This week on the problem set you will get practice at calculating integrals using substitution and integration by parts.

*Numbers in parentheses indicate the question has been taken from the textbook:

S. J. Schreiber, Calculus for the Life Sciences, Wiley,

and refer to the section and question number in the textbook.

- 1. (5.3) Express the limits as definite integrals of the form $\int_0^1 f(x) dx$.
 - (a) $(5.3.1) \lim_{n\to\infty} \sum_{i=1}^{n} \frac{i}{n^2}$
 - (b) (5.3.5) $\lim_{n\to\infty} \sum_{i=1}^{n} \left(1 \frac{i^2}{n^2}\right) \frac{1}{n}$
 - (c) (5.3.6) $\lim_{n\to\infty} \sum_{i=1}^n \sin\left(\frac{\pi i}{n} \pi\right) \frac{\pi}{n}$

Solution: We know that if the integral ranges from x=0 to x=1 then $\Delta x=\frac{1}{n}$ and $x_i=\frac{i}{n}$. Using the definition of the definite integral

$$\int_0^1 f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x$$
$$= \lim_{n \to \infty} \sum_{i=1}^n f\left(\frac{i}{n}\right) \frac{1}{n}.$$

So we need that $f\left(\frac{k}{n}\right)\frac{1}{n} = \sin\left(\frac{\pi i}{n} - \pi\right)\frac{\pi}{n}$ i.e. that

$$f\left(\frac{k}{n}\right) = \sin\left(\frac{\pi i}{n} - \pi\right)\pi$$

which is obviously achieved if $f(x) = \pi \sin(\pi x - \pi)$. That means the definite integral corresponding to the Riemann sum is

$$\int_0^1 \pi \sin \left(\pi x - \pi \right) \, \mathrm{d}x.$$

- 2. (5.3) Express the definite integrals as limits of Riemann sums.
 - (a) (5.3.8) $\int_{-1}^{1} (x^2 x) dx$

Solution: We know that if the integral ranges from x=-1 to x=1 then $\Delta x=\frac{2}{n}$ and $x_i=\frac{2i}{n}-1$. Using the definition of the definite integral

$$\int_{-1}^{1} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{2i}{n} - 1\right) \frac{2}{n}.$$

Thus, since $f(x) = x^2 - x = x(x - 1)$ we get that

$$\int_{-1}^{1} x^2 - x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2i}{n} - 1 \right) \left(\frac{2i}{n} - 2 \right) \frac{2}{n}.$$

- (b) (5.3.9) $\int_0^1 e^x dx$
- (c) (5.3.11) $\int_{-1}^{1} |x| dx$
- 3. (5.5) Calculate the following integrals using substitution.
 - (a) $(5.5.12) \int \frac{x}{\sqrt{x^2+1}} dx$
 - (b) $(5.5.14) \int \sin^3 t \cos t \, dt$
 - (c) $(5.5.16) \int \frac{z^3}{\sqrt{z^4+12}} dz$
 - (d) (5.5.19) $\int_1^2 \frac{e^{1/x}}{x^2} dx$
 - (e) (5.5.23) $\int_{1}^{2} x\sqrt{x-1} dx$
 - (f) (5.5.24) $\int_0^2 (e^x e^{-x})^2 dx$
- 4. (5.5-30) Suppose an environmental study indicates that the ozone level, L, in the air above a major metropolitan center is changing at a rate modeled by the function

$$L'(t) = \frac{0.24 - 0.03t}{\sqrt{36 + 16t - t^2}}$$

parts per million per hour (ppm/h) t hours after 7:00 A.M.

(a) Express the ozone level L(t) as a function of t if L is 4 ppm at 7:00 A.M.

Solution: The function L(t) expressing the ozone level at time t will be an antiderivative of L'(t). That is

$$L(t) = \int \frac{0.24 - 0.03t}{\sqrt{36 + 16t - t^2}} \, dt.$$

We will use the substitution $u = 36 + 16t - t^2$. Thus u' = 2(8 - t). Note that 0.24 - 0.03t = 0.03(8 - t). Thus

$$L(t) = \int \frac{0.03}{\sqrt{36 + 16t - t^2}} \cdot \frac{1}{2} 2(8 - t) dt$$
$$= 0.03 \int \frac{1}{2\sqrt{u}} du$$
$$= 0.03\sqrt{u} + C$$
$$= 0.03\sqrt{36 + 16t - t^2} + C$$

To find the constant C we simply solve the equation L(0) = 4, that is,

$$0.03\sqrt{36 + 16 \cdot 0 - 0^{2}} + C = 4$$

$$0.03\sqrt{36} + C =$$

$$0.18 + C =$$

$$C = 4 - 0.18 = 3.82.$$

Thus

$$L(t) = 0.03\sqrt{36 + 16t - t^2} + 3.82.$$

(b) Find the time between 7:00 A.M. and 7:00 P.M. when the highest level of ozone occurs. What is the highest level? (Note: part b has been changed slightly from what is written in the textbook.)

Solution: First we find the critical points by setting L'(t) = 0. This happens when t = 8, i.e. at 3pm. Using the first derivative test we know this is a maximum. Thus the highest level of ozone is

$$L(8) = 0.03\sqrt{26 + 16 \cdot 8 - 64} - 3.82 = 0.09\sqrt{10} - 3.82 = 4.10$$
ppm

5. The circle $x^2 + (y+1)^2 = 4$ has area 4π . What is the area of the portion of the circle lying above the x axis?

You may use the fact that

$$\int \sqrt{1-t^2} \, dt = \frac{1}{2} \left(t \sqrt{1-t^2} + \sin^{-1} t \right) + C.$$

Solution: We first draw a picture so that we can visualise the area we would like to find.

We want to find the shaded area. The circle is given by the equation $x^2 + (y+1)^2 = 4$, which means the function that describes the top half semicircle is

$$y = \sqrt{4 - x^2} - 1$$

and the area is given by the integral

$$A = \int_{a}^{b} \sqrt{4 - x^2} - 1 \, \mathrm{d}x.$$

Here a and b are the x-intercepts of the semicircle. We can find these by setting y=0 and solving for x:

$$0 = \sqrt{4 - x^2} - 1$$

$$1 = \sqrt{4 - x^2}$$

$$1 = 4 - x^2$$

$$x^2 = 4 - 1 = 3$$

$$x = \pm \sqrt{3}$$

Thus $a = -\sqrt{3}$ and $b = \sqrt{3}$. Thus

$$A = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4 - x^2} - 1 \, \mathrm{d}x$$

which we can separate,

$$= \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4 - x^2} \, \mathrm{d}x - \int_{-\sqrt{3}}^{\sqrt{3}} \, \mathrm{d}x$$

and factor out the 4,

$$= \int_{-\sqrt{3}}^{\sqrt{3}} 2\sqrt{1 - \left(\frac{x}{2}\right)^2} \, \mathrm{d}x - \int_{-\sqrt{3}}^{\sqrt{3}} \, \mathrm{d}x.$$

Note that

$$\int_{-\sqrt{3}}^{\sqrt{3}} dx = 2\sqrt{3}.$$
 (1)

We can solve the first part of A by using the substitution $u = \frac{x}{2}$, so $u' = \frac{1}{2}$. Note that when $x = \pm \sqrt{3}$ then $u = \pm \frac{\sqrt{3}}{2}$. This means

$$2\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{1 - \left(\frac{x}{2}\right)^2} \, \mathrm{d}x = 4\int_{-\sqrt{3}/2}^{\sqrt{3}/2} \sqrt{1 - u^2} \, \mathrm{d}x$$

now we can apply the antiderivative given in the question,

$$=4\left[\frac{1}{2}u\sqrt{1-u^2}+\frac{1}{2}\sin^{-1}u\right]_{-\sqrt{3}/2}^{\sqrt{3}/2}$$

noting that $\sin^{-1}\left(\pm\frac{\sqrt{3}}{2}\right) = \pm\frac{pi}{3}$, we get

$$= \sqrt{3} \cdot \frac{1}{2} + 2 \cdot \frac{\pi}{3} - \left(-\sqrt{3}\right) \cdot \frac{1}{2} - 2 \cdot \left(-\frac{\pi}{3}\right)$$
$$= \sqrt{3} + \frac{4\pi}{3}. \tag{2}$$

Since A = (2) - (1) we have $A = \frac{4\pi}{3} - \sqrt{3}$.

- 6. (5.6) Calculate the following integrals using integration by parts.
 - (a) (2) $\int e^t \sin t \, dt$
 - (b) (6) $\int x^2 \ln x \, dx$
 - (c) (9) $\int \sin x \cos x \, dx$
 - (d) (14) $\int_0^{\pi} x \sin x \, dx$
 - (e) (16) $\int_1^e x^3 \ln x \, dx$