Арифметика с фиксированной точкой

15

Обзор главы

В разделе	Вы найдете	на стр.
15.1	Основные арифметические операции	15–2
15.2	Сложение целого числа с АККИ 1	15–6

15.1. Основные арифметические операции

Описание

В таблице 15–1 перечислены команды AWL, с помощью которых можно складывать, вычитать, умножать и делить целые числа (16 бит и 32 бита).

Таблица 15–1. Основные арифметические операции для целых чисел (16 бит и 32 бита)

Операция	Размер в битах	Функция
+I	16	Складывает содержимое младших слов AKKU 1 и 2 и сохраняет результат в младшем слове AKKU 1.
_I	16	Вычитает содержимое младшего слова AKKU 1 из содержимого младшего слова AKKU 2 и сохраняет результат в младшем слове AKKU 1.
*I	16	Перемножает содержимое младших слов АККU 1 и 2 и сохраняет результат (32 бита) в АККU 1.
/I	16	Делит содержимое младшего слова АККИ 2 на содержимое младшего слова АККИ 1. Результат сохраняется в младшем слове АККИ 1. Остаток от деления сохраняется в старшем слове АККИ 1.
+D	32	Складывает содержимое AKKU 1 и 2 и сохраняет результат в AKKU 1.
-D	32	Вычитает содержимое AKKU 1 из содержимого AKKU 2 и сохраняет результат AKKU 1.
*D	32	Перемножает AKKU 1 с содержимым AKKU 2 и сохраняет результат в AKKU 1.
/D	32	Делит содержимое AKKU 2 на содержимое AKKU 1 и сохраняет частное в AKKU 1.
MOD	32	Делит содержимое AKKU 2 на содержимое AKKU 1 и сохраняет остаток от деления как результат в AKKU 1.

Связь между арифметическими операциями и аккумуляторами Описание функций в таблице 15–1 показывает, что арифметические операции соединяют между собой содержимое AKKU 1 и 2. Результат сохраняется в AKKU 1. Старое содержимое AKKU 1 сдвигается в AKKU 2.

В CPU с четырьмя АККU затем содержимое АККU 3 копируется в АККU 2, а содержимое АККU 4 в АККU 3. Старое содержимое АККU 4 не меняется.

Соединение двух целых чисел в CPU с 2 AKKU

Операция сложения АККИ 1 и 2 как целых чисел (16 бит) (+I) указывает СРU сложить содержимое младшего слова АККИ 1 и содержимое младшего (16 бит) слова АККИ 2 и сохранить результат в младшем слове АККИ 1. Эта операция заменяет старое содержимое младшего слова АККИ 1. Старое содержимое АККИ 2 и старшего слова АККИ 1 не меняются (см. рис. 15–1). Пример

программы следует за рис. 15-2.

Рис. 15-1. Сложение двух целых чисел

Соединение двух целых чисел в СРU с 4 АККU Операция сложения АККU 1 и 2 как целых чисел (16 бит) (+I) указывает СРU сложить содержимое младшего слова АККU 1 и содержимое младшего (16 бит) слова АККU 2 и сохранить результат в младшем слове АККU 1. Эта операция заменяет старое содержимое младшего слова АККU 1. Затем содержимое АККU 3 копируется в АККU 2, а содержимое АККU 4 в АККU 3. Старшее слово АККU 1 не меняется (см. рис. 15–2).

Рис. 15-2. Сложение двух целых чисел в СРU с 4 АККU

AWL	Объяснение
L MW10	Загрузить значение из меркерного слова MW10 в АККU 1.
L DBW12	Загрузить значение из слова данных DBW12 в АККU 1.
	Старое содержимое АККU 1 сдвигается в АККU 2.
+I	СРU оценивает содержимое младших слов АККИ 1 и 2 как целые числа (16 бит),
	складывает их и сохраняет результат в младшем слове АККU 1.
	Передать содержимое младшего слова АККU 1 (результат) в слово данных DBW14.
T DBW14	

Анализ битов в слове состояния

Арифметические операции влияют на следующие биты слова состояния:

- A1 и A0
- OV
- OS

Результат **действителен**

Прочерк (–) у одного из представленных в таблице битов означает, что на этот бит результат арифметической операции не оказывает влияния. Эти биты слова состояния можно анализировать с помощью операций из таблицы

15-5.

Таблица 15–2. Сигнальное состояние битов в слове состояние: результат арифметической операции внутри области допустимых значений

Область допустимых значений результата для целых чисел (16 и 32 бита)		Биты слова состояния			
		A0	ov	os	
0 (нуль)	0	0	0	_	
16 бит: –32 768 ≤ результат <0 (отрицательное число)	0	1	0	-	
32 бита: −2 147 483 648 ≤ результат < 0 (отрицательное число)					
16 бит: 32 767 ≥ результат >0 (положительное число)	1	0	0	-	
32 бита: 2 147 483 647 ≥ результат >0 (положительное число)					

Результат недействителен

Таблица 15–3. Сигнальное состояние битов в слове состояние: результат арифметической операции вне области допустимых значений

Область недопустимых значений результата		Биты слова состояния			
для целых чисел					
(16 и 32 бита)	A1	A0	OV	OS	
16 бит: результат > 32 767 (положительное число)	1	0	1	1	
32 бита: результат > 2 147 483 647 (положительное					
число)					
16 бит: результат < -32 768 (отрицательное число)	0	1	1	1	
32 бита: результат < -2 147 483 648					
(отрицательное число)					

Таблица 15–4. Сигнальное состояние битов в слове состояния: арифметические операции с целыми числами (32 бита) +D, /D и MOD

Операция		Биты слова состояния			
	A1	A0	ov	os	
+D: результат = -4 294 967 296	0	0	1	1	
/D или MOD: деление на 0		1	1	1	

Таблица 15-5. Операции, оценивающие биты A1, A0, OV и OS

Операция	Ссылка на бит в слове состояния или метка перехода	Анализируемые биты в слове состояния (помечены X)	Глава в этом руковод- стве
U,O,X,UN,ON,XN	>0, <0, <>0, >=0, <=0, ==0, UO, OV, OS	A1, A0, OV, OS	11.3
SPO	<метка перехода>	OV	22.4
SPS	< метка перехода >	OS	22.4
SPU	< метка перехода >	А1 и А0	22.5
SPZ	< метка перехода >	А1 и А0	22.5
SPN	< метка перехода >	А1 и А0	22.5
SPP	< метка перехода >	А1 и А0	22.5
SPM	< метка перехода >	А1 и А0	22.5
SPMZ	< метка перехода >	А1 и А0	22.5
SPPZ	< метка перехода >	А1 и А0	22.5

15.2. Сложение целого числа с АККИ 1

Сложение целых констант (8 бит, 32 бита)

слове состояния.

С помощью операции *Сложить целые константы* Вы можете прибавить *целую* константу к содержимому младшего слова АККU 1. Эти
возможности перечислены в таблице 15–6. Эти операции не влияют на биты в

Таблица 15-6. Сложение целого числа с АККИ 1

Операция	Операнд	Функция
+	+ целое число (16 бит)	Складывает 16-битную целую константу с содержимым младшего слова АККИ 1. Результата сохраняется в АККИ 1. Старое содержимое младшего слова АККИ 1 заменяется. АККИ 2 и старшее слово АККИ 1 не меняются.
+	+ L# целое число (32 бита)	Складывает 32-битную целую константу с содержимым АККИ 1. Результат сохраняется в АККИ 1. Старое содержимое аккумулятора заменяется. АККИ 2 не меняется.

Примеры Ниже представлены две программы, содержащие операцию сложения целых констант.

AWL	Объяснение	
L MW10	Загрузить значение из MW10 в АККU 1.	
L MW20	Загрузить значение из MW20 в АККU 1.	
+I	Сложить 16-битные значения в АККИ 1 и 2.	
+ -5	Прибавить минус 5 к результату операции +I.	
T MW14	Передать новый результат в MW14.	

AWL	Объяснение	
L MD10	Загрузить значение из МD10 в АККИ 1.	
L MD16	Загрузить значение из МD16 в АККИ 1.	
+D	Сложить 32-битные значения в АККИ 1 и 2.	
+ L#–1	Прибавить минус 1 к результату операции +D.	
T MD24	Передать новый результат в MD24.	