Homework 3

Problem 1. Prove that if terms $a_1, a_2, \dots a_n$ are in normal form, then so is the list $a_1 :: a_2 :: \dots a_n :: \mathbf{nil}$.

Solution. We only need to prove that if a, b are in normal form, then so is $a :: \mathbf{nil}$ and a :: b. Thus, if $a_i :: a_{i+1} :: \cdots :: a_n :: \mathbf{nil}$ is in normal form, then so is $a_{i-1} :: a_i :: a_{i+1} :: \cdots :: a_n :: \mathbf{nil}$. By induction we can prove the original statement.

If a, b are in normal form, $a :: b \equiv \mathbf{pair} \, ab = \lambda x.xab$. To do β -reduction on this term we have the following approaches: 1. Do the reduction within a single term x, a or b first. 2. Do the reduction on xa first. 3. View xa as a whole and conduct reduction on (xa)b first. Because x, a, b are all in normal form, they can't perform β -reduction singally. Meanwhile because x is a single variable and does not start with λ (so xa does not start with λ as well), xa and (xa)b can't be reduced.

Since $\mathbf{nil} = \lambda x.\mathbf{t}$ is in normal form, when terms $a_1, a_2, \dots a_n$ are also in normal form, by the property proven above $a_n :: \mathbf{nil}$ is also a normal form. Then by using this property inductively we can prove that $a_1 :: a_2 :: \dots a_n :: \mathbf{nil}$ is also in normal form.

Problem 2. Show that **filter** is a special case of **reduce** for **filter** and **reduce** defined in the class.

Solution. Consider filter $\equiv \lambda lf$.reduce $l\left(\lambda ab.(\mathbf{ite}(fa)(\mathbf{cons}\,ab)b)\right)$ nil. For any list $l \equiv x :: l_1$, since reduce $(h :: t) f z \rightarrow_{\beta} f h$ (reduce t f z), so:

```
\begin{split} & \operatorname{filter} l \: f \twoheadrightarrow_{\beta} \operatorname{\mathbf{reduce}} l \: (\lambda ab. (\operatorname{\mathbf{ite}}(fa)(\operatorname{\mathbf{cons}} ab)b)) \operatorname{\mathbf{nil}} \\ & \equiv \operatorname{\mathbf{reduce}} (x :: l_1) \: (\lambda ab. (\operatorname{\mathbf{ite}}(fa)(\operatorname{\mathbf{cons}} ab)b)) \operatorname{\mathbf{nil}} \\ & \twoheadrightarrow_{\beta} \: (\lambda ab. (\operatorname{\mathbf{ite}}(fa)(\operatorname{\mathbf{cons}} ab)b)) \: x \: (\operatorname{\mathbf{reduce}} l_1 \: (\lambda ab. (\operatorname{\mathbf{ite}}(fa)(\operatorname{\mathbf{cons}} ab)b)) \operatorname{\mathbf{nil}}) \\ & \twoheadrightarrow_{\beta} \: \operatorname{\mathbf{ite}}(fx)(\operatorname{\mathbf{cons}} x(\operatorname{\mathbf{filter}} l_1 \: f))(\operatorname{\mathbf{filter}} l_1 \: f) \\ & \twoheadrightarrow_{\beta} \: \begin{cases} x :: \operatorname{\mathbf{filter}} l_1 \: f & \operatorname{\mathbf{if}} \: fx \twoheadrightarrow_{\beta} \operatorname{\mathbf{t}} \\ \operatorname{\mathbf{filter}} l_1 \: f & \operatorname{\mathbf{otherwise}} \end{cases} \end{split}
```

which is the inductive definition of filter.

Homework 3 Zhang Chi

Problem 3. Let $F: \{0,1\}^n \to \{0,1\}$ be a Boolean function. Prove that there is a λ term f representing F in the sense that for all $x_1, x_2, \ldots, x_n \in \{0,1\}$,

$$f[x_1][x_2]\cdots[x_n] \twoheadrightarrow_{\beta} [F(x_1,x_2,\ldots,x_n)],$$

where $[0] \equiv \mathbf{f}$ and $[1] \equiv \mathbf{t}$.

Solution. Use indution on n. When n = 1, then there are only four functions, F(x) = x, $F(x) = \neg x$, F(x) = 0 and F(x) = 1, which can be represented by $\lambda x.x$, $\lambda x.\mathbf{not} \ x \equiv \lambda x.x\mathbf{ft}$, $\lambda x.\mathbf{t}$ and $\lambda x.\mathbf{f}$ respectively.

If the statement holds for n-variable functions, below we'll prove the case n+1. Consider functions $F(x_1, x_2 \cdots x_n, 1)$ and $F(x_1, x_2 \cdots x_n, 0)$ which are both n-variable functions. We can use the induction hypothesis to represent them by λ terms f_1 and f_0 respectively. Then we can define $f \equiv \lambda x_1 x_2 \cdots x_n x_{n+1}$. (ite $x_{n+1}(f_1 x_1 x_2 \cdots x_n)(f_0 x_1 x_2 \cdots x_n)$) to represent F, as:

$$f[x_{1}][x_{2}]\cdots[x_{n+1}] \twoheadrightarrow_{\beta} \mathbf{ite}[x_{n+1}](f_{1}[x_{1}][x_{2}]\cdots[x_{n}])(f_{0}[x_{1}][x_{2}]\cdots[x_{n}])$$

$$\twoheadrightarrow_{\beta} \mathbf{ite}[x_{n+1}][F(x_{1},x_{2}\cdots x_{n},1)][F(x_{1},x_{2}\cdots x_{n},0)]$$

$$\twoheadrightarrow_{\beta} \begin{cases} [F(x_{1},x_{2}\cdots x_{n},1)] & \text{if } x_{n+1}=1 \\ [F(x_{1},x_{2}\cdots x_{n},0)] & \text{if } x_{n+1}=0 \end{cases}$$

$$\equiv [F(x_{1},x_{2}\cdots x_{n},x_{n+1})]$$

Problem 4. Let $C \subseteq \Sigma^*$ be a language. Prove that C is Turing-recognizable if and only if there is a decidable language D such that

$$C = \{x \mid \exists y \text{ such that } \langle x, y \rangle \in D\}.$$

Solution. Say $y \in \Sigma_1^*$. Assume Σ_1 is a finite charset, then Σ_1^* is countable. Thus we can assign a positive integer starting with 1 to each $y \in \Sigma_1^*$, e.g. $y_1, y_2, ..., y_i, ...$, and this sequence can cover all strings in Σ_1^* .

If there exists such D which is Turing-decidable, suppose TM M_1 can accept D and always halt, then we can define a TM M_2 to accept C as such:

Homework 3 Zhang Chi

Algorithm 1: M_2 to accept C

```
Data: x

1 i=1;

2 while True do

3 | if M_1 accepts \langle x, y_i \rangle then

4 | accept and halt;

5 | end

6 | else

7 | | i=i+1;

8 | end

9 end
```

Since M_1 always halt, each step in the While loop will end in finite steps. For any $x \in C$, by condition $C = \{x \mid \exists y \, s.t. \langle x, y \rangle \in D\}$ we know $\exists k \in \mathbb{Z}_+ \, s.t. \langle x, y_k \rangle \in D$. So with k steps of iteration, each ending in finite steps, M_2 will accept x. For any $x \notin C$, $\forall y \in \Sigma_1^*$, $\langle x, y \rangle \notin D$, so M_2 will never accept x.

On the other hand, if C is Turing recognizable, say by TM M_2 , then $\forall x \in C, \exists T_x \in \mathbb{Z}_+$ such that M_2 will halt and accept x in T_x steps. Thus we can consider $D = \{\langle x,y \rangle \mid x \in C, y \in \Sigma_1^{T_x} \}$. By this definition we can easily verify $C = \{x \mid \exists y \, s.t. \langle x,y \rangle \in D\}$. Use TM M_1 to accept D: M_1 receives $\langle x,y \rangle$ and put x into M_2 and run only $|y| = T_x$ steps. If M_2 accepts x in T_x steps, then M_1 accepts $\langle x,y \rangle$, otherwise it rejects. Obviously all $\langle x,y \rangle \in D$ can be accepted by M_1 . All tuples $\langle x,y \rangle$ acceptable by M_1 satisfies $x \in C, |y| = T_x$ and by definition is in D. Also since M_1 will always halt in finite steps (consists of T_x steps of simulation and the finite steps of preparing the configuration for M_2), so D is Turing-decidable.