CIVIO2 - STRUCTURES and MATERIALS

Topic: Shear Stress

F.B.D.

| Total Applied Shear

F.B.D. of Chunk of Beam

Fin compression $\downarrow \downarrow a \rightarrow \downarrow V$ Fin compression

 \sim F if a=small $\frac{V_2}{I}$ dF

$$V_i = Part of Total Shear V$$

 $I: Fy = 0 \implies V_i' = V_i$

$$\sum F_{x} = 0 \implies \bigvee_{2} = \bigvee_{2}'$$

And couple from V2 will cancel out Force Couple from V1

$$\prod_{0=-V_{1}\cdot a} = 0$$

$$0 = -V_{1}\cdot a + V_{2}\cdot b$$

$$V_{1}\cdot a = V_{2}\cdot b$$

$$V_{2} = V_{1}\frac{a}{b}$$

21 Define Shear Stress

Force is parallel to Area

deformed Shape

F.B.D. of Shaded Region

Calculate ΔC

Force on Left =
$$\int_{y_0}^{y_{top}} dA = \int_{y_0}^{y_{top}} dA$$

AC = $\frac{(M_e - M_e)}{I} \int_{y_0}^{y_{top}} dA$

Force on Right = $\int_{y_0}^{y_{top}} dA$

Value of (MB-MA)

(MB-MA) = MB- (MB+Vdx)

= -Vdx

Take absolute value

(MB-MA) = Vdx

1855 Jourawski (Zurauski)

Txy @ Depth Yo =
$$\frac{\Delta C}{dx \cdot b}$$

Width of cross section @ depth yo

Txy = $\frac{V dx}{I}$ | $\frac{V}{V} dA \cdot \frac{1}{M \cdot b}$

Txy = $\frac{V}{Ib}$ | $\frac{V}{V} dA$

Ist Moment of Area. Q