J-CAMD 091

Automatic log *P* estimation based on combined additive modeling methods

Takahiro Suzuki^{a,*} and Yoshihiro Kudo^b

^aDepartment of Chemical Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan ^bDepartment of Information Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992, Japan

Received 29 August 1989 Accepted 2 February 1990

Key words: Partition coefficient; Property estimation; Hydrophobicity; Lipophilicity; Group-contribution method; Drug design; Structure-property correlation

SUMMARY

A program for the automatic estimation of the logarithm of the partition coefficient between 1-octanol and water phases ($\log P$) has been developed as a component of a system entitled CHEMICALC (Combined Handling of Estimation Methods Intended for Completely Automated Log P Calculation). Log P values are calculated based on additive group contributions to $\log P$. Three sets of groups are defined, and their contributions have been derived from the experimental $\log P$ values of 1465 molecules. The system divides a structural formula of a compound of interest into the groups whose increments are provided and then calculates its $\log P$ value. All processing after structure input is fully automated. This system has been tested for predicting the $\log P$ values of 1686 compounds. The accuracy is sufficient for many practical purposes.

INTRODUCTION

The logarithm of the partition coefficient between 1-octanol and water phases (usually expressed as log P) has been chosen as a parameter in QSAR studies by Hansch and Fujita, who have emphasized the importance of lipophilic properties in determining the transport properties of a drug and its interactions with receptor molecules [1]. Usually, before a new drug reaches the marketplace, a large number of candidate molecules is screened. Accurate log P values are necessary for reducing the actual number of molecules to be tested. Nevertheless, synthesis and experimental log P determinations may be costly and time consuming, especially if some compounds are as yet unknown or not readily available.

In recent years, $\log P$ has become a key parameter in studies of the environmental fate of organic chemicals. Log P also has legislative significance in many countries. For example, the Japanese government requires a manufacturer (or an importer) of a chemical substance to include a $\log P$

^{*}To whom correspondence should be addressed.

value in its specifications. Moreover, when selecting an optimal experimental condition to measure $\log P$, one generally wants to know its rough estimate. Therefore, a reliable and convenient method for determination of $\log P$ is desired.

Various methods for predicting log *P* based on additive-constitutive characteristics have been attempted. The method of Rekker and de Kort [2] is easy and convenient for manual calculation, but provides a rough approximation for structurally complex compounds. While the method of Hansch and Leo [3] is more refined, the user is required to describe precisely a myriad of correction factors for some structural moieties. Chou and Jurs [4] computerized the approach of Hansch and Leo and elegantly developed the computer program CLOGP3 [5]. The methods of Rekker, and Hansch and Leo, however, are difficult to express systematically in computer programs and it appears that the physicochemical nature of correction factors used in such methods cannot be understood satisfactorily. Broto et al. [6] and Ghose and Crippen [7] tried to improve upon these methods by removing the correction factors; however, computerization of their approaches has yet to be completed to our knowledge. Klopman et al. [8], on the other hand, proposed a simple model for utilizing atomic charge densities and structural (atom and group) descriptors of a molecule to estimate log *P* values. They showed that even neglect of charge densities can fit the partition coefficients of simple molecules.

From a practical viewpoint, we intended to develop an alternative method for simple and accurate calculation of log *P* based on assumed additivity of group contribution. Full automatic calculation is performed easily and directly from a structural formula of a query compound. A program using this approach is to be incorporated in the system CHEMICALC (Combined Handling of Estimation Methods Intended for Completely Automatic Log *P* Calculation). The present paper describes this new estimation method and the CHEMICALC system.

METHOD

Estimation Method

A $\log P$ value is assumed to be calculated based on the following group-contribution model without any correction terms,

$$\log P = \sum_{i}^{N} n_{i} \cdot G_{i} \tag{1}$$

where N is the total number of groups (i.e., partial structures) defined to be orthogonal, n_i is the number of the ith group in the molecule, and G_i is the group contribution to $\log P$, so called increment, of the ith group. Clearly, the quality of this model (i.e., the precision of its predictions and their reliability) is critically dependent on the definition of a set of increments and on the values used. Any structure can be divided into groups, but their number can be considerable.

Orthogonality among groups is a factor which will lead to a single estimated value. The set of atoms is perfectly orthogonal, but it is usually not very accurate to estimate $\log P$ for most molecules since few molecular properties are independent of structure. Generally, as the size of the fragments increases, more precise estimates would be available. But from a viewpoint of statistical reliability, the sheer volume of experimental data needed to determine their group values is a pro-

hibitive factor. The definition of what constitutes the best value of a group contribution is not very rigid. After considering statistical reliability of values, manageability of structural formulas, and implicit inclusion of the constitutive factors, we decided to make an essential set of a mixed level of groups to be stored in the Basic Group Table. Although the set of groups in this table constitutes a kind of closed system, there are special cases in which larger groups are arranged together according to their proper values of log P. Two supplementary tables are thus set up: (1) the Extended Group, which consists of larger groups with their values of contribution defined by the system, and (2) the User Defined Group, which consists of larger groups with their values of contribution defined by the user. Observed data also are very useful if available, so the system also contains an Observed Data Table.

Definition and Notation of the Basic Group

A Basic Group consists of a key group and its environment. A key group is taken to contain a central polyvalent atom (C, N, O, and S) and the attached atoms bonded to it. An attached atom is any atom bonded to only one other atom (e.g., H, halogens, O in CO group, N in CN group,

Fig. 1. Notation examples of the Basic Group.

etc.). Certain atomic groups, cyano, nitro, and such, are treated as univalent hetero atoms. The carbon and nitrogen atoms are categorized and the shorthand notation is used as follows:

C: single bonded (sp³) carbon

Cd: double bonded (aliphatic sp²) carbon

Ct: triple bonded (sp) carbon
 Car: aromatic (sp²) carbon
 Carf: aromatic fused carbon
 N: single bonded nitrogen
 Nd: double bonded nitrogen
 Nar: aromatic nitrogen

The group is defined by using the following notation as shown in Fig. 1. The key group is listed first, followed by the symbol, -, which indicates the group is bonded directly to the nearest neighbors. Parentheses are placed around the ligands not bonded to one another. A numerical subscript indicates how many of such ligands are attached. When hetero atoms are contained in the next-nearest neighbors (so-called β atoms) to the key group, non-bonded interactions with other hetero atoms in that group (key group and all of its β atoms) are taken into account. Such β atoms are listed, followed by the symbol, --, in groups 6, 14, 15, 16, and 17 of Fig. 1.

Outline of CHEMICALC System

The basic system structure of CHEMICALC is shown in Fig. 2. This system requires the user to provide only a structural formula of a molecule of interest.

Fig. 2. Structure of CHEMICALC.

TABLE 1 COMMANDS FOR THE INTERACTIVE STRUCTURE INPUT

Command	Function
A N1 L DX	Attachment of a chain or a ring L to atom N1.
	The direction parameter DX may be set for 8 main directions: U, upward; D, downward; R, right-
	ward; L, leftward; as well as combinations RU, LU, RD and LD.
BNbM	Replace the bond type between atoms N and M with chemical bond b.
B N / M	Delete bonds between pairs of atoms N and M.
D N1Nk	Delete atoms N1,,Nk.
EX N1Nk	Replace the atom type of atoms N1,,Nk with chemical element X.
J N1Nk	Formation of bonds connecting atoms N1,,Nk.
H(HELP)	Display the list of commands.
CT	Show a connection table.
NEW	Abandon the structure.
ST	Display structural formula.
OK	Termination of the structure input.

In the current personal computer version, input and output of structural formulas are based on the use of a character-type CRT. Entry of chemical structure is performed in the interactive mode using the set of commands listed in Table 1. One can initiate with a chain or a ring, add a chain or a ring, and alter atom and bond types. Figure 3 shows an aspect of input operation of a structural formula described with the limited set of characters printed by a line printer. During and/or after the generation of the structure, one can check the correctness of the structure on a display. For speedier operation or a routine procedure for simple structures, the user can use the direct mode to input a connection table.

After the structure has been entered, the structural information is stored in a connection table and is decomposed to partial structures according to the definition of the Basic Group. Then its $\log P$ value is calculated by summing up G_i values of constituent groups from Table 2. In this step, if a group in the query molecule contains β hetero atoms and there is no corresponding group in the table, all β atoms in the query molecule are omitted. Values of pure atomic fragments are used when the target group values are not available. The Extended Group and the User Defined Group that are present in the query molecule are identified automatically. In this step, the maximum substructure is preferably identified and the estimation results based on different pathways which use the Extended Group Table and/or the User Defined Group Table together with the Basic Group Table (it is applied to the remaining part of the structural formula) are available. This system also provides a consulting function to assist the user. The program has been written in Fortran 77 under the MS-DOS operating system on the NEC PC-9801 Personal Computer.

RESULTS AND DISCUSSION

Increments of Basic Group Set

The increments of the Basic Group Set were determined by using a least-squares method based on Eq. 1. Experimental log P values of 1465 compounds containing carbon, hydrogen, oxygen, ni-

Fig. 3. An aspect in the structure input.

trogen, sulfur, and halogens were taken from the literature [3] and were used to determine 415 increments as shown in Table 2.

Some increments were assigned arbitrarily to circumvent a colinearity problem (i.e., this usually

TABLE 2 CONTRIBUTION VALUES TO LOG P OF THE BASIC GROUP SET*

	Group*	Frequency of use	No. of compounds	G_i	Remarks
1	CH ₃ -(Cal)	536	341	0.764	
2	CH ₃ -(Car)	173	124	0.614	
3	CH ₃ -(O)	119	104	0.610	
4	CH ₃ -(N)	211	151	0.610	\equiv CH ₃ -(O), assigned
5	CH ₃ -(S)	19	18	0.610	\equiv CH ₃ -(O), assigned
6	CH ₃ -(CO)	119	115	0.773	- (),
7	CH ₃ -(CS)	1	1	1.410	
8	CH ₃ -(SO)	3	2	0.773	$\equiv \text{CH}_3\text{-}(\text{CO})$
9	CH_3 -(SO_2)	7	6	0.773	$\equiv CH_{3}(CO)$
0	CH_2 -(C) ₂ (Cl) ₂	4	4	0.897	,
1	CH ₂ -(C) ₂ (O)(Cl)	1	1	0.897	$\equiv CH_2-(C)_2(Cl)_2$
2	CH_2 - $(C)_2$	467	198	0.536	2 (/2 (/2
3	CH_2 -(Cd)(C)	28	22	0.407	
4	CH_2 -(Ct)(C)	2	2	0.232	
5	CH ₂ -(Car)(C)	78	73	0.369	
6	CH ₂ -(C)(N')(N')	15	7	0.497	
7	CH ₂ -(C)(N)(S)	2	1	0.556	
8	CH ₂ -(C)(N)(O)	10	6	0.473	
9	CH ₂ -(C)(N)(O)(NO)	5	3	0.820	
0	CH ₂ -(C)(N)(CO)(NO)	2	1	0.979	
21	CH ₂ -(Cal)(N')	117	81	0.291	
.2	CH ₂ -(C)(N')(N')(NO)	13	5	0.602	
23	CH ₂ -(C)(O)(N)	10	6	0.473	
:4	CH ₂ -(C)(O)(O)	18	11	0.505	
:5	CH ₂ -(C)(O)(F)	1	1	0.370	
26	CH ₂ -(C)(O)(Cl)	1	1	0.633	
:7	CH ₂ -(C)(O)(Br)	1	1	0.701	
8	CH ₂ -(C)(O)(F) ₃	1	1	0.494	
:9	CH ₂ -(C)(O)(Cl) ₃	1	1	1.333	
0	CH_2 -(C)(O)(NO ₂)	1	1	1.250	
1	CH ₂ -(C)(O)	89	80	0.331	
2	CH ₂ -(C)(S)(CO)	1	1	0.685	
3	CH ₂ -(C)(S)(N)	2	1	0.657	
4	CH ₂ -(C)(CO)(O)(CO)	2	1	0.797	
5	CH ₂ -(C)(CO)(N)	2	1	0.493	
6	CH_2 - $(Cd)_2$	4	2	0.159	
7	CH ₂ -(Cd)(Car)	3	3	0.272	
8	CH ₂ -(Car) ₂	9	7	0.295	
9	CH ₂ -(Cd)(O)	7	6	0.414	
0	CH_2 -(Car)(N)	4	4	0.257	
-1	CH ₂ -(Car)(O)	19	19	0.213	
12	CH_2 -(C')(S)	10	9	0.392	
3	CH ₂ -(C')(CO)	82	75	0.493	
4	CH ₂ -(C')(CS)	2	2	0.493	$\equiv CH_{2^{\sim}}(CO)(C')$
-5	CH ₂ -(N')(CO)	6	6	-0.731	
6	CH_{2} - $(O)_{2}$	5	5	0.901	
17	CH ₂ -(O)(CO)	71	71	1.002	
18	CH ₂ -(S)(CO)	1	1	1.002	$\equiv CH_2$ -(O)(CO)
9	CH ₂ -(CO) ₂	5	5	1.454	
0	$CH_2F-(C')$	3	3	-0.003	

162
TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_{t}	Remarks
51	CH ₂ Cl-(C)(Cl)	2	1	0.740	
52	CH ₂ Cl-(C')	10	8	0.684	
53	CH ₂ Cl-(CO)	1	1	0.684	$\equiv CH_2Cl-(C')$
54	$CH_2Br-(C')$	7	7	0.816	
55	CH ₂ Br-(CO)	1	1	0.816	$\equiv CH_2Br-(C')$
56	CH_2I -(C')	2	2	1.112	
57	CH ₂ I-(CO)	1	1	1.112	$\equiv CH_2I-(C')$
58	CH ₂ CN-(C')	3	3	-0.576	
59	CH_2NO_2 -(C')	7	7	-0.383	
60	$CH_2NCS-(C')$	3	3	0.874	
61	$CH-(C)_3(O)(Cl)_2$	1	1	1.528	
62	CH-(C') ₃	68	62	0.233	
63	CH-(C) ₂ (N)(O)	1	1	0.070	
64	$CH-(C)_2(N)(N)(NO)$	5	3	0.369	
65	CH-(C') ₂ (N)	20	18	-0.179	
66	CH-(C) ₂ (O)(O)	2	I	0.063	
67	CH-(C) ₂ (O)(O) ₂	14	5	0.998	
68	CH-(C) ₂ (O)(O) ₃	4	4	0.860	
69	CH-(C) ₂ (O)(F) ₃	1	1	0.030	
70	CH-(C) ₂ (O)(Cl) ₂	3	2	0.813	
71	CH-(C) ₂ (O)(Cl)	1	1	0.462	
72	CH-(C) ₂ (O)(Cl) ₂ (CO)	1	1	0.946	
73	CH-(C') ₂ (O)(N)	5	4	0.267	
74	CH-(C') ₂ (O)	18	17	-0.087	
75	CH-(C) ₂ (S)	1	1	0.401	
76	CH-(C') ₂ (CO)	7	7	-0.259	
77	CH-(C)(O) ₂ (O)	4	4	0.246	
78	$CH-(C)(O)_2-(Cl)_3$	1	1	2.810	
79	$CH-(C)(O)_2$	1	1	0.072	
80	CH - $(C)(CO)_2$	1	1	1.623	
81	$CH-(Car)(CO)_2$	1	1	1.485	
82	CH-(C)(CO)(N)	12	12	-1.367	
83	CH-(C')(CO)(O)	4	4	0.994	
84	CHF_2 -(C)	1	1	0.014	
85	CHCl ₂ -(C)	1	1	1.026	
86	$CHCl_2(C)$ $CHCl_2(C)_2$ $(Cl)_2$	25	8	0.620	
87	$CHCl-(C)_2-(O)(Cl)_2$	2	1	0.620	\equiv CHCl-(C) ₂ (Cl)
88	CHCl-(C) ₂ (O)(Cl)	9	4	0.620	$\equiv \text{CHCl-(C)}_2\text{(Cl)}$
89	CHCl-(C) ₂ (S)(Cl) ₂	2	1	0.620	$\equiv \text{CHCl-(C)}_2\text{(Cl)}$
90	CHCl-(C) ₂ (S)(Cl)	2	1	0.620	$\equiv \text{CHCl-}(C)_2(Cl)$
91	CHCl-(C) ₂ (Cl)	11	6	0.254	= CITCI-(C) ₂ (CI)
92	CHCl-(C) ₂ -(Cl)	1	1	0.372	
93	CHCl-(C)(CO)	1	1	0.372	\equiv CHCl-(C) ₂
94	CHBr-(C)(CO)	3	3	0.544	= 01101-(0)2
95	CHNCS-(C') ₂	1	1	0.689	
96	C-(C) ₃ (N)	3	2	-0.713	
97	C-(C) ₃ (N) C-(C) ₃ (O)(Cl) ₃	1	1	0.415	
98	$C-(C)_2(Car)(O)(F)_6$	1	1	0.284	
99	C-(C') ₃ (O)	7	7	-0.473	

TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_i	Remarks
101	C-(C) ₂ (CO)(O)	1	1	0.491	
102	C-(C)(Car)(CO)(N)	1	1	-0.067	
103	C-(C') ₄	18	13	-0.064	
104	C-(C')3(CO)	6	6	-0.064	$\equiv C-(C')_4$
105	$C-(CO)_2(O)_2$	1	1	3.816	
106	CF ₃ -(C)(F)(Cl) ₂	1	1	1.000	
107	CF_{3} - (C')	33	31	1.203	
108	CF ₃ -(O)	2	2	1.770	
109	CF ₃ -(S)	2	2	1.438	
110	CF ₃ -(CO)	3	3	1.203	
111	CF_3 - (SO_2)	4	4	2.670	
112	CFCl ₂ -(C)(F) ₃	1	1	1.820	
113	CCl ₃ -(C')	9	8	1.374	
114	CCl ₃ -(S)	1	1	1.648	
115	CCl ₃ -(CO)	1	1	1.374	
116	CCl-(C) ₂ (O)(Cl) ₂	1	1	1.348	
117	CC1-(C) ₂ (S)(Cl) ₂	1	1	0.956	
118	CBr-(C) ₂ (CO)	1	1	0.197	
119	CNO_2 - $(C)_3$	1	1	-1.282	
120	CdH ₂ -(Cd)	38	30	0.477	
121	CdH-(Cd)(O)	6	5	0.786	
122	CdH-(Cd)(S)	8	7	0.685	
123	CdH-(Cd)(CO)(CO)	11	5	1.478	
124	CdH-(Cd)(CO)	33	28	0.718	
125	CdH-(Cd)(Nd)(Nd)	1	1	2.634	
126	CdH-(Cd)(Nd)(Nd)(CO)	1	1	2.634	\equiv CdH-(Nd)(Cd)(Nd
127	CdH-(C')(N')	55	53	0.641	(1.12)(-3)
128	CdH-(C')(Cd)	130	94	0.433	
129	CdH-(Nd)(N')	12	11	2.552	
130	CdH-(Nd)(S)	2	2	2.111	
131	CdH-(Nd)(CO)	1	1	2.111	\equiv CdH-(Nd)(S)
132	CdHBr-(Cd)	1	1	1.093	_ 0411 (110)(0)
133	CdHCN-(Cd)	2	2	-0.480	
134	CdHNO ₂ -(Cd)	16	16	-0.214	
135	$Cd-(C)(Cd)_2$	2	2	0.433	
136	Cd-(C)(Cd)(Nd)	1	1	2.286	
	Cd-(C)(Cd)(O)	1	1	-0.326	
137 138	Cd-(C)(Cd)(CO)(CO)	Ī	1	1.210	
139	Cd-(C)(Cd)(CO)(CO)	3	3	0.608	
140	Cd-(C)(N)(Nd)(F) ₃	10	10	2.443	
141	Cd-(C)(N)(Nd)	6	6	1.808	
142	Cd-(C)(CO)(Nd)	5	5	1.321	
142 143	Cd-(Cd) ₂	1	1	0.495	
143 144	Cd-(Cd) ₂ Cd-(Cd)(C') ₂	23	17	0.493	
	Cd-(Cd)(C') ₂ Cd-(Cd) ₂ (Nd)	3	3	2.083	
145		1	1	1.256	
146	Cd-(Cd)(CO) ₂		1	0.060	
147	Cd - $(Cd)(N)_2$	1	1 4	2.504	
148 149	Cd-(Cd)(N)(Nd)	4 1	4 1	2.304	
1 /11 ($Cd-(Cd)(Nd)_2$	ı	1	//. .)	

164
TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_i	Remarks
151	Cd-(Cd)(CO)(O)	5	5	2.367	
152	Cd-(Cd)(CO)(S)	1	1	1.464	
153	Cd-(Cal)(Cd)(N)	4	4	0.055	
154	Cd-(Car) ₂ (Nd)	5	5	1.497	
155	Cd-(Car)(N)(Nd)	1	1	2.504	
156	Cd-(N) ₂ (Nd)	2	2	3.295	
157	Cd-(N)(Nd) ₂	1	1	5.599	
158	Cd-(N)(Nd)(O)	2	2	4.204	
159	Cd-(N)(Nd)(S)	4	4	1.107	
160	CdF ₂ -(Cd)	1	1	0.763	
161	CdF-(Cd)(CO)	2	2	0.172	
162	CdCl-(Cd)(CO)	1	1	0.672	
163	CdCl-(Nd) ₂	1	1	2.942	
164	CdBr-(Cd)(CO)	1	1	0.812	
165	CdI-(Cd)(CO)	1	1	1.062	
166	$CdNO_2$ -(C)(Cd)	2	2	-0.718	
167	CdI -(Cd) ₂ (N)(Nd)	1	1	1.978	
168	CdNO2-(Cd)2(N)(Nd) $CdNO2-(Cd)2(N)(Nd)$	1	1	0.868	
169	$CdCN-(Cd)_{2}-(N)(Nd)$	1	1		
170	CdCN-(Nd)(CO)	11	11	0.518	
171	CtH-(Ct)	7	6	3.548 0.244	
172	Ctr-(Ct)(C')	9	7		
				0.201	
173	CarH-(Car') ₂	5012	1235	0.367	
174 175	CarH-(Car)(Nar)(Nar)	21	9	0.560	O- II (O- N
	CarH-(Car')(Nar)	160 22	117	0.367	$\equiv \text{CarH-}(\text{Car}')_2$
176	CarH-(Car)(NaO)		20	0.367	$\equiv \text{CarH-}(\text{Car'})_2$
177	CarH-(Nar) ₂	2 2	2 2	0.863	
178	$CarF-(Car)_2(N)$			0.587	G F (G) (GO)
179	$CarF \cdot (Car)_2 \cdot \cdot (O)$	2	2	0.615	$\equiv \operatorname{CarF-(Car)_2(CO)}$
180	$CarF-(Car)_2-(O)(F)$	2	1	0.615	$\equiv \text{CarF-(Car)}_2\text{(CO)}$
181	$CarF-(Car)_2(F)_2$	9	2	0.370	G F (G) (GO)
182	$CarF$ - $(Car)_2$ (CO)	4	3	0.615	$\equiv \text{CarF-(Car)}_2\text{(CO)}$
183	CarF-(Car') ₂	28	25	0.615	
184	CarF-(Car)(Nar)	1	1	1.102	
185	CarCl-(Car) $_2$ (N)	5	5	1.420	
186	$CarCl-(Car)_2(N)(Cl)$	1	1	1.650	
187	$CarCl-(Car)_{2}-(O)$	15	13	0.075	
188	CarCl-(Car) ₂ (O)(Cl)	6	4	0.547	
189	CarCl-(Car) ₂ (Cl) ₂	14	5	0.688	
190	CarCl-(Car) ₂ (Cl)	24	13	0.956	
191	CarCl-(Car) ₂ (Br)	1	1	0.956	$\equiv \text{CarCl-}(\text{Car})_2$ (Cl)
192	CarCl-(Car) ₂ (I)	1	1	0.939	
193	$CarCl-(Car)_2-(NO_2)$	3	3	0.679	
194	CarCl-(Car) ₂ (CO)	4	4	1.014	$\equiv CarCl-(Car')_2$
195	CarCl-(Car) ₂ (CN)	1	1	1.014	$\equiv CarCl-(Car')_2$
196	CarCl-(Car) ₂ (SO ₂)	1	1	1.014	$\equiv CarCl-(Car')_2$
197	CarCl-(Car') ₂	88	76	1.014	
198	CarCl-(Car)(Nar)(Cl)	3	2	1.280	
199	CarCl-(Car)(Nar)	6	6	1.233	
200	$CarBr-(Car)_2(N)$	1	1	1.659	

TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_i	Remarks
201	CarBr-(Car) ₂ (O)	13	9	0.075	
202	$CarBr-(Car)_{2}-(O)_{2}$	2	2	-0.021	
203	CarBr-(Car)2(Cl)	1	1	1.218	
204	CarBr-(Car)2(Br)	5	3	1.086	
205	CarBr-(Car) ₂ (Br) ₂	1	1	0.429	
206	CarBr-(Car)2(CO)	2	2	1.276	
207	CarBr-(Car') ₂	38	37	1.276	
208	CarBr-(Car)(Nar)	1	1	1.094	
209	$CarI-(Car)_2(N)$	2	2	2.101	
210	CarI-(Car) ₂ (O)	5	5	1.626	
211	CarI-(Car) ₂ (Cl)	1	1	1.586	
212	CarI-(Car) ₂ (CO)	3	3	1.626	$\equiv \text{CarI} \cdot (\text{Car})_2 - (\text{O})$
213	CarI-(Car') ₂	18	18	1.661	
214	CarIO ₂ -(Car) ₂	1	1	-3.165	
215	CarIO-(Car) ₂	1	1	-3.445	
216	CarCN-(Car) ₂ (O)	3	3	-0.275	$\equiv CarCN-(Car)_2$
217	CarCN-(Car) ₂ (Cl)	1	1	-0.030	` /-
218	CarCN-(Car') ₂	21	21	-0.275	
219	CarCN-(Car)(Nar)	2	2	0.140	
220	$CarNO_2$ - $(Car)_2$ (N)	1	1	0.899	
221	CarNO ₂ -(Car) ₂ (O)	9	7	0.093	$\equiv CarNO_2-(Car')_2$
222	CarNO ₂ -(Car) ₂ (O) ₂	1	1	-0.343	• , ,-
223	$CarNO_2$ - $(Car)_2$ (Cl)	3	3	0.093	$\equiv CarNO_2-(Car')_2$
224	$CarNO_2$ - $(Car)_2$ (CO)	2	2	0.093	$\equiv \text{CarNO}_2\text{-}(\text{Car'})_2$
225	$CarNO_2$ - $(Car)_2$ (NO_2)	4	2	0.056	2 (/=
226	$CarNO_2$ - $(Car)_2$ (SO_2)	1	1	0.093	$\equiv \text{CarNO}_2\text{-}(\text{Car'})_2$
227	CarNO ₂ -(Car') ₂	98	87	0.093	- \ ,-
228	CarNO ₂ -(Car)(Nar)	1	1	0.194	
229	CarNO-(Car') ₂	3	3	0.175	
230	CarNCS-(Car') ₂	21	19	1.430	
231	Car-(Cal)(Car') ₂	484	389	0.172	
232	Car-(Cal)(Car)(Nar)	16	15	0.242	
233	Car-(Car') ₃	51	25	0.233	
234	Car-(Car) ₂ (N)(N)	8	4	0.652	
235	$Car-(Car)_2(N)(O)$	6	6	0.395	
236	$Car-(Car)_2(N)(Cl)$	4	4	0.250	
237	Car-(Car)2(N)(CO)(O)	2	2	0.749	
238	Car-(Car) ₂ (N)(S)	3	2	0.451	
239	$Car-(Car)_2(N)(CO)$	8	8	1.213	
240	$Car-(Car)_2(N)(CO)_2$	1	1	1.213	\equiv Car-(Car) ₂ (N)(CO
241	Car-(Car)2(N)(Nd)2	2	2	0.652	$\equiv \operatorname{Car-}(\operatorname{Car})_2(\operatorname{N})-(\operatorname{N})$
242	$Car-(Car)_2(N)(Nd)$	13	13	0.652	$\equiv \operatorname{Car-(Car)_2(N)(N)}$
243	$Car-(Car)_2(Nd)(Nd)(N)$	2	2	0.652	$\equiv \operatorname{Car-}(\operatorname{Car})_2(\operatorname{N})-(\operatorname{N})$
244	$Car-(Car)_2(Nd)(N)$	12	12	0.652	$\equiv \operatorname{Car-}(\operatorname{Car})_2(\operatorname{N})(\operatorname{N})$
245	$Car-(Car)_2(Nd)(O)$	1	1	0.652	$\equiv \operatorname{Car-}(\operatorname{Car})_2(\operatorname{N})-(\operatorname{N})$
246	$Car-(Car)_2(Nd)(S)$	î	1	0.652	$\equiv \operatorname{Car-}(\operatorname{Car})_2(\operatorname{N})-(\operatorname{N})$
247	$Car-(Car)_2(Nd)(CO)$	3	3	1.213	74() ()
248	$Car-(Car)_2(Nd)(SO_2)$	3	3	0.842	
249	$Car-(Car')_2(N')$ $Car-(Car')_2(N')$	289	269	0.250	
250	$Car \cdot (Car)_2(Nar)$	4	3	0.275	

166
TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_i	Remarks
251	Car-(Car) ₂ (O)(N)	9	9	0.652	$\equiv \operatorname{Car-}(\operatorname{Car})_2(\operatorname{N})-(\operatorname{N})$
252	Car-(Car)2(O)(Nd)	1	1	0.652	$\equiv \operatorname{Car-}(\operatorname{Car})_2(\operatorname{N})(\operatorname{N})$
253	Car-(Car) ₂ (O)(O)	39	22	0.771	
254	$Car-(Car)_2(O)(O)_2$	2	2	0.317	
255	Car-(Car) ₂ (O)(F)	3	3	0.729	
256	$Car-(Car)_2(O)(F)_2$	1	1	1.992	
257	Car-(Car) ₂ (O)(F)(CO)	1	1	0.323	
258	Car-(Car) ₂ (O)(Cl)	8	8	2.013	
259	$Car-(Car)_2(O)(Cl)_2$	5	5	2.898	
260	Car-(Car) ₂ (O)(Cl)(CO)	3	3	1.114	
261	$Car-(Car)_2(O)(Br)$	6	5	1.890	
262	$Car-(Car)_2(O)(Br)_2$	5	4	3.039	
263	Car-(Car) ₂ (O)(Br)(CO)	1	1	1.303	
264	Car-(Car) ₂ (O)(I)	3	3	0.658	$\equiv \text{Car-}(\text{Car'})_2(\text{O})$
265	Car-(Car) ₂ (O)(I)(CO)	2	2	0.102	, ,,,
266	Car-(Car) ₂ (O)(CO)	45	44	1.689	
267	Car-(Car) ₂ (O)(CO) ₂	2	2	0.466	
268	Car-(Car) ₂ (O)(CO)(CN)	2	2	0.782	
269	Car-(Car) ₂ (O)(CO)(O)	5	5	0.066	
270	Car-(Car)2(O)(CO)(S)	2	2	0.066	\equiv Car-(Car) ₂ (O)(CO)(C
271	Car-(Car) ₂ (O)(CN)	1	1	1.519	72(1) ()(=
272	Car-(Car) ₂ (O)(NO ₂)	7	6	1.403	
273	Car-(Car) ₂ (O)(NO ₂) ₂	2	2	1.064	
274	Car-(Car') ₂ (O)	354	306	0.658	
275	$Car-(Car)_2(S)(N)$	3	2	0.451	
276	$Car-(Car)_2(S)(Nd)$	1	1	1.033	
277	$Car-(Car)_2(S)(O)$	2	2	0.636	
278	Car-(Car) ₂ (S)(CO)	2	1	1.096	
279	Car-(Car) ₂ (S)	17	16	0.658	$\equiv \text{Car-}(\text{Car'})_2(\text{O})$
280	Car-(Car) ₂ (CO)(N)	Ĭ	1	1.198	(=)2(=)
281	Car-(Car) ₂ (CO)(Nd)	3	3	0.869	
82	Car-(Car) ₂ (CO)(O)	4	4	1.044	$\equiv \text{Car-}(\text{Car'})_2(\text{CO})$
283	Car-(Car) ₂ (CO)(O) ₂	36	36	1.034	(= /2(= = /
284	$Car-(Car)_2(CO)(O)_3$	2	2	-0.085	
:85	Car-(Car) ₂ (CO)(S)	2	1	0.993	
86	$Car-(Car)_2(CO)(F)_2$	1	1	0.706	
287	Car-(Car) ₂ (CO)(F)(O)	2	2	0.748	
288	Car-(Car) ₂ (CO)(Cl)(O)	3	3	0.522	
289	$Car-(Car)_2(CO)(Br)(O)$	2	2	0.447	
90	Car-(Car) ₂ (CO)(I)(O)	3	3	0.314	
291	$Car-(Car)_2(CO)(O)(NO_2)$	2	2	1.115	
92	Car-(Car) ₂ (CO)(O)(N)	11	11	1.198	
93	Car-(Car) ₂ (CO)(CO)	20	10	0.878	
94	Car-(Car') ₂ (CO)	173	164	1.044	
95	Car-(Car) ₂ (CS)	1	1	1.044	$\equiv \text{Car-}(\text{Car'})_2(\text{CO})$
96	$Car-(Car)_2(SO_2)(Nd)(N)$	4	3	0.936	74(00)
97	Car-(Car')2(SO2)	46	44	1.044	$\equiv \text{Car-}(\text{Car'})_2(\text{CO})$
98	Car-(Car) ₂ (SO)	6	4	1.044	$\equiv \operatorname{Car}(\operatorname{Car}')_2(\operatorname{CO})$
99	Car-(Car)(N')(Nar)	12	12	1.368	(/2()
00	Car-(Car)(Nar)(O)	5	5	0.435	

TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_i	Remarks
301	Car-(Car)(Nar)(S)	1	1	1.919	
302	Car-(Car)(Nar)(CO)	4	4	1.679	
03	Car-(N)(Nar) ₂	8	6	1.773	
04	Carf-(Carf)(Car)2(Nar)2	1	1	0.750	
05	Carf-(Car') ₃	201	119	0.230	
06	Carf-(C'ar)2(Nar)(Nar)	20	9	0.567	
07	Carf-(Car')2(Nar)	66	56	0.479	
08	Carf-(Car')2(NarO)	20	20	0.479	$\equiv \text{Carf-}(\text{Car}')_2(\text{Nar})$
09	CHO-(C)	3	3	-0.906	
10	CHO-(Cd)	2	2	-1.264	
11	CHO-(Car)	11	11	-1.223	
12	CHO-(O)	3	3	-0.906	
13	CHO-(N)	11	11	-0.906	
14	CO-(C) ₂	17	16	-1.747	
15	CO-(C)(Cd)	8	8	-1.908	\equiv CO-(C)(Car)
16	CO-(C)(Car)	34	31	-1.908	\ - /\/
17	CO-(C)(Nd)	3	3	-1.682	
18	CO-(Cd) ₂	8	7	-2.856	
19	CO-(Cd)(Car)	19	11	-2.238	
20	CO-(Car) ₂	7	7	-2.587	
21	CO-(C)(N)(Br)	1	1	-1.212	
22	CO-(C)(N)(Cl)	1	1	-1.090	
23	CO-(C)(N)(I)	1	1	-1.178	
23 24	CO-(C)(N)(Cl) ₃	1	1	-0.210	
2 4 25	CO-(C)(N)(C1) ₃	3	3	-0.959	
25 26	CO-(C ₂)(N)(1 ²) ₃	121	103	-0.535 -1.682	
	CO-(Car)(N)	59	57	-2.115	
27		2	2	-2.113 -0.671	
28	CO-(C)(O)(Br)	318	312	-0.071 -1.357	
29	CO-(C')(O)	5	3	-1.337 -1.316	
30	CO-(C')(CO)	56	5 55	-0.923	
31	CO-(N) ₂				\equiv CO-(N) ₂
32	CO-(N)(Nd)	8	8	-0.923	$= CO-(N)_2$
33	CO-(N)(O)	80	73	-1.471	
34	CO-(N)(CO)	3	2	-1.138	
35	CS-(C')(N)	4	4	-1.725	
36	CS-(N) ₂	7	7	-1.600	
37	NH ₂ -(C')	179	171	-1.177	
38	NH_{2} - (N)	10	10	-0.274	
39	NH ₂ -(CO)	69	67	-0.124	
340	NH ₂ -(CS)	3	3	0.070	
41	NH_2 -(SO_2)	25	25	0.124	
42	NH-(Cal) ₂	28	27	-1.401	
43	NH-(Car) ₂	11	11	-0.720	
344	NH-(Cal)(Car)	33	33	-0.945	
345	NH-(C')(CO)	157	145	-0.060	
46	NH-(C')(CS)	11	9	-0.060	\equiv NH-(C')(CO)
347	$NH-(C')(SO_2)$	13	13	-0.060	\equiv NH-(C')(CO)
348	NH-(C')(O)	16	16	-1.560	
349	NH-(Car)(N)	4	2	-0.615	
50	NH-(CO)(O)	3	3	-1.090	

168
TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_i	Remarks
351	NH-(CO) ₂	52	37	1.002	
352	NH-(CO)(N)	6	6	-0.060	\equiv NH-(C')(CO)
353	NH-(CO)(Nd)	3	3	0.185	
354	NH-(Cd)(Nd)	5	5	-0.577	
355	NH-(Car)(Nd)	14	14	-0.329	
356	NH-(CO)(CS)	3	2	1.703	
357	NH-(CO)(SO ₂)	2	2	-0.060	\equiv NH-(C')(CO)
358	N-(Cal) ₃	16	15	-1.654	. / /
359	N-(Cal) ₂ (Car)	25	23	-0.935	
360	$N-(C)(Car)_2$	1	1	-1.820	
361	$N-(Car)_3$	1	1	-0.510	
362	N-(C)(Car)(Nd)	6	6	-0.385	
363	$N-(C)(CO)_2$	2	2	-0.220	
364	$N-(C)(N)_2$	1	1	-0.575	
365	$N-(Car)(Nd)_2$	2	2	-0.711	
366		3	3	-0.711 -1.135	
	N-(C)(Cd)(N')				N (C)(C) (A)
367	N-(Cd)(CO)(N)	4	4	-1.135	$\equiv N-(C)(Cd)(N')$
368	N-(Car)(CO)(N)	2	2	-1.135	$\equiv N-(C)(Cd)(N')$
369	N-(C)(Car)(CS)	1	1	-0.307	
370	N-(C') ₂ (CO)	39	39	-1.014	
371	$N-(C')_2(SO_2)$	2	2	-0.353	
372	NdH-(Cd)	1	1	-4.265	
373	Nd-(C)(Cd)	4	4	-1.993	
374	Nd-(Cd) ₂	9	9	-2.512	
375	Nd-(Car)(Cd)	26	25	-2.893	
376	Nd-(C)(Nd)	1	1	-0.175	
377	Nd-(Cd)(N)	20	20	-0.983	
378	Nd-(Cd)(Nd)	11	7	-0.928	
379	Nd-(Car)(Nd)	12	10	-0.928	\equiv Nd-(Cd)(Nd)
380	Nd-(Cd)(CO)	10	10	-2.352	
381	Nd-(Cd)(O)	6	6	-0.983	$\equiv Nd-(Cd)(N)$
382	$Nd-(N')_2$	11	11	-0.928	$\equiv Nd-(Cd)(Nd)$
383	NdNO-(Cd)	1	1	-2.452	
384	NdBr-(Cd)	1	1	-0.678	
385	NdCl-(Cd)	1	1	-0.538	
386	Nar-(Car') ₂	180	152	-1.182	
387	Nar-(Car)(Nar)	2	1	-1.094	
388	NarO-(Car') ₂	20	20	-2.923	
389	NNO- $(C)_2$	31	27	-1.666	
390	NNO-(C)(CO)	3	3	0.397	
391	OH-(Cal)	91	76	-1.287	
392	OH-(Car)(Nar)	2	2	-2.546	
393	OH-(Car)	194	180		
393 394	OH-(CO)	214		-1.102	
39 4 395	•		206	0.265	- OII (CO)
393 396	OH-(N')	7	7	0.265	\equiv OH-(CO)
	O-(C') ₂	237	212	-1.093	
397	O-(C')(CO)	166	165	-0.062	
398	O-(CO) ₂	1	1	-1.130	
399	O-(CO)(N)	15	15	0.741	
400	$O-(C)(SO_2)$	2	1	0.340	

TABLE 2 (continued)

	Group*	Frequency of use	No. of compounds	G_i	Remarks
401	O-(Cd)(Nd)	2	2	-0.797	
402	O-(C)(N)	2	1	-0.797	$\equiv O-(Cd)(Nd)$
403	O-(Car)(N)	1	1	0.266	
404	ONO ₂ -(C)	1	1	-0.017	
405	SH-(C')	4	4	0.052	
406	S-(C') ₂	34	34	-0.361	
407	S-(C)(S)	2	1	0.275	
408	SO ₂ -(Car) ₂	2	2	-3.358	
409	SO ₂ -(C)(Car)	6	6	-2.849	
410	SO_2 -(C')(N')	39	38	-2.240	
411	SO_2 -(C)(O)	2	2	-2.240	$\equiv SO_2$ -(C')(N')
412	SO_2 - $(N)_2$	1	1	-1.501	
413	SO ₂ F-(Car)	2	2	-0.559	
414	SO-(C') ₂	5	5	-3.003	
415	SCN-(C')	3	3	-0.198	
Pure a	tomic contributions				
416	C-(X)			0.288	
417	H-(X)			0.040	
418	N-(X)			-0.523	
419	O-(X)			-0.327	
420	S-(X)			0.079	
421	F-(X)			0.144	
422	Cl-(X)			0.471	
423	Br-(X)			0.796	
424	I-(X)			1.285	

*(C) = sp³ C-atom; (Cd) = aliphatic sp² C-atom; (Ct) = sp C-atom; (Cal) = C, Cd, or Ct; (Car) = aromatic sp² C-atom; (Carf) = aromatic fused C-atom; (C') = C, Cd, Ct, or Car; Car' = Car or Carf; (N) = single bonded N-atom; (Nd) = double bonded N-atom; (N') = N or Nd; (Nar) = aromatic N-atom; (X) = any atoms.

happens when more than two unique groups are found in a single molecule and cannot be separated reliably because of dependency on each other) and/or to increase the statistical significance of the increments for smaller segments. Most were assigned in the same way as previously done by Benson for the prediction of chemical thermodynamic data [9] (e.g., CH_2 -(C)(N)--(O) was analogously assigned the same value as CH_2 -(C)(O)--(O) and 3 potential groups, CH_3 -(O), CH_3 -(O), and CH_3 -(O), were all fused into one, CH_3 -(O), etc.).

Since the 415 groups are insufficient for the Basic Group Table to cover all of the structures which require their $\log P$ values to be estimated, 9 pure atomic fragments (Nos. 416-424 in Table 1) were added as complements. Their increments were also obtained with Eq. 1 based on a data set of 250 typical compounds which were extracted from the entire set of 1465 compounds. The set includes compounds (shown in Appendix Table A1) with diversity of structure and has a wide range of observed $\log P$ values from -1.73 to 6.11 [10] (i.e., the total number of entries of the Basic Group Table is 424).

Fig. 4. Derivation of the group contribution to log P for C₆H₅CH₂-(C).

Increments of Extended Group Set

The increments of the Extended Group Set are determined as follows. Initially, a molecule is divided into 2 parts, a target group (i.e., Extended Group) and the rest of the molecule. For the latter, a sum of increments is calculated by using the value of the Basic Group Set. Then the difference between the experimentally observed log P and the estimated log P value of the fragment is determined. To reduce the influence of potential errors as much as possible for any given molecule, the mean value based on several molecules was adopted. An example of this procedure is given in Fig. 4. Increments determined until now are shown in Table 3. 'C' in parentheses represents the neighboring carbon atom in the same manner as in Table 2. If one prefers to use a group connecting with different atoms, its increment is readily available from the value in Table 3 by using the increment in Table 2.

Use of CHEMICALC

This system has been tested for computing $\log P$ values of 1686 molecular structures, of which 1465 were used for determining G_i values. Although more than one value could be obtained for many compounds, the estimates using only the Basic Group Table are presented here.

The summary of estimation results is shown in Table 4 (the entire list of compounds used for

the calculation is shown in Appendix Tables A1 and A2). In this table, all compounds in the test set are classified into typical classes and their average absolute errors are shown. Excellent agreement of the calculated $\log P$ values with experimental values was obtained for monofunctional compounds, but the average error for polyfunctional compounds was more than twice as large as that for monofunctional compounds. The error for polyfunctional compounds was most likely due to 2 factors: (i) eq. 1 and/or classification of the Basic Group was not complete; and (ii) the

TABLE 3 CONTRIBUTION VALUES TO LOG P OF THE EXTENDED GROUP SET

Group	G_i	Group	G_i	
CH2=CH-(C)	1.03	(c)	0.16	
CH2=CHCH2−(C)	1.47	ни <u> </u>	0.55	
CH ≅ C-CH2-(C)	0.63		0.55	
(CH ₃) ₂ CH−(C)	1.83	NO-(c)	0.48	
(CH ₃)3 C-(C)	2.40	⟨ <mark>N</mark> ¯⟩-(c)	-0.60	
CH₃CH₂CH−(¢) CH₃	2.22	(<u>)</u> -(c)	-0.40	
(c)	1.43	(C) √(S-(C)	2.09	
(c)	2.70	(C)-s0-(c)	-0.22	
(c)	3.02	⟨⊙⟩-50₂-(c)		
(c)	2.67		-0.30	
(c)	1.96	(C)-502-NH-(C)	0.45	
(c)-(C)	1.87	NH2502-(C)	0.20	
	2.39	HON=CH -(C)	1.74	
CH=CH-(C)	2.85		1.44	
CH ² -(C)	2.46	O N (C)	0.70	
CH3-(C)	2.95	HN H (C)	-1.38	
CH3-CH3 CH3	3.23	H00CCH20-(C)	1.11	
(CH ₁) ₂ CH —(C)	3.47	O>−NH-(C)	1.17	
(C)−C(CH)}₃−(C)	3.35	O-NH-E-(C)	0.36	

172
TABLE 3 (continued)

Group	G_i	Group	G_i
(O) (O) (w)	3.18	(C)	2.16
	3.03	(c)	0.16
(O)-(O)-(c)	3.90	(c)	-0.24
(O)(O)(w)	4.35	(c)	1.94
(O) (c)	5.42	(O) (C)	1.86
(c)	5.78	(c)	1.35
(O)(O)-(')	4.69		1.38
(O) (O) (O)	6.31	(5) Z=Z	0.54
(6)	0.16	0N-V-(C)	0.31
(c) (c) (c)	1.45	0 4-(C)	0.31
(C) - \(\frac{1}{6} - (c)	0.92	0N-H N-N0	-1.04
$\bigcirc -\frac{g}{c} - o - (c)$ $\bigcirc -cH_2 o - (c)$ $cH_3 - \bigcirc -\frac{g}{c} - (c)$	1.48	· · · · · · · · · · · · · · · · · · ·	0.40
		(c)-(O)-conh nH₂	-0.01
(C)-0-5-(c)	0.82	NO CONHNH2	-0.97
(C)-CH20-(C)	1.32	<u> </u>	
сн ₃ -{О} ⁰ -(с)	1.51		0.21
CH3-(C)	1.34	(C) - (C) (C)	3.39
CH1-(O)-0-C-(C)	2.99	(C)-ONNO (CH3	1.56
		~	

TABLE 4
ESTIMATION RESULTS FOR 1686 COMPOUNDS

Compound class	No. of compounds ^a	Average absolute error ^b
Aliphatic hydrocarbons	28 (28)	0.20
Aromatic hydrocarbons	54 (53)	0.17
Nitriles (monofunctional)	8 (7)	0.31
Alcohols and Phenols (monofunctional)	52 (51)	0.12
Ethers (monofunctional)	19 (19)	0.18
Aldehydes and ketones (monofunctional)	25 (25)	0.15
Carboxylic acids and esters (monofunctional)	42 (42)	0.21
Nitro compounds (monofunctional)	20 (19)	0.15
Amides and Anilides (monofunctional)	21 (21)	0.19
Amines and 1N-containing ring compounds	99 (99)	0.14
1S-containing compounds	13 (13)	0.06
Halogenated hydrocarbons	55 (40)	0.11
Other compounds	1250 (1048)	0.42
Compounds not included in the data set	221 (0)	0.49°
All compounds	1686 (1465)	0.35

^a: The numbers in parentheses denote number of compounds used for the determination of group values.

propagation of errors cannot be neglected for large or complex molecules when calculation is based on small-sized groups.

Although the set of compounds (see Table A2) not included in the basic set contained not only many structurally complex molecules, but also molecules containing more carbon atoms than the 1465 compounds used in the data set, the predicted values gave a correlation coefficient of 0.938 and an average absolute error of 0.49. The error distribution for the test set is also shown in Fig. 5. About 72% of the compounds in the test set could be calculated within a precision of 0.40 log P units (equivalent to the precision of many experimental uncertainties); therefore, the usefulness of this system was confirmed.

CONCLUSION

A computer-assisted system, CHEMICALC, for predicting $\log P$ values from molecular structures has been implemented and tested. The method of calculation is based on the additive-constitutive character of $\log P$, involves no correction factors (the constitutive factor is kept hidden in the group classification), and is thus convenient for computer use. Another predominant feature of this method is its combined handling of 3 sets of group contributions. Although this scheme affords more than one estimate to a query molecule, it is useful for reliably estimating $\log P$ values. In fact, for structurally complex molecules, the most accurate prediction can be obtained by using larger sized groups, and, even in the calculation based on only the Basic Group Set, sufficiently ac-

^b: $\sum |\log P(\text{observed})| \log P(\text{estimated})|$ Number of compounds.

^c: Compounds whose observed log *P* values are not available are excluded.

Fig. 5. Histograms of the error distribution in the prediction of log P values for 1686 compounds.

curate predictions are possible. The increments of the Basic Group Set are also useful for the estimation of the distribution of lipophilicity on molecular structures.

REFERENCES

- 1 Hansch, C. and Fujita, T., J. Am. Chem. Soc., 86 (1964) 1616.
- 2 Rekker, R.F. and de Kort, H.M., Eur. J. Med. Chem., 14 (1979) 479.
- 3 Hansch, C. and Leo, A.J., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, NY, 1979.
- 4 Chou, J.T. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 19 (1979) 172.
- 5 CLOGP3 User Guide, MedChem Software Release 3.5, Daylight Chemical Information Systems, Inc., Irvine, CA 1988.
- 6 Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem., 19 (1984) 71.
- 7 Ghose, A.K. and Crippen, G.M., J. Comput. Chem., 7 (1986) 565.
- 8 Klopman, G., Namboodiri, K. and Schochet, M., J. Comput. Chem., 6 (1985) 28.
- 9 Benson, S.W., Thermochemical Kinetics, 2nd ed., Wiley, New York, NY, 1976.
- 10 Suzuki, T. and Kudo, Y., Bull. Yamagata Univ., 20 (1988) 69.

APPENDIX

The list of the experimental and calculated (by using only the Basic Group Table) log *P* values in the data set is shown in Table A1. The table is arranged in the order: aliphatic hydrocarbons, aromatic hydrocarbons, nitriles, alcohols, phenols, ethers and heterocycles with 1 O atom, aldehydes and ketones, carboxylic acids and esters, nitro compounds, amides and anilides, amines and 1 N-containing ring compounds, S-containing compounds, halogen containing compounds, and polyfunctional compounds. Compounds denoted by an asterisk are used for the determination of the contributions of the pure atomic fragments.

Table A2 shows the estimation results (based on only the Basic Group Table) for the compounds not included in the data set.

TABLE AI EXPERIMENTAL AND CALCULATED LOG ${\it P}$ VALUES IN THE DATA SET

Compound	Empirical formula	0 00	9 20	palioawoj	Character of the contract of	20	-
		psqo , Sol	Evg / estd	a de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición del composición dela co	Emplical Ioniula	Pop / final	LOG 7 estd
Aliphatic Hydrocarbons							
1. Ethane	C, F,	1.8	1.53	36. <i>p</i> -Xylene	, H	3,5	3.04
* 2. Propane	້ະເ	2.36	2.06	* 37. Indene	S.B.	2.92	2.65
* 3. Butane	C ₄ H ₁₀	2.89	2.60	38. Allylbenzene	, F	3.23	3.19
* 4. Isobutane	C ₄ H ₁₀	2.76	2.53	* 39. Cyclopropylbenzene	င်းမှီး	3.27	331
* 5. Neopentane	C ₆ H ₁₂	3.11	2.99	40. Indane	H.S.	3.33	3.09
* 6. Pentane	C ₅ H ₁₂	3.39	3.14	41. 1-Phenylpropene	C ₉ H ₁₀	3.35	3.49
* 7. 2,2-Dimethylbutane	C ₆ H ₁₄	3.82	3.53	42. Isopropylbenzene	C ₉ H ₁₂	3.66	3.77
* 8. 2,3-Dimethylbutane	C ₆ H ₁₄	3.85	3.52	* 43. Propylbenzene	C ₉ H ₁₂	3.68	3.67
* 9. Cyclopropane	చిగ్	1.72	1.60	44. 1,3,5-Trimethylbenzene	C ₆ H ₁₂	3.42	3.46
* 10. Cyclopentane	C ₅ H ₁₀	3.00	2.68	45. 1,2,4-Trimethylbenzene	C ₉ H ₁₂	3.65	3.46
* 11. Cyclohexane	C ₆ H ₁₂	3.44	3.22	* 46. Naphthalene	Ω ₀ H ₈	3.37	3.40
* 12. Ethylene	C₂H₄	1.13	0.95	47. t-Butylbenzene	C ₁₀ H ₁₄	4.11	4.23
* 13. Acetylene	C ₂ H ₂	0.37	0.49	* 48. Butylbenzene	C10H14	4.26	4.21
14. Allen	C ₃ H ₄	1.45	1.45	49. 1,2,4,5-Tetramethylbenzene	C ₁₀ H ₁₄	4.00	3.88
* 15. Propyne	C₃H₄	0.94	1.21	* 50. 1 - Methylnaphthalene	C1,H10	3.87	3.82
* 16. Propylene	C3H ₆	1.77	1.67	51. 2-Methylnaphthalene	C1,H10	3.86	3.82
* 17.1,3-Butadiene	C₄H ₆	1.99	1.82		C ₁₂ H ₈	4.03	3.87
18. 2-Butyne	C₄H ₆	1.46	1.93	* 53. Biphenyl	C ₁₂ H ₁₀	4.09	4.14
19. Isobutene	C₄H ₈	2.40	2.25	54. Acenaphthene	C12H10	3.92	3.74
* 20. cis-2-Butene	C₄H ₈	2.31	2.39	55. 1,2-Dimethylnaphthalene	C ₁₂ H ₁₂	4.31	4.23
21. trans-2-Butene	Ç₄H ₈	2.33	2.39	* 56. 1,3-Dimethylnaphthalene	C ₁₂ H ₁₂	4.42	4.23
22. 1,4-Pentadiene	C ₅ H ₈	1.48	1.98	57. 1,4-Dimethylnaphthalene	C ₁₂ H ₁₂	4.37	4.23
* 23. 1-Pentyne	C ₅ H ₈	1.98	1.98	58. 1,5-Dimethylnaphthalene	C ₁₂ H ₁₂	4.38	4.23
24. 1,3-Cyclohexadiene	C ₆ H ₈	2.47	2.55	59. 1,7-Dimethylnaphthalene	G ₁₂ H ₁₂	4.44	4.23
* 25. 1,4-Cyclohexadiene	C ₆ H ₈	2.30	2.05	60, 1,8-Dimethylnaphthalene	C ₁₂ H ₁₂	4.26	4.23
* 26. 1 - Butene	Ç⁴H ₈	2.40	2.08	61. 2,3-Dimethylnaphthalene	C ₁₂ H ₁₂	4.40	4.23
* 27. Cyclohexene	C ₆ H ₁₀	2.86	2.75	62. 2,6-Dimethylnaphthalene	G ₂ H ₁₂	4.31	4.23
28. 1,5-Hexadiene	C ₆ H ₁₀	2.45	2.63	63. Hexamethylbenzene	C ₁₂ H ₁₈	4.31	4.72
Aromatic Hydrocarbons				64. Fluorene	G ₁₃ H ₁₀	4.18	4.04
* 29. Benzene	C ₆ H ₆	2.15	2.20	 65. Diphenylmethane 	Ç ₁₃ H ₁₂	4.14	4.30
30. Toluene	C ₇ H ₈	2.73	2.62	66. 2,3,6-Trimethylnaphthalene	C ₁₃ H ₁₄	4.73	4.65
* 31. Phenylacetylene	S.H.	2.53	2.45	* 67. Anthracene	C14H10	4.45	4.60
32. Styrene	C ₆ H ₆	2.95	2.92	68. Diphenylacetylene	G₁₄H₁₀	4.78	4.42
* 33. Ethylbenzene	C ₈ H ₁₀	3.15	3.14	69. Phenanthrene	C14H12	4.60	4.59
* 34. <i>o</i> -Xylene	C ₈ H ₁₀	3.12	3.04	70. 9,10-Dihydroanthracene	C₁4H₁2	4.25	4.21
35. <i>m</i> -Xylene	C ₈ H₁₀	3.20	3.04	* 71. Stilbene	C14H12	4.81	4.88

TABLE A1 (continued)

	Compound	Empirical formula	9 00	9 50	Compound	Fmpirical formula	9 po	Log P.
			psqo . Sol	LOS desid			perio .	nes o
	72. Bibenzyl	C14H14	4.79	4.75	* 108, 2-Phenylethanol	C.H.O	136	1 42
*	73. Pyrene	C ₁₆ H ₁₀	4.88	5.05	* 109. m-Methylbenzyl alcohol	C.H.S	1.60	1.35
	74. Fluoranthene	$C_{16}H_{10}$	5.22	5.06	110. p-Methylbenzyl alcohol	O.H.O.	1.59	1.35
	75. Benz[a]anthracene	C ₁₈ H ₁₂	5.61	5.78	111. 1-Ethylcyclohexanol	C ₈ H ₃ O	1.73	1.37
	76. Chrysene	C18H12	5.91	5.78	* 112. Octanol	C ₈ H ₁₈ O	3,15	3.02
	77. Benzo[b]fluoranthene	$C_{20}H_{12}$	6.57	6.02	113. Cinnamylalcohol	C ₉ H ₁₀ O	1.95	2.00
	78. Benzo [k] fluoranthene	$C_{20}H_{12}$	6.84	6.26	114. 3-Phenylpropanol	C ₃ H ₁₂ O	1.88	1.96
	79. Benzo[g,h,/]perylene	$C_{22}H_{12}$	7.10	6,70	115. Phenylcyclopropylcarbinol	C10H120	1.95	1.94
	80. Indeno $[1,2,3-cd]$ pyrene	$C_{22}H_{12}$	7.66	6.83	* 116.1-Dodecanol	C ₁₂ H ₂₆ O	5.13	5.17
	81. Dibenz[<i>a,h</i>]anthracene	$C_{22}H_{14}$	5.97	7.00	117. Diphenylcarbinol	C ₁₃ H ₁₂ O	2.67	2.64
	Nitriles				* 118. Phenyl-o-tolylcarbinol	C14H14O	3.06	3.29
•	82. Acrylonitrife	C_3H_3N	-0.92	0.00	119. Phenyl-p-tolylcarbinol	C14H14O	3.13	3.29
•	83. Propionitrile	C_3H_5N	0.16	0.19	Phenols			
	84. Benzonitrile	C ₂ H ₅ N	1.56	1.56	* 120. Phenol	C ₆ H ₆ O	1.46	1.39
•	85. Benzylcyanide	C ₈ H ₂ N	1.56	1.43	121. Cresol	C ₇ H ₈ O	1.96	1.81
*	86. Cinnamonitrile	C ₉ H ₇ N	1.96	1.96	* 122. o-Methylphenol	C ₇ H ₈ O	1.95	1.81
*	87. Benzylacetonitrile	C ₉ H ₉ N	1.70	1.80	123. p-Methylphenol	C ₇ H ₈ O	1.94	1.81
*	88. 3-Cyano-1-propylbenzene	C ₁₀ H ₁₁ N	2.21	3.03	* 124. 2,4-Dimethylphenol	C ₈ H ₁₀ O	2.30	2.23
	Alcohols				125. 3,5-Dimethylphenol	C ₈ H ₁₀ O	2.31	2.23
	89. Methanol	CH⁴O		-0.68	* 126. m-Ethylphenol	C ₈ H ₁₀ O	2.40	2.33
•	90. Ethanol	C_2H_6O		-0.19	127. o-Ethylphenol	C ₈ H ₁₀ O	2.47	2.33
	91. Allyl alcohol	C_3H_6O	0.17	0.04	128. p-Ethylphenol	C ₈ H ₁₀ O	2.26	2.33
	92. Propanol	C ₃ H ₈ O	0.25	0.34	129. o-Propylphenol	C ₉ H ₁₂ O	2.93	2.87
	93. Isopropanol	C_3H_8O	0.05	0.15	130. o-Isopropylphenol	C ₉ H ₁₂ O	2.88	2.96
*	94. Butanol	C4H100	0.88	0.88	* 131.1-Naphthalenol	C ₁₀ H ₈ O	2.98	2.59
	95. Isobutanol	C4H100	0.76	0.81	132. 2-Naphthalenol	C ₁₀ H ₈ O	2.84	2.59
*	96. s-Butanol	C4H100	0.61	0.69	133. o-s-Butylphenol	C ₁₀ H ₁₄ O	3.27	3.49
	97. t-Butanol	C4H100	0.35	0.53	134. o-t-Butyiphenol	C10H14O	3.31	3.42
*	98. 3-Methyl-2-butanol	$C_5H_{12}O$	1.28	1.15	135. p-t-Butylphenol	C10H14O	3.31	3.42
	99. Pentanol	$C_5H_{12}O$	1.56	1.42	136. Thymol	C10H14O	3.30	3.37
	100. Isopentanol	$C_5H_{12}O$	1.42	1.34	137. 2-Phenyiphenol	C ₁₂ H ₁₀ 0	3.09	3.32
	101. 3-Pentanol	$C_5H_{12}O$	1.21	1.23	138. 3-Phenylphenol	C ₁₂ H ₁₀ O	3.23	3.32
	102. 2,2-Dimethyl-1-Propanol	$C_5H_{12}O$	1.36	1.27	139. 4-Phenylphenol	C ₁₂ H ₁₀ O	3.20	3.32
	103. t-Amyl alcohol	$C_5H_{12}O$	68.0	1.07	Ethers and Heterocycles with 1 0 atom			
*	104. Cyclohexanol	$C_6H_{12}O$	1.23	1.31	140. Ethylene oxide	C ₂ H ₄ O	-0.30	-0.08
	105. 3,3-Dimethyi-2-butanol	C ₆ H₁₄O	1.48	1.61	' 141. Dimethyl ether	C ₂ H ₆ O	0.10	0.13
*	106. Hexanol	C ₆ H₁₄O	2.03	1.95	, 142. Furan	C4H40	1.34	1.35
*	107. Benzyl alcohol	C,H ₈ 0	1.10	0.93	143. 2,5-Dihydrofuran	C₄H ₆ O	0.46	09'0

TABI	TABLE A1 (continued)				TABLE A1 (continued)			
ŭ	Compound	Empirical formula	Log Pobsd	Log Pestd	Compound	Empirical formula	Log P _{obsd}	Log Pestd
* 14	44 Ethyl vinyl ether	O.H.O	1 04	1 27	181 5-Isonrom/fronalone	O.H.O	1 89	70.6
*	45. Tetrahydrofuran	C,H,O	0.46	0.64	182 6-Isonropyltronalone	C,0H,2O	1.82	207
7,	46 Diethyl ether	C.H.O	0.89	1 09	183 Renzonhenone	O.H.	3 1 8	317
*	147. Dipropyl ether	O,H,2	2.03	2.17	Carboxylic acids and Esters)	<u>.</u>
* 14	48. Butyl ethyl ether	C ₆ H ₃ 0	2.03	2.17	184. Formic acid	CH,0,	-0.54	-0.64
* 14	49. Anisole	C,H,O	2.08	2.01	* 185. Acetic acid	C,H,0,	-0.17	-0.32
15	50. Benzofurane	C ₈ H ₆ O	2.67	2.42	* 186. Methyl acetate	C ₃ H ₆ O ₂	0.18	-0.04
15	51. Benzyl methyl ether	C ₆ H ₁₀ O	1.35	1.74	* 187. Propionic acid	$C_3H_6O_2$	0.33	0.17
* 15	52. Phenetole	C ₈ H ₁₀ O	2.51	2.50	188. Crotonic acid	C4H ₆ O ₂	0.72	0.82
15	53. Allyl phenyl ether	$C_9H_{10}O$	2.94	2.72	189. Ethyl acetate	$C_4H_8O_2$	0.73	0.45
* 15	54. Phenyi propyl ether	C ₉ H ₁₂ O	3.18	3.03	* 190. Butyric acid	C ₄ H ₈ O ₂	0.79	0.70
15	55. 1-Methoxy-3-phenylpropane	C10H140	2.70	2.76	191. Propyl formate	$C_4H_8O_2$	0.83	99.0
15	56. Dibenzofuran	$C_{12}H_8O$	4.12	3.63	 192. Propionic acid ethyl ester 	$C_5H_{10}O_2$	1.21	0.93
15	57. Diphenyl ether	C ₁₂ H ₁₀ 0	4.21	3.89	193. Hexanoic acid	$C_6H_{12}O_2$	1.88	1.77
*	58. Benzył phenyl ether	C ₁₃ H ₁₂ 0	3.79	3.62	* 194. Benzoic acid	$C_7H_6O_2$	1.87	1.79
A/	41dehydes and Ketons				195. Phenyl formate	C,H ₆ O ₂	1.26	1.53
15	59. Acetone	C_3H_6O	-0.24	-0.20	196. Phenyl acetate	$C_8H_8O_2$	1.49	1.85
· 16	60, 2-Butanone	C_4H_8O	0.26	0.28	 197. Benzoic acid methyl ester 	$C_8H_8O_2$	2.12	2.07
16	61, 2-Pentanone	C ₅ H ₁₀ O	0.91	0.82	198. Phenylacetic acid	C ₈ H ₈ O ₂	1.41	1.41
. 16	162. 1-Hexyn-5-one	C ₆ H ₈ O	0.58	0.20	199. m-Toluic acid	C ₈ H ₈ O ₂	2.37	2.21
16	63. Cyclohexanone	C ₆ H ₁₀ O	0.81	0.85	* 200. p-Toluic acid	$C_8H_8O_2$	2.27	2.21
* 16	64. 1-Hexen-5-one	C ₆ H ₁₀ O	1.02	0.84	201. Cinnamic acid	$C_9H_8O_2$	2.08	2.07
16	65. Hexaldehyde	$C_6H_{12}O$	1.78	1.96	202. Benzyl acetate	$C_9H_{10}O_2$	1.96	1.57
16	66. 2-Hexanone	$C_6H_{12}O$	1.38	1.36	203. Ethyl benzoate	$C_9H_{10}O_2$	2.64	2.56
16	67. Benzaldehyde	C,H ₆ O	1.48	1.65	204. Phenylacetic acid methyl ester	$C_9H_{10}O_2$	1.83	1.69
, 16	68. 4-Cyclopropyl-2-Butanone	C ₂ H ₁₂ 0	1.50	1.36	205. 3-Phenylpropionic acid	$C_9H_{10}O_2$	1.84	1.78
16	69. o-Methylbenzaldehyde	C ₀ H ₈ O	2.26	2.08	* 206. m-Tolyl acetate	$C_9H_{10}O_2$	2.09	2.27
* 17	70. Phenylacetaldehyde	C ₈ H ₈ O	1.78	1.59	207. o-Tolyl acetate	$C_9H_{10}O_2$	2.11	2.27
1)	71. Acrylophenone	C ₆ H ₈ O	1.88	1.84	208. p-Tolyl acetate	$C_9H_{10}O_2$	2.11	2.27
*	72. Cinnamaldehyde	C ₉ H ₈ O	1.90	1.89	209. p-Methylphenylacetic acid	$C_9H_{10}O_2$	1.86	1.83
1	73. p-Methylacetophenone	$C_9H_{10}O$	2.28	2.16	* 210. Cinnamic acid methyl ester	$C_{10}H_{10}O_{2}$	2.62	2.34
*	74. Acetophenone	C ₈ H ₈ O	1.68	1.74	211. 1-Phenylethyl acetate	$C_{10}H_{12}O_2$	2.30	2.03
17	75. 1-Phenyl-2-propanone	C ₉ H ₁₀ O	1.44	1.53	212. 2-Phenylethyl acetate	$C_{10}H_{12}O_2$	2.42	2.06
* 17	76. Propiophenone	C ₉ H ₁₀ 0	2.19	2.23	213. 4-Phenylbutyric acid	$C_{10}H_{12}O_2$	2.42	2.31
17	77. Metyl styryl ketone	C10H100	2.07	2.02	 214. B-Phenylpropionic acid methyl ester 	C ₁₀ H ₁₂ O ₂	2.32	2.06
17	78. 9-Fluorenone	$C_{13}H_8O$	3.58	2.90	* 215. Decanoic acid	$C_{10}H_{20}O_{2}$	4.09	3.92
1.	79. Benzalacetophenone	C ₁₅ H ₁₂ O	3.08	3.78	216. 1-Naphthonic acid	$C_{11}H_{8}O_{2}$	3.10	3.02
2	180. 5- Phenyl-2-pentanone	C11H14O	2.42	2.43	217. Cinnamic acid ethyl ester	C11H12O2	2.99	2.83

TABLE A1 (continued)

Сотроинд	Empirical formula	Log P _{obsd}	Log P _{estd}	Compound	Empirical formula	Log P _{obsd}	Log Pestd
 218. 4-Phenylbutyric acid methyl ester 	C ₁₁ H ₁₄ O ₂	2.77	2.60	* 254. <i>m</i> -Methylbenzamide	C,H,NO	1.18	1.06
219. 2-Isopropylphenyl acetate	C ₁₁ H ₁₄ O ₂	2.78	3.41	* 255. N-methylformanilide	C _B H ₉ NO	1.09	0.78
220. Naphthalene-1-acetoxy	C ₁₂ H ₁₀ O ₂	2.78	3.04	* 256. Allyl-isopropylacetamide	C ₈ H ₁₅ NO	1.14	1.05
* 221. Dodecanoic acid	C ₁₂ H ₂₄ O ₂	4.20	4.99	* 257. Propyl-isopropylacetamide	C _B H ₁₇ NO	1.48	1.57
222. Phenyl benzoate	C ₁₃ H ₁₀ O ₂	3.59	3.95	* 258. Cinnamamide	C ₃ H ₃ NO	1.41	1.35
223. Ibuprofen	$C_{13}H_{18}O_{2}$	3.51	3.41	259. y-Phenylpropionamide	C ₉ H ₁₁ NO	1.15	1.06
* 224. Benzyl benzoate	C ₁₄ H ₁₂ O ₂	3.97	3.68	260. Propionanilide	C ₉ H ₁₁ NO	1.61	1.60
225. a,a-Diphenyl propionic acid	C ₁₅ H ₁₄ O ₂	2.58	3.62	261. N-N-Dimethylbenzamide	C ₉ H ₁₁ NO	0.62	0.97
Nitro compounds				262. W-Methylacetanilide	C ₉ H ₁₁ NO	1.07	0.77
* 226. Nitroethane	C ₂ H ₅ NO ₂	0.18	0.38	263. p-Isopropylbenzamide	C ₁₀ H ₁₃ NO	2.14	2.21
* 227. Nitropropane	C ₃ H ₂ NO ₂	0.87	0.91	264, 4-Phenylbutyramide	C ₁₀ H ₁₃ NO	1.41	1.60
* 228. 1-Nitrobutane	C ₄ H ₉ NO ₂	1.47	1.45	* 265. Cinnamanilide	C ₁₅ H ₁₃ NO	3.61	3.50
* 229. 2-Methyl-2-nitropropane	C ₄ H ₉ NO ₂	1.01	1.01	Amines and 1 N-containing ring compounds			
* 230. 1-Nitropentane	C ₅ H ₁₁ NO ₂	2.01	1.99	266. Methylamine	CH ₅ N	-0.57	-0.57
* 231. Nitrobenzene	$C_6H_5NO_2$	1.85	1.93	267. Ethylamine	C,H,N	-0.13	-0.12
* 232. m-Nitrotoluene	C ₂ H ₂ NO ₂	2.45	2.35	268. Allylamine	C ₃ H ₂ N	0.03	0.02
233. o-Nitrotoluene	C ₇ H ₇ NO ₂	2.30	2.35	269. Isopropylamine	C,H,N	-0.03	0.17
* 234. p-Nitrotoluene	C ₂ H ₂ NO ₂	2.37	2.35	* 270. Methylethylamine	C ₃ H ₉ N	0.15	0.26
235. a-Nitrotoluene	$C_7H_7NO_2$	1.75	1.62	271. Propylamine	C ₃ H ₉ N	0.48	0.41
* 236. β -Nitrostyrene	$C_8H_7NO_2$	2.24	2.23	272. Trimethylamine	C ₃ H ₉ N	0.16	0.17
* 237. \(\beta\)-Nitroethylbenzene	$C_8H_9NO_2$	2.08	1.99	* 273. Pyrrole	C ₄ H ₅ N	0.75	0.75
238. 1,3-Dimethyl-2-nitrobenzene	$C_8H_9NO_2$	2.95	2.77	* 274. Pyrrolidine	C ₄ H ₉ N	0.46	0.25
239. 2-Methyl- β -nitrostyrene	$C_9H_9NO_2$	2.63	2.65	275. Butylamine	C ₄ H ₁₁ N	0.88	0.95
240. β -Methyl- β -nitrostyrene	$C_9H_9NO_2$	2.52	2.49	276. Isobutylamine	C4H11N	0.88	0.88
241. 4-Methyl- β -nitrostyrene	$C_9H_9NO_2$	2.66	2.65	* 277. s-Butylamine	C4H11N	0.74	0.71
242. 1 - Nitronaphthalene	$C_{10}H_7NO_2$	3.19	3.12	278. t-Butylamine	C4H11N	0.40	0.40
243. B-Ethyl-B-nitro styrene	C ₁₀ H ₁₁ NO ₂	2.86	2.89	279. Diethylamine	C4H11N	0.57	0.71
244. 2-Nitro-1-butenylbenzene	$C_{10}H_{11}NO_{2}$	2.86	3.64	280. Ethyl-dimethylamine	C ₄ H ₁₁ N	0.70	0.62
Amides and Anilides				* 281. Pyridine	C ₅ H ₅ N	0.64	0.65
245. N.N-Dimethylformamide	C ₃ H ₂ NO	-1.01	-0.70	* 282. Píperidine	C ₅ H ₁₁ N	0.85	0.79
* 246. N-Methylacetamide	C ₃ H ₂ NO	-1.05	-0.36	283. Amyfamine	C ₅ H ₁₃ N	1.45	1.49
* 247. Butylamide	C ₄ H ₉ NO		-0.01	284. Methylbutylamine	C ₅ H ₁₃ N	1.33	1.34
* 248. Benzamide	C ₂ H ₂ NO	0.64	0.64	* 285. Aniline	C ₆ H ₇ N	0.90	0.91
* 249. Formanilide	C,H,NO	1.12	1.12	286. 2-Methylpyridine	C ₆ H ₇ N	1.11	1.14
* 250. Oxindole	C ₈ H ₇ NO	1.16	0.64	* 287. 3-Methylpyridine	C ₆ H ₇ N	1.20	1.07
251. p-Methylformanilide	C ₈ H ₉ NO	1.61	1.54	288. 4-Methylpyridine	C ₆ H ₇ N	1.22	1.07
252. Phenylacetamide	C ₈ H ₉ NO	0.45	69.0	289. 2,5-Dimethylpyridine	C ₆ H ₈ N	0.63	1.56
* 253. Acetoanilide	C ₈ H ₉ NO	1.16	1.12	290. 4,6-Dimethylpyridine	CeHgN	0.62	1.56

TABLE Al (continued)

	Compound	Empirical formula	Log Pobsd	Log Pestd	Compound	Empirical formula	Log P _{obsd}	Log Pestd
	291. Diallylamine	C ₆ H ₁₁ N	1.11	1.00	329. p-Butylpyridine	C ₉ H ₁₃ N	3.13	2.66
*	292. Allylpropylamine	C ₆ H ₁₃ N	1.33	1.39	330. N.N-Dimethylbenzylamine	C ₉ H ₁₃ N	1.79	1.83
	293. Cyclohexylamine	C ₆ H ₁₃ N	1.49	1.32	331. 3-Phenyl-propylamine	C ₉ H ₁₃ N	1.83	2.03
	294. Dimethylbutylamine	C ₆ H ₁₅ N	1.70	1.69	332. N-Propylaniline	C ₉ H ₁₃ N	2.45	2.73
	295. Dipropylamine	C ₆ H ₁₅ N	1.73	1.78	333. N,N-Dimethyl-m-toluidine	C ₉ H ₁₃ N	2.80	2.79
*	296. Hexylamine	C ₆ H ₁₅ N	2.06	2.02	334. N,N-Dimethyl-o-toluidine	C ₉ H ₁₃ N	2.85	2.79
	297. Triethylamine	C ₆ H ₁₅ N	1.44	1.51	335. N,N-Dimethyl-p-toluidine	C ₉ H ₁₃ N	2.61	2.79
	298. N-Methylaniline	C ₂ H ₉ N	1.82	1.75	336. Tripropylamine	C ₉ H ₂₁ N	2.79	3.12
	299. Benzylamine	C ₂ H ₉ N	1.09	1.09	337. 2-Methylquinoline	G₀H₀N	2.59	2.59
*	300. 2-Ethylpyridine	C ₂ H ₉ N	1.69	1.66	338. 6-Methylquinoline	C ₁₀ H ₉ N	2.57	2.52
	301. 2,6-Lutidine	C,H ₉ N	1.68	1.63	339. 7-Methylquinoline	$C_{10}H_9N$	2.47	2.52
	302. m-Toluidine	C,H ₉ N	1.40	1.33	340. 8-Methylquinoline	$C_{10}H_9N$	2.60	2.52
	303. o-Toluidine	C ₂ H ₉ N	1.29	1.33	341, 1 - Naphtylamine	C ₁₀ H ₉ N	2.25	2.10
*	304. p-Toluidine	C,H ₉ N	1.39	1.33	342. 2-Naphtylamine	$C_{10}H_{9}N$	2.28	2.10
	305. Quinuclidine	C,H ₁₃ N	1.20	1.06	343. N-Phenylpyrrole	C ₁₀ H ₉ N	3.08	3.30
	306. Heptylamine	C,H,N	2.57	2.56	344. 1,2-Dimethylindole	C ₁₀ H ₁₁ N	2.82	2.82
	307. Propyl-isobutylamine	C ₂ H ₁ ,N	2.07	2.24	345. N-Butylaniline	C ₁₀ H ₁₅ N	3.58	3.27
*	308. Propyl-s-butylamine	C ₂ H ₁ ,N	1.91	2.08	346. N.N-Diethylaniline	C ₁₀ H ₁₅ N	3.31	3.26
	309. Propylbutylamine	C ₂ H ₁₂ N	2.12	2.32	347. 2-Phenylpyridine	$C_{11}H_9N$	2.63	2.63
	310. Indole	C ₈ H ₇ N	2.00	2.02	348. 4-Phenylpyridine	C ₁₁ H ₉ N	2.62	2.59
٠	311. N-Ethylaniline	C ₈ H ₁₁ N	2.16	2.20	349. N-Phenylpiperidine	C ₁₁ H ₁₅ N	2.78	3.34
	312. N,N-Dimethylaniline	C ₈ H ₁₁ N	2.31	2.37	350. p-Hexylpyridine	C11H17N	4.35	3.74
	313. 2-Phenylethylamine	C ₈ H ₁₁ N	1.41	1.49	351. y-Phenylpropyldimethylamine	C ₁₁ H ₁₇ N	2.73	2.86
	314. 2-Ethylaniline	C ₈ H ₁₁ N	1.74	1.85	352. Carbazole	$C_{12}H_9N$	3.29	3.18
	315. N-Methylbenzylamine	C ₈ H ₁₁ N	1.52	1.47	353. p-Heptylpyridine	$C_{12}H_{19}N$	5.00	4.27
*	316. 4-Propylpyridine	C ₈ H ₁₁ N	2.10	2.13	354. 2-Aminobiphenyl	C ₁₂ H ₁₁ N	2.84	2.84
	317. N-Methyl-o-toluidine	C ₈ H ₁₁ N	2.16	2.17	355. Diphenylamine	C ₁₂ H ₁₁ N	3.34	3.45
	318. N-Methyl-p-toluidine	C ₈ H ₁₁ N	2.15	2.17	356. Acridine	$C_{13}H_9N$	3.40	3.54
*	319. Dibutylamine	C ₈ H ₁₉ N	2.68	2.85	357. N-Benzylaniline	C ₁₃ H ₁₃ N	3.13	3.40
	320. Ethyl-diisopropylamine	C ₈ H ₁₉ N	2.68	2.58	358. Diphenylmethylamine	$C_{13}H_{13}N$	3.16	2.96
	321. 2-Ethylhexylamine	C ₈ H ₁₉ N	2.82	3.02	359. p-Octylpyridine	$C_{13}H_{21}N$	5.42	4.81
	322. Quinoline	C ₉ H ₂ N	2.03	2.10	360. N-Methyl-N-Benzylaniline	C ₁₄ H ₁₅ N	4.22	4.02
	323. Isoquinoline	C ₉ H ₇ N	2.09	1.85	361. p-Nonylpyridine	C ₁₄ H ₂₃ N	6.11	5.34
	324. 2-Methylindole	C ₉ H ₉ N	2.53	2.20	362. 2-Phenylquinoline	C ₁₅ H ₁₁ N	3.90	4.07
	325. 3-Methylindole	C ₉ H ₉ N	2.60	2.60	363. 2,6-Diphenylpyridine	C ₁ ,H ₁₃ N	4.82	4.61
	326. 5-Methylindole	C ₉ H ₉ N	2.68	2.44	364. Triphenylamine	C ₁₈ H ₁₅ N	5.74	5.75
*	327. 1,2,3,4-Tetrahydroquinoline	C ₉ H ₁₁ N	2.29	2.14	S-containing compounds			
	328. Amphetamine	$C_9H_{13}N$	1.76	1.78	365. Thiophene	C₄H₄S	1.81	1.88

TABLE A1 (continued)

1	Compound	Empirical formula	Log Pobsd	Log P _{estd}	Compound	Empirical formula	Log P _{obsd}	Log Pestd
*	366. Diethyl sulfide	C4H10S	1.95	1.95	403. Hexafluorobenzene	O F	2.22	2.22
*	367. 1-Butanethiol	C4H10S	2.28	2.28	* 404. Hexachlorocyclohexane	C ₆ H ₆ Cl ₆	3.72	3.72
*	368. Thiophenol	C ₆ H ₆ S	2.52	2.55	* 405. Tetrachlorocyclohexane	C ₆ H ₈ Cl ₄	2.82	2.82
*	369. Methylthiobenzene	C ₇ H ₈ S	2.74	2.74	* 406. a,a,a-Trichlorotoluene	C,H ₅ Cl ₃	2.92	3.38
*	370. Benzothiophene	C ₈ H ₆ S	3.12	3.06	* 407. a-Bromotoluene	C ₇ H ₇ Br	2.92	2.82
*	371. Phenylethyl sulfide	C ₈ H ₁₀ S	3.20	3.28	* 408. m-Chlorotoluene	C,H,Cl	3.28	3.27
*	372. 2-Phenylthiophene	C ₁₀ H ₈ S	3.74	3.49	* 409. p-Chlorotoluene	C,H,Cl	3.33	3.27
*	373. Diphenyl sulfide	C ₁₂ H ₁₀ S	4.45	4.45	 410. 1-Methylpentachlorocyclohexane 	C ₇ H ₉ Cl ₅	4.04	4.05
	374. Dimethyl sulfoxide	C ₂ H ₆ OS		-1.35	* 411. <i>B</i> -Phenylethylbromide	C ₈ H ₉ Br	3.09	3.19
	375. Methylphenyl sulfoxide	C,H ₈ OS	0.55	0.55	* 412. B-Phenylethylchloride	C ₈ H ₉ Cl	2.95	3.06
	376. Methylphenyl sulfone	$C_7H_8O_2S$	0.47	0.47	413. y-Phenylpropylbromide	C ₉ H ₁ ,Br	3.72	3.73
	377. Diphenyl sulfone	C ₁₂ H ₁₀ O ₂ S	2.40	2.40	414. y-Phenylpropylchloride	C ₉ H,,Cl	3.55	3.60
	Halogen containing compounds				* 415. y-Phenylpropylfluoride	C ₉ H ₁₁ F	2.95	2.91
	378. 1,2-Dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄	2.82	2.82	* 416. y-Phenylpropyliodide	C ₉ H _{1,1} l	3.90	4.02
*	379. 1,1-Difluoroethylene	$C_2H_2F_2$	1.24	1.24	417. a-(2,2,2-Trichloroethyl)styrene	C ₁₀ H ₉ Cl ₃	4.56	4.51
	380. 1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	2.49	2.14	Polyfunctional compounds			
*	381. Vinylbromide	C ₂ H ₃ Br	1.57	1.57	418. Trichloroacetamide	C ₂ H ₂ Cl ₃ NO	1.04	1.04
	382. 1,1-Dichloroethane	C ₂ H ₄ Cl ₂	1.79	1.79	419. Trifluoroacetamide	$C_2H_2F_3NO$	0.12	0.12
•	383. 1,2-Dichloroethane	C₂H₄Cl₂	1.48	1.48	420. Bromoacetic acid	$C_2H_3BrO_2$	0.41	0.41
*	384. 1,1-Difluoroethane	$C_2H_4F_2$	0.75	0.84	421. 2,2,2-Trichloroethanol	$C_2H_3Cl_3O$	1.42	1.42
•	385. Ethylbromide	C ₂ H ₅ Br	1.61	1.58	422. 2,2,2-Trichloroethandiol	$C_2H_3Cl_3O_2$	1.61	1.61
*	386. Ethylchloride	C ₂ H ₆ Cl	1.43	1.45	423. 2,2,2Trifluoroethanol	$C_2H_3F_3O$	0.41	0.41
*	387. Ethyliodide	C ₂ H ₅ I	2.00	1.88	424. Bromoacetamide	C ₂ H ₄ BrNO	-0.52	-0.52
*	388, Chforopropane	C ₃ H ₂ Cl	2.04	1.98	 425. Chloroacetamide 	C ₂ H ₄ CINO	-0.53	-0.53
*	389. 2-Chloropropane	C ₃ H ₂ Cl	1.90	1.90	426. lodoacetamide	C ₂ H ₄ INO	-0.19	-0.19
•	390. 1-Bromopropane	C ₃ H ₇ Br	2.10	2.12	427. Mercaptoacetic acid	C2H402S	60.0	-0.04
•	391. 1-Chlorobutane	C₄H ₉ Cl	2.64	2.52	428. Hydroxyacetic acid	C ₂ H ₄ O ₃	-1.11	-1.38
*	392. 1 - Fluoropentane	C ₅ H ₁₁ F	2.33	2.37	429. 2-Bromoethanol	C ₂ H ₅ BrO	0.23	0.23
*	393. Hexachlorobenzene	C ₆ Cl ₆	4.13	4.13	* 430. 2-Chloroethanol	C ₂ H ₅ ClO	0.03	0.03
	394. m-Dibromobenzene	$C_6H_4Br_2$	3.75	4.02	431. 2-Fluoroethanol	C_2H_5FO	-0.92	-0.92
*	395. o-Dibromobenzene	C ₆ H ₄ Br ₂	3.64	3.64	432. Acetaldoxime	C_2H_5NO	-0.12	69.0
	396. o-Dichlorobenzene	C ₆ H₄Cl ₂	3.38	3.38	433. Aminoacetic acid	$C_2H_5NO_2$	-3.00	-3.00
	397. m-Dichlorobenzene	C ₆ H₄Cl ₂	3.38	3.50	434. 2-Nitroethanol	$C_2H_5NO_3$	-0.42	-0.42
*	398. p-Dichlorobenzene	C ₆ H ₄ Cl ₂	3.38	3.50	435. Dimethyldisulfide	$C_2H_6S_2$	1.77	1.77
*	399. Bromobenzene	C_6H_5Br	2.99	3.11	436. N-Nitrosodimethylamine	$C_2H_6N_2O$	-0.57	-0.45
*	400. Chlorobenzene	C ₆ H ₅ Cl	2.84	2.85	* 437. Ethanolamine	C ₂ H ₂ NO	-1.30	-1.52
*	401, Fluorobenzene	C_6H_5F	2.27	2.45	438. a-Bromopropionic acid	$C_3H_bBrO_2$	0.92	06:0
*	402. lodobenzene	Ç ₆ H₅I	3.25	3.50	439. 4-lodopyrazole	$C_3H_3IN_2$	1.70	1.70

TABLE Al (continued)

Compound	Empirical formula	Log P _{obsd}	Log Pestd	Compound	Empirical formula	Log Pobed	Log Perd
						•	2
* 440. Isoxazole	C ₃ H ₃ NO	0.08	0.08	478. Uracil	C.H.N.O.	-1.07	030
* 441. Thiazole	C ₃ H ₃ NS	0.44	0.56	479. Barbituric acid	C.H.N.O.	-1.41	-0.83
442, 6-Azauracil	$C_3H_3N_3O_2$	-0.29	-0.29	480. 2-Aminopyrazine	C,HFN3	-0.07	69.0-
443. 4-Nitropyrazofe	C ₃ H ₃ N ₃ O ₂	0.59	0.59	481. 2-Aminopyrimidine	CH.N3	-0.22	-0.67
444. Imidazole	$C_3H_4N_2$	-0.08	-0.08	482. 2-Amino-4-pyrimidone	C4H5N3O	-0.99	-0.99
* 445. Pyrazole	$C_3H_4N_2$	0.13	0.16	* 483. Cytosine	C ₄ H ₅ N ₃ O	-1.73	-1.73
446. Hydantoin	$C_3H_4N_2O_2$	-1.69	-2.39	484, 2,3-Butanedione	C4H6O2	-1.34	-1.09
447. 1,1,1-Trifluoro-2-propanol	$C_3H_5F_3O$	0.71	0.71	485. y-Butyrolactone	C4H6O2	-0.64	-0.06
* 448. Ethylisothiocyanate	C ₃ H ₅ NS	1.47	1.64	* 486. Succinic acid	C4H6O4	-0.59	-0.59
449. 1,3-Dichloropropane	C ₃ H ₆ Cl ₂	2.00	2.27	* 487. Malic acid	C ₄ H ₆ O ₅	-1.26	-1.98
450. 2-Thioimidazolidone	$C_3H_6N_2S$	99.0-	-0.73	488. a-Bromobutyric acid	C ₄ H ₇ BrO ₂	1.42	1.44
 451. 3-Mercatpropionic acid 	$C_3H_6O_2S$	0.43	0.43	489. 2,2,2-Trichloro-t-butanol	C4H7Cl3O	2.03	2.03
452. Lactic acid	$C_3H_6O_3$	-0.62	-0.62	* 490. N-Nitrosomorpholine	C ₄ H ₆ N ₂ O ₂	-0.44	-0.17
453. a -Aminopropionic acid	C ₃ H ₇ NO ₂	-2.72	-2.87	* 491. N,N'Dinitrosopiperazine	C ₄ H ₈ N ₄ O ₂	-0.85	-0.92
454. Methyl-N-methyl carbamate	$C_3H_7NO_2$	-0.06	-0.37	492. a-Hydroxy-isobutyric acid	C₄H ₈ O ₃	-0.36	-0.36
* 455. Ethyl carbamate	$C_3H_7NO_2$	-0.15	-0.56	493. 1-Nitroso-trimethylurea	C ₄ H ₉ N ₃ O ₂	0.36	0.29
456. N-Ethylurea	$C_3H_8N_2O$	~0.74	-0.05	494. N,N-Dimethylacetamide	C ₄ H ₉ NO	-0.70	-0.70
* 457. Dimethoxymethane	$C_3H_8O_2$	0.00	-0.07	* 495. Morpholine	C ₄ H ₉ NO	-1.08	-0.60
458. 2-Methoxyethanol	$C_3H_8O_2$	-0.77	-0.76	* 496. N-Nitrosopiperazine	C ₄ H ₉ N ₃ O	0.18	-0.87
* 459. 1-Amino-2-propanol	C ₃ H ₉ NO	-0.96	-0.96	497. Piperazine	$C_4H_{10}N_2$	-1.17	-0.81
460. 5-Bromouracil	C ₄ H ₃ BrN ₂ O ₂		-0.21	498. N-Nitrosodiethylamine	$C_4H_{10}N_2O$	0.48	0.44
461. 5-Chlorouracil	$C_4H_3CIN_2O_2$		-0.35	* 499. 2,3-Butanediol	C4H1002	-0.92	-0.92
462. 5-Fluorouracil	$C_4H_3FN_2O_2$	-0.95	-0.85	500. 2- Ethoxyethanol	$C_4H_{10}O_2$	-0.54	-0.28
463. 2-Methyl-2-imidazoline	$C_4H_8N_2$	0.52	0.17	* 501, Diethanolamine	C4H11NO2	-1.43	-2.08
464. N-Nitrosopyrrolidine	$C_4H_8N_2O$	-0.19	-0.01	502. 2,3,4,5,6-Pentachloropyridine	C _S CI _S N	3.53	4.09
465. N-Nitrosothiomorpholine	C4H ₈ N ₂ OS	0.40	0.40	* 503. 2,3-Dichloropyridine	C ₅ H ₃ Cl ₂ N	2.11	2.21
466. ButyInitrate	C₄H ₉ NO₃	2.15	2.15	504. 2,5-Dichloropyridine	$C_5H_3Cl_2N$	2.40	2.17
467. 1-Nitroso-trimethylurea	$C_4H_9N_3O_2$	0.36	0.29	505. 2,6-Dichloropyridine	C ₅ H ₃ Cl ₂ N	2.15	2.39
468. 5-Fluorouracil	$C_4H_3FN_2O_2$	-0.85	-0.85	506. 3,5-Díchloropyridine	C ₅ H ₃ Cl ₂ N	2.56	1.95
469. 5-lodouracil	$C_4H_3IN_2O_2$	0.04	0.04	507. 2-Bromopyridine	C ₅ H ₄ BrN	1.38	1.38
* 470. 4-Cyanopyrazole	$C_4H_3N_3$	0.24	0.24	* 508. 3-Bromopyridine	C ₅ H ₄ BrN	1.58	1.56
471. Pyrazine	$C_4H_4N_2$	-0.22	-0.12	509, 4-Bromopyridine	C ₅ H₄BrN	1.54	1.56
472. Pyridazine	$C_4H_4N_2$	-0.72	-0.72	510. 2-Chloropyridine	C ₅ H ₄ CIN	1.28	1.52
* 473. Pyrimidine	$C_4H_4N_2$	-0.40	-0.40	511. 3-Chloropyridine	C ₅ H ₄ CIN	1.33	1.30
474. Pyrazine-2-one	C4H4N2O	-1.49	-1.49	512. 2-Nitropyridine	C ₅ H ₄ N ₂ O ₂	0.48	0.48
475. 2-Pyrimidone	C4H4N2O	-1.62	-1.62	* 513. 3-Nitropyridine	C ₅ H ₄ N ₂ O ₂	09.0	0.38
* 476. 4-Pyrimidone	$C_4H_4N_2O$	-1.38	-2.86	514, 5-Formyluracil	C ₅ H ₄ N ₂ O ₃	-1.03	-1.03
477, 2-Thiouracil	C4H4N2OS	-0.28	-0.28	515, Hypoxanthine	C ₅ H ₄ N ₄ O	-1.11	1.93

TABLE AI (continued)

Compound	Empirical formula	Log P _{obsd}	Log Pestd	Compound	Empirical formula	Log P _{obsd}	Log Pestd
518 1100 civil	2	200	000	EEA + Doors of conferences	Q 2	0	07.0
010. Oile acid	05H4N4O3	2.32	60.0	554. t-relityl carballiate	C6113NO2	4.00	
517. Z-Hydroxypyridine	CsHsNO	-0.58	-0.38	555. 1 - Nitroso-3,3-diethyl-1 - methylurea	C ₆ H ₁₃ N ₃ O ₂	= :	<u>×</u>
518. Pyridine 1-oxide	C ₅ H ₅ NO	-1.30	-1.09	556. 1-Nitrosodiisopropylamine	C ₆ H ₁₄ N ₂ O	1.63	1.03
519. Adenine	C ₅ H ₅ N ₅	-0.16	-0.98	557. Pentachlorophenol	C ₆ HCl ₅ O	5.12	4.95
520. 2-Aminopyridine	C ₅ H ₆ N ₂	0.58	0.48	558, Pentafluorophenol	C ₆ HF ₅ 0	3.23	3.23
521. 3-Aminopyridine	C ₅ H ₆ N ₂	0.20	-0.64	* 559. 2,3,4,6-Tetrachlorophenol	C ₆ H ₂ CI ₄ O	4.10	4.42
522. 4-Aminopyridine	C ₅ H ₆ N ₂	0.26	-0.64	560. 2,6-Dibromo-4-nitrophenol	C ₆ H ₃ Br ₂ NO ₃	3.05	2.91
* 523. 2-Methylpyrazine	C ₅ H ₆ N ₂	0.23	0.17	561. 2,4,6-Tribromophenol	C ₆ H ₃ Br ₃ O	3.96	4.10
524. Thymine	C ₅ H ₆ N ₂ O ₂	-0.62	0.35	562, 2,4,6-Tribromoresorcinol	$C_6H_3Br_3O_2$	4.37	4.37
525. 5- Ethyl-6-azauracil	C ₅ H ₇ N ₃ O ₂	0.22	0.09	* 563. 2,6-Dichloro-4-nitrophenol	C ₆ H ₃ Cl ₂ NO ₃	2.94	2.77
* 526. Acetylacetone	C ₅ H ₈ O ₂	0.34	-0.49	564. 2,4,5-Trichlorophenol	C ₆ H ₃ Cl ₃ O	3.72	3.63
527. 8-Valerolactone	C ₅ H ₈ O ₂	-0.35	0.48	565. 2,4,6-Trichlorophenol	C ₆ H ₃ Cl ₃ O	3.62	3.69
528. N-Nitroso-4-piperidone	C ₅ H ₈ N ₂ O ₂	-0.47	-0.47	* 566. 1,3,5-Trinitrobenzene	C ₆ H ₃ N ₃ O ₆	1.18	1.38
529. 1,3-Diacetylurea	C ₅ H ₈ N ₂ O ₃	-0.68	-0.74	567. 2,4,6-Trinitrophenol	C ₆ H ₃ N ₃ O ₇	2.03	96:0
530. Butyl thiocyanate	C ₅ H ₉ NS	2.03	2.03	568. 3-Bromo-1-nitrobenzene	C ₆ H ₄ BrNO ₂	2.64	2.84
531. <i>D</i> -Ribose	C ₅ H ₁₀ O ₅	-2.32	-2.63	569. 4-Bromo-1-nitrobenzene	C ₆ H ₄ BrNO ₂	2.55	2.84
532. L-Arabinose	C ₅ H ₁₀ O ₅	-3.02	-2.63	570. 2,4-Dibromophenol	C ₆ H₄Br ₂ O	3.22	3.24
* 533. <i>N</i> -Nitrosopiperidine	$C_5H_{10}N_2O$	0.63	0.52	571, 4-Chloro-1-nitrobenzene	C ₆ H₄CINO ₂	2.39	2.58
534. 3-Hydroxy-N-nitrosopiperidine	$C_5H_{10}N_2O_2$	-0.47	-0.50	572. 3-Chloro-1-nitrobenzene	C ₆ H ₄ CINO ₂	2.46	2.58
535. 4-Hydroxy-N-nitrosopiperidine	$C_6H_{10}N_2O_2$	-0.89	-1.39	573. 2-Chloro-1-nitrobenzene	C ₆ H ₄ CINO ₂	2.24	2.24
536. 2-Methylpropanoylurea	$C_5H_{10}N_2O_2$	0.04	-0.42	574. 2,4-Dichlorophenol	C ₆ H ₄ Cl ₂ O	3.30	3.10
* 537. 2-Methyl-N,N'-dinitrosopiperazine	C ₅ H ₁₀ N ₄ O ₂	-0.28	-1.26	575. 3-lodonitrobenzene	C ₆ H₄INO ₂	2.94	3.22
538. 4-Methylmorpholine	C ₅ H ₁₁ NO	-0.33	-0.25	576. 2-Cyanopyridine	$C_6H_4N_2$	0.50	0.43
539. Methionine	C ₅ H ₁₁ NO ₂ S	-1.87	-2.46	577. 3-Cyanopyridine	$C_6H_4N_2$	0.36	0.01
540. N-Butylurea	$C_5H_{12}N_2O$	0.41	1.02	* 578. 4-Cyanopyridine	$C_6H_4N_2$	0.46	0.01
 541. Diethoxymethane 	$C_5H_{12}O_2$	0.84	0.90	579. m-Dinitrobenzene	$C_6H_4N_2O_4$	1.49	1.65
542. Isopropoxyethanol	$C_5H_{12}O_2$	0.05	70.0	580. o-Dinitrobenzene	$C_6H_4N_2O_4$	1.58	1.58
543. Propyl-/V-methyl carbamate	C ₅ H ₁₁ NO ₂	0.95	0.65	581. p-Dinitrobenzene	$C_6H_4N_2O_4$	1.46	1.65
544. 4-Methyl-N-nitrosopiperazine	C ₅ H ₁₁ N ₃ O	0.20	-0.72	* 582. 2,4-Dinitrophenol	C ₆ H₄N ₂ O ₆	1.50	1.59
545. N-Bromobenzoquinone monoimine	C ₆ H ₄ BrNO	1.12	1.12	583. 2,5-Dinitrophenol	C ₆ H ₄ N ₂ O ₅	1.75	1.59
546. N-Chlorobenzoquinone monoimine	C ₆ H ₄ CINO	1.26	1.26	584, 2,6-Dinitrophenol	C ₆ H ₄ N ₂ O ₅	1.25	1.25
547. 2,5-Dichlorophenol	C ₆ H ₄ Cl ₂ O	3.20	3.10	585. 3,5-Dinitrophenol	$C_6H_4N_2O_5$	2.32	0.84
548. N-Hydroxybenzoquinone monoimine	$C_6H_5NO_2$	1.08	1.08	586. Quinone	$C_6H_4O_2$	0.20	0.20
549. N-Formylcyclobutane carboxyamide	$C_6H_9NO_2$	-0.70	-0.20	587. m-Bromophenol	C ₆ H ₅ BrO	2.63	2.30
550. 1,2-5,6-Dianhydrogalactitol	C ₆ H ₁₀ O ₄	-1.29	0.24	588. o-Bromophenol	C ₆ H ₅ BrO	2.35	2.33
551. 3-Methylbutanoylurea	$C_6H_{12}N_2O_2$	0.45	0.53	* 589. p-Bromophenol	C ₆ H ₅ BrO	2.43	2.30
552. Isoleucine	$C_6H_{13}NO_2$	-1.69	-1,34	590. <i>m</i> -Chlorophenol	C ₆ H ₅ ClO	2.50	2.04
553. Pentyl carbamate	$C_6H_{13}NO_2$	1.35	1.05	591. o-Chlorophenol	C ₆ H ₅ ClO	2.17	2.45

TABLE Al (continued)

Compound	Empirical formula	Log P _{obsd}	Log P _{estd}	Compound	Empirical formula	Log Pobsd	Log P _{estd}
592. p-Chlorophenol	C ₆ H ₅ ClO	2.35	2.04	630. 3-Hydroxypicolinamide	$C_6H_6N_2O_2$	0.65	-1.09
593. 2,3-Dichloroaniline	C ₆ H ₅ Cl ₂ N	2.78	2.78	631. m-Nitroaniline	C ₆ H ₆ N ₂ O ₂	1.37	0.63
594. 3,4-Dichloroaniline	C ₆ H ₅ Cl ₂ N	2.69	2.09	632, o-Nitroaniline	C ₆ H ₆ N ₂ O ₂	1.44	1.44
* 595. 3,4-Dichlorobenzenesulfonamide	C ₆ H ₄ Cl ₂ NO ₂ S	1.44	1.69	633. p-Nitroaniline	C ₆ H ₆ N ₂ O ₂	1.39	0.63
596. m-Fluorophenol	C_6H_6FO	1.93	1.64	634. o-Nitrobenzenesulfonamide	C ₆ H ₆ N ₂ O ₄ S	0.34	0.24
597. o-Fluorophenol	C_6H_5FO	1.71	1.71	* 635. p-Nitrobenzenesulfonamide	C ₆ H ₆ N ₂ O ₄ S	0.64	0.24
598. p-Fluorophenol	C ₆ H ₅ F0	1.81	1.64	636. m-Nitrobenzenesulfonamide	C ₆ H ₆ N ₂ O ₄ S	0.55	0.24
599. <i>m</i> -lodophenol	C ₆ H ₅ IO	3.00	2.69	* 637. Resorcinal	C ₆ H ₆ O ₂	0.80	0.58
600. o-lodophenol	C ₆ H ₅ IO	2.65	2.65	638. Catechol	$C_6H_6O_2$	0.88	0.81
* 601. p-lodophenol	C ₆ H ₅ IO	2.91	2.69	639. Hydroquinone	C ₆ H ₆ O ₂	0.59	0.58
602. lodosobenzene	C ₆ H ₅ IO	-1.61	-1.61	* 640. 1,3,5-Trihydroxybenzene	C ₆ H ₆ O ₃	0.16	-0.23
603. lodoxybenzene	C ₆ H ₅ IO ₂	-1.33	-1.33	641. 1-Hydroxypentachlorocyclohexane	C ₆ H ₇ Cl ₅ O	2.54	2.62
604. Picolinic acid	C ₆ H ₅ NO ₂	-1.98	-0.94	642. m-Aminophenol	C ₆ H ₇ NO	0.17	0.10
605. 3-Hydroxypicolinic acid	$C_6H_5NO_3$	-1.27	-1.27	643. o-Aminophenol	C ₆ H ₇ NO	0.62	-0.02
606. m-Nitrophenol	C ₆ H ₅ NO ₃	2.01	1.12	644. p-Aminophenol	C ₆ H ₇ NO	0.04	0.10
607. o-Nitrophenol	$C_6H_5NO_3$	1.79	1.86	645. 2-Methoxypyridine	C ₆ H ₇ NO	1.39	1.68
608. p-Nitrophenol	$C_6H_5NO_3$	1.91	1.12	646. 4-Methoxypyridine	C ₆ H ₇ NO	1.00	0.46
609. 2-Nitroresorcinol	C ₆ H ₅ NO ₄	1.36	1.36	647. N-Phenylhydroxyamine	C ₆ H ₇ NO	0.79	0.79
610. Benzotriazole	$C_6H_5N_3$	1.34	0.59	* 648. Benzenesulfonamide	C ₆ H ₇ NO ₂ S	0.31	0.51
611. <i>m</i> -Bromoaniline	C ₆ H ₆ BrN	2.10	1.82	649. p-Phenolsulfonamide	C ₆ H ₇ NO ₃ S	90.0	-0.29
* 612. o-Bromoaniline	C_6H_6BrN	2.29	2.20	650. 2-Aminonicotinamide	C ₆ H ₇ N ₃ O	0.88	-1.09
613. p-Bromoaniline	C_6H_6BrN	2.05	1.82	651. 6-Aminonicotinamide	C ₆ H ₇ N ₃ O	0.70	-1.09
614. p-Bromobenzenesulfonamide	C ₆ H ₆ BrNO ₂ S	1.36	1.42	652. Isoniazid	C ₆ H ₇ N ₃ O	-1.14	-1.12
615. m-Chloroaniline	C ₆ H ₆ CIN	1.88	1.56	653. 2-Amino-4-picoline	$C_6H_8N_2$	0.56	06:0
616. o-Chloroaniline	CeHeCIN	1.90	1.96	654. 2-Amino-5-methylpyridine	$C_6H_8N_2$	1.02	0.90
617. p-Chloroaniline	C ₆ H ₆ CIN	1.83	1.56	655. o-Phenylenediamine	$C_6H_8N_2$	0.15	0.42
618. m-Chlorobenzenesulfonamide	C ₆ H ₆ CINO ₂ S	1.29	1.16	656. m-Aminobenzenesulfonamide	$C_6H_8N_2O_2S$	-1.20	-0.78
619. o-Chlorobenzenesulfonamide	C ₆ H ₆ CINO ₂ S	0.74	1.16	657. M-Phenylsulfamide	C ₆ H ₈ N ₂ O ₂ S	0.40	0.40
* 620. p-Chlorobenzenesulfonamide	C ₆ H ₆ CINO ₂ S	0.84	1.16	* 658. Sulfanilamide	$C_6H_8N_2O_2S$	-0.72	-0.78
621. 2-Chloroisoniazid	C ₆ H ₆ CIN ₃ O	0.11	-0.25	659. Pentylenetetrazole	C ₆ H ₁₀ N ₄	0.14	0.20
622. <i>m</i> -Fluoroaniline	C ₆ H ₆ FN	1.30	1.16	660, 4-Ketovaleric acid methyl ester	C ₆ H ₁₀ O ₃	-0.13	-0.19
* 623. o-Fluoroaniline	C ₆ H ₆ FN	1.26	1.13	* 661. Adipic acid	C ₆ H ₁₀ O ₄	80:0	-0.13
624. p-Fluoroaniline	C ₆ H ₆ FN	1.15	1.16	662. Bromisovalum	C ₆ H ₁₁ BrN ₂ O ₂	1.14	0.58
625. 2-Fluoroisoniazid	C ₆ H ₆ FN ₃ O	-0.11	-0.38	663. a-Chloro-isovalerylurea	C ₆ H ₁₁ CIN ₂ O ₂	1.00	0.41
626. <i>m</i> -lodoaniline	C ₆ H ₆ IN	2.98	2.20	664. 2-Azacycloheptanone	C ₆ H ₁₁ NO	-0.19	0.65
627. <i>o</i> -Iodoaniline	C ₆ H ₆ IN	3.34	2.64	665. 2-Azacycloheptanthion	C ₆ H ₁₁ NS	0.75	0.61
* 628. <i>p</i> -lodoaniline	C ₆ H ₆ IN	3.34	2.20	666. 2-Methyl-N-nitrosopiperidine	$C_6H_{12}N_2O$	0.71	0.82
629, Nicotinamide	$C_6H_6N_2O$	-0.37	-0.91	667. 3-Methyl-N-nitrosopiperidine	$C_6H_{12}N_2O$	0.99	0.99

TABLE A1 (continued)

	Compound	Empirical formula	Log P _{obsd}	$LogP_{estd}$	Compound	Empirical formula	Log P _{obsd}	Log Pestd
*	668. 4-Methyl-N-nitrosopiperidine	$C_6H_{12}N_2O$	1.05	66.0	706. Benzothiazole	C ₇ H ₅ NS	2.01	2.01
	669. 2,6-Dimethyl-N-nitrosomorpholine	$C_6H_{12}N_2O_2$	0.32	0.94	707. Phenylisothiocyanate	C ₇ H ₅ NS	3.28	3.27
	670. 2,6-Dimethyl-N,N'-dinitrosopiperazine	C ₆ H ₁₂ N ₄ O ₂	0.08	0.14	708. Phenylthiocyanate	C ₇ H ₅ NS	2.54	2.30
	671. Leucine	C ₆ H ₁₃ NO ₂	-1.52	-1.34	709. Trifluoromethyl thiobenzene	C ₇ H ₅ F ₃ S	3.57	3.57
*	672. N-Nitrosodipropylamine	C ₆ H ₁₄ N ₂ O	1.63	1.52	710. 3,5-Dinitrobenzamide	C ₇ H ₅ N ₃ O ₅	0.83	60.0
	673. 2-Butoxyethanol	C ₆ H ₁₄ O ₂	0.83	0.80	711. Trichloromethyl thiobenzene	C,H ₅ Cl ₃ S	3.78	3.78
	674. Diethylacetal	C ₆ H ₁₄ O ₂	0.84	0.84	712. <i>m</i> -Bromobenzamide	C ₇ H ₆ BrNO	1.65	1.55
	675. Busulfan	C ₆ H ₁₄ O ₆ S ₂	-0.52	-0.52	713. p-Bromobenzamide	C ₇ H ₆ BrNO	1.76	1.55
	676. Di-isopropanolamine	C ₆ H ₁₅ NO ₂	-0.82	-0.82	714. 2-Bromo-4-aminobenzoic acid	C ₇ H ₆ BrNO ₂	99.0	0.81
*	677. N,N,N',N' -Tetramethylethylenediamine	C ₆ H ₁₆ N ₂	0.30	0.13	715. 3-Bromo-4-aminobenzoic acid	C ₇ H ₆ BrNO ₂	1.40	1.79
	678. p-Bromophenyl isothiocyanate	C ₇ H ₄ BrNS	4.03	4.17	716. m-Chlorobenzamide	C ₇ H ₆ CINO	1.51	1.29
	679. 3,5-Diiodosalicylic acid	C ₇ H ₄ I ₂ O ₃	4.56	2.96	 717. p-Chlorobenzamide 	C,H ₆ CINO	1.51	1.29
	680. 3-Cyano-1-nitrobenzene	C ₂ H ₄ N ₂ O ₂	1.17	1.29	718. 2-Chloro-4-aminobenzoic acid	C ₇ H ₆ CINO ₂	0.50	0.62
	681. 4-Cyano-1-nitrobenzene	C ₂ H ₄ N ₂ O ₂	1.19	1.29	719. 3-Chloro-4-aminobenzoic acid	C ₇ H ₆ CINO ₂	1.52	1.55
	682. 4-Nitrophenyl isothiocyanate	C ₇ H ₄ N ₂ O ₂ S	3.62	2.99	720. m-Fluorobenzamide	C ₇ H ₆ FNO	0.91	0.89
	683. m-Bromobenzoic acid	C ₇ H ₅ BrO ₂	2.87	2.70	721. p-Fluorobenzamide	C,H ₆ FNO	0.91	0.89
	684. p-Bromobenzoic acid	C, H ₅ BrO ₂	2.86	2.70	722. 2-Fluoro-4-aminobenzoic acid	C ₇ H ₆ FNO ₂	0.46	0.45
	685. 5-Bromosalicylic acid	C ₂ H ₅ BrO ₃	2.87	2.91	723. 3-Fluoro-4-aminobenzoic acid	$C_7H_6FNO_2$	0.58	0.71
	686. Zoxazolamine	C ₇ H ₅ CIN ₂ O	2.46	2.46	724. p-Trifluoromethylaniline	$C_7H_6F_3N$	1.95	1.92
	687. 1-Phenyl-4-chlorotetrazole	C ₇ H ₅ ClN ₄	1.48	0.73	725. p-lodobenzamide	C ₇ H ₆ INO	1.99	1.93
	688. m-Chlorobenzoic acid	C ₂ H ₅ ClO ₂	2.68	2.43	726. 2-lodo-4-aminobenzoic acid	$C_7H_6INO_2$	0.82	1.02
	689. o-Chlorobenzoic acid	C ₇ H ₅ ClO ₂	1.98	1.91	727. 3-lodo-4-aminobenzoic acid	C ₇ H ₆ INO ₂	1.53	2.23
	690. p-Chlorobenzoic acid	C ₇ H ₅ ClO ₂	2.65	2.43	728. 7-Azaindole	$C_7H_6N_2$	1.82	1.59
	691. m-Fluorobenzoic acid	$C_7H_5FO_2$	2.15	2.04	729. Benzimidazole	$C_7H_6N_2$	1.46	1.49
*	692. p-Fluorobenzoic acid	$C_7H_5FO_2$	2.07	2.04	730. 4-Cyano-2-methylpyridine	$C_7H_6N_2$	0.81	0.50
	693. Trifluoromethoxybenzene	$C_7H_5F_3O$	3.17	3.17	731. 2-Cyano-6-methy pyridine	$C_7H_6N_2$	0.84	0.92
	694. m-Trifluoromethylphenol	$C_7H_5F_3O$	2.95	2.40	732. Indazole	$C_7H_6N_2$	1.82	1.22
	695. o-Trifluoromethylphenol	$C_7H_5F_3O$	2.80	2.40	733. pCyanobenzenesulfonamide	$C_7H_6N_2O_2S$	0.23	-0.13
	696. Phenyl-trifluoromethyl sulfone	$C_7H_5F_3O_2S$	2.68	2.70	734. m-Nitrobenzamide	$C_7H_6N_2O_3$	0.77	0.37
	697. <i>m</i> -lodobenzoic acid	$C_7H_510_2$	3.13	3.08	735. p-Nitrobenzamide	$C_7H_6N_2O_3$	0.82	0.37
	698. o-lodobenzoic acid	$C_7H_510_2$	2.40	2.32	736. p-Nitroformanilide	$C_7H_6N_2O_3$	1.43	0.85
	699. p-Iodobenzoic acid	$C_7H_510_2$	3.02	3.08	737. 2,4-Dinitrotoluene	$C_7H_6N_2O_4$	1.98	2.07
	700. m-Cyanophenol	C ₇ H ₅ NO	1.70	0.75	738. 2-Nitro-4-aminobenzoic acid	$C_7H_6N_2O_4$	0.38	0.29
	701. o-Cyanophenol	C ₂ H ₅ NO	1.61	1.61	739. o-Phenylenethiourea	$C_7H_6N_2S$	1.66	1.05
*	702. p-Cyanophenol	C ₂ H ₅ NO	1.60	0.75	740. m-Hydroxybenzaldehyde	$C_7H_6O_2$	1.38	0.85
	703. m-Nitrobenzoic acid	C, H ₅ NO₄	1.83	1.51	741. o-Hydroxybenzaldehyde	$C_7H_6O_2$	1.70	1.88
	704. p-Nitrobenzoic acid	C,H ₅ NO₄	1.89	1.51	* 742. p-Hydroxybenzaldehyde	$C_7H_6O_2$	1.35	0.85
	705. 5-Nitrosalicylic acid	C ₇ H ₆ NO ₆	2.34	1.73	743. 1,2-Methylenedioxybenzene	C,H ₆ O ₂	2.08	1.73

TABLE A1 (continued)

Compound	Empirical formula	Log Pobsd	Log P _{estd}	Compound	Empirical formula	Log P _{obsd}	Log P _{estd}
744. Tropolone	C,H ₀ O,	0.53	0.67	782. n-Hydroxyhenzyl alcohol	C, H	0.25	010
745. m-Hydroxybenzoic acid	C,H,O,	1.50	0.98	783. o-Hydroxybenzyl alcohol	C,H,O,	0.73	0.12
746. Salicylic acid	C,H ₀	2.26	2.01	784. m-Methoxyphenol	C,H,O,	158	1.20
747. p-Hydroxybenzoic acid	C,H ₆ O ₃	1.58	0.98	785. o-Methoxyphenol	C,H ₈ O,	1.32	1.43
748. 2,4-Dihydroxybenzoic acid	C,H ₆ O₄	1.44	1.20	786. p-Methoxyphenol	C,H ₈ O ₂	1.37	1.20
749. 2,6-Dihydroxybenzoic acid	C ₇ H ₆ O ₄	2.20	2.20	787. 3-Methoxypentachlorocyclohexane	C ₇ H ₉ Cl ₅ O	3.51	3.43
750. m-Chlorobenzyl alcohol	C ₂ H ₂ ClO	1.94	1.58	788. m-Aminobenzyl alcohol	C,H ₉ NO	-0.05	0.36
* 751. p-Chlorobenzył alcohol	C,H,CIO	1.96	1.58	789. <i>m</i> -Methoxyaniline	C ₇ H ₉ NO	0.93	0.72
752. 2-Methyl-4-chlorophenol	C,H,CIO	2.78	2.46	790. o-Methoxyaniline	C ₇ H ₉ NO	0.95	980
753. 3-Methyl-4-chlorophenol	C,H,CIO	3.10	2.46	791. p-Methoxyaniline	C ₇ H ₉ NO	0.95	0.72
754. p-Fluorosulfonyltoluene	C,H,FO ₂ S	2.74	2.74	792. m-Methylbenzenesulfonamide	C ₇ H ₉ NO ₂ S	0.85	0.93
755. 2-Acetylpyridine	C,H,NO	0.83	0.83	793. o-Methylbenzenesulfonamide	C, H ₉ NO ₂ S	0.84	0.93
756. 4-Acetylpyridine	C,H,NO	0.54	0.20	794. p-Methylbenzenesulfonamide	C ₂ H ₉ NO ₂ S	0.82	0.93
757. 3-Acetylpyridine	C ₂ H ₂ NO	0.43	0.20	795. m-Methioaniline	C, H ₉ NS	1.45	1.45
758. Benzaldoxime	C,H,NO	1.75	1.93	796. o-Methioaniline	C ₇ H ₉ NS	1.20	1.44
759. o-Aminobenzoic acid	C ₂ H ₂ NO ₂	1.21	1.61	797. o-Phenyleneurea	C ₇ H ₆ N ₂ O	1.12	1.73
760. p-Aminobenzoic acid	C ₂ H ₂ NO ₂	0.83	0.49	798. 1-Phenyltetrazole	C ₇ H ₆ N ₄	1.09	1.09
761. m-Hydroxybenzamide	C ₂ H ₂ NO ₂	0.39	-0.17	799, 2,5-Dihydroxybenzoic acid	C ₇ H ₆ O ₄	1.74	1.20
762. o-Hydroxybenzamide	$C_7H_7NO_2$	1.28	0.86	800. Benzohydroxamic acid	C ₂ H ₂ NO ₂	0.26	-0.06
763. p-Hydroxybenzamide	C ₂ H ₂ NO ₂	0.25	-0.17	801. Isonicotinic acid methylester	C ₂ H ₂ NO ₂	0.87	0.52
764. 3-Hydroxy-4-aminobenzoic acid	C ₇ H ₇ NO ₃	-0.32	-0.18	802. Nicotinic acid methylester	C,H,NO ₂	0.81	0.52
765. m-Nitroanisole	C ₂ H ₂ NO ₃	2.16	1.74	803. o-Phenylcarbamate	C ₇ H ₇ NO ₂	1.08	0.84
766. p-Nitroanisole	C ₂ H ₂ NO ₃	2.03	1.74	804. Salicylamide	C ₂ H ₂ NO ₂	0.89	98.0
767. m-Nitrobenzyl alcohol	C ₂ H ₂ NO ₃	1.21	99'0	805. p-Aminosalicylic acid	C,H,NO ₃	0.87	0.71
768. p-Nitrobenzyl alcohol	C ₂ H ₂ NO ₃	1.26	99'0	806. 2-Acetaminopyridine	$C_7H_8N_2O$	0.61	69.0
769. Thiobenzamide	C,H,NS	1.49	1.46	807. 3-Acetaminopyridine	$C_7H_8N_2O$	0.41	-0.43
770. 1-Methylbenzotriazole	C ₂ H ₂ N ₃	1.13	1.14	808. 4-Acetaminopyridine	$C_7H_8N_2O$	0.59	-0.43
771. m-Aminobenzamide	$C_7H_8N_2O$	0.33	-0.65	809. Thiophene, 2-carboxylic acid ethylester	C ₇ H ₈ O ₂ S	2.33	2.33
772. p-Aminobenzamide	$C_7H_8N_2O$	0.02	-0.65	810. 2-Furoic acid ethyl ester	C,H ₈ O ₃	1.52	2.60
773. Benzoylhydrazine	$C_7H_8N_2O$	0.19	0.43	811. 1-Hydroxymethylpentachlorocyclohexane	ne C ₇ H ₃ Cl ₅ O	2.94	2.94
774. N-Phenylurea	$C_7H_8N_2O$	0.83	96.0	812. 3-Methoxypentachlorocyclohexane	C ₇ H ₃ Cl ₅ O	3.51	3.51
775. 2,4-Diaminobenzoic acid	$C_7H_8N_2O_2$	-1.14	0.32	813. 1-Methiopentachlorocyclohexane	C ₇ H ₉ Cl ₅ S	3.75	3.75
776. 3,4-Diaminobenzoic acid	$C_7H_8N_2O_2$	-0.70	0.00	814. 3-Methiopentachlorocyclohexane	C ₇ H ₉ Cl ₅ S	3.85	3.85
777. p-Nitro-N-methylaniline	$C_7H_8N_2O_2$	2.04	1.48	815. Methanesulfonanilide	C ₇ H ₉ NO ₂ S	0.95	0.56
778. Phenylthiourea	$C_7H_8N_2S$	0.73	0.73	816. 2-Methylisoniazid	C ₇ H ₉ N ₃ O	-0.37	-0.63
779. Theobromine	$C_7H_8N_4O_2$	-0.78	2.23	817. 2-Methoxyisoniazid	C ₇ H ₉ N ₃ O ₂	-0.10	-0.09
* 780. p-Methiophenol	C,H ₈ OS	1.78	1.93	818. 1-H-2-Methoxytetrachlorocycloxane		2.99	2.99
781. m- Hydroxybenzyl alcohol	$C_7H_8O_2$	0.49	0.12	819. 3-Methio-4-amino-6-N-Pr-1,2,4-triazine-5-one	a-5-one C ₇ H ₁₂ N ₄ OS	1.01	-0.51

TABLE A1 (continued)

		psqo / fight	LOG 7 estd	Componia		nego G	Diea Con
820. 3-Methoxy-4-amino-6-isoPr-1,2,4-triazine-5-	3-5-			856. p-Trifluoromethylbenzamide	C _R H ₆ F ₃ NO	1.71	1.65
one	C ₂ H ₁₂ N ₄ O ₂	-0.06	1.86	857. Quinoxaline	C ₈ H ₆ N ₂	1.32	1.18
821. 1,3-Diallylurea	C ₇ H ₁₂ N ₂ O	0.64	1.36	858. Cinnoline-4-one	C ₃ H ₆ N ₂ O	0.82	-0.19
822. Carbromal	C ₂ H ₁₃ BrN ₂ O ₂	1.54	1.07	859. m-Cyanobenzamide	C ₈ H ₆ N ₂ O	0.52	00.0
823. 2-Azacyclooctanone	C,H ₁₃ NO	0.24	1.19	860, p-Cyanobenzamide	C ₈ H ₆ N ₂ O	0.48	0.00
824. 2-Azacyclooctanthione	C ₇ H ₁₃ NS	1.00	1.14	861. p-Cyanoformanilide	C,HeN,O	1.08	0.48
825. 6-Isopropyl-4-amino-3-meamino-1,2,4-tria-				862. Quinazoline-4-one	C ₈ H ₆ N ₂ O	0.77	1.03
zine-5-one	C ₇ H ₁₃ N ₅ O	0.30	0.64	863. Quinazoline-2-one	C ₈ H ₆ N ₂ O	0.80	-0.80
826. 2,6-Dimethyl-N-nitrosopiperidine	C ₇ H ₁₄ N ₂ O	1.36	1.11	864. Quinazoline-2,4-dione	C ₈ H ₆ N ₂ O ₂	0.55	1.78
827. 3,5-Dimethyl-N-nitrosopiperidine	C,H14N2O	1.53	1.45	865. Quinazoline-2,3-dione	C ₈ H ₆ N ₂ O ₂	0.20	0.38
828. o-Hexylcarbamate	C ₇ H ₁₈ NO ₂	1.85	1.58	866. 2-Nitro-8-nitrostyrene	C ₈ H ₆ N ₂ O ₄	1.80	1.95
829. o-t-Hexylcarbamate	C ₂ H ₁₆ NO ₂	1.45	1.23	867, 3-Nitro- <i>B</i> -nitrostyrene	C ₈ H ₆ N ₂ O ₄	1.82	1.95
830. o-Pentyl-/V-methylcarbamate	C ₇ H ₁₅ NO ₂	1.96	1.72	868. 4-Nitro-B-nitrostyrene	C ₈ H ₆ N ₂ O ₄	1.89	1.95
831. 1-Nitrosotriethyl urea	C ₇ H ₁₅ N ₃ O ₂	1.54	1.63	869. Piperonal	C ₈ H ₆ O ₃	1.05	1.18
832. Phthalic anhydride	C ₆ H ₄ O ₃		-0.29	870. Isophthalic acid	C ₆ H ₆ O ₄	1.66	1.37
833. p-Trifluoroacetamide bromobenzene	C ₈ H ₅ BrF ₃ NO	3.34	3.18	871. p-Bromoacetophenone	C ₈ H ₇ BrO	2.43	2.65
834. 2-Chloroquinoxaline	C ₈ H ₅ CIN ₂	2.23	1.84	872, 2-Bromophenylacetate	C ₈ H ₇ BrO ₂	2.20	2.79
835. 5-Chloroquinoxaline	C ₈ H ₅ CIN ₂	1.75	1.92	873. m-Bromophenylacetic acid	C ₈ H ₇ BrO ₂	2.37	2.32
836. 6-Chloroquinoxaline	$C_8H_5CIN_2$	2.10	2.01	874. p-Bromophenylacetic acid	C ₈ H ₇ BrO ₂	2.31	2.32
837. 2-Chloro-5-nitro- β -nitrostyrene	C ₈ H ₅ CIN ₂ O ₄	2.23	2.60	875. 2-Bromophenoxyacetic acid	C ₈ H ₇ BrO ₃	2.10	2.25
838. 2,4-Dichloro-ß-nitrostyrene	$C_8H_5Cl_2NO_2$	3.26	3.52	876. 3-Bromophenoxyacetic acid	C ₈ H ₇ BrO ₃	2.22	2.22
839. 2-Trifluoromethyl benzimidazole	$C_8H_5F_3N_2$	2.58	2.58	877. 4-Bromophenoxyacetic acid	C ₈ H ₇ BrO ₃	2.45	2.22
840. Trifluoroacetophenone	$C_8H_5F_3O$	2.15	2.15	878. 2-(2,4,6-Tribromophenoxy)ethanol	C ₈ H ₇ Br ₃ O ₂	3.42	3.83
841. m-Trifluoromethyl benzoic acid	$C_8H_5F_3O_2$	2.95	2.80	879. p-Chloroacetophenone	C ₈ H ₇ CIO	2.35	2.39
842. <i>m</i> -Cyanobenzoic acid	$C_8H_5NO_2$	1.48	1.15	880. 2-Chlorophenylacetate	C ₈ H ₇ ClO ₂	2.18	2.91
843. p-Cyanobenzoic acid	$C_8H_5NO_2$	1.56	1.15	881. 3-Chlorophenylacetate	C ₈ H ₇ ClO ₂	2.32	2.49
844. 4-Carboxyphenylisothiocyanate	$C_8H_5NO_2S$	3.52	2.85	882. m-Chlorophenylacetic acid	C ₈ H ₇ ClO ₂	2.09	2.06
845. 3-Bromo-4-chlorophenoxyacetic acid	C ₈ H ₆ BrClO ₃	2.75	2.49	883. p-Chlorophenylacetic acid	C ₉ H ₂ ClO ₂	2.12	5.06
846. 5-Bromo-indole	C _B H ₆ BrN	3.00	2.93	884. m-Chlorophenoxyacetic acid	C ₈ H ₇ ClO ₃	2.03	1.96
847. 3-Chloro-5-fluorophenoxyacetic acid	C ₈ H ₆ CIFO ₃	2.20	2.21	885. o-Chlorophenoxyacetic acid	C ₈ H ₇ ClO ₃	2.02	2.37
848. 4-Chloro-3-iodophenoxyacetic acid	C ₈ H ₆ CIIO ₃	3.10	3.10	886. p-Chlorophenoxyacetic acid	C ₈ H ₇ ClO ₃	1.99	1.96
849. 4-Chloro-\(\beta\)-nitrostyrene	C ₈ H ₆ CINO ₂	2.44	2.87	887. 2-Fluorophenylacetate	C ₈ H ₇ FO ₂	1.76	2.17
850. 3-Chloro-β-nìtrostyrene	C ₈ H ₆ CINO ₂	2.57	2.87	888. 3-Fluorophenylacetate	$C_8H_7FO_2$	1.74	2.10
851. 2-Chloro- eta -nitrostyrene	C ₈ H ₆ CINO ₂	2.85	2.87	889. m-Fluorophenyl acetic acid	C ₈ H ₇ FO ₂	1.65	1.66
852. 4-Chloro-3-nitrophenoxyacetic acid	C ₈ H ₆ CINO ₅	1.85	1.35	890. o-Fluorophenyl acetic acid	C ₈ H ₇ FO ₂	1.50	1.66
853. 2,4-Dichlorophenoxyacetic acid	$C_8H_6Cl_2O_3$	2.81	3.02	891. p-Fluorophenyl acetic acid	$C_8H_7FO_2$	1.55	1.66
854. 3,4-Dichlorophenoxyacetic acid	$C_8H_6Cl_2O_3$	2.81	2.49	892. m-Fluorophenoxyacetic acid	C ₈ H ₇ FO ₃	1.48	1.56
855. 5-Fluoro-3-jodophenoxyacetic acid	C,H,FIO,	2.42	2.85	893. o-Fluorophenoxyacetic acid	C.H.EO.	1 26	1 63

TABLE Al (continued)

Compound	Empirical formula	Log Pobsd	Log P _{estd}	Compound	Empirical formula	Log Pobsd	Log Pestd
894. p-Fluorophenoxvacetic acid	C.H.FO.	141	1.56	932. p-Nitroacetanilide	C.H.N.O.	1.66	0.84
895 2-Indophenvlacetate	C.H.IO.	2.55	311	933. N-Methyl-2-nitrophenylcarbamate	C.H.N.O.	1.02	<u>-</u> -
896. m-lodophenylacetic acid	C,H,10,	2.62	2.70	934. N-Methyl-3-nitrophenylcarbamate	C ₈ H ₈ N ₂ O ₄	1.39	100.
897. p-lodophenylacetic acid	C ₃ H ₂ IO,	2.64	2.70	935. N-Methyl-4-nitrophenylcarbamate	C ₈ H ₈ N ₂ O ₄	1.47	1.04
898. 2-Iodophenoxyacetic acid	C ₈ H ₇ IO ₃	2.19	2.57	936. Phenylthioacetic acid	C ₈ H ₈ O ₂ S	1.91	2.04
899. 3-lodophenoxyacetic acid	C ₈ H,10 ₃	2.44	2.60	937. m-Acetylphenol	C ₈ H ₈ O ₂	1.39	0.93
900. 4-lodophenoxyacetic acid	C ₈ H ₇ IO ₃	2.69	2.60	938. p-Acetylphenol	C ₈ H ₈ O ₂	1.35	0.93
901. m-Acetylnitrobenzene	C ₈ H ₂ NO ₃	1.42	1.47	939. o-Hydroxyacetophenone	$C_8H_8O_2$	1.92	1.96
902. p-Acetylnitrobenzene	C ₈ H ₇ NO ₃	1.49	1.47	940. p-Methiobenzoic acid	$C_8H_8O_2S$	2.74	2.33
903. 3-Hydroxy-\(\beta\)-nitrostyrene	C ₈ H ₇ NO ₃	2.07	1.42	941. Vanillin	$C_8H_8O_3$	1.31	0.88
904. 4-Hydroxy- β -nitrostyrene	C ₈ H ₂ NO ₃	2.12	1.42	942. m-Carbomethoxyphenol	$C_8H_8O_3$	1.89	1.26
905. 2-Nitrophenylacetate	C ₈ H ₇ NO ₄	1.55	2.32	943. p-Carbomethoxyphenol	C ₈ H ₈ O ₃	1.96	1.26
906. 3-Nitrophenylacetate	C ₈ H ₇ NO ₄	1.82	1.57	944. m- Hydroxyphenylacetate	$C_8H_8O_3$	1.23	1.04
907, 4-Nitrophenylacetate	C ₈ H ₇ NO ₄	1.49	1.57	945. m-Hydroxyphenylacetic acid	C ₈ H ₈ O ₃	0.85	0.60
908. m-Nitrophenylacetic acid	C ₈ H ₇ NO ₄	1.45	1.13	946. o-Hydroxyphenylacetic acid	$C_8H_8O_3$	0.85	09:0
909. p-Nitrophenylacetic acid	C ₈ H ₇ NO ₄	1.39	1.13	947. Isovanillin	$C_8H_8O_3$	0.97	0.88
910. m-Nitrophenoxyacetic acid	C ₈ H ₇ NO ₅	1.37	1.04	948. m-Methoxybenzoic acid	C ₆ H ₈ O ₃	2.02	1.60
911. o-Nitrophenoxyacetic acid	C ₈ H ₇ NO ₆	1.22	1.78	949. o-Methoxybenzoic acid	C ₈ H ₈ O ₃	1.59	2.63
912. p-Nitrophenoxyacetic acid	C ₈ H ₇ NO ₅	1.48	1.04	950. p-Methoxybenzoic acid	$C_8H_8O_3$	1.96	1.60
913. Benzylisothiocyanate	C ₈ H ₇ NS	2.83	2.88	951. Methyl salicyate	$C_8H_8O_3$	2.46	2.29
914. Benzylthiocyanate	C ₈ H ₇ NS	1.99	2.20	952. Phenoxyacetic acid	$C_8H_8O_3$	1.26	1.31
915. 2-Aminoquinazoline-4-one	C ₈ H ₇ N ₃ O	09.0	09.0	953. o-Vanillin	C ₈ H ₈ O ₃	1.37	0.17
916. 1-Carboxymethylbenzotriazole	C ₈ H ₇ N ₃ O ₂	-1.88	-1.29	954. m-Hydroxyphenoxyacetic acid	C ₈ H ₈ O ₄	0.76	0.50
917. 3,5-Dinitro-4-methylbenzamide	C ₈ H ₇ N ₃ O ₅	99.0	0.51	955. o-Hydroxyphenoxyacetic acid	C ₈ H ₈ O ₄	0.85	0.50
918. N-Methyl-3-bromophenylcarbamate	C ₈ H ₈ BrNO ₂	2.25	2.22	956. p-Hydroxyphenoxyacetic acid	C ₈ H ₈ O ₄	0.65	0.50
919. N-Methyl-4-bromophenylcarbamate	C ₈ H ₈ BrNO ₂	2.17	2.22	957. 4,5,6-Tribromo-2-trifluoromethylbenzimidazole	zole C ₈ H ₂ Br ₃ F ₃ N ₂	4.08	3.86
920. p-Chloroacetanilide	C ₈ H ₈ CINO	1.87	1.76	958. 5,6-Dibromo-2-trifluoromethylbenzimidazole	le C ₈ H ₃ Br ₂ F ₃ N ₂	4.15	4.02
921. N-Methyl-4-chlorophenylcarbamate	C ₈ H ₈ CINO ₂	2.01	1.96	959. 5-Chloro-6-nitro-2-trifluoromethylbenzimida	la-		
922. N-Methyl-2-chlorophenylcarbamate	C ₈ H ₈ CINO ₂	1.64	1.44	zole	$C_8H_3CIF_3N_3O_2$	3.21	2.62
923. N-Methyl-3-chlorophenylcarbamate	C ₈ H ₈ CINO ₂	2.03	1.96	960. 2-Trifluoromethyl-5,6-dichlorobenzimidazole	le C ₈ H ₃ Cl ₂ F ₃ N ₂	3.99	3.76
924. N-Methyl-2-bromophenylcarbamate	C ₆ H ₈ BrNO ₂	1.77	1.63	961. 2-Trifluoromethyl-5,6-dinitrobenzimidazole	$C_8H_3F_3N_4O_4$	3.89	1.96
925. N-Methyl-2-fluorophenylcarbamate	C ₈ H ₈ FNO ₂	1.25	1.27	962. 2-Trifluoromethyl-5-bromobenzimidazole	C ₈ H ₄ BrF ₃ N ₂	3.57	3.49
926. N-Methyl-3-fluorophenylcarbamate	C ₈ H ₈ FNO ₂	1.48	1.56	963. 2-Trifluoromethyl-5-chlorobenzimidazole	$C_8H_4BrF_3N_2$	3.39	3.23
927. N-Methyl-4-fluorophenylcarbamate	C ₈ H ₈ FNO ₂	1.28	1.56	964. 2-Trifluoromethyl-5-nitrobenzimidazole	$C_8H_4F_3N_3O_2$	2.68	2.31
928. N-Methyl-2-iodophenylcarbamate	C ₈ H ₈ INO ₂	1.96	1.84	965. m-CF ₃ -Trifluoromethane sulfonanilide	$C_8H_5F_6NO_2S$	4.50	3.46
929. N-Methyl-3-iodophenylcarbamate	C ₈ H ₈ INO ₂	2.52	2.61	966. p-CF ₃ -Trifluoromethane sulfonanilide	$C_8H_5F_6NO_2S$	4.47	3.46
930. N-Methyl-4-iodophenylcarbamate	C ₈ H ₈ INO ₂	2.46	2.61	967. Trifluoroacetanilide	$C_8H_6F_3NO$	2.21	2.27
931. Isophthalamide	$C_8H_8N_2O_2$	-0.21	-0.92	968. 7-Chloro-3-methyl-2H-1,2,4-benzothiodiazine			
				1,1-dioxide	C ₈ H ₇ CIN ₂ O ₂ S	1.20	1.27

TABLE A1 (continued)

	-	neno . P	Disa . C.	Compound	cirpincar ioriniula	LOG 7 obsd	Log Festd
969. 6-Chloro-3-methyl-2 <i>H</i> -1,2,4-benzothiodiazine	Je			1005 At-Methylphenylcarhamate	CH,NO	1 24	1.51
1,1-dioxide	C.H.CIN.O.S	1.21	1.27	1006 Nicotinic acid athyl astar	C.H.NO.	1 32	101
970. 8-Chloro-3-methyl-2 <i>H-</i> 1,2,4-benzothiodiazine				1007 Isonicotinic acid ethyl ester	C.H.NO.	143	101
1,1-dioxide	C ₈ H ₇ CIN ₂ O ₂ S	0.62	0.62	1008. Phenoxyacetamide	C°H°NO	0.76	0.76
971. 5-Chloro-2(methylthio)benzimidazole	C ₈ H ₇ CIN ₂ S	3.22	0.94	1009. Picolinic acid ethyl ester	C ₈ H ₉ NO ₂	0.87	-0.17
972. 2,3-Dichloro-N-methylphenylcarbamate	$C_8H_7CI_2NO_2$	2.48	2.74	1010, 2-Methoxy-4-aminobenzoic acid	C ₈ H ₉ NO ₃	-0.38	1.32
973. 2,5-Dichloro-M-methylphenylcarbamate	C ₈ H ₇ Cl ₂ NO ₂	2.44	2.32	1011. p-Nitrophenetole	C ₈ H ₉ NO ₃	2.53	2.22
974. N-Methyl-3,4-dichlorophenylcarbamate	$C_8H_7Cl_2NO_2$	2.80	2.69	1012. Thioacetanilide	C ₈ H ₉ NS	1.71	1.71
975. N-Methyl-3,5-dichlorophenylcarbamate	$C_8H_7Cl_2NO_2$	3.03	2.80	1013, Sulfanilacetamide	C ₈ H ₁₀ N ₂ O ₂ S	96.0-	-1.62
976. 3-Amino-4-chlorophenoxyacetic acid	C ₈ H ₈ CINO ₃	1.16	1.07	1014, 1-Methyl-1-phenyl-2-thiourea	C ₈ H ₁₀ N ₂ S	0.85	0.85
977. 4-Methylphenylisothiocyanate	C ₈ H ₇ NS	3.92	3.68	1015. Caffeine	C ₈ H ₁₀ N ₄ O,	-0.07	-1.39
978. p-Fluoroacetanilide	C ₈ H ₈ FNO	1.47	1.36	1016. 1,3-Dimethoxybenzene	C ₈ H ₁₀ O ₂	2.21	1.82
979. p-Acetamide-benzenesulfonylfluoride	C ₈ H ₈ FNO ₃ S	2.17	1.23	1017. o-Dimethoxybenzene	C ₈ H ₁₀ O ₂	2.21	1.82
980. p-lodoacetanilide	C ₈ H ₈ INO	2.46	2.41	1018. m-Ethoxyphenol	C ₈ H ₁₀ O ₂	1.98	1.68
981. N-Methyl-2-iodophenylcarbamate	_	1.94	2.21	1019. o-Ethoxyphenol	C ₈ H ₁₀ O ₂	1.68	1.91
982. 3-Methyl-1,2,4-benzothiodiazine-1,1-dioxide	C ₈ H ₈ N ₂ O ₂ S	0.29	0.63	1020. p-Ethoxyphenol	C ₈ H ₁₀ O ₂	1.81	1.68
983. p-Methoxybenzaldehyde	$C_8H_8O_2$	1,59	1.46	1021. o-Methoxybenzyl alcohol	C ₈ H ₁₀ O ₂	1.13	0.74
984. 3,4-Methylenedioxy benzyl alcohol	C ₈ H ₈ O ₃	1.05	0.46	1022. p-Methoxybenzyi alcohol	C ₈ H ₁₀ O ₂	1.10	0.74
985. p-Hydroxybenzoic acid methyl ester	C ₈ H ₈ O ₃	1.92	1.26	1023. m-Dimethylaminophenol	C ₈ H ₁₁ NO	1.57	1.56
986. Mandelic acid	$C_8H_8O_3$	0.62	0.62	1024. N.N-Dimethylbenzenesulfonamide	C ₈ H ₁₁ NO ₂ S	1.35	1.51
987. p-Methylsulfonylbenzoic acid	C ₈ H ₈ O ₄ S	0.67	0.39	1025. p-Ethylbenzenesulfonamide	C ₈ H ₁₁ NO ₂ S	1.31	1.45
988. 1-Acetoxypentachlorocyclohexane	$C_8H_9Cl_5O_2$	3.40	3.40	1026. 3,6-Dimethoxy-1,2,4,5-tetrachlorocyclohexane	ane C ₈ H ₁₂ C _{I4} O ₂	3.15	3.14
989. p-Aminoacetophenone	C _s H _s NO	0.41	0.45	1027. Barbital	$C_8H_{12}N_2O_3$	0.65	0.58
990. Ethyl-4-pyridyl ketone	C ₈ H ₉ NO	1.0	89:0	1028. 4-Pentylpyrazole	$C_8H_{14}N_2$	2.96	2.93
991. o-Methylbenzaldoxime	C ₈ H ₉ NO	2.53	2.35	1029. Heptanoic acid	C ₈ H ₁₄ O ₃	0.55	0.22
992. p-Aminophenylacetate	C ₈ H ₉ NO ₂	-0.16	0.55	1030. N-Nitroso-octamethyleneimine	$C_8H_16N_2O$	2.04	2.04
993. o-Benzylcarbamate	$C_8H_9NO_2$	1.20	0.56	1031. N-Nitroso-dibutylamine	$C_8H_{18}N_2O$	1.92	2.59
994. N-Phenylglycine	$C_8H_9NO_2$		-0.68	1032. Quinoline-1-oxide	C ₉ H ₇ NO	0.36	0.36
995. m-Hydroxyacetoanilide	$C_8H_9NO_2$	0.73	0.31	1033. 6-Chloro-4-nitroquinoline-1-oxide	C ₉ H ₅ CIN ₂ O ₃	1.41	0.73
996. o-Hydroxyacetoanilide	$C_8H_9NO_2$	0.72	08.0	1034. 8-Fluoro-4-nitroquinoline-1-oxide	$C_9H_5FN_2O_3$	1.00	0.33
997. p-Hydroxyacetoanilide	$C_8H_9NO_2$	0.36	0.31	1035. 6-Cyanoquinoxaline	C ₉ H ₅ N ₃	1.01	0.72
998. m-Methoxybenzamide	$C_8H_9NO_2$	0.85	0.45	1036. 4,5-Dinitroquinoline-1-oxide	$C_9H_5N_3O_5$	0.95	-0.19
999. o-Methoxybenzamide	$C_8H_9NO_2$	0.87	1.63	1037. 4,6-Dinitroquinoline-1-oxide	C ₉ H ₅ N ₃ O ₅	06.0	-0.19
1000. p-Methoxybenzamide	$C_8H_9NO_2$	98.0	0.45	1038. 4,8-Dinitroquinoline-1-oxide	$C_9H_5N_3O_6$	92.0	-0.19
1001. m-Methoxyformanilide	$C_8H_9NO_2$	1.25	0.93	1039. 3-Bromoquinoline	C_9H_6BrN	3.03	3.01
1002. p-Methoxyformanilide	$C_8H_9NO_2$	1.03	0.93	1040. 6-Bromoquinoline	C ₉ H ₆ BrN	2.83	3.01
1003, 2-Methyl-4-aminobenzoic acid	$C_8H_9NO_2$	0.31	0.91	1041. 7-Bromoquinoline	C ₉ H ₆ BrN	2.92	3.01
1004. 3-Methyl-4-aminobenzoic acid	$C_8H_9NO_2$	0.54	0.91	1042. 2-Chloroquinoline	C ₉ H ₆ CIN	2.71	2.96

TABLE Al (continued)

Compound	Empirical formula	Log P _{obsd}	Log P _{estd}	Compound	Empirical formula	Log P _{obsd}	Log P _{estd}
1043 6-Chloroquinoline	N.C.H.CIN	273	274	1081 8-Aminoquinoline	N.H.N.	1 70	000
1044 8-Chloroquipolipe	NIO.H.O	233	274	1082 2-Aminoquinoline	2918N2	10,1	0.00
1045 A-Chloro-8-anipolipol	OND H.C	2.55	1 93	1083 3-Aminoquinoline	C9118142	1.07	26.1
1046 4-Chlorogijnoline-1-oxide	OND HOU	9 6	00	1084 4-Aminoquinoline	C.H.N.	 	0.00
1047, 3-Cvano-4-chlorophenoxyacetic acid	CHECINO	1.56	1.56	1085, 5-Aminoaujnoline	CeH _e N ₂	1.6	0.80
1048. 1,1,1,3,3,3-Hexafluoro-2-phenyl-2-propanol	C ₃ H ₆ F ₆ O	3.41	3.41		CaH _B N,	1.28	0.80
1049. 3-Nitroquinoline	C ₃ H ₆ N ₂ O ₂	1.97	1.82	1087. 2-Methylquinoxaline	C ₉ H ₈ N,	1.61	1.65
1050. 4-Nitroquinoline	C ₉ H ₆ N ₂ O ₂	5.06	1.82	1088. 5-Methylquinoxaline	C ₉ H ₈ N ₂	2.04	1.78
1051. 5-Nitroquinoline	$C_9H_6N_2O_2$	1.86	1.82	1089. 2-Phenylimidazole	C ₃ H ₈ N ₂	1.88	1.88
1052, 6-Nitroquinoline	$C_9H_6N_2O_2$	1.84	1.82	1090. 5-Amino-8-hydroxyquinoline	C ₃ H ₈ N ₂ O	-0.11	-0.01
1053. 7-Nitroquinoline	$C_9H_6N_2O_2$	1.82	1.82	1091. 4-Aminoquinoline-1-oxide	C ₉ H ₈ N ₂ O	0.05	-0.94
1054. 8-Nitroquinoline	$C_9H_6N_2O_2$	1.40	1.82	1092. 2-Methoxyquinoxaline	$C_9H_8N_2O$	2.31	2.00
1055. 3-Nitroquinoline-1-oxide	$C_9H_6N_2O_3$	0.56	0.08	1093. 3-Methyl-quinazoline-4-one	$C_9H_8N_2O$	69.0	0.87
1056. 4-Nitroquinoline-1-oxide	$C_9H_6N_2O_3$	1.02	80.0	1094. N-Methyl-4-cyanophenylcarbamate	$C_9H_8N_2O_2$	0.95	0.87
1057. 5-Nitroquinoline-1-oxide	$C_9H_6N_2O_3$	0.49	80.0	1095. N-Methyl-3-cyanophenylcarbamate	$C_9H_8N_2O_2$	0.97	0.87
1058. 6-Nitroquinoline-1-oxide	$C_9H_6N_2O_3$	0.39	80.0	1096. N-Methyl-2-cyanophenylcarbamate	$C_9H_8N_2O_2$	98.0	0.87
1059. 7-Nitroquinoline-1-oxide	$C_9H_6N_2O_3$	0.36	80:0	1097. 8-Sulfonamidoquinoline	$C_9H_8N_2O_2S$	0.36	0.41
1060. 8-Nitroquinoline-1-oxide	$C_9H_6N_2O_3$	0.04	80.0	1098, 2-Methioquinoxaline	$C_9H_8N_2S$	2.79	2.77
1061, Coumarin	$C_9H_6O_2$	1.39	2.03	1099. Aspirin	C ₉ H ₈ O ₄	1.23	1.23
1062. 1,3-Indandione	$C_9H_6O_2$	0.61	98.0	1100. m-Carboxyphenylacetic acid	C ₃ H ₈ O ₄	1.14	0.99
1063. Ninhydrin	C ₃ H ₆ O ₄	0.65	0.65	1101. p-Formylphenoxyacetic acid	C ₃ H ₈ O ₄	0.79	97.0
1064. 3-Carboxy-4-chlorophenoxyacetic acid	C ₉ H ₇ ClO ₅	1.07	1.02	1102. m-Carboxyphenoxyacetic acid	$C_9H_8O_5$	1.11	0.30
1065. 3-Trifluoromethylphenylacetic acid	$C_9H_7F_3O_2$	2.62	2.42	1103. 5-Methoxyindole	C ₉ H ₉ NO	2.06	1.83
1066. m -Trifluoromethylphenylacetic acid	$C_9H_7F_3O_2$	2.62	2.42	1104. p-Acetylformanilide	$C_9H_9NO_2$	0.94	99.0
1067. p-Trifluoromethylphenylacetic acid	$C_9H_7F_3O_2$	2.45	2.42	1105. N-Acetyl-o-aminobenzoic acid	$C_9H_9NO_3$	1.88	1.82
1068. m-Trifluoromethylphenoxyacetic acid	$C_9H_7F_3O_3$	2.36	2.32	1106. N -Acetyl- p -aminobenzoic acid	C ₉ H ₉ NO ₃	1.31	0.70
1069. m-Trifluoromethylthiophenoxyacetic acid	$C_9H_7F_3O_3S$	2.86	2.68		C ₉ H ₉ NO ₃	2.20	2.03
1070. m-Trifluoromethoxyphenoxyacetic acid	$C_9H_7F_3O_4$	2.48	2.28		C ₉ H ₉ NO ₃	2.37	2.03
1071. m-Trifluoromethylsulfonylphenoxyacetic acid	$C_9H_7F_3O_5S$	2.19	1.81	1109, 2-Phenethylisothiocyanate	C ₉ H ₉ NS	3.47	3.25
1072. 4-Hydroxyquinoline	C ₉ H ₇ NO	0.58	1.29	1110. 1-Phenethylisothiocyanate	C ₉ H ₉ NS	3.46	3.46
1073. 2-Quinolinol	C ₉ H ₂ NO	1.26	1.06	1111. Sulfathiazole	$C_9H_9N_3O_2S_2$	0.05	-1.16
1074. 8-Quinolinol	C ₉ H ₇ NO	1.96	1.29	1112. <i>DL-p</i> -Chlorophenylalanine	C ₉ H ₁₀ CINO ₂	-0.48	-0.61
1075. a-Quinolone	C ₉ H ₇ NO	1.26	1.30	1113. Phenylalanine	C ₉ H ₁₁ NO ₂	-1.35	-1.26
1076. 2-Cyanophenylacetate	$C_9H_7NO_2$	1.33	1.33	1114. DL-p-Fluorophenylalanine	C ₃ H ₁₀ FNO ₂	-1.89	-1.01
1077, m-Cyanophenylacetic acid	$C_9H_7NO_2$	1.18	0.77	1115. 5,6-Dimethylbenzimidazole	C ₉ H ₁₀ N ₂	2.35	2.32
1078. N-Methylindol-2,3-dione	$C_9H_7NO_2$	0.58	0.74	1116. p-N-Acetylaminobenzamide	$C_9H_{10}N_2O_2$	0.01	-0.45
1079. 4-Cyano-phenoxyacetic acid	C ₉ H ₇ NO ₃	0.93	0.67	1117. p-Nitrophenylalanine	$C_9H_{10}N_2O_4$	-1.25	-1.53
1080. 3-Cyano-phenoxyacetic acid	C ₉ H ₇ NO ₃	0.95	0.67	1118. 3-Ureido-phenoxyacetic acid	$C_9H_{10}N_2O_4$	0.26	0.09

TABLE A1 (continued)

Compound	Empirical formula	Log Pobsd	Log Pestd	Compound	Empirical formula	Log Pobsd	Log P _{estd}
1119. o-Hydroxypropiophenone	C ₉ H ₁₀ O ₂	2.54	2.45	1157. Nornicotine	C ₉ H ₁ ,N,	0.17	0.24
1120. p-Hydroxypropiophenone	C ₉ H ₁₀ O ₂	2.03	1.42	1158. m-Dimethylaminobenzamide	C ₃ H ₁ ,N ₂ O	0.95	0.81
1121. p-Methoxyacetophenone	$C_9H_{10}O_2$	1.82	1.55	1159. p-Dimethylaminobenzamide	C ₉ H ₁₂ N ₂ O	1.14	0.81
1122. p-Hydroxybenzoic acid ethyl ester	$C_9H_{10}O_3$	2.47	1.74	1160. p-Aminophenylalanine	$C_9H_{12}N_2O_2$	-2.20	-2.55
1123. 2-Methoxyphenylacetate	$C_9H_{10}O_3$	1.38	1.18	1161. 1-Phenyl-3-ethylthiourea	C ₉ H ₁₂ N ₂ S	1.42	1.42
1124. 4-Methoxyphenylacetate	C ₉ H ₁₀ O ₃	1.54	1.66	1162. o-Isopropoxyphenol	$C_9H_{12}O_2$	2.09	2.26
1125. m-Methoxyphenylacetic acid	C ₉ H ₁₀ O ₃	1.50	1.22	1163. 1,2,3-Trimethoxybenzene	C ₃ H ₁₂ O ₃	1.53	1.51
1126. p-Methoxyphenylacetic acid	C ₉ H ₁₀ O ₃	1.42	1.22	1164. N./V-Dimethyl-o-anisidine	C ₉ H ₁₃ NO	1.63	2.32
1127. m-Methylphenoxyacetic acid	C ₉ H ₁₀ O ₃	1.78	1.73	1165. N.N-Dimethyl-p-anisidine	C ₉ H ₁₃ NO	1.42	2.18
1128. o-Methylphenoxyacetic acid	C ₉ H ₁₀ O ₃	1.98	1.73	1166. p-Propylbenzenesulfonamide	C ₉ H ₁₃ NO ₂ S	1.64	1.99
1129. p-Methylphenoxyacetic acid	C ₉ H ₁₀ O ₃	1.86	1.73	1167. Probarbital	C ₉ H ₁₄ N ₂ O ₃	0.97	1.04
1130. 2-Methoxyphenoxyacetic acid	C ₉ H ₁₀ O ₄	0.98	1.34	1168. N-Methyl-5-butylbarbituric acid	C ₉ H ₁₄ N ₂ O ₃	1.10	1.10
1131. 4-Methoxyphenoxyacetic acid	C ₉ H ₁₀ O ₄	1.23	1.12	1169. 1,3-Dibutyryl urea	C ₉ H ₁₆ N ₂ O ₃	1.40	1.30
1132, 3-Methoxyphenoxyacetic acid	C ₉ H ₁₀ O ₄	1.38	1.12	1170. Azelaic acid	C ₉ H ₁₆ O ₄	1.57	1.48
1133. m-Methylsulfonylphenylacetic acid	C ₉ H ₁₀ O ₄ S	90.0	0.01	1171. 4-Tertbutyl-N-nitrosopiperidine	$C_9H_{18}N_2O$	1.96	2.45
1134. m-Methylsulfonylphenoxyacetic acid	$C_9H_{10}O_6S$	0.01	-0.09	1172. 2,2,6,6-Tetramethyl-N-nitrosopiperidine	C ₉ H ₁₈ N ₂ O	2.49	1.57
1135. 1,1-Dimethyl-3-p-chlorophenylurea	C ₉ H ₁₁ CIN ₂ O	1.94	1.96	1173. Meprobamate	$C_9H_{18}N_2O_4$	0.70	-0.12
1136. 1,1-Dimethyl-3-m-chlorophenylurea	C ₉ H ₁₁ CIN ₂ O	2.00	1.96	1174. Hexamethylmelamine	C ₉ H ₁₈ N ₆	2.52	2.63
1137. 3-Methylthiophenoxyacetic acid	C ₉ H ₁₀ O ₃ S	1.90	1.85	1175. 2-Chloro-1,4-naphthoquinone	C ₁₀ H ₅ ClO ₂	2.15	0.14
1138. o-Aminobenzoic acid ethyl ester	$C_9H_{11}NO_2$	2.57	2.38	1176. 7-Trifluoromethylquinoline	C ₁₀ H ₆ F ₃ N	3.02	3.10
1139. N-Dimethylphenylcarbamate	$C_9H_{11}NO_2$	1.69	1.17	1177. 8-Trifluoromethylquinoline	C ₁₀ H ₆ F ₃ N	2.50	3.10
1140. p-Ethoxybenzamide	$C_9H_{11}NO_2$	1.30	0.93	1178. 4-Hydroxy-7-trifluoromethylquinoline	C ₁₀ H ₆ F ₃ NO	2.05	2.29
1141. N-Phenylethylcarbamate	$C_9H_{11}NO_2$	2.30	1.58	1179. 1,4-Naphthoquinone	$C_{10}H_6O_2$	1.78	1.70
1142. o-Methoxyacetanilide	$C_9H_{11}NO_2$	0.98	1.42	1180. 2-Hydroxy-1,4-naphthoquinone	$C_{10}H_6O_3$	1.38	0.55
1143. p-Methoxyacetanilide	$C_9H_{11}NO_2$	1.03	0.92	1181. 2-Trifluoromethyl-4,7-dichloro-5,6-dimethyl			
1144. Tsumacide	$C_9H_{11}NO_2$	1.70	1.93	benzimidazole	C ₁₀ H ₇ Cl ₂ F ₃ N ₂	3.19	4.31
1145. N-methyl-o-tolylcarbamate	$C_9H_{11}NO_2$	1.46	1.93	1182. 3,4,5-Tri-Cl-C ₆ H ₂ NHN = C(CN)COOCH ₃	C ₁₀ H ₆ Cl ₃ N ₃ O ₂	5.22	5.01
1146. N-methyl-p-tolylcarbamate	$C_9H_{11}NO_2$	1.66	1.93	1183. 2,4,5-Tri-Cl-C ₆ H ₂ NHN = C(CN)COOCH ₃	C ₁₀ H ₆ Cl ₃ N ₃ O ₂	5.15	5.74
1147. N-Methyl-4-methylthiophenylcarbamate	C ₉ H ₁₁ NO ₂ S	1.92	2.05	1184. $3,4$ -Dichloro- $C_6H_3NHN = C(CN)CO-CH_3$	C ₁₀ H ₇ Cl ₂ N ₃ O	4.56	4.36
1148. N-Methyl-2-methylthiophenylcarbamate	C ₉ H ₁₁ NO ₂ S	1.51	1.44	1185. 3.5 -Dichloro- $C_6H_3NHN = C(CN)CO-CH_3$	C ₁₀ H ₇ Cl ₂ N ₃ O	4.68	4.48
1149, 2-Ethoxy-4-aminobenzoic acid	C ₉ H ₁₁ NO ₃	0.16	1.81	1186. 3.5 -Dichloro-C ₆ H ₃ NHN = C(CN)COOCH ₃	C ₁₀ H ₇ Cl ₂ N ₃ O ₂	4.50	4.81
1150. N-Methyl-2-methoxyphenylcarbamate	C ₉ H ₁₁ NO ₃	0.81	0.84	1187. 2-Nitroso-1-naphthol	$C_{10}H_7NO_2$	2.57	2.39
1151. N-Methyl-3-methoxyphenylcarbamate	C ₉ H ₁₁ NO ₃	1.30	1.32	1188. 1-Nitroso-2-naphthol	C ₁₀ H ₂ NO ₂	2.28	2.39
1152. N-Methyl-4-methoxyphenylcarbamate	C ₉ H ₁₁ NO ₃	1.20	1.32	1189. 2-CI-C ₆ H ₄ NHN = C(CN)CO-CH ₃	C ₁₀ H ₈ ClN ₃ O	4.01	4.24
1153. 2-Tyrosine	C ₉ H ₁₁ NO ₃	-2.26	-2.07	1190. $3-CI-C_6H_4NHN=C(CN)CO-CH_3$	C ₁₀ H ₈ CIN ₃ O	3.91	3.83
1154. 1-Propylbenzotriazole	C ₉ H ₁₁ N ₃	2.13	2.12	1191. $4-CI-C_6H_4NHN = C(CN)CO-CH_3$	C ₁₀ H ₈ CIN ₃ O	4.13	3.83
1155. 1-Isopropylbenzotriazole	C ₉ H ₁₁ N ₃	1.98	1.88	1192. 3-CI-C ₆ H ₄ NHN=C(CN)COOCH ₃	$C_{10}H_8CIN_3O_2$	3.56	4.16
1156. 1,1-Dimethyl-3- p -nitrophenylurea	$C_9H_{11}N_3O_3$	1.51	1.03	1193. N-Formyl-p-cyanostrylamine	$C_{10}H_8N_2O$	1.58	1.47

TABLE A1 (continued)

Compound	Empirical formula	Log P _{obsd}	Log Pestd	Compound	Empirical formula	Log Pobed	Log Pestd
1194. 2-Methyl-4-nitroquinoline-1-oxide	C,0H8N2O3	1.25	0.57	1231. p-Hydroxybenzoic acid propyl ester	C.H.0	3.04	2.28
1195. 3-Methyl-4-nitroquinoline-1-oxide	C ₁₀ H ₈ N ₂ O ₃	1.06	0.50	1232. o-Methylphenoxyacetic acid methyl ester	C ₁₀ H ₁ ,0,	2.08	2.01
1196. 5-Methyl-4-nitroquinoline-1-oxide	C ₁₀ H ₈ N ₂ O ₃	1.36	0.50	1233. 3-Ethylphenoxyacetic acid	C ₁₀ H ₁₂ O ₃	2.25	2.25
1197. 6-Methyl-4-nitroquinoline-1-oxide	C ₁₀ H ₈ N ₂ O ₃	1.43	0.50	1234. 2-Ethylphenoxyacetic acid	C ₁₀ H ₁₂ O ₃	2.53	2.25
1198. 7-Methyl-4-nitroquinoline-1-oxide	$C_{10}H_8N_2O_3$	1.42	0.50	1235. N-Phenylmorpholine	C ₁₀ H ₁₃ NO	1.36	1.95
1199. 8-Methyl-4-nitroquinoline-1-oxide	$C_{10}H_8N_2O_3$	1.59	0.50	1236. 4-Ethoxyacetanilide	C ₁₀ H ₁₃ NO ₂ .	1.58	1.41
1200. Hymecromone	$C_{10}H_8O_3$	1.58	1.80	1237. 2,3-Dimethyl-4-hydroxyacetanilide	C ₁₀ H ₁₃ NO ₂	1.06	1.14
1201. 6-Methoxyquinoline	C₁₀H₀NO	2.20	1.90	1238. 2,5-Dimethyl-4-hydroxyacetanilide	C ₁₀ H ₁₃ NO ₂	1.09	1.14
1202. 7-Methoxyquinoline	C ₁₀ H ₉ NO	2.37	1.90	1239. 2,6-Dimethyl-4-hydroxyacetanilide	C ₁₀ H ₁₃ NO ₂	08.0	1.14
1203. 8-Methoxyquinoline	C ₁₀ H ₉ NO	1.84	1.90	1240. N.N-Dimethylphenoxyacetamide	C ₁₀ H ₁₃ NO ₂	0.77	0.93
1204. N-Methyl-a-quinolone	C _{to} H ₉ NO	1.45	96.0	1241. 3,5-Dimethyl-4-hydroxyacetanilide	C ₁₀ H ₁₃ NO ₂	1.60	1.14
1205. N-Methyl-4-quinolone	C₁₀H₀NO	0.44	2.68	1242. 3-Ethyl-4-hydroxyacetanilide	C ₁₀ H ₁₃ NO ₂	1.79	1.24
1206. 2-Methyl-8-quinolinol	C ₁₀ H ₉ NO	2.33	1.77	1243. Fusaric acid	C ₁₀ H ₁₃ NO ₂	-1.29	1.07
1207. 4-Methyl-8-quinolinol	C ₁₀ H ₉ NO	2.41	1.73	1244. m-Methoxy-N,N-dimethylbenzamide	C ₁₀ H ₁₃ NO ₂	1.00	0.78
1208. Indole-3-acetic acid	$C_{10}H_9NO_2$	1.41	1.23	1245. o-Methoxy-N,N-dimethylbenzamide	$C_{10}H_{13}NO_{2}$	0.71	1.96
1209. 5-Methoxy-8-quinolinol	$C_{10}H_9NO_2$	2.06	1.09	1246. p-Methoxy-N,N-dimethylbenzamide	C ₁₀ H ₁₃ NO ₂	96.0	0.78
1210. 4-Methyl-5,8-dihydroxyquinoline	$C_{10}H_9NO_2$	1.59	68.0	1247. N-Methyl-2-ethylphenylcarbamate	C ₁₀ H ₁₃ NO ₂	1.93	2.45
1211. 3-Acetamido-4-chlorophenoxyacetic acid	C ₁₀ H ₁₀ CINO ₄	0.75	1.28	1248. N-Methyl-3-ethylphenylcarbamate	C ₁₀ H ₁₃ NO ₂	2.20	2.45
1212. 6,7 - Dimethylquinoxaline	$C_{10}H_{10}N_2$	2.29	2.20	1249. N-Methyl-4-ethylphenylcarbamate	C ₁₀ H ₁₃ NO ₂	2.23	2.45
1213. Sulfadiazine	C ₁₀ H ₁₀ N ₄ O ₂ S	-0.13	-0.21	1250. N-Methyl-2,3-dimethylphenylcarbamate	C10H13NO2	1.95	2.35
1214. Benzoylacetone	C10H10O2	2.52	1.45	1251. N-Methyl-2,5-dimethylphenylcarbamate	C10H13NO2	2.03	2.35
1215, 4-Acetyl-phenoxyacetic acid	C10H10O4	0.87	0.85	1252. N-Methyl-3,4-dimethylphenylcarbamate	$C_{10}H_{13}NO_{2}$	2.09	2.35
1216. 3-Acetyl-phenoxyacetic acid	C₁₀H₁₀O₄	86.0	0.85	1253. N-Methyl-3,5-dimethylphenylcarbamate	$C_{10}H_{13}NO_{2}$	2.23	2.35
1217. 2-Acetyl-phenoxyacetic acid	C10H10O4	1.25	1.88	1254. m-Tolyl-N,N-dimethylcarbamate	$C_{10}H_{13}NO_{2}$	2.05	1.59
1218. 1,1-Dimethyl-3-m-CF ₃ -phenylurea	$C_{10}H_{11}F_3N_20$	2.36	2.32	1255. o-Tolyl-N.N-dimethylcarbamate	C ₁₀ H ₁₃ NO ₂	1.86	1.59
1219. 3-Allyloxy-4-aminobenzoic acid	C ₁₀ H ₁₁ NO ₃	0.42	1.15	1256. p-Tolyl-N.N-dimethylcarbamate	$C_{10}H_{13}NO_{2}$	2.03	1.59
1220. N-Methyl-3-acetylphenylcarbamate	C ₁₀ H ₁₁ NO ₃	06.0	1.05	1257. N-Methyl-3-methyl-4-methylthiophenylcarba	ırba-		
1221. N-Methyl-4-acetylphenylcarbamate	C ₁₀ H ₁₁ NO ₃	1.01	1.05	mate	C ₁₀ H ₁₃ NO ₂ S	2.47	2.47
1222. m-Acetamide-phenoxyacetic acid	C ₁₀ H ₁₁ NO ₄	0.48	0.22	1258. 3-Methoxyphenyl-N,N-dimethylcarbamate	5 C ₁₀ H ₁₃ NO ₃	1.60	0.97
1223. Sulfamethoxazole	C10H11N3O3S	0.88	0.88	1259. 4-Methoxyphenyl-N,N-dimethylcarbamate	5 C ₁₀ H ₁₃ NO ₃	1.53	0.97
1224. 2,5-Dimethyl-4-chloro-N-methylphenylcarba	÷			1260. N-Methyl-2-ethoxyphenylcarbamate	_	1.24	1.32
mate	$C_{10}H_{12}CINO_2$	2.95	3.00	1261. N-Methyl-3-ethoxyphenylcarbamate	C ₁₀ H ₁₃ NO ₃	1.75	1.80
1225. Serotonin	$C_{10}H_{12}N_2O$	0.21	0.54	1262. N-Methyl-4-ethoxyphenylcarbamate	C ₁₀ H ₁₃ NO ₃	1.63	1.80
1226. m-Diacetamidobenzene	$C_{10}H_{12}N_2O_2$	0.50	0.03	1263. 2-Propoxy-4-aminobenzoic acid	C ₁₀ H ₁₃ NO ₃	0.70	2.34
1227. 4-Dimethylamino- β -nitrostyrene	C10H12N2O2	2.67	2.39	1264. 4-Sulfamoylbenzoic acid propyl ester	C10H13NO4S	1.75	1.40
1228. Allobarbital	$C_{10}H_{12}N_2O_3$	0.94	0.61	1265. 1-s-Butylbenzotriazole	C ₁₀ H ₁₃ N ₃	2.31	2.42
1229. 4-Ethoxyphenylacetate	$C_{10}H_{12}O_3$	1.95	2.14	1266. 3,5-Dimethoxy-4-bromophenethylamine	C ₁₀ H ₁₄ BrNO ₂	2.03	3.18
1230. Ethylmandelate	$C_{10}H_{12}O_{3}$	0.91	1.39	1267. Anabasine	$C_{10}H_{14}N_2$	0.97	0.78

TABLE A1 (continued)

C ₁₀ H ₁₄ N ₂ 1.17 0.66 C ₁₀ H ₁₄ N ₂ 0.33 0.31 0.31 0.41 0.60 C ₁₀ H ₁₄ N ₂ O 0.33 0.31 0.31 0.51 0.64 0.48 0.64 0.48 0.41 0.68 C ₁₀ H ₁₄ N ₂ O ₂ 1.43 1.68 1.68 1.60 C ₁₀ H ₁₆ N ₂ O ₃ 1.43 1.68 1.65 1.60 C ₁₀ H ₁₆ N ₂ O ₃ 1.89 1.65 1.65 1.60 C ₁₁ H ₁₆ Cl ₂ N ₃ O ₂ 4.66 5.17 0.14 C ₁₁ H ₂ Cl ₃ N ₃ O ₂ 4.66 5.17 0.00 CH ₃ C ₁₁ H ₂ Cl ₃ N ₃ O ₂ 4.66 5.17 0.00 CH ₃ C ₁₁ H ₂ Cl ₃ N ₃ O ₂ 5.21 0.23 0.00 CH ₃ C ₁₁ H ₂ Cl ₃ N ₃ O ₂ 5.21 0.22 0.14 0.00 CH ₃ C ₁₁ H ₃ Cl ₃ N ₃ O ₂ 5.21 0.22 0.14 0.00 CH ₃ C ₁₁ H ₃ Cl ₃ N ₃ O ₂ 5.21 0.22 0.14 0.00 CH ₃ C ₁₁ H ₃ Cl ₃ N ₃ O ₂ 2.20 2.20 0.00 CH ₃ C ₁₁ H ₃ Cl ₃ N ₃ O ₂ 2.20 2.20 0.00 CH ₃ C ₁₁ H ₃ Cl ₃ N ₃ O ₂ 2.20 2.20 0.00 CH ₁ Cl ₁ H ₃ O ₃ 2.21 0.22 0.20 0.14 0.00 C ₁₁ H ₃ O ₃ 2.21 0.22 0.10 0.10 C ₁₁ H ₃ O ₃ 2.21 0.22 0.10 0.10 C ₁₁ H ₃ O ₃ 2.21 0.22 0.10 0.10 C ₁₁ H ₃ O ₃ 2.71 2.22 0.10 0.10 C ₁₁ H ₁₂ N ₂ O ₃ 2.71 2.22 0.10 0.10 C ₁₁ H ₁₂ N ₂ O ₃ 2.71 2.22 0.10 0.10 C ₁₁ H ₁₂ N ₂ O ₃ 2.71 2.22 0.11 0.00 0.23 0.23 0.28 0.11 0.00 0.23 0.23 0.28 0.11 0.20 0.23 0.23 0.24 0.11 0.20 0.23 0.23 0.23 0.24 0.11 0.00 0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.24 0.21 0.23 0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23						
CroH14N2O 0.33 0.31 CroH14N2O 1.12 1.68 CroH16NO 1.12 1.03 CroH16NO 1.12 1.03 CroH16NO 1.12 1.03 CroH16NO 1.12 1.03 CroH16NO 2.45 2.53 CroH16NO 2.45 2.53 CroH16NO 2.46 6.17 CroCCH3 CriH6ClF3N3O2 4.86 6.17 CriH6F3N3O2 4.86 5.17 CriH6F3N3O2 5.21 6.23 CriH6F3N3O2 5.21 6.23 CriH6F3N3O2 5.21 6.23 CriH6F3N3O2 5.03 5.50 CriH6NO 2.62 2.20 CriH6NO 2.71 2.20 CriH6NO 2.71 2.12 Inol CriH12NO 2.71 2.26 CriH12NO 2.72 2.34 Inbamate CriH13NO 2.59 2.33 Inbamate CriH14NO 2.59 2.33 CriH14O 2.50 2.59 CriH14O 2.50 2.50 CriH14O 2.50		0.60	1306. o-Isopropylphenoxyacetic acid	C ₁₁ H ₁₄ O ₃	2.84	2.88
Continuous continuous continuous continuous continuous continuo	_	0.31	1307. p-Hydroxybenzoic acid butyl ester	C ₁₁ H ₁₄ O ₃	3.57	2.82
C;OH;sNO 1.12 1.03 C;OH;sNO 1.12 1.03 C;OH;sNO 1.12 1.03 C;OH;sNO 2.45 2.53 C;OH;sNO 2.45 2.53 C;OH;SNO 2.45 2.53 C;OH;SNO 2.46 6.63 C;H;CIS,N3O 2.46 6.17 C;H;CIS,N3O 2.40 6.17 C;H;CIS,N3O 2.21 6.23 C;H;CIS 2.10 2.12 C;H;CIS 2.10 2.13 C;H;CIS 2.10 2.13 C;H;CIS 2.10 2.10 C;H;CIS 2.10 2.10 C;H;CIS 2.10 2.10 C;H;CIS 2.10 2.10 C;H;CIS 2.10	C ₁₀ H ₁₄ N ₂ O ₂	1,68	1308. 4-Butoxybenzamide	$C_{11}H_{15}NO_{2}$	2.48	2.01
C(CN)CCOCCH ₃ C ₁₀ H ₁₈ NO ₂ S C ₁₁ H ₁ Cl ₂ F ₃ N ₃ O ₂ 4.66 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 4.66 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 4.66 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 4.66 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 5.21 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 5.21 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 5.21 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 5.03 C ₁₁ H ₁ Cl ₃ N ₃ O ₂ 5.03 C ₁₁ H ₁ F ₁ N ₃ O ₂ 5.03 C ₁₁ H ₁ F ₁ N ₃ O ₂ 5.03 C ₁₁ H ₁ F ₁ N ₃ O ₂ 5.03 C ₁₁ H ₁ F ₁ N ₃ O ₂ 5.03 C ₁₁ H ₁ F ₁ N ₃ O ₂ 5.03 C ₁₁ H ₁ Cl ₃ C ₁₁ H ₁ Cl ₃ 6.02 C ₁₁ H ₁ Cl ₃ C ₁₁ H ₂ Cl ₃ C ₁₁ Cl ₃ C ₁₁ Cl ₄	`	1.03	1309, 3-Isopropyl-4-hydroxyacetanilide	$C_{11}H_{15}NO_2$	2.20	1.87
CCN)CCOCCH ₃ C ₁₁ H ₆ N ₂ O ₃ 1.89 1.65 C(CN)CCOCCH ₃ C ₁₁ H ₆ Cl ₂ F ₃ N ₃ O ₂ 4.36 6.63 C(11+Cl ₅ N ₃ O ₂ 4.66 5.17 C(11+Cl ₅ N ₃ O ₂ 4.66 5.17 C(11+R ₅ N ₃ O ₂ 5.21 6.23 C(11+R ₅ Cl ₃ N ₃ O ₂ 5.21 6.23 C(11+R ₅ N ₃ O ₂ 5.03 5.50 C(11+R ₅ N ₃ O ₂ 3.78 4.55 C(11+R ₅ N ₃ O ₂ 3.78 4.55 C(11+R ₅ N ₃ O ₂ 3.78 4.55 C(11+R ₅ N ₃ O ₂ 3.78 4.46 C(11+R ₅ O ₃ 3.78 4.27 4.88 C(11+R ₅ O ₃ 3.78 4.34 4.46 C(11+R ₅ O ₃ 2.10 2.12 C(11+R ₅ O ₃ 1.35 1.36 C(11+R ₅ O ₃ 2.20 2.20 C(11+R ₅ O ₃ 1.20 1.20 C(11+R ₅ O ₃ 1.20 1.20 C(11+R ₅ O ₃ 2.71 2.26 C(11+R ₅ O ₃ 2.71 2.26 C(11+R ₅ O ₃ 2.71 2.26 C(11+R ₅ N ₃ O ₂ 2.75 1.51 C(11+R ₅ N ₃ O ₂ 2.75 1.58 C(11+R ₅ N ₃ O ₂ 1.63 0.28 C(11+R ₅ N ₃ O ₃ 1.69 0.23 C(11+R ₅ N ₃ O ₃ 1.69 0.21 C(11+R ₅ N ₃ O ₃ 1.69 0.23 C(11+R ₅ N ₃ O ₃ 1.69 2.33 C(11+R ₅ N ₃ O ₃ 1.69 2.33 C(11+R ₅ N ₃ O ₃ 2.69 2.88 C(11+R ₅ O ₃ 2.69 C(11+R ₅		2.53	1310. 2,4,5-Trimethyl-N-methylphenylcarbamate	$C_{11}H_{15}NO_2$	2.52	2.77
2(CN)COOCH ₃ C ₁₁ H ₈ Cl ₂ F ₃ N ₃ O ₂ 4.36 6.63)COOCH ₃ C ₁₁ H ₅ Cl ₂ F ₃ N ₃ O ₂ 4.66 5.17)COOC ₂ H ₅ C ₁₁ H ₅ Cl ₃ N ₃ O ₂ 5.21 6.23)COOC ₂ H ₅ C ₁₁ H ₈ Cl ₃ N ₃ O ₂ 5.21 6.23)COOC ₂ H ₅ C ₁₁ H ₈ Cl ₃ N ₃ O ₂ 5.03 5.50 CCOOCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₂ 5.03 5.50 CCOOCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₂ 5.42 4.01 CCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₂ 5.42 4.01 CCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₂ 5.22 4.01 CCH ₃ C ₁₁ H ₈ Cl ₃ N ₂ 2.20 2.29 CCH ₄ N ₃ O ₂ 2.20 2.20 CCH ₈ O ₂ 1.35 1.35 CCH ₈ O ₃ 1.20 2.20 CCH ₁ N ₃ O ₂ 2.71 2.02 CCH ₁ N ₃ O ₂ 1.06 2.99 CCH ₁ N ₁ NO 2.71 2.12 CCH ₁ N ₂ N ₂ 0.23 0.28 CCH ₁ N ₂ N ₂ 0.23 0.28 CCH ₁ N ₂ N ₂ O ₂ 1.53 CCH ₁ N ₂ N ₂ O ₂ 1.63 CCH ₁ N ₂ N ₂ O ₂ 1.63 1.68 CCH ₁ N ₃ N ₂ O ₂ 1.63 0.24 CCH ₁ N ₃ N ₃ O ₃ 1.69 2.34 CCH ₁ N ₃ N ₃ O ₃ 1.69 2.33 CCH ₁ N ₃ N ₃ O ₃ 1.69 2.33 CCH ₁ N ₁ N ₃ O ₃ 2.59 2.88 CCH ₁ H ₁ O ₃ 2.59 2.88		1.65	1311. 2,3,5-Trimethyl-4-hydroxyacetanilide	C ₁₁ H ₁₅ NO ₂	1.30	1.56
)COOCCH ₃ C ₁₁ H ₇ ClF ₃ N ₃ O ₂ 4.66 5.17 110COOCCH ₃ C ₁₁ H ₅ Cl ₃ N ₃ O ₂ 5.21 6.23 110COOCCH ₃ C ₁₁ H ₈ Cl ₃ N ₃ O ₂ 5.21 6.23 110COOCCH ₃ C ₁₁ H ₈ Cl ₃ N ₃ O ₂ 5.21 6.23 110COOCCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₄ S 3.78 4.52 4.01 C ₁₁ H ₈ F ₃ N ₃ O ₄ S 4.22 4.01 C ₁₁ H ₈ F ₃ N ₃ O ₄ S 4.27 4.88 C ₁₁ H ₇ NS 4.34 4.46 C ₁₁ H ₇ NS 4.34 4.46 C ₁₁ H ₇ NS 4.34 4.46 C ₁₁ H ₈ O ₂ 2.10 2.12 C ₁₁ H ₈ O ₂ 2.20 2.20 2.10 C ₁₁ H ₈ O ₂ 2.20 2.20 2.20 C ₁₁ H ₈ O ₃ 1.35 1.35 1.35 1.35 C ₁₁ H ₁ ClO ₃ 1.06 2.99 C ₁₁ H ₁ ClO ₃ 2.71 2.12 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.75 1.51 2.12 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.75 1.51 2.12 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.75 1.51 2.00 C ₁₁ H ₁ N ₁ N ₂ O ₂ 1.03 0.28 C ₁₁ H ₁ N ₁ N ₂ O ₂ 1.03 0.28 C ₁₁ H ₁ N ₁ N ₂ O ₂ 1.03 0.28 C ₁₁ H ₁ N ₁ N ₂ O ₂ 1.03 0.28 C ₁₁ H ₁ N ₁ N ₂ O ₂ 1.03 0.23 0.24 0.21 date C ₁₁ H ₁ N ₁ N ₂ O ₂ 1.03 0.23 0.24 0.21 date C ₁₁ H ₁ N ₁ N ₁ O ₂ 1.05 2.34 0.23 date C ₁₁ H ₁ N ₁ N ₁ O ₃ 1.55 2.34 0.24 C ₁₁ H ₁ N ₁ O ₃ 2.59 2.88 110 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.2	C ₁₁ H ₆ Cl ₂ F ₃ N ₃ O ₂	6.63	1312. 2,3,6-Trimethyl-4-hydroxyacetanilide	$C_{11}H_{15}NO_2$	1.24	1.56
(COOCH ₃ C ₁₁ H ₇ F ₃ N ₄ O ₄ 3.44 5.05 (COOC ₂ H ₅ C ₁₁ H ₅ Cl ₃ N ₅ O ₂ 5.21 6.23 (COOCH ₃ C ₁₁ H ₅ Cl ₃ N ₅ O ₂ 5.23 5.50 (COCH ₃ C ₁₁ H ₅ Cl ₃ N ₅ O ₂ 5.03 5.50 (COCH ₃ C ₁₁ H ₅ Cl ₃ N ₅ O ₂ 5.03 5.50 (COCH ₃ C ₁₁ H ₅ Cl ₃ N ₅ O ₂ 8.427 4.88 (C ₁₁ H ₅ N ₅ O ₂ 8.427 4.88 (C ₁₁ H ₅ N ₅ O ₂ 8.427 4.46 (C ₁₁ H ₈ O ₂ 2.10 2.12 (C ₁₁ H ₈ O ₂ 2.10 2.12 (C ₁₁ H ₈ O ₂ 2.10 2.12 (C ₁₁ H ₈ O ₂ 1.35 1.35 (C ₁₁ H ₁₁ ClO ₃ 1.06 2.99 (C ₁₁ H ₁₁ N ₂ O ₂ 2.75 1.51 (C ₁₁ H ₁₂ N ₂ O ₂ 2.75 1.51 (C ₁₁ H ₁₂ N ₂ O ₂ 2.75 1.51 (C ₁₁ H ₁₂ N ₂ O ₂ 1.53 1.58 (C ₁₁ H ₁₂ N ₂ O ₂ 1.53 1.58 (C ₁₁ H ₁₃ N ₀ O ₃ 1.18 0.71 (C ₁₁ H ₁₃ N ₀ O ₃ 1.18 0.71 (C ₁₁ H ₁₃ N ₀ O ₃ 1.18 0.71 (C ₁₁ H ₁₃ N ₀ O ₃ 1.18 0.71 (C ₁₁ H ₁₃ N ₀ O ₃ 1.20 (C ₁₁ H ₁₃ N ₀ O ₃ 1.20 (C ₁₁ H ₁₃ N ₀ O ₃ 1.20 (C ₁₁ H ₁₃ N ₀ O ₃ 2.59 2.33 (C ₁₁ H ₁₄ O ₃ 2.59 2.88 (C ₁₁ H ₁₄ O ₃ 2.59 2.88	C ₁₁ H ₇ CIF ₃ N ₃ O ₂	5.17	1313. 2-Amino-5-phenylvaleric acid	$C_{11}H_{15}NO_2$	-0.36	-0.19
(COOC ₂ H ₅ C ₁₁ H ₈ Cl ₃ N ₄ O ₂ 5.21 6.23 (COOC ₄ C ₁₁ H ₅ Cl ₃ N ₄ O ₂ 5.03 5.50 (COOC ₄ C ₁₁ H ₅ Cl ₃ N ₃ O ₂ 3.78 4.52 (COOC ₄ C ₁₁ H ₅ N ₃ O ₄ S 4.27 4.88 (C ₁₁ H ₅ N ₃ O ₅ S 4.27 4.88 (C ₁₁ H ₅ N ₃ O ₅ S 4.27 4.46 (C ₁₁ H ₈ O ₂ 2.20 (C ₁₁ H ₈ O ₂ 2.10 2.12 (C ₁₁ H ₈ O ₂ 2.20 (C ₁₁ H ₈ O ₂ 1.35 (C ₁₁ H ₈ O ₃ 1.20 (C ₁₁ H ₈ O ₃ 1.20 (C ₁₁ H ₁ N ₄ O ₂ 2.75 1.51 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.51 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.51 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.51 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.51 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.52 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.52 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.53 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.53 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.53 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.53 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.53 (C ₁₁ H ₁ N ₄ O ₂ 2.77 1.53 (C ₁₁ H ₁ N ₄ O ₂ 2.17 0.28 (C ₁₁ H ₁ N ₄ O ₃ 2.29 (C ₁₁ H ₁ N ₄ O ₃ 2.29 (C ₁₁ H ₁ N ₄ O ₃ 2.59 (C ₁₁ H ₁ O ₃ 2.59	3 C ₁₁ H ₇ F ₃ N₄O₄	5.05	1314. 2-Butoxy-4-aminobenzoic acid	C ₁₁ H ₁₅ NO ₃	1.24	2.88
)COOC2H ₅ C ₁₁ H ₈ C ₁₃ N ₉ O ₂ 5.03 5.50 C ₁₁ H ₈ C ₁₃ N ₉ O ₂ 3.78 4.52 COOCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₂ 3.78 4.52 COOCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₄ S 4.27 4.88 C ₁₁ H ₈ C ₁ N ₃ O ₅ S 4.27 4.88 C ₁₁ H ₃ N ₃ O ₅ S 4.27 4.88 C ₁₁ H ₃ N ₃ O ₅ S 4.27 4.88 C ₁₁ H ₃ N ₃ O ₅ S 4.27 4.88 C ₁₁ H ₃ O ₂ 2.13 4.46 C ₁₁ H ₈ O ₂ 2.10 2.12 C ₁₁ H ₈ O ₂ 2.10 2.12 C ₁₁ H ₈ O ₂ 2.20 2.20 C ₁₁ H ₈ O ₃ 1.26 1.35 I.35 II.36 C ₁₁ H ₁ N ₁ O ₂ 2.70 2.20 C ₁₁ H ₁ N ₁ O ₂ 2.71 2.12 II.36 II.36 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.71 2.12 II.36 II.36 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.71 2.12 II.36 II.36 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.71 2.12 II.36 II.36 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.71 2.12 II.36 II.36 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.71 2.26 C ₁₁ H ₁ N ₂ O ₂ 2.71 2.26 C ₁₁ H ₁ N ₂ N ₂ O ₂ 2.71 2.34 II.38 II.38 II.38 II.38 C ₁₁ H ₁ N ₁ N ₂ O ₂ 2.34 II.38 II.39	$C_{11}H_8Cl_3N_3O_2$	6.23	1315. Baygon	$C_{11}H_{15}NO_3$	1.58	1.67
OCH3 C ₁ H _B F ₃ N ₃ O ₂ 3.78 4.52 1317. COOCH3 C ₁ H _B F ₃ N ₃ O ₂ 4.27 4.88 1318. OCH3 C ₁ H _B T ₃ N ₃ O ₂ S 4.27 4.88 1319. C ₁ H ₅ NN 4.34 4.46 1320. C ₁ H ₅ NN 2.13 4.46 1320. C ₁ H ₆ O ₂ 2.10 2.29 1321. C ₁ H ₆ O ₂ 2.20 2.29 1322. C ₁ H ₆ O ₃ 1.26 2.29 1324. C ₁ H ₁ NO 2.71 2.12 1326. C ₁ H ₁ NO 2.71 2.16 1329. G ₁ H ₁ NO 2.71 2.26 1320. C ₁ H ₁ NO 2.73 2.26 1330. G ₁ H ₁ NO 2.53 1.53 1.32 G ₁ H ₁ N ₂ N ₂ O ₂ 1.53 1.56 1.33	C11HBCl3N3O2	5.50	1316. N-Methyl-3-isopropoxyphenylcarbamate	C ₁₁ H ₁₅ NO ₃	1.96	2.15
COOCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₄ S 4.22 4.01 1318. OCH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₅ S 4.27 4.88 1319. C ₁₁ H ₃ N ₅ O ₅ S 4.27 4.88 1319. C ₁₁ H ₃ N ₅ O ₅ S 4.27 4.88 1319. C ₁₁ H ₃ N ₅ O ₅ S 4.24 4.46 1320. C ₁₁ H ₈ O ₂ 2.10 2.29 1321. C ₁₁ H ₈ O ₂ 2.20 2.29 1322. C ₁₁ H ₈ O ₃ 1.35 1.35 1.35 1324. C ₁₁ H ₁ N ₀ O ₂ 2.71 2.12 1326. C ₁₁ H ₁ N ₀ O ₂ 2.71 2.12 1326. C ₁₁ H ₁ N ₂ O ₂ 2.71 2.26 1320. C ₁₁ H ₁ N ₂ O ₂ 1.53 1.58 1330. C ₁₁ H ₁ N ₂ O ₂ 1.53 1.58 1331. C ₁₁ H ₁ N ₂ O ₂ 1.15 0.28 1331. C ₁₁ H ₁ N ₂ O ₂ 1.15 0.28 1331. C ₁₁ H ₁ N ₂ O ₂ 1.15 0.28 1331. C ₁₁ H ₁ N ₀ O ₂ 0.17 0.28 1331. C ₁₁ H ₁ N ₀ O ₂ 0.17 0.28 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.21 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.21 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ N ₀ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ O ₂ 0.29 0.29 1331. C ₁₁ H ₁ O ₃ 0.29 0.29 1331.	$C_{11}H_8F_3N_3O_2$	4.52	1317. 1-Pentylbenzotriazole	$C_{11}H_{15}N_3$	3.22	3.19
OCH3 C ₁₁ H ₆ F ₃ N ₃ O ₂ S 4.27 4.88 1319. C ₁₁ H ₇ NS 4.34 4.46 1320. C ₁₁ H ₇ NS 4.34 4.46 1321. C ₁₁ H ₆ O ₂ 2.10 2.29 1321. C ₁₁ H ₆ O ₂ 2.10 2.12 1323. I C ₁₁ H ₆ O ₂ 2.20 1324. I C ₁₁ H ₆ O ₃ 1.20 1324. I C ₁₁ H ₆ O ₃ 1.20 1324. I C ₁₁ H ₁ NO 2.71 2.29 1326. I C ₁₁ H ₁ NO 2.71 2.29 1326. I C ₁₁ H ₁ NO 2.71 2.26 1328. I C ₁₁ H ₁ NO 2.71 2.26 1330. C ₁₁ H ₁₂ N ₂ O ₂ 1.53 1.58 1324. G ₁₁ H ₁₂ N ₂ O ₂ 1.53 1.58 1334. I C ₁₁ H ₁₂ N ₂ O ₂ 0.03 0.52 1336. I G ₁₁ H ₁₂ N ₂ O ₂ 1.14 0.21 1336. I	CH ₃ C ₁₁ H ₈ F ₃ N ₃ O ₄ S	4.01	1318. 2-Pentylbenzotriazole	C ₁₁ H ₁₅ N ₃	3.63	2.83
C ₁₁ H ₂ NS 4.34 4.46 1320. C ₁₁ H ₂ NS 4.34 4.46 1321. C ₁₁ H ₆ O ₂ 2.10 2.29 1321. C ₁₁ H ₆ O ₂ 2.10 2.12 1323. i C ₁₁ H ₆ O ₃ 1.35 1324. i C ₁₁ H ₆ O ₃ 1.20 1324. i C ₁₁ H ₆ O ₃ 1.20 1324. i C ₁₁ H ₁ ClO ₃ 1.06 2.99 1326. i C ₁₁ H ₁ NO 2.71 2.12 1328. i C ₁₁ H ₁ NO 2.71 2.26 1329. C ₁₁ H ₁ NO 2.71 2.26 1330. C ₁₁ H ₁ NO 2.71 2.26 1330. C ₁₁ H ₁ NO 2.73 0.28 1331. ate C ₁₁ H ₁₂ NA ₂ S 0.17 0.28 1336. ate C ₁₁ H ₁₂ NA ₂ S 0.93 0.62 1336. ate C ₁₁ H ₁₃ NO ₃ 1.56 2.34 1339. arbamate C ₁₁ H ₁₄ NO ₃ </td <td>C₁₁H₈F₃N₃O₂S</td> <td>4.88</td> <td>1319, 5-Allyl-5-butylbarbituric acid</td> <td>C₁₁H₁₆N₂O₃</td> <td>1.35</td> <td>1.67</td>	C ₁₁ H ₈ F ₃ N ₃ O ₂ S	4.88	1319, 5-Allyl-5-butylbarbituric acid	C ₁₁ H ₁₆ N ₂ O ₃	1.35	1.67
C ₁₁ H ₂ NS 4.34 4.46 1321. C ₁₁ H ₆ CINO 2.62 2.29 1322. C ₁₁ H ₆ O ₂ 2.10 2.12 1323. ne C ₁₁ H ₆ O ₂ 2.20 2.20 1324. ne C ₁₁ H ₆ O ₃ 1.35 1.35 1324. ne C ₁₁ H ₆ O ₃ 1.20 1.20 1326. c ₁₁ H ₁ NO 2.71 2.12 1326. c ₁₁ H ₁ NO 2.71 2.26 1329. c ₁₁ H ₁ N ₂ N ₂ 2.71 2.26 1330. c ₁₁ H ₁ N ₁ N ₂ O ₂ 1.53 1.58 1331. c ₁₁ H ₁ N ₁ N ₂ O ₂ 1.14 1.339. 1331. ate C ₁₁ H ₁ N ₁ N ₂ O ₂ 0.71 0.28 1334. c ₁ H ₁ N ₂ NO 1.36 0.34 0.21 1336. are C ₁₁ H ₁ N ₂ O ₂ S 0.17 0.28 1334. are C ₁₁ H ₁ N ₁ O ₂ S 0.34 1339. are C ₁₁ H ₁ N ₁ O ₂ S 0.39 0.52 1340. <td></td> <td>4.46</td> <td>1320. Inpea</td> <td>$C_{11}H_{10}N_2O_3$</td> <td>1.28</td> <td>1.13</td>		4.46	1320. Inpea	$C_{11}H_{10}N_2O_3$	1.28	1.13
c $C_{11}H_8CINO$ 2.62 2.29 $132.$ i $C_{11}H_8O_2$ 2.10 2.12 $132.$ i $C_{11}H_8O_2$ 2.20 2.20 $132.$ inoquinone $C_{11}H_8O_3$ 1.20 1.20 $132.$ inol $C_{11}H_1NO_2$ 2.71 2.99 $132.$ inol $C_{11}H_1NO_2$ 2.71 2.99 $132.$ inol $C_{11}H_1NO_2$ 2.71 2.20 $132.$ inol $C_{11}H_1NO_2$ 2.71 2.20 $132.$ $C_{11}H_1NO_2$ 2.71 2.20 $132.$ $C_{11}H_2NA_2$ 2.71 2.20 $132.$ $C_{11}H_2NA_2$ 2.71 2.20 $132.$ $C_{11}H_1NA_2$ 2.34 2.34 $133.$ are $C_{11}H_3NO_3$ 1.55 2.34 $133.$ are $C_{11}H_1AO_3$ 2.59 2.34 $133.$ arbamate $C_{11}H_1AO_3$ 2.59		4.46	1321. p-Diethylaminobenzyl alcohol	C11H17NO	2.29	1.99
the Grithe O_{c1} 2.10 2.12 1323. The children of O_{c1} 4.26 2.20 2.20 1324. The children of O_{c1} 4.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1	0	2.29	1322. 2,3-Dimethoxyamphetamine	$C_{11}H_{17}NO_2$	1.49	1.63
the G ₁₁ H ₈ O ₂ 2.20 2.20 1324. The G ₁₁ H ₈ O ₃ 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	C ₁₁ H ₈ O ₂	2.12	1323. 2,4-Dimethoxyamphetamine	$C_{11}H_{17}NO_2$	1.75	1.40
thoquinone C ₁₁ H ₈ O ₃ 1.35 1.35 1325. thoquinone C ₁₁ H ₈ O ₃ 1.20 1.20 1326. C ₁₁ H ₁₁ ClO ₃ 1.06 2.99 1327. C ₁₁ H ₁₁ NO ₂ 2.71 2.12 1328. C ₁₁ H ₁₁ NO ₂ 2.71 2.26 1329. C ₁₁ H ₁₂ N ₂ O ₂ 1.53 1.58 1330. C ₁₁ H ₁₂ N ₂ O ₂ -1.04 -1.40 1331. C ₁₁ H ₁₂ N ₂ O ₂ -1.04 -1.40 1333. ate C ₁₁ H ₁₃ NO ₂ 0.33 0.28 1334. ate C ₁₁ H ₁₃ NO ₂ 1.18 0.71 1335. are C ₁₁ H ₁₃ NO ₃ 1.55 2.34 1336. are C ₁₁ H ₁₃ NO ₃ 1.55 2.34 1339. arbamate C ₁₁ H ₁₄ O ₃ 2.59 2.23 1340. C ₁₁ H ₁₄ O ₃ 2.59 2.88 1341.	C ₁₁ H ₈ O ₂	2.20	1324. 2,5-Dimethoxyamphetamine	$C_{11}H_{17}NO_2$	1.88	1.40
thoquinone $C_{11}H_8O_3$ 1.20 1.20 1326. $C_{11}H_{11}ClO_3$ 1.06 2.99 1327. $C_{11}H_{11}NO_2$ 2.71 2.12 1328. $C_{11}H_{11}NO_2$ 2.75 1.51 1329. $C_{11}H_{12}N_2O_2$ 1.53 1.58 1330. $C_{11}H_{12}N_2O_2$ -1.04 -1.40 1331. $C_{11}H_{12}NO_2$ 0.34 0.28 1337. $C_{11}H_{12}NO_3$ 0.93 0.52 1336. atte $C_{11}H_{13}NO_3$ 1.18 0.71 1337. arbamate $C_{11}H_{13}NO_3$ 1.55 2.34 1338. $C_{11}H_{14}NO_3$ 1.55 2.34 1338. $C_{11}H_{14}O_3$ 2.59 2.23 1341.	C11H8O3	1.35	1325. 3,4-Dimethoxyamphetamine	$C_{11}H_{17}NO_2$	1.00	1.63
C ₁₁ H ₁₁ ClO ₃ 1.06 2.99 1327. inol C ₁₁ H ₁₁ NO ₂ 2.71 2.12 1328. C ₁₁ H ₁₁ NO ₂ 2.71 2.26 1329. C ₁₁ H ₁₂ N ₂ O 0.23 0.28 1330. C ₁₁ H ₁₂ N ₂ O -1.04 -1.40 1331. C ₁₁ H ₁₂ N ₂ O ₂ -1.04 -1.40 1334. ate C ₁₁ H ₁₂ NO ₂ 0.34 0.28 1334. ch H ₁₃ NO ₃ 1.18 0.71 1335. are C ₁₁ H ₁₃ NO ₃ 1.36 0.23 1336. are C ₁₁ H ₁₃ NO ₃ 1.18 0.71 1337. arbamate C ₁₁ H ₁₃ NO ₃ 1.55 2.34 1339. ch H ₁₄ N ₂ O 2.59 2.23 1340. C ₁₁ H ₁₄ O ₃ 2.59 2.88 1341.	C ₁₁ H ₈ O ₃	1.20	1326. Mescaline	C ₁₁ H ₁₇ NO ₃	0.78	0.80
inol $C_{11}H_1NO$ 2.71 2.12 $C_{11}H_1NO_2$ 2.75 1.51 $C_{11}H_1NO_2$ 2.75 1.51 $C_{11}H_1NO_2$ 2.77 2.26 $C_{11}H_12N_2O$ 0.23 0.28 $C_{11}H_12N_2O$ 1.53 1.58 $C_{11}H_12N_2O_2$ -1.04 -1.40 $C_{11}H_12N_2O_2$ -1.04 -1.40 $C_{11}H_12N_2O_2$ 0.17 0.28 $C_{11}H_12N_2O_3$ 0.17 0.28 $C_{11}H_12N_2O_3$ 0.17 0.28 $C_{11}H_12N_2O_3$ 0.17 0.28 $C_{11}H_13NO_3$ 1.18 0.71 arb		2.99	1327. 5-Ethyl-5-isoamyl-2-thiobarbituric acid	C11H18N2O2S	2.98	2.84
inol C ₁₁ H ₁₁ NO ₂ 2.75 1.51 C ₁ H ₁₂ N ₂ 2.71 2.26 C ₁ H ₁₂ N ₂ O 0.23 0.28 C ₁ H ₁₂ N ₂ O 1.53 1.58 C ₁ H ₁₂ N ₂ O -1.04 -1.40 C ₁ H ₁₂ N ₂ O ₂ -1.04 -1.40 C ₁ H ₁₂ N ₄ O ₂ S 0.17 0.28 C ₁ H ₁₂ N ₄ O ₂ S 0.34 0.21 ate C ₁ H ₁₃ NO ₃ 0.93 0.52 arbamate C ₁ H ₁₃ NO ₃ 1.18 0.71 arbamate C ₁ H ₁₃ NO ₃ 1.55 2.34 C ₁ H ₁₄ N ₂ O 2.59 2.23 C ₁ H ₁₄ O ₃ 2.59 2.88 C ₁ H ₁₄ O ₃ 2.69 2.88	C,,H,,NO	2.12		$C_{11}H_{18}N_2O_3$	2.24	2.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₁ H ₁₁ NO ₂	1.51	1329. Amobarbital	$C_{11}H_{18}N_2O_3$	2.07	2.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.26	1330. Pentobarbital	$C_{11}H_{18}N_2O_3$	2.03	2.11
C ₁₁ H ₁₂ N ₂ O ₂ 1.53 1.58 C ₁₁ H ₁₂ N ₂ O ₂ -1.04 -1.40 C ₁₁ H ₁₂ N ₂ O ₂ -1.04 -1.40 C ₁₁ H ₁₂ N ₂ O ₃ 0.17 0.28 C ₁₁ H ₁₂ N ₄ O ₃ S 0.34 0.21 ate C ₁₁ H ₁₃ NO ₃ 0.93 0.52 arbamate C ₁₁ H ₁₃ NO ₃ 1.18 0.71 arbamate C ₁₁ H ₁₃ NO ₃ 1.55 2.34 C ₁₁ H ₁₄ N ₂ O 2.59 2.23 C ₁₁ H ₁₄ O ₃ 2.59 2.88 C ₁₁ H ₁₄ O ₃ 2.69 2.88		0.28	1331. 1,10-Phenanthroline	$C_{12}H_8N_2$	1.78	2.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.58	1332. 1,7-Phenanthroline	$C_{12}H_8N_2$	2.51	2.51
C ₁₁ H ₁₂ N ₄ O ₂ S 0.17 0.28 C ₁₁ H ₁₂ N ₄ O ₂ S 0.34 0.21 C ₁₁ H ₁₃ NO ₃ 0.93 0.52 ate C ₁₁ H ₁₃ NO ₃ 1.18 0.71 arbamate C ₁₁ H ₁₃ NO ₃ 1.55 2.34 C ₁₁ H ₁₄ N ₂ O 2.59 2.23 C ₁₁ H ₁₄ O ₃ 2.59 2.88 C ₁₁ H ₁₄ O ₃ 2.69 2.88		-1.40	1333. 4,7-Phenanthroline	$C_{12}H_8N_2$	2.05	1.99
tate C ₁₁ H ₁₂ N ₄ O ₂ S 0.34 0.21 C ₁₁ H ₁₃ NO ₃ 0.93 0.52 (C ₁₁ H ₁₃ NO ₃ 1.18 0.71 arbamate C ₁₁ H ₁₃ NO ₃ 1.55 2.34 C ₁₁ H ₁₄ NO ₃ 1.55 2.34 C ₁₁ H ₁₄ NO ₃ 2.59 2.23 C ₁₁ H ₁₄ O ₃ 2.59 2.88 C ₁₁ H ₁₄ O ₃ 2.69 2.88		0.28	1334. Phenazine	$C_{12}H_8N_2$	2.84	2.84
rate C ₁₁ H ₁₃ NO ₃ 0.93 0.52 rate C ₁₁ H ₁₃ NO ₃ 1.18 0.71 arbamate C ₁₁ H ₁₃ NO ₃ 1.55 2.34 c ₁₁ H ₁₄ NO ₃ 1.49 2.34 c ₁₁ H ₁₄ N ₂ O 2.59 2.23 c ₁₁ H ₁₄ O ₃ 2.59 2.88 c ₁₁ H ₁₄ O ₃ 2.69 2.88		0.21	1335. 4-Benzoylpyridine	$C_{12}H_9NO$	1.98	1.62
rate C ₁₁ H ₁₃ NO ₃ 1.18 0.71 arbamate C ₁₁ H ₁₃ NO ₃ 1.55 2.34 C ₁₁ H ₁₄ NO ₃ 1.49 2.34 C ₁₁ H ₁₄ N ₂ O 2.59 2.23 C ₁₁ H ₁₄ O ₃ 2.59 2.88 C ₁₁ H ₁₄ O ₃ 2.69 2.88	C ₁₁ H ₁₃ NO ₃	0.52	1336. 2-Acetamido-1,4-naphthoquinone	$C_{12}H_9NO_3$	1.29	1.23
arbamate C ₁₁ H ₁₃ NO ₃ 1.55 2.34 arbamate C ₁₁ H ₁₃ NO ₃ 1.49 2.34 C ₁₁ H ₁₄ N ₂ O 2.59 2.23 C ₁₁ H ₁₄ O ₃ 2.59 2.88 C ₁₁ H ₁₄ O ₃ 2.69 2.88	C ₁₁ H ₁₃ NO ₃	0.71	1337. Phenothiazine	C ₁₂ H ₉ NS	3.78	3.48
arbamate $C_{11}H_{13}NO_3$ 1.49 2.34 1.40 $C_{11}H_{14}N_2O$ 2.59 2.23 $C_{11}H_{14}O_3$ 2.59 2.88 $C_{11}H_{14}O_3$ 2.69 2.88 1.40 $C_{11}H_{14}O_3$ 2.69 2.88	C ₁₁ H ₁₃ NO ₃	2.34	1338. Azobenzene	$C_{12}H_{10}N_2$	3.82	2.31
$C_{11}H_{14}N_2O$ 2.59 2.23 $C_{11}H_{14}O_3$ 2.59 2.88 $C_{11}H_{14}O_3$ 2.69 2.88	C ₁₁ H ₁₃ NO ₃	2.34	1339. Harmalol	$C_{12}H_{12}N_20$	2.19	2.19
$C_{11}H_1d_0$ 2.59 2.88 1 $C_{11}H_1d_0$ 2.69 2.88 1		2.23	1340. Phenylsulfoxide	$C_{12}H_{10}OS$	2.06	2.70
oid C ₁₁ H ₁₄ O ₃ 2.69 2.88 1		2.88	1341. 6,7-Dimethyl-1,4-naphthoquinone	$C_{12}H_{10}O_{2}$	2.49	2.54
		2.88	1342. 2-Naphthoxyacetic acid	$C_{12}H_{10}O_3$	2.53	2.50
1305. 3-Propylphenoxyacetic acid $C_{11}H_{14}O_3$ 2.71 2.78 1343. o-Phenoxyaniline		2.78	1343. o-Phenoxyaniline	C ₁₂ H ₁₁ NO	2.46	2.74

TABLE A1 (continued)

Compound	Empirical formula	Log Pobsed	Log Pestd	Compound	Empirical formula	Log P _{obsd}	Log Pestd
1344. p-Phenoxyaniline	C ₁₂ H ₁₁ NO	2.36	2.60	1379. 4-Biphenylisothiocyanate	C ₁₃ H _o NS	4.66	5.19
1345. Carbaryl	C ₁₂ H ₁₁ NO ₂	2.34	2.70	1380. 4-Isothiocyanodiphenyl ether	C ₁₃ H ₉ NOS	4.75	4.96
1346. Benzidine	$C_{12}H_{12}N_2$	1.34	1.55	1381. 4-Isothiocyanodiphenylsulfoxide	C ₁₃ H ₈ NOS,	4.40	3.76
1347. Hydrazobenzene	$C_{12}H_{12}N_2$	2.94	2.94	1382. 4-Isothiocyanoazobenzene	C ₁₃ H ₉ N ₃ S	5.55	3.38
1348. Dapsone	$C_{12}H_{12}N_2O_2S$	0.97	-0.19	1383. 4-Aminosalicylic acid, 4-bromophenylester	C ₁₃ H ₁₀ BrNO ₃	3.46	3.78
1349. Sulfamethazine	$C_{12}H_{14}N_4O_2S$	0.32	0.77	1384. 4-Aminosalicylic acid, 2-bromophenylester	C ₁₃ H ₁₀ BrNO ₃	3.74	3.01
1350. o - t -Butylphenoxyacetic acid	$C_{12}H_{16}O_3$	3.33	3.34	1385. 4-Aminosalicylic acid, 3-bromophenylester	C ₁₃ H ₁₀ BrNO ₃	3.84	3.78
1351. 3-Butylphenoxyacetic acid	$C_{12}H_{16}O_3$	3.18	3.32	1386. 3'-Chloro-N-phenylanthoanilic acid	C ₁₃ H ₁₀ CINO ₂	2.43	4.78
1352. 4-s-Butylphenoxyacetic acid	$C_{12}H_{16}O_3$	3.12	3.41	1387. 4-Aminosalicylic acid,4-chlorophenylester	C ₁₃ H ₁₀ CINO ₃	3.60	3.52
1353. 3-t-Butylphenoxyacetic acid	$C_{12}H_{16}O_3$	2.96	3.34	1388. 4-Aminosalicylic acid, 2-chlorophenylester	C ₁₃ H ₁₀ CINO ₃	3.72	3.03
1354. o-s-Butylphenoxyacetic acid	$C_{12}H_{16}O_3$	3.32	3.41	1389. 4-Aminosalicylic acid, 3-chlorophenylester	C ₁₃ H ₁₀ CINO ₃	3.90	3.52
1355. <i>B</i> -Phenylglucopyraroside	$C_{12}H_{16}O_{6}$	-0.71	-0.24	1390. 1-(3,4-Dichlorophenyl)-3-phenylurea	C ₁₃ H ₁₀ Cl ₂ N ₂ O	4.70	4.31
1356. Arbutin	$C_{12}H_{16}O_{7}$	-1.35	-1.05	1391. 4-Aminosalicylic acid, 4-fluorophenylester	C ₁₃ H ₁₀ FNO ₃	3.27	3.12
1357, 3-t-Butyl-4-hydroxyacetanilide	$C_{12}H_{17}NO_2$	2.85	2.34	1392. 4-Aminosalicylic acid, 2-fluorophenylester	C ₁₃ H ₁₀ FNO ₃	3.29	2.78
1358. 3,5-Diethyl-4-hydroxyacetanilide	$C_{12}H_{17}NO_2$	2.36	2.18	1393. 4-Aminosalicylic acid, 3-fluorophenylester	C ₁₃ H ₁₀ FNO ₃	3.42	3.12
1359. N-Methyl-2-s-butylphenylcarbamate	$C_{12}H_{17}NO_2$	2.78	3.61	1394. 1-Aminoacridine	C ₁₃ H ₁₀ N ₂	2.47	2.25
1360. N-Methyl-2-t-butylphenylcarbamate	$C_{12}H_{17}NO_2$	2.65	3.54	1395. 2-Aminoacridine	C ₁₃ H ₁₀ N ₂	2.62	2.25
1361. N-Methyl-3-methyl-4-isopropylphenylcarba				1396. 3-Aminoacridine	$C_{13}H_{10}N_2$	2.19	2.25
mate	$C_{12}H_{17}NO_2$	3.11	3.50	1397. 4-Aminoacridine	C ₁₃ H ₁₀ N ₂	3.26	2.25
1362. N-Methyl-3-methyl-5-isopropylphenylcarba				1398. 9-Aminoacridine	C13H10N2	2.74	2.25
mate	$C_{12}H_{17}NO_{2}$	3.10	3.50	1399. 4-Isothiocyanodiphenylamine	C ₁₃ H ₁₀ N ₂ S	4.94	4.51
1363. N-Methyl-3-methyl-6-isopropylphenylcarba-				1400. o-Hydroxybenzophenone	C ₁₃ H ₁₀ O ₂	3.52	3.39
mate	$C_{12}H_{17}NO_2$	2.84	3.50	1401. p-Hydroxybenzophenone	C ₁₃ H ₁₀ O ₂	3.07	2.36
1364. N-Methyl-3-t-butylphenylcarbamate	$C_{12}H_{17}NO_2$	2.93	3.54	1402. o-Phenoxybenzoic acid	C ₁₃ H ₁₀ O ₃	2.84	4.50
1365. N-Methyl-4-s-butylphenylcarbamate	$C_{12}H_{17}NO_2$	3.20	3.61	1403. p-Phenoxybenzoic acid	C ₁₃ H ₁₀ O ₃	3.21	3.48
1366. N-Methyl-4-t-butylphenylcarbamate	$C_{12}H_{17}NO_2$	3.06	3.54	1404. N-Benziliden aniline	C ₁₃ H ₁₁ N	1.84	1.84
1367. 2-Isopropylphenyldimethylcarbamate	$C_{12}H_{17}NO_{2}$	2.65	2.73	1405. Benzanilide	C ₁₃ H ₁₁ NO	2.70	2.79
1368. 2,3,5,6-Tetramethyl-4-hydroxyacetanilide	$C_{12}H_{17}NO_2$	1.44	1.98	1406. N-Phenylanthranilic acid	C ₁₃ H ₁₁ NO ₂	4.36	4.15
1369. N-Methyl-2-butylthiophenylcarbamate	$C_{12}H_{17}NO_2S$	2.98	3.05	1407. Salicylanilide	C ₁₃ H ₁₁ NO ₂	3.27	3.16
1370. Bufexamic	$C_{12}H_{17}NO_3$	1.47	1.36	1408. Phenyl-4-aminosalicylate	C ₁₃ H ₁₁ NO ₃	3.15	2.87
1371. N-Methyl-3-butoxyphenylcarbamate	$C_{12}H_{17}NO_3$	2.96	2.88	1409. 3,6-Diaminoacridine	$C_{13}H_{11}N_3$	1.10	0.95
1372. N-Methyl-4-butoxyphenylcarbamate	$C_{12}H_{17}NO_3$	2.86	2.88	1410. 4,4'-Dihydroxydiphenylmethane	$C_{13}H_{12}O_2$	2.91	2.69
1373. 2-Pentoxy-4-aminobenzoic acid	$C_{12}H_{17}NO_3$	1.55	3.42	1411. o-Phenoxyanisole	$C_{13}H_{12}O_2$	2.92	3.93
1374. 2-Isopentoxy-4-aminobenzoic acid	$C_{12}H_{17}NO_3$	1.47	3.34	1412. Di-(p-aminophenyl)methane	$C_{13}H_{14}N_2$	1,59	1.72
1375. Tolbutamide	$C_{12}H_{18}N_2O_3S$	2.34	2.14	1413. N¹-(4-Methylphenyl)sulfanilamide	C ₁₃ H ₁₄ N ₂ O ₂ S	2.00	2.18
1376. Thioxanthon	C ₁₃ H ₈ OS	3.99	3.99	1414. N¹-(2-Methoxyphenyl)sulfanilamide	C ₁₃ H ₁₄ N ₂ O ₃ S	1.56	1.71
1377. 3,4,4'-Trichlorocarbanilide	$C_{13}H_9Cl_3N_2O$	2.91	4.95	1415. N1-(4-Methoxyphenyl)sulfanilamide	C ₁₃ H ₁₄ N ₂ O ₃ S	1.51	1.57
1378. Niflumic acid	$C_{13}H_9F_3N_2O_2$	1.59	3.61	1416. Benzylacetoacetic acid ethyl ester	C ₁₃ H ₁₆ O ₃	2.52	2.25

TABLE Al (continued)

1417. 4-Cyclopentylphenoxyacetic acid							
	C ₁₃ H ₁₆ O ₃	3.41	3.49	1442 4-Aminosalicylic acid 3-methoxyphenyl ester	C, H; NO,	3.25	2.68
1418. Aminopyrene	C ₁₃ H ₁₇ N ₃ O	1.00	1.86	1443. Naproxen	C14H14O3	3.18	2.41
1419. Heptabarbital	C ₁₃ H ₁₈ N ₂ O ₃	2.17	2.41	$1444.2-Me-4-CI-C_eH_3NHN = C(CN)CO-t-Bu$	C,4H,6CIN3O	4.31	5.71
1420. 2-s-Butylphenyldimethylcarbamate	C ₁₃ H ₁₉ NO ₂	3.31	3.27	1445. Reposal	C,4H,8N,03	2.53	2.44
1421. N-Methyl-3-methyl-4-t-butylphenylcarbamate	$C_{13}H_{19}NO_{2}$	3.38	3.96	1446, 4-Cyclohexyiphenoxyacetic acid	C;4H;03	3.79	4.03
1422. N-Methyl-3-methyl-5-t-butylphenylcarbamate	C ₁₃ H ₁₉ NO ₂	3.35	3.96	1447. Chlorambucil	C ₁₄ H ₁₉ Cl ₂ NO ₂	1.70	3.21
1423. N-methyl-3-methyl-6-t-butylphenylcarbamate	$C_{13}H_{19}NO_{2}$	3.14	3.96	1448. p-Hydroxybenzoic acid heptyl ester	C ₁₄ H ₂₀ O ₃	4.83	4.42
1424. 2-Methyl-5-t-butyl-4-hydroxyacetanilide	$C_{13}H_{19}NO_2$	2.67	2.76	1449. 3,5-Dipropyl-4-hydroxyacetanilide	C ₁₄ H ₂₁ NO ₂	3.16	3.25
1425. Probenecid	C₁₃H₁₅NO₄S	3.21	3.05	1450. Lidocaine	C ₁₄ H ₂₂ N ₂ O	2.26	0.91
1426. 4,4'- Diisothiocyanatebiphenyl	$C_{14}H_8N_2S_2$	5.50	6.26	1451. 2-Isothiocyano anthracene	C ₁₅ H ₉ NS	5.70	5.65
1427. DFDT	$C_{14}H_9Cl_3F_2$	4.62	6.11	1452. 2-Phenyl-1,3-indanedione	C ₁₅ H ₁₀ O ₂	2.90	2.90
1428. 4-Isothiocyanobenzophenone	C ₁₄ H ₉ NOS	4.88	4.23	1453. 1-Me-4-phenyl-7-chloroquinazolin-2-one	C ₁₅ H ₁₁ CIN ₂ O	2.36	2.28
1429. 4-Isothiocyanophenylbenzoate	$C_{14}H_9NO_2S$	4.90	5.01	1454. 1-Me-4-phenyl-6-chloroquinazolin-2-one	C ₁₅ H ₁₁ CIN ₂ 0	2.38	2.28
1430. 3'-CF ₃ -N-phenylanthranilic acid	$C_{14}H_{10}F_3NO_2$	5.62	5.16	1455. 1-Me-4-phenyl-6-fluoroquinazolin-2-one	C ₁₅ H ₁₁ FN ₂ O	1.87	1.96
1431. Benzil	C ₁₄ H ₁₀ O ₂	3.38	3.04	1456. 4-Isothiocyanostilbene	C ₁₅ H ₁₁ NS	5.85	5.94
1432. 4-Isothiocyanodiphenylmethane	C ₁₄ H ₁₁ NS	4.40	5.37	1457, 1-Methyl-4-phenylquinazolin-2-one	C,rH1,NO	1.79	1.72
1433. m-Phenylphenoxyacetic acid	C ₁₄ H ₁₂ O ₃	3.18	3.24	1458. 1-Methyl-4-phenyl-6-0H-quinazolin-2-one	C ₁₅ H ₁₂ N ₂ O ₂	1.72	0.90
1434. o-Phenylphenoxyacetic acid	C ₁₄ H ₁₂ O ₃	2.83	3.24	1459. 9-Carboxy-9,10-dihydroanthracene	C ₁₅ H ₁₂ O ₂	2.67	2.55
1435. $2-CF_3-4-CI-C_6H_3NHN=C(CN)CO-t-Bu$	C ₁₄ H ₁₃ CIF ₃ N ₃ O	2.67	6.30	1460. 3-Benzamido-phenoxyacetic acid	C ₁₅ H ₁₃ NO ₄	1.99	1.90
1436. 2-CI-5-CF ₃ -C ₆ H ₃ NHN=C(CN)CO- t -Bu	$C_{14}H_{13}CIF_3N_3O$	5.31	6.70	1461, 4-Aminosalicylic acid-2,6-dimethylphenylester	_	3.38	3.71
1437. 4-Aminosalicylic acid, 2-tolyl ester	C ₁₄ H ₁₃ NO ₃	3.14	3.29	1462. 1,1-Diphenyl-3,3-dimethylurea		2.80	2.44
1438. 4-Aminosalicylic acid,4-tolyl ester	C ₁₄ H ₁₃ NO ₃	3.38	3.29	1463. Parthenin	C ₁₅ H ₁₉ O ₄	0.77	90.0
1439. 4-Aminosalicylic acid, 3-tolyl ester	C ₁₄ H ₁₃ NO ₃	3.64	3.29	1464. a,a'-diethyl-4,4'-Stilbenedid	C ₁₈ H ₂₀ O ₂	5.07	5.23
1440. 4-Aminosalicylic acid, 2-methoxyphenyl ester	C ₁₄ H ₁₃ NO ₄	2.88	2.20	1465. Estrone	C ₁₈ H ₂₂ O ₂	2.76	3.66
1441. 4-Aminosalicylic acid,4-methoxyphenyl ester	C ₁₄ H ₁₃ NO ₄	3.07	2.68				

TABLE A2
ESTIMATION RESULTS FOR THE COMPOUNDS NOT INCLUDED IN THE DATA SET

TABLE A2 (continued)

Compound	Empirical formula Log P _{obsd} Log P _{estd}	la Log P _o	bsd Log Pestd	Compound	Empirical formula Log P _{obsd} Log P _{estd}	la Log P	bsd Log Pestd
1. Methyl bromide	CH ₃ Br	1.19	1.20	37. 1,4-Dimethyltetrachlorocyclohexane	C ₈ H₁2Cl₄	4.40	4.38
2. Methyl chloride	CH3CI	0.91	0.88	38. 4,5,6,7-Tetrabromo-2-trifluoromethylbenzimida-			
3. Methyl fluoride	CH ₃ F	0.51	0.55	zole	$C_8HBr_4F_3N_2$	4.81	3.72
4. Methyl iodide	CH ₃ I	1.51	1.69	39. 4,5,6,7-Tetrachloro-2-trifluoromethylbenzimida-			
5. Nitromethane	CH ₃ NO ₂	-0.33	-0.77	zole	C ₈ HCl ₄ F ₃ N ₂	3.97	4.34
6. Tetrachloroethylene	C ₂ Cl₄	2.60	2.60	40. 4,5,7-Trichloro-2-trifluoromethylbenzimidazole	C ₈ H ₂ Cl ₃ F ₃ N ₂	3.78	4.07
7. Hexafluoroethane	C ₂ F ₆	2.00	2.00	41. 4,5,6-Trichloro-2-trifluoromethylbenzimidazole	C ₈ H ₂ Cl ₃ F ₃ N ₂	3.87	3.74
8. Acetonitrile	C ₂ H ₃ N	-0.34	0.17	42. 2-Trifluoromethyl-4,7-dichlorobenzimidazole	C ₈ H ₃ Cl ₂ F ₃ N ₂	2.87	3.48
9. 2-Br,2-Cl,1,1,1-Trifluoroethane	C ₂ HBrCIF ₃	2.30	2.80	43. 2-Trifluoromethyl-4,5-dichlorobenzimidazole	C ₈ H ₃ Cl ₂ F ₃ N ₂	3.49	3.47
10. Trichloroethylene	C ₂ HCl ₃	2.29	2.03	44, 2-Trifluoromethyl-4,6-dichlorobenzimidazole	C _B H ₃ Cl ₂ F ₃ N ₂	3.49	3.47
11. 2,2,3,3,3-Pentafluoropropanol	C ₃ H ₃ F ₅ O	1.23	0.82	45, 4,5,6,7-Tetrachloro-2-methylbenzimidazole	C _B H ₄ Cl ₄ N ₂	2.83	3.27
12. Methoxyflurane	C ₃ H ₄ Cl ₂ F ₂ O	2.21	1.12	46. 3-CF ₃ -6-Cl-1,2,4-benzothiadiazine – 1,1-dioxide		1.65	2.35
13. Pentafluoropropionic acid ethyl ester	$C_5H_5F_5O_2$	2.12	1.46	47. 3-Methyl-5-I-7-Cl-1,2,4-benzothiadiazine — 1,1-			
14. 3,4-Dichloro-N-nitrosopiperidine	$C_5H_8Cl_2N_2O$	1.04	80.0	dioxide	C ₈ H ₆ CIIN ₂ O ₂ S	1.81	1.97
15, 3,5,6-Trichloro-2-pyridinol	C ₆ H ₂ Cl ₃ NO	2.27	0.88	48. 3-Methyl-5-NO ₂ -7-Cl-1,2,4-benzothiadiazine			
16. Nitrosobenzene	C ₆ H ₅ NO	2.01	2.01	1,1-dioxide	C ₈ H ₆ CIN ₃ O ₄ S	0.85	0.41
17. 2,3,4,5,6-Pentachlorophenol	C ₆ HCl ₅ O	5.07	4.95	49. 3. Methyl-6-NO ₂ -7-Cl-1,2,4-benzothiadiazine –			
18. 1-H-Pentachlorocyclohexane	C ₆ H ₇ Cl ₅	3.53	3.27	1,1-dioxide	C ₈ H ₆ CIN ₃ O ₄ S	1.42	99.0
19. Allylglycidyl ether	C ₆ H ₁₀ O ₂	1	1.15	50. 3-Chloromethyl-6-CI-1,2,4-benzothiadiazine-			
20. Citric acid	C ₆ H ₈ O ₇	-1.72	-2.48	1,1-dioxide	C ₈ H ₆ Cl ₂ N ₂ O ₂ S	1.68	1.19
21. Histidine	$C_6H_9N_3O_2$	-2.52	-1.66	51. 3-Methyl-7-F-1,2,4-benzothiadiazine-			
22. Trifluoromethylbenzene	C ₇ H ₅ F ₃	3.01	3.21	1,1-dioxide	C ₈ H ₇ FN ₂ O ₂ S	0.62	0.87
23. Saccharin	C, H ₅ NO ₃ S	0.91	0.48	52. 5-Chloro-3-methyl-2 <i>H</i> -1,2,4-benzothiadiazine –			
24. 5-Nitro-benzimidazole	$C_7H_5N_3O_2$	1.64	1.62	1,1-dioxide	C ₈ H ₇ CIN ₂ O ₂ S	0.72	1.38
25. Bromothiazide	C ₇ H ₆ BrN ₃ O ₄ S ₂	0.00	-0.87	53. 3-Methyl-6-NH ₂ -7-Cl-1,2,4-benzothiadiazine—			
26. Chlorothiazide	$C_7H_6CIN_3O_4S_2$	-0.27	-1.14	1,1-dioxide	C ₈ H ₈ CIN ₃ O ₂ S	0.63	0.38
27. Fluorothiazide	$C_7H_6FN_3O_4S_2$	-0.29	-1.53	54.1-(3,3,3-Trifluoroethoxy) pentachlorocyclohexane C _B H ₈ Cl ₅ F ₃ O	eC ₈ H ₈ Cl ₅ F ₃ 0	4.06	4.52
28. Sulfaguanidine	C ₇ H ₁₀ N ₄ O ₂ S	-1.22	-1.22	55. Methyl-N(2-F-phenyl)carbamate	C _B H ₈ FNO ₂	1.66	1.32
29. a-Chlorotoluene	C,H,Cl	2.30	2.69	56. Methyl-N(2-Cl-phenyl)carbamate	C ₆ H ₈ CINO ₂	2.13	2.16
30. o- Chlorotoluene	C,H,Cl	3.42	3.27	57. Methyt-N(2-Br-phenyl)carbamate	$C_8H_8BrNO_2$	2.25	2.39
31. Hydrobromothiazide	$C_7H_8BrN_3O_4S_2$	0.08	-0.89	58. Methyl-N(2-NO ₂ -phenyl)carbamate	$C_8H_8N_2O_4$	2.07	1.63
32. Hydrochlorothiazide	C, H ₈ CIN ₃ O ₄ S ₂	-0.07	-1.16	59. Methyl-N(2-I-phenyl)carbamate	C ₈ H ₈ INO ₂	2.44	2.84
33. Glycerylmonobutyrate	C,H14O4	-0.17	-0.19	60. 6-Azauridine	C ₈ H ₁₁ N ₃ O ₆	-2.14	-3.21
34. 4-Vinylcyclohexene	C_8H_{12}	ţ	3.36	61. Ethyltartrate	C ₈ H ₁₄ O ₆	-0.29	-1.23
35. p -Di(trichloromethyl)benzene	C ₈ H₄Cl ₆	4.62	4.56	62. 3-Chloro-4-nitroquinoline-1-oxide	$C_9H_5CIN_2O_3$	1.33	0.73
36. 2-Chloro-1-ethylbenzene	C ₈ H ₉ Cl	2.95	3.78	63. 4,8-Dihydroxyquinoline	$C_9H_7NO_2$	0.62	0.47

TABLE A2 (continued)

Compound	Empirical formula Log Potsul Log Pestr	Log P _{obsc}	Log Pestd	Compound	Empirical formula Log P _{obsd} Log P _{estd}	ıla Log P	obsd Log Pestd
64 Mathyl_M/2-CEnhonyl\narhamate	H. F. NO.	213	211	101 Sulfisoxazole	C.1H.3N.0.S	1.15	2.04
65 Sulfamathizola	C.H., N.O.S.	0.26	-0.77	102 Tuhercidin	C1.H1.N.O.	-0.80	-1.84
66 Methyl-N/2-methyl-nhenyl)carbamate	C.H.1NO.	1.69	1.52	103. 1-Allvl-3.4-dimethoxybenzene	C ₁₁ H ₁₄ O ₂	1	3.03
67. Methyl-N(2-methoxy-phenyl)carbamate	CaH11NO3	1.84	1.40	104. Metron S	C ₁₁ H ₂₅ N	ı	3.90
68. 2.4.6-Trimethylphenol	C,H,20	2.86	2.65	105. 3,5-DiCF ₃ -C ₆ H ₃ NHN = C(CN)COOCH ₃	$C_{12}H_7F_6N_3O_2$	5.16	5.53
69. Ethylidenenorbornene	C ₉ H ₁ ,	ŀ	3.92	106. 2,4,5,2',4',5'-PCB	C ₁₂ H ₄ Cl ₆	6.72	7.90
70. Isophorone	C ₉ H ₁₄ O	E	2.18	107. 2,4,5,2',5'-PCB	C ₁₂ H ₅ Cl ₅	6.11	7.26
71. 5-Propyl-5-ethylbarbituric acid	C ₉ H ₁₄ N ₂ O ₃	99.0	1.12	108. 4-Nitrophenyl-2,4,6-trichlorophenyl ether	$C_{12}H_6Cl_3NO_3$	ı	5.92
72. 4-Cyanoquinoline	C ₁₀ H ₆ N ₂	1.98	1.45	109. $2,5$ -CN-C ₆ H ₃ NHN = C(CN)COOCH ₃	$C_{12}H_7N_5O_2$	2.81	2.23
73. Benzal malononitrile	$C_{10}H_6N_2$	2.18	2.26	110. 4,4'-PCB	$C_{12}H_8Cl_2$	5.58	5.43
74. Methyl-N(2-ethoxy-phenyl)carbamate	C ₁₀ H ₁₃ NO ₃	2.40	1.89	111. $3-CF_3-4-CI-C_6H_3NHN=C(CN)COOC_2H_5$	$C_{12}H_9CIF_3N_3O_2$	4.86	5.65
75. 2-Amino-1,4-naphtoquinone	C ₁₀ H ₇ NO ₂	1.88	1.05	112. Propyzamide	C ₁₂ H ₁₁ Cl ₂ NO	ı	4.26
76. Safrole	C ₁₀ H ₁₀ O ₂	ı	2.71	113. Phenobarbital	$C_{12}H_{12}N_2O_3$	1.42	1.31
77. Inosine	C ₁₀ H ₁₂ N ₄ O ₅	-2.08	-4.04	114. Pyrimethamine	C ₁₂ H ₁₃ CIN ₄	2.69	2.75
78. Adenosine	C10H13N5O4	-1.23	→3.18	115. Vitavax	$C_{12}H_{13}NO_{2}S$	2.14	1.51
79. Cimetidine	C ₁₀ H ₁₆ N ₆ S	ı	0.97	116. Cyclopentobarbital	$C_{12}H_{14}N_2O_3$	1.51	1.34
80. 1-Hydroxyadamantane	C ₁₀ H ₁₆ O	2.14	2.16	117. Sulfsomidine	C ₁₂ H ₁₄ N ₄ O ₂ S	-0.30	0.41
81. 2-CI-5-CF ₃ -C ₆ H ₃ NHN = C(CN)CO-CH ₃	C ₁₁ H ₇ CIF ₃ N ₃ O	5.08	4.19	118. Sulfadimethoxine	$C_{12}H_{14}N_4O_4S$	1.33	-0.14
82. 2-CI-5-CF ₃ -C ₆ H ₃ NHN = C(CN)COOCH ₃	C ₁₁ H ₇ CIF ₃ N ₃ O ₂	4.42	5.57	119. 4-Chloro-phenyl- β - D -glucopyranoside	$C_{12}H_{15}ClO_6$	0.26	0.41
83. 3-CHF ₂ -4-CI-C ₆ H ₃ NHN = C(CN)COOCH ₃	C ₁₁ H ₈ CIF ₂ N ₃ O ₂	3.83	4.58	120. 2-lodo-phenyl- β - D -glucopyranoside	$C_{12}H_{15}O_6I$	0.27	1.02
84. Fenclozic acid	C ₁₁ H ₈ CINO ₂ S	3.29	2.44	121. 4-lodo-phenyl- <i>β-D</i> -glucopyranoside	$C_{12}H_{15}O_6$	0.75	1.05
85. $4-SCF_3-C_6H_4NHN=C(CN)COCH_3$	C ₁₁ H ₈ F ₃ N ₃ 0S	5.04	4.55	122. 2-Nitro-phenyl- β - D -glucopyranoside	$C_{12}H_{15}NO_8$	-0.78	0.24
86. 2-CF ₃ -C ₆ H ₄ NHN = C(CN)COOCH ₃	$C_{11}H_8F_3N_3O_2$	3.72	4.52	123. 4-Nitro-phenyl- <i>β-D</i> -glucopyranoside	$C_{12}H_{15}NO_8$	-0.44	-0.51
87. 4-CF ₃ -C ₆ H ₄ NHN=C(CN)COOCH ₃	C ₁₁ H ₈ F ₃ N ₃ O ₂	3.79	4.52	124. Cyclobarbital	$C_{12}H_{16}N_2O_3$	1.77	1.87
88. $3,4$ -DiCI-C ₆ H ₃ NHN = C(CN)COOC ₂ H ₅	C ₁₁ H ₉ Cl ₂ N ₃ O ₂	4.66	5.18	125. Hexobarbital	$C_{12}H_{16}N_2O_3$	1.49	0.41
89. 3,5-DiCI- $C_6H_3NHN = C(CN)COOC_2H_5$	$C_{11}H_9Cl_2N_3O_2$	3.82	5.29	126. Methyl-N(4-n-butyl-phenyl)carbamate	$C_{12}H_{17}NO_2$	3.68	3.11
90. $2-CH_3-4-CI-C_6H_3NHN=C(CN)COCH_3$	C ₁₁ H ₁₀ CIN ₃ O	4.28	4.25	127. Methyl-N(3,4-diethoxyphenyl)carbamate	$C_{12}H_{17}NO_4$	2.09	1.91
91. 2-CI- $C_6H_4NHN = C(CN)COOC_2H_5$	C ₁₁ H ₁₀ CIN ₃ O ₂	3.38	5.05	128. 2-Amino-phenyl- eta - D -glucopyranoside	$C_{12}H_{17}NO_{6}$	-1.23	-1.39
92. $3-CI-C_6H_4NHN=C(CN)COOC_2H_5$	C ₁₁ H ₁₀ CIN ₃ O ₂	3.94	4.64	129. Aspergillic acid	$C_{12}H_{20}N_2O_2$	1.81	2.03
93. 2,4-(NH ₂) ₂ -5(3,4-DiCl-Ph)-6-Methyl-				130. Sotalol	$C_{12}H_{20}N_2O_3S$	-1.51	-0.24
pyrimidine	C ₁₁ H ₁₀ Cl ₂ N₄	2.82	2.76	131. Hexachlorophene	$C_{13}H_6Cl_6O_2$	7.54	7.10
94. Sulfapyridine	C11H11N3O2S	0.02	0.94	132. 2,4,5-TriCI- $C_6H_2NHN = C(CN)CO-t-Bu$	C ₁₃ H ₁₂ Cl ₃ N ₃ O	5.86	6.87
95, 1-Phenyl-3,5-dimethyl-4-nitrosopyrazole	C ₁₁ H ₁₁ N ₃ O	2.28	3.89	133. 2-SO ₂ Et-5-CF ₃ -C ₆ H ₅ NHN = C(CN)COCH ₃	$C_{13}H_{12}F_3N_3O_3S$	4.22	3.15
96. 8-Dimethylaminoquinoline	C11H12N2	2.73	2.26	134.3-CI- $C_6H_4NHN = C(CN)CO-t-Bu$	C ₁₃ H ₁₄ CIN ₃ 0	4.62	5.29
97. Salfalene	C ₁₁ H ₁₂ N ₄ O ₃ S	0.70	0.81	135. 3-CF ₃ -phenyl- <i>β-D</i> -glucopyranoside	$C_{13}H_{15}F_{3}O_{6}$	0.49	0.60
98. Sulfamethoxypyridazine	$C_{11}H_{12}N_4O_3S$	0.40	09'0	136. 2-CH ₂ OH-phenyl- <i>β-D</i> -glucopyranoside	$C_{13}H_{18}O_7$	-1.22	-1.39
99. Sulfamonomethoxine	$C_{11}H_{12}N_4O_3S$	0.85	0.92	137. 2-Methyl-phenyl- \mathcal{B} - D -glucopyranoside	$C_{13}H_{18}O_{6}$	-0.16	0.18
100. Polythiazide	$C_{11}H_{13}CIF_3N_3O_4S_3$	S ₃ 1.13	0.03	138, 3-Methyl-phenyl- eta - D -glucopyranoside	$C_{13}H_{18}O_{6}$	-0.20	0.18

Compound	Empirical formula Log $P_{ m obsd}$ Log $P_{ m estd}$	la Log P _o	bsd Log Pestd	Compound	Empirical formula Log Pobsel Log Pestd	lla Log P	bed Log Pestd
139. 4-Methoxy-phenyl- B - D -glucopyranoside	C ₁₃ H ₁₈ O ₂	-0.73	-0.43	176. 4-t-Butyl-phenyl- β - D -glucopyranoside	C ₁₆ H ₂₄ O ₆	1.18	1.80
140. Ethyl-N(3,4-diethoxyphenyl) carbamate	C ₁₃ H ₁₉ NO ₄	2.50	2.40	177. Carbinoxamine	C ₁₆ H ₁₉ CIN ₂ O	1	2.44
141, Rantidine	C ₁₃ H ₂ ,N ₄ O ₃ S	ı	-2.12	178. Prochlonoi	C ₁₆ H ₁₄ Cl ₂ 0	١	4.85
142. DDT	C ₁₄ H ₉ Cl ₅	6.19	6.92	179. Benzo[a]acridine	C17H11N	1	4.73
143. 2-Butylthio-1,4-naphthoquinone	C14H14O2S	3.29	2.80	180. Benzo[c]fluorene	C ₁₇ H ₁₂	1	5.17
144. a-Aminoazotoluene	C₁₄H₁₅N₃	1	1.86	181. Ellipticine	C17H14N2	4.80	3.67
145. Trimethoprim	C ₁₄ H ₁₈ N ₄ O ₃	0.91	0.44	182. Triflupromazine	$C_{18}H_{19}F_3N_2S$	5.19	4.25
146. Allyl-N(3,4-diethoxyphenyl)carbamate	C ₁₄ H ₁₉ NO ₄	2.76	2.63	183. Promethazine	$C_{17}H_{20}N_2S$	2.88	2.87
147. 3-Ethyl-phenyl- β - D -glucopyranoside	C ₁₄ H ₂₀ O ₆	0.31	0.70	184. Diphenhydramine	C ₁₇ H ₂₁ NO	3.27	4.24
148. Alachlor	C ₁₄ H ₂₀ CINO ₂	1	2.43	185. Cocaine	C ₁₇ H ₂₁ NO ₄	5.09	0.51
149. n-Propyl-W(3,4-diethoxyphenyl) carbamate	C ₁₄ H ₂₁ NO ₄	2.91	2.94	186. Benzyl-W(3,4-diethoxyphenyl)carbamate	$C_{18}H_{21}NO_4$	3.29	3.52
150. Isopropyl-N(3,4-diethoxyphenyl)carbamate	C ₁₄ H ₂₁ NO ₄	2.82	2.75	187. Trimeprazine	$C_{18}H_{22}N_2S$	3.44	3.37
151. Practolol	C ₁₄ H ₂₂ N ₂ O ₃	0.79	-0.13	188. Metrizamide	C ₁₈ H ₂₂ I ₃ N ₃ O ₈	-1.89	-1.86
152. Clonazepam	C ₁₅ H ₁₀ CIN ₃ O ₃	2.41	1.30	189. Mebhydroline	$C_{19}H_{20}N_2$	1	3.47
153. Lorazepan	C ₁₅ H ₁₀ Cl ₂ N ₂ O ₂	2.38	1.99	190. Nalorphine	$C_{19}H_{21}NO_3$	1.51	1.07
154. Apigenin	C ₁₅ H ₁₀ O ₅	1.74	3.31	191. Triprolidine	$C_{19}H_{22}N_2$	3.92	3.85
155. Oxazepam	C ₁₅ H ₁₁ CIN ₂ O ₂	2.17	1.35	192. Diphenylpyraline	C ₁₉ H ₂₃ NO	1	3.36
156. Nitrazepam	C ₁₅ H ₁₁ N ₃ O ₃	2.12	0.65	193. Homochlorocyclizine	$C_{19}H_{23}CIN_2$	1	3.90
157. 1,2-Diphenyl-3,5-pyrazolidinedione	C ₁₅ H ₁₂ N ₂ O ₂	1.45	-0.01	194. Ethopropazine	$C_{19}H_{24}N_2S$	4.77	4.17
158. 5,5-Diphenyl-hydantoin	C ₁₅ H ₁₂ N ₂ O ₂	2.47	2.64	195. Levomepromazine	C ₁₉ H ₂₄ N ₂ OS	3.39	3.51
159. $4,5-(-0CF_2CF_2O-)C_6H_3NHN = C(CN)CO-t-Bu$	_	4.96	4.42	196. Quinine	$C_{20}H_{24}N_2O_2$	1.73	2.14
160. 3,5-DiCF ₃ -C ₆ H ₃ NHN = C(CN)CO- t -Bu	C ₁₅ H ₁₃ F ₆ N ₃ O	5.44	99.9	197. 4-Androstene-3,17-dione	$C_{19}H_{26}O_2$	2.75	3.48
161. Sulfaphenazole	C ₁₅ H ₁₄ N ₄ O ₂ S	1.52	1.00	198. Testosterone	$C_{19}H_{28}O_2$	3.32	3.90
162. Vernolepin	C ₁₅ H ₁₆ O ₅	0.31	0.05	199. Benzo[<i>a</i>] pyrene	$C_{20}H_{12}$	6.50	6.24
163. Vernomenin	$C_{15}H_{16}O_{5}$	-0.14	0.05	200. Phenolphthalein	C ₂₀ H ₁₄ O ₄	2.41	3.18
164. Bisphenol A	C ₁₅ H ₁₆ O ₂	3.32	3.86	201. Phenolphthalol	$C_{20}H_{18}O_3$	3.27	3.36
165. a-Cyclopropyl-a-(4-methoxyphenyl)-5-				202. Elephantin	$C_{20}H_{22}O_7$	1.05	2.60
pyrimidine methanol	$C_{15}H_{16}N_2O_2$	J	0.77	203. Perochloperazine	C ₂₀ H ₂₄ CIN ₃ S	3.55	3.65
166. N-Sulfanilyl-3,4-xylanide	$C_{15}H_{16}N_2O_3S$	2.19	0.89	204. Perazine	C ₂₀ H ₂₅ N ₃ S	2.90	3.00
167. Helenalin	C ₁₅ H ₁₈ O ₄	0.87	0.15	205. Buguinolate	$C_{20}H_{27}NO_{5}$	2.18	4.44
168. Ambrosin	C ₁₅ H ₁₈ O ₃	1.03	2.06	206. Dibucaine	$C_{20}H_{29}N_3O_2$	4.40	4.43
169. Meperidine	C ₁₅ H ₂₁ NO ₂	1.68	2.23	207, 17-Methyltestosterone	$C_{20}H_{30}O_{2}$	3.36	4.28
170. Physostigmine	$C_{15}H_{21}N_{3}O_{2}$	1.58	1.68	208. Prostaglandin E2	$C_{20}H_{32}O_{5}$	1.35	1.40
171. Isobutyl-N(3,4-diethoxyphenyl)carbamate	C ₁₅ H ₂₃ NO ₄	3.36	3.40	209. Prostaglandin E1	C ₂₀ H ₃₄ O ₅	2.00	1.87
172. n-Butyl-N(3,4-diethoxyphenyl) carbamate	C ₁₅ H ₂₃ NO ₄	3.46	3.47	210. Haloperidol	C ₂₁ H ₂₃ CIFNO ₂	4.30	3.43
173. Diazepam	$C_{16}H_{13}CIN_2O$	2.82	1.23	211. Trifluoperazine	$C_{21}H_{24}F_3N_3S$	3.90	3.98
174. Cyclopentyl-N(3,4-diethoxyphenyl)carbamate	$C_{16}H_{23}NO_4$	3.33	3.36	212. Thioridazine	$C_{21}H_{26}N_2S_2$	5.79	4.60
175. Nialamide	$C_{16}H_{18}N_4O_2$	0.87	-0.02	213. Clemastine	$C_{21}H_{26}CINO$	ı	4.86

TABLE A2 (continued)		TABLE A2 (continued)		İ	
Compound	Empirical formula Log Pobsel Log Pessel	Compound	Empirical formula Log Pobsed Log Pestd	la Log P _{ob}	sd Log Pestd
214. Progesterone 215. Pipamperone 216. Benzo[b]chrysene 217. Thioproperazine	C ₂₁ H ₃₀ O ₂ 3.87 4.15 C ₂₁ H ₃₀ FN ₃ O ₂ 2.40 1.56 C ₂₂ H ₁₄ – 6.98 C ₂₂ H ₃₀ N ₄ O ₂ S ₂ 0.83 2.27	218. Flupentixol 219. Coronene 220. Etorphine 221. Prostaglandin F2α	C ₂₃ H ₂₆ F ₃ N ₂ OS C ₂₄ H ₁₂ C ₂₆ H ₃₃ NO ₄ C ₂₉ H ₃₄ O ₆	3.83 1.86 2.28	3.80 7.16 1.79 2.27