UNCLASSIFIED

AD NUMBER AD890462 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; AUG 1971. Other requests shall be referred to Air Force Office of Scientic Research, Bolling AFB, Washington, DC 20330. **AUTHORITY** AFOSR ltr, 15 Feb 1972

von KARMAN INSTITUTE

FOR FLUID DYNAMICS

TECHNICAL NOTE 78

SUPERSONIC GAS - SOLID PARTICLE FLOW

IN AN AXISYMMETRIC NOZZLE

BY THE METHOD OF CHARACTERISTICS

ъy

G.R. JOHNSON

RHODE-SAINT-GENESE, BELGIUM

AUGUST 1971

VON KARMAN INSTITUTE FOR FLUID DYNAMICS

TECHNICAL NOTE, 78

SUPERSONIC GAS-SOLID PARTICLE FLOW

IN AN AXISYMMETRIC MOZZLE

BY THE METHOD OF CHARACTERISTICS.

Ъу

GJR. JOHNSON

Augment 1971

AUG 1971

14 VKI-TN-78

367 475

TABLE OF CONTENTS

List of Symbols	i
Abstract	ii
I. INTRODUCTION	1
II. GOVERNING EQUATIONS	2
III.APPLICATION OF THE METHOD OF CHARACTERISTICS	5
IV. NUMERICAL SOLUTION TECHNIQUE	16
V. CONCLUSIONS AND RECOMMENDATIONS	20
REFERENCES	21
APPENDICES	
A. Program Description	A1-1
B. Program Input	A2-1
C. Program Listing	A3-1

LIST OF SYMBOLS

c a particle drag coefficient particle specific heat gas specific heat particle diameter D density per unit volume of a particle mass flow rate of particles Mach number М pressure Pr Prandtl number R gas constant Reynolds number Re temperature T x-direction velocity component y-direction velocity component speed axial coordinate along nozzle axis radial coordinate measured from nozzle axis Mach angle isentropic exponent streamline angle with respect to nozzle axis viscosity density per unit volume

Subscripts

p	particle	property				
x	partial	derivative	with	respect	to	x
	partial	derivative	with	respect	to	A

ABSTRACT

study was conducted to numerically treat a mixture composed of a gas and solid particles in a supersonic, axisymmetric nozzle. The governing equations are a set of eight first order, quasi-linear, partial differential equations. Seven of these equations are of the hyperbolic type when the flow is supersonic (based on the frozen speed of sound in the gas) and can be solved by the method of characteristics. The eighth equation (the particle continuity equation) is rewritten as an integral equation to be solved. The resulting seven compatibility equations and the seven characteristic equations (only four are distinct; the t. gas Mach lines and the gas and particle streamlines) are solved by the modified Euler predictor - corrector algorithm. These equations were programmed for an IBM 1130 computer. A sample nozzle calculation is given and compared with the one-dimensional calculations. These results indicate that the program is working correctly.

I. INTRODUCTION

The purpose of the present investigation was to numerically treat a mixture of a gas and solid particles in an axisymmetric, supersonic nozzle. The study was primarily intended for industrial particle micronization processes. In this process solid particles are fluidized and entrained by a high pressure air flow. The mixture is then expanded through a converging-diverging nozzle. The solid particles are accelerated during this expansion and impact a target downstream of the nozzle exit plane. If the particles have sufficient momentum they are broken upon impact. This process is repeated until the desired particle sizes are obtained.

The interest in the present study was not so much to determine two-dimensional particle velocities but rather to be able to investigate non-uniform particle distributions in each nozzle plane. One of the inherent restrictions in one-dimensional gas solid-particle analyses is that the particles are uniformly distributed in each nozzle plane. However, experimental studies definitely show that most of the particles are concentrated near the nozzle center line. To treat the problem of nonuniform particle distribution it is necessary to formulate the problem in two fimensions.

Riethmuller has done an extensive literature survey on gas-solid particle flow analyses and experiments. Therefore, only articles that are directly pertinent to this analysis are referenced in this report.

II. GOVERNING EQUATIONS

The supersonic motion of most compressible fluids encountered in nozzle expansion flow can be accurately described by the governing equations of an inviscia fluid. The basic assumptions which constitute such a gas dynamic model are: (1) continuum, (2) steady, (3) inviscid, (4) adiabatic, and (5) the gas composition is frozen. The resulting partial differential equations can be treated by the well known technique of the method of characteristics. For axisymmetric or two-dimensional nozzles this method transforms the partial differential equations into a system of differential equations which are valid along certain characteristic directions in the flow field.

The transformed equations are much simpler to solve and this fact led Kliegel² to attempt a similar analysis for a mixture of a gas and solid particles. The major assumption necessary for such a gas-solid particle analysis is that the particles behave as a continuum. Clearly, this assumption is physically unrealistic. That it yields good engineering results is another question. Kliegel has shown that the results are in good agreement with observation for rocket engine applications for moderate loading ratios and small particle sizes. Similar comparisons will be required for particle micronization processes to determine the applicability of this assumption. However, it would appear that, even for particle micronization processes this assumption should give useful engineering results for moderate loading ratios of small particles.

The equations governing the steady axisymmetric flow of a mixture of a gas and solid particles are derived by Hoffman and Thompson³. The assumptions necessary for these derivations are: (1) the gas is inviscid except for its interactions with the solid particles, (2) the mixture mass and mixture energy of the system are constant, (3) the volume

occupied by the solid particles is negligible, (4) the thermal motion of the solid particles is negligible, (5) the solid particles do not interact, (6) the drag and heat transfer characteristics of an actual particle shape and the size distribution of particles can be represented by spherical particles of a single size, (7) the internal temperature of each solid particle is uniform, (8) energy exchange between the gas and the solid particles occurs by convection only, (9) the only force acting on the solid particles is the viscous drag forces, (10) no mass transfer between the gas and the solid particles, and (11) no phase change.

Based on these assumptions, the following equations govern the gas-solid particle flow:

$$\rho \mathbf{u}_{\mathbf{x}} + \rho \mathbf{v}_{\mathbf{y}} + \mathbf{u} \rho_{\mathbf{x}} + \mathbf{v} \rho_{\mathbf{y}} + \rho \mathbf{v} / \mathbf{y} = 0$$
 (II-1)

$$\rho u u_{x} + \rho v u_{y} + P_{x} + A p_{p} (u - u_{p}) = 0$$
 (II-2)

$$\rho u v_x + \rho v v_y + p_y + A \rho_p (v - v_p) = 0$$
 (II-3)

$$up_x + vp_y - a^2u\rho_x - a^2v\rho_y - AB\rho_p = 0$$
 (II-4)

$$\rho_{p} u + \rho_{p} v + u_{p} \rho_{p} + v_{p} \rho_{p} + v_{p} \rho_{p} + \rho_{p} v / v = 0$$
 (II-3)

$$\rho_{p} \left[u_{p}u_{px} + v_{p}u_{py} - A(u - u_{p}) \right] = 0$$
 (II-6)

$$\rho_{\mathbf{p}} \left[u_{\mathbf{p}} \mathbf{v}_{\mathbf{p}_{\mathbf{X}}} + \mathbf{v}_{\mathbf{p}} \mathbf{v}_{\mathbf{p}_{\mathbf{y}}} - A(\mathbf{v} - \mathbf{v}_{\mathbf{p}}) \right] = 0$$
 (11-7)

$$\rho_{p} \left[u_{p}^{T} p_{x} + v_{p}^{T} p_{y} + \frac{2}{3} AC (T_{p} - T) \right] = 0$$
 (11-8)

where

$$A = \frac{3}{4} \frac{C_{D} \rho (u - u_{p})}{\rho_{p} D}$$
 (17-9)

$$C = \frac{12 \text{ k N}_{\text{U}}}{\mu \text{ C}_{\text{D}} \text{ Re}}$$
 (II-10)

$$B = (\gamma - 1) \left[\frac{2}{3} C_p (T_p - T) + (u - u_p)^2 + (v - v_p)^2 \right]$$
 (II-11)

The drag coefficient and Nusselt number for a particle are calculated from equations given by Neilson and Gilchrist 7

$$C_{\rm p} = 28 \, \text{Re}^{-0.85} + 0.48$$
 (II-12)

$$N_{\rm u} = 2.0 + 0.6 \, \text{Re}^{0.5} \, \text{Pr}^{0.333}$$
 (II-13)

where the Reynolds number for a particle is defined as follows:

$$Re = \frac{\rho D(W - W)}{\mu}$$
 (II-14)

III. APPLICATION OF THE METHOD OF CHARACTERISTICS

In this section, the techniques of the method of characteristics will be employed to obtain the characteristic and compatibility equations for the flow field variables.

The flow field governing equations, Equations (II-1) through (II-8) can be written in the following general form:

$$L_i = a_{ij}z_{jx} + b_{ij}z_{jy} + c_i = 0$$
 (i,j = 1,..., 8) (III-1)

where z represents the eight dependent variables u,v,p,p,u,p, up, p, and T and the x and y subscripts denote partial differentiation. These eight equations can be combined to form a single differential operator by employing arbitrary multipliers and summing. Thus

$$L = \sigma_i L_i = 0$$
 (i = 1,..., 8) (III-2)

where σ_i are the arbitrary multipliers. In this section, the convention of indicati-; a summation be repeated indices will be used. The partial differential equation, Equation (III-2), can be rewritten in the form of an ordinary differential equation under certain conditions. Thus

$$(a_{ij}^{\sigma})dz_j + c_{i}^{\sigma}dx = 0$$
 (i,j = 1,..., 8) (III-3)

if and only if the following equations are valid :

$$a_{i,j}^{\sigma} = dy/dx = b_{i,j}^{\sigma}$$
 (i,j = 1,..., 8) (III-4)

Equations (III-4) are eight independent equations for dy/dx. Equations (III-4) are used to determine the unknown multipliers σ_i which can then be substituted into Equation (III-3) to yield the compatibility equations. Rearranging Equations (III-4) to solve for σ_i yields the following equations:

$$\sigma_{i}(a_{ij} dy/dx - b_{ij}) = 0$$
 (i,j = 1,...,8) (III-5)

If this system of equations, Equations (III-5), is to have a solution other than the trivial, i.e., all $\sigma_i = 0$, then the determinant of the coefficients of σ_i must be zero. Thus,

$$[a_{ij} dy/dx - b_{ij}] = 0$$
 (i,j = 1,...,8) (III-6)

Now, dy/dx can be obtained from Equation (III-6). The resulting dy/dx can then be substituted into Equations (III-4) to determine relationships in terms of the multipliers σ_i . With σ_i known, the final form of the compatibility equations, Equations (III-3), is obtained.

The governing equations for the flow field are repeated below for convenience.

$$\rho u_{x} + \rho v_{y} + u \rho_{x} + v \rho_{y} + \rho v/y = 0$$
 (III-7)

$$\rho u u_{x} + \rho v u_{y} + P_{x} + A \rho_{p} (u \sim u_{p}) = 0$$
 (III-8)

$$\rho u v_{x} + \rho v v_{y} + P_{y} + A \rho_{p} (v - v_{p}) = 0$$
 (III-9)

$$uP_{x}^{2} + vF_{y} - a^{2}u\rho_{x} - a^{2}v\rho_{y} - AB\rho_{p} = 0$$
 (III-10)

$$\rho_{p}^{u}_{p} + \rho_{p}^{v}_{p} + u_{p}^{\rho}_{p} + v_{p}^{\rho}_{p} + \rho_{p}^{v}/y = 0$$
 (III-11)

$$\rho_{p} \left[u_{p} u_{p} + v_{p} u_{p} - A(u - u_{p}) \right] = 0$$
 (III-12)

$$\rho_{p} \left[u_{p} v_{p_{x}} + v_{p} v_{p_{y}} - A(v - v_{p}) \right] = 0$$
 (III-13)

$$\rho_{p} \left[cu_{p}^{T}_{p_{x}} + cv_{p}^{T}_{p_{y}} + \frac{2}{3} AC(T_{p} - T) \right] = 0$$
 (III-14)

The determinant, Equation (III-6) can now be written as follows:

pdy/dx	- p	0	s_1	ō	0	o	0	
ρS _l	0	dy/dx	0	0	0	ō	0	
0	pSı	- 1	0	0	0	0	0	
0	0	s_1	- s ² S ₁	0	0	0	0	
o	0	0	0	opdy/da	- p	0	S ₂	= 0
0	0	0	0	°pS2	0	0	o	
0	0	0	0	0	9 p 3 2	0	0	
0	Ç	0	c	c	0	opes2	0	
1							(III-	15)

where $S_1 = (udy/dx - v)$ and $S_2 = (u_p dy/dx - v_p)$. Since the upper right quarter of the above determinant is filled with zeros, the expansion of the determinant reduces to

$$[G] \times [P] = 0 \qquad (III-16)$$

where G represents the upper left quarter of the determinant and P represents the lower right quarter of the determinant as shown below:

Gas Properties	! ! !	Zeros		
	1	Farticles		
Zeros	;	Properties		
-	I	[P]		

Equation (III-16) can be zero by either G or P being zero. Setting these two determinants to zero yields the following expressions:

$$[G] = (udy/dx - v)^{2} [(dy/dx)^{2} [u^{2} - a^{2}] - 2 vdy/dx + (v^{2} - a^{2})] = 0$$
 (III-17)

and

$$[P] = (u_p dy/dx - v_p)^4 = 0$$
 (III-18)

Therefore, Equation (III-16) becomes :

$$(u_p dy/dx - v_p)^4 (udy/dx - y)^2 [(dy/dx)^2 [u^2 - a^2] - 2 uvdy/dx + (v^2 - a^2)] = 0 mtext{(III-19)}$$

The characteristic curves are found by solving for dy/dx which, for this system of equations, are

$$dy/dx = v/u (III-20)$$

$$dy/dx = \frac{uv \pm a^2 / M^2 - 1}{u^2 - a^2}$$
 (III-21)

$$dy/dx = v_p/u_p$$
 (III-22)

In terms of the Mach angle α , the gas flow angle θ and the particle flow angle θ_p , Equations (III-20), (III-21) and (III-22) can be rewritten, respectively, as

$$dy/dx = tan \theta (III-23)$$

$$dy/dx = tan (\theta \pm \alpha)$$
 (III-24)

$$dy/dx = \tan \theta_{p}$$
 (III-25)

Thus, the characteristic curves are the gas streamlines appearing twice, the Mach lines each appearing once and the particle streamlines appearing four times. Equations (III-21) are real only when M > 1, whereas, Equations (III-20) and (III-22) are always real. Therefore, the system of governing equations, Equations (III-7) through (III-14) is hyperbelic when the flow field is supersonic. Of these eight characteristic curves, four are distinct; the two Mach lines, the gas streamlines and the particle streamlines.

In order to determine the compatibility equations, the unknown multiplier σ_1 must be determined. These multipliers are determined by simultaneously solving Equations (III-4), using Equations (III-20) through (III-22) for the slope of each characteristic curve.

Substituting the coefficients a_{ij} and b_{ij} from Equations (III-7) through (III-14) into Equations (III-4) yields the following results:

$$\sigma_1 dy/dx + (udy/dx - v)\sigma_2 = 0$$
 (III-26)

$$-\sigma_1 + (udy/dx - v)\sigma_3 = 0$$
 (III-27)

$$\sigma_2 dy/dx - \sigma_3 + (udy/dx - v)\sigma_4 = 0$$
 (III-28)

$$(udy/dx - v) (\sigma_1 - a^2\sigma_4) = 0$$
 (III-29)

$$\sigma_5 dy/dx + (u_p dy/dx - v_p)\sigma_6 = 0$$
 (III-30)

$$-\sigma_5 + (u_p dy/dx - v_p)\sigma_7 = 0$$
 (III-31)

$$(u_p dy/dx > v_p)\sigma_8 = 0$$
 (III-32)

$$(u_p dy/dx - v_p)\sigma_5 = 0 (III-33)$$

The form of the general compatibility equation, Equation (III-3) is :

$$\left[\rho \sigma_{1} + \rho u \sigma_{2} \right] du + \left[\rho u \sigma_{3} \right] dv + \left[\sigma_{2} + u \sigma_{4} \right] dp$$

$$+ \left[u \sigma_{1} - a^{2} u \sigma_{4} \right] d\rho + \left[\rho_{p} \sigma_{5} + \rho_{p} u_{p} \sigma_{6} \right] du_{p}$$

$$+ \left[\rho_{p} u_{p} \sigma_{7} \right] dv_{p} + \left[\rho_{p} u_{p} \sigma_{8} \right] dT_{p}$$

$$+ \left[u_{p} \sigma_{5} \right] d\rho_{p} + \left[\rho_{p} v_{1} / y + A \rho_{p} (u - u_{p}) \sigma_{2} \right]$$

$$+ A \rho_{p} (v - v_{p}) \sigma_{3} - A B \rho_{p} \sigma_{4} + \rho_{p} v_{p} \sigma_{5} / y - A \rho_{p} (u - u_{p}) \sigma_{6}$$

$$- A \rho_{p} (v - v_{p}) \sigma_{7} + \frac{2}{3} \rho_{p} A C (T_{p} - T) \sigma_{8} \right] dx = 0$$

$$(III-34)$$

For the gas streamline characteristic curve, (udy/dx - v) = 0. Thus, by substituting this relationship into Equations ("II-26) through (III-33), the following results are obtained:

$$\sigma_1 = 0$$

$$\sigma_2 = u\sigma_3/v \qquad (III-35)$$

$$\sigma_5 = \sigma_5 = \sigma_7 = \sigma_8 = 0$$

Substituting Equation (III-35) into Equation (III-34) and regrouping terms into coefficients of the two arbitrary multipliers, σ_3 and σ_4 , yields the following result:

$$\left[pudu + pvdv + dp + Ap_{p}(u - u_{p})dx + Ap_{p}(v - v_{p})dy \right] \frac{u}{v}\sigma_{3}$$

$$+ \left[udp - a^{2}udp - ABp_{p}dx \right]\sigma_{4} = 0$$
(III-36)

Since the multipliers σ_3 and σ_4 are arbitrary, their coefficients must equal zero. Equating the coefficients of these multipliers

to zero yields the following compatibility equations which are valid along gas streamlines:

$$\rho u du + \rho v dv + dp + A \rho_p (u - u_p) dx + A \rho_p (v - v_p) dy = 0$$
 (III-37)

$$udp - a^2ud_p - AB\rho_p dx = 0 (III-38)$$

Noting that

udu + vdv = WdW

Equation (III-37) can be rewritten as

$$\rho WdW + dp + A\rho_p [(u - u_p)dx + (v - v_p)dy] = 0$$
 (III-39)

Equations (III-38) and (III-39) are valid only along gas streamlines, i.e., along curves defined by

$$dy/dx = \tan \theta \tag{III-40}$$

Along the Mach lines, the slope dy/dx is determined from either Equations (III-21) or (III-24) and (udy/dx - \forall) \neq 0. Therefore, by combining Equations (III-26) through (III-33) with Equation (III-31), the relationships for the multipliers σ_i for determining the compatibility equations which are valid along the Mach lines are obtained and are as follows:

$$\sigma_{1}^{2} = \frac{a^{2}\sigma_{4}}{\sigma_{2}^{2}}$$

$$\sigma_{2}^{2} = \frac{-a^{2}\sigma_{4} \frac{dy}{dx}}{(udy/dx - v)}$$

$$\sigma_{3} = \left[\frac{(udy/dx - v)^{2} - a^{2}(dy/dx)^{2}}{(udy/dx - v)}\right] \sigma_{4}$$

$$\sigma_{5} = \sigma_{6} = \sigma_{7} = \sigma_{8} = 0 \qquad (III-41)$$

Since no relationship is obtained for $\sigma_{4,6}$ this multiplier is arbitrary. The compatibility equations valid along the Mach lines are obtained by substituting Equations (III-41) into Equation (III-34), the general compatibility equation, and equating the coefficient of σ_4 to zero, which yields

$$(- vdu + udv) \pm \frac{\sqrt{M^2 - 1}}{\rho} dp + \frac{v}{y} (udy - vdx)$$

$$- A(\rho_p/\rho)(u - u_p)dy + A(\rho_p/\rho)(v - v_p)dx$$

$$- AB(\rho_p/\rho a^2)(udy - vdx) = 0 \qquad (III-42)$$

Equation (III-42) can be rewritten in terms of θ and α as

$$d\theta \pm (\cot \alpha/\rho W^2) dp \pm \left[\frac{\sin \theta}{y} - \frac{A_{\rho_p}}{\rho W} (1 + B/a^2) \right] \times \left(\frac{\sin \alpha}{\cos (\theta \pm \alpha)} \right) dx + A(\rho_p/\rho W^2) \left[u_p dy - v_p dx \right] = 0$$
(III-43)

where the gas Mach lines are given by

$$dy/dx = tan (\theta \pm \alpha)$$
 (III-44)

In Equations (III-43) and (III-44), the upper signs refer to left-running Mach lines and the lower signs refer to right-running Mach lines.

For the particle streamline characteristic curve, $(u_p dy/dx - v_p) = 0$. Thus, by substituting this relationship into Equations (III-26) through (III-33), the following results are obtained:

$$\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4 = \sigma_5 = 0$$
 (III-45)

Substituting Equation (III-45) into Equation (III-34) and regrouping terms into coefficients of the three arbitrary multipliers, σ_6 , σ_7 and σ_8 yields the following result:

Again, the multipliers σ_6 , σ_7 and σ_8 are arbitrary. Therefore, their coefficients must be zero. Equating the coefficients of these three multipliers to zero yields the following compatibility equations which are valid along the particle streamlines:

$$u_{p} du_{p} - A(u - u_{p}) dx = 0$$
 (III-47)

$$u_{p}dv_{p} - A(v - v_{p})dx = 0$$
 (III-48)

$$cu_{p}dT_{p} + \frac{2}{3}AC(T_{p} - T)dx = 0$$
 (III-49)

where the particle streamline is given by

$$dy/dx = v_g/u_g (III-50)$$

It should be pointed out that only seven compatibility equations are obtained in this analysis, i.e., no equation is obtained for solving for the particle density, ρ_p . This can be explained by noting that σ_5 is zero for all characteristic curves. Therefore, the fifth governing equation, Equation (III-11), the particle continuity equation does not enter the analysis as treated by the method of characteristics. If Equation (III-11) is removed from the set of governing equations, seven characteristic curves and seven compatibility equations are obtained, as should be. In order to have a complete set of equations it is necessary to include Equation (III-11) or some equivalent equation in order to have a relationship for ρ_p . In the present analysis an integral equivalent equation for particle continuity

is employed. The equation used is as follows :

$$\dot{m}_{p} = 2\pi \int_{0}^{y} y \rho_{p} (u_{p} dy/dx - v_{p}) dx$$
 (III-51)

Equation (III-51) is used to calculate an average particle density at each point in the flow field.

It should be reemphasized that treating the particles as a continuum is an approximation in the present two-dimensional analysis just as in previous one-dimensional analyses.

In summary, the governing partial differential equations have been transformed to a system of differential equations valid only along certain characteristic curves. These are:

Gas Streamlines

$$dy/dx = tan \theta$$
 (III-52)

$$\rho WdW + dp + A\rho_p [(u - u_p)dx + (v - v_p)dy] = 0$$
 (III-53)

$$udp - a^2ud\rho - AB\rho_{D}dx = 0 (III-54)$$

Gas Mach Lines

$$dy/dx = \tan (\theta \pm \alpha)$$
 (III-55)

$$d\theta \pm (\cot \alpha/\rho W^2)dp \pm \left[\frac{\sin \theta}{y} - \frac{A\rho}{\rho W}(1 + B/a^2)\right] \frac{\sin \alpha}{\cos (\theta \pm \alpha)} dx$$

$$+ A(\rho_p/\rho W^2) [u_p dy - v_p dx] = 0$$
 (III-56)

Particle Strenmlines

$$dy/dx = tan \theta p$$
 (III-57)

$$u_p du_p - A(u - u_p) dx = 0$$
 (III-58)

$$u_p dv_p - A(v - v_p) dx = 0$$
 (III-59)

$$u_{p}cdT_{p} + \frac{2}{3} AC(T_{p} - T)dx = 0$$
 (III-60)

and the particle continuity equation

$$\dot{m}_{p} = 2\pi \int_{0}^{y} y \rho_{p} (u_{p} dy/dx - v_{p}) dx \qquad (III-61)$$

IV. NUMERICAL SOLUTION TECHNIQUE

The formulation of the problem of treating a supersonic flow field consisting of a mixture of a gas and solid particles represents only one part of the present investigation. In order to make use of the equations derived in the previous section, it is necessary to translate the equations of motion of Section III into a numerical algorithm. This section outlines the solution procedure which was programmed for the IBM 1130 computer at the von Karman Institute.

As was discussed in the previous section, the gas Mach lines (two of the characteristic curves) are real only when the gas Mach number (ratio of the gas speed and the frozen speed of sound) is greater than one. Therefore, the present scheme is only applicable in regions of the flow which are supersonic. This means that in order to calculate the flow in a nozzle by the method of characteristics one must know the flow properties in the region downstream of, but near, the gas sonic line. In order to obtain the necessary initial conditions for a gas-solid particle flow the complete subsonic and transonic flow field must be solved. Since this problem has not been solved to date, it is necessary to use approximate methods to obtain the gas and solid particle properties from which to start the solution procedure. It is clearly evident that much more work must be done in the subsonic and transonic flow regions before the present supersonic analysis can be effectively utilized, i.e., to get realistic results one must specify realistic initial conditions.

The numerical algorithm does not depend on the initial conditions. Therefore, as better methods for predicting the initial conditions become available, they can be input into the present analysis directly as input data.

The numerical algorithm used is a modified Euler, predictor-corrector technique where averaged coefficients are

used. The transformed equations, Equations (III-52) through (III-61) are forward differenced. To illustrate the technique, Figure 1 presents an interior mesh point grid. The four distinct characteristic curves are shown with the point numbering scheme as used in the computer program. Point 3 is the point where the solution is sought. Points 1 and 2 are previously obtained solution points or given points on the initial value line. The prop ies at points 4 and 5 are known (by interpolation) once the location of each point is determined. The solution procedure is as follows:

(1) Predict the x and y direction of Point 3 by solving the two equations, Equations (III-55). In finite difference form this yields:

$$x_3 = (y_2 - y_1 - x_2 H_{23} + x_1 S_{13})/(S_{13} - H_{23})$$

$$y_3 = y_1 + S_{13}(x_3 - x_1)$$

where

$$H_{23} = \frac{1}{2} \left[\tan (\theta_2 + \alpha_2) + \tan (\theta_3 + \alpha_3) \right]$$

$$S_{13} = \frac{1}{2} \left[\tan (\theta_1 - \alpha_1) + \tan (\theta_3 + \alpha_3) \right]$$

it should be noted that the second term within the brackets in the above two equations are set equal to the first term for the predictor.

- (2) Solve for the gas flow angle and the pressure by simultaneously solving the two equations, Fauttions (III-56).
- (3) Calculate the position of Points 4 and 5 by the particle streamline equation, Equation (III-57) and the ges streamline equation, Equation (III-52), respectively.

- (4) Interpolate for the properties at points 4 and 5.
- (5) Calculate the gas velocity and the gas density at Paint 3 from Equations (III-53) and (III-54).
- (6) Calculate the particle velocity, particle flow angle, particle temperature, and particle density from Equations (III-58) through (III-61).
- (7) Now that all properties are known (predicted values), evaluate all equation coefficients, average the coefficients, and repeat steps (1) through (6).

This algorithm is second order accurate. To iterate again accomplishes nothing. If the accuracy is not sufficient change the grid spacing by increasing the number of points on the initial value line and redo the calculations.

The same technique is used on the wall boundary except that on the wall the solution point is obtained by the intersection of the left characteristic and the wall contour. Since the gas flow angle is the wall angle, the flow angle is known. This reduces the unknowns by one, which is necessary since the right characteristic compatibility equation cannot be used.

The same procedure exists at the centerline. Here the gas flow angle is zero (known, a priori), and the left characteristic compatibility equation is not used.

To check the program out, a sample case was executed for which previous one-dimensional results were available. The initial value line properties were taken from the one-dimensional results. The results were then compared at the nozzle exit, 9 cm. downstream of the initial value line. The following table presents the results as obtained from the two programs. The loading ratio was 1.5,

i.e., the particle flow rate was 1.5 times the gas flow rate. Particle diameter was 500 microns.

	Present Analysis 2 - d	1 - d
Gas Velocity	469.0 m/sec	467.6 m/sec
Particle Velocity	213.2 m/sec	214.7 m/sec
Ĝas Temperature	159.7 °K	159.7°K
Particle Temperature	295.7 °K	291.9 °K
Gas Hach number	1.850	1.845
Pressure	1.86×10 ⁶ n/m ²	1.88×10 ⁶ n/m ²

The run time for the two-dimensional calculation on the IBM 1130 was approximately 9 minutes.

The above comparison indicates that the program is working correctly and that it can be used effectively for particle-gas problems.

V. CONCLUSIONS AND RECOMMENDATIONS

The results of the comparison of the present two-dimensional, supersonic analysis with the one-dimensional analysis indicate that the program is working correctly and that it can be a useful tool for particle micronization processes. The present analysis has the advantage that non-uniform particle distributions can be treated if the necessary initial data are available. The program has been written in modular form so that any required or desired program changes are relatively simple.

Further studies are needed in two areas. These are: (1) a working subsonic and transonic analysis to take advantage of the potential applications of this analysis and (2) much more effort is required to obtain governing equations that are more physically realistic. The use of the particle continuum assumption, obviously, has restrictions. Experimental measurements are necessary to determine the region where this assumption breaks down. It should be emphasized that one-dimensional analyses suffer from the same problem and, therefore, if for particle micronization processes the continuum assumption does not provide engineering results neither approach can be used to predict particle behaviour in the nozzle.

REFERENCES

- 1. Riethmuller, M., VKI Report, 1971 (in preparation).
- 2. Kliegel, J.R., Ninth Symposium on Combustion; Cornell University, 1962.
- 3. Hoffman, J.D. and Thompson, H.D., AIAA Paper 66-538, June 1966.
- 4. Neilson, J.H. and Gilchrist, A., J.F.M., Vol. 33, Part 1, p. 137.

Figure 1 Gas-solid particle characteristic mesh

PRICESED PAGE BLANK NOT FILMED

APPENDICES

APPENDIX A

PROGRAM DESCRIPTION

The computer program was written in the FORTRAN IV language for the IBM 1130 computer at the von Karman Institute. The program consists of the MAIN program and four subroutines. These subroutines are designated FLGHP, MGCP, MGCB and CGEFP. The structure of the program is illustrated in Figure A-1. A brief description of the program is as follows:

MAIN - This program calls the flow field logic program or CALLS EXIT as determined by whether SWITCH 10 on the console is "on" or "off".

FLØWP - This subroutine controls the logic in calculating the flow field in an axisymmetric nozzle. All input data and all output options are accomplished by this subroutine. Subroutine FLØWP calls MØCP for the solution at an interior mesh point or MØCB for the solution at the wall boundary or the centerline boundary. Two arrays store the solution along a back left characteristic and the left characteristic being solved.

<u>MØCP</u> - This subroutine uses the modified Euler predictor corrector technique with averaged coefficients to solve for an interior mesh point. Subroutine CØEFP is called to evaluate all the necessary coefficients used in the finite difference equations.

MØCB - This subroutine is nearly identical to the above subroutine except the solution point is on the boundary.

<u>CØEFP</u> - This subroutine evaluates the coefficients of the finite difference equations and is called from both MOCP and MGCB.

Figure A-1 Program Structure

APPENDIX B

PROGRAM INPUT

The input date for the program has been kept to a minimum to keep the program simple. The following data are required for program execution:

CARD 1 (FORMAT 3F10.0)

- 1-10 GAMMA, ratio of the specific heats for the gas (air, Y*1.4)
- 11-20 RGAS, the gas constant (air, R=29.27)
- 21-30 PR. the gas Prandtl number (air, Pr=0.7)

CARD 2 (FORMAT 4F13.0)

- 1-10 DIAM, particle diameter (meters)
- 11-20 RHOP, particle density (kg/m3)
- 21-30 CPART, particle specific heat
- 31-40 PFLRT, particle flow rate (kg/sec)
- CARD 3 (FORMAT 12,8X,12,8X,12,8X,11)
- 1-2 NPTSL, the number of points for which data is specified on the initial value line (MAX=5)
- 11-12 IMAX, the maximum number of left characteristics to be calculated
- 21-22 IOUT, the number of the left characteristic where print out begins. If all characteristics are desired IOUT=0.
- 31 NU, not used

The following two cards are repeated for each of the NPTSL points. Two cards are required per point. The first point input is the wall point, the last point is the centerline point.

CARD 4 (FORMAT 7F10.0)

- 1-10 x-location of the point (meters)
- 11-20 y-location of the point (meters)
- 21-30 Gas Mach number
- 31-40 Gas velocity (m/sec)
- 41-50 Gas flow angle (degrees)
- 51-60 pressure (n/m^2)
- 61-70 gas density $(kg/m^3 + \epsilon_c)$

CARD 5 (FORMAT 5F10.0)

- 1-10 particle velocity (m/sec)
- 11-20 particle flow angle (degrees)
- 21-30 particle density (kg/m^3)
- 31-40 particle temperature (°K)
- 41-50 particle stream function (0.0 for centerline, 1.0 at limiting streamline).

APPENDIX C

PROGRAM LISTING

This appendix contains the complete program listing. All subroutines are stored on disc 6. For execution, it is only necessary to compile the MAIN program. The two subroutines MØCP and MØCB are stored in the LOCAL mode.

C MAIN PROGRAM
C COMMON STATEMENTS
C COMMON HU, CONST, THETW, PFLRT, PI, X3A, Y3A, E3A, V3A, T3A, P3A, R3A, VELP3, ITP3A, RP3A, TEP3A, PSI3A COMMON GAMMA, GC, RGAS, DIAM, RHOP, PR, CPART
C 10 CONTINUE PAUSE CALL DATSW (10, K10) GO TO (20,3M), K10
20 CALL FLOWP GS TO 10
C 30 CALL EXIT
C END

SUBROUTINE FLOWP

THIS PROGRAT CONTROLS THE LOGIC NECESSARY TO CALCULATE THE FLOW FIELD IN A SUPERSONIC AXISYMMETRIC (NU=1) OR THO-DEHENSIONAL (NU=0) HOZZLE BY THE METHOD OF CHARACTERIS

THE ARRAY SLY IS USED TO STORE THE INIT. AL-VALUE LINE. THE FIRST SUBSCRIPT IS THE POINT HUMBER, THE SECOND DENOTE THE FUID PROPERTY DEFINED BY THE FOLLOWING

- X POSITION
- Y POSITION
- GAS MACH NUMBER
- CAS VELOCITY
- GAS FLOW ANGLE
- GAS PRESSURF
- GAS DEUSITY
- PARTICLE VELOCITY
- PARTICLE FLOW ANGLE PARTICLE DENSITY
- 10
- PARTICLE TEMPERATURE 11
- PARTICLE STREAM FUNCTION

THE SAME SCHEME IS USED FOR THE TWO CHARACTERISTIC ARRAYS CHARA AND CHARL. TWO ARRAYS ARE NEEDED SINCE IT IS NECESS TO SAVE ONE LEFT CHARACTERISTIC WHILE THE NEXT ONE IS BEIN CALCULATED.

** MOTE **

THE INPUT PARAMETER HPTSL GOVERNS THE SIZE OF THE THREE ARRAYS. THESE MUST BE SLV(MPTSL, 12), CHARA(2*MPTSL, 12) AND CHARL (2*NPTSL, 12).

TYPE, DIMENSION AND COMMON STATEMENTS

DIMENSION SLV(5,12), CHARA(10,12), CHARL(10,12) COMMON MY, CONST. THETM, PFLRT, PI, X3A, Y3A, E3A, V3A, T3A, P3A, R3A, VF '3, 1TP3A, RP3A, TEP3A, PS13A COMMON GATTIA, GC, RGAS DIAN, RHOP, PR, CPART

SET PROGRAM CONSTANTS AND IMPATILIZE COUNTERS

GC=9.81

C

C

C

C

C C

C

C

C C

C C C

```
P1=3.1415926
      RAD=189.0/FI
      LINE=9
      "STER=100.0
      1CL=1
      1=0
      J=0
'1'1=1
000
               READ INPUT GAS DATA
      READ (2,1001) GAMMA, RGAS, PR
C
               READ IMPUT PARTICLE DATA
C
      READ (2,1001) DIAM, RHOP, CPART, PELRT
C
C
               READ LUPUT CONTROL FLAGS
C
      READ (2,1692) NPTSL, IMAX, TOUT, NU
C
CC
               READ INITIAL-VALUE LINE POINTS AND FLOW PROPERTIES
      70 10 K=1, NPTSL
      READ (2,1003) (SLV(K,1P),1P=1,12)
SLV(K,5)=SLV(k,5)/RAD
      SLV(K,9)=SLV(K,9)/RAD
   16 CONTAINUE
ſ,
               STORE FIRST POINT OF INITIAL-VALUE LINE IN AUXILLIARY ARRA
C
      nn 20 K=1,12
      CHARA(1,K)=SLV(1,K)
   20 CONTINUE
      THETH=SLY(1,5)
      CONST=SORT(GALPIA*RGAS*GC)
      URITE (1,1908)
      GO TO 219
C
Ĉ
               HICREMENT COUNTER
   30 1=1+1
      GO TO (48,50), INDEX
C
               IN IS THE NUMBER OF POINTS ON THE LEFT CHARACTERISTIC
               BEING CALCULATED
```

```
C
   40 J=1+1
      MM=J+l
      GO TO GO
C
   50 J=HPTSL+HPTSL-1
      111=1
C
               THE COURTER KK DETERMINES WETHER THE LEFT CHARACTERISTIC
CCC
               DELIIG CALCULATED STARTS FROM THE INITIAL-VALUE LINE OR FRO
               THE CENTERLINE
   50 KK=1+1-HPT3L
               LOOP FOR CALCULATING THE PROPERTIES ALONG A LEFT CHARACTER
      90 200 L=1,J
      K=L+1
      "=L+T
      L = L - 1
   1F(N) 7°,7°,12°
7° CONTINU
       1F(KK) 99,89,119
   89 INDEX=2
   9" JP=1+1
      no 100 1P=1,12
       CHARA(L, IP)=SLV(JP, IP)
  100 CONTINUE
       00 TO 129
000
                CALCULATE FLOW PROPERTIES OF THE CENTERLINE
  110 1CL=2
       VELP1=CHARL(2,8)
       VELP2=CID (L(1,8)
       TP1=CUARL(2,9)
       TP2=CHADL(1,0)
       RP1=0HARL(2,10)
       nP2=CHARL(1,30)
       TEP1≃CHA:L(2,11)
       TEP2=CHARL(1,11)
       PSI1=CHARL(2, 12)
       PS12=CHARL(1,12)
       CALL MOCREZ, CHARL(2,1), CHARL(1,1), CHARL(2,2), CHARL(1,2), CHARL(2,3)
      1, CHARL(1, 3), CHARL(2, 4), CHARL(1, 4), CHARL(2, 5), CHARL(1, 5), CHARL(2, 6)
      2, CHARL(1, 6), CHARL(2, 7), CHARL(1, 7), VELP1, YELP2, TP1, TP2, RP1, RP2,
      3TEP1, TEP2, PS11, PS12)
```

```
'(='\-<u>1</u>
        CO TO 18A
   121 CONTINUE
        00 TO (130,140), ICL
   130 1 = [
        ::= L
        00 TO 150
   140 "="1-1
   is: VELPI=CHAPL(K, 3)
        VELP2=CHANA(P, C)
        TP1=C"A"L(K, 7)
        TP2=CHARA(H, 1)
        RP1=CHARL(X,14)
        RP2=CHARA(H,10)
        TEP1=CHARL(K,11)
TEP2=CHARA(H,11)
        PSfi=CHARL(K, 12)
        PS12=CHARA(H, 12)
        11%=L-J
        IF(:12) 169,176,178
CC
                    CALCULATE FLOW PROPERTIES AT AN INTERIOR MESH POINT
   15° CALL DOP (CHARL(K, 1), CHARA(H, 1), CHARL(K, 2), CHARA(H, 2), CHARL(K, 3), CHARA(H, 3), CHARA(H, 4), CHARA(H, 4), CHARL(K, 5), CHARA(H, 5), CHARA(K, 6)
       2), CHARA(H, 5), CHARL(K, 7), CHARA(H, 7), VELP1, VELP2, TP1, TP2, RP1, RP2,
       3TEP1, TEP2, PS11, PS12)
CO TO 180
C
                    CALCULATE FLOW PROPERTIES ON THE MOZZLE WALL
  17° GALL 1963 (1,CHARL(K,1),GHARA(H,1),GHARL(K,2),GHARA(H,2),GHARL(K,3),GHARA(H,2),GHARA(H,3),GHARA(H,4),GHARA(H,4),GHARL(K,5),GHARA(H,5),GHARA(H,5),GHARA(H,5),GHARA(H,5),GHARA(H,7),VELP1,VELP2,TP1,TP2,RP1,RP2,
       3TEP1, TEP2, PS11, PS12)
Ç
                    STORE THE SOLUTION ORTAINED FROM SUBROUTINE MOC IN
                    THE AUXILLIARY ARRAY
   180 CHARA(1, 1)=X3A
        CHARA(1,2)=Y3A
        CHARA(11,3)=E3A
        CHARA(H, 4)=V3A
        CHARA(1,5)=T3A
```

```
CHARA(11, 6) = P34
      CHARA(1,7)=R3A
      CHARA(11, 3) = VELP3
      CHARA('1, 9)=TP3A
      CHARA(11, 18)=RP3A
      CHARA(M, 11)=TEP3A
      CHARA(1, 12) = PS 13A
  280 CONTINUE
  218 CONTINUE
CCC
               HOVE DATA FROM AUXILLIARY ARRAY TO THE LEFT
               CHARACTERISTIC ARRAY
      DO 240 K=1,111
      DO 220 LL=1,12
      CHARL(K, LL)=CHARA(K, LL)
 220 CONTINUE
      IF(1-10UT) 240,230,230
               PRINT OUT SOLUTION ALONG THE LEFT CHARACTERISTIC
  230 CONTINUE
      1F(L1ME-62) 234,232,232
  232 WRITE (1,1008)
      WRITE (1,1006)
      LINE=9
  234 XCH=CHARL(K, 1) *METER
      YCH=CHARL(K, 2) *HETER
      TheG=CHARL(K,5)*RAD
      RKG=CHARL(K,7)/GC
      PRES=CHARL(K, 5)/(GC*HETER*HETER)
      TEMP=CHARL(K,6)/(RGAS*CHARL(K,7))
      TPDEG=CHARL(K,9) +RAD
      WRITE (1,1004) XCM, YCM, CHARL(K, 3), CHARL(K, 4), TheG, PRES, RKG
      WRITE (1,1007) CHARL(K,8), TPDEG, CHARL(K,10), CHARL(K,11)
      LINE=LINE+2
  240 CONTINUE
       IF(1-10UT) 267,250,250
  250 URITE (1,1005)
      LINE=LINE+3
               STORE WALL POINT IN THE LEFT CHARACTERISTIC ARRAY
C
  DO 270 LL=1,12
      CHARL('NI, LL)=CHARA(NI, LL)
```

```
SUBROUTINE COEFP (Y, E, V, T, P, RHO, VELP, TEP, RHOPP, TP, S, H, Q, APU, APV,
     1ARU, ARV, CE, G, F, FP, GP, BP, C, DP)
         THIS SUBROUTINE CALCULATES THE COEFFICIENTS AT EACH POINT
Ċ
         WHICH ARE USED IN SOLVING THE DIFFERENTIAL EQUATIONS FOR THE
C
         METHOD OF CHARACTERISTICS SOLUTION TECHNIQUE
C
C
         TYPE, DIMENSION . 40 COMMON STATEMENTS
      REAL KGAS, MU, NU1
      COMMON NU, CONST, THETH, PFLRT, PI, X3A, Y3A, E3A, V3A, T3A, P3A, R3A, VELP3,
     1TP3A, RP3A, TEP3A, PS13A
      COMMON GAMMA, GO, R, DI AM, RHOP, PR, CPART
      SOS=V/E
      D=1.0/SORT(E**2-1.0)
      A=ATAN(D)
      STMA=SIN(T-A)
      STPA=SIN(T+A)
      CTMA=COS(T-A)
      CTPA=COS(T+A)
      S=STHA/CTHA
      H=STPA/CTPA
      Q XOS(A)/(SIH(A)+RHO/G0+V++2)
      UP=VELP*COS(TP)
      VP=VELP*SIN(TP)
      DU=V*COS(T)-UP
      DV=V+SIM(T)-VP
      TEMP=P/(R*RHO)
      MU=0.00000143*SQRT(TEMP)/(1.0+105.9/TEMP)
      KGAS=1090.0*!!U
      REY=RHO+DIAM+ABS(V-VELP)/(MU+GO)
      CX=0.48+28.0/(REY**0.85)
      NU1=2.0+0.6*SQRT(REY)*PR**0.333
      CP=12.C+KGAS+NU1/(MU+CX+REY)
      B=(GAMMA-1.0)*(2.0*CP*(TEP-1EMP)/3.4.DU+DV*DV)
      AP=0.75*CX*RHO*ABS(V-VELP)/(D1AM*RHGP*G0)
      APU=AP*DU/UP
      APV=AP*DV/UP
      ARU=AP*RHOPP*DU
      ARV=AP*RHOPP*DV
      CE=2.0*AP*CP*(TEMP-TEP)/(3.0*UP*CPART)
      F=-AP*GO*RHOPP/(RHO*V*E*STPA)*(1.0+B/(SOS*SOS))
      G=-AP*GN*RHOPP/(RHO*V*E*STNA)*(1.448/(SOS*SOS))
      IF(Y-0.0000001) 20,20,10
  10 STY=SIN(T)/Y
      F=F+STY/(E+STPA)
      G=G+STY/(E*STMA)
   20 FP=-AP*RHOPP*G0*VELP/(V*V*RHO)*(COS(TP)*H-SIN(TP))
      GP=-AP*RHOPP*GO*VELP/(V*V*RHO)*(COS(TP)*S-SI於(TP))
      BP=RHO*V/GB
      C=$0$*$0$/60
      DP#AP*B*RHOPP/(C*V*COS(T))
      RETURN
      END
```

SUBROUTINE MOCP (X1, X2, Y1, Y2, E1, E2, V1, V2, T1, T2, P1, P2, R1, R2, 1VELP2, VELP2, TP1, TP2, RP1, RP2, TEP1, TEP2, PS11, PS12) C THIS SUBROUTINE IS A METHOD OF CHARACTERISTICS SUBPROGRAM USED TO CALCULATE THE FLOW PROPERTIES AT AN INTERIOR C MESH POINT. . THE GASDYNAMIC MODEL IS ROTATIONAL AND A PERFECT GAS IS ASSUMED. , THIS SUBROUTINE USES THE MODIFIED-EULER PREDICTOR-CORRECTOR TECHNIQUE, WHERE AVERAGED C C COEFFICIENTS ARE USED. . C POINTS 1 AND 3 ARE ON THE RIGHT CHARACTERICTIC, POINTS 2 AND 3 ARE ON THE LEFT CHARACTERISTIC, POINTS 5 AND 3 ARE C ON THE GAS STREAMLINE, POINTS 4 AND 3 ARE ON THE PARTICLE STREAMLINE WHERE POINT 3 IS THE DESIRED SOLUTION POINT. C C C C TYPE, DIMENSION AND COMMON STATEMENTS C COMMON NU, CONST, THETW, PFLRT, PI, X3A, Y3A, E3A, V3A, T3A, P3A, R3A, VELP3, 1TP3A, RP3A, TEP3A, PS13A COMMON G, GO, R, DIAM, RHOP, PR, CPART 1=-1 - 1CL=1 CALCULATE THE COEFFICIENTS AT POINT 1 (Y1, E1, V1, T1, P1, R1, VELP1, TEP1, RP1, TP1, S1, H, Q1, APU, APV, CALL COE G1,F,FP,GP1,B,C,D) 1ARU, ARV, C AVERAGE THE COEFFICIENTS FOR THE PREDICTOR C S13 B1 Q13=Q1 G13=G1 GP13=GP1 CALCULATE THE COEFFICIENTS AT POINT 2 CALL COEFP (Y2, E2, V2, T2, P2, R2, VELP2, TEP2, RP2, TP2, S, H2, Q2, APU, APV, 1ARU, ARV, CE, G2, F2 FP2, GP, B, C, D) 1F(Y2-0.0000001) 70, 70, 80 CENTERLINE APPROXIMATION

```
70-1CL=2
C
              AVERAGE COEFFICIENTS FOR THE PREDICTOR
   80 H23=H2
      Q23=Q2
      F23=F2
      FP23×FP2
C
   90 1=1+1
C
              INTERIOR MESH POINT SOLUTION
      X3A=(Y2-Y1-X2*H23+X1*S13)/(S13-H23)
      Y3A = Y1 + S13 * (X3A - X1)
      GC TO (150,140), !CL
C
C
              SOLUTION WHEN POINT 2 IS ON THE CENTERLINE
  140 P3A~(-2.0*T1+Q23*P2+2.0*Q13*P1-2.0*G13*(Y3A-Y1)-2.0*GP13*(X3A-X1)
     1-F23*(Y3A-Y2)+FP23*(X3A-X2))/(2.0*013+023)
      T3A=T1+013*(P3A-P1)+G13*(Y3A-Y1)+GF13*(X3A-X1)
      F2=F2+T3A/Y3A
      ICL=1
      GO TO 210
  150 P3A=(Q23+P2+Q13+P1+T2-T1-F23+(Y3A-Y2)+FP23+(X3A-X2)-G13+(Y3A-Y1)-
     1GP15*(X3A-X1))/(023+Q13)
      T3A=T2-Q23*(P3A-P2)-F23*(Y3A-Y2)+FP23*(X3A-X2)
C
C
C
              CALCULATE THE POSITION OF POINT 5 FROM THE GAS
C
              STREAMLINE CHARACTERISTIC EQUATION. ,
  219 | XY=1
      JX12=X1-X2
      IF(ABS(DX12)-0.0001) 230,240,240
  230 DXDY=(X2-X1)/(Y2-Y1)
      DX12=Y1-Y2
      1 XY=2
      GO TO 250
  240 DYDX=(Y1-Y2)/DX12
  250 CONTINUE
      1F(1) 260,260,270
  260 T5=T3A
  270 TT35=(SIN(T3A)/COS(T3A)+SIN(T5)/COS(T5))+0.5.
```

```
GO TO (280,290), 1XY
  280 X5=(Y3A-Y2+X2+DYDX-X3A+TT35)/(DYDX-TT35)
      Y5=Y3A+TT35*(X5-X3A)
      DX=X5-X2
      GO TO 300
  290 Y5=(Y3A+TT35+(X1-X3A)-TT35+DXDY+Y1)/(1.0-TT35+DXDY)
      X5=X1+(Y5-Y1)*DXDY
      DX=Y5-Y2
C
C
               CALCULATE THE DERIVATIVES OF THE PROPERTIES BETWEEN
C
               POINTS 1 AND 2.,
  300 \text{ SM12=}(E1-E2)/DX12
      SV12=(V1-V2)/DX12
      ST12=(T1-T2)/DX12
      SP12=(P1-P2)/DX12
      SR12=(R1-R2)/DX12
      SPV12=(VELP1-VELP2)/DX12
      STP12=(TP1-TP2)/0X12
      SRP12=(QP1-QP2)/DX12
      STE12=(TEP1-TEP2)/DX12
C
               LINEARLY INTERPOLATE FOR THE PROPERTIES AT POINT 5
      E5=E2+SM12*DX
      V5=V2+SV12*DX
      T5=T2+ST12+DX
      P5=P2+SP12*DX
      R5=R2+SR12*DX
      VELP5=VELP2+SPV12*DX
      TP5=TP2+STP12*DX
      RP5=RP2+SRP12*DX
      TEP5=TEP2+STE12*DX
      1F(1) 302,302,304
C
C
               CALCULATE THE POSITION OF POINT 4 FROM THE PARTICLE
               STREAMLINE CHARACTERISTIC EQUATION. ,
  302 TP3A=TP5
      TP4=TP5
  304 TT34=(S1N(TP3A)/COS(TP3A)+S1N(TP4)/COS(TP4))+0.5
  GO TO (306,307), 1XY
306 X4=(Y3A-Y2+X2*DYDX-X3A*TT34)/(DYDX-TT34)
      Y4=Y3A+TT34*(X4-X3A)
      DXX=X4-X2
      GO TO 308
```

```
307 Y4=(Y3A+TT34*(X1-X3A)-TT34*DXDY*Y1)/(1.0-TT34*DXDY)
      X4=X1+(Y4-Y1) +DXDY
      DXX=Y4-Y2
000
               LINEARLY INTERPOLATE FOR THE PROPERTIES AT POINT 4
  308 E4=E2+SM12*DXX
      V4=V2+SV12+DXX
      T4=T2+ST12*DXX
      P4=P2+SP12*DXX
      R4=R2+SR12*DXX
       VELP4=VELP2+SPV12*DXX
       TP4=TP2+STP12+DXX
      RP4=RP2+SRP12*DXX
       TEP4=TEP2+STE12*DXX
       PS14=PS12+P1/PFLRT+(0.5+(RP4+VELP4+COS(TP4)+RP2+VELP2+COS(TP2))
     1*(Y4**2-Y2**2)~(Y4*RF" VELP4*S1N(TP4)+Y2*RP2*VELP2*S1N(TP2).*(X4
     2-X2))
C
               CALCULATE THE COEFFICIENTS AT POINT 5
C
      CALL GOEFP (75, E5, V5, T5, P5, R5, VELP5, TEP5, RP5, TP5, S, H, Q, APU, APV,
     1ARU5, ARV5, CE, G2, F, FP, GP, B5, C5, D5)
               CALCULATE THE COEFFICIENTS AT POINT 4
C
       CALL COEFP (Y4.E4.V4.T4.P4.R4.VELP4.TEP4.RP4.TP4.S.H.Q.APU4.APY4.
     1ARU, ARV, CE4, G2, F, FP, GP, B, C, D)
       1F(1) 520,320,330
C
C
               AVERAGE COEFFICE IS FOR THE PREDICTOR
  320 C35=C5
       335=B5
       035=D5
       ARU35=ARU5
       ARV35=ARV5
       APU43≈APU4
       APV43=APV4
       CE43=CE4
       GO TO 340
               AVERAGE COEFFICIENTS FOR THE CORRECTOR
ſ,
  330 835=(B3+B5)*0.5
       C35=(C3+C5)*0.5
```

W. W. W. W. C.

```
D35=0.5+(03+D5)
      ÄRU35=0.5. (ARU3+ARU5)
      ARV35=0.5*(ARV3+ARV5)
      APU43=0,5,* (APU4+APU3)
      APV43=0.5*(APV4+APV3)
      CE43=0.5 (CE4+CE3)
               C LCULATE THE VELOCITY AND DENSITY FROM THE STREAMLINE
С
               U. MPATIBILITY EQUATIONS
  340 V3A=V5+(P5-P3A-ARU35+(X3A-X5)-ARV35+(Y3A-Y5))/B35
      R3A=R5+(P3A-P5)/C35-D35+(X3A-X5)
      TEMP=P3A/(R*R3A)
      SOS=CONST*SQRT(TEMP)
      E3A=V3A/SOS
      UP3=VELP4*COS(TP4)+APU43*(X3A-X4)
VP3=VELP4*S1N(TP4)+APV43*(X3A-X4)
      VELP3=SQRT(UP3**2+VP3**2)
      YDOT3=VP3/UP3
      TP3A=ATAN(YD0T3)
      TEP3A=TEP4+CE43*(X3A-X4)
      PS13A=PS14
      RP3A=(PFLRT*(PS13A-PS12)/P1-RP2*VELP2*COS(TP2)*0.5*(Y3A**2-Y2**2)
     1+(X3A-X2)+Y2+RP2+VELP2+S1N(TP2))/(0.5+UP3+(Y3A++2-Y2++2)-Y3A+VELP3
     2*SIN(TP3A)*(X3A-X2))
      IF(1) 350,350,410
C
               CALCULATE THE COEFFICIENTS AT POINT 3
C
  350 CALL COEFP (Y3/, E3A, V3A, T3A, P3A, R3A, VELP3, TEP3A, RP3A, TP3A, S3, H3,
     1Q3, APU3, APV3, ARU3, ARV3, CF3, G3, F3, FP3, GP3, B3, C3, D3)
C
               AVERAGE COEFFICIENTS FOR THE CORRECTOR
C
      H23=(H2+H3)*0.5
      Q23 = (Q2 + Q3) * 0.5
      F23=(F2+F3)*0.5
      $13=($1+$3)*0.5,
      Q13=(Q1+Q3)*0.5
      G13= (G1+G3)+0,5,
      FP23=0,5*(FP2+FP3)
      GP13=f1.5,* (GP1+GP3)
      GO TO 90
  410 RETURN
      END
```

```
SUBROUTINE MOCE (18 M1 X2 Y1 Y2 E1 E2 V1 V2 T1 T2 P1 P2 R1 R2 V1 VELP1, VELP2 TP1 TP2 RP1 RP2 TEP1 TEP2 P511 P512 COMMON MU, COMST, THETH, PERT, P1 X3A, Y3A, E3A, V3A, T3A, P3A, R3A, VELP3,
      1TP3A, PP3A, TEP3A, PS13A
       CONTION G. GO. R. DIAM, RHOP, PR. CPART
        1=-1
        00 TO (10,20), 18
C
C
                  REDEFINE DATA TRANSFERRED THROUGH CALL STATE'S
                                                                                  FOR
                  WALL POINT SOLUTION
    10 X5=X1
        Y5=Y1
        E5=E1
        V5=V1
        T5=T1
        P5=P1
        25=21
        VELP5=VELP1
        TP5=TP1
        RP5=RP1
        TEP5=TEP1
        PSI5=PSI1
        TANTH-SIN(THETH)/COS(THET')
        X4=X1
        Y4=Y1
        E4=EJ
        74=V1
        T4=T1
        P4=P1
        34=R1
        VELP4=VELP1
        T:4=TP1
        RP4=RP1
        TEP4=TEP1
        PS14=P511
        GO TO 43
C
C
                  MEDEFINE DATA TRANSFERRED THROUGH CALL STATEMENT FOR
C
                  CENTERLINE SOLUTION
    2º X5=X2
        Y5=Y2
        E5=£2
        V5=V2
        75≈T2
        P5=P2
```

THE RESERVE

```
75=R2
VELP5=VELP2
      TP5=TP2
       2P5=2P2
       TEP5=TEP2
       PS 15=PS 12
      X4=X2
      Y4=Y2
       F4=F2
      14=V2
       T4=T?
       P4=P2
       24=22
      YELP4=VELP2
       TP4=TP2
       ?P4=?P2
       TEP4=TEP2
       PS14=PS12
       CALL COSEP (Y1, E1, V1, T1, P1, R1, VELP1, TEP1, RP1, TP1, S1, H, Q1, APU, APV,
      1ARU, ARV, CE, G1, F, FP, GP1, B, C, D)
       S13=S1
       013=01
       G13=G1
       GP13=GP1
   GO TO (40,00), 18
46 CALL COEFP (Y2,E2,V2,T2,P2,R2,VELP2,TEP2,RP2,TP2,S,H2,Q2,A8U,APV, 1ARU,ARV,CE,G2,F2,FP2,GP,B,C,D)
       1123=H2
       Q23=Q2
       F23=F2
       FP23=FP2
   90 1=1+1
       GO TO (100,180), IB
C
                MALE POINT SOLUTION
C
  190 X3A=(Y5-Y2+H23*X2-X5*TA'IT'I)/(H23-TANT'I)
       Y3A=Y2+1!23*(X3A-X2)
       T3A=T!!!T!!
       F3A=(02)+P2+T2-T3A-F23*(Y3A-Y2)+FP23*(X3A-X2))/223
       90 TO 216
000
                 CESTFFLINE SOLUTION
  18C X3A=X1-Y1/S13
       Y34=0.0
```

```
T3A=0.0
    P3A=(013*P1-T1+G13*Y1-GP13*(X3A-X1))/013
210 CONTINUE
1F(1) 310,310,330
310 CALL COEFP (Y5,E5,V5,T5,P5,R5,VELP5,TEP5,RP5,TP5,S,H,Q,APU,APV,
   1A005, A0V5, CE, G2, F, 5P, GP, 95, C5, D5)
             CALCULATE THE COEFFICIENTS AT POINT 4
    CALL CHEEP (Y4,E4,V4,T4,P4,R4,VELP4,TEP4,RP4,TP4,S,H,Q,APIJ4,APV4,
   1A37, A37, C34, G2, E, EP, G2, 3, C, D)
    C35=C5
    B35=B5
    D35=D5
    ARU35=ARU5
    ARV35=ARV5
    APU43=APU4
    APV43=APV4
    0E43=0E4
    30 T. 34P
330 B35=(B3+B5) ±0.5
    C35# C3+C5)*~.5
    D35=4.5*(D3+D5)
    ACU35=0.5*(ARU3+ARU5)
    /'\V35=0.5*(/?\V3+A?\V5)
APU43=0.5*(APU4+APU3)
    / PV43=0.5 = (APV6+/PV3)
    CE45=f.5*(CF4+CE3)
340 V3A=Y5+(P5-P3A-ACU35*(X3A-X5)~ACV35*(Y3A-Y5))/R35
     23A=05+(23A-25)/035-935*(X3A-X5)
     TF'IP=23A/(2*23A)
     SOS=CONST*SQNT(TEMP)
     E3A=Y3A/COS
     11P3=VELP4*COS(TP4)+APU43*(X3A-X4)
     VP3=VELP4*S1 1(TP4)+APV43*(X3A-A4)
VELP3=SQ1T(UP3**2+YP3**2)
     YOUT3=VP3/UP3
     TP3A=ATAH(YDDT3)
     TEP3A=TEP4+CF43*(X3A-X4)
     PST3A=PST4
     30 TO (342,344), 18
342 393A=(PFL3T*(PS13A-PS12)/P1-3P2*VELP2*COS(TP2)*0.5*(Y7A**2-Y2**2)
    1+(X3A-X2)+Y2*RP2*VELP2*S1H(TP2))/(0.5*UP3*(Y3A**2-Y2**2)-Y3A*VELP3
    2*SIH(TP3A)*(X3A~X2))
     60 TO 348
344 ?P3A=(PFL?T*PS11/P1-?P1*VELP1*COS(TP1)*0.5*Y1**2+(X1-X3A)*Y1
```

```
175LP1*S!!!(TP1))/(0.5*UP3*Y1**2)
  346 CONTINUS
       IF(1) 350,350,410
  35° CALL COEFP (Y3A, E3A, V3A, T3A, P3A, R3A, VELP3, TEP3A, RP3A, TP3A, S3, H3, 1Q3, APU3, APV3, ARU3, ARV3, CE3, G3, F3, FP3, GP3, B3, C3, D3)
       GO TO (399,370), 18
000
                  CENTERLINE APPROXIMATION
  370 STY=SIM(T1)/Y1
        D=1.C/SQRT(E3A**2-1.0)
       A⇒ATAH(D)
       STMA=SIM(T3A-A)
       G3=G3+STY/(E3A*STMA)
       90 TO 400
  390 1123=(112+113) +0.5
        0.23 = (0.2 + 0.3) * 0.5
        F23# F2+F3)*9.5
        FP23= 0.5 * (FP2+FP3)
       GO TO (90,400), 13
  498 S13=(S1+S3)*0.5
        0.13 = (0.1 + 0.3) * 0.5
        613 = (61 + 63) * 0.5
        GP13=0.5*(GP1+GP3)
        GO TO 90
  410 RETURN
        EIID
```

C	SAMPLE DATA	A CASE			
1.4	29.27	0.7.			
0,0005	2000.A	500.Q	0.8972		
3	35	C	1		
0.0	0.605485	1.0,736	330.31	15.Q	1296100.0 187.9731
123.7.6	15.0	76.7.112	298.05	1.Q	•
0.00002	0.0027425	1.0736	330.31	7.5.	1296100.0 187.9731
123.76	7.5.	76.7.1128	298-05	0.25	
0.00004	0.0.	1.0736	330.31	0 . n,	1296100.0 187.9731
123.76	9.0	76.7.112	298.05	0.0	-