Abstract Algebra Homework 5

Zachary Meyner

2. Prove that $\mathbb{Z} \cong n\mathbb{Z}$ for $n \neq 0$.

Proof. Let $\varphi : \mathbb{Z} \to n\mathbb{Z}$ with $n \neq 0$, and $\varphi(x) = nx$.

One-to-one:

Let $a, b \in \mathbb{Z}$ with $\varphi(a) = \varphi(b)$. Then

$$na = nb$$
$$\Rightarrow a = b$$

so φ is one-to-one.

Onto:

Let $x \in n\mathbb{Z}$ and consider

$$y = \frac{x}{n}$$
$$\varphi(y) = n\frac{x}{n}$$
$$\varphi(y) = x$$

so $y \in \mathbb{Z}$ because $x \in n\mathbb{Z}$, and φ is onto.

Preserves Operation:

Let $a, b \in \mathbb{Z}$, then

$$\varphi(a+b) = n(a+b)$$

$$= na + nb$$

$$= \varphi(a) + \varphi(b)$$

so φ preserves operation.

26. Let $\varphi: G \to H$ be a group isomorphism. Show that $\varphi(x) = e_H$ iff $x = e_G$, where e_G and e_H are the identities of G and H, respectively.

Proof. (\Rightarrow) Let $x \in G$ s.t. $\varphi(x) = e_H$. Then

$$\varphi(x)\varphi^{-1}(x) = e_H(e_H)^{-1} = e_H$$
$$\varphi(xx^{-1}) = \varphi(e_G) = e_H$$
$$\varphi(x) = e_H$$

1

thus $x = e_G$.

 (\Leftarrow) Let $x = e_G$ and $h = \varphi(g) \in H$, then

$$h\varphi(x) = \varphi(g)\varphi(x)$$

$$= \varphi(gx)$$

$$= \varphi(ge_G)$$

$$= \varphi(g)$$

$$= h$$

$$= \varphi(e_Gg)$$

$$= \varphi(x)\varphi(g)$$

$$= \varphi(x)h$$

So by definition of identity $\varphi(x) = e_H$.