Sensor: 104860, Date: 15/07/2023 IV-Characterisation: 104860_HPK

LCD-HGCAL Sensor Testing

October 24, 2023

Measurement: 104860_HPK

Date: 15/07/2023
Test station: HPK

• Chuck temperature: 25.0 degrees Celsius

Sensor: 104860
Size: 8 inches
N_{cells}: 199

• Doping: p-type, p-stop: comm.

ullet active thickness: 300 $\mu{\rm m}$

Irradiation: 0 neq/cm²

Location of intermediate files

- (raw) measurement file:
 - / eos/ user/ h/ hgsensor/ HGCAL test results/ Results/ Hamamatsu/ HPK Upload/ Full/ S15591-01/2309/OBA49339/IV/8-198-300F-L6-P5295-04-104860-0-IV.txt
- formatted file:
 - home/data/hgsensor_iv/Hamamatsu_Preproduction_OBA49339/formatted/ 104860 HPK.txt
- voltage-corrected file:
 - / home/ data/ hgsensor iv/ Hamamatsu Preproduction OBA49339/ resistance_corrected/ 104860_HPK.txt
- temperature-scaled file:
 - / home/ data/ hgsensor iv/ Hamamatsu Preproduction OBA49339/ temperature scaled/ 104860 HPK.txt

All-cells IV

- Left: IV curves for all channels. Shown in the legend are only the curves for pads defined as bad by the grading performed with the indicated checksCollectionID.
- Right: Total current measured as the mean of the last 50 channels (if available otherwise all). Absolute values are used both for voltages and currents.

Hexplots, interpolated bias voltage of 600 V

IV Grading of the sensor

Info:

- Last measured voltage point: 1000.0 V;
- \bullet Expected depletion voltage for sensors of thickness 300 μ m: 250 V; 250 x 1.5 = 375.0 V.
- IV scan performed well above 1.5 times the expected depletion voltage.

Grading:

- Sensor has been graded with checksCollectionID 1.
- Global characteristics:
 - \bullet Current at 600V I600 (normalised to 20 deg Celsius): $<=100~\mu A$ integrated over the sensor and guard rings: Passed
 - I800 < 2.5 x I600: Passed
 - Number of bad pads 0 <= 8 for full-sized sensors: Passed
 - Allowed number of adjacent bad pads <= 2: Passed
- Per-pad characteristics used to define bad pads if any of the following are met:
 - Current at 600V I600 (normalised to 20 deg Celsius) > 100 nA/pad: 0 pads, namely []
 - 1600 > 10 nA and $1800 > 2.5 \times 1600$: **0** pads, namely []
 - $1600 \le 10 \text{ nA}$ and 1800 > 25 nA: **0** pads, namely []

Sensor has PASSED the requirements.

WARNING: The following pads were masked at least once before or at 600V: [].

- All cells, independent of cell geometry, enter the median and inter-quantile range computation.
- Left: Currents are normalised to a reference temperature $T_{-20} = -20^{\circ}$ C, as stated in Equation 1.

$$I_{-20} = I_T \cdot \left(\frac{T_{-20}}{T}\right)^2 \cdot \exp\left(\frac{E_g}{2 \cdot k_b} \cdot \left(\frac{1}{T} - \frac{1}{T_{-20}}\right)\right) \tag{1}$$

• Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Description of the following figures:

- The maximum of the color scale is defined to be the median of all cells connected to the sensor plus $1.5 \times$ the 50-84% inter-quantile range.
- Top-left: Currents are normalised to a reference temperature $T_{-20}=-20^{\circ}$ C, as stated in Equation 1.
- Top-right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.
- ullet Bottom-left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1 with colour scale according to the highest bias voltage (absolute value).
- Bottom-right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling with colour scale according to the highest bias voltage (absolute value).

Hexplots, nominal bias voltage of 1000.0 V

Hexplots, nominal bias voltage of 900.0 V

Hexplots, nominal bias voltage of 800.0 V

Hexplots, nominal bias voltage of 700.0 V

Hexplots, nominal bias voltage of 600.0 V

Hexplots, nominal bias voltage of 500.0 V

Hexplots, nominal bias voltage of 400.0 V

Hexplots, nominal bias voltage of 300.0 V

Hexplots, nominal bias voltage of 200.0 V

Hexplots, nominal bias voltage of 100.0 V

Hexplots, nominal bias voltage of 0.0 V

Channel mapping

• Illustration of the channel pad numbers for the subsequent figures.

Per-cell IV curves, pads 1-10

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 11-20

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 21-30

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 31-40

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 41-50

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- \bullet Right: Cell leakage current at 25.0 $^{\circ}$ as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 51-60

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 61-70

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 71-80

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 81-90

- \bullet The maximum of the y-scale is defined to be the median of all cells plus 1.5× the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 91-100

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 101-110

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 111-120

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- \bullet Right: Cell leakage current at 25.0 $^{\circ}$ as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 121-130

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 131-140

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 141-150

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 151-160

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 161-170

- \bullet The maximum of the y-scale is defined to be the median of all cells plus 1.5× the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 171-180

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 181-190

- The maximum of the y-scale is defined to be the median of all cells plus 1.5x the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

Per-cell IV curves, pads 191-199

- \bullet The maximum of the y-scale is defined to be the median of all cells plus $1.5\times$ the 68% central inter-quantile range.
- \bullet Left: Currents are normalised to a reference temperature $T_{-20}=-20^\circ$ C, as stated in Equation 1.
- Right: Cell leakage current at 25.0° as measured, i.e. without temperature scaling.

