

Биполярни Транзистори

Основни свойства

Транзисторът е активен полупроводников елемент. Той позволява с много малък входен сигнал да се управлява значително по-голям по амплитуда и мощност изходен сигнал.

Биполярният транзистор е полупроводников елемент, предназначен за усилване, управление и генериране на електрически сигнали.

Структура на транзистора

Обратният ток през p-n прехода зависи от генерирането на двойки електрон-дупка, но не и от приложеното напрежение.

Възможно ли е инжектиране на неосновни токоносители в близост до прехода електрически вместо оптически?

Ако е така, бихме могли да контролираме обратния ток на прехода просто чрез промяна скоростта на инжектиране на неосновни носители.

Структура на транзистора

Биполяният транзистор има три области: емитер, база, и колектор, които формират два p-n прехода: емитер-база и база-колектор.

Емитерът е силно легиран и инжектира токоносители.

Базата управлява потока на токоносители. Тя е слабо легирана и е много тънка.

Колекторът събира токоносителите преминали през базата.

Вследствие на дифузията на свободни токоносители, в p-n преходите се образуват обеднени област с бариерен потенциал от около 0.7V при 25°C за Si.

Типове и символи

Съществуват два типа транзистори - *NPN* и *PNP*. Те имат един и същ принцип на действие, но се различават по поляритет на приложените напрежения на преходите и по посока на токовете.

Фигурата илюстрира схемните означения на транзисторите и връзката между електродите и структурата на транзистора. Стрелката върху емитера показва посоката на тока през елемента.

Режими на работа на транзистора

Според поляритета на напреженията, приложени към *p-n* преходите, се различават четири режима на работа:

Активен режим

- емитерен преход право включване
- колекторен преход обратно включване

Режим на отсечка

- емитерен преход обратно включване
- колекторен преход обратно включване

Режим на насищане

- емитерен преход право включване
- колекторен преход право включване

Инверсен

- емитерен преход обратно включване
- колекторен преход право включване

Активен режим

Биполярният транзистор нормално е запушен. За да започне да провежда ток, трябва на двата р-п прехода да се подадат постоянни напрежения.

В **активен режим** р-n преходът емитер-база е включен в права посока, а преходът база-колектор – в обратна.

За *PNP* транзистор, поляритетът на напреженията е противоположен.

Физически процеси в емитера

Ако U_{ве} е по-голям от потенциалната бариера на емитерния преход, започва явлението **инжекция**.

Тъй като емитерът е по-силно легиран от базата, инжекцията е едностранен процес и токът през прехода се състои предимно от електрони.

$$\gamma = rac{I_{En}}{I_{E}} < 1$$
 Коефициент на инжекция

Физически процеси в базата

Електроните, навлизайки в *P* базата, са неосновни токоносители там. Тъй като базата е много тънка, незначителен брой електрони **рекомбинират** с дупки в базата и **по-голяма част** от тях достигат до колекторния преход.

$$\chi = \frac{I_{Cn}}{I_{En}} < 1$$
 Коефициент на пренасяне

Физически процеси в колектора

Електроните, достигнали до колектора, се **екстрахират** от обратно включения колекторен p-n преход в областта на колектора и преминават в колекторната верига. Ако настъпи лавинен пробив те се умножават в прехода. При липса на пробив M = 1.

 $I_C = MI_{Cn}$ M – коефициент на лавинно умножение

Колекторен ток

$$I_C = M\chi\gamma I_E = \alpha I_E$$

lpha - Коефициент на предаване по ток в схема обща база

Токове в транзистора

Емитерният ток е най-големият ток, защото емитерът е източник на свободни електрони. Колекторният ток е приблизително равен на емитерния, но по-малък от него. Токът на базата е най-малък.

Схеми на включване

В зависимост от това, кой от електродите в транзистора е общ между входната, и изходната верига се различават 3 схеми на свързване – обща база (ОБ), общ емитер (ОЕ) и общ колектор (ОК).

Изход

Токове в транзистора – връзка между колекторен и емитерен ток

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E + I_{CB0} \approx \alpha I_E$$

$$\alpha \approx \frac{I_C}{I_E} < 1$$

 α - коефициент на усилване по ток за схема "обща база"

Токове в транзистора – връзка между колекторен и базов ток

 β - коефициент на усилване по ток за схема "общ емитер". Други означения: h_{21}, h_{FE}

1IN	
-----	--

_	_	_		
	л	Λ	`	,
11.1	и.	_	x	

DC Current Gain	h _{FE}		
$(I_{\rm C} = -0.1 \text{ mAdc}, V_{\rm CE} = -10 \text{ Vdc})$		75	_
$(I_{\rm C} = -1.0 \text{ mAdc}, V_{\rm CE} = -10 \text{ Vdc})$		100	_
$(I_{\rm C} = -10 \text{ mAdc}, V_{\rm CE} = -10 \text{ Vdc})$		100	_
$(I_{\rm C} = -150 \text{ mAdc}, V_{\rm CE} = -10 \text{ Vdc}) \text{ (Note 1)}$		100	300
$(I_{\rm C} = -500 \text{ mAdc}, V_{\rm CE} = -10 \text{ Vdc}) \text{ (Note 1)}$		50	-

Коефициентът на усилване по ток β се променя в широки граници при изменение на колекторния ток, температурата и при смяна на транзистора.

Kirk effect

Постоянно-токов режим

Примери

$$U_{BB} = 5V$$

 $R_B = 100k\Omega$
 $I_B = ?$

$$I_B = \frac{U_{BB} - U_{BE}}{R_B}$$

$$= \frac{5V - 0.7V}{100k\Omega}$$

$$= 4.3V \cdot 1 \times 10^{-5}A = 43\mu A$$

Примери

$$U_{CC} = 12V$$

$$R_C = 3k\Omega$$

$$I_C = 1mA$$

$$U_{CE} = ?$$

$$U_{CE} = U_{CC} - I_C R_C$$

$$= 12V - 1mA \cdot 3k\Omega$$

$$= 12V - 1 \times 10^{-3} A \cdot 3 \times 10^3 \Omega$$

$$= 12V - 3V = 9V$$

Примери

$$U_{CC} = 12V$$

$$R_C = 1, 5k\Omega$$

$$R_B = 330k\Omega$$

$$I_B = 25\mu A$$

$$\beta = 200$$

$$U_{CE} = ?$$

$$P_C = ?$$

$$U_{CE} = U_{CC} - I_{C}R_{C}$$
 $I_{C} = \beta \cdot I_{B}$
 $P_{C} = U_{CE} \cdot I_{C}$ $= 200 \cdot 25 \times 10^{-6} A$
 $= 5000 \times 10^{-6} A$
 $= 5 \times 10^{-3} A = 5mA$

$$U_{CE} = 12V - 5 \times 10^{-3} A \cdot 1, 5 \times 10^{3} \Omega$$
$$= 12V - 7, 5V = 4, 5V$$
$$P_{C} = 4, 5V \cdot 5mA = 22, 5mW$$

Волт-Амперни Характеристики

Обща База – Изходни Характеристики

$$I_C = \alpha I_E + I_{CB0} + \frac{U_{CB}}{r_C}$$
 $\alpha = f(I_E)$ $r_C = \frac{dU_{CB}}{dI_C} \Big|_{I_E = \text{const}}$

Изходно диференциално съпротивление в ОБ

Обща База – Входни Характеристики

$$I_E = f(U_{EB}) \bigg|_{U_{CB} = \text{const}}$$

$$r_{in} = \frac{dU_{EB}}{dI_E} = \frac{\Delta U_{EB}}{\Delta I_E}$$

Входно диференциално съпротивление в ОБ

Общ Емитер – Изходни Характеристики

$$I_C = f(U_{CE})$$

Отсечка ($I_B = 0$, $I_C = I_{CEO}$)

$$= f(I_C) \qquad r_C^* = \frac{dU_{CE}}{dI_C} = \frac{r_C}{1+\beta}$$

Изходно диференциално съпротивление в ОЕ

Модулиране на Широчината на Базата

С увеличаване на Uce се увеличава коефициента на усилване по ток h_{FE} Early effect

Общ Емитер – Входни Характеристики

$$I_B = f(U_{BE})$$
 $U_{CE} = \text{const}$

$$r_{in} = \frac{dU_{BE}}{dI_B} = \frac{\Delta U_{BE}}{\Delta I_B}$$

Входно диференциално съпротивление в ОЕ

Влияние на температурата

Транзисторът в схема ОЕ е по-силно зависим от температурата спрямо схема ОБ защото I_{CE0} и β се увеличават по-бързо с температурата отколкото I_{CB0} и α .

Максимално допустими параметри

Максимално допустимите параметри определят границите на токове, напрежения, мощности и други величини в транзистора, които не трябва да се надвишават, за да се гарантира надеждна експлоатация. Те се задават в каталозите от фирмите производители за всеки тип транзистор.

Тези параметри определят нивата, над които елементът се разрушава. Те не би трябвало дори да се доближават за всички режими на работа. В противен случай елементът може да не функционира нормално или да се съкрати срокът му за експлоатация.

Максимална Мощност

Мах температура на прехода T_{Cmax}

Мах мощност в колектора P_{Cmax}

$$P = U_{CE}I_{C}$$

Мощност, отделена в колекторния преход

$$P = \frac{T_C - T_a}{R_{th}}$$

Мощност, разсеяна в околната среда

$$P_{C\max} = \frac{T_{C\max} - T_a}{R_{th}}$$

Отделената мощност трябва винаги да е по-малка от P_{Cmax} . В противен случай транзисторът изгаря.

Максимална Мощност

Absolute Maximum Ratings T_C=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	1100	V
V _{CEO}	Collector-Emitter Voltage	800	٧
V _{EBO}	Emitter-Base Voltage	7	V
I _C	Collector Current (DC)	3	Α
I _{CP}	Collector Current (Pulse)	10	Α
I _B	Base Current	1.5	Α
P _C	Collector Dissipation (T _C =25°C)	50	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 55 ~ 150	°C
		-	

$$P = U_{CE}I_{C}$$

Мощност, отделена в колекторния преход

Максимална Температура

Absolute Maximum Ratings $T_C=25$ °C unless otherwise noted

Parameter	Value	Units
Collector-Base Voltage	1100	V
Collector-Emitter Voltage	800	V
Emitter-Base Voltage	7	V
Collector Current (DC)	3	Α
Collector Current (Pulse)	10	Α
Base Current	1.5	Α
Collector Dissipation (T _C =25°C)	50	W
Junction Temperature	150	°C
Storage Temperature	- 55 ~ 150	°C
	Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current (DC) Collector Current (Pulse) Base Current Collector Dissipation (T _C =25°C) Junction Temperature	Collector-Base Voltage 1100 Collector-Emitter Voltage 800 Emitter-Base Voltage 7 Collector Current (DC) 3 Collector Current (Pulse) 10 Base Current 1.5 Collector Dissipation (T _C =25°C) 50 Junction Temperature 150

$$P_{C \max(T_a)} = \frac{T_{j \max} - T_a}{R_{th(j-a)}}, \qquad P_{C \max(T_C)} = \frac{T_{j \max} - T_C}{R_{th(j-c)}}$$

Максимално допустимата мощност намалява с увеличаване на температурата.

Отвеждане на топлината

Отделената в прехода топлина се отвежда през корпуса на транзистора.

Биполярните транзистори се срещат с пластмасови или метални корпуси според разсейваната от тях мощност.

Средномощните транзистори имат метална плоча до корпуса си. При мощните корпусът е метален за по-бързото разсейване на топлината.

Топлинно съпротивление

Топлинното съпротивление R_{th} показва ефективността при отделяне на топлината от транзистора и се измерва в K/W или в ${}^{\circ}C/W$.

$$R_{th} = R_{th_{jc}} + R_{th_{ca}} \qquad R_{th_{ca}} >> R_{th_{jc}} \qquad \qquad P_{C\max} = \frac{T_{C\max} - T_{a}}{R_{th}}$$

Колкото **по-малко е топлинното съпротивление** толкова **по-голяма** е максимално допустимата мощност.

$R_{th} = R_{th_{jc}} + R_{th_{ch}} + R_{th_{ha}}$ Преход- Корпус- Радиатор- корпус радиатор околна среда

Радиатор

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θЈС	0.584	°C/W

2N5684

Максимален колекторен ток

Максималният колекторен ток I_{Cmax} показва максималният ток, който може да протече през транзистора без да се надвиши P_{Cmax} .

$$U_{CE}I_{C\max} = P_{C\max} = \frac{T_{C\max} - T_a}{R_{th}}$$

Област на безопасна работа

Figure 5. Active-Region Safe Operating Area

Ако работната точка е избрана в областта на безопасна работа, това гарантира, че по време на експлоатация няма да се надвишат максимално- допустимите параметри.

Област на безопасна работа (Safe operating area)

V_{CE}[V], COLLECTOR-EMITTER VOLTAGE

Absolute Maximum Ratings T_C=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	1100	V
V _{CEO}	Collector-Emitter Voltage	800	V
V _{EBO}	Emitter-Base Voltage	7	V
I _C	Collector Current (DC)	3	Α
I _{CP}	Collector Current (Pulse)	10	Α
I _B	Base Current	1.5	Α
P _C	Collector Dissipation (T _C =25°C)	50	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 55 ~ 150	°C

JFP5027

Област на безопасна работа (Safe operating area)

Figure 8. Power Derating

С увеличаване на температурата областта на безопасна работа се "свива".

Пробиви в транзистора

Collector-emitter breakdown voltage with base open - Това е пробивното напрежение в схема общ емитер

Collector-base breakdown voltage with emitter open - Това е пробивното напрежение в схема обща база

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc

OFF CHARACTERISTICS

Collector - Emitter Breakdown Voltage (Note 2) (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector – Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	60	-	Vdc
Emitter – Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	V _{(BR)EBO}	6.0	_	Vdc