Consumer Bankruptcy as Aggregate Demand Management

Adrien Auclert Kurt Mitman

Stanford

CEMFI &IIES

PSE

14 December 2023

► Common phenomenon...

Common phenomenon, and highly countercyclical

▶ Credit relief comparable to unemployment insurance in magnitude

More generous states less sensitive to the cycle more

Consumer bankruptcy and aggregate stabilization

- In the data:
 - a) Consumer bankruptcy is large and countercyclical
 - b) Downturns tend to be less severe when there is more debt relief, at least across regions [Verner-Gyongyosi 2019, Auclert et al 2021]
- ▶ **Q**: To what extent does bankruptcy act as an *automatic stabilizer*?

Consumer bankruptcy and aggregate stabilization

- In the data:
 - a) Consumer bankruptcy is large and countercyclical
 - b) Downturns tend to be less severe when there is more debt relief, at least across regions [Verner-Gyongyosi 2019, Auclert et al 2021]
- ▶ **Q**: To what extent does bankruptcy act as an automatic stabilizer?
- Our paper: a framework + quantitative theory to answer this Q

Consumer bankruptcy and aggregate stabilization

- In the data:
 - a) Consumer bankruptcy is large and countercyclical
 - b) Downturns tend to be less severe when there is more debt relief, at least across regions [Verner-Gyongyosi 2019, Auclert et al 2021]
- ▶ **Q**: To what extent does bankruptcy act as an automatic stabilizer?
- Our paper: a framework + quantitative theory to answer this Q
 - 1. Define what an automatic stabilizer is
 - 2. Show that consumer bankruptcy has the features of one
 - 3. Quantitatively evaluate the extent to which bankruptcy reduces the magnitude of output fluctuations, and effect of alternative policy rules

Related literatures

- Automatic stabilizers and the business cycle
 - ► IS-LM: income tax, govt spending [Musgrave-Miller 1948, Christiano 1984]
 - ► HANK: income tax [McKay-Reis 2016], UI [McKay-Reis 2020, Kekre 2021]
- Aggregate demand effect of credit-relief policy
 - ▶ [recently student loans: Dinerstein-Yannelis-Chen 2023; Katz 2023]
- Quantitative literature on consumer bankruptcy
 - ▶ Insurance vs credit access [Zame 93, Livshits et al 07, Chatterjee et al 07, ...]
 - Add business cycle fluctuations [Nakajima Rios-Rull 16, Fieldhouse et al 11]
 - Add nominal rigidities [new!]

Outline

1. Automatic stabilizers in a two period framework

2. Consumer default as an automatic stabilizer

3. Quantitative evaluation

Outline

1. Automatic stabilizers in a two period framework

2. Consumer default as an automatic stabilizer

3. Quantitative evaluation

Q: What is an automatic stabilizer?

▶ **Q:** What is an automatic stabilizer?

"I know it when I see it"

Q: What is an automatic stabilizer?

"I know it when I see it"

- ▶ We propose the following practical definition: let
 - 1. $\epsilon_s \equiv \frac{\partial s}{\partial y}$ be the sensitivity of some aggregate s to output y
 - 2. $\alpha_s \equiv \frac{\partial AD}{\partial s}$ be the sensitivity of aggregate demand to s

Then we say that s is an **automatic stabilizer** if $|\epsilon_s \cdot \alpha_s < 0|$

Q: What is an automatic stabilizer?

"I know it when I see it"

- ▶ We propose the following practical definition: let
 - 1. $\epsilon_s \equiv \frac{\partial s}{\partial v}$ be the sensitivity of some aggregate s to output y
 - 2. $\alpha_s \equiv \frac{\partial AD}{\partial s}$ be the sensitivity of aggregate demand to s

Then we say that s is an **automatic stabilizer** if $|\epsilon_s \cdot \alpha_s < 0|$

$$|\epsilon_{s}\cdot\alpha_{s}<0|$$

- Examples of stabilizers:
 - **b** government spending $g: \epsilon_g < 0, \alpha_g > 0$
 - income tax t: $\epsilon_t > 0$, $\alpha_t < 0$
 - ▶ monetary policy (real interest rate r): $\epsilon_r > 0$, $\alpha_r < 0$

Q: What is an automatic stabilizer?

"I know it when I see it"

- ▶ We propose the following practical definition: let
 - 1. $\epsilon_s \equiv \frac{\partial s}{\partial y}$ be the sensitivity of some aggregate s to output y
 - 2. $\alpha_s \equiv \frac{\partial AD}{\partial s}$ be the sensitivity of aggregate demand to s

Then we say that s is an **automatic stabilizer** if $|\epsilon_s \cdot \alpha_s < 0|$

- Examples of stabilizers:
 - government spending g: $\epsilon_g < 0$, $\alpha_g > 0$
 - ▶ income tax t: $\epsilon_t > 0$, $\alpha_t < 0$
 - ▶ monetary policy (real interest rate r): $\epsilon_r > 0$, $\alpha_r < 0$
- ▶ If $\epsilon_s \cdot \alpha_s > 0$, it's an automatic destabilizer
 - e.g. Fisher debt deflation (price level P): $\epsilon_P > 0$, $\alpha_P > 0$

Model setup: households

- ▶ Two periods t = 0, 1 (short and long-run)
 - Production in period 0: $y_0 = A_0 n_0$, flex prices, partially rigid wages
 - ▶ Endowment in period 1: $y_1 = 1$

Model setup: households

- ightharpoonup Two periods t = 0, 1 (short and long-run)
 - Production in period 0: $y_0 = A_0 n_0$, flex prices, partially rigid wages
 - ▶ Endowment in period 1: $y_1 = 1$
- ▶ I groups of heterogeneous agents, mass μ^i each
 - lacktriangle discount factor eta^i , borrowing constraint $\overline{b_1^i}$, inequality e_0^i , risk $e_1^i \sim F^i$
 - ▶ proportional taxation: post-tax income $z_{it} = (1 \tau_t) y_{it}$; $z_t \equiv \mathbb{E}[z_{it}]$
 - $\blacktriangleright \text{ write } \Theta \equiv \left(\beta^i, \overline{b_1^i}, e_0^i, F^i\right)$

Model setup: households

- ▶ Two periods t = 0, 1 (short and long-run)
 - Production in period 0: $y_0 = A_0 n_0$, flex prices, partially rigid wages
 - ▶ Endowment in period 1: $y_1 = 1$
- lacksquare I groups of heterogeneous agents, mass μ^i each
 - discount factor β^i , borrowing constraint $\overline{b_1^i}$, inequality e_0^i , risk $e_1^i \sim F^i$
 - **proportional** taxation: post-tax income $z_{it} = (1 \tau_t) y_{it}$; $z_t \equiv \mathbb{E}\left[z_{it}\right]$
 - $\blacktriangleright \text{ write } \Theta \equiv \left(\beta^i, \overline{b_1^i}, e_0^i, F^i\right)$
- **Consumption function** $c_0(z_0, z_1, \Theta) \equiv \sum_i \mu^i c_0^i(z_0, z_1, \Theta)$, with

$$\begin{aligned} c_0^i\left(z_0,z_1,\Theta\right) &= \arg\max_{b_1^i \leq \overline{b_1^i}} u\left(c_0^i\right) + \beta^i \mathbb{E}\left[u\left(c_1^i\right)\right] \\ c_0^i &= \frac{e_0^i}{\mathbb{E}\left[e_0^i\right]} z_0 + \frac{1}{R} b_1^i; \quad c_1^i = \frac{e_1^i}{\mathbb{E}\left[e_1^i\right]} z_1 - b_1^i \end{aligned}$$

▶ Monetary policy: set real rate R and $P_1 = P_0$

- **Monetary policy**: set real rate R and $P_1 = P_0$
- ► Fiscal policy:
 - Period 0: govt spending rule $g_0(y_0)$, tax revenue rule $t_0(y_0)$
 - Period 1: constant g_1 , t_1 is residual to ensure:

$$t_0(y_0) + \frac{t_1}{R} = g_0(y_0) + \frac{g_1}{R}$$
 (GIBC)

- $ightharpoonup (t_0,t_1)$ levied by changing tax rate $au_0,\, au_1$
- ▶ Empirically relevant case: $g_0' < 0$, $t_0' > 0$ (e.g. $t_0' = \tau_0$ if τ_0 constant)

- **Monetary policy**: set real rate R and $P_1 = P_0$
- ► Fiscal policy:
 - Period 0: govt spending rule $g_0(y_0)$, tax revenue rule $t_0(y_0)$
 - Period 1: constant g_1 , t_1 is residual to ensure:

$$t_0(y_0) + \frac{t_1}{R} = g_0(y_0) + \frac{g_1}{R}$$
 (GIBC)

- (t_0, t_1) levied by changing tax rate τ_0 , τ_1
- lacktriangle Empirically relevant case: $g_0'<0$, $t_0'>0$ (e.g. $t_0'= au_0$ if au_0 constant)
- Aggregate post-tax income in period t: $z_t = y_t t_t$

- ▶ Monetary policy: set real rate R and $P_1 = P_0$
- Fiscal policy:
 - Period 0: govt spending rule $g_0(y_0)$, tax revenue rule $t_0(y_0)$
 - Period 1: constant g_1 , t_1 is residual to ensure:

$$t_0(y_0) + \frac{t_1}{R} = g_0(y_0) + \frac{g_1}{R}$$
 (GIBC)

- (t_0, t_1) levied by changing tax rate τ_0 , τ_1
- Empirically relevant case: $g_0' < 0$, $t_0' > 0$ (e.g. $t_0' = \tau_0$ if τ_0 constant)
- Aggregate post-tax income in period t: $z_t = y_t t_t$
- **Equilibrium** for given Θ is y_0 that solves:

$$c_0(y_0 - t_0(y_0), 1 - t_1, \Theta) + g_0(y_0) = y_0$$
 s.t. (GIBC)

- ▶ Monetary policy: set real rate R and $P_1 = P_0$
- Fiscal policy:
 - Period 0: govt spending rule $g_0(y_0)$, tax revenue rule $t_0(y_0)$
 - Period 1: constant g_1 , t_1 is residual to ensure:

$$t_0(y_0) + \frac{t_1}{R} = g_0(y_0) + \frac{g_1}{R}$$
 (GIBC)

- (t_0, t_1) levied by changing tax rate τ_0 , τ_1
- lacktriangle Empirically relevant case: $g_0'<0$, $t_0'>0$ (e.g. $t_0'= au_0$ if au_0 constant)
- Aggregate post-tax income in period t: $z_t = y_t t_t$
- **Equilibrium** for given Θ is y_0 that solves:

$$AD_0(y_0, t_0(y_0), g_0(y_0), \Theta) = y_0$$

► Initial equilibrium $y_0 = 1$, $\Theta = 0$: $AD_0(1, t_0(1), g_0(1), 0) = 1$

▶ Negative demand shock: $AD_0(y_0, t_0(y_0), g_0(y_0), \Theta) = y_0$

Output fluctuations under demand shocks

▶ Counterfactual with fixed t_0 , g_0 : we'll see that $AD_0(y_0)$ steepens

▶ Same demand shock, larger change in y_0^* st $AD_0(y_0^*, t_0, g_0, \Theta) = y_0^*$

► Same demand shocks, larger output fluctuations

General formulation

▶ With *S* stabilizers, determination of period 0 output is

$$AD(y, s_1(y) \cdots s_S(y), \Theta) = y$$

- Let dy^* be outcome with all stabilizers shut off, $\epsilon_s = 0$.
- ▶ Let $M^* \equiv \left(1 \frac{\partial AD}{\partial y}\right)^{-1}$ be the Keynesian multiplier in that case.

General formulation

▶ With *S* stabilizers, determination of period 0 output is

$$AD(y, s_1(y) \cdots s_S(y), \Theta) = y$$

- ▶ Let dy^* be outcome with all stabilizers shut off, $\epsilon_s = 0$.
- ▶ Let $M^* \equiv \left(1 \frac{\partial AD}{\partial y}\right)^{-1}$ be the Keynesian multiplier in that case.

Proposition (Contribution of automatic stabilizers to fluctuations)

$$\frac{\operatorname{std}(dy^*)}{\operatorname{std}(dy)} = 1 + M^* \cdot \sum_{s \in S} (-\epsilon_s \cdot \alpha_s)$$

Stabilization ratio:

$$\boxed{\eta = \frac{\operatorname{std}(dy^*)}{\operatorname{std}(dy)} = 1 + M^* \cdot \sum_{s \in S} (-\epsilon_s \cdot \alpha_s)}$$

"How much more volatile would output be without stabilizers?"

Stabilization ratio:

$$\boxed{\eta = \frac{\operatorname{std}(dy^*)}{\operatorname{std}(dy)} = 1 + M^* \cdot \sum_{s \in S} (-\epsilon_s \cdot \alpha_s)}$$

"How much more volatile would output be without stabilizers?"

 $ightharpoonup \epsilon_s = rac{\partial s}{\partial v}$ is measurable in data. M^*, α_s given by sufficient statistics!

Stabilization ratio:

$$\eta = \frac{\operatorname{std}(dy^*)}{\operatorname{std}(dy)} = 1 + M^* \cdot \sum_{s \in S} (-\epsilon_s \cdot \alpha_s)$$

"How much more volatile would output be without stabilizers?"

- $ightharpoonup \epsilon_s = rac{\partial s}{\partial v}$ is measurable in data. M^*, α_s given by sufficient statistics!
- ightharpoonup For instance, here with t and g as stabilizers,

$$\eta = 1 + \epsilon_t \cdot \frac{\textit{MPC}_0 - \textit{R} \cdot \textit{MPC}_1}{1 - \textit{MPC}_0} + (-\epsilon_g) \cdot \frac{1 - \textit{R} \cdot \textit{MPC}_1}{1 - \textit{MPC}_0}$$

where
$$MPC_0 = \frac{\partial c_0}{\partial z_0}$$
 and $MPC_1 = \frac{\partial c_0}{\partial z_1}$.

Stabilization ratio:

$$\eta = \frac{\operatorname{std}(dy^*)}{\operatorname{std}(dy)} = 1 + M^* \cdot \sum_{s \in S} (-\epsilon_s \cdot \alpha_s)$$

"How much more volatile would output be without stabilizers?"

- $ightharpoonup \epsilon_s = rac{\partial s}{\partial v}$ is measurable in data. M^*, α_s given by sufficient statistics!
- For instance, here with t and g as stabilizers,

$$\eta = 1 + \epsilon_t \cdot \frac{\textit{MPC}_0 - \textit{R} \cdot \textit{MPC}_1}{1 - \textit{MPC}_0} + (-\epsilon_g) \cdot \frac{1 - \textit{R} \cdot \textit{MPC}_1}{1 - \textit{MPC}_0}$$

where
$$MPC_0 = \frac{\partial c_0}{\partial z_0}$$
 and $MPC_1 = \frac{\partial c_0}{\partial z_1}$.

▶ In full-fledged HANK model , similar formula, but need to adjust " MPC_0 " for persistence of shock, then can set " MPC_1 " = 0.

Automatic stabilizers quantified

	Stabilization ratio		
	Suff. stat.	Simple HANK	Quant. Model
Acyclical <i>G</i>	1.20	1.21	
Acyclical deficits	1.09	1.09	
Acyclical bankuptcy			
All three acyclical	_		
Active bankruptcy policy	_	_	

Outline

1. Automatic stabilizers in a two period framework

2. Consumer default as an automatic stabilizer

3. Quantitative evaluation

Updated environment

- ▶ Two types I = 2 (borrowers and savers)
 - ► Mass 1/2 of savers *S*
 - Mass 1/2 of borrowers B, with option to default in both periods
 - For simplicity: no taxes/spending, $z_{it} = e_{it} y_t$
- ▶ Borrowers now have defaultable legacy debt $b_0 > 0$ owed to savers

Updated environment

- ▶ Two types I = 2 (borrowers and savers)
 - ► Mass 1/2 of savers *S*
 - Mass 1/2 of borrowers B, with option to default in both periods
 - For simplicity: no taxes/spending, $z_{it} = e_{it} y_t$
- lacktriangle Borrowers now have defaultable legacy debt $b_0>0$ owed to savers
 - \triangleright Default involves utility cost K_0, K_1 and financial market exclusion
 - We think of K_0 , K_1 as an **instruments of policy** (more instruments later)

Timeline

▶ Two periods t = 0, 1

Timeline

▶ Two periods t = 0, 1

Timeline

▶ Two periods t = 0, 1

Period 1 choice

$$V(e_1, b_1) = \max\{u(e_1 - b_1); u(e_1) - K_1\}$$

Period 1 choice

$$V(e_1, b_1) = \max\{u(e_1 - b_1); u(e_1) - K_1\}$$

- ightharpoonup Default decision characterized by income threshold $\overline{e_1}$
- ▶ Repay when $e_1 \ge \overline{e_1}$

Period 1 choice

$$V\left(e_{1},b_{1}\right)=\begin{cases}u\left(e_{1}\right)-K_{1} & e_{1}\leq\overline{e_{1}}\left(b_{1}\right)\\u\left(e_{1}-b_{1}\right) & e_{1}>\overline{e_{1}}\left(b_{1}\right)\end{cases}$$

- ▶ Here, consumption effect of default is $CED = b_1$
- Intuitively, debt repayment is foregone consumption

Entering period 1: probability of default

- ▶ Bottom line: default if $e_1 \le \overline{e_1}(b_1)$
- ▶ More likely to default if more indebted, or lower income

Entering period 1: probability of default

- ▶ Bottom line: default if $e_1 \le \overline{e_1}(b_1)$
- ▶ More likely to default if more indebted, or lower income
- ▶ Income shocks *e*₁ distributed i.i.d with cdf *F*
- ▶ Fraction of borrowers that default given b_1 : $d_1(b_1) = F(\overline{e_1}(b_1))$

Loan pricing: banks internalize default risk

- ► Competitive intermediaries face cost of funds *R*, diversify loan risks
- Amount they offer to a borrower that promises to repay b₁:

$$Q\left(b_{1}\right)=\frac{b_{1}}{R}\left(1-d_{1}\left(b_{1}\right)\right)$$

Loan pricing: banks internalize default risk

- Competitive intermediaries face cost of funds R, diversify loan risks
- Amount they offer to a borrower that promises to repay b₁:

$$Q\left(b_{1}\right)=\frac{b_{1}}{R}\left(1-d_{1}\left(b_{1}\right)\right)=\frac{b_{1}}{R}\left(1-F\left(\overline{e_{1}}\left(b_{1}\right)\right)\right)$$

Period 0 choice

Period 0 choice

- \triangleright Period 0 GDP is y_0
- ▶ Household with income shock e_0 chooses max $\{V^r(e_0), V^d(e_0)\}$ w.

$$V^{r}(e_{0}) = \max_{b_{1}} \left\{ u\left(y_{0}e_{0} - b_{0} + Q\left(b_{1}\right)\right) + \beta \mathbb{E}_{e_{1}}\left[V\left(e_{1}, b_{1}\right)\right] \right\}$$
$$V^{d}(e_{0}) = u\left(y_{0}e_{0}\right) + \beta \mathbb{E}_{e_{1}}\left[u\left(e_{1}\right)\right] - K_{0}$$

Period 0 choice and default rate

$$V_0(e_0) = \max\{V^r(e_0); V^d(e_0)\}$$

ightharpoonup Assume parameters are such that there is a single threshold $\overline{e_0}$

Period 0 choice and default rate

$$V_0(e_0) = \max \{ \frac{V^r(e_0)}{(e_0)}; V^d(e_0) \}$$

- ightharpoonup Consumption effect of default still positive, but less than b_0
- ▶ Repayers can roll over some of their debt (depending on *Q*)

Period 0 choice and default rate

$$V_0(e_0) = \max\{V^r(e_0); V^d(e_0)\}$$

- ▶ Income shocks e₀ distributed i.i.d with cdf F (mean 1)
- Fraction of consumers who default at date 0: $d_0 = F(\overline{e_0})$

General equilibrium

- lacktriangle Savers own financial intermediaries, have $e_t=1$ & are unconstrained
 - consume MPC^S out of the PV of income and intermediary profits:

$$c_0^S = MPC^S \left(y_0 + \frac{1}{R} + b_0 (1 - d_0) \right)$$

General equilibrium

- lacktriangle Savers own financial intermediaries, have $\emph{e}_t=1$ & are unconstrained
 - consume MPC^S out of the PV of income and intermediary profits:

$$c_0^S = MPC^S \left(y_0 + \frac{1}{R} + b_0 (1 - d_0) \right)$$

Aggregate spending in period 0:

$$c_0(y_0, d_0(y_0)) = \frac{1}{2} \int c_0^B(e_0) dF(e_0) + \frac{1}{2} c_0^S$$

General equilibrium

- lacktriangle Savers own financial intermediaries, have $e_t=1$ & are unconstrained
 - consume MPC^S out of the PV of income and intermediary profits:

$$c_0^S = MPC^S \left(y_0 + \frac{1}{R} + b_0 (1 - d_0) \right)$$

Aggregate spending in period 0:

$$c_0(y_0, d_0(y_0)) = \frac{1}{2} \int c_0^B(e_0) dF(e_0) + \frac{1}{2} c_0^S$$

► New equation characterizing equilibrium:

$$c_0\left(y_0,d_0\left(y_0\right)\right)=y_0$$

How consumer default affects the Keynesian cross

 \blacktriangleright What is α for consumer default d?

$$\alpha_d = \frac{\partial AD}{\partial d} = (ACED - MPC^S) \cdot \frac{b_0}{2}$$

ACED is the consumption effect of default for the marginal defaulter, normalized by her debt b_0

How consumer default affects the Keynesian cross

 \blacktriangleright What is α for consumer default d?

$$\alpha_d = \frac{\partial AD}{\partial d} = (ACED - MPC^S) \cdot \frac{b_0}{2}$$

ACED is the consumption effect of default for the marginal defaulter, normalized by her debt \emph{b}_0

 \blacktriangleright What is ϵ for consumer default d?

$$\epsilon_d = \frac{\partial d}{\partial y} = F'(\overline{e_0}) \frac{\partial \overline{e_0}}{\partial y} < 0$$

since higher output raises $V^r - V^d$ for all e_0

► So, provided that:

$$ACED > MPC^{S}$$

consumer default fits our definition of an automatic stabilizer

Lemma (Automatic stabilizer role of bankruptcy)

$$\frac{\operatorname{std}\left(dy_{0}^{*}\right)}{\operatorname{std}\left(dy_{0}\right)} = 1 + M^{*} \cdot \left(ACED - MPC^{S}\right) \frac{b_{0}}{2y_{0}} \left(-\frac{\partial d_{0}}{\partial \log y_{0}}\right)$$

Lemma (Automatic stabilizer role of bankruptcy)

$$\frac{\operatorname{std}\left(\mathit{d}\mathit{y}_{0}^{*}\right)}{\operatorname{std}\left(\mathit{d}\mathit{y}_{0}\right)} = 1 + \mathit{M}^{*} \cdot \left(\mathit{ACED} - \mathit{MPC}^{S}\right) \frac{\mathit{b}_{0}}{2\mathit{y}_{0}} \left(-\frac{\partial \mathit{d}_{0}}{\partial \log \mathit{y}_{0}}\right)$$

- Sufficient statistic for original Q. Back of envelope:
 - ▶ $MPC^{S} \simeq 0$ to 0.15 from studies of spending from illiquid accounts
 - ► ACED is more complicated: requires unobserved counterfactual

Lemma (Automatic stabilizer role of bankruptcy)

$$\frac{\operatorname{std}\left(\mathit{dy}_{0}^{*}\right)}{\operatorname{std}\left(\mathit{dy}_{0}\right)} = 1 + \mathit{M}^{*} \cdot \left(\mathit{ACED} - \mathit{MPC}^{S}\right) \frac{\mathit{b}_{0}}{2\mathit{y}_{0}} \left(-\frac{\partial \mathit{d}_{0}}{\partial \log \mathit{y}_{0}}\right)$$

- Sufficient statistic for original Q. Back of envelope:
 - ▶ $MPC^S \simeq 0$ to 0.15 from studies of spending from illiquid accounts
 - ► ACED is more complicated: requires unobserved counterfactual
 - Strategy from Indarte (2021): ratio of Δd_0 from raising income in both states vs only in default state reveals the *ACED*.
 - lacktriangle Her estimates imply $ACED \simeq 0.2$ to 0.5 [depending on risk aversion]

Lemma (Automatic stabilizer role of bankruptcy)

$$\frac{\operatorname{std}\left(\mathit{dy}_{0}^{*}\right)}{\operatorname{std}\left(\mathit{dy}_{0}\right)} = 1 + \mathit{M}^{*} \cdot \left(\mathit{ACED} - \mathit{MPC}^{S}\right) \frac{\mathit{b}_{0}}{2\mathit{y}_{0}} \left(-\frac{\partial \mathit{d}_{0}}{\partial \log \mathit{y}_{0}}\right)$$

- Sufficient statistic for original Q. Back of envelope:
 - $ightharpoonup MPC^S \simeq 0$ to 0.15 from studies of spending from illiquid accounts
 - ► ACED is more complicated: requires unobserved counterfactual
 - Strategy from Indarte (2021): ratio of Δd_0 from raising income in both states vs only in default state reveals the *ACED*.
 - lacktriangle Her estimates imply $ACED \simeq 0.2$ to 0.5 [depending on risk aversion]
 - ► For instance:

$$1 + \underbrace{\frac{\textit{M}^*}{2}} \cdot \left(\underbrace{\frac{\textit{ACED}}{0.5}} - \underbrace{\frac{\textit{MPC}^\textit{S}}{0}}\right) \cdot \underbrace{\frac{b_0}{2y_0}}_{0.25} \cdot \underbrace{\left(-\frac{\partial \textit{d}_0}{\partial \log y_0}\right)}_{\sim 0.5} \sim 1.13$$

Automatic stabilizers quantified

	Stabilization ratio		
	Suff. stat.	Simple HANK	Quant. Model
Acyclical <i>G</i>	1.20	1.21	
Acyclical deficits	1.09	1.09	
Acyclical bankuptcy	1.13		
All three acyclical	1.42		
Active bankruptcy policy	_	_	

Outline

1. Automatic stabilizers in a two period framework

2. Consumer default as an automatic stabilizer

3. Quantitative evaluation

Quantitative model overview

- "HANK" w/ household default
 - similar to Livshits, MacGee, Tertilt (2007)
 - but general equilibrium + nominal rigidities
- ► Household model:
 - ightharpoonup OLG, ages $j = 1 \dots J$
 - Idiosyncratic income risk and expenditure risk
- Production:
 - \triangleright Cobb-Douglas production in k, n, adj costs on k
 - ightharpoonup Sticky prices and wages ightarrow standard price and wage NKPCs
- Government policy:
 - ▶ Bankruptcy code: filing fee, exclusion from credit, Chapter 7 & 13
 - ightharpoonup Fiscal: progressive taxation, PAYGO pensions, rules for g, t
 - ► Monetary: constant *R* benchmark (also consider Taylor rule)

Calibration / Estimation

- Calibrate steady state parameters to match
 - ▶ life-cycle profiles: income, wealth, consumption, debt and default
 - cross-section: debt, chargeoffs, default, income
- Estimate slopes of NKPCs, fiscal rule parameters, and shock processes for β , g, mp, tfp, tax, ϵ^p , ϵ^w , ζ^m , via SMM to match
 - standard deviations and covariances of standard aggregates
 - cyclicality of bankruptcy, chargeoffs and debt
 - regression coefficient of output on taxes and spending
 - fiscal rule parameter estimates: $\phi_{ty} = 0.34$, $\phi_{gy} = -0.15$

Cyclical Properties of Data & Model

Model			Data			
Var	Std Dev	Cor(y,x)	$Cor(x, x_{-1})$	Std Dev	Cor(y,x)	$Cor(x, x_{-1})$
Υ	0.011	1.000	0.619	0.010	1.000	0.880
C	0.015	0.502	0.355	0.009	0.883	0.876
G	0.014	-0.768	0.634	0.012	-0.420	0.848
I	0.050	0.928	0.621	0.054	0.894	0.872
N	0.015	0.938	0.629	0.011	0.808	0.960
BK	0.144	-0.173	0.612	0.170	-0.251	0.409
CO	0.172	-0.327	0.785	0.185	-0.604	0.812
D	0.039	-0.323	0.869	0.024	-0.180	0.914
W	0.019	0.466	0.496	0.931	-0.048	0.229
π	0.033	-0.042	0.314	0.011	0.198	0.777
i	0.024	0.251	0.690	0.028	0.370	0.988
π^w	0.023	0.112	0.715	1.675	0.103	0.766
tax	0.037	0.651	0.557	0.060	0.579	0.567
B^g/Y	0.017	-0.794	0.745	0.048	-0.558	0.901

Model counterfactuals

Counterfactuals

- 1. Baseline: turn off benchmark automatic stabilizers
 - Countercyclical government spending
 - Countercyclical deficits
- 2. Eliminate countercyclical bankruptcy
 - Penalties increase in recessions to ensure acyclical default rate
- 3. Active use of bankruptcy policy for demand magement
 - Penalties reduced in recession, triples bankruptcy rate cyclicality

Automatic stabilizers quantified

	Stabilization ratio		
	Suff. stat.	Simple HANK	Quant. Model
Acyclical <i>G</i>	1.20	1.21	1.22
Acyclical deficits	1.09	1.09	1.11
Acyclical bankuptcy	1.13		1.06
All three acyclical	1.42	_	1.44
Active bankruptcy policy	_	_	0.92

Comparison to earlier papers on automatic stabilizers

- McKay-Reis (2016)
 - ▶ Remove income tax stabilizers \rightarrow reduce std (Y) by 0.5%
 - ▶ Our model \rightarrow increase std (Y) by 11%
- ► Kekre (2021)
 - ▶ Increase generosity of UI by $4\times\rightarrow$ reduce std(Y) by 8%
 - ▶ Our active policy: increase $\frac{\partial d}{\partial \log y}$ by $3 \times \rightarrow$ reduce std (Y) by 8%

Conclusion

- Bankruptcy serves as an automatic stabilizer in response to shocks
 - ► Transfer that rises in bad times, reduces magnitude of fluctuations
 - Quantitatively, dampens output fluctuations by around 6%
- Active bankruptcy policy can help aggregate demand management
 - ► Simple "lean against wind" policy further dampens by 8%
- Feasible alternative to ad-hoc policy changes that
 - achieves ex-post redistribution to constrained households
 - avoids credit supply contraction

Thank you!

Bankruptcy generosity and unemployment cyclicality

Expected asset for feiture in bankruptcy (\$1000s)

Simple HANK model

- Consider a canonical HANK model with demand shock Θ
- ► Intertemporal Keynesian Cross: [Auclert-Rognlie-Straub]

$$d\mathbf{Y} = d\mathbf{C} + d\mathbf{G} = \mathbf{M}(d\mathbf{Y} - d\mathbf{T}) + \mathbf{M}^{\Theta}d\Theta + \mathbf{M}d\mathbf{G}$$

Fiscal rules

$$dG_t = \epsilon_g dY_t$$

$$dT_t = \epsilon_t dY_t + \phi_t dB_{t-1}$$

► Then:

$$\left[I - \mathbf{M} + \epsilon_t \left(\mathbf{M} - \phi_t \mathbf{MC} \left(\rho\right)\right) + \left(-\epsilon_g\right) \left(\mathbf{I} - \phi_t \mathbf{MC} \left(\rho\right)\right)\right] d\mathbf{Y} = \mathbf{M}^{\Theta} d\Theta$$
 where $\rho \equiv 1 + r - \phi_t < 1$.

► Calibrate the model to feature a certain $M_{0,0}$, then feed in shocks $d\Theta$ with different persistences, calculate $\eta \equiv \operatorname{sd}(d\mathbf{Y}^*)/\operatorname{sd}(d\mathbf{Y}^*)$

Stabilization coefficient in simple HANK model

Implied MPC from

$$\eta = 1 + \epsilon_t \cdot \frac{\textit{MPC}}{1 - \textit{MPC}} + (-\epsilon_g) \cdot \frac{1}{1 - \textit{MPC}}$$

Model setup: household problem

- ▶ Write *S* for aggregate state
- ▶ Consider interim state after shocks z, κ have realized
- ► Household with option to default solves:

$$W_j(b,z,\kappa;S) = \mathbb{E}_{\epsilon^R,\epsilon^D} \left[\max_{d \in \{0,1\}} (1-d) \left(V_j^R(b,z,\kappa;S) + \epsilon^R \right) + d \left(V_j^D(z;S) + \epsilon^D \right) \right]$$

where ϵ^R , ϵ^D are type-I EV distributed with parameter $\frac{1}{\alpha}$.

Value of repaying is:

$$\begin{array}{rcl} V_{j}^{R}(b,z,\kappa;S) & = & \max_{c,beq \geq 0,b'} u(c) - v(n) + 1_{\{j=J\}} w \, (beq) \\ & & + \beta 1_{\{j \neq J\}} \mathbb{E} \left[W_{j+1}(b',z',\kappa';S') \right] \\ & s.t. \\ c + & \frac{beq}{1+r} + Q_{j}^{R}(b',z;S) & = & b - \kappa + y_{j} \, (z,n) \end{array}$$

Model setup: household problem

- ► Write *S* for aggregate state
- ▶ Consider interim state after shocks z, κ have realized
- Household with option to default solves:

$$W_j(b,z,\kappa;S) = \mathbb{E}_{\epsilon^R,\epsilon^D} \left[\max_{d \in \{0,1\}} (1-d) \left(V_j^R(b,z,\kappa;S) + \epsilon^R \right) + d \left(V_j^D(z;S) + \epsilon^D \right) \right]$$

where $\epsilon^R,\,\epsilon^D$ are type-I EV distributed with parameter $\frac{1}{\alpha}.$

Value of defaulting is:

$$V_{j}^{D}(z;S) = \begin{cases} X_{j}(-F - \gamma y_{j}(z,n), z;S) - K & y_{j}(z,n) \leq \overline{y_{j}} \\ X_{j}(\overline{b_{j}}(z) - F, z;S) - K & \text{otherwise} \end{cases}$$

where

$$\overline{b}_{j}(z) = -\frac{\overline{\zeta}y_{j}(z,n)}{\nu}$$

Model setup: exclusion value

Value function in exclusion given by:

subject to

$$c + \frac{beq}{1+r} + Q_{j}^{X}(b', z; S) = b + y_{j}(z, n) + T_{j}(b, z, \kappa)$$

$$b^{max} \equiv \min \left\{ 0, Q_{j}^{X}(b', z; S) - b = \bar{\zeta}y_{j}(z, n) \right\}$$

where $T_j(b, z, \kappa)$ is a transfer to guarantee households a consumption floor \underline{c} in exclusion.

Calibrated life-cycle profiles

Back

Estimated shock processes

Ζ	σ^Z	ρ^z		
mp	0.01	0.65		
β	0.001	0.54		
G	0.002	0.90		
tfp	0.001	0.98		
ϵ	1.05	0.5		
$\epsilon^{\it w}$	0.64	0.32		
tax	0.007	0.30		

Model all shocks as AR(1), eg, $Z_t = \rho^z Z_{t-1} + \sigma^z \eta$, $\eta \sim N(0, 1)$

Estimated parameters

Parameter	Interpretation	Value	
κ^{w}	Slope of wage NKPC	0.005	
κ^p	Slope of price NKPC	2.69	
Ψ	Elasticity of investment to Q	1.89	
ϕ_{π}	Taylor rule coef. on π_{t+1}	1	
$\phi_{\mathbf{g},\mathbf{y}}$	Spending rule coef. on y_t	-0.155	
$\phi_{ au, extbf{y}}$	Tax rule coef. on y_t	0.3357	
$\phi_{oldsymbol{g},oldsymbol{b}}$	Spending rule coef. on b_{t-1}	0	
$\phi_{ au, au}$	Tax rule coef. on b_{t-1}	0.024	

Variance decomposition

	Variance Decomposition								
Variable	Std Dev	β	тр	G	tfp	ϵ	$\epsilon^{\it w}$	tax	
Y	0.0185	7%	29%	48%	1%	0%	8%	7%	
С	0.0143	31%	4%	33%	2%	0%	12%	18%	
G	0.0262	2%	7%	87%	0%	0%	2%	2%	
1	0.0711	0%	60%	26%	0%	0%	9%	3%	
Ν	0.0230	7%	30%	45%	5%	0%	8%	7%	
BK	0.118	1%	17%	33%	3%	0%	7%	40%	
CO	0.180	1%	12%	38%	3%	0%	8%	38%	
d	0.0592	1%	7%	46%	3%	0%	14%	30%	
W	0.0096	1%	1%	51%	1%	0%	33%	13%	
π^{w}	0.0102	1%	4%	50%	2%	0%	26%	17%	
π	0.0271	1%	4%	49%	2%	0%	26%	18%	
i	0.0270	1%	11%	46%	2%	0%	24%	17%	

