

12th International Satisfiability Modulo Theories Competition

SMT-COMP 2017

Matthias Heizmann (co-organizer) Giles Reger (co-organizer) Tjark Weber (chair)

Outline

- Main changes over last competition
 - ▶ Benchmarks with 'unknown' status
 - Logics with algebraic data-types
 AUFBVDTLIA, AUFDTLIA, QF_DT, UFDT, UFDTLIA
 - Unsat-core Track

Statistics and selected results of competition

Short presentation of solvers
 Boolector, COLIBRI, CVC4, SMTInterpol, veriT, Yices

SMT-COMP - Procedure

Solvers, Logics, and Benchmarks

- 15 teams participated
- Solvers:

Logics:

► Benchmarks:

StarExec

Cluster of machines at the University of Iowa.

Hardware:

- ▶ Intel Xeon CPU E5-2609 @ 2.4 GHz, 10 MB cache
- 2 processors per node, 4 cores per processor
- Main memory capped at 60 GB per job pair

Software:

- Red Hat Enterprise Linux Server release 7.2
- Kernel 3.10.0-514, gcc 4.8.5, glibc 2.17

Main Track

```
Main Track benchmark
  (set-logic ...)
  (set-info ...)
  (declare-sort ...)
  (define-sort ...)
  (declare-fun ...)
  (define-fun ...)
  (assert term0)
  (assert term1)
  (assert term2)
  (check-sat)
  (exit)
```

```
any number of
set-info, declare-sort, define-sort,
declare-fun, define-fun, assert
in any order
```

← one single check-sat command

Benchmarks with 'unknown' status

Some benchmarks in SMT-LIB repository do not have a sat/unsat status.

Benchmarks with 'unknown' status in SMT-COMP

not used in competition

2015

separate experimental track

2017 included in Main Track

New logics

Algebraic data-types

- defined in SMT-LIB 2.6 draft
- "experimental" this year (i.e., no winner determined)

	benchmarks	solvers
AUFBVDTLIA	1709	CVC4
AUFDTLIA	728	CVC4, vampire
QF_DT	8000	CVC4
UFDT	4535	CVC4, vampire
UFDTLIA	303	vampire, CVC4

Benchmarks with 'unknown' status

Rules

- we trust the results of the solver(s)
- ▶ in case of disagreement we trust solvers that are sound on benchmarks with known status
- ▶ if there is disagreement between otherwise sound solvers, we exclude the benchmark

Benchmarks with 'unknown' status

Rules

- we trust the results of the solver(s)
- in case of disagreement we trust solvers that are sound on benchmarks with known status
- ▶ if there is disagreement between otherwise sound solvers, we exclude the benchmark

Outcome

- ► There were 29 benchmarks with unknown status on which solvers disagreed on the result.
- ▶ On one benchmark (in BV) the corresponding solvers were sound on all benchmarks with known status.
- On 28 benchmarks (all in QF_FP) the presumably wrong answers were given by unsound solvers.

Competition run of Main Track

- run all job pairs with 10 min timeout
- made preliminary results available
- rerun all job pairs that timed out with 20 min timeout
- made final results available on Friday (21st June)

Main Track - Selected results - QF_ABV

Benchmarks in this division: 15061

Winners:

Sequential Performances	Parallel Performances
Boolector	Boolector

Result table¹

Solver	Sequential performance			Parallel performance			
Solver	Error Score	Correctly Solved Score	CPU time Score	Errors	Correct Score	CPU Score	WALL Score
Boolector	0.000	14627.624	56.054	0.000	14627.624	56.054	56.101
CVC4	0.000	13136.950	155.681	0.000	13136.950	155.681	162.762
Yices2	0.000	14515.846	65.395	0.000	14515.846	65.395	65.207
mathsat-5.4.1ª	0.000	13098.157	155.650	0.000	13098.157	155.651	155.727
z3-4.5.0 <u>n</u>	0.000	13115.900	171.596	0.000	13115.900	171.597	171.665

n. Non-competing.

http://smtcomp.sourceforge.net/2017/results-QF_ABV.shtml

Main Track: Competition-Wide Scoring

Rank	Solver	Score (sequential)	Score (parallel)
	Z3	171.99	171.99
1	CVC4	161.38	161.76
2	Yices2	110.63	110.63
3	SMTInterpol	65.96	66.00

Application Track

Logic	Solvers	Benchmarks	S Order (parallel performance)	
ANIA	2 3 CVC4; z3-4.5.0 <u>n</u>			
QF ANIA	2	5	z3-4.5.0 <u>n</u> ; CVC4	
QF ALIA 5 44 QF UFNIA 2 1		44	z3-4.5.0 <u>n</u> ; SMTInterpol; Yices2; mathsat-5.4.1 <u>n</u> ; CVC4	
		1	z3-4.5.0 <u>°</u> ; CVC4	
QF BVFP	1	2	z3-4.5.0 <u>n</u>	
LIA	2	6	z3-4.5.0 <u>n</u> ; CVC4	
ALIA	2	24	z3-4.5.0 <u>n</u> ; CVC4	
QF UFLRA	5	3056	Yices2; z3-4.5.0 ⁿ ; SMTInterpol; CVC4; mathsat-5.4.1 ⁿ	
<u>UFLRA</u> 2 1870 z3-4.5.0 <u>n</u> ; CVC4		z3-4.5.0 <u>°</u> ; CVC4		
QF UFLIA	5	780	z3-4.5.0 ⁿ ; CVC4; Yices2; SMTInterpol; mathsat-5.4.1 ⁿ	
QF NIA 2 10 CVC4; z3-4.5.0 ⁿ QF FP 1 2 z3-4.5.0 ⁿ QF BV 4 18 mathsat-5.4.1 ⁿ ; Yices2; CVC4; z3-4.5.0 ⁿ		10	CVC4; z3-4.5.0 ⁿ	
		z3-4.5.0 <u>n</u>		
		mathsat-5.4.1 <u>n</u> ; Yices2; CVC4; z3-4.5.0 <u>n</u>		
QF LRA	LRA 6 10 mathsat-5.4.1 ⁿ ; SMTInterpol; Yices2; z3-4.5.0 ⁿ ; CVC4; opens			
QF LIA 5 68 Yices2; z3-4.5.0 ⁿ ; SMTInterpol; maths:		Yices2; z3-4.5.0 <u>n</u> ; SMTInterpol; mathsat-5.4.1 <u>n</u> ; CVC4		
QF AUFLIA	5	72	Yices2; z3-4.5.0 <u>n</u> ; SMTInterpol; CVC4; mathsat-5.4.1 <u>n</u>	

Motivation

- ► Important application of SMT-LIB
- One step towards verifiable proofs

History 2012 introduced discontinued 2016 reinstated as experimental track 2017 "regular" track

Main Track benchmark

```
(set-logic ...)
(set-info ...)
...
(declare-sort ...)
(define-sort ...)
(define-fun ...)
(define-fun ...)
(assert term0)
(assert term1)
(assert term2)
...
(check-sat)
(exit)
```

Solver input

```
(set-option :produce-unsat-cores true)
(set-logic ...)
(set-info ...)

...
(declare-sort ...)
(define-sort ...)
(define-fun ...)
(define-fun ...)
(assert (! term0 :named y0))
(assert (! term1 :named y1))
(assert (! term2 :named y2))

...
(check-sat)
(get-unsat-core)
(exit)
```

```
Main Track benchmark
                           Solver input
                             (set-option :produce-unsat-cores true)
  (set-logic ...)
                             (set-logic ...)
  (set-info ...)
                             (set-info ...)
  (declare-sort ...)
                             (declare-sort ...)
  (define-sort ...)
                             (define-sort ...)
 (declare-fun ...)
                             (declare-fun ...)
  (define-fun ...)
                             (define-fun ...)
  (assert term())
                             (assert (! term0 :named y0))
  (assert term1)
                             (assert (! term1 :named y1))
  (assert term2)
                             (assert (! term2 :named y2))
  (check-sat)
                             (check-sat)
  (exit)
                             (get-unsat-core)
                             (exit)
                                          Solver output
              timeout: 40min
                                            unsat
                                            (y0 y2)
```


unknown/

unsat

unknown/

unsat

unknown/

unsat

unknown/

unsat

Unsat-core Track – Statistics

Unsat-core Track - Statistics

- ▶ 19 times there was no consensus among the validating solvers (→ majority decision)
- ▶ 27525 (~12%) times no independent validating solver approved the correctness of the unsatisfiable core

(Very) short presentations of

Solvers

that sent us slides.

Boolector, COLIBRI, CVC4, SMTInterpol, veriT, Yices

Boolector at the SMTCOMP'17

Aina Niemetz, Mathias Preiner, Armin Biere

Divisions

BV QF_BV QF_UFBV QF_ABV QF_AUFBV

Changes since 2016 (QF_BV)

- combination of prop.-based local search + bit-blasting now default
- experimental configuration with new SAT solver CaDiCaL

Major Improvements

- BV engine at SMT-COMP 2016 was a prototype implementation
 - --- rewrite of BV engine with major improvements

COLIBRI (QF_FP, QF_BVFP)

- ▶ 776 errors due to a wrong backward propagation for fp.fma
- ▶ 1 error due to a mix between -0. and +0.

On the 308, non Wintersteiger benchmark of QF_FP in sec.

CVC4 1.5

Clark Barrett (Stanford), Martin Brain (Oxford), Guy Katz (Stanford), Tim King (Google), Paul Meng (U Iowa), Aina Niemetz (Stanford), Mathias Preiner (Stanford), Andres Nötzli (Stanford), Andrew Reynolds (U Iowa), Cesare Tinelli (U Iowa)

SMT 2017, July 22, 2017

CVC4 1.5: Recent Developments

- A new theory of sets with cardinality and relations.
- A new theory of strings.
- A new theory of separation logic constraints.
- Support for many new heuristics for reasoning with quantifiers, including finite model finding.
- Improved heuristics for reasoning about non-linear arithmetic.
- Support for proofs for uninterpreted functions, arrays, bitvectors, and their combinations.
- Support for unsat cores.
- Native support for syntax-guided synthesis (sygus).

Contact

We aim for CVC4 to be a versatile research platform for SMT and are open to collaborators and contributors.

For more information:

- Contact one of the project leaders:
 - Clark Barrett barrett@cs.stanford.edu
 - Cesare Tinelli cesare-tinelli@uiowa.edu
- Visit the website: cvc4.stanford.edu

SMTInterpol [8]

decides Satisfiability Modulo Theory computes Craig Interpolants

SMTInterpol SMTInterpol

decides **S**atisfiability **M**odulo **T**heory computes Craig **Interpol**ants

SMTInterpol SMTInterpol

decides **S**atisfiability **M**odulo **T**heory computes Craig **Interpol**ants

decides Satisfiability Modulo Theory computes Craig Interpolants

decides **S**atisfiability **M**odulo **T**heory computes Craig **Interpol**ants

decides **S**atisfiability **M**odulo **T**heory computes Craig **Interpol**ants

decides **S**atisfiability **M**odulo **T**heory computes Craig **Interpol**ants

http://ultimate.informatik.uni-freiburg.de/smtinterpol

http://www.veriT-solver.org

Haniel Barbosa, Pascal Fontaine, Maximilian Jaroschek, Marek Kosta, Thomas Sturm, and Vu Xuan Tung

University of Lorraine, CNRS, Inria, and LORIA (France), MPI Informatics and Saarland University (Germany), and JAIST (Japan)

What is new:

- few improvements for quantifier handling
- fine-grained proofs for formula processing
- veriT+raSAT+Redlog for supporting QF [UF]NRA
- veriT+Redlog for better handling (N|L)RA

Goals:

- clean, small SMT for UF(N|L)IRA with quantifiers and proofs
- ▶ for verification platforms (e.g. B, TLA+) and proof assistants (e.g. Isabelle, Coq)

Yices 2.6

Bruno Dutertre and Dejan Jovanović SRI International

> SMTCOMP 2017 Heidelberg, Germany

Yices 2.6 in SMTCOMP 2017

Status

- No major change since last year
- o Supports linear and non-linear arithmetic, arrays, UF, bitvectors
- Limited quantifier reasoning: ∃∀ fragments for bitvector, LRA
- Includes two types of solvers: classic DPPL(T) + MC-SAT

Entered in all the divisions that Yices supports

- Main track: Quantifier-free logics including linear and nonlinear arithmetic, bitvectors, and combination with UF and Arrays.
- Application track: Same logics, except that the MC-SAT solver is not incremental yet.

1

What's New

New Licence

o Yices 2 is now GPL

Distributions

- Prebuilt binaries + source tarfile at http://yices.csl.sri.com
- o Git repository on Github https://github.com/SRI-CSL/yices2
- Ubuntu/Debian package
- Homebrew package for MacOS X

2

What's Next

MC-SAT Extensions

- o Add support for incremental solving
- o Extends MC-SAT to bitvector problems

CDCL Solver

New sat solver in progress

Miscellaneous

- o Complete support for SMT-LIB 2.6
- Fix some API issues

3

Teams:

- ► Congratulations on your accomplishments!
- ► Thanks for your participation!