Student Name: TODO Collaboration Statement: Total hours spent: TODO I discussed ideas with these individuals: None • . . . I consulted the following resources: • TODO • TODO • . . . By submitting this assignment, I affirm this is my own original work that abides by the course collaboration policy. Links: [HW4 instructions] [collab. policy] **Contents** 2 2 3 3 4 4 6

7

8

1a: Problem Statement

Find the optimal one-hot assignment vectors r^1 for all N=7 examples, given the initial cluster locations μ^0 . Report the value of the cost function $J(x, r^1, \mu^0)$.

1a: Solution

TODO FILL IN TABLE

1b: Problem Statement

Find the optimal cluster locations μ^1 for all K=3 clusters, using the optimal assignments r^1 you found in 1a. Report the value of the cost function $J(x, r^1, \mu^1)$.

1b: Solution

TODO FILL IN TABLE

μ^1	$\mid r^1$	$\mid J(x_{1:N}, r^1, \mu^1)$
[[-3.5	[1 0 0]	23.8125

1c: Problem Statement

Find the optimal one-hot assignment vectors r^2 for all N=7 examples, using the cluster locations μ^1 from 1b. Report the value of the cost function $J(x, r^2, \mu^1)$.

1c: Solution

TODO FILL IN TABLE

μ^1		$ r^2 $			$J(x_{1:N}, r^2, \mu^1)$
[[-3.5 [-0.75 [2.0	1.125] 3.0] 2.0]]	[[1	0 0 0 0	0] 0] 0]	18.703

1d: Problem Statement

Find the optimal cluster locations μ^2 for all K=3 clusters, using the optimal assignments r^2 from above. Report the value of the cost function $J(x, r^2, \mu^2)$.

1d: Solution

TODO FILL IN TABLE

μ^2	r^2	$J(x_{1:N}, r^2, \mu^2)$
[[-3.4 1.5]	[[1 0 0]	17.703
[0.74 0.199]	[1 0 0]	
[1.75 2.5]]	[1 0 0]	
	[1 0 0]	
	[1 0 0]	
	[0 0 1]	
	[0 0 1]]	

1e: Problem Statement

What interesting phenomenon do you see happening in this example regarding cluster 2? How could you set cluster 2's location in 1d to better fulfill the goals of K-means (find K clusters that reduce cost the most)?

1e: Solution

In the example, we see that the no data points are assigned to cluster 2. This is an inefficient use of clusters and might not optimally reduce clustering cost. A possible solution to this problem is randomly re-initializing the location of cluster 2. This could be done by randomly assigning data points from the dataset or using a method like K-means ++ because K-means chooses the initial centers in a way that they are far apart. This increases the chance that all the clusters are used.

2a: Problem Statement

Show (with math) that using the parameter settings defined above, the general formula for γ_{nk} will simplify to the following (inspired by PRML Eq. 9.42):

$$\gamma_{nk} = \frac{\exp(-\frac{1}{2\epsilon}(x_n - \mu_k)^T (x_n - \mu_k))}{\sum_{j=1}^K \exp(-\frac{1}{2\epsilon}(x_n - \mu_j)^T (x_n - \mu_j))}$$
(1)

2a: Solution

$$\gamma_{nk} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

Plugging in the given parameters for the GMM, the general formula for γ_{nk} is:

$$= \frac{\pi_k \mathcal{N}(x_n | \mu_k, \epsilon I)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \epsilon I)}$$
(2)

Let's investigate the form of the Gaussian distribution in the expression above:

$$\mathcal{N}(x_n|\mu_k, \epsilon I) = \frac{1}{\sqrt{(2\pi)^d |(\epsilon I)|}} \exp\left(-\frac{1}{2}(x-\mu)^T (\epsilon I)^{-1} (x-\mu)\right)$$
(3)

Realize that $|(\epsilon I)|$ and $(\epsilon I)^{-1}$ are equivalent to:

- $|(\epsilon I)| = \epsilon^d$ since the determinant of a diagonal matrix is the product of its diagonal entries.
- $(\epsilon I)^{-1} = \frac{1}{\epsilon}I$ because inverse of a diagonal matrix replaces the main diagonal elements of the matrix with their reciprocals.

Inserting these to the Gaussian distribution in expression 3 produces:

$$\mathcal{N}(x_n|\mu_k, \epsilon I) = \frac{1}{(2\pi\epsilon)^{D/2}} \exp\left(-\frac{1}{2}(x_n - \mu_k)^T \frac{1}{\epsilon} I(x_n - \mu_k)\right)$$
(4)

An matrix remains the same when multiplied by the identity matrix and therefore:

$$= \frac{1}{(2\pi\epsilon)^{D/2}} \exp\left(-\frac{1}{2\epsilon}(x_n - \mu_k)^T (x_n - \mu_k)\right)$$
 (5)

Plugging the Gaussian distribution in expression 4 in the expression 2:

$$\gamma_{nk} = \frac{\pi_k \frac{1}{(2\pi\epsilon)^{D/2}} \exp\left(-\frac{1}{2\epsilon} (x_n - \mu_k)^T (x_n - \mu_k)\right)}{\sum_{j=1}^K \pi_j \frac{1}{(2\pi\epsilon)^{D/2}} \exp\left(-\frac{1}{2\epsilon} (x_n - \mu_k)^T (x_n - \mu_k)\right))}$$
(6)

Simplifying by canceling out $\frac{1}{(2\pi\epsilon)^{D/2}}$ and π_k (since mixture weight are uniform, $\pi_K = \frac{1}{K}$ for all K) in the numerator and denominators, we are left with:

$$\gamma_{nk} = \frac{\exp\left(-\frac{1}{2\epsilon}(x_n - \mu_k)^T (x_n - \mu_k)\right)}{\sum_{j=1}^K \exp\left(-\frac{1}{2\epsilon}(x_n - \mu_k)^T (x_n - \mu_k)\right))}$$
(7)

2b: Problem Statement

What will happen to the vector γ_n as $\epsilon \to 0$? How is this related to K-means?

2b: Solution

When ϵ approaches 0, the exponential function is much more sensitive to changes, and even small differences in distances lead to large differences in exponential values. In γ_{nk} , each point is assigned to the nearest cluster with a value nearly 1, and γ_{nk} is close to 0 for all other clusters. Therefore, γ_{nk} behaves like a hard assignment in k-means.

3a: Problem Statement

Given: $m = \mathbb{E}_{p^{\min(x)}}[x]$. Prove that the covariance of vector x is:

$$\operatorname{Cov}_{p^{\min}(x)}[x] = \sum_{k=1}^{K} \pi_k (\Sigma_k + \mu_k \mu_k^T) - mm^T$$
(8)

3a: Solution

Based on hint 3 (ii), we know $Cov(x) = E[xx^T] - E[x]E[x]^T$. Therefore, we have:

$$Cov(pmix(x)) = E_{pmix}[xx^{T}] - E_{pmix}[x]E_{pmix}[x]^{T}$$
(9)

Next, we derive $E_{pmix}[xx^T]$ and $E_{pmix}[x]E_{pmix}[x]^T$ in expression 9.

For $E_{pmix}[xx^T]$ notice that:

- $E_{pmix}[xx^T] = \sum_{k=1}^{K} \pi_k E_{f_k}[xx^T]$ from hint 3 (i).
- For each k, $E_{f_k}[xx^T] = \sum_{k=1}^K + \mu_k \mu_k^T$ based on hint 3 (ii).

Therefore,

$$E_{pmix}[xx^{T}] = \sum_{k=1}^{K} \pi_{k} \left(\sum_{k=1}^{K} + \mu_{k} \mu_{k}^{T} \right)$$
 (10)

We know from question description that:

$$m = E_{pmix}[x] = E_{pmix}[x]^T \tag{11}$$

Also, since the transpose of an expectation of a random vector is equivalent to taking the expectation of the transpose of that vector, we have:

$$E[x^T] = (E[x]^T) = m^T$$
 (12)

Plugging in (10), (11), and (12) in expression (9), we have:

$$Cov(pmix(x)) = \sum_{k=1}^{K} \pi_k (\sum_{k=1}^{K} + \mu_k \mu_k^T) - mm^T$$
 (13)

4a (OPTIONAL): Problem Statement

Consider any two Categorical distributions q(z) and p(z) that assign positive probabilities over the same size-K sample space. Show that their KL divergence is non-negative. That is, show that

$$KL\left(\text{CatPMF}(z|\mathbf{r})||\text{CatPMF}(z|\pi)\right) \ge 0$$
 (14)

when $\mathbf{r} \in \Delta_+^K$ and $\pi \in \Delta_+^K$.

4a: Solution

TODO