Forecasting Rental Demands of Bike-Sharing Systems

Group 1 Wei Guo, Yi He, Yan Jin, Xiao Tan

UNIVERSITY of WASHINGTON-

Outline

- 1. Background
- 2. Problem Description and Proposed Solutions
- 3. Data Analysis
- 4. Results
- 5. Discussion

Background

- Bike-sharing is becoming popular
 - Sustainable and environmentally friendly
 - Part of public transportation, more and more important
 - Over 500 bike-sharing programs worldwide

- Distributed network of stations
- Rent and return at any open station
- Convenient for both registered and casual users
- Large assortment of related data automatically collected

Problem Description

Objective: Forecast accurate bike rental demands for the given dates based on historical patterns and weather data

T2: 11	D : T	
Field	Data Type	Description
dteday	date	date from 01/01/2011 to 12/31/2012
season	categorical	1 = spring, 2 = summer, 3 = fall, 4 = winter
yr	categorical	0 = year 2011, 1 = year 2012
mnth	categorical	month, 1-12
weekday	categorical	day of the week; $1-6 = Monday-Saturday$, $0 = Sunday$
hr	categorical	hour, 0-23
holiday	categorical	0 = not a holiday, 1 = holiday
workingday	categorical	0 = not a working day, 1 = working day
weathersit	categorical	1 = clear, few clouds, partly cloudy,
		2 = mist+cloudy, mist+broken clouds, mist+few clouds, mist,
		3 = light snow, light rain+thunderstorm+scattered clouds, light rain+scattered clouds,
		4 = heavy rain+ice pallets+thunderstorm+mist, snow+fog
temp	${\rm continuous}$	normalized temperature in Celsius; the values are divided by 41 (max)
atemp	${\rm continuous}$	normalized "feels like" temperature in Celsius; the values are divided by 50 (max)
hum	integer	normalized humidity; the values are divided by 100 (max)
windspeed	${\rm continuous}$	normalized wind speed; the values are divided by 67 (max)
casual	integer	number of non-registered user rentals
registered	integer	number of registered user rentals
cnt	integer	number of total rentals

Proposed Solutions: Count Models

Poisson Regression	Negative Binomial Model
$\log(\mu) = \beta_0 + \beta_1 X_1$	$\log(\lambda) = \beta_0 + \beta_1 X_1 + \varepsilon$
Assumptions	Assumptions
1. Independently distributed	1. Independently distributed
2. Mean and variance is equal	2 . $\exp(\varepsilon_i)$ is a gamma-
to μ	distributed error

Principle Components Analysis

- Reduce number of variables
- Reduce multicolinearity
- Simplify redundant information
- Reduce the complexity of large sets of correlated variables.

Proposed Solutions: Ensemble Learning

Benefits of Ensemble Learning (decision tree based method)

- Makes no assumptions (non parametric)
- Can handle different types of variables
- Robust to over-fitting
- Deals with missing data well
- Relatively easy to use
- Overall good performance

Random Forest	Gradient Boosting Method
Bagging Method	Boosting Method
Low variance, high bias	Low bias, high variance
Run in parallel	Run sequentially

Data Analysis

Distribution of count variable

User behavior analysis

UNIVERSITY of WASHINGTON-

Data Analysis

Correlation

UNIVERSITY of WASHINGTON-

Estimation results

Method	Total RMSLE
Poisson	1.734
Negative Binomial	1.107
Random Forest	0.329
Gradient Boosting	0.403

Feature selection

Discussion

- Random Forest and Gradient Boosting outperform the Poisson based regression
- Several characteristics of user behavior are identified
- Casual and registered count models are separately trained
- Feature selection is a significant source of improvement in predictions
- PCA may not improve the accuracy of models
- Future research: Time series analysis, relative-importance of regressors in Negative-Binomial regression model

