Logic Design

- 1. In a **binary coded decimal (BCD)** system, 4 bits are used to represent a decimal digit from 0 to 9. For example, 37_{10} is written as 00110111_{BCD} .
- (a) Write 289₁₀ in BCD
- (b) Convert 100101010001_{BCD} to decimal
- (c) Convert 01101001_{BCD} to binary
- (d) Explain why BCD might be a useful way to represent numbers
- 2. Convert the following decimal numbers to 6-bit two's complement binary numbers and subtract them. Indicate whether or not the difference **overflows** a 6-bit result.
- (a) $18_{10} 12_{10}$
- (b) $30_{10} 9_{10}$
- $(c) -28_{10} 3_{10}$
- (d) $-16_{10} 21_{10}$
- 3. Convert each of the following **octal** numbers to binary, hexadecimal, and decimal.
- (a) 23_8
- (b) 45_8
- (c) 371_8
- (d) 2560₈