Harvey J. Stein

Outlin

Revie

measureme

Risk measure:

c.....

MATH GR 5320 Financial Risk Management and Regulation

Lecture 3: Risk Measurement

Department of Mathematics Columbia University

Harvey J. Stein

Head, Quantitative Risk Analytics Bloomberg LP

Fall 2016

Compilation: September 7, 2016 at 13:41

If mistakes are found, please return them to histein@columbia.edu

Eormula

Summar

Reference

Outline

1 Review

- 2 Risk measurement
- 3 Risk measures
- 4 Formula derivations
- **5** Summary

measuremei

Risk measure

derivation

Summar

Reference

Review

1 Review

- 2 Risk measurement
- Risk measures
- 4 Formula derivations
- **5** Summary

Harvey J. Stein

Outline

Review

measureme

Risk measure

Julililiai

Reference

Market structure

To understand risks, we need to know how the markets operate

- Players Who is participating.
- Pieces What are they buying and selling.
- Moves How the players operate.

Harvey J. Stein

Outlin

Review

measureme

Rick measure

Formula

Summar

Referenc

Players

Each market participant has a different role. We need to understand the roles.

- Banks
 - Investment banks
 - Retail banks
 - Other banking institutions credit unions, savings and loans, etc.
 - Meta-banks bank holding companies
- Market facilitators
 - Exchanges
 - Clearing houses
 - Broker-dealers
 - Securities firms
- Investors
 - Individuals
 - Insurance companies
 - Hedge funds
 - Institutional investors
 - Pension funds
 - Corporate treasuries
- Regulators

Harvey J. Stein

Outlin

Review

Kisk

D: 1

r tibit incubur

derivatio

Summar

Regulation

Post-crisis, regulation has become a much bigger part of the market.

- Deregulation prior to crisis
- Reregulation after the crisis

Major regulators:

- Federal Reserve Banks (FRB)
 - Bank holding companies, registered state banks
- US Treasury Office of Comptroller of the Currency (OCC)
 - National banks
- Federal Deposit Insurance Corporation (FDIC) and The National Credit Union Administration (NCUA)
 - All depository institutions
- Securities and Exchanges Commission (SEC)
 - Trading listings, security based swaps, hedge funds
- Commodity Futures Trading Commission (CFTC)
 - Trading commodities, futures and options, other swaps
- Individual state regulatory agencies
 - State banks, community banks

Harvey J. Stein

Outline

Dist

measureme

Risk measure

Summar

......

Regulatory mechanisms

Banks are regulated by

- Monitoring activity and positions
- Analyzing potential losses of positions
- Requiring capital
- Reducing positions

Trading is regulated by

- Disclosure rules
- Trading rules (no insider trading)
- Investigations
- Capital requirements
- Margin requirements

Harvey J. Stein

Review

What pieces do the players play with?

- Savings
- Loans
- Stocks
- Bonds
- Futures and options
- Structured products
- . . .

Harvey J. Stein

Outiin

Review

measureme

Risk measure

derivation

Summary

Kelerence

The Moves

The activities are:

- Market making
- Transactional services
- Investing
- Hedging

rtisk measur

Summar

Reference

Risk measurement

- 1 Review
- 2 Risk measurement
- 3 Risk measures
- 4 Formula derivations
- Summary

Harvey J. Stein

Outlin

Risk

measurement

Risk measure

Summai

Reference

General risk measurement framework

To manage risk, we need to be able to measure risk.

In general, for a portfolio V, we:

- Pick a relevant horizon time T
- Compute some statistics of V_T , the portfolio value at time T.

Key issue:

• What is the distribution of V_T ?

Harvey J. Stein

Outline

Revi

Risk measurement

Risk measur

Formula

c .

Summary

Picture

Figure: 10 sample paths for each of two stock processes, $dS_i = \mu_i S_i dt + \sigma_i S_i dW_i$, both start at 100, black with 30% vol and 7% return and red with 20% vol and 5% return.

Harvey J. Stein

Outlin

Risk

measurement

Risk measure

derivation

Summary

Reference

Basic questions

Must answer the following questions in order to do risk calculations:

- 1. What factors affect the value of the portfolio?
- 2. What is the behavior of these factors?
- 3. What is the behavior of the P&L as a function of these factors?
- 4. How do I summarize the behavior of the P&L?

These are the four questions of risk analysis.

Each question is a step in the computation of a risk analytic.

Harvey J. Stein

Outlin

Risk

measurement

Risk measure

_

c .

......

Risk measurement steps

Detailed steps:

- 1. What factors affect the value of the portfolio?
 - · Identify risk factors.
- 2. What is the behavior of these dependencies?
 - · Model behavior of risk factors:
 - Develop a model.
 - Fit model to data.
 - Use model to yield future distribution of risk factors.
- 3. What is the behavior of the P&L as a function of these factors?
 - Use structure of portfolio and pricing functions to compute distribution of V_T.
- 4. How do I summarize the behavior of the P&L?
 - Compute risk measures, which are statistics on V_T .

Harvey J. Stein

Outlin

Risk

measurement

Risk measure

_

Formula

Summar

Reference

Numerical methods

Method used depends on form of risk measures and pricing models:

- Analytically.
- Semi-analytically.
- Use approximations.
- Make simplifying assumptions.
- Use Monte Carlo.

Harvey J. Stein

Outlin

Review

measurement

Risk measure

Julilliai

Referenc

Stock example – direct modeling

Consider a portfolio of stocks – $V = \sum a_i S_i$

- Risk factors can be the S_i themselves.
- Assume GBM:
 - $dS_i = \mu_i S_i dt + \sigma_i S_i dW_i$
 - $dW_i dW_j = \rho_{ij} dt$
- Fit μ_i , σ_i and ρ_{ij} to historical data.
- Given assumed processes, $V_T = \sum a_i S_{i,T}$.
- Can now compute statistics of V_T .

Harvey J. Stein

Outlin

Risk

measurement

Risk measure

c.....

Reference

Stock example – factor model

The same stock portfolio can be modeled with a factor model:

- Select risk factors R_i , such as momentum, industry return, etc.
- Model stocks as $dS_i = \sum_i \beta_{ij} dR_j + d\epsilon_i$.
- Model risk factors as well GBM or ABM.
- Fit model to historical data.
- Changes in V are now given by changes in R_j and in ϵ_i .
- Can now compute statistics of V_T .

MATH GR 5320 · Risk Management Lecture 3: Risk

Harvey J. Stein

Risk

measurement

Measurement

Consider a portfolio of call options with maturities T_i , strikes K_i on stocks S_i (if more than one option on the same stock, can have $S_i = S_i$).

Stock example – option portfolio

- Pricing model:
 - $V_T = \sum a_i C(T, S_{i,T}, K_i, T_i, \sigma_i, r(T, T_i)).$
 - C is the Black-Scholes formula and σ_i is the implied vol at time T for options on S_i maturing at T_i with strike K_i .
 - r is the time T rate for discounting from T_i to T.
- Need to model the S_i.
- Should also model r and σ_i , not to mention correlations between all of them, lest volatility and interest rate risk is ignored.
- Calibrate the model to historical data.
- Start it off at the current market.
- The above pricing formula gives V_T as a function of the market factors.
- Now compute statistics.

.

,

Risk measures

- 1 Review
- 2 Risk measurement
- 3 Risk measures
- 4 Formula derivations
- **5** Summary

Harvey J. Stein

Outline

Revie

RISK

medbar emen

Risk measures

Risk measures

Consider the P&L distribution of two different portfolios:

Which portfolio is riskier?

- Need a statistic of the P&L distribution that measures the riskiness.
- Such a statistic is called a risk measure.

Harvey J. Stein

Outlin

Review

Risk

ieasuremer

Risk measures

derivation

Summar

D C

Desirable characteristics of a risk measure:

- Easy to compute.
- Easy to validate (backtestable and elicitable).
- Actionable value tells you what to do.
- Not deceptive (e.g. coherent).
- Robust small measurement errors do not cause large changes in risk measure.

One way for a risk measure to not be deceptive is if it is coherent.

We think of a risk measure as a function ρ of the P&L of a portfolio, where larger values mean greater risk.

A coherent risk measure is one that has the following desirable properties:

Normalized $\rho(0) = 0$

Monotonic
$$V \leq V' \implies \rho(V) \geq \rho(V')$$

Positive homogeneity $\rho(\alpha V) = \alpha \rho(V)$ when $\alpha \geq 0$.

Translation invariance For a constant
$$a$$
, $\rho(V+a)=\rho(V)-a$
Subadditive $\rho(V+V')\leq \rho(V)+\rho(V')$

Some consider the larger class of convex risk measures. Instead of subadditivity and positive homogeneity, convexity:

Convexity
$$\rho(\lambda V + (1 - \lambda)V') \le \lambda \rho(V) + (1 - \lambda)\rho(V')$$

References: Artzner et al. [Art+99] and Föllmer and Schied [FS08]

Harvey J. Stein

Outli

Revie

Risk

Risk measures

Elicitability

We would like our risk measure to also be elicitable.

Risk measure ρ is elicitable if there exists a loss function L such that:

$$\rho(V) = \operatorname*{argmin}_{X} E[L(X, V)]$$

Think of E[L(X, V)] as the magnitude of the error being made when using X as an estimate of $\rho(V)$.

Elicitability:

- Elicitable risk measures have good statistical tests for the accuracy of estimates.
- Risk measures that are not elicitable can still be backtested.

References: Gneiting [Gne11], Ziegel [Zie14], Emmer, Kratz, and Tasche [EKT13], Bellini and Bignozzi [BB13], and Acerbi and Szekely [AS14]

Risk measures

derivatio

Summar

D 6

Robustness

Notions of robustness of a risk measure:

- Risk measure is continuous or uniformly continuous after making set of distributions into a metric space.
- Consider sensitivity of risk measure to changes in portfolio, changes in historical data, changes in parameters, etc.

But:

- New concept.
- Many functions are continuous but numerically unstable.
- More work needs to be done.

References: Cont, Deguest, and Scandolo [CDS10] and Emmer, Kratz, and Tasche [EKT13]

Harvey J. Stein

Outlin

Revie

measureme

Risk measures

_

Julilliai

Reference

Common risk measures

Most common risk measurements:

- Variance at horizon T.
- p-th percentile VaR at horizon T.
- p-th percentile expected shortfall at horizon T.
- p-th expectile at horizon T.

Risk measures

derivatio

Summar

Reference

Variance

Variance at horizon T:

$$E^{P}[(V_{T} - E^{P}[V_{T}])^{2}] = E^{P}[V_{T}^{2}] - E^{P}[V_{T}]^{2}$$
$$= E^{P}[V_{T}^{2}] - \overline{V_{T}}^{2}$$

- Measure of dispersion, and thus of risk.
- Excellent if V_T is normally distributed.
- Should easily pass back tests if calibrated to history.
- Relatively easy to compute.
- Robust by some measures.

Issues:

- Ignores asymmetry.
- Insufficient to estimate losses.
- Assuming normality can underestimate losses (e.g. 68% within 1 SD, 95.5% within 2 SD, 99.7% within 3 SD).

Cumman

Reference

Variance and SD types

There are different types of standard deviation.

Standard deviation of a random variable:

- $\sqrt{E[(X-E[X])^2]}$
- $\bullet \ \sqrt{E[X^2] E[X]^2}$

Population standard deviation:

- $\mu = \sum_{i=1}^{n} (X_i/n)$
- $\sqrt{\frac{1}{n}\sum^n(X_i-\mu)^2}$
- $\sqrt{\sum_{i=1}^{n} X_i^2/n \mu^2}$

Sample standard deviation (corrected):

•
$$\sqrt{\frac{1}{n-1}\sum^n(X_i-\mu)^2}$$

We will generally use the population standard deviation.

Note – Spreadsheets and mathematical packages often provide both. Pick the right one!

Harvey J. Stein

Outlin

Revie

Kisk

Risk measures

c.....

Reference:

Variance example

Computing variance given possible future Apple prices:

ID	Apple	Square		
1	116.52	13576.91		
2	108.60	11793.96		
3	101.21	10243.46		
4	112.11	12568.65		
5	111.25	12376.56		
6	105.81	11195.76		
7	109.67	12027.51		
8	109.43	11974.92		
9	105.08	11041.81		
10	116.58	13590.90		

- $E[V_T^2]$ = Average of squares = 12039.04
- $E[V_T]^2 = \text{Square of average} = 12017.86$
- Variance = 12039.04 12017.86 = 21.18
- SD = $\sqrt{\text{Variance}}$ = 4.6

.....

rormula

Summar

Reference

 VaR

The p level VaR is X if p of the time our losses are less than or equal to X:

$$VaR(V, T, p) = G^{-1}(p)$$
, where $G(X) = P[V_0 - V_T \le X] = E^P[1_{V_0 - V_T \le X}]$

- Quantile of loss distribution.
- Precise percentile loss, so actionable.
- Essentially same as variance if distribution is normal.
- Elicitable.
- Robust.

Issues:

- Not coherent fails subadditivity diversification can increase risk.
- Is coherent for linear portfolios of elliptically distributed factors, but might as well use variance.
- Hard to back test accurately.
- Harder to compute than standard deviation.

Harvey J. Stein

Outlin

Revie

KISK

Risk measures

c.....

Reference

VaR example

With the same Apple prices and starting price of 106.74.

Compute the VaR by sorting the losses:

ID	Apple	Loss	
3	101.21	5.53	
9	105.08	1.66	
6	105.81	0.93	
2	108.60	-1.86	
8	109.43	-2.69	
7	109.67	-2.93	
5	111.25	-4.51	
4	112.11	-5.37	
1	116.52	-9.78	
10	116.58	-9.84	

10 samples, so:

- 90% VaR = worst loss = 5.53
- 80% VaR = 2nd worst = 1.66
- 70% VaR = 3rd worst = 0.93

Risk measures

Camerolla.

Summar

VaR note

The p level VaR is X if p of the time our losses are less than or equal to X:

$$VaR(V, T, p) = G^{-1}(p)$$
, where $G(X) = P[V_0 - V_T \le X] = E^P[1_{V_0 - V_T \le X}]$

Often, given as:

$$VaR(V, T, p) = \inf\{I | P[V_0 - V_T > I] \le 1 - p\}$$

Our definition is a simplification – assumes the loss distribution does not have jumps.

Risk measures

Formula

Expected shortfall

Expected shortfall

$$ES(V, T, p) = -E^{P}[V_{T} - V_{0}|V_{T} - V_{0} < -VaR(V_{T}, p)]$$

- Coherent measure of risk diversification never increases risk.
- Mandated by latest Basel rules [Bas13].
- Robust by some measures.

Issues:

- Same as variance if distribution is normal.
- Harder to compute than VaR.
- Harder to back test (not elicitable, but still back-testable).
- Actionable?

Harvey J. Stein

Outlin

Revie

Measurem

Risk measures

.

Reference

ES example

With the same Apple prices and starting price of 106.74.

Sort and compute average of losses in tail:

ID	Apple	Loss	Sum	Count	ES
3	101.21	5.53	5.53	1	5.53
9	105.08	1.66	7.19	2	3.60
6	105.81	0.93	8.12	3	2.71
2	108.6	-1.86	6.26	4	1.57
8	109.43	-2.69	3.57	5	0.71
7	109.67	-2.93	0.64	6	0.11
5	111.25	-4.51	-3.87	7	-0.55
4	112.11	-5.37	-9.24	8	-1.16
1	116.52	-9.78	-19.02	9	-2.11
10	116.58	-9.84	-28.86	10	-2.89

10 samples, so:

- 90% ES = Worst loss = 5.53
- 80% ES = Average of 2 worst = 3.60
- 70% ES = Average of 3 worst = 2.71

Harvey J. Stein

Outlin

Revie

Risk

Risk measures

Summar

rtererene

Expectiles

Expectiles are like a weighted average of one sided variances

$$\underset{X}{\operatorname{argmin}} E[|p-1_{V < X}|(V-X)^2]$$

- Coherent.
- Elicitable.
- Robust by some measures.

Issues:

- Harder to compute than VaR computationally similar to ES.
- Not clear exactly what it is.
- How is it actionable?

Harvey J. Stein

Outlin

Revie

Risk

measuremen

Risk measures

_

_

Reference

Picture

- 100 paths, 30% vol, 7% return
- ullet 2 year 98% VaR = next to lowest path = high uncertainty
- ullet 2 year 98% ES = average of these two paths
- 97% Var and ES substantially lower

Harvey J. Stein

Outline

Iteview

meacureme

Risk measur

Formula derivations

c.....

Formula derivations

- 1 Review
- 2 Risk measurement
- Risk measures
- 4 Formula derivations
- Summary

measurem

Risk measure

Formula derivations

Summar

Reference

Stock formulas

Portfolio:

- One share of stock S
- S follows GBM with known constant parameters

Formulas:

$$V_T = S_T$$
$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

We will compute:

$$\operatorname{\mathsf{var}}(V_T)$$
 $\operatorname{\mathsf{VaR}}(V,T,p)$
 $\operatorname{\mathsf{ES}}(V,T,p)$

Formula

derivations

Reference

Basic facts

Brownian motion W_t :

- Almost all paths are continuous.
- Martingale: Expectation of future is current value:

$$W_t = E[W_T | \mathcal{F}_t], \text{ for } T \geq t$$

- $W_0 = 0$, so $E[W_t] = 0$ too.
- Independent increments: For times $t_i \leq t_{i+1}$, $W_{t_4} W_{t_3}$ and $W_{t_2} W_{t_1}$ are independent.
- Gaussian: $W_{t_2} W_{t_1} \sim N(0, t_2 t_1)$
- Covariance: $E[W_{t_2}W_{t_1}] = \min(t_2, t_1)$. (implies $var[W_t] = t$)
- dWdW = dt

Ito's formula:

• If $S_t = f(t, V_t)$ then

$$df(t,V) = f_1 dt + f_2 dV + \frac{1}{2} f_{22} dV dV$$

Risk measure

Formula

derivations

References

Formula for GBM

Ito's formula shows:

$$S_T = S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma W_T}$$

Proof:

$$f(T, W) = S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma W}$$

$$df(T, W) = f_1 dT + f_2 dW + \frac{1}{2} f_{22} dW dW$$

$$= (\mu - \frac{\sigma^2}{2}) S_T dt + \sigma S_T dW + \frac{\sigma^2}{2} S_T dt$$

$$= \mu S_T dt + \sigma S_T dW$$

Harvey J. Stein

Outlin

Revie

KISK

Rick measure

Formula

derivations

GBM *S* is given by:

$$S_T = S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma W_T}$$

Know:

$$W_T \sim extstyle extstyle N(0,T)$$
, so $extstyle extstyle PDF(W_T) = rac{1}{\sqrt{2\pi T}} e^{rac{-W^2}{2T}}$

So, directly compute mean:

$$E[S_T] = \int_{\Omega} S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma W_T} dP$$

$$= \frac{1}{\sqrt{2\pi T}} \int_{-\infty}^{\infty} S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma W} e^{\frac{-W^2}{2T}} dW$$

$$= \frac{S_0 e^{(\mu - \frac{\sigma^2}{2})T}}{\sqrt{2\pi T}} \int_{-\infty}^{\infty} e^{\sigma W - \frac{W^2}{2T}} dW$$

Trisk ilicasure

Formula derivations

Summar

Reference

Mean of GBM

Have:

$$E[S_T] = \frac{S_0 e^{(\mu - \frac{\sigma^2}{2})T}}{\sqrt{2\pi T}} \int_{-\infty}^{\infty} e^{\sigma W - \frac{W^2}{2T}} dW$$

Complete the square:

$$u = \frac{W}{\sqrt{2T}} - \frac{\sqrt{2T}\sigma}{2}$$

$$u^2 = \frac{W^2}{2T} - \sigma W + \frac{\sigma^2 T}{2}$$

$$du = \frac{1}{\sqrt{2T}} dW$$

$$E[S_T] = \frac{S_0 e^{(\mu - \frac{\sigma^2}{2})T}}{\sqrt{2\pi T}} \int_{-\infty}^{\infty} e^{-u^2 + \frac{\sigma^2 T}{2}} \sqrt{2T} du$$

$$= \frac{S_0 e^{\mu T}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-u^2} du$$

$$= S_0 e^{\mu T}$$

Tribit medbare

Formula derivations

Summar

Reference

EZ Mean of GBM

Alternatively, use martingales.

Define A_T by:

$$dA_T = \sigma A_T dW_T$$

$$A_T = e^{-\frac{\sigma^2}{2}T + \sigma W_T}$$

$$S_T = S_0 e^{\mu t} A_T$$

 A_T is a martingale, so:

$$E[A_T] = A_0 = 1$$

$$E[S_T] = E[S_0 e^{\mu T} A_T]$$

$$= S_0 e^{\mu T} E[A_T]$$

$$= S_0 e^{\mu T}$$

This is why you should learn how to work with martingales!

Risk

...

Formula

derivations

EZ Variance of GBM

For the variance, we proceed analogously:

$$S_{T} = S_{0}e^{(\mu - \frac{\sigma^{2}}{2})T + \sigma W_{T}}$$

$$S_{T}^{2} = S_{0}^{2}e^{(2\mu - \sigma^{2})T + 2\sigma W_{T}}$$

$$dB_{T} = 2\sigma B_{T}dW_{T}$$

$$B_{T} = e^{-2\sigma^{2}T + 2\sigma W_{T}}$$

$$S_{T}^{2} = S_{0}^{2}e^{(2\mu + \sigma^{2})T}B_{T}$$

 B_T is a martingale, so:

$$E[S_T^2] = E[S_0^2 e^{(2\mu + \sigma^2)T} B_T]$$

$$= S_0^2 e^{(2\mu + \sigma^2)T} E[B_T]$$

$$= S_0^2 e^{(2\mu + \sigma^2)T}$$

$$var[S_T] = E[S_T^2] - E[S_T]^2$$

$$= S_0^2 e^{(2\mu + \sigma^2)T} - S_0^2 e^{2\mu T}$$

$$= S_0^2 (e^{\sigma^2 T} - 1) e^{2\mu T}$$

Formula

derivations

Summai

Reference

EZer Variance of GBM

It would have been easier to use the mean formula:

$$S_T = S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma W_T}$$

$$S_T^2 = S_0^2 e^{(2\mu - \sigma^2)T + 2\sigma W_T}$$

$$= S_0^2 e^{(2\mu + \sigma^2 - \frac{(2\sigma)^2}{2})T + 2\sigma W_T}$$

Since $E[S_T] = S_0 e^{\mu T}$,

$$E[S_T^2] = S_0^2 e^{(2\mu + \sigma^2)T}$$

I.e. S_T^2 is also a GBM with a specific drift term, so the same formula applies.

Harvey J. Stein

Outlin

measureme

Risk measur

Formula

derivations

Summar

Deference

Variances with numbers

For 5% growth rate and 30% volatility and an initial price of 100, we have the following variances:

Horizon	Horizon	Mean	$E[S^2]$	variance	SD	scaled
(days)	(years)					1 day
1	0.003968	100.02	10008	3.6	1.9	
5	0.019841	100.10	10038	17.9	4.2	4.23
10	0.039683	100.20	10076	35.9	6.0	5.98
20	0.079365	100.40	10152	72.3	8.5	8.45
252	1.000000	105.13	12092	1040.8	32.3	30.01

$$E[W_T] = 0$$
$$E[W_T^2] = T$$

So, for BM, we can scale by $\sqrt{\mathcal{T}}$ to adjust for time For GBM, it's close, but off by 7% at 1 year.

Harvey J. Stein

Outlin

Revie

Kisk

D: 1

Formula derivations

Summar

References

GBM VaR

To compute VaR, we need to know the probability of S_T being below a level X.

$$S_{T} = S_{0}e^{(\mu - \frac{\sigma^{2}}{2})T + \sigma W_{T}}$$

$$P(S_{T} < X) = P(\log(S_{T}) < \log(X))$$

$$= P(\log(S_{0}) + (\mu - \frac{\sigma^{2}}{2})T + \sigma W_{T} < \log(X))$$

$$= P\left(W_{T} < \frac{\log(\frac{X}{S_{0}}) - (\mu - \frac{\sigma^{2}}{2})T}{\sigma}\right)$$

$$W_T \sim N(0, T)$$
, so

$$P(W_T < a) = \Phi(\frac{a}{\sqrt{T}})$$

$$P(S_T < X) = \Phi\left(\frac{\log(\frac{X}{S_0}) - (\mu - \frac{\sigma^2}{2})T}{\sqrt{T}\sigma}\right)$$

Formula

derivations

References

GBM VaR

Continuing...

$$\begin{split} P(S_T < X) &= 1 - p \\ 1 - p &= \Phi\left(\frac{\log(\frac{X}{S_0}) - (\mu - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}\right) \\ \Phi^{-1}(1 - p) &= \frac{\log(\frac{X}{S_0}) - (\mu - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}} \\ S_0 e^{\sigma\sqrt{T}\Phi^{-1}(1-p) + (\mu - \frac{\sigma^2}{2})T} &= X \end{split}$$

This yields:

$$VaR(S, T, p) = S_0 - S_0 e^{\sigma \sqrt{T} \Phi^{-1} (1-p) + (\mu - \frac{\sigma^2}{2})T}$$

Harvey J. Stein

Outli

Revie

KISK

_ . . .

Misk IIICasui

Formula derivations

Summar

Reference

GBM VaR Values

Horizon	Mean	SD	50%	84%	98%	99.9%	99.9999%
(days)			VaR	VaR	VaR	VaR	VaR
1	100.02	1.9	0.00	1.86	3.80	5.67	9.36
5	100.10	4.2	-0.01	4.11	8.30	12.23	19.72
10	100.20	6.0	-0.02	5.75	11.53	16.85	26.69
20	100.40	8.5	-0.04	8.02	15.90	22.95	35.53
252	105.13	32.3	-0.50	25.42	45.73	60.23	78.88

Horizon	16%	2%	0.1%	0.00001%
(days)	VaR	VaR	VaR	VaR
1	-1.90	-3.96	-6.02	-10.33
5	-4.30	-9.08	-13.96	-24.58
10	-6.14	-13.08	-20.31	-36.47
20	-8.81	-19.00	-29.90	-55.24
252	-35.44	-86.10	-153.98	-378.17

Harvey J. Stein

Outlin

Revie

IVISK

D: 1

Formula derivations

Summan

Reference

Expected shortfall

The formula for expected shortfall for $V_T = S_T$ is more complicated to derive

$$\begin{aligned} \mathsf{ES}(S,T,p) &= -E^{P}[S_{T} - S_{0}|S_{T} - S_{0} < -\mathsf{VaR}(S,T,p)] \\ &= S_{0} - E^{P}[S_{T}|S_{T} < S_{0} - \mathsf{VaR}(S,T,p)] \\ E^{P}[S_{T}|S_{T} < X] &= \frac{\int_{-\infty}^{X} S_{T} dP}{\int_{-\infty}^{X} dP} \\ &\int_{-\infty}^{X} S_{T} dP = \frac{1}{\sqrt{2\pi T}} \int_{-\infty}^{Y} S_{0} e^{(\mu - \frac{\sigma^{2}}{2})T + \sigma W} e^{-\frac{W^{2}}{2T}} dW \end{aligned}$$

where Y satisfies $S_0 e^{(\mu - \frac{\sigma^2}{2})T + \sigma Y} = X$.

Now, complete the square, solve for Y, and plug in $X = S_0 - \text{VaR}(S, T, p)$, and note that with such an X, the denominator above is just 1 - p.

Harvey J. Stein

Outlin

measureme

Risk measure

Formula

Summary

1 Review

- Risk measurement
- 3 Risk measures
- 4 Formula derivations
- **5** Summary

Summary

Formula

derivation

Summary

. .

Reference

Summary

Risk measurement steps - answer the 4 questions:

- 1. What factors affect the value of the portfolio?
 - · Identify risk factors.
- 2. What is the behavior of these dependencies?
 - Model behavior of risk factors:
 - Develop a model.
 - Fit model to data.
 - Use model to yield future distribution of risk factors.
- 3. What is the behavior of the P&L as a function of these factors?
 - Use structure of portfolio and pricing functions to compute distribution of V_T.
- 4. How do I summarize the behavior of the P&L?
 - Compute risk measures, which are statistics on V_T .

Harvey J. Stein

Outlin

1101101

IVISK

D: I

_ .

Summary

Reference

Summary

Method varies depending on form of risk measures, factor models, and pricing models:

- analytically
- semi-analytically
- using approximations
- making simplifying assumptions
- using Monte Carlo

Misk illeasur

Formula

Summary

_ .

Summary

Modeling examples:

- Direct modeling via fitted GBMs for stock portfolio
- Factor model for stock portfolio
- Option portfolio

Risk measures:

- Common measures
 - Variance
 - VaR
 - ES
 - Expectiles
- · Compare based on:
 - Coherence
 - Elicitability/backtestability
 - Robustness
 - Ease of use
- Need large numbers of samples for accuracy!

Summary

Summary

Computations:

$$dS = \mu S dt + \sigma S dW$$

•
$$E[S_T] = S_0 e^{\mu T}$$

•
$$var[S_T] = S_0^2 (e^{\sigma^2 T} - 1)e^{2\mu T}$$

•
$$VaR(S, T, p) = S_0 - S_0 e^{\sigma \sqrt{T} \Phi^{-1} (1-p) + (\mu - \frac{\sigma^2}{2})T}$$

•
$$ES(S, T, p) = homework$$

Mostly easy to compute using martingale techniques

Still to come:

- Detailed VaR calculations
- More on VaR
- Credit risk
- Counterparty risk
- Regulation
- Case studies

Risk

_ . . .

derivation

Summary

References

References I

[Art+99] Philippe Artzner et al. "Coherent measures of risk." In:

Mathematical finance 9.3 (1999), pp. 203-228. URL:

http://personal.fmipa.itb.ac.id/khreshna/
files/2011/02/artzner1999.pdf.

- [AS14] C. Acerbi and B. Szekely. "Testing Expected Shortfall."
 In: Workshop on systemic risk and regulatory market risk
 measures. MSCI. 2014. URL: https://www.parmenidesfoundation.org/fileadmin/redakteure/events/
 Workshop_Kondor_02._03.06.2014/Acerbi_
 ESBacktest_reduced_size.pdf.
- [BB13] Fabio Bellini and Valeria Bignozzi. "Elicitable risk measures." In: SSRN (Dec. 2013). URL: http://ssrn.com/abstract=2334746.

Harvey J. Stein

Outlin

D: 1

measurem

Risk measure

Formula

Summary

References

References II

[CDS10] Rama Cont, Romain Deguest, and Giacomo Scandolo. "Robustness and sensitivity analysis of risk measurement procedures." In: Quantitative Finance 10.6 (2010), pp. 593–606. URL: http://ssrn.com/abstract=1086698.

- [EKT13] Susanne Emmer, Marie Kratz, and Dirk Tasche. "What is the best risk measure in practice? A comparison of standard measures." In: (Dec. 2013). URL: http://arxiv.org/pdf/1312.1645.pdf.
- [FS08] Hans Föllmer and Alexander Schied. "Convex and coherent risk measures." In: (Oct. 2008). URL: http://www.math.hu-berlin.de/~foellmer/papers/CCRM.pdf.
- [Gne11] Tilmann Gneiting. "Making and evaluating point forecasts." In: Journal of the American Statistical Association 106.494 (2011), pp. 746–762.

Harvey J. Stein

Outlin

revie

moncurom

Rick measure

Julilliai

References

References III

[Zie14] Johanna F. Ziegel. *Coherence and elicitability*. Papers. arXiv.org, 2014. URL: http://arxiv.org/abs/1303.1690v3.

[Bas13] Basel Committee on Banking Supervision. Fundamental review of the trading book — second consultative document. Tech. rep. Bank of International Settlement, Oct. 2013. URL:

http://www.bis.org/publ/bcbs265.htm.