At the beginning of mathematical objects

JF Durand, M1, université Lille 1

Introduction

- O Do you have a problem with 27 ? (three times three)
- O No? Well you are able to conceptualize (abstraction).

Plan

- O The Birth of equations
- Formalization
- O Groups

The birth of Equations

- O This object called: unknown in mathematics has appeared for the first time in the Antiquity.
- O The problem was : « Division in Extrem and Mean Ratio »

The birth of Equations

The Goal is to divide a segment in two.

The little section divide by the tall section equals the tall section divide by the entiere segment.

$$\frac{B}{A} = \frac{A}{A+B}$$

The birth of Equations

- O Others problems talking about area.
- Egyptian: A number and its sevenths equals nineteen. What is this number?
- O Greek: Thales, Euclide, Pythagore

Solving methods are geometrical or numerical and always about lenght, area or volume.

Formalization

- In the ninth century, Al Khwarizmy invent two object :
 - O Unknown
 - O Equation
- O He still uses sentences but gave up the thing behind the number (length, area, volumes... etc)
- Now we can study equations for themselves.

Formalization

- O In 1830, Galois created the concept of « group »
 - O For solving equations of higher degree
 - Open the way to a lot of derived object: circle, division ring

Groups

- O A group is a couple (G,S)
 - O G a set : [a,b]
 - (number, variable,..etc)
 - O S an operation:
 - O (+,-,*,/,..etc)

Groups

- O A group has to respect four rules:
 - O Closure
 - O a,b in G; in G
 - O Associativity
 - \circ a,b,c in G: (a•b)•c = a•(b•c)
 - O Identity Element (e)
 - O e,a in G; $e \cdot a = a \cdot e = a$
 - O Inverse Element
 - O e,a,b in G; $a \cdot b = b \cdot a = e$

Groups

O In practice

17 regular paving like this one in the plane

Ammonia, group of order 6

Trigonometric circle with multiplication is an usual group

Conclusion

- O Mathematics are universal?
- « Mathematics should be an obviousness for everyone, because it's only a logical concatenation, which is in theroy a formality of the 'common sense' shared by everybody » Poincaré

Bibliography

- O Podcast Science
- R. Herz-Fischler, A Mathematical History of Division in Extreme and Mean Ratio, Wilfrid Laurier.
- O https://fr.wikipedia.org/wiki/Al-Khw%C3%A2rizm%C3%AE
- O https://fr.wikipedia.org/wiki/Groupe (math%C3%A9matiques)
- O http://images.math.cnrs.fr/Un-concept-mathematique-trois.html

Complex Number

- Tartaglia find a way to solve 3 degrees of equations
- O Sometimes in the middle of the calculation he falls of a monster.
- A monster is a square root of a negative number.
- O These numbers are called imaginary numbers.

Complexe Number

- O Later D'Alembert found that these monster is a multiple of a number that mulitply -1.
- O Written a+ib
- O Complexe is not the meaning of difficulty here, but the fact of their composition in two member.