## In [19]:

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as pp
```

## In [20]:

```
df1 = pd.read_csv(r"C:\Users\user\Desktop\c10\madrid_2001.csv")
df = df1.head(1000)
df
```

## Out[20]:

|     | date                       | BEN  | со   | EBE  | MXY | ИМНС | NO_2      | NOx       | OXY  | O_3       | PN       |
|-----|----------------------------|------|------|------|-----|------|-----------|-----------|------|-----------|----------|
| 0   | 2001-<br>08-01<br>01:00:00 | NaN  | 0.37 | NaN  | NaN | NaN  | 58.400002 | 87.150002 | NaN  | 34.529999 | 105.000  |
| 1   | 2001-<br>08-01<br>01:00:00 | 1.50 | 0.34 | 1.49 | 4.1 | 0.07 | 56.250000 | 75.169998 | 2.11 | 42.160000 | 100.599! |
| 2   | 2001-<br>08-01<br>01:00:00 | NaN  | 0.28 | NaN  | NaN | NaN  | 50.660000 | 61.380001 | NaN  | 46.310001 | 100.099! |
| 3   | 2001-<br>08-01<br>01:00:00 | NaN  | 0.47 | NaN  | NaN | NaN  | 69.790001 | 73.449997 | NaN  | 40.650002 | 69.779!  |
| 4   | 2001-<br>08-01<br>01:00:00 | NaN  | 0.39 | NaN  | NaN | NaN  | 22.830000 | 24.799999 | NaN  | 66.309998 | 75.1800  |
|     |                            |      |      |      |     |      |           |           |      |           |          |
| 995 | 2001-<br>08-02<br>18:00:00 | NaN  | 0.09 | NaN  | NaN | 0.09 | 27.670000 | 33.189999 | NaN  | 93.559998 | 30.309!  |
| 996 | 2001-<br>08-02<br>18:00:00 | NaN  | 0.41 | NaN  | NaN | NaN  | 45.639999 | 62.180000 | NaN  | 86.820000 | 44.279!  |
| 997 | 2001-<br>08-02<br>18:00:00 | 1.28 | 0.35 | 1.68 | NaN | 0.10 | 51.560001 | 84.430000 | NaN  | 56.520000 | 50.509   |
| 998 | 2001-<br>08-02<br>18:00:00 | NaN  | 0.11 | NaN  | NaN | NaN  | 33.270000 | 42.939999 | NaN  | 93.910004 | 25.760   |
| 999 | 2001-<br>08-02<br>18:00:00 | NaN  | 0.05 | NaN  | NaN | 0.04 | 11.520000 | 12.950000 | NaN  | 83.019997 | 35.6600  |
|     |                            |      |      |      |     |      |           |           |      |           |          |

# 1000 rows × 16 columns

## In [21]:

df=df.dropna()

```
In [22]:
```

```
df.columns
```

```
Out[22]:
```

## In [23]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 166 entries, 1 to 989
Data columns (total 16 columns):
     Column
              Non-Null Count Dtype
     -----
              -----
---
                              ----
0
     date
              166 non-null
                              object
 1
     BEN
                              float64
              166 non-null
 2
     CO
              166 non-null
                              float64
                              float64
 3
     EBE
              166 non-null
 4
     MXY
              166 non-null
                              float64
 5
              166 non-null
                              float64
     NMHC
 6
     NO_2
              166 non-null
                              float64
 7
                              float64
     NOx
              166 non-null
                              float64
 8
     OXY
              166 non-null
 9
     0 3
                              float64
              166 non-null
 10
    PM10
              166 non-null
                              float64
                              float64
 11
     PXY
              166 non-null
 12
     SO_2
              166 non-null
                              float64
 13
     TCH
              166 non-null
                              float64
                              float64
 14
              166 non-null
    TOL
15 station 166 non-null
                              int64
dtypes: float64(14), int64(1), object(1)
memory usage: 22.0+ KB
```

## In [24]:

```
data=df[['CO' ,'station']]
data
```

## Out[24]:

| СО   | station                                                                  |
|------|--------------------------------------------------------------------------|
| 0.34 | 28079035                                                                 |
| 0.63 | 28079006                                                                 |
| 0.43 | 28079024                                                                 |
| 0.34 | 28079099                                                                 |
| 0.06 | 28079035                                                                 |
|      |                                                                          |
| 0.77 | 28079006                                                                 |
| 0.23 | 28079024                                                                 |
| 0.35 | 28079099                                                                 |
| 0.61 | 28079035                                                                 |
| 0.85 | 28079006                                                                 |
|      | 0.34<br>0.63<br>0.43<br>0.34<br>0.06<br><br>0.77<br>0.23<br>0.35<br>0.61 |

166 rows × 2 columns

## In [25]:

```
data.plot.line(subplots=True)
```

## Out[25]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)



## In [26]:

data.plot.line()

## Out[26]:

## <AxesSubplot:>



## In [27]:

x = data[0:100]

## In [28]:

x.plot.bar()

## Out[28]:

## <AxesSubplot:>



## In [29]:

data.plot.hist()

# Out[29]:

<AxesSubplot:ylabel='Frequency'>



## In [30]:

data.plot.area()

## Out[30]:

# <AxesSubplot:>



# In [31]:

data.plot.box()

# Out[31]:

# <AxesSubplot:>



## In [32]:

b.plot.pie(y='station' )

## Out[32]:

<AxesSubplot:ylabel='station'>



#### In [33]:

```
data.plot.scatter(x='CO' ,y='station')
```

#### Out[33]:

<AxesSubplot:xlabel='CO', ylabel='station'>



#### In [34]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 166 entries, 1 to 989
Data columns (total 16 columns):
              Non-Null Count Dtype
 #
     Column
0
     date
              166 non-null
                               object
 1
     BEN
              166 non-null
                               float64
 2
              166 non-null
                               float64
     CO
 3
     EBE
              166 non-null
                               float64
 4
     MXY
              166 non-null
                               float64
 5
     NMHC
              166 non-null
                               float64
 6
     NO_2
              166 non-null
                               float64
 7
     NOx
              166 non-null
                               float64
 8
     0XY
              166 non-null
                               float64
 9
     0_3
              166 non-null
                               float64
 10
     PM10
              166 non-null
                               float64
                               float64
 11
     PXY
              166 non-null
                               float64
 12
     SO 2
              166 non-null
 13
     TCH
              166 non-null
                               float64
```

## In [35]:

df.describe()

## Out[35]:

|       | BEN        | СО         | EBE        | MXY        | NMHC       | NO_2       | NOx         |
|-------|------------|------------|------------|------------|------------|------------|-------------|
| count | 166.000000 | 166.000000 | 166.000000 | 166.000000 | 166.000000 | 166.000000 | 166.000000  |
| mean  | 2.179639   | 0.641566   | 2.435542   | 5.874518   | 0.134398   | 61.698193  | 109.326385  |
| std   | 1.697713   | 0.449958   | 1.876533   | 5.129837   | 0.099364   | 35.642849  | 87.084126   |
| min   | 0.430000   | 0.020000   | 0.250000   | 0.530000   | 0.000000   | 4.190000   | 7.190000    |
| 25%   | 0.782500   | 0.322500   | 0.940000   | 1.985000   | 0.060000   | 32.182500  | 35.682501   |
| 50%   | 1.645000   | 0.510000   | 2.020000   | 4.740000   | 0.120000   | 61.730000  | 91.309998   |
| 75%   | 3.080000   | 0.820000   | 3.262500   | 8.185000   | 0.180000   | 90.977503  | 159.450005  |
| max   | 7.840000   | 2.090000   | 8.900000   | 24.180000  | 0.510000   | 138.600006 | 389.299988  |
| 4     |            |            |            |            |            |            | <b>&gt;</b> |

# In [36]:

## In [37]:

sns.pairplot(df1[0:50])

# Out[37]:

<seaborn.axisgrid.PairGrid at 0x176f05bff40>



#### In [38]:

```
sns.distplot(df1['station'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:255
7: FutureWarning: `distplot` is a deprecated function and will be remove d in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

#### Out[38]:

<AxesSubplot:xlabel='station', ylabel='Density'>



#### In [39]:

```
sns.heatmap(df1.corr())
```

#### Out[39]:

#### <AxesSubplot:>



#### In [40]:

```
In [41]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

# **Linear Regression**

```
In [42]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

#### Out[42]:

LinearRegression()

#### In [43]:

```
lr.intercept_
```

#### Out[43]:

28078924.650785644

#### In [44]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

#### Out[44]:

#### Co-efficient

| BEN  | 7.601835   |
|------|------------|
| со   | -75.818249 |
| EBE  | 26.947553  |
| MXY  | -28.704971 |
| NMHC | 311.556604 |
| NO_2 | 0.409014   |
| NOx  | -0.062479  |
| OXY  | -51.313632 |
| O_3  | 0.021585   |
| PM10 | 0.164274   |
| PXY  | 140.334383 |
| SO_2 | -2.038764  |
| тсн  | 88.321620  |
| TOL  | -6.460025  |

```
In [45]:
```

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

#### Out[45]:

<matplotlib.collections.PathCollection at 0x17682314a30>



## In [46]:

```
lr.score(x_test,y_test)
```

#### Out[46]:

0.4872767878254125

## In [47]:

```
lr.score(x_train,y_train)
```

## Out[47]:

0.6299345764794582

## In [48]:

```
from sklearn.linear_model import Ridge,Lasso
```

## In [54]:

```
r=Ridge(alpha=10)
r.fit(x_train,y_train)
```

#### Out[54]:

Ridge(alpha=10)

## In [55]:

```
r.score(x_test,y_test)
```

## Out[55]:

0.2631926973406742

```
In [56]:
r.score(x_train,y_train)
Out[56]:
0.396161240870166
In [57]:
l=Lasso(alpha=10)
1.fit(x_train,y_train)
Out[57]:
Lasso(alpha=10)
In [58]:
1.score(x_train,y_train)
Out[58]:
0.19468447289278856
In [59]:
1.score(x_test,y_test)
Out[59]:
0.17123023752648703
In [60]:
from sklearn.linear_model import ElasticNet
e=ElasticNet()
e.fit(x_train,y_train)
Out[60]:
ElasticNet()
In [61]:
e.coef_
Out[61]:
array([ 1.71173836, -0.56560351, 6.48100498, -0.81225867,
        1.2649111 , -0.61371316, -3.32224475, 0.18148639,
                                                              0.06472336,
                     2.71840775, 0.
                                             , -0.
                                                           ])
In [62]:
e.intercept_
Out[62]:
28078983.823303495
```

```
In [63]:
prediction=e.predict(x_test)
In [64]:
e.score(x_test,y_test)
Out[64]:
0.17899369923948127
In [67]:
from sklearn import metrics
In [68]:
print(metrics.mean_squared_error(y_test,prediction))
958.2210838066244
In [69]:
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
30.955146321841614
In [70]:
print(metrics.mean_absolute_error(y_test,prediction))
25.12592246942222
In [71]:
from sklearn.linear_model import LogisticRegression
In [72]:
feature_matrix=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
       'PM10', 'PXY', 'SO_2', 'TCH', 'TOL']]
target_vector=df[ 'station']
In [73]:
feature_matrix.shape
Out[73]:
(166, 14)
In [74]:
target_vector.shape
Out[74]:
(166,)
```

```
In [75]:
from sklearn.preprocessing import StandardScaler
In [76]:
fs=StandardScaler().fit_transform(feature_matrix)
In [77]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[77]:
LogisticRegression(max_iter=10000)
In [78]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [79]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [80]:
logr.classes_
Out[80]:
array([28079006, 28079024, 28079035, 28079099], dtype=int64)
In [81]:
logr.score(fs,target_vector)
Out[81]:
0.9397590361445783
In [82]:
logr.predict_proba(observation)[0][0]
Out[82]:
8.732936483311502e-18
In [83]:
logr.predict_proba(observation)
Out[83]:
array([[8.73293648e-18, 2.78894484e-10, 9.99999901e-01, 9.82938257e-08]])
```

```
In [84]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [85]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

#### Out[85]:

RandomForestClassifier()

#### In [86]:

## In [87]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

#### Out[87]:

#### In [88]:

```
grid_search.best_score_
```

### Out[88]:

0.6982758620689655

#### In [89]:

```
rfc_best=grid_search.best_estimator_
```

#### In [90]:

```
from sklearn.tree import plot tree
plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
Out[90]:
[Text(1984.0, 1993.2, 'PXY <= 0.83\ngini = 0.734\nsamples = 81\nvalue = [3</pre>
6, 19, 36, 25]\nclass = a'),
   Text(992.0, 1630.80000000000000, 'SO_2 <= 9.62 \setminus i = 0.194 \setminus i = 18
\nvalue = [0, 17, 1, 1]\nclass = b'),
  Text(496.0, 1268.4, 'gini = 0.56\nsamples = 5\nvalue = [0, 3, 1, 1]\nclas
s = b'),
  Text(1488.0, 1268.4, 'gini = 0.0\nsamples = 13\nvalue = [0, 14, 0, 0]\ncl
ass = b'),
   Text(2976.0, 1630.8000000000000, 'TOL <= 30.695 \setminus ini = 0.67 \setminus ini
3\nvalue = [36, 2, 35, 24]\nclass = a'),
   Text(2480.0, 1268.4, 'OXY <= 4.55 \mid e = 0.672 \mid e = 55 \mid e = [2]
6, 2, 35, 24]\nclass = c'),
  Text(1488.0, 906.0, 'NMHC <= 0.02\ngini = 0.66\nsamples = 45\nvalue = [1
4, 2, 29, 24]\nclass = c'),
   Text(992.0, 543.59999999999, 'gini = 0.231\nsamples = 8\nvalue = [13,
0, 2, 0] \setminus ass = a'),
   37\nvalue = [1, 2, 27, 24]\nclass = c'),
  1, 0, 10]\nclass = d'),
  1, 27, 14]\nclass = c'),
  Text(3472.0, 906.0, '0_3 <= 47.81\ngini = 0.444\nsamples = 10\nvalue = [1
2, 0, 6, 0] \setminus ass = a'),
   0, 6, 0]\nclass = c'),
  Text(3968.0, 543.599999999999, 'gini = 0.0\nsamples = 5\nvalue = [10, 0,
0, 0] \nclass = a'),
   Text(3472.0, 1268.4, 'gini = 0.0\nsamples = 8\nvalue = [10, 0, 0, 0]\ncla
ss = a')
                                                                                         PXY <= 0.83
gini = 0.734
samples = 81
                                                                                           = [36, 19, 36, 25]
                                                                                                                                     TOL <= 30.695
gini = 0.67
samples = 63
value = [36, 2, 35, 24]
                                             -10.194
                                          amples = 18
le = [0, 17, 1, 1]
                                                                                                                                              class = a
                                                                                                                  OXY <= 4.55
gini = 0.672
                 gini = 0.56
             samples = 5
value = [0, 3, 1, 1]
class = b
                                                                 samples = 13
ue = [0, 14, 0, 0]
class = b
                                                                                                                                                                samples = 8
value = [10, 0, 0, 0]
class = a
                                                                                                            samples = 55
value = [26, 2, 35, 24]
                                                                                                                                                               O_3 <= 47.81
gini = 0.444
samples = 10
value = [12, 0, 6, 0]
class = a
                                                                NMHC <= 0.02
                                                                  gini = 0.66
samples = 45
e = [14, 2, 29, 24]
                                                                                       NO_2 <= 43.135
gini = 0.551
                                                                                                                                            gini = 0.375
                                                                                                                                            samples = 5 ue = [2, 0, 6, 0]
                                           samples = 8 e = [13, 0, 2, 0]
                                                                                                                                                                                         samples = 5 value = [10, 0, 0, 0]
                                                                                     samples = 37
value = [1, 2, 27, 24]
                                                                                                                   gini = 0.499
                                                                                                                     mples = 28
= [1, 1, 27, 14]
class = c
```

# logistic regression is best suitable for this dataset

/a aaa==aaa4 / /==aa

In [ ]: