

Module A3: Partial Fractions

Calculate the integral of $f(x) = \frac{1}{x^n(x-a)}$ where n is a positive integer and $a \neq 0$.

Hint 1: Try this out for various values of n and see if you notice a pattern.

Hint 2: Find the coefficient A of $\frac{1}{x-a}$, subtract $\frac{A}{x-a}$ from f(x), simplify the resulting difference, and use the fact that $x^n-a^n=(x-a)(x^{n-1}+x^{n-2}a+\cdots+xa^{n-2}+a^{n-1})$

First very:
$$\frac{1}{x-a} = \sum_{n=0}^{\infty} x^n \cdot (-1) \cdot a^{-(n+1)}$$

$$\int x^n, \quad \frac{1}{x-a} dx = \int x^n \left(\sum_{i=0}^{\infty} x^i (-i) \cdot a^{-(i+1)} \right) dx$$

$$= -\sum_{i=0}^{\infty} x^{i} \cdot (-1) \cdot a^{-(i+1)} dx$$

6. het time!

then
$$\frac{dh}{dt} = 0$$
 $X \cdot \frac{dX}{dt} = 1 \cdot \frac{dl}{at}$
 $X \cdot v_2 = 1 \cdot v_0$
 $V = \frac{1}{x} v_0 = \frac{1}{\cos \theta} \cdot \frac{d\cos \theta}{d\cos \theta}$
 $2 \cdot \text{tell how the boat moves,}$
 $as \times 1 \cdot 0 \cdot 0$
 $accelerates$

0115A Page 3

t follow our initarities

\$V, 550 1, UT.