华东师范大学期末试卷 (A)

2011 - 2012 学年第 二 学期

课程名称:	高等数学 🛭	١
VN1X111111.	101 11 20 1 4	7

学生姓名: _____

学 号:

专 业: _____

年级/班级: 2011级

课程性质:公共必修.

_	\equiv	111	四	总分	阅卷人签名

一、填空题(24分,每题4分)

1.
$$\lim_{\substack{x \to 0 \\ y \to 2}} \frac{1 - \cos(xy)}{e^{x^2y} - 1} = \underline{\hspace{1cm}};$$

2. 函数
$$f(x, y) = \ln(1 + 2x^2y)$$
 的全微分 $dz =$ ______.

3.
$$\int_{0}^{\frac{\pi}{4}} dy \int_{y}^{\frac{\pi}{4}} \frac{\sin x}{x} dx = \underline{\qquad}.$$

4. 设
$$f(x, y, z) = xy^2z^3$$
, 则 $rot(grad f) =$ ______.

6. 方程
$$y'' - 5y' + 6y = 0$$
 通解为______.

二、多元函数微积分(32分)

1. (6分)设
$$z = f(u,v)$$
有二阶连续偏导数, $u = x^2y$, $v = x^2 + y^2$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

2. (6 分) 求曲面 $z = x^2 + y^2$ 平行于平面 2x - 4y - z = 1 的切平面方程和法线方程.

3. (6 分) 设D由 $y = x^2$, y = 0, x = 1 围成,求二重积分 $\iint_D (x^2 - 1) \cdot \sqrt{y} d\sigma$.

4. (7 分) 计求第二型曲面积分 $\iint_{\Sigma} (2x+z) dy dz + z dx dy$. 其中 Σ 为曲面 $z=x^2+y^2$, $0 \le z \le 1$ 取上側.

5. (7分) 求函数 z = x + 2y 在区域 $D: \frac{x^2}{2} + y^2 \le 1$ 上的最大值和最小值.

三、解下列级数题(24分)

1. (6分) 判断正项级数 $\sum_{n=1}^{\infty} \frac{2^n n^2}{n!}$ 的收敛性.

2. (6 分) 判断级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln(1+n)}{n+1}$ 的收敛性,如果收敛,是条件收敛还是绝对收敛。

- 3. (7分)设 $f(x) = x + 1, x \in (0,\pi]$, 其傅里叶展开式数为 $S(x) = \sum_{n=1}^{\infty} b_n \sin nx$,
- (1) 计算 b_1 ; (2) 求 $S(\frac{5}{2}\pi)$ 。

4. (8分)将 $f(x) = \frac{1}{(2-x)^2}$ 展开成x-1的幂级数,并指出收敛域。

.

四、求解下列微分方程(20分)

1. (6分) 求微分方程 $y' + \frac{1}{x}y = \sqrt{x}$ 的通解。

2. (7 分) 求方程 $y'' = \frac{4x}{1+x^2} y'$ 满足 $y|_{x=0} = 0$, $y'|_{x=0} = 1$ 的特解.

3. (7分)设函数 f(x) 具有二阶连续导数,且 f(0) = f'(0) = 0. 已知方程 $f(x)ydx + [\sin x - f'(x)]dy = 0$ 是一个全微分方程,求 f(x) 的表达式.