Option	Description
pch	point character (pch=1, 2,)
lty	line type (lty=1, 2,)
lwd	line thickness (lwd= $1, 2,$)
col	color (col="red", "blue",)
xlim	x-axis limits: xlim=c(min,max)
ylim	y-axis limits
xlab	x-axis label: xlab="my label"
ylab	y-axis label
main	main title
sub	sub title

To plot smooth curves, use the curve command. The first argument must be an expression in terms of x:

```
> curve(x^2, from = 0, to = 2)
> curve(cos(x), from = 0, to = pi)
> curve(cos(x), from = 0, to = pi, lty = 4, col = "red")
```

Low-level Plot Functions

Low-level plot functions can be executed only after a high-level plot has been created. For example,

> plot(Poverty ~ Unemp, data = States03, xlab = "Unemployment", ylab = "Poverty")

```
> abline(v = mean(States03$Unemp), lty = 2) #vertical line at mean unemployment rate,
> text(30, 18, "mean unemployment rate") #text at (30, 18)
> title("Data from 2003")

The abline function has several options:
abline(3, 5) adds the straight line y = 3 + 5x
abline(v = 2) adds the vertical line, x = 2
abline(h = 0) adds the horizontal line, y = 0

> plot(Poverty ~ ColGrad, data = States03, col = "blue", pch = 19, xlab = "College grad (%)", ylab = "Poverty (%)")
> points(Uninsured ~ ColGrad, data = States03, col = "red", pch = 19)
> mtext("Percent uninsured", side = 4)
> legend("bottomleft", legend = c("Y: Poverty", "Y: Uninsured"), col = c("blue", "red"), pch = c(16, 16))
```

You can also use different plotting symbols for different levels of a factor variable:

Probability Distributions in R

Continuous

Distributions	root
beta	beta
Cauchy	cauchy
chi-square	chisq
exponential	exp
F	f
gamma	gamma
normal	norm
student's t	t
uniform	unif
Weibull	weibull

In the continuous case, droot returns the density, proot a cumulative probability, qroot a quantile, rroot a random number.

Probability

If X follows N(0,1), then to find $P(X \le 1.25) = \Phi(1.25)$, that is, the amount of area under the standard normal density curve to the left of x = 1.25,

> pnorm(1.25)

By default, the norm function assumes $\mu = 0, \sigma = 1$ (that is, you are working with the standard normal distribution). For other means and standard deviations, specify them in the argument. For example, if $X \sim N(\mu = 2, \sigma = 3)$, then to find $F(2.8) = P(X \le 2.8)$,

> pnorm(2.8, 2, 3)

If X follows a chi-square distribution with 25 degrees of freedom then to compute $F(13.9) = P(X \le 13.9)$,

> pchisq(13.9, 25)

If X follows an exponential distribution with parameter $\lambda = 10$, then to compute P(X > 4),

> 1 - pexp(4, 10)

or

> pexp(4, 10, lower.tail=FALSE)