

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

General Purpose & High Capacitance

Class 2, X7R

6.3 V TO 50 V 100 pF to 22 μF

RoHS compliant & Halogen Free

YAGEO Phícomp

SCOPE

This specification describes X7R series chip capacitors with leadfree terminations.

<u>APPLICATIONS</u>

- PCs, Hard disk, Game PCs
- DVDs, Video cameras
- Mobile phones
- · Data processing

FEATURES

- · Supplied in tape on reel
- · Nickel-barrier end termination
- RoHS compliant
- Halogen Free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

XXXX X X X7R X BB XXX (2) (3) (4)

(I) SIZE - INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $J = \pm 5\%$ (1)

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

(4) RATED VOLTAGE

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

NOTE

1. Tolerance ±5% is not available for full product range, please contact local sales force before ordering

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

DIMENSION

Table I For outlines see fig. 2

labi	C 1 101 00ti	iries see lig. Z					
TYPE	L _I (mm)	W (mm)	T (MM)	L_2 / L_3	3 (mm)	L ₄ (mm)	DIMENSION
	L ₁ (111111)	** (111111)	1 (1111)	min.	Max.	min.	CODE
0201	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1	0.2	0.2	BA
0402	1.0 ±0.05	0.5 ± 0.05	0.5 ±0.05	0.15	0.35	0.4	CA
	1.6 ±0.1	0.8 ± 0.1	0.8 ±0.1	0.2	0.6	0.4	DA
0603	1.6 ±0.15	0.8 ± 0.15	0.8 ± 0.15	0.2	0.6	0.4	DB
	1.6 ±0.2	0.8 ± 0.2	0.8 ± 0.2	0.2	0.6	0.4	DC
	2.0 ± 0.1	1.25 ±0.1	0.6 ±0.1	0.25	0.75	0.55	EO
0805	2.0 ± 0.1	1.25 ±0.1	0.85 ± 0.1	0.25	0.75	0.55	EA
	2.0 ±0.2	1.25 ±0.2	1.25 ±0.2	0.25	0.75	0.55	EB
	3.2 ± 0.15	1.6 ± 0.15	0.85 ± 0.1	0.25	0.75	1.4	FO
	3.2 ± 0.2	1.6 ±0.2	1.0 ±0.1	0.25	0.75	1.4	FI
1206	3.2 ± 0.2	1.6 ±0.2	1.15 ± 0.1	0.25	0.75	1.4	FA
	3.2 ± 0.3	1.6 ±0.2	1.6 ±0.2	0.25	0.8	1.4	FC
	3.2 ±0.3	1.6 ±0.3	1.6 ±0.3	0.3	0.9	1.4	FD
	3.2 ± 0.2	2.5 ± 0.2	0.85 ± 0.1	0.25	0.75	1.4	G0
	3.2 ± 0.4	2.5 ± 0.3	1.15 ± 0.1	0.25	0.75	1.4	GI
	3.2 ± 0.4	2.5 ± 0.3	1.25 ±0.2	0.25	0.75	1.4	GA
1210	3.2 ± 0.4	2.5 ± 0.3	1.6 ±0.2	0.25	0.75	1.4	G2
	3.2 ± 0.4	2.5 ± 0.3	1.9 ±0.2	0.25	0.75	1.4	GB
	3.2 ± 0.4	2.5 ± 0.3	2.5 ± 0.2	0.25	0.75	1.0	GC
	3.2 ±0.4	2.5 ±0.3	2.5 ±0.3	0.25	0.75	1.0	GD
	4.5 ± 0.2	3.2 ± 0.2	0.85 ± 0.1	0.25	0.75	2.2	JA
1812	4.5 ± 0.2	3.2 ± 0.2	1.15 ±0.1	0.25	0.75	2.2	JB
	4.5 ± 0.4	3.2 ± 0.4	1.6 ± 0.2	0.25	0.75	2.2	JC

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 2 Size	es from 0201	to 0402								
CAP.	0201					0402				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
100 pF	BA	ВА	BA	BA	ВА	CA	CA	CA	CA	CA
150 pF	BA	ВА	BA	BA	ВА	CA	CA	CA	CA	CA
220 pF	BA	ВА	ВА	ВА	ВА	CA	CA	CA	CA	CA
330 pF	ВА	ВА	ВА	ВА	ВА	CA	CA	CA	CA	CA
470 pF	ВА	ВА	ВА	ВА	ВА	CA	CA	CA	CA	CA
680 pF	ВА	ВА	ВА	ВА	ВА	CA	CA	CA	CA	CA
1.0 nF	ВА	ВА	ВА	ВА	ВА	CA	CA	CA	CA	CA
I.5 nF	ВА	ВА	ВА	ВА		CA	CA	CA	CA	CA
2.2 nF	ВА	ВА	ВА	ВА		CA	CA	CA	CA	CA
3.3 nF	ВА	ВА	ВА	ВА		CA	CA	CA	CA	CA
4.7 nF	BA	ВА	ВА	ВА		CA	CA	CA	CA	CA
6.8 nF	BA	ВА	ВА	ВА		CA	CA	CA	CA	CA
IO nF	BA	ВА	ВА	ВА		CA	CA	CA	CA	CA
15 nF						CA	CA	CA	CA	CA
22 nF						CA	CA	CA	CA	CA
33 nF						CA	CA	CA	CA	CA
47 nF						CA	CA	CA	CA	CA
68 nF						CA	CA	CA	CA	
100 nF	BA					CA	CA	CA	CA	CA
150 nF										
220 nF						CA	CA	CA		
330 nF										
470 nF						CA	CA			
680 nF										
Ι.0 μF						CA				
2.2 µF										
4.7 µF										
10 μF										
22 µF										

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering

Surface-Mount Ceramic Multilayer Capacitors General Purpose & High Cap. X7R 6.3 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR X7R

CAPACITANO Table 3 Sizes			101000	<u> </u>						
CAP.	0603					0805				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
100 pF	DA	DA	DA	DA	DA					
150 pF	DA	DA	DA	DA	DA					
220 pF	DA	DA	DA	DA	DA	EO	E0	E0	E0	E0
330 pF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
470 pF	DA	DA	DA	DA	DA	EO	E0	E0	E0	E0
680 pF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
1.0 nF	DA	DA	DA	DA	DA	EO	E0	E0	E0	E0
1.5 nF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
2.2 nF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
3.3 nF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
4.7 nF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
6.8 nF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
IO nF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
15 nF	DA	DA	DA	DA	DA	EO	EO	EO	EO	EO
22 nF	DA	DA	DA	DA	DA	EO	E0	EO	EO	E0
33 nF	DA	DA	DA	DA	DA	EA	EA	EA	EA	EA
47 nF	DA	DA	DA	DA	DA	EA	EA	EA	EA	EA
68 nF	DA	DA	DA	DA	DA	EA	EA	EA	EA	EA
100 nF	DA	DA	DA	DA	DA	EA	EA	EA	EA	EA
150 nF	DA	DA	DA	DA	DA	EA	EA	EA	EA	EA
220 nF	DA	DA	DA	DA	DA	EA	EA	EA	EA	EB
330 nF	DA	DA	DA	DA		EB	EB	EB	EB	EB
470 nF	DA	DA	DA	DA	DA	EB	EB	EB	EB	EB
680 nF	DA	DA	DA	DA		EB	EB	EB	EB	EB
Ι.0 μF	DA	DA	DA	DA	DB	EB	EB	EB	EB	EB
2.2 μF	DA	DA	DC			EB	EB	EB	EB	EB
4.7 µF	DC					EB	EB	EB	EB	
ΙΟ μF						EB	EB	EB		
22 µF										

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering

CAPACITANCE RANGE & THICKNESS FOR X7R

Table 4 Size 1206

CAP.	1206

CAP.	1200				
	6.3 V	10 V	16 V	25 V	50 V
100 pF					
150 pF					
220 pF	FO	FO	F0	FO	FO
330 pF	FO	FO	FO	FO	F0
470 pF	FO	FO	F0	FO	FO
680 pF	FO	FO	F0	FO	FO
I.O nF	FO	FO	F0	FO	FO
I.5 nF	FO	FO	FO	FO	FO
2.2 nF	FO	FO	F0	FO	FO
3.3 nF	FO	FO	F0	FO	F0
4.7 nF	FO	FO	F0	FO	FO
6.8 nF	FO	FO	F0	FO	F0
IO nF	FO	FO	F0	FO	F0
15 nF	FO	FO	F0	FO	FO
22 nF	FO	FO	F0	FO	F0
33 nF	FO	FO	FO	FO	FO
47 nF	FO	FO	F0	FO	F0
68 nF	FO	FO	FO	FO	FO
100 nF	FO	FO	F0	FO	F0
150 nF	FO	FO	FO	FO	FA
220 nF	FO	FO	F0	FO	FA
330 nF	FO	FO	F0	FO	F0
470 nF	FO	FO	F0	FO	FI
680 nF	FA	FA	FA	FA	FC
Ι.Ο μF	FA	FA	FA	FA	FC
2.2 μF	FA	FA	FA	FA	FC
4.7 µF	FC	FC	FC	FC	FC
IO μF	FC	FC	FC	FC	
22 μF	FC	FC	FD		
47 µF					

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering
- 4. Please contact local sales force for special ordering code before ordering

CAPACITANCE RANGE & THICKNESS FOR X7R

lable 5	Sizes from	1210 to 1812	

CAP.	1210					1812
	6.3 V	10 V	16 V	25 V	50 V	50 V
100 pF						
150 pF						
220 pF						
330 pF						
470 pF						
680 pF						
I.O nF						
1.5 nF						
2.2 nF	G0	G0	G0	G0	G0	
3.3 nF	G0	G0	G0	G0	G0	
4.7 nF	G0	G0	G0	G0	G0	JA
6.8 nF	G0	G0	G0	G0	G0	JA
IO nF	G0	G0	G0	G0	G0	JA
15 nF	G0	G0	G0	G0	G0	JA
22 nF	G0	G0	G0	G0	G0	JA
33 nF	G0	G0	G0	G0	G0	JA
47 nF	G0	G0	G0	G0	G0	JA
68 nF	G0	G0	G0	G0	G0	JA
100 nF	G0	G0	G0	G0	G0	JB
150 nF	G0	G0	G0	G0	GI	JB
220 nF	G0	G0	G0	G0	GI	JB
330 nF	G0	G0	G0	G0	GI	JB
470 nF	GI	GI	GI	GI	GA	JB
680 nF	GI	GI	GI	GI	GA	JC
Ι.0 μF	GA	GA	GA	GA	GA	JC
2.2 μF	GB	GB	GB	GB	GB	
4.7 µF	GB	GB	GB	GB	GD	
ΙΟ μF	GB	GB	GB	GB		
22 µF	GC	GC	GC	GC		
47 μF	GC	GC				

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before ordering
- 4. Please contact local sales force for special ordering code before ordering

THICKNESS CLASSES AND PACKING QUANTITY

_	_			
	la	h	le.	6

SIZE CODE	THICKNESS CLASSIFICATION	TAPE WIDTH – QUANTITY PER REEL	Ø180 MM Paper	/ 7 INCH Blister	Ø330 MM Paper	/ 13 INCH Blister	QUANTITY PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1200	1.25 ±0.2 mm	8 mm		3,000		10,000	
_	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
1210	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm	I2 mm		3,000			
	1.25 ±0.2 mm	I2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
	1.5 ±0.1 mm	I2 mm		2,000			
	1.6 ±0.2 mm	I2 mm		2,000		8,000	
	2.0 ±0.2 mm	I2 mm		2,000			
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
	1.15 ±0.1 mm	I2 mm		1,000			
	1.25 ±0.2 mm	I2 mm		1,000			
1812	1.5 ±0.1 mm	I2 mm		1,000			
	1.6 ±0.2 mm	I2 mm		1,000			
	2.0 ±0.2 mm	I2 mm		1,000			
	2.5 ±0.2 mm	I2 mm		500			

ELECTRICAL CHARACTERISTICS

X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Table 7

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

DESCR	IPTION							VALUE
Capacit	tance range						100) pF to 47 μF
Capacit	tance tolera	ince					±5%,	±10%, ±20%
Dissipa	tion factor	(D.F.)						
X7R		0201	0402	0603	0805	1206	1210	
	≤10V	100pF to 10nF	100pF to 100nF	I00pF to IμF	150pF to 2.2μF	220pF to 2.2µF	2.2nF to 2.2µF	≤ 5%
		I00nF	220nF to 470nF	2.2μF to 4.7μF	4.7μF to 10μF	$4.7\mu F$ to $22\mu F$	$4.7\mu F$ to $47\mu F$	≤10%
			IμF					≤12.5%
	16V	100pF to 1.2nF	100pF to 22nF	100pF to 220nF	150pF to 470nF	220pF to 1µF	2.2nF to 1µF	≤ 3.5%
		1.5nF to 10nF	27nF to 100nF	470nF to 1.0μF	680 nF to 2.2μF	2.2µF	2.2μF to 10μF	≤ 5%
			220nF	2.2µF	4.7μF to 10μF	4.7μF to 22 μ F	22µF	≤10%
	25V	100pF to 470pF	100pF to 10nF	100pF to 39nF	150pF to 180nF	220pF to 680nF	2.2nF to 1µF	≤ 2.5%
			12 nF to 47nF	47nF to 220nF	220nF to 470nF	IμF		≤ 3.5%
		560pF to 10nF	56nF to 100nF		680nFto IμF	2.2µF	2.2µF	≤ 5%
				270nF to 1µF	2.2μF to 4.7μF	$4.7\mu F$ to $22\mu F$	$4.7\mu F$ to $22\mu F$	≤10%
	50V	100pF to 1nF	100pF to 10nF	100pF to 39nF	150pF to 180nF	220pF to 470nF	2.2nF to 1µF	≤2.5%
			12 nF to 47nF	47nF to 220nF	220nF to 470nF	680nF to 1µF		≤ 3.5%

Insulation resistance after 1 minute at U _r (DC)	$R_{ins} \ge 10 \text{ G}\Omega$ or $R_{ins} \times C_r \ge 500(100)^*$ seconds whichever is less
Maximum capacitance change as a function of temperature	

470nF to IµF

I00nF

±15% Operating temperature range: -55 °C to +125 °C

680nF

I μF to 2.2μF to 4.7μF

NOTE

(temperature characteristic/coefficient):

≤ 5%

≤10%

2.2μF to 10μF

^{*} For individual I.R specification, please contact local sales.

SOLDERING RECOMMENDATION

 Tahl	ما	Ω	
		•	

SIZE **SOLDERING**

METHOD	0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	> 100 nF	> I µF	> 2.2 µF	> 4.7 µF	Reflow only
Reflow/Wave		≤ 100 nF	≤lµF	≤ 2.2 µF	≤ 4.7 µF	

TESTS AND REQUIREMENTS

Table 9 Test procedures and requirements

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual Inspection 4.4 Any applicable method using × 10 magnification and Dimension Check		Any applicable method using × 10 magnification	In accordance with specification		
Capacitance (1)		4.5.1	Class 2: At 20 °C, 24 hrs after annealing $f = 1 \text{ KHz for } C \leq 10 \mu\text{F, rated voltage} > 6.3 \text{ V, measuring at voltage } 1 \text{ V}_{ms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz, for } C \leq 10 \mu\text{F, rated voltage} \leq 6.3 \text{ V, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 120 \text{ Hz for } C > 10 \mu\text{F, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$	Within specified tolerance	
Dissipation Factor (D.F.) (1)		4.5.2	Class 2: At 20 °C, 24 hrs after annealing $f=1$ KHz for $C \le 10$ μF , rated voltage >6.3 V, measuring at voltage 1 V _{ms} at 20 °C $f=1$ KHz, for $C \le 10$ μF , rated voltage ≤ 6.3 V, measuring at voltage 0.5 V _{ms} at 20 °C $f=120$ Hz for $f=120$ Hz	In accordance with specification	
Insulation Resistance	4.5.3 At U _r (DC) for I minute		At U_r (DC) for I minute	In accordance with specification	

NOTE:

1. For individual product specification, please contact local sales.

REQUIREMENTS

 Δ C/C: ± 30 ppm

X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%

Class I:

Class2:

Class2:

<General purpose series>

<High Capacitance series>

X7R/X5R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%

TEST TEST METHOD PROCEDURE

Temperature Characteristic

IEC 60384-21/22

Capacitance shall be measured by the steps shown in the following table.

The capacitance change should be measured after 5 min at each specified temperature stage.

Step	Temperature(°C)	
a	25±2	
Ь	Lower temperature±3℃	
С	25±2	
d	Upper Temperature±2℃	
е	25±2	

(I) Class I

Temperature Coefficient shall be calculated from the formula as below

Temp, Coefficient =
$$\frac{C2 - C1}{C1 \times \Delta T} \times 10^6 \text{ [ppm/°C]}$$

C1: Capacitance at step c

C2: Capacitance at 125°C

 ΔT : 100°C(=125°C-25°C)

(2) Class II

Capacitance Change shall be calculated from the formula

$$\Delta C = \frac{C2 - C1}{C1} \times 100\%$$

C1: Capacitance at step c

C2: Capacitance at step b or d

Adhesion

4.7 A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate

Force

size ≥ 0603: 5N size = 0402: 2.5N

size = 0201: 1N

TEST METHOD **PROCEDURE TEST**

REQUIREMENTS

Bond Strength

Mounting in accordance with IEC 60384-22 paragraph 4.3

No visible damage

Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm

ΔC/C Class2:

X7R: ±10%

Test Substrate:

	Dimension(mm)				
Туре	a	Ф	С		
0201	0.3	0.9	0.3		
0402	0.4	1.5	0.5		
0603	1.0	3.0	1.2		
0805	1.2	4.0	1.65		
1206	2.2	5.0	1.65		
1210	2.2	5.0	2.0		
1808	3.5	7.0	3.7		
	-	-	-		

unit:mm

Resistance to Soldering Heat

4.9 Precondition: I50 +0/-10 °C for I hour, then keep for 24 ± 1 hours at room temperature

Preheating: for size ≤ 1206: 120 °C to 150 °C for 1

minute

Preheating: for size >1206: 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for I minute Solder bath temperature: 260 ±5 °C

Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours

Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned

 Δ C/C

Class2:

X7R: ±10%

D.F. within initial specified value R_{ins} within initial specified value

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS	
Solderability	IEC 60384- 21/22	4.10	Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination	
			Test conditions for lead containing solder alloy		
			Temperature: 235 ±5 °C		
			Dipping time: 2 ± 0.2 seconds Depth of immersion: 10 mm		
			Alloy Composition: 60/40 Sn/Pb		
			Number of immersions: I		
			Test conditions for lead-free containing solder alloy		
			Temperature: 245 ±5 °C		
			Dipping time: 3 ±0.3 seconds		
			Depth of immersion: 10 mm Alloy Composition: SAC305		
			Number of immersions: I		
Rapid Change of		4.11	Preconditioning;	No visual damage	
Temperature			150 +0/-10 °C for I hour, then keep for		
			24 ±1 hours at room temperature	ΔC/C	
			5 cycles with following detail:	Class2:	
			30 minutes at lower category temperature	X7R: ±15%	
			30 minutes at upper category temperature		
			Recovery time 24 ±2 hours	D.F. meet initial specified value	

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Damp Heat with U _r Load	IEC 60384- 21/22	4.13	1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for	No visual damage after recovery
			24 ±1 hour at room temp	<general purpose="" series=""></general>
			2. Initial measure:	ΔC/C
			Spec: refer to initial spec C, D, IR	Class2:
			3. Damp heat test:	X7R: ±15%
			500 \pm 12 hours at 40 \pm 2 °C;	D.F.
			90 to 95% R.H. I.0 U _r applied	Class2:
			4. Recovery:	X7R: ≤ 16V: ≤ 7%
			Class 2: 24 ±2 hours	≥ 25V: ≤ 5%
			5. Final measure: C, D, IR	R _{ins}
			Do Isi	Class2:
			P.S. If the capacitance value is less than the	\times 7R: \geq 500 M Ω or R _{ins} \times C _r \geq 25s
			minimum value permitted, then after the other measurements have been made the capacitor	whichever is less
			shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.	<high and="" capacitance="" cc0402×rx7r9bb104="" iuf)="" series(≥=""></high>
				ΔC/C
				Class2:
				X7R: ±20%
				D.F.
				Class2:
				X7R: 2 x initial value max
				R _{ins}
				Class2:
				X7R: $500 \text{ M}\Omega$ or $R_{\text{ins}} \times C_r \ge 5s$
				whichever is less

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS	
Endurance	IEC 60384- 21/22	4.14	1. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for	No visual damage	
			24 ±1 hour at room temp	<general purpose="" series=""></general>	
			2. Initial measure:	ΔC/C	
			Spec: refer to initial spec C, D, IR	Class2:	
			3. Endurance test:	X7R: ±15%	
			Temperature: X7R: 125 °C	D.F.	
			Specified stress voltage applied for 1,000 hours:	Class2:	
			Applied $2.0 \times U_r$ for general products*	X7R: ≤ 16V: ≤ 7%	
			Applied 1.5 \times U _r for high cap. Products*	≥ 25V: ≤ 5%	
			4. Recovery time: 24 ±2 hours	R _{ins}	
			5. Final measure: C, D, IR	Class2:	
				$X7R: \ge 1,000 \text{ M}\Omega \text{ or } R_{\text{ins}} \times C_r \ge 50s$	
			P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements	whichever is less	
			have been made the capacitor shall be preconditioned	<high capacitance="" series=""></high>	
			according to "IEC 60384 4.1" and then the	ΔC/C	
			requirement shall be met.	Class 2:	
				X7R: ±20%	
				D.F.	
				Class 2:	
				X7R: 2 × initial value max	
			* General product: 0201 ≤ 10nF, 0402 ≤ 100nF, 0603	R _{ins}	
			≤ 470nF, 0805, 1206, 1210 ≤ 1uF;	Class 2:	
			* High cap product: 0201 > 10nF, 0402 > 100nF,	X7R: I,000 M Ω or R _{ins} × C _r \geq 10s	
			0603 > 470nF, 0805, 1206, 1210 > 1uF;	whichever is less	
Voltage Proof	IEC 60384-	4.6	Consideration of the constraint of the constrain	Na hasalidaya ay fashayay	
Tollage 11001	I_C 00304-	0.50	Specified stress voltage applied for 1~5 seconds	No breakdown or flashover	
			Ur ≦ 100 V: series applied 2.5 Ur		
			Charge/Discharge current is less than 50 mA		

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 16	Dec 7th, 2016	=	- Dimension updated
Version 15	Oct. 3rd, 2016	-	- Dimension updated, Soldering recommendation updated
Version 14	May 31st, 2016	-	- Dimension updated
Version 13	Dec. 30, 2015	-	- Dimension on 0603 and 1206 case size updated
Version 12	May 26, 2015	-	- 1210, 25V dissipation factor updated
Version 11	Jan. 06, 2015	-	- 0402, I00nF, 50V Dissipation factor (D.F.) updated.
Version 10	Jul. 08, 2014	-	- Dimension updated
Version 9	Aug. 19, 2013	-	- Dimension updated
Version 8	Oct 13, 2011	-	- Dimension updated
			- 50V Dissipation factor(D.F) updated
Version 7	Jan 13, 2011	-	- Dimension updated
Version 6	Oct 13, 2010	-	- Rated voltage of 0201 extend to 50 V
			- Capacitance range of 0201 X7R 6.3V to 16V extend to 100 pF
			- Capacitance range of 0805 X7R 10V extend to 10 μF
			- Capacitance range of 0805 X7R 50V extend to 1 μF
			- Capacitance range of I2I0 X7R I0V extend to 22 µF
			- Figures of impedance ESR updated
Version 5	Jul 27, 2010	-	- Dimension on 0603 and 1206 case size updated
			- 16V to 25V Dissipation factor(D.F) updated
Version 4	Apr 21, 2010	-	- The statement of "Halogen Free" on the cover added
			- Dimension updated
Version 3	Oct 26, 2009	-	- Capacitance range of 0402 X7R 25 V extend to 100 nF
			- 16V Dissipation factor updated
Version 2	May 11, 2009	-	- Product range updated
Version I	Apr 24, 2009	-	- Ordering code updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose and high capacitance X7R series with RoHS compliant
			- Replace the "6.3V to 50V" part of pdf files: X7R_10V_9, X7R_16V-to-100V_9, X7R_16-to-500V_9, UP-X5R_X7R_HighCaps_6.3-to-25V_11, UY-X5R_X7R_HighCaps_6.3-to-25V_11
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NP0X5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated