255563US.ST25 SEQUENCE LISTING

```
<110> GOFFIN, VINCENT BERNICHTEIN, SOPHIE
       KELLY, PAUL A
<120> MAMMAL PROLACTIN VARIANTS
       255563US0PCT
<130>
<140>
       10/500,968
<141>
       2004-07-08
<150>
       PCT/EP03/00448
<151>
       2003-01-08
<150>
       EP02290030.2
       2002-01-08
<151>
<160>
       9
<170> PatentIn version 3.3
<210>
<211>
       38
<212>
       PRT
<213>
       Homo sapiens
<220>
<221>
       VARIANT
<222>
       (1)..(9)
       delta 1-9 hPRL deletion
<220>
<221>
<222>
       VARIANT
       (1)..(10)
       delta 1-10 hPRL deletion
<223>
<220>
<221>
       VARIANT
<222>
       (1)..(12)
       delat 1-12 hPRL deletion
<223>
<220>
<221>
       VARIANT
       (1)..(13)
delat 1-13 hPRL deletion
<222>
<223>
<220>
<221>
       VARIANT
<222>
       (1)..(14)
<223>
       delat 1-14 hPRL deletion
<220>
<221>
       VARIANT
<222>
       (11)..(11)
<223>
       delta 1-10 hPRL and delat 1-10 hPRL Cys replaced by Ser
<400> 1
Leu Pro Ile Cys Pro Gly Gly Ala Ala Arg Cys Gln Val Thr Leu Arg
1 10 15
```

Asp Leu Phe Asp Arg Ala Val Val Leu Ser His Tyr Ile His Asn Leu 20 25 30

255563US.ST25

Ser Ser Glu Met Phe Ser 35				
<210> 2 <211> 29 <212> PRT <213> Homo sapiens				
<400> 2				
Phe Pro Thr Ile Pro Leu 1 5		Phe Asp Asn Ala 10	Met Leu Arg 15	
Ala His Arg Leu His Gln 20	Leu Ala Phe A 25	Asp Thr Tyr Gln		
<210> 3 <211> 27 <212> DNA <213> Artificial Sequen	ıce			
<220> <223> synthetic oligonu	ıcleotide			
<pre><400> 3 ggcatatgcg atcccaggtg acccttc 27</pre>				27
<210> 4 <211> 27 <212> DNA <213> Artificial Sequen	nce			
<220> <223> synthetic oligonucleotide				
<pre><400> 4 ggcatatgtc ccaggtgacc cttcgag 27</pre>				
<210> 5 <211> 27 <212> DNA <213> Artificial Sequen	nce			
<220> <223> synthetic oligonu	ıcleotide			
<400> 5 ggcatatgca ggtgaccctt cgagacc 27				
<210> 6 <211> 28 <212> DNA <213> Artificial Sequen	ıce			
<220> <223> synthetic oligonu	ıcleotide			
<pre><400> 6 ggcatatggt gacccttcga gacctgtt 28</pre>				

<210> <211> <212> <213>	27	255563US.ST25
<220> <223>	synthetic oligonucleotide	
<400> ggcata	7 cgac ccttcgagac ctgtttg	

color of the second color of the second

<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 9
ctgttacacc cacgcatgg

19

27

27