S1 Table. Energy budget parameter estimates for snail hosts deviating from the original *Schistosome* Individual-Based Dynamic Energy Budget (SIDEB) model based on repeated feeding and starvation experiments on algae resources (1,2).

Parameter	Description	Estimate ^{1,2,3}	Units
Host parameter	c		
riost parameter K	Proportional allocation to soma	0.91	
	•	$5.2 \cdot 10^{-3}$	— — — — — — — — — — — — — — — — — — —
M	Mass:volume relationship		$mg\ C\ mm^{-3}$
E_M	Maximum host reserve biomass relative to structural biomass	1.40	mg C
L_{M}	Maximum physical host length	53.61	mm
i_M	Surface area-specific maximum host ingestion rate	$3.04 \cdot 10^{-2}$	$mg \ C \ d^{-1} \ mm^{-2}$
F_h	Host (Type-II) foraging half saturation constant	0.0005	$mg\ C\ L^{-l}$
Y_{EF}	Yield of reserve on resources	0.3273	_
Y_{VE}	Yield of structure on reserve	0.2606	_
μ_D	Maintenance rate for maturity	0.1326	_
D_R	Host maturity threshold for reproduction	0.6167	mg C
$arepsilon_H$	Carbon content of host offspring	0.015	mg C
Parasite parame	<u>eters</u>		
α	Parasite manipulation of host allocation rule	2.2002	$mg C^{-1}$
i_{PM}	Parasite maximum mass-specific ingestion rate	0.5830	$mg \ C \ d^{-l}$
Y_{PE}	Yield of parasite biomass on reserve	0.9368	_
Y_{RP}	Yield of parasite offspring biomass on assimilate	0.0526	_
e_h	Parasite ingestion half saturation constant	$2.20 \cdot 10^{-2}$	_
m_P	Mass-specific maintenance rate for parasites	0.3107	d^{-I}
p_h	Parasite allocation half-saturation constant	0.1277	_
\mathcal{E}_{P}	Carbon content of parasite offspring	$4 \cdot 10^{-5}$	mg C

Damage, hazard, survival, and repair parameters

k_R	Damage repair rate constant	$3.14 \cdot 10^{-2}$	d^{-1}		
$\delta_{ heta}$	Damage density threshold	$9.12 \cdot 10^{-2}$	_		
h_δ	Hazard coefficient of damage	$2.06 \cdot 10^{-3}$	d^{-l}		
h_b	Background hazard rate	$4.0\cdot10^{-4}$	d^{-1}		
Θ	Intensity of parasite-induced damage	79.3058	_		
m_R	Scaled energy expenditure rate for damage repair	$1.0 \cdot 10^{-5}$	d^{-l}		
Transmission	model				
arepsilon	Snail-miracidia contact rate	20.0	$L d^{-I}$		
σ	Miracidial infection probability given contact	0.50	_		
M_{in}	Miracidial input rate	10	$L^{-l} d^{-l}$		
m_M	Mortality rate of miracidia	1	d^{-I}		
Environmental/Resource parameters					
ENV	Volume of environment	500	L		
r	Algal maximum growth rate	varied	d^{-l}		
K	Algal carrying capacity	5	$mg C L^{-l}$		
det	Detritus subsidy rate	Varied	$mg C L^{-l} d^{-l}$		
M_Z	Mortality rate of cercariae	1	d^{-1}		

^{1.} All DEB parameter estimates rounded to five significant figures.

References

- 1. Civitello DJ, Fatima H, Johnson LR, Nisbet RM, Rohr JR. Bioenergetic theory predicts infection dynamics of human schistosomes in intermediate host snails across ecological gradients. Ecology Letters. 2018.
- 2. Civitello DJ, Baker LH, Maduraiveeran S, Hartman RB. Resource fluctuations inhibit the reproduction and virulence of the human parasite Schistosoma mansoni in its snail intermediate host. :In review.

^{2.} Transmission model parameters rounded from estimates in Civitello and Rohr (2014).

^{3.} Environmental/resource parameters chosen to reflect a $1\text{m}^2 \cdot 0.5$ m deep volume of habitat, realistic quantities of algal growth or detrital input, and rates of parasite mortality.