

UTAustinX: UT.7.10x Foundations of Data Analysis - Part 1

Important Pre-Course Survey

- Contact Us
- How To Navigate the Course
- DiscussionBoard
- Office Hours
- Week 1: Introduction to Data
- Week 2: Univariate Descriptive Statistics
- Week 3: Bivariate Distributions
- ➤ Week 4:
 Bivariate
 Distributions
 (Categorical
 Data)

Readings

Reading Check due Mar 15, 2016 at 18:00 UTC

Lecture Videos

Comprehension Check due Mar 15, 2016 at 18:00 UTC gender

Week 4: Bivariate Distributions (Categorical Data) > Pre-Lab > Prepare for the Analysis

Reflect on the Question

Analyze the Data

Draw Conclusions

■ Bookmark

Primary Research Question

For artists age 30 or older, do female artists play different kinds of music on Austin City Limits than male artists?

Breakdown Your Analysis

Let's break this analysis into its required steps:

- 1. Create a subset of the data for artists age 30 or older.
- 2. Create a table to show the marginal distribution for each variable.
- 3. Create a contingency table to show the conditional distribution for gender and genre.
- 4. Make a bar chart to better visualize how many male and female artists played in each genre.
- 5. Calculate P(A): the probability of each type of music (genre) being played.
- 6. Calculate $P(A \mid B)$: the probability of each genre, given the artist's gender.
- 7. Interpret what these probabilities tell us about the relationship between genre and gender.

Here is the code you will use:

#Subset the data for artists age 30 or older older <-acl[acl\$Age>=30,]

Create tables of marginal distributions genre <- table(older\$Genre) genre gender <- table(older\$Gender)

R Tutorial Videos

Pre-Lab

Pre-Lab due Mar 15, 2016 at 18:00 UTC

Lab

Lab due Mar 15, 2016 at 18:00 UTC

Problem Set

Problem Set due Mar 15, 2016 at 18:00 UT

Week 5: Linear Functions

- # Create contingency table
 twoway <- table(older\$Gender,older\$Genre)
 twoway</pre>
- # Visualize the counts
 barplot(twoway, legend=T, beside=T)
- # Calculate P(A): the probability of each genre being played prop.table(genre)
- # Calculate P(A|B): the probability of each genre being played, given the artist's gender prop.table(twoway,1)

(1/1 point)

1) How many columns will be present in the table generated by the following line of code?

gender <- table(acl\$Gender)</pre>

- О 3
- ② 2
- 0 1
- O 4

Click here for a video explanation of how to answer this question.

You have used 1 of 1 submissions

(1/1 point)

2) This code produces a bar chart with both a legend and side-by-side bars for each gender:

barplot(twoway, legend=TRUE, beside=TRUE)

What would the code look like if we wanted to keep the legend but stack the bars (instead of set them side-by-side)?

barplot(twoway, beside=TRUE)

o barplot(twoway)
barplot(twoway, legend=TRUE)
Click here for a video explanation of how to answer this question.
You have used 1 of 1 submissions
(1/1 point)3) This line of code will produce four values, one for each genre of music: prop. table (genre)
What value should you get if you sum the four values together?
0.25
● 1.00
O 0.50
O 4.00
Click here for a video explanation of how to answer this question.
You have used 1 of 1 submissions
<pre>(1/1 point) 4) What does the value "1" refer to in this line of code: prop.table(twoway,1)</pre>
Hint: Go back and look at the comment line.
● The number 1 references the first variable (gender) listed in the contingency table code. ✓

The number 1 refers to the first kind of question we typically ask of a contingency table.
The number 1 refers to the fact that we typically code gender as (0,1) for (male,female).
Click here for a video explanation of how to answer this question.
You have used 1 of 1 submissions
(1/1 point) 5) Suppose we ran the following code to find conditional probabilities. What error has caused the prop.table function to not work? (You may want to examine the dataset in R for help.)
acl <- AustinCityLimits
<pre>View(acl) gender_grammy <- table(acl\$Gender, acl\$Grammy)</pre>
<pre>prop.table(acl\$Gender, acl\$Grammy, 1)</pre>
<pre>Error in prop.table(acl\$Gender, acl\$Grammy, 1) : unused argument (1)</pre>
The prop.table function needs a table as an argument.
There is no "Gender" variable in our dataset.
The "Grammy" variable in our dataset is not capitalized.
We have used two quantitative variables instead of categorical variables.
Click here for a video explanation of how to answer this question.

You have used 1 of 1 submissions

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

