Sursa: ID1.c, ID1.cpp, ID1.pas

Problema 1 – maxp 100 puncte

Considerăm un şir de numere a_1 , a_2 , ..., a_N . O secvență nevidă în acest şir este de forma a_i , a_{i+1} , ..., a_j , unde $i \le j$. De exemplu, pentru N=4 și şirul $2 \ 3 \ 4 \ 3$, secvențele nevide sunt: 2, $2 \ 3$, $2 \ 3 \ 4$, $2 \ 3 \ 4 \ 3$, $3 \ 4$, $3 \ 4 \ 3$, $4 \ 3$, $4 \ 3$, $4 \ 3$. Definim puterea unui element a_i ca fiind numărul de secvențe care-l conțin pe a_i și în care a_i este strict mai mare decât celelalte elemente ale fiecăreia dintre respectivele secvențe. Astfel în șirul $2 \ 3 \ 4 \ 3$ puterea elementului a_1 este 1 (fiind maxim doar în secvența formată din el însuși), a elementului a_2 este $2 \ (a_2$ fiind maxim în secvențele $2 \ 3$ și 3), a elementului a_3 este 6 (fiind maxim în secvențele $2 \ 3 \ 4$, $2 \ 3 \ 4 \ 3$, $3 \ 4$, $3 \ 4 \ 3$, $4 \ 5$, $4 \ 5$), iar a elementului a_4 este 1.

Cerinte

Scrieți un program care determină puterea cea mai mare a unui element din șirul dat, precum și numărul de elemente din șir care au cea mai mare putere.

Date de intrare

Fișierul maxp.in conține pe prima linie numărul natural N, iar pe a doua linie, în ordine, numerele naturale a_1 , a_2 , ..., a_N separate prin câte un spațiu.

Date de iesire

Fişierul maxp.out va conține pe prima linie un număr natural ce reprezintă puterea cea mai mare a unui element din şirul dat şi pe a doua linie va conține un număr natural ce reprezintă numărul de elemente din şir care au cea mai mare putere.

Restricții și precizări:

- 2 <= N <= 200000
- Elementele șirului sunt numere naturale și au cel mult 6 cifre
- Se acordă 50% din punctaj pentru determinarea corectă a celei mai mari puteri a unui element din șir și 50% din punctaj pentru determinarea numărului de elemente din șir care au cea mai mare putere.

Exemplu

maxp.in	maxp.out	Explicații
7 9 3 4 5 1 2 2	12	Elementul 5 de pe poziția 4 este maxim în 12 secvențe: 3 4 5, 3 4 5 1, 3 4 5 1 2, 3 4 5 1 2 2, 4 5, 4 5 1, 4 5 1 2, 4 5 1 2 2, 5, 5 1, 5 1 2, 5 1 2 2, deci puterea lui este 12. Este singurul element care are această putere, celelalte elemente având puteri mai mici.
maxp.in	maxp.out	Explicații

Ministerul Educației Naționale Olimpiada de Informatică – etapa județeană 2 martie 2013

Clasa a VIII-a

Sursa: ID1.c, ID1.cpp, ID1.pas

6	3	Elementele din pozițiile 3 și 4 sunt maxime în 3 secvențe, deci
1 0 7 7 2 6	2	puterea lor este 3. Celelalte elemente au puteri mai mici.

Timp maxim de execuție: 0.5 secunde/test

Memorie totală disponibilă: 32 MB pentru segment de date și stivă

Dimensiunea maximă a sursei :10KB