

Нго Данг Хиен

Адаптивное управление системами с переменными параметрами

Специальность: 2.3.1 Системный анализ, управление и обработка информации, статистика

Научный руководитель: Герасимов Дмитрий Николаевич, доцент, к.т.н

Санкт-Петербург, 1 декабря 2024 г.

Оглавление

VİTMO

- Актуальность исследования
- 2 Обзор существующих методов
- Задача 1
- Задача 2
- Задача 3
- Заключение
- Полученные научные результаты

Современные технические системы наиболее точно могут быть описаны нестационарными математическими моделями, в которых параметры могут изменяться во времени.

(a) Модель асинхронного двигателя

(b) Системы позиционирования судна

(с) Модель динамики манипулятора

Примеры систем с переменными параметрами

Цель исследования. Целью диссертационной работы является синтез законов адаптивного управления для класса нестационарных систем в условиях параметрической неопределенности постоянной матрицы состояния и переменной матрицы входов.

Задачи.

- Синтез закона адаптивного управления по выходу для линейного нестационарного объекта, модель которого содержит переменные параметры, описываемые управляемым генератором с известной матрицей состояния.
- ② Синтез адаптивного наблюдателя производных выходной регулируемой переменной для нестационарного объекта с параметрически неопределенной моделью переменных элементов матрицы входа.
- Синтез алгоритма адаптивного управления по выходу для класса нестационарных систем в условиях параметрической неопределенности с приложением для асинхронного двигателя с неизвестными сопротивлением, индуктивностью и моментом нагрузки.

Обзор существующих методов

Ortega R., Loria A., Nicklasson P. J., Sira-Ramirez H. Generalized AC motor // Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. — London: Springer London, 1998. — C. 265—309.	Параметрическая определенность модели, Матрица входов — обратная функция
Данг Б. [др]. Метод синтеза адаптивных наблюдателей для нестационарных систем с полиномиальными параметрами [10.2021]	Собственные числа матрицы состояния генератора параметров известны и все равны 0
Низовцев С.И., Адаптивные наблюдатели линейных нестационарных систем в условиях неизмеряемых возмущений [12.2021] Pyrkin A., Bobtsov A., Ortega R., Isidori A. An adaptive observer for uncertain linear time-varying systems with unknown additive perturbations//Automatica, 2023, Vol. 147, pp. 110677	Собственные числа матрицы состояния генератора параметров могут иметь произвольные значения, но известны
Gerasimov D., Popov A., Hien N.D., Nikiforov V. Adaptive control of LTV systems with uncertain periodic coefficients //IFAC-PapersOnLine, 2023, Vol. 56, No. 2, pp. 9185-9190	Матрица состояния переменная, матрица входов постоянная, доступен измерению вектор состояния

Научная новизна

Научная новизна

- Разработка новых алгоритмов управления по выходу для класса нестационарных моделей на основе адаптивного наблюдателя переменных параметров, описываемых автономным или управляемым генератором с неизвестными начальными условиями и матрицей состояния.
- Разработка нового метода параметризации модели генератора к виду линейного регрессионного соотношения, в котором вектор неизвестных параметров соответствует параметрам генератора.
- Синтез закона управления по выходу для нестационарного объекта с неизвестными параметрами, предполагающий включение в контур управления цепочки интеграторов и гарантирующий асимптотическую устойчивость замкнутой системы.

Рассматривается неафинный по входу объект управления

$$\dot{x}(t) = Ax(t) + B(t)u(t), \tag{1}$$

$$y(t) = Cx(t), (2)$$

где $x(t) \in \mathbb{R}^k$ — вектор переменных состояния, $y(t) \in \mathbb{R}^m$ — измеримый вектор выходных регулируемых переменных, $u(t) \in \mathbb{R}^\ell$ — управляющих воздействий, элементы матрицы A могут быть неизвестны, $B(\xi(t),u):\mathbb{R}^{k imes \ell}$ — матрица входов с переменными и неизвестными параметрами, $\xi(t) \in \mathbb{R}^n$ — вектор переменных состояния входной динамики, описываемой соотношением

$$B(t) = B_0 H(\xi(t)), \tag{3}$$

$$\dot{\xi}(t) = \frac{\Gamma}{\xi}(t) + Gu(t), \tag{4}$$

где элементы матрицы Γ могут быть неизвестны, $B_0\in\mathbb{R}^{k\times r}$ — известная матрица, $H(\xi(t)):\mathbb{R}^n\to\mathbb{R}^{r imes\ell}$

Желаемое поведение выходной переменной $y^*(t)$ задано в виде выхода линейного генератора с состоянием $\xi_y(t) \in \mathbb{R}^q$ и заданными параметрами $h_y \in \mathbb{R}^{q \times m}$, $\Gamma_y \in \mathbb{R}^{q \times q}$, $\xi_y(0) \in \mathbb{R}^q$:

$$\dot{\xi}_y(t) = \Gamma_y \xi_y(t),\tag{5}$$

$$y^*(t) = h_y^{\mathsf{T}} \xi_y(t). \tag{6}$$

Требуется синтезировать закон управления u(t) по выходу, гарантирующий ограниченность всех переменных состояния, а также асимптотическое слежение регулируемой переменной y(t) за задающим воздействием y^* :

$$\lim_{t \to \infty} \left(A - \hat{A}(t) \right) = 0, \ \lim_{t \to \infty} \left(B(t) - \hat{B}(t) \right) = 0, \ \lim_{t \to \infty} \left(y(t) - y^*(t) \right) = 0. \tag{7}$$

Допущение 1

Функция B(t) такая, что матрица B_0 известна, пара (A,B_0) является полностью управляемой, а также существует псевдообратное отображение $H^L(\xi,\tau):\mathbb{R}^n\times\mathbb{R}^r\to\mathbb{R}^\ell$, удовлетворяющее соотношению

$$H(\xi)H^{L}(\xi,\tau)=\tau$$

для некоторой переменной $au \in \mathbb{R}^r$ и $\forall \xi$.

Допущение 2

Пара матриц (A, C) является полностью наблюдаемой.

Задача 1: Синтез закона адаптивного управления по выходу для линейного нестационарного объекта с управляемым генератором переменных параметров с известной матрицей состояния.

где $x(t) \in \mathbb{R}^k$, $y(t) \in \mathbb{R}^m$, $u(t) \in \mathbb{R}^\ell$.

(8)

(9)

(10)

(11)

(12)

10/18

Рассматривается объект управления

Слайды

$$\dot{x}(t)$$

 $B(t) = B(\xi(t))$ — матрица входов с переменными параметрами

переменных состояния и выполнение целевого условия

$$\dot{x}(t) = Ax(t) + y(t) = C^{\top}x(t),$$

где $\xi(t) \in \mathbb{R}^n$, $\xi(0)$ — неизвестны, матрицы $\Gamma, G, B_0 \in \mathbb{R}^k$, $H \in \mathbb{R}^{n \times \ell}$ — известны.

Требуется синтезировать закон управления u(t), обеспечивающий ограниченность всех

$$\dot{x}(t) = Ax(t) + B(t)\frac{u(t)}{v(t)},$$

 $B(t) = B_0 \, \xi^{\top}(t) H$.

 $\dot{\xi}(t) = \Gamma \xi(t) + G u(t),$

 $\lim_{t \to \infty} (y(t) - y^*(t)) = 0.$

Задача 1

(14)

(15)

Утверждение 1

Закон управления вида

$$u(t) = H^{\mathsf{T}} \xi_d V(t) + K_1^{\mathsf{T}} \xi(t), \tag{13}$$

$$\dot{\xi}_d(t) = (\Gamma + GK_1^{\top})\xi_d(t) + GH^{\top}\xi_d(t)V(t),$$

$$V(t) = (\xi_d^{\top}(t)HH^{\top}\xi_d(t))^{-1}(\tau(t) - \xi_d^{\top}(t)HK_1^{\top}\xi_d(t)),$$

$$V(t) = (\zeta_d(t)HH \quad \zeta_d(t)) \quad (T(t) - \zeta_d(t)HK_1 \zeta_d(t)),$$

где начальные условия $\xi_d(0)$ выбраны так, что $\|\xi_d(t)\|\in\mathcal{L}_\infty$ и $H^ op \xi_d(t)
eq 0$, с входным сигналом

$$\tau(t) = K_2^{\top} (\hat{x}(t) - x^*(t)) + h_y^{\top} \Gamma_y^k \xi_y(t),$$
(16)

$$\dot{\hat{x}}(t) = A\hat{x}(t) + B_0 \tau(t) + L\left(y(t) - C^{\top} \hat{x}(t)\right), \tag{17}$$

где
$$x^*\left(t\right) = \begin{bmatrix} h_y \\ \vdots \\ h_y^\top \Gamma_y^{k-1} \end{bmatrix} \xi_y\left(t\right)$$
, обеспечивает ограниченность всех переменных состояния и выполнение

цели

Продифференцируем (9) k раз, перепишем в матричном виде, выразим вектор переменных x(t) и подставим в уравнение $u^{(k)}(t)$.

$$y^{(k)} = C^{\top} A^k W_y^{-1} \left(\varphi - F_1(u) \xi - F_2(u) \right) + C^{\top} A^{k-1} B_0 u^{\top} H^{\top} \xi + \dots + C^{\top} B_0 \left(\frac{d}{dt} \right)^{k-2} \left[u^{\top} H^{\top} G u \right].$$
(18)

Для исключения в выражении (18) неизмеряемой функции $\xi(t)$ воспользуемся методом GPEBO и рассмотрим фильтры вида

$$\dot{\sigma}_1 = \Gamma \sigma_1 + Gu, \ \sigma_1(0) = 0,$$

$$\dot{\sigma}_2 = \Gamma \sigma_2, \qquad \sigma_2(0) = I.$$
(19)

$$\dot{\sigma}_2 = \Gamma \sigma_2, \qquad \sigma_2(0) = I.$$

Заметим, что для невязки $\widetilde{\xi}(t)=\xi(t)-\sigma_1(t)$ имеем соотношение

$$\dot{\tilde{\xi}}(t) = \Gamma \tilde{\xi}(t), \qquad \tilde{\xi}(0) = \xi(0),$$

и
$$\tilde{\xi}(t) = \sigma_2(t)\xi(0)$$
.

(a) Временная диаграмма ξ_d .

(c) Ошибка регулирования $e(t) = y - y^*$.

(b) Сигнал управления u(t).

(d) Ошибка оценивания $\eta = \tilde{\xi}(0)$.

Задача 2:

Задача 3:

- Алгоритм управления по выходу для нестационарного объекта с переменной матрицей входа, параметры которой являются выходом управляемого генератора с известной матрицей состояния.
- Адаптивный наблюдатель производных выходной регулируемой переменной для нестационарного объекта с оцениванием мгновенных значений переменных элементов матрицы входа.
- Алгоритм управления по выходу для нестационарного объекта с переменной матрицей входа, параметры которой являются выходом управляемого генератора с неизвестными матрицами состояния и начальными условиями.

- Gerasimov D. N., Popov A., Hien N. D., Nikiforov V. O. Adaptive control of LTV systems with uncertain periodic coefficients. // IFAC-PapersOnLine. 2023. Т. 56, вып. 2, № 2. С. 9185—9190.
- Gerasimov D. N., Ngo D. H., Nikiforov V. O. Direct Adaptive Control of LTV Discrete-time Systems with Uncertain Periodic Coefficients. // 2024 63nd IEEE Conference on Decision and Control (CDC). IEEE, 2024. C. 00—00.
- Нго Д. Х. Адаптивное управление дискретными системами с неопределёнными периодическими коэффициентами. // XIV Всероссийское совещание по проблемам управления (ВСПУ-2024). Т. хх. 2024. х—у.

- The 22nd IFAC World Congress, Yokohama, Japan. 9—14 июля 2023 г.
- The 63rd IEEE Conference on Decision and Control (CDC-2024), Milan, Italy. 16–19 декабря 2024 г.
- XIV Всероссийское совещание по проблемам управления (ВСПУ-2024), Россия, Москва, ИПУ РАН. 17–20 июня 2024 г.

Спасибо за внимание!

Контакты

E-mail: hiennd@itmo.ru

Таблица слайдов

• Слайд 1	• Слайд 11	• Слайд 21	• Слайд 31	• Слайд 41
• Слайд 2	 Слайд 12 	• Слайд 22	Слайд 32	Слайд 42
• Слайд 3	 Слайд 13 	 Слайд 23 	Слайд 33	Слайд 43
• Слайд 4	 Слайд 14 	Слайд 24	Слайд 34	Слайд 44
• Слайд 5	Слайд 15	Слайд 25	Слайд 35	Слайд 45
• Слайд б	 Слайд 16 	Слайд 26	• Слайд 36	Слайд 46
• Слайд 7	Слайд 17	Слайд 27	Слайд 37	Слайд 47
• Слайд 8	 Слайд 18 	Слайд 28	Слайд 38	Слайд 48
• Слайд 9	 Слайд 19 	Слайд 29	Слайд 39	Слайд 49
• Слайд 10	• Слайд 20	• Слайд 30	• Слайд 40	• Слайд 50