Genotype Reconstruction for Diversity Outbred Mice

A comparison of r/qt12 and DOQTL

John Spaw¹ Karl Broman²

github.com/JohnPSpaw¹ github.com/kbroman²

Probabilities are generated from:

Probabilities are generated from:

1. Transition Model

Probabilities are generated from:

- 1. Transition Model
- 2. Emission Model

Probabilities are generated from:

1. Transition Model

2. Emission Model

Conditional probability of observed data given underlying diplotype state

Data

Two large 3D arrays of emission probabilities

- ► r\qt12 (Broman)
- ► DOQTL (Gatti)

Data

Two large 3D arrays of emission probabilities

- ► r\qt12 (Broman)
- ► DOQTL (Gatti)

 $500 \times 120,000 \times 36$ (Individual × Markers × Haplotype)

Data

Two large 3D arrays of emission probabilities

- ▶ r\qt12 (Broman)
- ► DOQTL (Gatti)

$$500 \times 120,000 \times 36$$
 (Individual × Markers × Haplotype)

How are they different (or the same)?

Inferred Haplotypes

INSERT INFERRED HAPLOTYPE IMAGE (BARS)

For each individual at each marker:

Compute sum of absolute differences

$$\sum_{i=1}^{36} |p_{1,i} - p_{2,i}|$$

For each individual at each marker:

Compute sum of absolute differences

$$\sum_{i=1}^{36} |p_{1,i} - p_{2,i}|$$

Reduces problems to two-dimensions:

For each individual at each marker:

Compute sum of absolute differences

$$\sum_{i=1}^{36} |p_{1,i} - p_{2,i}|$$

Reduces problems to two-dimensions: $500 \times 120,000$

For each individual at each marker:

Compute sum of absolute differences

$$\sum_{i=1}^{36} |p_{1,i} - p_{2,i}|$$

Reduces problems to two-dimensions: $500 \times 120,000$

Each entry represents distance between methods