Informatică

Problema 1.

În câte moduri se pot grupa 4 perechi de paranteze rotunde astfel încât să formeze o secvenţă echilibrată? Numim secvenţă echilibrată secvenţa de paranteze ce respectă regulile din matematică, orice paranteză deschisă este închisă într-un mod simetric (exemplu: secvenţa "()(())" este echilibrată, în timp ce secvenţa "()(()" nu este echilibrată).

```
a. 42 b. 20 c. 16 d. 14 e. 7 f. 15
```

Problema 2.

```
Se dă structura:

struct clasa {
    int nr;
    char cod[3];
    struct {
        char nume[50];
        float medie[17];
    } elev[30];
};
```

Știind că în variabila **elev** sunt memorate datele pentru exact 30 de elevi, ordonați alfabetic, care este varianta corectă pentru a verifica dacă al treilea elev din clasa **c** (variabilă de tip **clasa**), în care se studiază 17 materii, obține bursă de merit, dacă elevii eligibili sunt cei cu media anuală cel puțin egală cu 9.50? Se dă funcția al cărei antet este **float suma(float v[], int n)**, care calculează suma elementelor vectorului **v**.

```
a. ((suma(c.elev[2].medie, 17) / 17) >= 9.5)

b. ((suma(c.elev[3].medie) / 17) >= 9.5)

c. ((suma(c.elev[3].medie, 17) / 17) >= 9.5)

d. ((suma(elev[2].medie, 17) / 17) >= 9.5)

e. ((suma(c.medie, 17) / 17) >= 9.5)

f. ((suma(c.elev[2].medie, 17)) >= 9.5)
```

Problema 3.

Care este numărul minim de muchii ce trebuie adăugate într-un graf neorientat cu 2024 de noduri și 1024 de componente conexe pentru a deveni conex?

```
a. 2023 b. 1023 c. 2024 d. 1024 e. 512 f. 1016
```

Problema 4.

Se dă următorul subprogram:

```
int f(int &a, int b) {  a++; \\ b+=a; \\ ++a=a==b; \\ b+=10; \\ ++a+=b/3; \\ return a++; \}
```

Care va fi rezultatul returnat în urma apelului $\mathbf{f}(\mathbf{a}, \mathbf{b})$ și ce se va afișa în urma instrucțiunii **cout** $<<\mathbf{a}<<$ ' ' $<<\mathbf{b}$;, dacă pentru \mathbf{a} se citește valoarea 3, iar pentru \mathbf{b} se citește valoarea 7?

a. 887 **b.** 987 **c.** 997 **d.** 897 **e.** 8912 **f.** 9912

Problema 5.

Fie următoarea funcție:

```
int f(int n) {  if (n == 0) \{ \\ return 2024; \\ } else \{ \\ return f(n / 10) + n \% 10; \\ \}  }
```

Ce se va returna în urma apelului f(1234)?

a. 2024 **b.** 2023 **c.** 2043 **d.** 2034 **e.** 2022 **f.** 2032

Problema 6.

Fie următoarea secvență de instrucțiuni:

```
int a = 0, b = 1;
for (int i = 3; i <= n; i++) {
     int c = a + b;
     a = b;
     b = c;
cout << b;
```

Ce variantă dintre cele de mai jos produce același rezultat pentru orice n număr întreg?

a.
$$\frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$

b.
$$(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n$$

c.
$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{\frac{n}{2}} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{\frac{n}{2}}$$

d.
$$\frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n + \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$

b.
$$(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n$$

c. $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^{\frac{n}{2}} - \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^{\frac{n}{2}}$
d. $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n + \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^n$
e. $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^{\frac{n}{2}} + \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^{\frac{n}{2}}$

f.
$$(\frac{1+\sqrt{5}}{2})^n + (\frac{1-\sqrt{5}}{2})^n$$

Problema 7.

Care este numărul maxim de noduri dintr-un arbore binar care are înălțimea 10?

a. 1024

b. 2048

c. 1029

d. 2047

e. 4048

f. 1017

Problema 8.

Un subprogram generează toate anagramele cuvântului litera, cu proprietatea că niciun caracter nu se află la poziția inițială. Care este numărul soluțiilor astfel generate?

a. 256

b. 690

c. 265

d. 720

e. 125

f. 128

Problema 9.

Se dă vectorul $\mathbf{v} = \{1, 2, 3, 4, 5\}$. Care este complexitatea unui algoritm care sortează vectorul v în ordine crescătoare prin metoda inserției?

a. O(n) **b.** $O(\log n)$ **c.** O(1) **d.** $O(n\log n)$ **e.** $O(n^2)$ **f.** $O(2^n)$

Problema 10.

Ce va reține variabila ${\bf c}$ în urma executării instrucțiunilor de mai jos?

```
\begin{array}{l} {\rm char}\ c[] = "informatica"; \\ {\rm int}\ i = 0; \\ {\rm for}\ (i = 0;\ i < strlen(c);\ i++); \\ {\rm if}\ (strchr("aeiou",\ c[i]))\ \{ \\ {\rm c}[4]\ \text{-=}\ 32; \\ \} \\ {\rm c}[5] = 0; \end{array}
```

a. infoRMATICA b. info c. inforMatica d. infor0 e. infoR f. infor