Projection

1. Ý tưởng hình học

- Cho hai vector \vec{R} và \vec{S} , ta có thể vẽ tam giác vuông với:
 - \circ $ec{S}$ là cạnh huyền
 - $\circ~$ Góc giữa $ec{R}$ và $ec{S}$ là heta
- Theo công thức lượng giác:

$$\cos(\theta) = \frac{\text{cạnh kề}}{\text{cạnh huyền}} = \frac{\text{độ dài chiếu của } \vec{S} \text{ lên } \vec{R}}{|\vec{S}|}$$

2. Liên hệ với dot product

• Từ công thức dot product:

$$ec{R}\cdotec{S}=|ec{R}||ec{S}|\cos(heta)$$

• Suy ra:

$$rac{ec{R}\cdotec{S}}{|ec{R}|}=|ec{S}|\cos(heta)$$

Đây chính là **độ dài hình chiếu của** \vec{S} **lên** \vec{R} — gọi là **scalar projection** (chiếu vô hướng).

3. Scalar Projection (Chiếu vô hướng)

• Là một số thực:

scalar projection of
$$\vec{S}$$
 onto $\vec{R} = \frac{\vec{R} \cdot \vec{S}}{|\vec{R}|}$

- Diễn tả **độ lớn thành phần của** \vec{S} theo hướng của \vec{R}

4. Vector Projection (Chiếu vectơ)

- Là **một vector** cùng hướng với $ec{R}$, có độ dài bằng scalar projection:

vector projection of
$$\vec{S}$$
 onto $\vec{R} = \left(\frac{\vec{R} \cdot \vec{S}}{|\vec{R}|^2} \right) \vec{R}$

- Nếu \vec{R} là vector đơn vị (unit vector), thì:

vector projection =
$$(\vec{R} \cdot \vec{S})\vec{R}$$

5. Kết luận

- Dot product không chỉ cho biết góc giữa hai vector, mà còn dùng để tính phép chiếu.
- Scalar projection là độ dài bóng đổ của một vector lên vector khác.
- Vector projection là vector nằm cùng hướng với vector được chiếu lên, nhưng có độ dài tương ứng với thành phần song song.