Ejercicios

Aplicaciones Lineales

Curso Álgebra Lineal

Pregunta 1

Sea $f: \mathbb{R}_n[x] \longrightarrow \mathbb{R}_n[x]$ definida por f(p(x)) = p(x+1) - p(x). Demuestra que f es lineal.

Calcula la matriz de f en la base canónica. Calcula también dimensión y bases de la imagen y el núcleo de f.

Pregunta 2

¿Existe alguna aplicación lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$f(1,0,0) = (1,1)f(1,1,0) = (1,0)f(1,1,1) = (1,-1)f(-1,0,1) = (-1,2)$$

?

En caso de existir, ¿es única?

Pregunta 3

Encuentra la matriz de la aplicación lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ definida por

$$f(x, y, z) = (a_0x + b_0y + c_0z, a_1x + b_1y + c_1z, a_2x + b_2y + c_2z, a_3x + b_3y + c_3z)$$

con respecto de las bases canónicas. Generaliza para el caso \mathbb{R}^n y \mathbb{R}^m

Pregunta 4

Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ definido por

$$f(1,0,0) = (1,1,0,1), f(0,1,0) = (-1,2,0,0), f(0,0,1) = (0,3,0,1)$$

Encuentra la matriz asociada a f con respecto a las bases $B = \{(1,2,1), (0,1,2), (0,0,1)\}$ y $B' = \{(2,1,0,1), (0,2,0,0), (0,0,1,0), (0,0,0,3)\}$

Pregunta 5

Considera la base de \mathbb{R}^3 , $B = \{(1,1,1), (0,0,-2), (0,1,2)\}$ y los subespacios vectoriales

$$F = \{(x, y, z) \mid 2x + y - z = 0, \ x - y + 2z = 0\}$$
$$G = \{(x, y, z) \mid 2x - 3y + 4z = 0\}$$

donde las coordenadas (x, y, z) están referidas a la base B. Sea $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ un endomorfismo tal que f(x) = 2x para todo $x \in F$ y f(x) = 3x para todo $x \in G$. Calcula la matriz de f con respecto a la base canónica.

Pregunta 6

Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ el endomorfismo que tiene por matriz en la base canónica

$$\begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

Encuentra las bases del núcleo y la imagen de f y demuestra que son suplementarios. ¿Se verifica $f^2 = f$?

Pregunta 7

Estudia, según los valores del parámetro α (da la dimensión y bases de $\ker(f)$ e $\operatorname{Im}(f)$) la familia de endomorfismos de \mathbb{R}^3 que en la base canónica tienen por matriz

$$\begin{pmatrix}
\alpha & 1 & \alpha \\
1 & \alpha & 0 \\
1 & \alpha & 1
\end{pmatrix}$$

Pregunta 8

Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ la aplicación lineal definida por f(x,y,z) = (-2x+y,3z). Encuentra la matriz asociada a f con respecto de las bases

- $B = \{(1, 2, -1), (0, 1, 0), (3, 1, 1)\}$ y $B' = \{(0, 2), (-1, 1)\}$ $C = 1\{(1, 1, 1), (0, 1, 0), (0, 0, 1)\}$ y $C' = \{f(1, 1, 1), f(0, 1, 0)\}$

Pregunta 9

Sea E el subconjunto de $\mathcal{M}_2(\mathbb{R})$ dado por las matrices de la forma

$$\begin{pmatrix} a & b+c \\ -b+c & a \end{pmatrix}$$

- Demuestra que E es un subespacio vectorial de $\mathcal{M}_2(\mathbb{R})$ y encuentra la dimensión y una base.
- Demuestra que la aplicación $f: E \longrightarrow E$ dada por

$$f\begin{pmatrix} a & b+c \\ -b+c & a \end{pmatrix} = \begin{pmatrix} 0 & 2b+c \\ -2b+c & 0 \end{pmatrix}$$

es lineal y encuentra la matriz de f con respecto a la base encontrada en el apartado a. Encuentra también el núcleo y la imagen de f.

Pregunta 10

Estudia cuáles de las siguientes aplicaciones son lineales y para las que no lo sean, di cuáles son inyectivas y cuáles exhaustivas

- $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ dada por f(x,y) = (x+y,0,2y)
- $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por f(x, y, z) = (xz, -y, -2z)
- $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ dada por f(x, y, z) = xyz
- $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dada por f(x, y, z) = (x, z)

Pregunta 11

Considera las siguientes aplicaciones $f_i: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$

$$f_1(x, y, z) = (y + z, x + z, x + z)$$

$$f_2(x, y, z) = (3x, 2y, x + y + z)$$

$$f_3(x, y, z) = (x - y, x + y, z)$$

$$f_4(x, y, z) = (x - y - z, y - x - z, z - x - y)$$

$$f_5(x, y, z) = (x + y + 2z, 2x - z, x - y - 3z)$$

- Demuestra que todas ellas son lineales
- Encuentra de cada una la matriz asociada con respecto a la base canónica, tanto de partida como de llegada.
- Determina cuáles de ellas son monomorfismo y cuáles epimorfismos
- Encuentra el núcleo de f_5
- Encuentra la matriz de la composición $f_3 \circ f_2$
- Encuentra la matriz de $2f_3 f_2$

Pregunta 12

Si e_1, e_2, e_3 representa la base canónica de \mathbb{R}^3 , sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la aplicación lineal definida por

$$f(e_1) = ae_1 + e_2 + 3e_3$$

$$f(e_2) = e_1 + 3e_2 + 10e_3$$

$$f(e_3) = -e_1 + e_2 + 4e_3$$

- Encuentra, según los valores del parámetro a, bases del núcleo y la imagen de f
- Para valores de a en que $\ker(f) \neq 0$, encuentra para qué valores de b, el vector (1, b, -4) tiene antiimagen y calcúlalas todas.