TCS II

Formal Languages and Computability 2021/22 2nd Midterm (A)

10th June 2022

Solutions

Question (a) (TM for the given language)

TM for language L₁:

 $M = \langle Q, \Sigma, \Gamma, q_0, B, F, \delta \rangle$

 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_F\}$ (1 point)

 $\Sigma = \{0, 1, 2\} (1 \text{ point})$

 $\Gamma = \{0, 1, 2, \square\} (1 \text{ point})$

 $q_0 = q_0$ (1 point)

 $B = \square (1 point)$

 $F = \{q_F\} (1 point)$

δ (graph): (14 points)

δ (transitions):

δ	$(q_0, 0)$)) =	(a1.	П.	R)
O	uo, v	<i>,,</i> –	ιuı,	,	11/

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_1, 1, R)$$

$$\delta(q_1, 2) = (q_1, 2, R)$$

$$\delta(q_1, \square) = (q_2, \square, L)$$

$$\delta(q_2, 2) = (q_3, \square, L)$$

$$\delta(q_3, 1) = (q_4, \square, L)$$

$$\delta(q_4, 0) = (q_4, 0, L)$$

$$\delta(q_4, 1) = (q_4, 1, L)$$

$$\delta(q_4, 2) = (q_4, 2, L)$$

$$\delta(q_4, \square) = (q_5, \square, R)$$

$$\delta(q_5,0)=(q_1,\square,R)$$

$$\delta(q_5, \square) = (q_F, \square, R)$$

<u>δ (transition table)</u>:

Q\Σ	0	1	2	
$\rightarrow q_0$	(q₁, □, R)	/	/	/
q ₁	(q ₁ , 0, R)	(q ₁ , 1, R)	(q ₁ , 2, R)	(q₂, □, L)
q ₂	/	/	(q₃, □, L)	/
q ₃	/	(q₄, □, L)	/	/
q ₄	(q ₄ , 0, L)	(q ₄ , 1, L)	(q ₄ , 2, L)	(q₅, □, R)
q ₅	(q₁, □, R)	/	/	(q _F , □, R)
* q _F	/	/	/	/

Question (b) (IDs)

 $001212 \in L(M)$ with IDs (10 points)

 $q_0001212 + q_101212 + 0q_11212 + 01q_1212 + 012q_112 + 0121q_12 + 01212q_1 + 0121q_2 + 0121q_2 + 012q_3 + 01q_4 \\ 2q_1001212 + q_101212 + 01q_1212 + 01q_1212 + 012q_1 + 0121q_1 \\ 2q_1001212 + q_101212 + 012q_1 + 01q_1 \\ 2q_1001212 + q_101212 + 01q_1 \\ 2q_1001212 + q_101212 + 012q_1 \\ 2q_1001212 + q_101212 + 012q_1 \\ 2q_1001212 + q_101212 + q_10121q_1 \\ 2q_1001212 + q_101212 + q_10121q_1 \\ 2q_1001212 + q_101212 + q_10121q_1 \\ 2q_1001212 + q_10121q_1 \\ 2q_10012 + q_10121q_1 \\ 2q_10012 + q_10121q_1 \\ 2q_10012 + q_10121q_1 \\ 2q_10012 + q_1012q_1 \\ 2q_10012$

 $+\ 0q_{4}12\ +\ q_{4}012\ +\ q_{4}\Box 012\ +\ q_{5}012\ +\ q_{1}12\ +\ 1q_{1}2\ +\ 12q_{1}\ +\ 1q_{2}2\ +\ q_{3}1\ +\ q_{4}\ +\ q_{5}\ +\ q_{F}$

Question (a) (turn the given CFG into CNF)

Given the CFG:

$$S \rightarrow XYZ \mid YZ$$

$$X \rightarrow xX \mid y$$

$$Y \rightarrow x \mid X$$

$$Z \rightarrow z$$

$$W \rightarrow xX \mid yy \mid z$$

2. step – remove unit productions: (2 points)

1. step – remove ε-productions: (1 point) there are no such productions.

3. step – remove variables that don't produce strings of all terminals: (1 point) there are no such variables.

4. step – remove »unreachable« variables:

variable W is »unreachable« (2 points)

$$S \rightarrow XYZ \mid YZ$$

 $X \rightarrow xX \mid y$
 $Y \rightarrow x \mid xX \mid y$
 $Z \rightarrow z$

5. step – Chomsky Normal Form (CNF):

a) Terminals → Variables: (2 points)

$$S \rightarrow XYZ \mid YZ$$
 $X \rightarrow AX \mid y$
 $Y \rightarrow x \mid AX \mid y$
 $Z \rightarrow z$
 $A \rightarrow x$

b) »Shortening«: (2 points)

Question (b) (use the CYK algorithm)

Is xxyxz in the language of the given CFG? (15 points)

{ S } ◀		Yes. The string xxyxz is in the language of the given CFG.				
{ }	{S}					
{X,Y}	{ }	{S}				
{ }	{X,Y}	{}	{S,B}			
{Y,A}	{Y,A}	{X,Y}	{Y,A}	{ Z }		
×	x	У	×	z		

Question (a) (reduction from MPCP to PCP)

MPCP to PCP reduction: (10 points)

idx _{MPCP}	MPCP	PCP	idx _{PCP}
1	(a,ab)	(a*,*a*b)	1
2	(b,ca)	(b*,*c*a)	2
3	(ca,a)	(c*a*,*a)	3
4	(abc,c)	(a*b*c*,*c)	4
		(*a*,*a*b)	S1
		(\$,*\$)	F

Question (b) (solution to MPCP – and PCP)

The solution to the given MPCP is the index sequence 1, 2, 3, 1, 4 (shown below): (7 points)

Pair index	1	2	3	1	4	concatenated string
1 st element of pair	a	b	ca	a	abc -	→ abcaaabc
2 nd element of pair	ab	ca	a	ab	c -	→ abcaaabc

The solution to the related PCP is the index sequence S1, 2, 3, 1, 4, F (shown below): (3 points)

Pair index	S1	2	3	1	4	F	concatenated string
1st element of pair	*a*	b*	c*a*	a*	a*b*c*	\$ →	►*a*b*c*a*a*a*b*c*\$
2 nd element of pair	*a*b	*c*a	*a	*a*b	*c	* \$→	►*a*b*c*a*a*a*b*c*\$

Question (a) (conversion to 3-CNF)

There are 3 Boolean variables, so direct conversion to 3-CNF is possible (using the truth table).

Truth table: (5 points)

Α	В	С	A(-C) + B
Т	Т	Т	T
Т	Т	F	Т
Т	F	T	F
Т	F	F	Т
F	T	T	T
F	Т	F	Т
F	F	Т	F
F	F	F	F

Falsifying variable assignments: (5 points)

$$(A = T, B = F, C = T),$$

$$(A = F, B = F, C = T),$$

$$(A = F, B = F, C = F).$$

Resulting expression in 3-CNF: (5 points)

$$(-A + B + -C) (A + B + -C) (A + B + C)$$

Question (b) (reduction from 3-SAT to VC)

Graph form the 3-CNF expression (order of clauses changed to ease connecting variables with their negations): (5 points)

$$(A + B + -C)$$
 $(-A + B + -C)$ $(A + B + C)$

Select a truth assignment (**A** = T, **B** = T, **C** = T) and pick a true node in each column:

All the non-selected nodes form the node cover (green nodes) (5 points)

