Between Two Sets

Consider two sets of positive integers, $A = \{a_0, a_1, \dots, a_{n-1}\}$ and $B = \{b_0, b_1, \dots, b_{m-1}\}$. We say that a positive integer, x, is *between* sets A and B if the following conditions are satisfied:

- 1. All elements in A are factors of x.
- 2. \boldsymbol{x} is a factor of all elements in \boldsymbol{B} .

In other words, some x is between A and B if that value of x satisfies $x \mod a_i = 0$ for every a_i in A and also satisfies $b_i \mod x = 0$ for every b_i in B. For example, if $A = \{2, 6\}$ and $B = \{12\}$, then our possible x values are 6 and 12.

Given A and B, find and print the number of integers (i.e., possible x's) that are *between* the two sets.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of elements in set A) and m (the number of elements in set B).

The second line contains n distinct space-separated integers describing $a_0, a_1, \ldots, a_{n-1}$. The third line contains m distinct space-separated integers describing $b_0, b_1, \ldots, b_{m-1}$.

Constraints

- $1 \le n, m \le 10$
- $1 < a_i < 100$
- $1 \le b_i \le 100$

Output Format

Print the number of integers that are considered to be *between* A and B.

Sample Input

2 3 2 4 16 32 96

Sample Output

3

Explanation

There are three x values between $A = \{2,4\}$ and $B = \{16,32,96\}$:

- x = 4:
 - All the elements in A evenly divide x=4.
 - x=4 evenly divides all the elements in B.
- x = 8:
 - All the elements in A evenly divide x = 8.
 - x = 8 evenly divides all the elements in B.
- x = 16:
 - All the elements in A evenly divide x=16.

ullet x=16 evenly divides all the elements in $\emph{B}.$

Thus, we print ${\bf 3}$ as our answer.