《统计学大作业报告》

——基于上海每日新冠疫情数据的线性回归分析

作者姓名:石磊

(学院:信息学院 专业:数据科学与大数据技术 学号:2052515)

摘要:上海疫情的亲历者,我对上海疫情的整个发展趋势以及各个阶段进行统计分析。我将上海疫情按时间分为了四个阶段。在每个阶段中我们分别对疫情数据进行线性回归分析,分别是:确诊病例人数随时间变化线性回归分析、无症状感染者人数随时间变化线性回归分析、确诊病例人数随无症状感染者人数变化进行线性回归分析。分析过程中,我首先计算其相关性系数 R、回归方程;并且比较 R 方值,F 检验来判断线性相关性;接着计算回归曲线在95%置信水平下的置信区间以及均值的预测区间;又对相关系数进行显著性检验确定其显著性程度;最后得出确诊病例人数随时间变化、无症状感染者人数随时间变化在疫情开始发展阶段呈强正相关性,在疫情稳定结束阶段呈强负相关性;确诊病例人数随无症状感染者人数增加呈强正相关,反之亦然。

关键词:线性回归分析, R-square, F 检验, R 方值, 置信区间。

引言:在这次疫情中,通过对上海官方发布的上海疫情数据,对数据进行回归分析,揭露数据底下蕴含着统计的思想,让我们利用统计的知识重新了解上海的抗疫历程,通过数据讲述疫情的整个"生命周期"。

1 收集数据

1.1 数据来源

在上海发布的从 3 月 12 日至 5 月 25 日这 75 天中的官方上海疫情数据。 数据列别包括:日期、本土确诊病例人数、本土无症状病例人数、本土确诊+无症状病例人数、时间间隔。

图 1: 上海疫情数据集展示图 (1)

date	quezhen	wu	quewu	time_code
12-Mar	1	64	65	1
13-Mar	41	128	169	2
14-Mar	9	130	139	3
15-Mar	5	197	202	4
16-Mar	8	150	158	5
17-Mar	57	203	260	6
18-Mar	8	366	374	7
19-Mar	17	492	509	8
20-Mar	24	734	758	9
21-Mar	31	865	896	10
22-Mar	4	977	981	11
23-Mar	4	979	983	12
24-Mar	29	1580	1609	13
25-Mar	38	2231	2269	14
26-Mar	45	2631	2676	15
27-Mar	50	3450	3500	16
28-Mar	96	4381	4477	17
29-Mar	326	5656	5982	18
30-Mar	355	5298	5653	19
31-Mar	358	4144	4502	20
1-Apr	260	6051	6311	21
2-Apr	438	7788	8226	22
3-Apr	425	8581	9006	23
4-Apr	268	13086	13354	24
5-Apr	311	16766	17077	25
6-Apr	322	19660	19982	26
7-Apr	824	20398	21222	27
8-Apr	1015	22609	23624	28
9-Apr	1006	23937	24943	29
10-Apr	914	25173	26087	30
11-Apr	994	22348	23342	31
12-Apr	1189	25141	26330	32
13-Apr	2573	25146	27719	33
14-Apr	3200	19872	23072	34

图 2: 上海疫情数据集展示图 (2)

15-Apr	3590	19923	23513	35
16-Apr	3238	21582	24820	36
17-Apr	2417	19831	22248	37
18-Apr	3084	17332	20416	38
19-Apr	2494	16407	18901	39
20-Apr	2634	15861	18495	40
21-Apr	1931	15698	17629	41
22-Apr	2736	20634	23370	42
23-Apr	1401	19657	21058	43
24-Apr	2472	16983	19455	44
25-Apr	1661	15319	16980	45
26-Apr	1606	11956	13562	46
27-Apr	1292	9330	10622	47
28-Apr	5487	9545	15032	48
29-Apr	1249	8932	10181	49
30-Apr	788	7084	7872	50
1-May	727	6606	7333	51
2-May	274	5395	5669	52
3- May	260	4722	4982	53
4-May	261	4390	4651	54
5-May	245	4024	4269	55
6-May	253	3961	4214	56
7-May	215	3760	3975	57
8-May	322	3625	3947	58
9- May	234	2780	3014	59
10-May	228	1259	1487	60
11-May	144	1305	1449	61
12-May	227	1869	2096	62
13-May	194	1487	1681	63
14-May	166	1203	1369	64
15-May	69	869	938	65
16-May	77	746	823	66
17-May	96	759	855	67
18-May	82	637	719	68
19-May	88	770	858	69

图 3: 上海疫情数据集展示图 (3)

20-May	84	784	868	70
21-May	52	570	622	71
22-May	55	503	558	72
23-May	58	422	480	73
24-May	44	343	387	74
25-May	48	290	338	75

2 问题二的求解与分析

2.1 数据散点图的绘画与分析

散点图的绘画使用软件 Python, 我们散点图绘画过程, 部分图横坐标为日期时间, 所以为了消除非数值型数据作为成图源数据带来的不方便,这里创建了新的一栏来表示持续天数。

2.1.1 散点图展示 (代码见附录:源代码1)

(1) 本土确诊病例人数随时间变化散点

图 4: 本土确诊病例人数随时间变化散点

(2) 本土无症状病例人数随时间变化散点图

图 5: 本土无症状病例人数随时间变化散点图

(3) 本土无症状与确诊病例人数随时间变化散点图

图 6: 本土无症状与确诊病例人数随时间变化散点图

图 7: 确诊病例人数随无症状人数散点图

确诊病例与无症状感染者的关系散点图

图 8: 确诊病例与无症状感染者的关系散点图

确诊病例与无症状感染者的关系散点图

散点数据线性拟合公式为: 无症状感染者 = 3939.629 + 5.099*确诊病例, R方值为 0.466。

3 问题三的求解与分析

3.1 确诊病例数据区间的划分

上海疫情数据集共 75 个样本数据, 从 3 月 12 号到 5 月 25 号,这里根据问题二的 散点图大致可以看出疫情趋势,为更加详细的分析,故将样本数据划分为四个区间 (3 个阶段)分别进行线性回归分析。

- (1) 区间 1: 3 月 12 号到 3 月 29 号
- (2) 区间 2: 3 月 30 号到 4 月 8 号
- (3) 区间 3: 4 月 9 号到 4 月 27 号
- (4) 区间 4: 4 月 28 号到 5 月 25 号

3.2 疫情不同阶段确诊病例与时间的线性分析

由于篇幅原因,这里挑标志性的两个时间段来进行分析,剩余的见附录二

(1) 3.12-3.29 阶段线性分析

图 9: 确诊病例随时间拟合图

图 10: 确诊病例回归标准化残差图

残差:

 $-0.\ 26670477\ -0.\ 24339162\ -0.\ 25187374\ -0.\ 26089483\ -0.\ 81378385\ -0.\ 94473112$

-0.66060243 -0.64338577 -0.6607535 -0.71436949 -0.08093388 11.24018815]

散点数据线性拟合公式为: 确诊病例 = -45.915 + 24.488*天数, R方值为 0.629。

表 1:线性回归分析结果-简化格式

	回归系数	95% CI	VIF
ALC MIL	-45.915	-145.752 ~ 53.922	
常数	(-0.901)		
天数	24.488**	15.265 ~ 33.711	1.000
	(5.204)	13.203 ~ 33.711	1.000
样本量	18		
R ²	0.629		
调整 R ²	0.605		
F值□	F(1,16)=27.079,p=0.000		

因变量:确诊病例

D-W 值:1.153

表 1:线性回归分析结果-简化格式

回归系数	数 95% CI	VIF

* p<0.05 ** p<0.01 括号里面为 t值

从上表可知,将天数作为自变量,而将确诊病例作为因变量进行线性回归分析,从上表可以看出,模型公式为:确诊病例=-45.915 + 24.488*天数,模型 R 方值为 0.629,意味着天数可以解释确诊病例的 62.9%变化原因。

线性关系显著性检验: F检验是回归方程总体的显著性检验,F检验主要是检验因变量与自变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当。

对模型进行 F 检验时发现模型通过 F 检验 (F=27.079, p=0.000<0.05),也即说明天数一定会对确诊病例产生影响关系。

天数的回归系数值为 24. 488 (t=5. 204, p=0. 000<0. 01),意味着天数会对确诊病例产生显著的正向影响关系。

同时由上表可知,95%的置信区间为[15.256,33.711]。

总结分析可知: 天数全部均会对确诊病例产生显著的正向影响关系。

(2) 4.9-4.27 阶段线性分析

图 11: 第 29-47 天确诊病例随时间拟合图

第29-47天确诊病例随时间变化趋势

直方图 因变量: 确诊病

残差:

[-1.31476452 -1.4360097 -1.31544566 -1.05322441 0.58996213 1.35802742 1.89081118 1.36059734 0.34202405 1.12448565 0.40363368 0.55380229 -0.26552249 0.65379293 -0.93518525 0.32215547 -0.66040936 -0.75530184 -1.20729449]

散点数据线性拟合公式为:确诊病例 = 5702.484-100.889*天数, R方值为 0.182。

表 2:线性回归分析结果-简化格式

	回归系数	95% CI	VIF
常数	5702.484*	1802.164 ~ 9602.804	_
	(2.866)		

表 2:线性回归分析结果-简化格式

	回归系数	95% CI	VIF
	-100.889	202.400 0.704	
天数	(-1.946)	-202.480 ~ 0.701	1.000
样本量		19	
R ²		0.182	
调整 R ²		0.134	
F值□		F(1,17)=3.789,p=0.068	

因变量:确诊病例

D-W 值: 1.768

* p<0.05 ** p<0.01 括号里面为 t值

从上表可知,将天数作为自变量,而将确诊病例作为因变量进行线性回归分析,从上表可以看出,模型公式为:确诊病例=5702.484-100.889*天数,模型 R 方值为 0.182,意味着天数可以解释确诊病例的 18.2%变化原因。对模型进行 F 检验时发现模型并没有通过 F 检验(F=3.789,p=0.068>0.05),也即说明天数并不会对确诊病例产生影响关系,因而不能具体分析自变量对于因变量的影响关系。

由上表中的 95% CI 一栏可得到计算后 95%的置信区间

从上表可知,将天数作为自变量,而将确诊病例作为因变量进行线性回归分析,从上表可以看出,模型 R 方值为 0.182,意味着天数可以解释确诊病例的 18.2%变化原因。

4 问题四的求解与分析

4.1 无症状感染者的统计分析

此处选取两个时期进行分析,理由同上,剩余两个时间段无症状感染者统计表见附录 3 (1) 对 1-10 天无症状感染者随时间变化分析

图 13: 第 1-10 天无症状感染者病例回归拟合图

第1-10天无症状感染者病例随时间变化趋势

图 14: 第 1-10 天无症状病例回归标准化残差图

直方图

散点数据线性拟合公式为: 无症状感染者 = -384.200 + 579.818*天数, R方值为 0.939。

表 3:第1-10天无症状感染者病例线性回归分析结果-简化格式

	回归系数	95% CI	VIF
214 W.L	-384.200	-1020.585 ~ 252.185	
常数	(-1.183)		
天数	579.818**	477.255 ~ 682.381	
	(11.080)	477.233 ~ 602.301	1.000
样本量	10		
R ²	0.939		
调整 R ²	0.931		
F值□	F(1,8)=122.772,p=0.000		

因变量:无症状感染者

D-W 值:1.181

* p<0.05 ** p<0.01 括号里面为 t值

从上表可知,将天数作为自变量,而将无症状感染者作为因变量进行线性回归分析,从上表可以看出,模型公式为:无症状感染者=-384.200 + 579.818*天数,模型 R 方值为 0.939,意味着天数可以解释无症状感染者的 93.9%变化原因。对模型进行 F 检验时发现模型通过 F 检验 (F=122.772, p=0.000<0.05),也即说明天数一定会对无症状感染者产生影响关系,最终具体分析可知:

天数的回归系数值为 579.818(t=11.080, p=0.000<0.01),意味着天数会对无症状感染者产生显著的正向影响关系。

总结分析可知: 天数全部均会对无症状感染者产生显著的正向影响关系。

从上表可知,将天数作为自变量,而将无症状感染者作为因变量进行线性回归分析,从上表可以看出,模型 R 方值为 0.939,意味着天数可以解释无症状感染者的 93.9%变化原因。

(2) 对第 24-54 天无症状感染者进行分析

第24-54天无症状感染者病例随时间变化趋势

图 16: 第 24-54 天无症状病例回归标准化残差图

直方图

散点数据线性拟合公式为:无症状感染者 = 41027.534-739.192*天数,R方值为0.738。

表 4:第 24-54 天无症状病例随时间变化线性回归分析结果-简化格式

	回归系数	95% CI	VIF
ALC NO.	41027.534**	24611 102 47442 066	
常数	(12.532)	34611.103 ~ 47443.966	-
天数	-739.192**	000 552 570 024	1.000
	(-9.035)	-899.552 ~ -578.831	1.000
样本量	31		
R²	0.738		
调整 R ²	0.729		
F值□	F(1,29)=81.623,p=0.000		

因变量:无症状感染者

D-W 值: 0.451

* p<0.05 ** p<0.01 括号里面为 t值

从上表可知,将天数作为自变量,而将无症状感染者作为因变量进行线性回归分析,从上表可以看出,模型公式为:无症状感染者=41027.534-739.192*天数,模型 R 方值为 0.738, 意味着天数可以解释无症状感染者的 73.8%变化原因。对模型进行 F 检验时发现模型通过 F 检验 (F=81.623, p=0.000<0.05),也即说明天数一定会对无症状感染者产生影响关系,最终具体分析可知:

天数的回归系数值为-739.192(t=-9.035, p=0.000<0.01),意味着天数会对无症状感染者产生显著的负向影响关系。

总结分析可知:天数全部均会对无症状感染者产生显著的负向影响关系。

从上表可知,将天数作为自变量,而将无症状感染者作为因变量进行线性回归分析,从上表可以看出,模型 R 方值为 0.738,意味着天数可以解释无症状感染者的 73.8%变化原因。

5 问题五的求解与分析

5.2 无症状感染者与确诊病例的统计分析

这里我将其分为确诊病例<2417人和确诊病例>2417人两类,(此处只列一类,还有一类图表

(1) 无症状感染者与确诊病例的关系图

图 17: 第 24-54 天无症状病例与确诊病例回归标准化残差图

无症状感染者与确诊病例的关系图 (确诊病例小于2417)

直方图

散点数据线性拟合公式为:无症状感染者 = 1601.727 + 11.912*确诊病例,R方值为 0.584。

表 5: 无症状感染者与确诊病例的线性回归分析结果-简化格式

	回归系数	95% CI	VIF
常数	1601.727*	02.040 2111.414	
	(2.079)	92.040 ~ 3111.414	-
确诊病例	11.912**	9.407 ~ 14.417	1.000
	(9.321)	9.407 ~ 14.417	1.000
样本量		64	
R ²		0.584	

表 5:无症状感染者与确诊病例的线性回归分析结果-简化格式

	回归系数	95% CI	VIF
- 调整 <i>R</i> ²		0.577	
<i>F</i> 值□	F(1,62)=86.873,p=0.000		

因变量:无症状感染者

D-W 值: 0.459

* p<0.05 ** p<0.01 括号里面为 t值

从上表可知,将确诊病例作为自变量,而将无症状感染者作为因变量进行线性回归分析,从上表可以看出,模型公式为:无症状感染者=1601.727 + 11.912*确诊病例,模型 R 方值为 0.584,意味着确诊病例可以解释无症状感染者的 58.4%变化原因。对模型进行 F 检验时发现模型通过 F 检验 (F=86.873, p=0.000<0.05),也即说明确诊病例一定会对无症状感染者产生影响关系,最终具体分析可知:

确诊病例的回归系数值为 11.912(t=9.321, p=0.000<0.01),意味着确诊病例会对无症状感染者产生显著的正向影响关系。

总结分析可知:确诊病例全部均会对无症状感染者产生显著的正向影响关系。

从上表可知,将确诊病例作为自变量,而将无症状感染者作为因变量进行线性回归分析,从上表可以看出,模型 R 方值为 0.584,意味着确诊病例可以解释无症状感染者的 58.4%变化原因。

6 问题六的求解与分析

6.1 时间与下列三点(确诊病例,无症状感染者,确诊+无症状人数)的相关性时间与确诊病例相关

表 6:全时间段与确诊病例 Pearson 相关-详细格式

		确诊病例
日期	相关系数	-0.082

表 6:全时间段与确诊病例 Pearson 相关-详细格式

	确诊病例
p值	0.487

* p<0.05 ** p<0.01

从上表可知,利用相关分析去研究确诊病例分别和日期共1项之间的相关关系,使用Pearson相关系数去表示相关关系的强弱情况。具体分析可知:

确诊病例和日期之间的相关系数值为-0.082,接近于 0,并且 p 值为 0.487>0.05,因而说明确诊病例和日期之间并没有相关关系。

时间与无症状感染者相关

表 7:全时间段与无症状感染者的 Pearson 相关-详细格式

		无症状感染者
日期	相关系数	-0.072
	ρ值	0.538

^{*} p<0.05 ** p<0.01

从上表可知,利用相关分析去研究无症状感染者分别和日期共 1 项之间的相关关系,使用 Pearson 相关系数去表示相关关系的强弱情况。具体分析可知:

无症状感染者和日期之间的相关系数值为-0.072,接近于 0,并且 p 值为 0.538>0.05,因而说明无症状感染者和日期之间并没有相关关系。

时间与确诊病例+无症状感染者相关

表 8:全时间段与确诊病例+无症状感染者的 Pearson 相关-详细格式

		确诊病例+无症状感染者
日期	相关系数	-0.076
	p值	0.518

^{*} p<0.05 ** p<0.01

从上表可知,利用相关分析去研究确诊病例+无症状感染者分别和日期共 1 项之间的相关关系,使用 Pearson 相关系数去表示相关关系的强弱情况。具体分析可知:确诊病例+无症状感染者和日期之间的相关系数值为-0.076,接近于 0,并且 p 值为 0.518>0.05,因而说明确诊病例+无症状感染者和日期之间并没有相关关系。

6.2 整个疫情的走势:

确诊病例在第 1 到第 26 天阶段呈现缓慢增长趋势,(从日 1 例到达日 322 例),接下来在第 27-第 35 天阶段急剧上升(从日 824 例到达日 3590 例),在之后的第 36 天到第 52 天的阶段开始急速下降(从日 3238 例到达日 274 例),除了第 48 天异常上升达到顶峰数值5487 例,在最后的第 53 天到第 75 天这个阶段缓慢下降(从日 260 例到达日 48 例)。

无症状感染者在第 1 到第 12 天阶段呈现缓慢增长趋势,(从日 64 例到达日 977 例),接下来在第 13-第 30 天阶段急剧上升达到顶峰(从日 979 例到达日 25173 例,),在之后的第 31 天到第 60 天的阶段开始急速下降(从日 22348 例到达日 1259 例),在最后的第 61 天到第 75 天这个阶段缓慢下降(从日 1305 例到达日 290 例)。

6.3 上海应对措施的有效性

由疫情稳定与结束阶段,在问题三、四、五的分析中可知,此阶段拟合效果优胜说明在 上海市政府的措施实行下,疫情在稳定消散,感染者人数日渐下降,说明上海应对疫情采取 的措施起到了很好的效果,线性拟合的优胜代表了疫情可预测性的下降,按照一定的速度逐 渐消失,体现了上海措施的有效。

6.4 上海疫情可能的变化预测

根据疫情稳定与发展阶段线性回归分析可知,确诊人数和无症状感染者人数随时间增加 而减少,线性回归模型拟合优胜。所及由回归分析可预测,在接下来时间,上海现存的确诊 及无症状感染者将完全治愈,感染者人数会逐步清零,疫情已经得到有效控制,感染者人数 大幅下降,未来一月上海将完全恢复正常,摆脱疫情的影响,人民学习生活逐渐走向正轨。

7 问题十的求解与分析

7.1 讨论线性分析工具对上海疫情变化的分析

线性回归工具将上海疫情的发展阶段分析的较为透彻,一系列疫情阶段性的特征直接反应到线性回归模型上,我门可以通过模型的正确性与相关系数的显著性检验,证明疫情数据之间的相关性。使用线性分析工具对上海疫情的各个阶段进行描述、分析;使得上海疫情各阶段的趋势十分清晰地展现在了我们眼前,让我们看到了上海市的经历,上海政府抗疫的效率,大家齐心协力跟随政府共克时艰,打赢了这场"战争"。这一个个模型之下就是上海的历程,经历疫情的无声扩散、毫无源头到疫情全面爆发再到有效措施的实施最后疫情结束,线性分析结果显著。

7.2 更优的模型

对于模型的选择而言,由于该变化情况可能有时用线性回归模型来拟合并不一定准确, 所以可以考虑深度学习中的神经网络模型来进行后续的预测。

9、参考文献:

[1] 贾俊平,何晓群.统计学基础(第 8 版).中国人民大学出版社有限公司,2021

10、附录部分

附录一 (源代码和数据)

源代码:

#加载模型库

import pandas as pd

import numpy as np

import scipy

import statsmodels.api as sp

import matplotlib.pyplot as plt

#解决中文显示问题

plt.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体

plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题

#读取数据

def get data(path):

return pd. read excel (path)

#数据分段

def split (data, start, end):

return data[start:end]

#线性回归,返回预测值和残差

```
def lr(x, y):
    x1 = sp. add constant(x)
    model = sp. OLS(y, x1)
    results=model.fit()
    print(results.summary())
    y_pred=model. predict(results. params, x1)
    outliers = results.get influence()
    resids1 = outliers.resid studentized external
    plt. figure (figsize=(8,8))
    print('残差:')
    print(resids1)
    plt. subplot (2, 1, 2)
    plt.hist(resids1)
    plt. subplot (2, 1, 1)
    plt. plot (x, y, '.')
    plt. plot([\min(x), \max(x)], [\min(x)*(\text{results. params}[1])+\text{results. params}[0],
                              \max(x)*(\text{results.params}[1])+\text{results.params}[0]])
   # return y pred, resids1
path = '.../新冠/xinguan.xlsx'
data = get data(path)
### 日期、确诊、无症状、确诊+无症状、日期编号
data date = data['date'].values
data quezhen = data['quezhen']. values
data wu = data['wu'].values
data_quewu = data['quewu'].values
data time code = data['time code'].values
各个散点图
#各种需要的散点图
plt.figure(figsize=(10, 12))
plt. subplot (3, 1, 1)
plt.plot(data_date, data_quezhen,'.')
plt.title('确诊病例')
#plt. xticks (data_time_code, data_date,)
plt. subplot (3, 1, 2)
plt.plot(data_date, data_wu,'.')
plt.title('无症状感染者')
plt. subplot (3, 1, 3)
plt.plot(data_date, data_quewu,'.')
plt.title('确诊病例和无症状感染者')
```

确诊和无症状的关系

```
#无症状感染者和确诊病例的关系, x 是确诊, y 是无症状
1r (data quezhen, data wu)
确诊区间
#确诊病例分时间区间进行验证
qz_1_18 = split(data_quezhen, 0, 18)
time_1_18 = split(data_time_code, 0, 18)
qz_19_28 = split (data_quezhen, 18, 28)
time_19_28 = split(data_time_code, 18, 28)
qz 29 47 = split (data quezhen, 28, 47)
time_29_47 = split(data_time_code, 28, 47)
qz_48_75 = split(data_quezhen, 47, 75)
time 48 75 = split(data time code, 47, 75)
1r(time 19 28, qz 19 28)
1r(time 29 47, qz 29 47)
1r(time_48_75, qz_48_75)
无症状区间
wu 1 10 = split (data wu, 0, 10)
time_1_10 = split(data_time_code, 0, 10)
wu_11_23 = split(data_wu, 10, 23)
time_11_23 = split(data_time_code, 10, 23)
wu_24_54 = split (data_quezhen, 23, 54)
time 24 54 = split(data time code, 23, 54)
wu 55 75 = split (data quezhen, 54, 75)
time_55_75 = split(data_time_code, 54, 75)
```

附录二:确诊病例各时期统计表

lr(time_1_10, wu_1_10)
lr(time_11_23, wu_11_23)
lr(time_24_54, wu_24_54)
lr(time_55_75, wu_55_75)

第19-28天

第19-28天确诊病例随时间变化趋势

图 20: 第 19-28 天确诊病例回归标准化残差图

直方图 田本景、碑冷症

散点数据线性拟合公式为:确诊病例 = -5807.085 + 312.412*天数, R方值为 0.662。

表 9:第19-28线性回归分析结果-简化格式

	回归系数	95% CI	VIF
常数	-5807.085*	0.467.207 21.46.062	
	(-3.110)	-9467.207 ~ -2146.963	-
天数	312.412**	157.813 ~ 467.011	1.000
	(3.961)		1.000
样本量		10	
R ²		0.662	
调整 R ²		0.620	
<i>F</i> 值□		F(1,8)=15.687,p=0.004	

因变量:确诊病例

D-W 值:1.196

* p<0.05 ** p<0.01 括号里面为 t值

第 48-75 天

图 21: 第 48-75 天确诊病例随时间病例回归图

第48-75天确诊病例随时间变化趋势

图 22: 第 48-75 天确诊病例标准化残差图

直方图

散点数据线性拟合公式为:确诊病例 = 738.084-9.901*天数, R方值为 0.728。

表 10:第48-75 天确诊病例随时间线性回归分析结果-简化格式

	回归系数	95% CI	VIF
常数	738.084**	E02.0E0 002.217	
	(10.037)	593.950 ~ 882.217	-
天数	-9.901**	-12.225 ~ -7.578	1 000
	(-8.352)		1.000
样本量		28	
R ²		0.728	
调整 R ²		0.718	
F值□		<i>F</i> (1,26)=69.750, <i>p</i> =0.000	

因变量:确诊病例

D-W 值:1.100

* p<0.05 ** p<0.01 括号里面为 t值

附录 3:

第11-23天

第11-23天无症状感染者病例随时间变化趋势

图 24: 第 11-23 天无症状病例标准化残差图

散点数据线性拟合公式为:无症状感染者 = -12901.225 + 1520.819*天数,R方值为 0.430。

表 11:第11-23 天无症状病例与时间的线性回归分析结果-简化格式

	回归系数	95% CI	VIF
常数	-12901.225	-30926.988 ~ 5124.538	
	(-1.403)		-
天数	1520.819*	485.266 ~ 2556.372	1 000
	(2.878)		1.000
样本量		13	
R ²		0.430	
调整 R ²		0.378	
F值□		F(1,11)=8.285,p=0.015	

因变量:无症状感染者

D-W 值:1.195

* p<0.05 ** p<0.01 括号里面为 t值

第 55-75 天

第55-75天无症状感染者病例随时间变化趋势

图 26: 第 55-75 天无症状病例标准化残差图

直方图 因变量:无症状感染。

散点数据线性拟合公式为:无症状感染者 = 3517.076-42.562*天数, R方值为 0.345。

表 12:第11-23天无症状病例与时间的线性回归分析结果-简化格式

	回归系数	95% CI	VIF
常数	3517.076**	1704.002 5240.000	
	(4.001)	1794.062 ~ 5240.089	-
天数	-42.562**	CO OFC 16 160	1 000
	(-3.161)	-68.956 ~ -16.169	1.000
样本量		21	
R ²		0.345	
调整 R ²		0.310	
F值□		F(1,19)=9.990,p=0.005	

因变量:无症状感染者

D-W 值: 0.527

* p<0.05 ** p<0.01 括号里面为 t值

附录 4:

图 27: 无症状病例与确诊病例(确诊病例数>2416)的回归关系图

无症状感染者与确诊病例的关系图 (确诊病例大于2416)

图 27: 无症状病例与确诊病例 (确诊病例数>2416) 的无症状感染者标准化残差图

散点数据线性拟合公式为:无症状感染者 = 27078.875-2.793*确诊病例, R方值为

0.383。

表 13:无症状病例与确诊病例(确诊病例数>2416)的线性回归分析结果-简化格式

	回归系数	95% CI	VIF
常数	27078.875**	19680.830 ~ 34476.920	-
	(7.174)		
确诊病例	-2.793*	-5.107 ~ -0.479	1 000
	(-2.366)		1.000
样本量		11	
R ²		0.383	
调整 R ²		0.315	
F值□		F(1,9)=5.597,p=0.042	

因变量:无症状感染者

D-W 值: 0.850

无症状感染者与确诊人数线性回归分析结果-简化格式

^{*} p<0.05 ** p<0.01 括号里面为 t值