Lemma 0.1. Let M be a regular surface, $\gamma:I\to M$ be a differentiable curve on M, and $p\in\gamma(I)$. Furthermore, let $X:U\to X(U)\subset M$ be a local parameterization at $p\in X(U)$. Then there exist some interval $J\subseteq I$, and differentiable curve $\alpha:J\to U$ on U such that $\gamma\big|_{J}=X\circ\alpha$ and $p\in\alpha(J)$.

Proof. We assume without loss of generality that $\gamma(0) = X(0) = p$. Denote the components of X by X(u,v) = (f(u,v), g(u,v), h(u,v)). As X is regular, we have $X_u(0) \times X_v(0) \neq 0$, hence the differential

$$dX(0) = \begin{bmatrix} f_u(0) & f_v(0) \\ g_u(0) & g_v(0) \\ h_u(0) & h_v(0) \end{bmatrix}$$

has rank 2. It follows that there is some 2×2 minor of dX(0) which has non-zero determinant. Suppose without loss of generality that one such minor is given by

$$\begin{bmatrix} f_u(0) & f_v(0) \\ g_u(0) & g_v(0) \end{bmatrix},$$

and let F(u,v)=(f(u,v),g(u,v)). Then let p'=F(0,0). As dF(0) has full rank, F has a C^1 inverse about some neighbourhood $U_{p'}$ of p'. Now let $\pi_{x,y}:\mathbb{R}^3\to\mathbb{R}^2$ be the projection onto the first two coordinates. Then let J be a small enough interval such that $\pi(\gamma(J))\subset U_{p'}$. Then $0\in J$ since $\pi(\gamma(0))=\pi(p)=p'$. Now let $\alpha:J\to U$ be given by

$$\alpha = F^{-1} \circ \pi \circ \gamma |_{I}.$$

Then α is C^1 as it's a composition of C^1 functions. Moreover, as $F^{-1} \circ \pi$ coincides with X^{-1} on $\pi^{-1}(U_q)$ it follows that

$$\begin{split} X \circ \alpha &= X \circ F\big|_{U_q}^{\quad -1} \circ \pi \circ \gamma\big|_J \\ &= \gamma\big|_J. \end{split}$$

Corollary 0.2. Let M_1, M_2 be regular surfaces, and $\phi: M_1 \to M_2$ be a differentiable map. Let $\gamma: I \to M_1$ be a differentiable curve on M_1 . Then $\phi \circ \gamma$ is a differentiable curve on M_2 .

Proof. Let $p \in \gamma(I)$ and $q = \phi(p)$. Let $X: U \to X(U) \subset M_1, Y: V \to Y(V) \subset M_2$ be two local parameterizations such that $\phi(X(U)) \subset Y(V)$ and $p \in X(U)$. Let α be the factorization of $\gamma|_J$ through X. Then

$$\phi\circ\gamma\big|_J=Y\circ Y^{-1}\circ\phi\circ X\circ\alpha$$

and as $Y, Y^{-1} \circ \phi \circ X, \alpha$ are all C^1 , so is their composition $\phi \circ \gamma|_J$. We've verified that $\phi \circ \gamma$ is C^1 at the arbitrary point $\gamma^{-1}(p)$, whence it's C^1 at all of its domain.