

A. Course Handout

Institute/School/College Name	Chitkara University Institute of Engineering & Technology					
Department/Centre Name	Department of Computer Science & Engineering					
Programme Name	Bachelor of Engineering- Computer Science & Engineering					
	(Artificial Intelligence)					
Course Name	Supervised and	Session	2024-25			
	Unsupervised Learning					
Course Code	22AI010	Semester/Batch	4 th /2023			
Lecture/Tutorial (Per Week)	2-0-4	Course Credits	4			
Course Coordinator Name	Dr. Harshvardhan					

1. Objective of the Course:

The main objectives of the courses are:

- Use Supervised and Unsupervised Learning algorithms to make predictions.
- Use Regression and Classification algorithms for predicting continuous and discrete values.
- Learn best practices for real world data sets.
- Learn how to use sklearn library for pre-processing the data.
- Understanding important concepts which helps to improve model more.
- Understand the full product workflow for the machine learning lifecycle.

2. Course Learning Outcome

After completing the course, the student will be able to: -

of it in it in	Understand the fundamental concepts and principles of machine learning, including the types of problems to can solve and the tools and techniques used to implement ML algorithms. Develop the skills of pre-process and clean the data for ML tasks, including handling missing values or corrupted data, selecting relevant features, and caling and normalizing the data.	PO3, PO4, PO5, PO6	K2 K3	Factual, Conceptual Fundamental, Conceptual	10
it im im im it im im im	t can solve and the tools and techniques used to mplement ML algorithms. Develop the skills of pre-process and clean the data for ML tasks, including handling missing values or orrupted data, selecting relevant features, and	PO5, PO6 PO1, PO2, PO3, PO4,	К3	Fundamental,	10
CLO02 D fo	mplement ML algorithms. Develop the skills of pre-process and clean the data for ML tasks, including handling missing values or orrupted data, selecting relevant features, and	PO1, PO2, PO3, PO4,	К3	1	10
CLO02 D	Develop the skills of pre-process and clean the data or ML tasks, including handling missing values or orrupted data, selecting relevant features, and	PO3, PO4,	K3	1	10
fo	or ML tasks, including handling missing values or orrupted data, selecting relevant features, and	PO3, PO4,	K3	1	10
	orrupted data, selecting relevant features, and	/ /		Conceptual	
co		PO5, PO6		1 1 1 1 1 1 1 1 1	
	caling and normalizing the data.				
CLO03 B	Become proficient in using popular ML libraries and	PO1, PO2,	K3	Conceptual,	16
fr	rameworks such as sklearn to build ML models.	PO3, PO4,		Procedural	
		PO5, PO6			
CLO04 U	Inderstand how to evaluate the performance of ML	PO1, PO2,	K3	Conceptual,	16
m	nodels, including common metrics and methods for	PO3, PO4,		Procedural	
m	nodel selection and hyper-parameter tuning	PO5, PO6			
CL005 U	Inderstand the ethical and societal implications of	PO1, PO2,	K3	Conceptual,	14
M	AL, including issues of bias, privacy, and	PO3, PO4,		Procedural	
tra	ransparency.	PO5, PO6,			
		PO7, PO8, PO9			
Total Conta	act Hours				60

CLO-PO-PSO Mapping grid |Program outcomes (POs) and Program Specific Outcomes (PSOs) are available as a part of Academic Program Guide

Course	P01	P02	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PSO1	PSO2	PSO3
Learning															
Outcomes															
CLO1	Н	M	L	M	L	L							M		M
CLO2	Н	L	M	M	Н	M								M	Н
CLO3	Н	L	L	M	Н	M								Н	M
CLO4	Н	M	M	M	Н	M							Н		
CLO5	Н	Н	M	M	M	Н	L	Н	M				Н	L	Н

^{*}H=High, M=Medium, L=Low

3. ERISE Grid Mapping

Feature Enablement	Level (1-5, 5 being highest)
Entrepreneurship	3
Research	5
Innovation	4
Skills	4
Employability	4

4. Recommended Books (Reference Books/Textbooks):

B01: "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien (2nd edition)

B02: Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2nd edition)

B03: Introduction to Machine Learning" by Alpaydin (4th edition)

B04: The Elements of Statistical Learning" by Trevor Hastie, Robert Tibshirani (2nd edition)

B05: Pattern Classification" by Duda and Hart (2nd edition)

5. Other readings & relevant websites:

S. No.	Link of Journals, Magazines, websites and Research Papers
1	https://www.analyticsvidhya.com/machine-learning/
2	https://towardsdatascience.com/machine-learning/home
3	https://www.geeksforgeeks.org/machine-learning/
4	https://www.javatpoint.com/machine-learning
5	https://medium.com/@randylaosat/a-beginners-guide-to-machine-learning-dfadc19f6caf

6. Recommended Tools and Platforms

Anaconda, Jupyter Notebook, Pycharm, VSCode, Google Colab

7. Course Plan:

a. Lecture Plan

Lecture Number	Topics	Recommended Books
1-3	Introduction to Machine Learning: Basic Terminology, Types of Machine Learning, Supervised, Unsupervised, and Semi-Supervised Learning.	B02, B03
4-7	Revision - Python, Numpy, Pandas, Matplotlib (Prerequisite)	B02, B03

8-9	Linear Regression - Linear Regression Ideal, Best Line, Concept, Best Line Metric, Best Line Math Metric	B01, B03				
10-12	Linear Regression - Loss functions, Loss function minimize, Square Function, MSE/RMSE, Assumptions of Linear Regression	B02, B03				
13-14	Introduction to Gradient Descent, Stochastic Gradient Descent, Mini Batch Gradient Descent.	B04, B05				
15-17	Multiple Linear Regression, Polynomial Regression using case studies.	B02, B03				
	Formative Assessment-1 (1-17 lectures)					
18-20	Classification - Evaluation Metric (Confusion metric, Precision, Recall, F1-Score), Loss function vs Cost Function.	B02, B04				
21-24	Classification - Logistic Regression, Step function, Sigmoid function, Loss Function, Optimization technique for loss function	B05, B03				
Sessional Test-1 (1-24 lectures)						
25-26	Feature Selection, Bias-Variance Trade offs, Regularization techniques	B02, B03				
27-30	Augmentations, K-Fold Cross Validation, Grid Search Cv/Random Search	B01, B02				
31-32	Classification and Regression with KNN.	B03, B04				
33-36	KNN Complexity and Overfitting vs Underfitting.	B03, B05				
, II	Formative Assessment-2 (18-36 lectures)					
37-38	Sklearn Documentation and cross_val_score	B02, B03				
39-41	Imbalanced Dataset - Oversampling, Downsampling, Weighting classes	B01, B03				
42-45	How to Handle Categorical and missing values in a dataset, Feature Importance, Collinearity, Hyper-parameter Tuning	B02, B03				
46-47	Dimensionality Reduction - PCA, TSNE	B02, B04				
48-50	Dimensionality Reduction - Applications and use case studies	B01, B03				
	Sessional Test-2 (25-50 lectures)					
51-54	PCA and SVD it's working, Eigen Values, Eigen vectors, Covariance matrix.	B02, B03				
55-56	Unsupervised Learning Algorithm - K-Means Clustering, Elbow Method	B03, B05				
56-60	Classification and Regression with KNN, SVM, Decision Trees, Random Forest	B02, B03				
	END-TERM EXAM (FULL SYLLABUS)					

8. <u>Delivery/Instructional Resources</u>

Lecture No.	Topics	PPT (Link of ppts on the central server)	Industry Expert Session (If yes: link of ppts on the central server)	Web References	Audio- Video
1-3	Introduction to Machine Learning: Basic Terminology, Types of Machine Learning, Supervise Learning, Unsupervised Learning, Semi- Supervised Learning.				www.you tube.com/ watch?v= jGwO_U gTS7I&li st=PLoR OMvodv4 rMiGQp3 WXShtM GgzqpfVf bU
4-7	Revision - Python, Numpy, Pandas, Matplotlib (Pre-requisite)			https://towardsdatascien ce.com/the-data- science-trilogy-numpy- pandas-and-matplotlib- basics-42192b89e26	
8-9	Linear Regression - Linear Regression Ideal, Best Line, Concept, Best Line Metric, Best Line Math Metric			https://www.analyticsvi dhya.com/blog/2021/10/ everything-you-need-to- know-about-linear- regression/	
10-12	Linear Regression - Loss functions, Loss function minimize, Square Function, MSE/RMSE, Assumptions of Linear Regression			https://towardsdatascien ce.com/evaluation- metrics-model- selection-in-linear- regression- 73c7573208be	
13-14	Introduction to Gradient Descent, Stochastic Gradient Descent, Mini Batch Gradient Descent.			https://www.javatpoint. com/gradient-descent- in-machine-learning	
15-17	Classification - Logistic Regression, Step function, Sigmoid function, Loss Function, Optimization technique for loss function			https://www.javatpoint. com/gradient-descent- in-machine-learning	
18-20	Classification - Evaluation Metric (Confusion metric, Precision, Recall, F1-Score), Loss function vs Cost Function.			https://medium.com/@n andinisekar27/logistic- regression-overview- and-its-error-metrics- 8b54512ca39f	
21-24	Multiple Linear Regression, Polynomial Regression using case studies.			https://towardsdatascien ce.com/polynomial- regression- bbe8b9d97491	

25-26	Feature Selection, Bias-Variance Trade offs, Regularization techniques		https://towardsdatascien ce.com/regularization- the-path-to-bias- variance-trade-off- b7a7088b4577	
27-30	Augmentations, K-Fold Cross Validation, Grid Search CV/Random Search		https://towardsdatascien ce.com/regularization- the-path-to-bias- variance-trade-off- b7a7088b4577	
31-32	Classification and Regression with KNN.		https://www.javatpoint. com/k-nearest- neighbor-algorithm-for- machine-learning	
33-36	KNN Complexity and Overfitting vs Underfitting.		https://www.geeksforge eks.org/underfitting- and-overfitting-in- machine-learning/	
37-38	Sklearn Documentation and cross_val_score		https://scikit- learn.org/stable/module s/generated/sklearn.mod el_selection.cross_val_s core.html	
39-41	Imbalanced Dataset - Oversampling, Downsampling, Weighting classes		https://machinelearning mastery.com/random- oversampling-and- undersampling-for- imbalanced- classification/	
42-45	How to Handle Categorical and missing values in a dataset, Feature Importance, Collinearity, Hyper- parameter Tuning		https://towardsdatascien ce.com/supervised- machine-learning- feature-engineering- and-hyper-parameter- tuning-a3da583dd7b9	
46-47	Dimensionality Reduction - PCA, TSNE		https://www.geeksforge eks.org/difference- between-pca-vs-t-sne/	
48-50	Dimensionality Reduction - Applications and use case studies		https://www.geeksforge eks.org/dimensionality- reduction/	
51-54	PCA and SVD it's working, Eigen Values, Eigen vectors, Covariance matrix.		https://medium.com/@n otsokarda/pca-vs-svd- simplified-32c5c753998	
55-56	Unsupervised Learning Algorithm - K-Means Clustering, Elbow Method			https://yo utu.be/EIt IUEPCIz M?si=IxU iZm2PsZ FbDebU

Forest	56-60	Classification and Regression with KNN, SVM, Decision Trees, Random Forest				https://w ww.youtu be.com/w atch?v=y N7ypxC7 838
--------	-------	--	--	--	--	---

9. Action plan for different types of learners

Slow Learners	Average Learners	Fast Learners
 Multiple Remedial Extra Classes Encouragement for improvement using Peer Tutoring 	 Doubt-sessions Pre-coded algorithms to illustrate concepts and notions E-notes and E-exercises to read in addition to pedagogic material 	 More Practice assignments on real life problems Engaging students to hold hands of slow learners by creating a Peer Tutoring Group Participation in Hackathons, competitions.

10. Evaluation Scheme & Components:

Evaluation Component	Type of Component	No. of Assessments	Weightage of Component
Component 1	Formative Assessments (FAs)	02*	20%
Component 2	Sessional Tests (STs)	02**	30%
Component 3	End Term Examinations	01	50%
Г	100%		

^{*}Out of 02 FAs, the ERP system automatically picks the best 01 FA marks for evaluation of the FAs as final marks.

11. Details of Evaluation Components:

Evaluation Component	Description	Syllabus Covered (%)	Timeline of Examination	Weightage (%)	
Communit 01	Formative Assessment 01	Up to 28%	Week 6	200/	
Component 01	Formative Assessment 02	29%-50%	Week 14	20%	
~	Component 02		Week 7	200/	
Component 02			Week 15	30%	
Component 03	End Term Examination*	100%	To be notified by Dean Examination	50%	

^{*} As per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination

^{**}ST1 and ST2 average will be taken for the total ST marks.

12. Evaluation Components

Type of Assessment	Timeline of Conduct	Total Marks	Question Paper Format			
			1 Mark MCQ	2 Mark MCQ/2 Marks Question	5 Mark Question	10 Mark Question
Formative Assessment 1	Week 6	20	20	0	0	0
Formative Assessment 2	Week 7	20	20	0	0	0
Sessional Test 1	Week 14	30	20	5	0	0
Sessional Test 2	Week 15	30	20	5	0	0
End Term Examination		50	10	5	4	1

B. Syllabus of the Course:

Subject: Supervised and Unsupervised Learning	Subject Code: 22AI010
---	-----------------------

S. No.	Topic (s)		Weightage %
1-3	Introduction to Machine Learning: Basic Terminology, Types of Machine Learning, Supervise Learning, Unsupervised Learning, Semi-Supervised Learning.		10%
4-10	Revision - Python, Numpy, Pandas, Matplotlib (Pre-requisite)	7	5%
11-20	Linear Regression - Loss functions, Loss function minimize, Square Function, MSE/RMSE, Assumptions of Linear Regression, Introduction to Gradient Descent, Stochastic Gradient Descent, Mini Batch Gradient Descent. Classification - Logistic Regression, Step function, Sigmoid function, Loss Function, Optimization technique for loss function, Classification - Evaluation Metric (Confusion metric, Precision, Recall, F1-Score), Loss function vs Cost Function.	10	20%
21-30	Multiple Linear Regression, Polynomial Regression using case studies. Feature Selection, Bias-Variance Trade offs, Regularization techniques, Augmentations-Fold Cross Validation, Grid Search Cv/Random Search		20%
31-43	Classification and Regression with KNN. KNN Complexity and Over fitting vs Under fitting. Sklearn Documentation and cross_val_score Imbalanced Dataset - Oversampling, Downsampling, Weighting classes		20%
44-54	How to Handle Categorical and missing values in a dataset, Feature Importance, Collinearity, Hyper-parameter Tuning, Dimensionality Reduction - PCA, TSNE, Dimensionality Reduction - Applications and use case studies. PCA and SVD it's working, Eigen Values, Eigen vectors, Covariance matrix.		20%

Course Plan

55-60	Unsupervised Learning Algorithm - K-Means Clustering, Elbow Method, Classification and Regression with KNN, SVM, Decision Trees, Random Forest	6	5%	
-------	--	---	----	--

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. Harshvardhan	
Head Academic Delivery	Dr. Kamal Deep Garg	
Dean (CSE-AI)	Dr. Sushil Kumar Narang	
Date	January 07, 2025	