TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHÓ HỎ CHÍ MINH KHOA CƠ KHÍ CHẾ TẠO MÁY

BỘ MÔN CƠ ĐIỆN TỬ

THỰC TẬP SERVO

BÁO CÁO 1

GVHD	ThS: VÕ LÂM CHƯƠNG	
SVTH	Trần Ngọc Hiểu	20146127
	Đỗ Sĩ Hoài	20146491
	Phạm Quang Huy	20146126
	Tiết Nguyễn Hoàng Tấn Đạt	20146488
	Dương Nhật Huy	20146125
	Lê Nhựt Linh	20146159

Lê Văn Mạnh Quỳnh 20146147

MODULE 3 AND 4: HỆ THỐNG SERVO MỘT TRỰC SỬ DỤNG ĐỘNG CƠ DC SERVO

1. Nội dung thí nghiệm.

- Mô hình hóa hệ thống servo một trục.
- Sử dụng Simulink / Matlab để minh họa hiệu suất hệ thống.
- Lập trình bằng STM32F103.
- Kiểm soát vận tốc của động cơ servo DC.
- Kiểm soát vị trí của hệ thống servo một trục.

2. Giới thiệu hệ thống.

2.1 Các bộ phận chính:

Hình 1: Động cơ servo DC và encoder

Hình 2: Vi điều khiển STM32F103

Hình 3: Mạch cầu H

Hình 4: Bộ nguồn

Hình 5: Tổng quan hệ thống

2.2. Sơ đồ nối dây

Sơ đồ phần cứng hệ thống servo một trục sử dụng động cơ servo DC:

Mạch cầu H:

Programmer/Debugger:

Sơ đồ kết nối trên Board STM32F103RX:

2.3 Cấu hình trên CubeMX

3. Tiến hành thí nghiệm.

3.1. Xác định hàm truyền hệ thống

Các bước thực hiện:

B1: Tăng MV (PWM) từ 0 \rightarrow 100%

B2: Quan sát đồ thị và tìm ra được $V_{\text{max}} = 1140 \text{ RPM}$

B3: Tìm hàm truyền hệ thống

Ta có:

- Tại thời điểm v=0 RPM = 0 rad/s, $\tau=0.7185$ s
- Tại thời điểm v = 1140 RPM = 119,38 rad/s, $\tau_{100\%} = 0.75$ s
- Chọn gốc $\tau = 0.7185$ s làm thời điểm bắt đầu, ta có $\tau_{0\%} = 0$ s, $\tau_{100\%} = 0.0315$ s
- Căn cứ vào kết quả biểu đồ trên C#, ta thấy được $au_{63\%} = 0.0198$ s

- Ta có hàm truyền tổng quát của hệ bậc 1:

$$\circ \quad Gc = \frac{Kc}{Ts+1}$$

$$\circ Kc = \frac{\Delta CV}{\Delta MV} = \frac{119,38}{100} = 1,1938$$

$$T = \tau_{63\%} = 0.0198s$$

Hàm truyền của hệ thống: $G(s) = \frac{1.1938}{0.01938s+1}$

- 3.2. Module 3: Kiểm soát vận tốc của hệ Servo một trục
- 3.2.1. Tính toán hệ số cho bộ điều khiển vận tốc (dùng bộ PI)

Sử dụng phương pháp IMC để thiết kế bộ điều khiển PID:

IMC controller settings for Parallel-Form PID controller (Chien and Fruehauf,1990); $K=K_p$; $\tau=\tau_p$; $\theta=\theta_p$

Case	Model	K_cK	τ_I	$ au_D$
A	$\frac{K}{\tau s + 1}$	$\frac{\tau}{\tau_c}$	τ	-
В	$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2}{\tau_c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
С	$\frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	2ζτ	$\frac{\tau}{2\zeta}$
D	$\frac{K(-\beta s + 1)}{\tau^2 s^2 + 2\zeta \tau s + 1}, \ \beta > 0$	$\frac{2\zeta\tau}{\tau_c + \beta}$	2ζτ	$\frac{\tau}{2\zeta}$
E	$\frac{K}{s}$	$\frac{2}{\tau_c}$	$2\tau_c$	-
F	$\frac{K}{s(\tau s+1)}$	$\frac{2\tau_c + \tau}{\tau_c^2}$	$2\tau_c + \tau$	$\frac{2\tau_c\tau}{2\tau_c+\tau}$
G	$\frac{Ke^{-\theta s}}{\tau s + 1}$	$\frac{\tau}{\tau_c + \theta}$	τ	-
Н	$\frac{Ke^{-0s}}{\tau s + 1}$	$\frac{\tau + \frac{\upsilon}{2}}{\tau_c + \frac{\theta}{2}}$	$\tau + \frac{\theta}{2}$	$\frac{\tau\theta}{2\tau+\theta}$
I	$\frac{K(\tau_3 s + 1)e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2 - \tau_3}{\tau_c + \theta}$	$\tau_1 + \tau_2 - \tau_3$	$\frac{\tau_1\tau_2 - (\tau_1 + \tau_2 - \tau_3)\tau_3}{\tau_1 + \tau_2 - \tau_3}$
J	$\frac{K(\tau_3 s + 1)e^{-\theta s}}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau-\tau_3}{\tau_c+\theta}$		$\frac{\tau^2 - (2\zeta\tau - \tau_3)\tau_3}{2\zeta\tau - \tau_3}$
K	$\frac{K(-\tau_3 s + 1)e^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2 + \frac{\tau_3 \theta}{\tau_c + \tau_3 + \theta}}{\tau_c + \tau_3 + \theta}$	$\tau_1 + \tau_2 + \frac{\tau_3 \theta}{\tau_c + \tau_3 + \theta}$	$\frac{\tau_3\theta}{\tau_c + \tau_3 + \theta} + \frac{\tau_1\tau_2}{\tau_1 + \tau_2 + \frac{\tau_3\theta}{\tau_c + \tau_3 + \theta}}$
L	$\frac{K(-\tau_3 s + 1)e^{-0s}}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau + \frac{\tau_3\theta}{\tau_c + \tau_3 + \theta}}{\tau_c + \tau_3 + \theta}$		$\frac{\tau_3\theta}{\tau_c + \tau_3 + \theta} + \frac{\tau^2}{2\zeta\tau + \frac{\tau_3\theta}{\tau_c + \tau_3 + \theta}}$
M	$\frac{Ke^{-\theta s}}{s}$	$\frac{2\tau_c + \theta}{(\tau_c + \theta)^2}$	$2\tau_c + \theta$	-
N	$\frac{Ke^{-0s}}{s}$	$\frac{2\tau_c + \theta}{\left(\tau_c + \frac{\theta}{2}\right)^2}$	$2\tau_c + \theta$	$\frac{\tau_c \theta + \frac{\theta^2}{4}}{2\tau_c + \theta}$
0	$\frac{Ke^{-0s}}{s(\tau s+1)}$	$\frac{2\tau_c + \tau + \theta}{(\tau_c + \theta)^2}$	$2\tau_c + \tau + \theta$	$\frac{(2\tau_c + \theta)\tau}{2\tau_c + \tau + \theta}$

Vì hệ thống không có độ trễ và hàm truyền có dạng tương thích với mô hình của case

A => Chọn phương pháp tính toán của case A để tính các thông số PID.

Bước 1: Chọn $\mathcal{T}c$:

- Several IMC guidelines for τ_c have been published for the FOPTD . $+\tau_c > 0.8\theta_p; \tau_c > 0.1\tau_p$ (Rivera et al., 1986) $+\tau_p > \tau_c > \theta_p$ (Chien and Fruehauf, 1990)

 \Rightarrow Chọn $\tau c = \tau p * 0.8 = \tau * 0.8 = 0.0198 * 0.8 = 0.01584$

Bước 2: Tính τ_i

$$\Rightarrow \tau_i = \tau = 0.0198$$

Bước 3: Tính K_c

$$\Rightarrow K_c = (\tau / \tau c)/K = 0.0198/(1.1938*0.01584) = 1.04$$

Kết luân:

$$K_p = K_c = 1,04$$

$$K_i = Kc/\tau_i = 1,04/0,02 = 52$$

3.2.2 Kết quả chạy mô phỏng

Hình 6: Mô phỏng hàm truyền

Hình 7: Hàm step có giá trị tăng từ 0 lên 100

Hình 8: Kết quả chạy mô phỏng trong 10 giây

- Ta thấy kết quả mô phỏng khá sát với thực tế khi giá trị đạt được khoảng 119 rad/s (thực tế là 119.38 rad/s)
- Thời gian mà CV tăng từ 0 lên 119 rad/s khoảng 0,1s, hơi lệch so với thực tế (thực tế là 0,0315). Sai lệch có thể là do biểu đồ thời gian trên C# không chính xác so với thực tế cũng như thời gian lấy mẫu chưa đủ chính xác.

Mô phỏng bộ điều khiển PI:

Hình 9: Mô phỏng hệ thống điều khiển vận tốc dùng bộ PI

Hình 10: Thiết lập giá trị max, min cho output

Hình 11: Set thông số cho bộ điều khiển PI

Hình 12: Kết quả chạy mô phỏng bộ điều khiển vận tốc

3.2.3. Code điều khiển vận tốc

```
#define pi 3.1415
#define p2r pi/2000

float Kp = 1.0;
float Ki = 0.3;
float Kd = 0.0;
float dt = 0.005;

#define MAX_PWM 99
#define MIN_PWM 0
```

```
void test_motor_control(enum_dir_t direction, int16_t pwm)
{
   // Turn on PC3
   HAL_GPIO_WritePin(GPIOC, GPIO_PIN_3, (uint8_t)(direction));
   __HAL_TIM_SetCompare(&htim3, TIM_CHANNEL_2,pwm); // set pwm
}
```

```
int16_t PID(float pos_sp, float pos_cv)
{
   error = pos_sp - pos_cv;
   integral = integral + error * dt;
   int16_t mv = (int16_t)(Kp*error + Ki*integral);
   if (mv > 99)
   {
      mv = 99;
   }
   else if (mv < 0)
   {
      mv = 0;
   }
   return mv;
}</pre>
```

3.2.4. Kết quả chạy thực nghiệm

- Cho Set point vận tốc thực tế là 100 rad/s, kết quả thu được ổn định ở mức khoảng 90 rad/s, vận tốc ổn định.
- 3.4. Module 4: Kiểm soát vị trí của hệ Servo một trục
- 3.4.1. Tính toán hệ số cho bộ điều khiển vị trí (dùng bộ PD)

Ta có hàm truyền có dạng:

$$\frac{K}{(\tau s + 1)s}$$

Bước 1: Chon τc:

- Several IMC guidelines for τ_c have been published for the FOPTD .

$$+\tau_{\rm c}>~0.8 heta_p; au_{\rm c}>~0.1 au_p$$
 (Rivera et al., 1986)

$$+\tau_p > \tau_c > \theta_p$$
 (Chien and Fruehauf, 1990)

$$\Rightarrow$$
 Chọn $\tau c = \tau p/3 = 0.0067$

Bước 2: Tính Kc

$$\Rightarrow$$
 Kc * K = $(2 * \tau c + \tau) / \tau c^2$

$$\Rightarrow$$
 Kc = 611.68

Bước 3: Tính τd

$$\Rightarrow \tau d = (2 * \tau c * \tau) / (2 * \tau c + \tau) = 0.008$$

3.4.2 Kết quả chạy mô phỏng

Hình 13: Mô phỏng hệ thống điều khiển vị trí dùng bộ PD

Hình 14: Kết quả mô phỏng hệ với set point là vị trí 200 rad

3.4.3. Code điều khiển vị trí

```
#define pi 3.1415
#define p2r pi/2000

float Kp = 2.0;
float Ki = 0.0;
float Kd = 0.1;
float dt = 0.005;

#define MAX_PWM 99
#define MIN_PWM 0
```

3.4.4. Kết quả chạy thực nghiệm

Hình 14: Kết quả chạy thực tế với setpoint là 200 rad

- Ta thấy rằng kết quả điều khiển vị trí không xảy ra vọt lố, sai lệch khác nhỏ (khoảng 2 rad)