CSE4088 Introduction to Machine Learning

Homework 4 Report

SVM with Soft Margins

To solve problems in the homework, we apply soft-margin SVM to handwritten digits from the processed US Postal Service Zip Code data set. We will train two types of binary classifiers; one-versus-one (one digit is class +1 and another digit is class -1, with the rest of the digits disregarded), and one-versus-all (one digit is class +1 and the rest of the digits are class -1).

Implement SVM with soft margin on the above zip-code data set by solving

$$\min(\alpha) \qquad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m K(x_n, x_m) - \sum_{n=1}^{N} \alpha_n$$

s.t.
$$\sum_{n=1}^{N} y_n \alpha_n = 0, \quad 0 \le \alpha_n \le C, \quad n = 1, ..., N$$

• Polynomial Kernel

Consider the polynomial kernel $K(x_n, x_m) = (1 + x_n^T x_m)^Q$, where ! is the degree of the polynomial.

2. With C = 0.01 and Q = 2, which of the following classifiers has the highest E_{in} ?

Program Output

```
Question 2
C=0.010000, Q=2, classifier value=0, E_in=0.105884
C=0.010000, Q=2, classifier value=2, E_in=0.100261
C=0.010000, Q=2, classifier value=4, E_in=0.089425
C=0.010000, Q=2, classifier value=6, E_in=0.091071
C=0.010000, Q=2, classifier value=8, E_in=0.074338
```

According to program output, 0 versus all classifier value has highest E_{in} value.

The answer is [a].

3. With C = 0.01 and Q = 2, which of the following classifiers has the lowest E_{in} ?

Program Output

```
Question 3
C=0.010000, Q=2, classifier value=1, E_in=0.014401
C=0.010000, Q=2, classifier value=3, E_in=0.090248
C=0.010000, Q=2, classifier value=5, E_in=0.076258
C=0.010000, Q=2, classifier value=7, E_in=0.088465
C=0.010000, Q=2, classifier value=9, E in=0.088328
```

According to program output, 1 versus all classifier value has lowest E_{in} value.

The answer is [a].

4. Comparing the two selected classifiers from Problems 2 and 3, which of the following values is the closest to the difference between the number of support vectors of these two classifiers?

Program Output

```
Question 4
C=0.010000, Q=2, classifier value=0, E_in=0.105884
C=0.010000, Q=2, classifier value=1, E_in=0.014401
Difference between the number of support vectors of cls_0 and cls_1 = 1793
```

According to program output, the difference between support vectors counts is closed to 1800.

The answer is [c].

5. Consider the 1 versus 5 classifier with Q = 2 and $C \in \{0.001, 0.01, 0.1, 1\}$. Which of the following statements is correct? Going up or down means strictly so?

Program Output

```
Question 5
C
         E_in
                   E_out
                            Support_vector_count
0.00100 0.00448 0.01651
                             76
0.01000 0.00448
                   0.01887
                             34
         0.00448
0.10000
                   0.01887
                             24
                             24
1.00000
         0.00320
                   0.01887
```

According to program output, minimum E_{in} is achieved with maximum C. Statements [a], [b] and [c] are incorrect, statement [d] is correct.

The answer is [d].

6. In the 1 versus 5 classifier, comparing Q = 2 with Q = 5, which of the following statements is correct?

Program Output

Question 6

С	E_in	E_out	Support_vector_count
0.00010	0.00897	0.01651	236
0.00100	0.00448	0.01651	76
0.01000	0.00448	0.01887	34
0.10000	0.00448	0.01887	24
1.00000	0.00320	0.01887	24
С	E_in	E_out	Support_vector_count
C 0.00010	E_in 0.00448	E_out 0.01887	Support_vector_count 26
_	_	_	– –
0.00010	0.00448	0.01887	26
0.00010 0.00100	0.00448 0.00448	0.01887 0.02123	26 25
0.00010 0.00100 0.01000	0.00448 0.00448 0.00384	0.01887 0.02123 0.02123	26 25 23

First block of the program output shows the result of Q=2. Second block of the program output shows the result of Q=5. According to the results, when C=0.001, the number of support vectors is lower at Q=5 than at Q=2.

The answer is [b].

• Cross Validation

In the next two problems, we will experiment with 10-fold cross validation for the polynomial kernel. Because E_{cv} is a random variable that depends on the random partition of the data, we will try 100 runs with different partitions and base our answer on how many runs lead to a particular choice.

7. Consider the 1 versus 5 classifier with Q=2. We use E_{cv} to select $C \in \{0.0001, 0.001, 0.01, 0.1, 1\}$. If there is a tie in E_{cv} , select the smaller C. Within the 100 random runs, which of the following statements is correct?

Program Output

```
Question 7-8
Iteration 0, min support vector: 1.0000
Iteration 1, min support vector: 0.0010
Iteration 2, min support vector: 0.0010
Iteration 3, min support vector: 0.0100
Iteration 97, min support vector: 0.0010
Iteration 98, min support vector: 0.0100
Iteration 99, min support vector: 0.1000
       Hits
              Mean
0.0001 0
             0.0098
0.0010 47
             0.0048
0.0100 29
             0.0047
0.1000 11
             0.0048
1.0000 13
             0.0049
Mean E cv: 0.0058
```

When we count C values with minimum error, C = 0.001 has 47 times minimum error rate. The most often selected C value in 100 sample runs is C = 0.001.

The answer is [b].

8. Again, consider the 1 versus 5 classifier with Q = 2. For the winning selection in the previous problem, the average value of E_{cv} over the 100 runs is closest to which option?

According to result in question 7, average E_{cv} is 0.0058. It is closest to 0.005.

The answer is [c].

RBF Kernel

Consider the radial basis function (RBF) kernel $K(x_n, x_m) = \exp(-||x_n - x_m||^2)$ in the soft-margin SVM approach Focus on the 1 versus 5 classifier.

9. Which of the following values of C results in the lowest E_{in} ?

Program Output

Question 9-10		
С	E_in	E_out
0.01	0.0038	0.0236
1.00	0.0045	0.0212
100.00	0.0032	0.0189
10000.00	0.0026	0.0236
1000000.00	0.0006	0.0236

According to program output, lowest E_{in} is achieved when $C = 10^6$.

The answer is [e].

10. Which of the following values of C results in the lowest E_{out} ?

According to the results in question 9, the lowest E_{out} is achieved when C = 100.

The answer is [c].