Exercice 1. Soit $V = \mathbb{R}^3$ et $S = \{(9,9,0), (2,0,1), (3,5,-4), (12,12,-1)\} \subset V$.

- (i) Déterminer si S est une famille libre ou une famille liée.
- (ii) Trouver une base de Vect(S).
- (iii) Déterminer si Vect(S) = V.

Exercice 2. Soit V un \mathbb{R} -espace vectoriel et $S = \{u, v, w\} \subset V$. Montrer que si S est une famille libre alors il en est de même pour $T = \{u, u + v, u + v + w\}$.

Exercice 3. Soit V le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} . Soit

$$S = \{f_1(x), f_2(x), f_3(x), f_4(x), f_5(x)\} \subset V$$

où

$$f_1(x) = x$$
, $f_2(x) = 1 + x$, $f_3(x) = x + \sin^2 x$, $f_4(x) = x^3 - x$, et $f_5(x) = x + \cos^2 x$.

Montrer que S est une famille liée.

Exercice 4.

(i) Soit $V = M_{2\times 2}(\mathbb{R})$ et

$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \right\} \subset V.$$

Montrer que S est une famille libre.

(ii) Montrer que

$$\begin{pmatrix} 7/3 & 3 \\ 2 & 0 \end{pmatrix} \in \operatorname{Vect} \left(\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \right\} \right)$$

en trouvant $c_1, c_2 \in \mathbb{R}$ tels que $c_1 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 7/3 & 3 \\ 2 & 0 \end{pmatrix}$, et montrer que cette paire (c_1, c_2) est unique.

- (iii) Supposons que S est un sous-ensemble d'un \mathbb{R} -espace vectoriel V et que $v \in V$ appartient à $\mathrm{Vect}(S)$, i.e. v est une combinaison linéaire déléments de S. Montrer que si S est libre alors une combinaison linéaire d'éléments de S égale à v est unique (à réarrangement près des éléments de S).
- (iv) Supposons que S est un sous-ensemble d'un \mathbb{R} -espace vectoriel V et que $v \in V$ appartient à $\mathrm{Vect}(S)$. Montrer que si S est lié alors il existe deux combinaisons linéaires distinctes d'éléments de S égales à v.

Exercice 5. Soit $S = \{(a, c), (b, d)\} \subset \mathbb{R}^2$. Montrer que S est libre si et seulement si $ad - bc \neq 0$.

Exercice 6. Soit $V = \mathbb{P}_3(\mathbb{R})$.

- (a) Trouver une base pour chacun des sous-espaces vectoriels W de V suivants :
 - (i) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0.
 - (ii) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0 et p(5) = 0.
 - (iii) W est le sous-espace des polynômes $p \in V$ tels que p(7) = 0, p(5) = 0 et p(3) = 0.
- (b) Soit U le sous-ensemble des polynômes $p \in V$ tels que p(7) = 0, p(5) = 0, p(3) = 0 et p(1) = 0. Montrer que $U = \{0\}$.

Exercice 7. Soit $V = \{(x, y, z) : x, y, z \in \mathbb{R}, x + y + z = 1\}$. Soient $v = (x, y, z) \in V$, $v_1 = (x_1, y_1, z_1) \in V$, $v_2 = (x_2, y_2, z_2) \in V$ et $r \in \mathbb{R}$. On a montré dans un exercice précédent que V est un \mathbb{R} -espace vectoriel sous les opérations suivantes :

$$v_1 + v_2 = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2 - 1, y_1 + y_2, z_1 + z_2)$$

 et

$$rv = r(x, y, z) = (rx - r + 1, ry, rz).$$

Trouver une base de V.

Exercice 8. Soit $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \in M_{2\times 4}(\mathbb{R})$. Soit W le sous espace vectoriel de \mathbb{R}^4 consistant de l'ensemble des solutions du système homogène AX = 0. Trouver une base de W.