<u>Eral Edree – Numerical Optimization in Python – python ex1.</u>

Link to github repo: https://github.com/ErelEdree/numerical_optimization_ex_1

quadratic_identity, method: $gradient_descent$, Iter 1: x = [0. 0.], f(x) = 0.0, success = True

function: quadratic_identity, method: **newton_method**, Iter 1: x = [0. 0.], f(x) = 0.0, success = True

function: quadratic_ellipse, method: $gradient_descent$, Iter 100: x = [0.11271997 0.0008856], f(x) = 0.012784220095399295, success = False

function: quadratic_ellipse, method: **newton_method**, Iter 1: x = [0. 0.], f(x) = 0.0, success = True:

function: quadratic_rotated, method: gradient_descent, Iter 100: x = [0.07682763 0.13062022], f(x) = 0.023112584192700524, success = False

function: quadratic_rotated, method: newton_method, Iter 1: x = [0. 0.], f(x) = 0.0, success = True

function: **rosenbrock**, method: **gradient_descent**, Iter 7750: x = [0.99989437 0.99978771], f(x) = 1.1267173492101773e-08, success = True

function: **rosenbrock**, method: **newton_method**, Iter 20: x = [1. 1.], f(x) = 6.668339839446365e-30, success = True

function: linear_function, method: gradient_descent, Iter 100: x = [-99. 201.], f(x) = -501.0, success = False

function: linear_function, method: newton_method, Iter 100: x = [1. 1.], f(x) = -1.0, success = False

function: **exponential_triangle**, method: **gradient_descent**, Iter 28: x = [-3.46572886e-01-9.76799665e-07], f(x) = 2.559266696664345, success = True

function: **exponential_triangle**, method: **newton_method**, Iter 8: x = [-3.46573590e-01 -2.17907897e-17], f(x) = 2.5592666966582156, success = True

