(NATURAL SCIENCE)

Vol. 63 No. 12 JUCHE106(2017).

주체106(2017)년 제63권 제12호

모듈공간에서 비선형빔방정식의 꼬쉬문제

안진명, 김진명

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《현시대는 과학기술의 시대이며 과학기술의 발전수준은 나라의 종합적국력과 지위를 규정하는 징표로 됩니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》단행본 38폐지)

우리는 모듈공간 $M_{p,q}^{s}$ 에서 비선형빔방정식

$$\begin{cases} u_{tt}(t, x) + \Delta^2 u(t, x) + u(t, x) = f(u), & x \in \mathbb{R}^n, t \in \mathbb{R} \\ u(0, x) = u_0(x), & u_t(0, x) = u_1(x), & x \in \mathbb{R}^n \end{cases}$$
 (*)

의 풀이의 유일존재성에 대한 연구를 진행하였다.

비선형빔방정식의 꼬쉬문제의 타당성은 선행연구들에서 많이 연구되였다.

선행연구[3, 4]에서는 비선형항이 u^p 이고 $1 , <math>2^{**} := \begin{cases} 2n/(n-4), & n \geq 5 \\ \infty, & 1 \leq n \leq 4 \end{cases}$ 때

쏘볼레브공간 $X=H^2\times L^2$, $X=H^s\times H^{s-2}$ 에서 빔방정식 (*)의 국부적 및 대역적타당성을, 선행연구[2]에서는 비선형항 u^p 의 제곱지수 p가 1+8/n보다 큰 자연수일 때 동차 및 비동차베쏘브공간 $\dot{B}^{s_p}_{2,\,q}\times \dot{B}^{s_p-2}_{2,\,q}$ $(1\leq q<\infty)$ 및 $B^s_{2,\,q}\times B^{s-2}_{2,\,q}(s\geq s_p,\,1\leq q<\infty)$ 에서 변형된 빔방

정식의 꼬쉬문제 $\begin{cases} u_{tt}(t,\ x) + \Delta^2 u(t,\ x) = \pm u^p(t,\ x),\ x\in \textit{\textbf{R}}^n,\ t>0\\ u(0,\ x) = u_0(x),\ u_t(0,\ x) = u_1(x),\quad x\in \textit{\textbf{R}}^n \end{cases}$ 의 국부적 및 대역적타당성을

론증하였다. 여기서 $s_p = n/2 - 4/(p-1)$ 는 표준척도법에 의하여 주어지는 림계지수이다.

최근에 쏘볼레브공간이나 베쏘브공간과는 달리 주파수평등분해기술을 도입한 모듈공간 $M_{p,\,q}^{\,s}$ 에서 분산방정식에 대한 연구가 활발히 진행되고있다.

선행연구[5]에서는 모듈공간에서 비선형슈뢰딩거방정식과 클라인-고르돈방정식의 시간감쇠평가와 슈트리카르츠평가를 얻고 비선형항이 λu^{1+k} ($k \in N$), $\lambda (e^{\rho |u^2}-1)u$ ($\lambda \in C$, $\rho > 0$), $\sinh u - u$ 일 때 풀이의 유일존재성을 밝혔으며 선행연구[1]에서는 모듈공간에서 비선형과동방정식의 꼬쉬문제를 연구하였다. 또한 선행연구[6]에서는 모듈공간에서 슈뢰딩거형분산반군을 비롯한 몇가지 반군의 슈트리카르츠평가를 얻었다.

론문에서는 우선 모듈공간에서 빔방정식의 무딘시간감쇠평가를 얻고 그것으로부터 비선형빔방정식연구의 기본도구인 슈트리카르츠평가를 얻는다.

다음 슈트리카르츠평가를 리용하여 비선형항이 u^{1+k} $(k \in N)$, $\sinh u - u$ 일 때 비선형빔 방정식 (*)의 풀이의 유일존재성을 밝힌다.

서술을 간단히 하기 위하여 $M_{p,q}^0 = M_{p,q}$, $l_{\square}^{0,q}(L^r(\pmb{R},L^p)) = l_{\square}^q(L^r(\pmb{R},L^p))$ 로 한다.

A < B 는 $A \le CB$ 를, F 는 푸리에변환을, F^{-1} 은 푸리에거꿀변환을 의미한다.

t>0, $\varphi(x)\in S'(\pmb{R}^n)$ 에 대하여 W(t), $\dot{W}(t)$ 를 다음과 같이 정의되는 $S'(\pmb{R}^n)$ 우의 연산자들이라고 하자.

$$\begin{split} W(t)\varphi(x) &:= G_1(t, x) * \varphi(x) = F^{-1}(e^{it(1+|\xi|^4)^{1/2}}/(2i(1+|\xi|^4)^{1/2}) - e^{-it(1+|\xi|^4)^{1/2}})F\varphi(x) \\ \dot{W}(t)\varphi(x) &:= G_0(t, x) * \varphi(x) = F^{-1}((e^{it(1+|\xi|^4)^{1/2}} + e^{-it(1+|\xi|^4)^{1/2}})/2)F\varphi(x) \end{split}$$

그러면 비선형빔방정식 (*)의 풀이는 다음의 적분방정식의 풀이로 된다.

$$u(t, x) = \dot{W}(t)u_0(x) + W(t)u_1(x) + \int_0^t W(t - \tau)f(u)d\tau$$

이때 빔방정식의 시간감쇠평가는 다음과 같다.

정리 1 $U(t) = F^{-1}e^{it(1+|\xi|^4)^{1/2}}F$, $s \in \mathbf{R}$, $2 \le p < \infty$, 1/p + 1/p' = 1, $0 < q < \infty$, $\theta \in (0, 1]$, $2\sigma(\theta, p) = n(1/2 - 1/p)\theta$, $2/\gamma(\theta, p) = (n/2)(1/2 - 1/p)\theta$ 라고 하면

$$\|U(t)f\|_{M_{p,q}^{s-2\sigma(\theta, p)}} < (1+|t|)^{-2/\gamma(\theta, p)} \|f\|_{M_{p',q}^{s}}$$

가 성립된다.

시간감쇠평가로부터 다음의 슈트리카르츠평가를 얻는다.

정리 2 $U(t) = F^{-1}e^{it(1+|\xi|^4)^{1/2}}F$, $A_Uf := \int_0^t U(t-\tau)f(\tau,\cdot)d\tau$, $\theta \in (0, 1]$, $2 \le p < \infty$, $1 \le q < \infty$, $2\sigma(\theta, p) = n(1/2-1/p)\theta$, $2/\gamma(\theta, p) = (n/2)(1/2-1/p)\theta$, $\gamma \ge \max(2, \gamma(\theta, p))$ 라고 하자.

이때 $\|U(t)\varphi\|_{l_{\square}^{-\sigma, q}(L^{r}(\mathbf{R}, L^{p}))} \leq \|\varphi\|_{M_{2, q}}$, $\|A_{U}f\|_{l_{\square}^{-\sigma, q}(L^{r}(\mathbf{R}, L^{p}))\cap l_{\square}^{q}(L^{\infty}(\mathbf{R}, L^{2}))} \leq \|f\|_{l_{\square}^{\sigma, q}(L^{r'}(\mathbf{R}, L^{p'}))}$ 가 성립된다.

보조정리[5] $1 \le p$, p_i , γ , $\gamma_i \le \infty$ 가 $1/p = 1/p_1 + \dots + 1/p_m$, $1/\gamma = 1/\gamma_1 + \dots + 1/\gamma_m$ 을 만족시킨다고 하자.

이때
$$\begin{cases} q=1, & \alpha=0 \\ q'\alpha > nm, & \alpha>0 \end{cases}$$
이면 $\|u_1u_2\cdots u_m\|_{l_0^{-\alpha,\ q}(L^{p'}(\pmb{R},\ L^{p'}))} \lesssim \prod_{i=1}^m \|u_i\|_{l_0^q(L^{p_i}(\pmb{R},\ L^{p_i}))}$ 이 성립된다.

다음으로 비선형항이 $|u|^{\kappa}u$ 일 때 빔방정식 (*)의 풀이의 유일존재성을 밝힌다.

정리 3 $n \ge 1$, $f(u) = |u|^{\kappa} u$, $\kappa \in \mathbb{N}$, $\kappa \ge \frac{8}{n}$ 이고 $\sigma = \frac{2}{\kappa + 2}$, $1 \le q < \frac{n(1 + \kappa)}{n(1 + \kappa) + 2\sigma - 2}$ 를 만족시킨다고 하자.

이때 $(u_0,\,u_1)\in M_{2,\,\,q}^{\sigma}\times M_{2,\,\,q}^{\sigma-2}$ 이고 충분히 작은 $\delta>0$ 이 있어서 $\|u_0\|_{M_{2,\,\,q}^{\sigma}}+\|u_1\|_{M_{2,\,\,q}^{\sigma-2}}\leq \delta$ 가 성립되면 빔방정식 (*)은 유일한 대역풀이 $u\in C(\pmb{R},\,M_{2,\,\,q}^{\sigma})\cap l_{\square}^q(L_{x.\,\,t\in\pmb{R}}^{2+\kappa})$ 를 가진다.

증명 정리 2에서 $\theta = \frac{8}{n\kappa}$, $p = 2 + \kappa$ 로 하면 $\gamma(\theta, p) = 2 + \kappa$, $2\sigma = n\theta \left(\frac{1}{2} - \frac{1}{p}\right) = \frac{4}{\kappa + 2}$ 이 므로 $\|U(t)\varphi\|_{l_{2}^{q}(L_{\nu}^{2+\kappa}, p)} < \|\varphi\|_{M_{2}^{\sigma}}$ 가 성립된다.

한편 베른슈타인인자정리로부터 $\|\Box_k(I+\Delta^2)^{-1/2}g\|_p < \langle k \rangle^{-2}\|g\|_p$ 이고 $\Box_k = \sum_{|l|_\infty \le 1} \Box_k \Box_{k+l}$ 이므로 정리 2로부터

$$\|U(t)(I+\Delta^{2})^{-1/2}\varphi\|_{l_{0}^{q}(L_{x,\ t\in\mathbb{R}}^{2+\kappa})} \leq \|(I+\Delta^{2})^{-1/2}\varphi\|_{M_{2,\ q}^{\sigma}} \leq \|\varphi\|_{M_{2,\ q}^{\sigma-2}},$$

 $\|A_U(I+\Delta^2)^{-1/2}f(u)\|_{l^q_{\mathbb{D}}(L^{2+\kappa}_{v,te,\mathbf{R}})\cap l^{\sigma,q}_{\mathbb{D}}(L^{\infty}(\mathbf{R},L^2))} < \|f(u)\|_{l^{2\sigma-2,q}_{\mathbb{D}}(L^{(2+\kappa)/(1+\kappa)})}$

가 성립된다.

한편 정리의 조건을 만족시키는 σ , q는 $2-2\sigma>0$, $q'(2-2\sigma)>n(\kappa+1)$ 을 만족시키므로 $\|f(u)\|_{l_0^{2\sigma-2,q}(L_{x_-,\epsilon R}^{(2+\kappa)/(1+\kappa)})}<\|u\|_{l_0^{q}(L_{x_-,\epsilon R}^{2+\kappa})}$ 이다.

 $X = l_{\square}^{\sigma, q}(L^{\infty}(\mathbf{R}, L^{2})) \cap l_{\square}^{q}(L^{2+\kappa}(\mathbf{R}, L^{2+\kappa}))$ 로 놓고 바나흐공간 (D, d) 를 $D = \{||u||_{X} \leq M\}$, $d(u, v) = ||u - v||_{X}$ 와 같이 구성하자.

이때 넘기기 $T:D \to X$ 를 $T:u(t, x) \mapsto \dot{W}(t)u_0(x) + W(t)u_1(x) + \int\limits_0^t W(t-\tau)f(u)d\tau$ 로 놓으면 $\|Tu\|_X < \|u_0\|_{\dot{M}^{\sigma_a}_{2,a}} + \|u_1\|_{\dot{M}^{\sigma_a,2}_{2,a}} + \|u\|_X^{\kappa+1} \ \text{ol} \ \text{다}.$

이제 M>0을 $4CM^{\kappa}<1$ 이 되게 잡고 $\delta \leq M/2C$ 가 되게 δ 를 잡으면 T는 (D,d)를 자기자신으로 보내는 넘기기로 된다. 또한 $u_1^{k+1}-u_2^{k+1}=(u_1-u_2)\sum_{i=0}^k u_1^i u_2^{k-i}$ 임을 고려하면 $\|Tu-Tv\|_X\leq C(\|u-v\|_X\ M^{\kappa})<\|u-v\|/2\ \text{로부터}\ T$ 가 축소넘기기라는것이 나온다.

따라서 바나흐부동점정리로부터 D에는 빔방정식 (*)의 유일풀이가 존재한다.(증명끝) 다음으로 비선형항이 $\sinh u - u$ 일 때 빔방정식 (*)의 풀이의 유일존재성을 밝힌다. 정리 $4 n \ge 4$, $f(u) = \sinh u - u$ 라고 하자.

이때 $(u_0,\ u_1)\in M_{2,\,1}^{1/2}\times M_{2,\,1}^{-3/2}$ 이고 충분히 작은 $\delta>0$ 이 있어서 $\|u_0\|_{M_{2,\,1}^{1/2}}+\|u_1\|_{M_{2,\,1}^{-3/2}}\leq \delta$ 이면 빔방정식 (*)은 유일한 대역풀이 $u\in C(\pmb{R},\ M_{2-1}^{1/2})\cap l^1_\square(L_{x\ t\in \pmb{R}}^4)$ 를 가진다.

참 고 문 헌

- [1] E. Cordero et al.; J. Math. Anal. Appl., 353, 583, 2009.
- [2] A. Guo et al.; Nonlinear Anal., 65, 802, 2006.
- [3] Z. Guo et al.; J. Funct. Anal., 254, 1642, 2008.
- [4] S. P. Levandosky et al.; J. Differential Equations., 143, 360, 1998.
- [5] B. X. Wang et al.; J. Differential Equations, 232, 36, 2007.
- [6] C. Zhang; Nonlinear Anal., 78, 156, 2013.

주체106(2017)년 8월 5일 원고접수

The Cauchy Problem of Nonlinear Beam Equations in Modulation Spaces

An Jin Myong, Kim Jin Myong

We obtain the Strichartz estimate of beam equations $u_{tt}(t, x) + \Delta^2 u(t, x) + u(t, x) = f(u)$ in modulation spaces and by using it we establish the global well-posedness of the Cauchy problem of nonlinear beam equations where $f(u) = u^{1+k}$ $(k \in \mathbb{N})$ or $f(u) = \sinh u - u$.

Key words: beam equation, modulation space, Cauchy problem