# **Probability Theory for Machine Learning**

Shengyang Sun <sup>a</sup> January 10, 2019

Introduction to Machine Learning CSC411 University of Toronto

<sup>&</sup>lt;sup>a</sup>Slides from Jesse Bettencourt.

Introduction to Notation

#### **Motivation**

### Uncertainty arises through:

- Noisy measurements
- Finite size of data sets
- Ambiguity
- Limited Model Complexity

Probability theory provides a consistent framework for the quantification and manipulation of uncertainty.

## Sample Space

Sample space  $\Omega$  is the set of all possible outcomes of an experiment.

Observations  $\omega \in \Omega$  are points in the space also called sample outcomes, realizations, or elements.

Events  $E \subset \Omega$  are subsets of the sample space.

## Sample Space Coin Example

In this experiment we flip a coin twice:

```
Sample space All outcomes \Omega = \{HH, HT, TH, TT\}
```

Observation  $\omega = HT$  valid sample since  $\omega \in \Omega$ 

Event Both flips same  $E = \{HH, TT\}$  valid event since  $E \subset \Omega$ 

# **Probability**

## **Probability**

The probability of an event E, P(E), satisfies three axioms:

- 1:  $P(E) \ge 0$  for every E
- 2:  $P(\Omega) = 1$
- 3: If  $E_1, E_2, \ldots$  are disjoint then

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

4

#### Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A, B)Conditional Probability of A given B is denoted P(A|B).

- Assuming P(B) > 0, then P(A|B) = P(A,B)/P(B)
- Product Rule: P(A, B) = P(A|B)P(B) = P(B|A)P(A)

## **Conditional Example**

60% of ML students pass the final and 45% of ML students pass both the final and the midterm.

What percent of students who passed the final also passed the midterm?

## **Conditional Example**

60% of ML students pass the final and 45% of ML students pass both the final and the midterm.

What percent of students who passed the final also passed the midterm?

Reword: What percent passed the midterm given they passed the final?

$$P(M|F) = P(M,F)/P(F)$$
  
= 0.45/0.60  
= 0.75

### Independence

Events A and B are independent if P(A, B) = P(A)P(B)Events A and B are conditionally independent given C if P(A, B|C) = P(B|A, C)P(A|C) = P(B|C)P(A|C)

## Marginalization and Law of Total Probability

Marginalization (Sum Rule)

$$P(X) = \sum_{Y} P(X, Y)$$

Law of Total Probability

$$P(X) = \sum_{Y} P(X|Y)P(Y)$$

# Bayes' Rule

## Bayes' Rule

Bayes' Rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

## Bayes' Rule

Bayes' Rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$$

$$Posterior = \frac{\text{Likelihood} * Prior}{\text{Evidence}}$$

$$Posterior \propto \text{Likelihood} \times Prior$$

Suppose you have tested positive for a disease. What is the probability you actually have the disease?

Suppose you have tested positive for a disease. What is the probability you actually have the disease? This depends on accuracy and sensitivity of test and prior probability of the disease:

- P(T = 1|D = 1) = 0.95 (true positive)
- P(T = 1|D = 0) = 0.10 (false positive)
- P(D=1) = 0.1 (prior)

So 
$$P(D = 1 | T = 1) = ?$$

Suppose you have tested positive for a disease. What is the probability you actually have the disease?

$$P(T=1|D=1)=0.95$$
 (true positive)  
 $P(T=1|D=0)=0.10$  (false positive)  
 $P(D=1)=0.1$  (prior)

\_So 
$$P(D = 1 | T = 1) = ?$$

Use Bayes' Rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(D=1|T=1) = \frac{P(T=1|D=1)P(D=1)}{P(T=1)}$$

Suppose you have tested positive for a disease. What is the probability you actually have the disease?

$$P(T=1|D=1)=0.95$$
 (true positive)  
 $P(T=1|D=0)=0.10$  (false positive)  
 $P(D=1)=0.1$  (prior)

.Use Bayes' Rule:

$$P(D = 1|T = 1) = \frac{P(T = 1|D = 1)P(D = 1)}{P(T = 1)}$$

$$P(D = 1|T = 1) = \frac{0.95 * 0.1}{P(T = 1)}$$

Suppose you have tested positive for a disease. What is the probability you actually have the disease?

$$P(T=1|D=1) = 0.95$$
 (true positive)  
 $P(T=1|D=0) = 0.10$  (false positive)  
 $P(D=1) = 0.1$  (prior)

$$P(D=1|T=1) = \frac{0.95*0.1}{P(T=1)}$$
 (Bayes' Rule)

By Law of Total Probability

$$P(T = 1) = \sum_{D} P(T = 1|D)P(D)$$

$$= P(T = 1|D = 1)P(D = 1) + P(T = 1|D = 0)P(D = 0)$$

$$= 0.95 * 0.1 + 0.1 * 0.90$$

$$= 0.185$$

16

Suppose you have tested positive for a disease. What is the probability you actually have the disease?

$$P(T=1|D=1)=0.95$$
 (true positive)  
 $P(T=1|D=0)=0.10$  (false positive)  
 $P(D=1)=0.1$  (prior)  
 $P(T=1)=0.185$  (from Law of Total Probability)

$$P(D = 1 | T = 1) = \frac{0.95 * 0.1}{P(T = 1)}$$
$$= \frac{0.95 * 0.1}{0.185}$$
$$= 0.51$$

Probability you have the disease given you tested positive is 51%

**Random Variables and Statistics** 

#### Random Variable

How do we connect sample spaces and events to data? A random variable is a mapping which assigns a real number  $X(\omega)$  to each observed outcome  $\omega \in \Omega$ 

For example, let's flip a coin 10 times.  $X(\omega)$  counts the number of Heads we observe in our sequence. If  $\omega = HHTHTHHTHT$  then  $X(\omega) = 6$ .

### I.I.D.

Random variables are said to be independent and identically distributed (i.i.d.) if they are sampled from the same probability distribution and are mutually independent.

This is a common assumption for observations. For example, coin flips are assumed to be iid.

#### Discrete and Continuous Random Variables

#### Discrete Random Variables

- Takes countably many values, e.g., number of heads
- Distribution defined by probability mass function (PMF)
- Marginalization:  $p(x) = \sum_{y} p(x, y)$

#### Continuous Random Variables

- Takes uncountably many values, e.g., time to complete task
- Distribution defined by probability density function (PDF)
- Marginalization:  $p(x) = \int_{y} p(x, y) dy$

## **Probability Distribution Statistics**

Mean: First Moment,  $\mu$ 

$$E[x] = \sum_{i=1}^{\infty} x_i p(x_i)$$
 (univariate discrete r.v.)  
$$E[x] = \int_{-\infty}^{\infty} x p(x) dx$$
 (univariate continuous r.v.)

Variance: Second Moment,  $\sigma^2$ 

$$Var[x] = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx$$
$$= E[(x - \mu)^2]$$
$$= E[x^2] - E[x]^2$$

**Gaussian Distribution** 

#### **Univariate Gaussian Distribution**

Also known as the Normal Distribution,  $\mathcal{N}(\mu, \sigma^2)$ 

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$$



#### Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.

x is a D-dimensional vector

 $\mu$  is a D-dimensional mean vector

 $\Sigma$  is a  $D \times D$  covariance matrix with determinant  $|\Sigma|$ 

$$\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$



#### **Covariance Matrix**

Recall that  ${\bf x}$  and  $\mu$  are D-dimensional vectors Covariance matrix  $\Sigma$  is a matrix whose (i,j) entry is the covariance

$$\Sigma_{ij} = Cov(\mathbf{x}_i, \mathbf{x}_j)$$

$$= E[(\mathbf{x}_i - \mu_i)(\mathbf{x}_j - \mu_j)]$$

$$= E[(\mathbf{x}_i \mathbf{x}_j)] - \mu_i \mu_j$$

so notice that the diagonal entries are the variance of each elements.

The covariant matrix has the property that it is symmetric and positive-semidefinite (this is useful for whitening).

## Whitening Transform

Whitening is a linear transform that converts a d-dimensional random vector  $\mathbf{x} = (x_1, \dots, x_d)^T$  with mean  $\mu = E[\mathbf{x}] = (\mu_1, \dots, \mu_d)^T$  and positive definite  $d \times d$  covariance matrix  $Cov(\mathbf{x}) = \Sigma$  into a new random d-dimensional vector

$$\mathbf{z} = (z_1, \dots, z_d)^T = W\mathbf{x}$$

with "white" covariance matrix,  $Cov(\mathbf{z}) = \mathbf{I}$ The  $d \times d$  covariance matrix W is called the whitening matrix. Mahalanobis or ZCA whitening matrix:  $W_{ZCA} = \Sigma^{-\frac{1}{2}}$ 

**Inferring Parameters** 

## **Inferring Parameters**

We have data X and we assume it is sampled from some distribution.

How do we figure out the parameters that 'best' fit that distribution?

Maximum Likelihood Estimation (MLE)

$$\hat{\theta}_{\textit{MLE}} = \underset{\theta}{\operatorname{argmax}} P(X|\theta)$$

Maximum a Posteriori (MAP)

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} P(\theta|X)$$

We are trying to infer the parameters for a Univariate Gaussian Distribution, mean  $(\mu)$  and variance  $(\sigma^2)$ .

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$$

The likelihood that our observations  $x_1, \ldots, x_N$  were generated by a univariate Gaussian with parameters  $\mu$  and  $\sigma^2$  is

Likelihood = 
$$p(x_1...x_N|\mu, \sigma^2) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x_i - \mu)^2\}$$

For MLE we want to maximize this likelihood, which is difficult because it is represented by a product of terms

Likelihood = 
$$p(x_1...x_N|\mu, \sigma^2) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x_i - \mu)^2\}$$

So we take the log of the likelihood so the product becomes a sum

Log Likelihood = 
$$\log p(x_1 \dots x_N | \mu, \sigma^2)$$
  
=  $\sum_{i=1}^N \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x_i - \mu)^2\}$ 

Since log is monotonically increasing  $\max L(\theta) = \max \log L(\theta)$ 

The log Likelihood simplifies to

$$\mathcal{L}(\mu, \sigma) = \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2} (x_i - \mu)^2\}$$
$$= -\frac{1}{2} N \log(2\pi\sigma^2) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

Which we want to maximize. How?

To maximize we take the derivatives, set equal to 0, and solve:

$$\mathcal{L}(\mu,\sigma) = -\frac{1}{2}N\log(2\pi\sigma^2) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

Derivative w.r.t.  $\mu$ , set equal to 0, and solve for  $\hat{\mu}$ 

$$\frac{\partial \mathcal{L}(\mu, \sigma)}{\partial \mu} = 0 \implies \hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Therefore the  $\hat{\mu}$  that maximizes the likelihood is the average of the data points.

Derivative w.r.t.  $\sigma^2$ , set equal to 0, and solve for  $\hat{\sigma}^2$ 

$$\frac{\partial \mathcal{L}(\mu, \sigma)}{\partial \sigma^2} = 0 \implies \hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$