$\bf Aufgabe~2~(4~Punkte)$. Sei Xein Submartingal. Zeigen Sie die Äquivalenz folgender Aussagen

- 1. Es gilt X^+ ist gleichgradig integrierbar.
- 2. Es existiert eine Zufallsvariable $X_{\infty} \in L^1(\mathscr{F}_{\infty})$, sodass $E[X_{\infty}|\mathscr{F}_t] \ge X_t$ für alle $t \in \mathbb{R}_+$.

Wir gehen nach dem Beweis von Theorem 9.30 in [Kal21]. Sei zunächst X^+ gleichgradig integrierbar. Nach Lemma 24 aus Wahrscheinlichkeitstheorie 1 gilt $\sup_{t\geq 0} E[X_t^+] < \infty$. Mit Satz 57, dem Doob'schen Grenzwertsatz, gibt es ein X_∞ , sodass $X_t^+ \xrightarrow{\mathrm{f.s.}} X_\infty^+$. Nach dem Satz 60, dem Satz von Vitaly, gilt auch $X_t^+ \xrightarrow{L^1} X_\infty^+$. Sei nun $A \in \mathscr{F}_t$. Dann kriegen wir für $t \leq s$

$$E[(X_{\infty}^{+} - X_{s}^{+})\mathbb{1}_{A}] = E[(X_{\infty}^{+} - X_{t}^{+})\mathbb{1}_{A}] + E[(X_{t}^{+} - X_{s}^{+})\mathbb{1}_{A}].$$

Da X ein Submartingal ist, ist der zweite Term negativ. Somit kriegen wir

$$\leq E[(X_{\infty}^+ - X_t^+)\mathbb{1}_A] \leq E[|X_{\infty}^+ - X_t^+|] \to 0$$

sodass auch

$$E[X_t^+|\mathscr{F}_s] \to E[X_\infty^+|\mathscr{F}_s]. \tag{1}$$

Da X ein Submartingal ist, können wir für alle $\geq 0 \leq t \leq s$ schreiben $X_t \leq E[X_s|\mathscr{F}_t]$ und damit auch

$$X_t \le \lim_{s \to \infty} E[X_s^+] - \liminf_{s \to \infty} E[X_s^-|\mathscr{F}_t].$$

Mit Gleichung (1) im ersten Term und dem Lemma von Fatou im zweiten kriegen wir

$$\leq E[X_{\infty}^+] - E[\liminf X_{s}^-|\mathscr{F}_t] = E[X_{\infty}|\mathscr{F}_t].$$

Gibt es andererseits ein X_{∞} , sodass für alle $t \geq 0$ gilt $X_t \leq E[X_{\infty}|\mathscr{F}_t]$, so gilt nach Blatt 2 Aufgabe 3.ii, dass $X_t^+ \leq E[X_{\infty}^+|\mathscr{F}_t]$, denn · + ist konvex. Mit Korollar 8.22 aus [Kle20] erhalten wir schließlich, dass X^+ gleichgradig integrierbar ist.

Formulieren Sie eine analoge Aussage für Supermartingale.

Sei X ein Supermartingal, dann ist -X ein Submartingal. Somit gibt es genau dann ein $-X_{\infty} \in L^1(\mathscr{F}_{\infty})$, sodass $E[-X_{\infty}|\mathscr{F}_t] \geq -X_t$ für alle $t \in \mathbb{R}_+$, wenn $(-X)^+$ gleichgradig integrierbar ist. Das heißt, die folgenden Aussagen sind äquivalent.

- 1. X^- ist gleichgradig integrierbar.
- 2. Es existiert eine Zufallsvariable $X_{\infty} \in L^1(\mathscr{F}_{\infty})$, sodass $E[X_{\infty}|\mathscr{F}_t] \leq X_t$ für alle $t \in \mathbb{R}_+$.

Aufgabe 4 (4 Punkte).

i) Seien Y_i , $i=1,2,\ldots$ unabhängig identisch verteilt mit $P(Y_i=0)=1-P(Y_i=1)=\frac{1}{2}$. Zeigen Sie, dass $\mathcal{X}=(X_n)_{n\geq 1}$ mit $X_n:=2^n\prod_{i=1}^n Y_i$ ein Martingal ist bzgl. einer geeigneten Filtration.

Sei $\mathbb{F} = (\mathscr{F}_n)$ mit $\mathscr{F}_n = \sigma(Y_1, \dots, Y_n)$. Dann sind Y_1, \dots, Y_n \mathscr{F}_n -messbar, sodass gilt

$$E[X_{n+1}|\mathscr{F}_n] = E\left[2^{n+1} \prod_{i=1}^{n+1} Y_i \;\middle|\; \mathscr{F}_n\right] = 2^{n+1} \prod_{i=1}^n Y_i E[Y_{n+1}|\mathscr{F}_n] \,.$$

Da Y_n+1 unabhängig von Y_1,\dots,Y_n und damit von \mathscr{F}_n ist, kriegen wir

$$=2^{n+1}\prod_{i=1}^{n}Y_{i}E[Y_{n+1}]=2^{n+1}\prod_{i=1}^{n}Y_{i}E[Y_{1}],$$

Denn alle Y_i sind ja identisch verteilt. Mit $E[Y_1] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$ kriegen wir schließlich

$$=2^n\prod_{i=1}^n Y_i=X_n\,,$$

sodass \mathcal{X} ein Martingal ist.

ii) Sei $(Z_n)_{n\geq 1}$ eine Folge unabhängiger Zufallsvariablen mit $P(Z_n=1)=\frac{1}{n}=1-P(Z_n=0)$. Zeigen Sie, dass die Folge in L^1 konvergiert, aber nicht fast sicher.

Es gilt $E[|Z_n-0|]=1\cdot\frac{1}{n}+0\cdot(1-\frac{1}{n})=\frac{1}{n}\to 0$, sodass $Z_n\xrightarrow{L^1}$ 0. Da die Z_n unabhängig sind, sind auch die Mengen $\{Z_n=1\}$ unabhängig. Außerdem gilt $\sum_{n\geq 1}P(Z_n=1)=\sum_{n\geq 1}\frac{1}{n}=\infty$. Somit können wir Borel-Cantelli zwei anwenden. Hiernach folgt, $1=P(\limsup\{Z_n=1\})=P(\forall n\geq 1\exists m\geq n\ Z_m=1)$. Angenommen, es gilt $1=P(\lim_{n\to\infty}Z_n=0)=P(\exists k\geq 1\forall l\geq k\ Z_l=0)$, dann würde aber auch für alle $m\geq k\ P$ -fast-sicher gelten, dass $Z_m=0$. Somit kann Z_n nicht fast sicher gegen 0 konvergieren und auch nicht gegen etwas anderes, denn $Z_n\xrightarrow{L^1}0$ impliziert $Z_n\xrightarrow{P}0$ und $Z_n\xrightarrow{\text{f.s.}}Z$ impliziert $Z_n\xrightarrow{P}Z$, sodass Z=0 sein muss.

iii) Gibt es ein Martingal $X=(X_n)_{n\geq 1}$, dass in L^1 , aber nicht fast sicher konvergiert?

Nein, denn Konvergenz in L^1 impliziert für Martingale fast sicherere Konvergenz. Angenommen, $X_n \xrightarrow{L^1} X_{\infty}$, also insbesondere auch $X_n \xrightarrow{P} X_{\infty}$. Dann gilt $\sup_n E[|X_n|] < \infty$, also auch $\sup_n E[X_n^+] < \infty$. Somit können wir den Doobschen Konvergenzsatz, Satz 57, anwenden. Demnach gibt es ein X_{∞}' , sodass $X_n \xrightarrow{f.s.} X_{\infty}'$. Da hierdurch auch gilt $X_n \xrightarrow{P} X_{\infty}'$, muss folgen $X_{\infty} = X_{\infty}'$.

References

- [Kal21] Kapitel 9. In: KALLENBERG, Olav: Optional Times and Martingales. Cham: Springer International Publishing, 2021. – ISBN 978-3-030-61871-1, 185-206
- [Kle20] Klenke, Achim: Wahrscheinlichkeitstheorie. Springer Spektrum, 2020 (Masterclass)