ML SESSION

#5 배깅, 랜덤포레스트 베이지안 서치

0 우수과제자

멘토	우수과제자
조영진	고민성
김예원	주민지
윤성식	이수빈
장성민	이현지
마민정	이수민
한보혜	이상우

INDEX

1 st 앙상블

2nd 배깅과 페이스팅

3rd 랜덤포레스트

4th 엑스트라트리

5th 베이지안 최적화

0 Modeling Step

STAGE 1 STAGE 2 STAGE 3 STAGE 4 STAGE 5 **STAGE 6 Data Collection** Data Mining Data Data Split Prediction Evaluation and (Train/Test) (Modeling) Preprocessing Understanding

'앙상블이 좋다'

앙상블: 서로 조화롭게 잘 어우러져 화합을 이룬다는 뜻

-> 각각의 악기가 내는 소리가 서로 잘 조화롭게 합쳐져 '더 좋은 소리'를 만듦

ML에서 앙상블은 ?

앙상블(Ensemble): 서로 조화롭게 잘 어우러져 화합을 이룬다는 뜻

앙상블(Ensemble): 서로 조화롭게 잘 어우러져 화합을 이룬다는 뜻

ML에서는?

-> 각각의 모델이 내는 예측이 서로 잘 조화롭게 합쳐져 '더 좋은 예측'을 만듦

1

앙상블

문제	1	2	3	4	5
정답	Α	Α	Α	Α	Α

철수

1 2 3 4 5 A B A B A

60%

영희

1 2 3 4 5 A B A B A

60%

진수

1 2 3 4 5 A B A B A

60%

제출

문제	1	2	3	4	5
개수	3A	3B	3A	3B	3A
제출	A	В	Α	В	Α

60%

철수

1	2	3	4	5
Α	В	Α	В	Α

SEE

60%

영희

1	2	3	4	5
Α	Α	В	В	Α

60%

진수

1	2	3	4	5
В	Α	Α	Α	В

60%

제출

문제	1	2	3	4	5
개수	2A 1B	2A 1B	2A 1B	1A 2B	2A 1B
제출	A	A	A	В	Α

80%

철수

1 2 3 4 5 A B A B A

60%

영희

1 2 3 4 5 A A B A A

80%

진수

1 2 3 4 5 B A A A B

60%

제출

문제	1	2	3	4	5
개수	2A 1B	2A 1B	2A 1B	2A 1B	2A 1B
제출	Α	Α	Α	Α	Α

100%

즉, 한 사람의 정답률은 좋지 않을 수 있다.

하지만 다 모아놓으면 한 사람이 하는 것보다 정답률이 더 좋아질 수 있다.

-> 집단지성

1

앙상블

ML에서는?

- √ Hard Voting은 앙상블의 한 종류
- √ 앙상블은 알고리즘이 아니라 테크닉에 가깝다

- · 단일 모델의 한계
 - √ 모든 데이터셋에 대해 항상 최고인 알고리즘이 있을까?

· 공짜 점심 이론

- √ 모든 데이터셋에 항상 최고인 알고리즘은 존재할 수 없다.
- √ 좋은 일반화 성능을 기대한다면, 여러 알고리즘을 실험해서 가장 좋은 성능의 모델을 찾아야 한다.

1

앙상블

- 여러 모델을 조합하면?
 - √ 단일 모델보다 성능이 확연히 좋아진다

<u> 경험적 연구 소개 (2014)</u>

<u>참고: delgado14a.pdf (jmlr.org)</u>

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?

Manuel Fernández-Delgado Eva Cernadas

MANUEL.FERNANDEZ.DELGADO@USC.ES EVA.CERNADAS@USC.ES

Senén Barro Senén Barro Senén Barro Senén Barro Gusc.es CITIUS: Centro de Investigación en Tecnoloxías da Información da USC

University of Santiago de Compostela Campus Vida, 15872, Santiago de Compostela, Spain

Dinani Amorim

DINANIAMORIM@GMAIL.COM

Departamento de Tecnologia e Ciências Sociais- DTCS Universidade do Estado da Bahia

Av. Edgard Chastinet S/N - São Geraldo - Juazeiro-BA, CEP: 48.305-680, Brasil

· 121개의 데이터셋에 대해 179개 알고리즘으로 성능 검증

DO WE NEED HUNDREDS OF CLASSIFIERS TO SOLVE REAL WORLD CLASSIFICATION PROBLEMS?

Rank	Acc.	κ	Classifier	Rank	Acc.	к	Classifier
32.9	82.0	63.5	parRF_t (RF)	67.3	77.7	55.6	pda_t (DA)
33.1	82.3	63.6	rf_t (RF)	67.6	78.7	55.2	elm_m (NNET)
36.8	81.8	62.2	svm_C (SVM)	67.6	77.8	54.2	SimpleLogistic_w (LMR)
38.0	81.2	60.1	svmPoly_t (SVM)	69.2	78.3	57.4	MAB_J48_w (BST)
39.4	81.9	62.5	rforest_R (RF)	69.8	78.8	56.7	BG_REPTree_w (BAG)
39.6	82.0	62.0	elm_kernel_m (NNET)	69.8	78.1	55.4	SMO_w (SVM)
40.3	81.4	61.1	svmRadialCost_t (SVM)	70.6	78.3	58.0	MLP_w (NNET)
42.5	81.0	60.0	svmRadial_t (SVM)	71.0	78.8	58.23	BG_RandomTree_w (BAG)
42.9	80.6	61.0	C5.0_t (BST)	71.0	77.1	55.1	mlm_R (GLM)
44.1	79.4	60.5	avNNet_t (NNET)	71.0	77.8	56.2	BG_J48_w (BAG)
45.5	79.5	61.0	nnet_t (NNET)	72.0	75.7	52.6	rbf_t (NNET)
47.0	78.7	59.4	pcaNNet_t (NNET)	72.1	77.1	54.8	fda_R (DA)
47.1	80.8	53.0	BG_LibSVM_w (BAG)	72.4	77.0	54.7	lda_R (DA)
47.3	80.3	62.0	mlp_t (NNET)	72.4	79.1	55.6	svmlight_C (NNET)
47.6	80.6	60.0	RotationForest_w (RF)	72.6	78.4	57.9	AdaBoostM1_J48_w (BST)
50.1	80.9	61.6	RRF_t (RF)	72.7	78.4	56.2	BG_IBk_w (BAG)
51.6	80.7	61.4	RRFglobal_t (RF)	72.9	77.1	54.6	ldaBag_R (BAG)
52.5	80.6	58.0	MAB_LibSVM_w (BST)	73.2	78.3	56.2	BG_LWL_w (BAG)
52.6	79.9	56.9	LibSVM_w (SVM)	73.7	77.9	56.0	MAB_REPTree_w (BST)
57.6	79.1	59.3	adaboost_R (BST)	74.0	77.4	52.6	RandomSubSpace_w (DT)
58.5	79.7	57.2	pnn_m (NNET)	74.4	76.9	54.2	lda2_t (DA)
58.9	78.5	54.7	cforest_t (RF)	74.6	74.1	51.8	svmBag_R (BAG)
59.9	79.7	42.6	dkp_C (NNET)	74.6	77.5	55.2	LibLINEAR_w (SVM)
60.4	80.1	55.8	gaussprRadial_R (OM)	75.9	77.2	55.6	rbfDDA_t (NNET)
60.5	80.0	57.4	RandomForest_w (RF)	76.5	76.9	53.8	sda_t (DA)
62.1	78.7	56.0	svmLinear_t (SVM)	76.6	78.1	56.5	END_w (OEN)
62.5	78.4	57.5	fda_t (DA)	76.6	77.3	54.8	LogitBoost_w (BST)
62.6	78.6	56.0	knn_t (NN)	76.6	78.2	57.3	MAB_RandomTree_w (BST)
62.8	78.5	58.1	mlp_C (NNET)	77.1	78.4	54.0	BG_RandomForest_w (BAG)
63.0	79.9	59.4	RandomCommittee.w (OEN)	78.5	76.5	53.7	Logistic_w (LMR)
63.4	78.7	58.4	Decorate_w (OEN)	78.7	76.6	50.5	ctreeBag_R (BAG)
63.6	76.9	56.0	mlpWeightDecay_t (NNET)	79.0	76.8	53.5	BG_Logistic_w (BAG)
62.0	70.7	50.7	ede B (DA)	70.1	77.4	52.0	loss & (NINIET)

- · 공짜 점심 이론이 틀리지는 않았다.
- · 순위가 통계적으로 유의미한 차이가 있음

1

앙상블

. 정리

- √ 앙상블은 '거의' 모든 경우에서 단일 모델보다 좋은 성능을 보일 수 있다.
- √ 모든 상황에서 최고의 성능을 내는 단일 모델은 없다.
- √ 분류기가 독립적일수록, 오차에 상관관계가 없을수록 더 효과적
- √ 개별 분류기의 성능이 어느정도 보장되어야 함

조영진 20명 VS 학회원 20명 VS 전국의 유아 20명

- · 앙상블을 어떻게 할까?
 - √ 단일 모델들을 조합해서 사용
 - √ 편향과 분산을 고려

$$Err(x_0) = E[y - \hat{F}(x)|x = x_0]$$

$$= Bias^{2}\left(\widehat{F}(x_{0})\right) + Var\left(\widehat{F}(x_{0})\right) + \sigma^{2}$$

- · 편향과 분산
 - √ 편향:실제 레이블(정답값)과 여러 모델들이 예측한 값의 평균의 차이
 - √ 분산 : 개별 모델들의 확산 정도

· Low Bias, High Variance Models : DT, SVM, ANN

· High Bias, Low Variance Models : LR

2

배깅과 페이스팅

- · 배깅(Bagging): Bootstrap Aggregating
 - -> 다양한 Bootstrap을 만들어 단일 모델을 돌리고 결과를 취합하는 방식

2

배깅과 페이스팅

- 배깅

- 페이스팅

배깅과 페이스팅

배깅과 페이스팅

- · 특징
 - √ 개별 예측기의 편향은 train 100% 다 써서 훈련 했을 때보다는 높음
 - √ 경험적으로, 앙상블의 결과는 원본 데이터셋으로 하나의 예측기를 훈련시킬 때와 비교해 편향은 비슷하나, 분산은 줄어듬.

-> 모델의 편향은 낮으나 분산이 큰 모델들에 적합! (DT, SVM, ANN..)

배깅과 페이스팅

배깅과 페이스팅

- 결정 트리 하나의 예측보다 훨씬 일반화 잘 되어 있음
- 배깅은 일반적으로 비슷한 편향에서 더 작은 분산을 만듬

배깅과 페이스팅

랜덤 패치와 서브 스페이스

- 반대로, 특성(Feature) 샘플링도 가능하다!
- 서브스페이스 방식 : 훈련 샘플은 모두 사용하고 특성만 샘플링 하는 방식
- 랜덤패치방식 : 훈련 샘플과 특성을 모두 샘플링 하는 방식
- 고차원 데이터셋에서 유용

- 랜덤 패치 방식

- 서브스페이스방식

3 世덤포레스트

랜덤 포레스트

3

랜덤 포레스트

랜덤 포레스트

랜덤포레스트

- 수많은 의사 결정 트리로 학습된 결과를 앙상블 하여 새로운 예측을 내는 모델
- DT보다 훈련 샘플링의 무작위성 + 특성 샘플링의 무작위성 추가
- 과적합 방지 + 앙상블 효과

엑스트라트리

엑스트라트리

- 더 극단적으로 Random한 트리 모델

$$G_{left} = 1 - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2 = \frac{6}{16} \qquad G_{right} = 1 - \left(\frac{5}{7}\right)^2 - \left(\frac{2}{7}\right)^2 = \frac{20}{49}$$

$$J(k, t_K) = \frac{m_{left}}{m} G_{left} + \frac{m_{right}}{m} G_{right}$$

$$= \frac{4}{11} * \frac{6}{16} + \frac{7}{11} * \frac{20}{49}$$

$$G_{left} = 1 - \left(\frac{4}{9}\right)^2 - \left(\frac{5}{9}\right)^2 = \frac{40}{81} \qquad G_{right} = 1 - \left(\frac{2}{2}\right)^2 - \left(\frac{0}{2}\right)^2 = 0$$

$$J(k, t_K) = \frac{m_{left}}{m} G_{left} + \frac{m_{right}}{m} G_{right}$$

$$= \frac{9}{11} * \frac{40}{81} + \frac{2}{11} * 0$$

 $min_samples_split = 2$

- · DT에서 최적의 임계값을 찾는 과정을 생략하고 무작위로 분할
 - √ 계산속도 Up, 무작위성 Up

베이지안 최적화

- 1. Manual Search
- 2. Grid Search
- 3. Random Search

노하우 + 오래걸림 + 완전 무작위

Bayesian Optimization 등장!

베이지안 최적화

베이지안 최적화란?

- '사전 정보'를 기반으로 '최적해'를 탐색
- 파라미터 튜닝 과정에서 얻는 정보를 반영하여 다음 하이퍼파라미터를 추정하는 것
- 최적의 탐색값을 찾는 속도가 빠르다.

베이지안 최적화

an A

<과제> 이번 주차에 배운 다양한 앙상블 모델을 통해 저번 과제 성능 더 올려보기

THANK YOU