中水

东南大学考试卷(A卷)答案

课程名称 线性代数A 考试学期 17-18-3 得 分

适	用	专	亦	非电线	英 业 学	试形式_	闭	卷	考试	时间	长度	120分	钟
	88 (=			_							T	T

题号	_	=	=	四	五	六	七
得分				, , , , , , , , , , , , , , , , , , ,			

一. (30%) 填空题

- 1. 设方阵 A 满足 $A^2 + 2A + 2E = O$,则 A + 3E 的逆矩阵 $(A + 3E)^{-1} = \frac{1}{5}(E A)$.
- 2. 设 3 阶方阵 A 的特征值为 2, 1, -1, A^* 是 A 的伴随矩阵,则矩阵 $A^* A^{-1}$ 的行列式 $\left|A^* A^{-1}\right| = \frac{27}{2}.$
- 3. 设向量空间 R^2 中两组基 $\alpha_1 = (3, 4)^T, \alpha_2 = (2, 3)^T; \beta_1 = (1, 1)^T, \beta_2 = (0, 1)^T,$ 已 知 R^2 中向量 α 在基 α_1, α_2 下坐标是 $(1, 1)^T$, 则 α 在基 β_1, β_2 下坐标是 $(5, 2)^T$.
- 4. 设n阶方阵A的元素都是 $k(\neq 0)$,则A的特征多项式是 $\lambda^{n-1}(\lambda-nk)$.

5. 设矩阵
$$\begin{pmatrix} 2 & x & 0 \\ x & 1 & x \\ 0 & x & 0 \end{pmatrix}$$
 与 $\begin{pmatrix} y & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ 相似,则 $(x, y) = (\pm 2, 4)$.

6. 设 3 阶可逆矩阵
$$A = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
, $B = \begin{pmatrix} 2\alpha + \beta + 3\gamma \\ -\alpha + \beta + 2\gamma \\ \alpha - \beta - 3\gamma \end{pmatrix}$, 则行列式 $\left|AB^{-1}\right| = -\frac{1}{3}$.

- 7. 如果向量 (k, 1, 4) 可由向量组 (1, 2, -1), (3, -1, 1) 线性表示,则参数 k 满足条件 k=32.
- 8. 如果实二次型 $f(x_1, x_2, x_3) = \lambda x_1^2 + (\lambda + 1)x_2^2 + x_3^2 + 2\lambda x_1 x_3$ 是正定二次型,则参数 λ 满足条件 $\lambda \in (0, 1)$.
- 9. 设 $a(\neq 0)$ 是 3 阶实对称矩阵 A 的二重特征值, $\alpha_1 = (1, 1, 1)^T$ 与 $\alpha_2 = (1, 0, -1)^T$ 是 A 的对应特征值 a 的特征向量。如果 A 不可逆,则 A 的另一个特征值是 0 ,相应的特征向量为 $(1, -2, 1)^T$.
- 10. 设 α 是 3 维列向量, $\alpha^T \alpha = k$, $k \in (1, +\infty)$,则 二次型 $f(x_1, x_2, x_3) = X^T (E - \alpha \alpha^T) X$ 的规范形为 $y_1^2 + y_2^2 - y_3^2$.

二. (12%) 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ p \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ q \end{pmatrix}$ 的秩为 2,

- 1. 求参数 p, q 的值;
- 2. 求该向量组的一个极大线性无关组,并且将向量组中的其余向量用极大线性无关组表示出来。

.解: 1. 设 $A = (\alpha_1 \alpha_2 \alpha_3 \alpha_4)$

则

$$A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 1 & 1 & 0 & 1 \\ 1 & p & 2 & q \end{pmatrix}$$
 初等行交换
 $\begin{pmatrix} 1 & 2 & 1 & -1 \\ 0 & -1 & -1 & 2 \\ 0 & 0 & -p+3 & q+2p-3 \end{pmatrix}$

已知r(A)=2, 于是 p=3, q=-3

2. α_1, α_2 是该向量组的一个极大线性无关组,

$$\alpha_3 = -\alpha_1 + \alpha_2$$
, $\alpha_4 = 3\alpha_1 - 2\alpha_2$

- Ξ (12%) 线性方程组 $\begin{cases} x_1 + x_2 + x_3 = 1 \\ 2x_1 + 5x_2 + px_3 = 5 \end{cases}$,讨论参数 p 取何值时,线性方程组 $3x_1 + px_2 + 3x_3 = 2$
- (1) 有唯一解; (2) 无解; (3) 有无穷多解, 在有无穷多解时, 求其通解。

解: 线性方程组系数矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 5 & p \\ 3 & p & 3 \end{pmatrix}$$
, 增广矩阵 $(A,b) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & p & 5 \\ 3 & p & 3 & 2 \end{pmatrix}$

(1) |A| = -(p-2)(p-3), 所以, 当 $p \neq 2$, 且 $p \neq 3$ 时, 线性方程组有唯一解。

(2)
$$\stackrel{\text{def}}{=} p = 3 \text{ pr}$$
, $(A,b) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 3 & 5 \\ 3 & 3 & 3 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 3 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

此时 $r(A) = 2 \neq r(A,b) = 3$, 所以, 当 p = 3 时, 线性方程组无解。

此时r(A) = r(A,b) = 2 < 3, 所以, 当p = 2时, 线性方程组有无穷多解。

线性方程组一个特解 $\gamma = (-1, 1 1)^T$,

线性方程组导出组一个基础解系 $\eta = \begin{pmatrix} -1, & 0, & 1 \end{pmatrix}^T$,因此,线性方程组的通解为: $\gamma + k\eta$, $\forall k \in R$.

四 (12%) 设矩阵
$$A = \begin{pmatrix} 3 & -5 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $A^* \in A$ 的伴随矩阵,

如果 $AXA^* = 6E + AX$, 求矩阵 X.

解:

矩阵 A 的行列式 |A|=2, 如果 $AXA^*=6E+AX$, 那么 $A(XA^*-X)=6E$ 于是 X(2E-A)=6E, 因此 $X=6(2E-A)^{-1}$

其中,矩阵
$$2E - A = \begin{pmatrix} -1 & 5 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, $(2E - A)^{-1} = \begin{pmatrix} -\frac{1}{6} & \frac{5}{6} & 0 \\ \frac{1}{6} & \frac{1}{6} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$,

所以
$$X = \begin{pmatrix} -1 & 5 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

五 (10%) 设向量
$$\eta = \begin{pmatrix} 3 \\ -6 \\ 20 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & x & 0 \\ 4 & y & -2 \end{pmatrix}$ 的一个特征向量,

- 1. 求参数 x, y 的值;
- 2. 问:矩阵 A 是否相似于对角矩阵?说明理由。

解:

1.
$$abla A\eta = \lambda \eta$$
, $abla \left(\begin{array}{cccc}
3 & 1 & 0 \\
-4 & x & 0 \\
4 & y & -2
\end{array} \right) \left(\begin{array}{cccc}
3 \\
-6 \\
20
\end{array} \right) = \lambda \left(\begin{array}{cccc}
3 \\
-6 \\
20
\end{array} \right)$, $abla = 1, x = -1, y = -8.$

2.
$$\pm x = -1$$
, $y = -8$ 时, $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$

 $\left|\lambda E-A\right|=(\lambda+2)(\lambda-1)^2$,因此 A 的特征值为 $\lambda_1=-2$, $\lambda_2=\lambda_3=1$

$$E - A = \begin{pmatrix} -2 & -1 & 0 \\ 4 & 2 & 0 \\ -4 & 8 & 3 \end{pmatrix} \xrightarrow{\text{niiii} + \text{niii}} \begin{pmatrix} -2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 10 & 3 \end{pmatrix}$$

由于r(E-A)=2,对应二重特征值 1 有一个线性无关特征向量,因此矩阵 A 没有三个线性无关特征向量,所以 A 不相似于对角矩阵。

六 (14%) 设 $f(x_1, x_2, x_3) = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$

- 1. 写出 $f(x_1, x_2, x_3)$ 的矩阵;
- 2. 求正交变换 X = QY, 将二次型 $f(x_1, x_2, x_3)$ 化为标准形。

解: 1.
$$f(x_1, x_2, x_3)$$
 的矩阵 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$

2. $|\lambda E - A| = \lambda(\lambda - 3)^2$, 所以 A 的特征值为 $\lambda_1 = \lambda_2 = 3$, $\lambda_3 = 0$ (3E - A)X = 0 的基础解系为 $\eta_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T$, $\eta_2 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$ AX = 0 的基础解系为 $\eta_3 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}^T$,

$$\mathbb{R} \beta_1 = \eta_1, \quad \beta_2 = \eta_2 - \frac{\langle \eta_2, \beta_1 \rangle}{\langle \beta_1, \beta_1 \rangle} \beta_1 = \frac{1}{2} (1, -1 2)^T, \quad \beta_3 = \eta_3$$

再取
$$\gamma_1 = \frac{1}{\|\beta_1\|} \beta_1 = \frac{\sqrt{2}}{2} (1, 1, 0)^T, \ \gamma_2 = \frac{1}{\|\beta_2\|} \beta_2 = \frac{\sqrt{6}}{6} (1, -1, 2)^T$$

$$\gamma_3 = \frac{1}{\|\beta_3\|} \beta_3 = \frac{\sqrt{3}}{3} (-1, 1, 1)^T$$

令正交矩阵
$$Q = (\gamma_1 \quad \gamma_2 \quad \gamma_3) = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ 0 & \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$$

则正交变换 X = QY 将二次型 $f(x_1, x_2, x_3)$ 化为标准形: $3y_1^2 + 3y_2^2$

七(10%)证明题:

1. 设 η_1,η_2 是n维列向量,A是 $s \times n$ 矩阵,A的秩为n-2,若齐次线性方程组AX=0的每个解向量都可由 η_1,η_2 线性表示,证明 η_1,η_2 是AX=0的一个基础解系。

证明:已知 $s \times n$ 矩阵 A 的秩是n-2,则 AX=0 的基础解系有两个向量,设 α_1,α_2 是 AX=0 的基础解系,据已知条件得 α_1,α_2 可由向量 η_1,η_2 线性表示,于是 $2=r(\alpha_1,\alpha_2) \le r(\eta_1,\eta_2)$,得 $r(\eta_1,\eta_2)=r(\alpha_1,\alpha_2)=2$,因此 η_1,η_2 线性无关,并且 η_1,η_2 与 α_1,α_2 等价,所以 η_1,η_2 是 AX=0 的一个基础解系。

2. 设n阶实矩阵A满足 $A^2 = A$,证明存在n阶对称矩阵P,Q,使得A = PQ.

证明: 若n阶实矩阵A满足 $A^2 = A$,则A的特征值为0或1,且r(A) + r(E - A) = n,因此A有n个线性无关的特征向量,所以A相似于对角矩阵。

设
$$r(A) = k$$
,则 A 相似于 $\begin{pmatrix} E_k & O \\ O & O \end{pmatrix}$,因此存在 n 阶可逆矩阵 B ,使得

$$A = B \begin{pmatrix} E_k & O \\ O & O \end{pmatrix} B^{-1}, \quad \text{if \mathbb{R} is } A = B \begin{pmatrix} E_k & O \\ O & O \end{pmatrix} B^T (B^{-1})^T \begin{pmatrix} E_k & O \\ O & O \end{pmatrix} B^{-1},$$

取
$$P = B \begin{pmatrix} E_k & O \\ O & O \end{pmatrix} B^T$$
, $Q = (B^{-1})^T \begin{pmatrix} E_k & O \\ O & O \end{pmatrix} B^{-1}$, 那么 P , $Q \neq n$ 阶对称矩阵,

使得
$$A = PQ$$