Supplementary Tables for

Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome

Houqing Yu^{1,2}, Amit K. Singh Gautam¹, Shameika R. Wilmington^{1,2}, Dennis Wylie³, Kirby Martinez-Fonts^{1,2}, Grace Kago¹, Marie Warburton¹, Sreenivas Chavali⁴, Tomonao Inobe⁵, Ilya J. Finkelstein¹, M. Madan Babu⁴, and Andreas Matouschek^{1,2}

To whom correspondence should be addressed: Andreas Matouschek, Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, Tel.: (512) 232-4045; Fax: (512) 471-1218; Email: matouschek@austin.utexas.edu

¹Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712

²Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208

³Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712

⁴Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

⁵Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan

 Table S1. Initiation region sequences.

name	tail	amino acid sequences	
A	35	LRYQPLLRISQNCEAAILRASQTRLNTIHHHHHHH	
В	ODC	EVEEQDDGTLPMSCAQESGMDRHPAACASARINV	
С	polyG	GGGGGGGGGGGGGGGGGGGGGGGGG	
D	GRR	EIKDKEEVQRKRQKLMPNFSDSFGGGSGAGAGGGGMFGSGGGGGGGTGSTGPGYSFPH	
Е	SRR	RSSSTSSDSGSSSSSASSSGSSSTSSDSGSSSSSSSSSSSS	
F	NB	RSKRIKCPDCEPFCNKRGSKRIKCPDCEPFCNKRGS	
G	NS	RSLIEEVRHRLKTTENSGSLIEEVRHRLKTTENSGS	
Н	SP1	RSSLLTEVETPGSSLLTEVETPGSSLLTEVETP	
I	SP2	RSPESMREEYRKEGSPESMREEYRKEGSPESMREEYRKEGSPESMREEYRKE	
J	SPmix	RSPESMREEYRKEGSSLLTEVETPGSPESMREEYRKEGSSLLTEVETPGSPESMREEYRKE	
K	SNS	RSPESMREEYRKEGSKRIKCPDCEPFCNKRGSPESMREEYRKE	
L	NBS	RSKRIKCPDCEPFCNKRGSKRIKCPDCEPFCNKRGSPESMREEYRKE	
M	DRR	RSDEDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	
N	eRR	GGGGAWLLPVSLVRRRTTLAPNTQTASPRALADS	
О	PEST	GGSGGTLQMLPESEDEESYDTESEFTEFTEDELPYDDCVFGGQRLTL	
P	Su9	MASTRVLASRLASQMAASAKVARPAVRVAQVSKRTIQTGSPLQRAYSS	
Q	no tail	N/A	

Table S2. Additional initiation region sequences analyzed in Figure 8.

No	SEQUENCE	YFP/RFP
1	RIPYRRYPRRRGPPRNYQQNYQNSESGEKNEGSESAPEGQAQQRRPYRRRFPARVN	0.27±0.09
2	RIPKTVHGAEFYANKKHKGLPLNDANSRLQQNNSRHNLQEHNIDSSPCSEDSHARVN	1.2±0.3
3	RIPEKPYICKAPGCTKRYTDPSSLRKHVKTVHGAEFYANKKHKGLPLNDANSRARVN	0.3±0.1
4	RIPKNEGSESAPEGQAQQRRPYRRRRFPPYYMRRPYGRRPQYSNPPVQGEVMEARVN	0.17±0.01
5	RIPKSNAGMKHGTMDTESKKDPEGCDKSDDKNTVNLFGKVIETTEQDQEPSEAARVN	5.5±0.8
6	RIPTVGNGEVTLTYATGTKEESAGVQDNLFLEKAMQLAKRHANALFDYAVTGDARVN	4.5±0.5
7	RIPLGKMLGTSSPSIKSESDISSSNHHLVNGVRASDSLLTYSPDDLAENLNLDARVN	0.6±0.1
8	RIPDSTISTATTALALQARRNPAGTKWMEHVKLERLKQVNGMFPRLNPILPPKARVN	0.14±0.01
9	RIPAKRIVGSDSSPSNNNAGLHSQNSSLNSYTNMMRNINDEQLITEVIKSFKRARVN	0.16±0.04
10	RIPFRRGPPRQRQPREDGNEEDKENQGDETQGQQPPQRRYRRNFNYRRRPENARVN	0.6±0.2
11	RIPDDKNTVNLFGKVIETTEQDQEPSEATVGNGEVTLTYATGTKEESAGVQDNARVN	0.19±0.05
12	RIPTGPGYSFPHYGFPTYGGITFHPGTTKSNAGMKHGTMDTESKKDPEGCDKSARVN	2.6±0.9
13	RIPPYYMRRPYGRRPQYSNPPVQGEVMEGADNQGAGEQGRPVRQNMYRGYRPRARVN	0.21±0.02
14	RIPQQDLSNTTSKREECLQVKTVKAEKPMTSQPSPGGQSSCSSQQSPISNYSNARVN	1.0±0.3
15	RIPPPPRDSGSHSQSRSPGRPTQGALGEQQDLSNTTSKREECLQVKTVKAEKPARVN	0.7±0.2
16	RIPKSTGPSPNQHSMNLNTSVLYSDEVLIQKVIKSLNINSNISICDSLGRTLLARVN	0.16±0.02
17	RIPSFPYGQPQYGVAGQYPYQLPKNNYNYYQTQNGQEQQSPNQGVAQHSEDSQARVN	1.2±0.5
18	RIPIQKVIKSLNINSNISICDSLGRTLLHLACLKNYSSLVYTLIKKGARVNDIARVN	0.11±0.03
19	RIPDSFGLTPLHFACISGDPKIIKMLLNCKVNYSLRSHNGLTAREVFIANHIHARVN	0.13±0.01
20	RIPHLACLKNYSSLVYTLIKKGARVNDIDSFGLTPLHFACISGDPKIIKMLLNARVN	0.15±0.01
21	RIPAEAANVTGPGGVPVQGSKYAADRNHYRRYPRRRGPPRNYQQNYQNSESGEARVN	0.9±0.2
22	RIPNGNASASTIGGSVLARQRFRGRLQTKGINSSTIMLCNIPESNRTFGISELARVN	0.16±0.03
23	RIPDGWNCDDDVDVADLPIVLRAMVNIGNGNASASTIGGSVLARQRFRGRLQTARVN	0.19±0.02
24	RIPNSYTNMMRNINDEQLITEVIKSFKRNNNLSTVNLSMCDVRGRTLLHLAAFARVN	0.11±0.03
25	RIPDARNIAKRIVGNDSPDSGTNGNSCSKSTGPSPNQHSMNLNTSVLYSDEVLARVN	0.33±0.03
26	RIPGADNQGAGEQGRPVRQNMYRGYRPRFRRGPPRQRQPREDGNEEDKENQGDARVN	4.57±0.01

27	RIPMTSQPSPGGQSSCSSQQSPISNYSNSGLELPLTDGGSIGDLSAIDETPIMARVN	0.4±0.1
28	RIPQSQQPQSQQSPQSQKQGNNVAAQQYYMYQNQFPGYSYPGMFDSQGYAYGQARVN	0.21±0.07
29	RIPNNENNNDDLPQEIEINDNKKAIFTYVDDTDRQLIELALQIVGLKMNGKLEARVN	0.26±0.09
30	RIPLQQNNSRHNLQEHNIDSSPCSEDSHLGKMLGTSSPSIKSESDISSSNHHLARVN	0.5±0.2
31	RIPQHQLQQQYLSQQQQYAQQQQHPQPQSQQPQSQQSPQSQKQGNNVAAQQYARVN	1.8±0.6
32	RIPNGWQIISSSSGATPTSKEQSGSSTNGSNGSESSKNRTVSGGQYVVAAAPNARVN	2.1±0.3
33	RIPYMYQNQFPGYSYPGMFDSQGYAYGQQYQQLAQNNAQTSGNANQYNFQQGYARVN	0.14±0.04
34	RIPASTISSAYLSSRRSSGISPCFSSRRSSEASQAEGRPQNVSVADSYDPISTARVN	0.33±0.01
35	RIPAPAVSPLIGNGTQSNNTCSLGGPMTLLPGRSDLSGVDVTMLNMLNRRDSSARVN	0.3±0.2
36	RIPSGLELPLTDGGSIGDLSAIDETPIMDSTISTATTALALQARRNPAGTKWMARVN	0.26±0.07
37	RIPYYQTQNGQEQQSPNQGVAQHSEDSQQKQSQQQQQQQQQQPQGQPQPEVQMQNGARVN	4.28±0.01
38	RIPVNGVRASDSLLTYSPDDLAENLNLDDGWNCDDDVDVADLPIVLRAMVNIGARVN	0.22±0.06
39	RIPNGGGAFSQARSSSTGSSSSTGGGGQESQPSPLALLAATCSRIESPNENSNARVN	0.14±0.01
40	RIPLPPVLVPRHSEYNPQHSLLAQFRNLGQNEPHMPLNATFPDSFQQPHSHPFARVN	0.15±0.05
41	RIPQYQQLAQNNAQTSGNANQYNFQQGYGQAGANTAAANLTSAAAAAAAASPATARVN	0.27±0.07
42	RIPGQAGANTAAANLTSAAAAAAASPATAHAQPQQQQPYGGSFMPYYAHFYQQARVN	0.28±0.09
43	RIPGQNEPHMPLNATFPDSFQQPHSHPFPQSPNSSYPNSPGSSSSTYPHSPTSARVN	0.7±0.2
44	RIPNSQGPSQSGGTGELDLTATQLSQGANGWQIISSSSGATPTSKEQSGSSTNARVN	4.89±0.01
45	RIPPQSPNSSYPNSPGSSSSTYPHSPTSSDPGSPFQMPADTPPPAYLPPEDPMARVN	0.9±0.7
46	RIPSDPGSPFQMPADTPPPAYLPPEDPMAQDGSQPMDTNMTNMTAPTLPAEINARVN	0.5±0.2
47	NSGSHNFTTQQRKR	3.1±0.2
48	NSGSEDKKAGDEMKELREEIERLKLELSHKKDQETPNEDFKNELGG	5.3±0.4
49	NSGSQKVPSATNSKTTKSKANINNKSKKRGTNLVNKNSNSTPRQKKSQRYVSNLQRS	2.7±0.2
50	NSGSCSFENSNSTSIPSPASSSQSHTPMRNMSSLSDNSVFSRNMEQSSPITPSMGGETLMGG	0.85±0.03
51	NSNTEADSS	4.9±0.4
52	NSGSHKIRRMLSKELQDHRKVMNDVANKDVGEPSSEKLELNAEYTGKQFEHGG	2.6±0.4
53	NSGSTIQMRYGHSLPEARALNIEDCDLDRATNDFYLEPLIERDLLAHYDHQIVMDVRMVNLGG	3±2
54	NSGSKQLAHEEHINNDGDNDDENSNNIESSPLKQGHHHPKGQADDNNEGPDEEESTKEVPKPGGG	2.3±0.9
55	NSGSLRKRRQQQLSSNSTDNSLHPNSGQTPRASDSQRRHKKRNTTNLDRLRQEREENSLEMDCTQSGG	1.0±0.6

56	NSGSANVDSQSNNKHDGKDDDATNNNDGQDNNTNNDHNNNSNINNNNVGSHGISSHSPSSIRDTGG	2.6 ± 0.4
57	NSGSLLSRRHGSATAKQRA	2.7±0.4
58	NSGSSQSINSANNIQSSDSDLVQHFESLAQEIRHHKKYKQNNSKQRKILKKIQDLKQTPPEATLGG	0.26±0.02
59	NSGSSPEQQVISEENDAKKLEQSALNSEASEDSEAMDEESKALKAAAEKADAPIDTNKMD	1.9±0.9
60	NSGSAKHQEISSAGTSSNTTKNVNNNKNDSNDDNNGNNNNDASNLMESVLDKTSSHSPSSIRDT	2.0±0.2
61	NSGSEQNKTT	2.73±0.09
62	NSGSEGIVTRLNETFNPEIQALPPLREIISGTSETHSSNNPFEIHSSNIDSELRNRFDYSEEEMDEDDDVDVFAGG	2.8±0.1
63	NSGSTSSLNEITPSKNRVTSACNSERRTTSQEANNLEGYHSCAQE	3.0±0.2
64	NSGSNTTSENIE	3.0±0.1
65	NSGSMKEAQKQLEEVQEQLTEYESQNLKLKKKLEATKTENSELQSTIVTLNTELENLKKNKKAQKKYS	2.6±0.2
66	NSGSLTVEIKEETSKD	4.2±0.2
67	NSGSCEGPSHGGLPGG	3.2±0.1
68	NSGSFRNPDSAFSANAKRGSKLVALRRINMEHIQQSRDNKQY	0.82 ± 0.05
69	NSGSQQILSRQQSLGSAFGHSPPLIHPAPTFPTQRPIPGIPTVLGG	0.17±0.02
70	NSGSADQKTTGKDIGGAAVSSMSGCPVMHESSSSSPPSSECP	2.8±0.1
71	NSGSHGSLPHVAEPSVPYRGTVFAMDPRNGYMEPHYHPPHLFPAGG	0.35 ± 0.07
72	NSGSRVTSMTQLNHHGRSPTSSPGNESSALLLTHSWVNKTSLHSVEADSS	0.93±0.09
73	NSGSNRFHRGKKSVERIRKFQNRQKNAKIKASDDAISKKSTSVNVSDGKIKRRDKKVSAGRTTVVVENTKGG	1.4±0.1
74	NSGSSHDDVANGIVPKHVVNVQNPPKQEVFEKIPSPEFNSNNEKELVQRKGSANEKLHQELGEKQPASGG	4.2±0.2
75	NSGSHLDLVKERPRFERSLEDLLKENATLAIELTKEITVSKRSSGEEKNDSETKGTHVERRRVPFLRDLLVKKRTTL KPRVPTLKRRRVPFLRDLLVKKRTTLKPRVPTLKRRRVPFLSLQSLPERLPEADSS	0.22±0.02
76	NSGSSWKDVQQEQEI	4.2±0.2
77	NSGSTDGTGDDHDGAPLSSSPSFGQQNDNSNWTCLKQGCF	1.8±0.2
78	NSGSERAKANLRAI	1.9±0.3
79	NSGSYHLQNDYSDAKTIVDTETEENLSTPLNLSTLNWKPQSWVLVCLTWVTTKPTNCLSTKLSTKRDLTLEPEELR LKKKTSVTL	0.18±0.01
80	NSGSTEDITVQEPVPLPEDAPEDAEPQFKEVTKTIKKDVLGMTAKTFALNPVELNDLIEKENELRNQDKLVAGG	0.48 ± 0.04
81	NSGSTPWKVYHRNLERKVGPIEERS	1.4±0.1
82	NSGSMKRHVSSSFNNKVPLIKASSSNNSATSSPSIANSQLKSLENGG	3.3±0.3

83	NFNSHNVYITADKQKNGIKANFKIRHNVEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSYQSKLSKDPNEKRDH MVLLEFVTAAGITHGMDELYRIRRLELINVT	2.6±0.2
84	NSGSLPPTMGKKTLLSLLPLLKTD	0.5±0.1
85	NSGSQYGLEAARSGGPSFGPGGAGGAGGFPGGAGGFSGGHAFSNEDAFNIFSQFFGGSSPFGGPDDSVSLSLL THLVVVLVWVVCQEADSS	0.7±0.1
86	NSGSPMEQIQKKQQELRQARQRMFRHER	1.6±0.2
87	NSGSMRCLAPRPAGFYLFEPQGFSQCATELGPLEGGYLELLNSDADPLCLYHFYDQMDLAGEEEIELYS EPDTDTINCDQFSRLLCDMEGDEETREAYANIAEGG	1.0±0.1
88	NSGSEFISLSPPHEALDYHFGLEEGEGIRDLFDCDFGDLTHWTSEADSS	4.6±0.2
89	NSGSELFQDLSQLQETWLAEAQVPDNDEQFVPDYQAESLVWEADSS	2.0±0.1
90	NSGSFVFTYPEADSFPPGGAGGAGVSQVVLVVSLVVTLSLTKTLSTSSLNSSVVLLHSVVLTTLVSLSLLTHLVVVL VWVVCQEADSS	0.91±0.08
91	NSGSMEVAPEQPRWMAHPAVLNAQHPDSHHPGLAHNYMEPAQLLPPDEVDVFFNHLDSQGNPYYANPAHARAR VGG	0.19±0.02
92	NSGSSSPSMRPDVSSPPSSSSTATTGPPPKLCLVCSDEASGCHYGG	1.5±0.2
93	NSGSEFKLELVEKLFAEDTEAKNPFSTQDTDLDLEMLAPYIPMDDDFQLRSFDQLSPLESSSASPESASPQSTVGG	1.0±0.1
94	NSGSDIGLSLQRVFTDLKNMDATWLDSLLTPVRLPSIQAIPCAPGG	0.14 ± 0.01
95	NSGSLPQQATYFPPSPPSSEPGSPDRQAEMLQNLTPPPSYAATIASKLAIHNPNLPTTLPGG	0.34±0.04
96	NSGSMDFFRVVENQQPPATMPLNVSFTNRNYDLDYDSVQPYFYCDEEENFYQQQQQSELQPPAPSEDIWKKFELL PTPPLSPSRRSGLCSPSYVAVTPFSLRGDNDGGGGSFSTADQLEMVTELLGGDMVNQGG	
97	NSGSIESLQELLREQVENYYSLPGQSCSEPTSPTSNCSDGMPECGG	3.4±0.4
98	NSGSMEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLGG	0.81±0.05
99	NSGSDVSKLGEEEDEISPLSHDNFQYESEENGNPSPPIYKKSGELVKSSLKRRSKSLPITPKSIFNKTGSKGG	0.73±0.02

Table S3. Yeast Strains.

strain	genotype	source
BY4741	$MATa$ his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$	(1)
$pdr5\Delta$	BY4741 with pdr5::kanMX4	(2)
MAHQ1	$pdr5\Delta$ with $uba1-204$	this study
YYS40	MATa RPN11-3 × FLAG-HIS3 ade2 can1 his3 leu2 trp1 ura3 ssd1	(3)
S. pombe	h+ his+ ade6-M216 leu1-32 ura4-D18 arg+	(4)

References

- 1. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D. (1998)
 Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* 14, 115–132
- 2. Fleming, J. A., Lightcap, E. S., Sadis, S., Thoroddsen, V., Bulawa, C. E., and Blackman, R. K. (2002) Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. *Proc. Natl. Acad. Sci. USA* **99**, 1461–1466
- 3. Saeki, Y., Isono, E., and Toh-E, A. (2005) Preparation of ubiquitinated substrates by the PY motifinsertion method for monitoring 26S proteasome activity. *Meth. Enzymol.* **399**, 215–227
- 4. Leupold, U. (1950) Die Vererbung von Homothallie und Heterothallie bei *Schizosaccharomyces pombe. CR Trav. Lab. Carlsberg Ser. Physiol.* **24**, 381–480