HW 11

The due date for these problems is Tuesday, April 26.

- 1. Problem 51 from the textbook.
- 2. Consider the metric space $(\mathbb{R}, |\cdot|)$ with the Euclidean topology. Give, with brief proof, an example to show a countably infinite intersection of open sets can be a closed set.
- 3. Consider $(\mathbb{R},|\cdot|)$ with the Euclidean topology, and X=(0,1] the topological space with the topology induced by $(\mathbb{R},|\cdot|)$. Give an example of a set $A\subsetneq X\subseteq \mathbb{R}$ that is open in the induced topology on X, but not in \mathbb{R} . Give an example of a set $B\subsetneq X\subseteq \mathbb{R}$ that is closed in the induced topology on X, but not in \mathbb{R} . Justify briefly.
- 4. Problem 58 (2), (3) from the textbook. You may assume (1) is proved.