Assignmen4- Report

<u>Q1.</u>

Assumption:

Ignoring all the unknown words if present in test during the creation of word count feature matrice of test

- Loading and Preprocessing of data is done:
 - Preprocessing of data includes:
 - Converting into lower case
 - Removing URLs
 - Removing punctuations
 - Removing stopwords
- 1. vocabulary of unique words from the training set:
 - o length of vocabulary list is 1698
- 2. Training word count feature matrices created of size: $800 \text{ rows} \times 1698 \text{ columns}$ Testing word count feature matrices created of size: $200 \text{ rows} \times 1698 \text{ columns}$ Both the feature matrices are different
 - Multinomial Naïve Bayes applied with add-1 smoothing

Metric Measure	Training Set	Test Set
Accuracy	0.956	0.74
F1-Score	0.961	0.633

Q2.

Assumption: One hot feature encoding is applied on the data set before splitting

• Data is splitted into 75:25 ratio tsne plot to visualise the dataset

• Knn implemented from scratch

Grid Search on K values and error is as follows:

10: 0.4266792809839167,
20: 0.4099653106275623,

30: 0.4112267423525702,

40: 0.4077578051087985,

40. 0.4077570051007505

50: 0.402712078208767,

60: 0.4052349416587827,

70: 0.40618101545253865,

80: 0.3954588457899716,

100: 0.4030274361400189

Optimal K value is 80

Error Vs Number of neighours graph:

- Sklearn Train accuracy for optimal K: 0.70 Sklearn Test Accuracy for optimal K: 0.631
- Comparison b/w my implementation and the inbuilt sklearn function accuracy for optimal k value

Knn Implementation	Training Accuracy	Test Accuracy	
Scratch(my implementation)	0.72	0.59	
Sklearn Function	0.70	0.63	

There is a deviation between accuracies. Sklearn function is giving more accuracy for test and train set for optimal k i.e80 value compared to my implementation.

<u>Q3.</u>

Approach:

In Kmeans after providing cluster numbers to every cluster formed. Within cluster voting is done whichever data point has maximum occurrence that label is given to the cluster and whenever a new data point is closed to any cluster that cluserts label is given to the data point in this way prediction is done in K means implementation from scratch

 Visualize data through tsne plot different colors are labels of the data

Optimal Value of k is found using elbow method i.e. 20(clusters)
 Plot of error vs number of clusters graph

Scatter plot to visualize the dataset to depict the clusters formed(optimal)

Training Accuracy for optimal K for Kmeans Scratch: 0.645
 Testing Accuracy for optimal K for Kmeans Scratch: 0.70

Comparison b/w my implementation and the inbuilt sklearn function accuracy for optimal k value for Kmeans

K-Means Implementation	Training Accuracy	Test Accuracy	
Scratch Implementation	0.64	0.70	
Sklearn Kmeans	0.75	0.77	

Sklearn is giving better accuracy for training and test set compared to implementation of K means from scratch