Accelerated and Sparse Algorithms for Approximate Personalized PageRank

David Martínez-Rubio

joint work with Elias Wirth, Sebastian Pokutta

Technische Universität Berlin, Zuse Institute Berlin

Problem

Problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n_{\geq \mathbf{0}}} \{ g(\mathbf{x}) \stackrel{\text{def}}{=} \langle \mathbf{x}, Q\mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle \}.$$

where $0 \prec \alpha \cdot I \preccurlyeq Q \preccurlyeq L \cdot I$ and $Q_{ij} \leq 0$.

Problem

Problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n_{> \mathbf{0}}} \{ g(\mathbf{x}) \stackrel{\text{def}}{=} \langle \mathbf{x}, Q\mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle \}.$$

where $0 \prec \alpha \cdot I \preccurlyeq Q \preccurlyeq L \cdot I$ and $Q_{ij} \leq 0$. For ℓ_1 -regularized personalized PageRank, it is

$$Q \stackrel{\text{def}}{=} \alpha I + \frac{1-\alpha}{2}\mathcal{L}$$
 and $\mathsf{b} \stackrel{\text{def}}{=} \alpha \left(D^{-1/2} \mathsf{s} - \rho D^{1/2} \mathbb{1} \right)$

where $\alpha, \rho > 0$, $\mathcal{L} \stackrel{\text{def}}{=} I - D^{-1/2}AD^{-1/2}$ is the symmetric normalized Laplacian matrix, which satisfies $0 \prec \mathcal{L} \leq 2I$.

Problem

Problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n \setminus \mathbf{0}} \{ g(\mathbf{x}) \stackrel{\text{def}}{=} \langle \mathbf{x}, Q \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle \}.$$

where $0 \prec \alpha \cdot I \preccurlyeq Q \preccurlyeq L \cdot I$ and $Q_{ij} \leq 0$. For ℓ_1 -regularized personalized PageRank, it is

$$Q \stackrel{\text{def}}{=} \alpha I + \frac{1-\alpha}{2}\mathcal{L}$$
 and $\mathsf{b} \stackrel{\text{def}}{=} \alpha \left(D^{-1/2}\mathsf{s} - \rho D^{1/2}\mathbb{1}\right)$

where $\alpha, \rho > 0$, $\mathcal{L} \stackrel{\text{def}}{=} I - D^{-1/2}AD^{-1/2}$ is the symmetric normalized Laplacian matrix, which satisfies $0 \prec \mathcal{L} \preccurlyeq 2I$.

The problem comes from the personalized PageRank problem

$$\min\{f(x) \stackrel{\text{def}}{=} \langle x, Qx \rangle - \alpha \langle D^{-1/2} s, x \rangle\},\$$

by adding the ℓ_1 regularization $+\alpha\rho\|D^{1/2}x\|_1$ and noticing that the minimizer is in $\mathbb{R}_{\geq 0}$, for $\rho > 0$. The personalized PageRank vector is the solution to the system

$$x = (1 - \alpha)Wx + \alpha s = ((1 - \alpha)W + \alpha s \mathbb{1}^T)x,$$

where $W = (I + AD^{-1})/2$ and $s \in \Delta^n$ is a distribution over the nodes.

1 1

Results and comparison

- ▶ The Hessian of g is Q, satisfying $\alpha I \leq Q \leq LI$, its condition number is L/α .
- $\blacktriangleright \ \ \mathcal{S}^* \stackrel{\mathrm{def}}{=} \ \mathsf{supp}(\mathsf{x}^*), \ \mathsf{vol}(\mathcal{S}^*) \stackrel{\mathrm{def}}{=} \ \mathsf{nnz}(Q_{:,\mathcal{S}^*}) \ \mathsf{and} \ \ \widetilde{\mathsf{vol}}(\mathcal{S}^*) \stackrel{\mathrm{def}}{=} \ \mathsf{nnz}(Q_{\mathcal{S}^*,\mathcal{S}^*}).$
- ▶ For the ℓ_1 -regularized personalized PageRank, it is $vol(S^*) \leq \frac{1}{\rho} + |S^*|$.

Method	Time complexity	Space complexity
ISTA [FRS+19]	$\widetilde{\mathcal{O}}(vol(\mathbb{S}^*) \frac{L}{\alpha})$	0(3*)
CDPR (Ours)	$O(S^* ^3 + S^* vol(S^*))$	$O(S^* ^2)$
ASPR (Ours)	$\widetilde{\mathbb{O}}(\mathbb{S}^* \widetilde{vol}(\mathbb{S}^*)\sqrt{rac{L}{lpha}}+ \mathbb{S}^* vol(\mathbb{S}^*))$	O(S*)
CASPR (Ours)	$\widetilde{\mathbb{O}}(\mathbb{S}^* \widetilde{vol}(\mathbb{S}^*)\min\left\{\sqrt{rac{L}{lpha}}, \mathbb{S}^* ight\}+ \mathbb{S}^* vol(\mathbb{S}^*))$	0(S*)

Problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n_{> \mathbf{0}}} \{ g(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \langle \mathbf{x}, Q\mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle \}.$$

Suppose:

- \blacktriangleright $\mathbf{x}^{(0)} \in \mathbb{R}^n_{\geq 0}$ and $S \subseteq [n]$ s.t. $\mathbf{x}^{(0)}_i = 0$ if $i \notin S$ and $\nabla_i g(\mathbf{x}^{(0)}) \leq 0$ if $i \in S$.
- $\blacktriangleright \ \ x^{(*,C)} \stackrel{\scriptscriptstyle\rm def}{=} \arg\min_{x \in C} g(x) \ \ \text{and} \ \ x^* \stackrel{\scriptscriptstyle\rm def}{=} \arg\min_{x \in \mathbb{R}^n_{>0}} g(x).$

Suppose:

- \blacktriangleright $\mathbf{x}^{(0)} \in \mathbb{R}^n_{>0}$ and $S \subseteq [n]$ s.t. $\mathbf{x}^{(0)}_i = 0$ if $i \notin S$ and $\nabla_i g(\mathbf{x}^{(0)}) \leq 0$ if $i \in S$.
- $\blacktriangleright \ \mathsf{x}^{(*,C)} \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathsf{arg}\,\mathsf{min}_{\mathsf{x} \in C}\,g(\mathsf{x}) \ \mathsf{and} \ \mathsf{x}^* \stackrel{\scriptscriptstyle\mathrm{def}}{=} \mathsf{arg}\,\mathsf{min}_{\mathsf{x} \in \mathbb{R}^n_{>0}}\,g(\mathsf{x}).$

Then:

- 1. It holds that $x^{(0)} \le x^{(*,C)}$ and $\nabla_i g(x^{(*,C)}) = 0$ for all $i \in S$.
- 2. If for $i \in S$, we have $x_i^{(0)} > 0$ or $\nabla_i g(x^{(0)}) < 0$, then $x_i^{(*,C)} > 0$.
- 3. If $x_i^{(*,C)} > 0$ for all $i \in S$, we have $x^{(*,C)} \le x^*$ and therefore $S \subseteq S^*$.

Suppose:

$$\blacktriangleright$$
 $\mathsf{x}^{(0)} \in \mathbb{R}^n_{\geq 0}$ and $S \subseteq [n]$ s.t. $\mathsf{x}^{(0)}_i = 0$ if $i \notin S$ and $\nabla_i g(\mathsf{x}^{(0)}) \leq 0$ if $i \in S$.

$$ightharpoonup C \stackrel{\text{def}}{=} \operatorname{span}(\{e_i \mid i \in S\}) \cap \mathbb{R}^n_{>0}.$$

$$ightharpoonup \chi^{(*,C)} \stackrel{\text{def}}{=} \arg\min_{x \in C} g(x) \text{ and } x^* \stackrel{\text{def}}{=} \arg\min_{x \in \mathbb{R}^n_{>0}} g(x).$$

- Then:
 - 1. It holds that $x^{(0)} \leq x^{(*,C)}$ and $\nabla_i g(x^{(*,C)}) = 0$ for all $i \in S$.
 - 2. If for $i \in S$, we have $x_i^{(0)} > 0$ or $\nabla_i g(x^{(0)}) < 0$, then $x_i^{(*,C)} > 0$.
 - 3. If $x_i^{(*,C)} > 0$ for all $i \in S$, we have $x^{(*,C)} \le x^*$ and therefore $S \subseteq S^*$.

Proof of 1.: $\bar{g} \stackrel{\text{def}}{=} g$ restricted to span($\{e_i \mid i \in S\}$). Let $\{x^{(t)}\}_{t=0}^{\infty}$ be the iterates of PGD($C, x^{(0)}, \bar{g}$). We start with $\nabla \bar{g}(x^{(0)}) \leq 0$. By induction:

$$x^{(t+1)} = x^{(t)} - \frac{1}{I} \nabla \bar{g}(\mathbf{x}^{(t)}) \geq x^{(t)} \text{ and } \nabla \bar{g}(\mathbf{x}^{(t+1)}) = \nabla \bar{g}(\mathbf{x}^{(t)}) - \frac{1}{I} Q_{S,S} \nabla \bar{g}(\mathbf{x}^{(t)}) \leq 0$$

 $\mathsf{x}^{(t)} o \mathsf{x}^{(*,C)}$, $\nabla \bar{g}(\mathsf{x}^{(t)}) o \nabla \bar{g}(\mathsf{x}^{(*,C)})$ (so \leq 0, and by optimality it is \geq 0.)

Suppose:

- \blacktriangleright $\mathsf{x}^{(0)} \in \mathbb{R}^n_{\geq 0}$ and $S \subseteq [n]$ s.t. $\mathsf{x}^{(0)}_i = 0$ if $i \notin S$ and $\nabla_i g(\mathsf{x}^{(0)}) \leq 0$ if $i \in S$.
- $ightharpoonup x^{(*,C)} \stackrel{\text{def}}{=} \operatorname{arg\,min}_{x \in C} g(x) \text{ and } x^* \stackrel{\text{def}}{=} \operatorname{arg\,min}_{x \in \mathbb{R}^n_{>0}} g(x).$

Then:

- 1. It holds that $x^{(0)} \le x^{(*,C)}$ and $\nabla_i g(x^{(*,C)}) = 0$ for all $i \in S$.
- 2. If for $i \in S$, we have $x_i^{(0)} > 0$ or $\nabla_i g(x^{(0)}) < 0$, then $x_i^{(*,C)} > 0$.
- 3. If $x_i^{(*,C)} > 0$ for all $i \in S$, we have $x^{(*,C)} \le x^*$ and therefore $S \subseteq S^*$.

Proof of 2.: We have that $x_i^{(1)} > 0$ by the assumption on $x_i^{(0)}$ and the PGD update rule. By the monotonicity of iterates in the proof of 1., we obtain the result.

Proof of 3.: Sketch: Apply 1. and 2. to the initial point $\mathbf{x}^{(*,C)}$ and set of indices $S \cup \{i \mid \nabla_i \mathbf{g}(\mathbf{x}^{(*,C)}) < 0\}$ and then again and so on until you get to \mathbf{x}^* .

▶ **Definition.** i is a good coordinate iff $i \in S^*$. Otherwise it is bad.

Definition. *i* is a good coordinate iff $i \in S^*$. Otherwise it is bad.

▶ Idea for an algorithm: discover good coordinates sequentially, by optimizing in the subspace $C^{(t)} \stackrel{\text{def}}{=} \text{span}(\{e_i \mid i \in S^{(t)}\}) \cap \mathbb{R}^n_{\geq 0}$, where $S^{(t)}$ is the set of currently known good coordinates.

▶ **Definition.** *i* is a good coordinate iff $i \in S^*$. Otherwise it is bad.

▶ Idea for an algorithm: discover good coordinates sequentially, by optimizing in the subspace $C^{(t)} \stackrel{\text{def}}{=} \text{span}(\{e_i \mid i \in S^{(t)}\}) \cap \mathbb{R}^n_{>0}$, where $S^{(t)}$ is the set of currently known good coordinates.

At the minimizer $\mathbf{x}^{(*,t+1)} \stackrel{\text{def}}{=} \mathbf{x}^{(*,C^{(t)})}$, we are optimal $(\mathbf{x}^{(*,t+1)} = \mathbf{x}^*)$ or we have $\nabla_i g(\mathbf{x}^{(*,t+1)}) < 0$ only if i is good and new, i.e., only if $i \in S^* \setminus S^{(t)}$.

Definition. *i* is a good coordinate iff $i \in S^*$. Otherwise it is bad.

▶ Idea for an algorithm: discover good coordinates sequentially, by optimizing in the subspace $C^{(t)} \stackrel{\text{def}}{=} \text{span}(\{e_i \mid i \in S^{(t)}\}) \cap \mathbb{R}^n_{\geq 0}$, where $S^{(t)}$ is the set of currently known good coordinates.

At the minimizer $\mathbf{x}^{(*,t+1)} \stackrel{\text{def}}{=} \mathbf{x}^{(*,C^{(t)})}$, we are optimal $(\mathbf{x}^{(*,t+1)} = \mathbf{x}^*)$ or we have $\nabla_i g(\mathbf{x}^{(*,t+1)}) < 0$ only if i is good and new, i.e., only if $i \in S^* \setminus S^{(t)}$.

▶ An approximate version of this holds, after overcoming some technicalities.

- ► Start at $x^{(0)} = 0$.
- ▶ For t > 0, define the set of new good coordinates $N^{(t)} \stackrel{\text{def}}{=} \{i \in [n] \mid \nabla_i g(\mathbf{x}^{(t)}) < 0\}$ and select $i \in N^{(t)}$, $\mathbf{u}^{(t)} \stackrel{\text{def}}{=} \nabla_i g(\mathbf{x}^{(t)}) \mathbf{e}_i$.

- Start at $x^{(0)} = 0$.
- ► For t > 0, define the set of new good coordinates $N^{(t)} \stackrel{\text{def}}{=} \{i \in [n] \mid \nabla_i g(\mathbf{x}^{(t)}) < 0\}$ and select $i \in N^{(t)}$, $\mathbf{u}^{(t)} \stackrel{\text{def}}{=} \nabla_i g(\mathbf{x}^{(t)}) \mathbf{e}_i$.
- Compute direction $d^{(t)}$ from $u^{(t)}$ by *Q*-Gram-Schmidt using all previous (sparse) directions so $\langle d^{(t)}, Qd^{(k)} \rangle = 0$ for all k < t.

- ► Start at $x^{(0)} = 0$.
- ► For t > 0, define the set of new good coordinates $N^{(t)} \stackrel{\text{def}}{=} \{i \in [n] \mid \nabla_i g(\mathbf{x}^{(t)}) < 0\}$ and select $i \in N^{(t)}$, $\mathbf{u}^{(t)} \stackrel{\text{def}}{=} \nabla_i g(\mathbf{x}^{(t)}) \mathbf{e}_i$.
- ► Compute direction $d^{(t)}$ from $u^{(t)}$ by *Q*-Gram-Schmidt using all previous (sparse) directions so $\langle d^{(t)}, Qd^{(k)} \rangle = 0$ for all k < t.
- ▶ Optimize on the line $x^{(t+1)} \leftarrow \arg\min_{\eta^{(t)}} \{x^{(t)} + \eta^{(t)} d^{(t)}\}$. It is $x^{(t+1)} = x^{(*,C^{(t)})}$.

- ► Start at $x^{(0)} = 0$.
- ► For t > 0, define the set of new good coordinates $N^{(t)} \stackrel{\text{def}}{=} \{i \in [n] \mid \nabla_i g(\mathbf{x}^{(t)}) < 0\}$ and select $i \in N^{(t)}$, $\mathbf{u}^{(t)} \stackrel{\text{def}}{=} \nabla_i g(\mathbf{x}^{(t)}) \mathbf{e}_i$.
- Compute direction $d^{(t)}$ from $u^{(t)}$ by *Q*-Gram-Schmidt using all previous (sparse) directions so $\langle d^{(t)}, Qd^{(k)} \rangle = 0$ for all k < t.
- ▶ Optimize on the line $\mathbf{x}^{(t+1)} \leftarrow \arg\min_{\eta^{(t)}} \{\mathbf{x}^{(t)} + \eta^{(t)} \mathbf{d}^{(t)}\}$. It is $\mathbf{x}^{(t+1)} = \mathbf{x}^{(*,C^{(t)})}$.
- ► Time complexity $O(|S^*|^3 + |S^*|vol(S^*))$ and space complexity $O(|S^*|^2)$.

1. Because $Q_{ij} \leq 0$ for $i \neq j$, for $y = x - \Delta e_i$, we have $\forall j \neq i$: $\nabla_i g(y) \geq \nabla_i g(x)$ if $\Delta > 0$ and $\nabla_i g(y) \leq \nabla_i g(x)$ otherwise.

- 1. Because $Q_{ij} \leq 0$ for $i \neq j$, for $y = x \Delta e_i$, we have $\forall j \neq i$: $\nabla_j g(y) \geq \nabla_j g(x)$ if $\Delta > 0$ and $\nabla_j g(y) \leq \nabla_j g(x)$ otherwise.
- 2. Recall, $\nabla_i g(\mathbf{x}^{(*,C^{(t)})}) < 0$ only if $i \in S^* \setminus S^{(t)}$. So by 1., for $\mathbf{x} \in C^{(t)}$ s.t. $\mathbf{x} \leq \mathbf{x}^{(*,C^{(t)})}$ it is $\nabla_i g(\mathbf{x}) < 0$ only if $i \in S^*$:

We can detect new coordinates!

- 1. Because $Q_{ij} \leq 0$ for $i \neq j$, for $y = x \Delta e_i$, we have $\forall j \neq i$: $\nabla_j g(y) \geq \nabla_j g(x)$ if $\Delta > 0$ and $\nabla_j g(y) \leq \nabla_j g(x)$ otherwise.
- 2. Recall, $\nabla_i g(\mathbf{x}^{(*,C^{(t)})}) < 0$ only if $i \in \mathbb{S}^* \setminus S^{(t)}$. So by 1., for $\mathbf{x} \in C^{(t)}$ s.t. $\mathbf{x} \leq \mathbf{x}^{(*,C^{(t)})}$ it is $\nabla_i g(\mathbf{x}) < 0$ only if $i \in \mathbb{S}^*$: We can detect new coordinates!
- 3. To ensure there exists such an $i \in S^* \setminus S^{(t)}$, get close to $x^{(*,C^{(t)})}$ from below: optimize using accelerated projected gradient descent (APGD) to get close to $x^{(*,C^{(t)})}$ and then move slightly towards 0 to be $\leq x^{(*,C^{(t)})}$.

- 1. Because $Q_{ij} \leq 0$ for $i \neq j$, for $y = x \Delta e_i$, we have $\forall j \neq i$: $\nabla_j g(y) \geq \nabla_j g(x)$ if $\Delta > 0$ and $\nabla_j g(y) \leq \nabla_j g(x)$ otherwise.
- 2. Recall, $\nabla_i g(\mathbf{x}^{(*,C^{(t)})}) < 0$ only if $i \in \mathbb{S}^* \setminus S^{(t)}$. So by 1., for $\mathbf{x} \in C^{(t)}$ s.t. $\mathbf{x} \leq \mathbf{x}^{(*,C^{(t)})}$ it is $\nabla_i g(\mathbf{x}) < 0$ only if $i \in \mathbb{S}^*$: We can detect new coordinates!
- 3. To ensure there exists such an $i \in S^* \setminus S^{(t)}$, get close to $x^{(*,C^{(t)})}$ from below: optimize using accelerated projected gradient descent (APGD) to get close to $x^{(*,C^{(t)})}$ and then move slightly towards 0 to be $\leq x^{(*,C^{(t)})}$.
- 4. **Lemma**. Optimizing with accuracy $\hat{\varepsilon}_t = \varepsilon \cdot \frac{\alpha^2}{2(1+|S^{(t)}|)L^2}$ to get $\bar{\mathbf{x}}^{(t+1)}$ and reducing $\mathbf{x}^{(t+1)} \leftarrow \max\{0, \bar{\mathbf{x}}^{(t+1)} \delta_t \mathbb{1}\}$ for $\delta_t = \sqrt{\frac{\varepsilon \alpha}{(1+|S^{(t)}|L^2)}}$, we either expand $S^{(t)}$ using 2. with $\mathbf{x}^{(t+1)}$, or $\mathbf{x}^{(t+1)}$ is an ε -minimizer.

- 1. Because $Q_{ij} \leq 0$ for $i \neq j$, for $y = x \Delta e_i$, we have $\forall j \neq i$: $\nabla_j g(y) \geq \nabla_j g(x)$ if $\Delta > 0$ and $\nabla_j g(y) \leq \nabla_j g(x)$ otherwise.
- 2. Recall, $\nabla_i g(\mathbf{x}^{(*,C^{(t)})}) < 0$ only if $i \in \mathbb{S}^* \setminus S^{(t)}$. So by 1., for $x \in C^{(t)}$ s.t. $x \leq \mathbf{x}^{(*,C^{(t)})}$ it is $\nabla_i g(x) < 0$ only if $i \in \mathbb{S}^*$:

 We can detect new coordinates!
- 3. To ensure there exists such an $i \in S^* \setminus S^{(t)}$, get close to $x^{(*,C^{(t)})}$ from below: optimize using accelerated projected gradient descent (APGD) to get close to $x^{(*,C^{(t)})}$ and then move slightly towards 0 to be $< x^{(*,C^{(t)})}$.
- 4. **Lemma**. Optimizing with accuracy $\hat{\varepsilon}_t = \varepsilon \cdot \frac{\alpha^2}{2(1+|S^{(t)}|)L^2}$ to get $\bar{\mathbf{x}}^{(t+1)}$ and reducing $\mathbf{x}^{(t+1)} \leftarrow \max\{0, \bar{\mathbf{x}}^{(t+1)} \delta_t \mathbb{1}\}$ for $\delta_t = \sqrt{\frac{\varepsilon \alpha}{(1+|S^{(t)}|L^2)}}$, we either expand $S^{(t)}$ using 2. with $\mathbf{x}^{(t+1)}$, or $\mathbf{x}^{(t+1)}$ is an ε -minimizer.
- 5. The lemma above is proven by showing that if the global gap is $> \varepsilon$, then one step of gradient descent reduces the function value more than what it can be reduced in $C^{(t)}$.

Accelerated and Sparse PageRank (ASPR) algorithm

Theorem

The iterates of ASPR satisfy:

- 1. $x_i^{(*,t)} > 0$ if and only if $i \in S^{(t-1)}$. Also, $\nabla_i g(x^{(*,t)}) = 0$ if $i \in S^{(t-1)}$.
- 2. It is $x^{(t)} < x^{(*,t)} < x^*$ and $x^{(*,t-1)} < x^{(*,t)}$.
- 3. $S^{(t-1)} \subseteq S^{(t)} \stackrel{\text{def}}{=} S^{(t-1)} \cup \{i \in [n] \mid \nabla_i g(\mathbf{x}^{(t)}) < 0\} \subseteq S^*$, or $\mathbf{x}^{(t)}$ is an ε -minimizer of g.

- ▶ APGD only needs gradients restricted to $C^{(t)}$, costing $O(vol(S^*))$ each. Then, it uses a full gradient to find the new good coordinates, costing $O(vol(S^*))$. It is done at most $|S^*|$ times.
- \triangleright All new good coordinates are incorporated to $S^{(t)}$ unlike for CDPR.
- ► Time complexity $\widetilde{\mathfrak{O}}(|\mathcal{S}^*|\widetilde{\mathsf{vol}}(\mathcal{S}^*)\sqrt{\frac{L}{\alpha}} + |\mathcal{S}^*|\mathsf{vol}(\mathcal{S}^*))$ and space complexity $\mathfrak{O}(|\mathcal{S}^*|)$.

- ▶ **Lemma.** $S \subseteq [n]$. If x is s.t. $x_j = 0$ if $j \notin S$ and $\nabla_j g(x) \le 0$ if $j \in S$, then for any $i \notin S$ s.t. $\nabla_j g(x) < 0$, it is $i \in S^*$.
- **Variant:** During APGD's execution, one can compute the full gradient from time to time to check the condition, expand $S^{(t)}$, and restart.

- ▶ **Lemma.** $S \subseteq [n]$. If x is s.t. $x_j = 0$ if $j \notin S$ and $\nabla_j g(x) \le 0$ if $j \in S$, then for any $i \notin S$ s.t. $\nabla_j g(x) < 0$, it is $i \in S^*$.
- **Variant:** During APGD's execution, one can compute the full gradient from time to time to check the condition, expand $S^{(t)}$, and restart.
- ▶ Interestingly, if we compute a full gradient at every iteration, ASPR is not better than CDPR, up to constants and logs, in the regime in which ISTA is not better, up to constants and logs.

в | 9

- ▶ **Lemma.** $S \subseteq [n]$. If x is s.t. $x_j = 0$ if $j \notin S$ and $\nabla_j g(x) \le 0$ if $j \in S$, then for any $i \notin S$ s.t. $\nabla_i g(x) < 0$, it is $i \in S^*$.
- **Variant:** During APGD's execution, one can compute the full gradient from time to time to check the condition, expand $S^{(t)}$, and restart.
- ▶ Interestingly, if we compute a full gradient at every iteration, ASPR is not better than CDPR, up to constants and logs, in the regime in which ISTA is not better, up to constants and logs.
- ▶ **Lemma.** If we observe $\nabla_i g(x) \leq 0$ for all $i \in S^{(t)}$, it is $x \leq x^{(*,t+1)} \leq x^*$.
- ▶ **Variant:** With such an x, we can update the feasible set: $C \leftarrow C \cap \{y \mid y \geq x\}$.

- ▶ **Lemma.** $S \subseteq [n]$. If x is s.t. $x_j = 0$ if $j \notin S$ and $\nabla_j g(x) \le 0$ if $j \in S$, then for any $i \notin S$ s.t. $\nabla_j g(x) < 0$, it is $i \in S^*$.
- **Variant:** During APGD's execution, one can compute the full gradient from time to time to check the condition, expand $S^{(t)}$, and restart.
- ▶ Interestingly, if we compute a full gradient at every iteration, ASPR is not better than CDPR, up to constants and logs, in the regime in which ISTA is not better, up to constants and logs.
- ▶ **Lemma.** If we observe $\nabla_i g(x) \leq 0$ for all $i \in S^{(t)}$, it is $x \leq x^{(*,t+1)} \leq x^*$.
- ▶ Variant: With such an x, we can update the feasible set: $C \leftarrow C \cap \{y \mid y \geq x\}$.
- **Variant:** Using the (unconstrained) Conjugate Gradients algorithm (CG) instead of APGD, the guarantee improves. And we can forgo the knowledge of the strong convexity constant α .

Comparisons

Method	Time complexity	Space complexity
ISTA [FRS+19]	$\widetilde{\mathcal{O}}(vol(\mathbb{S}^*) \frac{L}{\alpha})$	0(8*)
CDPR (Ours)	$O(S^* ^3 + S^* vol(S^*))$	O(S* ²)
ASPR (Ours)	$\widetilde{\mathbb{O}}(\mathbb{S}^* \widetilde{vol}(\mathbb{S}^*)\sqrt{rac{L}{lpha}} + \mathbb{S}^* vol(\mathbb{S}^*))$	0(8*)
CASPR (Ours)	$\widetilde{\mathbb{O}}(\mathbb{S}^* \widetilde{vol}(\mathbb{S}^*)\min\left\{\sqrt{rac{L}{lpha}}, \mathbb{S}^* ight\}+ \mathbb{S}^* vol(\mathbb{S}^*))$	0(8*)