

Relatório 05 Redes Neurais Artificiais O Perceptron

Cristiano Lopes Moreira

Matrícula: 119103-0

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		1 (14)

Relatório 05

Sumário

1.	Introdução3
2.	Desenvolvimento teórico
3.	Proposta de implementação Algoritmo Perceptron 6
4.	Experimentação e Resultados
4.1.	Dados Porta Logica E
4.2.	Dados Porta Logica OU
4.3.	Dados Porta Logica XOR
4.4.	Iris Fisher
5.	Conclusão
6.	Referências

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		2 (14)

1. Introdução

Com aplicações nas áreas de reconhecimento e classificação de padrões de escrita e fala, reconhecimento de faces em visão computacional, controle previsão de ações no mercado financeiro, identificação de anomalias em imagens médicas, entre outras; as redes neurais artificiais (RNA) vieram da ideia de se construir uma máquina ou mecanismo autônomo, que seja dotado de inteligência, inspirada na visão do cérebro humano e dos neurônios biológicos que tem grande poder de processamento paralelo, capacidade armazenamento e de utilizar conhecimento experimenta. Essas redes são constituídas de sub elementos, denominados neurônios, que realizam, de forma paralelizada, diversas subtarefas de um problema maior (HAYKIN, 2008).

Dentre os modelos de RNA, a rede Perceptron, idealizada por Rosenblatt (1958), é uma arquitetura de aprendizado supervisionado, onde a rede aprende com uma saída já conhecida, para classificação binária de padrões que se limitada a problemas linearmente separáveis, obtendo saída discreta tipo verdadeiro ou falso.

A saída da rede é tratada pela ponderação ponto a ponto entre os padrões de entradas e seus pesos sinápticos, a fim de serem ativados pela soma ponderada destes estímulos que o neurônio aplicará na fronteira de decisão com uma função de ativação. O objetivo desta rede é encontrar os melhores parâmetros, ou pesos, através do ajuste fino de seus hiperparâmetros (taxa de aprendizado, número de épocas, função de ativação, quantidade de padrões...) a fim de encontrar o erro zero entre as saídas da rede e a desejada conseguindo a separabilidade das classes limitado pelo hiperplano.

2. Desenvolvimento teórico

A regressão linear é um dos algoritmos mais conhecidos e utilizados em estatística e em aprendizado de máquina, sua representação linear é uma equação matemática que melhor descreve uma reta que se encaixa entre os pontos

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		3 (14)

amostrados de uma variável X com saída representando a descrição de um fenômeno.

$$y = f(X) = \alpha + \beta$$
Shoes

16
Quadratica
Linear Linear Robusta

14
 $\frac{3}{25}$
 $\frac{12}{10}$
 $\frac{12}{10}$
 $\frac{12}{10}$
 $\frac{12}{10}$
Height

Suponha que Y seja conhecido até um número finito de pontos p dos parâmetros $\beta=(\beta_1,\ldots,\beta_p)$, ou seja, Y = X β . Estimamos β pelo valor de coeficiente $\hat{\beta}$ que melhor se ajusta aos dados.

A rede neural artificial perceptron, assim como o método de regressão linear, busca encontrar os coeficientes da reta que melhor representa este pontos, porém, distinto do método de regressão linear pelos mínimos quadrados, o coeficiente de estimativa calculado pela RNA preceptron é obtido através de diversas interações, chamadas de treinamento ou aprendizado, que minimizam o erro do coeficiente com base na confirmação do resultado esperado balizado por um coeficiente de aprendizado.

Matematicamente os coeficientes da reta, ou pesos sinápticos, são vetorialmente representados por "w", com seu aprendizado/atualização, realizado pelas diversas interações nos ciclos de aprendizado (episódios ou épocas) com as equações abaixo:

$$w_i = w_i + \Delta w_i \tag{2}$$

Aluno		Aluno RA/Matrícula Professor		Ti	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação		
Data	Versão	Turma	Nome do arquivo		Página	
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		4 (14)	

Relatório 05

Sendo:
$$\Delta w_i = \eta(t - o)x_i \tag{3}$$

Onde: $t \notin o \text{ valor desejado}$ (4)

o é a saída do perceptron

 x_i é a entrada do perceptron

η é a taxa de aprendizado

Uma vez concluído o processo de treinamento, o perceptron pode ser utilizado para estimar casos que não fazem parte do conjunto de dados do treinamento. Através da somatória de todas as variáveis de entrada, balizadas pelos pesos sinápticos, o perceptron verifica por função de ativação se as entradas alcançam seu nível de saturação para acionar a saída do perceptron com 1 ou -1 (classificação binária), que ao final é a estimativa de qual classe pertence o item pesquisado.

$$f(W^{T}X) = \begin{cases} 1 se \sum_{i=0}^{n} w_{i}x_{i} > 0 \\ -1 caso contrário \end{cases}$$
 (5)

Parâmetro	Variável Representativa	Tipo Característico
Entradas	X _i (i-ésima entrada)	Reais ou binários
Pesos Sinápticos	w _i (associado a x _i)	Reais iniciados aleatoriamente
Saída	у	Binária
Função de Ativação	g(x)	Degrau bipolar
Processo de Treinamento		Supervisionado
Regra de Aprendizado		Regra de Hebb

Alun	Aluno RA/Matrícula Professor		Tij	ро	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		5 (14)

3. Proposta de implementação Algoritmo Perceptron

Pseudocódigos:

Treinamento

Obtém-se um conjunto de dados;

Associar a saída desejada para cada amostra obtida;

Iniciar um vetor w com valores aleatórios pequenos;

Especificar uma taxa de aprendizagem η_aprend

definir um número de episódios: epsodios ← episódios de aprendizagem

para todas as amostras de treinamento faça:

$$u \leftarrow W^T \ X^{(k)}$$

$$y \leftarrow sinal(u)$$

se y≠ saída associada desejada (S)

$$w \leftarrow w + \eta$$
_aprend $(S - y) X^{(k)}$

Aluno		Aluno RA/Matrícula		Tij	00
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		6 (14)

Relatório 05

Predição

Obtém-se a amostra a ser classificada X;

Utilizar o vetor w ajustando durante o treinamento;

Para i = 1 até epsodios faça:

 $u \leftarrow W^T \; X$

 $y \leftarrow sinal(u)$

se y=-1

retorna Classe 0

se não

retorna Classe 1

Aluno		RA/Matrícula	Professor	Ti	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		7 (14)

4. Experimentação e Resultados

Para verificar o funcionamento do algoritmo do Perceptron, foi realizada a implementação em Python confrontando os resultados entre a classificação indicada na base de dados e o agrupamento proposto pelo algoritmo:

Ambiente:

PyCharm 2019.2.2 (Professional Edition) Build#PY-192.6603.34

Python 3.7.5 (tags/v3.7.5:5c02a39a0b, Oct 15 2019, 01:31:54) on win32

Bibliotecas:

matplotlib-3.1.1 (utilizado para plotagem de gráficos)

pandas-0.25.2 (suporte à plotagem de gráficos)

xlrd-1.2.0 (leitura de arquivos do Excel - base de dados)

numpy-1.17.4 (gestão de matrizes)

Base de Dados:

dbTraining.xlsx	Е	Porta logica E de 2 entradas
	OU	Porta logica OU de 2 entradas
	XOR	Porta logica XOR de 2 entradas
	íris	http://archive.ics.uci.edu/ml/datasets/Iris

Aluno		RA/Matrícula	Professor	Ti	00
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc 8		8 (14)

4.1. Dados Porta Logica E

Base de dados:

		Classif	icação
X	Υ	Original	Perceptron
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Perceptron Porta E						
Função de ativação: $f(W^TX) = egin{cases} 1 \ se \sum_{i=0}^n w_i x_i \geq lpha \ -1 \ caso \ contrário \end{cases}$						
Dimensões	Dimensões d 2					
Taxa de aprendizagem	η	0.01				
Coeficiente de saturação	α	0.5				
Episódios/eras	Ε	38				
Pesos Sinápticos	W	(0.5577 0.5796 -0.0855)				

Resultados:

		Classifica	ção Correta	
		0	1	Precisão
Perceptron	0	3	0	100%
Perce	1	0	1	100%
			Precisão Total	100%

Os testes demostraram que com 1 perceptron é possível representar com 100% de precisão uma porta lógica do tipo E

Aluno		RA/Matrícula	Professor	Tij	00
Cristiano Lopes Moreira 1191		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		9 (14)

4.2. Dados Porta Logica OU Base de dados:

		Classificação		
X	Υ	Original	Perceptron	
0	0	0	0	
0	1	1	1	
1	0	1	1	
1	1	1	1	

Perceptron Porta OU							
Função de ativação: $f(W^TX) = egin{cases} 1 \ se \sum_{i=0}^n w_i x_i \geq lpha \ -1 \ caso \ contrário \end{cases}$							
Dimensões	Dimensões d 2						
Taxa de aprendizagem	η	0.01					
Coeficiente de saturação	α	0.5					
Episódios/eras	Ε	58					
Pesos Sinápticos	W	(0.083 0.4356 0.4231)					

Resultados:

		Classifica	ção Correta	
		0	1	Precisão
Perceptron	0	1	0	100%
Perce	1	0	3	100%
			Precisão Total	100%

Os testes demostraram que com 1 perceptron é possível representar com 100% de precisão uma porta lógica do tipo OU

Aluno		RA/Matrícula	Professor	Tij	ро
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relató implem	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		10 (14)

4.3. Dados Porta Logica XOR

Base de dados:

		Classificação		
X	Υ	Original	Perceptron	
0	0	0	1	
0	1	1	0	
1	0	1	0	
1	1	0	0	

Perceptron Porta XOR						
Função de ativação: $f(W^TX) = egin{cases} 1 \ se \sum_{i=0}^n w_i x_i \geq lpha \ -1 \ caso \ contrário \end{cases}$						
Dimensões	Dimensões d 2					
Taxa de aprendizagem	Taxa de aprendizagem η 0.01					
Coeficiente de saturação $lpha$ 0.5						
Episódios/eras	Ε	<i>E</i> 200				
Pesos Sinápticos	W	(0.5577 0.5796 -0.0855)				

Resultados:

		Classifica	ção Correta	
		0	1	Precisão
Perceptron	0	1	2	50%
Perce	1	1	0	0%
			Precisão Total	25%

Os testes demostraram que com 1 perceptron NÃO é possível representar uma porta lógica do tipo XOR, isto ocorre porque o perceptron classifica somente massas linearmente divisíveis, o que não é o caso da porta lógica XOR.

Aluno		RA/Matrícula	Professor	Ti _l	00
Cristiano Lop	iano Lopes Moreira 119103-0		Dr Reinaldo Blanchi		orio de entação
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		11 (14)

4.4. Iris Fisher

Base de dados:

Fig2: Distribuição Original 3 dimensões visão em 2D da base de dados Iris-Fisher

O conjunto de dados contém 3 classes de 50 instâncias cada, em que cada classe se refere a um tipo de planta de íris, mostrados na Figura 2.

Uma classe é linearmente separável da outras duas 2 e as demais não são linearmente separáveis.

Atributo previsto: classe da planta íris.

Informações da base:

- comprimento da sépala em cm
- largura da sépala em cm
- comprimento da pétala em cm
- largura da pétala em cm
- 3 classes: (Setosa, Versicolour e Virginica)

Aluno		Aluno RA/Matrícula		Professor	Ti	ро
Cristiano Lop	es Moreira	loreira 119103-0 Dr Reinaldo Bianchi Relatório o implementa				
Data	Versão	Turma	Nome do arquivo		Página	
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		12 (14)	

Perceptron Base de Dados Iris						
Função de ativação: $f(W^TX) = egin{cases} 1 \ se \sum_{i=0}^n w_i x_i \geq lpha \ -1 \ caso \ contrário \end{cases}$						
Dimensões	d		4			
Taxa de aprendizagem	η		0.01			
Coeficiente de saturação	α	0.5				
Episódios/eras	Ε		200			
Pesos Sinápticos	W	(-0.0787 -0.089	9 0.3183	0.3075	0.5158)	

Resultados:

		Classificação Correta			
		0	1	2	Precisão
_	0	47	0	0	94%
Perceptron	1	3	50	50	100%
Д	2	0	0	0	0%
				Precisão Total	64.66%

Fig3: Classificação perceptron da base de dados Iris-Fisher – diversas dimensões – vista 2D

Aluno		RA/Matrícula	Professor	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação	
Data	Versão	Turma	Nome do arquivo		Página
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		13 (14)

Pela figura 3 e pela tabela de confusão observar-se que o perceptron é eficiente para classificação dos dados que estão linearmente separados a classificação entre a Iris do grupo 0 (Setosa) e as dos grupos 1 (Versicolour) e 2 (Virginica), porém, por ser um classificador binário linear, não consegue realizar uma classificação entre os grupos 1 e 2 que não são linearmente separáveis.

O algoritmo apresentou 64.66% de acerto na classificação, em comparação com a classificação real informada pela base de dados, sendo o erro maior entre os grupos 1 e 2, onde toda Virginica foi classificada como Versicolour, sendo 100% de erro na classificação das Virginicas.

5. Conclusão

Conclui-se que o Perceptron é um algoritmo de redes neurais supervisionado de camada única pertencente a arquitetura sem realimentação (feedfoward) que tem por objetivo classificar grupos linearmente separáveis, ou seja, é um classificador binário, muito útil para problemas de classificação binária e linear. É ineficiente para problemas não lineares e classificações de múltiplos grupos, porém pode ser utilizado como base de uma rede de múltiplas camadas de perceptron que deve ser objeto de um outro estudo.

6. Referências

[1] HAYKIN, Simon. **Redes Neurais: princípios e práticas**. 2. ed. Ontario Canada: Bookman, 2008.

Aluno		RA/Matrícula Professor		Ti _l	Tipo	
Cristiano Lopes Moreira		119103-0	Dr Reinaldo Bianchi	Relatório de implementação		
Data	Versão	Turma	Nome do arquivo	ome do arquivo		
27/11/2019	1	2º. Semestre de 2019	PEL_208_Relatório_05_Cristiano_Moreira.doc		14 (14)	