# Optimal Pricing in Repeated Posted-Price Auctions with Different Patience of the Seller and the Buyer



Arsenii Vanunts (avanunts@yandex.ru), <u>Alexey Drutsa</u> (adrutsa@yandex.ru)

## Setup of repeated posted-price auctions

Equal goods (e.g., ad spaces) are repeatedly offered for sale by a seller to a **single** buyer over T rounds (**the time horizon**).

- The buyer holds a private **fixed** valuation  $v \in \mathbb{R}_+$  for each of those goods, and v is **unknown** to the seller.
- At each round t = 1, ..., T, a price  $p_t$  is offered by the seller, and an allocation decision  $a_t \in \{0,1\}$  is made by the buyer:

$$a_t = 0$$
, when the buyer rejects, and  $a_t = 1$ , when the buyer accepts.

The seller applies a **pricing algorithm** A that sets prices  $\{p_t\}_{t=1}^T$  in response to buyer decisions  $\mathbf{a} = \{a_t\}_{t=1}^T$  referred to as a **buyer strategy**.

The price  $p_t$  can depend only on  $\{a_s\}_{s=1}^{t-1}$  and the horizon T.

#### Utility of the buyer

$$Sur_{\gamma_B}(A, \mathbf{a}, v) := \sum_{t=1}^{T} \gamma_B^{t-1} a_t (v - p_t)$$

 $\gamma_B \in (0,1]$  is the buyer's discount

### Utility of the seller

$$\operatorname{Rev}_{\gamma_S}(A, \mathbf{a}) := \sum_{t=1}^{T} \gamma_S^{t-1} a_t p_t$$

 $\gamma_S \in (0,1]$  is the seller's discount

### Two-stage game: strategic buyer and the goal of the seller

The seller knows prior distribution of valuations D and the discount  $\gamma_B$ .

- 1. The seller announces a pricing algorithm A in advance.
- 2. The buyer selects an optimal strategy  $\mathbf{a}^{\mathrm{Opt}}(A, v, \gamma_B) \in \mathrm{argmax}_{\mathbf{a}} \mathrm{Sur}_{\gamma_B}(A, \mathbf{a}, v)$ .

The seller seeks for a pricing  $A^*$  with maximal expected strategic revenue (ESR):

$$\mathbb{E}_{v \sim D} \left[ \text{Rev}_{\gamma_{\mathcal{S}}} \left( A, \mathbf{a}^{\text{Opt}}(A, v, \gamma_{B}) \right) \right] \rightarrow \text{max}_{A}$$

## Dynamic pricing

## Pricing algorithm is a labeled complete binary tree



# Background: optimal static pricing

Optimal static pricing is s.t. constantly offers a price  $p^*$  that maximizes

$$H_D(p) := p \mathbb{P}_{v \sim D} [v \geq p] = p(1 - F_D(p)),$$

where  $F_D(p)$  is CDF of the prior distribution of valuations D.

The price  $p^*$  is known as the Mayerson price.

## Research questions

- 1. What is the optimal algorithm and its expected strategic revenue?
- 2. How much more is the maximal ESR than the constant Myerson's one?
- 3. Can the seller extract expected revenue more than in the static Myerson pricing having limits on computational resources?

# Background: equal patience $(\gamma_S = \gamma_B)$

Dynamic pricing cannot help to extract more revenue than optimal static pricing.

Theorem [Devanur et al., 2015]. Let the discount rates be equal:  $\gamma_S = \gamma_B = \gamma$ . Then the optimal constant pricing  $A_1^*$  is optimal among all pricing algorithms and the optimal revenue is  $\Gamma p^* (1 - F_D(p^*)) = \Gamma H_D(p^*)$ , where  $\Gamma = \sum_{t=1}^T \gamma^{t-1}$ .

# Less patient seller: the case of $\gamma_S \leq \gamma_B$

#### "Bid-deal" algorithm

The seller "accumulates" all her revenue at the first round by proposing the buyer a "big deal" that incentivizes him to pay a large price at the first round and get all goods in the subsequent rounds for free, or, otherwise, get nothing.



<u>Theorem.</u> Let the discount rates be s.t.  $\gamma_S \leq \gamma_B$ . Then the "Big-deal" algorithm  $A_{hd}^*$  is optimal among all pricing algorithms and the optimal revenue is  $\Gamma^B p^* (1 - F_D(p^*))$ , where  $\Gamma^B = \sum_{t=1}^T \gamma_B^{t-1}$ .

#### The constant algorithm $A_1^*$ is no longer optimal

Relative ESR of the optimal algorithm  $A_{bd}^*$  w.r.t. the optimal constant one  $A_1^*$  is

$$\frac{\Gamma^B}{\Gamma^S} = \frac{\sum_{t=1}^T \gamma_B^{t-1}}{\sum_{t=1}^T \gamma_S^{t-1}} \ge 1$$

All results of this section hold even for non-geometric discounts such that  $\gamma_t^S \leq \gamma_t^B$ 

# Less patient buyer: the case of $\gamma_S \geq \gamma_B$

Definition. Let  $\gamma$  be a discount, then an algorithm A is said to be completely active (CA) for  $\gamma$ , if for any strategy **a** there exists a valuation  $v \in \mathbb{R}_+$  s.t.  $S_{\mathbf{a}}(v) =$ S(v), where  $S_{\mathbf{a}}(u) := \operatorname{Sur}_{v}(A, \mathbf{a}, u)$  and  $S(u) := \operatorname{Sur}_{v}(A, \mathbf{a}^{\operatorname{Opt}}(A, u, \gamma), u)$ , i.e., the surplus function  $S_a$  (as a line) is tangent to the optimal surplus function S.

<u>Proposition.</u> Let  $\gamma_S \geq \gamma_B$ . Then optimal algorithm  $A^*$  can be found among completely active algorithms for  $\gamma_B$ .

#### The fundamental property of a CA algorithm:

it bijectively corresponds to the break (discontinuity) points  $\{v_1, \dots, v_k\}$  of the derivative of its surplus function S(), which is piecewise linear,  $k = 2^T - 1$ .

These points allow easily parametrize the expected strategic revenue:

$$\mathbb{E}_{v \sim D}\left[\operatorname{Rev}_{\gamma_{S}}\left(A, \mathbf{a}^{\operatorname{Opt}}(A, v, \gamma_{B})\right)\right] = \sum_{i=1}^{k} (F_{D}(v_{i+1}) - F_{D}(v_{i}))\operatorname{Rev}_{\gamma_{S}}(A, \mathbf{a}^{i}),$$

where  $\text{Rev}_{\gamma_S}(A, \mathbf{a}^i)$  can be linearly expressed in terms of the algorithm prices and, thus, in terms of the break points  $\{v_1, \dots, v_k\}$ . Let

- $\Xi_{T,\gamma_S,\gamma_B}$  be the  $k \times k$  matrix that encodes these linear transformations
- $1 \mathbf{F}_D(\mathbf{v}) = \{1 F_D(v_i)\}_{i=1}^k \in \mathbb{R}^k$
- $\Delta^k = \{u_1, \dots, u_k \mid 0 \le u_1 \le \dots \le u_k\} \subset \mathbb{R}^k$

## Optimize the multidimensional bilinear-like functional

$$L_{D,\gamma_S,\gamma_B}(\mathbf{v}) \coloneqq \left(1 - \mathbf{F}_D(\mathbf{v})\right)^{\mathrm{T}} \mathbf{\Xi}_{T,\gamma_S,\gamma_B} \mathbf{v}, \qquad \mathbf{v} \in \Delta^k$$

#### Properties of the functional:

- $\rightarrow$  the functional is continuously differentiable as many times as the CDF  $F_D$
- > its derivatives have simple form and can be easily
- $\rightarrow$  the domain  $\Delta^k$  is convex and has a simple form of simplex
- > the matrix  $\Xi_{T,\gamma_S,\gamma_R}$  is positive definite on the domain  $\Delta^k$

Hence, a variety of gradient methods can be used to find the solution.

When optimal break points  $\{v_1, \dots, v_k\}$  are found, use them to find optimal algorithm prices (they linearly depend on the break points).

All results of this section hold even for non-geometric discounts such that

$$\gamma_{t+1}^S/\gamma_t^S \ge \gamma_{t+1}^B/\gamma_t^B$$

If patience is not equal, dynamic pricing can help the seller boost expected revenue

- If the seller is less patient, get payments for all goods upfront in the first round
- If the seller is more patient, optimize a multidimensional functional of bilinear-like form. This functional is a multivariate analogue of the one used to determine Myerson's price and can be used.
- 1. to find an optimal dynamic pricing, i.e., by efficient gradient-based methods;
- 2. to construct an optimal low-dimensional approximation to improve revenue even in the game with a large horizon.

# Efficient approximations and optimal pricing algorithms with constraints (in the case of $\gamma_S \geq \gamma_B$ )

## Approximation by optimal $\tau$ -step pricing algorithm

The functional  $L_{D,\gamma_S,\gamma_B}(\mathbf{v})$ 

- > does not help for games with infinite horizon;
- > suffers from dimensional complexity (the number of variables is  $2^T 1$ ).

<u>Definition.</u> An algorithm A is said to be a  $\tau$ -step pricing algorithm, if it is constant from the  $\tau$ -th round on (i.e., prices in the rounds  $\tau + 1, ..., T$  are equal to the price offered in the round  $\tau$ ).

The optimal  $\tau$ -step pricing algorithm can be found by means of optimization of the functional  $L_{D,\gamma_S,\gamma_B}(\mathbf{v})$  for a reduced game with horizon  $\tau$  and the discount factors  $\hat{\gamma}_{\tau}^{S} = \sum_{t=\tau+1}^{T} \gamma_{S}^{t-1}$  and  $\hat{\gamma}_{\tau}^{B} = \sum_{t=\tau+1}^{T} \gamma_{B}^{t-1}$  at the  $\tau$ -th round.

Let  $\mathfrak A$  denote the set of all algorithms and  $\mathfrak A_{ au}$  be the subset of au-step algorithms.

<u>Proposition.</u> Let the discount rates be s.t.  $\gamma_S \ge \gamma_B$  and let

- $) \quad \mathsf{OPT} = \max_{A \in \mathfrak{A}} \mathbb{E}_{v \sim D} \left[ \mathsf{Rev}_{\gamma_S} \left( A, \mathbf{a}^{\mathsf{Opt}} (A, v, \gamma_B) \right) \right] \text{ be the maximal ESR;}$
- > OPT<sub>τ</sub> =  $\max_{A \in \mathfrak{A}_{\tau}} \mathbb{E}_{v \sim D} \left[ \text{Rev}_{\gamma_S} \left( A, \mathbf{a}^{\text{Opt}}(A, v, \gamma_B) \right) \right]$  be the maximal ESR in the class of  $\tau$ -step pricing algorithms.

Then

$$OPT_{\tau} \le OPT \le OPT_{\tau} + \sum_{t=\tau+1}^{T} \gamma_S^{t-1} \mathbb{E}_{v \sim D}[v].$$

The parameter  $\tau$  allows the seller make a trade-off between: the achievable fraction of OPT and the computational complexity.

## Example: a 3-step pricing algorithm



#### Optimal algorithms with constraints

One more structural insight of our functional  $L_{D,\gamma_S,\gamma_B}(\mathbf{v})$ :

- > Optimization over the set of break points  $\{v_1, ..., v_k\}$  of the derivative of the surplus envelope S() allows to find optimal algorithms with constraints that can be expressed in terms of these break points.
- E.g., the seller is able to control the probability of buyer usage of each strategy  $\mathbf{a}^i$  through a constraint on  $F_D(v_{i+1}) F_D(v_i)$  (e.g., setting it to 0).

**Example:** the seller is looking for an algorithm s.t. strategies active with positive probability are monotone, i.e. of the form (reject n rounds, accept remaining T-n rounds) for some  $n \leq T$ . Hence, if  $\mathbf{a}^i$  is not monotone, then  $v_i = v_{i+1}$ , i.e. the line  $S_{\mathbf{a}^i}$  is tangent to the envelope S in only one point. To find an optimal algorithm among those for which  $v_i = v_{i+1}$ , one needs slightly update the functional  $L_{D,\gamma_S,\gamma_B}$ : replace i-th and (i+1)-th rows in the matrix  $\mathbf{E}_{T,\gamma_S,\gamma_B}$  by their sum, do the same with i-th and (i+1)-th columns, and remove i-th components from the vectors  $1 - \mathbf{F}_D(\mathbf{v})$  and  $\mathbf{v}$ . The modified optimization functional for the problem with constraints will have T+1 variables since it is equal to the number of strategies that are active with positive probability.

# Numerical experiments (in the case of $\gamma_S \ge \gamma_B$ )

#### We find

- > optimal  $\tau$ -step algorithms  $A_{\tau}^*$ ,  $\tau = 2, ..., 6$ ;
- in infinite games  $T = \infty$ ;
- with the valuation v uniformly distributed in [0,1], i.e.,  $F_D(v) = v$  (experiment results for exponential and beta distributions are similar).

#### The baseline

Expected revenue of the optimal static pricing:  $H_D(p^*)\Gamma^S$ , where  $\Gamma^S = \sum_{t=1}^T \gamma_S^{t-1}$ .

#### Figure contains

- > @ the top: prices of the optimal 4-step algorithm  $A_4^*$  for all nodes (prices are denoted by  $A(\mathbf{n})$ ,  $\mathbf{n}$  is a node encoded by a string of 0 and 1);
- > @ the bottom: the relative expected strategic revenue of  $A_{\tau}^*$  (w.r.t.  $A_1^*$ );
- > @ the left: for  $\gamma_S = 0.8$  and different  $0.01 \le \gamma_B \le 0.8$ ;
- > @ the right: for  $\gamma_B = 0.2$  and different  $0.2 \le \gamma_S \le 0.995$ .



#### We observe that

- The constant pricing  $A_1^*$  is not optimal:  $\tau$ -step algorithms are better.
- > Significant boost of revenue can be obtained even when the minimal possible step aside from the constant pricing is made: e.g., change dynamically the price only after the first round and get+20% to revenue.
- > Expected revenue of  $A_{\tau}^*$  converges quite quickly to the optimal one.
- If  $|\gamma_S \gamma_B| \to 0$ , then the optimal pricing  $A^*$  converges to the optimal constant one  $A_1^*$  (empirically showing that  $H_D$  is a special case of  $L_{D,\gamma_S,\gamma_B}$ ).

## Incomplete information about buyer discount

## Case (1): the seller knows only a lower bound $\hat{\gamma}_B$ s.t. $\gamma_S < \hat{\gamma}_B \leq \gamma_B$

The "Big-deal" algorithm can be useful in this case as well! Just change it slightly:



Theorem. Let the discount rates be s.t.  $\gamma_S < \gamma_B$  and the seller knows only a lower bound  $\hat{\gamma}_B$  s.t.  $\gamma_S < \hat{\gamma}_B \le \gamma_B$ . Then the expected strategic revenue of the "Bigdeal" algorithm as depicted above is at least  $\hat{\Gamma}^B p^* (1 - F_D(p^*))$ , where  $\hat{\Gamma}^B = \sum_{t=1}^T \hat{\gamma}_B^{t-1}$ . This revenue is better than the optimal constant one:

$$OPT_1 = \Gamma^S p^* (1 - F_D(p^*)) < \hat{\Gamma}^B p^* (1 - F_D(p^*)) \le \Gamma^B p^* (1 - F_D(p^*)) = OPT$$

# Case (2): the seller uses inexact $\gamma_{B,\varepsilon}=\gamma_B+\varepsilon$ and optimizes $L_{D,\gamma_S,\gamma_{B,\varepsilon}}$

The seller uses the functional  $L_{D,\gamma_S,\gamma_B,\varepsilon}$  to find an optimal algorithm, assumes buyer's discount is  $\gamma_{B,\varepsilon}=\gamma_B+\varepsilon$ , but faces a buyer with true discount  $\gamma_B$ . We evaluate the loss in revenue by the following numerical experimentation: T=5,  $v\sim D=Uniform[0,1]$ , and  $\gamma_S=0.5$  (different sets of parameters give qualitatively the same results).



In figure: (a) the expected strategic revenue of this seller is divided by the ESR of a well-informed seller (i.e. s.t.  $\varepsilon = 0$ ); (b) the ESR of Myerson's constant pricing. We observe that

- if  $\varepsilon$  is small enough (for  $\varepsilon = 0.02$ , or  $\varepsilon \ge 4\%$  of  $\gamma_B$ ), then the seller is still able to extract over 99% of the optimal ESR;
- even if  $\varepsilon$  is very large (for  $\varepsilon = 0.1$ , or  $\varepsilon \ge 20\%$  of  $\gamma_B$ ), the seller is still able to extract over 97% of the optimal ESR for most cases ( $\gamma_B \le 0.4$ );
- if the seller is able to just separate  $\gamma_B$  of  $\gamma_S$  with a decent margin, then she is able to gain extra revenue (w.r.t. the optimal constant pricing).