

Data Analysis

Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision—making.


```
import numpy as np
a = np.array([2,3,4])
print(a.dtype)
b = \text{np.array}([(1.5,2,3), (4,5,6)])
print(b)
c = np.array([[1,2],[3,4]], dtype=complex)
np.zeros((3,4))
np.ones( (2,3,4), dtype=np.int16 )
np.arange(10,30,5)
np.linspace(0, 2, 9)
```

```
b.min(axis=0)
b.sum(axis=0)
                      # axis=0 - Col
b.sum(axis=1)
                      # axis=1 - Row
                      \# a_{,}a+b_{,}a+b+c
b.cumsum(axis=1)
a = np.arange(10)**3
print(a[2:5])
a[:6:2] = -1000
print(b[0:5, 1])
                  # each row in 2nd column of b
print(b[1:3, : ])
                  # each col in the 2&3 row of b
a.reshape(6,2)
```


- Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

Consider

- We use data of Tamil Nadu Medical
 Counselling Provisional List for NEET
 2018 Candidates
- All the data available in the CSV File Format (process.csv)
- We use this data for data analysis with Pandas Python Package

13 12,4132, VIGNESH. KUMAR, OC, 612,,

14 13,1648, SABARISH S, BC, 610, 8,

importing required python packages

import pandas as pd

import numpy as np

Read Data From CSV using Pandas

tneet=pd.read_csv("process.csv")

#tneet is Data Frame

print(tneet)

	RANK	ARNO	NAME	COMMUNITY	MARK	CRANK	EMPTY
0	1	18507	KEERTHANA.K	BC	676	1	NaN
1	2	7736	RAJ CHENDUR ABHISHEK.R	BC	656	2	NaN
2	3	13216	PRAVEEN.R	OC	650	NaN	NaN
3	4	24782	MOHAMED SHUAIB HASAN	BCM	644	1	NaN
4	5	7990	RAGAVENDRAN.T.V	BC	626	3	NaN
5	6	24128	ARAVIND.S	BC	625	4	NaN
6	7	9061	HARI NARENDHIRAN.N.E	BC	625	5	NaN
25414	25412	5042	MADHUMITHA R	BC	96	12415	NaN
25415	25413	6914	METILDA SHARLIN C	BC	96	12416	NaN
25416	25414	16843	MANIDHARANI D	BC	96	12417	NaN
25417	25415	25984	GUNASEKAR S	SC	96	3864	NaN
25418	25416	21628	MOHAMMED RAYYAN A	BCM	96	1394	NaN
25419	25417	5806	ABDUL RAHIM P	BCM	96	1395	NaN

Get the number of records & column


```
print(tneet.index)
```

print(tneet.columns)

```
RangeIndex(start=0, stop=25420, step=1)
Index(['RANK', 'ARNO', 'NAME', 'COMMUNITY', 'MARK', 'CRANK', 'EMPTY'],
```


Usage of Head function

#Viewing the first 5 lines

print(tneet.head())

		RANK	ARNO	NAME	COMMUNITY	MARK	CRANK	EMPTY
Index	0	1	18507	KEERTHANA.K	BC	676	1	NaN
much	1	2	7736	RAJ CHENDUR ABHISHEK.R	BC	656	2	NaN
	2	3	13216	PRAVEEN.R	OC	650	NaN	NaN
	3	4	24782	MOHAMED SHUAIB HASAN	BCM	644	1	NaN
	4	5	7990	RAGAVENDRAN.T.V	BC	626	3	NaN
		•						

#Viewing the first n lines

print(tneet.head(2))

	RANK	ARNO	NAME	COMMUNITY	MARK	CRANK	EMPTY
0	1	18507	KEERTHANA.K	BC	676	1	NaN
1	2	7736	RAJ CHENDUR ABHISHEK.R	BC	656	2	NaN

Set specific column as Index Column

tneet=tneet.set_index("RANK")
print(tneet.head())

	RAI	ARNO NK	NAME	COMMUNITY	MARK	CRANK	EMPTY
Index	1	18507	KEERTHANA.K	BC	676	1	NaN
	2	7736	RAJ CHENDUR ABHISHEK.R	BC	656	2	NaN
	3	13216	PRAVEEN.R	OC	650	NaN	NaN
	4	24782	MOHAMED SHUAIB HASAN	BCM	644	1	NaN
	5	7990	RAGAVENDRAN.T.V	BC	626	3	NaN

name=tneet['NAME'] print(name)

RANK		
1		KEERTHANA.K
2		RAJ CHENDUR ABHISHEK.R
3		PRAVEEN.R
4		MOHAMED SHUAIB HASAN
5		RAGAVENDRAN.T.V
6		ARAVIND.S
7		HARI NARENDHIRAN.N.E
25411		ARUNACHAL.J.K
25412		MADHUMITHA R
25413		METILDA SHARLIN C
25414		MANIDHARANI D
25415		GUNASEKAR S
25416		MOHAMMED RAYYAN A
25417		ABDUL RAHIM P
Name:	NAME,	Length: 25420, dtype: object

subset=tneet[['NAME','MARK']] print(subset)

RANK		
1	KEERTHANA.K	676
2	RAJ CHENDUR ABHISHEK.R	656
3	PRAVEEN.R	650
4	MOHAMED SHUAIB HASAN	644
5	RAGAVENDRAN.T.V	626
6	ARAVIND.S	625
7	HARI NARENDHIRAN.N.E	625
25411	ARUNACHAL.J.K	96
25412	MADHUMITHA R	96
25413	METILDA SHARLIN C	96
25414	MANIDHARANI D	96
25415	GUNASEKAR S	96
25416	MOHAMMED RAYYAN A	96
25417	ABDUL RAHIM P	96
[25420	rows x 2 columns]	

label-based indexing

integer-based indexing

subset=tneet.loc[['1','10']]
print(subset)

	ARNO		NAME	COMMUNITY	MARK	CRANK	EMPTY
RANK							
1	18507		KEERTHANA.K	BC	676	1	NaN
10	17021	DAV/T	RHADATHT II M	MRC / DNC	617	1	NaN

subset=tneet.iloc[[0,9]]
print(subset)

	ARNO	NAME	COMMUNITY	MARK	CRANK	EMPTY
RANK						
1	18507	KEERTHANA.K	BC	676	1	NaN
10	17021	RAVI BHARATHI.U.M	MBC/DNC	617	1	NaN

subset=tneet.loc[:'5']
print(subset)

subset=tneet.iloc[:5]
print(subset)

		ARNO	NAME	COMMUNITY	MARK	CRANK	EMPTY
R	ANK						
1		18507	KEERTHANA.K	BC	676	1	NaN
2		7736	RAJ CHENDUR ABHISHEK.R	BC	656	2	NaN
3		13216	PRAVEEN.R	OC	650	NaN	NaN
4		24782	MOHAMED SHUAIB HASAN	BCM	644	1	NaN
5		7990	RAGAVENDRAN.T.V	BC	626	3	NaN

		ARNO	NAME	COMMUNITY	MARK	CRANK	EMPTY
R	ANK						
1		18507	KEERTHANA.K	BC	676	1	NaN
2		7736	RAJ CHENDUR ABHISHEK.R	BC	656	2	NaN
3	,	13216	PRAVEEN.R	OC	650	NaN	NaN
4		24782	MOHAMED SHUAIB HASAN	BCM	644	1	NaN
5		7990	RAGAVENDRAN.T.V	BC	626	3	NaN

label-based indexing

subset=tneet.loc[:'2',['NAME','MARK']] print(subset)

			NAME	MARK
RANK				
1		1	KEERTHANA.K	676
2	RAJ	CHENDUR	${\tt ABHISHEK.R}$	656

integer-based indexing

subset=tneet.iloc[:2,[1,3]] print(subset)

			NAME	MARK	
RANK					
1		K	CEERTHANA.K	676	
2	RAJ	CHENDUR	ABHISHEK.R	656	

Del specific column

del tneet['EMPTY'] print(tneet)

	ARNO	NAME	COMMUNITY	MARK	CRANK
RANK					
1	18507	KEERTHANA.K	BC	676	1
2	7736	RAJ CHENDUR ABHISHEK.R	BC	656	2
3	13216	PRAVEEN.R	OC	650	NaN
4	24782	MOHAMED SHUAIB HASAN	BCM	644	1
5	7990	RAGAVENDRAN.T.V	BC	626	3
6	24128	ARAVIND.S	BC	625	4
7	9061	HARI NARENDHIRAN.N.E	BC	625	5
25411	5062	ARUNACHAL.J.K	MBC/DNC	96	5491
25412	5042	MADHUMITHA R	BC	96	12415
25413	6914	METILDA SHARLIN C	BC	96	12416
25414	16843	MANIDHARANI D	BC	96	12417
25415	25984	GUNASEKAR S	SC	96	3864
25416	21628	MOHAMMED RAYYAN A	BCM	96	1394
25417	5806	ABDUL RAHIM P	BCM	96	1395
[25420	rows x	5 columns]			


```
oc=tneet[tneet.COMMUNITY=='OC']
bc=tneet[tneet.COMMUNITY=='BC']
bcm=tneet[tneet.COMMUNITY=='BCM']
mbc=tneet[tneet.COMMUNITY=='MBC/DNC']
sc=tneet[tneet.COMMUNITY=='SC']
sca=tneet[tneet.COMMUNITY=='SCA']
st=tneet[tneet.COMMUNITY=='ST']
```

print('OC:\t',len(oc))
print('BC:\t',len(bc))
print('BCM:\t',len(bcm))
print('MBC:\t',len(mbc))
print('SC:\t',len(sc))
print('SCA:\t',len(sca))
print('ST:\t',len(st))

OC: 1690
BC: 12417
BCM: 1395
MBC: 5491
SC: 3864
SCA: 447
ST: 113

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms

- * Line Plot
- * Histograms
- * Paths
- Three-dimensional plotting
- * Streamplot
- Ellipses

- * Bar charts
- * Pie charts
- * Tables
- Scatter plots
- * Filled curves
- * Log plots
- * Polar plots

- * Legends
- Pyplot
- * ColorMaps
- ❖ Text annotation
- * Wireframe plots
- Surface plots
- Contour plots

importing required python packages

import matplotlib.pyplot as plt

x=['OC','BC','BCM','MBC','SC','SCA','ST']

y=[len(oc),len(bc),len(bcm),len(mbc),len(sc),len(sca),len(st)]

plt.plot(x,y)

plt.show()

plt.title('Category wise Total Candidates');

plt.xlabel('Category')
plt.ylabel('# of Candidates')
plt.show()

x=['OC','BC','BCM','MBC','SC','SCA','ST']

y=[len(oc),len(bc),len(bcm),len(mbc),len(sc),len(sca),len(st)]

plt.bar(x,y)

category

plt.title('Category wise Total Candidates');

plt.xlabel('Category')

plt.ylabel('# of Candidates')

plt.show()

Draw Pip Chart

x=['OC','BC','BCM','MBC','SC','SCA','ST']

y=[len(oc),len(bc),len(bcm),len(mbc),len(sc),len(sca),len(st)]

plt.pie(y,labels=x)
plt.title('Category wise Total Candidates');
plt.xlabel('Category')

plt.ylabel('# of Candidates')
plt.show()

Example for Multi line chart with legends

plt.plot(oc.index.astype('int'),np.arange(1,len(oc)+1)) plt.plot(bc.index.astype('int'),bc.CRANK.astype('int')) plt.plot(bcm.index.astype('int'),bcm.CRANK.astype('int')) plt.plot(mbc.index.astype('int'),mbc.CRANK.astype('int')) plt.plot(sc.index.astype('int'),sc.CRANK.astype('int')) plt.plot(sca.index.astype('int'),sca.CRANK.astype('int')) plt.plot(st.index.astype('int'),st.CRANK.astype('int')) plt.title('Category wise Rank Range'); plt.xlabel('Candidate') plt.ylabel('Rank') plt.legend(['OC','BC','BCM','MBC','SC','SCA','ST']) plt.show()

Count the marks, which is same mark to more than one students


```
def repeatMarks(groups,start,stop):
   rgroups=groups.loc[start:stop]
   plt.bar(rgroups.index,rgroups.values)
   plt.title("Repeating Marks (Range: {0} to {1}) - Total: {2}".format(start,stop,np.sum(rgroups.values)))
   plt.xlabel('Mark (min: {0},max: {1})'.format(min(rgroups.index),max(rgroups.index)))
   plt.ylabel('Number of Candidates')
   plt.show()
```


groups=markgroup.size()

repeatMarks(plt,groups,1,720)

repeatMarks(plt,groups,1,100)

repeatMarks(plt,groups,101,200)

repeatMarks(plt,groups,201,300)

repeatMarks(plt,groups,301,400)

repeatMarks(plt,groups,401,500)

repeatMarks(plt,groups,501,600)

repeatMarks(plt,groups,601,720)

Category wise Repeating Mark Analysis


```
def repeatMarks(category,groups,start,stop):
   rgroups=groups.loc[start:stop]
   if len(rgroups)>0:
      plt.bar(rgroups.index,rgroups.values)
      plt.title("{3}-Repeating Marks (Range: {0} to {1}) - Total: {2}".format(start,stop,np.sum(rgroups.values),category))
      plt.xlabel('Mark (min: {0}, max: {1})'.format(min(rgroups.index), max(rgroups.index)))
      plt.ylabel('Number of Candidates')
      plt.savefig('report/categoryRepeatMark/{0}-{1}-{2}.png'.format(category.replace("/","-"),start,stop))
      plt.show()
for category in ['OC','BC','BCM','MBC/DNC','SC','SCA','ST']:
   markgroup=tneet[tneet.COMMUNITY==category].groupby(['MARK'])
   groups=markgroup.size()
   repeatMarks(category,groups,1,720)
   repeatMarks(category, groups, 601, 720)
   repeatMarks(category,groups,501,600)
   repeatMarks(category,groups,401,500)
   repeatMarks(category, groups, 301,400)
   repeatMarks(category, groups, 201, 300)
   repeatMarks(category, groups, 101, 200)
   repeatMarks(category,groups,1,100)
```


616.6 616.7 616.8 616.9 617.0 617.1 617.2 617.3 617.4

Mark (min: 617,max: 617)

Mark (min: 402,max: 484)

420

Mark (min: 401,max: 500)

Category Vs Mark Range


```
categories=['OC','BC','BCM','MBC/DNC','SC','SCA','ST']
ranges=['1-100','101-200','201-300','301-400','401-500','501-600','601-720']
cateData=[7
for category in categories:
   markgroup=tneet[tneet.COMMUNITY==category].groupby(['MARK'])
  groups=markgroup.size()
  cdata=[7
   for rang in ranges:
     start, stop=rang.split("-")
     start=int(start)
     stop=int(stop)
     cdata.append(sum(groups.loc[start:stop].values))
  cateData.append(cdata)
cateData=np.array(cateData)
```


Plotting into heat maps


```
fig, ax = plt.subplots()
im = ax.imshow(cateData)
ax.set_xticks(np.arange(len(categories)))
ax.set_yticks(np.arange(len(ranges)))
ax.set_xticklabels(categories)
ax.set_yticklabels(ranges)
plt.setp(ax.get_xticklabels(), rotation=49, ha="right",
       rotation_mode="anchor")
for i in range(len(categories)):
   for j in range(len(ranges)):
      text = ax.text(j, i, cateData[i, j],ha="center", va="center", color="w")
ax.set_title("Category Vs Mark Range")
fig.tight_layout()
plt.show()
```


Mark Range – Low & High


```
categories=['OC','BC','BCM','MBC/DNC','SC','SCA','ST']
lowrange=[]
highrange=[]
for category in categories:
    markgroup=tneet[tneet.COMMUNITY==category]
    low=min(markgroup.MARK)
    high=max(markgroup.MARK)
    lowrange.append(low)
    highrange.append(high)
```

plt.plot(categories,lowrange)
plt.plot(categories,highrange)
plt.title('Mark Range - Low & High');
plt.xlabel('Community')
plt.ylabel('Mark')
plt.legend(['Low Mark Range','High Mark Range'])
plt.show()

Available MBBS & BDS Seats


```
3
```

```
govtGQ=2445
selfGQ=783
rajGQ=127
bdsGQ=85
bdsSelfGQ=1020
rajbds=68
totalSeats=govtGQ+selfGQ+rajGQ+bdsGQ+bdsSelfGQ+rajbds
plt.bar(['Govt(2445)','Self(783)','Rajah(127)'],[govtGQ,selfGQ,rajGQ])
plt.bar(['Govt(85)','Self(1020)','Rajah(68)'],[bdsGQ,bdsSelfGQ,rajbds])
plt.title("College Wise Available Seats")
plt.ylabel('Medical Seats')
plt.legend(['MBBS','BDS'])
plt.show()
```


S

Seat Allocation By TN Government

plt.pie(allocation.values(),labels=allocation.keys())
plt.title("TN Government Seat Allocation")
plt.legend(["{!s}={!r}%".format(key,val) for (key,val)
in allocation.items()])
plt.show()


```
govtGQ=2445
selfGQ=783
rajGQ=127
bdsGQ=85
bdsSelfGQ=1020
rajbds=68
totalSeats=govtGQ+selfGQ+rajGQ+bdsGQ+bdsSelfGQ+rajbds
legends=[]
for (key, val) in allocation.items():
   seat=round((totalSeats*val)/100)
   legends.append("{!s}={!r}".format(key,seat))
   plt.bar([key],[seat])
plt.title("TN Government Seat Allocation")
plt.legend(legends)
plt.show()
```


How many students get GQ Seat in each category


```
3
```

```
govtGQ=2445
selfGQ=783
rajGQ=127
bdsGQ=85
bdsSelfGQ=1020
rajbds=68
totalSeats=govtGQ+selfGQ+rajGQ+bdsGQ+bdsSelfGQ+rajbds
markgroup=tneet.groupby(['COMMUNITY'])
groups=markgroup.size()
for category in allocation.keys():
  seat=round((totalSeats*allocation[category])/100)
  totalSeat.append(100)
  cols.append(category)
  seatallot.append(round((seat/groups[category])*100))
  rseat.append(seat)
  parti.append(groups[category])
```

```
plt.plot(cols,parti)
plt.plot(cols, rseat)
plt.title("Participants Vs Available Seats (In Count)")
plt.legend(['Participants','Available Seats'])
plt.show()
plt.bar(cols,totalSeat)
plt.bar(cols, seatallot)
plt.ylim(1,110)
plt.title("Participants Vs Available Seats (In %) ")
plt.legend(['Participants','Available Seats'])
plt.xlabel('Community')
plt.ylabel('Candidates')
plt.show()
```


Cut Off Analysis


```
minmarks=[7
maxmarks=[7
lowmarks=[7
categories=allocation.keys()
for category in categories:
   seat=round((totalSeats*allocation[category])/100)
   allstudents=tneet[tneet.COMMUNITY==category]
   students=allstudents[:seat]
   minmarks.append(min(students.MARK))
   maxmarks.append(max(students.MARK))
   lowmarks.append(min(allstudents.MARK))
```

```
rows=['Low Mark','CutOff Mark','High Mark']
plt.plot(categories,lowmarks)
plt.plot(categories, minmarks)
plt.plot(categories,maxmarks)
plt.ylabel('Mark')
plt.title('Cut OFF Analysis Using Category Seat Allocation')
plt.legend(rows)
plt.table(cellText=[lowmarks,minmarks,maxmarks],
                 rowLabels=rows,
                 colLabels=tuple(categories),
                 loc='bottom')
plt.xticks([])
plt.show()
```


Is there any wrong?

¥

Government of Tamil Nadu as follows:-

Open Competition - 31 %

Backward Class - 30 %

Most Back ward Class - 20 %

Scheduled Caste - 18 %

Scheduled Tribe - 1 %

Within the 30% reservation for Backward Classes, 3.5% will be provided for Muslims and 16% of seats out of the 18% quota earmarked to Scheduled Caste shall be allocated to the Arunthathiyar Community.

BC, BCM, MBC / DNC, SC, SCA, ST candidates are eligible for Selection under Open Competition as per merit in addition to the reservation made for those categories. Counselling Schedule will be available on the official websites only.

Oh
Due to this

OC cut off

other categories

MBBS & BDS	
Category	Cut OFF
OC	401
BC	332
ВСМ	312
MBC/DNC	286
SC	220
SCA	206
ST	156

OC – Open Competition,
Govt define some terms
during counselling in this
category

