第三节 抽样分布

- 一、基本概念
- 二、常见分布
- 三、小结

样本是统计推断的依据,但是在解决实际问题时,往往不能直接利用样本本身,原因在于由样本所获取的信息无法直接用来解决问题.

为了解决实际问题,需要针对各种不同的统计问题构造各种不同的样本函数来进行实际推断.

一、基本概念

1. 统计量的定义

设 X_1, X_2, \dots, X_n 是来自总体X的一个样本, $g(X_1, X_2, \dots, X_n)$ 是 X_1, X_2, \dots, X_n 的函数,若g中不含未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 是一个统计量.

设 x_1, x_2, \dots, x_n 是相应于样本 X_1, X_2, \dots, X_n 的样本值,则称 $g(x_1, x_2, \dots, x_n)$ 是 $g(X_1, X_2, \dots, X_n)$ 的观察值.

实例1 设 X_1, X_2, X_3 是来自总体 $N(\mu, \sigma^2)$ 的一个样本,其中 μ 为已知, σ^2 为未知,判断下列各式哪些是统计量,哪些不是?

$$T_1 = X_1,$$
 $T_2 = X_1 + X_2 e^{X_3},$ $T_3 = \frac{1}{3}(X_1 + X_2 + X_3),$ $T_4 = \max(X_1, X_2, X_3),$ $T_5 = X_1 + X_2 - 2\mu,$

$$T_6 = \frac{1}{\sigma^2} (X_1^2 + X_2^2 + X_3^2)$$
. 不是

2. 几个常用统计量的定义

设 X_1, X_2, \dots, X_n 是来自总体的一个样本, x_1, x_2, \dots, x_n 是这一样本的观察值.

(1) 样本平均值
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$$

其观察值

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

(2) 样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \right).$$

其观察值

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right).$$

(3) 样本标准差

$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2};$$

其观察值
$$s = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
.

(4) 样本k 阶(原点)矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, \dots;$

其观察值
$$\alpha_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$$

(5) 样本k 阶中心矩

$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k, k = 2, 3, \dots;$$

其观察值
$$b_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k, k = 2, 3, \cdots.$$

由以上定义得下述结论:

若总体X的k阶矩 $E(X^k)$ 记成 μ_k 存在,则当 $n \to \infty$ 时, $A_k \xrightarrow{P} \mu_k$, $k = 1, 2, \cdots$.

证明 因为 X_1, X_2, \dots, X_n 独立且与X同分布,

所以 $X_1^k, X_2^k, \dots, X_n^k$ 独立且与 X^k 同分布,

故有
$$E(X_1^k) = E(X_2^k) = \cdots = E(X_n^k) = \mu_k$$
.

再根据第五章辛钦定理知

辛钦定理

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\xrightarrow{P}\mu_{k}, \quad k=1,2,\cdots;$$

由第五章关于依概率收敛的序列的性质知

$$g(A_1,A_2,\cdots,A_k) \xrightarrow{P} g(\mu_1,\mu_2,\cdots,\mu_k),$$

其中g是连续函数.

以上结论是下一章所要介绍的矩估计法的理 论根据.

3. 经验分布函数

总体分布函数 F(x) 相应的统计量称为经验分布函数.

经验分布函数的做法如下:

设 X_1, X_2, \dots, X_n 是总体F的一个样本,用 $S(x)(-\infty < x < +\infty)$ 表示 X_1, X_2, \dots, X_n 中不大于x的随机变量的个数,

定义经验分布函数 $F_n(x)$ 为

$$F_n(x) = \frac{1}{n}S(x), \quad -\infty < x < +\infty.$$

对于一个样本值 $, F_n(x)$ 的观察值容易求得. $(F_n(x))$ 的观察值仍以 $F_n(x)$ 表示.)

实例 设总体 F 具有一个样本值 1,2,3,

则经验分布函数 $F_3(x)$ 的观察值为

$$F_3(x) = \begin{cases} 0, & x < 1, \\ \frac{1}{3}, & 1 \le x < 2, \\ \frac{2}{3}, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

实例 设总体 F 具有一个样本值 1,1,2,则经验分布函数 $F_3(x)$ 的观察值为

$$F_3(x) = \begin{cases} 0, & x < 1, \\ \frac{2}{3}, & 1 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

一般地,

并重新编号, $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$,

则经验分布函数 $F_n(x)$ 的观察值为

$$F_n(x) = \begin{cases} 0, & x < x_{(1)}, \\ \frac{k}{n}, & x_{(k)} \le x < x_{(k+1)}, & k = 1, 2, \dots, n-1. \\ 1, & x \ge x_{(n)}. \end{cases}$$

格里汶科定理

格里汶科资料

对于任一实数 x, 当 $n \to \infty$ 时, $F_n(x)$ 以概率 1 一致收敛于分布函数 F(x), 即

$$P\left\{\lim_{n\to\infty}\sup_{-\infty< x<+\infty}\left|F_n(x)-F(x)\right|=0\right\}=1.$$

对于任一实数 x当n 充分大时,经验分布函数的任一个观察值 $F_n(x)$ 与总体分布函数 F(x)只有微小的差别,从而在实际上可当作 F(x)来使用.

二、常见分布

统计量的分布称为抽样分布.

1. χ²分布

设 X_1,X_2,\cdots,X_n 是来自总体N(0,1)的样本,则称统计量

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

服从自由度为n的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$.

自由度是指上式右端包含的独立变量的个数.

 $\chi^2(n)$ 分布的概率密度为

$$f(y) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} & y^{\frac{n}{2} - 1} e^{-\frac{y}{2}}, \\ \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} & y > 0 \\ 0, & \text{ } \# \text{ } \#. \end{cases}$$

特别的: $\chi^2(1)$ 分布的概率密度为

$$f(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}, & y > 0 \\ 0, & \text{ } \# \text{ } \#. \end{cases}$$

$$\Gamma$$
函数: $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \quad (\alpha > 0)$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}; \quad \Gamma(1) = 1;$$

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha) \Rightarrow \Gamma(n+1) = n!, n \in \mathbb{Z}^+$$

若
$$X \sim \Gamma(\alpha, \theta), \ f_X(x) = \left\{ egin{aligned} & \dfrac{1}{\theta^{lpha}\Gamma(lpha)} x^{lpha-1} \mathrm{e}^{-x/ heta}, \quad x > 0, \\ & 0, & \sharp \theta. \end{aligned} \right.$$
 其他. $\alpha > 0, \theta > 0,$

$$\chi^{2}(1) 分布即为 \Gamma\left(\frac{1}{2},2\right) 分布! f(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}, & y > 0 \\ 0, & \sharp \text{ de.} \end{cases}$$

若 X_1, X_2, \dots, X_n 相互独立, X_i 服从参数为 $\alpha_i, \theta(i=1,2,\dots,n)$

的 Γ 分布,则 $\sum_{i=1}^{n} X_{i}$ 服从参数为 $\sum_{i=1}^{n} \alpha_{i}$, θ 的 Γ 分布.

证明 因为 $\chi^2(1)$ 分布即为 $\Gamma\left(\frac{1}{2},2\right)$ 分布,

又因为 $X_i \sim N(0,1)$, 由定义 $X_i^2 \sim \chi^2(1)$,

 $\mathbb{P} X_i^2 \sim \Gamma\left(\frac{1}{2}, 2\right), \quad i = 1, 2, \dots, n.$

因为 X_1, X_2, \dots, X_n 相互独立,

所以 $X_1^2, X_2^2, \dots, X_n^2$ 也相互独立,

根据 Γ 分布的可加性知 $\chi^2 = \sum_{i=1}^n X_i^2 \sim \Gamma\left(\frac{n}{2}, 2\right)$.

$\chi^2(n)$ 分布的概率密度曲线如图.

 χ^2 分布的性质

性质 $1(\chi^2)$ 分布的可加性)

设 $\chi_1^2 \sim \chi^2(n_1)$, $\chi_2^2 \sim \chi^2(n_2)$, 并且 χ_1^2 , χ_2^2 独立, 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$.

(此性质可以推广到多个随机变量的情形.)

设 $\chi_i^2 \sim \chi^2(n_i)$, 并且 χ_i^2 $(i = 1, 2, \dots, m)$ 相互独立, 则 $\sum_{i=1}^m \chi_i^2 \sim \chi^2(n_1 + n_2 + \dots + n_m)$.

性质2 (x²分布的数学期望和方差)

若
$$\chi^2 \sim \chi^2(n)$$
, 则 $E(\chi^2) = n$, $D(\chi^2) = 2n$.

证明 因为 $X_i \sim N(0,1)$, 所以 $E(X_i^2) = D(X_i) = 1$,

$$D(X_i^2)=E(X_i^4)-[E(X_i^2)]^2=3-2=1, i=1,2,\dots,n.$$

故
$$E(\chi^2) = E\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n E(X_i^2) = n,$$

$$D(\chi^2) = D\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n D(X_i^2) = 2n.$$

χ^2 分布的分位点

对于给定的正数 α , $0 < \alpha < 1$, 称满足条件

$$P\{\chi^2 > \chi_\alpha^2(n)\} = \int_{\chi_\alpha^2(n)}^\infty f(y) dy = \alpha$$

的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点.

对于不同的 α , n, 可以通过查表求 得上 α 分位点的值.

例1 设 X 服从标准正态分布 N(0,1), N(0,1) 的上 α 分位点 z_{α} 满足 $P\{X>z_{\alpha}\}=\frac{1}{\sqrt{2\pi}}\int_{z_{\alpha}}^{+\infty}e^{-\frac{x^{2}}{2}}dx=\alpha$, 求 z_{α} 的值, 可通过查表完成.

$$z_{0.05} = 1.645,$$

附表1-1

$$z_{0.025} = 1.96,$$

附表1-2

根据正态分布的对称性知

$$z_{1-\alpha}=-z_{\alpha}$$
.

例2 设 $Z \sim \chi^2(n)$, $\chi^2(n)$ 的上 α 分位点满足

$$P\{Z>\chi_{\alpha}^{2}(n)\}=\int_{\chi_{\alpha}^{2}(n)}^{+\infty}\chi^{2}(y;n)\mathrm{d}y=\alpha,$$

求 $\chi^2_{\alpha}(n)$ 的值,可通过查表完成.

$$\chi^2_{0.025}(8) = 17.535$$
,附表2-1

$$\chi^2_{0.975}(10) = 3.247$$
, 附表2-2

$$\chi^2_{0.1}(25) = 34.382$$
. 附表2-3

课本附表5只详列到n=40为止.

在Matlab中求解

费希尔(R.A.Fisher)证明:

费希尔资料

当n充分大时, $\chi^2_{\alpha}(n) \approx \frac{1}{2}(z_{\alpha} + \sqrt{2n-1})^2$.

其中 z_{α} 是标准正态分布的上 α 分位点.

利用上面公式,

可以求得 n > 40 时, 上 α 分位点的近似值.

例如
$$\chi_{0.05}^2(50) \approx \frac{1}{2}(1.645 + \sqrt{99})^2 = 67.221.$$

而查详表可得 $\chi^2_{0.05}(50) = 67.505$.

2. t 分布

设 $X \sim N(0,1), Y \sim \chi^2(n)$,且X, Y独立,则称随机变量 $t = \frac{X}{\sqrt{Y/n}}$ 服从自由度为n的t分布,记为 $t \sim t(n)$.

t分布又称学生氏(Student)分布.

t(n)分布的概率密度函数为

$$h(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad -\infty < t < +\infty$$

t分布的概率密度曲线如图

显然图形是关于 t=0对称的.

当n充分大时, 其图 形类似于标准正态 变量概率密度的图

形. 因为
$$\lim_{n\to\infty}h(t)=\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}},$$

所以当n足够大时t分布近似于N(0,1)分布,但对于较小的n,t分布与N(0,1)分布相差很大。

t分布的分位点

对于给定的 α , $0 < \alpha < 1$, 称满足条件

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t) dt = \alpha$$

的点 $t_{\alpha}(n)$ 为t(n)分布的上 α 分位点.

可以通过查表求

得上α分位点的值.

由分布的对称性知

$$t_{1-\alpha}(n)=-t_{\alpha}(n).$$

当n > 45时, $t_{\alpha}(n) \approx z_{\alpha}$.

例3 设 $T \sim t(n)$, t(n) 的上 α 分位点满足

$$P\{T>t_{\alpha}(n)\}=\int_{t_{\alpha}(n)}^{+\infty}t(y;n)\mathrm{d}y=\alpha,$$

求 $t_{\alpha}(n)$ 的值,可通过查表完成.

$$t_{0.05}(10) = 1.8125$$
, 附表3-1

$$t_{0.025}(15) = 2.1315$$
. 附表3-2

在Matlab中求解

3. F分布

设 $U \sim \chi^2(n_1), V \sim \chi^2(n_2)$,且U, V独立,则称随机变量 $F = \frac{U/n_1}{V/n_2}$ 服从自由度为 (n_1, n_2) 的F分布,记为 $F \sim F(n_1, n_2)$.

$$F(n_1, n_2) 分布的概率密度为$$

$$V(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)\left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1}}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)\left[1 + \left(\frac{n_1 y}{n_2}\right)\right]^{\frac{n_1 + n_2}{2}}}, \quad y > 0, \\ 0, \qquad \qquad 其他. \end{cases}$$

F分布的概率密度曲线如图

根据定义可知,

若
$$F \sim F(n_1, n_2)$$
, 0.6
则 $\frac{1}{F} \sim F(n_2, n_1)$. 0.2

F分布的分位点

对于给定的 α , $0 < \alpha < 1$, 称满足条件

$$P\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{+\infty} \psi(y) dy = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为 $F(n_1,n_2)$ 分布的上 α 分位点.

例4 设 $F(n_1, n_2)$ 分布的上 α 分位点满足

$$P\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{+\infty} \psi(y) dy = \alpha,$$

求 $F_{\alpha}(n_1, n_2)$ 的值,可通过查表完成.

$$F_{0.025}(7,8) = 4.90,$$

附表4-1

 $F_{0.05}(14,30) = 2.31$. 附表4-2

在Matlab中求解

F分布的上 α 分位点具有如下性质:

$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}.$$

证明 因为 $F \sim F(n_1, n_2)$,

所以 $1-\alpha = P\{F > F_{1-\alpha}(n_1, n_2)\}$

$$= P\left\{\frac{1}{F} < \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\} = 1 - P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

$$=1-P\left\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\right\},\,$$

故
$$P\left\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\right\}=\alpha,$$

因为
$$\frac{1}{F} \sim F(n_2, n_1)$$
, 所以 $P\left\{\frac{1}{F} > F_{\alpha}(n_2, n_1)\right\} = \alpha$,

比较后得
$$\frac{1}{F_{1-\alpha}(n_1,n_2)} = F_{\alpha}(n_2,n_1),$$

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}.$$

用来求分布表中未列出的一些上α分位点.

例
$$F_{0.95}(12,9) = \frac{1}{F_{0.05}(9,12)} = \frac{1}{0.28} = 0.357$$
.

设总体X的均值为 μ ,方差为 σ^2 , X_1 , X_2 , \dots , X_n 是来自总体的一个样本,则:

$$E(\overline{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \mu;$$

$$D(\overline{X}) = D(\frac{1}{n} \sum_{i=1}^{n} X_i) = \frac{\sigma^2}{n};$$

$$E(S^{2}) = E\left[\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}\right]$$

$$= E\left[\frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}\right)\right] = \sigma^{2}$$

4. 正态总体的样本均值与样本方差的分布定理一

设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 是样本均值, 则有

 $\overline{X} \sim N(\mu, \sigma^2/n).$

正态总体 $N(\mu,\sigma^2)$ 的样本均值和样本方差有以下两个重要定理.

定理二

设 X_1, X_2, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} , S^2 分别是样本均值和样本方差,则有

(1)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1);$$

(2) \overline{X} 与 S^2 独立.

证明略。

定理三

设 X_1, X_2, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 分别是样本均值和样本方差,则有

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1).$$

证明 因为
$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1), \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1),$$

且两者独立,由 t 分布的定义知

$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\bigg/\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}\sim t(n-1).$$

定理四

设 $X_1, X_2, ..., X_{n_1}$ 与 $Y_1, Y_2, ..., Y_{n_2}$ 分别是具有相同方差的两正态总体 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 的样本,且这两个样本互相独立,设 $\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$, $\overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$ 分别是这两个样本的均值,

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2, \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$$

分别是这两个样本的方差,则有

(1)
$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1);$$

(2)
$$\stackrel{\underline{\omega}}{=} \sigma_1^2 = \sigma_2^2 = \sigma^2 \, \text{ID},$$

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$$
, $S_w = \sqrt{S_w^2}$.

证明 (1) 由定理二

$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1), \ \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1),$$

由假设 S_1^2 , S_2^2 独立,则由 F 分布的定义知

$$\frac{(n_1-1)S_1^2}{(n_1-1)\sigma_1^2} / \frac{(n_2-1)S_2^2}{(n_2-1)\sigma_2^2} \sim F(n_1-1, n_2-1),$$

$$\mathbb{P} \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1).$$

(2) 因为
$$\overline{X} - \overline{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} \right)$$

所以
$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1),$$

$$\pm \frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1), \quad \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1),$$

且它们相互独立,故由 χ^2 分布的可加性知

$$V = \frac{(n_1 - 1)S_1^2}{\sigma^2} + \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2),$$

由于U与V相互独立,按t分布的定义.

$$\frac{U}{\sqrt{V/(n_1+n_2-2)}}$$

$$= \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2).$$

三、小结

两个最重要的统计量:

样本均值
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

三个来自正态分布的抽样分布:

 χ^2 分布, t 分布, F 分布.

辛钦定理

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立,服从同

一分布,且具有数学期望 $E(X_k) = \mu (k = 1, 2, \cdots)$,

则对于任意正数
$$\varepsilon$$
, 有 $\lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{k=1}^n X_k - \mu\right| < \varepsilon\right\} = 1.$

返回

附表1-1

标准正态分布表

	z	0	1	2	3	4	5	6	7	8	9
38	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0		_	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0	1.64	15	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
П	0.7	0.7580	0			0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
П	0.8	0.7881	0.7710	0.1737	0.7707	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
П	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
П	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
П	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
П	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545

附表1-2

标准正态分布表

Z	0	1	2	3	4	5	6	7	8	9
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9915	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9508	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9586	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9			9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9	1 (16	9842	0.9846	0.9850	0.9854	0.9853
2.2	0.9861	0.9864	0.9	1.9	70	9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9			9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9990	0.9993	0.9995	0.9997	0.9698	0.9998	0.9999	0.9999	1.0000

附表2-1

χ²分布表

	n	α =0.25	0.10	0.05	0.025	0.01	0.005
1.57	1	1.323	2.706	3.841	5.024	6.635	7.879
	2	2.773	4.605	5.991	7.378	9.210	10.597
	3	4.108	6.251	7.815	9.348	11.345	12.838
	4	5.385	7.7		11.143	13.277	14.860
	5	6.626	9.2	7.535	12.833	15.086	16.750
	6	7.841	10.6		14.449	16.812	18.548
П	7	9.037	12.017	14.067	16.013	18.475	20.278
L	8	10.219	13.362	15.507	17.535	20.090	21.955
П	9	11.389	14.684	16.919	19.023	21.666	23.589
П	10	12.549	15.987	18.307	20.483	23.209	25.188
П	11	13.701	17.275	19.675	21.920	24.725	26.757
П	12	14.845	18.549	21.026	23.337	26.217	28.299
Н	13	15.984	19.812	22.362	24.736	27.688	29.891
	14	17.117	20.064	23.685	26.119	29.141	31.319
	15	18.245	22.307	24.996	27.488	30.578	32.801
	16	19.369	23.542	26.296	28.845	32.000	34.267

附表2-2

χ^2 分布表

n	$\alpha = 0.995$	0.99	0.975	0.95	0.90	0.75
1			0.001	0.004	0.016	0.102
2	0.010	0.020	0.051	0.103	0.211	0.575
3	0.072	0.115	0.216	0.352	0.584	1.213
4	0.207	0.297	0.484	0.711	1.064	1.923
5	0.412	0.554	0.831	1.145	1.610	2.675
6	0.6	2 4 7	1.237	1.635	2.204	3.455
7	0.9	3.247	1.690	2.167	2.833	4.255
8	1.3		2.180	2.733	3.490	5.071
9	1.735	2.088	2.700	3.325	4.168	5.899
10	2.156	2.558	3.247	3.940	4.865	6.737
11	2.603	3.053	3.816	4.575	5.578	7.584
12	3.074	3.571	4.404	5.226	6.304	8.438
13	3.565	4.107	5.009	5.892	7.042	9.299
14	4.075	4.660	5.629	6.571	7.790	10.165
15	4.601	5.229	6.262	7.261	8.547	11.037
16	5.142	5.812	6.908	7.962	9.312	11.912

附表2-3

χ²分布表

	n	$\alpha = 0.25$	0.10	0.05	0.025	0.01	0.005
	17	20.489	24.769	27.587	30.191	33.409	35.718
	18	21.605	25.989	28.869	31.526	34.805	37.156
	19	22.718	27.204	30.144	32.852	36.191	38.582
	20	23.828	28.412	31.410	34.170	37.566	39.997
П	21	24.935	29.615	24 20	79	38.932	41.401
П	22	26.039	30.813	34.382	Z 781	40.289	42.796
П	23	27.141	32.007)76	41.638	44.181
1	24	28.241	33.196	36.415	39.364	42.980	45.559
L	25	29.339	34.382	37.652	40.646	44.314	46.928
п	26	30.435	35.563	38.885	41.923	45.642	48.290
П	27	31.528	36.741	40.113	43.194	46.963	49.645
П	28	32.620	37.916	41.337	44.461	48.278	50.993
П	29	33.711	39.087	42.557	45.712	49.588	52.336
1	30	34.800	40.256	43.773	46.979	50.892	53.672
	31	35.887	41.422	44.985	48.232	52.191	55.003
	32	36.973	42.585	46.194	49.480	53.486	56.328

附表3-1

t分布表

	n	$\alpha = 0.25$	0.10	0.05	0.025	0.01	0.005
-51	1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
	2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
	3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
	4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
	5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
П	6	0.7176	1.4398	1.9432	1 010	27	3.7074
Н	7	0.7111	1.4149	1.8946	1.812	80	3.4995
П	8	0.7064	1.3968	1.8595)65	3.3554
1	9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
L	10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
н	11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
п	12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
П	13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
П	14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
	15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
	16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

附表3-2

t分布表

n	α =0.25	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1 8331	2.2622	2.8214	3.2498
10	0.6998	1.37	1215	2.2281	2.7638	3.1693
11	0.6974	1.36	2.1315	2.2010	2.7181	3.1058
12	0.6955	1.35		2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208

附表4-1

F分布表

 $\alpha = 0.025$

n_2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	120	∞
$\frac{n_1}{1}$	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	976.7	984.9	993.1	997.2	1001	1006	1014	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.43	39.45	39.46	39.46	39.47	39.49	39.50
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.34	14.25	14.17	14.12	14.08	14.04	13.95	13.90
4	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.75	8.66	8.56	8.51	8.46	8.41	8.31	8.26
10.0							100											
5	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.52	6.43	6.33	6.28	6.23	6.18	6.07	6.02
6	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.37	5.27	5.17	5.12	5.07	5.01	4.90	4.85
7	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	4.67	4.57	4.47	4.42	4.36	4.31	4.20	4.14
8	7.57	6.06	5.42	5.50	4.82	4.65	4.53	4.4	4.36	4.30	4.20	4.10	4.00	3.59	3.89	3.84	3.73	3.67
9	7.21	5.71	5.08	4.72	4.48	4.23	4.20	4.1	4.03	3.96	3.87	3.77	3.67	3.61	3.56	3.51	3.39	3.33
10	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.8	78	3.72	3.62	3.52	3.42	3.37	3.31	3.26	3.14	3.08
11	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.6	6	3.53	3.43	3.33	3.23	3.17	3.12	3.06	2.94	2.88
12	6.55	5.10	4.47	4.12	3.89	3.73	3.61					3.18	3.07	3.02	2.96	2.91	2.79	2.72
13	6.41	4.97	4.35	4.00	3.77	3.60	3.48			$\mathbf{\Omega}$.05	2.95	2.89	2.84	2.78	2.66	2.60
14	6.30	4.86	4.24	3.89	3.66	3.50	3.38		4.	90		2.95	2.84	2.79	2.73	2.67	2.55	2.49
1.5	6.20	4.77	4.15	2.00	2.50	2.41	2.20					0.0	2.76	2.70	264	2.50	2.46	2.40
15	6.20	4.77	4.15	3.80	3.58	3.41	3.29					2.86	2.76	2.70	2.64	2.59	2.46	2.40
16	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.03	2.99	2.09	2.79	2.68	2.63	2.57	2.51	2.38	2.32
17 18	6.04 5.95	4.62 4.56	4.01 3.95	3.66 3.61	3.44	3.28 3.22	3.16 3.10	3.06 3.01	2.98	2.92 2.87	2.82 2.77	2.72 2.67	2.62 2.56	2.56 2.50	2.50 2.44	2.44 2.38	2.32 2.26	2.25 2.19
19	5.93	4.50	3.93	3.56	3.38	3.22	3.10	2.96	2.93 2.88	2.87	2.77	2.67	2.56	2.30	2.44	2.38	2.26	2.19
19	3.92	4.31	3.90	3.30	3.33	5.17	3.03	2.96	2.88	2.82	2.72	2.02	2.31	2.43	2.39	2.33	2.20	2.13

附表4-2

F分布表

$$\alpha = 0.05$$

n_2		1	2	3	4	5	6	7	8	9	10	15	20	24	30	40	60	120	∞
n_1												19.15					34		
1	1	61.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	24.05	241.9	245.9	248.0	249.1	250.1	151.1	252.2	253.3	254.3
2	1	8.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	1	0.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4		7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
									NO VA									777	
5		6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6		5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7		5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	2.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8		5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9		3.12	4.26	3.81	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
	н											17.16							
10	1	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	1	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95					2.61	2.57	2.53	2.49	2.45	2.40
12	1	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.8			4		2.51	5.47	2.43	2.38	2.34	2.30
13	1	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.7	,	7 7	1		2.42	2.38	2.34	2.30	2.25	2.21
14	4	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.7		2.3		L	2 25	2.31	2.27	2.22	2.18	2.13
	н																		
15	1	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.6					2.29	2.25	2.20	2.16	2.11	2.07
16	1	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17		4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18		4.41	5.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	1	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88

费希尔资料

Ronald Aylmer Fisher

Born: 17 Feb 1890 in London, England Died: 29 Jul. 1962 in

Adelaide, Australia

学生氏资料

William Sealey Gosset

Born: 13 Jun. 1876 in Canterbury, England Died: 16 Oct. 1937 in Beaconsfield, England

格里汶科资料

Boris Vladimirovich Glivenko

Born: 1 Jan. 1912 in Simbirsk (now Ulyanovskaya), Russia Died: 27 Dec. 1995 in Moscow, Russia

作业: 1, 3, 4, 6(3), 7, 9

