

OUTLINE

- 1 HÀM NHIỀU BIẾN
 - 2 TYPES OF DIFFERENTIATION
 - 3 GRADIENT PROGRAMMING

4 EXERCISE

BẠN ĐÃ TỪNG THẮC MẮC VÌ SAO NETWORK CÓ THỂ TRAINING CHƯA?

HAY VÌ SAO CÁC FRAMEWORK CÓ THỂ ĐẠO HÀM MỘT CÁCH TỰ ĐỘNG NHƯ VẬY ĐƯỢC?

NGÀY HÔM NAY BẠN SẼ TỰ TAY XÂY DỰNG ĐƯỢC MỘT TOOL MINI ĐẠO HÀM TỰ ĐỘNG!

ARE YOU READY?

HÀM 2 BIẾN

Định nghĩa: Hàm hai biến là **một quy luật** ứng với một cặp số thực được sắp xếp thứ tự $(x,y) \in D$, ta luôn xác định được **duy nhất** một số thực z = f(x,y)

$$f: D \subset \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto z = f(x,y)$

Tập hợp D được gọi là **miền xác định** của hàm số f và được kí hiệu D(f).

Tập hợp $E = \{z, \exists (x, y) \in D : z = f(x, y)\}$ được gọi là **tập giá trị** của hàm số f

Định nghĩa: Đồ thị của hàm hai biến z = f(x, y) là tập hợp tất cả những điểm $(x, y, z) \in R^3$ sao cho z = f(x, y) và $(x, y) \in D$

Đồ thị của hàm một biến y = f(x) là *một đường cong*, còn đồ thị của hàm hai biến z = f(x, y) là *một mặt cong*.

HÀM 2 BIẾN

HÀM n BIẾN

$$f: D \subset \mathbb{R}^n \to \mathbb{R}$$
$$(x_1, x_2, \dots, x_n) \mapsto z = f(x_1, x_2, \dots, x_n)$$

Giả sử ta có nhiều luật f_1 , f_2 , ..., f_n là các hàm nhận n giá trị x_1 , x_2 , ..., x_m

$$z_{1} = f_{1}(x_{1}, x_{2}, ..., x_{m})$$

$$z_{2} = f_{2}(x_{1}, x_{2}, ..., x_{m})$$

$$\vdots$$

$$z_{n} = f_{n}(x_{1}, x_{2}, ..., x_{m})$$

 $f:D\subset\mathbb{R}^m\to\mathbb{R}^n$

Similar

scalar to scalar

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \in R, y \in R$$

vector to scalar

$$f: \mathbb{R}^{nx1} \to \mathbb{R}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{nx1}, y \in \mathbb{R}$$

scalar to vector

$$f: \mathbb{R} \to \mathbb{R}^{nx1}$$

$$x \in \mathbb{R}, y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \in \mathbb{R}^{nx1}$$

vector to vector

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{nx1} \to \mathbb{R}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{nx1}, y \in \mathbb{R}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{nx1}, y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{mx1}$$

- 1. Scalar differentiation: $f : \mathbb{R} \to \mathbb{R}$ $y \in \mathbb{R}$ w.r.t. $x \in \mathbb{R}$
- 2. Multivariate case: $f : \mathbb{R}^N \to \mathbb{R}$ $y \in \mathbb{R}$ w.r.t. vector $x \in \mathbb{R}^N$
- 3. Vector fields: $f : \mathbb{R}^N \to \mathbb{R}^M$ vector $\mathbf{y} \in \mathbb{R}^M$ w.r.t. vector $\mathbf{x} \in \mathbb{R}^N$
- 4. General derivatives: $f: \mathbb{R}^{M \times N} \to \mathbb{R}^{P \times Q}$ matrix $\mathbf{y} \in \mathbb{R}^{P \times Q}$ w.r.t. matrix $\mathbf{X} \in \mathbb{R}^{M \times N}$

SCALAR DIFFERENTIATION

scalar to scalar

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \in R, y \in R$$

Công thức đạo hàm một bên

$$f'(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}$$

Công thức đạo hàm trung tâm

$$f'(x) = \lim_{\epsilon \to 0} \frac{f\left(x + \frac{\epsilon}{2}\right) - f\left(x - \frac{\epsilon}{2}\right)}{\epsilon}$$

Theo lý thuyết đạo hàm, epsilon càng nhỏ thì giá trị đạo hàm tại một điểm càng chính xác!

MULTIVARIATE CASE

vector to scalar

$$f: \mathbb{R}^{nx1} \to \mathbb{R}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{nx1}, y \in \mathbb{R}$$

$$y = f(x), \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$$

Partial derivative (change one coordinate at a time):

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{i-1}, \frac{x_i + h}{x_{i+1}, \dots, x_N}) - f(x)}{h}$$

Jacobian vector (gradient) collects all partial derivatives:

$$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{r}} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_N} \end{bmatrix} \in \mathbb{R}^{1 \times N}$$

Note: This is a row vector.

VECTOR FIELDS

vector to vector

$$f: \mathbb{R}^{nx1} \to \mathbb{R}^{mx1}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{nx1}, y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ x_m \end{bmatrix} \in \mathbb{R}^{mx1}$$

$J = \frac{dy}{dx} = \begin{bmatrix} \frac{dy_1}{dx_1}, \frac{dy_1}{dx_2}, \dots, \frac{dy_1}{dx_n} \\ \frac{dy_2}{dx_1}, \frac{dy_2}{dx_2}, \dots, \frac{dy_2}{dx_n} \\ \dots \\ dy_m, dy_m, dy_m \end{bmatrix} \in \mathbb{R}^{mxn}$

vector to scalar

Jacobian matrix

APPLICATIONS AND USES

		Type of functions	Applicable techniques
Curves		$f: \mathbb{R} ightarrow \mathbb{R}^n$ for $n>1$	Lengths of curves, line integrals, and curvature.
Surfaces	y and a second s	$f: \mathbb{R}^2 o \mathbb{R}^n$ for $n>2$	Areas of surfaces, surface integrals, flux through surfaces, and curvature.
Scalar fields		$f:\mathbb{R}^n o\mathbb{R}$	Maxima and minima, Lagrange multipliers, directional derivatives, level sets.
Vector fields		$f: \mathbb{R}^m o \mathbb{R}^n$	Any of the operations of vector calculus including gradient, divergence, and curl.

1

Manual Differentiation

dễ xảy ra lỗi, quá khó để triển khai đạo hàm

2

Numberical Differentiation:

dễ xảy ra lỗi do giới hạn tính toán của máy tính

3

Dual Numbers for AD:

kết quả chính xác như tính tay, và hoàn toàn tự động

1 Manual Differentiation

Let's define a very simple function:

$$f(x) = 3x^3 - 5x^2$$
$$\Rightarrow f'(x) = 9x^2 - 10x$$

```
[1] #In Python code:
    def func(x):
        return 3 * x ** 3 - 5 * x ** 2

    def func_der(x):
        return 9 * x ** 2 - 10 * x
[3] func_der(1.5)
```

Manual Differentiation

Ok, let try...
$$f(x) = sin(tan(x)^{cos(x)}cos(x)^{tan(x)})$$
$$f'(x)$$
?

SoftRelu

 $log(1 + e^{wx+b})$

or

After 2 layer, derivative become ...

$$rac{e^{b_1+b_2+w_1x+w_2log(1+e^b_1+w_1x)}w_2x)}{(1+e^{b_1+w_1x})(1+e^{b_2+w2log(1+e^{b_1+w_1x})})}$$

Next layer?

Manual Differentiation

dễ xảy ra lỗi, quá khó để triển khai đạo hàm

Manual Differentiation

dễ xảy ra lỗi, quá khó để triển khai đạo hàm

Numberical Differentiation:

dễ xảy ra lỗi do giới hạn tính toán của máy tính

Dual Numbers for AD:

kết quả chính xác như tính tay, và hoàn toàn tự động

2 Numberical Differentiation

$$f'(x) = \lim_{arepsilon o 0} rac{f(x+arepsilon) - f(x)}{arepsilon} \hspace{0.5cm} ext{V\'oi } arepsilon \ll 0$$

Tránh tại x không xác định:

$$f'(x) = \lim_{arepsilon o 0} rac{f(x + arepsilon/2) - f(x - arepsilon/2)}{arepsilon}$$

2 Numberical Differentiation

```
def gradient(f, x, epsilon=1.0e-13):
    return (f(x + epsilon/2) - f(x - epsilon/2))/epsilon

from math import sin, tan, cos

def ff(x):
    return sin(tan(x)**cos(x) * cos(x)**tan(x))

1 gradient(ff, 1.0)

-1.5987211554602254
```

```
f(x) = sin(tan^{cos(x)}cos^{tan(x)}) f'(x)?
```

Chỉ cần định nghĩa function

2 Numberical Differentiation

$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

```
[15] import numpy as np

def f1_3(x):
    return (np.exp(x)-np.exp(-x)) / (np.exp(x)+np.exp(-x))

gradient(f1_3, 2.0)
```

0.0716093850883226

2

Numberical Differentiation

$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

```
[15] import numpy as np

def f1_3(x):
    return (np.exp(x)-np.exp(-x)) / (np.exp(x)+np.exp(-x))

gradient(f1_3, 2.0)
```

```
import matplotlib.pyplot as plt
    x = np.arange(-10, 10, 0.01)
    plt.plot(x, f1_3(x),
              x, gradient(f1_3, x))
    plt.show()
C→
      1.00
      0.75
      0.50
      0.25
      0.00
     -0.25
     -0.50
     -0.75
     -1.00
           -10.0 -7.5 -5.0 -2.5 0.0
                                       2.5
                                             5.0
                                                  7.5
                                                       10.0
```

2 Numberical Differentiation

So on...

Hey, we need new method pro men!!

2

Numberical Differentiation:

dễ xảy ra lỗi do giới hạn tính toán của máy tính

1

Manual Differentiation

dễ xảy ra lỗi, quá khó để triển khai đạo hàm

2

Numberical Differentiation:

dễ xảy ra lỗi do giới hạn tính toán của máy tính

3

Dual Numbers for AD:

kết quả chính xác như tính tay, và hoàn toàn tự động

3 Dual Numbers for AD

Expand the taylor function f(x) at x_0

$$f(x) = f(x_0) + rac{f'(x_0)}{1!}(x-x_0) + rac{f''(x_0)}{2!}(x-x_0)^2 + \ldots$$

With $x \sim x_0$: $x - x_0 = \varepsilon$, we have:

$$f(x_0+arepsilon)=f(x_0)+rac{f'(x_0)}{1!}arepsilon+rac{f''(x_0)}{2!}arepsilon^2+\ldots$$

$$f(x_0+arepsilon)=f(x_0)+f'(x_0)arepsilon$$

3 Dual Numbers for AD

With $x \sim x_0$: $x - x_0 = \varepsilon$, we have:

Dual Numbers

$$a = u^{n}$$

$$\Rightarrow z = u^{n} + u'n * u^{n-1}\varepsilon$$


```
class DualNumber:
   def __init__(self, value, prime):
       self.value = value
       self.prime = prime
   def __add (self, other):
       if not isinstance(other, DualNumber):
           other = DualNumber(other, 0)
       return DualNumber(self.value + other.value,
                             self.prime + other.prime)
   def radd (self, other):
       return DualNumber(other, 0) + self
   def sub (self, other):
       if not isinstance(other, DualNumber):
           other = DualNumber(other, 0)
       return DualNumber(self.value - other.value,
                             self.prime - other.prime)
   def rsub (self, other):
       return DualNumber(other, 0) - self
   def mul (self, other):
       if not isinstance(other, DualNumber):
           other = DualNumber(other, 0)
       return DualNumber(self.value * other.value,
                             self.value * other.prime + self.prime * other.value)
```

```
def rmul (self, other):
   return DualNumber(other, 0) * self
def __truediv__(self, other):
   if not isinstance(other, DualNumber):
       other = DualNumber(other, 0)
   return DualNumber(self.value/other.value,
                         (self.prime*other.value -
                          self.value*other.prime)/(other.value**2))
def __rtruediv__(self, other):
   return DualNumber(other, 0) / self
def __pow__(self, other):
   if not isinstance(other, DualNumber):
       other = DualNumber(other, 0)
   return DualNumber(self.value**other.value,
                     np.exp(other.value*np.log(self.value))
                     *(other.prime*np.log(self.value)
                       + other.value * self.prime * 1.0/self.value
def repr (self):
   return repr(self.value) + ' + ' + repr(self.prime) + '*epsilon'
def neg (self):
   return DualNumber(-self.value, -self.prime)
def pos (self):
   return DualNumber(self.value, self.prime)
```



```
def func(f):
82
        def fdeclare(dark):
83
84
            if not isinstance(dark, DualNumber):
85
                def wrapper(x):
                    return f(dark(x))
86
87
                return wrapper
88
89
            return f(dark)
90
91
        return fdeclare
92
```

```
1 def f(x):
2    return x*(3*x+2)**(1/2)
3
4 auto_diff(f, [2.0])
```

```
array([3.8890873])

Åo thật
đấy!
```

```
95 @func
 96 def exp(x):
         return DualNumber(np.exp(x.value),
 98
                          x.prime * np.exp(x.value))
 99 @func
100 def sin(x):
         return DualNumber(np.sin(x.value),
102
                          x.prime * np.cos(x.value))
103 @func
104 def cos(x):
         return DualNumber(np.cos(x.value),
105
                          -x.prime * np.sin(x.value))
106
107 @func
108 def tan(x):
         return DualNumber(np.tan(x.value),
110
                          x.prime/np.cos(x.value)**2)
111 @func
112 def log(x):
         return DualNumber(np.log(x.value),
114
                          x.prime*(1.0/x.value))
115 @func
116 def pow(x, n):
         return DualNumber(x.value**n,
117
118
                          x.prime*n*(x.value**(n-1)))
119 @func
120 def fabs(x):
         return DualNumber(np.abs(x.value),
122
                          x.value/(x.value**2)**0.5)
123 @func
124 def fsum(x, axis=None, dtype=None, keepdims=np._NoValue):
         return DualNumber(np.sum(x.value, axis=axis, dtype=dtype, keepdims=keepdims),
125
126
                           x.prime)
127
    def auto_diff(f, x):
129
130
         if isinstance(x, int):
131
            x = [x]
132
133
         x = np.array(x, dtype=np.float64)
134
135
         return f(DualNumber(x, np.ones(x.shape))).prime
```

3 Dual Numbers for AD:

kết quả chính xác như tính tay, và hoàn toàn tự động

OK, THỰC RA NÃY GIỜ TA MỚI TRIỂN KHAI SCALAR DIFFERENTIATION ^^

ĐỂ DỄ TIẾP CẬN, TA SẼ TRIỂN KHAI VÀ SỬ DỤNG NUMBERICAL DIFFERENTIATION

GRADIENT PROGRAMMING

scalar to scalar

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \in R, y \in R$$

$$f'(x) = \lim_{arepsilon o 0} rac{f(x + arepsilon/2) - f(x - arepsilon/2)}{arepsilon}$$

GRADIENT PROGRAMMING

scalar to scalar

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \in R, y \in R$$

$$f'(x) = \lim_{arepsilon o 0} rac{f(x + arepsilon/2) - f(x - arepsilon/2)}{arepsilon}$$

vector to scalar

$$y = f(x), \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$$

▶ Partial derivative (change one coordinate at a time):

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{i-1}, \frac{x_i + h}{x_{i+1}, \dots, x_N}) - f(x)}{h}$$

► Jacobian vector (gradient) collects all partial derivatives:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_N} \end{bmatrix} \in \mathbb{R}^{1 \times N}$$

Note: This is a row vector.

vector to vector

vector to scalar

$$J = \frac{dy}{dx} = \begin{bmatrix} \frac{dy_1}{dx_1}, \frac{dy_1}{dx_2}, \dots, \frac{dy_1}{dx_n} \\ \frac{dy_2}{dx_1}, \frac{dy_2}{dx_2}, \dots, \frac{dy_2}{dx_n} \\ \dots \\ \frac{dy_m}{dx_1}, \frac{dy_m}{dx_2}, \dots, \frac{dy_m}{dx_n} \end{bmatrix} \in \mathbb{R}^{mxn}$$

```
# From scratch
def d_vec_to_vec(f, w, epsilon=1e-7):
    result = []
    w = np.array(w, dtype=np.float64).reshape(-1, 1)
    for i in range(w.shape[0]):
        w_t = w.copy()
        w_p = w.copy()
        w_t[i] += epsilon/2
        w_p[i] -= epsilon/2
        result.append((f(w_t) - f(w_p))/epsilon)
    return np.concatenate(result, -1)
```

GRADIENT PROGRAMMING

scalar to scalar scalar to vector vector to scalar vector to vector

```
# From scratch

def d_vec_to_vec(f, w, epsilon=1e-7):
    result = []
    w = np.array(w, dtype=np.float64).reshape(-1, 1)
    for i in range(w.shape[0]):
        w_t = w.copy()
        w_p = w.copy()
        w_t[i] += epsilon/2
        w_p[i] -= epsilon/2
        result.append((f(w_t) - f(w_p))/epsilon)
    return np.concatenate(result, -1)
```


$$x^4 - 8x^3 + 21x^2 - 24x + 9 = 0$$

$$(x+4)(x+6)(x-2)(x-12) = 25x^2$$

$$z = 2x^4 + y^4 - 4x^2 + 2y^2$$
Optimization
$$z = 2x^2 + 3y^2 - e^{-(x^2 + y^2)}$$
LOSS FUNCTION

TÌM NGHIỆM

$$(x + 4)(x + 6)(x - 2)(x - 12) = 25x^2$$

$$\Rightarrow \begin{bmatrix} x = -8 \\ x = -3 \\ x = \frac{15 \pm \sqrt{129}}{2} \end{bmatrix}$$

Chọn điểm rơi

```
epochs = 1000
x = 9

for _ in range(epochs):
    x = x - f(x)/d_f(f, x)
print(x)
```


TÌM NGHIỆM

$$x^{4} - 8x^{3} + 21x^{2} - 24x + 9 = 0$$

$$\Rightarrow x = \frac{5 \pm \sqrt{13}}{2}$$

Chọn điểm rơ

```
epochs = 1000

x = 2

for _ in range(epochs):
    x = x - f(x)/d_f(f, x)
print(x)
```

0.6972243622680052

Optimization

Optimization

Chọn điểm rơi


```
x = 1.0
y = 1.0
lr = 0.01
epoch = 1000
f val = []
for _ in range(epoch):
    z = f1([x,y])
    dx, dy = d_vec_to_vec(f1, [x,y])
    x -= dx*lr
    y -= dy*lr
    f_val.append(z)
plt.plot(f_val)
print(f"min = \{f_val[-1]\} with x,y=\{x,y\}")
min = -2.0 with x,y=(0.999999999111822, 4.551026222543442e-12)
 1.0
 0.5
 0.0
-0.5
-1.0
-1.5
-2.0
               200
                        400
                                 600
                                          800
                                                  1000
```

Optimization

Chọn điểm rơi

$$z = 2x^{2} + 3y^{2} - e^{-(x^{2} + y^{2})}$$
Filled Contours Plot
$$0.75 - 0.50 - 0.25 - 0.50 - 0.25 0.00 0.25 0.50 0.75 1.00$$

$$-0.75 - 0.75 - 0.75 - 0.50 - 0.25 0.00 0.25 0.50 0.75 1.00$$

```
x = 1.0
y = 1.0
lr = 0.01
epoch = 1000
f_val = []
for _ in range(epoch):
    z = f2([x,y])
    dx, dy = d_vec_to_vec(f2, [x,y])
    x -= dx*lr
    y -= dy*lr
    f_val.append(z)
plt.plot(f_val)
print(f"min = \{f_val[-1]\} with x,y=\{x,y\}")
min = -1.0 with x, y = (5.763158839044991e - 10, 4.551026222543442e - 12)
 0
             200
                                600
                                         800
                                                 1000
```

Optimization loss function (eg. Linear regression)

Advertising.csv

	TV	Radio	Newspaper	Sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	12
4	151.5	41.3	58.5	16.5
5	180.8	10.8	58.4	17.9
6	8.7	48.9	75	7.2
7	57.5	32.8	23.5	11.8
8	120.2	19.6	11.6	13.2
9	8.6	2.1	1	4.8
10	199.8	2.6	21.2	15.6
11	66.1	5.8	24.2	12.6
12	214.7	24	4	17.4
13	23.8	35.1	65.9	9.2
14	97.5	7.6	7.2	13.7
15	204.1	32.9	46	19
16	195.4	47.7	52.9	22.4
17	67.8	36.6	114	12.5
18	281.4	39.6	55.8	24.4

Optimization loss function (eg. Linear regression)

```
import numpy as np
import matplotlib.pyplot as plt

# From scratch
def d_vec_to_vec(f, w, epsilon=1e-7):
    result = []
    w = np.array(w, dtype=np.float64).reshape(-1, 1)
    for i in range(w.shape[0]):
        w_t = w.copy()
        w_p = w.copy()
        w_t[i] += epsilon/2
        w_p[i] -= epsilon/2
        result.append((f(w_t) - f(w_p))/epsilon)
    return np.concatenate(result, -1)
```

```
[3]: data = np.genfromtxt("advertising.csv", delimiter=',', skip_header=True)

[4]: x = data[:, :-1]
y = data[:, -1:]

[5]: n_sample, n_features = x.shape # Lãy số sample, và số features

[6]: x = (x - x.mean())/x.std()

[7]: x = np.concatenate((x, np.ones((n_sample, 1))), axis = 1) # Thêm cột 1 vào x

[8]: x.shape

[8]: (200, 4)
```

```
[9]: def linear(const):
    def handle(x):
        return const@x
    return handle

[10]: def mean_square_error(const):
    def handle(x):
        return np.mean((const-x)**2, keepdims=True)
    return handle

[11]: # init parameters (weight, Learning_rate, epoch, batch_size)
    w = np.random.rand(n_features + 1, 1)
    learning_rate = 0.01
    batch_size = n_sample
    n_epochs = 100

#for debug
losses = []
```

```
[12]: # Tìm w, b
      for epoch in range(n epochs):
          # May be shufle
          for i in range(0, n_sample, batch_size):
              # pick sample
              x_i = x[i:i+batch_size, :]
              y_i = y[i:i+batch_size]
              # predict
              y_pred = linear(x_i)(w)
              # Loss (debug)
              1 = mean_square_error(y_i)(y_pred) # np.abs(o - y_i)
              losses.extend(1)
              # compute gradient (d_weight)
              dw = (d_vec_to_vec(mean_square_error(y_i), y_pred) @ d_vec_to_vec(linear(x_i), w)).T
              # Update weight
              w = w - learning_rate*dw
```


Optimization loss function (eg. Linear regression)

