#### A Final Report to Investigate Engineering Solutions to Prevent Theft Due to Forgetting Credit Cards at Gordion Shopping Mall Akbank ATM

Aslı Karaman 21901576 ENG401-004

#### Contents

- Introduction
- Problem Definition
- Proposed Solutions
- Criteria for Assessing Solutions
- Research Methodology
- Results and Analysis
- Conclusion and Recommendations
- References

#### Introduction

### Introduction

Automated Teller Machine (ATM) components [1]:

- Cash withdrawal
- Cash deposit
- Credit card payment
- Open an account (deposit and time deposit account)
- Account balance inquiry
- Loan payments

- PIN code change
- Money transfers
- Display IBAN and Chip Para
- Money transfer between saving account and investment account
- Mutual fund transactions



Fig. 1: Components of ATM [2]

#### Introduction

- •ATMs are becoming the default channel for basic banking transactions [3].
- •Protections against thefts and attacks in ATMs: Remote monitoring, alert systems, chip-based cards, foreign object detection [4].
- •There can also be a security problem due to user error [5].



**Fig. 1:** User making banking transaction [6]

### Pilot Study Area

- The pilot study area of this project is Gordion Shopping Mall Akbank ATM.
- Above 4.000 Akbank ATMs are 7/24 available for customers' use [7].
- •Akbank ATMs allow many banking transactions such as cash withdrawals, cash deposits, balance inquiries, credit card payments, money transfers, investment funds transactions, and mobile phone top-ups [7].



**Fig. 3:** Gordion Shopping Mall [8]



Fig. 4: Akbank ATM [9]

### Preliminary Research

Cases of credit card and debit card fraud have increased significantly. Investigations show that this
is mainly due to customer negligence: failing to take simple precautionary steps while conducting
transactions [11].



**Fig. 5:** Card fraud losses types [12]



Fig. 6: Fraud detection [12]

### Project's

• **Purpose:** Prevent theft due to forgetting credit cards at Gordion Shopping Mall Akbank ATM by the technical solutions.

- Impact: Improve the security of credit and debit cards by eliminating user error
- **Significance:** Solutions can decrease fraud loss due to credit card loss, and the solutions can be applied to all ATMs to prevent theft due to user error.

#### **Problem Definition**

#### Problem Definition



**Fig. 7:** Card reader component of an ATM [13]

- Card reader reads account information stored on a magnetic strip of credit and debit cards to retrieve the customer's account information [14].
- ATM users may forget their credit cards at the ATMs [5].
- Forgetting credit cards at Gordion Shopping Mall Akbank ATM can result in theft because a person rather than the card owner can take the card and it can be result in theft.



Fig. 8: Akbank ATM [15]

#### Root Causes

- The ATM rearranges the task flow by giving the credit card first and then the money to reduce user error [5].
- Rearrangement of the task flow [5] and the warning message on the screen [16] is not enough to eliminate the possibility of user error.
- Precautions are not adequate for the prevention of the problem.



Fig. 9: Warning message [16]

### Problem Scope

- Who: ATM users who are Akbank Debit or Credit Card owners.
- What: Credit or debit card fraud
- When: After completion of the banking transaction
- Where: At Gordion Shopping Mall Akbank ATM
- Why: Precautions taken for forgetting credit card is not enough
- How: A person rather than the card owner can take the card

### **Proposed Solutions**

### Proposed Solutions

Fingerprint Identification System (FIS)

Matching the Card With the Application (MCWA)

Collaboration of Akbank and Gordion Shopping Mall (CAGSM)

### Fingerprint Identification System (FIS)



**Fig. 10:** Fingerprint illustration [16]

- A digital system responsible for scanning fingerprints to identify a person and grant permission or access [17].
- A series of distinct points, called minutiae, are the points the FIS uses for comparison [18].
- •FIS can be used in Gordion Shopping Mall Akbank ATM for the person identification.



**Fig. 11:** Fingerprint identification system in ATMs [19]

#### FIS

- Four modules: sensor, feature extraction, template database, and matching [20].
- The matching module compares the query and template data stored in database to arrive at a match or non-match verdict [20].
- A fingerprint identification device will be integrated next to the Akbank ATM at Gordion Shopping Mall.
- Requirements:
  - Fingerprint identicifation device
  - Network connection between the ATM and fingerprint identification device
  - An electrical and computer engineer to implement the system



**Fig. 12:** How FIS works [19]

#### MCWA

- Cards are embedded with a small gold- or a silver-colored microchip to securely manage the transactions [21].
- EMV chips create a unique key each time the card is used [21]. Chip identifies that transaction by a unique transaction code valid for one-time use only [22].



Fig. 13: Anatomy of a credit card [23]

#### MCWA

- The card will be paired with the application on the user's phone or smartwatch.
- A unique transaction code created by EMV chips for onetime use only [22] will be used for the card's location detection.



Fig. 14: EMV chip on the credit card [24]

- Distance Matrix API in Google: calculates the distance between waypoints on a map [25].
- The distance between the credit card and the location of the user will be controlled by the API in application.



Fig. 15: Banking application integrated with a map [25]

#### MCWA

•User will be notified with a notification from the application if the credit card is too far away from the user.

- •Requirements:
  - Additional technological material which will be integrated to EMV chips
  - Distance Matrix API in Google
  - Computer engineer for the implementation of the API to the apllication
  - Electric engineer for the implementation and modification of the EMV chip

#### **CAGSM**

- Security tags clip a radio-frequency identification chip directly onto an item. An alarm is triggered when the chip crosses the detection sensor [26].
- Detector sends out a signal that communicates with security tags or labels on products. This tag or label then answers back via small transmitters [27].



Fig. 16: How detectors work illustration [28]

#### **CAGSM**

- CAGSM: Detection of whether the credit card is on the user or not. If it is not, then the user will be notified by a message.
- •Transactional SMS messages are used for informational messages to registered customers [29].
- •Requirements:
  - Security tags
  - Detector devices
  - Transactional SMS Messages System
  - Electric and Computer Engineers for the implementation



**Fig. 17:** Gordion Shopping Mall [30]



**Fig. 18:** Akbank [7]

### Criteria for Assessing Solutions

### Criteria for Assessing Solutions

1) Cost [31]



2) Performance [32]



3) Feasibility [33]





| FIS                                                                                                     | MCWA                                                                                                                                                                         | CAGSM                                                                                                                              |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Cost of the device and its implementation to the ATM will be investigated [16], [17], [18], [19], [20]? | Integration of the location property to the banking application and the adaptation of EMV chips for the detection of the location will be considered [21], [22], [24], [25]? | The price of the detection devices and the security tags adaptable to the credit cards will be researched [26], [27], [28], [29] ? |

FIS: Fingerprint Identification System

MCWA: Matcing the Card with Application CAGSM: Collaboration of Akbank and Gordion

**Shopping Mall** 

# Performance X

#### FIS

#### **MCWA**

#### **CAGSM**

The FIS system is additional property for the banking system, so the effects to the performance of the electronic device will be examined [16], [17], [18], [19], [20]? Integration of the map property to the application may affect the app's performance in terms of speed. Also, connection requirement's effects on charge consumption will be investigated [21], [22], [24], [25]?

An additional component to the credit cards for detecting its location may affect the performance. Whether it will slown down the transaction of the credit card will be considered [26], [27], [28], [29]?

FIS: Fingerprint Identification Sys.tem MCWA: Matcing the Card with Application

CAGSM: Collaboration of Akbank and Gordion

**Shopping Mall** 

# Feasibility \

#### FIS

The followings will be considered: Can the property be used in all the versions of the ATM software system, and be adapted to the updates to the system of the ATM [16], [17], [18], [19], [20]?

#### **MCWA**

The followings will be considered: In the case of a weak connection between the credit card and the application, the location of the credit card can be obtained or not [21], [22], [24], [25]?

#### **CAGSM**

The followings will be considered: Will the security system work properly in the case of a power cut [26], [27], [28], [29]?

FIS: Fingerprint Identification System

MCWA: Matcing the Card with Application CAGSM: Collaboration of Akbank and Gordion

**Shopping Mall** 

### Research Methodology

### Research Methodology

1) Market Research [34]



2) Expert Opinion [35]



3) Literature Review [36]



## Market Research



- •This research methodology will be used to assess the solutions in terms of cost criteria and the performance of the devices [17], [18], [20], [21], [22], [25], [26], [27], [29].
- The solutions require additional electronic device(s), applications, and software to integrate the properties. Therefore, a market search will be done for all the solutions to determine the differences between the prices according to the types and performance of the devices.
- 1) Implementation cost
- 2) Electronic devices' prices
- 3) Setup cost



- This research methodology will be used to assess the performance and feasibility criteria [17], [18], [20], [21], [22], [25], [26], [27], [29].
- 1) Applicability of the systems will be considered, and how the performance of the credit cards, applications on smartphones and smartwatches, and the ATMs will be affected will be determined.
- 2) The solutions' feasibility in various conditions will be investigated.

# Literature Review

- This research methodology will be used to assess the solutions in terms of their performance and feasibility [17], [18], [20], [21], [22], [25], [26], [27], [29].
- 1) Investigating the systems that already use these technologies and their implementation and functionality.
- 2) Research the solutions in terms of how long they can be used and what can be done to increase the feasibility of the solutions.
- 3) Research the functionality of the solutions in corner cases.

### Research Methodology

|               | FIS                                                                                | MCWA                                                                               | CAGSM                                                                              |
|---------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| COST          | Market research                                                                    | Market research                                                                    | Market research                                                                    |
| PERFORMANCE X | <ul><li>Expert opinion</li><li>Literature review</li><li>Market research</li></ul> | <ul><li>Expert opinion</li><li>Literature review</li><li>Market research</li></ul> | <ul><li>Expert opinion</li><li>Literature review</li><li>Market research</li></ul> |
| FEASIBILITY 🗸 | <ul><li>Expert opinion</li><li>Literature review</li></ul>                         | <ul><li>Expert opinion</li><li>Literature review</li></ul>                         | <ul><li>Expert opinion</li><li>Literature review</li></ul>                         |

### Results and Analysis

### Criteria Weigtening



Fig. 19: Criteria Weigtening Pie Chart [37]

- Performance criteria (40%): Largest slice due to technological devices' performance importance
- Cost criteria (35%): Price of devices, components, and solution implementations require a considerable cost
- Feasibility criteria (25%): Least slice since the new functionalities to the technological devices are mostly adaptable and integrable



#### Fig. 19: Cost criteria illustration [38]

### Cost Scoring (35%)

- Financial costs are investigated
- The costs are in USD
- Scoring process:
  - Solution starts with the highest score
  - If another solution's cost is less
  - ⇒ solution's score **decreases**
  - o If another solution's cost is more
  - ⇒ solution's score **decreases**

|         | Points             | Comments |
|---------|--------------------|----------|
| Lowest  | Good (5)           |          |
| Median  | Unsatisfactory (3) |          |
| Highest | Poor (1)           |          |



## Performance Scoring (%40)

|                                                               | Points                                                                                                 | Comments |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| 1) Additional property does not affect system's response time | Yes, not affected (2) Partially, a slight increase (1) No, time increases (0                           |          |
| 2) Device's load scalability protected for heavy load         | Yes, sufficient (2) Partially, enough to process (1) No, insufficient (0)                              |          |
| 3) Existing functionalities' performance not affected         | Yes, not affected (2) Partially, inefficiency is potential (1) No, inefficiency in functionalities (0) |          |
| 4) Device's battery/lifespan runs out faster                  | Yes, charging is not affected (1) No, it runs out faster (0)                                           |          |



#### **Fig. 21 :** Feasibility criteria illustration [40]

# Feasibility Scoring (25%)

|                                                                   | Points                                                                                         | Comments |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------|
| 1) Solution adaptable to updates/new versions                     | Yes, adaptable (2) Partially, needs adjustment (1) No, not adaptable (0)                       |          |
| 2) Weak connection/power cut does not affect system functionality | Yes, functions properly (2) Partially, decrease in functionality (1) No, does not function (0) |          |
| 3) Similar examples in different areas                            | Yes, examples exist (1)<br>No, not applied before (0)                                          |          |
| 4) Additional user information acquisition not required           | Yes, not required (1)<br>No, required (0)                                                      |          |



illustration [38]

## FIS's Cost (35%)

- Fingerprint reader device (per device): \$45.00 \$700.00 [41]
- Average cost of FIS device: [(45 + 700) / 2] = \$372.5
- Average Network/LAN connection cost: \$440 [42]
- Instalation of the identification device (labour): \$300 \$600 [43]
- **Average cost of installation:** [(300 + 600) / 2] = \$450

Average total cost: \$372,5 + \$450 + \$440 = \$1,262.5

# FIS's Cost (35%):

Average total cost: \$1,262.5



**Fig. 19 :** Cost criteria illustration [38]

|             | Points             | Comments                   |
|-------------|--------------------|----------------------------|
| Lowest: FIS | Good (5)           | Solutions' cost: \$1,262.5 |
| Median      | Unsatisfactory (3) |                            |
| Highest     | Poor (1)           |                            |



## MCWA's Cost (35%)

Fig. 19 : Cost criteria illustration [38]

- Google Distance Matrix API (monthly): \$1,000 [44]
- Google Distance Matrix API Advanced (monthly): \$1,985 [44]
- Average total cost of API: [(1,000 + 1,985) / 2] = \$1,492.5
- Average total cost of EMV terminals setup: \$500 \$1,000 => (500 + 1,000) / 2 = \$750 [45]

Average total cost: \$750 + \$1,492.5 = \$2,242.5

illustration [38]

# MCWA's Cost (35%):

Average total cost: = \$2,242.5

|               | Points             | Comments                                         |
|---------------|--------------------|--------------------------------------------------|
| Lowest: FIS   | Good (5)           | FIS's cost (\$1,262.5) < MCWA's cost (\$2,242.5) |
| Median        | Unsatisfactory (3) |                                                  |
| Highest: MCWA | Poor (1)           | MCWA's cost (\$2,242.5) > FIS's cost (\$1,262.5) |



## CAGSM's Cost (35%)

- Average total cost of detector device (per device): \$2,899.00 \$3,519.00 =>
  - (2,899.00 + 3,519.00) / 2 = \$3,209.00 [46]
- Micro security tags (per tag): \$18.99 [47]
- Avarage setup cost of the Transactional SMS System (monthly): \$25 \$1,000 = \$512,5 [48]

Average total cost: \$420 + \$18.99 + \$512.5 = \$3,740.49

# CAGSM's Cost (35%):

Average total cost: = \$3,740.49



|                | Points             | Points Comments                                                                      |  |
|----------------|--------------------|--------------------------------------------------------------------------------------|--|
| Lowest : FIS   | Good (5)           | FIS (\$1,262.5) < CAGSM (\$3,740.49)<br>FIS (\$1,262.5) < MCWA (\$2,242.5)           |  |
| Median: MCWA   | Unsatisfactory (3) | FIS's (\$1,262.5) < MCWA (\$2,242.5)<br>CAGSM (\$3,740.49) > MCWA's cost (\$2,242.5) |  |
| Highest: CAGSM | Poor (1)           | CAGSM (\$3,740.49) > FIS (\$1,262.5)<br>CAGSM (\$3,740.49) > MCWA (\$2,242.5)        |  |



### Cost Analysis

Fig. 19: Cost criteria illustration [38]

FIS
Total score: 5 pt

MCWA
Total score: 3 pt

CAGSM
Total score: 1 pt

- CAGSM cost is higher than the other two solutions because of the detector device's high price.
- MCWA's API requirement for the banking application costs considerably
- Compared to the other two solutions, FIS is the most cost-efficient solution.



## FIS's Performance (%40)

Total: 6/7

Fig. 20: Performance criteria illustration [39]

|                                                               | Points                                                                                             | Comments                                                                                                  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1) Additional property does not affect system's response time | Yes, not affected (2) Partially, slight increase (1) No, time increases (0)                        | ATM's CPU and memory provide sufficient processing capabilities [49]                                      |
| 2) Device's load scalability protected for heavy load         | Yes, sufficient (2)  Partially, enough to process (1)  No, insufficient (0)                        | Load scalability can be affected due to high collision at heavy loads [50]                                |
| 3) Existing functionalities' performance not affected         | Yes, not affected (2) Partially, inefficiency possible (1) No, inefficiency in functionalities (0) | Many applications can be added to the system without a side effect due to ATM's highly scalable base [51] |
| 4) Device's battery/lifespan runs out faster                  | Yes, charging is not affected (1) No, it runs out faster (0)                                       | There is no effect on the battery or lifespan [52]                                                        |



# MCWA'S Performance (%40) Total: 5/7

|                                                               | Points                                                                                             | Comments                                                                                                     |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| 1) Additional property does not affect system's response time | Yes, not affected (2) Partially, slight increase (1) No, time increases (0)                        | Response time which is dependent on communication between the card and device, will not be affected [52]     |  |
| 2) Device's load scalability protected for heavy load         | Yes, sufficient (2)  Partially, enough to process (1)  No, insufficient (0)                        | System may not be scalable if software architecture doesn't function effectively to increase throughput [53] |  |
| 3) Existing functionalities' performance not affected         | Yes, not affected (2) Partially, inefficiency possible (1) No, inefficiency in functionalities (0) | Existing functionalities will not be affected by the property addition as communication is not affected [52] |  |
| 4) Device's battery/lifespan runs out faster                  | Yes, charging is not affected (1)  No, runs out faster (0)                                         | Complex apps equipped with additional features reduce the battery life of the device [54]                    |  |

# criteria illustration [39]

## CAGSM's Performance (%40)

Total: 6/7

|                                                               | Points                                                                                               | Comments                                                                                                                           |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| 1) Additional property does not affect system's response time | Yes, not affected (2) Partially, slight increase (1) No, time increases (0)                          | System response time depends on authorization and authorization request is sent by the data obtained from the processor [55], [56] |  |
| 2) Device's load scalability protected for heavy load         | Yes, sufficient (2) Partially, enough to process (1) No, insufficient (0)                            | No change between the card and the network of the banking system [52]                                                              |  |
| 3) Existing functionalities' performance not affected         | Yes, not affected (2)  Partially, inefficiency possible (1)  No, inefficiency in functionalities (0) | A card's chip can be demagnetized due to Electromagnetic security systems' electromagnetic interference [58] [57]                  |  |
| 4) Device's battery/lifespan runs out faster                  | Yes, charging is not affected (1) No, runs out faster (0)                                            | Lifespan of the credit cards depends on the expiration time set by the bank [59]                                                   |  |



## Performance Analysis

FIS Total score: 6/7

**MCWA** Total score: 5/7

**CAGSM** Total score: 6/7

- MCWA's battery inefficiency due to application complexity with the additional feature is a drawback for performance criteria
- The possibility of a decrease in load scalability is a concern for both FIS and CAGSM
- Both CAGSM and FIS have better performance compared to MCWA

# FIS's Feasibility (25%)

Total: 3/6

|                                                                   | Points                                                                                          | Comments                                                                                                                    |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| 1) Solution adaptable to updates/new versions                     | Yes, adaptable (2) Partially, needs adjustment (1) No, not adaptable (0)                        | Digital banking software is designed in a way that remote ATMs' potential can be expanded with the new functionalities [60] |  |
| 2) Weak connection/power cut does not affect system functionality | Yes, functions properly (2) Partially, decrease in functionality (1)  No, does not function (0) | FIS depends on electricity to function, so power cut will make the system unusable [61]                                     |  |
| 3) Similar examples in different areas                            | Yes, examples exist (1) No, not applied before (0)                                              | Users can log in to the HSBC Mobile Banking application through fingerprint authentication [62]                             |  |
| 4) Additional user information acquisition not required           | Yes, not required (1)  No, required (0)                                                         | FIS works by examining a finger pressed against a smooth surface [63]                                                       |  |



## MCWA's Feasibility (25%)

Total: 5/6

Fig. 21: Feasibility criteria illustration [40]

|                                                                   | Points                                                                                           | Comments                                                                                                                          |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| 1) Solution adaptable to updates/new versions                     | Yes, adaptable (2) Partially, needs adjustment (1) No, not adaptable (0)                         | All smartphones/watches have communication abilities like NFC, Bluetooth, WiFi, etc., to get and apply updates [52]               |  |
| 2) Weak connection/power cut does not affect system functionality | Yes, functions properly (2)  Partially, decrease in functionality (1)  No, does not function (0) | EMV chips don't require an internet connection. Internet connection is required for API usage [64], [65]                          |  |
| 3) Similar examples in different areas                            | Yes, examples exist (1) No, not applied before (0)                                               | Microchips are used in GPS receivers. Akbank mobile application provides the nearest branch' o ATMs locations [66], [67]          |  |
| 4) Additional user information acquisition not required           | Yes, not required (1) No, required (0)                                                           | Required user information is stored on an embedded EMV microchip. Distance Matrix API detects the user location itself [68], [69] |  |

# Fig. 21: Feasibility criteria illustration [40]

## CAGSM's Feasibility (25%)

Total: 5/6

|                                                                   | Points                                                                                           | Comments                                                                                                                                       |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1) Solution adaptable to updates/new versions                     | Yes, adaptable (2) Partially, needs adjustment (1) No, not adaptable (0)                         | These are common technologies, so they will be adaptable to the changes [52]                                                                   |  |
| 2) Weak connection/power cut does not affect system functionality | Yes, functions properly (2)  Partially, decrease in functionality (1)  No, does not function (0) | Electrical field is generated only when tag's circuit comes into contact with radio waves. Backup system keeps the detector running [70], [71] |  |
| 3) Similar examples in different areas                            | Yes, examples exist (1) No, not applied before (0)                                               | Shopping malls have many examples to prevent theft [72]                                                                                        |  |
| 4) Additional user information acquisition not required           | Yes, not required (1) No, required (0)                                                           | Embedding a radio-frequency identification chip directly onto the card will be enough; no additional user information is required [52]         |  |

### Feasibility Analysis

**Fig. 21 :** Feasibility criteria illustration [40]

FIS
Total score: 3/6

MCWA
Total score: 5/6

CAGSM
Total score: 5/6

- FIS's additional user information acquisition requirement and the possibility of nonfunctioning due to power cut results in drawbacks for feasibility criteria.
- Internet connection dependency for MCWA is a disadvantage for the feasibility of the technological solution.
- Condition for the micro security tag's electric field is a negative point for feasibility
- CAGSM and MCWA are more feasible solutions compared to FIS

#### **Conclusion and Recommendations**

## Final Scores

|       | Cost (35%)    | Performance (40%) | Feasibility (25%) | Total Score |
|-------|---------------|-------------------|-------------------|-------------|
| FIS   | 5/5 * 35 = 35 | 6/7 * 40 = 34.28  | 3/6 * 25 = 12.5   | 81.78%      |
| MCWA  | 3/5 * 35 = 21 | 5/7 * 40 = 28.7   | 5/6 * 25 = 20.8   | 70.5%       |
| CAGSM | 1/5 * 35 = 7  | 6/7 * 40 = 34.28  | 5/6 * 25 = 20.8   | 62,08%      |

#### Conclusion and Recommendations

- FIS is the most cost-efficient solution among the three solutions.
- FIS performs effectively and it is feasible to be integrated into ATM.
- FIS got the highest score among all solutions and is the recommended solution for PSA.



Fig. 22: Fingerprint identification device on ATM [19]

#### Action Plan

- Required technological devices: fingerprint identification devices and equipment for the network connection will be ordered from the companies that sell these devices.
- 2) The fingerprint identification device will be integrated by Electrics and Electronics engineers.
- Computer engineer will set the network connection and all necessary software.
- 4) The engineers of Akbank will test all the corner cases and the ATM and FIS functionalities.



Fig. 23: Action plan illustration [73]

#### Action Plan's Gantt Chart



Fig. 22: Action plan's Gantt Chart [74]

- [1] "ATMs," Akbank, [Online]. Available: <a href="https://www.akbank.com/en-us/Content/Pages/ATMs.aspx">https://www.akbank.com/en-us/Content/Pages/ATMs.aspx</a>. [Accessed: Oct. 6, 2022].
- [2] J. Bowen, "Components of ATM," Howstuffworks. [Online].
  - Available: https://money.howstuffworks.com/personalfinance/banking/atm3.htm . [Accessed: Oct. 6, 2022].
- [3] "ATM safety: A global consumer perspective," Atmmarketplace, Jun. 19, 2018. [Online].
  - Available: <a href="https://www.atmmarketplace.com/blogs/atm-safety-a-global-consumer-perspective/">https://www.atmmarketplace.com/blogs/atm-safety-a-global-consumer-perspective/</a>. [Accessed: Oct. 6, 2022].
- [4] R. D. Saket, B. B. Sagar, "ATM reliability and risk assessment issues based on fraud, security and safety,"
  - Int. J. Computer Aided Engineering and Technology, vol. 4, no. 3, pp. 285-286, Jan. 2012.
- [5] "Preventing User Errors in Automated Teller Machines," Uxmovement, Oct. 11, 2011. [Online].
  - Available: <a href="https://uxmovement.com/thinking/preventing-user-errors-in-automated-teller-machines/">https://uxmovement.com/thinking/preventing-user-errors-in-automated-teller-machines/</a>. [Accessed: Oct. 6, 2022].
- [6] G. Parker, "User making banking transaction," Moneyink, Mar. 24, 2018. [Online].
  - Available: <a href="https://moneyinc.com/10-of-the-most-common-atm-mistakes-people-make/">https://moneyinc.com/10-of-the-most-common-atm-mistakes-people-make/</a>. [Accessed: Oct. 6, 2022].

- [7] "ATMs," Akbank. [Online]. Available: https://www.akbank.com/en-us/Content/Pages/ATMs.aspx. [Accessed: Oct. 6, 2022].
- [8] "Gordion Shopping Mall," Mekan360. [Online].
  - Available: <a href="https://mekan360.com/sanaltur\_gordion-alisveris-merkezi">https://mekan360.com/sanaltur\_gordion-alisveris-merkezi</a> 14533.html . [Accessed: Oct. 6, 2022].
- [9] "Akbank ATM," Şirket Haberleri. [Online].
  - Available: <a href="https://www.aa.com.tr/tr/sirkethaberleri/finans/akbank-mobil-uygulama-deneyimini-yenilenen-atmlerine-tasidi/666001">https://www.aa.com.tr/tr/sirkethaberleri/finans/akbank-mobil-uygulama-deneyimini-yenilenen-atmlerine-tasidi/666001</a>. [Accessed: Oct. 6, 2022].
- [10] "Credit Card Fraud Statistics," Shift. [Online]. Available: <a href="https://shiftprocessing.com/credit-card-fraud-statistics/">https://shiftprocessing.com/credit-card-fraud-statistics/</a>. [Accessed: Oct. 7, 2022].
- [11] "Credit Card and Debit Card Theft," Republic Bank. [Online].
  - Available: https://republictt.com/about/credit-card-and-debit-card-theft. [Accessed: Oct. 7, 2022].
- [12] R. Chuprina, O. Kovalenko, "Card fraud losses types," "Fraud detection," SPD Group, Apr. 2, 2021. [Online].
  - Available: <a href="https://spd.group/machine-learning/credit-card-fraud-detection/">https://spd.group/machine-learning/credit-card-fraud-detection/</a>. [Accessed: Oct. 7, 2022].
- [13] J. Jet, "Card reader component of an ATM, Forbes, Jan. 30, 2018. [Online].
  - Available: forbes.com/sites/johnnyjet/2018/01/30/6-tips-to-help-avoid-card-skimming-at-atms-while-traveling/?sh=4be090229921. [Accessed: Oct. 7, 2022].

- [14] "ATMs: How They Work and Basic ATM Parts," *Electro Magnetic Components*. [Online]. Available: <a href="https://www.atmparts.net/atm-parts/">https://www.atmparts.net/atm-parts/</a>. [Accessed: Oct. 7, 2022].
- [15] "Akbank ATM," Wikipedia, Jun. 12, 2015. [Online]. Available: <a href="https://tr.wikipedia.org/wiki/Dosya:Akbank">https://tr.wikipedia.org/wiki/Dosya:Akbank</a> ATM.jpg . [Accessed: Oct. 7, 2022].
- [16] C. Doctorow, "Warning message," Flickr, Mar. 12, 2015. [Online].
  - Available: <a href="https://www.flickr.com/photos/doctorow/3328214334/in/photostream/">https://www.flickr.com/photos/doctorow/3328214334/in/photostream/</a> . [Accessed: Oct. 7, 2022].
- [17] "Fingerprint Identification System," MicroSegur. [Online].
  - Available: <a href="https://microsegur.com/en/fingerprint-identification-system/">https://microsegur.com/en/fingerprint-identification-system/</a>. [Accessed: Oct. 8, 2022].
- [18] "Fingerprint Recognition," ScienceDirect. [Online].
- Available: <a href="https://www.sciencedirect.com/topics/computer-science/fingerprint-">https://www.sciencedirect.com/topics/computer-science/fingerprint-</a>
  <a href="recognition#:~:text=Fingerprint%20recognition%20systems%20work%20by,recognition%20system%20uses%20for%20comparison">https://www.sciencedirect.com/topics/computer-science/fingerprint-</a>
  <a href="recognition#:~:text=Fingerprint%20recognition%20systems%20work%20by,recognition%20system%20uses%20for%20comparison">https://www.sciencedirect.com/topics/computer-science/fingerprint-</a>
  <a href="recognition#:~:text=Fingerprint%20recognition%20systems%20work%20by,recognition%20system%20uses%20for%20comparison">https://www.sciencedirect.com/topics/computer-science/fingerprint-</a>
  <a href="recognition#:~:text=Fingerprint%20recognition%20systems%20work%20by,recognition%20systems%20uses%20for%20comparison">https://www.sciencedirect.com/topics/computer-science/fingerprint</a>
  <a href="recognition#:~:text=Fingerprint%20recognition%20systems%20work%20by,recognition%20systems%20uses%20for%20comparison</a>
  <a href="recognition#:~:text=Fingerprint%20recognition%20systems%20work%20by,recognition%20systems%20work%20by,recognition%20systems%20work%20by,recognition%20systems%20work%20by,recognition%20systems%20work%20work%20by,recognition%20systems%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20work%20wo
- [19] A. Mckeown, "Fingerprint identification system in ATMs," Sia, Sep. 1, 2016. [Online].
  - Available: <a href="https://www.securityindustry.org/2016/09/01/biometrics-banking/">https://www.securityindustry.org/2016/09/01/biometrics-banking/</a>. [Accessed: Oct. 8, 2022].

- [20] "Fingerprint Recognition System (FRS) Benefits And Challenges," rb, Aug. 3, 2020. [Online].

  Available: <a href="https://roboticsbiz.com/fingerprint-recognition-system-frs-benefits-and-challenges/">https://roboticsbiz.com/fingerprint-recognition-system-frs-benefits-and-challenges/</a>. [Accessed: Oct. 8, 2022].

  [21] "What Do All the Symbols / Numbers On Your Credit Card Mean?," Card Insider, Aug. 31, 2021. [Online].

  Available: <a href="https://cardinsider.com/blog/anatomy-of-a-credit-card/">https://cardinsider.com/blog/anatomy-of-a-credit-card/</a>. [Accessed: Oct. 8, 2022].

  [22] "How Do Emv Chip Card Works," Creditmantri, Dec. 31, 2018. [Online].

  Available: <a href="https://www.creditmantri.com/article-how-do-emv-chip-cards-work/">https://www.creditmantri.com/article-how-do-emv-chip-cards-work/</a>. [Accessed: Oct. 8, 2022].

  [23] "Anatomy of a Credit Card," Money tips, Jul. 29, 2022. [Online].

  Available: <a href="https://moneytips.com/anatomy-of-a-credit-card/">https://moneytips.com/anatomy-of-a-credit-card/</a>. [Accessed: Oct. 8, 2022].

  [24] J. Egan, "EMV chip on the credit card," Experian, Apr. 26, 2021. [Online].

  Available: <a href="https://www.experian.com/blogs/ask-experian/what-is-an-emv-">https://www.experian.com/blogs/ask-experian/what-is-an-emv-</a>
- [25] "How to create a location-based app for Android and IOS," *The App Solutions*. [Online].
  - Available: <a href="https://theappsolutions.com/blog/development/develop-app-with-geolocation/">https://theappsolutions.com/blog/development/develop-app-with-geolocation/</a>. [Accessed: Oct. 8, 2022].

chip/#:~:text=EMV%20chips%20are%20the%20small,code%20for%20each%20credit%20transaction . [Accessed: Oct. 8, 2022].

[26] "Types of Security Tags Used in Retail Shops," Chron, Sep. 26, 2017. [Online].

Available: <a href="https://smallbusiness.chron.com/security-tags-used-in-retail-shops-8315951.html">https://smallbusiness.chron.com/security-tags-used-in-retail-shops-8315951.html</a>. [Accessed: Oct. 8, 2022].

[27] "How do security tags work?," Vitag, Sep. 23, 2021. [Online].

Available: <a href="https://www.vitag.com.au/how-security-tags-work/">https://www.vitag.com.au/how-security-tags-work/</a>. [Accessed: Oct. 8, 2022].

[28] "How detectors work illustration," Magestore, May. 20, 2020. [Online].

Available: <a href="https://www.magestore.com/blog/how-do-store-alarms-work/">https://www.magestore.com/blog/how-do-store-alarms-work/</a>. [Accessed: Oct. 8, 2022].

[29] "Promotional SMS: Everything You Need to Know," Messente. [Online].

Available: <a href="https://messente.com/blog/promotional-sms">https://messente.com/blog/promotional-sms</a> . [Accessed: Oct. 8, 2022].

[30] "Gordion Shopping Mall," Avm. [Online].

Available: <a href="https://www.avm.gen.tr/gordion-alisveris-merkezi-ankara/and-style/">https://www.avm.gen.tr/gordion-alisveris-merkezi-ankara/and-style/</a> .[Accessed: Oct. 8, 2022].

[31] "Utilize Cost And Value Engineering Throughout The Project Life Cycle," Whole Building Design Guide, Jul. 31, 2020. [Online].

Available: <a href="https://www.wbdg.org/design-objectives/cost-effective/utilize-cost-value-engineering">https://www.wbdg.org/design-objectives/cost-effective/utilize-cost-value-engineering</a>. [Accessed: Oct. 9, 2022].

[32] "Performance Criterion," ScienceDirect. [Online].

Available: <a href="https://www.sciencedirect.com/topics/computer-science/performance-criterion">https://www.sciencedirect.com/topics/computer-science/performance-criterion</a> .[Accessed: Oct. 9, 2022].

[33] "Feasibility Assesment," Moct. [Online].

Available: https://moct.gov.sy/ICTSandards/en/22/8 Feasibility Assessment.htm [Accessed: Oct. 9, 2022].

[34] L. Mich, M. Franch and P. L. N. Inverardi, "Market Research for Requirements Analysis Using Linguistic Tools,"

Requirements Engineering, vol. 9, no. 1, pp. 40-56, Jan. 2004. [Online].

Available: <a href="http://eprints.biblio.unitn.it/387/1/NLP-CASEMarketResearch(1)newversion.pdf">http://eprints.biblio.unitn.it/387/1/NLP-CASEMarketResearch(1)newversion.pdf</a>. [Accessed: Oct. 9, 2022].

[35] K. J. Sileyew, "Research Design and Methodology," Research Design and Methodology, Aug. 2019. [Online].

Available: https://www.researchgate.net/publication/335110374 Research Design and Methodology.

[Accessed: Oct. 9, 2022].

[36] "Engineering Literature Review," Case Western Reserve University: Kelvin Smith Library, 2006. [Online].

Available: <a href="https://researchguides.case.edu/c.php?g=157847&p=1036130">https://researchguides.case.edu/c.php?g=157847&p=1036130</a>. [Accessed: Oct. 9, 2022].

[37] "Free Pie Chart Maker," Canva. [Online]. Available: <a href="https://www.canva.com/graphs/pie-charts/">https://www.canva.com/graphs/pie-charts/</a>. [Accessed: Nov. 28, 2022].

- [38] "Cost criteria illustration," Neuro Technology. [Online]. Available: https://www.megamatcher.online/pricing/. [Accessed: Nov. 25, 2022].
- [39] "Performance criteria illustration," Iconfinder [Online].
  - Available: <a href="https://www.iconfinder.com/icons/7059353/key">https://www.iconfinder.com/icons/7059353/key</a> performance indicators icon . [Accessed: Nov. 25, 2022].
- [40] "Feasibility criteria illustration," Flaticon [Online]. Available: <a href="https://www.flaticon.com/free-icons/criteria">https://www.flaticon.com/free-icons/criteria</a> . [Accessed: Nov. 25, 2022].
- [41] "Biometric Devices: Cost, Types and Comparative Analysis," Bayometric. [Online].
  - Available: https://www.bayometric.com/biometric-devices-cost/ . [Accessed: Nov. 25, 2022].
- [42] "Fanless Industrial PC Intel Celeron I3 I5 Network Router 4 LAN Support Poe Port Cheap Mini Computer," Made-in-China: Connecting Buyers with Chinese Supliers. [Online].
- Available: <a href="https://yanling-store.en.made-in-china.com/product/idWnDSzYALVw/China-Fanless-Industrial-PC-Intel-Celeron-I3-I5-Network-Router-4-LAN-Support-Poe-Port-Cheap-Mini-Computer.html">https://yanling-store.en.made-in-china.com/product/idWnDSzYALVw/China-Fanless-Industrial-PC-Intel-Celeron-I3-I5-Network-Router-4-LAN-Support-Poe-Port-Cheap-Mini-Computer.html</a> . [Accessed: Nov. 25, 2022].
- [43] "Biometric devices cost guide," Checkatrade. [Online].
  - Available: <a href="https://www.checkatrade.com/blog/cost-guides/biometric-devices-cost/">https://www.checkatrade.com/blog/cost-guides/biometric-devices-cost/</a>. [Accessed: Nov. 25, 2022].
- [44] "Pricing that scales to fit your needs," Google Maps Platform. [Online].
- Available: <a href="https://mapsplatform.google.com/pricing/?gl=1%2A1ld6lji%2Aga%2AMjA3MjU4MDIyMS4xNjY1MzAzNDgx%2Aga">https://mapsplatform.google.com/pricing/?gl=1%2A1ld6lji%2Aga%2AMjA3MjU4MDIyMS4xNjY1MzAzNDgx%2AgaNRWSTWS78N%2AMMZY2OTQwMzk5NC4xLjEuMTY2OTQwNDMwMS4wLjAuMA..#pricing-grid</a>. [Accessed: Nov. 25, 2022].

[45] "Upgrading to Accept EMV Chip Cards: How Much Will It Cost Your Business?," Square. [Online].

Available: <a href="https://squareup.com/us/en/townsquare/upgrading-to-accept-emv-chip-cards-how-much-will-it-cost-you#:~:text=For%20small%20businesses%2C%20getting%20set,isn't%20just%20penny%20change">https://squareup.com/us/en/townsquare/upgrading-to-accept-emv-chip-cards-how-much-will-it-cost-you#:~:text=For%20small%20businesses%2C%20getting%20set,isn't%20just%20penny%20change</a>. [Accessed: Nov. 25, 2022].

[46] "Visitor counting rfid reader access control system multi-tag uhf rfid door gate, " Alibaba.com. [Online].

Available: <a href="https://www.alibaba.com/product-detail/visitor-counting-rfid-reader-access-control">https://www.alibaba.com/product-detail/visitor-counting-rfid-reader-access-control</a> 1600502226861.html?spm=a2700.details.0.0.65d224626uCjfE . [Accessed: Nov. 29, 2022].

[47] "10PCS 5MM NFC 213 Chip Mini Bluetooth Pairing RFID NFC Tag Sticker FPC Tag 213 Programmable Anti-Metal IC Card Access Control?," Amazon. [Online].

Available: <a href="https://www.amazon.com/Bluetooth-Pairing-Sticker-Programmable-Anti-Metal/dp/B0B1HK69VK/ref=sr\_1\_10?keywords=RFID+Chips&qid=1669648193&sr=8-10">https://www.amazon.com/Bluetooth-Pairing-Sticker-Programmable-Anti-Metal/dp/B0B1HK69VK/ref=sr\_1\_10?keywords=RFID+Chips&qid=1669648193&sr=8-10</a>. [Accessed: Nov. 28, 2022].

[48] "Four ways to grow your business," Sendinblue. [Online]. Available: <a href="https://www.sendinblue.com/pricing/">https://www.sendinblue.com/pricing/</a>. [Accessed: Nov. 25, 2022].

[49] B. Rahman, S. Akhtar, "Impact of Introducing Biometric ATM cards for Banking Industry: Bangladesh Perspective," World Journal of Social Sciences, vol. 8, no.

2, pp. 32, Jun. 2018. [Online].

Available:https: //www.researchgate.net/publication/326689466\_Impact\_of\_Introducing\_Biometric\_ATM\_cards\_for\_Banking\_Industry\_Bangladesh

Perspective. [Accessed: Nov. 28, 2022].

[50] A. B. Bondi, "Characteristics of Scalability and Their Impact on Performance," AT&T Labs, Jan. 2000. [Online].

Available: https://www.researchgate.net/publication/221556521 Characteristics of Scalability and Their Impact on Performance .

[Accessed: Nov. 28, 2022].

[51] S. Thirumoorthy, M. Kumaraguru, S. Akshay, M. Kanishka "Biometric based Fingerprint Verification System for ATM machines," Journal of Physics: Conference Series, May.

2021. [Online].

Available:https: <a href="https://www.researchgate.net/publication/351921492\_Biometric\_based\_Fingerprint\_Verification\_System\_for\_ATM\_machines">https://www.researchgate.net/publication/351921492\_Biometric\_based\_Fingerprint\_Verification\_System\_for\_ATM\_machines</a>.

[Accessed: Nov. 28, 2022].

[52] S. Tas, "A Project to Investigate Engineering Solutions to Prevent Theft Due to Forgetting Credit Cards at Gordion Shopping Mall Akbank ATM," Nov. 27, 2022.

[53] L. G. Williams, C. U. Smith, "Web Application Scalability: A Model-Based Approach," Software Engineering Research and Performance Engineering Services. [Online].

Available:https: <a href="mailto:chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.spe-ed.com/papers/scale04.pdf">chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.spe-ed.com/papers/scale04.pdf</a>.

[Accessed: Nov. 28, 2022].

[54] Y. Guo, C. Wang, X. Chen, "Understanding Application-Battery Interactions on Smartphones: A Large-Scale Empirical Study," IEEEAccess, Aug. 8, 2017. [Online].

Available: <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7983341">https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7983341</a>. [Accessed: Nov. 28, 2022].

[55] S. H. A. Hamid, M. H. N. M. Nasir, W. Y. Ming, H. Hassan, "Improving Response Time of Authorization Process of Credit Card System Using Multi-Threading and Shared -Memory Pool Techniques," Journal of Computer Science, vol. 4, no. 2, pp. 152, Feb. 2008. [Online].

Available: <a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Multi-<a href="https://www.researchgate.net/publication/26621831">https://www.researchgate.net/publication/26621831</a> Improving Response Time of Authorization Process of Credit Card System Using Response Time Outhorization Process of Card Response Time Outhorization

[56] "Credit Card Payment Process," Corporate Tools. [Online]. Available: <a href="https://www.corporatetools.com/credit-card-processing/payment-process/">https://www.corporatetools.com/credit-card-processing/payment-process/</a>.

[Accessed: Nov. 29, 2022].

[57] D. Hodges, "My Debit Card Chip Is Not Working — What To Do?, "SuperMoney, Jun. 8, 2022. [Online]. Available: <a href="https://www.supermoney.com/debit-card-chip-is-not-working/#:~:text=The%20main%20reason%20that%20chips,t%20a%20forever%20fix%2C%20however">https://www.supermoney.com/debit-card-chip-is-not-working/#:~:text=The%20main%20reason%20that%20chips,t%20a%20forever%20fix%2C%20however</a>. [Accessed: Nov. 29, 2022].

[58] J. Guag, B. Addissie, D. Witters, "Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects,"

National Library of Medicine: National Center for Biotechnology Information , Mar. 20, 2017. [Online].

Available: <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359895/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359895/</a>. [Accessed: Nov. 29, 2022].

[59] C. Crail, "Credit Card Expiration Dates: What You Need To Know, "Forbes Advisor, Jul. 21, 2022. [Online].

Available: <a href="mailto:forbes.com/advisor/credit-cards/credit-card-expiration-dates-what-you-need-to-whow/#:~:text=Expiration%20dates%20appear%20on%20the,last%20day%20of%20November%202024">forbes.com/advisor/credit-cards/credit-card-expiration-dates-what-you-need-to-whom/#:~:text=Expiration%20dates%20appear%20on%20the,last%20day%20of%20November%202024</a>. [Accessed: Nov. 29, 2022].

```
[60] "Streamline Banking," Hyosung Tns. [Online]. Available: <a href="https://global.hyosung-tns.com/software">https://global.hyosung-tns.com/software</a>. [Accessed: Nov. 29, 2022].
[61] D. Thakkar, "How Accurate are today's Fingerprint Scanners? Limitations, Errors and Their Effect on the Accuracy," Bayometric. [Online].

Available: <a href="https://www.bayometric.com/how-accurate-are-todays-fingerprint-scanners/">https://www.bayometric.com/how-accurate-are-todays-fingerprint-scanners/</a>. [Accessed: Nov. 29, 2022].
[62] "Biometric Authentication," HSBC. [Online].

Available: <a href="https://www.hsbc.am/en-am/pdfs/ways-to-bank/face-id-touch-id/">https://www.hsbc.am/en-am/pdfs/ways-to-bank/face-id-touch-id/</a>. [Accessed: Nov. 29, 2022].
[63] R. Manjula Devi, ... K. Devendran, "Fingerprint Recognition," ScienceDirect, 2022[Online].

Available: <a href="https://www.sciencedirect.com/topics/computer-science/fingerprint-recognition">https://www.sciencedirect.com/topics/computer-science/fingerprint-recognition</a>. [Accessed: Nov. 28, 2022].
[64] B. Martucci, "How EMV (chip) Credit Cards Work – Technology & Security," Bayometric, Jun. 7, 2022 [Online].

Available: <a href="https://www.moneycrashers.com/emv-chip-credit-cards-technology-security/">https://www.moneycrashers.com/emv-chip-credit-cards-technology-security/</a>. [Accessed: Nov. 28, 2022].
[65] 'Do I need an Internet connection to use the API?," Pdfcrowd. [Online].
```

Available: <a href="https://pdfcrowd.com/faq/do-i-need-an-internet-connection-to-use-the">https://pdfcrowd.com/faq/do-i-need-an-internet-connection-to-use-the</a>
-api/#:~:text=The%20API%20is%20a%20web,able%20to%20use%20the%20API. [Accessed: Nov. 28, 2022].

[66] "Is a GPS Tracking Chip the Same as an RFID Chip?," Rfid Journal. [Online].

Available: <a href="https://www.rfidjournal.com/question/is-a-gps-tracking-chip-the-same-as-an-rfid">https://www.rfidjournal.com/question/is-a-gps-tracking-chip-the-same-as-an-rfid</a>

-chip#:~:text=A%20Global%20Positioning%20System%20(GPS,each%20of%20the%20four%20satellites . [Accessed: Nov. 28, 2022].

[67] "Akbank Mobile App," Akbank. [Online].

Available: https://www.akbank.com/en-us/Akbank-Direkt/Pages/Akbank-Direkt-Mobile-App.aspx. [Accessed: Nov. 28, 2022].

[68] "The EMV Chip Card Transition: Background, Status, and Issues for Congress," Congressional Research Service, May. 17, 2016. [Online].

Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://sgp.fas.org/crs/misc/R43925.pdf. [Accessed: Nov. 28, 2022].

[69] "Distance Matrix API overview," Google Maps Platform. [Online].

Available: <a href="https://developers.google.com/maps/documentation/distance-matrix/overview">https://developers.google.com/maps/documentation/distance-matrix/overview</a>. [Accessed: Nov. 28, 2022].

[70] B. Martucci, 'RFID security tags – how they work and why you need them," Immago, Nov. 30, 2020 [Online].

Available: <a href="https://immago.com/rfid-security-tags/">https://immago.com/rfid-security-tags/</a> . [Accessed: Nov. 28, 2022].

[71] "Do Access Control Systems Work When the Power Is Out?," SSMI: Southwest System Monitoring, Nov. 13, 2020. [Online].

Available: <a href="https://www.ssmi-controls.com/2020/11/do-access-control-systems-work-when-the-power-is">https://www.ssmi-controls.com/2020/11/do-access-control-systems-work-when-the-power-is</a>

-out/#:~:text=If%20your%20building%20experiences%20a,No%20worries!. [Accessed: Nov. 28, 2022].

[72] "The important role of clothing security tags within the fashion retail industry," *Gateway*. [Online].

Available: <a href="https://gateway-security.com/clothing-security-tag/">https://gateway-security.com/clothing-security-tag/</a>. [Accessed: Nov. 29, 2022].

[73] "Action plan illustration, " Iconfinder. [Online].

Available: <a href="https://gateway-security.com/clothing-security-tag/">https://gateway-security.com/clothing-security-tag/</a>. [Accessed: Nov. 30, 2022].

[74] "Free Online Gantt Chart Maker, " Canva. [Online]. Available: <a href="https://www.canva.com/graphs/gantt-charts/">https://www.canva.com/graphs/gantt-charts/</a>. [Accessed: Nov. 30, 2022].

#### THANK YOU!