1

Chapitre

Suites

1. Rappels

Définition 1.1 : Suite réelle/complexe

Une suite réelle réelle est une application de $\mathbb N$ dans $\mathbb R$ ou $\mathbb C$. L'ensemble des suites réelles est noté $\mathbb R^\mathbb N$.

Définition 1.2 : Suites réelles majorées/minorées

Une suite réelle est

- · majorée si $\exists C \in \mathbb{R}, \forall p \in \mathbb{N}, u_p \leq C$
- · minorée si $\exists C \in \mathbb{R}, \forall p \in \mathbb{N}, u_p \geq C$
- Définition 1.3 : Suite réelle/complexe bornée

Si $\exists C \in \mathbb{R}, \forall p \in \mathbb{N}, |u_p| \leq C$.

Définition 1.4 : Suite convergente/divergente

Une suite est dite convergente si $\exists l \in \mathbb{R} \setminus \infty, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \geq N, |u_p - l| \leq \varepsilon$. On dit que l est la limite de la suite. On le note $u_p \to l$.

On n'écrit pas $\lim u_p=l$ car en faisant ça on suppose que la limite existe vant même de commencer à l'étudier. Il ne faut pas l'écrire en début de calcul.

π

Définition 1.5 : Suite divergente

Elle est divergente i elle n'est pas convergente.

Proposition 1.1

Soit (u) une suite convergente. On suppose qu'il existe l_1, l_2 telle que $u_p \to l_1$ et $u_p \to l_2$. Alors $l_1 = l_2$.

T Preuve 1.1

On suppose qu'il existe l_1, l_2 telle que $u_p \to l_1$ et $u_p \to l_2$. Par définition de la convergence d'une suite :

$$\forall \varepsilon > 0, \exists N_1 \in \mathbb{N}, \forall p \ge N_1, |u_p - l_1| \le \varepsilon$$

$$\forall \varepsilon > 0, \exists N_2 \in \mathbb{N}, \forall p \geq N_2, |u_p - l_2| \leq \varepsilon$$

On pose $N = \max(N_1, N_2)$. On a alors $\forall p \geq N, |u_p - l_1| \leq \varepsilon$ et $\forall p \geq N, |u_p - l_2| \leq \varepsilon$

$$|l_1 - l_2| = |l_1 - u_n + u_n - l_2| \le |l_1 - u_n| + |u_n - l_2| < \varepsilon + \varepsilon = 2\varepsilon$$

$$|l_1 - l_2| < 2\varepsilon \iff l_1 = l_2$$

Proposition 1.2

Soit u une suite convergente. Alors elle est bornée. La réciproque est fausse. En effet, $u_n = (-1)^p$ à démontrer avec la def de la limite

π Preuve 1.2

Soit u CV et l sa limite. Prenons $\varepsilon = 36$. $\exists N, \forall p \geq N, |u_p - l| \leq 36$. Mais $|u_p - l| \le 36 \Rightarrow |u_p| \le 36 + |l|$ par inégalité triangulaire.

Posons $M = \max(|u_0|, |u_1| \dots |u_N|)$ et $C = \max(M, 36 + |l|)$

Soit $p \in \mathbb{N}$, on a :

$$p \leq N, |u_p| \leq M \leq C$$

•
$$p \ge N, |u_p| \le 36 + |l| \le C$$

Définition 1.6 : Limite infinie de suites réelles

On dit que la suite tend vers

- $\cdot +\infty \text{ si } \forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_p \geq A$
- $\cdot -\infty$ si $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_p \leq A$
- **Définition 1.7 :** Propriété vraie à partir d'un certain rang

On dit qu'une suite vérifie une propriété à partir d'un certain rang, si $\exists n, \forall p \geq n, u_p$ vérifie la propriété.

Définition 1.8 : Suites réelles monotones

Soit u une suite réelle. On dit que u est croissante (à partir d'un certain rang) si $(\exists N,) \ \forall p (\geq N), u_{p+1} \geq u_p$.

Proposition 1.3

Toute suite réelle croissante à partir d'un certain rang tend vers une limite finie ou infinie.

Si elle est en plus majorée, elle tend vers une limite finie.

Exemple : $w_p = \frac{p^2}{2p} \ge -70$ Elle est minorée.

 $w_{p+1}-w_p=rac{p^2+2p+1-2p^2}{2^{p+1}}=-rac{(p-1)^2-2}{2^{p+1}}\leq 0$ dès que $p\geq 3$. Donc elle est décroissante à partir du rang 3. Donc elle est convergente et admet une limite.

1 Notations de Landau

Définition 2.1 : Suites néglieables

Soit u et v deux suites. On dit que u est néglieable devant v (en + ∞), noté $u_p o_{p\to\infty}(v_p)$. Il existe une suite ε telle que $\varepsilon_p\to 0$ et $u_p = v_p \varepsilon_p$ à partir d'un certain rang.

Proposition 2.1

u et v deux suites. On suppose qu'il existe $N \in \mathbb{N}, \forall p \geq N, v_p \neq 0$. Alors $u_p = o(v_p) \iff \frac{u_p}{v_n} \to 0.$

T Preuve 2.1

Supposons $u_p=o(v_p)$. Alors $\exists (\varepsilon_p), \varepsilon \to 0$ et $u_p \varepsilon_p v_p$ à partir d'un certain rang M.

$$\forall p \ge \max(M, N), \frac{u_p}{v_p} = \varepsilon_p \to 0.$$

Supposons $\frac{u_p}{v_p} \to 0$. Définissons $\varepsilon_p = \frac{u_p}{v_p}$ si $p \ge N$ et 1 dans le cas contraire. Alors $\varepsilon_p \to 0$ et $\forall p \ge N, u_p = \varepsilon_p v_p$, donc $u_p = o(v_p)$.

Exercice : Montrer que $u_p = o(v_p) \iff |u_p| = o(|v_p|)$. en utilisant la definition

$$u_p = v_p \varepsilon_p \Rightarrow |u_p| = |\varepsilon_p v_p| = |o||v_p| = o(|v_p|) \operatorname{car} \varepsilon_p > 0.$$

 $|u_p|=o(|v_p|)\iff rac{|u_p|}{|v_p|} o 0$ Si u_p et v_p sont de même signe, $rac{u_p}{v_p}\geq 0$ et $rac{u_p}{v_p} o 0+$. Dans le cas contraire, $rac{u_p}{v_p} o 0-$. Dans tous les cas, $rac{u_p}{v_p} o 0-$, donc $u_p = o(v_p)$.

Exemple: $p^3 = o(p^5)$.

Exemple: $p^k = o(p^m) \iff m > k$.

On a jamais $u_p=o(u_p)$ sauf si la suite est nulle à partir d'un certain rang.

Proposition 2.2

Si u = o(v), v = o(w), alors u = o(w).

T Preuve 2.2

Il existe 2 suites ε et η qui tendent vers 0 telles que $u_p=\varepsilon_p v_p \forall p\geq$

$$N_1$$
 et $v_p = \eta_p w_p \forall p \geq N_2$

$$\forall p \geq \max(N_1, N_2), u_p = \varepsilon_p v_p = \varepsilon_p \eta_p w_p.$$
 On pose $\delta_p = \varepsilon_p \eta_p \to 0.$

Définition 2.2 : Suite dominée

Soient u et v deux suites, on dit que u est dominée par v, noté u=O(v) si $\exists \eta$ une suite born'ee telle que $u_p=\eta_p v_p$ à partir d'un certain rang.

Proposition 2.3

Si u = o(v), alors u = O(v).

π Preuve 2.3 : À faire

 $u_p=o(v_p)=arepsilon_p v_p$ avec $arepsilon_p o 0$. Elle est convergente, donc bornée. On peut donc poser $\eta_p=arepsilon_p$ et $u_p=\eta_p v_p=O(v_p)$

Proposition 2.4

Si $v_p \neq 0, \forall p \geq N_1$, on a : $u = O(v) \iff \exists C \in \mathbb{R} tq \forall p \geq N, |\frac{u_p}{v_p}| \leq C.$

π Preuve 2.4

 $(u_p)=O(v_p)=\eta_p v_p$, donc $rac{u_p}{v_p}=rac{\eta_p v_p}{v_p}=\eta_p$ qui est bornée. Donc par définition, $\exists C\in\mathbb{R} tq \forall p\geq N, |rac{u_p}{v_p}|\leq C$

Autre sens?

π Proposition 2.5

Soient u, v, w trois suites. Si u = O(v) et v = O(w), alors u = O(w).

Proposition 2.6

Soient $u = O(v) \land v_p \to 0 \Rightarrow u_p \to 0$.

Preuve 2.5

 $\exists \eta$ suite bornée et $N \in \mathbb{N}$ tel que $u_p = \eta_p v_p, \forall p \geq N$. Alors $\forall p \geq N$ $N, |u_p| = |\eta_p v_p| = |\eta_p| |v_p|$. Comme η est bornée, $\exists C \in \mathbb{R}$ tel qye $\forall p \in \mathbb{N}, |\eta_p| \leq C.$

Donc $\forall p \geq N, |u_p| \leq c|v_p| \rightarrow 0$, donc $u_p \rightarrow 0$.

Exemple : $u_p=p^2+3p+2$ et $v_p=p^2+6p-3$. On remarque que $v_p\to\infty$ donc $\exists N, \forall n\geq N, v_p\geq 1$. Pour $p\geq N, \frac{u_p}{v_p}\to 1$. La suite converge, donc elle est bornée.

Définition 2.3 : Suite équivalente

Soient u et v 2 suites équivalentes. La suite u est éuivalente à v_p , noté $u \sim v$ si $u_p = v_p + o(v_p)$ ou encore $\exists \varepsilon \to 0, \forall p \geq N, u_p = v_p + o(v_p)$ $v_p + \varepsilon_p v_p = (1 + \varepsilon_p) v_p$

Proposition 2.7

Soient u et v deux suites. $u_p \sim v_p \iff \frac{u_p}{v_p} \to 1$

π Preuve 2.6

Si $u_p \sim v_p, \exists N_1, \varepsilon \to 0$ telle que $u_n = v_n(1+\varepsilon) \forall p \geq N_1$. Donc $\forall p \geq N_1 + N, \frac{u_p}{v_p} = 1 + \varepsilon_p \to 1$.

Récirpoquement, on suppose $\frac{u_p}{v_p} \to 1$. Pour $p \geq N u_p = v_p \frac{u_p}{v_p} = v_p (1 + \frac{u_p}{v_p} - 1)$. posons $\varepsilon_p = 42 sip < N, \frac{u_p}{v_p} - 1$ sinon. Alors $\varepsilon_p \to 0$ et $\forall p \geq N, u_p = v_p(1 + \varepsilon_p).$

Proposition 2.8

Soient u, v, w trois suites. On a :

- $u \sim u$
- $u_p \sim v_p \iff v_p \sim u_p$
- $u_p \sim v_p$ et $v_p \sim w_p$ alors $u_p \sim w_p$.

π Preuve 2.7

 $u_p = (1+0)u_p \text{ avec } 0 = \varepsilon_p.$

Supposons que $u_p \sim v_p$, alors $\exists \varepsilon_p \to 0$ et N tel que $\forall p \geq N, u_p = (1+\varepsilon_p)v_p$. Comme $\varepsilon_p \to 0, \exists N_3, \forall p \geq N_3, |\varepsilon_p| \leq 1/2$, et donc $1+\varepsilon_p \geq 1-|\varepsilon_p| \geq 1/2 > 0$. Donc $\forall n \geq \max(N,N_3)$, on a $v_p = u_p \frac{1}{1+\varepsilon_p} = u_p (1+\frac{1}{1+\varepsilon_p}-1) = u_p (1+\frac{-\varepsilon_p}{1+\varepsilon_p})$. Posons alors $\varepsilon_q = \frac{-\varepsilon_p}{1+\varepsilon_p} sip \geq \max(N,N_3)$. Alors $\varepsilon_q \to 0$ e $\forall p \geq \max(N,N_3), v_p (1+\varepsilon_p)u_p$.

Exemple : Soit u_p , $|u_p| < 1$ et $u_p \to 0$. Alors $\ln(1 + u_p) \sim u_p$.

 $\begin{array}{l} v_p = \ln(1+u_p) = \ln(1+up) - \ln(1). \ \ \text{D'après le TAF} : \exists c_p \in [1-|u_p|, 1+|u_p|] \\ \text{tel que } \ln(1+u_p) - \ln(1) = \ln'(c_p)(1+u_p-1) = \frac{u_p}{c_p} = u_p(1+\frac{1}{c_p}-1) = \\ u_p(1+\frac{1-c_p}{c_p}). \ \ \text{Or, } c_p \to 1, 1-|u_p| \le c_p \le 1+|u_p|. \end{array}$

Proposition 2.9

Soient u et v 2 suites. On suppose que $u_p \sim v_p$ et v converge vers l. Alors $u_p \to l.$

Preuve 2.8: À faire

 $v_p \to l \wedge u_p = (1+\varepsilon) v_p \text{, donc } u_p \to l \times 1 = l.$

π Proposition 2.10

u et v deux suites réelles. Si $u \sim v$ et $v_p \to \infty$, alors $u_p \to \infty$.

1. Sous-suites

π

Définition 3.1

On dit que v est une suite extraite de $u \iff \exists \varphi: \mathbb{N} \to \mathbb{N}$ strcutement croissante telle que $\forall p \in \mathbb{N}, v_p = u_{\varphi(p)}.$

Exemple: $u_0, u_1, u_2, \dots, u_p$ Si on prend $v_0 = u_2, \varphi(0) = 2$

C'est φ qui définit la sous-suite, la suite u est une suite extraite de u. Il suffit de prendre $\varphi(p)=p$.

Proposition 3.1

On a $\varphi(p) \geq p$.

Preuve 3.1: Laissée en exo

Proposition 3.2

Une suite converge vers $l \iff$ toutes ses suites extraites cobvergent ver l.

Preuve 3.2

u est une suite extraite de u

Dans l'autre sens : u CV vers l donc $\forall \varepsilon > 0 \exists N \forall n \geq N, |u_p| - l < \varepsilon$. Soit v une suite extraite de u. $\exists \varphi N \to \mathbb{N}, \forall n \in \mathbb{N}, v_p = u_{\varphi(p)}$. $\forall p \geq N, \varphi(p) \leq p, |v_p - l| = |u_\varphi - l| < \varepsilon$.

Définition 3.2 : Valeur d'adhérence

l est une valeur d'adhérence $\iff l$ est une limite finie d'une suite extraite de u.

π

Proposition 3.3

Toute suite admet une sous-suite monotone.

Théorème 3.1 : Bolzano Weitrass

Toute suite réelle bornée admet une sous-suite convergente.

Preuve 3.3

Soit une sous-suite réelle/complexe bornée. Elle admet une soussuite monotone qui sera aussi bornée (pourquoi?), donc convergente

1. Suite de Cauchy / Complétude

Définition 4.1 : Suite de Cauchy

Soit u une suite. On dit que u est de Cauchy si elle vérifie une des 2 prorpiétés suivantes équivalentes :

- $\cdot \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \ N, q > N, |u_p u_q| \le \varepsilon$
- $\cdot \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \ N, q > N, |u_{p+q} u_p| \le \varepsilon$

$\hat{\pi}$

Proposition 4.1

Toute suite convergente est de Cauchy

π Preuve 4.1

On prend une suite et sa limite l. Alors $\forall \varepsilon>0, \exists N\in\mathbb{N}, \forall p\leq N, |u_p-l|\leq \frac{\varepsilon}{2}$. D'où $\forall p,q\geq N, |u_p-u_q|=|u_p-l+l-u_q|\leq |u_p-l|+|l-u_q|\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

Proposition 4.2

Toute suite de Cauchy est bornée.

π Preuve 4.2

Prenons $\varepsilon = 1, \exists N, \forall p, q \geq N, |u_p - u_q| \leq 1.$

Alors , $\forall p \geq N, |u_p - u_N + u_N| \leq |u_p - U_n| + |u_N| \leq 1 + |u_N|$. On a bien écrit que la suite u_p est bornée.

Posons $C = \max(|u_0|, |u_1|, \dots |U_n|, 1 + |U_N|)$. Si $p \leq N, |u_p| \leq C$. Si $p \geq N, |u_p| \leq C$. Donc u est bornée.

Proposition 4.3

Si u est de Cauchy et admet une sous-suite convergente, alors uconverge.

π Preuve 4.3

Il existe $\varphi:\mathbb{N}\to\mathbb{N}$ strcitement croissant et un l tel que $\forall \varepsilon>$ $0, \exists N_1, \forall p \ge N_1, |u_{\varphi(p)} - l| \le \frac{\varepsilon}{2}.$

Comme la suite est de Cauchy, $\exists N_2, \forall p; q \geq N_2, |u_p - u_q| \leq \frac{\varepsilon}{2}$.

Soit $N = \max(N_1 N_2), \forall p \geq N, \varphi(p) \geq N$, d'où $|u_p - l| = |u_p - l|$ $|u_{\varphi(p)} + u_{\varphi(p)} - l| \le |u_p - u_{\varphi(p)}| + |u_{\varphi(p)} - l| \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$

Donc u converge vers l.

Théorème 4.1

Toute suite de Cauchy converge. On dit que \mathbb{R} et \mathbb{C} sont complets.

Preuve 4.4

Soit u de Cauchy. Alors u est bornée. Par BW, elle admet une sous-

suite convergente, donc elle converge.