Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Iowa State University

June 10, 2013

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Outline

Introduction to Continuous Random Variables

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Introduction to Continuous Random Variables

A special case: the

- Two types of random variables:
 - Discrete random variable: one that can only take on a set of isolated points (X, N, and S).
 - ► Continuous random variable: one that can fall in an interval of real numbers (T and Z).
- Examples of continuous random variables:
 - ightharpoonup Z = the amount of torque required to loosen the next bolt (not rounded).
 - T = the time you'll have to wait for the next bus home.
 - ightharpoonup C = outdoor temperature at 3:17 PM tomorrow.
 - ightharpoonup L =length of the next manufactured part.

A special case: the

- V: % yield of a chemical process using method A.
- Y: % yield of a chemical process using method B.
- \triangleright How do we mathematically distinguish between V and Y, given:
 - ▶ Each has the same range: 0% < V, Y < 100%
 - ▶ There are uncountably many possible values in this range.
- ▶ We may want to show that Y tends to take on higher % yield values than V on average.

Dason Kurkiewicz

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential

Distribution of Y

- ► The heights of these curves are not themselves probabilities.
- ► However, the the curves imply that process *Y* will yield more product per run on average than process *V*.

A generic probability density function (pdf)

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Introduction to Continuous Random Variables

Outline

Probability Density Functions

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density Functions

Probability Density Functions

Cumulative

A special case: the

A probability density function (pdf) of a continuous random variable X is a function f(x) with:

$$f(x) \ge 0$$
 for all x .

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx, \ a \le b$$

▶ The pdf is the continuous analogue of a discrete random variable's probability mass function.

Cumulative Distribution Functions

A special case: the exponential distribution

- ▶ Let Y be the time delay (s) between a 60 Hz AC circuit and the movement of a motor on a different circuit.
- ► Say *Y* has a density of the form:

$$f(y) = \begin{cases} c & 0 < y < \frac{1}{60} \\ 0 & \text{otherwise} \end{cases}$$

we say that Y has a Uniform(0, 1/60) distribution.

ightharpoonup f(y) must integrate to 1:

$$1 = \int_{-\infty}^{\infty} f(y)dy = \int_{-\infty}^{0} 0dy + \int_{0}^{1/60} cdy + \int_{1/60}^{\infty} 0dy = \frac{c}{60}$$

▶ hence, c = 60, and:

$$f(y) = \begin{cases} 60 & 0 < y < \frac{1}{60} \\ 0 & \text{otherwise} \end{cases}$$

A look at the density

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density Functions

Your turn: calculate the following probabilities.

$$f(y) = \begin{cases} 60 & 0 \le y \le \frac{1}{60} \\ 0 & \text{otherwise} \end{cases}$$

- 1. $P(Y \leq \frac{1}{100})$
- 2. $P(Y > \frac{1}{70})$
- 3. $P(|Y| < \frac{1}{120})$
- 4. $P(Y = \frac{1}{90})$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density Functions

1.

$$P(Y \le \frac{1}{100}) = P(-\infty < Y \le \frac{1}{100})$$

$$= \int_{-\infty}^{1/100} f(y) dy$$

$$= \int_{-\infty}^{0} 0 dy = \int_{0}^{1/100} 60 dy$$

$$= \frac{60}{100} = \frac{3}{5}$$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density Functions

$$P(Y > \frac{1}{70}) = P(\frac{1}{70} < Y \le \infty)$$

$$= \int_{1/70}^{\infty} f(y) dy$$

$$= \int_{1/70}^{1/60} 60 dy + \int_{1/60}^{\infty} 0 dy$$

$$= 60y \Big|_{1/70}^{1/60} + 0$$

$$= 60 \left(\frac{1}{60} - \frac{1}{70}\right)$$

$$= \frac{1}{7} \approx 0.143$$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density Functions

$$P(|Y| < \frac{1}{120}) = P(-\frac{1}{120} < Y < \frac{1}{120})$$

$$= \int_{-1/120}^{1/120} f(y) dy$$

$$= \int_{-1/120}^{0} 0 dy + \int_{0}^{1/120} 60 dy$$

$$= 0 + 60y \Big|_{0}^{1/120}$$

$$= 60 \left(\frac{1}{120} - 0\right) = \frac{1}{2}$$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density Functions

$$P(Y = \frac{1}{80}) = P(\frac{1}{80} \le Y \le \frac{1}{80})$$

$$= \int_{1/80}^{1/80} f(y) dy = \int_{1/80}^{1/80} 60 dy$$

$$= 60 \mid_{1/80}^{1/80} = 60 \left(\frac{1}{80} - \frac{1}{80}\right)$$

$$= 0$$

In fact, for any random variable X and any real number a:

$$P(X = a) = P(a \le X \le a)$$
$$= \int_{a}^{a} f(x)dx = 0$$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density Functions

Cumulative

A special case: the

Outline

Cumulative Distribution Functions

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Cumulative Distribution **Functions**

Probability Density Functions

Cumulative

Distribution
Functions

A special case: the exponential

► The **cumulative distribution function** of a random variable *X* is a function *F* such that:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

In other words:

$$\frac{d}{dx}F(x) = f(x)$$

- ► As with discrete random variables, *F* has the following properties:
 - ▶ $F(x) \ge 0$ for all x.
 - F is monotonically increasing.
 - $\lim_{x \to -\infty} F(x) = 0$
 - $\blacktriangleright \lim_{x\to\infty} F(x) = 1$

Remember:

$$f_Y(y) = \begin{cases} 60 & 0 < y < 1/60 \\ 0 & \text{otherwise} \end{cases}$$

For y < 0:

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t)dt = \int_{-\infty}^{0} 0dt = 0$$

For 0 < y < 1/60:

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t)dt = \int_{-\infty}^{0} 0dt + \int_{0}^{y} 60dt = 60y$$

For y > 1/60:

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t)dt$$
$$= \int_{-\infty}^{0} 0dt + \int_{0}^{1/60} 60dt + \int_{1/60}^{\infty} 0dt = 1$$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Introduction to Continuous Random Variables

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

A look at the cdf

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Cumulative Distribution Functions

Probability Density

Cumulative Distribution **Functions**

A special case: the

$$F(y) = \begin{cases} 0 & y \le 0 \\ 60y & 0 < y \le \frac{1}{60} \\ 1 & y > \frac{1}{60} \end{cases}$$

- 1. F(1/70)
- 2. $P(Y \leq \frac{1}{80})$
- 3. $P(Y > \frac{1}{150})$
- 4. $P(\frac{1}{130} \le Y \le \frac{1}{120})$

Answers: calculate the following using the cdf

1.
$$F(\frac{1}{70}) = 60\frac{1}{70} = \frac{6}{7}$$

2.
$$P(Y \le \frac{1}{80}) = F(\frac{1}{80}) = 60\frac{1}{80} = \frac{3}{4}$$

3.

$$P(Y > \frac{1}{150}) = \int_{1/150}^{\infty} f(y) dy$$

$$= \int_{-\infty}^{\infty} f(y) dy - \int_{-\infty}^{1/150} f(y) dy$$

$$= 1 - F(1/150) = 1 - \frac{60}{150}$$

$$= \frac{3}{5}$$

In fact, for any random variable X, discrete or continuous:

$$P(X \ge x) = 1 - P(X < x)$$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Cumulative Distribution **Functions**

A special case: the

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

$$P(\frac{1}{130} \le Y \le \frac{1}{120}) = \int_{1/130}^{1/120} f(y)dy$$

$$= \int_{-\infty}^{1/120} f(y)dy - \int_{-\infty}^{1/130} f(y)dy$$

$$= F(1/120) - F(1/130)$$

$$= 60(1/120) - 60(1/130)$$

$$= 1/26 \approx 0.0384$$

Outline

A special case: the exponential distribution

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

A special case: the exponential distribution

$$f(x) = \begin{cases} \frac{1}{\alpha} e^{-x/\alpha} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Dason Kurkiewicz

Random Variables

A special case: the

exponential distribution

Your turn: for $X \sim \text{Exp}(2)$, calculate the following

$$f(x) = \begin{cases} \frac{1}{2}e^{-x/2} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

- 1. $P(X \le 1)$
- 2. P(X > 5)
- The cdf F of X

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density

A special case: the exponential distribution

Dason Kurkiewicz

Random Variables

Probability Density

Cumulative

A special case: the exponential distribution

1.

$$P(X \le 1) = \int_{-\infty}^{1} f(x)dx$$

$$= \int_{-\infty}^{0} 0dx + \int_{0}^{1} \frac{1}{2}e^{-x/2}dx$$

$$= 0 + (-e^{-x/2})_{0}^{1}$$

$$= -e^{-1/2} - (-e^{-0/2})$$

$$= 1 - e^{-1/2} \approx 0.393$$

A special case: the exponential distribution

For x < 0.

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$
$$= \int_{-\infty}^{x} 0dx = 0$$

For x > 0:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx$$
$$= \int_{-\infty}^{0} 0dx + \int_{0}^{x} \frac{1}{2}e^{-t/2}dt$$
$$= -e^{-t/2} |_{0}^{x} = -e^{-x/2} - (-e^{-0/2})$$
$$= 1 - e^{-x/2}$$

Continuous Random Variables (Ch. 5.2)

Dason Kurkiewicz

Random Variables

Probability Density

Cumulative

A special case: the exponential distribution

Dason Kurkiewicz

Random Variables

Probability Density

A special case: the exponential distribution

Hence:

$$F(x) = \begin{cases} 1 - e^{-x/2} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

In general, an $\mathsf{Exp}(\alpha)$ random variable has cdf:

$$F(x) = \begin{cases} 1 - e^{-x/\alpha} & x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Uses of the $Exp(\alpha)$ random variable

Continuous

Random Variables (Ch. 5.2) Dason Kurkiewicz

A special case: the exponential distribution

- \blacktriangleright An Exp(α) random variable measures the waiting time until a specific event that has an equal chance of happening at any point in time.
- Examples:
 - ► Time between your arrival at a bus stop and the moment the bus comes
 - Time until the next person walks inside the library.
 - Time until the next car accident on a stretch of highway.