MOTOROLA SEMICONDUCTOR **TECHNICAL DATA**

2N5109

The RF Line

NPN SILICON HIGH-FREQUENCY TRANSISTOR

... designed specifically for broadband applications requiring good linearity. Useable as a high frequency current mode switch to 200 mA.

- Low Noise Figure @ f = 200 MHz NF = 3.0 dB (Typ)
- High Current-Gain Bandwidth Product fT = 1200 MHz (Min) @ IC = 50 mAdc

1.2 GHz @ 50 mAdc HIGH FREQUENCY **TRANSISTOR** NPN SILICON

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	20	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Base Current — Continuous	IB	400	mAdc
Collector Current – Continuous	¹¢	400	mAdc
Total Device Dissipation @ T _C = 75°C (1 Derate above 25°C	PD	2.5 20	Watt mW/ ^Q C
Storage Temperature Range	T _{stg}	-65 to +200	°C

- (1) Total Device Dissipation at T_A = 25⁰C is 1.0 Watt
 Indicates JEDEC Registered Data.

FIGURE 1 - RF AMPLIFIER FOR VOLTAGE GAIN TEST CIRCUIT

- 2 CONTROLLING DIMENSION INCH 3 DIMENSION J MEASURED FROM DIMENSION A
- MAXIMUM
- 4 DIMENSION B SHALL NOT VARY MORE THAN 0.25 10 0101 IN ZONE R THIS ZONE CONTROLLED FOR AUTOMATIC HANDLING DIMENSION F APPLIES BETWEEN DIMENSION P
- AND L DIMENSION D APPLIES BETWEEN
 DIMENSION L AND K MINIMUM LEAD DIAMETER IS UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A .	851	9 39	0 335	0 370	
В	7.75	8 50	0 305	0 335	
C	6 10	6 60	0 240	0.260	
D	0.41	0.53	0.016	0.021	
E	0.23	1 04	0.009	0.04	
F	841	0.48	0.016	0.019	
G	5.08	5 08 BSC		BSC	
н	0.72	0.86	0.028	0 034	
J	0.74	1 14	0 029	0.045	
K]	12.70	19 05	0 500	0.750	
L	6.35		0.250		
M	45 BSC		45 BSC		
Ρ.		1 27	. –	0.050	
R	2 54		0 100		
	C	ASE 7	9-04		
	1	O-205	AD		
		(TO-3	9)		

MOTOROLA RF DEVICE DATA

2N5109

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C = 5.0 mAdc, I _B ≈ 0)	VCEO(sus)	20	-	-	Vdc
Collector-Emitter Sustaining Voltage (1) ($I_C = 5.0 \text{ mAdc}, R_{BE} = 10 \Omega$)	V _{CER(sus)}	40			Vdc
Collector Cutoff Current (VCE = 15 Vdc, (B = 0)	CEO		-	20	μAdc
Collector Cutoff Current (VCE = 15 Vdc, VBE = -1.5 V, TC = 150°C)	1CEX	-	-	5.0	mAdc
(V _{CE} = 35 Vdc, V _{BE} = -1.5 V)		-	_	5.0	mAdc
Emitter Cutoff Current (VBE = 3.0 Vdc, IC = 0)	IEBO	<u> </u>	-	100	μAdc
ON CHARACTERISTICS					
DC Current Gain { C = 360 mAdc, V _{CE} = 5.0 Vdc} { C = 50 mAdc, V _{CE} = 15 Vdc}	hFE	5.0 40	-	120	
DYNAMIC CHARACTERISTICS	L	·	<u> </u>	L	L
*Current-Gain — Bandwidth Product (IC = 50 mAdc, VCE = 15 Vdc, f = 200 MHz)	fτ	1200			MHz
*Collector-Base Capacitance (V _{CB} = 15 Vdc, I _E = 0, f = 1.0 MHz)	c ^{cp}	-	1.8	3.5	pF
Noise Figure (I _C = 10 mAdc, V _{CE} = 15 Vdc, f = 200 MHz) (Figure 2)	NF	-	3.0		d₿
FUNCTIONAL TEST					
*Common-Emitter Amplifier Voltage Gain (Figure 1) (IC = 50 m Adc, V _{CC} = 15 Vdc, f = 50 to 216 M Hz)	G _{ve}	11		-	dB
*Power Input (Figure 2) II	Pin	-	-	0.1	mW

FIGURE 2 - 200 MHz TEST CIRCUIT

^{*}Indicates JEDEC Registered Data.
(1) Pulsed thru a 25 mH Inductor; 50% Duty Cycle

FIGURE 7 - INPUT ADMITTANCE versus FREQUENCY

FIGURE 8 - INPUT ADMITTANCE Versus COLLECTOR CURRENT

FIGURE 9 — REVERSE TRANSFER ADMITTANCE
Versus FREQUENCY

FIGURE 10 - REVERSE TRANSFER ADMITTANCE versus

FIGURE 11 - FORWARD TRANSFER ADMITTANCE

FIGURE 12 - FORWARD TRANSFER ADMITTANCE VOISUS
COLLECTOR CURRENT

FIGURE 13 - OUTPUT ADMITTANCE versus FREQUENCY

FIGURE 14 - OUTPUT ADMITTANCE versus COLLECTOR
CURRENT

FIGURE 15 - INPUT REFLECTION COEFFICIENT versus FREQUENCY

FIGURE 16 - OUTPUT REFLECTION COEFFICIENT VOISUS
FREQUENCY

2N5109

FIGURE 18 - FORWARD TRANSMISSION COEFFICIENT FIGURE 17 - REVERSE TRANSMISSION versus FREQUENCY COEFFICIENT versus FREQUENCY 320° VCE = 15 Vdc IC = 35 mAdc ZG = ZL = 50 Ω VCE = 15 Vdc IC = 35 mAdc ZG = ZL = 50 Ω รกกอ 260° 250° 120[©]

FIGURE 19 -- INPUT REFLECTION COEFFICIENT AND OUTPUT REFLECTION
COEFFICIENT VOTUS FREQUENCY

