Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт Высшая школа прикладной математики и вычислительной физики

Направление подготовки "01.03.02. Прикладная математика и информатика"

Дисциплина "Численные методы"

Отчет по лабораторной работе №5
"Решение задачи Коши для обыкновенных дифференциальных уравнений одношаговыми методами"

Работу выполнил: Иванова А.С. Группа: 5030102/00002 Преподаватель: Павлова Л.В.

Санкт-Петербург 2022

Содержание

1.	Формулировка задачи	3
2.	Алгоритм метода и условия его применимости 2.1. Алгоритм метода	
3.	Предварительный анализ задачи	4
4.	Проверка условий применимости метода	4
5.	Тестовый пример с детальными расчетами для задачи малой размерности	4
6.	Перечень контрольных тестов для иллюстрации метода	5
7.	Модульная структура программы	5
8.	Численный анализ решения задачи 8.1. Сходимость метода 8.2. Влияние шага на точность вычислений 8.3. Влияние ошибки исходных данных на решение	
9.	Краткие выволы	7

1. Формулировка задачи

Необходимо решить задачу Коши для обыкновенного дифференциального уравнения 2-го порядка методом Эйлера-Коши

$$\begin{cases} y'' = f(x, y, y') \\ y'(a) = y'_0 \\ y(a) = y_0 \end{cases}$$
 (1)

Исходная функция:

$$y'' = \frac{-(2x+2) * y' * x + y * x + 1}{x^2 * (2x+1)}$$
 (2)

На отрезке [0.2;1] с начальными условиями

$$y'(0.2) = -25; y(0.2) = 5$$

Известно точное решение:

$$y = \frac{1}{x}$$

Необходимо исследовать сходимость метода, влияние шага на точность вычислений и влияние ошибок в исходных данных на решение, т.е. устойчивость задачи.

2. Алгоритм метода и условия его применимости

2.1. Алгоритм метода

Решение задачи Коши будем искать в виде значений сеточной функции, построенной на равномерной сетке на отрезке [a;b].

Сделаем замену:
$$z(x) = y'(x); z'(x) = y''(x)$$

Тогда получим систему дифференциальных уравнений первого порядка:

$$\begin{cases} y'(x) = z(x) \\ z'(x) = f(x, y, z) \\ y(a) = y_0 \\ z(a) = y'_0 \end{cases}$$
 (3)

Схема предиктор-корректор (метод прогноза и коррекции) — семейство алгоритмов численного решения различных задач, которые состоят из двух шагов. На первом шаге (предиктор) вычисляется грубое приближение требуемой величины. На втором шаге при помощи иного метода приближение уточняется (корректируется).

К данному семейству относится метод Эйлера-Коши. Предиктором в данном случае выступает метод Эйлера, корректором - метод трапеций численного инетгрирования.

N - Количество разбиений равномерной сетки

$$h = \frac{b-a}{N}$$
; $x_i = a + h * i$; $i = 0, ..., N$

Находим сначала грубое приближение методом Эйлера: В общем случае для дифференциального уравнения 1-го порядка формула Эйлера имеет вид:

$$\tilde{y}_i = y_{i-1} + h * f(x_{i-1}, y_{i-1})$$

В нашем случае для системы дифференциальных уравнений:

$$\begin{cases} \tilde{y}_i = y_{i-1} + h * z_{i-1} \\ \tilde{z}_i = z_{i-1} + f(x_{i-1}, y_{i-1}, z_{i-1}) \end{cases}$$
(4)

Затем уточняем полученный результат методом трапеции: В общем случае для дифференциального уравнения 1-го порядка: $y_i = y_{i-1} + h * \frac{f(x_{i-1},y_{i-1}) + f(x_i,\tilde{y}_i)}{2}$

$$y_i = y_{i-1} + h * \frac{f(x_{i-1}, y_{i-1}) + f(x_i, \tilde{y}_i)}{2}$$

В нашем случае для системы дифференциальных уравнений:

$$\begin{cases} y_i = y_{i-1} + h * \frac{z_{i-1} + \tilde{z}_i}{2} \\ z_i = z_{i-1} + h * \frac{f(x_{i-1}, y_{i-1}, z_{i-1}) + f(x_i, \tilde{y}_i, \tilde{z}_i)}{2} \end{cases}$$
 (5)

2.2. Условия применимости

- Частная производная по х непрерывна и ограничена
- Выполянется условие Липшица по у

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2| \tag{6}$$

• Существование непрерывных производных до 2-го порядка для применения правила Рунге.

Предварительный анализ задачи 3.

Для оценки погрешности используется правило Рунге:

$$\frac{|S_{n,2N}(f) - S_{n,N}(f)|}{2^m - 1} \le \epsilon \tag{7}$$

Для формулы Эйлера-Коши m=2

4. Проверка условий применимости метода

Исходная функция:

$$y'' = \frac{-(2x+2) * y' * x + y * x + 1}{x^2 * (2x+1)}$$
 (8)

На отрезке [0.2;1]

Данная функция будет иметь разрывы производных по х в точках 0 и -0.5, которые не входят в заданный отрезок, следовательно метод Эйлера-Коши можно использовать. Условие Липшица по у выполнено.

5. Тестовый пример с детальными расчетами для задачи малой размерности

Решим дифференциальное уравнение 1-го порядка:

$$y' = \frac{2xy + 3}{r^2} \tag{9}$$

На отрезке [1;2] с начальным условием y(1)=-1

Ответ для проверки:

$$y = -\frac{1}{r}$$

Возьмем N=1, тогда h=1

$$ilde{y}_1 = y_0 + h * f(x_0, y_0) = -1 + \frac{2*1*(-1)+3}{1} = -1 + 1 = 0$$
 $y_1 = y_0 + h * \frac{f(x_0, y_0) + f(x_1, \tilde{y}_1)}{2} = -1 + \frac{1+0.75}{2} = -1 + 0.875 = -0.125$
Погрешность существенна. Пусть N=2, тогда h=0.5
 $ilde{y}_1 = y_0 + h * f(x_0, y_0) = -1 + 0.5 \frac{2*1*(-1)+3}{1} = -1 + 0.5 = -0.5$
 $y_1 = y_0 + h * \frac{f(x_0, y_0) + f(x_1, \tilde{y}_1)}{2} = -0.5833$
 $ilde{y}_2 = y_1 + h * f(x_1, y_1) = -0.3055$
 $y_2 = y_1 + h * \frac{f(x_1, y_1) + f(x_2, \tilde{y}_2)}{2} = -0.3333$
Дальнейшими итерациями можно приблизить значение к точному.

6. Перечень контрольных тестов для иллюстрации метода

Необходимо решить задачу Коши для обыкновенного дифференциального уравнения 2-го порядка методом Эйлера-Коши

$$\begin{cases} y'' = f(x, y, y') \\ y'(a) = y'_0 \\ y(a) = y_0 \end{cases}$$
 (10)

Исходная функция:

$$y'' = \frac{-(2x+2) * y' * x + y * x + 1}{x^2 * (2x+1)}$$
 (11)

На отрезке [0.2;1] с начальными условиями

$$y'(0.2) = -25; y(0.2) = 5$$

Исследуется сходимость метода (количество итераций от заданной точности), влияние шага h на точность вычислений и влияние ошибок в исходных данных на решение, т.е. устойчивость задачи.

7. Модульная структура программы

def my ddfunc(x, y, z):

Вычисление значения исходной функции от x,y,z

def answer(x):

Точное решение задачи Коши

def EulerCauchy(xmin, xmax, N, ddfunc, y0, z0):

Вычисление значения одной итерации метода Эйлера-Коши при заданном количестве разбиений

def iterations(eps, xmin, xmax, ddfunc, y0, z0):

Получение решения задачи Коши с помощью метода Эйлера-Коши с заданной точностью.

8. Численный анализ решения задачи

8.1. Сходимость метода

Из данного графика можно сделать вывод, что при увеличении количества итераций точность вычислений увеличивается

8.2. Влияние шага на точность вычислений

Из данного графика можно сделать вывод, что для достижения большей точности нужно уменьшать шаг равномерной сетки.

8.3. Влияние ошибки исходных данных на решение

Из данного графика можно сделать вывод, что при увеличении ошибки в исходных данных ошибка вычислений увеличивается. Данная задача является устойчивой, т.к. ошибка входных данных и ошибка результата имеют одинаковый порядок.

9. Краткие выводы

На основе полученных результатов можно сделать вывод о том, что при увеличении количества итераций и шага разбиения равнмоерной сетки погрешность результата уменьшается. Также можно сделать вывод о том, что если в исходные данные вносить ошибки, то при ее увеличении будет увеличиваться и ошибка результата. Данная задача является устойчивой, т.к. ошибка входных данных и ошибка результата имеют одинаковый порядок.