# Breaking and Fixing Cryptophia's Short Combiner

Bart Mennink and Bart Preneel

KU Leuven



CANS 2014 — October 22, 2014

# Cryptographic Hash Functions



# Classical Security Requirements



## Hash Function Combiners



## Hash Function Combiners



- Extra security barrier: secure even if one hash function is broken
- Applications in TLS and SSL

#### Hash Function Combiners



- Extra security barrier: secure even if one hash function is broken
- Applications in TLS and SSL

$$C_{\text{concat}}^{H_1, H_2}(M) = H_1(M) \parallel H_2(M)$$
  
 $C_{\text{xor}}^{H_1, H_2}(M) = H_1(M) \oplus H_2(M)$ 

#### Robustness

ullet Attack on  $C^{H_1,H_2}$  can be reduced to  $H_1$  and  $H_2$ 

#### Robustness

ullet Attack on  $C^{H_1,H_2}$  can be reduced to  $H_1$  and  $H_2$ 

|                                                    | coll | sec | pre | prf |
|----------------------------------------------------|------|-----|-----|-----|
| $C_{\text{concat}}^{H_1, H_2} = H_1 \parallel H_2$ | yes  | yes | yes | no  |
|                                                    |      |     |     |     |

#### Robustness

ullet Attack on  $C^{H_1,H_2}$  can be reduced to  $H_1$  and  $H_2$ 

|                                                    | coll | sec | pre | prf |
|----------------------------------------------------|------|-----|-----|-----|
| $C_{\text{concat}}^{H_1, H_2} = H_1 \parallel H_2$ | yes  | yes | yes | no  |
| $C_{\rm xor}^{H_1, H_2} = H_1 \oplus H_2$          | no   | no  | no  | yes |

#### Robustness

ullet Attack on  $C^{H_1,H_2}$  can be reduced to  $H_1$  and  $H_2$ 

|                                                    | coll | sec | pre | prf |
|----------------------------------------------------|------|-----|-----|-----|
| $C_{\text{concat}}^{H_1, H_2} = H_1 \parallel H_2$ | yes  | yes | yes | no  |
| $C_{\rm xor}^{H_1, H_2} = H_1 \oplus H_2$          | no   | no  | no  | yes |

## Long Output

- ullet Collision robustness:  $pprox 2n ext{-bit output [Pietrzak-C08]}$
- "Robustness" requires explicit reduction

- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$

- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- · Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$

 $\mathcal{A}_1$ 

 $\mathcal{A}_2$ 

- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$



- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$



- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$



- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$



- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$



- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$



- $\bullet$   $H_1, H_2$  based on random oracle
- Discards need of explicit reduction
- Combines well with indifferentiability framework

$$C^{H_1,H_2}: \{0,1\}^{\kappa} \times \{0,1\}^* \to \{0,1\}^n$$



#### Ideal Combiner Model

#### $C_{\rm concat}$ is secure

•  $H_1 = \mathcal{R}$  or  $H_2 = \mathcal{R}$ 

#### $C_{\rm xor}$ is insecure

• If  $\mathcal{A}_1$  chooses  $H^{\mathcal{R}}=\mathcal{R}$ , we have  $C^{H_1,H_2}_{\mathrm{xor}}(M)=0$ 

|                                                    | coll | sec | pre |
|----------------------------------------------------|------|-----|-----|
| $C_{\text{concat}}^{H_1, H_2} = H_1 \parallel H_2$ | yes  | yes | yes |
| $C_{\mathrm{xor}}^{H_1,H_2} = H_1 \oplus H_2$      | no   | no  | no  |

#### Ideal Combiner Model

#### $C_{\mathrm{concat}}$ is secure

•  $H_1 = \mathcal{R}$  or  $H_2 = \mathcal{R}$ 

#### $C_{\rm xor}$ is insecure

• If  $\mathcal{A}_1$  chooses  $H^{\mathcal{R}}=\mathcal{R}$ , we have  $C^{H_1,H_2}_{\mathrm{xor}}(M)=0$ 

|                                                    | coll | sec | pre |
|----------------------------------------------------|------|-----|-----|
| $C_{\text{concat}}^{H_1, H_2} = H_1 \parallel H_2$ | yes  | yes | yes |
| $C_{\mathrm{xor}}^{H_1, H_2} = H_1 \oplus H_2$     | no   | no  | no  |

Can we build secure "short combiner"?

$$C_{\rm mit}^{H_1,H_2}(k,M) =$$

$$C_{
m mit}^{H_1,H_2}(k,M) =$$
  $k=(k_1,\ldots,k_6)$  is a fixed key

$$C_{ ext{mit}}^{H_1,H_2}(k,M)=$$
  $k=(k_1,\ldots,k_6)$  is a fixed key  $m_1\|\cdots\|m_\ell=M\|\mathsf{pad}(M)$ 

$$\begin{split} C_{\mathrm{mit}}^{H_1,H_2}(k,M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k &= (k_1,\ldots,k_6) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathsf{pad}(M) \end{split}$$

$$\begin{split} C_{\mathrm{mit}}^{H_1,H_2}(k,M) &= H_1\Big(\tilde{m}_1^1\| \cdots \| \tilde{m}_\ell^1 \Big) \oplus H_2\Big(\tilde{m}_1^2\| \cdots \| \tilde{m}_\ell^2 \Big) \\ k &= (k_1,\dots,k_6) \text{ is a fixed key} \\ m_1\| \cdots \| m_\ell &= M \| \mathsf{pad}(M) \\ \tilde{m}_j^1 &= H_1(1 \parallel m_j \oplus k_1) \oplus m_j \oplus k_2 \oplus H_2(1 \parallel m_j \oplus k_3) \quad (\forall j) \end{split}$$

$$\begin{split} C_{\mathrm{mit}}^{H_1,H_2}(k,M) &= H_1\Big(\tilde{m}_1^1\| \cdots \| \tilde{m}_\ell^1 \Big) \oplus H_2\Big(\tilde{m}_1^2\| \cdots \| \tilde{m}_\ell^2 \Big) \\ k &= (k_1,\ldots,k_6) \text{ is a fixed key} \\ m_1\| \cdots \| m_\ell &= M \| \mathsf{pad}(M) \\ \tilde{m}_j^1 &= H_1(1 \parallel m_j \oplus k_1) \oplus m_j \oplus k_2 \oplus H_2(1 \parallel m_j \oplus k_3) \quad (\forall j) \\ \tilde{m}_j^2 &= H_2(0 \parallel m_j \oplus k_4) \oplus m_j \oplus k_5 \oplus H_1(0 \parallel m_j \oplus k_6) \quad (\forall j) \end{split}$$

$$\begin{split} C_{\mathrm{mit}}^{H_1,H_2}(k,M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k &= (k_1,\ldots,k_6) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathrm{pad}(M) \\ \tilde{m}_j^1 &= H_1(1 \parallel m_j \oplus k_1) \oplus m_j \oplus k_2 \oplus H_2(1 \parallel m_j \oplus k_3) \quad (\forall j) \\ \tilde{m}_j^2 &= H_2(0 \parallel m_j \oplus k_4) \oplus m_j \oplus k_5 \oplus H_1(0 \parallel m_j \oplus k_6) \quad (\forall j) \end{split}$$

Entanglement of hash functions!

$$\begin{split} C_{\mathrm{mit}}^{H_1,H_2}(k,M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k &= (k_1,\ldots,k_6) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathrm{pad}(M) \\ \tilde{m}_j^1 &= H_1(1\parallel m_j \oplus k_1) \oplus m_j \oplus k_2 \oplus H_2(1\parallel m_j \oplus k_3) \quad (\forall j) \\ \tilde{m}_j^2 &= H_2(0\parallel m_j \oplus k_4) \oplus m_j \oplus k_5 \oplus H_1(0\parallel m_j \oplus k_6) \quad (\forall j) \end{split}$$

- Entanglement of hash functions!
- Proven:  $2^{n/2}$  collision security  $2^n$  (second) preimage security

 $\bullet$  Now: no padding and M=m (one block) and b=2

ullet Now: no padding and M=m (one block) and b=2



ullet Now: no padding and M=m (one block) and b=2



$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^1) \oplus H^{\mathcal{R}}(\tilde{m}^2)$$

ullet Now: no padding and M=m (one block) and b=2



$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus H^{\mathcal{R}}(\tilde{m}^{2})$$

$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus m \oplus k_{2} \oplus H^{\mathcal{R}}(1 \parallel m \oplus k_{3})$$

$$\tilde{m}^{2} = H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})$$

$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus H^{\mathcal{R}}(\tilde{m}^{2})$$
$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus m \oplus k_{2} \oplus H^{\mathcal{R}}(1 \parallel m \oplus k_{3})$$
$$\tilde{m}^{2} = H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})$$

ullet  ${\cal A}_1$  outputs

$$H^{\mathcal{R}}(x)$$

•  $\mathcal{A}_2^{\mathcal{R}}(k)$  outputs colliding pair

$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus H^{\mathcal{R}}(\tilde{m}^{2})$$
$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus m \oplus k_{2} \oplus H^{\mathcal{R}}(1 \parallel m \oplus k_{3})$$
$$\tilde{m}^{2} = H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})$$

A<sub>1</sub> outputs

$$H^{\mathcal{R}}(x) = \begin{cases} \mathcal{R}(x) \oplus y, \text{ if } x = 1 \| y \text{ for some } y \in \{0,1\}^n, \\ 0, \text{ otherwise.} \end{cases}$$

•  $\mathcal{A}_2^{\mathcal{R}}(k)$  outputs colliding pair

$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus H^{\mathcal{R}}(\tilde{m}^{2})$$

$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus m \oplus k_{2} \oplus H^{\mathcal{R}}(1 \parallel m \oplus k_{3})$$

$$\tilde{m}^{2} = H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})$$

A<sub>1</sub> outputs

$$H^{\mathcal{R}}(x) = \begin{cases} \mathcal{R}(x) \oplus y, \text{ if } x = 1 \| y \text{ for some } y \in \{0,1\}^n, \\ 0, \text{ otherwise.} \end{cases}$$

•  $\mathcal{A}_2^{\mathcal{R}}(k)$  outputs colliding pair

$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus \underline{H^{\mathcal{R}}(\tilde{m}^{2})}$$

$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus m \oplus k_{2} \oplus H^{\mathcal{R}}(1 \parallel m \oplus k_{3})$$

$$\tilde{m}^{2} = \underline{H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})}$$

A<sub>1</sub> outputs

$$H^{\mathcal{R}}(x) = \begin{cases} \mathcal{R}(x) \oplus y, \text{ if } x = 1 \| y \text{ for some } y \in \{0,1\}^n, \\ 0, \text{ otherwise}. \end{cases}$$

•  $\mathcal{A}_2^{\mathcal{R}}(k)$  outputs colliding pair

$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus \frac{H^{\mathcal{R}}(\tilde{m}^{2})}{H^{\mathcal{R}}(\tilde{m}^{2})}$$

$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus k_{2} \oplus k_{3} \oplus \mathcal{R}(1 \parallel m \oplus k_{3})$$

$$\tilde{m}^{2} = H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})$$

A<sub>1</sub> outputs

$$H^{\mathcal{R}}(x) = \begin{cases} \mathcal{R}(x) \oplus y, \text{ if } x = 1 \| y \text{ for some } y \in \{0,1\}^n, \\ 0, \text{ otherwise}. \end{cases}$$

•  $\mathcal{A}_2^{\mathcal{R}}(k)$  outputs colliding pair

$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus H^{\mathcal{R}}(\tilde{m}^{2})$$

$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus k_{2} \oplus k_{3} \oplus \mathcal{R}(1 \parallel m \oplus k_{3})$$

$$\tilde{m}^{2} = H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})$$

ullet  ${\cal A}_1$  outputs

$$H^{\mathcal{R}}(x) = \begin{cases} \mathcal{R}(x) \oplus y, \text{ if } x = 1 \| y \text{ for some } y \in \{0,1\}^n, \\ 0, \text{ otherwise}. \end{cases}$$

•  $\mathcal{A}_2^{\mathcal{R}}(k)$  outputs colliding pair  $m \in \{0,1\}^n$  and  $m' = m \oplus k_1 \oplus k_3$ 

$$C_{\text{mit}}^{\mathcal{R},H^{\mathcal{R}}}(k,m) = \mathcal{R}(\tilde{m}^{1}) \oplus H^{\mathcal{R}}(\tilde{m}^{2})$$

$$\tilde{m}^{1} = \mathcal{R}(1 \parallel m \oplus k_{1}) \oplus k_{2} \oplus k_{3} \oplus \mathcal{R}(1 \parallel m \oplus k_{3})$$

$$\tilde{m}^{2} = H^{\mathcal{R}}(0 \parallel m \oplus k_{4}) \oplus m \oplus k_{5} \oplus \mathcal{R}(0 \parallel m \oplus k_{6})$$

A<sub>1</sub> outputs

$$H^{\mathcal{R}}(x) = \begin{cases} \mathcal{R}(x) \oplus y, \text{ if } x = 1 \| y \text{ for some } y \in \{0,1\}^n, \\ 0, \text{ otherwise}. \end{cases}$$

- $\mathcal{A}_2^{\mathcal{R}}(k)$  outputs colliding pair  $m \in \{0,1\}^n$  and  $m' = m \oplus k_1 \oplus k_3$
- Generalizes to second preimage resistance (where  $\mathcal{A}_1$  chooses m)

$$\begin{split} C^{H_1,H_2}(k\pmb{l},M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k\pmb{l} &= (k_1,k_2,\pmb{l}_1,\pmb{l}_2) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathsf{pad}(M) \end{split}$$

$$\begin{split} C^{H_1,H_2}(k\pmb{l},M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k\pmb{l} &= (k_1,k_2,\pmb{l}_1,\pmb{l}_2) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathsf{pad}(M) \\ \tilde{m}_j^1 &= H_1(0 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(0 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \\ \tilde{m}_j^2 &= H_1(1 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(1 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \end{split}$$

$$\begin{split} C^{H_1,H_2}(k\pmb{l},M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k\pmb{l} &= (k_1,k_2,\pmb{l}_1,\pmb{l}_2) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathsf{pad}(M) \\ \tilde{m}_j^1 &= H_1(0 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(0 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \\ \tilde{m}_j^2 &= H_1(1 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(1 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \end{split}$$

## Changes

 $oldsymbol{0}$  Use extra keys  $l_1, l_2$  to impose injectivity (w.h.p.)

$$\begin{split} C^{H_1,H_2}(k\pmb{l},M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k\pmb{l} &= (k_1,k_2,\pmb{l}_1,\pmb{l}_2) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathsf{pad}(M) \\ \tilde{m}_j^1 &= H_1(0 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(0 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \\ \tilde{m}_j^2 &= H_1(1 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(1 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \end{split}$$

## **Changes**

- ① Use extra keys  $l_1, l_2$  to impose injectivity (w.h.p.)
- 2 Keys  $k_3, k_4, k_5, k_6$  have become redundant

$$\begin{split} C^{H_1,H_2}(k\pmb{l},M) &= H_1\Big(\tilde{m}_1^1\|\cdots\|\tilde{m}_\ell^1\Big) \oplus H_2\Big(\tilde{m}_1^2\|\cdots\|\tilde{m}_\ell^2\Big) \\ k\pmb{l} &= (k_1,k_2,\pmb{l}_1,\pmb{l}_2) \text{ is a fixed key} \\ m_1\|\cdots\|m_\ell &= M\|\mathsf{pad}(M) \\ \tilde{m}_j^1 &= H_1(0 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(0 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \\ \tilde{m}_j^2 &= H_1(1 \parallel \pmb{l}_1 \parallel m_j \oplus k_1) \oplus H_2(1 \parallel \pmb{l}_2 \parallel m_j \oplus k_2) \quad (\forall j) \end{split}$$

## Changes

- ① Use extra keys  $l_1, l_2$  to impose injectivity (w.h.p.)
- 2 Keys  $k_3, k_4, k_5, k_6$  have become redundant
- 3 Simplifications in notation

#### **Theorem**

- ullet Adversary  ${\mathcal A}$  makes at most  $q_{\mathcal A}$  queries to  $C^{H_1,H_2}$
- ullet  $H^{\mathcal{R}}$  makes at most  $q_H$  calls to  ${\mathcal{R}}$

$$\begin{aligned} \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{coll}}(\mathcal{A}) &\leq 2q_H^3 q_{\mathcal{A}}^2/2^n \\ \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{sec}}(\mathcal{A}) &\leq 4q_H^3 q_{\mathcal{A}}/2^n \\ \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{pre}}(\mathcal{A}) &\leq 2q_H^3 q_{\mathcal{A}}/2^n \end{aligned}$$

#### **Theorem**

- ullet Adversary  ${\mathcal A}$  makes at most  $q_{\mathcal A}$  queries to  $C^{H_1,H_2}$
- ullet  $H^{\mathcal{R}}$  makes at most  $q_H$  calls to  ${\mathcal{R}}$

$$\begin{aligned} \mathbf{Adv}^{\mathsf{coll}}(\mathcal{A}) &\leq 2q_H^3 q_{\mathcal{A}}^2/2^n \\ \mathbf{Adv}^{\mathsf{sec}}(\mathcal{A}) &\leq 4q_H^3 q_{\mathcal{A}}/2^n \\ \mathbf{Adv}^{\mathsf{pre}}(\mathcal{A}) &\leq 2q_H^3 q_{\mathcal{A}}/2^n \end{aligned}$$

#### Remarks

ullet One can assume  $q_H=\mathcal{O}(1)$ 

#### **Theorem**

- ullet Adversary  ${\mathcal A}$  makes at most  $q_{\mathcal A}$  queries to  $C^{H_1,H_2}$
- ullet  $H^{\mathcal{R}}$  makes at most  $q_H$  calls to  ${\mathcal{R}}$

$$\begin{split} \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{coll}}(\mathcal{A}) &\leq 2q_H^3q_\mathcal{A}^2/2^n \\ \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{sec}}(\mathcal{A}) &\leq 4q_H^3q_\mathcal{A}/2^n \\ \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{pre}}(\mathcal{A}) &\leq 2q_H^3q_\mathcal{A}/2^n \end{split}$$

#### Remarks

- One can assume  $q_H = \mathcal{O}(1)$
- ullet n corresponds to  $|l_1|=|l_2|$ , not to  $|m_j|$

#### **Theorem**

- ullet Adversary  ${\mathcal A}$  makes at most  $q_{\mathcal A}$  queries to  $C^{H_1,H_2}$
- ullet  $H^{\mathcal{R}}$  makes at most  $q_H$  calls to  ${\mathcal{R}}$

$$\begin{aligned} \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{coll}}(\mathcal{A}) &\leq 2q_H^3 q_{\mathcal{A}}^2/2^n \\ \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{sec}}(\mathcal{A}) &\leq 4q_H^3 q_{\mathcal{A}}/2^n \\ \mathbf{A}\mathbf{d}\mathbf{v}^{\mathsf{pre}}(\mathcal{A}) &\leq 2q_H^3 q_{\mathcal{A}}/2^n \end{aligned}$$

#### Remarks

- ullet One can assume  $q_H=\mathcal{O}(1)$
- ullet n corresponds to  $|l_1|=|l_2|$ , not to  $|m_j|$
- Tighter bounds in paper

$$\tilde{m}^{1}(kl, m) = H_{1}(0 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(0 \parallel l_{2} \parallel m \oplus k_{2})$$
  
$$\tilde{m}^{2}(kl, m) = H_{1}(1 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(1 \parallel l_{2} \parallel m \oplus k_{2})$$

$$\tilde{m}^{1}(kl, m) = H_{1}(0 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(0 \parallel l_{2} \parallel m \oplus k_{2})$$
  
$$\tilde{m}^{2}(kl, m) = H_{1}(1 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(1 \parallel l_{2} \parallel m \oplus k_{2})$$

#### Lemma

• For any kl and any m, m':

$$\tilde{m}^1(kl,m) \quad \tilde{m}^2(kl,m) \quad \tilde{m}^1(kl,m') \quad \tilde{m}^2(kl,m')$$
 are "more or less" mutually unrelated

$$\tilde{m}^{1}(kl, m) = H_{1}(0 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(0 \parallel l_{2} \parallel m \oplus k_{2})$$
  
$$\tilde{m}^{2}(kl, m) = H_{1}(1 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(1 \parallel l_{2} \parallel m \oplus k_{2})$$

#### Lemma

• For any kl and any m, m':

$$\tilde{m}^1(kl,m) \quad \tilde{m}^2(kl,m) \quad \tilde{m}^1(kl,m') \quad \tilde{m}^2(kl,m')$$
 are "more or less" mutually unrelated

• Formally, (conditional) min-entropies  $\geq n-2\log(q_H)$ 

$$\tilde{m}^{1}(kl, m) = H_{1}(0 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(0 \parallel l_{2} \parallel m \oplus k_{2})$$
  
$$\tilde{m}^{2}(kl, m) = H_{1}(1 \parallel l_{1} \parallel m \oplus k_{1}) \oplus H_{2}(1 \parallel l_{2} \parallel m \oplus k_{2})$$

#### Lemma

• For any kl and any m, m':

$$\tilde{m}^1(kl,m) - \tilde{m}^2(kl,m) - \tilde{m}^1(kl,m') - \tilde{m}^2(kl,m')$$
 are "more or less" mutually unrelated

• Formally, (conditional) min-entropies  $\geq n-2\log(q_H)$ 

### Consequences

- Preprocessing functions injective (w.h.p.)
- ullet  $H^{\mathcal{R}}$ -evaluation "cancels out" an  $\mathcal{R}$ -call w.p.  $\leq q_H^3/2^n$

## Conclusions

#### Our Results

- Constant time attacks on Cryptophia's short combiner
- Fix to re-establish security claims

## Conclusions

#### Our Results

- Constant time attacks on Cryptophia's short combiner
- Fix to re-establish security claims

#### **Future Research**

- Different security properties?
- Less  $H_1/H_2$ -calls?
- Beyond random oracle model?

## Conclusions

#### Our Results

- Constant time attacks on Cryptophia's short combiner
- Fix to re-establish security claims

#### **Future Research**

- Different security properties?
- Less  $H_1/H_2$ -calls?
- Beyond random oracle model?

# Thank you for your attention!