# Lecture 7: The Metropolis-Hastings Algorithm

Nick Whiteley

#### What we have seen last time: Gibbs sampler

• Key idea: Generate a Markov chain by updating the component of  $(X_1, \ldots, X_p)$  in turn by drawing from the full conditionals:

$$X_j^{(t)} \sim f_{X_j|X_{-j}}(\cdot|X_1^{(t)},\dots,X_{j-1}^{(t)},X_{j+1}^{(t-1)},\dots,X_p^{(t-1)})$$

- Two drawbacks:
  - Requires that it is possible / easy to sample from the full conditionals.
  - Can yields a slowly mixing chain if (some of) the components of  $(X_1, \ldots, X_p)$  are highly correlated.

#### What we will see today: Metropolis-Hastings algorithm

- Key idea: Use rejection mechanism, with a "local proposal": We let the newly proposed  ${\bf X}$  depend on the previous state of the chain  ${\bf X}^{(t-1)}$ .
- Samples  $(\mathbf{X}^{(0)}, \mathbf{X}^{(1)}, \ldots)$  form a Markov chain (like the Gibbs sampler).

# 5.1 Algorithm

# The Metropolis-Hastings algorithm

#### Algorithm 5.1: Metropolis-Hastings

Starting with  $\mathbf{X}^{(0)} := (X_1^{(0)}, \dots, X_p^{(0)})$  iterate for  $t = 1, 2, \dots$ 

- 1. Draw  $\mathbf{X} \sim q(\cdot | \mathbf{X}^{(t-1)})$ .
- 2. Compute

$$\alpha(\mathbf{X}|\mathbf{X}^{(t-1)}) = \min \left\{ 1, \frac{f(\mathbf{X}) \cdot q(\mathbf{X}^{(t-1)}|\mathbf{X})}{f(\mathbf{X}^{(t-1)}) \cdot q(\mathbf{X}|\mathbf{X}^{(t-1)})} \right\}.$$

3. With probability  $\alpha(\mathbf{X}|\mathbf{X}^{(t-1)})$  set  $\mathbf{X}^{(t)} = \mathbf{X}$ , otherwise set  $\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}$ .

# Illustration of the Metropolis-Hastings method



### Basic properties of the Metropolis-Hastings algorithm

• The probability that a newly proposed value is accepted given  $\mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)}$  is

$$a(\mathbf{x}^{(t-1)}) = \int \alpha(\mathbf{x}|\mathbf{x}^{(t-1)})q(\mathbf{x}|\mathbf{x}^{(t-1)}) \ d\mathbf{x}.$$

ullet The probability of remaining in state  ${f X}^{(t-1)}$  is

$$\mathbb{P}(\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)} | \mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)}) = 1 - a(\mathbf{x}^{(t-1)}).$$

• The probability of acceptance does not depend on the normalisation constant: If  $f(\mathbf{x}) = C \cdot \pi(\mathbf{x})$ , then

$$\alpha(\mathbf{X}|\mathbf{X}^{(t-1)}) = \frac{\pi(\mathbf{X}) \cdot q(\mathbf{X}^{(t-1)}|\mathbf{X})}{\pi(\mathbf{X}^{(t-1)}) \cdot q(\mathbf{X}|\mathbf{X}^{(t-1)})}$$

## The Metropolis-Hastings Transition Kernel

#### Lemma 5.1

The transition kernel of the Metropolis-Hastings algorithm is

$$\begin{split} K(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}) &= \alpha(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}) q(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)}) \\ &+ (1 - a(\mathbf{x}^{(t-1)})) \delta_{\mathbf{x}^{(t-1)}}(\mathbf{x}^{(t)}), \end{split}$$

where  $\delta_{\mathbf{x}^{(t-1)}(\cdot)}$  denotes Dirac-mass on  $\{\mathbf{x}^{(t-1)}\}$ .

# 5.2 Convergence properties

### Theoretical properties

#### Proposition 5.1

The Metropolis-Hastings kernel satisfies the *detailed balance* condition

$$K(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}) f(\mathbf{x}^{(t-1)}) = K(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}) f(\mathbf{x}^{(t)}).$$

Thus  $f(\mathbf{x})$  is the invariant distribution of the Markov chain  $(\mathbf{X}^{(0)}, \mathbf{X}^{(1)}, \ldots)$ . Furthermore the Markov chain is reversible.

## Example 5.1: Reducible Metropolis-Hastings

Consider the target distribution

$$f(x) = (\mathbb{I}_{[0,1]}(x) + \mathbb{I}_{[2,3]}(x))/2.$$

and the proposal distribution  $q(\cdot|\mathbf{x}^{(t-1)})$ :

$$X|X^{(t-1)} = x^{(t-1)} \sim \mathsf{U}[x^{(t-1)} - \delta, x^{(t-1)} + \delta]$$



Reducible if  $\delta < 1$ : the chain stays either in [0, 1] or [2, 3].

### Further theoretical properties

- The Markov chain  $(\mathbf{X}^{(0)}, \mathbf{X}^{(1)}, \ldots)$  is irreducible if  $q(\mathbf{x}|\mathbf{x}^{(t-1)}) > 0$  for all  $\mathbf{x}, \mathbf{x}^{(t-1)} \in \operatorname{supp}(f)$ : every state can be reached in a single step. (less strict conditions can be obtained, see e.g.(see Roberts & Tweedie, 1996)
- The chain is aperiodic, if there is positive probability that the chain remains in the current state, i.e.  $\mathbb{P}(\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}) > 0$ ,

#### An ergodic theorem

#### Theorem 5.1

If the Markov chain generated by the Metropolis-Hastings algorithm is irreducible, then for any integrable function  $h:E\to\mathbb{R}$ 

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} h(\mathbf{X}^{(t)}) \to \mathbb{E}_f (h(\mathbf{X}))$$

for every starting value  $\mathbf{X}^{(0)}$ .

Interpretation: We can approximate expectations by their empirical counterparts using a single Markov chain.

5.3 Random-walk Metropolis5.4 Choosing the proposal distribution

#### Random-walk Metropolis: Idea

- In the Metropolis-Hastings algorithm the proposal is from  $\mathbf{X} \sim q(\cdot|\mathbf{X}^{(t-1)}).$
- A popular choice for the proposal is  $q(\mathbf{x}|\mathbf{x}^{(t-1)}) = g(\mathbf{x} \mathbf{x}^{(t-1)})$  with g being a *symmetric* distribution, thus

$$\mathbf{X} = \mathbf{X}^{(t-1)} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim g.$$

Probability of acceptance becomes

$$\min\left\{1, \frac{f(\mathbf{X}) \cdot g(\mathbf{X} - \mathbf{X}^{(t-1)})}{f(\mathbf{X}^{(t-1)}) \cdot g(\mathbf{X}^{(t-1)} - \mathbf{X})}\right\} = \min\left\{1, \frac{f(\mathbf{X})}{f(\mathbf{X}^{(t-1)})}\right\},$$

- We accept . . .
  - every move to a more probable state with probability 1.
  - moves to less probable states with a probability  $f(\mathbf{X})/f(\mathbf{x}^{(t-1)}) < 1$ .



#### Random-walk Metropolis: Algorithm

#### Random-Walk Metropolis

Starting with  $\mathbf{X}^{(0)} := (X_1^{(0)}, \dots, X_p^{(0)})$  and using a symmetric random walk proposal g, iterate for  $t = 1, 2, \dots$ 

- 1. Draw  $\epsilon \sim g$  and set  $\mathbf{X} = \mathbf{X}^{(t-1)} + \epsilon$ .
- 2. Compute

$$\alpha(\mathbf{X}|\mathbf{X}^{(t-1)}) = \min\left\{1, \frac{f(\mathbf{X})}{f(\mathbf{X}^{(t-1)})}\right\}.$$

3. With probability  $\alpha(\mathbf{X}|\mathbf{X}^{(t-1)})$  set  $\mathbf{X}^{(t)} = \mathbf{X}$ , otherwise set  $\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}$ .

Popular choices for g are (multivariate) Gaussians or t-distributions (the latter having heavier tails)

# Example 5.2: Bayesian probit model (1)

- Medical study on infections resulting from birth by Cesarean section
- 3 influence factors:
  - indicator whether the Cesarian was planned or not  $(z_{i1})$ ,
  - indicator of whether additional risk factors were present at the time of birth  $(z_{i2})$ , and
  - indicator of whether antibiotics were given as a prophylaxis  $(z_{i3}).$
- Response variable: number of infections  $Y_i$  that were observed amongst  $n_i$  patients having the same covariates.

| # birt    | hs    | planned  | risk factors | antibiotics |
|-----------|-------|----------|--------------|-------------|
| infection | total |          |              |             |
| $y_i$     | $n_i$ | $z_{i1}$ | $z_{i2}$     | $z_{i3}$    |
| 11        | 98    | 1        | 1            | 1           |
| 1         | 18    | 0        | 1            | 1           |
| 0         | 2     | 0        | 0            | 1           |
| 23        | 26    | 1        | 1            | 0           |
| 28        | 58    | 0        | 1            | 0           |
| 0         | 9     | 1        | 0            | 0           |
| 8         | 40    | 0        | 0            | 0           |
|           |       |          |              |             |

# Example 5.2: Bayesian probit model (2)

• Model for  $Y_i$ :

$$Y_i \sim \text{Bin}(n_i, \pi_i), \qquad \pi = \Phi(\mathbf{z}_i'\boldsymbol{\beta}),$$

where  $\mathbf{z}_i = [1, z_{i1}, z_{i2}, z_{i3}]^T$  and  $\Phi(\cdot)$  being the CDF of a N(0, 1).

- Prior on the parameter of interest  $\beta$ :  $\beta \sim N(\mathbf{0}, \mathbb{I}/\lambda)$ .
- ullet The posterior density of eta is

$$f(\boldsymbol{\beta}|y_1, \dots, y_n) \propto \left( \prod_{i=1}^N \Phi(\mathbf{z}_i'\boldsymbol{\beta})^{y_i} \cdot (1 - \Phi(\mathbf{z}_i'\boldsymbol{\beta}))^{n_i - y_i} \right) \cdot \exp\left( -\frac{\lambda}{2} \sum_{j=0}^3 \beta_j^2 \right)$$

# Example 5.2: Bayesian probit model (3)

Use the following random walk Metropolis algorithm (50,000 samples).

Starting with any  $\beta^{(0)}$  iterate for t = 1, 2, ...:

- 1. Draw  $\epsilon \sim N(\mathbf{0}, \Sigma)$  and set  $\beta = \beta^{(t-1)} + \epsilon$ .
- 2. Compute

$$\alpha(\boldsymbol{\beta}|\boldsymbol{\beta}^{(t-1)}) = \min \left\{ 1, \frac{f(\boldsymbol{\beta}|Y_1, \dots, Y_n)}{f(\boldsymbol{\beta}^{(t-1)}|Y_1, \dots, Y_n)} \right\}.$$

3. With probability  $\alpha(\beta|\beta^{(t-1)})$  set  $\beta^{(t)} = \beta$ , otherwise set  $\boldsymbol{\beta}^{(t)} = \boldsymbol{\beta}^{(t-1)}$ 

(for the moment we use  $\Sigma = 0.08 \cdot \mathbb{I}$ , and  $\lambda = 10$ ).

# Example 5.2: Bayesian probit model (4)



Convergence of the  $\beta_j^{(t)}$  is to a distribution, not a value!

# Example 5.2: Bayesian probit model (5)



Convergence of cumulative averages  $\sum_{tau=1}^{t} \beta_{i}^{(\tau)}/t$  is to a value.

# Example 5.2: Bayesian probit model (6)



# Example 5.2: Bayesian probit model (7)

|              |           | Posterior mean | 95% credil | ole interval |
|--------------|-----------|----------------|------------|--------------|
| intercept    | $\beta_0$ | -1.0952        | -1.4646    | -0.7333      |
| planned      | $\beta_1$ | 0.6201         | 0.2029     | 1.0413       |
| risk factors | $\beta_2$ | 1.2000         | 0.7783     | 1.6296       |
| antibiotics  | $\beta_3$ | -1.8993        | -2.3636    | -1.471       |

### Choosing a good proposal distribution

- Ideally: Markov chain with small correlation  $\rho(\mathbf{X}^{(t-1)}, \mathbf{X}^{(t)})$  between subsequent values.
  - $\rightsquigarrow$  fast exploration of the support of the target f.
- Two sources for this correlation:
  - the correlation between the current state  $\mathbf{X}^{(t-1)}$  and the newly proposed value  $\mathbf{X} \sim q(\cdot|\mathbf{X}^{(t-1)})$  (can be reduced using a proposal with high variance)
  - the correlation introduced by retaining a value  $\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}$  because the newly generated value  $\mathbf{X}$  has been rejected (can be reduced using a proposal with small variance)
- Trade-off for finding the ideal compromise between:
  - fast exploration of the space (good mixing behaviour)
  - obtaining a large probability of acceptance
- For multivariate distributions: covariance of proposal should reflect the covariance structure of the target.



# Example 5.3: Choice of proposal (1)

- Target distribution, we want to sample from: N(0,1) (i.e.  $f(\cdot) = \phi_{(0,1)}(\cdot)$
- We want to use a random walk Metropolis algorithm with

$$\varepsilon \sim \mathsf{N}(0, \sigma^2)$$

- What is the optimal choice of  $\sigma^2$ ?
- We consider four choices  $\sigma^2 = 0.1^2, 1, 2.38^2, 10^2$ .

Example 5.3: Choice of proposal (2) 9 9 9-





# Example 5.3: Choice of proposal (4)

|                     | Autocorrelation $\rho(X^{(t-1)}, X^{(t)})$ |                  | Probability of acceptance $\alpha(X, X^{(t-1)})$ |                  |  |
|---------------------|--------------------------------------------|------------------|--------------------------------------------------|------------------|--|
|                     | Mean                                       | 95% CI           | Mean                                             | 95% CI           |  |
| $\sigma^2 = 0.1^2$  | 0.9901                                     | (0.9891,0.9910)  | 0.9694                                           | (0.9677,0.9710)  |  |
| $\sigma^2 = 1$      | 0.7733                                     | (0.7676, 0.7791) | 0.7038                                           | (0.7014, 0.7061) |  |
| $\sigma^2 = 2.38^2$ | 0.6225                                     | (0.6162, 0.6289) | 0.4426                                           | (0.4401, 0.4452) |  |
| $\sigma^2 = 10^2$   | 0.8360                                     | (0.8303, 0.8418) | 0.1255                                           | (0.1237, 0.1274) |  |

Suggests: Optimal choice is  $2.38^2 > 1$ .

# Example 5.4: Bayesian probit model (revisited)

- So far we used:  $Var(\epsilon) = 0.08 \cdot \mathbb{I}$ ).
- ullet Better choice: Let  $\mathrm{Var}(\epsilon)$  reflect the covariance structure
- Frequentist asymptotic theory:  $Var(\hat{\boldsymbol{\beta}}^{m.l.e}) = (\mathbf{Z}'\mathbf{D}\mathbf{Z})^{-1}$  $\mathbf{D}$  is a suitable diagonal matrix
- Better choice:  $Var(\epsilon) = 2 \cdot (\mathbf{Z}'\mathbf{D}\mathbf{Z})^{-1}$
- Increases rate of acceptance from 13.9% to 20.0% and reduces autocorrelation:

| $\mathbf{\Sigma} = 0.08 \cdot \mathbf{I}$                                                                          | $\beta_0$ | $eta_1$ | $eta_2$ | $eta_3$ |
|--------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|---------|
| Autocorrelation $\rho(\beta_j^{(t-1)}, \beta_j^{(t)})$                                                             | 0.9496    | 0.9503  | 0.9562  | 0.9532  |
|                                                                                                                    |           |         |         |         |
| $\Sigma = 2 \cdot (\mathbf{Z}' \mathbf{D} \mathbf{Z})^{-1}$ Autocorrelation $\rho(\beta_i^{(t-1)}, \beta_i^{(t)})$ | $\beta_0$ | $eta_1$ | $eta_2$ | $eta_3$ |

(in this example  $\det(0.08 \cdot \mathbb{I}) = \det(2 \cdot (\mathbf{Z}'\mathbf{DZ})^{-1})$ )