ЛАБОРАТОРНА РОБОТА №5

Варіант: 12

Виконав: Попов А.А.

Тема: Цифрові мікросхеми послідовнісного типу (з пам'яттю).

Мета: Вивчити призначення, конструктивне виконання та характеристики цифрових мікросхем послідовнісного типу.

Набути навички роботи з RS, D, T, JK тригерами.

Забезпечення лабораторної роботи:

- 1. Персональний комп'ютер.
- 2. Програмне середовище емуляції електричних схем (ELECTRONICWORKBENCH, Multisim, OrCAD, PCAD-2001 або інший).
- 3. Зразки принципових електричних схем.

Теоретичний матеріал.

Теоретичний матеріал викладено в Budishev.pdf (с. 333-336), Бабич, Жуков - Комп'ютерна схемотехніка.pdf (с. 96-110).

Хід розв'язання

Першим завданням потрібно емулювати і ознайомитися з конструктивним виконанням та технічними характеристиками цифрових мікросхем послідовнісного типу, тому розглянемо по черзі чотири задані тригери та таблиці істинності, щовідповідають іх роботі(рис. 1.1, 2.1, 3.1, 4.1, 5.1):

Асинхронний RS-тригер:

S	R	Qt	Q_{t+1}
0	0	0 (1)	0 (1)
0	1	1 (0)	0
1	0	0 (1)	1
1	1	не визначено (з	ваборонена комбінація)

Рисунок 3 – Будова та схемотехнічне позначення асинхронних RSтригерів

Рисунок 1.1 - Асинхронний RS-тригер в середовищі Multisim

Синхронний RS-тригер:

С	S	R	Qt	Q_{t+1}
1	0	0	0(1)	0 (1)
1	0	1	1 (0)	0
1	1	0	0 (1)	1
1	1	1	не визначено	(заборонена комбінація)

Рисунок 2 - Приклад синхронного RS-тригера

Рисунок 2.1 - Синхронний RS-тригер в середовищі Multisim

Універсальний ЈК-тригер:

С	J	K	Q_t	Q_{t+1}
0	X	X	X	Qt
1	0	0	X	Qt
1	0	1	X	0
1	1	0	X	1
1	1	1	0	1
1	1	1	1	0

Рисунок 3 - Приклад синхронного ЈК - тригера

Рисунок 3.1 - Універсальний JK-тригер середовищі Multisim

D-тригер:

С	D	Qt	Q_{t+1}
0	X	X	Qt
1	0	0	0
1	0	1	0
1	1	1	1
1	1	0	1

Рисунок 4 - Схемотехнічне позначення D-тригера

Рисунок 4.1 - D-тригер в середовищі Multisim

Т-тригер:

T	Q(t)	Q(t+1)		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Рисунок 5 - Приклад Т-тригера

Рисунок 5.1 - Т-тригер в середовищі Multisim

Після ознайомлення з конструктивним виконанням та технічними характеристиками цифрових мікросхем проводимо експерименти з визначення таблиць істинності тригерів, порівнюючи отримані за експериментальними даними таблиці істинності з теоретичними.

На прикладі схеми D-тригера:

Під час експериментальних тестів з активованими та деактивованими пропусками струмів для кожного входу схеми було встановлено повну відповідність отриманих результатів з очікуваними.

Висновок: Під час лабораторної роботи були отримані навички в моделюванні різних типів тригерів, випробуванні їх функціональності та виявленні помилок у їх моделях. Експериментально порівнювали таблиці істинності тригерів з їх фактичними значеннями на схемах.