Introduction to Quantitative Ecology Fall 2018 Chris Sutherland csutherland@umass.edu

1. We would *not* use the Spearman's rank test to calculate a correlation coefficient - which one?

- 2. For her PhD, Eugene is studying the effects of annual temperature on American robin reproductive success (number of eggs hatched). What is the *dependent* variable?
 - A) American robin
 - B) Eugene
 - C) Temperature
 - D) Number of eggs

3. What is the most likely Pearson's correlation coefficient (r) for this relationship?

- A) 0.90
- B) 0.09
- C) -0.9
- D) -0.09

4. What is the slope in this equation of a straight line?

$$y = mx + c$$

- A) y
- B) m
- C) x
- D) c

5. Which of the following is *polynomial* relationship?

A)
$$y = ax + c$$

$$B) \ y = ax + bx^2 + c$$

C)
$$y = log(ax) + c$$

D)
$$y = c$$

- ▶ What are examples of correlations?
- ▶ Why would we be interested in correlations?

Interested in the relationship between two samples

- ▶ Dependent variable:
 - data we are interested in explaining
 - Y-axis
 - response variable

Interested in the relationship between two samples

- ► Dependent variable:
 - data we are interested in explaining
 - Y-axis
 - response variable
- ► Independent variable:
 - data used to describe variation in dependent variable
 - X-axis
 - explanatory variable

Interested in the relationship between two samples

- ► Dependent variable:
 - data we are interested in explaining
 - Y-axis
 - response variable
- ► Independent variable:
 - data used to describe variation in dependent variable
 - X-axis
 - explanatory variable
- ▶ Dealing with *pairs* of values!

What is the sign of the correlation?

What is the sign of the correlation?

Lets play a game!

http://www.istics.net/Correlations/

We need a way to

- quantify correlations/relationships
- ightharpoonup assess whether correlations/relationships are significant

We need a *test*!

- 1. Spearman's rank test (r_s)
 - determine the strength of the link between 2 samples
 - data are *not* normally distributed
 - realtionship not linear
 - but still exhibits a positive of negative trend
 - is not u-shaped or n-shaped
 - \triangleright use the *ranks* of values
 - \triangleright correlation strength ranges from -1 to 1
 - ▶ -1: perfect negative correlation
 - ▶ 1: perfect *positive* correlation
 - ▶ 0: no correlation

We need a *test*!

- 2. Pearson's product moment (r)
 - determine the strength of the link between 2 samples
 - data are normally distributed
 - relationship assumed to be linear
 - positive of negative trend
 - not u- or n-shaped
 - use actual values
 - correlation strength ranges from -1 to 1
 - ▶ -1: perfect negative correlation
 - ▶ 1: perfect *positive* correlation
 - ▶ 0: no correlation

- 1. Spearman's rank test (r_s)
 - determine the strength of the link between 2 samples
 - data are not normally distributed
 - not necessarily linear
 - use the *ranks* of values
- 2. Pearson's product moment (r)
 - determine the strength of the link between 2 samples
 - data are normally distributed
 - assumed to be linear linear
 - use actual values
- ▶ For both, the *correlation coefficient* ranges from -1 to 1
 - ▶ -1: perfect negative correlation
 - ▶ 1: perfect *positive* correlation
 - ▶ 0: no correlation

Example: the Mayfly data

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

There is no correlation between stream speed and mayfly abundance

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

There is no correlation between stream speed and mayfly abundance

▶ H_1 (the alternative hypothesis):

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

There is no correlation between stream speed and mayfly abundance

▶ H_1 (the alternative hypothesis):

There is a positive correlation between stream speed and mayfly abundance

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- programs (Excel and R) will do the math for us
- ightharpoonup BUT we should be aware of what's going on!

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- ▶ programs (Excel and R) will do the math for us
- ightharpoonup BUT we should be aware of what's going on!

m	ayfly	
	Speed	Abundance
1	2	6
2	3	3
3	5	5
4	9	23
5	14	16
6	24	12
7	29	48
8	34	43

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

ightharpoonup first, calculate the ranks of the values: speed

ma	ayfly		
	Speed	${\tt Abundance}$	${\tt Speed.rank}$
1	2	6	1
2	3	3	2
3	5	5	3
4	9	23	4
5	14	16	5
6	24	12	6
7	29	48	7
8	34	43	8

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

ightharpoonup first, calculate the ranks of the values: abundance

m	ayfly			
	Speed	Abundance	${\tt Speed.rank}$	${\tt Abundance.rank}$
1	2	6	1	3
2	3	3	2	1
3	5	5	3	2
4	9	23	4	6
5	14	16	5	5
6	24	12	6	4
7	29	48	7	8
8	34	43	8	7

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

ightharpoonup then, calculate the difference in the ranks: D

m	ayfly				
	Speed	Abundance	${\tt Speed.rank}$	Abundance.rank	Diff
1	2	6	1	3	2
2	3	3	2	1	-1
3	5	5	3	2	-1
4	9	23	4	6	2
5	14	16	5	5	0
6	24	12	6	4	-2
7	29	48	7	8	1
8	34	43	8	7	-1

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

 \blacktriangleright then, square the difference in the ranks: D^2

ma	ayfly					
	Speed	${\tt Abundance}$	${\tt Speed.rank}$	${\tt Abundance.rank}$	${\tt Diff}$	${\tt Diff.sq}$
1	2	6	1	3	2	4
2	3	3	2	1	-1	1
3	5	5	3	2	-1	1
4	9	23	4	6	2	4
5	14	16	5	5	0	0
6	24	12	6	4	-2	4
7	29	48	7	8	1	1
8	34	43	8	7	-1	1

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

- ▶ so now we have all the pieces!
 - \triangleright n: number of pairs of observations (each has an x and a y)
 - ightharpoonup D: difference in ranks between variables
 - \triangleright D^2 : the difference squared

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

Speed Abundance Speed.rank Abundance.rank Diff Diff.s 1 2 6 1 3 2 2 3 3 2 1 -1
2 3 3 2 1 -1
3 5 5 3 2 -1
4 9 23 4 6 2
5 14 16 5 5 0
6 24 12 6 4 -2
7 29 48 7 8 1
8 34 43 8 7 -1

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

$$r_s = 0.81$$

What does this tell us?

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

$$r_s = 0.81$$

Two useful pieces of information:

- 1. Sign of the correlation
 - positive value means *positive* correlation

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

$$r_s = 0.81$$

Two useful pieces of information:

- 1. Sign of the correlation
 - positive value means positive correlation
- 2. Strength of the correlation
 - ightharpoonup r ranges from -1 to 1
 - $r_s = 0.81$ is strongly positive
 - ightharpoonup but is this *significant*?

Spearman's rank test (r_s) - conclusions

As with many statistical tests, determine significance based on:

- ► significance level
- ► sample size
- critical value

Spearman's rank test (r_s) - conclusions

As with many statistical tests, determine significance based on:

- ► significance level
- ► sample size
- ► critical value

If the test statistic is greater than the critical value:

- reject the null hypothesis
- ightharpoonup there is a statistically significant positive correlation

Spearman's rank test (r_s) - conclusions

As with many statistical tests, determine significance based on:

- ► significance level
- ► sample size
- critical value

If the test statistic is greater than the critical value:

- reject the null hypothesis
- ightharpoonup there is a statistically significant positive correlation

If the test statistic is less than the critical value:

- ► fail to reject the null hypothesis
- ▶ there is no evidence of a statistically significant positive correlation

Spearman's rank test (r_s) - mayfly conclusions

- ► significance level (typically 5%)
- ▶ $sample \ size \ (number \ of \ pairs = 8)$
- ► critical value (0.738)
- \blacktriangleright test stasistic ($r_s = 0.81$)
- ▶ the test stasistic is ?? than the critical value

No. of pairs, n	Significance level			
	5%	2%	1%	
5	1.000	1.000	-	
6	0.886	0.943	1.000	
7	0.786	0.893	0.929	
8	0.738	0.833	0.881	
9	0.683	0.783	0.833	
10	0.648	0.746	0.794	
12	0.591	0.712	0.777	
14	0.544	0.645	0.715	
16	0.506	0.601	0.665	
18	0.475	0.564	0.625	
20	0.450	0.534	0.591	
22	0.428	0.508	0.562	
24	0.409	0.485	0.537	
26	0.392	0.465	0.515	
28	0.377	0.448	0.496	
30	0.364	0.432	0.478	

Spearman's rank test (r_s) - mayfly conclusions

So, $r_s > 0.738$:

- ► reject the null hypothesis
- ▶ accept the alternative hypothesis

There is a statistically significant positive correlation between stream flow and mayfly abundance!

2. Pearson's product moment (r)

- 2. Pearson's product moment (r)
 - determine the strength of the link between 2 samples
 - data are normally distributed
 - relationship assumed to be linear
 - use actual values

2. Pearson's product moment (r)

- determine the strength of the link between 2 samples
- data are normally distributed
- relationship assumed to be linear
- use actual values
- ► -1: perfect negative correlation
- ▶ 1: perfect *positive* correlation
- ▶ 0: no correlation

2. Pearson's product moment (r)

- determine the strength of the link between 2 samples
- data are normally distributed
- relationship assumed to be linear
- use actual values
- ► -1: perfect *negative* correlation
- ▶ 1: perfect *positive* correlation
- 0: no correlation

The linear assumption:

► relationship between two variables can be described by the equation of a straight line:

$$y = mx + c$$

- \triangleright y: the dependent/response variable
- \triangleright x: the independent/explanatory variable
- \blacktriangleright m: the *slope* of the relationship
- ightharpoonup c: the intercept

Pearson's product moment (r) - an example

Relationship between area & species richness (by hand/eye):

$$species = m \times area + c$$

Pearson's product moment (r) - an example

Relationship between area & species richness (by hand/eye):

$$species = m \times area + c$$

- 2. Pearson's product moment (r)
- ▶ calculates the strength of the correlation
 - ▶ similar to Spearman's coefficient
- ▶ also the equation of the best fit line
 - calculates the slope
 - calculates the intercepts

Pearson's product moment calculates strength of correlation & parameters of linear relationship between two variables.

Example: the Mayfly data

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

There is no correlation between stream speed and mayfly abundance

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

There is no correlation between stream speed and mayfly abundance

▶ H_1 (the alternative hypothesis):

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

There is no correlation between stream speed and mayfly abundance

▶ H_1 (the alternative hypothesis):

There is a positive correlation between stream speed and mayfly abundance

Before conducting any statistical test, we need to state the hypotheses!

▶ H_0 (the *null* hypothesis):

There is no correlation between stream speed and mayfly abundance

▶ H_1 (the alternative hypothesis):

There is a positive correlation between stream speed and mayfly abundance

NOTE: the hypotheses remain the same, but the assumption about the data are different. The assumptions determine the appropriate model!

Pearson's product moment (r) - the straight line

Equation of a straight line:

$$y = mx + c$$

Pearson's product moment (r) - the slope

Equation of a straight line:

$$y = mx + c$$

Calculating the slope:

$$m = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Pearson's product moment (r) - the intercept

Equation of a straight line:

$$y = mx + c$$

Calculating the slope:

$$m = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Calculating the intercept:

$$\mathbf{c} = \bar{y} - m\bar{x}$$

Pearson's product moment (r) - the linear equation

Equation of a straight line:

$$y = mx + c$$

- ▶ programs (Excel and R) will do the math for us
- ▶ <u>BUT</u> we should be aware of what's going on!
 - calculating the *slope* from the data
 - calculating the *intercept* from the data

Pearson's product moment (r) - the statistical test

Equation of a straight line: y = mx + c

- ▶ but, is the linear relationship *significant*?
- ▶ we can calculate Pearson's correlation coefficient

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

Pearson's product moment (r) - the statistical test

Equation of a straight line: y = mx + c

- ▶ but, is the linear relationship *significant*?
- ▶ we can calculate Pearson's correlation coefficient

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

Pearson's product moment (r) - the statistical test

Equation of a straight line: y = mx + c

- ▶ but, is the linear relationship *significant*?
- ▶ we can calculate Pearson's correlation coefficient

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$
$$r = 0.84$$

Pearson's product moment (r) - in practice

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

$$r = 0.84$$

Again we have two useful pieces of information:

- 1. Sign of the correlation
 - positive value means *positive* correlation
- 2. Strength of the correlation
 - ightharpoonup r ranges from -1 to 1
 - $r_s = 0.84$ is strongly positive
 - ightharpoonup but is this *significant*?

Pearson's product moment (r) - conclusions

As with many statistical tests, determine significance based on:

- ► significance level
- ► sample size
- critical value

Pearson's product moment (r) - conclusions

As with many statistical tests, determine significance based on:

- ► significance level
- ► sample size
- ► critical value

If the test statistic is greater than the critical value:

- reject the null hypothesis
- ightharpoonup there is a statistically significant positive correlation

Pearson's product moment (r) - conclusions

As with many statistical tests, determine significance based on:

- ► significance level
- ► sample size
- ► critical value

If the test statistic is greater than the critical value:

- ► reject the null hypothesis
- ▶ there is a statistically significant positive correlation

If the test statistic is <u>less than</u> the critical value:

- ► fail to reject the null hypothesis
- ▶ there is no evidence of a statistically significant positive correlation

Pearson's product moment (r) - mayfly conclusions

- ► significance level (typically 5%)
- ▶ sample size (df = number of pairs 2 = 8 2 = 6)
- ► critical value (0.707)
- \blacktriangleright test stasistic (r = 0.84)
- ▶ the test stasistic is ?? than the critical value

	Significance		
Degrees of freedom	5%	1%	
1	0.997	1	
2	0.95	0.99	
3	0.878	0.959	
4	0.811	0.917	
5	0.754	0.874	
6	0.707	0.834	
7	0.666	0.798	
8	0.632	0.765	
9	0.602	0.735	
10	0.576	0.708	
12	0.532	0.661	
14	0.497	0.623	
16	0.468	0.59	
18	0.444	0.561	
20	0.423	0.537	
22	0.404	0.515	
	0.388	0.496	
24	0.374	0.478	
26	0.361	0.463	
28	0.340	0.440	

Pearson's product moment (r) - mayfly conclusions

So, r > 0.707:

- ► reject the null hypothesis
- ▶ accept the alternative hypothesis

There is a statistically significant positive correlation between stream flow and mayfly abundance!

Mayfly conclusions

Spearman's rank correlation coefficient:

- $r_s > 0.738$:
- reject the null hypothesis
- ▶ accept the alternative hypothesis

Pearson's correlation coefficient:

- r > 0.707:
- reject the null hypothesis
- ▶ accept the alternative hypothesis

Conclusion:

- ► same regardless of assumptions!
- ▶ there *is* a statistically significant positive correlation between stream flow and mayfly abundance!

Correlations in practice

- ▶ we *could* do it by hand (UGH!)
- ightharpoonup we prefer to use built in functions
 - ▶ in Excel
 - ▶ in R

Example: the Mayfly data

hea	ad(may	fly)	
5	Speed	Abundance	
1	2	6	
2	3	3	ø
3	5	5	2
4	9	23	Abundance
5	14	16	ĭ
6	24	12	3
			⋖

Spearman: $r_s = 0.81$ Pearson: r = 0.84

Spearman's rank test in Excel

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

In Excel

- ▶ an automated routine doe snot exist
- ▶ have to do it by hand
- **)**: (

Pearson's product moment in Excel

Pearson's correlation coefficient:

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

► CORREL(response, predictor)

Slope of the best fit line:

SLOPE(response, predictor)

Intercept of the best fit line:

$$c = \bar{y} - m\bar{x}$$

► INTERCEPT(response, predictor)

Pearson's product moment in Excel

Pearson's correlation coefficient:

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

► Analysis toolpack - Correlation

Correlation			? ×
Input Input Range: Grouped By:	SC\$1:SD\$50 © Columns Rows		OK Cancel <u>H</u> elp
Output options © Qutput Range: New Worksheet Ply: New Workbook	SF\$3		

Spearman's rank test in R

```
#make the mayfly 'data.frame' by hand:
mayfly \leftarrow data.frame(Speed = c(2,3,5,9,14,24,29,34),
                     Abundance = c(6,3,5,23,16,12,48,43))
mayfly
  Speed Abundance
                6
    9
               23
5
    14
            16
6
     24
          12
     29
            48
8
     34
               43
```

$$r_s = 1 - \frac{6 \times \sum D^2}{n(n^2 - 1)}$$

ightharpoonup Spearman correlation coefficient (r_s)

```
cor(var1, var2, method='spearman')
```

ightharpoonup Spearman correlation coefficient and significance test

```
cor.test(var1, var2, method='spearman')
```

ightharpoonup Spearman correlation coefficient (r_s)

```
cor(mayfly$Speed, mayfly$Abundance, method='spearman')
[1] 0.8095238
```

ightharpoonup Spearman correlation coefficient (r_s)

```
cor(mayfly$Speed, mayfly$Abundance, method='spearman')
[1] 0.8095238
```

▶ Spearman correlation coefficient and significance test

```
cor.test(mayfly$Speed, mayfly$Abundance, method='spearman')
    Spearman's rank correlation rho

data: mayfly$Speed and mayfly$Abundance
S = 16, p-value = 0.02178
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.8095238
```

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

ightharpoonup Pearson's correlation coefficient (r)

```
cor(var1, var2, method='pearson')
```

▶ Pearson's correlation coefficient and significance test

```
cor.test(var1, var2, method='pearson')
```

 \triangleright Pearson's correlation coefficient (r)

```
cor(mayfly$Speed, mayfly$Abundance, method='pearson')
```

 \triangleright Pearson's correlation coefficient (r)

```
cor(mayfly$Speed, mayfly$Abundance, method='pearson')
[1] 0.8441408
```

ightharpoonup Pearson's correlation coefficient (r)

```
cor(mayfly$Speed, mayfly$Abundance, method='pearson')
[1] 0.8441408
```

▶ Pearson's correlation coefficient and significance test

```
cor.test(mayfly$Speed, mayfly$Abundance, method='pearson')
```

 \triangleright Pearson's correlation coefficient (r)

```
cor(mayfly$Speed, mayfly$Abundance, method='pearson')
[1] 0.8441408
```

▶ Pearson's correlation coefficient and significance test

Linear equation in R

To calculate the slope and the intercept of the best fit line:

- ▶ use a linear model
- ▶ in R use the function lm(respnse ~ predictor)

Linear equation in R

To calculate the slope and the intercept of the best fit line:

- ▶ use a *linear model*
- ▶ in R use the function lm(respnse ~ predictor)

Linear equation in R

To calculate the slope and the intercept of the best fit line:

- ▶ use a linear model
- ▶ in R use the function lm(respnse ~ predictor)

```
summary(lm(mayfly$Abundance ~ mayfly$Speed))
Call:
lm(formula = mayfly$Abundance ~ mayfly$Speed)
Residuals:
   Min 1Q Median 3Q
                                 Max
-18 080 -2 481 -0 580 3 975 12 042
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8667 5.7912 0.322 0.75813
mayfly$Speed 1.1756 0.3048 3.857 0.00839 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.05 on 6 degrees of freedom
Multiple R-squared: 0.7126, Adjusted R-squared: 0.6647
F-statistic: 14.87 on 1 and 6 DF, p-value: 0.008393
```

Its all related!

```
cor.test(mavflv$Speed, mavflv$Abundance, method='pearson')
   Pearson's product-moment correlation
data: mayfly$Speed and mayfly$Abundance
t = 3.8568, df = 6, p-value = 0.008393
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3442317 0.9711386
sample estimates:
     cor
0.8441408
summary(lm(mayfly$Abundance ~ mayfly$Speed))
Call:
lm(formula = mayfly$Abundance ~ mayfly$Speed)
Residuals:
   Min 1Q Median 3Q
                                  Max
-18.080 -2.481 -0.580 3.975 12.042
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8667 5.7912 0.322 0.75813
mavflv$Speed 1.1756 0.3048 3.857 0.00839 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.05 on 6 degrees of freedom
Multiple R-squared: 0.7126, Adjusted R-squared: 0.6647
F-statistic: 14.87 on 1 and 6 DF, p-value: 0.008393
```

Its all related!

cor.test(mavflv\$Speed, mavflv\$Abundance, method='spearman')

```
Spearman's rank correlation rho
data: mayfly$Speed and mayfly$Abundance
S = 16, p-value = 0.02178
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.8095238
summary(lm(mavflv$Abundance ~ mavflv$Speed))
Call:
lm(formula = mayfly$Abundance ~ mayfly$Speed)
Residuals:
   Min 10 Median 30
                                 Max
-18.080 -2.481 -0.580 3.975 12.042
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8667
                        5.7912 0.322 0.75813
mayfly$Speed 1.1756 0.3048 3.857 0.00839 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.05 on 6 degrees of freedom
Multiple R-squared: 0.7126, Adjusted R-squared: 0.6647
F-statistic: 14.87 on 1 and 6 DF, p-value: 0.008393
```

Correlations in R:

- 1. Read in the data
- 2. Make a plot of 'total length' in response to 'SVL' length
- 3. Decide whether to use the Pearson or Spearman test

Correlations in R:

- ► Read in the data
- ▶ Make a plot of 'total length' in response to 'SVL' length
- ▶ Decide whether to use the Pearson or Spearman test
- ► Conduct the analysis:
 - what is the correlation coefficient?
 - ▶ what is the intercept of the relationship?
 - ▶ what is the slope of the relationship?
 - ▶ is the relationship significant?

Correlations in Excel:

- ► Create an Excel worksheet that show the same values you got in R:
 - ▶ the correlation coefficient
 - ▶ the intercept of the relationship
 - the slope of the relationship
 - ightharpoonup the p-value

Correlations in Excel:

- ► Create an Excel worksheet that show the same values you got in R:
 - ▶ the correlation coefficient
 - ▶ the intercept of the relationship
 - the slope of the relationship
 - ightharpoonup the *p*-value (see below)

► Submit the workbook

To compute the p-value, you need to use T.DIST.2T() in Excel. This needs t, $test\ statistic$, which you can calculate that using r (the correlation coefficient):

$$t = \frac{r \times \sqrt{n-2}}{\sqrt{1-r^2}}$$