MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

October 2, 2024

Outline

- Real Analysis Lecture 9
 - More on Closed Sets
 - Compactness

Outline

- Real Analysis Lecture 9
 - More on Closed Sets
 - Compactness

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

Examples:

every point in A is adherent

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points
- -1 is an accumulation point of (-1, 1).

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points
- -1 is an accumulation point of (-1, 1).
- suprema and infima are accumulation points!

Definition

A point $\vec{x} \in A$ is called an **adherent point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A.

It is called an **accumulation point** if for all r > 0 the ball $B(\vec{x}; r)$ contains at least one element of A different from \vec{x} .

- every point in A is adherent
- accumulation points are adherent points
- -1 is an accumulation point of (-1, 1).
- suprema and infima are accumulation points!
- 0 is an accumulation point of {1/1, 1/2, 1/3, ...}

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Obviously, if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A, then it contains at least one point of A different from \vec{x} , so it's an accumulation point.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Obviously, if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A, then it contains at least one point of A different from \vec{x} , so it's an accumulation point.

Suppose instead that \vec{x} is an accumulation point and let r > 0.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Obviously, if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A, then it contains at least one point of A different from \vec{x} , so it's an accumulation point.

Suppose instead that \vec{x} is an accumulation point and let r > 0. It suffices to show that the set $C = (B(\vec{x}; r) \setminus \{\vec{x}\}) \cap A$ is infinite.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Suppose that *C* is finite.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Suppose that C is finite.

Then the set $\{|\vec{y} - \vec{x}| : \vec{y} \in C\}$ is also finite.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Suppose that C is finite.

Then the set $\{|\vec{y} - \vec{x}| : \vec{y} \in C\}$ is also finite.

It is also nonempty and has only positive values.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Suppose that C is finite.

Then the set $\{|\vec{y} - \vec{x}| : \vec{y} \in C\}$ is also finite.

It is also nonempty and has only positive values. This means that it has a minimum value s > 0.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Suppose that C is finite.

Then the set $\{|\vec{y} - \vec{x}| : \vec{y} \in C\}$ is also finite.

It is also nonempty and has only positive values. This means that it has a minimum value s > 0.

Since \vec{x} is an accumulation point, $B(\vec{x}; s) \cap A$ has an element \vec{y} different from \vec{x} .

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Suppose that *C* is finite.

Then the set $\{|\vec{y} - \vec{x}| : \vec{y} \in C\}$ is also finite.

It is also nonempty and has only positive values. This means that it has a minimum value s > 0.

Since \vec{x} is an accumulation point, $B(\vec{x}; s) \cap A$ has an element \vec{y} different from \vec{x} .

However, $\vec{y} \in C$ and $|\vec{y} - \vec{x}| < s$, contradicting the minimality of s.

Theorem (Apostol Theorem 3.17)

A point \vec{x} is an accumulation point of A if for all r > 0, the ball $B(\vec{x}; r)$ contains infinitely many points of A.

Proof.

Suppose that C is finite.

Then the set $\{|\vec{y} - \vec{x}| : \vec{y} \in C\}$ is also finite.

It is also nonempty and has only positive values. This means that it has a minimum value s > 0.

Since \vec{x} is an accumulation point, $B(\vec{x}; s) \cap A$ has an element \vec{y} different from \vec{x} .

However, $\vec{y} \in C$ and $|\vec{y} - \vec{x}| < s$, contradicting the minimality of s.

We conclude that C is infinite.

Closure of a set

Definition

The **closure** of a set A is the set \overline{A} of all adherent points of A

Closure of a set

Definition

The **closure** of a set A is the set \overline{A} of all adherent points of A

Theorem (Apostol Theorem 3.18, 3.20, 3.22)

A set is closed if and only if it contains all of its adherent points (ie. $A = \overline{A}$), or equivalently if and only if A contains all of its accumulation points.

Closure of a set

Proof.

Suppose that A is closed.

Then $\mathbb{R}^n \setminus A$ is open.

If $\vec{x} \in \mathbb{R}^n \backslash A$, then there exist r > 0 such that $B(\vec{x}; r) \subseteq \mathbb{R}^n \backslash A$.

This means that $B(\vec{x}; r) \cap A = \emptyset$.

Thus \vec{x} is not an adherent point of A.

Thus every adherent point of A is an element of A.

Closures are closed

Theorem

If $A \subseteq \mathbb{R}^n$ is any set, then \overline{A} is closed.

Proof.

Exercise!

Outline

- Real Analysis Lecture 9
 - More on Closed Sets
 - Compactness

We are moving toward a very important notion called **compactness**.

We are moving toward a very important notion called **compactness**.

We are moving toward a very important notion called **compactness**.

This important concept is captured in many different ways:

no "missing points" in the set

We are moving toward a very important notion called **compactness**.

- no "missing points" in the set
- sequences have convergent subsequences

We are moving toward a very important notion called **compactness**.

- o no "missing points" in the set
- sequences have convergent subsequences
- Cauchy sequences converge

We are moving toward a very important notion called **compactness**.

- no "missing points" in the set
- sequences have convergent subsequences
- Cauchy sequences converge
- open covers have finite subcovers

Intuition of compactness

We are moving toward a very important notion called **compactness**.

This important concept is captured in many different ways:

- o no "missing points" in the set
- sequences have convergent subsequences
- Cauchy sequences converge
- open covers have finite subcovers
- in \mathbb{R}^n : compact = closed and bounded

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{i \in J} U_i$.

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{j \in J} U_j$.

Examples:

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{j \in J} U_j$.

Examples:

• $\{\mathbb{R}\}$ is an open cover of the interval (0,1]

Definition

A **open cover** of a set $A \subseteq \mathbb{R}^n$ is a family $\{U_i : i \in I\}$ of open sets with $A \subseteq \bigcup_{i \in I} U_i$.

A **subcover** is a family $\{U_j : j \in J\}$ with $J \subseteq I$ which is still covers A, ie. $A \subseteq \bigcup_{j \in J} U_j$.

Examples:

- $\{\mathbb{R}\}$ is an open cover of the interval (0,1]
- $\{(\frac{1}{n}, \frac{n+1}{n}) : n \in \mathbb{Z}_+\}$ is an open cover of (0, 1]

Lindelöf Covering Theorem

Theorem

Let $A \subseteq \mathbb{R}^n$ be a set and suppose $\{U_i : i \in I\}$ is an open covering of A. Then there exists a countable subcover $\{U_i : j \in J\}$.

Lindelöf Covering Theorem

Theorem

Let $A \subseteq \mathbb{R}^n$ be a set and suppose $\{U_i : i \in I\}$ is an open covering of A. Then there exists a countable subcover $\{U_i : j \in J\}$.

Question

Can we do better than this?

Lindelöf Covering Theorem

Theorem

Let $A \subseteq \mathbb{R}^n$ be a set and suppose $\{U_i : i \in I\}$ is an open covering of A. Then there exists a countable subcover $\{U_i : j \in J\}$.

Question

Can we do better than this?

Definition

A set $A \subseteq \mathbb{R}^n$ is called **compact** if every open cover of A has a *finite* subcover.

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

We prove the Bolzano-Weierstrass Theorem

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

- We prove the Bolzano-Weierstrass Theorem
- Then use Bolzano-Weierstrass to prove the Cantor Intersection Theorem

Definition

A set $A \subseteq \mathbb{R}^n$ is called **bounded** if there exists $\vec{a} \in \mathbb{R}^n$ and r > 0 with $A \subseteq B(\vec{a}; r)$.

We wish to prove the **Heine-Borel Theorem** that closed and bounded sets are compact.

- We prove the Bolzano-Weierstrass Theorem
- Then use Bolzano-Weierstrass to prove the Cantor Intersection Theorem
- We use the Cantor Intersection Theorem to prove the Heine-Borel Theorem

Bolzano-Weierstrass Theorem

Theorem (Bolzano-Weierstrass Theorem)

A bounded set $A \subseteq \mathbb{R}^n$ with infinitely many points will contain an accumulation point.