- 1. The constraints are:
 - (a) $P(d) \le 0.991058$
 - (b) $P(t|\bar{d}) \le 0.002332$
 - (c) $P(\bar{t}|d) \le 0.005966$

Figure 1: Disease Constraint

Figure 2: Test Constraints

```
2. Our variables are: {
      LightSensor = whether light is currently sensed
      SoundSensor = whether SamBot hears his dog barking,
      Battery = whether SamBot's battery is OK,
      Dog Barking = whether his dog is barking,
      Dog Bowel Trouble = whether his dog is having bowel trouble,
      Dog Outside = whether his dog is outside,
      Expecting Guests = whether his family is expecting guests,
      Family Home = whether his family is home,
      Hearable Barking = whether he can hear barking,
      Light Sensor Health = whether his light sensor is working,
      Outdoor Light = whether the outdoor light is on,
      Sound Sensor Health = whether his sound sensor is working
   (a) MLE | LightSensor \land \neg SoundSensor = \{
           Battery = OK,
           Dog Barking = No,
           Dog Bowel Trouble =Yes,
           Dog Outside = Yes,
           Expecting Guests = No,
           Family Home = No,
           Hearable Barking = No,
           Light Sensor Health = OK,
           Outdoor Light = On,
           Sound Sensor Health = OK
       Setting LightSensor and ¬SoundSensor and using the MPE tool on the network gave
       us the following:
```


Figure 3: MLE | LightSensor $\land \neg BarkSensor$

LightSensor = Off,
SoundSensor = Off,
}
Setting FamilyHome and ¬ExpectingGuests and using the MPE tool on the network
gave us the following:

(b) MLE LightSensor, SoundSensor | FamilyHome ∧ ¬ExpectingGuests = {

Figure 4: MLE | FamilyHome ∧ ¬ExpectingGuests

(c) $MIN(\mathbf{Z}) - ND(SoundSensor, \mathbf{Z}, LightSensor) = \{Battery, FamilyHome\}$

Proof. We can see this by considering that all paths from SoundSensor to LightSensor must flow through one of the two items in \mathbf{Z} .

Battery is divergent, so it blocks all paths through it. therefore

blocked(SoundSensor, Battery, LightSensor)=True

FamilyHome has two paths through it: {ExpectingGuests, FamilyHome, DogOutside} and {OutdoorLight, FamilyHome, DogOutside}. The former is sequential and the latter is divergent, so both are blocked by assigning FamilyHome. Therefore

blocked(ExpectingGuests, FamilyHome, DogOutside)=True blocked(OutdoorLight, FamilyHome, DogOutside)=True

Thus we can see that

 $\mbox{d_SEP(SoundSensor, FamilyHome Battery, LightSensor)=} \mbox{True}$ and therefore that

IND(SoundSensor, FamilyHome Battery, LightSensor)=True.

(d) Our structure is multiply connected, as can be seen by the triangular connection of FamilyHome, ExpectingGuests, and OutdoorLight,