Overview

Abel Soares Siqueira

14/08/2018

Machine Learning

Machine Learning - Parte II

- Começa a segunda parte ML de verdade;
- Veremos os algoritmos agora;
- Três partes:
 - Aprendizagem Supervisionada Regressão;
 - Aprendizagem Supervisionada Classificação;
 - Aprendizagem Não-supervisionada Agrupamento;
- Vamos tentar estudar três coisas:
 - Teoria e desenvolvimento do algoritmo;
 - Implementação e/ou ideias de como aplicar o algoritmo;
 - Uso prático computacional, com uma implementação já completa.
- Como já vimos, temos que separar os dados em treinamento e teste, a partir daqui já assumimos que isso é feito;

Classes de Problemas

Classes de Problemas

Aprendizagem supervisionada

- Temos um conjunto de dados $\{(x_i, y_i), i = 1, ..., N\}, x_i \in X$ e $y_i \in Y$;
- Se os targets y; forem valores numéricos contínuos, é um problema de regressão;
- Se os targets *y_i* forem discretos, ou categóricos, é um problema de classificação;

Aprendizagem Não-supervisionada

- Temos um conjunto de dados $x_i \in X$, sem target;
- Supõe-se haver uma classificação implícita desses dados, mas não temos exemplos;
- Na pior das hipóteses, não sabemos nem quantos grupos diferentes;

Algoritmos

Regressão

- Queremos encontrar um modelo $h_{\theta}(x)$ tal que $h_{\theta}(x_i)$ aproxime bem y_i ;
- Utilizamos uma função de perda, $\ell(h_{\theta}(x_i), y_i)$ para medir o erro;
- Minimizamos a média das perdas

$$L(\theta) = \sum_{i=1}^{N} \ell(h_{\theta}(x_i), y_i);$$

- Usualmente o modelo é linear em θ , mas não necessariamente em x;
- Exemplo: $h_{\theta}(x) = \theta_0 + \theta_1 x$, $\ell(\hat{y}, y) = \frac{1}{2} (y \hat{y})^2$,

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left[y_i - h_{\theta}(x_i) \right]^2.$$

- Duas classes: + e −;
- Novo ponto X, e uma região de avaliação local;
- Quero P(+|X) prob. de ser +;
- Teorema de Bayes: $P(+|X) = \frac{P(X|+)P(+)}{P(X)}$;
- P(+) é calculado usando todos os pontos;
- P(X|+) é a probabilidade de estar na região e dado a classe +;

- P(+) = 29/50;
- P(-) = 21/50;
- P(X|+) = 3/29;
- P(X|-) = 2/21;

•
$$P(+|X) = \frac{\frac{29}{50} \frac{3}{29}}{P(X)} = \frac{3}{50P(x)};$$

• $P(-|X) = \frac{\frac{21}{50} \frac{2}{21}}{P(X)} = \frac{2}{50P(x)};$

• P(+|X) > P(-|X) então X será da classe +.

Classificação - Logística

- $y_i \in 0, 1$;
- Hipótese: y é Bernoulli, P(y = 1) = p = 1 P(y = 0); logo, $P(y = k) = p^k (1 p)^{1-k}$, $k \in \{0, 1\}$;
- Fazemos um modelo $h_{\theta}(x) = \sigma(\theta^T x)$ onde $\sigma(t) = \frac{1}{1 + e^{-t}}$;
- Nosso classificador é

$$\begin{cases} 1, & h_{\theta}(x) > \frac{1}{2}, \\ 0, & h_{\theta}(x) < \frac{1}{2}. \end{cases}$$

• Nossa perda: $\ell(h_{\theta}(x), y) = -\log \left[h_{\theta}(x)^y (1 - h_{\theta}(x))^{1-y}\right];$

Classificação - Logística

Classificação - Máquina de Vetor Suporte

- $y_i \in \{-1, 1\};$
- $b + w^T x = 0$ define um hiperplano;
- Queremos $y_i(b + w^T x_i) \ge 1$ para cada i;
- A margem entre $b + w^T x = 1$ e $b + w^T x = -1$ é $\frac{2}{\|w\|}$;
- Para maximizar essa margem podemos minimizar ||w||;
- Otimização:

min
$$\frac{1}{2} ||w||^2$$

 $y_i(b + w^T x_i) \ge 1, \quad \forall i = 1, ..., m.$

Classificação - Máquina de Vetor Suporte

Classificação - Árvore de decisão

- Uma árvore de decisão é uma sequência de escolhas;
- A cada passo de escolha separamos uma característica em duas partes;
- A árvore essencialmente divide o espaço em retângulos;

Classificação - Árvore de decisão

Classificação - Árvore de decisão

Supervisionado - Redes Neurais

- A rede é feita de camadas, a primeira sendo a entrada x_i e a última a saída y_i ;
- As outras camadas são ditas escondidas;
- Entre cada camada existem ligações de cada nó, significando multiplicação por um parâmetro;
- Em cada nó também podemos aplicar uma função de ativação;
- Existem discussões, mas muito de RN pode ser visto simplesmente como um modelo:

$$h_{\theta}(x) = \sigma_2(\Theta_2\sigma_1(\Theta_1x)),$$

onde Θ_j são matrizes de parâmetros θ e σ_1 são as funções de ativação dessa camada;

Supervisionado - Redes Neurais

Supervisionado - Redes Neurais

- Primeira: x_1 , x_2 ;
- Interna: $z_1 = \sigma_{11}(\theta_1 x_1 + \theta_2 x_2)$ $z_2 = \sigma_{12}(\theta_3 x_1 + \theta_4 x_2)$ $z_3 = \sigma_{13}(\theta_5 x_1 + \theta_6 x_2)$;
- Final: $\hat{y} = \sigma_2(\theta_7 z_1 + \theta_8 z_2 + \theta_9 z_3)$;
- Num modelo para duas variáveis de entrada e uma de saída usamos 9 variáveis (ignoramos o viés);

- N pontos são escolhidos como centros;
- Cada ponto é classificado pela proximidade a um centro;
- Os centros são atualizados como o ponto médio de cada região;

Lista de Algoritmos

Regressão	Classificação	Agrupamento
Reg. Mul.	Logística	Hierárquicos
	Naive Bayes	K-médias
Redes Neurais	Redes Neurais	K-medóides
SVMr	SVMc	DBSCAN
Árvores Reg.	Árvores Class.	Red. Dim.
KNN	KNN	Anal. Fatorial
	A. Discrimante	ACP

FIM