УПРУГИЕ ЭЛЕМЕНТЫ

В каждой машине есть специфические детали, принципиально отличающиеся от всех остальных. Их называют упругими элементами. Упругие элементы имеют разнообразные, весьма непохожие друг на друга конструкции. Поэтому можно дать общее определение.

Упругими элементами называют детали машин, работа которых основана на способности изменять свою форму под воздействием внешней нагрузки и восстанавливать ее в первоначальном виде после снятия этой нагрузки.

Или другое определение:

Упругие элементы – **детали**, жёсткость которых намного меньше, чем у остальных, а деформации выше.

Благодаря этому своему свойству упругие элементы первыми воспринимают удары, вибрации, деформации.

Чаще всего упругие элементы легко обнаружить при осмотре машины, как, например, резиновые покрышки колёс, пружины и рессоры, мягкие кресла водителей и машинистов.

Иногда упругий элемент скрыт под видом другой детали, например, тонкого торсионного вала, шпильки с длинной тонкой шейкой, тонкостенного стержня, прокладки, оболочки и т.п. Однако и здесь опытный конструктор сможет распознать и применять такой "замаскированный" упругий элемент именно по сравнительно малой жёсткости.

Упругие элементы находят широчайшее применение:

- для амортизации (снижение ускорений и сил инерции при ударах и вибрации за счёт значительно большего времени деформации упругого элемента по сравнению с жёсткими деталями, например рессоры автомобиля);
- для создания постоянных сил (например, упругие и разрезные шайбы под гайкой создают постоянную силу трения в витках резьбы, что препятствует самоотвинчиванию, сил прижатия диска муфты сцепления);
- для силового замыкания кинематических пар, чтобы исключить влияние зазора на точность перемещения, например в распределительном кулачковом механизме двигателя внутреннего сгорания;
- для аккумуляции (накопления) механической энергии (часовые пружины, пружина оружейного бойка, дуга лука, резина рогатки и т.д.);
- для измерения сил (пружинные весы основаны на связи веса и деформации измерительной пружины по закону Гука);
- для восприятия энергии удара, например буферные пружины, применяемые в железнодорожных составах, артиллерийских орудиях.

В технических устройствах используется большое число различных упругих элементов, но наиболее распространены следующие три типа элементов, выполненных как правило из металла:

Пружины – упругие элементы, предназначенные для создания (восприятия) сосредоточенной силовой нагрузки.

Торсионы – упругие элементы, выполненные обычно в форме вала и предназначенные для создания (восприятия) сосредоточенной моментной нагрузки.

Мембраны — упругие элементы, предназначенные для создания (восприятия) распределенной по их поверхности силовой нагрузки (давления).

Упругие элементы находят самое широкое применение в различных областях техники. Их можно обнаружить и в авторучках, которыми вы пишете конспекты, и в стрелковом оружии (например, боевая пружина), и в МГКМ (клапанные пружины двигателей внутреннего сгорания, пружины в муфтах сцепления и главных фрикционах, пружины тумблеров и переключателей, резиновые кулаки в ограничителях поворота балансиров гусеничных машин и т.д. и т.п.).

В технике наряду с цилиндрическими винтовыми одножильными пружинами растяжения-сжатия широкое распространение получили моментные пружины и торсионные валы.

В данном разделе рассматриваются только два вида из большого числа упругих элементов: *цилиндрические винтовые пружины растяжения-сжатия* и *торсионы*.

Классификация упругих элементов

- 1) По виду создаваемой (воспринимаемой) нагрузки: *силовые* (пружины, амортизаторы, демпферы) воспринимают сосредоточенную силу; *моментные* (моментные пружины, торсионы) сосредоточенный крутящий момент (пару сил); *воспринимающие распределенную нагрузку* (мембраны давления, сильфоны, трубки Бурдона и т.п.).
- 2) По виду материала, использованного для изготовления упругого элемента: *металлические* (стальные, стальные нержавеющие, бронзовые, латунные пружины, торсионы, мембраны, сильфоны, трубки Бурдона) и *неметаллические*, изготовленные из резин и пластмасс (демпферы и амортизаторы, мембраны).
- 3) По виду основных напряжений, возникающих в материале упругого элемента в процессе его деформации: *растяжения-сжатия* (стержни, проволоки), *кручения* (винтовые пружины, торсионы), *изгиба* (пружины изгиба, рессоры).
- 4) В зависимости от взаимосвязи нагрузки, действующей на упругий элемент, с его деформацией: *линейные* (график нагрузка-деформация представляет прямую линию) и *нелинейные* (график нагрузка-деформация непрямолинеен).
- 5) В зависимости от формы и конструкции: *пружины, цилиндрические винтовые*, однои многожильные, *конические винтовые*, *бочкообразные винтовые*, *тарельчатые*, *цилиндрические прорезные*, *спиральные* (ленточные и круглые), *плоские*, *рессоры* (многослойные пружины изгиба), *торсионы* (пружинные валы), *фигурные* и т.п.

- 6) В зависимости от способа *изготовления: витые, точеные, штампованные,* наборные и т.п.
- 7) Пружины делятся на классы. 1-й класс для больших чисел циклов нагружений (клапанные пружины двигателей автомобилей). 2-й класс для средних чисел циклов нагружений и 3-й класс для малых чисел циклов нагружений.
- 8) По точности пружины делятся на группы. 1-я группа точности с допускаемыми отклонениями по силам и упругим перемещениям $\pm 5\%$, 2-я группа точности на $\pm 10\%$ и 3-я группа точности $\pm 20\%$.

Рис. 1 — Некоторые упругие элементы машин: винтовые пружины - a) растяжения, δ) сжатия, δ) коническая сжатия, ϵ) кручения;

- ∂) телескопическая ленточная пружина сжатия; e) наборная тарельчатая пружина; \mathcal{K} , \mathcal{K}) кольцевые пружины; \mathcal{K} 0 составная пружина сжатия; \mathcal{K} 0 спиральная пружина; \mathcal{K} 1 пружина изгиба; \mathcal{K} 3) пружина изгиба; \mathcal{K} 4 торсионный валик.
- Обычно упругие элементы выполняются в виде пружин различных конструкций (рис. 1.1).

Рис. 1.1 – Конструкции пружин

Основное распространение в машинах имеют упругие пружины растяжения (рис.1.1, a), сжатия (рис.1.1, δ) и кручения (рис.1.1, e) с различным профилем сечения проволоки. Применяются также фасонные (рис.1.1, e), многожильные (рис.1.1, e) и составные пружины (рис.1.1, e) имеющие сложную упругую характеристику применяющиеся при сложных и высоких нагрузках.

В машиностроении наибольшее распространение получили винтовые одножильные пружины, витые из проволоки — цилиндрические, конические и бочкообразные. Цилиндрические пружины имеют линейную характеристику (зависимость сила-деформация), две другие — нелинейную. Цилиндрическая или коническая форма пружин удобна для размещения их в машинах. В упругих пружинах сжатия и растяжения витки подвержены кручению.

Цилиндрические пружины изготавливаются, как правило, методом навивки проволоки на оправку. При этом пружины из проволоки диаметром до 8 мм навиваются, как правило, холодным способом, а из проволоки (прутка) большего диаметра – горячим способом, то есть с предварительным подогревом заготовки до температуры пластичности металла. Пружины сжатия навиваются с необходимым шагом между витками. При навивке пружин растяжения проволоке обычно придается дополнительное осевое вращение, обеспечивающее плотное прилегание витков друг к другу. При таком способе навивки между витками возникают силы сжатия, достигающие до 30% от максимально допустимого значения для данной пружины. Для соединения с другими деталями используются различные виды прицепов, например в виде изогнутых витков (рис.1.1, а). Наиболее совершенными являются крепления с помощью ввертываемых резьбовых пробок с крючками.

Пружины сжатия навивают открытой навивкой с просветом между витками на 10...20% больше расчетных осевых упругих перемещений каждого витка при максимальных рабочих нагрузках. Крайние (опорные) витки пружин сжатия (рис. 1.2) обычно поджимаются и сошлифовываются, чтобы получить плоскую, перпендикулярную продольной оси пружины, опорную поверхность, занимающую не менее 75% круговой длины витка. После обрезки в нужный размер, подгибки и подшлифовки концевых витков пружины подвергаются стабилизирующему отжигу. Чтобы избежать потери устойчивости, при отношении высоты пружины в свободном состоянии к диаметру пружины больше трех ее следует ставить на оправки либо монтировать в направляющих стаканах.

Рис.1.2 – Цилиндрическая пружина сжатия

Для получения повышенной податливости при небольших габаритах применяют многожильные витые пружины (на рис.1.1, ∂) показаны сечения таких пружин). Изготовленные из высокосортной патентированной проволоки они обладают повышенной эластичностью, большой статической прочностью и хорошей амортизационной способностью. Вместе с тем изза повышенного износа, вызванного трением между проволоками, контактной коррозией и пониженной усталостной прочностью, применять их для переменных нагрузок при большом числе циклов нагружений не рекомендуется. И те, и другие пружины подбираются по ГОСТ 13764 -86... ГОСТ 13776-86...

Составные пружины (рис.1.1, е) используются при больших нагрузках и ДЛЯ ослабления Они резонансных явлений. (обычно состоят ИЗ нескольких двух) концентрически расположенных пружин сжатия, воспринимающих нагрузку одновременно. Для устранения закручивания торцевых опор и перекоса пружины должны иметь правое и левое направление навивки. Между ними должен быть достаточный радиальный зазор, а опоры сконструированы так, чтобы отсутствовало боковое сползание пружин.

Для получения нелинейной нагрузочной характеристики используют фасонные (в частности, конические) *пружины* (рис.1.1, ε), проекции витков которых на опорную плоскость имеют вид спирали (архимедовой или логарифмической).

Витые цилиндрические *пружины кручения* изготовляют из круглой проволоки аналогично пружинам растяжения и сжатия. Просвет между витками у них несколько больше (во избежание трения при нагружении). Они имеют специальные зацепы, с помощью которых внешний крутящий момент нагружает пружину, вызывая поворот поперечных сечений витков.

Разработано множество конструкций специальных пружин (рис.2).

Рис.2 – Специальные пружины

Наиболее часто используемые — тарельчатые (рис.2, a), кольцевые (рис.2, δ), спиральные (рис.2, s), стержневые (рис.2, s) и листовые рессоры (рис.2, d), обладающие кроме амортизирующих свойств высокой способностью гасить ($demn \phi upo sam b$) колебания за счёт трения между пластинами. Кстати, такой же способностью обладают и многожильные пружины (рис. 1.1, d).

При значительных крутящих моментах, сравнительно небольшой податливости и свободе перемещений в осевом направлении применяются *терсионные валы* (рис.2, ϵ).

При больших осевых нагрузках и малых перемещениях могут использоваться *тарельчатые и кольцевые пружины* (рис. 2, *а*, *б*), причем последние благодаря значительному рассеиванию энергии широко используются также в мощных амортизаторах. Тарельчатые пружины применяют при больших нагрузках, малых упругих перемещениях и стесненных габаритах по оси приложения нагрузки.

При ограниченных габаритах по оси и небольших крутящих моментах применяются плоские спиральные пружины (рис.2, ϵ).

Для стабилизации нагрузочных характеристик и увеличения статической прочности ответственные пружины подвергаются операции заневоливания, т.е. нагружению, при котором в некоторых зонах поперечного сечения возникают пластические деформации, а при разгрузке - остаточные напряжения со знаком, противоположным знаку напряжений, возникающих при рабочих нагрузках.

Широко применяются неметаллические упругие элементы (рис.3), выполненные, как правило, из резины или полимерных материалов.

Рис.3 – Типовые резиновые упругие элементы

Такие резиновые упругие элементы применяются в конструкциях упругих муфт, виброизолирующих опор (рис. 4), мягких подвесок агрегатов и ответственных грузов. При этом компенсируются перекосы и несоосности. Для защиты резины от износа и передачи нагрузки в них применяют металлические детали — трубки, пластины и т.п. материал элементов — техническая резина с пределом прочности $\sigma_B \ge 8$ МПа, модуль сдвига G = 500...900 МПа. В резине, из-за малого модуля упругости, рассеивается от 30 до 80 процентов энергии колебаний, что примерно в 10 раз больше, чем у стали.

Преимущества резиновых упругих элементов следующие: электроизолирующая способность; высокая демпфирующая способность

(рассеяние энергии в резине достигает 30...80%); способность аккумулировать большее количество энергии на единицу массы, чем пружинная сталь (до 10 раз).

Рис. 4 – Упругая опора вала

Пружины и резиновые упругие элементы применяются в конструкциях некоторых ответственных зубчатых колёс, где они сглаживают пульсации передаваемого вращающего момента, заметно увеличивая ресурс изделия (рис.5).

Рис. 5 — Упругие элементы в зубчатых колёсах a — пружины сжатия, δ — пластинчатые пружины

Здесь упругие элементы встраиваются в конструкцию зубатого колеса.

Для больших нагрузок при необходимости рассеяния энергии вибрации и ударов применяют пакеты упругих элементов (пружин).

Идея состоит в том, что при деформации составных или слоистых пружин (рессор) энергия рассеивается за счёт взаимного трения элементов, как это происходит в слоистых рессорах и многожильных пружинах.

Пластинчатые пакетные рессоры (рис.2.*д*) за счёт своего высокого демпфирования успешно применялись с первых шагов транспортного машиностроения ещё в подвеске карет, применялись они и на электровозах, и электропоездах первых выпусков, где были из-за нестабильности сил трения позже заменены витыми пружинами с параллельными демпферами, их можно встретить в некоторых моделях автомобилей и строительно-дорожных машин.

Пружины изготовляют из материалов, обладающих высокой прочностью и стабильными упругими свойствами. Такими качествами после соответствующей термической

обработки обладают высокоуглеродистые и легированные (с содержанием углерода 0,5...1,1%) стали марок 65, 70; марганцовистые стали 65Γ , 55Γ C; кремнистые стали 60C2, 60C2A, 70C3A; хромованадиевая сталь 51X Φ A и др. Модуль упругости пружинных сталей $E = (2,1...2,2)\cdot 10^5$ МПа, модуль сдвига $G = (7,6...8,2)\cdot 10^4$ МПа.

Для работы в агрессивных средах используются нержавеющие стали или сплавы цветных металлов: бронзы БрОЦ4-1, БрКМц3-1, БрБ-2, монель-металл НМЖМц 28-25-1,5, латуни и др. Модуль упругости сплавов на медной основе $E=(1,2...1,3)\cdot 10^5$ МПа, модуль сдвига $G=(4,5...5,0)\cdot 10^4$ МПа.

Заготовками для изготовления пружин служат проволока, пруток, полосовая сталь, лента.