

# HIGH-PERFORMANCE GPU VIDEO ENCODING

ABHIJIT PATAIT SR. MANAGER, NVIDIA



#### AGENDA

- GPU Video Encoding Overview
- NVIDIA Video Encoding Capabilities
  - Kepler, Maxwell Gen 1, Maxwell Gen 2
- Software API
- Performance & Quality
- Roadmap



#### WHY GPU VIDEO ENCODING?



#### **BENEFITS**

- Low power
  - Fixed function hardware, free CPU
  - Reduced memory transfers
- Low latency
- High performance
- Higher density
- Scalability
  - Automatic benefit from improvements in hardware
- Ease of programming
  - Linux, Windows, C/C++, Application portability



#### NVIDIA VIDEO ENCODER CAPABILITIES



#### MAIN FEATURES

| Feature                         | Benefits                                          |
|---------------------------------|---------------------------------------------------|
| H.264 base, main, high profiles | Wide range of use-cases                           |
| H.265/HEVC main profile         | Lower bitrates at same quality                    |
| High performance (4K @ 60 fps)  | "Blazing-speed" encoding                          |
| YUV 4:2:0 and 4:4:4 support     | High quality encoding without chroma subsampling  |
| QP maps                         | Customizable quality, region of interest encoding |
| 4K encoding in hardware         | High resolution encode                            |
| API - NV Encode SDK & GRID SDK  | Flexible, Win/Linux, DirectX/CUDA                 |
| Independent of CUDA             | Use CUDA and encode simultaneously                |



#### FEATURE COMPARISON

| Kepler                                                 | Maxwell Gen 1 (GM10x)                         | Maxwell Gen 2 (GM20x)                         |
|--------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| H.264 only                                             | H.264 only                                    | H.264 and HEVC/H.265                          |
| Planar 4:4:4 & proprietary 4:4:4; no lossless encoding | Standard 4:4:4 and H.264 lossless encoding    | Standard 4:4:4 and H.264 lossless encoding    |
| ~240 fps 2-pass encoding @ 720p                        | ~500 fps 2-pass encoding @ 720p               | ~900 fps 2-pass encoding @ 720p               |
| GRID K340/K520, K1/K2,<br>Quadro, Tesla K10/K20        | Maxwell-based GRID & Quadro products          | TBA                                           |
| GeForce – 2 full-speed encode sessions/system          | GeForce – 2 full-speed encode sessions/system | GeForce – 2 full-speed encode sessions/system |
| NV Encode SDK 1.0-5.0 (Now)                            | NV Encode SDK 4.0+ (Now)                      | NV Encode SDK 5.0+ (Now)                      |
| GRID SDK 1.x, 2.2, 2.3 (Now)                           | GRID SDK 3.0+ (Now)                           | In development                                |



#### WHAT'S NEW - HARDWARE

#### ▶ HEVC

- 8-bit encoding
- Main8 profile
- Optimized for low-latency applications (I and P frames)
- > 300 fps at very high quality 720p

#### ▶ H.264

- Improved performance (~80% higher compared to 1st Gen Maxwell)
- 4:4:4 and lossless



#### WHAT'S NEW - SOFTWARE

- ► NVENC SDK 5.0
- ▶ NVIDIA GPU driver 347.18 and above
- ▶ HEVC
  - Unified API for H.264 and HEVC
  - Linux & Windows
  - Intra refresh, ref-pic invalidation, etc. for H.264 and HEVC
- Support for all NVENC hardware up to GM20x
- Adaptive quantization
- Quality improvements
- All-new sample applications, including a performance application



#### **SOFTWARE API**



#### **USING NVENC**

Direct Encode

# NVENC SDK

- No capture
- Transcoding
- Archiving
- Video editing
- CUDA pre-process + encoding
- Granular encoder settings
- D3D, CUDA interop

Capture + Encode

# GRID SDK

- Capture + encode
- Optimized for low-latency apps
- Capture + CUDA preprocess + encoding
- Encoder settings optimized for streaming
- D3D, CUDA interop



## DIRECT ENCODE (NVENC SDK)





#### CAPTURE & ENCODE (GRID SDK)





#### NVENC SDK (1/2)

- Available on NVIDIA developer zone
  - https://developer.nvidia.com/nvidia-video-codec-sdk
  - Current release: 5.0
- Interface header, documentation, sample application
- .dll/.so included in the driver
- Unified API for Windows and Linux
- ▶ Works on x86/x64
- API's, presets, rate control modes for
  - Low-latency streaming
  - Transcoding
  - Video conferencing



#### NVENC SDK (2/2)

- Unified API for H.264 and HEVC
- Flexibility
  - Dynamic resolution/bitrate change
  - Low-level encoder settings
  - Windows, Linux, DirectX, CUDA, OGL (via CUDA)
  - Works on GeForce (2 sessions/system)
- Error concealment
  - Reference picture invalidation
  - Intra-refresh
- Greater flexibility for quality/performance trade-off
- Lossless encoding only in NVENC SDK



#### GRID SDK ENCODE

- ▶ NDA only older release available on NV developer zone
  - https://developer.nvidia.com/grid-app-game-streaming
- Current release: 3.1 (Now NDA), 2.3 (Public)
- Interface header, documentation, sample apps
- .dll/.so included in the driver
- Windows and Linux
- ▶ Works on x86/x64
- Presets and API's for
  - Remote graphics (Cloud gaming, remote desktop, capture & stream)
  - Optimized for low latency





#### H.264 QUALITY - 1-PASS ENCODING







#### H.264 QUALITY - 2-PASS ENCODING







#### **COMPARISON: 1-PASS VS 2-PASS**

H.264 quality comparison: 1-pass vs 2-pass





#### **BITRATE SAVINGS**





#### Bitrate savings - HQ preset



33%

25%

189

Bitrate sayings

33%

26%

**19**%



#### H.264 VS HEVC





### H.264 VS HEVC







#### H.264 PERFORMANCE - GM20X

H.264 Performance (1080p)





#### H.264/HEVC PERF COMPARISON

H.264/HEVC Performance: 2-pass





#### **PERFORMANCE - TREND**







#### **ROADMAP**

- Core GPU chip IP
- ► Motion estimation only mode 2H2015
- ► SAO, 10/12-bit, HEVC B-frames
- ► Lossless/4:4:4
- Improved quality for screen content encoding
- ME performance and quality enhancements
- ▶ Today: 4K@60fps
- Next: 8K@??



#### THANK YOU

APATAIT@NVIDIA.COM

JOIN THE CONVERSATION

#GTC15 **У f** 





