

Introduction to CUDA

(5) Performance Considerations

Reference

- CUDA C Programming Guide,
 - https://docs.nvidia.com/cuda/cuda-c-programmingguide/index.html
- Programming Massively Parallel Processors,
 - A Hands-on Approach
 - Third Edition
 - Chapter 5

Resources and Performance

- Performance of a parallel program can vary greatly depending on the resource constraints of the computing hardware.
- In different applications, different constraints may dominate and become bottlenecks.
- It is important to find:
 - the major types of resource constraints in a CUDA device;
 - how they can affect the kernel execution performance.

Content

- Global Memory Bandwidth
- More on Memory Parallelism
- Warps and SIMD Hardware
- Dynamic partitioning of resources

Global Memory Bandwidth

• Ideal

Reality

DRAM core arrays are slow

 Reading from a cell in the core array is a very slow process

- 10s of nanoseconds v.s. sub-nanosecond clock cycle
- Like determine the flavor of cup of coffee by smelling far away

DRAM Burst

Each time a DRAM location is accessed, a range of consecutive locations that includes the requested location are actually accessed.

These consecutive locations accessed and delivered are referred to as DRAM bursts.

Coalesce

- Threads in a <u>warp</u> execute the same instruct at any given time.
- Modern DRAM systems are designed to be always accessed in burst mode.
- The favorable access pattern is achieved When all threads in a warp access consecutive global memory locations.
- In this case, the hardware combines, or **coalesces**, all these accesses into a consolidated access to consecutive DRAM locations (burst).

A 2D C Array in Linear Memory Space

 How the memory addresses are formed in accessing C multidimensional array elements?

DRAM Burst – A System View

- Each address space is partitioned into burst sections
 - Whenever a location is accessed, all other locations in the same section are also delivered to the processor
- Basic example: a 16-byte address space, 4-byte burst sections
 - In practice, we have at least 4GB address space, burst section sizes of 128-bytes or more

Memory Coalescing

 When all threads of a warp execute a load instruction, if all accessed locations fall into the same burst section, only one DRAM request will be made and the access is fully coalesced.

Un-coalesced Accesses

- When the accessed locations spread across burst section boundaries:
 - Coalescing fails
 - Multiple DRAM requests are made

A Simple Matrix Multiplication Kernel (review)

```
global
void MatrixMulKernel(float* M, float* N, float* P, int Width)
 // Calculate the row index of the P element and M
 int Row = blockIdx.y * blockDim.y + threadIdx.y;
 // Calculate the column index of P and N
 int Col = blockIdx.x * blockDim.x + threadIdx.x;
 if ((Row < Width) && (Col < Width)) {
   float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
   for (int k = 0; k < Width; ++k)
      Pvalue += M[Row*Width+k] * N[k*Width+Col];
    P[Row*Width+Coll = Pvalue;
```

Two Access Patterns

For M, threads in a warp read adjacent rows; For N, threads in a warp read adjacent columns;

k is loop counter in the inner product loop of the kernel code

N accesses are coalesced.

N[k*Width+Col]

k*Width:

same across all threads within a given iteration of the k loop.

Col:

Col=blockIdx.x*blockDim.x+threadIdx.x

blockIndx.x and blockDim.x are same for all threads in the same block.

M accesses are not coalesced.

Access direction in Kernel code

M[Row*Width+k]

k & Width:

same across all threads within a given iteration of the k loop.

Row:

Row=blockIdx.y*blockDim.y+threadIdx.y

blockIndx.x and blockDim.x are same for all threads in the same block.

Use shared memory to enable coalescing in tiled matrix multiplication

Tiled Matrix Multiplication Kernel

```
_global___ void MatrixMulKernel(float* M, float* N, float* P, int Width){
   shared float Mds[TILE WIDTH][TILE WIDTH];
    shared float Nds[TILE WIDTH][TILE WIDTH];
   int bx = blockIdx.x; int by = blockIdx.y;
   int tx = threadIdx.x; int ty = threadIdx.y;
    // Identify the row and column of the P element to work on
   int Row = by * TILE WIDTH + ty;
   int Col = bx * TILE_WIDTH + tx;
   float Pvalue = 0;
    // Loop over the M and N tiles required to compute the P element
8. for (int ph = 0; ph < Width/TILE WIDTH; ++ph) {
       // Collaborative loading of M and N tiles into shared memory
       Mds[?][?] = M[
9.
                                                   ];
10.
       Nds[?][?] = N[
                                                   ];
       __syncthreads();
11.
      for (int k = 0; k < TILE WIDTH; ++k)
12.
13.
           Pvalue += Mds[ty][k] * Nds[k][tx];
       __synchthreads();
14.
15. }
16. P[Row*Width+Col] = Pvalue;
```

Load M elements

- The linearized index calculation is equivalent to the twodimensional array access expression:
- M[Row][ph*TILE_WIDTH+tx].
 - column index used by the threads only differs in terms of threadIdx.
 - row index is determined by blockldx.y and threadldx.y
 - threads in the same thread block have <u>identical</u> blockldx.y/threadIdx.y and <u>adjacent</u> threadIdx.x
- Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx]

Load N elements

- The linearized index calculation is equivalent to the twodimensional array access expression:
- N[ph*TILE_WIDTH+ty][bx*TILE_WIDTH+tx].
 - the row index ph*TILE_WIDTH+ty has the same value for all threads with the **same** threadIdx.y value.
 - the column index calculation for each thread, Col=bx*TILE_WIDTH+tx,
 where bx*TILE_WIDTH is the same for all threads in the same block
- Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];

Tiled Matrix Multiplication Kernel

```
_global___ void MatrixMulKernel(float* M, float* N, float* P, int Width){
   shared float Mds[TILE WIDTH][TILE WIDTH];
    shared float Nds[TILE WIDTH][TILE WIDTH];
   int bx = blockIdx.x; int by = blockIdx.y;
   int tx = threadIdx.x; int ty = threadIdx.y;
    // Identify the row and column of the P element to work on
   int Row = by * TILE_WIDTH + ty;
    int Col = bx * TILE WIDTH + tx;
   float Pvalue = 0;
    // Loop over the M and N tiles required to compute the P element
8. for (int ph = 0; ph < Width/TILE WIDTH; ++ph) {
       // Collaborative loading of M and N tiles into shared memory
       Mds[ty][tx] = M[Row*Width + ph*TILE WIDTH + tx];
9.
       Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
10.
       __syncthreads();
11.
       for (int k = 0; k < TILE WIDTH; ++k)
12.
            Pvalue += Mds[ty][k] * Nds[k][tx];
13.
        __synchthreads();
14.
15.
16. P[Row*Width+Col] = Pvalue;
```

Content

- Global Memory Bandwidth
- More on Memory Parallelism
- Warps and SIMD Hardware
- Dynamic partitioning of resources

Bursting is not sufficient

- DRAM systems typically employ two more forms of parallel organization:
 - banks and channels.
 - At the highest level, a processor contains one or more channels.
 - Each channel is a memory controller with a bus that connects a set of DRAM <u>banks</u> to the processor.

Number of Channels

- The data transfer <u>bandwidth</u> of a bus is defined by its width and clock frequency:
 - For example, a 64-bit <u>DDR</u> bus with a clock frequency of 1
 GHz has a bandwidth of 8B*2*1 GHz = 16 GB/sec
- This seems to be a large number but is often too small for modern CPUs and GPUs.
 - CPU \rightarrow 32GB/s \rightarrow 2 channels
 - GPU \rightarrow 128GB/s \rightarrow 8 channels

Number of Banks

 For each channel, the <u>number of banks</u> is determined by fully utilizing the bandwidth of the bus:

Multiple DRAM Banks

In general, if the ratio of the cell array <u>access</u> <u>latency</u> and <u>data transfer</u> time is R, we need to have at least R+1 banks.

- Reasons to have more banks:
 - Avoid bank conflicts;
 - Manufacturability;

Data Distribution

- There is an important connection between the <u>parallel</u> execution of threads and the <u>parallel</u> organization of the DRAM system:
 - 1. sufficient number of threads making simultaneous memory accesses.
 - 2. these memory accesses must be evenly distributed to the channels and banks.
 - 3. each access to a bank must also be a coalesced access.

Data Distribution

• The distribution scheme *spreads* the elements across the banks and channels in the system:

Interleaved data distribution

Interleaved Data Distribution

• Example:

 multiplication will be performed with 2×2 thread blocks and 2×2 tiles

Interleaved Data Distribution

N_{1,0} N_{1,1} N_{2,0} N_{2,1} N_{3,0} N_{3,1} N_{3,0} N_{3,1}

• Example:

Tiles loaded by	Block 0,0	Block 0,1	Block 1,0	Block 1,1
Phase 0	M[0][0],M[0][1],	M[0][0], M[0][1],	M[2][0], M[2][1],	M[2][0], M[2][1],
(2D index)	M[1][0], M[1][1]	M[1][0], M[1][1]	M[3][0], M[3][1]	M[3][0], M[3][1]
Phase 0 (linearized index)	M[0], M[1],	M[0], M[1],	M[8], M[9],	M[8], M[9],
	M[4], M[5]	M[4], M[5]	M[12], M[13]	M[12], M[13]
	00.0			
Phase 1	M[0][2],M[0][3],	M[0][2],M[0][3],	M[2][2], M[2][3],	M[2][2], M[2][3],
(2D index)	M[1][2], M[1][3]	M[1][2], M[1][3]	M[3][2], M[3][3]	M[3][2], M[3][3]
Phase 1 (linearized index)	M[2], M[3],	M[2], M[3],	M[10], M[11],	M[10], M[11],
	M[6], M[7]	M[6], M[7]	M[14], M[15]	M[14], M[15]

Multiplying 8×8 matrices with the same 2×2 thread block configuration: What's the number of channels to make use?

Content

- Global Memory Bandwidth
- More on Memory Parallelism
- Warps and SIMD Hardware
- Dynamic partitioning of resources

Warps as Scheduling Units

- Each block is divided into 32-thread warps
 - An implementation technique
 - Warps are scheduling units in SM
 - Threads in a warp execute in Single Instruction Multiple Data (SIMD)
 manner
 - The number of threads in a warp may vary in future generations

Warps in Multi-dimensional Thread Blocks

- The thread blocks are first linearized into 1D in row major order before partitioning into warps.
 - In x-dimension first, y-dimension next, and z-dimension last
 - For this example, all 16 threads form half a warp.
 - The warp will be padded with another 16 threads to complete a 32-thread warp.

 $T_{y,x}$, x being threadIdx.x and y being threadIdx.y.

Blocks are partitioned after linearization

- Linearized thread blocks are partitioned
 - Thread indices within a warp are consecutive and increasing
 - Warp 0 starts with Thread 0
- Partitioning scheme is consistent across devices
 - Thus you can use this knowledge in control flow
 - However, the exact size of warps may change from generation to generation
- <u>DO NOT</u> rely on any ordering within or between warps
 - If there are any dependencies between threads, you must
 _syncthreads() to get correct results (more later).

SMs are SIMD Processors

- Control unit for instruction fetch, decode, and control is shared among multiple processing units
 - Control overhead is minimized

SIMD Execution Among Threads in a Warp

- All threads in a warp must execute the same instruction at any point in time
- This works efficiently if all threads follow the <u>same control</u> flow path
 - All if-then-else statements make the same decision
 - All loops iterate the same number of times

Control Divergence

- Control divergence occurs when threads in a warp take different control flow paths by making different control decisions
 - Some take the then-path and others take the else-path of an if-statement
 - Some threads take different number of loop iterations than others
- The execution of threads taking different paths are <u>serialized</u> in current GPUs
 - The control paths taken by the threads <u>in a warp</u> are traversed one at a time until there is no more.
 - During the execution of each path, all threads taking that path will be executed in parallel
 - The number of different paths can be large when considering <u>nested</u> control flow statements

Control Divergence Examples

- Divergence can arise when branch or loop condition is a function of thread indices:
 - Example kernel statement with divergence:
 - if (threadIdx.x > 2) { }
 - This creates two different control paths for threads in a block
 - Decision granularity < warp size; threads 0, 1 and 2 follow different path than the rest of the threads in the first warp
 - Example without divergence:
 - If (blockIdx.x > 2) { }
 - Decision granularity is a multiple of blocks size;
 - all threads in any given warp follow the same path.

Example: Vector Addition Kernel

Device Code

```
// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
   int i = threadIdx.x + blockDim.x * blockIdx.x;
   if(i<n) C[i] = A[i] + B[i];
}</pre>
```

Analysis for vector size of 1,000 elements

- Assume that block size is 256 threads
 - 8 warps in each block
- All threads in Blocks 0, 1, and 2 are within valid range
 - i values from 0 to 767
 - There are 24 warps in these three blocks, none will have control divergence
- Most warps in Block 3 will not control divergence
 - Threads in the warps 0-6 are all within valid range, thus no control divergence
- One warp in Block 3 will have control divergence
 - Threads with i values 992-999 will all be within valid range
 - Threads with i values of 1000-1023 will be outside valid range
- Effect of serialization on control divergence will be small
 - 1 out of 32 warps has control divergence
 - The impact on performance will likely be less than 3%

Performance Impact of Control Divergence

- Boundary condition checks are vital for complete functionality and robustness of parallel code
 - The tiled matrix multiplication kernel has many boundary condition checks
 - The concern is that these checks may cause significant performance degradation
 - For example, see the tile loading code below:

```
if(Row < Width && t * TILE_WIDTH+tx < Width) {
    ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
} else {
    ds_M[ty][tx] = 0.0;
}

if (p*TILE_WIDTH+ty < Width && Col < Width) {
    ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
} else {
    ds_N[ty][tx] = 0.0;
}</pre>
```

Two types of blocks in loading M Tiles

- 1. Blocks whose tiles are all within valid range until the last phase.
- 2. Blocks whose tiles are partially outside the valid range all the way

Analysis of Control Divergence Impact

- Assume 16x16 tiles and thread blocks
- Each thread block has 8 warps (256/32)
- Assume square matrices of 100x100
- Each thread will go through 7 phases (ceiling of 100/16)
- There are 49 thread blocks (7 in each dimension)

Control Divergence in Loading M Tiles

- Assume 16x16 tiles and thread blocks
- Each thread block has 8 warps (256/32)
- Assume square matrices of 100x100
- Each warp will go through 7 phases (ceiling of 100/16)
- There are 42 (6*7) Type 1 blocks, with a total of 336 (8*42) warps
- They all have 7 phases, so there are 2,352 (336*7) warp-phases
- The warps have control divergence <u>only in their last phase</u>
- 336 warp-phases have control divergence

Control Divergence in Loading M Tiles (Type 2)

Type 2:

- the 7 block assigned to load the bottom tiles, with a total of 56 (8*7) warps
- They all have 7 phases, so there are 392 (56*7) warp-phases
- The first 2 warps in each Type 2 block will stay within the valid range until the last phase
- The 6 remaining warps stay outside the valid range
- So, only 14 (2*7) warp-phases have control divergence

Type 2

Overall Impact of Control Divergence

- Type 1 Blocks: 336 out of 2,352 warp-phases have control divergence
- Type 2 Blocks: 14 out of 392 warp-phases have control divergence
- The performance impact is expected to be less than 12% (350/2,944 or (336+14)/(2352+14))

Additional Comments

- The estimated performance impact is data dependent.
 - For larger matrices, the impact will be significantly smaller
- In general, the impact of control divergence for boundary condition checking for large input data sets should be <u>insignificant</u>
 - One should not hesitate to use boundary checks to ensure full functionality
- The fact that a kernel is full of control flow constructs does not mean that there will be heavy occurrence of control divergence

Content

- Global Memory Bandwidth
- More on Memory Parallelism
- Warps and SIMD Hardware
- Dynamic partitioning of resources

- The execution resources in an SM include:
 - registers,
 - shared memory,
 - thread block slots,
 - and thread slots.
- These resources are dynamically partitioned and assigned to threads to support their execution.

— Thread slots:

- These thread slots are partitioned and assigned to thread blocks during runtime.
- For example: Fermi devices have 1536 thread slots.
 - If each thread block consists of 512 threads, the 1536 thread slots are partitioned and assigned to three blocks.
 - In this case, each SM can accommodate up to three thread blocks due to limitations on thread slots.
 - If each thread block contains 256 threads, the 1536 thread slots are partitioned and assigned to 6 thread blocks.
- The ability to dynamically partition the thread slots among thread blocks makes SMs versatile.

– Block slots:

- subtle interactions between block slots and thread slots.
- For example: Fermi devices have 1536 thread slots.
 - If each block has 128 threads, the 1536 thread slots can be partitioned and assigned to 12 blocks.
 - However, since there are only 8 block slots in each SM, only 8 blocks will be allowed.
 - This means that in the end, only 1024 of the thread slots will be utilized.
- Therefore, to fully utilize both the block slots and thread slots, one needs at least 256 threads in each block.

– Registers:

- the automatic variables declared in a CUDA kernel are placed into registers.
- For example: assume each SM has 16,384 registers.
 - If the kernel uses 10 registers per thread for 16×16 thread blocks, how many threads can run on each SM? 10*16*16 = 2560
 - The number of registers required by six blocks is 15,360. OK
 - Adding another block would require 17,920 registers? NOT
 - How about additional two automatic variables?
 - -12*16*16 = 3072; registers required by six blocks is now 18,432. NOT
- The CUDA runtime will reduce the number of blocks assigned to each SM by one.
 - This, however, reduces the number of threads running on an SM from 1536 to 1280.
 - "performance cliff"

- Shared memory:
 - another resource that is dynamically partitioned at run-time.
- For example: Tiled algorithms
 - require a large amount of shared memory to be effective.
 - large shared memory usage can reduce the number of thread blocks running on an SM.
- Reduced thread parallelism can negatively affect the utilization of the memory access bandwidth;
 - reduced memory access throughput, in turn, can further reduce the thread execution throughput.

 Constraints of all the dynamically partitioned resources interact with each other in a complex manner.

CUDA Occupancy Calculator

- a downloadable Excel sheet
- calculates the actual number of threads running on each SM for a particular device given the usage of resources by a kernel.

summary

- The memory bandwidth is a <u>first-order performance factor</u> in a massively parallel processor
 - DRAM bursts, banks, and channels
 - All concepts are also applicable to modern multicore processors
- The <u>memory coalescing is important</u> for effectively utilizing memory bandwidth in CUDA
 - Its origin in DRAM burst
 - Checking if a CUDA memory access is coalesced
 - Techniques for improving memory coalescing in CUDA code