Increasing and Decreasing Functions:

1. A function f is increasing on an interval if, for any two numbers x_1 and x_2 in the interval,

$$x_1 < x_2$$
 implies that $f(x_1) < f(x_2)$.

2. A function f is decreasing on an interval if, for any two numbers x_1 and x_2 in the interval,

$$x_1 < x_2$$
 implies that $f(x_1) > f(x_2)$.

Example 1. Let $y = 1 - x^2$. Determine the intervals in which the function is increasing and decreasing.

Relative maximum and minimum:

- 1. A point is called a relative (or local) maximum if it has a larger *y*-value than any point near it.
- 2. A point is called a relative (or local) minimum if it has a smaller *y*-value than any point near it.
- 3. Either of maximum and minimum points/values are called extreme points/values.

Example 2. Determine the intervals on which the function $y = x^3 - 3x + 2$ is increasing and decreasing. From this information determine the maximum and minimum points.

Critical Points: A number c in the domain of f for which f'(c) = 0 is called a critical number of f. The points (c, f(c)) are called critical points.

First Derivative Test:

- 1. Find the critical numbers of f. Suppose c is a critical number.
- 2. Test the derivative with two values of x, one slightly less and the other slightly more than c.
 - (a) If, as x increases, the sign of the derivative changes from + to -, then f(c) is a maximum value and (c, f(c)) is a maximum point.
 - (b) If the sign changes from to +, then f(c) is a minimum value.
 - (c) If the sign does not change, then (c, f(c)) is neither a minimum nor a maximum.

Example 3. Test the function $f(x) = x^3$ for extreme values and sketch the graph.

Example 4. Find the extreme values of the function $y = (-2/3)x^3 + x^2 + 4x - 5$ and sketch the graph.