Exercice 1. On considère la fonction f définie sur [-3;3] par $f(x)=x^2$.

- 1. À l'aide de la calculatrice, obtenir un tableau de valeurs, en partant de -3, avec un pas de 1.
- 2. Tracer la courbe représentative de f dans un repère orthonormé.

Exercice 2. On considère la fonction f définie sur [-4;4] par $f(x)=\frac{x^3}{10}$.

- 1. À l'aide de la calculatrice, obtenir un tableau de valeurs, en partant de -4, avec un pas de 1.
- 2. Tracer la courbe représentative de f dans un repère orthonormé.

Exercice 3. On considère une fonction f vérifiant f(2) = 3. Compléter les phrases à trous suivantes.

- 1. a pour image par la fonction f.
- 2. Le point A(...;...) est un point de la courbe représentative de la fonction f.
- 3. Le nombre réel est une solution de l'équation $f(x) = \dots$
- 4. Le nombre réel est un antécédent de par la fonction f.

Exercice 4. Les vétérinaires donnent parfois le tableau de correspondance entre l'âge des chats et l'équivalent en âge humain ci-contre. On Âge du chat (en année) 0,52 12 16 1 note c l'âge du chat en année et H(c) l'âge Âge humain (en année) 10 18 26 42 70 94 humain en équivalent en année.

- 1. Dans un repère orthogonal, tracer une courbe représentant la fonction H sur [0; 16].
- 2. Les deux âges sont-ils proportionnels? Justifier.

 Quelle est la représentation graphique qui modélise une situation de proportionnalité?
- 3. Préciser l'image de 3 et interpréter la réponse.
- 4. Donner un antécédent de 60 et interpréter la réponse.

Exercice 5.

Dans un repère orthogonal, on a tracé la représentation graphique d'une fonction f.

- 1. Déterminer l'ensemble de définition D_f .
- 2. Donner l'image de -4 par la fonction f.
- 3. Donner f(-2), f(3) et f(4).
- 4. Quels sont les antécédents de 5 par f? De -1? De 0?

Exercice 6.

On considère les trois verres ci-contre et on note h la hauteur du liquide contenu dans chaque verre. On note $V_1(h)$, $V_2(h)$ et $V_3(h)$ les volumes respectifs de liquide (en cL) dans ces 3 verres en fonction de h (en cm) jusqu'à remplissage complet.

On a tracé ci-contre les différentes courbes représentatives des fonctions $V_1,\,V_2$ et V_3 . Pour chacun des trois verres :

- 1. Préciser les ensembles de définition des volumes associés ainsi ²⁵ que les images à leurs extrémités. Interpréter ces résultats. ₂₀
- 2. Préciser le volume à mi-hauteur, puis la hauteur du verre quand il est à moitié plein.
- 3. On verse 20 cL : préciser la hauteur du liquide dans chacun des trois verres.
- 4. Déterminer les coordonnées des différents points d'intersection et interpréter le résultat.
- 5. Si on remplit les trois verres à une même hauteur, est-il possible que les trois convives aient le même volume de liquide? Justifier.

Exercice 7. La fonction f est représentée par la courbe \mathscr{C}_f . Compléter le tableau suivant.

Images ou antécédents	f(x) = y	$\textbf{Courbe}~\mathscr{C}_f$
3 a pour image -1 par f		
	f(2) = 5	
		$A(1;-2) \in \mathscr{C}_f$
0 est un antécédent de 4 par f		
		$B(5;12) \in \mathscr{C}_f$
8 a pour antécédents -1 et 9 par f		

Exercice 8.

- 1. Soit \mathscr{C}_f la courbe représentative de la fonction f définie sur \mathbb{R} par $f(x) = \sqrt{25 x^2}$.
 - (a) Le point (-4;3) appartient-il à la courbe \mathscr{C}_f ? Justifier.
 - (b) Même question avec le point $(\frac{1}{2}; \frac{9}{2})$.
- 2. Soit \mathscr{C}_g la courbe représentative de la fonction g définie sur \mathbb{R} par $g(x) = \frac{5x-4}{2}$. Le point (6; 13) appartient-il à la courbe \mathscr{C}_f ? Justifier.

Exercice 9.

Dans chaque cas, on a représenté dans un repère orthonormé une fonction f définie sur $\mathbb R.$ Pour chacune d'elle

- 1. préciser graphiquement les solitions des équations f(x) = -0.5; f(x) = 0 et f(x) = 2;
- 2. déterminer, suivant les valeurs de k, le nombre de solutions de l'équation f(x) = k où $k \in \mathbb{R}$.

Exercice 10.

On considère la hauteur H, en mètre, d'un type d'arbre en fonction de son âge t (en mois).

- 1. Déterminer et interpréter H(1).
- 2. Ces arbres sont commercialisables dès qu'ils mesurent au moins 2 m : traduire cela par une inéquation et la résoudre.

- 3. À partir de quelle année ces arbres atteignent-ils leur hauteur maximale?
- 4. Dès qu'ils atteignent 3,5 m, Jean taille ses arbres à une hauteur de 3 m. Les arbres repoussent toujours au même rythme. Quelle sera la fréquence des coupes après la première?

Exercice 11.

Dans chaque cas, on a tracé dans un repère orthogonal (O; I, J) la courbe représentative C_f d'une fonction f et la courbe représentative C_g d'une fonction g définie sur \mathbb{R} .

Dans chaque cas, résoudre graphiquement l'équation

$$f(x) = g(x)$$
.

Exercice 12. On considère les fonctions f et g définies sur \mathbb{R} par, pour tout $x \in \mathbb{R}$, $f(x) = x^2$ et g(x) = 4x - 4.

- 1. Afficher les représentations graphiques de f et g sur la calculatrice.
- 2. En appuyant sur la touche CALCULS, puis en sélectionnant INTERSECTION, trouver le point d'intersection entre les courbes représentatives de f et de g.
- 3. Vérifier que, pour tout $x \in \mathbb{R}$, $f(x) g(x) = x^2 4x + 4$ puis factoriser cette expression.
- 4. Donner les solutions de l'équation f(x) g(x) = 0.
- 5. Quel est le lien entre les questions 1 et 2 et les questions 3 et 4?

Exercice 13.

Associer à chaque tableau de variation ci-dessous la courbe correspondante ci-contre.

- 1. Pour chaque représentation graphique cidessous, desser le tableau de variation correspondant.
- 2. Préciser si ces courbes admettent un maximum ou un minimum, et le(s) donner le cas échéant.

Exercice 15.

On considère une fonction f dont le tableau de variations est donné ci-contre. Répondre par vrai ou par faux aux affirmations suivantes.

- 2. f est croissante sur [-7; 3]
- 3. f est décroissante sur [-3; 2]
- 4. f est décroissante sur [2;5]

- 5. f est négative sur $]-\infty;0]$.
- 6. f est positive sur [0; 2].
- 7. -7 est le minimum de f.
- 8. 3 est le maximum de f.