Next we prove σ_1 is a G-extendible set for ρ_1 . Given $\psi_1: \sigma_1 \to G$ we let $\psi_2: \sigma_2 \to G$ be the function given by $\psi_2 = \psi_1 \circ \theta^*$. There is also a homomorphism $\Psi_2: \rho_2 \to G$ such that $\Psi_2|_{\sigma_2} = \psi_2$ since σ_2 is a G-extendible set for ρ_2 . There is a homomorphism $\Psi_1: \rho_1 \to G$ such that for all $a, b \in X_1$ such that $a\rho_1 b$ we have $\Psi_1(a,b) = \Psi_2((\theta^*)^{-1}(a,b))$ if $a \neq b$ and $\Psi_1(a,b) = 1$ if a = b. Given $a,b \in X_1$ such that $(a,b) \in \sigma_1$ there exist $x,y \in X_1$ such that $a = \theta(x)$, $b = \theta(y)$, and $(x,y) \in \sigma_2$. We have $\theta^*(x,y) = (a,b)$ and $\Psi_2(x,y) = \Psi_1(a,b)$ by construction, $\Psi_2(x,y) = \psi_2(x,y)$ since $(x,y) \in \sigma_2$, and $\psi_2(x,y) = \psi_1(a,b)$ since $\psi_2 = \psi_1 \circ \theta^*$. This shows $\Psi_1|_{\sigma_1} = \psi_1$ and σ_1 is a G-extendible set for ρ_1 .

Definition 4.4 Let ρ be a reflexive relation on a set X.

- 1. (X, ρ) is stable if ρ is balanced and if the relations $a\rho b$, $a\rho c$, $b\rho c$, $b\rho d$, and $c\rho d$ imply $a\rho d$ for all distinct $a, b, c, d \in X$.
- 2. An element $x \in X$ is a clasp if there exist $w, y \in X \setminus \{x\}$ such that $w\rho x$, $x\rho y$, and $(w, y) \notin \rho$.
- 3. $x \in X$ is a locked clasp if there exist $u, v, w, y \in X \setminus \{x\}$ such that $(w, y) \notin \rho$ and $(u, x, y), (u, x, v), (w, x, v) \in \text{Trans}(X)$.
- 4. An unlocked clasp is a clasp which is not locked.

It is easy to see a preorder is stable. The balanced relation determined by (d) in Figure 1 is not stable. Neither a balanced relation which is not stable nor a stable relation which contains a locked clasp can be the compression of a preorder by [8, Theorem 2.4 and Lemma 3.4].