

11/OCTUBRE

K-NEAREST

NEIGHBOURS

¿Cómo predecimos la clase de **x**?

TBA

K-nearest Neighbors (KNN)

$$\Pr(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j)$$

Para clasificar x_0 :

- 1. Buscar K puntos en train más cercanos a x_0 [vecindario N_0]
- 2. Calcular la distribución de clases en $N_0[Pr(Y)]$
- 3. Asignar a la clase de mayor probabilidad (solemos usar *K* impar)

KNN

KNN: K=1

KNN: K=100

Tasa de error de clasificación

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

¿Cómo es el error en cada *K*?

- -- Componente sistemático del DGP ("verdadera" frontera de clasificación)
- o o Observaciones de entrenamiento de cada clase

KNN

KNN

Tradeoff sesgo-varianza

Tradeoff sesgo-varianza

Para *K*=1, la predicción depende de una sola observación!
Cuando *K* crece, depende del promedio de muchas

Fuente: The Elements of Statistical Learning (Hastie et al, 2009)

TBA

KNN regression

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathcal{N}_0} y_i$$

Para predecir la respuesta de x_0 :

- 1. Buscar K puntos en train más cercanos a x_0 [vecindario N_0]
- 2. Calcular el promedio de Y en

N₀ [*f_hat(Y)*]

En DGP **no lineales**, KNN tiene mejor rendimiento A diferencia de MCO, **es un método local y no paramétrico** [no asume una forma específica de f(X)] ¿Esto quiere decir que MCO no sirve en este escenario?

¿Esto quiere decir que MCO no sirve en este escenario? **NO!** Podríamos transformar *x* para mejorar el ajuste de MCO :)

¿Cuántos valores necesitamos en memoria para hacer la predicción de una observación nueva con MCO? ¿Y con KNN?

¿Cuántos *valores* necesitamos en memoria para hacer la predicción de una observación nueva con MCO? β_0 y β_1

¿Y con KNN? Las matriz de observaciones n x p

→ KNN es costoso en términos de memoria y cómputo (necesitamos calcular la matriz de distancias y encontrar los mínimos)

¿Qué pasa si agregamos covariables irrelevantes al escenario anterior? j=2,...,20

KNN y La Maldición de la Dimensionalidad

¡Las distancias se deterioran mucho en dimensión alta! (alto p/N)

 \rightarrow Para seguir encontrando individuos parecidos a medida que aumentamos p, necesitamos aumentar N exponencialmente

Aplicación en imágenes satelitales

¿Cuál es el uso de la tierra Y de cada píxel x?

(Michie et al, 1994)

82 x 100

 $y \in \{\text{red soil, cotton, gray soil, mixture, }...\}$

X

featurización

1 pixel + 8 neighbors

$$\phi(X) \in \mathbb{R}^{36}$$

feature map

$$\hat{y} = \hat{f}(\phi(X))$$

KNN

Fuente: The Elements of Statistical Learning (Hastie et al, 2009)

Lecturas recomendadas

- An Introduction to Statistical Learning
 2.2.3 + 3.5
- The Elements of Statistical Learning

Probabilistic Machine Learning: An Introduction
 16.1

