<u>FLOW</u>

- 1. What is ASR?
- 2. Motivation for ASR
- 3. Paper Overview in short
- 4. Dataset
- 5. ASR Block Diagram
- 6. Technical depth of RNN and LSTM
- 7. Timeline (workplan) of work for stage-2

What is ASR?

- 1. Speech recognition is inter-disciplinary sub-field of computational linguistics.
- 2. It develops methodologies and technologies that enables the recognition and translation of spoken language into text by computers.
- 3. It incorporates knowledge and research in the linguistics, computer science, and electrical engineering fields.

Motivation (Why ASR?)

- ASR has many applications such as -
- 1. In-car systems (Voice Commands)
- 2. Health care (Medical documentation)
- 3. Military (Fighter Aircraft(Voice Commands))
- 4. Usage in education and daily life (Ex. Blind students can benefit)
- 5. Hands-free computing (Ex. Coding by just voice commands)
- 6. Home automation and many more applications exist.

Overview:

In this paper, they proposed a novel architecture for a deep RNN:

RESIDUAL LSTM(Variant of Long Short Term Memory)

Dataset- AMI Meeting Corpus

- The AMI Meeting Corpus is a multi-modal data set consisting of 100 hours of meeting recordings.
- The meetings were recorded in English using three different rooms with different acoustic properties.
- Example Audio from dataset-

Figure 1: AMI's three instrumented meeting rooms.

Source: http://groups.inf.ed.ac.uk/ami/corpus/

Abstract View- ASR

Block Diagram of Speech Recognition

Plot of Sampled Data -Y of audio

MFCC FEATURES

Block Diagram of MFCC

- 1. Important Content of speech is Linguistic content.
- 2. Unimportant- Background noise, emotions, silence etc.

Reference -

Davis, S. Mermelstein, P. (1980) Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences. In IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 28 No. 4, pp. 357-366

RNN- Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural network where connections between nodes form a directed graph along a sequence. Unlike feedforward neural networks, RNNs can use their internal state (memory) to **process sequences of inputs**.

Why RNN? or LSTM (a variant of RNN)

- The past input data influences the current output- Example
- **1.** Stock Price Prediction- Output depends on previous data.
- **2.** <u>Text Generation</u>- As shown in right.
- 3. Automatic Speech Recognition

About RNN

- 1. RNN is a multiple copy of the same network (For ex. ANN), that receives inputs at different times as well as it's previous hidden state
- 2. This diagram shows it's unrolling.

Ex. CAT phonemes are K,A,T. It needs 3 inputs and hence three ANN units in RNN.

More about RNN

Disdadvantage of Feedforward Networks and RNN

Vanishing Gradient Problem

Example

Suppose we want to predict:

I will swim today

We will need 4 timesteps, since the sentence is composed of 4 words.

Ct (Memory cell/Current Output/Context Vector) Description

First Timestep

I will swim today

ht (hidden output)

First Timestep

I will swim today

Example - English to German Translation

Seq2Seq

Machine Translation

Note: The Above Diagram happens at Testing Time

During Training:

Inputs: <START> WOHER KOMMEN SIE
Targets: WOHER KOMMEN SIE <END>

Sigmoid VS tanh

$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}.$$

$$\cosh(x) = rac{1}{2}(e^x + e^{-x}); \; \sinh(x) = rac{1}{2}(e^x - e^{-x}); \; \tanh(x) = rac{\sinh(x)}{\cosh(x)}$$

Source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

LSTM Architecture(Forget gate)

Reference: freeCodeCamp.org

Forget Gate Equation:

LSTM Architecture(Input gate)

Input Gate Equation

LSTM Architecture(New Memory based on previous hidden state and current input)

Equation of Current State C^(t)

<u>LSTM Architecture(New Memory = previous +</u> current memory)

LSTM Architecture(How much of new memory to be as output)

LSTM Architecture(Hidden State Output)

Thanks