A pseudo-associated order

Daniel Miller

November 12, 2012

This note is essentially an explication of the arguments in the first section of Bondarko's paper [Bon00].

1 Duality for group algebras

Let k be a commutative ring, Γ a finite group. We can consider the group algebra $k[\Gamma]$ as a Hopf algebra in the usual way. The dual of $k[\Gamma]$ is spanned as a k-module by the functionals $\hat{\sigma}(\tau) = \delta_{\sigma\tau}$. Instead of using different notation for $k[\Gamma]$ and its dual, we will use the * to denote the product in the dual of $k[\Gamma]$. In other words,

$$\left(\sum a_{\sigma}\sigma\right)*\left(\sum b_{\sigma}\sigma\right) = \sum a_{\sigma}b_{\sigma}\sigma.$$

For the rest of this note, the *standard situation* consists of a Dedekind domain \mathfrak{o} with field of fractions k, along with a finite Galois extension K/k. Put $\Gamma = \operatorname{Gal}(K/k)$, and write \mathfrak{O} for the integral closure of \mathfrak{o} in K. For fractional ideals $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{O}$, put

$$\mathfrak{A}(\mathfrak{a},\mathfrak{b})=\{f\in k[\Gamma]:f\mathfrak{a}\subset\mathfrak{b}\}.$$

Write $\mathfrak{A} = \mathfrak{A}(\mathfrak{O}, \mathfrak{O})$. Note that \mathfrak{A} is not, in general, closed under the multiplication *. We will define an \mathfrak{o} -subalgebra $Q \subset k[\Gamma]$ that is closed under *, and show that in certain instances, Q is monogenic under *, and gives an easily computable \mathfrak{o} -basis for \mathfrak{A} .

2 General nonsense with projectives

As before, let k be an arbitrary commutative ring. If E is a k-module, write $E^{\vee} = \text{hom}_k(E, k)$. If E, F are finitely generated projective k-modules, there is a natural isomorphism

$$E^{\vee} \otimes F \xrightarrow{\sim} \text{hom}(E, F) \qquad f \otimes x \mapsto f(-)x.$$

Return to the standard situation. There is a natural isomorphism $K[\Gamma] \to \hom_k(K, K)$. For fractional ideals $\mathfrak{a}, \mathfrak{b} \subset K$ put

$$\mathfrak{C}(\mathfrak{a},\mathfrak{b}) = \hom_{\mathfrak{a}}(\mathfrak{a},\mathfrak{b}) = \{ f \in K[\Gamma] : f\mathfrak{a} \subset \mathfrak{b} \}.$$

If $\mathfrak{a} \subset K$ is a fractional ideal, we may identify \mathfrak{a}^{\vee} with $\mathfrak{a}^* := \{x \in K : \operatorname{tr}(x\mathfrak{a}) \subset \mathfrak{o}\}$ via

$$\mathfrak{a}^* \to \mathfrak{a}^{\vee} \qquad x \mapsto \operatorname{tr}(x-).$$

In light of the above identifications, we have the following isomorphism of \mathfrak{o} -modules:

$$\mathfrak{a}^* \otimes \mathfrak{b} \xrightarrow{\sim} \mathfrak{a}^{\vee} \otimes \mathfrak{b} \xrightarrow{\sim} \hom_{\mathfrak{o}}(\mathfrak{a}, \mathfrak{b}) = \mathfrak{C}(\mathfrak{a}, \mathfrak{b}) \qquad x \otimes y \mapsto \sum \sigma(x) y \sigma.$$

This suggests we define a map

$$\phi: K \otimes K \to K[\Gamma]$$
 $x \otimes y \mapsto \sum \sigma(x)y\sigma$.

It is well-known that if we give $K[\Gamma]$ the multiplication *, then ϕ is an isomorphism of k-algebras. Write $\mathfrak{D}^{-1} = \mathfrak{D}^*$ for the inverse different of the extension K/k.

Definition 2.1. $Q = \mathfrak{C}(\mathfrak{D}^{-1}, \mathfrak{O}) \cap k[\Gamma]$.

Since $Q = \mathfrak{O} \otimes \mathfrak{O}$ as a subset of $K \otimes K$, it is closed under *.

3 Local fields

We remain in the standard situation, and moreover assume that K/k is a totally ramified extension of local fields. Write \mathfrak{p} (resp. \mathfrak{P}) for the maximal ideal of \mathfrak{o} (resp. \mathfrak{D}). We also assume that $\mathfrak{D} = \delta \mathfrak{D}$ for some $\delta \in k$. We call such extensions *perfectly ramified*. In this case, one has $Q = \delta \mathfrak{A}$. As a result, \mathfrak{D} is free over \mathfrak{A} if and only if $\mathfrak{D} = Qx$ for some $x \in \mathfrak{D}^{-1}$.

For the moment, we drop the assumption that K/k is perfectly ramified (but still assume it is totally ramified). Let n = [K : k] and let v be the normalized valuation on K. Put $d = v(\mathfrak{D})$ and r = n - d - 1.

Theorem 3.1. If v(a) = r, then $\operatorname{tr} a \in \mathfrak{o}^{\times}$.

Proof. Let $\pi \in K$ be a uniformizer, $f \in \mathfrak{o}[X]$ its minimal polynomial. It is well-known that $d = v(f'(\pi))$. So, if we let $x = \pi^{n-1}/f'(\pi)$, then v(x) = n - d - 1, and by a theorem of Euler, $\operatorname{tr} x = 1$. If v(y) = v(x), then $y = \varepsilon x + z$, where $\varepsilon \in \mathfrak{o}^{\times}$ and v(z) > 0. Then $v(\operatorname{tr} z) > 0$, so $\operatorname{tr} y = \varepsilon + \operatorname{tr} z \in \mathfrak{o}^{\times}$.

Theorem 3.2. Let $\alpha = 1 \otimes x + \sum x_i \otimes y_i \in \mathfrak{O} \otimes \mathfrak{O}$ with v(x) < n and $v(x_i) > 0$. If v(a) = r, then $v(\phi(\alpha)(a)) = v(x)$.

Proof. Consider the following computation, where π_0 is a uniformizer in \mathfrak{o} :

$$\phi(\alpha)(a) = x \operatorname{tr}(a) + \sum \operatorname{tr}(x_i a) y_i$$
$$= x \operatorname{tr}(a) + \sum \pi_0 y_i \operatorname{tr}\left(\frac{x_i a}{\pi_0}\right).$$

Since v(a) = r, the arguments of the trace on the right have valuation at least -d, so the sum on the right has valuation > n, whence the result.

In particular, if tr a=1, then $\phi(\alpha)(a) \equiv x \pmod{\mathfrak{P}^e}$, where $e=v(\mathfrak{p})$ is the index of ramification.

Theorem 3.3. Let $f, g \in Q$ and v(a) = r. If v(f(a)) = i, v(g(a)) = j and i, j, i + j < n, then v((f * g)(a)) = i + j.

Proof. Write $f = \phi(\alpha)$, $g = \phi(\beta)$ where $\alpha = 1 \otimes x + \sum x_i \otimes y_i$ and $\beta = 1 \times u + \sum u_j \otimes v_j$ as in Theorem 3.2. Then v(x) = i and v(y) = j. We have

$$f * g = \phi(\alpha\beta) = 1 \otimes ux + \sum x_i u_j \otimes y_i v_j.$$

By Theorem 3.2, it follows that (f * g)(a) has valuation v(ux) = i + j.

As a matter of fact, note that if $\operatorname{tr} a = 1$, then $(f * g)(a) \equiv f(a)g(a) \pmod{\mathfrak{P}^e}$.

For $f \in K[\Gamma]$, define $f^{*0} = \text{tr}$, and $f^{*(i+1)} = f * f^{*i}$. If $f \in Q$, then $f^{*i} \in Q$ for all i. Suppose v(f(a)) = 1 for some a with v(a) = r. Then by Theorem 3.3, $f^{*i}(a)$ has valuation i for all $0 \le i < n$. Thus $\{f^{*0}(a), \ldots, f^{*(n-1)}(a)\}$ is an \mathfrak{o} -basis for \mathfrak{O} .

Theorem 3.4. If v(a) = r and f(a) is a uniformizer, then $\{f^{*0}, \ldots, f^{*(n-1)}\}$ is an \mathfrak{o} -basis for Q.

Proof. First note that the f^{*i} form a k-basis for $K[\Gamma]$. Moreover, for $g \in k[\Gamma]$, g = 0 if and only if g(a) = 0. Indeed, writing $g = \sum a_i f^{*i}$, we get $g(a) = \sum a_i f^{*i}(a)$. The ith term on the right has valuation $i \pmod n$, so the only way g(a) can be zero is for each $a_i = 0$. Thus if $g \in Q$, then we have $g(a) = a_i f^{*i}(a)$ for some $a_i \in \mathfrak{o}$ for each $0 \le i < n$. It follows that $g - \sum a_i f^{*i}$ kills a, whence $g = \sum a_i f^{*i}$.

4 Back to the associated order

Suppose K/k is perfectly ramified, that is $\mathfrak{D} = \mathfrak{D}\delta$ for $\delta \in k$. Then $\mathfrak{A} = \delta^{-1}Q$. So, if there exists $f \in Q$ such that f(a) is prime for some a with v(a) = r, we have $\mathfrak{A} \cdot a = \mathfrak{D}$, and $\{\delta^{-1}f^{*i}\}$ forms an \mathfrak{o} -basis for \mathfrak{A} .

Theorem 4.1. \mathfrak{A} is Hopf if and only if $\Delta(\delta^{-1} \operatorname{tr}) \in \mathfrak{A} \otimes \mathfrak{A}$.

Proof. Since Δ is k-linear, it suffices to prove that $\Delta(Q) \subset \mathfrak{A} \otimes Q$ if and only if $\Delta(\operatorname{tr}) \in \mathfrak{A} \otimes Q$. In fact, this always holds (even if K/k is not perfectly ramified). One implication is obvious. To prove the other, we show that for $f \in k[\Gamma]$, we have

$$\Delta(f) = (f \otimes \operatorname{tr}) * \Delta(\operatorname{tr}).$$

Indeed, writing $f = \sum a_{\sigma} \sigma$, we compute

$$\Delta(f) = \sum a_{\sigma} \sigma \otimes \sigma$$

$$= \left(\sum_{a,\tau} a_{\sigma} \sigma \otimes \tau\right) * \left(\sum_{\gamma} \gamma \otimes \gamma\right)$$

$$= (f \otimes \operatorname{tr}) * \Delta(\operatorname{tr}).$$

Since $\Delta(\operatorname{tr}) \in \mathfrak{A} \otimes Q$ and $(Q \otimes Q)(\mathfrak{A} \otimes Q) \subset \mathfrak{A} \otimes Q$, the result follows.

5 Functoriality

Finally, we show that Q is functorial in K. Let K'/K be a finite Galois extension, $\Gamma' = \operatorname{Gal}(K'/K)$, and $G = \operatorname{Gal}(K'/k)$. There is an obvious functorial surjection $\Gamma' \to \Gamma$. This extends to a (functorial) map of k-Hopf algebras $k[\Gamma'] \to k[\Gamma]$. It induces an injection $\rho : k[\Gamma]^{\vee} \to k[\Gamma']^{\vee}$, via

$$\rho(\sigma) = \sum_{\tau \mapsto \sigma} \tau.$$

One can easily check that if $f \in Q_K$, then $\rho(f) \in Q_{K'}$. Since the maps $\Gamma' \to \Gamma$ are functorial, so are the ρ . To conclude, Q defines a functor from the category of finite Galois extensions of k to the category of \mathfrak{o} -algebras.

References

[Bon00] Mikhail Bondarko. "Local Leopoldt's problem for rings of integers in abelian p-extensions of complete discrete valuation fields". In: Doc. Math. 5 (2000), 657–693 (electronic).