Detection Of Anomaly & User Behavior Analytics

How to detect Anomaly and to use on Security?

Sections

- General Information
- 2 Anomaly Detection Through Keystroke
- Anomaly Detection Project

General Information

 Today's most damaging security threats do not originate from malicious outsiders or malware but from trusted insiders with access to sensitive data and systems - both malicious insiders and negligent insiders

General Information

Frequency for three profiles of insider incidents by global region

- Criminal & malicious insider
- Credential thief (imposter risk)

General Information

54%

Operational disruption or outage

50%

Loss of critical data

38%

Brand damage

Legal liabilities

Loss in competitive edge

Expenditure remediating successful intrusions

Loss in revenue

Total number of benchmarked organizations

204

Total number of insider incidents

4,716

Total average cost

\$11.45M

Incidents relating to negligence

62[%]

Incidents relating to criminal insider

23[%]

Incidents relating to user credential theft

14%

Annualized cost for negligence

\$4.581

Annualized cost for criminal insider

\$4.081

Annualized cost for credential theft

\$2.79M

General Information

Cost savings resulting in the deployment of cyber risk reducing tools and activities

Mean = \$11.45 (US\$ millions)

Sections

- General Information
- Anomaly Detection Through Keystroke
- Anomaly Detection Project

Anomaly detection through keystroke and tap dynamics implemented via machine learning algorithms

JAW ED et al., Turk J Elec Elig & Comp Sci

Figure 1. Proposed system of CyberSleep.

10101010

Anomaly detection through keystroke and tap dynamics implemented via machine learning algorithms

	count	mean	std	min	25%	50%	75%	max
DD.period.t	20400.0	0.264148	0.220534	0.0187	0.146900	0.20595	0.306450	12.5061
UD.period.t	20400.0	0.170769	0.226836	-0.2358	0.049800	0.10870	0.212400	12.4517
H.t	20400.0	0.085727	0.027424	0.0093	0.066000	0.08100	0.099800	0.2411
DD.t.i	20400.0	0.169085	0.123546	0.0011	0.113600	0.14040	0.183900	4.9197
UD.t.i	20400.0	0.083358	0.125755	-0.1621	0.027200	0.05780	0.096400	4.7999
H.i	20400.0	0.081565	0.026887	0.0032	0.062000	0.07710	0.096900	0.3312
DD.i.e	20400.0	0.159372	0.226928	0.0014	0.089300	0.12090	0.173100	25.9873
UD.i.e	20400.0	0.077806	0.228512	-0.1600	0.007400	0.04120	0.093400	25.9158
H.e	20400.0	0.089138	0.030635	0.0021	0.068600	0.08340	0.102700	0.3254
DD.e.five	20400.0	0.377434	0.265342	0.0013	0.216600	0.28900	0.456850	4.9618
UD.e.five	20400.0	0.288295	0.266695	-0.1505	0.133200	0.20040	0.369400	4.8827
H.five	20400.0	0.076904	0.021746	0.0014	0.061000	0.07420	0.090600	0.1989
DD.five.Shift.r	20400.0	0.438887	0.260343	0.1694	0.307900	0.37750	0.486025	8.3702
UD.five.Shift.r	20400.0	0.361983	0.260886	0.0856	0.229675	0.30200	0.408900	8.2908
H.Shift.r	20400.0	0.095937	0.033900	0.0014	0.070200	0.09350	0.116700	0.2817
DD.Shift.r.o	20400.0	0.250921	0.174533	0.0494	0.156500	0.20135	0.283425	4.1523
UD.Shift.r.o	20400.0	0.154984	0.181619	-0.0865	0.054700	0.10220	0.191000	4.0120

sessionIndex rep H.period DD.pe

0.1491

0.1111

0.1328

0.3509

0.2756

0.2847

0.2583 0.1338

0.1496 0.0839

0.1533 0.1085

01011101001010101001010

Sections

- General Information
- Anomaly Detection Through Keystroke
- Anomaly Detection Project

{'': 0, '!': 1, "'": 2,

'-': 3, '.': 4,

'1': 5,

'3': 6,

'4': 7, '5': 8,

'6': 9, '7': 10,

'8': 11,

'a': 12,

'b': 13, 'c': 14, 'd': 15, 'e': 16,

'f': 17,

'g': 18,

'h': 19, 'i': 20, 'j': 21,

'k': 22,

'1': 23,

'm': 24, 'n': 25, 'o': 26, 'p': 27, 'q': 28, 'r': 29, 's': 30,

't': 31,

'v': 34,

'w': 35, 'x': 36,

'y': 37,

'z': 38,

'ã§': 39, 'ä±': 40}

'thequickon 'u': 33,

5

10

15

20

20

10

Comparing Anomaly-Detection Algorithms for Keystroke Dynamics

Kron

