

Exact Formulas for the Computation of Expected Tchebycheff Improvement

Liang Zhao and Qingfu Zhang

Department of Computer Science City University of Hong Kong

July 3, 2023

Outline

- Background and Motivation
- 2 Exact Formulas for the ETI Computation
- 3 Experimental Results
- 4 Conclusion

Background

Expected Tchebycheff Improvement (ETI)

 a popular acquisition function in expensive multiobjective optimization.

Existing methods for ETI computation

approximation methods.

Our work

exact formulas for the computation of ETI.

Background

Expensive Multiobjective Optimization Problem (MOP):

minimize
$$F(x) = (f_1(x), \dots, f_m(x))^T$$

subject to $x \in \Omega \subseteq \mathbb{R}^d$ (1)

where

- \blacksquare evaluation of F(x) is **very expensive**.
- evolutionary algorithms: difficult or impossible to directly use.

Efficient global optimization (EGO)

- ParEGO (J. Knowles, 2006)
- EHVI-EGO (Emmerich et al, 2006)
- MOEA/D-EGO (Zhang et al., 2009)
- ...

Aerodynamic shape optimization

ParEGO VS MOEA/D-EGO

Decomposition

- Tchebycheff scalarization: $g^{te}(F(x)|\mathbf{w})$
- MOP -> single-objective subproblem

ParEGO

- randomly generates a weight vector **w**ⁱ
- Gaussian process (GP) model -> $g^{te}(F(x)|\mathbf{w}^i)$
- single-objective Expected Improvement (EI)
- select one query point: $x^* = \arg \max_{x \in \Omega} EI(x)$

MOEA/D-EGO

- \blacksquare GP model -> $f_i(x)$
- Expected Tchebycheff Improvement (ETI): $\text{EI}_{\mathcal{T}}(x|\mathbf{w}^i)$, i = 1, ..., N
- $extbf{Q} = \operatorname{arg\,max}_{x \in \Omega} \operatorname{EI}_{T}(x|\mathbf{w}^{i}), i = 1, \dots, N$
- \blacksquare subset selection: select q query points from Q.

Advantages

- readily supports parallel expensive multiobjective optimization.
- achieves a good balance between convergence and diversity.

Disadvantages

the computation of ETI is complex, due to the maximum of several Gaussians is not a Gaussian ¹.

Let
$$\eta_i := w_i(y_i - z_i^*)$$
. $p(\eta_i) = \mathcal{N}(w_i(\hat{\mu}_i(\mathbf{x}) - z_i^*), w_i^2 \hat{\sigma}_i^2(\mathbf{x}))$.

$$\operatorname{EI}_{T}(x|\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{y} \sim p(\boldsymbol{y}|x,\mathcal{D})} \left[\max(0, g^* - \max_{1 \leq i \leq m} \{w_i(y_i - \boldsymbol{z}_i^*)\}) \right], \quad (2)$$

where
$$g^* = \min_{\boldsymbol{u} \in \mathcal{D}} g^{te}(\boldsymbol{u}|\boldsymbol{w}), \ \boldsymbol{y} = F(x), \ \boldsymbol{w} = (w_1, \dots, w_m)^T$$
.

 $^{^1}$ Nadarajah, S. and Kotz, S., 2008. Exact distribution of the max/min of two Gaussian random variables.

Related Work

Approximation methods for the computation of ETI

- numerical integration (e.g., Gauss-Hermite quadrature)
- Monte Carlo methods (time-consuming)
- Moment Matching Approximation approximate $p(\max_{1 \le i \le m} \eta_i)$ with a Gaussian (Zhang et al., 2009)
- approximate $p(\max_{1 \le i \le m} \eta_i)$ with a Gumbel distribution (T. Chugh, 2022)

Limitation of approximation methods

the estimation error of these methods cannot be fully determined without the aid of exact formulas.

Research Goal

- to derive an exact formula for the computation of ETI.
- to analyze the performance of the widely-used approximation method.

Outline

- 1 Background and Motivation
- 2 Exact Formulas for the ETI Computation
- 3 Experimental Results
- 4 Conclusion

Multi-point EI and ETI

Similarity between Multi-point EI and ETI

■ Multi-point El (i.e., *q*-El):

$$q\text{-}EI(X) = \mathbb{E}_{y^i \sim p(y^i|x^i,\mathcal{D})} \left[\max(0, f^* - \min_{1 \le i \le q} y^i) \right], \tag{3}$$

where f^* is the minimum of observed objective values.

Expected Tchebycheff Improvement (ETI):

$$\operatorname{EI}_{\mathcal{T}}(x|\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{y} \sim \rho(\boldsymbol{y}|x,\mathcal{D})} \left[\max(0, g^* - \max_{1 \leq i \leq m} \{w_i(y_i - \boldsymbol{z}_i^*)\}) \right], \quad (4)$$

where g^* is the minimum of $g^{te}(F(x)|\mathbf{w})$ on observed samples.

$$f^* - \min_{1 \le i \le q} y^i = f^* + \max_{1 \le i \le q} \{-y^i\}. \tag{5}$$

Exact Formula of ETI

Inspired by the exact computation method for multi-point El ²

$$\operatorname{EI}_{\mathcal{T}}(x|\boldsymbol{w}) = \sum_{k=1}^{m} \mathbb{P}(\boldsymbol{Z}^{(k)} \leq \boldsymbol{b}^{k})(g^{*} - \mathbb{E}[Z_{k}^{(k)}|\boldsymbol{Z}^{(k)} \leq \boldsymbol{b}^{(k)}])$$
(6)

Proposition (Tallis formulas)

Let $\mathbf{Z} := (Z_1, \ldots, Z_m)$ be a random vector obeying multivariate Gaussian distribution, i.e., $\mathbf{Z} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_m)^T \in \mathbb{R}^m$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times m}$. Let $\mathbf{b} = (b_1, \ldots, b_m)^T \in \mathbb{R}^m$ and $\mathbf{Z} \leq \mathbf{b}$ denotes $\forall i, Z_i \leq b_i$. For any $k \in \{1, \ldots, m\}$, the conditional expectation of Z_k given $\mathbf{Z} \leq \mathbf{b}$ is:

$$\mathbb{E}(Z_k|\mathbf{Z} \leq \mathbf{b}) = \mu_k - \frac{1}{p} \sum_{i=1}^m \frac{\Sigma_{ik}}{\sqrt{\Sigma_{ii}}} \phi(\frac{b_i - \mu_i}{\sqrt{\Sigma_{ii}}}) p_i, \tag{7}$$

Exact Formula of ETI

Limitation

- relies on the specific technique to compute the multivariable Gaussian cumulative distribution function (cdf).
- is expensive to calculate

Computational time

- Moment Matching Approximation
- Exact formula, i.e., Eq. (6)
- Simplified exact formulas (independent assumption for η_1, \ldots, η_m)

Outline

- 1 Background and Motivation
- 2 Exact Formulas for the ETI Computation
- 3 Experimental Results
- 4 Conclusion

Experimental settings

Compared methods

- MOEA/D-EGO-A (Moment Matching Approximation)
- MOEA/D-EGO-E (Exact formulas)

Test problems

- ZDT test suite
- F1-F4
- DTLZ test suite

General settings

- number of decision variables d: 8 for m = 2, 6 for m = 3
- number of initial samples: 11d 1
- maximal number of function evaluation: 200
- number of independent runs: 21

Experimental Results

Mean IGD+ values (m = 2, Batch size: 5)

- perform similarly on the majority of test problems (13 out of 16).
- DTLZ2 and DTLZ5:MOEA/D-EGO-E outperforms MOEA/D-EGO-A.

Problem	m	d	MOEA/D-EGO-A	MOEA/D-EGO-E
ZDT1	2	8	9.9449e-3 (1.94e-3) ≈	1.0263e-2 (2.04e-3)
ZDT2	2	8	2.2673e-2 (1.11e-2) ≈	2.4315e-2 (7.31e-3)
ZDT3	2	8	1.2522e-2 (2.69e-3) ≈	2.1716e-2 (4.60e-2)
ZDT4	2	8	3.4847e+1 (1.14e+1) +	4.4925e+1 (1.76e+1)
ZDT6	2	8	4.3851e-1 (2.31e-1) ≈	3.8072e-1 (1.24e-1)
F1	2	8	5.5393e-3 (3.80e-4) ≈	5.3017e-3 (4.04e-4)
F2	2	8	2.0022e-2 (3.72e-3) ≈	2.1768e-2 (1.16e-2)
F3	2	8	1.7296e-2 (5.67e-3) ≈	2.4403e-2 (2.39e-2)
F4	2	8	1.8654e-2 (5.68e-3) ≈	1.8467e-2 (7.64e-3)
DTLZ1	2	8	$9.0484e+1 (2.44e+1) \approx$	8.9805e+1 (3.00e+1)
DTLZ2	2	8	1.4233e-2 (3.27e-3) -	9.7645e-3 (1.93e-3)
DTLZ3	2	8	$2.0846e+2 (5.04e+1) \approx$	2.1182e+2 (4.96e+1)
DTLZ4	2	8	2.6053e-1 (1.00e-1) ≈	2.9041e-1 (7.81e-2)
DTLZ5	2	8	1.3539e-2 (2.93e-3) -	9.8923e-3 (2.53e-3)
DTLZ6	2	8	8.0241e-1 (4.49e-1) ≈	1.0289e+0 (5.90e-1)
DTLZ7	2	8	1.0883e-1 (1.41e-1) ≈	7.6586e-2 (1.06e-1)
+/-/≈			1/2/13	

Experimental Results

Mean IGD+ values on DTLZ with different batch sizes

- perform similarly on the majority of test problems.
- DTLZ2 and DTLZ5:MOEA/D-EGO-E outperforms MOEA/D-EGO-A.

Problem 8atch Size MOEA/D-EGOA MOEA/D-EGOA				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Problem	Batch Size		MOEA/D-EGO-E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DTLZ1	1	$9.0191e+1 (1.99e+1) \approx$	7.9933e+1 (2.12e+1)
5 9,0484e+1 (2.44e+1) ≈ 9,8905e+1 (3.00e+1) 8 9,1492e+1 (2.36e+1) ≈ 8,9006e+1 (2.25e+1) 1 8,9393e-3 (1.95e-3) − 6,3421e-3 (2.75e-3) 2 9,4724e-3 (1.65e-3) − 7,6098e-3 (2.05e-3) 5 1,4233e-2 (3.27e-3) − 9,7645e-3 (1.93e-3) 1 2,0715e+2 (3.86e+1) ≈ 1,265e+2 (4.16e+1) 2 2,0187e+2 (4.18e+1) ≈ 2,0160e+2 (5.46e+1) 8 2,02766e+2 (5.34e+1) ≈ 1,9445e+2 (6.81e+1) 1 2,0105e-1 (1.09e-1) ≈ 2,1102e-1 (4.791e-2) 1 2,2758e-1 (1.09e-1) ≈ 2,2101e-1 (7.91e-2) 1 2,2758e-1 (1.09e-1) ≈ 2,2041e-1 (7.16e-2) 8 2,9145e-1 (1.09e-1) ≈ 2,2041e-1 (7.16e-2) 1 8,0699e-3 (1.91e-3) − 6,5561e-3 (5.05e-2) 1 8,0699e-3 (1.91e-3) − 7,2738e-3 (1.77e-3) 1 8,0699e-3 (1.91e-3) − 7,2738e-3 (1.77e-3) 1 1,2124e-1 (4.87e-1) ≈ 1,2094e-1 (6.17e-1) 2 8,4697e-1 (4.39e-1) ≈ 1,2094e-0 (5.17e-1) 1 1,1214e-1 (4.87e-1) ≈ 1,2094e-0 (5.17e-1) 1 1,2124e-1 (4.87e-1) ≈ 1,2094e-0 (5.17e-1) 2 8,4697e-1 (4.39e-1) ≈ 1,1063e-0 (5.59e-1) 2 8,78158e-1 (5.76e-1) ≈ 1,2094e-0 (5.17e-1) 2 9,165e-2 (1.13e-2) ≈ 7,0534e-2 (5.87e-2) 2 9,165e-2 (6.73e-2) ≈ 7,6534e-2 (1.08e-2) 2 9,165e-2 (6.73e-2) ≈ 9,3447e-2 (6.68e-2) 2 9,344e-2 (6.73e-2) ≈ 7,6536e-2 (1.06e-2) 2 1,0835e-1 (1.41e-1) ≈ 7,6536e-2 (1.06e-1) 3 3,8449e-2 (7.54e-2) ≈ 3,2312e-2 (1.68e-2)			$9.1206e+1 (2.52e+1) \approx$	8.9113e+1 (2.18e+1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	$9.0484e+1 (2.44e+1) \approx$	8.9805e+1 (3.00e+1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DTLZ2		8.9393e-3 (1.95e-3) -	6.3421e-3 (2.75e-3)
5 1.4238c 2 (3.7c.3) - 9.7645c 3 (1.98c.3) 1 3257c (2.98c.3) - 9.7923c 3 (1.67c.3) 2 2.0715e+2 (3.86e+1) ≈ 1.925e+2 (4.16e+1) 5 2.0945e+2 (4.18e+1) ≈ 2.0160e+2 (5.64e+1) 8 2.0795e+2 (1.84e+1) ≈ 2.1182e+2 (4.96e+1) 1 2.0705e+1 (9.16e-2) ≈ 2.1182e+2 (4.96e+1) 1 2.0705e+1 (9.16e-2) ≈ 2.1201e+1 (7.91e-2) 2 2.3758e+1 (8.07e-2) ≈ 2.2104e+1 (8.95e-2) 8 2.9145e+1 (7.14e-2) ≈ 3.2500e+1 (6.96e-2) 1 8.0669e+3 (1.91e-3) - 6.5561e-3 (5.06e-2) 5 1.0556e+2 (2.47e-3) - 7.2738a-3 (1.77e-3) 5 1.3539e+2 (2.93e-3) - 9.9525e-3 (1.95e-3) 1 1.1214e+0 (4.97e-1) ≈ 1.1063e+0 (5.58e+1) 1 1.1214e+0 (4.97e-1) ≈ 1.1063e+0 (5.58e+1) 1 1.1214e+1 (4.49e-1) ≈ 1.1063e+0 (5.58e+1) 5 8.041e+1 (4.49e-1) ≈ 1.293e+0 (5.58e+1) 1 6.2493e+2 (1.13e-2) ≈ 7.0531e-2 (5.87e-2) DTLZ7 2 9.165e-2 (6.73e-2) ≈ 9.3447e-2 (8.66e-2) DTLZ7 5 1.0883e+1 (1.41e-1) ≈ 7.656e-2 (1.06e-1)				7.6098e-3 (2.09e-3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	1.4233e-2 (3.27e-3) -	9.7645e-3 (1.93e-3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	1.3527e-2 (2.98e-3) -	9.7923e-3 (1.67e-3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DTLZ3	1	2.0715e+2 (3.86e+1) ≈	1.9265e+2 (4.16e+1)
S		2	2.0187e+2 (4.18e+1) ≈	2.0160e+2 (5.64e+1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	2.0846e+2 (5.04e+1) ≈	2.1182e+2 (4.96e+1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	2.0796e+2 (6.34e+1) ≈	1.9443e+2 (6.81e+1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DT: 74	1	2.0105e-1 (9.16e-2) ≈	2.1201e-1 (7.91e-2)
5			2.3758e-1 (8.07e-2) ≈	2.2104e-1 (8.95e-2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DTLZ4	5	2.6053e-1 (1.00e-1) ≈	2.9041e-1 (7.81e-2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	$2.9145e-1 (7.14e-2) \approx$	3.2500e-1 (6.96e-2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	8.0689e-3 (1.91e-3) -	6.5651e-3 (5.03e-3)
5 1,3539e.2 (2,95e.3) - 9,89292e.3 (2,55e.3) 8 14231e.2 (2,85e.3) - 9,5625e.3 (1,95e.3) 1 1124e+0 (4,87e.1) ≈ 1,2910e+0 (6,17e.1) 2 8,4697e.1 (4,39e.1) ≈ 1,1063e+0 (5,50e.1) 5 8,0241e.1 (4,49e.1) ≈ 1,0239e+0 (5,50e.1) 6 7,8318e.1 (5,76e.1) ≈ 1,2757e+0 (7,43e.1) 1 6,2493e.2 (1,13e.2) ≈ 7,6531e.2 (5,87e.1) DTLZ7 2 9,1616e.2 (6,73e.2) ≈ 9,3847e.2 (8,60e.2) 5 1,0883e.1 (1,41e.1) ≈ 7,658e.2 (1,06e.2) 8 3,8449e.2 (7,54e.2) ≈ 3,2312e.2 (16,18e.2)	DTI 75		1.0556e-2 (2.47e-3) -	7.2783e-3 (1.77e-3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DILZS	5	1.3539e-2 (2.93e-3) -	9.8923e-3 (2.53e-3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	1.4231e-2 (2.88e-3) -	9.5625e-3 (1.95e-3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1.1214e+0 (4.87e-1) ≈	1.2910e+0 (6.17e-1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DTLZ6	2	8.4697e-1 (4.39e-1) ≈	1.1063e+0 (5.53e-1)
1 6.2493e.2 (1.13e.2) ≈ 7.0531e.2 (5.87e.2) DTLZ7 2 9.1616e.2 (6.73e.2) ≈ 9.3847e.2 (8.60e.2) 5 1.0883e.1 (1.41e.1) ≈ 7.6586e.2 (1.06e.1) 8 3.8449e.2 (7.54e.2) ≈ 3.2312e.2 (6.18e.2)		5	8.0241e-1 (4.49e-1) ≈	1.0289e+0 (5.90e-1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	7.8318e-1 (5.76e-1) ≈	1.2757e+0 (7.43e-1)
5 1.0883e-1 (1.41e-1) ≈ 7.6586e-2 (1.06e-1) 8 3.8449e-2 (7.54e-2) ≈ 3.2312e-2 (6.18e-2)	DTLZ7	1	6.2493e-2 (1.13e-2) ≈	7.0531e-2 (5.87e-2)
5 1.0883e-1 (1.41e-1) ≈ 7.6586e-2 (1.06e-1) 8 3.8449e-2 (7.54e-2) ≈ 3.2312e-2 (6.18e-2)		2	9.1616e-2 (6.73e-2) ≈	9.3847e-2 (8.60e-2)
0.0000000000000000000000000000000000000		5	1.0883e-1 (1.41e-1) ≈	7.6586e-2 (1.06e-1)
+/ - / ≈ 0/8/20		8	3.8449e-2 (7.54e-2) ≈	3.2312e-2 (6.18e-2)
	+/	-/≈	0/8/20	

Discussion

Why the approximation method performs similarly with the exact formula on many of the test problems?

- (a) vs. (b): approximation error \searrow as $\hat{\sigma}_i^2 \searrow$.
- predicted variances of the GP models get smaller during optimization.

Experimental Results

Mean IGD+ values on DTLZ (m = 3, Batch size: 5)

■ DTLZ2 and DTLZ5:MOEA/D-EGO-A outperforms MOEA/D-EGO-E.

Problem	m	d	MOEA/D-EGO-A	MOEA/D-EGO-E
DTLZ2	3	6	5.0246e-2 (3.53e-3) +	7.2728e-2 (1.82e-2)
DTLZ5	3	6	1.0300e-2 (1.35e-3) +	1.5099e-2 (4.68e-3)
DTLZ7	3	6	$5.4108e-2 (4.88e-3) \approx$	5.4427e-2 (3.86e-3)
+/ − / ≈			2/0/1	

Discussion

Why does the approximation method outperform the exact formula?

- Exact formula relies on the specific technique to compute the multivariable Gaussian cumulative distribution function (cdf).
- Gaussian cdf: does not have a closed-form expression when $m \ge 3$.

Code

https://github.com/mobo-d/MOEAD-EGO/ETI

```
for k=1:M
   L k = eye(M); L k(:,k)=-1; L k(k,k)=1;
   mu k = g mu*L k': % The mean of <math>Z^{(k)}, n*m
   b_k = zeros(n,M); b_k(:,k) = Gbest;
   for j=1:1:n
        Sigma k = L k*diag(g sig2(i,:))*L k'; % The covariance matrix of Z^{(k)} for j-th query, m*m
        % P(Z^k<=b^k)
        p_k = qsimvnv(200*M,Sigma_k, -inf.*ones(M,1), (b_k(j,:)-mu_k(j,:))');
        ETI(j) = ETI(j) + p_k *(Gbest(j) - mu_k(j,k));
        temp ci = (b k(i,:) -mu k(i,:))'./diag(Sigma k):%m*1
        temp_Sigma_k_ii = sqrt(diag(Sigma_k));
        phi ik = Sigma k(:,k).*normpdf((b k(j,:) -mu k(j,:))'./temp Sigma k ii)./temp Sigma k ii;%m*1
        for i=1:M
             % need c.i^(k) and Sigma.i^(k)
             cik = b_k(j,:)' - mu_k(j,:)' -Sigma_k(:,i).* temp_ci ; cik(i)=[]; % m-1*1
             Phi ik = gsimvnv(200*M,sigmaik ,-inf.*ones(M-1.1),cik ) : %1*1
              ETI(i) = ETI(i) + phi ik(i)*Phi ik:
```

Outline

- 1 Background and Motivation
- 2 Exact Formulas for the ETI Computation
- 3 Experimental Results
- 4 Conclusion

Conclusion and Future Work

Exact formulas VS Moment matching approximation

- Moment matching approximation: approximation error \searrow as $\hat{\sigma}_i^2 \searrow$.
- Moment matching approximation is good enough in terms of both accuracy and computational time.

Future work

 Similarity between Multi-point EI and ETI: moment matching approximation -> multi-point EI

Thank you!

Liang Zhao (liazhao5-c@my.cityu.edu.hk)