

Hyun Ho Jeon ISL Lab Seminar

Contents

Introduction - Visual Odometry

Visual odometry

• In robotics and computer vision, *visual odometry* is the process of determining the position and orientation of a robot by analyzing the associated camera images. It has been used in a wide variety of robotic applications, such as on the Mars Exploration Rovers.

Maimone, M.; Cheng, Y.; Matthies, L. (2007). "Two Years of Visual Odometry on the Mars Exploration Rovers". Journal of Field Robotics 24

Visual Odometry

Advantages of VO

- Is not affected by wheel slip in uneven terrain or other adverse conditions
- Provide accurate trajectory estimates
- Additional information acquisition
 - IMU, GPS, Wheel Odometry: egomotion only
- Low cost comparing to IMU, Laser Odometry
- Capable in GPS-denied environments
 - Underwater, Aerial, indoor, another planet

Positive condition for VO

Static scene with enough textured features

VO Process

Feature

• Features may be specific structures in the image such as points, edges or objects.

- Feature Tracking

- Feature Matching

Tracking & Matching

Camera movement

MANUA ARRAYS

Feature Tracking

Feature Matching

Match after track

Short baseline : low ME accuracy Guaranteed feature correspondence

long baseline: High ME accuracy
Poor feature correspondence
(even heavy computation for descriptor)

long baseline : High ME accuracy Guaranteed feature correspondence

Robust Aged Feature Set

How to obtain accurate Motion Estimation

- Sufficient reliable correspondences
 - Repeatable & Traceable feature extraction(Aging & Tracking)
 - Adding feature of new part of scene(Feature detection & Matching)
 - Outlier rejection
- Sufficient long baseline length
 - Sufficient pixel movement

VO : Real-time

- Low computational complexity feature detector
- Low computational complexity descriptor
- Simple tracking algorithm

Visual Odometry using RAFset

Overlap check

- Overlap check
 - Reduce computation, check overlapped features.

Filter

Outlier filtering

$$e_{i} = \sqrt{(x_{i} - x_{i})^{2} + (y_{i} - y_{i})^{2}} \qquad where, (x, y) \longleftrightarrow correspondence \longleftrightarrow (x', y')$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} e_{i}, \quad \sigma = \sqrt{\frac{\sum_{i=1}^{n} (e_{i} - \mu)^{2}}{n}}$$

$$T_{outlier} = \mu + \sigma_{e}$$

• Inliers should be smaller than $T_{outlier}$

Stop state detection

$$e_{i} = \sqrt{(x_{i} - x_{i})^{2} + (y_{i} - y_{i})^{2}} \qquad where, (x, y) \longleftrightarrow correspondence \longleftrightarrow (x', y')$$

$$\overline{e} = \sum_{i=1}^{n} e_{i}$$

Aging

Aging

- Tracked
- Overlapped
- Reappeared

De-aging

Disappearedage = age/numFailed

Structure of RAF

vecPoint

vecPoint

RAF Set = (vecPoint + other data) × nRAF

RAF Set = (vecPoint + other data) × nRAF

Robust Aged Feature Set

Scale Problem (2D-2D)

• [R|T] from E, |T| = 1

Scale Problem(3D-2D)

Use LIDAR information

Motion Estimation

• 2D-2D RT from Essential matrix => Triangulation(add 3D points)

• 3D-2D RT from solvePnP => Motion Estimation

KITTI Dataset

The odometry benchmark consists of 22 stereo sequences, saved in loss less png format: We provide 11 sequences (00-10) with ground truth trajectories for training and 11 sequences (11-21) without ground truth for evaluation. For this benchmark you may provide results using monocular or stereo visual odometry, laser-based SLAM or algorithms that combine visual and LIDAR information. The only restriction we impose is that your method is fully automatic (e.g., no manual loop-closure tagging is allowed) and that the same parameter set is used for all sequences. A development kit provides details about the data format.

- Download odometry data set (grayscale, 22 GB)
- Download odometry data set (color, 65 GB)
- Download odometry data set (velodyne laser data, 80 GB)
- Download odometry data set (calibration files, 1 MB)
- Download odometry ground truth poses (4 MB)
- Download odometry development kit (1 MB)

Experimental result

Experimental result

Experimental result: #09

Ventura, Jonathan, Clemens Arth, and Vincent Lepetit. "Approximated Relative Pose Solvers for Efficient Camera Motion Estimation." Computer Vision-ECCV 2014 Workshops. Springer International Publishing, 2014.

Q&A

Optical flow

