EXAMEN FINAL

[Cod: CM334 Curso: Análisis Numérico I]

[Prof.: L. Paredes]

Alumno: Lazaro Camasca Edson

Pregunta 1:					
METODO HOUSE HOLDER					
A:					
[[1. 3. 9.]					
[1. 4. 16.]					
[1. 5. 25.]]					
Eliminando la columna 1					
v:					
[[1.]					
[0.3660254]					
[0.3660254]]					
H_1:					
[[-0.57735027 -0.57735027 -0.57735027]					
[-0.57735027 0.78867513 -0.21132487]					
[-0.57735027 -0.21132487 0.78867513]]					
R_1:					
[[-1.73205081e+00 -6.92820323e+00 -2.88675135e+01]					
[2.77555756e-17 3.66025404e-01 2.13952810e+00]					
[0.00000000e+00 1.36602540e+00 1.11395281e+01]]					
Q_1:					
[[-0.57735027 -0.57735027 -0.57735027]					
[-0.57735027 0.78867513 -0.21132487]					

[-0.57735027 -0.21132487 0.78867513]]

```
Eliminando la columna 2
v:
       ]
[[1.
[0.76732699]]
H_2:
[[ 1. 0.
            0. ]
[ 0. -0.25881905 -0.96592583]
[ 0.
       -0.96592583 0.25881905]]
R_2:
[[-1.73205081e+00 -6.92820323e+00 -2.88675135e+01]
[-7.18367158e-18 -1.41421356e+00 -1.13137085e+01]
[-2.68098273e-17 2.34919574e-16 8.16496581e-01]]
Q_2:
[[-5.77350269e-01 -5.77350269e-01 -5.77350269e-01]
[7.07106781e-01 -1.41152218e-18 -7.07106781e-01]
[ 4.08248290e-01 -8.16496581e-01 4.08248290e-01]]
Eliminando la columna 3
[[1.]]
H_3:
[[ 1. 0. 0.]
[0. 1. 0.]
[ 0. 0. -1.]]
R_3:
[[-1.73205081e+00 -6.92820323e+00 -2.88675135e+01]
[-7.18367158e-18 -1.41421356e+00 -1.13137085e+01]
```

```
[ 2.68098273e-17 -2.34919574e-16 -8.16496581e-01]]
Q_3:
[[-5.77350269e-01 -5.77350269e-01 -5.77350269e-01]
[ 7.07106781e-01 -1.41152218e-18 -7.07106781e-01]
[-4.08248290e-01 8.16496581e-01 -4.08248290e-01]]
Q final:
[[-5.77350269e-01 -5.77350269e-01 -5.77350269e-01]
[7.07106781e-01 -1.41152218e-18 -7.07106781e-01]
[-4.08248290e-01 8.16496581e-01 -4.08248290e-01]]
R_final
[[-1.73205081e+00 -6.92820323e+00 -2.88675135e+01]
[-7.18367158e-18 -1.41421356e+00 -1.13137085e+01]
[ 2.68098273e-17 -2.34919574e-16 -8.16496581e-01]]
c = Q * b:
[-4.04145188 -3.53553391 -0.40824829]
Resolviendo el sistema Triangular Superior: RX=c
Sistema de ecuaciones:
[-1.73205*x1 + -6.9282*x2 + -28.8675*x3] = [-4.04145]
[0*x1 + -1.41421*x2 + -11.3137*x3] = [-3.53553]
[0*x1 + 0*x2 + -0.816497*x3] = [-0.408248]
Solucion x : Coeficientes de la funcion
```

[-1.53271548e-14 -1.50000000e+00 5.00000000e-01]

Pregunta 2:

Método SOR

W = 1.2

Error Tolerancia = 1e-7

- x_1: [[14.8 -2.36]]
- x_2: [[6.70771892 -0.10349595]]
- x_3: [[4.9183591 2.13434921]]
- x_4: [[4.46141368 2.7388887]]
- x_5: [[4.13787632 2.91824458]]
- x_6: [[4.04534018 2.97471063]]
- x_7: [[4.01364734 2.99267518]]
- x_8: [[4.00386028 2.99798109]]
- x_9: [[4.00104483 2.99946264]]
- x_10: [[4.00027465 2.99986022]]
- A_10: [[4:00027403 2:33300022]
- x_11: [[4.00007087 2.99996417]]
- x_12: [[4.00001807 2.9999909]]
- x_13: [[4.00000458 2.9999977]]
- x_14: [[4.00000115 2.99999942]]
- x_15: [[4.00000029 2.99999985]]
- x_16: [[4.00000007 2.999999996]]

Converge en iter:16

Resultado:

[[4.0000007], [2.99999996]]

Pregunta 3:

METODO DE POTENCIA

Matriz A:

[[0.5 0.3 0.5]

 $[0.25 \ 0.4 \ 0.25]$

[0.25 0.3 0.25]]

Data Frame - Método Potencia

	.4/1.)			la sala da
x1(k)		x2(k)	x3(k)	lambda
0	400.0	400.000000	300.000000	
1	1.0	0.712766	0.627660	470
2	1.0	0.673395	0.604037	1.02766
3	1.0	0.667672	0.600603	1.00404
4	1.0	0.666817	0.600090	1.0006
5	1.0	0.666689	0.600014	1.00009
6	1.0	0.666670	0.600002	1.00001
7	1.0	0.666667	0.600000	1
8	1.0	0.666667	0.600000	1
9	1.0	0.666667	0.600000	1
10	1.0	0.666667	0.600000	1
11	1.0	0.666667	0.600000	1
12	1.0	0.666667	.600000	1
7 8 9 10 11	1.0 1.0 1.0 1.0 1.0	0.666667 0.666667 0.666667 0.666667	0.600000 0.600000 0.600000 0.600000	1 1 1 1

El valor propio es: 1.000000001544724

El vector propio es: [1. 0.66666667 0.6]

Comprobación:

A*v=

[1. 0.66666667 0.6]

lamb*v =

[1. 0.66666667 0.6]

Usando la librería np.linal.eig(A) Valor propio: [1.00000000e+00]

Pregunta 4:

Mínimos Cuadrados

```
Matriz M:
[[ 1 176]
[ 1 168]
[ 1 202]
[ 1 138]
[ 1 213]
[ 1 159]
[ 1 193]
[ 1 122]
[ 1 185]
[ 1 153]]
A = M.t * M:
[[ 10 1709]
[ 1709 299465]]
b = M.t * y:
[ 4932 889433]
Resolvemos Ax = b
x = Coeficientes: [-582.40096527 6.29374468]
C = -582.40096527 + 6.29374468 * I
```

Grafica

C(240) = 928.0977571685438

