

Introduction to fuzzy logic

Notes of class

Iván Andrés Trujillo Abella

FACULTAD DE INGENIERÍA

Fuzzy logic 1

linguistic variable of the following elements:

- \bullet X variable name
- T(x) set of terms
- ϖ universe of discourse
- G syntax rules
- M semantic rules

degree of belonging $x \in A = \mu_A(x) = 1$, otherwise $x \notin A = \mu_A(x) = 0$. now we can said that $\mu(x) \in [0,1]$

the degree of belonging of x to a any set is a number in the closed interval [0,1]. we can said that ϖ discrete (countable), a set could be written as $\tilde{A} = \{\frac{\mu_{\tilde{A}}(x_1)}{x_1} + \frac{\mu_{\tilde{A}}(x_2)}{x_2} + \dots + \frac{\mu_{\tilde{A}}(x_n)}{x_n}\}$ or in a compact way in $\tilde{A} = \{\sum_{i=1}^{n} \frac{\mu_{\tilde{A}}(x_{i})}{x_{i}}\}$. in continuous ϖ (uncountable) we can write $\tilde{A} = \{\int \frac{\mu_{\tilde{A}}(x)}{x}\}$. Until now the major point is the breaking the law of "tercero excluido".

1.1 Support

The support of a fuzzy set S(), those elements that have a degree of belonging greater than zero $\mu_{\tilde{A}}(x) > 0$.

$$S(A) = \{x | \mu_A(x) > 0\} \tag{1}$$

remember that a set is considered regarding a ϖ .

1.1.1 Singleton

The support is defined only for one value of the all domain for example x_0 and $\mu_A(x_0) = 1$.

1.2 α cut-off

suppose that A is fuzzy set of ϖ then by $\alpha \in [0,1]$ A_{α} is:

$$A_{\alpha} = \begin{cases} x \in \varpi | \mu_{A}(x) \ge \alpha, & \text{if } \alpha \ge 0 \\ S(A), & \text{if } \alpha = 0 \end{cases}$$
 (2)

2 Cartesian product

by two sets A and B the Cartesian product is defined as all possible pairs formed with the sets.

$$AXB: \{(a,b)|a \in A \text{ and } b \in B\}$$
(3)

for instance $A = \{a_1, a_2\}$ and $B = \{b_1, b_2, b_3\}$ therefore $AXB = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_2, b_2), (a_2, b_3)\}$. when you think in two intervals for instance A = [2, 4] and B = [3, 5] we can interpreted as region in \mathbb{R}^2 .

3 Orthogonal extension

we have two universes of discourses ϖ_1 and ϖ_2 we can think in the cartesian product of them $\varpi_1 X \varpi_2$.

now the extension is:

we can establish that $\mu_{\vec{\tilde{A}}}(x,y) = \mu_{\tilde{A}}(x)$

4 Orthogonal projection

This problem is inverse to the problem defined previously.

$$\begin{array}{cccccc} \varpi_1/\varpi_2 & a_1 & a_2 & a_3 \\ b_1 & 0.8 & 0.9 & 1 \\ b_2 & 0 & 0 & 0.8 \\ b_3 & 0.4 & 0.5 & 0.7 \end{array}$$

this is only take the major value for each element in the different combinations, for instance for $b_1 = 1$ and for $a_1 = 0.8$. We can establish that $\mu_{\overline{A}}(x) = \max \mu_A(x, y)$.

4.1 basic operations

the Union operation with membership functions. in summary we can uses $\mu_{A\cup B}(x) = \max(\mu_A(x), \mu_B(x))$. make the table for intersection and complement.

4.2 T-norm and S-norm

remember the unitary cubic

4.3 fuzzy relations

We have $A \subset \varpi_1$ and $B \subset \varpi_2$ a R is a subset of pairs, the fuzzy relation $\tilde{R} = \frac{\mu_{a_1b_1}}{(a_1b_1)} + ... + ...$

in mathematical terms we can said that a fuzzy relation between two fuzzy sets is a subset of the Cartesian product among the universe of discourses. $\tilde{R} = \tilde{A}X\tilde{B}$ is a subset of the cartesian product of the universe of discourses, and the degree of belonging is defined as $\mu_{\tilde{R}}(x,y) = \min(\mu_{\tilde{A}}(x),\mu_{\tilde{B}}(y))$. Remember that we can uses any t-norm.

4.3.1 Compound relations

Suppose $\tilde{A}\tilde{R}_1\tilde{B}$ and $\tilde{B}\tilde{R}_2\tilde{C}$ how we can establish a relation between \tilde{A} and \tilde{C} .

$$\tilde{R_1} = \begin{bmatrix} 0.3 & 0.9 & 0.1 \\ 0.1 & 0 & 0.4 \\ 0.8 & 0.6 & 0.7 \end{bmatrix}, \tilde{R_2} = \begin{bmatrix} 0.9 & 0.5 & 0.1 \\ 0.3 & 0.7 & 0.3 \\ 0.4 & 0.9 & 0.5 \end{bmatrix}$$

Think in the composition of two functions $f \circ g(x) = f(g(x))$ therefore $\tilde{R}_1 \circ \tilde{R}_2$ is defined in the a similar way with a multiplication matrix take the i-th row of \tilde{R}_1 and compare with the i-th column of \tilde{R}_2 instead of apply the multiplication uses the min operator for instance the 1 row of \tilde{R}_1 is $[\tilde{r}_{111}, \tilde{r}_{112}, \tilde{r}_{113}...\tilde{r}_{11n}]$ and the 1 column of \tilde{R}_2 is $[\tilde{r}_{211}, \tilde{r}_{221}, \tilde{r}_{231}...\tilde{r}_{2m1}]^T$. the first element of the composition matrix will be $\max[\min(\tilde{r}_{111}, \tilde{r}_{211}), \min(\tilde{r}_{112}, \tilde{r}_{221})...\min(\tilde{r}_{11n}, \tilde{r}_{2m1})]$. applied the steps over all rows and columns respectively.

$$\tilde{R_1} \circ \tilde{R_2} = \begin{bmatrix} 0.4 & 0.7 & 0.3 \\ 0.4 & 0.4 & 0.5 \\ 0.8 & 0.7 & 0.5 \end{bmatrix}$$

- 5 Linguistic variables
- 6 fuzzy inference
- 7 Fuzzy C-means