## **FUNCIONES DE VARIAS VARIABLES**

APLICACIONES MATEMÁTICAS PARA ECONOMÍA Y NEGOCIOS (EAF2010)

**FELIPE DEL CANTO** 

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

PRIMER SEMESTRE DE 2021

## MOTIVACIÓN: MODELO DE DEMANDA

■ En Intro a la Micro, la demanda dependía sólo del precio:

$$Q(p) = -3p + 1$$

■ Consumo de leche de almendra depende negativamente del precio.

■ Pero también depende de otras cosas...

## MOTIVACIÓN: MODELO DE DEMANDA

- La solución era dejar el precio "quieto" y mirar cambios en otros factores.
  - ► Ingreso, precio de otros bienes, preferencias, etc.

■ Pero a veces nos interesa la interacción **en conjunto** de todos los factores.

¡Una variable no es suficiente para un análisis más detallado!

# Funciones, dominio y recorrido

#### **FUNCIONES DE VARIAS VARIABLES**

- $\blacksquare$  Pensaremos en general en n variables.
  - ightharpoonup Es decir, en puntos (o vectores) en  $\mathbb{R}^n$ .
  - ►  $\mathbf{x} = (x_1, x_2, ..., x_n)$ .

## **Definición** (Función de *n* variables)

Una función f de n variables y con dominio  $D \subset \mathbb{R}^n$  (D subconjunto de  $\mathbb{R}^n$ ) es una regla que asigna un número (real)  $f(\mathbf{x})$  a cada uno de los vectores  $\mathbf{x}$  en D. Esto se puede resumir:

$$f: D \subset \mathbb{R}^n \to \mathbb{R}$$

y leemos "f es una función de n variables con dominio D y que toma valores en  $\mathbb{R}$ ".

#### **FUNCIONES DE VARIAS VARIABLES**

## **Ejemplo** (Funciones de varias variables)

■ Costo de producir leche y crema de coco:

$$C(x_1, x_2) = 12x_1 + 8x_2 + 4x_1x_2$$

- $f(x_1, x_2) = \ln(x_1) + \ln(x_2).$
- Ventas dadas por precio (p) y gasto en publicidad (A):

$$f(p,A) = 1000(5 - pe^{-kA})$$

 $f(x_1, x_2, x_3) = \frac{\sqrt{9 - x_1^2 - x_2^2}}{x_1 + x_3}.$ 

## LENGUAJE Y NOTACIÓN

- $\blacksquare$  Cuando n=2 (solo hay 2 variables), decimos que la función es **bivariada**.
  - ► En el caso general decimos que es multivariada o multivariable.

lacksquare Cuando es claro que  $D\subset\mathbb{R}^n$  podemos simplificar la notación y escribir:

$$f:D\to\mathbb{R}$$

#### **DOMINIO**

A menos que digamos lo contrario, asumimos que el dominio de una función es el conjunto más grande de puntos para los cuales se puede aplicar la regla.

## Ejercicio: Encuentre el dominio de las funciones anteriores.

■ Costo de producir leche y crema de coco:

$$C(x_1, x_2) = 12x_1 + 8x_2 + 4x_1x_2$$

- $f(x_1,x_2) = \ln(x_1) + \ln(x_2).$
- Ventas dadas por precio (p) y gasto en publicidad (A):

$$f(p,A) = 1000(5 - pe^{-kA})$$

 $f(x_1, x_2, x_3) = \frac{\sqrt{9 - x_1^2 - x_2^2}}{x_1 + x_3}.$ 

6 | 5

#### **RANGO O RECORRIDO**

## **Definición** (Rango)

El rango o recorrido de una función f es el conjunto de todos los valores que toma la función cuando se reemplazan todos los posibles puntos de su dominio. Formalmente se escribe:

$$\mathsf{Rango} = \{ f(\mathbf{x}) \, | \, \mathbf{x} \in D \}$$

- **¡Cuidado!** Encontrar el rango puede ser engorroso.
- Si el rango es un conjunto *I*, podemos escribir:

$$f:D\subset\mathbb{R}^n\to I$$

■ Para una función de una variable f, la continuidad era, a grandes rasgos: Cambios pequeños de x se traducen en cambios pequeños de f(x).

■ Para funciones multivariadas la idea es la misma.

■ No veremos la definición formal pero sí un resultado útil como regla de pulgar.

#### **Teorema** (Continuidad de funciones multivariadas)

Si una función multivariada se construye como suma, resta, multiplicación, división y/o composición de funciones continuas, entonces es continua donde esté bien definida.

- Esas "funciones continuas" pueden ser univariadas.
- Recordar que composición es poner una función dentro de otra.
  - ►  $f(x) = \sqrt{\ln(x)}$  es la composición de  $\sqrt{x}$  y  $\ln(x)$ .

## **Ejemplo** (Continuidad)

■ La función

$$f(x,y,z) = x^3z - 3y^2z^3 - xyz + z^2$$

es continua en todo  $\mathbb{R}^3$ .

■ La función

$$g(x,y) = \frac{x^2 + y^2 - 4}{x - y}$$

es continua en los puntos donde  $x \neq y$ , para que el denominador no sea o.



## **GRÁFICOS**

- En funciones de una variable bastaba con un gráfico con 2 ejes.
  - ▶ Uno para x y uno para f(x)



## **GRÁFICOS**

- En funciones bivariadas, vamos a necesitar 3 ejes.
  - ▶ Uno para  $x_1$ , uno para  $x_2$  y uno para f(x).



### **GRÁFICOS**

- En general en funciones de n variables necesitamos n+1 ejes.
  - Pero para poder dibujar (¡e imaginar!) no podemos usar más de 2 variables.

■ Luego, en el curso usaremos muchas funciones bivariadas.

**importante!** Nunca olviden que en general pensamos en n variables.

## **GRÁFICOS PARA FUNCIONES BIVARIADAS**

- Hay otras formas de graficar funciones bivariadas, usando solo dos ejes.
  - ► Para mostrar la altura usamos colores.
  - Estos gráficos se conocen como mapas de calor.



**→** 52

■ Hay otras formas de tener una idea, en 2D, de una función bivariada.

- Viendo qué puntos del dominio hacen que la función esté a la misma altura.
  - ► Y dibujándolos en el plano XY.

■ Estos puntos se conocen como **curvas de nivel**.

## **Definición** (Curva de nivel)

La curva de nivel de f a altura c es el conjunto de puntos del dominio D para los cuales  $f(\mathbf{x}) = c$ .

- Se llaman "curvas" porque en general estos puntos forman una curva.
  - Pero esto no ocurre siempre, ¡no se dejen engañar!.

lacktriangle Las podemos ver "cortando" el gráfico de f con un plano a la altura deseada.

## **Ejemplo** (Curvas de nivel para $Y = K^{0,3}L^{0,7}$ )





En este ejemplo, si Y modela la producción para una empresa, las curvas de nivel se llaman **isocuantas**. Esto porque, por ejemplo, a altura 4 (línea amarilla) todos esos puntos (K,L) entregan la misma cantidad de producción.

## **Ejercicio:** Dibuje tres curvas de nivel para las siguientes funciones.





## **APLICACIÓN**

## Aplicación: Curvas de nivel y problema del consumidor

En sus 8 horas diarias libres, usted obtiene utilidad de jugar videojuegos y ver series. Su función de utilidad es  $u: \mathbb{R}_+ \to \mathbb{R}$  con  $u(v,s) = \ln(v) + \ln(s)$ , donde v y s son las horas jugando videojuegos y viendo series, respectivamente. Encuentre la combinación de v y s que hace que usted obtenga la máxima utilidad posible, siguiendo los siguientes pasos:

1. Observe las curvas de nivel de u y piense ¿hacia donde crece la utilidad?



## **APLICACIÓN**

## Aplicación: Curvas de nivel y problema del consumidor

- 2. Escriba una función g(v,s) que represente el total de horas utilizadas en ambas actividades.
- 3. Grafique (en un lugar conveniente) la función del paso anterior.
- 4. Concluya en qué punto (o puntos) debiera darse el máximo de utilidad.

20 5:

## **DERIVADAS PARCIALES**

■ Pensemos que el precio del cobre (P) se mueve según la función:

$$P = e^{-C^2 + CT - T^2}$$

- C es el cambio porcentual del índice SSEC (el "IPSA chino").
- T es el cambio porcentual en las toneladas extraídas de cobre.



- Los productores se preguntan, ¿extraigo una tonelada adicional?
- Pero, ¿qué pasa si China mejora su actividad económica?



■ Hay veces donde una mayor C sube el precio otras donde lo baja



 $\blacksquare$  Lo mismo ocurre con T.



- Necesitamos sistematizar este comportamiento.
  - ► No siempre podemos recaer en el dibujo.

■ Esto es sobre todo cierto cuando hay varias variables.

■ Y más aún cuando pensando en optimización.

■ ¡Necesitamos derivadas!

#### DERIVADAS DE FUNCIONES DE UNA VARIABLE

- Para una función univariada f, su derivada era la "razón de cambio".
  - Responde a la pregunta ¿cuánto cambia f(x) si x cambia?.
  - ▶ Si f' = 3, entonces f(x) avanza 3 veces lo que avanza x.
  - ightharpoonup Esto es válido cuando los cambios en x son pequeños.
- La lógica anterior hacía que escribiéramos la derivada como:

$$\frac{df}{dx}$$
: "El cambio en  $f$  cuando cambia  $x$ "

■ Para funciones multivariadas será muy parecido.

#### **DERIVADAS DE FUNCIONES MULTIVARIADAS**

■ Pensemos en una función de 2 variables g(x,y).

- Queremos ver la "razón de cambio".
  - Pero hay muchas preguntas.
  - ▶ ¿Ambas variables se mueven lo mismo?, ¿Con qué "velocidad se mueven"?, etc.

- El problema es que no sabemos mirar muchas variables a la vez.
  - ► No se puede hacer "razonablemente".
  - ► Lo mejor es que "congelamos" algunas variables.

#### **DERIVADAS DE FUNCIONES MULTIVARIADAS**

## Ejemplo (Derivada para una función de dos variables)

- Consideremos la función  $f(x,y) = 3x^2y + 2xy + 3y^2$ .
  - ightharpoonup Queremos ver cómo cambia f cuando cambian x e y.
  - Pero no sabemos cómo mover ambas a la vez.
- $\blacksquare$  Pensemos por un segundo que y no es una variable (está fija en un valor).
  - Entonces, ahora f es una función de una variable.
  - ► En ese caso

$$\frac{df}{dx} = 6xy + 2y$$

#### **DERIVADAS PARCIALES PARA FUNCIONES BIVARIADAS**

## **Definición** (Derivadas parciales para funciones de dos variables)

Sea  $f: D \subset \mathbb{R}^2 \to \mathbb{R}$  con variables llamadas  $x_1$  y  $x_2$ . Definimos:

- La derivada parcial de f con respecto a  $x_1$  como la derivada de la función f con respecto a  $x_1$ , si  $x_2$  se piensa como constante. Se escribe  $\frac{\partial f}{\partial x_1}$  ó  $f_{x_1}$ .
- La derivada parcial de f con respecto a  $x_2$  como la derivada de la función f con respecto a  $x_2$ , si  $x_1$  se piensa como constante. Se escribe  $\frac{\partial f}{\partial x_2}$  ó  $f_{x_2}$ .

#### **DERIVADAS PARCIALES PARA FUNCIONES BIVARIADAS**

- Como no cambiamos la definición, la interpretación es la misma.
  - ► Si  $\frac{\partial f}{\partial x_1} = 3$  cuando  $x_2 = 1$ , entonces  $f(x_1, 1)$  avanza 3 veces lo que avanza  $x_1$ .
  - $\blacktriangleright$  Esa interpretación solo es válida cuando los cambios en  $x_1$  son pequeños.

- No olvidar que las derivadas es algo "local".
  - Es decir, hay un valor para la derivada en todo punto.
  - ► Especificamente uno escribe  $\frac{\partial f}{\partial x_1}(x_1, x_2)$ .
  - ightharpoonup Para indicar que la derivada se está calculando en el punto  $(x_1, x_2)$ .

#### **DERIVADAS PARCIALES PARA FUNCIONES BIVARIADAS**

## Ejemplo (Derivadas parciales para funciones de dos variables)

Para la función que modelaba las ventas de acuerdo al precio (p) y el gasto en publicidad (A):

$$f(p,A) = 1000(5 - pe^{-kA}),$$

¿Cuánto cambian las ventas si el precio sube?

#### **DERIVADAS PARCIALES PARA FUNCIONES BIVARIADAS**

## **Ejemplo** (Derivadas parciales para funciones de dos variables)

Para la función que modelaba las ventas de acuerdo al precio (p) y el gasto en publicidad (A):

$$f(p,A) = 1000(5 - pe^{-kA}),$$

¿Cuánto cambian las ventas si el gasto en publicidad sube?

# Interpretación geométrica

■ Para una función univariada, su derivada era la pendiente de la **recta tangente**.



$$y = f(x_0) + \frac{df}{dx}(x_0) \times (x - x_0)$$

# Interpretación geométrica

- Con las derivadas parciales la idea no cambia.
  - Porque son derivadas de funciones univariadas.
  - ► Pero el dibujo se ve un poco distinto.





## INTERPRETACIÓN GEOMÉTRICA

- Entonces en cada punto tenemos dos direcciones tangentes.
  - ightharpoonup Una en la dirección x y otra en la dirección y.

- Esto significa que tenemos un resultado parecido al de la recta tangente.
  - Pero para dos variables ahora tenemos un **plano tangente**.

## INTERPRETACIÓN GEOMÉTRICA



$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \times (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \times (y - y_0)$$

#### **DERIVADAS PARCIALES PARA FUNCIONES MULTIVARIADAS**

La definición de derivada parcial se generaliza directamente al caso de n variables.

## **Definición** (Derivadas parciales para funciones de n variables)

Sea  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  con variables llamadas  $x_1, x_2, \ldots, x_n$ . Definimos la derivada parcial de f con respecto a  $x_i$  como la derivada de la función f con respecto a  $x_i$ , si las otras n-1 variables se piensan como constantes. Se escribe  $\frac{\partial f}{\partial x_i}$  ó  $f_{x_i}$ .

- La interpretación de siempre, como razón de cambio se mantiene.
  - ightharpoonup Recordando que esa interpretación solo vale para cambios pequeños de  $x_i$ .
  - ► Y que solo vale en los valores donde "congelamos" las demás variables.

#### **EL GRADIENTE**

## **Definición** (Gradiente)

Sea  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  con variables llamadas  $x_1, x_2, ..., x_n$ . Llamamos gradiente de  $f(\nabla f)$  al vector de las derivadas parciales de f. Esto es,

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

- Como las derivadas parciales son funciones, el gradiente también lo es.
- El gradiente tiene muchas propiedades interesantes.
- Y aparecerá continuamente en el curso.



# MOTIVACIÓN: PRECIO DEL COBRE

■ En el modelo del precio del cobre (*P*):

$$P = e^{-C^2 + CT - T^2}$$

- C es el cambio porcentual del índice SSEC (el "IPSA chino").
- ightharpoonup T es el cambio porcentual en las toneladas extraídas de cobre.

- ¿Cómo describir el movimiento de las derivadas parciales?
  - ▶ ¿El precio aumenta cada vez más a medida que *T* crece?
  - ▶ ¿El precio cae cada vez más a medida que *C* crece?

# MOTIVACIÓN: PRECIO DEL COBRE





# MOTIVACIÓN: PRECIO DEL COBRE

■ Al final, las derivadas son funciones.

- Y como tales, también tienen derivadas.
  - Estas se conocen como derivadas (parciales) de orden superior.

- Son parte importante de la descripción de una función.
  - Y también serán importantes en optimización.

#### **DERIVADAS PARCIALES DE SEGUNDO ORDEN**

# Definición (Derivadas parciales de segundo orden)

Sea  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  con variables llamadas  $x_1, \dots, x_n$ . Definimos

 $\blacksquare$  La derivada parcial de segundo orden con respecto a la variable  $x_i$  como

$$\frac{\partial}{\partial x_i} \left( \frac{\partial f}{\partial x_i} \right)$$

y la anotamos como  $\frac{\partial^2 f}{\partial x_i^2}$  o bien,  $f_{x_i x_i}$ .

 $\blacksquare$  La derivada parcial de segundo orden con respecto a las variables  $x_i$  y  $x_j$  como

$$\frac{\partial}{\partial x_j} \left( \frac{\partial f}{\partial x_i} \right)$$

y la anotamos como  $\frac{\partial^2 f}{\partial x_i \partial x_i}$ , o bien,  $f_{x_i x_j}$ 

#### **DERIVADAS PARCIALES DE SEGUNDO ORDEN**

■ Observar que en la segunda parte de la definición el orden es importante.

A priori

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \neq \frac{\partial^2 f}{\partial x_j \partial x_i}$$

■ Esto puede llegar a ser cierto bajo ciertas condiciones.

# **Teorema** (Teoremita de Young)

Supongamos que dos derivadas parciales de orden 2 de la función  $f(x_1,...,x_n)$  se han obtenido con el mismo número de derivaciones respecto de cada una de las variables y son continuas en un conjunto abierto S. Entonces las dos derivadas parciales son iguales en todo punto de S.

■ Si se cumplieran las condiciones de este teorema, entonces se da la igualdad

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

■ El teorema es muy útil para calcular e interpretar derivadas parciales.

## Ejemplo (Teoremita de Young)

En el modelo de ventas,  $f(p,A) = 1000(5 - pe^{-kA})$ , las derivadas parciales son continuas,

$$\frac{\partial f}{\partial p} = -1000e^{-kA}, \qquad \frac{\partial f}{\partial A} = 1000kpe^{-kA},$$

luego

$$\frac{\partial^2 f}{\partial p \partial A} = \frac{\partial^2 f}{\partial A \partial p} = 1000 ke^{-kA}$$

Lo que se interpreta como "el cambio marginal en ventas por cambios en precio es creciente en el gasto en publicidad" y "el cambio marginal en ventas por cambios en gasto publicitario es creciente en el precio" y ambos efectos son iguales.

# **Ejercicio:** Interpretación del Teorema de Young

Verifique el teorema de Young para la función de producción  $Y=K^{0,3}L^{0,7}$  e interprete.

#### **MATRIZ HESSIANA**

## **Definición** (Matriz hessiana)

Para una función  $f(x_1,...,x_n)$  se define la matriz Hessiana H como la matriz de derivadas parciales de segundo orden (o matriz de segundas derivadas):

$$H = \begin{pmatrix} f_{x_1 x_1} & f_{x_1 x_2} & \cdots & f_{x_1 x_n} \\ f_{x_2 x_1} & f_{x_2 x_2} & \cdots & f_{x_2 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_n x_1} & f_{x_n x_2} & \cdots & f_{x_n x_n} \end{pmatrix}$$

- Esta matriz será muy importante para el capítulo de optimización.
- Además, tiene una conexión muy cercana con el Teorema de Young.

#### **MATRIZ HESSIANA**

## Corolario (Matriz hessiana simétrica)

Si  $f(x_1,...,x_n)$  es tal que se cumplen los supuestos del teorema de Young en un conjunto abierto S, entonces H es simétrica, es decir,  $H^T = H$ .

■ Recordar que las matrices simétricas son iguales a su traspuesta.

■ Esto es útil para ahorrar cálculos de derivadas de segundo orden.

#### **DERIVADAS PARCIALES DE ORDEN SUPERIOR**

## **Definición** (Derivadas parciales de orden superior)

Sea  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  con variables llamadas  $x_1, \ldots, x_n$ . Definimos la derivada parcial de orden m con respecto a las variables  $(x_{i_1}, x_{i_2}, \ldots, x_{i_m})$  es

$$\frac{\partial}{\partial x_{i_m}} \left( \cdots \frac{\partial}{\partial x_{i_2}} \left( \frac{\partial f}{\partial x_{i_1}} \right) \right)$$

y la anotamos como  $\frac{\partial^m f}{\partial x_{im}\cdots\partial x_{i_2}\partial x_{i_1}}$  o bien,  $f_{x_{i_1}\cdots x_{i_m}}$ .

■ La notación es rara pero por ejemplo, para f(x,y), podemos tener

$$\frac{\partial^3 f}{\partial^2 x \partial y}$$

## **Teorema** (Teorema de Young)

Supongamos que dos derivadas parciales de orden m de la función  $f(x_1,\ldots,x_n)$  se han obtenido con el mismo número de derivaciones respecto de cada una de las variables y son continuas en un conjunto abierto S. Entonces las dos derivadas parciales son iguales en todo punto de S.

- Este es el enunciado general del Teorema de Young.
  - ightharpoonup Solo cambiamos "de orden 2" por "de orden m".

## "Demostración" (Teorema de Young)

Pensemos en una función f(x,y) y consideremos los siguientes puntos del dominio:



## "Demostración" (Teorema de Young)

Si h es pequeño, entonces

$$f_{xy}(A) \approx \frac{1}{h} (f_x(D) - f_x(A)) \approx \frac{1}{h^2} (f(C) - f(D) - (f(B) - f(A)))$$
$$f_{yx}(A) \approx \frac{1}{h} (f_y(B) - f_y(A)) \approx \frac{1}{h^2} (f(C) - f(B) - (f(D) - f(A)))$$

y, por lo tanto,

$$f_{xy}(A) \approx f_{yx}(A)$$

El mismo argumento vale para los demás puntos.