Appendix 3

Malcolm

Started 5 Nov 2024

Contents

A	Probability			2
	A.1	Fundamental concepts		
		A.1.1	Expectation and Variance	4
		A.1.2	Expected value of a function of a RV	;
		A.1.3	Expectation and variance of linear functions	4
		A.1.4	Variance in terms of Moments Expression	4
		A.1.5	Expectation and Variance of Bernoulli	ļ
			Expectation of Discrete Uniform	
			Variance of Discrete Uniform	
В	Supplementary Notes			
	B.1	The su	um of the first n natural numbers is $n(n+1)/2$	8

Appendix A

Probability

A.1 Fundamental concepts

A.1.1 Expectation and Variance

Expectation

We define the expected value of a random variable X with a PMF p_X by

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

Variance and Standard Deviation

We define the variance associated with a random variable X as

$$var(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \sum_{x} (X - \mathbb{E}[X])^2 p_X(x)$$

(See that the because of the square the variance is always nonnegative). The variance provides a measure of dispersion of X around the mean. Another measure of dispersion is the *Standard deviation* of X, which is defined as the square root of the variance and is denoted by σ_X :

$$\sigma_X = \sqrt{\operatorname{var}(X)}$$

The standard deviation is often easier to interpret because it has the same units as X.

A.1.2 Expected value of a function of a RV

Expectation of a function

Let X be a RV with PMF p_X , and let g(X) be a function of X. Then the expected value of the random variable g(X) is given by

$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

This can be shown, since

$$p_Y(y) = \sum_{\{x | g(x) = y\}} p_X(x)$$

we have

$$\mathbb{E}[g(X)] = \mathbb{E}[Y]$$

$$= \sum_{y} y p_{Y}(y)$$

$$= \sum_{y} \sum_{\{x|g(x)=y\}} p_{X}(x)$$

$$= \sum_{y} \sum_{\{x|g(x)=y\}} y p_{X}(x)$$

$$= \sum_{y} \sum_{\{x|g(x)=y\}} g(x) p_{X}(x)$$

$$= \sum_{x} g(x) p_{X}(x)$$

Variance

Using this we can write the variance of X as

$$\operatorname{var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \sum_{x} (X - \mathbb{E}[X])^2 p_X(x)$$

A.1.3 Expectation and variance of linear functions

We show for a random variable X, and letting Y = aX + b:

$$\mathbb{E}[Y] = a\mathbb{E}[X] + b, \quad \text{var}(Y) = a^2 \text{var}(X)$$

Linearity of Expectations:

$$\mathbb{E}[Y] = \sum_{x} (ax+b)p_X(x) = a\underbrace{\sum_{x} xp_x(x)}_{=\mathbb{E}[X]} + b\underbrace{\sum_{x} p_x(x)}_{=1} = a\mathbb{E}[X] + b$$

Variance:

$$\operatorname{var}(Y) = \sum_{x} (ax + b - \mathbb{E}[aX + b])^{2} p_{X}(x)$$

$$= \sum_{x} (ax + b - a\mathbb{E}[X] + b)^{2} p_{X}(x)$$

$$= a^{2} \sum_{x} (x - \mathbb{E}[X])^{2} p_{X}(x)$$

$$= a^{2} \operatorname{var}(X)$$

Note that unless g(X) is a linear function, it is not generally true that $\mathbb{E}[g(X)]$ is equal to $g(\mathbb{E}[X])$.

A.1.4 Variance in terms of Moments Expression

We show

$$var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

see that

$$\begin{aligned} \text{var}(X) &= \sum_{x} (x - \mathbb{E}[X])^2 p_X(x) \\ &= \sum_{x} (x^2 - 2x \mathbb{E}[X] + (\mathbb{E}[X])^2) p_X(x) \\ &= \sum_{x} x^2 p_X(x) - 2\mathbb{E}[X] \sum_{x} x p_X(x) + (\mathbb{E}[X])^2 \sum_{x} p_X(x) \\ &= \mathbb{E}[X^2] - 2(\mathbb{E}[X])^2 + (\mathbb{E}[X])^2 \\ &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \end{aligned}$$

A.1.5 Expectation and Variance of Bernoulli

Consider a Bernoulli RV X with PMF

$$p_X(k) = \begin{cases} p, & \text{if } k = 1. \\ 1 - p, & \text{if } k = 0. \end{cases}$$

The mean, second moment, and variance of X are as follows:

$$\mathbb{E}[X] = 1 \cdot p + 0 \cdot (1 - p) = p$$

$$\mathbb{E}[X^2] = 1^2 \cdot p + 0 \cdot (1 - p) = p$$

$$\text{var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = p - p^2 = p(1 - p)$$

A.1.6 Expectation of Discrete Uniform

Consider a Discrete Uniform RV X with PMF, for $k \in [a, b]$:

$$p_X(k) = \begin{cases} \frac{1}{b-a+1}, & \text{if } k = a, a+1 \dots, b \\ 0, & \text{otherwise.} \end{cases}$$

An illustration is useful here:

Expectation

Upon inspection one might suppose that the expectation is

$$\mathbb{E}[X] = \frac{a+b}{2}$$

(next page)

Expectation (cont.)

The formula can be elucidated from the definition of the expectation. First see that a sequence $\sum_{k=a}^{b} k$ can be written as

$$\sum_{k=a}^{b} k = \sum_{k=1}^{b} k - \sum_{k=1}^{a-1} k$$

$$= \frac{(b)(b+1)}{2} - \frac{(a-1)(a)}{2} \quad \text{(see B.1)}$$

$$= \frac{b^2 + b - a^2 + a}{2} = \frac{(b-a+1)(a+b)}{2}$$

The last step isn't easy to factor, but working back from our 'hypothesis' for the expectation it coincides.

so now we have

$$\mathbb{E}[X] = \sum_{k=a}^{b} k \left(\frac{1}{b-a+1}\right)$$

$$= \frac{1}{b-a+1} \sum_{k=a}^{b} k$$

$$= \frac{1}{b-a+1} \cdot \frac{(b-a+1)(a+b)}{2}$$

$$= \frac{(a+b)}{2}$$

A.1.7 Variance of Discrete Uniform

Appendix B

Supplementary Notes

B.1 The sum of the first n natural numbers is n(n+1)/2

We have that

$$\sum_{i=1}^{i} i = 1 + 2 + \dots + n$$

Now consider $2\sum_{i=1}^{n} i$:

$$2\sum_{i=1}^{n} i = 2(1+2+\cdots+(n-1)+n)$$

$$= (1+2+\cdots+(n-1)+n)+(n+(n-1)+\cdots+2+1)$$

$$= (1+n)+(2+(n-1))+\cdots+((n-1)+2)+(n+1)$$

$$= (n+1)_{1}+(n+1)_{2}+\cdots+(n+1)_{n}$$

$$= n(n+1)$$

so

$$2\sum_{i=1}^{n} i = n(n+1)$$
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$