Фамилия, имя и номер группы (печатными буквами):	Задача	1	2	3	4	5
	Балл					

Минимум

1. Пусть X_1,\dots,X_n — случайная выборка из нормального распределения с параметрами μ и $\sigma^2=9$. Используя реализацию случайной выборки, $(x_1,x_2,x_3)=(-1.17,0.58,2.71)$, постройте 95%-ый доверительный интервал для неизвестного параметра μ .

Подсказка:
$$\sum_{i=1}^{3} X_i = 2.12$$
.

2. Пусть X_1, \dots, X_n — случайная выборка из нормального распределения с параметрами μ и σ^2 . Используя реализацию случайной выборки, $(x_1, x_2, x_3) = (5.95, -2.74, 6.65)$, постройте 85%-ый доверительный интервал для неизвестного параметра σ^2 .

Подсказка:
$$\sum\limits_{i=1}^{3}\left(X_{i}-\bar{X}\right)^{2}=54.73.$$

3. Пусть X_1,\dots,X_n и Y_1,\dots,Y_m — независимые случайные выборки из нормального распределения с параметрами (μ_X,σ_X^2) и (μ_Y,σ_Y^2) соответственно. Известно, что $\sigma_X^2=\sigma_Y^2$. Используя реализации случайных выборок, $(x_1,x_2,x_3)=(1.72,1.82,2.49)$ и $(y_1,y_2)=(-1.37,0.54)$, постройте 90%-ый доверительный интервал для разности математических ожиданий, $\mu_X-\mu_Y$.

Подсказка:
$$\sum_{i=1}^{3} X_i = 6.03$$
, $\sum_{i=1}^{3} \left(X_i - \bar{X} \right)^2 = 0.35$, $\sum_{i=1}^{2} Y_i = -0.42$, $\sum_{i=1}^{2} \left(Y_i - \bar{Y} \right)^2 = 1.82$.

4. Дядя Вова (Владимир Николаевич) и Скрипач (Гедеван) зарабатывают на Плюке чатлы, чтобы купить гравицапу. Число заработанных за i-ый день чатлов имеет распределение Пуассона с неизвестным параметром λ . Заработки в различные дни независимы. За прошедшие 100 дней они заработали 350 чатлов.

С помощью метода максимального правдоподобия постройте приближенный 99%-ый доверительный интервал для неизвестного параметра λ .