МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 6.11.5 Туннелирование в полупроводниках

Салтыкова Дарья Б04-105

1 Введение

Цель работы: исследовать принцип действия туннельного диода, измерить его вольт-амперная характеристику и основные параметры.

2 Теоретические сведения

Туннельным диодом называется сильно легированный полупроводник, уровень Ферми которого лежит в разрешенной зоне и становятся возможны туннельные переходы электронов в области узкого (p-n)-перехода.

Будем считать, что все состояния, лежащие ниже уровня Ферми, заполнены электроны, а выше — свободны. Энергетические диаграммы идеального туннельного диода и его вольтамперная характеристика показаны на рисунке 1. μ_n и μ_p обозначены уровни Ферми в n- и p-области соответственно; E_c и E_v - границы зоны проводимости и валентной зоны. В отсутсвии внешнего поля уровни Ферми μ_n и μ_p лежат на одной горизонтали; число дырок и электронов, туннелирующих в обе стороны, одинаково, и ток отсутствует (рисунок 1.a). При приложении напряжения в прямом направлении уровень Ферми в *n*-области «ползет» вверх по отношению к уровню Ферми в р-области, электроны туннелируют налево, ток растет. Он достигает максимума в точке δ вольт-амперной характеристики (рисунок 1. \Re), соответствующей наибольшему совпадению занятой зоны в отрицательной области и свободной в положительной. При дальнейшем увеличении внешнего напряжения перекрытие занятых уровней в *п*-области и свободных в р- уменьшается, и ток падает до нуля: это иллюстрирует рисунок 1.6. Предельное положение соответствует энергетической диаграмме г. При дальнейшем увеличении напряжения ток, возникающий за счет туннелирующих электронов, остается равным нулю, а диффузиозный ток возникает при совпадении занятых уровней n-области с свободными уровнями зоны проводимости (рисунок $1.\partial$). На диаграмме 1.e показан ток в обратном направлении.

Рис. 1: Схема энергетических уровней и вольт-амперная характеристика идеального туннельного диода

Реальная вольт-амперная характеристика туннельного диода отличается от таковой для идеального и представлена на рисунке 2. Она учитывает образование примесных зон и возможность их слияния с основными, что объясняет наличия ненулевого тока I_v в минимуме характеристики.

Рис. 2: Вольт-амперная характеристика неидеальных туннельных диодов с меньшей (сплошная линия) и большей (пунктирная линия) шириной запрещенной зоны

Вольт-амперная характеристика реального туннельного диода (см. рисунок 2) описывается следующими значениями напряжения и тока.

Напряжению U_p соответствует максимум тока I_p , при котором смещение энергетических зон одинаково, причем это напряжение связано с расстоянием ξ между уровнем Ферми в n-области и зоной проводимости и энергией $E_{\rm n\ max}$, соответствующей максимуму плотности распределения электронов, следующим отношением:

$$U_p \approx \frac{\xi - E_{\text{n max}}}{e}$$

В точке U_v ток минимален, и, как следует из описания выше:

$$U_v \approx \frac{(\mu_n - E_c) + (E_v - \mu_p)}{e} = \frac{\xi + \eta}{e} \approx \frac{2\xi}{e} \approx \frac{2\eta}{e}$$

Напряжение U_f характеризует раствор вольт-амперной характеристики и определяется шириной запрещенной зоны.

3 Экспериментальная установка

Схема установки представлена на рисунке 3. На вход Y осциллографа подается напряжение, пропорциональное току через диод, а на вход X — падение напряжения на диоде.

Рис. 3: Схема наблюдения вольт-амперной характеристики туннельного диода с помощью осциллографа

Ток I через диод зависит от напряжения U на нем по следующей формуле:

$$I = U \frac{R_1 + 2(R_2 + R_3)}{(R_1 + 2R_2) \cdot R_3}$$

4 Ход работы

Сопротивления нашей установки:

$$R_1 = 680 \; \text{Om}$$

$$R_2 = 100 \; \text{Om}$$

$$R_3 = 120 \, \text{Om}.$$

Изучим вольт-амперную характеристику обыкновенного и туннельного диодов с помощью осциллографа.

Рис. 4: Вольт-амперная характеристика обычного полупроводникового диода

Рис. 5: Вольт-амперная характеристика туннельного полупроводникового диода

Изучим вольт-амперную характеристику обыкновенного и туннельного диодов в статическом режиме.

Рис. 6: Вольт-амперная характеристика обыч- Рис. 7: Вольт-амперная характеристика тунного полупроводникового диода нельного полупроводникового диода

Оценим U_p, U_v и U_f из динамической и статической ВАХ. Примем $E_v = 0$. Найдем энергию Ферми:

$$\mu_n \approx \mu_p \approx eU_v/2$$

	U_p , B	U_v , B	U_f , B	σ_U , B	I_p , MA	I_v , MA	I_f , MA	σ_I , MA
Динамический	0,060	0,330		0,020	6,400	3,500		0,200
Статический	0,040	0,370	0,455	0,001	4,046	0,711	4,065	0,004

Таблица 1: Результаты для U_p, U_v и U_f и I_p, I_v и I_f

Найдем энергию, соответствующую максимальной плотности распределения электронов $E_{n_{max}}$:

$$E_{n_{max}} = \mu_n - eU_p$$

Динамический	Статический				
$\mu_n \approx 180 \text{ мэВ}$	$\mu_n \approx 185 \; \text{мэВ}$				
$E_{n_{max}} pprox 120 \ { m мэВ}$	$E_{n_{max}} \approx 145 \text{ мэВ}$				

Таблица 2: Характеристики туннельного диода

5 Вывод

В данной работе исследовались ВАХ обыкновенного и туннельного диодов в динамическом и статическом режимах. В отличие от обыкновенного диода, у туннельного наблюдается промежуток спада тока. Также были получены характеристики туннельного диода, они приведены в таблице (2). Полученные в разных режимах результаты схожи между собой, но мы не располагаем данными о диоде, поэтому сравнить их с табличными нет возможности.