

Experimental Design and Statistical Power

LISA BRAMER

PNNL 2019 SRP Workshop

Experimental Design Considerations

- 3 R's of Experimental Design
 - Replication
 - Randomization
 - Control (Reduce variability and confounding variables)
- Replication is needed to establish statistical significance in any analysis
 - An increased number of replicates is necessary to guard against loss of statistical significance due to sample-to-sample variation or other technical problems
 - Balance between cost and quality data If the data can't be used, then reduced price is not worth the effort

Tests of Significance

Proudly Oberated by Rattelle Since 1065

- Hypothesis = claim/belief that we wish to test
- 2 competing hypotheses
 - Null (H_0) → what we assume to be true
 - \blacksquare Alternative (H_A) \rightarrow what we want to show
- "Innocent until proven guilty"
 - Assume H₀ is true until/unless we have enough evidence in the data in favor of H_A

dly Oberated by Rattelle Since 1065

- H₀ & H_A stated in terms of some population parameter, p
- ▶ Different types of hypotheses, e.g.

<u>2-sided</u>	<u>1-sided</u>	1-sided
$H_0: p = p_0$	$H_0: p \ge p_0$	$H_0: p \leq p_0$
$H_A: p \neq p_0$	$H_A: p < p_0$	$H_A: p > p_0$

- Note:
 - "=" sign always included in H₀
 - H₀ & H_A must contradict each other

Errors in Hypothesis Testing

- Rejecting H₀ in favor of H_A does not guarantee that H_A is true despite very strong evidence
- For any hypothesis test, there are 2 kinds of errors we can make

		Decision	
		Fail to reject H ₀	Reject H ₀
Truth	H ₀	Correct decision	Type I error = α (false positive)
	H _A	Type II error (false negative)	Correct decision (power)

June 27, 2019 5

Errors in Hypothesis Testing

Proudly Oberated by Rattelle Since 1065

- By construction, hypothesis testing limits the rate of Type I errors (false positives) to a significance level, α
 - We choose ahead of time what significance level we will test at
 - Multiple tests on different attributes of the same data require an adjustment in order to preserve the significance level
 - E.g. testing the salmon for levels of multiple chemicals requires an adjustment
 - The more tests we do, the more likely we are to find a false positive
- Type II error rate (1 power) is a function of sample size, significance level, & effect size
 - Trade-offs
 - In general, larger sample sizes allow us to detect smaller differences with more power
 - Standard deviation of the values also affects power

What is Statistical Power?

Statistical Power – probability of rejecting the null hypothesis, when the alternative hypothesis is true

OUTCOMES	The Null Hypothesis	The Alternative	
	Is True	Hypothesis is True	
R The Null Hy e Is Tr s e	Accurate 1 - α	Type II Error β	
a r c The Alte h ^{Hypothesis}	 Type I Error α	Accurate 1 - β	

Proudly Operated by Battelle Since 1965

Why Worry About Power?

- Scientifically Meaningful Effect
 - Want enough samples to detect a scientifically meaningful effect
- Money
 - Undersized study wastes resources by not having capacity to produce useful results
 - Oversized study uses more resources than necessary
- ► Ethical issues when using live subjects (humans, etc.)
- Grant reviewers (and IRBs) are looking for sample size and power calculations

IT WAS GETTING HARDER AND HARDER TO FIND A TRULY MEANINGFUL RELATIONSHIP AT THE MEDICAL JOURNAL HAPPY HOUR.

Statistical Power

Experimental Design & Statistical Test(s) Type 1 Sample Effect Variability Size Size Error **Statistical Power**

Pacific Northwest NATIONAL LABORATORY

Type 1 Error

Proudly Operated by Battelle Since 1965

- Tradeoff between Type 1 and 2 errors
 - Inversely related
- ▶ Lower Type 1 error → Lower power
 - Holding other factors constant
- Typical values: 0.05, 0.1
 - Domain dependent

HYPOTHESIS TESTING		Reality	
001	COMES	The Null Hypothesis Is True	The Alternative Hypothesis is True
R e s e	The Null Hypothesis Is True	Accurate 1 - α	Type II Error β
a r	The Alternative Hypothesis is True	Type I Error	Accurate 1 - β

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Effect Size/Variability

- Effect Size desired detectable difference (if a difference exists)
- Variability variability of the parameter being estimated
 - If evaluating difference in means→ sd of values from same group
- Ratio of Effect Size/Variability determines power
 - More variability → less power
 - Smaller effect size → less power
- Typical values?
 - Determined by data and/or domain knowledge

Sample Size and Power

- Usually the quantities we want to estimate
 - If I have X number of samples, what is my power?
 - How many samples do I need for 80% power?

- ► Most domains, we have one estimate of variability → one power calculation
- Biology 'omics data often have multiple response variables

Omics Data

- Many measurements → many variability estimates → many power calculations
 - 200 metabolites → 200 power calculations

Given 80% Power

2 0.008 3 0.136 4 0.236 5 0.328 6 0.424 7 0.504 8 0.560 9 0.628 10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.860	N	SD_Quantile
4 0.236 5 0.328 6 0.424 7 0.504 8 0.560 9 0.628 10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	2	0.008
5 0.328 6 0.424 7 0.504 8 0.560 9 0.628 10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	3	0.136
6 0.424 7 0.504 8 0.560 9 0.628 10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	4	0.236
7 0.504 8 0.560 9 0.628 10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	5	0.328
8 0.560 9 0.628 10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	6	0.424
9 0.628 10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	7	0.504
10 0.652 11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	8	0.560
11 0.696 12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	9	0.628
12 0.728 13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	10	0.652
13 0.752 14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	11	0.696
14 0.784 15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	12	0.728
15 0.804 16 0.816 17 0.832 18 0.844 19 0.844	13	0.752
16 0.816 17 0.832 18 0.844 19 0.844	14	0.784
17 0.832 18 0.844 19 0.844	15	0.804
18 0.844 19 0.844	16	0.816
19 0.844	17	0.832
	18	0.844
20 0.860	19	0.844
	20	0.860

Other Considerations

- Will you have missing data (e.g. proteomics)?
 - Power calculations assume no missing data
- Are you testing more than two groups?
 - Multiple test correction
- Hypotheses not dealing with means (e.g. trend analysis over time)
 - Variability is not straightforward calculation
 - Example data is key

Tips

- Contact your favorite statistician before you plan replicates
- Groups vs Replicates
 - If determining how to allocate resources More replicates per group, rather than adding more groups

Proudly Oberated by Rattelle Since 106

► Claim: The mean level of benzo(a)pyrene in tipi-smoked salmon is at least that of shed-smoked salmon

