

Allegato Tecnico

Jawa Druids

Versione | 1.0.0

Data approvazione ??-??-???

Responsabile | Nome Cognome

Redattori | Nome Cognome

Nome Cognome

Verificatori | Nome Cognome

Nome Cognome

Nome Cognome

Stato | Approvato

Lista distribuzione | Jawa Druids

Prof. Tullio Vardanega

Prof. Riccardo Cardin

Uso | Esterno

Sommario

Il presente documento contiene le scelte architetturali che il gruppo Jawa Druids ha effettuato ai fini realizzativi del progetto. Contiene i design pattern e i diagrammi di attività, sequenza, classi e package.

Indice

1	Introduzione				
	1.1	Scopo del documento			
	1.2	Scopo del prodotto			
		Glossario			
2	Arc	chitettura del prodotto			
	2.1	Descrizione generale			
	2.2	Architettura Acquisition			
	2.3	Architettura Prediction			
		Architettura Web-App			
3	Rec	quisiti soddisfatti			
	3.1	Tabella requisiti funzionali			
	3.2	Grafici requisiti funzionali			

1 Introduzione

1.1 Scopo del documento

Lo scopo del documento è quello di elencare e motivare le scelte architetturali fatte dal gruppo Jawa Druids, per quanto riguarda il progetto GDP: Gathering Detection Platform.

1.2 Scopo del prodotto

In seguito alla pandemia del virus COVID-19 è nata l'esigenza di limitare il più possibile i contatti fra le persone, specialmente evitando la formazione di assembramenti. Il progetto GDP: Gathering Detection Platform di Sync Lab ha pertanto l'obiettivo di creare una piattaforma in grado di rappresentare graficamente le zone potenzialmente a rischio di assembramento, al fine di prevenirlo. Il prodotto finale è rivolto specificatamente agli organi amministrativi delle singole città, cosicché possano gestire al meglio i punti sensibili di affolamento, come piazze o siti turistici. Lo scopo che il software intende raggiungere non è solo quello della rappresentazione grafica real-time ma anche quella di poter riuscire a prevedere assembramenti in intervalli futuri di tempo.

Al tal fine il gruppo Jawa Druids si prefigge di sviluppare un prototipo software in grado di acquisire, monitorare ed analizzare i molteplici dati provenienti dai diversi sistemi e dispositivi, a scopo di identificare i possibili eventi che concorrono all'insorgere di variazioni di flussi di utenti. Il gruppo prevede inoltre lo sviluppo di un'applicazione web da interporre fra i dati elaborati e l'utente, per favorirne la consultazione.

1.3 Glossario

All'interno della documentazione viene fornito un Glossario, con l'obiettivo di assistere il lettore specificando il significato e contesto d'utilizzo di alcuni termini strettamente tecnici o ambigui, segnalati con una G a pedice.

2 Architettura del prodotto

2.1 Descrizione generale

In fase di progettazione, il gruppo $Jawa\ Druids$ ha deciso di suddividere la modellazione architetturale di Gathering-Detection-Platform in tre distinti moduli, tutti indipendenti tra loro. Il primo modulo si occupa solamente di leggere, tramite file $JSON_G$, tutte le webcam disponibili per poi effettuare il riconoscimento persone tramite i frame scaricati. Successivamente i dati estrapolati verranno invitati al database. Il secondo modulo, il machine-learning $_G$, si occupa di recuperare questi dati dal database per lavorarli producendo predizioni per le ore future. Infine il terzo modulo, la web-app $_G$ vera e propria, si occuperà di rappresentare graficamente i dati all'interno del database mediante una heat-map $_G$ e farli visualizzare all'utente.

2.2 Architettura Acquisition

L'architettura riguardante il modulo di acquisizione, ovvero il primo modulo del software, è basata sul fatto che è creata sul paradigma della codifica procedurale. Inoltre non presenta alcuna classe in quanto non crea oggetti, crea esclusivamente un array con i dati che estrapola dai frame e dalle informazioni del tempo.

2.3 Architettura Prediction

L'architettura del modulo del machine-learning si può semplificare ad un modulo unico con all'interno i metodi necessari per prelevare dati dal database per poi reinviarli da lavorati. Non necessita classi interne in quanto svolge esclusivamente operazioni funzionali

2.4 Architettura Web-App

Per il modulo relativo al front-end_G, si è deciso di utilizzare il pattern Model-View-Controller(MVC). Questa scelta è dovuta al fatto che, essendo la web-app sviluppata con spring, il pattern è quello che più si adatta alla tipologia sia di modellazione sia di scopo.

3 Requisiti soddisfatti

In questo capitolo vengono illustrati attraverso grafici a torta e tabelle i requisiti funzionali che sono stati implementati all'interno della demo sviluppata per la Revisione di qualifica.

3.1 Tabella requisiti funzionali

Codice Requi	Fonte
RSFO1	Capitolato $_{\scriptscriptstyle G}$ V. esterno 17-12-2020
RSFF2	$\operatorname{Capitolato}_{\scriptscriptstyle G}$
RSFO3	UC2
RSFO4	${ m Capitolato}_{\scriptscriptstyle G} \ { m UC8}$
RSFO4.1	${ m Capitolato}_{\scriptscriptstyle G} \ { m UC8.1} \ { m UC8.2}$
RSFO4.2	${ m Capitolato}_{\scriptscriptstyle G} \ { m UC8.3}$
RSFO5	$\operatorname{Capitolato}_{\scriptscriptstyle G}$
RSFD5.1	$\operatorname{Capitolato}_{\scriptscriptstyle G}$
RSFD6	$\operatorname{Capitolato}_{\scriptscriptstyle G}$
RSFO7	${ m Capitolato}_{\scriptscriptstyle G} \ { m UC1}$
RSFO8	Interno
RSFO9	Interno UC1
RSFO10	Interno UC1

RSFO11	Interno UC1
RSFF12	Interno
RSFD13	Interno UC10
RSFD14	Interno UC10
RSFF15	Interno UC11.1
RSFF16	Interno UC11.2
RSFO17	Interno
RSFO18	V. esterno 2-02-2021
RSFO18.1	V. esterno 2-02-2021
RSFO19	Interno UC9
RSFO20	Interno UC4
RSFO21	Interno
RSFO22	Interno
RSFO22.1	Interno
RSFO22.2	Interno
RSFF23	Interno
RSFO24	UC5.1
RSFO25	Interno
RSFO26	UC5.1
RSFO27	UC5.2
RSFO28	UC5.3
RSFD29	Interno
RSFO30	V. esterno 02-02-2021

RSFF31	Interno UC12
RSFO32	UC3
RSFO32.1	UC3.1
RSFO32.1.1	UC3.1.1
RSFO32.1.2	UC3.1.2
RSFO32.1.3	UC3.1.2
RSFO32.2	UC3.2
RSFD33	UC6
RSFD33.1	UC6.1
RSFD33.2	UC6.2
RSFD34	UC7
RSFD35	UC13
RSFD36	UC14
RSFD36.1	UC14.1
RSFD36.2	UC14.2
RSFD37	UC15
RSFD37.1	UC16
RSFD38	UC15
RSFD39	UC15
RSFD40	UC17
RSFD41	UC18

Tabella 3.1: Requisiti funzionali soddisfatti

3.2 Grafici requisiti funzionali