PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 38/04, 38/17, 39/00, 48/00, 49/00,
51/08, C07H 21/00, C07K 7/00, 14/705,
C12N 15/12, C12Q 1/02, 1/68, G01N
33/566

(11) International Publication Number: WO 98/23282

(43) International Publication Date: 4 June 1998 (04.06.98)

(21) International Application Number: PCT/US97/21857

(22) International Filing Date: 26 November 1997 (26.11.97)

(30) Priority Data:

60/031,930 27 November 1996 (27.11.96) US 60/048,547 3 June 1997 (03.06.97) US

(71) Applicant: BOSTON HEART FOUNDATION, INC. [US/US]; 139 Main Street, Cambridge, MA 02142 (US).

(72) Inventors: LEES, Ann, M.; 203 Clinton Road, Brookline, MA 02146 (US). LEES, Robert, S.; 203 Clinton Road, Brookline, MA 02146 (US). LAW, Simon, W.; 30 Greenwood Street, Lexington, MA 02173 (US). ARJONA, Anibal, A.; Apartment 22, 1238 Commonwealth Avenue, Boston, MA 02134 (US).

(74) Agent: GREER, Helen; Banner & Witcoff, Ltd., One Financial Center, Boston, MA 02111 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NOVEL LOW DENSITY LIPOPROTEIN BINDING PROTEINS AND THEIR USE IN DIAGNOSING AND TREATING ATHEROSCLEROSIS

(57) Abstract

Isolated polynucleotides encoding novel polypeptides which are capable of binding to native and methylated LDL (low density lipoprotein), the isolated polypeptides, called LBPs (LDL binding proteins), and biologically active fragments and analogs thereof, are described. Also described are methods for determining if an animal is at risk for atherosclerosis, methods for evaluating an agent for use in treating atherosclerosis, methods for treating atherosclerosis, and methods for treating a cell having an abnormality in structure or metabolism of LBP. Pharmaceutical compositions and vaccine compositions are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Scnegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA.	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UС	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Јар ал	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NOVEL LOW DENSITY LIPOPROTEIN BINDING PROTEINS AND THEIR USE IN DIAGNOSING AND TREATING ATHEROSCLEROSIS

Field of the Irvention

This application claims the benefit of U.S. Provisional Application No. 60/031,930 filed November 27, 1996, and U.S. Provisional Application No. 60/048,547 filed June 3, 1997.

This invention relates to novel polypeptides (LBPs) which bind to low density lipoprotein (LDL), polynucleotides which encode these polypeptides, and treatments, diagnoses and therapeutic agents for atherosclerosis.

10

15

5

Background of the Invention

Atherosclerosis is the principal cause of heart attacks and strokes. It has been reported that about 50% of all deaths in the United States, Europe and Japan are due to atherosclerosis. Atherosclerotic lesions in the arterial wall characterize atherosclerosis. Cholesteryl esters (CE) are present in these atherosclerotic lesions. Low density lipoprotein (LDL) has been shown to be the major carrier of plasma CE, and has been implicated as the agent by which CE enter the atherosclerotic lesions.

Scattered groups of lipid-filled macrophages, called foam cells, are the first visible signs of atherosclerosis and are described as type I lesions. These macrophages are reported to contain CE derived from LDL. The macrophages recognize oxidized LDL, but not native LDL, and become foam cells by phagocytosing oxidized LDL. Larger, more organized collections of foam cells, fatty streaks, represent type II lesions. These lesions further develop into complex lesions called plaques, which can result in impeding the flow of blood in the artery.

It is widely believed that accumulation of LDL in the artery depends on the presence of functionally modified endothelial cells in the arterial wall. It has been reported in animal models of atherosclerosis that LDL, both native LDL and methylated LDL, accumulates focally and irreversibly only at the edges of regenerating endothelial islands in aortic lesions, where functionally modified endothelial cells are present, but not in the centers of these islands where endothelial regeneration is completed. Similarly, LDL accumulates in human atherosclerotic lesions. The mechanism by which the LDL accumulates focally and irreversibly in arterial lesions has not heretofore been understood.

Summary of the Invention

It is an object of the invention to provide polypeptides which bind to LDL.

It is yet another object of the invention to provide a method for determining if an animal

35

5

15

20

25

30

is at risk for atherosclerosis.

It is yet another object of the invention to provide a method for evaluating an agent for use in treating atherosclerosis.

It is yet another object of the invention to provide a method for treating atherosclerosis.

Still another object of the invention is to utilize an LBP (low density lipoprotein binding protein) gene and/or polypeptide, or fragments, analogs and variants thereof, to aid in the treatment, diagnosis and/or identification of therapeutic agents for atherosclerosis.

In one aspect, the invention features an isolated polynucleotide comprising a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9; or a polynucleotide capable of hybridizing to and which is at least about 95% identical to any of the above polynucleotides and wherein the encoded polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polynucleotides wherein the encoded polypeptide is capable of binding to LDL.

In certain embodiments, the polynucleotide comprises the nucleic acid sequence as set forth in SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17 or SEQ ID NO:18.

Another aspect of the invention is an isolated polypeptide comprising a polypeptide having the amino acid sequence as set forth in SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO:9; or a polypeptide which is at least about 95% identical to any of the above polypeptides and wherein the polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polypeptides wherein the fragment is capable of binding to LDL.

Another aspect of the invention is a method for determining if an animal is at risk for atherosclerosis. An animal is provided. An aspect of LBP metabolism or structure is evaluated in the animal. An abnormality in the aspect of LBP metabolism or structure is diagnostic of being at risk for atherosclerosis.

Another aspect of the invention is a method for evaluating an agent for use in treating atherosclerosis. A test cell, cell-free system or animal is provided. An agent is provided. The agent is administered to the test cell, cell-free system or animal in a therapeutically effective amount. The effect of the agent on an aspect of LBP metabolism or structure is evaluated. A change in the aspect of LBP metabolism or structure is indicative of the usefulness of the agent

in treating atherosclerosis.

10

15

20

25

30

Another aspect of the invention is a method for evaluating an agent for the ability to alter the binding of LBP polypeptide to a binding molecule, e.g., nat.ve LDL, modified LDL, e.g., methylated LDL or oxidized LDL, or an arterial extracellular matrix structural component. An agent is provided. An LBP polypeptide is provided. A binding molecule is provided. The agent, LBP polypeptide and binding molecule are combined. The formation of a complex comprising the LBP polypeptide and binding molecule is detected. An alteration in the formation of the complex in the presence of the agent as compared to in the absence of the agent is indicative of the agent altering the binding of the LBP polypeptide to the binding molecule.

Another aspect of the invention is a method for evaluating an agent for the ability to bind to an LBP polypeptide. An agent is provided. An LBP polypeptide is provided. The agent is contacted with the LBP polypeptide. The ability of the agent to bind to the LBP polypeptide is evaluated.

Another aspect of the invention is a method for evaluating an agent for the ability to bind to a nucleic acid encoding an LBP regulatory sequence. An agent is provided. A nucleic acid encoding an LBP regulatory sequence is provided. The agent is contacted with the nucleic acid. The ability of the agent to bind to the nucleic acid is evaluated.

Another aspect of the invention is a method for treating atherosclerosis in an animal. An animal in need of treatment for atherosclerosis is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the animal in a therapeutically effective amount such that treatment of the atherosclerosis occurs. In certain embodiments, the agent is an LBP polypeptide, e.g., LBP-1, LBP-2 or LBP-3, or a biologically active fragment or analog thereof. In certain embodiments, the agent is a polypeptide of no more than about 100, 50, 30, 20, 10, 5, 4, 3 or 2 amino acid residues in length. In certain embodiments, the agent is a polypeptide having an amino acid sequence that includes at least about 20%, 40%, 60%, 80%, 90%, 95% or 98% acidic amino acid residues.

Another aspect of the invention is a method for treating an animal at risk for atherosclerosis. An animal at risk for atherosclerosis is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the animal in a therapeutically effective amount such that treatment of the animal occurs.

Another aspect of the invention is a method for treating a cell having an abnormality in structure or metabolism of LBP. A cell having an abnormality in structure or metabolism of

-4-

LBP is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the cell in a therapeutically effective amount such that treatment of the cell occurs.

Another aspect of the invention is a pharmaceutical composition for treating atherosclerosis in an animal comprising a therapeutically effective amount of an agent, the agent being capable of altering an aspect of LBP metabolism or structure in the animal so as to result in treatment of the atherosclerosis, and a pharmaceutically acceptable carrier.

Another aspect of the invention is a vaccine composition for treating atherosclerosis in an animal comprising a therapeutically effective amount of an agent, the agent being capable of altering an aspect of LBP metabolism or structure in the animal so as to result in treatment of the atherosclerosis, and a pharmaceutically acceptable carrier.

Another aspect of the invention is a method for diagnosing atherosclerotic lesions in an animal. An animal is provided. A labeled agent capable of binding to LBP, e.g., LBP-1, LBP-2 or LBP-3, present in atherosclerotic lesions is provided. The labeled agent is administered to the animal under conditions which allow the labeled agent to interact with the LBP so as to result in labeled LBP. The localization or quantification of the labeled LBP is determined by imaging so as to diagnose the presence of atherosclerotic lesions in the animal.

Another aspect of the invention is a method for immunizing an animal against an LBP. e.g., LBP-1, LBP-2 or LBP-3, or fragment or analog thereof. An animal having LDL is provided. The LBP or fragment or analog thereof is administered to the animal so as to stimulate antibody production by the animal to the LBP or fragment or analog thereof such that binding of the LBP to the LDL is altered, e.g., decreased or increased.

Another aspect of the invention is a method of making a fragment or analog of LBP polypeptide, the fragment or analog having the ability to bind to native LDL and to modified LDL, e.g., methylated LDL, oxidized LDL, acetylated LDL, or cyclohexanedione-treated LDL. An LBP polypeptide is provided. The sequence of the LBP polypeptide is altered. The altered LBP polypeptide is tested for the ability to bind to modified LDL and native LDL.

Yet another aspect of the invention is a method for isolating a cDNA encoding an LBP. A cDNA library is provided. The cDNA library is screened for a cDNA encoding a polypeptide which binds to native LDL and modified LDL, e.g., methylated LDL or oxidized LDL. The cDNA which encodes the polypeptide is isolated, the cDNA encoding an LBP.

The above and other features, objects and advantages of the present invention will be

30

10

better understood by a reading of the following specification in conjunction with the drawings.

Brief Description of the Drawings

- Fig. 1 depicts the amino acid sequence of rabbit LBP-1 (SEQ ID NC:1). Differences in amino acids between rabbit and human LBP-1 are depicted in bold type.
- Fig. 2 depicts the amino acid sequence of rabbit LBP-2 (SEQ ID NO:2). Differences in amino acids between rabbit and human LBP-2 are depicted in bold type.
- Fig. 3 depicts the amino acid sequence of amino acids 86 to 317 of rabbit LBP-2 (SEQ ID NO:3).
- Fig. 4 depicts the amino acid sequence of amino acids 66 to 317 of rabbit LBP-2 (SEQ ID NO:4).
 - Fig. 5 depicts the amino acid sequence of rabbit LBP-3 (SEQ ID NO:5). Differences in amino acids between rabbit and human LBP-3 are depicted in bold type.
 - Fig. 6 depicts the amino acid sequence of human LBP-1 (SEQ ID NO:6). Differences in amino acids between rabbit and human LBP-1 are depicted in bold type.
 - Fig. 7 depicts the amino acid sequence of human LBP-2 (SEQ ID NO:7). Differences in amino acids between rabbit and human LBP-2 are depicted in bold type.
 - Fig. 8 depicts the amino acid sequence of human LBP-3 (SEQ ID NO:8). Differences in amino acids between rabbit and human LBP-3 are depicted in bold type.
 - Fig. 9 depicts the amino acid sequence of amino acids 14 to 33 of human or rabbit LBP-1, called BHF-1 (SEQ ID NO:9).
 - Fig. 10 depicts the cDNA sequence encoding rabbit LBP-1 (SEQ ID NO:10) and the corresponding amino acid sequence. Differences in amino acids between rabbit and human LBP-1 are depicted in bold type.
 - Fig. 11 depicts the cDNA sequence encoding rabbit LBP-2 (SEQ ID NO:11) and the corresponding amino acid sequence. Differences in amino acids between rabbit and human LBP-2 are depicted in bold type.
 - Fig. 12 depicts the cDNA sequence 256 to 1617 of rabbit LBP-2 (SEQ ID NO:12) and the corresponding amino acid sequence.
 - Fig. 13 depicts the cDNA sequence 196 to 1617 of rabbit LBP-2 (SEQ ID NO:13) and the corresponding amino acid sequence.
 - Fig. 14 depicts the cDNA sequence encoding rabbit LBP-3 (SEQ ID NO:14) and the corresponding amino acid sequence. Differences in amino acids between rabbit and human

15

20

25

5

15

20

25

LBP-3 are depicted in bold type.

Fig. 15 depicts the cDNA sequence encoding human LBP-1 (SEQ ID NO:15) and the corresponding amino acid sequence. Differences in amino acids between rabbit and human LBP-1 are depicted in bold type.

Fig. 16 depicts the cDNA sequence encoding human LBP-2 (SEQ ID NO:16) and the corresponding amino acid sequence. Differences in amino acids between rabbit and human LBP-2 are depicted in bold type.

Fig. 17 depicts the cDNA sequence encoding human LBP-3 (SEQ ID NO:17) and the corresponding amino acid sequence. Differences in amino acids between rabbit and human LBP-3 are depicted in bold type.

Fig. 18 depicts the cDNA sequence encoding BHF-1 (SEQ ID NO:18).

Fig. 19 corresponds to the amino acid sequence of rabbit LBP-1 (top sequence) in alignment with the amino acid sequence of human LBP-1 (bottom sequence).

Fig. 20 corresponds to the amino acid sequence of rabbit LBP-2 (top sequence) in alignment with the amino acid sequence of human LBP-2 (bottom sequence).

Fig. 21 corresponds to the amino acid sequence of rabbit LBP-3 (top sequence) in alignment with the amino acid sequence of human LBP-3 (bottom sequence).

Detailed Description

In accordance with aspects of the present invention, there are provided novel mature human and rabbit polypeptides, LBP-1, LBP-2 and LBP-3, and biologically active analogs and fragments thereof, and there are provided isolated polynucleotides which encode such polypeptides. LBP is an abbreviation for low density lipoprotein (LDL) binding protein. The terms polynucleotide, nucleotide and oligonucleotide are used interchangeably herein, and the terms polypeptides, proteins and peptides are used interchangeably herein.

This invention provides for an isolated polynucleotide comprising a polynucleotide encoding the polypeptide having the amino acid sequence of rabbit LBP-1 as set forth in Fig. 1 (SEQ ID NO:1); rabbit LBP-2 as set forth in Fig. 2 (SEQ ID NO:2); 86 to 317 of rabbit LBP-2 as set forth in Fig. 3 (SEQ ID NO:3); 66 to 317 of rabbit LBP-2 as set forth in Fig. 4 (SEQ ID NO:4); rabbit LBP-3 as set forth in Fig. 5 (SEQ ID NO:5); human LBP-1 as set forth in Fig. 6 (SEQ ID NO:6); human LBP-2 as set forth in Fig. 7 (SEQ ID NO:7); human LBP-3 as set forth in Fig. 8 (SEQ ID NO:8); 14 to 33 of human or rabbit LBP-1, called BHF-1, as set forth in Fig. 9 (SEQ ID NO:9); a polynucleotide capable of hybridizing to and which is at least about 80%

identical, more preferably at least about 90% identical, more preferably yet at least about 95% identical, and most preferably at least about 98% identical to any of the above polynucleotides, and wherein the encoded polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polynucleotides wherein the encoded polypeptide is capable of binding to LDL.

This invention also includes an isolated polynucleotide comprising a polynucleotide encoding the polypeptide having amino acid residues 8-22 (SEQ ID NO:19), 8-33 (SEQ ID NO:20), 23-33 (SEQ ID NO:21) or 208-217 (SEQ ID NO:22) of human LBP-2 as set forth in Fig. 7 (SEQ ID NO:7); amino acid residues 14-43 (SEQ ID NO:23) or 38-43 (SEQ ID NO:24) of rabbit or human LBP-1 as set forth in Fig. 1 (SEQ ID NO:1) and Fig. 6 (SEQ ID NO:6); amino acid residues 105-120 (SEQ ID NO:25), 105-132 (SEQ ID NO:26), 121-132 (SEQ ID NO:27) or 211-220 (SEQ ID NO:28) of rabbit LBP-2 as set forth in Fig. 2 (SEQ ID NO:2); amino acid residues 96-110 (SEQ ID NO:29) of rabbit LBP-3 as set forth in Fig. 5 (SEQ ID NO:5); amino acid residues 53-59 (SEQ ID NO:41) of human LBP-3 as set forth in Fig. 8 (SEQ ID NO:8); a polynucleotide capable of hybridizing to and which is at least about 80% identical, more preferably at least about 90% identical, more preferably yet at least about 95% identical, and most preferably at least about 98% identical to any of the above polynucleotides, and wherein the encoded polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polynucleotides wherein the encoded polypeptide is capable of binding to LDL.

By a polynucleotide encoding a polypeptide is meant a polynucleotide which includes only coding sequence for the polypeptide, as well as a polynucleotide which includes additional coding and/or non-coding sequences. Thus, e.g., the polynucleotides which encode for the mature polypeptides of Figs. 1-9 (SEQ ID NOS:1-9) may include only the coding sequence for the mature polypeptide; the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence; the coding sequence for the mature polypeptide (and optionally additional coding sequence) and non-coding sequence, such as introns or non-coding sequences 5' and/or 3' of the coding sequence for the mature polypeptide. The polynucleotides of the invention are also meant to include polynucleotides in which the coding sequence for the mature polypeptide is fused in the same reading frame to a polynucleotide sequence which aids in expression and/or secretion of a polypeptide from a host cell, e.g., a leader sequence. The polynucleotides are also meant to include polynucleotides in which the coding sequence is fused in frame to a marker sequence

30

10

20

which, e.g., allows for purification of the polypeptide.

The polynucleotides of the present invention may be in the form of RNA, DNA or PNA, e.g., cRNA, cDNA, genomic DNA, or synthetic DNA, RNA or PNA. The DNA may be double-stranded or single stranded, and if single stranded may be the coding strand or non-coding (antisense) strand.

In preferred embodiments, the polynucleotide comprises the nucleic acid of rabbit LBP-1 as set forth in Fig. 10 (SEQ ID NO:10); rabbit LBP-2 as set forth in Fig. 11 (SEQ ID NO:11); nucleotide 256 to 1617 of rabbit LBP-2 as set forth in Fig. 12 (SEQ ID NO:12); nucleotide 196 to 1617 of rabbit LBP-2 as set forth in Fig. 13 (SEQ ID NO:13); rabbit LBP-3 as set forth in Fig. 14 (SEQ ID NO:14); human LBP-1 as set forth in Fig. 15 (SEQ ID NO:15); human LBP-2 as set forth in Fig. 16 (SEQ ID NO:16); human LBP-3 as set forth in Fig. 17 (SEQ ID NO:17); or nucleotide 97 to 156 of rabbit LBP-1 or nucleotide 157 to 216 of human LBP-1. (BHF-1), as set forth in Fig. 18 (SEQ ID NO:18).

In other preferred embodiments, the polynucleotide comprises the nucleic acid as set forth in SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33 SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40 or SEQ ID NO:42.

The coding sequence which encodes the mature polypeptide may be identical to the coding sequences shown in Figs. 10-18 (SEQ ID NOS:10-18) or SEQ ID NOS:30-40 or 42, or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptides as the DNA of Figs. 10-18 (SEQ ID NOS:10-18) and SEQ ID NOS: 30-40 and 42.

This invention also includes recombinant vectors comprising the polynucleotides described above. The vector can be, e.g., a plasmid, a viral particle or a phage. In certain embodiments, the recombinant vector is an expression vector. The vectors may also include various marker genes which are useful in identifying cells containing such vectors.

This invention also includes a cell comprising such a recombinant vector. The recombinant vectors described herein can be introduced into a host cell, e.g., by transformation, transfection or infection.

This invention also includes a method for producing an LBP comprising culturing such a cell under conditions that permit expression of the LBP.

This invention also includes an isolated polypeptide comprising a polypeptide having the

amino acid sequence as set forth in Fig. 1 (SEQ ID NO:1); Fig. 2 (SEQ ID NO:2): Fig. 3 (SEQ ID NO:3); Fig. 4 (SEQ ID NO:4); Fig. 5 (SEQ ID NO:5); Fig. 6 (SEQ ID NO:6); Fig. 7 (SEQ ID NO:7); Fig. 8 (SEQ ID NO:8) or Fig. 9 (SEQ ID NO:9); or a polypeptide which is at least about 80% identical, more preferably at least about 90% identical, more preferably yet at least about 95% identical, and most preferably at least about 98% identical to the above polypeptides, and wherein said polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polypeptides wherein the fragment is capable of binding to LDL. Differences in amino acids between the rabbit and human LBP-1, LBP-2 and LBP-3 genes are depicted in bold type in the figures. The differences in the amino acid sequences between rabbit and human LBP-1, LBP-2 and LBP-3 are also specifically shown in Figs. 19, 20 and 21, respectively.

This invention also includes an isolated polypeptide comprising a polypeptide having amino acid residues 8-22 (SEQ ID NO:19), 8-33 (SEQ ID NO:20), 23-33 (SEQ ID NO:21) or 208-217 (SEQ ID NO:22) as set forth in Fig. 7 (SEQ ID NO:7); amino acid residues 14-43 (SEQ ID NO:23) or 38-43 (SEQ ID NO:24) as set forth in Fig. 1 (SEQ ID NO:1) and Fig. 6 (SEQ ID NO:6); amino acid residues 105-120 (SEQ ID NO:25), 105-132 (SEQ ID NO:26), 121-132 (SEQ ID NO:27) or 211-220 (SEQ ID NO:28) as set forth in Fig. 2 (SEQ ID NO:2); amino acid residues 96-110 (SEQ ID NO:29) as set forth in Fig. 5 (SEQ ID NO:5); and amino acid residues 53-59 (SEQ ID NO:41) as set forth in Fig. 8 (SEQ ID NO:8); or a polypeptide which is at least about 80% identical, more preferably at least about 90% identical, more preferably yet at least about 95% identical, and most preferably at least about 98% identical to the above polypeptides, and wherein said polypeptide is capable of binding to LDL; or a biologically active fragment of any of the above polypeptides wherein the fragment is capable of binding to LDL.

The polypeptides of the invention are meant to include, e.g., a naturally purified product, a chemically synthesized product, and a recombinantly derived product.

The polypeptides can be used, e.g., to bind to LDL, thereby inhibiting formation of atherosclerotic plaques. The polypeptides can also be used, e.g., in gene therapy, by expression of such polypeptides in vivo. The polypeptides can also be used in pharmaceutical or vaccine compositions. The polypeptides can also be used as immunogens to produce antibodies thereto, which in turn, can be used as antagonists to the LBP polypeptides.

Without being bound by any theory, it is believed that the LBPs provide the mechanism by which atherosclerosis is promoted through LDL oxidation. The LBPs are believed to be required in order for focal, irreversible LDL binding to occur at the arterial wall, and that such

10

15

20

25

binding is a critical early event in atherosclerosis because it allows the time necessary for LDL to be changed from its native state to a fully oxidized state. Since oxidized, but not native, LDL is a foreign protein, macrophages ingest it, first becoming the foam cells of type I lesions, and subsequently forming the fatty streaks of type II lesions.

This invention also includes a method for determining if an animal is at risk for atherosclerosis. An animal is provided. An aspect of LBP metabolism or structure is evaluated in the animal. An abnormality in the aspect of LBP metabolism or structure is diagnostic of being at risk for atherosclerosis.

By atherosclerosis is meant a disease or condition which comprises several stages which blend imperceptibly into each other, including irreversible binding of LDL, LDL oxidation, macrophage recruitment, blockage of the artery and tissue death (infarction).

By animal is meant human as well as non-human animals. Non-human animals include. e.g., mammals, birds, reptiles, amphibians, fish, insects and protozoa. Preferably, the non-human animal is a mammal, e.g., a rabbit, a rodent, e.g., a mouse, rat or guinea pig, a primate, e.g., a monkey, or a pig. An animal also includes transgenic non-human animals. The term transgenic animal is meant to include an animal that has gained new genetic information from the introduction of foreign DNA, i.e., partly or entirely heterologous DNA, into the DNA of its cells: or introduction of a lesion, e.g., an in vitro induced mutation, e.g., a deletion or other chromosomal rearrangement into the DNA of its cells; or introduction of homologous DNA into the DNA of its cells in such a way as to alter the genome of the cell into which the DNA is inserted, e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in a knockout or replacement of the homologous host gene or results in altered and/or regulatable expression and/or metabolism of the gene. The animal may include a transgene in all of its cells including germ line cells, or in only one or some of its cells. Transgenic animals of the invention can serve as a model for studying atherosclerosis or for evaluating agents to treat atherosclerosis.

In certain embodiments, the determination for being at risk for atherosclerosis is done in a prenatal animal.

By LBP is meant a low density lipoprotein (LDL) binding protein which is capable of binding LDL and methylated LDL. By methylated LDL is meant that about 50% to about 90% of the lysine residues of LDL have a methyl group chemically attached. Methylated LDL is not recognized by previously reported cell surface receptors. See, e.g., Weisgraber et al., J. Biol.

5

10

15

20

Chem. 253:9053-9062 (1978). In certain embodiments, the LBP is also capable of binding oxidized LDL. In certain preferred embodiments, the binding of LDL to an LBP is irreversible. In certain preferred embodiments, the LBP does not transport the LDL to any intracellular compartment. Examples of LBPs are LBP-1, LBP-2 and LBP-3 described herein.

By LBP metabolism is meant any aspect of the production, release, expression, function, action, interaction or regulation of LBP. The metabolism of LBP includes modifications, e.g., covalent or non-covalent modifications, of LBP polypeptide. The metabolism of LBP includes modifications, e.g., covalent or non-covalent modifications, that LBP induces in other substances. The metabolism of LBP also includes changes in the distribution of LBP polypeptide, and changes LBP induces in the distribution of other substances.

Any aspect of LBP metabolism can be evaluated. The methods used are standard techniques known to those skilled in the art and can be found in standard references, e.g., Ausubel et al., ed., Current Protocols in Mol. Biology, New York: John Wiley & Sons, 1990; Kriegler, M., ed., Gene Transfer and Expression, Stockton Press, New York, NY, 1989; pDisplay gene expression system (Invitrogen, Carlsbad, CA). Preferred examples of LBP metabolism that can be evaluated include the binding activity of LBP polypeptide to a binding molecule, e.g., LDL; the transactivation activity of LBP polypeptide on a target gene; the level of LBP protein: the level of LBP mRNA; the level of LBP modifications, e.g., phosphorylation, glycosylation or acylation; or the effect of LBP expression on transfected mammalian cell binding of LDL.

By binding molecule is meant any molecule to which LBP can bind, e.g., a nucleic acid, e.g., a DNA regulatory region, a protein, e.g., LDL, a metabolite, a peptide mimetic, a non-peptide mimetic, an antibody, or any other type of ligand. In certain preferred embodiments, the aspect of LBP metabolism that is evaluated is the ability of LBP to bind to native LDL and/or methylated LDL and/or oxidized LDL. Binding to LDL can be shown, e.g., by antibodies against LDL, affinity chromatography, affinity coelectrophoresis (ACE) assays, or ELISA assays. See Examples. In other embodiments, it is the ability of LBP to bind to an arterial extracellular matrix stuctural component that is evaluated. Examples of such components include proteoglycans, e.g., chondroitin sulfate proteoglycans and heparin sulfate proteoglycans: elastin; collagen; fibronectin; vitronectin; integrins; and related extracellular matrix molecules. Binding to arterial extracellular matrix structural components can be shown by standard methods known to those skilled in the art, e.g., by ELISA assays. Primary antibodies to the LBP are then added, followed by an enzyme-conjugated secondary antibody to the primary antibody, which

5

15

20

25

produces a stable color in the presence of an appropriate substrate, and color development on the plates is measured in a microtiter plate reader.

-12-

Transactivation of a target gene by LBP can be determined, e.g., in a transient transfection assay in which the promoter of the target gene is linked to a reporter gene, e.g., β -galacto-sidase or luciferase, and co-transfected with an LBP expression vector. Such evaluations can be done in vitro or in vivo. Levels of LBP protein, mRNA or phosphorylation, can be measured, e.g., in a sample, e.g., a tissue sample, e.g., arterial wall, by standard methods known to those skilled in the art.

In certain embodiments, an aspect of LBP structure is evaluated, e.g., LBP gene structure or LBP protein structure. For example, primary, secondary or tertiary structures can be evaluated. For example, the DNA sequence of the gene is determined and/or the amino acid sequence of the protein is determined. Standard cloning and sequencing methods can be used as are known to those skilled in the art. In certain embodiments, the binding activity of an antisense nucleic acid with the cellular LBP mRNA and/or genomic DNA is determined using standard methods known to those skilled in the art so as to detect the presence or absence of the target mRNA or DNA sequences to which the antisense nucleic acid would normally specifically bind.

The risk for atherosclerosis that is determined can be a reduced risk or an increased risk as compared to a normal animal. For example, an abnormality which would give a reduced risk is an inactive LBP polypeptide. An abnormality which would give an increased risk would be, e.g., an LBP polypeptide that has higher activity, e.g., LDL binding activity, than native LBP polypeptide.

The invention also includes a method for evaluating an agent for use in treating atherosclerosis. A test cell, cell-free system or animal is provided. An agent is provided. The agent is administered to the test cell, cell-free system or animal in a therapeutically effective amount. The effect of the agent on an aspect of LBP metabolism or structure is evaluated. A change in the aspect of LBP metabolism or structure is indicative of the usefulness of the agent in treating atherosclerosis.

In certain embodiments, the method employs two phases for evaluating an agent for use in treating atherosclerosis, an initial <u>in vitro</u> phase and then an <u>in vivo</u> phase. The agent is administered to the test cell or cell-free system <u>in vitro</u>, and if a change in an aspect of LBP metabolism occurs, then the agent is further administered to a test animal in a therapeutically effective amount and evaluated <u>in vivo</u> for an effect of the agent on an aspect of LBP

10

-13-

metabolism.

By cell is meant a cell or a group of cells, or a cell that is part of an animal. The cell can be a human or non-human cell. Cell is also meant to include a transgenic cell. The cell can be obtained, e.g., from a culture or from an animal. Animals are meant to include, e.g., natural animals and non-human transgenic animals. In certain embodiments, the transgenic cell or non-human transgenic animal has an LBP transgene, or fragment or analog thereof. In certain embodiments, the transgenic cell or non-human transgenic animal has a knockout for the LBP gene.

The test cell, cell-free system or animal can have a wild type pattern or a non-wild type pattern of LBP metabolism. A non-wild type pattern of LBP metabolism can result, e.g., from under-expression, over-expression, no expression, or a temporal, site or distribution change. Such a non-wild type pattern can result, e.g., from one or more mutations in the LBP gene, in a binding molecule gene, a regulatory gene, or in any other gene which directly or indirectly affects LBP metabolism. A mutation is meant to include, e.g., an alteration, e.g., in gross or fine structure, in a nucleic acid. Examples include single base pair alterations, e.g., missense or nonsense mutations, frameshifts, deletions, insertions and translocations. Mutations can be dominant or recessive. Mutations can be homozygous or heterozygous. Preferably, an aspect of LBP-1, LBP-2 or LBP-3 metabolism is evaluated.

An agent is meant to include, e.g., any substance, e.g., an anti-atherosclerosis drug. The agent of this invention preferably can change an aspect of LBP metabolism. Such change can be the result of any of a variety of events, including, e.g., preventing or reducing interaction between LBP and a binding molecule, e.g., LDL or an arterial extracellular matrix structural component; inactivating LBP and/or the binding molecule, e.g., by cleavage or other modification; altering the affinity of LBP and the binding molecule for each other; diluting out LBP and/or the binding molecule; preventing expression of LBP and/or the binding molecule; reducing synthesis of LBP and/or the binding molecule; synthesizing an abnormal LBP and/or binding molecule; synthesizing an alternatively spliced LBP and/or binding molecule; preventing or reducing proper conformational folding of LBP and/or the binding molecule; modulating the binding properties of LBP and/or the binding molecule; interfering with signals that are required to activate or deactivate LBP and/or the binding molecule; activating or deactivating LBP and/or the binding molecule in such a way as to prevent binding; or interfering with other receptors. ligands or other molecules which are required for the normal synthesis or functioning of LBP

1.5

and/or the binding molecule. For example, the agent can block the binding site on LDL for LBPs expressed focally in the arterial wall extracellular matrix, or it could block the binding site on an LBP for LDL, or it could be bifunctional, i.e., it could block both binding sites.

Examples of agents include LBP polypeptide, e.g., LBP-1, LBP-2 or LBP-3, or a biologically active fragment or analog thereof; a nucleic acid encoding LBP polypeptide or a biologically active fragment or analog thereof; a nucleic acid encoding an LBP regulatory sequence or a biologically active fragment or analog thereof; a binding molecule for LBP polypeptide; a binding molecule for LBP nucleic acid, the LBP nucleic acid being, e.g., a nucleic acid comprising a regulatory region for LBP or a nucleic acid comprising a structural region for LBP or a biologically active fragment of LBP; an antisense nucleic acid; a mimetic of LBP or a binding molecule; an antibody for LBP or a binding molecule; a metabolite; or an inhibitory carbohydrate or glycoprotein. In certain embodiments, the agent is an antagonist, agonist or super agonist.

Knowledge of the existence of the sequence of the LBPs allows a search for natural or artificial ligands to regulate LDL levels in the treatment of atherosclerosis. In certain embodiments, the agent is a natural ligand for LBP. In certain embodiments, the agent is an artificial ligand for LBP.

By analog is meant a compound that differs from naturally occurring LBP in amino acid sequence or in ways that do not involve sequence, or both. Analogs of the invention generally exhibit at least about 80% homology, preferably at least about 90% homology, more preferably yet at least about 95% homology, and most preferably at least about 98% homology, with substantially the entire sequence of a naturally occurring LBP sequence, preferably with a segment of about 100 amino acid residues, more preferably with a segment of about 50 amino acid residues, more preferably yet with a segment of about 20 amino acid residues, more preferably yet with a segment of about 10 amino acid residues, more preferably yet with a segment of about 5 amino acid residues, more preferably yet with a segment of about 4 amino acid residues, more preferably yet with a segment of about 3 amino acid residues, and most preferably with a segment of about 2 amino acid residues. Non-sequence modifications include, e.g., in vivo or in vitro chemical derivatizations of LBP. Non-sequence modifications include, e.g., changes in phosphorylation, acetylation, methylation, carboxylation, or glycosylation. Methods for making such modifications are known to those skilled in the art. For example, phosphorylation can be

30

10

modified by exposing LBP to phosphorylation-altering enzymes, e.g., kinases or phosphatases.

Preferred analogs include LBP or biologically active fragments thereof whose sequences differ from the wild-type sequence by one or more conservative amino acid substitutions or by one or more non-conservative amino acid substitutions, deletions, or insertions which do not abolish LBP biological activity. Conservative substitutions typically include the substitution of one amino acid for another with similar characteristics, e.g., substitutions within the following groups: valine, glycine; glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Other examples of conservative substitutions are shown in Table 1.

Table 1

CONSERVATIVE AMINO ACID SUBSTITUTIONS

For Amino Acid	Code	Replace with any of			
Alanine	A	D-Ala, Gly, beta-Ala, L-Cys, D-Cys			
Arginine	R	D-Arg, Lys, D-Lys, homo-Arg, D-homo-Arg, Met, Ile, D-Met, D-Ile, Orn, D-Orn, L-NMMA, L-NAME			
Asparagine N		D-Asn. Asp, D-Asp, Glu, D-Glu, Gln, D-Gln			
Aspartic Acid	D	D-Asp, D-Asn, Asn, Glu, D-Glu, Gln, D-Gln			
Cysteine	С	D-Cys. S-Me-Cys, Met. D-Met, Thr, D-Thr			
Glutamine	Q	D-Gln, Asn. D-Asn, Glu, D-Glu, Asp, D-Asp			
Glutamic Acid	Е	D-Glu, D-Asp. Asp, Asn, D-Asn, Gln, D-Gln			
Glycine	G	Ala, D-Ala, Pro, D-Pro, β-Ala Acp			
Histidine	Н	D-His			
Isoleucine	I	D-Ile, Val. D-Val, Leu, D-Leu, Met, D-Met			
Leucine	L	D-Leu, Val, D-Val, Leu, D-Leu, Met, D-Met			
Lysine	K	D-Lys, Arg, D-Arg, homo-Arg, D-homo-Arg, Met, D-Met, Ile, D-Ile, Orn, D-Orn			
Methionine	М	D-Met, S-Me-Cys, Ile, D-Ile, Leu, D-Leu, Val, D-Val			
Phenylalanine	F	D-Phe, Tyr, D-Thr, L-Dopa, His, D-His, Trp, D-Trp, Trans-3,4, or 5-phenylproline, cis-3,4, or 5-phenylproline			
Proline P		D-Pro, L-I-thioazolidine-4-carboxylic acid, D-or L-1-oxazolidine-4-carboxylic acid			
Serine	S	D-Ser, Thr, D-Thr, allo-Thr, Met, D-Met, Met(O), D-Met(O), L-Cys, D-Cys			
Threonine	Т	D-Thr, Ser, D-Ser, allo-Thr, Met, D-Met, Met(O), D-Met(O), Val, D-Val			
Tryptophan W		D-Trp. Phe, D-Phe, Tyr, D-Tyr			
Tyrosine Y		D-Tyr, Phe, D-Phe, L-Dopa, His, D-His			
Valine V		D-Val, Leu, D-Leu, Ile, D-Ile, Met, D-Met			

15

10

20

25

Amino acid sequence variants of a protein can be prepared by any of a variety of methods known to those skilled in the art. For example, random mutagenesis of DNA which encodes a protein or a particular domain or region of a protein can be used, e.g., PCR mutagenesis (using, e.g., reduced Taq polymerase fidelity to introduce random mutations into a cloned fragment of DNA; Leung et al., BioTechnique 1:11-15 (1989)), or saturation mutagenesis (by, e.g., chemical treatment or irradiation of single-stranded DNA in vitro, and synthesis of a complementary DNA strand; Mayers et al., Science 229:242 (1985)). Random mutagenesis can also be accomplished by, e.g., degenerate oligonucleotide generation (using, e.g., an automatic DNA synthesizer to chemically synthesize degenerate sequences; Narang, Tetrahedron 39:3 (1983); Itakura et al., Recombinant DNA, Proc. 3rd Cleveland Sympos. Macromolecules, ed. A.G. Walton, Amsterdam: Elsevier, pp. 273-289 (1981)). Non-random or directed mutagenesis can be used to provide specific sequences or mutations in specific regions. These techniques can be used to create variants which include, e.g., deletions, insertions, or substitutions, of residues of the known amino acid sequence of a protein. The sites for mutation can be modified individually or in series, e.g., by (i) substituting first with conserved amino acids and then with more radical choices depending upon results achieved, (ii) deleting the target residue, (iii) inserting residues of the same or a different class adjacent to the located site, or (iv) combinations of the above. For example, analogs can be made by in vitro DNA sequence modifications of the sequences of Figs. 10-18 (SEQ ID NOS:10-18). For example, in vitro mutagenesis can be used to convert any of these DNA sequences into a sequence which encodes an analog in which one or more amino acid residues has undergone a replacement, e.g., a conservative replacement as described in Table 1.

10

15

20

30

Methods for identifying desirable mutations include, e.g., alanine scanning mutagenesis (Cunningham and Wells, Science 244:1081-1085 (1989)), oligonucleotide-mediated mutagenesis (Adelman et al., DNA 2:183 (1983)); cassette mutagenesis (Wells et al., Gene 34:315 (1985)). combinatorial mutagenesis, and phage display libraries (Ladner et al., PCT International Appln. No. WO88/06630). The LBP analogs can be tested, e.g., for their ability to bind to LDL and/or to an arterial extracellular matrix component, as described herein.

Other analogs within the invention include, e.g., those with modifications which increase peptide stability. Such analogs may contain, e.g., one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence. Also included are, e.g.: analogs that include residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring or synthetic amino acids, e.g., β or γ amino acids; and cyclic analogs.

Analogs are also meant to include peptides in which structural modifications have been introduced into the peptide backbone so as to make the peptide non-hydrolyzable. Such peptides are particularly useful for oral administration, as they are not digested. Peptide backbone modifications include, e.g., modifications of the amide nitrogen, the α -carbon, the amide carbonyl, or the amide bond, and modifications involving extensions, deletions or backbone crosslinks. For example, the backbone can be modified by substitution of a sulfoxide for the carbonyl, by reversing the peptide bond, or by substituting a methylene for the carbonyl group. Such modifications can be made by standard procedures known to those skilled in the art. See, e.g., Spatola, A.F., "Peptide Backbone Modifications: A Structure-Activity Analysis of Peptides Containing Amide Bond Surrogates, Conformational Constraints, and Related Backbone Replacements." in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 7, pp. 267-357, B. Weinstein (ed.), Marcel Dekker, Inc., New York (1983).

An analog is also meant to include polypeptides in which one or more of the amino acid residues include a substituent group, or polypeptides which are fused with another compound, e.g., a compound to increase the half-life of the polypeptide, e.g., polyethylene glycol.

By fragment is meant some portion of the naturally occurring LBP polypeptide. Preferably, the fragment is at least about 100 amino acid residues, more preferably at least about 50 amino acid residues, more preferably yet at least about 30 amino acid residues, more preferably yet at least about 20 amino acid residues, more preferably yet at least about 5 amino acid residues, more preferably yet at least about 4 amino acid residues, more preferably yet at least about 3 amino acid residues, and most preferably at least about 2 amino acid residues in length. Fragments include, e.g., truncated secreted forms, proteolytic fragments, splicing fragments, other fragments, and chimeric constructs between at least a portion of the relevant gene, e.g., LBP-1, LBP-2 or LBP-3, and another molecule. Fragments of LBP can be generated by methods known to those skilled in the art. In certain embodiments, the fragment is biologically active. The ability of a candidate fragment to exhibit a biological activity of LBP can be assessed by methods known to those skilled in the art. For example, LBP fragments can be tested for their ability to bind to LDL and/or to an arterial extracellular matrix structural component, as described herein. Also included are LBP fragments containing residues that are not required for biological activity of the fragment or that result from alternative mRNA splicing or alternative protein processing events.

Fragments of a protein can be produced by any of a variety of methods known to those

15

25

skilled in the art, e.g., recombinantly, by proteolytic digestion, or by chemical synthesis. Internal or terminal fragments of a polypeptide can be generated by removing one or more nucleotides from one end (for a terminal fragment) or both ends (for an internal fragment) of a nucleic acid which encodes the polypeptide. Expression of the mutagenized DNA produces polypeptide fragments. Digestion with "end-nibbling" endonucleases can thus generate DNAs which encode an array of fragments. DNAs which encode fragments of a protein can also be generated, e.g., by random shearing, restriction digestion or a combination of the above-discussed methods. For example, fragments of LBP can be made by expressing LBP DNA which has been manipulated in vitro to encode the desired fragment, e.g., by restriction digestion of any of the DNA sequences of Figs. 10-18 (SEQ ID NOS:10-18).

Fragments can also be chemically synthesized using techniques known in the art, e.g., conventional Merrifield solid phase f-Moc or t-Boc chemistry. For example, peptides of the present invention can be arbitrarily divided into fragments of desired length with no overlap of the fragments, or divided into overlapping fragments of a desired length.

An LBP or a biologically active fragment or analog thereof, or a binding molecule or a biologically active fragment or analog thereof, can, e.g., compete with its cognate molecule for the binding site on the complementary molecule, and thereby reduce or eliminate binding between LBP and the cellular binding molecule. LBP or a binding molecule can be obtained, e.g., from purification or secretion of naturally occurring LBP or binding molecule, from recombinant LBP or binding molecule, or from synthesized LBP or binding molecule.

Therefore, methods for generating analogs and fragments and testing them for activity are known to those skilled in the art.

An agent can also be a nucleic acid used as an antisense molecule. Antisense therapy is meant to include, e.g., administration or in situ generation of oligonucleotides or their derivatives which specifically hybridize, e.g., bind, under cellular conditions, with the cellular mRNA and/or genomic DNA encoding an LBP polypeptide, or mutant thereof, so as to inhibit expression of the encoded protein, e.g., by inhibiting transcription and/or translation. The binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix.

In certain embodiments, the antisense construct binds to a naturally-occurring sequence of an LBP gene which, e.g., is involved in expression of the gene. These sequences include, e.g., promoter, start codons, stop codons, and RNA polymerase binding sites.

30

15

In other embodiments, the antisense construct binds to a nucleotide sequence which is not present in the wild type gene. For example, the antisense construct can bind to a region of an LBP gene which contains an insertion of an exogenous, non-wild type sequence. Alternatively, the antisense construct can bind to a region of an LBP gene which has undergone a deletion, thereby bringing two regions of the gene together which are not normally positioned together and which, together, create a non-wild type sequence. When administered in vivo to a subject, antisense constructs which bind to non-wild type sequences provide the advantage of inhibiting the expression of a mutant LBP gene, without inhibiting expression of any wild type LBP gene.

An antisense construct of the present invention can be delivered, e.g., as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the cellular mRNA which encodes an LBP polypeptide. An alternative is that the antisense construct is an oligonucleotide which is generated ex vivo and which, when introduced into the cell causes inhibition of expression by hybridizing with the mRNA (duplexing) and/or genomic sequences (triplexing) of an LBP gene. Such oligonucleotides are preferably modified oligonucleotides which are resistant to endogenous nucleases, e.g. exonucleases and/or endonucleases, and are therefore stable in vivo. Exemplary nucleic acid molecules for use as antisense oligonucleotides are phosphoramidate, phosphothioate, phosphorodithioates and methylphosphonate analogs of DNA and peptide nucleic acids (PNA). (See also U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed. (See, e.g., Van der Krol et al., Biotechniques 6:958-976, (1988); Stein et al., Cancer Res. 48:2659-2668 (1988)).

By mimetic is meant a molecule which resembles in shape and/or charge distribution LBP or a binding molecule. The mimetic can be a peptide or a non-peptide. Mimetics can act as therapeutic agents because they can, e.g., competitively inhibit binding of LBP to a binding molecule. By employing, e.g., scanning mutagenesis, e.g., alanine scanning mutagenesis, linker scanning mutagenesis or saturation mutagenesis, to map the amino acid residues of a particular LBP polypeptide involved in binding a binding molecule, peptide mimetics, e.g., diazepine or isoquinoline derivatives, can be generated which mimic those residues in binding to a binding molecule, and which therefore can inhibit binding of the LBP to a binding molecule and thereby interfere with the function of LBP. Non-hydrolyzable peptide analogs of such residues can be generated using, e.g., benzodiazepine (see, e.g., Freidinger et al., in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands (1988)); azepine (see, e.g.,

10

15

20

-20-

Huffman et al., in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands (1988)); substituted gamma lactam rings (see, e.g., Garvey et al., in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands (1988)); keto-methylene pseudopeptides (see, e.g., Ewenson et al., J. Med. Chem. 29:295 (1986); Ewenson et al., in Peptides: Structure and Function (Proceedings of the 9th American Peptide Symposium) Pierce Chemical Co. Rockland, IL (1985)); β-turn dipeptide cores (see, e.g., Nagai et al., Tetrahedron Lett. 26:647 (1985); Sato et al., J. Chem. Soc. Perkin Trans. 1:1231 (1986)); or β-aminoalcohols (see, e.g., Gordon et al., Biochem. Biophys. Res. Commun. 126:419 (1985); Dann et al., Biochem. Biophys. Res. Commun. 134:71 (1986)).

Antibodies are meant to include antibodies against any moiety that directly or indirectly affects LBP metabolism. The antibodies can be directed against, e.g., LBP or a binding molecule, or a subunit or fragment thereof. For example, antibodies include anti-LBP-1, LBP-2 or LBP-3 antibodies; and anti-binding molecule antibodies. Antibody fragments are meant to include, e.g., Fab fragments, Fab' fragments, F(ab'), fragments, F(v) fragments, heavy chain monomers, heavy chain dimers, heavy chain trimers, light chain monomers, light chain dimers. light chain trimers, dimers consisting of one heavy and one light chain, and peptides that mimic the activity of the anti-LBP or anti-binding molecule antibodies. For example, Fab, fragments of the inhibitory antibody can be generated through, e.g., enzymatic cleavage. Both polyclonal and monoclonal antibodies can be used in this invention. Preferably, monoclonal antibodies are used. Natural antibodies, recombinant antibodies or chimeric-antibodies, e.g., humanized antibodies, are included in this invention. Preferably, humanized antibodies are used when the subject is a human. Most preferably, the antibodies have a constant region derived from a human antibody and a variable region derived from an inhibitory mouse monoclonal antibody. Production of polyclonal antibodies to LBP is described in Example 6. Monoclonal and humanized antibodies are generated by standard methods known to those skilled in the art. Monoclonal antibodies can be produced, e.g., by any technique which provides antibodies produced by continuous cell lines cultures. Examples include the hybridoma technique (Kohler and Milstein, Nature 256:495-497 (1975), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983)), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., in Monoclonal Antibodies and Cancer Therapy, A.R. Liss, Inc., pp. 77-96 (1985)). Preferably, humanized antibodies are raised through conventional production and harvesting techniques (Berkower, I., Curr. Opin. Biotechnol. 7:622-

10

15

20

25

-21-

628 (1996); Ramharayan and Skaletsky, Am. Biotechnol. Lab 13:26-28 (1995)). In certain preferred embodiments, the antibodies are raised against the LBP, preferably the LDL-binding site, and the Fab fragments produced. These antibodies, or fragments derived therefrom, can be used, e.g., to block the LDL-binding sites on the LBP molecules.

Agents also include inhibitors of a molecule that are required for synthesis, post-translational modification, or functioning of LBP and/or a binding molecule, or activators of a molecule that inhibits the synthesis or functioning of LBP and/or the binding molecule. Agents include, e.g., cytokines, chemokines, growth factors, hormones, signaling components, kinases. phosphatases, homeobox proteins, transcription factors, editing factors, translation factors and post-translation factors or enzymes. Agents are also meant to include ionizing radiation, non-ionizing radiation, ultrasound and toxic agents which can, e.g., at least partially inactivate or destroy LBP and/or the binding molecule.

An agent is also meant to include an agent which is not entirely LBP specific. For example, an agent may alter other genes or proteins related to arterial plaque formation. Such overlapping specificity may provide additional therapeutic advantage.

The invention also includes the agent so identified as being useful in treating atherosclerosis.

The invention also includes a method for evaluating an agent for the ability to alter the binding of LBP polypeptide to a binding molecule. An agent is provided. An LBP polypeptide is provided. A binding molecule is provided. The agent, LBP polypeptide and binding molecule are combined. The formation of a complex comprising the LBP polypeptide and binding molecule is detected. An alteration in the formation of the complex in the presence of the agent as compared to in the absence of the agent is indicative of the agent altering the binding of the LBP polypeptide to the binding molecule.

In preferred embodiments, the LBP polypeptide is LBP-1, LBP-2 or LBP-3. Examples of a binding molecule include native LDL, modified LDL, e.g., methylated LDL or oxidized LDL, and arterial extracellular matrix structural components.

Altering the binding includes, e.g., inhibiting or promoting the binding. The efficacy of the agent can be assessed, e.g., by generating dose response curves from data obtained using various concentrations of the agent. Methods for determining formation of a complex are standard and are known to those skilled in the art, e.g., affinity coelectrophoresis (ACE) assays or ELISA assays as described herein.

5

10

15

20

25

The invention also includes the agent so identified as being able to alter the binding of an LBP polypeptide to a binding molecule.

The invention also includes a method for evaluating an agent for the ability to bind to an LBP polypeptide. An agent is provided. An LBP polypeptide is provided. The agent is contacted with the LBP polypeptide. The ability of the agent to bind to the LBP polypeptide is evaluated. Preferably, the LBP polypeptide is LBP-1, LBP-2 or LBP-3. Binding can be determined, e.g., by measuring formation of a complex by standard methods known to those skilled in the art, e.g., affinity coelectrophoresis (ACE) assays or ELISA assays as described herein.

The invention also includes the agent so identified as being able to bind to LBP polypeptide.

The invention also includes a method for evaluating an agent for the ability to bind to a nucleic acid encoding an LBP regulatory sequence. An agent is provided. A nucleic acid encoding an LBP regulatory sequence is provided. The agent is contacted with the nucleic acid. The ability of the agent to bind to the nucleic acid is evaluated. Preferably, the LBP regulatory sequence is an LBP-1, LBP-2 or LBP-3 regulatory sequence. Binding can be determined, e.g., by measuring formation of a complex by standard methods known to those skilled in the art, e.g., DNA mobility shift assays, DNase I footprint analysis (Ausubel et al., ed., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, (1989)).

The invention also includes the agent so identified as being able to bind to a nucleic acid encoding an LBP regulatory sequence.

The invention also includes a method for treating atherosclerosis in an animal. An animal in need of treatment for atherosclerosis is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the animal in a therapeutically effective amount such that treatment of the atherosclerosis occurs.

In certain preferred embodiments, the agent is an LBP polypeptide, e.g., LBP-1, LBP-2 or LBP-3, or a biologically active fragment or analog thereof. The agent can be, e.g., the polypeptide as set forth in SEQ ID NOS:1-9. Preferably, the agent is a polypeptide of no more than about 100 amino acid residues in length, more preferably of no more than about 50 amino acid residues, more preferably yet of no more than about 30 amino acid residues, more preferably yet of no more than about 10 amino acid residues, more preferably yet of no more than about 5 amino acid residues, more

10

15

20

25

-23-

preferably yet of no more than about 4 amino acid residues, more preferably yet of no more than about 3 amino acid residues, and most preferably of no more than about 2 amino acid residues. Preferably, the polypeptide includes at least about 20% acidic amino acid residues, more preferably yet at least about 40% acidic amino acid residues, more preferably yet at least about 60% acidic amino acid residues, more preferably yet at least about 80% acidic amino acid residues, more preferably yet at least about 90% acidic amino acid residues, more preferably yet at least about 95% acidic amino acid residues, and most preferably at least about 98% acidic amino acid residues. Acidic amino acid residues include aspartic acid and glutamic acid. An example of such an LBP polypeptide is BHF-1, which is a 20 amino acid length fragment of human or rabbit LBP-1 which contains amino acid residues 14 through 33. See Fig. 9 (SEQ ID NO:9). 45% of the amino acid residues of BHF-1 are acidic. The invention also includes biologically active fragments and analogs of BHF-1.

Other preferred acidic regions from the LBPs are amino acid residues 8 through 22 (SEQ ID NO:19), 8 through 33 (SEQ ID NO:20), 23 through 33 (SEQ ID NO:21), and 208 through 217 (SEQ ID NO:22) of human LBP-2 as depicted in Fig. 7 (SEQ. ID NO:7); amino acid residues 14 through 43 (SEQ ID NO:23) and 38 through 43 (SEQ ID NO:24) of rabbit or human LBP-1 as depicted in Fig. 1 (SEQ ID NO:1) and Fig. 6 (SEQ ID NO:6); amino acid residues 105 through 120 (SEQ ID NO:25), 105 through 132 (SEQ ID NO:26), 121 through 132 (SEQ ID NO:27), and 211 through 220 (SEQ ID NO:28) of rabbit LBP-2 as depicted in Fig. 2 (SEQ ID NO:2); amino acid residues 96 through 110 (SEQ ID NO:29) of rabbit LBP-3 as depicted in Fig. 5 (SEQ ID NO:5); and amino acid residues 53-59 (SEQ ID NO:41) of human LBP-3 as depicted in Fig. 8 (SEQ ID NO:8). The invention is also meant to include biologically active fragments and analogs of any of these polypeptides.

Other examples of agents include homopolymers and heteropolymers of any amino acid or amino acid analog. In certain preferred embodiments, the agent is a homopolymer of an acidic amino acid or analog thereof. In certain embodiments, the agent is a heteropolymer of one or more acidic amino acids and one or more other amino acids, or analogs thereof. For example, agents include poly(glu), poly(asp), poly(glu asp), poly(glu N), poly(asp N) and poly(glu asp N). By N is meant any amino acid, or analog thereof, other than glu or asp. By poly(glu asp) is meant all permutations of glu and asp for a given length peptide. A preferred peptide is poly(glu) of no more than about 10 amino acids in length, preferably about 7 amino acids in length.

15

20

WO 98/23282 PCT/US97/21857 -24-

In certain preferred embodiments, the agent is an LBP nucleic acid or a biologically acrive fragment or analog thereof, e.g., a nucleic acid encoding LBP-1, LBP-2 or LBP-3 polypeptide, or a biologically active fragment or analog thereof. The agent car. be, e.g., a nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NOS:10-18. In other embodiments, the agent is an antisense molecule, e.g., one which can bind to an LBP gene sequence.

Treating is meant to include, e.g., preventing, treating, reducing the symptoms of, or curing the atherosclerosis. Administration of the agent can be accomplished by any method which allows the agent to reach the target cells. These methods include, e.g., injection, deposition, implantation, suppositories, oral ingestion, inhalation, topical administration, or any other method of administration where access to the target cells by the agent is obtained. Injections can be, e.g., intravenous, intradermal, subcutaneous, intramuscular or intraperitoneal. Implantation includes inserting implantable drug delivery systems, e.g., microspheres, hydrogels, polymeric reservoirs, cholesterol matrices, polymeric systems, e.g., matrix erosion and/or diffusion systems and non-polymeric systems, e.g., compressed, fused or partially fused pellets. Suppositories include glycerin suppositories. Oral ingestion doses can be enterically coated. Inhalation includes administering the agent with an aerosol in an inhalator, either alone or attached to a carrier that can be absorbed.

Administration of the agent can be alone or in combination with other therapeutic agents. In certain embodiments, the agent can be combined with a suitable carrier, incorporated into a liposome, or incorporated into a polymer release system.

In certain embodiments of the invention, the administration can be designed so as to result in sequential exposures to the agent over some time period, e.g., hours, days, weeks, months or years. This can be accomplished by repeated administrations of the agent by one of the methods described above, or alternatively, by a controlled release delivery system in which the agent is delivered to the animal over a prolonged period without repeated administrations. By a controlled release delivery system is meant that total release of the agent does not occur immediately upon administration, but rather is delayed for some time. Release can occur in bursts or it can occur gradually and continuously. Administration of such a system can be, e.g., by long acting oral dosage forms, bolus injections, transdermal patches or subcutaneous implants.

Examples of systems in which release occurs in bursts include, e.g., systems in which the

10

15

20

25

-25-

agent is entrapped in liposomes which are encapsulated in a polymer matrix, the liposomes being sensitive to a specific stimulus, e.g., temperature, pH, light, magnetic field, or a degrading enzyme, and systems in which the agent is encapsulated by an ionically-coated microcapsule with a microcapsule core-degrading enzyme. Examples of systems in which release of the agent is gradual and continuous include, e.g., erosional systems in which the agent is contained in a form within a matrix, and diffusional systems in which the agent permeates at a controlled rate, e.g., through a polymer. Such sustained release systems can be, e.g., in the form of pellets or capsules.

The agent can be suspended in a liquid, e.g., in dissolved form or colloidal form. The liquid can be a solvent, partial solvent or non-solvent. In many cases water or an organic liquid can be used.

The agent can be administered prior to or subsequent to the appearance of atherosclerosis symptoms. In certain embodiments, the agent is administered to patients with familial histories of atherosclerosis, or who have phenotypes that may indicate a predisposition to atherosclerosis, or who have been diagnosed as having a genotype which predisposes the patient to atherosclerosis, or who have other risk factors, e.g., hypercholesterolemia, hypertension or smoking.

The agent is administered to the animal in a therapeutically effective amount. By therapeutically effective amount is meant that amount which is capable of at least partially preventing or reversing atherosclerosis. A therapeutically effective amount can be determined on an individual basis and will be based, at least in part, on consideration of the species of animal, the animal's size, the animal's age, the agent used, the type of delivery system used, the time of administration relative to the onset of atherosclerosis symptoms, and whether a single, multiple, or controlled release dose regimen is employed. A therapeutically effective amount can be determined by one of ordinary skill in the art employing such factors and using no more than routine experimentation.

Preferably, the concentration of the agent is at a dose of about 0.1 to about 1000 mg/kg body weight/day, more preferably at about 0.1 to about 500 mg/kg/day, more preferably yet at about 0.1 to about 100 mg/kg/day, and most preferably at about 0.1 to about 5 mg/kg/day. The specific concentration partially depends upon the particular agent used, as some are more effective than others. The dosage concentration of the agent that is actually administered is dependent at least in part upon the final concentration that is desired at the site of action, the

10

15

WO 98/23282 PCT/US97/21857 -26-

method of administration, the efficacy of the particular agent, the longevity of the particular agent, and the timing of administration relative to the onset of the atherosclerosis symptoms. Preferably, the dosage form is such that it does not substantially deleteriously affect the animal. The dosage can be determined by one of ordinary skill in the art employing such factors and using no more than routine experimentation.

In certain embodiments, various gene constructs can be used as part of a gene therapy protocol to deliver nucleic acids encoding an agent, e.g., either an agonistic or antagonistic form of an LBP polypeptide. For example, expression vectors can be used for in vivo transfection and expression of an LBP polypeptide in particular cell types so as to reconstitute the function of, or alternatively, abrogate the function of, LBP polypeptide in a cell in which non-wild type LBP is expressed. Expression constructs of the LBP polypeptide, and mutants thereof, may be administered in any biologically effective carrier, e.g. any formulation or composition capable of effectively delivering the LBP gene to cells in vivo. Approaches include, e.g., insertion of the subject gene in viral vectors including, e.g., recombinant retroviruses, adenovirus, adenoassociated virus, and herpes simplex virus-1, or recombinant bacterial or eukaryotic plasmids. Viral vectors infect or transduce cells directly; plasmid DNA can be delivered with the help of. for example, cationic liposomes (lipofectin™ (Life Technologies, Inc., Gaithersburg, MD) or derivatized (e.g. antibody conjugated), polylysine conjugates, gramacidin S, artificial viral envelopes or other such intracellular carriers, as well as direct injection of the gene construct or $Ca_3(PO_4)_2$ precipitation carried out in vivo. The above-described methods are known to those skilled in the art and can be performed without undue experimentation. Since transduction of appropriate target cells represents the critical first step in gene therapy, choice of the particular gene delivery system will depend on such factors as the phenotype of the intended target and the route of administration, e.g., locally or systemically. Administration can be directed to one or more cell types, and to one or more cells within a cell type, so as to be therapeutically effective. by methods that are known to those skilled in the art. In a preferred embodiment, the agent is administered to arterial wall cells of the animal. For example, a genetically engineered LBP gene is administered to arterial wall cells. In certain embodiments, administration is done in a prenatal animal or embryonic cell. It will be recognized that the particular gene construct provided for in in vivo transduction of LBP expression is also useful for in vitro transduction of cells, such as for use in the diagnostic assays described herein.

10

15

20

25

-27-

In certain embodiments, therapy of atherosclerosis is performed with antisense nucleotide analogs of the genes which code for the LBPs. Preferably, the antisense nucleotides have non-hydrolyzable "backbones," e.g., phosphorothioates, phosphorodithioates or methylphosphonates. The nucleoside base sequence is complementary to the sequence of a portion of the gene coding for, e.g., LBP-1, 2 or 3. Such a sequence might be, e.g., ATTGGC if the gene sequence for the LBP is TAACCG. One embodiment of such therapy would be incorporation of an antisense analog of a portion of one of the LBP genes in a slow-release medium, e.g., polyvinyl alcohol, which is administered, e.g., by subcutaneous injection, so as to release the antisense nucleotide analog over a period of weeks or months. In another embodiment, the antisense analog is incorporated into a polymeric matrix, e.g., polyvinyl alcohol, such that the gel can be applied locally to an injured arterial wall to inhibit LBP synthesis and prevent LDL accumulation, e.g., after angioplasty or atherectomy.

The invention also includes a method for treating an animal at risk for atherosclerosis. An animal at risk for atherosclerosis is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the animal in a therapeutically effective amount such that treatment of the animal occurs. Being at risk for atherosclerosis can result from, e.g., a family history of atherosclerosis, a genotype which predisposes to atherosclerosis, or phenotypic symptoms which predispose to atherosclerosis, e.g., having hypercholesterolemia, hypertension or smoking.

The invention also includes a method for treating a cell having an abnormality in structure or metabolism of LBP. A cell having an abnormality in structure or metabolism of LBP is provided. An agent capable of altering an aspect of LBP structure or metabolism is provided. The agent is administered to the cell in a therapeutically effective amount such that treatment of the cell occurs.

In certain embodiments, the cell is obtained from a cell culture or tissue culture or an embryo fibroblast. The cell can be, e.g., part of an animal, e.g., a natural animal or a non-human transgenic animal. Preferably, the LBP is LBP-1, LBP-2 or LBP-3.

The invention also includes a pharmaceutical composition for treating atherosclerosis in an animal comprising a therapeutically effective amount of an agent, the agent being capable of altering an aspect of LBP metabolism or structure in the animal so as to result in treatment of the atherosclerosis, and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers include, e.g., saline, liposomes and lipid emulsions.

10

15

20

25

In certain preferred embodiments, the agent of the pharmaceutical composition is an LBP polypeptide, e.g., LBP-1. LBP-2 or LBP-3, or a biologically active fragment or analog thereof. The agent can be, e.g., the polypeptide as set forth in SEQ ID NOS:1-9. Preferably, the agent is a polypeptide of no more than about 100 amino acid residues in length, more preferably of no more than about 50 amino acid residues, more preferably yet of no more than about 30 amino acid residues, more preferably yet of no more than about 10 amino acid residues, more preferably yet of no more than about 5 amino acid residues, more preferably yet of no more than about 4 amino acid residues, more preferably yet of no more than about 3 amino acid residues, and most preferably of no more than about 2 amino acid residues. Preferably, the polypeptide includes at least about 20% acidic amino acid residues, more preferably yet at least about 40% acidic amino acid residues, more preferably yet at least about 40% acidic amino acid residues, more preferably yet at least about 90% acidic amino acid residues, more preferably yet at least about 90% acidic amino acid residues, more preferably yet at least about 90% acidic amino acid residues, more preferably yet at least about 90% acidic amino acid residues, more preferably yet at least about 98% acidic amino acid residues.

10

15

20

25

30

In certain preferred embodiments, the agent is an LBP nucleic acid, e.g., a nucleic acid encoding LBP-1, LBP-2 or LBP-3 polypeptide, or a biologically active fragment or analog thereof. The agent can be, e.g., a nucleic acid comprising a nucleotide sequence as set forth in SEO ID NOS:10-18.

The invention also includes a vaccine composition for treating atherosclerosis in an animal comprising a therapeutically effective amount of an agent, the agent being capable of altering an aspect of LBP metabolism or structure in the animal so as to result in treatment of the atherosclerosis, and a pharmaceutically acceptable carrier.

The invention also includes a method for diagnosing atherosclerotic lesions in an animal. An animal is provided. A labeled agent capable of binding to LBP present in atherosclerotic lesions is provided. The labeled agent is administered to the animal under conditions which allow the labeled agent to interact with the LBP so as to result in labeled LBP. The localization or quantification of the labeled LBP is determined by imaging so as to diagnose the presence of atherosclerotic lesions in the animal.

Preferably, the LBP is LBP-1, LBP-2 or LBP-3. The imaging can be performed by standard methods known to those skilled in the art, including, e.g., magnetic resonance imaging. gamma camera imaging, single photon emission computed tomographic (SPECT) imaging, or

positron emission tomography (PET).

Preferably, agents that bind tightly to LBPs in atherosclerotic lesions are used for atherosclerotic imaging and diagnosis. The agent is radiolabeled with, e.g., ^{9 m}Tc or another isotope suitable for clinical imaging by gamma camera, SPECT, PET scanning or other similar technology. Since LBPs occur in very early lesions, such imaging is more sensitive than angiography or ultrasound for locating very early lesions which do not yet impinge on the arterial lumen to cause a visible bulge or disturbed flow. In addition to locating both early and more developed lesions, the imaging agents which bind to LBPs can also be used to follow the progress of atherosclerosis, as a means of evaluating the effectiveness of both dietary and pharmacological treatments.

Thus, a diagnostic embodiment of the invention is the adaptation of, e.g., a peptide complementary to one of the LBPs, by radiolabeling it and using it as an injectable imaging agent for detection of occult atherosclerosis. The peptide is selected from those known to bind to LBPs, e.g., RRRRRR or KKLKLXX, or any other polycationic peptide which binds to the highly electronegative domains of the LBPs. For extracorporeal detection with a gamma scintillation (Anger) camera, technetium-binding ligands, e.g., CGC, GGCGC, or GGCGCF, can be incorporated into the peptides at the N-terminus or C-terminus for ^{99m}Tc labeling. For external imaging by magnetic resonance imaging (MRI), e.g., the gadolinium-binding chelator, diethylene triamine penta-acetic acid (DTPA), is covalently bound to the N- or C-terminus of the peptides. In yet other embodiments, the LBP-binding peptides are covalently bound, e.g., to magnetic ion oxide particles by standard methods known to those skilled in the art, e.g., conjugating the peptides with activated polystyrene resin beads containing magnetic ion oxide.

The invention also includes a method for immunizing an animal against an LBP, e.g., LBP-1, LBP-2 or LBP-3, or fragment or analog thereof. An animal having LDL is provided. An LBP or fragment or analog thereof is provided. The LBP or fragment or analog thereof is administered to the animal so as to stimiulate antibody production by the animal to the LBP or fragment or analog thereof such that binding of the LBP to the LDL is altered, e.g., decreased or increased.

The invention also includes a method of making a fragment or analog of LBP

polypeptide, the fragment or analog having the ability to bind to modified LDL and native LDL.

An LBP polypeptide is provided. The sequence of the LBP polypeptide is altered. The altered LBP polypeptide is tested for the ability to bind to modified LDL, e.g., methylated LDL,

oxidized LDL, acetylated LDL, cyclohexanedione-treated LDL (CHD-LDL), and to native LDL.

The fragments or analogs can be generated and tested for their ability to bind to these modified LDLs and to native LDL, by methods known to those skilled in the art, e.g., as described herein. Preferably, they are tested for their ability to bind to methylated LDL and native LDL. The binding activity of the fragment or analog can be greater or less than the binding activity of the native LBP. Preferably, it is greater. In preferred embodiments, the LBP is LBP-1, LBP-2 or LBP-3.

The invention also includes a method for isolating a cDNA encoding an LBP. A cDNA library is provided. The cDNA library is screened for a cDNA encoding a polypeptide which binds to native LDL and modified LDL, e.g., methylated LDL or oxidized LDL. The cDNA which encodes this polypeptide is isolated, the cDNA encoding an LBP.

The following non-limiting examples further illustrate the present invention.

EXAMPLES

Example 1: Construction of a Rabbit cDNA Library

10

15

20

25

30

This example illustrates the construction of a rabbit cDNA library using mRNA from balloon-deendothelialized healing rabbit abdominal aorta. Balloon-catheter deendothelialized rabbit aorta has been shown to be a valid model for atherosclerosis (Minick et al., Am. J. Pathol. 95:131-158 (1979).

The mRNA was obtained four weeks after ballooning to maximize focal LDL binding in the ballooned rabbit aorta. First strand cDNA synthesis was carried out in a 50 µl reaction mixture containing 4 µg mRNA; 2 µg oligo d(T) primer; methylation dNTP mix (10 mM each): 10 mM DTT; 800 units superscript II RT (Life Technologies, Gaithersburg, MD); 1 X first strand cDNA synthesis buffer (50 mM Tris-HCl, pH 8.3; 75 mM KCl; 5 mM MgCl₂), which was incubated for 1 hr at 37°C. The reaction mixture was then adjusted to 250 µl through the addition of 1 X second strand buffer (30 mM Tris-HCl, pH 7.5; 105 mM KCl; 5.2 mM MgCl₂): 0.1 mM DTT; methylation dNTP mix (10 mM each); 50 units <u>E. coli</u> DNA polymerase I, 3 units RNase H; 15 units <u>E. coli</u> DNA ligase (all enzymes from Life Technologies), which was incubated for an additional 2.5 hr at 15°C. The resulting double-stranded cDNAs (dscDNA) were then treated with 1.5 units T4 DNA polymerase (Novagen Inc., Madison, WI) for 20 min at 11°C to make blunt-ended dscDNA. These were then concentrated by ethanol precipitation and EcoR1/Hind III linkers were attached to the ends by T4 DNA ligase (Novagen Inc.). The linkerligated cDNAs were treated with EcoR1 and HindIII restriction enzymes to produce EcoR1 and

Hind III recognition sequences at their 5' and 3' ends, respectively. After the removal of linker DNA by gel exclusion chromatography, the dscDNAs were inserted into λ EXlox phage arms (Novagen Inc.) in a unidirectional manner by T4 DNA ligase and packaged into phage particles according to the manufacturer's protocol (Novagen Inc.). A phage library of cDNAs containing 2 x 106 independent clones was established from 4 μ g of mRNA.

Example 2: Identification of Rabbit cDNAs Encoding LDL Binding Proteins (LBPs)

This example illustrates a method of functionally screening a rabbit cDNA library so as to identify cDNAs encoding LBPs which bind to both native LDL and methyl LDL. Methyl LDL is not recognized by previously reported cell surface receptors. See, e.g., Weisgraber et al., J. Biol. Chem. 253:9053-9062 (1978).

A fresh overnight culture of E. coli ER1647 cells (Novagen Inc.) was infected with the cDNA phage obtained from Example 1, and plated at a density of 2 x 10⁴ plaque-forming units (pfu) in 150 mm diameter plates containing 2 X YT agar. A total of 50 plates, equivalent to 1 x 10⁶ phage, were plated and incubated at 37°C until the plaques reached 1 mm in diameter (5-6 hr). A dry nitrocellulose membrane, which had previously been saturated with 10 mM IPTG solution, was layered on top of each plate to induce the production of recombinant protein, as well as to immobilize the proteins on the membranes. The plates were incubated at 37°C for an additional 3-4 hr, and then overnight at 4°C.

The next day, the membranes were lifted from each plate and processed as follows. Several brief rinses in TBST solution (10mM Tris-HCl, pH 8.0; 150mM NaCl, 0.05% Tween 20); two 10-min rinses with 6M guanidine-HCl in HBB (20mM HEPES, pH 7.5; 5mM MgCl₂, 1mM DTT, and 5mM KCl); two 5-min rinses in 3M guanidine-HCl in HBB; a final brief rinse in TBSEN (TBS, 1mM EDTA, 0.02% NaN₃).

The membranes were then blocked for 30 min at room temperature in a solution of TBSEN with 5% non-fat dry milk, followed by 10 min in TBSEN with 1% non-fat dry milk. Following blocking, the membranes were incubated with native human LDL (obtained as described in Example 11 or methylated human LDL (meLDL) (see Weisgraber et al., J. Biol. Chem. 253:9053-9062 (1978)), at a concentration of 4 μg/ml, in a solution containing 1 X TBSEN, 1% non-fat dry milk, 1mM PMSF, 0.5 X protease inhibitor solution (1mM ε-amino caproic acid/1mM benzamidine). Incubation was for 4 hr at room temperature in a glass Petri dish with gentle stirring on a stirring table, followed by overnight at 4°C with no stirring.

5

15

20

25

Specifically bound meLDL and native LDL were detected on the nitrocellulose membranes by antibodies against human LDL. Sheep anti-human LDL polyclonal antibodies (Boehringer Mannheim, Indianapolis, IN) were adsorbed with <u>E. coli</u> plys E cell extracts to abolish background. For adsorption, <u>E. coli</u> plys E cells were grown to log phase, spun down and resuspended in PBS containing 1 mM PMSF, 2 mM e-amino caproic acid, and 1 mM benzamidine. The cell suspension then underwent 8 freeze-thaw cycles via immersion in liquid nitrogen and cold running tap water, respectively. The anti LDL antibodies/cell extract solution were incubated with gentle stirring for 1 hr at 4°C

(1 ml of antibody solution/3 mg crude cell extract). Following incubation, the mixture was centrifuged (10,000 x g; 10 min; 4°C) and the supernatant was stored at 4°C in the presence of 0.02° o NaN; until use. The membranes were processed for immunoscreening as follows: (i) three 5-min washes at room temperature in TBSEN containing 1% gelatin; (ii) 30 min incubation in PBS, pH 7.4 with 1% gelatin; (iii) two-hr room temperature incubation with gentle stirring in fresh PBS gelatin solution containing adsorbed sheep anti-human LDL antibodies (Boehringer Manheim, Indianapolis, IN) (1:1000 dilution); (iv) three brief washes in TBS, pH 7.4; (v) one-hr room temperature incubation with gentle stirring in PBS/gelatin solution containing donkey antisheep alkaline phosphatase-conjugated antibodies (Sigma, St. Louis, MO) (1:10,000 dilution); (vi) three brief washes with TBS, pH 7.4.; and (vii) development according to the manufacturer's instructions, using an alkaline phosphatase substrate development kit (Novagen Inc.). Phage plaques which produced LBPs appeared as blue-colored "donuts" on the membranes.

The phage from Example 1 containing the LBP cDNAs were plaque-purified and converted into plasmid subclones by following a protocol called "Autosubcloning by Cremediated Plasmid Excision" provided by Novagen Inc. DNA sequences were obtained by the dideoxynucleotide chain-termination method (Sanger et al., Proc. Natl. Acad. Sci., USA 74:5463-5467 (1977), and analyzed by an Applied Biosystems automated sequencer. The open reading frame (ORF) of each cDNA was determined from consensus sequences obtained from both the sense and antisense strands of the cDNAs. Sequencing confirmed that three previously unknown genes had been isolated. Since the genes were selected by functional screening for LDL binding, the proteins coded by these genes were termed LDL binding proteins (LBPs), specifically, LBP-1, LBP-2 and LBP-3. The cDNA sequences for rabbit LBP-1, LBP-2 and LBP-3 and the corresponding proteins are set forth in SEQ ID NOS:10-14.

15

20

25

5

10

20

Based on their respective cDNA coding sequences, the sizes of the recombinant proteins were determined to be 16.2 kDa for LBP-1, 40 kDa for LBP-2, and 62.7 kDa for LBP-3.

Example 3: Northern Blot Analysis of Rabbit RNA Using LBP cDNA or cRNA

This example illustrates the size and tissue distribution of LBP mRNAs. Total RNA was isolated from different rabbit tissues: adrenals, thoracic aorta, abdominal aorta, ballooned and reendothelialized abdominal aorta, heart, kidney, smooth muscle cells, lung and liver, by Trizol reagent (Life Technologies) and concentrated by ethanol precipitation. Gel electrophoresis of RNA was carried out in 1.2% agarose gel containing 1 X MOPS buffer (0.2M MOPS, pH 7.0; 50mM sodium acetate; 5mM EDTA, pH 8.0) and 0.37M formaldehyde. Gels were loaded with 20 µg total RNA from each tissue examined and electrophoresed at 100 volts for 2 hr in 1 X MOPS buffer. RNAs were blotted onto supported nitrocellulose membranes (Schleicher & Schuell, Keene, NH) and immobilized by baking at 80°C for 2 hr. Hybridization to radiolabeled LBP-1, LBP-2 and LBP-3 cDNA or cRNA probes was carried out by standard procedures known to those skilled in the art (see, e.g., Ausubel et al., Current Protocols in Molecular Biology; John Wiley & Sons (1989)); signals were detected by autoradiography.

The results were as follows: the sizes of the mRNAs were about 1.3 kb for LBP-1, about 2.3-2.5 kb for LBP-2, and about 4.7 kb for LBP-3. LBP-1, LBP-2 and LBP-3 mRNA were found in all tissues tested, but the highest amount was in ballooned abdominal aorta.

Example 4: Isolation of Human LBP cDNAs

This example illustrates isolation of human LBP cDNAs. Human LBP cDNA clones were isolated from three cDNA libraries. A human fetal brain cDNA library was obtained from Stratagene, LaJolla, CA, a human liver and a human aorta cDNA library were obtained from Clontech. Palo Alto, CA, and screened with a radiolabeled cDNA probe derived from rabbit LBP-1, LBP-2 or LBP-3, according to the method described in Law et al., Gene Expression 4:77-84 (1994). Several strongly hybridizing clones were identified and plaque-purified. Clones were confirmed to be human LBP-1, LBP-2 and LBP-3, by DNA sequencing using the dideoxynucleotide chain-termination method and analysis by an Applied Biosystems automated sequencer. The cDNA sequences and the corresponding proteins for human LBP-1, LBP-2 and LBP-3 are set forth in SEQ ID NOS:15, 16 and 17, respectively. A comparison between the corresponding LBP-1, LBP-2 and LBP-3 protein sequences for rabbit and human are shown in Figs. 19, 20 and 21.

Example 5: Isolation of Recombinant LBP-1, LBP-2 and LBP-3 Rabbit Proteins from E. coli

LBP cDNA was isolated from the original pEXlox plasmids obtained as described in Examples 1 and 2, and subcloned into the pPRoEX-HT vector (Life Technologies) for recombinant protein expression. Induction of the recombinant protein by IPTG addition to transformed E. coli DH10B cultures resulted in the expression of recombinant protein containing a 6-histidine tag (N-terminal). This tagged protein was then purified from whole cell proteins by binding to Ni-NTA (nickel nitrilo-triacetic acid) as described in the protocol provided by the manufacturer (Qiagen, Inc., Santa Clara, CA). The preparation obtained after the chromatography step was approximately 90% pure; preparative SDS-PAGE was performed as the final purification step.

When required by the characterization procedure, iodination of LBPs was carried out using Iodobeads (Pierce, Rockford, IL). The Iodobeads were incubated with 500 µCi of Na¹²⁵I solution (17 Ci/mg) (New England Nuclear, Boston, MA) in a capped microfuge tube for 5 min at room temperature. The protein solution was added to the Iodobeads-Na¹²⁵I microfuge tube and incubated for 15 min at room temperature. At the end of this incubation, aliquots were removed for the determination of total soluble and TCA precipitable counts. The radiolabeled protein was then precipitated with cold acetone (2.5 vol; -20°C; 2.5 hr). Following this incubation, precipitated protein was collected by centrifugation (14,000 g; 1 hr; room temperature) and resuspended in sample buffer (6 M urea/50 mM Tris, pH 8.0/2 mM EDTA). Integrity of the protein preparation was assessed by SDS-PAGE.

The identities of the recombinant LBPs were confirmed using standard protein sequencing protocols known to those skilled in the art. (A Practical Guide for Protein and Peptide Purification for Microsequencing, Matsudaira, ed., Academic Press, Inc., 2d edition (1993)). Analysis was performed using an Applied Biosystems Model 477A Protein Sequencer with on-line Model 120 PTH amino acid analyzer.

Example 6: Production of Antibodies to LBP-1, LBP-2 and LBP-3

20

30

This example illustrates the production of polyclonal antibodies to LBP-1, LBP-2 and LBP-3. A mixture of purified recombinant LBP protein (0.5 ml; 200 µg) and RIBI adjuvant (RIBI ImmunoChem Research, Inc., Hamilton, MT) was injected subcutaneously into male guinea pigs (Dunkin Hartley; Hazelton Research Products, Inc., Denver, PA) at 3-5 sites along the dorsal thoracic and abdominal regions of the guinea pig. Blood was collected by

WO 98/23282 PCT/US97/21857 -35-

venipuncture on days 1 (pre-immune bleeding), 28, 49 and 70. Booster injections were administered on days 21 (100 μ g; SC), 42 (50 μ g; SC), and 63 (25 μ g; SC). The titer of the guinea pig antiserum was evaluated by serial dilution "dot blotting." Preimmune antiserum was evaluated at the same time. After the third booster of LBP protein, the titer against the recombinant protein reached a maximal level with a detectable colorimetric response on a dot blot assay of 156 pg.

Specificity of the polyclonal antibody for recombinant LBP-1, LBP-2 or LBP-3 was demonstrated using Western blot analysis. (Towbin et al., Proc. Natl. Acad. Sci. USA 76:4350 (1979)). The protein-antibody complex was visualized immunochemically with alkaline phosphatase-conjugated goat anti-guinea pig IgG, followed by staining with nitro blue tetrazolium (BioRad Laboratories, Hercules, CA). Non-specific binding was blocked using 3% non-fat dry milk in Tris buffered saline (100 mM Tris; 0.9% NaCl, pH 7.4).

Example 7: Immunohistochemical Characterization

15

20

25

10

This example illustrates the presence of LBPs in or on endothelial cells covering plaques, in or on adjacent smooth muscle cells, and in the extracellular matrix. In addition, co-localization of LDL and LBPs was demonostrated. These results were obtained by examining ballooned rabbit arterial lesions and human atherosclerotic plaques by immunohistochemical methods.

Ballooned deendothelialized aorta was obtained from rabbits which had received a bolus injection of human LDL (3 mg; i.v.) 24 hr prior to tissue collection. Human aortas containing atherosclerotic plaques were obtained from routine autopsy specimens. Tissues were fixed in 10% buffered formalin (\leq 24 hr) and imbedded in paraffin using an automated tissue-imbedding machine. Tissue sections were cut (5-7 μ) and mounted onto glass slides by incubating for 1 hr at 60°C. Sections were deparaffinized. After a final wash with deionized H₂O, endogenous peroxidase activity was eliminated by incubating the sections with 1% H₂O₂/H₂O buffer for 5 min at room temperature. Sections were rinsed with phosphate buffered saline (PBS) for 5 min at room temperature and nonspecific binding was blocked with 5% normal goat serum or 5% normal rabbit serum depending on the source of the secondary antibody (Sigma, St. Louis, MO) (1 hr; room temperature). Sections were then incubated with a 1:50 dilution (in 5% normal goat serum/PBS) of a guinea pig polyclonal antibody against the rabbit form of recombinant LBP-1. LBP-2 or LBP-3. Controls included preimmune serum as well as specific antisera to LBP-1.

WO 98/23282 PCT/US97/21857 -36-

LBP-2. or LBP-3 in which the primary antibody was completely adsorbed and removed by incubation with recombinant LBP-1, LBP-2 or LBP-3 followed by centrifugation prior to incubation with the tissue sections. An affinity purified rabbit polyclonal antibody against human apolipoprotein B (Polysciences Inc.; Warrington, PA) was used at a dilution of 1:100 (in 5% normal rabbit serum/PBS). Sections were incubated for 2 hr at room temperature in a humidified chamber. At the end of incubation, sections were rinsed with PBS and incubated with a 1:200 dilution (in 5% normal goat serum/PBS) of goat anti-guinea pig biotinylated IgG conjugate (Vector Laboratories, Burlingame, CA) or a 1:250 dilution (in 5% normal rabbit serum/PBS) of rabbit anti-goat biotinylated IgG conjugate (Vector Laboratories, Burlingame, CA) for 1 hr at room temperature in a humidified chamber. Sections were then rinsed with PBS and antigen-antibody signal amplified using avidin/biotin HRP conjugate (Vectastain ABC kit: Vector Laboratories, Burlingame, CA). Sections were developed using DAB substrate (4-6 min: room temperature) and counterstained with hematoxylin.

In the ballooned rabbit artery, immunohistochemistry with the anti-LBP-l. LBP-2 and LBP-3 antibodies showed that LBP-1, LBP-2 and LBP-3 were located in or on functionally modified endothelial cells at the edges of regenerating endothelial islands, the same location in which irreversible LDL binding has been demonstrated (Chang et al., Arteriosclerosis and Thrombosis 12:1088-1098 (1992)). LBP-l, LBP-2 and LBP-3 were also found in or on intimal smooth muscle cells underneath the functionally modified endothelial cells, and to a lesser extent, in extracellular matrix. No LBP-1, LBP-2 or LBP-3 was detected in still deendothelialized areas, where LDL binding had been shown to be reversible (Chang et al., Arteriosclerosis and Thrombosis 12:1088-1098 (1992)). Immunohistochemistry of ballooned rabbit aorta with anti-human apolipoprotein B antibodies showed the presence of LDL at the same locations as that found for LBP-1, LBP-2 and LBP-3.

In the human atherosclerotic plaques taken at routine autopsies, immunohistochemistry with the anti-LBP-1, anti-LBP-2 and anti-LBP-3 antibodies showed that LBP-1, LBP-2, and LBP-3 were also found in or on endothelial cells covering plaques and in or on adjacent smooth muscle cells. In the human tissue, there was greater evidence of LBP-1, LBP-2 and LBP-3 in extracellular matrix.

The results obtained with paraffin sections were identical to those of frozen sections.

10

15

20

25

Example 8: Affinity Coelectrophoresis (ACE) Assays of LBPs and LDL or HDL

This example illustrates that binding occurs between LBP-1, LBP-2 or LBP-3 and LDL, and that this binding is specific, as illustrated by the fact that binding does not occur between LBP-1, LBP-2 or LBP-3 and HDL (high density lipoprotein).

Analysis of the affinity and specificity of recombinant rabbit LBP-1, LBP-2 or LBP-3 binding to LDL was carried out using the principle of affinity electrophoresis (Lee and Lander, Proc. Natl. Acad. Sci. USA 88:2768-2772 (1991)). Melted agarose (1%; 65°C) was prepared in 50 mM sodium MOPS, pH 7.0; 125 mM sodium acetate, 0.5% CHAPS. A teflon comb consisting of nine parallel bars (45 x 4 x 4 mm/3 mm spacing between bars) was placed onto GelBond film (FMC Bioproducts, Rockland, ME) fitted to a plexiglass casting tray with the long axis of the bars parallel to the long axis of the casting tray. A teflon strip (66 x 1 x 1 mm) was placed on edge with the long axis parallel to the short axis of the casting tray, at a distance of 4 mm from the edge of the teflon comb. Melted agarose (>65°C) was then poured to achieve a height of approximately 4 mm. Removal of the comb and strip resulted in a gel containing nine 45 x 4 x 4 mm rectangular wells adjacent to a 66 x 1 mm slot. LDL or HDL samples were prepared in gel buffer (50mM sodium MOPS, pH 7.0, 125 mM sodium acetate) at twice the desired concentration. Samples were then mixed with an equal volume of melted agarose (in 50 mM MOPS, pH 7.0; 125 mM sodium acetate; 50°C), pipetted into the appropriate rectangular wells and allowed to gel. The binding affinity and specificity of LBP-1 and LBP-3 was tested using several concentrations of LDL (540 to 14 nM) and HDL (2840-177 nM). A constant amount (0.003 nM - 0.016 nM) of 125I-labeled LBP-1, LBP-2 or LBP-3 (suspended in 50 mM sodium MOPS, pH 7.0; 125 mM sodium acetate; 0.5% bromphenol blue; 6% (wt/vol) sucrose) was loaded into the slot. Gels were electrophoresed at 70v/2hr/20°C. At the end of the run, the gels were air dried and retardation profiles were visualized by exposure of X-ray films to the gels overnight at -70°C, with intensifying screens).

LDL retarded LBP-1, LBP-2 and LBP-3 migration through the gel in a concentration-dependent, saturable manner, indicating that LBP-1, LBP-2 and LBP-3 binding to LDL was highly specific. This conclusion is supported by the fact that HDL did not retard LBP-1, LBP-2 or LBP-3. A binding curve generated from the affinity coelectrophoresis assay indicated that LBP-1 binds to LDL with a K_d of 25.6 nM, that LBP-2 (rabbit clone 26) binds to LDL with a K_d of 100 nM, and that LBP-3 (80 kDa fragment) binds to LDL with a K_d of 333 nM.

In addition to testing affinity and specificity of LBP-1, LBP-2 and LBP-3 binding to

10

15

20

25

WO 98/23282 PCT/US97/21857 -38-

LDL, the ability of "cold" (i.e., non-radiolabeled) LBP-1, LBP-2 or LBP-3 to competitively inhibit radiolabeled LBP-1, LBP-2 or LBP-3 binding to LDL, respectively, was tested. Competition studies were carried out using fixed concentrations of cold LDL and radiolabeled LBP-1 and increasing amounts of cold recombinant LBP-1 (6-31 μ M). The ACE assay samples and gel were prepared as described herein. Cold LBP-1 inhibited binding of radiolabeled LBP-1 to LDL in a concentration-dependent manner, cold LBP-2 inhibited binding of radiolabeled LBP-2 to LDL in a concentration-dependent manner, and cold LBP-3 inhibited binding of radiolabeled LBP-3 to LDL in a concentration-dependent manner.

Rabbit and human LBP-2 contain a long stretch of acidic amino acids at the amino terminal (rabbit LBP-2 amino acid residues 105 through 132 and human LBP-2 amino acid residues 8 through 33). The possibility that this segment of LBP-2 was the LDL binding domain was tested by subcloning two rabbit LBP-2 clones which differ from each other by the presence or absence of this acidic region (clone 26 and clone 45, respectively) into expression vectors, by standard methods known to those skilled in the art. ACE assays were then conducted in order to assess the affinity and specificity of the binding of these two clones to LDL. LDL retarded clone 26 derived radiolabeled LBP-2 migration through the gel in a concentration-dependent, saturable. manner while clone 45 derived radiolabeled LBP-2 migration was not retarded.

Competition studies using fixed concentrations of cold LDL and clone 26 derived radiolabeled LBP-2 and increasing concentrations of cold recombinant LBP-2/clone 26 and LBP-2/clone 45 were carried out. Cold clone 26 derived LBP-2 inhibited binding of clone 26 derived radiolabeled LBP-2 to LDL in a concentration-dependent manner. Clone 45 derived LBP-2, on the other hand, did not affect the binding of clone 26 derived radiolabeled LBP-2 to LDL. These results indicate that the long stretch of acidic amino acids contain a binding domain of LBP-2 to LDL.

25

30

20

10

15

Example 9: Affinity Coelectrophoresis (ACE) Assays of LBP-1 or LBP-2 and LDL in the Presence of Inhibitors

This example illustrates that binding between LBP-1 or LBP-2 and LDL is inhibited by polyglutamic acid or BHF-1. The ability of a third compound to inhibit binding between two proteins previously shown to interact was tested by a modification of the ACE assays described in Example 8. The third compound was added to the top or wells together with the radiolabeled protein. If the third compound inhibited binding, the radiolabeled protein would run through the

gel. If the third compound did not inhibit binding, migration of the radio-labeled protein was retarded by the protein cast into the gel.

Inhibition of LBP-1/LDL or LBP-2/LDL binding by polyglutamic acid (average MW about 7500, corresponding to about 7 monomers) was shown by casting a constant amount of LDL (148 nM) in all the rectangular lanes. A constant amount (1 µl) of ¹²⁵I-labeled LBP-1 or LBP-2 (0.003 nM - 0.016 nM) was loaded in the wells at the top of the gel, together with increasing concentrations of polyglutamic acid (obtained from Sigma) (0-0.4 nM). The gel was electrophoresed at 70 volts for 2 hr, dried and placed on X-ray film, with intensifying screens, overnight at -70°C before the film was developed to determine the retardation profile of LBP-1 and LBP-2. As the concentration of polyglutamic acid increased, retardation of radiolabeled LBP-1 and LBP-2 migration by LDL decreased in a concentration-dependent manner, which showed that polyglutamic acid inhibited binding between LBP-1, LBP-2 and LDL.

Inhibition of LBP-1/LDL binding by BHF-1 was shown by casting a constant amount of LDL (148 nM) in all the rectangular lanes. A constant amount of ¹²⁵I-labeled LBP-1 (0.003 nM - 0.016 nM) was loaded in the wells at the top of the gel, together with increasing concentrations of BHF-1 (0-10 nM), obtained as described in Example 15. The gel was electrophoresed at 70 volts for 2 hr, dried and placed on X-ray film, with intensifying screens, overnight at -70°C. The film was then developed to determine the retardation profile of ¹²⁵I-LBP-1. As the concentration of BHF-1 increased, retardation of LBP-1 by LDL decreased in a concentration-dependent manner, which demonstrated that BHF-1 inhibited binding between LBP-1 and LDL.

Example 10: Affinity Coelectrophoresis (ACE) Assays for Identifying Fragments, Analogs and Mimetics of LBPs which Bind to LDL

This example illustrates a method for identifying fragments, analogs or mimetics of LBPs which bind to LDL, and which thus can be used as inhibitors of LDL binding to LBP in the arterial walls, by occupying binding sites on LDL molecules, thereby rendering these sites unavailable for binding to LBP in the arterial wall.

Fragments of LBPs are generated by chemical cleavage or synthesized from the known amino acid sequences. Samples of these fragments are individually added (cold) to radiolabeled LBP as described in Example 8, to assess the inhibitory potency of the various fragments. By iterative application of this procedure on progressively smaller portions of fragments identified as inhibitory, the smallest active polypeptide fragment or fragments are identified. In a similar

20

WO 98/23282 PCT/US97/21857

manner, analogs of the LBPs are tested to identify analogs which can act as inhibitors by binding to LDL. And, similarly, mimetics of LBP (molecules which resemble the conformation and/or charge distributions of the LD_-binding sites on LBP molecules) are tested in a similar fashion to identify molecules exhibiting affinities for the LDL-binding sites on LBP.

The affinities of the inhibitors so identified are at least as strong as the affinity of LDL itself for the LDL-binding sites on LBP. The inhibitors bind at least competitively, and some irreversibly and preferentially as well, to the LDL-binding sites, thereby rendering such sites unavailable for binding to humoral LDL.

Example 11: ELISA Assays

5

15

20

This example illustrates the use of an ELISA plate assay for the quantification of a test compound's capacity to inhibit the binding of LDL to a specific LBP.

The assay was carried out as follows: LDL was diluted in 50 mM Na₂HCO₃, pH 9.6/0.02% NaN, and added to the wells of a 96-well plate (ImmunoWare 96-Well Reacti-Bind EIA Polystyrene Plates; Pierce (Rockford, IL)) to achieve a final concentration ranging from 0.1 to 1 µg/well. The plates were incubated for 6 hr at room temperature. At the end of the incubation period, the wells were washed 3 times with Tris-buffered saline, pH 7.4 (TBS), and blocked overnight with 200 µl of 1% bovine serum albumin (BSA) in TBS/0.02% NaN₃ (Sigma: St. Louis MO) at room temperature. The wells were then incubated with 200 µl of LBP protein (5-10 µg/well) in TBS and varying concentrations of the test compound. Plates were incubated for 1 hr at room temperature. The wells were then washed three times with TBS and blocked for 2 hr with 200 µl of 1% BSA in TBS/0.02% NaN3 at room temperature. At the end of the incubation period, the wells were washed 3 times with TBS and a 1:1000 dilution (in TBS/0.05% Tween 20) of the appropriate guinea pig anti-LBP protein polyclonal antibody was added to the wells and incubated for 1 hr at room temperature. The wells were then washed 3 times with TBS/0.05% Tween 20; a 1:30,000 dilution of goat anti-guinea pig IgG alkaline phophatase conjugate (Sigma) was added to each well. Plates were incubated for 1 hr at room temperature. The wells were washed 3 times with TBS/0.05% Tween 20 and a colorimetric reaction was carried out by adding 200 ml of p-nitrophenyl phosphate substrate (Sigma; St. Louis MO) to the wells. The reaction was allowed to proceed for 30 min at room temperature and stopped with 50 μl of 3N NaOH. The absorbance was determined at 405 nm using an ELISA plate reader. The test compound's effectiveness in blocking the binding of LDL to the recombinant protein was

assessed by comparing the absorbance values of control and treated groups.

Alternatively, LBPs, rather than LDL, were bound to the plate. Recombinant LBP protein binding to LDL and the effect of varying concentration of the inhibitor on LBP-LDL binding was determined through the use of antibodies against LDL. This interaction was visualized through the use of a secondary antibody conjugated to a reporter enzyme (e.g. alkaline phosphatase).

ELISA plate assays were used to screen agents which can affect the binding of LBP proteins to LDL. For example, peptides derived from LBP-1 and human LBP-3 protein sequences (BHF-1 and BHF-2, respectively) were synthesized and have been shown to reduce the binding of LDL to recombinant LBP-1 and LBP-2 in this format. These results were in agreement with those obtained with the ACE assays.

Example 12: Administration of Humanized Antibodies Against LBPs so as to Block LDL-Binding Sites on the LBPs

This example illustrates administration to patients of humanized antibodies against LBP-1. LBP-2 or LBP-3 so as to block LDL-binding sites on arterial LBP molecules. Mouse monoclonal antibodies are humanized by recombinant DNA techniques and produced by standard procedures known to those skilled in the art (Berkower, I., Curr. Opin. Biotechnol. 7:622-628 (1996); Ramharayan and Skaletsky, Am. Biotechnol. Lab 13:26-28 (1995)) against LBPs and or the LDL-binding sites on the LBPs. The corresponding Fab fragments are also produced. as described in Goding, J.W., Monoclonal Antibodies:Principles and Practice, Academic Press. New York, NY (1986). These antibodies are administered parenterally in sufficient quantity so as to block LDL-binding sites on the LBP molecules, i.e., 1-10 mg/kg daily. This prevents the irreversible arterial uptake of LDL that is required to facilitate oxidation of the LDL.

Example 13: Preparation of LDL

This example illustrates the preparation of LDL. LDL was prepared from the plasma of normolipemic donors (Chang et al., Arterioscler. Thromb. 12:1088-1098 (1992)). 100 ml of whole blood was placed into tubes containing 100 mM disodium EDTA. Plasma was separated from red blood cells by low-speed centrifugation (2.000 g; 30 min; 4°C). Plasma density was adjusted to 1.025 gm/ml with a solution of KBr and centrifuged for 18-20 hr, 100,000 x g, 12°C.

10

15

20

25

WO 98/23282 PCT/US97/21857
-42-

Very low density lipoproteins (VLDL) were removed from the tops of the centrifuge tubes with a Pasteur pipet. The density of the infranate was raised to 1.050 gm/ml with KBr solution and centrifuged for 22-24 hr, 100,000 x g, 12°C. LDL was removed from the tops of the centrifuge tubes with a drawn out Pasteur pipet tip. Purity of the LDL preparation was checked by

Ouchterlony double immunodiffusion against antibodies to human LDL, human HDL, human immunoglobulins, and human albumin. KBr was removed from the LDL solution by dialysis (1L, x 2, ≈ 16 hr) against 0.9% saline, pH 9.0, containing 1 mM EDTA and 10 μM butylated hydroxytoluene (BHT), the latter to prevent oxidation of LDL. Following dialysis. LDL protein was measured by the method of Lowry (Lowry et al., J. Biol. Chem. 193:265-275 (1951)), and the LDL was stored at 4°C until use. LDL preparations were kept for no more than 4-6 weeks.

Example 14: Preparation of HDL

This example illustrates the preparation of HDL. HDL was prepared from plasma of normolipemic donors. 100 ml of whole blood was placed into tubes containing 100 mM disodium EDTA and plasma was collected by centrifugation (2000 g; 30 min; 4°C). Apolipoprotein B containing lipropoteins present in plasma were then precipitated by the sequential addition of sodium heparin (5,000 units/ml) and MnCl₂ (1M) to achieve a final concentration of 200 units/ml and 0.46 M, respectively (Warnick and Albers, J. Lipid Res. 19:65-76 (1978)). Samples were then centrifuged (2000 g; 1 hr; 4°C). The supernatant was collected and density adjusted to 1.21 g/ml by the slow addition of solid KBr. HDL was separated by ultracentrifugation (100.000 g; >46 hr; 12°C). Purity of the HDL preparation was assessed via Ouchterlony double immunodiffusion test using antibodies against human HDL, human LDL, human immunoglobulins, and human albumin. HDL samples were dialyzed against saline pH 9.0/1mM EDTA/10µM BHT (4L; 24 hr/4°C) and total protein was determined by the Lowry protein assay (Lowry et al., J. Biol. Chem. 193:265-275 (1951)). HDL was stored at 4°C until use. HDL preparations were kept for no longer than 2 weeks.

Example 15: Synthesis of BHF-1

This example illustrates the synthesis of BHF-1, a fragment of human or rabbit LBP-1 which contains amino acid residues 14 through 33. BHF-1 was synthesized using an Applied Biosystems Model 430A peptide synthesizer with standard T-Boc NMP chemistry cycles. The sequence of BHF-1 is as follows:

15

20

25

10

20

val-asp-val-asp-glu-tyr-asp-glu-asn-lys-phe-val-asp-glu-glu-asp-gly-gly-asp-gly (SEQ ID NO:9)

After synthesis, the peptide was cleaved with hydrofluoric acid/anisole (10/1 v/v) for 30 min at - 10°C and then incubated for 30 min at 0°C. BHF-1 was then precipitated and washed three times with cold diethyl ether. Amino acid coupling was monitored with the ninhydrin test (>99%).

The BHF-1 peptide was purified to homogeneity by high performance liquid chromatography on a reverse phase Vydac C_4 column (2.24 X 25 cm) using a linear gradient separation (2-98% B in 60 min) with a flow rate of 9 ml/min. Buffer A consisted of 0.1% trifluoroacetic acid (TFA)/Milli Q water and Buffer B consisted of 0.085% TFA/80% acetonitrile. The gradient was run at room temperature and absorbance monitored at 210 and 277 nm.

Fast atom bombardment-mass spectrometry gave a protonated molecular ion peak $(M+H)^+$ at m/z=2290.2, in good agreement with the calculated value. On amino acid analysis, experimental values for the relative abundance of each amino acid in the peptide were in good agreement with theoretical values. The lyophilized peptide was stored at -20°C.

Example 16: In Vitro Screening for Agents Which Inhibit Binding Between LDL and LBPs

This example illustrates in <u>vitro</u> screening for agents which inhibit binding between LDL and LBPs.

A candidate polypeptide for being an agent is chosen, e.g., LBP-1, LBP-2, LBP-3, BHF-1 or any other polypeptide. The shortest fragment of the polypeptide that inhibits LDL binding to LBPs in vitro is determined. Peptides are synthesized by standard techniques described herein. Inhibition assays are performed using standard ELISA techniques for screening, and affinity coelectrophoresis (ACE) assays to confirm the ELISA results, as described herein. Short peptides ranging, e.g., from dimers to 20-mers are constructed across sequences of the candidate polypeptide whose chemical characteristics make them likely LDL binding sites, e.g., acidic regions. The ability of shorter and shorter lengths of the peptides to inhibit LDL binding in vitro and to mammalian cells in culture is tested. For example, the effect of the peptide on inhibiting LDL binding in mammalian cells transfected to express an LBP gene is tested. Each of the peptides so identified as an inhibitor is tested with each of LBP-1, LBP-2 and LBP-3, to

determine whether a single inhibitor works against all three LBPs.

Once the minimum active sequence is determined, the peptide backbone is modified so as to inhibit proteolysis, as discussed herein. For example, modification is accomplished by substitution of a sulfoxide for the carbonyl, by reversing the peptide bond, by substituting a methylene for the carbonyl group, or other similar standard methodology. See Spatola, A.F., "Peptide Backbone Modifications: A Structure-Activity Analysis of Peptides Containing Amide Bond Surrogates, Conformational Constraints, and Related Backbone Replacements," in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. 7, pp. 267-357, B. Weinstein (ed.), Marcel Dekker, Inc., New York (1983). The ability of these analogs to inhibit LDL binding to the LBPs in vitro is tested by ELISA and ACE assays in a similar manner as for the natural peptides described above.

Example 17: In Vitro Screening With Cultured Mammalian Cells for Agents Which Inhibit Binding Between LDL and LPBs

This example illustrates cell-based in vitro screening of agents which have been shown by in vitro tests such as ACE assay and ELISA to be potential inhibitors of binding between LDL and LBPs.

Mammalian cells, such as 293 cells, which are commonly used for expression of recombinant gene constructs, are used to develop cell lines which express LBPs on the cell surface. This is done by subcloning LBP open reading frames (ORFs) into a mammalian expression plasmid vector, pDisplay (Invitrogen, Carlsbad, CA), which is designed to express the gene of interest on the cell surface. The use of mammalian cells to produce LBPs allows for their expression in a functionally active, native conformation. Therefore, stably transfected mammalian cell lines with surface expression of LBPs individually, or in combination, are particularly suitable for assaying and screening inhibitors that block LDL binding in cell culture, as well as to evaluate the cytotoxicity of these compounds.

Specifically, LBP ORFs are amplified by PCR (Perkin Elmer, Foster City, CA) from cDNA templates using Taq polymerase (Perkin Elmer) and appropriate primers. The amplified LBP ORFs are purified by agarose gel electrophoresis and extracted from gel slices with the Bio-Rad DNA Purification kit (Bio-Rad, Hercules, CA). The purified DNAs are then cut with the restriction enzymes Bgl II and Sal I (New England Biolabs, Beverly, MA) to generate cohesive ends, and purified again by agarose gel electrophoresis and DNA extraction as described above.

15

20

25

The LBP ORFs are then subcloned into the Bgl II/Sal I sites in the mammalian expression vector, pDisplay (Invitrogen) by ligation. Recombinant plasmids are established by transformation in E.coli strains TOP10 (Invitrogen) or DH5α (Life Technologies, Grand Island, NY). Recombinant pDisplay/LBP plasmid DNA is isolated from overnight E.coli cultures with the Bio-Rad Plasmid Miniprep kit, cut with Bgl II/Sal I, and analyzed by agarose gel electrophoresis. LBP ORFs in successfully transformed clones are verified by automated dideoxy DNA sequencing. To transfect human kidney 293 cells, 1-2 μg of DNA is mixed with 6 μl lipofectamine reagent (Life Technologies) and incubated with the cells as described in the Life Technologies protocol. LBP expression in transfected cells is confirmed by Western blot analysis of cell extracts obtained 48 hr after transfection. To select for stably transfected 293 cells, the antibiotic G418 (Life Technologies) is added to the growth medium at a concentration of 800 μg/ml. Colonies resistant to G418 are tested for recombinant LBP expression by Western blot, and recombinant clones expressing LBPs are expanded, assayed for LDL binding and used to test compounds for their ability to inhibit LDL binding.

15

20

10

Example 18: In Vivo Screening for Agents Which Inhibit Binding Between LDL and LBPs

This example illustrates in vivo screening of agents which have been shown by in vitro tests to be promising candidate inhibitors of binding between LDL and LBPs.

In vivo inhibitory activity is first tested in the healing balloon-catheter deendothelialized rabbit aorta model of arterial injury (Roberts et al., J. Lipid Res. 24:1160-1167 (1983); Chang et al., Arterioscler. Thomb. 12:1088-1098 (1992)). This model was shown to be an excellent analog for human atherosclerotic lesions. Each candidate inhibitor is tested in five to ten ballooned rabbits, while an equal number of rabbits receive a control peptide, or placebo. Four weeks following aortic deendothelialization, when reendothelialization (healing) is partially complete, daily parenteral (intravenous or subcutaneous) or intragastric administration of the peptides and the analogs begins at an initial concentration of 10 mg/kg body weight, which is varied down, or up to 100 mg/kg depending on results. 30 min later, a bolus of intravenously injected ¹²⁵I (or ^{99m}Tc-) labeled LDL is given to test the candidate inhibitor's ability in short term studies to inhibit LDL sequestration in healing arterial lesions. If ¹²⁵I-LDL is used, the animals are sacrificed 8-24 hr later, the aortas excised, washed and subjected to quantitative autoradiography of excised aortas, as previously described (Roberts et al., J. Lipid Res. 24:1160-1167 (1983); Chang et al., Arterioscler. Thomb. 12:1088-1098 (1992)). If ^{99m}Tc-LDL is used.

analysis is by external gamma camera imaging of the live anesthetized animal at 2-24 hr, as previously described (Lees and Lees, Syndromes of Atherosclerosis, in Fuster, ed., Futura Publishing Co., Armonk, NY, pp. 385-401 (1996)), followed by sacrifice, excision and imaging of the excised aorta. Immediately before the end of testing, the animals have standard toxicity tests, including CBC, liver enzymes, and urinalysis.

The compounds which are most effective and least toxic are then tested in short term studies of rabbits fed a 2% cholesterol diet (Schwenke and Carew, Arteriosclerosis 9:895-907 (1989)). Each candidate inhibitor is tested in five to ten rabbits, while an equal number of rabbits receive a control peptide, or placebo. Animals receive one or more doses per day of the candidate inhibitor, or placebo, for up to two weeks. Daily frequency of doses is determined by route of administration. If active drug or placebo are administered parenterally, they are given 1-3 times daily and the 2% cholesterol diet is continued. If drug or placebo are given orally, they are mixed with the 2% cholesterol diet. Schwenke and Carew (Arteriosclerosis 9:895-907 (1989)) have shown that the LDL concentration in lesion-prone areas of the rabbit aorta is increased 22-fold above normal in rabbits fed a 2% cholesterol diet for 16 days and that the increased LDL content precedes the histological evidence of early atherosclerosis. Therefore, analysis of the effect of the candidate inhibitors is tested two weeks after the start of cholesterol feeding by injecting ¹²⁵I-LDL, allowing it to circulate for 8-24 hr, and then performing quantitative autoradiography on the excised aortas of both test and control animals. If appropriate, quantitation of aortic cholesterol content is also carried out (Schwenke and Carew. Arteriosclerosis 9:895-907 (1989); Schwenke and Carew, Arteriosclerosis 9:908-918 (1989).

The above procedures identify the most promising candidate inhibitors, as well as the best route and frequency of their administration. Inhibitors so identified are then tested in long-term studies of cholesterol-fed rabbits. These tests are carried out in the same way as the short-term cholesterol feeding studies, except that inhibitor effectiveness is tested by injection of ¹²⁵I-LDL at longer intervals following the initiation of cholesterol feeding, and lesion-prone areas of the aorta are examined histologically for evidence of atherosclerosis. Testing times are at two, four, and six months. Major arteries are examined grossly and histologically for evidence and extent of atherosclerosis. If necessary, other accepted animal models, such as atherosclerosis-susceptible primates (Williams et al., Arterioscler. Thromb. Vasc. Biol. 15:827-836 (1995) and/or Watanabe rabbits are tested with short- and long-term cholesterol feeding.

10

20

Example 19: In Vivo Inhibition of Radiolabeled LDL Accumulation in the Ballooned Deendothelialized Rabbit Aorta via Induction of Active Immunity Against LBP Protein

This example illustrates the effect that induction of immunity against LBP protein has on the accumulation of radiolabeled LDL in the ballooned deendothelialized rabbit agrae model of atherosclerosis.

Immunity was induced in male New Zealand White rabbits (Hazelton Research Products, Denver, PA) as follows: A mixture of purified human recombinant LBP-2 or BHF-1 peptide (1 ml; 1 mg) and RIBI adjuvant (RIBI ImmunoChem Research, Inc., Hamilton, MT) was injected subcutanously at 2-5 sites along the dorsal thoracic and abdominal regions of the rabbits. Blood was collected by venipuncture on days 1 (preimmune bleeding), 35, 63, and 91. Booster injections were administered on days 28 (500 μ g; SC), 56 (250 μ g; SC), and 84 (125 μ g; SC).

The titer of the rabbits was evaluated by serial dilution using an ELISA plate format. Preimmune serum was evaluated at the same time. After the third booster of LBP protein or peptide, the titer reached a maximal level with a detectable colorimetric response on an ELISA plate of 156 pg. Titer is defined as the maximum dilution of antibody which generates an absorbance reading of 0.5 above control in 30 min. Specificity of the polyclonal antibodies was demonstrated using Western blot analysis as described in Example 6.

On day 93, the abdominal aorta of immunized and control rabbits was deendothelialized using a Fogarty number 4 embolectomy catheter (Chang et al., Arteriosclerosis and Thrombosis 12:1088-1098 (1992)). Four weeks after ballooning, rabbits received a bolus injection of ¹²⁵I-labeled LDL (1 ml; i.v.). Blood samples were collected at 1 hr intervals for 8 hr, and 24 hr post injection. Blood samples were centrifuged for 30 min at 2000 rpm (40°C) and total activity present in the serum was determined using a Gamma counter. Total TCA precipitable counts were determinined by addition of TCA to the serum to a final concentration of 10% followed by incubation for 10 min at 4°C. Serum samples were then centrifuged (2000 rpm; 30 min; 40°C) and total activity present in the supernate was determined. TCA precipitable counts were calculated by substration: total soluble counts minus counts present in the supernate after TCA precipitation. Blood samples for the determination of antibody titers were collected prior to the injection of the radiolabeled LDL.

After 24 hr, the rabbits were injected intravenously with 5% Evan's blue dye which was allowed to circulate for 15 min. Areas of the aorta in which the endothelial covering is absent stain blue while those areas covered by endothelium remain unstained. At the end of the

5

10

15

incubation period, the rabbits were euthanized and the abdominal and thoracic aorta were dissected out, rinsed, and fixed overnight in 10% TCA at room temperature. The aortas were then rinsed exhaustively with physiological saline, weighed, counted, blotted dry and placed onto X-ray film in order to visualize the pattern of radiolabeled LDL accumulation in the deendothelialized rabbit abdominal aorta.

-48-

PCT/US97/21857

Immunization of rabbits against recombinant human LBP-2 or BHF-1 peptide altered the pattern of radiolabeled LDL accumulation in the ballooned deendothelialized abdominal aorta. When corrected for dosage, and percent reendothelialization. immunized-ballooned rabbits had lower accumulation of radiolabeled LDL compared to nonimmune-ballooned rabbits. These results indicate that active immunization against LBP provides an effective means by which the accumulation of LDL in the injured arterial wall can be modified.

Example 20: Screening Agents in Humans Which Inhibit Binding Between LDL and LBPs

Human studies are carried out according to standard FDA protocols for testing of new drugs for safety (Phase I), efficacy (Phase II), and efficacy compared to other treatments (Phase III). Subjects, who are enrolled into studies after giving informed consent, are between the ages of 18 and 70. Women who are pregnant, or likely to become pregnant, or subjects with diseases other than primary atherosclerosis, such as cancer, liver disease, or diabetes, are excluded. Subjects selected for study in FDA Phase II and Phase III trials have atherosclerotic disease previously documented by standard techniques, such as ultrasound and/or angiography, or are known to be at high risk of atherosclerosis by virtue of having at least one first degree relative with documented atherosclerosis. Subjects themselves have normal or abnormal plasma lipids. Initial testing includes 20-50 subjects on active drug and 20-50 subjects, matched for age, sex, and atherosclerotic status, on placebo. The number of subjects is pre-determined by the number needed for statistical significance. Endpoints for inhibitor efficacy includes ultrasound measurements of carotid artery thickness in high risk subjects, as well as in subjects with known carotid or coronary disease; atherosclerotic events; atherosclerotic deaths; and all-cause deaths in all subjects. Non-invasive analysis (carotid artery thickness by ultrasound) as per Stadler (Med. and Biol. 22:25-34 (1996)) are carried out at 6- to 12-month intervals for 3 years. Atherosclerotic events and deaths, as well as all-cause deaths are tabulated at 3 years.

Oral dosage of drug in FDA Phase I trials ranges from 0.01 to 10 gm/day, and is

10

15

20

25

WO 98/23282 PCT/US97/21857

determined by results of animal studies, extrapolated on a per kg basis. Based on data obtained from Phase I studies, the dose range and frequency are narrowed in Phase II and III trials. If parenteral administration of drug is determined by ar imal studies to be the only effective method, parenteral administration in human subjects is tested by injection, as well as by the transdermal and nasal insufflation routes. Testing of parenteral drug follows the same outline as that for oral administration.

The optimal treatment schedule and dosage for humans is thus established.

Example 21: Treating an Individual Having Atherosclerosis with BHF-1

This example illustrates a method for treating an individual having atherosclerosis with an LBP fragment, e.g., BHF-1, so as to decrease the levels of arterially bound LDL in the individual. BHF-1 is obtained as described herein. The BHF-1 is administered to the mammal intravenously as a bolus or as an injection at a concentration of 0.5-10 mg/kg body weight. Such administrations are repeated indefinitely in order to prevent the development or progression of symptomatic atherosclerosis, just as is done currently with cholesterol-lowering drugs. Stable subjects are examined twice yearly to evaluate the extent of any atherosclerotic disease by physical exam and non-invasive studies, such as carotid artery thickness, ultrasound, and/or gamma camera imaging of the major arteries, to determine if atherosclerotic lesions are present, and, if previously present, have regressed or progressed. Such a regimen results in treatment of the atherosclerosis.

Those skilled in the art will be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. These and all other equivalents are intended to be encompassed by the following claims.

20

10

SEQUENCE LISTING

(1) GENERA' INFORMATION:

(i) APPLICANT: Lees, Ann M.

Lees, Robert S. Law, Simon W. Arjona, Anibal A.

- (ii) TITLE OF INVENTION: NOVEL LOW DENSITY LIPOPROTEIN BINDING PROTEINS AND THEIR USE IN DIAGNOSING AND TREATING ATHEROSCLEROSIS
- (iii) NUMBER OF SEQUENCES: 42
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Banner & Witcoff, Ltd.
 - (B) STREET: One Financial Center
 - (C) CITY: Boston
 - (D) STATE: MA
 - (E) COUNTRY: USA
 - (F) ZIP: 02111
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 and WordPerfect 6.1
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: Not available
 - (B) FILING DATE: November 26, 1997
 - (C) CLASSIFICATION: Not available
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Greer, Helen
 - (B) REGISTRATION NUMBER: 36.816
 - (C) REFERENCE/DOCKET NUMBER: 3983/59819
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 617-345-9100
 - (B) TELEFAX: 617-345-9111
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 151 amino acids
 - (B) TYPE: amino acid

-51-

WO 98/23282 PCT/US97/21857

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Ser Lys Asn Thr Val Ser Ser Ala Arg Phe Arg Lys Val Asp Val 1 5 10 15

Asp Glu Tyr Asp Glu Asn Lys Phe Val Asp Glu Glu Asp Gly Gly Asp 20 25 30

Gly Gln Ala Gly Pro Asp Glu Gly Glu Val Asp Ser Cys Leu Arg Gln 35 40 45

Gly Asn Met Thr Ala Ala Leu Gln Ala Ala Leu Lys Asn Pro Pro Ile 50 55 60

Asn Thr Arg Ser Gln Ala Val Lys Asp Arg Ala Gly Ser Ile Val Leu 65 70 75 80

Lys Val Leu Ile Ser Phe Lys Ala Gly Asp Ile Glu Lys Ala Val Gln 85 90 95

Ser Leu Asp Arg Asn Gly Val Asp Leu Leu Met Lys Tyr Ile Tyr Lys
100 105 110

Gly Phe Glu Ser Pro Ser Asp Asn Ser Ser Ala Val Leu Leu Gln Trp 115 120 125

His Glu Lys Ala Leu Ala Ala Gly Gly Val Gly Ser Ile Val Arg Val 130 135 140

Leu Thr Ala Arg Lys Thr Val 145 150

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 317 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Asp Cys Arg Ser Ser Ser Asn Asn Arg Xaa Pro Lys Gly Gly Ala Ala 1 5 10 15

Arg Ala Gly Gly Pro Ala Arg Pro Val Ser Leu Arg Glu Val Val Arg 20 25 30

Tyr Leu Gly Gly Ser Ser Gly Ala Gly Gly Arg Leu Thr Arg Gly Arg

-52-

Val Gln Gly 50	Leu Leu	Glu Gl 55	u Glu	Ala	Ala	Ala	Arg 60	Gly	Arg	Leu	Glu
Arg Thr Arg 65	Leı Gly	Ala Le 70	u Ala	Leu	Pro	Arg 75	Gly	Asp	Arg	Pro	Gly 80
Arg Ala Pro	Pro Ala 85	Ala Se	r Ala	Arg	Ala 90	Ala	Arg	Asn	Lys	Arg 95	Ala
Gly Glu Glu	Arg Val	Leu Gl	u Lys	Glu 105	Glu	Glu	Glu	Glu	Glu 110	Glu	Glu
Asp Asp Glu 115	Asp Asp	Asp As	p Asp 120	Val	Val	Ser	Glu	Gly 125	Ser	Glu	Val
Pro Glu Ser 130	Asp Arg	Pro Al	_	Ala	Gln	His	His 140	Gln	Leu	Asn	Gly
Gly Glu Arg 145	Gly Pro	Gln Th	r Ala	Lys	Glu	Arg 155	Ala	Lys	Glu	Trp	Ser 160
Leu Cys Gly	Pro His 165	Pro Gl	y Gln	Glu	Glu 170	Gly	Arg	Gly	Pro	Ala 175	Ala
Gly Ser Gly	Thr Arg 180	Gln Va	l Phe	Ser 185	Met	Ala	Ala	Leu	Ser 190	Lys	Glu
Gly Gly Ser 195	Ala Ser	Ser Th	r Thr 200	Gly	Pro	Asp	Ser	Pro 205	Ser	Pro	Val
Pro Leu Pro 210	Pro Gly	Lys Pr 21		Leu	Pro	Gly	Ala 220	Asp	Gly	Thr	Pro
Phe Gly Cys 225	Pro Ala	Gly Ar 230	g Lys	Glu	Lys	Pro 235	Ala	Asp	Pro	Val	Glu 240
Trp Thr Val	Met Asp 245	Val Va	l Glu	Tyr	Phe 250	Thr	Glu	Ala	Gly	Phe 255	Pro
Glu Gln Ala	Thr Ala 260	Phe Gl	n Glu	Gln 265	Glu	Ile	Asp	Gly	Lys 270	Ser	Leu
Leu Leu Met 275		Thr As	p Val 280	Leu	Thr	Gly	Leu	Ser 285	Ile	Arg	Leu
Gly Pro Ala 290	Leu Lys	Ile Ty 29		His	His	Ile	Lys 300	Val	Leu	Gln	Gln
Gly His Phe	Glu Asp	Asp As	p Pro	Glu	Gly	Phe 315	Leu	Gly			

(2) INFORMATION FOR SEQ ID NO:3:

WO 98/23282 PCT/US97/21857

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 232 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ala Ser Ala Arg Ala Ala Arg Asn Lys Arg Ala Gly Glu Glu Arg Val 10 Leu Glu Lys Glu Glu Glu Glu Glu Glu Glu Asp Asp Glu Asp Asp 20 Asp Asp Asp Val Val Ser Glu Gly Ser Glu Val Pro Glu Ser Asp Arg Pro Ala Gly Ala Gln His His Gln Leu Asn Gly Gly Glu Arg Gly Pro Gln Thr Ala Lys Glu Arg Ala Lys Glu Trp Ser Leu Cys Gly Pro His 75 Pro Gly Gln Glu Glu Gly Arg Gly Pro Ala Ala Gly Ser Gly Thr Arg Gln Val Phe Ser Met Ala Ala Leu Ser Lys Glu Gly Gly Ser Ala Ser 105 100 Ser Thr Thr Gly Pro Asp Ser Pro Ser Pro Val Pro Leu Pro Pro Gly 120 Lys Pro Ala Leu Pro Gly Ala Asp Gly Thr Pro Phe Gly Cys Pro Ala 135 Gly Arg Lys Glu Lys Pro Ala Asp Pro Val Glu Trp Thr Val Met Asp 150 145 Val Val Glu Tyr Phe Thr Glu Ala Gly Phe Pro Glu Gln Ala Thr Ala 170 165 Phe Gln Glu Gln Glu Ile Asp Gly Lys Ser Leu Leu Met Gln Arg Thr Asp Val Leu Thr Gly Leu Ser Ile Arg Leu Gly Pro Ala Leu Lys 200 195 Ile Tyr Glu His His Ile Lys Val Leu Gln Gln Gly His Phe Glu Asp 215 210 Asp Asp Pro Glu Gly Phe Leu Gly 230 225

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 252 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Thr 1	Arg	Leu	Gly	Ala 5	Leu	Ala	Leu	Pro	Arg 10	Gly	Asp	Arg	Pro	Gly 15	Arg
Ala	Pro	Pro	Ala 20	Ala	Ser	Ala	Arg	Ala 25	Ala	Arg	Asn	Lys	Arg 30	Ala	Gly
Glu	Glu	Arg 35	Val	Leu	Glu	Lys	Glu 40	Glu	Glu	Glu	Glu	Glu 45	Glu	Glu	Asp
Asp	Glu 50	qaA	qzA	Asp	Asp	Asp 55	Val	Val	Ser	Glu	Gly 60	Ser	Glu	Val	Pro
Glu 65	Ser	Asp	Arg	Pro	Ala 70	Gly	Ala	Gln	His	His 75	Gln	Leu	Asn	Gly	Gly 80
Glų	Arg	Gly	Pro	Gln 85	Thr	Ala	Lys	Glu	Arg 90	Ala	Lys	Glu	Trp	Ser 95	Leu
Cys	Gly	Pro	His 100	Pro	Gly	Gln	Glu	Glu 105	Gly	Arg	Gly	Pro	Ala 110	Ala	Gly
Ser	Gly	Thr 115	Arg	Gln	Val	Phe	Ser 120	Met	Ala	Ala	Leu	Ser 125	Lys	Glu	Gly
Gly	Ser 130	Ala	Ser	Ser	Thr	Thr 135	Gly	Pro	Asp	Ser	Pro 140	Ser	Pro	Val	Pro
Leu 145	Pro	Pro	Gly	Lys	Pro 150	Ala	Leu	Pro	Gly	Ala 155	Asp	Gly	Thr	Pro	Phe 160
Gly	Cys	Pro	Ala	Gly 165	Arg	Lys	Glu	Lys	Pro 170	Ala	Asp	Pro	Val	Glu 175	Trp
Thr	Val	Met	Asp 180	Val	Val	Glu	Tyr	Phe 185	Thr	Glu	Ala	Gly	Phe 190	Pro	Glu
Gln	Ala	Thr 195	Ala	Phe	Gln	Glu	Gln 200	Glu	Ile	Asp	Gly	Lys 205	Ser	Leu	Leu
Leu	Met 210	Gln	Arg	Thr	Asp	Val 215	Leu	Thr	Gly	Leu	Ser 220	Ile	Arg	Leu	Gly

WO 98/23282 PCT/US97/21857 -55-

Pro Ala Leu Lys Ile Tyr Glu His His Ile Lys Val Leu Gln Gln Gly 235 230 225

His The Glu Asp Asp Pro Glu Gly Phe Leu Gly 245

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 557 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

165

180

Met Lys Asn Gln Asp Lys Lys Asn Gly Ala Ala Lys Gln Pro Asn Pro Lys Ser Ser Pro Gly Gln Pro Glu Ala Gly Ala Glu Gly Ala Gln Gly Arg Pro Gly Arg Pro Ala Pro Ala Arg Glu Ala Glu Gly Ala Ser Ser Gln Ala Pro Gly Arg Pro Glu Gly Ala Gln Ala Lys Thr Ala Gln Pro 60 Gly Ala Leu Cys Asp Val Ser Glu Glu Leu Ser Arg Gln Leu Glu Asp 75 70 Ile Leu Ser Thr Tyr Cys Val Asp Asn Asn Gln Gly Ala Pro Gly Glu 85 Asp Gly Val Gln Gly Glu Pro Pro Glu Pro Glu Asp Ala Glu Lys Ser 105 Arg Ala Tyr Val Ala Arg Asn Gly Glu Pro Glu Pro Gly Thr Pro Val 120 Val Asn Gly Glu Lys Glu Thr Ser Lys Ala Glu Pro Gly Thr Glu Glu 135 Ile Arg Thr Ser Asp Glu Val Gly Asp Arg Asp His Arg Arg Pro Gln 150 145 Glu Lys Lys Lys Ala Lys Gly Leu Gly Lys Glu Ile Thr Leu Leu Met

Gln Thr Leu Asn Thr Leu Ser Thr Pro Glu Glu Lys Leu Ala Ala Leu 185

Cys	Lys	Lys 195	Tyr	Ala	Glu	Leu	Leu 200	Glu	Glu	His	Arg	Asn 205	Ser	Gln	Lys
Gln	Met 210	Lys	Leu	Leu	Gln	Lys 215	Lys	Gln	Ser	Gln	Leu 220	Val	Gln	Glu	Lys
Asp 225	His	Leu	Arg	Gly	Glu 230	His	Ser	Lys	Ala	Ile 235	Leu	Ala	Arg	Ser	Lys 240
Leu	Glu	Ser	Leu	Cys 245	Arg	Glu	Leu	Gln	Arg 250	His	Asn	Arg	Ser	Leu 255	Lys
Glu	Glu	Gly	Val 260	Gln	Arg	Ala	Arg	Glu 265	Glu	Glu	Glu	Lys	Arg 270	Lys	Glu
Val	Thr	Ser 275	His	Phe	Gln	Met	Thr 280	Leu	Asn	Asp	Ile	Gln 285	Leu	Gln	Met
Glu	Gln 290	His	Asn	Glu	Arg	Asn 295	Ser	Lys	Leu	Arg	Gln 300	Glu	Asn	Met	Glu
Leu 305	Ala	Glu	Arg	Leu	Lys 310	Lys	Leu	Ile	Glu	Gln 315	Tyr	Glu	Leu	Arg	Glu 320
Glu	His	Ile	Asp	Lys 325	Val	Phe	Lys	His	Lys 330	Asp	Leu	Gln	Gln	Gln 335	Leu
Val	Asp	Ala	Lys 340	Leu	Gln	Gln	Ala	Gln 345	Glu	Met	Leu	Lys	Glu 350	Ala	Glu
Glu	Arg	His 355	Gln	Arg	Glu	Lys	Asp 360	Phe	Leu	Leu	Lys	Glu 365	Ala	Val	Glu
Ser	Gln 370	Arg	Met	Cys	Glu	Leu 375	Met	Lys	Gln	Gln	Glu 380	Thr	His	Leu	Lys
Gln 385	Gln	Leu	Ala	Leu	Tyr 390	Thr	Glu	Lys	Phe	Glu 395	Glu	Phe	Gln	Asn	Thr 400
Leu	Ser	Lys	Ser	Ser 405	Glu	Val	Phe	Thr	Thr 410	Phe	Lys	Gln	Glu	Met 415	Glu
Lys	Met	Thr	Lys 420	Lys	Ile	Lys	Lys	Leu 425	Glu	Lys	Glu	Thr	Thr 430	Met	Tyr
Arg	Ser	Arg 435	Trp	Glu	Ser	Ser	Asn 440	Lys	Ala	Leu	Leu	Glu 445	Met	Ala	Glu
Glu	Lys 450		Leu	Arg	Asp	Lys 455	Glu	Leu	Glu	Gly	Leu 460	Gln	Val	Lys	Ile
Gln 465		Leu	Glu	Lys	Leu 470		Arg	Ala	Leu	Gln 475		Glu	Arg	Asn	Asp 480

WO 98/23282 PCT/US97/21857 -57-

Leu Asn Lys Arg Val Gln Asp Leu Ser Ala Gly Gly Gln Gly Pro Val
485 490 495

Ser Asp Ser Gly Pro Glu Arg Arg Pro Glu Pro Ala Thr Thr Ser Lys 500 505 510

Glu Gln Gly Val Glu Gly Pro Gly Ala Gln Val Pro Asn Ser Pro Arg 515 520 525

Ala Thr Asp Ala Ser Cys Cys Ala Gly Ala Pro Ser Thr Glu Ala Ser 530 535 540

Gly Gln Thr Gly Pro Gln Glu Pro Thr Thr Ala Thr Ala 545 550 555

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 151 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ser Lys Asn Thr Val Ser Ser Ala Arg Phe Arg Lys Val Asp Val

Asp Glu Tyr Asp Glu Asn Lys Phe Val Asp Glu Glu Asp Gly Gly Asp 20 25 30

Gly Gln Ala Gly Pro Asp Glu Gly Glu Val Asp Ser Cys Leu Arg Gln 35 40 45

Gly Asn Met Thr Ala Ala Leu Gln Ala Ala Leu Lys Asn Pro Pro Ile 50 55 60

Asn Thr Lys Ser Gln Ala Val Lys Asp Arg Ala Gly Ser Ile Val Leu 65 70 75 80

Lys Val Leu Ile Ser Phe Lys Ala Asn Asp Ile Glu Lys Ala Val Gln 85 90 95

Ser Leu Asp Lys Asn Gly Val Asp Leu Leu Met Lys Tyr Ile Tyr Lys

Gly Phe Glu Ser Pro Ser Asp Asn Ser Ser Ala Met Leu Leu Gln Trp 115 120 125

His Glu Lys Ala Leu Ala Ala Gly Gly Val Gly Ser Ile Val Arg Val 130 135 140

Leu Thr Ala Arg Lys Thr Val 145 150

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 217 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Glu Glu Arg Val Leu Glu Lys Glu Glu Glu Glu Asp Asp Asp Glu Asp 10 Glu Asp Glu Glu Asp Asp Val Ser Glu Gly Ser Glu Val Pro Glu Ser 25 Asp Arg Pro Ala Gly Ala Gln His His Gln Leu Asn Gly Glu Arg Gly 45 40 35 Pro Gln Ser Ala Lys Glu Arg Val Lys Glu Trp Thr Pro Cys Gly Pro 50 55 His Gln Gly Gln Asp Glu Gly Arg Gly Pro Ala Pro Gly Ser Gly Thr Arg Gln Val Phe Ser Met Ala Ala Met Asn Lys Glu Gly Gly Thr Ala 90 85 Ser Val Ala Thr Gly Pro Asp Ser Pro Ser Pro Val Pro Leu Pro Pro 105 Gly Lys Pro Ala Leu Pro Gly Ala Asp Gly Thr Pro Phe Gly Cys Pro 115 120 125 Pro Gly Arg Lys Glu Lys Pro Ser Asp Pro Val Glu Trp Thr Val Met 130 Asp Val Val Glu Tyr Phe Thr Glu Ala Gly Phe Pro Glu Gln Ala Thr 155 145 Ala Phe Gln Glu Gln Glu Ile Asp Gly Lys Ser Leu Leu Met Gln 170 Arg Thr Asp Val Leu Thr Gly Leu Ser Ile Arg Leu Gly Pro Ala Leu 190 180 Lys Ile Tyr Glu His His Ile Lys Val Leu Gln Gln Gly His Phe Glu 205 200 195

PCT/US97/21857 WO 98/23282 -59-

Asp Asp Asp Pro Asp Gly Phe Leu Gly 210 215

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 530 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Lys Ser Ser Pro Gly Gln Pro Glu Ala Gly Pro Glu Gly Ala Gln Glu 10 Arg Pro Ser Gln Ala Ala Pro Ala Val Glu Ala Glu Gly Pro Gly Ser 25 Ser Gln Ala Pro Arg Lys Pro Glu Gly Ala Gln Ala Arg Thr Ala Gln 40 35 Ser Gly Ala Leu Arg Asp Val Ser Glu Glu Leu Ser Arg Gln Leu Glu 55 50 Asp Ile Leu Ser Thr Tyr Cys Val Asp Asn Asn Gln Gly Gly Pro Gly 70 Glu Asp Gly Ala Gln Gly Glu Pro Ala Glu Pro Glu Asp Ala Glu Lys 90 85 Ser Arg Thr Tyr Val Ala Arg Asn Gly Glu Pro Glu Pro Thr Pro Val 110 100 Val Tyr Gly Glu Lys Glu Pro Ser Lys Gly Asp Pro Asn Thr Glu Glu 115 Ile Arg Gln Ser Asp Glu Val Gly Asp Arg Asp His Arg Arg Pro Gln 135 130

Glu Lys Lys Lys Ala Lys Gly Leu Gly Lys Glu Ile Thr Leu Leu Met 155 150

Gln Thr Leu Asn Thr Leu Ser Thr Pro Glu Glu Lys Leu Ala Ala Leu 170 165

Cys Lys Lys Tyr Ala Glu Leu Leu Glu Glu His Arg Asn Ser Gln Lys 190 185 180

Gln Met Lys Leu Leu Gln Lys Lys Gln Ser Gln Leu Val Gln Glu Lys 200 205 195

								-6	0-						
Asp	His 210	Leu	Arg	Gly	Glu	His 215	Ser	Lys	Ala	Val	Leu 220	Ala	Arg	Ser	Lys
Leu 225	Glu	Ser	Leu	Cys	Arg 230	Glu	Leu	Gln	Arg	His 235	Asn	Arg	Ser	Leu	Lys 240
Glu	Glu	Gly	Val	Gln 245	Arg	Ala	Arg	Glu	Glu 250	Glu	Glu	Lys	Arg	Lys 255	Glu
Val	Thr	Ser	His 260	Phe	Gln	Val	Thr	Leu 265	Asn	Asp	Ile	Gln	Leu 270	Gln	Met
Glu	Gln	His 275	Asn	Glu	Arg	Asn	Ser 280	Lys	Leu	Arg	Gln	Glu 285	Asn	Met	Glu
Leu	Ala 290	Glu	Arg	Leu	Lys	Lys 295	Leu	Ile	Glu	Gln	Tyr 300	Glu	Leu	Arg	Glu
Glu 305	His	Ile	Asp	Lys	Val 310	Phe	Lys	His	Lys	Asp 315	Leu	Gln	Gln	Gln	Leu 320
Val	Asp	Ala	Lys	Leu 325	Gln	Gln	Ala	Gln	Glu 330	Met	Leu	Lys	Glu	Ala 335	Glu
Glu	Arg	His	Gln 340	Arg	Glu	Lys	Asp	Phe 345	Leu	Leu	Lys	Glu	Ala 350	Val	Glu
Ser	Gln	Arg 355	Met	Cys	Glu	Leu	Met 360	Lys	Gln	Gln	Glu	Thr 365	His	Leu	Lys
Gln	Gln 370	Leu	Ala	Leu	Tyr	Thr 375	Glu	Lys	Phe	Glu	Glu 380	Phe	Gln	Asn	Thr
Leu 385	Ser	Lys	Ser	Ser	Glu 390		Phe	Thr	Thr	Phe 395	_	Gln	Glu	Met	Glu 400
Lys	Met	Thr	Lys	Lys 405	Ile	Lys	Lys	Leu	Glu 410	Lys	Glu	Thr	Thr	Met 415	Tyr
Arg	Ser	Arg	Trp 420	Glu	Ser	Ser	Asn	Lys 425	Ala	Leu	Leu	Glu	Met 430	Ala	Glu
Glu	Lys	Thr 435	Val	Arg	Asp	Lys	Glu 440	Leu	Glu	Gly	Leu	Gln 445	Val	Lys	Ile
Gln	Arg 450	Leu	Glu	Lys	Leu	Cys 455	Arg	Ala	Leu	Gln	Thr 460	Glu	Arg	Asn	Asp
Leu 465	Asn	Lys	Arg	Val	Gln 470	Asp	Leu	Ser	Ala	Gly 475	Gly	Gln	Gly	Ser	Leu 480
Thr	Asp	Ser	Gly	Pro 485	Glu	Arg	Arg	Pro	Glu 490	Gly	Pro	Gly	Ala	Gln 495	Ala

WO 98/23282 PCT/US97/21857

-61-

Pro Ser Ser Pro Arg Val Thr Glu Ala Pro Cys Tyr Pro Gly Ala Pro Ser Thr Glu Ala Ser Gly Gln Thr Gly Pro Gln Glu Pro Thr Ser Ala

520

Arg Ala 530 515

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Val Asp Val Asp Glu Tyr Asp Glu Asn Lys Phe Val Asp Glu Glu Asp 1 5 10 15

Gly Gly Asp Gly 20

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1404 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

AAGCCTCGC	A GCGGTCGGG	G CGGCGCCGCG	GAGGCTCGAG	GGCGGCGGGC GGCGG	CG 57
ATG TCG A Met Ser L	AG AAC ACG ys Asn Thr	GTG TCG TCG Val Ser Ser	GCG CGG TTC Ala Arg Phe 10	CGG AAG GTG GAC Arg Lys Val Asp 15	GTG 105 Val
GAT GAG T Asp Glu T	TAC GAC GAG Tyr Asp Glu 20	AAC AAG TTC Asn Lys Phe	GTG GAC GAG Val Asp Glu 25	GAA GAC GGC GGC Glu Asp Gly Gly 30	GAC 153 Asp
GGC CAG C	GCG GGG CCG Ala Gly Pro 35	GAC GAG GGC Asp Glu Gly 40	GAG GTG GAC Glu Val Asp	TCG TGC CTG CGG Ser Cys Leu Arg 45	CAA 201 Gln
GGG AAC 1 Gly Asn 1	ATG ACA GCC Met Thr Ala	GCC CTG CAG Ala Leu Gln 55	GCG GCG CTG Ala Ala Leu	AAG AAC CCT CCC Lys Asn Pro Pro 60	ATC 249 Ile

			AGC Ser													297
			AIC Ile													345
			AGG Arg 100										-	-		393
			AGC Ser													441
-			GCG Ala													489
			AGG Arg				TAG	CCTG	GCA (GGAA	GGG:	rg co	CTGC	CGGG	3	540
	GGGA	GCT (GCCG	GTAC		BACC	AAAA	G GC	CCAG	ATGC	CGC	CGCT	GCC	CTGT	GGCGG	600
CGT	CTGT	rcc (CAGC:	rtcg	CT T	TTC	CTT	r cc	CGTG	rctg	TCA	GGAT:	rac :	ATAAG	GGTTTC	660
CCT'	rcgr	GAG A	AATC	GGAG:	rg g	CGCA	GAGG	G TC	CTGT	TCAT	ACG	CGCC	GTG (CGTC	CGGCTG	720
TGT	AAGA	ccc (CTGC	CTTC	AG T	GTCC1	rtga(G CA	ACGG:	TAGC	GTG:	rcgc	CGG	CTGG	STTTGG	780
TTT'	TGTC	GTG (GAGG	GATC:	rg g	rcag/	AATT:	r ga	GGCC	AGTT	TCC	raac:	rca '	TTGC	rggTCA	840
GGA	AATG	ATC '	TTCA:	TTTA	AA AA	LAAAA	LAAAA	A AG	ACTG(GCAG	CTA	TAT	GCA .	AAAC'	TGGACC	900
CTC	TTCC	CTT :	ATTT	AAGC	AG A	GTGA	GTTT	C TG	GAAC	CAGT	GGT	GCCC	CCC	cccc	CGCCCC	960
GGC	CGCC	GTC (CTGC'	rcaa(GG G	AAGC	CTCC	C TG	CAGA	GCAG	CAG	AGCC	CCT	GGGC	AGGAGC	1020
GCC	GCGT	ccc (GCTC	CCAG	GA G	ACAG	CATG	C GC	GGTC	ACGC	GGC.	ACTT	CCT	GTGC	CTCCCA	1080
GCC	CCAG'	TGC	CCCG	gagt"	rc r	TCAG(GGCG.	A CA	GGGA	CCTC	AGA	AGAC'	TGG .	ATCC	GATCCA	1140
GAC	AGAC	GCC	CATT	CTTG	GT T	CAGC'	TCAG'	T GT	TTTC.	AAAA	GGA.	ACGT	GCT .	ACCG'	TGGGTA	1200
GAG	CACA	CTG	GTTC	TCAG.	AA C	ACGG	CCGG	C GC	TTGA	CGGT	TGT	CACA	GCT	CCAG	aaca a a	1260
TCC	TGGG.	AGA	CAGG	CGAG	CG C	GAGT	CGCC	G GG	CAGG.	AATT	CCA	CACA	CTC	GTGC'	TGTTTT	1320
TGA	TACC	TGC	TTTT	TGTT	TT G	TTTT	GTAA	A AA	TGAT	GCAC	TTG	AGAA	TAA	AAAA	CGTCAG	1380
TGT	TGAC	AAA	AAAA	AAAA	AA A	AAA										1404

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1617 base pairs

WO 98/23282 PCT/US97/21857

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GAC Asp	TGC Cys	CGC Arg	AGC Ser	AGC Ser 5	AGC Ser	AAC Asn	AAC Asn	CGC Arg	TAG Xaa 10	CCG Pro	AAG Lys	GGT Gly	GGC Gly	GCG Ala 15	GCG Ala	48
CGG Arg	GCC Ala	GGC Gly	GGC Gly 20	CCG Pro	GCG Ala	CGG Arg	CCC Pro	GTG Val 25	AGC Ser	CTG Leu	CGG Arg	GAA Glu	GTC Val 30	GTG Val	CGC Arg	96
TAC Tyr	CTC Leu	GGG Gly 35	GGT Gly	AGC Ser	AGC Ser	GGC Gly	GCT Ala 40	GGC Gly	GGC Gly	CGC Arg	CTG Leu	ACC Thr 45	CGC Arg	GGC Gly	CGC Arg	144
GTG Val	CAG Gln 50	GGT Gly	CTG Leu	CTG Leu	GAA Glu	GAG Glu 55	GAG Glu	GCG Ala	GCG Ala	GCG Ala	CGG Arg 60	GGC Gly	CGC Arg	CTG Leu	GAG Glu	192
CGC Arg 65	ACC Thr	CGT Arg	CTC Leu	GGA Gly	GCG Ala 70	CTT Leu	GCG Ala	CTG Leu	CCC Pro	CGC Arg 75	GGG Gly	GAC Asp	AGG Arg	CCC Pro	GGA Gly 80	240
CGG Arg	GCG Ala	CCA Pro	CCG Pro	GCC Ala 85	GCC Ala	AGC Ser	GCC Ala	CGC Arg	GCG Ala 90	GCG Ala	CGG Arg	AAC Asn	AAG Lys	AGA Arg 95	GCT Ala	288
GGC Gly	GAG Glu	GAG Glu	CGA Arg 100	Val	CTT Leu	GAA Glu	AAG Lys	GAG Glu 105	GAG Glu	GAG Glu	GAG Glu	GAG Glu	GAG Glu 110	GAG Glu	GAA Glu	336
GAC Asp	GAC Asp	GAG Glu 115	Asp	GAC Asp	GAC Asp	GAC Asp	GAC Asp 120	Val	GTG Val	TCC Ser	GAG Glu	GGC Gly 125	TCG Ser	GAG Glu	GTG Val	384
CCC	GAG Glu 130	Ser	GAT Asp	CGT Arg	CCC Pro	GCG Ala 135	Gly	GCG Ala	CAG Gln	CAT His	CAC His	CAG Gln	CTG Leu	AAT Asn	GGC Gly	432
GG(Gl) 145	y Glu	CGC Arg	GGC Gly	CCG Pro	CAG Gln 150	Thr	GCC Ala	AAG Lys	GAG	G CGG Arg 155	Ala	AAG Lys	GAG Glu	TGG Trp	TCG Ser 160	480
CT(Le	G TGT	GGG Gl	c ccc	CAC His	Pro	GGC Gly	CAC	G GAG	GAA 1 Glu 170	ı Gly	G CGC / Arg	g GGG	CCG Pro	GCC Ala 175	GCG Ala	528
GG Gl	C AG y Se:	r GG r Gl	C ACC y Th:	r Ar	CAC g Gli	G GTO	TTO	C TCC e Sei 185	r Me	G GCC	G GCG	c TTC	AGT Ser 190	r Lys	GAG Glu	576
GG G1	G GG. y Gl	A TC y Se 19	r Al	C TC' a Se	T TC	G AC	C AC r Th 20	r Gl	g CC' y Pr	T GAG	C TC p Se	C CC0 r Pro 20!	sei	c CCC	G GTG Val	624

														ACC Thr		672
														GTG Val		720
														TTC Phe 255		768
														TCC Ser		816
														CGC Arg		864
														CAG Gln		912
			GAG Glu										TGA	GCAC <i>i</i>	AGA	961
GCC	CCG	CGC (CCCT	rgtc	2C C2	ACCC(CCAC	2 000	GCCT	GGAC	CCA	rtcc:	rgc (CTCC	ATGTCA	1021
CCCA	AAGG1	rgt (CCCA	GAGG	CC A	GAG (CTGG	A CTO	GGC2	AGGC	GAG	GGT	GCG (GACC'	FACCCT	1081
GAT	CTG	GTA (GGGG	GCGG	GG C	CTTG	CTGT	G CT	CATT	GCTA	CCC	ccci	ACC (CCGT	STGTGT	1141
CTC	rgca	CCT	GCCC	CCAG	CA C	ACCC(CTCC	c ggz	AGCC	rgga	TGT	GGCC1	rgg (GACT	CTGGCC	1203
TGC	CAT:	rtt (GCCC	CCAG	AT C	AGCC(CCT		raca	ICCT	GTC	CAG	GAC .	ATTT	TTTAAA	1261
AGA	AAAA	AAG (GAAA	AAAA	AA AA	ATTG	GGGA(G GG(GCT	GGGA	AGG:	rgcc:	CCA .	AGAT	CCTCCT	1321
CGG	CCA	ACC .	AGGT	GTTT	AT T	CCTA'	rata:	r atz	ATAT	TATA	GTT	TTGT	rct (GCCT	ST TTT T	1381
CGT	TTTT'	TGG '	TGCG'	TGGC	CT T	rctt(CCT	c cc:	ACCA	CCAC	TCA	TGGC:	ccc .	AGCC	CTGCTC	1441
GCC	CTGT	CGG	CGGG.	AGCA	GC T	GGGA.	ATGG(G AG	GAGG(GTGG	GAC	CTTG	GGT	CTGT	CTCCCA	1501
CCC'	rctc'	TCC	CGTT	GGTT	CT G	TTGT	CGCT	C CA	GCTG	GCTG	TAT'	TGCT'	TTT	TAA'T	ATTGCA	1561
CCG	AAGG	GTT	GTTT'	TTTT	TT T	TTTA	AATA	a aa'	TTTT.	AAAA	AAA	ggaa.	AAA .	AAAA	A.A	1617

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1362 bases

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCC Ala 1	AGC Ser	GCC Ala	CGC Arg	GCG Ala 5	GCG Ala	CGG Arg	AAC Asn	AAG Lys	AGA Arg 10	GCT Ala	GGC Gly	GAG Glu	GAG. Glu	CGA Arg 15	GTG Val	48	
CTT Leu	GAA Glu	AAG Lys	GAG Glu 20	GAG Glu	GAG Glu	GAG Glu	GAG Glu	GAG Glu 25	GAG Glu	GAA Glu	GAC Asp	GAC Asp	GAG Glu 30	GAC Asp	GAC Asp	96	
GAC Asp	GAC Asp	GAC Asp 35	GTC Val	GTG Val	TCC Ser	GAG Glu	GGC Gly 40	TCG Ser	GAG Glu	GTG Val	CCC Pro	GAG Glu 45	AGC Ser	GAT Asp	CGT Arg	144	4
CCC Pro	GCG Ala 50	GGT Gly	GCG Ala	CAG Gln	CAT H1s	CAC His 55	CAG Gln	CTG Leu	AAT Asn	GGC Gly	GGC Gly 60	GAG Glu	CGC Arg	GGC Gly	CCG Pro	19:	2
CAG Gln 65	ACC Thr	GCC Ala	AAG Lys	GAG Glu	CGG Arg 70	GCC Ala	AAG Lys	GAG Glu	TGG Trp	TCG Ser 75	CTG Leu	TGT Cys	GGC Gly	CCC Pro	CAC His 80	24	0
CCT Pro	GGC Gly	CAG Gln	GAG Glu	GAA Glu 85	GGG Gly	CGG Arg	GGG Gly	CCG Pro	GCC Ala 90	GCG Ala	GGC Gly	AGT Ser	GGC Gly	ACC Thr 95	CGC Arg	28	8
CAG Gln	GTG Val	TTC Phe	TCC Ser 100	ATG Met	GCG Ala	GCC Ala	TTG Leu	AGT Ser 105	AAG Lys	GAG Glu	GGG Gly	GGA Gly	TCA Ser 110	GCC Ala	TCT Ser	33	6
TCG Ser	ACC Thr	ACC Thr 115	GGG Gly	CCT Pro	GAC Asp	TCC Ser	CCG Pro 120	TCC Ser	CCG Pro	GTG Val	CCT Pro	TTG Leu 125	CCC Pro	CCC Pro	GGG Gly	38	4
AAG Lys	CCA Pro 130	Ala	CTC Leu	CCA Pro	GGA Gly	GCC Ala 135	GAT Asp	GGG Gly	ACC Thr	CCC Pro	TTT Phe 140	GGC Gly	TGC Cys	CCT Pro	GCC Ala	43	,2
GGG Gly 145	Arg	AAA Lys	GAG Glu	AAG Lys	CCG Pro 150	Ala	GAC Asp	CCC Pro	GTG Val	GAG Glu 155	Trp	ACA Thr	GTC Val	ATG Met	GAC Asp 160	4 8	30
GTC Val	: GTG Val	GAC Glu	TAC Tyr	TTC Phe	Thr	GAG Glu	GCG Ala	GGC Gly	TTC Phe 170	Pro	GAG	CAA Gln	GCC Ala	ACG Thr 175	GCT Ala	52	28
TT(Phe	CAC Glr	GAC	G CAC 1 Glr 180	ı Glu	ATC	GAC Asp	GGC Gly	: AAG Lys 185	Ser	CTC Lev	CTG	CTC Leu	Met 190	. Gir	CGC Arg	57	76
AC(C GAS	GT(Va. 19	l Le	C ACC	GGG Gly	CTC Lev	TC0 1 Se1 200	: Ile	C CGC	C CTC	GGG Gly	CCA Pro 205	Ala	TTC Lev	AAA Lys	62	24

-66-

											_				GAC Asp		672
				GGC Gly				T JAC	GCACA	AGA (GCCG(CCGC	GC C	CC'IT	TCCC		726
CAC	CCCF	ACC (cccc	TGGA	C C	CATTO	CCTGC	CT	CATO	GTCA	CCC	AAGG:	rgt	CCCAC	GAGGCC	786	
AGG	AGCTO	GA (CTGGC	GCAGO	GC G	AGGG	GTGCG	GA(CTAC	CCT	GAT	CTG	STA (GGGG	GCGGGG	846	
CCTT	rgcto	TG (CTCA	rtgct	TA C	ccc	CACC	2 220	GTGTC	STGT	CTC	rgcad	CCT (GCCC	CCAGCA	906	
CAC	CCTC	ccc (GGAG	CTGC	A TO	GTCG	CTG	G GA	CTCTC	GCC	TGC	rcat:	TTT	GCCC	CCAGAT	966	
CAG	cccc	TC (CCTC	CCTCC	CT G	rccc	AGGAC	C AT	rttti	AAA	AGA	LAAAA	AAG	GAAA	AAAAA	1026	
AAT:	rgggc	GAG (GGGG	CTGGC	SA AG	GTG	CCCZ	A AGA	ATCC	CCT	CGG	CCA	ACC .	AGGT	GTTTAT	1086	
TCCT	TATAT	TAT Z	ATATA	ATATA	AT Gʻ	TTTT(GTTCT	r GC	CTGT	TTTT	CGT	TTTT:	rgg	TGCG:	IGGCCT	1146	
TTC	rtcc	CTC (CAC	CACC	AC T	CATG	3CCC	C AG	CCCT	CTC	GCC	CTGT	CGG	CGGG	AGCAGC	1206	
TGG	TAAE	GGG 2	AGGA	GGT	G G	ACCT'	TGGG7	r cto	GTCT	CCA	CCC	rctc:	rcc	CGTT	GGTTCT	1266	
GTT	STCG	CTC (CAGC	rggc:	rg T	ATTG	CTTT:	TAI	ATAT:	rgca	CCG	AAGG	GTT	GTTT	TTTTTT	1326	
TTT	CAAAT	FAA .	AATT	TAA	AA A	AAGG.	LAAAA	A AA	AAAA							1362	

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1422 bases

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

			GCG Ala 5									48
			GCC Ala									96
			CTT Leu									144
	Asp	Asp	GAC Asp	Asp	Asp	Val	Val	Ser	Glu			192

						GGT Gly											240
GAG Glu	CGC Arg	GGC Gly	CCG Pro	CAG Gln 85	ACC Thr	GCC Ala	AAG Lys	GAG Glu	CGG Arg 90	GCC Ala	AAG Lys	GAG Glu	TGG Trp	TCG Ser 95	CTG Leu		288
TGT Cys	GGC Gly	CCC Pro	CAC His 100	CCT Pro	GGC Gly	CAG Gln	GAG Glu	GAA Glu 105	GGG Gly	CGG Arg	GGG Gly	CCG Pro	GCC Ala 110	GCG Ala	GGC Gly		336
AGT Ser	GGC Gly	ACC Thr 115	CGC Arg	CAG Gln	GTG Val	TTC Phe	TCC Ser 120	ATG Met	GCG Ala	GCC Ala	TTG Leu	AGT Ser 125	AAG Lys	GAG Glu	GGG Gly		384
GGA Gly	TCA Ser 130	GCC Ala	TCT Ser	TCG Ser	ACC Thr	ACC Thr 135	GGG Gly	CCT Pro	GAC Asp	TCC Ser	CCG Pro 140	TCC Ser	CCG Pro	GTG Val	CCT Pro		432
TTG Leu 145	CCC Pro	CCC	GGG Gly	AAG Lys	CCA Pro 150	GCC Ala	CTC Leu	CCA Pro	GGA Gly	GCC Ala 155	GAT Asp	GGG Gly	ACC Thr	CCC Pro	TTT Phe 160		480
GGC Gly	TGC Cys	CCT Pro	GCC Ala	GGG Gly 165	CGC Arg	AAA Lys	GAG Glu	AAG Lys	CCG Pro 170	GCA Ala	GAC Asp	CCC Pro	GTG Val	GAG Glu 175	TGG Trp		528
ACA Thr	GTC Val	ATG Met	GAC Asp 180	Val	GTG Val	GAG Glu	TAC Tyr	TTC Phe 185	Thr	GAG Glu	GCG Ala	GGC Gly	TTC Phe 190	CCT Pro	GAG Glu		576
CAA Gln	GCC Ala	ACG Thr	Ala	TTC Phe	CAG Gln	GAG Glu	CAG Gln 200	Glu	ATC Ile	GAC Asp	GGC Gly	AAG Lys 205	Ser	CTG Leu	CTG Leu		624
CTC Lev	ATG Met	Gln	CGC Arg	ACC Thr	GAT Asp	GTC Val 215	Leu	ACC Thr	GGC Gly	CTG Leu	TCC Ser 220	Ile	CGC Arg	CTG Leu	GGG Gly		672
CCA Pro 225) Ala	TTC	AAA 1 Lys	A ATC	TAT Ty: 230	Glu	CAC His	CAT His	T ATC	AAG Lys 235	Val	CTC Lev	CAG Gln	CAG Gln	GGT Gly 240		720
CAC His	TTC Phe	C GAC	G GAC	GAT Asp 245	Ası	CCG Pro	GAA	A GGC	TTC / Phe 250	e Lev	GGA 1 Gly	A TGF	AGCAC	'AGA			766
GC	CGCC	GCGC	CCC	rtgt	ccc (CACCO	CCA	CC C	ggcc:	rgga	CCI	ATTC	CTGC	CTCC	ATGTCA	826	
CC	CAAG	GTGT	CCC	AGAG	GCC /	AGGA	GCTG	GA C	rggg	CAGG	GA(gggg:	rgcg	GACC	TACCCT	886	
GA.	TTCT	GGTA	GGG	GGCG	GGG	CCTT	GCTG'	rg c	ICAT'	rgct/	A CC	cccc	CACC	CCG1	GTGTGT	946	
CT	CTGC.	ACCT	GCC	CCCA	GCA	CACC	CCTC	CC G	GAGC	CTGG	A TG	rcgc	CTGG	GACT	CTGGCC	1006	
TG	CTCA	TTTT	GCC	CCCA	GAT	CAGC	CCCC'	TC C	CTCC	CTCC'	r GT	CCCA	GGAC	ATT	CTTTAAA	1066	

AGAAAAAAA AATTGGGGAG GGGGCTGGGA AGGTGCCCCA AGATCCTCCT 1126
CGGCCCAACC AGGTGTTTAT TCCTATATAT ATATATATAT GTTTTGTTCT GCCTGTTTTT 1186
CGTTTTTTGG TGCGTGGCCT TTCTTCCCTC CCACCACCAC TCATGGCCCC AGCCCTGCTC 1246
GCCCTGTCGG CGGGAGCAGC TGGGAATGGG AGGAGGGTGG GACCTTGGGT CTGTCTCCCA 1306
CCCTCTCTCC CGTTGGTTCT GTTGTCGCTC CAGCTGGCTG TATTGCTTTT TAATATTGCA 1366
CCGAAGGGTT GTTTTTTTT TTTTAAATAA AAATTTAAAA AAAGGAAAAA AAAAAA 1422

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4722 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GTGGAAAATA GCA	ACTGTGT TTCTCA	AGGA TCCAATCCCA	ACCTAAGGTG GCAGCGCA	CA 60
			AAA CAG CCC AAC CCC Lys Gln Pro Asn Pro 15	
	o Gly Gln Pro (GAG GGA GCC CAG GGG Glu Gly Ala Gln Gly 30	
			GAA GGT GCC AGC AGC Glu Gly Ala Ser Ser 45	
			AAA ACT GCT CAG CCT Lys Thr Ala Gln Pro 60	
			CGC CAG TTG GAA GAG Arg Gln Leu Glu Asp 80	
			GGG GCC CCG GGT GAG Gly Ala Pro Gly Gly 95	
	n Gly Glu Pro		GAT GCA GAG AAG TC Asp Ala Glu Lys Se: 110	
	l Ala Arg Asn		CCG GGC ACC CCA GTZ Pro Gly Thr Pro Va: 125	

GTC Val	AAT Asn 130	GGC Gly	GAG Glu	AAG Lys	GAG Glu	ACC Thr 135	TCC Ser	AAG Lys	GCA Ala	GAG Glu	CCG Pro 140	GGC Gly	ACG Thr	GAA Glu	GAG Glu	492
ATC Ile 145	CGG Arg	ACG Thr	AGC Ser	GAT Asp	GAG Glu 150	GTC Val	GGA Gly	GAC Asp	CGA Arg	GAC Asp 155	CAC His	CGG Arg	AGG Arg	CCA Pro	CAG Gln 160	540
GAA Glu	AAG Lys	AAG Lys	AAG Lys	GCC Ala 165	AAG Lys	GGT Gly	CTG Leu	GGA Gly	AAG Lys 170	GAG Glu	ATC Ile	ACG Thr	CTG Leu	CTG Leu 175	ATG Met	588
CAG Gln	ACA Thr	CTG Leu	AAC Asn 180	ACG Thr	CTG Leu	AGC Ser	ACC Thr	CCA Pro 185	GAG Glu	GAG Glu	AAG Lys	CTG Leu	GCG Ala 190	GCT Ala	CTG Leu	636
TGC Cys	AAG Lys	AAG Lys 195	TAT Tyr	GCG Ala	GAA Glu	CTG Leu	CTC Leu 200	GAG Glu	GAG Glu	CAC His	CGG Arg	AAC Asn 205	TCG Ser	CAG Gln	AAG Lys	684
CAG Gln	ATG Met 210	AAG Lys	CTG Leu	CTG Leu	CAG Gln	AAG Lys 215	AAG Lys	CAG Gln	AGC Ser	CAG Gln	CTG Leu 220	GTG Val	CAG Gln	GAG Glu	AAG Lys	732
GAC Asp 225	CAC His	CTG Leu	CGT Arg	GGC Gly	GAG Glu 230	CAC His	AGC Ser	AAG Lys	GCC Ala	ATC Ile 235	CTG Leu	GCC Ala	CGC Arg	AGC Ser	AAG Lys 240	780
CTC Leu	GAG Glu	AGC	CTG Leu	TGC Cys 245	CGG Arg	GAG Glu	CTG Leu	CAG Gln	CGG Arg 250	CAC His	AAC Asn	CGC Arg	TCG Ser	CTC Leu 255	AAG Lys	828
GAA Glu	. GAA . Glu	GGT Gly	GTG Val 260	Gln	CGA Arg	GCC Ala	CGA Arg	GAG Glu 265	Glu	GAG Glu	GAG Glu	AAG Lys	CGC Arg 270	AAG Lys	GAG Glu	876
GTG Val	ACG Thr	TCA Ser 275	CAC His	TTC Phe	CAG Gln	ATG Met	ACG Thr 280	Leu	AAC Asn	GAC Asp	ATT Ile	CAG Gln 285	Leu	CAG Gln	ATG Met	924
GAG Glu	CAG Glr 290	His	AAC Asn	GAG Glu	CGC Arg	AAC Asn 295	Ser	AAG Lys	CTG Leu	CGC Arg	CAG Gln 300	Glu	AAC Asn	ATG Met	GAG Glu	972
CTC Let 305	ı Ala	GAC Glu	G CGG 1 Arg	CTC	AAG Lys 310	Lys	CTG Leu	ATT	T GAG	G CAG 1 Glr 315	Tyr	GAG	CTG Leu	CGA Arg	GAA Glu 320	1020
GA(G CAG	C ATO	GAC Asp	AAA Lys	. Val	TTC Phe	AAA Lys	A CAG	AAC Lys	s Asp	CTC Lev	G CAC	CAC Glr	G CAG 1 Glr 335	CTG Leu	1068
GT(Va	G GAG	C GC p Al	C AAG a Lys 340	s Le	C CAC	G CAC	GCC n Ala	CAG a Gl: 34	n Gli	G ATO	G CTO	AAC 1 Lys	G GAC G Glu 350	ı Ala	A GAG A Glu	1116

-70-

GAG CGG Glu Arg			Lys A									1164
		TGC GAC										1212
		CTA TAC Leu Ty:	Thr G									1260
		AGC GAG Ser Glu 405										1308
		: AAG ATG : Lys Ile										1356
		GAG AGG Glu Se:	Ser A									1404
	Thr Let	CGG GA										1452
		AAG CTO Lys Let 47	ı Cys A									1500
		G GTG CAG G Val Gl: 485										1548
		CCT GA Pro Gl			Glu							1596
		C GAG GG l Glu Gl	y Pro C									1644
	Asp Al	r TCC TG a Ser Cy						Thr				1692
		G CCC CA y Pro Gl 55	n Glu I				Thr			AGAG	CTT	1741
GGTGCT	GGG TGT	GCCAGGA	AGGGAG	CAGG CA	AGCCC	AGCC	AGG	CCTG	GCC	CAGC	CCAGGC	1801
TCCCATGCTA AGCAGTCCGG TGCTGAGGCC AGGATGTTCT							GAC	CTGG	CTG	GCAC	CTGACC	1861
CTCTGCAGTC TTGGATTTTG TGGGTCAGTT TTACATGCAT ATGGCACACA TGCAAGGCCT									1921			

CACACATTTG	TGTCTCTAAG	TGTACTGTGG	GCTTGCATCG	GGGGTGACGA	TGGACAGATG	1981
AAGCCAGCGG	CTCCCTTGTG	AGCTGAAGTC	TTACGGAGGA	GACGGCGTCT	GCACTGCCAT	2041
CGCAGTGACC	TGCAGGACGA	GTTCCTTGAG	CTTTCCCTGC	CTGCTTTGAG	GCTGAGACCC	2101
CTCCCGGCCC	TTCAGAGCTC	CTGACAGGTG	ATACACACCC	AGCCTTGACC	GCACTTCTCT	2161
TGGGTAGCTG	GGCTCTCCTA	GCCTCCCCCA	GAGGCGCCAT	TGCTTCTCTT	GACTTGGAGA	2221
GGGGATGCCC	AGGCGTGGCC	TTGGCAGGCA	CTGGGAGCTA	GTGATTGGGC	TGCTCTCCTG	2281
CCTCGAGCAG	GGGCAGGAGT	GTTTCTGGTG	GGATGATGCG	CTCGCTGGTC	AGGAGCCCCG	2341
TGGGCGCTGC	TTCCCCCGCC	CTCTGGTGAT	GCCAGGACCA	GGCCAGTGAT	GCTTCTCAGT	2401
AGCCTTACCA	TTCACAGGTG	CCTCTCCAGC	CCGCACAGTG	AGTGACAAGA	TCATCCAAAG	2461
GATTCCTTCT	GAAGGTGTTC	GTTTCGTTTT	GTTTTGTTGC	ACGTGACGGT	TTGTATTGAG	2521
GACCCTCTGA	GGAAGAGGGG	TGCTGTAGCA	GTGGTCCCTG	CGTGCCTGGC	TCCAGTGTCC	2581
TGCCCTCCCC	CCCCTCGCCA	TGGCTCCTCG	GCCGCCTTGG	TGCTGAGGTT	TCTGTTTGGT	2641
GAGATCAGGT	TGTCTGTTCA	GAGAGAAGAG	GCGTCTGATG	GCTTTGCCGC	CAGCTTGCCT	2701
GCGGGCCTCA	ATCCCGGGAG	GCCGCCCGGT	TCCCGTCACT	GTTGTCCCCG	TGCAGTGCGT	2761
TGCTGGTGCC	CAGGACCAGC	TGCTCGTTTG	CTGTATGGGT	CAGTTTCTGC	TTCCTGCCCC	2821
CCACTCCACC	TAACTGCAAT	CCTTGGGGTT	TCCCTGGTTC	TCGTCCCTGG	TACCTCTGTG	2881
CCCAAGAAGT	AGCCTTCTTT	GGGATTCTTG	TTCTGCCCAT	GCGGGAGCTG	CTGCTGTCTG	2941
ACAGGTGAGG	CCTGAGACTC	AGCGGCTGAC	AGAGCTGCAG	AGCTCTGCAC	GGTGGCTCCC	3001
GGGGCGGCCT	CTGTGTGCTG	CACACCGCTG	CTCTGCTGGC	ACTGGCCAGT	CTGTGCAGAG	3061
CATTTGAGTA	CTGGCTCAGG	AGGGAGGCT	CTGCTGGCCT	CGAGGGACAG	GCCACGTCT	3121
CCAGCTGGGC	TCAGGGAGAG	CCCCAGACTG	GCTGCGTAGG	GTGCTTGGGG	; TTTGCTTCTT	3181
GCAGTATTT	TTGGAAGCTG	TTTTGTTGTC	CTGCTATTCC	TTCATCTTCC	: ACAGTCCACG	3241
CTCAGCCTT	AACTTGGAT	CCTCACATAA	CAGGGTTCAT	GAGACCCGC	AGTACGCCCA	3301
AGCTACGTA	r GGCTGAGGC	AGCTGGCAGG	; TGAATGGCAC	GCCATTGCT	CTGCTAATCC	3361
CTGGCATAT	TTTAGTTCAG	CTCGAAATG	CCCCGCCACA	A GTGCAAGCAG	TGAGTCCACG	3421
TGCCACCCT	G GGCTGAATC	CACCCCCTG1	GAGTGTTGCC	CGAGATTGT	TCTCTTCTGA	3481
ATGCCTTCA	C TGGGAATGG	C CTCTGCCGCC	TCCTGCTCAC	G GGAGGCTTT	CCCTTCCCTC	3541
AGCCCCTGT	G CCAGACTGA	G GTACAAGAA	CGCCAAGCC	ATGCAAGGT	G TGGCTAGGCG	3601
CCAGGGTGC	a ggaaggagg	C AGGTAGCTG	CTGCACCCT	r gaaagccaa	G AGGCCTACGG	3661

rggcctccat	CCTGGCTTGC	CTCACTTCAG	CTACCTCGCA	TAGCCCAGGG	GTGGGGCTAT	3723
rGGATTCCAG	GGTGGGGGA	TGGGAAGCTG	CAGGGGGCAG	GTGGCTCTCA	CTAGGCTTCC	3781
CAGCTCAGGA	ATGTGGGCCT	CAGGTAGGGG	AGAGCCTTTG	CTCCACTCCA	CCCATTTGCA	3841
GGCATCTAGG	CCAGTCTAGA	TGGCGACCCC	TTCTCTTCCT	CTCCATTGAC	CAAATCGTAC	3901
CTGTCTCTCC	AGCTGCTCGC	TTGCTCTGCT	TTCCAAAGTC	AGCCCAGGTA	CCCAGGTGCC	3961
GCCCACATTG	GCCTGGAACC	TGGACCAGAG	GCAAGGGAGG	TGGCCTATCC	TTGAGTGATA	4021
GCCAGTGCCT	TCCTCACCCG	GTGGCTTCCA	TGCCTGTGAC	CTCAGATTTA	GGACCAAGAG	4081
CTGTGTTGGT	TTCTTACGTT	GTGAGCTTTC	CCTCCAGGGG	ACCACAGCAG	GTGAGGCTCG	4141
GAGCCCAGAG	CCCTTGGCGC	CGCCAGCAGT	AACTTGTGTC	CGGACCTTGT	CCAGCTGAGC	4203
GCTTCGTGTA	TGACTCAGCT	TCGTGTGTGA	GTCCAGCGGA	GTGCGTCACG	TGACCTAGAC	426
TCAGCGGTGT	CAGCCGCACT	TTGATTTGTT	TGTTTTCCAT	GAGGTTTTTG	GACCATGGGC	4323
TTAGCTCAGG	CAACTTTTCT	GTAAGGAGAA	TGTTAACTTT	CTGTAAAGAT	GCTTATTTAA	4383
CTAACGCCTG	CTTCCCCCAC	TCCCAACCAG	GTGGCCACCG	AGAGCTCACC	AGGAGGCCAA	444
TAGAGCTGCT	CCAGCTCTCC	CATCTTGCAC	CGCACAAAGG	TGGCCGCCCC	AGGGACAGCC	450
AGGCACCTGC	CTGGGGGAGG	GGCTTCTCTT	CCTTATGGCC	TGGCCATCTA	GATTGTTTAA	4563
AGTTGTGCTG	ACAGCTTTTT	TTGGTTTTTT	GGTTTTTGTT	TTTGTTTTTG	TTTTTGTTTT	4623
TGTCTACTTT	TGGTATTCAC	AACAGCCAGG	GACTTGATTT	TGATGTATTT	TAAGCCACAT	4683
TAAATAAAGA	GTCTGTTGCC	TTAAAAAAAA	ААААААААА	А		4722

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1928 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GACG	CCT	CAG A	AGCGC	BAACA	AG GO	GAAGI	rgaat	CAC	GCGC	CCGG	GTAC	TGG	TT (CTG	GCTG	3	60
GCTI	GCT	GAG (gtag <i>i</i>	AGGC	AG CO	GCCA!	AGAAC	AGC	GCCTT	TTGC	CGCT	rggT	CGG (GATTO	G G		117
ATG Met																	165
1				5					10					15			

GAT GAA TAT GAC GAG AAC AAG TTC GTG GAC GAA GAA GAT GGG GGC GAC Asp Glu Tyr Asp Glu Asn Lys Phe Val Asp Glu Glu Asp Gly Gly Asp 20 25 30	213
GGC CAG GCC GGG CCC GAC GAG GGC GAG GTG GFC TCC TGC CTG CGG CAA Gly Gln Ala Gly Pro Asp Glu Gly Glu Val Asp Ser Cys Leu Arg Gln 35	261
GGA AAC ATG ACA GCT GCC CTA CAG GCA GCT CTG AAG AAC CCC CCT ATC Gly Asn Met Thr Ala Ala Leu Gln Ala Ala Leu Lys Asn Pro Pro Ile 50	309
AAC ACC AAG AGT CAG GCA GTG AAG GAC CGG GCA GGC AGC ATT GTC TTG Asn Thr Lys Ser Gln Ala Val Lys Asp Arg Ala Gly Ser Ile Val Leu 65 70 75 80	357
AAG GTG CTC ATC TCT TTT AAA GCT AAT GAT ATA GAA AAG GCA GTT CAA Lys Val Leu Ile Ser Phe Lys Ala Asn Asp Ile Glu Lys Ala Val Gln 85 90 95	405
TCT CTG GAC AAG AAT GGT GTG GAT CTC CTA ATG AAG TAT ATT TAT AAA Ser Leu Asp Lys Asn Gly Val Asp Leu Leu Met Lys Tyr Ile Tyr Lys 100 105 110	453
GGA TTT GAG AGC CCG TCT GAC AAT AGC AGT GCT ATG TTA CTG CAA TGG Gly Phe Glu Ser Pro Ser Asp Asn Ser Ser Ala Met Leu Leu Gln Trp 115 120 125	501
CAT GAA AAG GCA CTT GCT GCT GGA GGA GTA GGG TCC ATT GTT CGT GTC His Glu Lys Ala Leu Ala Ala Gly Gly Val Gly Ser Ile Val Arg Val 130 135 140	549
TTG ACT GCA AGA AAA ACT GTG TAGTCTGGCA GGAAGTGGAT TATCTGCCTC Leu Thr Ala Arg Lys Thr Val 145 150	600
GGGAGTGGGA ATTGCTGGTA CAAAGACCAA AACAACCAAA TGCCACCGCT GCCCTGTGGG	660
TAGCATCTGT TTCTCTCAGC TTTGCCTTCT TGCTTTTTCA TATCTGTAAA GAAAAAAATT	720
ACATATCAGT TGTCCCTTTA ATGAAAATTG GGATAATATA GAAGAAATTG TGTTAAAATA	780
GAAGTGTTTC ATCCTTTCAA AACCATTTCA GTGATGTTTA TACCAATCTG TATATAGTAT	840
AATTTACATT CAAGTTTTAA TTGTGCAACT TTTAACCCTG TTGGCTGGTT TTTGGTTCTG	900
TTTGGTTTTG TATTATTTTT AACTAATACT GAAAAATTTG GTCAGAATTT GAGGCCAGTT	960
TCCTAGCTCA TTGCTAGTCA GGAAATGATA TTTATAAAAA ATATGAGAGA CTGGCAGCTA	1020
TTAACATTGC AAAACTGGAC CATATTTCCC TTATTTAATA AGCAAAATAT GTTTTTGGAA	1080
TAAGTGGTGG GTGAATACCA CTGCTAAGTT ATAGCTTTGT TTTTGCTTGC CTCCTCATTA	1140
TCTGTACTGT GGGTTTAAGT ATGCTACTTT CTCTCAGCAT CCAATAATCA TGGCCCCTCA	1200
ATTTATTTGT GGTCACGCAG GGTTCAGAGC AAGAAGTCTT GCTTTATACA AATGTATCCA	1260

-74-

TAAAATATCA	GAGCTTGTTG	GGCATGAACA	TCAAACTTTT	GTTCCACTAA	TATGGCTCTG	1320
TTTGGAAAAA	.\CTGCAAATC	AGAAAGAATG	ATTTGCAGAA	AGAAAGAAAA	ACTATGGTGT	1380
AATTTAAACT	CTGGGCAGCC	TCTGAATGAA	ATGCTACTTT	CTTTAGAAAT	ATAATAGCTG	1440
CCTTAGACAT	TATGAGGTAT	ACAACTAGTA	TTTAAGATAC	CATTTAATAT	GCCCCGTAAA	1500
TGTCTTCAGT	GTTCTTCAGG	GTAGTTGGGA	TCTCAAAAGA	TTTGGTTCAG	ATCCAAACAA	1560
ATACACATTC	TGTGTTTTAG	CTCAGTGTTT	TCTAAAAAAA	GAAACTGCCA	CACAGCAAAA	1620
AATTGTTTAC	TTTGTTGGAC	AAACCAAATC	AGTTCTCAAA	AAATGACCGG	TGCTTATAAA	1680
AAGTTATAAA	TATCGAGTAG	CTCTAAAACA	AACCACCTGA	CCAAGAGGGA	AGTGAGCTTG	1740
TGCTTAGTAT	TTACATTGGA	TGCCAGTTTT	GTAATCACTG	ACTTATGTGC	AAACTGGTGC	1800
AGAAATTCTA	TAAACTCTTT	GCTGTTTTTG	ATACCTGCTT	TTTGTTTCAT	TTTGTTTTGT	1860
TTTGTAAAAA	TGATAAAACT	TCAGAAAATA	AAATGTCAGT	GTTGAATAAT	TAAAAAAAA	1920
AAAAA						1925

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1207 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GAG Glu								48
GAT Asp								96
CGT Arg								144
CAG Gln 50								192
CAG Gln								240

CGC Arg	CAG Gln	GTG Val	TTC Phe	TCC Ser 85	ATG Met	GCA Ala	GCC Ala	ATG Met	AAC Asn 90	AAG Lys	GAA Glu	GGG Gly	GGA Gly	ACA Thr 95	GCT Ala	288
TCT Ser	GTT Val	GCC Ala	ACC Thr 100	GGG Gly	CCA Pro	GAC Asp	TCC Ser	CCG Pro 105	TCC Ser	CCC Pro	GTG Val	CCT Pro	TTG Leu 110	CCC Pro	CCA Pro	336
GGC Gly	AAA Lys	CCA Pro 115	GCC Ala	CTA Leu	CCT Pro	GGG Gly	GCC Ala 120	GAC Asp	GGG Gly	ACC Thr	CCC Pro	TTT Phe 125	GGC Gly	TGT Cys	CCT Pro	384
CCC Pro	GGG Gly 130	CGC Arg	AAA Lys	GAG Glu	AAG Lys	CCA Pro 135	TCT Ser	GAT Asp	CCC Pro	GTC Val	GAG Glu 140	TGG Trp	ACC Thr	GTG Val	ATG Met	432
GAT Asp 145	GTC Val	GTC Val	GAA Glu	TAT Tyr	TTT Phe 150	ACT Thr	GAG Glu	GCT Ala	GGA Gly	TTC Phe 155	CCG Pro	GAG Glu	CAG Gln	GCG Ala	ACA Thr 160	480
GCT Ala	TTC Phe	CAA Gln	GAG Glu	CAG Gln 165	GAA Glu	ATT	GAT Asp	GGC Gly	AAA Lys 170	Ser	TTG Leu	CTG Leu	CTC Leu	ATG Met 175	CAG Gln	528
CGC Arg	ACA Thr	GAT Asp	GTG Val 180	Leu	ACC Thr	GGC Gly	CTG Leu	TCC Ser 185	Ile	CGC Arg	CTC Leu	GGG Gly	CCA Pro 190	Ala	CTG Leu	576
AAA Lys	ATC Ile	TAC Tyr 195	Glu	CAC His	CAC His	ATC	AAG Lys 200	Val	CTT Leu	CAG	CAA Gln	GGC Gly 205	His	TTT	GAG Glu	624
	GAT Asp	Asp					Lev			.GCGC	CCA	GCCT	'CACC	CC		671
TGC	CCCA	.GCC	CATI	CCGG	CC C	CCAT	CTCA	4C CC	CAAGA	ATCCC	CCA	AGAGI	CCA	GGAG	CTGGAC	731
GGC	GACA	CCC.	TCAG	CCCI	CA I	TAACA	AGATI	rc ca	AAGGA	AGAGG	GC#	ACCCI	CTT	GTCC	TTATCT	79:
TTO	GCCC	TTG	TGT	CTGT	CTC A	ACACA	ACATO	ET GO	CTCCI	rcago	ACC	TCGC	STGT	GGGG	AGGGGA	853
TT	GCTCC	CTTA	AAC	CCA	GT (GCT	GACC	T C	CCA	CCCAC	TCC	CAGGA	ACAT	TTTA	GGAAAA	913
AA	CAAAA	rgaa	ATG:	rggg	GG (CTTC	CAT	CT CO	CCA	AGATO	CTO	CTTC	CGTT	CAGO	CAGATG	97:
TT'	rccro	GTAT	AAA:	rgtt	rgg 2	ATCT	GCCT	GT T	TATT!	r t gg:	r GG	GTGG:	rctt	TCCI	CCCTCC	103
CC'	TACC	ACCC	ATG	CCCC	CCT '	TCTC	AGTC'	TG C	CCCT	GGCC1	r cc	AGCC	CCTA	GGGG	SACTAGC	109
TG	GGTT	GGGG	TTC	CTCG	GGC	CTTT	TCTC'	TC C'	TCCC'	TCTT	r TC'	TTTC'	TGTT	GATT	rgtcgct	115
CC	AGCT	GGCT	GTA	TTGC	TTT	TTAA	TATT	GC A	CCGA	AGGT'	T TT	TTAA	ATAA	AAT'	TTTA	120

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4697 bases

(B) TYPE: nucleic acid

(C STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

	GAA GCA GGA CCC GAG (Glu Ala Gly Pro Glu (10	
	GCA GTA GAA GCA GAA Ala Val Glu Ala Glu 25	
	GAG GGG GCT CAA GCC Glu Gly Ala Gln Ala 40	
	TCT GAG GAG CTG AGC Ser Glu Glu Leu Ser 60	
	GTG GAC AAT AAC CAG Val Asp Asn Asn Gln 75	
	CCG GCT GAA CCC GAA Pro Ala Glu Pro Glu 90	
	AAT GGG GAG CCT GAA Asn Gly Glu Pro Glu 105	
	TCC AAG GGG GAT CCA Ser Lys Gly Asp Pro 120	
	GGA GAC CGA GAC CAT Gly Asp Arg Asp His 140	
	TTG GGG AAG GAG ATC Leu Gly Lys Glu Ile 155	
	ACC CCA GAG GAG AAG Thr Pro Glu Glu Lys 170	
	CTG GAG GAG CAC CGG Leu Glu Glu His Arg 185	

-77-

AAG Lys	CAG Gln	ATG Met	AAG Lys 195	CTC Leu	CTA Leu	CAG Gln	AAA Lys	AAG Lys 200	CAG Gln	AGC Ser	CAG Gln	CTG Leu	GTG Val 205	CAA Gln	GAG Glu	623
AAG Lys	GAC Asp	CAC His 210	CTG Leu	CGC Arg	GGT Gly	GAG Glu	CAC His 215	AGC Ser	AAG Lys	GCC Ala	GTC Val	CTG Leu 220	GCC Ala	CGC Arg	ACC Ser	671
AAG Lys	CTT Leu 225	GAG Glu	AGC Ser	CTA Leu	TGC Cys	CGT Arg 230	GAG Glu	CTG Leu	CAG Gln	CGG Arg	CAC His 235	AAC Asn	CGC Arg	TCC Ser	CTC Leu	719
AAG Lys 240	GAA Glu	GAA Glu	GGT Gly	GTG Val	CAG Gln 245	CGG Arg	GCC Ala	CGG Arg	GAG Glu	GAG Glu 250	GAG Glu	GAG Glu	AAG Lys	CGC Arg	AAG Lys 255	767
GAG Glu	GTG Val	ACC Thr	TCG Ser	CAC His 260	TTC Phe	CAG Gln	GTG Val	ACA Thr	CTG Leu 265	AAT Asn	GAC Asp	ATT Ile	CAG Gln	CTG Leu 270	CAG Gln	815
ATG Met	GAA Glu	CAG Gln	CAC His 275	AAT Asn	GAG Glu	CGC Arg	AAC Asn	TCC Ser 280	AAG Lys	CTG Leu	CGC Arg	CAA Gln	GAG Glu 285	AAC Asn	ATG Met	863
Glu	Leu	Ala 290	GAG Glu	Arg	Leu	Lys	Lys 295	Leu	Ile	Glu	Gln	Tyr 300	Glu	Leu	Arg	911
Glu	Glu 305	His	ATC Ile	Asp	Lys	Val 310	Phe	Lys	His	Lys	Asp 315	Leu	Gln	Gln	Gln	959
Leu 320	Val	Asp	GCC Ala	Lys	Leu 325	Gln	Gln	Ala	Gln	Glu 330	Met	Leu	Lys	Glu	Ala 335	1007
Glu	. Glu	. Arg	His	Gln 340	Arg	Glu	Lys	Asp	Phe 345	Leu	Leu	Lys	Glu	Ala 350		1055
Glu	ser	Glr	Arg 355	Met	Cys	Glu	. Leu	. Met 360	Lys)	Gln	ı Gln	Glu	Thr 365	His	CTG Leu	1103
AAC Lys	G CAA	A CAC n Glr 370	ı Lev	GCC Ala	CTA Leu	TAC Tyr	ACA Thr 375	Glu	AAG Lys	; TTI : Phe	GAG Glu	GAG Glu 380	ı Phe	CAG	AAC Asn	1151
AC#	A CTI c Let 385	ı Se:	C AAA	A AGO S Ser	AGC Ser	GAG Glu 390	ı Val	TTO Phe	C ACC ∋ Thi	ACA Thi	TTC Phe 395	Lys	G CAG	GAG Glu	ATG Met	1199
GA: G1: 40:	u Ly	G AT	G ACT	r AAG	AA0	s Ile	AAC Lys	AA(G CTO	G GAG 1 Glu 410	7 LÀ	A GAM	A ACC	ACC Thr	ATG Met 415	1247

-78-

TAC CGG TCC CGG TGG GAG AGC AGC AAC AAG GCC CTG CTT GAG ATG GCT Tyr Arg Ser Arg Trp Glu Ser Ser Asn Lys Ala Leu Leu Glu Met Ala 420 425 430	1295
GAG GAG AAA ACA GTC CGG GAT AAA GAA CTG GAG GGC CTG CAG GTA AAA Glu Glu Lys Thr Val Arg Asp Lys Glu Leu Glu Gly Leu Gln Val Lys 435	1343
ATC CAA CGG CTG GAG AAG CTG TGC CGG GCA CTG CAG ACA GAG CGC AAT Ile Gln Arg Leu Glu Lys Leu Cys Arg Ala Leu Gln Thr Glu Arg Asn 450 455 460	1391
GAC CTG AAC AAG AGG GTA CAG GAC CTG AGT GCT GGT GGC CAG GGC TCC Asp Leu Asn Lys Arg Val Gln Asp Leu Ser Ala Gly Gly Gln Gly Ser 465 470 475	1439
CTC ACT GAC AGT GGC CCT GAG AGG AGG CCA GAG GGG CCT GGG GCT CAA Leu Thr Asp Ser Gly Pro Glu Arg Arg Pro Glu Gly Pro Gly Ala Gln 480 485 490 495	1487
GCA CCC AGC TCC CCC AGG GTC ACA GAA GCG CCT TGC TAC CCA GGA GCA Ala Pro Ser Ser Pro Arg Val Thr Glu Ala Pro Cys Tyr Pro Gly Ala 500 505 510	1535
CCG AGC ACA GAA GCA TCA GGC CAG ACT GGG CCT CAA GAG CCC ACC TCC Pro Ser Thr Glu Ala Ser Gly Gln Thr Gly Pro Gln Glu Pro Thr Ser 515 520 525	1583
GCC AGG GCC TAGAGAGCCT GGTGTTGGGT CATGCTGGGA AGGGAGCGGC AGCCCAGCCA Ala Arg Ala 530	1642
GGCCTGGCCC ATAAAAGGCT CCCATGCTGA GCAGCCCATT GCTGAAGCCA GGATGTTCTT	1702
GACCTGGCTG GCATCTGGCA CTTGCAATTT TGGATTTTGT GGGTCAGTTT TACGTACATA	1762
GACCTGGCTG GCATCTGGCA CTTGCAATTT TGGATTTTGT GGGTCAGTTT TACGTACATA GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT	1762 1822
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT	1822 1882
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT TGGGGATGGG GGTGTGTACA GATGAAGTCA GTGGCTTGTC TGTGAGCTGA AGAGTCTTGA	1822 1882 1942
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT TGGGGATGGG GGTGTGTACA GATGAAGTCA GTGGCTTGTC TGTGAGCTGA AGAGTCTTGA GAGGGGCTGT CATCTGTAGC TGCCATCACA GTGAGTTGGC AGAAGTGACT TGAGCATTTC	1822 1882 1942 2002
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT TGGGGATGGG GGTGTGTACA GATGAAGTCA GTGGCTTGTC TGTGAGCTGA AGAGTCTTGA GAGGGGCTGT CATCTGTAGC TGCCATCACA GTGAGTTGGC AGAAGTGACT TGAGCATTTC TCTGTCTGAT TTGAGGCTCA GACCCCTCCC TGCCCTTTCA GAGCTCAAAA CAAGTAATAC	1822 1882 1942 2002 2062
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT TGGGGATGGG GGTGTGTACA GATGAAGTCA GTGGCTTGTC TGTGAGCTGA AGAGTCTTGA GAGGGGCTGT CATCTGTAGC TGCCATCACA GTGAGTTGGC AGAAGTGACT TGAGCATTTC TCTGTCTGAT TTGAGGCTCA GACCCCTCCC TGCCCTTTCA GAGCTCAAAA CAAGTAATAC ACCAAGGTCT TGACTGCATT TGTCTTGTGA GCAGGGCTTG CTTGGTCAGC TCAGGCCCTC	1822 1882 1942 2002 2062 2122
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT TGGGGATGGG GGTGTGTACA GATGAAGTCA GTGGCTTGTC TGTGAGCTGA AGAGTCTTGA GAGGGGCTGT CATCTGTAGC TGCCATCACA GTGAGTTGGC AGAAGTGACT TGAGCATTTC TCTGTCTGAT TTGAGGCTCA GACCCCTCCC TGCCCTTTCA GAGCTCAAAA CAAGTAATAC ACCAAGGTCT TGACTGCATT TGTCTTGTGA GCAGGGCTTG CTTGGTCAGC TCAGGCCCTC CTAGCTGCTT GGAGGCTCCT TTGATTCTCT AGACCTGGAA AAGGTGTCCC TAGGCAGAGC	1822 1882 1942 2002 2062 2122 2182
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT TGGGGATGGG GGTGTGTACA GATGAAGTCA GTGGCTTGTC TGTGAGCTGA AGAGTCTTGA GAGGGGCTGT CATCTGTAGC TGCCATCACA GTGAGTTGGC AGAAGTGACT TGAGCATTTC TCTGTCTGAT TTGAGGCTCA GACCCCTCCC TGCCCTTTCA GAGCTCAAAA CAAGTAATAC ACCAAGGTCT TGACTGCATT TGTCTTGTGA GCAGGGCTTG CTTGGTCAGC TCAGGCCCTC CTAGCTGCTT GGAGGCTCCT TTGATTCTCT AGACCTGGAA AAGGTGTCCC TAGGCAGAGC CCTGGCAGGG CGCTCAGAGC TGGGATTTCC TGCCTGGAAC AAGGGACCTG GAGAATGTTT	1822 1882 1942 2002 2062 2122 2182 2242
GGGCATTTTG CAAGGCCTTG CAAATGCATT TATACCTGTA AGTGTACAGT GGGCTTGCAT TGGGGATGGG GGTGTGTACA GATGAAGTCA GTGGCTTGTC TGTGAGCTGA AGAGTCTTGA GAGGGGCTGT CATCTGTAGC TGCCATCACA GTGAGTTGGC AGAAGTGACT TGAGCATTTC TCTGTCTGAT TTGAGGCTCA GACCCCTCCC TGCCCTTTCA GAGCTCAAAA CAAGTAATAC ACCAAGGTCT TGACTGCATT TGTCTTGTGA GCAGGGCTTG CTTGGTCAGC TCAGGCCCTC CTAGCTGCTT GGAGGCTCCT TTGATTCTCT AGACCTGGAA AAGGTGTCCC TAGGCAGAGC CCTGGCAGGG CGCTCAGAGC TGGGATTTCC TGCCTGGAAC AAGGGACCTG GAGAATGTTT TTGCGTGGGA TGATGTGCTG GTCAGGAGCC CCTTGGGCAT CGCTTCCCCT GCCCTTTGGT	1822 1882 1942 2002 2062 2122 2182 2242

TGTATTGAGG	ACCTTCCAAG	GAAAAGGGAT	GCTGTACCAG	TGGTGCCTGG	GTGCCTGGCC	2482
TCCAGTGTCC	CACCTCCTTC	ACCACCCCAC	TTGGCTCCTT	TGCCATCTTG	ATGC'IGAGGT	2542
TTCCTGTTTG	GTGAGATCAG	GTTGTTTGTG	GTAAAAGAAA	GGAAAGGGCT	TCTGATGGCT	2602
TTGCCACAAG	CTTACCTGTG	GGTTTCAGTC	CTGAGAGGCC	ACCACCAGTT	CCCATCAGCA	2662
CTGTCTCCAT	GCAGCAGTTG	CTGGGTCCCA	TGTCCAGCTG	CCTCTTTGGC	TTCATGGGTT	2722
TTTCTGCTTC	CTGCCCCCAC	CCCCACATGT	GCAATCCTCA	AGATTTGTCC	TGATTCTATT	2782
TCCTGGCACC	TCCCTGCCTG	TCCTTGGGGA	TTCTACTTCT	TCCTGTGTGG	GGCCCATAGC	2842
TGTTGTCTAA	CAGGTAAGAA	ATGAAATTGA	ACTATTGACT	GGGCCCCAGA	AATCCATAAA	2902
ATGGCTGCAG	ACAGTTGTTT	CTGTGTCCTG	TTCTACCCCC	ACTCCAGTAC	ATAACTACTA	2962
TGTACTGTGT	AGAGCCATTC	TATATGCTGA	ATGTTCTGCT	GTTGCAAACT	TGCCAGGGTA	3022
TTAGCCAGTG	TTTGTGCCAA	GCAGTTTTCG	GGGACAACAG	AATGACTCAG	ACCAAGATGG	3082
ATAGGATGGT	TAGGGCTTTG	CTTCTTGCTG	TTTTTCTTTG	AACTAGTCAT	TGTCCTGCAG	3142
GTCCCTTCAT	CTTCCATACC	TAGCCCACTC	TTTTAGCCCT	TACCTTAAAT	CTCTCAGATA	3202
AGTTGGTTCA	a caaagaatgt	TAAGTACTGA	ATCATGTGTG	ACTGAGACCA	GAGATGGCAA	3262
ATGAATGGCA	A CACCATTTCT	CCTTCTCCTC	G CCCCAGGGCA	GGTACCACTG	ATCTGCATCA	3322
GAGTTGCCT	G CTATTCTCTG	GTGTATCCT	CACATCTAGO	; TGCCCTCAAG	CAGCTGTGTG	3382
AGTGTTGAG	A TCTCTGCCAT	CTCTGGCTG	A GATACTGCT	TCCTGTGAAC	G TGTTTCCCAT	3442
GACCTTTTT	C TTCCCCTTTG	: AATCCCTCT	r gtctggagt	A GTCCTTGCC1	TCTTCTTGCT	3502
CCAGTAGGC	C TTTTCCTTAC	CCCAGCCCT	T GTGCCAGGC	r AAGCTGGTAG	CAAGAGCTGCC	3562
AACTCACAG	A GTTTTGCTAC	GCGAGAGAG	g TGCAGGGAA	G AGGCAGAGG	r atgcaccttc	3622
CCCCTTGAA	g agagggaa <i>l</i>	A GGCCTACAG	r ggcccacat.	A ATTGCCTGA	C TCACACTTCA	3682
GCTACCTCT	T AATGCCTGT	G GAGGGACTG	G AGCTGCTGG.	A TCCCAGTGT	G GTGGTGTAGG	3742
AGGCCACAG	T GAGCAGG T G	G CCCCAGCTG	G GTTTCCCAG	g TCAGGAATG	T GGGCCCCAGG	3802
CAAGGTGCA	G CCTTTGCTC	A CAGCTCCAT	C CATGTCTAG	A CCTTCAGGC	C AGTCTGCAGA	3862
TGAGGTTCC	C TACCTTTT	C TTCTCTTCA	T TGACCAAAT	C AACCAATCA	C TACAGCTGCT	3922
CTGCTTCTC	GC TTTCCAAAG	T AGCCCAGGT	C CTGGGCCAG	A TGCAGGGGA	G GTGCCTATCC	3982
ATGAGTGA	AG GCCAGTGTC	T TCCTCACCT	G GGTGGTCCC	A CACTTGTGA	C CCTCAGTTTT	4042
AGGACCCA	AG ATCTGTGTT	G GTTTCTTAC	A TTGCTAGCT	T TTCCTCCAG	G GGACCACAGC	4102
AGGTGAAG	CT CAAGAGCGC	A TGGCTCTG	T AATAGTAAA	T TGTTTTCAG	G GCCTTGTCCA	4162

GCTGAGAGCT	TCATGTCCAC	CAGATTCTGA	GAGGTGTCAG	CAGCACTTTT	TTTTTTTATT	4222
TGTTGTTTGT	TTTCCATGAG	GTTATCGGAC	CATGGG TTGA	GCTCAGGCAC	TTTCTGTAGG	4282
AGACTGTTAT	TTCTGTAAAG	ATGGTTATTT	AACCCTCCTC	CACCCCATCA	CGGTGGCCCT	4341
GAGGGCTGAC	CCGGAGGCCA	GTGGAGCTGC	CTGGTGTCCA	CGGGGGAGGG	CCAAGGCCTG	4402
CTGAGCTGAT	TCTCCAGCTG	CTGCCCCAGC	CTTTCCGCCT	TGCACAGCAC	AGAGGTGGTC	4462
ACCCCAGGGA	CAGCCAGGCA	CCTGCTCCTC	TTGCCCTTCC	TGGGGGAAAG	GAGCTGCCTT	4522
CTGTCCCTGT	AACTGCTTTC	CTTATGGCCC	AACCCGGCCA	CTCAGACTTG	TTTGAAGCTG	4582
CACTGGCAGC	TTTTTTGTCT	CCTTTGGGTA	TTCACAACAG	CCAGGGACTT	GATTTTGATG	4642
TATTTTAAAC	CACATTAAAT	AAAGAGTCTG	TTGCCTTAAA	АААААААА	AAAAA	4697

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 60 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GTG GAC GTG GAT GAG TAC GAC GAG AAC AAG TTC GTG GAC GAG GAA GAC

Val Asp Val Asp Glu Tyr Asp Glu Asn Lys Phe Val Asp Glu Glu Asp

1 5 10 15

GGC GGC GAC GGC
Gly Gly Asp Gly

20

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Glu Glu Glu Glu Asp Asp Asp Glu Asp Glu Asp Glu Glu Asp Asp 1 5 10 15

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Glu Glu Glu Glu Asp Asp Asp Glu Asp Glu Asp Glu Glu Asp Val

Ser Glu Gly Ser Glu Val Pro Glu Ser Asp 20 25

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Val Ser Glu Gly Ser Glu Val Pro Glu Ser Asp

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Glu Asp Asp Asp Pro Asp Gly Phe Leu Gly
1 5 10

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Val Asp Val Asp Glu Tyr Asp Glu Asn Lys Phe Val Asp Glu Glu Asp Gly Gly Asp Gly Gln Ala Gly Pro Asp Glu Gly Glu Val Asp 20 25 (2) INFORMATION FOR SEQ ID NO:24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: Asp Glu Gly Glu Val Asp 5 (2) INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: Glu Glu Glu Glu Glu Glu Glu Asp Asp Glu Asp Asp Asp Asp Asp 10 (2) INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: Glu Glu Glu Glu Glu Glu Glu Asp Asp Glu Asp Asp Asp Asp Asp 5 10 Val Val Ser Glu Gly Ser Glu Val Pro Glu Ser Asp 20 25

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids

(B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: Val Val Ser Glu Gly Ser Glu Val Pro Glu Ser Asp 10 (2) INFORMATION FOR SEQ ID NO:28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: Pro Pro Gly Lys Pro Ala Leu Pro Gly Ala 5 10 (2) INFORMATION FOR SEQ ID NO:29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29: Glu Asp Gly Val Gln Gly Glu Pro Pro Glu Pro Glu Asp Ala Glu 10 5 (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: 45 Glu Glu Glu Asp Asp Asp Glu Asp Glu Asp Glu Asp Asp 10 5

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 78 bases

(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
GAA GAG GAA GAA GAT GAT GAA GAT GAA GAT GAA GAT GAT	45
TCA GAG GGC TCT GAA GTG CCC GAG AGT GAC Ser Glu Gly Ser Glu Val Pro Glu Ser Asp 20 25	78
(2) INFORMATION FOR SEQ ID NO:32:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
GTG TCA GAG GGC TCT GAA GTG CCC GAG AGT GAC Val Ser Glu Gly Ser Glu Val Pro Glu Ser Asp 1 5 10	33
(2) INFORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
GAG GAT GAT GAC CCC GAT GGC TTC TTA GGC Glu Asp Asp Asp Pro Asp Gly Phe Leu Gly 1 5 10	30
(2) INFORMATION FOR SEQ ID NO:34:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE	DESCRIPTION:	SEO ID NO:34:
IXII SECULINCE	DESCRIPTION.	SEQ ID NOS

GGG GGC GAC GGC CAG GCC GGG CCC GAC GAG GGC GAG GTG GAC

Gly Gly Asp Gly Gln Ala Gly Pro Asp Glu Gly Glu Val Asp

20 25 30

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 bases

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GAC GAG GGC GAG GTG GAC
Asp Glu Gly Glu Val Asp
1 5

18

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 48 bases

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 84 bases

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GTC GTG TCC GAG GGC TCG GAG GTG CCC GAG AGC GAT Val Val Ser Glu Gly Ser Glu Val Pro Glu Ser Asp 20 25	84
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GTC GTG TCC GAG GGC TCG GAG GTG CCC GAG AGC GAT Val Val Ser Glu Gly Ser Glu Val Pro Glu Ser Asp 1 5 10	36
(2) INFORMATION FOR SEQ ID NO:39:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
CCC CCC GGG AAG CCA GCC CTC CCA GGA GCC Pro Pro Gly Lys Pro Ala Leu Pro Gly Ala 1 5 10	30
(2) INFORMATION FOR SEQ ID NO:40:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 bases (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
GAG GAT GGG GTC CAG GGT GAG CCC CCT GAA CCT GAA GAT GCA GAG Glu Asp Gly Val Gln Gly Glu Pro Pro Glu Pro Glu Asp Ala Glu 1 5 10 15	45
(2) INFORMATION FOR SEQ ID NO:41:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7 amino acids

WO 98/23282

PCT/US97/21857

-87-

(B) TYPE: amino acid (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Arg Asp Val Ser Glu Glu Leu 1 5

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 bases

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

CGT GAT GTC TCT GAG GAG CTG Arg Asp Val Ser Glu Glu Leu 1 5 21

10

CLAIMS

- 1. An isolated polynucleotide comprising a member selected from the group consisting of:
- (a) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:1:
 - (b) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:2;
 - (c) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:3:
 - (d) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:4;
 - (e) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:5;
- (f) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:6;
 - (g) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:7;
 - (h) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:8;
- 20 (i) a polynucleotide encoding the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:9;
 - (j) a polynucleotide capable of hybridizing to and which is at least about 95% identical to the polynucleotide of (a)-(h) or (i) wherein the encoded polypeptide is capable of binding to LDL; and
- (k) a biologically active fragment of polynucleotide

 (a)-(i) or (j) wherein the encoded polypeptide is capable of binding to LDL.
 - 2. An isolated polynucleotide of claim 1 wherein said member is selected from the group consisting of:
- (SEQ ID NO:19), 8-33 (SEQ ID NO:20), 23-33 (SEQ ID NO:21) or 208-217 (SEQ ID NO:22) of the amino acid sequence as set forth in SEQ ID NO:7;