

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Department of Electronics & Communication Engineering

ECE111|Digital Circuits

Dr. G.S. Visweswaran

Lab_6:
Combinational Circuit Design

Student Name: Aayush Gakhar

Roll No.: 2020006

Date: 14/3/2021

Part A. Decoder Circuit for generating BCD Code from Encrypted code

Aim: Designing and testing of a circuit for decryption/decoding of an incoming digital signal which is encrypted by some set of rules which are:

An encrypted communication system sends decimal digits encoded by a 4-bit binary code C3 C2 C1 C0 according to the following scheme, where N denotes the value of the digit:

For $4 \ge N \ge 0$, C3 C2 C1 C0 = 13 – N (in decimal), and for $9 \ge N \ge 5$, C3 C2 C1 C0 = N – 3 (in decimal).

Components/ICs Used: Input, ConstantVal, Nand gate, Wire, splitter(Bitwidth=4), Hexdisplay

Circuit Diagram:

Input = 2(0010) Output = 5

Input = 6(0110) Output = 9

Input = 9(1001) Output = 4

Input = 13(1101) Output = 0

Truth Table:

Encr. Code	C 3	C2	C1	CO	DE of N	D	С	В	Α
0	0	0	0	0	X	X	X	X	X
1	0	0	0	1	X	X	X	X	X
2	0	0	1	0	5	0	1	0	1
3	0	0	1	1	6	0	1	1	0
4	0	1	0	0	7	0	1	1	1
5	0	1	0	1	8	1	0	0	0
6	0	1	1	0	9	1	0	0	1
7	0	1	1	1	X	X	X	X	X
8	1	0	0	0	X	X	X	X	X
9	1	0	0	1	4	0	1	0	0
10	1	0	1	0	3	0	0	1	1
11	1	0	1	1	2	0	0	1	0
12	1	1	0	0	1	0	0	0	1
13	1	1	0	1	0	0	0	0	0
14	1	1	1	0	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X

K maps (If Applicable):

D		C1 C0					
		0 0	0 1	11	1 0		
C3 C2	0 0	X	X	0	0		
	0 1	0	1	X	1		
	11	0	0	X	X		
	1 0	X	0	0	0		

C1 C0	0 0	0 1	11	10
I/O OF MUX FOR D	0	C3'	0	C2

С		C1 C0					
		0 0	0 1	11	1 0		
C3 C2	0 0	X	X	1	1		
	0 1	1	0	Χ	0		
	11	0	0	X	X		
	1 0	X	1	0	0		

C1 C0	0 0	0 1	11	10
I/O OF MUX FOR C	C3'	C2'	C3'	C3' C2'

В		C1 C0					
		0 0	0 1	11	1 0		
C3 C2	0 0	X	X	1	0		
	0 1	1	0	X	0		
	11	0	0	X	X		
	1 0	X	0	1	1		

C1 C0	0 0	0 1	11	1 0
I/O OF MUX FOR B	C3'	0	1	C3

Α		C1 C0					
		0 0	0 1	11	1 0		
C3 C2	0 0	X	X	0	1		
	0 1	1	0	X	1		
	11	1	0	X	X		
	1 0	X	0	0	1		

C1 C0	0 0	0 1	11	1 0
I/O OF MUX FOR A	1	0	0	1

FINAL									
C1 C0	0 0	0 1	10	11					
D	0	C3'	C2	0					
С	C3'	C2'	C3' C2'	C3'					
В	C3'	0	C3	1					
Α	1	0	1	0					

Observations/Results: The hex display works according to the truth table

Applications:Decoders are greatly used in applications where the particular output or group of outputs to be activated only on the occurrence of a specific combination of input levels. Specific output is provided for specific input.

Part B. Divider Circuit for 2-bit Binary Numbers

Aim: Designing and testing a circuit for dividing a 2-bit number N1 N0 by another 2-bit number D1 D0 (D1 D0 \neq 0) to generate a 2-bit quotient Q1 Q0 and a 2-bit remainder R1 R0.

Components/ICs Used: Input, ConstantVal, Nand gate, Wire, splitter(Bitwidth=4), Hexdisplay

Circuit Diagram:

Input(N1 N0 D1 D0) = 0101 Output(Q R) = 1 0 Input(N1 N0 D1 D0) = 0111 Output(Q R) = 0 1

Input(N1 N0 D1 D0) = 1010 Output(Q R) = 1 0 Input(N1 N0 D1 D0) = 1101 Output(Q R) = 30

Truth Table:

N1	N0	D1	D0	Q1	Q0	R1	R0
0	0	0	0	X	X	X	X
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	X	X	X	X
0	1	0	1	0	1	0	0
0	1	1	0	0	0	0	1
0	1	1	1	0	0	0	1
1	0	0	0	X	X	X	X
1	0	0	1	1	0	0	0
1	0	1	0	0	1	0	0
1	0	1	1	0	0	1	0
1	1	0	0	X	X	X	X
1	1	0	1	1	1	0	0
1	1	1	0	0	1	0	1
1	1	1	1	0	1	0	0

K maps (If Applicable):

Q1		N1 N0					
		0 0	0 1	11	1 0		
D1 D0	0 0	X	X	X	Χ		
	0 1	0	0	1	1		
	11	0	0	0	0		
	1 0	0	0	0	0		

N1 N0	0 0	0 1	11	1 0
I/O OF MUX FOR Q1	0	0	D1'	D1'

Q0		N1 N0			
		0 0	0 1	11	1 0
D1 D0	0 0	X	Χ	X	X
	0 1	0	1	1	0
	11	0	0	1	0
	10	0	0	1	1

N1 N0	0 0	0 1	11	10
I/O OF MUX FOR Q0	0	D1'	1	D0'

R1		N1 N0			
		0 0	0 1	11	1 0
D1 D0	0 0	X	X	X	X
	0 1	0	0	0	0
	11	0	0	0	1
	1 0	0	0	0	0

N1 N0	0 0	0 1	11	1 0
I/O OF MUX FOR R1	0	0	0	D1 D0

R0		N1 N0			
		0 0	0 1	11	1 0
D1 D0	0 0	X	X	X	X
	0 1	0	0	0	0
	11	0	1	0	0
	1 0	0	1	1	0

N1 N0	0 0	0 1	11	10
I/O OF MUX FOR R0	0	D1	D0'	0

FINAL						
N1 N0	0 0	0 1	10	11		
Q1	0	0	D1'	D1'		
Q0	0	D1'	D0'	1		
R1	0	0	D1 D0	0		
R0	0	D1	0	D0'		

Observations/Results: The hex display works according to the truth table.

Applications: Dividers are used in ALU of chips to do basic division operations. This is a combinational circuit and combinational circuits have a wide variety of uses such as calculators, digital measuring techniques, computers, digital processing, automatic control of machines, industrial processing, digital communications, etc.