UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE SÃO JOÃO DA BOA VISTA ENGENHARIA ELETRÔNICA E DE TELECOMUNICAÇÕES

LABORATÓRIO DE DISPOSITIVOS E CIRCUITOS DE RF TURMA DCRF-L

Prática de Laboratório Nº 06

Alunos: Gabriel Bozelli Dias RA: 221490272

Guilherme Abdo Peiro Miguel RA: 221490434 Thiago Mendes Santos RA: 221490345

Professor: Rafael Abrantes Penchel

Conteúdo

1	Cor	Contextualização da Prática			
	1.1	Descrição do experimento	1		
	1.2	Objetivos	1		
	1.3	Materiais	1		
	1.4	Fundamentação Teórica	1		
		1.4.1 Matriz "S"	1		
		1.4.2 Acopladores direcionais	1		
		1.4.3 Linha de microfita	2		
		1.4.4 Híbrida de 90°	2		
2	Pro	ocedimentos Experimentais e Discussões	3		
	2.1	Procedimentos	3		
	2.2	Discussões e resultados	4		
3	Cor	nclusões	6		
$\mathbf{R}^{\mathbf{c}}$	Referências				

1 Contextualização da Prática

1.1 Descrição do experimento

Neste experimento, foi projetada uma hibrída de 90° nos software Ansys e, a partir dele, extraiu-se a matriz S e os principais parâmetros de um acoplador direcional: acoplamento, perda de inserção, isolamento, diretividade e perda de retorno.

1.2 Objetivos

Estudar, entender e projetar um acoplador direcional do tipo hibrida de 90° no Ansys e extrair sua matriz S e seus parâmetros.

1.3 Materiais

• Software Ansys Electronics Desktop

1.4 Fundamentação Teórica

1.4.1 Matriz "S"

A Scattering matrix, ou matriz de espalhamento, é uma das principais ferramentas utilizadas na caracterização e análise de redes elétricas que utilizam altas frequências, como circuitos de micro-ondas, linhas de transmissão, dispositivos de RF (radiofrequência), e acopladores, que será o nosso foco neste experimento. Ela permite estabelecer relações entre o comportamento da onda incidente com a onda refletida em cada uma de suas N portas. Além disso, realizando o devido casamento das impedâncias, é possível por meio dela identificar e calcular os coeficientes de reflexão, tanto para a entrada, quanto para a saída, assim como identificar o quanto de tensão há na saída, em relação ao o que há na entrada.

1.4.2 Acopladores direcionais

Um acoplador direcional é um dispositivo passivo de quatro portas usado para dividir a potência em uma linha de transmissão. Idealmente, ele direciona a potência de uma porta de entrada para uma porta de saída principal (through port) e uma porta acoplada (coupled port), enquanto isola a quarta porta (isolated port).

Os principais parâmetros de um acoplador direcional são [1]:

• Acoplamento (C): A razão, em dB, entre a potência incidente na porta de entrada (P_{in}) e a na porta acoplada (P_c) .

$$C = 10 \log_{10} \left(\frac{P_{in}}{P_c} \right) = -20 \log_{10} |S_{31}| \quad \text{(dB)}$$

(Assumindo porta 1 como entrada e porta 3 como acoplada).

• Isolação (I): A razão, em dB, entre a potência incidente na porta de entrada e a na porta isolada (P_{iso}) .

$$I = 10 \log_{10} \left(\frac{P_{in}}{P_{iso}} \right) = -20 \log_{10} |S_{41}| \quad (dB)$$
 (2)

(Assumindo porta 4 como isolada).

• Diretividade (D): A razão, em dB, entre a potência na porta acoplada e a na porta isolada. É uma medida da capacidade do acoplador de identificar a direção da propagação da onda.

$$D = 10\log_{10}\left(\frac{P_c}{P_{iso}}\right) = I - C = -20\log_{10}\left|\frac{S_{41}}{S_{31}}\right| \quad (dB)$$
 (3)

• Perda de Inserção (IL): A razão, em dB, entre a potência incidente e a potência na porta de saída principal (P_{out}) .

$$IL = 10 \log_{10} \left(\frac{P_{in}}{P_{out}} \right) = -20 \log_{10} |S_{21}| \quad (dB)$$
 (4)

(Assumindo porta 2 como saída principal).

• Perda de Retorno (RL): Mede o quão bem uma porta está casada com a impedância característica. É o negativo do coeficiente de reflexão (S_{ii}) em dB.

$$RL = -20\log_{10}|S_{ii}|$$
 (dB) (5)

(Onde S_{ii} se refere à porta em questão, por exemplo, S_{11} para a porta de entrada). Um valor alto de RL (em dB) indica um bom casamento de impedância.

1.4.3 Linha de microfita

Consistem em uma faixa condutora depositada sobre um substrato dielétrico com um plano de terra metálico na face inferior. A geometria da linha (largura W, altura do substrato d, e constante dielétrica efetiva ϵ_e) determina sua impedância característica Z_0 , que pode ser calculada pelas equações a seguir:

$$Z_0 = \begin{cases} \frac{60}{\sqrt{\epsilon_{eff}}} \ln\left(\frac{8d}{W} + \frac{W}{4d}\right), & \text{para } \frac{W}{d} \le 1\\ \frac{120\pi}{\sqrt{\epsilon_{eff}} \left[\frac{W}{d} + 1.393 + 0.667 \ln\left(\frac{W}{d} + 1.444\right)\right]}, & \text{para } \frac{W}{d} \ge 1 \end{cases}$$

Essas expressões permitem o dimensionamento das linhas para que apresentem uma impedância característica desejada.

1.4.4 Híbrida de 90°

A híbrida de 90 graus é um tipo de acoplador direcional, geralmente projetado para ter um acoplamento de 3 dB, o que significa que a potência de entrada é dividida por 2, sendo igualmente distribuída entre as duas portas de saída. Outra característica fundamental é a diferença de fase de 90 graus (quadratura) entre os sinais nessas duas portas [1].

A Fig.1 representa a esquematização da híbrida. O funcionamento baseia-se na superposição de ondas. Quando um sinal é injetado na Porta 1, ele se divide e viaja por dois caminhos até as Portas 2 e 3. Devido aos comprimentos de $\lambda/4$ e às impedâncias, as ondas se somam (ou subtraem) nessas portas. Para um projeto ideal:

- Na Porta 2 (*Through*), as ondas chegam com uma fase de -90 graus.
- Na Porta 3 (Acoplada), as ondas chegam com uma fase de -180 graus.
- Na Porta 4 (Isolada), as ondas chegam em oposição de fase e se cancelam.

Isso resulta em uma divisão igual de potência entre as Portas 2 e 3, com a Porta 3 apresentando um atraso de fase de 90 graus em relação à Porta 2. A Porta 4 fica isolada, e a Porta 1 fica casada (sem reflexão).

Figura 1: Esquema de uma híbrida 90°.

Fonte: Retirado de [1].

No contexto de uma híbrida de 90°, as linhas de microfita são utilizadas para implementar a defasagem e a divisão de potência. Nesse tipo de acoplador, algumas linhas de microfita possuem comprimentos específicos de $\lambda/4$ para produzir a diferença de fase de 90° entre as portas de saída, e a impedância das linhas deve ser escolhida para garantir que a divisão de potência seja simétrica. Pode-se observar essa relação analisando a matriz S:

$$\mathbf{S} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ j & 0 & 0 & 1 \\ 0 & j & 1 & 0 \end{bmatrix}$$

Essa matriz indica que um sinal aplicado na Porta 1 será igualmente dividido entre as Portas 2 e 3, com 90° de diferença de fase entre eles, e a Porta 4 estará idealmente isolada. A reflexão das portas é idealmente nula, pois todas as portas estão casadas.

O comprimento $\lambda/4$ pode ser calculador utilizando a seguinte fórmula:

$$\lambda = \frac{4c}{f\sqrt{\epsilon_{eff}}}\tag{6}$$

$$\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(\frac{1}{\sqrt{1 + 12\frac{d}{W}}} \right)$$
(7)

2 Procedimentos Experimentais e Discussões

2.1 Procedimentos

A simulação da híbrida de 90° foi realizada no software Ansys Electronics Desktop, utilizando o módulo HFSS (High Frequency Structure Simulator). Inicialmente, foi escolhido para a composição do susbtrato o material Roger 5880, com permissividade relativa $\epsilon_r=2.2$ e altura h=1mm. Abaixo do substrato, foi inserido o plano terra, composto por cobre, com altura h=18um.

Para encontrar os comprimentos e larguras corretos das linhas de microfita, utilizamos as equações apresentadas na Seção 1, para a frequência de 2.7 GHz. Os resultados são apresentados a seguir:

Tabela 1: Valores dos parâmetros da híbrida

W_{50}	3mm
W_{35}	5mm
L	22mm
h	1mm

A estrutura da híbrida foi desenhada utilizando 8 linhas de microfita: 4 delas representariam os ramos para as portas, com impedância $Z_o = 50\Omega$, 2 delas representariam as seções verticais da híbrida, com impedância $Z_o=50\Omega$, e 2 delas representariam as seções horizontais da híbrida, com impedância $Z_o=\frac{50}{\sqrt{2}}\Omega$. Foram adicionadas quatro portas do tipo Lumped Wave na extremidade dos ramos. Após a montagem, foi executada uma análise em frequência dentro da faixa de 1GHz até 5 GHz.

2.2 Discussões e resultados

Após as aplicações das fórmulas e a modelagem da Híbrida no software Ansys, o dispositivo final ficou conforme mostra a Fig. 2.

30 (mm)

Figura 2: Dispositivo final

Fonte: Elaborado pelos autores.

Realizando a simulação dos parâmetros S na híbrida, foi-se obtido os gráficos das Figs. 3 e 4.

Figura 3: Porta 1 e suas relações com outras portas

Fonte: Elaborado pelos autores.

Figura 4: Porta 2 e suas relações com outras portas

Fonte: Elaborado pelos autores.

Para a Fig. 3, nota-se que quando a porta 1 é excitada, o sinal transmitido para as portas 2 e 3 é a metade do sinal de entrada (\approx -3,26 dB) na frequência de 2,72 GHz, ou seja, essa é a frequência de operação ideal para essa híbrida, lembrando que esse é um dispositivo de banda estreita. Para essa mesma frequência, nota-se que a isolação e o acoplamento do dispositivo são bons (\approx -17 dB), demonstrando que há pouca reflexão para a porta 1 e pouco sinal transmitido para a porta 4, conforme o desejado. Apesar disso, os valores de acoplamento e reflexão máximos (\approx -23 dB) não acontecem na frequência de operação devido a diferença de

dimensão dos braços do dispositivo, fazendo com que cada um tenha a frequência de operação específica que, mesmo sendo diferente, são relativamente próximas. Para a Fig. 4, a análise é a mesma, basta levar em consideração a simetria da híbrida.

Para a Fig. 5, pode ser observado na figura anterior, pela híbrida ser de 90°, observa-se uma defasagem de 90° entre a porta 1 e a 2, devido ao fato destas 2 portas estarem separadas por apenas um "seguimento" do transformador, resultando em 90°, já a porta 1 e a 3, estão em 180°, devido ao fato delas estarem separadas por 2 "seguimentos" do transformador, resultando na soma destes 2 trechos de 90°, assim defasando em 180°.

Figura 5: Fase de S21 e S31

Fonte: Elaborado pelos autores.

3 Conclusões

Foi possível projetar e simular com sucesso uma híbrida de 90° utilizando o software Ansys, com foco na frequência de operação de 2,7 GHz. Através do uso adequado das equações teóricas para cálculo da impedância característica e do comprimento de linha $\lambda/4$, obteve-se uma estrutura que apresenta bom desempenho, especialmente na frequência de 2,72 GHz, onde os principais parâmetros, como acoplamento, perda de inserção, isolamento, diretividade e perda de retorno, atingiram valores satisfatórios.

A matriz S extraída da simulação demonstrou que o comportamento da híbrida se aproxima do ideal, com uma divisão de potência aproximadamente igual entre as portas de saída e uma diferença de fase de 90° entre elas, além de baixa reflexão e bom isolamento da porta não utilizada. Isso confirma que o projeto está bem dimensionado e que os princípios teóricos estudados foram corretamente aplicados.

Apesar disso, é possível observar que valores de frequência imediatamente acima de $2.72 \,\mathrm{GHz}$ possuem um melhor isolamento das portas, pois seus valores de reflexão são menores que $-32 \,dB$, porém os valores de potência para as portas ficam ligeiramente distintos, não havendo uma distribuição simétrica para as portas 2 e 3.

Referências

 $[1]\ \ D.\ M.\ Pozar,\ \textit{Microwave engineering: theory and techniques.} \ \ John\ wiley\ \&\ sons,\ 2021.$