sup A$. Définissons $\delta = \sup A - s$. Alors, $|s - \inf A| = |(\sup A - \frac{\delta}{2}) - (\inf A + \frac{\delta}{2})|$ et comme $(\sup A - \frac{\delta}{2}), (\inf A + \frac{\delta}{2}) \in A$, alors $|s - \inf A| = m \in B$.

On déduit donc que $\sup A - \inf A \leq \sup B$ (**).

Par (*) et (**), il est montré que $\sup B = \sup A - \inf A$

Exercice 4. Montrer que $\{x \in \mathbb{Q}, x^2 \leq 2\}$ ne possède pas de supremum dans \mathbb{Q} .

Par l'absurde :

Supposons que le supremum de $\{x \in \mathbb{Q}, x^2 \leq 2\}$ existe, et notons-le S. Puisque \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} ,

$$\forall x \in \mathbb{Q} \cap [-\sqrt{2}, \sqrt{2}], \exists \varepsilon > 0 \text{ t.q. } S - \varepsilon > x$$

Alors, $S - \varepsilon < S$ est un majorant de $\{x \in \mathbb{Q}, x^2 \le 2\}$, ce qui contredit la supposition que S est le supremum de cet ensemble.