AIS – Lab assignment 1

- Image processing and face detection in real-time -

- Face detection - applications -

- Image processing -

Important stages:

Image acquisition

Preprocessing

- Smoothing noise
- Removing outliners
- Normalizing data
- Reducing data

• ..

Representation and description

Segmentation and detection

Recognition and interpretation

- Lab assignment -

1st task - Basic image processing:

Implement different image processing techniques (image filtering, thresholding, histogram equalisation, edge detection...).

grayscale

histogram equalisation

Gaussian blur

thresholding

Sobel (x)

Sobel (y)

Canny

Face detection using Viola/Jones detector Haar-like features -

-edge detection-

-line detection-

-center-surround feature-

- Combining weak classifiers -

Linear combination learnt from the training dataset: $w_1 \cdot \square \square + w_2 \cdot \square \square + w_3 \cdot \square \square + w_3 \cdot \square \square$

- Cascaded classifiers -

- Start with simple classifiers that reject many negative windows while detecting almost all positive windows
- Positive response from 1st classifier triggers the evaluation of a 2nd, more complex classifier, and so on...
- Negative outcome at any point leads to *immediate rejection*

- Lab assignment -

2nd taks – Face detection using Viola-Jones:

Using pre-trained haarcascades append the baseline code to track faces in the web camera stream in real time. If you don't have access to a camera, use an appropriate image from the Internet.

- Lab assignment -

3rd taks – Face detection with deeplearning models:

Repeat task 2 by replacing the Viola-Jones face detector with MTCNN.

- Software -

Package management:

PIP – installs and manages software packages written in Python

- install Python 3 (for Windows: https://www.python.org/downloads/source/)
- Pip should be automatically installed. If it's not installed follow https://www.tecmint.com/install-pip-in-linux/ for Linux/UNIX

Development environments:

PyCharm

Visual Studio Code

Libraries:

OpenCV – for installation use pip install opencv-python (in the terminal/command prompt)

MTCNN – for installation use *pip install mtcnn* (in the terminal/command prompt)

