Madeira Island Portugal 21-23 October

Sicherheit in Technik und Chemie

NATURALMSEQUERIES

A NATURAL WAY TO QUERY MATERIALS SCIENCE ENGINEERING DATA

EXPERIMENTS

Andre Valdestilhas, Thomas Hanke, Soudeh Javamasoudian, Ghezal Ahmad Jan Zia, Horst Fellenberg, Thilo Muth

www.bam.de

Outiline

- 1. Preliminaries (My self, RDF, FAIR)
- 2. Motivation
- 3. Research questions (RQ)
- 4. Methodology (Our approach)
- 5. Evaluation and results Answer RQ
- 6. Conclusion

11.04.2017 Thema der Präsentation 2-15

MySelf Directed Labeled Graph

Preliminaries: RDF

Semantic Web -> Resource Description Framework

- Triples (Subject Predicate Object)
- Make the Web machine readable

Multigraph (Labelled,

Metadata data model

\ Directed)

structured Data (RDF)

- + **shared Identifiers** (Links,URI)
- + query engine (SPARQL)
- Knowledge graph

Data → Knowledge – FAIR- and Open-Data

F:

FINDABLE

- · What data exists?
- How & where do I find the measured values?

ACCESSIBLE

- Is raw data & metadata accessible?
- -> Quality / value of data
- Restrictions? (Software, formats...)

INTEROPERABLE

- Usability beyond the originator:
- -> Input & query (internal and external)

REUSABLE

 Value creation: Creation of new knowledge with fewer attempts or re-evaluation

How MSE domain expert obtain the Knowledge Graph

Motivation

 Material science data can be represented as directed graphs

- RDF as data model
- Lack of specific knowledge of SPARQL queries

Research questions

BAM

RQ1. How to query semantic MSE data **easier** than using **SPARQL** queries?

RQ2. What is the best way to **organize Material Sciences Methods data?**

RQ3. **How much** will the framework **help** the Materials Science Engineering domain?

Methodology (our approach)

Sparklis citation: Ferré, Sébastien. 'Sparklis: An Expressive Query Builder for SPARQL Endpoints with Guidance in Natural Language'. Semantic Web 8(3): 405-418. IOS Press, 2017

Methodology (our approach)

Methodology (our approach) Querying the data

Natural Language to SPARQL query and graph visualization of the query results

Evaluation: Domain experts creating knowledge – Ontology, querying data

- Link data across institutions (BAM Fraunhofer KIT, etc)
- Exploit heterogenous materials data

Approach – Research Questions

RQ1. How to query semantic MSE data **easier** than using **SPARQL** queries? (**NLP**)

RQ2. What is the best way to organize Material Sciences Methods data?

(RDF Knowledge Graph)

RQ3. **How much** will the framework **help** the Materials Science Engineering domain? (**Evaluation/Usability**)

Conclusion

Potential for Lightweight
Design

Explore how NaturalMSEQueries has successfully applied to the several projects, projects, showcasing its potential for lightweight lightweight design in materials science.

Future Development
NaturalMSEQueries + LLM (work in progress)

User-Friendly Approach

- Pioneer on the intersection between between SWT and MSF
- Understand how our approach enables enables domain experts to query materials science data more effectively, effectively, improving the overall usability and accessibility of Semantic Semantic Web technologies.

https://github.com/Mat-O-Lab/KnowledgeUI

andre.valdestilhas@bam.de