Examen de fin d'études secondaires 2013 - Section C - Mathématiques I Corrigé

I. 1)
$$\underbrace{z^3 - 3z^2 + (9 - 5i)z - 2 + 10i}_{P(z)} = 0$$

Soit $z_0 = bi$ $(b \in \mathbb{R})$ une solution imaginaire pure.

Alors:
$$P(z_0) = 0 \Leftrightarrow (bi)^3 - 3(bi)^2 + (9 - 5i)bi - 2 + 10i = 0$$

$$\Leftrightarrow -b^3i + 3b^2 + 9bi + 5b - 2 + 10i = 0$$

$$\Leftrightarrow 3b^2 + 5b - 2 + (-b^3 + 9b + 10) \cdot i = 0$$

$$\Leftrightarrow \begin{cases} 3b^2 + 5b - 2 = 0 & (1) \\ -b^3 + 9b + 10 = 0 & (2) \end{cases}$$

(1):
$$\Delta = 25 + 24 = 49$$
; $b_1 = \frac{-5 + 7}{6} = -\frac{1}{3}$; $b_2 = \frac{-5 - 7}{6} = -2$

$$b = -2 \text{ dans } (2): 8-18+10=0$$

Donc: $z_0 = -2i$ est une solution imaginaire pure et P(z) est divisible par z + 2i.

Schéma de Horner:

D'où: $P(z) = (z+2i) \cdot Q(z)$, avec $Q(z) = z^2 + (-3-2i)z + 5 + i$.

Résolvons l'équation Q(z) = 0:

$$\Delta = (-3 - 2i)^2 - 4(5 + i) = 9 + 12i - 4 - 20 - 4i = -15 + 8i$$

Soit x + iy $(x, y \in \mathbb{R})$ une racine carrée complexe de Δ . On obtient le système suivant:

$$\begin{cases} x^2 - y^2 = -15 & (1) \\ 2xy = 8 & (2) \\ x^2 + y^2 = \sqrt{225 + 64} = 17 & (3) \end{cases}$$

(1) + (3):
$$2x^2 = 2 \Leftrightarrow x^2 = 1 \Leftrightarrow x = 1 \text{ ou } x = -1$$

$$(3)-(1): 2y^2 = 32 \Leftrightarrow y^2 = 16 \Leftrightarrow y = 4 \text{ ou } y = -4$$

D'après (2) x et y sont de même signe.

Donc: Les racines carrées de Δ sont 1+4i et -1-4i.

Ainsi: Les solutions de l'équation Q(z) = 0 sont $z_1 = \frac{3+2i+1+4i}{2} = \frac{4+6i}{2} = 2+3i$

et
$$z_2 = \frac{3+2i-1-4i}{2} = \frac{2-2i}{2} = 1-i$$
.

Finalement: $S = \{-2i; 2+3i; 1-i\}$

2) a)
$$z_1 = \frac{6i - 4}{5 - i} = \frac{(6i - 4)(5 + i)}{(5 - i)(5 + i)} = \frac{30i - 6 - 20 - 4i}{25 + 1} = \frac{-26 + 26i}{26} = -1 + i$$

$$|z_1| = \sqrt{1 + 1} = \sqrt{2}$$

$$\begin{cases} \cos \varphi_1 = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \\ \sin \varphi_1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \end{cases}, \text{ done: } \varphi_1 = \frac{3\pi}{4}$$

$$\text{D'où: } z_1 = \sqrt{2} \operatorname{cis} \frac{3\pi}{4}$$

D'où:
$$z_1 = \sqrt{2} \operatorname{cis} \frac{3\pi}{4}$$

b)
$$Z = \frac{z_1^6}{z_2} = \frac{\left(\sqrt{2}\operatorname{cis}\frac{3\pi}{4}\right)^6}{2\operatorname{cis}\frac{\pi}{3}} = \frac{8\operatorname{cis}\frac{18\pi}{4}}{2\operatorname{cis}\frac{\pi}{3}} = 4\operatorname{cis}\left(\frac{9\pi}{2} - \frac{\pi}{3}\right) = 4\operatorname{cis}\frac{25\pi}{6} = 4\operatorname{cis}\frac{\pi}{6}$$

c) Racines cubiques de
$$z_2$$
: $t_k = \sqrt[3]{2} \operatorname{cis}\left(\frac{\pi}{9} + \frac{2k\pi}{3}\right)$, avec $k \in \{0;1;2\}$

Donc:
$$t_0 = \sqrt[3]{2} \operatorname{cis} \frac{\pi}{9}$$
, $t_1 = \sqrt[3]{2} \operatorname{cis} \frac{7\pi}{9}$ et $t_2 = \sqrt[3]{2} \operatorname{cis} \frac{13\pi}{9}$

II. 1)
$$\det A = \begin{vmatrix} 2 & 1 & -1 \\ -3 & 1 & 4 \\ m & -2 & m \end{vmatrix} = 2m + 4m - 6 + m + 16 + 3m = 10m + 10$$

Or:
$$\det A = 0 \Leftrightarrow 10m = -10 \Leftrightarrow m = -1$$

1er cas:
$$m \neq -1$$
: 1do n(). A sb synthesis shows show and $(M \Rightarrow q, x)$ $y(+x)$ 1io8

Comme dét $A \neq 0$, on a un système de Cramer.

$$\det A_x = \begin{vmatrix} 0 & 1 & -1 \\ 5 & 1 & 4 \\ -3 & -2 & m \end{vmatrix} = -12 + 10 - 3 - 5m = -5m - 5$$

$$x = \frac{\det A_x}{\det A} = \frac{-5m - 5}{10m + 10} = \frac{-5(m+1)}{10(m+1)} = -\frac{1}{2}$$

$$x = \frac{\det A_x}{\det A} = \frac{-5m - 5}{10m + 10} = \frac{-5(m+1)}{10(m+1)} = -\frac{1}{2}$$

$$\det A_y = \begin{vmatrix} 2 & 0 & -1 \\ -3 & 5 & 4 \\ m & -3 & m \end{vmatrix} = 10m - 9 + 5m + 24 = 15m + 15$$

$$y = \frac{\det A_y}{\det A} = \frac{15m + 15}{10m + 10} = \frac{15(m+1)}{10(m+1)} = \frac{3}{2}$$

$$y = \frac{\det A_y}{\det A} = \frac{15m + 15}{10m + 10} = \frac{15(m+1)}{10(m+1)} = \frac{3}{2}$$

$$\det A_z = \begin{vmatrix} 2 & 1 & 0 \\ -3 & 1 & 5 \\ m & -2 & -3 \end{vmatrix} = -6 + 5m + 20 - 9 = 5m + 5$$

$$z = \frac{\det A_z}{\det A} = \frac{5m+5}{10m+10} = \frac{5(m+1)}{10(m+1)} = \frac{1}{2}$$

Le système admet une solution unique: $S = \left\{ \left(-\frac{1}{2}; \frac{3}{2}; \frac{1}{2} \right) \right\}$

Interprétation géométrique:

Les équations du système sont celles de trois plans qui se coupent en un seul point.

$$2^{e}$$
 cas: $m = -1$:

$$\frac{2^{e} \text{ cas: } m = -1:}{\begin{cases} 2x + y - z = 0 & (1) \\ -3x + y + 4z = 5 & (2) \\ -x - 2y - z = -3 & (3) \end{cases}} \begin{cases} 2x + y - z = 0 & (1) \\ 5y + 5z = 10 & (2)/3 \cdot (1) + 2 \cdot (2) \\ -3y - 3z = -6 & (3)/(1) + 2 \cdot (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x + y - z = 0 \\ y + z = 2 \\ y + z = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} y+z=2\\ y+z=2 \end{cases}$$
En posant $z=\alpha$, avec $\alpha \in \mathbb{R}$, on obtient:
$$\begin{cases} 2x=\alpha-2+\alpha\\ y=-\alpha+2\\ z=\alpha \end{cases} \Leftrightarrow \begin{cases} x=\alpha-1\\ y=-\alpha+2\\ z=\alpha \end{cases}$$
Le système est simplement indéterminé: $S=\{(\alpha-1;-\alpha+2;\alpha) | \alpha \in \mathbb{R}\}$

Le système est simplement indéterminé: $S = \{(\alpha - 1; -\alpha + 2; \alpha)\}$

Interprétation géométrique:

Les équations du système sont celles de trois plans qui se coupent suivant la droite

passant par le point A(-1;2;0) et de vecteur directeur
$$\vec{u} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
.

2) a) Soient $\overrightarrow{AB} \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$ deux vecteurs directeurs (non colinéaires) du plan π .

Alors:
$$M(x; y; z) \in \pi \Leftrightarrow d\acute{e}t(\overrightarrow{AM}; \overrightarrow{AB}; \overrightarrow{AC}) = 0$$

$$\Leftrightarrow \begin{vmatrix} x-2 & -3 & 1 \\ y-1 & 1 & -2 \\ z+3 & 1 & 5 \end{vmatrix} = 0$$

$$\Leftrightarrow$$
 5(x-2)+6(z+3)+(y-1)-(z+3)+2(x-2)+15(y-1)=0

$$\Leftrightarrow 7(x-2)+16(y-1)+5(z+3)=0$$

$$\Leftrightarrow 7x - 14 + 16y - 16 + 5z + 15 = 0$$

$$\Leftrightarrow 7x + 16y + 5z - 15 = 0$$

b) Comme $d \perp \pi$, le vecteur $\vec{u} \begin{bmatrix} 16 \\ 5 \end{bmatrix}$ est un vecteur normal au plan π et aussi un

vecteur directeur de la droite d.

Alors:
$$M(x; y; z) \in d \Leftrightarrow \overrightarrow{AM} = k\overrightarrow{AB} (k \in \mathbb{R})$$

$$\Leftrightarrow \begin{cases} x = 2 + 7k \\ y = 1 + 16k \\ z = -3 + 5k \end{cases}$$

III. 1)
$$\left(2x^3 - \frac{3}{x^2}\right)^9 = \sum_{k=0}^9 (-1)^k C_9^k \left(2x^3\right)^{9-k} \left(\frac{3}{x^2}\right)^k = \sum_{k=0}^9 (-1)^k \cdot 2^{9-k} \cdot 3^k \cdot x^{27-3k} \cdot x^{-2k}$$

$$= \sum_{k=0}^9 (-1)^k \cdot 2^{9-k} \cdot 3^k \cdot x^{27-5k}$$

Or: $27 - 5k = 12 \Leftrightarrow -5k = -15 \Leftrightarrow k = 3$ Donc: Terme en x^{12} : $(-1)^3 \cdot C_9^3 \cdot 2^6 \cdot 3^3 \cdot x^{12} = -84 \cdot 64 \cdot 27 \cdot x^{12} = -145512x^{12}$

2) a) P(5 cartes de la même couleur) =
$$\frac{4 \cdot C_{13}^5 \cdot C_{39}^3}{C_{52}^8} = \frac{47047572}{752538150} \approx 0,0625$$

b) P(au moins 1 dame) =
$$1 - P(\text{aucune dame}) = 1 - \frac{C_{48}^8}{C_{52}^8} = 1 - \frac{377348994}{752538150} \approx 0,4986$$

3) a) Nombre de tirages:
$$B_5^3 + B_6^3 + B_7^3 = 5^3 + 6^3 + 7^3 = 684$$

b) Nombre de tirages:
$$3! \cdot A_5^1 \cdot A_6^1 \cdot A_7^1 = 6 \cdot 5 \cdot 6 \cdot 7 = 1260$$

c) P(2^e boule rouge) =
$$\frac{A_5^2 + A_6^1 \cdot A_5^1 + A_7^1 \cdot A_5^1}{A_{18}^2} = \frac{85}{306} = \frac{5}{18} \approx 0,2778$$

Alors: $M(x; y; z) \in \pi \Leftrightarrow d\acute{et}(\widetilde{AM}; \widetilde{AB}; \widetilde{AC}) = 0$

- 7r-14+16u-16+5++15=0

 $\Leftrightarrow 7x + 16y + 5z - 15 = 0$

b) Comme $d \perp L \pi$, le vecteur \vec{u} 16 est un vecteur normal au plan π et aussi un

vecteur directeur de la droite d.

Alors: $M(x; y; z) \in d \Leftrightarrow AM = kAB (k \in \mathbb{R})$

> {y=1+16k

z = -3 + 5k