ZERO-INFLATED POISSON GENERALIZED LINEAR

MIXED MODEL FOR COUNT DATA

Brian M. Brost

06 April 2016

Description

A zero-inflated generalized linear mixed model with varying coefficients for grouped count data.

Implementation

The file zi.poisson.varying.coef.sim.R simulates data according to the model statement presented below, and zi.poisson.varying.coef.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let z_{ij} , for i = 1, ..., N and $j = 1, ..., n_i$, denote observed count data (i.e., z_{ij} are integers greater than or equal to 0), where the index j denotes replicate observations (level-1 units) within group i (level-2 units), and n_i is the number of observations in group i. Furthermore, let \mathbf{x}_{ij} be a vector of p covariates (including the intercept) associated with y_{ij} and $\boldsymbol{\beta}_i$ be the corresponding vector of coefficients for group i.

$$y_{ij} \sim \begin{cases} \operatorname{Pois}(\lambda_{ij}), & z_{ij} = 1 \\ 0, & z_{ij} = 0 \end{cases}$$

$$z_{ij} \sim \operatorname{Bern}(p_i)$$

$$\log(\lambda_{ij}) = \mathbf{x}'_{ij}\boldsymbol{\beta}_i$$

$$\boldsymbol{\beta}_i \sim \mathcal{N}(\boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma})$$

$$\boldsymbol{\mu}_{\beta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\beta}^2 \mathbf{I})$$

$$\boldsymbol{\Sigma}^{-1} \sim \operatorname{Wish}(\mathbf{S}_0^{-1}, \nu)$$

$$p_i \sim \operatorname{Beta}(\alpha_1, \alpha_2)$$

Full conditional distributions

Latent mixture component indicator variable (z_{ij}) :

$$[z_{ij} | \cdot] \propto [y_{ij} | \lambda_{ij}, z_{ij}] [z_{ij} | p_i]$$

$$\propto \operatorname{Pois}(y_{ij} | \lambda_{ij})^{z_{ij}} 1_{\{y_{ij}=0\}}^{1-z_{ij}} p_i^{z_{ij}} (1-p_i)^{1-z_{ij}}$$

$$\propto \left(\frac{\lambda_{ij}^{y_{ij}} \exp(-\lambda_{ij})}{y_{ij}!}\right)^{z_{ij}} p_i^{z_{ij}} (1-p_i)^{1-z_{ij}}$$

$$\propto (\exp(-\lambda_{ij}))^{z_{ij}} p_i^{z_{ij}} (1-p_i)^{1-z_{ij}}$$

$$\propto (p_i \times \exp(-\lambda_{ij}))^{z_{ij}} (1-p_i)^{1-z_{ij}}$$

$$= \operatorname{Bern}(\tilde{p}),$$

where

$$\tilde{p} = \frac{p_i \times \exp\left(-\lambda_{ij}\right)}{p_i \times \exp\left(-\lambda_{ij}\right) + 1 - p_i}.$$

Note that z_{ij} is only updated for instances where $y_{ij} = 0$ ($z_{ij} = 1$ when $y_{ij} > 0$).

Probability associated with the mixture component indicator variables (p_i) :

$$[p_{i} | \cdot] \propto \prod_{j=1}^{n_{i}} [z_{ij} | p_{i}] [p_{i}]$$

$$\propto \prod_{j=1}^{n_{i}} p_{i}^{z_{ij}} (1 - p_{i})^{1 - z_{ij}} p_{i}^{\alpha_{1} - 1} (1 - p_{i})^{\alpha_{2} - 1}$$

$$\propto p_{i}^{\sum_{j=1}^{n_{i}} z_{ij}} (1 - p_{i})^{n_{i} - \sum_{j=1}^{n_{i}} z_{ij}} p_{i}^{\alpha_{1} - 1} (1 - p_{i})^{\alpha_{2} - 1}$$

$$= \text{Beta} \left(\sum_{j=1}^{n_{i}} z_{ij} + \alpha_{1}, n_{i} - \sum_{j=1}^{n_{i}} z_{ij} + \alpha_{2} \right)$$

Regression coefficients (β_i) :

$$\begin{split} \left[\boldsymbol{\beta}_{i} \mid \cdot\right] & \propto & \prod_{j=1}^{n_{i}} \left[y_{ij} \mid \mathbf{x}_{ij}^{\prime} \boldsymbol{\beta}_{i}\right] \left[\boldsymbol{\beta}_{i} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}\right] \\ & \propto & \prod_{j=1}^{n_{i}} \operatorname{Pois}\left(y_{ij} \mid \mathbf{x}_{ij}^{\prime} \boldsymbol{\beta}_{i}\right) \mathcal{N}\left(\boldsymbol{\beta}_{i} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}\right). \end{split}$$

The update for β_i proceeds using Metropolis-Hastings.

Mean of regression coefficients (μ_{β}) :

$$\begin{split} \left[\boldsymbol{\mu}_{\beta}\mid\cdot\right] &\propto & \prod_{i=1}^{N}\left[\boldsymbol{\beta}_{i}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}\right]\left[\boldsymbol{\mu}_{\beta}\mid\mathbf{0},\sigma_{\beta}^{2}\right] \\ &\propto & \prod_{i=1}^{N}\mathcal{N}\left(\boldsymbol{\beta}_{i}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}\right)\mathcal{N}\left(\boldsymbol{\mu}_{\beta}\mid\mathbf{0},\sigma_{\beta}^{2}\mathbf{I}\right) \\ &\propto & \exp\left\{\sum_{i=1}^{N}\left(-\frac{1}{2}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}_{\beta}\right)'\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\beta}_{i}-\boldsymbol{\mu}_{\beta}\right)\right)\right\} \\ &\times \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}_{\beta}-\mathbf{0}\right)'\left(\sigma_{\beta}^{2}\mathbf{I}\right)^{-1}\left(\boldsymbol{\mu}_{\beta}-\mathbf{0}\right)\right\} \\ &\propto & \exp\left\{-\frac{1}{2}\left(-2\left(\sum_{i=1}^{N}\boldsymbol{\beta}_{i}'\boldsymbol{\Sigma}^{-1}\right)\boldsymbol{\mu}_{\beta}+\boldsymbol{\mu}_{\beta}'\left(\boldsymbol{N}\boldsymbol{\Sigma}^{-1}\right)\boldsymbol{\mu}_{\beta}\right)\right\} \\ &\times \exp\left\{-\frac{1}{2}\left(\boldsymbol{\mu}_{\beta}'\left(\sigma_{\beta}^{2}\mathbf{I}\right)^{-1}\boldsymbol{\mu}_{\beta}\right)\right\} \\ &\propto & \exp\left\{-\frac{1}{2}\left(-2\left(\sum_{i=1}^{N}\boldsymbol{\beta}_{i}'\boldsymbol{\Sigma}^{-1}\right)\boldsymbol{\mu}_{\beta}+\boldsymbol{\mu}_{\beta}'\left(\boldsymbol{N}\boldsymbol{\Sigma}^{-1}+\left(\sigma_{\beta}^{2}\mathbf{I}\right)^{-1}\right)\boldsymbol{\mu}_{\beta}\right)\right\} \\ &= & \mathcal{N}(\mathbf{A}^{-1}\mathbf{b},\mathbf{A}^{-1}), \end{split}$$

where $\mathbf{A} = N\mathbf{\Sigma}^{-1} + \left(\sigma_{\beta}^{2}\mathbf{I}\right)^{-1}$ and $\mathbf{b}' = \boldsymbol{\beta}'\mathbf{\Sigma}^{-1}$, where $\boldsymbol{\beta}$ is the vector sum $\sum_{i=1}^{N} \boldsymbol{\beta}_{i}$.

Variance-covariance of regression coefficients (Σ):

$$\begin{split} \left[\boldsymbol{\Sigma} \mid \cdot \right] & \propto & \prod_{i=1}^{N} \left[\boldsymbol{\beta}_{i} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma} \right] \left[\boldsymbol{\Sigma} \mid \mathbf{S}_{0}, \boldsymbol{\nu} \right] \\ & \propto & \prod_{i=1}^{N} \mathcal{N} \left(\boldsymbol{\beta}_{i} \mid \boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma} \right) \operatorname{Wish} \left(\boldsymbol{\Sigma} \mid \mathbf{S}_{0}, \boldsymbol{\nu} \right) \\ & \propto & \left| \boldsymbol{\Sigma} \right|^{-\frac{N}{2}} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{N} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \right\} \\ & \times \left| \mathbf{S}_{0} \right|^{-\frac{\nu}{2}} \left| \boldsymbol{\Sigma} \right|^{-\frac{\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left(\mathbf{S}_{0} \boldsymbol{\Sigma}^{-1} \right) \right\} \\ & \propto & \left| \boldsymbol{\Sigma} \right|^{-\frac{N+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\sum_{i=1}^{N} \operatorname{tr} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \right) + \operatorname{tr} \left(\mathbf{S}_{0} \boldsymbol{\Sigma}^{-1} \right) \right] \right\} \\ & \propto & \left| \boldsymbol{\Sigma} \right|^{-\frac{N+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left(\sum_{i=1}^{N} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \right) \boldsymbol{\Sigma}^{-1} + \mathbf{S}_{0} \boldsymbol{\Sigma}^{-1} \right) \right] \right\} \\ & \propto & \left| \boldsymbol{\Sigma} \right|^{-\frac{N+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left(\sum_{i=1}^{N} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \right) \boldsymbol{\Sigma}^{-1} + \mathbf{S}_{0} \boldsymbol{\Sigma}^{-1} \right) \right] \right\} \\ & = & \operatorname{Wish} \left(\left(\sum_{i=1}^{N} \left(\left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right) \left(\boldsymbol{\beta}_{i} - \boldsymbol{\mu}_{\beta} \right)' \right) + \mathbf{S}_{0} \right)^{-1}, N + \nu \right). \end{split}$$