void flipStack2 (StackOfT& s)	Name:	
//! updates s //! requires s = 2	Name:	
//! ensures s = #s[1,2) * #s[0,1)	One CM:	

Reasoning Table for flipStack2

S	Code	Assume	Confirm
0		s0 = 2	true
	T y; StackOfT t;		/ / / / / /
1		T.Init(y1) ^ t1 = <> ^ s1 = s0	s1 /= <>
	s.pop(y)		/ / / / / /
2		<pre><y2> is prefix of s1 ^ s2 = s1[1, s1) ^ t2 = t1</y2></pre>	true
	t.push(y);		/ / / / / /
3		t3 = <y2> * t2 ^ s3 = s2 ^ T.Init(y3)</y2>	s3 /= <>
	s.pop(y)		/ / / / / /
4		<pre><y4> is prefix of s3 ^ s4 = s3[1, s3) ^ t4 = t3</y4></pre>	true
	t.push(y)		/ / / / / /
5		t5 = <y4> * t4 ^ s5 = s4 ^ T.Init(y5)</y4>	true
	s.transferFrom(t);		/ / / / / /
6		s6 = t5 ^ t6 = <> ^ y6 = y5	s6 = s0[1,2) * s0[0,1)

VC1:	$ s0 = 2 ^ T.Init(y1) ^ t1 = <> ^ s1 = s0 \rightarrow s1 /= <$
VC3:	$ s0 = 2 ^ T.Init(y1) ^ t1 = <> ^ s1 = s0 ^ is prefix of s1 ^ s2 = s1[1, s1) ^ t2 = t1 ^ t3 = * t2 ^ s3 = s2 ^ T.Init(y3) \rightarrow s3 /= <>$
VC6:	$ s0 = 2 ^ T.Init(y1) ^ t1 = <> ^ s1 = s0 ^ is prefix of s1 ^ s2 = s1[1, s1) ^ t2 = t1 ^ t3 = * t2 ^ s3 = s2 ^ T.Init(y3) ^ is prefix of s3 ^ s4 = s3[1, s3) ^ t4 = t3 ^ t5 = * t4 ^ s5 = s4 ^ T.Init(y5) ^ s6 = t5 ^ t6 = <> ^ y6 = y5 \rightarrow s6 = s0[1,2) * s0[0,1)$

Steps:

- 1. Assume all the *premises* on the lhs of → are true
- 2. Use the premises from the lhs to show that the *conclusion* on the rhs cannot be false
- The proof goes through if the conclusion is shown to be true
- The proof fails if the conclusion cannot be shown to be true

To do: Prove VC6

Direct Proof of VC6

Steps:

- 1) Assume all of VC6's premises are true
- 2) Show that the equality in VC6's conclusion holds utilizing its premises

Start with the VC6's conclusion (i.e., the rhs of VC6)

Do a backwards sweep starting with s6 using VC6's premises to make transformations to s6

```
1. s6 = s0[1,2) * s0[0,1)
2. t5 = s0[1,2) * s0[0,1)
                                                                   Conclusion #0
                                                                   Substitution using #1
    3. <y4> * t4 = s0[1,2) * s0[0,1)
                                                                   Substitution using #2
    4. < y4 > * t3 = s0[1,2) * s0[0,1)
                                                                   Substitution using #3
    5. \sqrt{4} * \sqrt{2} * t2 = s0[1,2) * s0[0,1)
                                                                 Substitution using #4
    6. \langle y4 \rangle * \langle y2 \rangle * t1 = s0[1,2) * s0[0,1)
                                                                 Substitution using #5
                                                                Substitution using #6
Concatenation identity
    7. \langle y4 \rangle * \langle y2 \rangle * \langle \rangle = s0[1,2) * s0[0,1)
    8. \langle y4 \rangle * \langle y2 \rangle = s0[1,2) * s0[0,1)
                                                              Lemma #1 and Lemma #2 (below)
    9. s0[1,2) * s0[0,1) = s0[1,2) * s0[0,1)
Lemma 1:
    1. <y2> is prefix of s1
                                                                   Premise #10
    2. \langle y2 \rangle is prefix of s0
                                                                   Substitution using #7
    3. \langle y2 \rangle = s0[0,1)
                                                                   Definition of prefix
Lemma 2:
    1. <y4> is prefix of s3
                                                                   Premise #11
    2. \langle y4 \rangle is prefix of s2
                                                                   Substitution using #8
    3. <y4> is prefix of s1[1,|s1|)
                                                                   Substitution using #9
    4. \langle y4 \rangle = s1[1, |s1|)[0, 1)
                                                                   Definition of prefix
    5. \langle y4 \rangle = s0[1, |s0|)[0, 1)
                                                                   Substitution using #7
    6. \langle y4 \rangle = s0[1,2)
                                                                   Application of Concise Notation
```