

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique

Année 2018–2019

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique

Filipe Manuel Vasconcelos

Table des matières

Table	des m	a <mark>tières</mark> 5
Introd	luctio	<u>n</u> 9
Chapi	${ m tre} \ 1$	Systèmes linéaires, continus 11
1.	Intro	duction
	1.1.	Système
	1.2.	Système linéaire
	1.3.	Système à temps continu
	1.4.	Système invariant
2.	Mod	élisation d'un signal
	2.1.	Types de signaux
	2.2.	Propriétés générales des signaux analogiques 11
	2.3.	Signaux usuels
3.	La tı	cansformée de Laplace
	3.1.	Définition
	3.2.	Transformées des signaux usuels
	3.3.	Propriétés
	3.4.	Application de la transformée de Laplace
4.	Fonc	tion de Transfert
	4.1.	Représentation de la fonction de transfert
Chapi	tre 2	Schéma fonctionnels 31
1.	Intro	duction
2.	Term	ninologie
3.	Tran	sformation des schémas fonctionnels
	3.1.	Réduction de schéma-bloc
	3.2.	Manipulation de schéma-bloc
4.	Cas	d'entrées multiples
5.	Rédu	action de schéma-bloc de grande taille
	5.1.	Exemple à entrée simple
	5.2.	Exemple à entrées multiples 41
6.	Grap	he de fluence
	6.1.	Définitions
	6.2.	Algèbre des graphes de fluences
	6.3.	Règle de Mason

Chapi	tre 3	Modélisation des SLCI	49
1.	Intro	duction	49
2.	Systè	eme du premier ordre	50
	2.1.	Définition d'un système du premier ordre	50
	2.2.	Fonction de transfert d'un système du premier ordre	50
	2.3.	Pôle de la fonction de transfert du premier ordre	50
	2.4.	Réponses temporelles d'un système du premier ordre	50
3.	Systè	eme du second ordre	54
	3.1.	Définition d'un système du second ordre	54
	3.2.	Fonction de transfert d'un système du second ordre	54
	3.3.	Pôles de la fonction de transfert du second ordre	55
	3.4.	Réponses temporelles d'un système du second ordre	56
4.	Autre	es modèles	69
Chapi	tre 4	Analyse fréquentielle	71
1.	Répo	nse harmonique	71
	1.1.	Exemple de réponse harmonique dans le domaine temporelle	73
2.	Repre	ésentation graphique de la réponse harmonique	75
	2.1.	Diagramme de Bode	76
	2.2.	Diagramme de Nyquist	78
	2.3.	Diagramme de Black	78
3.	Analy	yse fréquentielle des modèles usuels	79
	3.1.	Diagrammes de Bode : méthodologie générale	79
	3.2.	Diagrammes de Nyquist : méthodologie générale	95
Chapi	tre 5	Asservissements linéaires des systèmes	105
1.	Intro	duction	105
Chapi	tre 6	Performances des systèmes asservis	107
Chapi	tre 7	Stabilité des systèmes asservis	109
1.	Défin	itions de la stabilité	109
2.	Critè	re de stabilité	109
	2.1.	Critère algébrique de Routh	111
	2.2.	Critère graphique du revers	114
	2.3.	Critère de Nyquist	116
Chapitre 8		Correction des systèmes asservis	117
Chapitre 9		Initiation à la représentation d'état	119
Chapitre A		Transformation de Laplace	123
1.	Défin	itions	123
2.	Propriétés		
3.		eau des transformées de Laplace	
Annex	ke B	Rappel sur les nombres complexes	129

Annex	ce C Décomposition en éléments simples	133
1.	Avant-propos	. 133
2.	Fraction rationnelle rencontrées en automatique	. 133
3.	Décomposition en éléments simples	. 134
4.	Détermination des coefficients de la DES	. 135
	4.1. Par identification	. 135
	4.2. Multiplication/Substitution	. 135
	4.3. Évaluation	. 135
	4.4. Parité	. 135
	4.5. Passage à la limite	. 135
Annex	ke D Systèmes du second ordre	137
1.	Abaques	. 138
2.	Réponses temporelles	. 139
3.	Analyse fréquentielle	. 141
Annex	ce E Initiation à Scilab	143
1.	Présentation générale	. 143
2.	Syntaxe: console	. 144
3.	Polynômes et fractions rationnelles	. 145
4.	Vecteurs et matrices	. 148
5.	Programmation	. 151
6.	SLCI avec Scilab	. 153
	6.1. Définition d'un système linéaire	. 153
	6.2. Simulation temporelle d'un système linéaire	. 154
	6.3. Système du premier ordre	. 155
	6.4. Système du second ordre	. 158
Annex	ce F Échelle logarithmique et le décibel	159
1.	Rappel sur le logarithme décimal	. 159
2.	Échelle logarithmique décimale	. 159
3.	Le décibel	. 161
4.	Diagramme de Bode	. 161
5.	Tracer du diagramme de Bode avec Scilab	. 163
Référe	ences	165
Index		167

Introduction

1. Systèmes linéaires continus et invariants

1. Introduction

1.1. Système

- 1.2. Système linéaire
- 1.3. Système à temps continu
- 1.4. Système invariant

2. Modélisation d'un signal

Un signal

2.1. Types de signaux

à compléter... Analogique, numérique et discret.

2.2. Propriétés générales des signaux analogiques

Un signal d'entrée ou de sortie d'un SLCI sera modélisé par une fonction continue du temps. Formellement, par une fonction s telle que :

$$s: \mathbb{R} \to \mathbb{R}$$
$$t \to s(t)$$

Causal

Stable

Périodique

2.3. Signaux usuels

Impulsion de Dirac

L'impulsion de Dirac $\delta(t)$ est une « fonction » telle que

$$\delta(t) : \begin{cases} \int_{-\infty}^{+\infty} \delta(t) \, dt &= 1\\ \int_{-\infty}^{+\infty} \delta(t) f(t) \, dt &= f(0) \end{cases}$$

Graphiquement une impulsion de Dirac $\delta(t)$ est représentée par une flèche en t=0. La figure ci-dessous présente une impulsion de Dirac ainsi qu'une impulsion retardée de τ noté $\delta(t-\tau)$.

FIGURE 1.1.

Impulsion réelle:

La réponse à une impulsion de Dirac est appelée réponse impulsionnelle.

¹Les guillemets sont essentiels pour ne pas se fâcher avec nos collègues mathématiciens.

FIGURE 1.2.

Échelon unité

L'échelon unitaire est défini par la fonction, noté u(t), telle que :

$$u(t) = \begin{cases} 0 & \forall t < 0 \\ 1 & \forall t \ge 0 \end{cases}$$

Graphiquement, la fonction est représenté par une marche² à t=0. Ci dessous nous la représentons avec la fonction retardée $u(t-\tau)$.

FIGURE 1.3.

En général, l'échelon unitaire est utilisé en entrée de nos systèmes pour modéliser des états fermé/ouvert (« on/off »). Nous la rencontrerons souvent sous sa forme généralisée,

$$e(t) = E_0 u(t)$$

où e(t) est le signal d'entrée du système et E_0 la valeur seuil de l'échelon dont l'unité dépend de la nature du problème considéré.

La réponse à un échelon est appelée réponse indicielle.

²Nos collègues anglo-saxons l'appelle la « step function »

Rampe unité

La fonction rampe³ r(t) unité est la fonction telle que :

$$r(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$$

ou autrement dit, en utilisant la propriété de causalité de l'échelon :

$$r(t) = t \cdot u(t)$$

Figure 1.4.

Remarquons que la fonction rampe est l'intégrale de l'échelon unité, notamment

$$r(t) = \int_{-\infty}^{t} u(\tau) \, d\tau$$

Exponentielle décroissante

La fonction exponentielle décroissante s(t) est telle que :

$$s(t) = e^{-at} \cdot u(t)$$

avec a l'inverse d'un temps caractéristique.

Sinusoïde

La fonction sinusoïdale s(t) est la fonction telle que :

$$s(t) = A\sin(\omega t + \phi) \cdot u(t)$$

avec A son amplitude, ω sa pulsation (en rad/s) et ϕ sa phase (rad). La réponse à une sinusoïde est appelée la **réponse harmonique** et son analyse fera l'objet de tout un chapitre (Chapitre 4).

³On retrouve parfois [16] le terme d'échelon vitesse pour désigner la fonction rampe

FIGURE 1.5.

FIGURE 1.6.

3. La transformée de Laplace

La transformée de Laplace⁴ est l'outil indispensable pour l'étude des SLCI. Celle-çi s'avère très utile pour la résolution d'équation différentielle régissant nos SLCI et nous permettra de définir la notion de fonction de transfert entre une entrée et une sortie d'un système.

3.1. Définition

La Transformée de Laplace (TL) d'une fonction causale s (signal) d'une variable réelle t (temps), est la fonction S de la variable complexe p, définie par :

$$S(p) = \mathcal{L}\left\{s(t)\right\} = \int_0^{+\infty} e^{-pt} s(t) dt.$$
 (1.1)

 $^{^4\}mathrm{Pierre-Simon}$ de Laplace, (1749-1827) mathématicien, astronome, physicien et homme politique français

On dit également que S(p) est l'image dans le domaine de Laplace de la fonction s(t) du domaine temporelle. De plus la transformée S(p) de s(t) est unique et parfaitement définie. Connaissant S(p) on en déduit s(t) par la transformation inverse

$$s(t) = \mathcal{L}^{-1}\left\{S(p)\right\}$$

Les transformations inverse sont tabulées à l'Annexe A. Lorsque la transformation n'existe pas dans les tables, on réalise une décompostion en éléments simple de la réponse S(p) pour se placer dans un cas usuel (Annexe C).

Remarquons, dès à présent l'utilisation d'une convention utile : les fonctions du temps seront toujours désignées par une minuscule, et les fonctions complexes par la majuscule respective.

3.2. Transformées des signaux usuels

Transformée d'une impulsion de Dirac

Par simple application des définitions de la TL et de l'impulsion de Dirac, la transformée d'une impulsion de Dirac $\delta(t)$ s'écrit :

$$\mathscr{L}\left\{\delta(t)\right\} = \int_{0}^{+\infty} e^{-pt} \,\delta(t) \mathrm{d}t = 1$$

ou encore

$$\mathscr{L}\left\{\delta(t)\right\} = 1\tag{1.2}$$

Transformée d'un échelon unitaire

La transformée de Laplace d'un signal échelon unitaire s'écrit :

$$\mathscr{L}\{u(t)\} = \int_0^{+\infty} e^{-pt} u(t) dt = \int_0^{+\infty} e^{-pt} dt = \left[\frac{-e^{-pt}}{p}\right]_0^{+\infty} = \frac{1}{p}$$

ou encore

$$\mathscr{L}\left\{u(t)\right\} = \frac{1}{p} \tag{1.3}$$

Dans le cas de la forme généralisée, il suffit de multiplier par une constante.

Transformée d'une rampe

La transformée de Laplace d'un signal rampe s'écrit :

$$\mathscr{L}\left\{r(t)\right\} = \int_0^{+\infty} e^{-pt} r(t) dt = \int_0^{+\infty} t e^{-pt} dt$$

Par intégration par parties :

$$v = -\frac{1}{p}e^{-pt}$$
 $du = dt$
 $dv = e^{-pt}dt$ $u = t$

$$\int_0^{+\infty} t e^{-pt} dt = \left[-t \frac{1}{p} e^{-pt} \right]_0^{+\infty} - \int_0^{+\infty} -\frac{1}{p} e^{-pt} dt = \frac{1}{p^2}$$

ou encore

$$\mathscr{L}\left\{r(t)\right\} = \mathscr{L}\left\{t \cdot u(t)\right\} = \frac{1}{p^2} \tag{1.4}$$

Transformée d'une exponentielle décroissante

$$\mathscr{L}\left\{e^{-at}u(t)\right\} = \int_0^{+\infty} e^{-pt}e^{-at}dt = \int_0^{+\infty} e^{-(p+a)t}dt = \frac{1}{p+a}$$

ou encore

$$\mathscr{L}\left\{e^{-at}u(t)\right\} = \frac{1}{p+a} \tag{1.5}$$

Transformée d'une sinusoïde

La transformée de Laplace d'un signal sinusoïdal s'écrit :

$$\mathcal{L}\left\{\sin\omega t \cdot u(t)\right\} = \int_0^{+\infty} e^{-pt} \frac{e^{j\omega t} - e^{-j\omega t}}{2j} dt = \frac{1}{2j} \int_0^{+\infty} e^{-(p-j\omega)t} dt - \int_0^{+\infty} e^{-(p+j\omega)t} dt$$
$$= \frac{1}{2j} \left(\frac{1}{p-j\omega} - \frac{1}{p+j\omega}\right)$$
$$= \frac{\omega}{p^2 + \omega^2}$$

ou encore

$$\mathscr{L}\left\{\sin\omega t \cdot u(t)\right\} = \frac{\omega}{p^2 + \omega^2} \tag{1.6}$$

3.3. Propriétés

Nous allons ici uniquement présenter les principales propriétés de la TL, on se rapportera à nouveau à l'Annexe A pour une liste exhaustive de ces propriétés. La propriété fondamentale de la transformée de Laplace est d'être linéaire.

Retard

Soit $s(t-\tau)$ un signal s(t) présentant un retard τ .

$$\mathscr{L}\left\{s(t-\tau)\right\} = \int_0^{+\infty} e^{-pt} s(t-\tau) dt$$

en appliquant le changement de variable $t' = t - \tau$, on obtient $t = t' + \tau$ et dt = dt

$$\mathscr{L}\{s(t-\tau)\} = \int_{\tau}^{+\infty} e^{-p(t'+\tau)} s(t') dt' = e^{-p\tau} \int_{0}^{+\infty} e^{-pt'} s(t') dt' = e^{-p\tau} \int_{0}^{+\infty} e^{-p\tau} s(t') dt' = e^{-p\tau} \int_{0}^{+\infty} e^{-p\tau}$$

on reconnait dans cette dernière expression la définition de la transformée de Laplace, on écrit alors :

$$\mathcal{L}\left\{s(t-\tau)\right\} = e^{-p\tau}S(p) \tag{1.7}$$

Dérivation

Soit un signal s(t) continu et dérivable pour $t \geq 0$ et S(p) sa transformée. Par définition de la transformée de Laplace

$$\mathcal{L}\left\{\frac{\mathrm{d}s(t)}{\mathrm{d}t}\right\} = \int_0^{+\infty} e^{-pt} \frac{\mathrm{d}s(t)}{\mathrm{d}t} \mathrm{d}t$$

par intégration par parties

$$v = e^{-pt}$$
 $du = \frac{ds(t)}{dt}dt$
 $dv = -pe^{-pt}dt$ $u = s(t)$

$$\mathcal{L}\left\{\frac{\mathrm{d}s(t)}{\mathrm{d}t}\right\} = \left[s(t)e^{-pt}\right]_0^{+\infty} - p \int_0^{+\infty} e^{-pt}s(t)\mathrm{d}t$$
$$= f(0) + pS(p)$$

ou encore

$$\mathcal{L}\left\{\frac{\mathrm{d}s(t)}{\mathrm{d}t}\right\} = pS(p) + f(0) \tag{1.8}$$

On généralise à tous les ordres de dérivation dans le cas de conditions initiales nulles.

$$\mathscr{L}\left\{\frac{\mathrm{d}^n s(t)}{\mathrm{d}t^n}\right\} = p^n S(p)$$

Remarquons que dériver dans le domaine temporelle consiste à multiplier par p dans le domaine de Laplace.

Intégration

Soient des signaux v(t) et s(t) tel que $v(t) = \int_0^t s(\tau) d\tau$. Par définition,

$$\mathscr{L}\left\{v(t)\right\} = \int_0^{+\infty} e^{-pt} v(t) dt$$

par intégration par parties,

$$v = v(t)$$
 $du = e^{-pt}dt$
 $dv = s(t)dt$ $u = -\frac{1}{p}e^{-pt}$

$$\mathcal{L}\left\{v(t)\right\} = \left[-\frac{1}{p}v(t)\right]_0^{+\infty} - \int_0^{+\infty} -\frac{1}{p}e^{-pt}s(t)dt$$
$$= \frac{1}{p}\int_0^{+\infty} e^{-pt}s(t)dt$$

ou encore

$$\mathcal{L}\left\{\int_0^t s(\tau)d\tau\right\} = \frac{S(p)}{p} \tag{1.9}$$

Remarquons que intégrer dans le domaine temporelle consiste à diviser par p dans le domaine de Laplace.

Théorème de la valeur initiale

$$s(0) = \lim_{p \to +\infty} pS(p) \qquad \forall S(p)$$
 (1.10)

Théorème de la valeur finale

$$s(\infty) = \lim_{p \to 0} pS(p) \tag{1.11}$$

valable que si pS(p) a tous ses pôles à partie réelle strictement négative, autrement dit que le signal soit stable.

3.4. Application de la TL à la résolution d'équation différentielle

Soit l'équation différentielle suivante :

$$\frac{d^2s(t)}{dt^2} + 2\frac{ds(t)}{dt} + s(t) = e(t)$$
 (1.12)

où e(t) et s(t) sont respectivement les fonctions temporelles d'entrée et de sortie du système régit par cette équation différentielle avec pour conditions initiales (CI) s(0) = -1 et s'(0) = 2. Nous considérons la réponse à un échelon unitaire (i.e e(t) = u(t))

Nous allons résoudre cette équation par deux méthodes différentes : la méthode classique de résolution d'équations différentielles avec second membre, et par l'application de la transformée de Laplace⁵.

Résolution par la méthode « classique »

L'équation caractéristique associée à cette équation différentielle est donnée par

$$r^2 + 2r + 1 = 0$$

cette équation possède une solution double $r_{1,2} = -1$. La solution homogène $s_0(t)$ est donc de la forme

$$s_0(t) = (\alpha t + \beta)e^{-t}.$$

Une solution particulière $s_1(t) = 1$ nous est trivialement donnée par l'entrée en échelon qui correspond au régime permanent. La solution générale est donc donnée par :

$$s(t) = (\alpha t + \beta)e^{-t} + 1$$

⁵Dans le cas particulier de cette équation différentielle, on observera que la méthode classique est plus facile à mettre en oeuvre. Ceci n'est pas toujours le cas. Comme nous le verrons la transformée de Laplace devient totalement indispensable pour la définition de la fonction de transfert d'un SLCI.

FIGURE 1.7. – Représentation de la solution générale de l'équation différentielle (1.12). On vérifie lors du tracer que l'on observe bien les principales propriétes du signal (i.e conditions initiales, valeurs finales).

Dérivons cette solution générale pour pouvoir déterminer les coéfficients α , β en utilisant les conditions initiales,

$$s'(t) = \alpha e^{-t} - (\alpha t + \beta)e^{-t}$$

$$s(0) = -1 \Rightarrow \beta + 1 = -1 \Rightarrow \beta = -2$$

 $s'(0) = 2 \Rightarrow \alpha + 2 = 2 \Rightarrow \alpha = 0$

La solution générale de l'équation différentielle (1.12) est donc

$$s(t) = 1 - 2e^{-t} (1.13)$$

On constate que cette solution vérifie l'équation différentielle (1.12) ainsi que les conditions initiales.

Résolution par appliqation de la transformée de Laplace

Appliquons la transformée de Laplace aux différents termes de l'équation différentielle (1.12), nous obtenons

$$\mathcal{L}\left\{s(t)\right\} = S(p)$$

$$\mathcal{L}\left\{\frac{\mathrm{d}s(t)}{\mathrm{d}t}\right\} = pS(p) - s(0) = pS(p) + 1$$

$$\mathcal{L}\left\{\frac{\mathrm{d}^2s(t)}{\mathrm{d}t^2}\right\} = p^2S(p) - ps(0) - s'(0) = p^2S(p) + p - 2$$

$$\mathcal{L}\left\{u(t)\right\} = \frac{1}{p}$$

L'équation différentielle (1.12) devient dans le domaine de Laplace :

$$p^{2}S(p) + p - 2 + 2pS(p) + 2 + S(p) = \frac{1}{p}$$

En réarrangeant cette expression, il est possible de déterminer la forme de la réponse S(p) dans le domaine de Laplace.

$$S(p) (p^{2} + 2p + 1) + p = \frac{1}{p}$$

$$S(p) (p+1)^{2} = \frac{1-p^{2}}{p}$$

$$S(p) = \frac{1-p^{2}}{p(p+1)^{2}}$$

Cette forme « n'existant »pas dans les tableaux de transformation de Laplace usuels, nous allons décomposer cette fraction rationnelle en éléments simples (Annexe C).

$$S(p) = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2}$$

Par identification,

$$S(p) = \frac{A(p+1)^2 + Bp(p+1) + Cp}{p(p+1)^2} = \frac{1 - p^2}{p(p+1)^2}$$

$$\begin{cases} A + B & = -1\\ 2A + B + C & = 0\\ A & = 1 \end{cases} \Rightarrow \begin{cases} B & = -2\\ C & = 0 \end{cases}$$

La réponse S(p) se décompose donc de la façon suivante en éléments simples :

$$S(p) = \frac{1}{p} - \frac{2}{p+1}$$

Il est maitenant plus aisé d'appliquer la transformation de Laplace inverse, en utilisant le tableau des transformées de Laplace usuels (Annexe A) pour obtenir la réponse temporelle s(t). Notamment,

$$\mathcal{L}^{-1}\left\{\frac{1}{p}\right\} = 1$$

et

$$\mathcal{L}^{-1}\left\{\frac{2}{p+1}\right\} = 2e^{-t}$$

soit

$$\mathcal{L}^{-1}\left\{S(p)\right\} = s(t) = 1 - 2e^{-t} \tag{1.14}$$

Comme attendu, les deux méthodes donnent le même résultat, cependant la transformée de Laplace permet de définir dans le domaine de Laplace, une relation direct entre l'entrée et la sortie d'un système. C'est la fonction de transfert qui réalise ce lien.

4. Fonction de Transfert

Comme nous l'avons déjà discuté, un SLCI est par définition représenté par une équation différentielle à coefficients constants,

$$\sum_{i=0}^{n} a_i \frac{\mathrm{d}^i s(t)}{\mathrm{d}t^i} = \sum_{i=0}^{m} b_i \frac{\mathrm{d}^i e(t)}{\mathrm{d}t^i}$$
(1.15)

avec $n, m \in \mathbb{N}$, s(t) le signal de sortie, e(t) le signal d'entrée et $a_i, b_i \in \mathbb{R}$. L'équation est dite d'ordre n.

Sous cette forme, cette équation différentielle constitue ce que l'on nomme la loi temporelle du système. Sans perte de généralité, on ne considèrera dans un premier temps que les systèmes pour lesquels toutes les conditions initialles sont nulles⁶.

⁶Que l'on nomme la condition d'Heaviside

En appliquant la transformée de Laplace à l'équation (1.15), on obtient

$$\sum_{i=0}^{n} a_i p^i S(p) = \sum_{i=0}^{m} b_i p^i E(p)$$
 (1.16)

Sous cette forme, cette équation constitue ce que l'on nomme la loi fréquentielle du système.

Définition

La fonction de transfert H(p) d'un système est donnée par le rapport de la sortie S(p) sur l'entrée E(p).

$$H(p) = \frac{S(p)}{E(p)} \tag{1.17}$$

Cette fonction H(p) est également appelé transmittance.

4.1. Représentations algébrique et graphique de la fonction de transfert

D'après la loi fréquentielle (Équation (1.16)), la fonction de transfert d'un SLCI peut s'écrire sous la forme d'une fraction rationnelle,

$$H(p) = \frac{\sum_{i=0}^{m} b_i p^i}{\sum_{i=0}^{n} a_i p^i}.$$
 (1.18)

Il existe différentes façons équivalentes d'écrire cette fonction de transfert. Nous allons en introduire deux : la forme canonique et la forme factorisée. La forme canonique permet de faire apparaître les intégrateurs purs du systèmes. La forme factorisée utilise les racines de la fraction rationnelle définissant la fonction de transfert. Pour montrer l'équivalence de ces représentations nous allons les construire à partir de la forme générale de l'équation (1.18) et ou de la connaissance des pôles et zéros de la fonction de transfert.

Une fonction de transfert peut être vue comme le fraction de deux polynômes (i.e fraction rationnelle) : un polynôme au numérateur N(p) et un polynôme au dénominateur D(p).

$$H(p) = \frac{N(p)}{D(p)}$$

Ces polynômes possèdent des racines dans \mathbb{C} . Les racines de N(p) sont dits les zéros de H(p) et les racines de D(p) sont dits les pôles de H(p). Il en vient qu'une fonction de transfert possède m zéros et n pôles.

Exemple

Reprenons l'équation différentielle de la section précédente, dans les conditions de Heaviside, afin de construire la fonction de transfert qui lui est associée.

$$\frac{d^2s(t)}{dt^2} + 2\frac{ds(t)}{dt} + s(t) = e(t)$$
 (1.19)

La transformée de Laplace de cette équation nous donne,

$$p^{2}S(p) + 2pS(p) + S(p) = E(p)$$

$$S(p) (p^{2} + 2p + 1) = E(p)$$

$$S(p) = \frac{1}{p^{2} + 2p + 1}E(p)$$

La fonction de transfert associée à cette équation différentielle est donc

$$H(p) = \frac{1}{p^2 + 2p + 1}$$

Il est aisé de constater que la fonction de transfert est d'ordre deux et ne possède pas de zéro.

Forme canonique de la fonction de transfert

Développons les sommes de l'équation (1.18),

$$H(p) = \frac{b_0 + b_1 p + b_2 p^2 + \ldots + b_m p^m}{a_0 + a_1 p + a_2 p^2 + \ldots + a_n p^n}.$$

La forme canonique dépend du nombre d'intégrateur du système. Par exemple, si a_0 est non nul, l'expression précédente se factorise sous la forme,

$$H(p) = K_0 \cdot \frac{1 + b'_1 p + b'_2 p^2 + \ldots + b'_m p^m}{1 + a'_1 p + a'_2 p^2 + \ldots + a'_n p^n}.$$

avec $K_0 = \frac{b_0}{a_0}$, $a_i' = \frac{a_i}{a_0}$ et $b_i' = \frac{b_i}{b_0}$. Dans ce cas, le système est dit de classe 0 et donc ne possède aucun intégrateur.

Si maintenant a_0 est nul et a_1 non nul, la fonction de transfert peut s'écrire,

$$H(p) = \frac{K_1}{p} \cdot \frac{1 + b'_1 p + b'_2 p^2 + \ldots + b'_m p^m}{1 + a'_1 p + a'_2 p^2 + \ldots + a'_{n-1} p^{n-1}}.$$

avec $K_1 = \frac{b_0}{a_1}$, $a'_i = \frac{a_{i+1}}{a_1}$ et $b'_i = \frac{b_i}{b_0}$. Dans ce cas, le système est dit de classe 1 et donc possède un intégrateur.

On généralise donc la forme canonique de la fonction de transfert d'un système de classe α sous la forme,

$$H(p) = \frac{K_{\alpha}}{p^{\alpha}} \cdot \frac{\sum_{i=0}^{m} b'_{i} p^{i}}{\sum_{i=0}^{n-\alpha} a'_{i} p^{i}}$$
(1.20)

où $K_{\alpha} = \frac{b_0}{a_{\alpha}}$ est le gain statique et les coefficients de la forme canonique a'_i et b'_i sont déterminés à partir des coefficients de l'équation différentielle régissant le système⁷.

Exemple de forme canonique

Soit un système décrit par la fonction de transfert suivante :

$$H(p) = \frac{2p+5}{p^3 + 2p^2 + 4p}$$

Le coefficient d'ordre 0 étant nul au dénominateur, le système est de classe 1, la forme canonique de cette fonction de transfert est donc⁸ donnée par

$$H(p) = \frac{K(0.4p+1)}{p(0.25p^2 + 0.5p + 1)},$$

où le gain statique K = 1.25.

Forme factorisée de la fonction de transfert

Soient les pôles p_i avec $i \in [1, n]$ et les zéros z_j avec $j \in [1, m]$ de la fonction de transfert H(p). Il est alors possible de factoriser par les pôles et les zéros pour écrire la fonction de transfert sous la forme :

⁷Pour simplifier la notation, les primes des coefficients de la forme canonique peuvent être omis, cependant ceux-ci restent toujours différents des coefficients de l'équation différentielle.

⁸Il est d'usage en automatique d'écrire les nombres rationnels par leurs valeurs numériques plutôt que par leurs fractions.

$$H(p) = k \cdot \frac{\prod_{j=0}^{m} (p - z_j)}{\prod_{i=0}^{n} (p - p_i)},$$
(1.21)

avec $k = \frac{b_m}{a_n}$. On remarquera que cette constante k n'est pas le gain statique de la forme canonique.

Exemple de fonction de transfert factorisée

Soit la fonction de transfert H(p) tel que

$$H(p) = \frac{6p + 12}{2p^2 + 4p + 1.5}$$

En factorisant par les coefficients d'ordre maximum au numérateur et au dénominateur, et en observant que la fonction de transfert possède un zéro $(z_1 = -2)$ et deux pôles $(p_1 = -1.5 \text{ et } p_2 = -0.5)$, on peut réécrire H(p) sous sa forme factorisée :

$$H(p) = \frac{6}{2} \cdot \frac{p+2}{p^2 + 2p + 0.75}$$

La fonction de transfert possède un zéro $(z_1 = -2)$ et deux pôles $(p_1 = -1.5)$ et $p_2 = -0.5$. Elle peut alors s'écrire :

$$H(p) = \frac{k(p+2)}{(p+1.5)(p+0.5)}$$

avec k=3.

Carte des pôles et zéros d'une fonction de transfert

Il est également possible de représenter une fonction de transfert graphiquement à l'aide d'une carte des pôles et des zéros dans le plan complexe. Les pôles sont représentés par des (×) et les zéros par des (∘). La carte des pôles et des zéros d'une fonction de transfert est essentiel pour la construction du lieu d'Evans⁹ pour l'étude des systèmes asservis.

Exemple de carte de pôles et zéros d'une fonction de transfert

Soit H(p) une fonction de transfert telle que

$$H(p) = \frac{p-1}{p^2 + 2p + 2} \tag{1.22}$$

⁹Walter Richard Evans, (1920-1999), ingénieur, automaticien américain

Cette fonction de transfert possède un zéro réel $(z_1 = 1)$ et deux pôles complexes conjugués $(p_{1,2} = 1 \pm j)$. La forme factorisée de H(p) est donc

$$H(p) = \frac{p-1}{(p+1+j)(p+1-j)}$$
 (1.23)

La figure 1.8 présente la carte des pôles de cette fonction de transfert.

FIGURE 1.8. – Exemple d'une carte de pôles et zéros associés à la fonction de transfert Équation (1.22)

2. Schémas fonctionnels et graphes de fluence

1. Introduction

Dans ce chapitre, nous allons introduire un outil graphique pour faciliter la représentation des relations mathématiques entre les différents éléments constituants un SLCI. Cet outil est le **schéma fonctionnel** ou également appelé **schéma-blocs**. Les schémas fonctionnels nous seront très utiles pour l'étude des systèmes asservis. Dans une dernière partie nous introduirons les graphes de fluence, comme présenté dans [11]. Même si ces derniers sont moins utilisés pour l'étude des schémas fonctionnels, l'algèbre qui lui est associée s'avère bien plus éfficace et pourra être utilisé dans d'autres applications (ex : éléctronique, réseaux de neurones).

2. Terminologie

Les schémas fonctionnels sont composés de quatre éléments de base :

- les flèches.
- les blocs.
- les comparateurs et sommateurs.
- les points de prélèvement.

Flèche

Les flèches donnent la direction de l'information (i.e du signal) au sein du schémablocs. Elles peuvent être orner de la grandeur mathématique qui leurs sont associée. Celles-ci peuvent être des grandeurs temporelles ou fréquentielles.

$$e(t)$$
 $E(p)$

Pour allégér la notation, nous allons omettre la variable p des grandeurs dans le domaine de Laplace désigné par une majuscule.

Bloc

Le bloc est la représentation d'une fonction de transfert entre deux grandeurs. Par exemple, la relation entre deux grandeurs E et S et la fonction de transfert H qui s'écrit formellement,

$$S = HE, (2.1)$$

est équivalente au schéma fonctionnel suivant :

$$E \longrightarrow H \longrightarrow S$$

Comparateur/Sommateur:

Les comparateurs ou sommateurs permettent de représenter des opérations simples entre différentes grandeurs. Nous parlerons respectivement de comparateur ou de sommateur dans le cas d'une différence ou d'une somme entre deux grandeurs. Par exemple, la relation

$$S = E_1 - E_2$$

est équivalente au comparateur suivant :

De même pour la somme de deux grandeurs,

$$S = E_1 + E_2$$

est équivalente au sommateur suivant :

Point de prélèvement

Un point de prélèvement (ou point de dérivation ou encore jonction) est un point d'une flèche où une information est prélevée ne modifiant pas sa valeur. Par exemple, la jonction suivante (représenté par un point) donne lieu à deux branches auxquelles sont associées la même grandeur S.

Dans cette configuration, la branche 1 est dite « direct »et la branche 2 est dite de « retour ».

3. Transformation des schémas fonctionnels

3.1. Réduction de schéma-bloc

Blocs en série / produit

Lorsque les blocs sont placés en série, la fonction de transfert entre la sortie et l'entrée globale est le produit des fonctions de transfert mis en jeu. Par exemple, les deux schémas fonctionnels suivants sont équivalents.

Nous laissons au lecteur la démonstration triviale à partir des relations mathématiques.

Blocs en parallèle

Lorsque les blocs sont placés en parallèle, la fonction de transfert entre la sortie et l'entrée globale est la somme des fonctions de transfert mis en jeu. Par exemple, les deux schémas fonctionnels suivants sont équivalents.

La démonstration est également triviale.

La boucle de contre-réaction (positive ou négative)

La boucle de contre-réaction peut être réduite à une simple fonction de transfert. Considérons un système définit par le schéma-bloc ci-dessous, composé des différents élements de bases.

Notons l'utilisation du symbole \pm dans le comparateur/sommateur Déterminons la relation entre l'entrée E et la sortie S de ce système. Pour celà réécrivons les relations linéaires simples issus de ce schéma-bloc. On sait que :

$$\epsilon = E \pm M \tag{2.2}$$

$$M = H_2 S \tag{2.3}$$

$$S = H_1 \epsilon \tag{2.4}$$

 $^{^1 \}mbox{\ensuremath{\mbox{\tiny a}}}$ Positive or negative feedback », chez nos amis anglophones

Introduisons l'équation (2.3) dans (2.2) et le résulat ainsi obtenu dans (2.4):

$$\epsilon = E \pm H_2 S$$

$$S = H_1 (E \pm H_2 S)$$

$$S = H_1 E \pm H_1 H_2 S$$

Regroupons les termes dépendant de la sortie ensemble pour déterminer la relation entre l'entrée et la sortie.

$$S(1 \mp H_1 H_2) = H_1 E$$

On obtient alors la formule de Black², reliant la sortie est l'entrée d'une boucle de contre-réaction :

$$S = \frac{H_1}{1 \mp H_1 H_2} E \tag{2.5}$$

Notons l'inversion du signe du dénominateur de la formule selon que la boucle est positive ou négative.

La boucle de contre-réaction est donc équivalente au schéma-bloc simplifié suivant :

$$\begin{array}{c|c}
E & \hline
 & H_1 \\
\hline
 & 1 \mp H_1 H_2 \\
\hline
\end{array}$$

Boucle de contre-réaction unitaire

Une boucle de contre-réaction unitaire est une boucle de contre-réaction sans fonction de transfert de retour (ex : dans le cas présenté précedemment $H_2 = 1$).

La formule de Black se simplifie alors de la façon suivante :

$$S = \frac{H_1}{1 + H_1} E \tag{2.6}$$

²Harold Stephen Black (1898-1983) ingénieur, électronicien américain.

3.2. Manipulation de schéma-bloc

Nous allons ici présenter différentes manipulations que nous pourront appliquer au schéma-bloc. Ces manipulations peuvent être vues comme des opérations d'une algèbre de blocs.

Déplacement d'un comparateur vers la gauche

Considérons le schéma-bloc suivant :

Pour pouvoir déplacer le comparateur vers la gauche, il faut introduire le bloc K dans la chaîne direct. En conséquence, la chaîne de retour doit être modifié pour ne pas affecter la sortie globale S. Le schéma fonctionnel précédent est donc équivalent au schéma ci-dessous :

Dans le cas particulier où les deux branches du comparateur sont toutes les deux affectées par la même fonction de transfert, il suffit de déplacer la fonction de transfert après le comparateur. Par exemple, les deux schémas-blocs suivants sont équivalents :

Déplacement d'un point de prélèvement vers la droite

Considérons le schéma-bloc suivant :

Il est aisé de déplacer le bloc K devant le point de prélèvement :

Dans le cas particulier où seul une branche est affectée par le bloc, il faut réduire la branche non affectée après avoir déplacer le point de prélèvement. Ansi les deux schémas-blocs ci-dessous sont équivalents :

4. Cas d'entrées multiples

Dans le cas d'un système possédant plusieurs entrées, il est possible de simplifier le problème en appliqant le principe de superposition. Notamment la réponse totale est la somme des réponses indivuels de chaque entrée lorsque toutes les autres sont considérées comme nuls.

Considérons le schéma-blocs suivant :

Dans un premier temps, on considère l'entrée P nulle, le schéma-bloc devient :

La sortie $S_{P\equiv 0}$ (i.e lorsque $P\equiv 0$) est donc donnée par la formule de Black pour la boucle de contre-réaction ainsi obtenue.

$$S_{P\equiv 0} = \frac{H_1 H_2}{1 + R_1 H_1 H_2} E$$

Dans le cas où l'on considère maintenant l'entrée E comme nulle, le schéma-bloc se réduit de la façon suivante :

La sortie $S_{E\equiv 0}$ est donc donnée par,

$$S_{E\equiv 0} = \frac{H_2}{1 + R_1 H_1 H_2} P$$

La sortie totale S du système à deux entrées est la somme de ses sorties indépendantes,

$$S = S_{P \equiv 0} + S_{E \equiv 0} \tag{2.7}$$

$$S = \frac{H_1 H_2}{1 + R_1 H_1 H_2} E + \frac{H_2}{1 + R_1 H_1 H_2} P \tag{2.8}$$

$$S = H_E E + H_P P \tag{2.9}$$

Si E est une entrée de consigne et P une perturbation, H_E et H_P sont respectivement appelées fonction de transfert d'asservissement et fonction de transfert de régulation.

5. Méthodologie générale pour la réduction de schéma-bloc de grande taille

Nous venons de présenter les principales transformations et manipulations qui peuvent être appliquées aux schémas fonctionnels. Nous donnons ici une approche simple pour la réduction de schéma-bloc de grande taille :

- 1. Regrouper les blocs en parallèle et en série.
- 2. Éliminer les boucles de contre-réaction locales.
- 3. Déplacer les sommateurs/comparateurs vers la gauche et déplacer les jonctions vers la droite.
- 4. Répéter pour obtenir une forme cannonique pour une entrée particulière.
- 5. Dans le cas d'entrée multiple, répéter (1-4) pour chaque entrée.

5.1. Exemple à entrée simple

Nous allons appliquer étape par étape cette méthodologie à la réduction du schémabloc, à une seule entrée, suivant :

Étape 1Regroupons d'abord les blocs en cascades :

Étape 2
Déplaçons le point de prélèvement de la boucle de retour inférieur vers la droite :

L'étape précédente nous permet d'identifier une boucle de contre-réaction locale (B_1) . Après réduction de cette boucle, le schéma-blocs dévient :

À nouveau il est possible d'identifier une boucle de contre-réaction B_2 :

Étape 3

Enfin, il nous suffit de réduire la boucle de contre-réaction B_2 par la formule de Black :

$$\begin{array}{c|c}
E & \hline
 & H_1H_2H_3H_4 & S \\
\hline
 & 1 + R_1H_3H_4 + R_2R_3H_1H_2H_3 & S
\end{array}$$

5.2. Exemple à entrées multiples

6. Graphe de fluence

Nous discutons ici d'une approche sensiblement différente pour la représentation graphique des relations mathématiques intervenants dans les SLCI. Cette partie est largement inspirée de [11]. Elle peut être omise au cours d'une première lecture. L'algèbre de ces graphes de fluence est cependant très éfficace et trouve de nombreuses applications en dehors de l'automatique.

6.1. Définitions

Branche et noeud

Dans l'application qui nous intéresse, un graphe de fluence peut être vu comme un schéma fonctionnel allégé. En effet, le graphe de fluence ne comporte que deux éléments de base : le **noeud** et la **branche orientée**. Les noeuds portent les variables du système (entrée, sortie, perturbation, commande...). Une branche reliant deux noeuds peut être ornée du facteur multiplicatif ou de la fonction de transfert.

L'équation (2.1) reliant une entrée et sortie par l'intermédiaire d'une fonction de transfert se représente par le graphe de fluence suivant :

$$E \circ \xrightarrow{H} \circ S$$

$$S = HE$$

Source, puits et parcours

Nous allons condidérer le graphe de fluence suivant, pour illustrer différentes définitions :

FIGURE 2.1. – Graphe de fluence présentant les différents éléments de bases, types de noeuds et de branches.

— Une **source** ou noeud d'entrée est un noeud dont toutes les branches sont divergentes. Exemple : le noeud E est une source.

- Un **puits** ou noeud de sortie est un noeud dont toutes les branches sont convergentes. Exemple : le noeud S est un puits.
- Un **parcours** est une succession continue, unidirectionnelle de branches. Exemples : $\{E \to X_1 \to X_2 \to S\}$, $\{E \to X_1 \to S\}$, $\{X_1 \to X_2 \to S\}$, $\{E \to X_1 \to X_2 \to X_1 \to S\}$
- Un **parcours ouvert** est un parcours le long duquel chaque noeud n'est franchi qu'une fois. Exemples : $\{E \to X_1 \to X_2 \to S\}, \{E \to X_1 \to S\}$
- Un **parcours fermé** ou **boucle** est un parcours qui aboutit au noeud dont il est parti, chaque autre noeud n'étant franchi qu'une seule fois. Exemples : $\{X_1 \to X_2 \to X_1\}, \{X_2 \to X_2\}$ (cette dernière est appelée boucle élémentaire)

6.2. Algèbre des graphes de fluences

Nous présentons ici 7 opérations de bases liées à l'algèbre des graphes de fluence.

1. Addition en un noeud

La valeur d'un noeud est égale à la somme de tous les signaux convergeant vers ce noeud.

$$S = H_1 E_1 + H_2 E_2$$

Le comparateur/sommateur présentait précedemment est équivalent au graphe de fluence suivant :

2. Distribution par un noeud

La valeur d'un noeud est transmise par chaque branche quittant ce noeud.

Ce graphe représente les équations suivantes :

$$X_1 = H_1 E_1 + H_2 E_2$$

$$S_1 = H_3 X_1 = H_1 H_3 E_1 + H_2 H_3 E_2$$

$$S_2 = H_4 X_1 = H_1 H_4 E_1 + H_2 H_4 E_2$$

3. Branches en série

Un suite de branches en série peut être réduite à une unique branche, dont la fonction de transfert est égale au produit des fonctions de transfert des diverses branches.

$$E \circ \xrightarrow{H_1} X \xrightarrow{H_2} \circ S \qquad \equiv \qquad E \circ \xrightarrow{H_1 H_2} \circ S$$

4. Branche en parallèle

Deux ou plusieurs branches connectées en parallèle, reliant le même noeud d'origine au même noeud extrémité, peuvent être réduites par une branche unique, dont la fonction de transfert est égale à la somme des fonctions de transfert des diverses branches.

5. Absorption d'un noeud

Un noeud qui n'est ni une source ni un puits peut être supprimé de la manière suivante :

$$E_1 \longrightarrow H_1 \longrightarrow S \qquad \equiv \qquad E_1 \longrightarrow S$$

$$E_2 \longrightarrow H_2 \longrightarrow S \longrightarrow KH_2 \longrightarrow KH_2$$

6. Boucles de contre-réaction

Considérons la boucle de contre-réaction définit par le schéma fonctionnel et le graphe de fluence équivalent :

La variable M du graphe de fluence peut être réduit, ce qui donne :

Il est possible d'éliminer le noeud porté par la variable ϵ :

$$E \circ H_1 \circ S \circ H_1H_2$$

Ce dernier graphe exprime la relation suivante :

$$S = H_1 E - H_1 H_2 S$$

d'où l'expression déjà établie

$$S = \frac{H_1}{1 + H_1 H_2} E,$$

qui se représente simplement par le graphe de fluence :

$$E \xrightarrow{\frac{H_1}{1 + H_1 H_2}} S$$

Comme nous l'avons déjà discuté, dans le cas d'une boucle de contre-réaction unitaire, la branche de retour est égale à 1

De la même manière que précedemment, le graphe de fluence se limite à deux noeud et deux branches (dont une boucle élémentaire).

$$E \circ \xrightarrow{H} S \circ H$$

La fonction de transfert est simplement représentée par le graphe suivant³

$$E \xrightarrow{\frac{H}{1+H}} S$$

7. Le gain d'un parcours

Le gain d'un parcours est le produit des toutes les fonctions de tranfert des branches parcourues.

6.3. Règle de Mason

Ces opérations de bases vont nous permettre d'introduire la règle de Mason⁴. Cette régle permet de réduire le graphe de fluence et déterminer la fonction de transfert entre l'entrée et la sortie d'un graphe de fluence.

La fonction de transfert globale H entre la source E et le puits S d'un graphe de fluence est égale à

$$H = \frac{S}{E} = \frac{1}{\Delta} \sum_{k} G_k \Delta_k \tag{2.10}$$

οù

$$S = HE - H(HE - HS) = HE - H^{2}E - H^{2}S = (H - H^{2})E - H^{2}S.$$

En procédant de même avec cette nouvelle expression, on obtient une relation de récurrence.

$$S = E \sum_{k=0}^{n} H^k - H^{n+1}S$$

Pour $n \to \infty$, on reconnait la série géométrique $\sum_k^n H^k = \frac{1}{1-H}$ et $H^{n+1} \to 0$ pour |H| < 1. La sortie S tend donc bien vers la fonction de transfert attendue, seulement si |H| < 1. Cette dernière condition peut être interprétée comme une limite du gain de la fonction de transfert dans le cas d'une fonction de transfert unitaire.

 $^{^3}$ Remarquons que le graphe précédent exprime la relation S=HE-HS qui nous donne bien la fonction de transfert $\frac{H}{1+H}$. Cependant, cette expression exprime une grandeur que l'on cherche en fonction d'elle même. En remplaçant, S par sa définition HE-HS, on obtient

⁴Samuel Jefferson Mason (1921-1974), électronicien américain.

- k dénombre les parcours ouverts entre E et S,
- G_k est le gain du k-ème parcours ouverts
- Δ est le **déterminant du graphe**, donné par :

$$\Delta = 1 - \sum_{i} B_i - \sum_{i,j} B_i B_j - \sum_{i,j,k} B_i B_j B_k \dots$$
 (2.11)

où les B_i sont les gains des boucles du graphe de fluence, d'abord pris séparemment $(\sum_i B_i)$ puis deux à deux $(\sum_{i,j} B_i B_j)$, puis par trois $(\sum_{i,j,k} B_i B_j B_k)$ et ainsi de suite. On ne prend en compte que les produits de boucles disjoints, c'est à dire n'ayant aucun noeud en commun.

— Δ_i est le déterminant du graphe obtenu en supprimant le parcours ouvert de gain G_i .

Exemple 1

Ce graphe de fluence possède trois boucles de gain :

- $-H_1H_2H_3$
- $-R_1H_1H_2$
- $--R_2H_2H_3$

et un parcours ouvert $H_1H_2H_3$ de déterminant $\Delta_k = 1$. Les boucles étant toutes disjointes, le determinant du graphe est donc simplement donné par :

$$\Delta = 1 - R_1 H_1 H_2 + H_1 H_2 H_3 + R_2 H_2 H_3$$

La fonction de transfert de ce graphe de fluence est donc :

$$H = \frac{H_1 H_2 H_3}{1 - R_1 H_1 H_2 + H_1 H_2 H_3 + R_2 H_2 H_3}$$

Exemple 2

Ce graphe de fluence présente 2 boucles non disjointes de gain R_3 et $R_2H_3H_4$ et 2 parcours ouverts de gain $H_1H_2H_3H_4$ et $R_1H_1H_4$. Le déterminant du graphe est donc donné par

$$\Delta = 1 - R_3 - R_2 H_3 H_4$$

La fonction de transfert associé à ce graphe de fluence est donc :

$$H = \frac{H_1 H_2 H_3 H_4 + R_1 H_1 H_4}{1 - R_3 - R_2 H_3 H_4}$$

3. Modélisation des SLCI

1. Introduction

- Système du premier ordre
- Système du second ordre
- Gain, intégrateur et dérivateur pur
- Système d'ordre quelconque

 \grave{a} compléter...

2. Système du premier ordre

2.1. Définition d'un système du premier ordre

Un système du premier ordre est un système régit par une équation différentielle linéaire à coefficient constant du premier ordre (i.e n=1 pour l'équation (1.15)) de forme générale :

$$\tau \frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = Ke(t) \tag{3.1}$$

où K est le gain statique et τ la constante de temps du système.

2.2. Fonction de transfert d'un système du premier ordre

La transformée de Laplace de l'équation (3.1), dans les conditions de Heaviside, nous donne :

$$\tau pS(p) + S(p) = KE(p)$$

La fonction de transfert H(p) d'un système du premier ordre est donc de la forme :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{\tau p + 1}$$
 (3.2)

2.3. Pôle de la fonction de transfert du premier ordre

Un système du premier ordre ne possède qu'un seul pôle qui est trivialement déterminé par la résolution de l'équation :

$$\tau p + 1 = 0$$

ce pôle $p_1 = -\frac{1}{\tau}$ est donc réel négatif. La fonction de transfert d'un système du premier s'écrit peut alors s'écrire sous la forme factorisée suivante

$$H(p) = \frac{K}{(p-p_1)} = \frac{K}{\left(p + \frac{1}{\tau}\right)}$$

2.4. Réponses temporelles d'un système du premier ordre

Nous allons ici établir toutes les réponses temporelles d'un système du premier ordre.

FIGURE 3.1. – Réponse impulsionnelle d'un système du premier ordre pour différentes valeurs de la constante de temps τ (Équation (3.3)) avec K = 1 et $E_0 = 1$.

2.4.1. Réponse impulsionnelle

Nous condidérons une excitation impulsionnelle de la forme :

$$e(t) = E_0 \delta(t),$$

où $\delta(t)$ est l'impulsion de Dirac et E_0 est une constante.

La réponse impulsionnelle d'un système du premier ordre est, dans le domaine de Laplace, de la forme :

$$S(p) = H(p)E(p) = \frac{KE_0}{(\tau p + 1)}.$$

La transformée de Laplace inverse de S(p) (c.f ligne 7 du tableau de l'Annexe A), nous donne la forme générale de la réponse impulsionnelle d'un système du premier ordre :

$$\mathcal{L}^{-1}\{S(p)\} = s(t) = \frac{KE_0}{\tau} e^{-t/\tau}.$$
(3.3)

Cette réponse correspond à une simple exponentielle décroissante. La figure 3.1 présente la réponse impulsionnelle d'un système du premier ordre pour différentes valeurs de la constante de temps τ .

Pour $t \to \infty$, la valeur de s(t) tend vers 0, ce qui est caractéristique d'un système stable.

(a) Pour différentes valeurs de τ et K=1 (b) Pour différentes valeurs du gain K et $\tau=1$

FIGURE 3.2. – Réponse indicielle d'un système du premier ordre avec $E_0 = 1$.

La pente à l'origine peut être obtenue directement en dérivant la réponse temporelle s(t)

$$s'(0) = -\frac{KE_0}{\tau^2}$$

La pente à l'origine est négative et inversemment proportionnelle au carré de la constante de temps du système τ .

2.4.2. Réponse indicielle

Pour déterminer la réponse indicielle, nous considérons une entrée e(t) en échelon telle que :

$$e(t) = E_0 \cdot u(t),$$

où u(t) est l'échelon unitaire et E_0 est une constante.

Dans le domaine de Laplace la sortie est donc de la forme :

$$S(p) = H(p)E(p) = \frac{KE_0}{p(1+\tau p)} = \frac{KE_0}{\tau p(p+\frac{1}{\tau})}$$

La transformée de Laplace inverse de S(p) (c.f ligne 11 du tableau de l'Annexe A), nous donne la forme générale de la réponse indicielle d'un système du premier ordre :

$$\mathcal{L}^{-1}\left\{S(p)\right\} = s(t) = KE_0 \left(1 - e^{-t/\tau}\right) \tag{3.4}$$

	$t = 0.5\tau$	$t = \tau$	$t = 3\tau$
$\frac{s(t)}{KE_0}$	0.393	0.632	0.950

Tableau 3.1. – Quelques valeurs particulières de la réponse indicielle d'un système du premier ordre.

(a) Pour différentes valeurs de τ et K=1 (b) Pour différentes valeurs du gain K et $\tau=1$

FIGURE 3.3. – Réponse à une rampe d'un système du premier ordre avec $E_0=1.$

La figure 3.2 présente cette réponse indicielle pour différentes valeurs de la constante de temps τ . Pour $t \to \infty$, la valeur de s(t) tend vers KE_0 La pente à l'origine peut être obtenue directement en dérivant la réponse temporelle s(t)

$$s'(0) = \frac{KE_0}{\tau}$$

La pente à l'origine est positive et inversemment proportionnelle à la constante de temps du système.

Le tableau 3.1 donne quelques valeurs particulières de la réponse indicielle. D'après celui-ci, on constate que le temps $t_{5\%}$ de réponse à 5% est de l'ordre de 3τ (i.e $-\log 5\%$).

2.4.3. Réponse à une rampe

Nous considérons maitenant une excitation rampe de la forme :

$$e(t) = E_0 \cdot r(t) = E_0 t \cdot u(t)$$

où E_0 est une constante, r(t) est la fonction rampe unitaire et u(t) la fonction La réponse à une rampe d'un système du premier ordre est, dans le domaine de Laplace, de la forme :

$$S(p) = H(p)E(p) = \frac{KE_0}{p^2(1+\tau p)}$$

La transformée de Laplace inverse de S(p) (c.f ligne 11 du tableau de l'Annexe A), nous donne la forme générale de la réponse à une rampe d'un système du premier ordre :

$$\mathcal{L}^{-1}\left\{S(p)\right\} = s(t) = KE_0 \left(t - \tau (1 - e^{-t/\tau})\right) \tag{3.5}$$

La pente à l'origine peut être obtenue directement en dérivant la réponse temporelle s(t). On constate alors que s'(0) = 0 quelque soit τ . À la limite $t \to \infty$ la réponse à une rampe tend vers $t - \tau$.

3. Système du second ordre

3.1. Définition d'un système du second ordre

Un système du second ordre est un système régit par une équation différentielle du second ordre de forme générale :

$$\frac{\mathrm{d}^2 s(t)}{\mathrm{d}t^2} + 2\xi \omega_0 \frac{\mathrm{d}s(t)}{\mathrm{d}t} + \omega_0^2 s(t) = K\omega_0^2 e(t)$$

où ξ est le coefficient d'amortissement, K le gain statique et ω_0 la pulsation propre du système. Cette pulsation est celle de l'oscillateur harmonique équivalent sans amortissement ($\xi = 0$).

3.2. Fonction de transfert d'un système du second ordre

La transformée de Laplace de l'équation différentielle est, lorsque les CI sont toutes nulles :

$$S(p) (p^2 + 2\xi\omega_0 p + \omega_0^2) = K\omega_0^2 E(p).$$

La fonction de transfert H(p) de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K\omega_0^2}{p^2 + 2\xi\omega_0 p + \omega_0^2}$$
 (3.6)

La forme suivante, pour laquelle on a factorisée par ω_0^2 , est également très courante :

$$H(p) = \frac{K}{\left(\frac{p}{\omega_0}\right)^2 + \frac{2\xi p}{\omega_0} + 1}$$

3.3. Pôles de la fonction de transfert du second ordre

Les pôles de la fonction de transfert sont donnés par les racines du polynôme :

$$p^2 + 2\xi\omega_0 p + \omega_0^2 = 0$$

le discriminant de ce polynôme est :

$$\Delta = 4\xi^2 \omega_0^2 - 4\omega_0^2 = 4\omega_0^2(\xi^2 - 1)$$

Les racines de ce polynôme dépendent donc du signe de Δ et ainsi de la valeur du taux d'amortissement ξ définissant les différents régimes d'un système du second ordre :

- Régime apériodique pour $\xi > 1$
- Régime apériodique critique pour $\xi = 1$
- Régime pseudo-périodique pour $0 < \xi < 1$

à noter que le cas $\xi=0$ correspond à un régime périodique associé à l'oscillateur harmonique au cas de l'oscillateur harmonique. Le cas $\xi<0$ correspond à un cas divergent par définition (instable) et ne sera donc pas traité.

Le tableau 3.2 résume les différents types de pôles rencontrées dans les différents régimes du système du second ordre.

Quelque soit le régime du système du second ordre, on peut écrire la fonction de transfert de la façon suivante en utilsant les pôles appropriés :

$$H(p) = \frac{K\omega_0^2}{(p - p_1)(p - p_2)}$$

Nous remarquerons également que le produit $p_1p_2 = \omega_0^2$ quelque soit le régime du système, cette relation nous sera très utile pour l'établissement des réponses temporelles des différents régimes.

Régime	Pôles	Carte des pôles
Régime apériodique $\xi>1$	Deux pôles réels $p_{1,2} = -\xi \omega_0 \pm \omega_0 \sqrt{\xi^2 - 1}$	$ \begin{array}{c c} \text{Im} \\ \hline & \\ & \\$
Régime apériodique critique $\xi=1$	Un pôle double réel $p_1=p_2=-\omega_0$	$p_1 = p_2$ Re
Régime pseudo-périodique $0<\xi<1$	Deux pôles complexes conjugués $p_{1,2} = -\alpha \pm j\omega_d$ $\text{avec } \alpha = \xi\omega_0 \text{ et }$ $\omega_d = \omega_0\sqrt{1-\xi^2}$	$ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & &$

Tableau 3.2. – Pôles de la fonction de transfert d'un système du second ordre selon le régime associé à l'amortissement.

3.4. Réponses temporelles d'un système du second ordre

Nous allons ici, comme dans le cas des systèmes du premier ordre données les formes analytiques des réponses temporelles (impulsionnelle, indicielle et rampe) des systèmes du second ordre. On trouvera les courbes en annexe (Annexe D)

3.4.1. Réponse impulsionnelle

La réponse impulsionnelle d'un système du second ordre est, dans le domaine de Laplace, donnée par :

$$S(p) = \frac{K\omega_0^2}{p^2 + 2\xi\omega_0 p + \omega_0^2}$$

où E(p) = 1 dans le cas d'une impulsion de Dirac unitaire¹.

Étudions la forme analytique des réponses impulsionnelles dans les différents régimes du système du second ordre. Nous rappellons que l'étude de la réponse impulsionnelle revient à étudier la fonction de transfert du système.

Dans le cas $\xi > 1$ (régime apériodique),

la sortie dans le domaine de Laplace s'écrit :

$$S(p) = \frac{K\omega_0^2}{(p - p_1)(p - p_2)}$$

La transformée de Laplace inverse de S(p) (c.f ligne 16 du tableau de l'Annexe A), nous donne la forme générale de la réponse impulsionnelle d'un système du second ordre en régime apériodique :

$$s(t) = \frac{K\omega_0^2}{p_1 - p_2} \left(e^{p_1 t} - e^{p_2 t} \right)$$
 (3.7)

les exponentielles étant sans unité, les pôles sont d'unité d'inverse d'un temps, posons donc $p_1=-1/\tau_1$ et $p_2=-1/\tau_2$, la réponse devient :

$$s(t) = \frac{K}{\tau_1 - \tau_2} \left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right)$$
 (3.8)

les paramètres τ_1 et τ_2 peuvent être considérés comme les constante de temps de deux systèmes du premier ordre fictifs placés en série :

$$E(p) | K_1 \atop 1 + \tau_1 p | X(p) \atop 1 + \tau_2 p | S(p)$$

où $K_1K_2 = K$. Dans le régime apériodique un système du second ordre sera toujours considérer comme la mise en cascade de deux systèmes du premier ordre.

Dans le cas $\xi = 1$ (régime apériodique critique),

la sortie dans le domaine de Laplace s'écrit :

$$S(p) = \frac{K\omega_0^2}{(p - p_1)^2}$$

¹Nous avons ici posé $E_0 = 1$ pour alléger la notation.

La transformée de Laplace inverse de S(p) (c.f ligne 8 du tableau de l'Annexe A), nous donne la forme générale de la réponse impulsionnelle d'un système du second ordre en régime apériodique critique :

$$s(t) = K\omega_0^2 t e^{p_1 t} \tag{3.9}$$

posons $p_1 = -1/\tau$, la réponse devient :

$$s(t) = K\omega_0^2 t e^{-\frac{t}{\tau}} \tag{3.10}$$

Dans le cas $0 < \xi < 1$ (régime pseudo-périodique),

la sortie dans le domaine de Laplace s'écrit :

$$S(p) = \frac{K\omega_0^2}{(p - p_1)(p - p_2)} = \frac{\omega_0^2}{(p + \xi\omega_0 - j\omega_0\sqrt{1 - \xi^2})(p + \xi\omega_0 + j\omega_0\sqrt{1 - \xi^2})}$$

en posant $\alpha = \xi \omega_0$ et $\omega_d = \omega_0 \sqrt{1 - \xi^2}$, la sortie S(p) devient :

$$S(p) = \frac{K\omega_0^2}{(p+\alpha-j\omega_d)(p+\alpha+j\omega_d)} = \frac{K\omega_0^2}{(p+\alpha)^2 + \omega_d^2} = \frac{K\omega_d}{1-\xi^2} \cdot \frac{\omega_d}{(p+\alpha)^2 + \omega_d^2}$$

La transformée de Laplace inverse de S(p) (c.f ligne 30 du tableau de l'Annexe A), nous donne la forme générale de la réponse impulsionnelle d'un système du second ordre en régime pseudo-périodique :

$$s(t) = \frac{K\omega_d}{1 - \varepsilon^2} e^{-\xi\omega_0 t} \sin \omega_d t \tag{3.11}$$

3.4.2. Réponse indicielle

La réponse indicielle d'un système du second ordre est, dans le domaine de Laplace, donnée par :

$$S(p) = \frac{K\omega_0^2}{p^2 + 2\xi\omega_0 p + \omega_0^2} \cdot \frac{E_0}{p}$$

où $E(p) = \frac{E_0}{p}$ est une entrée échelon.

Étudions la forme analytique des réponses indicielles dans les différents régimes du système du second ordre.

Dans le cas $\xi > 1$ (régime apériodique),

la sortie dans le domaine de Laplace s'écrit :

$$S(p) = \frac{K\omega_0^2}{(p - p_1)(p - p_2)} \cdot \frac{E_0}{p}$$

La transformée de Laplace inverse de S(p) (c.f ligne 19 du tableau de l'Annexe A), nous donne la forme générale de la réponse indicielle d'un système du second ordre en régime apériodique :

$$s(t) = KE_0 \left(1 + \frac{1}{p_1 - p_2} \left(p_2 e^{p_1 t} - p_1 e^{p_2 t} \right) \right)$$
 (3.12)

posons $p_1 = -1/\tau_1$ et $p_2 = -1/\tau_2$, la réponse devient :

$$s(t) = KE_0 \left(1 + \frac{1}{\tau_1 - \tau_2} \left(\tau_2 e^{-\frac{t}{\tau_2}} - \tau_1 e^{-\frac{t}{\tau_1}} \right) \right)$$
 (3.13)

Nous pouvons à nouveau envisager cette réponse comme la réponse de deux systèmes du premier ordre en série.

Dans le cas $\xi = 1$ (régime apériodique critique),

la sortie dans le domaine de Laplace s'écrit :

$$S(p) = \frac{K\omega_0^2}{(p - p_1)^2} \cdot \frac{E_0}{p}$$

La transformée de Laplace inverse de S(p) (c.f ligne 14 du tableau de l'Annexe A), nous donne la forme générale de la réponse indicielle d'un système du second ordre en régime apériodique critique :

$$s(t) = \frac{KE_0\omega_0^2}{p_1^2} \left(1 - (1 - p_1t)e^{p_1t}\right)$$

$$s(t) = KE_0 \left(1 - e^{p_1 t} + p_1 t e^{p_1 t} \right)$$
(3.14)

en posant $p_1 = -\frac{1}{\tau}$, on obtient :

$$s(t) = KE_0 \left(1 - e^{-\frac{t}{\tau}} - \frac{t}{\tau} e^{-\frac{t}{\tau}} \right)$$
 (3.15)

Dans le cas $0 < \xi < 1$ (régime pseudo-périodique),

la sortie S(p) dans le domaine de Laplace s'écrit :

$$S(p) = \frac{K\omega_0^2}{(p+\alpha)^2 + \omega_d^2} \cdot \frac{E_0}{p}$$

où l'on a posé $\alpha = \xi \omega_0$ et $\omega_d = \omega_0 \sqrt{1 - \xi^2}$. Décomposons S(p) en éléments simples,

$$S(p) = \frac{A}{p} + \frac{B(p+\alpha) + C}{(p+\alpha)^2 + \omega_d^2}$$

procédons par évaluation pour A:

$$A = pS(p)\Big|_{p=0} = \frac{KE_0\omega_0^2}{\alpha^2 + \omega_d^2} = KE_0$$

et identification pour B et C:

$$KE_{0}((p+\alpha)^{2} + \omega_{d}^{2}) + Bp^{2} + \alpha Bp + Cp = KE_{0}\omega_{0}^{2}$$

$$\iff KE_{0}p^{2} + 2KE_{0}\alpha p + KE_{0}(\alpha^{2} + \omega_{d}^{2}) + Bp^{2} + \alpha Bp + Cp = KE_{0}\omega_{0}^{2}$$

$$\iff \begin{cases} B + KE_{0} = 0 \\ 2KE_{0}\alpha + \alpha B + C = 0 \end{cases}$$

$$\iff \begin{cases} B = -KE_{0} \\ C = -KE_{0}\alpha \end{cases}$$

on obtient alors:

$$S(p) = KE_0 \left(\frac{1}{p} - \frac{(p+\alpha)}{(p+\alpha)^2 + \omega_d^2} - \frac{\alpha}{(p+\alpha)^2 + \omega_d^2} \right)$$

$$S(p) = KE_0 \left(\frac{1}{p} - \frac{(p+\alpha)}{(p+\alpha)^2 + \omega_d^2} - \frac{\xi}{\sqrt{1-\xi^2}} \frac{\omega_d}{(p+\alpha)^2 + \omega_d^2} \right)$$

La transformée de Laplace inverse de S(p) (c.f lignes 3, 30 et 31 du tableau de l'Annexe A), nous permet de déterminer la réponse indicielle :

$$s(t) = KE_0 \left(1 - e^{-\alpha t} \cos(\omega_d t) - \frac{\xi}{\sqrt{1 - \xi^2}} e^{-\alpha t} \sin(\omega_d t) \right)$$

$$s(t) = KE_0 \left(1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\alpha t} \left(\sqrt{1 - \xi^2} \cos(\omega_d t) + \xi \sin(\omega_d t) \right) \right)$$

FIGURE 3.4. – Réponse indicielle d'un système du second ordre en régime pseudo-périodique pour différentes valeurs du taux d'amortissement ξ (Équation (3.5)) avec $\omega_0 = 1$.

en posant:

$$\cos \phi = \xi$$
$$\sin \phi = \sqrt{1 - \xi^2}$$

on obtient:

$$s(t) = KE_0 \left(1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\alpha t} \left(\sin \phi \cos \left(\omega_d t \right) + \cos \phi \sin \left(\omega_d t \right) \right) \right)$$

et enfin la forme générale de la réponse indicielle d'un système du second ordre en régime pseudo-périodique s'écrit :

$$s(t) = KE_0 \left(1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_0 t} \sin\left(\omega_d t + \phi\right) \right)$$
 (3.16)

Il est maintenant possible d'interpréter les différentes grandeurs introduites. En effet, cette réponse a la forme d'une sinusoïde de pulsation ω_d (dite pseudo-pulsation), de phase ϕ et amortie par une exponentielle décroissante dépendant de ξ . La figure 3.9 présente cette réponse indicielle du régime pseudo-périodique pour différentes valeurs du taux d'amortissement pour une pulsation propre $\omega_0 = 1$. Nous constatons que comme attendu, l'amplitude des oscillations augmente lorsque le taux d'amortissement diminue.

Dépassement et temps de réponse à 5%

Certaines propriétés de la réponse indicielle dans le régime pseudo-périodique sont fortement dépendantes du taux d'amortissement. C'est le cas du dépassemement et du temps de réponse. La figure 3.5 présente la réponse à un échelon unitaire pour un amortissement de $\xi=0.2$, on observe que les dépassements succésifs sont de moins en moins important. Pour déterminer la relation entre le dépassement et le taux d'amortissement, il nous faut d'abord déterminer le temps du premier maximum t_1 .

FIGURE 3.5. – Définition du dépassement observé dans le cas de la réponse indicielle en régime pseudo-périodique d'un système du second ordre. Les deux enveloppes correspondent aux exponentielles décroissantes $1 + e^{-\alpha t}$ et $1 - e^{-\alpha t}$.

Pour celà il suffit de déterminer le temps pour lequel la dérivée du signal s(t) s'annule. On calcul alors un temps t_1 à $T_d/2$ où T_d est la pseudo-période définit à partir de la pseudo-pulsation ω_d . On a alors :

$$T_d = \frac{2\pi}{\omega_d}$$
$$t_1 = \frac{\pi}{\omega_d}$$

Formellement, le premier dépassement est définit par :

$$D_1 = \left| \frac{s(t_1) - s(\infty)}{s(\infty) - s(0)} \right|$$

FIGURE 3.6. – Variation de la valeur D_k du k-ème dépassement en fonction du taux d'amortissement ξ .

où s(0), $s(\infty)$ et $s(t_1)$ sont respectivement la valeur initiale, la valeur finale et la valeur du premier maximum du signal.

La valeur $s(t_1)$ s'obtient en remplaçant la valeur de t_1 dans la forme analytique de la réponse indicielle du régime pseudo-périodique (Équation (3.16)) :

$$s(t_1) = KE_0 \left(1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\alpha t_1} \sin(\omega_d t_1 + \phi) \right)$$
$$s(t_1) = KE_0 \left(1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\alpha \pi/\omega_d} \sin(\pi + \phi) \right)$$
$$s(t_1) = KE_0 \left(1 + e^{-\alpha \pi/\omega_d} \right)$$

Le dépassement est donc donné par l'expression :

$$D = e^{-\frac{\xi \pi}{\sqrt{1 - \xi^2}}} \tag{3.17}$$

et le k-ème dépassement D_k est lui donné par :

$$D_k = e^{-\frac{k\xi\pi}{\sqrt{1-\xi^2}}} \tag{3.18}$$

La figure 3.6 présente cette relation entre le dépassement et le taux d'amortissement. Il est possible d'utiliser cette figure comme un abaque² facilitant le calcul du dépassement connaissant le taux d'amortissement et inversement.

Il n'existe pas de relation analytique simple pour déterminer le temps de réponse à 5% (c.f définition donnée par la figure 3.7) en fonction du taux d'amortissement. Nous avons alors procéder par une méthode numérique, qui pourra constituer un exercice de travaux pratiques sous Scilab (Annexe E). La figure 3.8 présente la variation du temps de réponse à 5% réduit à la pulsation (i.e $\omega_0 \cdot t_{5\%}$) en fonction du taux d'amortissement ξ . On observe un minimum du temps de réponse pour $\xi \sim 0.7$

FIGURE 3.7. – Définition du temps de réponse à 5% dans le cas de la réponse indicielle en régime pseudo-périodique d'un système du second ordre. Le temps de réponse à 5% est définit comme le temps minimal pour que le signal soit compris dans une bande à $\pm 5\%$ autour de la valeur finale. Réponse indicielle pour (bleu) $\xi=0.2$ et (rouge) $\xi=0.5$.

²Les abaques sont très répandus en automatique. Ils permettent de s'affranchir de nombreux claculs.

FIGURE 3.8. – Temps de réponse à 5% réduit en fonction du taux d'amortissement ξ . Le minimum est atteint pour $\xi \sim 0.7$ pour lequel $\omega_0 \cdot t_{5\%} \sim 3$.

3.4.3. Réponse à une rampe

La réponse à une rampe d'un système du second ordre est, dans le domaine de Laplace, donnée par

$$S(p) = \frac{K\omega_0^2}{p^2 + 2\xi\omega_0 p + \omega_0^2} \cdot \frac{E_0}{p^2}$$

où $E(p) = \frac{E_0}{p^2}$ est un signal rampe. Étudions la forme analytique des réponses à une rampe dans les différents régimes du système du second ordre.

Dans le cas $\xi > 1$ (régime apériodique),

écrivons la sortie S(p) sous la forme :

$$S(p) = \frac{K\omega_0^2}{(p-p_1)(p-p_2)} \cdot \frac{E_0}{p^2}$$

la décomposition en éléments simples de S(p) s'écrit :

$$S(p) = \frac{A}{p} + \frac{B}{p^2} + \frac{C}{p - p_1} + \frac{D}{p - p_2}.$$

Procédons par évaluation pour obtenir les coéfficients B, C et D:

$$B = p^{2}S(p)\Big|_{p=0} = KE_{0},$$

$$C = (p - p_{1})S(p)\Big|_{p=p_{1}} = \frac{KE_{0}\omega_{0}^{2}}{p_{1}^{2}(p_{1} - p_{2})} = \frac{KE_{0}p_{2}^{2}}{\omega_{0}^{2}(p_{1} - p_{2})},$$

$$D = (p - p_{2})S(p)\Big|_{p=p_{2}} = \frac{KE_{0}\omega_{0}^{2}}{p_{2}^{2}(p_{2} - p_{1})} = \frac{-KE_{0}p_{1}^{2}}{\omega_{0}^{2}(p_{1} - p_{2})},$$

et par indentification pour A:

$$A = KE_0 \frac{p_1 + p_2}{\omega_0^2}$$

la sortie S(p) devient alors :

$$S(p) = KE_0 \left(\frac{p_1 + p_2}{\omega_0^2} \cdot \frac{1}{p} + \frac{1}{p^2} + \frac{1}{\omega_0^2 (p_1 - p_2)} \left(\frac{p_2^2}{p - p_1} - \frac{p_1^2}{p - p_2} \right) \right)$$

La transformée de Laplace inverse de S(p) (c.f lignes 4 et 7 du tableau de l'Annexe A), nous permet de déterminer la réponse à une rampe du régime apériodique :

$$s(t) = KE_0 \left(t + \frac{p_1 + p_2}{\omega_0^2} + \frac{1}{\omega_0^2 (p_1 - p_2)} \left(p_2^2 e^{p_1 t} - p_1^2 e^{p_2 t} \right) \right)$$
(3.19)

posons $p_1 = -1/\tau_1$ et $p_2 = -1/\tau_2$, la réponse devient :

$$s(t) = KE_0 \left(t - \tau_1 - \tau_2 + \frac{1}{(\tau_1 - \tau_2)} \left(\tau_1^2 e^{-\frac{t}{\tau_1}} - \tau_2^2 e^{-\frac{t}{\tau_2}} \right) \right)$$
(3.20)

Dans le cas $\xi = 1$ (régime apériodique critique),

écrivons la sortie S(p) sous la forme :

$$S(p) = \frac{K\omega_0^2}{(p-p_1)^2} \cdot \frac{E_0}{p^2}.$$

La décomposition en éléments simples de S(p) s'écrit :

$$S(p) = \frac{A}{p} + \frac{B}{p^2} + \frac{C}{(p-p_1)} + \frac{D}{(p-p_1)^2}.$$

Procédons par évaluation pour obtenir les coéfficients B et D:

$$B = p^{2}S(p)\Big|_{p=0} = KE_{0},$$

$$D = (p - p_{1})^{2}S(p)\Big|_{p=p_{1}} = KE_{0},$$

par identification on obtient:

$$A = KE_0 \frac{2}{p_1}$$

et en utilisant la parité de la fonction C = -A. La sortie S(p) devient alors :

$$S(p) = KE_0 \left(\frac{2}{p_1} \cdot \frac{1}{p} + \frac{1}{p^2} - \frac{2}{p_1} \cdot \frac{1}{(p - p_1)} + \frac{1}{(p - p_1)^2} \right)$$

La transformée de Laplace inverse de S(p) (c.f lignes 3, 4, 7 et 8 du tableau de l'Annexe A), nous permet de déterminer la réponse à une rampe du régime apériodique critique :

$$s(t) = KE_0 \left(\frac{2}{p_1} + t - \frac{2}{p_1} e^{p_1 t} + t e^{p_1 t} \right)$$
 (3.21)

posons $p_1 = -1/\tau$, la réponse devient :

$$s(t) = KE_0(t - 2\tau + (t + 2\tau)e^{-\frac{t}{\tau}})$$
(3.22)

Dans le cas $0 < \xi < 1$ (régime pseudo-périodique),

écrivons la sortie S(p) sous la forme :

$$S(p) = \frac{K\omega_0^2}{(p+\alpha)^2 + \omega_d^2} \cdot \frac{E_0}{p^2},$$

où, rappellons que $\alpha = \xi \omega_0$ et $\omega_d = \omega_0 \sqrt{1 - \xi^2}$. La décomposition en éléments simples de S(p) s'écrit :

$$S(p) = \frac{A}{p} + \frac{B}{p^2} + \frac{C(p+\alpha) + D}{(p+\alpha)^2 + \omega_d^2}.$$

Procédons par évaluation pour obtenir le coéfficient B:

$$B = p^2 S(p) \Big|_{p=0} = \frac{K E_0 \omega_0^2}{\alpha^2 + \omega_d^2} = K E_0,$$

où $\alpha^2 + \omega_d^2 = \omega_0^2$ par définition.

Par identification du numérateur, on obtient les relations suivantes sur les coefficients :

$$\begin{cases} p^3: & A + C = 0 \\ p^2: & B + 2A\alpha + C\alpha + D = 0 \\ p^1: & 2B\alpha + A(\alpha^2 + \omega_d^2) = 0 \end{cases}$$

On a alors:

$$A = -\frac{2\alpha}{\alpha^2 + \omega_d^2} B = -\frac{2\xi}{\omega_0} K E_0$$

$$C = -A = \frac{2\xi}{\omega_0} K E_0$$

$$D = -B - A\alpha = K E_0 \left(\frac{2\xi}{\omega_0} \alpha - 1\right) = K E_0 (2\xi^2 - 1)$$

La sortie S(p) s'écrit donc :

$$S(p) = KE_0 \left(\frac{1}{p^2} - \frac{2\xi}{\omega_0} \cdot \frac{1}{p} + \frac{2\xi}{\omega_0} \cdot \frac{p + \alpha}{(p + \alpha)^2 + \omega_d^2} + \frac{2\xi^2 - 1}{\omega_d} \cdot \frac{\omega_d}{(p + \alpha)^2 + \omega_d^2} \right)$$

La transformée de Laplace inverse de S(p) (c.f lignes 3, 4, 30 et 31 du tableau de l'Annexe A), nous permet de déterminer la réponse à une rampe du régime pseudo-périodique :

$$s(t) = KE_0 \left(t - \frac{2\xi}{\omega_0} + \frac{2\xi\sqrt{1-\xi^2}}{\omega_d} e^{-\alpha t} \cos \omega_d t + \frac{2\xi^2 - 1}{\omega_d} e^{-\alpha t} \sin \omega_d t \right)$$

en posant à nouveau :

$$\cos \phi = \xi$$
$$\sin \phi = \sqrt{1 - \xi^2}$$

et en notant que :

$$\cos 2\phi = 1 - 2\sin^2 \phi = 2\xi^2 - 1$$

 $\sin 2\phi = 2\sin \phi \cos \phi = 2\xi\sqrt{1 - \xi^2}$

FIGURE 3.9. – Réponse à une rampe d'un système du second ordre en (bleu) régime apériodique avec $\xi=2.0$, (vert) régime apériodique critique (i.e $\xi=1$) et en (rouge) régime pseudo-périodique avec $\xi=0.1$. Avec $\omega_0=1$, K=1 et $E_0=1$.

on obtient:

$$s(t) = KE_0 \left(t - \frac{2\xi}{\omega_0} + \frac{2\xi}{\omega_d} e^{-\alpha t} \sin(\omega_d t + 2\phi) \right)$$
 (3.23)

4. Autres modèles

- gain pur
- intégrateur pur
- dérivateur pur

à compléter...

4. Analyse fréquentielle et représentation graphique

Dans ce chapitre, nous allons établir la forme de la réponse d'un SLCI à une entrée sinusoïdale, dite **réponse harmonique**. Nous présenterons ensuite différentes représentations graphiques qui constitueront l'analyse fréquentielle de cette réponse harmonique.

1. Réponse harmonique

Soit un SLCI définit par une fonction de transfert H(p) auquel on applique une entrée sinusoïdale e(t) tel que :

$$e(t) = E_0 \sin \omega t$$

d'amplitude E_0 et de pulsation ω^1 . Dans le domaine de Laplace, la sortie S(p) est de la forme :

$$S(p) = H(p)E(p)$$

où E(p) est la transformée de Laplace d'un sinus (c.f ligne 23 du tableau de l'Annexe A), on obtient alors :

$$S(p) = H(p) \frac{E_0 \omega}{p^2 + \omega^2}$$

Les pôles de la fonction de transfert H(p) donnent lieu au régime transitoire alors que les pôles de l'excitation donnent lieu au régime permanent. Les deux pôles de l'excitation sont $p_{1,2} = \pm j\omega$. La forme factorisée s'écrit alors :

$$S(p) = H(p) \frac{E_0 \omega}{(p + j\omega)(p - j\omega)}$$

¹Strictement, ω est une pulsation en unité rad/s, la fréquence associée étant $f = \omega/2\pi$, en s⁻¹ ou Hz. Cependant, par abus de langage, il est courant de se référer en terme de fréquence en parlant de la pulsation ω . Nous prendrons cependant soin d'utiliser la bonne forme dans nos applications numériques.

En régime permanent, la décomposition de S(p) en éléments simples s'écrit :

$$S(p) = \frac{A}{p - j\omega} + \frac{B}{p + j\omega}$$

où les coéfficients s'obtiennent par évaluation :

$$A = (p - j\omega)S(p)\Big|_{p=-j\omega} = \frac{E_0\omega}{p + j\omega}H(p)\Big|_{p=-j\omega} = -\frac{E_0}{2j}H(j\omega)$$

$$B = (p + j\omega)S(p)\Big|_{p=-j\omega} = \frac{E_0\omega}{p - j\omega}H(p)\Big|_{p=-j\omega} = -\frac{E_0}{2j}H(-j\omega)$$

nous obtenons donc:

$$S(p) = \frac{E_0}{2j} \left(\frac{H(j\omega)}{p - j\omega} - \frac{H(-j\omega)}{p + j\omega} \right)$$

La transformée de Laplace inverse de la sortie S(p) permet d'obtenir la réponse temporelle

$$s(t) = \frac{E_0}{2i} \left(H(j\omega)e^{j\omega t} - H(-j\omega)e^{-j\omega t} \right)$$

En écrivant le nombre complexe $H(j\omega)$ sous sa forme exponentielle (Annexe B):

$$H(j\omega) = |H(j\omega)| e^{j\phi}$$

 $H(-j\omega) = |H(j\omega)| e^{-j\phi}$

où $|H(j\omega)|$ et ϕ sont respectivement le module et l'argument du nombre complexe $H(j\omega)$ et où l'on considère de plus que $H(-j\omega)$ est égale à son conjugué (i.e $H(-j\omega) = \overline{H(j\omega)}$).

La réponse temporelle peut alors s'écrire sous la forme

$$s(t) = E_0|H(j\omega)| \left(\frac{e^{j(\omega t + \phi)} - e^{-j(\omega t + \phi)}}{2j}\right)$$

où l'on reconnait la forme exponentielle de la fonction sinus qui nous permet d'écrire :

$$s(t) = E_0|H(j\omega)|\sin(\omega t + \phi) \tag{4.1}$$

Cette relation exprime que l'excitation d'un Slci par une entrée sinusoïdale donne lieu, en régime permanent, à une réponse harmonique dépendant de la fréquence d'excitation dont le gain en amplitude et la phase sont respectivement donné par le module et l'argument de la fonction de transfert du système.

À noter que $H(j\omega)$ correspond au rapport de la sortie sur l'entrée, ainsi le gain $|H(j\omega)|$ et la phase peuvent être définits à partir de la sortie et de l'entrée du signal,

$$H(j\omega) = \frac{S(j\omega)}{E(j\omega)}$$
$$|H(j\omega)| = \frac{|S(j\omega)|}{|E(j\omega)|}$$
$$\arg H(j\omega) = \arg S(j\omega) - \arg E(j\omega)$$

Le gain $|H(j\omega)|$ est une fonction réelle de ω de ce fait nous utiliserons par la suite $G(\omega)$ pour noter plus explicitement cette dépendance. La phase est également une fonction de la pulsation d'excitation, nous la noterons donc $\phi(\omega)$ par la suite.

1.1. Exemple de réponse harmonique dans le domaine temporelle

Considérons un SLCI définit par une fonction de transfert H(p) du premier ordre (Équation (3.2)) de forme canonique :

$$H(p) = \frac{1}{1+p}$$

avec K = 1, $\tau = 1$ s.

Comme nous venons de le montrer la réponse harmonique est complétement déterminée par la connaissance du module et de l'argument du nombre complexe $H(j\omega)$. Le module donnant accès au rapport du gain en amplitude de la sortie sur l'entrée et l'argument à la différence de phase entre la sortie et l'entrée.

Calculons donc ces deux quantités pour notre fonction de transfert du premier ordre :

$$G(\omega) = |H(j\omega)| = \left| \frac{1}{1 + j\tau\omega} \right|$$
$$\phi(\omega) = \arg(H(j\omega)) = -\arctan(\omega\tau)$$

Le tableau 4.1 présente le module et l'argument pour quelques valeurs particulières de ω ($\omega=0.1, 1$ et 10 rad/s). D'après ces valeurs, nous constatons que le rapport des amplitudes décroit et que le déphasage augmente lorsque la pulsation de l'excitation augmente.

ω [rad/s]	$\omega = 1$	$\omega = 10$	$\omega = 100$
$G(\omega)$	0.99	0.70	0.1
$\phi(\omega)$	-5.7°	-45°	-84.3°

Tableau 4.1. – Quelques valeurs particulières du gain et de la phase de la fonction de transfert du premier ordre, pour K=1 et $\tau=1$ s.

La figure 4.1 présente la forme des réponses temporelles de ce système pour les données calculées du gain et de la phase de la fonction de transfert considérée. Cette représentation graphique montre ses limites, en effet quand est-il de toutes les autres valeurs de la pulsation?

Nous allons maintenant généraliser cette analyse sans pour autant avoir à tracer la réponse temporelle pour toutes les pulsations que l'on souhaite étudier.

FIGURE 4.1. – Réponse harmonique (Équation (4.1)) d'un système du premier ordre pour différentes pulsations d'excitation de la forme $e(t) = \sin \omega t$, (données du tableau 4.1). Cette figure permet d'observer l'augmentation du déphasage et la diminution de l'amplitude lorsque la fréquence d'excitations augmente. (bleu) excitation e(t) (rouge) sortie s(t).

2. Représentation graphique de la réponse harmonique

Comme nous venons de le voir, il est possible d'étudier la réponse harmonique d'un SLCI dans le domaine temporelle et observer la variation d'amplitude et du déphasage qui dépend de la pulsation d'excitation. Ces variations d'amplitude et de phase sont totalement déterminées par la connaissance du module et de l'argument du nombre complexe $H(j\omega)$, c'est ce qui constitue l'analyse fréquentielle des SLCI. Dans cette partie, nous présenterons trois types de représentations graphiques que sont les :

- Diagramme de Bode
- Diagramme de Nyquist
- Diagramme de Black-Nichols

Nous présenterons les diagrammes des modèles usuels régulièrement rencontrées au cours d'une analyse fréquentielle d'un SLCI.

2.1. Diagramme de Bode

Un diagramme de Bode² permet de représenter le comportement fréquentielle d'un système quelconque en fonction de la fréquence d'excitation en entrée. Il se compose de deux graphiques :

i) le tracé du gain en décibel en fonction de la pulsation ω :

$$G_{dB}(\omega) = 20 \log G(\omega) = 20 \log |H(j\omega)| \tag{4.2}$$

ii) le tracé de la phase en fonction de la pulsation ω :

$$\phi(\omega) = \arg H(j\omega) \tag{4.3}$$

L'axe des pulsations étant généralement représenté par une échelle logarithmique pour permmettre la représentation de la réponse harmonique sur une large plage de valeurs en pulsation (Annexe F). Le calcul de la phase passe lui par la détermination de l'argument principale (Annexe B).

Figure 4.2. – Représentation schématique d'un diagramme de Bode. Le gain en décibel et la phase associé à une fonction de transfert sont représentés en fonction de la pulsation (à l'échelle log) sur deux repères distincts.

La principale propriété du diagramme de Bode est de permettre de simplifier un grand nombre calcul. En effet, dans le cas par exemple où deux systèmes H_1 et H_2 sont mis en série,

$$H(j\omega) = H_1(j\omega)H_2(j\omega),$$

²Hendrik Wade Bode (1905-1982), ingénieur, chercheur et inventeur américain

2. REPRÉSENTATION GRAPHIQUE DE LA RÉPONSE HARMONIQUE

77

Le diagramme de Bode de $H(j\omega)$ est la somme de deux diagrammes indépendants :

$$Bode(total) = Bode(1) + Bode(2)$$

2.2. Diagramme de Nyquist

Un diagramme de Nyquist³ présente la partie imaginaire et la partie réelle de $H(j\omega)$ pour différentes valeurs paramétrés de ω . Il a l'avantage de combiner les deux graphiques du diagramme de Bode en un seul. En effet, la phase et l'amplitude d'un point dans le plan complexe peut être déterminé graphiquement par respectivement l'angle avec l'axe des réels et la distance à l'origine (Annexe B). Cette représentation graphique est communément appelée le lieu de Nyquist. Le lieu de Nyquist complet et le tracé théorique des parties réel et imaginaire de $H(j\omega)$, en considérant les pulsations négatives, c'est à dire entre $\omega \to -\infty$ et $\omega \to +\infty$.

FIGURE 4.3. – Représentation schématique d'un diagramme de Nyquist. Le nombre complexe $H(j\omega)$ est représenté dans le plan complexe pour différentes valeurs de la pulsation ω de 0 à ∞ .

2.3. Diagramme de Black

Le diagramme de Black⁴ consiste à tracer le gain en décibel $G_{dB}(\omega)$ en fonction de la phase, paramétré par la pulsation ω . À l'instar du diagramme de Nyquist, le diagramme de Black à l'avantage de combiner les deux graphiques du diagramme de Bode.

à compléter...

 $^{^3{\}rm Harry}$ Nyquist (1889-1976), électronicien, ingénieur américain.

⁴Il également appelé diagramme de Nichols ou encore Black-Nichols.

FIGURE 4.4. – Représentation schématique d'un diagramme de Black. Le gain et la phase de la fonction de transfert $H(j\omega)$ sont représentés sur le lieu de Black pour différentes valeurs de la pulsation ω de 0 à ∞ .

3. Analyse fréquentielle des modèles usuels

Nous allons ici présenter la forme canonique des diagrammes fréquentielles (Bode, Nyquist et Black-Nichols) pour les modèles usuels rencontrées dans l'étude des SLCI. Les diagrammes de Bode restent l'outil principale et fera l'objet d'une présentation plus détaillée.

3.1. Diagrammes de Bode : méthodologie générale

Pour chacuns des modèles usuels, nous appliquerons la procédure suivante :

- Définir la fonction de transfert H(p) du modèle pour $p = j\omega$
- Établir la fonction du gain $G(\omega)$ à partir du module de $|H(j\omega)|$
- Établir la fonction de la phase $\phi(\omega)$ à partir de l'argument principale de $|H(j\omega)|$. L'argument principale est définit à l'Annexe B.
- Si les fonctions $G(\omega)$ et $\phi(\omega)$ ne sont pas de simples constantes, réalisér une étude asymptotique pour $\omega \to 0$ et $\omega \to +\infty$.
- Tracer le diagramme de Bode **réel** et le diagramme de Bode **asymptotique**.

3.1.1. Diagramme de Bode d'un gain pur

La fonction de transfert d'un gain pur est de la forme $H(j\omega)=K$, le gain est donc simplement donné par

$$G(\omega) = |H(j\omega)| = K$$

d'où le gain G_{dB} en décibel :

$$G_{dB}(\omega) = 20 \log K$$

ce qui correspond à une constante en gain (Figure 4.5) et la phase s'obtient à partir de l'argument principale du nombre complexe $H(j\omega)$:

$$\phi(\omega) = 0$$

FIGURE 4.5. – Diagramme de Bode d'un gain pur avec (noir) K = 0.1, (bleu) K = 1 et (rouge) K = 10. Remarquons que la phase reste inchangée lorsque le gain statique K varie et que seul le gain $G_{dB}(\omega)$ est modifié.

3.1.2. Diagramme de Bode d'un intégrateur pur

La fonction de transfert d'un intégrateur pur est de la forme $H(j\omega) = \frac{K}{j\omega}$, le gain est donc simplement donné par

$$G(\omega) = |H(j\omega)| = \frac{K}{\omega}$$

d'où le gain G_{dB} en décibel :

$$G_{dB}(\omega) = 20 \log K - 20 \log \omega$$

ce qui correspond à une pente de -20dB/décade (Figure 4.6) et la phase s'obtient à partir de l'argument principale du nombre complexe $H(j\omega)$:

$$\phi(\omega) = -\frac{\pi}{2}$$

FIGURE 4.6. – Diagramme de Bode d'un intégrateur pur avec (noir) K=0.1, (bleu) K=1 et (rouge) K=10. Remarquons que le gain s'annule pour $\omega=K$ et que la phase reste inchangée.

3.1.3. Diagramme de Bode d'un dérivateur pur

La fonction de transfert d'un dérivateur pur est de la forme $H(j\omega)=Kj\omega$, le gain est donc simplement donné par

$$G(\omega) = |H(j\omega)| = Kj\omega$$

d'où le gain G_{dB} en décibel :

$$G_{dB}(\omega) = 20 \log K + 20 \log \omega$$

ce qui correspond à une pente de +20 dB/décade (Figure 4.7) et la phase s'écrit simplement

$$\phi(\omega) = \frac{\pi}{2}$$

FIGURE 4.7. – Diagramme de Bode d'un dérivateur pur avec (noir) K=0.1, (bleu) K=1 et (rouge) K=10. Remarquons que le gain s'annule pour $\omega=\frac{1}{K}$ et que la phase reste inchangée.

3.1.4. Diagramme de Bode d'un système du premier ordre

Un système du premier ordre présente une fonction de transfert de la forme :

$$H(j\omega) = \frac{K}{1 + j\tau\omega} \tag{4.4}$$

Le module de cette fonction de transfert $G(\omega) = |H(j\omega)|$ s'écrit :

$$G(\omega) = \frac{K}{\sqrt{1 + \tau^2 \omega^2}}$$

Le gain en dB s'obtient alors par :

$$G_{dB}(\omega) = 20 \log K - 20 \log \sqrt{1 + \tau^2 \omega^2}$$
 (4.5)

et la phase est simplement donné par la fonction tangente réciproque :

$$\phi(\omega) = \arg H(j\omega) = -\arctan(\tau\omega) \tag{4.6}$$

Ce sont ces deux fonctions de la fréquence que nous traçons sur un diagramme de Bode. Elles sont représentés sur les figures 4.8 et 4.9, pour respectivement différentes valeurs du gain statique K et du temps caractéristique τ .

Il est cependant recommandé de déterminer les asymptotes de ces deux fonctions à basse et haute fréquence. Pour celà, nous introduisons une **fréquence de cassure** $\omega_c = \frac{1}{\tau}$ qui délimite ces deux domaines. À cette fréquence, le gain en décibel est de $G_{dB}(\omega_c) = 20 \log K - 3$ et la phase $\phi(\omega) = \arctan(1) = \frac{\pi}{4}$. Le gain de -3dB est la valeur approximative de $20 \log \sqrt{2}$, communément utilisée pour définir la **fréquence de coupure**.

À basse fréquence, c'est à dire lorsque $\tau\omega\ll 1$ ou encore $\omega\ll\omega_0$, le gain et la phase se comporte comme,

$$G_{dB}(\omega) \sim 20 \log K$$

 $\phi(\omega) \sim 0^{\circ}$.

À haute fréquence, c'est à dire lorsque $\tau\omega\gg 1$ ou encore $\omega\gg\omega_0$, le gain et la phase se comporte comme,

FIGURE 4.8. – Diagramme de Bode d'un système du premier ordre (Équation (4.4)) avec (noir) K=0.1 (bleu) K=1 et (rouge) K=10. L'effet du gain K est de décaler verticalement la courbe de gain.

$$G_{dB}(\omega) \sim 20 \log K - 20 \log \frac{\omega}{\omega_0}$$

 $\phi(\omega) \sim -\frac{\pi}{2}.$

La figure 4.10 présente sur un même diagramme de Bode, les courbes réels et les courbes asymptotiques.

3.1.5. Diagramme de Bode de deux systèmes du premier ordre en série

La fonction de transfert globale de deux systèmes du premier ordre en série s'écrit :

$$H(j\omega) = \frac{K_1 K_2}{(1 + j\tau_1 \omega)(1 + j\tau_2 \omega)} \tag{4.7}$$

On utilise la propriété du logarithme pour écrire le gain globale $G_{dB}(\omega)$ comme une somme de gain de deux systèmes du premier ordre, soit

$$G_{dB}(\omega) = G_{dB1}(\omega) + G_{dB2}(\omega)$$

De même pour la phase :

$$\phi(\omega) = \phi_1(\omega) + \phi_2(\omega)$$

FIGURE 4.9. – Diagramme de Bode d'un système du premier ordre (Équation (4.4)) avec (noir) $\tau=10$ (bleu) $\tau=1$ et (rouge) $\tau=0.1$. L'effet du temps caractéristique τ est de décaler horizontalement la courbe de phase.

FIGURE 4.10. – Diagramme de Bode d'un système du premier ordre (Équation (4.4)) (i.e $K=1, \tau=1$ et $\omega_c=1$) avec (bleu) le diagramme réel et (rouge) le diagramme asymptotique. On vérifie que les valeurs asymptotiques sont de bonnes approximations à basse et haute fréquence. Il est également possible de lire un gain de -3 dB et une phase de -45°à la fréquence de coupure.

En reprenant les équations (4.5) et (4.6) on établit facilement que,

$$G_{dB}(\omega) = 20 \log K_1 K_2 - 20 \log \sqrt{1 + \tau_1^2 \omega^2} - 20 \log \sqrt{1 + \tau_2^2 \omega^2}$$

et

$$\phi(\omega) = -\arctan \tau_1 \omega - \arctan \tau_2 \omega$$

L'étude asymptotique se fait en considérant deux fréquences de coupures $\omega_{c1} = \frac{1}{\tau_1}$ et $\omega_{c2} = \frac{1}{\tau_2}$. Supposons d'abord, sans perte de généralité, que $\omega_{c2} > \omega_{c1}$ et considérons les trois domaines de fréquence ainsi définits selon que $\omega \ll \omega_{c1}$, $\omega_{c1} < \omega < \omega_{c1}$ ou $\omega \gg \omega_{c2}$

Pour $\omega \ll \omega_{c1}$

$$G_{dB}(\omega) \sim 20 \log K_1 K_2$$

 $\phi(\omega) \sim 0^{\circ}$

Pour $\omega_{c1} < \omega < \omega_{c1}$

$$G_{dB}(\omega) \sim 20 \log K_1 K_2 - 20 \log \frac{\omega}{\omega_{c1} \omega_{c2}}$$

 $\phi(\omega) \sim -90^{\circ}$

Pour $\omega \gg \omega_{c2}$

$$G_{dB}(\omega) \sim 20 \log K_1 K_2 - 40 \log \frac{\omega}{\omega_{c1} \omega_{c2}}$$

 $\phi(\omega) \sim -180^{\circ}$

La figure 4.11 présente le diagramme de Bode réel et asymptotique de deux systèmes du premier ordre en cascade. On remarquera que l'approximation asymptotique est suffisante pour décrire le gain de ce genre de système. En marquant la discontinuité dans le graphe de la phase, on distingue plus facilement les différentes zones et les changements de pente du gain. Pour la phase, il suffit de déterminer sa valeur pour quelques valeurs particulières de la pulsation.

Comme nous l'avons déjà rencontré, l'étude de deux systèmes du premier ordre en série correspond à l'étude d'un système du second ordre en régime apériodique.

FIGURE 4.11. – Diagramme de Bode de systèmes du premier ordre en série (Équation (4.7)) avec $\tau_1 = 10$ et $\tau_2 = 0.1$ (bleu) le diagramme réel et (rouge) le diagramme asymptotique.

3.1.6. Diagramme de Bode d'un système second d'ordre

La fonction de transfert d'un système du second ordre (Équation (3.6)) est donnée par :

$$H(j\omega) = \frac{K\omega_0^2}{(\omega_0^2 - \omega^2) + j2\xi\omega_0\omega}$$
(4.8)

Le gain s'obtient en calculant le module de ce nombre complexe :

$$G(\omega) = \frac{K\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\xi\omega_0\omega)^2}}$$

Le gain en décibel s'écrit alors :

$$G_{db}(\omega) = 20 \log K\omega_0^2 - 20 \log \sqrt{(\omega_0^2 - \omega^2)^2 + (2\xi\omega_0\omega)^2}$$

et la phase par l'argument princiale :

$$\phi(\omega) = \begin{cases} -\arctan\left(\frac{2\xi\omega_0\omega}{\omega_0^2 - \omega^2}\right) & \text{si } \omega^2 < \omega_0^2 \\ -\arctan\left(\frac{2\xi\omega_0\omega}{\omega_0^2 - \omega^2}\right) + \pi & \text{si } \omega^2 > \omega_0^2 \\ -\frac{\pi}{2} & \text{si } \omega^2 = \omega_0^2 \end{cases}$$

Comme précdemment, il est recommandé d'étudier les valeurs asymptotiques du gain et de la phase.

Pour $\omega \ll \omega_0$

$$G_{dB}(\omega) \sim 20 \log K$$

 $\phi(\omega) \sim 0^{\circ}$

Pour $\omega \gg \omega_0$

$$G_{dB}(\omega) \sim 20 \log K \omega_0^2 - 40 \log \omega$$

 $\phi(\omega) \sim -180^{\circ}$

La figure 4.12 présente le diagramme de Bode associé à ces deux fonctions pour $\xi = 1$, ainsi que le diagramme de Bode asymptotique. La figure 4.13 présente l'effet du taux d'amortissement ξ sur le diagramme de Bode. Il est possible d'observer une augmentation de la valeur maximum du gain proche de la fréquence de coupure. C'est ce phénomène de résonance que nous allons discuter dans la prochaine partie.

Phénomène de résonance

Le gain d'un système du second ordre présente un maximum pour certaines valeurs du taux d'amortissement ξ . Nous allons établir en détail les différentes grandeurs caractéristiques de ce phénomène de résonance. L'approche suivante s'inspire en partie de [5].

Partons du gain naturel $G(\omega)$ d'un système du second ordre pour lequel,

$$G(\omega) = \frac{K\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\xi\omega_0\omega)^2}}$$

on pose $X=\omega^2$, et on porte le gain au carré pour éliminer la racine carrée. On

FIGURE 4.12. – Diagramme de Bode d'une fonction de transfert second ordre (Équation (4.8)) avec $K=1,\,\omega_0=1$ et $\xi=1$

FIGURE 4.13. – Diagramme de Bode d'une fonction de transfert du second ordre (Équation (4.8)) pour différentes valeurs de ξ avec K=1 et $\omega_0=1$

obtient alors,

$$(G(\omega))^2 = \frac{K^2 \omega_0^4}{(\omega_0^2 - X)^2 + (2\xi\omega_0)^2 X}$$

Le numérateur étant constant, le gain présentera un maximum si le dénominateur présente un minimum. Notons D(X), ce dénominateur qui s'écrit :

$$D(X) = (\omega_0^2 - X)^2 + (2\xi\omega_0)^2 X$$

Calculons, la dérivée par rapport à X,

$$\frac{dD(X)}{dX} = -2(\omega_0^2 - X) + (2\xi\omega_0)^2$$

qui s'annule pour

$$X = X_0 = \omega_0^2 (1 - 2\xi^2).$$

La dérivée seconde étant positive, le dénominateur D(X) présente un minimum en X_0 . Puisque X>0 et $\omega_0^2>0$ alors la condition sur le taux d'amortissement est

$$\xi < \frac{\sqrt{2}}{2} \tag{4.9}$$

La pulsation de résonance est donc définit par :

$$\omega_r = \omega_0 \sqrt{1 - 2\xi^2}. (4.10)$$

La valeur du gain maximal est obtenue à la pulsation de résonance,

$$G(\omega_r) = \frac{K}{2\xi\sqrt{1-\xi^2}},$$

ce qui permet de définir le **facteur de surtension** Q qui est le rapport entre le maximum atteint par le gain et la valeur de l'asymptote à basse fréquence, d'où

$$Q = \frac{1}{2\xi\sqrt{1-\xi^2}} \tag{4.11}$$

D'après ces dernières expressions, on observe qu'à la limite $\xi \to 0$, la pulsation de résonance ω_r tend vers ω_0 , et le gain maximal tend lui vers l'infini. La pulsation ω_0 est donc la valeur pour lequel le phénomène de résonance est le plus intense. La figure 4.14 présente la position du gain maximum à la pulsation de résonance pour différentes valeurs du taux d'amortissement.

FIGURE 4.14. – Évolution du gain en décibel en fonction de la pulsation pour différentes valeurs du taux d'amortissement du régime pseudo-périodique. Le gain maximal à la pulsation de résonance ω_r est représenté par une pastille noir sur chacune des courbes pour $\xi < \sqrt{2}/2$. On remarquera l'utilisation exceptionnel d'une échelle linéaire pour les pulsations.

3.1.7. Diagramme de Bode d'un système d'ordre quelconque

Dans le cas d'un système d'ordre supérieur à deux, nous allons utiliser les propriétés d'additivité des diagrammes de Bode, en décomposant la fonction de transfert en différents modèles simples.

Il est nottament possible d'écrire une fonction de transfert sous la forme d'un produit gain pur, d'intégrateur, de dérivateur, de premier et second ordre :

$$H(p) = K_0 p^{\alpha} \prod_i (1 + \tau_i p)^{n_i} \prod_j (1 + 2\xi_j \tau_j p + \tau_j p^2)^{n_j}$$
 (4.12)

où les exposants α , n_i et n_j peuvent être positifs et négatifs.

Nous listons ci-dessous l'effet sur le gain et la phase d'un diagramme de Bode pour chacuns de ces élements selon le signe des exposants α , n_i , et n_j .

- le terme K_0 (i.e gain pur) provoque :
 - gain: $+20 \log K_0$
 - phase : rien
- le terme $K_0 p^{\alpha}$ (i.e intégrateur si $\alpha < 0$ ou dérivateur si $\alpha > 0$) provoque :
 - gain : pente de 20α dB/décade
 - phase : $90\alpha^{\circ}$
- un terme $\frac{1}{(1+\tau_i p)}$ (i.e premier ordre au dénominateur) provoque, en $\omega = \frac{1}{\tau_i}$
 - gain : une rupture de pente de -20 dB/décade
 - phase : un saut de -90°
- un terme $(1 + \tau_i p)$ (i.e premier ordre au numérateur) provoque, en $\omega = \frac{1}{\tau_i}$
 - gain : une rupture de pente de +20 dB/décade
 - phase : un saut de $+90^{\circ}$
- un terme $\frac{1}{(1+2\xi_j\tau_jp+\tau_jp^2)}$ (i.e second ordre au dénominateur) provoque, en $\omega=\frac{1}{\tau_j}$
 - gain : une rupture de pente de -40 dB/décade
 - phase : un saut de - 180°
- un terme $(1+2\xi_j\tau_jp+\tau_jp^2)$ (i.e second ordre au numérateur) provoque, en $\omega=\frac{1}{\tau_j}$
 - gain : une rupture de pente de +40 dB/décade
 - phase : un saut de $+180^{\circ}$

Exemple

Soit la fonction de transfert H(p) telle que

$$H(p) = \frac{100(p+1)^2}{(100p+1)(10p+1)(0.01p+1)}$$
(4.13)

La première étape consiste à ordonner les temps caractéristiques par ordre décroissant (ou encore les pulsations propres par ordre croissant). Ensuite, il faut identifier les différents modèles, ici nous identifions :

- un gain pur $K_0 = 100$
- un second ordre double au numérateur de temps caractéristique $\tau=1$
- trois premier ordre au dénominateur de temps caractéristique $\tau = \{0.01, 10, 100\}$

Enfin, nous regroupons dans un tableau l'effet sur le gain et la phase pour chaque domaines en pulsations compris entre les différentes pulsations caractéristiques. On adopte la notation suivante : $\tau_1 = 100$, $\tau_2 = 10$, $\tau_3 = 1$ et $\tau_4 = 0.01$, avec $\omega_i = 1/\tau_i$, on obtient alors : $\omega_1 = 0.01$, $\omega_2 = 0.1$, $\omega_3 = 1$ et $\omega_4 = 100$

	$\omega \ll \omega_1$	$\omega_1 < \omega < \omega_2$	$\omega_2 < \omega < \omega_3$	$\omega_3 < \omega < \omega_4$	$\omega \gg \omega_4$
$G_{dB}(\omega)$ (pente)	0(40dB)	-20dB/décade	-20dB/décade	$+40 \mathrm{dB/d\acute{e}cade}$	-20dB/décade
$\phi(\omega)$	0°	-90°	-90°	$+180^{\circ}$	-90°
$G_{dB}(\omega)$ total	0(40dB)	-20dB/décade	-40dB/décade	0(-20dB)	-20dB/décade
$\phi(\omega)$ total	0°	-90°	-180°	0	-90°

Il est également possible de déterminer la forme analytique du gain et de la phase.

$$G_{dB}(\omega) = 40 + 20\log(1 + \tau_3^2\omega^2) - 10\log(1 + \tau_1^2\omega^2)(1 + \tau_2^2\omega^2)(1 + \tau_4^2\omega^2)$$
(4.14)

et

$$\phi(\omega) = 2 \arctan \tau_3 \omega - \arctan \tau_1 \omega - \arctan \tau_2 \omega - \arctan \tau_4 \omega \qquad (4.15)$$

FIGURE 4.15. – Diagramme de Bode du système d'ordre quelconque de l'équation (4.13) (bleu) diagramme de Bode réel et (rouge) diagramme de Bode asymptotique.

3.2. Diagrammes de Nyquist : méthodologie générale

Pour chacuns des modèles usuels, nous appliquerons la procédure suivante :

- Définir la fonction de transfert H(p) du modèle pour $p = j\omega$
- Établir la partie réelle et imaginaire du nombre complexe $H(j\omega)$
- Tracer le lieu de Nyquist point par point, pour différentes valeurs de ω de 0 à $+\infty$, c'est à dire Re $(H(j\omega))$ et Im $(H(j\omega))$ dans le plan complexe.

Dans chacuns des exemples suivants nous reproduisons le lieu de Nyquist complet le domaine des pulsations négatives étant représenté en pointillé. Dans la pratique, il suffit de tracer le symétrique par rapport à l'axe des réels et d'inverser le sens de la flêche pour obtenir le sens de la pulsation de $-\infty \to 0$.

3.2.1. Diagramme de Nyquist d'un gain pur

Le diagramme de Nyquist d'un gain pur est trivial. En effet le nombre complexe $H(j\omega)$ étant égal à une constante réel K, le diagramme de Nyquist ce limite à un point sur l'axe des réels quelque soit la valeur de ω . Ce qui est en accord avec le

fait qu'un gain pur est de phase nulle.

$$\operatorname{Re}(H(j\omega)) = K$$

 $\operatorname{Im}(H(j\omega)) = 0$

3.2.2. Diagramme de Nyquist d'un intégrateur pur

Le diagramme de Nyquist d'un intégrateur pur est également trivial, puisque le nombre complexe $H(j\omega)=\frac{K}{j\omega}$ est un nombre imaginaire pur. Cependant il dépend de la pulsation ω .

Re
$$(H(j\omega)) = 0$$

Im $(H(j\omega)) = \frac{-K}{\omega}$

FIGURE 4.16. – Diagramme de Nyquist d'un intégrateur pur. Le lieu de Nyquist est représenté par une demi droite sur l'axe des nombres imaginaires purs négatifs.

3.2.3. Diagramme de Nyquist d'un dérivateur pur

Le diagramme de Nyquist d'un dérivateur pur est également représentatif d'un nombre complexe $H(j\omega)=Kj\omega$ imaginaire pur.

$$Re(H(j\omega)) = 0$$
$$Im(H(j\omega)) = K\omega$$

FIGURE 4.17. – Diagramme de Nyquist d'un dérivateur pur. Le lieu de Nyquist est représenté par une demi droite sur l'axe des nombres imaginaires purs positifs.

3.2.4. Diagramme de Nyquist d'un système du premier ordre

La fonction de transfert d'un système du premier ordre s'écrit :

$$H(j\omega) = \frac{K}{1 + j\tau\omega}$$

Les parties réel et imaginaire de cette fonction de transfert sont données par :

$$\operatorname{Re}(H(j\omega)) = \frac{K}{1 + \tau^2 \omega^2}$$
$$\operatorname{Im}(H(j\omega)) = -\frac{\tau \omega}{1 + \tau^2 \omega^2}$$

	$\omega = 0$	$\omega o \infty$	$\omega = \frac{1}{\tau}$
$\operatorname{Re}\left(H(j\omega)\right)$	K	0	K/2
$\overline{\mathrm{Im}\left(H(j\omega)\right)}$	0	0	-1/2

Tableau 4.2. – Quelques valeurs particulières de $\operatorname{Re}(H(j\omega))$ et $\operatorname{Im}(H(j\omega))$ selon ω pour un système du premier ordre.

Nous avons regroupé dans le tableau 4.2 quelques valeurs particulières de Re $(H(j\omega))$ et Im $(H(j\omega))$ pour quelques valeurs de ω .

Le lieu complet de Nyquist d'un système du premier ordre à la forme d'un cercle, nous allons établir ses caractéristiques[13].

Posons tout d'abord,

$$X = \operatorname{Re}(H(j\omega)) = \frac{K}{1 + \tau^2 \omega^2}$$

on peut écrire,

$$\tau^2 \omega^2 = \frac{K}{X} - 1$$

En posant maintenant,

$$Y = \operatorname{Im}(H(j\omega)) = \frac{\tau\omega}{1 + \tau^2\omega} = -\tau\omega X$$

on obtient une relation entre Y et X:

$$Y^2 = \left(\frac{K}{X} - 1\right)X^2$$

on reconnait alors l'équation d'un cercle de centre (K/2,0) et de rayon K/2

$$\left(X - \frac{K}{2}\right)^2 + Y^2 = \left(\frac{K}{2}\right)^2$$

3.2.5. Diagramme de Nyquist d'un système du second ordre

La fonction de transfert d'un système du second ordre s'écrit :

$$H(j\omega) = \frac{K\omega_0^2}{(\omega_0^2 - \omega^2) + j2\xi\omega_0\omega}$$

FIGURE 4.18. – Diagramme de Nyquist d'un système du premier ordre. Avec K=1 et $\tau=1$. Le lieu de Nyquist est représenté par un demi cercle idans le plan des nombres imaginaires négatifs. Le lieu de Nyquist complet correspond à un cercle de rayon K/2 et de centre (K/2,0)

Les parties réel et imaginaire de cette fonction de transfert sont données par :

$$\operatorname{Re}(H(j\omega)) = \frac{K\omega_0^2(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2)^2 + 4\xi^2\omega_0^2\omega^2}$$
$$\operatorname{Im}(H(j\omega)) = \frac{-2\xi\omega_0^2\omega^2}{(\omega_0^2 - \omega^2)^2 + 4\xi^2\omega_0^2\omega^2}$$

3.2.6. Effet d'un retard sur le diagramme de Nyquist

La fonction de transfert $H_R(j\omega)$ d'un retard est donnée par la relation :

$$H_R(j\omega) = e^{-j\tau_1\omega} = \cos\tau_1\omega - j\sin\tau_1\omega$$

avec τ_1 le retard. Étudions l'effet de ce retard sur le diagramme de Nyquist d'un système du premier ordre $H(j\omega)$. La fonction de transfert modifié est :

$$H(j\omega) = \frac{K}{1 + j\tau\omega} H_R(j\omega) = \frac{K}{1 + j\tau\omega} (\cos\tau\omega - j\sin\tau\omega)$$

FIGURE 4.19. – Diagramme de Nyquist d'un système du second ordre. Avec K=1 et $\tau=1$. Le lieu de Nyquist est représenté par une demi cardioïode dans le plan des nombres imaginaires négatifs.

Les parties réels et imaginaire de la fonction de transfert sont :

$$\operatorname{Re}(H(j\omega)) = \frac{K(\cos \tau_1 \omega - \tau \omega \sin \tau_1 \omega)}{1 + \tau^2 \omega^2}$$
$$\operatorname{Im}(H(j\omega)) = \frac{-K(\tau \omega \cos \tau_1 \omega + \sin \tau_1 \omega)}{1 + \tau^2 \omega^2}$$

FIGURE 4.20. – Diagramme de Nyquist d'un système du second ordre pour différentes valeurs du taux d'amortissement ξ . Avec K=1 et $\tau=1$. Le lieu de Nyquist est représenté par une demi cardioïode dans le plan des imaginaires négatifs.

FIGURE 4.21. – Effet d'un retard sur le diagramme de Nyquist d'un système du premier ordre. Avec $K=1,\, \tau=1$ et $\tau_1=2$. Le lieu de Nyquist est représenté par une spirale.

FIGURE 4.22. – Effet d'un retard sur le diagramme de Nyquist d'un système du premier ordre pour différentes valeurs de retard. (bleu) $\tau_1=0.5$, (rouge) $\tau_1=1.0$ et (noir) $\tau_1=2.0$ Avec $K=1,~\tau=1$ et $\tau_1=2$. Le lieu de Nyquist est représenté par une spirale. Par souci de clarté, nous n'avons ici représenté que l'intervalle $\omega \in [0,\frac{10}{\tau_1}]$

5. Asservissements linéaires des systèmes

1. Introduction

Figure 5.1. – Exemples historiques de régulateurs.

6. Performances des systèmes asservis

7. Stabilité des systèmes asservis

1. Définitions de la stabilité

Un système est dit stable si à une entrée bornée le système produit une sortie bornée¹

Un système est dit stable lorsque écarté de sa position d'équilibre, il tend à y revenir

Ces deux définitions sont équivalentes dans le cas des SLCI.

FIGURE 7.1. – Représentation schématique de la stabilité

2. Critère de stabilité

Condition fondamentale de stabilité

Un système est stable si sa fonction de transfert ne possède aucun pôles à partie réelle négative.

 $^{^1\}mathrm{Chez}$ nos amis anglo-saxons, on rencontre le concept de BIBO (« bounded input bounded output »)

FIGURE 7.2. – Stabilité d'un SLCI d'après la carte des pôles de sa fonction de transfert. (Vert) Deux pôles complexes conjugués. (Rouge) Pôle à partie réel négative. (Gris) Deux pôles complexes conjugués à partie réelle nulle. (Noir) Pôle nul. (Bleu) Deux pôles complexes conjugués à partie réelle positive. (Orange) Pôle à partie réel positive.

Inconvénients de la condition fondamentale

2.1. Critère algébrique de Routh

Routh²

$$H_{BF}(p) = \frac{N(p)}{D(p)} = \frac{a_m p^m + a_{m-1} p^{m-1} + \dots + a_1 p + a_0}{b_n p^n + b_{n-1} p^{n-1} + \dots + b_1 p + b_0}$$

l'équation caractéristique :

$$D(p) = 0$$

$$b_n p^n + b_{n-1} p^{n-1} + \dots + b_1 p + b_0 = 0$$
(7.1)

Condition nécessaire (Routh)

Un système d'ordre n est stable si tous les coefficients $(b_i \forall i \neq n)$ de son équation caractéristique sont de même signe que b_n .

Cette condition nécessaire s'avère suffisante si le système est du premier ou du second ordre. Pour un ordre supérieur il faut construire le tableau de Routh à partir des coéfficients de D(p), pour appliquer un critère suplémentaire.

2.1.1. Tableau de Routh

Dans le cas où la condition nécessaire est respectée et n > 2, il faut constuire le tableau de Routh à partir des coéfficients de l'équation caractéristique de la foction de transfert en boucle fermée.

Le tableau de Routh est constitué de n lignes et de k colonnes où $k = n/2 + 1^3$. L'élément A_{ij} correspond à l'élément de la i-ème ligne et j-ème colonne.

Les deux premières lignes du tableau sont directement construites à partir des

²Edward John Routh (1831-1907), mathématicien anglais.

³On réalise ici une division entière. Par exemple si n=5, k=2+1=3 et si n=6, k=3+1=4

coéfficients de D(p).

si n est impaire la dernière colonne de la seconde ligne est non-nulle :

Les éléments de la troisième ligne sont construits à partir du déterminant⁴ d'élements des deux premières lignes.

$$\frac{p^n}{p^{n-1}} \begin{vmatrix} b_n & b_{n-2} & b_{n-4} & \cdots & b_3 & b_1 \\ b_{n-1} & b_{n-3} & b_{n-5} & \cdots & b_2 & b_0 \\ \hline p^{n-2} & A_{31} & A_{32} & A_{33} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{vmatrix} \Rightarrow A_{32} = -\frac{1}{b_{n-1}} \begin{vmatrix} b_n & b_{n-4} \\ b_{n-1} & b_{n-5} \end{vmatrix}$$

On construit de la même manière la quatrième ligne :

Et ainsi de suite jusque la dernière ligne du tableau.

⁴Nous rappellons le calcul d'un déterminant d'une matrice 2×2 tel que $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

La formule générale pour obtenir l'élément A_{ij} est alors :

$$A_{ij} = -\frac{1}{A_{(i-1)1}} \begin{vmatrix} A_{(i-2)1} & A_{(i-2)(j+1)} \\ A_{(i-1)1} & A_{(i-1)(j+1)} \end{vmatrix}$$
 (7.2)

Le critère s'applique sur la première colonne (dite des pivots) du tableau de Routh ainsi construit.

Critère de Routh

Un système est stable si tous les termes de la colonne des pivots du tableau de Routh sont de même signes.

Remarques:

Le nombre de changement de signe, nous donne le nombre de pôles à partie réelle de la fonction de transfert en boucle fermée.

2.1.2. Exemple

Soit un système asservi caractérisé par le schéma-bloc suivant :

$$E(p) \xrightarrow{\epsilon} H(p) = \frac{K}{p(p^2 + p + 3)}$$

La fonction de transfert en boucle fermée ${\cal H}_{BF}$ s'écrit :

$$H_{BF} = \frac{H(p)}{1 + H(p)} = \frac{K}{p^3 + p^2 + 3p + K}.$$

L'équation caractéristique D(p) de H_{BF} est donc

$$D(p) = p^3 + p^2 + 3p + K,$$

Nous constatons que le système est d'ordre 3 dont les coefficients sont :

$$b_3 = 1$$

 $b_2 = 1$
 $b_1 = 3$
 $b_0 = K$

Le critère nécessaire de Routh est donc respecté pour K>0. Construisons maintenant le tableau de Routh :

$$\begin{vmatrix} p^{3} & 1 & 3 \\ p^{2} & 1 & K \\ \hline p^{1} & A_{31} & 0 \\ p^{0} & A_{41} & 0 \end{vmatrix}$$

$$A_{31} = -\begin{vmatrix} 1 & 3 \\ 1 & K \end{vmatrix} = 3 - K$$

$$A_{41} = -\frac{1}{A_{31}} \begin{vmatrix} 1 & K \\ A_{31} & 0 \end{vmatrix} = K$$

$$\begin{vmatrix} p^{3} & 1 & 3 \\ p^{2} & 1 & K \\ p^{1} & 3 - K & 0 \\ p^{0} & K & 0 \end{vmatrix}$$

La colonne des pivots sont tous de même signe si 3-K>0 et K>0 (déjà établie par la condition nécessaire de Routh). La condition sur K pour que le système soit stable est donc :

2.2. Critère graphique du revers

Routh s'applique sur la fonction de transfert en boucle fermée, les critères graphiques permettent d'étudier la stabilité du système en boucle ouverte. En effet si l'on considère la boucle de contre réaction unitaire pour l'asservissement d'un système de fonction de transfert H(p), telle que :

la fonction de transfert en boucle ouverte $H_{BO}(p)$ est simplement donné par H(p), et comme nous l'avons déjà rencontré à plusieurs occasions, la fonction de transfert en boucle fermée H_{BF} est égale à

$$H_{BF}(p) = \frac{N(p)}{D(p)} = \frac{H_{BO}(p)}{1 + H_{BO}(p)},$$

ainsi étudier les pôles de l'équation caractéristique D(p)=0 est équivalent à étudier l'équation

$$1 + H_{BO}(p) = 0 \Leftrightarrow H_{BO}(p) = -1$$

Il est alors possible d'étudier la fonction de transfert en boucle ouverte par rapport au point critique du plan complexe (-1,0)

2.2.1. Critère du revers de Nyquist

Critère du revers (Nyquist)

Un système est stable en boucle fermée si lorsque parcourant le lieu de Nyquist de la boucle ouverte dans le sens des pulsations croissantes, on laisse le point critique sur la gauche.

FIGURE 7.3. – Représentation schématique de lieux de Nyquist de trois systèmes : stable, critique et instable vérifiant le critère du revers.

2.2.2. Critère du revers de Black

2.2.3. Critère du revers de Bode

2.3. Critère de Nyquist

Le critère de Nyquist est également un critère graphique mais est plus générale que le critère du revers. Il s'appuie sur le principe de l'argument de Cauchy⁵.

Théorème du principe de l'argument de Cauchy

FIGURE 7.4. – Représentation de la transformation d'un contour \mathcal{C} en son image par une fonction analytique F(p)

Principe de l'argument de Cauchy

Si un contour \mathcal{C} contient Z zéros et P pôles d'une fonction analytique F(p) sans en traverser aucun, alors quand on le parcourt dans le sens antitrigonométrique, le contour $\Gamma = F(\mathcal{C})$ fait un nombre de tours autour de l'origine dans le sens trigonométrique égal à,

$$N = Z - P$$

⁵Nous ne donnerons qu'une présentation élémentaire et sans démonstration de ce théorème. Un cours d'analyse complexe permettra de compléter cette présentation. On trouvera dans [1], une introduction plus détaillée ainsi qu'une bibliographie très fournie sur le sujet.

8. Correction des systèmes asservis

9. Initiation à la représentation d'état

A. Transformation de Laplace

1. Définitions

Soit f une fonction de la variable réelle t définie sur \mathbb{R} et supossée nulle pour t < 0, on appelle transformée de Laplace de f, la fonction F définie par :

$$F(p) = \int_0^\infty e^{-pt} f(t) dt$$

avec $p \in \mathbb{C}$.

En automatique, on n'utilise que la transformée de Laplace restreinte qui ne s'applique qu'aux fonctions causales. Pour transformer une fonction quelconque en fonction causale, on la combine avec la fonction de Heaviside u(t) qui est telle que :

On note $F(p) = \mathcal{L}\{f(t)\}$, la transformée de Laplace de f(t) et on dit de F(p) qu'elle est l'image de f(t) dans le domaine de Laplace f(t) et on notera $\mathcal{L}^{-1}\{F(p)\}$ la transformée de Laplace inverse.

2. Propriétés

— linéarité :

$$\mathscr{L}\left\{af(t)+bg(t)\right\}=aF(p)+bG(p)$$

— dilatation du temps :

$$\mathscr{L}\left\{f(kt)\right\} = \frac{1}{k}F\left(\frac{p}{k}\right)$$

— produit de convolution :

$$\mathscr{L}\left\{f(t) * g(t)\right\} = F(p)G(p)$$

¹Plusieurs termes sont utilisés dans la littérature. On parle de domaine complexe, domaine fréquentielle ou de domaine symbolique. On choisit dans ce document de ne parler que du domaine de Laplace

— dérivation :

$$\mathcal{L}\left\{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\right\} = pF(p) - f(0^{+})$$

$$\mathcal{L}\left\{\frac{\mathrm{d}^{2}f(t)}{\mathrm{d}t^{2}}\right\} = p^{2}F(p) - pf(0^{+}) - f'(0^{+})$$

$$\mathcal{L}\left\{\frac{\mathrm{d}^{n}f(t)}{\mathrm{d}t^{n}}\right\} = p^{n}F(p)$$

si toutes les conditions initiales sont nulles.

— intégration :

$$\mathscr{L}\left\{\int_0^t f(u)du\right\} = \frac{F(p)}{p} + \frac{g(0^+)}{p}$$

avec : $g(t) = \int_0^t f(u) du$

— théorème du retard en (t):

$$\mathscr{L}\left\{f(t-\tau)\right\} = e^{-\tau p}F(p)$$

— théorème du retard en (p):

$$\mathcal{L}^{-1}\left\{F(p+a)\right\} = e^{-at}f(t)$$

— théorème de la valeur initiale :

$$\lim_{t \to 0} f(t) = \lim_{p \to \infty} pF(p)$$

— théorème de la valeur finale :

$$\lim_{t \to \infty} f(t) = \lim_{p \to 0} pF(p)$$

— transformée de Laplace d'une fonction périodique et f(t) de période T:

$$F(p) = \frac{F_0(p)}{1 - e^{-Tp}}$$

où $F_0(p)$ est la transformée de Laplace du motif $f_0(t)$ égal à f(t) sur le segment [0,T] et nul partout ailleurs.

2. PROPRIÉTÉS

3. Tableau des transformées de Laplace

	F(p)	$f(t) = \mathscr{L}^{-1}\left\{F(p)\right\}$
1	1	$\delta(t)$
2	$e^{- au p}$	$\delta(t- au)$
3	$\frac{1}{p}$	1
4	$\frac{1}{p^2}$	t
5	$\frac{1}{p^3}$	$\frac{1}{2}t^2$
6	$\frac{1}{p^n}$	$\frac{1}{(n-1)!}t^{n-1}$
7	$\frac{1}{p+a}$	e^{-at}
8	$\frac{1}{(p+a)^2}$	te^{-at}
9	$\frac{1}{(p+a)^3}$	$\frac{1}{2}t^2e^{-at}$
10	$\frac{1}{(p+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$
11	$\frac{a}{p(p+a)}$	$1 - e^{-at}$
12	$\frac{a}{p^2(p+a)}$	$\frac{1}{a}\left[at - (1 - e^{-at})\right]$
13	$\frac{p}{(p+a)^2}$	$(1-at)e^{-at}$
14	$\frac{a^2}{p(p+a)^2}$	$1 - (1 + at)e^{-at}$
15	$\frac{a^2(p+z)}{p(p+a)^2}$	$z - (z + a(z - a)t) e^{-at}$
16	$\frac{b-a}{(p+a)(p+b)}$	$e^{-at} - e^{-bt}$

Tableau A.1. – Table de transformées de Laplace d'après[11]

	F(p)	$f(t) = \mathcal{L}^{-1}\left\{F(p)\right\}$
17	$\frac{(b-a)p}{(p+a)(p+b)}$	$-ae^{-at} + be^{-bt}$
18	$\frac{(b-a)(p+z)}{(p+a)(p+b)}$	$(z-a)e^{-at} - (z-b)e^{-bt}$
19	$\frac{ab}{p(p+a)(p+b)}$	$1 + \frac{be^{-at} - ae^{-bt}}{a - b}$
20	$\frac{ab(p+z)}{p(p+a)(p+b)}$	$z + \frac{b(z-a)e^{-at} - a(z-b)e^{-bt}}{a-b}$
21	$\frac{1}{(p+a)(p+b)(p+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$
22	$\frac{p+z}{(p+a)(p+b)(p+c)}$	$\frac{(z-a)e^{-at}}{(b-a)(c-a)} + \frac{(z-b)e^{-bt}}{(c-b)(a-b)} + \frac{(z-c)e^{-ct}}{(a-c)(b-c)}$
23	$\frac{\omega}{p^2 + \omega^2}$	$\sin \omega t$
24	$\frac{p}{p^2 + \omega^2}$	$\cos \omega t$
25	$\frac{p+z}{p^2+\omega^2}$	$\sqrt{\frac{z^2 + \omega^2}{\omega^2}} \sin(\omega t + \phi) \text{ avec } \phi = \arctan\frac{\omega}{z}$
26	$\frac{\omega^2}{p(p^2+\omega)^2}$	$1 - \cos \omega t$
27	$\frac{\omega^2(p+z)}{p(p^2+\omega)^2}$	$z - \sqrt{\frac{z^2 + \omega^2}{\omega^2}} \cos(\omega t + \phi) \text{ avec } \phi = \arctan\frac{\omega}{z}$
28	$\frac{\omega}{p^2 - \omega^2}$	$\sinh \omega t$
29	$\frac{p}{p^2 - \omega^2}$	$\cosh \omega t$
30	$\frac{\omega}{(p+a)^2 + \omega^2}$	$e^{-at}\sin\omega t$
31	$\frac{p+a}{(p+a)^2 + \omega^2}$	$e^{-at}\cos\omega t$
32	$\frac{p+z}{(p+a)^2+\omega^2}$	$\sqrt{\frac{(z-a)^2 + \omega^2}{\omega^2}} e^{-at} \sin(\omega t + \phi) \text{ avec}$ $\phi = \arctan\frac{\omega}{z-a}$
33	$\frac{\omega^2}{p^2 + 2\xi\omega p + \omega^2}$	$\phi = \arctan \frac{\omega}{z - a}$ $\frac{\omega}{\sqrt{1 - \xi^2}} e^{-\xi \omega t} \sin \omega \sqrt{1 - \xi^2} t$
34	$\frac{\omega^2}{p(p^2 + 2\xi\omega p + \omega^2)}$	$1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega t} \sin \omega \sqrt{1 - \xi^2} t + \phi \text{ avec}$ $\phi = \arccos \xi$

Tableau A.2. – (suite) Table de transformées de Laplace d'après [11]

B. Rappel sur les nombres complexes

Représentation géométrique d'un nombre complexe

Un nombre complexe z est définit par un couple de nombre réel (x, y), tel que

$$z = x + jy$$
,

où j est le nombre imaginaire pur tel que $j^2 = -1^1$.

Un nombre complexe est donc composé d'une partie réel Re(z) = x et d'une partie imaginaire Im(z) = y.

Un nombre complexe peut être représenté géométriquement dans un plan (dit complexe), pour lequel l'abscisse et l'ordonné d'un point du plan correspondent respectivement à la la partie réelle et imaginaire (??).

Définition du conjugué d'un nombre complexe

Le conjugué de z est le nombre noté \overline{z} tel que :

$$\overline{z} = \operatorname{Re}(z) - j\operatorname{Im}(z) = x - jy$$

Dans la représentation géométrique le conjugé \overline{z} est le symétrique de z par rapport à l'axe des réels $(\ref{eq:conjugé})$.

Définition du module d'un nombre complexe

Le module d'un nombre complexe noté |z| est la racine carrée de la somme des carrés de Re(z) et de Im(z), autrement dit,

$$|z| = \sqrt{x^2 + y^2},$$

où x = Re(z) et y = Im(z) comme définit précedemment.

Dans le plan complexe, le module |z| correspond à la distance à l'origine du point correspondant à z dans le plan complexe.

 $^{^{1}}$ En mathématiques et en physique, le nombre imaginaire pur est généralement noté i. Ici nous utilisons la convention des automaticiens et des électroniciens pour ne pas confondre i avec l'intensité du courant.

Propriétés du module

Soient z_1 et z_2 deux nombres complexes.

$$-|z_1|=0 \Leftrightarrow z_1=0$$

$$- |z_1 z_2| = |z_1||z_2|$$

$$- |z^n| = |z|^n \text{ pour } n \in \mathbb{N}^*$$

$$- \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \text{ pour } z_2 \neq 0$$

$$- |z_1 + z_2| \le |z_1| + |z_2|$$

$$- |-z| = |z|; |\overline{z}| = |z|$$

Définition de l'argument d'un nombre complexe

L'argument $\operatorname{arg}(z)$ d'un nombre complexe z est l'angle qui, dans la représentation géométrique, sépare l'axe des réels du vecteur représentatif de z (??). Le couple $(|z|, \theta = \operatorname{arg}(z))$ sont donc les coordonnées polaires de la représentation géométrique d'un nombre complexe. L'argument est définit à 2π près. On appelle argument principal celui qui est compris entre $[-\pi, \pi]$

Propriétés de l'argument

Soient z, z_1 et z_2 des nombres complexes.

$$-\cos\theta = \frac{\operatorname{Re}(z)}{|z|}; \sin\theta = \frac{\operatorname{Im}(z)}{|z|}$$

$$-\operatorname{arg}(z_1 z_2) = \operatorname{arg}(z_1) + \operatorname{arg}(z_2); \operatorname{arg}(\overline{z}) = \operatorname{arg}(z)$$

$$-\operatorname{arg}(-z) = \pi + \operatorname{arg}(z)[2\pi]; \operatorname{arg}\left(\frac{1}{z}\right) = -\operatorname{arg}(z)[2\pi]$$

$$-\operatorname{arg}\left(\frac{z_1}{z_2}\right) = \operatorname{arg}(z_1) - \operatorname{arg}(z_2)[2\pi] \text{ pour } z_2 \neq 0$$

$$-\operatorname{arg}(z\overline{z}) = \operatorname{arg}(z) + \operatorname{arg}(\overline{z}) = \operatorname{arg}(z) - \operatorname{arg}(z) = 0[2\pi]$$

Calcul de l'argument principal d'un nombre complexe

L'argument étant définit à 2π près, il est recommandé de donner l'argument principale pour des questions d'unicité (i.e arg $z \in [-\pi, \pi]$). Soit ϕ l'argument principale d'un nombre complexe z = a + ib, alors ϕ est définit par :

$$\phi = \begin{cases} \arctan(b/a) & \text{si } a > 0 \\ \arctan(b/a) + \pi & \text{si } a < 0 \text{ et } b \ge 0 \\ \arctan(b/a) - \pi & \text{si } a < 0 \text{ et } b < 0 \\ \pi/2 & \text{si } a = 0 \text{ et } b > 0 \\ -\pi/2 & \text{si } a = 0 \text{ et } b < 0 \\ 0 & \text{si } a = 0 \text{ et } b = 0 \end{cases}$$

La formule précédente nécessite de distinguer plusieurs cas. Cependant, de nombreux langages de programmation fournissent une variante de la fonction arc tangente, qui est souvent appélee atan2(b,a), et qui traite ces différents cas.

Forme exponentielle ou polaire d'un nombre complexe

La formule d'Euler

$$e^{i\theta} = \cos\theta + i\sin\theta$$

permet d'écrire tout nombre complexe sous sa forme exponentielle :

$$z = |z|e^{i\theta}$$

Une conséquence spéctaculaire de la formule d'Euler est que

$$e^{i\pi} = -1.$$

On notera que $e^{i\theta}$ est un nombre complexe de module 1 admettant θ pour argument. Lorsque θ varie de 0 à 2π , l'image du nombre complexe $e^{i\theta}$ décrit le cercle

unité. Une autre conséquence est que les fonctions trigononométriques peuvent s'exprimer sous forme d'exponentielle complexe :

$$\sin \omega t = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$
$$\cos \omega t = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$

C. Décomposition en éléments simples

1. Avant-propos

En automatique, la détermination d'une réponse temporelle s(t) correspond à déterminer la transformée de Laplace inverse de la fraction rationnelle S(p) définit dans le domaine de Laplace, autrement dit :

$$s(t) = \mathcal{L}^{-1}\left\{S(p)\right\}$$

Cette inversion passe généralement par l'utiliation des tables de transformées de Laplace Annexe A). Ces tables peuvent ne pas être complètes. La décomposition en éléments simples de S(p), nous permet alors de réécrire cette fraction rationnelle sous une forme comportant des fractions rationnelles usuellement présente dans les tables.

Dans cette annexe, nous présenterons les techniques les plus couramment recontrées dans l'étude des SLCI. Ces systèmes ne s'intéressent qu'à une famille de fraction rationnelle. Cette présentation n'est pas exhaustive, et ne remplacera donc pas la lecture du chapitre du cours de mathématiques qui lui est consacré.

2. Fraction rationnelle rencontrées en automatique

Dans le cas qui nous intéresse la fraction rationnelle est la réponse S(p) définit dans le domaine de Laplace. Cette grandeur est de la forme,

$$S(p) = \frac{N(p)}{D(p)}$$

où N(p) et D(p) sont deux polynômes de degrés m et n respectivement. En générale, nous aurons à faire à des systèmes pour lesquels m < n. Une des conséquences est que la décomposition en élements simples ne comportera pas de partie entière.

3. Décomposition en éléments simples

Soit $S(p) = \frac{N(p)}{D(p)}$ une fraction rationnelle. On considère la décomposition de D(p) en produit de polynômes irréductibles unitaire de la forme :

$$D(p) = a \prod_{k=1}^{r} (p - \alpha_k)^{m_k} \prod_{k=1}^{s} (p^2 + \beta_l p + \gamma_l)^{n_k}$$

où a est une constante qui est le coefficient du terme de plus haut degré de D(p), les α_k sont les pôles de multiplicités m_k , les polynômes de degré 2 sont sans pôles réels (i.e $\beta_i - 4\gamma_i < 0$).

Alors il existe une famille unique de rééls $A_{k,i}$, $B_{l,j}$ et $C_{l,j}$ telles que :

$$S(p) = \sum_{k=1}^{r} \sum_{i=1}^{m_k} \frac{A_{k,i}}{(p - \alpha_k)^i} + \sum_{l=1}^{s} \sum_{j=1}^{n_l} \frac{B_{l,j}p + C_{l,j}}{(p^2 + \beta_l p + \gamma_l)^j}$$
(C.1)

On appelle cette écriture la **décomposition en éléments simples** de S(p) sur \mathbb{R} .

Exemple 1

Soit S(p) tel que :

$$S(p) = \frac{1}{(p^2 - 1)(p^2 + 1)^2}$$

où D(p) se factorise sous la forme :

$$D(p) = (p^2 - 1)(p^2 + 1)^2 = (p - 1)(p + 1)(p^2 + 1)^2$$

On obtient une décomposition en éléments simples de S(p) de la forme :

$$S(p) = \frac{A}{p-1} + \frac{B}{p+1} + \frac{Cp+D}{p^2+1} + \frac{Ep+F}{p^2+1}$$

Exemple 2

Soit S(p) tel que :

$$S(p) = \frac{4p^3}{(p^2 - 1)^2}$$

¹Nous rappelons que dans $\mathbb{R}[p]$, les polynômes irréductibles sont les polynômes de degré 1 et les polynômes de degré 2 de discriminant négatif

 $^{^2\}mathrm{Un}$ polynôme unitaire est un polynôme dont le coéfficient de degré le plus grand est 1

où D(p) se factorise sous la forme :

$$D(p) = (p^2 - 1)^2 = ((p - 1)(p + 1))^2$$

On obtient une décomposition en éléments simples de S(p) de la forme :

$$S(p) = \frac{A}{p-1} + \frac{B}{(p-1)^2} + \frac{C}{p+1} + \frac{D}{(p+1)^2}$$

4. Détermination des coefficients de la décomposition en éléments simples

à compléter...

4.1. Par identification

à compléter...

4.2. Multiplication/Substitution

à compléter...

4.3. Évaluation

à compléter...

4.4. Parité

à compléter...

4.5. Passage à la limite

à compléter...

D. Systèmes du second ordre

1. Abaques

Dépassement

Temps de réponse à 5%

2. Réponses temporelles

Tableau D.1. – Formes caractéristiques des réponses temporelles d'un système du second ordre pour les différents régimes. Paramètres des réponses temporelles : (pour tous) $K=1, E_0$ (apériodique) $\xi=2, \omega_0=1$ (i.e $\tau_1=3.73$ et $\tau_1=0.26$) (critique) $\xi=1, \omega_0=1$ (i.e $\tau=1$) (pseudo-périodique) $\xi=0.3$ et $\omega_0=1$

3. Analyse fréquentielle

Diagramme de Bode

Phénomène de résonance

E. Initiation à Scilab

1. Présentation générale (source Wikipédia)

Scilab est un logiciel libre de calcul numérique fournissant un environnement de calcul pour des applications scientifiques. Il est utilisé pour le traitement du signal, l'analyse statistique, le traitement d'images, les simulations de dynamique des fluides, l'optimisation numérique, et la modélisation et simulation de systèmes dynamiques.

La syntaxe et les possibilités offertes par Scilab sont similaires à celles de Matlab. Scilab peut exécuter des instructions en ligne de commande, ainsi que des fichiers de commande (scripts) contenant des instructions (format texte). On peut exécuter des programmes Fortran ou C à partir de Scilab. Scilab est complété par un environnement graphique Xcos comparable à l'environnement graphique Simulink fourni avec Matlab.

2. Syntaxe: console

Les instructions sont tapées après le prompt -->. Le résultat est donné sauf si l'instruction se termine par un point-virgule auquel cas le résultat est caché. Les variables sont sensibles à la casse. ans est la variable qui contient le dernier résultat. Un commentaire commence par \\. La plupart des opérateurs sont communs avec d'autres langages (affectation =, addition +, soustraction -, multiplication *, puissance **).

Exemples:

```
-->// ceci n'est pas un commentaire

-->a=2
a =

2.
-->A=3; \\ le résultat est caché

-->a*A \\ produit
ans =

6.
-->ans**2 \\ utilisation de la valeur précédente
ans =

36.
```

Il existe quelques variables prédéfinies sous Scilab, elles sont appelées à l'aide du symbole « % ». La liste de ces variables est accessible par la fonction whos -name %

```
%e  // constante d'Euler
%eps  // précision machine epsilon
%F %f  // booléen false 0
%T %t  // booléen True 1
%pi   // constante pi
%i   // nombre imaginaire
%inf  // infini
%nan  // not-a-number
%s %z  // définition polynôme
```

Quelques opérateurs logiques :

```
-->A=0;
-->B=1;
        // ET logique
-->A&B
ans =
 F
-->A|B
        // OU logique
ans =
 Τ
         // NON logique
ans =
 Т
-->A==B
        // Egalité logique
ans
 F
        // Différence logique
-->A~=B
ans
 Τ
```

3. Polynômes et fractions rationnelles

En automatique, la définition de la fonction de transfert fait intervenir des polynômes et des fractions rationnelles.

La déclaration d'un polynôme se fait à l'aide de deux instructions. La première utilise la fonction poly(0, "p") qui définit « p »comme l'indéterminée d'un polynôme. La seconde instruction est l'énoncé du polynôme utilisant cette indéterminée.

Exemple:

On définit deux polynômes $D(p)=1+2p+3p^2$ et N(p)=1+p de la façon suivante :

```
-->p = poly(0, 'p');

-->D=(1+2*p+3*p**2)

D =

2
1 + 2p + 3p

-->N=1+p
N =

1 + p
```

La fonction roots(D) donne les racines du polynôme D(p):

```
-->roots(D)
ans =

- 0.3333333 + 0.4714045i  // nombre complexe
- 0.3333333 - 0.4714045i  //
-->roots(N)
ans =

- 1.
```

Scilab gère de la même manière les fractions rationnelles :

```
-->H=N/D

H =

1 + p

------
2
1 + 2p + 3p
```

Il est possible d'extraire les numérateurs et dénominateurs de H(p) = N(p)/D(p) par les variables H.num et H.den respectivement :

Il est également possible de définir un polynôme à partir de ces racines ou de ces coefficients en appelant seulement la fonction poly.

À partir de ses racines :

```
-->poly([1 2],'p') // polynôme dont les racines sont 1 et 2
ans =
2
2 - 3p + p
```

À partir des ses coefficient:

```
-->poly([1 2],'p','c') // option 'c' nécessaire
ans =
1 + 2p
```

Remarque:

Lorsque que l'on écrit p=poly(0, 'p'), on définit la variable p comme le polynôme dont la racine est nulle.

```
-->p=poly(0,'p')
ans =
p
```

4. Vecteurs et matrices

Pour définir un vecteur ligne :

```
--> v=[1,2,3]
          2.
                3.
-->v=1:3
   1.
         2.
                3.
                           // a:incr:b
-->v=1:0.5:4
                           // liste allant de a à b par incrément
                           // de incr
          1.5
                 2.
                       2.5
                               3.
                                     3.5
                                             4.
    1.
```

Pour définir un vecteur colonne :

```
--> v=[1;2;3]
v =
1.
2.
3.
```

Nous combinons les deux syntaxes précédentes pour définir une matrice :

```
--> m=[1 2; 3 4; 5 6]

m =

1. 2.

3. 4.

5. 6.
```

Le vecteur ou la liste nul est simplement déclaré par :

```
-->liste=[];
```

Les parenthèses permettent d'accéder aux élément d'une matrice et le symbole « : »permet d'accéder à toute ou une partie d'une ligne ou d'une colonne

```
-->v(1)
ans =

1.

-->m(2,1)
ans =

3.
--> // accéder à une ligne entière

-->m(1,:)
ans =

1. 2.
```

Pour concaténer deux vecteurs ou matrices :

```
-->u=[1,2,3];
-->v=[4,5,6];
-->w=[v,u]
                     1. 2. 3.
          5.
                6.
-->m1=[1 2; 3 4; 5 6]
-->m2=[1 2; 3 4; 5 6]
-->m3=[m1,m2]
m3 =
    1.
          2.
                1.
                      2.
    3.
          4.
                3.
                      4.
    5.
          6.
                5.
                      6.
```

Les opérateurs mathématiques de bases peuvent être utilisés sur les vecteur et matrices mais doivent respecter une certaine cohérence des dimensions des objets de chaque coté de l'opérateur. Notamment, les opérations * et / sont des opérations matricielles. Pour faire des opérations élément par élément, on fera précéder le signe opératoire d'un point : . * ./.

Exemple:

```
// définition de l'indéterminée du polynôme
-->p = poly(0, 'p');

//définition d'un vecteur de numérateur
-->num=[1 10 20];

//définition d'un vecteur de dénominateur
-->den=[p*(p+1) p*(p+10) p*(p+20) ];

//définition d'un vecteur de fonction de transfert
-->H=num ./ den
```

Scilab a été conçu pour le calcul matriciel et numérique. Il existe de nombreuses opérations spécifiques aux matrices et à la résolution numériques que nous ne traiterons pas dans ce document.

Pour accéder à l'aide en ligne, cliquez sur ? >Aide Scilab dans la barre de menus, ou tapez dans la console :

```
-->help <fonction>
```

5. Programmation (source Wikibooks)

Scilab est également un langage de programmation, il accepte un certain nombre d'instructions autres que mathématiques, permettant la formulation et l'exécution d'algorithmes : for, while, if, do, do, case...ou définition de fonction. L'écriture de programmes se fait idéalement avec l'éditeur de texte SciNotes ; celuici met en exergue les instructions en couleurs, les parenthésages (correspondance entre les paires de parenthèses et de crochets), et surligne les lignes continuées avec un fond jaune. On peut aussi utiliser un autre éditeur de texte en sauvegardant le fichier avec l'extension .sce ou .sci. Lorsque l'environnement le permet, on peut faire du copier-coller depuis l'éditeur de texte externe vers SciNotes ou bien l'éditeur de ligne de commande.

Syntaxe d'une fonction:

La fonction doit commencer par le mot réservé function et finir par endfunction sous la forme :

```
function [out1,out2,...,outN]=nomfonction(in1,in2,...,inP)

// out1,out2,...,outN sont les variables de sortie
// in1,in2,...,inP variables d entree

<instructions>
```

endfunction

Une façon usuelle de définir des fonctions est de mettre celles-ci dans un fichier à extension .sci. Il faut alors la charger avec la fonction exec().

Appel d'une fonction:

Pour exécuter une fonction il suffit de l'appeler en passant les arguments nécessaires

```
function [u,v]=mafonction(a,b)
    u=exp(a)
    v=u*sin(b)
endfunction
-->mafonction(rand(),rand())
```

L'appel précédent ne renvoie que la valeur de u. Pour obtenir les deux valeurs escomptées il faut faire un appel sous la forme :

```
-->[u,v]=test_function(rand(),rand())
v =
0.5695456
u =
1.0707657
```

6. Slci avec Scilab

Scilab permet de réaliser des études avancées des systèmes linéaires continus et invariants.

6.1. Définition d'un système linéaire

```
Fonction syslin (extrait de la doc officiel : help syslin )
```

— Syntaxe:

```
sl=syslin(dom,N,D)
sl=syslin(dom,H)
```

- Paramètres :
 - dom : chaîne de caractères ('c', 'd'), ou [] ou un scalaire.
 - N,D: matrices polynomiales
 - H: matrice rationnelle
 - sl : tlist (liste de type "syslin") représentant le système dynamique
- Description:
 - syslin définit un système dynamique linéaire en tant que liste typée, et vérifie la consistance des données.
 - dom spécifie le domaine temporel : dom='c' pour un système à temps continu, dom='d' pour un système à temps discret, n pour un système échantillonné à la période n (en secondes), dom=[] si le domaine temporel n'est pas défini

6.2. Simulation temporelle d'un système linéaire

Fonction csim (extrait de la doc officiel (en anglais) : help csim)

— Syntax:

```
[y [,x]]=csim(u,t,sl,[x0 [,tol]])
```

— Parameters:

- u function, list or string (control)
- t real vector specifying times with, t(1) is the initial time (x0=x(t(1))).
- sl syslin list (SIMO linear system) in continuous time.
- y a matrix such that y=[y(t(i))], i=1,...,n
- x a matrix such that x=[x(t(i))], i=1,...,n
- tol a 2 vector [atol rtol] defining absolute and relative tolerances for ode solver

— Description :

- csim simulation of the controlled linear system sl. sl is assumed to be a continuous-time system represented by a syslin list.
- u is the control and x0 the initial state.
- y is the output and x the state.

The control can be:

- a function : [inputs] = u(t)
- a list: list(ut,parameter1,...,parametern) such that: inputs=ut(t,parameter1,...,parametern) (ut is a function)
- the string "impuls" for impulse response calculation (here sl must have a single input and x0=0). For systems with direct feed-through, the infinite pulse at t=0 is ignored.
- the string "step" for step response calculation (here s1 must have a single input and x0=0)
- a vector giving the values of u corresponding to each t value.

6.3. Système du premier ordre

Soit, un système du premier ordre définit par la fonction de transfert :

$$H(p) = \frac{K}{1 + \tau p}$$

La définition sous Scilab de ce système se fait simplement par les quelques instructions suivantes :

Nous allons maintenant étudier les réponses temporelles à différentes excitations du système du premier ordre.

6.3.1. Réponse impulsionnnelle

6.3.2. Réponse indicielle

```
t=0.0:0.05:20;
                              // définition du vecteur
                              // de temps
// -----
// réponse indicielle
// -----
e1='step'
                              // 'step' : échelon
s1=csim(e1,t,PremierOrdre);
// clf : effacer le contenu de
// la fenêtre graphique
// scf : creer une nouvelle
// fenêtre graphique
scf(0);clf(0);
plot(t,s1,'r')
legend('$s 1(t)$','$e 1(t)$')
xlabel("$t$","fontsize",4);
ylabel("$s(t)$","fontsize",4);
title('réponse indicielle', "fontsize", 4);
```

6.3.3. Réponse à une excitation sinusoïdale

Ci-dessous nous présentons une façon d'étudier la réponse temporelle pour différentes valeurs d'un des paramètres du système du premier ordre.

```
scf(3);clf(3);
for tau=1:1.0:10.
    H2=K/(1+tau*p)
    PremierOrdre=syslin('c',H2)
    e1='step'
    s1=csim(e1,t,PremierOrdre);
    plot(t,s1,'r')
end
```

6.3.4. Réponse fréquentielle

Scilab permet de tracer facilement les différents diagrammes de la réponse fréquentielle d'un système. Nous donnons ici les fonctions les plus importantes :

```
Réponse Fréquentielle
scf(grf);clf(grf);grf=grf+1;
fMin =0.01,fMax=100;
p=poly(0,'p')
K=1.,tau=1.;
H=K/(1+tau*p);
PremierOrdre=syslin('c',[K],[1+tau*p])
// -----
// diagrammme de Bode
//----
bode(PremierOrdre,fMin,fMax); bode_asymp(PremierOrdre,fMin,fMax);
// diagrammme de Nyquist
//----
scf(grf);clf(grf);grf=grf+1;
nyquist(PremierOrdre) ;
// -----
// diagramme de Black
```

```
// ------
scf(grf);clf(grf);grf=grf+1;
black(PremierOrdre,0.01,10);
nicholschart(colors=color('gray')*[2 2]) //abaque de Black

// -------
// Lieu de Evans
//-------
scf(grf);clf(grf);grf=grf+1;
evans(PremierOrdre);
```

6.4. Système du second ordre

à compléter

F. Échelle logarithmique et le décibel

En automatique, l'échelle logarithmique est très fréquement utilisée pour permettre la représentation graphique de variables dont les valeurs s'étalent sur plusieurs ordres de grandeur. Pour les diagrammes de Bode, il est courant de représenter le gain d'un Slci en décibel **dB** qui est également une unité liée au logarithme décimale. La maitrise du calcul logarithmique est donc indispensable pour l'établissement d'un diagramme de Bode.

1. Rappel sur le logarithme décimal

Le logarithme décimal (noté log ou \log_{10}) est le logarithme en base 10. La propriété principale du logarithme est de transformer un produit en somme¹.

Formellement, la fonction logarithme décimal $\log(x)$ est défini analytiquement par

$$\log\left(x\right) = \frac{\ln\left(x\right)}{\ln\left(10\right)}$$

où la fonction $\ln x$ est la fonction logarithme néperien (i.e en base naturelle e)

Propriétés

$$-\log(ab) = \log(a) + \log(b); \log\left(\frac{a}{b}\right) = \log a - \log(b)$$

$$-\log(a^n) = n\log(a); \log\sqrt[n]{(a)} = \frac{1}{n}\log(a)$$

$$-\log(x) = a \Leftrightarrow x = 10^a; \log(1) = 0; \log(10) = 1; \log(0.1) = -1$$

2. Échelle logarithmique décimale

Sur une **échelle linéaire** décimale classique, des couples de graduations dont la **différence** (Δ ci-dessous) vaut 10 sont à égales distances.

¹C'est pour cette propriété qu'il fut introduit par John Napier en 1614 pour faciliter les calculs de produit quelconque en établissant une correspondance avec la somme de logarithme à l'aide de tables de logarithme, ceci avant le développement de calculateur numérique performant.

Sur une **échelle logarithmique** décimale, des couples de graduations dont le **rapport** (α ci-dessous) vaut 10 sont à égales distances.

On généralise cette l'égalité entre le rapport et n'importe quelle distance constante sur l'axe à échelle logarithmique.

On remarquera que dans le cas ci-dessus, les valeurs 16,32 et 64 n'ont pas de graduation qui leurs sont propres mais ces valeurs sont bien déterminées par la distance constante entre deux graduation de rapport $\alpha = 2$.

Il existe une terminologie pour se référer à des rapport α particuliers, on parle d'**octave**² lorsque $\alpha = 2$ et de **décade** lorsque $\alpha = 10$

Avec cette terminologie, une atténuation du gain d'une réponse harmonique de $-20~\mathrm{dB}$ lorsque la pulsation augmente d'un facteur 10, se dira $-20\mathrm{dB/d\acute{e}cade}$ ou $-6\mathrm{dB/octave}$.

²Pour le lecteur mélomane, celà correspond à la définition de l'octave musicale. Par exemple, l'octave supérieur du La (noté La4) de fréquence 440 Hz est de fréquence égale à 880 Hz (noté La3).

3. LE DÉCIBEL 161

G	0.01	0.1	0.5	$\sqrt{2}/2$	1	$\sqrt{2}$	2	10	100
G_{dB}	-40	-20	~-6	~-3	0	~3	~6	20	40

Tableau F.1. – Équivalence entre gain naturel G et gain décibel G_{dB} . D'après [5]

3. Le décibel

Le bel (B) est une unité de grandeur sans dimension exprimant la valeur relative entre deux quantités par le logarithme décimal de leur rapport. Le décibel (dB), plus couramment utilisé, est définie comme un dixieme de bel, et donc correspond à dix fois le logarithme décimal du rapport.

$$X_{dB} = 10 \log \frac{P_s}{P_e}$$

Le gain en décibel reporté sur un diagramme de Bode correspond à la valeur relative à 1 du carré du gain G. Ainsi,

$$G_{dB}(\omega) = 10 \log G^2 = 20 \log G$$

Nous rappellons que le gain G, dit naturel, est le module de la fonction de transfert $G = |H(j\omega)|$. Le tableau F.1 donne l'équivalence entre le gain naturel G et gain décibel G_{dB} pour différentes valeurs particulières frequemment rencontrées dans ce cours.

4. Diagramme de Bode

Un diagramme de Bode d'un fonction complexe $H(j\omega)$ est composé de deux courbes (i.e gain et phase) en représentation semi-logarithmique. Soit la fonction complexe du premier ordre telle que

$$H(j\omega) = \frac{1}{1+j\omega} \tag{F.1}$$

Tracer du gain

Le gain de cette fonction de transfert $G(\omega) = |H(j\omega)|$ s'écrit :

$$G(\omega) = \frac{1}{\sqrt{1 + \omega^2}}$$

le gain en décibel est donc :

$$G_{dB} = 20 \log \frac{1}{\sqrt{1+\omega^2}} = -20 \log \sqrt{1+\omega^2}$$

C'est cette fonction qu'il faut tracer point par point sur le diagramme de Bode, cependant il est généralement recommandé d'étudier les asymptotes de cette fonction avant de tracer la courbe. Pour les basses fréquences, le gain en décibel ce commporte comme

$$G_{dB} \sim -20 \log 1 \sim 0 \text{dB}$$

et pour les hautes fréquences, comme

$$G_{dB} \sim -20 \log \omega$$
.

Dans le cas des hautes fréquences, lorsque la pulsation est mutiplié par 10 (i.e une décade) le gain diminue de -20 dB, on dit également qu'à haute fréquence le gain possède une pente de -20 dB par décade. La pulsation de coupure est ici de $\omega_c=1$, c'est cette pulsation qui marque la « séparation » entre basses et hautes fréquences.

Tracer de la phase

La phase $\phi(\omega)$ correspond à l'argument principale (Annexe B) de la fonction complexe $H(j\omega)$.

$$\phi(\omega) = \arg H(j\omega) = -\arg (1+j\omega) = -\arctan \omega$$

C'est cette fonction $\phi(\omega)$ qu'il faut tracer point par point sur le diagramme de Bode, mais comme précedemment il est conseillé de déterminer les asymptotes à basse et haute fréquence. À basse fréquence, la phase se comporte comme,

$$\phi(\omega) \sim 0$$

et à haute fréquence, comme,

$$\phi(\omega) \sim -\frac{\pi}{2}.$$

Les asymptotes sont une approximation bien plus grossière dans le cas de la phase. En générale, il est recommandé de calculer la phase pour des valeurs particulières de la pulsation. Par exemple, à la pulsation de coupure, lorsque $\omega=1$, la phase est de -45°, en effet,

$$\phi(1) = -\arg(1 + j\omega) = -\frac{\pi}{4}$$

La figure F.1 présente le diagramme de Bode associé à la fonction de transfert de l'équation (F.1).

Figure F.1. – Diagramme de Bode d'un système du premier ordre.

5. Tracer du diagramme de Bode avec Scilab

Deux fonctions permettent de tracer un diagramme de Bode avec Scilab.

- bode(syslin,fMin,fMax) trace le diagramme de Bode réel. Cette fonction prend pour argument sys un système linéaire comme défini à l' Annexe E, fMin et fMax une fréquence minimal et maximal (en Hz sauf si un 4ème argument est donné).
- bode_asymp(syslin,fMin,fMax) trace le diagramme asymptotique.

Références

- [1] Denis Arzelier. Représentation et analyse des systèmes lineaires (pc7bis), 2005.
- [2] B. Bayle and J. Gangloff. Systèmes et asservissements à temps continu, 2009.
- [3] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah. *Modeling and Simulation in Scilab/Scicos*. Springer, 2006.
- [4] Y. Granjon. Automatique: systèmes linéaires, non linéaires, à temps continu, à temps discret, représentation d'état, événements discrets. Dunod, Paris, 2015.
- [5] E. Laroche and H. Halalchi. Asservissement des systèmes lineaires à temps continu. http://eavr.u-strasbg.fr/~laroche/student.
- [6] O. Le Gallo. Automatique des systèmes mécaniques : Cours, travaux pratiques et exercices corrigés. Sciences de l'ingénieur. Dunod, 2009.
- [7] Joe Mabel. Régulateur à boules au Georgetown PowerPlant Museum à Seattle. CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5694146.
- [8] B. Marx. Outils Mathématiques pour l'ingénieur Traitement du Signal. http://w3.cran.univ-lorraine.fr/perso/benoit.marx/enseignement.html.
- [9] B. Marx. Contrôle des systèmes linéaires. http://w3.cran.univ-lorraine.fr/perso/benoit.marx/enseignement.html.
- [10] F. Orieux. Automatique : Systèmes linéaires et asservissements. Notes de Cours, Master 2 Outils et systèmes de l'astronomie et de l'Espace, 20017-1018.
- [11] E. Ostertag. Systèmes et asservissements continus : Modélisation, analyse, synthèse des lois de commande. Ellipses Marketing, 2004.
- [12] R. Papanicola. Sciences industrielles PCSI: Mécanique et automatique. Ellipses Marketing, 2003.
- [13] R. Papanicola. Sciences industrielles PSI: Mécanique et automatique. Ellipses Marketing, 2010.

166 RÉFÉRENCES

[14] Marsyas-Travail personnel. Clepsydre athénienne reconstituée, Musée de l'Agora antique d'Athènes. CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=476174.

- [15] Consortium Scilab. Introduction to Scilab. www.scilab.org/content/download/247/1702/file/introscilab.pdf.
- [16] C. Sueur, P. Vanheeghe, and P. Borne. Automatique des systèmes continus. Editions Technip.
- [17] E. Thomas. TP Scilab. http://cpgeptljg.free.fr/scenari/TP_INFO/TP_info_12_ordre/co/module_TP_1_2_ordre_5.html.

Index

```
Système du 1er ordre
Définition, 50
Diagramme de Bode, 83
Diagramme de Nyquist, 97
Fonction de transfert, 50
Réponse à une rampe, 54
Réponse harmonique dans le domaine
temporelle, 73
Réponse impulsionnelle, 51
Réponse indicielle, 52
```