

Improving Scalability of Bundle Adjustment

Partha Ghosh

Master Thesis

Supervised by: Thomas Schneider, Marcin Dymczyk

Agenda

- **Bundle Adjustment**
 - Motivation
 - Keyframing
- **CKLAM**
 - Formulation
 - Sparsity
 - Results
- R-CKLAM
 - Formulation
 - Results

Bundle Adjustment in SLAM

 $argmin_{x,f}(\sum C_{IMU} + \sum C_{visual})$

Exclude redundant information

Agenda

- **Bundle Adjustment**
 - Motivation
 - Keyframing
- **CKLAM**
 - Formulation
 - Sparsity
 - Results
- **R-CKLAM**
 - Formulation
 - Results

Constrained Keyframe-Based Localization and Mapping (CKLAM)

 Removal of Nonkeyframes → Loss of information

 CKLAM → Preserve information as much as possible

CKLAM Formulation

- $C = C_P(x_1; \hat{x}_{1|1}) + C_0(x_1, f_1; Z_{11}) + C_0(x_m, f_n; Z_{mn}) + \sum_{i=0}^{3} C_M(x_{i+1}, x_i; u_i) + \sum_{z} C_o(x_i, f_j; z_{ij})$
- Quadratize cost $C_2 = f(a_2)$ and project on $C_1 = f(a_1)$

CKLAM Objective Simplified

- Have $C_2 = f(a_1, a_2)$ need $C_{new} = f_{new}(a_1)$
 - Such that $argmin_{a_1,a_2}(C_2) \approx argmin_{a_1}(C_{new})$
- Quadratization

$$C_2 = \frac{1}{2} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}^T H \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + g^T \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \alpha$$

 $C_{NFW} = a_1^T H_{new} a_1 + g_{new}$ where $H_{new} = (H_{11} - H_{12}H_{22}^{-1}H_{21})$ and $g_{new} = (g_1 - H_{11}H_{22}^{-1}g_2)$

Hessian Matrix for Bundle Adjustment

CKLAM Sparsity

• Cross terms between f_1 and f_5 are created

CKLAM Sparsity

No cross dependency between f_1 and f_5

CKLAM Results (Simulated Map)

CKLAM vs Bundle Adjustment

CKLAM Results

Agenda

- Bundle Adjustment
 - Motivation
 - Keyframing
- CKLAM
 - Formulation
 - Sparsity
 - Results
- R-CKLAM
 - Formulation
 - Results

Relative CKLAM (RCKLAM) Motivation

- Modeling integrated error as absolute Gaussian is unnatural
- No substantial changes of individual vertices
- Hard to move local information to global frame

Model uncertainty of relative pose between consecutive key frames

R-CKLAM vs CKLAM

RCKLAM Formulation

•
$$C_{CKLAM} = f(T_{GB_1}, T_{GB_2}) \rightarrow C_{RCKLAM} = g(T_{B_1B_2})$$

• $T_{B_1B_2} = T_{GB_1}^{-1}T_{GB_2}$

Linearize $T_{B_1B_2}$

$$H = \begin{bmatrix} J_1 & J_2 \\ 0 & 1 \end{bmatrix}^T H' \begin{bmatrix} J_1 & J_2 \\ 0 & 1 \end{bmatrix}$$

RCKLAM vs CKLAM (Simulated Map)

RCKLAM and Loop-closure

Evaluation on Euroc Datasets

Evaluation on Euroc Datasets

Results Real Maps

Computational time advantage (Only **Optimization time)**

Conclusion

- A new method R-CKLAM has been proposed
- Flexibility significantly improved
- Advantages with loop closure shown

Future Work

- Building online versions of CKLAM and RCKLAM
- Keyframe selection coupled with CKLAM

References

- 1. Esha D. Nerurkar , Kejian J. Wu , and Stergios I. Roumeliotis , "C-KLAM: Constrained Keyframe-Based Localization and Mapping", In IEEE International Conference on Robotics and Automation Workshop on Long-term Autonomy, 2013.
- 2. G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In Proc. of the IEEE and ACM International Symposium on Mixed and Augmented Reality, pages 225–234, Nara, Japan, Nov. 13–16 2007.
- 3. J. Folkesson and H. Christensen, "Graphical slam a selfcorrecting map," in Proc. of the IEEE International Conference on Robotics and Automation, New Orleans, LA, Apr. 26 – May 1, 2004, pp. 383–390.

CKLAM Marginalization

RCKLAM Formulation

$$C_{CKLAM} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \alpha$$

•
$$C_{RCKLAM} = \begin{bmatrix} f(x_2, x_1) \\ x_2 \end{bmatrix}^T \begin{bmatrix} H'_{11} & H'_{12} \\ H'_{21} & H'_{22} \end{bmatrix} \begin{bmatrix} f(x_2, x_1) \\ x_2 \end{bmatrix} + \begin{bmatrix} g'_1 \\ g'_2 \end{bmatrix}^T \begin{bmatrix} f(x_2, x_1) \\ x_2 \end{bmatrix} + \alpha$$

RCKLAM Formulation

- Reformulate $C = \frac{1}{2}X^THX + g^TX + \alpha$ as $C = (AX + b)^T(AX + b)$
- Linearize $f = f(x_{10}, x_{20}) + \frac{\partial f}{\partial x_1}(x_1 x_{10}) + \frac{\partial f}{\partial x_2}(x_2 x_{20})$
- Need $A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b = A' \begin{bmatrix} f(x_2, x_1) \\ x_2 \end{bmatrix} + b'$ replace linearization of f and reorder
- $A' = A \begin{bmatrix} J_1 & J_2 \\ 0 & 1 \end{bmatrix}^{-1}$ and $b' = b A' \begin{bmatrix} \alpha_1 \\ 0 \end{bmatrix}$ where $\alpha_1 = f(x_{10}, x_{20}) J_1 x_{10} J_2 x_{20}$ with $J_1 = \frac{\partial f}{\partial x_1}$ and $J_2 = \frac{\partial f}{\partial x_2}$

Results Real Maps (MH - 01)

Results Real Maps (MH - 01)

Results Real Maps (MH - 02)

Results Real Maps (MH - 02)

Results Real Maps (MH - 03)

Results Real Maps (MH - 03)

Results Real Maps (MH - 01)

Results Real Maps (MH - 01)

