

Prof. Dr.-Ing. **Sikora**

Elvira Fleig, Rolf Jongebloed

Rechenübung Signale & Systeme (WiSe 2023/2024)

z-Transformation, zeitdiskrete Filter (12. Termin)

05.02 - 11.02.2024

Hinweise

- Die Aufgabenblätter zur Rechenübung stehen jeweils vor dem jeweiligen Termin auf dem ISIS-Portal zum Download bereit.
- Aufgaben, die mit [HA] bzw. [AK] beginnen, sind Hausaufgaben bzw. alte Klausuraufgaben, die als Hausaufgabe bearbeitet werden sollen. Diese werden zusätzlich in den freiwilligen Tutorien vorgerechnet bzw. besprochen.

1 z-Transformation

1.1 Herleitung der z-Transformation

a) Überführe allgemein die Fouriertransformierte eines zeitdiskreten Signals

$$u_A(t) = \sum_{k=-\infty}^{\infty} u(kT) \cdot \delta(t - kT)$$

zunächst in die zeitdiskrete Laplacetransformierte und schließlich in die z-Transformierte.

- b) Bestimme das Abbild der $j\omega$ -Achse aus der Laplace-Ebene in der z-Ebene.
- c) Gegeben sei das folgende PN-Diagramm eines zeitkontinuierlichen Systems. Skizziere das PN-Diagramm, das das System nach einer Abtastung des Ausgangssignals charakterisiert ($\omega_T = 6$).

- d) Skizziere die entsprechende PN-Verteilung des zeitdiskreten Systems in der z-Ebene.
- e) Wo in der z-Ebene lägen die beiden Polstellen, wenn ihr Imaginärteil ursprünglich ± 2 betragen hätte?

3 Seite(n) output.tex

1.2 Bestimme die z-Transformierten der folgenden zeitdiskreten Signale. Gib jeweils auch den Konvergenzbereich an, auf dem die z-Transformierte definiert ist.

a)
$$u_1 = \{4, 3, 2, 1\}$$

b)
$$u_2(n) = \left(\frac{1}{3}\right)^n \cdot \sigma(n)$$

1.3 Bestimme jeweils das zugehörige Signal im Zeitbereich für die folgenden z-Transformierten.

a)
$$U_1(z) = z + 2 + z^{-1}$$

b)
$$U_2(z) = \frac{z^2 + 4z}{z + 2}$$

2 Zeitdiskrete Filter

2.1 Skizziere für die folgenden Filter die ersten fünf Werte der Impulsantwort und gib die jeweilige Differenzengleichung an. Bestimme weiterhin die z-Transformierte der Differenzengleichung.

a)

b)

1.2 Bestimme die z-Transformierten der folgenden zeitdiskreten Signale. Gib jeweils auch den Konvergenzbereich an, auf dem die z-Transformierte definiert ist.

a)
$$u_1 = \{4, 3, 2, 1\}$$

b)
$$u_2(n) = \left(\frac{1}{3}\right)^n \cdot \sigma(n)$$

A)
$$U_{A}(2) = \sum_{k=0}^{\infty} u(k) 2^{-k} = 42^{-0} + 32^{-1} + 12^{-1} + 2^{-3}$$

konvergenzbereich: 42/93, 12/70

b)
$$U_2(\frac{1}{2}) = \sum_{k=0}^{\infty} U(k) \frac{1}{2}^{-k} = \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^{k} - \frac{1}{2}^{-k} = \sum_{k=0}^{\infty} \left(\frac{1}{3k}\right)^{k}$$

$$U(z) \equiv \mathbf{Z}_{II} \{ u(k) \} \equiv \sum_{k=-\infty}^{\infty} u(k) z^{-k}$$

Geometrische Reihei
$$\frac{2}{k}$$
 $9^k = \frac{1}{1-9}$, $|9| < 1$

$$U_{2}(\frac{1}{2}) = \frac{1}{1 - \frac{1}{3\frac{1}{2}}} = \frac{3\frac{1}{2}}{3\frac{1}{2} - 1}, \left| \frac{1}{3\frac{1}{2}} \right| < 1 \iff |3\frac{1}{2}| > 1 \iff |\frac{1}{2}| > \frac{1}{2}$$

1.3 Bestimme jeweils das zugehörige Signal im Zeitbereich für die folgenden z-Transformierten.

a)
$$U_1(z) = z + 2 + z^{-1}$$

b)
$$U_2(z) = \frac{z^2+4z}{z+2}$$

$$\delta(k-q) \longrightarrow z^{-q}$$

$$U_1(k) = S(k+1) + \lambda \cdot S(k) + S(k-1)$$

$$\frac{2}{2} \frac{1}{2} \frac{1}{4} \frac{1}{2} = \frac{1}{2} \frac{1}{4} \frac{$$

2 Zeitdiskrete Filter

2.1 Skizziere für die folgenden Filter die ersten fünf Werte der Impulsantwort und gib die jeweilige Differenzengleichung an. Bestimme weiterhin die z-Transformierte der Differenzengleichung.

	n	×(n)	X(n-1)	x(n-2)	x(n-3)	<i>ب</i> اله.	$\chi(n-1)=\chi(n)+\delta(n-1)$
	0	1	0	0	0	1/2	9
	1	0	51 V		0	1	
-	2	0	0	N A	. 0	-/	X(s) · Z-1
	3	0	0	O	2 \	- 4	
	4	0	0		0	0	

$$H(3) = \frac{\chi(3)}{\lambda(3)} = \left(\frac{2}{\sqrt{1}} + \frac{5}{2} - \sqrt{1} - \frac{5}{2} - \sqrt{1} - \frac{5}{2} - \frac{3}{2}\right) \cdot \frac{\frac{3}{2}}{3}$$

System funktion
$$(Die 2-610m361 mierte) = \frac{\frac{1}{2}z^3+z^3-z-\frac{1}{2}}{z^3}$$
der Impulsantwort)

b)

SIIR: Infinite Impulse Response

$$y(n) = 1 \cdot \chi(n) - 2 \cdot \chi(n-1) - \frac{1}{2} y(n-1) - \frac{1}{8} y(n-2)$$

n	K(N)	XCN-47	y (n-1)	y(n-2)	y (n)
0	1	O	0	0	_1
1	0	1	1	0	-2.1-2.12-5/2
2	0	O	- 52	81	- = - (- =) - = - 1
3	0	O	# =	7-5	- 4 . 4 - 1 . (-1) = - 11 + 6 = 24 = 8
4	0	٥	3/8	11/12	$-\frac{1}{2} \cdot \frac{3}{8} - \frac{1}{8} \cdot \frac{11}{12} = -\frac{71}{144}$
					1 744

$$H(2) = \frac{\chi(2) \cdot (1 - 2 \cdot 2^{-1})}{1 + 1/2 \cdot 2^{-1} + 1/3 \cdot 2^{-2}} = \frac{\chi(2) \cdot (2^{2} - 22)}{2^{2} + 1/2 \cdot 2^{2} + 1/3}$$

RUe Signale & Systeme | WiSe 2023/2024 | Termin 12 Seite 3 von 3

c)

d) $x[n] \xrightarrow{+} z^{-1} \xrightarrow{z} \frac{1}{3} \xrightarrow{1} \frac{1}{4}$

c) B(n)=1.x(n)-5.x(n-1)+5.x(n-5)-1.x(n-3)-78(n-1)+28(n-2)-48(n-2)

n	\times (n)	x(n-1)	x(n-2)	x (n-3)	y(n-1)	y(n-2)	y(n-3)	\(\gamma(n)
0	1	0	9	0	0	0	0	
1	0	AV.	. 0	0	15	0	0	-2.1-3.1=-5
2	0	0	a V	. 0	- <u>5</u> 🗸	1 /	0	2.1-5.(-1)+1=15
3	٥	0	0	7	15/4	-5/2	2 1	-1-1-15-2-5-1=-31
4	0	0	0	0	-37	²⁾ 15/4	7 -5/2	+7.57+1.15+15
					8			- 8 - 4 7 Z
								16

$$\frac{1}{A(z)} = \frac{1}{A(z)} \cdot \frac{$$

$$H((3) = \frac{\chi(3)}{\chi(3)} = \frac{3^3 + 2^3 - 2 \cdot 3^2 + 2}{3^3 + 2 \cdot 3^2 + 2 \cdot 3^2 + 2}$$

 $y(n) = 4 \cdot \alpha(n) + 3 \cdot \alpha(n-1) + 3 \cdot \alpha(n-1) + 1 \cdot \alpha(n-3)$ $\alpha(n) = x(n) + \frac{1}{2}\alpha(n-1) + \frac{1}{2}\alpha(n-1) + \frac{1}{4}\alpha(n-3)$

n	x(n)	acn)	oven -1)	acn -2)	acn -3)	yun
0	A	1	0	9	0	4
ન	o	17	1	0	0	¥+3=5
2	0	7.7.7.3	د) س	Λ	0	$\frac{3}{2} + \frac{3}{2} + \frac{1}{2} + \frac{6}{2} + \frac{6}{2} = \frac{6}{20}$
3	0	112 12	7	412	1	79 12
4	0	<u>87</u> 744	13	ساخ	12	467 6L

h(m= \$4,5, 35, 78/1, 463/62,...}

Y(2) = 4A(2) + 3 A(2) 2-1+3 A(2) -2-2+2 A(2) -2-3
A(2) = 4(2) + 2 A(2) 2-1+3 A(2) -2-2+2 A(2) -2-3

$$Y(5) = \frac{1 - \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5}}{X(5)}$$

2. kanonisule Form