Algebra I Blatt 2

Thorben Kastenholz Jendrik Stelzner

1. Mai 2014

Aufgabe 1

Wir gehen im Folgenden davon aus, dass kG-Moduln als unitär verstanden werden, da die Aussage sonst offenbar nicht stimmt.

Es sei $\pi:G\times V\to V$ eine lineare Gruppenwirkung auf V. Diese entspricht einem Gruppenhomomorphismus $\tilde{\pi}:G\to \mathrm{GL}(V),g\mapsto \pi_g$ mit $\pi_g:v\mapsto g.v$. Wir können diesen zu einer Abbildung $\bar{\pi}:G\to \mathrm{End}(V),g\mapsto \pi_g$ ergänzen. Da der zugrundelegende k-Vektorraum von kG der freie k-Vektorraum über G ist, lässt sich $\bar{\pi}$ durch die universelle Eigenschaft des freien Vektorraums zu einer linearen Abbildung $\tau:kG\to \mathrm{End}(V)$ ergänzen, d.h. für alle $\sum_{g\in G}a_gg\in kG$ ist

$$\tau\left(\sum_{g\in G} a_g g\right) = \sum_{g\in G} a_g \bar{\pi}(g) = \sum_{g\in G} a_g \pi_g.$$

Da G eine k-Basis von kG ist, und τ auf dieser Basis multiplikativ ist (denn $\tau_{|G}=\bar{\pi}$), ist τ auch ein Ringhomomorphismus, d.h. für alle $\sum_{g\in G}a_gg, \sum_{h\in G}b_hh\in kG$ ist

$$\begin{split} \tau\left(\left(\sum_{g\in G}a_gg\right)\cdot\left(\sum_{h\in G}b_hh\right)\right) &= \tau\left(\sum_{g,h\in G}a_gb_hgh\right)\\ &= \sum_{g,h\in G}a_gb_h\pi_{gh} = \sum_{g,h\in G}a_gb_h\pi_g\pi_h = \left(\sum_{g\in G}a_g\pi_g\right)\left(\sum_{h\in G}b_h\pi_h\right)\\ &= \tau\left(\sum_{g\in G}a_gg\right)\tau\left(\sum_{h\in G}b_hh\right). \end{split}$$

Da auch $\tau(1_{kG})=\tau(e)=\pi_e=1_{\mathrm{End}(V)}$ ist $\tau:kG\to\mathrm{End}(V)$ ein unitaler k-Algebrahomomorphismus. Bekanntermaßen entspricht τ einer kG-Modulstruktur auf V via

$$\begin{split} \left(\sum_{g \in G} a_g g\right) \cdot v := \tau \left(\sum_{g \in G} a_g g\right)(v) &= \left(\sum_{g \in G} a_g \pi_g\right)(v) \\ &= \sum_{g \in G} a_g \pi_g(v) = \sum_{g \in G} a_g(g.v). \end{split}$$

Andererseits entspricht eine kG-Modulstruktur auf V einem unitären k-Algebrahomomorphismus $\Phi: kG \to \operatorname{End}(V), x \mapsto (v \mapsto x \cdot v)$. Insbesondere ist Φ ein unitärer Ringhomomorphismus, und induziert daher einen Gruppenhomomorphismus der Einheitengruppen

 $\tilde{\phi}: (kG)^{\times} \to (\operatorname{End}(V))^{\times} = \operatorname{GL}(V).$

Da $G\subseteq (kG)^{\times}$ eine Unterguppe ist (denn g hat in kG das Inverse g^{-1}) beschränkt sich $\tilde{\phi}$ zu einem Gruppenhomomorphismus $\phi:G\to \mathrm{GL}(V)$. ϕ entspricht einer linearen G-Gruppenwirkung auf V via $g.v=\phi(g)(v)$ für alle $g\in G,v\in V$.

Die beiden Konstruktionen sind invers zueinander: Es sei $\pi:G\times V\to V$ eine lineare Gruppenwirkung auf $V,\,\tilde{\tau}:kG\to \operatorname{End}(V)$ der entsprechende k-Algebrahomomorphismus, wie oben konstruiert, und $\pi':G\to\operatorname{GL}(V)$ der Gruppenhomomorphismus, der wie oben durch Einschränkung von τ auf G entsteht. Da für alle $g\in G,v\in V$

$$\pi'(g)(v) = \tau(g)(v) = \pi_g(v) = g.v$$

ist die lineare Gruppenaktion, die π' entspricht, genau π .

Ist andererseits $\Phi:kG\to \operatorname{End}(V)$ ein unitärer k-Algebrahomomorhismus, $\pi:G\to \operatorname{GL}(V)$ der wie oben beschriebene, durch Einschränkung entstehende Gruppenhomomorphismus, und $\Psi:kG\to \operatorname{End}(V)$ der aus π entstehende k-Algebrahomomorphismus. Es ist klar, dass Φ und Ψ auf $G\subseteq kG$ übereinstimmen. Da G eine k-Basis von kG ist, ist daher $\Phi=\Psi$.