TW 9: 9.127, 9.128, 9.129 · the justim-space regresentation of I. ブーディテンテ×左び · expressly Tin spherial count tos: Î > ru, x \$ [1, 2 + 10 = 12 + 14] = \full \(\langle \) \(\tau_b · to find Lx, take the x component of the unit weeters to g and the 4 since Up = - Ux sinf + 4y col & To = To cost os \$ + To ast sing

At folias that Ix = to sind 2 - cost. cost 2) $=\frac{\cos\theta}{\sin\theta}\cos\theta=\cot\theta\cos\theta$ Lx > \$ (-sin \theta \frac{2}{20} - it \theta \frac{2}{20}) is and it is Ly > to (cos/20 - contint) = that 2 - cotton (2)

For 1.117
$$\hat{L}_{2} = \frac{1}{i} \frac{\partial}{\partial p}$$

combining 9.117, 9.127, and 9.128.
 $\hat{L}^{2} = \hat{L}_{12}^{2} + \hat{L}_{2}^{2} + \hat{L}_{2}^{2}$
 $= -t^{2} \left(4n^{2} \int_{0}^{2} \frac{\partial}{\partial p} + \cot^{2}\theta_{1} \partial_{2}^{2} \frac{\partial^{2}}{\partial p} + 2\sin^{2}\theta_{2}^{2} \cot^{2}\theta_{1} \partial_{2}^{2} \right)$
 $+ -t^{2} \left(\cos^{2}\theta \int_{0}^{2} + \cot^{2}\theta_{1} \partial_{2}^{2} \frac{\partial^{2}}{\partial p} + 2\sin^{2}\theta_{2}^{2} \cot^{2}\theta_{1} \partial_{2}^{2} \right)$
 $+ -t^{2} \frac{\partial^{2}}{\partial p^{2}} + \cot^{2}\theta_{1} \partial_{2}^{2} + \cos^{2}\theta_{2}^{2} + \cos^{2}\theta_{1}^{2} \partial_{2}^{2} + \cos^{2}\theta_{2}^{2} \partial_{2}^{2} \partial_{2}^$

$$=-\frac{1}{2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sinh\theta\frac{\partial}{\partial\theta}\right)\right]$$

$$+\left(\frac{\cos^{4}\theta}{\sin^{4}\theta}+\cos^{4}\theta+1\right)\frac{\partial^{2}}{\partial\theta^{2}}$$

$$-\left(\frac{1}{\sin^{4}\theta}\right)\left(\frac{1}{\sin^{4}\theta}+\cos^{4}\theta+1\right)$$

$$=\frac{1}{\sin^{4}\theta}\left(\frac{1}{\sin^{4}\theta}+\cos^{4}\theta+1\right)$$

$$=\frac{1}{\sin^{4}\theta}\left(\frac{$$

Tw 9.12 · wave function 4(F)= (x+y+2) f(-) · sphenical auredinates 1, 0, 0 => 4(F)=(rsin Oros + rsin & sin & +rics +)(r) = rf/r) sind eight eight eight had $= \mathcal{A}_r \bigg) \bigg[\frac{e^{i\theta_r e^{i\theta}}}{2} + e^{i\theta_r - e^{i\theta}} \bigg] \sin \theta + \cos \theta \bigg]$ = off) [2 eight + 1e sint + 2e sint = f(r)[(1+1)eigint+(1-1)eigint+10rt) · wing the spherical humanics:

Υη±1(θ,θ)=7√3 e^{±iθ}sinθ /10(θ,θ)=√3 1 1 θ

=> 4(0,p)= c, 1, + 6 1,-1,+ 6 1,0 · note that $\langle \theta, H l, m \rangle = H(\theta, \phi) = \chi_{l,m}(\theta, \phi)$ one of that if a perfiche is in an any eyenstate the Î/4>= l(l+1)2+2/4> thus $\langle y_{i,1}/L/Y_{i,1}\rangle = \ell(\ell+1)/L^2$ où $\ell=1$ $= 2L^2$ & $\langle Y, o/\overline{L}/Y, . \rangle = 2t^2$ The wife producting I. porsible a value of the Lain of the producting I. porsible sources

for La: 12/4/2-mth/4/2

While the sources

While the sources of t $(4)_{1,1} \hat{L}_{2} / \hat{A}_{1,1} = 1$

In
$$9.16$$

In 9.16

. I in pusition spia: 2 - h Sint 36 (nit 50)+ 5124 202 $\hat{\mathcal{I}}_{n} = \left\{ \frac{1}{2} \left\{ -\int_{\partial n}^{2} e^{2i\theta_{n} \cdot \theta} \right\} \right\}$ = 12 3 (1 06 (not in 6) + 1 i') cif $= \frac{1}{1} \frac{3}{6\pi} \frac{1}{3\pi 6} \left[(\omega_3^2 \theta - s)n^2 \theta \right] - 1 e^{2\pi \theta}$ $= \left\{ \frac{3}{16\pi} \frac{3}{3\pi 6} \left[-2sin^2 \theta \right] e^{2\pi \theta} \right] e^{2\pi \theta}$ $= \left\{ \frac{3}{16\pi} \frac{3}{3\pi 6} \left[-2sin^2 \theta \right] e^{2\pi \theta} \right] e^{2\pi \theta}$ = 21 87 sin Beig $=(2+^2)\left[-\int_{\frac{2}{8h}}^{2}\sin\theta e^{i\theta}\right]$ - TY, = (2+2) Y,

pastur-græ repres. Fradistrong of pr → to (3r + 1) • nomalisation underson: $\langle \psi/\psi \rangle = \int_{0}^{\infty} r^{2} dr \left| R(r) \right|^{2} = 1$ · Has
(4/ p. /4) = \(\text{i'd- R'+)\frac{1}{2}\tau_{-1}\R(-1)}\R(-1)\) où R(r)= 4/r) in the for the form of the de $=\frac{1}{i}\int_{1}^{\infty}dru^{*}(r)\left(\frac{u^{i}}{r}-\frac{1}{r^{2}}+\frac{1}{r^{2}}\right)$

 $= \frac{1}{3} \int_{0}^{\infty} u^{+}(r) u(r) dr$ = # [u*u/ - - [u*() u(r) dr] gree to zer of ulo)=0, he ving: = 5 0 1/1) [th Juli) dr $= \left(\int_{0}^{\infty} r^{2} u^{*} t^{*}\right) \left[\frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r}\right] \frac{u(r)}{r} dr$ = (4/p-14)* is to dred in (1/2/4)= (4/2/4) on theten in the land field of the posters is in the state 14 \$/1,0,0>+ 32/2,1,1> (E) = P(E). E,+ P(E) E. où PEI)= K1,0,0/4)/2= 16 PE2)= 1(2,1,1/4)/2= 25 · the arrange levels for hydryon on given of $\overline{\mathcal{F}}_{n}=-\frac{136\pi V}{n^{2}}$

 $E_1 = -13.6$ $E_2 = -\frac{13.6}{4} = -3.4$ (E)= 36 (B.6)+25 (-3.4) = -9.228eV (I2)= P(R,) I12 + P(R) I22 ai Ph)=# P/4)= 35 I'= Mem) to Peo 0 $I_2^2 = l(11)t^2 \xrightarrow{l=1} 2t^2$ $\langle z'' \rangle = 2t^2 \frac{2}{25} = \frac{18t}{25}$

(2) = P(l1) L2, + P(l2) L2. or Plat & Pllet anthosomes above and de = mt = 0 L 22=mt = 1 : (2) = 25

10.2 8 14(t)) = e-i Enth /4(0)> =e-15th 4/30,0)+e-152th 3/2,1,1) in, from port (a), E1 = -13.6 eV & E2 = -3.4 eV $\frac{1}{4}(4) = e^{\frac{1}{3}13.645h} \frac{4}{3}11,0,0$ + e2.34t/t 32/2,7,1) one of the expected on his vary) with one sine (f(t))= (4/4)/A/4/t) which inches tens, and carries time-independence of the

For the same reason, the expected when of I and Lz are also time-independent.

Tw 10.3 (14(0)) = = [/3,0,0) + = /3,1,1) + = /2,1,0) · Hamitanian:

A = 2 + 00 Lz · the war for at bret 14(t) = e 2 = 1/90) + e = 1/2/11) in the charge openatus dyrand on the eyenvalus of Joth prand Lz 3 = -13.6 Mz + winth on MI is the ress of the join

(E)=P(E1,)E1,+P(E1,1)E1,+P(E1,0)E2, (1)2 (t)2 - E1/4 $=\frac{1}{4}E_{3}+\frac{1}{2}E_{3}+\frac{1}{4}$ $-\frac{E_{1}}{2}+\omega t$ = 7=10+1 (England) + 1(England) where Eno can de ordnated as attail (4x) = (4t) | 2, 14(t) = (4t) | 2, -1- 14(t) = 2/30,0/eitit+1/2/3,1/eitit+2/3,10/eitit+ $\left. \int_{\mathcal{U}} \frac{1}{1} |\partial u\rangle e^{-i E_{j,o}} + \dots \right]$ = $\frac{1}{\sqrt{2}} \int e^{i(\xi_{2,3}-\xi_{2,p})t/k} + e^{-i[\xi_{2,4}-\xi_{1,0}]t/k}$ = $\frac{1}{2\sqrt{2}} \cos[(\xi_{2,1}-\xi_{2,0})t/h] = \frac{1}{2\sqrt{2}} \cos \omega t$

Tw 10.3 continued (L2> <4/2/4> $= \int_{2}^{1} \langle 10,0| + \frac{1}{12} \langle 2,1,1| + \frac{1}{2} \langle 2,1,0| \right] \hat{L}_{2} \left[\frac{1}{2} |1,0,0| + \dots \right]$ 45 sine 2 /4)=mt/4) A fellow that $\langle L_2 \rangle = \left[\frac{1}{2} \langle 30,0| + \frac{1}{12} \langle 2,1,1| + \frac{1}{2} \langle 2,1,0| \right] \left[\frac{1}{12} + 12,31 \right] \right]$

· Sohrredis & a growd Ate Hatom: $\frac{Z_{exy}}{Z_{1}} = 4\pi \frac{k^{2}}{me^{2}} = 0.529 \, \hat{A} = 0.529 \,$ der gry har probile system the Butradio & grand shite angy can to at mul by sidstably he reduced mess, pt = min / into the fumber due ?. Af DENERUN & AN ELECTION pa = 0.9997m ~ m

S/ PUSITRONIUM N= 0.5m $F_1 = -6.8eV$ 4 BOUND STATE OF PROTON & - WE MUON $\mu = 183.6 \, \text{m}$ Litto : 13 0.0288 A E,= -2800eV DI GRANTATIONAL BUND STATE OF 2 WELLING the grantesant forme det. the box rentures is equal to the central forme $\frac{EM^2}{r^2} = \frac{mv^2}{r} \implies r = \frac{Em}{v^2}$ DENTERON & AN ELECTION

= 0.9097m $\simeq m$ Townstations $\frac{Em^2}{v^2} = \frac{mv^2}{r^2} \implies r = \frac{Em}{v^2}$ $\therefore r_8 \simeq 0.529 A = a_0$ The relation of the relation $r_8 = r_8 = r_8$

. He good shit way E= T+V = 2mv2+ -6m2 $=\frac{1}{2}\frac{6m^2}{m^2}-\frac{6m^2}{m^2}=-\frac{1}{2}\frac{6m^2}{m^2}$ emulyth of notified ~ 1.6×10-68 gV the energy of the another plaker is given by

he -3 = $\frac{hc}{3} = \frac{-3E_1}{3E_1} \Rightarrow \lambda = \frac{4kc}{3E_1}$ · dustum cheten 7 = 4thc = 122 nm ultravolut

pushonius 7 = -46 = 243 mm Stanult o justin de -ve mour 3.2500 = 0.66 nm x ray)

gravitational Sund oth frusten pour 2= -4he 3. (1.6×10-4) = 1×10⁶⁵ mm

to 10.43/c) = Rys(P)=pl (so ak pk) e to => R3,0(p)= (22r)0 \ \frac{2}{3} \cdots \frac{2}{3} \cdots \ \frac{2}{3} $=e^{2/3} \left[a_0 + a_1 \left(\frac{27}{3} \frac{7}{a_0} \right) + a_2 \left(\frac{27}{3} \frac{7}{a_0} \right)^2 + a_3 \left(\frac{22}{3} \frac{7}{3} \frac{7}{a_0} \right)^3 \right]$ $= e^{-\frac{2r}{3}} a_0 \left[1 - \frac{27r}{3} + \frac{22^2r^2}{27a} \right]$

· the Bish adis for the is 2x smaller than that for both and hydrigen $r_B(^3Hc) = \frac{1}{2}a_0$ the system is initially in the gund state of for this in, grand of $\psi(^{3}H): \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_{0}}\right)^{\frac{1}{2}} e^{-\frac{1}{2a_{0}}}$ what the $\psi(^{3}He) = \frac{1}{\sqrt{\pi}} \left(\frac{2}{a_{0}}\right)^{\frac{1}{2}} e^{-\frac{2r}{a_{0}}}$ The productibly that the cluster is fund in the grund of the pow atom, 3 Hz can be expressed: 1(4(He) 14(34)) 2 $= \left/ \frac{1}{\pi} \left(\frac{\sqrt{2}}{9} \right)^{3} \int_{0}^{-3/4} e^{-3/46} \int_{0}^{3} \int_{0}^{2} = \frac{2^{3} \cdot 16}{9 \cdot 16} \left(\frac{9i}{5} \right)^{6} \approx 0.7$