Funkcja Lapunowa

W przedstawionych ćwiczeniach funkcja Lapunowa V(x) jest stosowana do badania stabilności układu

$$\dot{x} = f(x), x \in \mathbb{R}^n$$

- 1. Co oznacza, że punkt równowagi jest stabilny ? Co oznacza, że punkt równowagi jest stabilny asymptotycznie ?
- 2. Podstawowe właściwości funkcji Lapunowa

Narysuj funkcję $V(x_1, x_2) = x_1^2 + x_2^2$.

Wskaż, dlaczego funkcja V(x) jest skalarna, wypukła, nieujemna oraz posiada ciągłą pochodną.

Na otrzymanym wykresie wykreśl kilka przykładowych kierunków zmian funkcji, czyli wektory $\nabla V(x_1,x_2)$

- 3. Orientacja zmian funkcji Lapunowa $\nabla V(x_1,x_2)$ względem funkcji f(x) Na otrzymanym rysunku dorysuj kilka możliwych położeń funkcji f(x) (funkcja skierowana na zewnątrz, do środka, styczna do V). Która z zaobserwowanych sytuacji wskazuje na stabilność układu ?
- 4. Stabilność w sensie Lapunowa

Niech: (a) $x^* = 0$ będzie punktem równowagi dla układu $\dot{x} = f(x)$

(b)V(x) będzie funkcją skalarną, wypukłą, nieujemną oraz posiadającą ciągłą pochodną

Jeżeli (1)
$$V(0) = 0$$
 i $V(x) > 0$ dla $x = 0$ oraz

$$(2)\,\dot{V}(x)\leq 0$$

wtedy punkt x^* jest stabilny.

Jeżeli (2)
$$\dot{V}(x) < 0$$
,

wtedy punkt x^* jest asymptotycznie stabilny

Jeżeli (2)
$$\dot{V}(x) \le 0$$
 oraz $\dot{V}(x) = 0$ tylko dla $x = x^*$,

wtedy punkt x^* jest asymptotycznie stabilny

Zaproponuj implementację przedstawionych reguł logicznych

5. Układowi $\dot{x} = -x$

odpowiada funkcji Lapunowa
$$V(x)=x^2$$
, ponieważ $\dot{V}(x)=2x\dot{x}=-2x^2$

Z tego wynika, że punkt równowagi x^* jest asymptotycznie stabilny.

Rozwiąż to zadanie za pomocą programu z zadania nr 4. Zaproponuj metodę obliczania funkcji $\dot{V}(x)$ (numeryczną lub symboliczną).

W sprawozdaniu należy opisać:

- a) czego dotyczyło laboratorium,
- b) przedstawić sposób rozwiązania zadań 1-5,
- c) jakie są zalety i wady omawianego zagadnienia.