Auditoría del Proyecto loT de Recolección de Datos de Temperatura y Humedad con ESP8266 y DHT11 en AWS

1. Introducción

- **Propósito del Informe:** Establecer el objetivo de la auditoría, que es evaluar tanto la parte técnica como metodológica del proyecto IoT.
- Descripción General del Proyecto: Una breve descripción del sistema IoT, indicando que se está utilizando el dispositivo ESP8266 y el sensor DHT11 para recolectar datos de temperatura y humedad, los cuales se almacenan y procesan en AWS.

Objetivos de la Auditoría:

- Evaluar la implementación técnica de los dispositivos y la infraestructura en la nube (AWS).
- Verificar el cumplimiento de las mejores prácticas de seguridad, eficiencia y optimización de costos.
- Evaluar la implementación del marco metodológico Scrum en el desarrollo del proyecto.

2. Definición de Alcance

- ¿Qué se audita?
 - → El/los dispositivo(s) loT registrado(s) en AWS loT Core.
 - ¿Qué servicios AWS toca?
 - → AWS IoT Core, AWS Device Defender, AWS IoT Device Management, CloudWatch, IAM.
 - ¿Qué queremos evaluar?
 - → Seguridad, disponibilidad, trazabilidad, cumplimiento de políticas.

COBIT aplica aquí:

- APO02: Gestión de la estrategia.
- EDM03: Aseguramiento de la optimización del riesgo.

3. Metodología de Auditoría

- Enfoque y Métodos Utilizados: Describir los métodos utilizados para la auditoría, tales como revisiones de código, entrevistas con el equipo de desarrollo, análisis de los flujos de datos, revisión de arquitectura, etc.
- Fuentes de Información: Detallar las fuentes utilizadas, como el código fuente del dispositivo, los registros de AWS, las configuraciones de la base de datos, y otros artefactos del proyecto.

4. Revisión de la Arquitectura Técnica

Esta sección aborda los componentes técnicos del proyecto, revisando el hardware, la conexión a AWS, los protocolos de comunicación, y la configuración de almacenamiento en la nube.

• ESP8266 y DHT11:

- Evaluación de la conexión del ESP8266 con el sensor DHT11 para medir temperatura y humedad.
- Verificación de la configuración de red WiFi del ESP8266 y su capacidad para enviar datos a la nube.
- Análisis de la precisión de las mediciones de **DHT11** (que tiene una precisión limitada) y cómo estos datos son utilizados en el sistema.

Conexión a AWS:

- Revisión de la integración del ESP8266 con AWS loT Core para la autenticación y la transmisión de datos de forma segura.
- Verificación de los protocolos de comunicación utilizados, como MQTT o HTTPS, para asegurar que los datos se envíen de forma eficiente y segura.

AWS Lambda (si aplica):

Evaluación de cómo los datos son procesados y manejados por AWS
Lambda antes de ser almacenados en la base de datos DynamoDB, si

se utiliza.

5. Identificación de Procesos COBIT Relevantes

Tarea	Proceso COBIT relacionado	Descripción del control/auditoría
Configurar la plataforma AWS	APO13 / DSS05	Asegurar que la plataforma loT esté configurada correctamente
Escribir programa de conexión	BAI09 / DSS05	Gestionar el desarrollo de código seguro para conexión de dispositivos.
Envío de datos vía MQTT	DSS05 / APO13	Asegurar transmisión segura y confiable de datos en IoT Core.
Verificar conexión y envío de datos	MEA01 / DSS05	Monitorear que los datos se envían correctamente.

6. Identificación de tareas

Tarea	Criterio de Aceptación	Estado	Observaciones
Configurar la plataforma AWS	Se registren datos en la tabla de DynamoDB		
Crear archivos de certificados	Compilación del archivo de cabecera con nombre y ruta de archivos correctos		
Escribir programa de conexión	Conexion estable con AWS IoT Core usando certificados		
Envío de datos vía MQTT	Envío exitoso de mensajes MQTT y recepción en tópico de prueba		
Verificar conexión y envío de datos	Confirmar que los datos enviados son		

	ecibidos y Ilmacenados en	
D)ynamoDB	
С	correctamente	