Marshal in the Middle

Challenge Description

The security team was alerted to suspicious network activity from a production web server. The task was to determine if any data was stolen and identify what it

was.

Given files:

- chalcap.pcapng → Network traffic capture
- secrets.log → TLS pre-master secrets log (for decrypting HTTPS traffic)
- Zeek logs (bro/) → Parsed traffic logs

Step 1 — Initial Analysis

The provided packet capture (chalcap.pcapng) primarily contained encrypted TLS traffic. Since a secrets.log file was also given, this hinted that the HTTPS sessions could be decrypted to inspect the payload.

Step 2 — Decrypting TLS Traffic

To decrypt HTTPS:

- 1. Opened Wireshark → Edit → Preferences → Protocols → TLS.
- 2. Loaded secrets.log into (Pre)-Master-Secret log filename.

3. Reopened the chalcap.pcapng.

Step 3 — Filtering for Exfiltrated Data

To focus only on decrypted application data, I applied the following display filter in Wireshark:

```
http.file_data contains "HTB"
```

This directly searched HTTP payloads for the string HTB, which is a common flag format.

Step 4 — Identifying the Flag

After applying the filter, one packet contained suspicious outbound data with the flag string.

By inspecting the full decrypted HTTP payload ($Follow \rightarrow TLS \ Stream$), the following flag was revealed:

 $HTB\{Th15_15_4_F3nD3r_Rh0d35_M0m3NT!!\}$

boom thats our flag