Fondamenti di Automatica

Sistemi di controllo

- *Sistema*, insieme organizzato di componenti causa-effetto
- Controllo automatico, insieme di algoritmi che governano sistema in autonomia
- *Disturbo*, ingresso a sistema non modellabile, necessario gestirlo e compensarlo.

Tipologie di controlli

Controllo a retroazione (o a catena chiusa)

Controllo basato su controllo di ingressi in funzione dell'uscita.

2 tipologie:

- *Retroazione positiva*, risultati del sistema amplificano il sistema stesso, che di conseguenza produrrà risultati maggiori che amplificheranno ulteriormente il funzionamento del sistema. instabili e tipicamente portano il sistema a divergere.
- *Retroazione negativa (o controreazione)*, risultati del sistema smorzano il sistema stesso stabilizzandolo.

stabili e tipicamente portano il sistema a convergere.

Controllo a catena aperta

Non prevede controllo uscita come la controreazione. Controllo disturbi su considerazioni a priori.

Obiettivi del controllo

- **Stabilità**, garantire nel tempo che ingressi e disturbi limitati producano effetti limitati.
- Rispondere velocemente
- Gestire i disturbi e rumori per non influenzare uscita

Sistemi complessi

Organizzazione gerarchica di sottosistemi decomponibili.

Modellistica

Descrizione del sistema che consente di effettuare scelte di progettazione. Ne esistono diverse tipologie:

- **In scala**, per studio di sistemi che sono complessi da rappresentare in maniera più astratta. Difficile e costoso.
- Analogico, cambia dominio fisico ma vengono lasciate inalterate le equazioni di interesse (necessita di modellazione matematica).
- **Grafico**, descrizione sistema attraverso disegni simbolici e grafici.
- Matematico, descrive il sistema attraverso equazioni analitiche (manipolabile con calcolatore).

astrazione

Classificazione modelli

Linearità

Principio di sovrapposizione

L'effetto di una somma di perturbazioni in ingresso è uguale alla somma degli effetti prodotti da ogni singola perturbazione.

$$y=f(ax_1+bx_2)=af(x_1)+bf(x_2)=ay_1+by_2$$

Esempi:

Lineare
$$y = kx$$

$$y = \frac{dx}{dt}$$

$$y = \int x dt$$

Non lineare
$$y=x^{2}$$

$$y=|x|$$

$$y=e^{x}$$

Esempi di linearità e stazionarietà:

- $\ddot{v} + \dot{v} 5v = 3f$ lineare (prodotto tra costanti)
- $\ddot{v} + sen(t)\dot{v} 5v = 3\cos(t)f$ lineare, non stazionario(funzioni nel tempo)
- $\ddot{v} + \dot{v}v 5v = 3f$ non lineare (prodotto tra variabili)
- $\ddot{v} + \dot{v} 5v = 3 fv$ non lineare (ingresso moltiplicato per uscita)
- $\ddot{v} + \dot{v} 5v = e^f$ non lineare

derivazione, integrazione e moltiplicazione per costante non intaccano linearità.

Creazione modello

- 1. Disegnare diagramma schematico del sistema + definizione di variabili (minori possibili)
- 2. definire equazioni matematiche di ogni componente elementare
- 3. interconnettere modelli elementari per avere modello finale

Rappresentazione matematica modello

Rappresentazione ingresso-uscita

Necessario modello lineare del sistema. Ingressi u(t) e uscita y(t) in relazione diretta:

$$a_{n}\frac{d^{n}y(t)}{dt^{n}} + \dots + a_{1}\frac{dy(t)}{dt} + a_{0}y(t) = b_{m}\frac{d^{m}u(t)}{dt^{m}} + \dots + b_{1}\frac{du(t)}{dt} + b_{0}u(t)$$
Ingressi u(t)
Uscite y(t)

Rappresentazione ingresso-stato-uscita

Adatto anche a sistemi non-stazionari e non-lineari. Descrizione processi:

Stato di un sistema è l'insieme di condizioni che permettono di dimenticare il passato del sistema.

Numero di variabili di stato uguale al numero di equazioni.

Rappresentazione matriciale di ingresso-stato-uscita: $\begin{cases} x = Ax + Bu \\ uscita \end{cases}$ $\begin{cases} x = Ax + Bu \\ y = Cx + Du \end{cases}$

con lo stato:
$$\begin{vmatrix} \dot{x}_{1} = \sum_{1}^{N} a_{1n} x_{n} + \sum_{1}^{N} b_{1k} u_{k} \\ \vdots \\ \dot{x_{N}} = \sum_{1}^{N} a_{Nn} x_{n} + \sum_{1}^{N} b_{Nk} u_{k} \end{vmatrix}$$

Esempio:

1. Disegno diagramma schematico del sistema

3. Applico legge che governa il sistema

$$\sum V = 0 \Rightarrow L \frac{di}{dt} + \frac{1}{C} \int_{0}^{t} i(t) dt + V_{C}(0) + Ri(t) = V_{i}(t) \qquad L \frac{d^{2}i}{dt^{2}} + \frac{1}{C}i(t) + R \frac{di}{dt} = \frac{dV_{i}}{dt}$$

5. Scompongo equazione in equazioni di ordine 1

$$\begin{vmatrix} L\frac{di}{dt} = -V_C(t) - Ri + V_i(t) \\ C\frac{dV_C}{dt} = i(t) \end{vmatrix}$$

2. Definisco grandezze del sistema

$$\begin{cases} V_C = \frac{1}{C} \int_0^t i(t)dt + V_C(0) \\ V_L = L \frac{di}{dt} \\ V_R = Ri(t) \end{cases}$$

4. Elimino integrali derivando

$$L\frac{d^2i}{dt^2} + \frac{1}{C}i(t) + R\frac{di}{dt} = \frac{dV_i}{dt}$$

6. definisco variabili di ingresso e stato

ingresso
$$u = [V_i]$$
, stato $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} i \\ V_c \end{bmatrix}$

7. riscrivo equazioni rispetto alle variabili di stato

$$\begin{vmatrix} \dot{x}_1 = -\frac{1}{L} x_2 - \frac{R}{L} x_1 + \frac{1}{L} V_i \\ \dot{x}_2 = \frac{1}{C} x_1 \end{vmatrix}$$

9. Ricavo uscita

$$V_u = y \Rightarrow V_u = Ri \Rightarrow y = Rx_1$$

8. relazione matriciale stato-ingresso

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} \cdot [V_i]$$

10. relazione matriciale uscita

$$y = \begin{bmatrix} R & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \cdot \begin{bmatrix} V_i \end{bmatrix}$$

Linearizzazione

Operazione che rende lineare un sistema non lineare, lineare. Possibile solo se le equazioni sono derivabili.

1. Dato sistema espresso in forma di ingresso-stato-uscita

relazione ingresso-stato
$$\begin{cases} \dot{x_1} = -3x_1^3 - 5x_2 \\ \dot{x_2} = -2x_2 + x_1 + 3\sin(u) \end{cases}$$
, relazione uscita $y = x_1 + 4x_2$

2. Trovo (oppure ho assegnati) dei punti di equilibrio

$$x_{10} = 0$$
 , $x_{20} = 0$, $u_0 = k \pi \Rightarrow sen(u_0) = 0$

3. Applico Taylor a stato-ingresso e uscita e vi sostituisco poi i punti di equilibrio (considerando variazioni nell'intorno dell'equilibrio)

$$f_{x} = \begin{bmatrix} \frac{\delta f_{1}}{\delta x_{1}} & \dots & \frac{\delta f_{1}}{\delta x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\delta f_{n}}{\delta x_{1}} & \dots & \frac{\delta f_{n}}{\delta x_{n}} \end{bmatrix} = \begin{bmatrix} -9x_{10}^{2} = 0 & -5 \\ 1 & -2 \end{bmatrix} \quad f_{u} = \begin{bmatrix} \frac{\delta f_{1}}{\delta u_{1}} & \dots & \frac{\delta f_{1}}{\delta u_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\delta f_{n}}{\delta u_{1}} & \dots & \frac{\delta f_{n}}{\delta u_{n}} \end{bmatrix} = \begin{bmatrix} 0 \\ 3\cos(u_{0}) = 3 \end{bmatrix}$$

dato $\frac{\delta f_i}{\delta w}$: δf_i indica quale equazione i derivare e δw indica per quale variabile

4. Ottengo quindi 4 matrici caratteristiche

$$A = \begin{bmatrix} 0 & -5 \\ 1 & -2 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad A = \begin{bmatrix} 1 & 4 \end{bmatrix} \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

Trasformata di Laplace

Operatore lineare che trasforma segnali nel dominio del tempo a segnali di variabile complessa "s".

- permette di risolvere algebricamente le equazioni differenziali (semplificazione)
- · evidenzia caratteristiche periodiche/pseudo-periodiche

$$F(s)=L[f(t)]=\int_{0}^{\infty}e^{-st}f(t)dt$$
• $s=a+jb$ (numero complesso)
• $f(t)=f(t)\cdot u_{-1}(t)$ (causale)

Trasformate notevoli

$$L \left[f(t) = \begin{cases} e^{pt} & t > 0 \\ 0 & t < 0 \end{cases} \right] = \frac{1}{s - p} \quad \text{esponenziale} \qquad \qquad L\left[u_{-k}(t) \right] = \frac{1}{s^k} \quad (\quad u_0(t) \quad \text{delta,} \quad u_{-1}(t) \quad \text{gradino,} \quad u_{-2}(t) \quad \text{rampa)}$$

$$L[\sin \omega t] = L\left[\frac{e^{j\omega t} - e^{-j\omega t}}{2j}\right] = \frac{\omega}{s^2 + \omega^2} \quad \text{seno} \qquad L[\cos in \omega t] = L\left[\frac{e^{j\omega t} + e^{-j\omega t}}{2}\right] = \frac{s}{s^2 + \omega^2} \quad \text{coseno}$$

Proprietà

Linearità
$$L[c_1f_1(t)+c_2f_2(t)]=c_1F_1(s)+c_2F_2(s)$$

Convoluzione
$$L\left[\int_{0}^{t} f(t)g(t-\tau)d\tau\right] = F(s) + G(s)$$

Traslazione
$$L[u_{-1}(t-a)f(t-a)]=e^{-as}F(s)$$
 Modulazione $L[e^{at}f(t)]=F(s-a)$

Derivazione Integrazione

$$L\left[\frac{d^{n}}{dt^{n}}f(t)\right] = s^{n}F(s) - s^{n-1}F(0) - \dots - s^{0}F(0) \qquad L\left[\int_{0}^{t}f(t)d\tau\right] = \frac{1}{s}F(s)$$

Teoremi valore iniziale e finale

Permettono di conoscere i valori iniziali e finali di una funzione nel tempo usando la trasformata di Laplace.

T valore iniziale
$$\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} s \cdot F(s)$$

T valore finale
$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \cdot F(s)$$

Esempio:

1. Disegno diagramma schematico del sistema

2. Definisco grandezze del sistema. Mi interessa la velocità, quindi rispetto a ingresso velocità.

$$\begin{cases} F_{att \, viscoso} = Dv \\ F_{e} = 2 \, u_{-1}(t) \end{cases}$$

3. Applico legge che governa il sistema $\sum F = ma \Rightarrow M \dot{v} = F_c - Dv$

4. applico Laplace
$$L[M\dot{v}] = L[F_e - Dv] \Rightarrow M[sv(s) - v(0)] = F_e(s) - Dv(s)$$
 con
$$F_e(s) = \frac{2}{s}$$

5. Suppongo il carrello inizialmente fermo (v(0)=0) e pongo in funzione di v $M \, sv(s) = F_e(s) - Dv(s) \Rightarrow v(s) = \frac{1}{sM+D} \, F(s)$

6. imposto M=1 e D=1 come da problema

$$v(s) = \frac{1}{s+1} \cdot \frac{2}{s}$$

7. ora posso eseguire analisi nel dominio di Laplace senza necessità di antitrasformare

• velocità finale (sfrutto teorema del valore finale)

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \cdot F(s) = \lim_{s \to 0} s \cdot \frac{1}{s+1} \cdot \frac{2}{s} = 2 \Rightarrow v_f = 2m/s$$

· andamento velocità

non oscillatorio, non compaiono denominatori del tipo:

$$L[\sin \omega t] = L\left[\frac{e^{j\omega t} - e^{-j\omega t}}{2j}\right] = \frac{\omega}{s^2 + \omega^2} \quad \text{oppure} \quad L[\cos in \omega t] = L\left[\frac{e^{j\omega t} + e^{-j\omega t}}{2}\right] = \frac{s}{s^2 + \omega^2}$$

denominatore s+1 del tipo $L\left[f(t)=\begin{bmatrix}e^{pt} & t>0\\0 & t<0\end{bmatrix}=\frac{1}{s-p}$, quindi andamento esponenziale

Inversione trasformata

Data funzione in Laplace espressa come rapporto di polinomi $F(s) = \frac{N(s)}{D(s)} = \frac{\sum b_m s^m}{\sum a_n s^n}$

con $m \le n$

1. fattorizzo numeratore e denominatore:

numeratore
$$\sum a_m s^m = a_m (s-z_m) \cdot ... \cdot (s-z_1)$$
 con radici reali $z_m, ..., z_1$ (zeri) denominatore $\sum a_n s^n = a_n (s-p_n) \cdot ... \cdot (s-p_1)$ con radici reali $p_n, ..., p_1$ (poli) esempio:

$$F(s) = \frac{s^2 + 6s + 5}{s^3 + 2s^2 + 16s} = \frac{(s+1)(s+5)}{s(s+1+j\sqrt{15})(s+1-j\sqrt{15})}$$
 con zeri $z_1 = -1, z_2 = -5$ e poli $p_1 = 0, p_2 = -1+j\sqrt{15}, p_3 = -1-j\sqrt{15}$

- 2. Posso trovarmi in 2 casi:
 - o poli semplici (molteplicità = 1)
 - 1. Pongo in forma di fratti semplici $F(s) = \frac{N(s)}{D(s)} = \sum_{i=1}^{n} \frac{R_i}{(s-p_i)}$
 - 2. calcolo i residui $R_i = \lim_{s \to p_i} (s p_i) \cdot \frac{N(s)}{D(s)}$
 - 3. trasformo usando la proprietà di linearità e $L^{-1} \left[\frac{1}{s-a} \right] = e^{-at}$

esempio:

$$F(s) = \frac{5s+3}{(s+1)(s+2)(s+3)} = \frac{R_1}{s+1} + \frac{R_2}{s+2} + \frac{R_3}{s+3} \quad \text{con 3 poli}$$

calcolo i residui:

$$R_{1} = \frac{5(-1)+3}{(-1+2)(-1+3)} = -1 \quad \text{con} \quad s = -1$$

$$R_{2} = \frac{5(-2)+3}{(-2+1)(-2+3)} = 7 \quad \text{con} \quad s = -2$$

$$R_{2} = \frac{5(-3)+3}{(-3+1)(-3+2)} = -6 \quad \text{con} \quad s = -3$$

$$F(s) = \frac{-1}{s+1} + \frac{7}{s+2} + \frac{6}{s+3}$$

calcolo anti-trasformata $f(t) = -e^{-t} + 7e^{-2}t - 6e^{-3}t$

o poli multipli (molteplicità > 1)

1. Pongo in forma di fratti semplici
$$F(s) = \frac{N(s)}{D(s)} = \sum_{i=1}^{n} \frac{R_i}{(s-p_i)}$$

avrò anche
$$\frac{R_k}{(s-p_k)}^{(1)} + \frac{R_k}{(s-p_k)^2}^{(2)} + \dots + \frac{R_k}{(s-p_k)^R}^{(R)}$$
 per poli multipli

2. calcolo i residui
$$R_k^{(j)} = \lim_{s \to k} \frac{1}{(R-j)!} \cdot \frac{d^{(R-j)}}{ds^{(R-j)}} \cdot \left[(s-p_k)^R \frac{N(s)}{D(s)} \right]$$

3. trasformo con
$$L^{-1} \left[\frac{R^{(h)}}{(s-p)^h} \right] = \frac{R^{(h)} t^{(h-1)} e^{pt}}{(h-1)!}$$

esempio:

$$F(s) = \frac{s-1}{s^2} = \frac{R_1}{s} + \frac{R_2}{s^2}$$
 con 1 polo multiplo di grado 2

calcolo i residui:

$$R_{1} = \lim_{s \to 0} \frac{1}{(2-1)!} \cdot \frac{d^{(2-1)}}{ds^{(2-1)}} \cdot \left[(s-0)^{2} \frac{s-1}{s^{2}} \right] = \lim_{s \to 0} \frac{d}{ds} \cdot \left[s^{2} \frac{s-1}{s^{2}} \right] = \lim_{s \to 0} 1 = 1 \quad \text{con} \quad j = 1$$

$$R_{2} = \lim_{s \to 0} \frac{1}{(2-2)!} \cdot \frac{d^{(2-2)}}{ds^{(2-2)}} \cdot \left[(s-0)^{2} \frac{s-1}{s^{2}} \right] = \lim_{s \to 0} s^{2} \frac{s-1}{s^{2}} = -1 \quad \text{con} \quad j = 2$$

calcolo anti-trasformata: $f(t)=u_{-1}(t)(1-t)$

Funzione di trasferimento

Sistema è descritto dalla sua funzione di trasferimento. Sistema è:

- Stabile as intoticamente se polo singolo/multiplo $\Re[p_i] < 0$
- Stabile se polo singolo $\Re[p_i]=0$
- Instabile se polo multiplo $\Re[p_i]=0$

Caratteristiche osservabili da funzione di trasferimento:

- Velocità di convergenza aumenta se $\Re\left[\,p_{\scriptscriptstyle i}\,
 ight]$ diminuisce
- Comportamento oscillatorio se $p_i = p_j^*$ complesso
- Valore uscita con teorema del valore finale

dispensa fatta molto bene su FdT e sua stabilità: http://home.deib.polimi.it/rocco/leonardo/lez3.pdf

Funzione di trasferimento con variabili di stato

Date le matrici A,B,C,D di un sistema ingresso-stato-uscita linearizzato: $G(s)=B[sI-A]^{-1}C+D$

Poli della funzione di trasferimento G(s) sono gli autovalori di $Q = [sI - A]^{-1}$, verificare che il grado denominatore è minore del grado del numeratore.

Schemi a blocchi

Sistemi rappresentabili attraverso schemi a blocchi. Funzione di trasferimento è $W(s) = \frac{y}{u}$.

Disturbi

Se in presenza di disturbi z_i si sfrutta il principio di sovrapposizione degli effetti, cioè sommo i sistemi calcolati considerando un ingresso/disturbo alla volta.

$$W_{Z1}(s) = \frac{G_2}{1 + G_1 G_2 H}$$

$$W_{Z2}(s) = -\frac{G_1 G_2}{1 + G_1 G_2 H} = -W(s)$$

Vale la sovrapposizione degli effetti, quindi

$$Y = WU + W_{Z1}Z_1 + W_{Z2}Z_2$$

Stabilità

Dato sistema a riposo con $u(t)=0 \Rightarrow y(t)=0$, si ha la stabilità se a ingresso limitato corrispondono effetti limitati: $|u(t)| < M_u \Rightarrow |y(t)| < M_y$.

Sistema è stabile se:

- risposta impulsiva è assolutamente sommabile $\int\limits_0^\infty g(au)d au \leq M \leq \infty$
- poli del sistema sono $\Re[p_i] < 0$
- transitorio decade, altrimenti se si assesta su valore è al limite di stabilità

Sistema semplicemente stabile se:

• ho un polo nell'origine instabilità iniziale, altrimenti se ho più poli ho oscillazioni permanenti (instabile!)

Criterio di Routh

Permette di conoscere il numero di poli positivi presenti in un polinomio caratteristico.

Dato polinomio:
$$a_n s^n + a_{n-1} s^{n-1} + ... + a_1 s + a_0 = 0$$

Creo tabella di Routh

con coefficienti:

$$b_{n-2} = \frac{a_{n-1}a_{n-2} - a_n a_{n-3}}{a_{n-1}}, \qquad b_{n-4} = \frac{a_{n-1}a_{n-4} - a_n a_{n-5}}{a_{n-1}}, \dots$$

$$c_{n-3} = \frac{b_{n-2}a_{n-3} - a_{n-1}b_{n-4}}{b_{n-2}}, \qquad c_{n-5} = \frac{b_{n-2}a_{n-5} - a_{n-1}b_{n-6}}{b_{n-2}}, \dots$$

Suggerimenti:

- possibile moltiplicare e dividere per uno stesso numero positivo (importante non cambiare il segno!) le righe della tabella di Routh per semplificarsi i calcoli
- possibile usare la "regola del cavallo" per evitare di calcolare
 coefficienti sugli angoli

Risultati: per ogni variazione di segno dei termini della prima colonna (considerati successivamente) corrisponde un polo positivo.

Casi particolari:

- Se sulla prima colonna appare 0: sostituisco 0 con $\epsilon = 0^+$ e continuo il procedimento
- Se un'intera riga è 0:
 - 1. torno a riga precedente e considero gli elementi come se fosse un polinomio con solo grado pari
 - 2. applico la derivata e prendo i coefficienti risultanti per sostituire la riga nulla

Motore

Alimentato con corrente e tensioni continue. Composto da:

- **rotore**, fornisce moto rotazionale
- **statore**, genera campo magnetico costante grazie a magneti permanenti
- spazzole, forniscono corrente a collettore (filo si sarebbe aggrovigliato con il motore in funzione), distanziate di 180°

• collettore, costituito da lamelle isolate tra loro che forniscono corrente alle spire

Campo magnetico generato da magnete muove con la forza di Lorentz delle spire concentriche attraversate da corrente i.

Forza di Lorentz: un filo percorso da corrente ed immerso in un campo magnetico, è soggetto ad una forza se i versi dei vettori della corrente e del campo magnetico sono ortogonali tra di loro. Il verso della forza risultante è descrivibile dalla regola della mano destra.

Rotazione possibile grazie a commutatore che ogni 90° inverte corrente i, mantenendo la coppia nella stessa direzione.

$$\begin{cases} \varphi_e = K_e i_e & flusso \, generato \, dallo \, statore \, (costante) \\ fcem = \varphi_e \, K_a \omega & forza \, contro \, elettromotrice \, dovuta \, a \, rotazione \\ \tau_m = \varphi_e \, K_a i_a & momento \, generato \end{cases}$$

quindi: $fcem = K_e K_a i_e \omega$

legenda:

 K_e costante elettrica

 K_a costante coppia

ω v angolare rotaz motore

Rotore

- 1. Kirchoff $V_a = R_a i_a + L_a \frac{di_a}{dt} + fcem$
- 2. sostituisco $K_e K_a i_e = K_m$ (costante):

$$V_a = R_a i_a + L_a \frac{di_a}{dt} + K_m \omega$$

3. trasformo con Laplace

$$V_a(s) = R_a I_a(s) + s L_a I_a(s) + K_m \omega(s)$$

4. ottengo corrente nel motore

$$I_a(s) = \frac{V_a(s) - K_m \omega(s)}{R_a + s L_a}$$

corrente max con $\omega = 0$ a motore fermo

Carico

Applicando a motore un carico con inerzia J e attrito D:

$$\begin{cases} Ma = f Dv \\ J \dot{\omega} = \frac{\tau_m}{sJ + D} \Rightarrow sJ \omega(s) = \tau_m - D\omega(s) \Rightarrow \omega(s) = \frac{\tau_m}{sJ + D} \end{cases}$$

la velocità del motore $\omega(s)$ è inversamente proporzionale al carico applicato sJ+D.

Riduttore

Motore in continua molto veloce ma applica coppia ridotta, per risolvere si usa riduzione meccanica con ingranaggi.

Se
$$r_{motore} = 1$$
 e $r_{riduttore} = N$ c'è riduzione $\frac{1}{N}$, ottenendo $\begin{cases} \omega_m = \frac{\omega_o}{N} & velocità motore \\ \tau_m = N \tau_o & coppia motore \end{cases}$

Schema motore

- $\frac{1}{N}$ riduzione
- $\frac{1}{sJ_m + D_m}$ carico interno e $(sJ_I + D_I) \cdot \frac{1}{N^2}$ carico esterno

Carico totale
$$C(s) = \frac{1}{sJ_{tot} + D_{tot}}$$
 con $J_{tot} = J_m + \frac{J_I}{N^2}$ (inerzia), $D_{tot} = D_m + \frac{D_I}{N^2}$ (attrito)

Regime permanente

Considerando che risp.sistema lineare=risp.transitoria+risp.permanente, la risposta permanente è utile per esaminare l'errore tra uscita desiderata e y_d uscita effettiva y.

$$e(t) = y_d(t) - y(t) = K_d u(t) - y(t)$$
 - K_d guadagno desiderato nel trasferimento

-
$$u$$
 ingresso, pari a: 1 se gradino, $\frac{t^2}{2}$ se parabola, ...

Errore

Errore a regime può essere costante, tendente a 0 o all'infinito.

- $\widetilde{e}(t) = K_d u(t) \widetilde{y}(t)$ errore a regime
- $e_t(t) = e(t) \widetilde{e}(t)$ errore al transitorio
- $e = y_d(s) \widetilde{y}(s) = [K_d W(s)]U(s)$ errore

Calcolo dell'errore a regime

1. Porto lo schema a blocchi del sistema in forma canonica

2. Calcolo la funzione di trasferimento

$$W(s) = \frac{y}{u} = \frac{G(s)}{1 \pm G(s)H(s)} = \frac{G(s)}{1 + \frac{G(s)}{K_d}}$$

- 3. Individuo tipo di sistema: sistema è di tipo k quando ha k poli nell'origine (considero la totalità dei processi)
- 4. Individuo tipo ingresso: dato ingresso canonico $u(t) = \frac{t^k}{k!}$ ottengo:

k=0 : gradino, k=1 : rampa, k=2 : parabola

- 5. Ricavo K_d e K_G
 - $\circ K_G \text{ è il guadagno totale in catena diretta } G(s) = \frac{K_G}{s^k} \cdot \frac{\prod\limits_{i}^{j} (s \, \tau_j^z + 1)}{\prod\limits_{i}^{i} (s \, \tau_i^p + 1)}$
 - \circ K_d è l'inverso del guadagno su catena inversa $K_d = \frac{1}{K_H}$, $y_d(t) = K_d \frac{t^k}{k!}$
- 6. Calcolo errore a regime in base a ingresso compatibile con la tabella "ingresso/tipo sistema" Dato ingresso di grado h e sistema di grado k (con |U| ampiezza segnale in ingresso):

• se
$$h < k \rightarrow e = 0$$

• se
$$h>k \rightarrow e \rightarrow \infty$$

• se
$$h=k=0 \rightarrow \frac{K_d^2}{K_d+K_G} \cdot |U|$$

• se
$$h=k$$
 con $h, k \neq 0 \rightarrow \frac{K_d^2}{K_G} |U|$

Sistema astatico

Quando la risposta a regime a disturbo costante è nulla (altrimenti sistema statico).

Dato un disturbo, per ottenere astatismo è necessario avere un polo nell'origine nella funzione di trasferimento dell'errore.

Disturbo in uscita

Per ridurre errore:

- **sistema astatico** inserisco polo in G(s)
- **sistema statico** $y_z = \frac{1}{1 + K_G K_H} \cdot |z|$ aumento K_G (guadagno di G(s))

Disturbo in catena diretta

Per ridurre errore:

- **sistema astatico** inserisco polo in $G_1(s)$ perché in $G_2(s)$ si semplificherebbe
- sistema statico
 - \circ se $G_2(s)$ con poli nell'origine $y_z = \frac{1}{1 + K_{G1}K_H} \cdot |z|$ \circ se $G_2(s)$ non ha poli nell'origine
 - o se $G_2(s)$ non ha poli nell'origi $y_z = \frac{K_{G2}}{1 + K_{G1}K_{G2}K_H} \cdot |z|$

Disturbo sulla misura

- **sistema astatico** mai astatico
- sistema statico
 - \circ se G(s) ha poli nell'origine $y_z = -1|z|$
 - \circ se G(s) non ha poli nell'origine

$$y_z = \frac{-K_G K_H}{1 + K_G K_H} \cdot |z|$$

Diagrammi di Bode e Nyquist

Rappresentazione grafica della risposta in frequenza di un sistema lineare stazionario (LTI).

Bode

Comprende due grafici che rappresentano l'ampiezza (o modulo) e la fase della funzione complessa di risposta in frequenza.

Disegnare grafico di Bode

Data
$$G(s) = \frac{(s+1)}{s(s+3)^2}$$

1. Riscrivere la FdT in forma appropriata $G(s) = K \cdot s^h \frac{\prod (1 + \tau_i s)}{\prod (1 + \tau_j s)}$

in questo caso:

$$G(s) = \frac{(s+1)}{s(s+3)^{2}} = \frac{(s+1)}{s \cdot 3^{2} \left(\frac{s}{3} + 1\right)^{2}} = 3^{-2} \cdot s^{-1} \cdot \frac{(s+1)}{\left(\frac{s}{3} + 1\right)^{2}}$$

2. Trovare parti costituenti FdT

$$K_{dB} = 20 \log_{10} |K|$$

- poli (reali / origine)
- zeri (reali / origine)

In questo caso:

$$K_{dB} = 20 \log_{10} |3^{-2}| \approx -20 \, dB$$

- poli: 0, -3 (molteplicità 2)
- zeri: -1
- 3. **Grafico modulo** (scala ordinate: $20 \, dB$, ascisse: potenze di 10)

Le pendenze delle rette del grafico sono:

- polo: −20 *dB*·*molteplicità zero* per decade
- zero: +20 dB·molteplicità zero per decade
- 1. traccio retta per il punto $(10^{\circ}, K_{dB})$ con $pendenza = (\# zeri origine - \# poli origine) \cdot 20 dB$ per decade

in questo caso $pendenza = (0-1)\cdot 20 dB = -20 dB$ per decade

2. traccio semirette partendo dai punti $(|polo|, K_{dB})$ e $(|zero|, K_{dB})$ con $pendenza = (\# zeri ascissa k - \# poli ascissa k) \cdot 20 dB$ per decade

3. finisco il grafico del modulo sommando i tracciati

- 4. **Grafico fase** (scala ordinate: 45° , ascisse: potenze di 10 le stesse del modulo)
 - 1. traccio costante per il punto di ordinata:

 $\label{eq:condinate} ordinata\,inizio = [0\,\circ\,se\,K>0\,\lor\,-180\,\circ\,se\,K<0] - 90\,\circ\cdot\#\,poli\,origine + 90\,\circ\cdot\#\,zeri\,origine$ in questo caso $\label{eq:caso} ordinata\,inizio = 0\,\circ\,-90\,\circ\cdot1 + 90\,\circ\cdot0 = -90\,\circ$

- 2. segno con tratti distintivi sulle ascisse le pendenze e relative molteplicità:
 - decade prima del polo / decade dopo lo zero: -45°·*molteplicità* per decade (pallino nero)
 - decade prima dello zero / decade dopo il polo: +45 °·*molteplicità* per decade (pallino bianco)

3. finisco il grafico della fase sommando i tracciati (sono scritte le pendenze)

Stabilità in Bode

Margine di ampiezza: misura robustezza stabilità rispetto ad incertezze sul guadagno a ciclo chiuso

$$m_A$$
 dove $\omega_{fase} = -180^{\circ}$

Margine di fase: misura robustezza stabilità su fase della funzione a ciclo chiuso

$$m_F$$
 dove $\omega_{modulo} = 0$

Nyquist

Permette di capire stabilità di sistemi a ciclo chiuso.

Disegnare grafico di Nyquist

Grafico in coordinate polari, in cui il modulo è rappresentato dalla coordinata radiale e la fase dalla coordinata angolare.

- 1. Disegnare diagramma di Bode e determinare proprietà del grafico di Nyquist:
 - modulo: se modulo decresce allora Nyquist si muove verso origine, altrimenti si allontana
 - fase: se fase decresce allora Nyquist si muove in senso orario, altrimenti antiorario.
 Ricavo anche l'intervallo di fase.

In questo caso (diagramma Bode esempio precedente):

- \circ modulo: decrescente \to grafico Nyquist si muove verso origine. Intervallo di modulo $-\infty < |G| < +\infty$
- ° fase: decrescente → grafico Nyquist si muove in senso orario. Intervallo di fase $-45\,^{\circ}<\phi<-180\,^{\circ}$

2. connetto estremi seguendo l'andamento del grafico

in questo caso a -135° cambia orientamento e rimane in modulo a -20dB per un tratto

3. Specchio rispetto alle ascisse e chiudo il diagramma impostando il verso di percorrenza

Stabilità in Nyquist

Sistema è stabile se il diagramma di Nyquist non passa per il punto (-1,0) e compie, intorno a questo punto, un numero di rotazioni antiorarie pari a #poli.

Teoria e metodi di risoluzione dei quesiti

Parte prima

• **Linearizzabilità nel punto di lavoro**: sostituire il punto di lavoro dato nell'equazione e verificare che la funzione nella quale è stato sostituito il punto di lavoro sia derivabile (e quindi linearizzabile).

Es: data l'equazione $\dot{y} = |u-1|$ gli sostituisco il punto di lavoro $u_0 = 1$ e ottengo $\dot{y} = |0|$ che non è derivabile, quindi non linearizzabile nel punto di lavoro dato.

• **Linearizzazione nel punto di lavoro**: derivare nell'intorno tutti i termini dell'equazione e sostituire poi il punto di lavoro (ed effettuare eventuali somme alla fine).

Es: data l'equazione
$$\dot{y}+0.2\,y(t)=u(t)+0.4\,u(t)^4$$
 derivo nell'intorno e ottengo $\dot{\Delta}\,y+0.2\,\Delta\,y=\Delta\,u+0.4*4\,u^3\,\Delta\,u$. Sostituisco poi il punto di lavoro $\dot{\Delta}\,y+0.2\,\Delta\,y=\Delta\,u+1.6\,\Delta\,u$ e infine risolvo eventuali somme $\dot{\Delta}\,y+0.2\,\Delta\,y=2.6\,\Delta\,u$.

• Sistemi lineari dato un ingresso:

Sistemi lineari devono essere causali ($t \ge 0$) e possono essere sempre presenti oscillazioni (o nei quiz "altri andamenti").

sistemi lineari asintoticamente stabili:

- ∘ risposta forzata: tendono a valore costante e può essere nulla per $0 \le t \le T_0$
- ∘ risposta permanente: rispondono sempre con lo stesso segnale in ingresso (se sinusoide in ingresso → sinusoide in uscita, se limitato in ingresso → limitato in uscita) e può essere nulla per $0 \le t \le T_0$
- → 0 per segnali limitati nel tempo dopo un tempo sufficiente

sistemi lineari:

- risposta libera: se converge a 0 allora il sistema è asintoticamente stabile (quindi ad es segnali gradino in ingresso hanno uscita limitata), la risposta transitoria tende a 0 ed è stabile BIBO. Se diverge allora il sistema è instabile, la risposta transitoria tende a ∞.
- Dato un sistema lineare, a fronte di ingressi e uscite conosciuti, calcolare l'uscita per un nuovo ingresso: uguagliare ingresso e uscita conosciuti e semplificare in termini di costante di Laplace. Applicare la trasformazione trovata all'ingresso dato.

Es: dato ingresso $u_1 = \delta_{-1}(t)$ e uscita $y_1 = 2\delta_{-2}(t)$ calcolare y_2 sapendo $u_2 = \sin(4t)$

. Eguaglio ingresso e uscita $u_1 = y_1 \Rightarrow \delta_1(t) = 2\delta_2(t) \Rightarrow \frac{1}{s} = 2 \cdot \frac{1}{s^2} \Rightarrow 1 = 2 \cdot \frac{1}{s}$ e trovo quindi la

trasformazione da applicare all'ingresso, che è un integrale ($\frac{1}{s}$) e una moltiplicazione

(2):
$$y_2 = 2 \cdot \int sen(4t)dt = \frac{2}{4} \cdot \int sen(4t) \cdot 4dt = \frac{1}{2} \cdot -\cos(4t) = -0.5\cos(4t)$$

• Dato schema a blocchi di un sistema lineare, a fronte di ingressi e uscite conosciuti, calcolare l'uscita per un nuovo ingresso: si assegnano i valori di guadagno K_i corrispondenti alle entrate e uscite conosciute, dopodiché si calcola l'uscita totale con le funzioni di trasferimento per ogni ingresso e disturbo (grazie alla proprietà di linearità).

Es:

dati gli ingressi e uscite conosciuti

- $u_1 = \delta(t), z_1 = z_2 = 0 \Rightarrow y = \delta(t)$
- $z_1 = \delta(t), u_1 = z_2 = 0 \Rightarrow y = 0.1\delta(t)$
 - $z_2 = \delta(t), u_1 = z_1 = 0 \Rightarrow y = 0.2\delta(t)$

Prevedere l'uscita per la combinazione $u_1 = 5\delta_{-1}(t)$, $z_1 = \delta_{-1}(t)$, $z_2 = 10\delta_{-1}(t)$

- 1. Assegno i valori ai guadagni dei processi
 - 1. prendo la prima equazione $u_1=\delta(t)$, $z_1=z_2=0$ \Rightarrow $y=\delta(t)$ e elimino dallo schema z_1 e z_2 perché danno contributo nullo. Percorro lo schema dall'ingresso u fino all'uscita e verifico che l'uscita è uguale all'entrata, quindi il guadagno totale è $K_C \cdot K_P = 1$.
 - 2. prendo la seconda equazione $z_1=\delta(t)$, $u_1=z_2=0$ \Rightarrow y=0, $1\delta(t)$ e elimino dallo schema u_1 e z_2 perché danno contributo nullo. Percorro lo schema dal disturbo in ingresso z_1 fino all'uscita e verifico che l'uscita è moltiplicata per 0,1, quindi il guadagno totale è $K_P=0$,1 .
 - 3. prendo la terza equazione $z_2=\delta(t)$, $u_1=z_1=0$ \Rightarrow y=0, $2\delta(t)$ e elimino dallo schema u_1 e z_1 perché danno contributo nullo. Percorro lo schema del disturbo in ingresso z_2 fino all'uscita e verifico che l'uscita è moltiplicata per 0,2, quindi il guadagno totale è $K_H \cdot K_C \cdot K_P = 0$,2
 - 4. ora risolvo il sistema di equazioni trovato $\begin{cases}
 K_C \cdot K_P = 1 \\
 K_P = 0,1 \\
 K_H \cdot K_C \cdot K_P = 0,2
 \end{cases} = \begin{cases}
 K_C = 10 \\
 K_P = 0,1 \\
 K_H = 0,2
 \end{cases}$
- 2. Ora trovo le funzioni di trasferimento per ciascun ingresso e disturbo

$$W_{u} = \frac{C(s) \cdot P(s)}{1 + C(s) \cdot P(s) \cdot H(s)} , W_{z_{1}} = \frac{P(s)}{1 + C(s) \cdot P(s) \cdot H(s)} , W_{z_{2}} = \frac{H(s) \cdot C(s) \cdot P(s)}{1 + C(s) \cdot P(s) \cdot H(s)}$$

3. Infine calcolo l'uscita

$$y = W_u \cdot |u| + W_{z_1} \cdot |z_1| + W_{z_2} \cdot |z_2| = \frac{1}{1,2} \cdot (10 \cdot 0.1 \cdot 5 + 0.1 \cdot 1 + 0.2 \cdot 10) = 7.1$$
 quindi $y = 7.1 \delta_{-1}$

Metodo veloce, moltiplico ingressi per uscite e sommo:

$$y = y_{u_1} \cdot u_1 + y_{z_1} \cdot z_1 + y_{z_2} \cdot z_2 = 1.5 + 0.1.1 + 0.2.10 = 7.1 \delta_{-1}$$

- **Determinare per quali valori di k>0 un polinomio ha tutte radici a parte reale negativa**: applicare Routh e impostare un sistema con tutti i risultati della prima colonna della tabella di Routh > 0.
- **Data la funzione di trasferimento, determinarne la stabilità**: applicare il teorema del valore finale alla funzione di trasferimento: = 0 → stabile asintoticamente, = 1 → semplicemente stabile, = ∞ → instabile.

Es: data la funzione di trasferimento $\frac{(s+4)e^{-3s}}{-5s^2-2s-1}$ applico il teorema del valore finale

$$\lim_{s \to 0} s \cdot \frac{(s+4)e^{-3s}}{-5s^2 - 2s - 1} = 0$$