Assignment Report: Custom DWA Local Planner in ROS2 Humble

Objective

The goal of this assignment is to implement a Dynamic Window Approach (DWA) local planner for TurtleBot3 in Gazebo using ROS2 Humble. The planner is coded from scratch without using the default nav2 dwb controller.

ROS2 Node Functionality

The node *custom_dwa_planner_node.py* does the following:

Topic	Message Type	Role
/odom	nav_msgs/Odometry	Subscribed (robot pose & velocity)
/scan	sensor_msgs/LaserScan	Subscribed (obstacle distances)
/goal_pose	geometry_msgs/PoseStamped	Subscribed (navigation goal)
/cmd_vel	geometry_msgs/Twist	Published (robot velocity commands)
dwa_markers	visualization_msgs/MarkerArray	Published (RViz trajectory visualization, optional)

DWA Algorithm Workflow

- 1. Receive robot state from /odom and environment scan from /scan.
- 2. Define a dynamic window of possible linear and angular velocities based on robot limits.
- 3. For each sampled (v, ω) :
- Forward simulate the trajectory for a short horizon.
- Check for collisions using LaserScan data.
- Compute a cost score based on heading-to-goal, obstacle clearance, forward velocity, and smoothness.
- 4. Choose the trajectory with the highest score.
- 5. Publish the corresponding (v, ω) command on /cmd_vel.
- 6. Optionally visualize trajectories in RViz with markers.

Expected Output

- The TurtleBot3 should navigate towards the goal while avoiding obstacles in Gazebo. - The planner continuously publishes safe velocity commands to /cmd_vel. - Debugging and info logs show planner decisions. - RViz markers visualize candidate trajectories and the chosen path.

System Architecture Diagram

Conclusion

This assignment demonstrates how to implement a custom DWA local planner from scratch. The planner integrates with ROS2 topics, applies a velocity sampling and cost evaluation scheme, and provides both control commands and visualization support. This shows understanding of local planning in mobile robotics and ROS2 integration.