To C: Summortive Assignment

| .1./a/No b./ No c./ Yes | .2./ \Rightarrow R. := a R₂ $R_2::=$ a R₁ | b R₃ $R_3::=$ b R₅ | E 2.1./ S Lettmost Derivation of abbba. \Rightarrow a B a \Rightarrow a B B a \Rightarrow a B b b a

22/ $L(G) = \{ a^n b^m a^n | n \ge 0, m \ge 1 \}$

Problem Suppose we are given a DFA that reading d". this state then accepts b", and then a", but not the word a For X < n. Hence all States prior to the b's are inequivalent to the ax states. Therefore the state has infinitely many states, and thus is par finite or regular.

3./ No, the RGB Cramut often uses 256 discrete values for denoting the prescence of rad, freen and blue in a colour. This connot describe the infinite number of colours in the ideal light spectrum, even if the quantization was minimized.