7	Roll No.
i X	S. No. of Question Paper : 2743
	Unique Paper Code : 32355402 • GC-4
	Name of the Paper : GE-4 Numerical Methods
	Name of the Course : Mathematics : Generic Elective for
	Honours
	Semester : IV
	Duration: 3 Hours Maximum Marks: 75
Na.	(Write your Roll No. on the top immediately on receipt of this question paper.)
	All the six questions are compulsory.
	Attempt any two parts from each question.
	Use of Scientific Calculator is allowed,
	1. (a) Explain significant digits and Local truncation error with
	examples. An approximate value of π is given by
	3.1428571 and its true value is 3.1415926. Find the
	absolute and relative errors.

seems but the connect result

- (b) Explain the Bisection method for computing the roots of equation f(x) = 0. Perform three iterations of the Bisection method in the interval (1, 2) to obtain roots of the equation $f(x) = x^3 x 1 = 0$.
 - (c) Define rate of convergence. Determine the rate of convergence for the Secant method.
- 2. (a) Perform four iterations of the Regula-Falsi method to obtain a root of the equation:

$$f(x) = 3x + \sin x - e^x = 0.$$

- (b) Perform three iterations of Newton's method to find the root of the equation $x^4 x 10 = 0$ and starting approximation as 1.5.
- (c) Perform two iterations of Newton's method to solve the non-linear system of equations with initial approximation (1, 1):

$$f(x, y) = x^2 + y - 11 = 0$$
 and

$$g(x, y) = x + y^2 - 7 = 0.$$

3. (a) Solve the linear system Ax = b using Gaussian elimination with pivoting:

the real margines of the little

$$A = \begin{bmatrix} 6 & 2 & 2 \\ 6 & 2 & 1 \\ 1 & 2 & -1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}.$$

(b) Starting with initial vector (x, y, z) = (0, 0, 0) perform three iterations of Gauss-Seidel method to solve the following system of equations:

$$2x - y = 7$$
, $-x + 2y - z = 1$, $-y + 2z = 1$.

(c) Explain Thomas Algorithm and solve the following

Tridiagonal system Ax = b using the Thomas

Method:

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 3 & 3 \\ 0 & 3 & 10 \end{bmatrix}, b = \begin{bmatrix} 10 \\ 17 \\ 22 \end{bmatrix}.$$

4. (a) Find the unique polynomial P(x) of degree 2 or less using Lagrange interpolating formula for the following data:

$$x = [1, 3, 4]$$

$$f(x) = [1, 27, 64]$$

Also, estimate P(1.5).

(b) Prove the following relations:

(i)
$$\mu = \sqrt{1 + \frac{\delta^2}{4}}$$

(ii)
$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}.$$

(c) By use of Richardson extrapolation, find f' (3) using the approximate formula:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

with h = 4, 2 and 1, from the following values

x f(x)

4, 1

 $\hat{\mathbf{1}}$

5. (a) The following data represents the function $f(x) = e^x$:

1 2.7183

1.5 4.4817

2.0 7.3891

2.5 12.1825

na Warner un brajellage

Estimate the value of f(2.25) usign the Newton's forward difference interpolation and compare with the exact value.

13

(b) Obtain the piecewise linear interpolating polynomial for the function f(x) defined by the given data:

x f(x)

0 - 1

1 2

2 5

3

and interpolate at x = 0.5 and 1.5.

(c) Find the approximate value of :

$$I = \int_{0}^{1} \frac{dx}{1+x}$$

using

- (i) Trapezoidal rule
- (ii) Simpson's rule.

6. (a) Apply Euler's modified method to approximate the

solution of the initial value problem and calculate y(1.3)

by using h = 0.1:

$$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}, \quad y(1) = 1.$$

(b) Apply mid-point method (R.K. Second order) to solve the initial value problem:

$$\frac{dy}{dx} = yx^3 - 1.5y$$

from x = 0 to 2 where y(0) = 1 by using h = 1.

(c) Apply finite difference method to solve the given

$$\frac{d^2y}{dx^2}=y+x(x-4), 0\leq x\leq 4,$$

$$y(0) = 0$$
, $y(4) = 0$ with $h = 1$.

2743

Tutorials Duniya. Com

Visit https://www.tutorialsduniya.com/question-papers to get Delhi University Question Papers of all the following courses,

- **➤** General Electives
- **B.Sc.** (H) Computer Science
- **B.Sc.** (H) Chemistry
- **B.Sc.** (H) Electronics
- > B.Sc. (H) Botany
- **B.Sc.** (H) Home Science
- **➢ B.Com** (**H**)
- **B.Sc. Physical Science**
- **B.A.** Programme
- **B.A.** (H) Psychology
- **B.A.** (H) Economics
- > B.A. (H) Hindi
- > B.A. (H) Journalism
- **B.A.** (H) Political Science
- **B.A.** (H) Sanskrit

- > AECC
- **B.Sc.** (H) Mathematics
- > B.Sc. (H) Physics
- **B.Sc.** (H) Statistics
- > B.Sc. (H) Geology
- > B.Sc. (H) Zoology
- > B.Sc. (H) Microbiology
- **B.Sc.** Mathematical Science
- > BMS
- **▶** B.Sc. Life Science
- **B.A.** (H) English
- **B.A.** (H) History
- **B.A.** (H) Philosophy
- > B.A. (H) Geography
- > B.A. (H) Sociology
- **❖** Get FREE Compiled Books, Notes, Programs, Books, Question Papers with Solution* etc at https://www.tutorialsduniya.com
 - > For any query, contact us at help@tutorialsduniya.com
- **✓** Facebook: https://www.facebook.com/tutorialsduniya
- ✓ Youtube: https://www.youtube.com/user/TutorialsDuniya
- ✓ LinkedIn: https://www.linkedin.com/company/tutorialsduniya