Problem Set 7

[Your Full Name Here]

MATH 100 — Introduction to Proof and Problem Solving — Summer 2023

Prob	lem 7.1. Let $A = \{1, 2, 3, 4\}$. Give an example, with reasoning, of a relation on A that is:	
(a)	reflexive and symmetric but not transitive.	
	Solution.	
(b)	reflexive and transitive but not symmetric.	
	Solution.	
(c)	symmetric and transitive but not reflexive.	
	Solution.	
(d)	reflexive but neither symmetric nor transitive.	
	Solution.	
(e)	symmetric but neither reflexive nor transitive.	
	Solution.	
(f)	transitive but neither reflexive nor symmetric.	
	Solution.	

Problem 7.2. Suppose $H \subseteq \mathbb{Z}$ is a subset that satisfies

- (a) If $x \in H$ then $-x \in H$
- (b) If $x, y \in H$ then $x + y \in H$

Show that the relation $xRy \iff x-y \in H$ is an equivalence relation. (Hint: first show that $0 \in H$)

Unimportant Remark: We denote the set of equivalences classes \mathbb{Z}/H and read it as $\mathbb{Z} \mod H$. This is called the space of cosets in group theory. This problem works much more generally: replace \mathbb{Z} by any group G, and then H is called a subgroup of G.

Solution.

Problem 7.3. Let $n\mathbb{Z} := \{nx : x \in \mathbb{Z}\} \subset \mathbb{Z}$ be the subset of all multiples of n. Show that $n\mathbb{Z}$ satisfies conditions (a) and (b) from the above problem. What is the equivalence relation defined above in this case? What are the space of all cosets?

Solution.

Problem 7.4. Let $H = \{2^m \mid m \in \mathbb{Z}\}$. A relation R is defined on $\mathbb{Q}_{>0}$, the set of positive rational numbers by:

aRb if and only if $\frac{a}{b} \in H$.

- (a) Show that *R* is an equivalence relation
- (b) Describe the equivalence class [3]
- (c) Prove [2] = H.

Solution.

Collaborators:

References:

• [Book(s): Title, Author]

• [Online: Link]

• [Notes: Link]

Fin.