Predictions by Hosotani

July 27, 2021

We show a comparison of the values of m_{π} and m_{η} computed with the prediction by Hosotani and by means of lattice simulations. We show two predictions by Hosotani for L=64 and $L_t=10$, in one we assume that $m_{\eta}=\sqrt{m_{\pi}^2+2g^2/\pi}$ and in other we set $m_{\eta}=\sqrt{2g^2/\pi}$ (its value in the chiral limit for two flavors).

1 64x10

Figure 1: m_{η} and m_{π} computed with the prediction by Hosotani and with lattice simulations. Two points were used to fit the mass plateau.

Figure 2: m_{η} and m_{π} computed with the prediction by Hosotani and with lattice simulations. Three points were used to fit the mass plateau.

Figure 3: m_{η} and m_{π} computed with the prediction by Hosotani and with lattice simulations. Four points were used to fit the mass plateau.

Figure 4: m_{η} and m_{π} computed with the prediction by Hosotani and with lattice simulations. Two points were used to fit the mass plateau.

Figure 5: m_{η} and m_{π} computed with the prediction by Hosotani and with lattice simulations. Three points were used to fit the mass plateau.

Figure 6: m_{η} and m_{π} computed with the prediction by Hosotani and with lattice simulations. Four points were used to fit the mass plateau.

3 64x16

Figure 7: m_{η} and m_{π} computed with the prediction by Hosotani and with lattice simulations. Four points were used to fit the mass plateau.

(c)

0.10

m

0.15

0.20

0.00

0.05