- Changed how I calculate s_x for the second last age group
- Changed how to calculate $_0q_5$ that was previously slightly off
- Given the hypervariance for h a tighter prior and hypervariance for k a more diffused prior, if I loosen the prior on h hypervariance I get crazy estimates again
- Switched to using UNPD census counts instead of WPP population estimates (but using 1960 WPP estimates as baseline)
 - use a separate hypervariance for the baseline population?
- Tried fitting to only 0 50+, 0 50, 5 50+, 5 50, with different combinations of MVN, AR, ARIMA on h and k, estimated h are sill lower than IGME estimates
- Tried using AR around common mean for k and AR around 0 for k, estimated precision for k varies such that in both case are around 2.7
- Tried fitting to just the DHS data, the IGME priors are effective
- Results below shown are fitted to 0-85+ Burkina Faso females
 - Estimated ρ for h and k are very close to 1, hence the almost parallel estimate h to the IGME estimates
 - Wiggly estimated f_x (but the magnitude is small?)
 - Estimated migration proportion insensible at the oldest age groups
 - Estimated $_{45}q_{15}$ are higher than WPP estimates most of the time
 - Currently estimating logit(ρ), i.e. ρ can only be within (0,1), should I scale it to (-1,1)?
 - Fitting too closely to population data?
 - Estimated 0-4 population seems to be consistently higher than the raw data and parallel?

Figure 1: Estimated h

Figure 2: Estimated k

Figure 3: Estimated $_{45}q_{15}$

Figure 4: Estimated total population counts

Figure 5: Estimated 0-4 population counts

Figure 6: Estimated 60+ population counts

Figure 7: Estimated $_{45}g_{15}$

Figure 8: Estimated $_{\infty}g_{80}$

Figure 9: Estimated $_{5}f_{25}$