Output Compare

Dr. Edward Nava ejnava@unm.edu

PIC Architecture

Pulse Width Modulated Signals

$$Duty\ Cycle = \left(\frac{t_h}{T}\right) * 100\%$$

$$Duty\ Cycle = \left(\frac{.5T}{T}\right) * 100\% = 50\%$$

$$T$$

$$Duty\ Cycle = \left(\frac{.125T}{T}\right) * 100\% = 12.5\%$$

PWM Signal Applications

 By varying the duty cycle of a pulse train, the average DC value can be varied

By varying the duty cycle, V_{avg} can be varied from 0 to V

Using PWM Signals

- Because we can change the duty cycle dynamically, a PWM signal can used for a variety of applications:
 - Speed control of a DC motor
 - Dimming of LED lights
 - Controlling the position of the armature of a Servo-Motor.

Generating Tones using PWM

Using a PWM wave with a duty cycle of 50%, we can generate tones.

Recall:

$$x(t)_{Square} = \frac{4}{\pi} \left[sin(2\pi ft) + \frac{1}{3} sin(3(2\pi ft)) + \frac{1}{5} sin(5(2\pi ft)) + \dots \right]$$

= fundamental frequency + odd harmonics

By varying the period of the square wave, we vary the fundamental frequency and the harmonics

Generating PWM Signals

- PWM signals are generated using a timer.
- The PWM signal period corresponds to the value set in the timer preset register.

Generating The Output Compare Signal

Output Compare Operation

Figure 16-1: Output Compare Module Block Diagram

- Note 1: Where 'x' is shown, reference is made to the registers associated with the respective output compare channels 1 through 5.
 - 2: OCFA pin controls OC1-OC4 channels. OCFB pin controls OC5 channels.
 - 3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit time base. Refer to the specific device data sheet for the time bases associated with the module.

Output Compare SFRs

TABLE 4-9: OUTPUT COMPARE1-5 REGISTERS MAP(1)

Virtual Address (BF80_#)	Register Name			Bits															
		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AllResets
3000	OC1CON-	31:16	-	ı	-	_	-	-	1	1	-	-	-	-	_	1	-	-	0000
		15:0	ON	_	SIDL	_	_	_	_	_	-	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3010	OC1R	31:16 15:0								OC1R-	:31:0>								XXXX
3020	OC1RS	31:16 15:0								OC1RS	<31:0>								XXXX
3200	OC2CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
		15:0	ON	_	SIDL	_	_	_	_	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3210	OC2R	31:16 15:0	OC2R<31:D>															XXXX	
3220	OC2RS	31:16 15:0	OC2RS<31:0>															XXXX	
3400	OC3CON	31:16	-	_	_	_	_	_	-	_	-	_	-	_	_	_	_	_	0000
		15:0	ON	ı	SIDL	_	_	-	ı	_	_	ı	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3410	OC3R	31:16 15:0	OC3R<31:0>															XXXX	
3420	OC3RS	31:16 15:0	OC3RS<31:0>															XXXX	
3600	OC4CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
		15:0	ON	-	SIDL	_	_	_	-	_	-	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3610	OC4R	31:16 15:0	OC4Re31:0s														XXXX		
3620	OC4RS	31:16 15:0	OC4RS<31:0>															NXXX	
3800	OC5CON-	31:16	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	0000
		15:0	ON	-	SIDL	_	_	_	-	-	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3810 3820	OC5R	31:16						· ·		OC5R-	:31:0>								XXXX
		15:0 31:16																	XXXX
	OC5RS -	15:0								OC5RS	<31:0>								XXXX
		10.0																	nana

Legend: x = unknown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information

