### Modern Systems Analysis and Design

# Chapter 4 Designing Interfaces and Dialogues

### Learning Objectives

- Explain the process of designing interfaces and dialogues and the deliverables for their creation
- Contrast and apply several methods for interacting with a system
- ✓ List and describe various input devices and discuss usability issues for each in relation to performing different tasks



#### Learning Objectives

- Discuss the general guidelines for interface design including:
  - Layout and design
  - Structuring data entry fields
  - Providing feedback
  - System help



### Learning Objectives

- Discuss the design of human-computer dialogues and the use of dialogue diagramming
- Design graphical user interfaces
- Explain interface design guidelines unique to the design of Internet based electronic commerce systems



#### Introduction

- Focus on how information is provided to and captured from users
- Dialogues are analogous to a conversation between two people
- A good human-computer interface provides a unifying structure for finding, viewing and invoking the different components of a system



## The Process of Designing Interfaces and Dialogues

- User-focused activity
- Parallels form and report design process
- Employs prototyping methodology
  - Collect information
  - Construct prototype
  - Assess usability
  - Make refinements



## The Process of Designing Interfaces and Dialogues

- Deliverables
  - Design Specifications
    - Narrative
    - Sample Design
    - Testing and usability assessment



- Methods of Interacting
  - Command Language Interaction
    - Users enter explicit statements into a system to invoke operations
  - Menu Interaction
    - A list of system options is provided
    - A specific command is invoked by user selection of a menu option
    - Menu complexity varies according to needs of system and capabilities of development environment
    - Hierarchies can be employed
    - Two common placement methods
      - Pop-up
      - Drop-down



- Methods of Interacting
  - Menu Interaction (continued)
    - Table 14-1 presents general guidelines for designing menus
  - Form Interaction
    - Allows users to fill in the blanks when working with a system
    - Measures of an effective design
      - Self-explanatory title and field headings
      - Fields organized into logical groupings
      - Distinctive boundaries
      - Default values
      - Displays appropriate field lengths
      - Minimizes the need to scroll windows



- Methods of Interacting
  - Object-Based Interaction
    - Symbols are used to represent commands or functions
    - Icons
      - Graphic symbols that look like the processing option they are meant to represent
      - Use little screen space
      - Can be easily understood by users



- Methods of Interacting
  - Natural Language Interaction
    - Inputs to and outputs from system are in a conventional speaking language like English
- Hardware Options for System Interaction
  - Table 14-2 presents a list of devices
  - Table 14-3 summaries usability assessment research for various devices



### Designing Interfaces

- Designing Layouts
  - Standard formats similar to paper-based forms and reports should be used
  - Screen navigation on data entry screens should be left-to-right, top-to-bottom as on paper forms



#### **Designing Layouts**

- Flexibility and consistency are primary design goals
  - Users should be able to move freely between fields
  - Data should not be permanently saved until the user explicitly requests this
  - Each key and command should be assigned to one function



### Structuring Data Entry

| Entry       | Never require data that are already on-line or that can be computed |
|-------------|---------------------------------------------------------------------|
| Defaults    | Always provide default values when appropriate                      |
| Units       | Make clear the type of data units requested for entry               |
| Replacement | Use character replacement when appropriate                          |
| Captioning  | Always place a caption adjacent to fields                           |
| Format      | Provide formatting examples                                         |
| Justify     | Automatically justify data entries                                  |
| Help        | Provide context-sensitive help when appropriate                     |



#### Controlling Data Input

- One objective of interface design is to reduce data entry errors
- Role of systems analyst is to anticipate user errors and design features into the system's interfaces to avoid, detect and correct data entry mistakes
- Table 14-8 describes types of data entry errors
- Table 14-9 lists techniques used by system designers to detect errors



#### **Providing Feedback**

#### 1. Status Information

- Keeps users informed of what is going on in system
- Displaying status information is especially important if the operation takes longer than a second or two

#### 2. Prompting Cues

Best to keep as specific as possible

#### 3. Error and Warning Messages

- Messages should be specific and free of error codes and jargon
- User should be guided toward a result rather than scolded
- Use terms familiar to user
- Be consistent in format and placement of messages



#### Providing Help

- Place yourself in user's place when designing help
- Guidelines
  - Simplicity
    - Help messages should be short and to the point
  - Organization
    - Information in help messages should be easily absorbed by users
  - Demonstrate
    - It is useful to explicitly show users how to perform an operation



### Providing Help

- Context-Sensitive Help
  - Enables user to get field-specific help
- Users should always be returned to where they were when requesting help



### **Designing Dialogues**

- Dialogue
  - Sequence in which information is displayed to and obtained from a user
- Primary design guideline is consistency in sequence of actions, keystrokes and terminology
- Three step process
  - 1. Design dialogue sequence
  - 2. Build a prototype
  - 3. Assess usability



## Designing the Dialogue Sequence

- Define the sequence
- Have a clear understanding of the user, task, technological and environmental characteristics
- Dialogue Diagram
  - A formal method for designing and representing human-computer dialogues using box and line diagrams
  - Consists of a box with three sections
    - 1. Top: Unique display reference number used by other displays for referencing dialogue
    - 2. Middle: Contains the name or description of the display
    - 3. Bottom: Contains display reference numbers that can be accessed from the current display



# Designing Dialogues: Building Prototypes and Assessing Usability

- Often optional activities
- Task is simplified by using graphical design environment



### Designing Interfaces and Dialogues in Graphical Environments

- Interface Design Issues
  - Become an expert user of the GUI environment
    - Understand how other applications have been designed
    - Understand standards
  - Gain an understanding of the available resources and how they can be used
    - Become familiar with standards for menus and forms
    - Figure 14-20 presents standards for menus
    - Table 14-14 presents some common properties of windows and forms in a GUI environment



### Designing Interfaces and Dialogues in Graphical Environments

- Dialogue Design Issues
  - Goal is to establish the sequence of displays that users will encounter when working with system
  - Ability of some GUI environments to jump from application to application or screen to screen makes sequencing a challenge
  - One approach is to make users always resolve requests for information before proceeding
  - Dialogue diagramming helps analysts better manage the complexity of designing graphical interfaces



# Electronic Commerce Application: Designing Interfaces and Dialogues for Pine Valley Furniture's Webstore

- General Guidelines
  - Several factors have contributed to poor design of Web interfaces
    - Web's single "click-to-act" method of loading static hypertext documents
    - Limited capabilities of most Web-browsers to support finely grained user interactivity
    - Limited agreed-upon standards for encoding Web content and control mechanisms
    - Lack of maturity in Web scripting and programming languages
  - Design errors are summarized in Table 14-15



# Electronic Commerce Application: Designing Interfaces and Dialogues for Pine Valley Furniture's Webstore

- Design Guidelines
  - Navigation with cookie crumbs
    - A technique which uses a series of tabs on a Web page to show users where they are and where they have been in the site
    - Tabs are hyperlinks to allow users to move backward easily within the site
    - Two important purposes
      - Allows users to navigate to a point previously visited
      - Shows users where they have been and how far they have gone from point of entry into site



#### Summary

- Interaction Methods and Devices
- Design guidelines for interfaces
  - Layout design
  - Structuring data entry fields
  - Providing feedback
  - Designing help
- Designing dialogues
- Designing interfaces and dialogues in graphical environments
- Electronic Commerce Application: Designing Interfaces and Dialogues for a Web Application

