第三届中国大学生数学竞赛决赛试卷 (数学类, 2012)

考试形式: __闭卷___ 考试时间: __150___ 分钟 满分: __100___ 分

题	I	_	<u> </u>	111	四	五.	六	七	总分
满り	分	15	15	10	10	15	20	15	100
得多	分								

注意: 1. 所有答题都必须写在此试卷密封线右边,写在其他纸上一律无效.

- 2. 密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3. 如当题空白不够, 可写在当页背面, 并标记题号.

得 分	
评阅人	

一、 (本题 15 分) 设有空间中五点: A(1,0,1), B(1,1,2), C(1,-1,-2), D(3,1,0), E(3,1,2). 试求过点 E 且与 A,B,C 所在平面 Σ 平行而与直线 AD 垂直的直线方程.

得 分	
评阅人	

二、 (本题 15 分) 设 f(x) 在 [a,b] 上有两阶导数, 且 f''(x) 在 [a,b] 上黎曼可积, 证明

$$f(x) = f(a) + f'(a)(x-a) + \int_{a}^{x} (x-t)f''(t) dt, \quad \forall x \in [a, b].$$

得 分	
评阅人	

三、 (本题 10 分) 设 $k_0 < k_1 < \ldots < k_n$ 为给定的 正整数, A_1, A_2, \ldots, A_n 为实参数.指出函数 $f(x) = \sin k_0 x + A_1 \sin k_1 x + \ldots + A_n \sin k_n x$ 在 $[0, 2\pi)$ 上零点

个数的(当 A_1, A_2, \ldots, A_n 变化时的)最小可能值并加以证明.

得 分	
评阅人	

四、 (本题 10 分) 设正数列 a_n 满足 $\lim_{n \to +\infty} a_n = 1$, $\lim_{n \to +\infty} a_n < +\infty$, $\lim_{n \to +\infty} \sqrt[n]{a_1 a_2 \dots a_n} = 1$. 求证:

$$\lim_{n \to +\infty} \frac{a_1 + a_2 + \dots a_n}{n} = 1.$$

得 分	
评阅人	

五、 (本题 15 分) 设 A, B 分别是 3×2 和 2×3 实矩阵,若 $AB = \begin{pmatrix} 8 & 0 & -4 \\ -\frac{3}{2} & 9 & -6 \\ -2 & 0 & 1 \end{pmatrix}$. 求 BA.

得分	
评阅人	

六、 (本题 20 分) 设 $\{A_i\}_{i\in I}$, $\{B_i\}_{i\in I}$ 是数域 F 上两个矩阵集合, 称它们在 F 上相似: 如果存在 F 上与 $i\in I$ 无关的可逆矩阵 P 使得 $P^{-1}A_iP=B_i, \forall i\in I$.

证明: 有理数域 \mathbf{Q} 上两个 矩阵集合 $\{A_i\}_{i\in I}$, $\{B_i\}_{i\in I}$, 如果它们在实数域 \mathbf{R} 上相似,则它们在有理数域 \mathbf{Q} 上也相似.

得 分	
评阅人	

七、 (本题 15 分) 设 F(x), G(x) 是 $[0, +\infty)$ 上的两个 非负单调递减函数, $\lim_{x\to +\infty} x(F(x)+G(x))=0$.

(i) 证明:
$$\forall \varepsilon > 0$$
, $\lim_{x \to +\infty} \int_{\varepsilon}^{+\infty} x F(xt) \cos t \, dt = 0$.

(ii) 若进一步有
$$\lim_{n\to+\infty}\int_0^{+\infty} (F(t)-G(t))\cos\frac{t}{n}\,dt=0.$$
 证明: $\lim_{x\to0}\int_0^{+\infty} (F(t)-G(t))\cos(xt)\,dt=0.$