

MÁSTER EN CIENCIA DE DATOS E INGENIERÍA DE COMPUTADORES

Uso de Machine Learning en la Determinación de Niveles de Suciedad en Sistemas Fotovoltaicos a partir de parámetros ambientales

Autora : Luíza Araujo Costa Silva

Tutora: Prof^a. Dr^a. María del Carmen Pegalajar Jiménez

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

Energía Fotovoltaica

- Radiación / Luz Solar → Energía Eléctrica
- Paneles o módulos solares
- España → El 7,5%
 de la energía generada ¹

Soiling: La suciedad en los módulos fotovoltaicos

- Impide la transmisión de luz en el módulo
- Reducción de hasta un 25% del rendimiento energético²
- Pérdidas causadas³:
 - 2018 → € 3 a 5 mil millones
 - 2023 → € 7 mil millones
- Parámetros ambientales:
 - Iluvia, temperatura, contaminación atmosférica...

Nivel de suciedad

- SR Soiling Ratio
 - Energía no generada debido al soiling
 - Variación de 0 a 1

$$SR = rac{Salida}{El\acute{e}ctrica}^{(D)}$$
 $Salida$
 $El\acute{e}ctrica$
 $El\acute{e}ctrica$

El problema propuesto

- Actualmente:
 - Modelos matemáticos, utilizándose datos de mediciones en suelo
- Propuesta:
 - Utilizar técnicas de *Machine Learning* para determinar el *Soiling Ratio* (SR), utilizándose datos de parámetros ambientales procedentes de satélites

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

Procedencia de los datos

CEACTEMA MERRA-2 Centro de Estudios Avanzados en Modern-Era Retrospective analysis for Ciencias de la Tierra, Energía y Medio Research and Applications **Ambiente Mediciones** Marzo/2019 a **Parámetros** SR Marzo/2021 **Ambientales** Conjunto de datos utilizado

Análisis de los datos

Análisis Exploratorio y Preprocesamiento

Análisis y Preprocesamiento de los datos

- *Outliers* → Método Z-Score
- Imputación de datos nulos → Media entre sus vecinos
- Estacionariedad → Prueba de *Dickey-Fuller* aumentada
- Normalización → RobustScaler
- Ventanas deslizantes → 1, 2, 3, 5, 7, 10, 14 días anteriores

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

Métodos utilizados

- Scikit-learn
 - Regresión Lineal
 - Árbol de Decisión
 - Random Forest
 - MLP Perceptrón Multi-Capa
- Keras
 - LSTM

Modelos Matemáticos

- Coello y Boyle ⁴
- You ⁵

```
'Temperature',

'Wind_speed',

'PM10',

'DUSMASS25',

'Rainfall'
```

Modelo	RMSE	MAE	MAPE	R ²	Origen
Coollo y Poylo	0.016876	0.011128	1.136918	0.341808	Datos de Suelo
Coello y Boyle	0.038538	0.023643	2.420922	0.205066	Datos de Satelites
Vari	0.019935	0.013792	1.418861	0.347129	Datos de Suelo
You	0.030156	0.01736	1.777113	0.185304	Datos de Satelites
Media:	0.02637625	0.01648075	1.6825	0.2697185	

Selección de Características

- Input_1 → Algoritmo Boruta
 - 'Temperature', 'Relative_Humidity', 'Pressure', 'Wind_speed', 'Air_Density','Short_wave_irradiation', 'Rainfall'
 - (+) 'Ventana_d-1', 'Ventana_d-2',... 'Ventana_d-n']
- Input_2 → Modelos Matemáticos
 - 'Temperature', 'Wind_speed', 'PM10', 'DUSMASS25', 'Rainfall'
 - (+) 'Ventana_d-1', 'Ventana_d-2',...'Ventana_d-**n**']
- Input_3 → Sólo ventanas deslizantes
 - 'Ventana_d-1', 'Ventana_d-2',... 'Ventana_d-n']

Partición Entrenamiento / Test

- Entrenamiento → 70%
- Test → 30%

Métricas Utilizadas

- RMSE
- MAE
- MAPE
- R²

Resultados Obtenidos por Algoritmo

Métodos		Mejor Model	0	Peor Modelo			Media
Metodos	Input	Ventana	RMSE	Input	Ventana	RMSE	RMSE
Regresión Lineal	Input_3	1	0.000068	Input_1	14	0.003456	0.0010227
MLP	Input_3	1	0.000068	Input_2	5	0.000908	0.0003173
Random Forest	Input_3	1	0.000576	Input_2	5	0.002139	0.0010653
Árbol de Decisión	Input_3	1	0.001117	Input_2	5	0.003177	0.0017348
LSTM	Input_3	3	0.012109	Input_1	2	0.016131	0.0131012

Modelo Matemático	Mejor RMSE	Peor RMSE	Media RMSE	
Coello y Boyle	0.016876	0.038538	0.027707	
You	0.019935	0.030156	0.025046	

Ajuste MLP

Ajuste LSTM

Experimentos Realizados

Los 5 Mejores Resultados Obtenidos

		Input		Test			
#	Modelo		Vent	RMSE	MAE	MAPE	R²
1	Regresión Lineal	Input_3	1	0.000068	0.000013	0.001361	0.999977
2	MLP (1 capa con 30 neuronas)	Input_3	1	0.000068	0.000013	0.001365	0.999977
3	Regresión Lineal	Input_2	1	0.000073	0.000031	0.003113	0.999974
4	MLP (1 capa con 30 neuronas)	Input_2	1	0.000073	0.000031	0.003119	0.999974
5	MLP (1 capa con 30 neuronas)	Input_1	1	0.000078	0.000036	0.003712	0.999971

#	Modelo Matemático	RMSE	MAE	MAPE	R ²
6	Coello y Boyle	0.016876	0.011128	1.136918	0.341808
7	You	0.019935	0.013792	1.418861	0.347129

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

Predicciones secuenciales

- Predicciones futuras en la serie temporal
 - Se entrena el modelo con los valores medidos
 - Se predice utilizando las salidas del modelo como entrada para la siguiente predicción
 - Hasta el horizonte temporal futuro que se desee

Ejemplo:

- Ventanas:
 - 2 días
- Predicción:
 - 90 días futuros

	Fecha	SRIndex	Entrada: Ventanas (2 días)	Predicción	Validación
0	01/01/2019	SRo			SRo
ent	02/01/2019	SR1			SR1
Entrenamiento	03/01/2019	SR2	$V_0 = SR_0, SR_1$	y_train <mark>o</mark>	SR ₂
ens	04/01/2019	SR3	V1 = SR1, SR2	y_train1	SR3
nţ	05/01/2019	SR4	V2 = SR2, SR3	y_train2	SR4
de E	06/01/2019	SR5	V3 = SR3, SR4	y_train3	SR5
	()	()	()	()	()
Datos	30/12/2020	SR650	V648 = SR648, SR649	y_train <mark>648</mark>	SR 650
۵	31/12/2020	SR 651	V649 = SR649, SR650	y_train649	SR 651
	01/01/2021	SR652	V_testo = SR650, SR651	y_testo	SR652
ı	02/01/2021	SR653	V_test1 = SR651, y_test0	y_test1	SR653
Test	03/01/2021	SR654	V_test2 = y_test0, y_test1	y_test2	SR654
de 1	04/01/2021	SR655	V_test3 = y_test1, y_test2	y_test3	SR655
	05/01/2021	SR656	V_test4 = y_test2, y_test3	y_test4	SR 656
Datos	06/01/2021	SR657	V_tests = y_test3, y_test4	y_tests	SR 657
_	()	()	()	()	()
	31/03/2021	SR 741	V_tests = y_test88, y_test89	y test89	SR 741

Predicciones secuenciales - Experimentos

- Regresión Lineal y MLP
 - Input_3: sólo las ventanas
- **MLP**
 - Input_2: Mismos datos de los modelos matemáticos + las ventanas
- Ventanas de 1, 2 y 3 días
- Predecir hasta 90 días futuros

Resultados

Resultados

RMSE

Modelo

Predicciones Secuenciales

Origen

Datos de Suelo

Datos de Satelites

Datos de Suelo

Datos de Satelites

Resultados

Resultados

Modelo	RMSE	Origen		
Coolloy Boylo	0.016876	Datos de Suelo		
Coello y Boyle	0.038538	Datos de Satelites		
Vou	0.019935	Datos de Suelo		
You	0.030156	Datos de Satelites		

			1
	DMCE You	0.019935	Datos
Comparativo de la evolución del	RMSE	0.030156	Datos d
0.025	Media:	0.02637625	▋ .
0.02 <u>5</u>	the state of the s	delo-Input-Ventana ■RL-Input_3-1 ■RL-Input_3-2	3
0.015 0.015 0.015		 RL - Input_3 - 3 MLP - Input_3 - 1 MLP - Input_3 - 2 	
0.01 KMSE 0.01	_	■ MLP - Input_3 - 3 ■ MLP - Input_2 - 1	Ľ
0.005		► MLP - Input_2 - 2 MLP - Input_2 - 3	
1 2 3 4 5 6 7 8 9 10 11 12 15 20 3	30 45 60 75 90		

Secuencia de días a futuro

Predicciones Secuenciales

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

- Introducción
- Análisis Exploratorio y Preprocesamiento
- Experimentos Realizados
- Predicciones Secuenciales
- Conclusión

Conclusión

- Resultados muy prometedores
 - Regresión Lineal, MLP, Random Forest y Árbol de Decisión
 - LSTM: no tan eficaz
- Predicciones Secuenciales:
 - Error muy bajo hasta 5 días: Input_3
 - Error más bajo que los modelos matemáticos hasta 90 días

Conclusión

Conclusión

- Contexto de los datos:
 - Procedencia geográfica de las mediciones:
 - Jaén no sufre efectos severos del soiling
 - Bajos niveles \rightarrow estimativas menos precisas ⁶
 - Conjunto de datos relativamente pequeño
- Parámetros Ambientales: más investigación
 - Más errores en datos de satélite 7
 - Ruido para el predictor

Conclusión

Líneas de Futuro

- Construir modelos con datos ambientales de suelo y compararlos a los resultados obtenidos en este trabajo
- Validar los modelos con mediciones de SR procedentes de otras ubicaciones, principalmente que sufran de manera más severa los efectos del soiling y con más mediciones disponibles.

Líneas de Futuro

- Extender la colaboración con el CEACTEMA/UJA:
 - nuevos modelos matemáticos actualmente desarrollados por estos investigadores
- Publicación de un artículo científico
- Utilización de pronósticos meteorológicos futuros en las predicciones secuenciales como entrada externa.

Conclusión

Referencias

- 1. Red Electrica de España, «La demanda de energía eléctrica de España aumenta un 4,8 % en marzo», (2021).
- 2. A. Comerio, «Avaliação do impacto de sujidade de módulos fotovoltaicos na geração de energia elétrica», (2019).
- 3. J. G. Bessa, L. Micheli, F. Almonacid, y E. F. Fernández, «Monitoring photovoltaic soiling: assessment, challenges, and perspectives of current and potential strategies», (2021).
- 4. M. Coello y L. Boyle, *«Simple Model for Predicting Time Series Soiling of Photovoltaic Panels»*, (2019).
- 5. S. You, Y. J. Lim, Y. Dai, y C. H. Wang, «On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities», (2018).
- 6. Å. Skomedal y M. Deceglie, «Combined Estimation of Degradation and Soiling Losses in Photovoltaic Systems», (2020).
- 7. J. M. Carmona, P. Gupta, D. F. Lozano-García, A. Y. Vanoye, F. D. Yépez, y A. Mendoza, *«Spatial and Temporal Distribution of PM2.5 Pollution over Northeastern Mexico: Application of MERRA-2 Reanalysis Datasets»*, (2020).

i Muchas Gracias!

