Static-8

Title

Cantilever beam with a rotational spring at the support

Description

Determine the displacements of a cantilever subjected to a concentrated load at the free end.

Rotational spring constant KRz = 10000 lbf-in/rad

Structural geometry and analysis model

Model

Analysis Type

2-D static analysis (X-Y plane)

Unit System

in, lbf

Dimension

Length 10 in

Element

Beam Element

Material

Modulus of elasticity $E = 30 \times 10^6 \text{ psi}$

Section Property

Moment of inertia $I_{yy} = 1000 \text{ in}^4$

Boundary Condition

Node 1; Constrain Dx and Dy

Rotational spring constant about Z-axis, $K_{\theta Z} = 10000$ lbf-in/rad

Load Case

A concentrated load, 10 lbf is applied to the node 2 in the -Y direction.

Results

Displacements of the structure (node 2)

Comparison of Results

Unit: in, rad

Displacement(Node 2)	Theoretical	ANSYS	MIDAS/Civil
δ_{X}	0.00	0.00	0.00
$\delta_{ m Y}$	-0.10	-0.10	-0.10
θ_{Z}	-0.01	-0.01	-0.01

Reference

"ANSYS, Engineering Analysis System Verification Manual", Revision 4.4, SWANSON Analysis Systems, Inc., 1990, VM41.