The roots of the general quintic equation

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the roots of the general quintic equation. The paper ends with "The End"

Introduction

In a previous paper, I've described the roots to the general cubic equation. In a previous paper, I've described one of the roots of the quartic equation. In a previous paper, I've described my monic quintic identity. In a previous paper, I've described the roots of my monic quintic equation, which are expressible in radicals. In this paper, I describe the roots of the general quintic equation.

Preliminaries

The general quintic equation is

$$ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$$

where a, b, c, d, e, f are constants.

If f = 0 then the equation reduces to

$$x(ax^4 + bx^3 + cx^2 + dx + e) = 0$$

which has the root x = 0 and the quartic

$$ax^4 + bx^3 + cx^2 + dx + e = 0$$

one of whose roots is known and can be factored out. The roots of the remaining cubic are known. Similarly, if a = 0 then the equation reduces to the quartic equation

$$bx^4 + cx^3 + dx^2 + ex + f = 0$$

one of whose roots is known and can be factored out. The roots of the remaining cubic are known.

If a = f = 0 then the equation reduces to

$$x(bx^3 + cx^2 + dx + e) = 0$$

which has the root x = 0 and the cubic

$$bx^3 + cx^2 + dx + e = 0$$

whose roots are known.

Therefore, $a \neq 0$ and $f \neq 0$ henceforth. Moreover, we divide the general quintic equation by the leading coefficient a to transform the general quintic equation to the monic quintic equation

$$x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0$$

where $e \neq 0$ henceforth.

Comparing coefficients with my monic quintic

Recall that my monic quintic is

$$x^{5} + ax^{4} + bx^{3} + \left(P^{3} + bP + a\left(Q - P^{2}\right) - 2PQ + \frac{e}{b - aP + P^{2} - Q}\right)x^{2} + \left(Q\left(b - aP + P^{2} - Q\right) + \frac{e(a - P)}{b - aP + P^{2} - Q}\right)x + e = 0$$

Comparing coefficients we get

- (1) a = a
- (3) $c = P^3 + bP + a(Q P^2) 2PQ + \frac{e}{b aP + P^2 Q}$ (4) $d = Q(b aP + P^2 Q) + \frac{e(a P)}{b aP + P^2 Q}$

Thus, if suitable P and Q are obtained, then, by my monic quintic identity, we can reduce the monic quintic equation to the product of a cubic equation and a quadratic equation, whose roots are known.

Choosing P and Q

Eliminating e between equations (3) and (4) gives us the eliminant

(6)
$$a^2P^2 - a^2Q - abP + ac - 2aP^3 + 2aPQ + bP^2 + bQ - cP - d + P^4 - P^2Q - Q^2 = 0$$

As long as $b-aP+P^2-Q\neq 0$ and we obtain corresponding P and Q, we may choose any value for either P or Q to solve the eliminant. For most quintics, P=0 is a valid and convenient choice. When P=0 is not a valid choice, other valid and convenient choices may be P = a, Q = 0, $Q = P^2$ etc.

Solving the monic quintic

Once we have at least one valid value of P and one valid value of Q, by the right side of my monic quintic identity, we obtain 5 roots of the monic quintic equation.

Notes

- 1. Note that by following this procedure, we obtain 5 roots of the general quintic equation expressible in radicals.
- 2. Note that this procedure doesn't invalidate Galois' theory since our procedure is based on expressing the general quintic equation as factored forms but not on solving the quintic equation algebraically.

Exercises for the reader

Find the roots of the following quintic equations expressible in radicals:

- 1. $x^5 + x^4 - 266713x^3 + 4x^2 - 16244256x - 31481 = 0$
- 2. $x^5 - x - 20 = 0$

The End