2ND EDITION

RASPBERRY PI FULL STACK

A COMPREHENSIVE PROJECT COURSE THAT WILL TEACH YOU HOW TO BUILD A MODERN INTERNET-OF-THINGS APPLICATION WITH YOUR RASPBERRY PI AND ARDUINO. LEARN PYTHON AND JAVASCRIPT, SENSORS, BUTTONS & LEDS, IF-THIS-THEN-THAT, GOOGLE SHEETS, GOOGLE CHARTS, PLOTLY, AND COMMUNICATE WITH THE NRF24.

DR PETER DALMARIS

Use any Raspberry Pi | Tested with Raspbian Buster, Python 3, and Arduino Uno.

Dedicated discussion space.

RASPBERRY PI FULL STACK 0.42

Peter Dalmaris

Raspberry Pi Full Stack, 2nd Edition

By Dr Peter Dalmaris

Copyright © 2020 by Tech Explorations TM

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review.

Printed in Australia

First Printing: 2020

ISBN: 978-1-63649-322-0

Tech Explorations Publishing PO Box 22, Berowra 2081 NSW Australia

www.techexplorations.com

Cover designer: Michelle Dalmaris

Disclaimer

The material in this publication is of the nature of general comment only, and does not represent professional advice. It is not intended to provide specific guidance for particular circumstances and it should not be relied on as the basis for any decision to take action or not take action on any matter which it covers. Readers should obtain professional advice where appropriate, before making any such decision. To the maximum extent permitted by law, the author and publisher disclaim all responsibility and liability to any person, arising directly or indirectly from any person taking or not taking action based on the information in this publication.

Version 0.42

Table of contents

Part 1: Getting Started with the Raspberry Pi Full Stack	10
Chapter 1 - What is this book about?	11
Chapter 2 - A walk-through the Full Stack project	13
Chapter 3 - Required hardware	18
Chapter 4 - How to get help	23
Chapter 5 - The code repository	25
Part 2: Raspberry Pi, Arduino, and Raspberry Pi Zero W	27
Chapter 6 - Raspberry Pi vs Arduino high level comparison	28
Chapter 7 - Need for efficiency: The Raspberry Pi Zero W	35
Chapter 8 - Need for speed: The Raspberry Pi 4 (and 3)	38
Part 3: How to setup the operating system	
Chapter 9 - Operating systems for the Raspberry Pi	
Chapter 10 - What is a 'headless' operating system	45
Chapter 11 - How to download and install Raspbian	
Chapter 12 - How to setup SSH and Wifi in headless mode	
Chapter 13 - How to set a hostname	56
Chapter 14 - Boot into Raspbian for the first time	60
Chapter 15 - How to set a fixed IP address	
Chapter 16 - Basic configuration	67
Chapter 17 - Working as the 'root' user	70
Part 4: How to backup and restore your SD card	74
Chapter 18 - Backup an SD card - Mac OS	75
Chapter 19 - Restore an SD card - Mac OS	78
Chapter 20 - Backup an SD card - Windows	
Chapter 21 - Restore an SD card - Windows	
Part 5: Pins, GPIOs and how to control them with Python	
Chapter 22 - Raspberry Pi pins, roles, and numbers	86
Chapter 23 - A taste of Python on the Command Line Interpreter	90
Chapter 24 - Python Functions	95
Chapter 25 - A simple Python program	
Chapter 26 - Wire a simple circuit	
Chapter 27 - Control an LED with GPIOZERO	111

Chapter 28 - Control an LED with rpi.gpio	115
Chapter 29 - Read a button with GPIOZERO	119
Chapter 30 - Read a button with RPi.GPIO	
Chapter 31 - Control an LED with a button	124
Chapter 32 - Setup the DHT22 sensor with Git	
Chapter 33 - Use the DHT22 sensor	
Chapter 34 - DHT with the CircuitPython library	136
Part 6: Setup the Web application Stack	138
Chapter 35 - The Web Application Stack	139
Chapter 36 - The Python Virtual Environment	145
Chapter 37 - Increase the disk swap file size	149
Chapter 38 - Set up system Python - preparation	152
Chapter 39 - Download, compile and install Python 3	154
Chapter 40 - Setup the app Python Virtual Environment	158
Chapter 41 - Setup Nginx	161
Chapter 42 - Setup Flask	163
Chapter 43 - A tour of a simple Flask app	166
Chapter 44 - UWSGI installation	169
Chapter 45 - Nginx configuration	172
Chapter 46 - UWSGI configuration	176
Chapter 47 - UWSGI and Nginx configuration testing	179
Chapter 48 - Configure systemd to auto-start uwsgi	182
Part 7: Setup the database	185
Chapter 49 - Install the SQLIte3 database	
Chapter 50 - Hand-on with the SQLite3 CLI	189
Part 8: Styling with Skeleton	195
Chapter 51 - Static assets and the Skeleton boilerplate CSS	196
Chapter 52 - Setup the static assets directory	200
Chapter 53 - Introducing the Skeleton boilerplate CSS	203
Chapter 54 - Copying files using SFTP	207
Chapter 55 - Flask templates	212
Chapter 56 - Debugging a Flask app	217
Part 9: Capture and record sensor data	221
Chapter 57 - Introduction to Part 9	222
Chapter 58 - Install the DHT library and the rpi-gpio module	223

	Chapter 59 - Install the DHT library and the rpi-gpio module (legacy)_	_227
	Chapter 60 - Display the current sensor values in the browser	_232
	Chapter 61 - Create a database to store sensor data	_238
	Chapter 62 - Capture sensor data with a Python script	_240
	Chapter 63 - Schedule sensor readings with cron	_244
	Chapter 64 - Update the application file and template file	246
Pa	rt 10: Implement the date range selection feature	252
	Chapter 65 - Introduction to Part 10	253
	Chapter 66 - Prototype datetime range of records in SQLite CLI	_256
	Chapter 67 - Prototype datetime range in the browser	_259
	Chapter 68 - URL querystring validation	_265
	Chapter 69 - Quick tidying up	270
	Chapter 70 - Use radio buttons for easy timedate range selection	275
	Chapter 71 - Provision the Python script to work with the radio button	s <u>.</u> 279
Pa	rt 11: Google Charts and Datetime widgets	_283
	Chapter 72 - Introduction to Part 11	284
	Chapter 73 - Implement Google Charts	288
	Chapter 74 - Test Google Charts	_295
	Chapter 75 - The datetime picker widget	297
	Chapter 76 - Implement the datetime picker widget	_300
	Chapter 77 - Test the datetime picker widget	_303
Pa	rt 12: Dealing with time zones	_306
	Chapter 78 - Adjust datetimes to local time zone on the client side	_307
	Chapter 79 - Introduction to Arrow	_312
	Chapter 80 - Implement Arrow	316
	Chapter 81 - Upload timezone changes and test	319
	Chapter 82 - Link the two pages of the application	322
Pa	rt 13: Charting with Plotly	_326
	Chapter 83 - What is Plotly and how to install it	_327
	Chapter 84 - Try out Plotly on the CLI	_331
	Chapter 85 - Implement Plotly support on the client side	335
	Chapter 86 - Add Plotly support on the server side	341
	Chapter 87 - How to debug Javascript	
	Chapter 88 - Server side debugging example	
Рa	rt 14: Access your application from the Internet	

Chapter 89 - How to access your application from the Internet?	357
Chapter 90 - Set a static IP address	360
Chapter 91 - Expose your app to the Internet with port forwarding.	
Chapter 92 - Create a self-signed certificate for application	369
Chapter 93 - Edit Nginx configuration to use SSL	
Chapter 94 - Test SSL in Firefox, Safari, Chrome	
Part 15: Data-logging with Google Sheet	386
Chapter 95 - What is datalogging, and why Google Sheet?	
Chapter 96 - Setup Google API credentials	390
Chapter 97 - Setup the Python libraries and Google Sheet	
Chapter 98 - Implement of Google Sheet data-logging	408
Part 16: Setup a remote Arduino Sensor node with the nRF24	
Chapter 99 - Why setup an Arduino remote node?	412
Chapter 100 - The Arduino node wiring	
Chapter 101 - The Arduino node sketch	
Chapter 102 - Raspberry Pi and nRF24 wiring	423
Chapter 103 - The Raspberry Pi nRF24 receiver script	
Chapter 104 - How to install the Python nRF24 modules on the Rasp	berry
Pi	433
Chapter 105 - Test the nRF24 communications	439
Chapter 106 - Modify the front end of the application to show remote	e node
data	442
Part 17: If This Than That alerts	
Chapter 107 - An introduction to If This Then That	
Chapter 108 - Create an IFTTT webhook and applet	450
Chapter 109 - Add IFTTT code in the application and testing	
Chapter 110 - Install the node listener script as an systemd service	464
Part 18: Wrapping up	467
Chapter 111 - Make lab_env_db page update every 10 minutes	
Chapter 112 - Recap and what's next	470
Part 19: Project extension: Text messaging using Twilio	
Chapter 113 - What is this project extension all about?	
Chapter 114 - An introduction to Twilio	
Chapter 115 - Setup Twilio account	
Chapter 116 - Create a useful bash shell script	

Chapter 117 - Add Twilio support to Raspberry Pi	488
Chapter 118 - Install Twilio CLI	491
Chapter 119 - Create local and public DNS hostnames	496
Chapter 120 - Create trusted SSL/TLS certificate	502
Chapter 121 - Send text alert messages	513
Chapter 122 - Receive text message commands	517

Chapter 34

DHT with the CircuitPython library

In this chapter I will show you how to use the DHT sensor with the newer DHT library from Adafruit that is part of the CircuitPython project⁹. CircuitPython is the Python programming language specifically adapted for using with microcontrollers and, of course, the Raspberry Pi. CircuitPython is a fork of MicroPython¹⁰, and implementation of the Python language for microcontrollers such as the pyboard¹¹ and the ESP32¹².

To install the CircuitPython DHT module, you can use apt-get, instead of Git. The module requires the libgpiod C library for its operation, so let's install it first.

I assume that you are logged in to your Raspberry Pi as the "pi" user. At the prompt, type this:

\$ sudo apt-get install libgpiod-dev

Accept the installation, and wait for a few seconds.

When the prompt comes back, use pip3 to install the DHT library (in the output below I have omitted most of the text and only kept the first and last few lines):

\$ pip3 install adafruit-circuitpython-dht

Looking in indexes: https://pypi.org/simple, https://www.piwheels.org/simple

^{9.} Learn more about CircuitPython: https://circuitpython.org/

^{10.} Learn more about MicroPython: https://store.micropython.org/

^{11.} See the family of pyboard microcontrollers: https://store.micropython.org/

^{12.} Quick reference for the ESP32 implementation of microPython: http://docs.micropython.org/en/latest/esp32/quickref.html

Collecting adafruit-circuitpython-dht

Downloading https://www.piwheels.org/simple/adafruit-circuitpython-dht/
adafruit_circuitpython_dht-3.5.1-py3-none-any.whl

Successfully installed Adafruit-Blinka-5.4.0 Adafruit-PlatformDetect-2.17.0 Adafruit-PurelO-1.1.5 adafruit-circuitpython-dht-3.5.1 pyftdi-0.51.2 pyusb-1.1.0 rpi-ws281x-4.2.4 sysv-ipc-1.0.1

The CircuitPython DHT library is now installed, and you can use it in your Python programs. Let's try it out in the Python Command Line Interface. Type "python3" to start the CLI, and copy the program as you see it below (in bold is the text to enter):

```
$ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import board
>>> import adafruit_dht
>>> dhtDevice = adafruit_dht.DHT22(board.D17)
>>> temperature_c = dhtDevice.temperature
>>> temperature_f = temperature_c * (9 / 5) + 32
>>> humidity = dhtDevice.humidity
>>> print("Temp: {:.1f} F / {:.1f} C Humidity: {}% ".format(temperature_f, temperature_c, humidity))
Temp: 91.0 F / 32.8 C Humidity: 25.8%
>>> exit()
```

The program is just as simple as the one you used in the previous chapter. You must import "adafruit_dht", and then create the DHT object by calling "adafruit_dht.DHT22". The only parameter to pass is the data PIN number (17). To get the temperature, call "temperature" on the DHT object. You can get the humidity by calling "humidity".

In later parts of this project, you can use the CircuitPython DHT library as a drop-in replacement of the earlier version of the library.