

WE CLAIM:

1. A compound of Formula I:

5

in which:

X¹ and X² are both methylene or X¹ is ethylene and X² is a bond;

10 R³ is -CR⁵=CHR⁶, -CR⁵(CR⁶)₂ or -CR⁷=NR⁸, wherein R⁵ is hydrogen and R⁶ is hydrogen or (C₁₋₄)alkyl or R⁵ and R⁶ together with the atoms to which R⁵ and R⁶ are attached form (C₃₋₁₂)cycloalkenyl, hetero(C₅₋₁₂)cycloalkenyl, (C₆₋₁₂)aryl, hetero(C₆₋₁₂)aryl, (C₉₋₁₂)bicycloaryl or hetero(C₈₋₁₂)bicycloaryl and R⁷ and R⁸ together with the atoms to which R⁷ and R⁸ are attached form hetero(C₅₋₁₂)cycloalkenyl, hetero(C₆₋₁₂)aryl or 15 hetero(C₈₋₁₂)bicycloaryl, wherein R³ optionally is substituted by 1 to 5 radicals independently selected from a group consisting of (C₁₋₄)alkyl, cyano, halo, halo-substituted (C₁₋₄)alkyl, nitro, -X⁴NR⁹R⁹, -X⁴OR⁹, -X⁴SR⁹, -X⁴C(O)NR⁹R⁹, -X⁴C(O)OR⁹, -X⁴S(O)R¹⁰, -X⁴S(O)₂R¹⁰ and -X⁴C(O)R¹⁰, wherein X⁴ is a bond or (C₁₋₂)alkylene, R⁹ at each occurrence independently is hydrogen, (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl and 20 R¹⁰ is (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl; and

R^4 is $-C(O)X^5R^{11}$ or $-S(O)_2X^5R^{11}$, wherein X^5 is a bond, $-O-$ or $-NR^{12}-$, wherein R^{12} is hydrogen or (C_{1-6}) alkyl, and R^{11} is (i) (C_{1-6}) alkyl optionally substituted by $-OR^{13}$, $-SR^{13}$, $-S(O)R^{13}$, $-S(O)_2R^{13}$, $-C(O)R^{13}$, $-C(O)OR^{13}$, $-C(O)NR^{13}R^{14}$, $-NR^{13}R^{14}$, $-NR^{14}C(O)R^{13}$, $-NR^{14}C(O)OR^{13}$, $-NR^{14}C(O)NR^{13}R^{14}$ or $-NR^{14}C(NR^{14})NR^{13}R^{14}$, wherein

5 R^{13} is (C_{3-12}) cycloalkyl(C_{0-3})alkyl, hetero(C_{5-12})cycloalkyl(C_{0-3})alkyl, (C_{6-12}) aryl(C_{0-3})alkyl, hetero(C_{5-12})aryl(C_{0-3})alkyl, (C_{9-12}) bicycloaryl(C_{0-3})alkyl or hetero(C_{8-12})bicycloaryl(C_{0-3})alkyl and R^{14} at each occurrence independently is hydrogen or (C_{1-6}) alkyl, or (ii) (C_{3-12}) cycloalkyl(C_{0-3})alkyl, hetero(C_{5-12})cycloalkyl(C_{0-3})alkyl, (C_{6-12}) aryl(C_{0-3})alkyl, hetero(C_{5-12})aryl(C_{0-3})alkyl, (C_{9-12}) bicycloaryl(C_{0-3})alkyl or

10 hetero(C_{8-12})bicycloaryl(C_{0-3})alkyl or (iii) (C_{3-6}) cycloalkyl(C_{0-3})alkyl, hetero(C_{5-6})cycloalkyl(C_{0-3})alkyl, phenyl(C_{0-3})alkyl or hetero(C_{5-6})aryl(C_{0-3})alkyl substituted by $-X^6OR^{15}$, $-X^6SR^{15}$, $-X^6S(O)R^{15}$, $-X^6S(O)_2R^{15}$, $-X^6C(O)R^{15}$, $-X^6C(O)OR^{15}$, $-X^6C(O)NR^{15}R^{16}$, $-X^6NR^{15}R^{16}$, $-X^6NR^{16}C(O)R^{15}$, $-X^6NR^{16}C(O)OR^{15}$, $-X^6NR^{16}C(O)NR^{15}R^{16}$, $-X^6NR^{16}C(O)OR^{16}$, $-X^6NR^{16}C(NR^{16})NR^{15}R^{16}$, wherein X^6 is a

15 bond or methylene, R^{15} is (C_{3-6}) cycloalkyl(C_{0-3})alkyl, hetero(C_{5-6})cycloalkyl(C_{0-3})alkyl, phenyl(C_{0-3})alkyl or hetero(C_{5-6})aryl(C_{0-3})alkyl and R^{16} is hydrogen or (C_{1-6}) alkyl; wherein R^4 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C_{1-6}) alkyl, (C_{1-6}) alkylidene, cyano, halo, nitro, halo-substituted (C_{1-3}) alkyl, $-X^6NR^{17}R^{17}$, $-X^6NR^{17}C(O)OR^{17}$, $-X^6NR^{17}C(O)NR^{17}R^{17}$, $-X^6NR^{17}C(NR^{17})NR^{17}R^{17}$, $-X^6OR^{17}$, $-X^6SR^{17}$, $-X^6C(O)OR^{17}$, $-X^6C(O)NR^{17}R^{17}$, $-X^6S(O)_2NR^{17}R^{17}$, $-X^6P(O)(OR^{18})OR^{17}$, $-X^6OP(O)(OR^{18})OR^{17}$, $-X^6NR^{17}C(O)R^{18}$, $-X^6S(O)R^{18}$, $-X^6S(O)_2R^{18}$ and $-X^6C(O)R^{18}$ and when occurring within an aliphatic moiety are radicals independently selected from a group

consisting of cyano, halo, nitro, $-NR^{17}R^{17}$, $-NR^{17}C(O)OR^{17}$, $-NR^{17}C(O)NR^{17}R^{17}$, $-NR^{17}C(NR^{17})NR^{17}R^{17}$, $-OR^{17}$, $-SR^{17}$, $-C(O)OR^{17}$, $-C(O)NR^{17}R^{17}$, $-S(O)_2NR^{17}R^{17}$, $-P(O)(OR^{17})OR^{17}$, $-OP(O)(OR^{17})OR^{17}$, $-NR^{17}C(O)R^{18}$, $-S(O)R^{18}$, $-S(O)_2R^{18}$ and $-C(O)R^{18}$, wherein X^6 is a bond or $(C_{1-6})alkylene$, R^{17} at each occurrence independently is

5 hydrogen, $(C_{1-6})alkyl$ or halo-substituted $(C_{1-3})alkyl$ and R^{18} is $(C_{1-6})alkyl$ or halo-substituted $(C_{1-3})alkyl$;

X^3 is a group of Formula (a), (b) or (c):

(a)

(b)

(c)

10

n is 0, 1 or 2;

R^{20} is selected from the group consisting of hydrogen, $(C_{1-6})alkyl$, $(C_{3-12})cycloalkyl(C_{0-6})alkyl$, hetero $(C_{5-12})cycloalkyl(C_{0-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$ and hetero $(C_{5-12})aryl(C_{0-6})alkyl$;

15 R^{21} is selected from the group consisting of hydrogen, $(C_{1-9})alkyl$, $(C_{3-12})cycloalkyl(C_{0-6})alkyl$, hetero $(C_{5-12})cycloalkyl(C_{0-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$, hetero $(C_{5-12})aryl(C_{0-6})alkyl$, $(C_{9-12})bicycloaryl(C_{0-3})alkyl$, hetero $(C_{8-12})bicycloaryl(C_{0-3})alkyl$, $-C(O)R^{26}$, $-C(S)R^{26}$, $-S(O)_2R^{26}$, $-C(O)OR^{26}$, $-C(O)N(R^{26})R^{27}$, $-C(S)N(R^{26})R^{27}$ and $-S(O)_2N(R^{27})R^{26}$;

20 R^{23} is selected from $(C_{1-6})alkyl$, $(C_{4-6})alkenyl$, $(C_{3-12})cycloalkyl(C_{0-6})alkyl$, hetero $(C_{5-12})cycloalkyl(C_{0-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$ or hetero $(C_{5-12})aryl(C_{0-6})alkyl$

optionally substituted with amino, -NHC(O)R¹⁵ or -R¹⁵ wherein R¹⁵ is as described above;

R²⁵ is selected from hydrogen, (C₁₋₆)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl, hetero(C₅₋₁₃)aryl(C₀₋₆)alkyl, -X⁴NHR¹⁵, -X⁴S(O)₂R²⁶ or -X⁴C(O)R¹⁷NR¹⁷C(O)R¹⁷ wherein R¹⁵, R¹⁷ and X⁴ are as

5 described above;

R²⁶ is selected from the group consisting of hydrogen, (C₁₋₆)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl or hetero(C₈₋₁₂)-bicycloaryl(C₀₋₃)alkyl;

10 R²⁷ is hydrogen, (C₁₋₆)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl or hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl;

wherein X³ optionally further contains 1 to 5 substituents which when occurring, within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted 15 (C₁₋₃)alkyl, -X⁶NR¹⁷R¹⁷, -X⁶NR¹⁷C(O)OR¹⁷, -X⁶NR¹⁷C(O)NR¹⁷R¹⁷, -X⁶NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -X⁶OR¹⁷, -X⁶C(O)R¹⁷, -X⁶OR¹⁵, -X⁶SR¹⁷, -X⁶C(O)OR¹⁷, -X⁶C(O)NR¹⁷R¹⁷, -X⁶S(O)₂NR¹⁷R¹⁷, -X⁶P(O)(OR⁸)OR¹⁷, -X⁶OP(O)(OR⁸)OR¹⁷, -X⁶NR¹⁷C(O)R¹⁸, -X⁶S(O)R¹⁸, -X⁶S(O)₂R¹⁸ and -X⁶C(O)R¹⁸ and when occurring within 20 an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, -NR¹⁷R¹⁷, -NR¹⁷C(O)OR¹⁷, -NR¹⁷C(O)NR¹⁷R¹⁷, -NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -OR¹⁷, -SR¹⁷, -C(O)OR¹⁷, -C(O)NR¹⁷R¹⁷, -S(O)₂NR¹⁷R¹⁷, -P(O)(OR¹⁷)OR¹⁷, -OP(O)(OR¹⁷)OR¹⁷, -NR¹⁷C(O)R¹⁸, -S(O)R¹⁸, -S(O)₂R¹⁸ and -C(O)R¹⁸, wherein R¹⁵, R¹⁷, R¹⁸ and X⁶ are as described above; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the

pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

5 2. The compound of claim 1 in which X¹ and X² are both methylene or X¹ is ethylene and X² is a bond; R³ is -CR⁵=CHR⁶, -CR⁵(CR⁶)₂ or -CR⁷=NR⁸, wherein R⁵ is hydrogen and R⁶ is hydrogen or (C₁₋₄)alkyl or R⁵ and R⁶ together with the atoms to which R⁵ and R⁶ are attached form (C₃₋₁₂)cycloalkenyl, (C₆₋₁₂)aryl, hetero(C₆₋₁₂)aryl or (C₉₋₁₂)bicycloaryl and R⁷ and R⁸ together with the atoms to which R⁷ and R⁸ are attached form 10 hetero(C₅₋₁₂)cycloalkenyl or hetero(C₆₋₁₂)aryl, wherein R³ optionally is substituted by 1 to 5 radicals independently selected from a group consisting of (C₁₋₄)alkyl, cyano, halo, halo-substituted (C₁₋₄)alkyl, -X⁴OR⁹ and -X⁴C(O)OR⁹, wherein X⁴ is a bond or (C₁₋₂)alkylene, R⁹ at each occurrence independently is (C₁₋₃)alkyl or halo-substituted 15 (C₁₋₃)alkyl; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

3. The compound of claim 2 in which R⁴ is -C(O)X⁵R¹¹ or -S(O)₂X⁵R¹¹, wherein X⁵ 20 is a bond, -O- or -NR¹²-, wherein R¹² is hydrogen or (C₁₋₆)alkyl, and R¹¹ is (i) (C₁₋₆)alkyl or (ii) hetero(C₅₋₁₂)cycloalkyl(C₀₋₃)alkyl, (C₆₋₁₂)aryl(C₀₋₃)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₃)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl or (iii) hetero(C₅₋₆)cycloalkyl(C₀₋₃)alkyl or phenyl(C₀₋₃)alkyl substituted by -X⁶OR¹⁵, -X⁶C(O)R¹⁵ or -X⁶NR¹⁶C(O)OR¹⁶, wherein X⁶ is a bond or methylene, R¹⁵ is phenyl(C₀₋₃)alkyl or

hetero(C₅₋₆)aryl(C₀₋₃)alkyl and R¹⁶ is hydrogen or (C₁₋₆)alkyl; wherein R⁴ optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, halo,

-X⁶NR¹⁷R¹⁷, -X⁶OR¹⁷, -X⁶C(O)OR¹⁷, -X⁶NC(O)R¹⁶ and -X⁶C(O)R¹⁸, R¹⁷ at each

5 occurrence independently is hydrogen, (C₁₋₆)alkyl or halo-substituted (C₁₋₃)alkyl and R¹⁸ is (C₁₋₆)alkyl or halo-substituted (C₁₋₃)alkyl; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of

10 isomers thereof.

4. The compound of claim 3 in which X³ is a group of Formula (a), (b) or (c):

15

n is 0, 1 or 2;

R²⁰ is selected from the group consisting of hydrogen and (C₁₋₆)alkyl;

R²¹ is selected from the group consisting of (C₁₋₉)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl, -C(O)R²⁶, -S(O)₂R²⁶, -C(O)OR²⁶ and -C(O)N(R²⁶)R²⁷;

20 R²³ is selected from (C₁₋₆)alkyl optionally substituted with amino, -NHC(O)R¹⁵ or -R¹⁵ wherein R¹⁵ is as described above;

R^{25} is selected from $(C_{1-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$, $-X^4S(O)_2R^{26}$ or $-X^4C(O)R^{17}NR^{17}C(O)R^{17}$ wherein R^{17} and X^4 are as described above and R^{26} is as described below;

R^{26} is selected from the group consisting of $(C_{1-6})alkyl$,

5 $hetero(C_{5-12})cycloalkyl(C_{0-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$, $hetero(C_{5-12})aryl(C_{0-6})alkyl$ and $(C_{9-12})bicycloaryl(C_{0-3})alkyl$;

R^{27} is $(C_{1-6})alkyl$;

wherein X^3 optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of $(C_{1-6})alkyl$, cyano, halo, $-X^6OR^{17}$, $-X^6C(O)R^{17}$ and $-X^6OR^{15}$; and the N -oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof; and the pharmaceutically acceptable salts and solvates of such compounds and the N -oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

15

5. The compound of claim 4 in which R^3 is selected from the group consisting of phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, vinyl, 2-difluoromethoxyphenyl, 1-oxy-pyridin-2-yl, 4-methoxyphenyl, 4-methylphenyl, 2-methylphenyl, 4-chlorophenyl, 3,5-dimethylphenyl, 4-trifluoromethylphenyl, 4-trifluoromethoxyphenyl, 2-bromophenyl, 20 naphthalen-2-yl, 3,4-dichlorophenyl, 3-methylphenyl, 3-trifluoromethylphenyl, 3-trifluoromethoxyphenyl, 2,3,4,5,6-pentafluoro-phenyl, 2-fluorophenyl, 2-chlorophenyl, 2-cyano-phenyl, 2-trifluoromethylphenyl, 4-*tert*-butyl-phenyl, 3-chlorophenyl, 4-bromophenyl, 2-fluoro-3-chloro-phenyl, 2-fluoro-3-methyl-phenyl, 3-fluorophenyl, 2,5-difluorophenyl, 3-bromophenyl, 2,5-dichlorophenyl, 2,6-difluorophenyl, 3-cyano-phenyl,

4-cyano-phenyl, 2-trifluoromethoxyphenyl, 2,3-difluorophenyl, biphenyl, 2-bromo-5-fluoro-phenyl, 4-fluorophenyl, 3,4-difluorophenyl, 2,4-difluorophenyl, 2,4,6-trifluorophenyl, 2,4,5-trifluorophenyl, 2,3,4-trifluorophenyl, 2-chloro-5-trifluoromethylphenyl, 2,4-bis-trifluoromethylphenyl, 2,5,6-trifluorophenyl, 2-fluoro-3-5-trifluoromethylphenyl, 2-fluoro-4-trifluoromethylphenyl, 2-fluoro-5-trifluoromethylphenyl, 2,3,5-trifluorophenyl, 2-fluoro-5-trifluoromethylphenyl, 5-fluoro-2-trifluoromethylphenyl, 4-fluoro-3-trifluoromethylphenyl, 2-methoxyphenyl, 3,5-bis-trifluoromethylphenyl, 4-difluoromethoxyphenyl, 3-difluoromethoxyphenyl, 2,6-dichlorophenyl, 4-carboxyphenyl, cyclohexyl, cyclopropyl, isopropyl, thiophen-2-yl, 5-chloro-thiophen-2-yl and 3,5-10 dimethyl-isoxazol-4-yl.

6. The compound of claim 5 in which R⁴ is benzoyl, morpholine-4-carbonyl, acetyl, furan-3-carbonyl, 2-methoxy-benzoyl, 3-methoxy-benzoyl, naphthalene-2-carbonyl, benzo[1,3]dioxole-5-carbonyl, 3-pyridin-3-yl-acryloyl, benzofuran-2-carbonyl, furan-2-15 carbonyl, *tert*-butoxy-carbonyl, biphenyl-4-carbonyl, quinoline-2-carbonyl, quinoline-3-carbonyl, 3-acetyl-benzoyl, 4-phenoxy-benzoyl, 3-hydroxy-benzoyl, 4-hydroxy-benzoyl, pyridine-3-carbonyl, 3-(*tert*-butoxycarbonylamino-methyl)-benzoyl, 4-carbonyl-piperazine-1-carboxylic acid *tert*-butyl ester, 4-carbonyl-piperazine-1-carboxylic acid ethyl ester, 4-(furan-2-carbonyl)-piperazine-1-carbonyl, pyridine-4-carbonyl, 1-oxy-pyridine-4-carbonyl, 20 1-oxy-pyridine-3-carbonyl, thiophene-2-carbonyl, thiophene-3-carbonyl, 4-benzoyl-benzoyl, 5-methyl-thiophene-2-carbonyl, 3-chloro-thiophene-2-carbonyl, 3-bromo-thiophene-2-carbonyl, 4-chloro-benzoyl, 3-fluoro-4-methoxy-benzoyl, 4-methoxy-benzoyl, 4-trifluoromethoxy-benzoyl, 3,4-difluoro-benzoyl, 4-fluoro-benzoyl, 3,4-dimethoxy-benzoyl, 3-methyl-benzoyl, 4-bromo-benzoyl, 4-trifluoromethyl-benzoyl, 3-benzoyl-

benzoyl, cyclopentane-carbonyl, benzo[b]thiophene-2-carbonyl, 3-chloro-
benzo[b]thiophene-2-carbonyl, benzenesulfonyl, naphthalene-2-sulfonyl, 5-methyl-
thiophene-2-sulfonyl, thiophene-2-sulfonyl, formamyl-methyl ester, 4-methyl-pentanoyl,
formamyl-isobutyl ester, formamyl-monoallyl ester, formamyl-isopropyl ester, *N,N*-
5 dimethyl-formamyl, *N*-isopropyl-formamyl, *N*-pyridin-4-yl-formamyl, *N*-pyridin-3-yl-
formamyl, 3-phenyl-acryloyl, 1*H*-indole-5-carbonyl, pyridine-2-carbonyl, pyrazine-2-
carbonyl, 3-hydroxy-pyridine-2-carbonyl, 2-amino-pyridine-3-carbonyl, 2-hydroxy-
pyridine-3-carbonyl, 6-amino-pyridine-3-carbonyl, 6-hydroxy-pyridine-3-carbonyl,
pyridazine-4-carbonyl, 3-phenoxy-benzoyl and 1-oxo-1,3-dihydro-isoindole-2-carbonyl.

10

7. The compound of claim 6 in which X³ is selected from a group consisting of 4-
amino-3-oxo-azepane-1-carboxylic acid benzyl ester, 4-amino-3-oxo-azepane-1-carboxylic
acid isobutyl ester, 4-amino-1-benzoyl-azepan-3-one, 4-amino-1-benzenesulfonyl-azepan-
3-one, 4-amino-1-(pyridine-2-sulfonyl)-azepan-3-one, 4-amino-1-(1-oxy-pyridine-2-
15 sulfonyl)-azepan-3-one, 4-amino-1-(3,4-dichloro-benzenesulfonyl)-azepan-3-one, 4-amino-
1-(2-fluoro-benzenesulfonyl)-azepan-3-one, 4-amino-1-(3,4-dimethoxy-benzenesulfonyl)-
azepan-3-one, 4-amino-1-(2-cyano-benzenesulfonyl)-azepan-3-one, 4-amino-1-
(naphthalene-1-sulfonyl)-azepan-3-one, 4-amino-1-(thiophene-2-sulfonyl)-azepan-3-one,
4-amino-1-(thiazole-2-sulfonyl)-azepan-3-one, 4-amino-1-(pyrrolidine-1-sulfonyl)-azepan-
20 3-one, 4-amino-1-methanesulfonyl-azepan-3-one, 4-amino-1-(pyrrolidine-1-carbonyl)-
azepan-3-one, 4-amino-3-oxo-azepane-1-carboxylic-acid-dimethylamide, 4-amino-3-oxo-
azepane-1-carboxylic-acid-benzylamide, 4-amino-1-benzyl-azepan-3-one, 4-amino-1-
benzyl-piperidin-3-one, 4-amino-1-benzoyl-piperidin-3-one, 4-amino-1-benzoyl-
pyrrolidin-3-one, 4-amino-1-benzyl-pyrrolidin-3-one, 4-amino-1-benzenesulfonyl-

pyrrolidin-3-one, 4-amino-1-(5-methyl-hexyl)-pyrrolidin-3-one, 1-ethyl-2-oxo-3-(toluene-4-sulfonylamino)-butylamino, 1-ethyl-2-oxo-3-(4-phenoxy-benzenesulfonylamino)-propylamino, 1-ethyl-2-oxo-3-[4-(pyridin-3-yloxy)-benzenesulfonylamino]-propylamino, 3-(dibenzofuran-2-sulfonylamino)-1-ethyl-2-oxo-butylamino, 1-ethyl-3-[4-methyl-2-(4-methyl-pentanoylamino)-pentanoylamino]-2-oxo-propylamino, 5-amino-1-[(4-methoxyphenylsulfamoyl)-methyl]-pentylamino, 5-benzylloxycarbonylamino-1-[(4-methoxyphenylsulfamoyl)-methyl]-pentylamino, 1-[(4-methoxy-phenylsulfamoyl)-methyl]-3-phenyl-propylamino, 1-{[4-(1-hydroxy-ethyl)-phenylsulfamoyl]-methyl}-3-phenyl-propylamino, 1-[(4-acetyl-phenylsulfamoyl)-methyl]-3-phenyl-propylamino, 1-[(4-hydroxy-phenylsulfamoyl)-methyl]-3-phenyl-propylamino and 3-phenyl-1-[(2-phenylamino-ethylsulfamoyl)-methyl]-propylamino.

8. The compound of claim 7 selected from the group consisting of morpholine-4-carboxylic acid (1-{5-amino-1-[(4-methoxy-phenylsulfamoyl)-methyl]-pentylcarbamoyl}-2-phenylmethanesulfonyl-ethyl)-amide, (6-(4-methoxy-phenylsulfamoyl)-5-{2-[(morpholine-4-carbonyl)-amino]-3-phenylmethane-sulfonyl-propionylamino}-hexyl)-carbamic acid benzyl ester, morpholine-4-carboxylic acid (1-{1-[(4-methoxy-phenylsulfamoyl)-methyl]-3-phenyl-propylcarbamoyl}-2-phenylmethanesulfonyl-ethyl)-amide, morpholine-4-carboxylic acid [1-(3-benzenesulfonylamino-2-oxo-propylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide, morpholine-4-carboxylic acid [1-(1-benzoyl-4-oxo-pyrrolidin-3-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide, morpholine-4-carboxylic acid [1-(1-benzenesulfonyl-4-oxo-pyrrolidin-3-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide and 4-{2-[(Morpholine-4-carbonyl)-amino]-3-phenylmethanesulfonyl-propionylamino}-3-oxo-azepane-1-carboxylic acid benzyl ester.

9. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.

5 10. A method for treating a disease in an animal in which inhibition of Cathepsin S can prevent, inhibit or ameliorate the pathology and/or symptomology of the disease, which method comprises administering to the animal a therapeutically effective amount of compound of Claim 1 or a *N*-oxide derivative or individual isomer or mixture of isomers thereof; or a pharmaceutically acceptable salt or solvate of such compounds and the
10 *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers thereof.

11. The use of a compound of Claim 1 in the manufacture of a medicament for treating a disease in an animal in which Cathepsin S activity contributes to the pathology and/or
15 symptomology of the disease.

12. A process for preparing a compound of Formula I:

in which:

- X¹ and X² are both methylene or X¹ is ethylene and X² is a bond;
- R³ is -CR⁵=CHR⁶, -CR⁵(CR⁶)₂ or -CR⁷=NR⁸, wherein R⁵ is hydrogen and R⁶ is
- 5 hydrogen or (C₁₋₄)alkyl or R⁵ and R⁶ together with the atoms to which R⁵ and R⁶ are attached form (C₃₋₁₂)cycloalkenyl, hetero(C₅₋₁₂)cycloalkenyl, (C₆₋₁₂)aryl, hetero(C₆₋₁₂)aryl, (C₉₋₁₂)bicycloaryl or hetero(C₈₋₁₂)bicycloaryl and R⁷ and R⁸ together with the atoms to which R⁷ and R⁸ are attached form hetero(C₅₋₁₂)cycloalkenyl, hetero(C₆₋₁₂)aryl or hetero(C₈₋₁₂)bicycloaryl, wherein R³ optionally is substituted by 1 to 5 radicals
- 10 independently selected from a group consisting of (C₁₋₄)alkyl, cyano, halo, halo-substituted (C₁₋₄)alkyl, nitro, -X⁴NR⁹R⁹, -X⁴OR⁹, -X⁴SR⁹, -X⁴C(O)NR⁹R⁹, -X⁴C(O)OR⁹, -X⁴S(O)R¹⁰, -X⁴S(O)₂R¹⁰ and -X⁴C(O)R¹⁰, wherein X⁴ is a bond or (C₁₋₂)alkylene, R⁹ at each occurrence independently is hydrogen, (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl and R¹⁰ is (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl; and
- 15 R⁴ is -C(O)X⁵R¹¹ or -S(O)₂X⁵R¹¹, wherein X⁵ is a bond, -O- or -NR¹²- , wherein R¹² is hydrogen or (C₁₋₆)alkyl, and R¹¹ is (i) (C₁₋₆)alkyl optionally substituted by -OR¹³, -SR¹³, -S(O)R¹³, -S(O)₂R¹³, -C(O)R¹³, -C(O)OR¹³, -C(O)NR¹³R¹⁴, -NR¹³R¹⁴, -NR¹⁴C(O)R¹³, -NR¹⁴C(O)OR¹³, -NR¹⁴C(O)NR¹³R¹⁴ or -NR¹⁴C(NR¹⁴)NR¹³R¹⁴, wherein R¹³ is (C₃₋₁₂)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₃)alkyl, (C₆₋₁₂)aryl(C₀₋₃)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₃)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl or hetero(C₈₋₁₂)bicycloaryl(C₀₋₃)alkyl and R¹⁴ at each occurrence independently is hydrogen or (C₁₋₆)alkyl, or (ii) (C₃₋₁₂)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₃)alkyl, (C₆₋₁₂)aryl(C₀₋₃)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₃)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl or hetero(C₈₋₁₂)bicycloaryl(C₀₋₃)alkyl or (iii) (C₃₋₆)cycloalkyl(C₀₋₃)alkyl,

hetero(C₅₋₆)cycloalkyl(C₀₋₃)alkyl, phenyl(C₀₋₃)alkyl or hetero(C₅₋₆)aryl(C₀₋₃)alkyl substituted by -X⁶OR¹⁵, -X⁶SR¹⁵, -X⁶S(O)R¹⁵, -X⁶S(O)₂R¹⁵, -X⁶C(O)R¹⁵, -X⁶C(O)OR¹⁵, -X⁶C(O)NR¹⁵R¹⁶, -X⁶NR¹⁵R¹⁶, -X⁶NR¹⁶C(O)R¹⁵, -X⁶NR¹⁶C(O)OR¹⁵, -X⁶NR¹⁶C(O)NR¹⁵R¹⁶, -X⁶NR¹⁶C(O)OR¹⁶, -X⁶NR¹⁶C(NR¹⁶)NR¹⁵R¹⁶, wherein X⁶ is a bond or methylene, R¹⁵ is (C₃₋₆)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₆)cycloalkyl(C₀₋₃)alkyl, phenyl(C₀₋₃)alkyl or hetero(C₅₋₆)aryl(C₀₋₃)alkyl and R¹⁶ is hydrogen or (C₁₋₆)alkyl; wherein R⁴ optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted (C₁₋₃)alkyl, -X⁶NR¹⁷R¹⁷,

10 -X⁶NR¹⁷C(O)OR¹⁷, -X⁶NR¹⁷C(O)NR¹⁷R¹⁷, -X⁶NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -X⁶OR¹⁷, -X⁶SR¹⁷, -X⁶C(O)OR¹⁷, -X⁶C(O)NR¹⁷R¹⁷, -X⁶S(O)₂NR¹⁷R¹⁷, -X⁶P(O)(OR¹⁸)OR¹⁷, -X⁶OP(O)(OR¹⁸)OR¹⁷, -X⁶NR¹⁷C(O)R¹⁸, -X⁶S(O)R¹⁸, -X⁶S(O)₂R¹⁸ and -X⁶C(O)R¹⁸ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, -NR¹⁷R¹⁷, -NR¹⁷C(O)OR¹⁷, -NR¹⁷C(O)NR¹⁷R¹⁷, -NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -OR¹⁷, -SR¹⁷, -C(O)OR¹⁷, -C(O)NR¹⁷R¹⁷, -S(O)₂NR¹⁷R¹⁷, -P(O)(OR¹⁷)OR¹⁷, -OP(O)(OR¹⁷)OR¹⁷, -NR¹⁷C(O)R¹⁸, -S(O)R¹⁸, -S(O)₂R¹⁸ and -C(O)R¹⁸, wherein X⁶ is a bond or (C₁₋₆)alkylene, R¹⁷ at each occurrence independently is hydrogen, (C₁₋₆)alkyl or halo-substituted (C₁₋₃)alkyl and R¹⁸ is (C₁₋₆)alkyl or halo-substituted (C₁₋₃)alkyl;

20 X³ is a group of Formula (a), (b) or (c):

n is 0, 1 or 2;

R^{20} is selected from the group consisting of hydrogen, $(C_{1-6})alkyl$,

(C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl and hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl;

R²¹ is selected from the group consisting of hydrogen, (C₁₋₉)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl, hetero(C₈₋₁₂)-bicycloaryl(C₀₋₃)alkyl, -C(O)R²⁶, -C(S)R²⁶, -S(O)₂R²⁶, -C(O)OR²⁶, -C(O)N(R²⁶)R²⁷, -C(S)N(R²⁶)R²⁷ and -S(O)₂N(R²⁷)R²⁶;

R^{23} is selected from (C₁₋₆)alkyl, (C₄₋₆)alkenyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl or hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl optionally substituted with amino, -NHC(O)R¹⁵ or -R¹⁵ wherein R¹⁵ is as described above;

15 R²⁵ is selected from hydrogen, (C₁₋₆)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl, hetero(C₅₋₁₃)aryl(C₀₋₆)alkyl, -X⁴NHR¹⁵, -X⁴S(O)₂R²⁶ or -X⁴C(O)R¹⁷NR¹⁷C(O)R¹⁷ wherein R¹⁵, R¹⁷ and X⁴ are as described above;

R^{26} is selected from the group consisting of hydrogen, $(C_{1-6})alkyl$,
 20 $(C_{3-12})cycloalkyl(C_{0-6})alkyl$, hetero $(C_{5-12})cycloalkyl(C_{0-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$,
 hetero $(C_{5-12})aryl(C_{0-6})alkyl$, $(C_{9-12})bicycloaryl(C_{0-3})alkyl$ and hetero $(C_{8-12})-$

bicycloaryl(C₀₋₃)alkyl;

R²⁷ is hydrogen, (C₁₋₆)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl,

hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl or hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl;

wherein X³ optionally further contains 1 to 5 substituents which when occurring

- 5 within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted (C₁₋₃)alkyl, -X⁶NR¹⁷R¹⁷, -X⁶NR¹⁷C(O)OR¹⁷, -X⁶NR¹⁷C(O)NR¹⁷R¹⁷, -X⁶NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -X⁶OR¹⁷, -X⁶C(O)R¹⁷, -X⁶OR¹⁵, -X⁶SR¹⁷, -X⁶C(O)OR¹⁷, -X⁶C(O)NR¹⁷R¹⁷, -X⁶S(O)₂NR¹⁷R¹⁷, -X⁶P(O)(OR⁸)OR¹⁷, -X⁶OP(O)(OR⁸)OR¹⁷,
- 10 -X⁶NR¹⁷C(O)R¹⁸, -X⁶S(O)R¹⁸, -X⁶S(O)₂R¹⁸ and -X⁶C(O)R¹⁸ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, -NR¹⁷R¹⁷, -NR¹⁷C(O)OR¹⁷, -NR¹⁷C(O)NR¹⁷R¹⁷, -NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -OR¹⁷, -SR¹⁷, -C(O)OR¹⁷, -C(O)NR¹⁷R¹⁷, -S(O)₂NR¹⁷R¹⁷, -P(O)(OR¹⁷)OR¹⁷, -OP(O)(OR¹⁷)OR¹⁷, -NR¹⁷C(O)R¹⁸, -S(O)R¹⁸, -S(O)₂R¹⁸ and -C(O)R¹⁸, wherein R¹⁵,
- 15 R¹⁷, R¹⁸ and X⁶ are as described above; said process comprising:

(A) reacting a compound of Formula 2:

2

with a compound of the formula (a):

in which X¹, X², R³, R⁴, R²⁰ and R²¹ are as defined in the Summary of the Invention for Formula I; or

5 (B) reacting a compound of Formula 2 with a compound of the formula (b):

in which R²⁰, R²³ and R²⁵ are as defined in the Summary of the Invention for Formula I; or

10 (C) reacting a compound of Formula 2 with a compound of the formula (c):

in which R²⁰, R²³ and R²⁵ are as defined in the Summary of the Invention for Formula I; and

15 (D) optionally converting a compound of Formula I into a pharmaceutically acceptable salt;

(E) optionally converting a salt form of a compound of Formula I to non-salt form;

(F) optionally converting an unoxidized form of a compound of Formula I into a pharmaceutically acceptable *N*-oxide;

(G) optionally converting an *N*-oxide form of a compound of Formula I its
5 unoxidized form;

(H) optionally resolving an individual isomer of a compound of Formula I from a mixture of isomers;

(I) optionally converting a non-derivatized compound of Formula I into a pharmaceutically prodrug derivative; and

10 (J) optionally converting a prodrug derivative of a compound of Formula I to its non-derivatized form.

13. A compound of Formula Ix:

15

Ix

in which:

X¹ and X² are both methylene or X¹ is ethylene and X² is a bond;

R³ is -CR⁵=CHR⁶, -CR⁵(CR⁶)₂ or -CR⁷=NR⁸, wherein R⁵ is hydrogen and R⁶ is

hydrogen or (C₁₋₄)alkyl or R⁵ and R⁶ together with the atoms to which R⁵ and R⁶ are attached form (C₃₋₁₂)cycloalkenyl, hetero(C₅₋₁₂)cycloalkenyl, (C₆₋₁₂)aryl, hetero(C₆₋₁₂)aryl, (C₉₋₁₂)bicycloaryl or hetero(C₈₋₁₂)bicycloaryl and R⁷ and R⁸ together with the atoms to which R⁷ and R⁸ are attached form hetero(C₅₋₁₂)cycloalkenyl, hetero(C₆₋₁₂)aryl or

5 hetero(C₈₋₁₂)bicycloaryl, wherein R³ optionally is substituted by 1 to 5 radicals independently selected from a group consisting of (C₁₋₄)alkyl, cyano, halo, halo-substituted (C₁₋₄)alkyl, nitro, -X⁴NR⁹R⁹, -X⁴OR⁹, -X⁴SR⁹, -X⁴C(O)NR⁹R⁹, -X⁴C(O)OR⁹, -X⁴S(O)R¹⁰, -X⁴S(O)₂R¹⁰ and -X⁴C(O)R¹⁰, wherein X⁴ is a bond or (C₁₋₂)alkylene, R⁹ at each occurrence independently is hydrogen, (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl and R¹⁰ is
10 (C₁₋₃)alkyl or halo-substituted (C₁₋₃)alkyl; and

R^4 is $-C(O)X^5R^{11}$ or $-S(O)_2X^5R^{11}$, wherein X^5 is a bond, $-O-$ or $-NR^{12}-$, wherein R^{12} is hydrogen or $(C_{1-6})alkyl$, and R^{11} is (i) $(C_{1-6})alkyl$ optionally substituted by $-OR^{13}$, $-SR^{13}$, $-S(O)R^{13}$, $-S(O)_2R^{13}$, $-C(O)R^{13}$, $-C(O)OR^{13}$, $-C(O)NR^{13}R^{14}$, $-NR^{13}R^{14}$, $-NR^{14}C(O)R^{13}$, $-NR^{14}C(O)OR^{13}$, $-NR^{14}C(O)NR^{13}R^{14}$ or $-NR^{14}C(NR^{14})NR^{13}R^{14}$, wherein R^{13} is

15 (C₃₋₁₂)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₃)alkyl, (C₆₋₁₂)aryl(C₀₋₃)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₃)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl or hetero(C₈₋₁₂)bicycloaryl(C₀₋₃)alkyl and R¹⁴ at each occurrence independently is hydrogen or (C₁₋₆)alkyl, or (ii) (C₃₋₁₂)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₃)alkyl, (C₆₋₁₂)aryl(C₀₋₃)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₃)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl or
 20 hetero(C₈₋₁₂)bicycloaryl(C₀₋₃)alkyl or (iii) (C₃₋₆)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₆)cycloalkyl(C₀₋₃)alkyl, phenyl(C₀₋₃)alkyl or hetero(C₅₋₆)aryl(C₀₋₃)alkyl substituted by -X⁶OR¹⁵, -X⁶SR¹⁵, -X⁶S(O)R¹⁵, -X⁶S(O)₂R¹⁵, -X⁶C(O)R¹⁵, -X⁶C(O)OR¹⁵, -X⁶C(O)NR¹⁵R¹⁶, -X⁶NR¹⁵R¹⁶, -X⁶NR¹⁶C(O)R¹⁵, -X⁶NR¹⁶C(O)OR¹⁵, -X⁶NR¹⁶C(O)NR¹⁵R¹⁶, -X⁶NR¹⁶C(O)OR¹⁶, -X⁶NR¹⁶C(NR¹⁶)NR¹⁵R¹⁶, wherein X⁶ is a

bond or methylene, R¹⁵ is (C₃₋₆)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₆)cycloalkyl(C₀₋₃)alkyl, phenyl(C₀₋₃)alkyl or hetero(C₅₋₆)aryl(C₀₋₃)alkyl and R¹⁶ is hydrogen or (C₁₋₆)alkyl; wherein R⁴ optionally further contains 1 to 5 substituents which when occurring within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of

- 5 (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted (C₁₋₃)alkyl, -X⁶NR¹⁷R¹⁷, -X⁶NR¹⁷C(O)OR¹⁷, -X⁶NR¹⁷C(O)NR¹⁷R¹⁷, -X⁶NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -X⁶OR¹⁷, -X⁶SR¹⁷, -X⁶C(O)OR¹⁷, -X⁶C(O)NR¹⁷R¹⁷, -X⁶S(O)₂NR¹⁷R¹⁷, -X⁶P(O)(OR¹⁸)OR¹⁷, -X⁶OP(O)(OR¹⁸)OR¹⁷, -X⁶NR¹⁷C(O)R¹⁸, -X⁶S(O)R¹⁸, -X⁶S(O)₂R¹⁸ and -X⁶C(O)R¹⁸ and when occurring within an aliphatic moiety are radicals independently selected from a group
- 10 consisting of cyano, halo, nitro, -NR¹⁷R¹⁷, -NR¹⁷C(O)OR¹⁷, -NR¹⁷C(O)NR¹⁷R¹⁷, -NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -OR¹⁷, -SR¹⁷, -C(O)OR¹⁷, -C(O)NR¹⁷R¹⁷, -S(O)₂NR¹⁷R¹⁷, -P(O)(OR¹⁷)OR¹⁷, -OP(O)(OR¹⁷)OR¹⁷, -NR¹⁷C(O)R¹⁸, -S(O)R¹⁸, -S(O)₂R¹⁸ and -C(O)R¹⁸, wherein X⁶ is a bond or (C₁₋₆)alkylene, R¹⁷ at each occurrence independently is hydrogen, (C₁₋₆)alkyl or halo-substituted (C₁₋₃)alkyl and R¹⁸ is (C₁₋₆)alkyl or halo-substituted
- 15 (C₁₋₃)alkyl;

X³ is a group of Formula (a), (b), (c), (d), (e), (f), (g) or (h):

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

— represents a single bond, or a double bond;

X^7 represents aryl, heteroaryl or $NR^{20}R^{25}$;

5 n is 0, 1 or 2;

R^{20} is selected from the group consisting of hydrogen, $(C_{1-6})alkyl$, $(C_{3-12})cycloalkyl(C_{0-6})alkyl$, hetero $(C_{5-12})cycloalkyl(C_{0-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$ and hetero $(C_{5-12})aryl(C_{0-6})alkyl$;

R^{21} is selected from the group consisting of hydrogen, $(C_{1-9})alkyl$,
10 $(C_{3-12})cycloalkyl(C_{0-6})alkyl$, hetero $(C_{5-12})cycloalkyl(C_{0-6})alkyl$, $(C_{6-12})aryl(C_{0-6})alkyl$,
hetero $(C_{5-12})aryl(C_{0-6})alkyl$, $(C_{9-12})bicycloaryl(C_{0-3})alkyl$,
hetero $(C_{8-12})-bicycloaryl(C_{0-3})alkyl$, $-C(O)R^{26}$, $-C(S)R^{26}$, $-S(O)_2R^{26}$, $-C(O)OR^{26}$,
 $-C(O)N(R^{26})R^{27}$, $-C(S)N(R^{26})R^{27}$ and $-S(O)_2N(R^{27})R^{26}$;

R^{23} is selected from -H, (C_{1-6})alkyl, (C_{4-6})alkenyl, (C_{3-12})cycloalkyl(C_{0-6})alkyl,
 15 hetero(C_{5-12})cycloalkyl(C_{0-6})alkyl, (C_{6-12})aryl(C_{0-6})alkyl or hetero(C_{5-12})aryl(C_{0-6})alkyl
 optionally substituted with amino, $-NHC(O)R^{15}$ or $-R^{15}$ wherein R^{15} is as described above;

R^{25} is selected from hydrogen, $(C_{1-6})alkyl$, $(C_{3-12})cycloalkyl(C_{0-6})alkyl$,

hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl, hetero(C₅₋₁₃)aryl(C₀₋₆)alkyl, -X⁴NHR¹⁵, -X⁴S(O)₂R²⁶ or -X⁴C(O)R¹⁷NR¹⁷C(O)R¹⁷ wherein R¹⁵, R¹⁷ and X⁴ are as described above;

R²⁶ is selected from the group consisting of hydrogen, (C₁₋₆)alkyl,
 5 (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl and hetero(C₈₋₁₂)-bicycloaryl(C₀₋₃)alkyl;

R²⁷ is hydrogen, (C₁₋₆)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl or hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl;
 10 R²⁸ is R²⁰ or -O-C(=O)-R²⁹;

R²⁹ is (C₁₋₆)alkyl, (C₃₋₁₂)cycloalkyl(C₀₋₃)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₃)alkyl, (C₆₋₁₂)aryl(C₀₋₃)alkyl, hetero(C₅₋₁₂)aryl(C₀₋₃)alkyl, (C₉₋₁₂)bicycloaryl(C₀₋₃)alkyl or hetero(C₈₋₁₂)bicycloaryl(C₀₋₃)alkyl;

wherein X³ optionally further contains 1 to 5 substituents which when occurring
 15 within an alicyclic or aromatic ring system are radicals independently selected from a group consisting of (C₁₋₆)alkyl, (C₁₋₆)alkylidene, cyano, halo, nitro, halo-substituted (C₁₋₃)alkyl, -X⁶NR¹⁷R¹⁷, -X⁶NR¹⁷C(O)OR¹⁷, -X⁶NR¹⁷C(O)NR¹⁷R¹⁷, -X⁶NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -X⁶OR¹⁷, -X⁶C(O)R¹⁷, -X⁶OR¹⁵, -X⁶SR¹⁷, -X⁶C(O)OR¹⁷, -X⁶C(O)NR¹⁷R¹⁷, -X⁶S(O)₂NR¹⁷R¹⁷, -X⁶P(O)(OR⁸)OR¹⁷, -X⁶OP(O)(OR⁸)OR¹⁷,
 20 -X⁶NR¹⁷C(O)R¹⁸, -X⁶S(O)R¹⁸, -X⁶S(O)₂R¹⁸ and -X⁶C(O)R¹⁸ and when occurring within an aliphatic moiety are radicals independently selected from a group consisting of cyano, halo, nitro, -NR¹⁷R¹⁷, -NR¹⁷C(O)OR¹⁷, -NR¹⁷C(O)NR¹⁷R¹⁷, -NR¹⁷C(NR¹⁷)NR¹⁷R¹⁷, -OR¹⁷, -SR¹⁷, -C(O)OR¹⁷, -C(O)NR¹⁷R¹⁷, -S(O)₂NR¹⁷R¹⁷, -P(O)(OR¹⁷)OR¹⁷, -OP(O)(OR¹⁷)OR¹⁷, -NR¹⁷C(O)R¹⁸, -S(O)R¹⁸, -S(O)₂R¹⁸ and -C(O)R¹⁸, wherein R¹⁵, R¹⁷, R¹⁸ and X⁶ are as

described above; or

one of *N*-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixtures of isomers of compounds of formula Ix; or one of pharmaceutically acceptable salts and solvates of such compounds and the *N*-oxide derivatives, prodrug

5 derivatives, protected derivatives, individual isomers and mixtures of isomers formula Ix.

14. A compound of claim 13, wherein R²³ is selected from (C₁₋₆)alkyl, (C₄₋₆)alkenyl,

(C₃₋₁₂)cycloalkyl(C₀₋₆)alkyl, hetero(C₅₋₁₂)cycloalkyl(C₀₋₆)alkyl, (C₆₋₁₂)aryl(C₀₋₆)alkyl or

hetero(C₅₋₁₂)aryl(C₀₋₆)alkyl optionally substituted with amino, -NHC(O)R¹⁵ or -R¹⁵

10 wherein R¹⁵ is as described above;

15. A compound of claim 13, selected from the group consisting of:

Morpholine-4-carboxylic acid [1-(1-benzoyl-4-oxo-pyrrolidin-3-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide;

15 Morpholine-4-carboxylic acid [1-(1-benzenesulfonyl-4-oxo-pyrrolidin-3-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide;

20 4-{2-[(Morpholine-4-carbonyl)-amino]-3-phenylmethanesulfonyl-propionylamino}-3-oxo-azepane-1-carboxylic acid benzyl ester;

Morpholine-4-carboxylic acid [1-(3-benzenesulfonylamino-2-oxo-propylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide; or

25 N-{1S-[1S-(4-Methoxyphenylsulfamoylmethyl)-3-phenylpropylcarbamoyl] 2-benzylsulfonylethyl}-morpholine-4-carboxamide.

16. A compound of claim 13, selected from the group consisting of:

30 Morpholine-4-carboxylic acid [(R)-1-(6-oxo-cyclohex-1-enylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide;

Morpholine-4-carboxylic acid [(R)-2-cyclopropylmethanesulfonyl-1-(6-oxo-cyclohex-1-enylcarbamoyl)-ethyl]-amide;

Morpholine-4-carboxylic acid [(R)-1-(3,4-dioxo-cyclopentylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide;

5 Morpholine-4-carboxylic acid [2-(2-difluoromethoxy-phenylmethanesulfonyl)-1-(2-oxo-cyclohexylcarbamoyl)-ethyl]-amide;

Morpholine-4-carboxylic acid [2-(2-difluoromethoxy-phenylmethanesulfonyl)-1-(2-oxo-cyclopentylcarbamoyl)-ethyl]-amide;

10

Morpholine-4-carboxylic acid [2-(2-difluoromethoxy-phenylmethanesulfonyl)-1-(2-oxo-cyclobutylcarbamoyl)-ethyl]-amide;

15

(Morpholine-4-carboxylic acid [1-(2-benzylcarbamoyl-2-oxo-ethylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide);

Acetic acid 3-{2-[(morpholine-4-carbonyl)-amino]-3-phenylmethanesulfonyl-propionylamino}-4-oxo-azetidin-2-yl ester;

20

Morpholine-4-carboxylic acid [1-(2-hydroxy-1,1-dimethyl-3-oxo-3-phenylpropylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide;

Morpholine-4-carboxylic acid [1-(4-oxo-tetrahydro-furan-3-ylcarbamoyl)-2-phenylmethanesulfonyl-ethyl]-amide; or

25

Morpholine-4-carboxylic acid [2-(2-difluoromethoxy-phenylmethanesulfonyl)-1-(1,1-dimethyl-2,3-dioxo-3-phenyl-propylcarbamoyl)-ethyl]-amide.