1.	$\exists x (F(x) \land \forall y (G(y) \to P(x,y)))$	Premise (given)		
2.	$F(x) \land \forall y (G(y) \to P(x,y))$	Existential Instantiation from (1)		
3.	$\forall y (G(y) \to P(x,y))$	Simplification from (2)		
4.	F(x)	Simplification from (2)		
5.	$G(y) \to P(x,y)$	Universal Instantiation from (3)		
6.	$\neg G(y) \lor P(x,y)$	Law 20 from (5)		
7.	$\forall x (F(x) \to \forall y (H(y) \to \neg P(x,y)))$	Premise (given)		
8.	$F(x) \to \forall y (H(y) \to \neg P(x,y))$	Universal Instantiation from (7)		
9.	F(x)	Simplification from (8)		
10.	$\forall y (H(y) \to \neg P(x,y))$	Simplification from (8)		
11.	$H(y) \to \neg P(x,y)$	Universal Instantiation from (10)		
12.	$\neg H(y) \lor \neg P(x,y)$	Law 20 from (11)		
13.	$G(y) \to \neg H(y)$	Resolution from $(6),(12)$		
14.	$\forall x (G(y) \to \neg H(y))$	Universal Generalization from (13)		

Thus, I conclude that $\forall x (G(x) \rightarrow \neg H(x))$ is ture.

I split task into two subtasks.

Firstly, suppose $x \in A - (A \cap B)$,

Therefore, $x \in A \land x \notin A \cap B$ (by definition of difference).

If $x \notin A \cap B$, then $x \notin B$ (by definition of intersection).

Since $x \in A$ and $x \notin B, x \in A \cup B$ but $x \notin B$

Therefore, $x \in (A \cup B) - B$ (by definition of difference).

Secondly, suppose $x \in (A \cup B) - B$.

Therefore, $x \in A \cup B$ and $x \notin B$ (by definition of difference).

If, $x \in A \cup B$, but $x \notin B$, then $x \in A$ (by deffinition of union).

Since, $x \in A$ and $x \notin B$, $x \notin A \cap B$ (by defination of intersection).

Therefore, $x \in A - (A \cap B)$ (by definition of difference).

Finally, we prove that $A - (A \cap B) = (A \cup B) - B$.

Student ID: **20514470**

Question 3

Injective(one-to-one):

Let $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R} \times \mathbb{R}$.

Suppose $F(x_1, y_1) = F(x_2, y_2)$, then $(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$.

Since, $(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$, then $x_1 + y_1 = x_2 + y_2$, $x_1 - y_1 = x_2 - y_2$.

Therefore, $x_1 = x_2, y_1 = y_2$. Therefore, the function is Injective(one-to-one).

Surjective(onto):

For every element $(a, b) \in \mathbb{R} \times \mathbb{R}$, that (x + y, x - y) = (a, b), with $(x + y, x - y) \in \mathbb{R} \times \mathbb{R}$. Thus, the function is Surjective(onto).

Finally, I conclude F is a one-to-one correspondence.

- 1. Since x x = 0, for every natural numbers, a + bi = 0. Therefore, R is reflexive.
- 2. Since x-y=a+bi, then y-x=-a-bi. However, a,b are natural numbers, -a,-b are not natural numbers. For example, $x-y=3+4i, y-x=-3-4i, -3, -4 \notin N$. Therefore, R is not symmetric.
- 3. For $(x,y) \in R$, if $(x,y) \in R \land (y,x) \in R$ is ture, then x-y=a+bi=y-x=-a-bi. $a,b,-a,-b \in N$, when a=b=-a=-b, existing a=b=-a=-b=0. Therefore, R is antisymmetric for some natural numbers.
- 4. Suppose $(x,y) \in R$ and $(y,z) \in R$, then x-y=a+bi, y-z=c+di. Since x-y=a+bi, y-z=c+di, then x-z=(a+c)+(b+d)i. Since, a,b,c,d are natural numbers, then a+c,b+d are natural numbers. Therefore, R is transitive.

$$a_n = \begin{cases} 1 &, & if 0 \leq n \leq 3 \\ a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4} &, & if n \geq 4. \end{cases}$$
 Since $a_n \equiv 1 \pmod{3}$, then $\frac{a_n-1}{3} = 0$
 For $0 \leq n \leq 3$, $a_n = 1$, then $\frac{1-1}{3} = 0$
 Therefore, $a_n \equiv 1 \pmod{3}$ for $0 \leq n \geq 3$
 For $n \geq 4$, $a_4 = a_3 + a_2 + a_1 + a_0 = 1 + 1 + 1 + 1 = 4$; $a_5 = a_4 + a_3 + a_2 + a_1 + = 7$; $a_6 = a_5 + a_4 + a_3 + a_2 = 13$; $a_7 = a_6 + a_5 + a_4 + a_3 = 25$;
 :
$$a_n = a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4}$$
 For $n \geq 4$, let $b_1 = a_4 = 4$, $b_2 = a_5 = 7$, $b_3 = a_6 = 13$, $b_4 = a_7 = 25$, \cdots , $b_n = a_n (n \geq 4)$ Since $b_1 = a_4 = 4$, $b_2 = a_5 = 7$, $b_3 = a_6 = 13$, $b_4 = a_7 = 25$, \cdots , $b_n = a_n (n \geq 4)$, then $b_n = 4 + 3(k - 1) = 3k + 1$ Since $b_n = 3k + 1$, then $a_n = 3k + 1$, $(n \geq 4)$ Therefore, $\frac{a_n-1}{3} = \frac{3k+1-1}{3} = k$, $(n \geq 4)$ Therefore, $a_n \equiv 1 \pmod{3}$ for $a_1 \geq 4$ Thus, above all $a_n \equiv 1 \pmod{3}$ for all $n \geq 0$

Let $A = \{The \ student \ passed \ the \ exam \ on \ the \ first \ attempt\}$ $B = \{The \ student \ passed \ the \ exam \ on \ the \ second \ attempt\}$

$$P(A) = \frac{2}{3}$$
$$P(B) = \frac{1}{3}$$

(a)

 $C = \{The \, student \, passed \, at \, least \, one \, exam \}$

$$P(C) = 1 - P(\overline{C})$$

$$= 1 - P(\overline{AB})$$

$$= 1 - P(\overline{A})P(\overline{AB})$$

$$= 1 - [1 - P(A)][1 - P(B|\overline{A})]$$

$$= 1 - (1 - \frac{2}{3}) \cdot (1 - \frac{1}{3})$$

$$= \frac{7}{9}$$

(b)

$$P(A|B) = \frac{P(AB)}{P(B)}$$

$$= \frac{P(A)P(B|A)}{P(A)P(B|A) + P(\overline{A})P(B|\overline{A})}$$

$$= \frac{\frac{2}{3} \times \frac{2}{3}}{\frac{2}{3} \times \frac{2}{3} + (1 - \frac{2}{3}) \times \frac{1}{3}}$$

$$= \frac{\frac{4}{9}}{\frac{4}{9} + \frac{1}{9}}$$

$$= \frac{\frac{4}{9}}{\frac{5}{9}}$$

$$= \frac{4}{5}$$

(c)

$$E = 1 \times P(A) + 2 \times P(B)$$

$$= 1 \times \frac{2}{3} + 2 \times \frac{1}{3}$$

$$= \frac{2}{3} + \frac{2}{3}$$

$$= \frac{4}{3}$$

Appendix: \LaTeX Symbol List

You may find the following symbol list useful.

Greek Letters		_	Math Symbols		Math Constructs	
α	\alpha	×	\times	&	\&	
β	\beta	÷	\div	%	\%	
χ	\chi	\sim	\sim	{	\{	
δ	\delta	\neq	\neq	}	\}	
ϵ	\epsilon	\equiv	\equiv	((
η	\eta	\geq	\ge))	
γ	\gamma	<u>></u> <	\le	(\big(
ι	\iota	∞	\infty)	\big)	
κ	\kappa	$\prod_{i=1}^{n}$	\sum	(\Big(
λ	\lambda	Π	\prod	/		
μ	\mu	\neg	\neg)	\Big)	
ν	\nu	\wedge	\wedge	a^x	a^x	
ω	\omega	\vee	\vee	a_x	a_x	
ϕ	\phi	\rightarrow	\rightarrow	$\frac{abc}{xyz}$	$\frac{abc}{xyz}$	
π	\pi	\leftrightarrow	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\sqrt{abc}	\sqrt{abc}	
ψ	\psi	\forall	\forall	$\sqrt[n]{abc}$	$\sqrt[n]{abc}$	
ho	\rho	3	\exists	\overline{abc}	$\operatorname{\mathtt{overline}}\{\operatorname{abc}\}$	
σ	\sigma	∄	\nexists	$\mathcal{P}(X)$	$\mathbb{P}(X)$	
au	\tau	\in	\in	n		
θ	\theta	∉	\notin	$\bigcup_{i=1}$	$\bigcup_{i=1}^{n}$	
v	υ	\subset	\subset			
ξ	\xi	$\not\subseteq$ $\not\subseteq$ \emptyset	\not\subset			
ζ	\zeta	\subseteq	\subseteq			
Δ	\Delta	⊈	\nsubseteq			
Γ	\Gamma		\emptyset			
Λ	\Lambda	\bigcup	\cup			
Ω	\Omega	\cap	\cap			
Φ	\Phi	Ũ	\bigcup			
Π	\Pi	\cap	\bigcap			
Ψ	\Psi	0	\circ			
\sum_{i}	\Sigma	•	\cdot			
Θ	\Theta	• • •	\cdots			
Υ	\Upsilon		\ldots			
Ξ	\Xi					

Mathcal letters \mathcal{A}: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \) Mathbb letters \mathbb{A}: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \) Mathfrak letters \mathfrak{A}: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \) Bold letters \textbf{A}: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \) Bold italic letters \(pmb{A}: \) \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)