Application No.: 09/854,865

Amendment Date: December 8, 2004

Reply to office action of October 8, 2004

Amendments to the Claims

Listing of Claims

1

This listing of the claims will replace all prior versions, and listings, of claims in the application.

CLAIMS

1 ' (Currently amended) A multi-frame tape library system, comprising: 2 a plurality of individual library frames connected in series, each said frame comprising a 3 pulse signal generator, a plurality of tapes, a plurality of tape drive mechanisms for reading and writing data to said tapes, one or more controllable robot members to 4 move said tapes to and from said tape drive mechanisms and a delay signal generator, 5 6 at least one said frame also comprising a total count counter; 7 a multi-channel bus coupled to each said frame and comprising a frame bus for carrying information indicative of the presence of each said frame, and a power bus return bus 8 9 carrying information indicative of the last frame in said series; 10 wherein one of said frames being defined as a first frame and adapted to receive a signal indicative of power being supplied to any one of said frames and generate a delayed 11 12 signal, each subsequent frame receiving said delayed signal and generating a further 13 delayed signal and each frame generating a pulse on said frame bus; wherein one of 14 said frames being defined as said last frame and receiving said delayed signal and 2 09/854,865 TUC9-2001-0006US1

15		generating a signal to activate said power return bus; and wherein said total count
16		counter being incremented by each said pulse on said frame bus until said power
17		return bus is activated.
1	2	(Original) A multi-frame tape library system as claimed in claim 1, wherein the count in said
2		total count counter represents the total number of said frames connected together.
1	3	(Previously amended) A multi-frame tape library system as claimed in claim 1, wherein at
2		least one said frame generates a frame pulse when said delay signal is generated for that
3		frame.
1	4	(Original) A multi-frame tape library system as claimed in claim 3, wherein at least one said
2		frame further comprising an individual ID counter being incremented by each said pulse
3		on said frame bus until said frame pulse is generated.
1	5	(Original) A multi-frame tape library system as claimed in claim 4, wherein the count in said
2		individual ID counter represents the individual ID of the frame with respect to the total
3		number of said frames connected together.
1	6	(Original) A multi-frame tape library system as claimed in claim 1, wherein said delayed
2		signal generated by each said frame having a predetermined delay value that is
3		approximately constant.
1	7	(Original) A multi-frame tape library system as claimed in claim 1, wherein said delayed
2		signal generated by each said frame having a delay value that is variable.
1	8	(Currently amended) A modular tape library system comprising:
2		a plurality of individual library frames connected together in series, at least one frame
3		comprising a total count counter and an outer door which may be opened when said
4		at least one frame is under repair;

a multi-channel bus for exchanging information and data between said frames indicative 6 of the presence of each said frame and information indicative of the last frame in said 7 series; 8 wherein at least of said frames being adapted to receive a signal indicative of power 9 being supplied to any one of said frames and generate a pulse indicative of its 10 presence and a delayed signal which is forwarded to the next frame in the series, each 11 subsequent frame receiving said delayed signal and generating a further delayed 12 signal and a pulse indicative of their presence; and wherein one of said frames being 13 defined as said last frame and receiving said delayed signal and generating a signal to 14 indicate activation of said last frame; and wherein said total count counter being 15 incremented by each said pulse until signal to indicate activation of said last frame is 16 detected. 1 (Original) A modular system as claimed in claim 8, wherein the count in said total count 2 counter register represents the total number of said frames connected together. 1 10 (Previously amended) A modular system as claimed in claim 8, wherein at least one said 2 frame generates a frame pulse when said delay signal is generated for that frame. 11 (Original) A modular system as claimed in claim 10, wherein at least one said frame further 1 2 comprising an individual ID counter being incremented by each said pulse until said 3 frame pulse is generated. 1 12 (Original) A modular system as claimed in claim 11, wherein the count in said individual ID counter represents the individual ID of the frame with respect to the total number of said 2 3 frames connected together.

09/854,865

1	13 (Currently amended) A met	hod to automatically dete	ct the total count of frames within a
2	modular multi-frame ta	pe library system, said me	thod comprising the steps of:
3	coupling a plurality of	frames to a multi-channe	l data bus comprising a frame bus and a
4	power bus return be	ıs, each of said plurality o	f frames comprising a plurality of tapes
5	a plurality of tape d	rive mechanisms for read	ing and writing data to said tapes and
6	one or more control	lable robot members to m	ove said tapes to and from said tape
7	drive mechanisms;		
8	designating one of said	I frames as a first frame;	
9	designating one of said	l frames as a last frame;	
10	said first frame receivi	ng a signal indicative of p	ower being supplied to any one of said
11	frames and generati	ng a first delayed signal a	nd a pulse indicative of the presence of
12	said first frame;		
13	supplying said pulse to	said frame bus;	
14	supplying said delayed	signal to a subsequent fra	me, each said subsequent frame
15	generating a delayed	l signal and a pulse indica	tive of the presence of each frame and
16	supplying the pulses	to said frame bus;	
17	generating a signal to a	ctivate said power return	bus when said delayed signal reaches
18	said last frame; and		
19	incrementing a register	by each pulse until said p	ower bus is activated.
1	14 (Original) A method as clain	ned in claim 13, further co	omprising the steps of:
2	generating a frame puls	e when said delay signal i	s generated for that frame;
3	incrementing a register	by each said pulse on said	frame bus until said frame pulse is
4	generated.		
	09/854,865	5	TUC9-2001-0006US1

1	15 (Original) A method as claimed in claim 14, wherein the count in said counter represents the
2	individual ID of the frame with respect to the total number of said frames connected
3	together.
1	16 (Original) A method as claimed in claim 13, wherein the count in said register represents the
2	total number of said frames connected together.
1	17 (Currently amended) A multi-frame tape library system, comprising:
2	a plurality of individual library frames connected in series, each said frame comprising
3	pulse signal generator, and a delay signal generator, a plurality of tapes, a plurality of
4	tape drive mechanisms for reading and writing data to said tapes, one or more
·5	controllable robot members to move said tapes to and from said tape drive
6	mechanisms and at least one said frame also comprising an individual ID counter;
7	a multi-channel bus coupled to each said frame and comprising a frame bus for carrying
8	information indicative of the presence of each said frame;
9	wherein one of said frames being defined as a first frame and adapted to receive a signal
10	indicative of power being supplied to any one of said frames and generate a delayed
11	signal, each subsequent frame receiving said delayed signal and generating a further
12	delayed signal and each frame generating a pulse on said frame bus; wherein at least
13	one of said frames generating a frame pulse upon generation of that frame's delayed
14	signal, and wherein said individual ID counter being incremented by each said pulse
15	on said frame bus until said frame pulse is detected.
1 -	18 (Original) A multi-frame tape library system as claimed in claim 17, wherein the count in
2	said individual ID counter represents the individual ID of the frame with respect to the
3	total number of said frames connected together.
	09/8 54 .865

1	1 19 (Original) A multi-frame tape li	brary system as cla	imed in claim 17, wherein said multi-
2	2 channel bus further comprise	ing a power bus re	rum bus carrying information indicative of
3	3 the last frame in said series;	and wherein one o	f said frames being defined as said last
4	4 frame and receiving said del	ayed signal and ge	nerating a signal to activate said power
5	5 return bus.		
1	1 20 (Original) A multi-frame tape lib	orary system as cla	imed in claim 19, wherein at least one said
2	2 frame further comprising a to	otal count counter;	and wherein said total count counter being
3	incremented by each said pul	se on said frame b	us until said power return bus is activated.
1	1 21 (Original) A multi-frame tape lib	orary system as clai	med in claim 20, wherein the count in
2	2 said total count counter repre	sents the total num	ber of said frames connected together.
1	1 22 (Currently amended) A modular	tape library system	comprising:
2	a plurality of individual <u>libr</u>	ary frames connec	ted together in series, each of said
3	plurality of frames comp	rising a plurality o	f tapes, a plurality of tape drive
4	mechanisms for reading	and writing data to	said tapes, one or more controllable robot
5	members to move said ta	pes to and from sa	id tape drive mechanisms and at least one
6	frame comprising an indi	ividual ID counter;	
7	a multi-channel bus for excl	nanging informatio	n and data between said frames indicative
8	of the presence of each sa	aid frame;	
9	wherein at least of said fram	es being adapted to	receive a signal indicative of power
10	being supplied to any one	e of said frames and	d generate a pulse indicative of its
11	presence and a delayed si	gnal which is forw	arded to the next frame in the series, each
12	subsequent frame receiving	ng said delayed sig	nal and generating a further delayed
13	signal and a pulse indicat	ive of their presence	e; wherein at least one of said frames
	09/854,865	7	TUC9-2001-0006US1

14	generating a frame pulse upon generation of that frame's delayed signal, and wherein
15	said individual ID counter being incremented by each said pulse on said frame bus
16	until said frame pulse is detected.
1	23 (Original) A modular system as claimed in claim 22, wherein the count in said individual ID
2	counter represents the individual ID of the frame with respect to the total number of said
3	frames connected together.
1	24 (Original) A modular system as claimed in claim 22, wherein said multi-channel bus further
2	comprising a power bus return bus carrying information indicative of the last frame in
3	said series; and wherein one of said frames being defined as said last frame and receiving
4	said delayed signal and generating a signal to activate said power return bus.
1	25 (Original) A modular system as claimed in claim 24, wherein at least one said frame further
2	comprising a total count counter; and wherein said total count counter being incremented
3	by each said pulse on said frame bus until said power return bus is activated.
1	26 (Original) A modular system as claimed in claim 25, wherein the count in said total count
2	counter represents the total number of said frames connected together.
1	27 (Currently amended) A method to automatically detect the individual identification of frames
2	within a modular multi-frame tape library system, said method comprising the steps of:
3	coupling a plurality of library frames to a multi-channel data bus comprising a frame
4	bus, each of said plurality of frames comprising a plurality of tapes, a plurality of
5	tape drive mechanisms for reading and writing data to said tapes and one or more
6	controllable robot members to move said tapes to and from said tape drive
7	mechanisms;
8	designating one of said frames as a first frame;

09/854,865

8

9	said first frame receiving a signal indicative of power being supplied to any one of said
10	frames and generating a first delayed signal and a pulse indicative of the presence of
11	said first frame;
12	supplying said pulse indicative of the presence of said first frame to said frame bus;
13	supplying said delayed signal to a subsequent frame, each said subsequent frame
14	generating a delayed signal and a pulse indicative of the presence of each frame and
15	supplying the pulses to said frame bus;
6	generating a signal upon generation of said delayed signal; and
7	incrementing a register by each pulse until said signal is generated.
1	28 (Original) A method as claimed in claim 27, further comprising the steps of:
2	coupling said plurality of framed to said multi-channel bus further comprising a power
3	bus return bus;
4	designating one of said frames as a last frame;
5	generating a signal to activate said power return bus when said delayed signal reaches
6	said last frame; and
7	incrementing a register by each said pulse until activation of said power return bus.
1	29 (Original) A method as claimed in claim 27, wherein the count in said counter represents the
2	individual ID of the frame with respect to the total number of said frames connected
3	together.
1	30 (Original) A method as claimed in claim 28, wherein the count in said counter represents the
2	total number of said frames connected together.
1	31 (Currently amended) A multi-frame tape library system, comprising:

09/854,865

2	a plurality of individual library frames connected in series, each said frame comprising a
3	pulse signal generator, and a delay signal generator, a plurality of tape drive
4	mechanisms for reading and writing data to said tapes, one or more controllable robot
5	members to move said tapes to and from said tape drive mechanisms and at least one
6	said frame also comprising a total count counter and an individual ID counter;
7	a multi-channel bus coupled to each said frame and comprising a frame bus for carrying
8	information indicative of the presence of each said frame, and a power bus return bus
9	carrying information indicative of the last frame in said series;
10	wherein one of said frames being defined as a first frame and adapted to receive a signal
11	indicative of power being supplied to any one of said frames and generate a delayed
12	signal, each subsequent frame receiving said delayed signal and generating a further
13	delayed signal and each frame generating a pulse on said frame bus; wherein one of
14	said frames being defined as said last frame and receiving said delayed signal and
15	generating a signal to activate said power return bus; and wherein said total count
16	counter being incremented by each said pulse on said frame bus until said power
17	return bus is activated; and wherein at least one said frame generating a frame pulse
18	when said delay signal is generated for that frame, said individual ID counter being
19	incremented by each said pulse on said frame bus until said frame pulse is generated.
1	32 (Original) A multi-frame tape library system as claimed in claim 31, wherein the count in
2	said individual ID counter represents the individual ID of the frame with respect to the
3	total number of said frames connected together.
1	33 (Original) A multi-frame tape library system as claimed in claim 31, wherein the count in
2	said total count counter represents the total number of said frames connected together.

•	54 (Currently affected) A method to automatically detect the total count and midroidual
2	identification of frames within a modular multi-frame tape library system, said method
3	comprising the steps of:
4	coupling a plurality of library frames to a multi-channel data bus comprising a frame
5	bus and a power bus return bus, each of said plurality of frames comprising a
6	plurality of tapes, a plurality of tape drive mechanisms for reading and writing data to
7	said tapes and one or more controllable robot members to move said tapes to and
8	from said tape drive mechanisms;
9	designating one of said frames as a first frame;
10	designating one of said frames as a last frame;
11	said first frame receiving a signal indicative of power being supplied to any one of said
12	frames and generating a first delayed signal and a pulse indicative of the presence of
13	said first frame;
14	supplying said pulse to said frame bus;
15	supplying said delayed signal to a subsequent frame, each said subsequent frame
16	generating a delayed signal and a pulse indicative of the presence of each frame and
17	supplying the pulses to said frame bus;
18	generating a signal to activate said power return bus when said delayed signal reaches
19	said last frame;
20	incrementing a first counter by each pulse until said power bus is activated;
21	generating a frame pulse when said delay signal is generated for that frame;
22	incrementing a second counter by each said pulse on said frame bus until said
23	frame pulse is generated.
	00/054 065

- 1 35 (Original) A method as claimed in claim 34, wherein the count in said second counter
- 2 represents the individual ID of the frame with respect to the total number of said frames
- 3 connected together.
- 1 36 (Original) A method as claimed in claim 34, wherein the count in said first counter represents
- 2 the total number of said frames connected together.