

CompTIA Network+ N10-009 TTT Session 5:

Title

July 09, 2024

Instructor:
Don Tilley
Cybersecurity Instructor,
Program Director
Access Computer Training
dontilley130@gmail.com

Host:
Stephen Schneiter
Instructor Network Program Director
CompTIA
sschneiter@comptia.org

The CompTIA Instructor Network (CIN) is a worldwide community for instructors who provide CompTIA certification training.

Benefits of being a community member include:

- Communicate and collaborate with CompTIA staff and other instructors.
- Access resources for students to understand the value of getting certified.
- Receive complimentary training and tools from CompTIA to enrich your classroom.
- Become proficient at teaching CompTIA standards.
- Share best practices and resources with each other.

Join us for the morning session from 9:00 a.m. to 12:00 p.m. or the afternoon session from 1:00 p.m. to 4:00 p.m. Each session is \$99.00.

Lunch and refreshments provided

Workshop sessions:

- Get In Sync with the new CompTIA Tech+ FC0-U71
- 2. Teaching CompTIA Network+ N10-009 with the new CertMaster Perform
- 3. Tools for teaching CompTIA A+ 1100 Series

Each session provides:

- Access to official CompTIA content for the course
- Instructor led training and labs
- Certificate of completion provided at the end of session.

Hyatt Regency Atlanta
July 31 – August 1

Register today: https://connect.comptia.org/partnersummit/home

If a bad organizational culture eats ethics for breakfast, then will AI steal your lunch money?

What: One-hour webinar investigating current industry AI trends

When: Thursday July 25th 10:00 a.m. CST

Where: ON24

Who: James Stanger, Chief Technology Evangelist

Register: https://bit.ly/CINPulse-AITrends

- Introductions
- Getting to know you
- Why Network+
- Session 1 topics

Network+ N10-009 TTT Session Outline			
Date	Topic		
√ 06/20/2024	Introduction and Network Topologies		
✓ 06/25/2024	Cabling and Physical Installations		
✓ 06/27/2024	Configuring Interfaces and Switches		
√ 07/02/2024	Configuring Network Addressing		
√ 07/09/2024	Configuring Routing and Advanced Switching		
07/11/2024	Network Security		
07/16/2024	Network Security (Continued)		
07/18/2024	Wireless Networking		
07/23/2024	Troubleshooting and Management		
07/25/2024	Emerging Technologies and Trends		

CONFIGURING ROUTING AND ADVANCED SWITCHING

Learning Objectives

Compare and contrast routing concepts.

Compare and contrast dynamic routing concepts.

Install and troubleshoot routers.

Explain tiered switching architecture.

Explain virtual LANs.

ROUTING TECHNOLOGIES

Routing Tables and Path Selection

The following main parameters define a routing entry:

Protocol

Destination

Interface

Gateway/next hop

Static and Default Routes

Routing table entries

- Directly connected routes
- Remote routes
- Host routes
- Default route

Routing Table Example

Router B Routing Table				
Network	Interface	Source		
10.0.1.0/24	G0	Static		
10.0.2.0/24	G0	Connected		
10.0.3.0/24	G1	Connected		
10.0.4.0/24	G1	Static		

l	Router A Routing Table				
I	Network	Interface	Source		
I	10.0.1.0/24	G0	Connected		
I	10.0.2.0/24	G1	Connected		
I	10.0.3.0/24	G1	Static		
I	10.0.4.0/24	G1	Static		

Router C Routing Table				
Network	Interface	Source		
0.0.0.0/0	G0	Static		
10.0.3.0/24	G0	Connected		
10.0.4.0/24	G1	Connected		

Packet Forwarding

Hop Count

Router Configuration

Router placement:

- Same subnet or IP network must not be separated by a router
- Different subnets or IP networks must be separated by a router

Routing Tools

show route

Displays routing table

show arp

Lists current ARP table entries

route

Shows IP routing table of a host

traceroute

Tracks a packet's path to destination

Activity: Trivia

What is the function of a routing table?

What are directly connected routes?

What is traceroute used for?

DYNAMIC ROUTING TECHNOLOGIES

Static vs. Dynamic Routing

Feature	Static Routing	Dynamic Routing
Configuration	Manually configured	Automatically adjusts to network changes
Flexibility	Inflexible - Updates require manual intervention	Flexible - Adapts in real-time
Control	Complete control over routing paths	Less direct control over the routes that data takes
Use Case	Ideal for small, stable networks where routes do not change often	Ideal for larger, more complex networks with frequent changes

Dynamic Routing Protocols

Definition

Dynamic routing protocols are algorithms that automatically update route information and adjust the paths between network nodes by distributing network topology information.

Advantages

Scalability, adaptivity to network changes, and reduced network administration overhead

Considerations

Requires more processing power and memory Proper configuration is critical for security and efficiency

RIP Protocol

Definition

A legacy dynamic routing protocol that finds the best path between the source and destination networks.

Features

Uses hop count as the metric for path selection 15 maximum allowed hops

Considerations

Not ideal for large networks because of the hop count limit

> Slow to converge in response to network changes

Enhanced IGRP (EIGRP)

Definition

An advanced distancevector protocol that is used on a computer network for automating routing decisions and configurations

Features

Uses metrics such as bandwidth, delay, load, and reliability for path selection

Supports both IPv4 and IPv6 without needing separate configurations

Considerations

More complex to configure Cisco Systems proprietary protocol

Open Shortest Path First (OSPF)

Definition

A dynamic link-state protocol that efficiently exchanges routing information within an autonomous system using the Shortest Path First algorithm.

Features

Computes the shortest path first

Supports complex network topologies

Considerations

Can be complex planning and configuration

Requires more bandwidth than distance-vector protocols

Border Gateway Protocol (BGP)

Gateway protocol that enables the Internet to exchange routing information between autonomous systems.

Features

Scalable to the Internet's size, handling thousands of routes

Uses path vector protocol for establishing routing decisions

Supports CIDR, allowing for efficient IP address management and route aggregation.

Activity: Fill in the Blank

- are algorithms that automatically update route information and adjust the paths between network nodes by distributing network topology information.
- is a protocol that enables the Internet to exchange routing information between autonomous systems.
- is a legacy dynamic routing protocol that finds the best path between the source and destination networks.
- 4. ______ is a dynamic link-state protocol that efficiently exchanges routing information within an autonomous system using the Shortest Path First algorithm.

NETWORK ADDRESS TRANSLATION

Network Address Translation (NAT)

Modifies the network address information in packet headers while in transit

Enables multiple devices on a local network to share a single public IP address

Why it is needed

Increases network security by hiding internal IP addresses from external networks

Conserves public IP addresses

NAT Types

Dynamic

Maps internal addresses to a pool of external addresses dynamically

Allows a larger number of devices to share the same external IP address

Static

Translates one internal IP address to one external IP address.

Allows inbound connections initiated from outside the network.

Edge Routers

An edge router

- Is located at the boundary of a network that connects to external networks (e.g., the Internet).
- Manages the flow of data between the internal and external networks.
- Routes data to its destination, performs NAT and applies security measures.

Types of Edge Routers

Customer Edge (CE)

Located at the edge of a customer's network

Connects customer's internal network to provider's network, acting as a security barrier for the customer's network

Provider's Edge (PE)

Located at the edge of a provider's network

Focuses on maintaining the integrity and confidentiality of customer data as it travels across the provider's network

Port Address Translation

Activity: Multiple Choice

FIREWALLS

Firewall Types

Hardware

Standalone appliances

Integrated within routers

Next-Generation (NGFW)

Software

Operating system-based

Third-party software-based Cloud-based

Firewall as a service (FAAS) **Unified Threat** Management (UTM)

> All-in-one security appliances

Stateless vs. Stateful

Stateless inspection (Packet filtering)

Filters based on IP addresses. protocol, and port numbers

Acts at the network layer

Suitable for smaller networks or less complex security requirements

Stateful inspection (Circuit Level Gateway)

Inspects packets and tracks the state of active connections

Acts at the session layer

Ideal for corporate networks where it is critical to protect sensitive data

ENTERPRISE NETWORKING TOPOLOGIES

Activity: Think About It

What are the three basic network topologies?

Tree Topology

Hybrid Topologies

Hybrid Topologies

- Used when a basic topology isn't enough
- Use a mixture of the basic topologies
- Used to implement redundancy and fault tolerance

VIRTUAL LANS

Virtual LANs and Subnets

Creates separate networks within a single physical network infrastructure

Segmentation

- Divides a network into small, isolated segments
- Doesn't require separate hardware

Flexibility

 Users and devices are grouped by function, department or team

Simplified Administration

 Network changes or moves can be easily managed without altering physical setup

VLAN IDs and Membership

VLAN IDs

- Each VLAN is assigned a unique ID
- Each device is a member of a VLAN
- Devices use VLAN IDs to manage traffic
- Inter-VLAN routing is needed for devices to communicate between VLANs

Tagged and Untagged Ports

- Port tagging: method of marking data packets with a VLAN ID
- Tagged ports: configured to receive and understand packets that have a VLAN identifier
- Untagged ports: set to receive data without a VLAN identifier

VLAN Types

Default VLAN

- VLAN with ID1
- Should remain unused
- Change unused ports from ID1

Native VLAN

- Receives all untagged frames
- Separate Native and Default **VLANS**
- Match Native **VLAN IDs** on switches

Voice VLAN

- Handles VoIP system traffic
- Ensures voice communication quality
- Prioritizes voice traffic

Management **VLAN**

- Manages network devices and services
- Isolate from user data traffic
- Separate from **Default VLAN**

Trunking and IEEE

VLAN Routing

Activity: Two Truths and a Lie

Each device in a VLAN is assigned a unique VLAN ID.

Untagged ports are set to receive data without a VLAN identifier.

A Native VLAN receives all untagged frames.

ROUTING AND VLAN TROUBLESHOOTING

Routing Table Issues

Suspect a routing issue if you ping a host's default gateway but not some or all hosts on remote network.

Default Route and Routing Loop Issues

Misconfigured default routes or distributing default routes to other routers can lead to routing loops.

VLAN Assignment Issues

Devices on a VLAN need a matching IP configuration (address, subnet mask, gateway, DNS).

Activity: Homework

- Research these hybrid topologies and note the following:
- What do they look like?
- How and when are they used?

Hierarchical star

Hierarchical star-mesh

Star of stars

3-Tiered network hierarchy

Summary

- **Routing Tables**: Routers' internal maps guide data packets to their destinations
- **Dynamic Routing:** Protocols automate routing information exchange between routers
- **NAT**: Translates between private and public IP addresses for internet access
- **VLANs**: Create logical network segments within a physical network

Discussion time: Please type your questions in chat

- Questions over content.
- Share you experience.
- What would you like to see different moving forward?

Thank You!

Let's keep the conversation going in the CompTIA Instructor Forum: https://cin.comptia.org