Problema: utilizzo dei cerchi di Mohr per studiare la deformazione (12 gennaio)

giovedì 26 dicembre 2019 15:33

da eostruzione dei cerchi di Molve può essore effettuata per qualsiasi matais simundica, quinosi andio por la matrica di deformazione pura € Malla base di sersori ortonomiali (1, j, iè) dello spesio, la motrica data assume la sequente forma:

$$\underline{\underline{E}} = \begin{bmatrix} \varepsilon & \varepsilon/2 & o \\ \varepsilon/2 & o & o \\ o & o & o \end{bmatrix}$$

avendo finato la base, exponibile identificare i cettari anche attraverso le auc componenti un questo base. La diresione k e una diresione principale, arrociata all'autonottare nullo. Fufatti:

In astraire la air conferenza di Mohre, ni introduce un generico versore \underline{m} ortogonale a \underline{K} ed un versore \underline{m} sempre ortogonale a \underline{K} ma znotato di $^{Te}/z$ in senso erario rispetto ed \underline{n} (visto da \underline{K}). Scegliendo opportunamente \underline{m} ed \underline{m} ni porrano identificare dai punti motevali del piano avente $\underline{E}n$ in ascirra e $\frac{1}{8}$ Y_{mm} in ordinata su uni bassivi per tracciare la circonferenza richiesta. Con $\underline{E}n$ si indica la dilatazione lungo ea direzione \underline{m} , con Y_{mm} si indica alla disposte se condo le direzioni $(\underline{m},\underline{m})$ prima della deformazione. In posticolare, scegliendo $\underline{m} = \underline{I}$ ed $\underline{m} = \underline{I}$ si ottiene:

$$\frac{\delta(\hat{q})(\hat{x})}{2} = \underline{i} \cdot \underline{\mathbf{E}} \hat{\mathbf{j}} = \frac{\varepsilon}{2} \hat{\mathbf{j}}$$

Si identifica con il punto A (0, E/2).

auas gamente, su gaiendo m=i e m=-1 si ottiena:

$$\frac{\mathcal{S}(x)(-\vec{j})}{2} = -\vec{j} \cdot \vec{\Xi} \cdot \vec{i} = -\vec{\xi}_{\vec{j}};$$

da eui il punto $B(\mathcal{E}, -\mathcal{E}/2)$.

Si rappasentano i due penti sul piano, avendo cura di orientare gli osi $(E_n, \frac{\mathcal{E}_{nm}}{2})$ parallelamente ai versori E e f. He punto medio del sagniento AB si trava sell'osse delle oxisse. Dai punti A e B si tracciano le retre parallele alle normali corrispondent, assi y ed \times rispett ivamente. La loro interse F one detormi no F, il polo della rappasentazone di Holix. Si traccia la arconferenza di Holix imponendo che questa passi per i punti F, F e F. Il suo centro coincide con il punto medio di F.

Graficamente ni onerva nulito du il punto per ani la dilatazione è manima è il punto C. Da considerazioni guantiide, onervano de il raggio della circonferenzo e per a $\frac{N2}{2}$ ϵ e de l'oscima del centro della circonferenzo e per a $\frac{N2}{2}$ ϵ e de l'oscima del centro della circonferenza e per a $\epsilon/2$, ni de eluca Dio il socione della ruonima dibatozione (ascima di C) e pari a ϵ _{res} = ϵ = $1\frac{2+1}{2}$ ϵ .

Per judividuare la covispondente divisione (che coincide con una divisione principale) si eonginage il polo P con il punto C. Da eoni derasioni trigonometriche si omervo che questa muora diresione individuate, indicte eon 3, sonne eon l'ome delle × un angolo di pari a:

$$\omega = \tan^{\frac{1}{2}} \left(\frac{\varepsilon/2}{\frac{1+42}{2}\varepsilon} \right) = \frac{\pi}{8} .$$

L'altra direzione principale à sava inclinate di 5 16 rispetto all'osse delle x. È possibile rappresentaza sul piano anche il la dileatazione relativo all'osse z, che e asse principale, otenando cost le sequenti 3 airconferenze della rappresentazione di Molir.

Diduiarco de guesto dalaborato è esclurivamente frutto del mio lavoro, mon è stato copiato da altri.

Ommobine (Formitoni

Diduiare de questo descrito è esclusivamente frutto de mio lavoro, mon è stato copiato da altri.

Annolisa Generesi