And the second
An (n-1) rounds Algo for
Distributed Sorting on a line network 2-3 PM
Sasasi's Algo
Odd- even Transposition, Algo
-nrounds
(n-1) rounds (Sasaki's Algo)
Line Network:
P ₁ P ₂ P ₃ P ₄ P ₅
Assumptions:
$\rightarrow 11 = 5$
> Sault-free (No Process or no channel will fail) networks
Metworks > No failures > processes / channels are reliable
Q: Can We improve the dist. Sorting Algo?
A: Yes.
How?
(P_1) (P_2) (P_3)
3 2 2 3 E
/ Q / /- 3

Perform Dist. Sorting in (n-1) rounds!! (\leqslant) Initial: 2 5 3 Step 1 0 P3 P4 (0) (-1) 5(0) (0) (0) Area < update? if the element marked as Area = area =1, unique (u) moves from Pito Pit/ receiving Pi (leftto right) if the marked element moves from Pix to Pi (right to left) steps: (4) Pi P4 2 (-1) 5 4 3^{u} 1 u 2 (-1) 3 <u>C-D</u>14 (-1)2 (-1)+I =(0) \leq Soln: \leq

