Fluid Dynamics Lab

- 1. Take all the appropriate measurements of the styrofoam cup (height and diameters).
- 2. Mark two hole locations on the cup, one at the base and another at a fixed height below the top of the cup. Record their locations relative to the ground. The cup will rest on a surface at a height *H* above the ground.
- 3. With a pen, mark two locations inside the cup: one location will represent the initial water level (h_0), and the other a height to which it will drain (h_f) in some time t.
- 4. Fill the cup with water to h_0 .
- 5.Estimate v_I by puncturing a hole on your cup (use the base location) and timing how long it takes for the water level to drop from h_0 to h_f .
- 6. Compute how far from the base does the water fall using the hole location from step 5. Note, you will need to compute T (time it takes the water to reach the ground) and v_2 first (and the corresponding errors). Compare this against your measured distance. Compute your percentage error.
- 7. Repeat step 6 with the other hole location.

9. Tabulate your results with your results

$h_{\theta} \pm \delta h_{\theta}$	$h_1 \pm \delta h_1$	$H\pm H$	$v_1 \pm \delta v_1$	$v_2 \pm \delta v_2$	$t\pm\delta t$	$T\pm\delta T$	$y \pm \delta y$	$x \pm \delta x$

9. Comment on your results and any discrepancies between theory and experiment.