Math 335, Homework 5

Due Wednesday, March 10

- 1. Is the group D_4 (the group of symmetries of a square, under the operation of composition) cyclic? Carefully explain how you know.
- 2. (a) Let $G = \langle a \rangle$ be a cyclic group in which $\operatorname{ord}(a) = \infty$. Prove that

$$\langle a^k \rangle \subseteq \langle a^m \rangle$$

if and only if m|k. (**Hint**: A problem from Homework 4 will be helpful here.)

- (b) Give a counterexample to show that part (a) is false if ord(a) is finite. (**Hint**: Try making m larger than the order of a.)
- 3. Let G be any group, and let $a \in G$ be an element of order 15. What is the order of a^6 ? Of a^{10} ? Prove your answers.
- 4. Consider the group $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ under addition modulo n. We say that an element k of this group generates \mathbb{Z}_n if $\langle k \rangle = \mathbb{Z}_n$.
 - (a) List all of the elements of \mathbb{Z}_9 that generate \mathbb{Z}_9 .
 - (b) Prove that k generates \mathbb{Z}_n if and only if gcd(n, k) = 1.
- 5. Consider the group $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$ under addition modulo p, where p is a prime number. What are all of the subgroups of \mathbb{Z}_p ? Carefully explain how you know that you've found them all.