

Dérivée d'une fonction

I. Nombre dérivé - Fonction dérivée - tangente à une courbe.

Définition :

Soit f est une fonction définie sur un intervalle I. La courbe (C) ci-dessous est la représentation graphique de f dans un repère orthonormal (O,\vec{i},\vec{j}) . M et N sont deux points de (C) d'abscisses respectives $a\in I$ et $x=a+h\in I$ où $h\in \mathbb{R}^*$.

M et N ont donc pour coordonnées: M(a; f(a))et N(x; f(x)), c'est à dire: N(a+h; f(a+h)).

On a donc: $\vec{MN}(x-a;f(x)-f(a))$ soit $\vec{MN}(h;f(a+h)-f(a))$

La droite (MN) sécante à (C) a donc pour coefficient directeur:

$$m = \frac{f(x) - f(a)}{x - a} = \frac{f(a+h) - f(a)}{h}.$$

Si la courbe (C) possède en M une tangente de coefficient directeur d, alors lorsque le point N se rapproche de M, c'est à dire lorsque x tend vers a, ou, ce qui revient au même, lorsque h tend vers 0,

les sécantes (MN) vont atteindre une position limite qui est celle de la tangente (MP) en M à (C).

Ceci peut alors se traduire à l'aide des coefficients directeurs par:

$$\lim_{xarrowa} \frac{f(x) - f(a)}{x - a} = d \text{ , c'est à dire}: \quad \lim_{harrow0} \frac{f(a + h) - f(a)}{h} = d.$$

On a donc:
$$\lim_{harrow0} \left[\frac{f(a+h) - f(a)}{h} - d \right] = 0.$$

Si nous appelons Φ , la fonction définie pour $h \in \mathbb{R}^*$ et $a+h \in I$ par :

$$\Phi(h) = \frac{f(a+h) - f(a)}{h} - d.$$

on a:

$$\lim_{harrow0}\Phi(h)=0$$
 et $h\Phi(h)=f(a+h)-f(a)-dh$, ce qui s'écrit aussi: $f(a+h)=f(a)+dh+h\Phi(h)$.

Réciproquement, s'il existe un réel d et une fonction Φ telle que, pour tout $h \in \mathbb{R}^*$ et $a+h \in I$, on ait: $f(a+h)=f(a)+dh+h\Phi(h)$ avec $\lim_{harrow0}\Phi(h)=0$,

on en déduit que:
$$\Phi(h) = \frac{f(a+h) - f(a)}{h} - d$$
 et donc que: $\lim_{harrow0} \frac{f(a+h) - f(a)}{h} = d$.

Ceci nous permet donc de donner les trois définitions équivalentes:

Définition 1:

Si f est une fonction définie sur un intervalle I et si $a \in I$.

Lorsqu'il existe un nombre réel d tel que, pour tout réel h proche de 0, on ait

$$\lim_{harrow0} \frac{f(a+h) - f(a)}{h} = d$$

On dit que la fonction f est dérivable en a et que $d=f^{\prime}(a)$ est le nombre dérivé de f en a.

Définition 2 :

Si f est une fonction définie sur un intervalle I et si $a \in I$.

Lorsqu'il existe un nombre réel d tel que, pour tout réel $x \in I$ et proche de a, on ait:

$$\lim_{xarrowa} \frac{f(x) - f(a)}{x - a} = d$$

On dit que la fonction f est dérivable en a et que d = f'(a) est le nombre dérivé de f en a.

II. Fonction dérivable sur un intervalle I. Fonction dérivée d'une fonction dérivable sur I

Définition :

On dit que f est dérivable sur un intervalle I lorsqu'elle est dérivable en tout point de I.

Lorsque f est dérivable sur un intervalle I, la fonction qui à tout $x \in I$ associe le nombre dérivé de f en x est appelée fonction dérivée de f sur I. Cette fonction est notée f'.

Interprétation graphique du nombre dérivé.

Si f est une fonction définie sur un intervalle I. Si $a \in I$ et si f est dérivable en x=a, alors :La courbe représentative de f possède une tangente au point M(a;f(a)) et le coefficient directeur de cette tangente est le nombre dérivé f'(a)de la fonction f en x=a.

REMARQUES:

Si le graphique de f ne possède pas de tangente au point M d'abscisse x=a, alors la fonction f n'est pas dérivable en a. C'est le cas de la fonction valeur absolue en x=0.

Le graphique d'une fonction peut fort bien posséder une tangente en un point sans que la fonction soit dérivable en ce point : il suffit que le coefficient directeur de cette tangente n'existe pas (tangente parallèle à l'axe des ordonnées).

C'est le cas de la fonction racine carrée en x=0.

III. Équation de la tangente à une courbe

Définition:

Si fonction f est dérivable en a, la tangente (MP) à la courbe (C) en M d'abscisse x=a existe. Elle a pour coefficient directeur m=f'(a).

Son équation est donc de la forme: y=mx+p, où m=f'(a) et son ordonnée à l'origine p peut être calculée.

Il suffit d'écrire que (MP) passe par $m=f^{\prime}(a)$.

On a donc: $f(a) = f'(a) \times a + p$. Ceci donne: $p = f(a) - a \times f'(a)$.

Donc: y = f'(a)x + f(a) - af'(a)que l'on écrit souvent sous l'une des formes, plus faciles à retenir:

Equation de la tangente au point M(a; f(a)):

Définition :

$$y = f'(a)(x-a) + f(a)$$
 ou $y - f(a) = f'(a)(x-a)$.

IV. Signe de la dérivée et sens de variation d'une fonction

Nous admettrons sans démonstration les théorèmes suivants:

Théorème 1 :

Soit f est une fonction dérivable sur un intervalle I.

- Si f est croissante sur I, alors pour tout $x \in I$, on a: $f'(x) \ge 0$
- Si f est décroissante sur I, alors pour tout $x \in I$, on a: $f'(x) \leq 0$.
- Si f est constante sur I, alors pour tout $x \in I$, on a: f'(x) = 0.

Théorème 2 :

Soit f est une fonction dérivable sur un intervalle I.

- Si, pour tout $x \in I$, on a: $f'(x) \ge 0$, alors f est croissante sur I.
- Si, pour tout $x \in I$, on a: $f'(x) \le 0$, alors f est décroissante sur l.
- Si, pour tout $x \in I$, on a: f'(x) = 0, alors f est constante sur I.

Théorème 3 :

Soit f est une fonction dérivable sur un intervalle I.

- Si, pour tout $x \in I$, on a: f'(x) > 0 (sauf peut-être en des points is olés 0 où), alors f est strictement croissante sur I.
- Si, pour tout $x\in I$, on a: f'(x)<0 (sauf peut-être en des points is 0 où),alors f est strictement décroissante sur l.

En particulier:

Soit f une fonction dérivable sur un intervalle [a;b].

Propriété:

- Si, pour tout $x \in [a;b]$, on a f'(x) > 0, alors f est strictement croissante sur [a;b].
- Si, pour tout $x \in [a; b]$, on a f'(x) < 0, alors f est strictement décroissante sur [a; b].

EXEMPLES:

1) Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2$.

f est dérivable sur \mathbb{R} et f'(x) = 2x pour tout $x \in \mathbb{R}$.

- · Pour tout $x \in]-\infty;0]$, on a $f'(x) \leq 0$, donc f est décroissante sur $]-\infty;0]$.
- · Pour tout $x \in [0; +\infty[$, on a $f'(x) \ge 0$, donc f est croissante sur $[0; +\infty[$.

Bien que f'(0) = 0, on a de façon plus précise :

- · Pour tout $x \in]-\infty;0[$, on a f'(x) < 0, donc f est strictement décroissante sur $]-\infty;0[$.
- Pour tout $x \in]0; +\infty[$, on a f'(x) > 0, donc f est strictement croissante sur $]0; +\infty[$.

V. Changement de signe de la dérivée et extremum d'une fonction

Nous admettrons sans démonstration les théorèmes suivants:

Théorème:

Si f est une fonction dérivable sur un intervalle I,

Et si f admet un maximum local ou un minimum local en $\,x=a\,$ différent des extrémités de l'intervalle I,

Alors: f'(a) = 0.

1.Cas particulier où f est dérivable sur un intervalle ouvert.

Propriété :

Si f est une fonction dérivable sur un intervalle ouvert I,

Et si f admet un maximum local ou un minimum local en $a \in I$,

Alors: f'(a) = 0.

Propriété:

Si f est une fonction dérivable sur un intervalle ouvert I,

et si $a \in I$ et si f'(x) s'annule pour x = a en changeant de signe,

Alors f(a) est un extremum local de f sur I.

EXEMPLES:

1) Soit la fonction f définie sur \mathbb{R} par $f(x)=2x^3-3x^2-12x+5$. f est dérivable sur \mathbb{R} avec $f'(x)=6x^2-6x-12=6(x+1)(x-2)$.

f'(x) s'annule en x=-1 et x=2 en changeant de signe, car :

- $\bullet \ \ \text{pour x appartenant à } -]\infty; -1[\ \text{, on a} : f'(x)>0 \ \text{donc f est strictement croissante sur } -]\infty; -1[$
- •
- pour x appartenant à]-1;2[, on a : f'(x) < 0 donc f est strictement décroissante sur]-1;2[.
- pour x appartenant à $]2;+\infty[$, on a : f'(x)>0 donc f est strictement croissante sur $]2;+\infty[$.

La fonction f possède donc un maximum local en x=-1 et un minimum local en x=2.

Toute cette étude peut être résumée dans le tableau ci-dessous :

Voici un morceau des représentations graphiques de f et de f':

