Searches for Robot Control Model

An Abstract Board Game

is the following eight-tuple

$$\langle X, P, R_p, \{ON\}, v, S_i, S_t, TR \rangle$$

 $X = \{x_i\}$ is a finite set of *points*;

 $P=\{p_i\}$ is a finite set of *elements*; $P=P_1 \cup P_2$, $P_1 \cap P_2 = \emptyset$;

 $\mathbf{R_p}(\mathbf{x}, \mathbf{y})$ is a family of binary relations of *reachability* in X $(\mathbf{x} \in \mathbf{X}, \mathbf{y} \in \mathbf{X}, \mathbf{p} \in \mathbf{P})$; y is *reachable* from x for p;

ON(p) = x is a partial function of *placement* of elements P into X;

val > 0 is a real function, $val(p_i)$ are the values of elements;

 S_i is a set of *initial* states of the system, a certain set of formulas $\{ON(p_i) = x_i\}$;

 S_t is a set *target* states of the system (as S_i);

TR is a set of operators TRANSITION(p, x, y) for transition of the system from one state to another described as follows

precondition: $(ON(p) = x) \land R_p(x, y)$ **delete**: ON(p) = x, ON(q) = y**add**: ON(p) = y

Family of Grammars of Reduced Searches Grs

\overline{L}	Q	Kernel, π_k	$\pi_{\mathbf{n}}$	F_T	F_F
1	Q_1	$S(i) \rightarrow A(i)$	$\mathbf{M}(i) := \mathbf{m_S}(STATE)$ formulas for $\mathbf{G_{rs}}$	2	Ø
2	$Q_2^{ m G}_{ m rs}$	$A(i) \rightarrow A(End)$ $\pi(End)A(i)$	Parent(End) := i If Child(i) ≠ 0 then Sibling(Child(i)) := End else Sibling(i) := 0 Child(i) := End Endif End := End+1 d := d+1 SIGN := - SIGN	2	3
			STATE := NEWSTATE $\mathbf{m}(\text{End})$:= $\mathbf{m}_{\mathbf{S}}(\text{NEWSTATE})$ $\mathbf{V}(\text{End})$:= $\mathbf{BIG}_{\mathbf{NUMBE}}(\text{NEWSTATE})$ WHO(End) := $\mathbf{Element}(\text{NEWSTATE})$ FROM(End) := $\mathbf{X}(\text{NEWMOVE})$ TO(End) := $\mathbf{Y}(\text{NEWMOVE})$	R * SIGN MOVE))	1
			formulas for G_{rs}		
3	Q_3	$A(i) \rightarrow e$	<pre>if d≠0</pre>		
m(i)))		$V(i) := LEAF(V(i), m(i))$ formulas for G_{rs}	#11 (V (1)	,

At the beginning: i = 0, End =1, d =0; m(i), V(i), FROM(i), TO(i), Child(i), Sibling(i), Parent(i) are equal to 0; WHO(i) \in P \forall i \geq 0; SIGN \in {-1,1}, STATE \in SPACE

 $Q_3 = T$

MVGrs depends on the grammar Grs

Fvar = {End, SIGN, m, V, WHO, FROM, TO, Child, Parent, Sibling, STATE} Parm: $S \rightarrow \{i\}, A \rightarrow \{i\}, \pi \rightarrow \{i\}, L = \{1, 2, 3\}$

 $I \text{ at } m. S \rightarrow \{1\}, A \rightarrow \{1\}, \mathcal{U} \rightarrow \{1\}, L - \{1\}, \mathcal{U} \rightarrow \{1\},$

Functions are defined as follows:

$$D(\mathbf{m_S}) = SPACE, \mathbf{m_S}(STATE) = \sum_{p \in P_1} val(p) - \sum_{p \in P_2} val(p),$$

Functions val, TRANSITION, TRANSITION are from the

Definition of ABG; BIG_NUMBER = $\sum_{p \in P} val(p) + 1$

$$D(LEAF) = \mathbb{Z}_+ \times \mathbb{Z}_+, \quad \text{If } a = \text{BIG_NUMBER then } LEAF(a, b) := b,$$
 else $LEAF(a, b) := a$

$$D(MINIMAX) = \{-1, +1\} \times \mathbf{Z}_{+} \times \mathbf{Z}_{+}$$

$$MINIMAX(SN, v_1, v_2) = \begin{cases} max(v_1, v_2), & \text{if SN} = 1\\ min(v_1, v_2), & \text{if SN} = -1 \end{cases}$$

$$\begin{aligned} \text{MOVE} = & \quad \{(p, x, y) \mid x \in X, y \in X, (\exists p \, ((((SIGN = 1) \land (p \in P_1)) \lor \\ & \quad ((SIGN = -1) \land (p \in P_2))) \land (ON(p) = x) \land R_p(x, y))))\} \end{aligned}$$

MOVE = $\{(p_1, x_1, y_1), ..., (p_k, x_k, y_k)\}$

NEWMOVE = MV^{Grs}(d, End, SIGN, m, V, WHO, FROM, TO, *Child*, *Parent*, *Sibling*, STATE, ...)

MV yields the ordinal of a triple from the list MOVE

Element(NEWMOVE) = $p_{NEWMOVE}$, X(NEWMOVE) = $x_{NEWMOVE}$

Y(NEWMOVE) = $y_{NEWMOVE}$

NEWSTATE = TRANSITION(Element(NEWMOVE), X(NEWMOVE), Y(NEWMOVE)) (STATE)

Optimization problem for autonomous aerospace robotic vehicles with serial alternating motions

2D/4A Problem

Is there a strategy for the White to make a draw?

The specific question is as follows. Is there an optimal strategy that provides one of the following?

- 1. Both BOMBERs hit their targets on subsequent time increments and stay safe for at least one time increment.
- 2. Both BOMBERs are destroyed before they hit their targets or immediately after that.

Zones in the Start State of the Robot Control Model.

State where the branch was terminated. Zone gateways.

State where the control Zone from h8 to c8 was included into the search

State where the control Zone from g7 to c7 was detected

State where the control Zone from g7 to c7 was included into the search

Search tree for the robotic vehicles with alternating serial motions

Brute Force Search with limited depth

Add function NM(i) into *Fvar*. At the beginning of derivation NM(i) = 1 for all i from \mathbb{Z}_+ . Include new functional formula in the production 2 (section π_n):

$$NM(i) := NM(i) + 1$$

Function MV in this case is as follows:

$$MV(r) = r$$
, r is from \mathbb{Z}_+ .
 $NEWMOVE = MV(NM(i))$.

Predicate CUT:

CUT = MV(i) > |MOVE|, where |MOVE| is the number of triples in MOVE.

Best-Move Search without backtrack

Add function Value: $P \times X \times X \longrightarrow R$ and function **DIRECTION.** The algorithm for computation of Value depends on the particular heuristic function. Function MV is defined as follows:

MV(i, STATE) is the number of triple $(p_i, x_i, y_i) \in MOVE$ for which $\textit{Value}((p_i, x_i, y_i))$ is maximum.

Add formula **DIRECTION**:= 1 into the section π_n of production 1 and **DIRECTION**:= -1 in production 3.

$$CUT = ((MOVE = \emptyset) \lor (DIRECTION = -1))$$

Generate Search in this Zone

A Comparison of Searches for the same processing time

