Printed pages: 2

University Roll No.

B.Tech. I Year, I Semester

ECE 1001: Electronics Engineering

Time: 1 1/2 Hrs.

Max Marks: 20

SECTION-A

Attempt all Questions.

(1x5=5)

- What is forbidden energy gap, E_G?
- 2. Write the name of two penta-valent impurities.
- 3. Sketch V-I characteristics of a p-n junction diode.
- Write the expression for efficiency of half wave rectifier and hence find its maximum efficiency.
- 5. What is meant by "barrier potential in p-n junction diode?

SECTION -B

Attempt any three questions.

(2x3=6)

- 1. A germanium diode carries a current of 1 mA at room temperature when a forward bias of 0.15 Volt is applied. Estimate the reverse saturation current at room temperature?
- Define dynamic resistance of a p-n junction diode? Write its expression.
- 3. Differentiate between drift and diffusion currents in semiconductor. Which of these is dominant in a p-n junction diode?
- 4. For the given Zener diode network, determine VL, VR, Iz and IR

Page 1 of 2

Attempt any three questions.

(3x3=9)

- Explain the transition and diffusion capacitances of a p-n junction diode?
- Explain the working of a full wave bridge rectifier with neat circuit diagram and find PIV of each diode.
- 3. Determine and Sketch Vo for the following network.

4. Determine and sketch Vo for the following network.

Page 2 of 2

B. Tech. Ist Year, IInd Semester, Ist Term Examination, 2016-17 ECE-1001: Electronics Engineering

Time: 1 Hour Total Marks: 20

SECTION-A

Attempt ALL Questions.

|5x1 = 5 marks|

- Give the dependency of reverse current (l_o) on temperature.
- (ii) What is the significance of ripple factor in rectifiers?
- (iii) Find the conductivity of an intrinsic semiconductor if n_i = 2.5x10¹⁰/m³. $\mu_n = 0.13 \text{m}^2/\text{V-S}, \ \mu_p = 0.05 \text{m}^2/\text{V-S}.$
- (iv) Differentiate the ideal and practical Diode.
- (v) Draw block diagram of Regulated power supply.

SECTION-B

Attempt any THREE questions.

|3x2 = 6 marks|

- (i) A 230 V, 50 Hz ac voltage is applied to the primary of 5:1 step down transformer used in a bridge rectifier having a load resistance 500 ohm. Assuming the diode to be ideal, determine the following:
 - a) Peak Voltage
- b) de Voltage delivered to the load
- c) PIV of each diode d) dc output voltage.
- (ii) Differentiate diffusion and transition capacitance with the help of neat diagrams.
- (iii) Explain different breakdown mechanisms in zener diode with neat waveforms and justify why zener breakdown occurs before avalanche breakdown.
- (iv) Analyze and sketch the output waveform of the following circuit:

Attempt any THREE questions.

 $[3 \times 3 = 9 \text{ marks}]$

- Justify the V-I characteristics of PN junction diode with proper explanation of forward bias and reverse bias condition.
- (ii) Assuming an ideal diode sketch the input and output voltage for the half wave rectifier. Also explain its working with neat circuit diagram.
- (iii) Analyze and sketch the output waveform of the following circuit:

(iv) Determine the range of V_i for the given circuit that will maintain the zener diode in 'ON' state.

1st Term Examination

Odd-Semester, 2017-18

Program:B.Tech, Branch:All Branches(L to U Section), Year:I

Subject: Electronics Engineering, ECE-1001

Time: 1 Hour Maximum Marks:15

Section A

Note: Attempt all questions.

2X3=6 marks

- List the types of resistances present in the diode and derive the formula for dynamic resistance.
- Differentiate between Zener and Avalanche breakdown.
 Calculate the reverse saturation current if a diode at room temperature at a forward voltage of 0.4V carries a current of 10mA (Assume Ŋ=1).
- Detect the current I and Vo in the circuit shown below.

Fig.1

Section B

Note: Attempt all questions.

3X3= 9 marks

- Explain the working of Bridge rectifier and drive for dc output voltage and RMS output voltage.
- Test the circuit shown in Fig.2 for voltage regulation and calculate the value of I_R, I_L, V_L and I_Z

Fig.2

3. Explain and draw the output waveform for the following circuit.

l Term Examination

Odd-Semester, 2018-19

Program:B.Tech

Branch: All Branches (Section M to S & U to X)

Subject: Electronics Engineering

Code: BECG0001

Time: 1 Hour

Year:I

Maximum Marks:15

Section A

Note: Attempt All Questions.

2X3=6 marks

- List the types of breakdown in diode and their reason of occurrence.
- Define mass action law. Determine the hole and electron concentration in Si with donor impurity of 1 in 10⁸. Given that n_i=1.5x10¹⁰/cm³ & concentration of Si atoms=5x10²²/cm³.
- 3. Draw the output waveform for the circuit shown in Fig. 1.

Section B

Note: Attempt All Questions.

3X3=9 marks

- Explain the working of half wave rectifier showing input and output waveform. Derive the values for V_{ress} and V_{DC} of output waveform.
- 2. Explain the output waveform for the circuit shown in Fig. 2.

Fig. 2

 Calculate the values of I_R, I_L, V_L and I_Z for the circuit shown in Fig. 3.

I Term Examination

Even-Semester, 2018-19

Program:B.Tech

Branch:All Branches(Section A to L & T)

Subject: Electronics Engineering

Code: BECG0001

Time: 1 Hour

Year:1

Maximum Marks:15

Section A

Note: Attempt All Questions.

2X3=6 marks

- Define drift and diffusion of charge carriers in semiconductor.
- Draw the block diagram of regulated power supply and discuss about each block.
- 3. Draw the output waveform for the circuit shown in Fig. 1.

Fig. 1

Section B

Note: Attempt All Questions,

3X3=9 marks

Determine V_R, V_L and I_Z for the circuit shown in Fig. 2.

Fig. 2

- Clarify the concept of capacitance in diode. Derive formula for diode capacitances in forward and reverse bias conditions.
- Explain the working of centre tap full wave rectifier. Calculate V_{mm} and V_{dc} if the input voltage to full wave rectifier circuit is V_i=100Sin(1000xt).

I Term Examination, Odd Semester 2019-20

B.Tech (All Branches), I Year, I Semester

Code: BECG0001 Subject: Electronics Engineering

Time: 2 Hours Maximum Marks: 30

Section- A

Note: Attempt All ThreeQuestions.

3 x 2 = 06 Marks

1. Define static and dynamic resistance.

- Calculate the forward bias current of a Si diode when forward bias voltage of 0.4V is applied, the reverse saturation current is 1.17×10⁻⁹A and the thermal voltage is 25.2mV.
- 3. Draw the block diagram of regulated power supply.

Section-B

Note: Attempt All Three Questions.

3 x 3 = 09 Marks

 Draw and explain the output waveform for the circuit shown in Fig. 1.

- What is the need of clamper. Draw the circuit diagram of biased positive clamper and explain its working.
- 3. Differentiate between CB, CE and CC Configuration.

Section - C

Note: Attempt Any Three Ouestions.

 $3 \times 5 = 15 \text{ Marks}$

- Discuss the working of full wave bridge rectifier. Also derive the value for V_{DC} and V_{DD}.
- For the circuit shown in Fig. 2, find: (i) the output voltage (ii) the voltage drop across series resistance (iii) the current through zener diode

- Draw the characteristics of p-n junction diode under forward and reverse bias. Also discuss the two types of breakdown.
- Sketch the input and output characteristics of CE configuration and indicate all the regions of operation. Also give the biasing conditions for all regions.

University Rull No.....

Mid-Term Examination, Odd Semester, 2021-22

B.Tech., Year-I, Semester-I

BECG 0001: Electronics Engineering

Time: 2 Hours

Maximum Marks: 30

Section- A

Note: Attempt All Three Overtions.

3 x 2 = 6 Marks

- Q1. Why Silicon is preferred over Germanium? Give any two reasons.
- Q2. What is the significance of ripple factor? Calculate ripple factor for a half wave rectifier having maximum input Voltage of 10 V.
- Q3. Explain DC and AC diode resistance in brief.

Section- B

Note: Attempt All Three Ouestions.

3 x 3=9 Marks

- Q1. Explain Zener breakdown and Avalanche breakdown.
- Q2. Explain operation of Semiconductor diode in brief. Also explain its Current Voltage characteristics.
- Q3. Find the concentration of holes and electrons in a P-type Germanium at 300K, if the conductivity is 200 (Ω -cm)⁻¹. Also find these values for N-type Silicon, if the conductivity is 0.5 (Ω -cm)⁻¹. Given for Germanium, n_i =2.5*10¹⁵/cm³; μ_n =3800 cm²/V-Sec; μ_p =1800 cm²/V-Sec and for Silicon, n_i =1.5*10¹⁰/cm³; μ_n =1300 cm²/V-Sec; μ_p =500 cm²/V-Sec.

- Q1. Draw the circuit of Bridge Rectifier, explain its operation and draw the input-output characteristics. Also derive the expression for RMS value of the output voltage.
- Q2. For the circuits shown below, explain the operation and draw the input output characteristics.

- Q3. In a center tap full wave rectifier, the load resistance is 7500 Ω . Each diode has an ac plate resistance of 50 Ω . If the ac voltage applied to each diode has a peak amplitude of 400 V and frequency 50 Hz. Calculate:
- (a) I_{m} , I_{dc} , I_{nms} (b) P_{dc} (c) P_{sc} (d) η (e) ripple factor
- Q4. For the Zener diode network shown below, (a) Determine V_L , V_R , I_Z and P_Z . Repeat part (a) with $R_L = 5K\Omega$.

Course Name:

Course Outcome

- CO1: Understand semiconductor and transport mechanism of charge carrier in semiconductor material, PN junction diodes with its V-I characteristics.
- CO2: Apply the diodes in rectifiers, clippers, clampers and voltage regulator circuits.
- CO3: Understand the basic concepts of Bipolar Junction Transistor, Field Effect Transistor and MOSFET's with their characteristics.
- CO4: Design DC biasing amplifier circuits using transistors.
- CO5: Understand operations amplifier and its applications in the circuits such as adder, subtractor, integrator and differentiator.
- CO6: Understand Number systems, theorems and postulates of Boolean algebra, K-Map.
- CO7: logic gates, Implementation of logic expression using logic gates, implementation of logic expression using universal gates only.

Printed Pages:

University Roll No.

Mid Term Examination, Odd Semester 2022-23 B.Tech (Common to all branch), Ist Year, Ist Semester BECG 0001: Electronics Engineering

Time: 2 Hours

Attornet All Overtions

Maximum Marks: 30

Section - A

uten	npt All Questions 3)	€5 =	15	Ma	rks
No.	Detail of Question	Ma rks	CO	B	K
1	Explain Diode capacitance.	3	1	U	C
2	Differentiate between Zener and Avalanche breakdown. OR Draw V-I characteristics of p-n diode for 20°C and 100°C.	3	1	U	C
3	a) A germanium diode carries a current of 1mA at room temperature when a forward bias of 0.15V is applied. Calculate reverse current for the same. OR b) For the given circuit determine the value of I and Vo. 16V The site of I and Vo.	3	1	A	Р

4	 a) The mobility's of free electrons and holes in a pure germanium are 0.38 and 0.18 m²/V-s. Find the value of intrinsic conductivity. Assume n_i = 2.5x10¹⁹/ m³ at room temperature. b) Find the increase in temperature necessary to increase reverse current by a factor of 100. 	3	1	A	P
5	Sketch output waveform for the given circuit	3	2	A	P
	-8V + Vi 4V = VO				

Section - B

Attempt All Questions

5 X 3 = 15 Marks

No	Detail of Question	Ma rks	CO	B L	K L
6	Explain the working of n-p-n Bipolar junction transistor. Also give circuit diagram for BJT in common base configuration and common emitter configuration.	5	3	R	F

7	For the given network, determine the range of Vi that will maintain V _L at 8 V and not exceed the maximum power rating of the Zener diode. Vi Rs 915 915 V = 8 V P = 400mW ZMax	5	2	A	P
8	Explain working of Bridge rectifier and give its input and output waveform. Also derive expression for its Ripple factor.	5	2	U	P

Course Name: Electronics Engineering

- Understand semiconductor and transport mechanism of charge carries in semiconductor material, PN junction Course Outcome diodes with its V-I characteristics.
- Apply the diodes in rectifiers, elippers, clampers and voltage regulator circuits.
- Understand the basic concepts of Bipolar Junction Transistor, Field Effect Transistor and MDSFET's with their C07: 003:
- Design DC bissing amplifier circuits using transactors.
- Understand operations amplifier and its applications in the circuits such as adder, subtractor, integrator and OD4: 005:
- Understand Number systems, theorems and postulates of Boolean algebra, K-Map. CD6:

Printed Pages: 3

University Roll No.

Mid Term Examination, Even Semester 2022-23 B.Tech (Common to all branch), Ist Year, Ist Semester **BECG 0001: Electronics Engineering**

Time: 2 Hours

Maximum Marks: 30

Section - A

	Section - A 3 X	5=	15	Ma	rks
mp	t All Questions	Mar	CO	B	K
lo.	Detail of Question	ks	U	Lo	-
1	Define following terms: (a) mobility (b) conductivity of semiconductor and (c) diffusibility. OR Give a brief notes on diode capacitances.	3	1	U	С
2	Given a diode current of 6 mA, junction temperature 27°C, n =1.2, and Is = 1 nA, find the applied voltage V _D . OR Find the static and dynamic resistance of a Ge diode if the temperature is 27°C and reverse saturation current is		1	A	P
1	For the given circuit in fig.1, determine the value of Vo.	100	3	1 /	

4	Briefly explain the each block of a regulated power supply with neat sketch.	3	2	R	F
	A silicon bar is doped with 18×10 ¹⁶ atoms/cm ³ of Boron at room temperature. Mobility of electron and holes are 1300 cm ² /V-s and 500 cm ² /V-s. Calculate the conductivity of the semiconductor. Consider the intrinsic concentration is 1.5×10 ¹⁰ .	3			P

Section - B

No	pt All Questions Detail of Question	Ma rks	CO	B L	K. L
6	Consider the circuit given in fig.2, V_i = 30 volts dc. Calculate I_R , I_L , I_Z , V_L and P_Z . $ \begin{array}{cccccccccccccccccccccccccccccccccc$	5	2	A	C
7	(a) Enlist the advantages and disadvantages of full wave rectifier over half wave rectifier. (b) Consider the circuit given fig.3 where V _m =15 Volts and bias voltage V=5 Volts. Sketch the output waveform.		2	A A	I

8	Explain working of Centre-tap rectifier and give its input and output waveform. Also derive expression for its Ripple factor. OR The input to the bridge rectifier is V _i =200sin(314t) volt and each diode forward resistance is 10Ω. The output is applied to a load of 1.5KΩ. Determine (a) peak value of current through load resistor. (b) output rms value of current and (c) ripple factor.	5	2	U	P	
---	---	---	---	---	---	--