Problem 1. A cup of coffee that is initially $125^{\circ}F$ is placed in a room kept at a constant $72^{\circ}F$. The temperature of the coffee, T as a function of time is given by $T(x) = 72 + 53(0.8)^x$, where x is measured in minutes. How long will it take the coffee to cool to $100^{\circ}F$?

Problem 2. A radioactive isotope of bismuth has a half-life of 5 days. 20% of the isotope remain?	After how many days will

Problem 3. The world population has been growing roughly exponentially for the past 30 years. In 1987, the world population was approximately 5 billion. In 1998, the world population was approximately 6 billion. Find an exponential equation of the form $y = Ce^{kt}$ which models the population with t representing the number of years 1987. Use at least 6 decimal places for the value of t. What does the model predict the population was in 2000?

Problem 4. Suppose Matt wants to have \$10,000 saved in 9 year at 3.4% compounded continuously in order to reach his goal?	rs. How much should he invest today

Problem 5. A radioactive isotope of bismuth has a half-life of 5 days. After how many days will a 200-gram sample decay to 20 grams of radioactive material?

Problem 6. The doubling time for an investment is given by the equation $T = \frac{\ln(2)}{\ln(1+r)}$ where r is the interest rate in decimal form. At what interest rate would you need to invest in order to double your investment in 10 years?

Problem 7. Suppose after 2500 years an initial amount of 1000 grams of radioactive substance has decayed to 75 grams. What is the half-life of the substance?					

Problem 8. The concentration of a pollutant in the atmosphere increases according to the exponential growth model $A = Pe^{rt}$, where time is measured in years and r = 0.0035. In 1990, the concentration was 56 parts per million. Clean-up procedures will be initiated when the concentration reaches 70 parts per million. According to the model, in what year will that occur?

Problem 9. Air pressure, *P*, decreases exponentially with the height above the surface of the earth. At the top of Mount Everest, height 8848 meters, the air pressure is about 34.6% of the air pressure at sea level. Approximate the air pressure as a percentage of the sea level value at the top of Mount Kilimanjaro, height 5895 meters.

Problem 10. What is 12 months?	the doubling time for a	population of rabbits	that grows from	120 to 500 in