Modular IEEE Robot

Luke Chapman, Reid Crews, Isaac Hoese, Isaac Jennings, Abigail Kennedy, Mabel Olson

What is the problem?

- Problem: Each year, the SECON capstone team faces the same operational problems: motor control, navigation, and wire and battery management.
- **Solution:** Create a sound robot platform with navigation control, precise motor control, integrated battery charging, and adaptable modules.

2023 2024

What is the problem?

- Problem: Each year, the SECON capstone team faces the same operational problems: motor control, navigation, and wire and battery management.
- **Solution:** Create a sound robot platform with navigation control, precise motor control, integrated battery charging, and adaptable modules.

Industry Impact

- ROS led navigation allows for diverse applications
- Universal coding convention
- Small size and adaptability for multi-purpose use

Clearpath Robotics Husky A200

Husarion ROSbot XL

ROS led industry robots

Design

Our priorities:

- Modularity
- Autonomous Navigation
- Robust Power System

Chassis

- Modularity and Organization
 - Extruded Aluminum
 - Drop-in T-nuts
 - Slotted Sheets
- Iteration process with 3D components
- Motor attachment

Motor Control

- Navigation
 - Full range of movement
 - Reliable and consistent motor response
- Mecanum wheels

DC motors

Robot Movement from Mecanum Wheels

Experiments and Results - Speed

Target: 2 ft/s (1.36 mph)

Actual: 0.731 ft/s

Ran the robot in a straight line for a preset number of seconds and measured the distance.

Tile	Tile -NCa PstydoedLab		
Tirial	Distance ((inches))	Speed d (f (t//s/ s)	
1	4 %8	0 Ø.58 3	
22	4877	0 .07.83 5	
3	8 Ø.5	0 0.61 9	
4	4857.55	0 0.52 9	
55	45/8	0 0.58 3	

25 Padlahad Afraeylaad				
TTiribl	((inothess))	Speed (ft/s)		
11	8475	0.739		
22	8476	0.783		
33	8465	0.750		
44	45. 5	0.758		
55	45. 5	0.758		

Power

- Battery
 - Motor runtime of 30 minutes
- Power Distribution
 - Battery power to 3.3 V and 5 V rails
 - Design based around TI buck converters
- Wireless Charging
 - Experimental system to charge robot while in arena

Experiments and Results - Battery Life

Robot run in circles in place in 10-minute increments

- Battery discharge curve compared to datasheet
 - Estimated battery life to be 4-5 hrs

Experiments and Results - Power Board

Can source up to 5 A from each voltage rail

Microcontroller used to emulate turning the power board on and

off

 Tested number of power cycles the power board can survive

 Board has currently been power cycled 4,000,000+ times

Experiments and Results - Wireless Power

- Capacitive wireless charging was evaluated
- Proof-of-concept demonstrated powering a small load

 Future implementations will require more research and safety precautions

Navigation – Location and Object Detection

- Grove Ultrasonic Ranger
- Grove ToF Sensor (VL53L0X)
 - Mini-LIDAR, laser emitter
 - I2C Hub

Ultrasonic Ranger

Time of Flight

I2C Hub

Grove Connectors

Location Demo

Navigation – Line Following and Orientation

- Pololu QTR-8RC reflectance array
 - Returns values from 0-1000

Orientation Calibration Results

- LSM6DSOX + LIS3MDL 9 DOF
 - Returns roll, pitch, yaw

LSM6DSOX + LIS3MDL

Line Following Demo

Experiments and Results - Sensors

Two ESP32 microcontrollers were used to transmit data

Sensor Spy GUI for real – time sensor data

Objection Detection Demo

Nav2 Mapping Issues

- No working odometry: issues with the accuracy of our IMU
- No base scan for mapping
 - Initial solution: use other scanners to make a mock lidar
 - Solved by using Slamtec's Rplidar a2m8

Map of 2024 SECON Board

Map of Capstone Lab

Master Control

- Utilized ROS2 middleware for SLAM
- Laid foundation for autonomous navigation

Master Control

- Rviz2 utilized as the primary GUI
- URDF, robot state publisher, and joint state publisher

Established base_link -> base_scan (laser)

Master Control

- Robot_localization used for localization and mapping
 - EKF filter
 - Published odom -> base_link
- SLAM toolbox used for mapping
 - A* search algorithm configured for navigation

Map of 2024 SECON Board

A* Search Algorithm Visualization

Summary Results

	Constraint	Was it met?
1	Single start button	Yes
2	Allocated spot for alternate start method	Yes
3	Customizable dimensions (only take up half cubic foot)	Yes
4	Plug and play adaptable	Yes
5	Robust centralized charging system	Yes
6	Evaluate wireless charging	Yes
7	Single emergency stop for motors	Yes
8	Design power bus so motors don't inhibit operation	Yes
9	Travel inclines and declines up to 25 degrees	Yes
10	Turn 360 degrees and move forward and backward based on sensors	Yes
11	Navigation system controls movement, knows location within 2 inches, maximum speed of 2 ft/s	No
12	All components will be 3D printed	Yes
13	Line sensor attachment will be between 0.125 and 0.375 inches off the ground	No
14	Frame can withstand 20 pounds	Yes

Budget

Proposed Budget		
Subsystem	Cost	
Chassis	\$245.00	
Power	\$730.00	
Master Control	\$150.00	
Motor Control	\$363.00	
Navigation	\$314.00	
Wireless Charging	N/A	
Miscellaneous	\$200.00	
Total Cost	\$2,002.00	

Final Budget		
Subsystem	Cost	
Chassis	\$145.01	
Power	\$428.80	
Master Control	\$196.44	
Motor Control	\$318.73	
Navigation	\$424.23	
Wireless Charging	\$134.06	
Miscellaneous	\$0.00	
Total Cost	\$1,647.27	

References

"NFPA 79: Electrical Standard for Industrial Machinery". [Online]. Available: https://link.nfpa.org/free-access/publications/79/2121

"Using the National Electrical Code (NEC) Ampacity Charts," May 2021. [Online]. Available: https://www.nfpa.org/~/media/Files/Code%20or%20topic%20fact%20sheets/NECAmpacityWorkflow.pdf

"IEEE SOUTHEASTCON 2024 STUDENT HARDWARE COMPETITION RULES Version 5.6," Sep. 2023. [Online]. Available: https://ieeesoutheastcon.org/wp-content/uploads/sites/497/SEC24-HW-Competition V5.6-1.pdf

"IEEE Code of Ethics," Jun. 2020. [Online]. Available: https://www.ieee.org/about/coporate/governance/p7-8.html

"RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications," Jan. 2021. [Online]. Available: https://apps.fcc.gov/kdb/GetAttachment.html?id=g5f2nQFxHnlMbja%2FFzq1QQ%3D%3D&desc=680106%20D01%20RF%20Exposure%20Wireless%20Charging%Apps%20v03r01&tracking_number=41701

"TPS565201 4.5-V to 17-V Input, 5-A Synchronous Step-Down Voltage Regulator." Texas Instruments, Sep. 2017. Accessed: Oct. 13, 2023. [Online]. Available: https://www.ti.com/lit/ds/symlink/tps565201.pdf?ts=1698731666929

"IPC-2221A Generic Standard on Printed Board Design." IPC, May 2003. [Online]. Available: https://www-eng.lbl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/MATERIALS/IPC-2221A(L).pdf

J. Adam, "New correlations between electrical current and temperature rise in PCB traces," in Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (IEEE Cat. No.04CH37545), San Jose, CA, USA: IEEE, 2004, pp. 292 – 299. doi: 10.1109/STHERM.2004.1291337.

C. W. Van Neste, A. Phani, R. Hull, J. E. Hawk, and T. Thundat, "Quasi-wireless capacitive energy transfer for the dynamic charging of personal mobility Vehicles," in 2016 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Knoxville, TN, USA: IEEE, Oct. 2016, pp. 196–199. doi: 10.1109/WoW.2016.7772091.

"PCCG-LFP14.4V10A 14.4V 10A Lithium Iron Phosphate (LiFePO4) Battery Charger." Zeus Battery Products. Accessed: Nov. 09, 2023. [Online]. Available: https://www.zeusbatteryproducts.com/wp-content/uploads/downloads/ZEUS_LiFePO_CHARGER_PCCG-LFP%2014.4V10A_SPEC_SHEET_REVV2.2.pdf

Questions?

Designing Power Board for Current Capabilities

- IPC-2221A PCB Design Standards
- Trace size constrained by physical limitations and required current capacity

