Iris 데이터셋을 활용한 품종별 Petal Length 평균 차이 검정

1. 데이터 불러오기 및 구조 확인

`sns.load_dataset('iris')`로 데이터 불러옴

총 150개 샘플,5개 변수 (꽃받침/꽃잎 길이·너비 + 품종)

결측치 없음

2. 기술통계량 분석

Species	Count	Mean	Std Dev	Min	25%	50%	75%	Max
setosa	50	1.462	0.174	1.0	1.4	1.50	1.575	1.9
versicolor	50	4.260	0.470	3.0	4.0	4.35	4.60	5.1
virginica	50	5.552	0.552	4.5	5.1	5.55	5.88	6.9

3. 시각화(Boxplot)

Virginica 가 가장 길고, Setosa 가 가장 짧음

4. 정규성 검정

Species	W	p	정규성
setosa	0.9550	0.0548	0
versicolor	0.9660	0.1585	0
virginica	0.9622	0.1098	0

5. 등분산성 검정

p = 0.0000 → 등분산성 기각 (과제 지침상 가정하고 진행)

6~7. ANOVA

F p

1180.1612 2.8568e-91

8. Tukey HSD

Group1	Group2	MeanDiff	p	차이
setosa	versicolor	2.798	0.000	0

setosa	virginica	4.090	0.000	0
versicolor	virginica	1.292	0.000	0

9. 결론

Setosa: 가장 짧음 (≈1.46cm)

Virginica: 가장 김 (≈5.55cm)

Petal Length 는 품종 분류에 유의미

신용카드 사기 거래 탐지

1. 데이터 로드 및 탐색

신용카드 거래 데이터셋 (creditcard.csv)을 불러와 구조를 확인한 결과, 총 284,807개의 거래 중 정상 거래는 284,315건(99.83%), 사기 거래는 492건(0.17%)으로 심각한 클래스 불균형이 존재함을 확인하였다.

2. 샘플링

사기 거래(Class=1)는 전체 유지하고, 정상 거래(Class=0)는 10,000 건만 무작위로 샘플링하여 분석용 데이터셋을 구성하였다. 샘플링 후 클래스 비율은 Class 0: 95.31%, Class 1: 4.69%로 다소 완화되었다.

3. 데이터 전처리

Amount 변수에 대해 StandardScaler 로 표준화를 수행하여 Amount_Scaled 변수로 대체하였다. 그 후 X 와 y 로 Feature 와 Target 을 분리하였다.

4. 학습/테스트 데이터 분할

Stratified 방식으로 학습셋과 테스트셋을 8:2로 분할하였으며, 클래스 비율을 유지하기 위해 stratify=y 옵션을 적용하였다.

5. SMOTE 적용

학습 데이터에 대해 SMOTE(Synthetic Minority Over-sampling Technique)를 적용하여 소수 클래스(Class=1)를 오버샘플링하였다. 이는 모델이 클래스 불균형으로 인해 소수 클래스를 무시하지 않도록 하기 위함이다.

6. 모델 학습 및 평가

RandomForestClassifier 를 사용하여 모델을 학습하였다. 이 모델은 다수의 결정 트리를 앙상블하여 예측하는 방식으로, 클래스 불균형에 robust 하고 높은 정확도와 재현율을 기대할 수 있다. class weight='balanced' 옵션을 통해 불균형 문제를 보정하였다.

모델 성능:

- Precision (Class 1): 0.9647- Recall (Class 1): 0.8367- F1-score (Class 1): 0.8962

- PR-AUC: 0.9203

7. 최종 성능 평가

모델의 성능은 목표 기준(Recall ≥ 0.80, F1 ≥ 0.88, PR-AUC ≥ 0.90)을 모두 충족하였다. 따라서 해당 모델은 실전 상황에서도 사기 거래를 효과적으로 탐지할 수 있을 것으로 기대된다.