

	**	
	清华大学本科生考试试题专用纸	
(A	卷) 考试课程: 微积分(1) 考试时间: 2004年 1月:	3 日
	班号: 学号: 姓名:	,
	(请同时在答题纸上填好上面的内容)	
、	选择题(共 20 分,直接答在题干后的括号中)	
1.	岩 $f(2) = 0$, $f'(2) = 1$,则 $\lim_{t \to 0} \frac{f(2\cos t)}{t^2} = [$] 了	46
	A.1, B1, $C.\frac{1}{2}$, $D\frac{1}{2}$	N
2.	设 $f(x)$ 存在二阶导数, $f(x)$ 在点 $x_0 = 0$ 的二阶泰勒多项式为 $3 + x_0 - 2x^2$; 则表	百数
	$f(1-\cos x)$ 在点 $x_0 = 0$ 的二阶泰勒多项式为 []	()-
	A. $3+2x$. B. $3-2x^2$. C. $3+\frac{1}{2}x^2$. D. $-2x-2x^2$.	7000
3.	设 $f \in C[0,1]$, $f(x) \ge 0$. $I_1 = \int_0^1 f(x) dx$, $I_2 = \frac{1}{3} \int_0^1 f(x^3) dx$ $I_3 = 3 \int_0^1 f(x^3) dx$,则[Bj
	$A. I_1 \leq I_2 \leq I_3$, $B. I_2 \leq I_1 \leq I_3$, $C. I_3 \leq I_2 \leq I_1$, $D. I_3 \leq I_1 \leq I_2$.	
4.	设 $\int f(x)dx = x^2 + C$,则 $\int x f(\sqrt{1-x^2})dx = [$] $-\frac{2}{3}(1-x^2)^{\frac{3}{2}}$	172
	$A \cdot \frac{1}{2}(x^2-1)+C$, $B \cdot \frac{1}{2}(1-x^2)+C$, $A \cdot \frac{1}{2}(1-x^2)+C$	
	$C.\frac{1}{3}(x^2-1)^{\frac{3}{2}}+C$, $D\frac{1}{3}(x^2-1)^{\frac{3}{2}}+C$	n
5.	$f(x) = \int_0^x \left(\int_0^x \frac{u^2 - 1}{1 + e^u} du \right) dt, 则 f(x) 的下凸区间是 [$	
·	$A.(-\infty,-1]$, $B.[1,+\infty)$, $C.[-1,1]$, $D.(-\infty,-1]\cup[1,+\infty)$.	
	-填空题(共 20 分,直接答在题干后的括号中)	
1	假设曲线 $y=y^3$ 3× 比直线 $y=a$ 在三个交易 删定数 a 的取债费用具 $(-1, -1, -1)$	

2. $\int \frac{\ln x}{\sqrt{x}} dx = (2x \ln x - 4x + 1)$

3. 设函数
$$y = y(x)$$
 连续, 并且满足方程 $y(x) = -x + \int_0^{2x} y(\frac{t}{2}) dt$, 则 $y(x) = (\frac{1}{2} + Ce^{2x})$

设D 是曲线 $y = \cos x (0 \le x \le \pi)$,直线 $x = 0, x = \pi$ 以及x 轴围成的区域,则区域D 经x**轴旋转一周所得到的旋转体的体积等于(**

5. 微分方程
$$\frac{dy}{dx} = y^2 e^{-2x}$$
 满足 $y(0) = 1$ 的特解是 $y = (2e^{2x})$ 上 《 上 》 上 》 上 e^{2x} 上 《 上 》 上 e^{2x} 》 上 《 上 》 上 e^{2x} 》 上 《 上 》 上 e^{2x} 》 上 e

计算以下各题(共20分)

(1) 求
$$\int \arctan \frac{1}{x} dx$$
 $\times \Delta x \cot \Delta x + \frac{1}{2} \ln(HX^2) + C$

(2) 计算
$$\int_{1}^{1} \frac{x^2 - \sin x}{\sqrt{4 - x^2}} dx$$
 $\int_{1}^{2} \sqrt{3} + \int_{2}^{2} \sqrt{3} + \int_{3}^{2} \sqrt{3} + \int_{3}^{$

2. (10 分)
$$f(x) = \int_{1}^{x^{2}} e^{-t^{2}} dt$$
, 计算 $\int_{0}^{t} x f(x) dx$. $\frac{1}{4e} - \frac{1}{4}$

$$\checkmark$$
 (10 分) 求方程(1+x)y"+y'=ln(x+1)(x>-1)满足y(0)=1,y'(0)=-1的解.

- (10 分) 某水坝的闸门是一个竖直向下的直角三角形板, 该直角三角形闸门的三个顶点, 为 A,B,C, 斜边 BC 的长度等于常数 a (a>0). 用 θ 表示其中一个锐角 $\angle ABC$. 设 该闸 门完全浸入水中,并且直角边 AB 与水面重合.
 - $T=\int a^3 \sin^3\theta \cdot ds \theta = 0$ (1) 假设水的密度为 ρ , 重力加速度为g. 试将该闸门受到的水压力表示为 θ 的函数;
 - (2) 当 θ 等于多大时,三角形闸门受到的压力最大?

四、证明题(共10分)

设 f(x) 在 [a,b] 存在二阶导数。 f'(x), f'(x) 在 [a,b] 有界。 陛 $|\uparrow \bowtie \rangle = M$

$$\frac{1}{1} x = \frac{1}{1} \frac{1}{1} x = \frac{1}{1} \frac{1$$