USTHB Année 2019/2020

Faculté d'Electronique & Informatique Département d'Informatique L2-ACAD (Sections A & C)

Théorie des Langages Solutions des Exercices de la Série 1

Exercice 4:

Les grammaires qui génèrent les langages suivants :

1) L'ensemble des nombres binaires (un langage infini qui ne contient pas le mot vide)

Exemple: $L = \{0, 1, 01, 10, 00, 11, 001, 111, 00000, 10010, 00110, ...\}$

$$G= où T=\{0,1\}$$
 $N=\{S\}$ et $P=$

 $S \rightarrow 0S/1S/0/1$

Remarque: Les nombres commencent par un 0 ou 1. Apres la première lettre, il y a soit 0 soit 1 et ainsi de suite. E n'appartient pas au langage (il n'est pas un nombre binaire)

2) L'ensemble des nombres binaires sans 0 inutiles en tête

Exemple: L={0, 1, 10, 101, 100110, 111, 100000, ...}

$$G= où T=\{0,1\}$$
 N= $\{S, A\}$ et P=

S→ 1A/0 /*La génération commence par 1 suivi par une suite aléatoire de 0 et 1*/

 $A \rightarrow 0A/1A/\epsilon$ /*La suite aléatoire qui se trouve après le premier 1*/

ou bien

$$G= où T=\{0,1\}$$
 $N=\{S,A\}$ et $P=$

 $S \rightarrow A / 0$

$A \rightarrow A0 / A1 / 1$

Remarque : Dans la première grammaire la construction des mots se fait de la gauche vers la droite tandis que dans la deuxième elle se fait de la droite vers la gauche. 0 est un cas unique qu'on peut avoir directement à partir de l'axiome.

3) L'ensemble des nombres binaires de longueur paire.

Exemple: $L = \{00, 01, 10, 11, 1001, 0010, 1111, 0000, 100101, 111111, \dots\}$

$$G= où T=\{0,1\}$$
 N= $\{S, A\}$ et P=

 $S \rightarrow 1A/0A$ /* on génère le premier 0 ou le premier 1*/

 $A \rightarrow 0S/1S/0/1$ /* soit on génère 0 ou 1 et on s'arrête. Soit on génère 0 ou 1 et on

reviens à S pour continuer la génération d'un autre doublet*/

USTHB Année 2019/2020

Faculté d'Electronique & Informatique Département d'Informatique L2-ACAD (Sections A & C)

Théorie des Langages Solutions des Exercices de la Série 1

ou bien

 $G=<T, N, S, P> où T=\{0,1\}$ N= $\{S\}$ et P=

Remarque: Dans la première grammaire la génération se fait lettre par lettre. Dans la deuxième deux par deux, en considérant toutes les possibilités : 00, 01, 11, 10.

4) Les nombres décimaux éventuellement signés n'ayant pas de 0 inutiles. Rappelons que la partie (optionnelle) après la virgule ne se termine pas par un 0.

Exemple: $L = \{0, 2020, +123.45, -67.89, 0.98, +0.14, 987.65, +4321, \dots \}$

G=<T, N, S, P> où T= $\{0, ..., 9\}$ N= $\{$ S, A, B, D $\}$ et P=

S→ A / +A / -A /* Les nombres peuvent être positif, négatifs ou sans signe*/

 $A \rightarrow 1B/2B/.../9B/0/0.D$ /* La partie entière qui ne commence pas par 0*/

 $B \rightarrow 0B/1B/2B/.../9B/.D/ε$ /* soit on s'arrête, soit on passe a la partie décimale */

 $D \rightarrow 0D/1D/.../9D/1/.../9$ /* La partie décimale qui ne se termine pas par 0 */

5) L'ensemble des noms de variables (identificateurs) en Java. Un nom de variable en Java commence par une lettre alphabétique ou le caractère underscore (_) suivi par une suite quelconque de lettres alphabétiques, de chiffres et l'underscore.

Exemple: L={a, nom, nom pere, p1, p2, prix, 16 04 2020, thl 2020,}

Remarque : Chaque mot est composé de deux parties : début (premier symbole) qui peut être une lettre ou le underscore, et le reste du nom qui est une suite de lettres, de chiffres et de l'underscore.

G= $\langle T, N, S, P \rangle$ où $T = \{a, ..., z, A, ..., Z, 0, ..., 9, \},$

N={<NomJava>, <Suite>, <Lettre>, <Chiffre>} et P est :

<NomJava $> \rightarrow <$ Lettre > <Suite> / <Suite>

/*commence par une lettre alphabétique ou underscore suivi d'une suite aléatoire formée de lettres, chiffres et/ou underscore*/

<Suite> \rightarrow <Lettre> <Suite> / <Chiffre> <Suite> / $_$ <Suite> / \ge

/*une suite est une lettre alphabétique ou un chiffre ou un underscore suivi d'une suite. Minimum un mot vide*/

USTHB Année 2019/2020

Faculté d'Electronique & Informatique Département d'Informatique L2-ACAD (Sections A & C)

Théorie des Langages Solutions des Exercices de la Série 1

<Lettre> \rightarrow a /.... / Z /* les différentes possibilités d'une lettre */
<Chiffre> \rightarrow 0 /.... / 9 /* les différentes possibilités d'un chiffre */

6) L'ensemble des tableaux de caractères alphabétiques. Un tableau commence par { et se termine par } et les caractères sont séparés par une virgule. Chaque caractère est compris entre deux quotes simples. Le tableau peut être vide.

Exemple: L= {{}, {'a'}, {'b', 'c', 'd'}, ...}

G=<T, N, S, P> où T = {a, ..., z, A, ..., Z, ', \{, \}, \, }

N={<Tableau>, <SuiteCar>, <Car>} et S=<Tableau>, P=

<Tableau> → {<SuiteCar> }/{}

/* on génère les accolades et au milieu, soit une suite de caractères, soit le vide*/

<SuiteCar> → '<Car>', <SuiteCar> /'Car'

/* Une suite de caractères est un caractère entre deux quottes suivi d'une suite de caractères. Minimum un caractère */

<Car> → a/b/.../z/A/.../Z

/* les différentes possibilités d'un caractère */