Suppose I augment this information with reported uncertainties: the current literature suggests a value of around 71 \pm 2.5 (km/s)/Mpc, and my method has measured a value of 74 \pm 5 (km/s)/Mpc. Now are the values consistent? That is a question that can be quantitatively answered.

In visualization of data and results, showing these errors effectively can make a plot convey much more complete information.

Basic Errorbars

A basic errorbar can be created with a single Matplotlib function call (Figure 4-27):

```
In[1]: %matplotlib inline
    import matplotlib.pyplot as plt
    plt.style.use('seaborn-whitegrid')
    import numpy as np

In[2]: x = np.linspace(0, 10, 50)
    dy = 0.8
    y = np.sin(x) + dy * np.random.randn(50)

plt.errorbar(x, y, yerr=dy, fmt='.k');
```


Figure 4-27. An errorbar example

Here the fmt is a format code controlling the appearance of lines and points, and has the same syntax as the shorthand used in plt.plot, outlined in "Simple Line Plots" on page 224 and "Simple Scatter Plots" on page 233.

In addition to these basic options, the errorbar function has many options to finetune the outputs. Using these additional options you can easily customize the aesthetics of your errorbar plot. I often find it helpful, especially in crowded plots, to make the errorbars lighter than the points themselves (Figure 4-28):

Figure 4-28. Customizing errorbars

In addition to these options, you can also specify horizontal errorbars (xerr), onesided errorbars, and many other variants. For more information on the options available, refer to the docstring of plt.errorbar.

Continuous Frrors

In some situations it is desirable to show errorbars on continuous quantities. Though Matplotlib does not have a built-in convenience routine for this type of application, it's relatively easy to combine primitives like plt.plot and plt.fill_between for a useful result.

Here we'll perform a simple Gaussian process regression (GPR), using the Scikit-Learn API (see "Introducing Scikit-Learn" on page 343 for details). This is a method of fitting a very flexible nonparametric function to data with a continuous measure of the uncertainty. We won't delve into the details of Gaussian process regression at this point, but will focus instead on how you might visualize such a continuous error measurement:

In[4]: from sklearn.gaussian_process import GaussianProcess

```
# define the model and draw some data
model = lambda x: x * np.sin(x)
xdata = np.array([1, 3, 5, 6, 8])
ydata = model(xdata)
# Compute the Gaussian process fit
gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1E-1,
                    random start=100)
gp.fit(xdata[:, np.newaxis], ydata)
xfit = np.linspace(0, 10, 1000)
yfit, MSE = gp.predict(xfit[:, np.newaxis], eval_MSE=True)
dyfit = 2 * np.sqrt(MSE) # 2*sigma ~ 95% confidence region
```