Grau d'Estadística UB-UPC

Programació Lineal i Entera Tema 1 :

Fonaments de Programació Lineal

F.-Javier Heredia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Programació Lineal: introducció i propietats

1. Introducció

Definició problema de Programació Lineal, exemples i origen històric.

2. Propietats geomètriques dels problemes de (PL)

- Políedres i polítops.
- Classificació dels problemes (PL).
- Políedre en forma estàndard.
- Convexitat i poliedres.
- Punts extrems: definició, teoremes d'existència i optimalitat.
- Solucions bàsiques factibles: definició, càlcul i teorema d'equivalència.

Bibliografia: Cap. 2 - 5 "Introduction to Linear Optimization", D. Bertsimas, N. Tsitsiklis

Def. problema de Programació Lineal (PL)

Def. Problema de programació lineal: donats els vectors $c, l, u \in \mathbb{R}^n, b \in \mathbb{R}^m$ i la matriu $A \in \mathbb{R}^{m \times n}$ es defineix el problema de programació lineal com:

$$(PL) \begin{cases} \min_{x \in \mathbb{R}^n} z = & c'x & \text{funció objectiu} \\ s. a. : & \\ & Ax & \lessgtr & b & \text{constriccions} \\ & & l \le x \le u & \text{fites} \end{cases}$$

- **Regió factible de** (PL) : $\mathcal{F} = \{x \in \mathbb{R}^n : Ax \leq b, l \leq x \leq u\}$
- **Solució factible:** $x \in \mathbb{R}^n$ factible de $(PL) \Leftrightarrow x \in \mathcal{F}$
- Solució òptima: $x^* \in \mathcal{F}$ tal que $c'x^* \leq c'y, \forall y \in \mathcal{F}$.
- Altres formes d'expressar (PL) :

$$(\text{PL}) \min_{x \in \mathbb{R}^n} \{c'x | x \in \mathcal{F}\} \quad ; \quad (\text{PL}) \begin{cases} \min_{x \in \mathbb{R}^n} z = \sum_{i=1}^n c_i x_i \\ s. a. : \\ \sum_{i=1}^n a_{ji} x_j \leqslant b_j \quad j = 1, 2, \dots, m \\ l_i \leq x_i \leq u_i \qquad i = 1, 2, \dots, n \end{cases}$$

Problema de programació de la producció

Paràmetres:

- n: nre. productes a fabricar
- *m*: nre. recursos consumits
- c_i : benfici producte i, i = 1, ..., n
- b_j : disponibilitat recurs j, j = 1, ..., m
- a_{ji} : quantitat recurs j consumit pel producte i.

Variables:

• x_i : quantitat a fabricar producte i

Funció objectiu: es maximitzen els beneficis totals.

Constriccions: el programa de producció no consumeix més recursos dels existents.

$$\left\{ \begin{aligned} \max_{x \in \mathbb{R}^n} z &=& \sum_{i=1}^n c_i x_i \\ s. \, a. &: & \\ & \sum_{i=1}^n a_{ji} x_i &\leq b_j \quad j = 1, 2, ..., m \\ & x_i \geq 0 \qquad \qquad i = 1, 2, ..., n \end{aligned} \right.$$

Problema de la dieta

Paràmetres:

- n: nre. aliments diferents disponibles.
- *m*: nre. de nutrients essencials dieta.
- c_i : cost aliment i, i = 1, ..., n
- b_j : quantitat diària mínima nutrient j, j = 1, ..., m
- a_{ji}: quantitat nutrient j aportat per kg aliment i.

Variables:

x_i: quantitat diària aliment i a la dieta.

Funció objectiu: es minimitzen el preu total de la dieta.

Constriccions: la dieta aporta les quantitats necessàries de cada nutrient.

$$(PL) \begin{cases} \min_{x \in \mathbb{R}^n} z = & \sum_{i=1}^n c_i x_i \\ & \sum_{i=1}^n a_{ji} x_i \geq b_j \quad j = 1, 2, \dots, m \\ & x_i \geq 0 \qquad \qquad i = 1, 2, \dots, n \end{cases}$$

Problema de transport

Paràmetres:

- n: nre. centres producció.
- *m*: nre. centres consum
- c_{ij}: cost unitari transport entre centres i, j
- p_i : producció centre i, i = 1, ..., n
- d_i : demanda centre consum j, j = 1, ..., m

Variables:

• x_{ij} : quantitat de producte a transportar de i a j.

Funció objectiu: es minimitzen els costos totals de transport

Constriccions:

- Cada centre de producció envia tota la seva producció.
- 2) Cada centre de consum rep la seva demanda.

Problema de transport

Paràmetres:

- n: nre. centres producció.
- *m*: nre. centres consum
- c_{ij}: cost unitari transport entre centres i, j
- p_i : producció centre i, i = 1, ..., n
- d_i : demanda centre consum j, j = 1, ..., m

Variables:

• x_{ij} : quantitat de producte a transportar de i a j. **Funció objectiu**: es minimitzen els costos totals de transport

Constriccions:

- Cada centre de producció envia tota la seva producció.
- 2) Cada centre de consum rep la seva demanda.

$$\begin{cases} \min_{x \in R^{n \times m}} z = & \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} \\ \text{S. a.:} \\ 1) & \sum_{j=1}^{m} x_{ij} = p_i \quad i = 1, 2, ..., n \\ \\ 2) & \sum_{i=1}^{n} x_{ij} = d_j \quad j = 1, ..., m \\ \\ x_{ij} \ge 0 & i = 1, 2, ..., n \\ \\ j = 1, ..., m \end{cases}$$

Origens històrics de la PL

• Període clàssic, fonaments:

- Fourier, 1826: mètode per a resoldre sistemes d'inequacions lineals (eliminació de Fourier-Motzkin, secció 2.8 Bertsimas).
- Farkas, Caratheodory, Minkowsky, 1870-1930: fonaments.
- von Neumann, 1928: teoria de dualitat a partir de la teoria de jocs.
- Kantorovich, Koopmans, 1939: formulacions com a PL de problemes d'economia (Premis Nobel d'economia 1975).

Període modern, algorismes:

- George Dantzig, 1947: mètode del símplex.
 - * 1950: aplicacions.
 - * 1960: optimizació de grans dimensions (algorisme Dantzig-Wolfe).
 - 4 1970: complexitat algorísmica.
- Khachyan, 1979: mètode de l'el·lipsoide.
- Karmarkar, 1984: mètodes de punt interior.

Políedres i polítops : definicions

 Def. de políedre: un políedre P és un conjunt de ℝⁿ que pot ser expressat com a intersecció d'una col·lecció finita de semiespais:

$$P = \{x \in \mathbb{R}^n | Ax \ge b\}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

$$(PL) \min_{x \in \mathbb{R}^n} \{ c' x | x \in \mathcal{F} \equiv P \}$$

- Def. de polítop: un polítop és un políedre no buit i fitat.
 - Prop: els polítops són conjunts compactes (tancats i fitats)

 $\rightarrow \begin{vmatrix} -A^1 \\ A^2 \\ A^3 \end{vmatrix} x \ge \begin{vmatrix} -b^1 \\ b^2 \\ b^3 \end{vmatrix}$

 $a_1'x \ge b$

Classificació dels problemes (PL) (1/3)

- Def. Problema (PL) amb solució òptima:
 - Problema (PL) t.q. $\exists x^* \in P : c'x^* \le c'y, \forall y \in P, y \ne x^*$ (x^* solució òptima).
 - Problema (PL) t.q. $\{c'x|x \in P\}$ està fitat inferiorment.
 - Si x^* no és únic, les (infinites) solucions òptimes de (PL) s'anomenen òptims alternatius
- **Def. Problema** (PL) infactible: problema (PL) amb $P = \emptyset$.
- Def. Problema (PL) il-limitat:
 - Problema (PL) factible t.q. $\{c'x|x \in P\}$ no està fitat inferiorment.
 - Problema (PL) factible t.q. $\exists x \in P, d \in \mathbb{R}^n$ que satisfan:
 - $x + \theta d \in P, \forall \theta > 0$ (diem que d és un raig del políedre P).
 - c'd < 0 (diem que d és una direcció de descens sobre x).

Classificació dels problemes (PL) (2/3)

(PL) amb solució òptima

$$(PL) \begin{cases} \min & z = x_1 + x_2 \\ \text{s.a.:} & x_1 + 2x_2 \ge 2 \quad (r1) \\ & x_1 & \ge 1 \quad (r2) \\ & x_1, & x_2 \ge 0 \end{cases}$$

$$(PL) \begin{cases} \max & z = x_1 + x_2 \\ \text{s.a.:} & x_1 + x_2 \le 1 \\ 2x_1 & \le 1 \end{cases} (r1) \\ x_1, x_2 \ge 0$$

Solució única:

Infinites solucions (òptims alternatius):

$$P^* = \{ x \in \mathbb{R}^2 | \lambda x^1 + (1 - \lambda) x^2, \lambda \in [0, 1] \}$$

Classificació dels problemes (PL) (3/3)

• (PL) il-limitat (∄mínim):

• (PL) infactible (∄solució factible):

$$(PL) \begin{cases} \min & z = -x_1 - x_2 \\ \text{s.a.:} & x_1 + 2x_2 \ge 2 & (r1) \\ x_1 & \ge 1 & (r2) \end{cases} (PL) \begin{cases} \max & z = 2x_1 + x_2 \\ \text{s.a.:} & x_1 + x_2 \le -1 & (r1) \\ 2x_1 & \le -1 & (r2) \\ x_1, & x_2 \ge 0 \end{cases}$$

Políedres en forma estàndard

Def. de políedre en forma estàndard: $P_e = \{x \in \mathbb{R}^n | Ax = b, x \geq 0\}$

i.
$$P_e$$
 és un políedre: $Ax = b, x \ge 0 \to \begin{bmatrix} A \\ -A \\ I \end{bmatrix} x \ge \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix}$

Tot políedre $P = \{x \in \mathbb{R}^n | Ax \ge b\}$ es pot expressar com a políedre en forma estàndard:

$$Ax \ge b \xrightarrow{u,v \ge 0} \overbrace{[A \quad -A \quad -I]}^{x_e} \underbrace{\begin{bmatrix} u \\ v \end{bmatrix}}_{w} = A_e x_e = b, x_e \ge 0$$

- **Def.** (PL) en forma estàndard: $(PL)_e \min_{x \in \mathbb{R}^n} \{c'x : x \in P_e\}$
- Proposició: Tot problema (PL) es pot transformar en un problema equivalent en forma estàndard $(PL)_e$, en el sentit que:
 - a) donada una solució factible d'un problema podem trobar una solució factible de l'altre amb el mateix cost, i
 - b) les solucions òptimes de (PL) i $(PL)_e$ coincideixen.

Transformació a la forma estàndard

(PL)	$(PL)_e$		
$a_j'x \leq b_j$	$a'_j x + x_k = b_j, x_k \ge 0, (x_k \text{ variable de folga})$		
$a_j'x \ge b_j$	$a'_j x - x_k = b_j$, $x_k \ge 0$, $(x_k \text{ variable d'escreix})$		
$\underline{b}_j \le a_j' x \le \overline{b}_j$	$a'_j x + x_k = \overline{b}_j, \qquad 0 \le x_k \le \overline{b}_j - \underline{b}_j$		
$x_i \leq 0$	Canvi de variable: $y_i = -x_i$, $y_i \ge 0$		
x_i lliure	Mètode 1: $x_i=u_i-v_i$, u_i , $v_i\geq 0$ Mètode 2: s'elimina x_i d'una constricció $a_j'x=b_j$		
$x_i \le u_i$	Canvi de variable: $y_i = u_i - x_i$, $y_i \ge 0$		
$l_i \leq x_i$	Canvi de variable: $y_i = x_i - l_i$, $y_i \ge 0$		
$\max c'x$	$\min -c'x$		

• Analitzeu l'equivalència de les solucions factibles i de l'òptim del següent problema i el seu problema estàndard associat: $(PL) \min\{x_1 + x_2 | x_1 + x_2 \le 1, x \ge 0\}$

 $\max_{x \in \mathbb{R}^3} z =$

s. a.:

• Transformeu a la forma estàndard (PL)

$$4 \le 2x_1 + x_2 + x_3 \le 20$$

$$3x_1 - x_2 + 2x_3 \le 6$$

$$x_1 \ge 0 \quad x_2 \ge 3$$

 $+2x_2 +3x_3$

Convexitat i políedres (1/2)

• **Def. conjunt convex**: un conjunt $S \subset \mathbb{R}^n$ és convex si $\forall x, y \in \mathcal{S}$, $\forall \lambda \in [0,1]$: $\lambda x + (1 - \lambda)y \in \mathcal{S}$.

No Convex

• **Def. combinació convexa**: siguin $x^1, ..., x^k \in \mathbb{R}^n$, i

$$\lambda_1,\ldots,\lambda_k\in\mathbb{R}$$
 t.q. $\sum_{i=1}^k\lambda_i=1,\ \lambda_i\geq 0$ $i=1,\ldots,k.$

Llavors, $x = \sum_{i=1}^{k} \lambda_i x^i$

és combinació convexa de $x^1, ..., x^k$

Def. embolcall convex (convex hull) de $x^1, ..., x^k$: conjunt de totes les combinacions convexes de $x^1, ..., x^k$:

$$CH(x^1, ..., x^k) = \{x \in \mathbb{R}^n | x = \sum_{i=1}^k \lambda_i x_i, \lambda_i \ge 0 \sum_{i=1}^k \lambda_i = 1\}$$

Convexitat i políedres (2/2)

- Propietats (Ta 2.1 B&T):
 - a) La intersecció de conjunts convexos és convexa.
 - b) Tot poliedre és un conjunt convex.
 - c) La combinació convexa d'un nombre finit d'elements d'un conjunt convex pertany al conjunt convex.
 - d) L'embolcall convex d'un conjunt finit de vectors és un conjunt convex.
- b) \Rightarrow La regió factible dels problemes (PL) és un conjunt convex.

Propietats convexitat (1/3)

Propietats (Ta 2.1 B&T):

a) La intersecció de conjunts convexos és convexa.

Demo:

- Sigui S_i , $i \in \mathcal{I}$ conjunts convexos, $x, y \in \bigcap_{i \in \mathcal{I}} S_i$ i $\lambda \in [0,1]$.
- $\forall i \in \mathcal{I}, S_i$ és convex i conté x i $y \Rightarrow \lambda x + (1 \lambda)y \in S_i, \forall i \in \mathcal{I} \Rightarrow \bigcap_{i \in \mathcal{I}} S_i$ conv.
 - Tot políedre és un conjunt convex.

Demo:

Sigui $x, y \in P = \{x \in \mathbb{R}^n | Ax \ge b\}$ i $w = \lambda x + (1 - \lambda)y$. Llavors:

$$Aw = \lambda Ax + (1 - \lambda)Ay \ge \lambda b + (1 - \lambda)b = b \Rightarrow w \in P \Rightarrow P \text{ convex } \blacksquare$$

Propietats convexitat (2/3)

Propietats (Ta 2.1 B&T)

c) La combinació convexa d'un nombre finit d'elements d'un conjunt convex pertany al conjunt convex.

Demo:

- Per inducció:
 - Cert per $x^1, x^2 \in \mathcal{S}$, convex. Suposem que es satisfà per $x^1, \dots, x^k \in \mathcal{S}$ (1) i demostrem que es satisfà per $x^1, ..., x^k, x^{k+1} \in S$.
 - Sigui $\lambda_1, \dots, \lambda_{k+1} \ge 0, \sum_i \lambda_i = 1$. Assumint que $\lambda_{k+1} \ne 1$ tenim:

$$\sum_{i=1}^{k+1} \lambda_i x^i = \lambda_{k+1} x^{k+1} + (1 - \lambda_{k+1}) \sum_{i=1}^k \frac{\lambda_i}{(1 - \lambda_{k+1})} x^i$$

- Els coeficients $\tilde{\lambda}_i$ son ≥ 0 i $\sum_i \tilde{\lambda}_i = 1 \stackrel{(1)}{\Rightarrow} \tilde{x} = \sum_{i=1}^k \tilde{\lambda}_i x^i \in \mathcal{S}$
- $\mathcal{S} \text{ convex} \Rightarrow \lambda_{k+1} x^{k+1} + (1 \lambda_{k+1}) \tilde{x} = \sum_{i=1}^{k+1} \lambda_i x^i \in \mathcal{S} \blacksquare$

Propietats convexitat (3/3)

Propietats (Ta 2.1 B&T)

d) L'embolcall convex d'un conjunt finit de vectors és un conjunt convex.

Demo:

• Sigui: $S = CH(x^1, ..., x^k)$ i $y, z \in S$

$$- y = \sum_{i=1}^k \alpha_i x^i \in \mathcal{S} ; \alpha_i \ge 0, \sum_{i=1}^k \alpha_i = 1$$

$$- z = \sum_{i=1}^{k} \beta_i x^i \in \mathcal{S} ; \beta_i \ge 0, \sum_{i=1}^{k} \beta_i = 1$$

• Sigui $\lambda \in [0,1]$. Llavors:

$$\lambda y + (1+\lambda)z = \lambda \sum_{i=1}^k \beta_i x^i + (1-\lambda) \sum_{i=1}^k \beta_i x^i = \sum_{i=1}^k \overline{(\lambda \alpha_i + (1-\lambda)\beta_i)} x^i$$

Els coeficients δ_i satisfan $\delta_i \geq 0$ i $\sum_i \delta_i = 1 \Rightarrow \lambda y + (1 + \lambda)z \in \mathcal{S} \Rightarrow \mathcal{S}$ convex \blacksquare

Punts extrems, definició

Def. punt extrem: sigui el políedre P. Un vector $x \in P$ és un punt extrem de P si no existeix cap parell de vectors $y, z \in P$, diferents de x, ni cap escalar $\lambda \in [0,1]$ tals que:

$$x = \lambda y + (1 - \lambda)z$$

Punts extrems, existència

Definició: direm que el políedre $P \subset \mathbb{R}^n$ conté una línia si existeix el vector $x \in P$ i el vector no nul $d \in \mathbb{R}^n$ tals que $x + \lambda d \in P$ per a tot escalar λ .

Teorema 1: sigui el políedre no buit $P = \{x \in \mathbb{R}^n | a_i'x \ge b_i, i = 1, ..., m\}$ Llavors P té com a mínim un punt extrem $\Leftrightarrow P$ no conté cap línia. (Ta 2.6 B&T)

Corol-laris:

- Tot poliedre no buit fitat (polítop) té, com a mínim, un punt extrem.
- Tot políedre en forma estàndard no buit té, com a mínim, un punt extrem $(doncs P_e \subset \{x \in \mathbb{R}^n | x \ge 0\})$.

Punts extrems, optimalitat (1/3)

Teorema 2 "Sigui (PL) $\min_{x \in \mathbb{D}^n} \{c'x | x \in P\}$, P políedre. Suposem que P conté algun punt extrem i que existeix una solució òptima. Llavors existeix una solució òptima que és un pt. extrem de P." (Ta 2.7 B&T)

Demo:

- El conjunt $Q \neq \emptyset$ de solucions òptimes de (PL) és un políedre que conté un punt extrem:
 - Sigui z^* el valor òptim de la funció objectiu. Llavors $P^* = \{x \in \mathbb{R}^n \mid Ax \ge b, c'x = z^*\}$ és un políedre.
 - $P^* \subset P$ $P \text{ no conté cap línia} \Rightarrow P^* \text{ no conté cap línia} \Rightarrow P^* \text{ té punts extrems}.$

Punts extrems, optimalitat (1/2)

Demo (cont):

- 2. Sigui x^* un punt extrem de P^* . Demostrarem, per reducció a l'absurd, que x^* és punt extrem de P:
 - Si x^* **no** és pt. extrem de P llavors:

$$\exists y, w \in P, y \neq x^*, v \neq x^* \ i \ \lambda \in [0,1] \ t.q.: x^* = \lambda y + (1 - \lambda)v$$

Aleshores:

$$c'x^* = \lambda \overset{\geq z^*}{\widetilde{c'y}} + (1 - \lambda) \overset{\geq z^*}{\widetilde{c'v}} = z^* \Rightarrow c'y = c'v = c'x^* \Rightarrow y, v \in \mathbb{Q} \Rightarrow x^*$$
 no és pt. extrem de P^* : contradicció.

Llavors, existeix un vector x^* , pt. extrem del conjunt solució P^* , que és punt extrem de P ■

Punts extrems, optimalitat (1/3)

Teorema 2 "Sigui $(PL) \min_{x \in \mathbb{R}^n} \{c'x | x \in P\}$, P políedre. Suposem que P conté algun punt extrem i que existeix una solució òptima. Llavors existeix una solució òptima que és un pt. extrem de P." (Ta 2.7 B&T)

Interpretació:

- Hipòtesis: analitzem els següents (PL) a la vista de les hipòtesis:
 - a) $(PL) \min_{x \in \mathbb{R}^2} \{ c'x \mid x_1 + x_2 \ge 3 \}$
 - b) $(PL) \min_{x \in \mathbb{R}^2} \{ c'x | x_1 + x_2 \ge 3, x_1 + x_2 \le 1 \}$
 - c) $(PL) \min_{x \in \mathbb{R}^2} \{-x_1 x_2 | x_1 + x_2 \ge 3, x \ge 0\}$
- Tesis:

Considerem $(PL) \min_{x \in \mathbb{R}^2} \{c'x | x_1 + x_2 \le 1, x \ge 0\}$. On podem trobar l'òptim?

Solucions Bàsiques Factibles : definició

 Comentari: La caracterització de les solucions òptimes de problemes (PL) com a punts extrems no permet el seu tractament computacional

→ solucions bàsiques factibles

- Def.: Solució Bàsica (SB):
 - Sigui $(PL)_e \min_{x \in \mathbb{R}^n} \{c'x | Ax = b, x \ge 0\}$, A matriu $m \times n$ de rang complet.
 - El vector $x \in \mathbb{R}^n$ és una solució bàsica de $(P)_e$ sii Ax = b i existeixen indexs $\mathcal{B} = \{B(1), ..., B(m)\}$ tals que:
 - La matriu bàsica $B \stackrel{\text{def}}{=} [A_{B(1)}, A_{B(2)}, \dots, A_{B(m)}]$ és no singular.
 - ii. Si $i \notin \mathcal{B}$ llavors $x_i = 0$.
- **Def.: Solució Bàsica Factible (SBF)**: solució bàsica tal que $x \ge 0$.
- **Def.: Solució Bàsica Degenerada (SBD)** : s.b. tal que $\exists i \in \mathcal{B} : x_i = 0$.

Assumpció de rang complet de A

Teorema 3: "Sigui P_e un políedre estàndard no buit amb $A \in \mathbb{R}^{m \times n}$ i files a'_1, \dots, a'_m . Suposem que rang(A) = k < m i que les files $a'_{i_1}, \dots, a'_{i_k}$ són linealment independents. Considerem el políedre

$$Q_e=\left\{x\in\mathbb{R}^n\big|a_{i_1}'x=b_{i_1},\dots,a_{i_k}'x=b_{i_k},x\geq 0\right\}$$
 Llavors $Q_e=P_e$."

Demostració: exercici.

Així doncs, si A no és de rang complet i P_e no és buit, les files linealment dependents de A tenen associades constriccions redundants i es poden eliminar de la formulació del problema sense que la regió factible canviï.

• Exemple:
$$P_e = \left\{ x \in \mathbb{R}^3 \middle| \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, x \ge 0 \right\}$$

Solucions Bàsiques: càlcul.

Càlcul d'una SB: considerem el següent políedre:

$$P = \left\{ x \in \mathbb{R}^2 \middle| \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} x \le \begin{bmatrix} 6 \\ 0 \end{bmatrix}, x \ge 0 \right\}$$

Es sel·leccionen m variables d'indexos $\mathcal{B} = \{B(1), ..., B(m)\}$ amb columnes de A linealment independents (variables bàsiques):

$$x_B = [x_{B(1)}, x_{B(2)}, \dots, x_{B(m)}]', B \stackrel{\text{def}}{=} [A_{B(1)}, A_{B(2)}, \dots, A_{B(m)}]$$

2. Es fixen les n-m variables no bàsiques a zero:

$$\mathcal{N} \stackrel{\text{def}}{=} \{i \mid i \notin \mathcal{B}\} \equiv \{N(1), \dots, N(n-m)\}$$

$$x_N = [0]$$
 , $A_N \stackrel{\text{def}}{=} [A_{N(1)}, A_{N(2)}, \dots, A_{N(n-m)}]$ (matriu no-bàsica)

3. Es calcula el valor de les variables bàsiques:

$$Ax = \begin{bmatrix} B & A_N \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + A_N \widetilde{x_N} = Bx_B = b, \ x_B = B^{-1}b$$

Conjunt de les SB d'un problema PL

Problema de planificació de la producció en forma estàndard:

$$(PL) \begin{cases} \min & z = -350x_1 & -300x_2 \\ \text{s.a.:} & x_1 & +x_2 & +x_3 & = 200 & (r1) \\ & 9x_1 & +6x_2 & +x_4 & = 1566 & (r2) \\ & 12x_1 & +16x_2 & +x_5 & = 2880 & (r3) \\ & x_1 \geq 0, & x_2 \geq 0, & x_3 \geq 0, & x_4 \geq 0 & x_5 \geq 0 \end{cases}$$

Nombre total de SB $\leq {n \choose m} = {5 \choose 3} = 5!/3! \ 2! = 10$

- 74				
s.b.	x_B	x_N	\boldsymbol{x}^{-}	Z
1	x_3, x_4, x_5	x_1, x_2	x = [0 0 200 1566 2880]'	0
2	x_1, x_3, x_5	x_2, x_4	x = [174 0 26 0 792]'	-60900
3	x_1, x_2, x_5	x_3, x_4	$x = [122 78 0 0 168]' = x^*$	-66100
4	x_1, x_2, x_4	x_3, x_5	x = [80 120 0 126 0]'	-64000
5	x_2, x_3, x_4	x_1, x_5	x = [0 180 20 486 0]'	-54000
6	x_1, x_2, x_3	x_4, x_5	x = [108 99 -7 0 0]'	-67500
7	x_1, x_3, x_4	x_2, x_5	x = [240 0 -40 -594 0]'	-84000
8	x_1, x_4, x_5	x_2, x_3	x = [200 0 0 -234 480]'	-70000
9	x_2, x_4, x_5	x_1, x_3	x = [0 200 0 366 -320]'	-60000
10	x_2, x_3, x_5	x_1, x_4	x = [0 261 -61 0 -1296]'	-78300

Solucions bàsiques factibles

solució bàsica factible òptima

solucions bàsiques infactibles

Solucions Bàsiques Factibles i punts extrems

Ta. equivalència punts extrems - SBF

Teorema 3 : "Sigui P un políedre no buit en forma estàndard de rang complet, i sigui $x^* \in P$. Llavors: x^* és un punt extrem $\Leftrightarrow x^*$ és una solució bàsica factible."

Demo: (pt. extrem \Rightarrow SBF)

- Sigui $x = [x_1, x_2, ..., x_r, 0, ..., 0]'$ punt extrem de $P \Rightarrow Ax = b \Rightarrow \sum_{i=1}^r A_i x_i = b$ (1)
- Els vectors A_i i=1,2,...,r son linealment independents (per red. l'absurd) :
 - Considerem que x és punt extrem i $\exists \alpha_i \neq 0 : \sum_{i=1}^r \alpha_i A_i = 0$ (2)
 - Considerant (1), (2) i $\theta > 0$ tenim:

$$\sum_{i=1}^{r} A_i(x_i + \theta \alpha_i) = b \text{ i } \sum_{i=1}^{r} A_i(x_i - \theta \alpha_i) = b$$
 (3)

- Sigui θ prou petit com per que $(x_i + \theta \alpha_i) > 0$ i $(x_i \theta \alpha_i) > 0$, i = 1,2,...,r, llavors:
 - $x^{1} = [x_{1} + \theta \alpha_{1}, ..., x_{r} + \theta \alpha_{r}, 0, ..., 0]', x^{2} = [x_{1} \theta \alpha_{1}, ..., x_{r} \theta \alpha_{r}, 0, ..., 0]',$
 - $x^{1}, x^{2} \in P : (3) \Rightarrow Ax^{1} = b, Ax^{2} = b; x^{1}, x^{2} \ge 0$
 - $x = \frac{1}{2}x^1 + \frac{1}{2}x^2 \Rightarrow x$ no és pt. extrem $\Rightarrow A_i, i = 1, 2, ..., r$ lin. independents
- $A_i \in \mathbb{R}^m$, i = 1, 2, ..., r son linealment independents $(\Rightarrow r \leq m) \Rightarrow$ formen una base (amb

Ta. equivalència punts extrems - SBF

Demo (cont.): (SBF⇒ pt. extrem)

- 1. Sigui $x \in P$, SBF $\Rightarrow x = [x_1, x_2, ..., x_s, 0, ..., 0]'$ amb $x_j > 0, j = 1, 2, ..., s, s \le m$. (1)
- 2. Llavors $\sum_{i=1}^{s} A_i x_i = b$ i A_i , i = 1, 2, ..., s son linealment independents (doncs x SBF).
- 3. x és un pt. extrem (per reducció l'absurd) :
 - * Considerem que x NO és punt extrem. Llavors x es pot expressar com a combinació convexa dels vectors de P x^1 i x^2 :

$$x = \lambda x^{1} + (1 - \lambda)x^{2}, x^{1}, x^{2} \in P, x^{1} \neq x^{2}, 0 < \lambda < 1$$
 (2)

 $* (4) \xrightarrow{A_i \text{ lin. independent}} x_i^1 = x_i^2, i = 1, ..., s \Rightarrow x^1 = x^2 \Rightarrow x \text{ pt. extrem } \blacksquare$

Ta. equivalència punts extrems - SBF

Teorema 3 : "Sigui P un políedre no buit en forma estàndard de rang complet, i sigui $x^* \in P$. Llavors: x^* és un punt extrem $\Leftrightarrow x^*$ és una solució bàsica factible."

Interpretació:

- **Hipòtesis:** P un políedre estàndard no buit $\xrightarrow{\text{Cor. ii Ta 1}} \exists$ **un pt extrem**.
- **Tesi:** la correspondència pt. extrem s.b.f. **és biunívoca**?
 - Considerem les SBF de (PL) en funció del valor de $b_2 \in [0,1]$:

$$(PL) \begin{cases} \min & z = c_1 x_1 + c_2 x_2 \\ s. a.: & x_1 + x_2 \le 1 \\ & x_2 \le b_2 \end{cases} (r1)$$

$$x_1, x_2 \ge 0$$

Solucions bàsiques: exemple 1

(PL)
$$\begin{cases} \min & z = -4x_1 + x_2 \\ \text{s.a.:} & 3x_1 + x_2 \le 6 \quad (r1) \\ -x_1 + 2x_2 \le 0 \quad (r2) \\ x_1, & x_2 \ge 0 \end{cases}$$

$$\mathbf{x}_{B}^{1} : \begin{cases} \mathcal{B} = \{3,1\}, & x_{B}^{1} = \begin{bmatrix} x_{3} \\ x_{1} \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \\ \mathcal{B} = \{3,2\}, & x_{B}^{1} = \begin{bmatrix} x_{3} \\ x_{2} \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \\ \mathcal{B} = \{3,4\}, & x_{B}^{1} = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

•
$$x_B^2$$
: $\mathcal{B} = \{1,4\}$, $x_B^2 = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 3 & 0 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$x_B^3: \mathcal{B} = \{1,2\}, \ x_B^3 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 12/7 \\ 6/7 \end{bmatrix}$$

Solucions bàsiques: exemple 2

Solucions bàsiques: exemple 3

•
$$x_B^1 : \mathcal{B} = \{1,4\}, \ x_B^1 = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 1 \\ 5 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

•
$$x_B^2 : \mathcal{B} = \{2,4\}, \ x_B^2 = \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 1 \\ 3 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

•
$$x_B^3 : \mathcal{B} = \{2,3\}, \ x_B^3 = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 3 \\ 3 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

•
$$x_B^4 : \mathcal{B} = \{3,5\}, \ x_B^4 = \begin{bmatrix} x_3 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

•
$$x_B^5 : \mathcal{B} = \{1,3\}, \quad x_B^5 = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 3 \\ 5 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix} = \begin{bmatrix} 1 \\ 5/3 \end{bmatrix}$$

•
$$x_B^6 : \mathcal{B} = \{4,5\}, \quad x_B^6 = \begin{bmatrix} x_4 \\ x_5 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix}$$

 K_P

