

Network Security

Learning Objectives

Network fundamentals

Firewall technologies & securing network traffic

Evasion techniques

Network fundamentals

The OSI model

- Open Systems Interconnection (OSI) Reference Model
- Developed by ISO
 - Attempt to prompt interoperability
- A protocol defines rules
- Protocol suites define a series of protocols and interactions.
- Layers talk to each other using peer communications
- Each layer has its own protocol data unit (PDU)
 - Protocol specific information and user data

Upper layers

- Application: handle file transfer, virtual terminals and fulfilling networking request of applications
 - Defines what data should be transmitted
 - FTP, HTTP, Telnet, etc.
- Presentation: handle translation into standard format, data compression/decompression, data encryption/decryption
 - Specifies the way that data should be represented (ASCII, UNICODE, GIF, JPEG)
- Session: setup connection between applications; maintain control, negotiate, establish and close communication channel
 - Manages multiple transport layer connections to provide a session (consider FTP), remote procedure call (RPC)

Transport layer

- Transport: handles end-to-end transmission and segmentation of a data stream
 - Transport services (connection and connectionless)
 - Application access points (ports)
- Main protocols
 - Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)
 - Secure Sockets Layer (SSL)
 - Sequence Packet Exchange (SPX)

Network layer

- Insert information into the packet's header to be properly addressed and routed
- Network layer defines
 - Logical network addressing
 - Packet formats
 - Logical network structure
- Common protocols
 - Internet Protocol (IP)
 - Internet Control Message Protocol (ICMP)
 - Routing Information Protocol (RIP)
 - Open Shortest Path First (OSPF)
 - Internet Group Management Protocol (IGMP)

Lower layers

- Data Link: convert data into LAN or WAN frames for transmission and define how a computer accesses a network
 - Logical topology
 - Framing format
 - Protocols: Address Resolution Protocol (ARP), reverse ARP, point to point protocol (PPP).
- Physical layer converts bits into voltage for transmission
 - Physical topology
 - Electrical signals
 - Signalling methodologies
 - Data rates

Routers and routing

Systems Security Group Lancaster University

TCP/IP Model

- TCP/IP proposed in 1978
- Network and transport for ARPANet
 - Official protocol in 1981
- Design Goals
 - Hardware independence
 - Built in failure recovery
 - Fault tolerant
 - Efficient
 - Expandable
- TCP/IP became popular through distribution of Berkley Software Distribution (BSD) of UNIX.
- Open specification through the IETF and RFCs

TCP/IP layers

- Internet Layer
 - -IP
 - ICMP
 - Routers and Routing
- Transport Layer
 - User DatagramProtocol
 - Transmission Control Protocol
 - Provides end to end transport services

Firewalls

- Packet Filtering
- Stateful Inspection/dynamic filtering
- Proxies

Packet filtering

- Access Control Lists
- Based on network layer information
- Examine the header
- Weaknesses:
 - Cannot prevent attacks using the layers above, e.g. application,
 - Logging typically limited
 - Prone to improper configuration
- Example, permit udp host 10.1.1.3 host 172.16.1.2

Stateful Inspection

- Works at the transport and network layers
- Maintains a state table of communications channels
- Checks if connection had been established first. If not, it uses its ACL
- Example: iptables -A INPUT -i eth0 -m state
 –state \ ESTABLISHED,RELATED -j ACCEPT

Systems Security Group Lancaster University

uPNP

- Ports 0-1023 allocated to server side services
- Need for client to use higher ports
- How do we cope with the dynamic selection of ports?

Proxy firewalls

- Second generation firewalls
- Resides between a trusted and an untrusted network
- Application level:
 - Inspects the packet up to the application layer
 - Must understand the protocols
- Circuit level:
 - Creates a circuit at the session layer between the client and proxy server
 - Makes decisions based on source and destination.
- Degrades traffic performance

Network layer

Some of the differences

- IPv6 increases IP address size from 32 bits to 128 bits
- Some IPv4 headers have been dropped or made optional to reduce processing cost of packet handling and limit bandwidth
- New type of address called 'anycast address' is defined, which is used to send a packet to any one of a group of nodes
- New capability to enable the labelling of packets belonging to particular traffic flows – QoS or 'real-time' service
- Extensions to support authentication, data integrity, and (optional) data confidentiality

Systems Security Group Lancaster University

IPv6 and Security

- The good (almost):
 - IPSec was mandatory for all IPv6 stack implementations
 - Has been downgraded to a recommendation
- The bad:
 - Immature protocols = increased vulnerability
 - Unfamiliarity causes problems / misconfigurations
 - Automatic addressing may pose privacy concerns
 - IPv6 security controls lagging behind hacking arsenal / tools

IPSec

- Industry standard
- Main components
 - Security protocol
 - Authentication Header (AH)
 - Encapsulation Security Payload (ESP)
 - Security Association (SA)
 - Key management: Internet Key Exchange (IKE)
 - Algorithm

AH protocol

- AH can provide
 - Data integrity
 - Origin authentication
 - Anti-replay protection (optional)

- AH cannot provide
 - Data confidentiality
- Use for data integrity in cases where data is not secret but must be authenticated

ESP protocol

- ESP can provide
 - Data confidentiality through encryption
 - Data integrity
 - Origin authentication
 - Anti-replay

- ESP doesn't protect the IP header
- Use when data must be kept secret.

AH and ESP

- Using both AH & ESP can provide protection for the IP header and encrypt data.
 - Rarely used because of overhead incurred by AH.
- Use for the highest security.

Evasion techniques

Methods to avoid detection

Anonymity

Unobservability

End-to-end anonymity

Use of distributed, anonymous networks

— The Tor Project (https://www.torproject.org/)

- The Invisible Internet (I2P) (https://geti2p.net/)

– Freenet (https://freenetproject.org/)

The Tor network

- What is it?
 - A distributed anonymous communication service.
 - It is using an overlay network to improve anonymity on the Internet.
- Its design
 - Onion Routers (OR) route traffic
 - Onion Proxy (OP) fetches directories and creates virtual circuits.
 - Use of TCP with TLS.
 - Data is sent in fixed size (bytes) cells.

The onion routing protocol

How Tor works

How Tor works

How Tor works

Threats in Tor

DNS leaks

- DNS requests are not sent via the Tor network by default. Thus, an attacker could see what websites are being visited.
- Traffic analysis
 - Tor is vulnerable to an attacker who can see both ends of a connection.
- Malicious exit nodes
 - Traffic from the exit node to the target is not encrypted.

Questions?

Systems Security Group Lancaster University

References

- CISSP All in One. Chapter 7 Telecommunications and Network Security.
- Internet Protocol RFC 791
- Transmission Control Protocol RFC 793