Ανάλυση Κοινωνικών Δικτύων (Social Network Analysis)

1η Εργαστηριακή Άσκηση

Συμεών Παπαβασιλείου (papavass@mail.ntua.gr)
Βασίλειος Καρυώτης (vassilis@netmode.ntua.gr)
Γιώργος Μήτσης (gmitsis@netmode.ntua.gr)
Μαργαρίτα Βιτοροπούλου(mvitoropoulou@netmode.ntua.gr)
Κωνσταντίνος Τσιτσεκλής(ktsitseklis@netmode.ntua.gr)
Κωνσταντίνα Σακκά (nsakka@cn.ntua.gr)

Outline

- Topology generation & visualization
- Degree analysis
- Strength analysis weighted graphs
- Path length analysis
- Clustering coefficient (CC) analysis
- Centrality analysis
- Connectivity analysis
- RG models
- Evolutionary growth
- Ego-centralities

Network Types

Πίνακας 1 – Σύνθετα δίκτυα και χαρακτηριστικές παράμετροι

Τύπος Δικτύου	Μοντέλο	Αναγνωριστικό	Παράμετροι
Πλέγμα	Πεπερασμένο	REG	Κόμβοι <i>n</i>
			βαθμός <i>d</i>
Τυχαίος γράφος	Erdos-Renyi	RG (ER)	Κόμβοι <i>Ν</i>
			Συνδέσεις Μ
Τυχαίος γράφος	Gilbert	RG (G)	Κόμβοι η,
			Πιθανότητα
			σύνδεσης <i>p</i>
Τυχαίος γεωμετρικός γράφος	Επίπεδος	RGG	Περιοχή L×L
			Κόμβοι <i>n</i>
			Ακτίνα R
Scale-free	Barabasi-Albert	SF (BA)	Κόμβοι <i>n</i>
			Βαθμός αρχικού
			πλέγματος <i>d</i>
Small-world	Watts-Strogatz	SW (WS)	Κόμβοι <i>n</i>
			Βαθμός αρχικού
			πλέγματος <i>d</i>
			Πιθανότητα
			ανασύνδεσης g_p

Metrics Analysis

- Degree
- Strength (random) weight matrix
- Average path length
- Clustering coefficient (CC)
- Centrality
 - Degree
 - Closeness
 - Betweenness
 - Eigenvector

Connectivity Analysis

Percentage of connectivity:

```
# connected topologies

# totally generated topologies
```

Connectivity study process:

- 1. Generate topology
- 2. Check if connected
- 3. Repeat
- 4. Compute percentage of connected topologies

Connectivity Analysis Parameters

Πίνακας 3 - Εύρος παραμέτρων για τη μελέτη συνεκτικότητας δικτύου

Τοπολογία	Εύρος Παραμέτρων				
REG	$n = \{100, 200\}$	$d \in [2,10]$ με βήμα 2			
ER-RG		Μ ∈[50,500] με βήμα 50			
RG		$p \in [0.1, 0.9]$ με βήμα 0.1			
RGG		$R \in [25, 250]$ με βήμα 25	L = 1000		
BA-SF		$d \in [2,10]$ με βήμα 2			
WS-SW		d ∈ [2,10] με βήμα 2	$g_p \in [0.1, 0.7]$ με βήμα 0.1		

Study of RG Models

- Two popular models:
 - Gilbert G(n,p)
 - Erdos-Renyi *G(N,M)*

• Heuristic

if
$$pn^2 \rightarrow \infty$$
 as n increases, $G(n,p)$ behaves roughly as $G(N,M)$, $N=n$ with $M=\binom{n}{2}p$

Evolutionary Character of SW

- Watts-Strogatz model
 - Start from an ordered lattice
 - Randomly rewire each edge with prob. p excluding selfconnections and duplicate edges
 - Arbitrary long-range edges maybe added
- Study this evolution

Ego-network & Ego-centrality

- **Ego networks**: consist of a single actor (ego) together with the actors they are connected to (alters) and all the links among those alters.
- Computation of ego-centrality (one actor)
 - Adjacency matrix A (of ego network)
 - $A^2[1-A]$, where 1 is matrix of all 1's
 - Hadamard product of A² and 1-A
 - # of geodesics of length 2 joining i to j
 - Sum of the reciprocal of the entries gives ego-betweenness of the actor
 - Has to be halved if it is a graph
 - Repeat for rest of actors
- The calculation of all the ego betweenness scores for a whole network would be one order of magnitude faster than calculating the real betweenness scores.

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}^{2}[1-\mathbf{A}] = \begin{bmatrix} * & * & * & * & * \\ * & * & * & 2 & 1 \\ * & * & * & * & 1 \\ * & * & * & * & 1 \\ * & * & * & * & * \end{bmatrix}$$