

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PCT

SCIENCE REPORTS - INTELLIGENCE SERVICE

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(S1) International Patent Classification 5 : C12N 9/64, 15/57, C07K 7/00 A61K 37/02		A1	(11) International Publication Number: WO 91/15577 (43) International Publication Date: 17 October 1991 (17.10.91)
(21) International Application Number: PCT/US91/02339		(74) Agent: OSTER, Jeffrey, B.; Immunex Corporation, 51 University Street, Seattle, WA 98101 (US).	
(22) International Filing Date: 4 April 1991 (04.04.91)			
(30) Priority data: 505,298 656,759 4 April 1990 (04.04.90) 13 February 1991 (13.02.91)		US	(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent), US.
(71) Applicant (for all designated States except US): IMMUNEX CORPORATION [US/US]; 51 University Street, Seattle, WA 98101 (US).		Published With International search report.	
(72) Inventors; and (73) Inventors/Applicants (for US only) : BLACK, Roy, A. [US/US]; 8062-30th Avenue N.E., Seattle, WA 98115 (US). SLEATH, Paul, R. [US/US]; 836 West Armour Street, Seattle, WA 98119 (US). KRONHEIM, Shirley, R. [US/US]; 11526-36th N.E., Seattle, WA 98125 (US).			

(54) Title: INTERLEUKIN 1 β PROTEASE

(57) Abstract

There is disclosed an isolated polypeptide and derivatives thereof having protease biological activity for human precursor IL-1 β and for a substrate comprising: R₁-Asp-R₂-R₃, Wherein R₁ and R₃ are independently and D or L isomer amino acid, and R₂ is Ala or Gly, and wherein the specific protease cleavage site is between Asp and R₂. Inhibitor compounds, compositions and methods for inhibiting Interleukin 1 β protease activity are disclosed. The inhibitor compounds comprise an amino acid sequence of from 1 to about 5 amino acids having an N-terminal blocking group and C-terminal Asp residue connected to an electronegative leaving group, wherein the amino acid sequence corresponds to the sequence Ala-Tyr-Val-His-Asp.

POR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Greece	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BC	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Burundi	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Costa d'Ivoire	LI	Lithuania	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Tchad
CS	Czechoslovakia	LU	Luxembourg	TC	Togo
DE	Germany	MC	Monaco	US	United States of America

TITLEINTERLEUKIN 1 β PROTEASE

5

TECHNICAL FIELD OF THE INVENTION

This invention relates to an interleukin 1 β protease enzyme (IL-1 β pro) having biological activity to cleave inactive precursor interleukin-1 β (IL-1 β) polypeptides into active mature IL-1 β polypeptides. More specifically, the invention provides an isolated IL-1 β pro polypeptide and derivatives thereof that are capable of cleaving a particular amino acid sequence, including the amino acid sequence at the N-terminus of human IL-1 β . The present invention further provides a group of compounds that can inhibit IL-1 β pro activity and thereby function as IL-1 antagonists.

15

BACKGROUND OF THE INVENTION

Interleukin 1 β (IL-1 β) is a 17.5 kDa polypeptide hormone synthesized and secreted by stimulated monocytes. The initial translation product of IL-1 β is a larger 31 kDa biologically inactive precursor polypeptide. The N-terminus of biologically active, mature IL-1 β derived from human activated monocytes has been characterized by an N-terminal amino acid sequence beginning with Ala-Pro. See, for example, European Patent Application EP-A-0165654 and March et al. *Nature (London)* 315: 641-47 (1985) for sequence information of human IL-1 β .

The N-terminal Ala residue of human mature IL-1 β is in the 117 position and an Asp residue is in the 116 position counting from the N-terminus of human precursor IL-1 β polypeptide. Mature IL-1 β consists of the C-terminal 153 residues of the precursor polypeptide.

Maturation and release of mature IL-1 β from macrophages does not proceed by conventional means normally associated with most secretory proteins, because the precursor IL-1 β polypeptide lacks a hydrophobic signal sequence. Further, IL-1 β is not associated with a membrane-bound compartment in monocytes. (Singer et al. *J. Exp. Med.* 167:389-407 (1988)). Most secretory proteins are characterized by the presence of a hydrophobic stretch of amino acids called a signal sequence. The signal sequence directs the translocation of the protein across the membrane of the endoplasmic reticulum during protein synthesis. The protein is subsequently ushered out of the cell via exocytosis. Most secreted proteins have a signal sequence at the amino terminal that is removed upon translocation. Other proteins, such as ovalbumin, have an internal signal sequence that is not removed upon translocation. Both precursor forms of IL-1 α and IL-1 β (March et al.) lack any region (either amino terminal or internal) with sufficient hydrophobicity and length to qualify as a signal sequence.

A further indication of an unusual maturation pathway for IL-1 β is the absence of a pair of basic amino acids near the N-terminus of the mature polypeptide. The amino acid sequence Tyr-Val-His-Asp precedes the N-terminal Ala-Pro of the mature human IL-1 β polypeptide. Moreover, Young et al. *J. Cell Bio.* 107:447-56 (1988) found that fibroblasts transfected with cDNA coding for precursor IL-1 β were unable to process the precursor polypeptide into mature IL-1 β . Instead, the transfected fibroblasts produced high levels of inactive precursor polypeptide. The results reported by Young et al. are consistent with other reports for other cell types, including T cells, epidermal cells and B cells.

Hazuda et al. *J. Biol. Chem.* 263:8473-79 (1988) have reported that both the precursor and mature forms of IL-1 β appear in the supernatants of activated monocytes with little or no preference. Hazuda et al. suggest that IL-1 β processing is "intimately coordinated" with secretion.

There have been several attempts to characterize or isolate the system responsible for processing IL-1 β from its translated precursor form to its active mature form. Black et al. *J. Biol. Chem.* 263:9437-42 (1988) [Black et al. I] suggests that the cleavage pattern of precursor IL-1 β is effected by myeloid cell membranes and results from the action of a plurality of proteases which act as an IL-1 β processing system. A subsequent article by Black et al. *J. Biol. Chem.* 264:5323-26 (1989) [Black et al. II] describes a single protease that cleaves IL-1 β between His¹¹⁵ and Asp¹¹⁶, one residue upstream from the N-terminal Ala¹¹⁷ of mature IL-1 β . Thus, the protease described in Black et al. II generates a form of IL-1 β one amino acid longer than the mature IL-1 β purified from monocyte cultures. Black et al. II suggests that there may be an aminopeptidase in human blood that removes the N-terminal aspartate residue to complete the processing.

Kostura et al. *Proc. Nat Acad Sci. USA* 86:5227-31 (July, 1989) refers to a protease with a similar cleavage pattern but "qualitatively different" from the protease described in Black et al. II. The Kostura et al. protease is characterized as being located in cytosol of monocytic cells. However, Kostura et al. did not further define or isolate the responsible polypeptide.

Finally, Black et al. *FEBS Lett.* 247:386-90 (April, 1989) [Black et al. III] refers to a protease that generates mature IL-1 β from the precursor polypeptide and is characterized by being inhibited by iodoacetate and N-ethylmaleimide. Black et al. III attempted to purify their protease approximately 500 fold by a process starting by freeze-thawing cell lysates from THP-1 cells (ATCC) four times. Black et al. III centrifuged the lysates for 20 min at 36,590 X g. The supernatant was applied to a DEAE-Sephadex column equilibrated with 10 mM Tris-HCl (pH 8.1) and 5 mM dithiothreitol. The protease was eluted with 80-140 mM NaCl. The eluted material was diluted 1:5 with a buffer of 10 mM Tris-HCl (pH 8.1) and 5 mM dithiothreitol and applied to a protein red agarose column. The protease was

eluted with 0.5-0.8 M NaCl, concentrated 20-fold in a Centriprep-10 concentrator, and then subjected to gel filtration with Sephadex G-75. This procedure described in Black et al. III failed to demonstrate whether the protease activity was due to a single polypeptide or a group of processing enzymes.

5 Therefore, there is a need in the art to obtain the isolated system or single protease polypeptide responsible for processing precursor IL-1 β into its mature and biologically active form. The protease functions as an IL-1 agonist to increase IL-1 biological activity *in vivo*. Moreover, the isolated protease will be useful for improving wound healing, treating arthritis, and treating or preventing the onset of autoimmune diseases, such as 10 insulin dependent diabetes mellitus, lupus disorders, Graves' disease, Hashimotos disease, and the detrimental side effects of radiation treatment.

15 Further, isolation and characterization of the protease responsible for processing precursor IL-1 β into its biologically active form will aid in designing inhibitors for IL-1 β processing, because the availability of large quantities of IL-1 β pro will serve as a useful screening vehicle for finding compounds having IL-1 antagonist activity. Such IL-1 antagonists or IL-1 β pro inhibitors should be useful for treating inflammation and transplantation rejection.

20 Other protease inhibitors have been described (for example, U.S. Patents 4,644,055, 4,636,492 and 4,652,552). However, protease inhibitors tend to be specific for the protease they inhibit by having a chemical structure that mimics the substrate of a protease. Thus, none of the previously-described protease inhibitors would be expected to inhibit IL-1 β pro activity.

SUMMARY OF THE INVENTION

25 The present invention is directed to an isolated polypeptide having proteolytic activity for a specific protease cleavage site, wherein the protease activity is specific for a substrate peptide having an amino acid sequence comprising:

30 wherein R₁ and R₃ are independently any D or L isomer amino acid, R₂ is Ala or Gly, and wherein the specific protease cleavage site is between Asp and R₂. Preferably, the substrate peptide is at least eight amino acids in length. The isolated polypeptide is called the interleukin 1 β protease (IL-1 β pro) because it cleaves precursor IL-1 β polypeptide to yield mature IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues. This region of precursor IL-1 β corresponds to a species within the genus of 35 protease cleavage sites described herein.

IL-1 β pro is further characterized by a cDNA and amino acid sequence in Figure 1 (Sequence I.D. No. 2). Full length (precursor) IL-1 β pro comprises 404 amino acids.

Purified IL-1 β pro begins with the Asn Pro Ala Met Pro sequence beginning with amino acid 120. Based upon a molecular weight analysis, the approximate C-terminus of mature IL-1 β pro is about amino acid 297. However, molecular weight determination indicates that the C-terminus of the mature IL-1 β pro enzyme is from about amino acid 278 to about 5 amino acid 315. The present invention comprises an isolated IL-1 β pro polypeptide or a derivative, analog, or allelic variant thereof displaying IL-1 β pro biological activity comprising proteolytically cleaving human precursor IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues.

Figure 1 also shows a nucleotide sequence encoding a 404 amino acid polypeptide having IL-1 β pro biological activity. The present invention further comprises an isolated DNA sequence encoding IL-1 β pro or a derivative, analog or allelic variant thereof displaying biological activity to proteolytically cleave human precursor IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues. The isolated DNA sequence is selected from the group consisting of the nucleotide sequences in Figure 1 beginning at 10 nucleotide 1 and extending to nucleotide 1232, beginning at nucleotide 374 and extending to nucleotide 1232, beginning at nucleotide 374 and extending to a nucleotide from about 15 851 to about 962, DNA sequences which detectably hybridize to the Figure 1 sequence from nucleotide 1 to nucleotide 1232 and encode a polypeptide displaying biological activity to proteolytically cleave human precursor IL-1 β polypeptide at a cleavage site 20 between the Asp 116 and Ala 117 residues, and DNA sequences which, due to degeneracy of the genetic code, encode a mammalian IL-1 β pro polypeptide encoded by any of the foregoing DNA insertions and sequences.

The present invention further comprises a recombinant expression vector comprising an isolated DNA sequence as described herein and a host cell which comprises 25 the recombinant expression vector.

The present invention provides substituted peptide inhibitor compounds comprising an amino acid sequence of from 1 to about 5 amino acids, having an N-terminal protecting group and a C-terminal Asp residue connected to an electronegative leaving group. Preferably, the amino acid sequence corresponds to at least a portion of the amino acid 30 sequence Ala-Tyr-Val-His-Asp.

The inhibitor compounds of the present invention have the formula:

where Z is an N-terminal protecting group; Q₂ is 0 to 4 amino acids such that the sequence Q₂-Asp corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, residues 35 112 to 116 of sequence listing I.D. No. 2; and Q₁ comprises an electronegative leaving group. Z is preferably C₁-C₆ alkylketone, benzyl, acetyl, alkoxy carbonyl,

benzyloxycarbonyl or C₁-C₆ alkylcarbonyl. More preferably, Z is t-butoxycarbonyl (t-Boc), acetyl carbonyl or benzyloxycarbonyl (Cbz).

Q₁ is preferably C₁-C₃ alkyl, an aldehyde, diazomethyl ketone or halomethyl ketone. More preferably, Q₁ is an aldehyde or fluoromethyl ketone.

5 The present invention further provides reversible and irreversible IL-1 β pro inhibitors. Irreversible inhibitors are inhibitor compounds comprising an amino acid sequence of from 1 to about 5 amino acids having an N-terminal protecting group and a C-terminal Asp residue connected to a diazomethyl ketone or a halomethyl ketone, wherein the amino acid sequence corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, residues 112 to 116 of sequence listing LD. No. 1.

10 * Reversible IL-1 β inhibitors are compounds comprising an amino acid sequence of from 1 to about 5 amino acids having an N-terminal protecting group and a C-terminal Asp residue connected to an aldehyde moiety, wherein the amino acid sequence corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, residues 112 to 116 of sequence listing I.D. No. 1.

15 The present invention also provides a method of inhibiting the physiological actions of interleukin 1 β in a mammal in need of such treatment, comprising administering to said mammal an effective amount of a compound of the formula:

20 where Z is an N-terminal protecting group; Q₂ is 0 to 4 amino acids such that the sequence Q₂-Asp corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, residues 112 to 116 of sequence listing I.D. No. 2; and Q₁ comprises an electronegative leaving group.

25 In a preferred embodiment, Q₁ is a fluoromethyl ketone and inhibition is irreversible. In another preferred embodiment, Q₁ is an aldehyde moiety and inhibition is reversible.

30 The present invention still further provides a pharmaceutical composition comprising a physiologically acceptable carrier and a compound comprising an amino acid sequence of from 1 to about 5 amino acids having an N-terminal protecting group and a C-terminal Asp residue connected to an electronegative leaving group, wherein said amino acid sequence corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, residues 112 to 116 of sequence listing I.D. No. 1.

35 The present invention still further provides a method of treating inflammation associated with autoimmune disease in a mammal in need of such treatment comprising administering to said mammal an effective anti-inflammatory amount of a compound comprising an amino acid sequence of from 1 to about 5 amino acids having an N-terminal protecting group and a C-terminal Asp residue connected to an electronegative leaving

group, wherein said amino acid sequence corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, residues 112 to 116 of sequence listing I.D. No. 1.

The present invention further comprises antisense oligonucleotides that correspond to a sequence or antisense sequence of at least 15 nucleotides selected from the nucleotide sequence of Sequence ID No. 2 (Figure 1).

The present invention further comprises a method for treating arthritis, a method for treating an autoimmune disease in a susceptible individual, a method for improving wound healing, and a method for reducing the detrimental side effects of radiation treatment. All of the methods comprise administering a therapeutically effective amount of an isolated IL-1 β protease or a biologically active derivative thereof in a suitable pharmaceutical carrier.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 shows the DNA and corresponding amino acid sequence for a polypeptide having IL-1 β pro biological activity and corresponding to human mature IL-1 β pro or a biologically active fragment thereof.

DETAILED DESCRIPTION OF THE INVENTION

Utilizing polymerase chain reaction (PCR) techniques, we have isolated, purified, characterized, and expressed a mammalian IL-1 β pro polypeptide and active fragments thereof. The availability of abundant quantities of a recombinant IL-1 β pro enzyme has further allowed us to find inhibitor compounds capable of inhibiting IL-1 β pro activity and thereby function as IL-1 antagonists. Further, use of IL-1 β pro has IL-1 agonist activity. Thus, the invention relates to mammalian IL-1 β pro polypeptides, derivatives, analogs and allelic variants thereof having proteolytic activity for a substrate peptide having an amino acid sequence comprising:

wherein R₁ and R₃ are independently any D or L isomer amino acid, R₂ is Ala or Gly, and wherein the specific protease cleavage site is between Asp and R₂. Preferably, the substrate peptide is at least eight amino acids in length. Most preferably, R₂ is Gly.

Mammalian IL-1 β pro is preferably a human IL-1 β pro and has substrate specificity for a substrate peptide having the amino acid sequence described herein. Preferably, the human IL-1 β pro polypeptide or derivative thereof is a polypeptide having biological activity that cleaves human precursor IL-1 β polypeptide to yield human mature IL-1 β polypeptide.

IL-1 β pro is further characterized by the cDNA and amino acid sequence in Figure 1 (Sequence I.D. No. 2). Full length (precursor) IL-1 β pro comprises 404 amino acids. Purified IL-1 β pro begins with the Asn Pro Ala Met Pro sequence beginning with amino acid 120. Based upon a molecular weight analysis, the approximate C-terminus of mature

IL-1 β pro is about amino acid 297. However, the molecular weight determination indicates that the C-terminus of the mature enzyme is from about amino acid 278 to about amino acid 315. The present invention comprises an isolated IL-1 β pro polypeptide or a derivative, analog, or allelic variant thereof displaying biological activity comprising proteolytically cleaving human precursor IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues. The present invention comprises an isolated IL-1 β pro polypeptide or a derivative, analog, or allelic variant thereof displaying biological activity comprising proteolytically cleaving human precursor IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues. For the purposes of this application, the term "IL-1 β pro" shall encompass the amino acid sequence shown in Figure 1, plus all allelic variants, derivatives, analogs and fragments of this sequence that display IL-1 β pro biological activity.

IL-1 β pro biological activity is determined, for example, by assaying for IL-1 activity with a precursor IL-1 β polypeptide. Precursor IL-1 β is inactive, while mature IL-1 β is an active IL-1 polypeptide. A method for measuring IL-1 β pro activity is described in Black et al. II. Briefly, this method provides approximately five microliters of precursor IL-1 β (pIL-1 β) (10-50 μ g/ml prepared as described in Black et al. I) incubated with 10 μ l of IL-1 β pro polypeptide or another substance suspected of having IL-1 β pro biological activity. The incubation proceeds for approximately one hour at approximately 37°C and is terminated by addition of 15 μ l of 2 X SDS sample buffer followed by boiling for five minutes. The boiled sample is electrophoresed on a SDS-Polyacrylamide gel and placed onto a Western blot using an IL-1 β C-terminal-specific monoclonal antibody, such as 16FS described in Black et al. I.

Figure 1 also shows a nucleotide sequence encoding a 404 amino acid sequence having IL-1 β pro biological activity. The present invention further comprises an isolated DNA sequence encoding IL-1 β pro or a derivative, analog or allelic variant thereof displaying biological activity to proteolytically cleave human precursor IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues. The isolated DNA sequence is selected from the group consisting of the nucleotide sequences in Figure 1 beginning at nucleotide 1 and extending to nucleotide 1232, beginning at nucleotide 374 and extending to nucleotide 1232, beginning at nucleotide 374 and extending to a nucleotide from about 851 to about 962, DNA sequences which detectably hybridize to the Figure 1 sequence from nucleotide 1 to nucleotide 1232 and encode a polypeptide displaying biological activity to proteolytically cleave human precursor IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues, and DNA sequences which, due to degeneracy of the genetic code, encode a mammalian IL-1 β pro polypeptide encoded by any of the foregoing DNA inserts and sequences.

Inventive DNA sequences that detectably hybridize to the Figure 1 nucleotide sequence from nucleotide 1 to nucleotide 856, hybridize under conditions of high or severe stringency. Severe or high stringency conditions comprise, for example, overnight hybridization at about 68°C in a 6 X SSC solution followed by washing at about 68°C in a 5 X SSC solution.

The inhibitor compounds of the present invention are substituted compounds comprising an amino acid sequence of from 1 to about 5 amino acid residues having an N-terminal blocking group and a C-terminal Asp residue connected to an electronegative leaving group, wherein the amino acid sequence corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, which sequence represents the sequence of residues 112 to 116 of precursor IL-1B.

The amino acid sequence of precursor IL-1B is presented in sequence listing I.D. No. 2 taken from March et al., *Nature*, 315:641-647 (1985). Mature IL-1B is represented by the C-terminal 153 amino acid residues of precursor IL-1B. Thus, the N-terminal of IL-1B is the Ala residue at position 117 of sequence listing I.D. No. 1.

The naturally occurring amino acids are the L isomers and are so indicated without any isomeric (e.g., L or D) designation. The D isomers are so indicated.

As used herein, the phrase "corresponds to" means that a particular sequence may differ from the disclosed sequence by one or more conservative substitutions so long as such substitutions do not materially alter the inhibitory activity of the compounds of the present invention.

Examples of substitutions that do not materially alter inhibitory activity are replacement of the Ala at position 112 of sequence listing I.D. No. 1 with Ser or Gly; replacement of the Tyr at position 113 of sequence listing I.D. No. 1 with Phe; replacement of the Val at position 114 of sequence listing I.D. No. 1 with Leu, Ile or Met; and replacement of the His at position 115 of sequence listing I.D. No. 1 with Phe, Pro, a positively charged amino acid such as Lys, Arg, His or Tyr, or the use of D isomers.

The C-terminal amino acid residue of the compounds of the present invention is aspartic acid (Asp). Asp has a side chain of the formula CH₂-COOH. Preferably, the Asp side chain carboxyl group is protected to facilitate synthesis of the compounds of the present invention.

Asp side chain protection groups include, for example, a benzyl, substituted benzyl, formyl methyl or t-butyl moiety. The benzyl substituents increase the acid lability of the Asp side chain protecting moiety. Exemplary substituted benzenes are 2,4,6-trimethyl benzyl and 4-methoxybenzyl.

In a preferred embodiment, the Asp side chain protecting moiety is connected to the Asp side chain via an ester linkage, which linkage is subject to cleavage by naturally occurring intracellular esterase enzymes. In this way, the protected Asp with high lipid solubility gains

access to a cell and is cleaved by an esterase to yield a charged, water soluble deprotected Asp that remains in the cytoplasm where IL-1 β pro is predominantly located.

As used herein, the phrase "N-terminal blocking group" refers to chemical groups attached to the amino group of the N-terminal amino acid residue of the sequences of the present invention. Such blocking groups are well known and readily apparent to those of skill in the art. The Peptides, ed. by Gross and Meienhofer, Academic Press, New York, pp. 3-81 (1981). N-terminal blocking groups have been utilized with other types of protease inhibitors. See, e.g., U.S. Patent Nos. 4,652,552 and 4,636,492.

As used herein, the phrase "electronegative leaving group" refers to chemical groups susceptible to nucleophilic attack by an amino acid residue in the enzyme active site, thus modifying IL-1 β pro such that IL-1 β pro cannot interact with and cleave precursor IL-1 β .

The inhibitor compounds of the present invention inhibit the catalytic activity of IL-1 β pro in a reversible or an irreversible fashion. As used herein, "irreversible" means the formation of a covalent bond between the enzyme and the inhibitor.

The reversibility of IL-1 β pro activity is a function of the electronegative leaving group. When the electronegative leaving group is a diazoalkyl ketone, the inhibition of IL-1 β pro is irreversible and the compound is an irreversible inhibitor. When the electronegative leaving group is an aldehyde, the inhibition of IL-1 β pro is reversible and the compound is a reversible inhibitor.

The inhibitor compounds of the present invention have the formula:

where Z is an N-terminal blocking group; Q₂ is 0 to about 4 amino acids such that the sequence Q₂-Asp corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp, residues 112 to 116 of sequence listing I.D. No. 1; and Q₁ is an electronegative leaving group.

In a preferred embodiment, Z is C₁-C₆ alkyl, benzyl, acetyl, C₁-C₆ alkoxy carbonyl, benzyloxycarbonyl or C₁-C₆ alkyl carbonyl. As used herein, "alkyl" refers to linear or branched chains having 1 to 6 carbon atoms, which may be optionally substituted as herein defined. Representative alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl and the like. In a more preferred embodiment, Z is t-butoxycarbonyl (t-Boc), acetyl or benzyloxycarbonyl (Cbz).

Q₂ is preferably 1 amino acid. Preferably Q₂ is His, Phe, Pro, or Tyr. Most preferably, Q₂ is His or Phe.

Q₁ is preferably an aldehyde, a diazoalkyl ketone or a haloalkyl ketone. As used herein in reference to electronegative leaving groups, "alkyl" refers to linear or branched chain radicals having 1 to 3 carbon atoms, which may be optionally substituted as herein defined. Representative alkyl groups include methyl, ethyl, propyl and the like. More preferably, Q₁ is an aldehyde or fluoromethyl (CH₂F) ketone.

The inhibitor compounds of the present invention are made by techniques generally corresponding to methods known and readily apparent to those of skill in the art. See, e.g., Ketner, C.A. et al., Arch. Biochem. Biophys., 162:56 (1974); U.S. Patent No. 4,582,821; U.S. Patent No. 4,644,055; Ketner, C.A. et al., Arch. Biochem. Biophys., 165:739 (1974); Dakin, H.D. and West, R., J. Biol. Chem., 78:91 (1928); Rasnick, D., Anal. Biochem., 149:461 (1985).

Inhibitor compounds having a fluoromethyl electronegative leaving group are preferably synthesized by the Rasnick procedure.

Inhibitor compounds having a non-fluoro, haloalkyl ketone electronegative leaving group are synthesized in accordance with the Ketner procedure. An N-blocked amino acid or peptide is reacted with N-methylmorpholine and an alkyl, non-fluoro haloformate to generate a peptide-acid anhydride. The anhydride is then reacted with a diazoalkane in an inert, aprotic solvent to form a peptide-diazomethane ketone. The diazomethane ketone is then reacted with an anhydrous solution of HCl, HBr or HI to produce the desired N-blocked, C-terminal haloalkyl ketone peptide or amino acid.

Inhibitor compounds having a fluoroalkyl ketone electronegative leaving group are synthesized in accordance with a Rasnick procedure. An N-blocked peptide is reacted with fluoroacetic anhydride and a trialkylamine in an organic solvent to form a peptide-anhydride. The anhydride is then reacted with a catalyst such as 4-dimethylaminopyridine and the reaction mixture maintained at about 25° C for about two hours to allow for CO₂ evolution. The reaction mixture is then extracted with an organic solvent and the organic phase washed and dried. The organic solvent is removed to form an oil, which is then applied to a silica gel column. The N-blocked, fluoroalkyl ketone peptide is then eluted from the gel and purified.

Inhibitor compounds having a fluoroalkyl ketone electronegative leaving group can be extended in the N-terminus direction by removing the N-terminal blocking group and coupling the deprotected compound with other protected amino acids. Bodanszky, The Practice of Peptide Synthesis, Springer-Verlag, Berlin (1984). Alternatively, deprotected compounds are acetylated to yield compounds having an N-terminal acetyl protecting group. Stewart et al., Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, IL. (1984).

The inhibitor compounds of the present invention are useful in inhibiting the physiological actions of interleukin 1 β by preventing formation of biologically active IL-1 β . The inhibition of IL-1 β pro results in a decrease in active IL-1 β levels and a concomitant increase in precursor IL-1 β , which compound is biologically inactive.

The inhibitor compounds of the present invention are also useful in treating dysfunctional states, such as autoimmune disease-associated inflammation, often mediated by increased IL-1 activity.

Mammals needing treatment for an inflammatory disorder or prevention of an autoimmune condition are administered effective amounts of the compounds of this invention either alone or in the form of a pharmaceutical composition.

Pharmaceutical compositions of the present invention comprise physiologically acceptable carriers and compounds comprising amino acid sequences of from 1 to about 5 amino acids having an N-terminal blocking group and a C-terminal Asp residue connected to an electronegative leaving group, wherein said amino acid sequence corresponds to the sequence Ala-Tyr-Val-His-Asp, residues 112 to 116 of sequence listing I.D. No. 1.

Antisense oligonucleotides can be synthesized (by conventional phosphodiester techniques such as by Synthecell, Rockville, MD) that are complementary to unique species-specific coding regions of mRNA for IL-1 β pro. Examples of such regions include regions of at least 18 bases at the initiation codon (TACCGGCTGTTCCAGGAC or TACCTATTCTGGGCTCGA) complementary to bases 18-36 and 168 to 196, respectively in Figure 1, at the N-terminus of mature IL-1 β pro (TTGGGTCGATACGGGTGT) complementary to bases 374 to 392 in Figure 1, at the approximate C terminus after protease cleavage (CACACACCAAATTCTA) complementary to bases 890 to 908 in Figure 1, or at a region immediately 5' to the termination codon (ATGGAGAACGGTCCTGTA) complementary to bases 1205 to 1229 in Figure 1.

The primary amino acid structure of IL-1 β pro or its active fragment thereof may be modified by forming covalent or aggregative conjugates with other chemical moieties, such as glycosyl groups, lipids, phosphate, acetyl groups and the like, or by creating amino acid sequence mutants or derivatives. Covalent derivatives of IL-1 β pro are prepared by linking particular functional groups to IL-1 β pro amino acid side chains or at the N-terminus or C-terminus of the IL-1 β pro polypeptide. Other derivatives of IL-1 β pro within the scope of this invention include covalent or aggregative conjugates of IL-1 β pro or its fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. For example, the conjugated polypeptide may be a signal (or leader) polypeptide sequence at the N-terminal region of the IL-1 β pro polypeptide which co-translationally or post-translationally directs transfer of the IL-1 β pro polypeptide from its site of synthesis to a site inside or outside of the cell membrane or wall (e.g., the yeast α -factor leader). IL-1 β pro polypeptide fusions can comprise polypeptides added to facilitate purification and identification of IL-1 β pro (e.g., poly-His). Further, the amino acid sequence of IL-1 β pro can be linked to the peptide Asp-Tyr-Lys-Asp-Asp-Asp-Lys (Hopp et al. *BioTechnology* 6:1204 1988), which is a highly antigenic sequence and provides an epitope reversibly bound by a specific monoclonal antibody to enable rapid assay and facile purification of the expressed recombinant polypeptide. This specific leader sequence is cleaved by bovine mucosal enterokinase at the residue immediately following

the Asp-Lys pairing. Moreover, fusion polypeptides having this leader sequence at its N-terminal may be resistant to degradation in *E. coli* host cells.

The present invention further includes IL-1 β pro polypeptides with or without associated native-pattern glycosylation. IL-1 β pro expressed in yeast or mammalian expression systems (e.g., COS-7 cells) may be similar or significantly different in molecular weight and glycosylation pattern than the native human IL-1 β pro polypeptide. This depends upon the choice of expression system. Expression of IL-1 β pro polypeptides in bacterial expression systems, such as *E. coli*, provides non-glycosylated molecules.

Functional mutant analogs of human IL-1 β pro can be synthesized, for example, with inactivated N-glycosylation sites by oligonucleotide synthesis and ligation or by site-specific mutagenesis techniques. The IL-1 β pro derivatives can be expressed in homogeneous, reduced carbohydrate form using yeast expression systems. N-glycosylation sites in eukaryotic polypeptides are characterized by an amino acid triplet Asn- Φ - Ω where Φ is any amino acid except Pro and Ω is Ser or Thr. In this sequence, carbohydrate residues are covalently attached at the Asn side chain.

IL-1 β pro analogs or derivatives may also be obtained by mutations of the IL-1 β pro DNA sequence. An IL-1 β pro mutant derivative, as referred to herein, is a polypeptide substantially homologous to IL-1 β pro but which has an amino acid sequence different from native IL-1 β pro because of a deletion, insertion or substitution.

IL-1 β pro is expressed from a mammalian gene, presumably encoded by one or more multi-exon genes. The present invention further includes alternative mRNA constructs which can be attributed to different mRNA splicing events following transcription, and which share regions of identity or similarity with the cDNA's disclosed herein.

Bioequivalent analogs of IL-1 β pro polypeptides (defined as polypeptides having IL-1 β pro biological activity) may be constructed, for example, by making various substitutions of amino acid residues or sequences, or by deleting terminal or internal residues or sequences not needed for biological activity. For example, Cys residues can be deleted or replaced with other amino acids to prevent formation of incorrect intramolecular disulfide bridges upon renaturation. Other approaches to mutagenesis involve modification of dibasic amino acid residues to enhance expression in yeast systems in which KEX2 protease activity is present. Generally, substitutions are made conservatively by substituting an amino acid having physicochemical characteristics resembling those of the replaced residue. Further substitutions may be made outside of the "core" sequence needed for IL-1 β pro biological activity. Subunits of IL-1 β pro may be constructed by deleting terminal or internal residues or sequences. The resulting polypeptide should have IL-1 β pro biological activity as defined herein.

The terms "IL-1 β pro", "human IL-1 β pro" or "IL-1 β protease" include, but are not limited to, analogs or subunits of IL-1 β pro which are substantially similar to human IL-1 β pro and/or which exhibit the substrate-specific proteolytic biological activity associated with IL-1 β pro as described herein.

5 The term "substantially similar", when used to describe amino acid sequences, means that a particular sequence may vary from a disclosed reference sequence by one or more substitutions, deletions, or additions. However, the net effect is the same protease biological activity characteristic of the reference human IL-1 β pro polypeptide as determined by a Western gel assay. A substantially similar human IL-1 β pro polypeptide, 10 for example, can have a truncated sequence comprising a "core region" of a sequence of amino acids necessary for the specific protease biological activity characteristic of IL-1 β pro. Substantially similar IL-1 β pro derivatives will be greater than about 30% similar to the corresponding sequence of human IL-1 β pro and have IL-1 β pro biological activity. Polypeptides having amino acid sequences of lesser degrees of similarity but comparable 15 biological activity (including substrate specificity) are considered to be equivalents. More preferably, the derivative polypeptides will have greater than 80% amino acid sequence homology to human IL-1 β pro polypeptide. Percent similarity may be determined, for example, by comparing sequence information using a GAP computer program, version 6.0, available from University of Wisconsin Genetics Computer Group. The GAP 20 program uses the alignment method of Needleman and Wunsch (*J. Mol. Biol.* 48:443 1970), as revised by Smith and Waterman (*Adv. Appl. Math.* 2:482 1981). Briefly, the GAP program defines similarity as the number of aligned symbols which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default parameters for the GAP program include: (1) a weighted comparison matrix for 25 amino acids (see, Schwartz and Dayhoff, eds. *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, pp. 353-58 1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

30 "Biologically active", as used herein, refers to IL-1 β pro biological activity to cleave a particular amino acid sequence at the peptide bond between an Asp residue and an Ala or Gly residue.

35 "Recombinant", as used herein, means that a polypeptide is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide produced in a microbial expression system which is substantially free of native endogenous substances. Polypeptides expressed in most

bacterial expression systems (e.g., *E. coli*) will be free of glycan. Polypeptides expressed in yeast may have a glycosylation pattern different from that expressed in mammalian cells.

The IL-1 β pro protease has a highly restricted substrate specificity. Human precursor IL-1 β polypeptide has an amino acid sequence His-Asp-Ala-Pro for residues 115-118. Human IL-1 β pro cleaves this sequence between residues 116 and 117 (Asp-Ala) to form human mature IL-1 β polypeptide. Changing Asp-116 to Ala in a human precursor IL-1 β polypeptide by site-directed mutagenesis prevented cleavage of the mutant IL-1 β polypeptide derivative.

Isolated human IL-1 β pro was able to cleave at its specific substrate site even when the tertiary structure of the substrate precursor IL-1 β polypeptide was altered by denaturing the substrate polypeptide in boiling water. Precursor human IL-1 β was denatured by boiling a solution of precursor IL-1 β for fifteen minutes. Denaturation had little effect on the ability of human IL-1 β pro to be able to cleave human precursor IL-1 β into mature IL-1 β . Thus, the tertiary structure of the substrate polypeptide does not significantly contribute to the reaction with the enzyme IL-1 β pro.

IL-1 β pro biological activity was determined by a protease assay. As the IL-1 β pro enzyme is salt sensitive, samples having a salt concentration greater than 50mM were initially desalting. Samples can be desalting, for example, by applying 100 μ l of sample to a pre-spun 1 ml Biogel P-6DG (Bio-Rad) column, which was equilibrated in 10 mM Tris-HCl, 5 mM dithiothreitol, pH 8.1, and centrifuging for 5 min at 1876 X g. The assay was conducted by incubating a mixture of five μ l (30 ng) of purified human IL-1 β precursor and 10 μ l of the sample to be tested for IL-1 β protease biological activity for 60 min at 37°C. A control sample was similarly incubated to check for endogenous IL-1. The control sample mixture contained 5 μ l of 10 mM Tris-HCl, pH 8.1 and 5 mM dithiothreitol instead of IL-1 β precursor. The control sample incubations were terminated by addition of SDS (sodium dodecyl sulfate) in sample buffer followed by five min of boiling.

All incubated assay mixtures were electrophoresed on 0.75 mm-thick SDS, 14% polyacrylamide slab gels, using a discontinuous system, such as the one described in Laemmli *Nature* 277:680 1970. Western blots were performed following electrophoresis by transferring the proteins onto nitrocellulose (Sartorius) and probing using an 20 μ g/ml solution of purified IL-1 β COOH-terminal-specific monoclonal antibody (i.e., 16F5). The blot was developed using Horseradish Peroxidase Color Developing Reagent (Bio Rad). One hundred ng of purified mature IL-1 β was used as a control 17,500 dalton marker on the Western blot.

Human IL-1 β pro enzyme was obtained and purified from THP-1 cells obtainable from the American Type Culture Collection (ATCC). Approximately 120 liters of cells were cultured and then stimulated for 16 hours with liposaccharide, hydroxyurea and silica

as described in Matsushima *Biochemistry* 25:3424 1986. The cells were harvested by centrifugation, washed in Hanks balanced salt solution, and then recentrifuged. The cells were resuspended in 10 mM Tris-HCl, 5 mM dithiothreitol, pH 8.1 at a density of 10⁸/ml. The suspended cells were frozen and thawed three times and the lysates stored at -80°C until further use. Prior to purification, the lysates were thawed and then centrifuged for 20 min at 47,800 X g at 4°C. The supernatant was taken for further purification. The freeze-thawing procedure repeated four times released over 50% of the IL-1β pro activity into the supernatant. Additional freeze-thaws did not increase the yield of soluble material.

The human IL-1β pro polypeptide was purified in a six-step process. All the chromatography steps were performed at 4°C using a Pharmacia FPLC System. DEAE-Sephadex, Hydroxyapatite and Blue Agarose gels were pretreated with 0.1% Triton-X-100 and 10% bovine calf serum to prevent non-specific absorption of proteins to the gels. Further, the Blue Agarose column was washed with 8M urea to remove any noncovalently absorbed dye.

1. Approximately 500-600 ml of lysate supernatant was diluted 1:2 in 10mM Tris-HCl and 5mM dithiothreitol, pH 8.1 ("buffer A") to reduce ionic strength of the lysate to <20mM. pH was adjusted to 8.1. The diluted lysate supernatant was applied to a DEAE-Sephadex column (20 x 4.4 cm, Pharmacia Fine Chemicals), equilibrated with buffer A. The flow rate was 120 ml/hr. The column was washed with two column volumes of buffer A and then eluted with a linear gradient (3 column volumes) ranging from 0 to 300 mM NaCl in buffer A. Fifteen ml fractions were collected, analyzed for IL-1β pro activity and stored for further purification. The IL-1β pro activity was eluted with between 0.07 and 0.13 M NaCl. This step removed 79% of the contaminating proteins. The bulk of the contaminating proteins eluted between 0.15 and 0.25 M NaCl. This step was further useful in partially removing endogenous mature IL-1β, which eluted between 0.06 and 0.11 M NaCl, and endogenous precursor IL-1β which eluted between 0.12 and 0.18 M NaCl.

2. The pooled active fractions from the DEAE column were diluted in 50 mM potassium phosphate buffer, 5 mM dithiothreitol, pH 7.0 ("buffer B"). A 14 x 3 cm column of hydroxyapatite (HA Ultrogel, IBF Biotechnics) was equilibrated with buffer B. The diluted fractions were applied to the equilibrated hydroxyapatite column at a flow rate of 60 ml/hr. The column was washed with 2 column volumes of buffer B and then eluted with a linear gradient (4 column volumes) ranging from 50-200 mM potassium phosphate. Fractions were collected as 10 ml volumes, analyzed for IL-1β pro activity, and stored for further purification. IL-1β pro eluted between 0.085 and 0.113 M potassium phosphate. Forty percent of the contaminating polypeptides eluted before the protease and 40% eluted

later than the protease. Further, endogenous mature IL-1 β eluted between 0.05 and 0.08 M potassium phosphate.

3. A 20 x 1.6 cm Blue Agarose column (Gibco-BRL) was equilibrated with buffer

A. Fractions from the hydroxyapatite column with activity were diluted 1:3 in buffer A to
5 reduce ionic strength to <30 mM. This was necessary in order to allow IL-1 β pro to bind
to the column. Diluted fractions were applied to the Blue Agarose column at a 30 ml/hr
rate. The column was washed with three column volumes of buffer A. The proteins were
eluted with five column volumes of a linear gradient ranging from 0.1 to 1 M NaCl in
10 buffer A. Ten ml fractions were collected, analyzed for IL-1 β pro activity and stored for
further purification. IL-1 β pro was eluted with 0.5 to 0.68 M NaCl. Eighty percent of the
contaminating proteins were removed in this step, with 20% eluting earlier and the
remaining 60% remaining bound to the column.

4. A 95 x 2.5 cm Sephadex G-75 column (Pharmacia Fine Chemicals) was

equilibrated in buffer A and initially calibrated with ferritin (MW 400,000), ovalbumin
15 (MW 43,000), soybean trypsin inhibitor (MW 20,000) and DNP-aspartic acid (MW 300).
The Blue Agarose column fractions containing protease activity were pooled and

concentrated on a Centriprep-10 concentrator (Amicon) to a volume of approximately 2 ml
and then applied to the Sephadex G-75 column. Proteins were eluted with buffer A at a
flow rate of 20 ml/hr. Four ml fractions were collected and the fractions containing
20 protease activity were pooled for further purification. IL-1 β pro activity was eluted with
between 196 and 220 ml. This position is identical to the elution position of soybean
trypsin inhibitor, which suggests that human IL-1 β pro has a molecular weight of about
20,000 daltons. This step removed over 90% of the contaminating proteins from the
preparation. Thus, through the Sephadex step, more than 99.8% of the starting protein
25 contaminants have been separated from IL-1 β pro. However, PAGE (polyacrylamide gel
electrophoresis) analysis of the fractions still revealed several protein bands that did not
correlate with IL-1 β pro biological activity.

5. Fractions from the Sephadex column which contained protease activity were

pooled and the pool was concentrated on pretreated Centriprep 10 Concentrators to a 500 μ l
30 volume. Since protein concentration of the Sephadex pool was low (<30 μ g/ml),
pretreatment of the centripreps with bovine serum albumin reduced loss of IL-1 β pro
activity during concentration. Extensive washing of the treated centripreps prior to use
prevented contamination of samples with albumin. Pretreatment was accomplished by
centrifuging 15 ml of 1% bovine serum albumin (BSA) in centripreps for 30 min,
35 decanting the remaining solution, and washing with 10 mM Tris-HCl. A Mono PS/20
FPLC chromatofocussing column (Pharmacia Fine Chemicals) was equilibrated with 25
mM Tris-acetate and 5 mM dithiothreitol, pH 8.3 buffer. The concentrated solution was

mixed (1:1 v/v) with 500 µl of 25 mM Tris-acetate and 5 mM dithiothreitol, pH 8.3 and applied to the Mono PS/20 FPLC column. Proteins were eluted with Polybuffer 96:Polybuffer 74 (3:7) pH 5.0 (Pharmacia) at a 15 ml/hr flow rate. One ml fractions were collected and analyzed for pH and biological protease activity. This chromatofocusing step increased the purity of IL-1 β pro a further 100 fold and allowed for the visualization of a single protein band that correlated with IL-1 β pro biological activity. IL-1 β pro was eluted off the chromatofocusing column between pH 6.95 and 6.70. The fractions were concentrated on BSA-pretreated Centricon 10 Concentrators (Amicon) from 1 µl to 50 µl.

6. The fractions were subjected to electrophoresis on a polyacrylamide gel (PAGE), followed by electroblotting onto polyvinyl difluoride membrane paper (PVDF, Millipore Immobilin-P[®]) at 300 mA for 30 min. The PVDF membrane was stained with Coomassie Blue. There were five major bands with molecular weights of approximately 45,000, 43,000, 36,000, 22,000 and 18,000 daltons. The 22,000 dalton band correlated with IL-1 β pro activity and was sequenced.

15 The N-terminal sequence of the 22,000 dalton band yielded an amino acid sequence described herein. A mature human IL-1 β pro cDNA or an active fragment thereof was cloned using this N-terminal amino acid sequence and a three-stage polymerase chain reaction (PCR) procedure. In the first stage PCR procedure, fully degenerate PCR primers were designed and made from the N-terminal amino acid sequence. The degenerate 20 primers were used to amplify IL-1 β pro-specific sequences from a cDNA library prepared from THP-1 cell mRNA. A random primed first strand THP-1 cDNA library was constructed according to supplier instructions (Amersham). A mixed oligonucleotide primed amplification was carried out according to the procedure described in Lee et al. "cDNA Cloning Using Degenerate Primers" in *PCR Protocols* (Innis, Gelfand, Sninsky and White eds.) Academic Press, Inc. New York pp. 46-53 1990. Primer #1 was 25 designed to cross-hybridize to IL-1 β pro DNA (nucleotides 1-17) and contain an EcoR1 restriction site. Primer #1 (Sequence ID No. 3) had the sequence:

5'-GTCGAATTCAA(T/C)CCNGCNATGCCNAC-3'

Primer #2 was designed to cross-hybridize to IL-1 β pro DNA (complementary to 30 nucleotides 31-47 and contain an XbaI restriction site. Primer #2 (Sequence ID No. 4) had the sequence

5'-GTCTCTAGAAG(T/C)TTNAC(A/G)TTNCC(T/C)TC-3'

PCR amplification was performed with *thermus aquarius* polymerase (Perkin-Elmer Cetus) in 100µl of buffer for 30 cycles as described in Lee et al. *infra*. A 63 bp amplified 35 fragment was obtained from PCR amplification. This amplified fragment was subcloned into a pGem-4 vector (Promega). DNA sequence analysis of 10 isolates indicated that this

fragment encoded the first 16 amino acids of the N-terminus of IL-1 β pro as determined by purification and N-terminal sequence analysis.

The second stage of the PCR procedure made Primer #3 composed of nucleotides 1-17 (Figure 1) and a *Nor*1 restriction site and Primer #4 containing 20 T residues and a *Nor*1 restriction site. Primers #3 and #4 were added to the THP-1 cDNA library described above and PCR amplified for 6 cycles at 94°C for 1 min, 50°C for 1 min, and 72°C for 1 min, and for 24 cycles at 94°C for 1 min, 60°C for 1 min and 72°C for 1 min. Southern analysis of the PCR amplified clone using a 17 base oligonucleotide probe (complementary to nucleotides 16-32 in Figure 1) found a band at approximately 1000 bp that was also found to possess IL-1 β pro biological activity. The 1000 bp DNA was gel purified, subjected to a similar second round of PCR and subcloned into pGem-5 for sequencing. The nucleotide sequence of this clone is shown in Figure 1.

In the third stage of PCR cloning, full length IL-1 β pro clones were isolated from a cDNA library prepared from peripheral blood neutrophils. We found that neutrophils expressed IL-1 β pro mRNA. We isolated two clones (p48 and p214) with IL-1 β pro specific inserts of 1367 and 1360 base pairs, respectively. The DNA sequence shown in Figure 1 is a composite of all the IL-1 β pro clones. The amino acids encoded by all of the IL-1 β pro clones we found were identical.

IL-1 β pro cDNA is approximately 1373 base pairs in length, including a stretch of 20 A nucleotides corresponding to the poly (A) tail of mRNA. These A residues are preceded by two polyadenylation signals, AATAA, at 1316 and 1335 base pair. The sequence has an open reading frame of 404 amino acids, starting with an initiator Met codon at nucleotide 18 and ending with a termination codon at nucleotide 1230. Initiation of translation could also begin with an in-frame Met codon at nucleotide 66. Both initiator Met codons have 25 consensus Kozak translation initiation sequences. Polypeptides initiated with the Met residue at position 51 also have biological activity.

IL-1 β pro is a cytoplasmic enzyme. As the purified enzyme N-terminal amino acid is Asn (120), the protease undergoes N-terminal processing resulting in removal of 119 amino acids or 69 amino acids if the alternate initiator codon is used. Deletion analysis has indicated that at least 107 amino acids are removed from the C-terminus. However, it appears that the full C-terminus is necessary for proper folding of the protease before approximately 107 C-terminal amino acids can be removed to insure biological activity for the protease.

Expression of Recombinant IL-1 β pro

35 The DNA sequence shown in Figure 1 was expressed in a mammalian cell (e.g., COS-7 cells). For mammalian cell expression, synthetic oligonucleotide primers were made to amplify the entire coding domain of IL-1 β pro. The 5' primer (5'

ATATCGGTACCGCCTCCAGCATGCCTCCGGCAATGCCACATC-3') contains an Asp718 restriction site and an initiator Met residue fused to the N-terminus of the enzyme (nucleotides 1-20). The 3' primer (5'-

CTGCTAGATCTGCCCGAGACATTACAG-3') contains a BglII restriction site and

- 5 is complementary to nucleotides 883-902 of Figure 1. The PCR generated fragment was ligated into pDC303 mammalian vector, as described in Mosley et al. *Cell* 59:335-348 1989.

Human IL-1 β pro is preferably produced by recombinant DNA techniques. A recombinant DNA expression system inserts a clone encoding human IL-1 β pro 10 polypeptide or a derivative thereof with biological activity into an expression vector. The expression vector is inserted into a host cell. The host cell's protein synthesis machinery synthesizes the recombinant human IL-1 β pro polypeptide.

Suitable host cells for expression of mammalian IL-1 β pro polypeptides or derivatives thereof include prokaryotes, yeast or higher eukaryotic cells under the control of appropriate promoters. Prokaryotes include gram negative or gram positive organisms, for example *E. coli* or bacilli. Suitable prokaryotic host cells for transformation include, for example, *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium*, and various other species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*. Higher eukaryotic cells include established cell lines of mammalian origin as described below. Cell-free 20 translation systems could also be employed to produce mammalian IL-1 β pro polypeptides or derivatives thereof using RNAs derived from the DNA constructs disclosed herein. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al. *Cloning Vectors: A Laboratory Manual*, Elsevier, New York, 1985.

25 When an IL-1 β pro polypeptide or derivative thereof is expressed in a yeast host cell, the nucleotide sequence (e.g., structural gene) that codes on expression for an IL-1 β pro polypeptide or derivative thereof may include a leader sequence. The leader sequence enables improved extracellular secretion of translated polypeptide by a yeast host cell.

30 Alternatively, in a prokaryotic host cell, such as *E. coli*, the IL-1 β pro polypeptide or derivative thereof may include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in a prokaryotic host cell. The N-terminal Met may be cleaved from the expressed recombinant IL-1 β pro polypeptide or derivative thereof. Moreover, prokaryotic host cells may be used for expression of IL-1 β pro polypeptides or derivatives thereof that do not require extensive proteolytic and disulfide processing.

35 The recombinant expression vectors carrying the recombinant IL-1 β pro structural gene nucleotide sequence or derivative thereof are transfected or transformed into a substantially homogeneous culture of a suitable host microorganism or mammalian cell

line. Examples of suitable host cells include bacteria such as *E. coli*, yeast such as *S. cerevisiae*, or a mammalian cell line such as Chinese Hamster Ovary (CHO) cells.

Transformed host cells are cells which have been transformed or transfected with IL-1 β pro or a derivative thereof structural gene nucleotide sequences. Expressed IL-1 β pro polypeptides will be located within the host cell and/or secreted into culture supernatant, depending upon the nature of the host cell and the gene construct inserted into the host cell. Expression vectors transfected into prokaryotic host cells generally comprise one or more phenotypic selectable markers. A phenotypic selectable marker is, for example, a gene encoding proteins that confer antibiotic resistance or that supply an autotrophic requirement, and an origin of replication recognized by the host to ensure amplification within the host. Other useful expression vectors for prokaryotic host cells include a selectable marker of bacterial origin derived from commercially available plasmids. This selectable marker can comprise genetic elements of the cloning vector pBR322 (ATCC 37017). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells. The pBR322 "backbone" sections are combined with an appropriate promoter and an IL-1 β pro structural gene sequence. Other commercially vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM1 (Promega BioTech, Madison, WI, USA).

Promoter sequences are commonly used for recombinant prokaryotic host cell expression vectors. Common promoter sequences include β -lactamase (penicillinase), lacrosse promoter system (Chang et al., *Nature* 275:615, 1978; and Goeddel et al., *Nature* 281:544, 1979), tryptophan (trp) promoter system (Goeddel et al., *Nucl. Acids Res.* 8:4057, 1980; and EPA 36,776) and lac promoter (Maniatis, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, p. 412, 1982). A particularly useful prokaryotic host cell expression system employs a phage λ PL promoter and a cI857ts thermolabile repressor sequence. Plasmid vectors available from the American Type Culture Collection which incorporate derivatives of the λ PL promoter include plasmid pHUB2 (resident in *E. coli* strain JMB9 (ATCC 37092)) and pPLc28 (resident in *E. coli* RR1 (ATCC 53082)).

Human IL-1 β pro polypeptides and derivative polypeptides may be expressed in yeast host cells, preferably from the *Saccharomyces* genus (e.g., *S. cerevisiae*). Other genera of yeast, such as *Pichia* or *Kluyveromyces*, may also be employed. Yeast vectors will often contain an origin of replication sequence from a 2 μ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, and sequences for transcription termination. Preferably, yeast vectors include an origin of replication sequence and selectable marker. Suitable promoter sequences for yeast vectors include promoters for metallothionein, 3-phosphoglycerate

kinase (Hitzeman et al., *J. Biol. Chem.* 255:2073, 1980) or other glycolytic enzymes (Iles et al., *J. Adv. Enzyme Reg.* 7:149, 1968; and Holland et al., *Biochem.* 17:4900, 1978), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other suitable vectors and promoters for use in yeast expression are further described in Hitzeman, EP-A-73,657.

Yeast vectors can be assembled, for example, using DNA sequences from pDR322 for selection and replication in *E. coli* (*Amp^r* gene and origin of replication). Other yeast DNA sequences that can be included in a yeast expression construct include a glucose-repressible ADH2 promoter and α -factor secretion leader. The ADH2 promoter has been described by Russell et al. (*J. Biol. Chem.* 258:2674, 1982) and Beier et al. (*Nature* 300:724, 1982). The yeast α -factor leader sequence directs secretion of heterologous polypeptides. The α -factor leader sequence is often inserted between the promoter sequence and the structural gene sequence. See, e.g., Kurjan et al., *Cell* 30:933, 1982; and Bitter et al., *Proc. Natl. Acad. Sci. USA* 81:5330, 1984. A leader sequence may be modified near its 3' end to contain one or more restriction sites. This will facilitate fusion of the leader sequence to the structural gene.

Yeast transformation protocols are known to those of skill in the art. One such protocol is described by Hinnen et al., *Proc. Natl. Acad. Sci. USA* 75:1929, 1978. The Hinnen et al. protocol selects for *Trp^r* transformants in a selective medium, wherein the selective medium consists of 0.67% yeast nitrogen base, 0.5% casamino acids, 2% glucose, 10 μ g/ml adenine and 20 μ g/ml uracil.

Yeast host cells transformed by vectors containing ADH2 promoter sequence may be grown for inducing expression in a "rich" medium. An example of a rich medium is one consisting of 1% yeast extract, 2% peptone, and 1% glucose supplemented with 80 μ g/ml adenine and 80 μ g/ml uracil. Derepression of the ADH2 promoter occurs when glucose is exhausted from the medium.

Mammalian or insect host cell culture systems could also be employed to express recombinant IL-1 β pro polypeptide or derivatives thereof. Examples of suitable mammalian host cell lines include the COS-7 lines of monkey kidney cells (Gluzman Cell 23:175, 1981), L cells, C127 cells, 3T3 cells, Chinese hamster ovary (CHO) cells, HeLa cells, and BHK cell lines. Suitable mammalian expression vectors include nontranscribed elements such as an origin of replication, a promoter sequence, an enhancer linked to the structural gene, other 5' or 3' flanking nontranscribed sequences, such as ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and transcriptional termination sequences.

Transcriptional and translational control sequences in mammalian host cell expression vectors may be provided by viral sources. For example, commonly used mammalian cell promoter sequences and enhancer sequences are derived from Polyoma, Adenovirus 2, Simian Virus 40 (SV40), and human cytomegalovirus. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early and late promoter, enhancer, splice, and polyadenylation sites may be used to provide the other genetic elements required for expression of a structural gene sequence in a mammalian host cell. Viral early and late promoters are particularly useful because both are easily obtained from a viral genome as a fragment which may also contain a viral origin of replication (Fiers et al., 10 *Nature* 273:113, 1978). Smaller or larger SV40 fragments may also be used, provided the approximately 250 bp sequence extending from the *Hind* III site toward the *Bgl* I site located in the SV40 viral origin of replication site is included.

Further, mammalian genomic IL-1 β pro promoter, control and/or signal sequences may be utilized, provided such control sequences are compatible with the host cell chosen. Exemplary vectors can be constructed as disclosed by Okayama and Berg (*Mol. Cell. Biol.* 3:280, 1983).

Purification of Recombinant Human IL-1 β pro

Purified human IL-1 β pro polypeptides or derivatives thereof are prepared by culturing transformed host cells under culture conditions necessary to express IL-1 β pro polypeptides or derivatives thereof. The expressed polypeptides are purified from culture media or cell extracts. For example, supernatants from cultured transformed host cells can secrete recombinant IL-1 β pro polypeptide into culture media. The IL-1 β pro polypeptide or derivative thereof is concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. Following the concentration step, the concentrate can be applied to a purification matrix. For example, a suitable purification matrix is an IL-1 β pro inhibitor or an antibody molecule specific for an IL-1 β pro polypeptide or derivative thereof and bound to a suitable support. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred.

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify an IL-1 β pro polypeptide composition. Some or all of the foregoing purification steps, in various

combinations, can also be employed to provide a homogeneous recombinant protein. Alternatively, some or all of the steps used in the purification procedure described herein can also be employed.

Recombinant polypeptide produced in bacterial culture is usually isolated by initial
5 disruption of the host cells, extraction from cell pellets if an insoluble polypeptide, or from the supernatant if a soluble polypeptide, followed by one or more concentration, salting-out, ion exchange or size exclusion chromatography steps. Finally, reverse phase high performance liquid chromatography (RP-HPLC) can be employed for final purification steps. Microbial cells can be disrupted by any convenient method, including freeze-thaw
10 cycling, sonication, mechanical disruption, or use of cell lysing agents.

Transformed yeast host cells will generally express IL-1 β pro polypeptide as a secreted polypeptide. This simplifies purification. Secreted recombinant polypeptide from a yeast host cell fermentation can be purified by methods analogous to those disclosed by Urdal et al. (*J. Chromatog.* 296:171, 1984). Urdal et al. describe two sequential, reversed-phase HPLC steps for purification of recombinant human IL-2 on a preparative HPLC column.
15

Administration of IL-1 β pro Polypeptide and Derivative Compositions

The present invention provides methods of using therapeutic compositions comprising an effective amount of IL-1 β pro polypeptides and derivatives thereof in a suitable diluent and carrier. For therapeutic use, purified IL-1 β pro or a biologically active derivative thereof is administered to a patient, preferably a human, for treatment in a manner appropriate to the indication. Thus, for example, IL-1 β pro compositions administered to suppress autoimmunity can be given by bolus injection, continuous infusion, sustained release from implants, or other suitable technique. Typically, an IL-1 β pro therapeutic agent will be administered in the form of a pharmaceutical composition comprising purified polypeptide in conjunction with physiologically acceptable carriers, excipients or diluents. Such carriers will be nontoxic to patients at the dosages and concentrations employed. Ordinarily, the preparation of such compositions entails combining IL-1 β pro with buffers, antioxidants such as ascorbic acid, low molecular weight (less than about 10 residues) polypeptides, proteins, amino acids, carbohydrates including glucose, sucrose or dextrans, chelating agents such as EDTA, glutathione and other stabilizers and excipients. Neutral buffered saline or saline mixed with conspecific serum albumin are exemplary appropriate diluents.
20
25
30

The pharmaceutical compositions of the present invention include one or more of the IL-1 β pro inhibitor compounds of this invention formulated into compositions together with one or more non-toxic physiologically acceptable carriers, adjuvants or vehicles which are collectively
35

referred to herein as carriers, for parenteral injection, for oral administration in solid or liquid form, for rectal or topical administration, and the like.

The compositions can be administered to humans and animals either orally, rectally, parenterally (intravenously, intramuscularly or subcutaneously), intracisternally, intravaginally, 5 intraperitoneally, locally (powders, ointments or drops), or as a buccal or nasal spray.

- Compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, 10 vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.

- These compositions may also contain adjuvants such as preserving, wetting, 15 emulsifying, and dispensing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for 20 example, aluminum monostearate and gelatin.

- If desired, and for more effective distribution, the compounds can be incorporated into slow release or targeted delivery systems such as polymer matrices, liposomes, and microspheres. They may be sterilized, for example, by filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can 25 be dissolved in sterile water, or some other sterile injectable medium immediately before use.

- Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or (a) fillers or extenders, as for example, starches, lactose, sucrose, glucose, mannitol and silicic acid, (b) binders, as for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, 30 sucrose and acacia, (c) humectants, as for example, glycerol, (d) disintegrating agents, as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates and sodium carbonate, (e) solution retarders, as for example paraffin, (f) absorption accelerators, as for example, quaternary ammonium compounds, (g) wetting agents, as for 35 example, cetyl alcohol and glycerol monostearate, (h) adsorbents, as for example, kaolin and bentonite, and (i) lubricants, as for example, talc, calcium stearate, magnesium stearate, solid

polyethylene glycols, sodium lauryl sulfate or mixtures thereof. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents.

- 5 Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethyleneglycols, and the like.

- 10 Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared with coatings and shells, such as enteric coatings and others well known in this art. They may contain opacifying agents, and can also be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner.

- 15 Examples of embedding compositions which can be used are polymeric substances and waxes.

The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.

Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.

- 25 Suspensions, in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxycethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.

- 30 Compositions for rectal administrations are preferably suppositories which can be prepared by mixing the compounds of the present invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethyleneglycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and therefore, melt in the rectum or vaginal cavity and release the active component.

- 35 Dosage forms for topical administration of a compound of this invention include ointments, powders, sprays and inhalants. The active component is admixed under sterile conditions with a physiologically acceptable carrier and any needed preservatives, buffers or propellants as may be required. Ophthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.

The compounds of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to the IL-1 β pro inhibiting compounds of the present invention, stabilizers, preservatives, excipients, and the like. The preferred lipids are the phospholipids and the phosphoryl cholines (lecithins), both natural and synthetic.

Methods to form liposomes are known in the art. See, for example, Methods in Cell Biology, Ed. by Prescott, Volume XIV, Academic Press, New York, N.Y., p. 33 et seq., (1976).

Actual dosage levels of active ingredient in the compositions of the present invention may be varied so as to obtain an amount of active ingredient that is effective to obtain a desired therapeutic response for a particular composition and method of administration. The selected dosage level therefore depends upon the desired therapeutic effect, on the route of administration, on the desired duration of treatment and other factors.

The total daily dose of the compounds of this invention administered to a host in single or divided doses may be in amounts, for example, of from about 0.1 mg to about 160.0 mg per kilogram of body weight. Dosage unit compositions may contain such amounts of such submultiples thereof as may be used to make up the daily dose. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the body weight, general health, sex, diet, time and route of administration, rates of absorption and excretion, combination with other drugs and the severity of the particular disease being treated.

The following examples are for the purposes of illustration and not by way of limitation.

EXAMPLE 1

This example illustrates the range of substrate specificity of purified human IL-1 β pro enzyme to cleave a group of amino acid sequences. A variety of peptide substrates were prepared featuring changes in individual amino acids in the region corresponding to the cleavage site in human precursor IL-1 β (His115 to Pro118). The reactivity of the peptide substrates was expressed relative to the peptide corresponding to Ala112 to Ser121 of the precursor IL-1 β sequence.

Substrate peptides were synthesized by solid phase method (Merrifield J. Amer. Chem. Soc. 86:304-05 1964) using either an Applied Biosystems 430A peptide synthesizer or by the manual T-bag approach of Houghten (Proc. Nat. Acad. Sci. USA 82:5131-35

1985). 4-Methyl benzhydrylamine resin was used. The substrate peptides were acetylated prior to cleavage from resin, by liquid HF (0°C, 1 hr) in the presence of anisole as scavenger (HF:anisole 9:1). After evaporation of HF, the substrate peptide resin mixtures were washed with diethyl ether and extracted with 15% (w/v) acetic acid, lyophilized and purified on reverse phase high performance liquid chromatography (RP-HPLC) on a Vydac C18, 2.2cm x 25 cm column. Trifluoroacetic acid (0.1%) in water was solvent A and 0.1% trifluoroacetic acid in acetonitrile was solvent B for the mobile phases.

5 The purified substrate peptides were characterized by amino acid analysis using a Beckman 6300 system, RP-HPLC and mass spectrometry. Mass spectra were obtained by either fast atom bombardment on a VG Trio-2 system with xenon as the ionizing gas and glycerol/thioglycerol (1:1) as the sample matrix or by ^{252}Cf plasma desorption mass spectrometry on a Bio-Ion 20 mass spectrometer (See Tsarbopoulos *Peptide Res.* 2:258-66 1989). In each case, the mass of the observed peptide substrate corresponded with the theoretical value.

10 Peptide solutions of standard concentration were prepared by dissolving about 2-3 mg of peptide substrate in water, loading the solution onto a Waters Sep-Pak C18 cartridge and washing three times with 5 ml of water. The peptide substrates were eluted with acetonitrile and then evaporated to dryness. Each substrate was standardized to 1 mM by amino acid analysis prior to use.

15 Purified human IL-1 β pro enzyme (10 μl), peptide substrate in water (10 μl), and 10 mM Tris buffer, pH 8.0 containing 25% v/v glycerol (10 μl) were mixed and the mixtures were incubated at 37°C for four hours. The reaction was quenched with by adding 1 M glycine/HCl buffer pH 2.0 (10 μl). The samples were then analyzed using RP-HPLC with a Vydac C18 column (0.46 cm x 25 cm) and eluting with a linear gradient from 100%

20 solvent A to 70% solvent A/30% solvent B over 30 min at a flow rate of 1 ml/min. The effluent was monitored at 280 nm except with digestions of Ac-VHDAPV-NH₂ and Ac-HDAP-NH₂ (see Example 2) which were monitored at 220 nm. In the case of substrate peptides cleaved by the protease, consumption of substrate peptide was observed together with formation of a 280 nm absorbing product. A comparison of peak area of product peptide to that of total peak area of substrate and product yielded the extent of peptide cleavage, because the area under the combined substrate and product peaks was constant and independent of the amount of cleavage by the IL-1 β pro enzyme. Identities of peptide product peaks were confirmed by amino acid analysis and by mass spectrometry.

25 Table 1 shows the relative reactivities of a series of eight peptide substrates that were subject to digestion by purified IL-1 β pro enzyme.

TABLE I

<u>Peptide</u>	<u>Sequence</u>	<u>Reactivity relative to peptide 1</u>
5		
1	AYVHDAPVRS	1.00
2	AYVHNAPVRS	<0.01
10	3 AYVIIIEAPVRS	<0.05
4	AYVH(D-Asp)APVRS	<0.01
15	5 AYVHDGPVRS	3.40
6	AYVHDVPVRS	<0.05
7	AYVFDAPVRS	0.50
20	8 AYVHDAAVRS	0.47

The cleavage site can be described with the corresponding human precursor IL-1 β amino acid residues as follows:

Changing the L-aspartic acid residue of peptide 1 to either asparagine (peptide 2), glutamic acid (peptide 3) or D-aspartate (peptide 4) has a profound effect on the ability of IL-1 β pro to cleave the substrate. These data establish the requirement of an L-aspartate residue in the P1 position for this enzyme to be able to cleave a substrate.

Peptides 5 and 6 represent changes in the P1' position of the human precursor IL-1 β cleavage site. Replacing alanine with glycine (peptide 5) results in a substrate that is 3.4 times more reactive than peptide 1. However, changing the same residue to a valine (peptide 6) effectively prevents proteolytic cleavage. The fact that with a glycine residue in P1' the peptide is cleaved more readily suggests that the alanine residue in human precursor IL-1 β polypeptide is not critical for substrate binding, while the result with a valine residue in the P1' position indicates low steric tolerance at the P1' position. Thus, it seems

unlikely that the IL-1 β pro enzyme or derivatives thereof will cleave anywhere other than between Asp-Gly and Asp-Ala residues.

Peptides 7 and 8 represent changes to the P2 and P2' sites, respectively. Changing the proline of peptide 1 to an alanine yielded a substrate which was still cleaved by human IL-1 β pro but only half as efficiently as the peptide with human IL-1 β native sequence. A similar result was obtained when the histidine of peptide 1 was replaced with a phenylalanine. These data suggest that human IL-1 β pro enzyme tolerates conservative replacements of both residues and that the P2 and P2' positions are not as vital for activity as the amino acids at the P1 and P1' positions.

10

EXAMPLE 2

This example illustrates the effect of substrate peptide length on the ability of human IL-1 β pro enzyme to cleave peptide substrates. The experiment was conducted as described in Example 1. Five substrate peptides were made that correspond to the amino acid sequence of the IL-1 β pro cleavage site of human precursor IL-1 β . The results are shown in Table 2 below:

		Table 2	
	<u>Peptide</u>	<u>Sequence</u>	<u>Reactivity relative to peptide 1</u>
20	1	AYVHDAPVRS	1.00
25	9	EAYVHDAPVRSL	0.74
30	10	YVHDAPVR	2.49
	11	VHDAPV	Not cleaved
	12	HDAP	Not cleaved

The eight amino acid peptide (Ac-Tyr-Val-His-Asp-Ala-Pro-Val-Arg-NH₂) is cleaved most efficiently while the four and six amino acid peptides are not cleaved. Thus, IL-1 β pro has a minimum number of amino acid residues necessary for substrate peptide cleavage.

35

EXAMPLE 3
Synthesis of Π -18 Protease Inhibitors

A. Synthesis of Boc-Asp-CH₂F

5 A suspension of Boc-Asp-OH (8.11 mmol) and fluoroacetic anhydride (16.2 mmol) in benzene (30 ml) was treated with triethylamine (16.2 mol) at room temperature. The catalyst 4-dimethylaminopyridine (0.41 mmol) was added to the solution and the reaction stirred for about 2 h at room temperature. About 100 ml benzene was added to the reaction mixture. The organic solution was washed with 1N HCl (2 X 50 ml), saturated NaHCO₃ (2 X 50 ml), and 10 saturated NaCl (2 X 50 ml), followed by drying over anhydrous MgSO₄. The solvent was then removed by evaporation under reduced pressure. The resulting oil was applied to a 2.5 X 80 cm column of silica gel (60-200 mesh). The title compound was eluted with 2% methanol in chloroform.

15 **B. Synthesis of Boc-His-Asp-CH₂F, Boc-Pro-Asp-CH₂F, Boc-Tyr-Asp-CH₂F and Boc-Phe-Asp-CH₂F**

20 Boc-Asp-CH₂F prepared in accordance with the method of Example 3A above may be dissolved in trifluoroacetic acid (TFA) and the mixture stirred for about 5 minutes at about 23°C. Cold ether may then be added to the mixture. The ether is evaporated and benzene added to co-evaporate residual TFA. The deprotected peptide (H-Asp-CH₂F) is obtained as a TFA salt. The deprotected peptide may then be coupled to a protected amino acid (i.e. Boc-HisOH, Boc-ProOH, Boc-TyrOH, Boc-PheOH) using a standard symmetric anhydride procedure employing dicyclohexylcarbodiimide as a coupling reagent. Bodanszky, *supra*.

25 **C. Synthesis of Ac-His-Asp-CH₂F, Ac-Pro-Asp-CH₂F, Ac-Tyr-Asp-CH₂F and Ac-Phe-Asp-CH₂F**

30 The Boc protecting group may be removed from the compounds made in accordance with the method of Example 3B using trifluoroacetic acid as described above. Each deprotected compound may then be acetylated with acetic anhydride and diisopropylamine (DIAE) according to standard techniques. Stuart et al. *supra*.

D. Synthesis of Cbz-His-Asp-CH₂F, Cbz-Pro-Asp-CH₂F, Cbz-Tyr-Asp-CH₂F and Cbz-Phe-Asp-CH₂F

35 The Boc protecting group may be removed from Boc-Asp-CH₂F prepared according to the method of Example 3A using TFA as described above. Benzyloxycarbonyl-protected amino acids (i.e. Cbz-His-OH, Cbz-Phe-OH, Cbz-Tyr-OH, Cbz-Pro-OH) available from commercial

WO 91/15577

31

sources (Bachem, Philadelphia, PA) can then be coupled to the deprotected Asp using a symmetric anhydride coupling procedure. Rodanszky, *supra*.

EXAMPLE 4

Inhibition of IL-1 β pro Activity

- 5 Boc-Asp-CH₂F was tested for its ability to inhibit IL-1 β pro catalyzed degradation of precursor IL-1 β using an *in vitro* assay method. Black et al. I. Boc-Asp-CH₂F was prepared in accordance with the method of Example 3A.
- 10 5 μ l of precursor IL-1 β (about 50 μ g/ml in PBS) was mixed with 10 μ l of purified IL-1 β pro (15-75 μ g/ml in PBS) and incubated at 37°C for 30 min. The incubation was terminated by placing the samples on dry ice or by the addition of SDS sample buffer. PMSF (phenylmethanesulfonyl) was then added to a concentration of 1 mM, and the samples were dialyzed against water. After dialysis, the samples were concentrated to dryness in a Speed-Vac concentrator and dissolved in SDS sample buffer.
- 15 SDS-PAGE was carried out with 12% polyacrylamide gels. The gels were placed in transfer buffer (0.192 M glycine, 0.025 M Tris-HCl (pH 8.3), 20% v/v methanol), and protein was then electrophoresed onto nitrocellulose (Sartorius) in a Hoeffer transfer apparatus (1 h at maximum voltage). The nitrocellulose was subsequently placed in 20 mM sodium phosphate, pH 7.4 (PBS) containing 3% bovine serum albumin for at least 15 min at room temperature.
- 20 We used a monoclonal antibody (MAb) specific for mature IL-1 β to probe the blot. MAb was added to a concentration of 9 μ g/ml, and the incubation was continued for 30 min. The blot was then rinsed three times with PBS and was developed with a solution obtained by mixing 6 mg of horseradish peroxidase developing reagent (Bio-Rad) dissolved in 2 ml methanol and hydrogen peroxide (60 μ l diluted into 10 ml of Tris-buffered saline).
- 25 The data show that Boc-Asp-CH₂F completely inhibits the generation of mature IL-1 β from precursor IL-1 β at a concentration of 5 μ M and partially inhibits generation of mature IL-1 β at a concentration of 1 μ M.

EXAMPLE 5

- 30 This example illustrates biological activity of IL-1 β pro when transfected into COS cells. We inserted a cDNA corresponding to amino acids 120 to 404 into a mammalian cell expression vector (pDC303). This plasmid was co-transfected into COS-7 cells (monkey kidney) with a second mammalian expression plasmid containing a cDNA encoding precursor IL-1 β . After two days, cells were radiolabeled with ³⁵S and IL-1 β specific proteins were immunoprecipitated from cell lysates. The immunoprecipitates were analyzed by SDS-PAGE and autoradiography. We found that transfected COS-7 cells can process precursor IL-1 β to mature IL-1 β only if the cells were co-transfected with a

plasmid encoding IL-1 β pro. Cells co-transfected with a control plasmid or cells mock transfected did not show any processing of precursor IL-1 β . Thus, IL-1 β pro, lacking the N-terminal 119 amino acids enables cells to process precursor IL-1 β to the mature form of this protein.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: BLACK, ROY
SLEATH, PAUL
KRONHEIM, SHIRLEY

(ii) TITLE OF INVENTION: INTERLEUKIN 1 B PROTEASE

(iii) NUMBER OF SEQUENCES: 4

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: IMMUNEX CORPORATION
(B) STREET: 51 UNIVERSITY STREET
(C) CITY: SEATTLE
(D) STATE: WASHINGTON
(E) COUNTRY: USA
(F) ZIP: 98101

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.24

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: OSTER, JEFFREY B.
(B) REGISTRATION NUMBER: 32,585
(C) REFERENCE/DOCKET NUMBER: 0401WO

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 2065870430
(B) TELEFAX: 2065870606

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 769 AMINO ACIDS
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:
(A) ORGANISM: INTERLEUKIN-1B

WO 91/15577

PCT/US91/02339

34

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Ala Glu Val Pro Glu Leu Ala Ser Glu Met Met Ala Tyr Tyr Ser
 1 5 10 15

 Gly Asn Glu Asp Asp Leu Phe Phe Glu Ala Asp Gly Pro Lys Gln Met
 20 25 30

 Lys Cys Ser Phe Gln Asp Leu Asp Leu Cys Pro Leu Asp Gly Gly Ile
 35 40 45

 Gln Leu Arg Ile Ser Asp His His Tyr Ser Lys Gly Phe Arg Gln Ala
 50 55 60

 Ala Ser Val Val Val Ala Met Asp Lys Leu Arg Lys Met Leu Val Pro
 65 70 75 80

 Cys Pro Gln Thr Phe Gln Glu Asn Asp Leu Ser Thr Phe Phe Pro Phe
 85 90 95

 Ile Phe Glu Glu Glu Pro Ile Phe Phe Asp Thr Trp Asp Asn Glu Ala
 100 105 110

 Tyr Val His Asp Ala Pro Val Arg Ser Leu Asn Cys Thr Leu Arg Asp
 115 120 125

 Ser Gln Gln Lys Ser Leu Val Met Ser Gly Pro Tyr Glu Leu Lys Ala
 130 135 140

 Leu His Leu Gln Cys Gln Asp Met Glu Gln Gln Val Val Phe Ser Met
 145 150 155 160

 Ser Phe Val Gln Gly Glu Glu Ser Asn Asp Lys Ile Pro Val Ala Leu
 165 170 175

 Gly Leu Lys Glu Lys Asn Leu Tyr Leu Ser Cys Val Leu Lys Asp Asp
 180 185 190

 Lys Pro Thr Leu Gln Leu Glu Ser Val Asp Pro Lys Asn Tyr Pro Lys
 195 200 205

 Lys Lys Met Glu Lys Arg Phe Val Phe Asn Lys Ile Glu Ile Asn Asn
 210 215 220

 Lys Leu Glu Phe Glu Ser Ala Gln Phe Pro Asn Trp Tyr Ile Ser Thr
 225 230 235 240

 Ser Gln Ala Glu Asn Met Pro Val Phe Leu Gly Gly Thr Lys Gly Gly
 245 250 255

 Gln Asp Ile Thr Asp Phe Thr Met Gln Phe Val Ser Ser
 260 265

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1659 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: N

(iv) ANTI-SENSE: N

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(A) ORGANISM: INTERLEUKIN 1B PROTEASE

(vii) IMMEDIATE SOURCE:

(B) CLONE: INTERLEUKIN 1B PROTEASE

(x) PUBLICATION INFORMATION:

(A) AUTHORS: BLACK, ROY

SLEATH, PAUL

KRONHEIM, SHIRLEY

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AAAACGGAGAG	AAAAGCCTAA	AAGGAGACTCG	CTACATGCC	CACAGCCCTCC	TGAAAGGAGAA	60
GAGAAAGCTG	TTTATCCGTT	CCATGGGTGA	AGCTACATAA	ATGCGTTAA	CCTACAAACCT	120
CGAGGAAATA	CTGGATCAAT	TATTACAGAC	AAGGGTGCTG	AACAAAGGAG	AGATGGAGAA	180
ACTAAAAACGT	CAAATCTA	CAGTTTATAG	AAAAGAAGAA	CCCTTATGGA	TAAGACCCGA	240
CTTTTGATTG	ACTCCOTTAT	TCCCAGAGG	GCACACGGAT	CCCAAAATTTC	CATCACACATC	300
CCGATAACTG	AAACTGATAA	TTTGTGAAGA	AGACAGTTAC	CTGCACACCA	COCTCCGACT	360
CTCAGGAGAT	CAACATCTG	CAAATTACCT	TAATTGAGGA	AAGAAAGAAA	ATTATGCAAG	420
ACTCTCAAGG	AGTACTTTCT	TCTTTCCAG	CTCCTCAAGC	AGTGCAGGAC	AAACCCAGCTA	480
TCCTCCACCG	GAACCGAAAG	CTCAATCTC	AGGCTAGAA	GGGAAATCTCA	AGCTTTGCTC	540
CCTAGAAAGA	GCTCAARAGG	TATGCAAACA	AAACTCCGCA	CTTAATGAGA	ACACCAACAGA	600
TTTATCCAA	AAATGACAAG	TCAAGCCCCA	CACOTCTTCC	TCTCATTATC	TCCAAATGAA	660
AAATTGACAG	TAGACTGAA	AAATGTTGAG	TAATTCTAG	AAGAACTGGA	GCTGACGGTTC	720
ACATCAQACC	CATGACAATG	CTGCTACAAA	ATCTGGGCTA	CACCCGAAAA	TAATATTGGA	780
AAAAGGGATG	TGAA	TCTCACTGCT	TCCGACATGA	CTACAGAGCT	GGAGGCGATT	840
GCACACCCOC	CAGACGACAA	CTATATGAGC	CCGGACCTCT	GACACCCACG	TCTCTGCTTT	900
CATGTCTCAT	GGTATTCGGG	AGGCATTTC	TGGGAGAAA	CACTCTGAGG	AAAGAAAATAT	960
ACACMAOTCC	CAGATATACT	ACAACTCAAT	GCATCTTAA	ACATGTTGAA	TACCAAGAAC	1020
TCCCCAACTT	TGAAAGCACAG	ACGCGCGAA	TAAGAAACCG	AAAGTGTCTA	TCAATCCAGGC	1080
CTGCCGTGCT	CACAGCCCTG	GTGTGCTGTC	GTAAAGAT	TCACTAGGA	GAATTCGGAAA	1140
AAAGGTTCT	GGAAACCTAT	CTTTACCAAC	TACAGAAGAG	TTTGACGGATG	ATGCTTATTAA	1200
GAAGGCCAC	ATAGAGAAGA	AACATTAATAG	TTGAGATTTT	ATGCTTCTCT	GCTCTTCCAC	1260
ACCAAGATAAT	TTTCTTGGG	GCACATCCAC	AAATGGCTCT	GTTTTATTO	AGGTGGTAAC	1320
CAAGGAGAAAG	GCAGGACTCA	TTOAACATAT	CCAGGATAT	CCCTGTTCT	GTGATGCGAA	1380

CCAAATTTTC CCCAACCTTC CATTGAGA GAACTTGAG ATTACCTCA TTTGAGCAGC	1440
CAGATGGTAG AGCCCAGATG CCCACCACTG AAGAGTCAAC TTTGACAAGA TGTTCCTACC	1500
TGTTCCCAG GACATTAAGA TAAGGAAACT GTATGAATCT CTGCGGGCAG GAACTGAAGA	1560
GATCCTCTC TAAAGGTT TTGCAATTAT GTCTGCTGAA TAATAAATT TTTTGAAAT	1620
AATAAATCTG GTAGAAATT GAAAAAAA AAAAAAAA	1659

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: N

(iv) ANTI-SENSE: N

(v) ORIGINAL SOURCE:
 (A) ORGANISM: PRIMER #1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTCGAATTCA AYCCNGCNAT CCCNAC

26

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: N

(iv) ANTI-SENSE: N

(v) ORIGINAL SOURCE:
 (A) ORGANISM: PRIMER #2

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GTCCTCTAGAA GYTINACRTT NCCYTC

26

WHAT IS CLAIMED IS:

1. An isolated polypeptide having protease activity for a specific protease cleavage site, wherein the protease activity is specific for a substrate peptide having an amino acid sequence comprising:

wherein R_1 and R_3 are independently any D or L isomer amino acid, R_2 is Ala or Gly, and wherein the specific protease cleavage site is between Asp and R_2 .

10 2. The isolated polypeptide of claim 1 wherein the substrate peptide is at least eight amino acids in length.

15 3. An isolated IL-1 β pro polypeptide having IL-1 β pro activity and encoded by a DNA sequence is selected from the group consisting of the nucleotide sequences in Figure 1 beginning at nucleotide 1 and extending to nucleotide 1232, beginning at nucleotide 374 and extending to a nucleotide from about 851 to about 962, DNA sequences which detectably hybridize to the Figure 1 sequence from nucleotide 1 to nucleotide 1232 and encode a polypeptide displaying biological activity to proteolytically cleave human precursor IL-1 β 20 polypeptide at a cleavage site between the Asp 116 and Ala 117 residues, and DNA sequences which, due to degeneracy of the genetic code, encode a mammalian IL-1 β pro polypeptide encoded by any of the foregoing DNA inserts and sequences.

25 4. The isolated polypeptide of claim 3 wherein the protein sequence is selected from the group consisting of amino acid 1 to amino acid 404, amino acid 51 to amino acid 404, amino acid 120 to an amino acid beginning at position 278 and extending to amino acid 315, and amino acid 120 to amino acid 404.

30 5. An isolated DNA sequence encoding a mammalian IL-1 β pro enzyme.

6. The isolated DNA sequence of claim 5 wherein the mammalian IL-1 β pro enzyme is a human IL-1 β pro enzyme.

35 7. The isolated DNA sequence of claim 5 wherein the DNA sequence is selected from the group consisting of the nucleotide sequences in Figure 1 beginning at nucleotide 1 and extending to nucleotide 1232, beginning at nucleotide 374 and extending to a nucleotide from about 1232, beginning at nucleotide 374 and extending to a nucleotide from about

851 to about 962, DNA sequences which detectably hybridize to the Figure 1 sequence from nucleotide 1 to nucleotide 1232 and encode a polypeptide displaying biological activity to proteolytically cleave human precursor IL-1 β polypeptide at a cleavage site between the Asp 116 and Ala 117 residues, and DNA sequences which, due to degeneracy of the genetic code, encode a mammalian IL-1 β pro polypeptide encoded by any of the foregoing DNA inserts and sequences.

5 8. A recombinant expression vector comprising a DNA sequence according to claim 5.

10 9. A recombinant expression vector comprising a DNA sequence according to claim 6.

15 10. A recombinant expression vector comprising a DNA sequence according to claim 7.

11. A process for preparing a mammalian IL-1 β pro enzyme or an analog or derivative thereof, comprising culturing a suitable host cell comprising a vector according to claim 8 under conditions promoting expression.

20 12. A process for preparing a mammalian IL-1 β pro enzyme or an analog or derivative thereof, comprising culturing a suitable host cell comprising a vector according to claim 9 under conditions promoting expression.

25 13. A process for preparing a mammalian IL-1 β pro enzyme or an analog or derivative thereof, comprising culturing a suitable host cell comprising a vector according to claim 10 under conditions promoting expression.

14. An inhibitor compound comprising:

30 where Z is an N-terminal protecting group; Q₂ is 0 to 4 amino acids such that the sequence Q₂-Asp substantially corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp and Q₁ is an electronegative leaving group.

35 15. The inhibitor compound according to claim 14 wherein Z is C₁-C₆ alkyl, benzyl, acetyl, C₁-C₆ alkoxycarbonyl, benzyloxycarbonyl or C₁-C₆ alkyl carbonyl.

16. The inhibitor compound according to claim 14 wherein Z is t-butoxycarbonyl, acetyl or benzyloxycarbonyl.

17. The inhibitor compound according to claim 14 wherein Q₁ is an aldehyde, a
5 diazomethyl ketone or a halomethyl ketone.

18. The inhibitor compound according to claim 14 wherein Q₁ is fluoromethyl ketone.

10 19. The inhibitor compound according to claim 14 wherein Q₂ is 1 amino acid residue.

20. The inhibitor compound according to claim 14 wherein Q₂ is His, Phe, Pro or Tyr.

15

21. A pharmaceutical composition comprising a physiologically acceptable carrier and an inhibitor compound of the formula:

where Z is an N-terminal protecting group; Q₂ is 0 to 4 amino acids such that Q₂-Asp substantially corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp and Q₁ is an electronegative leaving group.

22. A compound selected from the group consisting of Boc-Asp-CH₂F, Boc-His-Asp-CH₂F, Boc-Phe-Asp-CH₂F, Boc-Pro-Asp-CH₂F, Boc-Tyr-Asp-CH₂F, Ac-His-Asp-CH₂F, Ac-Phe-Asp-CH₂F, Ac-Pro-Asp-CH₂F, Ac-Tyr-Asp-CH₂F, Cbz-His-Asp-CH₂F, Cbz-Phe-Asp-CH₂F, Cbz-Pro-Asp-CH₂F and Cbz-Tyr-Asp-CH₂F wherein Boc is t-butoxycarbonyl, Ac is acetyl and Cbz is benzyloxycarbonyl.

23. A method for improving wound healing at a wound site comprising administering a pharmaceutical composition to the wound site comprising the isolated polypeptide of claim 1 in a suitable pharmaceutical carrier.

24. A method for treating arthritis comprising administering a pharmaceutical composition comprising the isolated polypeptide of claim 1 in a suitable pharmaceutical carrier.

25. A method for treating an autoimmune disease in a susceptible individual comprising administering a pharmaceutical composition comprising the isolated polypeptide of claim 1 in a suitable pharmaceutical carrier.

5 26. The method of claim 25 wherein the autoimmune disease is selected from the group consisting of Insulin-dependent diabetes mellitus, Graves' disease, Hashimoto's disease and a lupus disease.

10 27. A method for reducing the detrimental side effects of radiation treatment comprising administering a pharmaceutical composition comprising the isolated polypeptide of claim 1 in a suitable pharmaceutical carrier.

15 28. A method of inhibiting IL-1 β pro activity in a mammal in need of such treatment comprising administering to said mammal an effective inhibitory amount of an inhibitor compound according to claim 14.

20 29. A method of treating inflammation or preventing and treating an autoimmune disease in a mammal in need of such treatment comprising administering to said mammal an effective amount of an inhibitor compound according to claim 14.

30. An antisense oligonucleotide comprising a sequence of at least 15 nucleotides complementary to a sequence of IL-1 β pro cDNA, wherein said antisense oligonucleotide inhibits translation of IL-1 β pro mRNA.

FIGURE 1

Met Ala Asp Lys Val Lou Lys Glu Lys Arg Lys Lou Phe Ile Arg Ser Met Glu Gly Thr Ile Asn Glu Lou
 Arg Ser Gcc Gac Aao Gtc Ctc Aao Gag Aao Gca Aao Ctt Ttt Att Ctt Tcc Aty Gct Gaa Gct Aca Aca Aat Gcc Tta
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 10010
 10011
 10012
 10013
 10014
 10015
 10016
 10017
 10018
 10019
 10020
 10021
 10022
 10023
 10024
 10025
 10026
 10027
 10028
 10029
 10030
 10031
 10032
 10033
 10034
 10035
 10036
 10037
 10038
 10039
 10040
 10041
 10042
 10043
 10044
 10045
 10046
 10047
 10048
 10049
 10050
 10051
 10052
 10053
 10054
 10055
 10056
 10057
 10058
 10059
 10060
 10061
 10062
 10063
 10064
 10065
 10066
 10067
 10068
 10069
 10070
 10071
 10072
 10073
 10074
 10075
 10076
 10077
 10078
 10079
 10080
 10081
 10082
 10083
 10084
 10085
 10086
 10087
 10088
 10089
 10090
 10091
 10092
 10093
 10094
 10095
 10096
 10097
 10098
 10099
 100100
 100101
 100102
 100103
 100104
 100105
 100106
 100107
 100108
 100109
 100110
 100111
 100112
 100113
 100114
 100115
 100116
 100117
 100118
 100119
 100120
 100121
 100122
 100123
 100124
 100125
 100126
 100127
 100128
 100129
 100130
 100131
 100132
 100133
 100134
 100135
 100136
 100137
 100138
 100139
 100140
 100141
 100142
 100143
 100144
 100145
 100146
 100147
 100148
 100149
 100150
 100151
 100152
 100153
 100154
 100155
 100156
 100157
 100158
 100159
 100160
 100161
 100162
 100163
 100164
 100165
 100166
 100167
 100168
 100169
 100170
 100171
 100172
 100173
 100174
 100175
 100176
 100177
 100178
 100179
 100180
 100181
 100182
 100183
 100184
 100185
 100186
 100187
 100188
 100189
 100190
 100191
 100192
 100193
 100194
 100195
 100196
 100197
 100198
 100199
 100200
 100201
 100202
 100203
 100204
 100205
 100206
 100207
 100208
 100209
 100210
 100211
 100212
 100213
 100214
 100215
 100216
 100217
 100218
 100219
 100220
 100221
 100222
 100223
 100224
 100225
 100226
 100227
 100228
 100229
 100230
 100231
 100232
 100233
 100234
 100235
 100236
 100237
 100238
 100239
 100240
 100241
 100242
 100243
 100244
 100245
 100246
 100247
 100248
 100249
 100250
 100251
 100252
 100253
 100254
 100255
 100256
 100257
 100258
 100259
 100260
 100261
 100262
 100263
 100264
 100265
 100266
 100267
 100268
 100269
 100270
 100271
 100272
 100273
 100274
 100275
 100276
 100277
 100278
 100279
 100280
 100281
 100282
 100283
 100284
 100285
 100286
 100287
 100288
 100289
 100290
 100291
 100292
 100293
 100294
 100295
 100296
 100297
 100298
 100299
 100300
 100301
 100302
 100303
 100304
 100305
 100306
 100307
 100308
 100309
 100310
 100311
 100312
 100313
 100314
 100315
 100316
 100317
 100318
 100319
 100320
 100321
 100322
 100323
 100324
 100325
 100326
 100327
 100328
 100329
 100330
 100331
 100332
 100333
 100334
 100335
 100336
 100337
 100338
 100339
 100340
 100341
 100342
 100343
 100344
 100345
 100346
 100347
 100348
 100349
 100350
 100351
 100352
 100353
 100354
 100355
 100356
 100357
 100358
 100359
 100360
 100361
 100362
 100363
 100364
 100365
 100366
 100367
 100368
 100369
 100370
 100371
 100372
 100373
 100374
 100375
 100376
 100377
 100378
 100379
 100380
 100381
 100382
 100383
 100384
 100385
 100386
 100387
 100388
 100389
 100390
 100391
 100392
 100393
 100394
 100395
 100396
 100397
 100398
 100399
 100400
 100401
 100402
 100403
 100404
 100405
 100406
 100407
 100408
 100409
 100410
 100411
 100412
 100413
 100414
 100415
 100416
 100417
 100418
 100419
 100420
 100421
 100422
 100423
 100424
 100425
 100426
 100427
 100428
 100429
 100430
 100431
 100432
 100433
 100434
 100435
 100436
 100437
 100438
 100439
 100440
 100441
 100442
 100443
 100444
 100445
 100446
 100447
 100448
 100449
 100450
 100451
 100452
 100453
 100454
 100455
 100456
 100457
 100458
 100459
 100460
 100461
 100462
 100463
 100464
 100465
 100466
 100467
 100468
 100469
 100470
 100471
 100472
 100473
 100474
 100475
 100476
 100477
 100478
 100479
 100480
 100481
 100482
 100483
 100484
 100485
 100486
 100487
 100488
 100489
 100490
 100491
 100492
 100493
 100494
 100495
 100496
 100497
 100498
 100499
 100500
 100501
 100502
 100503
 100504
 100505
 100506
 100507
 100508
 100509
 100510
 100511
 100512
 100513
 100514
 100515
 100516
 100517
 100518
 100519
 100520
 100521
 100522
 100523
 100524
 100525
 100526
 100527
 100528
 100529
 100530
 100531
 100532
 100533
 100534
 100535
 100536
 100537
 100538
 100539
 100540
 100541
 100542
 100543
 100544
 100545
 100546
 100547
 100548
 100549
 100550
 100551
 100552
 100553
 100554
 100555
 100556
 100557
 100558
 100559
 100560
 100561
 100

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91/02339

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)
 According to International Patent Classification (IPC) or to both National Classification and IPC
 IPC(S): C12N 9/64, 15/57; C07K 11/00; A61K 37/02
 U.S. Cl.: 435/226, 320.1; 530/330; 536/27; 514/17

II. FIELDS SEARCHED

Minimum Documentation Searched¹

Classification System	Classification Search ²
U. S.	135/219, 226, 320.1; 530/330, 345, 351; 536/277; 514/17

Documentation Searched other than Minimum Documentation
to the extent that such Documents are included in the Fields Searched²

Computer Search - CA and APS

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category ³	Citation of Document, " with indication, where appropriate, of the relevant passages ⁴	Relevant to Claim No. ⁵
Y	US, A, 4,635,492 (Kettner, et. al.), 13 January 1987, see entire patent.	14-22, 28
Y	US, A, 4,644,055 (Kettner, et. al.), 17 February 1987, see entire patent.	14-22, 28
Y	J. Biol. Chem., Volume 263, No. 19, issued 05 July 1988, R. A. Black, et. al., "Generation Of Biologically Active Interleukin-1B By Proteolytic Cleavage Of The Inactive Precursor", see pages 9437-9442, see particularly page 9439, Column 2, line 42 - page 9440, column 1, line 1 and page 9441, column 1, line 25-27.	1-22, 28, 30
Y	Proc. Natl. Acad. Sci., USA, Volume 86, issued July 1989, M. J. Kostura, et. al., "Identification Of A Monocyte Specific Pre-interleukin 1B Convertase Activity". see pages 5227-5231.	1-22, 28, 30
X	FEBS Letts., Volume 247, No. 2, issued 24 April 1989, H. A. Black, "Activation Of Interleukin-1B By A Co-induced Protease". see pages 386-390.	1-4 5-22, 28, 30
Y		

¹ Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "C" earlier document but published on or after the international filing date
- "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

² "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention³ "Z" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step⁴ "V" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art⁵ "E" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

17 July 1991

International Searching Authority

TSA/US

Date of Making of this International Search Report

26 JUL 1991

Signature of Authorizing Officer

Charles Patterson

Form PCT/ISA/310 (Second sheet) (Rev. 11-87)

FURTHER INFORMATION CONTINUED FROM THIS SECOND SHEET

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSearchABLE:

This International Search Report has not been established in respect of certain claims under Article 17(3)(b) for the following reasons:

1. Claim numbers _____ because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers _____ because they relate to parts of the international application that do not comply with the prescribed requirements in such an extent that no meaningful international search can be carried out, specifically:

3. Claim numbers _____, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 8.4(3).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING:

This International Searching Authority found multiple inventions in this international application as follows:

See attached sheet.

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims of the international application for which fees were paid, specifically claims:

1-22, 28, 30. Examiner agrees with applicant that claim 22 should be part of Group III and therefore has been examined.

3. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention best mentioned in the claims it is covered by claim numbers:

- As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims of the international application.

Remarks on Priority:

- The additional examinations were organized by the _____ office.
 No protest accompanied the document of evidence of priority.

Attachment to Form PCT/ISA/210
Continuation of Part VI.
Listin of multiple inventions

PCT/US91/02339

Group I, claims 1-4, drawn to a protease molecule.

Group II, claims 5-13, drawn to a DNA sequence, an expression vector containing the DNA, and a method of using the expression vector to make a protease.

Group III, claims 14-22 and 28, drawn to an inhibitor, a pharmaceutical composition comprising the inhibitor and a method of use.

Group VI, claim 23, drawn to a method for improving wound healing.

Group VII, claim 24, drawn to a method for treating arthritis.

Group VIII, claims 25-26, drawn to a method for treating an autoimmune disease.

Group IX, claim 27, drawn to a method for reducing the side effects of radiation.

Group X, claim 28, drawn to a method of treating inflammation.

Group XI, claim 29, drawn to a method of treating an autoimmune disease.

Group XII, claim 30, drawn to an antisense oligonucleotide.

IN DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		
Category	Description of Document, with indication, where applicable, of the relevant disclosure	Reference to Claim no.
Y	J. Biol. Chem., Volume 264, No. 10, issued 05 April 1989, R. A. Black, et. al.. "A Pre-aspartate-Specific Protease From Human Leukocytes That Cleaves Pro-interleukin-1 α ". see pages 5323-5326, see particularly page 5324, last full sentence and page 5326, line 8-13.	1-22,28,30
Y	Nature, Volume 315, issued 20 June 1985, C. J. March, et. al.. "Cloning, Sequence And Expression Of Two Distinct Human Interleukin-1 Complementary DNA's", see pages 641-647, see particularly sentence spanning pages 644-645 and first full sentence on page 646.	1-22,28,30
Y	Proc. Natl. Acad. Sci., USA, Volume 78, No. 11, issued November 1981, S. V. Suggs, et. al.. "Use Of Synthetic Oligonucleotides As Hybridization Probes: Isolation Of Cloned cDNA Sequences For Human α -microglobulin". see pages 6613-6617.	1-22,28,30