

Universidade do Minho

Algebra Linear	LCC	Teste 2	20/12/201	L9	Duração: 2h	Α	Escola de Ciências
Nome:					N	Vúme	ro:
			Grupo	Ι			
correta é atribuíd	a uma cota	ção de $1.25\mathrm{v}$	valores (apen	as ur	na das opções de re na resposta está co ío mínima total des	orreta)	e a uma resposta
1. O seguinte	conjunto A	F é um sube	espaço vetori	al de	\mathbb{R}^3 .		
	[(0,0,0),(0	(2,0), (0,-2)	$\{0,0\}$.		$F = \{(x, 2x, z) :$	$x,z \in$	$\mathbb{R}\}.$
2. Seja V um	espaço vet	sorial real e	$(oldsymbol{v}_1,oldsymbol{v}_2,oldsymbol{v}_3)$ 1	ıma	base de V .		
	(v_1, v_2, v_3) também é uma base de V etor nulo 0_V não pode escrever-se				$\{v_1, v_2, v_2 + v_3\}$ é um conjunto linearmente dependente.		
		o linear de a			$ \{v_1, v_2, v_3, 2v_1\} $ gerador de V .	não	é um conjunto
3. Seja $S = \{$	$(\alpha + \beta, \alpha -$	(-eta,2lpha):lpha,eta	$\beta \in \mathbb{R}$.				
	(1, 1, 2), (1,	-1,0),(1,0)	$,1)\rangle.$		S é um subespaç	o de F	\mathbb{R}^3 de dimensão 1.
$\boxed{ \qquad } (1,1,1)$	$1) \in S$.				$S = \mathbb{R}^3$.		
4. Seja $f: \mathbb{R}^3$	$\longrightarrow \mathbb{R}^4$ um	na aplicação	linear e A_f	a ma	atriz de f . Se car($(A_f) =$	= 3, então
Nuc()	$f)=\{0_{\mathbb{R}^3}\}.$				f é sobrejetiva.		
	é injetiva.				Nuc(f) é um sub dimensão 1.	espaç	o de \mathbb{R}^3 com
5. Sejam A_g = respetivam		$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} e A_h = \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} $ as m	atriz	es associadas às a	plicaç	ões lineares $g \in h$,
	elicações g definidas.	$\circ h \in h \circ g$ es	stão ambas		A aplicação αg , definida e (αg)		$\alpha \in \mathbb{R}$, está bem $\alpha = (2, 1, -1)$.
		g está bem = $(2,1,-1)$.	definida e		A aplicação $g \circ (g \circ h)(1,1) = (2)$		á bem definida e 2).

6. Seja $p(\lambda) = \lambda(\lambda - 1)^2(\lambda - 2)$ o polinómio característico de uma dada matriz A. Então,

A é invertível e 1 e $\frac{1}{2}$ são valores o sistema Ax = 0 tem solução única. próprios de A^{-1} .

os valores próprios de A são 0, 1 e 2, o sistema (A - 2I)x = 0 é possível e com a mesma multiplicidade algébrica.

Grupo II

Neste grupo as respostas a todos as questões devem ser devidamente justificadas.

- 1. [3 valores] Considere os vetores $\boldsymbol{u}_1=(0,0,1,1),\ \boldsymbol{u}_2=(0,1,1,1),\ \boldsymbol{u}_3=(1,1,1,2)$ e $\boldsymbol{u}_4=(-1,0,1,0)$ e o subespaço $S=\langle \boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3,\boldsymbol{u}_4\rangle$ de \mathbb{R}^4 .
 - (a) Verifique se os vetores u_1 , u_2 , u_3 e u_4 são linearmente independentes. Qual a dimensão de S?
 - (b) Determine os vetores $(x, y, z, w) \in \mathbb{R}^4$ que pertencem a S.
 - (c) Determine α de modo que o vetor $(1, -1, 0, \alpha)$ pertença a S.
- 2. [2.5 valores] Considere a aplicação linear $g: \mathbb{R}^4 \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$ definida por

$$g(a,b,c,d) = \begin{bmatrix} a & b+d \\ c-d & a \end{bmatrix}$$
, para $(a,b,c,d) \in \mathbb{R}^4$.

- (a) Determine um vetor $\boldsymbol{u} \in \mathbb{R}^4$ tal que $\boldsymbol{u} \neq (1,1,1,1)$ e $g(\boldsymbol{u}) = g(1,1,1,1)$.
- (b) Determine uma base para Nuc(g) e uma base para Im(g).
- 3. [2.5 valores] Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ a transformação linear tal que

$$T(1,1) = (1,3,1), T(-1,1) = (-1,0,2).$$

- (a) Determine T(x, y), para qualquer $(x, y) \in \mathbb{R}^2$.
- (b) Determine a representação matricial de T relativamente às bases canónicas.
- 4. [3 valores] Considere a matriz

$$A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 1 & 1 & 4 \end{bmatrix}.$$

- (a) Mostre que os valores próprios de A são 2 e 4.
- (b) Indique os valores próprios de $(A-5I)^3$.
- (c) Determine a dimensão do subespaço próprio associado ao maior valor próprio de A.
- (d) Apresente, se possível, uma matriz invertível P tal que $P^{-1}AP = D$, com D diagonal.
- 5. [1.5 valores] Seja $f: E \longrightarrow E'$ uma aplicação linear. Mostre que se $u_1, u_2, \ldots, u_k \in E$ são vetores linearmente dependentes, então $f(u_1), f(u_2), \ldots, f(u_k) \in E'$ são também linearmente dependentes. A afirmação recíproca é verdadeira?