Estrategias algorítmicas

Dividir para reinar

Backtracking

Algoritmos codiciosos

Programación dinámica

Estrategias algorítmicas

Dividir para reinar

Backtracking

Algoritmos codiciosos

Programación dinámica

Tres problemas en grafos con costos

a) Grafos direccionales:

 encontrar la ruta más corta desde un vértice a todos los otros —el algoritmo de Dijkstra

b) Grafos no direccionales:

encontrar el árbol de cobertura de costo mínimo

c) Grafos direccionales:

encontrar las rutas más cortas entre todos los pares de vértices

El algoritmo de Dijkstra es un **algoritmo codicioso**

En cada paso, el algoritmo hace una elección que corresponde a un **óptimo local**:

 toma la mejor decisión que puede, con la información que tiene hasta ese momento

... con la esperanza de que al hacer la última elección haya logrado el (un) **óptimo global:**

- algunos algoritmos codiciosos efectivamente encuentran el óptimo global (p.ej., Dijkstra)
- ... pero no todos

Conectividad digital

- El intendente de la Región del Maule ha decidido mejorar significativamente la conectividad digital de la región
- La idea es instalar fibra óptica subterránea entre todos los pares de puntos relevantes de la región —cada instalación tiene un costo
- Sólo que hay demasiada fibra óptica que instalar como para hacerlo todo de una vez
- Lo prioritario es conectar las ciudades más pobladas, que tienen escuelas, universidades, hospitales, compañías de bomberos, supermercados, etc.

¿Cuál es la forma más barata de hacer esto?

MST: Minimum spanning tree

El problema es descrito por un grafo no direccional con costos

La solución es un **subconjunto** *T* de las aristas tal que:

- las aristas de T no forman ciclos —forman un árbol
- las aristas de T incluyen todos los vértices —forman una cobertura
- no hay otro árbol de cobertura con menor costo total (la suma de los costos de las aristas de T) —es de costo mínimo

MSTs

Originalmente, hace 100 años, redes de distribución de electricidad

Después, redes telefónicas

Hoy, redes de comunicación, eléctricas, hidráulicas, de computadores, de carreteras, de tráfico aéreo

... incluso redes biológicas, químicas y físicas que se encuentran en la naturaleza

MSTs, cortes y aristas que cruzan el corte

Cortemos (particionemos) los vértices del grafo en dos (sub) conjuntos no vacíos, V_1 y V_2

Una arista **cruza** el corte si uno de sus extremos está en V_1 y el otro en V_2

¿Qué podemos afirmar respecto a estas aristas y los MST?

El corte (V_1, V_2) y las aristas que cruzan el corte

¿Cuál debería ser la siguiente arista, y siguiente nodo, a incluir?

Buscando un MST

Si para cada corte la arista de menor costo está en un MST

... ¿cómo podemos encontrar un MST?

... ¿podremos construirlo una arista a la vez?

Algoritmo de Prim

Para un grafo G(V, E), y un nodo inicial x

- 1. Sean $R = \{x\}$, $\overline{R} = V R$, los nodos incluidos y los que no
- 2. Sea e la arista de menor costo que cruza de R a \overline{R}
- 3. Sea u el nodo de e que pertenece a \overline{R}
- 4. Agregar e al MST. Eliminar u de R y agregarlo a R
- 5. Si quedan elementos en \overline{R} , volver a 2.

El corte (V_1, V_2) y las aristas que cruzan el corte en el algoritmo de Prim

¿Cuál debería ser la siguiente arista, y siguiente nodo, a incluir?

Así, hasta que incorporamos el último vértice, 5, a R; $R = \{0,2,7,1,6,4,3,5\}$ y $\overline{R} = \emptyset$.

El MST está formado por las aristas que usamos para incorporar cada vértice a *R* (más allá del vértice que elegimos como punto de partida, en este caso, el 0).

Prim en pseudo código

```
Prim(s): —s es el vértice de partida
Q \leftarrow cola\ de\ prioridades; \quad T \leftarrow \emptyset
for each u in V-{s}:
      d[u] \leftarrow \infty; \pi[u] \leftarrow null; Q.enqueue(s)
d[s] \leftarrow 0; \pi[s] \leftarrow null; Q.enqueue(s)
while !Q.empty():
     u \leftarrow Q.dequeue(); T \leftarrow T \cup (\pi[u],u)
     for each v in \alpha[u]:
         if v \in 0:
              if d[v] > costo(u,v):
                   d[v] \leftarrow costo(u,v); \pi[v] \leftarrow u
return T
```

Corrección de Prim

Para demostrar que Prim es correcto

- ... basta demostrar que dado cualquier corte, la arista de menor costo que cruza el corte está en el MST (diap. 15):
 - haciendo el supuesto de que todos los costos son distintos, se puede demostrar (fácilmente) por contradicción
- ... y luego demostrar que Prim efectivamente implementa esta estrategia —hints:
 - ¿cómo define Prim el corte (V_1, V_2) sugerido en la diap. 14?
 - ¿cómo elije Prim la arista de menor costo que cruza el corte anterior?

Complejidad de Prim

La complejidad está dada por la complejidad del ciclo while

El ciclo ocurre |V| veces, una por cada nodo u que se saca de Q:

- para cada u que sale de Q se revisan todas las aristas adyacentes a u
- ... \rightarrow el while revisa cada nodo y cada arista del grafo una vez \rightarrow O(V+E)
- ... pero en cada revisión hace una actualización \rightarrow O(V+E) × algo

Q es una cola de prioridades según d[v]; si la implementamos como un heap binario, entonces:

- ... algo es el tiempo que toma sacar un elemento del heap (no es O(1))
- ... y también el tiempo que toma actualizar la posición de un elemento en el heap (la asignación $d[v] \leftarrow costo(u,v)$, que tampoco es O(1))