## Relationship between mles per gallon and transmission type

Gaurav Bansal Saturday, July 26, 2014

## **Executive Summary**

Through stepwise model selection through minimizing AIC, the output model turned out to be mpg  $\sim$  as.factor(cyl) + hp + wt + as.factor(am). However, performing ANOVA anlysis to compare the above model with and without the am variable showed that such two models are likely to be similiar. A Shapiro-Wilk test of normality over the residues the above model failed to reject the null hypothesis, validating the anova analysis. Therefore, basing on all the studies, the conclusions are: 1. with the given data, the manual and automatic transmission types do not significantly impact the MPG; 2. with the given data, holding all other variables constant, vehicle of manual transmission have 1.81 increase in MPG compared to vehicle of automatic transmission.

```
#loading the data
data("mtcars")
summary(mtcars)
```

```
cyl
##
                                          disp
                                                            hp
         mpg
##
                            :4.00
                                            : 71.1
                                                              : 52.0
    Min.
            :10.4
                    Min.
                                                      Min.
    1st Qu.:15.4
                    1st Qu.:4.00
                                    1st Qu.:120.8
                                                      1st Qu.: 96.5
##
    Median:19.2
                    Median:6.00
                                    Median :196.3
                                                      Median :123.0
            :20.1
##
    Mean
                            :6.19
                                            :230.7
                                                      Mean
                                                              :146.7
                    Mean
                                    Mean
##
    3rd Qu.:22.8
                    3rd Qu.:8.00
                                    3rd Qu.:326.0
                                                      3rd Qu.:180.0
                                                              :335.0
                    Max.
                            :8.00
                                            :472.0
##
    Max.
            :33.9
                                    Max.
                                                      Max.
##
         drat
                           wt
                                          qsec
                                                           VS
##
    Min.
            :2.76
                    Min.
                            :1.51
                                    Min.
                                            :14.5
                                                     Min.
                                                             :0.000
    1st Qu.:3.08
                    1st Qu.:2.58
                                    1st Qu.:16.9
                                                     1st Qu.:0.000
##
    Median:3.69
                    Median:3.33
                                    Median:17.7
                                                     Median : 0.000
##
            :3.60
                            :3.22
                                            :17.8
                                                            :0.438
    Mean
                    Mean
                                    Mean
                                                     Mean
##
    3rd Qu.:3.92
                    3rd Qu.:3.61
                                    3rd Qu.:18.9
                                                     3rd Qu.:1.000
##
    Max.
            :4.93
                    Max.
                            :5.42
                                    Max.
                                            :22.9
                                                     Max.
                                                            :1.000
##
                                           carb
          am
                           gear
##
    Min.
            :0.000
                     Min.
                             :3.00
                                     Min.
                                             :1.00
    1st Qu.:0.000
                     1st Qu.:3.00
                                     1st Qu.:2.00
##
   Median :0.000
                     Median:4.00
                                     Median:2.00
##
    Mean
            :0.406
                     Mean
                             :3.69
                                     Mean
                                             :2.81
##
    3rd Qu.:1.000
                     3rd Qu.:4.00
                                      3rd Qu.:4.00
            :1.000
                             :5.00
    Max.
                     Max.
                                     Max.
                                             :8.00
```

```
#changing the values of factor varables to factors
mtcars$cyl<- as.factor(mtcars$cyl)
mtcars$vs<- as.factor(mtcars$vs)
mtcars$am<- as.factor(mtcars$am)
mtcars$gear<- as.factor(mtcars$gear)
mtcars$carb<- as.factor(mtcars$carb)</pre>
```

Fit the model taking all factors and then find AIC, the one having the lowest AIC will be the best fit model

```
fit <- lm(mpg~.,mtcars)</pre>
library("MASS")
x <- stepAIC(fit)
## Start: AIC=76.4
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
##
         Df Sum of Sq RSS AIC
## - carb 5
              13.60 134 69.8
## - gear 2
                3.97 124 73.4
                1.14 122 74.7
## - am 1
## - qsec 1
                1.24 122 74.7
## - drat 1
               1.82 122 74.9
             10.93 131 75.2
## - cyl 2
              3.63 124 75.4
## - vs 1
                     120 76.4
## <none>
               9.97 130 76.9
## - disp 1
## - wt 1
               25.55 146 80.6
## - hp 1
               25.67 146 80.6
##
## Step: AIC=69.83
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear
##
         Df Sum of Sq RSS AIC
## - gear 2
                5.02 139 67.0
## - disp 1
                0.99 135 68.1
## - drat 1
               1.19 135 68.1
## - vs 1
               3.68 138 68.7
## - cyl 2
             12.56 147 68.7
              5.26 139 69.1
## - qsec 1
## <none>
                    134 69.8
## - am 1 11.93 146 70.6
## - wt 1 19.80 154 72.2
## - wt 1
               22.79 157 72.9
## - hp 1
##
## Step: AIC=67
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am
##
         Df Sum of Sq RSS AIC
                0.97 140 65.2
## - drat 1
              10.42 149 65.3
## - cyl 2
## - disp 1
                1.55 141 65.4
## - vs
          1
                2.18 141 65.5
## - qsec 1
                 3.63 143 65.8
## <none>
                     139 67.0
## - am 1 16.57 156 68.6
## - hp 1 18.18 157 68.9
               31.19 170 71.5
## - wt 1
##
## Step: AIC=65.23
## mpg \sim cyl + disp + hp + wt + qsec + vs + am
##
##
         Df Sum of Sq RSS AIC
```

```
## - disp 1
                  1.25 141 63.5
## - vs
           1
                  2.34 142 63.8
## - cyl
                 12.33 152 63.9
                  3.10 143 63.9
## - qsec 1
## <none>
                       140 65.2
## - hp
                 17.74 158 67.0
           1
## - am
           1
                 19.47 160 67.4
## - wt
                 30.72 171 69.6
           1
##
## Step: AIC=63.51
## mpg \sim cyl + hp + wt + qsec + vs + am
##
          Df Sum of Sq RSS AIC
##
## - qsec 1
                   2.4 144 62.1
## - vs
           1
                   2.7 144 62.1
## - cyl
                  18.6 160 63.5
                       141 63.5
## <none>
## - hp
           1
                  18.2 159 65.4
## - am
                  18.9 160 65.5
           1
## - wt
           1
                  39.6 181 69.4
##
## Step: AIC=62.06
## mpg \sim cyl + hp + wt + vs + am
##
##
          Df Sum of Sq RSS AIC
## - vs
                   7.3 151 61.7
## <none>
                       144 62.1
## - cyl
           2
                  25.3 169 63.2
## - am
           1
                  16.4 160 63.5
## - hp
           1
                  36.3 180 67.3
## - wt
           1
                  41.1 185 68.1
##
## Step: AIC=61.65
## mpg \sim cyl + hp + wt + am
##
##
          Df Sum of Sq RSS AIC
## <none>
                       151 61.7
## - am
                   9.8 161 61.7
           1
## - cyl
           2
                  29.3 180 63.3
## - hp
           1
                  31.9 183 65.8
## - wt
           1
                  46.2 197 68.2
```

The model with cyl, hp, wt, am is the best fit model, so let us find the summary of this model, wether the values are significant or not

```
fit1 <- lm(mpg~cyl+hp+wt+am,mtcars)
summary(fit1)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cyl + hp + wt + am, data = mtcars)
##
## Residuals:
```

```
1Q Median
                           3Q
##
     Min
## -3.939 -1.256 -0.401 1.125 5.051
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                        2.6049
                                  12.94 7.7e-13 ***
## (Intercept) 33.7083
                                  -2.15
## cyl6
               -3.0313
                          1.4073
                                           0.0407 *
                                   -0.95
## cyl8
               -2.1637
                          2.2843
                                           0.3523
## hp
               -0.0321
                          0.0137
                                   -2.35
                                           0.0269 *
                                   -2.82
## wt
               -2.4968
                           0.8856
                                           0.0091 **
## am1
               1.8092
                           1.3963
                                    1.30
                                           0.2065
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.41 on 26 degrees of freedom
## Multiple R-squared: 0.866, Adjusted R-squared: 0.84
## F-statistic: 33.6 on 5 and 26 DF, p-value: 1.51e-10
```

After fitting the variable the p-value for AM is found to be 0.20646 which is not significant and we fail to reject the null hpothesis

```
fit1 <- lm(mpg~cyl+hp+wt+am,mtcars)
summary(fit1)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cyl + hp + wt + am, data = mtcars)
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
## -3.939 -1.256 -0.401 1.125 5.051
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.7083
                           2.6049
                                     12.94 7.7e-13 ***
               -3.0313
                           1.4073
                                     -2.15
                                            0.0407 *
## cyl6
                                    -0.95
## cy18
               -2.1637
                           2.2843
                                            0.3523
               -0.0321
                            0.0137
                                     -2.35
                                           0.0269 *
## hp
## wt
               -2.4968
                            0.8856
                                     -2.82
                                             0.0091 **
## am1
                1.8092
                            1.3963
                                      1.30
                                             0.2065
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.41 on 26 degrees of freedom
## Multiple R-squared: 0.866, Adjusted R-squared: 0.84
## F-statistic: 33.6 on 5 and 26 DF, p-value: 1.51e-10
#Also, let us test the anova of two models, one with am and one without am
fit1 <- lm(mpg~cyl+hp+wt+am,mtcars)
fit2 <- lm(mpg~cyl+hp+wt,mtcars)</pre>
anova(fit1,fit2)
```

## Analysis of Variance Table

```
##
## Model 1: mpg ~ cyl + hp + wt + am
## Model 2: mpg ~ cyl + hp + wt
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 26 151
## 2 27 161 -1 -9.75 1.68 0.21
```

P-value is 0.21 so we fail to reject the null hypothesis, these both the models are similar

```
#test for normality of residues
shapiro.test(fit1$residuals)

##
## Shapiro-Wilk normality test
##
```

P-value = 0.45, fail to reject the null. So the residues are likely to follow a normal distribution. So our anova test is likely to be valid.

## **Apendix**

## data: fit1\$residuals

## W = 0.9681, p-value = 0.4479

```
par(mfrow = c(2, 2))
plot(fit1)
```

