

Phone: (Off.) +88-0721-711108 Cell: +88-01716-697645 Fax: +88-0721-750064

E-mail: shiuly_math_ru@yahoo.com Web : www.ru.ac.bd/mathematics

Date

Matrices and Linear operators

 $F: V \longrightarrow U$

 $T: V \longrightarrow V$

Let $\{e_1, e_2, \dots, e_n\}$ be a basis of a vector space V over a field K and for any vector $V \in V$,

suppose $V = a_1e_1 + a_2e_2 + \dots + a_ne_n$.

Then the coordinate vector of ve relative to seif which we written write as a column vector

 $[V]_e = \begin{pmatrix} a_1 \\ a_2 \\ a_n \end{pmatrix} = \begin{pmatrix} a_1, a_2, \cdots, a_n \end{pmatrix}$ $[V]_e = \begin{pmatrix} a_1 \\ a_2 \\ \cdots \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \cdots \end{pmatrix}$

Matrix representation of a linear operator:

Let T be a linear operator on a vector space V over a field K and Suppose $\{e_1, e_2, \dots, e_n\}$ is a basis of V. Here $T(e_1)$, $T(e_2)$, ---, $T(e_n)$ are vectors in V and so each is a linear combination of $\{e_1, e_2, \dots, e_n\}$.

That is, $T(e_1) = a_{11}e_1 + a_{12}e_2 + \cdots + a_{1n}e_n$ $T(e_2) = a_{21}e_1 + a_{22}e_2 + \cdots + a_{2n}e_n$

T(en) = anje, + anzez+ - - + annen

Coefficient matrix =
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

The transpose of the above coefficient matrix is called the matrix representation of T relative to the basis seis or the matrix of T in the basis seis. It is denoted by [T]e or [T].

 a_{11} a_{21} a_{n_1} a_{12} a_{22} a_{n_2} a_{1n} a_{2n} a_{2n}

Problem: Find the matrix representation of each of the following operators T on R2 relative to the usual

If $(a, b) \in \mathbb{R}^2$, then $(a, b) = ae_1 + be_2$ Here $T: \mathbb{R}^2 \to \mathbb{R}^2$ basis $\{e_1 = (1,0), e_2 = (0,1)\}$; T(x,y) = (2y, 3x-y)

(2) T(x,y) = (3x-4y, x+5y)

561?: 1) $T(e_1) = T(1,0) = (0,3) = 0e_1 + 3e_2$ and $T(e_2) = T(0,1) = (2,-1) = 2e_1 + (-1)e_2$ = 20, - 02

Coefficient matrix = $\begin{pmatrix} 0 & 3 \\ 2 & -1 \end{pmatrix}$

.', Matrix representation = $[T]_e = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$.

2) $T(e_1) = T(1,0) = \begin{pmatrix} 3 & 1 \end{pmatrix} = 3e_1 + e_2$ $T(e_2) = T(0,1) = \begin{pmatrix} -4 & 5 \end{pmatrix} = -4e_1 + 5e_2$ | Here $[T]_e = \begin{pmatrix} 3 & -4 \\ 1 & 5 \end{pmatrix}$

Dr. Shiuly Akhter Associate Professor

Department of Mathematics University of Rajshahi Rajshahi - 6205, Bangladesh

Phone: (Off.) +88-0721-711108 Cell: +88-01716-697645 Fax : +88-0721-750064

E-mail: shiuly_math_ru@yahoo.com Web: www.ru.ac.bd/mathematics

Problem: Find the matrix representation of each of the following operators T on R2 relative to the basis

 $f_1 = (1,3), f_2 = (2,5)$?:

(1) T(x,y) = (2y, 3x-y)

(3) T(x, 4) = (3x-44, x+54)

Solo: First we find the coordinates of an arbitrary vector

 $(a,b) \in \mathbb{R}^2$ ω , r, to the basis $\{f_1,f_2\}$,

 $(a, b) = \chi f_1 + \gamma f_2 = \chi(1, 3) + \gamma(2, 5)$ or (a, b) = (x+2y, 3x+5y)

x = 2b - 5a and y = 3a - b

 $(a, b) = (2b - 5a) f_1 + (3a - 6) f_2$

a = 6, 6 = 0

(1) + (x, y) = (2y, 3x - y) $T(f_1) = T(1,3) = (6,0) = -30f_1 + 18f_2$