

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

57-117238

(43)Date of publication of application : 21.07.1982

(51)Int.Cl.

H01L 21/30

(21)Application number : 56-004153

(71)Applicant : NIPPON KOGAKU KK <NIKON>

(22)Date of filing : 14.01.1981

(72)Inventor : MATSUURA TOSHIO
SUWA KYOICHI
SHIMIZU TOSHIYUKI
TANIMOTO SHOICHI

(54) EXPOSING AND BAKING DEVICE FOR MANUFACTURING INTEGRATED CIRCUIT WITH ILLUMINOMETER

(57)Abstract:

PURPOSE: To measure the distribution of light intensity easily at the point of arbitrary time without overhauling or stopping the device by burying the illuminometer into a movable stage.

CONSTITUTION: The illuminometer 7 is buried into the sample stage 5, and positioned so that the upper surface of the illuminometer 7 and the upper surface of a wafer 6 agree approximately. A hole 7a with approximately 0.5mm^φ; as shown in the figure is bored to the illuminometer 7, and light passing the hole 7a is changed into electrical signals by a photoelectric converting element 12 and the intensity is obtained. To measure the light intensity, the sample stage 5 is moved, the illuminometer 7 is brought under an exposing region, and the intensity is measured.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

⑯ 日本国特許庁 (JP) ⑪ 特許出願公開
⑰ 公開特許公報 (A) 昭57-117238

⑮ Int. Cl.³
H 01 L 21/30

識別記号 庁内整理番号
7131-5F

⑯ 公開 昭和57年(1982)7月21日

発明の数 1
審査請求 未請求

(全 4 頁)

④ 照度計付き IC 製造用露光焼付装置

⑤ 特 願 昭56-4153
⑥ 出 願 昭56(1981)1月14日
⑦ 発明者 松浦敏男
越谷市瓦曾根2-17-18
⑧ 発明者 謙訪恭一
川崎市高津区新作1-1
⑨ 発明者 清水寿幸

東京都足立区南花畠5-15-4
-405
⑩ 発明者 谷元昭一
川崎市高津区溝ノ口817
⑪ 出願人 日本光学工業株式会社
東京都千代田区丸の内3丁目2
番3号
⑫ 代理人 弁理士 岡部正夫 外6名

明細書

1. 発明の名称

照度計付き IC 製造用露光焼付装置

2. 特許請求の範囲

1. 照明光射出部と2次元的に移動可能な試料台を有する IC 製造用露光焼付装置において、

前記射出部による露光面の光強度を測定するための照度計を、前記試料台上のウエハ面とこの照度計の測光面とがほぼ一致するよう前記試料台に埋設したことを特徴とする装置。

2. 前記照度計は遮光部材に設けた微小開口部を通過した光を測定するものであることを特徴とする特許請求の範囲又1項記載の装置。

3. 前記照度計は1次元または2次元フォトセンサであることを特徴とする特許請求の範囲又1項記載の装置。

3. 発明の詳細な説明

本発明は照明光射出部による露光面の光強度および強度分布を測定する照度計を備えた IC 製造用露光焼付装置に関する。

一般に、IC 製造用露光焼付装置では高い照明の均一性が要求されている。特に近年、IC の集積度が増してパターン線幅が1μm近くになるに従つて、上記要求は益々強くなつてきて、照明の不均一性がパターン線幅の不揃いや線幅の制御に大きく影響してくるようになつた。

原理的には、露光面ないし照明部の光強度を測定するには単に照明部に照度計を設置して測定し、強度分布については照明部において微小面積の照度計を2次元的または1次元的に移動させるかまたは何箇所かの位置で測光して露光面内の光強度分布を求めればよい。

しかし、従来、露光焼付装置の光強度を測定するには照明光射出部(例えば投影レンズ)の射出部)と試料台との間の空間に照度計を

相対的な値を測定しているに過ぎない。

以上のように、実際の露光面内において真の光強度および強度分布を任意の時点で測定するのは不可能に近いといつた欠点が従来存在していた。

よって、本発明の目的は、これらの欠点を解決して、焼付け用の照明光の真の光強度および強度分布が容易に測定可能な照度計付きIC製造用露光焼付装置を得ることである。

以下本発明を実施例に沿つて説明する。

オ1図はIC製造用縮小投影露光焼付装置としての本発明の実施例を示す。集光レンズ1を通して照明光によって、レチクル2上のICパターンは縮小投影レンズ3によって、2次元的に移動可能な試料台ステージ5に載置されたウエハ6上に縮小投影される。なお、図中4は投影レンズ3の瞳である。こうしてレチクル2上のICパターンがウエハ6上に露光される。さらに照度計7が試料台ステージ5に埋設されている。

設置して行い、また強度分布の測定は照度計を2次元的或いは1次元的移動機構を有する設置台に取付けて行つてきた。が、ここで測定した光強度または強度分布は、あくまで照明光射出部と試料台との間のものであつて露光面すなわち、実際にバターンを焼付けるウエハ面上でのデータではない。さらに、最近の露光焼付装置は構造が複雑で、照度計や移動機構付き照度計が上記空間に設置できない場合もある。

以上の如き理由のため、真の測定を行うには露光焼付装置の一部を分解して照度計を設置せざるを得ない。すなわち、試料台を取りはずすとか照明系全体を取りはずすとかして露光面と照度計の測光面を一致させて照度計を取り付けなければならぬ。

従つて、現実には装置製造時に照明系の特性試験として光強度および強度分布を測定している。しかし、この測定も、完成した装置のものとはずれた位置または全く別の位置で

オ2図は試料台ステージ5を上から見た平面図である。試料台ステージ5は不図示のX-Y可動機構を持つており、X軸干渉計8とY軸干渉計9によつて試料台ステージ5の位置は0.02μm程度の単位で求め得る。試料台ステージ5は干渉計8, 9からの位置情報により不図示の計算機によつてプログラム制御することも可能である。本実施例では照明露光領域10は最大約10×10mm(～14mm²)であるものとする。

オ3図は本実施例による照度計7、ウエハ6、試料台ステージ5の側断面を拡大したものである。照度計7の上面とウエハ6の上面はほぼ一致するように設置されている。照度計7には図のような0.5mm程度の穴(ピンホール7a)があいており、この穴7aを通過した光を光電変換素子12によつて電気信号にして強度を求める。この光強度を測定するためには、試料台ステージ5を動かして照度計7を露光領域10の下に持つていき測定

する。露光領域10の下で試料台ステージ5を2次元的に移動し、干渉計8, 9によつて試料台ステージ5の位置を測定すると容易に露光領域10内の光強度分布を得ることができる。

オ4図は露光領域10を照度計7が矢印のように移動した場合に得られる光強度分布の例を示す。試料台ステージ5を2次元的に移動することにより、強度分布も2次元的に求め得る。

本実施例は干渉計付きステージを用いた例であるが、干渉計ではなくリニアスケール等の位置の情報を得られる測長器が付いていても勿論良い。

またピンホール7aは、光電変換素子12への受光領域を微小面積に制限するためのものであり、光強度分布の測定の分解能、すなわち露光領域10の大きさに対する穴の大きさは必要によつて任意に定め得る。また、穴はピンホールに限られるものではなく、光電

変換素子の受光面を遮光するような遮光板に微小幅のスリットを設けておいてもよい。

ところで、本発明では照明露光領域 10×10 mm² の光強度および強度分布を隨時確認できるため、これを照明用ランプの劣化の判断に適用できる。ランプの劣化の判断は、従来、照明光の一部または露光に使わない部分の光強度を測定して行うか、或いは単に点灯時間だけで寿命判断してランプ交換を行つてきた。この前者の方法の測定では、一般に照明光の端の一部または外側をモニタしているため、実際に露光に使われる光強度との値との間に差を生じることが多い。また、後者は単なる目安に過ぎない。しかし、本発明の実施例による照度計を備えた露光焼付装置によれば、真の光強度すなわち露光面上の光強度を測定できるので、この値をランプの劣化の判断に用いることができる。

一般に、このような露光焼付装置は計算機によつて各動作が制御されている。そこで、

計算機に光強度分布を測定するためのプログラムをあらかじめ用意しておけば、露光焼付装置の適当な動作中（例えばウエハの変換動作時）に、露光面の光強度および強度分布が測定でき、かつ強度分布の時間的変化も知ることができ。さらに試料台ステージ5を移動して、露光領域 10×10 mm² の対角線上を照度計7のピンホール7aが通るようにして、このとき得られた強度分布（オ4図に示したような特性）から、計算処理によつて測定と同時に露光領域 10×10 mm² の照明光の均一性を表わすデータを作成することもできる。また、この照度計はレチクルの真の露光領域の大きさを確認するためにも使える。すなわち、照度計7を移動して光強度の分布特性（オ4図）の立上りと降下を検出し、そのときの試料台ステージ5の位置座標（干渉計8, 9より求められる）から、真の露光領域、すなわち実際のパターン焼付領域の大きさを測定すればよい。これはレチクルの有効面積（パターン領域）

が小さく（ウエハ上での露光領域が 10×10 mm² 角よりも小さくなる場合）、レチクルアバーチヤ（レチクルのパターン領域のみ開口されるような遮光板枠）でレチクルの周囲を遮光するとき、完全に遮光されたか否かを確認する場合に極めて有効である。

尚、他の実施例として、オ5図(A), (B)の如く1次元または2次元のフォトセンサ11, 12を用いてよい。1次元フォトセンサ11を用いる場合は、試料台ステージ5をフォトセンサ11の長手方向と直交する方向に移動するだけでよい。さらに2次元フォトセンサ12を用いる場合は、露光領域 10×10 mm²にフォトセンサ12がくるように試料台ステージ5を移動した後、フォトセンサ12を電気的に走査するだけで光強度分布が求められる。

このように本発明によれば、可動ステージに埋め込みの照度計であるので装置を分解或いは停止することなく、任意の時点で容易に光強度分布を得ることができるという利点が

ある。また、実際に露光されるウエハ面と照度計の測定面が一致しているために、露光時と全く同じ条件で真の光強度および強度分布を得るとができるという利点もある。

4. 図面の簡単な説明

オ1図は本発明による実施例の原理図、

オ2図は試料台部の平面図、

オ3図はオ1図の照度計の存在する近辺の拡大断面図、

オ4図は光強度分布のグラフ、

オ5図(A)は照度計として1次元フォトセンサを使用した例の図、オ5図(B)は2次元フォトセンサを使用した例の図である。

（主要部分の符号の説明）

試 料 台	-----	5
照 度 計	-----	7, 10, 12
微小開口部	-----	7a

才3図

才4図

才5図

特許法第17条の2の規定による補正の掲載

昭和 56 年特許願第 4153 号(特開 昭 57-117238 号, 昭和 57 年 7 月 21 日 発行 公開特許公報 57-1173 号掲載)については特許法第17条の2の規定による補正があつたので下記のとおり掲載する。 7 (2)

I n t . C l .	識別記号	庁内整理番号
H01L 21/30		7376-5F

手 続 判 正 書

昭和 62 年 12 月 1 日

特許庁長官 小川邦夫

1. 事件の表示 昭和 56 年特許願第 4153 号

2. 発明の名称 照度計付き IC 製造用露光焼付装置

3. 補正をする者

事件との関係 特許出願人

住所 東京都千代田区丸の内 3 丁目 2 檜 3 号

名称 (411) 日本光学工業株式会社

4. 代理人

〒100

住所 東京都千代田区丸の内 3-2-3 富士ビル 602 号室
電話 (213) 1561 (代表)

氏名 (6444) 弁理士 署 部 正 夫

5. 補正により増加する発明の数 1

6. 補正の対象 (1) 明細書の「発明の名称」の欄
(2) 明細書の「特許請求の範囲」の欄
(3) 明細書の「発明の詳細な説明」の欄

7. 補正の内容 別紙のとおり

- (1) 「発明の名称」を下記の通り訂正する。
トウェイガクロ エクリウナ
「投影型露光装置」
- (2) 「特許請求の範囲」を別紙の通り訂正する。
- (3) 明細書第 2 頁第 4 行目の
「IC 製造用露光焼付装置に関する。」を
「IC 製造用露光焼付装置、特に投影光学系
を用いた投影型露光装置に関する。」と訂
正する。
- (4) 同上第 2 頁第 5 行目の
「IC 製造用露光焼付装置」を
「投影型露光装置」と訂正する。
- (5) 同上第 2 頁第 19 行目の
「投影レンズ」を
「投影レンズ」と訂正する。
- (6) 同上第 4 頁第 8 ~ 9 行日の
「照度計付き IC 製造用露光焼付装置」を
「照度測定器を備えた投影型露光装置」と訂
正する。
- (7) 同上第 4 頁第 20 行目の

「埋設」を

「固定」と訂正する。

(8) 同上第 5 頁第 11 行目の

「照度計 7」を

「光電変換手段としての照度計 7」と訂正す
る。

(9) 同上第 9 頁第 18 行目の

「に埋め込みの」を

「と一体に取付けた」と訂正する。

2. 特許請求の範囲

1. 照明光射出部と 2 次元的に移動可能な試料台とを有する投影型露光装置において、前記照明光射出部による露光面の光強度を測定するために、前記射出部からの光を受ける測光面が前記試料台に載置される被露光基板の表面とほぼ一致するように前記試料台の一部に設けられた光電変換手段を備え、該光電変換手段の出力に基づいて前記露光面における光強度を検出することを特徴とする投影型露光装置。

2. 前記試料台は 2 次元的な位置を計測するための測長器を有し、

前記光電変換手段の測光面には前記照明光射出部からの光の照射領域よりも小さな面積に規定された受光部が形成され、該受光部と前記照射領域とが相対的に走査されるように前記試料台を移動させたとき、前記測長器から得られる位置情報と前記光電変換手段から得られる出力とに基づいて、前記照射領域の

位置を計測する位置計測手段と；前記レチクルの照明領域を規定する遮光手段とを有し、前記光電変換手段を前記露光面に位置させ、前記光電変換手段から得られる出力と前記位置計測手段から得られる位置情報とに基づいて、前記遮光手段により規定される露光領域の範囲を検知することを特徴とする投影型露光装置。

6. 前記光電変換手段の測光面には前記投影光学系による前記露光領域よりも小さな面積に規定された受光部が形成され、該受光部と前記露光領域とが相対的に走査されるように前記試料台を移動させて前記露光領域の範囲を検知することを特徴とする特許請求の範囲第 5 項記載の装置。

光強度分布を計測することを特徴とする特許請求の範囲第 1 項記載の装置。

3. 前記光電変換手段は、複数の受光部を有し、該複数の受光部の配置される位置と、該複数の受光部からの出力情報とに基づいて、前記露光面の光強度分布を検出することを特徴とする特許請求の範囲第 1 項記載の装置。

4. 前記光電変換手段は、前記複数の受光部を 2 次元的に配置した 2 次元フォトセンサとなることを特徴とする特許請求の範囲第 3 項記載の装置。

5. 2 次元的に移動可能な試料台に載置された被露光基板に、レチクルのパターンを投影光学系を介して焼き付ける投影型露光装置において、

前記投影光学系による露光面の光強度を測定するために、前記投影光学系からの光を受ける測光面が、前記被露光基板の表面とほぼ一致するように前記試料台の一部に設けられた光電変換手段と；前記試料台の 2 次元的な