Manual de Utilização do Projecto "Galileo"

João Oliveira (79174) e Tomás Reis (78811)

(Grupo 20)

MEFT

1º Ano 1º Semestre

Instituto Superior Técnico

12 de Janeiro de 2013

Universidade de Lisboa

Resumo

No âmbito da cadeira de Programação foi construído um pequeno simulador de arranjos ópticos. Este programa permite ao utilizador manipular os elementos de uma luneta terrestre. O código deste programa foi escrito em C, recorrendo às bibliotecas GTK e Cairo.

Neste documento é apresentada uma breve introdução à física por trás das situações simuladas, bem como uma apresentação das várias funcionalidades do programa e recomendações para a utilização do mesmo.

Conteúdo

1 A Luneta Terrestre

A Luneta Terrestre foi desenhada e elaborada por Galileu. É um telescópio refractivo, no sentido é que tem como objectivo ampliar objectos muito distantes e que o alcança com os fenómenos ópticos que resultam da refracção da luz numa lente esférica. As lunetas utilizadas por Galileu permitiram-lhe estudar os planetas e o plano celeste, um trabalho que teve grandes repercussões na época.

1.1 Lentes Delgadas

Uma lente é um simples aparelho óptico que transmite e redirecciona a luz. Tradicionalmente são utilizadas as chamadas lentes esféricas, que têm duas superfícies esféricas de raios distintos ou idênticos. Uma lente esférica é designada de lente delgada quando a sua espessura é desprezável face aos seus raios.

O material da lente tem um índice de refracção da luz superior ao do ar, criando um desvio na direcção dos raios de luz que a atravessam. A geometria da lentes é desenhada de forma a que este desvio continue a ter um foco. Quando os raios orginais são paralelos, uma lente pode desviar estes raios de forma a que atravessem um ponto após serem refractados na lente. Este é chamado o ponto focal e a sua distância à lente é a sua distância focal, carcaterística que resulta do material e geometria da lente. Neste caso é descrita uma lente convergente, ilustrada na Figura 1.

Figura 1: Lente Convergente

Também pode ocorrer que os raios aumentem a sua abertura. Neste caso, o ponto focal continua a existir, não como a intercepção dos raios mas antes como intercepção do prolongamento linear dos raios. Trata-se do caso das lentes divergente, ilustradas na Figura 2.

Quando os raios provém de um objecto mais próximo, o ponto onde os raios convergem, também designado de imagem, não se encontrará na

Figura 2: Lente Divergente

distância focal mas a uma distância q, dada pela seguinte equação, em função da distância focal f e a distância ao objecto p.

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q} \tag{1}$$

Esta equação é chamada a equação dos focos conjugados e o sinal das distâncias é dada conforme o objecto ou imagem sejam reais ou virtuais, sendo o sinal positivo ou negativo respectivamente. Entende-se por objecto ou imagem real aqueles onde os raios se interceptam, e por virtuais aqueles onde apenas o prolongamento linear dos raios se interceptam. Assim, a distância focal de uma lente convergente é sempre positiva, enquanto a distância focal de uma lente divergente é sempre negativa.

1.2 Óptica da Luneta Terrestre

A Luneta Terrestre é uma combinação bastante simples de uma lente convergente e uma lente divergente, em que a objectiva, a lente convergente, tem maior distância focal que a ocular, a lente divergente, estando a ocular colocada a uma distância da objectiva igual à diferença entre as distâncias focais.

Esta combinação é utilizada para ampliar objectos a uma distância tal que possa ser tida como infinita. Quando a distância entre as lentes é exactamente igual à diferença entre distâncias focais, a imagem resultante é igualmente no infinito e não invertida, sendo a ampliação uma ampliação angular. Todavia, neste programa, para a imagem ser melhor visualizada, uma luneta é tomada com uma distância entre lentes próxima da diferença entre as distâncias focais, resultando numa imagem ampliada a uma distância finita.

A luneta é assim bastante distinta do telescópio refractivo, ou telescópio kepleriano. Este utiliza duas lentes convergentes e a imagem resultante é

invertida. Contudo, permite maiores ampliações, produz uma imagem melhor focada e tem um maior campo de observação.

2 Introdução à Utilização do Programa

2.1 Compilar o Programa

O programa "Galileo" é actualmente distribuido numa pasta com os ficheiros de texto com o código e uma Makefile. Para poder correr o programa após obtenção desta pasta deve fazer **make** através da linha de comandos na pasta do programa. Caso ocorra alguma problema ou caso seja necessário eleminar os ficheiros .o e o ficheiro executável, pode inserir **make clean** na linha de comandos na pasta em questão para apagar todos os ficheiros criados pela Makefile.

Uma vez tendo compilado o programa, o executável é designado por galileo e pode ser executado na linha de comandos através de ./galileo na pasta em questão.

2.2 Utilizar o Programa: Os Básicos

O objectivo do programa é permitir ao utilizador simular um sistema óptico que pode formar uma luneta mas que também pode ser manipulado para combinações ópticas com outros resultados, se bem que não é garantido que todos sejam produtivos. Como tal, o utilizador disponibiliza ao utilizar uma lente convergente, uma lente divergente e as ferramentas ao utilizador para as alterar.

2.2.1 Posição das Lentes

O programa permite ao utilizador alterar a posição das lentes de duas formas distintas: através do rato ou através das barras horizontais no primeiro separador.

Para alterar a posição das lentes do rato basta premir uma das lentes com o rato. Para premir uma lente basta premir qualquer ponto no rectângulo limitado pela altura e largura máxima da lente. Caso as duas lentes estejam sobrepostas, o programa dará prioridade à lente convergente. Uma vez estando a lente premida, basta deslocar o rato de forma a arrastar a lente ao longo do eixo óptico. A posição vertical das lentes não pode ser alterada. O programa também não permite que a lente seja posicionada fora dos limites da área de desenho.

Para alterar a posição das lentes com as barras de ajuste basta seleccionar o separador **Posição das Lentes** e alterar a posição de cada lente na barra respectiva.

A posição das lentes é dada em valor na caixa **Dados** ou junto às barras. Este valor reflecte a posição na área de desenho em pixeis quando na escala **1:1**. Caso a escala esteja alterada deve ter em conta esse factor (para mais sobre escalas ver !!!!!!).

2.2.2 Distância Focal das Lentes

A distância focal de cada lente pode ser alterada de forma semelhante. No separador **Distâncias Focais** existe uma barra de ajuste para cada distâncial focal, permitindo valores até 300.

A distância focal também pode ser alterada com o rato. Junto a cada lente existe um círculo, laranja para a lente convergente e azul para a lente divergente, que representa a distância focal. Este círculo pode ser arrastado com o rato, aproximando-o o afastando-o da lente. A distância deste ponto à lente é a distância focal. Assim, aproximando este ponto da lente diminui a distância focal e afastando aumenta.

As distâncias focais das lentes também podem ser lidas na caixa **Dados**.

2.2.3 Ângulo de Incidência

Como o objecto observado pela luneta terrestre está muito distante, os raios provenientes são paralelos. Como tal, o parâmetro relevante sobre os raios que são recebidos pela luneta é o ângulo de incidência. Para alterar o ângulo de incidência basta utilizar a primeira barra de ajuste no separador **Angulo/Escala**.

3 Outras Opções do Programa

3.1 Escala

No separador **Angulo/Escala** é possível alterar a escala na segunda barra de ajuste. Alterar a escala reflecte uma multiplicação de todas as distâncias por um factor, ou seja funciona de forma semelhante a um zoom.

3.2 Raios Virtuais

Na caixa **Opções** está disponível a opção **Ver Raios Virtuais**. Entendese por raios virtuais todas as linhas que reflectem prolongamentos de raios luminosos, sendo portanto caminho que não são percorridos por luz mas que têm valor físico e geométrico. Quando esta opção se encontra ligada, estes raios têm uma cor diferente e são desenhadas a tracejados. Quando desligadas, não são visíveis.

3.3 Fixar Distâncias

Na caixa **Opções** está disponível a opção **Fixar Distâncias**. Enquanto esta opção estiver ligada a distância entre as lentes será conservada quando uma das lentes é alterada. Tal pode ser útil para deslocar um sistema óptico sem perturbar as suas características. Também limitará a alteração das lentes, de forma a que nunca seja possível arrastar uma lente para fora da área de desenho.

3.4 Recomeçar

O botão **Recomeçar** altera as todas definições ajustáveis pelo utilizador aos valores iniciais. Isto inclui todas as barras de ajuste e butões.

3.5 Criar Luneta

O botão **Criar Luneta** altera as posições das lentes de forma a que formem uma luneta terrestre. Para tal, a distância focal da lente convergente deve ser maior que a distância focal. É recomendado que a diferença entre distâncias focais seja grande para que se veja bem a luneta.

3.6 Cores

O botão **Cores** abre um menu que permite ajustar as cores dos objectos desenhados. Isto inclui as lentes (no modo "esquemáticas), os raios reais e

virtuais e os objectos. Neste menu o botão **Restaurar Cor** reverte a cor seleccionada para a cor predefinida e o botão **Cores Predefinidas** restaura todas as cores.

3.7 Bloqueado/Desbloqueado

O botão **Bloqueado/Desbloqueado** é semelhante ao botão **Criar Luneta**, excepto que enquanto estiver activo ("Bloqueado") o programa força a existência de uma luneta. Isto é, por um lado, a posição das lentes não pode ser alterada directamente, e, por outro, caso as distâncias focais sejam alteradas a posição das lentes é automaticamente ajustada para formar uma luneta.

3.8 Tipo de Lentes

A caixa **Tipo de Lentes** apresenta duas opções para o desenho das lentes. A opção **Esquemáticas** desenha as lentes como rectas encabeçadas por triângulos, como é padrão em esquemas de sistemas ópticos. A opção **Desenhadas** desenha de uma forma ilustrativa as lentes, com um perfil de lente esférica cujo raio varia com a distância focal de forma qualitativamente semelhante ao previsto pela teoria.