

Statistics Ex 7.3 Q15

Answer:

Direct Method:

We may prepare the table as shown:

Size of the items	$Midvalue(x_i)$	$Frequency(f_i)$	$f_i x_i$
1-4	2.5	6	15
4-9	6.5	12	78
9-16	12.5	26	325
16-27	21.5	20	430
		$\sum f_i = 64$	$\sum f_i x_i = 848$

We know that mean,
$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$= \frac{848}{64}$$

$$= 13.25$$

Hence, the mean is 13.25.

Short-Cut Method:

We may prepare the table as shown:

Size of Item	Mid value(x _i)	$egin{array}{ll} d_i = x_i \ -A \ = x_i \ -12 \ .5 \end{array}$	Frequency(<i>f_i</i>)	$f_i d_i$
1-4	2.5	-10	6	-60
4-9	6.5	-6	12	-72
9-16	12.5 = A	0	26	0
16-27	21.5	9	20	180
			N = $\sum f_i = 64$	$\sum f_i d_i$ = 48

Let the assumed mean be A = 12.5.

We know that mean,
$$\overline{X}=A+rac{\sum f_i d_i}{\sum f_i}$$

$$=12.5+rac{48}{64}$$

$$=12.5+0.75$$

$$=13.25$$

Hence, the mean is 13.25.

Step-deviation method cannot be used to evaluate the mean of the distribution as the width of the class intervals are not equal. Here, h is not fixed.

Statistics Ex 7.3 Q16

Answer:

Let the assumed mean be A = 1650 and h = 100.

Cost of living index :	$Midvalue(x_i)$:	No. of students: (f_i)	$d_i = x_i - A$ $= x_i - 1650$	$u_i = \frac{1}{h}(d_i)$ $= \frac{1}{100}(d_i)$	$f_i u_i$
1400-1500	1450	5	-200	-2	-10
1500-1600	1550	10	-100	-1	-10
1600-1700	1650	20	0	0	0
1700-1800	1750	9	100	1	9
1800-1900	1850	6	200	2	12
1900 – 2000	1950	2	300	3	6
		$\sum f_i = 52$			$\sum f_i u_i = 7$

We know that mean,
$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i \right)$$

Now, we have
$$N=\sum f_i=52,\;\sum f_iu_i=7,\;\;h=100$$
 and $A=1650$

Putting the values in the above formula, we have

$$\overline{X} = A + h \left(\frac{1}{N} \sum f_i u_i \right)$$

$$= 1650 + 100 \left(\frac{1}{52} \times (7) \right)$$

$$= 1650 + \frac{700}{52}$$

$$= 1650 + 13.46$$

$$= 1663.46$$

Hence, the mean is 1663.46.

****** END ******