Chapitre 30

PID_INT: automate PID

Objet de ce chapitre

Le présent chapitre décrit la fonction PID_INT.

Contenu de ce chapitre

Ce chapitre contient les sujets suivants :

Sujet	Page
Description de la fonction	136
Description des données dérivées	140

Description de la fonction

Description de la fonction

La fonction PID_INT effectue une régulation de type PID sur des entrées et sorties de type INT.

La mesure et la consigne sont des données analogiques au format [0-10000] et génèrent une commande analogique de même format.

La fonction élémentaire (EF) PID INT comprend les fonctions suivantes :

- algorithme PID série / parallèle,
- marche avant / arrière (en fonction du signe du gain KP),
- action dérivée d'une mesure ou d'une distance,
- limites haute et basse de la consigne à [0-10000],
- limites haute et basse de la sortie en mode automatique,
- anti-saturation de l'action intégrale,
- modes de fonctionnement manuel/automatique sans transition pas à pas,
- contrôle d'accès PID via l'interface homme-machine (IHM),
- fonctionnement en mode intégrateur pour KP = TD =0.

NOTE:

- Les paramètres utilisés par le terminal opérateur sont affichés en unités physiques.
- Le bon fonctionnement de l'algorithme PID nécessite de rester dans l'échelle [0-1000] pour les mesures et les consignes.
- La fonction PID doit être programmée dans une tâche MAST ou FAST périodique. Cette fonction est inopérante dans une configuration de tâche MAST cyclique. La section de logique contenant cette fonction ne doit pas être soumise à des conditions.

Les paramètres supplémentaires EN et ENO peuvent être configurés.

136 33002520 09/2020

Schéma de fonctionnement

Le schéma suivant illustre le fonctionnement de la fonction PID.

Représentation en FBD

Représentation:

Représentation en LD

Représentation:

Représentation en IL

Représentation:

```
LD Input_Tag
```

PID_INT Input_Unit, Input_PV, In_Out_Auto, In_Out_Para, PID_Out

Représentation en ST

Représentation:

```
PID_INT(Input_Tag, Input_Unit, Input_PV, In_Out_Auto, In_Out_Para,
PID Out);
```

138 33002520 09/2020

Description des paramètres

Le tableau suivant décrit les paramètres d'entrée :

Paramètre	Туре	Commentaire
Input_Tag	STRING	Nom du PID utilisé par le terminal. Chaîne de 8 caractères
Input_Unit	STRING	Unité de mesure utilisée par le terminal. Chaîne de 6 caractères
Input_PV	INT	Entrée de mesure Format de mesure [010000].

Le tableau suivant décrit les paramètres d'entrée/sortie :

Paramètre	Туре	Commentaire
In_Out_Auto	EBOOL	Bit d'entrée/sortie qui indique et gère les modes de fonctionnement de la fonction PID et du terminal : • 0 : manuel • 1 : automatique
In_Out_Para	ARRAY [nm] OF	n et m sont des entiers positifs, négatifs ou nuls. Tableau des paramètres d'entrée/sortie de la fonction PID. Les 16 premières valeurs sont décrites ci-après. Les autres valeurs sont réservées au traitement interne. Tableau de 43 entiers.

Le tableau suivant décrit les paramètres de sortie :

Paramètre	Туре	Commentaire
PID_Out	INT	Sortie analogique de la fonction PID. Si TI = 0, un décalage de 5000 est ajouté à la sortie OUT en mode automatique. Format de sortie [0; +10000].

Description des données dérivées

Description de la table PARA

Le tableau ci-dessous présente les différents paramètres de la table PARA :

Paramètre	Rang	Fonction
SP	PARA[0]	Consigne interne au format 0 - 10 000.
OUT_MAN	PARA[1]	Valeur de la sortie manuelle du PID (entre 0 et 10 000).
KP	PARA[2]	Gain proportionnel du PID (x100), signé sans unité (-10 000 <kp<+10 (négatif="" 000).="" :="" arrière).<="" avant,="" de="" du="" détermine="" kp="" l'action="" le="" pid="" positif="" sens="" signe="" td=""></kp<+10>
TI	PARA[3]	Le temps d'action intégrale du PID (entre 0 et 20 000) est indiqué en dixièmes de seconde.
TD	PARA[4]	Le temps d'action dérivée du PID (entre 0 et 10 000) est indiqué en dixièmes de seconde.
TS	PARA[5]	La période d'échantillonnage du PID (entre 1 et 32 000) est indiquée en centièmes de seconde. La période d'échantillonnage réelle est le multiple de la période de la tâche dans laquelle le PID le plus proche du TS est introduit.
OUT_MAX	PARA[6]	Limite supérieure de la sortie du PID en automatique (entre 0 et 10 000).
OUT_MIN	PARA[7]	Limite inférieure de la sortie du PID en automatique (entre 0 et 10 000).
PV_DEV	PARA[8].0	Choix d'action dérivée 0 = sur mesure, 1 = sur écart.
NO_BUMP	PARA[8].4	Mode sans à-coups ou par à-coups. 0 = par à-coups, 1 = sans à-coups.
PV_SUP*	PARA[9]	Limite supérieure de la plage des échelles de mesure, exprimée dans une unité physique (x 100) (entre -9 999 999 et +9 999 999).
PV_INF*	PARA[11] PARA[12]	Ces deux entiers sont, respectivement, le poids fort et le poids faible d'un entier double, à savoir la limite inférieure de la plage des échelles de mesure, exprimée dans une unité physique (x 100) (entre -9 999 999 et +9 999 999).
PV_MMI*	PARA[13] PARA[14]	Ces deux entiers sont, respectivement, le poids fort et le poids faible d'un entier double, à savoir l'image de la mesure, exprimée dans une unité physique (x 100).
SP_MMI*	PARA[15] PARA[16]	Ces deux entiers sont, respectivement, le poids fort et le poids faible d'un entier double, à savoir la consigne opérateur et l'image de la consigne, exprimées dans une unité physique (x 100).
* Valeur utilis	sée par le termi	nal opérateur.

140 33002520 09/2020

NOTE: Le paramètre PL7 parameter DEVAL MMI n'est pas disponible dans Control Expert.

A AVERTISSEMENT

FONCTIONNEMENT IMPREVU DE L'APPLICATION

Ne modifiez pas les paramètres utilisés par la gestion interne du PID par l'application.

Le non-respect de ces instructions peut provoquer la mort, des blessures graves ou des dommages matériels.

NOTE: les valeurs utilisées par le terminal sont multipliées par 100 pour obtenir un affichage à 2 décimales sur le terminal (le terminal n'utilise pas le format de virgule flottante, mais prend en charge un format de virgule fixe).

Règles

Il n'existe pas d'alignement de consigne interne sur la mesure en mode manuel.

Les réglages de l'échelle ne surviennent qu'en cas de modification d'une des consignes (SP ou DOP_SP).

L'algorithme sans l'action intégrale (TI = 0) exécute l'opération suivante :

Pour	Sortie	Avec
$\varepsilon t = SP PV$	OUT = KP [ε t+ Dt] / 100 + 5000	Dt = action dérivée

L'algorithme avec l'action intégrale (TI < 0) exécute l'opération suivante :

Pour	Sortie	Avec
$\varepsilon t = SP PV$	Δ OUT = KP [$\Delta \epsilon$ t+(TS/10.TI). ϵ t+ Δ Dt]/100 OUT	Dt = action dérivée
	= OUT + ΔOUT	

Lors d'un démarrage à froid, le PID redémarre en mode manuel, avec la sortie définie sur 0. Pour imposer le mode automatique ou une sortie manuelle non définie sur 0 après un démarrage à froid, vous devez programmer la séquence d'initialisation **après** l'appel PID.