CLAIMS

What is claimed is:

1	1.	A method comprising:
2	forming a sac	crificial layer on a substrate;
3	forming a me	etal layer on the sacrificial layer;
4	anodizing the	e metal layer to form a layer of a porous metal oxide; and
5	forming carb	on nanotubes in pores of the porous metal oxide layer.
1	2.	The method of claim 1, further comprising removing excess metal oxide
2	material fron	the pores of the porous metal oxide layer prior to forming the carbon
3	nanotubes.	
1	3.	The method of claim 2, wherein the pores extend through the porous metal
2	oxide layer ii	nto the sacrificial layer.
1	4.	The method of claim 1, further comprising depositing a catalyst in the
2	pores of the	porous metal oxide layer prior to forming the carbon nanotubes.
1	5.	The method of claim 5, wherein the catalyst comprises iron, nickel, cobalt,
2	rhodium, pla	tinum, or yttrium.

1	6.	The method of claim 1, further comprising separating the porous metal
2	oxide layer ar	nd carbon nanotubes from the sacrificial layer and the substrate to form a
3	free-standing	composite carbon nanotube (CNT) structure.
1	7.	The method of claim 6, wherein separating the porous metal oxide layer
2	and carbon na	anotubes from the sacrificial layer and substrate comprises dissolving the
3	sacrificial lay	er.
1	8.	The method of claim 7, wherein the sacrificial layer is dissolved in a
2	solution inclu	iding an acid.
1	9.	The method of claim 8, wherein the acid comprises phosphoric acid,
2	succinic acid,	or sulfuric acid.
1	10.	The method of claim 8, wherein the sacrificial layer is dissolved under
2	application of	f an anodic potential.
1	11.	The method of claim 6, further comprising attaching the composite CNT
2	structure to a	component.
1	12.	The method of claim 11, wherein the component comprises a
2	semiconducto	or wafer, an integrated circuit die, a heat spreader, or a heat sink.

2	to the compo	nent comprises attaching the composite CNT structure to the component
3	using a low n	nelting point metal alloy.
1	14.	The method of claim 13, wherein the low melting point metal alloy
2	comprises a s	solder.
1	15.	The method of claim 11, wherein attaching the composite CNT structure
2	to the compo	nent comprises compressing the composite CNT structure against the
3	component.	
1	16.	The method of claim 15, wherein the composite CNT structure is
2	compressed a	against the component under a pressure in a range up to approximately 10
3	Kg/cm ² .	
1	17.	The method of claim 6, wherein the composite CNT structure has a
2	thickness in a	a range of approximately 2 μm to 20 μm.
1	18.	The method of claim 1, wherein the carbon nanotubes are formed to a
2	height extend	ling above an upper surface of the porous metal oxide layer.

The method of claim 11, wherein attaching the composite CNT structure

1

13.

1	19.	The method of claim 1, wherein the carbon nanotubes are formed by
2	chemical vapo	or deposition (CVD) or plasma enhanced CVD.
1	20.	The method of claim 1, wherein the metal layer comprises aluminum and
2	the porous me	etal oxide layer comprises aluminum oxide.
1	21.	The method of claim 1, wherein the sacrificial layer comprises vanadium,
2	titanium, or tu	ingsten.
1	22.	The method of claim 1, wherein the metal layer is anodized under a
2	positive voltage	ge and in the presence of a solution including an acid.
1	23.	The method of claim 22, wherein the acid comprises one of phosphoric
2	acid, succinic	acid, sulfuric acid, and oxalic acid.
1	24.	The method of claim 22, wherein the positive voltage comprises a voltage
2	in a range of a	approximately 1 to 60 volts.
1	25.	A device comprising:
2	a porous meta	l oxide layer; and
3	a number of c	arbon nanotubes disposed in pores of the porous metal oxide layer.

1	26. The device of claim 25, wherein the metal oxide layer comprises
2	aluminum oxide.
1	27. The device of claim 25, wherein at least some of the carbon nanotubes
2	extend above a surface of the porous metal oxide layer.
1	28. A device comprising:
2	an integrated circuit die; and
3	a thermal interface device coupled with a surface of the die, the thermal interface device
4	comprising a layer of a porous metal oxide and a number of carbon nanotubes
5	disposed in pores of the porous metal oxide layer.
1	29. The device of claim 28, further comprising a heat spreader coupled with
2	the thermal interface device.
1	30. The device of claim 29, further comprising:
2	a second thermal interface device coupled with the heat spreader, the second thermal
3	interface device comprising a layer of a porous metal oxide and a number of
4	carbon nanotubes disposed in pores of the porous metal oxide layer; and
5	a heat sink coupled with the second thermal interface device.

1	31.	A system comprising:
2	a bus; and	
3	a device coup	led with the bus, the device including
4		an integrated circuit die, and
5		a thermal interface device coupled with a surface of the die, the thermal
6		interface device comprising a layer of a porous metal oxide and a
7		number of carbon nanotubes disposed in pores of the porous metal
8		oxide layer.
1	32.	The system of claim 31, wherein the device further includes a heat
2	spreader coup	oled with the thermal interface device.
1	33.	The system of claim 32, wherein the device further includes:
2	a second ther	mal interface device coupled with the heat spreader, the second thermal
3	interf	ace device comprising a layer of a porous metal oxide and a number of
4	carbo	n nanotubes disposed in pores of the porous metal oxide layer; and
5	a heat sink co	oupled with the second thermal interface device.
•		
1	34.	The system of claim 31, wherein the device comprises a processing
2	device.	

1	35.	The system of claim 34, further comprising a memory coupled with the
2	bus.	
1	36.	A method comprising:
2	forming a sac	rificial layer on a substrate;
3	forming a lay	er of a porous material on the sacrificial layer; and
4	forming carbo	on nanotubes in pores of the layer of porous material.
1	37.	The method of claim 36, further comprising depositing a catalyst in the
2	pores of the la	ayer of porous material prior to forming the carbon nanotubes.
1	38.	The method of claim 36, further comprising dissolving the sacrificial layer
2	to separate the	e layer of porous material and carbon nanotubes from the sacrificial layer
3	and the substr	rate.
1	39.	A method comprising:
2	disposing a su	obstrate in a plating bath including a plating solution, the plating solution
3	includ	ing ions of a metal and carbon nanotubes; and
4	forming a lay	er of the metal on the substrate, the metal layer including a number of the
5	carboi	n nanotubes.

1	40.	The method of claim 39, wherein the metal comprises one of tin, indium,
2	copper, nickel	, cobalt, iron, cadmium, chromium, ruthenium, rhodium, rhenium,
3	antimony, bis	muth, platinum, gold, silver, zinc, palladium, and manganese.
1	41.	The method of claim 39, wherein the carbon nanotubes comprise up to
2	approximately	20 percent by weight of the plating solution.
1	42.	The method of claim 39, wherein the metal layer is formed by
2	electroplating	
1	43.	The method of claim 42, wherein the plating solution further comprises a
2	complexing ag	gent.
1	44.	The method of claim 42, wherein the plating solution further comprises an
2	additive to reg	gulate a property of the metal layer.
1	45.	The method of claim 44, wherein the additive comprises polyethylene
2	glycol or a di-	sulfide.
1	46.	The method of claim 42, further comprising depositing a seed layer on the
2	substrate prior	to forming the metal layer.

1	47.	The method of claim 39, wherein the metal layer is formed by electroless
2	plating.	
1	48.	The method of claim 47, wherein the plating solution further comprises a
2	complexing ag	gent and a reducing agent.
1	49.	The method of claim 48, wherein the reducing agent comprises one of
2	formaldehyde,	hypophosphite, dimethyl amine borane, and hydrazine hydrate.
1	50.	The method of claim 47, wherein the plating solution further comprises a
2	substance to ac	djust a pH of the plating solution.
1	51.	The method of claim 47, wherein the plating solution further comprises an
2	additive to reg	ulate a property of the metal layer.
1	52.	The method of claim 51, wherein the additive comprises one of
2	polyethylene g	glycol and a di-sulfide.
1	53.	The method of claim 47, further comprising depositing a catalyst on the
2	substrate prior	to forming the metal layer.

1	54.	The method of claim 47, further comprising heating the plating solution in
2	the plating ba	th.
1	55.	The method of claim 39, further comprising applying an electric field
2	across the me	tal layer to align the carbon nanotubes in the metal layer.
1	56.	The method of claim 55, wherein the carbon nanotubes are aligned
2	substantially 1	perpendicular to a surface of the substrate.
1	57.	The method of claim 39, wherein the substrate comprises a semiconductor
2	wafer, an inte	grated circuit die, a heat spreader, or a heat sink.
1	58.	The method of claim 39, further comprising separating the metal layer
2	including the	carbon nanotubes from the substrate to form a free-standing composite
3	carbon nanoti	ube (CNT) structure.
1	59.	The method of claim 58, further comprising attaching the composite CNT
2	structure to a	component.
1	60.	The method of claim 59, wherein the component comprises a
2	semiconducto	or wafer, an integrated circuit die, a heat spreader, or a heat sink.

1	61. The method of claim 59, wherein attaching the composite CNT structure
2	to the component comprises:
3	depositing a layer of a low melting point metal alloy on a surface of the composite CNT
4	structure; and
5	attaching the composite CNT structure to the component using the layer of low melting
6	point metal alloy.
1	62. The method of claim 61, wherein the low melting point metal alloy
2	comprises a solder.
1	63. The method of claim 58, wherein the composite CNT structure has a
2	thickness in a range of approximately 2 μm to 20 μm.
1	64. A device comprising:
2	a substrate; and
3	a layer of metal disposed over a surface of the substrate, the metal layer having a number
4	of carbon nanotubes dispersed therein.
1	65. The device of claim 64, wherein each of the carbon nanotubes has a
2	primary axis substantially aligned in a direction perpendicular to the surface of the
3	substrate.

1 66. The device of claim 64, wherein the substrate comprises a semiconductor 2 wafer, an integrated circuit die, a heat spreader, or a heat sink. 1 67. The device of claim 64, wherein the substrate comprises a sacrificial 2 substrate and the layer of metal having the carbon nanotubes is separable from the 3 sacrificial substrate. 1 68. The device of claim 64, wherein the metal comprises one of tin, indium, 2 copper, nickel, cobalt, iron, cadmium, chromium, ruthenium, rhodium, rhenium, 3 antimony, bismuth, platinum, gold, silver, zinc, palladium, and manganese. 1 69. A device comprising: 2 an integrated circuit die; and 3 a thermal interface device coupled with a surface of the die, the thermal interface device 4 comprising a metal layer having a number of carbon nanotubes dispersed therein. 1 70. The device of claim 69, further comprising a heat spreader coupled with

2

the thermal interface device.

1	71. The device of claim 70, further comprising:
2	a second thermal interface device coupled with the heat spreader, the second thermal
3	interface device comprising a metal layer having a number of carbon nanotubes
4	dispersed therein; and
5	a heat sink coupled with the second thermal interface device.
1	72. A system comprising:
2	a bus; and
3	a device coupled with the bus, the device including
4	an integrated circuit die, and
5	a thermal interface device coupled with a surface of the die, the thermal
6	interface device comprising a metal layer having a number of
7	carbon nanotubes dispersed therein.
1	73. The system of claim 72, wherein the device further includes a heat
2	spreader coupled with the thermal interface device.
1	74. The system of claim 73, wherein the device further includes:
2	a second thermal interface device coupled with the heat spreader, the second thermal
3	interface device comprising a metal layer having a number of carbon nanotubes
4	dispersed therein; and
5	a heat sink coupled with the second thermal interface device.

- The system of claim 72, wherein the device comprises a processing
- device.
- 1 76. The system of claim 75, further comprising a memory coupled with the
- 2 bus.