Exerciții cursul 1

- 1. Fie $c: I \to \mathbb{R}^3$ o curbă parametrizată care nu trece prin origine. Fie $c(t_0)$ punctul de pe curbă cel mai apropiat de origine și presupunem că $c'(t_0) \neq 0$. Arătați că vectorul de poziție $c(t_0)$ este perpendicular pe vectorul tangent $c'(t_0)$.
- 2. Fie $c: I \to \mathbb{R}^3$ o curbă parametrizată pentru care c''(t) = 0 pentru orice $t \in I$. Ce putem spune despre curba c?
- 3. Fie $c: I \to \mathbb{R}^3$ o curbă parametrizată şi v_0 un vector fixat. Prespupunem că c'(t) este perpendicular pe v_0 pentru orice $t \in I$ şi că c(0) este perpendicular pe v_0 . Arătați că c(t) este perpendicular pe v_0 pentru orice $t \in I$.
- 4. Fie $c: I \to \mathbb{R}^3$ o curbă parametrizată cu $c'(t) \neq 0$ pentru orice $t \in I$. Arătați că ||c(t)|| este constant nenul dacă și numai dacă c(t) este perpendicular pe c'(t) pentru orice $t \in I$.
- 5. (foliul lui Descartes) Găsiți o parametrizare a curbei plane de ecuație $x^3 + y^3 3xy = 0$. Determinați poziția curbei față de dreapta de ecuație x + y + 1 = 0.
- 6. (spirala logaritmică) Fie curba plană având parametrizarea $c: \mathbb{R} \to \mathbb{R}^2$

$$c(t) = (ae^{kt}\cos t, ae^{kt}\sin t)$$

cu a și k constante, a, k > 0.

- (a) Arătați că unghiul dintre c(t) și c'(t) este constant.
- (b) Arătaţi că raportul distanţelor dintre două "spire" consecutive, măsurate pe aceeaşi rază vectoare, este constant.
- (c) Dacă s(t) este lungimea arcului de curbă de la c(t) la c(0), (t < 0), arătați că

$$\lim_{t \to -\infty} s(t)$$

este finită.

- (d) Găsiți o parametrizare canonică a spiralei pentru a = k = 1.
- 7. (cicloida) Un cerc de rază R se rostogolește (fără frecare) pe o dreaptă fixă. Traiectoria descrisă de un punct fix de pe cerc se numețe cicloidă.

- (a) Determinați o parametrizare a cicloidei în cazul când dreapta fixă este axa Ox. Determinați punctele ei singulare.
- (b) Calculați lungimea arcului de curbă corespunzător unei rotații complete a cercului.
- 8. (epicicloida) Fie γ un cerc de rază r și P un punct fixat pe γ . Cercul γ se rostogolește (fără frecare) rămânând tagent exterior unui cerc (fix) de rază R = kr, $k \geq 1$. Locul geometric descris de punctul P se numește epicicloida.
 - (a) Determinați o parametrizare a epicicloidei în cazul când cercul fix are centrul în originea sistemului de axe.
 - (b) * Dacă $k \in \mathbb{N}^*$ atunci epicicloida este o curbă închisă și are exact k vârfuri.
 - (c) * Dacă $k=\frac{p}{q}\in\mathbb{Q}^*$, cu $\frac{p}{q}$ fracție ireductibilă, atunci epicicloida este o curbă închisă și are exact p vârfuri.
 - (d) * Dacă $k \notin \mathbb{Q}^*$, atunci epicicloida descrie o mulțime densă în inelul $R \leq \rho \leq R + 2r$.
- 9. (hipocicloida) Fie γ un cerc de rază r și P un punct fixat pe γ . Cercul γ se rostogolește (fără frecare) rămânând tagent interior unui cerc (fix) de rază R = kr, $k \geq 1$. Locul geometric descris de punctul P se nuemște hipocicloida.
 - (a) Determinați o parametrizare a hipocicloidei în cazul când cercul fix are centrul în originea sistemului de axe.
 - (b) * Dacă $k \in \mathbb{N}^*$ atunci hipocicloida este o curbă închisă și are exact k vârfuri.
 - (c) * Dacă $k=\frac{p}{q}\in\mathbb{Q}^*$, cu $\frac{p}{q}$ fracție ireductibilă, atunci hipocicloida este o curbă închisă și are exact p vârfuri.
 - (d) * Dacă $k \notin \mathbb{Q}^*$, atunci hipocicloida descrie o mulțime densă în inelul $R-2r \leq \rho \leq R$.
- 10. (curba lui Viviani) Găsiți o parametrizare a curbei obținute prin intersecția unui cilindru circular drept de raza $r = \frac{1}{2}$ și axă axa Oz cu sfera de raza R = 1 și centru $(-\frac{1}{2}, 0, 0)$.
- 11. (tractricea) Fie curba parametrizată $c:(0,\pi)\to\mathbb{R}^2$ definită prin

$$c(t) = \left(k\left(\ln \operatorname{tg} \frac{t}{2} + \cos t\right), k\sin t\right),\,$$

unde t este unghiul pe care îl face c(t) cu axa Ox.

- (a) Schitati grafic imaginea curbei și stabiliți poziția curbei față de axa Ox.
- (b) Arătați că lungimea segmentului, măsurată pe tangentă, care are capetele punctul de tangență și axa Ox are lungimea constantă egală cu k.
- (c) * Reciproc, găsiți curbele care satisfac condiția geometrică de la punctul precedent.