AUTONOMOUS ROBOTS THAT CAN NAVIGATE & EXPLORE

NATHAN KONG

COM SCI 35L - LAB 3

AUTONOMOUS ROBOTS

- ROVINA Project
 - Autonomous robot used to navigate and explore dangerous places to reach.
- DARPA Challenges
 - Sought to find autonomous robotic solutions for various situations.
- Navigation Systems for Autonomous Flying
 - Commercial use or navigation and exploration.

WHAT TOOLS WOULD ROBOTS NEED?

- Using the Mikrokopter as an example:
 - Gumstix embedded PC
 - WiFi network card
 - Laser sensors
 - Inertial measurement unit (IMU)
 - Mirror

RE05 3D LIDAR[1]

ROBOTIC MAPPING

- A type of cartography
- Metric versus topological framework
 - spatial coordinates or relative placement
- Motion planning

WHAT IS LOCALIZATION & MAPPING?

- Localization where you are
- Mapping where everything else is relative to you

SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM)

- Egg & chicken problem
- Based on hypotheses and observations
- Subject to sensor noise
- Approximate solutions
 - particle filtering
 - Kalman filter

SOME APPLICATIONS

REFERENCES

- Grzonka, Slawomir, Giorgio Grisetti, and Wolfram Burgard. "Towards a navigation system for autonomous indoor flying." Robotics and Automation, 2009. ICRA'09. IEEE International Conference on. IEEE, 2009.
- "One Small Step for Robots, One Giant Leap for Robot-kind?" European Commission: CORDIS. 10 Oct. 2016. Web.
 Nov. 2016.
- Thrun, Sebastian, and John J. Leonard. "Simultaneous localization and mapping." *Springer handbook of robotics*. Springer Berlin Heidelberg, 2008. 871-889.