CLAIMS

What is claimed is:

1. A compound of Formula (I):

5

or a pharmaceutically acceptable salt thereof, wherein:

R¹, R² and R³ are independently H; phosphate; straight chained, branched or cyclic alkyl; acyl; CO-alkyl, CO-aryl, CO-alkoxyalkyl, CO-aryloxyalkyl, CO-substituted aryl, sulfonate ester; benzyl, wherein the phenyl group is optionally substituted with one or more substituents; alkylsulfonyl; arylsulfonyl; aralkylsulfonyl; a lipid; an amino acid; an amino acid residue; a carbohydrate; a peptide; cholesterol; or pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹, R² and/or R³ is independently H or phosphate;

15

10

wherein at least one of R^2 and R^3 is not hydrogen; and wherein:

Y¹ is hydrogen, bromo, chloro, fluoro, iodo, CN, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁴;

20

X¹ is a straight chained, branched or cyclic optionally substituted alkyl, CH₃, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, CH₂OH, optionally substituted alkenyl, optionally substituted alkynyl, COOH, COOR⁴, COO-alkyl, COO-aryl, CO-Oalkoxyalkyl, CONH₂, CONHR⁴, CON(R⁴)₂, chloro, bromo, fluoro, iodo, CN, N₃, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁵; and

25

X² is H, straight chained, branched or cyclic optionally substituted alkyl, CH₃, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, CH₂OH, optionally substituted alkenyl, optionally substituted alkynyl, COOH, COOR⁴, COO-alkyl, COO-aryl, CO-Oalkoxyalkyl, CONH₂, CONHR⁴, CON(R⁴)₂, chloro, bromo, fluoro, iodo, CN, N₃, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁵; and

wherein each Y³ is independently H, F, Cl, Br or I; and each R⁴ and R⁵ is independently hydrogen, acyl, alkyl, lower alkyl, alkenyl, alkynyl or cycloalkyl.

2. A compound of Formula (II):

5

10

15

20

25

$$X^2$$
 X^1
 X^1
 X^1
 X^2
 X^1
 X^2
 X^1
 X^2
 X^2
 X^3
 X^2
 X^3
 X^2
 X^3
 X^2
 X^3
 X^3
 X^3
 X^3
 X^3
 X^4
 X^3
 X^4
 X^4

or a pharmaceutically acceptable salt thereof, wherein:

R¹, R² and R³ are independently H; phosphate; straight chained, branched or cyclic alkyl; acyl; CO-alkyl, CO-aryl, CO-alkoxyalkyl, CO-aryloxyalkyl, CO-substituted aryl, sulfonate ester; benzyl, wherein the phenyl group is optionally substituted with one or more substituents; alkylsulfonyl; arylsulfonyl; aralkylsulfonyl; a lipid; an amino acid; an amino acid residue; a carbohydrate; a peptide; cholesterol; or pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹, R² and/or R³ is independently H or phosphate;

wherein at least one of R² and R³ is not hydrogen; and wherein:

Y¹ is hydrogen, bromo, chloro, fluoro, iodo, CN, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁴;

X¹ is a straight chained, branched or cyclic optionally substituted alkyl, CH₃, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, CH₂OH, optionally substituted alkenyl, optionally substituted alkynyl, COOH, COOR⁴, COO-alkyl, COO-aryl, CO-Oalkoxyalkyl, CONH₂, CONHR⁴, CON(R⁴)₂, chloro, bromo, fluoro, iodo, CN, N₃, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁵; and

X² is H, straight chained, branched or cyclic optionally substituted alkyl, CH₃, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, CH₂OH, optionally substituted alkenyl, optionally substituted alkynyl, COOH, COOR⁴, COO-alkyl, COO-aryl,

CO-Oalkoxyalkyl, CONH₂, CONHR⁴, CON(R⁴)₂, chloro, bromo, fluoro, iodo, CN, N₃, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁵; and

wherein each Y³ is independently H, F, Cl, Br or I; and

each R⁴ and R⁵ is independently hydrogen, acyl, alkyl, lower alkyl, alkenyl, alkynyl or cycloalkyl.

3. A compound of Formula (III), (IV) or (V):

5

10

15

20

or a pharmaceutically acceptable salt thereof, wherein:

R¹, R² and R³ are independently H; phosphate; straight chained, branched or cyclic alkyl; acyl; CO-alkyl, CO-aryl, CO-alkoxyalkyl, CO-aryloxyalkyl, CO-substituted aryl, sulfonate ester; benzyl, wherein the phenyl group is optionally substituted with one or more substituents; alkylsulfonyl; arylsulfonyl; aralkylsulfonyl; a lipid; an amino acid; an amino acid residue; a carbohydrate; a peptide; cholesterol; or pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹, R² and/or R³ is independently H or phosphate;

wherein at least one of \mathbb{R}^2 and \mathbb{R}^3 is not hydrogen; and wherein:

Base is selected from the group consisting of

$$(C) \qquad (D) \qquad (E) \qquad (F)$$

$$(G) \qquad (H) \qquad (H)$$

$$(G) \qquad (H) \qquad (H)$$

$$(G) \qquad (H) \qquad (K)$$

$$(G) \qquad (K) \qquad (L)$$

$$X^{2} \xrightarrow{NR^{4}R^{3}} X^{2} \xrightarrow{NR^{4}R^{5}} X^{2} \xrightarrow$$

$$(AA) \qquad (AB) \qquad (AC) \qquad (AD)$$

$$(AA) \qquad (AB) \qquad (AC) \qquad (AD)$$

$$(AE) \qquad (AF) \qquad (AF)$$

$$(AG) \qquad (AH) \qquad (AI) \qquad (AJ)$$

$$(AG) \qquad (AH) \qquad (AI) \qquad (AJ)$$

$$(AB) \qquad (BA) \qquad (BB)$$

$$X^{2} \xrightarrow{V^{1}} X^{2} \xrightarrow{V^{2}} X^{2} \xrightarrow{V^{1}} X^{2} \xrightarrow{V^{1}} X^{2} \xrightarrow{V^{2}} X^{2} \xrightarrow{V^{1}} X^{2$$

$$X^{2} \xrightarrow{NR^{4}R^{5}} X^{2} \xrightarrow$$

$$X^2$$
 X^2
 X^3
 Y^1
 X^3
 Y^2
 Y^3
 Y^2
 Y^3
 Y^2
 Y^3
 Y^2
 Y^3
 Y^2
 Y^3
 Y^2
 Y^3
 Y^4
 Y^2
 Y^3
 Y^4
 Y^4
 Y^4
 Y^5
 Y^6
 Y^7
 Y^8
 Y^8

each R⁴ and R⁵ is independently hydrogen, acyl, alkyl, lower alkyl, alkenyl, alkynyl or cycloalkyl;

5

10

15

20

each W¹, W², W³ and W⁴ is independently N, CH, CF, CI, CBr, CCl, CCN, CCH₃, CCF₃, CCH₂CH₃, CC(O)NH₂, CC(O)NHR⁴, CC(O)N(R⁴)₂, CC(O)OH, CC(O)OR⁴ or CX³; each W* is independently O, S, NH or NR⁴;

X is O, S, SO₂, CH₂, CH₂OH, CHF, CF₂, C(Y³)₂, CHCN, C(CN)₂, CHR⁴ or C(R⁴)₂; X* is CH, CF, CY³ or CR⁴;

 X^2 is H, straight chained, branched or cyclic optionally substituted alkyl, CH₃, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, CH₂OH, optionally substituted alkenyl, optionally substituted alkynyl, COOH, COOR⁴, COO-alkyl, COO-aryl, CO-Oalkoxyalkyl, CONH₂, CONHR⁴, CON(R⁴)₂, chloro, bromo, fluoro, iodo, CN, N₃, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁵;

each X³ is independently a straight chained, branched or cyclic optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, N₃, CN, -C(O)OH, -C(O)OR⁴, -C(O)O(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl)₂, OH, OR⁴, -O(acyl), -O(lower

S(acyl), -S(lower acyl), -S(R⁴), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl), -S(cycloalkyl), chloro, bromo, fluoro, iodo, NH₂, -NH(lower alkyl), -NHR⁴, -NR⁴R⁵. -NH(acyl), -N(lower alkyl)₂, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl), -NH(cycloalkyl), 5 or $-N(acyl)_2$; each Y is independently selected from the group consisting of H, optionally substituted lower alkyl, cycloalkyl, alkenyl, alkynyl, CH₂OH, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂F, CH₂Cl, CH₂N₃, CH₂CN, CH₂CF₃, CF₃, CF₂CF₃, CH₂CO₂R, (CH₂)_mCOOH, (CH₂)_mCOOR, (CH₂)_mCONH₂, (CH₂)_mCONR₂, and (CH₂)_mCONHR; 10 R is H, alkyl or acyl; Y¹ is hydrogen, bromo, chloro, fluoro, iodo, CN, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁴; each Y² is independently O, S, NH or NR⁴; and each Y³ is independently H, F, Cl, Br or I; wherein for Base (B), W⁴ cannot be CH if W¹, W² and W³ are N: 15 wherein for Base (E), (F), (K), (L), (W) and (X), W⁴ cannot be CH if W¹ is N; each R⁶ is independently an optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, -CH₂C(O)OH, -CH₂C(O)OR⁴, 20 -CH₂C(O)O(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), $-CH_2C(O)N(R^4)_2$, $-CH_2C(O)N(lower alkyl)_2$, $-(CH_2)_mC(O)OH$, $-(CH_2)_mC(O)OR^4$, $-(CH_2)_mC(O)O(lower alkyl), -(CH_2)_mC(O)NH_2, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NH(lower alkyl), -(CH_2)_mC(O)NH(lower alky$ alkyl), $-(CH_2)_mC(O)N(R^4)_2$, $-(CH_2)_mC(O)N(lower alkyl)_2$, -C(O)OH, $-C(O)OR^4$, -C(O)O(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, 25 -C(O)N(lower alkyl)₂ or cyano; each R⁷ is independently OH, OR², optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, 30 haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, optionally substituted carbocycle, optionally substituted heterocycle, optionally substituted heteroaryl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)SH, -CH₂C(O)SR⁴, -CH₂C(O)S(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), $-CH_2C(O)N(R^4)_2$, $-CH_2C(O)N(lower alkyl)_2$, $-(CH_2)_mC(O)OH$, $-(CH_2)_mC(O)OR^4$,

acyl), -O(alkyl), -O(lower alkyl), -O(alkenyl), -O(alkynyl), -O(aralkyl), -O(cycloalkyl), -

-(CH₂)_mC(O)O(lower alkyl), -(CH₂)_mC(O)SH, -(CH₂)_mC(O)SR⁴, -(CH₂)_mC(O)S(lower alkyl), -(CH₂)_mC(O)NH₂, -(CH₂)_mC(O)NHR⁴, -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)N(R⁴)₂, -(CH₂)_mC(O)N(lower alkyl)₂, -C(O)OH, -C(O)OR⁴, -C(O)O(lower alkyl), -C(O)SH, -C(O)SR⁴, -C(O)S(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl)₂, -O(acyl), -O(lower acyl), -O(R⁴), -O(alkyl), -O(lower alkyl), -O(alkenyl), -O(alkynyl), -O(aralkyl), -O(cycloalkyl), -S(acyl), -S(lower acyl), -S(R⁴), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl), -S(cycloalkyl), NO₂, NH₂, -NH(lower alkyl), -NHR⁴, -NR⁴R⁵, -NH(acyl), -N(lower alkyl)₂, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl), -NH(cycloalkyl), -N(acyl)₂, azido, cyano, SCN, OCN, NCO or halo;

alternatively, R^6 and R^7 can come together to form a spiro compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle; and

each m is independently 0, 1 or 2.

15

10

5

4. A compound of Formula (VI) or (VII):

or a pharmaceutically acceptable salt thereof,

20

25

wherein:

R¹ is H; phosphate; straight chained, branched or cyclic alkyl; acyl; CO-alkyl; CO-aryl; CO-alkoxyalkyl; CO-aryloxyalkyl; CO-substituted aryl; sulfonate ester; benzyl, wherein the phenyl group is optionally substituted with one or more substituents; alkylsulfonyl; arylsulfonyl; aralkylsulfonyl; a lipid; an amino acid; an amino acid residue; a carbohydrate; a peptide; cholesterol; or pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate; and

wherein:

Base is selected from the group consisting of

$$(A) \qquad (B)$$

$$X^{2} \qquad X^{2} \qquad$$

 NR^4R^5 NR⁴R⁵ X^3 (N) (M) NR⁴R⁵ NR⁴R⁵ NR^4R^5 NR⁴R⁵ (R) (**Q**) **(O**) **(P)** NR⁴R⁵ NR⁴R⁵ **(T) (S)** ŌН ÓН ŌН ŌН X^2 X^3 (X) (**W**) **(V)** (U)

5

$$X^{2} \xrightarrow{W^{2}} X^{2}$$

$$(BA) \qquad (BB)$$

$$X^{2} \xrightarrow{V^{1}} X^{2} \xrightarrow{W^{2}} X^{2}$$

$$(BC) \qquad (BD) \qquad (BE) \qquad (BF)$$

$$(BG) \qquad (BH)$$

$$X^{2} \xrightarrow{V^{1}} X^{2} \xrightarrow{W^{2}} X^{2}$$

$$(BG) \qquad (BH)$$

$$X^{3} \xrightarrow{V^{1}} X^{2} \xrightarrow{W^{1}} X^{2} \xrightarrow{V^{1}} X^{2} \xrightarrow{W^{1}} X^{2}$$

$$X^{4} \xrightarrow{V^{1}} X^{2} \xrightarrow{W^{1}} X^{2} \xrightarrow$$

OH OH OH WITH
$$X^3$$
 WITH Y^1 X^3 WITH Y^1 Y^2 WITH Y^2 OH Y^2

each R⁴ and R⁵ is independently hydrogen, acyl, alkyl, lower alkyl, alkenyl, alkynyl or cycloalkyl;

5

10

15

each W^1 , W^2 , W^3 and W^4 is independently N, CH, CF, CI, CBr, CCI, CCN, CCH₃, CCF₃, CCH₂CH₃, CC(O)NH₂, CC(O)NHR⁴, CC(O)N(R⁴)₂, CC(O)OH, CC(O)OR⁴ or CX³; each W^* is independently O, S, NH or NR⁴;

X is O, S, SO₂, CH₂, CH₂OH, CHF, CF₂, C(Y³)₂, CHCN, C(CN)₂, CHR⁴ or C(R⁴)₂; X^* is CH, CF, CY³ or CR⁴;

X² is H, straight chained, branched or cyclic optionally substituted alkyl, CH₃, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, CH₂OH, optionally substituted alkenyl, optionally substituted alkynyl, COOH, COOR⁴, COO-alkyl, COO-aryl,

CO-Oalkoxyalkyl, CONH₂, CONHR⁴, CON(R⁴)₂, chloro, bromo, fluoro, iodo, CN, N₃, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁵;

each X³ is independently a straight chained, branched or cyclic optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, N₃, CN, -C(O)OH, -C(O)OR⁴, -C(O)O(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl)₂, OH, OR⁴, -O(acyl), -O(lower acyl), -O(alkyl), -O(alkenyl), -O(alkynyl), -O(aralkyl), -O(cycloalkyl), -S(acyl), -S(lower acyl), -S(lower acyl), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl), -S(cycloalkyl), chloro, bromo, fluoro, iodo, NH₂, -NH(lower alkyl), -NHR⁴, -NR⁴R⁵, -NH(acyl), -N(lower alkyl)₂, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl), -NH(cycloalkyl), or -N(acyl)₂;

5

10

15

25

30

each Y is independently selected from the group consisting of H, optionally substituted lower alkyl, cycloalkyl, alkenyl, alkynyl, CH₂OH, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂F, CH₂Cl, CH₂N₃, CH₂CN, CH₂CF₃, CF₃, CF₂CF₃, CH₂CO₂R, (CH₂)_mCOOH, (CH₂)_mCOOR, (CH₂)_mCONH₂, (CH₂)_mCONR₂, and (CH₂)_mCONHR; R is H, alkyl or acyl;

Y¹ is hydrogen, bromo, chloro, fluoro, iodo, CN, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁴;

each Y² is independently O, S, NH or NR⁴;

each Y³ is independently H, F, Cl, Br or I;

wherein for Base (B), W⁴ cannot be CH if W¹, W² and W³ are N;

wherein for Base (E), (F), (K), (L), (W) and (X), W⁴ cannot be CH if W¹ is N;

each R⁶ is independently an optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃,

CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), -CH₂C(O)N(R⁴)₂, -CH₂C(O)N(lower alkyl)₂, -(CH₂)_mC(O)OH, -(CH₂)_mC(O)OR⁴,

-(CH₂)_mC(O)O(lower alkyl), -(CH₂)_mC(O)NH₂, -(CH₂)_mC(O)NHR⁴, -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)N(R⁴)₂, -(CH₂)_mC(O)N(lower alkyl)₂, -C(O)OH, -C(O)OR⁴, -C(O)O(lower alkyl), -C(O)NH₂, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl)₂ or cyano;

each R⁷ is independently OH, OR², optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, optionally substituted 5 carbocycle, optionally substituted heterocycle, optionally substituted heteroaryl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)SH, -CH₂C(O)SR⁴, -CH₂C(O)S(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), $-CH_2C(O)N(R^4)_2$, $-CH_2C(O)N(lower alkyl)_2$, $-(CH_2)_mC(O)OH$, $-(CH_2)_mC(O)OR^4$, -(CH₂)_mC(O)O(lower alkyl), -(CH₂)_mC(O)SH, -(CH₂)_mC(O)SR 4 , -(CH₂)_mC(O)S(lower alkyl) alkyl), $-(CH_2)_mC(O)NH_2$, $-(CH_2)_mC(O)NHR^4$, $-(CH_2)_mC(O)NH(lower alkyl)$, 10 $-(CH_2)_mC(O)N(R^4)_2$, $-(CH_2)_mC(O)N(lower alkyl)_2$, -C(O)OH, $-C(O)OR^4$, $-C(O)O(lower alkyl)_2$ alkyl), -C(O)SH, -C(O)SR⁴, -C(O)S(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl)₂, -O(acyl), -O(lower acyl), -O(R⁴), -O(alkyl). -O(lower alkyl), -O(alkenyl), -O(alkynyl), -O(aralkyl), -O(cycloalkyl), -S(acyl), -S(lower acyl), -S(R⁴), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl), -S(cycloalkyl), NO₂, 15 NH₂, -NH(lower alkyl), -NHR⁴, -NR⁴R⁵, -NH(acyl), -N(lower alkyl)₂, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl), -NH(cycloalkyl), -N(acyl)₂, azido, cyano, SCN, OCN, NCO or halo;

alternatively, R⁶ and R⁷ can come together to form a spiro compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle;

20

25

30

each R⁸ and R¹¹ is independently hydrogen, an optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), -CH₂C(O)N(lower alkyl)₂, -(CH₂)_mC(O)OH, -(CH₂)_mC(O)OR⁴, -(CH₂)_mC(O)O(lower alkyl), -(CH₂)_mC(O)NH₂, -(CH₂)_mC(O)NHR⁴, -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)NH₂, -(CH₂)_mC(O)N(lower alkyl)₂, -C(O)OH, -C(O)OR⁴, -C(O)O(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)NH₂, -C(O)NH₃, -C(O)NH(lower alkyl), -C(O)NH₂, -C(O)NH₃, -C(O)NH(lower alkyl), -C(O)NH₃, -C(O)NH₃,

each R⁹ and R¹⁰ are independently hydrogen, OH, OR², optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted

alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, optionally substituted carbocycle, optionally substituted heterocycle, optionally substituted heteroaryl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)SH, -CH₂C(O)SR⁴, -CH₂C(O)S(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NH₃, -CH₂C(O)NH(lower alkyl), -CH₂C(O)N(R⁴)₂, -CH₂C(O)N(lower alkyl)₂, -(CH₂)_mC(O)OH, -(CH₂)_mC(O)OR⁴, -(CH₂)_mC(O)O(lower alkyl), -(CH₂)_mC(O)SH₃, -(CH₂)_mC(O)SH₄, -(CH₂)_mC(O)SH₄, -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)N(R⁴)₂, -(CH₂)_mC(O)N(lower alkyl)₂, -C(O)OH, -C(O)OR⁴, -C(O)O(lower alkyl), -C(O)SH, -C(O)SH⁴, -C(O)S(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl), -O(acyl), -O(lower acyl), -O(R⁴), -O(alkyl), -O(alkynyl), -O(aralkyl), -O(cycloalkyl), -S(acyl), -S(lower acyl), -S(R⁴), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl), -S(cycloalkyl), NO₂, NH₂, -NH(lower alkyl), -NHR⁴, -NR⁴R⁵, -NH(acyl), -N(lower alkyl)₂, -NH(alkenyl), -NH(alkenyl), -NH(aralkyl), -NH(cycloalkyl), -N(acyl)₂, azido, cyano, SCN, OCN, NCO or halo;

each m is independently 0, 1 or 2; and

5

10

15

20

25

30

alternatively, R⁶ and R¹⁰, R⁷ and R⁹, R⁸ and R⁷ or R⁹ and R¹¹ can come together to form a bridged compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle or alternatively, R⁶ and R⁷ or R⁹ and R¹⁰ can come together to form a spiro compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle.

5. A compound of Formula (VIII), (IX) or (X):

or a pharmaceutically acceptable salt thereof, wherein:

wherein R¹, R² and R³ are independently H; phosphate; straight chained, branched or cyclic alkyl; acyl; CO-alkyl; CO-aryl; CO-alkoxyalkyl; CO-aryloxyalkyl; CO-substituted aryl; sulfonate ester; benzyl, wherein the phenyl group is optionally substituted with one or more substituents; alkylsulfonyl; arylsulfonyl; aralkylsulfonyl; a lipid; an amino acid; an

amino acid residue; a carbohydrate; a peptide; cholesterol; or pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹, R² and/or R³ is independently H or phosphate;

wherein at least one of R² and R³ is not hydrogen;

X is O, S, SO₂, CH₂, CH₂OH, CHF, CF₂, C(Y³)₂, CHCN, C(CN)₂, CHR⁴\or C(R⁴)₂; X^* is CH, CF, CY³, or CR⁴;

each Y³ is independently H, F, Cl, Br or I;

each R⁴ and R⁵ is independently hydrogen, acyl, alkyl, lower alkyl, alkenyl or cycloalkyl;

10

5

Base* is a purine or pyrimidine base;

each R^{12} is independently a substituted alkyl, CH_2CN , CH_2N_3 , CH_2NH_2 , CH_2NHCH_3 , $CH_2N(CH_3)_2$, CH_2OH , halogenated alkyl, CF_3 , $C(Y^3)_3$, 2-Br-ethyl, CH_2F , CH_2Cl , CH_2CF_3 , CF_2CF_3 , $C(Y^3)_2C(Y^3)_3$, substituted alkenyl, haloalkenyl (but not Br-vinyl), substituted alkynyl, haloalkynyl, $-CH_2C(O)OH$, $-CH_2C(O)OR^4$, $-CH_2C(O)O(lower alkyl)$, $-CH_2C(O)NH_2$, $-CH_2C(O)NHR^4$, $-CH_2C(O)NH(lower alkyl)$, $-CH_2C(O)N(R^4)_2$, $-CH_2C(O)N(lower alkyl)_2$, $-(CH_2)_mC(O)OH$, $-(CH_2)_mC(O)OR^4$, $-(CH_2)_mC(O)O(lower alkyl)$, $-(CH_2)_mC(O)NH_2$, $-(CH_2)_mC(O)NHR^4$, $-(CH_2)_mC(O)NH(lower alkyl)$, $-(CH_2)_mC(O)N(R^4)_2$, $-(CH_2)_mC(O)N(lower alkyl)_2$, $-(CO)NH(R^4)_2$, -(CO)NH(R

20

25

15

each R¹³ is independently substituted alkyl, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, substituted alkenyl, haloalkenyl (but not Br-vinyl), substituted alkynyl, haloalkynyl, optionally substituted carbocycle, optionally substituted heterocycle, optionally substituted heteroaryl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)SH, -CH₂C(O)SR⁴, -CH₂C(O)S(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), -CH₂C(O)N(R⁴)₂, -CH₂C(O)N(lower alkyl)₂, -(CH₂)_mC(O)OH, -(CH₂)_mC(O)OR⁴, -(CH₂)_mC(O)O(lower alkyl), -(CH₂)_mC(O)SH, -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)NH(lower alkyl), -(CH₂)_mC(O)NH(lower alkyl), -(CO)NH(lower alkyl), -(CO)SR⁴, -C(O)S(lower alkyl), -C(O)NH₂, -C(O)NH(lower alkyl), -C(O)NH₂, -C(O)NH(lower alkyl), -C(O)NH(lower alkyl), -C(O)NH(lower alkyl), -C(O)NH(lower alkyl), -C(O)N(lower alkyl), -O(cycloalkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl), -O(cycloalkyl), -

30

S(acyl), -S(lower acyl), -S(R⁴), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl),

-S(cycloalkyl), -NHR⁴, -NR⁴R⁵, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl),

-NH(cycloalkyl), SCN, OCN, NCO or fluoro;

alternatively, R¹² and R¹³ can come together to form a spiro compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle; and

each m is independently 0, 1 or 2.

5

6. A compound of Formula (XI) or (XII):

$$R^{10}$$
 $X = R^{12}$ R^{10} $X = R^{12}$ R^{10} $R^$

or a pharmaceutically acceptable salt thereof, wherein:

10

15

R¹ is H; phosphate; straight chained, branched or cyclic alkyl; acyl; CO-alkyl; CO-aryl; CO-alkoxyalkyl; CO-aryloxyalkyl; CO-substituted aryl; sulfonate ester; benzyl, wherein the phenyl group is optionally substituted with one or more substituents; alkylsulfonyl; arylsulfonyl; aralkylsulfonyl; a lipid; an amino acid; an amino acid residue; a carbohydrate; a peptide; cholesterol; or pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹ is H or phosphate;

Base is selected from the group consisting of

$$(C) \qquad (D) \qquad (E) \qquad (F)$$

$$(G) \qquad (H) \qquad (H)$$

$$(G) \qquad (H) \qquad (N)^{1} \qquad (K) \qquad (L)$$

$$(G) \qquad (H) \qquad (N)$$

$$(G) \qquad (H) \qquad (N)$$

$$(G) \qquad (H) \qquad (N)$$

$$X^{2} \xrightarrow{NR^{4}R^{5}} X^{2} \xrightarrow$$

$$X^{2} \xrightarrow{NH} X^{2} \xrightarrow{NH} X^{2$$

OH
$$X^2$$
 Y^1 X^3 Y^1 Y^2 Y^3 Y^4 Y

each W^1 , W^2 , W^3 and W^4 is independently N, CH, CF, CI, CBr, CCI, CCN, CCH₃, CCF₃, CCH₂CH₃, CC(O)NH₂, CC(O)NHR⁴, CC(O)N(R⁴)₂, CC(O)OH, CC(O)OR⁴ or CX³; each W^* is independently O, S, NH or NR⁴;

10

15

X is O, S, SO₂, CH₂, CH₂OH, CHF, CF₂, C(Y³)₂, CHCN, C(CN)₂, CHR⁴ or C(R⁴)₂; X* is CH, CF, CY³ or CR⁴;

X² is H, straight chained, branched or cyclic optionally substituted alkyl, CH₃, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, CH₂OH, optionally substituted alkenyl, optionally substituted alkynyl, COOH, COOR⁴, COO-alkyl, COO-aryl, CO-Oalkoxyalkyl, CONH₂, CONHR⁴, CON(R⁴)₂, chloro, bromo, fluoro, iodo, CN, N₃, OH, OR⁴, NH₂, NHR⁴, NR⁴R⁵, SH or SR⁵;

each X³ is independently a straight chained, branched or cyclic optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, N₃, CN, -C(O)OH, -C(O)OR⁴, -C(O)O(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl)₂, OH, OR⁴, -O(acyl), -O(lower alkyl), -O(alkyl), -O(alkyl), -O(cycloalkyl), -

```
-S(cycloalkyl), chloro, bromo, fluoro, iodo, NH<sub>2</sub>, -NH(lower alkyl), -NHR<sup>4</sup>, -NR<sup>4</sup>R<sup>5</sup>,
               -NH(acyl), -N(lower alkyl)2, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl), -NH(cycloalkyl),
               or -N(acyl)<sub>2</sub>;
 5
                           each Y is independently selected from the group consisting of H, optionally
               substituted lower alkyl, cycloalkyl, alkenyl, alkynyl, CH<sub>2</sub>OH, CH<sub>2</sub>NH<sub>2</sub>, CH<sub>2</sub>NHCH<sub>3</sub>,
               CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>, CH<sub>2</sub>F, CH<sub>2</sub>Cl, CH<sub>2</sub>N<sub>3</sub>, CH<sub>2</sub>CN, CH<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>, CF<sub>2</sub>CF<sub>3</sub>, CH<sub>2</sub>CO<sub>2</sub>R,
               (CH<sub>2</sub>)<sub>m</sub>COOH, (CH<sub>2</sub>)<sub>m</sub>COOR, (CH<sub>2</sub>)<sub>m</sub>CONH<sub>2</sub>, (CH<sub>2</sub>)<sub>m</sub>CONR<sub>2</sub>, and (CH<sub>2</sub>)<sub>m</sub>CONHR;
                           R is H, alkyl or acyl;
                           Y<sup>1</sup> is hydrogen, bromo, chloro, fluoro, iodo, CN, OH, OR<sup>4</sup>, NH<sub>2</sub>, NHR<sup>4</sup>, NR<sup>4</sup>R<sup>5</sup>, SH
10
                or SR<sup>4</sup>;
                           each Y<sup>2</sup> is independently O, S, NH or NR<sup>4</sup>;
                           each Y<sup>3</sup> is independently H. F. Cl. Br or I:
                           wherein for Base (B), W<sup>4</sup> cannot be CH if W<sup>1</sup>, W<sup>2</sup> and W<sup>3</sup> are N;
                           wherein for Base (E), (F), (K), (L), (W) and (X), W<sup>4</sup> cannot be CH if W<sup>1</sup> is N;
15
                           each R<sup>4</sup> and R<sup>5</sup> is independently hydrogen, acyl, alkyl, lower alkyl, alkenyl, alkynyl
                or cycloalkyl;
                            each R<sup>12</sup> is independently a substituted alkyl, CH<sub>2</sub>CN, CH<sub>2</sub>N<sub>3</sub>, CH<sub>2</sub>NH<sub>2</sub>,
                CH<sub>2</sub>NHCH<sub>3</sub>, CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>, CH<sub>2</sub>OH, halogenated alkyl, CF<sub>3</sub>, C(Y<sup>3</sup>)<sub>3</sub>, 2-Br-ethyl, CH<sub>2</sub>F,
                CH<sub>2</sub>Cl, CH<sub>2</sub>CF<sub>3</sub>, CF<sub>2</sub>CF<sub>3</sub>, C(Y<sup>3</sup>)<sub>2</sub>C(Y<sup>3</sup>)<sub>3</sub>, substituted alkenyl, haloalkenyl (but not Br-vinyl),
20
                substituted alkynyl, haloalkynyl, -CH<sub>2</sub>C(O)OH, -CH<sub>2</sub>C(O)OR<sup>4</sup>, -CH<sub>2</sub>C(O)O(lower alkyl),
                -CH<sub>2</sub>C(O)NH<sub>2</sub>, -CH<sub>2</sub>C(O)NHR<sup>4</sup>, -CH<sub>2</sub>C(O)NH(lower alkyl), -CH<sub>2</sub>C(O)N(R<sup>4</sup>)<sub>2</sub>,
                -CH<sub>2</sub>C(O)N(lower alkyl)<sub>2</sub>, -(CH<sub>2</sub>)<sub>m</sub>C(O)OH, -(CH<sub>2</sub>)<sub>m</sub>C(O)OR<sup>4</sup>, -(CH<sub>2</sub>)<sub>m</sub>C(O)O(lower
                alkyl), -(CH_2)_mC(O)NH_2, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NH(lower alkyl),
                -(CH_2)_mC(O)N(R^4)_2, -(CH_2)_mC(O)N(lower alkyl)_2, -C(O)OH, -C(O)OR^4, -C(O)NH_2,
25
                -C(O)NHR<sup>4</sup>, -C(O)NH(lower alkyl), or -C(O)N(R<sup>4</sup>)<sub>2</sub>, -C(O)N(lower alkyl)<sub>2</sub>;
                            each R<sup>13</sup> is independently substituted alkyl, CH<sub>2</sub>CN, CH<sub>2</sub>N<sub>3</sub>, CH<sub>2</sub>NH<sub>2</sub>, CH<sub>2</sub>NHCH<sub>3</sub>,
                CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>, CH<sub>2</sub>OH, halogenated alkyl (including halogenated lower alkyl), CF<sub>3</sub>, C(Y<sup>3</sup>)<sub>3</sub>,
                2-Br-ethyl, CH<sub>2</sub>F, CH<sub>2</sub>Cl, CH<sub>2</sub>CF<sub>3</sub>, CF<sub>2</sub>CF<sub>3</sub>, C(Y<sup>3</sup>)<sub>2</sub>C(Y<sup>3</sup>)<sub>3</sub>, substituted alkenyl, haloalkenyl
                (but not Br-vinyl), substituted alkynyl, haloalkynyl, optionally substituted carbocycle,
30
                optionally substituted heterocycle, optionally substituted heteroaryl, -CH<sub>2</sub>C(O)OH,
                -CH<sub>2</sub>C(O)OR<sup>4</sup>, -CH<sub>2</sub>C(O)O(lower alkyl), -CH<sub>2</sub>C(O)SH, -CH<sub>2</sub>C(O)SR<sup>4</sup>, -CH<sub>2</sub>C(O)S(lower
                alkyl), -CH<sub>2</sub>C(O)NH<sub>2</sub>, -CH<sub>2</sub>C(O)NHR<sup>4</sup>, -CH<sub>2</sub>C(O)NH(lower alkyl), -CH<sub>2</sub>C(O)N(R<sup>4</sup>)<sub>2</sub>,
                -CH_2C(O)N(lower\ alkyl)_2, -(CH_2)_mC(O)OH, -(CH_2)_mC(O)OR^4, -(CH_2)_mC(O)O(lower\ alkyl)_2
```

S(acyl), -S(lower acyl), -S(R⁴), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl),

 $-(CH_2)_mC(O)NHR^4$, $-(CH_2)_mC(O)NH(lower alkyl)$, $-(CH_2)_mC(O)N(R^4)_2$, -(CH₂)_mC(O)N(lower alkyl)₂, -C(O)OH, -C(O)OR⁴, -C(O)SH, -C(O)SR⁴, -C(O)S(lower alkyl), $-C(O)NH_2$, $-C(O)NHR^4$, -C(O)NH(lower alkyl), $-C(O)N(R^4)_2$, $-C(O)N(lower alkyl)_2$, -O(R⁴), -O(alkynyl), -O(aralkyl), -O(cycloalkyl), -S(acyl), -S(lower acyl), -S(R⁴), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl), -S(cycloalkyl), -NHR⁴, -NR⁴R⁵, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl), -NH(cycloalkyl), SCN, OCN, NCO or fluoro; and alternatively, R¹² and R¹³ can come together to form a spiro compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle; each R⁸ and R¹¹ is independently hydrogen, an optionally substituted alkyl (including lower alkyl), CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl (including halogenated lower alkyl), CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), -CH₂C(O)N(R^4)₂, -CH₂C(O)N(lower alkyl)₂, -(CH₂)_mC(O)OH, -(CH₂)_mC(O)OR⁴, $-(CH_2)_mC(O)O(lower alkyl), -(CH_2)_mC(O)NH_2, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NH(lower alkyl), -(CH_2)_mC(O)NH(lower alkyl), -(CH_2)_mC(O)NH(lower alkyl), -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NHR^4, -(CH_2)_mC(O)NHR^4$ alkyl), $-(CH_2)_mC(O)N(R^4)_2$, $-(CH_2)_mC(O)N(lower alkyl)_2$, -C(O)OH, $-C(O)OR^4$, -C(O)O(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂,-C(O)N(lower alkyl)₂, cyano, NH-acyl or N(acyl)₂; each R⁹ and R¹⁰ are independently hydrogen, OH, OR², optionally substituted alkyl, CH₃, CH₂CN, CH₂N₃, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂OH, halogenated alkyl, CF₃, C(Y³)₃, 2-Br-ethyl, CH₂F, CH₂Cl, CH₂CF₃, CF₂CF₃, C(Y³)₂C(Y³)₃, optionally substituted alkenyl, haloalkenyl, Br-vinyl, optionally substituted alkynyl, haloalkynyl, optionally substituted carbocycle, optionally substituted heterocycle, optionally substituted heteroaryl, -CH₂C(O)OH, -CH₂C(O)OR⁴, -CH₂C(O)O(lower alkyl), -CH₂C(O)SH, -CH₂C(O)SR⁴, -CH₂C(O)S(lower alkyl), -CH₂C(O)NH₂, -CH₂C(O)NHR⁴, -CH₂C(O)NH(lower alkyl), -CH₂C(O)N(R⁴)₂, -CH₂C(O)N(lower alkyl)₂, -(CH₂)_mC(O)OH, $-(CH_2)_mC(O)OR^4$, $-(CH_2)_mC(O)O(lower alkyl)$, $-(CH_2)_mC(O)SH$, $-(CH_2)_mC(O)SR^4$, $-(CH_2)_mC(O)S(lower alkyl)$, $-(CH_2)_mC(O)NH_2$, $-(CH_2)_mC(O)NHR^4$, $-(CH_2)_mC(O)NH(lower alkyl)$ alkyl), $-(CH_2)_mC(O)N(R^4)_2$, $-(CH_2)_mC(O)N(lower alkyl)_2$, -C(O)OH, $-C(O)OR^4$, -C(O)O(lower alkyl), -C(O)SH, -C(O)SR⁴, -C(O)S(lower alkyl), -C(O)NH₂, -C(O)NHR⁴, -C(O)NH(lower alkyl), -C(O)N(R⁴)₂, -C(O)N(lower alkyl)₂, -O(acyl), -O(lower acyl),

alkyl), $-(CH_2)_mC(O)SH$, $-(CH_2)_mC(O)SR^4$, $-(CH_2)_mC(O)S(lower alkyl)$, $-(CH_2)_mC(O)NH_2$,

5

10

15

20

25

-O(R⁴), -O(alkyl), -O(lower alkyl), -O(alkenyl), -O(alkynyl), -O(aralkyl), -O(cycloalkyl), -S(acyl), -S(lower acyl), -S(lower alkyl), -S(alkenyl), -S(alkynyl), -S(aralkyl), -S(cycloalkyl), NO₂, NH₂, -NH(lower alkyl), -NH(acyl), -NH(acyl), -N(lower alkyl)₂, -NH(alkenyl), -NH(alkynyl), -NH(aralkyl), -NH(cycloalkyl), -N(acyl)₂, azido, cyano, SCN, OCN, NCO or halo;

each m is independently 0, 1 or 2; and

5

10

15

20

25

alternatively, R^8 and R^{13} , R^9 and R^{13} , R^9 and R^{11} or R^{10} and R^{12} can come together to form a bridged compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle; or

alternatively, R¹² and R¹³ or R⁹ and R¹⁰ can come together to form a spiro compound selected from the group consisting of optionally substituted or optionally substituted heterocycle.

7. A compound of the Formula (XIII) or (XIV):

or a pharmaceutically acceptable salt thereof, wherein:

R₃ is selected from the group consisting of H; mono-, di-, and tri-phosphate or a stabilized phosphate prodrug; acyl; a sulfonate ester; optionally substituted alkyl sulfonyl; optionally substituted arylsulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; cholesterol; and a pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R₃ is independently H, or mono-, di- or triphosphate;

B indicates a spiro compound selected from the group consisting of optionally substituted carbocycle or optionally substituted heterocycle;

Base is selected from the group consisting of:

and

$$Q_{1} Q_{2} Q_{3} Q_{5}$$

$$Q_{1} Q_{4} Q_{6} R^{""}$$

$$(j)$$

wherein

5

each R', R", R" and R" are independently selected from the group consisting of H, OH, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, cycloalkyl, Br-vinyl, -O-alkyl, O-alkenyl, Oalkynyl, O-aryl, O-aralkyl, -O-acyl, O-cycloalkyl, NH2, NH-alkyl, N-dialkyl, NH-acyl, N-aryl, N-aralkyl, NH-cycloalkyl, SH, S-alkyl, S-acyl, S-aryl, Scycloalkyl, S-aralkyl, F, Cl, Br, I, CN, COOH, CONH₂, CO₂-alkyl, CONH-alkyl, CON-dialkyl, OH, CF₃, CH₂OH, (CH₂)_mOH, (CH₂)_mNH₂, (CH₂)_mCOOH, (CH₂)_mCN, (CH₂)_mNO₂ and (CH₂)_mCONH₂;

m is 0 or 1;

W is C-R" or N;

15

10

T and V independently are CH or N;

Q is CH, -CCl, -CBr, -CF, -CI, -CCN, -C-COOH, -C-CONH₂, or N;

Q₁ and Q₂ independently are N or C-R;

R is H, alkyl, or acyl; and

Q₃, Q₄, Q₅ and Q₆ independently are N or CH.

8. A compound of Formula (XIX), (XX), (XXI) (XXII) or (XXIII):

or a pharmaceutically acceptable salt thereof, wherein:

A is selected from the group consisting of optionally substituted lower alkyl, cycloalkyl, alkenyl, alkynyl, CH₂OH, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂F, CH₂Cl, CH₂N₃, CH₂CN, CH₂CF₃, CF₃, CF₂CF₃, CH₂CO₂R, (CH₂)_mCOOH, (CH₂)_mCOOR, (CH₂)_mCONH₂, (CH₂)_mCONR₂, and (CH₂)_mCONHR;

Y is selected from the group consisting of H, optionally substituted lower alkyl, cycloalkyl, alkenyl, alkynyl, CH₂OH, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂F, CH₂Cl, CH₂N₃, CH₂CN, CH₂CF₃, CF₃, CF₂CF₃, CH₂CO₂R, (CH₂)_mCOOH, (CH₂)_mCOOH, (CH₂)_mCONH₂, (CH₂)_mCONR₂, and (CH₂)_mCONHR;

R is H, alkyl or acyl;

5

10

15

20

25

X is selected from the group consisting of -OH, optionally substituted alkyl, cycloalkyl, alkenyl, alkynyl, -O-alkyl, -O-alkenyl, -O-alkynyl, -O-aryl, -O-aralkyl, -O-cycloalkyl-, O-acyl, F, Cl, Br, I, CN, NC, SCN, OCN, NCO, NO₂, NH₂, N₃, NH-acyl, NH-alkyl, N-dialkyl, NH-alkenyl, NH-alkynyl, NH-aryl, NH-aralkyl, NH-cycloalkyl, SH, S-alkyl, S-alkenyl, S-alkynyl, S-aryl, S-aralkyl, S-acyl, S-cycloalkyl, CO₂-alkyl, CONH-alkyl, CON-dialkyl, CONH-alkenyl, CONH-alkynyl, CONH-aralkyl, CONH-cycloalkyl, CH₂OH, CH₂NH₂, CH₂NHCH₃, CH₂N(CH₃)₂, CH₂F, CH₂Cl, CH₂N₃, CH₂CN, CH₂CF₃, CF₃, CF₂CF₃, CH₂CO₂R, (CH₂)_mCOOH, (CH₂)_mCOOR, (CH₂)_mCO-NH₂, (CH₂)_mCONR₂, (CH₂)_mCONHR, an optionally substituted 3-7 membered carbocyclic, and an optionally substituted 3-7 membered heterocyclic ring having O, S and/or N independently as a heteroatom taken alone or in combination;

m is 0 or 1;

R₃ is selected from the group consisting of H; mono-, di-, and tri-phosphate or a stabilized phosphate prodrug; substituted or unsubstituted alkyl; acyl; a sulfonate ester; optionally substituted alkyl sulfonyl; optionally substituted arylsulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; cholesterol; and a pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R₃ is independently H, or mono-, di- or triphosphate; and

Base is a non-natural base selected from the group of:

wherein:

5

10

15

25

each R', R", R" and R" is independently selected from the group consisting of H, OH, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, cycloalkyl, Br-vinyl, -O-alkyl, O-alkenyl, O-alkynyl, O-aryl, O-aralkyl, -O-acyl, O-cycloalkyl, NH₂, NH-alkyl, N-dialkyl, NH-acyl, N-aryl, N-aralkyl, NH-cycloalkyl, SH, S-alkyl, S-acyl, S-aryl, S-cycloalkyl, S-aralkyl, F, Cl, Br, I, CN, COOH, CONH₂, CO₂-alkyl, CONH-alkyl, CON-dialkyl, OH, CF₃, CH₂OH, (CH₂)_mOH, (CH₂)_mNH₂, (CH₂)_mCOOH, (CH₂)_mCN, (CH₂)_mNO₂ and (CH₂)_mCONH₂;

20 m is 0 or 1;

W is C-R" or N;

T and V independently are CH or N;

Q is CH, -CCl, -CBr, -CF, -CI, -CCN, -C-COOH, -C-CONH2, or N;

Q₁ and Q₂ independently are N or C-R"; and

 Q_3 , Q_4 , Q_5 and Q_6 independently are N or CH;

with the proviso that in bases (g) and (i), R', R''' are not H, OH, or NH_2 ; and Q, T, V, Q_2 , Q_5 and Q_6 are not N.

9. A compound of Formula (IX):

5

or a pharmaceutically acceptable salt thereof, wherein:

R¹, R² and R³ are independently H; phosphate; straight chained, branched or cyclic alkyl; acyl; CO-alkyl; CO-aryl; CO-alkoxyalkyl; CO-aryloxyalkyl; CO-substituted aryl; sulfonate ester; benzyl, wherein the phenyl group is optionally substituted with one or more substituents; alkylsulfonyl; arylsulfonyl; aralkylsulfonyl; a lipid; an amino acid; a carbohydrate; a peptide; cholesterol; or a pharmaceutically acceptable leaving group which when administered *in vivo* is capable of providing a compound wherein R¹, R² and/or R³ is independently H or phosphate;

15

10

X is O, S, SO₂ or CH₂;

Base* is a purine or pyrimidine base;

 R^{12} is $C(Y^3)_3$;

Y³ is independently H, F, Cl, Br or I; and

R¹³ is fluoro.

20

- 10. The compound of claim 9, wherein X is O, and Y^3 is H.
- 11. The compound of claim 10, wherein R^1 , R^2 and R^3 are H.

25

- 12. A method for the treatment of a host infected with a *Flaviviridae* virus, comprising administering an effective treatment amount of a compound as claimed in any one of claims 1-11, or a pharmaceutically acceptable salt thereof.
 - 13. The method of claim 12, wherein the virus is hepatitis C.

- 14. The method of claim 12, wherein the compound or pharmaceutically acceptable salt thereof is administered in combination or alternation with a second anti-viral agent.
- 15. The method of claim 14, wherein the second anti-viral agent is selected from the group consisting of an interferon, a ribavirin, an interleukin, a NS3 protease inhibitor, a cysteine protease inhibitor, a phenan-threnequinone, a thiazolidine derivative, a thiazolidine, a benzanilide, a phenan-threnequinone, a helicase inhibitor, a polymerase inhibitor, a nucleotide analogue, a gliotoxin, a cerulenin, an antisense phosphorothioate oligodeoxynucleotide, an inhibitor of IRES-dependent translation, and a ribozyme.
 - 16. The method of claim 15, wherein the second anti-viral agent is an interferon.
- 17. The method of claim 16, wherein the second anti-viral agent is selected from the group consisting of pegylated interferon alpha 2a, interferon alphacon-1, natural interferon, albuferon, interferon beta-1a, omega interferon, interferon alpha, interferon gamma, interferon tau, interferon delta and interferon gamma-1b.
 - 18. The method of claim 12, wherein the compound or pharmaceutically acceptable salt thereof is in the form of a dosage unit.

25

- 19. The method of claim 18 wherein the dosage unit contains 50 to 1000 mg or 0.1 to 50 mg of the compound.
 - 20. The method of claim 18 wherein the dosage unit is a tablet or capsule.
 - 21. The method of claim 12, wherein the host is a human.
- 22. The method of claim 12, wherein the compound or pharmaceutically acceptable salt thereof is in substantially pure form.
 - 23. The method of claim 12, wherein the compound or pharmaceutically acceptable salt thereof is at least 90% by weight of the β-D-isomer.

- 24. The method of claim 12, wherein the compound or pharmaceutically acceptable salt thereof is at least 95% by weight of the β -D-isomer.
- 25. The method of claim 12, wherein the compound is in the form of a pharmaceutically acceptable salt selected from the group consisting of a tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorate, α-ketoglutarate, α-glycerophosphate, formate, fumarate, propionate, glycolate, lactate, pyruvate, oxalate, maleate, salicylate, sulfate, nitrate, bicarbonate, carbonate salts, hydrochloride, di-hydrochloride, and phosphoric acid salt.

5

- 26. The method of claim 25, wherein the pharmaceutically acceptable salt is a hydrochloride salt.
- 27. A pharmaceutical composition comprising an effective amount to treat a

 Flaviviridae infection of a compound, or a pharmaceutically acceptable salt thereof, of any
 of claims 1 to 11 in a pharmaceutically acceptable carrier.
 - 28. The pharmaceutical composition of claim 27, wherein the carrier is suitable for oral delivery.

20

- 29. The pharmaceutical composition of claim 27 comprising an effective amount of the compound or pharmaceutically acceptable salt thereof to treat a host infected with West Nile Virus, Yellow fever, Denge Virus or BVDV.
 - 30. The composition of claim 27, wherein the *Flaviviridae* virus is hepatitis C.
- 31. The pharmaceutical composition of claim 29, wherein the compound or pharmaceutically acceptable salt thereof, is in the form of a dosage unit.
- 30 32. The composition of claim 31, wherein the dosage unit contains 0.1 to 50 mg or 50 to 1000 mg of the compound or pharmaceutically acceptable salt thereof.
 - 33. The composition of claim 31, wherein said dosage unit is a tablet or capsule.

- 34. The pharmaceutical composition of claim 27, further comprising a second anti-viral agent.
- 35. The pharmaceutical composition of claim 34, wherein the second anti-viral agent is selected from the group consisting of an interferon, a ribavirin, an interleukin, a NS3 protease inhibitor, a cysteine protease inhibitor, a phenan-threnequinone, a thiazolidine derivative, a thiazolidine, a benzanilide, a phenan-threnequinone, a helicase inhibitor, a polymerase inhibitor, a nucleotide analogue, a gliotoxin, a cerulenin, an antisense phosphorothioate oligodeoxynucleotide, an inhibitor of IRES-dependent translation, and a ribozyme.

10

25

- 36. The pharmaceutical composition of claim 35, wherein the second anti-viral agent is an interferon.
- 37. The pharmaceutical composition of claim 36, wherein the second anti-viral agent is selected from the group consisting of pegylated interferon alpha 2a, interferon alphacon-1, natural interferon, albuferon, interferon beta-1a, omega interferon, interferon alpha, interferon gamma, interferon tau, interferon delta and interferon gamma-1b.
- 20 38. The pharmaceutical composition of claim 27, wherein the compound or pharmaceutically acceptable salt thereof, is in substantially pure form.
 - 39. The pharmaceutical composition of claim 27, wherein the compound or pharmaceutically acceptable salt thereof, is at least 90% by weight of the β -D-isomer.
 - 40. The pharmaceutical composition of claim 27, wherein the compound or pharmaceutically acceptable salt thereof, is at least 95% by weight of the β -D-isomer.
 - 41. The pharmaceutical composition of claim 27 further comprising a pharmaceutically acceptable carrier suitable for oral, parenteral, inhalant or intravenous delivery.
 - 42. The pharmaceutical composition of claim 27, wherein the pharmaceutically acceptable salt is selected from the group consisting of a tosylate, methanesulfonate, acetate,

citrate, malonate, tartarate, succinate, benzoate, ascorate, α -ketoglutarate, α -glycerophosphate, formate, fumarate, propionate, glycolate, lactate, pyruvate, oxalate, maleate, salicylate, sulfate, nitrate, bicarbonate, carbonate salts, hydrobromate, hydrochloride, di-hydrochloride, and phosphoric acid salt.

5

43. The pharmaceutical composition of claim 42, wherein the pharmaceutically acceptable salt is a hydrochloride salt.