Efficient Visual Pretraining with Contrastive Detection

Training Image and Heuristic Masks

Visual self-supervised pretraining

Известные методы

- BYOL
- SimCLR
- SwAV
- ...

Чем этот метод лучше?

Известные методы

- BYOL
- SimCLR
- SwAV
- ...

Чем этот метод лучше?

Number of epochs, ImageNet pretraining

Предобучение значительно эффективнее

Описание метода

Две версии метода:

- основанная на SimCLR DetCon_s
- основанная на BYOL DetCon_в

Напоминание. SimCLR

Напоминание. BYOL

- Random cropping
- Horizontal flipping
- Color jittering
- Color dropping (to grey-scale)
- Blurring
- Solarization $(x \cdot \mathbb{1}_{x < 0.5} + (1-x) \cdot \mathbb{1}_{x > 0.5})$

ResNet-50 без последнего average pool слоя

$$oldsymbol{h_m} = rac{1}{\sum_{i,j} m_{i,j}} \sum_{i,j} m_{i,j} \; oldsymbol{h}[i,j]$$

$$\mathrm{DetCon}_{\mathbf{S}} \qquad \boldsymbol{v_m} = g_{\boldsymbol{\theta}}(\boldsymbol{h_m}), \quad \boldsymbol{v'_{m'}} = g_{\boldsymbol{\theta}}(\boldsymbol{h'_{m'}})$$

$$\mathsf{DetCon}_{\mathsf{B}} \quad \boldsymbol{v_m} = q_{\boldsymbol{\theta}} \circ g_{\boldsymbol{\theta}}(\boldsymbol{h_m}), \quad \boldsymbol{v'_{m'}} = g_{\boldsymbol{\xi}}(\boldsymbol{h'_{m'}})$$

$$\ell_{m{m},m{m}'} = -\log rac{\exp(m{v_m}\cdotm{v'_{m'}})}{\exp(m{v_m}\cdotm{v'_{m'}}) + \sum_{m{n}} \exp(m{v_m}\cdotm{v_n})}$$
 $1_{m{m},m{m}'}$ – индикатор того, что

$$\mathcal{L} = \sum_{m{m}} \sum_{m{m}'} \mathbb{1}_{m{m},m{m}'} \ell_{m{m},m{m}'}$$

 $\{oldsymbol{v_n}\}$ – negative samples

 $1_{m{m},m{m}'}$ – индикатор того, что маски соответствуют одному региону

DetCon Objective

Fine tuning

Оставляем только encoder

Результаты. Зависимость от алгоритма сегментации

Результаты. Сравнение с SimCLR и BYOL на COCO

	Instance Segmentation		
	COCO		
Pretrain epochs	300	1000	
BYOL	37.1	37.2	
\mathbf{DetCon}_B	37.8	38.2	
Efficiency Gain	$> 3 \times$		

ImageNet pretraining

Результаты. Сравнение с другими методами на СОСО

bb – bounding box mk – mask

	Fine-tune $1\times$		Fine-tune $2\times$	
method	AP^{bb}	AP^{mk}	AP^{bb}	AP ^{mk}
Supervised	39.6	35.6	41.6	37.6
VADeR	39.2	35.6	-	-
MoCo	39.4	35.6	41.7	37.5
SimCLR	39.7	35.8	41.6	37.4
MoCo v2	40.1	36.3	41.7	37.6
InfoMin	40.6	36.7	42.5	38.4
PixPro	41.4	-	-	-
BYOL	41.6	37.2	42.4	38.0
SwAV	41.6	37.8	-	-
DetCon _S	41.8	37.4	42.9	38.1
\mathbf{DetCon}_B	42.7	38.2	43.4	38.7

ImageNet pretraining

Результаты. Сравнение с supervised методом

Результаты. Нужны ли положительные пары и большой батч?

			Masks	
model	all neg	two views	FH	GT
DetCon	\checkmark	√	33.6	37.0
(a)		\checkmark	32.2	38.5
(b)			27.7	38.8

1/1--1--

all neg – в 128 раз больше отрицательных примеров two views – contrastive loss между признаками из разных аугментаций

Рецензент

Плюсы

- актуальная область применения
- сравнивается с лучшими на тот момент подходами и показывает более высокий результат
- алгоритм понятный и хорошо масштабируемый на новые подходы
- эксперименты на больших известных датасетах из открытого доступа
- наглядные графики для всех экспериментов и детальный ablation
- код с четкой инструкцией для воспроизведения
- ощутимый прирост в скорости обучения

Минусы

- нет обзора принципов генерации масок (возможно есть лучше)
- странно, что не используется для задачи классификации

Рецензент

Воспринимаемость

Хорошее изложение, все дополнительные детали расписаны и проиллюстрированы в аппендиксе

Вопросы

- как себя покажет в сравнении с новыми моделями (DINO)?
- как улучшить качество генерируемых масок?
- как показывает себя на задаче классификации?

Оценка: 8 (идея достойная, но так ли она сильна на текущий момент?)

Уверенность: 4 (для 100%-й надо еще потрогать код)

Практик-исследователь

Информация о статье

Препринт появился в марте 2021, осенью статью приняли на ICCV2021

Информация об авторах

Статья написана шестью исследователями из DeepMind (британская компания, занимающаяся искусственным интеллектом. В 2014 году была приобретена Google)

Работы, основанные на статье

Статья довольно новая и у нее всего 20 цитирований, в том числе она цитируется в статье, которую написали два из шести авторов оригинальной статьи в этом же году: Divide and Contrast: Self-supervised Learning from Uncurated Data и которую тоже приняли на ICCV2021

Практик-исследователь

Предыдущие работы авторов

Двое из авторов (Olivier J. He naff и Aaron van den Oord) уже занимались self-supervised learning и в 2020м году выпустили статью Data-Efficient Image Recognition with Contrastive Predictive Coding. В статье для обучения используются представления для небольших патчей с изображения и контрастив лосс, возможно DetCon это продолжение идей этой работы.

Связанные работы

Авторы в своей работе при выборе архитектуры моделей и пайплайнов аугментаций опираются на SimCLR и BYOL

Практик-исследователь

Конкурирующие статьи

Сами авторы в статье отмечают что их подход очень похож на Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals и Self-Supervised Visual Representation Learning from Hierarchical Grouping. Обе эти статьи также используют сегментацию изображений для self-supervised learning, отличия заключаются в том, что в них учится backbone предназначенный для решения задач сегментации и авторы этих статей не проводят эксперименты по pretraining efficiency (важная тема в DetCon).

Что можно улучшить

Для работы алгоритма необходимо разбиение изображения на маски, авторы предлагают несколько способов это делать (различные эвристики, ручная разметка). Логичным продолжением кажется попытаться сделать весь алгоритм end-to-end, то есть предложить какую-либо дифференцируемую сегментацию изображений.

Хакер

Официальная имплементация (TF): https://github.com/deepmind/detcon/deepmind/detcon/deepmind/detcon/
https://github.com/isaaccorley/detcon-pytorch

Методом, предложенным в статье было предобучено 2 сети (PASCAL VOC dataset): одна обучалась с ground truth масками, вторая с масками, сгенерированными с помощью алгоритма Felzenszwalb-Huttenlocher

Хакер

Официальная имплементация (TF): https://github.com/deepmind/detcon
Имплементация на PyTorch: https://github.com/isaaccorley/detcon-pytorch

Методом, предложенным в статье было предобучено 2 сети (PASCAL VOC dataset): одна обучалась с ground truth масками, вторая с масками, сгенерированными с помощью алгоритма Felzenszwalb-Huttenlocher

Хакер. Эксперимент

Зафиксируем обученные encoderы. И будем обучать только FC-голову (Pooling + Linear) для задачи классификации на датасете CIFAR10.

Для сравнения также возьмем предобученный (на ImageNet) encoder и также будем обучать только голову.

	ImNet	DetCon_gt	DetCon_gen
Train acc	0.722	0.263	0.192
Test acc	0.690	0.260	0.195

Результаты классификации на датасете CIFAR10.