

Sequence Listing

<110> Botstein,David

Desnoyers,Luc

Ferrara,Napoleone

Fong,Sherman

Gao,Wei-Qiang

Goddard,Audrey

Gurney,Austin L.

Pan,James

Roy,Margaret Ann

Stewart,Timothy A.

Tumas,Daniel

Watanabe,Colin K.

Wood,William I.

<120> Secreted and Transmembrane Polypeptides and Nucleic
Acids Encoding the Same

<130> P2930R1C9

<150> 60/095,325

<151> 1998-08-04

<150> 60/112,851

<151> 1998-12-16

<150> 60/113,145

<151> 1998-12-16

<150> 60/113,511

<151> 1998-12-22

<150> 60/115,558

<151> 1999-01-12

<150> 60/115,565

<151> 1999-01-12

<150> 60/115,733

<151> 1999-01-12

<150> 60/119,341

<151> 1999-02-09

<151> 2000-03-03

<150> PCT/US99/12252
<151> 1999-06-02

<150> PCT/US99/28634
<151> 1999-12-01

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04414
<151> 2000-02-22

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/32678
<151> 2000-12-01

<140> US 09/866,034
<141> 2001-05-25

<160> 38

<210> 1
<211> 1283
<212> DNA
<213> Homo sapiens

<400> 1
cgacgcgtg ggaccatac ttgttgtct gatccatgca caaggcgaaa 50
ctgttaggcc tctgtgccccgg ggcattggaaat tcggtgccga tgccagctc 100
cggtatgacc cgccgggacc cgctcgaaaa taagggtggcc ctggtaacgg 150
cctccaccga cgggatcggc ttccatcg cccggcggtt ggcccaggac 200
ggggccatg tggtcgtcag cagccgaaag cagcagaatg tggaccaggc 250
ggtgccacg ctgcagggggg aggggctgag cgtgacgggc accgtgtgcc 300
atgtgggaa ggcggaggac cgggagcgcc tggtgccac ggctgtgaag 350

cttcatggag gtatcgatat cctagtcctcc aatgctgctg tcaacccttt 400
cttggaaagc ataatggatg tcactgagga ggtgtggac aagactctgg 450
acattaatgt gaaggccccca gccctgatga caaaggcagt ggtgccagaa 500
atggagaaac gaggaggcgg ctcagtggtg atcgtgtctt ccatagcagc 550
cttcagtcca tctcctggct tcagtcctta caatgtcagt aaaacagcct 600
tgctggccct gaccaagacc ctggccatag agctggccccc aaggaacatt 650
agggtgaact gcctagcacc tggacttatac aagactagct tcagcaggat 700
gctctggatg gacaaggaaa aagaggaaag catgaaagaa accctgcgga 750
taagaaggtt aggcgagcca gaggattgtg ctggcatcgt gtcttcctg 800
tgctctgaag atgccagcta catcaactggg gaaacagtgg tggtgggtgg 850
aggaaccccg tcccgcctct gaggaccggg agacagccca caggccagag 900
ttgggctcta gtcctggtg ctgttccctgc attcacccac tggccttcc 950
cacctctgct caccttactg ttcacctcat caaatcagtt ctgcccctgtg 1000
aaaagatcca gccttcctg ccgtcaaggt ggcgtcttac tcgggattcc 1050
tgctgttgtt gtggccttgg gtaaaggccct cccctgagaa cacaggacag 1100
gcctgctgac aaggctgagt ctaccttggc aaagaccaag atattttttc 1150
ctggccact ggtgaatctg aggggtgatg ggagagaagg aacctggagt 1200
ggaaggagca gagttgcaaa ttaacagctt gcaaatgagg tgcaaataaa 1250
atgcagatga ttgcgcggct ttgaaaaaaaaaaa aaa 1283

<210> 2
<211> 278
<212> PRT
<213> Homo sapiens

<400> 2
Met His Lys Ala Gly Leu Leu Gly Leu Cys Ala Arg Ala Trp Asn
1 5 10 15
Ser Val Arg Met Ala Ser Ser Gly Met Thr Arg Arg Asp Pro Leu
20 25 30
Ala Asn Lys Val Ala Leu Val Thr Ala Ser Thr Asp Gly Ile Gly
35 40 45
Phe Ala Ile Ala Arg Arg Leu Ala Gln Asp Gly Ala His Val Val
50 55 60
Val Ser Ser Arg Lys Gln Gln Asn Val Asp Gln Ala Val Ala Thr
65 70 75

Leu	Gln	Gly	Glu	Gly	Leu	Ser	Val	Thr	Gly	Thr	Val	Cys	His	Val
80					85							90		
Gly	Lys	Ala	Glu	Asp	Arg	Glu	Arg	Leu	Val	Ala	Thr	Ala	Val	Lys
95						100						105		
Leu	His	Gly	Gly	Ile	Asp	Ile	Leu	Val	Ser	Asn	Ala	Ala	Val	Asn
110						115						120		
Pro	Phe	Phe	Gly	Ser	Ile	Met	Asp	Val	Thr	Glu	Glu	Val	Trp	Asp
125						130						135		
Lys	Thr	Leu	Asp	Ile	Asn	Val	Lys	Ala	Pro	Ala	Leu	Met	Thr	Lys
140						145						150		
Ala	Val	Val	Pro	Glu	Met	Glu	Lys	Arg	Gly	Gly	Gly	Ser	Val	Val
155						160						165		
Ile	Val	Ser	Ser	Ile	Ala	Ala	Phe	Ser	Pro	Ser	Pro	Gly	Phe	Ser
170						175						180		
Pro	Tyr	Asn	Val	Ser	Lys	Thr	Ala	Leu	Leu	Gly	Leu	Thr	Lys	Thr
185						190						195		
Leu	Ala	Ile	Glu	Leu	Ala	Pro	Arg	Asn	Ile	Arg	Val	Asn	Cys	Leu
200						205						210		
Ala	Pro	Gly	Leu	Ile	Lys	Thr	Ser	Phe	Ser	Arg	Met	Leu	Trp	Met
215						220						225		
Asp	Lys	Glu	Lys	Glu	Glu	Ser	Met	Lys	Glu	Thr	Leu	Arg	Ile	Arg
230						235						240		
Arg	Leu	Gly	Glu	Pro	Glu	Asp	Cys	Ala	Gly	Ile	Val	Ser	Phe	Leu
245						250						255		
Cys	Ser	Glu	Asp	Ala	Ser	Tyr	Ile	Thr	Gly	Glu	Thr	Val	Val	Val
260						265						270		
Gly	Gly	Gly	Thr	Pro	Ser	Arg	Leu							
							275							

<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 3
gcataatgga tgtcactgag g 21

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 4
agaacaatcc tgctgaaagc tag 23

<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 5
gaaacgagga ggcggctcag tggtgatcgt gtcttccata gcagcc 46

<210> 6
<211> 3121
<212> DNA
<213> Homo sapiens

<400> 6
gcgcctgag ctccgcctcc gggcccgata gcggcatcga gagcgcctcc 50
gtcgaggacc aggccggcga gggggccggc gggcgaaagg agatgaggg 100
ggcgcagcag ctgctgaccc tgcagaacca ggtggcgcgg ctggaggagg 150
agaaccgaga ctttctggct gcgttggagg acgccatgga gcagtacaaa 200
ctgcagagcg accggctgcg tgagcagcag gaggagatgg tggactgcg 250
gctgcgtta gagctggcgc ggccaggctg gggggccctg cgctcctga 300
atggcctgcc tccccggtcc ttgtgcctc gacctcatac agccccctg 350
gggggtgccc acgcccattgt gctggcatg gtgcgcctg cctgcctccc 400
tggagatgaa gttggctctg agcagagggg agagcaggtg acaaattggca 450
gggaggctgg agctgagttg ctgactgagg tgaacaggct gggaaatggc 500
tcttcagctg cttcagagga ggaagaggag gaggaggagc cgccaggcg 550
gaccttacac ctgcgcagaa ataggatcag caactgcagt cagagggcgg 600
gggcacgccc agggagtctg ccagagagga agggcccgaga gcttgcctt 650
gaggagttgg atgcagccat tccagggtcc agagcagttg gtgggagcaa 700
ggcccgagtt caggcccgcc aggtcccccc tgccacagcc tcagagtggc 750
ggctggccca ggcccagcag aagatccggg agctggctat caacatccgc 800
atgaaggagg agcttattgg cgagctggc cgcacaggaa aggcagctca 850
ggccctgaac cgccagcaca gccagcgtat ccgggagctg gagcaggagg 900

cagagcaggt gcgggcccag ctgagtgaag gccagaggca gctgcggag 950
ctcgagggca aggagctcca ggatgctggc gagcggtctc ggctccagga 1000
gttccgcagg agggtcgtcg cggcccagag ccaggtgcag gtgctgaagg 1050
agaagaagca ggctacggag cggtcggtgt cactgtcggc ccagagttag 1100
aagcgactgc aggagctcga gggaaacgtg cagctcatgc ggcagcagca 1150
gggacagctg cagaggcggc ttgcgagga gacggagcag aagcggcgcc 1200
tggaggcaga aatgagcaag cgccagcacc gctcaagga gctggagctg 1250
aagcatgagc aacagcagaa gatcctgaag attaagacgg aagagatcgc 1300
ggccttccag aggaagaggc gcagtggcag caacggctct gtggtcagcc 1350
tggaacagca gcagaagatt gaggagcaga agaagtggct ggaccaggag 1400
atggagaagg tgctacagca gggcgccgcg ctggaggagc tgggggagga 1450
gctccacaag cgggaggcca tcctggccaa gaaggaggcc ctgatgcagg 1500
agaagacggg gctggagagc aagcgcctga gatccagcca ggcctcaac 1550
gaggacatcg tgcgagtgtc cagccggctg gaggcacctgg agaaggagct 1600
gtccgagaag agcgggcagc tgccggcaggg cagcgcggcagc agccagcagc 1650
agatccgcgg ggagatcgac agcctgcgcc aggagaagga ctgcgtgctc 1700
aagcagcgcgc tggagatcga cggcaagctg aggccaggga gtctgctgtc 1750
ccccgaggag gagcggacgc tgccctttt ggatgaggcc atcgaggccc 1800
tggatgctgc cattgagtat aagaatgagg ccatcacatg ccgcgcggc 1850
gtgtttccgg cctcagccctc gttgctgtcc cagtgcgaga tgaacctcat 1900
ggccaagctc agtacccctc catcctcaga gaccagagcc ctccctgcac 1950
agtatttga caaggtggtg acgctccgag aggagcagca ccagcagcag 2000
attgccttct cggaaacttggaa gatgcagctg gaggagcagc agaggctgg 2050
gtactggctg gaggtggccc tggagcggca ggcgcctggag atggaccgccc 2100
agctgaccct gcagcagaag gggccggcagc agaacatgca gctgcctctg 2150
cagcagagtc gagaccaccc cggtaaggg ttagcagaca gcaggaggca 2200
gtatgaggcc cggattcaag ctctggagaa ggaactgggc cgttacatgt 2250
ggataaaacca ggaactgaaa cagaagctcg ggggtgtgaa cgctgttaggc 2300
cacagcaggg gtggggagaa gaggagcctg tgctcggagg gcagacagggc 2350

tcctggaaat gaagatgago tccacacctgc acccgagctt ctctggctgt 2400
ccccccctcac tgagggggcc ccccgaccc gggaggagac gcgggacttg 2450
gtccacgctc cgttaccctt gacctggaaa cgctcgagcc tgtgtggtga 2500
ggagcagggg tcccccgagg aactgaggca gcgggaggcg gctgagcccc 2550
tggtgcccg ggtgcttcct gtgggtgagg caggcctgcc ctggaacttt 2600
gggcctttgtt ccaagccccg gggggaaactg cgacgagcca gcccgggat 2650
gattgatgtc cgaaaaacc ccctgttaaagc cctcgccccca gaccctgcct 2700
tggagggaga ctccgagccct gctgaaaggg gcagctgcct gtttgcttc 2750
tgtgaaggc agtccttacc gcacacccta aatccaggcc ctcatctgtta 2800
ccctcaactgg gatcaacaaa tttggccat ggcccaaaag aactggaccc 2850
tcatttaaca aaataatatg caaattccca ccacttaactt ccatgaagct 2900
gtggtaccca attgcccct tgggtcttgc tcgaatctca ggacaattct 2950
ggtttcaggc gtaaatggat gtgctttagt ttccagggtt tggccaaagaa 3000
tcatcacgaa agggtcggtg gcaaccaggt tgggtttaa atggtcttat 3050
gtatataggg gaaactggga gacttttagga tcttaaaaaa ccatttaata 3100
aaaaaaaaatc tttgaaggga c 3121

<210> 7
<211> 830
<212> PRT
<213> Homo sapiens

<400> 7
Met Glu Gln Tyr Lys Leu Gln Ser Asp Arg Leu Arg Glu Gln Gln
1 5 10 15
Glu Glu Met Val Glu Leu Arg Leu Arg Leu Glu Leu Val Arg Pro
20 25 30
Gly Trp Gly Gly Leu Arg Leu Leu Asn Gly Leu Pro Pro Gly Ser
35 40 45
Phe Val Pro Arg Pro His Thr Ala Pro Leu Gly Gly Ala His Ala
50 55 60
His Val Leu Gly Met Val Pro Pro Ala Cys Leu Pro Gly Asp Glu
65 70 75
Val Gly Ser Glu Gln Arg Gly Glu Gln Val Thr Asn Gly Arg Glu
80 85 90
Ala Gly Ala Glu Leu Leu Thr Glu Val Asn Arg Leu Gly Ser Gly
95 100 105

Ser Ser Ala Ala Ser Glu Glu Glu Glu Glu Glu Pro Pro
 110 115 120
 Arg Arg Thr Leu His Leu Arg Arg Asn Arg Ile Ser Asn Cys Ser
 125 130 135
 Gln Arg Ala Gly Ala Arg Pro Gly Ser Leu Pro Glu Arg Lys Gly
 140 145 150
 Pro Glu Leu Cys Leu Glu Glu Leu Asp Ala Ala Ile Pro Gly Ser
 155 160 165
 Arg Ala Val Gly Gly Ser Lys Ala Arg Val Gln Ala Arg Gln Val
 170 175 180
 Pro Pro Ala Thr Ala Ser Glu Trp Arg Leu Ala Gln Ala Gln Gln
 185 190 195
 Lys Ile Arg Glu Leu Ala Ile Asn Ile Arg Met Lys Glu Glu Leu
 200 205 210
 Ile Gly Glu Leu Val Arg Thr Gly Lys Ala Ala Gln Ala Leu Asn
 215 220 225
 Arg Gln His Ser Gln Arg Ile Arg Glu Leu Glu Gln Glu Ala Glu
 230 235 240
 Gln Val Arg Ala Glu Leu Ser Glu Gly Gln Arg Gln Leu Arg Glu
 245 250 255
 Leu Glu Gly Lys Glu Leu Gln Asp Ala Gly Glu Arg Ser Arg Leu
 260 265 270
 Gln Glu Phe Arg Arg Arg Val Ala Ala Gln Ser Gln Val Gln
 275 280 285
 Val Leu Lys Glu Lys Lys Gln Ala Thr Glu Arg Leu Val Ser Leu
 290 295 300
 Ser Ala Gln Ser Glu Lys Arg Leu Gln Glu Leu Glu Arg Asn Val
 305 310 315
 Gln Leu Met Arg Gln Gln Gln Gly Gln Leu Gln Arg Arg Leu Arg
 320 325 330
 Glu Glu Thr Glu Gln Lys Arg Arg Leu Glu Ala Glu Met Ser Lys
 335 340 345
 Arg Gln His Arg Val Lys Glu Leu Glu Leu Lys His Glu Gln Gln
 350 355 360
 Gln Lys Ile Leu Lys Ile Lys Thr Glu Glu Ile Ala Ala Phe Gln
 365 370 375
 Arg Lys Arg Arg Ser Gly Ser Asn Gly Ser Val Val Ser Leu Glu
 380 385 390
 Gln Gln Gln Lys Ile Glu Glu Gln Lys Lys Trp Leu Asp Gln Glu

395	400	405
Met Glu Lys Val Leu Gln Gln Arg Arg Ala Leu Glu Glu Leu Gly 410	415	420
Glu Glu Leu His Lys Arg Glu Ala Ile Leu Ala Lys Lys Glu Ala 425	430	435
Leu Met Gln Glu Lys Thr Gly Leu Glu Ser Lys Arg Leu Arg Ser 440	445	450
Ser Gln Ala Leu Asn Glu Asp Ile Val Arg Val Ser Ser Arg Leu 455	460	465
Glu His Leu Glu Lys Glu Leu Ser Glu Lys Ser Gly Gln Leu Arg 470	475	480
Gln Gly Ser Ala Gln Ser Gln Gln Ile Arg Gly Glu Ile Asp 485	490	495
Ser Leu Arg Gln Glu Lys Asp Ser Leu Leu Lys Gln Arg Leu Glu 500	505	510
Ile Asp Gly Lys Leu Arg Gln Gly Ser Leu Leu Ser Pro Glu Glu 515	520	525
Glu Arg Thr Leu Phe Gln Leu Asp Glu Ala Ile Glu Ala Leu Asp 530	535	540
Ala Ala Ile Glu Tyr Lys Asn Glu Ala Ile Thr Cys Arg Gln Arg 545	550	555
Val Leu Arg Ala Ser Ala Ser Leu Leu Ser Gln Cys Glu Met Asn 560	565	570
Leu Met Ala Lys Leu Ser Tyr Leu Ser Ser Ser Glu Thr Arg Ala 575	580	585
Leu Leu Cys Lys Tyr Phe Asp Lys Val Val Thr Leu Arg Glu Glu 590	595	600
Gln His Gln Gln Gln Ile Ala Phe Ser Glu Leu Glu Met Gln Leu 605	610	615
Glu Glu Gln Gln Arg Leu Val Tyr Trp Leu Glu Val Ala Leu Glu 620	625	630
Arg Gln Arg Leu Glu Met Asp Arg Gln Leu Thr Leu Gln Gln Lys 635	640	645
Glu His Glu Gln Asn Met Gln Leu Leu Leu Gln Gln Ser Arg Asp 650	655	660
His Leu Gly Glu Gly Leu Ala Asp Ser Arg Arg Gln Tyr Glu Ala 665	670	675
Arg Ile Gln Ala Leu Glu Lys Glu Leu Gly Arg Tyr Met Trp Ile 680	685	690

Asn Gln Glu Leu Lys Gln Lys Leu Gly Gly Val Asn Ala Val Gly
695 700 705

His Ser Arg Gly Gly Glu Lys Arg Ser Leu Cys Ser Glu Gly Arg
710 715 720

Gln Ala Pro Gly Asn Glu Asp Glu Leu His Leu Ala Pro Glu Leu
725 730 735

Leu Trp Leu Ser Pro Leu Thr Glu Gly Ala Pro Arg Thr Arg Glu
740 745 750

Glu Thr Arg Asp Leu Val His Ala Pro Leu Pro Leu Thr Trp Lys
755 760 765

Arg Ser Ser Leu Cys Gly Glu Glu Gln Gly Ser Pro Glu Glu Leu
770 775 780

Arg Gln Arg Glu Ala Ala Glu Pro Leu Val Gly Arg Val Leu Pro
785 790 795

Val Gly Glu Ala Gly Leu Pro Trp Asn Phe Gly Pro Leu Ser Lys
800 805 810

Pro Arg Arg Glu Leu Arg Arg Ala Ser Pro Gly Met Ile Asp Val
815 820 825

Arg Lys Asn Pro Leu
830

<210> 8

<211> 662

<212> DNA

<213> Homo sapiens

<400> 8

atttccttag agcatcttg gaagcatgag gccacgatgc tgcacatcttgg 50

ctcttgtctg ctggataaca gtcttcctcc tccagtgttc aaaaggaact 100

acagacgctc ctgttggctc aggactgtgg ctgtgccagc cgacacccag 150

gtgtggaaac aagatctaca acccttcaga gcagtgtgt tatgtatgtg 200

ccatcttatac cttaaaggag acccgccgct gtggctccac ctgcaccccttc 250

tggccctgtt ttgagctctg ctgtcccgag tctttggcc cccagcagaa 300

gtttcttgtg aagttgaggg ttctgggtat gaagtctcag tgtcaacctat 350

ctcccatctc ccggagctgt accaggaaca ggaggcacgt cctgtacccca 400

taaaaaacccc aggctccact ggcagacggc agacaagggg agaagagacg 450

aagcagctgg acatcgagaga ctacagttga acttcggaga gaagcaactt 500

gacttcagag ggatggctca atgacatagc tttggagagg agcccagctg 550

gggatggcca gacttcaggga gaagaatgcc ttccctgttc atcccctttc 600
cagctccctt tcccgctgag agccactttc atcggcaata aaatccccca 650
catttaccat ct 662

<210> 9
<211> 125
<212> PRT
<213> Homo sapiens

<400> 9
Met Arg Pro Arg Cys Cys Ile Leu Ala Leu Val Cys Trp Ile Thr
1 5 10 15
Val Phe Leu Leu Gln Cys Ser Lys Gly Thr Thr Asp Ala Pro Val
20 25 30
Gly Ser Gly Leu Trp Leu Cys Gln Pro Thr Pro Arg Cys Gly Asn
35 40 45
Lys Ile Tyr Asn Pro Ser Glu Gln Cys Cys Tyr Asp Asp Ala Ile
50 55 60
Leu Ser Leu Lys Glu Thr Arg Arg Cys Gly Ser Thr Cys Thr Phe
65 70 75
Trp Pro Cys Phe Glu Leu Cys Cys Pro Glu Ser Phe Gly Pro Gln
80 85 90
Gln Lys Phe Leu Val Lys Leu Arg Val Leu Gly Met Lys Ser Gln
95 100 105
Cys His Leu Ser Pro Ile Ser Arg Ser Cys Thr Arg Asn Arg Arg
110 115 120
His Val Leu Tyr Pro
125

<210> 10
<211> 1942
<212> DNA
<213> Homo sapiens

<400> 10
cccacgcgtc cggccacgcg tccgggtgcc actcgccgcg cggccgcgtc 50
ccgggcttct ctttccctc cgacgcgcga cggctgcggca gacattccgg 100
ctgcccggtc tggagagctc cccgaacccc tccgcggaga ggagcgaggc 150
ggcgccaggg tggcccccgg ggccgcgttg gtctcggaga agcggggacg 200
aggccggagg atgagcgact gagggcgacg cggcactga cgcagttgg 250
ggccgcgact accggcagct gacagcgcga tgagcgactc cccagagacg 300
ccctagcccg gtgtgcgcgc caggcggagc gcgcaggtgg ggctggctg 350

ttagtggcc gccccacgcg ggtcgccggc cggcccagga tgggcgtgg 400
caaccgggc ccegeccccgc cgctgctacc cctgcgcccc ctgcgagccc 450
ggcgtccggc ccgcgcctg cgctcatgga cggcggctcc cggtggcgg 500
cggcgcccc cccggctgtg aatgcgactc gcccctcggc cgcgtcccc 550
gcccggccgc cccggggac gtggtagggg atgcccagct ccactgcgt 600
ggcagttggc gcgctctcca gttccctctt ggtcacctgc tgccctgatgg 650
tggctctgtg cagtccgagc atccccctgg agaagctggc ccaggcacca 700
gagcagccgg gccaggagaa gctgagcac gccactcggg acggccccc 750
gcgggtgaac gagctcgggc gcccggcgag ggacgagggc ggcagcggcc 800
gggactggaa gagcaagagc gcccgtggc tcgcccggc tgagccgtgg 850
acaagactga agcaggcctg ggtctcccag ggcccccccg ccaaggccgg 900
ggatctgcag gtccggcccc gcggggacac cccgcaggcg gaagccctgg 950
ccgcagccgc ccaggacgcg attggccgg aactcgcgcc cacgccccag 1000
ccacccgagg agtacgtgt accggactac cgtggcaagg gtcgcgtgg 1050
cgagagccgc ttctgttacg cgatcgggg aagttcgcg cccggcccc 1100
cgccctgccc gtgcctgtgc accgaggagg ggccgcgttg cgcgcagccc 1150
gagtgcggca ggctgcaccc gctgcatac cacgtcgaca cgagccagt 1200
ctgcccgcag tgcaaggaga ggaagaacta ctgcgagttc cggggcaaga 1250
cctatcagac ttggaggag ttctgttgtt ctccatgcga gaggtgtcgc 1300
tgtgaagcca acggtgaggt gctatgcaca gtgtcagcgt gtccccagac 1350
ggagtgtgtg gaccctgtgt acgagcctga tcagtgtgt cccatctgca 1400
aaaatggcc aaactgcttt gcagaaaccg cggtgatccc tgctggcaga 1450
gaagtgaaga ctgacgagtg caccatatgc cactgtactt atgaggaagg 1500
cacatggaga atcgagccgc aggccatgtg cacgagacat gaatgcagcc 1550
aaatgttagac gttcccaaga acacaaactc tgacttttc tagaacattt 1600
tactgatgtg aacattctag atgactctgg gaactatcag tcaaagaaga 1650
cttttgcgtt ggaataatgg aaaattgttg gtactttcc ttttgcgtt 1700
aacagttact acaacagaag gaaatggata tatttcaaaa catcaacaag 1750
aactttgggc ataaaaatctt tctctaaata aatgtgttat tttcacagta 1800

agtacacaaa agtacactat tatatatcaa atgtatttct ataatccctc 1850
cattagagag cttatataag tgttttctat agatgcagat taaaaatgct 1900
gtgttgtcaa ccgtcaaaaa aaaaaaaaaa aaaaaaaaaa aa 1942

<210> 11
<211> 325
<212> PRT
<213> Homo sapiens

<400> 11
Met Pro Ser Ser Thr Ala Met Ala Val Gly Ala Leu Ser Ser Ser
1 5 10 15
Leu Leu Val Thr Cys Cys Leu Met Val Ala Leu Cys Ser Pro Ser
20 25 30
Ile Pro Leu Glu Lys Leu Ala Gln Ala Pro Glu Gln Pro Gly Gln
35 40 45
Glu Lys Arg Glu His Ala Thr Arg Asp Gly Pro Gly Arg Val Asn
50 55 60
Glu Leu Gly Arg Pro Ala Arg Asp Glu Gly Gly Ser Gly Arg Asp
65 70 75
Trp Lys Ser Lys Ser Gly Arg Gly Leu Ala Gly Arg Glu Pro Trp
80 85 90
Ser Lys Leu Lys Gln Ala Trp Val Ser Gln Gly Gly Ala Lys
95 100 105
Ala Gly Asp Leu Gln Val Arg Pro Arg Gly Asp Thr Pro Gln Ala
110 115 120
Glu Ala Leu Ala Ala Ala Gln Asp Ala Ile Gly Pro Glu Leu
125 130 135
Ala Pro Thr Pro Glu Pro Pro Glu Glu Tyr Val Tyr Pro Asp Tyr
140 145 150
Arg Gly Lys Gly Cys Val Asp Glu Ser Gly Phe Val Tyr Ala Ile
155 160 165
Gly Glu Lys Phe Ala Pro Gly Pro Ser Ala Cys Pro Cys Leu Cys
170 175 180
Thr Glu Glu Gly Pro Leu Cys Ala Gln Pro Glu Cys Pro Arg Leu
185 190 195
His Pro Arg Cys Ile His Val Asp Thr Ser Gln Cys Cys Pro Gln
200 205 210
Cys Lys Glu Arg Lys Asn Tyr Cys Glu Phe Arg Gly Lys Thr Tyr
215 220 225
Gln Thr Leu Glu Glu Phe Val Val Ser Pro Cys Glu Arg Cys Arg

	230	235	240
Cys Glu Ala Asn Gly Glu Val Leu Cys Thr Val Ser Ala Cys Pro			
245	250	255	
Gln Thr Glu Cys Val Asp Pro Val Tyr Glu Pro Asp Gln Cys Cys			
260	265	270	
Pro Ile Cys Lys Asn Gly Pro Asn Cys Phe Ala Glu Thr Ala Val			
275	280	285	
Ile Pro Ala Gly Arg Glu Val Lys Thr Asp Glu Cys Thr Ile Cys			
290	295	300	
His Cys Thr Tyr Glu Glu Gly Thr Trp Arg Ile Glu Arg Gln Ala			
305	310	315	
Met Cys Thr Arg His Glu Cys Arg Gln Met			
320	325		

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 12
gaggtgtcgc tgtgaagcca acgg 24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 13
cgctcgattc tccatgtgcc ttcc 24

<210> 14
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 14
gacggagtgt gtggaccctg tgtacgagcc tgatcagtgc tgtcc 45

<210> 15
<211> 1587
<212> DNA
<213> Homo sapiens

<400> 15
cagccacaga cgggtcatga gcgcggatt actgctggcc tcctgggt 50
tcatccccc actgccagga gtgcaggcgc tgctctgcca gtttggaca 100
gttcagcatg tgtggaaagg gtccgaccta ccccgaaat ggaccctaa 150
gaacaccagc tgcgacagcg gcttgggtg ccaggacacg ttgatgtca 200
ttgagagcgg accccaagtg agcctggcgc tctccaaggg ctgcacggag 250
gccaaggacc aggagccccg cgtcaactgag cacccggatgg gccccggct 300
ctccctgatc tcctacacct tcgtgtgccc ccaggaggac ttctgcaaca 350
acctcgtaa ctccctcccc ctttggggcc cacagcccc agcagaccca 400
ggatccttga ggtgcccagt ctgcttgcgt atgaaaggct gtctggaggg 450
gacaacagaa gagatctgcc ccaagggac cacacactgt tatgatggcc 500
tcctcaggct caggggagga ggcattttct ccaatctgag agtccaggga 550
tgcatgcccc agccaggttg caacctgctc aatggacac agaaaattgg 600
gccccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650
atcgggggac caccattatg acacacggaa acttggctca agaaccact 700
gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750
ggagacgctg ctgctcatag atgttaggact cacatcaacc ctgggggaa 800
caaaaggctg cagcactgtt gggctcaaa attccagaa gaccaccatc 850
cactcagccc ctccctgggt gcttggcgc tcctataaccc acttctgctc 900
ctcgacactg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950
tccctcctca agctgcccgt gtcccaggag accggcagtg tcctacactgt 1000
gtgcagcccc ttggaacctg ttcaagtggc tccccccgaa tgacctgccc 1050
cagggcgcc actcatttgtt atgatgggtt cattcatctc tcaggaggt 1100
ggctgtccac caaaatgagc attcagggtc gcgtggccca accttccagc 1150
ttcttggta accacaccag acaaatcggtt atcttctctg cgcgtgagaa 1200
gcgtgatgtg cagcctcctg cctctcagca tgagggaggt gggctgagg 1250
gcctggagtc tctcaacttgg ggggtggggc tggcactggc cccagcgctg 1300
tggtggggag tggtttggcc ttccctgctaa ctctattacc cccacgattc 1350
ttcaccgctg ctgaccaccc acactcaacc tccctctgac ctcataaccc 1400
aatggccttg gacaccagat tctttcccat tctgtccatg aatcatcttc 1450

cccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500
 gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagtg 1550
 gctgcatgtt tctgataata cagaccctgt cctttca 1587

 <210> 16
 <211> 437
 <212> PRT
 <213> Homo sapiens

 <400> 16
 Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro
 1 5 10 15

 Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
 20 25 30

 His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
 35 40 45

 Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
 50 55 60

 Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
 65 70 75

 Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
 80 85 90

 Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg
 95 100 105

 Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
 110 115 120

 Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val
 125 130 135

 Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile
 140 145 150

 Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu
 155 160 165

 Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met
 170 175 180

 Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
 185 190 195

 Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr
 200 205 210

 Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln
 215 220 225

 Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val

230	235	240
Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu		
245	250	255
Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala		
260	265	270
Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val		
275	280	285
Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn		
290	295	300
Ser Ala Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln		
305	310	315
Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln		
320	325	330
Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro		
335	340	345
Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly		
350	355	360
Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln		
365	370	375
Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe		
380	385	390
Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His		
395	400	405
Glu Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val		
410	415	420
Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro		
425	430	435
Ser Cys		

<210> 17
<211> 2387
<212> DNA
<213> Homo sapiens

<400> 17
cgacgatgct acgcgcgcggc ggctgcctcc tccggacactc cgtagcgcc 50
gccgcggccc tggctgcggc gctgctctcg tcgcttgcgc gctgctctct 100
tcttagagccg agggaccggg tggcctcgcc gtcagcccc tatttcggca 150
ccaagactcg ctacgaggat gtcaaccccg tgctattgtc gggccccgag 200

gctccgtggc gggaccctga gctgctggag gggacctgca ccccggtgca 250
gctggtcgcc ctcattcgcc acggcacccg ctaccccacg gtcaaacaga 300
tccgcaagct gaggcagctg cacgggttgc tgcagggccg cgggtccagg 350
gatggcgggg ctagtagtac cggcagccgc gacctgggtg cagegctggc 400
cgactggcct ttgtggtacg cggaactggat ggacgggcag ctagtagaga 450
agggacggca gatatgcga cagctggcgc tgcgtctggc ctcgctttc 500
ccggccctt tcagccgtga gaactacggc cgccctggc tcatcaccag 550
ttccaagcac cgctgcatgg atagcagcgc cgcccttcctg caggggctgt 600
ggcagcacta ccacccctggc ttggccggc cggacgtcgc agatatggag 650
tttggacctc caacagttaa tgataaaacta atgagattt ttgatcactg 700
tgagaagttt ttaactgaag tagaaaaaaaaa tgctacagct ctttatcacf 750
tggaaaggcctt caaaaactgga ccagaaatgc agaacattt aaaaaaaagtt 800
gcagctactt tgcaagtgcc agtaaatgat taaaatgcag atttaattca 850
atagccttt ttcacctgtt catttgacct ggcaattaaa ggtgttaat 900
ctcccttggtg tgatgtttt gacatagatg atgcaaaggt attagaatat 950
ttaaatgatc tgaaacaata ttggaaaaga ggatatgggt atactattaa 1000
cagtcgatcc agctgcaccc tggttcagga tatcttcag cacttggaca 1050
aagcagttga acagaaacaa aggttcagc caatttcctc tccagtcac 1100
ctccagttt gtcatgcaga gacttttctt ccactgttt ctctcatgg 1150
ctacttcaaa gacaaggAAC ccctaacagc gtacaattac aaaaaacaaa 1200
tgcatcgaa gttccgaagt ggtctcattt taccttatgc ctcgaacctg 1250
atatttgc tttaccactg tgaaaaatgct aagactccta aagaacaatt 1300
ccgagtgcag atgttattaa atgaaaaaggt gttacctttg gcttactcac 1350
aagaaaactgt ttcattttat gaagatctga agaaccacta caaggacatc 1400
cttcagagtt gtcaaaccag tgaagaatgt gaattagcaa gggctaacag 1450
tacatctgat gaactatgag taactgaaga acattttaa ttctttagga 1500
atctgcaatg agtgattaca tgctttaat aggtaggcaa ttcccttgatt 1550
acaggaagct tttatattac ttgagtattt ctgtctttc acagaaaaac 1600
attgggttcc tctctgggtt tggacatgaa atgtaagaaa agatTTTCA 1650

ctggagcgc tctcttaagg agaaaacaaat ctattttagag aaacagctgg 1700
ccctgcaaat gtttacagaa atgaaaattct tcctacttat ataagaaatc 1750
tcacactgag atagaattgt gatttcataa taacacttga aaagtgcgtgg 1800
agtaacaaaa tatctcagtt ggaccatcct taacttgatt gaactgtcta 1850
ggaactttac agattgttct gcagttctct cttttttcc tcaggttagga 1900
cagctctagc attttcttaa tcaggaatat tgtggtaagc tgggagtatc 1950
actctggaag aaagtaacat ctccagatga gaatttggaa caagaaacag 2000
agtgttgtaa aaggcacacct tcactgaagc aagtccggaaa gtacaatgaa 2050
aataaaatatt tttggatttt atttatgaaa tatttgaaca ttttttcaat 2100
aattcccttt tacttctagg aagtctcaaa agaccatctt aaattattat 2150
atgtttggac aattagcaac aagtccgata gttagaatcg aagttttca 2200
aatccattgc ttagcttaact ttttcattct gtcacttggc ttcatgtttt 2250
atattttcctt attatatgaa atgtatcttt tggttgtttt atttttcttt 2300
ctttctttgtt aaatagttct gagttctgtc aaatgccgtg aaagtatttg 2350
ctataataaa gaaaattctt gtgactttaa aaaaaaaaa 2387

<210> 18
<211> 487
<212> PRT
<213> Homo sapiens

<400> 18
Met Leu Arg Ala Pro Gly Cys Leu Leu Arg Thr Ser Val Ala Pro
1 5 10 15
Ala Ala Ala Leu Ala Ala Leu Leu Ser Ser Leu Ala Arg Cys
20 25 30
Ser Leu Leu Glu Pro Arg Asp Pro Val Ala Ser Ser Leu Ser Pro
35 40 45
Tyr Phe Gly Thr Lys Thr Arg Tyr Glu Asp Val Asn Pro Val Leu
50 55 60
Leu Ser Gly Pro Glu Ala Pro Trp Arg Asp Pro Glu Leu Leu Glu
65 70 75
Gly Thr Cys Thr Pro Val Gln Leu Val Ala Leu Ile Arg His Gly
80 85 90
Thr Arg Tyr Pro Thr Val Lys Gln Ile Arg Lys Leu Arg Gln Leu
95 100 105
His Gly Leu Leu Gln Ala Arg Gly Ser Arg Asp Gly Ala Ser

	110	115	120
Ser Thr Gly Ser Arg Asp Leu Gly Ala Ala Leu Ala Asp Trp Pro			
125	130	135	
Leu Trp Tyr Ala Asp Trp Met Asp Gly Gln Leu Val Glu Lys Gly			
140	145	150	
Arg Gln Asp Met Arg Gln Leu Ala Leu Arg Leu Ala Ser Leu Phe			
155	160	165	
Pro Ala Leu Phe Ser Arg Glu Asn Tyr Gly Arg Leu Arg Leu Ile			
170	175	180	
Thr Ser Ser Lys His Arg Cys Met Asp Ser Ser Ala Ala Phe Leu			
185	190	195	
Gln Gly Leu Trp Gln His Tyr His Pro Gly Leu Pro Pro Pro Asp			
200	205	210	
Val Ala Asp Met Glu Phe Gly Pro Pro Thr Val Asn Asp Lys Leu			
215	220	225	
Met Arg Phe Phe Asp His Cys Glu Lys Phe Leu Thr Glu Val Glu			
230	235	240	
Lys Asn Ala Thr Ala Leu Tyr His Val Glu Ala Phe Lys Thr Gly			
245	250	255	
Pro Glu Met Gln Asn Ile Leu Lys Lys Val Ala Ala Thr Leu Gln			
260	265	270	
Val Pro Val Asn Asp Leu Asn Ala Asp Leu Ile Gln Val Ala Phe			
275	280	285	
Phe Thr Cys Ser Phe Asp Leu Ala Ile Lys Gly Val Lys Ser Pro			
290	295	300	
Trp Cys Asp Val Phe Asp Ile Asp Asp Ala Lys Val Leu Glu Tyr			
305	310	315	
Leu Asn Asp Leu Lys Gln Tyr Trp Lys Arg Gly Tyr Gly Tyr Thr			
320	325	330	
Ile Asn Ser Arg Ser Ser Cys Thr Leu Phe Gln Asp Ile Phe Gln			
335	340	345	
His Leu Asp Lys Ala Val Glu Gln Lys Gln Arg Ser Gln Pro Ile			
350	355	360	
Ser Ser Pro Val Ile Leu Gln Phe Gly His Ala Glu Thr Leu Leu			
365	370	375	
Pro Leu Leu Ser Leu Met Gly Tyr Phe Lys Asp Lys Glu Pro Leu			
380	385	390	
Thr Ala Tyr Asn Tyr Lys Lys Gln Met His Arg Lys Phe Arg Ser			
395	400	405	

Gly Leu Ile Val Pro Tyr Ala Ser Asn Leu Ile Phe Val Leu Tyr
410 415 420

His Cys Glu Asn Ala Lys Thr Pro Lys Glu Gln Phe Arg Val Gln
425 430 435

Met Leu Leu Asn Glu Lys Val Leu Pro Leu Ala Tyr Ser Gln Glu
440 445 450

Thr Val Ser Phe Tyr Glu Asp Leu Lys Asn His Tyr Lys Asp Ile
455 460 465

Leu Gln Ser Cys Gln Thr Ser Glu Glu Cys Glu Leu Ala Arg Ala
470 475 480

Asn Ser Thr Ser Asp Glu Leu
485

<210> 19
<211> 3554
<212> DNA
<213> Homo sapiens

<400> 19
gggactacaa gccgcgccgc gctgccgtg gcccctcagc aaccctcgac 50
atggcgctga ggcggccacc gcgactccgg ctctgcgcgc ggctgcctga 100
cttcttcctg ctgtgtcttt tcagggctg cctgataagg gctgtaaaatc 150
tcaaattccag caatcgAACCC ccagtggta aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttccgcagaca agtgacccca ggatcgagtg 250
gaagaaaattt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300
ttcagggaga cttgggggtt cgtgcagaaa tactggggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gcccTTTATC gctgtgaggt 400
cgttgtcgaa aatgaccgca agggaaatttga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagtg acccctgtct gttagagtgcg gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggat atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattttt cttccactt aaactctgaa 650
acaggcactt tggtgttac acgtgttac aaggacgact ctgggcagta 700
ctactgcatt gttccaatg acgcaggctc agccaggtgt gaggagcagg 750
agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800
gttgtccttg ctgtactggc cctgatcagc ttgggcacgt gctgtgcata 850

cagacgtggc tacttcatca acaataaaaca ggatggagaa agttacaaga 900
accaggaa accagatgga gtaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgtatc tgagacccgc ggtgtggctg 1000
agagcgacaca gagcgcacgt gcacataacct ctgctagaaa ctcctgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250
gcctgattcc cgcatgagta tttaggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacageacc 1400
agcagcgcac cccggcgaaa acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500
tgatcggtgt tgcatgttcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600
cttgccctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650
accttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgatt attgaaaaga aaatttctat tttaactgta aatatattgt 1800
catacaatgt taaataaacct attttttaa aaaagttcaa cttaaggtag 1850
aagttccaag ctactagtgt taaattggaa aatataataa attaagagta 1900
tttacccaa ggaatcctct catggaagtt tactgtgatg ttcccttct 1950
cacacaagtt ttagcccttt tcacaaggaa actcatactg tctacacatc 2000
agaccatagt tgcttagaa acctttaaaa attccagttt agcaatgttg 2050
aaatcagttt gcatctttc aaaagaaacc tctcaggta gcttgaact 2100
gcctcttctt gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
gccctcagat gtacatacac agatgccagt cagctccctgg gggtgcgc 2200
ggcgccccccg ctctagctca ctgttgccctc gctgtctgcc aggaggccct 2250
gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcactg 2300

tggcccttgc ttcatccagc acagctctca ggtgggact gcagggacac 2350
tggtgtttc catgtacgt cccagcttg ggctctgtt acagacctct 2400
ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450
tttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac atttttaaaaaaa gaaaatggat 2550
cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaacc atgatggagt ggccggccagt ccagcctttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggccctggcg gggaggaaag 2700
tgaaacgcct gaatcaaaag cagtttctta attttgactt taaatttttc 2750
atccgcccga gacactgctc ccatttggggacatca gcaacatcac 2800
tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850
gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctacta ctcaccttgt 2950
cttcagctt ccagtgtctt gggttttta tactttgaca gctttttttt 3000
aattgcatac atgagactgt gttgactttt ttttagttatg tgaaacactt 3050
tgccgcagggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctgggt gtctgtgca tgccatcttg gatgcttage atgcaagtcc 3150
cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctctttcttg gttgtcatag tgatagggta 3250
gccttattgc cccctottct tataccctaa aaccttctac actagtgcct 3300
tgggaaccag gtctgaaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400
aagatatgaa tgtgactcaa gactcgaggg cgatacgagg ctgtgattct 3450
gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
caccgttaatt tggcatctt ttaacctcat ttataaaaagc ttcaaaaaaaaa 3550
ccca 3554

<210> 20
<211> 310
<212> PRT
<213> Homo sapiens

<400> 20

Met	Ala	Leu	Arg	Arg	Pro	Pro	Arg	Leu	Arg	Leu	Cys	Ala	Arg	Leu
1					5			10					15	
Pro	Asp	Phe [*]	Phe	Leu	Leu	Leu	Phe	Arg	Gly	Cys	Leu	Ile	Gly	
					20			25					30	
Ala	Val	Asn	Leu	Lys	Ser	Ser	Asn	Arg	Thr	Pro	Val	Val	Gln	Glu
					35			40					45	
Phe	Glu	Ser	Val	Glu	Leu	Ser	Cys	Ile	Ile	Thr	Asp	Ser	Gln	Thr
					50			55					60	
Ser	Asp	Pro	Arg	Ile	Glu	Trp	Lys	Ile	Gln	Asp	Glu	Gln	Thr	
					65			70					75	
Thr	Tyr	Val	Phe	Phe	Asp	Asn	Lys	Ile	Gln	Gly	Asp	Leu	Ala	Gly
					80			85					90	
Arg	Ala	Glu	Ile	Leu	Gly	Lys	Thr	Ser	Leu	Lys	Ile	Trp	Asn	Val
					95			100					105	
Thr	Arg	Arg	Asp	Ser	Ala	Leu	Tyr	Arg	Cys	Glu	Val	Val	Ala	Arg
					110			115					120	
Asn	Asp	Arg	Lys	Glu	Ile	Asp	Glu	Ile	Val	Ile	Glu	Leu	Thr	Val
					125			130					135	
Gln	Val	Lys	Pro	Val	Thr	Pro	Val	Cys	Arg	Val	Pro	Lys	Ala	Val
					140			145					150	
Pro	Val	Gly	Lys	Met	Ala	Thr	Leu	His	Cys	Gln	Glu	Ser	Glu	Gly
					155			160					165	
His	Pro	Arg	Pro	His	Tyr	Ser	Trp	Tyr	Arg	Asn	Asp	Val	Pro	Leu
					170			175					180	
Pro	Thr	Asp	Ser	Arg	Ala	Asn	Pro	Arg	Phe	Arg	Asn	Ser	Ser	Phe
					185			190					195	
His	Leu	Asn	Ser	Glu	Thr	Gly	Thr	Leu	Val	Phe	Thr	Ala	Val	His
					200			205					210	
Lys	Asp	Asp	Ser	Gly	Gln	Tyr	Tyr	Cys	Ile	Ala	Ser	Asn	Asp	Ala
					215			220					225	
Gly	Ser	Ala	Arg	Cys	Glu	Glu	Gln	Glu	Met	Glu	Val	Tyr	Asp	Leu
					230			235					240	
Asn	Ile	Gly	Gly	Ile	Ile	Gly	Gly	Val	Leu	Val	Val	Leu	Ala	Val
					245			250					255	
Leu	Ala	Leu	Ile	Thr	Leu	Gly	Ile	Cys	Cys	Ala	Tyr	Arg	Arg	Gly
					260			265					270	
Tyr	Phe	Ile	Asn	Asn	Lys	Gln	Asp	Gly	Glu	Ser	Tyr	Lys	Asn	Pro
					275			280					285	
Gly	Lys	Pro	Asp	Gly	Val	Asn	Tyr	Ile	Arg	Thr	Asp	Glu	Glu	Gly

290

295

300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310

<210> 21

<211> 3437

<212> DNA

<213> Homo sapiens

<400> 21

caggaccagg tcttcctacg ctggagcagc ggggagacag ccaccatgca 50
catecctcgta gtccatgcca tggtgatcct gctgacgctg ggccgcctc 100
gagccgacga cagcgagtcc caggcgctgc tggacatctg gtttccggag 150
gagaagccac tgcccaccgc cttectggtg gacacatcgg aggaggcgct 200
gctgcttcct gactggctga agctgcgtat gatccgttct gaggtgctcc 250
gcctggtgga cgccgcctg caggacctgg agccgcagca gctgctgctg 300
ttcgtgcagt cgtttggcat ccccggttcc agcatgagca aactcctcca 350
gttcctggac caggcagtgg cccacgaccc ccagactctg gaggcagaaca 400
tcatggacaa gaattacatg gcccacctgg tggaggttcca gcatgagcgc 450
ggcgccctcg gaggccagac ttccactcc ttgctcacag cctccctgcc 500
gccccgccga gacagcacag aggcacccaa accaaagagc agcccgagac 550
agcccatagg ccagggccgg attcgggtgg ggacccagct ccgggtgctg 600
ggccctgagg acgacctggc tggcatgttc ctccagattt tcccgcttag 650
cccgacccct cggtggcaga gtcctcgtcc ccgcggcgctg gcctcgccc 700
tgcagcagggc cctggggccag gagctggccc gctgttcca gggcagcccc 750
gaggtgcccc gcatcacggc gctgtcctg caggccctcg ccaccctgtc 800
cagctccccca cacggcggtg ccctggtgat gtccatgcac cgtagccact 850
tcctggctcg ccgcgtgtcg cgccagctct gccagtacca gctgtgttg 900
ccacaggaca ccggcttctc ctgcgttcc ctgaagggtgc tcctgcagat 950
gctgcagtgg ctggacagcc ctggcggtgg gggcgcccc ctgcgggcac 1000
agctcaggat gcttgcgcagc caggcctcag ccggggcgac gctcagtgtat 1050
gtgcgaggggg ggcttcgtcg cctggccgag gccctggcgttccgtcagga 1100
cctggaggtg gtcagcttcca ccgtccgtgc cgtcatcgcc accctgaggt 1150
ctggggagca gtgcagcgtg gagccggacc tgatcagcaa agtcctccag 1200

gggctgatcg aggtgaggtc cccccacctg gaggagctgc tgactgcatt 1250
cttctctgcc actgcggatg ctgcctccccc gtttccagcc tgtaagcccg 1300
tttgtgggtt gagctccctg ctgctgcagg aggaggagcc cctggctggg 1350
ggaaagccgg gtgcggacgg tggcagcctg gaggccgtgc ggctggggcc 1400
ctcgtcaggc ctccctagtgg actggctgga aatgtggac cccgaggtgg 1450
tcagcagctg cccccacctg cagctcaggg tgctcttctc ccggaggaag 1500
ggcaaaggtc aggcccaggc gcctcggtt cgtccctacc tcctgaccct 1550
cttcacgcatt cagtccagct ggcccacact gcaccagtgc atccgagtcc 1600
tgctggcaaa gagccggaa cagaggttcg acccctctgc ctctctggac 1650
ttccctctggg cctgcattcca ttttcctcgc atctggcagg ggccggacca 1700
gcgcaccccg cagaageggc gggaggagct ggtgctgcgg gtccaggggcc 1750
cgagactcat cagcctggtg gagctgatcc tggccgaggg ggagacgggg 1800
agccaggacg gggacacacgc cgccctgcagg ctcatccagg cccggctgac 1850
cctgctgctc agctgctgct gtggggacga tgagagtgtc aggaagggtga 1900
cgagcacct gtcaggctgc atccagcagt ggggagacag cgtgctggga 1950
aggcgctgcc gagacccctt cctgcagctc tacctacagc ggccggagct 2000
gcgggtgccc gtgcctgagg tcctactgca cagcgaaggg gctgccagca 2050
gcagcgtctg caagctggac ggactcatcc accgcattcat cacgctctt 2100
gcggacaccca gcgactcccg ggcgttggag aaccgagggg cggatgccag 2150
catggcctgc cggaaagctgg cggggcgca cccgctgctg ctgctcaggc 2200
acctgcccatt gatcgccggcg ctccctgcacg gcccacccca cctcaacttc 2250
caggagttcc ggcagcagaa ccacctgagc tgcttcctgc acgtgctggg 2300
cctgctggag ctgctgcagc cgcacgtgtt ccgcagcgag caccaggggg 2350
cgctgtggga ctgccttctg tccttcattcc gcctgctgct gaattacagg 2400
aagtccctccc gccatctggc tgccttcattc aacaagttt tgcaagttcat 2450
ccataagtac attacctaca atgccccagc agccatctcc ttccctgcaga 2500
agcacgcccga cccgctccac gacctgtctt tcgacaacag tgacctggtg 2550
atgctgaaat ccctccttgc agggctcagc ctgcccagca gggacgcacag 2600
gaccgaccga ggcctggacg aagagggcga ggaggagagc tcagccggct 2650

cottggccct ggtcagcgac tcctgttca cccctctgac cgccggccgag 2700
atggccccct acatgaaacg gcttcccgg ggccaaacgg tggaggatct 2750
gctggaggtt ctgagtgaca tagacgagat gtcccgccgg agacccgaga 2800
tcctgagctt cttctcgacc aacctgcagc ggctgatgag ctccggccgag 2850
gagtgttgcc gcaacctcgc ctccagcctg gcccctgcgt ccatgcagaa 2900
cagccccagc attgcagccg cttdcctgcc cacgttcatg tactgcctgg 2950
gcagccagga cttdgaggtg gtgcagacgg ccctccggaa cctgcctgag 3000
tacgctctcc tgtgccaaga gcacgcggct gtgctgctcc accgggcctt 3050
cttggtgtggc atgtacggcc agatggaccc cagcgcgcag atctccgagg 3100
ccctgaggat cctgcatatg gaggccgtga tgtgagcctg tggcagccga 3150
ccccccctcca agccccggcc cgtcccgtcc ccggggatcc tcgaggcaaa 3200
gcccaggaag cgtggcggtt gctggctgtt ccgaggaggt gagggcgccg 3250
agccctgagg ccaggcaggc ccaggagcaa tactccgagc cctgggggtgg 3300
ctccgggccc gccgctggca tcagggccg tccagcaagc cctcattcac 3350
cttctgggcc acagccctgc cgccggccg cggatcccc cggcatggc 3400
ctgggctggt tttgaatgaa acgacctgaa ctgtcaa 3437

<210> 22

<211> 1029

<212> PRT

<213> Homo sapiens

<400> 22

Met	His	Ile	Leu	Val	Val	His	Ala	Met	Val	Ile	Leu	Leu	Thr	Leu
1				5				10					15	

Gly	Pro	Pro	Arg	Ala	Asp	Asp	Ser	Glu	Phe	Gln	Ala	Leu	Leu	Asp
					20				25				30	

Ile	Trp	Phe	Pro	Glu	Glu	Lys	Pro	Leu	Pro	Thr	Ala	Phe	Leu	Val
				35					40			45		

Asp	Thr	Ser	Glu	Glu	Ala	Leu	Leu	Leu	Pro	Asp	Trp	Leu	Lys	Leu
					50				55			60		

Arg	Met	Ile	Arg	Ser	Glu	Val	Leu	Arg	Leu	Val	Asp	Ala	Ala	Leu
					65				70			75		

Gln	Asp	Leu	Glu	Pro	Gln	Gln	Leu	Leu	Leu	Phe	Val	Gln	Ser	Phe
					80				85			90		

Gly	Ile	Pro	Val	Ser	Ser	Met	Ser	Lys	Leu	Leu	Gln	Phe	Leu	Asp
					95				100			105		

Gln Ala Val Ala His Asp Pro Gln Thr Leu Glu Gln Asn Ile Met
 110 115 120
 Asp Lys Asn Tyr Met Ala His Leu Val Glu Val Gln His Glu Arg
 125 130 135
 Gly Ala Ser Gly Gly Gln Thr Phe His Ser Leu Leu Thr Ala Ser
 140 145 150
 Leu Pro Pro Arg Arg Asp Ser Thr Glu Ala Pro Lys Pro Lys Ser
 155 160 165
 Ser Pro Glu Gln Pro Ile Gly Gln Gly Arg Ile Arg Val Gly Thr
 170 175 180
 Gln Leu Arg Val Leu Gly Pro Glu Asp Asp Leu Ala Gly Met Phe
 185 190 195
 Leu Gln Ile Phe Pro Leu Ser Pro Asp Pro Arg Trp Gln Ser Ser
 200 205 210
 Ser Pro Arg Pro Val Ala Leu Ala Leu Gln Gln Ala Leu Gly Gln
 215 220 225
 Glu Leu Ala Arg Val Val Gln Gly Ser Pro Glu Val Pro Gly Ile
 230 235 240
 Thr Val Arg Val Leu Gln Ala Leu Ala Thr Leu Leu Ser Ser Pro
 245 250 255
 His Gly Gly Ala Leu Val Met Ser Met His Arg Ser His Phe Leu
 260 265 270
 Ala Cys Pro Leu Leu Arg Gln Leu Cys Gln Tyr Gln Arg Cys Val
 275 280 285
 Pro Gln Asp Thr Gly Phe Ser Ser Leu Phe Leu Lys Val Leu Leu
 290 295 300
 Gln Met Leu Gln Trp Leu Asp Ser Pro Gly Val Glu Gly Gly Pro
 305 310 315
 Leu Arg Ala Gln Leu Arg Met Leu Ala Ser Gln Ala Ser Ala Gly
 320 325 330
 Arg Arg Leu Ser Asp Val Arg Gly Gly Leu Leu Arg Leu Ala Glu
 335 340 345
 Ala Leu Ala Phe Arg Gln Asp Leu Glu Val Val Ser Ser Thr Val
 350 355 360
 Arg Ala Val Ile Ala Thr Leu Arg Ser Gly Glu Gln Cys Ser Val
 365 370 375
 Glu Pro Asp Leu Ile Ser Lys Val Leu Gln Gly Leu Ile Glu Val
 380 385 390
 Arg Ser Pro His Leu Glu Glu Leu Leu Thr Ala Phe Phe Ser Ala

395	400	405
Thr Ala Asp Ala Ala Ser Pro Phe Pro Ala Cys Lys Pro Val Val		
410	415	420
Val Val Ser Ser Leu Leu Leu Gln Glu Glu Glu Pro Leu Ala Gly		
425	430	435
Gly Lys Pro Gly Ala Asp Gly Gly Ser Leu Glu Ala Val Arg Leu		
440	445	450
Gly Pro Ser Ser Gly Leu Leu Val Asp Trp Leu Glu Met Leu Asp		
455	460	465
Pro Glu Val Val Ser Ser Cys Pro Asp Leu Gln Leu Arg Leu Leu		
470	475	480
Phe Ser Arg Arg Lys Gly Lys Gly Gln Ala Gln Val Pro Ser Phe		
485	490	495
Arg Pro Tyr Leu Leu Thr Leu Phe Thr His Gln Ser Ser Trp Pro		
500	505	510
Thr Leu His Gln Cys Ile Arg Val Leu Leu Gly Lys Ser Arg Glu		
515	520	525
Gln Arg Phe Asp Pro Ser Ala Ser Leu Asp Phe Leu Trp Ala Cys		
530	535	540
Ile His Val Pro Arg Ile Trp Gln Gly Arg Asp Gln Arg Thr Pro		
545	550	555
Gln Lys Arg Arg Glu Glu Leu Val Leu Arg Val Gln Gly Pro Glu		
560	565	570
Leu Ile Ser Leu Val Glu Leu Ile Leu Ala Glu Ala Glu Thr Arg		
575	580	585
Ser Gln Asp Gly Asp Thr Ala Ala Cys Ser Leu Ile Gln Ala Arg		
590	595	600
Leu Pro Leu Leu Leu Ser Cys Cys Gly Asp Asp Glu Ser Val		
605	610	615
Arg Lys Val Thr Glu His Leu Ser Gly Cys Ile Gln Gln Trp Gly		
620	625	630
Asp Ser Val Leu Gly Arg Arg Cys Arg Asp Leu Leu Leu Gln Leu		
635	640	645
Tyr Leu Gln Arg Pro Glu Leu Arg Val Pro Val Pro Glu Val Leu		
650	655	660
Leu His Ser Glu Gly Ala Ala Ser Ser Val Cys Lys Leu Asp		
665	670	675
Gly Leu Ile His Arg Phe Ile Thr Leu Leu Ala Asp Thr Ser Asp		
680	685	690

Ser Arg Ala Leu Glu Asn Arg Gly Ala Asp Ala Ser Met Ala Cys
 695 700 705
 Arg Lys Leu^{*} Ala Val Ala His Pro Leu Leu Leu Leu Arg His Leu
 710 715 720
 Pro Met Ile Ala Ala Leu Leu His Gly Arg Thr His Leu Asn Phe
 725 730 735
 Gln Glu Phe Arg Gln Gln Asn His Leu Ser Cys Phe Leu His Val
 740 745 750
 Leu Gly Leu Leu Glu Leu Leu Gln Pro His Val Phe Arg Ser Glu
 755 760 765
 His Gln Gly Ala Leu Trp Asp Cys Leu Leu Ser Phe Ile Arg Leu
 770 775 780
 Leu Leu Asn Tyr Arg Lys Ser Ser Arg His Leu Ala Ala Phe Ile
 785 790 795
 Asn Lys Phe Val Gln Phe Ile His Lys Tyr Ile Thr Tyr Asn Ala
 800 805 810
 Pro Ala Ala Ile Ser Phe Leu Gln Lys His Ala Asp Pro Leu His
 815 820 825
 Asp Leu Ser Phe Asp Asn Ser Asp Leu Val Met Leu Lys Ser Leu
 830 835 840
 Leu Ala Gly Leu Ser Leu Pro Ser Arg Asp Asp Arg Thr Asp Arg
 845 850 855
 Gly Leu Asp Glu Glu Gly Glu Glu Ser Ser Ala Gly Ser Leu
 860 865 870
 Pro Leu Val Ser Val Ser Leu Phe Thr Pro Leu Thr Ala Ala Glu
 875 880 885
 Met Ala Pro Tyr Met Lys Arg Leu Ser Arg Gly Gln Thr Val Glu
 890 895 900
 Asp Leu Leu Glu Val Leu Ser Asp Ile Asp Glu Met Ser Arg Arg
 905 910 915
 Arg Pro Glu Ile Leu Ser Phe Phe Ser Thr Asn Leu Gln Arg Leu
 920 925 930
 Met Ser Ser Ala Glu Glu Cys Cys Arg Asn Leu Ala Phe Ser Leu
 935 940 945
 Ala Leu Arg Ser Met Gln Asn Ser Pro Ser Ile Ala Ala Ala Phe
 950 955 960
 Leu Pro Thr Phe Met Tyr Cys Leu Gly Ser Gln Asp Phe Glu Val
 965 970 975
 Val Gln Thr Ala Leu Arg Asn Leu Pro Glu Tyr Ala Leu Leu Cys

980	985	990
Gln Glu His Ala Ala Val Leu Leu His Arg Ala Phe Leu Val Gly		
995	1000	1005
Met Tyr Gly Gln Met Asp Pro Ser Ala Gln Ile Ser Glu Ala Leu		
1010	1015	1020
Arg Ile Leu His Met Glu Ala Val Met		
1025		

<210> 23
<211> 2186
<212> DNA
<213> Homo sapiens

<400> 23
ccggggccatg cagcctcgcc cccgcggcgcc cccgcgcgc acccgaggag 50
atgagggttcc gcaatggcac ctccctgacg ctgtgtgtct tctgcctgtg 100
cgcccttcctc tcgtgttccct ggtacgcggc actcagcgcc cagaaaggcg 150
acgttgttggaa cgtttaccag cgggagttcc tggcgctgcg cgatcggttg 200
cacgcagctg agcaggagag cctcaagcgc tccaaggagc tcaacctgg 250
gctggacgag atcaagaggg ccgtgtcaga aaggcaggcg ctgcgagacg 300
gagacggcaa tcgcacctgg ggccgcctaa cagaggaccc ccgattgaag 350
ccgttggaaacg gtcacacccg gcacgtgtcgtg cacctgccc ccgtttcca 400
tcacctgcca cacctgttgg ccaaggagag cagtctgcag cccgcggc 450
gcgttggccca gggccgcacc ggagtgtcgg tgggtatggg catcccgagc 500
gtgcggcgcgc aggtgcactc gtacactgact gacactctgc actcgctcat 550
ctcccgagctg agcccgccagg agaaggagga ctccgtcatac gtgggtgtga 600
tcgcccagac tgactcacag tacacttcgg cagtacaga gaacatcaag 650
gccttggccca ccacggagat ccattctggg ctccctggagg tcatctcacc 700
ctccccccac ttcttaccctg acttctcccg cctccgagag tcctttgggg 750
accccaagga gagagtccagg tggaggacca aacagaacct cgattactgc 800
ttccctcatga tgtacgcgcga gtccaaaggc atctactacg tgcagctgg 850
ggatgacatc gtggccaaagc ccaactaccc gggcaccatg aagaactttg 900
cactgcagca gccttcagag gactggatga tcctggagtt ctcccagctg 950
ggcttcatttg gtaagatgtt caagtcgtc gacctgagcc tgattgtaga 1000
gttcattctc atgttctacc gggacaagcc catcgactgg ctccctggacc 1050

atattctgtg ggtgaaagtc tgcaaccccg agaaggatgc gaagcactgt 1100
gaccggcaga aagccaacct gcggatccgc ttcaaaccgt ccctttcca 1150
gcacgtggc actcacttct cgctggctgg caagatccag aaactgaagg 1200
acaaagactt tggaaagcag gcgcgtgcgga aggagcatgt gaacccgcca 1250
gcagaggtga gcacgagcct gaagacatac cagcacttca ccctggagaa 1300
agcctacctg cgcgaggact tcttctggc cttcacccct gcccgggggg 1350
acttcatccg cttccgttcc ttccaacctc taagactgga gcggtttttc 1400
ttccgcagtg ggaacatcga gcacccggag gacaagctct tcaacacgtc 1450
tgtggaggtg ctgccttcg acaaccctca gtcagacaag gaggccctgc 1500
aggagggccg caccgccacc ctccggtacc ctggagcccc cgacggctac 1550
ctccagatcg gtccttcta caagggagtg gcagagggag aggtggaccc 1600
agccttcggc cctctggaag cactgegcct ctgcattccag acggactccc 1650
ctgtgtgggt gattctgagc gagatcttcc tgaaaaaggc cgactaagct 1700
gcccccttct gagggtaccc tgtggccagc cctgaagccc acatttctgg 1750
gggtgtcgta actgcgtcc ccggagggcc agatacgccc ccggccaaag 1800
ggttctgcct gggtcgccc ttggggccgc ctggggtccg ccgtggccc 1850
ggaggcccta ggagctggtg ctgccttcgc ccggccggcc gggaggagg 1900
caggccggccc ccacactgtg cctgaggccc ggaaccgttc gcacccggcc 1950
tgccccagtc aggccgtttt agaagagctt ttacttggc gcccggcgtc 2000
tctggcgcgaa acactggaat gcatatacta ctttatgtgc tgtttttttt 2050
attcttggat acatttgatt tttcacgta agtccacata tacttctata 2100
agagcgtgac ttgtataaaa gggtaatga agaaaaaaaaaaaaaaa 2150
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa 2186

<210> 24
<211> 548
<212> PRT
<213> Homo sapiens

<400> 24
Met Arg Leu Arg Asn Gly Thr Phe Leu Thr Leu Leu Leu Phe Cys
1 5 10 15
Leu Cys Ala Phe Leu Ser Leu Ser Trp Tyr Ala Ala Leu Ser Gly
20 25 30

Gln Lys Gly Asp Val Val Asp Val Tyr Gln Arg Glu Phe Leu Ala
35 40 45

Leu Arg Asp Arg Leu His Ala Ala Glu Gln Glu Ser Leu Lys Arg
50 55 60

Ser Lys Glu Leu Asn Leu Val Leu Asp Glu Ile Lys Arg Ala Val
65 70 75

Ser Glu Arg Gln Ala Leu Arg Asp Gly Asp Gly Asn Arg Thr Trp
80 85 90

Gly Arg Leu Thr Glu Asp Pro Arg Leu Lys Pro Trp Asn Gly Ser
95 100 105

His Arg His Val Leu His Leu Pro Thr Val Phe His His Leu Pro
110 115 120

His Leu Leu Ala Lys Glu Ser Ser Leu Gln Pro Ala Val Arg Val
125 130 135

Gly Gln Gly Arg Thr Gly Val Ser Val Val Met Gly Ile Pro Ser
140 145 150

Val Arg Arg Glu Val His Ser Tyr Leu Thr Asp Thr Leu His Ser
155 160 165

Leu Ile Ser Glu Leu Ser Pro Gln Glu Lys Glu Asp Ser Val Ile
170 175 180

Val Val Leu Ile Ala Glu Thr Asp Ser Gln Tyr Thr Ser Ala Val
185 190 195

Thr Glu Asn Ile Lys Ala Leu Phe Pro Thr Glu Ile His Ser Gly
200 205 210

Leu Leu Glu Val Ile Ser Pro Ser Pro His Phe Tyr Pro Asp Phe
215 220 225

Ser Arg Leu Arg Glu Ser Phe Gly Asp Pro Lys Glu Arg Val Arg
230 235 240

Trp Arg Thr Lys Gln Asn Leu Asp Tyr Cys Phe Leu Met Met Tyr
245 250 255

Ala Gln Ser Lys Gly Ile Tyr Tyr Val Gln Leu Glu Asp Asp Ile
260 265 270

Val Ala Lys Pro Asn Tyr Leu Ser Thr Met Lys Asn Phe Ala Leu
275 280 285

Gln Gln Pro Ser Glu Asp Trp Met Ile Leu Glu Phe Ser Gln Leu
290 295 300

Gly Phe Ile Gly Lys Met Phe Lys Ser Leu Asp Leu Ser Leu Ile
305 310 315

Val Glu Phe Ile Leu Met Phe Tyr Arg Asp Lys Pro Ile Asp Trp

320	325	330
Leu Leu Asp His Ile Leu Trp Val Lys Val Cys Asn Pro Glu Lys		
335	340	345
Asp Ala Lys His Cys Asp Arg Gln Lys Ala Asn Leu Arg Ile Arg		
350	355	360
Phe Lys Pro Ser Leu Phe Gln His Val Gly Thr His Ser Ser Leu		
365	370	375
Ala Gly Lys Ile Gln Lys Leu Lys Asp Lys Asp Phe Gly Lys Gln		
380	385	390
Ala Leu Arg Lys Glu His Val Asn Pro Pro Ala Glu Val Ser Thr		
395	400	405
Ser Leu Lys Thr Tyr Gln His Phe Thr Leu Glu Lys Ala Tyr Leu		
410	415	420
Arg Glu Asp Phe Phe Trp Ala Phe Thr Pro Ala Ala Gly Asp Phe		
425	430	435
Ile Arg Phe Arg Phe Phe Gln Pro Leu Arg Leu Glu Arg Phe Phe		
440	445	450
Phe Arg Ser Gly Asn Ile Glu His Pro Glu Asp Lys Leu Phe Asn		
455	460	465
Thr Ser Val Glu Val Leu Pro Phe Asp Asn Pro Gln Ser Asp Lys		
470	475	480
Glu Ala Leu Gln Glu Gly Arg Thr Ala Thr Leu Arg Tyr Pro Arg		
485	490	495
Ser Pro Asp Gly Tyr Leu Gln Ile Gly Ser Phe Tyr Lys Gly Val		
500	505	510
Ala Glu Gly Glu Val Asp Pro Ala Phe Gly Pro Leu Glu Ala Leu		
515	520	525
Arg Leu Ser Ile Gln Thr Asp Ser Pro Val Trp Val Ile Leu Ser		
530	535	540
Glu Ile Phe Leu Lys Lys Ala Asp		
545		

<210> 25

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 25

tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 26
caggaaacag ctatgaccac ctgcacacct gcaaattccat t 41

<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 27
actcgggatt cctgctgtt 19

<210> 28
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 28
aggccttac ccaaggccac aac 23

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 29
ggcctgtcct gtgttctca 19

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 30
tcccaccact tacttccatg aa 22

<210> 31
<211> 25
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 31
ctgtggtacc caattgccgc cttgt 25

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 32
attgtcctga gattcgagca aga 23

<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 33
gtcccagcaag ccctcatt 18

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 34
cttctgggcc acagccctgc 20

<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 35
cagttcaggt cgtttcattc a 21

<210> 36
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 36
ccagtcaggc cgttttaga 19

<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 37
cgggcgcccc agtaaaaagct c 21

<210> 38
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 38
cataaaagtat tatatgcatt ccagtgtt 28