# **Analysis of Algorithmic Efficiency**

CSC 3102 4.1 B.B. Karki, LSU

## **Analysis Framework**

- Two kinds of efficiency:
  - → Time efficiency: How fast an algorithm runs
  - Space efficiency: Deals with extra memory space an algorithm requires
  - We often deal with time efficiency.
- Measuring an input's size:
  - $\bullet$  Efficiency as a function of some parameter n indicating the algorithm's input size
    - ✓ Size of the list for the problems of sorting or searching
    - ✓ Degree of polynomial for the problem of evaluating a polynomial:

$$p(x) = a_n x^n + a_{n \cap 1} x^{n \cap 1} + \dots + a_0$$

- Choice of input-size parameter does matter in some situations
- → Operations of the algorithm can affect the choice
- Size of inputs for algorithms involving properties of numbers, is expressed by the number **b** of bits in the **n**'s binary representation:  $b = \lceil \log_2 n \rceil + 1$

CSC 3102 4.2 B.B. Karki, LSU

## **Time Efficiency: Units and Analyses**

- Standard unit of time measurement a second, a millisecond, and so on
  - → Measure the running time of a program implementing the algorithm.
- Basic operation: the operation that contributes most towards the running time of the algorithm
  - Count the number of repetitions of the basic operation
- Mathematical (or theoretical) analysis of an algorithm's efficiency
  - → Independent of specific inputs
  - Limited applicability.
- Empirical (or experimental) analysis of an algorithm's efficiency
  - ♦ Applicable to any algorithm
  - ♦ Results dependent on the particular sample of instances and the computer used.

CSC 3102 4.3 B.B. Karki, LSU

## **Mathematical Analysis**

■ Time efficiency is analyzed by determining the number of repetitions of the *basic operation* as a function of *input size*.



CSC 3102 4.4 B.B. Karki, LSU

#### **Examples: Input Size and Basic Operation**

| Problem                                         | Input size measure               | Basic operation                         |  |
|-------------------------------------------------|----------------------------------|-----------------------------------------|--|
| Search for key in list of <i>n</i> items        | Number of items in list <i>n</i> | Key comparison                          |  |
| Multiply two matrices of floating point numbers | Dimensions of matrices           | Floating point multiplication           |  |
| Compute $a^n$                                   | n                                | Floating point multiplication           |  |
| Graph problem                                   | #vertices and/or edges           | Visiting a vertex or traversing an edge |  |

CSC 3102 4.5 B.B. Karki, LSU

## Best-case, Average-case, Worst-case

For some algorithms efficiency depends on type of input:

Worst case: W(n) – maximum over inputs of size n

■ Best case: B(n) – minimum over inputs of size n

- Average case: A(n) "average" over inputs of size n
  - Number of times the basic operation will be executed on typical or random input
  - Based on some assumption about the probability distribution of all possible inputs of size n.
- Amortized efficiency
  - Amortize high cost of some worst-case occurrence (for some single operation) over the entire sequence (of n such operations).

CSC 3102 4.6 B.B. Karki, LSU

# **Example: Sequential Search**

- *Problem:* Given a list of n elements and a search key K, find an element equal to K, if any.
- Algorithm: Scan the list and compare its successive elements with **K** until either a matching element is found (successful search) or the list is exhausted (unsuccessful search)
- Worst case:  $C_{worst}(n) = n$
- Best case:  $C_{best}(n) = 1$
- Average case:  $C_{avg}(n) = \frac{p(n+1)}{2} + n(1 \square p)$ 
  - → Probability of a successful search = p✓ p = 1 for successful search and  $C_{best}(n) = (n+1)/2$ ✓ p = 0 for unsuccessful search and  $C_{best}(n) = n$

CSC 3102

4.7

B.B. Karki, LSU

# **Types of Formulas for Basic Operation Count**

■ Exact formula

e.g., 
$$C(n) = n(n-1)/2$$

■ Formula indicating order of growth with specific multiplicative constant

e.g., 
$$C(n) \approx 0.5n^2$$

■ Formula indicating order of growth with unknown multiplicative constant

e.g., 
$$C(n) \approx cn^2$$

CSC 3102

4.8

B.B. Karki, LSU

#### **Order of Growth**

- Most important: Order of growth of the algorithm's efficiency within a constant multiple as n  $\bigcirc$   $\infty$ 
  - ♦ See table 2.1
- **E**xamples:
  - → How much faster will algorithm run on computer that is twice as fast?
    ✓ Two times.
  - ♦ How much longer does it take to solve problem of double input size?
    - ✓ The function  $\log_2 n$  increases in value by 1:

$$\log_2 2n = \log_2 2 + \log_2 n = 1 + \log_2 n$$

- ✓ The linear function increases twofold: 2n
- ✓ The cubic function increases eightfold:  $(2n)^3 = 8n^3$
- ✓ The value for the  $2^n$  function is squared:  $2^{2n} = (2^n)^2$

CSC 3102 4.9 B.B. Karki, LSU

# **Table 2.1**

| $\overline{}$ | $\log_2 n$ | n        | $n\log_2 n$        | $n^2$     | $n^3$     | $2^n$               | n!                   |
|---------------|------------|----------|--------------------|-----------|-----------|---------------------|----------------------|
| 10            | 3.3        | $10^{1}$ | $3.3 \cdot 10^{1}$ | $10^{2}$  | $10^{3}$  | $10^{3}$            | $3.6 \cdot 10^6$     |
| $10^{2}$      | 6.6        | $10^{2}$ | $6.6 \cdot 10^2$   | $10^{4}$  | $10^{6}$  | $1.3 \cdot 10^{30}$ | $9.3 \cdot 10^{157}$ |
| $10^{3}$      | 10         | $10^{3}$ | $1.0 \cdot 10^4$   | $10^{6}$  | $10^{9}$  |                     |                      |
| $10^{4}$      | 13         | $10^{4}$ | $1.3 \cdot 10^5$   | $10^{8}$  | $10^{12}$ |                     |                      |
| $10^{5}$      | 17         | $10^{5}$ | $1.7 \cdot 10^6$   | $10^{10}$ | $10^{15}$ |                     |                      |
| $10^{6}$      | 20         | $10^{6}$ | $2.0 \cdot 10^7$   | $10^{12}$ | $10^{18}$ |                     |                      |

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

CSC 3102 4.10 B.B. Karki, LSU

#### **Three Asymptotic Notations**

- Principal indicator of efficiency = Order of growth of basic operation count
  - A way of comparing functions that ignores constant factors and small input sizes.
- O(g(n)): set of all functions f(n) with a smaller or same order of growth as g(n) (to within a constant multiple, as  $n \subseteq \infty$ ).
- $\Omega(g(n))$ : set of all functions f(n) with a larger or same order of growth as g(n) (to within a constant multiple, as  $n \square \infty$ ).
- [g(n)]: set of all functions f(n) with the same order of growth as g(n) (to within a constant multiple, as  $n[\infty)$ ).

CSC 3102 4.11 B.B. Karki, LSU

# **Big-Oh Notation**

- t(n)  $\bigcap$  O(g(n)): A function t(n) is said to be in O(g(n)), if it is bounded above by some constant multiple of g(n) for all large n
- There exist positive constant c and non-negative integer  $n_0$  such that  $t(n) \le c g(n)$  for every  $n \ge n_0$

Example: 100n+5 is  $O(n^2)$ 



Figure 2.1 Big-oh notation:  $t(n) \in O(g(n))$ 

CSC 3102 4.12 B.B. Karki, LSU

# **Big-Omega Notation**

- t(n)  $\square$   $\square$  (g(n)): A function t(n) is said to be in O(g(n)), if it is bounded below by some constant multiple of g(n) for all large n
- There exist positive constant c and non-negative integer  $n_0$  such that
  - $t(n) \ge c \ g(n)$  for every  $n \ge n_0$

Example:  $2n^3$ -65 is  $(n^2)$ 



Fig. 2.2 Big-omega notation:  $t(n) \in \Omega(g(n))$ 

CSC 3102 4.13 B.B. Karki, LSU

# **Big-Theta Notation**

- $t(n) \square \square (g(n))$ : A function t(n) is said to be in  $\square (g(n))$ , if it is bounded both above and below by some constant multiples of g(n) for all large n
- There exist positive constants  $c_1$  and  $c_2$  and non-negative integer  $n_0$  such that

 $c_2g(n) \ge t(n) \ge c_1g(n)$  for every  $n \ge n_0$ 

Example: (1/2)n(n-1) is  $\prod (n^2)$ 



Figure 2.3 Big-theta notation:  $t(n) \in \Theta(g(n))$ 

CSC 3102 4.14 B.B. Karki, LSU

# **Comparing Growth Rate: Using Limits**

- Compute the limit of the ratio of two functions under consideration
  - Using the limit-based approach is more convenient than the one based in the definition.

 $\lim_{\mathbf{n} \sqsubseteq \infty} T(\mathbf{n})/g(\mathbf{n}) = \begin{cases} 0 & \text{order of growth of } \mathbf{f}(\mathbf{n}) < \text{order of growth of } \mathbf{g}(\mathbf{n}) \\ C > 0 & \text{order of growth of } \mathbf{f}(\mathbf{n}) = \text{order of growth of } \mathbf{g}(\mathbf{n}) \end{cases}$   $\infty & \text{order of growth of } \mathbf{f}(\mathbf{n}) > \text{order of growth of } \mathbf{g}(\mathbf{n})$ 

Use calculus techniques such as L'Hôpital's Rule and Stirling's formula in computing the limits.

Examples: n(n+1)/2 vs.  $n^2$   $\log_2 n$  vs.  $\sqrt{n}$  n! vs.  $2^n$ 

CSC 3102 4.15 B.B. Karki, LSU

# **Basic Asymptotic Efficiency Classes**

1 constant Increasing order of the order of growth logarithmic  $\log n$ n linear  $n \log n$  $n \log n$  $n^2$ quadratic  $n^3$ cubic  $2^n$ exponential n!factorial

■ Caution: In defining asymptotic efficiency classes, the values of multiplicative constants are usually left unspecified.

CSC 3102 4.16 B.B. Karki, LSU

## **Empirical Analysis of Algorithms**

- A complementary approach to mathematical analysis is empirical analysis of an algorithm's efficiency.
- A general plan for the empirical analysis involves the following steps:
  - Understand the purpose of the analysis process (called experimentation)
  - ♦ Decide on the efficiency metric to be measured and the measurement unit
  - Decide on characteristics of the input sample
  - Generate a sample of inputs
  - Implement the algorithm for its execution (to run computer experiment/simulation)
  - Execute the program to generate outputs
  - Analyze the output data.

CSC 3102 4.17 B.B. Karki, LSU

# **Analyzing Output Data**

- Collect and analyze the empirical data (for basic counts or timings)
- Present the data in a tabular or graphical form
- Compute the ratios M(n)/g(n), where g(n) is a candidate to represent the efficiency of the algorithm in question
- Compute the ratios M(2n)/M(n) to see how the running time reacts to doubling of its input size
- **Examine the shape of the plot:** 
  - ✓ A concave shape for the logarithmic algorithm
  - ✓ A a straight line for a linear algorithm
  - ✓ Convex shapes for quadratic and cubic algorithms
  - ✓ An exponential algorithm requires a logarithmic scale for the vertical axis.

CSC 3102 4.18 B.B. Karki, LSU