Лекция 2. Автоковариационная и автокорреляционная функции.

Рассматриваемые в этой лекции ряды мы предполагаем стационарными в широком смысле. Поэтому определяемые ниже автоковариационная и автокорреляционная функции зависят только от разности моментов времени.

Определение. *Автоковариационная функция* ряда x_t определяется следующим образом

$$\gamma_j = Cov(x_t x_{t-j}) = E(x_t x_{t-j}).$$

(напомним, что мы рассматриваем ряды с $Ex_t = 0$).

 $Aвтокорреляционная функция ряда <math>x_t$ определяется следующим образом

$$\rho_j = \frac{\gamma_j}{\operatorname{var}(x_t)} = \frac{\gamma_j}{\gamma_0}.$$

Автоковариации и автокорреляции дают один из простейших способов описания совместных распределений наблюдаемого временного ряда. Например, корреляция между x_t и x_{t+1} является мерой того, насколько устойчив временной ряд, насколько, скажем, тенденция сегодняшнего дня будет воспроизведена завтра.

Автоковариации и автокорреляции различных ARMA процессов.

В этом параграфе мы вычислим автоковариационные и автокорреляционные функции некоторых основных временных рядов.

Белый шум. Поскольку мы предположили, что $\varepsilon_i \sim i.\,i.\,d.\,\mathcal{N}(0,\sigma_\varepsilon^2)$, очевидно, что

$$\gamma_0=\sigma_{arepsilon}^2$$
, $\gamma_j=0$ для $j
eq 0$ $ho_0=1$, $ho_j=0$ для $j
eq 0$.

МА (1). Модель имеет вид

$$x_t = \varepsilon_t + \theta \varepsilon_{t-1}$$
.

Автоковариации:

$$\gamma_0 = var(x_t) = var(\varepsilon_t + \theta \varepsilon_{t-1}) = \sigma_{\varepsilon}^2 + \theta^2 \sigma_{\varepsilon}^2 = (1 + \theta^2) \sigma_{\varepsilon}^2,$$

$$\gamma_1 = E(x_t x_{t-1}) = E((\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})) = E(\theta \varepsilon_{t-1}^2) = \theta \sigma_{\varepsilon}^2.$$

$$\gamma_2 = E(x_t x_{t-2}) = E((\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-2} + \theta \varepsilon_{t-3}) = 0.$$

$$\gamma_j = 0, j \ge 3.$$

Автокорреляции:

$$\rho_0 = 1, \rho_1 = \frac{\theta}{1 + \theta^2}, \rho_{2}, \rho_{3}, \dots = 0.$$

МА (2). Модель:

$$x_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}.$$

Автоковариации:

$$\gamma_0 = E[(\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2})^2] = (1 + \theta_1^2 + \theta_2^2) \sigma_{\varepsilon}^2,$$

$$\gamma_1 = E[(\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}) (\varepsilon_{t-1} + \theta_1 \varepsilon_{t-2} + \theta_2 \varepsilon_{t-3})] = (\theta_1 + \theta_1 \theta_2) \sigma_{\varepsilon}^2$$

$$\gamma_2 = E[(\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2})(\varepsilon_{t-2} + \theta_1 \varepsilon_{t-3} + \theta_2 \varepsilon_{t-4})] = \theta_2 \sigma_{\varepsilon}^2.$$

$$\gamma_3, \gamma_4, \gamma_5, ... = 0.$$

Автокорреляции:

$$\rho_0 = 1, \rho_1 = \frac{(\theta_1 + \theta_1 \theta_2)}{1 + \theta_1^2 + \theta_2^2}, \rho_2 = \frac{\theta_2}{1 + \theta_1^2 + \theta_2^2}, \rho_3, \rho_4, \dots = 0.$$

$MA(q), MA(\infty).$

Теперь должно быть ясно, как считать ковариации для общих моделей скользящего среднего. Для модели $\mathbf{MA}(\infty)$

$$x_t = \theta(L)\varepsilon_t = \sum_{j=0}^{\infty} (\theta_j L^j)\varepsilon_t$$

для автоковариаций получаем

$$\gamma_0 = var(x_t) = \left(\sum_{j=0}^{\infty} \theta_j^2\right) \sigma_{\varepsilon}^2,$$

$$\gamma_k = \sum_{j=0}^{\infty} \theta_j \theta_{j+k} \sigma_{\varepsilon}^2.$$

Здесь $\theta_0 = 1$. Автоковариации для модели **MA(q)** получаются из автоковариаций для модели **MA(\infty)**, если в формулах положить $\theta_{j+k} = 0$ для j+k > q. Формулы для ρ_j немедленно следуют из соотношения $\rho_j = \frac{\gamma_j}{\gamma_0}$.

AR (1). Есть два способа вычисления автоковариаций для этого процесса. Первый способ заключается в переходе к $MA(\infty)$ и использовании вышеприведённых формул для процесса $MA(\infty)$. Имеем:

$$(1 - \phi L)x_t = \varepsilon_t \implies x_t = (1 - \phi L)^{-1}\varepsilon_t = \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j},$$

Поэтому

$$\gamma_0 = \left(\sum_{j=0}^{\infty} \phi^{2j}\right) \sigma_{\varepsilon}^2 = \frac{1}{1-\phi^2} \sigma_{\varepsilon}^2$$
 , $\rho_0 = 1$,

$$\gamma_1 = \left(\sum_{j=0}^{\infty} \phi^j \phi^{j+1}\right) \sigma_{\varepsilon}^2 = \phi \cdot \left(\sum_{j=0}^{\infty} \phi^{2j}\right) \sigma_{\varepsilon}^2 = \frac{\phi}{1 - \phi^2} \sigma_{\varepsilon}^2, \ \rho_1 = \phi.$$

и, продолжая аналогичным образом, получим

$$\gamma_k = \frac{\phi^k}{1-\phi^2}\sigma_{\varepsilon}^2$$
, $\rho_k = \phi^k$.

Другой способ нахождения автоковариаций состоит в прямом вычислении и представляет самостоятельный интерес.

$$\begin{split} \gamma_1 &= E(x_t x_{t-1}) = E \big((\phi x_{t-1} + \varepsilon_t) \cdot x_{t-1} \big) = \phi \sigma_x^2, \rho_1 = \phi. \\ \gamma_2 &= E(x_t x_{t-2}) = E \big((\phi^2 x_{t-2} + \phi \varepsilon_{t-1} + \varepsilon_t) \cdot x_{t-2} \big) = \phi^2 \sigma_x^2, \rho_2 = \phi^2. \\ \gamma_k &= E(x_t x_{t-k}) = E \left((\phi^k x_{t-k} + \dots + \varepsilon_t) \cdot x_{t-k} \right) = \phi^k \sigma_x^2, \rho_k = \phi^k. \end{split}$$

AR (р). Уравнения Юла-Уолкера.

Второй метод позволяет легко вычислять автоковариации в модели AR(p). Приведём вычисления для модели AR(3), для моделей высшего порядка вычисления аналогичны. Имеем

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \phi_3 x_{t-3} + \varepsilon_t.$$

Умножая обе части на x_t, x_{t-1}, \dots , беря математические ожидания и деля на γ_0 , получим

$$1 = \phi_1 \rho_1 + \phi_2 \rho_2 + \phi_3 \rho_3 + \sigma_{\varepsilon}^2 / \gamma_0$$

$$\rho_1 = \phi_1 + \phi_2 \rho_1 + \phi_3 \rho_2$$

$$\rho_2 = \phi_1 \rho_1 + \phi_2 + \phi_3 \rho_1$$

$$\rho_3 = \phi_1 \rho_2 + \phi_2 \rho_1 + \phi_3$$

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \phi_3 \rho_{k-3}$$

Из второго, третьего и четвёртого уравнений находим ρ_1, ρ_2, ρ_3 . Из последнего уравнения находим ρ_4, ρ_5, \dots Из первого уравнения находим дисперсию σ_x^2

$$\sigma_{x}^{2} = \gamma_{0} = \frac{\sigma_{\varepsilon}^{2}}{1 - (\phi_{1}\rho_{1} + \phi_{2}\rho_{2} + \phi_{3}\rho_{3})}.$$

Фундаментальное представление.

АRMA процессы с *нормальными* независимыми одинаково распределёнными ошибками являются линейными комбинациями нормальных величин, поэтому сами $\{x_t\}$ нормально распределены. Таким образом, совместное распределение ARMA временных рядов полностью характеризуется их средним (0) и ковариациями

 $E(x_t, x_{t-j})$. (Используя обычную формулу для плотности многомерного нормального распределения, мы можем написать совместную плотность любого конечного набора значений $\{x_t\}$, эта плотность использует лишь ковариации). В свою очередь, все статистические свойства ряда описываются его совместными распределениями. Автоковариации дают в этом случае полную информацию о процессе. Иначе говоря:

Если два процесса с нормальными ошибками имеют одну и ту же автоковариационную функцию, то это один и тот же процесс.

Мы видели также, что AR(1) - это тот же процесс, что и соответствующий ему $MA(\infty)$, и.т.д. То, что автоковариационная функция полностью определяет процесс, является полезным фактом. Рассмотрим пример. Пусть $\{x_t\}$ разлагается на ∂Be гауссовские ненаблюдаемые компоненты следующим образом:

$$x_t = y_t + z_t$$
, $z_t = \delta_t$, $y_t = v_t + \alpha v_{t-1}$,

где $v_t - i.i.d$, $\delta_t - i.i.d$, и v_t и δ_t независимы между собой. Каким ARMA процессом описывается x_t ? Один из способов решения этой задачи состоит в нахождении автоковариационной функции $\{x_t\}$, затем находят ARMA процесс с этой автоковариационной функцией. Этот процесс и даст ARMA представление для $\{x_t\}$. Очевидно, процессы y_t и z_t независимы, поэтому

$$\begin{split} Var \ x_t &= Var \ y_t + Var \ z_t = (1+\alpha^2)\sigma_{\nu}^2 + \sigma_{\delta}^2. \\ E(x_t x_{t-1}) &= E[(\nu_t + \delta_t + \alpha \nu_{t-1})(\nu_{t-1} + \delta_{t-1} + \alpha \nu_{t-2})] = \alpha \sigma_{\nu}^2. \\ E(x_t x_{t-k}) &= 0, \qquad k \geq 2. \end{split}$$

Таким образом, автоковариационная функция этого процесса такова, что первые две автоковариации γ_0 u γ_1 отличны от нуля, а $\gamma_k = 0$ для $k \geq 2$. Как мы видели, такое поведение имеет автоковариационная функция процесса MA(1): $x_t = (1 + \theta L)\varepsilon_t$. Используя формулы, полученные выше для автоковариационной функции процесса MA(1), запишем систему уравнений, приравняв соответствующие ковариации

$$\gamma_0 = (1 + \theta^2)\sigma_{\varepsilon}^2 = (1 + \alpha^2)\sigma_{\nu}^2 + \sigma_{\delta}^2.$$
$$\gamma_1 = \theta\sigma_{\varepsilon}^2 = \alpha\sigma_{\nu}^2.$$

Получаем два уравнения с двумя неизвестными, которые следует решить относительно θ и σ_{ε}^2 - двух параметров представления $x_t = (1+\theta L)\varepsilon_t$. Выражая θ и σ_{ε}^2 через ковариации γ_0 и γ_1 , получим искомое представление. Вычисление автоковариационных функций гауссовских рядов для последующего представления ряда в виде одной из стандартных моделей является одним из наиболее часто используемых приёмов при работе с временными рядами.

Допустимые автокорреляционные функции.

Автокорреляционная функция играет фундаментальную роль при построении ARMA процессов. Однако не каждое множество чисел может быть множеством автокорреляций некоторого процесса. В этом параграфе мы рассмотрим вопрос: когда множество чисел $\{1, \rho_1, \rho_2, ...\}$ может быть автокорреляционной функцией некоторого ARMA процесса?

Очевидно, что коэффициенты корреляции должны по модулю не превосходить 1. Однако это условие является лишь *необходимым*, *но не достаточным*. Дополнительное условие состоит в том, что

дисперсия любой линейной комбинации значений $\{x_t\}$ должна быть неотрицательна. Таким образом,

$$Var(\alpha_0 x_t + \alpha_1 x_{t-1} + \cdots) \ge 0$$
 для $\{\alpha_0, \alpha_1, \dots\}$.

В частности,

$$Var\left(\alpha_0x_t+\alpha_1x_{t-1}\right)=\gamma_0[\alpha_0\alpha_1]\begin{bmatrix}1&\rho_1\\\rho_1&1\end{bmatrix}\begin{bmatrix}\alpha_0\\\alpha_1\end{bmatrix}\geq 0.$$

Таким образом, матрицы

$$B_1 := \begin{bmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{bmatrix}, B_2 := \begin{bmatrix} 1 & \rho_1 & \rho_2 \\ \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 \end{bmatrix}, \dots$$

и.т.д. должны быть неотрицательно определены. Это более сильное требование, чем $|\rho_i| \leq 1$. Например, детерминант второй матрицы B_2 должен быть неотрицательным (также как и детерминанты её главных миноров, что влечёт $|\rho_1| \leq 1$, $|\rho_2| \leq 1$), поэтому

$$1 + 2\rho_1^2 \rho_2 - 2\rho_1^2 - \rho_2^2 \ge 0 \implies (\rho_2 - (2\rho_1^2 - 1))(\rho_2 - 1) \le 0$$

Мы уже знаем, что $|\rho_2| \le 1$, поэтому $1 \ge \rho_2 \ge (2\rho_1^2 - 1) \Rightarrow$

$$-1 \le \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2} \le 1$$

Таким образом, $\rho_1 \, u \, \rho_2$ должны лежать внутри области параболической формы, показанной на рисунке

Например, если $\rho_1=0.9$, $mo~2\times(0.9)^2-1=0.62\leq\rho_2\leq1.$ Зачем нужны все эти вычисления? Тому есть, по крайней мере, две причины:

- 1) Показать, что **не всякая** последовательность автокорреляций может быть автокорреляционной функцией ARMA процесса.
- 2) Показать, что ограничения на ρ могут иметь очень сложный вид.

Сложности такого рода побуждают использовать другие методы анализа временных рядов. А именно, *спектральные методы*. Напомним, что из уравнений Юла-Уолкера следует, что автокорреляции на больших промежутках времени затухают экспоненциально быстро, т.е. $\exists \lambda, 0 < \lambda < 1$, такое, что $|\gamma_j| < \lambda^j$. Отсюда следует, что $\sum_{j=0}^{\infty} \gamma_j^2 < \infty$.

Прогнозирование и импульсные функции отклика.

Одно из наиболее важных направлений в теории ARMA процессов – прогнозирование будущих значений переменой на основе её прошлых значений. То есть мы хотим найти

$$E_t(x_{t+j}) \triangleq E(x_{t+j}|x_t, x_{t-1}, x_{t-2...}\varepsilon_t, \varepsilon_{t-1}, \varepsilon_{t-2}, ...).$$

То, насколько мы можем быть уверены в нашем прогнозе, характеризуется величиной

$$Var_t(x_{t+j}) \triangleq Var(x_{t+j}|x_t, x_{t-1}, x_{t-2...}\varepsilon_t, \varepsilon_{t-1}, \varepsilon_{t-2}, ...).$$

Прогнозирование для ARMA моделей.

Мы рассмотрим несколько примеров, а потом постараемся вывести общие принципы, следующие из этих примеров.

AR (1). Для модели AR(1), $x_{t+1} = \phi x_t + \varepsilon_{t+1}$, имеем $E_t(x_{t+1}) = E_t(\phi x_t + \varepsilon_{t+1}) = \phi x_t$.

$$E_t(x_{t+2}) = E_t(\phi^2 x_t + \phi \varepsilon_{t+1} + \varepsilon_{t+2}) = \phi^2 x_t,$$

$$E_t(x_{t+k}) = E_t(\phi^k x_t + \varepsilon_{t+k} + \cdots) = \phi^k x_t.$$

Аналогично,

$$Var_{t}(x_{t+1}) = Var_{t}(\phi x_{t} + \varepsilon_{t+1}) = E_{t}(\phi x_{t} + \varepsilon_{t+1})^{2} - \phi^{2}x_{t}^{2} = \sigma_{\varepsilon}^{2}.$$

$$Var_{t}(x_{t+2}) = Var_{t}(\phi^{2}x_{t} + \phi\varepsilon_{t+1} + \varepsilon_{t+2}) =$$

$$= E_{t}(\phi^{2}x_{t} + \phi\varepsilon_{t+1} + \varepsilon_{t+2})^{2} - \phi^{4}x_{t}^{2} = (1 + \phi^{2})\sigma_{\varepsilon}^{2}.$$

$$Var_{t}(x_{t+k}) = \cdots = (1 + \phi^{2} + \phi^{4} + \cdots + \phi^{2(k-1)})\sigma_{\varepsilon}^{2}.$$

Прогноз и стандартное отклонение для этой модели показаны на рисунке ниже

Заметим, что

$$\lim_{k\to\infty} E_t(x_{t+k}) = 0 = E(x_t),$$

$$\lim_{k\to\infty} Var_t(x_{t+k}) = \sum_{j=0}^{\infty} \phi^{2j} \sigma_{\varepsilon}^2 = \frac{1}{1-\phi^2} \sigma_{\varepsilon}^2 = Var(x_t)$$

Интуитивно это понятно: на очень далёкое время вперёд ничего лучше не придумать в качестве прогноза для x_{t+k} , чем среднее в момент t. В качестве дисперсии этого прогноза (она характеризует точность прогноза) берётся дисперсия в момент t. Таким образом,

безусловные моменты являются пределами условных моментов. То есть, мы можем рассматривать безусловные моменты либо как пределы условных моментов x_t , когда $t \to -\infty$, либо как пределы условных моментов x_{t+j} , когда горизонт $j \to \infty$.

МА. Прогноз для моделей MA также считается легко. Поскольку

$$x_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots$$

Имеем

$$E_t(x_{t+1}) = E_t(\varepsilon_{t+1} + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} + \cdots) = \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} + \cdots$$

$$E_t(x_{t+k}) = E_t(\varepsilon_{t+k} + \theta_1 \varepsilon_{t+k-1+} + \theta_k \varepsilon_t + \theta_{k+1} \varepsilon_{t-1} + \cdots) =$$

$$=\theta_k \varepsilon_t + \theta_{k+1} \varepsilon_{t-1} + \cdots$$

$$Var_t(x_{t+1}) = E_t(\varepsilon_{t+1} + \theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} + \cdots)^2$$

$$-(\theta_1 \varepsilon_t + \theta_2 \varepsilon_{t-1} + \cdots)^2 = \sigma_{\varepsilon}^2,$$

$$Var_t(x_{t+k}) = E_t(\varepsilon_{t+k} + \theta_1 \varepsilon_{t+k-1} + \dots + \theta_k \varepsilon_t + \theta_{k+1} \varepsilon_{t-1} + \dots)^2$$

$$-(\theta_k \varepsilon_t + \theta_{k+1} \varepsilon_{t-1} + \cdots)^2 = (1 + \theta_1^2 + \cdots + \theta_{k-1}^2) \sigma_{\varepsilon}^2.$$

AR и ARMA. При вычислении прогнозов используется то, что $E_t(\varepsilon_{t+j}) = 0$ и $Var_t(\varepsilon_{t+j}) = \sigma_{\varepsilon}^2$ при j > 0. Значение x_{t+j} представляется в виде суммы

$$x_{t+j} = \{\phi$$
ункция от $\varepsilon_{t+j}, \varepsilon_{t+j-1}, ..., \varepsilon_{t+1}\} + \{\phi$ ункция от $\varepsilon_t, \varepsilon_{t-1}, ... x_t, x_{t-1}, ...\}$

Второе слагаемое определяет условное среднее или прогноз, а первое слагаемое определяет условную дисперсию или ошибку прогноза. Сам прогноз можно выражать как в терминах $x-o \varepsilon$, так и в терминах ε . Например, для модели AR(1) можно написать $E_t(x_{t+j}) = \phi^j x_t$ или $E_t(x_{t+j}) = \phi^j \varepsilon_t + \phi^{j+1} \varepsilon_{t-1} + \cdots$ поскольку $x_t = \varepsilon_t + \phi \varepsilon_{t-1} + \cdots$.

Многомерные ARMA модели.

Сейчас мы только отметим, что многомерные ARMA модели определяются аналогично одномерным, только все буквы надо понимать не как числа и одномерные переменные, а как матрицы и векторы. Конечно, как обычно, надо соблюдать некоторую осторожность с такими операциями, как транспонирование и.т.п. Многомерные прогнозы считаются во многом так же, как и прогнозы для одномерных моделей. Если мы рассмотрим, например, векторную модель $MA(\infty)$

$$x_t=arepsilon_t+B_1arepsilon_{t-1}+B_2arepsilon_{t-2}+\cdots$$
 (здесь x_t , $arepsilon_t$ — векторы, а B_i — матрицы), то

$$E_t(x_{t+j}) = B_j \varepsilon_t + B_{j+1} \varepsilon_{t-1} + \cdots$$

$$Var_t(x_{t+j}) = \Sigma + B_1 \Sigma B_1' + \dots + B_{j-1} \Sigma B_{j-1}'.$$

Сравните с одномерным случаем

$$E_t(x_{t+j}) = E_t(\varepsilon_{t+j} + \theta_1 \varepsilon_{t+j-1} + \theta_j \varepsilon_t + \theta_{j+1} \varepsilon_{t-1} + \cdots)$$

$$= \theta_j \varepsilon_t + \theta_{j+1} \varepsilon_{t-1} + \cdots$$

$$Var_t(x_{t+j}) = (1 + \theta_1^2 + \theta_2^2 + \cdots + \theta_{j-1}^2) \sigma_{\varepsilon}^2.$$

Пространственное представление.

Модель AR(1) особенно удобна для вычислений, поскольку для неё сам прогноз и дисперсия ошибки прогноза могут быть вычислены рекурсивно. В этом параграфе мы объясним один полезный приём, позволяющий любой процесс преобразовать в векторный процесс AR(1), что приводит, в конечном счете, к созданию удобных программ, позволяющих вычислять прогнозы.

Представление ARMA процессов в виде векторного процесса AR(1).

Рассмотрим, для примера, процесс ARMA (2,1)

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t + \theta_1 \varepsilon_{t-1}.$$

Представим его как *векторный* процесс авторегрессии первого порядка

$$\begin{bmatrix} y_t \\ y_{t-1} \\ \varepsilon_t \end{bmatrix} = \begin{bmatrix} \phi_1 & \phi_2 & \theta_1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} y_{t-1} \\ y_{t-2} \\ \varepsilon_{t-1} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} [\varepsilon_t]$$

Или в матричном виде

$$x_t = Ax_{t-1} + Cw_t.$$

Иногда бывает удобно переопределить матрицу ${\it C}$ таким образом, чтобы дисперсия $w_t=1.$ То есть

$$C = \begin{bmatrix} \sigma_{\varepsilon} \\ 0 \\ \sigma_{\varepsilon} \end{bmatrix}$$
, $E(w_t w_t') = 1$.

Вычисление прогнозов с помощью векторного AR(1) представления.

Рассмотрим векторную $MA(\infty)$ модель

$$x_t = \sum_{j=0}^{\infty} A^j C w_{t-j}, \ Var(w_t) = I.$$

Прогноз легко считается

$$E_t(x_{t+k}) = A^k C w_t + A^{k+1} C w_{t-1} + \dots = A^k x_t.$$

Дисперсии ошибок прогноза равны

$$x_{t+1} - E_t(x_{t+1}) = Cw_{t+1} \Rightarrow Var_t(x_{t+1}) = CC'.$$

$$x_{t+2} - E_t(x_{t+2}) = Cw_{t+2} + ACw_{t+1} \Rightarrow Var_t(x_{t+2}) = CC' + ACC'A',$$

$$Var_t(x_{t+k}) = \sum_{j=0}^{k-1} A^j CC' (A^j)'$$

Эти формулы особенно удобны тем, что они позволяют рекуррентно пересчитывать прогнозы и их дисперсии:

$$E_t(x_{t+k}) = AE_t(x_{t+k-1}),$$

$$Var_t(x_{t+k}) = CC' + A[Var_t(x_{t+k-1})]A'.$$