Exercise 3. Let X be the two-element set $\{0,1\}$. Show there is a bijective correspondence between the set $\mathscr{P}(\mathbb{Z}_+)$ and the cartesian product X^{ω} .

Proof. Let

$$f: \mathscr{P}(\mathbb{Z}_+) \to X^{\omega}$$

$$A \mapsto (x_1, x_2, \dots) \qquad \text{with} \qquad x_i = \begin{cases} 1 & \text{if } i \in A \\ 0 & \text{otherwise} \end{cases}$$

Let $(x_1, x_2, ...) \in X^{\omega}$. The expression $S = \{i \in \mathbb{Z}_+ \mid x_i = 1\}$ defines a subset of \mathbb{Z}_+ . If $S \neq \emptyset$, then we have $f(S) = (x_1, x_2, ...)$. Otherwise, $x_i = 0$ for all i, and $f(\emptyset) = (0, 0, ...)$. From this we deduce that f is surjective.

Let now A, B be distinct subsets of \mathbb{Z}_+ . By switching the roles of A and B if needed, we can suppose that $A \neq \emptyset$. Since A and B are distinct, there exists $j \in A - B$. Then for $f(A) = (a_1, a_2, \ldots, a_j, \ldots)$ and $f(B) = (b_1, b_2, \ldots, b_j, \ldots)$, we have $a_j = 1$ but $b_j = 0$, so $f(A) \neq f(B)$ and f is injective.