

Internet of Things

Senior Design Project Course

Communication - Part 1

MCU to Gateway

Lecturer: Avesta Sasan

University of California Davis

Lets Get Started:

Focus of Today's Lecture:

Image source: http://www.cchc.cl/informacion-a-la-comunidad/industria-de-la-construccion/personaje/

Why Using Gateway?

Lowering Power

- Sensor sends the data to a gateway in short range (requires lower power)
- gate way send the data to cloud.

Supporting varying to/from sensor communication protocols

- Each sensor may have a different protocol.
- Gateway translate it to IP

Filtering the data

- Usually small fraction of data is usable.
- Filtering could be done at gateways.
 (more resources than MCU, reduce communication size, reduce cloud computation load)

4. Reducing latency

 Many IoT devices too small to do the processing themselves, and it take too long to wait for cloud. Gateway (an intermediate computation layer) remedy this.

Improving security

- Can afford to make data transmission through gateway more secure.
- Prevent too many lightly secured sensors to be connected to internet.

What is a Protocol

Language, Semantics, Grammar, Loudness, Noise, Reliability (repetition) Protocols, Interface, Sockets, Signal Strength, Noise, Error Recovery (Re-transmission)

Gateway and Protocol Translation

- IoT devices can connect to Internet using Internet Protocol (IP)
 Problem:
 - IP stack is very complex and demands a large amount of power and memory from the connecting devices.
 - Wired, hence mobility is limited!
- Gateway removes the need for direct connection to internet.
 - IoT devices can also connect locally through non-IP networks, which consume less power and offer larger mobility, and connect to the Internet via a smart gateway. It also enhances mobility of IoT devices.

Protocol Interfacing IoT Objects

Now lets look at the communication between gateway and IoT devices.

Non-IP

Gateway Supporting Various Protocols

Wireless Comm. To/From Gateways

- Wireless communication technologies used for:
 - Connecting the IoT device as local networks
 - Connecting these local networks (or individual IoT devices) to the Internet
- Some of popular wireless technologies are:

Near Field Communication (**NFC**)

Bluetooth

ZigBee

Wireless Fidelity (WiFi)

Cellular network

...

[1] F. Samie, L. Bauer and J. Henkel, "IoT technologies for embedded computing: A survey," 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, 2016, pp. 1-10.

Near Field Communication (NFC)

- Short-range (4~20 cm)
- Low-speed connection with simple setup
 - supported data rates: 106, 212 or 424 kbit/s.
 - operates at 13.56 MHz on ISO/IEC 18000-3 air interface.
- Can be used to bootstrap more capable wireless connections
- Has a tag that can contain small amount of data
 - can be read-only
 - can be re-writable
- Popular current usage:
 - contactless payment systems
 - sharing contacts, photos, videos or files

Near Field Communication (NFC)

NFC devices are Full-Duplex

able to receive and transmit data at the same time.

Modes of operation:

Passive

- the initiator device provides a carrier field.
- the target device answers by modulating the existing field.
- the target device may draw its operating power from the initiatorprovided electromagnetic field, making the target device a <u>transponder</u>.

Active

- Both initiator and target device communicate by alternately generating their own fields.
- A device deactivates its RF field while it is waiting for data.
- both devices typically have power supplies.

NFC Security Problems!

Eavesdrop:
/'ēvz dräp/
To secretly listen to a conversation

Device A

No protection against eavesdropping

- Can be vulnerable to data modifications
- An attacker can typically eavesdrop within
 - 10 m for active devices
 - 1 m for passive devices

Relay attacks are feasible

- The adversary forwards the request of the reader to the victim
- Relays its answer to the reader in real time pretending to be the owner of the victim's smart card

Device B

Using NFC with Arduino

- Read and write on NFC tag using Arduino
- You can add NFC capabilities by adding a shield to Arduino:
 - Adafruit PN532 RFID/NFC Shield

```
#include <Wire.h>
#include <PN532_I2C.h>
#include <PN532.h> // The following files are included in the libraries Installed
#include <NfcAdapter.h>

PN532_I2C pn532_i2c(Wire);
NfcAdapter nfc = NfcAdapter(pn532_i2c); // Indicates the Shield you are using
```

```
void setup(void) {
   Serial.begin(9600);
   Serial.println("NFC TAG READER"); // Header used when using the serial monitor
   nfc.begin();
}
```

Using NFC with Arduino

```
void loop(void) {
 Serial.println("\nScan your NFC tag on the NFC Shield\n"); // Command so that you an others
will know what to do
  if (nfc.tagPresent())
   NfcTag tag = nfc.read();
   Serial.println(tag.getTagType());
   Serial.print("UID: "); Serial.println(tag.getUidString()); // Retrieves the Unique Identific
ation from your tag
   if (tag.hasNdefMessage()) // If your tag has a message
     NdefMessage message = tag.getNdefMessage();
     Serial.print("\nThis Message in this Tag is ");
     Serial.print(message.getRecordCount());
     Serial.print(" NFC Tag Record");
      if (message.getRecordCount() != 1) {
       Serial.print("s");
     Serial.println(".");
     // If you have more than 1 Message then it wil cycle through them
      int recordCount = message.getRecordCount();
      for (int i = 0; i < recordCount; i++)</pre>
       Serial.print("\nNDEF Record ");Serial.println(i+1);
       NdefRecord record = message.getRecord(i);
        int payloadLength = record.getPayloadLength();
       byte payload[payloadLength];
        record.getPayload(payload);
       String payloadAsString = ""; // Processes the message as a string vs as a HEX value
        for (int c = 0; c < payloadLength; c++) {</pre>
          payloadAsString += (char)payload[c];
       Serial.print(" Information (as String): ");
       Serial.println(payloadAsString);
       String uid = record.getId();
       if (uid != "") {
          Serial.print(" ID: "); Serial.println(uid); // Prints the Unique Identification of th
 delay(10000);
```

Bluetooth

Bluetooth

- Technology designed and marketed by the <u>Bluetooth Special Interest</u> <u>Group</u> (SIG)
- A wireless technology standard for exchange of data over short distances.
- Uses short-wavelength Ultra High Frequency (UHF) radio waves in the industrial, scientific and medical (ISM) band from 2.4 to 2.485 GHz.
 - ISM is globally unlicensed (but not unregulated) band.
- Invented by telecom vendor <u>Ericsson in 1994</u>
- managed by the <u>Bluetooth Special Interest Group (SIG)</u>
- Bluetooth is a packet-based protocol.
- Master slave structure
- Multiple flavors:
 - Classic Bluetooth
 - Bluetooth Low Energy (BLE)
 - Bluetooth 5.0 (BT v5)

Bluetooth Flavors

Classic Bluetooth

- High throughput and bandwidth
 - Suitable for data stream applications
- Limitations
 - Limited number of nodes in the network (up to seven slaves)

- A.K.A. Bluetooth smart
- Originally introduced under the name Wibree by Nokia in 2006
- Short-rage, low bandwidth, and low latency
- Lower power consumption
- Lower setup time
- Supports unlimited number of nodes

Bluetooth Classic vs BLE

Choose wisely!

	Bluetooth Classic	Bluetooth Low Energy
Range (theoretical)	100 m	> 100 m
Power consumption	1 W	0.01 to 0.5 W
Peak current consumption	<30 mA	<15 mA
Data rate	1-3 Mbit/s	1 Mbit/s
Radio Frequencies	2.4 GHz	2.4 GHz
Focus	Wireless protocol for short range data exchange	Low power consumption – periodic exchange of small amounts of data
Use Cases	Wireless speakers, headsets	Wearable devices, smart pay systems

Bluetooth Flavors

Bluetooth 5.0 (BT v5)

- Focus on IoT
- □ The Bluetooth SIG officially unveiled Bluetooth 5 on June 16, 2016
 - Iphone 8, Samsung Galaxy S8, Xpheria XZ (sony) first to lunch with BT v5.0
- Doubles the speed of low energy connections (2MBps)
- Quadruple the range

Bluetooth 5

- Forward Error Correction (FEC)
- Eight-fold increase in data broadcasting
- Today: BT v5.3 (as of July 2021)

Bluetooth with Arduino

- Three connectivity options:
 - Arduino BT: an MCU with embedded Bluetooth capabilities.
 - Add a Bluetooth shield.
 - Connect a standalone BLE module
 - Connect using UART, I2C, SPI, ...
- (1) Example code (control Arduino with BLE)
- (2) Example code

