

CLAIMS

1. A method for improving the signal-to-noise ratio (S/N) in a system for measuring flatness of a strip of rolled material, said system comprising at least one signal processor
5 for determining said flatness and a measuring roll, having a number of measuring devices for force and pressure registration, each said device generating measurement output signals (U_{pi}) depending on the contact between the strip and the measuring roll, wherein each said measurement signals
10 (U_{pi}) comprises a force component signal (U_{Fi}) and a noise signal component, said method comprising the step of:
 - generating measurement output signals (U_{pi}) by means of each measuring device depending on the contact between the strip and the measuring roll;
15 - determining a time length (T_{tot}), based on the measurement output signals (U_{pi})
 - generating a time slot having the determined time length (T_{tot});
 - synchronizing said time slot to the appearance of a
20 force component (U_{Fi}) on an input of at least one quantity processor of said signal processor; and
 - controlling at least one quantity processor to be open for registration of an incoming force component signal (U_{Fi}) during said time slot and be closed until the next successive
25 time slot appears.

2. A method according to claim 1, wherein, said method comprises the steps of:

- generating a mean value signal (U_A) using the force component signals (U_{Fi}) which are generated within a time interval (T_g), from a number of the measurement output signals (U_{pi}); and

- determining a time length (T_{tot}), based on the mean value signal (U_A).

10 3. A method according to claim 2, wherein, said method comprises the steps of:

- adding a number n , n being a positive integer, of measurement output signals (U_{pi}) generated within a small time period (T_g) to a mean value determining circuit comprising at least one summation circuit for producing a summation signal (U_S);

- connecting said summation signal (U_S) to a dividing circuit for dividing (U_S) by the integer n , where n equals the number of added signals (U_{pi}) to the summation circuit; and

20 - producing a mean value signal (U_A) by said dividing circuit.

4. A method according to claim 2, wherein, said method comprises the step of:

25 - adding a number n , n being a positive integer, of measurement output signals (U_{pi}) generated within a time

period (T_g) to the mean value determining circuit comprising a microprocessor and applied software, stored in a memory that is connected to said microprocessor, wherein the software is adapted for calculating a mean value from a number of measurement output signals (U_{pi}).

5. A method according to claim 3, wherein, said method comprises the step of:

- storing and adding, to at least one second summation circuit, a number k , k being a positive integer, of consecutive mean value signals (U_A) to each other for further improvement of the S/N ratio.

6. A method according to claim 5, wherein, the method comprises the step of:

- signal treating of the mean value signal (U_A) by means of at least one of filtering and demodulating and rectifying the mean value (U_A).

20. 7. A device for improving the signal-to-noise ratio (S/N) in a system for measuring flatness of a strip of rolled material, said system comprising at least one signal processor for determining said flatness and a measuring roll, having a number of measuring devices for force and pressure registration, each said device generating measurement output signals (U_{pi}) depending on the contact between the strip and

the measuring roll, wherein each said measurement output signals (U_{pi}) comprises a force component signal (U_{Fi}) and a noise signal component, and wherein the device comprises:

a position synchronization processor arranged for

- 5 determining a time length (T_{tot}) based on the measurement output signals (U_{pi}) for generating a time slot having the determined time length (T_{tot}), for synchronizing said time slot to the appearance of a force component signal (U_{Fi}) on an input of at least one quantity processor of said signal
- 10 processor and for controlling at least one quantity processor to be open for registration of incoming force component signals (U_{Fi}) during said time slot and be closed until the next successive time slot appears.

- 15 8. A device according to claim 7, further comprising:

a mean value determining circuit generating a mean value signal (U_A) to the position synchronisation processor using the force component signals (U_{Fi}) which are generated within a time interval (T_g), from a number of said measurement output signals (U_{pi}).

- 25 9. A device according to claim 8, wherein, said mean value determining circuit comprises: at least one summation circuit for adding a number n , n being an positive integer, of measurement output signals (U_{pi}) generated within said time period (T_g), said summation circuit producing a summation

signal (U_S), which is connected to a dividing circuit for dividing (U_S) by integer n , where n equals the number of added signals (U_{pi}) to the summation circuit, said dividing circuit producing a mean value signal (U_A).

5

10. A device according to claim 8, wherein, said mean value determining circuit comprises: a microprocessor and applied software, stored in a memory connected to said microprocessor, the software adapted for calculating a mean value from a number of signals (U_{pi}).

10 value from a number of signals (U_{pi}).

11. A device according to claim 9 further comprising:
at least one second summation circuit for storing and adding a
number k , k being a positive integer, of consecutive mean
value signals (U_A) to each other for further improvement of
the S/N ratio.

15 value signals (U_A) to each other for further improvement of
the S/N ratio.

12. A device according to claim 11, further comprising:
a signal treatment device comprising at least one of a filter
device, a demodulating device; and a rectifying device for
signal treatment of the mean value signal (U_A) .

12. A device according to claim 11, further comprising:
a signal treatment device comprising at least one of a filter
20 device, a demodulating device; and a rectifying device for
signal treatment of the mean value signal (U_A) .

13. A device according to claim 9, wherein the position synchronisation processor is responsive to the mean value signal (U_A) for determining the wrap angle (α) which is used in the system for determining the flatness.

14. The use of a device according to claim 7 in a
rolling mill.

5 15. A computer program product containing software for
carrying out the steps of claim 1.

16. A flatness determination signal for improving the
signal-to-noise ratio (S/N) in a system for measuring flatness
10 of a strip of rolled material and derived from at least one
measurement signal (U_{pi}) wherein each separate measurement
signal (U_{pi}) is generated by a corresponding measuring device
of all measuring devices belonging to at least one of all
measurement zones of a measuring roll and comprises one or
15 more measurable values for calculating at least one of
following quantities or vectors: strip tension vector T , wrap
angel a , distributed force vector F_2 , force vector F_{mi} ,
flatness vector Ds_1 N/mm² and/or a corresponding quantity
flatness vector Ds_2 I-unit.

20 17. A flatness determination signal according to
claim 16, wherein said flatness determination signal comprises
an input signal to a flatness determination unit for
calculating at least one of said quantities or vectors.

18. A flatness determination signal according to
claim 17, wherein said flatness determination signal comprises
a force component signal (U_{Fi}).

5 19. A flatness determination signal according to
claim 18, said force component signal (U_{Fi}) includes a train
of electrical pulses.

10 20. A flatness determination signal according to
claim 16, wherein a number of said separate measurement
signals (U_{pi}), each include a train of electrical pulses,
synchronized and combined to a flatness determination signal
for calculating at least one of said quantities or vectors.

15 21. A system for measuring flatness of a strip of rolled
material, said system comprises at least one signal processor
for determining said flatness and a measuring roll, having a
number of measuring devices for force and pressure
registration, said devices generating measurement output
20 signals (U_{pi}) depending on the contact between the strip and
the measuring roll, wherein said measurement output signal
(U_{pi}) has a force component signal (U_{Fi}) and a noise signal
component, and a device for improving the signal-to-noise
ratio (S/N), comprising a position synchronisation processor
25 arranged for determining a time length (T_{tot}) based on the
measurement output signals (U_{pi}) for generating a time slot

having the determined time length (T_{tot}), for synchronising said time slot to the appearance of a force component signal (U_{Fi}) on an input of at least one quantity processor of said signal processor and for controlling at least one quantity processor to be open for registration of a incoming force component signals (U_{Fi}) during said time slot and be closed until the next successive time slot appears.

22. A system according to claim 21, wherein said device comprises: a mean value determining circuit generating a mean value signal (U_A) to the position synchronisation processor using the force component signals (U_{Fi}) which are generated within a time interval (T_g), from all or a number of said measurement output signals (U_{pi}).

23. A system according to claim 22, wherein said mean value determining circuit comprises: at least one summation circuit for adding a number n , n being a positive integer, of measurement output signals (U_{pi}) generated within said time period (T_g), said summation circuit producing a summation signal (U_s), which is connected to a dividing circuit for dividing (U_s) by integer n , where n equals the number of added signals (U_{pi}) to the summation circuit, said dividing circuit producing a mean value signal (U_A).

24. A system according to claim 22, wherein said mean value determining circuit comprises: a microprocessor and applied software, stored in a memory connected to said microprocessor, the software adapted for calculating a mean 5 value from a number of signals (U_{pi}).

25. A system according to claim 23, said device comprises: at least one second summation circuit for storing and adding a number k , k being a positive integer, of 10 consecutive mean value signals (U_A) to each other for further improvement of the S/N ratio.

26. A system according to claim 21, wherein the device comprises: a signal treatment device comprising at least one filter device or at least one demodulating device or at least 15 one rectifying device for signal treatment of the mean value signal (U_A).

27. A system according to claim 21, wherein the position 20 synchronisation processor is responsive to the mean value signal (U_A) for determining the wrap angle (a), which is used in the system for determining the flatness.