

Presentation of the team

José David Toro Franco Main author

Andrea SernaLiterature review

Mauricio ToroData preparation

Problem Statement

Streets of Medellín, Origin and Destination

Three paths that reduce both the risk of harassment and distance

Solution Algorithm

Explanation of the algorithm

Dijkstra.

The graph shows some possible paths, they differ in length and amount of street harassment. The user can select the path he or she would rather use to avoid street harassment or to save time using a shorter one.

Complexity of the algorithm

	Time complexity	Complexity of memory
Algorithm name	O(V ² *E*2 ^V)	O(E!*V*E*E*2 ^E)
Algorithm name	O(V*V*E*E*E)	O(E!)

Time and memory complexity of the algorithm name. V is...E is...

First path minimizing d = ???

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	??	??

Distance and risk of harassment for the path that minimizes d = ??. Execution time of ?? seconds.

Second path minimizing d = ???

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	??	??

Distance and risk of harassment for the path that minimizes d = ??. Execution time of ?? seconds.

Third path minimizing d = ???

Origin	Destination	Distance (meters)	Risk of harassment (between 0 and 1)
EAFIT University	National University	??	??

Distance and risk of harassment for the path that minimizes d = ??. Execution time of ?? seconds.

Visual comparison of the three paths

Future work directions

Future work directions

Report accepted in OSF.IO

Julián Ramírez, Andrés Salazar, Simón Marín, Mauricio Toro. Energy and Storage Optimization in Precision Livestock Farming. Technical Report, Universidad EAFIT, 2021. https://doi.org/10.31219/osf.io/du8yt

asalaza5@eafit.edu.co

smaring l@eafit.edu.co

sick or not.

paper will be centered around the classification of livestock. Primarily, by implementing an image recognition model

that will determine whether an animal (in this case a cow) is

OSFPREPRINTS ▼

jdramirezl@eafit.edu.co

ABSTRACT

mtorobe@eafit.edu.co

