Subjectul D. OPTICĂ

Nr. item	Soluţie/Rezolvare
II.a.	
	$\beta = \frac{x_2}{x_2}$
	$A = \begin{bmatrix} P & & & & & & & & & & & & & & & & & &$
	1 1 1
	$\beta = \frac{x_2}{x_1}$ $\frac{1}{f} = \frac{1}{x_2} - \frac{1}{x_1}$ $f = \frac{\beta x_1}{1 - \beta}$
	$f = \beta x_1$
	$\int -\frac{1}{1-\beta}$
	Rezultat final: $f = 20cm$
b.	
	$C = \frac{1}{f}$
	f
	Rezultat final: $C = 5d$
C.	
	$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$
	$R_2 o \infty$
	$R_2 \to \infty$ $R = (n-1) f$
	Rezultat final: $R = 10cm$
d.	
	$\frac{1}{f_1} = \left(\frac{n}{n_1} - 1\right) \frac{1}{R}$
	$C_1 = \left(\frac{n}{n_1} - 1\right) \frac{1}{R}$
	Rezultat final: $C_1 = 1,25d$