ACSI-BD

Introduction

Ivan Canet, 16 déc. 2017

TABLE DES MATIÈRES

I. Théorie des bases de données2
1. Qu'est-ce qu'une base de données ?2 2. Trois niveaux d'abstraction2 Niveau physique
Niveau logique
Vue externe
3. Grands problèmes à résoudre2
II. Présentation des bases de données
1. Les ensembles3
1.1. Les différents ensembles3
Ensembles
Multi-ensembles
Couples, triplets, n-uplets
1.2. Opérations des ensembles3
Inclusion stricte
Inclusion large
Intersection
Réunion
Produit cartésien
Relation
2. Bases de données
Schéma de relation Clef
Relation
Domaine
Attribut
Schéma relationnel
2.2. Contraintes et vérification4
Contrainte d'intégrité
Contrainte d'intégrité Contrainte référentielle
Logiciels de manipulation de la Base de Données

I. THÉORIE DES BASES DE DONNÉES

1. Qu'est-ce qu'une base de données ?

Une base de données est définie comme une certaine structure de données permettant de gérer des données persistantes.

2. Trois niveaux d'abstraction

Niveau physique

Le niveau physique consiste au niveau du stockage de l'information ; il est géré par l'administrateur système grâce aux langages de LDP (Langage de Description Physique).

Niveau logique

Le niveau logique, ou conceptuel, définit la structure des bases, et est géré par l'administrateur aux bases de données grâces aux LDD (Langage de Description des Données).

Vue externe

La vue externe contient la liste des informations utiles et autorisées à une certaine application – c'est le programmeur qui s'en occupe, avec les LMD (Langage de Manipulation des Données).

3. Grands problèmes à résoudre

Les principaux problèmes lors de la création d'une base de données sont ;

- La sécurité : gestion des autorisations
- L'intégrité: cohérence des données enregistrées, grâce à des règles de cohérence
- La concurrence : problèmes causés par des accès simultanés.

II. PRÉSENTATION DES BASES DE DONNÉES

1. Les ensembles

1.1. Les différents ensembles

Ensembles

Un ensemble est une liste désordonnée d'objets distincts. On peut le définir en extension, c'est-à-dire en donnant tous ses éléments (eg. $A = \{5, 2, 6\}$) ou par compréhension, en donnant un intervalle (eg. $B = \{multiples de 7\}$).

Multi-ensembles

Les multi-ensembles sont des ensembles autorisant les duplicatas. Un objet peut donc être présent deux fois ou plus.

Couples, triplets, n-uplets

Il s'agit d'une liste ordonnée d'objets, on ne peut les noter que par extension (eg C = (5,6)).

1.2. Opérations des ensembles

Inclusion stricte

L'inclusion consiste à définir un ensemble comme sous-ensemble d'un autre. On notera que l'ensemble X est contenu dans l'ensemble Y comme ceci : $X \subset Y$.

Inclusion large

L'inclusion large est identique à l'inclusion stricte, mais elle prend aussi en compte le cas où X et Y sont identiques. Elle se note $X \subseteq Y$.

Intersection

L'intersection permet de déterminer le plus grand sous-ensemble commun à deux ensembles X et Y, tel que $I \subset X$ et $I \subset Y$. On la note $I = X \cap Y$.

Réunion

La réunion désigne tous les éléments présent soit dans X, soit dans Y; on la note $I = X \cup Y$.

Produit cartésien

Le produit cartésien permet d'obtenir un ensemble de tous les couples de valeurs possibles entre X et Y. On le note $I=X\times Y$ et il vaut $I=\{(5,1),(5,3),(6,1),(6,3)\}$ si $X=\{5,6\}$ et $Y=\{1,3\}$. Contrairement à un produit 'traditionnel', il n'est pas transitif!

Relation

Une relation est un sous-ensemble de produit cartésien ; par exemple, la relation « être multiple de » est constituée d'une certaine portion de l'ensemble $\mathbb{N} \times \mathbb{N} = \mathbb{N}^2$.

2. Bases de données

2.1. Schématisation des ensembles et vocabulaire

Schéma de relation

Un schéma de relation est une manière de symboliser la structure d'une relation. La syntaxe est ;

RELATION (ATTRIBUT: DOMAINE, ATTRIBUT: DOMAINE, ...)

Par exemple:

MATIÈRE (N° : Entier, Nom : Chaîne de Caractères)

Clef

On nomme clef un attribut qui permet de différencier tous les tuples. On le souligne dans le schéma de relation.

Relation

Une relation est une des combinaisons existant dans un schéma de relation.

Domaine

Un domaine est un ensemble pouvant être utilisé pour définir un attribut.

Attribut

Un attribut est un des éléments d'une relation ; il doit être défini comme appartenant à un certain domaine.

Schéma relationnel

Un schéma relationnel est un ensemble de relations ; c'est ce qu'on appelle une base de donnée.

2.2. Contraintes et vérification

Contrainte d'intégrité

Une contrainte d'intégrité, aussi appelée prédicat, est une règle permettant de s'assurer de la cohérence des données.

Contrainte référentielle

Une contrainte référentielle permet de définir un attribut d'une relation comme lié à un attribut similaire d'une autre relation, par exemple les INE dans les moyennes et dans la liste des étudiants doivent être identiques ;

MOYENNES.INE → ÉTUDIANTS.INE

Logiciels de manipulation de la Base de Données

Aussi appelés Systèmes de Gestion de la Base de Données (SGBD), ils s'occupent de vérifier la conformité des données aux différentes contraintes.