

in the Name of Allah, the Beneficient, the Mesciful

Software Quality Assurance

Critical Estimation Concepts

Rivision

Decomposition Techniques

- If problem is too complex, "divide and conquer" is adopted
- Two views
 - Decomposition of the problem
 - Decomposition of the process

Software sizing

- Direct approach : Size is measured in LOC
- Indirect approach : Size is measured in FP

Problem based estimation

- Loc and FP are used in two ways
 - Estimation variable
 - Baseline metric from previous projects

Problem based estimation

- Steps involved
 - Decomposes software into functions
 - Using historical information, the planner estimates an optimistic, most likely and pessimistic value for each function
 - Expected value is calculated using
 - EV= $(S_{opt} + 4S_m + S_{pess}) / 6$
 - Baseline metric is then applied to derive the cost of each function
 - Function estimates are combined to form project estimate

Example (CAD software)

- CAD software will accept 2D and 3D geometric data from an engineer.
- The engineer interacts with s/w through a user defined interface.
- All geometric and supporting data are stored in DB.
- Design modules produce the required output.
- Peripheral control module produces the output on various output devices

Major functions of CAD

- 2D geometric analysis 2DGA
- 3D geometric analysis 3DGA
- User interface and control facilities UICF
- Database management DBM
- Design analysis modules -DAM
- Graphics display facilities CGDF
- Peripheral control PC

Loc based estimation	
Functions	Estimated Loc
2D geometric analysis	5300
3D geometric analysis	6800
User interface and control facilities	2300
Database management	3350
Design analysis modules	8400
Computer graphics display facilities	4950
Peripheral control	2100
	Contd

LOC Estimation

Three point estimation technique was used to estimate LOC value

Example: For 3D geometric analysis

optimistic: 4600

most likely:6900

pessimistic: 8600

Hence the expected value for 3DGA is 6800

Contd ...

LOC based estimation

- Historical data indicates the organization can produce 620 LOC/pm
- Labor rate is \$8000/month
- Cost / LOC = 8000/620 =\$ 13.00
- Hence the cost of the project is
- =(5300+6800+2300+3350+8400+4950+2100)/620
- =33,200 * \$13 = \$431,600
- Hence the effort of the project is
- = 33,200 / 620 = 54 person/months

FP based estimation

• FP focuses on estimates inputs, outputs, inquiries, files and external interfaces rather than software functions of CAD

Inf. Domain value	Est. value	Weight	FP count
Number of inputs	24	4	96
Number of outputs	16	5	80
Number of inquiries	22	4	88
Number of files	4	10	40
Number of external interfaces	2	7	14

Contd ...

FP based estimation

Three point estimation technique was used to estimate FP value

Example: For number of inputs

optimistic: 20

most likely:24

pessimistic: 30

Hence the expected value for number of inputs is 24

FP based estimation

- Historical data indicates the organization can produce 6.5 FP/pm
- Labor rate is \$8000/month
- Cost / FP = 8000/6.5 = \$ 1230.00
- Hence the cost of the project is

```
=\Sigma FP count * [0.65 + .01 * \Sigma Fi ]
```

$$=318 * (0.65 + .01 * 52)$$

- Hence the effort of the project is
- = 372 / 6.5 = 58 person/months