CS211: Computer Architecture

Instructor:

Jay Kania

Arithmetic and Bitwise Operations on Binary Data

Some Slides adapted from Bryant & O'Hallaron's slides

Arithmetic and Bitwise Operations

Operations

- Bitwise AND, OR, NOT, and XOR
- Logical AND, OR, NOT
- Shifts
- Complements

Arithmetic

- Unsigned addition
- Signed addition
- Unsigned/signed multiplication
- Unsigned/signed division

Basic Processor Organization

- Register file (active data)
 - We'll be a lot more specific later...
- Arithmetic Logic Unit (ALU)
 - Performs signed and unsigned arithmetic
 - Performs logic operations
 - Performs bitwise operations
- Many other structures...

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

■ A B = 1	when	either	A=1	or	B=1
-------------	------	--------	-----	----	-----

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

~	
0	1
1	0

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

```
Bitwise-AND operator:
```

Bitwise- OR operator:

Bitwise-XOR operator:

Bitwise-NOT operator: ~

All of the Properties of Boolean Algebra Apply

Quick Check

Operate on Bit Vectors

Operations applied bitwise

```
Bitwise-AND operator: &
```

Bitwise- OR operator:

Bitwise-XOR operator:

■ Bitwise-NOT operator: ~

```
01100110 11110000 01101001

& 00101111 | 01010101 ^ 00001111 ~ 00101111

00100110 11110101 01100110 11010000
```

All of the Properties of Boolean Algebra Apply

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

Examples (char data type):

```
in hexadecimal

• \sim 0x41 \rightarrow 0xBE \sim 01000001_2 \rightarrow 10111110_2

• \sim 0x00 \rightarrow 0xFF \sim 00000000_2 \rightarrow 11111111_2

• 0x69 & 0x55 \rightarrow 0x41

• 01101001_2 & 01010101_2 \rightarrow 01000001_2

• 0x69 \mid 0x55 \rightarrow 0x7D

• 01101001_2 \mid 01010101_2 \rightarrow 01111101_2
```

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&**&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type):
 - $!0x41 \rightarrow 0x00$
 - $!0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 \mid \mid 0x55 \rightarrow 0x01$
 - p && *p // avoids null pointer access

Bitwise Operations: Applications

Bit fields

One byte can fit up to eight options in a single field

```
Example: char flags = 0x1 | 0x4 | 0x8
= 000011012
```

```
Test for a flag:
   if ( flags & 0x4 ){
      //bit 3 is set
   } else {
      //bit 3 was not set
   }
```

Shift Operations

- Left Shift: x << y</p>
 - Shift bit-vector x left y places
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector X right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Quick Check

- Left Shift: x << y</p>
 - Shift bit-vector x left y places
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector X right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right

Argument x	00110011
<< 3	
Log. >> 4	
Arith. >> 3	

Argument x	1111111
<< 3	
Log. >> 4	
Arith. >> 3	

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Bitwise-NOT: One's Complement

- Bitwise-NOT operation: ~
 - Bitwise-NOT of **x** is ~**x**
 - Flip all bits of x to compute ~x
 - flip each 1 to 0
 - flip each 0 to 1
- Complement
 - Given x == 10011101

Flip bits (one's complement):

Signed Integer Negation: Two's Complement

- Negate a number by taking 2's Complement
 - Flip bits (one's complement) and add 1

$$~x + 1 == -x$$

- Negation (Two's Complement):
 - Given x == 10011101

Add 1:

-x: 01100011

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary	
x	15213	3B 6I	00111011 01101101	
~x	-15214	C4 92	11000100 10010010	
~x+1	-15213	C4 93	11000100 10010011	

$$x = 0$$

	Decimal	Hex Binary		
0	0	00 00	0000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

Arithmetic and Bitwise Operations

Operations

- Bitwise AND, OR, NOT, and XOR
- Logical AND, OR, NOT
- Shifts
- Complements

Arithmetic

- Unsigned addition
- Signed addition
- Unsigned/signed multiplication
- Unsigned/signed division

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Addition Operation

- Carry output dropped at end of addition
- Valid ONLY if true sum is within w-bit range

Example #1:

Unsigned Addition

Example #2:

Not Valid in 8-bit unsigned range (312 is > 255)

Example #3:

10082₁₀
59978₁₀

Not Valid in 16-bit unsigned range (70060 is > 65535)

Visualizing True Sum (Mathematical) Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum
- Values increase linearly with u and v
- Forms planar surface

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum

Sum = $UAdd_w(u,v)$ = true(u+v) % 2^w

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

Signed/Unsigned adds have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

- Will give s == t
- The only difference is our interpretation of sign bit value

Signed Addition

Note: Same bytes as for Ex #1 and Ex #2 in unsigned integer addition, but now interpreted as 8-bit signed integers

Example #1:

Not Valid in 8-bit signed range (172 > 127)

Example #2:

Valid in 8-bit signed range (-128 < 56 < 127)

Signed Addition

Note: Same bytes as for Ex #1 and Ex #2 in unsigned integer addition, but now interpreted as 8-bit signed integers

Example #3:

Example #2:

Visualizing Signed Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(SMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u \cdot v) = true(u \cdot v) \mod 2^w$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same
- The only difference is our interpretation of sign bit value

	123 ₁₀	
X	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

	01	1	1 1	0	1	1	123 ₁₀
Χ	11	1	0 1	0	1	0	234 ₁₀

	123 ₁₀	
X	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
X 11101010	234 ₁₀
0000000	

	123 ₁₀	
X	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
x 11101010	234 ₁₀
0000000000011111011	

	123 ₁₀	
Χ	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
x 11101010	234 ₁₀
0000000 01111011 0000000	

	123 ₁₀	
X	234 ₁₀	
	492	
•	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

01111011	123 ₁₀
x 11101010	234 ₁₀
0000000000001111101100000000000000000	

	123 ₁₀	
Χ	234 ₁₀	
	492	
	369 <mark>0</mark>	
+ 2	46 <mark>00</mark>	
2	8782 ₁₀	

```
123<sub>10</sub>
                                     234<sub>10</sub>
               0000000
             01111011
           0000000
            1111011
        0 0 0 0 0 0 0 0
        1111011
    01111011
+ 0 1 1 1 1 0 1 1
                                   28782<sub>10</sub>
```

Consider: $6_{10} * 2_{10} = 12_{10}$

	0110	6 ₁₀
X	0010	2 ₁₀

Consider: $6_{10} * 2_{10} = 12_{10}$

0110	6 ₁₀
x 0010	2 ₁₀
0000 0110 0000 + 0000	
1100	12 ₁₀

Consider: $6_{10} * 2_{10} = 12_{10}$

- Multiplying by two always shifts the input bit pattern by one to the left. That is: $(6_{10} * 2_{10}) == (0110_2 << 1)$
- More generally- multiplying by 2^k always shifts the input by k to the left: $(x_{10} * 2^k) = (x_2 << k)$

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

Examples

- u << 3 == u * 8</p>
- (u << 5) (u << 3) == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift (why not logical?)
 - Rounds wrong direction when **u** < **0**

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	11111100 01001001
у >> 8	-59.4257813	-60	FF C4	1111111 11000100

Incorrect Power-of-2 Divide

- **■** Consider: -25 / 2
- We expect that -25 / 2 = -12, however:

```
1. -25_{10} = 11100111_2

2. (-25 / 2) becomes (11100111_2 >> 1)

3. (11100111_2 >> 1) = 11110011_2

4. 11110011_2 = -13
```

Correct Power-of-2 Divide with *Biasing*

- **Quotient of Negative Number by Power of 2**
 - Want $\lceil x \mid 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k

11

 $+2^{k}-1$

 $u/2^k$

Biases dividend toward 0

Case 1: No rounding

Dividend:

Divisor:

Dividend's low bits are zero kBinary Point 2^k

Biasing has no effect

Biasing without changing result

■ Consider: -20 / 4 (answer should be -5)

Without bias:

```
1. -20_{10} = 11101100_{2}

2. (-20 / 4 ) becomes (11101100_{2} >> 2)

3. (11101100_{2} >> 2) = 11111011_{2}

4. 1111011_{2} = -5
```

With bias: $2^k = 4$, bias: 4 - 1 = 3

```
-20_{10} + 3_{10} = 11101111_2
```

- (-23 / 4) becomes $(11101111_2 >> 2)$
- $(11101111_2 >> 2) = 11111011_2$
- 4. $11111011_2 = -5$

Correct Power-of-2 Divide (Cont.)

Biasing that does change the result

■ Consider: -21 / 4 (answer should be -5)

Without bias:

```
1. -21_{10} = 11101011_{2}

2. (-21 / 4) becomes (11101011_{2} >> 2)

3. (11101011_{2} >> 2) = 11111010_{2}

4. 1111010_{2} = -6 (incorrect!)
```

With bias: $2^k = 4$, bias: 4 - 1 = 3

- $-21_{10} + 3_{10} = 11101110_2$
- (-18 / 4) becomes $(11101110_2 >> 2)$
- 3. $(11101110_2 >> 2) = 111111011_2$
- 4. $11111011_2 = -5$

Biasing that does change the result

■ Consider: -21 / 4 (answer should be -5)

Without bias:

```
-21_{10} = 11101011_2
```

- (-21 / 4) becomes $(11101011_2 >> 2)$
- $(11101011_2 >> 2) = 11111010_2$
- 4. $11111010_2 = -6$ (incorrect!)

Recall- lowest order bit has value 1!

With bias: $2^k = 4$, bias: 4 - 1 = 3

$$-21_{10} + 3_{10} = 11101110_2$$

- (-18 / 4) becomes $(11101110_2 >> 2)$
- $(11101110_2 >> 2) = 11111011_2$
- $1111101_{\frac{1}{4}}^{2} = -5$

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix