# User-steering Interpretable Visualization with Probabilistic PCA

Viet Minh Vu and Benoît Frénay

NADI Institute - PReCISE Research Center

University of Namur, Belgium

25/04/2019

#### Problem: Dimensionality Reduction (DR)



Samples from the Fashion-MNIST dataset

## Visualization of high dimensional data



Having an initial visualization with the Probabilistic Principle Component Analysis (PPCA) model ...

## Proposed interactive PPCA model (iPPCA)



The user can manipulate the visualization by moving some points.

## iPPCA result



The result of the interactive model is explainable to the users.

#### **Motivation**

#### User interaction in model design and analysis



Visual analytic method with Human-in-the-loop  $^{[1]}$ 

- The user can interact directly with the visualization to give their feedbacks.
- The model can update itself to take into account these feedbacks and produce a new visualization.

<sup>[1]</sup>Sacha, Dominik, et al. "Knowledge generation model for visual analytics." IEEE TVCG 2014

## **Existing approaches**

Integrating user's feedbacks into existing Dimensionality Reduction (DR) methods

• Weighted MDS with the some fixed points to modify the weights  $\omega_F$ :

$$\mathbf{Y} = \operatorname{argmin}_{\mathbf{Y}} \sum_{i < j \leq n} 
ho \Big| d_{\omega}(i,j) - d_{Y}(i,j) \Big| + (1-
ho) \Big| d_{\omega_{F}}(i,j) - d_{Y}(i,j) \Big|$$

Semi-supervised PCA with sets of Must-links (ML) and Cannot-links (CL):

$$J(\mathbf{W}) = rac{1}{2n^2} \sum_{i,j} \left| \mathbf{x}_i - \mathbf{y}_j 
ight|^2 + rac{lpha}{2n_{CL}} \sum_{CL} \left| \mathbf{x}_i - \mathbf{y}_j 
ight|^2 - rac{eta}{2n_{ML}} \sum_{ML} \left| \mathbf{x}_i - \mathbf{y}_j 
ight|^2$$

Constrained Locality Preserving Projections with ML and CL:

$$\mathbf{W} = \operatorname{argmin}_{\mathbf{W}} rac{1}{2} \Big( \sum_{i,j} (\mathbf{y}_i - \mathbf{y}_j)^2 \widetilde{M}_{ij} + \sum_{ML'} (\mathbf{y}_i - \mathbf{y}_j)^2 - \sum_{CL'} (\mathbf{y}_i - \mathbf{y}_j)^2 \Big)$$

- $\mathbf{v}_j = \mathbf{W}^T \mathbf{x}_j, \mathbf{W}$  is projection matrix,  $\mathbf{M}$  is weights matrix
- ML', CL' are the extended set of Must-links and Cannot-links constraints

## **Existing approaches**

Integrating user's feedbacks into existing Dimensionality Reduction (DR) methods

• Weighted MDS with the some fixed points to modify the weights  $\omega_F$ :

$$\mathbf{Y} = \operatorname{argmin}_{\mathbf{Y}} \sum_{i < j \le n} 
ho igg| d_{\omega}(i,j) - d_{Y}(i,j) igg| + (1-
ho) igg| d_{\omega_F}(i,j) - d_{Y}(i,j) igg|$$

Semi-supervised PCA with sets of Must-links (ML) and Cannot-links (CL):

$$J(\mathbf{W}) = rac{1}{2n^2} \sum_{i,j} \left| \mathbf{x}_i - \mathbf{y}_j 
ight|^2 + rac{lpha}{2n_{CL}} \sum_{CL} \left| \mathbf{x}_i - \mathbf{y}_j 
ight|^2 - rac{eta}{2n_{ML}} \sum_{ML} \left| \mathbf{x}_i - \mathbf{y}_j 
ight|^2$$

Constrained Locality Preserving Projections with ML and CL:

$$\mathbf{W} = \operatorname{argmin}_{\mathbf{W}} rac{1}{2} \Big( \sum_{i,j} (\mathbf{y}_i - \mathbf{y}_j)^2 \widetilde{M}_{ij} + \sum_{ML'} (\mathbf{y}_i - \mathbf{y}_j)^2 - \sum_{CL'} (\mathbf{y}_i - \mathbf{y}_j)^2 \Big)$$

- $\mathbf{v}_j = \mathbf{W}^T \mathbf{x}_j, \mathbf{W}$  is projection matrix,  $\mathbf{M}$  is weights matrix
- ML', CL' are the extended set of Must-links and Cannot-links constraints

# **Existing approaches**

Integrating user's feedbacks into existing DR methods

- User's feedbacks 

  Explicit regularization term
- Jointly optimized with the objective function of the basic DR methods.

#### **Problems?**

- Many discrete methods
- Manually design the regularization term explicitly

⇒ Can we find another approach?

# **Probabilistic approach**



#### **Probabilistic PCA**

- Probabilistic reformulation as the basic for a Bayesian treatment of PCA  $^{\left[1\right]}$
- Illustration for the generative process in PPCA model  $^{[2]}$ 
  - $\circ$  generate 2-dimensional data  $p(\mathbf{x})$  from 1-dimensional latent variable p(z)



<sup>[1]</sup> Bishop, Christopher M. "Bayesian pca." Advances in neural information processing systems. 1999.

<sup>[2]</sup> Bishop's PRML book, Figure 12.9

#### **Probabilistic PCA**

- $\mathbf{X} = \{\mathbf{x}_n\}$ : N observations of D-dimensions.
- The embedded points in the 2D visualization are the latent variables  $\mathbf{Z} = \{\mathbf{z}_n\}$ .
- ullet Likelihood  $\mathbf{x}_n \mid \mathbf{z}_n \sim \mathcal{N}(\mathbf{x}_n \mid \mathbf{W}\mathbf{z}_n, \; \sigma^2 \mathbf{I}_D)$
- The inference problem:  $\theta_{MAP} = \operatorname{argmax}_{\theta} \log p(\theta \mid \mathbf{X})$  where  $\theta$  represents all the model's parameters (including  $\mathbf{Z}$ ).
- The MAP estimate of the latent variables  $\mathbf{Z}$  is found by following the partial gradient  $\nabla_{\mathbf{Z}} \log p(\theta, \mathbf{X})$  to its local optima.

## **Proposed Interactive PPCA model**

• iPPCA: The user-indicated position of the selected points is modelled directly in the prior distribution of the PPCA model.

$$oldsymbol{z}_n \sim egin{cases} \mathcal{N}(oldsymbol{z}_n \mid oldsymbol{\mu}_n, \ \sigma_{ ext{fix}}^2) & ext{if } oldsymbol{z}_n ext{ is fixed by user,} \ \mathcal{N}(oldsymbol{z}_n \mid oldsymbol{0}, oldsymbol{1}) & ext{otherwise.} \end{cases}$$



## How user's constraints are handled?

- The user can fix the position of several interested points, with some level of uncertainty ( $\sigma_{fix}^2$ )
- A very small variance  $\Longrightarrow$  the user is very certain.
- A large variance 

  the user is not sure.



user's uncertainty  $\sigma_{fix}^2$ 



$$\sigma_{fix}^2 = 1e - 4$$
:
very sure



$$\sigma_{fix}^2=0.2$$
: very uncertain

#### **Evaluation of the iPPCA model**

#### The workflow:

- Show the initial visualization of the (original) PPCA model
- The user selects and moves some anchor points
- Reconstruct the iPPCA model to create a new visualization.
  - $\circ$  The uncertainty of the feedbacks ( $\sigma_{fix}^2$ ) is small
  - Hyper parameters of the optimization process are chosen to be the best

#### How to evaluate:

- Show how to explain the new visualization
  - The level on which we can understand / explain the visualization is considered as a qualitative measure

## Quickdraw dataset



90 sample images from Quickdraw dataset

- Move 6 different points of different groups
- The global structure of the embedding is preserved

#### **Fashion dataset**



100 sample images from Fashion dataset

- Moves 6 points towards the coordinate axes
- The goal of this interaction is to re-define the axes in the visualization

#### **Fashion dataset**



#### How to explain the new axes?

- Horizontal axis represents shape
- Vertical axis represents color density

#### Automobile dataset





203 data points of the Automobile dataset

#### How to explain the new axes?

- Horizontal axis: cars' size
- Vertical axis: cars' power



# Advantage of probabilistic approach

Combination of solid theoretical models and modern powerful inference toolboxes

- Take any old-class model or modern generative model
- Plug into a probability framework <sup>[1]</sup> which support modern inference methods like Stochastic Variational Inference (SVI)

Can easily extend the generative process

$$\mathbf{x}_n \mid \mathbf{z}_n \sim \mathcal{N}(f(\mathbf{z}_n), \sigma^2 \mathbf{I})$$

- ullet in PPCA model,  $f(\mathbf{z}_n) = \mathbf{W}\mathbf{z}_n$
- $f(\mathbf{z}_n)$  can be any high-capacity representation function (a neural net)



Embedding of DIGITS dataset with the original PCA and the modified PPCA model

- The decoder  $f(\mathbf{z})$  of PPCA is a simple neural network with one hidden layer of 50 units and a sigmoid activation function.
- The inference is done by the Pyro's built-in SVI optimizer [1].

<sup>[1]</sup> Pyro, Deep Universal Probabilistic Programming, http://pyro.ai/

## Recap

Propose the interactive PPCA model allowing the user to control the visualization

- [Why] To communicate the analytical result (e.g., create an explainable visualization) and to explore the visualizations ("what-if" analysis)
- [How] The user's feedbacks can be efficiently integrated into a probabilistic model via prior distributions of latent variables.
- [Potential] The probabilistic model is flexible to extend and can be easily optimized by the black-box inference methods.
- [Future work] Focus on the user's feedback modeling problem without worrying about the complex optimization procedure.

# User-steering Interpretable Visualization with Probabilistic PCA

Viet Minh Vu and Benoît Frénay

NADI Institute - PReCISE Research Center

