Chapter 6: K-Nearest Neighbor

CP363107 Data Science for marketing

สอนโดย รศ.ดร.วรารัตน์ สงฆ์แป้น

email: wararat@kku.ac.th

Department of Computer Science College of Computing, Khon Kaen University

Key idea: มีข้อมูลชุดการสอน (Training data) ให้เขียนอยู่ในรูป <xi, f(xi)> เช่น

ค์ปล่ะขอเสื่อย

- Discrete-valued หมายถึง ค่าป้ายบอกฉลากเป็นที่แบ่งประเภทชัดเจน เช่น วิ่ง หรือ ไม่วิ่ง ใช่ หรือ ไม่ใช่ เป็นต้น
 - ดังนั้นหาชุด X_q, ที่ใกล้เคียงที่สุดสำหรับชุดข้อมูลสอนมาเป็นตัวประมาณค่าสำหรับ X_n

$$\hat{f}(x_q) \leftarrow f(x_n)$$

 Real-valued หมายถึง ค่าป้ายบอกฉลากเป็นตัวเลขทศนิยม เช่น การพยากรณ์ ปริมาณน้ำฝน อุณหภูมิ เป็นต้น

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

Is this an apple?

ในการตัดสินผลไม้ที่ไม่เคยเห็นนั่นคือ แอปเปิ้ล นั่นคือเลือกพิจารณาภาพผลไม้จำนวน K ที่ใกล้เคียงมาก
 ที่สุด ดังนั้น การจำแนกประเภทผลไม้ที่ไม่ทราบจะใช้จำนวนผลโวตของผลไม้แต่ละประเภทว่าคือ แอปเปิ้ล

- •ถ้า k=5, นั่นหมายถึงเลือกภาพผลไม้ 5 ภาพที่ใกล้เคียงมากที่สุด เพื่อบ่งบอกประเภทของต้นไม้ที่ต้องการ แบ่งกลุ่ม
- •ดังนั้นจากภาพจะเห็นได้ว่า ผลไม้ทั้ง 5 ภาพส่วนใหญ่เป็นภาพของ แอปเปิ้ล ดังนั้นจึงตอบผลไม้นี้ว่า เป็น แอบเปิ้ล

ข้อเสียของ Decision Tree Classifier

()0.05

การปรับค่า K มีผลต่อคำตอบ

การปรับค่า K มีผลต่อคำตอบ

- ไม่ควรเลือก K เล็กเกินไป เพราะจะทำให้เบี่ยงเบนสูง
- ไม่ควรเลือก K ใหญ่เกินไป เพราะจะทำให้ข้อมูลเกินความลำเอียง
- เพราะฉะนั้นการเลือกค่า K ขึ้นอยู่กับข้อมูล ต้องมีการปรับค่าการประเมิน เช่น
 Cross-validation
- ระยะทางที่ใช้วัด คือ
 - ถ้า x ประกอบไปด้วย Attribute <a₁(x), a₂(x), ..., a_n(x)> ดังนั้น a_r(x) ดังกล่าว จึงแทนด้วยค่าในด้วย x
 ค่าระยะทางที่ใช้ เรียกว่า Euclidean Distance

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

โดย รศ.ดร.วรารัตน์ สงฆ์แป้น

K-NN Classifier

39 9 9

Discrete values

Humidity	temperature	Run
30	25	+
48	40	-
80	64	-
28	30	+
50	60	-

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

x = <humidity, temperature>

New instance $x_q = \langle 40, 30, run = ?? \rangle$ We can run inside(+) or outside (-)

$$\begin{aligned} &\text{Primed } d\left(x_q, x_1\right) = \sqrt{(40-30)^2 + (30-25)^2} = 11.18 \\ &d\left(x_q, x_2\right) = \sqrt{(40-48)^2 + (30-40)^2} = 12.80 \\ &d\left(x_q, x_3\right) = \sqrt{(40-80)^2 + (30-64)^2} = 52.5 \\ &d\left(x_q, x_4\right) = \sqrt{(40-28)^2 + (30-30)^2} = 12 \\ &d\left(x_q, x_5\right) = \sqrt{(40-50)^2 + (30-60)^2} = 31.62 \end{aligned}$$

1-NN (x1) Answer run inside(+)

2-NN (x1,x4) Answer run inside(+)

3-NN (x1,x2,x4) Answer run inside (+)

4-NN (x1,x2,x4,x5) Answer run inside (+)

5-NN Answer run inside(-)

K-NN Regressor

Real values

Humidity	temperature	Rainfall
30	25	5.1
48	40	15.5
80	64	20.2
28	30	3.2
50	60	12.0

x =

New instance $x_q =$ <40, 30, Rainfall =?? >

$$d(x_q, x_1) = \sqrt{(40 - 30)^2 + (30 - 25)^2} = 11.18$$

$$d(x_q, x_2) = \sqrt{(40 - 48)^2 + (30 - 40)^2} = 12.80$$

$$d(x_q, x_3) = \sqrt{(40 - 80)^2 + (30 - 64)^2} = 52.5$$

$$d(x_q, x_4) = \sqrt{(40 - 28)^2 + (30 - 30)^2} = 12$$

$$d(x_q, x_5) = \sqrt{(40 - 50)^2 + (30 - 60)^2} = 31.62$$

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

1-NN (x1)
Rainfall = 5.1

2-NN (x1,x4)
Rainfall =
$$(5.1+3.2)/2 = 4.15$$

3-NN (x1,x2,x4)
Rainfall = $(5.1+15.5+3.2)/3 = 7.9$

4-NN (x1,x2,x4,x5)
Rainfall = $(5.1+15.5+3.2+12.0)/4 = 8.95$

5-NN (x1,x2,x3, x4,x5)
Rainfall = $(5.1+15.5+3.2+20.2+12.0)/5 = 11.2$

ถ้าต้องการให้มีการประมาณค่าได้รายละเอียดมากขึ้น ดังนั้นจึงต้องคำนวณ ค่าน้ำหนักสำหรับการแบ่งประเภท ดังต่อไปนี้

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

ถ้าต้องการให้มีการประมาณค่าได้รายละเอียดมากขึ้น ดังนั้นจึงต้องคำนวณ ค่าน้ำหนักสำหรับการแบ่งประเภท ดังต่อไปนี้

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

Humidity	temperature	Run
30	25	1
48	40	0
80	64	0
28	30	1
50	60	0

x = <humidity, temperature>

New instance $x_q = <40$, 30> We can run inside(+) or outside (-), by k=3

$$\hat{f}(x_q) = \frac{w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3)}{w_1 + w_2 + w_3}$$

$$\hat{f}(x_q) = \frac{\left(\frac{1}{11.18^2}\right)^* (1) + \left(\frac{1}{12.8^2}\right)^* (0) + \left(\frac{1}{12^2}\right)^* (1)}{\left(\frac{1}{11.18^2}\right) + \left(\frac{1}{12.8^2}\right) + \left(\frac{1}{12^2}\right)} = 0.68 \approx 1$$

Humidity	temperature	Run
30	25	1
48	40	0
80	64	0
28	30	1
50	60	0

x = <humidity, temperature>

New instance $x_q = <40$, 30> We can run inside(+) or outside (-), by k=3

$$\hat{f}(x_q) = \frac{w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3)}{w_1 + w_2 + w_3}$$

$$\hat{f}(x_q) = \frac{\left(\frac{1}{11.18^2}\right)^* (1) + \left(\frac{1}{12.8^2}\right)^* (0) + \left(\frac{1}{12^2}\right)^* (1)}{\left(\frac{1}{11.18^2}\right) + \left(\frac{1}{12.8^2}\right) + \left(\frac{1}{12^2}\right)} = 0.68 \approx 1$$

Quiz พฤติกรรมคนใช้ Facebook

Sex	Occupation	Checkin	TypeOfPost	ClickAds
Male	Student	Education	Text	Camera
Female	Student	Bar	Video	Cosmetic
Female	Student	Bar	Text	Cosmetic
Male	Programmer	Bar	Text	Camera
Male	Student	Travel	Live	Camera

New instance x_q = <Female, Programmer, Travel, Live, ClickAds=?>

Use k=1, 3 or 5

จาก K-NN ทำไมใช้กับระบบ Recommendation

• ช่วยคัดเลือกของที่คิดว่าผู้ใช้จะสนใจ

สินค้าในระบบออนไลน์หนึ่งๆ หากมีมากมายมหาศาล การจะให้ผู้ใช้เลือกเองทั้งหมดนั้นก็จะเป็นการ เปลืองเวลาและเปลือง resource ไปมาก ซึ่งเมื่อผู้ใช้เข้ามาระบบเราแล้วค้นหาของไม่เจอ หรือ ของเยอะเกินไป สุดท้ายก็อาจจะเกิดความรู้สึกไม่อยากใช้เว็บเรา ดังนั้นระบบ recommendation จึงช่วยคัดเลือกสินค้าที่คิดว่าผู้ใช้จะสนใจ แทนที่จะนำเสนอทั้งหมด

• ช่วยแนะนำสินค้าอื่นๆมาให้ผู้ใช้

ตัวอย่างเช่น อย่างนึงที่การที่เรานำเสนอของอื่นๆที่ยังเกี่ยวข้องกับผู้ใช้อยู่ ซึ่งก็จะเป็นการเปิดโอกาสให้ผู้ใช้นั้นได้รู้จักกับสินค้าใหม่ๆ จากระบบ recommendation ด้วย

จะแนะนำได้ต้องดู Feedback

• ประเภทของ Feedback มากจาก Rating แบ่งเป็น 2 ประเภท คือ

1. Explicit Rating การให้คะแนนรีวิวต่างๆ เช่น ผู้ใช้ A อาจจะให้คะแนนรีวิวสินค้า B ด้วยคะแนน $\mathsf{8/10}$ คะแนน เราก็ จะสามารถรู้ได้ว่าผู้ใช้ A นั้นค่อนข้างชอบสินค้า B หรือ อาจจะให้คะแนนสินค้า C แค่ 1/10คะแนน เราก็จะพอทราบได้ว่าผู้ใช้ A ไม่ชอบสินค้า C เท่าไหร่ เป็นต้น 2. Implicit Rating ช่องทางอื่นอีกที่เราจะพอสามารถเดาๆได้ว่าผู้ใช้ชอบหรือมีความสนใจในสินค้าของเราหรือไม่ ตัวอย่างเช่น การคลิกเข้าไปดูสินค้านั้น หรือการตัดสินใจที่จะซื้อสินค้านั้น หรือการที่ผู้ใช้กด favorite เป็นต้น ซึ่ง rating ประเภทนี้นั้น จะมีปริมาณข้อมูลที่เยอะมากกว่า explicit rating มาก รวมไปถึงเมื่อมีผู้ใช้ใหม่เข้ามา เราก็สามารถเก็บข้อมูลนี้ได้เลยทันทีเมื่อเค้าเริ่มคลิก แต่ feedback ที่ได้นั้นก็จะไม่ชัดเจนเท่า explicit rating

ประเภทโมเดล Recommendation

Content Based VS Collaborative Filtering

Content-Based Filtering similar features (taste, ingredients, ...) recommended liked to user 1 by user user 1

Collaborative Filtering

โดย รศ.ดร.วรารัตน์ สงฆ์แป้น

Content Based VS Collaborative Filtering

CONTENT-BASED FILTERING

COLLABORATIVE FILTERING

Collaborative Filtering

ป็นหนึ่งใน Algorithm ที่ใช้ในการสร้าง Patterns หรือ Rules ในการแนะนำสินค้า ซึ่งแบ่ง ได้ง่ายๆ เป็น 2 แบบ

แบบที่ 1: User-Based Filtering เป็นการแนะนำโดยหาลูกค้าที่พฤติกรรมเหมือนกัน

แบบที่ 2: Item-Based Filtering เป็นการแนะนำโดยหาสินค้าที่ถูกซื้อด้วยลูกค้ากลุ่มเดียวกัน

User-based filtering

Collaborative filtering

User-based filtering

Learning the similarity weights

				And a second	
T	9	6	8	4	
	2	10	6		8
9	5	9		10	7
	?	10	7	8	?

User-based filtering

Learning the similarity weights distance or similarity measurements including K-NN (Euclidean Distance) Pearson Correlation, Cosine Similarity, and so on. 6 6 0.4 0.9 10 9 8

Item-based filtering

โดย รศ.ดร.วรารัตน์ สงฆ์แป้น