データベース設計論第4回制約と操作体系

2019/10/29

リレーションの制約

•リレーションは(少なくとも)第一正規形を 満たさなければならない

- リレーションは一貫性制約を満たさなければならない
 - •一意性制約(unique constraint)
 - 参照制約(referential constraints)

第一正規形であるとは

- ・ ドメインはシンプル(simple)でなければならない
- シンプルである、とは?
 - A) ドメインが、 あるドメインの 直積であってはいけない
 - B) ドメインが、あるドメインのべき集合であってはならない

非第一正規形の例

社員番号	社員名	
0650	(鈴木,一郎)	
1508	(浜崎,アユ)	

社員番号	社員名	趣味
0650	鈴木一郎	{野球,盆栽,コイン収集}
1508	浜崎アユ	{作詞, ショッピ ング}

A)を侵害している例

B)を侵害している例

正規化(normalization)

社員番号	社員名	
0650	(鈴木,一郎)	
1508	(浜崎,アユ)	

A)を侵害している例

複数の属性に分解する

社員番号	社員(姓)	社員(名)	
0650	鈴木	一郎	
1508	浜崎	アユ	

社員番号	社員名	趣味
0650	鈴木一郎	{野球,盆栽,コイ ン収集}
1508	浜崎アユ	{作詞, ショッピ ング}

複数のタプルに分解する

社員番号	社員名	趣味
0650	鈴木一郎	野球
0650	鈴木一郎	盆栽
0650	鈴木一郎	コイン収集
1508	浜崎アユ	作詞
1508	浜崎アユ	ショッピング

リレーションの制約

•リレーションは(少なくとも)第一正規形を 満たさなければならない

- リレーションは一貫性制約を満たさなければならない
 - •一意性制約(unique constraint)
 - 参照制約(referential constraints)

主キー

- 一意性制約(unique constraint)
 - タプルの重複は許されない
- 主キー(Primary Key)
 - リレーションスキーマの部分属性リストで その属性値がタプルを一意に識別し、 かつ<mark>極小</mark>であるもの

「最小」ではない. 属性のひとつがかけるとその性質がなくなる

2. キー制約: Key constraint 主キーの属性値に空値(NULL)は許されない

外部キー(foreign key)

社員

社員番号	社員名	趣味
0650	鈴木一郎	野球
0650	鈴木一郎	盆栽
0650	鈴木一郎	コイン収集
1508	浜崎アユ	作詞
1508	浜崎アユ	ショッピング

分解

社員

社員番号土員名0650鈴木一郎1508浜崎アユ

趣味

社員番号	趣味
0650	野球
0650	盆栽
0650	コイン収集
1508	作詞

参照制約

- 外部キー
 - 他のリレーションのあるタップルを参照する属性
 - 参照するタップルの主キーの値を持つ
- •参照制約
 - ・外部キーの属性値は、参照する主キーの値か あるいは空値(NULL)しか許されない

趣味

社員

<u>社員番号</u>	社員名
0650	鈴木一郎
1508	浜崎アユ

社員番号	趣味
0650	野球
0650	盆栽
0650	コイン収集
1508	作詞
1508	ショッピング

外部キー(foreign key)

学生

学籍番号 *	氏名
g0720501	赤井かな
g0720502	伊藤緑
g0720503	内田洋子
g0720504	内村亜衣

授業

授業番号	授業名
PR001	プログラミング実習
IT002	情報理論
AI003	人工知能論

履修

授業番号	学籍番号	成績
PR001	g0720501	
PR001	g0720504	
IT002	g0720502	
IT002	g0720507	
AI003	g0720503	

リレーションスキーマの表記の仕方

- 主キーの下にはアンダーラインを引く
- 外部キーの下には点線を引く

趣味

社員

<u>社員番号</u>	社員名
0650	鈴木一郎
1508	浜崎アユ

社員番号	趣味
0650	野球
0650	盆栽
0650	コイン収集
1508	作詞
1508	ショッピング

演習1:以下のテーブルを第1正規形に直しましょう

・栄養成分(商品名,原材料,アルコール分,エネルギー, タンパク質,脂質,食物繊維,ナトリウム,プリン体,賞味期間)

	商品名	原材料	アルコー ル分	エネル ギー	たんぱく 質	脂質	糖質	食物繊維	ナルリウム	ブリン体	賞味 期間
PREMILIA MAITS	ザ・プレミアム・モルツ	麦芽、ホップ	5.5%	47kcal	0.4~ 0.6g	Og	3.8g	0∼ 0.1g	0~ 7mg	約 9.5mg	9ヶ月
PREMIUM MALTS	ザ・ブレミアム・モルツ 〈黒〉	麦芽、ホップ	5.5%	52kcal	0.4~ 0.7g	Og	4.6g	0.1~ 0.5g	0~ 7mε	約 9.4mg	9ヶ月
PREMIUM MITS	ザ・プレミアム・モルツ 〈コクのブレンド〉	麦芽、ホップ	5.5%	49kcal	0.4~ 0.7g	Og	3.8g	0~ 0.5g	0∼ 7mg	約 9.5mg	9ヶ月

ER図から リレーションを設計する

例として使う ER図

手順1:実体をリレーションスキーマにする

- user(<u>account</u>, name, email)
- tweet(<u>id</u>, content)

手順2: 1:nの関係の場合の対処

- •n側の実体に対するリレーションスキーマに1側の主 キーを外部キーとして追加
- ・関連に属性がついていたら、それもn側の実体に追加
 - user(<u>account</u>, name, email)
 - tweet(id, content, account, datetime)

他の1:nの関係もリレーションに反映

- user(<u>account</u>, name, email)
- tweet(<u>id</u>, content, <u>account</u>, datetime, <u>retweeted_id</u>)

他の1:nの関係もリレーションに反映

- user(<u>account</u>, name, email)
- tweet(id, content, account, datetime, retweeted_id, replied_id)

他の1:nの関係もリレーションに反映

- user(<u>account</u>, name, email)
- tweet(id, content, account, datetime, retweeted_id, replied_id)

手順3: m:n 関係の対処

- 関連に対するリレーションスキーマを作る
- 二つの実体の主キーを追加し、これらを外部キーとする
- user(<u>account</u>, name, email)
- tweet(id, content, account, datetime, retweeted_id, replied_id)
- favorite(<u>account</u>, <u>tweet_id</u>, datetime)

手順3: m:n 関係の対処

- 関連に対するリレーションスキーマを作る
- 二つの実体の主キーを追加し、これらを外部キーとする
- user(<u>account</u>, name, email)
- tweet(id, content, account, datetime, retweeted_id, replied_id)
- favorite(<u>account</u>, <u>tweet_id</u>, datetime)
- follow(<u>follower_id</u>, <u>followee_id</u>)

リレーショナルデータモデルの操作体系

- 関係論理 (第一階述語論理に基づく)
 - P(t)を述語論理とする時、それをP(t)が真となるものの集合 $\{t \mid P(t)\}$ を求める $P(t) \equiv \text{"tltAB型である"}$
 - 非手続的言語
 - SQLのベースとなる操作体系
- 関係代数
 - 集合に対する演算の組合せで必要な集合を求める
 - 手続き的言語
 - ・ 関係論理と等価
 - 問合せ実行プランの生成に必要な体系

 $A - B, A \cup B, A \cap B, A \times B, \neg A,$ $\sigma_C A, \pi_a A, \delta A, A \bowtie B$

{t | P(t)}: AB型の人の集合

操作体系の関係

関係完備 relational complete

RCで書いた式は RAでも書くことができる RAで書いた式は RCでも書くことができる

関係論理 relational calculus (RC)

関係代数 relational algebra (RA)

関係完備

SQL

関係代数

- ・リレーションを対象にした演算の組合せで問合せ(query)を表す
- •演算子
 - 和(*A* ∪ B), 差(*A* − *B*), 交差(*A* ∩ *B*)
 - 直積 (A×B)
 - •射影 $(\pi_L(R))$,選択 $(\sigma_C(R))$
 - 結合(A ⋈_C B)
 - · 商(A ÷ B)

関係代数のために導入された演算子

SQL

- 関係論理に基づいたデータベース問合せ言語
- ISO国際標準で規格化されている

SELECT 属性名, 属性名, ...
FROM <リレーション名>, <リレーション名>
WHERE <検索条件>

関係代数の演算子

•和,差,交差

射影(projection) $\pi_L(R)$

- $\cdot R_2 = \pi_L(R_1)$
 - LはR₁から選んだ属性のリスト
 - R_2 は R_1 の各タプルのLにある属性を指定された順番で抜き出したもの
- 例2) userのname一覧を求める

$$\pi_{name}(user)$$

user(account, name, email)

account	name	email
ariyoshihiroiki	有吉弘行	ariyoshi@example.com
RyoNishikido_JP	錦戸 亮	nishikido@aaa.net
okazaki_taiiku	岡崎体育	taiiku@okazaki.jp

射影(projection) $\pi_L(R)$

- ・射影演算は以下の関係論理式とSQL文で表 すことができる
 - 関係論理式

$$L = \{l_1, \dots, l_n\} \succeq \mathsf{L} \mathsf{T}$$
$$\{t | s \in R \land t. l_1 = s. l_1 \land \dots \land t. l_n = s. l_n\}$$

• SQL文 SELECT $l_1, ..., l_n$ FROM R

選択 (selection) $\sigma_{\mathcal{C}}(R)$

- $\cdot R_2 = \sigma_C(R_1)$
 - CはR₁の属性を参照する条件
 - R_2 は条件Cを満たすような R_1 のタプルすべて
- 例1) nameが岡崎体育であるuserのタプル

σ_{name=}/岡崎体育,^{user} user(<u>account</u>, name, email)

account	name	email
ariyoshihiroiki	有吉弘行	ariyoshi@example.com
RyoNishikido_JP	錦戸 亮	nishikido@aaa.net
okazaki_taiiku	岡崎体育	taiiku@okazaki.jp

選択 (selection) $\sigma_{\mathcal{C}}(R)$

- ・選択演算は以下の関係論理式とSQL文で表すことができる
 - 関係論理式

CはRに対する論理式C(R)とする $\{t|t\in R \land C(R)\}$

• SQL文 SELECT ** FROM R WHERE C

該当するタプルの全ての 属性をもとめたいときには 「*」と書きます。

演算子の組合せ

- ・関係代数の演算子の出力はリレーションなので出力 結果に対して演算を適用できる
 - 例) $R_2 = \sigma_{name=1}$ 岡崎体育, (user)

account	name	email
ariyoshihiroiki	有吉弘行	ariyoshi@example.com
RyoNishikido_JP	錦戸 亮	nishikido@aaa.net
okazaki_taiiku	岡崎体育	taiiku@okazaki.jp

$$R_3 = \pi_{account}(R_2)$$
 account okazaki_taiiku

上記の処理をまとめて書ける

$$R_3 = \pi_{account}(\sigma_{name=r})$$
 尚崎体育, $(user)$)

演算子の組合せ

• 例3) 岡崎体育のアカウント名を求める

$$\pi_{account}(\sigma_{name=r})$$
 固崎体育, $(user)$

対応するSQL文

SELECT u.account

FROM user u

WHERE u.name = '岡崎体育'

単一のリレーションに関する関係論理式は 選択演算と射影演算の組合せで表すことができる

θ -結合(theta-join) $R_1 \bowtie_C R_2$

- •二つのリレーション R_1, R_2 の各タプルのうち、 条件Cを満たす組合せを求める
- 例

account	name
ariyoshihiroiki	有吉弘行
RyoNishikido_JP	錦戸 亮
okazaki_taiiku	岡崎体育

 $U = \pi_{account,name}user$ $T = \pi_{account,content}tweet$

	account	content
	RyoNishikido_JP	これリプライ?
	→ okazaki_taiiku	リツイートです
/	RyoNishikido_JP	そうなの?

 $U\bowtie_{U.account=T.account}$

U.account	U.name	T.account	T.content
Ryonishikido_JP	錦戸 亮	Ryonishikido_JP	これリプライ?
okazaki_taiiku	岡崎体育	okazaki_taiiku	リツイートです
Ryonishikido_JP	錦戸 亮	Ryonishikido_JP	そうなの?

θ -結合(theta-join) $R_1 \bowtie_{\mathcal{C}} R_2$

- 例4) 錦戸亮の全ツイートの 時刻とツイート内容を求める
 - 1. R₁: name='錦戸 亮'であるユーザ
 - $R_1 = \sigma_{name=1}$ 錦戸亮, user
 - 2. R₂: R₁に対応するtweetのタプルを求める
 - $R_2 = R_1 \bowtie_{user.account=tweet.account} tweet$
 - 3. R₃: R₂からdatetimeとcontentを射影する
 - $R_3 = \pi_{datetime,content} R_2$

SQL→関係代数→実行プラン

• 利用者が指定する問合せは非手続的

```
SELECT t.datetime,t.content
  FROM user u, tweet t
WHERE u.name = '錦戸亮'
and u.account = t.account
```

• DBMSはそれと等価な関係代数式を求める

```
\pi_{datetime,contents} ( \sigma_{name='}錦戸亮, user ) user.account=tweet.account tweet )
```

・関係代数式から実行プラン を求め、最適なプランに 書き換えて実行する

※DBMSは各演算子のための実行プログラムをいくつか用意しており、最適なプログラムを選ぶ