

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 169 (2007) 61–71

www.elsevier.com/locate/entcs

Semantics for a Basic Relevant Logic with Intensional Conjunction and Disjunction

Ying Gao¹

Department of Information and Computer Sciences Saitama University Saitama, Japan

Jingde Cheng²

Department of Information and Computer Sciences Saitama University Saitama, Japan

Abstract

This paper proposes a basic relevant logic $\mathbf{B}_{\sqcap \sqcup}^+$ with intensional conjunction \sqcap and disjunction \sqcup , which are more primitive than those defined by $A \circ B =_{df} \neg (A \to \neg B)$ and $A + B =_{df} \neg A \to B$. $\mathbf{B}_{\sqcap \sqcup}^+$ is a conservative extension of the basic relevant logic \mathbf{B}^+ . Stronger logics can be obtained by adding axioms or rules to $\mathbf{B}_{\sqcap \sqcup}^+$. Kripke style semantics for $\mathbf{B}_{\sqcap \sqcup}^+$ is given. Three ternary relations R, S_1, S_2 are used to deal with \to , \sqcap , and \sqcup , respectively. We also consider negation-extensions of $\mathbf{B}_{\sqcap \sqcup}^+$. The '*' operator is used to model negation.

Keywords: Relevant logics, Intensional conjunction, Intensional disjunction

1 Introduction

In the literature on relevant logics, two binary connectives, fusion \circ and fission +, can be defined by $A \circ B =_{df} \neg (A \to \neg B)$ and $A + B =_{df} \neg A \to B$, respectively. They are also called intensional conjunction and disjunction, and share many features classically attributed to extensional analogues, \wedge and \vee . The connective \circ can be introduced by way of the rule $A \circ B \to C \Leftrightarrow A \to (B \to C)$, having implication as its residual, which makes it important to algebraic treatment and proof theory of relevant logics. Defined by the above methods, \circ and + are highly related with

¹ Email: gaoying@aise.ics.saitama-u.ac.jp

² Email: cheng@aise.ics.saitama-u.ac.jp

implication. However, two more primitive connectives can be defined: \sqcap and \sqcup , which we call intensional conjunction and disjunction also, since further schemes can be added to make them share features of \circ and +.

Our idea is inspired by the work of establishing a non-normal conjunction rule in [3] (Chapter 8) for systems denying the law of identity. The rule is as following: I(A.B,a)=1 iff for some $b,c\in W,\ b\ominus c\le a$ and I(A,b)=1=I(B,c), where '.' represents the non-normal conjunction, W is the set of worlds, a,b and c are members of W, I is the assignment function, and \ominus is a two-place operation on W. If we use the expression S_1bca to represent the inequality $b\ominus c\le a$, where S_1 is a ternary relation, then this evaluation rule is very similar to that for \circ in relational semantics of relevant logics. So, it seems that some intensional conjunction can be defined independent of implication. Parallel to the above work in [3], we design a non-normal disjunction rule, and start our work from these two rules.

In this paper, we propose a base system $\mathbf{B}_{\sqcap \sqcup}^+$, obtained by adding intenstional conjunction and disjunction, denoted by \sqcap and \sqcup respectively, to the minimal positive relevant logic \mathbf{B}^+ . $\mathbf{B}_{\sqcap \sqcup}^+$ is a conservative extension of \mathbf{B}^+ . Stronger logics can be obtained by adding axiom or rule schemes to $\mathbf{B}_{\sqcap \sqcup}^+$. As to semantics, we use the ternary relation R to model implication \to . S_1 and S_2 are the other two ternary relations in our semantics. The former is used to deal with \sqcap , and the latter is for \sqcup . To construct a suitable canonical model, we define dualtheory and anti-dualtheory, and prove priming lemma for dualtheories. In addition, the basic negative system $\mathbf{BM}_{\sqcap \sqcup}$ is obtained by adding contraposition and De Morgan Laws to $\mathbf{B}_{\sqcap \sqcup}^+$ with negation modeled by the Routley *-operation.

We concentrate in this paper on the semantics of the basic systems with \sqcap and \sqcup . Extensions will be considered in a subsequent draft.

2 The Basic System $B_{\sqcap \sqcup}^+$

2.1 An Axiom System for $\mathbf{B}_{\sqcap \sqcup}^+$

 $\mathbf{B}_{\sqcap\sqcup}^+$ is expressed in a language \mathcal{L} , which has the two-place connectives \to , \wedge , \vee , \sqcap and \sqcup , parentheses (and), and a stock of propositional variables p,q,r,... Formulas are defined recursively in the usual manner. Some scope conventions are in force, that is, two-place connectives are ranked \sqcap , \sqcup , \wedge , \vee , \to in order of increasing scope (i.e. \sqcap binds more strongly than \sqcup , \sqcup than \wedge , etc.), and otherwise association is to the left. A, B, C, ... will be used to range over arbitrary formulas.

To define $\mathbf{B}_{\sqcap \sqcup}^+$, let us give an axiom system for \mathbf{B}^+ first, which has the following axioms and rules ³:

Axioms

$$\begin{array}{lll} \mathbf{A1} & A \rightarrow A \\ \mathbf{A2} & A \rightarrow A \vee B, \ B \rightarrow A \vee B \\ \mathbf{A3} & A \wedge B \rightarrow A, \ A \wedge B \rightarrow B \end{array}$$

³ Note that this axiom system is as same as that in [4] and [5] except that disjunctive forms of rules are not given distinctivly.

A4
$$A \land (B \lor C) \rightarrow (A \land B) \lor C$$

A5 $(A \rightarrow B) \land (A \rightarrow C) \rightarrow (A \rightarrow B \land C)$
A6 $(A \rightarrow C) \land (B \rightarrow C) \rightarrow (A \lor B \rightarrow C)$
Rules

Rules

R1
$$A, A \rightarrow B \Rightarrow B$$
 (Modus Ponens)

R2
$$A, B \Rightarrow A \land B$$
 (Ajunction)

R3
$$A \to B, C \to D \Rightarrow (B \to C) \to (A \to D)$$
 (Affixing).

Thus, $\mathbf{B}_{\square \perp}^+$ is obtained by adding the following axioms and rules to \mathbf{B}^+ :

A7
$$(A \lor B) \sqcap C \leftrightarrow (A \sqcap C) \lor (B \sqcap C),$$

$$C \sqcap (A \lor B) \leftrightarrow (C \sqcap A) \lor (C \sqcap B)$$
A8
$$(A \sqcup C) \land (B \sqcup C) \leftrightarrow (A \land B) \sqcup C,$$

$$(C \sqcup A) \land (C \sqcup B) \leftrightarrow C \sqcup (A \land B)$$
R4
$$A \rightarrow B, C \rightarrow D \Rightarrow A \sqcap C \rightarrow B \sqcap D$$
R5
$$A \rightarrow B, C \rightarrow D \Rightarrow A \sqcup C \rightarrow B \sqcup D.$$

It can be noted that the special cases of **R3** are:

$$A \to B \Rightarrow (C \to A) \to (C \to B)$$
 (Prefixing)
 $A \to B \Rightarrow (B \to C) \to (A \to C)$ (Suffixing)
 $A \to B, B \to C \Rightarrow A \to C$ (Transitivity).

And the special cases of **R4** and **R5** are, respectively:

$$A \to B \Rightarrow C \sqcap A \to C \sqcap B$$

$$A \to B \Rightarrow A \sqcap C \to B \sqcap C$$

$$A \to B \Rightarrow C \sqcup A \to C \sqcup B$$

$$A \to B \Rightarrow A \sqcup C \to B \sqcup C$$

We note that this axiomatisation contains slight redundancies. **R4** and **R5**, together with axioms and rules of \mathbf{B}^+ , suffice to prove each of $\mathbf{A7}$ and $\mathbf{A8}$ in one direction.

Semantics for $\mathbf{B}_{\square \square}^+$ 2.2

Now we define interpretations for $\mathbf{B}_{\sqcap \sqcup}^+$. The semantics is an extension of semantics for \mathbf{B}^+ in [6].

A $\mathbf{B}_{\square \square}^+$ frame (or model structure) is a 6-tuple $\langle g, O, W, R, S_1, S_2 \rangle$, where W is a set (of worlds); $g \in W$ (the base world); O is a unary relation on W; and R, S_1 , and S_2 are ternary relations on W, such that the following definitions apply and postulates hold for all $a, b, c, d \in W$.

d1.
$$a \leq b =_{df} \exists x (Ox \text{ and } Rxab);$$

 $\mathbf{p1.}\ Og;$

p2.
$$a \leq a$$
;

p3. if Rdbc and $a \leq d$ then Rabc;

p4. if S_1abd and $d \leq c$ then S_1abc ;

p5. if S_2abd and $c \leq d$ then S_2abc .

A $\mathbf{B}_{\sqcap \sqcup}^+$ -model (or interpretation) is a 7-tuple $< g, O, W, R, S_1, S_2, I>$, where $< g, O, W, R, S_1, S_2>$ is a $\mathbf{B}_{\sqcap \sqcup}^+$ -frame, and I is a function which assigns to each pair of propositional parameter, p, and world, a, a truth value $I(p, a) \in \{1, 0\}$, satisfying the Atomic Hereditary Condition. Truth values of all formulas at worlds are assigned by the following evaluation rules.

Atomic Hereditary Condition. For a propositional variable p, if I(p, a) = 1 and $a \le a'$, then I(p, a') = 1.

Evaluation Rules.

- $I(A \land B, a) = 1$ iff I(A, a) = 1 and I(B, a) = 1;
- $I(A \lor B, a) = 1$ iff I(A, a) = 1 or I(B, a) = 1;
- $I(A \sqcap B, a) = 1$ iff $\exists b, c \in W$, S_1bca , I(A, b) = 1 and I(B, c) = 1;
- $I(A \sqcup B, a) = 1$ iff $\forall b, c \in W$, if S_2bca then I(A, b) = 1 or I(B, c) = 1;
- $I(A \to B, a) = 1$ iff $\forall b, c \in W$, if Rabc and I(A, b) = 1 then I(B, c) = 1.

A $\mathbf{B}_{\sqcap \sqcup}^+$ -model is indeed an extension of a \mathbf{B}^+ -model in [6] by adding S_1 , S_2 , and evaluation rules for \sqcap , \sqcup .

We give the following definitions, with $\mathbf{B}_{\sqcap \sqcup}^+$ -frame(s) and $\mathbf{B}_{\sqcap \sqcup}^+$ -model(s) shortened as frame(s) and model(s), respectively. A is valid on a model if I(A,g)=1; A implies B on a model if for all $a \in W$: if I(A,a)=1 then I(B,a)=1; A is valid on a frame if A is valid on all models based on this frame; A implies B on a frame if A implies B on all models based on this frame. At last, A is $\mathbf{B}_{\sqcap \sqcup}^+$ -valid if A is valid on all frames; A $\mathbf{B}_{\sqcap \sqcup}^+$ -implies B if A implies B on all frames. For any extension of $\mathbf{B}_{\sqcap \sqcup}^+$, similar definitions can also be given.

The following lemmas will simplify the proof for soundness.

Lemma 2.1 (Hereditary Condition) For an arbitrary formula A, if I(A, a) = 1 and $a \le a'$, then I(A, a') = 1.

Proof. The proof is by an induction on the length of A with Atomic Hereditary Condition as induction basis. Here we give proofs for \sqcap and \sqcup .

 \sqcap . A is of the form $B \sqcap C$. Suppose $I(B \sqcap C, a) = 1$ and $a \leq a'$, to show $I(B \sqcap C, a') = 1$. For some $b, c \in W$, S_1bca , and I(B, b) = 1 = I(C, c). By **p4**, S_1bca' . So, $I(B \sqcap C, a') = 1$ as required.

 \sqcup . A is of the form $B \sqcup C$. Suppose $I(B \sqcup C, a) = 1$ and $a \leq a'$, to show $I(B \sqcup C, a') = 1$. Suppose further $b, c \in W$ and S_2bca' , to show I(B, b) = 1 or I(C, c) = 1. By **p5**, S_2bca . So, I(B, b) = 1 or I(C, c) = 1 as required. \square

Lemma 2.2 (Verification Lemma) • If A implies B on a $\mathbf{B}_{\sqcap \sqcup}^+$ -model, then $A \to B$ is valid on this model.

- If A implies B on a $\mathbf{B}_{\sqcap \sqcup}^+$ -frame, then $A \to B$ is valid on this frame.
- $A \mathbf{B}_{\square \square}^+$ -implies $B \text{ iff } A \to B \text{ is } \mathbf{B}_{\square \square}^+$ -valid.

Proof. For details of proof, please consult [6] (pp. 302-303).

2.3 Soundness

The soundness of the semantics is demonstrated in this section.

Theorem 2.3 If A is a theorem of $\mathbf{B}_{\sqcap \sqcup}^+$ then A is $\mathbf{B}_{\sqcap \sqcup}^+$ -valid.

Proof. The proof is by a simple induction over the length of proofs. It suffices to prove that all axioms are $\mathbf{B}_{\sqcap\sqcup}^+$ -valid and all rules preserve validity. We give proofs for one of $\mathbf{A8}$ (in one direction) and $\mathbf{R4}$.

For **A8**, suppose for an arbitrary model, $a \in W$ and $I((A \wedge B) \sqcup C, a) \neq 1$. Hence for some $b, c \in W$, S_2bca , $I(A \wedge B, b) \neq 1$ and $I(C, c) \neq 1$. So, $I(A, b) \neq 1$ or $I(B, b) \neq 1$. Hence, $I(A \sqcup C, a) \neq 1$ or $I(B \sqcup C, a) \neq 1$, i.e. $I((A \sqcup C) \wedge (B \sqcup C), a) \neq 1$. By Lemma 2.2, $(A \sqcup C) \wedge (B \sqcup C) \rightarrow (A \wedge B) \sqcup C$ is $\mathbf{B}_{\sqcap \sqcup}^+$ -valid.

For **R4**, suppose $A \to B$ and $C \to D$ are $\mathbf{B}_{\sqcap \sqcup}^+$ -valid, to show that $A \sqcap C \to B \sqcap D$ is $\mathbf{B}_{\sqcap \sqcup}^+$ -valid. Suppose further for an arbitrary model, $a \in W$ and $I(A \sqcap C, a) = 1$. Hence for some $b, c \in W$, S_1bca and I(A, b) = 1 = I(C, c). By Lemma 2.2, I(B, b) = 1 = I(D, c). So, $I(B \sqcap D, a) = 1$. Then, the result follows by Lemma 2.2.

2.4 Key Notions for Completeness

Completeness is established by the usual way. For any non-theorem A, we design a canonical interpretation which refutes A. Most of techniques come from [6] (Chapter 4) and [3] (Chapter 8). In this section, we give some notions for any logic \mathbf{L} in this paper.

First, where V and U are sets of formulas:

- $(1) \vdash_L A \text{ iff } A \text{ is a theorem of } \mathbf{L}.$
- (1) U is **L**-derivable from V, written $V \vdash_L U$, iff for some $A_1, ..., A_n$ in V and some $B_1, ..., B_m$ in $U, \vdash_L A_1 \land ... \land A_n \to B_1 \lor ... \lor B_m$.
- (2) An **L**-derivation of A from V, written $V \vdash_L A$, is a finite sequence of formulas $A_1, ..., A_n$, with $A_n = A$ such that each member of the sequence either belongs to V or is obtained from predecessors in the sequence by adjunction or a provable **L**-implication (i.e. in the latter case A_i is obtained from A_j since $\vdash_L A_j \to A_i$).
- (3) An **L**-derivation of U from V is an **L**-derivation of some disjunction $B_1 \vee ... \vee B_m$ of formulas $B_1, ..., B_m$ of U from V. Hence, U is **L**-derivable from V iff there is an **L**-derivation of U from V.
- (4) If Σ is the set of all formulas of the language \mathcal{L} , $\langle V, U \rangle$ is an **L**-maximal pair iff:
 - $V \cup U = \Sigma$;
 - $V \nvdash_L U$.

Please note that if $\langle V, U \rangle$ is an **L**-maximal pair, then $V \cap U = \emptyset$.

Next, it can be noted that if a is a set of formulas, and $b = \Sigma - a$, where Σ is the set of all formulas of the language \mathcal{L} , then a satisfies the following **a1**, **a2**, **a3** separately iff b satisfies **b1**, **b2**, **b3** separately.

- **a1.** If $\vdash_L A \to B$, then if $A \in a$ then $B \in a$;
- **a2.** if $A \in a$ and $B \in a$ then $A \wedge B \in a$;

- **a3.** if $A \vee B \in a$ then $A \in a$ or $B \in a$;
- **b1.** if $\vdash_L A \to B$, then if $B \in b$ then $A \in b$;
- **b2.** if $A \wedge B \in b$ then $A \in b$ or $B \in b$;
- **b3.** if $A \in b$ and $B \in b$ then $A \vee B \in b$.

Then we define, for arbitrary sets of formulas a, b:

- (1) a is an **L**-theory iff it satisfies **a1** and **a2**;
- (2) an **L**-theory a is *prime* iff it satisfies a3;
- (3) an **L**-theory a is regular iff whenever $\vdash_L A$, $A \in a$;
- (4) a is an **L**-anti-dualtheory iff it satisfies **a1** and **a3**;
- (5) an **L**-anti-dualtheory a is *prime* iff it satisfies **a2**;
- (6) b is an **L**-dualtheory iff it satisfies **b1** and **b3**;
- (7) an **L**-dualtheory b is prime iff it satisfies **b2**.

So, let a be a set of formulas and $b = \Sigma - a$, then: a is a prime **L**-theory iff a is a prime **L**-anti-dualtheory iff b is a prime **L**-dualtheory; a is an **L**-anti-dualtheory iff b is an **L**-dualtheory.

In following text, if system L is obvious, then the subscript L' and the prefix L' will simply be omitted.

Now, we define four operations as follows. For arbitrary sets of formulas a, b:

- $a \oplus b = \{B : \exists A \in b, A \to B \in a\};$
- $a \ominus b = \{C : \exists A \in a, \exists B \in b, \vdash_L A \cap B \to C\};$
- $\bullet \ \ a \oslash b = \Sigma \{C: \exists A \not\in a, \exists B \not\in b, \vdash_L C \to A \sqcup B\}.$

Based on the above definitions, we define three ternary relations R, S_1 , S_2 on any set of sets of formulas:

- Rabc iff $a \oplus b \subseteq c$, i.e., for all A, B, if $A \to B \in a$ and $A \in b$, then $B \in c$;
- S_1abc iff $a\ominus b\subseteq c$, i.e., for all A,B, if $A\in a,B\in b,$ and $\vdash_L A\sqcap B\to C,$ then $C\in c;$
- S_2abc iff $c \subseteq a \oslash b$, i.e., for all A, B, if $A \notin a$, $B \notin b$, and $\vdash_L C \to A \sqcup B$, then $C \notin c$.

2.5 Lemmas about Prime Theories

Our results are based on some lemmas in [6]. First, we list several lemmas, which are proved in [6] (pp. 307-308), or easy to get.

Lemma 2.4 If $\langle V, U \rangle$ is an **L**-maximal pair, then V is a prime **L**-theory, and U is a prime **L**-dualtheory.

Lemma 2.5 (Extension Lemma) Let V and U be sets of formulas such that $V \nvdash_L U$. Then there is an \mathbf{L} -maximal pair < V', U' > with $V \subseteq V'$ and $U \subseteq U'$.

Lemma 2.6 (Priming Lemma 1) Let V be an L-theory, U be closed under disjunction, and $V \cap U = \emptyset$. Then there is an L-theory V' such that (1) $V \subseteq V'$; (2) $V' \cap U = \emptyset$; and (3) V' is prime.

Similar to the Priming Lemma 1, we have the Priming Lemma 2.

Lemma 2.7 (Priming Lemma 2) Let V be closed under conjunction, U be an L-dualtheory, and $V \cap U = \emptyset$. Then there is an L-dualtheory U' such that (1) $U \subseteq U'$; (2) $V \cap U' = \emptyset$; and (3) U' is prime.

Proof. First, $V \nvDash_L U$. Otherwise there would be $A_1, ..., A_n \in V$ such that $A_1 \wedge ... \wedge A_n \in V \cap U$, since U is an **L**-dualtheory. By Lemma 2.5, there are $V' \supseteq V$ and $U' \supseteq U$ such that $\langle V', U' \rangle$ is an **L**-maximal pair. So, the result follows by Lemma 2.4.

The following corollary is proved in [6] (pp. 309).

Corollary 2.8 (Corollaries of Priming Lemma 1) 1. If A is a non-theorem of L then, there is a prime regular L-theory c such that $A \notin c$.

2. For all **L**-theories a, b', c' if Rab'c' and $C \notin c'$ then, there are prime **L**-theories b, c such that $Rabc, b' \subseteq b$ and $C \notin c$.

Corollary 2.9 (Corollaries of Priming Lemma 1) 1. For all L-theories a', b and prime L-theory c, if $S_1a'bc$ then, there is a prime L-theory a such that $a' \subseteq a$ and S_1abc .

2. For all **L**-theories a, b' and prime **L**-theory c, if $S_1ab'c$ then, there is a prime **L**-theory b such that $b' \subseteq b$ and S_1abc .

Proof. We only give proof for 1. The proof for 2 is similar.

- **1.** Set $U = \{A : \exists B \in b, \exists C \notin c, \vdash_L A \sqcap B \to C\}$. Then:
- (1) U is closed under disjunction;
- (2) a' is disjoint from U.

For (1), suppose $A_1, A_2 \in U$, then $\exists B_1, B_2 \in b$, and $\exists C_1, C_2 \notin c, \vdash_L A_1 \sqcap B_1 \to C_1$ and $\vdash_L A_2 \sqcap B_2 \to C_2$. Since $\vdash_L B_1 \land B_2 \to B_1$, by $\mathbf{R4}, \vdash_L A_1 \sqcap (B_1 \land B_2) \to A_1 \sqcap B_1$. Then by $\mathbf{R3}, \vdash_L A_1 \sqcap (B_1 \land B_2) \to C_1$. Similarly, $\vdash_L A_2 \sqcap (B_1 \land B_2) \to C_2$. So, $\vdash_L (A_1 \sqcap (B_1 \land B_2)) \lor (A_2 \sqcap (B_1 \land B_2)) \to C_1 \lor C_2$. Then, by $\mathbf{A7}, \vdash_L (A_1 \lor A_2) \sqcap (B_1 \land B_2) \to (A_1 \sqcap (B_1 \land B_2)) \lor (A_2 \sqcap (B_1 \land B_2))$. So, $\vdash_L (A_1 \lor A_2) \sqcap (B_1 \land B_2) \to C_1 \lor C_2$. Since c is prime, $C_1 \lor C_2 \notin c$. Since c is an c-theory, c-theo

For (2), suppose otherwise $A \in U$ and $A \in a'$. Then for some $B \in b$, $C \notin c$, $\vdash_L A \sqcap B \to C$. But $S_1a'bc$, whence $C \in c$, giving a contradiction.

Hence by (1) and (2), Lemma 2.6 applies to provide a prime **L**-theory a disjoint from U with $a' \subseteq a$. Next, we prove S_1abc . Suppose $A \in a$, $B \in b$ and $\vdash_L A \sqcap B \to C$. Since a is disjoint from U, $C \in c$, i.e., whenever $A \in a$, $B \in b$ and $\vdash_L A \sqcap B \to C$, then $C \in c$. Hence S_1abc .

Corollary 2.10 (Corollaries of Priming Lemma 2) 1. For all L-anti-dualtheories a', b and prime L-anti-dualtheory c, if $S_2a'bc$ then, there is a prime L-anti-dualtheory a such that $a \subseteq a'$ and S_2abc .

2. For all **L**-anti-dualtheories a, b' and prime **L**-anti-dualtheory c, if $S_2ab'c$ then, there is a prime **L**-anti-dualtheory b such that $b \subseteq b'$ and S_2abc .

Proof. We only give proof for 1. The proof for 2 is similar.

- **1.** Set $V = \{A : \exists B \notin b, \exists C \in c, \vdash_L C \to A \sqcup B\}$. Then:
- (1) V is closed under conjunction;
- (2) $\Sigma a'$ is disjoint from V.

For (1), suppose $A_1, A_2 \in V$, then $\exists B_1, B_2 \notin b$, and $\exists C_1, C_2 \in c, \vdash_L C_1 \to A_1 \sqcup B_1$ and $\vdash_L C_2 \to A_2 \sqcup B_2$. Since $\vdash_L B_1 \to B_1 \vee B_2$, by $\mathbf{R5}, \vdash_L A_1 \sqcup B_1 \to A_1 \sqcup (B_1 \vee B_2)$. Then by $\mathbf{R3}, \vdash_L C_1 \to A_1 \sqcup (B_1 \vee B_2)$. Similarly, $\vdash_L C_2 \to A_2 \sqcup (B_1 \vee B_2)$. So, $\vdash_L C_1 \wedge C_2 \to (A_1 \sqcup (B_1 \vee B_2)) \wedge (A_2 \sqcup (B_1 \vee B_2))$. Then, by $\mathbf{A8}, \vdash_L (A_1 \sqcup (B_1 \vee B_2)) \wedge (A_2 \sqcup (B_1 \vee B_2)) \to (A_1 \wedge A_2) \sqcup (B_1 \vee B_2)$. So, $\vdash_L C_1 \wedge C_2 \to (A_1 \wedge A_2) \sqcup (B_1 \vee B_2)$. Since c is a prime \mathbf{L} -anti-dualtheory, c0 c1 c2 c2. Since c3 is an \mathbf{L} -anti-dualtheory, c3 c4 c5 c5. Hence, c5 c6 c7 is closed under conjunction.

For (2), suppose otherwise $A \in V$ and $A \in \Sigma - a'$, i.e. $A \notin a'$. Then for some $B \notin b$, $C \in c$, $\vdash_L C \to A \sqcup B$. But $S_2a'bc$, whence $C \notin c$, giving a contradiction.

Since a' is an **L**-anti-dualtheory, $\Sigma - a'$ is an **L**-dualtheory. Hence by (1) and (2), Lemma 2.7 applies to provide a prime **L**-dualtheory a'' disjoint from V with $\Sigma - a' \subseteq a''$. Let $a = \Sigma - a''$, then $a \subseteq a'$. Since a'' is a prime **L**-dualtheory, a is a prime **L**-theory, i.e. prime **L**-anti-dualtheory. Next, we prove S_2abc . Suppose $A \notin a$, i.e $A \in a''$, $B \notin b$ and $\vdash_L C \to A \sqcup B$. Since a'' is disjoint from $V, C \notin c$, i.e., whenever $A \notin a$, $B \notin b$ and $\vdash_L C \to A \sqcup B$, then $C \notin c$. Hence S_2abc .

2.6 Completeness

For any non-theorem A of $\mathbf{B}_{\sqcap \sqcup}^+$, by $\mathbf{1}$ of Corollary 2.8, there is a a prime regular $\mathbf{B}_{\sqcap \sqcup}^+$ -theory g_c such that $A \notin g_c$. Design a canonical model for $\mathbf{B}_{\sqcap \sqcup}^+$, $\langle g_{\mathbf{C}}, O_{\mathbf{C}}, W_{\mathbf{C}}, R, S_1, S_2, I \rangle$, where $W_{\mathbf{C}}$ is the class of all prime theories, i.e. the class of all prime anti-dualtheories; $O_{\mathbf{C}}$ is defined as the subset of $W_{\mathbf{C}}$ such that $a \in O_{\mathbf{C}}$ if a is regular; R, S_1 and S_2 are defined as the above; for every prime theory a in $W_{\mathbf{C}}$ and propositional parameter p, I(p,a) = 1 iff $p \in a$.

Theorem 2.11 If A is $\mathbf{B}_{\sqcap \sqcup}^+$ -valid, then A is a theorem of $\mathbf{B}_{\sqcap \sqcup}^+$.

Proof. We prove the contrapositive. Given a non-theorem A, there is a canonical model $\langle g_{\rm C}, O_{\rm C}, W_{\rm C}, R, S_1, S_2, I \rangle$ for ${\bf B}_{\sqcap \sqcup}^+$. We show it is really a ${\bf B}_{\sqcap \sqcup}^+$ -model. It suffices to show that **p1-5** hold, and I satisfies the Atomic Hereditary Condition. Now, **p1** and Atomic Hereditary Condition are immediate by definitions. By the same proof in [6] (pp. 312), it can be proved $a \leq b$ iff $a \subseteq b$. So, we get **p2**. And, **p3-5** are established by definitions of R, S_1 and S_2 . Hence, the canonical model is a ${\bf B}_{\sqcap}^+$ -model.

Next, we show that for every world a and formula A, I(A,a)=1 iff $A \in a$. It follows that A is not valid on $< g_{\mathbb{C}}, O_{\mathbb{C}}, W_{\mathbb{C}}, R, S_1, S_2, I>$, and hence that A is not $\mathbf{B}_{\sqcap\sqcup}^+$ -valid. The proof is by induction on the complexity of the formulas. The cases for \wedge and \vee are proved by definitions of theory and prime theory. Here, we give proofs for \to , \sqcap and \sqcup .

 \rightarrow . Suppose $A \rightarrow B \in a$, to show $I(A \rightarrow B, a) = 1$. Using the induction hypothesis and the definition of R, it follows that for all $b, c \in W_{\mathbb{C}}$, if Rabc and

I(A,b)=1 then I(B,c)=1. Hence, $I(A\to B,a)=1$ by the evaluation rule for \to .

For the converse, suppose $A \to B \notin a$, to show $I(A \to B, a) \neq 1$. By the induction hypothesis and the evaluation rule for \to , it suffices to find $b, c \in W_{\mathbb{C}}$ such that Rabc, $A \in b$ and $B \notin c$. Define $b' = \{C : \vdash A \to C\}$ and $c' = \{D : \exists C \in b', C \to D \in a\}$. Then b' is a theory by $\mathbf{R1}$, $\mathbf{R2}$, $\mathbf{R3}$, and $\mathbf{A5}$. To show c' is a theory, suppose $\vdash D \to E$ and $D \in c'$. So, $\vdash (C \to D) \to (C \to E)$. Since $C \to D \in a$, $C \to E \in a$. Hence, $E \in c'$. Suppose further $D_1, D_2 \in c'$, i.e. for some $C_1, C_2 \in b'$, $C_1 \to D_1, C_2 \to D_2 \in a$. Since $\vdash A \to C_1$ and $\vdash A \to C_2$, using $\mathbf{R3}$ it follows that $A \to D_1, A \to D_2 \in a$. So $A \to D_1 \land D_2 \in a$ by $\mathbf{A5}$, i.e. $D_1 \land D_2 \in c'$. It follows that c' is a theory. By the definition of $C \in b'$, i.e. $C \to C \to C$, but $C \to C \to C$. Suppose otherwise, $C \to C \to C$, then for some $C \in C \to C$, i.e. $C \to C \to C \to C$. Suppose otherwise, $C \to C \to C$, then for some $C \to C$, i.e. $C \to C \to C$. Hence $C \to C \to C$, there are prime theories $C \to C$, such that $C \to C$, $C \to C \to C$.

 \sqcap . Suppose $A \sqcap B \in a$, to show $I(A \sqcap B, a) = 1$, i.e. for some $b, c \in W_{\mathbb{C}}$, S_1bca , I(A,b) = 1 = I(B,c). By the induction hypothesis, it suffices to find $b, c \in W_{\mathbb{C}}$ such that $b \ominus c \subseteq a$, $A \in b$ and $B \in c$. Define $b' = \{C : \vdash A \to C\}$ and $c' = \{D : \vdash B \to D\}$. Then b' and c' are theories by $\mathbf{R1}$, $\mathbf{R2}$, $\mathbf{R3}$, and $\mathbf{A5}$. It is immediate that $A \in b'$ and $B \in c'$. To show $b' \ominus c' \subseteq a$, suppose $E \in b' \ominus c'$, then for some $C \in b'$ and $D \in c'$, $\vdash C \sqcap D \to E$. Since $\vdash A \to C$ and $\vdash B \to D$, by $\mathbf{R4}$, $\vdash A \sqcap B \to C \sqcap D$. By $\mathbf{R3}$, $\vdash A \sqcap B \to E$. Since $A \sqcap B \in a$, $E \in a$. Accordingly, $b' \ominus c' \subseteq a$, i.e. $S_1b'c'a$. So, by Corollary 2.9, b' can be primed to b with $b' \subseteq b$, and c' can be primed to c with $c' \subseteq c$ such that S_1bca .

For the converse, suppose $I(A \sqcap B, a) = 1$, i.e. for some $b, c \in W_{\mathbb{C}}$, S_1bca , I(A, b) = 1 = I(B, c). Then using the induction hypothesis, it follows that $A \in b$ and $B \in c$. By **A1**, and the definition of \ominus , $A \sqcap B \in b \ominus c$. Hence $A \sqcap B \in a$.

 \sqcup . Suppose $I(A \sqcup B, a) \neq 1$, i.e. for some $b, c \in W_C$, S_2bca , $I(A, b) \neq 1$ and $I(B, c) \neq 1$. Then using the induction hypothesis, it follows that $A \notin b$ and $B \notin c$. By **A1**, and the definition of \emptyset , $A \sqcup B \notin b \otimes c$. Hence, $A \sqcup B \notin a$.

For the converse, suppose $A \sqcup B \notin a$, to show $I(A \sqcup B, a) \neq 1$, i.e. for some $b, c \in W_{\mathbb{C}}$, S_2bca , $I(A,b) \neq 1$ and $I(B,c) \neq 1$. By the induction hypothesis, it suffices to find $b, c \in W_{\mathbb{C}}$ such that $a \subseteq b \oslash c$, $A \notin b$ and $B \notin c$. Define $b' = \Sigma - \{C :\vdash C \to A\}$ and $c' = \Sigma - \{D :\vdash D \to B\}$. Then $\{C :\vdash C \to A\}$ and $\{D :\vdash D \to B\}$ are dualtheories by **R1**, **R2**, **R3**, and **A6**. So, b' and c' are anti-dualtheories. It is immediate that $A \notin b'$ and $B \notin c'$. To show $a \subseteq b' \oslash c'$, suppose $F \notin b' \oslash c'$, then for some $C \notin b'$, $D \notin c'$, $\vdash F \to C \sqcup D$. Since $C \notin b'$, $\vdash C \to A$, and since $D \notin c'$, $\vdash D \to B$. By **R5**, $\vdash C \sqcup D \to A \sqcup B$. Since $\vdash F \to C \sqcup D$, by **R3**, $\vdash F \to A \sqcup B$. $A \sqcup B \notin a$, so $F \notin a$ as required. Hence, $a \subseteq b' \oslash c'$, i.e. $S_2b'c'a$. So, by Corollary 2.10, b' can be primed to b with $b \subseteq b'$, and c' can be primed to c with $c \subseteq c'$ such that S_2bca .

Now, we can see that $\mathbf{B}_{\sqcap \sqcup}^+$ is a conservative extension of \mathbf{B}^+ , in the sense that it is an extension by adding new notations (\sqcap, \sqcup) , axioms $(\mathbf{A7}, \mathbf{A8})$ and rules $(\mathbf{R4}, \mathbf{R5})$, which has the following feature: let A be a formula in the notation of \mathbf{B}^+ ; then if A is provable in $\mathbf{B}_{\sqcap \sqcup}^+$, then A is also provable in \mathbf{B}^+ [1], since every $\mathbf{B}_{\sqcap \sqcup}^+$ -valid formula A involving only connectives \to , \wedge and \vee is also \mathbf{B}^+ -valid.

Actually, further features of \sqcap and \sqcup such as commutativity and associativity can be obtained by adding axiom or rule schemes to $\mathbf{B}_{\sqcap \sqcup}^+$. Also, we can introduce $A \circ B \to C \Leftrightarrow A \to (B \to C)$, which makes \to a residual of \sqcap , such that S_1 collapses to R. We leave this topic for further discussion.

3 Negation

For basic negation-extension of $\mathbf{B}_{\sqcap \sqcup}^+$, we add De Morgan Laws and contraposition:

A9
$$\neg (A \land B) \leftrightarrow \neg A \lor \neg B$$

A10 $\neg A \land \neg B \leftrightarrow \neg (A \lor B)$
R6 $A \to B \Rightarrow \neg B \to \neg A$.

We call this system $\mathbf{BM}_{\sqcap\sqcup}$. Please note that $\mathbf{A9}$ and $\mathbf{A10}$ also contain redundancies. By contraposition and positive axioms, we can prove each of $\mathbf{A9}$ and $\mathbf{A10}$ in one direction.

A $\mathbf{BM}_{\sqcap \sqcup}$ -frame is a 7-tuple $< g, O, W, R, S_1, S_2, * >$, where * is a one-place function from W to W, and the other elements are as before, such that postulate $\mathbf{p6}$ holds for all $a, b \in W$:

p6. If
$$a \leq b$$
 then $b^* \leq a^*$,

which is necessary for the Hereditary Condition.

A $\mathbf{BM}_{\sqcap\sqcup}$ -model is a 8-tuple $< g, O, W, R, S_1, S_2, *, I >$, where $< g, O, W, R, S_1, S_2, * >$ is a $\mathbf{BM}_{\sqcap\sqcup}$ -frame, and I is as before, with the following evaluation rule for negation:

•
$$I(\neg A, a) = 1 \text{ iff } I(A, a^*) \neq 1.$$

 $\mathbf{BM}_{\sqcap\sqcup}$ is sound with respect to the evaluation rule. For completeness, define * on a set of formulas a as: $a^* = \{A | \neg A \notin a\}$. Given a non-theorem A, the canonical interpretation for $\mathbf{BM}_{\sqcap\sqcup}$ is now $< g_{\mathbf{C}}, O_{\mathbf{C}}, W_{\mathbf{C}}, R, S_1, S_2, *, I >$. By De Morgan Laws and contraposition, it can be shown that: if a is an anti-dualtheory, then a^* is a theory; if a is a theory, then a^* is an anti-dualtheory. (For details of proof, please consult [4].) Hence, if a is a prime theory, so is a^* , i.e. * is well-defined. Also, by the definition of a^* , $\mathbf{p6}$ is easy to verify.

The system $\mathbf{B}_{\sqcap \sqcup}$ is obtained by adding Double Negation, $A \leftrightarrow \neg \neg A$ to $\mathbf{BM}_{\sqcap \sqcup}$. A $\mathbf{B}_{\sqcap \sqcup}$ -model is a $\mathbf{BM}_{\sqcap \sqcup}$ -model satisfying: for all $a \in W$, $a^{**} = a$.

From the definitions of $\mathbf{BM}_{\sqcap\sqcup}$ -model and $\mathbf{B}_{\sqcap\sqcup}$ -model, we can see that $\mathbf{BM}_{\sqcap\sqcup}$ is a conservative extension of \mathbf{BM} , and $\mathbf{B}_{\sqcap\sqcup}$ is a conservative extension of \mathbf{B} .

If $A \to (B \to C) \Rightarrow (B \to \neg A \sqcup C)$ and $B \to A \sqcup C \Rightarrow \neg A \to (B \to C)$ are added to $\mathbf{B}_{\sqcap \sqcup}$, we can get that S_2 is dependent on R. Further, $A \sqcap B \leftrightarrow \neg (A \to \neg B)$ and $A \sqcup B \leftrightarrow (\neg A \to B)$ can be established with some further axiom or rule schemes added.

4 Concluding Remarks

This paper considered a basic relevant logic $\mathbf{B}_{\sqcap \sqcup}^+$ with intensional conjunction \sqcap and disjunction \sqcup , and some of its negation-extensions. Kripke style semantics were given for these systems. Our semantics extend the traditional relational semantics for relevant logics in [6] by introducing ternary relations S_1 and S_2 .

In fact, a wealth of stronger systems can be obtained by adding axioms or rules to these basic systems in this paper. We will consider a range of axiom and rule schemes, and give the corresponding semantical postulates for these schemes in another draft.

References

- Anderson, A. R., and N. D. Belnap, Jr., "Entailment: The Logic of Relevance and Necessity, Volume 1", Princeton University Press, 1975.
- [2] Anderson, A. R., N. D. Belnap, Jr., and J. M. Dunn, "Entailment: The Logic of Relevance and Necessity, Volume 2", Princeton University Press, 1992.
- Brady, R. T. (editor), "Relevant Logics and their Rivals, Volume 2", Ashgate Publishing Company, 2003.
- [4] Priest, G., and R. Sylvan, Simplified Semantics for Basic Relevant Logics, Journal of Philosophical Logic, 21 (1992), 217-232.
- [5] Restall, G., Simplified Semantics for Relevant Logics (and some of their Rivals), Journal of Philosophical Logic, 22 (1993), 481-511.
- [6] Routley, R., V. Plumwood, R. K. Meyer, and R. T. Brady, "Relevant Logics and their Rivals, Volume 1", Ridgeview Publishing Company, 1982.