Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 31/10/2016	Dr. Héctor Fernando Gómez García	Creación del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores	
Álgebra lineal		
a) Vectores propios	Minería de datos	
b) Valores propios		
	a) Regresión	
Estadística analítica	b) Clasificación	
a) Regresión	c) Métodos basados en árboles	
b) Clasificación	d) Agrupamiento	
c) Análisis de componentes principales		

Nombre de la asignatura	Departamento o Licenciatura
Nombre de la asignatura	Departamento o Licenciatura

Aprendizaje estadístico Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 3	ID0309	6	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir diferentes técnicas de aprendizaje estadístico para el modelado de variables aleatorias continuas y discretas

Objetivo procedimental

Aplicar métodos de aprendizaje estadístico para la resolución de problemas de regresión, clasificación y agrupamiento de datos

Objetivo actitudinal

Potenciar el trabajo colaborativo a través del desarrollo de proyectos de aprendizaje estadístico para el fortalecimiento de la cultura del esfuerzo y el trabajo.

Unidades y temas

Unidad I. REGRESIÓN

Revisar las principales metodologías de regresión estadística para el modelado de variables cuantitativas

- 1) Regresión lineal múltiple
- 2) Selección de predictores
- 3) Regresión Ridge
- 4) Regresión Lasso.

Unidad II. CLASIFICACIÓN

Emplear diferentes técnicas para la clasificación de conjuntos de datos

- 1) Vecinos más cercanos
- 2) Análisis de discriminantes lineales
- 3) Clasificación mediante regresión logística

Unidad III. AGRUPAMIENTO

Resolver problemas de agrupamiento para la identificación de conjuntos de datos con características homogéneas

- 1) Análisis de componentes principales
- 2) K-Medias
- 3) Mapas auto-organizados
- 4) Agrupamiento jerárquico

Unidad IV. MÉTODOS BASADOS EN ÁRBOLES

Aplicar metodologías de regresión, clasificación y agrupamiento de datos basadas en árboles, para la solución de problemas

- 1) Árboles de regresión
- 2) Árboles de clasificación
- 3) Bagging
- 4) Boosting
- 5) Bosques aleatorios

Actividades que promueven el aprendizaje

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados. Realizar tareas asignadas Participar en el trabajo individual y en equipo Resolver casos prácticos

Coordinar la discusión de casos prácticos.

Realizar foros para la discusión de temas o problemas.

Discutir temas en el aula

Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (investigación, ensayos, lecturas, etc.)	20
Evidencias equipo (ejercicios, casos, proyectos, etc.)	30
Evidencias grupales (asambleas, lluvias de ideas, etc.)	20
Total	100

Fuentes de referencia básica

Bibliográficas

Christopher, B., (2006), Pattern Recognition and Machine Learning, United States: Springer Verlag.

James, G., (2014), An Introduction to Statistical Learning, United States: Springer Verlag.

Julian, I., (2009), Modern Multivariate Statistical Techniques, United States: Springer Verlag.

Michael, B., (2010), Guide to Intelligent Data Analysis, United States: Springer Verlag.

Richard, D., (2001), Pattern Classification, United Sates: Wiley.

Web gráficas

Fuentes de referencia complementaria

Bibliográficas

Andreas, C.M., (2016), Introduction to Machine Learning with Python: A Guide for Data Scientist, United States: O¿REILLY

Ethem, A., (2016), Machine Leaning: The New AI, United States: MIT Press

John, D.K., (2015), Fundamentals of Machine Learning for Predictive Data Analytics, United States: MIT Press.

Peter, F., (2012), Machine Learning: The Art and Science of Algorithms that Make Sense of Data, United Sates: Cambridge.

Sebastian, R., (2015), Python Machine Learning, United States: PACKT.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

De preferencia con licenciatura o posgrado en Computación. Opcionalmente Licenciatura o maestría en Matemáticas o en Estadística.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en la aplicación de técnicas de aprendizaje estadístico en problemas de modelado de datos.