MFE 409 LECTURE 2A MEASURING VALUE-AT-RISK

Valentin Haddad

Spring 2019

LECTURE OBJECTIVES

Measuring Value-at-Risk:

How to judge validity of a VaR estimate?

Historical approach

■ Model-building approach

How to get a measure for a given approach but also how to choose an appropriate approach

OUTLINE

BACK-TESTING

BACK-TESTING

- Back-testing: How well a current procedure would have performed if applied in the past
 - ► Investment strategy
 - ► Risk measure

Our context: How would a method to compute Value-at-Risk would have performed in the past?

S&P500 INDEX, 2012-2013

S&P500 Daily Returns, 2012-2013

A 99% VAR MEASURE

EXCEPTIONS

Another 99% Var Measure

Number of Exceptions

lacksquare Say we measure the daily VaR with confidence c

- On a given day:
 - ▶ Probability of exception: 1-c
 - ▶ Probability of no exception: *c*

Number of Exceptions

lacksquare Say we measure the daily VaR with confidence c

- On a given day:
 - ▶ Probability of exception: 1-c
 - Probability of no exception: c

■ For 99% VaR, a 2-year sample should have on average ? exceptions

Number of Exceptions

lacksquare Say we measure the daily VaR with confidence c

- On a given day:
 - ▶ Probability of exception: 1-c
 - Probability of no exception: c

■ For 99% VaR, a 2-year sample should have on average 5 exceptions

■ What if we see 6 exceptions? 11 exceptions?

- What if we see 6 exceptions? 11 exceptions?
- \blacksquare Probability of observing k exceptions:

$$\frac{n!}{k!(n-k)!}(1-c)^k c^{n-k}$$

- What if we see 6 exceptions? 11 exceptions?
- \blacksquare Probability of observing k exceptions:

$$\frac{n!}{k!(n-k)!}(1-c)^k c^{n-k}$$

 \blacksquare Probability of observing more (or equal) than m exceptions:

$$\sum_{k=m}^{n} \frac{n!}{k!(n-k)!} (1-c)^k c^{n-k}$$

- What if we see 6 exceptions? 11 exceptions?
- \blacksquare Probability of observing k exceptions:

$$\frac{n!}{k!(n-k)!}(1-c)^k c^{n-k}$$

 \blacksquare Probability of observing more (or equal) than m exceptions:

$$\sum_{k=m}^{n} \frac{n!}{k!(n-k)!} (1-c)^k c^{n-k}$$

- \blacksquare Binomial distribution: $P(\# \text{ exceptions} \ge m) = 1 F(m-1|n,1-c)$
 - ightharpoonup F(.|n,p) c.d.f. of a binomial with n trials and success probability p

APPLICATION

■ 99% - daily VaR

■ 2 years: 502 daily returns

■ Probability of 6 or more exceptions:

■ Probability of 11 or more exceptions:

APPLICATION

■ 99% - daily VaR

■ 2 years: 502 daily returns

■ Probability of 6 or more exceptions: 38.76%

■ Probability of 11 or more exceptions: 1.3%

ANOTHER VAR MEASURE

OTHER TESTS

lacktriangleright Probability of observing less (or equal) than m exceptions:

$$\sum_{k=0}^{m} \frac{n!}{k!(n-k)!} (1-c)^k c^{n-k}$$
$$= F(m|n, 1-c)$$

OTHER TESTS

 \blacksquare Probability of observing less (or equal) than m exceptions:

$$\sum_{k=0}^{m} \frac{n!}{k!(n-k)!} (1-c)^k c^{n-k}$$
$$= F(m|n, 1-c)$$

■ Two sided test (for large n):

$$-2\ln\left[c^{n-m}(1-c)^{m}\right] + 2\ln\left[(1-m/n)^{n-m}(m/n)^{m}\right] \sim \chi^{2}(1)$$

► Chi-squared 5% threshold: 3.84

Bunching

Bunching

OUTLINE

BACK-TESTING

- Assume the future will be drawn from the same distribution as the past
- Past data reveals the future distribution

- Assume the future will be drawn from the same distribution as the past
- Past data reveals the future distribution
- Formally, to compute the daily value-at-risk at confidence level c:
 - ightharpoonup You have n past observations of daily **returns**
 - $\,\blacktriangleright\,$ Assume the next return will be any of these draws with probability 1/n

- Assume the future will be drawn from the same distribution as the past
- Past data reveals the future distribution
- Formally, to compute the daily value-at-risk at confidence level c:
 - ightharpoonup You have n past observations of daily **returns**
 - $\,\blacktriangleright\,$ Assume the next return will be any of these draws with probability 1/n
 - ▶ The VaR corresponds to the loss in the $[(1-c) \times n]$ -th worst past realization
 - * if not integer, round up

EXAMPLE

- Assume we are 04/11/2017
- You have \$4m invested in S&P500, \$5m in NASDAQ Composite, \$1m in DJIA
- You know the value of the indices for the last 3 years (file *indices.xls*)

■ What is your 1-day 99% VaR?

Constructing the Var

 \blacksquare Construct returns for the indices: if index is I_t , return is

$$r_t = (I_t/I_{t-1}) - 1$$

Construct hypothetical portfolio returns: (るいへっくん)

$$r_t^{\mathsf{Portfolio}} = \$4\mathsf{m} \times r_t^{\mathsf{S\&P500}} + \$5\mathsf{m} \times r_t^{\mathsf{NASDAQ}} + \$1\mathsf{m} \times r_t^{\mathsf{DJIA}}$$

CONSTRUCTING THE VAR

■ Sort the 753	realizatio	ns fr	om worse t	o best	strened Val
		1.	24aug2015	-384.4229] /
		2.	24jun2016	-383.3271	
2		3.	21aug2015	طا <u>334.4092</u>	Name >
		4.	01sep2015	-293.692	ES = \$3/0,000
		5.	13jan2016	-292.5246	C(- (3/0,000
.au		6.	28sep2015	-273.9006	F2 > d.
EDKS P		7.	07jan2016	-269.3122	
Not Sty bar	6—	8.	05feb2016	-249.1592 🚤	
		9.	15jan2016	-247.4063	
		10.	09sep2016	-246.4139	
		11.	20aug2015	-246.061	
		12.	29jun2015	-223.0912	
		13.	27jun2016	-207.9397	
		14.	11dec2015	-206.0038	

Constructing the Var.

■ Sort the 753 realizations from worse to best

```
24aug2015
                -384.4229
 1
     24jun2016 -383.3271
 3.
     21aug2015 -334.4092
 4
     01sep2015 -293.692
 5.
                -292.5246
     13jan2016
 6
     28sep2015
                -273.9006
 7.
     07jan2016
                -269.3122
 8.
     05feb2016
                -249.1592
 9.
     15jan2016 -247.4063
10.
     09sep2016
                -246.4139
11
     20aug2015
                -246.061
12.
     29jun2015
                -223.0912
13.
     27jun2016
                -207.9397
     11dec2015
14
                -206.0038
```

■ Value-at-risk corresponds to the $753 \times 1\% = 8$ -th worst realization:

\$249,000

EXPECTED SHORTFALL

■ Can use the same method to compute expected shortfall

EXPECTED SHORTFALL

■ Can use the same method to compute expected shortfall

- Average of the $[(1-c) \times n]$ worst realizations
 - ► Still round up

STRESSED VAR

■ Stressed VaR (or ES): VaR (or ES) for the worst consecutive 251-day period in the historical sample

STRESSED VAR

- Stressed VaR (or ES): VaR (or ES) for the worst consecutive 251-day period in the historical sample = the are with the larget VaR
- Introduced by regulators to capture the idea that some periods are worse than others

■ (Stressed VaR) ≥ VaR? **★**

ACCURACY OF VAR

■ If you backtest historical VaR, you find exactly ? deviations

ACCURACY OF VAR

- lacktriangle If you backtest historical VaR, you find exactly $(1-c) \times n$ deviations
- But if you had the true VaR, you would sometimes find more, sometimes find less: historical VaR is not perfectly accurate
- Standard error of the estimate:

$$\frac{1}{f(x)}\sqrt{\frac{c(1-c)}{n}}$$

- ightharpoonup f(x): p.d.f. at quantile c
- Need to know distribution!

EXAMPLE: ACCURACY OF VAR

- Back to portfolio example
- Historical VaR: \$249,000

EXAMPLE: ACCURACY OF VAR

- Back to portfolio example
- Historical VaR: \$249,000
- Approximate by a normal (in \$000s): mean 4, standard deviation 87

$$x = \mu + \sigma \Phi^{-1}(0.01) = -198.4$$

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = 3.06 \times 10^{-4}$$

$$\text{StdDev(VaR)} = \frac{1}{f(x)} \sqrt{\frac{0.99 \times 0.01}{753}} = 12$$

$$\text{Val} - 1.96 \text{ SHeV(Val)}, \text{Val} + 1.96 \text{ SHev(Val)}$$

■ 95% confidence interval for the VaR is between \$229,000 and $$269,000 \rightarrow \text{not that precise}$

BOOTSTRAP

■ Bootstrap:

BOOTSTRAP

■ **Bootstrap**: Draw samples from historical data to understand behavior of statistics

BOOTSTRAP

- Bootstrap: Draw samples from historical data to understand behavior of statistics
- Suppose there are 500 daily changes and you want to calculate a 95% confidence interval for VaR
 - Sample 500,000 times with replacement from daily changes to obtain 1000 sets of changes over 500 days
 - Calculate VaR for each set
 - \odot Calculate a confidence interval by taking the range between the 2.5% lowest and 97.5% largest value

HOW MUCH HISTORICAL DATA?

■ Portfolio example used 3 years of data

■ How much data would you like to use?

HOW MUCH HISTORICAL DATA?

■ Portfolio example used 3 years of data

■ How much data would you like to use?

■ More data, more precise estimates

HOW MUCH HISTORICAL DATA?

■ Portfolio example used 3 years of data

■ How much data would you like to use?

■ More data, more precise estimates

■ But "future same as past" less likely to be true

WEIGHTING OF OBSERVATIONS

- Use as much data as possible, but put more weight on recent data
- Observation *i* receives weight:

$$\lambda^{n-i} \frac{1-\lambda}{1-\lambda^n}$$

■ Sort observations, VaR is the scenario just over 1-c cumulative weight

PORTFOLIO EXAMPLE WITH WEIGHTING

 $\lambda = 0.995$

	Date	Return	Weight	Cumulative weight
1.	24aug2015	-384.4229	.0006586	.0006586
2.	24jun2016	-383.3271	.0018966	.0025552
3.	21aug2015	-334.4092	.0006553	.0032106
4.	01sep2015	-293.692	.0006787	.0038893
5.	13jan2016	-292.5246	.0010764	.0049657
6.	28sep2015	-273.9006	.0007428	.0057085
7.	07jan2016	-269.3122	.001055	.0067636
8.	05feb2016	-249.1592	.0011663	.0079299
9.	15jan2016	-247.4063	.0010873	.0090171
10.	09sep2016	-246.4139	.0024737	.0114909
11.	20aug2015	-246.061	.0006521	.0121429
12.	29jun2015	-223.0912	.0005417	.0126846
13.	27jun2016	-207.9397	.0019061	.0145907
14.	11dec2015	-206.0038	.0009689	.0155596

PORTFOLIO EXAMPLE WITH WEIGHTING

 $\lambda = 0.995$

	Date	Return	Weight	Cumulative weight
1.	24aug2015	-384.4229	.0006586	.0006586
2.	24jun2016	-383.3271	.0018966	.0025552
3.	21aug2015	-334.4092	.0006553	.0032106
4.	01sep2015	-293.692	.0006787	.0038893
5.	13jan2016	-292.5246	.0010764	.0049657
6.	28sep2015	-273.9006	.0007428	.0057085
7.	07jan2016	-269.3122	.001055	.0067636
8.	05feb2016	-249.1592	.0011663	.0079299
9.	15jan2016	-247.4063	.0010873	.0090171
10.	09sep2016	-246.4139	.0024737	.0114909
11.	20aug2015	-246.061	.0006521	.0121429
12.	29jun2015	-223.0912	.0005417	.0126846
13.	27jun2016	-207.9397	.0019061	.0145907
14.	11dec2015	-206.0038	.0009689	.0155596

ESTIMATING THE TAIL

- Extreme tail estimated imprecisely with historical method: 99.9%
 would need multiple thousands of observations
- To get more precise estimates, make assumptions about the shape of the distribution
- Model the whole distribution, e.g. normal distribution
 - ightharpoonup VaR depends of σ
 - ightharpoonup Every observation helps estimate σ

ESTIMATING THE TAIL

- Extreme tail estimated imprecisely with historical method: 99.9% would need multiple thousands of observations
- To get more precise estimates, make assumptions about the shape of the distribution
- Model the whole distribution, e.g. normal distribution
 - ightharpoonup VaR depends of σ
 - **E**very observation helps estimate σ
- Model the left tail of the distribution, e.g. using a power law
 - ► VaR depends of the shape of the left tail of the distribution
 - Every tail observation helps estimate the shape of the left tail

ESTIMATING THE TAIL

- Extreme tail estimated imprecisely with historical method: 99.9% would need multiple thousands of observations
- To get more precise estimates, make assumptions about the shape of the distribution
- Model the whole distribution, e.g. normal distribution
 - ightharpoonup VaR depends of σ
 - **E**very observation helps estimate σ
- Model the left tail of the distribution, e.g. using a power law
 - ► VaR depends of the shape of the left tail of the distribution
 - Every tail observation helps estimate the shape of the left tail
- **Extreme value theory**: this approach is valid for many distributions

POWER LAW

 \blacksquare **Power law**: X follows a power law, with

$$\operatorname{Prob}(X>x)=Kx^{-1/\xi}$$

- ► Also called Pareto distribution
- \blacktriangleright $\xi < 1$ controls thickness of tail: low ξ , thin tail

Fat tail distribution

POWER LAW

■ Power law: X follows a power law, with

Prob
$$(X > x) = Kx^{-1/\xi}$$

log(x) = $-\frac{1}{5}$ log(x) + log(x)

eto distribution

- Also called Pareto distribution
- \blacktriangleright $\xi < 1$ controls thickness of tail: low ξ , thin tail

- Regress log[Prob(X > x)] on log(x): slope $-1/\xi$
 - ▶ In historical distribution: $Prob(X > x_i) = rank(x_i)/n$

Log-log Plot for Portfolio Loss

Extreme Value Theory

Key result: a wide range of probability distributions have common properties in the tail

Pickands - Balkona - Le Haan theorem Second Theorem of EVT

Extreme Value Theory

- Key result: a wide range of probability distributions have common properties in the tail

Tail distribution:
$$P(x \le x + y \times y + y) = \frac{F(u+y) - F(u)}{1 - F(u)} P(x \le x \times y)$$

Result: as u becomes large, $F_u(y)$ converges to a generalized Pareto distribution:

$$G_{\xi,\beta}(y) = 1 - \left[1 + \xi \frac{y}{\beta}\right]^{-1/\xi}$$

EXTREME VALUE THEORY

- Key result: a wide range of probability distributions have common properties in the tail
- Tail distribution:

$$F_u(y) = \frac{F(u+y) - F(u)}{1 - F(u)}$$

■ Result: as u becomes large, $F_u(y)$ converges to a generalized Pareto distribution:

$$G_{\xi,\beta}(y) = 1 - \left[1 + \xi \frac{y}{\beta}\right]^{-1/\xi}$$

■ Model of right tail! Remember to find the *c*-th quantile of losses

ESTIMATING THE POWER LAW

■ Partial distribution function:

$$g_{\xi,\beta}(y) = \frac{1}{\beta} \left(1 + \frac{\xi y}{\beta} \right)^{-1/\xi - 1}$$

■ Choose *u*: typically 95th percentile of historical distribution

ESTIMATING THE POWER LAW

Partial distribution function:

$$g_{\xi,\beta}(y) = \frac{1}{\beta} \left(1 + \frac{\xi y}{\beta} \right)^{-1/\xi - 1}$$

- Choose *u*: typically 95th percentile of historical distribution
- Maximize log likelihood:

$$\max_{\xi,\beta} \sum_{i \in tail} \ln \left[g_{\xi,\beta}(v_i - u) \right]$$

VAR AND ES FOR A POWER LAW

Probability distribution:

Prob(Loss > V) =
$$\underbrace{[1 - F(u)]}_{n_u/n} [1 - G_{\xi,\beta}(V - u)]$$

$$= \Pr(\text{Loss} > u) \times \Pr(\text{Loss} > v) \text{ | Loss} > u$$

VAR AND ES FOR A POWER LAW

Probability distribution:

VAR AND ES FOR A POWER LAW

Probability distribution:

$$\mathsf{Prob}(\mathsf{Loss} > \mathsf{V}) = \underbrace{[1 - F(u)]}_{n_u/n} [1 - G_{\xi,\beta}(\mathsf{V} - u)]$$

 $\blacksquare V$ is VaR if this is 1-c

$$VaR = u + \frac{\beta}{\xi} \left(\left[\frac{n}{n_u} c \right]^{-\xi} - 1 \right)$$

Can also obtain ES:

$$\mathsf{ES} = \frac{\mathsf{VaR} + \beta - \xi u}{1 - \xi}$$