You are given an unrooted tree of n nodes numbered from 1 to n. Each node i has a color, c_i .

Let d(i,j) be the number of different colors in the path between node i and node j. For each node i, calculate the value of **sum**_i, defined as follows:

$$sum_i = \sum_{j=1}^n d(i,j)$$

Your task is to print the value of sum_i for each node $1 \leq i \leq n$.

Input Format

The first line contains a single integer, n, denoting the number of nodes.

The second line contains n space-separated integers, c_1, c_2, \ldots, c_n , where each c_i describes the color of node i.

Each of the n-1 subsequent lines contains ${\bf 2}$ space-separated integers, ${\bf a}$ and ${\bf b}$, defining an undirected edge between nodes \boldsymbol{a} and \boldsymbol{b} .

Constraints

- $1 \le n \le 10^5$ $1 \le c_i \le 10^5$

Output Format

Print n lines, where the i^{th} line contains a single integer denoting sum_i .

Sample Input

1 2 3 2 3

2 4

Sample Output

10

9

11

12

Explanation

The Sample Input defines the following tree:

Each sum_i is calculated as follows:

1.
$$sum_1 = d(1,1) + d(1,2) + d(1,3) + d(1,4) + d(1,5) = 1 + 2 + 3 + 2 + 2 = 10$$

2.
$$sum_2 = d(2,1) + d(2,2) + d(2,3) + d(2,4) + d(2,5) = 2 + 1 + 2 + 1 + 3 = 9$$

2.
$$sum_2 = d(2,1) + d(2,2) + d(2,3) + d(2,4) + d(2,5) = 2 + 1 + 2 + 1 + 3 = 9$$

3. $sum_3 = d(3,1) + d(3,2) + d(3,3) + d(3,4) + d(3,5) = 3 + 2 + 1 + 2 + 3 = 11$
4. $sum_4 = d(4,1) + d(4,2) + d(4,3) + d(4,4) + d(4,5) = 2 + 1 + 2 + 1 + 3 = 9$

4.
$$sum_4 = d(4,1) + d(4,2) + d(4,3) + d(4,4) + d(4,5) = 2 + 1 + 2 + 1 + 3 = 9$$

5. $sum_5 = d(5,1) + d(5,2) + d(5,3) + d(5,4) + d(5,5) = 2 + 3 + 3 + 3 + 1 = 12$