

Ali Salam

Internship Report

Table of Contents

Neek 1 – Buildina a Central Offic	e	1
3		
Monday 4 - 7 - 2022		1
Central Office Definition		_
Structure of Central Office		-
Areas		_
Types of Components		

Resistance rules	2
Building Central Office requirements	3
Civil Work	4
Steps of Installation	4
Connections	5
Cables	6
Cabinet	6
Distribution Point	7
Components of Central Office	7
Power Supplies	8
Wednesday 6 - 7 - 2022	8
MDF (main distribution frame)	
Cable Vault	
VRB cables	
Enumeration	
MDF vertical blocks	
Cabinet	-
Primary and secondary cables Joints	
Trench types	
Week 2 – DSL	
Monday 21 - 7 - 2022	
Introduction	13
Frequencies	13
Types	14
ISP Connection	14
Topologies	14
ISPs Distribution in Lebanon	15
Cache Server	16
DSL evolution	16
Dial up	16
DSL	16
DSL Equipment – DSLAM	17
DSL service port types	18
ADSL	18
HDSL	19
VDSL	19
RDSL	19
EFM	20
DSL bandwidth types	20
Shared DSL	20
Dedicated DSL	20
Backbone	20
NC Standard	21
ITU	21
Week 3 – DSLAM	21
Monday 28 - 7 -2022	21

DSL equipment types	21
Zhone	21
MSAN	22
IMS	22
Pots Card	23
Combo Card	23
OLT	23
ONT	23
Wednesday 30 - 7 - 2022	2 4
Modulation	24
Definition	24
DSL modulation	24
Quadrative Amplitude Modulation	24
Fiber To The Cabinet	25
Active Cabinet	25
Components	25
Fiber To The Home	27
Active Cabinet in Lebanon	27
Features	28
Veek 4 – Fiber Optic	
Wedeeds 44 0 2022	20
Wednesday 14 - 8 - 2022	
Fiber Optic Cable	
Disadvantage	
Advantages	
Lambda Waves	
Fiber optic Connectors	
Patch Cord Fiber	
Veek 5 – FTTX	32
Monday 26 - 8 - 2022	32
Types of Fiber Connections	
FTTH	
FTTH Components	
OLT	
GPON Card	
SDF	
ODF	
FDB	
ONT	
TTB	36
Differences between FTTB and FTTH	30
Active Ethernet	
ODF/SDF	36

Week 1 – Building a Central Office

Monday 4 - 7 - 2022

Central Office Definition

A **central office** is a telecommunications system used in the public switched telephone network that interconnect telephone subscriber lines or virtual circuits of digital systems to establish telephone calls between subscribers.

It is the main switching facility, providing access to the Plain Old Telephone Service, leased lines, and circuit-switched services that the telco offers to customers.

Figure 1: Central Office

Structure of Central Office

Areas

Central Office is divided into two main areas:

- 1. Commercial Area
- 2. Technical Area

Types of Components

In the technical area, CO uses different types of components:

- 1. Active Components: Need electrical power to function
- 2. Passive Components: Function without the need of electrical power

Figure 2: Topology

Types of signals generated

- 1. Data: Internet Services with high frequency.
- 2. Voice: Phone Calls Services with low frequency.

The two types of signals are transported over the same cable, so the main point is to separate them by using a low-pass filter, that passes signals with low frequency (voice services), and to avoid interference (noise) between the signals.

Figure 3: Low-Pass Filter

Resistance rules

The resistance of the cables transporting the signals is the important criteria that will define the cost and the efficiency of the procedure.

There are two main rules of resistance R that we will take into consideration:

1.
$$R = \rho * La$$

ρ: Resistivity, electrical resistance of a conductor

L: Length of the cable a: Cross section area of

the cable

V: Voltage

I: Intensity

Given constant ρ , L, and V, the resistance is inversely proportional to I and a.

So to minimize R we have to maximize I and a, taking into consideration the cost of the cables used to maximize the efficiency.

Building Central Office requirements

- 1. Estate map of the city, containing the different types of buildings in it, and the distribution of streets driving to these buildings.
- 2. Survey on ground to update the map with missing buildings and new streets that are not mentioned yet in the government or in the official maps.
- 3. Specify the best place to build the CO considering the length of the cables arriving to each building in the city. The center of the city can be the best choice to maximize the efficiency and minimize the cost.

Figure 4: Survey Map of Brooklyn

Civil Work

Implementing the cables underground require some steps to prevent interference or noise during signal transportation, without the need to increase the cost of the operation because of constant maintenance.

Steps of Installation

- 1. A trench of about 1.5 meters deep and 45 cm wide is dug.
- 2. Then the trench is covered with a 10 cm thick layer of fine sand.
- 3. The cable is laid over the sand bed. The sand bed protects the cable from the moisture from the ground.
- 4. Then the laid cable is again covered with a layer of sand of about 10 cm thick.

- 5. When multiple cables are to be laid in the same trench, a horizontal or vertical spacing of about 30 cm is provided to reduce the effect of mutual heating.
- 6. The trench is then covered with bricks and soil to protect the cable from mechanical injury.

Figure 5: Civil Work

Cast iron or concrete pipes or ducts are laid underground with manholes at suitable positions along the cable route. The cables are then pulled into the pipes from the manholes.

An additional pipe/duct is also provided along with the three cable ducts for carrying relay protection connections and pilot wires.

Figure 6: Concrete Pipes

Connections

Each subscriber's telephone is connected to a distribution point. The distribution points are connected by secondary cables to cabinets. Primary cables then connect these cabinets to the telephone exchange.

Figure 7: Telephone Exchange Layout

Cables

Telephone cables have two types:

1. Primary cables: Used for primary underground distribution. Connect exchanges to cabinets.

Figure 8: Primary Cable

2. Secondary cables: Connect cabinets to distribution points.

Figure 9: Secondary Cable

Cabinet

Cabinets join central office's primary cables to distribution points' secondary cables.

Figure 10: Street Cabinet

Distribution Point

Small boxes that connect up to 15 individuals and households to cabinets and then to central offices.

Figure 11: 10 Pairs DP

Components of Central Office

- 1. MDF (main distribution frame)
- 2. Cable Vault
- 3. Backup power supplies

Power Supplies

Central Office uses multiple power sources for backup and continuous availability such as:

- a. EDL: Electricity provide by the government
- b. Generators: Electricity provided by motors
- c. UPS: Uninterruptible power supply

These three power supplies generate AC, so they need a rectifier to transform AC to DC.

In addition, the rectifier contains a charger that generate power to several batteries that generate DC power, so in case of electrical damage the batteries take place of the power supplies.

Figure 12: Batteries

Figure 13: Ogero Rectifier

Wednesday 6 - 7 - 2022

MDF (main distribution frame)

It is a signal distribution frame that is located in the central.

Every cable that supplies services to user telephones lines ends up at an MDF and is distributed through MDF to equipment within local exchanges.

Figure 14: MDF The

MDF is the interface between:

- System Side Horizontal Blocks: The signal from the central office (the switching equipment in the exchange)
- Line Side Vertical Blocks: The subscriber cables coming from the local network (The outside equipment)

Figure 15: MDF vertical and horizontal blocks

Cable Vault

It is a room giving access to underground primary cables and their connections. Located outside of the central office to join the cables from the outside (the nearest manhole to the CO) to VRB cables before connecting them to the MDF.

Figure 16: Cable Vault Room

VRB cables

At the level of the cable vault, the cables are joint to VRB cables to prevent inflammation due to the jelly material inside the cables that is waterproof.

Enumeration

MDF vertical blocks

The vertical blocks are enumerated to be saved in a clear database.

P.S. Each block contains 100 pairs in general, distributed in form of 10 layers, each layer has 10 pairs.

- 1. The number of the block: 001 is the first vertical block
- 2. The number of the layer
- 3. The number of the pair in the layer (port number). P.S. The numbers in each layer always start by 001 and ends at 010 whatever the layer is.

Cabinet

The secondary cables that exit that cabinet have a specific enumeration method.

- 1. The number of the cabinet
- 2. The total capacity of the cable
- 3. The reserved number of pairs
- 4. The starting and the ending number of the pairs
- 5. The cross section area of the cable

Primary and secondary cables Joints

There are two methods to join the primary cables to the secondary cables in the cabinets:

1. Thermal joint: Welding using aluminum and gas fasteners, provides a permanent joint. Welded parts are one entity.

Figure 17: Thermal Joint

2. Mechanical joint: Male and female pieces attached to each other, but not practical because it may enter water.

Figure 18: Mechanical Joint

Trench types

1. Manhole: A hole in the ground that is Man could get into to do the work

Figure 19: ManHole

2. Handhole: A hole large enough for a hand to go into it.

Figure 20: HandHole

Week 2 – DSL

Monday 21 - 7 - 2022

Introduction

DSL: Digital Subscriber Line

Frequencies

Voice Frequency: 3 KHz

DSL Frequency: High frequency

Types

- 1. Data + Voice: Need of using splitter on the central office side and a filter on the subscriber side.
- 2. Data: No need of a filter nor splitter because of the unique frequency of voice.

Figure 21: DSL

ISP Connection

The ISP contains the main servers, routers... It connects the local central office to the global network.

Figure 22: ISP to CO connection

Topologies

1. Star topology

Figure 23: Star Topology

2. Cascade topology: Used in Lebanon. P.S. One node failure can corrupt the whole network.

Figure 24: Cascade Topology

ISPs Distribution in Lebanon

Lebanon has four main ogero ISP stations: Ras Beirut – Jdeideh – Saida – Tripoli.

These ISPs are connected with fiber optics.

To connect Lebanon to worldwide network, Tripoli ISP is connected to Egypt then to Europe with fiber optic connections.

Cache Server

It is the server that saves the websites opened by the first user, so the other users can access without the need to exit the local network, to minimize the use of bandwidth, and the time taken.

Figure 26: Cache Server

DSL evolution

The DSL started to be used in Lebanon in 2007 with 128Kbps speed. Before that we used Dial up.

Dial up

Modem that needs two separate line for voice and data.

Speed is up to 56 Kbps.

Disadvantage: The voice line is busy when sending or receiving data because of dial up.

→ Cannot surf and phone at the same time.

Figure 27: Dial up modem

DSL

At first the dial up line was replaced with DSL, so the data and voice were still separated → no need to use a splitter.

In the next step the voice and the data were combined using splitter and then divided using filter.

Figure 28: DSL modem

DSL Equipment – DSLAM

Digital subscriber line access multiplexer: Active component, defined as a shelf that contains slots. It connects the customer and the ISP.

- 1. Management Card: There is two management cards in a DSLAM, one main card and the other is for backup. It has three main functionalities:
 - a. Uplink: Fiber (>1Gbps) Ethernet (1Gbps)
 - b. Management
 - c. Saving Data on the operations done on the DSLAM
- Service Port: It converts analog electrical signals to data traffic (upstream traffic for data upload) and data traffic to analog electrical signals (downstream for data download). a. ADSL
 - b. HDSL
 - c. VDSL
 - d. RDSL

P.S. If the management card was damaged, the new one should be reconfigured and updated with all data that was saved on the old one.

But if the service port was damaged, it can be replaced with new one, without reconfiguration.

Figure 29: DSLAM Equipment

Figure 30: 2 Types of Ogero DSLAM

DSL service port types

ADSL

Asymmetric Digital Subscriber Line: 8Mbps

The upload and the download are not equal (the download is larger usually).

The distance of the central office and the frequency of the signal are inversely proportional, so the maximum length of the cable is 3 km and then the signal is weak.

If we want to deliver a good quality further than 3 km, we should increase the cross section area \Rightarrow R = R₁ + R₂ + ... R_n (Multiple cables connected to arrive to the distance of 5 km)

ADSL₂: 15 MbpsADSL₂+: 24 Mbps

Figure 31: ADSL

HDSL

High Digital Subscriber Line: It is similar to SDSL (Symmetric Digital Subscriber Line)

The upload and the download amount is the same = 2.3 Mbps

We cannot pass voice on the cable, so there is no need of a splitter.

Mostly used in companies because the need of the high upload capacity.

Figure 32: HDSL

VDSL

Very High Digital Subscriber Line

It is similar to ADSL, the upload and the download are not equal. But we can change it to symmetric.

The normal length of the cable used is 600 - 800 m

Figure 33: VDSL

RDSL

Reach Digital Subscriber Line It

is the lower speed DSL.

It detects the line's characteristics and automate its capacity to it.

EFM

Ethernet First Mile is a service port type that is used for high band and short distance.

It is a cascade of 8 ports → 7 virtual ports and 1 real port.

Figure 34: EFM

DSL bandwidth types

Shared DSL

Multiple users access the data from the same server. As the case is in Lebanon.

Figure 35: Shared DSL

Dedicated DSL

Every single user access the data from a single server.

Figure 36: Dedicated DSL

Backbone

It is the main network that contains the primary servers, gateways...

Figure 37: ISP Backbone

NC Standard

The American National Standard.

ITU

International Telecommunication Union.

Week 3 - DSLAM

Monday 28 - 7 - 2022

DSL equipment types

- 1. Zhone
- 2. Huawei
- 3. Nokia
- 4. Cullis

Zhone

It has one service port and one management card for all kinds of DSL (unique).

It is the best solution and lowest cost between all the other equipment vendors and for better maintenance.

Figure 38: Zhone DSLAM

Figure 39: Ogero Zhone DSLAM

MSAN

Multiplexer Service Access Network. It is a DSL equipment shelf with VDSL service port mounted only.

Figure 40: MSAN

IMS

IP Multimedia Subsystem. It is a central office for VoIP telephony.

Figure 41: IMS

Pots Card

It is a service port on DSL modem for voice. Used to connect VoIP to a physical layer to the subscriber.

Figure 42: Pots Card

Combo Card

Service port where the splitter is built in.

It contains one port with two VLANs.

The modem in the receiver side contains a built in filter.

Figure 43: Combo Card

OLT

Optical Line Termination is a shelf that we put only fiber card on its service port.

ONT

Only network terminal is the modem to which the fiber optic is connected at the subscriber place.

Figure 44: OLT architecture

Wednesday 30 - 7 - 2022

Modulation

Definition

Converting data into electrical signals ready to be transmitted over cables.

DSL modulation

It uses modulation of high frequency carrier waves.

DSL modems can modulate frequencies that arrive to 4 MHz so the data and the voice can coexist.

Quadrative Amplitude Modulation

Combining the two amplitudes of voice and data into a signal channel to double the effective bandwidth.

Figure 45: DSL QAM

Fiber To The Cabinet

Facing a problem with the distance that a central office is placed far from subscribers' places, without decreasing the quality of the DSL signal, the solution of FTTC and active cabinet arises.

Connecting an active cabinet to the central office with fiber optic cables for better performance, and to the subscriber equipment with copper cables makes the FTTC architecture.

Figure 46: FTTC

Active Cabinet

To deliver a signal to distance longer than 3 km without the use of cables of higher cross section area a (higher cost), we can implement an active cabinet that represents a small central office, so the distance from it to the subscriber is independent of the distance from the central office to it. Which guarantee a further distance of delivery.

Figure 47: Active Cabinet

Components

- Rectifier
- Power supplies (EDL Generator RPS)

- MDF
- DSLAM

The new cabinet will house a VDSL2 capable DSLAM, which is MSAN, to which your phone line will be connected.

Figure 48: VDSL in Active Cabinet

Figure 49: Ogero FTTC

One problem left, the power supplies may face a failure, so the solution is RPS, remote power supply, that can help recover the failure of electricity until the repair.

Figure 50: RPS

Figure 51: Ogero RPS

Fiber To The Home

Connecting fiber optic cables directly to homes is the best solution regarding the price and efficiency.

The voltage provided by the power supplies at the central office, after rectifier, is 48 V, this voltage should be upgraded to 380 V, and then downgraded to 48 V at each subscriber's place.

Figure 52: FTTH

Active Cabinet in Lebanon

In Lebanon, Ogero has made a special kind of Active Cabinet.

Figure 53: Ogero Active Cabinet – Khalde

Features

Cutting the primary cables before the cabinet, then connecting it to a splitter in it. So if the electricity goes down the telephone line is not lost on the users' places.

Figure 54: Data and Voice Lines

Figure 55: DSLAM

Week 4 – Fiber Optic

Wednesday 14 - 7 - 2021

Fiber Optic Cable

A cable consisting of thin flexible fibers with a glass core where light signals can be sent.

The glass quality must be considered to control the reflection and refraction of the light.

- High reflection → No loss
- High refraction → Loss

Disadvantage

It can be broken easily (fragile). So it is protected with a sub duct and then put in a manhole.

Advantages

- 1. High speed up to 20 Gbps
- 2. Low loss
- 3. High distance

Lambda Waves

Waves follow the rule: $\lambda \ = \frac{v}{f}$

V: Velocity f: frequency

So Lambda is proportional to the frequency.

The infra-red waves frequency has the range of 850 to 1550. There are 2 types of cables:

- 1. Multimode (multiple frequencies): 850 \rightarrow 1300; used indoor for short distances up to 300 m.
- 2. Single mode (one frequency): 1310 \rightarrow 1550; it is used outdoor for long distances.

The gap between 1300 and 1310 is used for interference.

Fiber optic Connectors

There are 3 types of connectors:

- 1. SC: Subscriber Connector (Standard Connector)
- 2. LC: Lucent Connector
- 3. FC: Fiber Channel (Ferrule Connector)

Figure 57: FC

Figure 58: LC

Figure 59: SC

FC has become an old version of connectors.

But SC and LC has two types of contacts that differ in light reflection:

- 1. UPC: Ultra Physical Contact: It is polished with no angle.
- 2. APC: Angled Physical Contact: It is polished with an 8-degree angle.

Figure 60: APC

Figure 61: UPC

Patch Cord Fiber

Fiber cable that connects end devices or network hardware to your structured cabling system. The cable is terminated with LC, SC, MTRJ or ST connectors at each end. **P.S.** We can't connect LC to SC without an adapter (male - female).

Week 5 – FTTX

Monday 26 - 8 - 2022

Types of Fiber

Connections

FTTC: Fiber To The Cabinet
 FTTB: Fiber To The Building

3. FTTH: Fiber To The Home

Figure 62: FTTX

FTTH

Fiber to the home use no active components, it is a point to point connection from the central office to the home of the subscriber.

Figure 63: FTTH architecture

FTTH Components

OLT

Optical Line Termination is a shelf, located in the central office that we put only fiber card on its service port.

Figure 64: OLT

GPON Card

Gigabit Passive Optical Network. It is a service card for OLT.

• 2.5 Giga Downstream

1,25 Giga Upstream

Figure 65: GPON Card

SDF

Splitter Distribution Frame.

It is passive optical branching device, located in the central office and connected to the OLT splitting the bandwidth of transmission. It connects incoming patch cord from OLT and outgoing patch cord to ODF.

It may split the bandwidth to: 2 - 4 - 8 - 16 - 32 - 64 - 256 branches.

Figure 66: SDF

ODF

Optical Distribution Frame. It is a frame used to provide cable interconnections between communication facilities. It contains fiber optic adapters & connectors.

Figure 67: ODF

FDB

Fiber Distribution Box. It protects the connection point of the optical cable to access user end.

Figure 68: FDB

ONT

Optical Network Terminal. It communicates with your ISP on a fiber-optic Internet network.

Figure 69: ONT

P.S. To know what device is online, each ONT has a MAC address on the fiber optic cable for each house because 16 cables are connected to the same port on the OLT.

FTTB

It connects the fiber to a switch in the building and it exits as Ethernet to each house. That needs electricity to function (active component). Maximum 1 GB in the upstream and the downstream.

Figure 70: FTTB

Differences between FTTB and FTTH

Active Ethernet

Active Ethernet is a point to point technology than connects an OLT to remote ONT. It has 20 ports each one is 1 Giga upstream and 1 Giga downstream.

Figure 71: Active Ethernet

ODF/SDF

No splitter (1 to 1 connection) SDF used, but no need for ODF, connected directly to the building.

Figure 72: FTTB vs. FTTH

Table of Figures

Figure 1: Central Office
1
Figure 2: Topology
2
Figure 3: Low-Pass Filter
3
Figure 4: Survey Map of Brooklyn
4
Figure 5: Civil Work
5
Figure 6: Concrete Pipes
5
Figure 7: Telephone Exchange Layout
6
Figure 8: Primary Cable
6 Since O. Sanandara Calda
Figure 9: Secondary Cable
6 Figure 10: Street Cabinet
7
7 Figure 11: 10 Pairs DP
7
, Figure 12: Batteries
8
Figure 13: Ogero Rectifier
8
Figure 14: MDF
9
Figure 15: MDF vertical and horizontal blocks
9
Figure 16: Cable Vault Room
10
Figure 17: Thermal Joint
12
Figure 18: Mechanical Joint
12
Figure 19: ManHole
13
Figure 20: HandHole
13
Figure 21: DSL
14 5'
Figure 22: ISP to CO connection
15 Figure 22: Star Tanalogy
Figure 23: Star Topology
15 Figure 24: Cascade Topology
15

Figure 25: ISP Lebanon
16
Figure 26: Cache Server
16
Figure 27: Dial up modem
17
Figure 28: DSL modem
17
Figure 29: DSLAM Equipment
18
Figure 30: 2 Types of Ogero DSLAM
18
Figure 31: ADSL
19
Figure 32: HDSL
19
Figure 33: VDSL
Figure 34: EFM
20
Figure 35: Shared DSL
21
Figure 36: Dedicated DSL
21
Figure 37: ISP Backbone
21
Figure 38: Zhone DSLAM
22
Figure 39: Ogero Zhone DSLAM
22
Figure 40: MSAN
23
Figure 41: IMS
23
Figure 42: Pots Card
23
Figure 43: Combo Card
24
Figure 44: OLT architecture
24
Figure 45: DSL QAM
25
Figure 46: FTTC
26
Figure 47: Active Cabinet
26 Figure 48: VDSL in Active Cabinet
Figure 49: Ogero FTTC
27

Figure 50: RPS
28
Figure 51: Ogero RPS
28
Figure 52: FTTH
29
Figure 53: Ogero Active Cabinet – Khalde
29
Figure 54: Data and Voice Lines
30
Figure 55: DSLAM
30
Figure 56: Fiber Optic Cable
31
Figure 57: FC
32
Figure 58: LC
32
Figure 59: SC
32
Figure 60: APC
33
Figure 61: UPC
33
Figure 62: FTTX
34
Figure 63: FTTH architecture
34
Figure 64: OLT
35
Figure 65: GPON Card
35
Figure 66: SDF
36
Figure 67: ODF
36
Figure 68: FDB
37
Figure 69: ONT
37
Figure 70: FTTB
38
Figure 71: Active Ethernet
38
Figure 72: FTTB vs. FTTH
38