Esercitazioni su rappresentazione dei numeri e aritmetica

Salvatore Orlando Marta Simeoni

specificato?

20₁₀ su 5 bit ?

64₁₀ su 6 bit ?

500₁₀ su 9 bit ?

Ricorda che:

 $2^0 = 1$ $2^1 = 2$

2² = 4 2³ = 8 2⁴ = 16 2⁵ = 32 2⁶ = 64 2⁷ = 128 2⁸ = 256

 $2^9 = 512$

 $2^{10} = 1024$

Interi unsigned in base 2

Si utilizza un alfabeto binario A = {0,1}, dove 0 corrisponde al numero zero, e 1 corrisponde al numero uno

 $d_{n-1}...d_1d_0 \quad con \ di \ d_i \in \{0,1\}$

- Qual è il numero rappresentato ? $N = d_{n-1} \cdot 2^{n-1} + + d_1 \cdot 2^1 + d_0 \cdot 2^0$
- Quanti numeri sono rappresentabili su n bit?

1 1 00....0 $01....11 = 2^{n} \cdot 3$ $10....00 = 2^{n} \cdot 2$

 $11....11 = 2^{n} - 1$ $100....00 = 2^{n}$

Con sequenze di n bit sono rappresentabili 2ⁿ numeri naturali $(da 0 a 2^{n-1})$

Interi unsigned in base 2

I seguenti numeri naturali sono rappresentabili usando il numero di bit

S 20

1025₁₀ su 10 bit ? NO

Conversione binario-decimale

Esercizio: $1110101_2 = ???_{10}$

 $1.2^6 + 1.2^5 + 1.2^4 + 0.2^3 + 1.2^2 + 0.2^1 + 1.2^0 =$

64 + 32 + 16 + 0 + 4 + 0 + 1

Soluzione: 1110101₂ = 117₁₀

Conversione decimale-binario

• Esercizio: $100_{10} = ???_2$

Soluzione: 100₁₀ = 1100100₂

Conversione binario-ottale e viceversa

• Esercizio: $10101111_2 = ???_8$

S

Soluzione: 101011112 = 2578

Esercizio: $635_8 = ???_2$

9

<u>110</u> <u>011</u> <u>101</u>

Soluzione: 635₈ = 110011101₈

Conversione dec-bin: metodo più pratico

- Scriviamo direttamente il numero decimale come somma di potenze di 2
- Per far questo, sottraiamo via via le potenze di 2, a partire dalle più significative
- Esercizio: $103_{10} = ???_2$

Allora $103_{10} = 2^6 + 2^5 + 2^2 + 2^1 + 2^0$ Soluzione: $103_{10} = 1100111_2$

Ricorda che:

```
2^{0} = 1

2^{1} = 2

2^{2} = 4

2^{3} = 8

2^{4} = 16

2^{5} = 32

2^{6} = 64

2^{7} = 128

2^{8} = 256

2^{9} = 512

2^{10} = 1024
```

Base 16

Quali dei seguenti numeri esadecimali sono numeri sono corretti?

```
BED
CAR
938
DEAD
DEAD
A129
ACI
DECADE
DAD
```

Conversione binario-esadecimale e viceversa

• Esercizio: $101111111111_2 = ???_{16}$

 $\frac{1_{10} = 1_{16} = 0001_2}{2_{10} = 2_{16} = 0010_2}$

Ricorda che:

• Esercizio:
$$A3C9_{16} = ???_2$$

Soluzione: A3C9₁₆ = 1010001111001001₂ = 41929₁₀

Complemento a 2

• Esercizio: Rappresentare -35₁₀ in complemento a 2

Soluzione:
$$-35_{10} = 11011101_2$$

11011101

Interi signed in complemento a 2

- Come si riconosce un numero positivo da uno negativo?
- Positivo ⇒ bit più significativo 0
- Negativo ⇒ bit più significativo 1
- Su n bit sono rappresentabili 2ⁿ interi unsigned (da 0 a 2ⁿ-1)
- Sempre su n bit, quanti interi signed in complemento a 2?

$$0.....00 = 0$$
 $0......01 = 1$
...
 $01.....11 = 2^{n-1} - 1$ (massimo)
 $-2^{n-1} = 2^{n-1} - 2^n$
...
 $11.....11 = 2^n - 1$
-1 = $2^n - 1 - 2^n$

9₁₀ = 9₁₆ = 1001₂ 10₁₀ = A₁₆ = 1010₂ 11₁₀ = B₁₆ = 1011₂ 12₁₀ = C₁₆ = 1100₂ 13₁₀ = D₁₆ = 1101₂

 $14_{10} = E_{16} = 1110_2$

Dato N>0, il numero -N si rappresenta su n bit con il numero 2^n - N -1 \Rightarrow 2^n -1 (1......1) -2 $^{n-1}$ \Rightarrow 2^n -2 -2 $^{n-1}$ = 2^{n-1} (10.....0)

Complemento a 2

Esercizio: Rappresentare -35 in complemento a 2

$$00100011_{2} = +35_{10}$$

$$\downarrow \qquad \qquad \text{Inv}$$

$$11011101_{2}$$

Inverti (complementa a 1) tutti i bit a sinistra del bit "1" meno significativo

Complemento a 2

 Esercizio: Quale numero decimale rappresenta il seguente numero binario in complemento a due?

$1111\ 1111\ 1111\ 1111\ 1110\ 0000\ 1100_2$

 $0000\ 0000\ 0000\ 0000\ 0000\ 1111\ 0100_2 =$

$$2^2 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 = 500_{10}$$

Soluzione: il numero è -500₁₀

Complemento a 2: somma e sottrazione

• Esercizio: eseguire 15₁₀ - 38₁₀ in complemento a due su 8 bit

$$38_{10} = 00100110_{2} \quad complementando: -38_{10} = 11011010_{2}$$

$$15_{10} - 15_{10} + 00001111_{2} + 11011010_{2} = 0.23_{10}$$

$$-23_{10} \Rightarrow \frac{-23_{10}}{-23_{10}} \Rightarrow \frac{-23_{10}}{(011101001_{2}) \mod 2^{8}}$$

Complemento a 2: somma e sottrazione

Esercizio: eseguire 53₁₀ - 35₁₀ in complemento a due su 8 bit

Overflow

- In quali dei seguenti casi si può ottenere overflow?
- somma di due numeri con segno concorde?
 somma di due numeri con segno discorde?
- somma di due numeri con segno discorde?
 sottrazione di due numeri con segno concorde? NO
- sottrazione di due numeri con segno discorde? SI

Esercizio

- $x_3 = FF$ $x_5 = 84$ $x_2 = 13$ $x_4 = C1$ $x_1 = 7A$ Considerate i numeri esadecimali
- Scrivere i quattro numeri in codice binario a 8 bit

$$x_1 = \underline{0111} \ \underline{1010} \ x_2 = \underline{0001} \ \underline{0011} \ x_3 = \underline{1111} \ \underline{1111}$$

$$x_4 = \underline{1100} \ \underline{0001} \ x_5 = \underline{1000} \ \underline{0100}$$

Interpretare il codice binario in complemento a due ed eseguire le operazioni

```
(101100111) mod 2^8 = 01100111 overflow?
x_1 - x_2; x_3 + x_4; x_4 + x_5; x_4 - x_1
                                                                       x_1 01111010 + -x_2 11101101 =
                                                     11111000
```

Esercizio - caso particolare

- Si ricorda che l'opposto del numero negativo più piccolo su n bit non può essere rappresentato in complemento a due
- codifica non simmetrica
 - Supponiamo quindi
- di lavorare con rappresentazioni in complemento a due su 3 bit
- di dover effettuare la sottrazione X-y

dove y=1 00_2 è il minimo numero rappresentabile (y=- 4_{10})

Esercizio: calcolare x-y usando il solito algoritmo, dove x=001,

```
Abbiamo infatti sottratto un numero negativo da un
     Il complemento a due
                                                                OVERFLOW, anche se
                                                                                                                                      ⇒ il <u>segno atteso</u> è positivo
                          non ha effetto
                                                                                         riporti concordi !!
                                                                 (0101) \mod 2^3 = 101
                                                                                                                                          numero >= 0
× 001 +
```

Esercizio (continua)

```
(111000000) \mod 2^8 = 11000000 overflow?
               x_3 11111111 + x_4 11000001 =
1111111
```

```
(101000101) \mod 2^8 = 01000101 overflow?
            x_4 11000001 + x_5 10000100 =
10000000
```

```
(101000111) mod 2^8 = 01000111 overflow?
                     x_4 11000001 + -x_1 10000110 =
10000000
```

Esercizio - caso particolare (continua)

- Esercizio: calcolare x-y, dove x=111₂
- poiché $x=111_2$ allora $x=-1_{10}$
- non dovremmo avere overflow, poiché vogliamo effettuare la somma algebrica di due numeri con segno discorde
- il risultato da ottenere è $x-y=-1_{10}$ $(-4_{10})=3_{10}$

```
NO OVERFLOW, anche
                                                                           se riporti discordi
Il complemento a due
              non ha effetto
                                          corretto
                                                         (0011) \mod 2^3 = 011 = 3_{10}
```

Abbiamo infatti sottratto un numero negativo da un numero negativo => in questo caso non si può verificare overflow

Procedura generale per determinare l'OVERFLOW

riporti per controllare l'OVERFLOW potrebbe quindi portare a risultati erronei Alla luce dell'esempio precedente, guardare solo ai due ultimi

Solo in questi casi si può verificare un OVERFLOW. Possiamo controllarlo confrontando il bit di segno del risultato con il segno atteso.								
ou So	_	asi	asi	\	asi			asi
Segno atteso	+	qualsiasi	qualsiasi	٠	qualsiasi	+	•	qualsiasi
Segno 2º operando	+	•	+	•	+	•	+	•
Segno 1º operando	+	+	•	•	+	+	•	•
Operazione	Somma	Somma	Somma	Somma	Sottrazione	Sottrazione	Sottrazione	Sottrazione

Virgola fissa

Esercizio: $23.625_{10} = ???_2$

(usare la rappresentazione in virgola fissa con n=8, m=8)

resto 0 resto 1 Conversione parte intera: resto 1 resto 1 resto 1 5:2 = 2 2:2 = 1 1:2 = 0 23:2=1111:2=5

parte intera 1 parte intera 1 parte intera 0 Conversione parte frazionaria: $0.25 \times 2 = 0.50$ $0.50 \times 2 = 1$ $0.625 \times 2 = 1.25$

Soluzione: $23.625_{10} = 00010111.10100000_2$

Numeri con la virgola (virgola fissa)

Data una base B, si assegnano:

- n cifre per rappresentare la parte intera
- m cifre per rappresentare la parte frazionaria

In base B=2, abbiamo quindi m+n bit per parte intera e frazionazia

⊆ Ε

Esempio:

$$d_{n\text{-}1}...d_{1}d_{0}\cdot d_{\text{-}1}...d_{\text{-}m}$$

Qual è il numero rappresentato in base B?

$$N = d_{n-1} \cdot B^{n-1} + \dots + d_1 \cdot B^1 + d_0 \cdot B^0 + d_1 \cdot B^{-1} + \dots + d_m \cdot B^{-m}$$

Numeri con virgola mobile

- Un numero reale R può essere scritto in base B come R = ± m Be m = mantissa
- e = esponente
- - B = base
- Esempi con B = 10
- $R1 = 3.1569 \times 10^3$
- R2 = 2054.00035 x 10⁻⁶
- R3 = 0.1635 x 10²
- $R4 = 0.0091 \times 10^{-12}$
- Notazione scientifica:
- d_0 . $d_{-1}...d_{-k}$ con $d_0 \neq 0$ 0 · d-1...d-k **=** Notazione scientifica normalizzata:

= E

Numeri binari in virgola mobile

Rappresentando mantissa ed esponente in binario in notazione scientífica normalizzata si ottengono numeri del tipo:

±1. SS....S • 2yy...y

Si osservi che:

Spostare la virgola (punto) a destra di $\it n$ bit significa decrementare di $\it n$ l'esponente

es:
$$0.01 \cdot 2^3 = 1.0 \cdot 2^1$$

Infatti $1 \cdot 2^{-2} \cdot 2^3 = 1 \cdot 2^1$

Spostare la virgola (punto) a sinistra di n bit significa incrementare di n l'esponente

es:
$$100.011 \circ 2^3$$
 = $1.00011 \circ 2^5$
Infatti $(1 \circ 2^2 + 1 \circ 2^{-2} + 1 \circ 2^{-3}) \circ 2^3 = (1 \circ 2^0 + 1 \circ 2^{-4} + 1 \circ 2^{-5}) \circ 2^5$
 $2^5 + 2^1 + 2^0$ = $2^5 + 2^1 + 2^0$

Numeri FP

Una volta fissato il numero di bit totali per la rappresentazione dei numeri razionali rimane da decidere Quanti bit assegnare per la mantissa ? (maggiore è il numero di bit e maggiore è l'accuratezza con cui si riescono a rappresentare i numeri)

Quanti bit assegnare per l'esponente ?

(aumentando i bit si aumenta l'intervallo dei numeri rappresentabili)

OVERFLOW: si ha quando l'esponente positivo è troppo grande per poter essere rappresentato con il numero di bit assegnato all'esponente

UNDERFLOW: si ha quando l'esponente negativo è troppo grande (in valore assoluto) per poter essere rappresentato con il numero di bit assegnato all'esponente

Numeri FP

• Esercizio: $10_{10} = ???_2$ FP

$$10_{10} = 1010_2 = 1010.0_2 \cdot 2^0 = 1.01 \cdot 2^3$$

• Esercizio: $151.25_{10} = ???_2$ FP

$$151_{10} = 128 + 16 + 4 + 2 + 1 = 10010111_2$$

 $0.25_{10} \times 2 = 0.50_{10}$ parte intera 0
 $0.50_{10} \times 2 = 1_{10}$ parte intera 1
 $0.25_{10} = 0.01_2$
Quindi = $151.25_{10} = 10010111.01_2 = 1.001011101_2 \cdot 2^7$

Numeri FP in standard IEEE 724

Standard IEEE754: Singola precisione (32 bit)

si riescono a rappresentare numeri 2.0₁₀ • 2⁻³⁸ ÷ 2.0₁₀ • 2³⁸

Standard IEEE754: Doppia precisione (64 bit)

32bit

si riescono a rappresentare numeri 2.0₁₀ • 2⁻³⁰⁸ ÷ 2.0₁₀ • 2³⁰⁸