Tutorial: MapReduce

Theory and Practice of Data-intensive Applications

Pietro Michiardi

Eurecom

Introduction

What is MapReduce

A programming model:

- Inspired by functional programming
- Allows expressing distributed computations on massive amounts of data

An execution framework:

- Designed for large-scale data processing
- Designed to run on clusters of commodity hardware

What is this Tutorial About

Design of scalable algorithms with MapReduce

Applied algorithm design and case studies

In-depth description of MapReduce

- Principles of functional programming
- The execution framework

In-depth description of Hadoop

- Architecture internals
- Software components
- Cluster deployments

Motivations

Big Data

Vast repositories of data

- Web-scale processing
- Behavioral data
- Physics
- Astronomy
- Finance

• "The fourth paradigm" of science [6]

- Data-intensive processing is fast becoming a necessity
- Design algorithms capable of scaling to real-world datasets

• It's not the algorithm, it's the data! [2]

- More data leads to better accuracy
- With more data, accuracy of different algorithms converges

Key Ideas Behind MapReduce

Scale out, not up!

- For data-intensive workloads, a large number of commodity servers is preferred over a small number of high-end servers
 - Cost of super-computers is not linear
 - But datacenter efficiency is a difficult problem to solve [3, 5]
- ullet Some numbers (\sim 2010):
 - Data processed by Google every day: 20 PB
 - Data processed by Facebook every day: 15 TB

Implications of Scaling Out

Processing data is quick, I/O is very slow

- 1 HDD = 75 MB/sec
- ▶ 1000 HDDs = 75 GB/sec

Sharing vs. Shared nothing:

- Sharing: manage a common/global state
- Shared nothing: independent entities, no common state

Sharing is difficult:

- Synchronization, deadlocks
- Finite bandwidth to access data from SAN
- Temporal dependencies are complicated (restarts)

Failures are the norm, not the exception

- LALN data [DSN 2006]
 - Data for 5000 machines, for 9 years
 - Hardware: 60%, Software: 20%, Network 5%
- DRAM error analysis [Sigmetrics 2009]
 - Data for 2.5 years
 - 8% of DIMMs affected by errors
- Disk drive failure analysis [FAST 2007]
 - Utilization and temperature major causes of failures
- Amazon Web Service failure [April 2011]
 - Cascading effect

Implications of Failures

Failures are part of everyday life

Mostly due to the scale and shared environment

Sources of Failures

- Hardware / Software
- Electrical, Cooling, ...
- Unavailability of a resource due to overload

Failure Types

- Permanent
- Transient

Move Processing to the Data

- Drastic departure from high-performance computing model
 - HPC: distinction between processing nodes and storage nodes
 - HPC: CPU intensive tasks

- Data intensive workloads
 - Generally not processor demanding
 - The network becomes the bottleneck
 - MapReduce assumes processing and storage nodes to be colocated: Data Locality
- Distributed filesystems are necessary

Process Data Sequentially and Avoid Random Access

Data intensive workloads

- Relevant datasets are too large to fit in memory
- Such data resides on disks

Disk performance is a bottleneck

- Seek times for random disk access are the problem
 - Example: 1 TB DB with 10¹⁰ 100-byte records. Updates on 1% requires 1 month, reading and rewriting the whole DB would take 1 day¹
- Organize computation for sequential reads

¹From a post by Ted Dunning on the Hadoop mailing list

Implications of Data Access Patterns

- MapReduce is designed for
 - batch processing
 - involving (mostly) full scans of the dataset

- Typically, data is collected "elsewhere" and copied to the distributed filesystem
- Data-intensive applications
 - Read and process the whole Internet dataset from a crawler
 - Read and process the whole Social Graph

Hide System-level Details

Separate the what from the how

- MapReduce abstracts away the "distributed" part of the system
- Such details are handled by the framework

In-depth knowledge of the framework is key

- Custom data reader/writer
- Custom data partitioning
- Memory utilization

Auxiliary components

- Hadoop Pig
- Hadoop Hive
- Cascading/Scalding
- ... and many many more!

Seamless Scalability

We can define scalability along two dimensions

- In terms of data: given twice the amount of data, the same algorithm should take no more than twice as long to run
- ► In terms of resources: given a cluster twice the size, the same algorithm should take no more than half as long to run

Embarassingly parallel problems

- Simple definition: independent (shared nothing) computations on fragments of the dataset
- It's not easy to decide whether a problem is embarrassingly parallel or not

MapReduce is a first attempt, not the final answer

Part One

The MapReduce Framework

Preliminaries

Divide and Conquer

A feasible approach to tackling large-data problems

- Partition a large problem into smaller sub-problems
- Independent sub-problems executed in parallel
- Combine intermediate results from each individual worker

• The workers can be:

- Threads in a processor core
- Cores in a multi-core processor
- Multiple processors in a machine
- Many machines in a cluster

Implementation details of divide and conquer are complex

Divide and Conquer: How to?

- Decompose the original problem in smaller, parallel tasks
- Schedule tasks on workers distributed in a cluster
 - Data locality
 - Resource availability
- Ensure workers get the data they need
- Coordinate synchronization among workers
- Share partial results
- Handle failures

The MapReduce Approach

- Shared memory approach (OpenMP, MPI, ...)
 - Developer needs to take care of (almost) everything
 - Synchronization, Concurrency
 - Resource allocation

MapReduce: a shared nothing approach

- Most of the above issues are taken care of
- Problem decomposition and sharing partial results need particular attention
- Optimizations (memory and network consumption) are tricky

The MapReduce Programming model

Functional Programming Roots

- Key feature: higher order functions
 - Functions that accept other functions as arguments
 - Map and Fold

Figure: Illustration of map and fold.

Functional Programming Roots

map phase:

Given a list, map takes as an argument a function f (that takes a single argument) and applies it to all element in a list

fold phase:

- Given a list, fold takes as arguments a function g (that takes two arguments) and an initial value
- g is first applied to the initial value and the first item in the list
- ► The result is stored in an intermediate variable, which is used as an input together with the next item to a second application of *g*
- The process is repeated until all items in the list have been consumed

Functional Programming Roots

We can view map as a transformation over a dataset

- This transformation is specified by the function f
- Each functional application happens in isolation
- ► The application of *f* to each element of a dataset can be parallelized in a straightforward manner

We can view fold as an aggregation operation

- The aggregation is defined by the function g
- Data locality: elements in the list must be "brought together"
- If we can group element of the list, also the fold phase can proceed in parallel

Associative and commutative operations

► Allow performance gains through local aggregation and reordeing

EURECOM

Functional Programming and MapReduce

Equivalence of MapReduce and Functional Programming:

- The map of MapReduce corresponds to the map operation
- ► The reduce of MapReduce corresponds to the fold operation

• The framework coordinates the map and reduce phases:

Grouping intermediate results happens in parallel

In practice:

- User-specified computation is applied (in parallel) to all input records of a dataset
- Intermediate results are aggregated by another user-specified computation

What can we do with MapReduce?

- MapReduce "implements" a subset of functional programming
 - The programming model appears quite limited
- There are several important problems that can be adapted to MapReduce
 - In this tutorial we will focus on illustrative cases
 - We will see in detail "design patterns"
 - How to transform a problem and its input
 - How to save memory and bandwidth in the system

Mappers and Reducers

Data Structures

Key-value pairs are the basic data structure in MapReduce

- Keys and values can be: integers, float, strings, raw bytes
- They can also be arbitrary data structures

• The design of MapReduce algorithms involes:

- Imposing the key-value structure on arbitrary datasets
 - ★ E.g.: for a collection of Web pages, input keys may be URLs and values may be the HTML content
- ► In some algorithms, input keys are not used, in others they uniquely identify a record
- Keys can be combined in complex ways to design various algorithms

A MapReduce job

The programmer defines a mapper and a reducer as follows²:

- ▶ map: $(k_1, v_1) \rightarrow [(k_2, v_2)]$
- ▶ reduce: $(k_2, [v_2]) \rightarrow [(k_3, v_3)]$

A MapReduce job consists in:

- A dataset stored on the underlying distributed filesystem, which is split in a number of files across machines
- The mapper is applied to every input key-value pair to generate intermediate key-value pairs
- ► The reducer is applied to all values associated with the same intermediate key to generate output key-value pairs

²We use the convention $[\cdots]$ to denote a list.

Where the magic happens

- Implicit between the map and reduce phases is a distributed "group by" operation on intermediate keys
 - Intermediate data arrive at each reducer in order, sorted by the key
 - No ordering is guaranteed across reducers
- Output keys from reducers are written back to the distributed filesystem
 - The output may consist of r distinct files, where r is the number of reducers
 - Such output may be the input to a subsequent MapReduce phase
- Intermediate keys are transient:
 - They are not stored on the distributed filesystem
 - They are "spilled" to the local disk of each machine in the cluster—

A Simplified view of MapReduce

Figure: Mappers are applied to all input key-value pairs, to generate an arbitrary number of intermediate pairs. Reducers are applied to all intermediate values associated with the same intermediate key. Between the map and reduce phase lies a barrier that involves a large distributed sort and group by.

"Hello World" in MapReduce

```
    class Mapper

       method Map(docid a, doc d)
2:
           for all term t \in \text{doc } d do
3:
               Emit(term t, count 1)
4:
   class Reducer
       method Reduce(term t, counts [c_1, c_2, \ldots])
2:
           sum \leftarrow 0
3:
           for all count c \in \text{counts } [c_1, c_2, \ldots] do
4:
5:
               sum \leftarrow sum + c
           Emit(term t, count sum)
6:
```

Figure: Pseudo-code for the word count algorithm.

"Hello World" in MapReduce

Input:

- Key-value pairs: (docid, doc) stored on the distributed filesystem
- docid: unique identifier of a document
- doc: is the text of the document itself

Mapper:

- Takes an input key-value pair, tokenize the document
- Emits intermediate key-value pairs: the word is the key and the integer is the value

• The framework:

 Guarantees all values associated with the same key (the word) are brought to the same reducer

• The reducer:

- Receives all values associated to some keys
- Sums the values and writes output key-value pairs: the key is the word and the value is the number of occurrences

Implementation and Execution Details

- The partitioner is in charge of assigning intermediate keys (words) to reducers
 - Note that the partitioner can be customized
- How many map and reduce tasks?
 - The framework essentially takes care of map tasks
 - The designer/developer takes care of reduce tasks
- In this tutorial we will focus on Hadoop
 - Other implementations of the framework exist: Google, Disco, ...

Handle with care!

Using external resources

- E.g.: Other data stores than the distributed file system
- Concurrent access by many map/reduce tasks

Side effects

- Not allowed in functional programming
- E.g.: preserving state across multiple inputs
- State is kept internal

I/O and execution

- External side effects using distributed data stores (e.g. BigTable)
- No input (e.g. computing π), no reducers, never no mappers

The Execution Framework

The Execution Framework

MapReduce program, a.k.a. a job:

- Code of mappers and reducers
- Code for combiners and partitioners (optional)
- Configuration parameters
- All packaged together

A MapReduce job is submitted to the cluster

- The framework takes care of eveything else
- Next, we will delve into the details

Scheduling

Each Job is broken into tasks

- Map tasks work on fractions of the input dataset, as defined by the underlying distributed filesystem
- Reduce tasks work on intermediate inputs and write back to the distributed filesystem

The number of tasks may exceed the number of available machines in a cluster

 The scheduler takes care of maintaining something similar to a queue of pending tasks to be assigned to machines with available resources

Jobs to be executed in a cluster requires scheduling as well

- Different users may submit jobs
- Jobs may be of various complexity
- Fairness is generally a requirement

Scheduling

The scheduler component can be customized

As of today, for Hadoop, there are various schedulers

Dealing with stragglers

- Job execution time depends on the slowest map and reduce tasks
- Speculative execution can help with slow machines
 - But data locality may be at stake

Dealing with skew in the distribution of values

- E.g.: temperature readings from sensors
- In this case, scheduling cannot help
- It is possible to work on customized partitioning and sampling to solve such issues [Advanced Topic]

Data/code co-location

How to feed data to the code

 In MapReduce, this issue is intertwined with scheduling and the underlying distributed filesystem

How data locality is achieved

- The scheduler starts the task on the node that holds a particular block of data required by the task
- If this is not possible, tasks are started elsewhere, and data will cross the network
 - ★ Note that usually input data is replicated
- Distance rules [11] help dealing with bandwidth consumption
 - ★ Same rack scheduling

Synchronization

- In MapReduce, synchronization is achieved by the "shuffle and sort" bareer
 - Intermediate key-value pairs are grouped by key
 - This requires a distributed sort involving all mappers, and taking into account all reducers
 - If you have m mappers and r reducers this phase involves up to m × r copying operations
- IMPORTANT: the reduce operation cannot start until all mappers have finished
 - This is different from functional programming that allows "lazy" aggregation
 - In practice, a common optimization is for reducers to pull data from mappers as soon as they finish

Errors and faults

Using quite simple mechanisms, the MapReduce framework deals with:

Hardware failures

- Individual machines: disks, RAM
- Networking equipment
- Power / cooling

Software failures

- Exceptions, bugs
- Corrupt and/or invalid input data

Partitioners and Combiners

Partitioners

Partitioners are responsible for:

- Dividing up the intermediate key space
- Assigning intermediate key-value pairs to reducers
- ightarrow Specify the task to which an intermediate key-value pair must be copied

Hash-based partitioner

- Computes the hash of the key modulo the number of reducers r
- This ensures a roughly even partitioning of the key space
 - However, it ignores values: this can cause imbalance in the data processed by each reducer
- When dealing with complex keys, even the base partitioner may need customization

Combiners

Combiners are an (optional) optimization:

- Allow local aggregation before the "shuffle and sort" phase
- Each combiner operates in isolation

Essentially, combiners are used to save bandwidth

E.g.: word count program

Combiners can be implemented using local data-structures

- E.g., an associative array keeps intermediate computations and aggregation thereof
- ► The map function only emits once all input records (even all input splits) are processed

Partitioners and Combiners, an Illustration

Figure: Complete view of MapReduce illustrating combiners and partitioners.

Note: in Hadoop, partitioners are executed before combiners.

The Distributed Filesystem

Colocate data and computation!

- As dataset sizes increase, more computing capacity is required for processing
- As compute capacity grows, the link between the compute nodes and the storage nodes becomes a bottleneck
 - One could eventually think of special-purpose interconnects for high-performance networking
 - This is often a costly solution as cost does not increase linearly with performance
- Key idea: abandon the separation between compute and storage nodes
 - This is exactly what happens in current implementations of the MapReduce framework
 - ► A distributed filesystem is not mandatory, but highly desirable EURECON

Distributed filesystems

 In this tutorial we will focus on HDFS, the Hadoop implementation of the Google distributed filesystem (GFS)

- Distributed filesystems are not new!
 - HDFS builds upon previous results, tailored to the specific requirements of MapReduce
 - ▶ Write once, read many workloads
 - Does not handle concurrency, but allow replication
 - Optimized for throughput, not latency

HDFS

Divide user data into blocks

- Blocks are big! [64, 128] MB
- Avoids problems related to metadata management

Replicate blocks across the local disks of nodes in the cluster

 Replication is handled by storage nodes themselves (similar to chain replication) and follows distance rules

Master-slave architecture

- NameNode: master maintains the namespace (metadata, file to block mapping, location of blocks) and maintains overall health of the file system
- DataNode: slaves manage the data blocks

HDFS, an Illustration

Figure: The architecture of HDFS.

HDFS I/O

A typical read from a client involves:

- Ontact the NameNode to determine where the actual data is stored
 - NameNode replies with block identifiers and locations (i.e., which DataNode)
- Contact the DataNode to fetch data

A typical write from a client involves:

- Contact the NameNode to update the namespace and verify permissions
- NameNode allocates a new block on a suitable DataNode
- The client directly streams to the selected DataNode
- Ourrently, HDFS files are immutable

Data is never moved through the NameNode

Hence, there is no bottleneck

HDFS Replication

By default, HDFS stores 3 sperate copies of each block

This ensures reliability, availability and performance

Replication policy

- Spread replicas across differen racks
- Robust against cluster node failures
- Robust against rack failures

Block replication benefits MapReduce

- Scheduling decisions can take replicas into account
- Exploit better data locality

HDFS: more on operational assumptions

- A small number of large files is preferred over a large number of small files
 - Metadata may explode
 - Input splits fo MapReduce based on individual files
 - → Mappers are launched for every file
 - High startup costs
 - Inefficient "shuffle and sort"

Workloads are batch oriented

Not full POSIX

Cooperative scenario

Part Two

Hadoop implementation of MapReduce

Preliminaries

From Theory to Practice

The story so far

- Concepts behind the MapReduce Framework
- Overview of the programming model

Hadoop implementation of MapReduce

- HDFS in details
- Hadoop I/O
- Hadoop MapReduce
 - Implementation details
 - Types and Formats
 - Features in Hadoop

Hadoop Deployments

The BigFoot platform (if time allows)

Terminology

MapReduce:

- ▶ Job: an execution of a Mapper and Reducer across a data set
- Task: an execution of a Mapper or a Reducer on a slice of data
- ▶ Task Attempt: instance of an attempt to execute a task

Example:

- ★ Running "Word Count" across 20 files is one job
- ★ 20 files to be mapped = 20 map tasks + some number of reduce tasks
- ★ At least 20 attempts will be performed... more if a machine crashes

Task Attempts

- Task attempted at least once, possibly more
- Multiple crashes on input imply discarding it
- Multiple attempts may occur in parallel (speculative execution)
- Task ID from TaskInProgress is not a unique identifier

HDFS in details

The Hadoop Distributed Filesystem

- Large dataset(s) outgrowing the storage capacity of a single physical machine
 - Need to partition it across a number of separate machines
 - Network-based system, with all its complications
 - Tolerate failures of machines

- Hadoop Distributed Filesystem[10, 11]
 - Very large files
 - Streaming data access
 - Commodity hardware

HDFS Blocks

(Big) files are broken into block-sized chunks

NOTE: A file that is smaller than a single block does not occupy a full block's worth of underlying storage

Blocks are stored on independent machines

Reliability and parallel access

• Why is a block so large?

- Make transfer times larger than seek latency
- E.g.: Assume seek time is 10ms and the transfer rate is 100 MB/s, if you want seek time to be 1% of transfer time, then the block size should be 100MB

NameNodes and DataNodes

NameNode

- Keeps metadata in RAM
- Each block information occupies roughly 150 bytes of memory
- Without NameNode, the filesystem cannot be used
 - ★ Persistence of metadata: synchronous and atomic writes to NFS

Secondary NameNode

- Merges the namespce with the edit log
- ► A useful trick to recover from a failure of the NameNode is to use the NFS copy of metadata and switch the secondary to primary

DataNode

- They store data and talk to clients
- ► They report periodically to the NameNode the list of blocks they hold

EURECOM

Anatomy of a File Read

NameNode is only used to get block location

- Unresponsive DataNode are discarded by clients
- Batch reading of blocks is allowed

"External" clients

- For each block, the NameNode returns a set of DataNodes holding a copy thereof
- DataNodes are sorted according to their proximity to the client

"MapReduce" clients

- TaskTracker and DataNodes are colocated
- ▶ For each block, the NameNode usually 3 returns the local DataNode

³Exceptions exist due to stragglers.

Anatomy of a File Write

Details on replication

- Clients ask NameNode for a list of suitable DataNodes
- ► This list forms a pipeline: first DataNode stores a copy of a block, then forwards it to the second, and so on

Replica Placement

- Tradeoff between reliability and bandwidth
- Default placement:
 - First copy on the "same" node of the client, second replica is off-rack, third replica is on the same rack as the second but on a different node
 - ★ Since Hadoop 0.21, replica placement can be customized

Network Topology and HDFS

HDFS Coherency Model

Read your writes is not guaranteed

- The namespace is updated
- Block contents may not be visible after a write is finished
- Application design (other than MapReduce) should use sync() to force synchronization
- sync() involves some overhead: tradeoff between robustness/consistency and throughput

Multiple writers (for the same block) are not supported

 Instead, different blocks can be written in parallel (using MapReduce)

Hadoop I/O

I/O operations in Hadoop

Reading and writing data

- From/to HDFS
- From/to local disk drives
- Across machines (inter-process communication)

Customized tools for large amounts of data

- Hadoop does not use Java native classes
- Allows flexibility for dealing with custom data (e.g. binary)

What's next

- Overview of what Hadoop offers
- ► For an in depth knowledge, use [11]

Data Integrity

- Every I/O operation on disks or the network may corrupt data
 - Users expect data not to be corrupted during storage or processing
 - Data integrity usually achieved with checksums

- HDFS transparently checksums all data during I/O
 - HDFS makes sure that storage overhead is roughly 1%
 - DataNodes are in charge of checksumming
 - ★ With replication, the last replica performs the check
 - ★ Checksums are timestamped and logged for statistcs on disks
 - Checksumming is also run periodically in a separate thread
 - ★ Note that thanks to replication, error correction is possible

Compression

Why using compression

- Reduce storage requirements
- Speed up data transfers (across the network or from disks)

Compression and Input Splits

IMPORTANT: use compression that supports splitting (e.g. bzip2)

Splittable files, Example 1

- Consider an uncompressed file of 1GB
- HDFS will split it in 16 blocks, 64MB each, to be processed by separate Mappers

Compression

Splittable files, Example 2 (gzip)

- Consider a compressed file of 1GB
- ► HDFS will split it in 16 blocks of 64MB each
- Creating an InputSplit for each block will not work, since it is not possible to read at an arbitrary point

• What's the problem?

- This forces MapReduce to treat the file as a single split
- Then, a single Mapper is fired by the framework
- For this Mapper, only 1/16-th is local, the rest comes from the network

• Which compression format to use?

- ▶ Use bzip2
- ▶ Otherwise, use SequenceFiles
- See Chapter 4 (page 84) [11]

Serialization

Transforms structured objects into a byte stream

- For transmission over the network: Hadoop uses RPC
- For persistent storage on disks

Hadoop uses its own serialization format, Writable

- Comparison of types is crucial (Shuffle and Sort phase): Hadoop provides a custom RawComparator, which avoids deserialization
- Custom Writable for having full control on the binary representation of data
- Also "external" frameworks are allowed: enter Avro

Fixed-lenght or variable-length encoding?

- Fixed-lenght: when the distribution of values is uniform
- Variable-length: when the distribution of values is not uniform

Sequence Files

- Specialized data structure to hold custom input data
 - Using blobs of binaries is not efficient

SequenceFiles

- Provide a persistent data structure for binary key-value pairs
- Also work well as containers for smaller files so that the framework is more happy (remember, better few large files than lots of small files)
- They come with the sync() method to introduce sync points to help managing InputSplits for MapReduce

How Hadoop MapReduce Works

Anatomy of a MapReduce Job Run

Job Submission

- JobClient class
 - The runJob() method creates a new instance of a JobClient
 - ▶ Then it calls the submitJob() on this class
- Simple verifications on the Job
 - Is there an output directory?
 - Are there any input splits?
 - Can I copy the JAR of the job to HDFS?
- NOTE: the JAR of the job is replicated 10 times

Job Initialization

• The JobTracker is responsible for:

- Create an object for the job
- Encapsulate its tasks
- Bookkeeping with the tasks' status and progress

This is where the scheduling happens

- JobTracker performs scheduling by maintaining a queue
- Queueing disciplines are pluggable

Compute mappers and reducers

- JobTracker retrieves input splits (computed by JobClient)
- Determines the number of Mappers based on the number of input splits
- Reads the configuration file to set the number of Reducers

Task Assignment

Hearbeat-based mechanism

- TaskTrackers periodically send hearbeats to the JobTracker
- ▶ TaskTracker is alive
- Heartbeat contains also information on availability of the TaskTrackers to execute a task
- JobTracker piggybacks a task if TaskTracker is available

Selecting a task

- JobTracker first needs to select a job (i.e. scheduling)
- TaskTrackers have a fixed number of slots for map and reduce tasks
- JobTracker gives priority to map tasks (WHY?)

Data locality

- JobTracker is topology aware
 - Useful for map tasks
 - Unused for reduce tasks

Task Execution

Task Assignement is done, now TaskTrackers can execute

- Copy the JAR from the HDFS
- Create a local working directory
- ▶ Create an instance of TaskRunner

TaskRunner launches a child JVM

- This prevents bugs from stalling the TaskTracker
- A new child JVM is created per InputSplit
 - Can be overriden by specifying JVM Reuse option, which is very useful for custom, in-memory, combiners

Streaming and Pipes

- User-defined map and reduce methods need not to be in Java
- Streaming and Pipes allow C++ or python mappers and reducers
- We will cover Dumbo

Handling Failures

In the real world, code is buggy, processes crash and machine fails

Task Failure

- Case 1: map or reduce task throws a runtime exception
 - ★ The child JVM reports back to the parent TaskTracker
 - ★ TaskTracker logs the error and marks the TaskAttempt as failed
 - ★ TaskTracker frees up a slot to run another task
- Case 2: Hanging tasks
 - ★ TaskTracker notices no progress updates (timeout = 10 minutes)
 - ★ TaskTracker kills the child JVM⁴
- JobTracker is notified of a failed task
 - ★ Avoids rescheduling the task on the same TaskTracker
 - ★ If a task fails 4 times, it is not re-scheduled⁵
 - Default behavior: if any task fails 4 times, the job fails

⁵Exception is made for speculative execution

⁴With streaming, you need to take care of the orphaned process.

EURECOM

Handling Failures

TaskTracker Failure

- Types: crash, running very slowly
- Heartbeats will not be sent to JobTracker
- ▶ JobTracker waits for a timeout (10 minutes), then it removes the TaskTracker from its scheduling pool
- JobTracker needs to reschedule even completed tasks (WHY?)
- JobTracker needs to reschedule tasks in progress
- JobTracker may even blacklist a TaskTracker if too many tasks failed

JobTracker Failure

- Currently, Hadoop has no mechanism for this kind of failure
- In future releases:
 - ★ Multiple JobTrackers
 - ★ Use ZooKeeper as a coordination mechanisms

Scheduling

FIFO Scheduler (default behavior)

- Each job uses the whole cluster
- Not suitable for shared production-level cluster
 - ★ Long jobs monopolize the cluster
 - ★ Short jobs can hold back and have no guarantees on execution time

Fair Scheduler

- Every user gets a fair share of the cluster capacity over time
- Jobs are placed in to pools, one for each user
 - ★ Users that submit more jobs have no more resources than oterhs
 - ★ Can guarantee minimum capacity per pool
- Supports preemption
- "Contrib" module, requires manual installation

Capacity Scheduler

- Hierarchical queues (mimic an oragnization)
- FIFO scheduling in each queue
- Supports priority

Shuffle and Sort

- The MapReduce framework guarantees the input to every reducer to be sorted by key
 - The process by which the system sorts and transfers map outputs to reducers is known as shuffle

- Shuffle is the most important part of the framework, where the "magic" happens
 - Good understanding allows optimizing both the framework and the execution time of MapReduce jobs
- Subject to continuous refinements

The output of a map task is not simply written to disk

- In memory buffering
- Pre-sorting

Circular memory buffer

- 100 MB by default
- Threshold based mechanism to spill buffer content to disk
- Map output written to the buffer while spilling to disk
- If buffer fills up while spilling, the map task is blocked

Disk spills

- Written in round-robin to a local dir
- Output data is parttioned corresponding to the reducers they will be sent to
- Within each partition, data is sorted (in-memory)
- Optionally, if there is a combiner, it is executed just after the sort
 phase
 EURECOM

More on spills and memory buffer

- Each time the buffer is full, a new spill is created
- Once the map task finishes, there are many spills
- Such spills are merged into a single partitioned and sorted output file

The output file partitions are made available to reducers over HTTP

There are 40 (default) threads dedicated to serve the file partitions to reducers

Shuffle and Sort: the Reduce Side

- The map output file is located on the local disk of tasktracker
- Another tasktracker (in charge of a reduce task) requires input from many other TaskTracker (that finished their map tasks)
 - How do reducers know which tasktrackers to fetch map output from?
 - When a map task finishes it notifies the parent tasktracker
 - ★ The tasktracker notifies (with the heartbeat mechanism) the jobtracker
 - ★ A thread in the reducer polls periodically the jobtracker
 - Tasktrackers do not delete local map output as soon as a reduce task has fetched them (WHY?)
- Copy phase: a pull approach
 - ► There is a small number (5) of copy threads that can fetch map outputs in parallel

Shuffle and Sort: the Reduce Side

- The map outputs are copied to the the trasktracker running the reducer in memory (if they fit)
 - Otherwise they are copied to disk

Input consolidation

- A background thread merges all partial inputs into larger, sorted files
- Note that if compression was used (for map outputs to save bandwidth), decompression will take place in memory

Sorting the input

- When all map outputs have been copied a merge phase starts
- ▶ All map outputs are sorted maintaining their sort ordering, in rounds

Hadoop MapReduce Types and Formats

MapReduce Types

Input / output to mappers and reducers

- map: (k1, v1) → [(k2, v2)]
 reduce: (k2, [v2]) → [(k3, v3)]
- In Hadoop, a mapper is created as follows:
 - void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)
- Types:
 - ▶ K types implement WritableComparable
 - ▶ *V* types implement Writable

What is a Writable

- Hadoop defines its own classes for strings (Text), integers (intWritable), etc...
- All keys are instances of WritableComparable
 - Why comparable?

All values are instances of Writable

Getting Data to the Mapper

Reading Data

Datasets are specified by InputFormats

- InputFormats define input data (e.g. a file, a directory)
- ► InputFormats is a factory for RecordReader objects to extract key-value records from the input source

InputFormats identify partitions of the data that form an InputSplit

- InputSplit is a (reference to a) chunk of the input processed by a single map
 - Largest split is processed first
- Each split is divided into records, and the map processes each record (a key-value pair) in turn
- ► Splits and records are logical, they are not physically bound to a file

The relationship between InputSplit and HDFS blocks

FileInputFormat and Friends

TextInputFormat

Traeats each newline-terminated line of a file as a value

KeyValueTextInputFormat

Maps newline-terminated text lines of "key" SEPARATOR "value"

SequenceFileInputFormat

Binary file of key-value pairs with some additional metadata

SequenceFileAsTextInputFormat

► Same as before but, maps (k.toString(), v.toString())

Filtering File Inputs

 FileInputFormat reads all files out of a specified directory and send them to the mapper

- Delegates filtering this file list to a method subclasses may override
 - Example: create your own "xyzFileInputFormat" to read *.xyz from a directory list

Record Readers

- Each InputFormat provides its own RecordReader implementation
- LineRecordReader
 - Reads a line from a text file

- KeyValueRecordReader
 - Used by KeyValueTextInputFormat

Input Split Size

- FileInputFormat divides large files into chunks
 - Exact size controlled by mapred.min.split.size
- Record readers receive file, offset, and length of chunk
 - Example

On the top of the Crumpetty Tree→
The Quangle Wangle sat,→
But his face you could not see,→
On account of his Beaver Hat.→

- (0, On the top of the Crumpetty Tree) (33, The Quangle Wangle sat,) (57, But his face you could not see,) (89, On account of his Beaver Hat.)
- Custom InputFormat implementations may override split size

Sending Data to Reducers

- Map function receives OutputCollector object
 - ▶ OutputCollector.collect() receives key-value elements

- Any (WritableComparable, Writable) can be used
- By defalut, mapper output type assumed to be the same as the reducer output type

WritableComparator

- Compares WritableComparable data
 - ▶ Will call the WritableComparable.compare() method
 - Can provide fast path for serialized data

Configured through:

JobConf.setOutputValueGroupingComparator()

Partiotioner

- int getPartition(key, value, numPartitions)
 - Outputs the partition number for a given key
 - One partition == all values sent to a single reduce task
- HasPartitioner used by default
 - Uses key.hashCode() to return partion number

JobConf used to set Partitioner implementation

The Reducer

- void reduce(k2 key, Iterator<v2> values, OutputCollector<k3, v3> output, Reporter reporter)
- Keys and values sent to one partition all go to the same reduce task
- Calls are sorted by key
 - "Early" keys are reduced and output before "late" keys

Writing the Output

Writing the Output

- Analogous to InputFormat
- TextOutputFormat writes "key value <newline>" strings to output file
- SequenceFileOutputFormat uses a binary format to pack key-value pairs
- NullOutputFormat discards output

Hadoop MapReduce Features

Developing a MapReduce Application

Preliminaries

Writing a program in MapReduce has a certain flow to it

- Start by writing the map and reduce functions
 - ★ Write unit tests to make sure they do what they should
- Write a driver program to run a job
 - The job can be run from the IDE using a small subset of the data
 - ★ The debugger of the IDE can be used
- Evenutally, you can unleash the job on a cluster
 - ★ Debugging a distributed program is challenging

Once the job is running properly

- Perform standard checks to improve performance
- Perform task profiling

Configuration

Before writing a MapReduce program, we need to set up and cofigure the development environment

- Components in Hadoop are configured with an ad hoc API
- Configuration class is a collection of properties and their values
- Resources can be combined into a configuration

Configuring the IDE

- In the IDE create a new project and add all the JAR files from the top level of the distribution and form the lib directory
- ► For Eclipse there are also available plugins
- Commercial IDE also exist (Karmasphere)

Alternatives

- Switch configurations (local, cluster)
- ► Alternatives (see Cloudera documentation for Ubuntu) is very effective

Local Execution

Use the GenericOptionsParser, Tool and ToolRunner

- These helper classes makes it easy to intervene on job configurations
- These are additional configurations to the core configuration

The run() method

Constructs and configure a JobConf object and launch it

• How many reducers?

- In a local execution, there is a single (eventually none) reducer
- Even by setting a number of reducer larger than one, the option will be ignored

Cluster Execution

- Packaging
- Launching a Job
- The WebUI
- Hadoop Logs
- Running Dependent Jobs, and Oozie

Hadoop Deployments

Setting up a Hadoop Cluster

Cluster deployment

- Private cluster
- Cloud-based cluster
- AWS Elasitc MapReduce

Outlook:

- Cluster specification
 - Hardware
 - Network Topology
- Hadoop Configuration
 - Memory considerations

Cluster Specification

Commodity Hardware

- Commodity ≠ Low-end
 - ★ False economy due to failure rate and maintenance costs
- Commodity ≠ High-end
 - High-end machines perform better, which would imply a smaller cluster
 - A single machine failure would compromise a large fraction of the cluster

A 2010 specification:

- 2 quad-cores
- ▶ 16-24 GB ECC RAM
- 4 × 1 TB SATA disks⁶
- Gigabit Ethernet

Cluster Specification

• Example:

- Assume your data grows by 1 TB per week
- Assume you have three-way replication in HDFS
- ightarrow You need additional 3TB of raw storage per week
- Allow for some overhead (temporary files, logs)
- → This is a new machine per week

• How to dimension a cluster?

- Obviously, you won't buy a machine per week!!
- ► The idea is that the above back-of-the-envelope calculation is that you can project over a 2 year life-time of your system
- → You would need a 100-machine cluster

• Where should you put the various components?

Small cluster: NameNode and JobTracker can be colocated

Large cluster: requires more RAM at the NameNode

Cluster Specification

Should we use 64-bit or 32-bit machines?

- NameNode should run on a 64-bit machine: this avoids the 3GB Java heap size limit on 32-bit machines
- Other components should run on 32-bit machines to avoid the memory overhead of large pointers

What's the role of Java?

- Recent releases (Java6) implement some optimization to eliminate large pointer overhead
- → A cluster of 64-bit machines has no downside

Cluster Specification: Network Topology

Cluster Specification: Network Topology

Two-level network topology

Switch redundancy is not shown in the figure

Typical configuration

- 30-40 servers per rack
- 1 GB switch per rack
- Core switch or router with 1GB or better

Features

- Aggregate bandwidth between nodes on the same rack is much larger than for nodes on different racks
- Rack awareness
 - Hadoop should know the cluster topology
 - ★ Benefits both HDFS (data placement) and MapReduce (locality)

Hadoop Configuration

- There are a handful of files for controlling the operation of an Hadoop Cluster
 - See next slide for a summary table
- Managing the configuration across several machines
 - All machines of an Hadoop cluster must be in sync!
 - What happens if you dispatch an update and some machines are down?
 - What happens when you add (new) machines to your cluster?
 - What if you need to patch MapReduce?
- Common practice: use configuration management tools
 - Chef, Puppet, ...
 - Declarative language to specify configurations
 - Allow also to install software

Hadoop Configuration

Filename	Format	Description
hadoop-env.sh	Bash script	Environment variables that are used in the scripts to run Hadoop.
core-site.xml	Hadoop configuration XML	I/O settings that are common to HDFS and MapReduce.
hdfs-site.xml	Hadoop configuration XML	Namenode, the secondary namenode, and the datanodes.
mapred-site.xml	Hadoop configuration XML	Jobtracker, and the tasktrackers.
masters	Plain text	A list of machines that each run a secondary namenode.
slaves	Plain text	A list of machines that each run a datanode and a tasktracker.

Table: Hadoop Configuration Files

Hadoop Configuration: memory utilization

- Hadoop uses a lot of memory
 - Default values, for a typical cluster configuration
 - DataNode: 1 GBTaskTracker: 1 GB
 - ★ Child JVM map task: 2 × 200MB
 ★ Child JVM reduce task: 2 × 200MB
- All the moving parts of Hadoop (HDFS and MapReduce) can be individually configured
 - This is true for cluster configuration but also for job specific configurations
- Hadoop is fast when using RAM
 - Generally, MapReduce Jobs are not CPU-bound
 - Avoid I/O on disk as much as you can
 - Minimize network traffic
 - Customize the partitioner
 - **★** Use compression (→ decompression is in RAM)

Elephants in the cloud!

- May organization run Hadoop in private clusters
 - Pros and cons

- Cloud based Hadoop installations (Amazon biased)
 - Use Cloudera + Whirr
 - Use Elastic MapReduce

Hadoop on EC2

Launch instances of a cluster on demand, paying by hour

 CPU, in general bandwidth is used from within a datacenter, hence it's free

Apache Whirr project

- Launch, terminate, modify a running cluster
- Requires AWS credentials

Example

- ► Launch a cluster test-hadoop-cluster, with one master node (JobTracker and NameNode) and 5 worker nodes (DataNodes and TaskTrackers)
- \rightarrow hadoop-ec2 launch-cluster test-hadoop-cluster 5
 - See project webpage and Chapter 9, page 290 [11]

AWS Elastic MapReduce

Hadoop as a service

- Amazon handles everything, which becomes transparent
- How this is done remains a mistery

Focus on What not How

- All you need to do is to package a MapReduce Job in a JAR and upload it using a Web Interface
- Other Jobs are available: python, pig, hive, ...
- Test your jobs locally!!!

References I

- [1] Adversarial information retrieval workshop.
- [2] Michele Banko and Eric Brill. Scaling to very very large corpora for natural language disambiguation.
 - In Proc. of the 39th Annual Meeting of the Association for Computational Linguistic (ACL), 2001.
- [3] Luiz Andre Barroso and Urs Holzle.

 The datacebter as a computer: An introduction to the design of warehouse-scale machines.
 - Morgan & Claypool Publishers, 2009.
- [4] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside pagerank. In ACM Transactions on Internet Technology, 2005.

References II

- [5] James Hamilton.
 - Cooperative expendable micro-slice servers (cems): Low cost, low power servers for internet-scale services.

 In Proc. of the 4th Biennal Conference on Innovative Data
 - In Proc. of the 4th Biennal Conference on Innovative Data Systems Research (CIDR), 2009.
- [6] Tony Hey, Stewart Tansley, and Kristin Tolle. The fourth paradigm: Data-intensive scientific discovery. Microsoft Research, 2009.
- [7] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii.
 - Filtering: a method for solving graph problems in mapreduce. In *Proc. of SPAA*, 2011.

References III

[8] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification laws, shrinking diamters and possible explanations.

In Proc. of SIGKDD, 2005.

[9] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: Bringin order to the web. In *Stanford Digital Library Working Paper*, 1999.

[10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The hadoop distributed file system.

In Proc. of the 26th IEEE Symposium on Massive Storage Systems and Technologies (MSST). IEEE, 2010.

References IV

[11] Tom White. *Hadoop, The Definitive Guide*.

O'Reilly, Yahoo, 2010.

