Chương 4: Định thời CPU - 2

cuu duong than cong . com

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Mục tiêu

- Biết được các khái niệm cơ bản về định thời
- Biết được các tiêu chuẩn định thời CPU
- Hiểu được các giải thuật định thời
- Vận dụng các giải thuật định thời để làm bài tập và mô phỏng

cuu duong than cong . com

Ôn tập chương 4 - 1

- Các khái niệm cơ bản về định thời
- Các bộ định thời
- Các tiêu chuẩn định thời CPU
- Các giải thuật định thời
 - First-Come, First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Priority Scheduling

Bài tập chương 4 - 1

Sử dụng các giải thuật FCFS, SJF, SRTF, Priority để tính các giá trị thời gian đợi, thời gian đáp ứng và thời gian hoàn thành trung bình

Thread	Priority	Burst	Arrival
P_1	40	20	0
P_2	30	25	25
P_3	30	25	30
P_4 cu	u duo 35 than	con 15 con	60
P_5	5	10	100
P_6	10	10	105

Nội dung

- Các khái niệm cơ bản về định thời
 - Các bộ định thời
 - Các tiêu chuẩn định thời CPU
 - Các giải thuật định thời
 - First-Come, First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Priority Scheduling
 - Round-Robin (RR)
 - Highest Response Ratio Next (HRRN)
 - Multilevel Queue
 - Multilevel Feedback Queue

Nội dung

- Các khái niệm cơ bản về định thời
 - Các bộ định thời
 - Các tiêu chuẩn định thời CPU
 - Các giải thuật định thời
 - First-Come, First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Priority Scheduling
 - Round-Robin (RR)
 - Highest Response Ratio Next (HRRN)
 - Multilevel Queue
 - Multilevel Feedback Queue

Round Robin (RR)

- Mỗi process nhận được một đơn vị nhỏ thời gian CPU (time slice, quantum time), thông thường từ 10-100 msec để thực thi
- Sau khoảng thời gian đó, process bị đoạt quyền và trở về cuối hàng đợi ready
- Nếu có n process trong hàng đợi ready và quantum time = q thì không có process nào phải chờ đợi quá (n -1)q đơn vị thời gian

■ Hiệu suất:

- Nếu q lớn: RR → FCFS
- Nếu q nhỏ: q không được quá nhỏ bởi vì phải tốn chi phí chuyển ngữ cảnh
- Thời gian chờ đợi trung bình của giải thuật RR thường khá lớn nhưng thời gian đáp ứng nhỏ

■ Ví du: Quantum time = 20

Process	Burst Time
P1	53
P2	cuu duong 17
P3	68
P4	24

Gantt Chart for Schedule

turnaround time trung bình lớn hơn SJF, nhưng đáp ứng tốt hơn

Quantum time = 1:

- Thời gian turnaround trung bình cao hơn so với SJF nhưng có thời gian đáp ứng trung bình tốt hơn
- U'u tiên CPU-bound process
 - ► I/O-bound
 - CPU-bound

Quantum time và context switch:

Process time = 10

quantum

context switch

12

9

Đinh thời CPU

■ Thời gian hoàn thành trung bình (average turnaround time) không chắc sẽ được cải thiện khi quantum lớn

Quantum time cho Round Robin

- Performance tùy thuộc vào kích thước của quantum time (còn gọi là time slice), và hàm phụ thuộc này không đơn giản
- Time slice ngắn thì đáp ứng nhanh
 - Vấn đề: có nhiều chuyển ngữ cảnh. Phí tổn sẽ cao.
- Time slice dài hơn thì throughput tốt hơn (do giảm phí tổn OS overhead) nhưng thời gian đáp ứng lớn
 - Nếu time slice quá lớn, RR trở thành FCFS

Quantum time cho Round Robin

- Quantum time và thời gian cho process switch:
 - Nếu quantum time = 20 ms và thời gian cho process switch = 5 ms, như vậy phí tổn OS overhead chiếm 5/25 = 20%
 - Nếu quantum = 500 ms, thì phí tổn chỉ còn $\approx 1\%$
 - Nhưng nếu có nhiều người sử dụng trên hệ thống và thuộc loại "interactive" thì sẽ thấy đáp ứng rất chậm
 - Tùy thuộc vào tập công việc mà lựa chọn quantum time
 - Time slice nên lớn trong tương quan so sánh với thời gian cho process switch
 - ▶ Ví dụ với 4.3 BSD UNIX, time slice là 1 giây

Quantum time cho Round Robin (tt)

- RR sử dụng một giả thiết ngầm là tất cả các process đều có tầm quan trọng ngang nhau
 - Không thể sử dụng RR nếu muốn các process khác nhau có độ ưu tiên khác nhau

cuu duong than cong . com

cuu duong than cong . com

Nhược điểm của Round Robin

- Các process dạng CPU-bound vẫn còn được "ưu tiên"
 - Ví dụ:
 - Một I/O-bound process sử dụng CPU trong thời gian ngắn hơn quantum time và bị blocked để đợi I/O.
 - Một CPU-bound process chạy hết time slice và lại quay trở về hàng đợi ready queue (ở phía trước các process đã bị blocked)

Nội dung

- Các khái niệm cơ bản về định thời
 - Các bộ định thời
 - Các tiêu chuẩn định thời CPU
 - Các giải thuật định thời
 - First-Come, First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Priority Scheduling
 - Round-Robin (RR)
 - Highest Response Ratio Next (HRRN)
 - Multilevel Queue
 - Multilevel Feedback Queue

Highest Response Ratio Next

- Chọn process kế tiếp có giá trị RR (Response ratio) lớn nhất
- Các process ngắn được ưu tiên hơn (vì service time nhỏ)

$$RR = \frac{\text{waiting time} + \text{burst time}}{\text{burst time}}$$

Highest Response Ratio Next

Process	Arrival Time	Burst Time
1	0	3
2	2	6
3	4	5
4	6	4
5	8	2

Tại mốc thời gian thứ 9, sau khi P2 thực hiện xong, hàng đợi lúc này có P3, P4 và P5. RR của từng process được tính như sau:

$$RR(P3) = (5+5)/5 = 2$$

$$RR(P4) = (3+4)/4 = 1.75$$

$$RR(P5) = (1+2)/2 = 1.5$$

→ P3 được chọn đưa vào thực thi.

Tại mốc thời gian thứ 14, sau khi P3 thực hiện xong, P4 và P5 được tính RR lại như sau:

$$RR(P4) = (8+4)/4 = 3$$

$$RR(P5) = (6+2)/2 = 4$$

→ P5 được chọn đưa vào thực thi. Sau đó

Nội dung

- Các khái niệm cơ bản về định thời
 - Các bộ định thời
 - Các tiêu chuẩn định thời CPU
 - Các giải thuật định thời
 - First-Come, First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Priority Scheduling
 - Round-Robin (RR)
 - Highest Response Ratio Next (HRRN)
 - Multilevel Queue
 - Multilevel Feedback Queue

Multilevel Queue Scheduling

- Hàng đợi ready được chia thành nhiều hàng đợi riêng biệt theo một số tiêu chuẩn như
 - Đặc điểm và yêu cầu định thời của process
 - Foreground (interactive) và background (batch)
 process,...
- Process được gán cố định vào một hàng đợi, mỗi hàng đợi sử dụng giải thuật định thời riêng

Multilevel Queue Scheduling (tt)

- Hệ điều hành cần phải định thời cho các hàng đợi.
 - Fixed priority scheduling: phục vụ từ hàng đợi có độ ưu tiên cao đến thập. Vấn đề: có thể có starvation.
 - Time slice: mỗi hàng đợi được nhận một khoảng thời gian chiếm CPU và phân phối cho các process trong hàng đợi khoảng thời gian đó. Ví dụ: 80% cho hàng đợi foreground định thời bằng RR và 20% cho hàng đợi background định thời bằng giải thuật FCFS

Multilevel Queue Scheduling (tt)

Ví dụ phân nhóm các quá trình

Độ ưu tiên cao nhất

Độ ưu tiên thấp nhất

Nội dung

- Các khái niệm cơ bản về định thời
 - Các bộ định thời
 - Các tiêu chuẩn định thời CPU
 - Các giải thuật định thời
 - First-Come, First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Priority Scheduling
 - Round-Robin (RR)
 - Highest Response Ratio Next (HRRN)
 - Multilevel Queue
 - Multilevel Feedback Queue

Multilevel Feedback Queue

- Vấn đề của multilevel queue: process không thể chuyển từ hàng đợi này sang hàng đợi khác
- Khắc phục bằng cách dùng Multilevel Feedback Queue: cho phép process di chuyển một cách thích hợp giữa các hàng đợi khác nhau

Với Multilevel Feedback Queue, một process đã chờ quá lâu ở một hàng đợi có độ ưu tiên thấp có thể được chuyển đến hàng đợi có độ ưu tiên cao hơn (cơ chế niên hạn, aging)

Multilevel Feedback Queue (tt)

- Định thời dùng multilevel feedback queue đòi hỏi phải giải quyết các vấn đề sau
 - Số lượng hàng đợi bao nhiều là thích hợp?
 - Dùng giải thuật định thời nào ở mỗi hàng đợi?
 - Làm sao để xác định thời điểm cần chuyển một process đến hàng đợi cao hơn hoặc thấp hơn?
 - Khi process yêu cầu được xử lý thì đưa vào hàng đợi nào là hợp lý nhất?

Multilevel Feedback Queue (tt)

- Ví dụ: Có 3 hàng đợi
 - Q0 , dùng RR với quantum 8 ms
 - Q1, dùng RR với quantum 16 ms
 - Q2, dùng FCFS

So sánh các giải thuật

- Giải thuật định thời nào là tốt nhất?
- Câu trả lời phụ thuộc các yếu tố sau:
 - Tần xuất tải việc (System workload)
 - Sự hỗ trợ của phần cứng đối với dispatcher
 - Sự tương quan về trọng số của các tiêu chuẩn định thời
 như response time, hiệu suất CPU, throughput,...
 - Phương pháp định lượng so sánh
- → Phụ thuộc theo tiêu chí đánh giá

Đọc thêm

- Policy và Mechanism
- Định thời trên hệ thống multiprocessor
- Đánh giá giải thuật định thời CPU
- Định thời trong một số hệ điều hành thông dụng

cuu duong than cong . com

(Đọc trong tài liệu tham khảo sách gốc tiếng Anh)

Tổng kết

- Các khái niệm cơ bản về định thời
- Các bộ định thời
- Các tiêu chuẩn định thời CPU
- Hai yếu tố của giải thuật định thời

cuu duong than cong . com

CuuDuongThanCong.com

Tổng kết (tt)

- Các giải thuật định thời
 - First-Come, First-Served (FCFS)
 - Shortest Job First (SJF)
 - Shortest Remaining Time First (SRTF)
 - Round-Robin (RR)
 - Priority Scheduling
 - Highest Response Ratio Next (HRRN)
 - Multilevel Queue
 - Multilevel Feedback Queue

