Data Analysis With Python – Module 13 – Case Studies

Case Study #1: Linear Regression of Height & Weight

This case study will use data science and machine learning to predict mass when height is known. The dataset is a sample of women aged 30-39, derived from here: https://en.wikipedia.org/wiki/Simple linear regression#Numerical example

Please perform the following steps to complete this case study:

- 1. Create a new empty Jupyter Notebook.
- 2. Import all the modules required for:
 - numpy
 - pandas
 - matplotlib
 - seaborn
 - LinearRegression
- 3. Read the height mass.csv file into a Pandas DataSet called: people
 - Use the pandas read csv method.
- 4. Use a Seaborn histplot to show the distribution for Mass.
 - https://seaborn.pydata.org/generated/seaborn.histplot.html
 - Experiment with different bin #'s and find which one gives you the clearest information about the data.
 - What does the plot tell you about the data? Be specific. Don't focus on the numbers as much as the visual attributes.
 - Insert a markdown cell and note your observations. Superficial answers will lose marks.
- 5. Use a Seaborn histplot to show the distribution for Height.
 - Experiment with different bin #'s and find which one gives you the clearest information about the data.
 - What does the plot tell you about the data? Be specific. Don't focus on the numbers as much as the visual attributes.
 - Insert a markdown cell and note your observations. Superficial answers will lose marks.
- 6. Use a Seaborn jointplot to plot x=Height, y=Mass
 - If you get warnings, use named arguments like:
 - jointplot(x="x axis column name", y="y axis column name")
 - Does this plot confirm what the histplot showed?
 - Insert a markdown cell and note your observations. Superficial answers will lose marks.
- 7. Split the data into training and testing data, using appropriate variable names.
 - Prepare your x and y:
 - x: Drop the Mass column.
 - y: Specify the Mass column.
 - Use sklearn train test split to split the data.

Page 1 of 2 Rev.1

- 8. Create the model and fit it to the training data.
 - Create a sklearn LinearRegression model.
 - Use the fit method to fit it to the training data.
- 9. Predict values based on testing data.
 - Use the predict method to predict values with the x testing data.
- 10. Print out error metrics:
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)
- 11. Predict some specific mass. Choose any height directly from the data, predict the weight for that height, and see whether the prediction is close to reality.
 - Use the predict method and feed it a 2d array like: [[1.70]]
 - Add a markdown cell and explain how well the prediction matched reality, with specific attention to the RMSE error. Be specific and compare the numbers.
 Superficial answers will lose marks.
- 12. Use seaborn to display an Implot with the linear regression line shown (fit_reg=True).
 - If you get warnings, use named arguments like:
 - lmplot(x="x axis column name", y="y axis column name")
 - Does this plot support your observations from task #6?
 - Insert a markdown cell and note your observations. Superficial answers will lose marks.

Page 2 of 2 Rev.1