Aclaración sobre la transformación de Box y Cox

Supongamos que el problema de normalidad o homocedasticidad en el análisis de un modelo de regresión lineal pudiera corregirse mediante transformaciones de potencia en la variable de respuesta, y. Es decir, transformar y en y^{λ} , por ejemplo si $\lambda = 0.5$ entonces \sqrt{y} . Luego, el enfoque de Box y Cox consiste en estimar simultáneamente por máxima verosimilitud todos los parámtros del nuevo modelo lineal, β , σ^2 y λ .

Es claro que si $\lambda \to 0$ entonces $y^{\lambda} \to 1$, luego tenemos un ya que convertiría a todas las respuestas en uno y el problema perdería sentido.

Un enfoque para contrarrestar este problema es considerar la siguiente transformación

$$\frac{y^{\lambda}-1}{\lambda},$$

en este caso cuando $\lambda \to 0$ tenemos que,

$$\frac{y^{\lambda} - 1}{\lambda} \to \ln(y)$$

Luego, se sugiere transformar las variables como

$$\frac{y^{\lambda}-1}{\lambda}$$
 para $\lambda \neq 0$
 $\ln(y)$ para $\lambda = 0$.

Como el análisis de la varianza del modelo no se ve afectado por transformaciones lineales, se puede reescribir

$$y^{\lambda}$$
 para $\lambda \neq 0$
 $\ln(y)$ para $\lambda = 0$.