Discussion [0b10] [2] [0x2]

Limits

- (a) What is the biggest number that can be represented with two decimal digits?
- (b) What is the biggest number that can be represented with three binary digits?

 Ob111
- (c) What is the biggest number that can be represented with four hexadecimal digits?

 OXFFFF

Conversion

(a) Convert the following binary numbers into decimal.

11001 <u>25</u> 1001001 → **73**

(b) Convert the following decimal numbers into binary.

12 → <u>0b1100</u> 64 → <u>0b1000000</u> 127 → <u>0b1111111</u>

(c) Convert the following binary numbers into hexadecimal.

(d) Fill in the blanks.

Decimal	Binary	Hexadecimal
12	0b1100	С
5	0b101	5
11	1011	0x11
25	11001	
17	10001	11
27	11011	1B
8	0b1000	0x8
14	1110	0xE
30	0b11110	1E
73	0b1001001	49

Challenge Problems

(a) The original Pokemon are numbered 1-150. We want to store a binary encoding for all original Pokemon where each Pokemon has a binary code equivalent to their decimal number. How many bits do we need to use?

(b) What is the encoding for Pikachu (#25)?

Nh1	1001	
UUI	1001	

(c) Ternary utilizes base 3 instead of base 2. For example, 10 in ternary is equivalent to 3 in decimal. Imagine that we wanted to store a *ternary* encoding for all 150 Pokemon where each Pokemon has a ternary code equivalent to their decimal number. What is the ternary encoding for Pikachu (#25)?

221	