

Swimming Tango

An underwater navigation mechanism for deep-sea divers.

Done by: Rishabh Ananthan and Anupam Goli

ECE 4012 - L7A

Project in a Nutshell

- Creating a means of underwater navigation.
- Hardware size limited to that of a small tablet.
- The end goal is to perform visual odometry, similar to that of the Google Project Tango Explorer app.

Motivation

- Allows divers to determine their current location and find a way back to the starting point in case they've lost their way.
- Helps divers communicate in case of emergency.

Background

- Project Tango uses computer vision to help devices detect their position relative to surroundings.
- It implements a kinectlike sensor and uses pointcloud data for imaging.

Visual Odometry

- Determining position and orientation based on imaging data.
 - Images
 - Pointclouds
- Is of various types.
 - Monocular Our algorithm!
 - Stereo
 - Egomotion: Motion of a camera
 within a 3-D environment.

Visual Odometry Implementation

FAST Feature Detection

- Algorithm for corner detection.
 - Easy to detect and track corners
- Developed by Edward Rosten and Tom Drummond.

Nister's Five-Point Algorithm and RANSAC

- Five-point Algorithm: Algorithm used to generate the Essential Matrix, which is a collection of homogenous normalized image coordinates.
- RANSAC: Iterative algorithm that handles outliers when doing model estimation.
 - Randomly samples five points at every iteration, computes essential matrix and checks whether the rest are inliers with respect to the essential matrix.
 - The algorithm terminates after a fixed number of iterations, and the essential matrix with which the maximum number of points agree is used.

Conditions of Algorithm

- Uses image data.
 - SONAR generates pointclouds.
- Monocular algorithm
 - Only gets one perspective.
 - Requires an calibrated camera or sensors for actual position data.

Potential Solutions

- Modify algorithm to work with pointcloud data.
 - Likely to be time-consuming.
- Replace the SONAR with a device that can obtain images underwater.
 - Underwater camera or visual sensor.
 - Less time consuming as algorithm can be used as-is.
 - Would also greatly help portability of the potential device.

Underwater implementation

- Use an underwater imaging device such as a sonar to obtain imaging data of the underwater environment.
- Utilize an IMU and pressure sensor obtain position information and data.
- Run visual odometry and use the data in a SLAM algorithm for a real time up-to-date map.

Underwater Implementation cont

Pressure Sensor

Analog device.

- Connected to an mbed microcontroller, which acts as an A-to-D converter.
- Mbed can be powered by connecting to a computer.
- Takes in 3.3-5V and outputs an analog signal.
- Raw analog data is expressed as a proportion of max PSI
 and supply voltage

Compass

- Powered by the same rails that power the pressure sensor.
 - o Operates on a serial interface.
- Parsed data of compass and pressure sensor using a Python script.
 - Script also adds a timestamp which would be useful for the purposes of visual odometry.

SONAR

- Wanted to use a Tritech Micron DST.
 - However exceeded budget constraints.
 - Thus settled for Blueview P900-5.
 - Larger and bulkier.
- Were able to obtain capture via ProViewer software.
 - Faced issues compiling BlueView SDK on Raspberry Pi.
 - Was able to get it to compile on laptop.

Challenges Faced

- Had to switch platforms twice.
 - Initially we couldn't install ROS on the small netbook that we were using. So we switched to a Raspberry Pi.
 - o Blueview SDK wouldn't compile on the Raspberry Pi, so we switched to Anupam's laptop.
- Compass had wire connectivity issues and as such wiring had to be redone multiple times.
- We were slated to have four members, but this dropped to two. As such, managing time became an issue.

Future Work

- Collect underwater data and run visual odometry algorithm.
 - Could rework it to support pointclouds and use the SONAR.
 - Most time-effective option would be to replace the SONAR with an underwater camera.
- Package all components together in order to be able to create a lightweight, portable device.
 - o PVC.
 - Goop for waterproofing.