7. Egoera iragankorra zirkuitu elektrikoetan.

- Egoera iragankorra zirkuitu linealetan
- RC zirkuitua
- Denbora-konstantea
- Seinale karratuak
- RL zirkuitua*

Egoera iragankorra zirkuitu linealetan (I)

 Erresistentziadun zirkuituetan, zirkuituan gertatutako aldaketa batek, berehala aldatzen du zirkuituaren egoera.

Egoera iragankorra zirkuitu linealetan (II)

 Kondentsadorearen portaera dela eta, zirkuituan aldaketa bat egin eta gero, oreka berriro lortzeko (egoera egonkorra) denbora behar da. Denbora-tarte horretan, zirkuitua egoera iragankorrean dago.

Kondentsadorea: errepasoa

$$q = C \cdot v$$

$$q = C \cdot v$$
 $i(t) = C \cdot \frac{dv(t)}{dt}$

Ikurra:

Unitatea:

farad, F 1 farad = 1 F = 1C / 1V

Bi prozesu: karga eta deskarga

Karga prozesuan: energia xurgatzen du

Deskarga prozesuan: energia ematen du

Kondentsadorea

korronte zuzenean (DC) eta egoera egonkorrean

$$V$$
 kte. $\rightarrow I = 0$

$$\begin{array}{c|c}
I = \mathbf{0} & I = \mathbf{0} \\
 & \downarrow & \downarrow \\$$

RC zirkuitua. Karga / Deskarga prozesua

RC zirkuitua. Karga / Deskarga prozesua (II)

KTL:
$$E = v_R(t) + v_C(t)$$

$$E = RC \frac{dv_c(t)}{dt} + v_c(t)$$
 Ekuazio diferentziala

Ekuazioaren emaitza:

$$v_c(t) = K_1 e^{-\frac{t}{RC}} + K_2$$

 K_1 eta K_2 : konstanteak dira. Haien balioak lortzen dira zirkuituaren hasierako, t = 0, eta bukaerako, $t = \infty$, egoeren bitartez.

RC zirkuitua. Karga / Deskarga prozesua (III)

K₁ eta K₂ kalkulatzeko:

$$v_{c}(0) = V_{0}$$
 $v_{c}(\infty) = E$

$$K_{1}e^{-\frac{0}{RC}} + K_{2} = K_{1} + K_{2} = V_{0}$$

$$K_{1}e^{-\frac{\infty}{RC}} + K_{2} = K_{1} + K_{2} = E$$

$$K_1 = V_0 - E, K_2 = E$$

$$v_c(t) = V_0 e^{-\frac{t}{RC}} + E \left(1 - e^{-\frac{t}{RC}}\right)$$
 deribatuz: $i_c(t) = \frac{E - V_0}{R} e^{-\frac{t}{RC}}$

Karga-prozesua. Kasu partikularra: $V_0 = 0$

$$v_c(t) = V_0 e^{-\frac{t}{RC}} + E \left(1 - e^{-\frac{t}{RC}} \right) \qquad V_0 = 0$$

$$v_c(t) = E \left(1 - e^{-\frac{t}{RC}} \right)$$

$$i_c(t) = \frac{E - V_0}{R} e^{-\frac{t}{RC}} \qquad \frac{V_0 = 0}{R}$$

$$i_c(t) = \frac{E}{R} e^{-\frac{t}{RC}}$$

Karga-prozesua. Kasu partikularra: $V_0 = 0$

Karga-prozesua ($V_0 = 0$): denbora-konstantea (I)

Aztertutako zirkuituan, $\tau = RC$ biderkadura:

- Denbora-unitatetan neurtzen da ohm x farad = segundo
- Erlazionatuta dago esponentzialarekin: hazten den abiadurarekin, hain zuzen.

Karga-prozesua ($V_0 = 0$): denbora-ktea. (II)

$$v_c(t) = E\left(1 - e^{-\frac{t}{RC}}\right) \longrightarrow 1 - e^{-\frac{t}{RC}} = \begin{cases} 0.63 & t = \tau \text{ denean} \\ 0.86 & t = 2\tau \text{ denean} \\ 0.95 & t = 3\tau \text{ denean} \\ 0.98 & t = 4\tau \text{ denean} \end{cases}$$

Karga-prozesua ($V_0 = 0$): denbora-ktea. (III)

RC zirkuitu baten denbora-konstanteak adierazten du zenbat denbora behar den egoera iragankorra hasten denetik, kondentsadorearen tentsioa (karga) egoera egonkorrera iritsita jasango duen aldaketaren % 63 lortu arte.

Deskarga-prozesua. Kasu partikularra: *E=0*

$$v_c(t) = V_0 e^{-\frac{t}{RC}} + E \left(1 - e^{-\frac{t}{RC}} \right) \qquad E = 0 \qquad v_c(t) = V_0 e^{-\frac{t}{RC}}$$

$$i_c(t) = \frac{E - V_0}{R} e^{-\frac{t}{RC}} \qquad \qquad \underbrace{E = \mathbf{0}}_{c} \qquad \qquad i_c(t) = -\frac{V_0}{R} e^{-\frac{t}{RC}}$$

Deskarga-prozesua. Kasu partikularra: E = 0

Deskarga-prozesua: denbora-konstantea

$$e^{-\frac{t}{RC}} = \begin{cases} 0,37 & t = \tau \text{ denean} \\ 0,14 & t = 2\tau \text{ denean} \\ 0,05 & t = 3\tau \text{ denean} \\ 0,02 & t = 4\tau \text{ denean} \end{cases}$$

RC zirkuitua eta seinale karratuak

Aurreko zirkuituan, etengailua periodikoki irekitzen eta ixten bada → SEINALE KARRATUA.

1. kasua: $T/2 > 4\tau$

2. kasua: $T/2 < 4\tau$

