Sequential Pattern Mining

COSC 757: Spring 2016

What is Sequential Pattern Mining

- Find patterns in data where items are delivered in a sequence.
- A sequence is an ordered list of events
- Examples include:
 - Time series data
 - Symbolic sequences
 - Biological sequences

Applications

- Applications of sequential pattern mining
 - Customer shopping sequences
 - Medical treatments
 - Natural disasters (e.g., earthquakes),
 - Science & eng. processes
 - Stocks and markets, etc.
 - Telephone calling patterns, Weblog click streams
 - DNA sequences and gene structures
 - Sports data mining

A Simple Example

PITCH 1	PITCH 2	COUNT
Four-seam Fastball	Four-seam Fastball	2859
Slider	Slider	1792
Four-seam Fastball	Slider	1558
Slider	Four-seam Fastball	1065
Four-seam Fastball	Curveball	880
Four-seam Fastball	Changeup	693
Changeup	Changeup	618
Curveball	Curveball	609
Two-seam Fastball	Two-seam Fastball	606
Curveball	Four-seam Fastball	546

Most Common 2 Pitch Sequences Resulting in a Strike Out (2013)

PITCH 1	PITCH 2	PITCH 3	COUNT
Four-seam Fastball	Four-seam Fastball	Four-seam Fastball	1656
Four-seam Fastball	Four-seam Fastball	Slider	737
Slider	Slider	Slider	625
Four-seam Fastball	Slider	Slider	598
Four-seam Fastball	Slider	Four-seam Fastball	475
Slider	Four-seam Fastball	Slider	473
Slider	Four-seam Fastball	Four-seam Fastball	414
Four-seam Fastball	Four-seam Fastball	Curveball	397
Slider	Slider	Four-seam Fastball	332
Two-seam Fastball	Two-seam Fastball	Two-seam Fastball	305

Most Common 3 Pitch Sequences Resulting in a Strike Out (2013)

Source: http://www.beyondtheboxscore.com/2013/7/26/4558940/strikeout-pitch-sequences-pitchfx-sabermetrics

The Traditional CS Example

- A sequence database consists of ordered elements or events
- Transactions are orderless (e.g. diapers and beer)
- Sequences include some order (e.g. diapers then beer)
- Transaction databases vs. sequence databases

A <u>transaction database</u>

TID	itemsets
10	a, b, d
20	a, c, d
30	a, d, e
40	b, e, f

A <u>sequence database</u>

SID	sequences
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Subsequence vs. super sequence

- A sequence is an ordered list of events, denoted $< e_1 e_2 ... e_l >$
- Given two sequences $\alpha = \langle a_1 a_2 ... a_n \rangle$ and $\beta = \langle b_1 b_2 ... b_m \rangle$
- α is called a subsequence of β , denoted as $\alpha \subseteq \beta$, if there exist integers $1 \le j_1 < j_2 < ... < j_n \le m$ such that $a_1 \subseteq b_{j_1}$, $a_2 \subseteq b_{j_2}$,..., $a_n \subseteq b_{j_n}$
- β is a super sequence of α
 - E.g. α =< (ab), d> and β =< (abc), (de)>

What Is Sequential Pattern Mining?

 Given a set of sequences and support threshold, find the complete set of *frequent* subsequences

A <u>sequence</u>: < (ef) (ab) (df) c b >

A <u>sequence database</u>

SID	sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

An element may contain a set of items e.g. (ef). Items within an element are unordered and we list them alphabetically.

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

Challenges in Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
 - find the complete set of patterns, when possible,
 satisfying the minimum support (frequency) threshold
 - be highly efficient and scalable involving only a small number of database scans
 - be able to incorporate various kinds of user-specific constraints

Studies on Sequential Pattern Mining

- Concept introduction and an initial Apriori-like algorithm
 - Agrawal & Srikant. Mining sequential patterns, [ICDE'95]
- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant & Agrawal [EDBT'96])
- Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.KDD'00; Pei, et al. [ICDE'01])
- Vertical format-based mining: SPADE (Zaki [Machine Leanining'00])
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim [VLDB'99]; Pei, Han, Wang [CIKM'02])
- Mining closed sequential patterns: CloSpan (Yan, Han & Afshar [SDM'03])

Methods for sequential pattern mining

- Apriori-based Approaches
 - GSP
 - SPADE
- Pattern-Growth-based Approaches
 - FreeSpan
 - PrefixSpan

The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence *S* is not frequent, then none of the supersequences of *S* is frequent
 - E.g, <hb> is infrequent so are <hab> and <(ah)b>

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Given <u>support threshold</u> min_sup =2

GSP—Generalized Sequential Pattern Mining

- GSP (Generalized Sequential Pattern) mining algorithm
- Outline of the method
 - Initially, every item in DB is a candidate of length-1
 - for each level (i.e., sequences of length-k) do
 - scan database to collect support count for each candidate sequence
 - generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
 - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

Finding Length-1 Sequential Patterns

- Initial candidates:
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

 $min_sup = 2$

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Cand	Sup
<a>>	3
 b>	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
<g>></g>	1
	1

Generating Length-2 Candidates

51 length-2 Candidates

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cp></cp>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d>></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

Without Apriori property, 8*8+8*7/2=92 candidates

Apriori prunes 44.57% candidates

Finding Lenth-2 Sequential Patterns

- Scan database one more time, collect support count for each length-2 candidate
- There are 19 length-2 candidates which pass the minimum support threshold
 - They are length-2 sequential patterns

$$min_sup = 2$$

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

The GSP Mining Process

Seq. ID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

The GSP Algorithm

```
F_1 = the set of frequent 1-sequence
k=2,
while F(k-1) is not empty;
  Generate candidate sets C_k (set of candidate k-sequences);
     For all input sequences s in the database D
       Increment count of all a in C<sub>k</sub> if s supports a
       F_k = \{a \in C_k \text{ such that its frequency exceeds the threshold}\}\
       k = k+1;
       Result = Set of all frequent sequences is the union of all Fks
  End
End
```

The GSP Algorithm

- Benefits from Apriori pruning
 - Reduces search space
- Bottlenecks
 - Scans the database multiple times
 - Generates a huge set of candidate sequences

The SPADE Algorithm

- SPADE (<u>Sequential PAttern Discovery using Equivalent Class</u>) developed by Zaki 2001
- A vertical format sequential pattern mining method
- A sequence database is mapped to a large set of Item: <SID, EID>
- Sequential pattern mining is performed by
 - growing the subsequences (patterns) one item at a time by Apriori candidate generation

The SPADE Algorithm

SID	EID	Items
$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	1	a
1	$\frac{1}{2}$	abc
1	3	ac
1	$\frac{4}{5}$	d
1		cf
2	1 2 3 4 1 2	ad
2	2	\mathbf{c}
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	4 5 1 2 3	b
4	1	e
4	2	g af
$\overline{4}$	3	af
4	$\frac{4}{5}$	\mathbf{c}
4		b
4	6	c

ä	a	1	0	141 v 14
SID	EID	SID	EID	
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

	ab			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
$\overline{2}$	1	3	2	3	4	
3	2	5				
4	3	5				

	ä	aba		
SID	EID (a)	EID(b)	EID(a)	• 1• n•n
1	1	2	3	
2	1	3	4	

Spade Demo

Bottlenecks of Candidate Generate-andtest

- A huge set of candidates generated.
 - Especially 2-item candidate sequence.
- Multiple Scans of database in mining.
 - The length of each candidate grows by one at each database scan.
- Inefficient for mining long sequential patterns.
 - A long pattern grows up from short patterns
 - An exponential number of short candidates

PrefixSpan (Prefix-Projected Sequential Pattern Growth)

- PrefixSpan
 - Projection-based
 - But only prefix-based projection: less projections and quickly shrinking sequences
- J.Pei, J.Han,... PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. ICDE'01.

Prefix and Suffix (Projection)

- Given sequence <a(abc)(ac)d(cf)>
- <a>, <a(ab)> and <a(abc)> are <u>prefixes</u> of sequence <a(abc)(ac)d(cf)>

Prefix	Suffix (Prefix-Based Projection)
<a>	<(abc)(ac)d(cf)>
<aa></aa>	<(_bc)(ac)d(cf)>
<ab></ab>	<(_c)(ac)d(cf)>

Mining Sequential Patterns by Prefix Projections

- Step 1: find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
 - The ones having prefix <a>;
 - The ones having prefix ;
 - •
 - The ones having prefix <f>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
 - <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>,<(_b)(df)cb>, <(_f)cbc>

- - Further partition into 6 subsets
 - Having prefix <aa>;
 - ...
 - Having prefix <af>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Completeness of PrefixSpan

The Algorithm of PrefixSpan

- **Input**: A sequence database S, and the minimum support threshold min sup
- Output: The complete set of sequential patterns
- Method: Call PrefixSpan(<>,0,S)
- **Subroutine** PrefixSpan(α , I, S| α)
- Parameters:
 - α: sequential pattern,
 - I: the length of α ;
 - $S \mid \alpha$: the α -projected database, if $\alpha \neq <>$; otherwise; the sequence database S

The Algorithm of PrefixSpan

Method

- 1. Scan S $\mid \alpha$ once, find the set of frequent items b such that:
 - a) b can be assembled to the last element of α to form a sequential pattern; or
 - b)

b> can be appended to α to form a sequential pattern.
- 2. For each frequent item b, append it to α to form a sequential pattern α' , and output α' ;
- 3. For each α' , construct α' -projected database $S|\alpha'$, and call PrefixSpan(α' , I+1, $S|\alpha'$).

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: constructing projected databases
 - Can be improved by bi-level projections

Optimization in PrefixSpan

- Single level vs. bi-level projection
 - Bi-level projection with 3-way checking may reduce the number and size of projected databases
- Physical projection vs. pseudo-projection
 - Pseudo-projection may reduce the effort of projection when the projected database fits in main memory
- Parallel projection vs. partition projection
 - Partition projection may avoid the blowup of disk space

Scaling Up by Bi-Level Projection

- Partition search space based on length-2 sequential patterns
- Only form projected databases and pursue recursive mining over bilevel projected databases

Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection
 - Postfixes of sequences often appear repeatedly in recursive projected databases
- When (projected) database can be held in main memory, use pointers to form projections
 - Pointer to the sequence
 - Offset of the postfix

Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes
 - Efficient in running time and space when database can be held in main memory
- However, it is not efficient when database cannot fit in main memory
 - Disk-based random accessing is very costly
- Suggested Approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data set fits in memory

Performance on Data Set C10T8S8I8

Performance on Data Set Gazelle

Effect of Pseudo-Projection

CloSpan: Mining Closed Sequential Patterns

- A closed sequential pattern s:
 there exists no superpattern s'
 such that s' > s, and s' and s have
 the same support
- Motivation: reduces the number of (redundant) patterns but attains the same expressive power
- Using Backward Subpattern and A Backward Superpattern pruning to prune redundant search space

CloSpan: Performance Comparison with PrefixSpan

Extensions to Frequent Sequence Mining

Constraints for Seq.-Pattern Mining

- Item constraint
 - Find web log patterns only about online-bookstores
- Length constraint
 - Find patterns having at least 20 items
- Super pattern constraint
 - Find super patterns of "PC→digital camera"
- Aggregate constraint
 - Find patterns that the average price of items is over \$100

More Constraints

- Regular expression constraint
 - Find patterns "starting from Yahoo homepage, search for hotels in Washington DC area"
 - Yahootravel(WashingtonDC|DC)(hotel|motel|lodging)
- Duration constraint
 - Find patterns about \pm 24 hours of a shooting
- Gap constraint
 - Find purchasing patterns such that "the gap between each consecutive purchases is less than 1 month"

From Sequential Patterns to Structured Patterns

- Sets, sequences, trees, graphs, and other structures
 - Transaction DB: Sets of items
 - {{i₁, i₂, ..., i_m}, ...}
 - Seq. DB: Sequences of sets:
 - {<{i₁, i₂}, ..., {i_m, i_n, i_k}>, ...}
 - Sets of Sequences:
 - {{<i₁, i₂>, ..., <i_m, i_n, i_k>}, ...}
 - Sets of trees: {t₁, t₂, ..., t_n}
 - Sets of graphs (mining for frequent subgraphs):
 - $\{g_1, g_2, ..., g_n\}$
- Mining structured patterns in XML documents, biochemical structures, etc.

Episodes and Episode Pattern Mining

- Other methods for specifying the kinds of patterns
 - Serial episodes: $A \rightarrow B$
 - Parallel episodes: A & B
 - Regular expressions: (A | B)C*(D \rightarrow E)
- Methods for episode pattern mining
 - Variations of Apriori-like algorithms, e.g., GSP
 - Database projection-based pattern growth
 - Similar to the frequent pattern growth without candidate generation

Periodicity Analysis

- Periodicity is everywhere: tides, seasons, daily power consumption, etc.
- Full periodicity
 - Every point in time contributes (precisely or approximately) to the periodicity
- Partial periodicit: A more general notion
 - Only some segments contribute to the periodicity
 - Jim reads NY Times 7:00-7:30 am every week day
- Cyclic association rules
 - Associations which form cycles
- Methods
 - Full periodicity: FFT, other statistical analysis methods
 - Partial and cyclic periodicity: Variations of Apriori-like mining methods

Summary

- Sequential Pattern Mining is useful in many application, e.g. weblog analysis, financial market prediction, BioInformatics, etc.
- It is similar to the frequent itemsets mining, but with consideration of ordering.
- We have looked at different approaches that are descendants from two popular algorithms in mining frequent itemsets
 - Candidates Generation: AprioriAll and GSP
 - Pattern Growth: FreeSpan and PrefixSpan