CS464 Project Facial Expression Recognition

Group 8

Kürşad Güzelkaya Süleyman Gökhan Tekin Mustafa Mert Türkmen Bahadır Yüzlü Hazal Buluş

Introduction

- Focuses on developing a facial expression recognition system
- Analyze and compare the performance of various machine learning and deep learning models:
 - K Nearest Neighbour (KNN), Convolutional Neural Network (CNN), Decision Trees, and Random Forest

Background Information of Dataset

- FER-2013
- Dataset consist of 48x48 pixel grayscale images of faces
- Each face is categorized based on the emotion
- Seven categories: 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral

Background Information of Dataset

- The training set consists of 28,709 examples, test set consists of 3,589 examples.
- Imbalanced dataset

Data Balancing Techniques

- Methods used to balance dataset:
 - Data Augmentation
 - Random OverSampling
 - Resampling
 - Synthetic Minority Oversampling Technique (SMOTE)
 - Balanced Bagging Classification

Data Balancing Techniques

Balanced Bagging Classification

- Additional Classification Procedure
- Combines bagging with balanced sampling.
- Ensures that each training subset has an equal mix of all classes.

Synthetic Minority Oversampling Technique (SMOTE)

- ❖ Aims to balance dataset by artificially generating new examples of the minority class.
- Creates synthetic examples that are combinations of the closest minority class cases.

Data Balancing Techniques

Resampling

- Resample arrays or sparse matrices in a consistent way
- Determine the class with the maximum samples (majority class)
- For each minority class:
- Upsample the data to match the size of the majority class using resampling (with replacement).

Random Over Sampling

- Increase the number of samples in minority classes by duplicating them.
- ❖ Match the size of the majority class to balance the dataset.
- Randomly select and replicate instances from minority classes.
- Often done with replacement for a balanced class distribution.

PCA- Explained Variance Analysis

- Most variance captured by the first 50 components.
- Plateau after 100 components, minimal variance gain.
- Adding more components does not significantly increase the explained variance.
- Helps in dimensionality reduction, retaining most of the information while simplifying the model

K Nearest Neighbour (KNN)

- Maximum accuracy on imbalance data with K=5.
- PCA applied with 100 and 200 components, K is fixed to 5.
- Cause of getting low accuracy with PCA may be class Imbalance, or loss of important information, or overfitting.

Accuracy with 5-NN on 100 principal components: 18.80% Accuracy with 5-NN on 200 principal components: 18.47%

K Nearest Neighbour (KNN)

Preprocess Comparison

F1 performance dropped post-balancing.

Possible reasons:

- Oversampling may cause the model to overfit the minority class, hurting generalization.
- Balancing can distort data relationships, impacting model accuracy.
- Model parameters tuned for imbalanced data may perform poorly on balanced data.

Decision Tree Classifier

Preprocess Comparison

- Comparison of models
- F1 Score
- Result
- Flattening
- Not Scaling

Decision Tree Classifier Tuning

- Prevent Overfitting and Underfitting
- Grid Search
- Accuracy with Validation Data
- Forward Parameter Selection

Decision Tree Classifier

Final Model

- The best available model parameters
- Final Result on the Test Data

56

happy

Predicted

62

neutral

52

sad

surprise

surprise

69

angry

17

disgust

80

fear

Confusion Matrix

Random Forest Classifier

Preprocess Comparison

Random Forest Classifier

Tuning

Random Forest Weighted F1 Score for Different Minimum Samples Split

Random Forest Classifier

Final Model

- n estimators = 175
- criteria = gini
- min_samples_split = 3

Confusion Matrix Accuracy: 45.34%, Weighted f1_score: 44.67%

Convolutional Neural Network (CNN)

Model Complexity

	Layer	Parameter	Accuracy
CNN Model 1	4 Conv + 4 Dense	1006791	58.37%
CNN Model 2	2 Conv + 3 Dense	897095	55.21%
CNN Model 3	2 Conv + 3 Dense	243687	52.70%

CNN

Convolutional Neural Network (CNN)

Data Augmentation

- Disgust class increased to 2585 images from 436
- Use 3000 samples from other classes

```
# Define the augmentation parameters
datagen = ImageDataGenerator(
    rotation_range=15,
    width_shift_range=0.1,
    height_shift_range=0.1,
    shear_range=0.1,
    zoom_range=0.1,
    horizontal_flip=True,
    fill_mode='nearest'
)
```

Convolutional Neural Network (CNN)

Data Augmentation

Accuracy			
Unbalanced	Balanced		
52.70%	50.38%		

F1 Score			
Unbalanced	Balanced		
14.5%	14.2%		