# Représenter des analyses géométriques de données Des résultats aux graphiques avec R/RStudio et ggplot2

Anton Perdoncin

ERC Lubartworld, EHESS, Cens

04 juin 2021

- 1 Une famille de méthodes graphiques
- Quelques règles pratiques
- 3 Réalisation de l'ACM et premières visualisations
- Mise en forme des résultats statistiques
- Graphiques sur-mesure pas-à-pas

### Section 1

#### Introduction

# **Objectifs**

- Montrer comment réaliser, avec R et RStudio, des graphiques et des tableaux statistiques sur-mesure, permettant de présenter et visualiser les résultats d'une analyse géométrique des données.
- Donner un exemple d'espace de travail quantitatif reproductible.
- Plaider pour l'usage des solutions de contrôle de version git (intégré à RStudio).

#### Avant de commencer

- Rendez-vous sur le **dépôt GitHub** dédié à cette présentation : https://github.com/APerdoncin/visual\_agd
- Les usagers de GitHub peuvent cloner le dépôt sur leur ordinateur (git clone ...)
- Les autres peuvent simplement télécharger le contenu du dépôt et le copier dans un dossier dédié sur leur ordinateur (Code > Download ZIP)
- Deux scripts à exécuter :
  - 00-setup : packages (à installer éventuellement) et options
  - 01-data : téléchargement, "dézipage" et importation des données de l'EEC 2018

5 / 45

## Un espace de travail reproductible

- Des données brutes aux résultats et à la rédaction sans intervention parallèle ou externe sur les données
- Une organisation logique qui distingue les types de fichiers et les types d'opérations réalisées
- La garantie de **retrouver le même résultat** . . . à condition d'appliquer les mêmes procédures.

6/45

## Git: un ami qui vous veut du bien

- En finir avec les V1, V2, V142, VDEF ... VDEFDEF ... **VDERDESDERS**
- Sourcer et retrouver les modifications réalisées sur les fichiers
- Travailler de façon collaborative en minimisant les risques de conflits
- Un petit coût d'entrée... très nettement diminué par l'intégration de Git à RStudio

## Pourquoi le tutoriel sur Quanti?

- Nouvelles fonctionnalités et nouveaux packages disponibles :
  - explor (Julien Barnier);
  - FactoMineR;
  - factoextra;
  - GDAtools (Nicolas Robette): ggcloud\_variables, ggcloud\_indiv, ggadd\_ellipses, ggadd\_interaction, ggadd\_supvar.
- Mais... comment faire pour pouvoir tout paramétrer : modalités à représenter, couleurs, symboles, etc.
- ggplot2 : fonctionnalités graphiques surpuissantes pour des graphiques infiniment paramétrables
- mettre au propre des routines pouvant être adaptées à une diversité de données d'enquête et aux objectifs d'administration de la preuve statistique.

#### Les données

- Un objet "bac à sable": le travail intérimaire... sans aucune ambition sociologique (du moins pas aujourd'hui!)
- De "vraies" données d'enquête : fichier détail de l'EEC 2018 (http://insee.fr/fr/statistiques/4191029#consulter)
- On travaille directement sur les données recodées, "prêtes-à-jouer" (mais le script de recodage est disponible sur GitHub) : 4632 individus et 13 variables.

#### Section 2

Une famille de méthodes graphiques

### Résumer l'information le mieux possible

Analyses géométriques des données incluent notamment :

- Analyse en composantes principales (ACP)
- Analyse des correspondances multiples (ACM)
- Classifications (ascendantes hiérarchies notamment, CAH)
- Analyse factorielle de tableaux multiples (AFM), etc.

Un principe et résultat commun : fournir la **meilleure description possible des corrélations** dans un jeu de données. (Cibois, 2000 ; Le Roux et Rouanet, 2014 ; Volle, 1997)

# Résumer l'information le mieux possible



FIGURE 1 – La forme cheval

### Le parti-pris graphique

- Un usage répandu dans les enseignements et les publications : ne présenter que le fameux graphique en croix
  - un ou plusieurs plans factoriels et les nuages des modalités actives et/ou supplémentaires
  - parfois (rarement) les nuages d'individus encore plus rarement habillé ou structuré
- Les **résultats statistiques** (fréquences, contributions, coordonnées, cosinus carrés) sont rarement présentés.

### Le parti-pris graphique

- Usage cohérent avec l'intérêt intrinsèque des méthodes de réduction de dimentionalité : représenter sur un plan une information très multidimentionnelle...
- A deux condition :
  - que le graphique soit démonstratif ;
  - que l'on prenne garde aux erreurs d'interprétations graphiques (Cibois, 1997).

#### Section 3

# Quelques règles pratiques

# Un graphique démonstratif?

Schématiquement : un graphique utile à l'administration de la preuve doit être lisible, structuré, *self-explaning* et esthétique.

- Sélectionner quelles modalités représenter : quel que soit le critère retenu, tout n'est pas bon à représenter !
- Les noms des variables et les libellés des modalités doivent être présentés en "langage naturel" et non en code hiéroglyphique.
- Les libellés des modalités ne doivent pas se chevaucher.
- 4 Les labels des axes doivent être clairement présentés, et indiquer le pourcentage d'inertie conservé par chaque axe.

## Un graphique démonstratif?

empiéter sur le graphique.

La légende (si nécessaire) doit être positionnée de façon à ne pas

- Oistinguer clairement les types de modalités (actives ou illustratives).
- Oistinguer clairement les variables ou groupes de variables.
- Ne pas oublier l'esthétisme : gammes de couleur permettant de distinguer ce qui doit l'être ; pouvoir aisément passer de la couleur au noir et blanc (ou nuances de gris).

# Un graphique démonstratif?

C'est tout ? Non...

Des graphiques démonstratifs ne suffisent pas à asseoir statistiquement l'argumentation : il faut aussi présenter lisiblement les résultats statistiques de l'analyse géométrique.

# Quels résultats statistiques présenter ?

- Dépend du type d'analyse
- ACP : inerties et corrélations des variables aux axes ;
- AFM: inerties, fréquences, coordonnées, v-test;
- ACM : en plus des inerties :
  - fréquences : repérer les modalités à petits effectifs ;
  - contributions, coordonnées, cosinus carrés, v-test pour chacun des axes interprétés;
  - éventuellement sommer les contributions par variable, ou par groupe de variables;
  - pour chaque modalité illustrative : effectif brut, fréquence, puis coordonnées et cosinus carrés sur chacun des axes interprétés.

### Quels résultats statistiques présenter ?

- Là encore. la mise en forme des tableaux doit être faite avec attention :
  - sur LibreOffice Calc (ou son avatar non libre);
  - dans LateX (package xtable ou macro CalctoLatex / Excel2Latex);
  - RMarkdown: kable et kableExtra ou flextable

Une bonne nouvelle : structurer le tableau des résultats et rassembler les informations utiles à la réalisation des graphiques vont de pair...

#### Section 4

Réalisation de l'ACM et premières visualisations

#### Sélection des variables

"All in all, doing a data analysis, in good mathematics, is simply searching eigenvectors (*valeurs propres*); all the science (or the art) of it is just to find the right matrix to diagonalize." (J.-P. Benzécri)

#### Sélection des variables

#### Réalisation de l'ACM

```
res_acm <- MCA(d_acm, quali.sup = 5:7)</pre>
```

## Premières visualisations : graphiques par défaut



FIGURE 2 - Nuage des variables

## Premières visualisations : graphiques par défaut



FIGURE 3 - Nuage des modalités

## Premières visualisations : graphiques par défaut



FIGURE 4 - Nuage des individus

#### Alternatives

- FactoMineR : possibilité de paramétrer ces graphiques. . . dans certaines limites ; difficulté principale : représenter ensemble modalités actives et supplémentaires.
- factoextra: fonctions utiles pour des représentations rapides.
- explor : paramétrage interactif des graphiques.

#### Section 5

Mise en forme des résultats statistiques

#### Remarques

- Objectif : construire un gros tableau qui comporte toutes les informations pertinentes pour les modalités actives et supplémentaires.
- Modus operandi : on part de l'objet liste res\_acm qui stocke les résultats de l'analyse, on y prend les infos dont on a besoin, et on les manipule pour obtenir les "sous-tableaux" qui sont in fine assemblés.
- Go to 03-visu-agd.R!

#### Section 6

Graphiques sur-mesure pas-à-pas

### Nuage des modalités actives : sélection des modalités

```
resultats_actives %>%
  filter(dim1_contrib > seuil |
           dim2 contrib > seuil) %>%
```

#### Nuage des modalités actives : initialisation

# Nuage des modalités actives : initialisation



# Nuage des modalités actives : points et labels

```
geom_point() +
coord_fixed() +
geom_text_repel(segment.alpha = 0.5)
```

# Nuage des modalités actives : points et labels



# Nuage des modalités actives : axes, ordonnées et abscisses

# Nuage des modalités actives : axes, ordonnées et abscisses



# Nuage des modalités actives : paramétrage des points et de la légende

```
scale_shape_manual(name = "", values = 0:20) +
guides(shape=guide_legend(title = ""))
```

# Nuage des modalités actives : paramétrage des points et de la légende



# Nuage des modalités actives : cosmétique générale

```
theme_minimal() +
theme(legend.position="bottom")
```

## Nuage des modalités actives : résultat final



#### Autres graphiques

Go to 03-visu-agd.R

#### This is the end!

Merci de votre attention!

Mail: anton.perdoncin@ehess.fr

Twitter: @AntonPerdoncin

**GitHub**: https://github.com/APerdoncin

# Bibliographie {-} I

**Cibois** Philippe, 1997, « Les pièges de l'analyse des correspondances », *Histoire & Mesure*, 12(3), p. 299-320.

**Cibois** Philippe, 2000, *L'analyse factorielle. Analyse en composantes principales et analyse des correspondances*, Paris, PUF.

**Le Roux** Brigitte, **Rouanet** Henry, 2014, *Analyse géométrique des données multidimensionnelles*, Paris, Dunod.

Volle Michel, 1997, Analyse des données, Paris, Economica.