Progressive Fines and Tax Evasion

Duccio Gamannossi degl'Innocenti¹ Antoine Malézieux² Julie Rosaz² Annalisa Tirozzi³

¹Università Cattolica del Sacro Cuore, Milano, Italy

²Burgundy School of Business, Université Bourgogne Franche-Comte, Dijon, France

³University of Rome Tor Vergata, Rome, Italy

Table of contents

- 1. Introduction
- 2. Model
- 3. Experiment
- 4. Results
- 5. Conclusions

Introduction

Introduction

- Modern tax systems rely on the self-declaration of tax liabilities
- Evasion leads to sizeable revenue losses
 - 20% of GDP in Europe (Murphy 2019)
 - \cdot Under-reporting is pprox 18% in US with a tax gap of 500 billion
- · Evasion deterrence is performed through audits
 - Positive probability of sustaining costs (fines, litigation costs, shame, stigma, etc.)
- · Most tax systems entail progressivity in penalties
 - · Mistakes punished lightly (or not at all)
 - Misdemeanors and Felony subject to different regimes
 - France: No fine if minor, 10/40/80%
 - · Germany: Fine of 5/360 daily rates
 - · Italy: Non-filing 120%-240%, Under-reporting 90% to 180%
 - · Spain: Minor/Serious/Very Serious 50/100/150% + fine
- · We study what is the role of fine structure in deterrence

Related Literature

Economics of Crime applied to Tax Evasion

Becker, 1968; Allingham and Sandmo, 1972; Srinivasan, 1973; Yitzhaki
 1974

Theoretical studies on fine structure

- · Monetary fines vs. Felony (Pencavel, 1979)
- · Retroactive penalties (Rickard et al., 1982)
- · Interaction between tax progressivity and fines (Koskella, 1983)
- · Maximal penalties and their limits (Cowell, 1985)
- · Penalties and rewards (Falkinger and Walther 1991)

Experimental studies on fine size

- TEG in the lab, Friedland et al. (1978) (surveyed in Malézieux, 2018)
- Fine size (Kirchler et al., 2003, Park and Hyun, 2003, Choo et al., 2015, Alm and Malézieux, 2019)

Research Goals

- Experimentally test the impact of different fine structures on:
 - · The declarations of individuals
 - Total revenues collected
- The fine structures (treatments) we consider are:
 - · Linear (lin) standard in models
 - Progressive piece-wise linear (ppl) common in real-world tax systems
- · We develop a model of our experiment to:
 - · Clarify the incentives under different fine structures
 - Identify a reasonable comparison for different fine structures
 - Define a (perfectly rational) baseline to be compared to experimental evidence

Model

The Model

Our modelling setting follows Cowell (1990) and is fairly standard:

- Preferences are represented by $U(\bullet)$, with U'>0
- Pre-tax Income Y
- Income declared $X \in [0, Y]$ is taxed with a linear rate t
- Individuals may evade (under-declare) an amount Y X = E
- Declarations get audited with **probability** p
- If evasion is discovered, a fine f(tE) is levied
 - Linear $f(tE) = f_{lin}(tE) = f_{lin}tE, f_{lin} > 1$
 - Progressive piece-wise linear $f(tE) = f_{ppw}(tE)$

The Model - Parameters of the Experiment

Our modelling setting follows Cowell (1990) and is fairly standard:

- Preferences are represented by $U(\bullet)$, with U'>0
- Pre-tax Income Y = 125
- Income declared $X \in [0, Y]$ is taxed with a linear rate t = .2
- Individuals may evade (under-declare) an amount Y X = E
- Declarations get audited with probability p = .2
- If evasion is discovered, a fine f(tE) is levied
 - Linear $f(tE) = f_{lin}(tE) = f_{lin}tE, f_{lin} > 1$
 - Progressive piece-wise linear $f(tE) = f_{ppw}(tE)$

The Optimal Evasion

$$max_{E}\mathbb{E}[U] = (1-p)U(Y^{na}) + pU(Y^{a})$$

where:

$$Y^{na} = Y - tX$$
$$Y^{a} = Y - tX - f(tE)$$

If the fine rate is linear the model is analogous to Yitzhaki (1974)

Evasion Choice and Linear Fine

Evasion Choice and Linear Fine

Evasion Choice and Linear Fine

Optimal Evasion with a Linear Fine

Optimal Evasion with a Linear Fine - Lower Risk Aversion

A Progressive Piece-wise Linear Fine

$$f_{ppl}(E) = \begin{cases} 0 & E = 0\\ f_{ppl_1} & 0 < E < E_1\\ f_{ppl_2} & E_1 \le E < E_2\\ f_{ppl_3} & E_2 \le E \le Y \end{cases}$$

where

$$0 < E_1 < E_2 < Y$$
 $1 \le f_{ppl_1} < f_{ppl_2} < f_{ppl_3}$

A Reasonable Comparison Between Fine Structures

- Identify a reasonable comparison between fine structures is not straightforward
- · Our Approach:
 - 1. Choice of an "interesting" progressive piece-wise linear fine
 - 2. Progressive treatment with the selected progressive fine
 - 3. Linear treatment using average fine on the evaders audited in 2.
 - · It is an empirical mean-preserving contraction

Several desirable features of the selected comparison linear fine:

- It is observed by the government
- It imposes the same expected burden on the evaders

 irrespective of declaration shifts
- Its value -3.25- is close to the theoretical average and in line with fines used in the experimental TEG literature

The Experiment Progressive Piecewise Linear Fine

$$f_{ppl}(E) \begin{cases} 0 & E = 0 \\ 1 & 0 < E \le 25 \\ 2 & 25 < E \le 50 \\ 3 & 50 < E \le 75 \\ 4 & 75 < E \le 100 \\ 5 & 100 < E \le 125 \end{cases}$$

If evasion is limited, audit only recovers the tax due

- · Mimics the real-world handling of mistakes in good-faith
- Identifies honest individuals

In case of total evasion, the fine leaves the individual with 0

· Gauges heterogeneity in responses

Bunching

 Discontinuities in expected costs of fine at the thresholds lead to bunching of individuals with different risk aversion

Some Implications and Questions from the Model

- 1. The linear fine should induce more extreme declarations
- 2. The impact of the fine structure on Total Revenues is ambiguous
 - 2.1 The impact on **Revenues from Declarations** is ambiguous
 - · More extreme declarations in linear have an ambiguous net effect
 - · Depends on the distribution of preferences, risk, honesty, etc.
 - 2.2 The impact on **Revenues from Fines (RF)** is ambiguous Mechanically bigger RF for ppw, for example:
 - if $E = 1 \rightarrow RF_{lin} = 1 \cdot .2 \cdot 3.25 = .65$ and $RF_{ppw} = 1 \cdot .2 \cdot 1 = .2$
 - if $E=125 \rightarrow RF_{lin}=125 \cdot .2 \cdot 3.25 \approx 81$ and $RF_{ppw}=125 \cdot .2 \cdot 5=125$
 - Higher RF in the lower end for lin (.65 .2 \approx .4) are small relative to the higher RF in the high end for ppw (125 81 \approx 40)

Declaration change in response to fine change has opposite impact

3. Some interesting minor points i) Bunching at the thresholds (esp. 1st one) ii) Share of honest people

Experiment

The Experiment

Two between subjects treatments

- Progressive fine rate (T1)
- · Linear fine rate (T2)

Both treatments entail:

- 1. Tax evasion game
- 2. Risk aversion elicitation task Gneezy and Potters (1997)
- 3. Socio-demographics questionnaire
 - Age, gender, education, French origins, previous experience in experiments, self-assessed risk aversion, income, wealth

The Tax Evasion Game

- · Performed Jan-Feb 2022 online
- · Participants recruited using ORSEE (mostly students of BSB)
- · Taxation-like framing of instructions
- · Twenty periods with same course of action
 - · In each period participants receive 125 ECU (25ECUs = €1)
 - · Literature shows same behaviour with windfall/earned income
 - · Participants declare liabilities that are taxed at 20% rate
 - · Revenues used for research, no utility for participants
 - · With probability .2 the declaration is audited
 - · Upon audit the evaded tax debt gets fined
 - Payment is based on the outcome of 2 random periods

The Tax Evasion Game

Declared	q		Fine		
Income	T1	T2	Paid		
125	0	0	0		
124,99 - 100	1	3.25	1 [3.25] ×unpaid tax		
99,99 - 75	2	3.25	2 [3.25] ×unpaid tax		
74,99 - 50	3	3.25	3 [3.25] ×unpaid tax		
49,99 - 25	4	3.25	4 [3.25] ×unpaid tax		
24,99 - 0	5	3.25	5 [3.25] ×unpaid tax		

Summary Statistics of Covariates

Variables	Piece-wise (T1)		Linear (T2)			
	Obs	Mean	SD	Obs	Mean	SD
Age	2,620	20.34	1.85	2,540	21.06	1.69
Male	2,620	0.30	0.46	2,540	0.34	0.47
Year of study	2,620	2.48	1.74	2,540	3.05	1.46
French	2,620	0.94	0.24	2,540	0.95	0.21
Spending	2,620	159.28	177.49	2,540	174.93	148.8
Saving	2,620	132.92	177.23	2,540	369.09	2,645
Risk aversion (question)	2,620	5.60	2.00	2,540	5.81	2.10
Risk aversion (task)	2,620	5.71	3.22	2,540	5.98	3.00
Earning Risk (task)	2,620	14.18	10.22	2,540	12.43	10.06

Results

ECDF of Evasion

Polarization of Evasion - ECDF

Polarization of Evasion - Tests

Mann Whitney test

• Taking a draw from lin and ppl, is prob lin>ppl bigger than .5?

Kolmogorov-Smirnov test

• Is the lin CDF above ppl?

T test

· Is the average of lin bigger than the ppl one?

$$E \leq 75$$

$$M-W = 0.95\%$$

$$K-S = 5.14\%$$

$$T = 2.55\%$$

$$M-W = 80.17\%$$

$$T = 5.87\%$$

Outcome variables Averages

Variable	Piecewise	Linear
Declared income	82.82 (49.64)	84.78 (49.66)
Fine	8.11 (28.66)	5.29 (17.88)
Total revenues	24.67 (26.26)	22.25 (17.02)

Average Revenues

Declaration, Revenues and Fines

- Evasion is more polarized under the Linear fine for low levels of evasion, only marginally for high levels
- Average Revenues from declaration are not different across fine regimes

Higher Revenues from Deterrence +47% and Total revenues +10% (declaration+fines) under Piecewise fine:

- The mechanical increase of RF of the Piecewise fine is bigger than the reduction caused by declaration behavioural responses
- Results hold in a Panel Tobit specification, also accounting for covariates

Treatment effect on income declared, fine and revenues (no covariates)

	Income declared	Fine	Total revenues
Fixed rate	6.292	-17.02**	-2.460***
	(8.654)	(7.160)	(0.711)
Round	-0.703***	0.637	0.0418
	(0.214)	(0.494)	(0.0594)
Const.	115.1***	-152.8***	23.11***
	(6.498)	(9.639)	(0.798)
sigma_u			
Const.	66.13***	33.95***	1.507
	(3.621)	(4.590)	(0.997)
sigma_e			
Const.	77.67***	125.9***	24.36***
	(1.315)	(4.899)	(0.266)
N	5160	5160	5160

Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

Treatment effect on income declared, fine and revenues (with covariates)

	Income declared	Fine	Total revenues
Fixed rate	7.373	-18.04**	-2.445***
	(8.229)	(7.231)	(0.708)
Round	-0.789***	0.748	0.0292
	(0.220)	(0.505)	(0.0609)
Decision time	-0.147*	0.202	-0.0217
	(0.0880)	(0.177)	(0.0239)
Risk loving (task)	-0.447	-0.424	-0.0517
	(1.411)	(1.226)	(0.121)
Risk loving (question)	-11.03***	5.506***	-0.340*
	(2.164)	(1.888)	(0.185)
Age	2.899	-0.233	0.173
	(2.345)	(2.030)	(0.201)
Female	-16.26*	1.833	-1.444*
	(8.737)	(7.620)	(0.751)
Spending	0.00550	-0.0106	-0.000324
	(0.0253)	(0.0219)	(0.00217)
Savings	-0.00409*	0.00113	-0.000426**
	(0.00216)	(0.00177)	(0.000201)
Const.	133.0***	-178.5***	23.16***
	(49.71)	(44.12)	(4.314)
sigma_u			
Const.	60.92***	32.26***	0.685
	(3.383)	(4.633)	(2.082)
sigma_e			
Const.	77.65***	125.8***	24.37***
	(1.314)	(4.894)	(0.266)
N	5160	5160	5160

Conclusions

Conclusion

- We provide the first experimental evidence on the impact of the fine structure on declaration behaviour
- In line with theoretical intuition, a linear fine leads to more extreme declaration outcomes than a progressive one for low evaders, only marginally significant for high evaders
- No difference in average revenues from declarations across regimes
- · Total Revenues and Fine revenues higher for piecewise
- Linear fine increase the honest declarations but the piecewise fine extracts more revenues from evaders (that could be redistributed back to the honest)

Further Research

- Perform the experiment in within setting to validate our results at the individual level
 - · Investigate role of risk aversion
 - Who E > 75 under progressive increase evasion under linear
 - Who *E* < **75** under progressive **decrease** evasion under linear
 - Estimate elasticities of evasion to the fine rate by evasion brackets
- Estimate reduction in inequality of a tax-and-transfer system in the two fine regimes

Thank you!

Questions?