

Computational Intelligence

Subject6: An Introduction to Fuzzy Systems

Instructor: Ali Tourani

Agenda

- Intro
- Fuzzy sets
- Fuzzy membership functions
- Fuzzy sets in practice
- Fuzzy Alpha-cut

Some students are good at Python!

- Can computers <u>understand</u> this?!
- ► The world is not a **binary** or a **Boolean** system!

"To be, or not to be, that is the question."

- Fuzzy logic
 - An approach to computing based on "degrees of truth"

How much is it important?!

Can a computer understand this?

Most of the students could not produce a good and clean code in Python

- Fuzzy Logic (FL)
 - Our life is full of probabilities, imprecise structures, and vague notions
 - ► A method of reasoning that resembles human reasoning
 - Imitates the way of decision making in humans
 - With all intermediate possibilities between YES and NO

- Fuzzy Logic (FL)
 - ▶ Works on the levels of possibilities of input to achieve the definite output

Is John a polite person?

- ► A collection of distinct objects, digits, people, etc.
 - ► For instance: Computer Engineering students
- Can be represented as a list or a rule

- $A = \{3,7,9,16,21\}$
- $B = \{9,18,31\}$
- $C = \{x \mid x \in \mathbb{R}, x < 10\}$
- Each individual entity in a set is called a member or an element of the set
- Crisp set
 - ▶ An element is either a member of the set or not
 - ▶ John is a member of football team, but not tennis team
 - Membership operators
 - **▶ John** ∈ **FootballTeam**, but **John** ∉ **TennisTeam**

Representation	Operation
$A \subseteq B$	Subset (B contains the members of A and other elements)
$A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A$	Equity (A and B have the same elements)
$A \neq B$	Inequity (A and B do not have the same elements)
$A \subset B \Leftrightarrow A \subseteq B \text{ and } A \neq B$	Proper Subset (B contains the members of A, but A and B are not equal)
$\mathcal{P}(A)$	Power set (the set of all subsets of A, including the empty set and A itself)
$ \mathcal{P}(A) = 2^{ A }$	Cardinality (the number of elements contained)

Representation	Operation
$B - A = \{x \mid x \in B, x \notin A\}$	Complement (the complement of A with respect to B)
U	Universal Set
$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$	Union (the set of all elements that are in either A or B)
$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$	Intersection (the set of all elements that are in both A and B)
$A \cap B = \phi$	Isolated sets (A and B do not have a shared elements)
$\pi(A)$	Partition (a grouping of its elements into non-empty subsets)

Representation	Operation
Cover (A)	Cover (a collection of sets whose union is <i>U</i>)
$A \times B = \{(a,b) a \in A, b \in B\}$ $A \times B \neq B \times A$	Cartesian product
	Convex and Non-convex sets

Classical Sets

Consider a set *M* of real numbers;

Bounded from above

- ▶ There exists some real number k such that $k \ge s$ for all m in M
- ▶ **Upper Bound**: the number *k* with respect to *M*
- ▶ Likewise: bounded from below and lower bound
- A set of real numbers is bounded if it is contained in a finite interval

- ► **Supremum**: the least upper bound (LUB)
- ► **Infimum**: the greatest lower bound (GLB)

In contrast, in a Fuzzy Set:

- ► There is at least ONE fuzzy element
- ► An object may belong to this set with varying membership degrees
 - ► Range [0,1]
 - ▶ Zero means lack of membership
 - ▶ One means full membership
 - ▶ Might be defined as a function
 - ► Called Membership Function

$$\mu_A: X \to [0,1]$$

- A. Triangle
- B. Z-Shaped
- c. Trapezoid
- D. S-Shaped
- E. Sigmoid
- F. Gaussian

$$Gaussian(x,c,\sigma) = e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$$

Sample: Age classification

Sample: Age classification

Sample: Age classification

Samples:

- x=23 → 0.8 young and 0.2 M.A x=34 → 0.07 young and 0.93 M.A x=40 → 0 young and 1 M.A

- 1 Old

$$Young = \begin{cases} \frac{1}{35 - x} \\ \frac{15}{0} \end{cases}$$

$$M.A. = \begin{cases} \frac{x - 20}{15} \\ \frac{60 - x}{15} \\ 1 \end{cases}$$

$$Old = \begin{cases} 0\\ x - 45\\ \hline 15\\ 1 \end{cases}$$

$$x \le 20$$
$$20 < x < 35$$
$$x \ge 35$$

$$x \le 20 \quad OR \quad x \ge 70$$

 $20 < x < 35$
 $45 < x < 70$
 $35 \le x \le 45$

$$x \le 45$$
$$45 < x < 70$$
$$x \ge 70$$

Fuzzy set \tilde{A} in the Universal set U is in fact a set of ordered pairs, each element with a membership degree $\mu_{\tilde{A}}(y)$

$$\widetilde{A}=\left\{ \left(y,\mu_{\widetilde{A}}\left(y
ight)
ight)|y\in U
ight\}$$

• Where $\mu_{\tilde{A}}(y)$ is a real number between 0 and 1

$$\mu_{\widetilde{A}}(y) \in [0,1]$$

Sample - successful students set:

In a discrete universal space:

$$\widetilde{A} = \left\{ rac{\mu_{\widetilde{A}}\left(y_1
ight)}{y_1} + rac{\mu_{\widetilde{A}}\left(y_2
ight)}{y_2} + rac{\mu_{\widetilde{A}}\left(y_3
ight)}{y_3} + \ldots
ight\} \hspace{0.5cm} = \left\{ \sum_{i=1}^n rac{\mu_{\widetilde{A}}\left(y_i
ight)}{y_i}
ight\}$$

$$=\left\{\sum_{i=1}^{n}rac{\mu_{\widetilde{A}}(y_i)}{y_i}
ight\}$$

In a indiscrete universal space:

$$\widetilde{A} = \left\{ \int \frac{\mu_{\widetilde{A}}\left(y\right)}{y} \right\}$$

- ► In some cases, fuzzy sets are **interval-valued**:
 - Membership function provides a range of values instead of an individual value (Footprint of Uncertainty)

- ► In some cases, fuzzy sets are **Type-2**:
 - ▶ Membership function provides a **function** instead of an individual value

- Alpha-cut
 - A list of all elements of Fuzzy set A with membership grades greater than or equal to a given Alpha (α)
- Strong Alpha-cut
 - A list of all elements of Fuzzy set A with membership grades greater than a given **Alpha** (α)
- Note that $\alpha \in [0,1]$

Alpha Cut

$$A_{\alpha} = x \in X \mid \mu_{A} \mid x \geq \alpha$$

Strong Alpha Cut

$$A_{\alpha'} = x \in X \mid \mu_{A} \mid x > \alpha$$

ω – <u>1</u>

$$Young_{\alpha=0} = X$$

$$M.A._{\alpha=0}=X$$

$$Old_{\alpha=0} = X$$

$$Young = \begin{cases} \frac{1}{35 - x} \\ \frac{15}{0} \end{cases}$$

$$M.A. = \begin{cases} 0\\ \frac{x - 20}{15}\\ \frac{60 - x}{15} \end{cases}$$

$$Old = \begin{cases} 0 \\ x - 45 \\ \hline 15 \\ 1 \end{cases}$$

$$x \le 20$$

$$x \ge 35$$

$$x \le 20$$
 OR $x \ge 70$

$$35 \le x \le 45$$

$$x \le 45$$

$$x \ge 70$$

$$Young = \begin{cases} \frac{1}{35 - x} \\ \frac{15}{0} \end{cases}$$

$$x \le 20$$

$$x \ge 35$$

$$M.A. = \begin{cases} 0\\ \frac{x - 20}{15}\\ \frac{60 - x}{15} \end{cases}$$

$$x \le 20$$
 OR $x \ge 70$

$$35 \le x \le 45$$

$$x \le 45$$

$$x \ge 70$$

$$Young_{\alpha^+=1} = \emptyset$$

$$M.A._{\alpha^{+}=1} = \emptyset$$

$$Old_{\alpha^+=1}=\emptyset$$

$$Old = \begin{cases} 0\\ x - 45\\ \hline 15\\ 1 \end{cases}$$

$$M.A._{\alpha} = [20 + 15\alpha, 60 - 15\alpha]$$

$$Old_{\alpha} = [45 + 15\alpha, 100]$$

$$Young = \begin{cases} \frac{1}{35 - x} \\ \frac{15}{0} \end{cases}$$

$$M.A. = \begin{cases} 0\\ \frac{x - 20}{15}\\ \frac{60 - x}{15}\\ 1 \end{cases}$$

$$Old = \begin{cases} 0\\ x - 45\\ 15\\ 1 \end{cases}$$

$$x \le 20$$
$$20 < x < 35$$

$$x \ge 35$$

$$x \le 20$$
 OR $x \ge 70$

$$35 \le x \le 45$$

$$x \le 45$$

$$x \ge 70$$

$$M.A._{\alpha^+} = (20 + 15\alpha, 60 - 15\alpha)$$

$$Old_{\alpha^+}=(45+15\alpha,100)$$

$$Young = \begin{cases} \frac{1}{35 - x} \\ \frac{15}{0} \end{cases}$$

$$M. A. = \begin{cases} 0\\ \frac{x - 20}{15}\\ \frac{60 - x}{15}\\ 1 \end{cases}$$

$$Old = \begin{cases} 0\\ x - 45\\ 15\\ 1 \end{cases}$$

$$x \le 20$$
$$20 < x < 35$$

$$x \ge 35$$

$$x \le 20 \quad OR \quad x \ge 70$$

$$35 \le x \le 45$$

$$x \le 45$$

$$x \ge 70$$

Support and core sets

Height of a Fuzzy set

- ► The maximum membership degree in a fuzzy set
- Actually, Supremum for Alpha where $A_{\alpha} = \emptyset$
- ► If Height(A)=1, the set is **Normal**
- ► If Height(A)<1, the set is **Sub-normal**

Height of a Fuzzy set

Convexity of a Fuzzy set

What's Next?

► Fuzzy Operators and Relations

Questions?

