Summary of One-Sample Hypothesis-Testing Procedures

O.C. Curve Appendix Chart VII	a, b c, d c, d	e, f 8, h 8, h	i, j k, l m, n	
O.C. Curve Parameter	$d = \mu - \mu_0 /\sigma$ $d = (\mu - \mu_0)/\sigma$ $d = (\mu_0 - \mu)/\sigma$	$d = \mu - \mu_0 /\sigma$ $d = (\mu - \mu_0)/\sigma$ $d = (\mu_0 - \mu)/\sigma$	$\lambda = \sigma/\sigma_0$ $\lambda = \sigma/\sigma_0$ $\lambda = \sigma/\sigma_0$	
P-value	$P = 2[1 - \Phi(z_0)]$ Probability above z_0 $P = 1 - \Phi(z_0)$ Probability below z_0 $P = \Phi(z_0)$	Sum of the probability above $ t_0 $ and below $- t_0 $ Probability above t_0 Probability below t_0	See text Section 9.4.	$P = 2[1 - \Phi(z_0)]$ Probability above z_0 $P = 1 - \Phi(z_0)$ Probability below z_0 $P = \Phi(z_0)$
Fixed Significance Level Criteria for Rejection	$ \frac{ z_0 }{z_0} > z_{\alpha/2} $ $ z_0 > z_{\alpha} $ $ z_0 < -z_{\alpha} $	$ t_0 > t_{\alpha/2, n-1}$ $t_0 > t_{\alpha, n-1}$ $t_0 < -t_{\alpha, n-1}$	$\begin{array}{c} \chi_0^2 > \chi_{\alpha/2,n-1}^2 \\ \text{or} \\ \chi_0^2 < \chi_{1-\alpha/2,n-1}^2 \\ \chi_0^2 > \chi_{\alpha,n-1}^2 \\ \chi_0^2 < \chi_{1-\alpha,n-1}^2 \end{array}$	$ \frac{ z_0 > z_{\alpha/2}}{z_0 > z_{\alpha}} $ $ z_0 > z_{\alpha} $ $ z_0 < -z_{\alpha} $
Alternative Hypothesis	$H_1\colon \mu \neq \mu_0$ $H_1\colon \mu > \mu_0$ $H_1\colon \mu < \mu_0$	$H_1\colon \mu \neq \mu_0$ $H_1\colon \mu > \mu_0$ $H_1\colon \mu < \mu_0$	H_1 : $\sigma^2 \neq \sigma_0^2$ H_1 : $\sigma^2 > \sigma_0^2$ H_1 : $\sigma^2 < \sigma_0^2$	$H_1: p \neq p_0$ $H_1: p > p_0$ $H_1: p < p_0$
Test Statistic	$z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$t_0 = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$	$x_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$
Null Hypothesis	H_0 : $\mu = \mu_0$ σ^2 known	H_0 : $\mu = \mu_0$ σ^2 unknown	H_0 : $\sigma^2 = \sigma_0^2$	H_0 : $p=p_0$
Case		2.		4

Summary of One-Sample Confidence Interval Procedures

Two-sided $100(1 - \alpha)$ Percent Confidence Interval	$\bar{x} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \bar{x} + z_{\alpha/2}\sigma/\sqrt{n}$	$\overline{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu \le \overline{x} + t_{\alpha/2, n-1} s / \sqrt{n}$	$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$	$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Point Estimate	\bar{x}	\bar{x}	82	\hat{p}
Problem Type	Mean μ, variance σ ² known	Mean μ of a normal distribution, variance σ^2 unknown	Variance σ^2 of a normal distribution	Proportion or parameter of a binomial distribution p
Case	1.	2.	3.	4

Summary of Two-Sample Hypothesis-Testing Procedures

O.C. Curve Appendix Chart VII	a, b	c,d	c,d	e, f	8, h 8, h	ı	1.1				0, p	q, r	l		
O.C. Curve Parameter	$d = \frac{ \mu_1 - \mu_2 - \Delta_0 }{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$d = \frac{\mu_1 - \mu_2 - \Delta_0}{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$d = \frac{\mu_2 - \mu_1 - \Delta_0}{\sqrt{\sigma_1^2 + \sigma_2^2}}$	$d = \Delta - \Delta_0 /2\sigma$	$d = (\Delta - \Delta_0)/2\sigma$ $d = (\Delta_0 - \Delta)/2\sigma$ where $\Delta = \mu_1 - \mu_2$	ı					$\lambda = \sigma_1/\sigma_2$	$\lambda = \sigma_1/\sigma_2$	l		I
P-value	$P=2[1-\Phi(z_0)]$	Probability above z_0 $P = 1 - \Phi(z_0)$	Probability below z_0 $P = \Phi(z_0)$	Sum of the probability above $ t_0 $ and below $- t_0 $	Probability above t_0 Probability below t_0	Sum of the probability above $ t_0 $ and below $- t_0 $	Probability above t_0 Probability below t_0		Sum of the probability	Probability above t_0 Probability below t_0	See text Section 10-5.2.		$P=2[1-\Phi(z_0)]$	Froughlity above z_0 $P = 1 - \Phi(z_0)$	Probability below z_0 $P = \Phi(z_0)$
Fixed Significance Level Criteria for Rejection	$ z_0 >z_{lpha/2}$	$z_0 > z_{lpha}$	$z_0 < -z_{lpha}$	$ t_0 > t_{\alpha/2, n_1 + n_2 - 2}$	$t_0 > t_{\alpha,n_1+n_2-2}$ $t_0 < -t_{\alpha,n_1+n_2-2}$	$ t_0 >t_{lpha/2, u}$	$t_0 > t_{lpha, u}$ $t_0 < -t_{lpha, u}$		$ t_0 >t_{\alpha/2,n-1}$	$t_0 > t_{\alpha,n-1}$ $t_0 < -t_{\alpha,n-1}$	$f_0 > f_{\alpha/2, n_1 - 1, n_2 - 1}$	$f_0 < f_{1-\alpha/2, n_1 - 1, n_2 - 1}$ $f_0 > f_{\alpha, n_1 - 1, n_2 - 1}$	$ z_0 > z_{\alpha/2}$	$z_0 \sim z_{lpha}$	$z_0 < -z_lpha$
Alternative Hypothesis	H_1 : $\mu_1 = \mu_2 eq \Delta_0$	H_1 : $\mu_1 - \mu_2 > \Delta_0$	H_1 : $\mu_1 - \mu_2 < \Delta_0$	H_1 : $\mu_1 - \mu_2 \neq \Delta_0$	H_1 : $\mu_1-\mu_2>\Delta_0$ H_1 : $\mu_1-\mu_2<\Delta_0$	H_1 : $\mu_1 - \mu_2 \neq \Delta_0$	$H_1 \colon \mu_1 = \mu_2 > \Delta_0 \ H_1 \colon \mu_1 = \mu_2 < \Delta_0$		H_1 : $\mu_d \neq 0$	$H_1\colon oldsymbol{\mu}_d>0 \ H_1\colon oldsymbol{\mu}_d<0$	H_1 : $\sigma_1^2 \neq \sigma_2^2$	H_1 : $\sigma_1^2 > \sigma_2^2$	$H_1:p_1 \neq p_2$ H:z > z	$n_1: p_1 > p_2$	H_1 : $p_1 < p_2$
Test Statistic	$z_0 = \frac{\bar{x}_1 - \bar{x}_2 - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$			$t_0 = \frac{\overline{x}_1 - \overline{x}_2 - \Delta_0}{\sqrt{1 - \frac{1}{2}}}$	$s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$t_0 = \frac{\overline{x}_1 - \overline{x}_2 - \Delta_0}{\frac{1}{2}}$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2}}$ $(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2})^2$	$v = \frac{\left(\frac{s_1^2}{n_1}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}$	$t_0 = \frac{\overline{d}}{\sqrt{c_0 + c_0}}$	2/l V n	$f_0 = s_1^2 / s_2^2$		$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{z_0}$	$\sqrt{\hat{p}(1-\hat{p})} \left \frac{1}{n_1} + \frac{1}{n_2} \right $	
Null Hypothesis	H_0 : $\mu_1 - \mu_2 = \Delta_0$ σ_1^2 and σ_2^2 known			$H_0: \mu_1 - \mu_2 = \Delta_0$ $\sigma_1^2 = \sigma_2^2 \text{ unknown}$	7	H_0 : $\mu_1 - \mu_2 = \Delta_0$ $\sigma_1^2 \neq \sigma_2^2$ unknown	N.		Paired data $H_i: U_i = 0$	20 - CM - 70	$H_0 \colon \sigma_1^2 = \sigma_2^2$		$H_0 \mathpunct{:} p_1 = p_2$		
Case	1.			2.		.3			4		5.		.9		

Summary of Two-Sample Confidence Interval Procedures

Case	Problem Type	Point Estimate	Two-Sided $100(1-\alpha)$ Percent Confidence Interval
1.	Difference in two means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 known	$\overline{x}_1 - \overline{x}_2$	$\bar{x}_1 - \bar{x}_2 - z_{\omega/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2$ $\leq \bar{x}_1 - \bar{x}_2 + z_{\omega/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
\ \ '	Difference in means of two normal distributions $\mu_1 - \mu_2$, variances $\sigma_1^2 = \sigma_2^2$ and unknown	$\overline{x}_1 - \overline{x}_2$	$\bar{X}_1 - \bar{X}_2 - t_{\omega 2, n_1 + n_2 - 2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2$ $\leq \bar{X}_1 - \bar{X}_2 + t_{\omega 2, n_1 + n_2 - 2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
·;	Difference in means of two normal distributions $\mu_1 = \mu_2$, variances $\sigma_1^2 \neq \sigma_2^2$ and unknown	$\overline{x}_1 - \overline{x}_2$	$\bar{x}_1 - \bar{x}_2 - t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \le \mu_1 - \mu_2$ $\le \bar{x}_1 - \bar{x}_2 + t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ where $\nu = \frac{(s_1^2/n_1)^2}{(s_1^2/n_1)^2} + \frac{(s_2^2/n_2)^2}{(s_2^2/n_1)^2}$
4	Difference in means of two normal distributions for paired samples $\mu_0 = \mu_1 - \mu_2$	$ar{d}$	$\overline{d} - t_{\alpha/2,n-1} s_d / \sqrt{n} \le \mu_D \le \overline{d} + t_{\alpha/2,n-1} s_d / \sqrt{n}$
5.	Ratio of the variances σ_1^2/σ_2^2 of two normal distributions	$\frac{s_2^2}{s_2^2}$	$\frac{s_1^2}{s_2^2} f_{1-\alpha/2, n_2-1, n_1-1} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{s_1^2}{s_2^2} f_{\alpha/2, n_2-1, n_1-1}$ where $f_{1-\alpha/2, n_2-1, n_1-1} = \frac{1}{f_{\alpha/2, n_1-1, n_2-1}}$
9	Difference in two proportions of two binominal parameters $p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\hat{p}_1 - \hat{p}_2 - z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1}} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}$ $\leq p_1 - p_2 \leq \hat{p}_1 - \hat{p}_2 + z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1}} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}$