A Project Report

On

TRAFFIC CONTROL SYSTEM USING OPENCY

Submitted in

Partial fulfillment of the requirements of the degree of Bachelor of Technology

In

ELECTRONICS AND COMMUNICATION ENGINEERING

By

Sanjeev Gupta(19951A04E5)

K. Saikumar(20955A0413)

Under the Guidance of

Dr . Surekha Reddy Bandela

Assistant Professor

INSTITUTE OF AERONAUTICAL ENGINEERING HYDERABAD

Academic Year 2021-2022

TABLE OF CONTENTS

CHAPTER NO	TITLE	Page No
1.	INTRODUCTION	1
2.	LITERATURE SURVEY	2-3
3.	PROBLEM STATEMENT AND OBJECTIVES	4
4.	EXISTING MODEL	5
5.	PROPOSED MODEL	6
6.	FLOWCHART	7
7.	APPENDIX AND RESULT	8-9
8.	CONCLUSION AND FUTURE SCOPE	10
9.	REFERENCES	11

TRAFFIC CONTROL SYSTEM USING OPENCV

ABSTRACT:

In-country like India, billions of people start and end each working day stuck in traffic or commuting on congested trains and buses. To overcome the problems of traditional traffic control systems, there is a shift in adaption to an Adaptive traffic control system. This proposed model of camera-based traffic monitoring and processing system which reduces the cycle time and possesses special provisions for vehicles.

KEYWORDS— OpenCV, Traffic monitoring; Traffic congestion detection; Traffic Management System.

1

INTRODUCTION

OVERVIEW:

Congestion of traffic has been a matter of routine in any existing metropolitan region with an overwhelming population but minimal infrastructure. Traffic Congestion is a critical problem with dire causes and consequences on the road. Radical population growth and low public quality transportation have caused vehicles to expand massively. Poorly controlled traffic, apart from infrastructure, creates congestion that could survive for hours. Only to a certain degree can a pre-defined timing scheme for traffic control ease the problem. It must surpass its value as a fixed delay unit irrespective of the traffic volume on the pre-defined timer signal that leads to more traffic build-up on other lanes of the intersections. So, our proposed model reduces the time complexity of operation and based on detection of density of vehicles going to perform the traffic signal operations.

APPLICATIONS:

- Traveler information services
- Emergency management services
- Vehicle safety
- Control system
- Public transport services

ADVANTAGES AND DISADVANTAGES:

- The Traffic controlling get easier
- Emergency vehicles
- Vehicle's detection etc.
- Failure of camera system
- The accuracy may not appropriate

2

LITERATURE SURVEY

SNO	Title of the paper	DESCRIPTION	AUTHOR	LIMITATION
1.	Real-Time Adaptive Traffic Control System for Smart Cities	The fundamental concept behind having an adaptive traffic control system is to construct a traffic management system in such a way that it functions in response to real-time traffic patterns. We also come across existing traffic light system situations where, if there is no vehicle on a specific lane and heavy traffic on another lane, for a specified time, the traffic signal on the latter lane is green while the other remains red at the very same time.	Shyam Shankaran R Logesh Rajendran	there is currently no National ITS Plan or ITS Architecture that has been established.
2.	Density Based Smart Traffic Control System for Congregating Traffic Information	This paper proposes a system which will measure the traffic based on the density of the vehicles within the particular longitude and latitude. n providing the efficient traffic management system also provides the subscriber about the famous places, Hotels, and Events occurring near the traffic.	Amaresh A M Kavya Shivanand Bhat Ashwini G Bhagyashree J Aishwarya P	This system cannot determine when it has two ambulances in two different ways at the same time when it reaches the neutral point. This problem can be solved by inserting deadlock handling techniques in traffic control3.

3.	Optimal LQG	This approach provides	Dipankar	Transmission delay and
J.	Control of	a pathway to determine	Maity	packet dropout are
	Networked	the required networking	d H.	inevitable network-induced
	Systems Under	capabilities to achieve a	и п. Mamduhi ,	phenomena that severely
	Traffic-Correlated	•	Sandra	1 -
		guaranteed quality-of-	Hirche	compromise the control
	Delay and	control for systems		performance of network
	Dropout	operating over a shared-	Karl H.	control systems. The real-
		traffic network.	Johansson	time network traffic is a
		Numerical evaluations		major dynamic parameter
		are performed using		that directly influences
		realistic stochastic		delay and reliability of
		models for delay and		transmission channels, and
		dropout.		thus, acts as an
				unavoidable source of
				induced coupling among all
				network sharing systems
4.	Two-Level	In this paper, we	Zhao Zhou,	— Network-wide control of
	Hierarchical	propose a two-level	Bart De	large-scale urban traffic
	Model-Based	hierarchical control	Schutter, Shu	networks using a
	Predictive Control	framework for large-	Lin,	hierarchical framework can
	for Large-Scale	scale urban traffic	Yugeng Xi	be more efficient and
	Urban Traffic	networksAt the upper		flexible than centralized
	Networks	level, based on		strategies for reducing the
		decomposing a		traffic congestion in big
		heterogeneous traffic		cities, because it can
		network into several		adequately address some
		homogeneous		problems that occur in
		subnetworks, a higher		controlling such large
		level optimization		systems, e.g.,
		problem using the		computational complexity,
		concept of macroscopic		multiple control objectives,
		fundamental diagram is		weak robustness to
		formulated to deal with		uncertainties, and so on
		the traffic demand-		
		balance problem. At the		
		lower level, the		
		controller with a more		
		detailed traffic flow		
		model for each		
		subnetwork determines		
		the optimal signal timing		
		within the given region		
		under the guidance of		
		the upper-level		
		controller through		
		communication		
	l	Communication	l	

			•	
5.	Urban Traffic	the peak traffic network	Shaohu Tang1 , Wei	Urban
	Cooperative	is divided into	Zhu1, Xiaoming Liu2,	oversaturated
	Control based on	oversaturated region	Jianchun Zheng1,	traffic seriously
	Regional Division	and its associated areas,	Chunlin Shang2	affects the
		and the grey relational		efficiency of road
		analysis and spectral		network traffic,
		clustering method are		causing traffic
		used to divide the		delays and
		associated areas. Then,		congestion
		a traffic cooperative		directly
		control model of urban		
		oversaturation region		
		and its associated area is		
		proposed.		

PROBLEM STATEMENT AND OBJECTIVE

PROBLEM STATEMENT:

- If the density gets heaver the operation may difficult to perform.
- The manual operation cannot be accurate.
- And the density detection using OpenCV may not be suitable for all cases.

OBJECTIVE:

• Our main objective of this project is to detect the density of the vehicles in the particular direction where the density is more and perform the manual operation to overcome the traffic problems and also to it is use full for the emergency vehicles to get exist at faster from the traffic. The applications like emergency vehicles, object detection and tracking can be performed with this proposed method.

4

EXISTING MODEL

In India the siren sound of all emergency vehicles is pre-set and follows a similar pattern. The siren sound repeats in two tones. The tones are 960 Hz and 770 Hz, and these are repeated at every 1.3 sec period. The siren sound is affected by the Doppler Effect and varies its frequency due to the motion of the emergency vehicle. The proposed system works in two phases. First phase is about detection of emergency vehicle and second phase is all about taking the action at the intersection. The system uses the sound detection sensor, camera and microcontroller for processing the data. The proposed system uses the LoRa technology for communication. Data set of different emergency vehicle patterns will be stored at the smart object, which will be used to compare the current emergency vehicle with the existing dataset. Camera will be installed in the smart object and will be well positioned to capture only required portion of the road. In first phase the smart object detects the emergency vehicle on the road through: If the emergency vehicle is on the way towards the signal, then the smart object which is placed (200 m) away from the signal junction will detect the siren sound of emergency vehicle by using sound detection sensor. Next process in the smart object is about matching the moving object on the road with the stored dataset. The camera will be set to capture the pictures of vehicles on the road as soon as the Smart object detects the sound. If both the conditions satisfy, then smart object sends the message to the Decision Support System which is centralized in the Signal junction. Second phase is about taking the decision. Signal junction will be installed with the Decision Support System. This system receives the signals from the smart objects which are placed on the different roads which are going to intersect in the junction. All the smart objects and Decision Support System will be arranged in the star topology. The Decision Support System at the centre is responsible for taking the appropriate decision about clearing the traffic on the lane where the emergency vehicle is travelling. Decision Support System will be installed with Acoustic Sensors near the intersection which works on Receding Doppler Effect, to make sure that the emergency vehicle has crossed the junction so it can be reverted back to its normal functioning. Decision Support System is also responsible for receiving the data, processing the data, storing the data to the cloud, as well as transmitting the data to the next Decision Support System.

5

PROPOSED METHOD

This proposed model of traffic control system using OpenCV monitoring based on camera and processing system which reduces the cycle time and possesses special provisions for emergency vehicles.

EQUIPMENT REQUIRED:

- Camera
- Python Software
- Python library OpenCV

WORKING:

The control algorithm is intended to control 4-way and 2- way approach intersection. The video feed is obtained via the automated operations supported by OpenCV using the Direct Display (D show) techniques. The classifier for the identification of objects, which in this case are vehicles, has been created using the Open CV development kit. The cascaded classifier, consisting of several stages of other simple classifiers, uses Haar-like features to detect objects. Based upon that the traffic signals are operated.

7

6

FLOW CHART

7

APPENDIX AND RESULT

VEHICLE DETECTION:

RESULT:

VEHICLE COUNTING:

RESULT:

8

CONCLUSION AND FUTURE SCOPE

CONCLUSION:

• So, this proposed model of camera-based traffic monitoring and processing system which reduces the cycle time and possesses special provisions for vehicles and traffic control can be done easier and faster way.

FUTURE SCOPE:

- For increases in population this method can be easily adopted and the modifications can also be done future more.
- For emergency vehicles, tracking and counting and traffic signalling, number plates detecting.

9

REFERENCES

1.Michel. Ferreira and Pedro M. D'Orey, "On the Impact of Virtual Traffic Lights on Carbon Emissions Mitigation", *IEEE Transactions on Intelligent Transportation Systems*, vol. 13, no. 1, March 2012.

2.M. Naveen, S. Raghavendra, D. Imran Basha, & P. Kiran Kumar (2019). Density based Traffic Signals Controlling Using ARDUINO and IR Sensors.2019 International Journal of Electronics Engineering (IJEE). ISSN: 0973-7383. Volume-11. Issue-1. pp.348-351.

3. L. Zhang, H. Gao, and O. Kaynak, "Network-induced constraints in networked control systems—A survey," IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 403–416, Feb. 2013.

4.M Hajiahmadi, J Haddad, B De Schutter et al., "Optimal hybrid macroscopic traffic control for urban regions", *Perimeter and switching signal plans controllers*[*C*]// *Control Conference. IEEE*, pp. 3500-3505, 2013.