# Mapping class groups

### Apurva Nakade

July 7, 2017

## 1 Automorphisms

**Definition 1.1.** An **automorphism** or a **self-homeomorphism** of a manifold X is a map  $f: X \to X$  which is a homeomorphism. The set of automorphisms forms a group under composition, denoted Homeo(X).

This group is usually too big to get a good handle on, so instead we study automorphisms up to deformations i.e. we consider two automorphisms to be the same if one automorphism can be continuously deformed into another.

**Definition 1.2.** The group Homeo(X)/deformations is called the **mapping class group**, denoted MCG(X).

**Example 1.3.** Every automorphism of  $\mathbb{R}^1$  is a strictly increasing or a strictly decreasing function  $f: \mathbb{R}^1 \to \mathbb{R}^1$ . It is possible to deform a strictly increasing function  $f_1$  to another strictly increasing function  $f_2$  via the path of maps  $t.f_1 + (1-t).f_2$  for  $t \in [0,1]$ , similarly for decreasing functions. And composition of two decreasing functions is an increasing function. Together these imply that  $MCG(\mathbb{R}^1) \cong \mathbb{Z}/2$ .

The main object of interest for us is the mapping class group of the torus MCG(T) i.e. automorphisms of the torus up to deformations. Let us fix two non-parallel circles on the torus and call these the **principal** circles. While there are various choices for these all of which work we'll pick the simples ones and call them the **red** and the **blue** circles. See **Fig.1**.

### 2 Dehn Twists

One way to construct non-trivial automorphisms of the torus is via Dehn twists.

**Definition 2.1.** A **Dehn twist**, denoted D, is a special automorphism of the cylinder which twists the cylinder as in **Fig.2**.

Dehn twist has the nice property that the two boundary circles are unchanged. We can use Dehn twists to create non-trivial automorphisms of the torus by cutting out a cylinder, performing a Dehn twist, and glueing it back. This is an example of surgery on the torus! Dehn twists look even more interesting on gluing diagrams. See **Fig.3**.

We can perform Dehn twists on other cylinders sitting inside a torus which allows us to create more automorphisms of the torus. A theorem of Dehn-Lickorish says that for genus g surfaces the mapping class group is generated by a small set of Dehn twists. Dehn twists on punctured discs give rise to Braid groups establishing further connections between topology and group theory.

#### 3 Exercises

**Exercise 3.1.** Use the following exercises to show that the mapping class group of  $S^1 = \{(x, y) : x^2 + y^2 = 1\}$  is  $\mathbb{Z}/2$ .

- 1. Show that every automorphism can be continuously deformed to one that fixes the point (1,0).
- 2. Find two automorphisms of  $S^1$  which fix (1,0) which cannot be deformed into each other via automorphisms.
- 3. Show that  $MCG(S^1) \cong \mathbb{Z}/2$ .

**Exercise 3.2.** Find MCG(X) when X is one of the following spaces

- 1. Two parallel lines in  $\mathbb{R}^2$
- 2. Two intersecting lines in  $\mathbb{R}^2$

- 3. Union of two intersecting circles
- 4. The 2 dimensional unit disk  $D^2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ This one is non-trivial. Read the wikipedia page on Alexander's trick.

**Exercise 3.3.** Based on the above exercise what is the relationship between  $MCG(X \sqcup X)$  and MCG(X), where  $X \sqcup X$  denotes the disjoint union of two copies of X.

**Exercise 3.4.** Describe the homeomorphisms which are inverses of  $D_R$  and  $D_B$  in the mapping class group of the torus.

**Exercise 3.5.** Perform a Dehn twist on the cylinder around the equator on  $S^2$ . What is the corresponding element in  $MCG(S^2)$ ?

**Exercise 3.6.** 1. Verify that  $D_B D_R D_B$  and  $D_R D_B D_R$  are equal in MCG(T) by checking what they do to the principal circles.

- 2. Consider the  $2 \times 2$  matrices  $M_B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$  and  $M_R = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ . Verify that  $M_B M_R M_B = M_R M_B M_R$ .
- 3. Assuming that MCG(T) is generated by  $D_R$  and  $D_B$  show that this defines a homomorphism from MCG(T) to the group  $SL_2(\mathbb{Z})$  of  $2 \times 2$  matrices with integer coefficients and determinant 1.
- 4. Describe the action of the matrices  $M_R$  and  $M_B$  on the plane and relate it to the Dehn twists  $D_R$  and  $D_R$ .

**Exercise 3.7.**  $D_B D_R D_B$  is NOT a reflection! In **Fig. 4** describe what Dehn twists do to the shaded regions and figure out what  $D_B D_R D_B$  really is.

