Dipl.-Ing. Alexander Bubeck

Technology Seminar – ROS in Industrial Applications

- Learn about localization and navigation systems
 - Overview of modules of a mobile robot navigation
- Learn about the ROS navigation
 - Mapping components
 - Localization components
 - Planning compontents
- Experience the ROS navigation
 - Deploying the navigation
 - Application interfaces

Architecture of a navigation system

 Navigation systems consist of planners that move the robot from a start to a goal without creating collisions with the environment

For creating such plans the robot needs to know:
 Where he is based on a defined map of the environment
 Where the obstacles are relative to the robot
 Mapping
 Localization
 Controllers

Existing systems

- AGV systems with different kinematics
 - Differential kinematics
 - Car-like kinematics
 - Omni-directional kinematics
- Localization with required changes to the environent
 - Optical lines on floor
 - Magnetic tags in floor
 - Laser markers in environment
- Planning on predefined path
 - Reactive obstacles produce stops of AGV

Overview

- ROS provides a modular navigation system based on landmarks that can be used for arbitrary robots
- Separation of the modules for localization and navigation:
 - amcl and gmapping are components for localization
 - move_base is a component that integrates path planning, collision checking and controllers as plugins
- Process for utilizing the ROS navigation system for a robot:

Create a map of the environment

Start a localization for the environment

Configure and run motion planners

Prerequisites

- Mobile robot with driver in simulation (e.g. gazebo) or real robot hardware
- URDF description with at least a base_link and the sensor links with defined positions
- Sensors:
 - Laser scanners
 - Optional 3D cameras
- Actuators:
 - Kinematics module that controls cartesian twists
 - Cartesian odometry

Mobile robot navigation with ROS Mapping

- Gmapping: open source particle filter based slam algorithm (openslam.org)
 - Creates a gridmap of the environment that can be used by localization algorithms lateron
 - Robot moves around (e.g. by joystick) and gmapping registers scan data that are matched into a overall map
 - The existing part of the map is used for localization already during map creation
- Map is represented as occupancy grid and is distributed by the map_server node

Create a map of the environment

Start a localization for the environment Configure and run motion planners

Localization

- AMCL (adaptive monte carlo localization)
 - 2D localization of robot moving in a known environment
 - Particle filter on occupancy grid map
 - Not a global localization → needs to be initialized to a known pose on start
- Localization produces a tf tree:
 - /map: origin of the map and global coordinate system for the application
 - /odom combined: estimation of robot localization only based on odometry
 - /base_link: origin of the robot model (usually at the center of the robot on the floor)

Create a map of the environment

Start a localization for the environment

Configure and run motion planners

The costmap

- costmap_2d is the dynamic collision map that is used by move_base to plan a path
 - Live data of sensors (laser scans, 3D sensors) are mapped into a dynamic occupancy grid
 - Configured sensors can "mark" grids to be occupied or "clear" grids to be free
 - Costmap can be generated globally or in a defined local area around the robot

Create a map of the environment

Start a localization for the environment

Configure and run motion planners

Mobile robot navigation with ROS **Global path planners**

- Global planners are implemented as plugins
- Searches for path from current position to the goal position
- Search is based on static information in costmap
- Navfn: standard implementation of global planner
 - Robot assumed as circular
 - Path search implemented using Dijkstra's algorithm

Create a map of the environment

Start a localization for the environment

Configure and run motion planners

Local path planners

- Local planners are implemented as plugins
- Modification of path during execution to react to dynamic obstacles
- Dynamic costmap updates are used for collisions checks
- Different implementations are available:
 - Velocitiy filter: Implementation for differential platforms
 - Dynamic window approach: Implementation for omnidirectional platforms
 - Elastic Band: Omnidirectional behaviour can be tuned,
 Good performace in narrow environments

Create a map of the environment

Start a localization for the environment Configure and run motion planners

Deploying the navigation system

- Whole navigation system should be launched using a launch file configuring the nodes and the deployment
- Overall navigation system running looks like this:

Create a map of the environment

Start a localization for the environment

Configure and run motion planners

Interfaces to the navigation

- RVIZ can be used to:
 - Set the iniatial pose of the localization
 - Command a goal to the navigation

- TF can be utilized to integrate the localization information into an application (e.g. transform a detected pose into the global origin)
- Move_base action is used to command the navigation from applications

Create a map of the environment

Start a localization for the environment

Configure and run motion planners

Mobile robot navigation with ROS Summary

- ROS includes a navigation framework consisting of
 - Mapping: http://wiki.ros.org/gmapping
 - Localization: http://wiki.ros.org/amcl
 - Navigation: http://wiki.ros.org/move_base
- More detailed documentation can be found at <u>http://wiki.ros.org/navigation</u>
- Modular system allows to integrate extensions of mapping and planning algorithms (e.g. available from Fraunhofer IPA)

Your navigation expert

Dipl.-Ing. Alexander Bubeck

E-Mail: alexander.bubeck@ipa.fraunhofer.de

Phone: +49 711 970-1314