

DS-GA 1003 Machine Learning

Week 2: Lecture 2

Model Selection - Classification and Loss Functions

How can we put machine learning into practice?

DS-GA 1003 Machine Learning

Week 2: Lecture 2

Model Selection - Classification and Loss Functions

Announcements

- ▶ Please check Week 2 agenda on NYU Classes
 - ► Homework 1
 - ► Survey 1
 - ► Section, Tutoring Session, Office Hours
- Remember to post to Piazza

Review: What is machine learning?

Review: What is machine learning?

Review: Regression and Clustering

Review: Regression and Clustering

Steps for Machine Learning

- ► Loss Function l(x)
 - ► Set f(x) = l'(x) derivative
 - Find r such that f(r) = 0

Steps for Machine Learning

- ▶ Optimization
 - $\blacktriangleright \operatorname{Set} g(x) = x (f(x) / f'(x))$
 - ► Take $x_{t+1} = g(x_t)$

Steps for Machine Learning

- ► Regularization
 - ightharpoonup Set g(x) = x m (f(x) / f'(x))
 - ► Take $x_{t+1} = g(x_t)$

Agenda

- ► Steps for Machine Learning
 - ► Hypothesis Space
 - **▶** Loss Functions
 - ▶ Optimization
 - ▶ Regularization
- ► Putting Steps into Practice
 - ▶ Data
 - ► Features and Labels
 - ► Experimentation
 - **▶** Evaluation

Data

- **▶** Data
 - **►**Split
 - ► Training set
 - Held out set (sometimes call Validation set)
 - ▶Test set
 - ► Randomly allocate to these three, e.g. 60/20/20

Test Data

Validation Set

Training Data

Data

- **▶** Data
 - **►**Split
 - ► Training set
 - Held out set (sometimes call Validation set)
 - ►Test set
 - ► Randomly allocate to these three, e.g. 60/20/20

Data

- **▶** Data
 - **►**Split
 - ▶Training set
 - Held out set (sometimes call Validation set)
 - ►Test set
 - ► Randomly allocate to these three, e.g. 60/20/20

Features and Labels

- ▶ Features
 - Data comes in different forms
 - **►**Text
 - ► Recordings
 - **►** Images
 - ► Translate into features amenable to model
- ▶ Labels
 - ► For supervised learning, we have labels
 - ► Spam or Not Spam

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Features and Labels

	id	subject	email	spam
0	0	Subject: A&L Daily to be auctioned in bankrupt	url: http://boingboing.net/#85534171\n date: n	0
1	1	Subject: Wired: "Stronger ties between ISPs an	url: http://scriptingnews.userland.com/backiss	0
2	2	Subject: It's just too small	<html>\n <head>\n </head>\n <body>\n <font siz<="" th=""><th>1</th></body></html>	1
3	3	Subject: liberal defnitions\n	depends on how much over spending vs. how much	0
4	4	Subject: RE: [ILUG] Newbie seeks advice - Suse	hehe sorry but if you hit caps lock twice the	0

Experimentation

Experimentation

- ► Select a hypothesis *f*
 - Usually depends on numbers called parameters
 - ► Fit parameters to model on training set. Compute accuracy of test set.
- ► Tune hyperparameters on validation set
 - Usually arise from regularization
 - ► For example early stopping
- ▶ Data Snooping

Example	x_1	x_2	x_3	x_4	y
1	0	0	1 0	0	0
2	0	1	0	0	0
3	0	0	1.	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Experimentation

Experimentation

- ► Select a hypothesis *f*
 - Usually depends on numbers called parameters
 - ► Fit parameters to model on training set. Compute accuracy of test set.
- ► Tune hyperparameters on validation set
 - Usually arise from regularization
 - ► For example early stopping
- ▶ Data Snooping

x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	
1	0	0	0	?
1	0	0	1	1
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0
1	1	0	1	0 ? ?
1	1	1	0	?
1	1	1	1	?

Rule	Counterexample			
$\Rightarrow y$	1			
$x_1 \Rightarrow y$	3			
$x_2 \Rightarrow y$	2			
$x_3 \Rightarrow y$	1			
$x_4 \Rightarrow y$	7			
$x_1 \wedge x_2 \Rightarrow y$	3			
$x_1 \wedge x_3 \Rightarrow y$	3			
$x_1 \wedge x_4 \Rightarrow y$	3			
$x_2 \wedge x_3 \Rightarrow y$	3			
$x_2 \wedge x_4 \Rightarrow y$	3			
$x_3 \wedge x_4 \Rightarrow y$	4			
$x_1 \wedge x_2 \wedge x_3 \Rightarrow y$	3			
$x_1 \wedge x_2 \wedge x_4 \Rightarrow y$	3			
$x_1 \wedge x_3 \wedge x_4 \Rightarrow y$	3			
$x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3			
$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3			

$$sign (\langle \mathbf{w}, \mathbf{f}(x) \rangle - threshold) = \begin{cases} 1 & then spam \\ -1 & then not spam \end{cases}$$

► Step 2 (Combine)

$$f_{N+1}(x) \equiv 1$$

$$w_{N+1} = -$$
threshold

Step 3 (Output)
$$\operatorname{sign}(\langle \mathbf{w}, \mathbf{f}(x) \rangle) = \begin{cases} 1 & \text{then spam} \\ -1 & \text{then not spam} \end{cases}$$


```
input: A training set (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)

initialize: \mathbf{w}^{(1)} = (0, \dots, 0)

for t = 1, 2, \dots

if (\exists i \text{ s.t. } y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0) then

\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i

else

output \mathbf{w}^{(t)}
```


input: A training set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ initialize: $\mathbf{w}^{(1)} = (0, \dots, 0)$ for $t = 1, 2, \dots$ if $(\exists i \text{ s.t. } y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0)$ then $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$ else

output $\mathbf{w}^{(t)}$

Perceptron Algorithm

$$y \langle w_t, x \rangle$$
$$y \langle w_{t+1}, x \rangle = y \langle w_t, x \rangle + ||x||^2$$

Exercise

Fix x (vector), w (vector) and b (number). Assume absolute value of w is 1. Determine v that minimizes

$$\min\{\|\mathbf{x} - \mathbf{v}\| : \langle \mathbf{w}, \mathbf{v} \rangle + b = 0\}$$

Hint: Consider

$$\mathbf{v} = \mathbf{x} - (\langle \mathbf{w}, \mathbf{x} \rangle + b)\mathbf{w}$$

Tuning Hyperparameters

Dataset: 10 (X,Y) points generated from a sin function, with noise

Think about the nonlinear transformation that allowed us to model an inverse relationship between mpg and horsepower using linear regression

Tuning Hyperparameters

Dataset: 10 (X,Y) points generated from a sin function, with noise

We measure error using a loss function $L(y, \hat{y})$

For regression, a common choice is squared loss:

$$L(y_i, f(x_i)) = (y_i - f(x_i))^2$$
 Squared error

The *empirical loss* of the function *f* applied to the training data is then:

$$\frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

Measure of model complexity

We measure error using a loss function $L(y, \hat{y})$

For regression, a common choice is squared loss:

$$L(y_i, f(x_i)) = (y_i - f(x_i))^2$$
 Squared error

The *empirical loss* of the function *f* applied to the training data is then:

$$\frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

Measure of model complexity

Regularization

Regularization

Evaluation

► Evaluation

- Metrics measure the accuracy according to different criteria
- Often accuracy refers to fraction of instances predicted correctly
 - ▶0-1 loss function

- ▶ Advantages
 - ▶Error Bound
 - ► Online Algorithm
- ▶ Disadvantages
 - Many Decision Boundaries
 - ▶Overfitting
 - ► Separable Data

- Advantages
 - ► Error Bound
 - ► Online Algorithm
- ▶ Disadvantages
 - Many Decision Boundaries
 - ▶Overfitting
 - ► Separable Data

```
1 \mathbf{w}_1 \leftarrow \mathbf{w}_0 > typically \mathbf{w}_0 = \mathbf{0}

2 \mathbf{for} \ t \leftarrow 1 \ \mathbf{to} \ T \ \mathbf{do}

3 \mathbf{RECEIVE}(\mathbf{x}_t)

4 \widehat{y}_t \leftarrow \mathrm{sgn}(\mathbf{w}_t \cdot \mathbf{x}_t)

5 \mathbf{RECEIVE}(y_t)

6 \mathbf{if} \ (\widehat{y}_t \neq y_t) \ \mathbf{then}

7 \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_t \mathbf{x}_t > more generally \eta y_t \mathbf{x}_t, \eta > 0.

8 \mathbf{else} \ \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t

9 \mathbf{return} \ \mathbf{w}_{T+1}
```

- ▶ Advantages
 - ▶Error Bound
 - ► Online Algorithm
- ▶ Disadvantages
 - ► Many Decision Boundaries
 - ▶Overfitting
 - ► Separable Data

- ▶ Advantages
 - ▶Error Bound
 - ► Online Algorithm
- ▶ Disadvantages
 - ► Many Decision Boundaries
 - ▶Overfitting
 - ► Separable Data

- ▶ Advantages
 - ► Error Bound
 - ► Online Algorithm
- ▶ Disadvantages
 - Many Decision Boundaries
 - **▶**Overfitting
 - ► Separable Data

- ▶ Advantages
 - **Error Bound**
 - ► Online Algorithm
- ▶ Disadvantages
 - Many Decision Boundaries
 - ▶Overfitting
 - ► Separable Data

Summary

- ► Steps for Machine Learning
 - ► Hypothesis Space
 - **▶** Loss Functions
 - ▶ Optimization
 - ► Regularization
- ▶ Putting Steps into Practice
 - ▶ Data
 - ► Features and Labels
 - ► Experimentation
 - **▶** Evaluation

Questions

- ▶ Questions on Piazza?
- ▶ Question for You!
 - ► Can you think of another way to use Perceptron for nonseparable data

Questions

Pocket Algorithm

- ▶ Questions on Piazza?
- ▶ Question for You!
 - ► Can you think of another way to use Perceptron for nonseparable data

