

Introduction to Machine Learning & its types

$_{\mathsf{VOIS}}$

Contents

- Machine Learning
- Relation between Machine learning, Deep Learning and Al
- Types of Machine Learning
- Concept of Regression and Types
- Linear Regression
- Evaluation methods
- Tools
- Hands-on

_ \ 0 | S

Machine Learning

Machine learning (ML) is the study of computer algorithms that improve automatically through experience. It is seen as a subset of artificial intelligence. Machine learning algorithms build a model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so.[2]

Source - [1]

Relation between ML, DL & Al

Types of Machine Learning

Supervised

Supervised learning is the machine learning task of learning a function that maps an input to an output based on example inputoutput pairs.

Unsupervised

Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labelled responses.

Reinforcement

Reinforcement Learning is a type of machine learning technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences.

Supervised Learning(Task Driven)

Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs.

Unsupervised Learning(Data Driven)

Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labelled responses.

Reinforcement Learning(Learn From error)

Reinforcement Learning is a type of machine learning technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences.

Regression Methods: Linear Regression & Evaluation

Concept of Regression

Statistical process of estimating relation between independent and dependant variable[7]

How to identify problem is a regression problem?

Dependant variable (outcome) should be continuous value (numeric) not a categorical value. e.g.

Categorical data – months of year Continuous data – Temperature measured for a city

Types of Regression[8]

- Linear Regression
- Logistic Regression
- Ridge Regression
- Lasso Regression
- Polynomial Regression
- Bayesian Linear Regression

_ \ \ 0 | S

Linear Regression

- The predictor/features/ independent variables are in linear relation with dependent variable (outcome).
- If only one independent variable is present then this is called as simple linear regression.

$$Y = \alpha_0 + \alpha_1 X1 + E$$

Where y = Outcome / Dependant variable

 $\alpha_0 \& \alpha_1 = regression coefficients$

X1 = Independent variable / predictor / feature

E = Error between predicted and original value

• If the number of independent variables are more than one then its Multiple linear regression.

$$Y = \alpha_0 + \alpha_1 . X1 + + \alpha_n . Xn + E$$

Evaluation methods

- Mean Absolute Error: Summation of the absolute value distance from the points to the line. [10][11][12]
- Mean Squared Error: A summation of the square of distances from the points to the line. [10][11][12]

Mean Absolute Error (MAE)

Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)

$$rac{1}{n}\sum_{i=1}^n |y_i-\hat{y}_i|$$

$$rac{1}{n}\sum_{i=1}^n (y_i-\hat{y}_i)^2$$

$$\sqrt{rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$$

Where, $\hat{y} - predicted value of y$ $\bar{y} - mean value of y$

```
# calculate MAE, MSE, RMSE
print(metrics.mean_absolute_error(y_true, y_pred))
print(metrics.mean_squared_error(y_true, y_pred))
print(np.sqrt(metrics.mean_squared_error(y_true, y_pred)))
```


Tools

- Python 3
- Anaconda
- Packages NumPy , Pandas , Matplotlib , Scikit Learn
- Jupyter Notebook or Google Colab

Hands - on

Case 1: Home Price Prediction (Based on area)

	area	price
0	2600	550000
1	3000	565000
2	3200	610000
3	3600	680000
4	4000	725000

Case 2: Home Price Prediction (Based on Multiple feature)

	area	bedrooms	age	price
0	2600	3.0	20	550000
1	3000	4.0	15	565000
2	3200	NaN	18	610000
3	3600	3.0	30	595000
4	4000	5.0	8	760000
5	4100	6.0	8	810000

References

- 1. https://www.javatpoint.com/machine-learning
- 2. https://en.wikipedia.org/wiki/Machine_learning
- 3. https://en.wikipedia.org/wiki/Machine_learning#/media/File:Fig-X_All_ML_as_a_subfield_of_Al.jpg
- 4. https://numpy.org/
- https://pandas.pydata.org/
- 6. https://matplotlib.org/
- 7. https://scikit-learn.org/stable/
- 8. https://en.wikipedia.org/wiki/Regression_analysis
- 9. https://www.upgrad.com/blog/types-of-regression-models-in-machine-learning/
- 10. https://commons.wikimedia.org/wiki/File:Residuals_for_Linear_Regression_Fit.png
- 11. https://medium.com/acing-ai/how-to-evaluate-regression-models-d183b4f5853d
- 12. https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/regress.htm#CHDBHBDI
- 13. https://towardsdatascience.com/what-are-the-best-metrics-to-evaluate-your-regression-model-418ca481755b