Bipolar Junction Transistor

Text Book
Electronic Devices and Circuit Theory
By R. Boylestad and L. Nashelsky

History in brief

- 1904-1947: Vacuum tubes
- 23 December 1947: The amplifying action of the first transistor was demonstrated at Bell Tel Lab.
- It was a point-contact transistor
- It was smaller and lightweight,
- no heater requirement, hence, no heater loss
- It had a rugged construction
- It was more efficient due to less absorbed power
- Requiring no warm-up period
- The advantages of solid state devices

The first transistor

Present day Transistor Characteristics

- BJT abbreviates bipolar junction transistor
- Three terminals semiconductor device
- Bipolar device: bipolar reflects the fact that holes and electrons participate in injection process
- Current controlled device
- Types: PNP and NPN transistors
- Terminals are- emitter, base, and collector.
- Higher voltage gain
- Applications: amplification and switching

PNP and NPN Transistor

Bipolar Junction Transistors

Transistor equivalence diodes

Junction biasing

BE Junction	BC Junction	State of Operation
RB	RB	Cut-off
FB	RB	Active
RB	FB	Reverse-active
FB	FB	Saturation

Biasing for amplification and switching

BJT as a switch

- 1. Cut-off: BE and BC Junctions are reverse biased
- 2. Saturation: BE and BC Junctions are forward biased.

Amplification (active mode)

• BE junction forward bias, BC reverse bias

Operation in the active mode

$$I_E = I_C + I_B \qquad I_E = I_{C_{\textit{majority}}} + I_{\textit{CO}_{\textit{min ority}}}$$

BJT configurations

• Common base (CB) configuration

• Common emitter (CE) configuration

• Common collector (CC) configuration

Sometimes common base configuration is referred to as common base amplifier, CB amplifier, or CB configuration.

Common base configuration

Common-Base Configuration

The arrow in the graphic symbol defines the direction of emitter current (conventional flow) through the device.

The emitter base junction is forward biased while collector base junction is reversed biased

The emitter current is the sum of base current and collector current.

$$I_{E} = I_{B} + I_{C}$$

Figure 3.10 Developing the equivalent model to be employed for the base-to emitter region of an amplifier in the dc mode.

Dynamic input resistance (r_i)

$$r_i = \frac{\Delta V_{BE}}{\Delta I_E}$$
 , $V_{CB} = constant$

The input resistance of common base amplifier is very low.

Dynamic output resistance (r_o)

$$r_o = \frac{\Delta V_{CB}}{\Delta I_C}$$
, $I_E = constant$

The output resistance of common base amplifier is very high.

Alpha (α)

DC mode,

In the dc mode the levels of I_C and I_E due to the majority carriers are related by a quantity called *alpha* and defined by the following equation:

$$lpha_{ ext{dc}} = rac{I_C}{I_E}$$

Generally assume 1 but practically 0.90 to 0.998

$$I_C = \alpha I_E + I_{CBO}$$

AC mode,

$$lpha_{
m ac} = rac{\Delta I_C}{\Delta I_E}igg|_{V_{CB} = {
m \ constant}}$$

The ac alpha is formally called the *common-base*, *short-circuit*, *amplification factor*

Basic amplification action

$$I_t = \frac{V_t}{R_t} = \frac{200 \text{ mV}}{20 \Omega} = 10 \text{ mA}$$

If we assume for the moment that $\alpha_{ac} = 1$ ($I_c = I_e$),

$$I_L = I_t = 10 \text{ mA}$$

and

$$V_L = I_L R$$
$$= (10 \text{ mA})(5 \text{ k}\Omega)$$

$$= 50 \text{ V}$$

 $Transfer + Resistor \rightarrow Transistor$

Common emitter configuration

Input and output characteristics

Transistor Parameters

Dynamic input resistance (r_i)

$$r_i = \frac{\Delta V_{BE}}{\Delta I_B}$$
 , $V_{CE} = constant$

In CE configuration, the input resistance is very low.

Moderate Current Gain

Moderate Voltage Gain

High Power Gain

Moderate Input Impedance

Moderate Output Impedance

Dynamic output resistance (r_o)

$$r_o = \frac{\Delta V_{CE}}{\Delta I_C}$$
 , $I_B = constant$

In CE configuration, the output resistance is high.

Beta (β)

DC mode,

In the dc mode the levels of I_C and I_B are related by a quantity called *beta* and defined by the following equation:

$$\beta_{\rm dc} = \frac{I_C}{I_B}$$

Range: 50 to 200

AC mode,

For ac situations an ac beta has been defined as follows:

$$eta_{
m ac} = rac{\Delta I_C}{\Delta I_B}igg|_{V_{CE} = {
m constant}}$$

The formal name for β_{ac} is common-emitter, forward-current, amplification factor.

Relationship between α and β

$$\alpha = \frac{I_C}{I_E}$$

$$\beta = \frac{I_C}{I_R}$$

$$I_E = I_C + I_B$$

$$\frac{I_C}{\alpha} = I_C + \frac{I_C}{\beta}$$

$$\frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

$$\beta = \alpha\beta + \alpha = (\beta + 1)\alpha$$

$$\alpha = \frac{\beta}{\beta}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

Collector and emitter current in terms of base current

$$I_C = \beta I_B$$

$$I_E = I_C + I_B$$

$$= \beta I_B + I_B$$

$$I_E = (\beta + 1)I_B$$

Input characteristics

Output characteristics

Output characteristics is similar to CE Conf.

High Input Impedance
Low Output Impedance
High Current Gain
Low Voltage Gain
Low Power Gain

Because: Te= d I c

I t ご I c

Dynamic input resistance (r_i)

$$r_i = \frac{\Delta V_{BC}}{\Delta I_B}$$
, $V_{EC} = constant$

The input resistance of common collector amplifier is high.

Dynamic output resistance (r_o)

$$\mathbf{r_o} = \frac{\Delta \mathbf{V_{EC}}}{\Delta \mathbf{I_E}}, \quad \mathbf{I_B} = \mathbf{constant}$$

The output resistance of common collector amplifier is low.

Current amplification factor (y) $\gamma = \frac{\Delta I_E}{\Delta I_B}$

The current gain of a common collector amplifier is high.

Derive the relationship among three current gain for three types of configurations

Limits of operation

$$(20 \text{ V})I_C = 300 \text{ mW}$$

$$I_C = \frac{300 \text{ mW}}{20 \text{ V}} = 15 \text{ mA}$$

$$V_{CE}(25 \text{ mA}) = 300 \text{ mW}$$

$$V_{CE} = \frac{300 \text{ mW}}{25 \text{ mA}} = 12 \text{ V}$$

$$I_{CEO} \leq I_{C} \leq I_{C_{\max}}$$
 $V_{CE_{\text{sat}}} \leq V_{CE} \leq V_{CE_{\max}}$ $V_{CE}I_{C} \leq P_{C_{\max}}$

Terminal Identification

Figure 3.30 Transistor terminal identification.

Transistor tester: Use of Ohmmeter

THANKS