Bewegung: Basierend auf Potenzialfunktionen

Al for Game Developers – Kapitel 5

Überblick

- Das "Potenzial" von Potenzialfunktionen
- Das Lenard-Jones Potenzial
- Übertrag auf ein Spiel
- Umsetzung: Chasing/Evading
- Umsetzung: Obstacle Avoidance
- Umsetzung: Swarming
- Optimierungsansätze
- Fazit (Einsatz in der Realität)

Das "Potenzial" von Potenzialfunktionen

- Warum Potenzialfunktionen?
 - Reduktion des algorithmischen Aufwands
 - eine Funktion für
 - Chasing/Evading
 - Obstacle Avoidance
 - Swarming
 - leichte Implementierung
 - "nur" Potenzialberechnung

Das Lenard-Jones Potenzial

- einfache Potenzialfunktion
 - Attraktions/Repulsions-Potenzial von Molekülen

$$U = -\frac{A}{r^n} + \frac{B}{r^m}$$

- U ist das Potenzial
- A, B, n, m Paramenter der Moleküle
- r Abstand der Moleküle

Das Lenard-Jones Potenzial

Attraction

$$-\frac{A}{r^n}$$

Repulsion

$$\frac{B}{r^m}$$

Übertrag auf ein Spiel

- Was haben wir und brauchen wir?
 - Molekül = Spieleinheit
 - Parameter = Eigenschaften bzw. Bewertung der Spieleinheit
 - Distanz
- Was können wir dann simulieren?
 - Attraktion = Chasing/Swarming
 - Repulsion = Evading/Obstacle Avoidance

Übertrag auf ein Spiel

- weiteres Features
 - beliebige Orientierung
 - "Front" einer Figur kann festgelegt werden
 - Trennung Parameter und Funktion
 - einfache Erweiterbarkeit
 - einfache Optimierung

Umsetzung: Chasing/Evading

void DoAttractCraft2(void) Vector r = Craft2.vPosition -Craft1.vPosition; Vector u = r; u.Normalize(); double U, A, B, n, m, d; A = 2000;B = 4000;n = 2; m = 3;

```
d = r.Magnitude()/
  Craft2.fLength;
U = -A/pow(d, n) +
B/pow(d, m);
Craft2.Fa = VRotate2D(
  -Craft2.fOrientation, U * u);
Craft2.Pa.x = 0;
Craft2.Pa.y = Craft2.fLength /
Target = Craft1.vPosition;
```

Umsetzung: Chasing/Evading

- Fall A:
 - A<B: Chasing und Abstand halten
- Fall B:
 - A sehr klein: Interception
- Fall C:
 - A>B: Basic Chasing
- Fall D:
 - B sehr groß: Evading

Umsetzung: Obstacle Avoidance

- Hindernisse
 - wie andere Spielfigur
 - Attraction
 - keine
 - Repulsion
 - "Material"abhängig
 - Feuer > Stein

Umsetzung: Obstacle Avoidance

Programm 2: Vereinzelte Hindernisse

- Programm 3: Box
 - Anwendungsbeispiel:
 - vordefinierte Stecke die abgelaufen werden soll
 - z.B.: Autorennen, Patrouillen

Umsetzung: Swarming

- Was ist Swarming?
 - ähnlich Flocking
 - chaotisch
 - Beispiel: Bienenschwärme
- Umsetzung
 - Schwarm als Gruppe
 - Potenzial zwischen Gruppenmitgliedern

Umsetzung: Swarming Marketzung: Marketzung

- weitere Features
 - Massenverhalten
 - Anpassung der Parameter
 - weniger "chaotisch"
 - Gruppenbewegung
 - Anführereinheit
 - keine bzw. nur geringe Repulsion
 - "organisiertes" Chaos mit Bewegungsrichtung

Optimierungsansätze

- Problem: Viele "Einheiten" = Viele Berechnungen O(n²)
- 1. Lösung: Berücksichtigung der Entfernung
 - einfacher Grenzwertcheck
 - weniger Rechenaufwand

Optimierungsansätze

- 2. Lösung: Aufteilung des Spielfeldes in kleinere Felder
 - Rasterfelder
 - Listen der "Einheiten" in den Feldern
 - nur umgebenden Feldern berücksichtigt
 - Trade Off: Speicher <> CPU-Last
- 3.Lösung: Berücksichtigung von "Paaren"
 - P(i,j) = -P(j,i)
 - Speicheraufwand: Merken der "Paare"

Fazit (Einsatz in der Realität?)

- einfache Lösung um "realistisches" Verhalten zu simulieren
- sehr aufwendig bei vielen Einheiten
- Mögliche Einsatzgebiete
 - 2001 Vom US-Militär getestet für Dismounted Infantry Semi-Automated Forces
 - allerdings geschlagen von "Cell decomposition"
 - in jeden beliebigen Echtzeit-Strategiespiel
 - aber zu rechenintensiv um bei den Großen eingesetzt zu werden
 - bei kleine Autorennspielen (2D)
 - in der <u>Animationstechnik</u>
 - Simulation von <u>Schwärmen</u>

Quellen

- Al for Game Developers
 by David M. Bourg, Glenn Seeman
- Studie des US-Militärs
 http://www.gilgameshcontrite.com/Computer_Al/pages/page_12.html
- Artificial Life and Other Experiments
 http://www.aridolan.com
- Partikel Swarm Demo <u>http://ai-depot.com/Essay/SocialInsects-Abstract.html</u>
- Die vorgestellten Programme zur Veranschaulichung sind abgewandelte Version der Beispiel Programme aus "Al for Game Developers" http://examples.oreilly.com/ai/