Matt J. Kusner

properties of $f(\mathbf{x})$:

 $f(\mathbf{x})$ is **very expensive** to compute $f(\mathbf{x})$ is **nonconvex**

properties of $f(\mathbf{x})$:

 $f(\mathbf{x})$ is **very expensive** to compute $f(\mathbf{x})$ is **nonconvex**

idea: model f(x) with an easy-to-evaluate surrogate

Bayes. Opt. Application (**)

Hyperparameter tuning

[Bergstra et al. 2011, Hutter et al. 2011, Snoek et al. 2012]

Bayes. Opt. Application

Hyperparameter tuning

[Bergstra et al. 2011, Hutter et al. 2011, Snoek et al. 2012]

RBF Kernel SVM. Hyperparameters: (λ, σ)

 $1 - f(\lambda, \sigma)$ is validation error

Bayes. Opt. Application

Hyperparameter tuning

[Bergstra et al. 2011, Hutter et al. 2011, Snoek et al. 2012]

RBF Kernel SVM. Hyperparameters: (λ, σ)

 $1 - f(\lambda, \sigma)$ is validation error

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes as surrogates

 $h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$

a prior distribution over functions

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

a prior distribution over functions

figure credit: [Rasmussen & Williams, 2006]

Gaussian Processes as surrogates

kernel function $k(\mathbf{x}, \mathbf{x}')$

 $h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$

a prior distribution over functions

figure credit: [Rasmussen & Williams, 2006]

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

where to sample to maximize f(x)?

figure credit: [Rasmussen & Williams, 2006]

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

where to sample to maximize f(x)?

[Srinivas et al., 2010]

$$\mu_t(\mathbf{x}) + \sqrt{\beta}\sigma_t(\mathbf{x})$$

figure credit: [Rasmussen & Williams, 2006]

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

where to sample to maximize f(x)?

[Srinivas et al., 2010]

$$\mu_t(\mathbf{x}) + \sqrt{\beta}\sigma_t(\mathbf{x})$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

where to sample to maximize f(x)?

[Srinivas et al., 2010]

$$\mu_t(\mathbf{x}) + \sqrt{\beta}\sigma_t(\mathbf{x})$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

where to sample to maximize f(x)?

[Srinivas et al., 2010]

$$\mu_t(\mathbf{x}) + \sqrt{\beta}\sigma_t(\mathbf{x})$$
 exploitation exploration

figure credit: [Rasmussen & Williams, 2006]

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

Gaussian Processes as surrogates

$$h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$$

figure credit: [Brochu et al., 2010]

Gaussian Processes as surrogates

 $h \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$

figure credit: [Brochu et al., 2010]

