Gene Prediction: Statistical Approaches

Outline

- Codons
- Discovery of Split Genes
- Exons and Introns
- Splicing
- Open Reading Frames
- Codon Usage
- Splicing Signals
- TestCode

Gene Prediction: Computational Challenge

 Gene: A sequence of nucleotides coding for protein

 Gene Prediction Problem: Determine the beginning and end positions of genes in a genome cggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcat aagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg

cggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcat aagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg

cggctatgctaatgctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcat tgcggctatgctaagctgggatccgatgacatgatgatgdgctatgctaatgcatgcggctatgcaagctggg aagctgcggctatgctaatgcatgcggctatgctaagctcatgcgg

Central Dogma: DNA -> RNA ->

Central Dogma: Doubts

- Central Dogma was proposed in 1958 by Francis Crick
- Crick had very little supporting evidence in late 1950s
- Before Crick's seminal paper all possible information transfers were considered viable

 Crick postulated that some of them are not viable (missing arrows)

In 1970 Crick published a paper defending the Central Dogma.

Codons

- In 1961 Sydney Brenner and Francis Crick discovered frameshift mutations
- Systematically deleted nucleotides from DNA
 - Single and double deletions dramatically altered protein product
 - Effects of triple deletions were minor
 - Conclusion: every triplet of nucleotides, each codon, codes for exactly one amino acid in a protein

The Sly Fox

- In the following string THE SLY FOX AND THE SHY DOG
- Delete 1, 2, and 3 nucleotifes after the first **'S'**:

```
THE SYF OXA NDT HES HYD OG
THE SFO XAN DTH ESH YDO G
THE SOX AND THE SHY DOG
```

Which of the above makes the most sense?

Translating Nucleotides into Amino **Acids**

- Codon: 3 consecutive nucleotides
- 4 ³ = 64 possible codons
- Genetic code is degenerative and redundant
 - Includes start and stop codons
 - An amino acid may be coded by more than one codon

Great Discovery Provoking Wrong Assumption

- In 1964, Charles Yanofsky and Sydney Brenner proved colinearity in the order of codons with respect to amino acids in proteins
- In 1967, Yanofsky and colleagues further proved that the sequence of codons in a gene determines the sequence of amino acids in a protein
- As a result, it was incorrectly assumed that the triplets encoding for amino acid sequences form contiguous strips of information.

Central Dogma: DNA -> RNA -> CCTGAGCCAACTATTGATGAA transcription CCUGAGCCAACUAUUGAUGAA **RNA** translation Protein **PEPTIDE**

Discovery of Split

- In 1977, Phillip 5 the parts
 Richard Roberts
 experimented with mRNA of hexon, a viral protein.
 - Map hexon mRNA in viral genome by hybridization to adenovirus DNA and electron microscopy
 - mRNA-DNA hybrids formed three curious loop structures instead of contiguous duplex segments

Discovery of Split Genes (cont'd)

ch

;th

at

A.

ier

IA And

ed es IA IP-

ne.

dif-

ms.

- "Adenovirus Amazes at
 Cold Spring Harbor" (1977,
 Nature 268) documented
 "mosaic molecules
 consisting of sequences
 complementary to several
 non-contiguous segments
 of the viral genome".
- In 1978 Walter Gilbert coined the term intron in the Nature paper "Why Genes in Pieces?"

Fig. 1 Transcription map of adenovirus 2 (see Flint Cell 10, 153; 1977).

Fig. 2 a, Pattern of hybridisation between hexon mRNA and the r strand of EcoRI fragment A of adenovirus 2 DNA. b, Regions of adenovirus genome which contribute to hexon mRNA. Figures other than adenovirus DNA markers represent distances in nucleotide base pairs.

are the mosaic molecules synthesised? precursor

Exons and Introns

- In eukaryotes, the gene is a combination of coding segments (exons) that are interrupted by non-coding segments (introns)
- This makes computational gene prediction in eukaryotes even more difficult

Prokaryotes don't have introns - Genes in prokaryotes are continuous

Central Dogma: DNA -> RNA -> CCTGAGCCAACTATTGATGAA transcription CCUGAGCCAACUAUUGAUGAA **RNA** translation Protein **PEPTIDE**

Central Dogma and Splicing

Gene Structure

Splicing Signals

Exons are interspersed with introns and typically flanked by GT and AG

Splice site detection

Consensus splice sites

This figure shows two "sequence logos" which represent sequence conservation at the 5" (donor) and 3" (acceptor) ends of human inflores. The region between the black vertical bars is removed during mRNA splicing. The logos graphically demonstrate that most of the pattern for locating the infron ends resides on the inflorent seasons. The logos also show a common pattern "CAGIGT", which suggests hat the mechanisms hat recognize the two ends of the infron had a common ancestor. See R.M. Stephens and T.D. Schreider, "Features of splicesooms evalution and function inferred from an analysis of the infrondance actuments sites", J. Md. Biol., 226, 1124-1136, (1992)

Donor: 7.9 bits Acceptor: 9.4 bits

Promoters

 Promoters are DNA segments upstream of transcripts that initiate transcription

Promoter attracts RNA Polymerase to the transcription start site

Splicing mechanism

Splicing mechanism

- Adenine recognition site marks intron
- snRNPs bind around adenine recognition site
- The spliceosome thus forms
- Spliceosome excises introns in the mRNA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Activating the snRNPs

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Spliceosome Facilitation

Formation of spliceosome

Intron Excision

Formation of mRNA by excision of spliceosome

mRNA is now Ready

Gene Prediction • Newspaper written in unknown language

- - Certain pages contain encoded message, say 99 letters on page 7, 30 on page 12 and 63 on page 15.
- How do you recognize the message? You could probably distinguish between the ads and the story (ads contain the "\$" sign often)
- Statistics-based approach to Gene Prediction tries to make similar distinctions between exons and introns.

Statistical Approach: Metaphor in Unknown Language

itagonu, kan pomencia masovi izjavu da si priznaju da pomencia za masovi izjavu da si priznaju da oruzja za masovi izjavu da si priznaju da oruzja za masovi izjavu da si priznaja oruzja za masovi izjavu da je prvi put iz

Noting the differing frequencies of symbols (e.g. '%', '.', '-') and numerical symbols could you distinguish between a story and the stock report in a foreign newspaper?

363 0.75 m a foreign newspaper? 363 0.75 812 9.00 870^{A} 19.06 0.76 1505,812 9.00 19.06 0.76 1505,812 9.00 19.06

Two Approaches to Gene Prediction

- <u>Statistical</u>: coding segments (exons) have typical sequences on either end and use different subwords than non-coding segments (introns).
- <u>Similarity-based</u>: many human genes are similar to genes in mice, chicken, or even bacteria. Therefore, already known mouse, chicken, and bacterial genes may help to find human genes.

Similarity-Based Approach: Metaphor in Different Languages

```
plomatic co.

Pentagon says plans the compart war just pentagon says amid the compart the Ir

Pentagon says plans the Ir
```

If you could compare the day's news in English, side-by-side to the same news in a foreign language, some similarities may become apparent

Pentagonu, kana Pentagonu, kana Pentagonu, kana Pomenta Postojanja da pomenta Postojanja oruzja za masovi izjavu Provi put iz

Genetic Code and Stop Codons

2nd base in codon							
		C	O	Α	O		
1st base in codon	U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys STOP Trp	DCAG	3rd base
	С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His GIn GIn	Arg Arg Arg Arg	DCAG	se in codon
	Α	lle lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	DOAG	9
	G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	UC∢G	

UAA, UAG and UGA correspond to 3 Stop codons that (together with Start codon ATG) delineate Open Reading Frames

The Genetic Code

Six Frames in a DNA Sequence

CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACACCCTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACACCCTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC

GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG
GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG
GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG

- stop codons TAA, TAG, TGA
- start codons ATG

Open Reading Frames (ORFs)

- Detect potential coding regions by looking at **ORFs**
 - A genome of length n is comprised of (n/3) codons
 - Stop codons break genome into segments between consecutive Stop codons
 - The subsegments of these that start from the Start codon (ATG) are ORFs
 - ORFs in different frames may overlap

Long vs.Short

- Long open reading frames may be a gene
 - At random, we should expect one stop codon every (64/3) ~= 21 codons
 - However, genes are usually much longer than this
- A basic approach is to scan for ORFs whose length exceeds certain threshold
 - This is naïve because some genes (e.g. some neural and immune system genes) are relatively short

Testing ORFs: Codon

- Create a 64-element hash table and count the frequencies of codons in an ORF
- Amino acids typically have more than one codon, but in nature certain codons are more in use
- Uneven use of the codons may characterize a real gene
- This compensate for pitfalls of the ORF length test

Codon Usage in Human Genome

	U		C		A		G	
U	UUU Phe	57	UCU Ser	16	UAU Tyr	58	UGU Cys	45
	UUC Phe	43	UCC Ser	15	UAC Tyr	42	UGC Cys	55
	UUA Leu	13	UCA Ser	13	UAA Stp	62	UGA Stp	30
	UUG Leu	13	UCG Ser	15	UAG Stp	8	UGG Trp	100
C	CUU Leu	11	CCU Pro	17	CAUHis	57	CGU Arg	37
	CUC Leu	10	CCC Pro	17	CACHis	43	CGC Arg	38
	CUA Leu	4	CCA Pro	20	CAA Gln	45	CGA Arg	7
	CUG Leu	49	CCG Pro	51	CAG Gln	66	CGG Arg	10
A	AUU Ile	50	ACU Thr	18	AAU Asn	46	AGU Ser	15
	AUC 11e	41	ACC Thr	42	AAC Asn	54	AGC Ser	26
	AUA Ile	9	ACA Thr	15	AAA Lys	75	AGA Arg	5
	AUG Met	100	ACG Thr	26	AAG Lys	25	AGG Arg	3
G	GUU Val	27	GCU Ala	17	GAU Asp	63	GGU Gly	34
	GUC Val	21	GCC Ala	27	GAC Asp	37	GGC Gly	39
	GUA Val	16	GCA Ala	22	GAA Glu	68	GGA Gly	12
	GUG Val	36	GCG Ala	34	GAG Glu	32	GGG Gly	15

Codon Usage in Mouse Genome

<u>AA</u>	codon	/1000	<u>frac</u>	<u>AA</u>	codon	/1000	<u>frac</u>
Ser	TCG	4.31	0.05	Leu	CTG	39.95	0.40
Ser	TCA	11.44	0.14	Leu	CTA	7.89	0.08
Ser	TCT	15.70	0.19	Leu	CTT	12.97	0.13
Ser	TCC	17.92	0.22	Leu	CTC	20.04	0.20
Ser	AGT	12.25	0.15				
Ser	AGC	19.54	0.24	Ala	GCG	6.72	0.10
				Ala	GCA	15.80	0.23
				Ala	GCT	20.12	0.29
Pro	CCG	6.33	0.11	Ala	GCC	26.51	0.38
Pro	CCA	17.10	0.28				
Pro	CCT	18.31	0.30	Gln	CAG	34.18	0.75
Pro	CCC	18.42	0.31	Gln	CAA	11.51	0.25

Codon Usage and Likelihood

- An ORF is more "believable" than another if it has more "likely" codons
- Do sliding window calculations to find ORFs that have the "likely" codon usage
- Allows for higher precision in identifying true ORFs; much better than merely testing for length.
- However, average vertebrate exon length is 130 nucleotides, which is often too small to produce reliable peaks in the likelihood ratio
- Further improvement: **in-frame hexamer count** (frequencies of pairs of consecutive codons)

Gene Prediction and Motifs

 Upstream regions of genes often contain motifs that can be used for gene prediction

Promoter Structure in Prokaryotes (E.Coli)

Promoter structure in prokaryotes

Transcription starts at offset 0.

- Pribnow Box (-10)
- Gilbert Box (-30)
- Ribosomal Binding Site (+10)

consensus sequences

Ribosomal Binding Site

1055 E. coli Ribosome binding sites listed in the Miller book

Splicing Signals

- Try to recognize location of splicing signals at exon-intron junctions
 - This has yielded a weakly conserved donor splice site and acceptor splice site
- Profiles for sites are still weak, and lends the problem to the Hidden Markov Model (HMM) approaches, which capture the statistical dependencies between sites

Donor and Acceptor Sites: GT and AG dinucleotides

- The beginning and end of exons are signaled by donor and acceptor sites that usually have GT and AC dinucleotides
- Detecting these sites is difficult, because GT and AC appear very often

Donor and Acceptor Sites: Motif

TestCode

- Statistical test described by James Fickett in 1982: tendency for nucleotides in coding regions to be repeated with periodicity of 3
 - Judges randomness instead of codon frequency
 - Finds "putative" coding regions, not introns, exons, or splice sites
- TestCode finds ORFs based on compositional bias with a periodicity of three

TestCode Statistics

- Define a window size no less than 200 bp, slide the window the sequence down 3 bases. In each window:
 - Calculate for each base {A, T, G, C}
 - max $(n_{3k+1}, n_{3k+2}, n_{3k})$ / min $(n_{3k+1}, n_{3k+2}, n_{3k})$
 - Use these values to obtain a probability from a lookup table (which was a previously defined and determined experimentally with known coding and noncoding sequences

TestCode Statistics (cont'd)

 Probabilities can be classified as indicative of "coding" or "noncoding" regions, or "no opinion" when it is unclear what level of randomization tolerance a sequence carries

 The resulting sequence of probabilities can be plotted

TestCode Sample Output

Popular Gene Prediction Algorithms

• **GENSCAN**: uses Hidden Markov Models (HMMs)

TWINSCAN

 Uses both HMM and similarity (e.g., between human and mouse genomes)