Nº 9 2839 Nome: BEATRIZ SOUSA DEMÉTRIO Curso/Turma: MIEFIS

Resolução dos exercícios

Nota: Apresente sempre os cálculos que efectuar no verso da folha; o não cumprimento desta regra equivale à não entrega do trabalho.

Converta cada um dos valores para os seguintes sistemas:

	Valor	Resultado	Valor	Resultado
a) binário	132	1000 01002	12.375	1100 . 0112
b) decimal	1010012	41	1010.10112	171/16
c) hexadecimal	260	10416	110101011.01102	1ab. 6 16
d) octal	1111100111012	76358	11011.112	33.6g
f) ternário	24	2203	2/3	. 2 ₃

Represente, usando apenas 6 bits, os valores abaixo (expressos em decimal) usando cada uma das representações indicadas:

J.	S+A	Complemento 1	Complemento 2	Excesso 31
12	001 1002	001 1002	001 1002	110 0112
11	100 0012	111 110,	111 1112	000 010,
-31	1111112	100 0002	100 001	100 000

3. Converta para decimal cada uma das cadeias de bits abaixo, considerando a representação indicada em cada coluna:

	S+A	Complemento 1	Complemento 2	Excesso 15
00011	+ 3	+3.	+ 3	-12
10001	-1	- 14	-15	2
11110	- 14	- £	- 2	15

5. Preencha, em decimal, a tabela abaixo com a gama de valores representáveis usando 6 bits em cada um dos sistemas de representação propostos. Preencha também a coluna que indica qual a resolução da representação, isto é a diferença entre dois valores consecutivos.

Representação	Mínimo	Resolução	Máximo
Binário sem sinal, inteiros			
Binário sem sinal, 2 bits fraccionários			
Complemento para 2, inteiros			
Sinal + Amplitude, 1 bit fraccionário			
Excesso de 7, 3 bits fraccionários		F ₁₂	

8. Efetue as seguintes operações aritméticas na base dada e usando apenas o número de dígitos indicado em cada alínea. Se algum resultado não for representável usando esse número de dígitos assinale a situação de overflow.

1	001100112 + 011101012	
b)	00100.112 + 00011.012	
d)	0xac + 0x2b	
e)	272 ₈ + 533 ₈	

9. Faça a codificação binária para o processador nº 14, do terceiro sistema do bastidor 122 do piso -1.

3 15+A) $00011_2 = + (2^1 + 2^0) = +3$ $10001 = -(2^{\circ}) = -1$ $11110 = -(2^{3} + 2^{2} + 2^{1}) = -14$ COMPLEMENTO 1 +3 -> +3 10001, -- 11110, -- 14 11110, -> 10001 = -1 1 COMPLEMENTO 2 +3 -> +3 11110, +1 = 11110, = -15 111 112 10001, +1 = 10010; = -2 100012 10010, EXCESSO 15 +3-15 = -12 10001, = 17 - 17 - 15 = 2 $11110_{\xi} = 30 \rightarrow 30 - 15 = 15$