Fiche d'exercices: suites géométriques

Exercice 1:

Soit (u_n) la suite géométrique de premier terme $u_0 = 2$ et de raison q = 3.

- 1) Calculer u_5 .
- **2)** Calculer u_{10} .

Exercice 2:

Soit (v_n) la suite géométrique de premier terme $v_1 = 5$ et de raison q = 2.

- 1) Calculer v_7 .
- **2)** Calculer v_{12} .

Exercice 3:

Soit (u_n) la suite géométrique de raison q = 4 telle que $u_8 = 32768$.

- 1) Calculer u_0 .
- **2)** Calculer u_{15} .
- 3) Calculer u_4 .

Exercice 4:

Soit (u_n) la suite géométrique telle que $u_4 = 15,1875$ et $u_5 = 22,78125$.

- 1) Calculer la raison q de cette suite.
- **2)** Calculer u_{10} .
- **3)** Calculer u_1 .

Exercice 5:

Soit (u_n) la suite géométrique telle que $u_7 = 8748$ et $u_9 = 78732$.

- 1) Calculer la raison q de cette suite sachant que q est positive.
- **2)** Calculer u_3 .
- 3) Calculer u_{12} .

Exercice 6:

Soit (u_n) la suite géométrique telle que $u_7 = 640$ et $u_{12} = 20$ 480.

- 1) Calculer la raison q de cette suite.
- **2**) Calculer u_0 .
- 3) Calculer u_{10} .

Exercice 7:

Un matériel industriel acheté 5 000 € perd 10 % de sa valeur par an.

On pose $u_0 = 5\,000$ et on note u_n la valeur du matériel n années après son achat.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** Déterminer la nature de la suite (u_n) .
- **3)** Exprimer u_n en fonction de n.
- 4) Quelle sera la valeur du matériel 10 ans après l'achat? (arrondir au centime d'euro)
- 5) Au bout de combien d'années la valeur deviendra-t-elle inférieure à 1 000 €.

Exercice 8:

Dans un laboratoire on étudie des bactéries.

Avant de débuter l'expérience il y a 200 bactéries.

On constate que chaque jour, le nombre de bactéries augmente de 15 %.

On note u_n le nombre de bactéries au bout de n jours d'expérience.

- 1) Exprimer u_{n+1} en fonction de u_n .
- **2)** Déterminer la nature de la suite (u_n) .
- **3)** Exprimer u_n en fonction de n.
- 4) Combien y aura-t-il de bactéries au bout d'une semaine?
- 5) Au bout de combien de jours le nombre de bactéries dépassera-t-il 1 000?

Correction

Exercice 1:

1)
$$u_5 = u_0 \times q^5 = 2 \times 3^5 = 486$$
.

2)
$$u_{10} = u_0 \times q^{10} = 2 \times 3^{10} = 118\,098.$$

Exercice 2:

1)
$$v_7 = v_1 \times q^6 = 5 \times 2^6 = 320$$
.

2)
$$v_{12} = v_1 \times q^{11} = 5 \times 2^{11} = 10240.$$

Exercice 3:

1)
$$u_0 = u_8 \times q^{-8} = 32768 \times 4^{-8} = 0.5.$$

2)
$$u_{15} = u_8 \times q^7 = 32768 \times 4^7 = 536870912.$$

3)
$$u_4 = u_8 \times q^{-4} = 32768 \times 4^{-4} = 128$$
.

Exercice 4:

1)
$$u_5 = u_4 \times q = 15,1875 \times q = 22,78125 \text{ donc } q = \frac{22,78125}{15,1875} = 1,5.$$

2)
$$u_{10} = u_4 \times q^6 = 15,1875 \times 1,5^6 = 172,9951172.$$

3)
$$u_1 = u_4 \times q^{-3} = 15,1875 \times 1,5^{-3} = 4,5.$$

Exercice 5:

1)
$$u_9 = u_7 \times q^2 = 8748 \times q^2 = 78732$$
 donc $q^2 = \frac{78732}{8748} = 9$ donc $q = \sqrt{9} = 3$ ou $q = -3$ mais comme q est positive alors $q = 3$.

2)
$$u_3 = u_7 \times q^{-4} = 8748 \times 3^{-4} = 108.$$

3)
$$u12 = u_7 \times q^5 = 8748 \times 3^5 = 2125764$$
.

Exercice 6:

1)
$$u_{12} = u_7 \times b^5 = 640 \times q^5 = 20 \ 480 \ \text{donc} \ q^5 = \frac{20 \ 480}{640} = 32 \ \text{donc} \ q = q^1 = \left(q^5\right)^{\frac{1}{5}} = 32^{\frac{1}{5}} = 2.$$

2)
$$u_0 = u_7 \times q^{-7} = 640 \times 2^{-7} = 5.$$

3)
$$u_{10} = u_7 \times q^3 = 640 \times 2^3 = 5120$$
.

Exercice 7:

1)
$$u_{n+1} = u_n \times 0.9.$$

2) (u_n) est une suite géométrique car, pour passer d'un terme au suivant, on multiplie toujours par le même nombre : 0,9 (raison q de la suite).

3)
$$u_n = u_0 \times q^n = 5000 \times 0.9^n$$
.

4)
$$u_{10} = u_0 \times q^{10} = 5\,000 \times 0,9^{10} \approx 1\,743,39 \in$$
.

5) Au bout de 16 ans car
$$u_{15} \approx 1029, 5$$
 et $u_{16} \approx 926, 51$.

Exercice 8:

- 1) $u_{n+1} = u_n \times 1,15$.
- 2) (u_n) est une suite géométrique car, pour passer d'un terme au suivant, on multiplie toujours par le même nombre : 1,15 (raison q de la suite).
- 3) $u_n = u_0 \times q^n = 200 \times 1,15^n$.
- 4) $u_7 = u_0 \times q^7 = 200 \times 1,15^7 \approx 532.$ Au bout d'une semaine il y aura environ 532 bactéries.
- **5)** Au bout de 12 jours car $u_{11} \approx 930$ et $u_{12} \approx 1070$.