데이터분석 분야

지속가능한 축제 유치를 위한

대중교통 접근성 분석과 탄소발자국 경감 방안 제안

Team 멋쟁이토마토

목 차

•

01

02

03

제안 배경

데이터 분석

아이디어 제안

PART 1. 제안 배경 _ 01. 제안 배경

제안 배경 ① 코로나19 종식으로 인한 여행 및 관광에 대한 사람들의 관심도 증가

울저: 내한민국 감영병 포틸 (https://dportal.kdca.go.kr/pot/cv/trend/dmstc/selectMntrgSttus.do)

경기일보 (24.10.21)

제23회 이천쌀문화축제, 관람객 전년 대비 38% 증가 등 성료

연합뉴스 (24.10.14)

"울산 장생포 수국 페스티벌 방문객 작년보다 2배 증가"

뉴스핌 (24.04.11)

강진 서부해당화 봄꽃축제 전년 대비 88% 방문객 증가

PART 1. 제안 배경 _ 01. 제안 배경

제안 배경 ② 지역 방문자 수 및 관광지출액의 꾸준한 증가

출처: 한국관광 데이터랩

(https://datalab.visitkorea.or.kr/datalab/portal/loc/getLocalDataForm.do#)

AS-IS TO - BE 차량을 이용한 대중교통 이용을 통한 축제 방문객의 증가 탄소발자국 경감 탄소발자국 증가로 지속 가능한 축제 유치 환경오염 증가 " 지속가능한 축제 유치를 위한 대중교통 접근성 분석 및 탄소발자국 경감 방안 제시 "

PART 2. **데이터 분석** _ 01. 데이터 분석 파이프라인

PART 2. 데이터 분석 _ 02. 분석 축제 선정

1. OD데이터가 제공된 기간 내에 진행된 축제인가?

2. 충분히 많은 수의 참가자가 참가한 축제인가?

3. 축제 지역이 중복되지 않는가?

9월 1일 ~ 10월 15일내에 진행된 축제 중 5개 선정

PART 2. 데이터 분석 _ 02. 분석 축제 선정

지역 내 축제방문 비율 확인 및 지역 내 축제 방문객의 이동수단 확인

'지역 내 방문'이 **99.6**%를 차지 축제 방문객 중 **76.2**%가 **차량**을 이용하여 축제에 방문

지역 내 축제방문객의 이동수단 비율 ### 자항 ### 시내버스 지하철 기타 도보 철도 항공기 76.2%

마지막 도보시간이 길수록 방문객의 접근 피로도가 증가할 것이라는 예상

강릉, 임실의 마지막 도보시간이 상대적으로 높게 나타남

루트별 평균 환승 횟수가 많을수록 방문객의 접근 피로도가 증가할 것이라는 예상

'부산 → 임실', **'서울 → 강릉 경포호수광장**' 방문객의 루트별 평균 환승 횟수가 높음

축제기간과 축제기간 전/후의 이동속도에 차이가 있을 것이라는 예상

축제기간 내 이동수단의 평균 속도가 타 기간에 비해 느림 축제기간 시 축제지역 내 인구 집중 및 교통체증 발생

교통수단별 평균 이동속도 (축제기간/전/후 비교)

*추석 기간을 고려하여 기간을 2주 전으로 지정

*추석 기간을 고려하여 기간을 2주 전과 1주 후로 지정

축제별 방문객의 TOP 5 지역을 지도에 표시

축제에 방문한 방문객이 출발한 지역은 **모두 축제지 근방**임을 확인

방문객 4위

방문객 5위 🔳

서울 세계불꽃축제

대전 국제와인엑스포

강릉 커피축제 (강릉 스피드스케이팅 경기장)

강릉 커피축제 (강릉 경포호수광장)

임실 치즈축제

방문데이터, 귀가데이터, 목적별 시간대별 이동/체류 인구 비교

• - - - - - - - - - - - - - - -

시간대별 **축제 체류 인구**와 **귀가 체류 인구**가 서로 부합함

대전 축제 체류와 귀가 TOP5 체류

부산 축제 체류와 귀가 TOP5 체류

PART 2. **데이터 분석** _ 04. 데이터 수집

OD데이터 수집 및 전처리

···········• [대회 측에서 제공한 OD데이터 수집 및 전처리]

데이터	데이터 내용	데이터 수집 및 전처리 과정
SK telecom SKT 제공 OD데이터	・이동 목적 및 수단 구분 ・범위: 2023년 9월 1일 ~ 2023년 10월 15일 ・항목: 1) 전국 동 단위 인구 수 2) 전국 동 → 동 이동인구 수 ・행정동코드: 2023년 7월 기준	· [수집] 제공 데이터 · [전처리] 방문 데이터 + 귀가 데이터 · [전처리 상세 1] 방문 데이터: 대중교통을 이용하여 축제에 방문한 방문객 데이터 · [전처리 상세 2] 귀가 데이터: 대중교통을 이용하여 축제에서 귀가한 방문객 데이터

[OD 데이터]

origin	dest	date	start_time	end_time	gender	age	modal	origin_purpose	dest_purpose	od_dist_avg	od_duration_avg
S	D	20230902	10	14	0	0	5	0.0	5	283507.0	214.0
S	D	20230902	9	12	0	0	5	0.0	5	238549.0	160.0
S	D	20231006	13	17	1	0	5	0.0	5	375989.0	223.0
S	D	20231006	15	17	0	0	5	0.0	5	344481.0	102.0
S	D	20231013	17	21	1	0	5	5.0	4	342636.0	207.0
S	D	20230902	19	23	0	2	5	5.0	0	339198.0	240.0
S	D	20230904	16	20	1	4	5	3.0	0	378417.0	218.0
S	D	20230904	17	20	1	1	5	4.0	5	224869.0	180.0
S	D	20230907	17	19	0	2	5	5.0	5	290467.0	149.0
S	D	20230908	14	18	0	3	5	4.0	5	407495.0	238.0
S	D	20230909	18	21	1	2	5	5.0	0	270993.0	209.0

PART 2. 데이터 분석 _ 04. 데이터 수집

교통편 데이터 추가 수집

············• [Tmap 대중교통 길찾기 API를 이용하여 데이터 수집]

데이터	데이터 내용	데이터 수집 상세
Tmap 대중교통 길찾기 API	· 수집 경로: Tmap 대중교통 길찾기 API · 수집 범위: 축제 방문 예상 루트 · 수집 내용: 예상 루트에 맞는 교통편 및 경로 · 강릉 커피 축제는 두 장소에서 개최, 두 장소 구분 (A: 스피드스케이팅 경기장 B: 경포호수광장)	· [수집 범위] - 출발지: 임의로 정한 출발지(서울역/부산역); 축제 지역 내 대표 역(대전역/강릉역 등) - 도착지 : 대전, 부산, 강릉, 임실, 서울 축제 장소 - 수집 경로: 서울 → 대전, 부산, 강릉A, 강릉B, 임실, 서울 / 부산 → 대전, 부산, 강릉A, 강릉B, 임실, 서울 대전 → 대전 / 강릉 → 강릉A / 강릉 → 강릉B / 임실 → 임실

[지역별 코드 구분]

지역	코드
대전	D
부산	В
강릉 (스피드스케이팅 경기장)	GA
강릉 (경포호수광장)	GB
임실	ı
서울	S

[데이터 예시]

routeID	transitID	transit	description	time
SD01	1	WALK	-	303
SD01	2	TRAIN_1	KTX산천	4215
SD01	3	WALK	-	254
SD01	4	BUS	일반:707	1974
SD01	5	WALK	-	249
SD01	99	totalDistance	-	151529
SD01	99	totalTime	-	6995
SD01	99	totalWalkDistance	-	959

[상세 설명]

- · routeID: 출발지로부터 도착지로 가는 루트 코드
- · [형식]: '출발지 코드 + 도착지 코드 + 루트 번호'
- 다중 경로의 경우, 각각 하나의 경로로 카운트
- · 소요 시간(time)은 초(s) 단위
- · 루트 간 비교를 위한 상세정보 추가

(totalDistance, totalTime, totalWalkDistance)

PART 2. 데이터 분석 _ 05. 데이터 전처리

축제 방문객의 군집을 나누고, 세부 특성을 파악하기 위한 데이터 전처리 진행

데이터 전처리 파생변수 추가 · 이동속도 (speed) 축제기간 내 방문객의 distance*60이동속도를 파악하기 위해 이동속도 파생변수 추가 duration * 1000*단위: km/h · 주말 여부 (isWeekend) 주중/주말이 섞여 있는 데이터의 - False: 평일 주말 여부를 확인하기 위해 주말 여부 파생변수 추가 - True: 주말 · 축제기간 포함 여부 (isFestival) 전체 기간인 데이터의 - False: 축제기간 X 축제기간 포함 여부를 구분하기 위해 축제기간 포함 여부 파생변수 추가 - True: 축제기간 O

전처리 완료 데이터

isFest ival	i sWeek end	week Num	speed
False	True	5	57.33
False	True	5	67.54
False	True	5	79.49
False	True	5	102.72
False	True	5	61.02

PART 2. 데이터 분석 _ 06. 최종 데이터셋

축제 방문객의 방문 데이터부터 귀가 데이터까지 포함한 데이터셋 생성

방문 데이터

1) 출발 목적: 모든 목적

2) 도착 목적: 기타/쇼핑여가/여행

3) 기간: 전체 기간

4) 이동수단: 차량을 제외한 모든 이동수단

	출발지	도착지(축제 지역)		출발지	도착지(축제 지역)
1	서울 전체 (11)	대전 (2020055000)	9	서울 전체 (11)	서울 (1156054000)
2	부산 전체 (26)	대전 (3020035000)	10	부산 전체 (26)	서울 (1156054000)
3	대전 전체 (30)	대전 (8020055000)	11	서울 전체 (11)	강룡(1) (511505/200)
4	서울 전체 (11)	부산 (2625052000)	12	부산 전체 (26)	강릉(1) (511505/200)
5	부산 전체 (26)	부산 (2633052000)	13	강룡 전체 (51)	강릉(1) (511505/200)
6	서울 전체 (11)	임실 (4575034000)	14	서울 전체 (11)	강룡(2) (5115058000)
7	부산 전체 (24)	임실 (45/034000)	15	부산 전체 (26)	강릉(2) (5115058000)
8	전북 전체 (45)	임실 (45/5034000)	16	강릉 전체 (31)	강릉(2) (5115058000)

귀가 데이터

1) 출발 목적: 기타/쇼핑여가/여행

2) 도착 목적: 귀가

3) 기간: 전체 기간

4) 이동수단: 차량을 제외한 모든 이동수단

	출발지	도착지(축제 지역)		출발지	도착지(축제 지역)
1	대전	-	4	서울	2.
2	부산		5	강룡 스피드 스케이팅 경기장	
3	임실		6	강물 경포호수광장	

[X_data]

변수	변수 정의	데이터타 입	변수	변수 정의	데이터타입		
origin	출발지	str	num_transfer	환승 수	int		
dest	도착지	str	isFestival	축제 기간 포함 여부	bool		
gender	성별	int	isWeekend	주말 여부	bool		
age	연령대	int	speed	이동속도	float		
origin_purpose	출발지 목적	str	start_sin	출발시간_sin	float		
dest_purpose	도착지 목적	str	start_cos	출발시간_cos	float		
od_dist_avg	이동거리 평균	float	end_sin	도착시간_sin	float		
od_duration_avg	이동시간 평균	float	end_cos	도착시간_cos	float		
max_time	최대 이동시간	float	weekNum	주 번호	int		
num_transit_meth ods	이용 이동수단 수	int	predict_time	예상 대기시간(도보시간)	int		

[y_data]

modal	이동수단	str
-------	------	-----

이동거리, 시간을 기준으로 군집을 나누어 군집별 특성 파악

군집화

[군집화란?]

주어진 데이터들의 특성을 고려해 유사한 데이터들로부터 데이터 집단(Cluster)을 정의하고 데이터 집단의 대표점을 찾는 것

[군집화 사용 이유]

유사한 특성을 가진 데이터들을 군집화하여 군집의 특성을 추출함으로써 Insight를 도출하여 문제 해결을 위한 해결방안 제시에 도움을 줄 것으로 예상

사용 모델

[K-means Algorithm] 주어진 데이터를 k개의 클러스터로 묶는 알고리즘으로, 각 클러스터와 거리 차이의 분산을 최소화하는 방식으로 동작 [특징 및 장점] 간편한 분석 알고리즘 적용 과정 · 적은 계산량 · 신속한 처리 속도

군집 수 결정

1. 서울 세계 불꽃 축제

군집 분포

군집을 통해 파악한 특성

[축제 특성]

- · 부산·임실·강릉에 비해 방문객들의 평균 이동 거리 및 시간이 줄어듦
- · 타 지역 축제에 비해 지하철의 이용 비율이 높게 나타남
- 9세 이하 30대, 10대 40대의 비율이 높은 것으로 보아, 가족 단위 방문 예상

- · 지하철/시내버스를 이용하여 축제를 방문하는 방문객이 높음 (Cluster 1)
- · 거리가 멀수록 출발시간이 앞당겨짐 (Cluster 0~3)
- · 평균 이동거리가 가까워도 소요시간이 200분 이상이 있는 것을 보아 교통체증이 극심했음을 추측할 수 있음 (Cluster 0)

2. 부산 국제 영화제

군집 분포

군집을 통해 파악한 특성

[축제 특성]

- · 서울 · 대전에 비해 사람들의 평균 이동 거리 및 시간이 늘어남
- · 타 지역 축제에 비해 시내버스의 이용 비율이 높게 나타남
- · 메인 컨텐츠인 '아시아콘텐츠어워즈'가 진행된 일요일이 가장 많은 방문객을 보임

- · 주 방문 연령대는 20~30대 (Cluster 0~3)
- · 이동거리가 멀어질수록 남성 방문객의 비율이 증가 (Cluster 2~3)
- · 이동거리가 가까움에도 불구하고 소요시간이 200~300분인 데이터를 확인, 교통체증이 있었을 것으로 예상 (Cluster 0)

3. 대전 국제 와인 EXPO

군집 분포

군집을 통해 파악한 특성

[축제 특성]

- · 타 지역 축제에 비해 교통체증이 덜 나타남
- · 근처에 공원이 있어 9세 이하와 30대 방문객의 비율이 높은 것으로 예상됨
- · 축제가 마무리되는 시간대인 17시부터 방문객들의 귀가 비율이 높아짐
- · 이용한 교통수단 중 차량의 비율이 타 지역 축제에 비해 월등히 높음 (택시 예상)

- · 대중교통을 이용해 축제를 방문하는 방문객이 거리가 멀수록 감소 (Cluster 0~3)
- · 축제 방문이 목적인 방문객의 출발시간과 도착시간이 앞당겨짐 (Cluster 0~3)
- · 시간과 거리에 상관없이 방문객 9세 이하의 비율이 높음 (Cluster 0~3)

4. 강릉 커피 축제 (강릉 스피드 스케이팅 경기장)

군집 분포

군집을 통해 파악한 특성

[축제 특성]

- · 타 지역에 비해 도착 목적의 '기타', '여행'의 비율이 높음
- 9세 이하, 30대, 40대의 비율이 높은 것으로 보아, 가족 단위 방문으로 예상됨
- 모든 군집에서 여성의 비율이 남성보다 높음

- · 거리가 가장 먼 군집에서 '철도'를 이용한 방문객의 비율이 높음 (Cluster 1)
- · 여성 방문객의 비율(77.4%)이 높음 (Cluster 2)
- · 이동거리가 가장 먼 군집에서 9시에 가장 많이 출발함 (Cluster 3)

5. 강릉 커피 축제 (강릉 경포호수광장)

군집 분포

군집을 통해 파악한 특성

[축제 특성]

- · 타 지역 축제에 비해 여행을 목적으로 방문한 방문객의 비율이 높음
- · 경포호가 있어 20대 방문객의 비율이 높음
- · 방문객 성별 비율의 차이가 근소한 것으로 보아 연인 단위로 방문한 것으로 추측됨

- · 중간거리에서 일정하지 않은 소요 시간을 나타내는 것으로 보아 교통 체증의 영향을 크게 받는 것으로 추측됨 (Cluster 1)
- · 거리가 멀수록 철도 이용 방문객 비율이 높아짐 (Cluster 3)
- · 도착시간 13~14시에 방문객 비율이 높음 (Cluster 0~3)

6. 임실 N 치즈 축제

군집 분포

군집을 통해 파악한 특성

[축제 특성]

- · 철도를 이용한 방문객이 거의 없는 것으로 나타남
- · 30대 ~ 50대 방문객의 비율이 높음
- · 9세 이하 방문객의 비율이 높은 것으로 보아 가족 단위로 참가하는 방문객이 많다고 추측할 수 있음

- · 여성에 비해 방문하는 남성의 비율이 매우 높음 (Cluster 1~3)
- 대부분의 방문객은 지역 내 방문 또는 인근 지역에서 방문
- · 짧은 거리에서도 소요 시간이 300분 가까이 걸리는 것으로 보아 교통 체증이 심하고 축제장 입구에서의 혼잡이 예상됨 (Cluster 0)

PART 2. 데이터 분석 _ 08. MODELING

PART 2. 데이터 분석 _ 08. MODELING

부분 의존도(PDP)를 통한 모델 해석

부분 의존도 그래프(PDP, Partial Dependence Plot)를 통해 개별 변수가 예측에 미치는 영향 해석

평균 이동거리

평균 이동거리가 길수록 시내버스의 확률 감소, 지하철/철도/항공기의 확률 증가

평균 이동시간

평균 이동시간이 **25분 이내**인 경우, **시내버스/도보**의 확률 증가 **25분 이상 ~ 63분 이내**인 경우, **지하철/기타**의 확률 증가 **63분 이상**인 경우, **철도/항공기**의 확률 증가

목적지

시내버스는 '강릉 커피축제', 지하철은 '서울세계불꽃축제', 도보는 '대전 와인엑스포', 철도는 '임실치즈축제', 항공기는 '부산 국제 영화제'일 때, 확률 증가

시간/거리 기반 접근성, 환승/교통수단 접근성으로 대중교통 접근성 지표 설계

시간 기반 접근성 (A_time)

$$A_{
m time} = rac{T_{
m max} - T}{T_{
m max} - T_{
m min}}$$

(Tmax: 최대 이동시간, Tmin: 최소 이동시간)

환승 접근성 (Trans)

$$Trans = rac{T_{max} - T_{min}}{T_{max} - (T_{walk} + (N_{trans} imes T_{wait}))}$$

(Twalk: 도보 시간, Ntrans: 환승 수, Twait: 환승 이동시간)

거리 기반 접근성 (A_distance)

$$A_{
m distance} = rac{D_{
m max} - D}{D_{
m max} - D_{
m min}}$$

(Dmax: 최대 이동거리, Dmin: 최소 이동거리)
*D:실제 이동거리에는 가중중앙값이 사용됨.

교통수단 접근성 (Availability)

$$A_{ ext{availability}} = rac{N}{N_{ ext{max}}}$$

(Nmax: 전체 교통수단 수, N: 경로 내 이용가능한 교통수단 수)

XGBoost를 통한 변수 중요도 추출, 그에 따른 차등적 가중치 부여

가중치 산정 비율

- · Feature Importance Plot을 참고하여 가중치 산정
- · 가중치의 총 합은 1

거리 접근성 가중치 = $(w_distance) = 0.4$

시간 접근성 가중치 = $(w_{time}) = 0.3$

환승 접근성 가중치 = $(w_{trans}) = 0.2$

교통수단 접근성 가중치 = $(w_availability) = 0.1$

대중교통 접근성 지표 산출 공식 (Acomposite)

$$A_{composite} = w_{time} \times A_{time} + w_{distance} \times A_{distance} + w_{trans} \times A_{trans} + w_{availability} \times A_{availability}$$

대중교통 접근성 지표 계산 결과

경로별	시간접근성	거리접근성	환승접근성	교통수단접근성	대중교통접근성지표
ВВ	0.883992	0.949002	0.623631	1	0.919525
BD	0.842105	0.545072	0.527446	0.75	0.65115
BGA	0.026307	0.552765	0.979995	0.6	0.484997
BGB	0.089209	0.02831	0.942118	0.6	0.28651
BI	0.494594	0.190829	0.273036	0.8	0.359317
BS	0.634827	0.00883	0.519794	1	0.397939
DD	0.803841	0.786422	0.66018	1	0.787757
GGA	0.467466	0.617453	0.797243	0.5	0.59667
GGB	0.927336	0.998612	0.819548	0.666667	0.908222
II	0.25641	0.96136	-0.113317	0.5	0.104188
SB	0.230561	0.999511	0.619648	1	0.692902
SD	0.372775	0.594218	0.478011	1	0.545122
SGA	0.982265	0.556357	0.974372	1	0.812097
SGB	0.482986	0.847266	0.51336	0.8	0.666474
SI	0.335281	0.46351	0.515787	0.75	0.464146
SS	0.831081	0.877381	0.579934	1	0.816263

대중교통 접근성 지표를 높이기 위한 아이디어 제안

제안 1: 대중교통 연계 서비스 도입

- · 지하철 및 버스 연계 패키지: 축제 입장권과 연계된 지하철 및 시내버스 이용권을 할인된 가격으로 제공
- · 교통수단 환승 정보 제공: 축제 방문객을 위해 최적화된 환승 정보를 제공하는 전용 웹페이지나 앱 개발
- · 막차 시간 연장: 축제 종료 시간이 늦은 경우, 막차 시간 연장 또는 특별 노선을 추가 운행해 방문객의 귀가 편의성을 보장

제안 1-2 : 축제 전용 셔틀버스 운영 강화

- · 전용 경로 설정: 주요 교통 정체 구간을 우회할 수 있는 전용 셔틀버스 경로를 설정해 빠른 이동을 지원
- · **셔틀버스 정류장 확대**: 주요 도심지와 인근 지역에 셔틀버스 정류장을 확충하여 접근성을 높임
- · 실시간 버스 위치 정보 제공: 모바일 앱을 통해 방문객이 셔틀버스의 실시간 위치와 도착 예상 시간을 확인할 수 있도록 지원

대중교통 접근성 지표를 높이기 위한 아이디어 제안

제안 2: 주차 관리 및 차량 이용 억제 정책

- · **주차 요금 인상 및 예약제:** 축제 기간 동안 주차 요금을 인상하고 사전 예약제로 운영해 차량 이용을 줄임
- · 카풀 및 라이드셰어링 장려: 카풀 참여자에게 주차 요금 할인을 제공하거나 전용 주차 공간을 마련
- · **주차장 혼잡도 실시간 정보 제공**: 주차장 혼잡도를 실시간으로 알리는 시스템을 구축해 방문객의 주차 부담을 줄임
- · **전기차 주차 요금 할인**: 전기차의 주차 요금을 할인하는 정책을 시행하여 전기차의 축제 참여 장려

제안 3:교통혼잡 완화 캠페인

- · 사전 교통 안내 캠페인: 축제 공식 웹사이트와 SNS 채널을 통해 대중교통 이용 장점 및 교통 혼잡 시간대 피하기 등 사전 안내 실시
- · **친환경 교통 인증 프로그램:** 대중교통을 이용한 방문객에게는 소정의 기념품이나 할인 혜택을 제공해 참여를 유도
- · **지역 주민 참여 프로그램**: 지역 주민들이 자발적으로 교통 안내원으로 참여해 방문객의 대중교통 이용을 독려

od_dist_avg_mean 지표를 사용한 탄소발자국 계산

*od_dist_avg_mean: 축제 지역, 기간, 목적(쇼핑여가, 기타, 여행), 이용교통수단 조건을 걸어서 나온 od_dist_avg 값의 가중평균

차량

Co2 발생량 단위 Kg/일 = (od_dist_avg_mean / 16.04) *2.097

시내버스

Co2 발생량 단위 Kg/일 = (od_dist_avg_mean_bus/ 15.35) * 2.5

지하철

Co2 발생량 단위 Kg/일

= (od_dist_avg_mean_subway * 4 * 0.4781) / (30*24)

- * 주행 시 1km당 약 3~5 kWh의 전력을 소비
- * 지하철 평균 속도 30km/h로 설정
- * (전기 사용량 * 0.4781)

KTX 및 철도

Co2 발생량 단위 Kg/일

= (od_dist_avg_mean_tra * 2.5 * 0.4781) /(200*24)

- * 주행 시 1km당 약 2.5 kWh에서 3 kWh의 전력 소비
- * KTX 평균 속도 200km/h로 설정
- * (전기 사용량 * 0.4781)

od_dist_avg_mean 지표를 사용한 탄소발자국 계산

*od_dist_avg_mean: 축제 지역, 기간, 목적(쇼핑여가, 기타, 여행), 이용교통수단 조건을 걸어서 나온 od_dist_avg 값의 가중평균

지역축제	차량	시내버스	지하철	철도
여의도	8662.957	5629.28	173.86	39.09
임실	20207.26	14706.11	-	34.88
강릉(스피드스케이팅 경기장)	15609.97	7588.38	799.67	113.53
강릉(경포호수공원)	11571.76	5597.02	-	84.58
부산	6306.47	5398.74	89.21	106.41
대전	7072.41	2340.79	83.27	-

탄소 중립 축제를 위한 탄소 배출량 상쇄 프로그램

· 핵심 목표: 기업/국가에 적용되던 '탄소 배출권 거래'의 개념을 축제 방문객에게 적용함으로써, 지속 가능한 축제 유치 기대

축제 부스 아이디어

- 1. '**탄소 배출권 거래**' 개념을 홍보하는 부스 운영
- 2. 해당 축제의 주차 시설은 공용 주차장 요금의 3~4배로 책정 (단, 축제 홍보시 탄소 중립 축제로 인한 주차 요금 관련 공지)
- 3. 대중교통 이용자는 **굿즈**로 교환 가능한 '탄소 배출권' 지급 차량 이용자는 '탄소 배출권'을 <mark>소액</mark>으로 구매할 수 있는 기회 (탄소배출권구매시,주차요금감면/할인 혜택)
- 4. 탄소 배출권 수량 제한, 소진 시 SNS 공지
- 5. 사전에 부스 관련 홍보 → 비싼 주차 요금으로 인한 거부감 해결

기대 효과

- 1) '탄소 배출 상쇄'의 명목으로 차량 이용 절감 \rightarrow 축제로 인해 발생하는 **교통 혼잡 감소 효과**
- 2) '탄소 배출권 거래' 개념 홍보 → 해당 개념은 일상생활에도 접목 가능
- 3) **환경 친화적 이미지** 강화

PART 3. 아이디어 제안 _ 03. 기대효과

축제 주최측

- · 방문객의 원활한 이동으로 축제 **운영 효율성 향상**
- · 방문객 체류 시간 증가 및 소비 촉진으로 **지역 경제 활성화** 기대
- · 친환경 교통 인증 프로그램과 탄소 배출 상쇄 프로그램으로 **환경 친화적 이미지** 강화
- · 대중교통과 연계된 교통 인프라 확충을 통해 지역 상권과의 연계 강화로 **지역 경제 활성화** 및 **홍보** 효과

- · 축제 주변 지역의 교통 혼잡 완화 및 탄소 배출 절감 효과
- · 교통 혼잡 완화를 통한 지역 주민의 **불편 감소**

축제 방문객

- · 방문객의 이동 **편의성 증가**
- · 교통 혼잡 및 주차 예약제를 통한 방문객의 **대기 시간 감소** 및 **축제 참여도 증가**
- · 친환경 축제 참여 **만족감**