Problem set 6 - Due: Wednesday, March 5

1. Prove that if $0 < AB < \omega$, $X \neq Y$, A-X-B and A-Y-B, then either A-X-Y-B or A-Y-X-B. Does the same conclusion follow if $AB = \omega$?

Proof. Assume $0 < AB < \omega$, $X \neq Y$, A-X-B and A-Y-B. Since $0 < AB < \omega$, \overrightarrow{AB} is defined.

A-X-B and A-Y-B together with $X \neq Y$ implies A, B, X, Y are distinct, collinear. Thus, we can apply theorem 8.3, which says one of the following relations must hold.

$$A$$
- X - Y or A - Y - X

Assume A-X-Y, then A-Y-B with the ROI yields A-X-Y-B

Assume A-Y-X, then A-X-B with the ROI yields A-Y-X-B

Note: If $AB = \omega$, then ray \overrightarrow{AB} would not be defined, and we would not be able to invoke theorem 8.3. Thus, the same conclusion would not follow.

2. Prove proposition 8.11

Proposition 8.11 Let A, B be any two points on line m, with $0 < AB < \omega$. Then, there exists a point C on m with C-A-B and $CB < \omega$.

Proof. Assume A, B are any two points on line m, with $0 < AB < \omega$. Thus, \overrightarrow{AB} and \overrightarrow{BA} are defined. We let our choice of C be on the ray \overrightarrow{BA} but not in \overrightarrow{BA} . We note that there are infinitely many choices for C. By Ax.RR, there exists a choice of C on the ray \overrightarrow{BA} such that $BC = CB < \omega$.

Since C on \overrightarrow{BA} but not in \overline{BA} , C-A-B by definition of the ray \overrightarrow{BA} .

3. Show via the following steps that \mathbb{H} satisfies axiom RR.

Let M = (r, mr + b) and N = (t, mt + b) be the points of intersection of the line y = mx + b with the unit circle, r < t. So $l = \{(x, mx + b) : r < x < t\}$ is a (typical nonvertical) line in \mathbb{H} . Let A = (a, ma + b), C = (c, mc + b) be two points on l. We will assume a < c, so that r < a < c < t

- (a) Show that X = (x, y) is on \overrightarrow{AC} (in \mathbb{H}) if and only if $a \le x < t$ and y = mx + b
- (b) For $X = (x, y) \neq A$ on \overrightarrow{AC} , show

$$AX = \ln\left(\frac{(t-a)(x-r)}{(a-r)(t-x)}\right)$$

(c) For any real number s > 0, show that there exists an x with a < x < t such that

$$\ln\left(\frac{(t-a)(x-r)}{(a-r)(t-x)}\right) = s$$

and hence AX = s for $X = (x, mx + b) \in \overrightarrow{AC}$

a.) We show part (a) in two parts. First (1) that $X = (x, y) \in \overrightarrow{AC} \implies a \le x < t$, and y = mx + b. Then (2), $a \le x < t$ and $y = mx + b \implies X = (x, y) \in \overrightarrow{AC}$

(1) assume X=(x,y) exists on the ray \overrightarrow{AC} . X=A, X=C, or one of A-X-C, A-C-X. If X=A, then (x,y)=(a,ma+b) implies x=a, and y=ma+b=mx+b. Thus, $a\leqslant x< t$ and y=mx+b are satisfied. If X=C, then (x,y)=(c,mc+b) implies x=c, and y=mc+b=mx+b. Since t>c>a, $a\leqslant x< t$ and y=mx+b are satisfied.

Assume $X \neq A$ or C. Then, $X \in \overrightarrow{AC}$ implies one of A-X-C or A-C-X. Assume A-X-C. Since t > c > a x must live somewhere between a and c for A-X-C to be satisfied on the hyperbolic plane. Thus, a < x < c satisfies $a \leq x < t$. Next, since A-X-C, X is collinear with A and C, which implies y = mx + b is satisfied.

Assume A-C-X. Again, since t > c > a, A-C-X implies c < x < t, which satisfies $a \le x < t$. Also, X is collinear with A and C, thus y = mx + b is also satisfied.

(2) Assume $a \le x < t$ and y = mx + b. Since y = mx + b, X is collinear with A and C. Thus, X exists somewhere on the line \overrightarrow{AC} . But, since $a \le x < t$, X must be somewhere between A and X. Notice that this is precisely the definition of the ray $\overrightarrow{AC} = \{A, C\} \cup \{X : A-X-C\} \cup \{X : A-C-X\}$ on the hyperbolic line \overrightarrow{AC} . Thus, for $a \le x < t$ to be satisfied, one of A-X-C or A-C-X must be true.

Note that x = a or x = c implies X = A or X = C, both of which make X be on the ray \overrightarrow{AC} , as desired.

b.) Assume $X = (x, y) \neq A$ on \overrightarrow{AC} , then

$$AX = \ln\left(\frac{e(AN)e(XM)}{e(AM)e(XN)}\right) = \ln\left(\frac{|a-t| \cdot |x-r|}{|a-r| \cdot |x-t|}\right)$$

But, since $r < a \leqslant x < c < t$, we have

$$AX = \ln\left(\frac{(t-a)(x-r)}{(a-r)(t-x)}\right)$$

As desired.

c.) We first note that as $x \to t$, $(t-x) \to 0 \implies \frac{(t-a)(x-r)}{(a-r)(t-x)} \to +\infty \implies \ln\left(\frac{(t-a)(x-r)}{(a-r)(t-x)}\right) \to +\infty$. Next, we note that as $x \to a$, $\frac{(t-a)(x-r)}{(a-r)(t-x)} \to 1$, since $\frac{(t-a)(x-r)}{(a-r)(t-x)} = \frac{(t-a)(a-r)}{(a-r)(t-a)} = 1$ when x = a. Therefore the domain of $AX = \ln\left(\frac{(t-a)(x-r)}{(a-r)(t-x)}\right)$ is $(1,\infty)$

Since the natural log function is continuous over $[1, \infty)$ and maps $[1, \infty) \to (0, \infty)$, any s > 0 has an x satisfying a < x < t such that

$$AX = \ln\left(\frac{(t-a)(x-r)}{(a-r)(t-x)}\right) = s$$

4. Let A = (0,0) and B = (.8,0) in \mathbb{H} , and compute the midpoint of \overline{AB} (It's not (.4,0))

We require a point K such that $AK = KB = \frac{1}{2}AB$. First, we compute $d_{\mathbb{H}}(AB)$. If A = (0,0), and B = (0.8,0), then M = (-1,0) and N = (1,0). Further, distance is given by $e(PQ) = |x_1 - x_2|$ for all points on the line y = 0 collinear with A and B

$$d_{\mathbb{H}}(AB) = \ln\left(\frac{e(AN)e(BM)}{e(AM)e(BN)}\right) = \ln\left(\frac{1\,|0.8 - (-1)|}{1\,|0.8 - 1|}\right)$$
$$= \ln\left(\frac{1.8}{0.2}\right) = \ln(9)$$

Thus, we require K such that $AK = KB = \frac{1}{2}AB = \frac{1}{2}\ln(9) = \ln\left(9^{\frac{1}{2}}\right) = \ln(3)$. That is,

$$d_{\mathbb{H}}(AK) = \ln\left(\frac{e(AN)e(KM)}{e(AM)e(KN)}\right) = \ln(3)$$

$$\implies \frac{e(AN)e(KM)}{e(AM)e(KN)} = 3$$

Note that e(AN) = e(AM) = 1. Thus, if K = (x, 0) for 0 < x < 0.8

$$\frac{e(KM)}{e(KN)} = 3$$

$$\Rightarrow \frac{|x+1|}{|x-1|} = 3$$

$$\Rightarrow \frac{\sqrt{(x+1)^2}}{\sqrt{x-1^2}} = 3$$

$$\Rightarrow \sqrt{(x+1)^2} = 3\sqrt{(x-1)^2}$$

$$\Rightarrow (x+1)^2 = 9(x-1)^2$$

$$\Rightarrow x^2 + 2x + 1 = 9x^2 - 18x + 9$$

$$\Rightarrow 8x^2 - 20x + 8 = 0$$

By the quadratic formula

$$x = \frac{20 \pm \sqrt{20^2 - 4(8)(8)}}{2(8)}$$
$$= \frac{20 \pm 12}{16}$$

Thus, $x = \frac{1}{2}$, 2. Observe that since 2 > 1 > 0.8, it cannot be a solution. Thus, $x = \frac{1}{2}$, $d_{\mathbb{H}}(AK) = \ln(3)$ and the midpoint is therefore K = (0.5, 0). We quickly verify that $d_{\mathbb{H}}(KB) = \ln(3)$

$$d_{\mathbb{H}}(KB) = \ln\left(\frac{e(KN)e(BM)}{e(KM)e(BN)}\right) = \ln\left(\frac{|0.5 - 1| \cdot |0.8 + 1|}{|0.5 + 1| \cdot |0.8 - 1|}\right) = \ln(3)$$

Thus, $d_{\mathbb{H}}(AK) = d_{\mathbb{H}}(KB) = \frac{1}{2}AB = \ln(3)$, and K = (0.5, 0) is the midpoint of \overline{AB}