TITLE: Fraud Detection System For Online Transaction

Subtitle: Applying RandomForest and XGBoost for Fraud Detection and Developed with Streamlit

Group

Khansa Rubab Shannon Chen Victoria Giles Zalak Shah

Table of Contents

- 1. Introduction
- 2. Data Acquisition and Exploration
- 3. Data Preprocessing
- 4. Model Selection and Evaluation
 - Hyperparameter Tuning
 - Model Performance Metrics
- 5. Model Development with Streamlit
- 6. Key Takeaways

INTRODUCTION

Background on the problem of fraud detection:

- ☐ Tackling the challenge of online transaction fraud detection.
- ☐ The significance of timely and accurate fraud identification.
- Goal: Create a machine learning model to assess the probability of fraudulent transactions (classification problem).

Targeted Supervised Learning Solutions for Data-Driven Decision Making:

Dataset:

- Source: Kaggle (https://www.kaggle.com/competitions/ieee-fraud-detection/data)
- Consists of transactional and identity data
 - Features: TransactionID, TransactionDT, TransactionAmt, ProductCD, card1-6, addr1-2,
 - dist1-2, P_emaildomain, R_emaildomain, C1-C14, D1-D15, M1-M9, V1-V339,
 - id_01-id_38, DeviceType, DeviceInfo
- **Target:** is Fraud

Overcoming Dataset Complexity:

- Challenges faced:
 - Dataset size and complexity make hyperparameter tuning difficult on Jupyter and Google Colab.
 - Computational limitations impacted model training and evaluation
 - Aws free tier does not work.
- Concurrent attempt to transition to Apache Spark from Pandas
 - ☐ Leverage Spark's distributed computing capabilities
 - ☐ Efficiently handle large-scale data processing tasks
 - ☐ Improve model training and evaluation times
 - ☐ Limitations: Having to learn a new language on a fly

Data Processing Workflow:

Data Pre-processing:

- Conduct exploratory data analysis
- Combine identity and transaction datasets
- Manage missing values:
 - Remove columns with over 40% missing values
 - Impute remaining missing values using respective column means
 - Replace infinity values with NaN and fill with column mean
- Save cleaned data to CSV file
- Encode categorical variables with LabelEncoder
- □ Standardize numerical features using StandardScaler
- Store processed data in an SQL database

Data exploration and cleaning process

Step 2: Exploring the Data

```
# aet shape of the data
print("test identity Shape: ", test identity.shape)
print("test transaction Shape: ", test transaction.shape)
print("train_identity Shape: ", train_identity.shape)
print("train transaction Shape: ", train transaction.shape)
test identity Shape: (141907, 41)
test transaction Shape: (506691, 393)
train identity Shape: (144233, 41)
train transaction Shape: (590540, 394)
# print first two rows of each dataset
print(test identity.head())
print(test_transaction.head())
print(train identity.head())
print(train transaction.head(2))
   TransactionID
                  id-01
                             id-02
                                    id-03
                                           id-04
                                                  id-05
                                                          id-06
                                                                 id-07
                                                                        id-08
         3663586
                  -45.0
                         280290.0
                                      NaN
                                             NaN
                                                    0.0
                                                           0.0
                                                                  NaN
                                                                          NaN
                           3579.0
         3663588
                    0.0
                                      0.0
                                             0.0
                                                    0.0
                                                           0.0
                                                                  NaN
                                                                          NaN
         3663597
                   -5.0
                         185210.0
                                      NaN
                                             NaN
                                                    1.0
                                                           0.0
                                                                  NaN
                                                                          NaN
         3663601
                  -45.0
                         252944.0
                                      0.0
                                             0.0
                                                    0.0
                                                           0.0
                                                                  NaN
                                                                          NaN
         3663692
                  -95.0 328680.0
                                      NaN
                                             NaN
                                                    7.0
                                                         -33.0
                                                                  NaN
                                                                          NaN
                                                   id-33
   id-09
                                  id-31
                                         id-32
                                                                    id-34
               chrome 67.0 for android
                                           NaN
                                                     NaN
                                                                      NaN
               chrome 67.0 for android
                                          24.0
                                                1280x720
                                                          match status:2
     0.0
                    ie 11.0 for tablet
     NaN
                                           NaN
                                                     NaN
                                                                      NaN
     0.0
               chrome 67.0 for android
                                           NaN
                                                     NaN
                                                                      NaN
               chrome 67.0 for android
                                                     NaN
                                                                     NaN
   id-35 id-36 id-37 id-38 DeviceType
                                                           DeviceInfo
                                         MYA-L13 Build/HUAWEIMYA-L13
                                  mobile
                                  mobile
                                                 LGLS676 Build/MXB48T
                                 desktop
                                                          Trident/7.0
                                  mobile MYA-L13 Build/HUAWEIMYA-L13
                                  mobile
                                                 SM-G9650 Build/R16NW
```

In [6]:

```
# get information about the data
print(test_identity.info())
print(test_transaction.info())
print(train_identity.info())
print(train_transaction.info())
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 141907 entries, 0 to 141906 Data columns (total 41 columns): Column Non-Null Count Dtype TransactionID 141907 non-null int64 id-01 141907 non-null float64 float64 id-R2 136976 non-null id-83 float64 66481 non-null id-04 66481 non-null float64 id-05 134750 non-null float64 id-86 134750 non-null float64 id-97 5059 non-null float64 id-88 5059 non-null float64 id-09 74338 non-null float64 id-10 74338 non-null float64 id-11 136778 non-null float64 id-12 141907 non-null object 13 id-13 130286 non-null float64 id-14 71357 non-null float64 id-15 136977 non-null object id-16 125747 non-null object id-17 135966 non-null float64 id-18 50875 non-null float64 id-19 135906 non-null float64 id-20 135633 non-null float64 id-21 5059 non-null float64 id-22 5062 non-null float64 id-23 5062 non-null object 24 id-24 4740 non-null float64 id-25 5039 non-null float64 id-26 5047 non-null float64 id-27 5062 non-null object id-28 136778 non-null object id-29 136778 non-null object id-30 70659 non-null object id-31 136625 non-null object id-32 70671 non-null float64 id-33 object 70671 non-null id-34 72175 non-null object

Data exploration and cleaning process

The train dataset has a target column called isFraud.

```
In [7]:
```

```
# get descriptive statistics for each dataset
print(test identity.describe())
print(test transaction.describe())
print(train identity.describe())
print(train transaction.describe())
```

```
TransactionID
                               id-01
                                               id-02
                                                              id-03
                       141907.000000
        1.419070e+05
                                      136976,000000
                                                      66481,000000
count
        3.972166e+06
                          -11.325734
                                      192658.729909
                                                          0.053008
mean
        1.469966e+05
                           14.508520
                                      182613.277215
                                                          0.684551
std
min
        3.663586e+06
                         -100.000000
                                            2.000000
                                                         -12.000000
25%
        3.859268e+06
                          -12.500000
                                       63339,500000
                                                          0.000000
50%
        4.001774e+06
                           -5,000000
                                      133189,500000
                                                          0.000000
75%
        4.105284e+06
                           -5.000000
                                      265717.500000
                                                          0.000000
        4.170239e+06
                            0.000000
                                      999869.000000
                                                         11.000000
max
              id-84
                              id-05
                                              id-06
                                                           id-97
                                                                         id-08
       66481,000000
                     134750.000000
                                     134750,000000
                                                     5059,000000
                                                                   5059,000000
count
                                                                    -36.577782
          -0.087454
                           1.246033
                                          -6.803829
                                                       12.493180
mean
std
           0.840351
                           5.071394
                                          15,921457
                                                       11.678206
                                                                     25,544185
min
         -19.000000
                         -81.000000
                                        -100,0000000
                                                      -41.000000
                                                                   -100,000000
25%
           0.000000
                           0.000000
                                          -6.000000
                                                        3.000000
                                                                    -46.000000
50%
           0.000000
                           0.000000
                                                       12.000000
                                           0.000000
                                                                    -33.000000
75%
           0.000000
                           1.000000
                                           0.000000
                                                       21,000000
                                                                    -23,000000
           0.000000
                                                       59.000000
                                                                      0.000000
                          52.000000
                                           0.000000
max
              id-09
                                   id-17
                                                  id-18
                                                                  id-19 \
count
      74338.000000
                           135966,000000
                                           50875.000000
                                                         135906,000000
mean
           0.076219
                              191.070341
                                              14.795735
                                                             350.122982
std
           1.009687
                               30,749535
                                               2.318496
                                                            139,140824
         -32,000000
                              100,000000
                                              11.000000
                                                             100,000000
min
25%
           0.000000
                              166.000000
                                              13.000000
                                                             266.000000
50%
           0.000000
                              166,000000
                                              15,000000
                                                             321,000000
75%
           0.000000
                              225.000000
                                              15.000000
                                                             427.000000
          16,000000
                                                             670.000000
max
                              228,000000
                                              29.000000
               id-20
                             id-21
                                           id-22
                                                        id-24
                                                                      id-25
                       5059.000000
                                    5062.000000
                                                  4749.000000
                                                                5039,000000
      135633.000000
count
          408.886230
                        507.727021
                                      15.336823
                                                    13.166667
                                                                 332.043064
mean
std
          158.971756
                        227.371061
                                       5.618032
                                                     3.222440
                                                                  86.356683
```

```
train_data Shape: (590540, 434)
         test data Shape: (506691, 433)
In [11]:
          # Check for missing values in train and test data
          missing train = train.isnull().sum().sort values(ascending=False)
          missing test = test.isnull().sum().sort values(ascending=False)
In [12]:
          # Display the percentage of missing values in each column
          print("Missing values in train (%):")
          print((missing train / len(train)) * 100)
          print("\nMissing values in test_data (%):")
          print((missing test / len(test)) * 100)
         Missing values in train (%):
         id 24
                           99.196159
         id 25
                           99.130965
         id 07
                           99.127070
         id 08
                           99.127070
         id 21
                           99.126393
                             ...
         C11
                            0.000000
         C12
                            0.000000
         C13
                            0.000000
         C14
                            0.000000
         TransactionID
                            0.000000
         Length: 434, dtype: float64
         Missing values in test_data (%):
         id-24
                           99.064519
         id-25
                           99.005508
         id-26
                           99.003929
         id-07
                           99.001561
         id-08
                           99.001561
         V111
                            0.000000
         V112
                            0.000000
         V113
                            0.000000
         V114
                            0.000000
                            0.000000
         TransactionID
         Length: 433, dtype: float64
         Note:
```

**drop columns with a missing value percentage greater than a certain threshold (let's say 50%)

Step 5: Handle Missing Values

Data exploration and cleaning process

```
In [13]:
          # Drop columns with more than 40% missing values
          train data = train.drop(columns=missing train[missing train > 0.40 * len(train)].index)
          test data = test.drop(columns=missing test[missing test > 0.40 * len(test)].index)
In [14]:
          # Impute missing values in the remaining columns with their respective means
          train data.fillna(train data.mean(), inplace=True)
          test data.fillna(test data.mean(), inplace=True)
In [15]:
          # Replace infinity values with NaN
          train data.replace([np.inf, -np.inf], np.nan, inplace=True)
          test_data.replace([np.inf, -np.inf], np.nan, inplace=True)
          # Fill NaN values with the mean of each column
          train data.fillna(train data.mean(), inplace=True)
          test_data.fillna(test_data.mean(), inplace=True)
In [16]:
          # Load cleaned data
          clean train data = pd.read csv("Resources/clean train data.csv")
          clean test data = pd.read csv("Resources/clean test data.csv")
In [17]:
          # from sklearn.preprocessing import LabelEncoder
          # # Identify categorical columns
          # categorical columns = X train.select dtypes(include=['object']).columns
          # # AppLy Label encoding
          # for col in categorical columns:
                Le = LabeLEncoder()
                le.fit(pd.concat([X train[col], X val[col], test_data[col]]))
                X train[col] = Le.transform(X train[col])
                X val[col] = Le.transform(X val[col])
                test data[col] = Le.transform(test data[col])
In [18]:
          # X train.to csv("Resources/X train.csv", index=False)
          # X val.to csv("Resources/X val.csv", index=False)
          # y train.to csv("Resources/y train.csv", index=False)
          # v val.to csv("Resources/v val.csv", index=False)
          # test data.to csv("Resources/test data.csv", index=False)
```

Data Visualisation

Examine target variable distribution (isFraud) in the train_transaction dataset

Distribution of the Variable for both:

Compare Transaction Amt distributions for fraud and non-fraud transactions

Heatmap to visualise correlations

- Investigate correlations between selected numerical features using a heatmap:
 - Features: Transaction_Amt, card1, card2, card3, card5, addr1, addr2

 Gain insights into data patterns and relationships to inform model development and feature selection.

Model Selection:

Explore various machine learning models

- RandomForest
- Ensemble methods:
 Extremely Random tree classifier
 AdaBoost
 RandomForest
- Evaluate model performance with classification report

Random Forest	Classifier:				Ī		
Training Score: 0.999778733588467							
Testing Score: 0.9801469841162326							
	precision	recall	f1-score	support			
0	0.98	1.00	0.99	142497			
1	0.93	0.47	0.62	5138			
accuracy			0.98	147635			
macro avg	0.95	0.73	0.80	147635			
weighted avg	0.98	0.98	0.98	147635			
				- 17			
Extremely Rando	om Trees Cla	ssifier:					
Training Score		5511111					
Testing Score:		5823822					
	precision		f1-score	support			
· ·	pi 201010ii		11 30010	заррог с			
0	0.98	1.00	0.99	142497			
1	0.92	0.50	0.65	5138			
-	0.52	0.50	0.05	3130			
accuracy			0.98	147635			
macro avg	0.95	0.75	0.82	147635			
weighted avg	0.98	0.98	0.98	147635			
weighted dvg	0.50	0.50	0.50	14,033			
AdaBoost Class	ifier:						
Training Score		61119202					
Testing Score:							
			f1-score	support			
	DI CC131011	1 CCGII	11 30010	Support			
0	0.97	1.00	0.98	142497			
1	0.82	0.20	0.32	5138			
-	0.02	0.20	0.52	5150			
accuracy			0.97	147635			
macro avg	0.90	0.60	0.65	147635			
weighted avg	0.97	0.00	0.05	147635			

Our Findings for Model Selection and Evaluation

- Identified Random Forest as the best-performing model based on evaluation metrics
- We initially found Random Forest to be the top performer, but after examining more resources, XGBoost also emerged as a strong contender.
- Selected Random Forest and XGBoost for in-depth analysis
- Retrieved data from the SQL database for model training and testing
- Compared Random Forest and XGBoost performance on the retrieved dataset
- ☐ Finalized the model selection for app development based on the comparison results

Model Evaluation:

- Assess models performance using ROC AUC score and classification report
- Compare RandomForest and XGBoost models
- Identify the best-performing model based on evaluation metrics

Decision: Developed the XGBoost model for real-time fraud detection with streamlit

Random Fore	est:			
	precision	recall	f1-score	support
	0 0.98	1.00	0.99	113866
	1 0.94	0.47	0.63	4242
accurac	:y		0.98	118108
macro av	g 0.96	0.74	0.81	118108
weighted av	g 0.98	0.98	0.98	118108

Accuracy: 0.9800352220002032 ROC AUC: 0.7362497890665184

XGBoost:				
	precision	recall	f1-score	support
0	0.98	1.00	0.99	113866
1	0.92	0.48	0.63	4242
accuracy			0.98	118108
macro avg	0.95	0.74	0.81	118108
weighted avg	0.98	0.98	0.98	118108

Accuracy: 0.9798574186337928 ROC AUC: 0.7394484317086844

Model Optimisation (Attempted)

Attempted with RandomForest & XGBoost Classifiers
Utilised hyperparameter tuning technique: *GridSearchCV*

```
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier

# Define the parameter grids for RandomForest and XGBoost
rf_param_grid = {
    'n_estimators': [100, 200],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5],
    'min_samples_leaf': [1, 2]
}
```

```
from sklearn.model_selection import GridSearchCV
from xgboost import XGBClassifier

# Define the parameter grids for XGBoost

xgb_param_grid = {
    'n_estimators': [100, 200],
    'max_depth': [6, 10, 15],
    'learning_rate': [0.01, 0.1],
    'subsample': [0.5, 1],
    'colsample_bytree': [0.5, 1]
}
```

It performs an exhaustive search over all possible combinations of hyperparameters, training and evaluating the model with each combination using cross validation.

Returns the hyperparameters that resulted in best performance.

Model Optimisation (Timed out)

Insufficient computing power despite trying various mediums:

- Pandas on Jupyter Notebook
- Pandas on Google Colab (with TPU)
- PySpark on Google Colab (with TPU)

Thus, unable to successfully implement GridSearchCV as a form of hyperparameter tuning.

However, the **XGBoost Classification model** that we tested has some built-in regularization techniques to improve model generalisation, such as:

- □ L1, L2
- Max depth constraints

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you. (0% complete)

Model Deployment (Streamlit)

Decision taken to deploy our best performing model (XGBoost Classifier) using 2 features (out of our initial 400 + in the raw dataset) on Streamlit.io.

Created a web app with input fields for each feature in a respective dataset.

Users can upload a new pre-processed dataset onto the app and use it to predict the probability that a transaction is fraudulent.

```
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from xgboost import XGBClassifier
# Load the preprocessed data
X train = pd.read csv("Resources/X train.csv")
v train = pd.read csv("Resources/v train.csv")["isFraud"]
# Select two basic features
selected features = ['TransactionDT', 'TransactionAmt']
X train selected = X train[selected features]
# Train the XGBoost model
xgb model = XGBClassifier(use label encoder=False, random state=42)
xgb_model.fit(X_train_selected, y_train, eval_metric='logloss')
# Streamlit app
st.title("Fraud Detection")
transaction_dt = st.number_input("TransactionDT", min_value=0, value=100000)
transaction amt = st.number input("TransactionAmt", min value=0.0, value=50.0)
if st.button("Predict"):
   input data = pd.DataFrame({"TransactionDT": [transaction dt],
                            "TransactionAmt": [transaction amt]})
   prediction = xgb model.predict(input data)
   st.write("Prediction: ", "Fraud" if prediction[0] == 1 else "Not Fraud")
```

Model Deployment (Streamlit)

Limitation of current app:

It only takes in two basic features for predictions. It was vital that we had a functioning front-end given the tight timeframe.

Future refinements:

Enhance model performance by adding more features, incorporating other ML models, utilising alternative hyperparameter tuning techniques, and deploying the improved model on Heroku for increased accessibility.

Fraud Detection

Key TakeAways:

- Request more instances of fraudulent transactions from the organization to improve model training and prediction accuracy.
- Address imbalanced dataset challenges with techniques such as oversampling, undersampling, or using cost-sensitive learning.
- Optimize computational resources and training times by leveraging scalable solutions like Apache Spark or distributed computing.
- Seek clarity on column names to potentially merge related variables, inform feature engineering, and improve model interpretability.

Github Link: https://github.com/rubab-malik/Project 4

Thank you Mortaza and Jeffery