

COMSATS University Islamabad – Abbottabad Campus Department of Computer Science Course Syllabus

Course Information
Course Code: CSC211 Course Title: Data Structures and Algorithms

Credit Hours: 4(3,1) Lecture Hours/Week: 3

Lab Hours/Week: 3 Pre-Requisites: CSC103-Programming Fundamentals

Catalogue Description:

This course provides fundamental knowledge of data organization. The topics include: Overview of Data Structures; Time Complexity of an Algorithm; Static & Dynamic List; Stack; Queue; Tree & its Algorithms; Graph & its Algorithms; Sorting; Searching; and Hashing.

Text and Reference Books

Textbook:

1. "Data Structures and Algorithm Analysis in Java" by Mark Allen Weiss, Addison-Wesley.

Reference Book:

2. "Data Structures & Algorithm in Java" by Robert Lafore.

Week wise Plan:							
Lecture #	CDF Unit #	Topics Covered	Reading Material				
1.	1	Introduction: Course Overview, Data Structures, Data and Data Types, Data Structures, Abstract Data Types (ADTs). Types of Data Structures: Primitive and Non-Primitive, Linear and Nonlinear, Static and Dynamic, Sequential and Random Access, Persistent and Ephemeral.	Weiss: Ch1 Lafore: Ch1				
2.	1	Introduction: Algorithms, Relation among Data, Data Structures, and Algorithms.	Weiss: Ch2				
3.	1	Complexity: Complexity Analysis, Asymptotic Notations (O,Θ,Ω)	Weiss: Ch2				
4.	2	Array: Organization, Creation, Memory Representation, Class Arrays, Array using Template, Two Dimensional Arrays, n-Dimensional Arrays, ArrayList.	Weiss: Ch3 Lafore: Ch2				
5.	3	Linked List: Introduction, Organization, Dynamic Memory Management, ADT, Structure of Nodes, Insertion and Deletion of Nodes, Traversal of Nodes.	Weiss: Ch3 Lafore: Ch5				
6.	3	Variants of Linked List: Doubly Linked List, Circular Linked List	Weiss: Ch3 Lafore: Ch5				
7.	4	Stack: Primitive Operations, Stack-ADT, Representation of Stack using Arrays & Linked List.	Weiss: Ch3 Lafore: Ch4				
8.	4	Applications of Stack: Expression Evaluation and Conversion (Infix Notation).	Weiss: Ch3 Lafore: Ch4				
9.	4	Applications of Stack: Expression Evaluation and Conversion (Prefix & Postfix Notation).	Weiss: Ch3 Lafore: Ch4				
10.	4	Applications of Stack: Solving Recursion, Types/Variant of Recursions.	Weiss: Ch3 Lafore: Ch6				
11.	5	Queue: Queue-ADT, Queue Primitive Operations, Representation of Simple Queue Using Arrays & Linked List.	Weiss: Ch3 Lafore: Ch4				
12.	5	Queue: Circular Queue, Representation using Arrays, Advantages of Circular Queue.	Weiss: Ch3 Lafore: Ch4				
13.	5	Queue: DEque, Multiple Queues, Priority Queues.	Weiss: Ch3 Lafore: Ch4				

		Applications of Queue: Job Scheduling, Routers/Switching	Weiss: Ch3		
14.	5	Devices Queuing, Buffers.	Lafore: Ch5		
15 (Tree: Introduction, Terminology, General Trees,	Weiss: Ch4		
15.	6	Representation in Memory.	Lafore: Ch8		
		Binary Tree: Binary Trees ADT (Properties, Realization),	Weiss: Ch4		
16.	6	Binary Tree implementation using Array & Linked	Lafore: Ch8		
		List.	Eurore. ene		
17.		Mid Term Exam			
18.		1	W		
19.	6	Binary Tree: Traversal (Pre-order, In-order, Post-order).	Weiss: Ch4		
		Dinawy Casuch Tuess Inscrition Courshing Deletion of	Lafore: Ch8 Weiss: Ch4		
20.	6	Binary Search Tree: Insertion, Searching, Deletion of Nodes.	Lafore: Ch8		
			Weiss: Ch4		
21.	6	AVL Tree: Insertion and Deletion of Nodes.	Lafore: Ch8		
			Weiss: Ch6		
22.	6	Heap Data Structure: Priority Queue	Lafore: Ch12		
		Applications of Binary Tree: Expression Tree, Huffman	Weiss: Ch4,Ch10		
23.	6	Coding, Decision Tree.	Lafore: Ch8		
		Graph: Graph ADT, Basic Terminologies, Representation,	Weiss: Ch9		
24.	7	Adjacency Matrix, Adjacency List, Types of Graphs.	Lafore: Ch13		
25	7	Graph Traversal: Depth First Search (DFS), Breadth First	Weiss: Ch9		
25.	7	Search (BFS).	Lafore: Ch13		
26.	7	Shortest Path: Dijkstra Algorithm	Weiss: Ch9		
20.	/	Shortest I ath. Dijastia Algorithin	Lafore: Ch14		
27.	7	MST: Kruskal and Prim's Algorithm	Weiss: Ch9		
		1710 1. Hi dokar and Timi o'r igoridini	Lafore: Ch13		
28.	8	Searching Algorithms: Linear Search, Binary Search.	Lafore: Ch3		
20.	Ŭ	,	Eurore, ens		
	8	Sorting Algorithms: Introduction, Sorting Techniques, Bubble	Weiss: Ch7		
29.		Sort	Lafore:Ch7		
		Algorithm.			
30.	8	Sorting Algorithms: Selection Sort Algorithm, Insertion Sort	Weiss: Ch7		
	<u> </u>	Algorithm.	Lafore:Ch7		
31.	8	Sorting Algorithms: Quick Sort Algorithm, Merge Sort	Weiss: Ch7		
		Algorithm.	Lafore:Ch7		
32.	8	Hashing: Hash Function, Different Hashing Strategies &	Weiss:Ch5		
	-	Techniques.	Lafore:Ch11		

Final Term Exam

Student Outcomes (SOs)							
S.#	Description						
1	Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.						
2	Identify, formulate, research literature, and solve <i>complex</i> computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.						
3	Design and evaluate solutions for <i>complex</i> computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.						
4	Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to <i>complex</i> computing activities, with an understanding of the limitations.						
5	Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings.						

Course Learning Outcomes (CLO)										
Sr.#	Unit #	Course Learning Outcomes					Blooms Taxonomy Learning Level		so	
CLO's for Theory										
CLO-1	1-4	Employ linear problems.	data structures t	O :	solve computin	g	Applying	Applying		
CLO-2	5-6	Use non-linear data structures to solve computing Applying 1, problems.								
CLO-3	7-8	Analyze the tim	Analyzing	Analyzing						
CLO's for Lab										
CLO-4	1-7	Implement data	Applying	Applying						
CLO-5	1-8	Develop a project using appropriate data structures in a team environment.					Creating	Creating		
Assessment Tools		CLO-1	CLO-2		CLO-3		CLO-4	C	LO-5	
Quizzes		Quiz 1&2	Quiz 3		Quiz 4		-		-	
Assignments		Assignment 1&2	Assignment 3	Assignment 3 Assignment 4 I		4 La	ab Assignments		-	
Mid Term Exam		Mid Term Exam	Mid Term Exam -			-	-			
Final 1	Exam	Final Exam								
Project		-	-	-		-	- Lab			

Policy & Procedures

• Attendance Policy: Every student must attend 80% of the lectures delivered in this course and 80% of the practical/laboratory work prescribed for the respective courses. The students falling short of required percentage of attendance of lectures/seminars/practical/laboratory work, etc., shall not be allowed to appear in the terminal examination of this course and shall be treated as having failed this course.

• Course Assessment:

	Quizzes	Assignments	Mid Term Exam	Terminal Exam	Total		
Theory (T)	15	10	25	50	100		
Lab (L)	- 25		25	100			
Final Marks (T+L)	(T/100) *75 + (L/100) *25						

• **Grading Policy:** The minimum pass marks for each course shall be 50%. Students obtaining less than 50% marks in any course shall be deemed to have failed in that course. The correspondence between letter grades, credit points, and percentage marks at CUI shall be as follows:

Grade	A	A-	B+	В	B-	C+	С	C-	D	F
Marks	90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	55 - 59	50 - 54	< 50
Cr. Point	4.0	3.7	3.3	3.0	2.7	2.3	2.0	1.7	1.3	0.0

- **Missing Exam:** No makeup exam will be given for final exam under any circumstance. When a student misses the mid-term exam for a legitimate reason (such as medical emergencies), his grade forthis exam will be determined based on the Department policy. Further, the student must provide an official excuse within one week of the missed exam.
- **Academic Integrity:** All CUI policies regarding ethics apply to this course. The students are advised to discuss their grievances/problems with their counsellors or course instructor in a respectful manner.
- Plagiarism Policy: Plagiarism, copying and other anti-intellectual behavior are prohibited by the university regulations. Violators must face serious consequences.