

PECL2 – PLANIFICACIÓN DE REDES Y SUB-REDES

Redes de Computadores Ingeniería Informática

6 DE MARZO DE 2019

ROBERT PETRISOR X9441429K Y DAVID MÁRQUEZ 47319570Z Laboratorio 12-14H

2. Actividades

2.1 Creación de la Topología

Utilizando el simulador Cisco Packet Tracer, creamos la topología que se muestra en la siguiente imagen:

2.2 Diseño del esquema de Direcciones

Tomando como espacio de direcciones el rango 192.168.1.0/24, podremos elaborar la asignación de las direcciones IP de la siguiente manera:

192.168.1.0/24, nos indica que los 24 primeros bits, pertenecen al prefijo de la red. Es decir, 192.168.1.X. Los 8 bits restantes, pertenecen al resto de la subred. Como 2⁸=256, tenemos a nuestra disposición 256 direcciones posibles. En nuestra topología se puede observar 7 subredes (4 de área local (LAN) y 3 de área extensa(WAN)), que dependiendo de los bits que tomemos podrán contener más o menos hosts.

Redes de área local (LAN)							
Router	Router Interfaz del router Número de hosts previsto						
R1	Fa0/0	60					
R2.	Fa0/0	10					
IN.Z	Fa0/1	30					
R3	Fa0/0	7					

Redes de área extensa (WAN)						
Conexión	Número de hosts previsto	Primera IP asignable				
R1-R2	2	S0/0/0 en R1				
R1-R3	2	S0/0/1 en R1				
R2-R3	2	S0/0/1 en R2				

Si lo ordenamos de mayor a menor, obtendríamos lo siguiente:

R1 (Fa 0 0) (Subred 1)	60 Hosts / 126
R2 (Fa 0 1) (Subred 2)	30 Hosts / 62
R2 (Fa 0 0) (Subred 3)	10 Hosts / 30
R3 (Fa 0 0) (Subred 4)	7 Hosts / 14
R1-R2 (S 0 0 0 en R1)	2 Hosts / 2
(Subred 5)	
R1-R3 (S 0 0 1 en R1)	2 Hosts / 2
(Subred 6)	
R2-R3 (S 0 0 1 en R2)	2 Hosts / 2
(Subred 7)	

El diseño sería el siguiente:

Con todo esto, obtenemos la siguiente información:

En cuanto a las conexiones de área de red local, tenemos:

Subred 1

Direcciones IP: 192.168.1.X (128 direcciones posibles)

Donde X = 0, 1, 2, ..., 127.

- 192.168.1.0 es la dirección a la que pertenece a la subred
- 192.168.1.127 es la dirección a la que pertenece a la broadcast
- El resto son direcciones IP que se van asignando a hosts / routers

Subred 2

Direcciones IP: 192.168.1.X (64 direcciones posibles)

Donde X = 128, 129, 130, ..., 191.

- 192.168.1.128 es la dirección que pertenece a la subred
- 192.168.1.191 es la dirección que pertenece a la broadcast
- El resto son direcciones IP que se van a asignando a hosts / routers.

Subred 3

Direcciones IP: 192.168.1.X (32 direcciones posibles)

Donde X = 192, 193, 194, ..., 223.

- 192.168.1.192 es la dirección que pertenece a la subred
- 192.168.1.223 es la dirección que pertenece a la broadcast
- El resto son direcciones IP que se van a asignando a hosts / routers

Subred 4

Direcciones IP: 192.168.1.X (16 direcciones posibles)

Donde X = 224, 225, 226., ..., 239

- 192.168.1.226 es la dirección que pertenece a la subred
- 192.168.1.239 es la dirección que pertenece a la broadcast
- El resto son direcciones IP que se van a asignando a hosts / routers

Y con respecto a las conexiones de área de red extensas, tenemos:

Subred 5

Direcciones IP: 192.168.1.X (4 direcciones posibles)

Donde X = 240, 241, 242, 243.

Subred 6

Direcciones IP: 192.168.1.X (4 direcciones posibles)

Donde X = 244, 245, 246, 247.

Subred 7

<u>Direcciones IP:</u> 192.168.1.X (4 direcciones posibles)

Donde X = 248, 249, 250, 251.

Subred Libre

Direcciones IP = 192.168.1.X (4 direcciones disponibles)

Donde X = 252, 253, 254, 255.

2.3 Configuración de las Interfaces

Equipos	Dirección IP	Máscara de Red	Gateway	Subred
	-		•	
PC-1A	192.168.1.2	225.255.255.128	192.168.1.1	1
PC-1B	192.168.1.125	225.255.255.128	192.168.1.1	1
PC-1C	192.168.1.126	255.255.255.128	192.168.1.1	1
PC-2A	192.168.1.194	225.255.255.224	192.168.1.193	3
PC-2B	192.168.1.221	225.255.255.224	192.168.1.193	3
PC-2C	192.168.1.222	255.255.255.224	192.168.1.193	3
Server_Eagle	192.168.1.130	225.255.255.192	192.168.1.129	2
PC-3A	192.168.1.189	225.255.255.192	192.168.1.129	2
PC-3B	192.168.190	255.255.255.192	192.168.1.129	2
PC-4A	192.168.1.226	225.255.255.240	192.168.1.225	4
PC-4B	192.168.1.237	225.255.255.240	192.168.1.225	4
PC-4C	192.168.1.238	255.255.255.240	192.168.1.225	4

Routers	Direcciones IP	Máscara de Red	Gateway	R1-R2	R1-R3	R2-R3
R1	192.168.1.0	225.255.255.128	192.168.1.1	192.168.1.241	192.168.1.245	
R2	192.168.1.128	225.255.255.192	192.168.1.129	192.168.1.242		192.168.1.249
R2	192.168.1.192	225.255.255.224	192.168.1.193	192.168.1.242		192.168.1.249
R2	192.168.1.224	225.255.255.240	192.168.1.225		192.168.1.246	192.168.1.250

La topología de nuestra res es la siguiente:

2.4 Verificación de la conectividad

Una vez introducido un nuevo host a cada subred LAN, la topología nos queda de la siguiente manera:

Conectividad entre los equipos de la Subred 1:

Conectividad entre los equipos de la Subred 2:

Conectividad entre los equipos de la Subred 3:

	Last Status	Source	Destination	Type	Color	Time(sec)	Periodic	Num	Edit	Delete	
	Successful	PC-2A	PC-2B	ICMP		0.000	N	0	(edit)		(delete)
•	Successful	PC-2A	PC-2C	ICMP		0.000	N	1	(edit)		(delete)
•	Successful	PC-2A	Router 2	ICMP		0.000	N	2	(edit)		(delete)
•	Successful	PC-2B	PC-2A	ICMP		0.000	N	3	(edit)		(delete)
•	Successful	PC-2B	PC-2C	ICMP		0.000	N	4	(edit)		(delete)
•	Successful	PC-2B	Router 2	ICMP		0.000	N	5	(edit)		(delete)
•	Successful	PC-2C	PC-2A	ICMP		0.000	N	6	(edit)		(delete)
•	Successful	PC-2C	PC-2B	ICMP		0.000	N	7	(edit)		(delete)
•	Successful	PC-2C	Router 2	ICMP		0.000	N	8	(edit)		(delete)
•	Successful	Router 2	PC-2A	ICMP		0.000	N	9	(edit)		(delete)
•	Successful	Router 2	PC-2B	ICMP		0.000	N	10	(edit)		(delete)
•	Successful	Router 2	PC-2C	ICMP		0.000	N	11	(edit)		(delete)
•	Successful	Router 2	Router 2	ICMP		0.000	N	12	(edit)		(delete)
•	Successful	PC-2A	PC-2A	ICMP		0.000	N	13	(edit)		(delete)
•	Successful	PC-2B	PC-2B	ICMP		0.000	N	14	(edit)		(delete)
•	Successful	PC-2C	PC-2C	ICMP		0.000	N	15	(edit)		(delete)

Conectividad entre los equipos de la Subred 4:

2	Last Status	Source	Destination	Type	Color	Time(sec)	Periodic	Num	Edit	Delete	
	Successful	PC-4A	PC-4B	ICMP		0.000	N	0	(edit)		(delete)
•	Successful	PC-4A	PC-4C	ICMP		0.000	N	1	(edit)		(delete)
•	Successful	PC-4A	Router 3	ICMP		0.000	N	2	(edit)		(delete)
•	Successful	PC-4B	PC-4A	ICMP		0.000	N	3	(edit)		(delete)
•	Successful	PC-4B	PC-4C	ICMP		0.000	N	4	(edit)		(delete
•	Successful	PC-4B	Router 3	ICMP		0.000	N	5	(edit)		(delete
•	Successful	PC-4C	PC-4A	ICMP		0.000	N	6	(edit)		(delete
•	Successful	PC-4C	PC-4B	ICMP		0.000	N	7	(edit)		(delete
•	Successful	PC-4C	Router 3	ICMP		0.000	N	8	(edit)		(delete
•	Successful	Router 3	PC-4A	ICMP		0.000	N	9	(edit)		(delete
•	Successful	Router 3	PC-4B	ICMP		0.000	N	10	(edit)		(delete
•	Successful	Router 3	PC-4C	ICMP		0.000	N	11	(edit)		(delete
•	Successful	Router 3	Router 3	ICMP		0.000	N	12	(edit)		(delete
•	Successful	PC-4A	PC-4A	ICMP		0.000	N	13	(edit)		(delete
•	Successful	PC-4B	PC-4B	ICMP		0.000	N	14	(edit)		(delete
•	Successful	PC-4C	PC-4C	ICMP		0.000	N	15	(edit)		(delete

Conectividad entre los equipos de la Subred 5 (R1-R2):

PDU List Window Last Status Delete Source Destination Туре Time(sec) Edit Successful Router 1 Router 2 ICMP 0.000 0 (edit) (delete) Successful (delete) Router 2 Router 1 0.000 (edit)

Conectividad entre los equipos de la Subred 6 (R1-R3):

PDU List Window Fire Last Status Source Destination Type Color Time(sec) Periodic Num Edit Delete 0.000 (edit) Successful Router 1 Router 3 ICMP N 0 (delete Successful Router 3 Router 1 ICMP 0.000 N (edit) (delete

Conectividad entre los equipos de la Subred 7 (R2-R3):

2.5 Enrutamiento Estático

Para configurar las rutas estáticas entre redes hay que saber 3 campos:

- Dirección: Dirección IP donde se quiere ir
- Máscara de red: Máscara de red de destino
- Next Hop: Dirección IP del router que le hará ir a la red necesaria

O sino desde una terminal: ip route "subred destino" "Máscara de red" "IP del router destino"

Tablas de enrutamiento de los routers:

Routing Table for Router 1

Туре	Network	Port	Next Hop IP	Metric
С	192.168.1.0/25	FastEthernet0/0		0/0
S	192.168.1.128/26		192.168.1.242	1/0
S	192.168.1.192/27		192.168.1.242	1/0
S	192.168.1.224/30		192.168.1.246	1/0
С	192.168.1.240/30	Serial0/1/0		0/0
С	192.168.1.244/30	Serial0/1/1		0/0

Routing Table for Router 2						
Туре	Network	Po				

Туре	Network	Port	Next Hop IP	Metric
s	192.168.1.0/25		192.168.1.241	1/0
С	192.168.1.128/26	FastEthernet0/1		0/0
С	192.168.1.192/27	FastEthernet0/0		0/0
S	192.168.1.224/28		192.168.1.250	1/0
С	192.168.1.240/30	Serial0/1/0		0/0
С	192.168.1.248/30	Serial0/1/1		0/0

Routing Table for Router 3

Туре	Network	Port	Next Hop IP	Metric
s	192.168.1.0/25		192.168.1.245	1/0
S	192.168.1.128/26		192.168.1.249	1/0
S	192.168.1.192/27		192.168.1.249	1/0
С	192.168.1.224/28	FastEthernet0/0		0/0
С	192.168.1.244/30	Serial0/1/1		0/0
С	192.168.1.248/30	Serial0/1/0		0/0

Conectividad Desde Distintas Subredes:

Como hay muchas posibilidades de conexiones entre varias subredes, aquí hay un ejemplo de que funciona en todas las que he seleccionado.

