Fourier 变换				
定义				
	$\mathcal{F}[f(t)] = F(w) = \int_{-\infty}^{+\infty} f(t) e^{-jwt} dt$			
	$\mathcal{F}^{-1}[F(w)] = f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w) e^{jwt} dw$			
主要性质				
	$\mathcal{F}[f(t \pm t_0)] = e^{\pm jwt_0}F(w)$			
	$\mathcal{F}[e^{\pm jw_0t}f(t)] = F(w \mp w_0)$ 等价于			
	$\mathcal{F}^{-1}[F(w \mp w_0)] = e^{\pm jw_0 t} f(t)$			
	$\mathcal{F}[f(at)] = \frac{1}{ a } F(\frac{w}{a})$			
微 分 性 质	$\mathcal{F}[f^{(n)}(t)] = (jw)^n F(w)$ $F^{(n)}(w) = (-j)^n \mathcal{F}[t^n f(t)]$			
积 分 性 质 (了解)	$\mathcal{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{F(w)}{jw}$ 或 $\mathcal{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{F(w)}{jw} + \pi F(0)\delta(w)$			

常用』	Fourier 变换对	
f(t)	F(w)	
$\delta(t)$	1	
1	$2\pi\delta(w)$	
	$\int_{-\infty}^{+\infty} e^{-jwt} dt = 2\pi\delta(w)$	
e^{jw_0t}	$2\pi\delta(w-w_0)$	
$\delta(t-t_0)$	e^{-jwt_0}	
u(t)[Heaviside 函数]	$\pi\delta(w) + \frac{1}{jw}$	
sgn(t)	$\frac{2}{jw}$	
$sin(w_0t)$	$\frac{\pi}{j}[\delta(w-w_0)-\delta(w+w_0)]$	
$cos(w_0t)$	$\pi[\delta(w-w_0)+\delta(w+w_0)]$	
$Dirichlet$ 积分: $\int_0^{+\infty} \frac{sint}{t} dt = \frac{\pi}{2}$		

	Laplace 变换			
定义				
	$F(s) = \mathcal{L}[f(t)] = \int_0^{+\infty} f(t) e^{-st} dt$			
性质				
	$\mathcal{L}[e^{at}f(t)] = F(s-a)$			
	$\mathcal{L}[f(t-\tau)u(t-\tau)] = e^{-s\tau}F(s)$ 等价于			
	$\mathcal{L}^{-1}[e^{-s\tau}F(s)] = f(t-\tau)u(t-\tau)$			
	$\mathcal{L}[f(at)] = \frac{1}{a}F\left(\frac{w}{a}\right), a > 0$			
微 分 性 质	$\mathcal{L}[f'(t)] = sF(s) - f(0)$			
	一般地 $\mathcal{L}[f^{(n)}(t)] = s^n F(s) - \sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0)$			
	$F^{(n)}(s) = (-1)^n \mathcal{L}[t^n f(t)]$			
积 分 性 质	$\mathcal{L}\left[\int_{0}^{t} f(t) dt\right] = \frac{F(s)}{s}$			
	一般地			
	$\mathcal{L}\left[\int_0^t dt \int_0^t dt \cdots \int_0^t f(t) dt\right] = \frac{F(s)}{s^n}$			
(了解)	另外			
(2,711)	$\mathcal{L}\left[\frac{f(t)}{t^n}\right] = \int_s^{+\infty} ds \int_s^{+\infty} ds \cdots \int_s^{+\infty} F(s) ds$			
	注:由 $\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{+\infty} F(s)ds$,取 $s = 0$,则有 $\int_{0}^{+\infty} \frac{f(t)}{t}dt = \int_{0}^{+\infty} F(s)ds$			

	常用 Laplace 变换对
f(t)	F(s)
u(t)	$\frac{1}{s}$
$\delta(t)$	1
e ^{at}	$\frac{1}{s-a}$
sin(kt)	$\frac{k}{s^2 + k^2}$
cos(kt)	$\frac{s}{s^2 + k^2}$
t^m	$\frac{\Gamma(m+1)}{s^{m+1}}, \qquad m > -1$
	特别地, m 为整数,则为 $\frac{m!}{s^{m+1}}$.