# AHOO! Research Labs

# Fast Parallel PageRank



David Gleich
Leonid Zhukov
Pavel Berkhin

#### Websearch Engines



At search time, (1) we first look up all pages that contain the query word in the inverted index. Then (2) compute a query similarity score for each page and lookup the PageRank score (as well as other features). Finally, we (3) sort the pages and return the results.

At the indexing stage, a web-crawler traverses links between web pages and builds a text database and link database for all pages on the web.

We can do off-line analysis of these databases to build an inverted index, which returns pages that contain a a word, and global link scores like Pagerank.





#### **Parallel Motivation**

The datasets we have are huge and span much more storage than is possible on a single machine.

We hope to store the matrices in parallel to accelerate the computations.

| Name     | # Nodes | # Links | Storage |
|----------|---------|---------|---------|
| edu      | 2M      | 14M     | 176MB   |
| yahoo-r2 | 14M     | 266M    | 3.25GB  |
| uk       | 18.5M   | 300M    | 3.67GB  |
| yahoo-r3 | 60M     | 850M    | 10.4GB  |
| db       | 70M     | 1B      | 12.3GB  |
| av       | 1.4B    | 6.6B    | 80GB    |

#### **Our Approach**

- Graph in memory.
- Vast computational power.
- Efficient numerical methods.

**Linear System** 

Parallel computers



# The PageRank Vector

Question: If someone is randomly surfing the web, what is the probability that they will be on a certain page?

**Answer:** It's PageRank!

**How:** Convert the web-graph into a Markov chain modeling a random surfer.







### **Deriving the PageRank Equation**

1. Normalize out links.

$$P = D^{-1}A$$

2. Fix dangling nodes.

$$P' = P + dv^T$$

3. Add random moves.

$$P'' = cP' + (1-c)ev^T$$

After these changes the matrix is row-stochastic and irreducible ⇒

- a. A unique stationary distribution exists.
- b. Power iterations will converge to it.



A – adjacency matrix

D – out-degree matrix

d – dangling node indicator

v – personalization vector

c – teleportation coefficient



#### **PageRank Formulations**

PageRank is a stationary distribution of a Markov Chain.

#### Eigensystem

$$P''^{T}p = \lambda p$$
$$\lambda = 1$$

$$P'' = cP + c(dv^T) + (1-c)(ev^T)$$

#### Linear system

$$(I - cP^T)x = kv$$
$$p = \frac{x}{||x||}$$

$$k = k(x)$$

$$= ||x|| - c||P^T x||$$



### **Simple Stationary Iterations**

PageRank iterations

$$p^{(k+1)} = cP^T p^{(k)} + (1 - c||P^T p^{(k)}||_1)v$$

Linear system – Jacobi iterations

$$p^{(k+1)} = cP^{T}p^{(k)} + kv$$

Iteration Error

$$e^{(k)} = ||x^{(k)} - x^{(k-1)}||_1$$
  
 $r^{(k)} = ||b - Ax^{(k)}||_1$ 

Converges in k steps

$$k \sim \log(e^{(k)})/\log c$$



# Krylov Subspace Methods (KSP)

Consider a linear system

$$Ax = b$$

and residual

$$r = b - Ax$$

then the Krylov Subspace is

$$K_m = span\{r, Ar, A^2r, ..., A^mr\}$$

**Key Idea:** Use the extra information in the Krylov subspace to get a better approximation solution at the next step by explicitly minimizing within this subspace.

Important Note: KSP methods only use matrix-vector products.





### **Computational Methods**

PageRank Iterations: Convergence  $\sim \lambda_2/\lambda_1 = c$ .

Jacobi Iterations: Convergence similar to PR iterations.

Stationary Methods

GMRES: Most stable method, iterations can be expensive.

BiCG: Less stable but possibly faster than GMRES.

**BiCGSTAB:** "Combo" of BiCG and GMRES

Chebyshev, QMR, CGS,....

Krylov Subspace Methods

| Method   | Inner Products | SAXPY | Matrix-Vector | Storage  |
|----------|----------------|-------|---------------|----------|
| PAGERANK |                | 1     | 1             | M + 3v   |
| JACOBI   |                | 1     | 1             | M + 3v   |
| GMRES    | i+1            | i+1   | 1             | M+(i+5)v |
| BiCG     | 2              | 5     | 2             | M + 10v  |
| BiCGSTAB | 4              | 6     | 2             | M + 10v  |



#### **Building blocks of our system**



Custom

Off the shelf



**Gigabit Switch** 

RLX Blades
Dual 2.8 GHz Xeon
4 GB RAM
Gigabit Ethernet
120 Total



#### **Parallel Graphs**

7 nodes, 9 edges



Goal: 3 nodes/proc

| 0 | 1 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |
| 0 | 0 | 1 | 1 |   | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### Balance Nodes Between Processors

The ideal graph distribution is given by an NP-hard problem. The standard approximate algorithms (ParMeTIS, pjostle, spectral) all fail when applied to webgraphs.

#### **Practical solution**

Fill up processors consecutively by row and keep adding rows until

$$w_{rows}n_p + w_{nnz}nnz_p > (w_{rows}n + w_{nnz}nnz)/p$$
  
 $w_{rows}: w_{nnz} = 1:1,2:1,4:1$ 



# **Experimental results**

| Name                 | Size         | Power          | Jacobi         | GMRES     | BiCG      | BCGS          |
|----------------------|--------------|----------------|----------------|-----------|-----------|---------------|
| edu                  | 2M           | 84             | 84             | 21*       | 44*       | 21*           |
| 20 procs             | 14M          | 0.09/7.5s      | 0.07/6.5s      | 0.6/13.2s | 0.4/17.7s | 0.4/8.7s      |
| yahoo-r2             | 14M          | 71             | 65             | 12*       | 35*       | 17*           |
| 20 procs             | 266M         | 1.8/129s       | 1.9/126s       | 16/194s   | 8.6/300s  | 9.9/168s      |
| uk                   | 18.5M        | 73             | 71             | 22*       | 25*       | 11*           |
| 60 procs             | 300M         | 0.09/7s        | 0.1/10s        | 0.8/17.6s | 0.8/19.4s | 1.0/10.8s     |
| yahoo-r3<br>60 procs | 60M<br>850M  | 76<br>1.6/119s | 75<br>1.5/112s |           |           |               |
| db                   | 70M          | 62             | 58             | 29        | 45        | 15*           |
| 60 procs             | 1B           | 9.0/557s       | 8.7/506s       | 15/432s   | 15/676s   | 15/220s       |
| av<br>140 procs      | 1.4B<br>6.6B | 72<br>4.6/333s |                |           |           | 26<br>15/391s |

The size is the number of nodes (pages) and number of edges (links).

Each entry is the number of iterations, time per iteration, and total time. \* denotes a preconditioner. Residual is 10<sup>-7</sup>.



#### **Parallelization**



#### Full web parallelization



av: 1.4 B pages, 6.6 B links.



# **Convergence Results**





Time (sec)







# PageRank Acceleration Permutation

Domain lexicographic sorting reveals block structure in the webgraph.

http://host.domain.tld/path → http://tld.domain.host/path



bs-cc: 17 k pages, 133 k links





### **PageRank Acceleration Permutation**



av: 1.4 B pages, 6.6 B links.



# Applications – High c

If we decrease the probability of random jumps the surfer makes, the problem becomes ill-conditioned. The advanced linear systems can still converge in this case.



db: 70 M pages, 1 B links.



#### Conclusion

- PageRank can efficiently be computed as both an eigenvector and as a solution of a linear system on a distributed memory parallel machine.
- The best method to use is graph and computing architecture dependent.
- The PageRank problem scales wells on a fullyconnected network topology.
- The PageRank linear system can converge at high values of c.
- David Gleich, Leonid Zhukov, and Pavel Berkhin. "Fast Parallel PageRank: A Linear System Approach." Yahoo! Technical Report, 2004. www.stanford.edu/~dgleich/publications/prlinear-dgleich.pdf

