Pattern Classification and Recognition:

Ensemble Learning

ECE 681

Spring 2016

Stacy Tantum, Ph.D.

Committees

"A camel is a horse designed by a committee."

Decisions by Committee

Which classifiers?
How to make complementary?
How to combine?

Generalization Error

A lingering question...

- How to ensure performance on the training set fairly (accurately?) predicts performance on a test set?
- Average/ expected difference between training set and testing set performance

→ Ensemble learning, or committee machines

Classifier (In)Stability

UNSTABLE CLASSIFIERS

STABLE CLASSIFIERS

Small changes in data set

→ major changes in classifier

Small changes in data set

→ small changes in data set

High variance (from overfitting)

Low bias

Low variance

(Possibly) high bias

(from underfitting)

Neural networks, Decision trees

Linear discriminant analysis

Exploit classifier instability to create a diverse set of classifiers using subsets of the data

Bagging (Bootstrap Aggregating)

Useful if the learning algorithm is unstable (Highly variable depending on the training set) New Data Test Learning Classifier 1 Sample 1 Algorithm Test Learning **Training** Classifier 2 Sample 2 Algorithm **Examples Majority** Test Learning Classifier 3 Sample 3 Vote Algorithm

Prediction

Boosting

Useful if the learning algorithm is complex and unstable

 Highly variable depending on the training set

Combine weak classifiers to create a strong classifier

AdaBoost (adaptive boosting)

Upweight training previously incorrectly classified training samples

Boosting

T11: Ensemble Learning ECE 681 (Tantum, Spring 2016)

Bagging vs. Boosting

BAGGING

BOOSTING

Different data samples for each classifier

Different weighting of data for each classifier

Majority vote

Weighted vote

Sequence of (typically binary) decisions

Random Forests

Collection of random trees

At each node:

choose some small subset of variables at random find a variable (and a value for that variable) which optimizes the split

Randomize:

- Data used for each tree (i.e., bagging)
- Features available for splitting at each node