Introdução à Programação de Sistemas Embarcados

Prof. Roberto Hiramatsu [http://www.lsi.usp.br/~kenji/]
Prof. João Pimentel [www.cin.ufpe.br/~jhcp]

Aula 1 Turma Março/2018

Introdução à Programação de Sistemas Embarcados

26 a 30 de março de 2018 Unidade Acadêmica do Cabo de Santo Agostinho Universidade Federal Rural de Pernambuco

Instrutores

Prof. Roberto Hiramatsu

Doutor em Engenharia Elétrica pela USP

Site pessoal:

http://www.lsi.usp.br/~kenji/

Currículo:

http://lattes.cnpq.br/3420705447094

<u>049</u>

Prof. João Pimentel

Doutor em Ciência da Computação pela UFPE

Site pessoal: www.cin.ufpe.br/~jhcp

Currículo:

http://lattes.cnpq.br/8257035194560

<u>179</u>

Livro de apoio

C Programming for Arduino por Julien Bayle

C Programming for Arduino

Learn how to program and use Arduino boards with a series of engaging examples, illustrating each core concept

[PACKT] open source*

Objetivos do curso

Que vocês conheçam as peculiaridades do desenvolvimento de sistemas embarcados

e que aprendam estratégias para lidar com eles

Este <u>não é</u> um curso de introdução a programação

Este *não é* um curso de Arduino

Este *não é* um curso de decorar

Este *não é* um curso em que você ficará sentada(o) só assistindo

Para hoje, esperamos que vocês

- ... tenham uma noção do que são sistemas embarcados e para que servem
- ... tenham uma noção de como é o desenvolvimento de software e comecem a utilizar algumas boas práticas
- ... formem as duplas e recebam o material necessário
- ... conheçam alguns detalhes da linguagem C
- ... comecem a executar programas no Arduino
- ... entendam como é possível integrar um software com o mundo real

COMEÇANDO

CD-Changer **ACC Active Cruise** Control Airbags **DSC Dynamic** Stability Control Adaptive Gear Control Xenon Light **BMW** Assist RDS/TMC Speech Recognition Emergency Call

ACC Stop&Go **BFD** ALC KSG 42-Voltage Internet Portal GPRS, UMTS Telematics Online Services Blue-Tooth Car Office Local Hazard Warning Integrated Safety System Steer/Brake-By-Wire I-Drive Lane Keeping Assist. Personalization Software Update Force Feedback Pedal

2000 1980 1990

Degree of Interdependence

2004/pdfs/Frischkorn_Keynote Workshop SanDiego2004vers1.2.pdf

Sistemas embarcados - Embedded Systems

"Um sistema embarcado é uma combinação de hardware e software, e talvez outras partes (mecânicas ou de outro tipo), projetado para realizar uma função específica."

"Um sistema computadorizado dedicado a realizar um conjunto específico de funções no mundo real"

"Um sistema embarcado é qualquer sistema computadorizado escondido em um produto que não seja um computador"

Sistemas embarcados - Origem

1971 - Intel lança o primeiro processador disponível comercialmente

Sistemas embarcados - Conflitos entre requisitos

Custo

Energia

Tamanho

Temperatura

Precisão

Robustez

Engenharia de software

Programar não é escrever código

- 1) Entender o problema
- 2) Pensar em soluções diferentes e compará-las
- 3) Escolher uma solução e detalhar o seu passo-a-passo (algoritmo)
- 4) Elaborar testes
- 5) Escrever o código
- 6) Testar

Programação - boas práticas que vocês irão praticar

Inspeção de código

Programação em pares

Test-driven development

Desenvolvimento iterativo

Haskell, Prolog sum[1..100]

Scheme, Java mynum.add(5)

C i++;

Assembly language iadd

Machine language 10111001010110

Compilação

C e C++

C: 1972 (Bell Laboratories)

ANSI C: 1989

C++: publicado em 1985 (Bell Laboratories)

ISO/IEC 14882:1998

Ranking das linguagens

	Mar 2018	Mar 2017	Change	Programming Language	Ratings	Change
	1	1		Java	14.941%	-1.44%
	2	2		С	12.760%	+5.02%
	3	3		C++	6.452%	+1.27%
	4	5	^	Python	5.869%	+1.95%
	5	4	~	C#	5.067%	+0.66%

AMBIENTE DE DESENVOLVIMENTO (Roberto)

```
*/
const byte pino do led = 13;
// a função setup é executada uma vez quando você liga ou reinicia o Arduino
void setup() {
 pinMode (pino do led, OUTPUT); //inicializa o pino do led como saída
// a função loop é executada repetidamente, para sempre (até o Arduino ser desligado)
void loop() {
  digitalWrite(pino do led, HIGH); // liga o LED (sinal HIGH)
  delay(1000);
                                  // espera por um tempo
  digitalWrite(pino do led, LOW); // desliga o LED (sinal LOW)
  delay(1000);
                                    // espera por um tempo
```

Exemplo para Curso de Introdução à Programação de Sistemas Embarcados

/*

```
Exemplo para Curso de Introdução à Programação de Sistemas Embarcados
*/
const byte pino do led = 13;
// a função setup é executada uma vez quando você liga ou reinicia o Arduino
void setup() {
                                //inicializa o pino do led como saída
 pinMode(pino do led, OUTPUT);
// a função loop é executada repetidamente, para sempre (até o Arduino ser desligado)
void loop() {
  digitalWrite(pino do led, HIGH); // liga o LED (sinal HIGH)
  delay(1000);
                                  // espera por um tempo
```

// espera por um tempo

digitalWrite(pino do led, LOW); // desliga o LED (sinal LOW)

/*

delay(1000);

```
//comentário
/* comentário */
```

Comentários são muito úteis para ajudar outras pessoas (e você mesmo!) a entender o código.

- Explicar o que um trecho do código faz
- Explicar o porquê

```
Exemplo para Curso de Introdução à Programação de Sistemas Embarcados
*/
const byte pino_do_led = 13;
// a função setup é executada uma vez quando você liga ou reinicia o Arduino
void setup() {
 pinMode(pino_do_led, OUTPUT); //inicializa o pino_do_led como saída
// a função loop é executada repetidamente, para sempre (até o Arduino ser desligado)
void loop() {
  digitalWrite(pino do led, HIGH);
                                     // liga o LED (sinal HIGH)
  delay(1000);
                                     // espera por um tempo
  digitalWrite(pino do led, LOW);
                                     // desliga o LED (sinal LOW)
  delay(1000);
                                     // espera por um tempo
```

/*

```
Exemplo para Curso de Introdução à Programação de Sistemas Embarcados
*/
const byte pino do led = 13;
// a função setup é executada uma vez quando você liga ou reinicia o Arduino
void setup() {
                                //inicializa o pino do led como saída
  pinMode(pino do led, OUTPUT);
// a função loop é executada repetidamente, para sempre (até o Arduino ser desligado)
void loop() {
  digitalWrite(pino do led, HIGH);
                                     // liga o LED (sinal HIGH)
  delay(1000);
                                     // espera por um tempo
  digitalWrite(pino do led, LOW);
                                     // desliga o LED (sinal LOW)
  delay(1000);
                                     // espera por um tempo
```

/*

Este código está <u>definindo</u> a função chamada setup

```
void setup() {
   pinMode(pino_do_led, OUTPUT);
}
```

Este código está <u>definindo</u> a função chamada loop

```
void loop() {
   digitalWrite(pino_do_led, HIGH);
   delay(1000);
   digitalWrite(pino_do_led, LOW);
   delay(1000);
}
```

```
void loop() {
    digitalWrite(pin
    doloy(1000));
```

```
digitalWrite(pino_do_led HIGH);
  delay(1000);
  digitalWrite(pino_do_led, LOW);
  delay(1000);
```

```
Exemplo para Curso de Introdução à Programação de Sistemas Embarcados
*/
const byte pino do led = 13;
// a função setup é executada uma vez quando você liga ou reinicia o Arduino
void setup() {
 pinMode (pino do led, OUTPUT); //inicializa o pino do led como saída
// a função loop é executada repetidamente, para sempre (até o Arduino ser desligado)
void loop() {
  digitalWrite(pino do led, HIGH); // liga o LED (sinal HIGH)
  delay(1000);
                                  // espera por um tempo
  digitalWrite(pino do led, LOW); // desliga o LED (sinal LOW)
  delay(1000);
                                    // espera por um tempo
```

/*

Variável

```
const byte pino_do_led = 13;
```

Variável

const byte pino_do_led = 13;

Variáveis nome tipo

00101000011 01110000111101110 100110001110111000

Variáveis

```
Declaração de variáveis:
tipo nome = valor;
int x = 2;
int y = 2;
```

Principais tipos de variáveis

Tipo		Tamanho	Exemplo
boolean	Valor false ou true	1 byte	boolean x = true;
char	Um caractere	1 byte	char x = 'a';
byte	Um número inteiro de 0 a 255	1 byte	byte x = 100;
int	Um número inteiro de -32,768 to 32,767	2 bytes	int x = -100;
float	Um número com casas decimais de -3.4028235E + 38 to 3.4028235E + 38	4 bytes	float x = 3.14;
String	Um texto	variável	String x =

Atribuição

x = 3

x = 3

x = 5

Operadores numéricos

+ Soma
- Subtração

* Multiplicação

/ Divisão

Módulo (resto da divisão)

Ordem das operações (numéricas)

- 1. Parênteses e colchetes
- 2. Multiplicação, divisão e módulo
- 3. Soma e subtração
- 4. Atribuição (=)

```
void setup() {
  Serial.begin(9600);
void loop() {
  Serial.println(8+5-3*4);
```

```
void setup() {
  Serial.begin(9600);
void loop() {
  Serial.println(10 + 17/10 -3);
```

```
void setup() {
  Serial.begin(9600);
void loop() {
  Serial.println(10 + 17.0/10 -3);
```

PRÁTICA

Escreva um programa que calcule a seguinte expressão matemática:

$$\frac{10-3\times2}{4+1}$$
 + $\frac{3}{6}$

Notação abreviada

A notação abreviada é apenas uma forma reduzida de escrever algumas operações muito comuns:

```
int x = 0;

x++; //equivalente a x = x + 1. Ou seja, x = x + 1 agora vale 1

x--; //equivalente a x = x - 1 Ou seja, x = 0
```

Notação abreviada

A notação abreviada é apenas uma forma reduzida de escrever algumas operações muito comuns:

```
int x = 0;
x++; //incremento
x--; //decremento
```

Comparação de valores

==	igual
!=	diferente
<	menor
>	maior
<=	Menor ou igual
>=	Maior ou igual

Comparação de valores - exemplo

```
---
int x = 5
x > 3;
x < 3;
x != 3;
```

Operadores booleanos - expressões lógicas

&&	E (and)
II	OU INCLUSIVO (or)
!	NÃO (not)

```
int x = 5;

(x == 5) && (x > 10);

(x == 5) || (x > 10);
```

Operadores booleanos - tabela verdade

Operador E Lógico em C		Op	Operador OU Lógico em C			Operador NÃO	
AB	В	A && B	A	В	AIIB	Lógico em C	
V	V	V	V	V	Ÿ	A	! A
V	F	F	V	F	V	V	F
F	V	F	E	V	V	F	٧
F	F	F	E	F	F		

Ordem das operações (atualizado)

- 1. Parênteses e colchetes
- 2. Multiplicação, divisão e módulo
- 3. Soma e subtração
- 4. <, <=, >, >=
- 5. ==, !=
- 6. &&
- 7 11
- 8. Atribuição (=)

Condicionais - se / senão

```
if (expression) {
// code executed only if expression is true
else {
// code executed only if expression is false
```

Condicionais - somente o se

```
if (expression) {
// code executed only if expression is true
}
```

Condicionais - múltiplas condições

```
if (expression1) {
// code executed only if expression1 is true
else if (expression2) {
// code executed only if expression1 is false
// and expression2 is true
else {
// code executed only if expression1 and expression2
//are false
```

Laços

Um laço é uma série de ações que se repete.

Tipos de laços que iremos utilizar:

- for
- while

For - estrutura

```
for (declaration & definition; condition; increment) {
  // statements
}
```

For - exemplo

```
for (int i = 0 ; i < 100 ; i++) {
   Serial.println(i);
}</pre>
```

Let's break the loop for the first two and last two i values and see what happens. The values of the integer variable i for the first and second iteration is shown as follows:

- i = 0 , is i smaller than 100 ? yes, println(0) , increment i
- i = 1 , is i smaller than 100 ? yes, println(1) , increment i

Fa... xba 1aax x... 2xa...x2a... xba1... a£ 2 2a aba....

For - escopo

```
for (int i = 0 ; i < 100 ; i++) {
  Serial.println(i);
int i = 0;
for (; i < 100; i++) {
  Serial.println(i);
```

For - Mudando o incremento

```
---
for (int i = 0 ; i < 50 ; i = 2 * i + 1) {
    Serial.println(i);
}
```

For - Decremento

```
for (int i = 50; i > 0; i = 2 * i - 1) {
    Serial.println(i);
}
```

Loops aninhados (um dentro do outro)

```
for (int x = 1 ; x \le 10 ; x++) {
  for (int y = 1 ; y \le 10 ; y++) {
    Serial.println(x*y);
```

While - estrutura

```
while (expression) {
// statements
}
```

The expression is evaluated as a Boolean, true or false. While the expression is true, statements are executed, then as soon as it will be false, the loop will end.

While - exemplo

```
int i = 0;
while (i < 100) {
  Serial.println(x*y);
  i++;
```

Cuidado com loops infinitos

Cuidado - não crie loops infinitos sem querer