Assignment - 3 Support Vector Machines

22-09-2021

Hard SVM

- I. Dataset Description for Hard SVM:
 - a. Name of Dataset: Iris Dataset (link Dataset link)
 - **b. About Dataset:** The Iris dataset consist of 3 classes but for Hard SVM we need binary classification so we reconstructed this dataset by removing some data points which belong to class 2(Iris Virginica) and kept 2 classes class 0 (Iris Setosa) and class1(Iris Versicolour). The dataset is also Linearly Separable.
 - c. Dataset features:
 - Sepal length in cm
 - Sepal width in cm
 - Petal length in cm
 - Petal width in cm

d. Data Pre-processing:

Found that there are not any Not Available (NA) values in the dataset.

e. Features Selected:

All features mentioned above are chosen for training and testing.

f. Target Value to be Predicted:

class -1 (formerly class 0) : Iris Setosa class 1 (formerly class 1) : Iris Versicolour

II. Splitting the Dataset for Hard SVM:

Used <u>train test split</u> of <u>sklearn</u> to split the dataset into train and test.

Split the Dataset into: 70% - train set, 30% test set

III. Hard SVM implementation using CVXOPT Quadratic solver

A. Formulation Used : Dual Formulation

B. Number of Support Vectors: 4

C. Training Data points which are Support Vectors:

```
[[4.8 3.4 1.9 0.2 1. ]
[4.5 2.3 1.3 0.3 1. ]
[5.1 2.5 3. 1.1 1. ]
[5.1 3.3 1.7 0.5 1. ]]
```

D. Margin distance: 0.81755

E. Training Accuracy: 100.0 %

F. Testing Accuracy: 100.0 %

G. Confusion Matrix for test set:

```
confusion_matrix:
[[17 0]
[ 0 13]]
```

Soft SVM

I. Dataset Description for Soft SVM:

- a. Name of Dataset: Breast Cancer Wisconsin (Diagnostic) Dataset (link Dataset link)
- **b. About Dataset**: Features in the data are computed from a digitalized image of a fine needle aspirate (FNA) of breast mass that describe characteristics of the cell nuclei present in the image in the 3-dimensional space.

c. Dataset features:

diagnosis radius_mean texture_mean perimeter_mean area mean smoothness_mean compactness_mean concavity_mean concave points_mean symmetry_mean fractal_dimension_mean radius se perimeter_se area se smoothness_se compactness se concavity_se concave points_se symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst smoothness worst compactness_worst concavity_worst concave points_worst fractal_dimension_worst

d. Features Dropped:

Feature 'id' is dropped as for classification task id is not an attribute of breast. And also found that there are not any Not Available (NA) values in the dataset.

e. Features Selected:

All features mentioned above are chosen except 'id' for training and testing as all features describes the attributes of breast for cancer detection.

f. Train-Test split:

Train set: Test set = 80:20

II. Soft SVM implementation using CVXOPT Quadratic solver

A. Formulation Used: Dual Formulation

Regularization Parameter(C)	Number of Support Vectors	Margin distance	Training Accuracy	Testing Accuracy	Confusion Matrix for Test set
0.1	54	0.6936	98.2417%	98.2456%	confusion_matrix: [[41 2] [0 71]]
0.01	105	1.4587	96.7032%	97.3684%	confusion_matrix: [[40 3] [0 71]]
0.001	218	3.0388	81.0989%	81.5789%	confusion_matrix: [[22 21] [0 71]]

III. Soft SVM with SGD implementation

Regularization Parameter(λ)	Number of Support Vectors	Margin distance	Training Accuracy	Testing Accuracy	Confusion Matrix for Test set
0.1	82	1.0933	97.142%	98.245%	confusion_matrix: [[41 2] [0 71]]
0.01	12	0.3941	98.241%	98.245%	confusion_matrix: [[42 1] [1 70]]
0.001	17	0.4284	97.142%	97.368%	confusion_matrix: [[41 2] [1 70]]