Private Network

- Private IP network is an IP network that is not directly connected to the Internet
- IP addresses in a private network can be assigned arbitrarily.
 - Not registered and not guaranteed to be globally unique
- Generally, private networks use addresses from the following experimental address ranges [RFC 1918]
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.31.255.255
 - 192.168.0.0 192.168.255.255

Class	RFC 1918 Internal Address Range	CIDR Prefix
Α	10.0.0.0 - 10.255.255.255	10.0.0.0/8
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16

Private Addresses

Network Address Translation (NAT)

- RFC 1631
- A short term solution to the problem of the shortage of IP addresses
 - Long term solution is IP v6
 - CIDR (Classless Inter Domain Routing) is a possible short term solution
 - NAT is another
- NAT is a way to conserve IP addresses
 - Can be used to hide a number of hosts behind a single IP address
 - Uses private addresses:
 - 10.0.0.0-10.255.255.255,
 - 172.16.0.0-172.32.255.255 or
 - 192.168.0.0-192.168.255.255

NAT: all devices in local network share just one IPv4 address as far as outside world is concerned

all datagrams *leaving* local network have *same* source NAT IP address: 138.76.29.7, but *different* source port numbers

datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

- all devices in local network have 32-bit addresses in a "private" IP address space (10/8, 172.16/12, 192.168/16 prefixes) that can only be used in local network
- advantages:
 - just one IP address needed from provider ISP for all devices
 - can change addresses of host in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - security: devices inside local net not directly addressable, visible by outside world

implementation: NAT router must (transparently):

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - remote clients/servers will respond using (NAT IP address, new port
 #) as destination address
- remember (in NAT translation table) every (source IP address, port #)
 to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in destination fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

Concerns about NAT

Performance:

- Modifying the IP header by changing the IP address requires that NAT boxes recalculate the IP header checksum
- Modifying port number requires that NAT boxes recalculate TCP checksum

End-to-end connectivity:

- NAT destroys universal end-to-end reachability of hosts on the Internet.
- A host in the public Internet often cannot initiate communication to a host in a private network.
- The problem is worse, when two hosts that are in a private network need to communicate with each other.

but NAT is here to stay:

extensively used in home and institutional nets, 4G/5G cellular nets

Address Resolution Protocol (ARP)

Address Mapping Cont...

- The delivery of a packet to a host or a router requires two levels of addressing: logical and physical.
- We need to be able to map a logical address to its corresponding physical address and vice versa.
- Anytime a host or a router has an IP datagram to send to another host or router, it
 has the logical (IP) address of the receiver.
- But the IP datagram must be encapsulated in a frame to be able to pass through the physical network.
- This means that the sender needs the physical address of the receiver.
- A mapping corresponds a logical address to a physical address. ARP accepts a logical address from the IP protocol, maps the address to the corresponding physical address and pass it to the data link layer.

Logical and Physical addresses

```
Wireless LAN adapter Wi-Fi:
  Connection-specific DNS Suffix . : iitbhilai.ac.in
  Description . . . . . . . . . . . . Qualcomm QCA9377 802.11ac Wireless Adapter
  DHCP Enabled. . . . . . . . . . Yes
  Autoconfiguration Enabled . . . . : Yes
  Link-local IPv6 Address . . . . : fe80::80d1:147e:1fc0:c043%9(Preferred)
  IPv4 Address. . . . . . . . . . . . . . . . 10.3.54.107(Preferred)
  Lease Obtained. . . . . . . . . . . . . . . 29 September 2020 09:39:45
  Lease Expires . . . . . . . . . . . . . . . . . 29 September 2020 18:28:38
  Default Gateway . . . . . . . . : 10.3.0.1
  DHCP Server . . . . . . . . . : 10.1.72.7
  DHCPv6 IAID . . . . . . . . : 162556134
  DNS Servers . . . . . . . . . . . . 192.168.10.87
                               192.168.10.72
```

ARP Cache

```
C:\Users\Anand>arp -a
Interface: 10.3.54.107 --- 0x9
 Internet Address Physical Address
                                         Type
                                          dynamic
 10.3.0.1
              00-00-0c-07-ac-cd
                                          dynamic
  10.3.52.151
              a4-fc-77-04-20-43
                                          dynamic
                     00-28-f8-93-47-7a
 10.3.58.183
                     ff-ff-ff-ff-ff
 10.3.63.255
                                          static
                                          static
 224.0.0.22
                     01-00-5e-00-00-16
 224.0.0.251
                     01-00-5e-00-00-fb
                                          static
                                          static
 224.0.0.252
                     01-00-5e-00-00-fc
                     01-00-5e-7f-ff-fa
                                          static
 239.255.255.250
                      ff-ff-ff-ff-ff
                                          static
  255.255.255.255
```

Position of ARP in TCP/IP protocol suite

ARP operation

a. ARP request is broadcast

b. ARP reply is unicast

ARP packet

Hardwa	are Type	Protocol Type	
Hardware length	Protocol length	Operation Request 1, Reply 2	
Sender hardware address (For example, 6 bytes for Ethernet)			
Sender protocol address (For example, 4 bytes for IP)			
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)			
Target protocol address (For example, 4 bytes for IP)			

Encapsulation of ARP packet

An ARP request is broadcast; an ARP reply is unicast.

Four cases using ARP

Case 1: A host has a packet to send to a host on the same network.

Case 3: A router has a packet to send to a host on another network.

Case 2: A host has a packet to send to a host on another network.

Case 4: A router has a packet to send to a host on the same network.

Example

A host with IP address 130.23.43.20 and physical address B2:34:55:10:22:10 has a packet to send to another host with IP address 130.23.43.25 and physical address A4:6E:F4:59:83:AB. The two hosts are on the same Ethernet network. Show the ARP request and reply packets encapsulated in Ethernet frames.

Solution

Figure shows the ARP request and reply packets. Note that the ARP data field in this case is 28 bytes, and that the individual addresses do not fit in the 4-byte boundary. That is why we do not show the regular 4-byte boundaries for these addresses. Also note that the IP addresses are shown in hexadecimal.

Example

