Introducción a los Sistemas Operativos

Anexo I Arquitectura de Entrada/Salida

I.S.O.

✓ Versión: Octubre 2017

✓ Palabras Claves: Dispositivos de IO, Hardware de IO, IO programada, Polling, Interrupciones, DMA

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Variedad en los dispositivos de I/O

- ☑ Legible para el usuario
 - ✓ Usados para comunicarse con el usuario
 - Impresoras, Terminales: Pantalla, Teclado, Mouse
- Legible para la máquina
 - ✓ Utilizados para comunicarse con los componentes electrónicos
 - Discos, Cintas, Sensores, etc.
- ☑ Comunicación
 - ✓ Usados para comunicarse con dispositivos remotos
 - Líneas Digitales, Modems, Interfaces de red, etc.

Problemas que surgen

- Amplia Variedad
 - ✓ Manejan diferentes cantidad de datos
 - ✓ En Velocidades Diferentes
 - ✓ En Formatos Diferentes
- La gran mayoría de los dispositivos de E/S son más lentos que la CPU y la RAM

Hardware y software involucrado

- **☑** Buses
- Dispositivos
- ✓ Puertos de E/S Registros
- ✓ Drivers
- ☑Comunicación con controlador del dispositivo: I/O Programada, Interrupciones, DMA

Estructura de Bus de una PC

Comunicación: CPU - Controladora

- ☑¿Cómo puede la CPU ejecutar comandos o enviar/recibir datos de una controladora de un dispositivo?
 - ✓ La controladora tiene uno o mas registros:
 - Registros para señales de control
 - Registros para datos
- ✓ La CPU se comunica con la controladora escribiendo y leyendo en dichos registros

Comandos de I/O

- ☑ CPU emite direcciones
 - ✓ Para identificar el dispositivo
- ☑CPU emite comandos
 - ✓ Control Que hacer?
 - Ej. Girar el disco
 - ✓ Test Controlar el estado
 - Ej. power? Error?
 - ✓ Read/Write
 - Transferir información desde/hacia el dispositivo

Mapeo de E/S y E/S aislada

- ☑ Correspondencia en memoria (Memory mapped I/O)
 - ✓ Dispositivos y memoria comparten el espacio de direcciones.
 - √ I/O es como escribir/leer en la memoria.
 - ✓ No hay instrucciones especiales para I/O
 - Ya se dispone de muchas instrucciones para la memoria
- ☑ Isolated I/O (Aislada, uso de Puertos de E/S)
 - ✓ Espacio separado de direcciones
 - ✓ Se necesitan líneas de I/O. Puertos de E/S
 - ✓ Instrucciones especiales
 - Conjunto Limitado

Memory Mapped and Isolated I/O

ADDRESS	INSTRUCTION	OPERAND	COMMENT									
200	Load AC Store AC	"1" 517	Load accumulator		7 6	3 5	4	3	2	1	0	•
202	Load AC	517	Initiate keyboard read Get status byte	516							Keyboard input data register	
	Branch if Sign = 0		Loop until ready									
	Load AC	516	Load data byte						_			
					7 6	5 5	4	3	2	1	0	1 Karaka and Samuka katan
(a) Memory-mapped I/O												Keyboard input status and control register
					1				1			0-11-11-
				-		1 = ro 0 = b	eady ousy	'				— Set to 1 to start read

ADDRESS	INSTRUCTION	OPERAND	COMMENT							
200	Load I/O	5	Initiate keyboard read							
201	Test I/O	5	Check for completion							
	Branch Not Ready	201	Loop until complete							
	In	5	Load data byte							
(b) Isolated I/O										

Técnicas de I/O - Programada

- ☑ CPU tiene control directo sobre la I/O
 - ✓ Controla el estado
 - ✓ Comandos para leer y escribir
 - ✓ Transfiere los datos
- ☑ CPU espera que el componente de I/O complete la operación
- ☑ Se desperdician ciclos de CPU

Polling

- ☑ En la I/O Programada, es necesario hacer polling del dispositivo para determinar el estado del mismo
 - ✓ Listo para recibir comandos
 - ✓ Ocupado
 - ✓ Error
- ☑Ciclo de "Busy-wait" para realizar la I/O
- ✓ Puede ser muy costoso si la espera es muy larga

Técnicas de I/O - Manejada por Interrupciones

- ☑ Soluciona el problema de la espera de la CPU
- ☑ La CPU no repite el chequeo sobre el dispositivo
- ☑ El procesador continúa la ejecución de instrucciones
- ☑El componente de I/O envía una interrupción cuando termina

Técnicas de I/O - DMA

DMA (Direct Memory Access)

- ✓ Un componente de DMA controla el intercambio de datos entre la memoria principal y el dispositivo
- ☑ El procesador es interrumpido luego de que el bloque entero fue transferido.

Pasos para una transferencia DMA

