Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Resultate

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Mathematisches Seminar 2018

27.05.2019

Repetition Gabor-Wavelets

Exponentiell abfallende komplexe Exponenten (Sinus und Kosinus)

Abbildung: Sinus Gabor Wavelet 1D

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

$$G(x,y) = \frac{1}{2\pi\sigma\beta} e^{-\pi(\frac{(x-x_0)^2}{\sigma^2} + \frac{(y-y_0)^2}{\beta^2})} e^{i(\xi_0 x + \nu_0 y)}$$
(1)

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

$$G(x,y) = \frac{1}{2\pi\sigma\beta} e^{-\pi(\frac{(x-x_0)^2}{\sigma^2} + \frac{(y-y_0)^2}{\beta^2})} e^{i(\xi_0 x + \nu_0 y)}$$
(1)

Praktischer:

$$G(x,y) = e^{-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2}} e^{i(2\pi \frac{x'}{\lambda} + \phi)}$$
 (2)

$$G(x,y) = \frac{1}{2\pi\sigma\beta} e^{-\pi(\frac{(x-x_0)^2}{\sigma^2} + \frac{(y-y_0)^2}{\beta^2})} e^{i(\xi_0 x + \nu_0 y)}$$
(1)

Praktischer:

$$G(x,y) = e^{-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2}} e^{i(2\pi \frac{x'}{\lambda} + \phi)}$$
 (2)

mit:

$$x' = x\cos(\theta) + y\sin(\theta) \tag{3}$$

und:

$$y' = -x\sin(\theta) + y\cos(\theta) \tag{4}$$

Abbildung: Theta θ und Wellenlänge λ ändern

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Abbildung: Beispielbild

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Abbildung: Gabor-Filter angewandt auf das Beispielbild

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Neural Net (CNN)

Resultati

2D Wavelet Transformation als 2D Convolution

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Neurologie

Abbildung: Primärer Visueller Kortex in rot

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Neural Net (CNN)

Neuronale Netze

Abbildung: Schematische Darstellung eines Neuronalen Netzes

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

CIFAR-10 Dataset

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Architektur

1. Convolution: 64 3x3 Kernels

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Experiment

1. Convolution wird mit Gabor-Kernels durchgeführt:

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Performance

Kleinste Accuracy mit Gabor: 67.32% Höchste Accuracy ohne Gabor: 66.42%

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)

Gelernte Filter

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Neural Net (CNN)

Ende

Gabor Wavelets und Visuelle Wahrnehmung

Raphael Unterer

Gabor Wavelets

Convolutional Neural Net (CNN)