erste Prüfung - 7. Mai 2005

Zeit: 4.5 Stunden

Jede Aufgabe ist 7 Punkte wert.

1. Die beiden Folgen $a_1 > a_2 > \ldots > a_n$ und $b_1 < b_2 < \ldots < b_n$ enthalten zusammen jede der Zahlen $1, 2, \ldots, 2n$ genau einmal. Bestimme den Wert der Summe

$$|a_1 - b_1| + |a_2 - b_2| + \ldots + |a_n - b_n|.$$

2. Finde den grösstmöglichen Wert des Ausdrucks

$$\frac{xyz}{(1+x)(x+y)(y+z)(z+16)},$$

wobei x, y, z positive reelle Zahlen sind.

- **3.** Sei $n \ge 1$ eine natürliche Zahl. Ein reguläres 4n-Eck der Seitenlänge 1 sei irgendwie in endlich viele Parallelogramme zerlegt.
 - (a) Beweise, dass mindestens eines der Parallelogramme in der Zerlegung ein Rechteck ist.
 - (b) Bestimme die Summe der Flächen aller Rechtecke in der Zerlegung.

zweite Prüfung - 8. Mai 2005

Zeit: 4.5 Stunden

Jede Aufgabe ist 7 Punkte wert.

- 4. Seien k_1 und k_2 zwei Kreise, die sich im Punkt P äusserlich berühren. Ein dritter Kreis k berühre k_1 in B und k_2 in C, so dass k_1 und k_2 im Innern von k liegen. Sei A einer der Schnittpunkte von k mit der gemeinsamen Tangente von k_1 und k_2 durch P. Die Geraden AB und AC schneiden k_1 bzw. k_2 nochmals in R bzw. S. Zeige, dass RS eine gemeinsame Tangente von k_1 und k_2 ist.
- **5.** Sei p > 3 eine Primzahl. Zeige, dass p^2 ein Teiler ist von

$$\sum_{k=1}^{p-1} k^{2p+1}.$$

6. Sei T die Menge aller Tripel (p, q, r) von nichtnegativen ganzen Zahlen. Bestimme alle Funktionen $f: T \to \mathbb{R}$ für die gilt

$$f(p,q,r) = \begin{cases} 0 & \text{für } pqr = 0, \\ 1 + \frac{1}{6} \{ f(p+1,q-1,r) + f(p-1,q+1,r) \\ + f(p-1,q,r+1) + f(p+1,q,r-1) \\ + f(p,q+1,r-1) + f(p,q-1,r+1) \} \end{cases}$$
 sonst.

dritte Prüfung - 14. Mai 2005

Zeit: 4.5 Stunden

Jede Aufgabe ist 7 Punkte wert.

7. Sei $n \geq 2$ eine natürliche Zahl. Zeige, dass sich das Polynom

$$(x^2 - 1^2)(x^2 - 2^2)(x^2 - 3^2) \cdots (x^2 - n^2) + 1$$

nicht als Produkt von zwei nichtkonstanten Polynomen mit ganzen Koeffizienten schreiben lässt.

- 8. Betrachte einen See mit zwei Inseln darin und sieben Städten am Ufer. Die Inseln und Städte nennen wir im Folgenden kurz *Orte*. Zwischen genau den folgenden Paaren von Orten besteht eine Schiffsverbindung:
 - (i) zwischen den beiden Inseln,
 - (ii) zwischen jeder Stadt und jeder Insel,
 - (iii) zwischen zwei Städten genau dann, wenn sie nicht benachbart sind.

Jede dieser Verbindungen wird von genau einem von zwei konkurrenzierenden Schiffsunternehmen angeboten. Beweise, dass es stets drei Orte gibt, sodass zwischen je zwei dieser Orte Schiffsverbindungen desselben Unternehmens existieren.

- **9.** Sei $A_1A_2...A_n$ ein reguläres n-Eck. Die Punkte $B_1,...,B_{n-1}$ sind wie folgt definiert:
 - Für i = 1 oder i = n 1 ist B_i der Mittelpunkt der Seite $A_i A_{i+1}$;
 - Für $i \neq 1, i \neq n-1$ sei S der Schnittpunkt von A_1A_{i+1} und A_nA_i . Der Punkt B_i ist dann der Schnittpunkt der Winkelhalbierenden von A_iSA_{i+1} mit A_iA_{i+1} .

Beweise, dass gilt

$$\langle A_1B_1A_n + \langle A_1B_2A_n + \ldots + \langle A_1B_{n-1}A_n = 180^\circ.$$

vierte Prüfung - 15. Mai 2005

Zeit: 4.5 Stunden

Jede Aufgabe ist 7 Punkte wert.

- 10. Sei ABC ein spitzwinkliges Dreieck mit Höhenschnittpunkt H und seien M und N zwei Punkte auf BC, so dass $\overrightarrow{MN} = \overrightarrow{BC}$. Seien P und Q die Projektionen von M bzw. N auf AC bzw. AB. Zeige, dass APHQ ein Sehnenviereck ist.
- **11.** Finde alle Funktionen $f: \mathbb{N} \to \mathbb{N}$, sodass $f(m)^2 + f(n)$ ein Teiler ist von $(m^2 + n)^2$ für alle $m, n \in \mathbb{N}$.
- 12. Sei A eine $m \times m$ -Matrix. Sei X_i die Menge der Einträge in der i-ten Zeile und Y_j die Menge der Einträge in der j-ten Spalte, $1 \leq i, j \leq m$. A heisst cool, wenn die Mengen $X_1, \ldots, X_m, Y_1, \ldots, Y_m$ alle verschieden sind. Bestimme den kleinsten Wert für n, sodass eine coole 2005×2005 -Matrix mit Einträgen aus der Menge $\{1, 2, \ldots, n\}$ existiert.