2. Common Stochastic Processes

Common Stochastic Processes

A list of some special stochastic processes and their properties

The Bernoulli process

The stochastic process $\{X_n : n = 1, 2, ...\}$ is called a **Bernoulli process** with success probablity p if,

- 1. X_1, X_2, \dots are independent 2. $P(X_n=1)=p.P(X_n=0)=1-p=q.$ for all n

The Bernoulli process $\{X(n)\}$ has state space $S = \{0,1\}$ and index set T = $\{1, 2, 3, \ldots\}$

The Binomial process

Let $\{X_n: n=1,2,\ldots\}$ be a Bernoulli process with success probability p and let

$$S = \left\{ \begin{array}{cc} 0, & n = 0 \\ X_1 + X_2 + ..., & n = 1, 2, ... \end{array} \right.$$

Then S_n is the number of successes in the first n Bernoulli trials. Thus,

$$P\left(S_n=k\right)=(\tfrac{n}{k})\cdot p^k\cdot (1-p)^{n-k},\ k=0,1,...,n$$

The stochastic process $\{S_n:n=1,2,...\}$ is called a **binomial process**. The state space of the binomial process $\{S_n\}$ is $S=\{1,2,...,n\}$ while the index set is $T = \{1, 2, ...\}$