Artificial Intelligence Chapter 11: Planning

Michael Scherger

Department of Computer Science

Kent State University

Contents

- Search vs. Planning
- The Language of Planning Problems
- STRIPS Operators
- Partial Order Planning
- CLIPS

Introduction

 Planning is the task of coming up with a sequence of actions that will achieve the goal

- Classical planning environments
 - Fully observable, deterministic, finite, static (change only happens when the agent acts), and discrete (in time, action, objects)

Introduction

A plan is <u>complete</u> iff every precondition is achieved

 A precondition is <u>achieved</u> iff it is the effect if an earlier step and no possibly intervening step undoes it

- Consider a Internet Buying Agent whose task it is to buy our text book (search based)
 - ISBN# 0137903952
 - 10⁹ possibilities
 - Searched based agent
 - One buying action for each ISBN number
 - Difficult to find a good heuristic
 - Planning based agent
 - Work backwards
 - Goal is *Have*(0137903952)
 - Have(x) results from Buy(x)
 - Therefore *Buy(0137903952)*

- Now let's buy 4 books...
 - 10⁴⁰ plans of just 4 steps using searching
 - Must search with a heuristic
 - Use # books remaining?
 - Not useful for our agent since it sees the goal test only as a black box that returns True or False for each state
 - Lacks autonomy; requires a human to supply a heuristic function for each new problem

- If our planning agent could use a conjunction of subgoals
 - Then it could use a single domainindependent heuristic
 - The number of unsatisfied conjuncts
 - Have(A) \wedge Have(B) \wedge Have(C) \wedge Have(D)
 - A state containing Have(A) ∧ Have(B) would have a cost 2

- Another example:
 - Consider the task of getting milk, bananas, and a cordless drill
 - Really want to go to supermarket and then go to the hardware store
 - But we could get sidetracked!
 - By irrelevant actions

- Planning Systems do the following:
 - Open up action and goal representation to allow selection
 - Divide-and-conquer by sub-goaling
 - Relax requirement for sequential construction of solutions

The Language of Planning Problems

- Representation of states
 - Decompose the world into logical conditions and represent a state as a conjunction of positive literals
 - Must be ground and function-free
 - Examples:
 - Poor \(\triangle \text{Unknown} \)
 - At(Plane₁, CLE) \(At(Plane₂, LAS)
 - At(x,y) or At(Father(Fred), CLE) (not allowed)

April 3, 2006

The Language of Planning Problems

- Representation of goals
 - A partially specified state
 - Represented as a conjunction of ground literals
 - Examples
 - At(Plane₁, LAS)
 - Rich A Famous
 - State s satisfies goal g if s contains all the atoms in g (and possibly others)
 - Rich ^ Famous ^ Miserable satisfies Rich ^ Famous

The Language of Planning Problems

- Representation of actions
 - Specified in terms of the preconditions that must hold before it can be executed and the effects that ensue when it is executed
 - Action(Fly(p, from, to))
 - Precond: At(p, from) \(\times \) Plane(p) \(\times \) Airport(from) \(\times \) Airport(to)
 - Effect: ¬ At(p, from) ∧ At(p, to)
 - This is also known as an <u>action schema</u>

Search vs. Planning Again

Search

- States: program data structures
- Actions: program code
- Goal: program code
- Plan: sequence from S₀

Planning

- States: logical sentences
- Actions: preconditions and outcomes
- Goal: logical sentences (conjunction)
- Plan: constraints on actions

Example

- Suppose our current state is:
 - At(P1, CLE) ∧ At(P2, LAS) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(CLE) ∧ Airport(LAS)
- This state satisfies the precondition
 - At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
- Using the substitution
 - {p/P1, from/CLE, to/LAS}
- The following concrete action is applicable
 - Fly(P1, CLE, LAS)

- <u>STanford Research Institute Problem</u>
 <u>Solver</u>
- A restricted language for planning that describes actions and descriptions of objects in a system
- Example
 - Action: Buy(x)
 - Precondition: At(p), Sells(p, x)
 - Effect: Have(x)

- This abstracts away many important details!
- Restricted language -> efficient algorithm
 - Precondition: conjunction of positive literals
 - Effect: conjunction of literals
- A complete set of STRIPS operators can be translated into a set of successor-state axioms

April 3, 2006

- Only positive literals in states:
 Poor \(\sigma \) Unknown
- Closed world assumption:
 Unmentioned literals are false
- Effect P ∧ ¬Q:
 Add P and delete Q
- Only ground literals in goals:
 Rich \(\sigma \) Famous

Goals are conjunctions:
 Rich \(\sigma \) Famous

• Effects are conjunctions:

No support for equality

No support for types

ADL

Positive and negative literals in states:

```
¬ Rich ∧ ¬ Famous
```

Open world assumption:
 Unmentioned literals are unknown

- Effect P ∧ ¬Q:
 Add P and ¬ Q and delete ¬ P and Q
- Quantified variables in goals:
 ∃x At(P₁, x) ∧ At(P₂, x) is the goal of having P₁ and P₂ in the same place

ADL

- Goals allow conjunction and disjunction:
 - ¬ Poor ∧ (Famous ∨ Smart)
- Conditional Effects are allowed:
 when P: E means E is an effect only if P is satisfied
- Equality predicate built in:
 (x = y)
- Variables can have types: (p: Plane)

Example: Air Cargo Transport

Init(At(C₁, CLE) \(\) At(C₂, LAS) \(\) At(P₁, CLE) \(\) At(P₂, LAS) \(\) Cargo(C₁) \(\) Cargo(C₂) \(\) Plane(P₁) \(\) Plane(P₂) \(\) Airport(CLE) \(\) Airport(LAS))

Goal(At(C₁, LAS) At(C₂, CLE))

Example: Air Cargo Transport

- Action(Load(c, p, a),
 Precond: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
 Effect: ¬ At(c, a) ∧ In(c, p))
- Action(Unload(c, p, a),
 Precond: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧Plane(p) ∧ Airport(a)
 Effect: At(c, a) ∧ ¬ In(c, p))
- Action(Fly(p, from, to),
 Precond: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
 Effect: ¬ At(p, from) ∧ At(p, to))

Example: Air Cargo Transport

```
[ Load(C<sub>1</sub>, P<sub>1</sub>, CLE), Fly(P<sub>1</sub>, CLE, LAS),
  Unload( C<sub>1</sub>, P<sub>1</sub>, LAS),
  Load(C<sub>2</sub>, P<sub>2</sub>, LAS), Fly(P<sub>2</sub>, LAS, CLE),
  Unload( C<sub>2</sub>, P<sub>2</sub>, CLE)]
```

 Is it possible for a plane to fly to and from the same airport?

Example: The Spare Tire Problem

Init(At(Flat, Axle) \(At(Spare, Trunk))

Goal(At(Spare, Axle))

Example: The Spare Tire Problem

- Action(Remove(Spare, Trunk),
 Precond: At(Spare, Trunk)
 Effect: ¬ At(Spare, Trunk) ∧ At(Spare, Ground))
- Action(Remove(Flat, Axle),
 Precond: At(Flat, Axle)
 Effect: ¬ At(Flat, Axle) ∧ At(Flat, Ground))
- Action(PutOn(Spare, Axle),
 Precond: At(Spare, Ground) ∧ ¬ At (Flat, Axle)
 Effect: ¬ At(Spare, Ground) ∧ At(Spare, Axle))
- Action(LeaveOvernight,
 Precond:
 Effect: ¬ At(Spare, Ground) ∧ ¬ At(Spare, Axle) ∧ ¬ At(Spare, Trunk) ∧ ¬ At(Flat, Ground) ∧ ¬ At(Flat, Axle)

Init(On(A, Table) \(\) On(B, Table) \(\) On(C, Table) \(\) Block(A) \(\) Block(B) \(\) Block(C) \(\) Clear(A) \(\) Clear(B) \(\) Clear(C))

Goal(On(A, B) ∧ On(B, C))

Action(Move(b, x, y),
 Precond: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧
 (b ≠ x) ∧(b≠y) ∧ (x ≠ y)
 Effect: On(b, y) ∧ Clear(x) ∧ ¬ On(b,x) ∧ ¬ Clear(y))

Action(MoveToTable(b, x),
 Precond: On(b, x) ∧ Clear(b) ∧ Block(b) ∧ (b ≠ x)
 Effect: On(b, Table) ∧ Clear(x) ∧ ¬ On(b, x))

A plan for building a three block tower

[Move(B, Table, C), Move(A, Table, B)]

- Partially Ordered Plan
 - A partially ordered collection of steps
 - Start step has the initial state description and its effect
 - Finish step has the goal description as its precondition
 - <u>Causal links</u> from outcome of one step to precondition of another step
 - <u>Temporal ordering</u> between pairs of steps

 An open condition is a precondition of a step not yet causally linked

A plan is <u>complete</u> iff every precondition is achieved

 A precondition is <u>achieved</u> iff it is the effect if an earlier step and no possibly intervening step undoes it

POP Algorithm

```
function POP(initial, goal, operators) returns plan
   plan \leftarrow Make-Minimal-Plan(initial, goal)
   loop do
       if Solution? (plan) then return plan
       S_{need}, c \leftarrow \text{Select-Subgoal}(plan)
       Choose-Operators (plan, operators, S_{need}, c)
       Resolve-Threats(plan)
  end
function Select-Subgoal (plan) returns S_{need}, c
   pick a plan step S_{need} from STEPS( plan)
       with a precondition c that has not been achieved
   return S_{need}, c
```

POP Algorithm

```
procedure Choose-Operators (plan, operators, S_{need}, c)
   choose a step S_{add} from operators or STEPS( plan) that has c as an effect
   if there is no such step then fail
   add the causal link S_{add} \xrightarrow{c} S_{need} to Links (plan)
   add the ordering constraint S_{add} \prec S_{need} to ORDERINGS (plan)
   if S_{add} is a newly added step from operators then
        add S_{add} to STEPS( plan)
        add Start \prec S_{add} \prec Finish to Orderings (plan)
procedure Resolve-Threats(plan)
   for each S_{threat} that threatens a link S_i \xrightarrow{c} S_i in LINKS( plan) do
        choose either
              Demotion: Add S_{threat} \prec S_i to Orderings (plan)
              Promotion: Add S_j \prec S_{threat} to Orderings (plan)
        if not Consistent (plan) then fail
   end
```

Clobbering

- A <u>clobberer</u> is a potentially intervening step that destroys the condition achieved by a causal link
 - Example Go(Home) clobbers At(Supermarket)
- Demotion
 - Put before Go(Supermarket)
- Promotion
 - Put after Buy(Milk)

START On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C) On(A,B)On(B,C)**FINISH**

