

Université Sultane Moulay Slimane Beni-Mellal

Faculté polydisciplinaire de Khouribga

Liaisons Chimiques

Filières : SMPC

Semestre: 2

A. U. : 2019/2020

Pr. BOUALY

I-2. Théorie de Gillespie ou théorie V.S.E.P.R.

En 1957, Ronald James Gillespie a proposé une méthode élémentaire de prévision de la géométrie des molécules simples, fondée sur l'utilisation des formules de Lewis. Cette méthode porte le nom de VSEPR - Valence shell electron pair repulsion ou répulsion des paires électroniques de valence.

L'idée de base est extrêmement simple : les doublets de liaison (simple ou multiple) vont s'organiser autour de l'atome central de façon à minimiser les interactions répulsives. Ils vont donc distribuer en s'éloignant le plus possible les uns des autres, compte tanu da laur nambra

A partir de la structure de Lewis d'une molécule, on détermine :

- ☐ Le nombre **m** des atomes liés X, à atome A,
- \square Le nombre **n** de paires non liantes \mathbf{E} ,

La formule type du composé est donc AX_mE_n

et sa géométrie dépend de l'arrangement des (**m+n**) paires électroniques.

1- Si p = 2: AX_2

La géométrie	La géométrie de base
Linéaire	Linéaire

L'angle entre les deux liaisons est de 180

Exemple: BeCl₂

la structure de Lewis d'une molécule BeCl₂ es Cl —Be — Cl

Alors, la formule de la molécule BeCl₂ est de type AX₂

Donc la géométrie de BeCl₂ est linéaire.

2- Si
$$p = 3 : AX_3 \text{ et } AX_2E$$

La géométrie	La géométrie de base
Triangulaire	Triangulaire

120,0°
120,0°

L'angle entre les liaisons est de 120°.

Exemple: BF₃

la structure de Lewis d'une molécule BF3 est :

Alors, la formule de la molécule BF_3 est de type $\overline{AX_3}$

Donc la géométrie de BF₃ est triangulaire.

La géométrie	La géométrie de base
Coudée	Triangulaire

L'angle entre les liaisons est de 120°.

Exemple: SO₂

Alors, la formule de la molécule SO_2 est de type AX_3E Donc la géométrie de SO_2 est coudée.

3- Si $p = 4 : AX_4$, AX_3E et

∴ AXX ₄ ² E

² La géométrie	La géométrie de base
Tétraédrique	Tétraédrique

L'angle entre les liaisons est de 109°.

Exemple: CH₄

La structure de Lewis d'une molécule CH₄ est

Alors, la formule de la molécule CH₄ est de type AX₄ Donc la géométrie de CH₄ est **Tétraédrique**.

La géométrie	La géométrie de base
pyramidale	Tétraédrique

L'angle entre les liaisons est de 109°.

Exemple: NH₃

la structure de Lewis d'une molécule NH₃ est :__ N___ H

Alors, la formule de la molécule NH₃ est de type AX₃E

Donc la géométrie de NH₃ est pyramidale.

La géométrie	La géométrie de base
Coudée	Tétraédrique

L'angle entre les liaisons est de 109°.

Exemple: H₂O

la structure de Lewis d'une molécule H₂O est : — — H

Alors, la formule de la molécule H_2O est de type AX_2E_2 Donc la géométrie de H_2O est coudée.

3- Si
$$p = 5$$
: AX_5 , AX_4E , AX_3E_2 et

* A X X Z Easgéométrie		La géométrie de base
	bipyramide trigonale	bipyramide trigonale

Les angles entre les liaisons est de 120° et 90°.

Exemple: PCI₅

la structure de Lewis d'une molécule PCI₅ est :> p _ CI

Alors, la formule de la molécule PCI₅ est de type AX₅

Donc la géométrie de PCI₅ est bipyramide trigonale.

La géométrie	La géométrie de base
balançoire	Bipyramide trigonale

Les angles entre les liaisons est de 120° et 90°.

Exemple: SCI₄

La structure de Lewis d'une molécule SCl₄ est:

Alors, la formule de la molécule SCl_4 est de type AX_4E Donc la géométrie de SCl_4 est balançoire.

La géométrie	La géométrie de base
Forme T	Bipyramide trigonale

L'angle entre les liaisons est de 90°.

Exemple: CIF₃

La structure de Lewis d'une molécule CIF₃ est : CI—FI

Alors, la formule de la molécule CIF₃ est de type AX₃E₂

Donc la géométrie de CIF₃ est forme T.

La géométrie	La géométrie de base
linéaire	Bipyramide trigonale

L'angle entre les liaisons est de 180°.

Exemple: XeF₂

la structure de Lewis d'une molécule XeF₂ est :

Alors, la formule de la molécule CIF_3 est de type AX_2E_3

Donc la géométrie de XeF₂ est linéaire.

5- Si p = 6: AX_6 , AX_5E , AX_4E_2 , AX_3E_3 et

La géométrie	La géométrie de base
octaèdre	octaèdre

L'angle entre les liaisons est de 90°.

Exemple: SCI₆

la structure de Lewis d'une molécule SCI_6 es

AX_5E

La géométrie	La géométrie de base
pyramide à base carrée	octaédrique

L'angle entre les liaisons est de 90°.

Exemple: BrF₅

la structure de Lewis d'une molécule BrF₅ est: Br —F

Donc la géométrie de BrF₅ est pyramide à base carr

La géométrie	La géométrie de base
carrée	octaédrique

L'angle entre les liaisons est de 90°.

Exemple: XeF₄

La structure de Lewis d'une molécule XeF₄ est : Xe

Alors, la formule de la molécule XeF₄ est de type AX

Donc la géométrie de XeF₄ est carrée.

I-3. Polarité et moment dipolaire

a- La polarité

Soit une liaison A-B de, si l'atome **A** est moins électronégatif que **B** le nuage électronique est déplacé vers **B**. Alors On dit que la liaison A-B est polaire ou polarisée.

La liaison n'est pas 100% covalente même si les électronégativités sont proches.

b-Moment dipolaire

Soit une liaison A-B polaire et de longueur **d**. Cette liaison est équivalente à un dipôle électrique formé de deux charge **+q** sur **A** et **-q** sur **B**.

u

d

B

Un dipôle est caractérisé par:

- son vecteur moment dipolaire orienté du moins vers le plus.

son moment dipolaire: $\mu = q \times d$ Debye (D)

q: en Coulomb **d**: en mètre. **1D** = **3,336 10** -30

C.m

Le moment dipolaire d'une molécule peut être considéré comme la somme

vectorielle des moments dipolaire des di

Exemple: H₂O

Théorème de Pythagore généralisé dans le triangle jaune $\mu(H_2O)^2 = \mu(OH)^2 + \mu(OH)^2 - 2 \mu(OH) \mu(OH) Cos(180-105)$ Cos (180- α)= -Cos (α)

$$\mu(H_2O)^2 = 2 \mu(OH)^2 + 2 \mu(OH)^2 \cos(105)$$

$$\mu(H_2O)^2 = 2 \mu(OH)^2 (1 + \cos(105))$$

$$\mu(H_2O)^2 = 2 \mu(OH)^2 (2 \cos(105/2)^2)$$

$$\mu(H_2O)^2 = 4 \mu(OH)^2 \cos(105/2)^2$$

$$\mu(H_2O)^2 = 4 \mu(OH)^2 \cos(105/2)^2$$

c-Caractère ionique partiel

Soit la liaison A—B de moment dipolaire observé: $\mu_{\rm exp} = \delta {\bf d}_{\rm A-B}$

Si cette liaison était purement ionique (100% ionique) la charge commune serait e, le moment associé serait dans ce ca**s** $l_{\text{ionique}} = ed_{A-B}$

On définit le caractère ionique partiel d'une liaison par
$$EI(\%) = \frac{\mu_{exp}}{\mu_{ionique}} = 100 = \frac{\delta d}{ed} = 100$$

Ou bien
$$CI(\%) = \frac{\mu_{exp}}{\mu_{ionique}} 100 = \frac{\mu_{exp}}{ed} 100$$

Et puisque, e= 1,6 10-19 C et
$$1D = 3,336 \cdot 10^{-30}$$
 C.m

Alors
$$CI(\%) = \frac{\mu_{exp}(D)}{4,8d(Å)}100$$

Exercice: Calculer les caractères ioniques des liaisons A-B

suivantes:

A-B	μ (D)	d (A°)
H - CI	1,08	1,27
H - Br	0,79	1,42
H-I	0,38	1,61

Solution:

On a
$$CI(\%) = \frac{\mu_{exp}(D)}{4.8d(Å)}100$$

Alors

A-B	CI(AB) en %
H - CI	17,7
H - Br	11,6
H-I	4,9

Le pourcentage d'ionicité est directement relié à l'écart des électronégativités, plus la différence d'électronégativité des atomes liés est importante plus le pourcentage d'ionicité est élevé:

 $\chi(CI) > \chi(Br) > \chi(I)$ donc $\Delta \chi(H-CI) > \Delta \chi(H-Br) > \Delta \chi(H-I)$ Ainsi CI(H-CI) > CI(H-Br) > CI(H-I)

I-4. Variation des grandeurs moléculaires

Les paramètres géométriques et physico-chimiques des molécules qui diffèrent par l'atome central ou par un ou plusieurs atomes périphériques dépendent principalement des différences d'électronégativités, du nombre de paires libres présentes sur l'atome central etc....

Toute fois le facteur répulsion entre paires d'électrons est le plus déterminant. Cette répulsion décroit dans l'ordre suivant:

P. libre-P. libre > P. libre-P. liante > P. liante-P. liante

Evolution de l'angle X-A-X

Cet angle dépend de la distance qui sépare les deux doublets assurant les deux

liaisons. Cette distance dépend de la différence d'électronégativité

$$\Delta \chi = \chi_A$$

L'angle X-A-X diminue quand l'électronégativité de X augmente

F-P-F < CI-P-CI < Br-P-Br < I-P-I car
$$\chi_F > \chi_{CI} > \chi_{Br} > \chi_I$$

- l'angle X-A-X augmente quand l'électronégativité de l'atome central A augmente :

H-O-H > H-S-H > H-Se-H
$$(\chi_O > \chi_S > \chi_{Se})$$

- l'angle X-A-X diminue avec le nombre de paires libres sur l'atome central A. La répulsion paire libre- paire liante est plus forte que la répulsion paire liante-paire liante

$$H-C-H > H-N-H > H-O-H$$
 $(\chi_O > \chi_S > \chi_{Se})$ paire libre

Evolution du moment dipolaire

Le moment dipolaire d'une liaison augment avec la différence de l'électronégativité entre l'atome central et l'atome périphérique.

Exemples

$$\mu(HF) > \mu(HCI) > \mu(HBr)$$

$$\mu(FH) > \mu(OH) > \mu(NH) > \mu(CH)$$