ZAVRŠNI ISPIT IZ VJEROJATNOSTI I STATISTIKE

16.06.2011.

1. (5 bodova)

a) Dokažite da za nenegativnu neprekinutu slučajnu varijablu X i $\varepsilon>0$ vrijedi nejednakost Markova

$$P(X \ge \varepsilon) \le \frac{E(X)}{\varepsilon}.$$

b) Sto brojeva zaokruženo je na najbliži cijeli broj i potom zbrojeno. Ako su greške zaokruživanja nezavisne slučajne varijable jednoliko distribuirane na [-0.5, 0.5], izračunajte interval unutar kojeg se s vjerojatnošću 0.95 nalazi pogreška zbroja učinjena zbog zaokruživanja pribrojnika. (Disperzija jednolike razdiobe X na [-0.5, 0.5] je D(X) = 1/12.)

2. (**3** boda)

Uzorak x_1, x_2, \ldots, x_n izvučen je iz populacije koja ima gustoću razdiobe

$$f(x) = \lambda x^{\lambda - 1}, \quad x \in \langle 0, 1 \rangle.$$

Koristeći kriterij najveće izglednosti, odredite procjenu za parametar λ .

3. (4 boda)

- a) Definirajte kvantil reda p, za $p \in (0,1)$ i funkciju razdiobe F.
- b) Koristeći tablicu 4. za kvantile normalne razdiobe izračunajte u_p za p=0.2.
- c) Izračunajte kvantil u_p za p = 0.813 koristeći isključivo tablicu 1. jedinične normalne razdiobe (za funkciju Φ^*).

4. (4 boda)

Izmjerena je visina 120 djece određene dobi i dobiveno je $\overline{x}=152$ cm, $\widehat{s}=8.1$ cm. Visina od 150 cm prosječna je za djecu te dobi. Uz nivo značajnosti $\alpha=0.05$ testirajte hipotezu $H_0...a=150$ prema alternativnoj hipotezi $H_1...a>150$, pri čemu se pretpostavlja da je promatrana visina X slučajna varijabla s normalnom razdiobom $\mathcal{N}(a,\sigma^2)$, uz σ^2 nepoznat.

5. (**5** bodova)

Svi studenti druge godine na FERu polažu izvjesan predmet. Dio ispita je ispravljen: od 97 studenata položilo je njih 69, a palo 28.

- a) Odredite 90%-tni interval za postotak prolaznosti na tom predmetu.
- **b)** Uz koji nivo značajnosti α možemo tvrditi da na ovom predmetu imamo bolonjsku prolaznost od 75%?

6. (4 boda)

U dvije male trgovine istog lanca, prodaje se čokolada " π ". Prodaja je evidentirana tijekom jednog tjedna:

trgovina A	12	9	10	8	7	13	11
trgovina B	10	8	9	7	12	10	7

Pretpostavljamo da su ovi uzorci nezavisni s normalnom razdiobom uz jednaku disperziju čiji iznos nije poznat. Može li se uz nivo značajnosti $\alpha=0.1$ na temelju ovih podataka zaključiti da se prosječna dnevna prodaja čokolade " π " razlikuje u ovim trgovinama?

PITANJA IZ CJELOKUPNOG GRADIVA

7. (4 boda)

Kocka je bačena 7 puta. Izračunajte vjerojatnost da je:

- a) šestica dobivena tek u 7. bacanju,
- b) šestica dobivena barem jednom,
- c) šestica dobivena točno jednom.

Koliki je očekivani broj šestica?

8. (4 boda)

Odredite vrijednosti parametara C i D tako da funkcija

$$F(x) = Cx^2 + D, \quad x \in [0, 1]$$

bude funkcija razdiobe neke slučajne varijable koja poprima vrijednosti na intervalu [0,1]. Za te C i D odredite očekivanje te slučajne varijable kao i vjerojatnost $P\left(0.5 < X < 2\right)$.

9. (3 boda)

Definirajte eksponencijalnu razdiobu i izvedite njeno očekivanje E(X).

10. (4 boda)

Uzastopnim ponavljanjem nekog pokusa dobivene su sljedeće vrijednosti neprekinute slučajne varijable X (svrstane u intervale):

[a,b]	0 - 25	25 - 50	50 - 75	75 - 100
n_j	87	46	14	3

Pomoću χ^2 testa provjerite ravnaju li se dobiveni rezultati po eksponencijalnoj razdiobi uz nivo značajnosti 5%.

Ispit se piše 150 minuta. Dozvoljena je upotreba kalkulatora i statističkih formula i tablica.

RJEŠENJA ZAVRŠNOG ISPITA IZ VJEROJATNOSTI I STATISTIKE 16.06.2011.

1.

a)
$$P(X \ge \varepsilon) = \int_{\varepsilon}^{\infty} f(x) dx \le \int_{\varepsilon}^{\infty} \frac{x}{\varepsilon} f(x) dx \le \frac{1}{\varepsilon} \int_{0}^{\infty} x f(x) dx = \frac{E(X)}{\varepsilon}$$

b)
$$\frac{\sum_{i=1}^{100} X_i}{\sqrt{\frac{100}{12}}} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1), P\left(\left|\sum_{i=1}^{100} X_i\right| < t\right) = 0.95 \implies t = 5.658$$

2.

$$\lambda = \frac{-n}{\sum_{i=1}^{n} \ln x_i}$$

3.

b)
$$u_{0.2} = -0.84162$$
, **c)** $u_{0.813} = 0.889$

4.

$$\hat{t} = 2.705, \quad t_{120,0.95} = 1.658, \ \ H_0$$
 se odbacuje

5.

a)
$$\langle 0.633, 0.783 \rangle$$

b) $H_0..p = 0.75, \ H_1..p < 0.75, \ \hat{u} = -0.879 \implies \alpha = 18\%$

6.

$$\begin{split} \overline{x} &= 10, \ \overline{y} = 9 \\ s_X^2 &= \frac{28}{6}, \ s_Y^2 = \frac{20}{6}, \ s_Z^2 = 4 \\ \widehat{t} &= 0.935, t_{12,0.95} = 1.782, \ H_0 \text{ se prihvaća} \end{split}$$

7.

a)
$$\left(\frac{5}{6}\right)^{6} \left(\frac{1}{6}\right)$$
, **b)** $1 - \left(\frac{5}{6}\right)^{7}$, **c)** $7 \left(\frac{5}{6}\right)^{6} \left(\frac{1}{6}\right)$, $E(X) = \frac{7}{6}$

8.

$$C = 1, D = 0, P \{0.5 < X < 2\} = \frac{3}{4}, E(X) = \frac{2}{3}$$

9.

10.

$$\chi_q^2=3.548,\,\chi_{1,0.95}^2=3.841,$$
ravnaju se po eksp.
razdiobi uz $\alpha=5\%$