

Steps for Machine Learning

Look at the big picture.

Files/web/pandas

Get the data.

Discover and visualize the data to gain insights.

Prepare the data for Machine Learning algorithms.

Select a model and train it.

Train the model

Fine-tune your model.

Present your solution.

Launch, monitor, and maintain your system

Selection of Domain

Data Set: California census data

Metrics for each block group:

Population, median income, median housing price, ...

Problem:

Build a model to learn from this data and be able to predict the median housing price in any district, given median_income

As a Data Scientist, follow the steps of machine learning by starting with:

Frame the Problem

Select the Performance Measure

Check the Assumptions

Frame the Problem

Supervised/Unsupervised/reinforcement/classification/regressions/?

Batch Learning / Online Learning?

Supervised Learning – Labelled data is available

Regression – Asked to predict a value

Single regression problem – use median income to predict median_house_price

Batch learning is fine – small data, no rapid changes, no continues flow

Select Performance Measure

There are various performance measures for each model.

We selected the regression model for our problem

Root Mean Square Error(RMSE)

Mean Absolute Error (MAE)

RMSE
$$(X h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2}$$

MAE
$$(X, h) = \frac{1}{m} \sum_{i=1}^{m} |h(x^{(i)}) - y^{(i)}|$$

m - Number of observations

h – Hypothesis function

h(x(i)) – Predicted Value for ith instance

y(i) - Actual Value for ith instance

RMSE is more sensitive to outliers than the MAE.

Check Assumptions

Make the assumptions that what they can expect in different way.

There is the chance of expectation of result as "cheap", "reasonable", "Costly"

If so, there will be the wastage of working hours and efforts

Discuss with management and team and get clarity on this assumption

Lets continue with regression for now....

Downloading

Loading

Creating Training and test data

Downloading

Data may be available in various forms/ sources

Web

Files

Databases

Lets take CSV from given url.

Downloading


```
import os
import tarfile

import urllib

hurl="https://raw.githubusercontent.com/ageron/handson-ml/master/datasets/housing/housing.tgz"
lpath="datasets/housing/"
urllib.request.urlretrieve(hurl,lpath+"housing.tgz")
htgz=tarfile.open(lpath+"housing.tgz")
htgz.extractall(path=lpath)
htgz.close()
Downloads the file from hurl into local path
```


Loading Data into data frame (pandas)

import pandas as pd
d=pd.read_csv(lpath+"housing.csv")
d.head()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY

Loading Data into data frame (pandas)

Let's see the various statistics of loaded dataframe

```
In [16]: d.info()
                                                       In [19]: d.total rooms.count()
         <class 'pandas.core.frame.DataFrame'>
                                                       Out[19]: 20640
         RangeIndex: 20640 entries, 0 to 20639
         Data columns (total 10 columns):
                              20640 non-null float64
         longitude
                                                       In [17]: | d['ocean proximity'].value counts()
         latitude
                              20640 non-null float64
         housing median age
                              20640 non-null float64
                                                       Out[17]: <1H OCEAN
                                                                                9136
         total rooms
                              20640 non-null float64
                                                                                6551
                                                                 INLAND
         total bedrooms
                              20433 non-null float64
                                                                 NEAR OCEAN
                                                                                2658
        population
                              20640 non-null float64
                                                                 NEAR BAY
                                                                                2290
         households
                              20640 non-null float64
                        20640 non-null float64
                                                                 ISLAND
         median income
         median house value 20640 non-null float64
                                                                 Name: ocean proximity, dtype: int64
         ocean proximity
                              20640 non-null object
         dtypes: float64(9), object(1)
         memory usage: 1.6+ MB
```


Loading Data into data frame (pandas)

Let's see the various statistics of loaded dataframe

In [22]:	d.describe()										
Out[22]:	[22]:										
		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	
	count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000	
	mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909	
	std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874	
	min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000	
	25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000	
	50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000	
	75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000	
	max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000	

In [24]:	d.describe().population					
Out[24]:	count	20640.000000				
	mean	1425.476744				
	std	1132.462122				
	min	3.000000				
	25%	787.000000				
	50%	1166.000000				
	75%	1725.000000				
	max	35682.000000				
	Name:	population, dtype: float64				

Sample datasets in sklearn

load_boston([return_X_y])
load_iris([return_X_y])
load_diabetes([return_X_y])
load_digits([n_class, return_X_y])
load_linnerud([return_X_y])
load_wine([return_X_y])
load_breast_cancer([return_X_y])

Load and return the boston house-prices dataset (regression).

Load and return the iris dataset (classification).

Load and return the diabetes dataset (regression).

Load and return the digits dataset (classification).

Load and return the linnerud dataset (multivariate regression).

Load and return the wine dataset (classification).

Load and return the breast cancer wisconsin dataset (classification).

Visualize data

matplotlib is a library to plot graphs and visualize data

Conclusion

Covered Initial two steps of Data Science Project

Look at Big Picture

Getting Data

Next:

Pre-Processing

