Exercise 2

FY8503 Advanced theoretical physics Transport modelling with Stochastic differential equations

September 18, 2023

Problem 1

Implement the Euler-Maruyama method, and use it to solve the simplest SDE from the last lecture:

$$dX_t = a dt + b dW_t, (1)$$

where the drift and diffusion terms, a and b, are constants.

As this is just the Wiener process scaled by a constant b and shifted by an amount at, we can see that the distribution of a large number of realisations X_t , at time t, will follow a Gaussian distribution with some mean μ and variance σ^2 .

Task a

Solve for a large number of realisations, and plot a histogram of values of X_t together with the expected Gaussian distribution, for a few different times, t.

Task b

A more rigorous way (than visually comparing the expected distribution to a histogram) to look at the convergence to a distribution is perhaps to look at the moments of the distribution, for example the mean (first moment) or the variance (central second moment).

Solve the same equation for N_p realisations and a timestep Δt , and compare the mean and variance of the distribution of solutions to the mean and variance of the expected Gaussian distribution. Try different values of N_p , and different values of Δt . Do you observe any trends?

Problem 2

Use the Euler-Maruyama method to solve the other SDE we looked at in the last lecture:

$$dX_t = aX_t dt + bX_t dW_t, (2)$$

where the drift and diffusion terms, aX_t and bX_t , are now proportional to X_t . We recall from the lecture (see also Øksendal, 2003, p. 67) that the expectation value of the solution is

$$E(X_t) = \langle X_t \rangle = X_0 e^{at}, \tag{3}$$

where X_0 is the initial value at t = 0.

Task a

Solve the equation for N_p realisations and a timestep Δt , and compare the mean of the distribution of solutions to the expectation value. Try this for different values of N_p , and different values of Δt . Do you observe any trends?

Task b

If you want, you can try to compare the distribution of the numerical solutions to the expected distribution, which is log-normal (which means that $log(X_t)$ is normally distributed). You can read about geometric Brownian motion, for example at Wikipedia, and try to compare against the distribution described there. Note that the Wikipedia page uses a little different notation.