Lehrstuhl für Steuerungs- und Regelungstechnik / Lehrstuhl für Informationstechnische Regelung

Einführung in die Roboterregelung (ERR)

Technische Universität München

2. Übung

Aufgabe 1:

Die allgemeine Verdrehung eines Koordinatensystems sei beschrieben durch die Eulerwinkel Ψ, Θ, Φ und die resultierende homogene Transformation:

$$^aT_b(\Psi,~\Theta,~\Phi) = \mathsf{Rot}(z,~\Psi) \cdot \mathsf{Rot}(x,~\Theta) \cdot \mathsf{Rot}(z,~\Phi)$$

- 1.1 Wie lautet aT_b ?
- 1.2 Wie lautet ${}^aT_b(\Theta=0)$ und ${}^aT_b(\Theta=\pi)$?

Es sei nun ${}^aT_b(\Psi, \Theta, \Phi)$ gegeben und es sollen die Winkel Ψ, Θ, Φ bestimmt werden.

- 1.3 Betrachten Sie zuerst die Spezialfälle von aT_b aus 1.2. Wie lassen sich daraus Ψ und Φ bestimmen?
- 1.4 Betrachten Sie nun die allgemeine Form von aT_b für $\Theta \neq 0, \ \pi.$
 - 1. Berechnen Sie zuerst den Winkel Θ . Ist dies eindeutig möglich?
 - 2. Berechnen Sie nun die restlichen Winkel Ψ und Φ .

Aufgabe 2:

Gegeben sei die allgemeine homogene Rotationsmatrix $Rot(\underline{k}, \Theta)$.

- 2.1 Bestimmen Sie diese Matrix für $\underline{k} = \underline{e}_y$. Vergleichen Sie das Ergebnis mit der elementaren Rotation Rot (y, Θ) .
- 2.2 Gegeben sei folgende in der Vorlesung behandelte Rotation:

$$R(\underline{k}, \Theta) := R(z, 180^0) \cdot R(y, -90^0).$$

Bestimmen Sie dafür \underline{k} und Θ . Fertigen Sie eine Skizze an.

Zusatzaufgabe

Gegeben:
$$x = r \cdot \cos \Phi; \quad y = r \cdot \sin \Phi; \quad r > 0$$

Gesucht:
$$\Phi = \operatorname{atan2}(y, x)$$

 $\mathrm{atan2}(y,x)$ ist die Arcustangens-Funktion <u>zweier</u> Argumente mit dem Wertebereich $-\pi < \Phi \leq \pi$, die sich durch Auswerten der Vorzeichen von x und y auf die bekannte Arcustangens-Funktion <u>eines</u> Arguments zurückführen läßt.

- Z.1 Unterteilen Sie jeden Quadranten mittels der Winkelhalbierenden in 2 Teilbereiche a und b. Geben Sie nun die Lösung für jeden der 8 Teilbereiche an.
 - Benützen Sie neben der Funktion $\arctan(u)$ noch geeignete trigonometrische Beziehungen, so daß gilt: $|u| \leq 1$.
- Z.2 Fassen Sie die 8 Teillösungen aus Aufgabe 1.1 so zusammen, daß Sie mit einem Minimum an Fallunterscheidungen auskommen.
- Z.3 Geben Sie einen effizienten Rechenalgorithmus zur Bestimmung von Φ an.
 - Berücksichtigen Sie dabei die Eigenschaften der Gleitpunktmaschinenzahlen.
- Z.4 Durch welche Maßnahmen könnte die Rechenzeit ohne Verwendung eines Arithmetikprozessors verringert werden?