Mathematical Modeling of Trending Topics on Twitter

Jonathan Skaza

April 14, 2015

Comparison of Trending Topics

"Window" refers to the moving sum period (e.g., each point represents count in past 200s)

• Quantify the diffusion of information on Twitter

- Quantify the diffusion of information on Twitter
- Compare and contrast different trending topics

- Quantify the diffusion of information on Twitter
- Compare and contrast different trending topics
- Compare spread of information to spread of infectious disease

- · Quantify the diffusion of information on Twitter
- Compare and contrast different trending topics
- Compare spread of information to spread of infectious disease
- Create a reproducible output product

1. Twitter overview, facts, and figures

- 1. Twitter overview, facts, and figures
- 2. Methodological strategy

- 1. Twitter overview, facts, and figures
- 2. Methodological strategy
- 3. Previous studies

- 1. Twitter overview, facts, and figures
- 2. Methodological strategy
- 3. Previous studies
- 4. Results and discussion

• Created in 2006

- Created in 2006
- Incorporated in 2007

- Created in 2006
- Incorporated in 2007
- 288 million monthly active users 500 million Tweets per day

- Created in 2006
- Incorporated in 2007
- 288 million monthly active users 500 million Tweets per day
- Source: about.twitter.com

Anatomy of a Tweet

Twitter Application Programming Interface (API)

• Two different flavors: REST and Streaming

Streaming API

Source: dev.twitter.com

Streaming API Request Parameters

```
delimited locations
stall_warnings count
filter_level with
language replies
follow stringify_friend_id
track
```

Source: Twitter Developers Documentation

stream.filter(track=['#'])

Data Collection

Raw Tweet

{"created_at": "Fri Mar 27 18:16:52 +0000 2015", "id": 581520276292280320, "id_str": "581520276292280320", "text": "Loving the #NCAA #MarchMadness? Find out fun facts like which states listened most, overall listening hours and more! http:\//t.co\/DWfDTDnDg8", "source": "\u003cahref=\"http:\//twitter.com\" rel=\"nofollow\"\u003e Twitter Web Client\u003c\/a\u003e", "truncated":false, "in_reply_to_status_id":null, "in_reply_to_status_id_str" :null, "in_reply_to_user_id":null, "in_reply_to_user_id_str":null, "in_reply_to_screen_name":null, "user":{"id": 1694596596, "id_str": "1694596596", "name": "Westwood One", "screen_name": "WestwoodOne", "location": "In your speakers", "url": "http:\//www.westwoodone.com", "description": "Westwood One offers audio products and content to reach listeners whenever, wherever they are. #powerofsound", "protected":false, "verified":true, "followers_ count":1123, "friends count":337, "listed count":24, "favourites count":1923, "statuses count":2113, "created at" :"Fri Aug 23 19:28:54 +0000 2013", "utc_offset":-10800, "time_zone": "Atlantic Time (Canada)", "geo_enabled": false, "lang": "en", "contributors enabled": false, "is translator": false, "profile background color": "FAFAFA", "profile_background_image_url": "http:\/\pbs.twimg.com\/profile_background_images\/37880000066715369\/34 9a5b97fca21c477dd28089d909936b.png"."profile background image url https:///pbs.twimg.com//profi le_background_images\/378800000066715369\/349a5b97fca21c477dd28089d909936b.png", "profile_background_tile" :false, "profile link color": "OAOAOA", "profile sidebar border color": "FFFFFF", "profile sidebar fill color" :"DDEEF6", "profile_text_color": "333333", "profile_use_background_image": true, "profile_image_url": "http:\/\ /pbs.twimg.com\/profile_images\/489073660854935553\/a2WsGpB-_normal.jpeg","profile_image_url_https":"https:\ /\/pbs.twimg.com\/profile images\/489073660854935553\/a2WsGpB- normal.jpeg"."profile banner url":"https:\/\ /pbs.twimg.com\/profile_banners\/1694596596\/1422292326","default_profile":false,"default_profile_image": false, "following": null, "follow request sent": null, "notifications": null, "geo": null, "coordinates": null, "plac e":null."contributors":null."retweet count":0."favorite count":0."entities":{"hashtags":[{"text":"NCAA"."i ndices": [11.16]}. {"text": "MarchMadness", "indices": [17.30]}]. "trends": []. "urls[{"url": "http:///t.co//DWfDTD nDg8", "expanded url": "http:///bit.lv/1CiR90h", "display url": "bit.lv/1CiR90h", "indices": [118,140]}], "user mentions":[]."symbols":[]}."favorited":false."retweeted":false."possibly sensitive":false."filter level": "low", "lang": "en", "timestamp ms": "1427480212649"}

Data Collection

Processed Tweet

Fri Mar 27 18:16:52 +0000 2015,['NCAA', 'MarchMadness']

Methodology

SIR Model

Developed by Kermack and McKendrick (1927)

 $\textbf{Disease} \colon \mathsf{Proximal} \ \mathsf{to} \ \mathsf{infected} \ \mathsf{individual} \ \to \ \mathsf{Catch} \ \mathsf{disease} \ \to$

Recover from disease

Meme: Twitter user \rightarrow Tweet about topic \rightarrow Move on in life

SIR Model

$$egin{aligned} rac{dS}{dt} &= - eta SI \ rac{dI}{dt} &= + eta SI - \gamma I \ rac{dIR}{dt} &= + \gamma I \end{aligned}$$

Use Markov Chain Monte Carlo (MCMC) simulation techniques to estimate β , γ , initial S, and initial I (Coelho, Codeco, and Gomes, 2011)

• Infectious Disease

- Infectious Disease
 - Measles (McGilchrist et al., 1996; Grais et al., 2006; Tuckwell and Williams, 2007; Kuniya, 2006)

- Infectious Disease
 - Measles (McGilchrist et al., 1996; Grais et al., 2006; Tuckwell and Williams, 2007; Kuniya, 2006)
 - Influenza (Tuckwell and Williams, 2007; Li, Li, and Ghosh, 2009; Hooten, Anderson, and Waller, 2010; Coelho, Codeco, and Gomes, 2011)

- Infectious Disease
 - Measles (McGilchrist et al., 1996; Grais et al., 2006; Tuckwell and Williams, 2007; Kuniya, 2006)
 - Influenza (Tuckwell and Williams, 2007; Li, Li, and Ghosh, 2009; Hooten, Anderson, and Waller, 2010; Coelho, Codeco, and Gomes, 2011)
- Other Applications

- Infectious Disease
 - Measles (McGilchrist et al., 1996; Grais et al., 2006; Tuckwell and Williams, 2007; Kuniya, 2006)
 - Influenza (Tuckwell and Williams, 2007; Li, Li, and Ghosh, 2009; Hooten, Anderson, and Waller, 2010; Coelho, Codeco, and Gomes, 2011)
- Other Applications
 - Feynman diagrams (Bettencourt et al., 2006)

- Infectious Disease
 - Measles (McGilchrist et al., 1996; Grais et al., 2006; Tuckwell and Williams, 2007; Kuniya, 2006)
 - Influenza (Tuckwell and Williams, 2007; Li, Li, and Ghosh, 2009; Hooten, Anderson, and Waller, 2010; Coelho, Codeco, and Gomes, 2011)
- Other Applications
 - Feynman diagrams (Bettencourt et al., 2006)
 - News and rumors on Twitter (Jin et al., 2013)

- Infectious Disease
 - Measles (McGilchrist et al., 1996; Grais et al., 2006; Tuckwell and Williams, 2007; Kuniya, 2006)
 - Influenza (Tuckwell and Williams, 2007; Li, Li, and Ghosh, 2009; Hooten, Anderson, and Waller, 2010; Coelho, Codeco, and Gomes, 2011)
- Other Applications
 - Feynman diagrams (Bettencourt et al., 2006)
 - News and rumors on Twitter (Jin et al., 2013)
 - Spread of rumors in social networks (Zhao et al., 2012)

Infectious Disease

- Measles (McGilchrist et al., 1996; Grais et al., 2006; Tuckwell and Williams, 2007; Kuniya, 2006)
- Influenza (Tuckwell and Williams, 2007; Li, Li, and Ghosh, 2009; Hooten, Anderson, and Waller, 2010; Coelho, Codeco, and Gomes, 2011)
- Other Applications
 - Feynman diagrams (Bettencourt et al., 2006)
 - News and rumors on Twitter (Jin et al., 2013)
 - Spread of rumors in social networks (Zhao et al., 2012)
 - Zombie apocalypse (Witkowski and Blais, 2013)

Application of Methodology to #Obama

Specify Prior Probability Distributions

Prior Probability Distributions

- $\beta \sim U(0,2)$
- $\gamma \sim U(0,2)$
- $S_0 \sim U(30, 5000)$
- $I_0 \sim U(0, 10)$

Example of MCMC Parameter Estimation

Code Snippet

model = MCMCModel(sim, beta = Uniform(0,2)) $model.run_mcmc(10000)$

Run #Obama Simulation

Simulate 500 times, drawing from posterior probability distributions

```
for i in range(500):
    model.draw()
    sim.run(0,191)
    plot(sim.t,sim.l,'g-',alpha = .1)
```

Simulation Results for #Obama

Best Parameter Estimates & Credible Intervals

#thewalkingdead Simulation

#thewalkingdead Parameter Estimation

#CWC15 Simulation

#CWC15 Parameter Estimation

2013-14 U.S. Flu Season (September 1st - April 6th)

Flu Simulation

Flu Parameter Estimation

Comparison of Model Parameters

Prediction Using #Obama

Fit model to training set

Prediction Results for #Obama

Run simulation over longer timescale

Prediction Results for #Obama

Comparison to actual (i.e., validation) data

Prediction with a Larger Training Set

Notice that the training set now captures the peak

Prediction Results for #Obama

Prediction Results for #Obama

• Dynamical model tweaks

- Dynamical model tweaks
- Create better identification (i.e, hashtag selection) tools

- Dynamical model tweaks
- Create better identification (i.e, hashtag selection) tools
- Optimize "window" selection

- Dynamical model tweaks
- Create better identification (i.e, hashtag selection) tools
- Optimize "window" selection
- More prediction applications

- Dynamical model tweaks
- Create better identification (i.e, hashtag selection) tools
- Optimize "window" selection
- More prediction applications
- Develop interactive display

- Dynamical model tweaks
- Create better identification (i.e, hashtag selection) tools
- Optimize "window" selection
- More prediction applications
- Develop interactive display
- Compare to stochastic modeling strategy

Acknowledgments

Advisor: Brian Blais, PhD

Editorial Reviewer: John Quinn, PhD

Honors Program Coordinator: James Segovis, PhD

Questions?

Contact Info

Email: jonathan.skaza@gmail.com

Twitter: @SkazaSays