Αρχιτεκτονική Διάλεξη 10

Ανάκληση T0:MAR←PC, Z←PC+1 T1:MDR←M[MAR],PC←Z T2:IR←MDR[OPCODE],F←1 Εκτέλεση STA T3:MAR←MDR[ADDRESS 1] T4:MDR←ACC T5:M[MAR]←MDR

Εκτέλεση ADD

T3:MAR←MDR[ADDRESS 1]

T4:MDR←M[MAR] T5:Z←ACC+MDR T6: ACC←Z Εκτέλεση ISR T3:Z←SP-1

T4:SP←Z, MAR←Z(Address)

T5:Z←MDR T6: MDR←PC

T7:M[MAR]←MDR, PC←Z

Εκτέλεση AND

T3:MAR←MDR(Address)

T4:MDR←M[MAR] T5:Z←ACC^MDR

T6: ACC←Z

Κύκλος διακοπής

T0: Z←SP-1

T1:SP←Z,MAR←Z

T2:MDR←PC

T3:M[MAR]←MDR

T4:MAR←Z

T5:MDR←M[MAR]

 $T6:PC\leftarrow MDR, F\leftarrow 0, G\leftarrow 0, Ien\leftarrow 0$

Εντολή LDA

T3:MAR←MDR[ADDRESS 1]

T4:MDR←M[MAR]

T5:ACC←MDR,IR(Interact Enable=0)

then $F \leftarrow 0$ else $G \leftarrow 1$

		AND			JSR				Διακοπή																				
	A	Ανάκληση LDA		S	STA		ADD																						
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
MARin	1	1		1			1			1				1					1					1			1		
PCin		1																				1							1
PCout	1																				1				1				
Zin	1											1				1		1		1				1					
Zout		1											1				1		1		1	1			1			1	
MDRin								1																		1			
MDRout			1	1		1	1					1		1		1				1									1
IRin			1																										
IRout																													
ACCin						1							1				1												
ACCout								1																					
SPin																			1					1					
Spout																		1					1						
F	0	0	1	1	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0

Έστω ότι ένα πρόγραμμα πρέπει να εκτελέσει διαδοχικά τις εντολές

ADD

JSR

STA

Για να διαβάσουμε απο την μνήμη ελέγχου τα σήματα ελέγχου πρέπει να υπάρχει ένας δείκτης που θα μετακινηθεί διαδοχικά στις θέσεις

Αρχική Θέση	Διάβασμα στηλών
0	(0,1,2)
9	(9,10,11,12)→ ξανά 0
17	(17,18,19,20,21)→ ξανά 0
6	(6,7,8)

000 \rightarrow LDA Θέλουμε ένα κύκλωμα το οποίο στις εισόδους του να 001 \rightarrow STA σχηματίζει τους αριθμους 0-4 (3 είσοδοι) Επίσης, οι έξοδοι πρέπει να σχηματίζουν τους αριθμούς απο 3-17(5 bit) 011 \rightarrow AND 100 \rightarrow JSR

Είσοδοι			Έξοδοι	Έξοδοι						
I2	I1	10	D4	D3	D2	D1	D0			
0	0	0	0	0	0	1	1			
0	0	1	0	0	1	1	0			
0	1	0	0	1	0	0	1			
0	1	1	0	1	1	0	1			
1	0	0	1	0	0	0	1			

Στόχος: Κάθε φορά που διαβάζω ένα OPCODE να στέλνω τον δεικτή στην θέση εκκίνησης της αντιστοιχης εντολής

Φτιάχνω χάρτη Karnaugh

I2\ I1I0	00	01	11	10
0		$\langle - \rangle$		
1				

I2\ I1I0	00	01	11	10
0				\bigcap
1				

D2=I2'I0

D3=I2'I1 D4=I2I1'I0'

Νά δειξετε τις τιμές που θα διαβάσουν τα σχηματα ελεγχού MARin, Pcin....

Κατά την ανάκληση στο βήμα ο IR διαβάζει το OPCODE. Το OPCODE περνάει στή μονάδα ελέγχου και αποκωδικοποιειται απο τον ειδικό αποκωδικοποιητή.

Ο μΡΟ σχηματίζει μια τιμή εκκινηση .

Ο μΡC=01101=13 Ζητάει τη διεύθυνση 13 απο τη μνήμη ελεγχου (ουσιαστικά η στήλη 13)

Διέυθυνση 13=	1				1				1
R=	1				1				1
	MARin	PCin	PCout		MDRout				F

Όταν τελειώσουμε τη 13, έχει εκτελεστεί το T3 της ADD. Ο μPC ←μPC+1 στον επόμενο παλμο του ρολογιού μPC=14 και επαναλαμβάνεται η διαδικασία. Οταν μPC=16, τοτε F=0(ανάκληση) Ένα σήμα CLK μηδενίζει τον μPC και επαναλαμβάνεται η διαδικασία μPC

Ο αριθμός που αποθηκεύεται σε κάθε χρονική στιγμή μέσα στον μετρητή, αποθηκεύεται σε ένα πλήθος Flip-Flop

	17	JSR	21	22	28

Αν έρθει διακοπή, τότε $G{=}1$ και ο μPC οδηγείται στην αρχή του κύκλου διακοπής

Ασκηση:

Ένα σύστημα διαθέτει 32 εντολές των οποιων η εκτελεσή απαιτεί 3 βήματα, 32 εντολές τεσσάρων βημάτων και 64 εντολές 5 βημάτων. Επισης διαθέτει τον κύκλο διακοπής 7 βημάτων και τον κυκλο ανάκλησης.

Τα σήματα ελεγχου είναι 20.

- 1. Ποιο το μέγεθος της μνήμης ελέγχου
- 2. Οι τιμές των σημάτων ελεγχου τοποθετουνται με τη σειρά
 - 2.1. Ανάκληση
 - 2.2. 32 εντολές τριων βημάτων
 - 2.3. 32 εντολές 4 βημάτων
 - 2.4. 64 εντολές 5 βημάτων
 - 2.5. κυκλος διακόπτη
 - 2.6. Ποιο το μέγεθος του αποκωδικοποιητή και του μΡC

Λύση:

```
1)Γραμμές= 20*(32 εντολές*3 βήματα + 32 εντολές*4 βήματα+ 64 εντολές*5 βήματα+ 3 + 7 bit κύκλος ανάκλησης κύκλος διακοπής
```

- 2) 2.1.Ανάκληση: 0-2
 - 2.2 32 εντολές τριων βημάτων: 3-98
 - 2.3 32 εντολές 4 βημάτων:99-226
 - 2.4 64 εντολές 5 βημάτων:227-547
 - 2.5κυκλος διακόπτη:548-554
 - 2.6 Αποκωδικοποιητης 128 αρα 7 bit →2⁷ = 128 bit
 10 bit εξοδό
 Η αρχή τελευταίας εντολής →543
 10 bit

$$O \mu PC = 10x1024$$

Ο μΡC πρεπει να μετράει ως την τελευταία στηλη (553)

Ο αποκωδικοποιητης πρεπει να μετράει ως την αρχή της τελευταίας εντολής (543)