Kapitel 4

Allgemeine Wahrscheinlichkeitsräume

Ist Ω endlich oder abzählbar unendlich, so kann $\mathcal{A} = \mathcal{P}(\Omega)$ gewählt werden. Was machen wir z.B. bei $\Omega = [0, 1)$ im Beispiel des rotierenden Zeigers 1.1.b)?

 $\mathcal{P}([0,1))$ ist zwar eine $\sigma\text{-Algebra},$ für eine vernünftige Theorie jedoch zu groß, wie die folgende Überlegung zeigt.

Ist der Zeiger fair, so sollte für $[a,b) \subset [0,1)$ gelten:

P([a,b)) = b - a

Bzw. $\forall A \subset [0,1)$ und $\forall x \in [0,1)$:

$$P(x+A) = P(A) \ (*)$$

wobei $x+A=\{x+y \mod 1 | y\in A\}$ ($\Rightarrow P$ ändert sich nicht bei Verschiebung des Intervalls)

P ist also eine Gleichverteilung auf [0, 1). Es gilt jedoch:

Satz 4.1 Ein Wahrscheinlichkeitsmaß auf (der Potenzmenge) $\mathfrak{P}([0,1))$ mit der Eigenschaft (*) existiert <u>nicht</u>.

Beweis Betrachte folgende Äquivalenzrelation auf [0,1): $x \sim y \Leftrightarrow x-y \in \mathbb{Q}$ Die Äquivalenzklassen bilden eine Partition des [0,1)

Auswahlaxiom: Aus jeder Klasse wird ein Element genommen und in eine Menge A gesteckt.

Es gilt nun:

(i)
$$(x+A) \cap (y+A) = \emptyset$$
 $\forall x, y \in \mathbb{Q} \cap [0,1), x \neq y$

(ii)
$$\bigcup_{x\in\mathbb{Q}\cap[0,1)}(x+A)=[0,1)$$

• zu (i)

Annahme: $\exists a,b \in A \text{ und } x,y \in \mathbb{Q} \cap [0,1), x \neq y \text{ mit } (a+x) \mod 1 = (b+y) \mod 1.$ Da 0 < |x-y| < 1 folgt $a \neq b$

Wegen $a-b=y-x(\pm 1)\in \mathbb{Q}$ würde a,b in der gleichen Klasse liegen. Widerspruch.

• zu (ii) " \subset ": ist klar " \supset ": Sei $z \in [0,1) \Rightarrow \exists a \in A \text{ mit } a \sim z, \text{ d.h. } x := z - a \in \mathbb{Q} \text{ und } -1 < x < 1$ Falls x < 0 ersetze x durch x + 1 (z = (x + 1) + amod 1)

Sei jetzt P ein Wahrscheinlichkeitsmaß auf $\mathcal{P}([0,1))$ mit (*). Dann gilt:

$$1 \stackrel{\text{Normiertheit}}{=} P([0,1)) \stackrel{(i),(ii)}{=} P(\sum_{x \in \mathbb{Q} \cap [0,1)} (x+A)) \stackrel{\sigma\text{-Add}}{=} \sum_{x \in \mathbb{Q} \cap [0,1)} P(x+A) \stackrel{(*)}{=} \sum_{x \in \mathbb{Q} \cap [0,1)} P(A)$$

$$\Rightarrow$$
 Widerspruch

Definition 4.1

Es sei $\Omega \neq \emptyset$ und $\mathcal{E} \subset \mathcal{P}(\Omega)$. Dann heißt

$$\sigma(\mathcal{E}) := \bigcap_{\mathcal{A} \supset \mathcal{E}, \mathcal{A}} \bigcap_{\sigma\text{-}Algebra} \mathcal{A}$$

die von \mathcal{E} erzeugte σ -Algebra. \mathcal{E} heißt **Erzeugendensystem**.

Bemerkung 4.1

- a) $\sigma(\mathcal{E})$ ist die kleinste σ -Algebra, die \mathcal{E} enthält.
- b) Der Durchschnitt von beliebig vielen σ -Algebren über Ω ist wieder eine σ -Algebra $(\to \ddot{U}bung)$
- c) $\sigma(\mathcal{E}) \neq \emptyset$, da $\mathcal{P}(\Omega) > \mathcal{E}$ und σ -Algebra ist.

Wir definieren jetzt eine σ -Algebra auf \mathbb{R} .

Definition 4.2 Es sei $\mathcal{E} := \{(a,b], -\infty < a < b < \infty\}$ Dann heißt $\mathfrak{B} = \mathfrak{B}(\mathbb{R}) = \sigma(\mathcal{E})$ Borelsche σ -Algebra oder σ -Algebra der Borelschen Mengen von \mathbb{R}

Bemerkung 4.2

- a) Es gilt auch $\mathfrak{B} = \sigma(\{(-\infty, a], a \in \mathbb{R}\}) = \sigma(\{F \subset \mathbb{R}|F \text{ abgeschlossen}\})$ $= \sigma(\{U \subset \mathbb{R}|U \text{ offen}\})$ zur letzten Gleichung: $\mathfrak{B} = \sigma(U \subset \mathbb{R}|U \text{ offen}\})$
 - (i) $\mathfrak{B} \supset \sigma(\{U \subset \mathbb{R}|U \text{ offen}\})$, da sei $U \subset \mathbb{R}$ offen $\forall x \in U \exists (a,b] \subset U$ mit $x \in (a,b], a,b \in \mathbb{Q}$ also $U = \bigcup_{\{(a,b) \in \mathbb{Q}^2 | (a,b] \subset U\}} (a,b] \in \mathfrak{B}$

(ii) "
$$\subset$$
" $(a,b] = \bigcap_{n=1}^{\infty} (a,b+\frac{1}{n}) \in \sigma(\{U \subset \mathbb{R}|U \text{ offen}\})$

b) Sei $A \subset \mathbb{R}, A \neq \emptyset$ Dann ist $\mathfrak{B}_A := \{B \cap A | B \in \mathfrak{B}\}$ eine σ -Algebra über A

Satz 4.2 Es gibt ein Wahrscheinlichkeitsmaß P auf $([0,1),\mathfrak{B}_{[0,1)})$ mit der Eigenschaft $P(A) = P(A+x) \forall A \in \mathfrak{B}_{[0,1)}, \forall x \in [0,1)$ Insbesondere gilt:

$$P([a, b]) = b - a \ \forall 0 \le a < b < 1$$

Bemerkung 4.3 P heißt Gleichverteilung auf dem Einheitsintervall. Sei $x \in [0,1)$ Wegen $P(\{x\}) = \lim_{n \to \infty} P([x,x+\frac{1}{n})) = \lim_{n \to \infty} \frac{1}{n} = 0$ gilt P([a,b]) = P([a,b]) für $a,b \in [0,1]$ Ist das Wahrscheinlichkeitsmaß aus Satz 4.2 eindeutig?

Definition 4.3 Sei $\Omega \neq \emptyset$ $\mathcal{D} \subset \mathcal{P}(\Omega)$ heißt **Dynkin-System**, falls qilt:

- (i) $\Omega \in \mathcal{D}$
- (ii) $A \in \mathcal{D} \Rightarrow A^c \in \mathcal{D}$
- (iii) $A_1, A_2, \ldots \in \mathcal{D}$ mit $A_i \cap A_j = \emptyset$ für $i \neq j \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{D}$

Bemerkung 4.4 Der Durchschnitt von beliebig vielen Dynkin-Systemen ist wieder ein Dynkin-System. Es sei

$$\delta(\mathcal{E}) := \bigcap_{\mathcal{D} \supset \mathcal{E}, \mathcal{D}Dynkin-System} \mathcal{D}$$

das von \mathcal{E} erzeugte Dynkin-System.

Definition 4.4 Ein Mengensystem \mathcal{E} heißt **durchschnittsstabil** (\cap -stabil), falls $A, B \in \mathcal{E} \Rightarrow A \cap B \in \mathcal{E}$

Satz 4.3 (Satz über monotone Klassen)

Ist \mathcal{E} ein \cap -stabiles Mengensystem, so gilt $\delta(\mathcal{E}) = \sigma(\mathcal{E})$

Satz 4.4 Sei A eine σ -Algebra mit \cap -stabilem Erzeuger \mathcal{E} . Sind P und Q Wahrscheinlichkeitsmaße auf A mit der Eigenschaft $P(E) = Q(E) \ \forall E \in \mathcal{E}$, so gilt: $P(A) = Q(A) \ \forall A \in \mathcal{A}$.

Beweis Sei $\mathcal{D}:=\{A\in\mathcal{A}|P(A)=Q(A)\}$ Nach Voraussetzung ist $\mathcal{E}\subset\mathcal{D}$. Wegen den Eigenschaften von Wahrscheinlichkeitsmaßen ist \mathcal{D} ein Dynkin-System. Satz $4.3~\mathcal{D}\supset\delta(\mathcal{E})=\sigma(\mathcal{E})=\mathcal{A}$

Bemerkung 4.5 $\mathcal{E} := \{[a,b)|0 \le a < b < 1\}$ ist ein Erzeugendensystem von $\mathfrak{B}_{[0,1)}$. Offenbar ist \mathcal{E} durchschnittsstabil.

Also ist P aus Satz 4.3 eindeutig.