State-Machine Replication for Planet-Scale Systems

Enes, V., Baquero, C., Rezende, T.F., Gotsman, A., Perrin, M. and Sutra, P.

EuroSys'20

Presentation by Yannis Marketakis

In the context of HY559 (Computer Science Department, UOC)

In a nutshell

The context

Applications that run at multiple sites scattered across the globe

The problem

- State-Machine Replication (SMR) protocols are poorly suited for planet-scale applications
- Majorities might involve faraway replicas → increase clientperceived latency

The contribution

 The number of concurrent failures in geo-distributed systems is low (1 or 2)

The results

- Smaller fast quorums
- Flexible fast path condition

Planet-Scale Systems

- Leader-based SMR are not ideal
 - Unfair for clients far away from the leader
 - Adding more sites does not help → the leader must replicate commands to more sites

The observation

- Common SMR protocols provide a level of fault tolerance that is unnecessarily high for geo-distributed systems
 - 6 out of 13 can fail concurrently

The observation

- The number of concurrent site-failures in geo-distributed systems is low: typically 1 or 2
- In general geo-distributed systems are designed to be resilient to failures (e.g. multiple servers in different regions)
- The idea: Separate the maximum number of failures (f) from the overall number of sites (n)

ATLAS

- A leaderless SMR protocol
- Similarly to other leaderless protocols (i.e. EPaxos, Mencius) it permits processing commands
 - In one round-trip using a fast past
 - In two round-trips using a slow path
- ATLAS main features
 - Use smaller fast quorums
 - Flexible fast path condition

ATLAS – Smaller fast quorums

 Fast-quorums (bigger than a majority) increase latency due to far-away replicas

Protocol	Quorum
Generalized Paxos	$\frac{2n}{3}$
Epaxos	$\frac{3n}{4}$
ATLAS	$\frac{n}{2}+f$

- Smaller values of f
- → Smaller fast quorums
- → reduced latency
- \rightarrow essential for planet-scale applications

ATLAS – Flexible fast-path condition

- Take the fast path even when non-commuting commands are submitted concurrently
 - Allows processing more commands via the fast path
- Compared to existing approaches (GPaxos, EPaxos) ATLAS does not require fast-quorum replies to match exactly
 - It is enough if every dependency is reported by at least f processes
- With the provision of a (simpler) failure recovery mechanism
 - Recover decisions made by failed replicas while they were shortcutting via the fast path

ATLAS – Flexible fast-path condition example (f=2) ${a,b,c}$

$$\bigcup_{Q} dep = \bigcup_{f} Q dep$$
$$\{a, b, c, d\} = \{a, b, c, d\}$$

ATLAS: ✓ other SMR: ×

$$\bigcup_{Q} dep \neq \bigcup_{f} Q \ dep$$
$$\{a, b, c\} \neq \emptyset$$

ATLAS: * other SMR: *

ATLAS – Flexible fast-path condition example (f=1)

$$\bigcup_{Q} dep = \bigcup_{f} Q dep$$
$$\{a, b, c\} = \{a, b, c\}$$

ATLAS: ✓ other SMR: ×

$$\bigcup_{Q} dep = \bigcup_{f} Q \ dep$$
$$\{a\} = \{a\}$$

ATLAS: ✓ other SMR: ✓

 $dep(b)={a}$ by **2** processes

 $dep(a)=\{b\}$ by **1** process

 $dep(b)=\{a\}$ by **2** processes

Evaluation – Bounds of Failures

- 13 sites in various locations
 - Asia (4), Australia (1), Europe (4), N. America (3), S. America (1)
- Setting:
 - Sites ping each every second
- Noticeable events
 - Delays between a single site and others

Evaluation – fast path likelihood

Evaluation – Average latency

Conclusion

- ATLAS is a State-Machine Replication protocol tailored for planet-scale systems
- Key features: (a) smaller fast quorums and (b) flexible fast path condition
- The number of concurrent failures are not bound to the overall number of nodes/sites
 - This may compromise liveness but not safety
 - E.g. if more than f sites fail, then ATLAS will block until enough of them are reachable

References and Links

Citation

- Enes, V., Baquero, C., Rezende, T.F., Gotsman, A., Perrin, M. and Sutra, P., 2020, April. State-machine replication for planet-scale systems. In Proceedings of the Fifteenth European Conference on Computer Systems (pp. 1-15).
- Link to paper
 - https://dl.acm.org/doi/abs/10.1145/3342195.3387543
- Link to these slides
 - https://github.com/ymark/HY559-2023-Fall

Universidade do Minho

