

Matemática A

Fevereiro de 2010

Matemática A

Itens – 10.º Ano de Escolaridade – Soluções

Itens de Matemática A - 10º Ano de Escolaridade

Soluções

1.1.
$$a(2) = 68$$

1.2.
$$D_a =]0,10[$$

1.3.
$$a(x) = x^2 + (10 - x)^2 = 2x^2 - 20x + 100$$

1.4.
$$a(x) = a(2) \Leftrightarrow x = 2 \lor x = 8$$

Se x=2, tem-se $\overline{AP}=2$ e $\overline{BP}=8$ e, se x=8, tem-se $\overline{AP}=8$ e $\overline{BP}=2$; então, cada quadrado que se obtém para x=2 é geometricamente igual a um dos quadrados que se obtém para x=8

2.1.1.

2.1.2.
$$D_f = [0, 28]$$
 $D'_f = [0, 600]$

2.1.3. f(2) = 200 Às 9 horas e 2 minutos, o Rui estava a 200 metros de casa.

2.1.4. A equação f(t) = 600 traduz o seguinte problema:

«Qual foi o intervalo de tempo (contado em minutos após as 9 horas) durante o qual o Rui permaneceu no café?»

$$C.S. = [6, 16]$$

2.1.5.
$$C.S. = \{4, 20\}$$

2.2.1.

2.2.2. A equação f(t) = g(t) traduz o seguinte problema:

«Quais foram os instantes (contados em minutos após as 9 horas) em que o Rui esteve a igual distância de casa e do café?»

$$C.S. = \{3, 22\}$$

3.1. As funções f e g podem estar representadas na opção C.

A opção A não é a opção correcta porque, no instante inicial, a distância percorrida pela Rita é igual a 0 e, nesta opção, tem-se f(0) > 0

A opção B não é a opção correcta porque as duas amigas percorreram distâncias iguais e, portanto, o contradomínio da função f tem que ser igual ao contradomínio da função g. Nesta opção, o contradomínio de f está estritamente contido no contradomínio de g

A opção D não é a opção correcta porque a representação gráfica de f devia conter a origem do referencial, o que não acontece.

3.2. 8 km

4.1.1. v(1) representa o volume de água no depósito, em dm^3 , 1 minuto depois de começar o enchimento. v(t) representa o volume de água no depósito, em dm^3 , t minutos depois de começar o enchimento.

4.1.2. $D_{v}^{'} = [0, 300]$

4.1.3. $D_v = [0, 15]$

4.1.4. Representa, em minutos, o tempo necessário para encher completamente o depósito.

4.1.5. v(t) = 20t

4.1.6.

4.1.7.
$$D_h = [0, 15]$$
 $D_h^{'} = [0, 12]$

4.1.8.
$$h(t) = 0.8 t$$

- **4.2.1.** Representa o caudal da torneira, em dm^3 por minuto.
- **4.2.2.** Representa a área da base do depósito, em dm^2

_	-	
-	1	

x	y (valor real)	y = 11,86 - 1,46x	y - y(valor real)
2,00	8,9	8,94	0,04
2,50	8,3	8,21	0,09
3,00	7,4	7,48	0,08
3,50	6,9	6,75	0,15
4,00	5,9	6,02	0,12
4,50	5,3	5,29	0,01
5,00	4,6	4,56	0,04

- **5.2.** $y \,$ é a variável dependente e $\, x \,$ é a variável independente.
- **5.3.1.** 8,5 toneladas.
- **5.3.2.** 2,64 euros.
- **5.3.3.** z = 1000x(11,86 1,46x)
- **5.3.4.** O preço deve ser 4,06 euros por kg.

6.1.
$$a(5) = 1.5$$

6.2.
$$D_a = [0.6[$$
 $D'_a =]0.24]$

6.3.
$$a(x) = \frac{(8-x)(6-x)}{2} = \frac{x^2-14x+48}{2}$$

7.1.
$$D_f = D_g = [-6, 6]$$

7.1.
$$D_f = D_g = [-6, 6]$$
 7.2. $D'_f = [-1, 3]$ $D'_g = [-2, 0]$

7.3.7.
$$[-6, -3[\cup]3, 6]$$
 7.3.8. $\{0,3\}$ **7.3.9.** $[-6, 0[\cup]3, 6]$

7.3.9.
$$[-6,0] \cup [3,6]$$