Silicon Temperature Sensors

Designed for use in temperature sensing applications in automotive, consumer and industrial products requiring low cost and high accuracy.

- Precise Temperature Accuracy Over Extreme Temperature MTS102: ± 2°C from – 40°C to +150°C
- Precise Temperature Coefficient
- Fast Thermal Time Constant
 - 3 Seconds Liquid 8 Seconds — Air
- Linear VBE versus Temperature Curve Relationship
- · Other Packages Available

MTS102 MTS103 MTS105

SILICON TEMPERATURE SENSORS

(TO - 92)

Pin Number					
1	2	3			
Emitter	Base	Collector			

MAXIMUM RATINGS

WAXIMUM RATINGS	Symbol	Value	Unit	
Rating	- Jimber			
Emitter-Base Voltage	VEB	4.0	Vdc	
Collector Current — Continuous(5)	l _C	100	mAdc	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C	

Figure 1. Base-Emitter Voltage versus Ambient Temperature

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Supply Voltage		Vs	-0.2	_	35	Vdc
Output Voltage		Vout	-1.0		6.0	Vdc
Output Current		l _o	_	l –	10	mAdc
Emitter–Base Breakdown Voltage ($I_C = 100 \mu Adc, I_C = 0$)		V _{(BR)EBO}	4.0	_	_	Vdc
Base-Emitter Voltage (I _C = 0.1 mA)		VBE	580	595	620	mV
Base–Emitter Voltage Matching(1) (I _C = 0.1 mA, T _A = 25°C ±0.05°C)	MTS102 MTS103 MTS105	ΔVBE	-3.0 -4.0 -7.0	_ _ _	3.0 4.0 7.0	mV
Temperature Matching Accuracy(2) (T1 = 40°C, T2= +150°C, T _A = 25°C ± 0.05°C)	MTS102 MTS103 MTS105	ΔΤ	-3.0 -3.0 -5.0		3.0 3.0 5.0	°C
Temperature Coefficient (3.4) (VBE = 595 mV, I _C = 0.1 mA)		^T C	-2.28	-2.265	-2.26	mV/°C
Thermal Time Constant Liquid Flowing Air		ян	_	3.0 8.0	=	s
Dependence of T _C on V _{BE} @ 25°C ⁽⁴⁾ (Figure 3)		ΔΤ _Ο /ΔV _{BE}	_	0.0033	-	mV/°C mV
THERMAL CHARACTERISTICS				•	•	•
Thermal Resistance, Junction to Ambient		R ₀ JA	_		200	°C/W
MECHANICAL CHARACTERISTICS		•				
Weight				87		Grams

NOTES:

- All devices within any one group or package will be matched for VBE to the tolerance identified in the electrical characteristics table. Each
 device will be labeled with the mean VBE value for that group.
- 2. All devices within an individual group, as described in Note 1, will track within the specified temperature accuracy. This includes variations in T_C, V_{BE}, and nonlinearity in the range –40 to +150°C. Nonlinearity is typically less than ±1°C in this range. (See Figure 4)
- 3. The T_C as defined by a least-square linear regression for V_{BE} versus temperature over the range 40 to +150°C for a nominal V_{BE} of 595 mV at 25°C. For other nominal V_{BE} values the value of the T_C must be adjusted for the dependence of the T_C on V_{BE} (see Note 4).
- 4. For nominal VBE at 25°C other than 595 mV, the T_C must be corrected using the equation T_C = -2.265 + 0.003 (V_{BE} 595) where V_{BE} is in mV and the T_C is in mV/°C. The accuracy of this T_C is typically ±0.01 mV/°C.
- 5. For maximum temperature accuracy, IC should not exceed 2 mA. (See Figure 2)

Figure 3. Temperature Coefficient versus Base–Emitter Voltage

Motorola Sensor Device Data

MTS102 MTS103 MTS105

Figure 4. Linearity Error versus Temperature

Figure 5. VBE versus Ambient Temperature

APPLICATIONS INFORMATION

The base and collector leads of the device should be connected together in the operating circuit (pins 2 and 3). They are not internally connected.

The following example describes how to determine the VBE versus temperature relationship for a typical shipment of various VBE groups.

EXAMPLE:

Given — Customer receives a shipment of MTS102 devices. The shipment consists of three groups of different nominal VBE values.

Group 1: VBE (nom) = 595 mV

Group 2: VBE (nom) = 580 mV Group 3: VBE (nom) = 620 mV

Find - VBE versus temperature Relationship.

1. Determine value of Tc:

a. If VBE (nom) = 595 mV, T_C = $-2.265 \text{ mV/}^{\circ}\text{C}$ from the Electrical Characteristics table.

b. If VBE (nom) is less than or greater than 595 mV determine T_C from the relationship described in Note 4.
 T_C = -2.265 + 0.0033 (VBE - 595) or see Figure 3.

2. Determine the VBE value at extremes, -40°C and +150°C:

 $VBE(T_A) = VBE(25^{\circ}C) + (T_C)(T_A - 25^{\circ}C)$ where $VBE(T_A) = value$ of VBE at desired temperature.

 Plot the VBE versus TA curve using two VBE values: VBE (- 40°C), VBE(25°C), or VBE(+150°C)

Given any measured VBE, the value of TA (to the accuracy value specified: MTS102 - ± 2°C, MTS103 - ± 35°C, MTS105 - ± 5°C) can be read from Figure 5 or calculated from equation 2.

5. Higher temperature accuracies can be achieved if the collector current, I_C, is controlled to react in accordance with and to compensate for the linearity error. Using this concept, practical circuits have been built in which allow these sensors to yield accuracies within ± 0.1°C and ± 0.01°C.

Reference: "Transistors-A Hot Tip for Accurate Temperature Sensing," Pat O'Neil and Carl Derrington, *Electronics* 1979.

TYPICAL CIRCUITS

NOTE. With Q1 at a known temperature, adjust RCAL to set output voltage to V_{out} = TEMP x 10 mV, Output of MTS102, 3, 5 is then converted to V_{out} = 10 mV/°-(°F, °C or °K)

 $R = 27 k\Omega$ (1%) for °C or °K

Figure 6. Absolute Temperature Measurement

NOTE With Q1 and Q2 at identical temperature, adjust $R_{\mbox{\footnotesize{CAL}}}$ for $\mbox{\footnotesize{V}}_{\mbox{\footnotesize{Out}}}$ = 0 000 V

 $R = 15 k\Omega$ (1%) for °F

Figure 7. Differential Temperature Measurement 0 To 150°C

All resistors are 10% 1/4 watt except 6.2 k which is 5% 1/4 watt

Figure 8. Temperature Sensor to Digital MPU Circuit

Motorola Sensor Device Data 2–105