EVALUATION AND TUNING MOHAMMAD GHODDOSI

BIAS AND VARIANCE

OVERFITTING AND UNDERFITTING

TRAIN-TEST SPLIT

TRAIN-TEST - VALIDATION SPLIT

HYPER PARAMETER TUNING

- Grid search
- Random search
- Evolutionary optimization
- ...

LEARNING CURVE (OLD)

LEARNING CURVE (NEW)

HANDLING UNDERFITTING

- Increase model capacity
 - Add polynomial features
- Increase features
 - Get more features
 - Use feature extraction
- Reduce regularization
- Use more powerful models
- •

HANDLING OVERFITTING

- Reduce model capacity
 - Reduce parameters
 - Reduce polynomial degree
 - Remove some features
- Apply regularization
- Increase data size
- Early stopping
- ...

PERFORMANCE MEASURES

- Accuracy
- Confusion matrix
- Precision
- Recall
- F1-score
- ROC-AUC

PERFORMANCE MEASURES (ACC)

		Actual		
		Positive	Negative	
Predicted	Positive	True Positive	False Positive	
	Negative	False Negative	True Negative	

$$Accuracy(ACC) = \frac{\#TP + \#TN}{\#Positive + \#Negative}$$

PERFORMANCE MEASURES (PRECISION)

		Actual	
		Positive	Negative
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

$$Precision = \frac{\#TP}{\#TP + \#FP}$$

PERFORMANCE MEASURES (RECALL)

		Actual		
		Positive	Negative	
Predicted	Positive	True Positive	False Positive	
	Negative	False Negative	True Negative	

$$recall(TPR) = \frac{\#TP}{\#TP + \#FN}$$

PERFORMANCE MEASURES (F1-SCORE)

		Actual		
		Positive	Negative	
ted	Positive	True Positive	False Positive	
Predicted	Negative	False Negative	True Negative	

$$F_1 \ score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE

$$TPR = \frac{\#TP}{\#TP + \#FN}$$

$$FPR = \frac{\#FP}{\#FP + \#TN}$$

CONFUSION MATRIX

PERFORMANCE MEASURES

Two condition						
		True condition				
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True pos	curacy (ACC) = sitive + Σ True negative Total population
Predicted condition p	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	Σ	scovery rate (FDR) = False positive ted condition positive
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma}{\Sigma}$ True negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma}{\Sigma}$ False positive $\frac{\Sigma}{\Sigma}$ Condition negative	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score = 2 · Precision · Recall Precision + Recall
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= <u>LR+</u> <u>LR-</u>	FIEGISION FIXEGAII

REGULARIZATION

REGULARIZATIONS

- What causes overfitting:
 - Large weights (large derivatives)
 - Many features
 - Model trained too much
 - Powerful model
- Regularizations are techniques used to avoid overfitting.

REGULARIZATIONS

- Large weights (large derivatives)
 - L2 regularization
- Many features
 - L1 regularization
- Model trained too much
 - Early stopping
- Powerful model
 - dropout

L2 REGULARIZATION

- Large weights
 - So force model to chose small weights
- ridge regression

$$\hat{J} = J + \alpha \sum_{i=1}^{M} w_i^2$$

$$= J + \lambda \sum_{i=1}^{M} w_i^2$$

$$= J + \frac{1}{C} \sum_{i=1}^{M} w_i^2$$

L1 REGULARIZATION

- Many features
 - So force model to chose some features
- Lasso regression

$$\hat{J} = J + \alpha \sum_{i=1}^{M} |w_i|$$

EARLY STOPPING

Stop model from training when validation loss is going upward

