高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

概述

MAX30102 是一款集成脉搏血氧仪和心率监测模块。它包括内部 LED、光电探测器、光学元件和具有环境光抑制功能的低噪声电子元件。MAX30102 提供完整的系统解决方案,可简化移动和可穿戴设备的设计流程。

MAX30102 采用单个 1.8V 电源供电,并为内部 LED 提供单独的 5.0V 电源。

通信通过标准I2C 兼容接口进行。模块可通过软件关闭,待机电流为零,使电源轨始终保持通电状态。

应用

- ・可穿戴设备
- ・健身辅助设备

优点和特点

- · 心率监测器和脉搏血氧仪传感器 LED 反射解决方案
- · 微型 5.6mm x 3.3mm x 1.55mm 14 针光学模块
 - · 集成盖玻片,实现最佳、稳定的性能
- · 适合移动设备的超低功耗运行
 - ·可编程采样率和 LED 电流 节能
 - · 低功耗心率监测器 (< 1mW)
 - · 超低关断电流(0.7µA,典型值)
- ・快速数据输出能力
 - ・高采样率
- · 强大的运动伪影恢复能力
 - ・高信噪比
- · 工作温度范围: -40°C 至 +85°C

订购信息出现在数据表的末尾。

系统图

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

ルムコー	. 😑 🗀	上中去	_	/±
アスト	取り	5	ᄺ	ı

VDD至 GNDo.3V		连续功率 OESI
X_DRV, VLED+至PGND 所有其他引脚接地		工作温度 结温
间连续 连续输入电流进入任意端子±20mA ES	•	焊接温度 -40°C 至
(HBM)2.5kV 闩锁免疫力	±250mA	

连续功率耗散 (TA	= +70°C)
OESIP (+70°C	以上每°C降低5.5mW)440mW
工作温度范围	40°C 至 +85°C
结温	+90°C
焊接温度(回流)	+260°C 存储温度范围
-40°C 至 +105°C	

封装热特性

(注1)

开放式环境计划

结至外壳热阻(θJC)......150°C/W

注 1:封装热阻是使用 JEDEC 规范 JESD51-7 中描述的方法(使用四层电路板)获得的。有关封装热考虑的详细信息,请参阅www.maximintegrated.com/thermal-tutorial。

电气特性

(除非另有说明,VDD = 1.8V, VIR_LED+ = VR_LED+ = 5.0V, TA = -40°C 至 +85°C。典型值为TA = +25°C)(注 2)

范围	象征	状况	分钟 典型值 最大值 单位			
电源						
电源电压	电压源	由 RED 和 IR 计数公差保证	1.7	1.8	2.0	V
LED 电源电压 R_LED+ 或 IR_LED+ 至 PGND	电压+	由 LED 驱动器的 PSRR 保证 (仅限 R_LED+ 和 IR_LED+)	3.1	3.3	5.25	V
电源电流	व्यक्तिस्ट	SpO2和 HR 模式,PW = 215μs,50sps		600	1200	安培
		仅 IR 模式,PW = 215μS,50sps		600	1200	
关断模式下的电源电流	ISHDN	TA = +25°C,模式 = 0x80		0.7	10	安培
脉搏血氧仪/心率传感器特性						
ADC 分辨率				18		位
红色 ADC 计数 (注3)	可用生能灌发撕裂损余	RED_PA = 0x0C,LED_PW = 0x01, SPO2_SR = 0x05, ADC_RGE = 0x00, TA = +25°C	55536 6553	36 75536 计数	Ř	
红外 ADC 数量 (注3)	д Буунчайх	IR_PA = 0x0C,LED_PW = 0x01, SP02_SR = 0x05 ADC_RGE = 0x00, TA = +25°C	55536 6553	55536 65536 75536 计数		

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

电气特性 (续)

(除非另有说明,VDD = 1.8V, VIR_LED+ = VR_LED+ = 5.0V, TA = -40℃ 至 +85℃。典型值为TA = +25℃)(注 2)

范围	象征	状况	分钟	典型值 最	大值 单位		
		RED PA = IR PA = 0x00,	RED_PA = IR_PA = 0x00,			128次	
暗电流计数	LED_DCC	LED_PW = 0x03, SPO2_SR = 0x01 ADC_RGE = 0x02		0.01	0.05	%的 FS	
直流环境光抑制	аяночасыя	阳光直射下 ADC 使用手指放在传感 器上进行计数 (100K 勒克斯),	红色的		2		计数
		ADC_RGE = 0x3,LED_PW = 0x03, SP02_SR = 0x01	和 引领		2		计数
ADC 数量PSRR (VDD)	电源电压源	1.7V < VDD < 2.0V, LED_PW = 0x00,SPO2_SR = 0x05 TA = +25°C			0.25	1	%的 FS
		频率 = DC 至 100kHz,100mVP	-P		10		最低有效位
ADC 数量PSRR	电源抑制比LED	3.6V < R_LED+, IR_LED+ < 5.0V, TA =	+25°C		0.05	1	%的 FS
(LED 驱动器输出)		频率 = DC 至 100kHz,100mVP		10		最低有效位	
ADC 时钟频率	时钟						i
		LED_PW = 0x00			69		
	智力	LED_PW = 0x01			118		
ADC 积分时间		LED_PW = 0x02			215		微秒
		LED_PW = 0x03		411			
时隙定时(连续通道样本之间的定时;		LED_PW = 0x00		427.1			
例如,红色脉冲上升沿至红外脉冲上升沿)	智力	LED_PW = 0x01	524.7 720.0 1106.6			微秒	
		LED_PW = 0x02					
		LED_PW = 0x03					
盖玻片特性(注释4)							
耐水解等级		适用于 DIN ISO 719			血红蛋白1		
红外 LED 特性(注 4)					,		
LED 峰值波长	λР	ILED = 20mA, TA = +25°C		870	880	900	纳米
半高全宽	DL	ILED = 20mA, TA = +25°C			Ξ+		纳米
正向电压	心室颤动	ILED = 20mA, TA = +25°C			1.4		٧
辐射能量	采购订单	ILED = 20mA, TA = +25°C			6.5		毫瓦
红色 LED 特性(注释 4)							
LED 峰值波长	λР	ILED = 20mA, TA = +25°C		650	660	670	纳米
半高全宽	DL	ILED = 20mA, TA = +25°C			20		纳米
正向电压	心脏師功	ILED = 20mA, TA = +25°C			2.1		٧
辐射能量	采购订单	ILED = 20mA, TA = +25°C			9.8		毫瓦

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

电气特性 (续)

(除非另有说明,VDD = 1.8V, VIR_LED+ = VR_LED+ = 5.0V, TA = -40℃ 至 +85℃。典型值为TA = +25℃)(注 2)

范围	象征	状况	分钟	典型值 最	大值 单位	
光电探测器特性(注释4)						
灵敏度光谱范围	我 (量化宽松> 50%)	QE:量子效率	600		900	纳米
辐射敏感区				1.36		毫米2
辐射敏感的尺寸 区域	长x宽			1.38 x 0.98		毫米 x 毫米
内部芯片温度传感器	*					3
温度 ADC 采集 时间	ТТ	TA = +25°C		Ξ + π		5-859/02
温度传感器精度	饰面	TA = +25°C		±1		振氏度
温度传感器最小值 范围	TMIN			-40		揚氏度
温度传感器最大值 范围	最大温度范围			85		振氏度
数字输入特性:SCL、SDA	_		_			
输入高电压	艾滋病病毒	VDD = 2V	0.7 x 电压源			V
输入低电压	将要	VDD = 2V			0.3×电 源电压	V
滞后电压	超高压			0.2		V
输入漏电流	免疫网	VIN = GND 或VDD (静态)		±0.05	±1	安培
数字输出特性:SDA、INT	_					
输出低电压	音量	ISINK = 6毫安			0.2	V
I2C时序特性(SDA、SDA、INT)(注 4)						
I2C写地址				但		十六进制
I2C读取地址				的		十六进制
串行时钟频率	sCL		0		400	千赫
站点间公交车空闲时间 和 START 条件	缓冲容量		1.3			微秒
保持时间(重复)开始 健康)状况	tHD;STA		0.6			微秒
SCL 脉冲宽度低	低		1.3			微秒
SCL 脉冲宽度高	大腿		0.6			微秒
重复的建立时间 开始条件	tSU;STA		0.6			微秒
数据保持时间	tHD;那		0		900	纳秒

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

电气特性(续)

(除非另有说明,VDD = 1.8V, VIR_LED+ = VR_LED+ = 5.0V, TA = -40°C 至 +85°C。典型值为TA = +25°C)(注 2)

范围	象征	状况	分钟	典型值 最大值 单位	
数据建立时间	tSU;达		100		纳秒
STOP 条件的建立时间	tSU;STO		0.6		微秒
抑制脉冲宽度 长钉	特发性		0	50	纳秒
总线电容	炭黑			400	毫微微法
SDA 和 SCL 接收上升沿时间	響		20 + 0.1CB	300	纳秒
SDA 和 SCL 接收下降 时间	转运蛋白		20 + 0.1CB	300	纳秒
SDA 发送下降时间	转录因子			300	纳秒

注 2:所有器件均在TA = $+25^{\circ}$ C下进行 100% 生产测试。Maxim 保证温度范围内的规格 集成的台式或专有自动测试设备 (ATE) 特性。

注 3:规格由 Maxim Integrated 的台架特性和使用专有技术的 100% 生产测试保证。 ATE 设置和条件。

注 4:由设计和特性保证。未在最终生产中测试。

图 1. I2C 兼容接口时序图

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

典型工作特性

(除非另有说明,VDD=1.8V、VLED+=5.0V、TA=+25°C、RST。)

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

典型工作特性(续)

(除非另有说明,VDD = 1.8V、 VLED+ = 5.0V、 TA = +25°C、RST。)

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

引脚配置

引脚描述

J 1/J4PJ ШХС		
别针	姓名	功能
1, 7, 8, 14	数控	无连接。连接至 PCB 焊盘,实现机械稳定性。
2	新加坡	12C时钟输入
3	南达科他州	I2C数据,双向(开漏)
4	前列腺特异性抗原	LED 驱动器块的电源接地
5	驱动	红色 LED 驱动器。
6	IR_DRV	红外线 LED 驱动器。
9	电压+	LED 电源(阳极连接)。使用旁路电容连接 PGND 可获得最佳性能。
10	电压+	
11	电压源	模拟电源输入。使用旁路电容接地可获得最佳性能。
12	地线	模拟地
+=	智力	低电平有效中断(开漏)。通过上拉电阻连接至外部电压。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

功能图

详细描述

MAX30102 是一款完整的脉搏血氧仪和心率传感器系统解决方案模块,专为满足可穿戴设备的严苛要求而设计。该器件保持了极小的解决方案尺寸,而不会牺牲光学或电气性能。集成到可穿戴系统中所需的外部硬件元件极少。

该设备输出数据对红外 LED 的波长相对不敏感,而红色 LED 的波长对于正确解释数据至关重要。与 MAX30102 输出信号一起使用的 SpO2 算法可以补偿环境温度变化引起的相关 SpO2 误差。

MAX30102 可通过软件寄存器完全调整,数字输出数据可存储在 IC 内的 32 级深度 FIFO 中。 FIFO 允许 MAX30102 连接到共享总线上的微控制器或处理器,此时数据不会从 MAX30102 的寄存器连续读取。

LED 驱动器

MAX30102 集成红光和红外 LED 驱动器,用于调制 LED 脉冲以进行 SpO2和 HR 测量。

LED 电流可在 0 至 50mA 之间进行编程,并配备适当的电源电压。LED 脉冲宽度可在 69μ S 至 411μ S 之间进行编程,以便算法根据使用情况优化 SpO2 和 HR 的准确性和功耗。

SpO2子系统

MAX30102的SpO2子系统包含环境光消除 (ALC)、连续时间 sigma-delta ADC 和专有离散时间滤波器。ALC 具有内部跟踪/保持电路,可消除环境光并增加有效动态范围。SpO2 ADC 具有可编程满量程范围,范围从 2μ A 到 16μ A。ALC 可消除高达 200μ A 的环境电流。

内部 ADC 是具有 18 位分辨率的连续时间过采样 Sigma-Delta 转换器。ADC 采样率为 10.24MHz。ADC 输出数据速率可编程为 50sps(每秒采样数)至 3200sps。

接近功能

该设备包含近距离功能,可在用户手指不在传感器上时节省电量并减少可见光发射。当启动 SpO2或 HR 功能(通过写入 MODE 寄存器)时,IR LED 会在近距离模式下激活,驱动电流由 PILOT_PA 寄存器设置。当检测到物体超过 IR ADC 计数阈值(在 PROX_INT_THRESH 寄存器中设置)时,该部件会自动转换到正常的SpO2/HR模式。要重新进入近距离模式,必须重写 MODE 寄存器(即使值相同)。

温度传感器

MAX30102 具有片上温度传感器,用于校准 SpO2子系统的温度依赖性。温度传感器的固有分辨率为 0.0625° C。

可以通过将 $PROX_INT_EN$ 重置为 0 来禁用接近功能。在这种情况下,SpO2或 HR 模式将立即开始。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

寄存器映射和说明

登记	В7	B6	B5	B4	В3	B2	B1	В0	登记地址	经过 状态	读/写
地位											
打断 状态1	完整版	聚乙二醇 RDY	ALCA_ OVF	PROX_ 智力				电源 RDY	0x00	0X00 复制	代码
打断 状态 2							模具温度 _RDY		0x01	0x00 复制	代码
打断 启用 1	已满在	聚乙二醇 RDY_EN	ALCA_ OVF_EN	PROX_ INT_EN					0x02	0X00 读/ ²	3
打断 启用 2							模具温度 _RDY_EN		0x03	0x00 读/ ¹	5
					先进先出					2	X. Q.
FIFO 写入 指针					FIFO ²	写入指针[4:0]		, , , , , , , , , , , , , , , , , , , ,	0x04	0x00 读/ ²	5
溢出 柜台					OVF_ì	十数器[4:0]			0x05	0x00 读/ ¹	3
FIFO 读取 指针					FIFO	D_RD_PTR[4	:0]		0x06	0x00 读/ ²	5
先进先出日期 登记				FIFO_数据	[7:0]				0x07	0x00 读/ ²	5
配置											
先进先出配置	SN	1P_AVE[2:0]	先进先出 卷 OVER_EN	卷 FIFO_A_FULL[3:0]				0x08	0x00 读/ ⁷	.
模式配置	SHDN复位						模式[2:0]		0x09	0x00 读/ ⁷	5
血氧饱和度配置	0 (预订的)	SPO2_ADC	_RGE :0]	S	PO2_SR[2:0)]	LED 电源	[1:0]	0x0A 0x0	0 读/写	
预订的									0x0B 0x0	0 读/写	
LED 脉冲				LED1_	PA[7:0]				0x0C 0x0	0 读/写	
振幅				LED2_	PA[7:0]				0x0D 0x0		
预订的									0x0E 0x0		
预订的									0x0F 0x0	0 读/写	
近距离模式 LED 脉冲 振幅		PILOT_PA[7:0]						0x10	0x00 读/ ¹	5	
多 LED 模式控制			插槽2[2:0]				插槽1[2:0]		0x11	0x00 读/ ²	5
寄存器			插槽4[2:0]				插槽3[2:0]		0x12	0x00 读/ ²	<u> </u>

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

寄存器映射和说明(续)

登记	В7	В6	B5	B4	В3	B2	B1	В0	登记地址	经过 状态	读/写
预订的									0x13- 0x17	0xFF 读/写	ř
预订的									0x18- 0x1E	0x00 复制	代码
温度	~										
温度整数				色调[7:0]				0x1F 0x0	0 读	
温度分数						TFRAC	[3:0]		0x20	0x00 复制	代码
这 温度 配置								温度 _在	0x21	0x00 复制	代码
预订的									0x22- 0x2F	0x00 读/写	5
接近功能											
接近性 打断 临界点	PROX_INT_THRESH[7:0]							0x30	0x00 读/写	ij	
零件编号											
修订版本 ID				修改ID	[7:0]				0xFE 0xX	X* R	
零件编号				零件编	号[7]				0xFF 0x1	5 读	

^{*}XX 表示 2 位十六进制数(00 至 FF),用于识别部件版本。请联系 Maxim Integrated 获取您产品的版本 ID 号。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

中断状态(0x00-0x01)

登记	В7	В6	B5	B4	В3	B2	B1	В0	登记 地址	经过 状态	读/写
打断 状态 1	完整 PPG_F	RDY ALC_OVF		PROX_ 智力				电源 RDY	0x00 0X	00 读	
打断 状态 2							这_ TEMP_RDY		0x01	0x00 复制	代码

每当触发中断时,MAX30102都会将有效低中断引脚拉至低电平状态,直到中断被清除。

A_FULL:FIFO 几乎已满标志

在 SpO2和 HR 模式下,当 FIFO 写入指针剩余一定数量的可用空间时,此中断会触发。触发次数可通过FIFO_A_FULL[3:0]寄存器设置,通过读取中断状态1寄存器(0x00)可清除中断。

PPG RDY:新 FIFO 数据就绪

在 SpO2和 HR 模式下,当数据 FIFO 中有新样本时,会触发此中断。通过读取中断状态 1 寄存器 (0x00) 或读取 FIFO_DATA 寄存器可清除中断。

ALC OVF:环境光消除溢出

当SPO2/HR光电二极管的环境光消除功能达到其最大限度时,会触发此中断,因此,环境光会影响 ADC 的输出。通过读取中断状态 1 寄存器 (0x00) 可清除中断。

PROX_INT:接近阈值已触发

当接近度阈值达到时,会触发接近度中断,并且SpO2/HR模式已开始。这让主机处理器知道开始运行SpO2/HR算法并收集数据。通过读取中断状态 1 寄存器 (0x00) 可以清除中断。

PWR_RDY:电源就绪标志

在上电或掉电条件之后,当电源电压VDD从低于欠压锁定(UVLO)电压转变为高于UVLO电压时,会触发电源就绪中断,以发出信号表示模块已上电并准备好收集数据。

DIE_TEMP_RDY:内部温度就绪标志

当内部芯片温度转换完成后,将触发此中断,以便处理器可以读取温度数据寄存器。通过读取中断状态 2 寄存器 (0x01) 或 TFRAC 寄存器 (0x20) 可清除中断。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

每当读取中断状态寄存器或读取触发中断的寄存器时,中断都会被清除。例如,如果 SpO2传感器由于完成转换而触发中断,则读取 FIFO 数据寄存器或中断寄存器会清除中断引脚(使其返回到正常的 HIGH 状态)。这还会将中断状态寄存器中的所有位清除为零。

中断启用(0x02-0x03)

登记	B7	В6	B5	B4	B3	B2	B1	В0	登记地址	经过 状态	读/写
打断 启用 1	 满的_ 在	聚乙二醇 RDY_EN	ALCA_ OVF_EN	PROX_ INT_EN					0x02 0X0	0 读/写	
打断 启用 2							模具_温度_ RDY_EN		0x03 0x0	0 读/写	

除电源就绪中断外,每个硬件中断源均可在 MAX30102 IC 内的软件寄存器中禁用。电源就绪中断无法禁用,因为模块的数字状态在掉电条件(低电源电压)下会重置,而默认条件是所有中断均被禁用。此外,系统必须知道发生了掉电条件,因此模块内的数据会被重置。

为了保证正常运行,未使用的位应始终设置为零。

FIFO (0x04-0x07)

登记	В7	B6	B5	B4	B4 B3 B2 B1 B0						读/写
FIFO 写入 指针					FIFO写入指针[4:0]						5
溢出 柜台				OVF_计数器[4:0]						0x00 读/写	5
FIFO 读取 指针				FIFO_RD_PTR[4:0]					0x06	0x00 读/写	5
先进先出日期 登记		FIFO_数据[7:0]							0x07	0x00 读/写	5

FIFO 写指针

FIFO 写入指针指向 MAX30102 写入下一个样本的位置。此指针随着每个样本被推送到 FIFO 而前进。当 MODE[2:0] 为 010、011 或 111 时,它也可以通过12C接口进行更改。

FIFO 溢出计数器

当 FIFO 已满时,样本不会被推送到 FIFO,样本会丢失。OVF_COUNTER 会计算丢失的样本数。它在 0xF 处饱和。当从 FIFO 中 "弹出"完整样本(即删除旧 FIFO 数据并将样本下移)时(当读取指针前进时),OVF_COUNTER 会重置为零。

FIFO 读指针

FIFO 读取指针指向处理器通过12C接口从 FIFO 获取下一个样本的位置。每次从 FIFO 弹出样本时,该指针都会前进。处理器还可以在读取样本后写入此指针,以便在出现数据通信错误时重新从 FIFO 读取样本。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

FIFO 数据寄存器

循环 FIFO 深度为 32,最多可容纳 32 个数据样本。样本大小取决于配置为活动的 LED 通道(又称通道)的数量。由于每个通道信号都存储为 3 字节数据信号,因此 FIFO 宽度可以是 3 字节或 6 字节。

I2C寄存器映射中的 FIFO_DATA 寄存器指向要从 FIFO 读取的下一个样本。FIFO_RD_PTR 指向此样本。读取 FIFO_DATA 寄存器不会自动增加I2C寄存器地址。突发读取 此寄存器会反复读取相同的地址。每个样本每个通道有 3 个字节的数据(即 RED 为 3 个字节,IR 为 3 个字节等)。

FIFO 寄存器 (0x04-0x07) 都可以写入和读取,但实际上在操作中只应写入 FIFO_RD_PTR 寄存器。其他寄存器由 MAX30102 自动递增或填充数据。开始新的 SpO2 或心率转换时,建议先将 FIFO_WR_PTR、OVF_COUNTER 和 FIFO_RD_PTR 寄存器清除为全零 (0x00),以确保 FIFO 为空且处于已知状态。在一次突发读取 I2C 事务中读取 MAX30102 寄存器时,寄存器地址指针通常会递增,以便发送的下一个数据字节来自下一个寄存器,等等。FIFO 数据寄存器 (寄存器 0x07) 除外。读取此寄存器时,地址指针不会递增,但 FIFO_RD_PTR 会递增。因此,发送的下一个数据字节代表 FIFO 中可用的下一个数据字节。

进入和退出接近模式(当 PROX_INT_EN = 1 时)通过将写入和读取指针设置为彼此相等来清除 FIFO。

从 FIFO 读取

通常,从I2C接口读取寄存器会自动增加寄存器地址指针,这样就可以在不发生I2C启动事件的情况下一次性读取所有寄存器。在 MAX30102 中,这适用于除 FIFO_DATA 寄存器(寄存器 0x07)之外的所有寄存器。

读取 FIFO_DATA 寄存器不会自动增加寄存器地址。突发读取此寄存器会反复从同一地址读取数据。每个样本包含多个字节的数据,因此应从此寄存器读取多个字节(在同一事务中)以获得一个完整样本。

另一个例外是 0xFF。读取 0xFF 寄存器后的更多字节不会将地址指针推进回 0x00,并且读取的数据没有意义。

FIFO 数据结构

数据 FIFO 由一个 32 样本存储库组成,可存储 IR 和红色 ADC 数据。由于每个样本由两个通道的数据组成,因此每个样本有 6 个字节的数据,因此 FIFO 中总共可以存储 192 个字节的数据。

FIFO 数据是左对齐的,如表1所示;换句话说,无论 ADC 分辨率设置如何,MSB 位始终位于第 17 位数据位置。有关 FIFO 数据结构的直观表示,请参阅表 2。

表 1. FIFO 数据左对齐

機数转換器解決	[2	[9]	::	[2]	[1]	[0	₩.	₩.	1	M.	10	₩.	₩.	11	₩.	•
18 位																
17 位																
16 位																
15 位																

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

FIFO 数据每通道包含 3 个字节

FIFO 数据是左对齐的,这意味着无论 ADC 分辨率设置如何,MSB 始终位于同一位置。FIFO DATA[18] – [23] 未使用。表 2显示了每个三元组字节的结构(包含每个通道的 18 位 ADC 数据输出)。

SpO2模式下的每个数据样本包含两个数据三元组(每个3个字节),要读取一个样本,每个字节都需要一个I2C读取命令。因此,要在SpO2模式下读取一个样本,需要6个I2C字节读取。读取每个样本的第一个字节后,FIFO读取指针会自动递增。

写/读指针

写入/读取指针用于控制 FIFO 中的数据流。每次将新样本添加到 FIFO 时,写入指针都会递增。每次从 FIFO 读取样本时,读取指针都会递增。要从 FIFO 重新读取样本,请将其值减一并再次读取数据寄存器。

进入SpO2模式或HR模式时,应清除FIFO写入/读取指针(返回至0x00),以便FIFO中不显示旧数据。如果VDD重新通电或VDD电压低于其UVLO电压,则会自动清除指针。

表 2. FIFO 数据(每通道 3 字节)

字节 1							先进先出 数据[17]	先进先出 数据[16]
字节 2	先进先出	先进先出						
	数据[15]	数据[14]	数据[13]	数据[12]	数据[11]	数据[10]	数据[9]	数据[8]
字节 3	先进先出	先进先出						
	数据[7]	数据[6]	数据[5]	数据[4]	数据[3]	数据[2]	数据[1]	数据[0]

图 2. FIFO 数据寄存器的图形表示。它显示 SpO2模式下的 IR 和红色。

停止;

从 FIFO 读取数据的伪代码示例

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

第一个事务:获取 FIFO_WR_PTR: 开始; 发送设备地址+写入模式 发送FIFO_WR_PTR的地址; 重复开始; 发送设备地址+读取模式 读取FIFO_WR_PTR; 停止; 中央处理器评估要从 FIFO 读取的样本数量: NUM_AVAILABLE_SAMPLES = FIFO_WR_PTR - FIFO_RD_PTR (注意:应考虑指针环绕) NUM_SAMPLES_TO_READ = < 小于或等于 NUM_AVAILABLE_SAMPLES > 第二笔交易:从 FIFO 读取 NUM_SAMPLES_TO_READ 样本: 开始; 发送设备地址+写入模式 发送FIFO_DATA的地址; 重复开始; 发送设备地址+读取模式 对于 (i=0;i<NUM_SAMPLES_TO_READ;i++){ 读取FIFO_DATA; 保存LED1[23:16]; 读取FIFO_DATA; 保存LED1[15:8]; 读取FIFO_DATA; 保存LED1[7:0]; 读取FIFO_DATA; 保存LED2[23:16]; 读取FIFO_DATA; 保存LED2[15:8]; 读取FIFO_DATA; 保存LED2[7:0]; 读取 FIFO_DATA; } 停止; 开始; 发送设备地址+写入模式 发送FIFO_RD_PTR的地址; 写入FIFO_RD_PTR;

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

第三个事务:写入 FIFO_RD_PTR 寄存器。如果第二个事务成功,FIFO_RD_PTR 指向 FIFO 中的下一个样本,则第三个事务不是必需的。否则,处理器会适当更新 FIFO_RD_PTR,以便重新读取样本。

FIFO 配置 (0x08)

登记	В7	B6	B5	B4	В3	B2	B1	В0	登记地址	经过 状态	读/写
先进先出配置	S	MP_AVE[2:0]		先进先出角色 情人_ONE	7.5	FIFO_A_FUI	LL[3:0]		0x08 0x0	0 读/写	

位 7:5:样本平均值 (SMP_AVE)

为了减少数据吞吐量,可以通过设置该寄存器在芯片上对相邻样本(在每个单独的通道中)进行平均和抽取。

表 3. 样本平均值

SMP_AVE[2:0]	每个 FIFO 样本的平均样本数量
000	1(无平均值)
001	2
010	4
011	8
100	16
101	E+C
110	E#2
111	E+C

位 4:FIFO 满时滚动 (FIFO_ROLLOVER_EN)

此位控制 FIFO 完全充满数据时的行为。如果设置了 FIFO_ROLLOVER_EN (1),FIFO 地址将翻转为零,并且 FIFO 继续填充新数据。如果未设置此位 (0),则 FIFO 不会更新,直到读取 FIFO_DATA 或更改 WRITE/READ 指针位置。

位 3:0:FIFO 几乎满值 (FIFO_A_FULL)

该寄存器设置发出中断时 FIFO 中剩余的数据样本数(3个字节/样本)。例如,如果此字段设置为0x0,则当 FIFO 中剩余0个数据样本(所有32个 FIFO 字都有未读取数据)时发出中断。此外,如果此字段设置为0xF,则当 FIFO 中剩余15个数据样本(17个 FIFO 数据样本都有未读取数据)时发出中断。

FIFO_A_FULL[3:0]	中断时 FIFO 中的数据样本为空 已发布	FIFO 中有未读数据样本时 发出中断
0x0h	0	E+=
0x1h	1	31
0x2h	2	Ξ+
0x3h	3	二十九
0xFh	15	17

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

模式配置 [0x09]

登记	В7	В6	B5	B4	B3	B2	B1	В0	登记地址	经过 状态	读/写
模式配置	SHDN复位					_	模式[2:0]		0x09	0x00 读/写	5

位7:关断控制(SHDN)

通过将此位置为1,可以将器件置于省电模式。在省电模式下,所有寄存器都保留其值,并且写入/读取操作正常运行。在此模式下,所有中断均被清除为零。

位 6:复位控制(RESET)

当 RESET 位设置为 1 时,所有配置、阈值和数据寄存器都会通过上电复位复位到上电状态。复位序列完成后,RESET 位会自动清零。

注意:设置 RESET 位不会触发 PWR_RDY 中断事件。

位 2:0:模式控制

这些位设置 MAX30102 的工作状态。更改模式不会改变任何其他设置,也不会擦除数据寄存器内任何先前存储的数据。

表 4. 模式控制

模式[2:0]	模式	有源 LED 通道				
000	请勿使用					
001	请勿使	用				
010	心率模式	仅限红色				
011	SpO2 模式	红色和红外线				
100–110	请勿使	用				
111	多 LED 模式	红色和红外线				

SpO2配置 (0x0A)

登记	В7	B6	B5	B4	В3	B2	B1	В0	登记地址	经过 状态	读/写
血氧饱和度配置		SPO2_ADC_F	RGE[1:0]	S	PO2_SR[2:	0]	LED 电	源[1:0]	0x0A 0x0	0 读/写	

位 6:5:SpO2 ADC 范围控制

该寄存器设置 SpO2传感器 ADC 的满量程范围,如表5 所示。

表 5. SpO2 ADC 范围控制(18 位分辨率)

SPO2_ADC_RGE[1:0]	LSB 大小 (pA)	满量程 (nA)
00	7.81	2048
01	15.63	4096
10	31.25	8192
11	62.5	16384

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

位 4:2:SpO2采样率控制

这些位定义有效采样率,一个样本由一个红外脉冲/转换和一个红色脉冲/转换。

采样率和脉冲宽度是相关的,因为采样率设置了脉冲宽度时间的上限。如果用户选择的采样率对于所选的 LED_PW 设置来说太高,则将最高可能的采样率编程到寄存器中。

表 6. SpO2采样率控制

SPO2_SR[2:0]	每秒采样数
000	50
001	100
010	200
011	400
100	800
101	1000
110	1600
111	3200

有关脉冲宽度与采样率的信息,请参见表 11 和表 12。

位 1:0:LED 脉冲宽度控制和 ADC 分辨率

这些位设置 LED 脉冲宽度(IR 和 Red 具有相同的脉冲宽度),因此间接设置每次采样中 ADC 的积分时间。ADC 分辨率与积分时间直接相关。

表 7. LED 脉冲宽度控制

LED 电源[1:0]	脉冲宽度 (μs)	ADC 分辨率(位)
00	69 (68.95)	15
01	118 (117.78)	16
10	215 (215.44)	17
11	411 (410.75)	18

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

LED 脉冲幅度 (0x0C-0x10)

登记	В7	B6	B5	B4	B3	B2	B1	В0	登记地址	经过 状态	读/写
LED 脉冲	LED1 PA[7:0]) 读/写	
振幅				LED2 PA	[7:0]		10-		0x0D 0x00) 读/写	
预订的								0x0E 0x00	读/写		
预订的									0x0F 0x00) 读/写	
近距离模式 LED 脉冲 振幅				PILOT_PA	A[7:0]				0x10 0x00)读/写	

这些位设置每个 LED 的电流水平,如表8 所示。

表 8. LED 电流控制

LEDx_PA[7:0]、RED_PA[7:0] 或 IR_PA[7:0]	典型 LED 电流 (mA)*
0x00h	0.0
0x01h	0.2
0x02h	0.4
0x0Fh	3.1
0x1Fh	6.4
0x3Fh	12.5
0x7Fh	25.4
0xFFh	50.0

^{*}由于调整方法的不同,每个部件实际测量的 LED 电流可能会有很大差异。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

PILOT_PA[7:0] 的目的是设置接近模式以及多 LED 模式下的 LED 功率。

多 LED 模式控制寄存器 (0x11-0x12)

登记	В7	B6	B5	B4	В3	B2	B1	В0	登记地址	经过 状态	读/写
多 LED			插槽2[2:0]			插槽1[2:0]			0x11	0x00 读/写	5
模式控制寄存器		插槽4[2:0]			插槽3[2:0]		0x12 0x00) 读/写			

在多 LED 模式下,每个样本最多分为四个时隙,即 SLOT1 至 SLOT4。这些控制寄存器决定每个时隙中哪个 LED 处于活动状态,从而实现非常灵活的配置。

表 9. 多 LED 模式控制寄存器

SLOTx[2:0] 设置	哪个 LED 处于活动状态	LED 脉冲幅度设置
000	无(时间段已禁用)	N/A(关闭)
001	LED1(红色)	LED1_PA[7:0]
010	LED2(红外)	LED2_PA[7:0]
011	没有任何	N/A(关闭)
100	没有任何	N/A(关闭)
101	LED1(红色)	PILOT_PA[7:0]
110	LED2(红外)	PILOT_PA[7:0]

每个槽都会生成3字节输出到FIFO。一个样本包含所有活动槽,例如,如果SLOT1和SLOT2非零,则一个样本为2x3=6字节。

应按顺序启用插槽(即,如果启用了SLOT2,则不应禁用SLOT1)。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

温度数据(0x1F-0x21)

登记	В7	В6	B5	B4	В3	B2	B1	В0	登记 地址	经过 状态	读/写
芯片温度整数		色调[7]					0x1F 0x0	00 读			
芯片温度分数						TFRA	C[3:0]		0x20 0x0	00 复制代码	
气温 配置								TEMP_EN 0x2	1	0x00 复制	代码

温度整数

板载温度 ADC 输出分为两个寄存器,一个用于存储整数温度,一个用于存储分数。读取温度数据时应读取这两个寄存器,下面的公式显示了如何将两个寄存器相加:

TMEASURED = TINTEGER + TFRACTION

该寄存器以2的补码格式存储整数温度数据,其中每个位对应1°C。

表 10. 温度整数

寄存器值(十六进制)	温度 (°C)
0x00	0
0x01	+1
0x7E	+126
0x7F	+127
0x80	-128
0x81	-127
0xFE	-2
0xFF	-1

温度分数

该寄存器以 0.0625℃ 的增量存储小数温度数据。如果此小数温度与负整数配对,它仍会添加为正小数值(例如,-128℃ + 0.5℃ = -127.5℃)。

温度使能(TEMP_EN)

这是一个自清除位,设置后会启动温度传感器的单次温度读数。当在 IR 或 SpO2模式下将该位设置为 1 时,该位会在温度读数结束时自动清除回零。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

接近模式中断阈值 (0x30)

登记	В7	B6	B5	В4	В3	B2	B1	В0	登记地址	经过 状态	读/写
接近性 打断 临界点			Р	ROX_INT_THRE	ESH[7:0]				0x30	0x00 读/写	

此寄存器设置触发 HR 或 SpO2 模式开始的 IR ADC 计数。阈值定义为 ADC 计数的 8 个 MSB 位。例如,如果 PROX_INT_THRESH[7:0] = 0x01,则 17 位 ADC 值为 1023(十进制)或更高会触发 PROX_INT 中断。如果 PROX_INT_THRESH[7:0] = 0xFF,则只有饱和的 ADC 才会触发中断。

应用信息

采样率和性能

ADC 的最大采样率取决于所选的脉冲宽度,而脉冲宽度又决定了 ADC 的分辨率。

例如,如果脉冲宽度设置为 69μs,则 ADC 分辨率为 15 位,并且所有采样率都是可选的。但是,如果脉冲宽度设置为 411μs,则采样率受到限制。SpO2和 HR 模式允许的采样率总结在表 11和表 12 中。

电源考虑因素

本节讨论了 LED 波形及其对电源设计的影响。

MAX30102 中的 LED 以低占空比脉冲方式发光,以节省功耗,脉冲电流可能导致VLED+电源产生波纹。为确保这些脉冲不会在 LED 输出端转化为光学噪声,电源必须设计为能够处理这些噪声。确保电源(电池、DC/DC 转换器或 LDO)到引脚的电阻和电感远小于 1Ω ,并且电源旁路电容至少为 1μ F,连接到良好的接地平面。电容应尽可能靠近 IC 放置。

表 11. SpO2模式(允许的设置)

W.D.		脉冲宽度 (µs)		
样品 每 第二	69	118	215	411
50	这	这	这	这
100	这	这	这	这
200	这	这	这	这
400	这	这	这	这
800	这	这	这	
1000	这	这		
1600	这			
3200				
解决 (位)	15	16	17	18

表 12. HR 模式(允许的设置)

МП		脉冲宽度 (µs)		
样品 每 第二	69	118	215	411
50	这	这	这	这
100	这	这	这	这
200	这	这	这	这
400	这	这	这	这
800	这	这	这	这
1000	这	这	这	这
1600	这	这	这	
3200	这			
解决 (位)	15	16	17	18

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

在心率模式下,仅使用红色 LED 来捕获光学数据并确定用户的心率和/或光电容积图 (PPG)。

SpO2温度补偿

MAX30102 具有精确的板载温度传感器,可根据I2C主机的命令将 IC 的内部温度数字化。温度会影响红光和红外 LED 的波长。虽然设备输出数据对红外 LED 的波长对于正确解释数据至关重要。

红色 LED 电流设置与 LED 温升

将温度上升添加到模块温度读数中,以估算 LED 温度和输出波长。由于 LED 的热时间常数很快,因此即使脉冲宽度很短,LED 温度估算仍然有效。

中断引脚功能

低电平有效中断引脚在触发中断时拉低。该引脚为开漏引脚,这意味着它通常需要上拉电阻或电流源来连接外部电压源(最高可达 +5V,接地)。中断引脚并非设计用于吸收大电流,因此上拉电阻值应较大,例如 $4.7k\Omega$ 。

表 13. 红色 LED 电流设置与 LED 温升

红色 LED 电流设置	红色 LED 占空比(LED 的百分比 脉冲宽度至采样时间)	预计温度 上升(添加到温度传感器 测量值)(°C)
0001(0.2mA)	8	0.1
1111(50毫安)	8	2
0001(0.2mA)	16	0.3
1111(50毫安)	16	4
0001(0.2mA)	±+=	0.6
1111(50毫安)	프+그	8

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

测量和数据的时间安排 收藏

多 LED 模式下的时隙时序

MAX30102 可支持两个 LED 通道的顺序处理(红色和红外线)。下表 14显示了与每个脉冲宽度设置相关的四个可能的通道时隙时间。图 3显示了具有 1kHz 采样率的 SpO2 模式应用的通道时隙时序示例。

表 14. 时隙时序

脉冲宽度设置 (μs)	通道时隙定时(定时 脉冲间周期(μs)	通道间时序(上升沿 边沿到上升沿)(μs)
69	358	427
118	407	525
215	505	720
411	696	1107

图 3.1kHz 采样率的SpO2 模式通道时隙时序

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

SpO2模式下的计时

内部 FIFO 最多可存储 32 个样本,因此系统处理器无需在每次采样后读取数据。需要温度数据才能正确解释 SpO2数据(图 4),但不需要非常频繁地采样温度 每秒一次或每隔几秒就足够了。

图 4. SpO2模式下数据采集和通信的时间

表 15. SpO2模式下图 4 的事件序列

事件	描述	评论		
1	进入 SpO2模式。开始温度测量。	I2C写命令设置 MODE[2:0] = 0x03。同时,设置 TEMP_EN 位以启动单次温度测量。屏蔽 PPG_RDY 中断。		
2	温度测量完成,中断产生	TEMP_RDY中断触发,提醒中央处理器读取数据。		
3	读取临时数据,清除中断			
4	FIFO 几乎已满,生成中断 当达到 FIFO 几乎已满阈值时,生成中	断。		
5	FIFO 数据已读取,中断已清除			
6	下一个样本已存储	新样本存储在新的读取指针位置。实际上,它现在是 FIFO 中的第一个样本。		

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

HR 模式下的计时

内部 FIFO 最多可存储 32 个样本,因此系统处理器不需要在每次采样后读取数据。

在 HR 模式(图5)中,与 Sp02模式不同,温度信息对于解释数据来说不是必需的。用户可以选择红色 LED 或红外 LED 通道进行心率测量。

图 5. HR 模式下数据采集和通信的时序

表 16. HR 模式下图 5 的事件序列

事件	描述	评论	
1	进入模式	I2C写命令设置 MODE[2:0] = 0x02。屏蔽 PPG_RDY 中断。	
2	FIFO 几乎已满,生成中断 当 FIFO 只剩下一个空闲空间时,约	上 成中断。	
3	FIFO 数据已读取,中断已清除		
4	下一个样本已存储	新样本存储在新的读取指针位置。实际上,它现在是 FIFO 中的第一个样本。	

电源排序和要求

上电排序

图6显示了 MAX30102 的推荐上电顺序。

建议先给VDD供电,然后再给 LED 电源 (R_LED+、IR_LED+) 供电。即使电源未通电,中断和I2C引脚也可以上拉至外部电压。

电源建立后,会发生中断,提醒系统 MAX30102 已准备好运行。

读取I2C中断寄存器会清除中断,如图6所示。

断电排序

MAX30102 设计为能够耐受断电时的任何电源排序。

I2C接口

MAX30102 具有I2C/SMBus 兼容的 2 线串行接口,由一条串行数据线 (SDA) 和一条串行时钟线 (SCL) 组成。SDA 和 SCL 可帮助 MAX30102 与主机之间以高达 400kHz 的时钟速率进行通信。图 1显示了 2 线接口时序图。

主机生成 SCL 并启动总线上的数据传输。主机通过发送正确的从机地址和数据将数据写入 MAX30102。每个传输序列都由 START (S) 或 REPEATED START (Sr)条件和 STOP (P)条件构成。传输到 MAX30102的每个字长 8位,后跟一个确认时钟脉冲。从 MAX30102读取数据的主机发送正确的从机地址,后跟一系列九个SCL 脉冲。

MAX30102 与主机产生的 SCL 脉冲同步在 SDA 上传输数据。主机确认收到每个数据字节。每个读取序列由 START (S) 或 REPEATED START (Sr) 条件、非确认和 STOP (P) 条件构成。

SDA 既可用作输入,又可用作开漏输出。

SDA 上需要一个上拉电阻,通常大于 500Ω。SCL 仅用作输入。如果总线上有多个主机,或者单个主机具有开漏 SCL 输出,则 SCL 上需要一个上拉电阻,通常大于500Ω。与 SDA 和 SCL 串联的电阻是可选的。串联电阻可保护 MAX30102 的数字输入免受总线线路上的高压尖峰的影响,并最大限度地减少总线信号的串扰和下冲。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

图 6. 电源轨的上电顺序

位传输

每个 SCL 周期传输一个数据位。SDA 上的数据在 SCL 脉冲的高电平期间必须保持 稳定。SCL 为高电平时 SDA 上的变化是控制信号。请参阅 "启动条件"和 "停止条 件"部分。

启动和停止条件

当总线未使用时,SDA 和 SCL 处于高电平空闲状态。主机通过发出 START 条件来启动通信。START 条件是 SCL 为高电平时 SDA 上从高到低的转换。STOP 条件是 SCL 为高电平时 SDA 上从低到高的转换(图7)。主机发出的 START 条件表示开始向设备传输。

主机通过发出 STOP 条件终止传输并释放总线。如果生成的是 REPEATED START 条件而非 STOP 条件,则总线保持活动状态。

提前停止条件

MAX30102 可在数据传输期间的任何时间点识别 STOP 条件,除非 STOP 条件与 START 条件发生在同一高脉冲中。为确保正常运行,请勿在与 START 条件相同的 SCL 高脉冲期间发送 STOP 条件。

从机地址

总线主机通过发出 START 条件和随后的 7 位从机 ID 来启动与从机设备的通信。空闲时,MAX30102 等待 START 条件和随后的从机 ID。串行接口逐位比较每个从机 ID,如果检测到错误的从机 ID,则允许接口立即关闭电源并与 SCL 断开连接。在识别出 START 条件和随后

的正确从机 ID 后,MAX30102 被编程为接受或发送数据。从机 ID 字的 LSB 是读/写 (R/W) 位。R/W 表示主机是写入数据还是从 MAX30102 读取数据(R/W = 0 选择写入条件,R/W = 1 选择读取条件)。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

接收到正确的从机 ID 后,MAX30102 通过将 SDA 拉低一个时钟周期来发出 ACK。

MAX30102 从机 ID 由 7 个固定位组成,B7-B1(设置为 0b10101111)。首先传输 最高有效从机 ID 位 (B7),然后传输其余位。

表 17显示了该设备可能的从属 ID。

承认

确认位 (ACK) 是时钟控制的第9位,MAX30102在写入模式下使用该位来握手接收每个数据字节(图8)。如果成功接收前一个字节,MAX30102会在整个主机生成的第9个时钟脉冲期间拉低 SDA。监控 ACK 可以检测不成功的数据传输。

如果接收设备繁忙或发生系统故障,则会发生数据传输失败。如果数据传输失败,总线主机将重试通信。主机拉低 SDA

当 MAX30102 处于读取模式时,在第 9 个时钟周期内发送一个确认信号,确认收到数据。主机在每次读取字节后发送一个确认信号,以允许数据传输继续。当主机从 MAX30102 读取最后一个字节的数据时,发送一个非确认信号,然后发送一个 STOP 条件。

写入数据格式

对于写入操作,发送从属 ID 作为第一个字节,然后发送寄存器地址字节,然后发送一个或多个数据字节。寄存器地址指针在收到每个数据字节后自动递增,因此例如可以一次写入整个寄存器组。使用 STOP 条件终止数据传输。

写操作如图9所示。

内部寄存器地址指针自动递增,因此写入额外的数据字节会按顺序填充数据寄存 器。

表 17. 从机 ID 描述

В7	В6	B5	B4	В3	B2	B1	В0	写 地址	读 地址
1	0	1	0	1	1	1	读/写	0xAE	0xAF

时钟脉冲

图 7. 启动、停止和重复启动条件

图 8. 确认

图9. 向MAX30102写入一个数据字节

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

读取数据格式

对于读取操作,必须执行两个I2C操作。首先,发送从机ID字节,然后发送要读取的I2C寄存器。然后发送REPEAT START (Sr)条件,然后发送读取从机ID。然后,MAX30102开始从第一个操作中选择的寄存器开始发送数据。读取指针会自动递增,因此设备会继续按顺序从其他寄存器发送数据,直到收到STOP(P)条件。例外情况是FIFO_DATA寄存器,在该寄存器读取其他字节时,读取指针不再递增。

读取 FIFO_DATA 之后的下一个寄存器,需要I2C写入命令来改变读指针的位置。

图10和图11分别给出了读取一个字节和多个字节数据的过程。

需要初始写入操作来发送读取寄存器地址。

数据按顺序从寄存器发送,从初始I2C写操作中选择的寄存器开始。

如果读取 FIFO_DATA 寄存器,则读取指针不会自动递增,后续数据字节将包含 FIFO 的内容。

图10. 从MAX30102读取一个字节的数据

图 11. 从 MAX30102 读取多个字节的数据

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

典型应用电路

订购信息

部分 温度范围		引脚封装	
MAX30102EFD+T -40°C 至 +85°C		14 引脚 OESIP(0.8	
MAX30102EFD+1 -40 (C ± 700 C	毫米引脚间距)	

⁺表示无铅(Pb)/符合RoHS标准的封装。

T=卷带式。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

封装信息

有关最新的封装外形信息和焊盘图案(尺寸),请访问www.maximintegrated.com/packages。请注意,封<u>装代码中的"+"、"#"或"-"仅表示RoHS状态。封装图</u>纸可能显示不同的后缀字符,但图纸与封装相关,与RoHS状态无关。

封装类型	包裹代码	大纲编号	焊盘图案编号
14 开放环境计划	F143A5MK+1	21-1048	90-0602

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

封装信息 (续)

有关最新的封装外形信息和焊盘图案(尺寸),请访问www.maximintegrated.com/packages。请<u>注意,封装代码中的"+"、"#"或"-"仅表示RoHS</u>状态。封装图纸可能显示不同的后缀字符,但图纸与封装相关,与RoHS状态无关。

高灵敏度脉搏血氧仪和 可穿戴健康设备用心率传感器

修订历史

修订 数字	修订 日期	描述	页数 已改变
0	9/15	初始版本	

如需了解价格、交货和订购信息,请联系 Maxim Direct,电话 1-888-629-4642,或访问 Maxim Integrated 网站 www.maximintegrated.com。

Maxim Integrated 不对 Maxim Integrated 产品中完整电路以外的任何电路的使用承担责任。不暗示任何电路专利许可。Maxim Integrated 保留随时更改电路和规格的权利,怒不另行通知。电气特性表中显示 的参数值(最小和最大限值)是有保证的。本数据手册中引用的其他参数值仅供参考。