Organic Chemistry Concepts LOKT.09.051

Aromatic π -bond reactivity

Not similar to alkene reactivity

$$\begin{array}{c} + Br_2 \\ \hline \end{array} + HBr \\ \hline \begin{array}{c} H \\ Br \\ \hline H \end{array}$$

Not allowed

Electrophilic aromatic substitution, \mathbf{E}^+

Wheland intermediate

Bromination

Nitration

Sulfonation

Alkylation

$$\begin{array}{c|c} CH_3 \\ +C-H \\ CH_3 \end{array} \qquad \begin{array}{c|c} H \\ -CH(CH_3)_2 \\ H \end{array}$$

$$\begin{bmatrix} H \\ CH(CH_3)_2 \\ H \end{bmatrix} \qquad \begin{array}{c} \text{Base} \\ CH_3 \\ CH_3 \\ \end{array} \qquad \begin{array}{c} \text{CH}_3 \\ CH_3 \\ \end{array} \qquad \begin{array}{c} \text{H-Base} \\ \end{array}$$

Carbonium ion formation

$$H_2C = CH - CH_3$$
 $H_3C - CH - CH_3$

Acylation

$$R-C-C1 \longrightarrow AlCl_{3} \longrightarrow R-C-Cl-AlCl_{3}$$

$$R-C-Cl-AlCl_{3} \longrightarrow AlCl_{4} + \begin{bmatrix} R-C=0 & \longrightarrow R-C=0 \\ R-C-R & \longrightarrow R-C=0 \end{bmatrix}$$

$$R-C-Cl-AlCl_{3} \longrightarrow AlCl_{4} + \begin{bmatrix} R-C=0 & \longrightarrow R-C=0 \\ R-C-R & \longrightarrow R-C=0 \end{bmatrix}$$

Acyl cation

Direction of aromatic substitution

$$X$$
 $H + E^{+}$
 X
 $H + E^{+}$
 X
 $H + H^{+}$
 H^{+}
 H^{+}

Electrophilic substitution pattern

Para

<u>Meta</u>

Summary

Meta-bromoacetophenone synthesis

$$H$$
 H
 H
 H
 H
 H
 H
 H

Different positions!!

- -carbonium ion is stabilized
- -stabile aromatic structure

-for carbonium ion stabilization the second ring loses its aromaticity