

Day Ahead Market Forecast Applied Statistics project proposal presentation – A.Y. 2022/23

Dr. Bovera Filippo – filippo.bovera@polimi.it Matteo Spiller – matteo.spiller@polimi.it

Day Ahead Market

Day Ahead Market (DAM):

- it is the most liquid energy market in Europe. It hosts most of the electricity sales and transactions.
- The outcome, computed the day ahead at noon, is the price of the energy for the 24 hours of the next day.
- Energy producers and consumers submit bids to satisfy their needs. Each offer is characterized by a given amount of energy and price
- The price is obtained as the intersection between the cumulative demand and offer curves.

Research rationale

DAM forecasting is fundamental for energy traders to create an **optimal** bidding strategy to submit.

Moreover, new assets, such as **storage systems**, highly benefit from an optimal forecast for services like **energy arbitrage.**

Research rationale

In literature, a large interest is given to DAM forecast with overall positive results.

However, the events of the last years have strongly impacted the energy market.

These phenomena have **not been deeply investigated.** Therefore **2023 DAM forecast** represents an innovative research topic.

Data Set

The starting point of the project is represented by a database that contains the **DAM prices** of the **North** area between January 2018 and December 2022. Each market price is associated with the following features (**open access data**):

Source
GME
Terna

Variable	Source
Valley load (D-1)	Terna
Production at 9 (D-1)	Terna
Peak load (D-1)	Terna
Gas price (D-1)	GME
Production at 10 (D-1)	Terna
Hour/day/month/ weekday	Data

Conclusions

Project Goal

The project aims to develop a model capable to grasp the daily fluctuation of the DAM price in 2023. **?** python™

Programming language

Datasets and analysis have been executed with Python but other coding languages are welcome.

Possible methodologies

- Data decomposition: wavelet transform, empirical mode decomposition.
- Dimensionality reduction techniques: principal component analysis.
- Hyperparameters regularization: cross-validation, Akaike information criteria, Bayesian information criteria.
- Model ensembles.
- Data clustering to identify specific dataset to train different models.

Thank you

filippo.bovera@polimi.it matteo.spiller@polimi.it