Languages, automata and computation II Tutorial 11 – Ordinal numbers, register automata, orbit-finite sets

Winter semester 2024/2025

Ordinal numbers

Ordinal numbers generalize natural numbers and can be seen as representations of well-founded total orders. For a set A ordered by \leq we denote by $\operatorname{tp}(A, \leq)$ (or just $\operatorname{tp}(A)$) the ordinal number representing this relation. Two well-founded total orders (A, \leq_A) , (B, \leq_B) are isomorphic if and only if $\operatorname{tp}(A) = \operatorname{tp}(B)$. A number $n \in \mathbb{N}$ represents a totally ordered finite set with n elements, i.e. $\operatorname{tp}(A) = n$ if |A| = n. By ω we denote the ordinal type of the set of natural numbers with the usual order relation, i.e. $\operatorname{tp}(\mathbb{N}) = \omega$. The class of ordinal numbers is denoted by ON . They have precise set theoretic definition which we will not mention it here.

Let (A, \leq) , (B, \leq) be well-founded total orders represented by respectively $\alpha, \beta \in \mathbf{ON}$. We write $\alpha \leq \beta$ if can (A, \leq) be embedded into (B, \leq) . We also define the following operations:

- $\alpha + \beta = \operatorname{tp}(\{0\} \times A \cup \{1\} \times B, \preceq)$, where $(i, x) \preceq (j, y)$ if i < j or $(i = j \text{ and } x \leq y)$
- $\alpha \cdot \beta = \operatorname{tp}(B \times A, \preceq_{lex})$
- $\alpha^{\beta} = \operatorname{tp}(F(A, B), \leq)$, where F(A, B) is the set of all functions $B \to A$ with finite support and $f \leq g$ if f = g or $f(\xi) < g(\xi)$, where $\xi = \max\{\eta \in B : f(\eta) \neq g(\eta)\}$

Consecutive ordinal numbers are: $0, 1, 2, \dots, \omega, \omega + 1, \dots, \omega \cdot 2, \dots, \omega^2, \dots, \omega^{\omega}, \dots$

Exercise 1. Prove that for $\alpha, \beta, \gamma \in \mathbf{ON}$

1.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

2.
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

3.
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

4.
$$\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$$

5.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$$

Exercise 2. Show the following equalities/inequalities:

- 1. $1 + \omega = \omega < \omega + 1$
- $2. \ 2 \cdot \omega = \omega < \omega \cdot 2$
- $3. \ 2^{\omega} = 3^{\omega} = \omega$

Register automata

Let $(\mathbb{A}, =)$ be the set of data values with equality as the only relation (one can consider other data structures). An nondeterministic register automaton (NRA) is a tuple $A = (\Sigma, R, L, I, F, \Delta)$ where Σ is an orbit-finite input alphabet (often $\Sigma = \mathbb{A}$), R is a finite set of registers, L is a finite set of locations, $I, F \subseteq L$ are initial, resp., final locations, and $\Delta \subseteq (L \times R^{\mathbb{A}}) \times \Sigma \times (L \times R^{\mathbb{A}})$ is an equivariant set of transitions (thus orbit-finite). A state of a register automaton is a location together with register valuation, i.e. $Q = L \times R^{\mathbb{A}}$.

Exercise 3. Show that following languages are recognizable by register automata:

- 1. the first data value is the same as the last data value;
- 2. some data value appears twice;
- 3. the first data value appears again;
- 4. every three consecutive data values are pairwise distinct.

Exercise 4. Show that the class of languages recognizable by NRA is not closed under complement.

Exercise 5. Show that a nondeterministic register automaton can recognize the language "some data value appears twice", but a deterministic one cannot.

Exercise 6. Call a nondeterministic register automaton *guessing* if there exists a transition $t \in \Delta$ such that some data value in the target state appears neither in the source state nor in the input. Give an example of a language that needs guessing to be recognized. A corollary of the above two exercises is that:

deterministic \subseteq nondeterministic without guessing \subseteq nondeterministic

Sets with atoms

In this tutorial we explore sets with atoms. Fix a countable set A and consider the relational structure $\mathbb{A}=(A,=)$ over the signature consisting only of equality. Elements of \mathbb{A} are called *atoms* and automorphisms α of this structure are the bijections of A. Automorphisms are extended to sets homomorphically, e.g., $\alpha(x,y)=(\alpha x,\alpha y)$.

A set with atoms is any set built from set constructors and atoms from \mathbb{A} . An automorphism α fixes a set with atoms x if $\alpha x = x$. Fix a tuple $\bar{a} \in A^n$. An \bar{a} -automorphism is an automorphism fixing \bar{a} . A set with atoms x is supported by \bar{a} if it is fixed by every \bar{a} -automorphism, and it is equivariant if it is supported by the empty tuple (). A set with atoms is finitely supported if it is supported by

some tuple of atoms, and it is *legal* if it is finitely supported and all its elements are legal (this is a recursive definition).

The *orbit* of element x is the set $\operatorname{orbit}(x) = \{\alpha x \mid \operatorname{automorphism} \alpha\}$ of elements which can be obtained by applying some automorphism to x. Thus an equivariant set x is a union of orbits (of its elements), and an equivariant set is $\operatorname{orbit} finite$ if this union is finite. The set of orbits of a set x is $\operatorname{Orbits}(x) = \{\operatorname{orbit}(y) \mid y \in x\}$ (this is a partition of x). For instance, for given $a,b \in \mathbb{A}$ with $a \neq b$, we have $\operatorname{orbit}(a,a) = \{(c,d) \in \mathbb{A}^2 \mid c=d\}$ and $\operatorname{orbit}(a,b) = \{(c,d) \in \mathbb{A}^2 \mid c \neq d\}$. Since there are no more orbits in \mathbb{A}^2 , we have $\operatorname{Orbits}(\mathbb{A}^2) = \{\operatorname{orbit}(a,a), \operatorname{orbit}(a,b)\}$ and \mathbb{A}^2 is the union of two orbits.

Exercise 7. Fix the equality atoms $(\mathbb{A}, =)$. For each of the following sets with atoms decide whether they are 1) legal, 2) equivariant, 3) orbit finite.

- 1. \mathbb{A}^2 .
- $2. \ \mathbb{A}^* := \mathbb{A}^0 \cup \mathbb{A}^1 \cup \mathbb{A}^2 \cup \cdots.$
- 3. $\mathbb{A}^{\omega} := \{ a_1 a_2 \cdots \mid a_1, a_2, \cdots \in \mathbb{A} \}.$
- 4. $2^{\mathbb{A}} := \{B \mid B \subseteq \mathbb{A}\} \text{ (powerset)}.$
- 5. $2^{\mathbb{A}}_{\text{fin}} := \{B \mid B \subseteq \mathbb{A}, B \text{ finite}\}\ (\text{finite powerset}).$
- 6. $2_{\text{fs}}^{\mathbb{A}} := \{B \mid B \subseteq \mathbb{A}, B \text{ finitely supported} \}$ (finitely supported powerset).
- 7. $2_{eq}^{\mathbb{A}} := \{B \mid B \subseteq \mathbb{A}, B \text{ equivariant}\}\ (\text{equivariant powerset}).$

Exercise 8. An atom structure \mathbb{A} is called *oligomorphic* if \mathbb{A}^n is orbit-finite for every $n \in \mathbb{N}$. Are the following atom structures oligomorphic?

- 1. $(\mathbb{N}, =)$.
- $2. (\mathbb{Z}, \leq).$
- $3. (\mathbb{Q}, \leq).$
- 4. $(\mathbb{Q}, +)$.

Exercise 9. Consider an orbit-finite set X and an equivariant relation $R \subseteq X \times X$. For every $n \in \mathbb{N}$, let $R_n = R^0 \cup R^1 \cup R^2 \cup \cdots \cup R^n$. Show that the following chain computing the reflexive-transitive closure of R terminates:

$$R_0 \subseteq R_1 \subseteq \cdots \subseteq X \times X$$
.