

## **Circuits Theory and Electronic Fundamentals**

Integrated Master in Engineering Physics, IST, University of Lisbon

Lab 1: Circuit analysis methods
Alexandre Sequeira (96503), Duarte Marques (96523), João Chaves (96540)

March 25, 2021

## **Contents**

| 1 | Introduction                 | 1 |
|---|------------------------------|---|
| 2 | Theoretical Analysis         | 2 |
|   | 2.1 Mesh Method              | 2 |
|   | 2.2 Node Method              |   |
|   | 2.3 Results                  | 5 |
| 3 | Simulation Analysis          | 5 |
|   | 3.1 Operating Point Analysis | 5 |
| 4 | Conclusion                   | 6 |

## 1 Introduction

The objective of this laboratory assignment is to analyse the circuit shown in Figure 1, that is, to find all node voltages and branch currents. In Figure 1, the nodes have been numbered, current names and directions have been assigned to all branches and potential 0 has been assigned to one of the nodes.

By running the Python script  ${\tt t1\_datagen.py}$ , the values of the resistances  $R_1$  to  $R_7$ , voltage  $V_a$ , current  $I_d$  and constants  $K_b$  and  $K_c$  are obtained. These are shown in Table 1, shown below. In Section 2, a theoretical analysis of the circuit and the results obtained with the Octave math tool are presented. In Section 3, the results obtained using the Ngspice simulation tool are shown. The conclusions of this study are outlined in Section 4, in which the theoretical results obtained in Section 2 are compared to those presented in Section 3.



Figure 1: Circuit to be analysed in this laboratory assignment.

| Designation | Value                    |
|-------------|--------------------------|
| $R_1$       | 1.04053890347 k $\Omega$ |
| $R_2$       | 2.00185929606 kΩ         |
| $R_3$       | 3.06593231919 kΩ         |
| $R_4$       | 4.15163583349 kΩ         |
| $R_5$       | 3.03409481751 kΩ         |
| $R_6$       | 2.05654586148 kΩ         |
| $R_7$       | 1.00587575204 kΩ         |
| $V_a$       | 5.16821048288 V          |
| $I_d$       | 1.0127707267 A           |
| $K_b$       | 7.29055867767 mS         |
| $K_c$       | 8.22649929708 k $\Omega$ |

Table 1: Values obtained by running the file t1\_datagen.py.

# 2 Theoretical Analysis

In this section, the circuit shown in Figure 1 is analysed theoretically, by determining the values of voltages and currents, using the mesh and node methods.

#### 2.1 Mesh Method

The Kirchhoff Voltage Law (KVL) states that the sum of voltages in a circuit loop is zero. In Figure 2, the chosen directions for the mesh currents  $I_a$ ,  $I_b$ ,  $I_c$  and  $I_d$  are shown. It is also worth mentioning Ohm's Law, which states the following:

$$R = \frac{V}{I} \Leftrightarrow V = R \times I \tag{1}$$

Using this information, an equation is written for each of the four meshes represented in Figure 2. The value of current  $I_d$  is known and it was obtained by running  $\mathtt{t1\_datagen.py}$ . By solving the system that comes from applying KVL, the values of  $I_a$ ,  $I_b$  and  $I_c$  will be obtained. Knowing all the mesh currents and using the other values given by  $\mathtt{t1\_datagen.py}$ , it is possible to know all node voltages abd branch currents, using Ohm's Law.

By applying KVL and Ohm's Law in mesh 'a', the following equation is obtained:

$$-V_a + R_1I_a + R_3(I_a + I_b) + R_4(I_a + I_c) = 0 \Leftrightarrow I_a(R_1 + R_3 + R_4) + I_b(R_3) + I_c(R_4) = V_a$$
 (2)

For mesh 'b', we can write down:

$$I_b = K_b V_b = K_b (R_3 (I_a + I_b)) \Leftrightarrow I_a (K_b R_3) + I_b (K_b R_3 - 1) = 0$$
(3)

The equation for mesh 'c' is:

$$-V_c + R_4(I_a + I_c) + I_c(R_6 + R_7) = 0 \Leftrightarrow I_a(R_4) + I_c(R_4 + R_6 + R_7 - K_c) = 0$$
 (4)

For mesh 'd', it is clear that the correpondant current is the same as the current source's. Therefore, by inspection, we simply obtain:

$$I_d = I_d \tag{5}$$

Finally, by joining equations 2, 3 and 4 togehter, we get the following system:

$$\begin{pmatrix} R_1 + R_3 + R_4 & R_3 & R_4 \\ K_b R_3 & K_b R_3 - 1 & 0 \\ R_4 & 0 & R_4 + R_6 + R_7 - K_c \end{pmatrix} \begin{pmatrix} I_a \\ I_b \\ I_c \end{pmatrix} = \begin{pmatrix} V_a \\ 0 \\ 0 \end{pmatrix}$$
 (6)



Figure 2: Circuit with the respective mesh currents.

#### 2.2 Node Method

The Kirchhoff Current Law (KCL) states that the sum of the currents converging or diverging in a node is null. The nodes considered for the following equations are those represented in Figure 1. Using KCL and Ohm's Law (which can also be written as I=VG) in nodes not connected to voltage sources and additional equations for nodes related by voltage sources, it is possible to obtain a linear system from which the voltages at nodes  $V_1$  to  $V_7$  can be determined. Using these values and equation 1, currents  $I_a$ ,  $I_b$  and  $I_c$  could be easily calculated.

Let us now consider, in the first place, nodes not connected to voltage sources. For node  $V_2$ , we have that:

$$V_1(G_4) + V_2(-G_4 - G_6) + V_4(G_1) + V_5(G_6) + V_6(-G_1) = 0$$
(7)

The equation for node  $V_3$  is the following:

$$V_1(-G_5 - K_b) + V_3(G_5) + V_4(K_b) = I_d$$
(8)

For node  $V_4$ :

$$V_1(-G_3) + V_4(G_1 + G_2 + G_3) + V_6(-G_1) + V_7(-G_2) = 0$$
(9)

The equation for node  $V_5$  is:

$$V_2(-G_6) + V_5(G_6 + G_7) = 0 (10)$$

And finally, for node  $V_7$ , we have that:

$$V_1(K_b) + V_4(-G_2 - K_b) + V_7(G_2) = 0 (11)$$

Now, additional equations can be obtained for the nodes related by voltage sources ( $V_0$ ,  $V_1$ ,  $V_2$  and  $V_6$ ).

The value of the voltage in node  $V_0$  is 0V, because it is connected to GND. Therefore, this equation will not be used in the final matrix.

The source  $V_a$  can be used to obtain the following equation:

$$V_6 - V_2 = V_a (12)$$

Finally, for node  $V_1$ , we have that  $V_1 - V_0 = V_1 = V_c = K_c I_c$ . Using Ohm's Law, we can replace  $I_c$  by  $(V_2 - V_5)G_6$ . Therefore, the equation obtained is:

$$V_1 + V_5(K_cG_6) + V_2(-K_cG_6) = 0 (13)$$

Considering equations 7-13 above, one gets the following linear system:

$$\begin{pmatrix}
1 & -\frac{K_c}{R_6} & 0 & 0 & \frac{K_c}{R_6} & 0 & 0 \\
\frac{1}{R_4} & -\frac{1}{R_4} - \frac{1}{R_6} & 0 & \frac{1}{R_1} & \frac{1}{R_6} & -\frac{1}{R_1} & 0 \\
-\frac{1}{R_5} - K_b & 0 & \frac{1}{R_5} & K_b & 0 & 0 & 0 \\
-\frac{1}{R_3} & 0 & 0 & \frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_2} & 0 & -\frac{1}{R_1} & -\frac{1}{R_2} \\
0 & -\frac{1}{R_6} & 0 & 0 & \frac{1}{R_6} + \frac{1}{R_7} & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 \\
K_b & 0 & 0 & -\frac{1}{R_2} - K_b & 0 & 0 & \frac{1}{R_2}
\end{pmatrix}
\begin{pmatrix}
V_1 \\
V_2 \\
V_3 \\
V_4 \\
V_5 \\
V_6 \\
V_7
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
I_d \\
0 \\
V_a \\
0
\end{pmatrix} (14)$$

#### 2.3 Results

By solving the linear systems 6 and 14, the following values are obtained:

| Designation       | Value [A or V] |
|-------------------|----------------|
| $V_0$             | 0              |
| $V_1 = V_c$       | 7.898524E+00   |
| $V_2$             | 2.940328E+00   |
| $V_3$             | 1.171505E+01   |
| $V_4$             | 7.864904E+00   |
| $V_5$             | 9.657733E-01   |
| $V_6$             | 8.108539E+00   |
| $V_7$             | 7.374230E+00   |
| $I_a$             | 2.341433E-04   |
| $I_b$             | -2.451090E-04  |
| $I_c$             | 9.601318E-04   |
| $I_d$             | 1.012771E-03   |
| $V_b = V_4 - V_1$ | -3.362005E-02  |

Table 2: Values of voltages (in volts) and mesh currents (in amperes).

# 3 Simulation Analysis

## 3.1 Operating Point Analysis

Table 3 shows the simulated operating point results for the circuit presented in Figure 1. Voltages v(i) correspond to the respective voltages  $V_i$  in Table 2. Besides this, currents represented below as @rj[i] refer to the currents passing through the respective resistances,  $R_j$ . Therefore, @r1[i] is the value of  $I_a$ , @r2[i] is the value of  $I_b$  and @r6[i]=@r7[i] is the value of  $I_c$ . On the other hand, similarly to what is indicated in Table 2,  $v(1)=V_c$  and  $v(4)-v(1)=V_b$ .

It is also worth mentioning that @id[current] is the value of  $I_d$  and that @gb[i] is the current  $I_b$ .

| Name         | Value [A or V] |
|--------------|----------------|
| @gb[i]       | -2.45109e-04   |
| @id[current] | 1.012771e-03   |
| @r1[i]       | 2.341433e-04   |
| @r2[i]       | -2.45109e-04   |
| @r3[i]       | -1.09657e-05   |
| @r4[i]       | 1.194275e-03   |
| @r5[i]       | 1.257880e-03   |
| @r6[i]       | 9.601318e-04   |
| @r7[i]       | 9.601318e-04   |
| v(1)         | 7.898524e+00   |
| v(2)         | 2.940328e+00   |
| v(3)         | 1.171505e+01   |
| v(4)         | 7.864904e+00   |
| v(5)         | 9.657733e-01   |
| v(6)         | 8.108539e+00   |
| v(7)         | 7.374230e+00   |

Table 3: Operating point analysis table. A variable preceded by @ is a current, in the unit *ampere*; other variables are voltages, in the unit *volt*.

Comparing the theoretical analysis results presented in Table 2 and the results in Table 3, we can notice no observable differences. This was to be expected, since the circuit has no time dependency - meaning it's equal at any point in time - and all the components are linear.

## 4 Conclusion

In this laboratory assignment, the objective of analysing the given circuit has been achieved. Static analysis has been performed both theoretically, using the Octave maths tool, and by circuit simulation, using the Ngspice tool. By comparing Tables 2 and 3, it is possible to verify that the simulation results matched the theoretical results precisely. The reason for this perfect match is the fact that this is a straightforward circuit containing only linear components, so the theoretical and simulation models shall not differ. For more complex components, like transistors, it should be expected that the theoretical and simulation models could differ, but this is not the case in this lab assignment.