INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

7 - ESTRUTURAS ALGÉBRICAS

- 7.1) Operações Binárias
- 7.2) Semigrupos
- 7.3) Produtos e Quocientes de Semigrupos
- 7.4) Grupos
- 7.5) Produtos e Quocientes de Grupos

- Tipo especial de monóide.
- Aplicações aonde ocorre simetria:
 - matemática, física, química, sociologia...
 - aplicações recentes: física de partículas e cubo de Rubik
- Veremos importante aplicação da teoria de grupos a códigos binários.

• Um **grupo** (G,*) é um monóide (identidade e) com a seguinte propriedade adicional:

$$\forall a \in G, \exists a' \in G \text{ tal que } a*a' = a'*a = e$$

- **Description** Logo: grupo = conjunto G + operação binária sobre G tal que:
 - 1) $(a*b)*c = a*(b*c) \ \forall a,b,c \in G$
 - 2) existe um único elemento em G tal que:

$$a * e = e * a, \ \forall a \in G$$

3) $\forall a \in G, \exists a' \in G$, chamada de **inversa** de a tal que:

$$a * a' = a' * a = e$$

▶ Note que * é uma operação binária sobre G, ou seja:

$$a*b \in G, \forall a,b \in G$$

- Para simplificar notação:
 - escreveremos a*b como ab
 - vamos nos referir a (G,*) simplesmente como G
- **●** Um grupo G é dito **abeliano** se ab = ba, $\forall a, b \in G$

- **Exemplo 1:** O conjunto dos inteiros \mathbb{Z} , com a operação de adição simples, é um grupo abeliano.
 - Se $a \in \mathbb{Z}$, a inversa de a é o seu negativo -a.
- **Exemplo 2:** O conjunto \mathbb{Z}^+ , sob a operação de multiplicação simples, não é um grupo:
 - o elemento 2 em \mathbb{Z}^+ não tem inversa
 - no entanto, este conjunto com a operação formam um monóide
- Exemplo 3: O conjunto dos reais não nulos, sob a operação de multiplicação simples, é um grupo.
 - A inversa de $a \neq 0$ é 1/a

- **Exemplo 4:** (G, *), aonde G é o conjunto dos reais não-nulos e a*b=(ab)/2 é um grupo abeliano.
 - * é uma operação binária: a*b(=ab/2) é um real não-nulo e, portanto, está em G
 - * é uma operação associativa, pois:

$$(a * b) * c = (\frac{ab}{2}) * c = \frac{(ab)c}{4}$$

 $a * (b * c) = a * (\frac{bc}{2}) = \frac{a(bc)}{4} = \frac{(ab)c}{4}$

• o número 2 é a identidade em G, pois:

$$a * 2 = \frac{(a)(2)}{2} = a = \frac{(2)(a)}{2} = 2 * a$$

• $a \in G$ tem uma inversa dada por a' = 4/a, pois:

$$a * a' = a * \frac{4}{a} = \frac{a(4/a)}{2} = 2 = \frac{(4/a)(a)}{2} = \frac{4}{a} * a = a' * a$$

• G é um grupo abeliano: $\forall a, b \in G, \ a*b = b*a$

■ Teorema 1: Todo elemento a em um grupo G tem apenas uma inversa em G.

Prova:

- Sejam a' e a'' ambas inversas de a.
- Então: a'(aa'') = a'e = a'e: (a'a)a'' = ea'' = a''
- Portanto, por associatividade: a' = a''
- lacksquare Denotaremos a inversa de a por a^{-1} .
 - Portanto, em um grupo G temos:

$$aa^{-1} = a^{-1}a = e$$

- **Teorema 2:** Sejam a, b e c elementos de um grupo G. Então:
 - (a) $ab = ac \implies b = c$ (cancelamento à esquerda)
 - (b) $ba = ca \implies b = c$ (cancelamento à direita)
- Prova de (a):
 - Suponha que: ab = ac
 - Multiplicando os dois lados à esquerda por a^{-1} :

$$a^{-1}(ab)=a^{-1}(ac)$$
 $(a^{-1}a)b=(a^{-1}a)c$ (por associatividade) $eb=ec$ (pela definição de inversa) $b=c$ (pela definição de identidade)

Prova de (b): similar.

Teorema 3: Sejam a e b elementos de um grupo G. Então:

(a)
$$(a^{-1})^{-1} = a$$

(b)
$$(ab)^{-1} = b^{-1}a^{-1}$$

Prova de (a):

- Temos: $aa^{-1} = a^{-1}a = e$
- Como a inversa é única, concluímos que: $(a^{-1})^{-1} = a$.

Prova de (b):

$$(ab)(b^{-1}a^{-1}) = a(b(b^{-1}a^{-1})) =$$

$$= a((bb^{-1})a^{-1}) = a(ea^{-1}) = aa^{-1} = e$$

- e também: $(b^{-1}a^{-1})(ab) = e$
- de modo que: $(ab)^{-1} = b^{-1}a^{-1}$

- **Teorema 4:** Sejam a e b elementos de um grupo G. Então:
 - (a) A equação ax = b tem uma solução única em G
 - (b) A equação ya = b tem uma solução única em G
- Prova de (a):
 - O elemento $x=a^{-1}b$ é uma solução da equação, pois: $a(a^{-1}b)=(aa^{-1})b=eb=b$
 - Agora suponha que existam duas soluções: x_1 e x_2 .
 - Então: $ax_1 = b$ e $ax_2 = b$
 - ullet Logo: $x_1 = x_2$
- Prova de (b): Similar.

- Se um grupo G tem um nro finito de elementos, então a sua operação binária pode ser dada por uma tabela.
- A tabela de multiplicação de um grupo $G = \{a_1, a_2, \dots, a_n\}$ sob a operação binária * deve satisfazer às seguintes propriedades:
 - linha e coluna rotuladas por e devem conter todos os elementos: a_1, a_2, \ldots, a_n
 - pelo Teorema 4: cada elemento do grupo deve aparecer exatamente uma vez em cada linha e coluna da tabela
 - portanto, cada linha/coluna:
 - \cdot é uma permutação dos elementos de G
 - determina uma permutação diferente.

- **Nota**: se G é um grupo com um número finito de elementos:
 - G é denominado um grupo finito
 - a **ordem** de G é o número de elementos |G| em G
- Vamos agora determinar as tabelas de multiplicação de todos os grupos de ordens 1, 2, 3 e 4...

- **•** Ordem 1: $G = \{e\}$
 - $\bullet ee = e$
- **Ordem 2**: $G = \{e, a\}$
 - tabela de multiplicação:

- o espaço em branco pode ser preenchido por e ou por a:
 - como não pode haver repetições:

- Ordem 3: $G = \{e, a, b\}$
 - tabela de multiplicação:

	е	а	b
е	е	а	b
а	а	?	?
b	b	?	?

experimentando um pouco:

	е	а	b
е	е	а	b
а	а	b	е
b	b	е	а

 pode-se provar que esta tabela satisfaz às propriedades de grupo (associatividade dá trabalho)

- Observe que:
 - os grupos de ordem 1, 2 e 3 são abelianos
 - existe apenas um grupo de cada ordem para uma dada rotulagem dos elementos

- Ordem 4: $G = \{e, a, b, c\}$
 - tabela de multiplicação pode ser completada de 4 modos:

	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
е	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
а	а	е	С	b	а	е	С	b	а	b	С	е	а	С	е	b
b	b	С	е	а	b	С	а	е	b	С	е	а	b	е	С	а
С	С	b	а	е	С	b	е	а	С	е	а	b	С	b	а	е

- pode-se provar que cada uma destas tabelas satisfaz às propriedades de grupo
- observe que um grupo de ordem 4 é abeliano
- veremos que, na verdade, existem apenas 2 (e não 4) grupos diferentes de ordem 4...

Exemplo: Seja a operação + sobre $B = \{0, 1\}$ definida como:

- B é um grupo.
- Neste grupo, cada elemento é a sua própria inversa.

Exemplo(1/6): Considere o seguinte triângulo equilátero:

- Nota: Uma simetria de uma figura geométrica é uma bijeção do conjunto dos pontos que formam a figura para ele mesmo, preservando a distância entre pontos adjacentes.
- Simetria de um triângulo: permutação dos vértices.

Exemplo(2/6): Simetrias do triângulo equilátero:

- $m extbf{ ilde l}_1$, l_2 e l_3 são bissectores angulares dos respectivos ângulos
- O é o seu ponto de intersecção

Exemplo(3/6): Simetrias básicas do triângulo equilátero:

1) rotação f_2 de 120° em torno de O, dada pela permutação:

$$f_2 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$$

2) rotação f_3 de 240° em torno de O, dada pela permutação:

$$f_3 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)$$

3) rotação f_1 de 360^o em torno de O, dada pela permutação:

$$f_1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right)$$

ightharpoonup a qual, é claro, pode ser vista como uma rotação de 0° em torno de O

- **Exemplo(4/6):** Também existem 3 simetrias adicionais:
 - Resultado da reflexão sobre l_1 , l_2 e l_3 , respectivamente:

$$g_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad g_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad g_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

• Observe que o conjunto de todas as simetrias do triângulo é igual ao conjunto S_3 das permutações do conjunto $\{1,2,3\}$:

$$\{\{1,2,3\},\{2,3,1\},\{3,1,2\},\{1,3,2\},\{3,2,1\},\{2,1,3\}\}$$

Portanto: $S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\}$

Exemplo(5/6):

$$S_3 = \{f_1, f_2, f_3, g_1, g_2, g_3\}$$

$$= \{\{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\}, \{1, 3, 2\}, \{3, 2, 1\}, \{2, 1, 3\}\}\}$$

• A operação de composição sobre S_3 produz a seguinte tabela de multiplicação:

0	$ f_1 $	f_2	f_3	q_1	q_2	q_3
	f_1	$\frac{32}{f_{\odot}}$	$\frac{f_0}{f_0}$	01	00	
J1	$\int \int 1$	J2	J3	g_1	92	93
f_2	$\int f_2$	f_3	f_1	g_3	g_1	g_2
f_3	f_3	f_1	f_2	g_2	g_3	g_1
g_1	g_1	g_2	$ \begin{array}{c} f_3 \\ f_1 \\ f_2 \\ g_3 \\ g_1 \\ g_2 \end{array} $	f_1	f_2	f_3
g_2	g_2	g_3	g_1	f_3	f_1	f_2
g_3	g_3	g_1	g_2	f_2	f_3	f_1

- Exemplo(6/6): Esta tabela pode ser obtida algebricamente ou geometricamente.
 - Computando $g_2 \circ f_2$ algebricamente:

$$g_2 \circ f_2 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right) \circ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right) = g_3$$

• Computando $g_2 \circ f_2$ geometricamente:

- Exemplo: O conjunto de todas as permutações de n elementos sob a operação de composição:
 - grupo de ordem n!
 - denominado de grupo simétrico sobre n letras
 - denotado por S_n
 - S_3 coincide com o grupo de simetrias do triângulo equilátero
- Nota: também faz sentido considerar o grupo de simetrias de um quadrado.
 - Só que este grupo tem ordem 8.
 - Não coincide, portanto, com S_4 , cuja ordem é 4! = 24

- **Exemplo:** O monóide \mathbb{Z}_n (seção anterior) também é um grupo:
 - falta só provar que todo elemento de \mathbb{Z}_n tem inversa:
 - seja $[a] \in \mathbb{Z}_n$
 - então: $0 \le a < n$
 - ightharpoonup por outro lado: $[n-a] \in \mathbb{Z}_n$
 - o que permite concluir:

$$[a] \oplus [n-a] = [a+n-a] = [n] = [0]$$

- $m{\wp}$ ou seja: todo [a] tem uma inversa dada por [n-a]
- ex.: em \mathbb{Z}_6 , [2] é a inversa de [4]

Em seguida: subconjuntos de grupos que são importantes...

SUBGRUPOS

- lacksquare Seja H um subconjunto de um grupo G tal que:
 - (a) a identidade e de G pertence a H
 - (b) se a e b pertencem a H, então $ab \in H$
 - (c) se $a \in H$, então $a^{-1} \in H$

Então H é chamado de **subgrupo** de G

- Nota 1: subgrupo = subsemigrupo + (a) + (c)
- ▶ Nota 2: H também é um grupo com relação à operação de G, pois a associatividade de G também vale em H

- **Exemplo:** Seja *G* um grupo:
 - G e $H = \{e\}$ são subgrupos de G
 - são os chamados subgrupos triviais de G
- **Exemplo:** Considere S_3 (simetrias do triângulo equilátero), junto com a tabela de multiplicação dada.
 - $H = \{f_1, f_2, f_3\}$ é um subgrupo de S_3
- **Exemplo(!):** Seja A_n o conjunto de todas as permutações pares no grupo S_n .
 - A_n é um subgrupo de S_n
 - é o chamado grupo alternante sobre n letras

- **Exemplo:** Seja G um grupo e seja $a \in G$:
 - Como um grupo já é um monóide, já foi definido:

$$a^n = aa \cdots a$$
 (*n* fatores) aonde: $a^0 = e$

Agora vamos definir:

$$a^{-n} = a^{-1}a^{-1} \cdots a^{-1}$$
 (*n* fatores)

• Segue que, $\forall n, m \in \mathbb{Z}$:

$$a^n a^m = a^{n+m}$$

Com isto, é fácil mostrar que é um subgrupo de G:

$$H = \{a^i \mid i \in \mathbb{Z}\}$$

A seguir: isomorfismos e homomorfismos em grupos...

Exemplo:

- Sejam:
 - G: grupo dos nros reais sob adição
 - G': grupo dos nros reais positivos sob multiplicação
- Seja $f: G \to G'$ definida como: $f(x) = e^x$
- f é um isomorfismo, pois:
 - é injetiva:

$$f(a) = f(b) \Rightarrow e^a = e^b \Rightarrow a = b$$

é sobrejetiva:

se
$$c \in G'$$
, então $\exists ln(c) \in G$ tal que: $f(ln(c)) = e^{ln(c)} = c$

as operações correspondem:

$$f(a+b) = e^{a+b} = e^a e^b = f(a)f(b)$$

Exemplo(!):

- Sejam:
 - ullet G: grupo simétrico sobre n letras
 - G': grupo $B = (\{0, 1\}, +)$ (ex. anterior)
- Então a $f: G \rightarrow G'$ definida por:

$$f(p) = \left\{ \begin{array}{ll} 0 & \text{se} \;\; p \in A_n \;\; \text{(subgrupo das permutações pares em G)} \\ 1 & \text{se} \;\; p \notin A_n \end{array} \right.$$

é um homomorfismo.

Exemplo:

- Sejam:
 - G: inteiros sob adição
 - G': grupo \mathbb{Z}_n (ex. anterior)
- Seja a $f: G \to G'$ definida por:
 - se $m \in G$, então f(m) = [r]
 - · aonde r é o resto quando m é dividido por n
- Mostrar que f é um homomorfismo de G sobre G'.
- ▶ Nota: quando n = 2, esta f atribui [0] a todo inteiro par e [1] a todo inteiro impar.

Exemplo(cont.):

- f é sobrejetora, pois: f(r) = [r]
- f é um homomorfismo:
 - ullet sejam a e b elementos de G expressos como:

$$\cdot a = q_1 n + r_1 \Rightarrow f(a) = [r_1]$$

$$b = q_2 n + r_2 \implies f(b) = [r_2]$$

 $\Rightarrow f(a) + f(b) = [r_1] + [r_2] = [r_1 + r_2]$

por outro lado:

$$r_1 + r_2 = q_3 n + r_3 \implies f(a) + f(b) = [r_3]$$

ightharpoonup somando a e b, temos:

$$\cdot a + b = q_1 n + q_2 n + r_1 + r_2 = (q_1 + q_2 + q_3)n + r_3$$

$$\Rightarrow f(a+b) = [r_1 + r_2] = [r_3]$$

$$ho$$
 portanto: $f(a+b) = f(a) + f(b)$

Teorema:

- Sejam dois grupos (G,*) e (G',*') e:
 - $f: G \to G'$ um homomorfismo de G para G'
- Daí:
 - (a) se e é a identidade em G e e' em G', então f(e) = e'
 - (b) se $a \in G$, então $f(a^{-1}) = (f(a))^{-1}$
 - (c) se H é um subgrupo de G, então:

$$f(H) = \{f(h) \mid h \in H\}$$
 é um subgrupo de G' .

lacksquare Prova: \Rightarrow

Prova da parte (a):

• Seja x = f(e):

$$x *' x = f(e) *' f(e) = f(e * e) = f(e) = x$$

- Logo: x *' x = x
- Multiplicando por x^{-1} à direita:

$$x = x *' x *' x^{-1} = x *' x^{-1} = e'$$

• Ou seja: f(e) = e'

Prova da parte (b):

$$a * a^{-1} = e$$

De modo que:

$$f(a*a^{-1}) = f(e) = e'$$

$$\Rightarrow f(a)*'f(a^{-1}) = e' \quad \text{(pois } f \text{ \'e um homomorfismo)}$$

- Similarmente: $f(a^{-1}) *' f(a) = e'$
- Logo: $f(a^{-1}) = (f(a))^{-1}$

Prova da parte (c):

- Segue de:
 - correspondência entre subsemigrupos sob um homomorfismo (teorema abaixo)
 - partes (a) e (b)

Teorema (lembrete):

- Sejam:
 - f um homomorfi smo de um semigrupo (S,*) para um semigrupo (T,*)
 - S' um subsemigrupo de (S,*).
- Então: $f(S') = \{t \in T \mid t = f(s) \text{ para algum } s \in S'\}$ é um subsemigrupo de (T, *').

- **Exemplo:** Os grupos S_3 e \mathbb{Z}_6 são ambos de ordem 6.
 - No entanto: S_3 não é abeliano e \mathbb{Z}_6 é abeliano.
 - Portanto: eles não são isomórficos.

Exemplo(1/3): Tabelas de multiplicação para grupo de ordem 4:

	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
е	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
а	а	е	С	b	а	е	С	b	а	b	С	е	а	С	е	b
b	b	С	е	а	b	С	а	е	b	С	е	а	b	е	С	а
С	a b c	b	а	е	С	b	е	а	С	е	а	b	С	b	а	е
						(2)			(3)							

- Grupos cujas tabelas sejam (2) e (3) são isomórfi cos:
 - ullet seja $G=\{e,a,b,c\}$ o grupo cuja tabela é a (2)
 - seja $G' = \{e', a', b', c'\}$ o grupo cuja tabela é a (3)
 - seja $f: G \to G'$ dada por:

$$f(e) = e'$$
 $f(a) = b'$ $f(b) = a'$ $f(c) = c'$

renomeando desta forma, as tabelas (2) e (3) fi cam iguais

Exemplo(2/3): Tabelas de multiplicação para grupo de ordem 4:

	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
е	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
а	а	е	С	b	а	е	С	b	а	b	С	е	а	С	е	b
b	b	С	е	а	b	С	а	е	b	С	е	а	b	е	С	а
С	a b c	b	а	е	С	b	е	а	С	е	а	b	С	b	а	е
						(2)			(3)							

- Grupos cujas tabelas sejam (2) e (4) são isomórfi cos:
 - ullet seja $G=\{e,a,b,c\}$ o grupo cuja tabela é a (2)
 - ullet seja $G^{\prime\prime}=\{e^{\prime\prime},a^{\prime\prime},b^{\prime\prime},c^{\prime\prime}\}$ o grupo cuja tabela é a (4)
 - seja $g: G \to G''$ dada por:

$$g(e) = e''$$
 $g(a) = c''$ $g(b) = b''$ $g(c) = a''$

renomeando desta forma, as tabelas (2) e (4) fi cam iguais

Exemplo(3/3): Tabelas de multiplicação para grupo de ordem 4:

	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
е	е	а	b	С	е	а	b	С	е	а	b	С	е	а	b	С
а	а	е	С	b	а	е	С	b	а	b	С	е	а	С	е	b
b	b	С	е	а	b	С	a	е	b	С	е	а	b	е	С	а
С	b c	b	а	е	С	b	е	а	С	е	а	b	С	b	а	е
										(3)						

- Conclusão: grupos das tabelas (2), (3) e (4) são isomórfi cos.
- Grupos das tabelas (1) e (2) não são isomórfi cos:
 - $\forall x$ na tabela (1), temos: $x^2 = e$
 - tabela (2) não apresenta esta propriedade
- De fato, existem exatamente 2 grupos não-isomórifi cos de ordem 4:
 - o grupo da tab. (1) é chamado de "grupo Klein 4" (denotado por V)
 - o grupo da tab. (2) é denotado por \mathbb{Z}_4 :
 - ightharpoonup re-rotulando os elementos de \mathbb{Z}_4 resulta nesta tabela.

Final deste item.

Dica: fazer exercícios sobre Grupos...