

SAR TEST REPORT

Issued to

Brightstar Corporation

For

Fixed Wireless Phone

Model Name

: GP-858

Trade Name

: AVVIO

Brand Name

: AVVIO

FCC ID

: WVB-GP858

Standard

: FCC Oet65 Supplement C Jun.2001

47CFR 2.1093

ANSI C95.1-1999

IEEE 1528-2003

MAX SAR

: Head: 1.276W/kg

Body: 0.750W/kg

Test date

: 2011-05-17

Issue date

: 2011-05-17

Shenzhen MORLAB Communication Technology Co., Ltd.

Shu Luan

Date

2011.05.17

Date

Date

2011.05.17

IEEE 1725

Reg. No.

BQTF

741109

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

DIRECTORY

1. TESTING LABORATORY	4
1.1. Identification of the Responsible Testing Laboratory	4
1.2. Identification of the Responsible Testing Location	4
1.3. Accreditation Certificate	4
1.4. List of Test Equipments	4
2. TECHNICAL INFORMATION	5
2.1. Identification of Applicant	5
2.2. Identification of Manufacturer	5
2.3. Equipment Under Test (EUT)	5
2.3.1. Photographs of the EUT	5
2.3.2. Identification of all used EUTs	5
2.4. Applied Reference Documents	6
2.5. Device Category and SAR Limits	6
2.6. Test Environment/Conditions	7
3. SPECIFIC ABSORPTION RATE (SAR)	8
3.1. Introduction	8
3.2. SAR Definition	8
4. SAR MEASUREMENT SETUP	9
4.1. The Measurement System	9
4.2. Probe	9
4.3. Phantom	11
4.4. Device Holder	11
5. TISSUE SIMULATING LIQUIDS	12
6. UNCERTAINTY ASSESSMENT	14
6.1. UNCERTAINTY EVALUATION FOR HANDSET SAR TEST	14
6.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK	15
7. SAR MEASUREMENT EVALUATION	17
7.1. System Setup	17
7.2. Validation Results	
8. OPERATIONAL CONDITIONS DURING TEST	
8.1. Informations on the testing	
0.1. Intol mations on the testing	10

8.2. Body-worn Configurations	18
8.3. Measurement procedure	19
8.4. Description of interpolation/extrapolation scheme	19
9. TEST RESULTS LIST	21
ANNEX A ACCREDITATION CERTIFICATE	22
ANNEX B EUT SETUP PHOTOS	23
ANNEX C GRAPH TEST RESULTS	26

		Change History
Issue	Date	Reason for change
1.0	May 17, 2011	First edition

1. Testing Laboratory

1.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Morlab Communications Technology Co., Ltd.

Department: Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

Responsible Test Lab Manager: Mr. Shu Luan
Telephone: +86 755 86130268
Facsimile: +86 755 86130218

1.2. Identification of the Responsible Testing Location

Name: Shenzhen Morlab Communications Technology Co., Ltd.

Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

1.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L3572 (see 0)

1.4. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Rohde&Schwarz (CMU200, SN:105894)	2010-9-26	1year
3	Voltmeter	Keithley (2000, SN:1000572)	2010-9-24	1 year
4	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)	2010-9-24	1 year
5	Amplifier	Nucl udes (ALB216, SN:10800)	2010-9-24	1 year
6	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2010-9-24	1 year
7	Probe	Satimo (SN:SN_3708_EP80)	2010-9-24	1 year
8	Phantom	Satimo (SN:SN_36_08_SAM62)	2010-9-24	1 year
9	Liquid	Satimo (Last Calibration:21 08 08)	2010-8-21	1 year
10	Dipole 835MHz	Satimo (SN 36/08 DIPC 99)	2010-9-23	1 year
11	Dipole 1800MHz	Satimo (SN 36/08 DIPF 101)	2010-9-23	1 year

2. Technical Information

Note: the following data is based on the information by the applicant.

2.1. Identification of Applicant

Company Name: Brightstar Corporation

Address: 9725 NW 117th Avenue, #300 Miami, FL 33178

2.2. Identification of Manufacturer

Company Name: LAKIA Networks CO., LTD.

Address: 2/F,Unit A, Technology Service Building, Software Garden, 1phase,

Xiamen, Fujian, China Zip: 361005

2.3. Equipment Under Test (EUT)

Brand Name: AVVIO
Type Name: AVVIO
Marking Name: GP-858

Hardware Version: P2

Software Version: LKW_R51.01

Frequency Bands: GSM 850MHz / PCS 1900MHz

Modulation Mode: GSM: GMSK

Multislot Class
Antenna type:

Development Stage:
Battery Model:
Battery specification:

GSM: N/A, EDGE: N/A
Fixed Internal Antenna
Identical prototype
KAN 3XAAA
600mAh 3.7V

2.3.1. Photographs of the EUT

Please see for photographs of the EUT.

2.3.2. Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	P2	LKW R51.01

2.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title						
1	47 CFR§2.1O93	Radiofrequency Radiation Exposure Evaluation: Portable Devices						
2	FCC OET	Evaluating Compliance with FCC Guidelines for Human						
	Bulletin 65	Exposure to Radiofrequency Electromagnetic Fields						
	(Edition 97-01),							
	Supplement C							
	(Edition 01-01)							
3	ANSI C95.1-1999	IEEE Standard for Safety Levels with Respect to Human						
		xposure to Radio Frequency Electromagnetic Fields, 3kHz to						
		300 GHz						
4	IEEE 1528-2003	Recommended Practice for Determining the Peak Spatial-Average						
		Specific Absorption Rate(SAR) in the Human Body Due to						
		Wireless Communications Devices: Experimental Techniques.						

2.5. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.6. Test Environment/Conditions

Normal Temperature (NT): 20 ... 25 °C Relative Humidity: 30 ... 75 %

Air Pressure: 980 ... 1020 hPa
Test frequency: GSM 850MHz

PCS 1900MHz

Operation mode: Call established

Power Level: GSM 850 MHz Maximum output power(level 5)

PCS 1900 MHz Maximum output power(level 0)

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 125, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz, The EUT, The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, $\ \delta \ T$ is the temperature rise and $\ \delta \ t$ the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement Setup

4.1. The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2. Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm

- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:1ess than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

Skin depthKeithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

where DCP is the diode compression point in mV.

4.3. Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.4. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

Device holder

System Material	Permittivity	Loss Tangent		
Delrin	3.7	0.005		

5. Tissue Simulating Liquids

Simulant liquids that are used for testing at frequencies of GSM 850MHz PCS 1900MHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms. Approximately 20litres are needed for an upright head compared to about 25 litres for a horizontal bath phantom. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR) or from the flat phantom to the liquid top surface (body SAR) is 15cm.

Gives the recipes for one liter of head and body tissue simulating liquid for frequency band 835 MHz and 1900 MHz.

Ingredients	Frequency Band		Frequen	cy Band	
(% by weight)	835MHz		1900MHz		
Tissue Type	Head	Body	Head	Body	
Water	41.45	52.4	55.36	40.4	
Salt(NaCl)	1.45	1.4	0.35	0.5	
Sugar	56.0	45.0	30.45	58.0	
HEC	1.0	1.0	0.0	1.0	
Bactericide	0.1	0.1	0.0	0.1	
Triton	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	13.84	0.0	
Acticide SPX	0.0	0.0	0.0	0.0	
Dielectric Constant	42.45	56.1	41.00	54.0	
Conductivity (S/m)	0.91	0.95	1.38	1.45	

Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 23.0~23.8°C, humidity: 54~60%.

/	Frequency	Permittivity ε	Conductivity σ (S/m)			
Target value	835 MHZ	41.5	0.90			
Validation value (May 16)	835 MHZ	41.675999	0.894409			
Target value	1900 MHZ	40	1.40			
Validation value (May 16)	1900 MHZ	38.509998	1.436111			

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the phone holder.

Table 2: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.0~23.8°C, humidity: 54~60%.

1					
/	Frequency	Permittivity ε	Conductivity σ (S/m)		
Target value	835 MHz	55.2	0.97		
Validation value (May 16)	835 MHz	55.709999	1.009033		
Target value	1900 MHz	53.3	1.52		
Validation value (May 16)	1900 MHz	52.548876	1.573978		

6. Uncertainty Assessment

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

6.1. UNCERTAINTY EVALUATION FOR HANDSET SAR TEST

b Sec.	c Tol	d	e= f(d,k)	f	g	h= c*f/e	i=	k
Sec.	Tol					c*f/e	4 /	
Sec.	Tol		1		ļ	C 1/C	c*g/e	
		Prob.	Div.	Ci (1g)	Ci	1g Ui	10g Ui	V
•	(+- %	Dist.			(10g)	(+-%)	(+-%)	i
)							
T					T	T		
E.2.1	7.0	N	1	1	1	7.00	7.00	∞
E.2.2	2.5	R	√3.	0.7	0.7	1.02	1.02	8
E.2.2	4.0	R	V2	0.7	0.7	1.63	1.63	8
E.2.3	1.0	R		1	1	0.58	0.58	∞
E.2.4	5.0	R		1	1	2.89	2.89	∞
E.2.5	1.0	R		1	1	0.58	0.58	∞
E.2.6	0.02	N	1	1	1	0.02	0.02	∞
E.2.7	3.0	R	√2	1	1	1.73	1.73	∞
E.2.8	2.0	R		1	1	1.15	1.15	∞
E.6.1	3.0	R		1	1	1.73	1.73	∞
E.6.2	2.0	R		1	1	1.15	1.15	∞
			15					<u> </u>
E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
E.5.2	5.0	R	V2	1	1	2.89	2.89	∞
			13					
E.4.2.1	0.03	N	1	1	1	0.03	0.03	N
								-
								1
E.4.1.1	5.00	N	1	1	1	5.00	5.00	∞
6.6.2	2.74	R	√ ₃	1	1	1.58	1.58	∞
.	T	•	1	1	1	1	1	
E.3.1	0.05	R	$\sqrt{2}$	1	1	0.03	0.03	∞
			10					<u> </u>
E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	∞
	E.2.2 E.2.3 E.2.4 E.2.5 E.2.6 E.2.7 E.2.8 E.6.1 E.6.2 E.6.3 E.5.2 E.4.2.1 E.4.1.1 6.6.2	E.2.2 2.5 E.2.2 4.0 E.2.3 1.0 E.2.4 5.0 E.2.5 1.0 E.2.6 0.02 E.2.7 3.0 E.2.8 2.0 E.6.1 3.0 E.6.2 2.0 E.6.3 0.05 E.5.2 5.0 E.4.2.1 0.03 E.4.1.1 5.00 6.6.2 2.74	E.2.2 2.5 R E.2.2 4.0 R E.2.3 1.0 R E.2.4 5.0 R E.2.5 1.0 R E.2.6 0.02 N E.2.7 3.0 R E.2.8 2.0 R E.6.1 3.0 R E.6.2 2.0 R E.6.2 5.0 R E.6.2 2.0 R E.6.3 0.05 R E.5.2 5.0 R E.4.2.1 0.03 N E.4.2.1 0.03 N E.4.2.1 0.03 N E.4.3.1 0.05 R	E.2.2 2.5 R E.2.2 4.0 R E.2.3 1.0 R E.2.4 5.0 R E.2.5 1.0 R E.2.6 0.02 N 1 E.2.7 3.0 R E.2.8 2.0 R E.6.1 3.0 R E.6.2 2.0 R E.6.3 0.05 R E.5.2 5.0 R E.4.2.1 0.03 N 1 E.4.1.1 5.00 N 1 E.4.2.1 0.05 R E.3.2 4.57 R	E.2.2 2.5 R	E.2.2 2.5 R $\sqrt{3}$ 0.7 0.7 E.2.2 4.0 R $\sqrt{3}$ 1 1 1 E.2.3 1.0 R $\sqrt{3}$ 1 1 1 E.2.4 5.0 R $\sqrt{3}$ 1 1 1 E.2.5 1.0 R $\sqrt{3}$ 1 1 1 E.2.6 0.02 N 1 1 1 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 1 E.2.8 2.0 R $\sqrt{3}$ 1 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 1 E.5.2 5.0 R $\sqrt{3}$ 1 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 1 E.5.2 5.0 R $\sqrt{3}$ 1 1 1 E.5.2 5.0 R $\sqrt{3}$ 1 1 1 E.5.2 5.0 R $\sqrt{3}$ 1 1 1 E.5.3 1 0.05 R $\sqrt{3}$ 1 1 1 1 E.4.1.1 5.00 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E.2.2	E.2.2 2.5 R $\sqrt{3}$ 0.7 0.7 1.02 1.02 E.2.2 4.0 R $\sqrt{3}$ 0.7 0.7 1.63 1.63 1.63 E.2.3 1.0 R $\sqrt{3}$ 1 1 1 0.58 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 1 0.58 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 1 0.03 0.03 E.2.7 3.0 R $\sqrt{3}$ 1 1 1 0.02 0.02 E.2.7 3.0 R $\sqrt{3}$ 1 1 1 1.15 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1 1.73 1.73 E.6.2 2.0 R $\sqrt{3}$ 1 1 1 1.73 1.73 E.6.2 2.0 R $\sqrt{3}$ 1 1 1 1.15 1.15 E.6.3 0.05 R $\sqrt{3}$ 1 1 1 0.03 0.03 E.5.2 5.0 R $\sqrt{3}$ 1 1 1 0.03 0.03 E.4.1 5.00 N 1 1 1 1 5.00 5.00 6.6.2 2.74 R $\sqrt{3}$ 1 1 1 1.58 1.58 E.3.1 0.05 R $\sqrt{3}$ 1 1 1 0.03 0.03

Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	M
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	3.69	R	√3	0.6	0.49	1.28	1.04	~
from target value				13					
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
measurement uncertainty									
Combined Standard Uncertainty			RSS				10.09	9.53	
Expanded Uncertainty			k				20.18	19.06	
(95% Confidence interval)									

6.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

	T.		Τ.		T			T.	_
a	b	c	d	e=f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci	1g Ui	10g Ui	V
•		(+- %	Dist.		` =	(10g)	(+-%)	(+-%)	i
						` -			
Measurement System	<u></u>	<u> </u>		.1					
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	~
Axial Isotropy	E.2.2	2.5	R	V2	0.7	0.7	1.02	1.02	~
Hemispherical Isotropy	E.2.2	4.0	R	V3	0.7	0.7	1.63	1.63	~
Boundary effect	E.2.3	1.0	R	V3	1	1	0.58	0.58	~
Linearity	E.2.4	5.0	R	V3	1	1	2.89	2.89	~
System detection limits	E.2.5	1.0	R	V3	1	1	0.58	0.58	~
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	~
Reponse Time	E.2.7	3.0	R	√3.	1	1	1.73	1.73	~
Integration Time	E.2.8	2.0	R	V2	1	1	1.15	1.15	~
RF ambient Conditions	E.6.1	3.0	R	V3.	1	1	1.73	1.73	~
Probe positioner Mechanical	E.6.2	2.0	R	√3	1	1	1.15	1.15	~
Tolerance	<u> </u>			10					—
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	√3	1	1	0.03	0.03	∞
Extrapolation, interpolation and	E.5.2	5.0	R		1	1	2.89	2.89	~
integration Algoritms for Max.				√3					
SAR Evaluation									
Dipole									
Dipole axis to liquid Distance	8,E.4.2	1.00	R	√3	1	1	0.58	0.58	N
				15					-
									1
Input power and SAR drift	8,6.6.2	2.74	R	√3	1	1	1.58	1.58	0
measurement				15					
Phantom and Tissue Parameters	š								

Phantom Uncertainty (Shape and	E.3.1	0.05	R	√3	1	1	0.03	0.03	8
thickness tolerances)				13					
Liquid conductivity - deviation	E.3.2	4.57	R	√3	0.64	0.43	1.69	1.13	8
from target value				13					
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	M
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	3.69	R	√3	0.6	0.49	1.28	1.04	8
from target value				13					
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
measurement uncertainty									
Combined Standard Uncertainty			RSS				8.77	8.12	
Expanded Uncertainty			k				17.54	16.25	
(95% Confidence interval)									

7. SAR Measurement Evaluation

7.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

Equipments:

name	Type and specification
Signal generator	E4433B
Directional coupler	450MHz-3GHz
Amplifier	3W 502(10-2500MHz)
Reference dipole	835MHz:SN 36/08 DIPC 99
	1800MHz:SN 36/08 DIPF 101

7.2. Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %.

Frequency	835MHz	1900MHz
Target value (1g)	9.5 W/Kg	38.1 W/Kg
250 mW input payar	2.627 W/Kg (head)	9.903 W/Kg (head)
250 mW input power	2.711 W/Kg (body)	9.835 W/Kg (body)
Toot value (1a)	10.508 W/Kg (head)	39.612 W/Kg (head)
Test value (1g)	10.844 W/Kg (body)	39.34 W/Kg (body)

Note: System checks the specific test data please see page 88-95.

8. Operational Conditions During Test

8.1. Informations on the testing

The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level.

The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom.

Description of the "cheek" position:

The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost.

Description of the "tilted" position:

The mobile phone is well placed in the "cheek" position as described above. Then the mobile phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost.

Remark: Please refer to Appendix B for the test setup photos.

8.2. Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm(taking into account of the IEEE 1528 and the place of the antenna)

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

SAR Measurement Points in Area Scan

8.3. Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

8.4. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated

from the liquid surface with a 1mm step.
The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

9. Test Results List

Summary of Measurement Results (GSM 850MHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.							
			SAR(W/Kg)				
			Device Tes	t channel, Fred	quency and		
Phantom	Device Test	Antonno		Power			
		Antenna Positions	Channel	Channel	Channel		
Configurations	Positions	Positions	128	192	251		
			824.2MHz	836.6MHz	848.8MHz		
			33.30 dBm	33.80 dBm	33.97 dBm		
Left Side	Cheek/Touch	Extended	0.808	0.898	0.534		
Of Head	Ear/Tilt	Extended	0.476	0.361	0.364		
Right Side	Cheek/Touch	Extended	0.898	0.829	0.544		
Of Head	Ear/Tilt	Extended	0.430	0.442	0.264		
	Back upward	Extended	0.350	0.361	0.364		
Body	Keyboard Upward	Extended	/	/	0.228		

Summary of Measurement Results (GSM 1900MHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.							
			SAR(W/Kg)				
			Device Tes	t channel, Fred	quency and		
Phantom	Device Test	Antenna		Power			
	Positions	Positions	Channel	Channel	Channel		
Configurations	Positions	Positions	512	661	810		
			1850.2MHz	1880.0MHz	1909.8MHz		
			25.70 dBm	26.37 dBm	27.95 dBm		
Left Side	Cheek/Touch	Extended	1.112	1.075	1.190		
Of Head	Ear/Tilt	Extended	0.922	0.974	0.983		
Right Side	Cheek/Touch	Extended	1.015	1.276	1.209		
Of Head	Ear/Tilt	Extended	0.927	1.139	1.015		
	Back upward	Extended	/	/	0.650		
Body	Keyboard	Extended			0.265		
	Upward	Extellueu	/	/	0.365		

Note: 1. er KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is \leq 100 MHz, testing for the other channels is not required.

Annex A Accreditation Certificate

Annex B EUT Setup Photos

1 EUT Left Head Touch Cheek Position

2 EUT Left Head Tilt15 Position

3 EUT Right Head Touch Cheek Position

4 EUT Right Head Tilt15 Position

5 Side Position

Liquid Level Photo

Annex C Graph Test Results

TYPE	BAND	<u>PARAMETERS</u>
		Measurement 1: Right Head with Cheek device position
		on Low Channel in GSM mode
		Measurement 2: Right Head with Cheek device position
		on Middle Channel in GSM mode
		Measurement 3: Right Head with Cheek device position
		on High Channel in GSM mode
		Measurement 4: Right Head with Tilt device position on
		Low Channel in GSM mode
		Measurement 5: Right Head with Tilt device position on
		Middle Channel in GSM mode
		Measurement 6: Right Head with Tilt device position on
		High Channel in GSM mode
		Measurement 7: Left Head with Cheek device position
		on Low Channel in GSM mode
		Measurement 8: Left Head with Cheek device position
		on Middle Channel in GSM mode
	<u>GSM900</u>	Measurement 9: Left Head with Cheek device position
		on High Channel in GSM mode
		Measurement 10: Left Head with Tilt device position on
		Low Channel in GSM mode
		Measurement 11: Left Head with Tilt device position on
		Middle Channel in GSM mode
		Measurement 12: Left Head with Tilt device position on
		High Channel in GSM mode
		Measurement 13: Validation Plane with Body device
		position on Low Channel in GSM mode
		Measurement 14: Validation Plane with Body device
		position on Middle Channel in GSM mode
		Measurement 15: Validation Plane with Body device
		position on High Channel in GSM mode
		Measurement 16: Validation Plane with Body device
		position on High Channel in GSM mode keyboard
		upward Maggurament 17: Right Head with Check device position
		Measurement 17: Right Head with Cheek device position
		on Low Channel in GSM mode Maggurament 18: Right Head with Charle devices position
		Measurement 18: Right Head with Cheek device position on Middle Channel in GSM mode
	GSM1800	
		Measurement 19: Right Head with Cheek device position
		on High Channel in GSM mode Maggurament 20: Right Head with Tilt davige position on
		Measurement 20: Right Head with Tilt device position on
		Low Channel in GSM mode

Measurement 21: Right Head with Tilt device position on Middle Channel in GSM mode Measurement 22: Right Head with Tilt device position on High Channel in GSM mode Measurement 23: Left Head with Cheek device position on Low Channel in GSM mode Measurement 24: Left Head with Cheek device position on Middle Channel in GSM mode Measurement 25: Left Head with Cheek device position on High Channel in GSM mode Measurement 26: Left Head with Tilt device position on Low Channel in GSM mode Measurement 27: Left Head with Tilt device position on Middle Channel in GSM mode Measurement 28: Left Head with Tilt device position on High Channel in GSM mode Measurement 29: Validation Plane with Body device position on High Channel in GSM mode Measurement 30: Validation Plane with Body device position on High Channel in GSM mode keyboard upward

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 37 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 128):

() () () () () () () () () ()	
Frequency (MHz)	824.200012
Relative permittivity (real part)	41.790001
Relative permittivity	18.926250
Conductivity (S/m)	0.866612
Power Drift (%)	-2.430000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-30.00, Y=-8.00

SAR 10g (W/Kg)	0.601700
SAR 1g (W/Kg)	0.898337

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.9166	0.6869	0.4727	0.3178	0.2257	0.1586
(W/Kg)							

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 42 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt			
Phantom	Right head			
Device Position	Cheek			
Band	GSM850			
Channels	Middle			
Signal	GSM			

B. SAR Measurement Results

Middle Band SAR (Channel 190):

<u> </u>			
Frequency (MHz)	836.599976		
Relative permittivity (real part)	40.669998		
Relative permittivity	19.120001		
Conductivity (S/m)	0.888655		
Power Drift (%)	-1.420000		
Ambient Temperature:	22.0°C		
Liquid Temperature:	21.7C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-32.00, Y=-9.00

SAR 10g (W/Kg)	0.559864		
SAR 1g (W/Kg)	0.829378		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.8169	0.6201	0.4096	0.2930	0.2112	0.1493
(W/Kg)							

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 45 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt			
Phantom	Right head			
Device Position	Cheek			
Band	GSM850			
Channels	High			
Signal	GSM			

B. SAR Measurement Results

Higher Band SAR (Channel 251):

er Bana Stiff (Chamier 251).				
Frequency (MHz)	848.799988			
Relative permittivity (real part)	41.675999			
Relative permittivity	18.967199			
Conductivity (S/m)	0.894409			
Power Drift (%)	-0.480000			
Ambient Temperature:	22.0°C			
Liquid Temperature:	21.7C			
ConvF:	28.479,25.214,27.196			
Crest factor:	1:8			

Maximum location: X=-33.00, Y=-17.00

SAR 10g (W/Kg)	0.365224		
SAR 1g (W/Kg)	0.544175		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5560	0.3941	0.2869	0.1966	0.1417	0.1005
(W/Kg)							

MEASUREMENT 4

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 43 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt			
Phantom	Right head			
Device Position	Tilt			
Band	GSM850			
Channels	Low			
Signal	GSM			

B. SAR Measurement Results

Lower Band SAR (Channel 128):

() () () () () () () () () ()			
Frequency (MHz)	824.200012		
Relative permittivity (real part)	41.790001		
Relative permittivity	18.926250		
Conductivity (S/m)	0.866612		
Power Drift (%)	-1.890000		
Ambient Temperature:	22.0°C		
Liquid Temperature:	21.7C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-30.00, Y=-14.00

SAR 10g (W/Kg)	0.305065		
SAR 1g (W/Kg)	0.430489		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.4310	0.3232	0.2390	0.1790	0.1419	0.1040
(W/Kg)							

MEASUREMENT 5

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 37 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

ire Build Stiff (Chaimer 190).	
Frequency (MHz)	836.599976
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	-0.210000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-26.00, Y=-9.00

SAR 10g (W/Kg)	0.308462
SAR 1g (W/Kg)	0.442081

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.4517	0.3273	0.2449	0.1792	0.1300	0.0966
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 39 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

er Bana Stiff (Chamier 251).	
Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199
Conductivity (S/m)	0.894409
Power Drift (%)	-1.490000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-31.00, Y=-9.00

SAR 10g (W/Kg)	0.183095
SAR 1g (W/Kg)	0.264305

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2695	0.1966	0.1464	0.1063	0.0780	0.0594
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 41 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 128):

or Bund Britt (Chamier 120).	
Frequency (MHz)	824.200012
Relative permittivity (real part)	41.790001
Relative permittivity	18.926250
Conductivity (S/m)	0.866612
Power Drift (%)	-0.240000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-31.00, Y=-6.00

SAR 10g (W/Kg)	0.545666
SAR 1g (W/Kg)	0.809410

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.8405	0.5857	0.4223	0.3054	0.2218	0.1643
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 47 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

<u> </u>	
Frequency (MHz)	836.599976
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	-2.880000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-33.00, Y=-8.00

SAR 10g (W/Kg)	0.608734
SAR 1g (W/Kg)	0.898491

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.9386	0.6739	0.4805	0.3526	0.2565	0.1861
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 40 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

<u> </u>	
Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199
Conductivity (S/m)	0.894409
Power Drift (%)	1.300000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-27.00, Y=-1.00

SAR 10g (W/Kg)	0.362767
SAR 1g (W/Kg)	0.534490

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5517	0.3791	0.2692	0.1925	0.1346	0.0943
(W/Kg)							

15.0

25.0

30.0

20.0

Z (mm)

35.0

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 36 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

ile Balla Stiff (Challier 190).	
Frequency (MHz)	824.200012
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	-1.18721
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-26.00, Y=-2.00

SAR 10g (W/Kg)	0.335651
SAR 1g (W/Kg)	0.476387

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5033	0.3722	0.2777	0.2054	0.1523	0.1125
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 36 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

<u> </u>	
Frequency (MHz)	836.599976
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	-0.320000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-26.00, Y=-2.00

SAR 10g (W/Kg)	0.344320
SAR 1g (W/Kg)	0.483772

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5033	0.3722	0.2777	0.2054	0.1523	0.1125
(W/Kg)							

15.0

20.0

Z (mm)

25.0

30.0

0.0 2.5 5.0 7.5 10.0

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 36 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

()	
Frequency (MHz)	848.799988
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	-2.65000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-26.00, Y=-2.00

SAR 10g (W/Kg)	0.363541
SAR 1g (W/Kg)	0.488462

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.5033	0.3722	0.2777	0.2054	0.1523	0.1125
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 9 minutes 20 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 128):

ile Balla Billi (Challier 120).	
Frequency (MHz)	824.200012
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	0.340000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	0.243289
SAR 1g (W/Kg)	0.350156

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.3666	0.2682	0.1920	0.1392	0.1013	0.0724
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 9 minutes 20 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

ire Build Stiff (Chaimer 190).	
Frequency (MHz)	836.599976
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	1.767000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	0.254950
SAR 1g (W/Kg)	0.361058

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.3666	0.2682	0.1920	0.1392	0.1013	0.0724
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 9 minutes 20 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	GSM850		
Channels	High		
Signal	GSM		

B. SAR Measurement Results

Middle Band SAR (Channel 251):

ile Build Stiff (Citatilier 251).	
Frequency (MHz)	848.799988
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	1.896000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	0.287612
SAR 1g (W/Kg)	0.364167

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.3666	0.2682	0.1920	0.1392	0.1013	0.0724
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 9 minutes 20 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 251):

<u> </u>	
Frequency (MHz)	848.799988
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001
Conductivity (S/m)	0.888655
Power Drift (%)	0.340000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	0.187651
SAR 1g (W/Kg)	0.227652

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2666	0.1682	0.0920	0.0392	0.0013	0.00724
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 35 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

Build Stiff (Chamier 512):	
Frequency (MHz)	1850.199951
Relative permittivity (real part)	39.993999
Relative permittivity	12.991650
Conductivity (S/m)	1.335397
Power Drift (%)	-0.230000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-13.00, Y=8.00

SAR 10g (W/Kg)	0.574210
SAR 1g (W/Kg)	1.015659

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.1582	0.5973	0.2846	0.1478	0.0750	0.0373
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 40 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):

ile Build Stiff (Chaimer 661).	
Frequency (MHz)	1880.000000
Relative permittivity (real part)	38.509998
Relative permittivity	13.750000
Conductivity (S/m)	1.436111
Power Drift (%)	-1.200000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-13.00, Y=8.00

SAR 10g (W/Kg)	0.812654
SAR 1g (W/Kg)	1.275968

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.2509	0.8298	0.4103	0.2023	0.1023	0.0533
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 33 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 810):

<u> </u>	
Frequency (MHz)	1909.800049
Relative permittivity (real part)	39.929001
Relative permittivity	13.156500
Conductivity (S/m)	1.395905
Power Drift (%)	-0.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-11.00, Y=8.00

SAR 10g (W/Kg)	0.616197		
SAR 1g (W/Kg)	1.209462		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.2681	0.6191	0.3033	0.1476	0.0719	0.0352
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 38 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

<u> </u>	
Frequency (MHz)	1850.199951
Relative permittivity (real part)	39.993999
Relative permittivity	12.991650
Conductivity (S/m)	1.335397
Power Drift (%)	-0.770000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-6.00, Y=14.00

SAR 10g (W/Kg)	0.466325
SAR 1g (W/Kg)	0.927317

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.9825	0.4692	0.2339	0.1109	0.0562	0.0301
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 35 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):

it Built Still (Chumilet Col).	
Frequency (MHz)	1880.000000
Relative permittivity (real part)	38.509998
Relative permittivity	13.750000
Conductivity (S/m)	1.436111
Power Drift (%)	-0.330000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-6.00, Y=11.00

SAR 10g (W/Kg)	0.716961
SAR 1g (W/Kg)	1.138557

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.2299	0.7464	0.3598	0.1801	0.0875	0.0448
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 35 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 810):

er Bana Britt (Chamier 616).	
Frequency (MHz)	1909.800049
Relative permittivity (real part)	39.929001
Relative permittivity	13.156500
Conductivity (S/m)	1.395905
Power Drift (%)	-0.420000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-8.00, Y=13.00

SAR 10g (W/Kg)	0.568256
SAR 1g (W/Kg)	1.014768

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.1790	0.5886	0.2825	0.1368	0.0653	0.0342
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 6 minutes 6 seconds

A. Experimental conditions.

Phantom File	zinf1.txt
Phantom	Left head
Device Position	Cheek
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

<u> </u>	
Frequency (MHz)	1850.199951
Relative permittivity (real part)	39.993999
Relative permittivity	12.991650
Conductivity (S/m)	1.335397
Power Drift (%)	1.400000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-9.00, Y=6.00

SAR 10g (W/Kg)	0.592487
SAR 1g (W/Kg)	1.111864

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.1422	0.6164	0.3093	0.1572	0.0795	0.0395
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 34 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):

it Built Still (Chumilet Col).	
Frequency (MHz)	1880.000000
Relative permittivity (real part)	38.509998
Relative permittivit	13.750000
Conductivity (S/m)	1.436111
Power Drift (%)	-0.470000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-2.00, Y=1.00

SAR 10g (W/Kg)	0.782064
SAR 1g (W/Kg)	1.074890

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.5299	0.7849	0.3971	0.2030	0.1001	0.0494
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 6 minutes 6 seconds

A. Experimental conditions.

Phantom File	zinf1.txt
Phantom	Left head
Device Position	Cheek
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 810):

er Bana Britt (Chamier 616).	
Frequency (MHz)	1909.800049
Relative permittivity (real part)	39.929001
Relative permittivity	13.156500
Conductivity (S/m)	1.395905
Power Drift (%)	1.200000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=-8.00, Y=7.00

SAR 10g (W/Kg)	0.674589
SAR 1g (W/Kg)	1.190496

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.3379	0.6625	0.3417	0.1690	0.0848	0.0402
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 36 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Left head
Device Position	Tilt
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

<u> </u>	
Frequency (MHz)	1850.199951
Relative permittivity (real part)	39.993999
Relative permittivity	12.991650
Conductivity (S/m)	1.335397
Power Drift (%)	-1.010000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=0.00, Y=8.00

SAR 10g (W/Kg)	0.560792	
SAR 1g (W/Kg)	0.922483	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.0893	0.5650	0.2872	0.1408	0.0677	0.0335
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 7 minutes 37 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Left head
Device Position	Tilt
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):

it Built Still (Chumilet Col).	
Frequency (MHz)	1880.000000
Relative permittivity (real part)	38.509998
Relative permittivity	13.750000
Conductivity (S/m)	1.436111
Power Drift (%)	0.870000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=8.00, Y=6.00

SAR 10g (W/Kg)	0.776219
SAR 1g (W/Kg)	0.973568

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.0690	0.7933	0.4046	0.1993	0.0993	0.0479
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 6 minutes 7 seconds

A. Experimental conditions.

Phantom File	zinf1.txt
Phantom	Left head
Device Position	Tilt
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 810):

<u> </u>	
Frequency (MHz)	1909.800049
Relative permittivity (real part)	39.929001
Relative permittivity	13.156500
Conductivity (S/m)	1.395905
Power Drift (%)	1.490000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=0.00, Y=5.00

SAR 10g (W/Kg)	0.639490
SAR 1g (W/Kg)	0.982917

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.3470	0.6478	0.3136	0.1532	0.0769	0.0362
(W/Kg)							

mplete)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 9 minutes 16 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 810):

<u> </u>	
Frequency (MHz)	1909.800049
Relative permittivity (real part)	38.509998
Relative permittivity	13.750000
Conductivity (S/m)	1.436111
Power Drift (%)	-1.040000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=9.00, Y=-49.00

SAR 10g (W/Kg)	0.394089	
SAR 1g (W/Kg)	0.649631	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.6831	0.3791	0.1829	0.0882	0.0448	0.0196
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 9 minutes 16 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	GSM1900		
Channels	High		
Signal	GSM		

B. SAR Measurement Results

Middle Band SAR (Channel 810):

ile Build Stiff (Chaimer 610).	
Frequency (MHz)	1909.800049
Relative permittivity (real part)	38.509998
Relative permittivity	13.750000
Conductivity (S/m)	1.436111
Power Drift (%)	-1.54100
Ambient Temperature:	22.0°C
Liquid Temperature:	21.7C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8

Maximum location: X=9.00, Y=-49.00

SAR 10g (W/Kg)	0.226531
SAR 1g (W/Kg)	0.365490

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.3831	0.3791	0.1829	0.0882	0.0448	0.0196
(W/Kg)							

System Performance Check Data(Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Validation plane			
Device Position				
Band	835MHz			
Channels				
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835.000000
Relative permittivity (real part)	40.490002
Relative permittivity	15.070000
Conductivity (S/m)	0.983918
Power Drift (%)	-0.050000
Ambient Temperature:	22.4°C
Liquid Temperature:	22.5°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:1

Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	1.715223
SAR 1g (W/Kg)	2.677926

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	2.6486	1.2069	0.5583	0.3002

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Validation plane			
Device Position				
Band	835MHz			
Channels				
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835.000000
Relative permittivity (real part)	40.490002
Relative permittivity	15.070000
Conductivity (S/m)	0.983918
Power Drift (%)	-0.050000
Ambient Temperature:	22.4°C
Liquid Temperature:	22.5°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:1

Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	1.715223
SAR 1g (W/Kg)	2.677926

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	2.6486	1.2069	0.5583	0.3002

System Performance Check Data(Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	1800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1800.000000
Relative permittivity (real part)	38.930000
Relative permittivity	15.070000
Conductivity (S/m)	1.321229
Power Drift (%)	-0.140000
Ambient Temperature:	22.3°C
Liquid Temperature:	22.6°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	4.910003
SAR 1g (W/Kg)	8.455521

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	2.8536	1.3061	0.6041	0.3211

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/5/2011

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position			
Band	1800MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1800.000000
Relative permittivity (real part)	38.930000
Relative permittivity	15.070000
Conductivity (S/m)	1.321229
Power Drift (%)	-0.140000
Ambient Temperature:	22.3°C
Liquid Temperature:	22.6°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

₩ 1.0-

0.5-0.2-

0.0

2.5

5.0

7.5

Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	4.910003
SAR 1g (W/Kg)	8.455521

Z Axis Scan

Z (mm)

10.0 12.5 15.0 17.5 20.0 22.5 25.0

