1. A QUICK RECAP ON HEMOGLOBIN

- A protein with a quaternary structure, consisting of four polypeptides.
- Found in red blood cells.
- Each polypeptide contains one heme group, containing iron (Fe²⁺).
- One O₂ can bind to each heme group.
- When a hemoglobin molecule contains the maximum amount of oxygen, it is HbO₈ (called oxyhemoglobin).

2. OXYGEN DISSOCIATION CURVES

- The percentage saturation of haemoglobin is 100 if all the hemoglobin molecules in blood are carrying four oxygen molecules.
- The **percentage saturation** of haemoglobin is **0** if **all** the hemoglobin molecules in blood are **not carrying any** oxygen molecules.
- Percentage saturation depends on the surrounding oxygen concentration, which is usually measured as a partial pressure.
- Partial pressure is the pressure exerted by a gas in a mixture of gases. For these curves, "think" of partial pressure as meaning "concentration".
- Affinity is hemoglobin's attractiveness (willingness to bind) to oxygen.

- The oxygen-dissociation curve for hemoglobin is S-shaped (sigmoidal).
- It is not linear because binding potential changes with each additional O₂ molecule.
 - Binding of the first O₂ causes a shape change that allows the second and third molecules to bind easier
 - It is more difficult for the fourth O₂ to bind.
- At **respiring tissues**, where **pO**₂ is **low**, hemoglobin has **lower affinity** for oxygen, so it **releases** oxygen **more readily**, for **faster respiration** = **more energy** released.
- At the **lungs**, where **pO**₂ is **high**, hemoglobin has **higher affinity** for oxygen, so it **attaches** to oxygen **more readily**, rather than releases it.

3. FETAL HEMOGLOBIN

- Oxyhemoglobin forms when the pO₂ is high and dissociates when pO₂ is low.
- Fetal hemoglobin has a slightly different amino acid sequence than adult hemoglobin.
- Fetal hemoglobin has a **higher affinity** for oxygen than adult haemoglobin (dissociation curve is shifted to the **left**)
- Fetal hemoglobin is always more saturated with oxygen than adult haemoglobin
- Fetal haemoglobin becomes fully saturated at a lower pO₂.
- Oxygen that **dissociates** from **adult** haemoglobin is therefore **picked up** by fetal haemoglobin (i.e. in the placenta).
- This oxygen will only be released by fetal haemoglobin once it enters the respiring tissues, where pO₂ is low.
- Following birth, fetal hemoglobin is almost completely replaced by adult hemoglobin (~ 6 months after birth)
- Fetal hemoglobin production can be drug-induced in adults to treat diseases such as sickle cell anaemia.

4. MYOGLOBIN

- Myoglobin is used to **store oxygen** in **muscles**.
- It consists of only one heme and one globin group.
- This explains why its **oxygen-dissociation curve** is **not** S-shaped (sigmoidal).

- The oxygen-dissociation curve for myoglobin is to the left of that for adult hemoglobin.
- Myoglobin has a **higher affinity** for oxygen than adult haemoglobin.
- Myoglobin becomes saturated at lower pO₂.
- Myoglobin will hold onto its oxygen supply until levels in the muscles are very low (e.g. during intense physical exercise)
- This delayed release of oxygen helps to slow the onset of anaerobic respiration and lactic acid formation during exercise.

5. THE BOHR SHIFT

- Respiration decreases pO₂ and increases pCO₂ at the <u>tissues</u>.
- CO₂ decreases the blood pH (dissolves to form carbonic acid).
- H⁺ binds to hemoglobin and causes a shape change.
- This decreases haemoglobin's affinity for oxygen.
- So more oxygen is released at the same pO₂.
- This is known as the Bohr shift as it moves the oxygen dissociation curve to the right.
- The advantage of this is that more oxygen is released for aerobic respiration, so more energy/ATP is released.

6. GAS EXCHANGE AT HIGH ALTITUDE

The General Picture

- The partial pressure of oxygen at high altitude is lower than at sea level.
- Hemoglobin may not become fully saturated as it passes through the lungs.
- Body tissues may not be supplied with enough oxygen.
- A condition called mountain (altitude) sickness can develop, with muscle weakness, rapid pulse, nausea and headaches.
- This can be avoided by acclimatization to high altitude.

Acclimatization to high altitude	Natives living at high altitude
Red blood cell production increases	Higher lung capacity
Red blood cells contain more hemoglobin	Greater lung surface area
Muscles produce more myoglobin	Higher tidal volume
Muscles develop a denser capillary network	Hemoglobin has a greater affinity for oxygen
Ventilation rate increases	

High Altitude Training

ADVANTAGES

- improved performance at lower oxygen levels
- (due to) red blood cell production increasing
- (due to) myoglobin production increasing in muscles
- (due to) increased ventilation rate
- (due to) more oxygen circulating

RISKS

- mountain (altitude) sickness
- lower immunity
- stroke
- increased breakdown of muscle tissue
- effects are not permanent extended training needed at high altitude
- unfair to competitors who do not train at high altitude