• 1): $S \rightarrow SS+$ 2): $S \rightarrow SS*$ 3): $S \rightarrow a$

According to the grammar of 4.2.1, answer the following questions:

- Augment the grammar and construct the DFA of LR(0) items for the augmented grammar.
- Is this augmented grammar the LR(0) or SLR(1) grammar? Give your reason.
- Construct the SLR(1) parsing table.
- Show the parsing stack and the action of the parser for the input token string "aa+a*\$".

- LR(0) DFA
 - 扩充文法 (argument grammar)

G: G':
$$S \rightarrow SS+|SS*|a$$
 $S' \rightarrow S$ $S \rightarrow SS+|SS*|a$

• LR(0) DFA G': S'→S S→SS+|SS*|a


```
G':
• LR(0) DFA S'→S
S→SS+|SS*|a
```

```
I_0
S' \rightarrow \cdot S
S \rightarrow \cdot SS + S
S \rightarrow \cdot SS^*
S \rightarrow \cdot a
```


• LR(0) DFA $S' \rightarrow S$ $S \rightarrow SS + |SS^*|a$ $S \rightarrow S + |SS^*|a$

S**→·**SS*

 $S \rightarrow \cdot a$

S**→**•a

a

 $S \rightarrow a \cdot$

- The Main Idea of SRL(1)
 - It consults the input token before a shift to make sure that an appropriate DFA transition exists
 - It uses the Follow set of a nonterminal to decide if a reduction should be preformed.

• For item A→r•, reduction only takes place when the next token a

 \in FOLLOW(A)

G':

 $(0) S' \rightarrow S$

(1) S \rightarrow SS+

 $(2) S \rightarrow SS^*$

(3) S \rightarrow a

	FOLLOW		
S'	\$		
S	\$,+,*,a		

For state I₁

•If the next token is '\$', then reduce

•If the next token is 'a', then shift Conflict can be solved. So it is SLR(1) grammar.

Construction of SLR(1) Parse Table

Given a grammar G, we augment G to produce G'

- 1. Construct DFA of sets of LR(0) items
- 2. The ACTION section for state K is determined as follows:
 - a) If $A \rightarrow a \cdot a\beta \in K$, $a \in V_T$, and goto(K,a) = J, then set $ACTION[K,a] = 'S_J$ '
 - b) If $A \rightarrow a \cdot \in K$, and the number of $A \rightarrow a$ is j, then set $ACTION[K,b]=R_i$ for each $b \in Follow(A)$
 - c) If $S' \rightarrow S \in K$, then set ACTION[K, \$] = `acc'
- 3. The GOTO section for state K is constructed for all nonterminals using the rule: If $A \rightarrow a \cdot B \beta \in K$, $B \in V_N$, and goto(K,B)=J, then set GOTO[K,B]='J'

 I_3 s→ss·+ 5'→S. S I₀ <u>s</u>'→·s s→s·s+ s→ss·* s→s·s* s→·ss+ s**→**s•s+ s**→·**ss* s→·ss+ s**→**s·s* s→·ss* S**→·**a s>·ss+ S→·a s**→·**ss* а S**→**•a I_2 a S→a∙

s→ss+·

s→ss*·

SLR(1) Parsing table

G':

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow SS+$$

$$(2) S \rightarrow SS^*$$

	FOLLOW		
S'	\$		
S	\$,+,*,a		

	Action				Goto
	а	+	*	\$	S
0	s2				1
1	s2			acc	3
2	r3	r3	r3	r3	
3	s2	s4	s5		3
4	r1	r1	r1	r1	
5	r2	r2	r2	r2	
					10

	Action			Goto	
	а	+	*	\$	S
0	s2				1
1	52			acc	3
2	r3	r3	r3	r3	
3	s2	s4	s5		3
4	r1	r1	r1	r1	
5	r2	r2	r2	r2	

• SLR(1) 分析过程模拟

G'

 $(0) S' \rightarrow S$

 $(1) S \rightarrow SS+$

 $(2) S \rightarrow SS^*$

 $(3) S \rightarrow a$

Step	Stack	Input	Action	Goto
1	\$0	aa+a* \$	s2	
2	\$0a2	a+a* \$	r3	1
3	\$0S1	a+a* \$	s2	
4	\$0S1a2	+a* \$	r3	3
5	\$0S1S3	+a* \$	s4	
6	\$0S1S3+4	a* \$	r1	1
7	\$0S1	a* \$	s2	4.4

Goto Action \$ S s2 1 3 acc r3 r3 r3 r3 3 s2 **s**5 s4 3 r1 r2 r2 r2

• SLR(1) 分析过程模拟

Step	Stack	Input	Action	Goto
8	\$0S1a2	* \$	r3	3
9	\$0S1S3	* \$	s5	
10	\$0S1S3*5	\$	r2	1
11	\$0S1	\$	acc	

