CQF Exercise 2.1 Portfolio Theory

- 1. The Global Minimum Variance Portfolio (slide 24).
 - Express the variance of the portfolio returns, $\sigma_{\Pi}^2(w_A)$ as a sole function of the weight w_A invested in asset A (*Hint:* use the budget equation $w_B + w_A = 1$).
 - Minimize the function $\sigma_{\Pi}^2(w_A)$ to find the asset allocation of the global minimum variance portfolio.
 - Under what conditions on σ_A , σ_B and/or ρ_{AB} does this result hold?

2. The Tangency Portfolio (slide 42)

- Find a functional form $S(w_A^t, w_B^t)$ for the slope of the tangency line
- Express the slope of the tangency line, as a sole function $S(w_A^t)$ of the weight w_A^t invested in asset A (*Hint:* use the budget equation $w_B^t + w_A^t = 1$).
- Find the tangency portfolio's asset allocation. (*Hint:* rather than maximizing $S(w_A^t)$, consider maximizing $S^2(w_A^t)$)
- 3. What are the economic significance of α and β in Sharpe's Market Model and how are they measured or estimated in practice?