Predicting the Market Value of FIFA Players

By Luiz Augusto Carneiro

Sydney - May 2020

Photo by <u>Leonard von Bibra</u> on <u>Unsplash</u> ds-syd-pt-10dec19

Objective

Using the soFIFA.com dataset, predict a

player's market value

based on his physical and

technical characteristics.

Summary

ETL / EDA

- 2019 sofifa.com
- The target variable is the market value
- The data set has 18,147
 observations, with 39
 numerical features
 (normalised) and 3
 categorical features (193
 dummies generated):
 nationality, preferred foot and position.
- There are no missing values

Modelling

Models=RF and GBM

Top 1 characteristc = REACTIONS

Most important features are selected by using random forest and gbm models:

reactions, ballcontrol, standingtackle, dribbling, shortpassing, shotpower, finishing

Insights

- reactions is by far the most important feature
- The linear models (Linear regression and GLM) do not perform well.
- polynomial model has the best performance:
 - R^2 (train) = 86.5%
 - R^2 (test) = 85.8%

The Most Important Features

Random Forest

GBM

The seven most important features are the same for random _ forest and GBM.

The relative importance of the remaining features is very low.

importan		importance	importance	
0.59	reactions	0.614950	reactions	
0.13	ballcontrol	0.141138	ballcontrol	
0.047	standingtackle	0.030285	standingtackle	
0.030	dribbling	0.022470	dribbling	
0.023	shortpassing	0.011981	shortpassing	
0.018	shotpower	0.011932	shotpower	
0.015	finishing	0.011815	finishing	
0.013	gkdiving	0.009748	marking	
0.011	headingaccuracy	0.009563	gkreflexes	
0.010	sprintspeed	0.009108	weight_kg	
0.009	gkreflexes	0.008370	sprintspeed	
0.009	gkhandling	0.007923	slidingtackle	
0.008	marking	0.007714	stamina	
0.008	slidingtackle	0.007538	headingaccuracy	
0.007	stamina	0.007282	gkdiving	

Partial Dependence Plots

The plots below show the isolated impact of each feature on the target

Predicting the Market Value

The seven most important features are used to predict the market value

The polynomial model (degree 4) has the best performance:

- R^2 (train) = 86.5%
- R^2 (test) = 85.8%

The **linear regression model** has a much worse performance:

- R^2 (train) = 30.6%
- R^2 (test) = 31.0%

The **generalised linear model** (GLM) does not perform well, based on its MSE.

The End

Any questions?!!

Thank you!

Luiz Augusto Carneiro carneiro_aus@yahoo.com.au

