Lecture15: Impedance

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Review of previous lecture

Small-signal model

Example 6.14 (Razavi)

- Assume that $\mu_n C_{ox} = 100 \, \mu \text{A V}^{-2}$ and $\frac{W}{L} = 10$.
 - When the drain bias current is 0.5 mA, the gate overdrive voltage, $V_{GS} V_{TH}$, is 1 V.
 - Then,

$$g_m = 1 \text{ mS}$$

- Channel-length modulation
 - With the channel-length modulation coefficient, $\lambda = 0.1 \text{ V}^{-1}$,

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

- Then,

$$r_o = 20 \text{ k}\Omega$$

Simple math

- Following relations are useful.
 - Sine and cosine functions can be expanded with $e^{+j\omega t}$ and $e^{-j\omega t}$.

$$\sin \omega t = -\frac{j}{2}e^{+j\omega t} + \frac{j}{2}e^{-j\omega t}$$
$$\cos \omega t = \frac{1}{2}e^{+j\omega t} + \frac{1}{2}e^{-j\omega t}$$

- Therefore, for a function of $f(t) = f_s \sin \omega t + f_c \cos \omega t$, the expansion is

$$f(t) = \left(-j\frac{f_s}{2} + \frac{f_c}{2}\right)e^{+j\omega t} + \left(+j\frac{f_s}{2} + \frac{f_c}{2}\right)e^{-j\omega t}$$

- A single complex number, $-j\frac{f_s}{2} + \frac{f_c}{2}$, is enough to represent f(t).

Linearized system

- Our circuit is nonlinear in general.
- However, we have <u>linearized</u> it.
 - When the input signal has an angluar frequency, ω , the output signal has the same one.
 - It is sufficient to consider the input-output relation at ω .

Impedance

- Resistance, V(t) = R I(t)
 - It is assumed that V(t) and I(t) are in the same phase.
- Impedance, $V(\omega) = Z(\omega)I(\omega)$
 - Consider $V(t) = V_0 \sin \omega t$ and $I(t) = I_0 \cos \omega t$. (Different phases)
 - We introduce a phasor voltage, $V(\omega)$, and a phasor current, $I(\omega)$.
 - The relation between V(t) and $V(\omega)$ is $V(t) = Re[V(\omega)e^{j\omega t}]$.
 - When $V(t) = V_0 \sin \omega t$, the phasor voltage is $V(\omega) = -jV_0$.
 - When $I(t) = I_0 \cos \omega t$, the phasor voltage is $I(\omega) = I_0$.
 - In this example, $Z(\omega) = -j\frac{V_0}{I_0}$. A purely imaginary number.

Multi-terminal devices

- When the number of terminals is 3,
 - We can define $9 (= 3 \times 3)$ different impedances.
- Termination condition is important.
 - Depending on the termination condition, the impedance can be heavily changed.
 - In many cases, it is obvious from the problem.

Impedances of MOSFET

- "Looking into the <u>TERMINAL</u>," we see the impedance of the <u>TERMINAL</u>.
 - Example) Looking into the gate. The source and drain are acgrounded.

Similar for other terminals

Input impedance

- Consider a input signal with a finite internal resistance.
 - Usually, the internal resistance is small, but not zero.
 - The actual small-signal voltage applied to the gate terminal is given by

$$v_G(\omega) = v_{in} \frac{Z_G(\omega)}{r_{int} + Z_G(\omega)}$$

GIST Lecture on May 11, 2020 (Internal use only)