

머신러닝 딥러닝 핵심 개념

이승준

FinanceData.KR 2021-2024

Scalar Vector Matrix Tensor $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 5 & 4 \\ 1 & 7 & 5 & 4 \end{bmatrix}$

Perceptron

https://en.wikipedia.org/wiki/Perceptron

XOR Problem

MLP can solve XOR

$\sigma(20^{*}0 + 20^{*}0 - 10) \approx 0$	$\sigma (-20*0 - 20*0 + 30) \approx 1$	$\sigma (20^*0 + 20^*1 - 30) \approx 0$
$\sigma(20^*1 + 20^*1 - 10) \approx 1$	$\sigma (-20*1 - 20*1 + 30) \approx 0$	$\sigma (20*1 + 20*0 - 30) \approx 0$
$\sigma(20^*0 + 20^*1 - 10) \approx 1$	$\sigma (-20*0 - 20*1 + 30) \approx 1$	$\sigma (20^*1 + 20^*1 - 30) \approx 1$
$\sigma(20*1 + 20*0 - 10) \approx 1$	$\sigma (-20*1 - 20*0 + 30) \approx 1$	$\sigma (20^*1 + 20^*1 - 30) \approx 1$

	Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
	Single-Layer	Half Plane Bounded By Hyperplane	A B A	B	
	Two-Layer	Convex Open Or Closed Regions	A B A	B	
2	Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	A B A	B	10

Representation Learning

discover the representations needed for feature detection or classification from raw data (=**Feature learning**)

Loss, Error, Cost

- y: 실제값, \hat{y} : 예측치
- $(y-\hat{y})$: 실제값과 예측치의 차이

- Error population
- Residual sample

Model

• y = a + bx : 우리의 모델 (a,b: 파라미터)

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

H(x) = Wx + b

Cost function

$$H(x) = Wx + b$$

$$cost(W) = rac{1}{m} \sum_{i=1}^m \left(Wx_i - y_i
ight)^2$$

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Sir Francis Galton (1822 ~ 1911)

$$H(x) = Wx + b$$

$$cost(W) = rac{1}{m} \sum_{i=1}^m \left(Wx_i - y_i
ight)^2$$

 $minimize\ cost(W,b)$ Goal:

 $h_{\theta}(x) = \theta_0 + \theta_1 x$ Hypothesis:

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

 $\underset{\theta_0,\theta_1}{\text{minimize}} \ J(\theta_0,\theta_1)$ Goal:

Gradient descent

$$cost(W,b) = rac{1}{2m} \sum_{i=1}^m \left(H(x_i) - y_i
ight)^2$$

$$W:=W-lpharac{\partial}{\partial W}cost(W)$$

25 25 20 15 10

0.0

Learning rate

Too small: converge very slowly

Too big: overshoot and even diverge

Reduce size over time

http://bit.ly/2QAKrPK

Any local minimum is a global minimum

Multiple local minima may exist

Back propagation

Vanishing Gradient

Sigmoid Problems

- 1. saturated: Gradient Kill
- 2. Not zero-centered: Slow Performance

ReLU (Rectified Linear Unit)

Epoch, Batch size, Iterations

Train, Test, Validation

Train-Test Split

Validation Split

Label and Class Probability

Label	Description	Examples
0	T-Shirt/Top	
1	Trouser	
2	Pullover	
3	Dress	
4	Coat	
5	Sandals	JAMANA JAMANA JAMANA
6	Shirt	
7	Sneaker	
8	Bag	
9	Ankle boots	

Softmax Cross-Entropy

Softmax

Cross-Entropy

Thanks

FinanceData.KR 2020