Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 18

- Teoria dei grafi: definizioni di base
- Problema del flusso a costo minimo
- Matrici Totalmente Unimodulari

R. Cerulli – F. Carrabs

Grafo Non Orientati: Definizioni di base

Un grafo non orientato G=(V,E) è dato da una coppia di insiemi finiti:

- V={v₁,...,v_n} l'insieme degli n Nodi di G
- E={e₁,...,e_m}⊆VxV l'insieme degli m Archi non orientati di G

Ogni arco non orientato $e_k = (v_i, v_j)$ di G corrisponde ad una coppia non ordinata di nodi v_i e v_j di G. I nodi v_i e v_j sono gli estremi dell'arco e_k .

La presenza di un arco tra una coppia di nodi indica una relazione tra i nodi stessi.

Un esempio: G=(V,E)

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$$

$$e_1 = (v_1, v_5)$$
 $e_2 = (v_1, v_2)$...

Grafo Non Orientati: Definizioni di base

- un arco (v,v) è detto loop;
- un arco e=(u,v)∈E si dice incidente su u e su v;
- due nodi u,v∈V sono detti adiacenti ⇔ (u,v)∈E;
- due archi e₁,e₂∈E sono detti adiacenti ⇔ e₁=(u,v) ed e₂=(v,w) (hanno un estremo in comune);
- l'insieme di nodi N(u)={v∈V: v adiacente a u} è detto intorno di u in
 G;
- l'insieme di archi δ(u)={e∈E: e incide su u} è detto stella di u in G;
- $|\delta(u)|$ è detto grado del nodo u.

Teoria dei Grafi: Concetti Base

I grafi sono un mezzo per rappresentare relazioni binarie

Ad esempio:

- due città connesse da una strada
- due calcolatori connessi in una rete telematica
- due persone legate da una relazione di parentela (come, padre-figlio)
- due persone che condividono una stanza
- il collegamento tra due componenti elettronici
- un'operazione che deve essere eseguita da una certa macchina
- ...

Applicazioni

I grafi possono essere usati come strumento per modellare in maniera schematica un vastissimo numero di problemi decisionali.

Ad esempio:

- determinare il percorso più breve che connette due città
- determinare come connettere nella maniera più economica (più efficiente) un insieme di calcolatori in una rete telematica
- assegnare un insieme di operazioni ad un insieme di macchine
- determinare il percorso più conveniente da far percorrere ad una flotta di veicoli commerciali per effettuare delle consegne e quindi rientrare al deposito

• ...

Grafo semplice:

Non esistono "loop" o archi paralleli (ossia tra due nodi non ci può essere più di un arco).

Grafi e Sottografi

- G'=(V',E') è detto sottografo di G=(V,E) ⇔
 - V' ⊆ V
 - \triangleright E' \subseteq E e $(v_i,v_j) \in$ E' \Longrightarrow $(v_i,v_j) \in$ E
- G'=(V',E') è detto sottografo indotto da V' in G=(V,E) ⇔
 - V'⊆V
 - \forall u,v \in V' se (u,v) \in E allora (u,v) \in E'

Grafo Non Orientato Bipartito

G è detto grafo bipartito se esiste una partizione di V in due sottoinsiemi V_1 e V_2 tali che:

- $V_1 \cap V_2 = \emptyset$
- $V_1 \cup V_2 = V$
- $\forall e = (u,v) \in E$ se $u \in V_1$ allora $v \in V_2$ oppure se $u \in V_2$ allora $v \in V_1$

Grafo Non Orientato Completo

- G è un grafo completo ⇔ contiene tutti i possibili archi,
 ovvero |δ(v)|= n-1 ∀v∈V
- il numero di archi in un grafo completo è: $\binom{n}{2} = \frac{n(n-1)}{2}$

Grafo Non Orientato: Connettività

- Una path di lunghezza k da un vertice u ad un vertice u' in un grafo non orientato G=(V,E) è una sequenza $< v_0, v_1, ..., v_k >$ di vertici tali che $v_0 = u$ e $v_k = u'$ e $(v_{i-1}, v_i) \in E$ per i = 1, 2, ..., k;
- La lunghezza di una path è data dal numero di archi che compongono la path;
- La path contiene i vertici $v_0, v_1, ..., v_k$ e gli archi $(v_0, v_1), (v_1, v_2), ..., (v_{k-1}, v_k)$. (Per definizione c'è sempre una path di lunghezza zero da u a se stesso);
- Una path si dice semplice se tutti i vertici che la compongono sono distinti.
- Se esiste una path p dal vertice u ad un vertice u' in G allora u è connesso ad u' tramite p. Si noti che:
 - Se u è connesso a u' allora anche u' è connesso ad u;
 - Se u è connesso a u' e u' è connesso ad w allora u è connesso a w;
- Un grafo non orientato è connesso se e solo se tutti i suoi vertici sono connessi tra loro;
- Una path $\langle v_0, v_1, ..., v_k \rangle$ forma un ciclo se $k \geq 3$ e $v_0 = v_k$.

Grafo Non Orientato: Connettività

Esempi:

- $\langle v_1, v_2, v_5, v_4 \rangle$ è un path semplice di lunghezza 3 che contiene gli archi e_2, e_3 ed e_4 ;
- $\langle v_1, v_2, v_5, v_4, v_5 \rangle$ è un path (non semplice) di lunghezza 4;
- $< v_2, v_3, v_4, v_2 >$ è un ciclo;
- Il grafo in figura è connesso.

Grafo Non Orientato: Componenti Connesse

Quando un grafo G non è connesso è utile determinare quali siano i sottografi di G che risultano connessi.

- Una componente connessa $C_i = (V_i, E_i)$ di G è un sottografo di G in cui ogni coppia di vertici $u \in V_i$ e $v \in V_i$ è connessa;
- G è connesso ⇔ è composto da una sola componente connessa.

Esempio

In questo corso considereremo solo grafi semplici e connessi.

Grafi Orientati: Definizioni di base

• G=(V,E) è un grafo orientato se, dato V={v₁,...,v_n}, l'insieme degli archi E={e₁,...,e_m} è formato da coppie ordinate di nodi.

Per un grafo orientato si ha che $e_i = (v_h, v_k) \neq e_j = (v_k, v_h)$ con e_i , $e_i \in E$

L'arco e_i si dice uscente da v_h ed entrante in v_k;

v_h e v_k sono la coda e la testa di e_i rispettivamente.

Grafi Orientati: Definizioni di base

Nell'esempio $V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ $e_1 = (v_4, v_1), e_2 = (v_1, v_4)...$

- $Fs(v) = \{u \in V: (v,u) \in E\}$ è detto stella uscente di v;
- Bs(v) = {u∈V: (u,v) ∈E} è detto stella entrante di v;
- $S(v) = Fs(v) \cup Bs(v)$ è detto **stella** di v;
- le definizioni di sottografo e sottografo indotto di un grafo orientato sono analoghe a quelle date per i grafi non orientati.

Grafo Orientato: Connettività

- Una path di lunghezza k da un vertice u ad un vertice u' in un grafo orientato G=(V,E) è una sequenza < v₀, v₁, ..., v_k > di vertici tali che v₀ = u e v_k = u' e (v_{i-1}, v_i) ∈ E per i = 1,2, ..., k;
 (N.B. ogni arco della path è diretto verso v_k);
- Le definizioni di lunghezza di una path, path semplice e nodi e archi contenuti in una path sono analoghe a quelle date per i grafi non orientati;
- Una catena (chain) di lunghezza k da un vertice u ad un vertice u' in un grafo orientato G=(V,E) è una sequenza $< v_0, v_1, ..., v_k >$ di vertici tali che $v_0 = u$ e $v_k = u'$ e $(v_{i-1}, v_i) \in E$ oppure $(v_i, (v_{i-1}) \in E)$ per i = 1, 2, ..., k; (quindi ci possono essere archi nella catena che non sono diretti verso v_k)
- Se esiste una catena p_c dal vertice u ad un vertice u' in G allora u è connesso ad u' tramite p_c .
- Se esiste una path p dal vertice u ad un vertice u' in G allora u è fortemente connesso ad u' tramite p.
- Un grafo orientato
 - è connesso se e solo se tutti i suoi vertici sono connessi tra loro;
 - è fortemente connesso se e solo se tutti i suoi vertici sono fortemente connessi tra loro;
- Una path $\langle v_0, v_1, ..., v_k \rangle$ forma un ciclo se $k \geq 2$ e $v_0 = v_k$.

- La sequenza $< v_1, v_3, v_4, v_2 >$ è una **path** da v_1 a v_2 mentre la sequenza $< v_1, v_3, v_2 >$ è una **catena** da v_1 a v_2 ;
- Il vertice v_1 è fortemente connesso al vertice v_2 mentre v_2 è connesso, ma non fortemente connesso, a v_1 .
- La sequenza $\langle v_2, v_3, v_4 \rangle$ è un ciclo.
- Il grafo G è connesso ma non è fortemente connesso.
- Ci sono in G componenti fortemente connesse?

Rappresentazioni di un Grafo

Liste di adiacenza:

ad ogni vertice è associata la lista dei vertici adiacenti (può essere una tabella o una lista concatenata).

• Matrice di adiacenza (n x n) :

$$a_{ij} = 1 \text{ se } (v_i, v_j) \in E, \quad a_{ij} = 0 \text{ altrimenti}$$

Matrice di incidenza (n x m) :

$$a_{ij} = 1$$
 se $v_i \in e_j$, $a_{ij} = 0$ altrimenti

Matrice di Incidenza dei Grafi

Sia G=(V,E) un grafo non orientato con |V|=n ed |E|=m.
 Denotiamo con A=[a_{ij}], con i=1,...,n e j=1,...,m, la matrice di incidenza di G, dove:

$$a_{ij} = \begin{cases} 1 & se \ v_i \ \text{\`e} \ un \ estremo \ di \ e_j \\ 0 & altrimenti \end{cases}$$

Matrice di Incidenza dei Grafi

Esempio

matrice di incidenza di un grafo non orientato

Matrice di Incidenza dei Grafi Orientati

Sia G=(V,E) un grafo orientato con |V|=n ed |E|=m.
 Denotiamo con A=[a_{ij}], con i=1,...,n e j=1,...,m, la matrice di incidenza di G, dove:

$$a_{ij} = \begin{cases} 1 & se \ v_i \ \`e \ coda \ di \ e_j \\ -1 & se \ v_i \ \`e \ testa \ di \ e_j \\ 0 & altrimenti \end{cases} (arco \ uscente \ da \ v_i)$$

Matrice di Incidenza dei Grafi Orientati

Problema del Flusso a Costo Minimo

Sia G=(V,E) un grafo connesso e orientato in cui:

- Ad ogni arco (i,j) è associato un costo c_{ij} che rappresenta il costo da pagare per ogni unità di flusso che transita sull'arco (i,j).
- Ad ogni vertice v∈V è associato un valore <u>intero</u> b_v dove:
 - $-b_v > 0$ indica che il nodo v è un nodo di offerta
 - $-b_v < 0$ indica che il nodo v è un nodo di **domanda**
 - $-b_v = 0$ indica che il nodo v è un nodo di passaggio
- La somma di tutti i b_v deve essere uguale a zero (condizione di bilanciamento). Ciò che viene prodotto dalle sorgenti viene consumato dalle destinazioni.

Nel problema del **flusso a costo minimo** bisogna far giungere la merce prodotta dai nodi di offerta ai nodi di domanda minimizzando i costi di trasporto.

Problema del Flusso a Costo Minimo: Formulazione

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij}$$

$$\sum_{j \in FS(i)} x_{ij} - \sum_{k \in BS(i)} x_{ki} = b_i \qquad i = 1, ..., n$$

$$x_{ij} \ge 0 \quad \forall (i,j) \in A \quad \text{Intere?}$$

 x_{ij} = quantità di flusso che transita sull'arco (i,j)

 c_{ij} = costo di trasporto di una unità di flusso sull'arco (i,j)

 b_i = valore intero associato al nodo i (ne definisce il **ruolo** nel problema):

 $b_i > 0$: nodo di offerta

 $b_i < 0$: nodo di domanda

 $b_i = 0$: nodo di passaggio

Consideriamo un grafo orientato G=(V,E) rappresentante una rete di trasporto.

L'obiettivo è quello di trasportare, al minimo costo, determinate quantità di merce (unità di flusso) dai nodi di offerta a quelli di domanda (eventualmente transitando per dei nodi di passaggio).

Abbiamo:

• $b_i > 0$: nodo di offerta

 $b_i < 0$: nodo di domanda

 $b_i = 0$: nodo di passaggio

 Un costo c_{ij} ≥ 0 per ogni arco (costo per il trasporto di una unità di flusso)

$$\min \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\sum_{j \in FS(i)} x_{ij} - \sum_{k \in BS(i)} x_{ki} = b_i \qquad i = 1, \dots, n$$

$$x_{ij} \ge 0 \qquad \forall (i,j) \in A$$

Consideriamo una variabile $x_{ij} \ge 0$, $\forall (i,j) \in E$, rappresentante <u>la quantità di flusso</u> che attraverserà tale arco nella soluzione.

$$\min \quad 6x_{12} + x_{13} + 4x_{25} + 3x_{32} + 2x_{34} + 4x_{41} + x_{42} + 3x_{45}$$

$$x_{12}$$
 $+x_{13}$ $-x_{41}$ $=$ 5 $nodo 1$
 $-x_{12}$ $+x_{25}$ $-x_{32}$ $-x_{42}$ $=$ -4 $nodo 2$
 $-x_{13}$ $+x_{32}$ $+x_{34}$ $=$ 0 $nodo 3$
 $-x_{34}$ $+x_{41}$ $+x_{42}$ $+x_{45}$ $=$ 2 $nodo 4$
 $-x_{25}$ $-x_{45}$ $=$ -3 $nodo 5$

$$x_{ij} \ge 0 \quad \forall (i,j) \in A$$

Α	(1,2)	(1,3)	(2,5)	(3,2)	(3,4)	(4,1)	(4,2)	(4,5)
1	1	1	0	0	0	-1	0	0
2	-1	0	1	-1	0	0	-1	0
3	0	-1	0	1	1	0	0	0
4	0	0	0	0	-1	1	1	1
5	0	0	-1	0	0	0	0	-1

La matrice A dei vincoli del modello matematico corrisponde alla matrice di incidenza nodo-arco del grafo G.

$$\min \quad 6x_{12} + x_{13} + 4x_{25} + 3x_{32} + 2x_{34} + 4x_{41} + x_{42} + 3x_{45}$$

$$x_{12}$$
 $+x_{13}$ $-x_{41}$ $=$ 5 $nodo 1$
 $-x_{12}$ $+x_{25}$ $-x_{32}$ $-x_{42}$ $=$ -4 $nodo 2$
 $-x_{13}$ $+x_{32}$ $+x_{34}$ $=$ 0 $nodo 3$
 $-x_{34}$ $+x_{41}$ $+x_{42}$ $+x_{45}$ $=$ 2 $nodo 4$
 $-x_{25}$ $-x_{45}$ $=$ -3 $nodo 5$

$$x_{ij} \ge 0 \quad \forall (i,j) \in A$$

Problema del Flusso a Costo Minimo: Formulazione

In forma matriciale:
$$\min \underline{c}^T \underline{x}$$

$$A\underline{x} = \underline{b}$$

$$x \ge 0$$

Osservazioni:

1. La matrice A è la matrice di incidenza nodo-arco con dimensione $\mathbf{n} \times \mathbf{m}$. Ogni colonna \underline{a}_{ij} è associata all'arco (i,j), ed in particolare abbiamo che: $\underline{a}_{ij} = \underline{e}_i - \underline{e}_j$

(ei vettore colonna con tutti 0 eccetto un 1 nella posizione i-ma)

2. Il rango di questa matrice è: r(A) = n - 1

Definizione (totale unimodularità): Una matrice si dice totalmente unimodulare (TU) se tutte le sue sottomatrici quadrate (di ogni ordine) hanno determinante uguale a 0, 1 oppure -1.

Osservazione 1: Tutte le componenti di una matrice totalmente unimodulare sono uguali a 0, 1 oppure -1 dato che ogni suo elemento è una matrice quadrata di ordine 1x1.

Teorema 1: La matrici di incidenza nodo-arco A di un grafo orientato è totalmente unimodulare.

Dimostrazione: La dimostrazione è per induzione sulla dimensione k delle sottomatrici di A. Poiché A è una matrici di incidenza nodo-arco, tutti i suoi elementi sono uguali a ± 1 oppure 0 e quindi ogni sottomatrice 1x1 di A ha determinante uguale a ± 1 oppure 0. Questo dimostra la base dell'induzione (k = 1).

Per ipotesi induttiva supponiamo che il determinante di una qualsiasi sottomatrice quadrata (k-1)x(k-1) di A abbia determinante uguale a ± 1 oppure 0.

Sia A_k una sottomatrice di dimensione $k \ x \ k$ di A con $k \ge 2$. Dobbiamo dimostrare che il determinante di A_k è uguale a ± 1 oppure 0. Si noti che ogni colonna di A_k ha i) tutte le componenti uguali a zero oppure ii) solo un elemento diverso da zero (quindi uguale a ± 1) oppure iii) due elementi diversi da zero (un ± 1 e un ± 1).

Analizziamo le tre casi precedenti.

Se una colonna di A_k è nulla allora det $(A_k) = 0$.

Se una colonna di A_k ha un solo elemento diverso da zero , diciamo a_{ij} , allora calcolando il determinante sulla colonna j-esima, si ha che $det(A_k) = \pm 1 \cdot det(A_{k-1})$ dove A_{k-1} è la sottomatrice di A_k ottenuta rimuovendo la i-esima riga e j-esima colonna di A_k . Dall'ipotesi induttiva sappiamo che $det(A_{k-1})$ è uguale a \pm 1 oppure 0 e quindi $det(A_k)$ è uguale a \pm 1 oppure 0.

L'ultimo caso si verifica quando tutte le colonne di A_k hanno due elementi diversi da zero ossia un +1 e un -1. In questo caso, poiché effettuando la somma di tutte le righe di A_k si ottiene il vettore nullo, tali righe sono linearmente dipendenti e quindi $det(A_k) = 0$.

Corollario 1: Sia A la matrice di incidenza nodo-arco di un grafo orientato G, e sia A_B una sottomatrice quadrata di A non singolare. Si ha che A_B^{-1} ha tutte le componenti intere.

Dimostrazione: Poiché A è una matrice di incidenza nodo-arco, dal Teorema 1 sappiamo che A è totalmente unimodulare. Per calcolare la matrice inversa di A_R utilizziamo la formula:

$$A_B^{-1} = \frac{1}{\det(A_B)} \begin{pmatrix} cof(A_{B_{11}}) & cof(A_{B_{12}}) & \dots & cof(A_{B_{1(n-1)}}) \\ cof(A_{B_{21}}) & cof(A_{B_{22}}) & \dots & cof(A_{B_{2(n-1)}}) \\ cof(A_{B_{(n-1)1}}) & cof(A_{B_{(n-1)2}}) & \dots & cof(A_{B_{(n-1)(n-1)}}) \end{pmatrix}^T$$

Poiché A_B è una sottomatrice non singolare di A allora $\det(A_B) = \pm 1$.

Inoltre
$$cof(A_{B_{ij}}) = (-1)^{i+j}\underbrace{minor(A_{B_{ij}})}_{\mbox{\it quadrata di }A)}^{= -1, \ 0, \ +1}$$

Quindi $\frac{cof(A_{ij})}{\det(A_R)}$ è sempre un intero.

Teorema 2: Tutti i vertici del poliedro definito dal modello matematico del problema del flusso a costo minimo hanno coordinate intere.

Dimostrazione: Sia A_B una sottomatrice di A dimensioni (n-1)x(n-1) non singolare. La soluzioni di base ammissibili associate ad A_B ha la struttura

$$\underline{x} = \begin{bmatrix} \underline{x}_B \\ \underline{x}_N \end{bmatrix} = \begin{bmatrix} A_B^{-1} \underline{b} \\ \underline{0} \end{bmatrix}$$
 e corrisponde ad un vertice del poliedro.

Dobbiamo quindi dimostrare che il vettore $A_B^{-1}\underline{b}$ ha tutte le componenti intere.

Dal Corollario 1 sappiamo che A_B^{-1} ha tutte le componenti intere. Inoltre, per ipotesi, \underline{b} ha tutte le componenti intere, quindi $A_B^{-1}\underline{b}$ ha tutte le componenti intere.