+I

Hochschule Karlsruhe – Data Engineering WS 2021/2022 DSCB330 – Vorlesung 4 – OPC UA

Themenübersicht

Data Integration

- Data Formats (csv, XML, json)
- Extract, Transform, Load
- Object Relation Mapper (ORM)
- Staging

Data Processing

- Relationale Datenbanken
- nicht-relationale Datenbanken
- Resource Description Framework (RDF)
- Ontologien
- Data Warehouse

Data Modelling

- Serialisierung
- OPC UA
- MQTT
- Pub/Sub
- Data pipelines
 - Apache Airflow
 - gRPC

Web-Service Architektur

- Front-End
- Backend for Frontend (BFF)
- Micro Services
- Docker Container

Security

 Security ist wichtig in allen Phasen der Softwareentwicklung und Datenbereitstellung.

Übung

- Erstellung eines Daten-Modells einer prozesstechnischen Anlage
- Statische Daten
- Dynamische Daten
- Auswertung der Daten

Standards für den Datenaustausch Machine-to-Machine (M2M)

MQTT

- + Pub/sub-Architektur
- Clients veröffentlichen Nachrichten (publish)
- Server verteilt Nachrichten an "subscribed" clients
- + Keine Semantik

AMQP

- + Senden: Clients produzieren Nachrichten
- Server verteilt (konfigurierbar) die Nachrichten, z.B. pub/sub, round-robin
- + Clients können den Empfang und die Abarbeitung bestätigen
- + Empfangen: Clients konsumieren Nachrichten

OPC UA

- + Open Platform Communications Unified Architecture
- + plattformunabhängige, service-orientierte Architektur
- Transport von Maschinendaten (Regelgrößen, Messwerten, Parametern, HMI-Beschreibung, ...)
- inklusive semantischer Beschreibung
- + Integriertes Security-Konzept (UA Security)
- + Standardisierung IEC 62541

+ OPC UA is recognized as "the most important interoperability technology in today's industrial landscape"

OPC Foundation

- + Non-profit organization
- + Standardisierung von OPC UA
- + Zertifizierung von OPC UA Servern und Clients

OPC UA Spezifikation (Auswahl)

- + Information Model
- + Data Access
- + Alarms and Conditions
- + Historical Data Access
- + Pub/sub
- + Method execution

Feature

- + Redundanz
- + Heartbeat (Verbindungsüberwachung)
- + Pufferung (Verbindungsunterbrechungen führen nicht zu Datenverlust)

Protokolle

- + Binärprotokoll
- beste Performance, am wenigsten Overhead
- beste Interoperabilität
- Port 4840
- + Webservice (SOAP)
- Port 80 bzw. 443

Quelle: https://opcfoundation.org/; https://opcfoundation.org/; https://opcfoundation.org/; https://opcfoundation.org/; <a href="https:/

OPC UA Kommunikationsstack

+ Für Server und Client

OPC UA Informationsmodell

+ Erweiterbares Informationsmodell

OPC UA Struktur

- + Knotengeflecht (Netzwerk)
- + Root (NodeID 84)
- + Navigation in mehrere Richtungen
- + hasProperty: Blatt (Ende)
- + hasComponent: Ast (mit weiteren Verzweigungen)

Nutzen

- + Im Dictionary können alle Instanzen "Manufacturer" abgefragt werden
- Über die Typ-Definition k\u00f6nnen z.B. alle Temperaturmessger\u00e4te gefunden werden

Quelle: https://opcfoundation.org/about/opc-technologies/opc-ua/; https://opcfoundation.org/about/opc-ua/; https://opcfoundation.org/about/opc-ua/; https://opc-ua/; https://opc-ua/; https://opc-ua/; h

Hochschule Karlsruhe | Data Engineering | DSCB330 | VL 4 | WS 2021/2022 | Dipl.-Phys. Thomas Bierweiler 21.10.2021

OPC UA Server in einer prozesstechnischen Anlage

- Steuerung stellt Messwerte der angeschlossenen Feldgeräte bereit
- Geräte können zur Laufzeit angeschlossen werden
- Datentyp des Geräts entspricht nicht immer dem Datentyp des OPC **UA Servers**
- z.B. Gerät misst °F, OPC UA schreibt °C vor → Konvertierung

AFDiSD

Quelle: https://reference.opcfoundation.org/PADIM/docs/8.3/; https://www.automation.siemens.com/bilddb/search.aspx?lang=de&aktprim=0&usestructure=2&nodeid=5309999 (G PCS7 DE 00636V.svg)

Hochschule Karlsruhe | Data Engineering | DSCB330 | VL 4 | WS 2021/2022 | Dipl.-Phys. Thomas Bierweiler 21.10.2021

OPC UA Semantische Anreicherung

Companion Information Model – PA-DIM™

- + OPC 10000-5 Part 5: Information Model beschreibt das Informationsmodell von OPC UA
- + PA-DIM ist eine Erweiterung der OPC UA Spezifikation für die Prozessautomation
- + IRDI (International Registration Data Identifier) beschreibt auf Basis des Common Data Dictionary den Eintrag

Common Data Dictionary (CDD)

- + https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/TreeFrameset?O penFrameSet&ongletactif=1
- + IEC 61987 für die Prozessautomation
- + Link zur Definition von TemperatureMeasurementVariableType im CDD (0112/2///61987#ABA927#005)
- https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/e0e56d2682a34311c12575560058d
 c1c/abb5fa161d39c458c1258518003c488c?OpenDocument&Highlight=0,ABA927

8 PA-DIM Variable Extensions ↑ ⊙ ⊙

8.3 TemperatureMeasurementVariableType ↑ ⊙ ⊙ ■

The TemperatureMeasurementVariableType is a subtype of the AnalogSignalVariableType. It is formally defined in Table 27.

Attribute	Value	
BrowseName	TemperatureMeasurementVariableType	
IsAbstract	False	
ValueRank	−2 (−2 = 'Any')	
DataType	Float	

Subtype of AnalogSignalVariableType

References	NodeClass	BrowseName	DataType	TypeDefinition	Modelling Rule
0:HasComponent	Variable	SensorType	0:UInt32{Any}	0:MultiStateDictionaryEntryDiscreteType	0:Mandatory
0:HasComponent	Variable	SensorConnection	0:UInt32{Any}	0:MultiStateDictionaryEntryDiscreteType	0:Optional
0:HasComponent	Variable	SensorReference	0:UInt32{Any}	0:MultiStateDictionaryEntryDiscreteType	0:Optional
0:HasDictionaryEntry	Object	3:0112/2///61987#ABA927#005		0:IrdiDictionaryEntryType	

Short name:	Temperature
Definition:	for a physical system exchanging quantities of heat with two bodies, during a reversible cycle, a positive state quantity characterizing each body and proportional to the quantity of heat exchanged with this body

Quelle: https://reference.opcfoundation.org/Core/docs/Part5/; https://reference.opcfoundation.org/PADIM/docs/; https://reference.opcfoundation.org/PADIM/docs/8.3/

Hochschule Karlsruhe | Data Engineering | DSCB330 | VL 4 | WS 2021/2022 | Dipl.-Phys. Thomas Bierweiler 21.10.2021

OPC UA PA-DIM

+1

PA-DIM™

- + Übung 14-OPC-UA-Siemens-intern
- + PADIM: Types → ObjectTypes → TopologyElementType →
 ComponentType → PADIMType

- Vererbung: PADIMType definiert f
 ür den Manufacturer den "HasDictionaryEntry"-Eintrag
- + Pressure Transmitter: Anzeige aller Instanzen, Navigation zu den Instanzen über "Show in address space"

	PAProfile3ProcessControlAlType Device diagnostic status
>	PAProfile3ProcessControlPFLPressTransmitter
	PAProfile3ProcessControlPFPressTransmitter
>	PAProfile3ProcessControlPLPressTransmitter
>	¶ PAProfile3ProcessControlPPressTransmitter
>	PAProfile3ProcessControlPressTransmitterType

References					
夕 よ 像 Both	1 ▼				
Reference	Target DisplayName				
HasComponent	SignalSet				
TypeDefinitionOf	PBP3_PAbs_SN76921				
TypeDefinitionOf	PBP3_PAbs_SN90751				
TypeDefinitionOf	PBP3_PAbs_SN27349				
TypeDefinitionOf	PBP3_PAbs_SN23421				
SubtypeOf	PAProfile3ProcessControlAlType				

Hochschule Karlsruhe | Data Engineering | DSCB330 | VL 4 | WS 2021/2022 | Dipl.-Phys. Thomas Bierweiler 21.10.2021

Dictionaries

- + Übung 14-OPC-UA-Siemens-intern
- + Begriffsdefinitionen unter Root → Objects → Server →
 Dictionaries

- + Instanzen der Feldgeräte
- Root → Objects → DeviceSet

- Objects
 - > 🗎 Aliases
 - DeviceSet
 - > 💫 DeviceFeatures
 - > A PBP3_Act_EIPneu_AA12311
 - > BP3_Act_EIPneu_ABCD123
 - > Act_EIPneu_B123123
 - > BP3_Act_EIPneu_SN12312
 - PBP3_PAbs_SN23421
 - Asset ID
 - Device diagnostic status
 - Hardware revision
 - Manufacturer
 - Model
 - Product code
 - Revision counter
 - Serial number
 - 🗸 읋 SignalSet
 - Pressure
 - > Process value
 - Tag
 - Software revision
 - URI of Manufacturer
 - URI of Product instance

Sample Server

- + Übung 15-OPC-UA
- + https://github.com/OPCFoundation/UA-.NETStandard-Samples
- + Navigate to the folder **Samples/NetCoreConsoleServer**
- + dotnet run --project NetCoreConsoleServer.csproj -a
- + Sample server on the internet
- + http://opclabs.doc-that.com/files/onlinedocs/QuickOpc/Latest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/User's%20Guide%2
 opclatest/Opc/Latest/User's%20Guide%2
 opclatest/Opc/Latest/User's%20Guide%2
 <a href="mailto:opclabs.doc-that.com/files/opc/Latest/User's%20Guide%2
 <a href="mailto:opclabs.doc-that.com/files/opc/Latest/User's%20Guide%2
 opclatest/Opc/Latest/User's%20Guide%2
 opclatest/Opc/Latest/User's%20Guide%2
 opclatest/Opc/Latest/User's%20Guide%2
 opclatest/Opc/Latest/User's%20Guide%2
 <a href="mailto:opc/Latest/User's%20Gu

Python Sample Server – FreeOpcUa

- + Übung 16-OPC-UA-server-minimal-python
- + https://github.com/FreeOpcUa
- + https://github.com/FreeOpcUa/python-opcua
- + Neuere Version:https://github.com/FreeOpcUa/opcua-asyncio

OPC UA Clients

- + Unified Automation UaExpert
- https://www.unifiedautomation.com/de/produkte/entwicklerwerkzeuge/uaexpert.
 html
- + Integration Objects' OPC UA Client
- https://opcfoundation.org/products/view/opc-ua-client-freeproduct
- https://integrationobjects.com/sioth-opc/sioth-opc-unified-architecture/opc-ua-client/

Übungsaufgabe 7

OPC UA Client

+ Nutzen Sie als OPC UA Server entweder den öffentlichen OPC UA Sample Server, siehe

http://opclabs.doc-

that.com/files/onlinedocs/QuickOpc/Latest/User's%20Guide %20and%20Reference-

QuickOPC/OPC%20UA%20Sample%20Server.html

oder

- + starten Sie den OPC UA Server lokal https://github.com/OPCFoundation/UA-.NETStandard-Samples
- Navigate to the folder Samples/NetCoreConsoleServer
- dotnet run --project NetCoreConsoleServer.csproj –a
- Für die Ausführung des NetCoreConsoleServer benötigen Sie die ASP.NET Core Runtime 2.0.9 https://dotnet.microsoft.com/download/dotnet/2.0

- + Programmieren Sie einen OPC UA-Client (z.B. auf Basis von https://github.com/FreeOpcUa/opcua-asyncio), der
- sich mit dem OPC UA Server verbindet und
- die Werte Boiler #1/Drum1001/LIX001/Output, Boiler #1/FC1001/Measurement, Boiler #2/Pipe2002/FTX002/Output ausliest.

Hinweis zu www.timeseries.com

Algorithmus zur Klassifikation von Zeitreihen

- + ROCKET: Random Convolutional Kernel Transform
- ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels; Dempster et.al.; Data Mining and Knowledge Discovery (2020) 34:1454– 1495; 2020
- https://doi.org/10.1007/s10618-020-00701-z
- + http://www.timeseriesclassification.com/algorithmdescriptio
 n.php?algorithm id=13
- + Verschiedene Implementierungen verfügbar, u.a.
- https://pyts.readthedocs.io/en/stable/auto_examples/transf ormation/plot_rocket.html

Übung zu AMQP

- + 13-AMQP-RabbitMQ-WQ-SQL
- + Ziel: zuverlässige Übertragung von Nachrichten und Abarbeitung eines Tasks bei Ausfall eines Workers (Consumers)

Übungsaufgabe zur Graphdatenbank

+ Uebungsaufgaben/04-Graphdatabase

