Logistic Regression

Aaryan CO21BTECH11001

Let number of features of dataset = n

Let number of sets of features = m

Data consists of matrices X and y where i^{th} column of X represents the i^{th} feature of dataset and i^{th} element of y represents the value of variable dependent on set of features listed in i^{th} row of X.

Logistic regression is a type of classification algorithm where it assumes a linear relationship between dependent (X) and independent (y) variables.

In a binary classification problem, y consists of only two values, usually 0 and 1.

$$\text{Let } X^{(i)} = \begin{bmatrix} 1 \\ X_1 \\ X_2 \\ \vdots \\ \vdots \\ X_n \end{bmatrix} \quad and \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \vdots \\ \theta_n \end{bmatrix}$$

where θ is known as parameter.

We define a hypothesis function $h_{\theta}(x)$ as follows –

$$h_{\theta}(X^{(i)}) = \frac{1}{1 + e^{-\theta^T X^{(i)}}}$$

where
$$X_0^{(i)} = 1$$

We will calculate a value of θ which best fits the approximation –

If
$$h_{\theta}(X^{(i)}) \ge 0.5$$
 then $y_i = 1$ else if $h_{\theta}(X^{(i)}) < 0.5$ then $y_i = 0$

The above approximation is only for a binary classification problem. In any other classification problem, we can similarly fix landmarks for $h_{ heta}(X^{(i)})$

Now, we will define a function which is a measure of probability of accuracy of hypothesis function, which is known as log-likelihood function.

$$l(\theta) = \sum \left(y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right)$$

 $i_0 = l(\theta)$

Objective – Minimize or Converge the log-likelihood function.

There are two approaches to do this -

Gradient Ascent Algorithm -

Convergence limit = $\epsilon = 10^{-10}$ Initialize $\theta = \vec{0}$

$$conv = \infty$$

$$while |conv| > \epsilon$$

Newton's Algorithm of Classification -

Let
$$J(\theta) = -\frac{1}{m}l(\theta)$$

Hessian matrix –

$$H_{ij} = \frac{\partial^2 J}{\partial \theta_i \partial \theta_j}$$

Gradient vector –
$$\nabla_{\theta} J = \frac{\partial J}{\partial \theta}$$

Algorithm -

Convergence limit =
$$\epsilon = 10^{-12}$$

Initialize
$$\theta = \vec{0}$$

$$j_0 = J(\theta)$$

$$conv = \infty$$

H⁺ represent pseudoinverse of matrix H

After getting optimal θ , we can get the value corresponding to a new data D as

If
$$h_{\theta}(D) \ge 0.5$$
 then $val = 1$ else if $h_{\theta}(D) < 0.5$ then $val = 0$

Questions -

1. Is Logistic Regression a regression algorithm or classification algorithm?

Ans. Regression algorithm

2. What is the type of decision surface in Logistic Regression algorithm?

Ans. A linear curve (straight line)

3. Why do we need to take $X_0^{(i)} = 1 \forall i$?

Ans. Because in the hypothesis function there is a constant term apart from the linear combination of $X^{(i)}$ and θ , which is θ_0 , so the multiplier of θ_0 can be any value. For simplicity, we take it as 1.

4. What is the range of values of hypothesis function? **Ans.** (0,1)

5. Name three methods by which we can increase the accuracy of logistic regression?

Ans. Removal of incomplete dataset, Feature Scaling/Normalization, Removal of outliers of sparse features.

6. What are the disadvantages of linear regression model? **Ans.** It constructs linear boundaries which is not as accurate in non-linear problems.