## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

# (19) World Intellectual Property Organization International Bureau



(43) International Publication Date 2 August 2001 (02.08.2001)

PCT

# (10) International Publication Number WO 01/54501 A2

- (51) International Patent Classification7: A01N 43/40, 43/72, 43/80, 43/90, 43/653, 25/32 // (A01N 43/40, 57:20, 47:36, 47:06, 43:90, 43:824, 43:707, 43:70, 43:54, 43:50, 43:10, 37:40, 37:22, 33:18)
- (21) International Application Number: PCT/EP01/00720
- (22) International Filing Date: 23 January 2001 (23.01.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

139/00 1150/00 25 January 2000 (25.01.2000)

9 June 2000 (09.06.2000)

- (71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): RÜEGG, Willy, T. [CH/CH]; Felmetweg 6, CH-5073 Gipf-Oberfrick (CH).

- (74) Agent: BASTIAN, Werner, Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HERBICIDAL COMPOSITION



(57) Abstract: A herbicidal composition that, in addition to comprising customary inert formulation adjuvants, comprises: a) a compound of formula (I), wherein the substituents are as defined in claim 1; and b) a synergistically effective amount of one or more compounds of formulae (2.1 to 2.51). The compositions according to the invention may also comprise a safener.

# Herbicidal composition

The present invention relates to a novel herbicidal composition comprising a herbicidal active ingredient combination that is suitable for the selective control of weeds in crops of useful plants, for example in maize crops. The invention relates also to a method of controlling weeds in crops of useful plants, and to the use of the novel composition for that purpose.

## The compounds of formula I

wherein the definitions of the substituents are given hereinbelow have herbicidal activity.

Surprisingly, it has now been shown that a combination of variable amounts of active ingredients, that is, of an active ingredient of formula I with one or more of the active ingredients of formulae 2.1 to 2.51 listed below, which are known and some of which are also commercially available, exhibits a synergistic action that is capable of controlling, both pre-emergence and post-emergence, the majority of weeds occurring especially in crops of useful plants.

There is therefore proposed in accordance with the present invention a novel synergistic composition for selective weed control that, in addition to customary inert formulation adjuvants, comprises as active ingredient a mixture of

a) a herbicidally effective amount of a compound of formula I



wherein each R is independently hydrogen,  $C_1$ - $C_6$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_2$ - $C_6$ haloalkenyl,  $C_2$ - $C_6$ alkynyl,  $C_2$ - $C_6$ haloalkynyl,  $C_3$ - $C_6$ cycloalkyl,  $C_1$ - $C_6$ alkoxy,  $C_1$ - $C_6$ haloalkoxy,  $C_1$ - $C_6$ alkylthio,  $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylthio,  $C_1$ -C<sub>6</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>haloalkylsulfonyl, C<sub>1</sub>-C<sub>6</sub>alkoxycarbonyl, C<sub>1</sub>-C<sub>6</sub>alkylcarbonyl, C<sub>1</sub>- $C_6$ alkylamino, di( $C_1$ - $C_6$ alkyl)amino,  $C_1$ - $C_6$ alkylaminosulfonyl, di( $C_1$ - $C_6$ alkyl)aminosulfonyl, - $N(R_1)$ -S- $R_2$ , - $N(R_3)$ -SO- $R_4$ , - $N(R_5)$ -SO<sub>2</sub>- $R_6$ , nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C1-C6alkyl, C1-C6haloalkyl, C<sub>3</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>haloalkynyl, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, mercapto, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>- $C_6$ haloalkytthio,  $C_3$ - $C_6$ alkenytthio,  $C_3$ - $C_6$ haloalkenytthio,  $C_3$ - $C_6$ alkynytthio,  $C_2$ - $C_5$ alkoxyalkylthio,  $C_3$ - $C_5$ acetylalkỳlthio,  $C_3$ - $C_6$ alkoxycarbonylalkylthio,  $C_2$ - $C_4$ cyanoalkylthio,  $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_2$ alkylaminosulfonyl,  $C_2$ - $C_4$ dialkylaminosulfonyl,  $C_1$ - $C_3$ alkylene- $R_{45}$ , NR<sub>46</sub>R<sub>47</sub>, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by  $C_1$ - $C_3$ alkyl,  $C_1$ -C<sub>3</sub>haloalkyl, C<sub>1</sub>-C<sub>3</sub>alkoxy, C<sub>1</sub>-C<sub>3</sub>haloalkoxy, halogen, cyano or by nitro; or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C1-C4alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ haloalkynyl,  $C_3$ - $C_6$ haloalkynyl,  $C_1$ - $C_6$ alkoxy,  $C_1$ - $C_6$ haloalkoxy,  $C_3$ - $C_6$ alkenyloxy,  $C_3$ - $C_6$ alkynyloxy, mercapto,  $C_1$ - $C_6$ alkylthio,  $C_1$ - $C_6$ haloalkylthio,  $C_3$ - $C_6$ alkenylthio,  $C_3$ - $C_6$ haloalkenylthio,  $C_3$ - $C_6$ alkynylthio,  $C_2$ - $C_5$ alkoxyalkylthio,  $C_3$ - $C_5$ acetylalkylthio,  $C_3$ - $C_6$ alkoxycarbonylalkylthio,  $C_2$ - $C_4$ cyanoalkylthio,

 $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_2$ alkylaminosulfonyl,  $C_2$ - $C_4$ dialkylaminosulfonyl,  $C_1$ - $C_3$ alkylene- $R_7$ ,  $NR_8R_9$ , halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen; or each R is independently  $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkyl or  $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkyl;

each R is independently  $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkyl or  $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkyl; m is 1, 2, 3 or 4;

 $R_1$ ,  $R_3$  and  $R_5$  are each independently of the others hydrogen or  $C_1$ - $C_6$ alkyl;  $R_2$  is  $NR_{10}R_{11}$ ,  $C_1$ - $C_6$ alkoxy,  $C_1$ - $C_6$ haloalkoxy,  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkoxy,  $C_1$ - $C_6$ alkynyl,  $C_3$ - $C_6$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro;

 $R_4$  is  $NR_{12}R_{13}$ ,  $C_1$ - $C_6$ alkoxy,  $C_1$ - $C_6$ haloalkoxy,  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_6$ cycloalkyl or phenyl, wherein phenyl may itself be substituted by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro;

 $R_6$  is NR<sub>14</sub>R<sub>15</sub>, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>3</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>haloalkynyl, C<sub>3</sub>-C<sub>6</sub>cycloalkyl or phenyl, wherein phenyl may itself be substituted by C<sub>1</sub>-C<sub>3</sub>alkyl, C<sub>1</sub>-C<sub>3</sub>haloalkyl, C<sub>1</sub>-C<sub>3</sub>alkoxy, C<sub>1</sub>-C<sub>3</sub>haloalkoxy, halogen, cyano or by nitro;

 $R_7$  and  $R_{45}$  are each independently of the other  $C_1$ - $C_3$ alkoxy,  $C_2$ - $C_4$ alkoxycarbonyl,  $C_1$ - $C_3$ -alkylthio,  $C_1$ - $C_3$ alkylsulfinyl,  $C_1$ - $C_3$ alkylsulfonyl or phenyl, wherein phenyl may itself be substituted by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro;

 $R_8$ ,  $R_{10}$ ,  $R_{12}$ ,  $R_{14}$  and  $R_{46}$  are each independently of the others hydrogen or  $C_1$ - $C_6$ alkyl;  $R_9$ ,  $R_{11}$ ,  $R_{13}$ ,  $R_{15}$  and  $R_{47}$  are each independently of the others  $C_1$ - $C_6$ alkyl or  $C_1$ - $C_6$ alkoxy; Q is the group  $Q_1$ 

wherein R<sub>16</sub>, R<sub>17</sub>, R<sub>18</sub> and R<sub>19</sub> are each independently of the others hydrogen, hydroxy, C1-C4alkyl, C2-C6alkenyl, C2-C6alkynyl, C1-C4alkoxycarbonyl, C1-C6alkylthio, C1- $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_4$ alkyl-NHS(O)<sub>2</sub>,  $C_1$ - $C_4$ haloalkyl, -NH- $C_1$ - $C_4$ alkyl, -N(C<sub>1</sub>-C<sub>4</sub>alkyl)<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>alkoxy, cyano, nitro, halogen, or phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C4alkoxycarbonyl, amino, C1-C4alkylamino, di(C1-C4alkyl)amino, C1-C6alkylthio, C1-C6alkylsulfinyl, C1-C6alkylsulfonyl, C1-C4alkyl-S(O)2O, C1-C4haloalkylthio, C1- $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfonyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ ,  $C_1$ - $C_4$ alkyl- $S(O)_2NH$ ,  $C_1$ -C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro, COOH or by cyano; or two adjacent substituents out of R<sub>16</sub>, R<sub>17</sub>, R<sub>18</sub> and R<sub>19</sub> form a C<sub>2</sub>-C<sub>6</sub>alkylene bridge; R<sub>20</sub> is hydroxy, O'M<sup>+</sup>, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C<sub>3</sub>-C<sub>6</sub>cycloalkylcarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkoxycarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy,  $R_{21}R_{22}N-C(0)O$ ,  $C_1-C_{12}$ alkylthio,  $C_1-C_{12}$ alkylsulfinyl,  $C_1-C_{12}$ alkylsulfonyl,  $C_1-C_4$ haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, C2-C12alkenylthio, C2-C12alkenylsulfinyl, C2-C12 alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfinyl, C2-C12haloalkenylsulfonyl, C<sub>2</sub>-C<sub>12</sub>alkynylthio, C<sub>2</sub>-C<sub>12</sub>alkynylsulfinyl, C<sub>2</sub>-C<sub>12</sub>alkynylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O, phenyl-S(O)<sub>2</sub>O, (C<sub>1</sub>-C<sub>4</sub>alkoxy)<sub>2</sub>P(O)O, C<sub>1</sub>-C<sub>4</sub>alkoxy)P(O)O, H(C<sub>1</sub>-C<sub>4</sub>alkoxy)P(O)O, C<sub>1</sub>-C<sub>12</sub>-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1- $C_4$ alkoxy,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkylcarbonyl,  $C_1$ - $C_4$ alkoxycarbonyl,  $C_1$ - $C_4$ alkylamino, di  $(C_1$ -C4alkyl)amino, C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4alkyl-S(O)2O, C1- $C_4$ haloalkytthio,  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfonyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ ,  $C_1$ -C4alkyl-S(O)2NH, C1-C4alkyl-S(O)2N(C1-C4alkyl), halogen, nitro or by cyano; and R<sub>21</sub> and R<sub>22</sub> are each independently of the other hydrogen or C<sub>1</sub>-C<sub>4</sub>alkyl; or is the group Q2

wherein R<sub>23</sub> is hydroxy, O'M<sup>+</sup>, halogen, C<sub>1</sub>-C<sub>12</sub>alkoxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, C<sub>2</sub>-C<sub>4</sub>-alkenylcarbonyloxy, C<sub>3</sub>-C<sub>6</sub>cycloalkylcarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkoxycarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, R<sub>24</sub>R<sub>25</sub>N-C(O)O, C<sub>1</sub>-C<sub>12</sub>alkylthio, C<sub>1</sub>-C<sub>12</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>12</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>12</sub>alkylsulfinyl, C<sub>2</sub>-C<sub>12</sub>alkenylthio, C<sub>2</sub>-C<sub>12</sub>-alkenylsulfinyl, C<sub>2</sub>-C<sub>12</sub>haloalkylsulfinyl, C<sub>2</sub>-C<sub>12</sub>haloalkenylsulfinyl, C<sub>2</sub>-C<sub>12</sub>-alkenylsulfinyl, C<sub>2</sub>-C<sub>12</sub>-alke

haloalkenylsulfonyl,  $C_2$ - $C_{12}$ alkynylthio,  $C_2$ - $C_{12}$ alkynylsulfinyl,  $C_2$ - $C_{12}$ alkynylsulfonyl,  $C_1$ - $C_4$ alkyl- $S(O)_2O$ , phenyl- $S(O)_2O$ ,  $(C_1$ - $C_4$ alkoxy) $_2P(O)O$ ,  $C_1$ - $C_4$ alkyl( $C_1$ - $C_4$ alkoxy) $_2P(O)O$ ,  $C_1$ - $C_4$ alkoxy) $_2P(O)O$ , benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkylcarbonyl,  $C_1$ - $C_4$ alkylamino, di( $C_1$ - $C_4$ alkyl)amino,  $C_1$ - $C_4$ alkylthio,  $C_1$ - $C_4$ alkylsulfinyl,  $C_1$ - $C_4$ alkylsulfonyl,  $C_1$ - $C_4$ alkyl- $S(O)_2O$ ,  $C_1$ - $C_4$ haloalkylthio,  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ ,  $C_1$ - $C_4$ alkyl- $S(O)_2$ NH,  $C_1$ - $C_4$ alkyl- $S(O)_2$ N( $C_1$ - $C_4$ alkyl), halogen, nitro or by cyano;

 $R_{24}$  and  $R_{25}$  are each independently of the other hydrogen or  $C_1$ - $C_4$ alkyl; and Y is oxygen, sulfur, a chemical bond or a  $C_1$ - $C_4$ alkylene bridge; or is the group  $Q_3$ 

wherein  $R_{44}$ ,  $R_{37}$ ,  $R_{38}$  and  $R_{39}$  are each independently of the others hydrogen,  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_2$ - $C_6$ alkynyl,  $C_1$ - $C_6$ alkoxycarbonyl,  $C_1$ - $C_6$ alkylthio,  $C_1$ - $C_6$ alkyl-sulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ alkyl-NHS(O)2,  $C_1$ - $C_6$ alkylamino, di( $C_1$ - $C_6$ alkyl)amino, hydroxy,  $C_1$ - $C_6$ alkoxy,  $C_3$ - $C_6$ alkenyloxy,  $C_3$ - $C_6$ alkynyloxy, hydroxy- $C_1$ - $C_6$ alkyl,  $C_1$ - $C_4$ alkyl-sulfonyloxy- $C_1$ - $C_6$ alkyl, tosyloxy- $C_1$ - $C_6$ alkyl, halogen, cyano, nitro, phenyl, or phenyl substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alaloalkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkoxycarbonyl, amino,  $C_1$ - $C_4$ alkylamino, di( $C_1$ - $C_4$ alkyl)amino,  $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_4$ alkyl-S(O)2O,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ alkylsulfinyl-N( $C_1$ - $C_4$ alkyl),  $C_1$ - $C_6$ alkylsulfonyl-N( $C_1$ - $C_4$ alkyl), halogen, nitro, COOH or by cyano; or adjacent  $R_{44}$  and  $R_{37}$  or  $R_{38}$  and  $R_{39}$  together are  $C_3$ - $C_6$ alkylene;

W is oxygen, sulfur, sulfinyl, sulfonyl, -CR<sub>41</sub>R<sub>42</sub>-, -C(O)- or -NR<sub>43</sub>-; R<sub>41</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy-C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkylthio-C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyloxy-C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkylsulfonyloxy-C<sub>1</sub>-C<sub>4</sub>alkyl, tosyloxy-C<sub>1</sub>-C<sub>4</sub>alkyl, di(C<sub>1</sub>-C<sub>3</sub>alkoxyalkyl)methyl, di(C<sub>1</sub>-C<sub>3</sub>alkylthioalkyl)methyl, (C<sub>1</sub>-C<sub>3</sub>alkoxyalkyl)-(C<sub>1</sub>-C<sub>3</sub>alkylthioalkyl)methyl, C<sub>3</sub>-C<sub>5</sub>oxacycloalkyl, C<sub>3</sub>-C<sub>5</sub>thiacycloalkyl, C<sub>3</sub>-C<sub>4</sub>dioxacycloalkyl, C<sub>3</sub>-C<sub>5</sub>thiacycloalkyl, C<sub>3</sub>-C<sub>4</sub>dioxacycloalkyl, C<sub>3</sub>-C<sub>5</sub>thiacycloalkyl, C<sub>3</sub>-C<sub>4</sub>dioxacycloalkyl, C<sub>3</sub>-C<sub>5</sub>thiacycloalkyl, C<sub>3</sub>-C<sub>4</sub>dioxacycloalkyl, C<sub>3</sub>-C<sub>5</sub>thiacycloalkyl, C<sub>3</sub>-C<sub>5</sub>thi

 $C_4 \text{dithiacycloalkyl}, \ C_3 - C_4 \text{oxathiacycloalkyl}, \ formyl, \ C_1 - C_4 \text{alkoxycarbonyl}, \ or \ phenyl \ which \ may itself be substituted by $C_1 - C_4 \text{alkyl}, \ C_1 - C_4 \text{haloalkyl}, \ C_1 - C_4 \text{alkoxy}, \ C_1 - C_4 \text{haloalkoxy}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkylamino}, \ di(C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkylamino}, \ C_1$ 

R<sub>40</sub> is hydroxy, O<sup>™</sup>, halogen, C<sub>1</sub>-C<sub>12</sub>alkoxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, C<sub>2</sub>-C<sub>4</sub>alkenylcarbonyloxy, C<sub>3</sub>-C<sub>6</sub>cycloalkylcarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkoxycarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy,  $R_{98}R_{97}N-C(O)O$ ,  $C_1-C_{12}$ alkylthio,  $C_1-C_{12}$ alkylsulfinyl,  $C_1-C_{12}$ alkylsulfonyl,  $C_1-C_4$ haloalkylthio,  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfonyl,  $C_2$ - $C_{12}$ alkenylthio,  $C_2$ - $C_{12}$ alkenylsulfinyl,  $C_2$ - $C_{12}$ alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfinyl, C2-C12haloalkenylsulfonyl,  $C_2$ - $C_{12}$ alkynylthio,  $C_2$ - $C_{12}$ alkynylsulfinyl,  $C_2$ - $C_{12}$ alkynylsulfonyl,  $C_1$ - $C_4$ alkyl- $S(O)_2O$ ,  $phenyl-S(O)_2O, (C_1-C_4alkoxy)_2P(O)O, C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O, H(C_1-C_4alkoxy)P(O)O, H(C_1-C_4alkoxy$ C<sub>1</sub>-C<sub>12</sub>-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl. wherein the phenyl group may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1- $C_4$ alkoxy,  $C_1$ - $C_4$ haloalkoxy,  $C_1$ - $C_4$ alkylcarbonyl,  $C_1$ - $C_4$ alkoxycarbonyl,  $C_1$ - $C_4$ alkylamino, di( $C_1$ - $C_4$ alkyl)amino,  $C_1$ - $C_4$ alkylthio,  $C_1$ - $C_4$ alkylsulfinyl,  $C_1$ - $C_4$ alkylsulfonyl,  $C_1$ - $C_4$ alkyl- $S(O)_2O$ ,  $C_1$ -C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C4alkyl-S(O)2NH, C1-C4alkyl-S(O)2N(C1-C4alkyl), halogen, nitro or by cyano;  $R_{98}$  and  $R_{97}$  are each independently of the other hydrogen or  $C_1\text{-}C_4$ alkyl; R<sub>43</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, or phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>- $C_4$ alkoxycarbonyl,  $C_1$ - $C_4$ alkylamino, di( $C_1$ - $C_4$ alkyl)amino,  $C_1$ - $C_4$ alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, C<sub>1</sub>- $C_4 haloalkyl-S(O)_2O,\ C_1-C_4 alkyl-S(O)_2NH,\ C_1-C_4 alkyl-S(O)_2N(C_1-C_4 alkyl-S(O)_2NH)$ C4alkyl), halogen, nitro or by cyano; or is the group Q

wherein R<sub>30</sub> hydroxy, O⁻M⁺, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C<sub>3</sub>-C<sub>6</sub>cycloalkylcarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkoxycarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy,  $R_{31}R_{32}N-C(O)O$ ,  $C_1-C_{12}$ alkylthio,  $C_1-C_{12}$ alkylsulfinyl,  $C_1-C_{12}$ alkylsulfonyl,  $C_1-C_4$ haloalkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfonyl, C<sub>2</sub>-C<sub>12</sub>alkenylthio, C<sub>2</sub>-C<sub>12</sub>alkenylsulfinyl, C<sub>2</sub>-C<sub>12</sub>alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfinyl, C2-C12haloalkenylsulfonyl, C<sub>2</sub>-C<sub>12</sub>alkynylthio, C<sub>2</sub>-C<sub>12</sub>alkynylsulfinyl, C<sub>2</sub>-C<sub>12</sub>alkynylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O, phenyl-S(O)<sub>2</sub>O, ( $C_1$ - $C_4$ alkoxy)<sub>2</sub>P(O)O,  $C_1$ - $C_4$ alkyl( $C_1$ - $C_4$ alkoxy)P(O)O, H( $C_1$ - $C_4$ alkoxy)P(O)O, C<sub>1</sub>-C<sub>12</sub>-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl. wherein the phenyl group may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, C1-C4alkylcarbonyl, C1-C4alkylcarbonyl, C1-C4alkoxycarbonyl, C1-C4alkylamino, di(C1-C<sub>4</sub>alkyl)amino, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkylsul C4haloalkytthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, C1-C4haloalkyl-S(O)<sub>2</sub>O, C1-C4alkyl-S(O)2NH, C1-C4alkyl-S(O)2N(C1-C4alkyl), halogen, nitro or by cyano; and R<sub>31</sub> and R<sub>32</sub> are each independently of the other hydrogen or C₁-C₄alkyl; R<sub>33</sub> and R<sub>34</sub> are each independently of the other hydrogen, hydroxy, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C2-C6alkynyl, C1-C6alkylsulfinyl, C1-C6alkylsulfinyl, C1-C6alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>alkyl-NHS(O)<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>haloalkyl, -NH-C<sub>1</sub>-C<sub>4</sub>alkyl, -N(C<sub>1</sub>-C<sub>4</sub>alkyl)<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>alkoxy, cyano. nitro, halogen, or phenyl which may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, amino, C<sub>1</sub>-C<sub>4</sub>alkylamino, di(C<sub>1</sub>-C<sub>4</sub>alkyl)amino, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O,  $C_1-C_4$ haloalkylthio,  $C_1-C_4$ haloalkylsulfinyl,  $C_1-C_4$ haloalkylsulfonyl,  $C_1-C_4$ haloalkyl-S(O)<sub>2</sub>O, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro, COOH or by cyano; or R<sub>33</sub> and R<sub>34</sub> together form a C<sub>2</sub>-C<sub>6</sub>alkylene bridge; and R<sub>35</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, or phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C4alkoxycarbonyl, amino, C1-C4alkylamino, di(C1-C4alkyl)amino, C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4alkyl-S(O)2O, C1-C4haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, C1-C4haloalkyl-S(O)2O, C1-C4alkyl-S(O)2NH, C1-C4alkyl-S(O)2N(C1-C4alkyl), halogen, nitro, COOH or by cyano: or is the group Q<sub>5</sub>

wherein Z is sulfur, SO or SO2;

 $R_{01} \text{ is hydrogen, } C_1\text{-}C_8 \text{alkyl, } C_1\text{-}C_8 \text{alkyl substituted by halogen, } C_1\text{-}C_4 \text{alkoxy, } C_1\text{-}C_4 \text{alkylthio, } C_1\text{-}C_4 \text{alkylsulfinyl, hydroxy, cyano, nitro, } \text{-}CHO, \text{-}CO_2R_{02}, \text{-}COR_{03}, \text{-}COSR_{04}, \text{-}NR_{06}R_{06}, \text{CONR}_{036}R_{037}, \text{ or by phenyl which may itself be substituted by } C_1\text{-}C_4 \text{alkyl, } C_1\text{-}C_6 \text{haloalkyl, } C_1\text{-}C_4 \text{alkoxy, } C_1\text{-}C_4 \text{haloalkoxy, } C_2\text{-}C_6 \text{alkenyl, } C_3\text{-}C_6 \text{alkynyl, } C_3\text{-} C_6 \text{alkynyloxy, halogen, nitro, cyano, } \text{-}COOH, COOC_1\text{-}C_4 \text{alkyl, } COOphenyl, } C_1\text{-}C_4 \text{alkoxy, phenoxy, } (C_1\text{-}C_4 \text{alkoxy})\text{-}C_1\text{-}C_4 \text{alkyl, } (C_1\text{-}C_4 \text{alkylthio})\text{-}C_1\text{-}C_4 \text{alkyl, } (C_1\text{-} C_4 \text{alkyl, } (C_1\text{-}C_4 \text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4 \text{alkyl, } NHSO_2\text{-}phenyl, } N(C_1\text{-}C_6 \text{alkyl})\text{SO}_2\text{-}C_1\text{-}C_4 \text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4 \text{alkyl, } NHSO_2\text{-}Phenyl, } N(C_1\text{-}C_6 \text{alkyl})\text{SO}_2\text{-}C_1\text{-}C_4 \text{alkyl, } N(C_2\text{-}C_6 \text{alkenyl})\text{SO}_2\text{-}Phenyl, } N(C_3\text{-}C_6 \text{alkynyl})\text{SO}_2\text{-}C_1\text{-}C_4 \text{alkyl, } N(C_3\text{-}C_7\text{-}C_7 \text{alkyl, } N(C_3\text{-}C_7 \text{-}C_7 \text{alkyl, } N(C_3\text{-}C_7 \text{-}C_4 \text{alkyl, } N(C_$ 

or Ro1 is C2-C8alkenyl or C2-C8alkenyl substituted by halogen, C1-C4alkoxy, C1-C4alkytthio,  $C_1$ - $C_4$ alkylsulfonyl,  $C_1$ - $C_4$ alkylsulfinyl, -CONR $_{032}$ R $_{033}$ , cyano, nitro, -CHO, -CO $_2$ R $_{039}$ , -COR $_{039}$ , -COR $_{039}$ -COS-C1-C4alkyl, -NR034R035, or by phenyl which may itself be substituted by C1-C4alkyl,  $C_1$ - $C_6$ haloalkył,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ haloalkoxy,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, halogen, nitro, cyano, -COOH, COOC<sub>1</sub>-C<sub>4</sub>alkyl, COOphenyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, phenoxy, (C<sub>1</sub>-C<sub>4</sub>alkoxy)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylthio)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl)-C<sub>1</sub>-C<sub>4</sub>alkyl,  $(C_1-C_4alkylsulfonyl)-C_1-C_4alkyl, NHSO_2-C_1-C_4alkyl, NHSO_2-phenyl, N(C_1-C_6alkyl)SO_2-C_1-C_4alkyl, NHSO_2-C_1-C_4alkyl, NHSO_$ alkyl,  $N(C_1-C_6alkyl)SO_2$ -phenyl,  $N(C_2-C_6alkenyl)SO_2-C_1-C_4alkyl$ ,  $N(C_2-C_6alkenyl)SO_2$ -phenyl, alkyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(phenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, CONR<sub>040</sub>R<sub>041</sub>, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>haloalkyl, OSO<sub>2</sub>-phenyl, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkytthio, phenylthio, C1-C4alkylsulfonyl, C1-C4haloalkylsulfonyl, phenylsulfonyl, C1-C4alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, phenylsulfinyl, C<sub>1</sub>-C<sub>4</sub>alkylenephenyl or by -NR<sub>043</sub>CO<sub>2</sub>R<sub>042</sub>; or  $R_{01}$  is  $C_3$ - $C_6$ alkynyl or  $C_3$ - $C_6$ alkynyl substituted by halogen,  $C_1$ - $C_4$ haloalkyl, cyano, -CO₂R₀44, or by phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₅haloalkyl, C₁-C₄alkoxy,  $C_1$ - $C_4$ haloalkoxy,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_6$ alkenyloxy,  $C_3$ - $C_6$ alkynyloxy, halogen, nitro, cyano, -COOH, COOC $_1$ -C $_4$ alkyl, COOphenyl, C $_1$ -C $_4$ alkoxy, phenoxy, (C $_1$ -C $_4$ -sulfonyl)-C1-C4alkyl, NHSO2-C1-C4alkyl, NHSO2-phenyl, N(C1-C6alkyl)SO2-C1-C4alkyl,

WO 01/54501 PCT/EP01/00720

 $N(C_1-C_6alkyl)SO_2-phenyl,\ N(C_2-C_6alkenyl)SO_2-C_1-C_4alkyl,\ N(C_2-C_6alkenyl)SO_2-phenyl,\ N(C_3-C_6alkenyl)SO_2-phenyl,\ N(C_3-C_6alkynyl)SO_2-C_1-C_4-C_4-alkyl,\ N(C_3-C_7cycloalkyl)SO_2-phenyl,\ N(phenyl)SO_2-phenyl,\ N(phenyl)SO_2-phenyl,\$ 

Ro1 is C1-C4alkylene-C3-C7cycloalkyl, phenyl, or phenyl substituted by C1-C4alkyl, C1-C6haloalkyl, C1-C4alkoxy, C1-C4haloalkoxy, C2-C6alkenyl, C3-C6alkenyloxy, C3-C6alkenyloxy, C3-C6alkynyloxy, halogen, nitro, cyano, -COOH, COOC1-C4alkyl, COOphenyl, C1-C4alkoxy, phenoxy, (C<sub>1</sub>-C<sub>4</sub>alkoxy)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylthio)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylsulfonyl)-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-phenyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-phenyl, N(C<sub>2</sub>-C<sub>6</sub>alkenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>2</sub>-C<sub>6</sub>alkenyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>6</sub>alkynyi)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>3</sub>-C<sub>6</sub>alkynyi)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(phenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, CONR<sub>045</sub>R<sub>048</sub>, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>haloalkyl, OSO<sub>2</sub>-phenyl, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, phenylthio, C1-C4alkylsulfonyl, C1-C4haloalkylsulfonyl, phenylsulfonyl, C1-C4alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, phenylsulfinyl or by -NR<sub>048</sub>CO<sub>2</sub>R<sub>047</sub>; or R<sub>01</sub> is C<sub>1</sub>-C<sub>4</sub>alkylenephenyl, COR<sub>07</sub> or from 4- to 6-membered heterocyclyl; Roz, Rose, Rose and Rose are each independently of the others hydrogen, C1-C4alkyl, phenyl, or phenyl substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, halogen, nitro, cyano, -COOH, COOC<sub>1</sub>-C<sub>4</sub>alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, (C₁-C₄alkoxy)-C₁-C₄alkyl, (C₁-C₄alkylthio)-C₁-C₄alkyl,  $(C_1-C_4$ alkylsulfinyl)- $C_1-C_4$ alkyl,  $(C_1-C_4$ alkylsulfonyl)- $C_1-C_4$ alkyl, NHSO<sub>2</sub>- $C_1-C_4$ alkyl, NHSO<sub>2</sub>-phenyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-phenyl, N(C<sub>2</sub>-C<sub>6</sub>alkenyl)- $SO_2$ - $C_1$ - $C_4$ alkyl,  $N(C_2$ - $C_6$ alkenyl) $SO_2$ -phenyl,  $N(C_3$ - $C_6$ alkynyl) $SO_2$ - $C_1$ - $C_4$ alkyl,  $N(C_3$ - $C_6$ alkynyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(phenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, CONR<sub>049</sub>R<sub>050</sub>, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>haloalkyl, OSO<sub>2</sub>-phenyl, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, phenylthio, C<sub>1</sub>-C4alkylsulfonyl, C1-C4haloalkylsulfonyl, phenylsulfonyl, C1-C4alkylsulfinyl, C1-C<sub>4</sub>haloalkylsulfinyl, phenylsulfinyl, -C<sub>1</sub>-C<sub>4</sub>-alkylphenyl or by -NR<sub>052</sub>CO<sub>2</sub>R<sub>053</sub>;

 $R_{03}$ ,  $R_{039}$  and  $R_{097}$  are each independently of the others  $C_1$ - $C_4$ alkyl, phenyl, or phenyl substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ haloalkoxy,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ -alkynyl,  $C_3$ - $C_6$ alkenyloxy,  $C_3$ - $C_6$ alkynyloxy, halogen, nitro, cyano, -COOH, COOC $_1$ - $C_4$ alkyl, COOphenyl,  $C_1$ - $C_4$ alkoxy, phenoxy,  $(C_1$ - $C_4$ alkoxy)- $C_1$ - $C_4$ alkyl,  $(C_1$ - $(C_4$ alkyl,  $(C_1$ - $(C_4$ alkyl),  $(C_1$ - $(C_4$ alkyl),  $(C_2$ - $(C_4$ alkyl,  $(C_3$ - $(C_4$ alkyl),  $(C_3$ - $(C_4$ alkyl),  $(C_3$ - $(C_4$ alkyl,  $(C_3$ - $(C_4$ alkyl),  $(C_3$ - $(C_$ 

Ro4 is C1-C4alkyl;

R<sub>05</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>7</sub>cycloalkyl, phenyl, or phenyl substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, halogen, nitro, cyano, -COOH, COOC<sub>1</sub>-C<sub>4</sub>alkyl, COOphenyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, phenoxy, (C<sub>1</sub>-C<sub>4</sub>alkoxy)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylthio)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkyl), (C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-phenyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>6</sub>alkenyl)-SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>3</sub>-C<sub>6</sub>alkenyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>6</sub>alkynyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO

 $R_{06} \text{ is hydrogen, } C_1\text{-}C_4\text{alkyl, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_7\text{cycloalkyl, phenyl, or phenyl substituted by } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_6\text{haloalkyl, } C_1\text{-}C_4\text{alkoxy, } C_1\text{-}C_4\text{haloalkoxy, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{alkenyloxy, } C_3\text{-}C_6\text{alkynyloxy, halogen, nitro, cyano, -}COOH, COOC_1\text{-}C_4\text{-}alkyl, COOphenyl, } C_1\text{-}C_4\text{alkoxy, phenoxy, } (C_1\text{-}C_4\text{alkoxy})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkylthio})\text{-}C_1\text{-}C_4\text{-}alkyl, } (C_1\text{-}C_4\text{alkyl, nhso}_2\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkyl, nhso}_2\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_6\text{alkyl, nhso}_2\text{-}phenyl, } N(C_1\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, nhso}_2\text{-}phenyl, } N(C_2\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}phenyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{SO}_2\text{-}phenyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phenyl, } N(C_3\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}C_7\text{-}phen$ 

Ĵ }

 $SO_2$ - $C_1$ - $C_4$ alkyl, N(phenyl) $SO_2$ -phenyl,  $OSO_2$ - $C_1$ - $C_4$ alkyl,  $CONR_{061}R_{062}$ ,  $OSO_2$ - $C_1$ - $C_4$ haloalkyl,  $OSO_2$ -phenyl,  $C_1$ - $C_4$ alkylthio,  $C_1$ - $C_4$ haloalkylthio, phenylthio,  $C_1$ - $C_4$ alkylsulfonyl,  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfinyl, phenylsulfinyl,  $C_1$ - $C_4$ -alkylsulfinyl,  $C_1$ - $C_4$ -alkylenephenyl or by -NR<sub>064</sub> $CO_2$ R<sub>063</sub>;

R<sub>07</sub> is phenyl, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy or -NR<sub>08</sub>R<sub>09</sub>;

 $R_{09}$  and  $R_{09}$  are each independently of the other  $C_1$ - $C_4$ alkyl, phenyl, or phenyl substituted by halogen, nitro, cyano,  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ thioalkyl, - $CO_2R_{066}$ , - $COR_{087}$ ,  $C_1$ - $C_4$ -alkylsulfinyl or by  $C_1$ - $C_4$ haloalkyl; or  $R_{08}$  and  $R_{09}$  together form a 5- or 6-membered ring, which may be interrupted by oxygen,  $NR_{086}$  or by S;

 $R_{015}$ ,  $R_{031}$ ,  $R_{048}$ ,  $R_{062}$ ,  $R_{066}$ ,  $R_{060}$  and  $R_{064}$  are each independently of the others hydrogen,  $C_1$ - $C_4$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl or  $C_3$ - $C_7$ cycloalkyl;

R<sub>025</sub>, R<sub>026</sub>, R<sub>027</sub>, R<sub>028</sub>, R<sub>029</sub>, R<sub>030</sub>, R<sub>032</sub>, R<sub>033</sub>, R<sub>034</sub>, R<sub>035</sub>, R<sub>035</sub>, R<sub>037</sub>, R<sub>040</sub>, R<sub>041</sub>, R<sub>042</sub>, R<sub>045</sub>, R<sub>048</sub>, R<sub>047</sub>, R<sub>049</sub>, R<sub>050</sub>, R<sub>053</sub>, R<sub>054</sub>, R<sub>055</sub>, R<sub>057</sub>, R<sub>058</sub>, R<sub>058</sub>, R<sub>059</sub>, R<sub>061</sub>, R<sub>062</sub>, R<sub>063</sub>, R<sub>065</sub> and R<sub>068</sub> are each independently of the others hydrogen,  $C_1$ - $C_4$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_7$ cycloalkyl, phenyl, or phenyl substituted by halogen, nitro, cyano,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ haloalkylthio,  $C_1$ - $C_4$ haloalkylthio,  $C_1$ - $C_4$ haloalkylthio,  $C_1$ - $C_4$ haloalkyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ haloalkyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_6$ alkoxycarbonyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkylsulfinyl,  $C_4$ - $C_4$ alkylsulfinyl,  $C_5$ - $C_6$ alkylsulfinyl,  $C_7$ - $C_6$ alkylsulfonyl,  $C_7$ - $C_6$ alkylsulfinyl,  $C_7$ - $C_7$ alkylsulfonyl,  $C_7$ - $C_7$ alkylsulfinyl,  $C_7$ - $C_7$ alkoxycarbonyl, di( $C_7$ - $C_7$ alkyl)arnino,  $C_7$ - $C_7$ alkoxycarbonyl,  $C_7$ - $C_7$ alkoxy,  $C_7$ - $C_7$ alkoxy,  $C_7$ - $C_7$ alkyl- $C_7$ - $C_7$ alkyl- $C_7$ - $C_7$ alkyl- $C_7$ - $C_7$ -

or an agronomically acceptable salt of such a compound, and

b) a synergistically effective amount of one or more compounds selected from a compound of formula 2.1

wherein R<sub>51</sub> is CH<sub>2</sub>-OMe, ethyl or hydrogen;

R<sub>S2</sub> is hydrogen or R<sub>51</sub> and R<sub>S2</sub> together are the group -CH=CH-CH=CH-; and a compound of formula 2.2

wherein  $R_{53}$  is ethyl,  $R_{54}$  is methyl or ethyl and  $R_{55}$  is -CH(Me)-CH<sub>2</sub>OMe, <S>-CH(Me)-CH<sub>2</sub>OMe, CH<sub>2</sub>OMe or CH<sub>2</sub>O-CH<sub>2</sub>CH<sub>3</sub>; and a compound of formula 2.3

wherein R<sub>58</sub> is CH(Me)-CH<sub>2</sub>OMe or <S>CH(Me)-CH<sub>2</sub>OMe; and a compound of formula 2.4

wherein  $R_{57}$  is chlorine, methoxy or methylthio,  $R_{58}$  is ethyl and  $R_{59}$  is ethyl, isopropyl, -C(CN)(CH<sub>3</sub>)-CH<sub>3</sub> or tert-butyl; and a compound of formula 2.5

wherein R<sub>60</sub> is ethyl or n-propyl, R<sub>61</sub> is COO 1/2 Ca<sup>++</sup>, -CH<sub>2</sub>-CH(Me)S-CH<sub>2</sub>CH<sub>3</sub> or the group

and X is oxygen, N-O-CH<sub>2</sub>CH<sub>3</sub> or N-O-CH<sub>2</sub>CH=CH-Cl;

and a compound of formula 2.6

wherein  $R_{82}$  is hydrogen, methoxy or ethoxy,  $R_{83}$  is hydrogen, methyl, methoxy or fluorine,  $R_{84}$  is COOMe, fluorine or chlorine,  $R_{85}$  is hydrogen or methyl, Y is methine, C-F or nitrogen, Z is methine or nitrogen and  $R_{66}$  is fluorine or chlorine; and a compound of formula 2.7

wherein  $R_{67}$  is hydrogen or -C(O)-S-n-octyl; and a compound of formula 2.8

wherein  $R_{68}$  is either bromine or iodine; and a compound of formula 2.9

wherein  $R_{69}$  is chlorine or nitro; and a compound of formula 2.10

wherein  $R_{70}$  is fluorine or chlorine and  $R_{71}$  is -CH<sub>2</sub>-CH(Cl)-COOCH<sub>2</sub>CH<sub>3</sub> or -NH-SO<sub>2</sub>Me; and a compound of formula 2.11

wherein  $R_{72}$  is trifluoromethyl or chlorine; and a compound of formula 2.12

wherein R<sub>73</sub> is NH<sub>2</sub> or <S>NH<sub>2</sub>; and a compound of formula 2.13

wherein  $Y_1$  is nitrogen, methine, NH-CHO or N-Me,  $Y_2$  is nitrogen, methine or C-I,  $Y_3$  is methine,  $Y_4$  is methine or  $Y_3$  and  $Y_4$  together are sulfur or C-CI,  $Y_5$  is nitrogen or methine,  $Y_6$  is methyl, diffuoromethoxy, trifluoromethyl or methoxy,  $Y_7$  is methoxy or diffuoromethoxy and  $R_{74}$  is CONMe<sub>2</sub>, COOMe, COOC<sub>2</sub>H<sub>5</sub>, trifluoromethyl, CH<sub>2</sub>-CH<sub>2</sub>CF<sub>3</sub> or SO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, or a sodium salt thereof ("Me" being in each case the methyl group); and the compound of formula 2.13.c

and the compound of formula 2.14

$$Me \xrightarrow{Me} N \xrightarrow{N-N} Me$$

$$Me \xrightarrow{N-N} N \xrightarrow{N-H} (2.14),$$

and the compound of formula 2.15

( )

$$O_2N$$
  $O_2$   $O_2$ 

and the compound of formula 2.18

and the compound of formula 2.19

and the compound of formula 2.20

and the compound of formula 2.23

and the compound of formula 2.26

and the compound of formula 2.27

and the compound of formula 2.28

1

and the compound of formula 2.30

and the compound of formula 2.31

and the compound of formula 2.32

(\_)

$$H_2N - SO_2NHCO_2CH_3$$
 (2.34), and the compound of formula 2.35

$$CH_{2}NH - N - CF_{3}$$

$$CH_{2}NH - CI - O$$

$$(2.35),$$

$$CH_3$$
 $N$ 
 $O$ 
 $C(CH_3)_3$ 
 $(2.36),$ 

and the compound of formula 2.37 
$$N = CO_2CH_3$$
 (2.37),

and the compound of formula 2.38 
$$CH_3SOC$$
  $CH_2CH(CH_3)_2$  (2.38),

and the compound of formula 2.39 
$$(CH_3)_2N$$
  $N$   $N$   $O$   $(2.39),$ 

$$CI - \left\langle \underline{\phantom{C}} \right\rangle - OCH_2CO_2H$$
 $CH_3$ 
 $CH_3$ 

and the compound of formula 2.42

$$(CH_3)_3C \nearrow S \longrightarrow NCONHCH_3$$
 $N-N$  (2.43),

and the compound of formula 2.43

 $\binom{n}{n}$ 

and the compound of formula 2.44

and the compound of formula 2.45

and the compound of formula 2.48

and the compound of formula 2.49

and the compound of formula 2.50

$$H_3C$$
 $CH_3$ 
 $CH_3$ 

( )

$$CI \xrightarrow{F} O \xrightarrow{CH_3} F$$

$$O \xrightarrow{F} F$$

$$O \xrightarrow{CH_3} CH_3$$

$$O \xrightarrow{CH_3} CH_3$$

$$O \xrightarrow{CH_3} CH_3$$

In the above formulae, "Me" is a methyl group. The alkyl groups appearing in the substituent definitions may be straight-chained or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl and also branched isomers thereof. Alkoxy, alkenyl and alkynyl radicals are derived from the mentioned alkyl radicals. The alkenyl and alkynyl groups may be unsaturated once or more than once.

An alkylene group may be substituted by one or more methyl groups; preferably, such alkylene groups are unsubstituted in each case. The same also applies to all C<sub>3</sub>-C<sub>5</sub>cycloalkyl-, C<sub>3</sub>-C<sub>5</sub>oxacycloalkyl-, C<sub>3</sub>-C<sub>5</sub>thiacycloalkyl-, C<sub>3</sub>-C<sub>4</sub>dioxacycloalkyl-, C<sub>3</sub>-C<sub>4</sub>dithiacycloalkyl-, C<sub>3</sub>-C<sub>4</sub>oxathiacycloalkyl- and N(CH<sub>2</sub>)-containing groups.

Halogen is, generally, fluorine, chlorine, bromine or iodine. The same correspondingly applies to halogen in the context of other definitions, such as haloalkyl or halophenyl.

Haloalkyl groups having a chain length of from 1 to 6 carbon atoms are, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl and 2,2,2-trichloroethyl, pentafluoroethyl, heptafluoro-n-propyl, perfluoro-n-hexyl; haloalkyl groups in the definitions of  $R_2$ ,  $R_3$  and especially  $R_5$  are preferably trichloromethyl, dichlorofluoromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl or heptafluoro-n-propyl.

Suitable haloalkenyl radicals include alkenyl groups substituted one or more times by halogen, halogen being fluorine, chlorine, bromine or iodine and especially fluorine or chlorine, for example 2,2-difluoro-1-methylvinyl, 3-fluoropropenyl, 3-chloropropenyl, 3-chloropropenyl, 3-bromopropenyl, 2,3,3-trifluoropropenyl, 2,3,3-trichloropropenyl and 4,4,4-trifluorobut-2-en-1-yl. Preferred C<sub>2</sub>-C<sub>12</sub>alkenyl radicals substituted once, twice or three times by halogen are those having a chain length of from 2 to 5 carbon atoms. Suitable haloalkynyl radicals

include, for example, alkynyl groups substituted one or more times by halogen, halogen being bromine or iodine and, especially, fluorine or chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluoro-but-2-yn-1-yl. Preferred alkynyl groups substituted one or more times by halogen are those having a chain length of from 2 to 5 carbon atoms.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy or a pentyloxy or hexyloxy isomer, preferably methoxy and ethoxy. Alkylcarbonyl is preferably acetyl or propionyl. Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl, preferably methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl, preferably have a chain length of from 1 to 8 carbon atoms.

Haloalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy or 2,2,2-trichloroethoxy, preferably difluoromethoxy, 2-chloroethoxy or trifluoromethoxy.

Alkylthio groups preferably have a chain length of from 1 to 8 carbon atoms.

Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio or ethylthio. Alkylsulfinyl, isobutylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, sulfinyl, sec-butylsulfinyl or tert-butylsulfinyl, preferably methylsulfinyl or ethylsulfinyl.

Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, preferably methylsulfonyl, preferably methylsulfonyl, or ethylsulfonyl, preferably methylsulfonyl, or ethylsulfonyl, preferably methylsulfonyl or ethylsulfonyl.

Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or a butylamine isomer. Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, dibutylamino or diisopropylamino. Preference is given to alkylamino groups having a chain length of from 1 to 4 carbon atoms. Alkoxyalkyl groups preferably have from 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl. Alkylthioalkyl groups preferably have from 1 to 6 carbon atoms. Alkylthioalkyl is, for example, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthio-

ethyl, n-propylthiomethyl, n-propylthioethyl, isopropylthiomethyl, isopropylthioethyl, butylthiomethyl, butylthioethyl or butylthiobutyl.

The cycloalkyl groups preferably have from 3 to 6 ring carbon atoms and may be substituted by one or more methyl groups; they are preferably unsubstituted, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Phenyl, including phenyl as part of a substituent such as phenoxy, benzyl, benzyloxy, benzoyl, phenylthio, phenylalkyl, phenoxyalkyl or tosyl, may be in mono- or poly-substituted form, in which case the substituents may, as desired, be in the ortho-, meta- and/or para-position(s).

The invention also includes the salts that the compounds of formula I may form with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases. Among the alkali metal and alkaline earth metal hydroxides used as salt formers, emphasis is to be given to the hydroxides of lithium, sodium, potassium, magnesium and calcium, but especially those of sodium and potassium.

Examples of suitable amines for ammonium salt formation that come into consideration are ammonia as well as primary, secondary and tertiary C1-C18alkylamines, C1-C4hydroxyalkylamines and C2-C4alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methyl-ethylamine, methyl-isopropylamine, methylhexylamine, methyl-nonylamine, methyl-pentadecylamine, methyl-octadecylamine, ethylbutylamine, ethyl-heptylamine, ethyl-octylamine, hexyl-heptylamine, hexyl-octylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-namylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2amine, dibutenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-secbutylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary aryl amines for example anilines, methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylenediamines, benzidines, naphthylamines and

o-, m- and p-chloroanilines; but especially triethylamine, isopropylamine and diisopropylamine.

It is extremely surprising that the combination of the active ingredient of formula I with one or more active ingredients selected from formulae 2.1 to 2.51 exceeds the additive effect on the weeds to be controlled that is to be expected in principle, and thus broadens the range of action of the individual active ingredients especially in two respects: Firstly, the rates of application of the individual compounds of formulae 1 and 2.1 to 2.51 are reduced while a good level of action is maintained and, secondly, the composition according to the invention achieves a high level of weed control also in those cases where the individual substances, in the range of low rates of application, have become unusable from the agronomic standpoint. The result is a considerable broadening of the spectrum of weeds and an additional increase in selectivity in respect of the crops of useful plants, as is necessary and desirable in the event of an unintentional overdose of active ingredient. The composition according to the invention, while retaining excellent control of weeds in crops of useful plants, also enables greater flexibility in succeeding crops.

The composition according to the invention can be used against a large number of agronomically important weeds, such as Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Phaseolus, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica. The composition according to the invention is suitable for all methods of application conventionally used in agriculture, e.g. pre-emergence application, post-emergence application and seed dressing. The composition according to the invention is suitable especially for controlling weeds in crops of useful plants, such as cereals, rape, sugar beet, sugar cane, plantation crops, rice, maize and soybeans, and also for non-selective weed control.

"Crops" are to be understood to mean also those crops which have been made tolerant to herbicides or classes of herbicides as a result of conventional methods of breeding or genetic engineering.

Preferred compositions according to the invention comprise compounds of formula I wherein

WO 01/54501 PCT/EP01/00720

each R is independently hydrogen, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>2</sub>-C<sub>6</sub>haloalkenyl, C<sub>2</sub>-C<sub>6</sub>alkynyl, C2-C6haloalkynyl, C3-C6cycloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C6alkylthio, C1-C6alkylsulfinyl, C1-C6alkylsulfonyl, C1-C6haloalkyl, C1-C6haloalkylthio, C1-C6haloalkylsulfinyl, C1-C6haloalkylsulfonyl,  $C_1$ - $C_6$ alkoxycarbonyl,  $C_1$ - $C_6$ alkylcarbonyl,  $C_1$ - $C_6$ alkylamino, di( $C_1$ - $C_6$ alkyl)amino,  $C_1$ - $C_6$ alkylaminosulfonyl, di( $C_1$ - $C_6$ alkyl)aminosulfonyl, -N( $R_1$ )-S- $R_2$ , -N( $R_3$ )-SO- $R_4$ , -N(R<sub>5</sub>)-SO<sub>2</sub>-R<sub>6</sub>, nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C1-C6alkyl, C1-C6haloalkyl, C3-C6alkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>haloalkynyl, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C3-C6alkynyloxy, mercapto, C1-C6alkylthio, C1-C6haloalkylthio, C3-C6alkenylthio, C<sub>3</sub>-C<sub>6</sub>haloalkenylthio, C<sub>3</sub>-C<sub>6</sub>alkynylthio, C<sub>2</sub>-C<sub>5</sub>alkoxyalkylthio, C<sub>3</sub>-C<sub>5</sub>acetylalkylthio, C<sub>3</sub>-C<sub>6</sub>alkoxycarbonylalkylthio, C<sub>2</sub>-C<sub>4</sub>cyanoalkylthio, C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub>haloalkylsulfonyl, aminosulfonyl, C<sub>1</sub>-C<sub>2</sub>alkylaminosulfonyl, C<sub>2</sub>-C<sub>4</sub>dialkylaminosulfonyl, C<sub>1</sub>-C<sub>3</sub>alkylene-R<sub>45</sub>, NR<sub>48</sub>R<sub>47</sub>, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by C<sub>1</sub>-C<sub>3</sub>aikyl, C<sub>1</sub>-C<sub>3</sub>haloaikyl, C<sub>1</sub>-C<sub>3</sub>aikoxy, C<sub>1</sub>-C<sub>3</sub>haloaikoxy, halogen, cyano or by nitro;

or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C1-C4alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>3</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>haloalkynyl, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, mercapto, C<sub>1</sub>-C<sub>6</sub>alkylthio, C1-C6haloalkylthio, C3-C6alkenylthio, C3-C6haloalkenylthio, C3-C6alkynylthio, C2-C<sub>5</sub>alkoxyalkylthio, C<sub>3</sub>-C<sub>5</sub>acetylalkylthio, C<sub>3</sub>-C<sub>6</sub>alkoxycarbonylalkylthio, C<sub>2</sub>-C<sub>4</sub>cyanoalkylthio, C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub>haloalkylsulfonyl, aminosulfonyl, C1-C2alkylaminosulfonyl, C2-C4dialkylaminosulfonyl, C1-C3alkylene-R7, NR8R9, halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by C1-C3alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C<sub>3</sub>haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen.

.{ }

Compositions according to the invention that are also preferred comprise, as compound of formula I, a compound of formula Ia

#### wherein

 $R_{48} \text{ is } C_1\text{-}C_6 \text{alkyl, } C_2\text{-}C_6 \text{alkenyl, } C_2\text{-}C_6 \text{haloalkenyl, } C_2\text{-}C_6 \text{alkynyl, } C_2\text{-}C_6 \text{haloalkynyl, } C_3\text{-}C_6 \text{cyclostate}$ alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, or a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C1-C4alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ haloalkynyl,  $C_3$ - $C_6$ haloalkynyl, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, mercapto, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>-C<sub>6</sub>haloalkylthio, C<sub>3</sub>-C<sub>6</sub>alkenylthio, C<sub>3</sub>-C<sub>6</sub>haloalkenylthio, C<sub>3</sub>-C<sub>6</sub>alkynylthio, C<sub>2</sub>-C<sub>5</sub>alkoxyalkylthio,  $C_3$ - $C_5$ acetylalkylthio,  $C_3$ - $C_6$ alkoxycarbonylalkylthio,  $C_2$ - $C_4$ cyanoalkylthio,  $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_2$ alkylaminosulfonyl,  $C_2$ - $C_4$ dialkylaminosulfonyl,  $C_1$ - $C_3$ alkylene- $R_7$ ,  $NR_8R_9$ , halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen;

 $R_{49}$  is hydrogen,  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkyl, halogen, or phenyl which may be substituted by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro, and  $R_{50}$  is  $C_1$ - $C_6$ haloalkyl.

Among that group of compounds preference is given to those wherein  $R_{48}$  is  $C_1$ - $C_6$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_2$ - $C_6$ haloalkenyl,  $C_2$ - $C_6$ alkynyl,  $C_2$ - $C_6$ haloalkyl,  $C_3$ - $C_6$ cycloalkyl or  $C_1$ - $C_6$ -haloalkyl.

Preference is given also to compositions wherein, in formula I, Q is the group  $Q_2$  or  $Q_3$ , wherein, especially, in the group  $Q_2$  R<sub>23</sub> is hydroxy and in the group  $Q_3$  R<sub>40</sub> is hydroxy. Among that group emphasis is to be given to those compounds wherein m is 2 and one substituent R is  $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkyl or  $C_1$ - $C_4$ alkoxy- $C_1$ - $C_4$ alkyl.

Further preferred synergistic mixtures according to the invention comprise as active ingredients a compound of formula I and either a compound of formula 2.2,a

chloroacetyl-2-ethyl-6-methylaniline), or a compound of formula 2.2.b

$$CH_3$$
  $C(O)$ - $CH_2CI$   $C(C)$ - $CH_2CH_3$   $C(C)$ - $CH_2CH_3$   $C_2H_5$   $CH_3$   $C(C)$ - $CH_2$ 

or a compound of formula 2.2 wherein  $R_3$  is ethyl,  $R_4$  is methyl and  $R_5$  is ethoxymethyl, or a compound of formula 2.2 wherein  $R_3$  is ethyl,  $R_4$  is ethyl and  $R_5$  is methoxymethyl, or a compound 2.3, or a compound of formula 2.30, or a compound of formula 2.4, or a compound of formula 2.13, or a compound of formula 2.14, or a compound of formula 2.6 wherein  $R_{12}$  is hydrogen, Z is methine,  $R_{13}$  is methyl, Y is nitrogen,  $R_{14}$  is fluorine,  $R_{15}$  is hydrogen and  $R_{16}$  is fluorine, or  $R_{12}$  is methoxy, Z is methine,  $R_{13}$  is methoxy, Y is methine,  $R_{14}$  is chlorine,  $R_{15}$  is methyl and  $R_{16}$  is chlorine, or a compound of formula 2.7 wherein  $R_{17}$  is -C(O)-S-n-octyl, or a compound of formula 2.12, or a compound of formula 2.18, or a compound of formula 2.19, or a compound of formula 2.21, or a compound of formula 2.25, or a compound of formula 2.33, or a compound of formula 2.45, or a compound of formula 2.31.

Especially preferred synergistic mixtures according to the invention comprise as active ingredients a compound of formula I and either a compound of formula 2.2.a

chloroacetyl-2-ethyl-6-methylaniline), or a compound of formula 2.2.b

$$CH_3$$
 $C(O)$ - $CH_2CI$ 
 $C_2H_5$ 
 $CH_3$ 
 $C_2H_5$ 
 $CH_3$ 
 $CO$ - $CH_2CH_3$ 
 $CO$ - $CH_2CH_3$ 

or a compound of formula 2.2 wherein  $R_3$  is ethyl,  $R_4$  is methyl and  $R_5$  is ethoxymethyl, or a compound of formula 2.2 wherein  $R_3$  is ethyl,  $R_4$  is ethyl and  $R_5$  is methoxymethyl, or a compound of formula 2.3, or a compound of formula 2.30.

Combinations of the compounds of formula 1 with the compound of formula 2.2a

chloroacetyl-2-ethyl-6-methylaniline) have been found to be especially effective, the compound 1.001 indicated hereinbelow under Table 1 being especially preferred as the compound of formula 1.

The compounds of formula I can be prepared in a manner analogous to the processes described in WO 97/46530, by

a) reacting a compound of formula II

(\_)

wherein R and m are as defined for formula I and X is a leaving group, e.g. halogen, in an inert, organic solvent in the presence of a base, with compounds of formula III, IV,V or VI

wherein  $R_{20}$ ,  $R_{23}$ ,  $R_{30}$  and  $R_{40}$  are hydroxy and the other substituents are as defined for formula I, to form the compounds of formula VII, VIII, IX or X

$$(VIII)$$
,  $(VIII)$ 

Ì

$$(R)$$
n  $(R)$ n

and then isomerising those compounds, for example in the presence of a base and a catalytic amount of dimethylaminopyridine (DMAP) or a cyanide source; or b) reacting a compound of formula XI

wherein R and m are as defined for formula I, with compounds of formula III, IV, V or VI in an inert, organic solvent in the presence of a base and a coupling agent, to form the compound of formula VII, VIII, IX or X, and then isomerising that compound, for example in the manner described under route a).

Compounds of formula I wherein Q is a group Q<sub>5</sub>

wherein Z is sulfur and  $R_{38}$  and  $R_{01}$  are as defined for formula I, can be prepared in a manner analogous to known processes (e.g. those described in WO 97/43270), by either a) converting a compound of formula XII

 $\{\cdot,\cdot\}$ 

( )

wherein  $R_{36}$ , R and m are as defined, in the presence of a base, carbon disulfide and an alkylating reagent of formula XIII

$$R_{01}-X_1$$
 (XIII),

wherein  $R_{01}$  is as defined for formula I and  $X_1$  is a leaving group, e.g. halogen or sulfonate, into the compound of formula XIV

$$\begin{array}{c|c} (R)m & O & O \\ \hline N & R_{01}Z & ZR_{01} \end{array}$$
 (XIV),

wherein Z is sulfur and R,  $R_{01}$ ,  $R_{36}$  and m are as defined, and then cyclising that compound with hydroxylamine hydrochloride, optionally in a solvent, in the presence of a base, to form the compound of formula le

wherein Z is sulfur and R,  $R_{36}$ ,  $R_{01}$  and m are as defined, and then oxidising that compound with an oxidising agent, e.g. meta-chloroperbenzoic acid (m-CPBA).

Preparation of the compounds of formula I is illustrated in greater detail in the following Reaction Schemes 1 and 2.

# Reaction Scheme 1

route a):

(R)m 
$$+$$
 III, IV, V or VI  $\frac{\text{base, e.g. } (C_2H_5)_3N_1}{\text{solvent, e.g. } CH_2Cl_2}$ , VII, VIII, IX, or X 0-110°C

route b):

(R)m 
$$\rightarrow$$
 OH  $\rightarrow$  III, IV, V or VI  $\rightarrow$  base, e.g.  $(C_2H_8)_3N$ , coupling reagent, e.g.  $\rightarrow$  VII, VIII, IX, or X  $\rightarrow$  Solvent, e.g.  $\rightarrow$  CH $_2$ CL $_2$ ,  $\rightarrow$  0-110°C

The compounds of formula I containing the groups  $Q_1$ ,  $Q_2$ ,  $Q_3$  and  $Q_4$  wherein  $R_{20}$ ,  $R_{23}$ ,  $R_{30}$  and  $R_{40}$  are hydroxy can especially be prepared according to the above Reaction Scheme.

# Reaction Scheme 2

For preparation of the compounds of formula I wherein Q is a group  $Q_1$  to  $Q_4$  and  $R_{20}$ ,  $R_{23}$ ,  $R_{30}$  and  $R_{40}$  are hydroxy, there are used as starting materials, in accordance with Reaction Scheme 1, route a), the carboxylic acid derivatives of formula II wherein X is a leaving group, for example halogen, e.g. iodine, bromine or especially chlorine, N-oxyphthalimide or N,O-

(formed from dicyclohexylcarbodiimide (DCC) and the appropriate carboxylic acid) or  $^{C_2H_5N=C-NH(CH_2)_3N(CH_3)_2} \quad \text{(formed from N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide }$ 

(EDC) and the appropriate carboxylic acid). Those compounds are reacted in an inert, organic solvent, for example a halogenated hydrocarbon, e.g. dichloromethane, a nitrile, e.g. acetonitrile, or an aromatic hydrocarbon, e.g. toluene, and in the presence of a base, for example an alkylamine, e.g. triethylamine, an aromatic amine, e.g. pyridine or 4-dimethylaminopyridine (DMAP), with the dione derivatives of formula III, IV, V or VI to form the isomeric enol ethers of formula VII, VIII, IX and X. The esterification occurs at temperatures of from 0°C to 110°C.

The isomerisation of the ester derivatives of formulae VII, VIII, IX and X to form the dione derivatives of formula I (wherein  $R_{20}$ ,  $R_{23}$ ,  $R_{30}$  and  $R_{40}$  are hydroxy) can be carried out, for example, analogously to EP 369 803 in the presence of a base, for example an alkylamine, e.g. triethylamine, a carbonate, e.g. potassium carbonate, and a catalytic amount of DMAP or a cyanide source, for example acetone cyanohydrin or potassium cyanide.

,

According to Reaction Scheme 1, route b), the desired diones of formula I (wherein  $R_{20}$ ,  $R_{23}$ ,  $R_{30}$  and  $R_{40}$  are hydroxy) can be obtained, for example, analogously to Chem. Lett. 1975, 1045 by means of esterification of the carboxylic acids of formula XI with the dione derivatives of formula III, IV, V or VI in an inert solvent, for example a halogenated hydrocarbon, e.g. dichloromethane, a nitrile, e.g. acetonitrile, or an aromatic hydrocarbon, e.g. toluene, in the presence of a base, for example an alkylamine, e.g. triethylamine, and a coupling agent, for example 2-chloro-1-methyl-pyridinium iodide. The esterification occurs, depending on the solvent used, at temperatures of from 0°C to 110°C and yields first, as described under route a), the isomeric ester of formula I, which can be isomerised, as described under route a), for example in the presence of a base and a catalytic amount of DMAP, or a cyanide source to form the desired dione derivatives of formula I (wherein  $R_{20}$ ,  $R_{23}$ ,  $R_{30}$  and  $R_{40}$  are hydroxy).

Preparation of the compounds of formula I wherein Q is the group  $Q_5$  can be carried out in accordance with Reaction Scheme 2, by reacting the b-diketone derivative of formula XII, for example analogously to Synthesis 1991, 301; ibid. 1988, 793; or Tetrahedron 32, 3055 (1976), with carbon disulfide in the presence of a base, for example a carbonate, e.g. potassium carbonate, a metal hydride, e.g. sodium hydride, or potassium fluoride on aluminium, and an alkylating reagent of formula XIII, wherein  $X_1$  is a leaving group, for example halogen, e.g. iodine, bromine or especially chlorine,  $R_{25}OSO_2O$ -,  $CH_3SO_2O$ - or

$$\mathrm{CH_3}$$
 SO<sub>2</sub>O- . The reaction is preferably carried out in a solvent, for example an

amide, e.g. N,N-dimethylformamide (DMF), a sulfoxide, e.g. dimethyl sulfoxide (DMSO), or a nitrile, e.g. acetonitrile. The ketene thioacetal of formula XIV formed is cyclised using hydroxylamine hydrochloride in the presence of a base, for example sodium acetate, in a solvent, for example an alcohol, e.g. ethanol, or an ether, e.g. tetrahydrofuran, to form the compound of formula le wherein Z is S-. The cyclisation reaction is carried out at temperatures of from  $0^{\circ}$ C to  $100^{\circ}$ C. The compound of formula le (Z=S) may optionally be oxidised in a manner analogous to standard procedures, for example using peracids, e.g. meta-chloroperbenzoic acid (m-CPBA) or peracetic acid, to form the corresponding sulfones and sulfoxides of formula le (Z = SO- or SO<sub>Z</sub>), wherein the degree of oxidation at the sulfur atom (Z = SO- or SO<sub>Z</sub>) can be controlled by the amount of oxidising agent.

Oxidation to the compound of formula le (Z = SO- or  $SO_2$ -) is carried out as described, for example, in H. O. House, "Modern Synthetic Reactions" W. A. Benjamin, Inc., Menlo Park, California, 1972, pages 334-335 and 353-354.

The activated carboxylic acid derivatives of formula II in Reaction Scheme 1 (route a), wherein X is a leaving group, for example halogen, e.g. bromine, iodine or especially chlorine, can be prepared in accordance with known standard procedures, for example as described in C. Ferri "Reaktionen der organischen Synthese", Georg Thieme Verlag, Stuttgart, 1978, page 461 ff and as shown in the following Reaction Scheme 3.

#### **Reaction Scheme 3**

(R)m OH 
$$W_1$$
-X, DMF  $Cat.$ ,  $X$   $W_1$ -X, DMF  $X$   $W_1$ -X, DMF

According to Reaction Scheme 3, preparation of the compounds of formula II (X = leaving group) or II (X = halogen) is carried out, for example, by using a halogenating agent, for example a thionyl halide, e.g. thionyl chloride or bromide; a phosphorus halide or phosphorus oxychloride or phosphorus oxychloride or phosphorus pentabromide or phosphoryl bromide; or an oxalyl halide, e.g. oxalyl chloride, or by using a reagent for the formation of an activated ester for example N,N'-dicyclohexyl-carbodiimide (DCC) or N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide (EDC) of formula X. In the compound of formula X, as a halogenating agent, X, for example, is a leaving group, for example halogen, e.g. fluorine, bromine or iodine and especially chlorine, and W<sub>1</sub> is, for example, PCl<sub>2</sub>, SOCl, SOBr or CICOCO.

The procedure is optionally carried out in an inert, organic solvent, for example in an aliphatic, halogenated aliphatic, aromatic or halogenated aromatic hydrocarbon, e.g. n-hexane, benzene, toluene, xylenes, dichloromethane, 1,2-dichloroethane or chlorobenzene, at reaction temperatures in the range from -20°C to the reflux temperature of the reaction mixture, preferably at from 40 to 150°C, and in the presence of a catalytic amount of N,N-

dimethylformamide. Such reactions are generally known and described in the literature in a number of variants with respect to the leaving group X.

The compounds of formulae III, IV, V and VI are known and can be prepared in an analogous manner to that described, for example, in WO 92/07837, DE 3 818 958, EP 338 992 and DE 3 902 818.

The compounds of formula XII in Reaction Scheme 2 can be obtained by standard procedures, for example from the corresponding compounds of formula II

wherein R and m are as defined for formula I and X is a leaving group, for example halogen, for example *via* Claisen condensation, or from the compounds of formula II by reaction with a ketocarboxylic acid salt of formula XV

$$COO^*M^+$$
 $H_2C$ 
 $COR_{36}$ 
 $(XV),$ 

wherein  $R_{38}$  is as defined for formula I and M<sup>+</sup> is an alkali metal ion (cf., for example, WO 96/26192).

The compounds of formulae II and XI are known and can be prepared in an analogous manner to that described, for example, in WO 97/46530, Heterocycles, 48, 779 (1998), Heterocycles, 46, 129 (1997) or Tetrahedron Letters, 1749 (1998).

For the preparation of all further compounds of formula I functionalised according to the definition of  $(R)_m$ , a large number of known standard procedures, for example alkylation, halogenation, acylation, amidation, oximation, oxidation and reduction, are available, the choice of a suitable preparation procedure being governed by the properties (reactivities) of

the substituents in the respective intermediates. Examples of such reactions are given in WO 97/46353.

All further compounds falling within the scope of formula I can be prepared by simple means, taking into account the chemical properties of the pyridyl and  $\widehat{Q}$  moieties.

The end products of formula I can be isolated in customary manner by concentration or evaporation of the solvent and can be purified by recrystallisation or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons, by distillation or by means of column chromatography and a suitable eluant.

Furthermore, the person skilled in the art will be familiar with the sequence in which certain reactions should advantageously be performed in order to avoid possible subsidiary reactions.

Where synthesis is not directed at the isolation of pure isomers, the product may be in the form of a mixture of two or more isomers. The isomers can be separated according to methods known *per se*.

#### Preparation Examples:

Example P1: Preparation of 4-hydroxy-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-bicyclo[3.2.1]oct-3-en-2-one:

6.68 g (0.0305 mol) of 2-methyl-6-trifluoromethyl-nicotinic acid methyl ester (prepared in the manner described in Heterocycles, 46, 129 (1997)) are dissolved in 250 ml of methanol/water (3:1 mixture) and 1.92 g (0.046 mol) of lithium hydroxide hydrate are added in portions at 22°C. After 4 hours at 22°C, the reaction mixture is added to ethyl acetate and 2N hydrochloric acid; the organic phase is washed three times with water, dried with sodium sulfate and concentrated by evaporation, and the residue is triturated with a small amount of hexane. After filtering, 5.69 g (90 % of theory) of the expected 2-methyl-6-trifluoromethyl-nicotinic acid having a melting point of 147-149°C are obtained.

The 2-methyl-6-trifluoromethyl-nicotinic acid (2.0 g, 0.0098 mol) obtained is dissolved in 20 ml of oxalyl chloride. Three drops of dimethylformamide are added and the mixture is refluxed for 1 hour. The mixture is then concentrated using a rotary evaporator and the residue (2-methyl-6-trifluoromethyl-nicotinoyl chloride) is taken up in 30 ml of methylene

Ì

chloride. At 0°C, 2.7 ml (0.0196 mol) of triethylamine and 0.12 g (0.00098 mol) of dimethylaminopyridine are added, and then 1.49 g (0.0108 mol) of bicyclo[3.2.1]oct-2,4-dione. dissolved in 20 ml of methylene chloride, are added dropwise. After 3 hours at 22°C, the reaction mixture is extracted by shaking with 2N hydrochloric acid. The separated methylene chloride phase is washed with water and then extracted by shaking with 10 % aqueous sodium bicarbonate solution, dried over sodium sulfate and concentrated by evaporation. 3.18 g (100 % of theory) of 2-methyl-6-trifluoromethyl-nicotinic acid 4-oxo-bicyclo[3.2.1]oct-2en-2-yl ester are obtained in the form of an oil, which can be used further without purification. 3.02 g (0.0093 mol) of methyl-6-trifluoromethyl-nicotinic acid 4-oxo-bicyclo[3.2.1]oct-2-en-2yl ester and 1.9 ml (0.0136 mol) of triethylamine are dissolved in 45 ml of acetonitrile. At 22°C, 0.01 ml of acetone cyanohydrin is added. After 18 hours at 22°C, the reaction mixture is poured onto a mixture of water and 2N hydrochloric acid and extracted by shaking with ethyl acetate. The ethyl acetate phase is washed with water and then with brine, dried over sodium sulfate and concentrated by evaporation, and the residue is dissolved in a small amount of warm acetone. On being left to stand, the product crystallises out. After filtering, 0.99 g (33 % of theory) of the expected 4-hydroxy-3-(2-methyl-6-trifluoromethyl-pyridine-3carbonyl)-bicyclo[3.2.1]oct-3-en-2-one is obtained in the form of white crystals (m.p. 75-77°C).

# Example P2: (5-Cyclopropyl-3-methylsulfanyl-isoxazol-4-yl)-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-methanone:

14.8 g (0.080 mol) of 3-cyclopropyl-3-oxo-propionic acid tert-butyl ester are dissolved in 25 ml of MeOH and 1.93 g (0.080 mol) of magnesium are added. 7 ml of carbon tetrachloride are added dropwise while cooling in an ice bath and the reaction mixture is stirred at 22°C for 1 hour to complete the reaction. After concentrating by evaporation, the residue is suspended in 100 ml of acetonitrile and, at 22°C, 16.31 g (0.073 mol) of 2-methyl-6-trifluoromethyl-nicotinoyl chloride (prepared in the manner described in Example P1), dissolved in 50 ml of acetonitrile, are added dropwise. After 6 hours, the reaction mixture is taken up in ethyl acetate and washed with saturated sodium bicarbonate solution. The separated ethyl acetate phase is washed with water, dried over sodium sulfate and concentrated by evaporation. The residue is dissolved in 160 ml of methylene chloride and 10 ml of trifluoroacetic acid are added dropwise at 22°C. After 18 hours, the reaction mixture is poured into water and extracted with methylene chloride. The methylene chloride phase is washed with water and then with brine, dried over sodium sulfate and concentrated by

evaporation. 17.3 g (88 % of theory) of 1-cyclopropyl-3-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-propane-1,3-dione are obtained in the form of an oil, which can be used further without purification.

The 1-cyclopropyl-3-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-propane-1,3-dione (15.0 g, 0.055 mol) obtained is dissolved in 150 ml of dimethylformamide and  $\overline{50}$  g of potassium fluoride on an aluminium oxide support (Alox) (0.0055 mol/g, 0.276 mol) are added in portions at 0°C. After 5 minutes, 6.7 g (0.088 mol) of carbon disulfide are added. After 2 hours, 23.6 g (0.166 mol) of methyl iodide are added dropwise and the reaction mixture is heated at 22°C. After 2 hours the Alox is filtered off, the filtrate is poured into water and extracted by shaking with ethyl acetate. The ethyl acetate phase is washed with water and then with brine, dried over sodium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel (eluant: ethyl acetate/hexane 15/1). 12.0 g (60 % of theory) of 2-(bis-methylsulfanyl-methylene)-1-cyclopropyl-3-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-propane-1,3-dione are obtained in the form of a solid substance.

12.0 g (0.033 mol) of the product obtained are suspended in 120 ml of ethanol together with 5.4 g (0.066 mol) of anhydrous sodium acetate. 4.6 g (0.066 mol) of hydroxylamine hydrochloride are added and the batch is reacted at 22°C for 5 hours. A further 2.7 g of anhydrous sodium acetate and 2.3 g of hydroxylamine hydrochloride are then added. After 18 hours, the reaction mixture is diluted with water and extracted with ethyl acetate. The ethyl acetate phase is washed with water and then with brine, dried over sodium sulfate and concentrated by evaporation. On triturating with a small amount of ethyl acetate, 9.0 g (79.5 %) of the desired product are obtained in the form of white crystals (m.p. 103-104°C).

### Example P3: (5-Cyclopropyl-3-methylsulfinyl-isoxazol-4-yl)-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-methanone

1.50 g (0.0043 mol) of (5-cyclopropyl-3-methylsulfanyl-isoxazol-4-yl)-(2-methyl-6-trifluoro-methyl-pyridin-3-yl)-methanone are dissolved in 30 ml of acetone/water (2:1 mixture) and 1.02 g (0.0048 mol) of sodium metaperiodate are added in portions at 22°C. After 5 hours, the reaction mixture is concentrated by evaporation using a rotary evaporator. The residue is taken up in water and ethyl acetate. The ethyl acetate phase is dried over sodium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel (eluant: ethyl acetate/hexane 3/1). 0.8 g (51 %) of the desired product is obtained in the form of white crystals (m.p. 96-97°C).

Example P4: Preparation of 3-hydroxy-4,4-dimethyl-2-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-cyclohex-2-enone (A2-B24):

6.68 g (0.0305 mol) of 2-methyl-6-trifluoromethyl-nicotinic acid methyl ester (prepared in the manner described in Heterocycles, 46, 129 (1997)) are dissolved in 250 ml of methanol/water (3:1 mixture) and 1.92 g (0.046 mol) of lithium hydroxide hydrate are added in portions at a temperature of 22°C. After 4 hours at 22°C, the reaction mixture is added to ethyl acetate and 2N hydrochloric acid; the organic phase is washed three times with water, dried over sodium sulfate and concentrated by evaporation, and the residue is triturated with a small amount of hexane. After filtering, 5.69 g (90 % of theory) of the expected 2-methyl-6-trifluoromethyl-nicotinic acid having a melting point of 147-149°C are obtained.

The 2-methyl-6-trifluoromethyl-nicotinic acid (1.026 g, 0.005 mol) obtained is dissolved in 20 ml of oxalyl chloride. Three drops of dimethylformamide are added and the mixture is refluxed for 1 hour. The mixture is then concentrated by evaporation using a rotary evaporator and the residue (2-methyl-6-trifluoromethyl-nicotinoyl chloride) is taken up in 100 ml of methylene chloride. At a temperature of 0°C, 1.6 ml (0.0115 mol) of triethylamine and 0.7 g (0.005 mol) 4,4-dimethyl-cyclohexane-1,3-dione are added. After 2 hours at a temperature of 22°C, the solvent is removed using a vacuum rotary evaporator, the residue that remains is dissolved in 55 ml of acetonitrile and, for rearrangement of the intermediate, 0.15 ml (0.0016 mol) of acetone cyanohydrin and 0.79 ml (0.0057 mol) of triethylamine are added. After stirring for four hours at room temperature, the reaction solution is concentrated by evaporation. The syrup that remains is chromatographed on silica gel. The light-yellow, viscous oil obtained by eluting with a mixture of toluene, ethyl alcohol, dioxane, triethylamine and water (100:40:20:20:5 parts by volume) (Rf = 0.39 based on the said mixture as mobile phase) is dissolved in dichloromethane and washed with 75 ml of hydrochloric acid 5 % and 75 ml of water in succession. After drying the organic solution with Na<sub>2</sub>SO<sub>4</sub>, concentration by evaporation yields 1.05 g (63 %) of pure title compound.

 $^{1}$ H NMR (d<sub>6</sub>-DMSO, δ in ppm): 1.342, s, 6H: 2.088, t, J 9Hz, 2H: 2.685, s, 3H: 2.982, t, J 9Hz, 2H:8.030, d, J 8.1Hz, IH: 8.094, d, J 8.1Hz, 1H.

Example P5: Preparation of 5-methyl-5-trifluoromethyl-cyclohexane-1,3-dione (Example B1066):

0.64 g of sodium is introduced into 40 ml of ethanol, 3.23 ml of acetic acid methyl ester and 4.9 g of 4,4,4-trifluoro-3-methyl-but-2-enoic acid isopropyl ester are incorporated and the

mixture is heated at boiling temperature for 18 hours. After extraction with dilute hydrochloric acid against ethyl acetate, concentration by evaporation is carried out. The non-purified 2-methyl-4,6-dioxo-2-trifluoromethyl-cyclohexanecarboxylic acid methyl ester that remains behind is esterified in the presence of 9.1 g of sodium hydroxide in a mixture of methanol and water at boiling temperature. The mixture is then acidified with hydrochloric acid and extracted with fresh ethyl acetate. After recrystallisation (ethyl acetate), pure 5-methyl-5-trifluoromethyl-cyclohexane-1,3-dione having a melting point of 150-152°C is obtained.

## Example P6: Preparation of 2-hydroxy-1-methoxy-5-methyl-4-oxo-cyclohex-2-enecarboxylic acid methyl ester (B1069):

A 30 % solution of 35.8 g of sodium methanolate is made up in 65 ml of dimethyl sulfoxide and, over a period of 20 minutes, is treated at a temperature of from 30 to 35°C with a mixture of 16.7 g of 3-methyl-3-buten-2-one and 32.4 g of methoxymalonic acid dimethyl ester. The mixture is stirred for 1 hour at a temperature of 35°C, acidified with hydrochloric acid and then extracted several times with dichloromethane. The organic phases are washed with water, dried and concentrated. By crystallising from hot ethyl acetate and hexane, pure 2-hydroxy-1-methoxy-5-methyl-4-oxo-cyclohex-2-enecarboxylic acid methyl ester having a melting point of 117-117.5°C is obtained.

Example P7: Preparation of 2-hydroxy-1-methoxy-5-methyl-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-4-oxo-cyclohex-2-ene-carboxylic acid methyl ester (A2-B1069):

2.23 g of fresh 2-methyl-6-trifluoromethyl-nicotinoyl chloride are added to a mixture of 2.14 g of 2-hydroxy-1-methoxy-5-methyl-4-oxo-cyclohex-2-ene-carboxylic acid methyl ester and 2.02 g of triethylamine in 30 ml of acetonitrile. After about 30 minutes, 0.065 g of potassium cyanide is added and the batch is stirred for 18 hours. The batch is then extracted at pH 2 with water against ethyl acetate, dried over magnesium sulfate and concentrated by evaporation. By filtering over silica gel (mobile phase: ethyl acetate/methanol/triethylamine 85:10:5), pure 2-hydroxy-1-methoxy-5-methyl-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-4-oxo-cyclohex-2-enecarboxylic acid methyl ester is obtained in the form of a viscous oil.

# Example P8: Preparation of 3-hydroxy-4-methoxy-6-methyl-2-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-cyclohex-2-enone (A2-B1070):

0.586 g of potassium hydroxide is added to 1.4 g of 2-hydroxy-1-methoxy-5-methyl-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-4-oxo-cyclohex-2-enecarboxylic acid methyl ester in dioxane/water (5:3) and the batch is stirred for 3 hours. The batch is then acidified (pH 3) and extracted with fresh ethyl acetate. The crude product is purified by chromatography analogously to Example P7. 3-Hydroxy-4-methoxy-8-methyl-2-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-cyclohex-2-enone is obtained in the form of a viscous oil (as a mixture of 3 tautomeric forms, according to <sup>1</sup>H-NMR).

The compounds listed in the following Tables can also be prepared in an analogous manner and using methods described in the general Reaction Schemes 1 and 2 and in the references mentioned therein. In the following Tables Ph is the phenyl group and CC is an ethyne group.

Table 1: Compounds of formula lb:

$$\begin{array}{c|c} R_{78} & O & O \\ \hline R_{78} & N & R_{78} & O \end{array}$$
 (Ib)

| Compd. | R 75                                            | R 76            | R <sub>77</sub> | R 78 | m.p. (°C) |
|--------|-------------------------------------------------|-----------------|-----------------|------|-----------|
| 1.001  | CH₃                                             | CF <sub>3</sub> | н               | н    | 75-77     |
| 1.002  | CH₃CH₂                                          | CF₃             | н               | . н  |           |
| 1.003  | (CH₃)₂CH                                        | CF <sub>3</sub> | Н               | н    | 111-112   |
| 1.004  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> | Н               | Н    |           |
| 1.005  | Ph                                              | CF₃             | Н               | н    | oil       |
| 1.006  | CH₂Br                                           | CF₃             | . Н             | н    |           |
| 1.007  | CH₂OCH₃                                         | CF₃             | Н               | Н    | 124-126   |
| 1.008  | CH₂SMe                                          | CF₃             | н               | Н    | oil       |
| 1.009  | CH₂SO₂Me                                        | CF₃             | Н               | н    | 55-55     |
| 1.010  | SCH₃                                            | CF <sub>3</sub> | н               | Н    |           |

| Compd.             | R 75                                            | R 78                            | R <sub>77</sub> | R 78 | m.p. (°C)  |
|--------------------|-------------------------------------------------|---------------------------------|-----------------|------|------------|
| no.                |                                                 | •                               |                 |      |            |
| 1.011              | SOCH₃                                           | CF <sub>3</sub>                 | Н               | н    |            |
| 1.012              | SO₂CH₃                                          | CF <sub>3</sub>                 | Н               | Н    |            |
| 1.013 <sub>:</sub> | SPh                                             | CF <sub>3</sub>                 | н               | н    | <b>425</b> |
| 1.014              | SOPh                                            | CF <sub>3</sub>                 | Η .             | Н    | •          |
| 1.015              | SO <sub>2</sub> Ph                              | CF <sub>3</sub>                 | Н               | Н    |            |
| 1.016              | CH₃                                             | CF <sub>3</sub> CF <sub>2</sub> | н               | Н    |            |
| 1.017              | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    |            |
| 1.018              | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    |            |
| 1.019              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | Н               | н    |            |
| 1.020              | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    |            |
| 1.021              | CH₂Br                                           | CF₃CF₂                          | Н               | Н    |            |
| 1.022              | CH₂OCH₃                                         | CF <sub>3</sub> CF <sub>2</sub> | н               | Н    |            |
| 1.023              | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | Н               | н    |            |
| 1.024              | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub> CF <sub>2</sub> | H               | Н    |            |
| 1.025              | SCH₃                                            | CF₃CF₂                          | H               | Н    |            |
| 1.026              | SOCH <sub>3</sub>                               | CF₃CF₂                          | н               | Н    |            |
| 1.027              | SO₂CH₃                                          | CF <sub>3</sub> CF <sub>2</sub> | H               | Н    |            |
| 1.028              | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    |            |
| 1.029              | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    |            |
| 1.030              | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | •          |
| 1.031              | CH₃                                             | CHF <sub>2</sub>                | Н               | Н    |            |
| 1.032              | CH₃CH₂                                          | CHF₂                            | Н               | Н    |            |
| 1.033              | (CH₃)₂CH                                        | CHF <sub>2</sub>                | Н               | Н    |            |
| 1.034              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | Н               | Н    |            |
| 1.035              | Ph                                              | CHF₂                            | Н               | H    |            |
| 1.036              | CH₂Br                                           | CHF <sub>2</sub>                | Н               | Н    |            |
| 1.037              | CH₂OCH₃                                         | CHF <sub>2</sub>                | Н               | Н    | •          |
| 1.038              | CH₂SMe                                          | CHF₂                            | Н               | Н    |            |
| 1.039              | CH <sub>2</sub> SO <sub>2</sub> Me              | CHF <sub>2</sub>                | Н               | Н    | •          |
| 1.040              | SCH₃                                            | CHF <sub>2</sub>                | Н               | Н    |            |
| 1.041              | SOCH₃                                           | CHF <sub>2</sub>                | Н               | Н    |            |
| 1.042              | SO₂CH₃                                          | CHF <sub>2</sub>                | н               | Н    |            |

| Compd. | R 75                                            | R 76                            | R <sub>77</sub> | R 78 | m.p. (°C) |
|--------|-------------------------------------------------|---------------------------------|-----------------|------|-----------|
| n.     |                                                 |                                 |                 | ·    |           |
| 1.043  | SPh                                             | CHF <sub>2</sub>                | Н               | н    |           |
| 1.044  | SOPh                                            | CHF <sub>2</sub>                | н               | н    |           |
| 1.045  | SO₂Ph                                           | CHF <sub>2</sub>                | Н               | Н    | -         |
| 1.046  | CH₃                                             | CF <sub>3</sub>                 | CH₃             | Н    |           |
| 1.047  | CH₃CH₂                                          | CF <sub>3</sub>                 | СН₃             | н    |           |
| 1.048  | (CH₃)₂CH                                        | CF₃                             | СН₃             | н    |           |
| 1.049  | CH₃(CH₂)₃                                       | CF <sub>3</sub>                 | СН₃             | H    |           |
| 1.050  | Ph                                              | CF <sub>3</sub>                 | СН₃             | н    |           |
| 1.051  | CH₂Br                                           | CF <sub>3</sub>                 | СН₃             | н    |           |
| 1.052  | · CH <sub>2</sub> OCH <sub>3</sub>              | CF <sub>3</sub>                 | СН₃             | ·H   |           |
| 1.053  | CH₂SMe                                          | CF₃                             | СН₃             | Н    |           |
| 1.054  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF₃                             | СН₃             | Ĥ    | •         |
| 1.055  | SCH <sub>3</sub>                                | CF₃                             | СН₃             | н    | •         |
| 1.056  | SOCH <sub>3</sub>                               | CF₃                             | CH <sub>3</sub> | Н    |           |
| 1.057  | SO₂CH₃                                          | CF₃                             | CH <sub>3</sub> | Н    |           |
| 1.058  | SPh                                             | CF <sub>3</sub>                 | CH₃             | Н    |           |
| 1.059  | SOPh                                            | CF <sub>3</sub>                 | CH₃             | Н    |           |
| 1.060  | SO₂Ph                                           | CF <sub>3</sub>                 | CH₃             | Н    |           |
| 1.061  | CH₃                                             | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н    |           |
| 1.062  | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н    |           |
| 1.063  | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н    |           |
| 1.064  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н    |           |
| 1.065  | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н    |           |
| 1.066  | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н    |           |
| 1.067  | CH₂OCH₃                                         | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | Н    |           |
| 1.068  | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н    |           |
| 1.069  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | н    |           |
| 1.070  | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н    |           |
| 1.071  | SOCH₃                                           | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н    | •         |
| 1.072  | SO₂CH₃                                          | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | Н    |           |
| 1.073  | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | Н    |           |
| 1.074  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н    |           |

| Compd. | R 75                                            | R 76             | R 77            | R 78            | m.p. (°C) |
|--------|-------------------------------------------------|------------------|-----------------|-----------------|-----------|
| n.     |                                                 |                  |                 |                 |           |
| 1.075  | SO₂Ph                                           | CF₃CF₂           | CH₃             | Н               |           |
| 1.076  | · CH <sub>3</sub>                               | CHF₂             | CH <sub>3</sub> | Н               | •         |
| 1.077  | CH₃CH₂                                          | CHF <sub>2</sub> | CH₃             | Н               | -         |
| 1.078  | (CH₃)₂CH                                        | CHF <sub>2</sub> | CH₃             | Н               |           |
| 1.079  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF₂             | CH <sub>3</sub> | Н               |           |
| 1.080  | Ph                                              | CHF <sub>2</sub> | CH₃             | Н               |           |
| 1.081  | CH₂Br                                           | CHF <sub>2</sub> | CH₃             | Н               |           |
| 1.082  | CH₂OCH₃                                         | CHF <sub>2</sub> | CH <sub>3</sub> | Н               |           |
| 1.083  | CH₂SMe                                          | CHF <sub>2</sub> | CH <sub>3</sub> | н               |           |
| 1.084  | CH₂SO₂Me                                        | CHF <sub>2</sub> | CH₃             | н               |           |
| 1.085  | SCH₃                                            | CHF <sub>2</sub> | CH₃             | Н               |           |
| 1.086  | SOCH₃                                           | CHF <sub>2</sub> | CH₃             | Н               | •         |
| 1.087  | SO₂CH₃                                          | CHF <sub>2</sub> | CH₃             | Н               |           |
| 1.088  | SPh                                             | CHF <sub>2</sub> | CH₃             | Н               |           |
| 1.089  | SOPh                                            | CHF <sub>2</sub> | CH <sub>3</sub> | Н               | •         |
| 1.090  | SO₂Ph                                           | CHF <sub>2</sub> | CH₃             | Н               |           |
| 1.091  | CH₃                                             | CF <sub>3</sub>  | Н               | CH₃             | 92-94     |
| 1.092  | CH₃CH₂                                          | CF₃              | Н               | CH₃             |           |
| 1.093  | (CH₃)₂CH                                        | CF <sub>3</sub>  | Н               | CH₃             |           |
| 1.094  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF₃              | Н               | CH₃             |           |
| 1.095  | Ph                                              | CF <sub>3</sub>  | Н               | CH₃             |           |
| 1.096  | CH₂Br                                           | CF₃              | Н               | CH₃             |           |
| 1.097  | CH₂OCH₃                                         | CF <sub>3</sub>  | Н               | CH₃             |           |
| 1.098  | CH₂SMe                                          | CF <sub>3</sub>  | H               | CH₃             |           |
| 1.099  | CH₂SO₂Me                                        | CF <sub>3</sub>  | Н               | CH₃             |           |
| 1.100  | SCH₃                                            | CF₃              | Н               | CH₃             |           |
| 1.101  | SOCH₃                                           | CF <sub>3</sub>  | Н               | CH₃             |           |
| 1.102  | SO₂CH₃                                          | CF <sub>3</sub>  | Н               | CH <sub>3</sub> |           |
| 1.103  | SPh                                             | CF <sub>3</sub>  | Н               | CH <sub>3</sub> |           |
| 1.104  | SOPh                                            | CF <sub>3</sub>  | Н               | CH₃             |           |
| 1.105  | SO₂Ph                                           | CF <sub>3</sub>  | Н               | CH₃             |           |

Table 2: Compounds of formula Ic:

| Compd. | R 75                                            | R 76                            | R <sub>77</sub> | R 78       | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|-----------------|------------|----------|
| no.    |                                                 | •                               | •               | · · ·      |          |
|        |                                                 |                                 |                 |            |          |
| 2.001  | CH₃                                             | CF₃                             | Н               | Н          | 107-109  |
| 2.002  | CH₃CH₂                                          | CF₃                             | Н               | H          | oil      |
| 2.003  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | Н               | , <b>H</b> | oil      |
| 2.004  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | Η .             | н          |          |
| 2.005  | Ph                                              | CF <sub>3</sub>                 | Н               | н          | oil      |
| 2.006  | CH₂Br                                           | CF₃                             | н               | н          |          |
| 2.007  | CH₂OCH₃                                         | CF <sub>3</sub>                 | H ·             | H          |          |
| 2.008  | · CH <sub>2</sub> SMe                           | CF₃                             | Н               | Н          |          |
| 2.009  | CH <sub>2</sub> SO <sub>2</sub> Me .            | CF <sub>3</sub>                 | <b>'H</b>       | н          |          |
| 2.010  | SCH₃                                            | CF <sub>3</sub>                 | Н               | Н          |          |
| 2.011  | SOCH₃                                           | CF <sub>3</sub>                 | Н               | Н          |          |
| 2.012  | SO₂CH₃                                          | CF <sub>3</sub>                 | Н               | Н          |          |
| 2.013  | SPh                                             | CF <sub>3</sub>                 | Н               | Н          |          |
| 2.014  | SOPh                                            | CF <sub>3</sub>                 | Н               | Н          |          |
| 2.015  | SO <sub>2</sub> Ph                              | CF <sub>3</sub>                 | Н               | Н          |          |
| 2.016  | CH <sub>3</sub>                                 | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н          |          |
| 2.017  | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н          |          |
| 2.018  | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н          |          |
| 2.019  | CH₃(CH₂)₃                                       | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н          |          |
| 2.020  | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | н.              | н          | •        |
| 2.021  | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | н               | н          |          |
| 2.022  | CH <sub>2</sub> OCH <sub>3</sub>                | CF₃CF₂                          | Н               | Н          | ē        |

| Compd. | R 75                                            | R 76                            | R <sub>77</sub> | R 78                 | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|-----------------|----------------------|----------|
| no.    |                                                 |                                 |                 |                      |          |
| 2.023  | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | н               | н                    |          |
| 2.024  | CH₂SO₂Me                                        | CF <sub>3</sub> CF <sub>2</sub> | н               | Н                    |          |
| 2.025  | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | H               | Н                    | ~        |
| 2.026  | SOCH₃                                           | CF <sub>3</sub> CF <sub>2</sub> | н               | Н                    | •        |
| 2.027  | SO₂CH₃                                          | CF <sub>3</sub> CF <sub>2</sub> | Н               | н                    |          |
| 2.028  | SPh                                             | CF₃CF₂                          | Н               | Н                    |          |
| 2.029  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | н               | Н                    |          |
| 2.030  | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | н               | Н                    |          |
| 2.031  | CH₃                                             | CHF₂                            | н               | н                    |          |
| 2.032  | CH₃CH₂                                          | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.033  | (CH₃)₂CH                                        | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.034  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.035  | Ph                                              | CHF <sub>2</sub>                | н               | Н                    |          |
| 2.036  | CH₂Br                                           | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.037  | CH₂OCH <sub>3</sub>                             | CHF <sub>2</sub>                | н               | Н                    |          |
| 2.038  | CH₂SMe                                          | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.039  | CH₂SO₂Me                                        | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.040  | SCH₃                                            | CHF <sub>2</sub>                | н               | Н                    |          |
| 2.041  | SOCH <sub>3</sub>                               | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.042  | SO₂CH₃                                          | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.043  | SPh                                             | CHF <sub>2</sub>                | Н               | $\mathbf{H}_{\perp}$ |          |
| 2.044  | SOPh                                            | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.045  | SO₂Ph                                           | CHF <sub>2</sub>                | Н               | Н                    |          |
| 2.046  | CH₃                                             | CF <sub>3</sub>                 | CH₃             | Н                    |          |
| 2.047  | CH₃CH₂                                          | CF <sub>3</sub>                 | CH₃             | Н                    |          |
| 2.048  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | CH₃             | Н                    |          |
| 2.049  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | CH₃             | н                    |          |
| 2.050  | Ŕh                                              | `CF₃                            | CH₃             | Н                    |          |
| 2.051  | CH₂Br                                           | CF <sub>3</sub>                 | CH₃             | н                    |          |
| 2.052  | CH₂OCH₃                                         | CF <sub>3</sub>                 | CH <sub>3</sub> | Н                    |          |
| 2.053  | CH₂SMe                                          | CF <sub>3</sub>                 | CH₃             | н                    |          |
| 2.054  | CH₂SO₂Me                                        | CF <sub>3</sub>                 | CH₃             | н                    |          |

| Compd. | R 75                                            | R 76                            | R <sub>77</sub>   | R 78 | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|-------------------|------|----------|
| no.    |                                                 |                                 |                   |      |          |
| 2.055  | SCH₃                                            | CF <sub>3</sub>                 | CH₃               | Н    |          |
| 2.056  | SOCH₃                                           | CF₃                             | СН₃               | Н    |          |
| 2.057  | SO₂CH₃                                          | CF₃                             | CH₃               | н    | -        |
| 2.058  | SPh                                             | CF <sub>3</sub>                 | CH₃               | н    |          |
| 2.059  | SOPh                                            | CF <sub>3</sub>                 | СН₃               | Н    |          |
| 2.060  | SO₂Ph                                           | CF₃                             | СН₃               | н    |          |
| 2.061  | CH₃                                             | CF <sub>3</sub> CF <sub>2</sub> | CH₃               | Н    |          |
| 2.062  | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | CH₃               | н    |          |
| 2.063  | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | СН₃               | н    |          |
| 2.064  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | CH₃               | н    | •        |
| 2.065  | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | СН₃               | Н    |          |
| 2.066  | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub>   | н .  | •        |
| 2.067  | CH <sub>2</sub> OCH <sub>3</sub>                | CF <sub>3</sub> CF <sub>2</sub> | СН₃               | Н    |          |
| 2.068  | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | СН₃               | Н    |          |
| 2.069  | CH₂SO₂Me                                        | CF <sub>3</sub> CF <sub>2</sub> | СН₃               | . н  |          |
| 2.070  | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | СН₃               | Н    |          |
| 2.071  | SOCH <sub>3</sub>                               | CF <sub>3</sub> CF <sub>2</sub> | СН₃               | Н    |          |
| 2.072  | SO₂CH₃                                          | CF <sub>3</sub> CF <sub>2</sub> | CH₃               | н    | •        |
| 2.073  | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub>   | Н    | ٠        |
| 2.074  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub>   | Н    |          |
| 2.075  | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | CH₃               | H    |          |
| 2.076  | CH₃                                             | CHF <sub>2</sub>                | CH₃               | Н    |          |
| 2.077  | CH₃CH₂                                          | CHF <sub>2</sub>                | CH <sub>3</sub>   | Н    |          |
| 2.078  | (CH₃)₂CH                                        | CHF <sub>2</sub>                | · CH <sub>3</sub> | н    |          |
| 2.079  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | CH₃               | н    |          |
| 2.080  | Ph                                              | CHF <sub>2</sub>                | CH₃               | Н    |          |
| 2.081  | CH₂Br                                           | CHF <sub>2</sub>                | СН₃               | Н    | •        |
| 2.082  | CH₂OCH₃                                         | CHF <sub>2</sub>                | CH <sub>3</sub>   | Н    |          |
| 2.083  | CH₂SMe                                          | CHF <sub>2</sub>                | CH <sub>3</sub>   | H    |          |
| 2.084  | CH₂SO₂Me                                        | CHF <sub>2</sub>                | CH <sub>3</sub>   | Н    |          |
| 2.085  | SCH <sub>3</sub>                                | CHF <sub>2</sub>                | CH₃               | Н    |          |
| 2.086  | SOCH₃                                           | CHF₂                            | CH <sub>3</sub>   | Н    | -        |

| Compd. | R 75                                            | R 76             | R 77            | R 78            | m.p.(°C)       |
|--------|-------------------------------------------------|------------------|-----------------|-----------------|----------------|
| no.    | •                                               |                  |                 |                 |                |
| 2.087  | SO₂CH₃                                          | CHF <sub>2</sub> | CH₃             | н               |                |
| 2.088  | SPh                                             | CHF <sub>2</sub> | CH <sub>3</sub> | н               |                |
| 2.089  | SOPh                                            | CHF <sub>2</sub> | CH₃             | Н               | · <del>-</del> |
| 2.090  | SO₂Ph                                           | CHF <sub>2</sub> | CH <sub>3</sub> | Н               |                |
| 2.091  | CH₃                                             | CF <sub>3</sub>  | Н               | CH <sub>3</sub> |                |
| 2.092  | CH₃CH₂                                          | CF <sub>3</sub>  | H               | CH₃             | •              |
| 2.093  | (CH₃)₂CH                                        | CF <sub>3</sub>  | н               | CH₃             |                |
| 2.094  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF₃              | Н               | CH <sub>3</sub> |                |
| 2.095  | Ph                                              | CF <sub>3</sub>  | Н               | CH <sub>3</sub> | •              |
| 2.096  | CH₂Br                                           | CF <sub>3</sub>  | Н               | CH₃             |                |
| 2.097  | CH <sub>2</sub> OCH <sub>3</sub>                | CF <sub>3</sub>  | Н               | CH₃             |                |
| 2.098  | CH <sub>2</sub> SMe                             | CF₃              | Н               | CH₃ ·           |                |
| 2.099  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF₃              | Н               | CH₃             |                |
| 2.100  | SCH₃                                            | CF₃              | Н               | CH₃             |                |
| 2.101  | SOCH₃                                           | CF₃              | Н               | CH₃             |                |
| 2.102  | SO₂CH₃                                          | CF₃              | H               | CH₃             |                |
| 2.103  | SPh                                             | CF₃              | Н               | CH₃             |                |
| 2.104  | SOPh                                            | CF <sub>3</sub>  | H               | CH₃             |                |
| 2.105  | SO₂Ph                                           | CF₃              | Н               | CH₃             |                |

### Table 3: Compounds of formula Id:

()

Compd. R<sub>75</sub> R<sub>76</sub> R<sub>77</sub> R<sub>78</sub> m.p.(°C) no.

| Compd. | R 75                                            | R 78                            | R <sub>77</sub>  | R 78 | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|------------------|------|----------|
| no.    |                                                 |                                 |                  |      |          |
|        |                                                 |                                 |                  |      |          |
| 3.001  | CH₃                                             | CF₃                             | н                | н    |          |
| 3.002  | CH₃CH₂                                          | CF₃                             | Н                | н    | _        |
| 3.003  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | н                | н    |          |
| 3.004  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF₃                             | н                | н    |          |
| 3.005  | Ph                                              | · CF <sub>3</sub>               | Н                | н    |          |
| 3.006  | CH₂Br                                           | CF₃                             | Н                | н    | •        |
| 3.007  | CH₂OCH₃                                         | CF <sub>3</sub>                 | н                | Н    |          |
| 3.008  | CH₂SMe                                          | CF <sub>3</sub>                 | н                | H    |          |
| 3.009  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF₃                             | H                | н    |          |
| 3.010  | SCH₃                                            | CF₃                             | н                | н    | •        |
| 3.011  | SOCH <sub>3</sub>                               | CF₃                             | н                | н 🖓  | ٠.       |
| 3.012  | SO₂CH₃                                          | CF <sub>3</sub>                 | н                | н    | ,        |
| 3.013  | . SPh                                           | CF₃                             | Н                | Н    |          |
| 3.014  | SOPh                                            | CF <sub>3</sub>                 | н                | н    |          |
| 3.015  | SO₂Ph                                           | CF <sub>3</sub>                 | н                | Н    |          |
| 3.016  | CH₃                                             | CF <sub>3</sub> CF <sub>2</sub> | $\mathbf{H}_{+}$ | н .  |          |
| 3.017  | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | Н                | н    |          |
| 3.018  | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | Н                | Н    |          |
| 3.019  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | Ħ                | Н    |          |
| 3.020  | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | н                | н    |          |
| 3.021  | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | Н                | H    |          |
| 3.022  | CH₂OCH₃                                         | CF <sub>3</sub> CF <sub>2</sub> | Н                | Н    |          |
| 3.023  | CH₂SMe                                          | .CF3CF2                         | H                | н    |          |
| 3.024  | CH₂SO₂Me                                        | CF <sub>3</sub> CF <sub>2</sub> | Н .              | Н    |          |
| 3.025  | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | Н                | Н    |          |
| 3.026  | SOCH₃                                           | CF <sub>3</sub> CF <sub>2</sub> | Н                | H .  |          |
| 3.027  | SO <sub>2</sub> CH₃                             | CF <sub>3</sub> CF <sub>2</sub> | Н                | Н    |          |
| 3.028  | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | H                | Н    |          |
| 3.029  | SOPh                                            | CF₃CF₂                          | н                | . н  |          |
| 3.030  | SO₂Pħ                                           | CF <sub>3</sub> CF <sub>2</sub> | Н                | н    |          |
| 3.031  | CH <sub>3</sub>                                 | CHF₂                            | Н                | н    |          |
|        |                                                 |                                 |                  |      |          |

| Compd.  | R 75                                            | R 76                            | R <sub>77</sub> | R 78 | m.p.(°C) |
|---------|-------------------------------------------------|---------------------------------|-----------------|------|----------|
| no.     |                                                 |                                 |                 |      |          |
| 3.032   | CH₃CH₂                                          | CHF <sub>2</sub>                | Н               | н    |          |
| 3.033   | (CH₃)₂CH                                        | CHF <sub>2</sub>                | Н               | н    |          |
| 3.034   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | н               | Н    |          |
| 3.035   | Ph                                              | CHF <sub>2</sub>                | н               | Н    |          |
| 3.036   | CH₂Br                                           | CHF <sub>2</sub>                | н               | Н    |          |
| 3.037   | CH₂OCH₃                                         | CHF <sub>2</sub>                | Н               | Н    | 1        |
| 3.038   | CH₂SMe                                          | CHF <sub>2</sub>                | Н               | Ħ    | •        |
| 3.039   | CH <sub>2</sub> SO <sub>2</sub> Me              | CHF <sub>2</sub>                | н               | Н    |          |
| . 3.040 | SCH <sub>3</sub>                                | CHF <sub>2</sub>                | Н               | н .  | •        |
| 3.041   | SOCH₃                                           | CHF <sub>2</sub>                | Н               | Н .  |          |
| 3.042   | SO₂CH₃                                          | CHF <sub>2</sub>                | н               | Н    |          |
| 3.043   | SPh                                             | CHF <sub>2</sub>                | н               | H ·  |          |
| 3.044   | SOPh                                            | CHF <sub>2</sub>                | н               | н    |          |
| 3.045   | SO₂Ph                                           | CHF <sub>2</sub>                | Н               | Н    |          |
| 3.046   | CH₃                                             | CF₃                             | CH₃             | Н    |          |
| 3.047   | CH₃CH₂                                          | CF <sub>3</sub>                 | CH <sub>3</sub> | Н    |          |
| 3.048   | (CH <sub>3</sub> ) <sub>2</sub> CH              | CF₃                             | CH₃             | Н    |          |
| 3.049   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.050   | Ph                                              | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.051   | CH₂Br                                           | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.052   | CH₂OCH₃                                         | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.053   | CH₂SMe                                          | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.054   | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.055   | SCH₃                                            | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.056   | SOCH <sub>3</sub>                               | CF <sub>3</sub>                 | CH₃             | H.   |          |
| 3.057   | SO₂CH₃                                          | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.058   | SPh                                             | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.059   | SOPh ·                                          | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.060   | SO₂Ph                                           | CF <sub>3</sub>                 | CH₃             | Н    |          |
| 3.061   | CH₃                                             | CF₃CF₂                          | CH₃             | H    |          |
| 3.062   | CH₃CH₂                                          | CF₃CF₂                          | CH₃             | Н    |          |
| 3.063   | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н    |          |

| Compd. | R 75                                            | R 76                            | R 77 | R 78 | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|------|------|----------|
| no.    |                                                 |                                 |      |      | ,        |
| 3.064  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | н    | •        |
| 3.065  | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | Н    |          |
| 3.066  | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | н    | -        |
| 3.067  | CH₂OCH₃                                         | CF <sub>3</sub> CF <sub>2</sub> | CH₃  | Н    |          |
| 3.068  | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | н    |          |
| 3.069  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | н    |          |
| 3.070  | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | н    |          |
| 3.071  | SOCH <sub>3</sub>                               | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | Н    |          |
| 3.072  | SO₂CH₃                                          | CF <sub>3</sub> CF <sub>2</sub> | СН₃∶ | н∹   | ·        |
| 3.073  | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | н    |          |
| 3.074  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | Н    |          |
| 3.075  | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | СН₃  | . н  |          |
| 3.076  | CH <sub>3</sub>                                 | CHF <sub>2</sub>                | CH₃  | н    |          |
| 3.077  | CH₃CH₂                                          | CHF <sub>2</sub>                | СН₃  | н    |          |
| 3.078  | (CH₃)₂CH                                        | CHF₂                            | CH₃  | н    |          |
| 3.079  | CH₃(CH₂)₃                                       | CHF₂                            | CH₃  | н    |          |
| 3.080  | Ph                                              | CHF <sub>2</sub>                | CH₃  | Н    |          |
| 3.081  | CH₂Br                                           | CHF <sub>2</sub>                | CH₃  | н    |          |
| 3.082  | CH₂OCH₃                                         | CHF <sub>2</sub>                | СН₃  | Н    |          |
| 3.083  | CH₂SMe                                          | CHF <sub>2</sub>                | CH₃. | Н    |          |
| 3.084  | CH₂SO₂Me                                        | CHF₂                            | CH₃  | Н    |          |
| 3.085  | SCH₃                                            | CHF₂                            | СН₃  | Н    |          |
| 3.086  | SOCH₃                                           | CHF₂                            | CH₃  | н    |          |
| 3.087  | SO₂CH₃                                          | CHF <sub>2</sub>                | CH₃  | Н    |          |
| 3.088  | SPh                                             | CHF₂                            | CH₃  | Н    |          |
| 3.089  | SOPh                                            | CHF <sub>2</sub>                | CH₃  | н    |          |
| 3.090  | SO₂Ph                                           | CHF <sub>2</sub>                | CH₃  | Н    |          |
| 3.091  | СН₃                                             | CF <sub>3</sub>                 | н    | CH₃  |          |
| 3.092  | CH₃CH₂                                          | CF <sub>3</sub>                 | H    | CH₃  |          |
| 3.093  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | н    | CH₃  |          |
| 3.094  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | н    | CH₃  |          |
| 3.095  | <u>P</u> h                                      | CF <sub>3</sub>                 | н    | CH₃  |          |
|        |                                                 |                                 |      |      |          |

| Compd. | R 75     | R 76            | R <sub>77</sub> | R 78 | m.p.(°C) |
|--------|----------|-----------------|-----------------|------|----------|
| no.    |          |                 |                 |      |          |
| 3.096  | CH₂Br    | CF <sub>3</sub> | Н               | CH₃  |          |
| 3.097  | CH₂OCH₃  | CF₃             | Н               | CH₃  | _        |
| 3.098  | CH₂SMe   | CF₃             | H.              | CH₃  |          |
| 3.099  | CH₂SO₂Me | CF₃             | Н               | CH₃  |          |
| 3.100  | SCH₃     | CF₃             | Н               | CH₃  |          |
| 3.101  | SOCH₃    | CF <sub>3</sub> | Н               | CH₃  |          |
| 3.102  | SO₂CH₃   | CF <sub>3</sub> | Н               | CH₃  |          |
| 3.103  | SPh      | CF <sub>3</sub> | Н               | CH₃  |          |
| 3.104  | SOPh     | CF₃             | Н               | CH₃  | •        |
| 3.105  | SO₂Ph    | CF₃             | Н               | CH₃  |          |

Table 4: Compounds of formula le:

| Compd. | R 75                                            | R 76            | R <sub>77</sub> | Ř <sub>78</sub> | Z | m.p.(°C) |
|--------|-------------------------------------------------|-----------------|-----------------|-----------------|---|----------|
| 4.001  | CH₃                                             | CF₃             | Н               | н               | S | 103-104  |
| 4.002  | CH₃CH₂                                          | CF <sub>3</sub> | Н               | н               | S |          |
| 4.003  | (CH₃)₂CH                                        | CF₃             | Н               | Н               | S |          |
| 4.004  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> | н               | н               | S |          |
| 4.005  | Ph                                              | CF₃             | н               | н               | s |          |
| 4.006  | CH₂Br                                           | CF <sub>3</sub> | Н               | H               | S |          |
| 4.007  | CH₂OCH₃                                         | CF <sub>3</sub> | Н               | н               | S |          |
| 4.008  | CH₂SMe                                          | CF <sub>3</sub> | н               | н               | s |          |

| Compd | . R <sub>75</sub>                               | R 76                            | R <sub>77</sub> | R 78 | Z          | m.p.(°C)                              |
|-------|-------------------------------------------------|---------------------------------|-----------------|------|------------|---------------------------------------|
| no.   |                                                 |                                 |                 |      |            | , , , , , , , , , , , , , , , , , , , |
| 4.009 | CH₂SO₂Me                                        | CF₃                             | н               | н    | s          |                                       |
| 4.010 | SCH₃                                            | CF <sub>3</sub>                 | H               | H    | S          |                                       |
| 4.011 | SOCH₃                                           | CF <sub>3</sub>                 | н               | Н    | S          | -                                     |
| 4.012 | SO₂CH₃                                          | CF₃                             | н               | Н    | s          |                                       |
| 4.013 | SPh                                             | CF₃                             | н               | н    | S          |                                       |
| 4.014 | SOPh                                            | CF₃                             | н               | н    | S          |                                       |
| 4.015 | SO₂Ph                                           | CF₃                             | Н               | н    | S          |                                       |
| 4.016 | CH <sub>3</sub>                                 | CF <sub>3</sub> CF <sub>2</sub> | н               | Н    | S          |                                       |
| 4.017 | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | Н               | н    | S          |                                       |
| 4.018 | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | Н               | H·   | S          |                                       |
| 4.019 | CH₃(CH₂)₃                                       | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | S          |                                       |
| 4.020 | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | S          |                                       |
| 4.021 | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | Н               | Ĥ    | s          |                                       |
| 4.022 | CH <sub>2</sub> OCH₃                            | CF <sub>3</sub> CF <sub>2</sub> | н               | н    | s          |                                       |
| 4.023 | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | Н               | н    | s          |                                       |
| 4.024 | CH₂SO₂Me                                        | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | s          |                                       |
| 4.025 | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | Н               | H ·  | . <b>S</b> |                                       |
| 4.026 | SOCH₃                                           | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | Ş          |                                       |
| 4.027 | SO <sub>2</sub> CH <sub>3</sub>                 | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | S          |                                       |
| 4.028 | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | H               | Н    | S          |                                       |
| 4.029 | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | s          |                                       |
| 4.030 | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н    | S          |                                       |
| 4.031 | CH₃                                             | CHF <sub>2</sub>                | Н               | Н    | S          |                                       |
| 4.032 | CH₃CH₂                                          | CHF₂                            | Н               | Н    | S          |                                       |
| 4.033 | (CH₃)₂CH                                        | CHF <sub>2</sub>                | Н               | Н    | S          |                                       |
| 4.034 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | Н               | H ·  | S          |                                       |
| 4.035 | Ph                                              | CHF <sub>2</sub>                | Н               | Н    | S          |                                       |
| 4.036 | CH₂Br                                           | CHF <sub>2</sub>                | Н               | Н    | S          |                                       |
| 4.037 | CH₂OCH₃                                         | CHF <sub>2</sub>                | H               | Η .  | S          |                                       |
| 4.038 | CH₂SMe                                          | CHF <sub>2</sub>                | Н               | н    | S          |                                       |
| 4.039 | CH₂SO₂Me                                        | CHF <sub>2</sub>                | Н               | н    | S          |                                       |
| 4.040 | SCH₃                                            | CHF <sub>2</sub>                | Н               | Н    | S          |                                       |
|       |                                                 |                                 |                 |      |            |                                       |

| Compd.         | R 75                                            | R 76                            | R 77            | R 78  | Z          | m.p.(°C)   |
|----------------|-------------------------------------------------|---------------------------------|-----------------|-------|------------|------------|
| ·              | N 75                                            | 76                              | 11.77           | 11 78 | -          |            |
| no.<br>4.041   | SOCH₃                                           | CHF₂                            | н               | 'н    | s          |            |
|                | SO <sub>2</sub> CH <sub>3</sub>                 | _                               | Н               | Н     | S          |            |
| 4.042          |                                                 | CHF <sub>2</sub>                |                 | Н     | S          | <u>~</u> . |
| 4.043          | SPh                                             | CHF <sub>2</sub>                | Н               |       | S          |            |
| 4.044          | SOPh                                            | CHF <sub>2</sub>                | H               | н     |            |            |
| 4.045          | SO₂Ph                                           | CHF₂                            | H               | . н   | S          | •          |
| 4.046          | CH₃                                             | CF₃                             | CH₃             | Н     | S          |            |
| 4.047          | CH₃CH₂                                          | CF <sub>3</sub>                 | CH₃             | H     | S          |            |
| 4.048          | (CH₃)₂CH                                        | CF₃                             | CH₃             | Н     | S          |            |
| 4.049          | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | CH₃             | · H   | S          | , .        |
| 4.050          | Ph                                              | CF <sub>3</sub>                 | CH₃             | Н     | S          |            |
| 4.051          | CH₂Br                                           | CF₃                             | CH₃             | Н     | S          |            |
| 4.052          | CH <sub>2</sub> OCH <sub>3</sub>                | CF <sub>3</sub>                 | CH₃             | H     | S          |            |
| 4.053          | CH₂SMe                                          | CF <sub>3</sub>                 | CH <sub>3</sub> | Н     | S          |            |
| 4.054          | CH₂SO₂Me                                        | CF <sub>3</sub>                 | CH <sub>3</sub> | Н     | S          |            |
| 4.055          | SCH₃                                            | CF <sub>3</sub>                 | CH₃             | Н     | S          |            |
| 4.056          | SOCH <sub>3</sub>                               | CF <sub>3</sub>                 | СН₃             | Н     | S          |            |
| 4.057          | SO₂CH₃                                          | CF <sub>3</sub>                 | CH₃             | Н     | S          |            |
| 4.058          | SPh                                             | CF <sub>3</sub>                 | СН₃             | Н     | S          |            |
| <b>4.059</b> . | SOPh                                            | CF <sub>3</sub>                 | CH₃             | H     | s          |            |
| 4.060          | SO₂Ph                                           | CF <sub>3</sub>                 | CH₃             | Н     | S          |            |
| 4.061          | CH₃ ·                                           | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н     | S          |            |
| 4.062          | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н     | S          |            |
| 4.063          | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н     | S          |            |
| 4.064          | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н     | S.         |            |
| 4.065          | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | Н     | s          |            |
| 4.066          | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н     | s          |            |
| 4.067          | CH₂OCH₃                                         | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н     | <b>S</b> - |            |
| 4.068          | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н     | S          |            |
| 4.069          | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н     | S          |            |
| 4.070          | SCH <sub>3</sub>                                | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н     | · S        |            |
| 4.071          | SOCH <sub>3</sub>                               | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н     | S          | •          |
| 4.072          | SO <sub>2</sub> CH <sub>3</sub>                 | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | н     | S          |            |

| Compd. | R 75                                            | R 76                            | R <sub>77</sub> | R 78            | Z          | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|-----------------|-----------------|------------|----------|
| no.    |                                                 |                                 |                 | •               |            |          |
| 4.073  | SPh .                                           | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | • н             | s          |          |
| 4.074  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н               | S          | •        |
| 4.075  | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н               | s          | -        |
| 4.076  | CH₃                                             | CHF2                            | СН₃             | н               | s          |          |
| 4.077  | CH₃CH₂                                          | CHF₂                            | СН₃             | Н               | S          |          |
| 4.078  | (CH₃)₂CH                                        | CHF₂                            | СН₃             | Н               | · s        |          |
| 4.079  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | СН₃             | Н               | s          | •        |
| 4.080  | Ph                                              | CHF₂                            | CH₃             | Н               | S          |          |
| 4.081  | CH₂Br                                           | CHF2                            | СН₃             | н               | S          |          |
| 4.082  | CH₂OCH₃                                         | CHF <sub>2</sub>                | CH₃             | н               | S          |          |
| 4.083  | CH₂SMe                                          | CHF <sub>2</sub>                | СН₃             | н               | S          |          |
| 4.084  | CH₂SO₂Me                                        | CHF <sub>2</sub>                | СН₃             | н               | S          |          |
| 4.085  | SCH₃                                            | CHF <sub>2</sub>                | СН₃             | н               | S          |          |
| 4.086  | SOCH₃                                           | CHF <sub>2</sub>                | CH₃             | н               | . <b>S</b> |          |
| 4.087  | SO₂CH₃                                          | CHF₂                            | СН₃             | Н               | S          |          |
| 4.088  | SPh                                             | CHF₂                            | CH₃             | н               | S          |          |
| 4.089  | SOPh                                            | CHF₂                            | CH₃             | н               | <b>s</b> . |          |
| 4.090  | SO₂Ph                                           | CHF <sub>2</sub>                | CH₃             | Н               | S          |          |
| 4.091  | CH₃                                             | CF <sub>3</sub>                 | Н               | CH₃             | S          |          |
| 4.092  | CH₃CH₂                                          | CF <sub>3</sub>                 | H               | CH₃             | S          | 4        |
| 4.093  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | H               | CH₃             | S          |          |
| 4.094  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | Н               | СН₃             | S          |          |
| 4.095  | Ph                                              | CF₃                             | Н               | СН₃             | S          |          |
| 4.096  | CH₂Br                                           | CF <sub>3</sub>                 | Н               | . CH₃           | S          |          |
| 4.097  | CH₂OCH₃                                         | CF <sub>3</sub>                 | Н               | CH₃             | s          |          |
| 4.098  | CH₂SMe                                          | CF <sub>3</sub>                 | Н               | СН₃             | S          |          |
| 4.099  | CH₂SO₂Me                                        | CF <sub>3</sub>                 | Н               | СН₃             | S          |          |
| 4.100  | SCH₃                                            | CF <sub>3</sub>                 | Н               | CH₃             | S          |          |
| 4.101  | SOCH₃                                           | CF <sub>3</sub>                 | H               | CH₃             | S          |          |
| 4.102  | SO₂CH₃                                          | CF <sub>3</sub>                 | Н               | CH₃             | S          |          |
| 4.103  | SPh                                             | CF <sub>3</sub>                 | Н               | CH₃             | S          |          |
| 4.104  | SOPh                                            | CF <sub>3</sub>                 | н               | CH <sub>3</sub> | S          |          |

| Compd. | R 75                                            | R 76                            | ь    | D    | Z         |          |
|--------|-------------------------------------------------|---------------------------------|------|------|-----------|----------|
| -      | n 75                                            | ra 76                           | R 77 | R 78 | 2         | m.p.(°C) |
| no.    | CO 10h                                          | 05                              | • •  | 011  | c         |          |
| 4.105  | SO₂Ph                                           | CF₃                             | H    | CH₃  | S         | 00.07    |
| 4.106  | CH₃                                             | CF₃                             | Н    | Н    | SO        | 96-97    |
| 4.107  | CH₃CH₂                                          | CF₃                             | Н    | H    | so        |          |
| 4.108  | (CH₃)₂CH                                        | CF₃                             | Н    | Н    | SO        |          |
| 4.109  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF₃                             | Н    | Н    | SO        |          |
| 4.110  | Ph                                              | CF₃                             | Н    | Н    | SO        |          |
| 4.111  | CH₂Br                                           | CF₃                             | Н    | H    | SO        | •        |
| 4.112  | CH <sub>2</sub> OCH₃                            | CF₃                             | Н    | Н    | SO        | •        |
| 4.113  | CH₂SMe                                          | CF₃                             | Н    | Н    | SO        |          |
| 4.114  | CH <sub>2</sub> SO₂Me                           | CF <sub>3</sub>                 | Н    | Н    | SO        |          |
| 4.115  | SCH₃                                            | CF₃                             | Н    | Н    | SO        |          |
| 4.116  | SOCH <sub>3</sub>                               | CF <sub>3</sub>                 | Н    | Н    | SO        |          |
| 4.117  | SO₂CH₃                                          | CF <sub>3</sub>                 | Н    | Н    | so        | •        |
| 4.118  | SPh                                             | CF <sub>3</sub>                 | · H  | Н    | SO        |          |
| 4.119  | SOPh                                            | CF <sub>3</sub>                 | н    | н    | so        |          |
| 4.120  | SO₂Ph                                           | CF <sub>3</sub>                 | Н    | Н .  | so        |          |
| 4.121  | CH₃                                             | CF <sub>3</sub> CF <sub>2</sub> | Н    | н    | SO        |          |
| 4.122  | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | Н    | Н    | SO        | •        |
| 4.123  | (CH₃)₂CH                                        | CF₃CF₂                          | H    | Н    | SO        |          |
| 4.124  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | Н    | Н    | so        |          |
| 4.125  | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | Н    | Н    | so        |          |
| 4.126  | CH₂Br                                           | CF₃CF₂                          | Н    | н .  | so        | •        |
| 4.127  | CH₂OCH₃                                         | CF <sub>3</sub> CF <sub>2</sub> | , н  | Н    | SO        |          |
| 4.128  | CH₂SMe                                          | CF <sub>3</sub> CF <sub>2</sub> | Н    | н    | <b>SO</b> |          |
| 4.129  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub> CF <sub>2</sub> | н    | Н    | SO        |          |
| 4.130  | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | н    | н    | SO        |          |
| 4.131  | SOCH <sub>3</sub>                               | CF₃CF₂                          | н    | н    | SO        | ·        |
| 4.132  | SO₂CH₃                                          | CF₃CF₂                          | н    | н    | so        |          |
| 4.133  | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | н    | н    | , so      |          |
| 4.134  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | н    | н    | so        |          |
| 4.135  | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | н    | Н    | so        |          |
| 4.136  | CH₃                                             | CHF <sub>2</sub>                | н    | Н    | SO        |          |

| Compd. | R 75                                            | R 76                            | R <sub>77</sub>      | R 78 | <b>Z</b>        | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|----------------------|------|-----------------|----------|
| no.    |                                                 |                                 |                      |      |                 |          |
| 4.137  | CH₃CH₂                                          | CHF <sub>2</sub>                | н                    | н    | so              |          |
| 4.138  | (CH₃)₂CH                                        | CHF <sub>2</sub>                | н                    | н    | SO              |          |
| 4.139  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF₂                            | Н                    | н    | so              | -        |
| 4.140  | Ph                                              | CHF₂                            | н                    | Н    | SO              |          |
| 4.141  | CH₂Br                                           | CHF <sub>2</sub>                | н                    | н    | SO              |          |
| 4.142  | CH₂OCH₃                                         | CHF <sub>2</sub>                | н                    | н    | so              |          |
| 4.143  | CH₂SMe                                          | CHF <sub>2</sub>                | н                    | Н    | so              |          |
| 4.144  | CH₂SO₂Me                                        | CHF <sub>2</sub>                | н                    | Н    | SO              |          |
| 4.145  | SCH₃                                            | CHF <sub>2</sub>                | н                    | Н    | so              |          |
| 4.146  | SOCH <sub>3</sub>                               | CHF <sub>2</sub>                | н                    | н    | SO              | •        |
| 4.147  | SO₂CH₃                                          | CHF <sub>2</sub>                | н                    | н    | SO              |          |
| 4.148  | SPh                                             | CHF <sub>2</sub>                | н                    | Н    | so              |          |
| 4.149  | SOPh                                            | CHF₂                            | Н                    | H    | so              |          |
| 4.150  | SO₂Ph                                           | CHF₂                            | Н                    | Н    | so              |          |
| 4.151  | CH₃                                             | CF <sub>3</sub>                 | CH₃                  | н    | so              |          |
| 4.152  | CH₃CH₂                                          | CF <sub>3</sub>                 | СН₃                  | н    | so              |          |
| 4.153  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | СН₃                  | н    | so              |          |
| 4.154  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | CH₃                  | Н    | SO              |          |
| 4.155  | Ph                                              | CF <sub>3</sub>                 | CH <sub>3</sub>      | н    | SO              |          |
| 4.156  | CH₂Br                                           | CF₃                             | CH <sub>3</sub>      | H    | so              |          |
| 4.157  | CH₂OCH₃                                         | CF₃                             | CH₃                  | Н    | SO              |          |
| 4.158  | CH₂SMe                                          | CF <sub>3</sub>                 | CH₃                  | Н    | SO <sub>.</sub> |          |
| 4.159  | CH₂SO₂Me                                        | CF <sub>3</sub>                 | CH₃                  | Н    | SO              |          |
| 4.160  | SCH <sub>3</sub>                                | CF <sub>3</sub>                 | CH <sub>3</sub>      | Н.   | SO              |          |
| 4.161  | SOCH <sub>3</sub>                               | CF <sub>3</sub>                 | CH <sub>3</sub>      | Н    | so              |          |
| 4.162  | SO₂CH₃                                          | CF <sub>3</sub>                 | CH₃                  | Н    | so              |          |
| 4.163  | SPh                                             | CF₃                             | CH₃                  | Н    | so              |          |
| 4.164  | SOPh                                            | CF <sub>3</sub>                 | CH₃                  | Н    | SO              |          |
| 4.165  | SO₂Ph                                           | CF <sub>3</sub>                 | ···CH <sub>3</sub> · | н    | SO              |          |
| 4.166  | CH₃                                             | CF <sub>3</sub> CF <sub>2</sub> | CH₃                  | н    | SO              |          |
| 4.167  | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | CH₃                  | н    | so              |          |
| 4.168  | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | CH₃                  | н    | so              |          |

| ,      |                                                 |                                 |                 |                 |     |          |
|--------|-------------------------------------------------|---------------------------------|-----------------|-----------------|-----|----------|
| Compd. | R 75                                            | R 76                            | R <sub>77</sub> | R 78            | Z   | m.p.(°C) |
| no.    | •                                               |                                 | •               |                 |     |          |
| 4.169  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н               | SO  |          |
| 4.170  | Ph                                              | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н               | SO  | _        |
| 4.171  | CH₂Br                                           | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н               | SO  | _        |
| 4.172  | CH₂OCH₃                                         | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н               | SO  |          |
| 4.173  | CH₂SMe                                          | CF₃CF₂                          | CH₃             | Н               | SO. |          |
| 4.174  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н               | SO  |          |
| 4.175  | SCH₃                                            | CF₃CF₂                          | CH₃             | ·H              | SO  |          |
| 4.176  | . SOCH <sub>3</sub>                             | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н               | SO  |          |
| 4.177  | SO₂CH₃                                          | CF₃CF₂                          | CH <sub>3</sub> | Н               | so  |          |
| 4.178  | SPh                                             | CF₃CF₂                          | CH <sub>3</sub> | . н             | so  |          |
| 4.179  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | н               | SO  |          |
| 4.180  | SO₂Ph                                           | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н               | so  | •        |
| 4.181  | CH <sub>3</sub>                                 | CHF <sub>2</sub>                | CH₃             | Н               | SO  |          |
| 4.182  | CH₃CH₂                                          | CHF <sub>2</sub>                | CH₃             | н               | so  |          |
| 4.183  | (CH₃)₂CH                                        | CHF <sub>2</sub>                | CH <sub>3</sub> | Н               | so  |          |
| 4.184  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | CH₃             | H               | SO  |          |
| 4.185  | Ph                                              | CHF <sub>2</sub>                | CH₃             | Н               | SO  |          |
| 4.186  | CH₂Br                                           | CHF <sub>2</sub>                | CH <sub>3</sub> | Н               | SO  |          |
| 4.187  | CH <sub>2</sub> OCH <sub>3</sub>                | CHF <sub>2</sub>                | CH <sub>3</sub> | Н               | SO  |          |
| 4.188  | CH₂SMe                                          | CHF <sub>2</sub>                | CH₃             | Н               | SO  |          |
| 4.189  | CH₂SO₂Me                                        | CHF <sub>2</sub>                | CH₃             | Н               | SO  |          |
| 4.190  | SCH₃                                            | CHF <sub>2</sub>                | CH₃             | Н               | SO  |          |
| 4.191  | SOCH₃                                           | CHF <sub>2</sub>                | CH₃             | Н               | SO  |          |
| 4.192  | SO₂CH₃                                          | CHF₂                            | CH <sub>3</sub> | Н               | SO  |          |
| 4.193  | SPh                                             | CHF <sub>2</sub>                | CH <sub>3</sub> | Н               | so  |          |
| 4.194  | SOPh                                            | CHF₂                            | CH₃             | Н               | SO  |          |
| 4.195  | SO₂Ph                                           | CHF₂                            | CH <sub>3</sub> | H               | so  |          |
| 4.196  | CH₃                                             | CF <sub>3</sub>                 | Н               | CH <sub>3</sub> | SO  |          |
| 4.197  | CH₃CH₂                                          | CF <sub>3</sub>                 | н               | СН₃             | SO  |          |
| 4.198  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | Н               | СН₃             | so  |          |
| 4.199  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | Н               | CH <sub>3</sub> | SO  |          |
| 4.200  | <u>P</u> h                                      | CF <sub>3</sub>                 | н               | CH₃             | so  |          |

| Compd. | . R 75                                          | R 76                            | R <sub>77</sub> | R 78            | Z               | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|-----------------|-----------------|-----------------|----------|
| no.    |                                                 |                                 |                 |                 |                 |          |
| 4.201  | CH₂Br                                           | CF <sub>3</sub>                 | Н               | CH₃             | so              |          |
| 4.202  | CH <sub>2</sub> OCH <sub>3</sub>                | CF <sub>3</sub>                 | Н               | CH₃             | SO              |          |
| 4.203  | CH₂SMe                                          | CF₃                             | н               | CH₃             | so              | -        |
| 4.204  | CH₂SO₂Me                                        | CF <sub>3</sub>                 | Н               | CH₃             | SO              |          |
| 4.205  | SCH₃                                            | CF <sub>3</sub>                 | н               | CH <sub>3</sub> | so              |          |
| 4.206  | SOCH <sub>3</sub>                               | CF <sub>3</sub>                 | Н               | CH₃             | SO              |          |
| 4.207  | SO₂CH₃                                          | CF <sub>3</sub>                 | Н               | CH₃             | so              |          |
| 4.208  | SPh                                             | CF <sub>3</sub>                 | Н               | CH₃             | SO              |          |
| 4.209  | SOPh                                            | CF <sub>3</sub>                 | H               | CH₃             | SO              | · .      |
| 4.210  | SO₂Ph                                           | CF <sub>3</sub>                 | н               | CH₃             | so              |          |
| 4.211  | CH₃                                             | CF₃                             | H.              | н               | SO <sub>2</sub> | amorph-  |
|        | ,                                               | •                               |                 |                 |                 | ous      |
| 4.212  | CH₃CH₂                                          | CF <sub>3</sub> .               | Н               | н               | SO <sub>2</sub> |          |
| 4.213  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | н               | Н               | SO <sub>2</sub> |          |
| 4.214  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | н               | Н,              | SO <sub>2</sub> |          |
| 4.215  | Ph                                              | CF <sub>3</sub>                 | н               | Н               | SO <sub>2</sub> |          |
| 4.216  | CH₂Br                                           | CF₃                             | Н               | Н               | SO <sub>2</sub> |          |
| 4.217  | CH₂OCH₃                                         | CF₃                             | Н               | н               | SO <sub>2</sub> |          |
| 4.218  | CH₂SMe                                          | CF <sub>3</sub>                 | Н               | Н               | SO <sub>2</sub> |          |
| 4.219  | CH <sub>2</sub> SO <sub>2</sub> Me              | CF <sub>3</sub>                 | Н               | Н               | SO <sub>2</sub> |          |
| 4.220  | SCH₃                                            | CF₃                             | Н               | , H             | SO <sub>2</sub> |          |
| 4.221  | SOCH <sub>3</sub>                               | CF <sub>3</sub>                 | н               | Н               | SO <sub>2</sub> |          |
| 4.222  | SO₂CH₃                                          | CF <sub>3</sub>                 | Н               | Н               | SO <sub>2</sub> | •        |
| 4.223  | SPh                                             | CF <sub>3</sub>                 | Н               | н               | SO <sub>2</sub> |          |
| 4.224  | SOPh                                            | CF <sub>3</sub>                 | Н               | Н               | SO <sub>2</sub> |          |
| 4.225  | SO₂Ph                                           | CF <sub>3</sub>                 | Н               | Н               | SO₂             |          |
| 4.226  | CH₃                                             | CF₃CF₂                          | Н               | Н               | SO <sub>2</sub> |          |
| 4.227  | CH₃CH₂                                          | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н               | SO <sub>2</sub> |          |
| 4.228  | (CH₃)₂CH                                        | CF <sub>3</sub> CF <sub>2</sub> | TH              | * H             | SO₂             |          |
| 4.229  | $CH_3(CH_2)_3$                                  | CF <sub>3</sub> CF <sub>2</sub> | Н               | Н               | SO <sub>2</sub> |          |
| 4.230  | Ph                                              | CF₃CF₂                          | Н               | Н               | SO <sub>2</sub> |          |
| 4.231  | CH₂Br                                           | CF₃CF₂                          | Н               | Н               | SO <sub>2</sub> |          |

| Compd. | R 75                                            | R 76                            | R <sub>77</sub> | R 78       | Z               | m.p.(°C) |
|--------|-------------------------------------------------|---------------------------------|-----------------|------------|-----------------|----------|
| no.    |                                                 |                                 | ••              |            |                 |          |
| 4.232  | CH₂OCH₃                                         | CF₃CF₂                          | Н               | н          | SO <sub>2</sub> |          |
| 4.233  | CH <sub>2</sub> SMe                             | CF <sub>3</sub> CF <sub>2</sub> | Н               | н          | SO <sub>2</sub> |          |
| 4.234  | CH₂SO₂Me                                        | CF <sub>3</sub> CF <sub>2</sub> | H               | Н          | SO <sub>2</sub> | -        |
| 4.235  | SCH₃                                            | CF <sub>3</sub> CF <sub>2</sub> | н               | Н          | SO <sub>2</sub> |          |
| 4.236  | SOCH₃                                           | CF₃CF₂                          | н               | Н          | SO <sub>2</sub> |          |
| 4.237  | SO₂CH₃                                          | CF <sub>3</sub> CF <sub>2</sub> | н               | Н          | SO <sub>2</sub> |          |
| 4.238  | SPh                                             | CF <sub>3</sub> CF <sub>2</sub> | н               | н          | SO₂             |          |
| 4.239  | SOPh                                            | CF <sub>3</sub> CF <sub>2</sub> | н               | н          | SO <sub>2</sub> |          |
| 4.240  | SO₂Ph                                           | CF₃CF₂                          | н               | Н          | SO <sub>2</sub> |          |
| 4.241  | CH₃                                             | CHF <sub>2</sub>                | Н               | Н          | SO <sub>2</sub> |          |
| 4.242  | CH₃CH₂                                          | CHF₂                            | н               | Н          | SO₂             |          |
| 4.243  | (CH₃)₂CH                                        | CHF <sub>2</sub>                | Н               | н .        | SO <sub>2</sub> |          |
| 4.244  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CHF <sub>2</sub>                | H .             | Н          | SO <sub>2</sub> |          |
| 4.245  | Ph                                              | CHF <sub>2</sub>                | н               | н .        | SO <sub>2</sub> |          |
| 4.246  | CH₂Br                                           | CHF <sub>2</sub>                | H.              | Н          | SO <sub>2</sub> |          |
| 4.247  | CH₂OCH₃                                         | CHF <sub>2</sub>                | Н               | Ή          | SO <sub>2</sub> |          |
| 4.248  | CH₂SMe                                          | CHF <sub>2</sub>                | н               | Н          | SO <sub>2</sub> |          |
| 4.249  | CH₂SO₂Me                                        | CHF <sub>2</sub>                | н               | Н          | SO <sub>2</sub> |          |
| 4.250  | SCH₃                                            | CHF <sub>2</sub>                | Н               | Н          | SO <sub>2</sub> |          |
| 4.251  | SOCH <sub>3</sub>                               | CHF <sub>2</sub>                | Н               | Н          | SO <sub>2</sub> |          |
| 4.252  | SO₂CH₃                                          | CHF <sub>2</sub>                | Н               | н          | SO <sub>2</sub> |          |
| 4.253  | SPh                                             | CHF <sub>2</sub>                | н               | Н          | SO <sub>2</sub> |          |
| 4.254  | SOPh                                            | CHF <sub>2</sub>                | H               | H          | SO <sub>2</sub> |          |
| 4.255  | SO₂Ph                                           | CHF₂                            | н               | Н          | SO <sub>2</sub> |          |
| 4.256  | CH₃                                             | CF <sub>3</sub>                 | CH <sub>3</sub> | Н          | SO <sub>2</sub> |          |
| 4.257  | CH₃CH₂                                          | CF <sub>3</sub>                 | CH₃             | Н          | SO <sub>2</sub> |          |
| 4.258  | (CH₃)₂CH                                        | CF <sub>3</sub>                 | СН₃             | Н          | SO <sub>2</sub> |          |
| 4.259  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>                 | СН₃             | , <b>H</b> | SO <sub>2</sub> |          |
| 4.260  | Ph                                              | CF <sub>3</sub>                 | CH₃             | н          | SO <sub>2</sub> |          |
| 4.261  | CH₂Br                                           | CF <sub>3</sub>                 | CH <sub>3</sub> | Н          | SO <sub>2</sub> |          |
| 4.262  | CH₂OCH₃                                         | CF₃                             | CH₃             | н          | SO <sub>2</sub> |          |
| 4.263  | .CH₂SMe                                         | CF <sub>3</sub>                 | СН₃             | н          | SO <sub>2</sub> |          |

| Compd. | R 75                  | R 76                            | R <sub>77</sub> | R 78 | Z               | m.p.(°C) |
|--------|-----------------------|---------------------------------|-----------------|------|-----------------|----------|
| no.    |                       |                                 |                 |      |                 | 1.( -7   |
| 4.264  | CH₂SO₂Me              | CF <sub>3</sub>                 | СН₃             | н    | SO₂             |          |
| 4.265  | SCH₃                  | CF <sub>3</sub>                 | CH₃             | н    | SO <sub>2</sub> |          |
| 4.266  | SOCH₃                 | CF <sub>3</sub>                 | СН₃             | н    | SO <sub>2</sub> | -        |
| 4.267  | SO₂CH₃                | CF <sub>3</sub>                 | СН₃             | Н    | SO₂             |          |
| 4.268  | SPh                   | CF <sub>3</sub>                 | . CH₃           | Н    | SO <sub>2</sub> |          |
| 4.269  | SOPh                  | CF₃                             | СН₃             | Н    | SO <sub>2</sub> |          |
| 4.270  | SO₂Ph                 | CF <sub>3</sub>                 | СН₃             | Н    | SO <sub>2</sub> |          |
| 4.271  | CH₃                   | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | Н    | SO <sub>2</sub> |          |
| 4.272  | CH₃CH₂                | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | · н  | SO <sub>2</sub> |          |
| 4.273  | (CH₃)₂CH              | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | H    | SO <sub>2</sub> |          |
| 4.274  | $CH_3(CH_2)_3$        | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н    | SO <sub>2</sub> |          |
| 4.275  | Ph                    | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н    | SO <sub>2</sub> | .•       |
| 4.276  | CH₂Br                 | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н    | SO <sub>2</sub> |          |
| 4.277  | CH₂OCH₃               | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | Н    | SO <sub>2</sub> |          |
| 4.278  | CH₂SMe                | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | · H  | SO <sub>2</sub> |          |
| 4.279  | CH₂SO₂Me              | CF <sub>9</sub> CF <sub>2</sub> | СН₃             | Н    | SO <sub>2</sub> |          |
| 4.280  | SCH₃                  | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | Н    | SO <sub>2</sub> |          |
| 4.281  | SOCH₃                 | CF <sub>3</sub> CF <sub>2</sub> | CH₃             | н    | SO₂             |          |
| 4.282  | SO₂CH₃                | CF <sub>3</sub> CF <sub>2</sub> | СН₃             | н    | SO <sub>2</sub> |          |
| 4.283  | SPh                   | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н    | SO <sub>2</sub> |          |
| 4.284  | SOPh                  | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | Н    | SO <sub>2</sub> |          |
| 4.285  | SO₂Ph                 | CF <sub>3</sub> CF <sub>2</sub> | CH <sub>3</sub> | H .  | SO <sub>2</sub> |          |
| 4.286  | CH₃                   | CHF₂                            | CH <sub>3</sub> | н    | SO <sub>2</sub> |          |
| 4.287  | CH₃CH₂                | CHF <sub>2</sub>                | CH₃             | н    | SO <sub>2</sub> |          |
| 4.288  | (CH₃)₂CH              | CHF₂                            | CH₃             | Н    | SO <sub>2</sub> |          |
| 4.289  | CH₃(CH₂)₃             | CHF₂                            | CH₃             | Н    | SO <sub>2</sub> |          |
| 4.290  | Ph                    | CHF₂                            | CH <sub>3</sub> | Н    | SO <sub>2</sub> |          |
| 4.291  | CH₂Br                 | CHF <sub>2</sub>                | СН₃             | Н    | SO₂             |          |
| 4.292  | CH₂OCH₃               | CHF <sub>2</sub>                | CH <sub>3</sub> | Ή    | SO₂             | •        |
| 4.293  | CH₂SMe                | CHF <sub>2</sub>                | CH₃             | н    | SO <sub>2</sub> |          |
| 4.294  | CH <sub>2</sub> SO₂Me | CHF <sub>2</sub>                | CH₃             | н    | SO <sub>2</sub> |          |
| 4.295  | SCH₃                  | CHF₂                            | CH₃             | Н    | SO <sub>2</sub> |          |
|        |                       |                                 |                 |      |                 |          |

| Compd. | R 75                                            | R 76             | R 77             | R 78            | Z               | m.p.(°C) |
|--------|-------------------------------------------------|------------------|------------------|-----------------|-----------------|----------|
| no.    | 75                                              | 76               | //               | 78              | _               |          |
| 4.296  | SOCH₃                                           | CHF <sub>2</sub> | CH₃              | н               | SO₂             |          |
|        | _                                               | _                | -                |                 |                 |          |
| 4.297  | SO₂CH₃                                          | CHF <sub>2</sub> | CH₃              | Н               | SO <sub>2</sub> | •        |
| 4.298  | SPh                                             | CHF₂             | CH₃              | Н               | SO₂             |          |
| 4.299  | SOPh                                            | CHF <sub>2</sub> | CH₃              | Н               | SO <sub>2</sub> |          |
| 4.300  | SO₂Ph                                           | CHF₂             | CH₃              | Н               | SO <sub>2</sub> |          |
| 4.301  | CH₃                                             | CF <sub>3</sub>  | Н                | CH₃             | SO <sub>2</sub> |          |
| 4.302  | CH₃CH₂                                          | CF <sub>3</sub>  | Н                | CH₃             | SO <sub>2</sub> |          |
| 4.303  | (CH₃)₂CH                                        | CF <sub>3</sub>  | · H              | CH₃             | SO <sub>2</sub> |          |
| 4.304  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> | CF <sub>3</sub>  | $\mathbf{H}_{i}$ | CH₃             | SO <sub>2</sub> |          |
| 4.305  | Ph                                              | CF <sub>3</sub>  | н                | CH₃             | SO <sub>2</sub> |          |
| 4.306  | CH₂Br                                           | CF <sub>3</sub>  | н                | CH₃             | SO <sub>2</sub> |          |
| 4.307  | CH₂OCH₃                                         | CF <sub>3</sub>  | Н                | CH₃             | SO <sub>2</sub> |          |
| 4.308  | CH₂SMe                                          | CF <sub>3</sub>  | Н                | CH₃             | SO <sub>2</sub> |          |
| 4.309  | CH₂SO₂Me                                        | CF₃              | Н                | CH <sub>3</sub> | SO <sub>2</sub> | •        |
| 4.310  | SCH₃                                            | CF <sub>3</sub>  | Н                | CH₃             | SO <sub>2</sub> |          |
| 4.311  | SOCH <sub>3</sub>                               | CF <sub>3</sub>  | Н                | CH₃             | SO <sub>2</sub> |          |
| 4.312  | SO₂CH₃                                          | CF <sub>3</sub>  | Н                | CH <sub>3</sub> | SO <sub>2</sub> |          |
| 4.313  | SPh                                             | CF <sub>3</sub>  | Н                | CH <sub>3</sub> | SO <sub>2</sub> |          |
| 4.314  | SOPh                                            | CF <sub>3</sub>  | н                | CH₃             | SO <sub>2</sub> |          |
| 4.315  | SO₂Ph                                           | CF <sub>3</sub>  | Н                | CH₃             | SO <sub>2</sub> |          |

### Table 5: Compounds of formula XVI:

()

| Compd. | R 79  | R 80     | R <sub>81</sub> | R <sub>82</sub> |
|--------|-------|----------|-----------------|-----------------|
| no.    |       |          |                 |                 |
| A1     | <br>Н | <b>H</b> | н               | CF <sub>3</sub> |

| Compo       | i. R <sub>79</sub>                               | R 80            | R <sub>81</sub> | R <sub>82</sub>                 |
|-------------|--------------------------------------------------|-----------------|-----------------|---------------------------------|
| no.         |                                                  |                 |                 |                                 |
| A2          | CH₃                                              | Н               | Н               | CF₃                             |
| А3          | CH₃CH₂                                           | Н               | н               | CF₃                             |
| <b>A4</b>   | (CH₃)₂CH                                         | н               | Н               | CF₃                             |
| <b>A5</b>   | (CH₃)₃C                                          | Н               | H               | CF₃                             |
| A6          | cyclopropyl                                      | Н               | H.              | CF₃                             |
| <b>A7</b>   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Н               | Н               | CF₃                             |
| <b>A8</b>   | CH₃OCH₂                                          | Н               | Н               | CF <sub>3</sub>                 |
| <b>A9</b> - | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | H               | Н               | CF₃                             |
| A10         | Ph                                               | Н               | н               | CF <sub>3</sub>                 |
| A11         | PhO                                              | Н               | н               | CF <sub>3</sub>                 |
| A12         | PhS                                              | Н               | Н               | CF₃                             |
| A13         | PhSO                                             | н               | Н               | CF <sub>3</sub>                 |
| A14         | PhSO <sub>2</sub>                                | н               | Н               | CF₃                             |
| A15         | CH <sub>3</sub> S                                | Н               | Н               | CF₃                             |
| A16         | CH₃SO                                            | н               | н               | CF₃                             |
| A17         | CF₃                                              | н               | н               | CF₃                             |
| A18         | F₂CH                                             | Н               | Н               | CF₃                             |
| A19         | HCC                                              | н               | Н               | CF₃                             |
| A20         | CH₃CC                                            | Н               | н               | CF₃                             |
| A21         | CH₂=CH                                           | , H             | Н               | CF <sub>3</sub>                 |
| A22         | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н               | Н               | CF <sub>3</sub>                 |
| A23         | CH₃SO₂N(CH₃)                                     | н               | Н               | CF₃                             |
| A24         | (CH₃)₂N                                          | н               | Н               | CF <sub>3</sub>                 |
| A25         | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | • н             | CF₃                             |
| A26         | CICH <sub>2</sub>                                | Н               | Н               | CF₃                             |
| A27         | CH₃SCH₂                                          | Н               | Н               | CF₃                             |
| A28         | CH₃SOCH₂                                         | Н               | Н               | CF₃                             |
| A29         | CH₃SO₂CH₂                                        | Н               | Н               | CF <sub>3</sub>                 |
| A30         | [1,2,4]-triazol-1-yl-methyl                      | H               | Н               | CF <sub>3</sub>                 |
| A31         | СН₃                                              | CF <sub>3</sub> | н               | CH₃                             |
| A32         | CH₃                                              | СН₃             | н               | CF <sub>3</sub>                 |
| A33         | Н                                                | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> |

| Compd. | R 79                                                | R 80 | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|-----------------------------------------------------|------|-----------------|-------------------------------------------------|
| no.    | •                                                   |      |                 |                                                 |
| A34    | CH₃                                                 | Н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A35    | CH₃CH₂                                              | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A36    | cyclopropyl                                         | н    | Н               | CF₃CF₂                                          |
| A37    | (CH₃)₃C                                             | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A38    | (CH₃)₂CH                                            | H    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A39    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | н    | , H             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A40    | CH₃OCH₂                                             | Н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A41    | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A42    | Ph                                                  | н    | н               | CF₃CF₂                                          |
| A43    | PhO                                                 | н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A44    | PhS                                                 | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A45    | PhSO                                                | н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A46    | PhSO <sub>2</sub>                                   | н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A47    | CH₃S                                                | Н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A48    | CH₃SO                                               | Н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A49    | CF <sub>3</sub>                                     | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A50    | F₂CH                                                | н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A51    | HCC                                                 | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A52    | CH₃CC                                               | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A53    | CH₂=CH                                              | н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A54    | CH₂=CHCH₂                                           | н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A55    | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A56    | (CH <sub>3</sub> )₂N                                | Н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A57    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | H    | · H             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A58    | CICH₂                                               | H    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A59    | CH₃SCH₂                                             | н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A60    | CH₃SOCH₂                                            | Н    | н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A61    | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Н    | H               | CF₃CF₂                                          |
| A62    | [1,2,4]-triazol-1-yl-methyl                         | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub>                 |
| A63    | Н                                                   | Н    | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A64    | CH₃                                                 | н    | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A65    | ···· CH₃CH₂                                         | н    | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |

| Compd | . R <sub>79</sub>                                   | R so | Ret | R <sub>82</sub>                                 |
|-------|-----------------------------------------------------|------|-----|-------------------------------------------------|
| no.   |                                                     |      |     |                                                 |
| A66   | cyclopropyl                                         | Н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A67   | (CH₃)₃C                                             | н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A68   | (CH₃)₂CH                                            | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A69   | CH₃(CH₂)₂                                           | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A70   | CH₃OCH₂                                             | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A71   | CH₃O(CH₂)₂                                          | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A72   | Ph                                                  | Н    | Н.  | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A73   | PhO                                                 | H    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A74   | PhS                                                 | Н    | ← H | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A75   | PhSO                                                | Н    | · н | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A76   | PhSO <sub>2</sub>                                   | н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A77   | CH₃S                                                | Н    | Н.  | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A78   | CH₃SO                                               | Н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A79   | CF <sub>3</sub>                                     | Н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A80   | F₂CH                                                | Н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A81   | HCC                                                 | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A82   | CH₃CC                                               | н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A83   | CH <sub>2</sub> =CH                                 | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A84   | CH <sub>2</sub> =CHCH <sub>2</sub>                  | н    | · H | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A85   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A86   | (CH <sub>3</sub> ) <sub>2</sub> N                   | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A87   | (CH <sub>3</sub> )₂NSO₂                             | Н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A88   | CICH <sub>2</sub>                                   | Н    | . H | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A89   | CH₃SCH₂                                             | н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A90   | CH₃SOCH₂                                            | н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A91   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Н    | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A92   | [1,2,4]-triazol-1-yl-methyl                         | Н    | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A93   | Н .                                                 | • н  | Н   | CF <sub>2</sub> CI                              |
| A94   | CH₃                                                 | Н    | Н   | CF₂CI                                           |
| A95   | CH₃CH₂                                              | Н    | Н   | CF₂CI                                           |
| A96   | cyclopropyl                                         | Н    | н   | CF₂CI                                           |
| A97   | (CH₃)₃C                                             | H    | Н   | CF₂CI                                           |

()

| 0     | D                                                | <b>D</b> |                  |                    |
|-------|--------------------------------------------------|----------|------------------|--------------------|
| Compd | . R <sub>79</sub>                                | R 80     | Pi <sub>81</sub> | R <sub>82</sub>    |
| по.   | . (011.) (011                                    | 11       |                  | 05.01              |
| A98   | (CH₃)₂CH                                         | H        | H                | CF₂CI              |
| A99   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Н        | H                | CF₂CI              |
| A100  | CH₃OCH₂                                          | H        | Н                | ĈF₂CI              |
| A101  | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н        | Н                | CF <sub>2</sub> CI |
| A102  | Ph                                               | Н        | Н                | CF <sub>2</sub> CI |
| A103  | PhO                                              | Н        | . Н              | CF <sub>2</sub> CI |
| A104  | PhS                                              | H        | Н                | CF <sub>2</sub> Cl |
| A105  | PhSO                                             | Н        | Н                | CF <sub>2</sub> CI |
| A106  | PhSO <sub>2</sub>                                | Н        | H                | CF <sub>2</sub> Cl |
| A107  | CH₃S                                             | Н        | Н                | CF <sub>2</sub> CI |
| A108  | CH₃SO                                            | Н        | Н                | CF <sub>2</sub> Cl |
| A109  | · CF <sub>3</sub>                                | Н        | Н                | CF₂CI              |
| A110  | F₂CH                                             | Н        | н                | CF <sub>2</sub> Cl |
| A111  | HCC.                                             | Н        | Н                | CF <sub>2</sub> CI |
| A112  | CH₃CC                                            | Н        | Н                | CF <sub>2</sub> Ci |
| A113  | CH₂=CH                                           | H        | Н                | CF <sub>2</sub> Cl |
| A114  | CH₂=CHCH₂                                        | Н        | Н                | CF <sub>2</sub> CI |
| A115  | CH₃SO₂N(CH₃)                                     | н        | Н                | CF <sub>2</sub> Cl |
| A116  | (CH₃)₂N                                          | Н        | Н                | CF <sub>2</sub> CI |
| A117  | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н        | Н                | CF <sub>2</sub> Cl |
| A118  | CICH <sub>2</sub>                                | H        | Н                | CF <sub>2</sub> CI |
| A119  | CH₃SCH₂                                          | Н        | Н                | CF <sub>2</sub> CI |
| A120  | CH₃SOCH₂                                         | Н        | Н                | CF <sub>2</sub> CI |
| A121  | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н        | Н                | CF₂CI              |
| A122  | [1,2,4]-triazol-1-yl-methyl                      | Н        | Н                | CF₂CI              |
| A123  | Н                                                | Н        | н                | CHF <sub>2</sub>   |
| A124  | CH₃                                              | Н        | Н                | CHF₂               |
| A125  | CH₃CH₂                                           | н        | Н                | CHF₂               |
| A126  | cyclopropyl                                      | Н        | Н                | CHF₂               |
| A127  | (CH₃)₃C                                          | н        | н                | CHF <sub>2</sub>   |
| A128  | (CH₃)₂CH                                         | Н.       | Н                | CHF <sub>2</sub>   |
| A129  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Н        | Н                | CHF₂               |

|        | •                                                      |      |                 |                  |
|--------|--------------------------------------------------------|------|-----------------|------------------|
| Compd. | . R <sub>79</sub>                                      | R 80 | R <sub>81</sub> | R <sub>82</sub>  |
| no.    |                                                        |      |                 |                  |
| A130   | CH₃OCH₂                                                | н    | н               | CHF <sub>2</sub> |
| A131   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>       | н    | н               | CHF <sub>2</sub> |
| A132   | Ph                                                     | н    | н               | CHF <sub>2</sub> |
| A133   | PhO                                                    | Н    | Н               | CHF <sub>2</sub> |
| A134   | PhS                                                    | Н    | Н               | CHF <sub>2</sub> |
| A135   | PhSO                                                   | Н    | н               | CHF₂             |
| A136   | PhSO <sub>2</sub>                                      | Н    | н               | CHF₂             |
| A137   | CH₃S                                                   | Н    | Н               | CHF₂             |
| A138   | CH₃SO                                                  | Н    | Н               | CHF <sub>2</sub> |
| A139   | CF <sub>3</sub>                                        | Н    | н               | CHF <sub>2</sub> |
| A140   | F₂CH                                                   | Н    | н               | CHF <sub>2</sub> |
| A141   | HCC                                                    | . н  | н               | CHF <sub>2</sub> |
| A142   | CH₃CC                                                  | Н    | Н               | CHF <sub>2</sub> |
| A143   | CH₂=CH                                                 | н    | Н               | CHF <sub>2</sub> |
| A144   | CH <sub>2</sub> =CHCH <sub>2</sub>                     | н    | Н               | CHF <sub>2</sub> |
| A145   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> )    | Н    | Н               | CHF <sub>2</sub> |
| A146   | (CH <sub>3</sub> ) <sub>2</sub> N                      | Н    | H               | CHF <sub>2</sub> |
| A147   | (CH <sub>3</sub> )₂NSO₂                                | Н    | Н               | CHF <sub>2</sub> |
| A148   | CICH <sub>2</sub>                                      | Н    | Н               | CHF <sub>2</sub> |
| A149   | CH₃SCH₂                                                | , Н  | H               | CHF <sub>2</sub> |
| A150   | CH₃SOCH₂                                               | Н    | H               | CHF <sub>2</sub> |
| A151   | CH₃SO₂CH₂                                              | Н    | Н               | CHF <sub>2</sub> |
| A152   | [1,2,4]-triazol-1-yl-methyl                            | Н    | Н               | CHF₂             |
| A153   | Н                                                      | , H  | Н               | CCl <sub>3</sub> |
| A154   | CH₃                                                    | Н    | н.              | CCI <sub>3</sub> |
| A155   | CH₃CH₂                                                 | Н    | . Н             | CCl <sub>3</sub> |
| A156   | cyclopropyl                                            | Н    | Н               | CCl <sub>3</sub> |
| A157   | (CH₃)₃C                                                | Н    | Н               | CCI <sub>3</sub> |
| A158   | (CH₃)₂CH                                               | Н    | Н .             | CCl <sub>3</sub> |
| A159   | CH₃(CH₂)₂                                              | Н    | н               | CCl₃             |
| A160   | CH₃OCH₂                                                | Н    | Н               | CCl <sub>3</sub> |
| A161   | ······CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н    | н               | CCl3             |

| Compd. | . R <sub>79</sub>                                | R 80 | R <sub>81</sub> | <br>R <sub>82</sub> |
|--------|--------------------------------------------------|------|-----------------|---------------------|
| no.    | •                                                |      |                 |                     |
| A162   | Ph                                               | н    | Н               | CCl₃                |
| A163   | PhO                                              | Н    | н               | CCl <sub>3</sub>    |
| A164   | PhS                                              | Н    | Н               | ĈCl₃                |
| A165   | PhSO                                             | н    | н -             | CCI <sub>3</sub>    |
| A166   | PhSO <sub>2</sub>                                | Н    | н               | CCl₃                |
| A167   | CH₃S                                             | Н    | н               | CCl₃                |
| A168   | CH₃SO                                            | Н    | Н               | CCI <sub>3</sub>    |
| A169   | CF <sub>3</sub>                                  | Н    | Н               | CCl₃                |
| A170   | F₂CH                                             | Н    | Н               | CCl₃                |
| A171   | HCC                                              | Н    | н               | CCl₃                |
| A172   | CH₃CC                                            | Н    | н               | CCl₃                |
| A173   | CH₂=CH                                           | н    | • н             | CCl <sub>3</sub>    |
| A174   | CH₂=CHCH₂                                        | Н    | н               | CCl₃                |
| A175   | CH₃SO₂N(CH₃)                                     | Н    | н               | CCl3                |
| A176   | (CH₃)₂N                                          | н    | Н               | . CCl <sub>3</sub>  |
| A177   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н    | н               | CCl <sub>3</sub>    |
| A178   | CICH₂                                            | H,   | Н               | CCI <sub>3</sub>    |
| A179   | CH₃SCH₂                                          | Н    | Н               | CCI <sub>3</sub>    |
| A180   | CH₃SOCH₂                                         | Η '  | Н               | CCl <sub>3</sub>    |
| A181   | CH <sub>3</sub> SO₂CH₂                           | Н    | Ħ               | CCI <sub>3</sub>    |
| A182   | [1,2,4]-triazol-1-yl-methyl                      | н    | Н               | CCl <sub>3</sub>    |
| A183   | н                                                | н    | CH₃             | CF₃                 |
| A184   | CH₃                                              | Н    | CH₃             | CF₃                 |
| A185   | CH₃CH₂                                           | Н    | CH₃             | CF <sub>3</sub>     |
| A186   | cyclopropyl                                      | • н  | CH₃             | CF <sub>3</sub>     |
| A187   | (CH₃)₃C                                          | Н    | CH₃             | CF <sub>3</sub>     |
| A188   | (CH₃)₂CH                                         | Н    | CH₃             | CF <sub>3</sub>     |
| A189   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | H    | CH₃             | CF <sub>3</sub>     |
| A190   | CH₃OCH₂                                          | H    | CH₃             | CF <sub>3</sub>     |
| A191   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н    | CH₃             | CF <sub>3</sub>     |
| A192   | Ph                                               | Н    | CH₃             | CF <sub>3</sub>     |
| A193   | PhO                                              | Н    | CH₃             | CF₃                 |

| Compd. | R 79                                             | R <sub>so</sub> | R <sub>81</sub> | R <sub>82</sub>                 |
|--------|--------------------------------------------------|-----------------|-----------------|---------------------------------|
| no.    |                                                  | ~               |                 | **02                            |
| A194   | PhS                                              | н               | СН₃             | CF₃                             |
| A195   | PhSO                                             | Н               | СН₃             | CF₃                             |
| A196   | PhSO₂                                            | Н               | CH₃             | CF <sub>3</sub>                 |
| A197   | CH₃S                                             | Н               | CH₃             | CF₃                             |
| A198   | CH₃SO                                            | н               | CH₃             | CF₃                             |
| A199   | CF <sub>3</sub>                                  | н               | CH₃             | CF₃                             |
| A200   | F <sub>2</sub> CH                                | н               | CH₃             | CF₃                             |
| A201   | HCC                                              | н               | CH₃             | CF₃                             |
| A202   | CH₃CC                                            | . <b>H</b>      | CH₃             | CF₃                             |
| A203   | CH₂=CH                                           | н               | CH₃             | CF₃                             |
| A204   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | CH₃             | CF <sub>3</sub>                 |
| A205   | CH₃SO₂N(CH₃)                                     | н               | СН₃             | CF <sub>3</sub>                 |
| A206   | (CH₃)₂N                                          | Н               | СН₃             | CF <sub>3</sub>                 |
| A207   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н               | CH₃             | CF₃                             |
| A208   | CICH <sub>2</sub>                                | Н               | СН₃             | CF <sub>3</sub>                 |
| A209   | CH₃SCH₂                                          | н               | CH₃             | CF <sub>3</sub>                 |
| A210   | CH₃SOCH₂                                         | Н               | CH₃             | CF <sub>3</sub>                 |
| A211   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | н               | СН₃             | . CF <sub>3</sub>               |
| A212   | н                                                | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A213   | CH₃                                              | , Н             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A214   | CH₃CH₂                                           | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A215   | cyclopropyl                                      | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A216   | (CH₃)₃C                                          | н               | . CH₃           | CF <sub>3</sub> CF <sub>2</sub> |
| A217   | (CH₃)₂CH                                         | н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A218   | CH₃(CH₂)₂                                        | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A219   | CH₃OCH₂                                          | Н               | CH₃             | CF₃CF₂                          |
| A220   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | . Н             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A221   | Ph                                               | Н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A222   | PhO                                              | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A223   | PhS                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A224   | PhSO                                             | н               | CH₃ .           | CF <sub>3</sub> CF <sub>2</sub> |
| A225   | PhSO <sub>2</sub>                                | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |

| Compd. | R 79                                             | R 80 | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|--------------------------------------------------|------|-----------------|-------------------------------------------------|
| no.    |                                                  |      |                 |                                                 |
| A226   | CH₃S                                             | H    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A227   | CH₃SO                                            | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A228   | CF <sub>3</sub>                                  | Н    | CH₃             | CF₃CF₂                                          |
| A229   | F₂CH                                             | H    | CH₃             | CF₃CF₂                                          |
| A230.  | HCC                                              | н    | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A231   | CH₃CC                                            | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A232   | CH₂=CH                                           | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A233   | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A234   | CH₃SO₂N(CH₃)                                     | н    | CH₃             | CF₃CF₂                                          |
| A235   | (CH₃)₂N                                          | Н.   | CH₃             | CF₃CF₂                                          |
| A236   | (CH <sub>3</sub> )₂NSO₂                          | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A237   | CICH₂                                            | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A238   | CH₃SCH₂                                          | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A239   | CH₃SOCH₂                                         | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A240   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н    | CH₃             | CF₃CF₂                                          |
| A241   | Н                                                | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A242   | CH₃                                              | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A243   | CH₃CH₂                                           | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A244   | cyclopropyl                                      | H    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A245   | (CH₃)₃C                                          | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A246   | (CH₃)₂CH                                         | H    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A247   | CH₃(CH₂)₂                                        | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A248   | CH₃OCH₂                                          | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A249   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н    | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A250   | Ph                                               | H    | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A251   | PhO                                              | Н    | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A252   | PhS                                              | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A253   | PhSO                                             | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A254   | PhSO <sub>2</sub>                                | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A255   | CH₃S                                             | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A256   | CH₃SO                                            | н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A257   | CF <sub>3</sub>                                  | Н    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |

| Compd. | R 79                                                | R <sub>so</sub> | Ra              | R <sub>82</sub>                                 |
|--------|-----------------------------------------------------|-----------------|-----------------|-------------------------------------------------|
| no.    |                                                     |                 |                 |                                                 |
| A258   | F₂CH                                                | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A259   | HCC                                                 | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A260   | CH₃CC                                               | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A261   | CH₂=CH                                              | н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A262   | CH <sub>2</sub> =CHCH <sub>2</sub>                  | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A263   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A264   | (CH <sub>3</sub> ) <sub>2</sub> N                   | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A265   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A266   | CICH <sub>2</sub>                                   | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A267   | CH₃SCH₂                                             | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A268   | CH₃SOCH₂                                            | H               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A269   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | H               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A270   | н                                                   | Н               | СН₃             | CF <sub>2</sub> Cl                              |
| A271   | CH₃                                                 | н               | CH₃             | CF <sub>2</sub> Cl                              |
| A272   | CH₃CH₂                                              | Н               | CH₃             | ' CF <sub>2</sub> Cl                            |
| A273   | cyclopropyl                                         | н               | CH₃             | CF <sub>2</sub> CI                              |
| A274   | (CH₃)₃C                                             | н               | CH₃             | CF₂CI                                           |
| A275   | (CH₃)₂CH                                            | H               | CH₃             | CF₂CI                                           |
| A276   | CH₃(CH₂)₂                                           | Н               | СН₃             | CF₂CI                                           |
| A277   | CH₃OCH₂                                             | Н               | CH₃             | CF <sub>2</sub> CI                              |
| A278   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н               | СН₃             | CF <sub>2</sub> CI                              |
| A279   | Ph                                                  | Н               | СН₃             | CF <sub>2</sub> CI                              |
| A280   | PhO                                                 | н               | CH₃             | CF <sub>2</sub> CI                              |
| A281   | PhS                                                 | н               | CH₃             | CF₂CI                                           |
| A282   | PhSO                                                | н               | CH₃             | CF <sub>2</sub> Cl                              |
| A283   | PhSO₂                                               | Н               | СН₃             | CF₂CI                                           |
| A284   | CH₃S                                                | Н               | CH₃             | CF₂CI                                           |
| A285   | CH₃SO                                               | Н               | CH₃             | CF₂CI                                           |
| A286   | CF <sub>3</sub>                                     | н               | СН₃             | CF₂Ci                                           |
| A287   | F₂CH                                                | Н               | CH₃             | CF₂CI                                           |
| A288   | HCC                                                 | Н               | СН₃             | CF₂CI                                           |
| A289   | · CH₃CC                                             | н               | CH <sub>3</sub> | CF <sub>2</sub> CI                              |

| Compd. | R 79                                             | R 80 | R <sub>81</sub> | R <sub>82</sub>    |
|--------|--------------------------------------------------|------|-----------------|--------------------|
| no.    | •                                                |      |                 |                    |
| A290   | CH₂=CH                                           | Н    | CH₃             | CF₂CI              |
| A291   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н    | CH₃             | CF <sub>2</sub> CI |
| A292   | CH₃SO₂N(CH₃)                                     | Н    | CH₃             | ĈF₂CI              |
| A293   | (CH₃)₂N                                          | н    | CH₃             | CF₂CI              |
| A294   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н    | СН₃             | CF <sub>2</sub> Cl |
| A295   | CICH₂                                            | н    | CH₃             | CF <sub>2</sub> CI |
| A296   | CH₃SCH₂                                          | Н    | CH₃             | CF <sub>2</sub> CI |
| A297   | CH₃SOCH₂                                         | н    | CH₃             | CF <sub>2</sub> Cl |
| A298   | CH₃SO₂CH₂                                        | н    | CH₃             | CF <sub>2</sub> CI |
| A299   | н                                                | н    | CH₃             | CHF <sub>2</sub>   |
| A300   | CH <sub>3</sub>                                  | Н    | CH₃             | CHF <sub>2</sub>   |
| A301   | CH₃CH₂                                           | н    | CH₃             | CHF <sub>2</sub>   |
| A302   | cyclopropyl                                      | н    | СН₃             | CHF <sub>2</sub>   |
| A303   | (CH <sub>3</sub> ) <sub>3</sub> C                | н    | CH₃             | CHF <sub>2</sub>   |
| A304   | (CH₃)₂CH                                         | н    | CH₃             | CHF <sub>2</sub>   |
| A305   | $CH_3(CH_2)_2$                                   | Н    | CH₃             | CHF <sub>2</sub>   |
| A306   | CH₃OCH₂                                          | н    | CH₃             | CHF <sub>2</sub>   |
| A307   | CH₃O(CH₂)₂                                       | н    | CH₃             | CHF <sub>2</sub>   |
| A308   | Ph                                               | н    | CH₃             | CHF <sub>2</sub>   |
| A309   | PhO ·                                            | Н    | CH₃             | CHF <sub>2</sub>   |
| A310   | PhS                                              | Н    | CH₃             | CHF <sub>2</sub>   |
| A311   | PhSO                                             | Н    | CH₃             | CHF <sub>2</sub>   |
| A312   | PhSO₂                                            | Н    | CH₃             | CHF <sub>2</sub>   |
| A313   | CH₃S                                             | н    | CH₃             | CHF <sub>2</sub>   |
| A314   | CH₃SO                                            | н    | CH₃             | CHF₂               |
| A315   | CF <sub>3</sub>                                  | н    | CH₃             | CHF₂               |
| A316   | F <sub>2</sub> CH                                | н    | CH₃             | CHF <sub>2</sub>   |
| A317   | HCC                                              | н    | CH₃             | CHF <sub>2</sub>   |
| A318   | CH₃CC                                            | н    | CH₃             | CHF <sub>2</sub>   |
| A319   | CH₂=CH                                           | н    | CH₃             | CHF <sub>2</sub>   |
| A320   | CH₂=CHCH₂                                        | Н    | CH₃             | CHF <sub>2</sub>   |
| A321   | CH₃SO₂N(CH₃)                                     | н    | CH₃             | CHF <sub>2</sub>   |

| Compd. | R 79                                             | R 80 | R <sub>81</sub> | R <sub>82</sub>  |
|--------|--------------------------------------------------|------|-----------------|------------------|
| no.    |                                                  |      |                 |                  |
| A322   | (CH₃)₂N                                          | н    | CH₃             | CHF <sub>2</sub> |
| A323   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н    | CH₃             | CHF <sub>2</sub> |
| A324   | CICH₂                                            | н    | CH₃             | CHF₂             |
| A325   | CH₃SCH₂                                          | Н    | CH₃             | CHF <sub>2</sub> |
| A326   | CH₃SOCH₂                                         | Н    | CH₃             | CHF <sub>2</sub> |
| A327   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н    | CH₃             | CHF <sub>2</sub> |
| A328   | Н                                                | Н    | CH₃             | CCl₃             |
| A329   | CH₃                                              | Н    | CH₃             | CCl₃             |
| A330   | ·· CH₃CH₂                                        | н    | CH₃             | CCl₃             |
| A331   | (CH₃)₃C                                          | Н    | CH₃             | CCl <sub>3</sub> |
| A332   | (CH₃)₂CH                                         | Н    | CH₃             | CCl₃             |
| A333   | cyclopropyl                                      | н    | СН₃             | CCl <sub>3</sub> |
| A334   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н    | CH₃             | CCI <sub>3</sub> |
| A335   | CH₃OCH₂                                          | н    | CH₃             | CCl <sub>3</sub> |
| A336   | CH₃O(CH₂)₂                                       | .H   | CH₃             | CCl <sub>3</sub> |
| A337   | Ph                                               | н    | CH₃             | CCl <sub>3</sub> |
| A338   | PhO                                              | н    | СН₃             | CCl <sub>3</sub> |
| A339   | PhS                                              | н    | CH₃             | CCl <sub>3</sub> |
| A340   | PhSO                                             | Н    | CH₃             | CCI <sub>3</sub> |
| A341   | PhSO <sub>2</sub>                                | H    | CH <sub>3</sub> | CCl <sub>3</sub> |
| A342   | CH₃S                                             | Н    | CH₃             | CCI <sub>3</sub> |
| A343   | CH₃SO                                            | Н    | CH <sub>3</sub> | CCl3             |
| A344   | CF₃                                              | н    | CH₃             | CCl <sub>3</sub> |
| A345   | F₂CH                                             | н    | CH <sub>3</sub> | CCI <sub>3</sub> |
| A346   | HCC                                              | н    | CH₃             | CCI <sub>3</sub> |
| A347   | CH₃CC                                            | н    | . CH₃           | CCI <sub>3</sub> |
| A348   | CH₂=CH                                           | н    | CH <sub>3</sub> | CCl <sub>3</sub> |
| A349   | CH₂=CHCH₂                                        | н    | CH₃             | CCl <sub>3</sub> |
| A350   | CH₃SO₂N(CH₃)                                     | н    | CH₃             | CCI <sub>3</sub> |
| A351   | (CH₃)₂N                                          | н    | CH <sub>3</sub> | CCl₃             |
| A352   | (CH₃)₂NSO₂                                       | н    | CH₃             | CCl <sub>3</sub> |
| A353   | ·····CICH <sub>2</sub>                           | н    | CH₃             | CCl <sub>3</sub> |

| Compd. | R 79                                             | R 80 | R <sub>81</sub> | R <sub>82</sub> |
|--------|--------------------------------------------------|------|-----------------|-----------------|
| no.    |                                                  |      |                 | -               |
| A354   | CH₃SCH₂                                          | н    | СН₃             | CCl₃            |
| A355   | CH₃SOCH₂                                         | н    | CH₃             | CCl₃            |
| A356   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | н    | СН₃             | ĈCI₃            |
| A357   | Н                                                | н    | Ph              | CF <sub>3</sub> |
| A358   | CH₃                                              | н    | Ph              | CF <sub>3</sub> |
| A359   | CH₃CH₂                                           | H    | Ph              | CF <sub>3</sub> |
| A360   | cyclopropyl                                      | н    | Ph              | CF <sub>3</sub> |
| A361   | (CH <sub>3</sub> ) <sub>3</sub> C                | · H  | Ph              | CF₃             |
| A362   | (CH₃)₂CH                                         | н    | Ph              | CF <sub>3</sub> |
| A363   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н    | . Ph            | CF <sub>3</sub> |
| A364   | CH₃OCH₂                                          | н    | Ph              | CF₃             |
| A365   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н    | Ph              | CF <sub>3</sub> |
| A366   | Ph                                               | н    | Ph              | CF₃             |
| A367   | PhO                                              | н    | Ph              | CF₃             |
| A368   | PhS                                              | Н    | Ph              | CF₃             |
| A369   | PhSO                                             | Н    | Ph              | CF₃             |
| A370   | PhSO <sub>2</sub>                                | Н    | Ph              | CF₃             |
| A371   | CH₃S                                             | н    | Ph              | CF <sub>3</sub> |
| A372   | CH₃SO                                            | н    | Ph              | CF <sub>3</sub> |
| A373   | CF₃                                              | Н    | Ph              | CF₃             |
| A374   | F₂CH                                             | Н    | Ph              | CF₃             |
| A375   | HCC                                              | Н    | Ph              | CF <sub>3</sub> |
| A376   | CH₃CC                                            | Н    | Ph              | CF <sub>3</sub> |
| A377   | CH <sub>2</sub> =CH                              | Н    | Ph              | CF <sub>3</sub> |
| A378   | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н    | Ph              | CF <sub>3</sub> |
| A379   | CH₃SO₂N(CH₃)                                     | н    | Ph              | CF <sub>3</sub> |
| A380   | (CH₃)₂N                                          | н    | Ph              | CF <sub>3</sub> |
| A381   | (CH₃)₂NSO₂                                       | н    | Ph              | CF <sub>3</sub> |
| A382   | CICH <sub>2</sub>                                | н    | Ph              | CF₃             |
| A383   | CH₃SCH₂                                          | н    | Ph              | CF <sub>3</sub> |
| A384   | CH₃SOCH₂                                         | н    | Ph              | CF <sub>3</sub> |
| A385   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | н    | Ph              | CF <sub>3</sub> |

| Compd. | R 79                                             | R 80 | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|--------------------------------------------------|------|-----------------|-------------------------------------------------|
| no.    |                                                  |      |                 |                                                 |
| A386   | н                                                | н    | Ph              | CF₃CF₂                                          |
| A387   | CH₃                                              | н    | Ph              | CF₃CF₂                                          |
| A388   | CH₃CH₂                                           | н    | Ph              | ĈF₃CF₂                                          |
| A389   | cyclopropyl                                      | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A390   | (CH₃)₃C                                          | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A391   | (CH₃)₂CH                                         | н    | Ph              | CF₃CF₂                                          |
| A392   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A393   | CH₃OCH₂                                          | н    | Ph              | CF₃CF₂                                          |
| A394   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A395   | Ph                                               | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A396   | PhO                                              | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A397   | PhS                                              | H    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A398   | PhSO                                             | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A399   | PhSO <sub>2</sub>                                | H    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A400   | CH₃S                                             | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A401   | CH₃SO                                            | H    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A402   | CF₃                                              | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A403   | F₂CH                                             | н    | · Ph            | CF₃CF₂                                          |
| A404   | HCC                                              | н    | Ρĥ              | CF₃CF₂                                          |
| A405   | CH₃CC                                            | Н    | Ph              | CF₃CF₂                                          |
| A406   | CH₂=CH                                           | Н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A407   | CH₂=CHCH₂                                        | Н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A408   | CH₃SO₂N(CH₃)                                     | Н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A409   | (CH₃)₂N                                          | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A410   | (CH <sub>3</sub> )₂NSO₂                          | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A411   | CICH <sub>2</sub>                                | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A412   | CH₃SCH₂                                          | н    | Ph              | CF₃CF₂                                          |
| A413   | CH₃SOCH₂                                         | н    | Ph              | CF₃CF₂                                          |
| A414   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A415   | Н                                                | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A416   | CH₃                                              | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A417   | ·····CH <sub>3</sub> CH <sub>2</sub>             | н    | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |

| Compd. | R 79                                                | R 80           | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|-----------------------------------------------------|----------------|-----------------|-------------------------------------------------|
| no.    |                                                     |                |                 |                                                 |
| A418   | cyclopropyl                                         | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A419   | (CH <sub>3</sub> ) <sub>3</sub> C                   | H ·            | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A420   | (CH₃)₂CH                                            | н              | Ph              | CF₃CF₂CF₂                                       |
| A421   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A422   | CH₃OCH₂                                             | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A423   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A424   | Ph                                                  | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A425   | PhO                                                 | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A426   | PhS                                                 | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A427   | PhSO                                                | H <sup>.</sup> | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A428   | PhSO <sub>2</sub>                                   | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A429   | · CH₃S                                              | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A430   | CH₃SO                                               | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A431   | CF <sub>3</sub>                                     | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A432   | F₂CH                                                | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A433   | HCC                                                 | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A434   | CH₃CC                                               | н .            | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A435   | CH₂=CH                                              | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A436   | CH₂=CHCH₂                                           | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A437   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A438   | (CH₃)₂N                                             | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A439   | (CH <sub>3</sub> )₂NSO <sub>2</sub>                 | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A440   | CICH₂                                               | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A441   | CH₃SCH₂                                             | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A442   | CH₃SOCH₂                                            | н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A443   | CH₃SO₂CH₂                                           | Н              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A444   | Н                                                   | H              | Ph              | CF <sub>2</sub> CI                              |
| A445   | CH₃                                                 | н              | Ph              | CF <sub>2</sub> CI                              |
| A446   | CH₃CH₂                                              | н              | Ph              | CF <sub>2</sub> Cl                              |
| A447   | cyclopropyl                                         | н              | Ph              | CF <sub>2</sub> CI                              |
| A448   | (CH₃)₃C                                             | Н              | Ph              | CF <sub>2</sub> Cl                              |
| A449   | (CH₃)₂CH                                            | н              | Ph              | CF <sub>2</sub> CI                              |

| Compd. | R 79                                             | R 80 | R <sub>81</sub> | R <sub>82</sub>    |
|--------|--------------------------------------------------|------|-----------------|--------------------|
| no.    |                                                  |      |                 |                    |
| A450   | CH₃(CH₂)₂                                        | н    | Ph              | CF <sub>2</sub> Cl |
| A451   | CH₃OCH₂                                          | Н    | Ph              | CF <sub>2</sub> CI |
| A452   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н    | Ph              | ĈF₂CI              |
| . A453 | Ph                                               | н    | Ph              | CF₂CI              |
| A454   | PhO                                              | н    | Ph              | CF₂CI              |
| A455   | PhS                                              | Н    | Ph              | CF <sub>2</sub> CI |
| A456   | PhSO                                             | н    | Ph              | CF₂CI              |
| A457   | PhSO <sub>2</sub>                                | Н    | Ph              | CF <sub>2</sub> CI |
| A458   | CH₃S                                             | н    | Ph              | CF₂CI              |
| A459   | CH₃SO                                            | н    | Ph              | CF₂CI              |
| A460   | CF <sub>3</sub>                                  | Н    | Ph              | CF₂CI              |
| A461   | F₂CH                                             | н    | Ph              | CF₂CI              |
| A462   | HCC                                              | н    | Ph              | CF₂CI              |
| A463   | CH₃CC                                            | н    | Ph              | CF <sub>2</sub> Cl |
| A464   | CH₂=CH                                           | Н    | Ph              | CF₂CI              |
| A465   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н    | Ph              | CF <sub>2</sub> Cl |
| A466   | CH₃SO₂N(CH₃)                                     | н    | Ph              | CF <sub>2</sub> CI |
| A467   | (CH <sub>3</sub> ) <sub>2</sub> N                | н    | Ph              | CF <sub>2</sub> CI |
| A468   | (CH₃)₂NSO₂ .                                     | н    | Ph              | CF <sub>2</sub> CI |
| A469   | CICH <sub>2</sub>                                | H    | Ph              | CF <sub>2</sub> Cl |
| A470   | CH₃SCH₂                                          | н    | Ph              | CF <sub>2</sub> Cl |
| A471   | CH₃SOCH₂                                         | н    | Ph              | CF <sub>2</sub> CI |
| A472   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н    | Ph              | CF <sub>2</sub> CI |
| A473   | . Н                                              | H    | Ph              | CHF₂               |
| A474   | CH₃                                              | н    | Ph              | CHF <sub>2</sub>   |
| A475   | CH₃CH₂                                           | н    | Ph              | CHF <sub>2</sub>   |
| A476   | cyclopropyl                                      | Н    | Ph              | CHF <sub>2</sub>   |
| A477   | (CH₃)₃C                                          | Н    | Ph              | CHF₂               |
| A478   | (CH₃)₂CH                                         | Н    | Ph              | CHF₂               |
| A479   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н    | Ph              | CHF₂               |
| A480   | CH₃OCH₂                                          | Н    | Ph              | CHF₂               |
| A481   | ···-·CH₃O(CH₂)₂                                  | Н    | Ph              | CHF <sub>2</sub>   |

| Compd. | R 79                                                | R 80 | R <sub>81</sub> | <br>R <sub>82</sub> |
|--------|-----------------------------------------------------|------|-----------------|---------------------|
| no.    |                                                     |      |                 |                     |
| A482   | Ph                                                  | H    | Ph              | CHF₂                |
| A483   | PhO                                                 | н    | Ph              | CHF <sub>2</sub>    |
| A484   | PhS                                                 | н    | Ph              | ĈHF₂                |
| A485   | PhSO                                                | н    | Ph              | CHF <sub>2</sub>    |
| A486   | PhSO <sub>2</sub>                                   | Н    | Ph              | CHF <sub>2</sub>    |
| A487   | CH₃S                                                | н    | Ph              | CHF <sub>2</sub>    |
| A488   | CH₃SO                                               | н    | Ph _            | CHF <sub>2</sub>    |
| A489   | CF <sub>3</sub>                                     | Н    | Ph              | CHF <sub>2</sub>    |
| A490   | F₂CH                                                | н    | Ph              | CHF <sub>2</sub>    |
| A491   | HCC                                                 | н    | Ph              | CHF <sub>2</sub>    |
| A492   | CH₃CC                                               | н    | Ph              | CHF <sub>2</sub>    |
| A493   | CH₂=CH                                              | н    | Ph .            | CHF <sub>2</sub>    |
| A494   | CH <sub>2</sub> =CHCH <sub>2</sub>                  | н    | Ph              | CHF <sub>2</sub>    |
| A495   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н    | Ph              | CHF₂                |
| A496   | (CH₃)₂N                                             | н    | Ph              | CHF <sub>2</sub>    |
| A497   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Н    | Ph              | CHF <sub>2</sub>    |
| A498   | CICH <sub>2</sub>                                   | н    | Ph              | CHF <sub>2</sub>    |
| A499   | CH₃SCH₂                                             | н    | Ph              | CHF <sub>2</sub>    |
| A500   | CH₃SOCH₂                                            | н    | Ph              | CHF <sub>2</sub>    |
| A501   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Н    | Ph              | · CHF <sub>2</sub>  |
| A502   | Н                                                   | н    | Ph              | CCI3                |
| A503   | CH₃                                                 | Н    | Ph              | CCI <sub>3</sub>    |
| A504   | CH₃CH₂                                              | Н    | Ph              | CCI <sub>3</sub> .  |
| A505   | cyclopropyl                                         | Н    | Ph              | CCl3                |
| A506   | (CH₃)₃C                                             | Н    | Ph              | CCl3                |
| A507 · | (CH₃)₂CH                                            | н    | Ph              | CCl <sub>3</sub>    |
| A508   | CH₃(CH₂)₂                                           | н    | Ph              | CCI <sub>3</sub>    |
| A509   | CH₃OCH₂                                             | н    | Ph              | CCl <sub>3</sub>    |
| A510   | CH₃O(CH₂)₂                                          | н    | Ph              | CCl <sub>3</sub>    |
| A511   | Ph                                                  | H    | Ph              | CCl <sub>3</sub>    |
| A512   | PhO                                                 | н    | Ph              | CCI <sub>3</sub>    |
| A513   | PhS                                                 | Н    | Ph              | CCl <sub>3</sub>    |

| Compd. | R 79                                             | R <sub>80</sub>                                  | R <sub>81</sub> | R <sub>82</sub>  |
|--------|--------------------------------------------------|--------------------------------------------------|-----------------|------------------|
| no.    | •                                                |                                                  |                 |                  |
| A514   | PhSO                                             | н                                                | Ph              | CCI <sub>3</sub> |
| A515   | PhSO₂                                            | н                                                | Ph              | CCl <sub>3</sub> |
| A516   | CH₃S                                             | н                                                | Ph              | CCl₃             |
| A517   | CH₃SO                                            | н                                                | Ph              | CCl <sub>3</sub> |
| A518   | CF₃                                              | H                                                | Ph              | CCl3             |
| A519   | F₂CH                                             | н                                                | Ph              | CCl <sub>3</sub> |
| A520   | HCC                                              | н                                                | Ph              | CCl <sub>3</sub> |
| A521   | CH₃CC                                            | н                                                | Ph              | CCl <sub>3</sub> |
| A522   | CH₂=CH                                           | Н                                                | Ph              | CCl3             |
| A523   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н                                                | Ph              | CCl <sub>3</sub> |
| A524   | CH₃SO₂N(CH₃)                                     | н                                                | Ph              | CCl₃             |
| A525   | (CH₃)₂N                                          | н                                                | Ph              | CCl <sub>3</sub> |
| A526   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н                                                | Ph              | CCI <sub>3</sub> |
| A527   | CICH₂                                            | н                                                | Ph              | CCl <sub>3</sub> |
| A528   | CH₃SCH₂                                          | н                                                | Ph              | CCI <sub>3</sub> |
| A529   | CH₃SOCH₂                                         | н                                                | Ph              | CCl₃             |
| A530   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | н                                                | Ph              | CCl₃             |
| A531   | Н                                                | CH₃                                              | Н               | CF₃              |
| A532   | Н                                                | CH₃CH₂                                           | н               | CF₃              |
| A533   | H                                                | cyclopropyl                                      | Н               | CF₃              |
| A534   | н                                                | (CH₃)₃CH                                         | H               | CF₃              |
| A535   | Н                                                | (CH₃)₂CH                                         | Н               | CF₃              |
| A536   | н                                                | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н               | CF <sub>3</sub>  |
| A537   | Н                                                | CH₃OCH₂                                          | н               | CF <sub>3</sub>  |
| A538   | Н                                                | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н               | CF₃              |
| A539   | Н                                                | Ph                                               | H               | CF <sub>3</sub>  |
| A540   | н                                                | PhO                                              | н               | CF₃              |
| A541   | Н                                                | PhS                                              | Н               | CF₃              |
| A542   | H                                                | PhSO                                             | Н               | CF <sub>3</sub>  |
| A543   | Н                                                | PhSO <sub>2</sub>                                | Н               | CF <sub>3</sub>  |
| A544   | н                                                | CH₃S                                             | Н               | CF <sub>3</sub>  |
| A545   | H                                                | CH₃SO                                            | Н               | CF₃              |
|        |                                                  |                                                  |                 | -                |

| Compd.       | R 79       | R <sub>80</sub>                                 | R <sub>81</sub> | R <sub>82</sub>                 |
|--------------|------------|-------------------------------------------------|-----------------|---------------------------------|
| no.          |            |                                                 |                 |                                 |
| A546         | н          | CF₃                                             | Н               | CF₃                             |
| A547         | н          | F₂CH                                            | Н               | CF <sub>3</sub>                 |
| A548         | н          | HCC                                             | н               | ĈF₃                             |
| A549         | н          | CH₃CC                                           | н               | CF <sub>3</sub>                 |
| A550         | н          | CH₂=CH                                          | Н               | CF <sub>3</sub>                 |
| A551         | н          | CH <sub>2</sub> =CHCH <sub>2</sub>              | н               | CF <sub>3</sub>                 |
| A552         | H          | CH₃SO₂N(CH₃)                                    | Н               | CF <sub>3</sub>                 |
| A553         | н          | (CH₃)₂N                                         | н               | CF <sub>3</sub>                 |
| A554         | н          | (CH₃)₂NSO₂                                      | H               | CF <sub>3</sub>                 |
| A555         | Н          | CH₃SCH₂                                         | н               | CF₃                             |
| A556         | н          | CH₃SOCH₂                                        | н               | CF <sub>3</sub>                 |
| A557         | н          | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub> | Н               | CF <sub>3</sub>                 |
| A558         | н          | CH <sub>3</sub>                                 | н               | CF <sub>3</sub> CF <sub>2</sub> |
| <b>A5</b> 59 | , н        | CH₃CH₂                                          | н               | CF <sub>3</sub> CF <sub>2</sub> |
| A560         | н          | cyclopropyl                                     | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A561         | н          | (CH₃)₃C                                         | н               | CF <sub>3</sub> CF <sub>2</sub> |
| A562         | , <b>H</b> | (CH₃)₂CH                                        | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A563         | н          | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A564         | Н          | CH₃OCH₂                                         | • н             | CF₃CF₂                          |
| A565         | Н          | CH₃O(CH₂)₂                                      | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A566         | Н          | Ph                                              | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A567         | н          | PhO                                             | Н               | CF₃CF₂                          |
| A568         | Н          | PhS                                             | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A569         | н          | PhSO                                            | H               | CF <sub>3</sub> CF <sub>2</sub> |
| A570         | H          | PhSO <sub>2</sub>                               | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A571         | н          | CH₃S                                            | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A572         | н          | CH₃SO                                           | н               | CF <sub>3</sub> CF <sub>2</sub> |
| A573         | н          | CF <sub>3</sub>                                 | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A574         | . н        | F₂CH                                            | Н               | CF₃CF₂                          |
| A575         | н          | · HCC                                           | Н               | CF₃CF₂                          |
| A576         | н          | CH₃CC                                           | Н               | CF <sub>3</sub> CF <sub>2</sub> |
| A577         | H          | CH <sub>2</sub> =CH                             | Н               | CF <sub>3</sub> CF <sub>2</sub> |

| Compd. | R 79 | R <sub>80</sub>                                  | Raı | R <sub>82</sub>                                 |
|--------|------|--------------------------------------------------|-----|-------------------------------------------------|
| no.    |      | •                                                |     |                                                 |
| A578   | Н    | CH₂=CHCH₂                                        | Н   | CF <sub>3</sub> CF <sub>2</sub>                 |
| A579   | Н    | CH₃SO₂N(CH₃)                                     | Н   | CF <sub>3</sub> CF <sub>2</sub>                 |
| A580   | Н    | (CH₃)₂N                                          | н   | CF <sub>3</sub> CF <sub>2</sub>                 |
| A581   | • н  | (CH₃)₂NSO₂                                       | Н   | CF <sub>3</sub> CF <sub>2</sub>                 |
| A582   | Н    | CH₃SCH₂                                          | Н   | CF <sub>3</sub> CF <sub>2</sub>                 |
| A583   | н    | CH₃SOCH₂                                         | Н   | CF <sub>3</sub> CF <sub>2</sub>                 |
| A584   | н    | CH₃SO₂CH₂                                        | н   | CF <sub>3</sub> CF <sub>2</sub>                 |
| A585   | н .  | CH₃                                              | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A586   | Н    | CH₃CH₂                                           | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A587   | н    | cyclopropyl                                      | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A588   | • н  | (CH₃)₃C                                          | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A589   | . н  | (CH₃)₂CH                                         | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A590   | н    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | H   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A591   | Н    | CH₃OCH₂                                          | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A592   | Н    | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A593   | Н    | Ph                                               | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A594   | Н    | PhO                                              | н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A595   | Н .  | PhS                                              | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A596   | Н    | PhSO                                             | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A597   | н    | PhSO <sub>2</sub>                                | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A598   | н    | CH₃S                                             | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A599   | Н    | CH₃SO                                            | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A600   | Н    | CF₃                                              | . н | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A601   | . н  | F₂CH                                             | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A602   | · H  | HCC                                              | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A603   | н    | CH₃CC                                            | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A604   | н    | CH₂=CH                                           | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A605   | Н    | CH <sub>2</sub> =CHCH <sub>2</sub>               | H   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A606   | Н    | CH₃SO₂N(CH₃)                                     | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A607   | Н    | (CH₃)₂N                                          | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A608   | Н    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н   | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A609   | Н    | CH₃SCH₂                                          | Н   | CF₃CF₂CF₂                                       |
|        |      |                                                  |     |                                                 |

| Compd. | R 79 | R 80                                             | · R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|------|--------------------------------------------------|-------------------|-------------------------------------------------|
| no.    |      | ,                                                |                   |                                                 |
| A610   | Н    | CH₃SOCH₂                                         | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A611   | Н    | CH₃SO₂CH₂                                        | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A612   | Н    | CH₃                                              | Н                 | CF₂CI                                           |
| A613   | Н    | CH₃CH₂                                           | Н                 | CF <sub>2</sub> CI                              |
| A614   | Н    | cyclopropyl                                      | Н                 | CF <sub>2</sub> CI                              |
| A615   | Н    | (CH₃)₃C                                          | Н                 | CF <sub>2</sub> CI                              |
| A616   | н    | (CH₃)₂CH                                         | Н                 | CF <sub>2</sub> CI                              |
| A617   | Н    | CH₃(CH₂)₂                                        | Н                 | CF <sub>2</sub> CI                              |
| A618   | Н    | CH₃OCH₂                                          | Н                 | CF <sub>2</sub> Cl                              |
| A619   | . н  | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н                 | CF <sub>2</sub> Cl                              |
| A620   | н    | Ph                                               | Н                 | . CF <sub>2</sub> Cl                            |
| A621   | н    | PhO                                              | H                 | CF₂CI                                           |
| A622   | Н    | PhS                                              | H                 | CF₂CI                                           |
| A623   | Н    | PhSO                                             | Н                 | CF <sub>2</sub> CI                              |
| A624   | Ή.   | PhSO₂                                            | н                 | CF <sub>2</sub> CI                              |
| A625   | Н    | CH₃S                                             | Н                 | CF <sub>2</sub> CI                              |
| A626   | Н    | CH₃SO                                            | Н                 | CF <sub>2</sub> Cl                              |
| A627   | Н    | CF <sub>3</sub>                                  | н                 | CF <sub>2</sub> CI                              |
| A628   | H    | F₂CH                                             | Н                 | CF <sub>2</sub> CI                              |
| A629   | Н    | HCC                                              | Н                 | CF₂CI                                           |
| A630   | Н    | CH₃CC                                            | Н                 | CF <sub>2</sub> CI                              |
| A631   | Н    | CH₂=CH                                           | н                 | CF <sub>2</sub> CI                              |
| A632   | Н    | CH₂=CHCH₂                                        | Н                 | CF <sub>2</sub> CI                              |
| A633   | Н    | CH₃SO₂N(CH₃)                                     | ` Н               | CF <sub>2</sub> CI                              |
| A634   | Н    | (CH <sub>3</sub> )₂N                             | Н                 | CF₂CI                                           |
| A635   | Н    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н                 | CF <sub>2</sub> CI                              |
| A636   | н    | CH₃SCH₂                                          | Н                 | CF <sub>2</sub> CI                              |
| A637   | н    | CH₃SOCH₂                                         | н                 | CF <sub>2</sub> CI                              |
| A638   | н    | CH₃SO₂CH₂                                        | н                 | CF <sub>2</sub> CI                              |
| A639   | Н    | CH <sub>3</sub>                                  | н                 | CHF₂                                            |
| A640   | н    | CH₃CH₂                                           | Н                 | CHF <sub>2</sub>                                |
| A641   | H    | cyclopropyl                                      | н                 | CHF₂                                            |

| Compd. | R 79 | R 80                                             | R <sub>81</sub> | R <sub>82</sub>  |
|--------|------|--------------------------------------------------|-----------------|------------------|
| no.    |      |                                                  |                 |                  |
| A642   | H    | (CH₃)₃C                                          | н               | CHF <sub>2</sub> |
| A643   | н    | (CH₃)₂CH                                         | н               | CHF <sub>2</sub> |
| A644   | н    | CH₃(CH₂)₂                                        | н               | CHF₂             |
| A645   | н    | CH₃OCH₂                                          | н               | CHF <sub>2</sub> |
| A646   | н    | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н               | CHF <sub>2</sub> |
| A647   | Н    | Ph                                               | Н               | CHF <sub>2</sub> |
| A648   | н    | PhO                                              | н               | CHF <sub>2</sub> |
| A649   | н    | PhS                                              | Н               | CHF <sub>2</sub> |
| A650   | Н    | PhSO                                             | н               | CHF <sub>2</sub> |
| A651   | Н    | PhSO <sub>2</sub>                                | н.              | CHF <sub>2</sub> |
| A652   | н .  | CH₃S                                             | н               | CHF <sub>2</sub> |
| A653   | н    | CH₃SO                                            | н -             | CHF <sub>2</sub> |
| A654   | н    | CF <sub>3</sub>                                  | н               | CHF <sub>2</sub> |
| A655   | Н    | F₂CH                                             | ' н             | CHF <sub>2</sub> |
| A656   | н    | HCC                                              | H               | CHF <sub>2</sub> |
| A657   | н    | CH₃CC                                            | н               | CHF <sub>2</sub> |
| A658   | н    | CH₂=CH                                           | н               | CHF <sub>2</sub> |
| A659   | н .  | CH₂=CHCH₂                                        | Н               | CHF <sub>2</sub> |
| A660   | H    | CH₃SO₂N(CH₃)                                     | н               | CHF <sub>2</sub> |
| A661   | H    | (CH₃)₂N                                          | Н               | CHF <sub>2</sub> |
| A662   | Н    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CHF <sub>2</sub> |
| A663   | Н    | CH₃SCH₂                                          | Н               | CHF <sub>2</sub> |
| A664   | Н 1  | CH₃SOCH₂                                         | н               | CHF <sub>2</sub> |
| A665   | н    | CH₃SO₂CH₂                                        | Н               | CHF <sub>2</sub> |
| A666   | Н    | CH₃                                              | ⊶ н ்           | CCI <sub>3</sub> |
| A667   | н    | CH₃CH₂                                           | Н               | CCl₃             |
| A668   | Н    | cyclopropyl                                      | Н               | CCl₃             |
| A669   | Н    | (CH₃)₃C                                          | Н               | CCl₃             |
| A670   | H    | (CH₃)₂CH                                         | Н               | CCl₃             |
| A671   | Н    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Н               | CCl₃             |
| A672   | н    | CH₃OCH₂                                          | Н               | CCl₃             |
| A673   | Н    | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н               | CCl <sub>3</sub> |

| Compd. |   | R 79 | R 80                                                | R <sub>81</sub> | R <sub>82</sub>  |
|--------|---|------|-----------------------------------------------------|-----------------|------------------|
| no.    |   |      |                                                     |                 |                  |
| A674   |   | Н    | Ph                                                  | н               | CCl <sub>3</sub> |
| A675   |   | H    | PhO                                                 | Н               | CCl <sub>3</sub> |
| A676   |   | Н    | PhS                                                 | Н               | CCl₃             |
| A677   |   | Н    | PhSO                                                | Н               | CCl₃             |
| A678   |   | Н    | PhSO <sub>2</sub>                                   | н               | CCI <sub>3</sub> |
| A679   |   | Н    | CH₃S                                                | Н               | CCl₃             |
| A680   |   | Н    | CH₃SO                                               | H               | CCl₃             |
| A681   |   | Н    | CF <sub>3</sub>                                     | Н               | CCl <sub>3</sub> |
| A682   |   | Н    | F₂CH                                                | Н               | CCl₃             |
| A683   |   | Н.   | HCC                                                 | Н               | CCl₃             |
| A684   |   | Н    | CH₃CC                                               | ŀН              | CCl₃             |
| A685   |   | Н    | CH₂=CH                                              | Н               | CCl₃             |
| A686   |   | Н    | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Н               | CCl₃             |
| A687   |   | Н    | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Н               | CCl <sub>3</sub> |
| A688   |   | Н    | (CH₃)₂N                                             | Н               | CCl <sub>3</sub> |
| A689   |   | Н    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Н               | CCl <sub>3</sub> |
| A690   |   | Н    | CH₃SCH₂                                             | Н               | CCl <sub>3</sub> |
| A691   |   | Н    | CH₃SOCH₂                                            | н               | CCl3             |
| A692   |   | Н    | CH₃SO₂CH₂                                           | н               | CCl <sub>3</sub> |
| A693   |   | Н    | CH₃                                                 | CH₃             | CF <sub>3</sub>  |
| A694   |   | Н    | CH₃CH₂                                              | CH₃             | CF <sub>3</sub>  |
| A695   |   | Н    | cyclopropyl                                         | CH₃             | CF <sub>3</sub>  |
| A696   |   | Н    | (CH₃)₃C                                             | CH₃             | CF₃              |
| A697   |   | Н    | (CH₃)₂CH                                            | CH₃             | CF <sub>3</sub>  |
| A698   | • | Н    | CH₃(CH₂)₂                                           | CH₃             | CF₃              |
| A699   |   | Н    | CH₃OCH₂                                             | CH₃             | CF <sub>3</sub>  |
| A700   |   | Н    | · CH₃O(CH₂)₂                                        | CH₃             | CF <sub>3</sub>  |
| A701   |   | Н    | Ph                                                  | CH₃             | CF <sub>3</sub>  |
| A702   |   | Н    | PhO                                                 | СН₃             | CF <sub>3</sub>  |
| A703   |   | Н    | PhS                                                 | CH₃             | CF <sub>3</sub>  |
| A704   |   | Н    | PhSO                                                | СН₃             | CF <sub>3</sub>  |
| A705   |   | Н    | PhSO <sub>2</sub>                                   | CH <sub>3</sub> | CF <sub>3</sub>  |

| Compd. | R 79       | R <sub>80</sub>                                     | R <sub>81</sub> | R <sub>82</sub>                 |
|--------|------------|-----------------------------------------------------|-----------------|---------------------------------|
| no.    |            |                                                     |                 | _                               |
| A706   | н          | CH₃S                                                | СН₃             | CF₃                             |
| A707   | н          | CH <sub>3</sub> SO                                  | CH₃             | CF₃                             |
| A708   | . <b>H</b> | CF <sub>3</sub>                                     | CH₃             | TCF₃                            |
| A709   | н          | F₂CH                                                | CH₃             | CF₃                             |
| A710   | н          | HCC                                                 | CH₃             | CF₃                             |
| A711   | н          | CH₃CC                                               | CH₃             | CF <sub>3</sub>                 |
| A712   | Н          | CH₂=CH                                              | CH <sub>3</sub> | CF <sub>3</sub>                 |
| A713   | н          | CH <sub>2</sub> =CHCH <sub>2</sub>                  | СН₃             | CF <sub>3</sub>                 |
| A714   | н          | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CH₃             | CF <sub>3</sub>                 |
| A715   | н          | (CH₃)₂N                                             | CH₃             | CF₃                             |
| A716   | н          | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | CH₃             | CF₃                             |
| A717   | н          | CH₃SCH₂                                             | CH₃             | CF₃                             |
| A718   | н          | CH <sub>3</sub> SOCH <sub>2</sub>                   | CH₃             | CF <sub>3</sub>                 |
| A719   | Н          | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | CH₃             | CF₃                             |
| A720   | Н          | СН₃                                                 | CH₃             | CF₃CF₂                          |
| A721   | н          | CH₃CH₂                                              | CH₃             | CF₃CF₂                          |
| A722   | н          | cyclopropyl                                         | CH₃             | CF₃CF₂                          |
| A723   | н          | (CH₃)₃C                                             | СН₃             | CF₃CF₂                          |
| A724   | н          | (CH₃)₂CH                                            | · CH₃           | CF <sub>3</sub> CF <sub>2</sub> |
| A725   | н          | CH₃(CH₂)₂                                           | . CH₃           | CF₃CF₂                          |
| A726   | Н          | CH₃OCH₂                                             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A727   | Н          | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A728   | Н          | Ph                                                  | CH₃             | CF₃CF₂                          |
| A729   | Н          | PhO                                                 | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A730   | Н          | PhS                                                 | СН₃             | CF₃CF₂                          |
| A731   | Н          | PhSO                                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A732   | Н          | PhSO₂                                               | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> |
| A733   | Н          | CH₃S                                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A734   | H          | CH₃SO                                               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A735   | н          | CF₃                                                 | СН₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A736   | н          | F₂CH                                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> |
| A737   | Н          | HCC                                                 | СН₃             | CF <sub>3</sub> CF <sub>2</sub> |

| Compd. |   | R 79       | R 80                                                | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|---|------------|-----------------------------------------------------|-----------------|-------------------------------------------------|
| no.    |   |            | •                                                   |                 |                                                 |
| A738   |   | <b>H</b> : | CH₃CC                                               | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A739   |   | Н          | CH₂=CH                                              | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A740   |   | Н          | CH₂=CHCH₂                                           | CH <sub>3</sub> | CF₃CF₂                                          |
| A741   |   | Н          | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A742   |   | Н          | (CH₃)₂N                                             | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub>                 |
| A743   |   | Н          | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub>                 |
| A744   |   | Н          | CH₃SCH₂                                             | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A745   |   | Н          | CH₃SOCH₂                                            | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A746   |   | Н          | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 |
| A747   |   | Н          | CH₃                                                 | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A748   |   | Н          | CH₃CH₂                                              | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A749   |   | Н          | cyclopropyl                                         | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A750   |   | Н          | (CH <sub>3</sub> ) <sub>3</sub> C                   | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A751   |   | H          | (CH₃)₂CH                                            | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A752   |   | Н          | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A753   |   | Н          | CH₃OCH₂                                             | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A754   |   | Н          | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A755   |   | Н          | Ph                                                  | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A756   |   | н          | PhO                                                 | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A757   |   | Н          | PhS                                                 | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A758   |   | Н          | PhSO                                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A759   |   | Н          | PhSO₂                                               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A760   |   | Н          | · CH₃S                                              | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A761   | • | Н          | CH₃SO                                               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A762   |   | Н          | CF <sub>3</sub>                                     | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A763   |   | Н          | F₂CH                                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A764   |   | Н          | HCC                                                 | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A765   |   | Н          | CH₃CC                                               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A766   |   | Н          | CH₂=CH                                              | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A767   |   | Н          | CH₂=CHCH₂                                           | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A768   |   | Н          | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A769   |   | Н          | (CH₃) <sub>2</sub> N                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |

**(**)

| Compd. | R 79       | R <sub>so</sub>                                  | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|------------|--------------------------------------------------|-----------------|-------------------------------------------------|
| no.    |            | •                                                |                 | •                                               |
| A770   | н          | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A771   | н          | CH₃SCH₂                                          | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A772   | н          | CH <sub>3</sub> SOCH <sub>2</sub>                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A773   | Н          | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A774   | н          | CH₃                                              | CH₃             | CF <sub>2</sub> Cl                              |
| A775   | н          | CH₃CH₂                                           | CH₃             | CF₂CI                                           |
| A776   | н          | cyclopropyl                                      | CH₃             | CF <sub>2</sub> CI                              |
| A777   | н          | (CH₃)₃C                                          | CH₃             | CF <sub>2</sub> CI                              |
| A778   | · н        | (CH₃)₂CH                                         | CH₃             | CF <sub>2</sub> Cl                              |
| A779   | н          | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | CH₃             | CF <sub>2</sub> Cl                              |
| A780   | н          | CH₃OCH₂                                          | CH₃             | CF <sub>2</sub> CI                              |
| A781   | н          | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | CH₃             | CF <sub>2</sub> CI                              |
| A782   | н          | Ph                                               | CH₃             | CF₂CI                                           |
| A783   | н          | PhO                                              | CH₃             | CF <sub>2</sub> Cl                              |
| A784   | н          | PhS                                              | CH₃             | CF <sub>2</sub> Cl                              |
| A785   | н          | PhSO                                             | CH₃             | CF <sub>2</sub> CI                              |
| A786   | Н          | PhSO <sub>2</sub>                                | СН₃             | -<br>CF₂CI                                      |
| A787   | н          | CH₃S                                             | СН₃             | CF₂CI                                           |
| A788   | н          | CH₃SO                                            | СН₃             | CF <sub>2</sub> CI                              |
| A789   | н          | CF₃                                              | CH₃             | CF <sub>2</sub> CI                              |
| A790   | H          | F <sub>2</sub> CH                                | CH₃             | CF <sub>2</sub> Cl                              |
| A791   | · <b>H</b> | HCC                                              | СН₃             | CF <sub>2</sub> CI                              |
| A792   | . Н        | CH₃CC                                            | СН₃             | CF <sub>2</sub> CI                              |
| A793   | н          | CH₂=CH                                           | СН₃             | CF <sub>2</sub> Cl                              |
| A794   | Н .        | CH₂=CHCH₂                                        | СНз             | CF <sub>2</sub> CI                              |
| A795   | н          | CH₃SO₂N(CH₃)                                     | СН₃             | CF₂CI                                           |
| A796   | н          | (CH₃)₂N                                          | CH₃             | CF₂CI                                           |
| A797   | н          | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | СН₃             | CF <sub>2</sub> CI                              |
| A798   | · H        | CH₃SCH₂                                          | СН₃             | CF₂CI                                           |
| A799   | Н          | CH <sub>3</sub> SOCH₂                            | CH₃             | CF₂CI                                           |
| A800   | Н          | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | CH₃             | CF₂CI                                           |
| A801   | Н          | CH₃                                              | СН₃             | CHF₂                                            |

| •      |      |                                                  |                   |                  |
|--------|------|--------------------------------------------------|-------------------|------------------|
| Compd. | R 79 | R 80                                             | R <sub>81</sub>   | R <sub>82</sub>  |
| no.    |      | ·                                                |                   |                  |
| A802   | н    | CH₃CH₂                                           | CH₃               | CHF <sub>2</sub> |
| A803   | н    | cyclopropyl                                      | CH <sub>3</sub>   | CHF₂             |
| A804   | н    | (CH₃)₃C                                          | CH <sub>3</sub>   | ĈHF₂             |
| A805   | . Н  | (CH₃)₂CH                                         | CH₃               | CHF₂             |
| A806   | н    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | CH₃               | CHF <sub>2</sub> |
| A807   | Н    | CH₃OCH₂                                          | CH₃               | CHF <sub>2</sub> |
| A808   | Н    | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | СН₃               | CHF <sub>2</sub> |
| A809   | н    | Ph                                               | CH₃               | CHF <sub>2</sub> |
| A810   | H    | PhO                                              | СН₃               | CHF <sub>2</sub> |
| A811   | . н  | PhS                                              | СН₃               | CHF <sub>2</sub> |
| A812   | н    | PhSO                                             | CH₃               | CHF <sub>2</sub> |
| A813   | . н  | PhSO <sub>2</sub>                                | СН₃               | CHF <sub>2</sub> |
| A814   | H,   | CH₃S                                             | CH₃               | CHF <sub>2</sub> |
| A815   | н    | CH₃SO                                            | CH₃               | CHF <sub>2</sub> |
| A816   | н    | CF₃                                              | CH₃               | CHF <sub>2</sub> |
| A817   | H    | F <sub>2</sub> CH                                | CH₃               | CHF <sub>2</sub> |
| A818   | н    | HCC                                              | CH₃               | CHF <sub>2</sub> |
| A819   | н    | CH₃CC                                            | . CH <sub>3</sub> | CHF <sub>2</sub> |
| A820   | н    | . CH₂=CH                                         | CH₃               | CHF <sub>2</sub> |
| A821   | н    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃               | CHF <sub>2</sub> |
| A822   | н    | CH₃SO₂N(CH₃)                                     | CH₃               | CHF₂             |
| A823   | н    | (CH₃)₂N                                          | CH₃               | CHF₂             |
| A824   | H    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH <sub>3</sub>   | CHF₂             |
| A825   | Н    | CH₃SCH₂                                          | CH <sub>3</sub>   | CHF₂             |
| A826   | · H  | CH₃SOCH₂                                         | CH <sub>3</sub>   | CHF₂             |
| A827   | Н    | CH₃SO₂CH₂                                        | CH <sub>3</sub>   | CHF₂             |
| A828   | н    | CH₃                                              | CH <sub>3</sub>   | CCl₃             |
| A829   | Н    | CH₃CH₂                                           | CH₃               | CCl₃             |
| A830   | н    | cyclopropyl                                      | CH₃               | CCl <sub>3</sub> |
| A831   | H    | (CH₃)₃C                                          | CH₃               | CCl <sub>3</sub> |
| A832   | н    | (CH₃)₂CH                                         | CH₃               | CCI <sub>3</sub> |
| A833   | Н    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | CH₃               | CCl3             |

*(* '

| Compd. | R 79       | R 80                                                | R <sub>81</sub> | R <sub>82</sub>  |
|--------|------------|-----------------------------------------------------|-----------------|------------------|
| no.    |            |                                                     |                 |                  |
| A834   | Н          | CH₃OCH₂                                             | СН₃             | CCl <sub>3</sub> |
| A835   | Н          | CH₃O(CH₂)₂                                          | СН₃             | CCl <sub>3</sub> |
| A836   | • Н        | Ph                                                  | CH₃             | TCCl₃            |
| A837   | Н          | PhO                                                 | СН₃             | CCI <sub>3</sub> |
| A838   | н          | PhS                                                 | СН₃             | CCI <sub>3</sub> |
| A839   | Н          | PhSO                                                | СН₃             | CCI <sub>3</sub> |
| A840   | . <b>H</b> | PhSO₂                                               | CH <sub>3</sub> | CCI <sub>3</sub> |
| A841   | н          | CH₃S                                                | СН₃             | CCI <sub>3</sub> |
| A842   | H          | CH₃SO                                               | CH₃             | CCI <sub>3</sub> |
| A843   | н          | CF <sub>3</sub>                                     | СН₃             | CCI <sub>3</sub> |
| A844   | н          | F <sub>2</sub> CH                                   | CH₃             | CCl <sub>3</sub> |
| A845   | H          | HCC                                                 | СН₃             | CCl <sub>3</sub> |
| A846   | Н          | CH₃CC                                               | СН₃             | CCl <sub>3</sub> |
| A847   | Н          | CH₂=CH                                              | CH₃             | CCl <sub>3</sub> |
| A848   | н          | CH <sub>2</sub> =CHCH <sub>2</sub>                  | СН₃             | CCl <sub>3</sub> |
| A849   | н          | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CH₃             | CCl <sub>3</sub> |
| A850   | Н          | (CH <sub>3</sub> ) <sub>2</sub> N                   | CH₃             | CCl <sub>3</sub> |
| A851   | Н          | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | CH₃             | CCl <sub>3</sub> |
| A852   | Н          | CH₃SCH₂                                             | CH₃             | CCl <sub>3</sub> |
| A853   | Н          | CH <sub>3</sub> SOCH₂                               | CH₃             | CCl <sub>3</sub> |
| A854   | Н          | CH₃SO₂CH₂                                           | CH₃             | CCl <sub>3</sub> |
| A855   | Н          | CH₃                                                 | Ph              | CF <sub>3</sub>  |
| A856   | Н          | CH₃CH₂                                              | Ph              | CF <sub>3</sub>  |
| A857   | Н .        | (CH₃)₂CH                                            | Ph              | CF <sub>3</sub>  |
| A858   | Н          | (CH₃)₂CH                                            | Ph              | CF <sub>3</sub>  |
| A859   | . Н        | cyclopropyl                                         | Ph              | CF <sub>3</sub>  |
| A860   | Н          | CH₃(CH₂)₂                                           | Ph-             | CF <sub>3</sub>  |
| A861   | Н          | CH₃OCH₂                                             | Ph              | CF <sub>3</sub>  |
| A862   | H          | CH₃O(CH₂)₂                                          | Ph              | CF <sub>3</sub>  |
| A863   | Н          | Ph                                                  | Ph              | CF <sub>3</sub>  |
| A864   | Н          | PhO                                                 | Ph              | CF <sub>3</sub>  |
| A865   | Н          | PhS                                                 | Ph              | CF <sub>3</sub>  |
|        |            |                                                     |                 |                  |

.

|        |      |                                                     |                 | •                               |
|--------|------|-----------------------------------------------------|-----------------|---------------------------------|
| Compd. | R 79 | R 80                                                | R <sub>81</sub> | R <sub>82</sub>                 |
| no.    |      |                                                     |                 |                                 |
| A866   | н    | PhSO                                                | Ph              | CF <sub>3</sub>                 |
| A867   | H    | PhSO₂                                               | Ph              | CF <sub>3</sub>                 |
| A868   | н    | CH₃S                                                | Ph              | ĈF₃                             |
| A869   | н    | CH₃SO                                               | Ph              | CF <sub>3</sub>                 |
| A870   | н    | CF₃                                                 | Ph              | CF <sub>3</sub>                 |
| A871   | н    | F₂CH                                                | Ph              | CF <sub>3</sub>                 |
| A872   | н    | HCC                                                 | Ph              | CF <sub>3</sub>                 |
| A873   | н    | CH₃CC                                               | Ph              | CF <sub>3</sub>                 |
| A874   | н    | CH₂=CH                                              | Ph              | CF <sub>3</sub>                 |
| A875   | н    | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Ph              | ĊF₃                             |
| A876   | , H  | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Ph              | CF <sub>3</sub>                 |
| A877   | н    | (CH <sub>3</sub> ) <sub>2</sub> N                   | Ph              | CF <sub>3</sub>                 |
| A878   | н    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Ph              | CF <sub>3</sub>                 |
| A879   | н    | CH₃SCH₂                                             | Ph              | CF₃                             |
| A880   | н    | CH₃SOCH₂                                            | Ph              | CF <sub>3</sub>                 |
| A881   | Н    | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Ph              | CF <sub>3</sub>                 |
| A882   | H    | CH₃                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A883   | Н    | CH₃CH₂                                              | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A884   | Н    | cyclopropyl                                         | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A885   | H    | (CH₃)₃C                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A886   | н    | (CH₃)₂CH                                            | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A887   | Н    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A888   | , H  | CH₃OCH₂                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A889   | Н    | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A890   | Н    | Ph                                                  | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A891   | н    | PhO                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A892   | Н    | PhS                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A893   | н    | PhSO                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A894   | н    | PhSO₂                                               | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A895   | н    | CH₃S                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> |
| A896   | н    | CH₃SO                                               | · Ph            | CF <sub>3</sub> CF <sub>2</sub> |
| A897   | Н    | CF <sub>3</sub>                                     | Ph              | CF <sub>3</sub> CF <sub>2</sub> |

*'* }

| Compd. | R 79     | R <sub>80</sub>                                     | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|----------|-----------------------------------------------------|-----------------|-------------------------------------------------|
| no.    |          |                                                     |                 | -                                               |
| A898   | н        | F₂CH                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A899   | н        | HCC                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A900   | н        | CH₃CC                                               | Ph              | CF₃CF₂                                          |
| A901   | н        | CH₂=CH                                              | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A902   | н        | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A903   | н        | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A904   | н        | (CH₃)₂N                                             | ' Ph            | CF <sub>3</sub> CF <sub>2</sub>                 |
| A905   | н        | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A906   | н        | CH₃SCH₂                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A907   | н        | CH₃SOCH₂                                            | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A908   | н        | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 |
| A909   | Н        | CH <sub>3</sub>                                     | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A910   | н        | · CH <sub>3</sub> CH <sub>2</sub>                   | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A911   | H ·      | cyclopropyi                                         | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A912   | н        | (CH <sub>3</sub> ) <sub>3</sub> C                   | Ph .            | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A913   | н        | (CH₃)₂CH                                            | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A914   | Н        | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A915   | н        | CH₃OCH₂                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A916   | н        | CH₃O(CH₂)₂                                          | Ph              | CF₃CF₂CF₂                                       |
| A917   | Н        | Ph                                                  | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A918   | н        | PhO                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A919   | Н        | PhS                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A920   | H        | PhSO                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A921   | Н        | PhSO <sub>2</sub>                                   | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A922   | Н        | CH₃S                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A923   | Н        | CH₃SO                                               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A924   | н        | CF₃                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A925   | н        | F₂CH                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A926   | Н        | HCC                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A927   | н        | CH₃CC                                               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A928   | н        | CH₂=CH                                              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A929   | <b>H</b> | CH₂=CHCH₂                                           | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |

| Compd. |   | R 79 | R 80                                                | R <sub>81</sub> | R <sub>82</sub>                                 |
|--------|---|------|-----------------------------------------------------|-----------------|-------------------------------------------------|
| no.    |   |      |                                                     |                 |                                                 |
| A930   |   | Н    | CH₃SO₂N(CH₃)                                        | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A931   |   | Н    | (CH₃)₂N                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A932   |   | Н    | (CH <sub>3</sub> )₂NSO₂                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A933   |   | Н    | CH₃SCH₂                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A934   |   | Н    | CH₃SOCH₂                                            | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A935   |   | Н    | CH₃SO₂CH₂                                           | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> |
| A936   |   | Н    | CH₃                                                 | Ph              | CF <sub>2</sub> CI                              |
| A937   |   | Н    | CH₃CH₂                                              | Ph              | CF <sub>2</sub> Cl                              |
| A938   |   | Н    | cyclopropyl                                         | Ph              | CF <sub>2</sub> Cl                              |
| A939   |   | Н    | (CH₃)₃C                                             | Ph              | CF <sub>2</sub> CI                              |
| A940   |   | Н    | (CH₃)₂CH                                            | Ph              | CF <sub>2</sub> CI                              |
| A941   | • | Н    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CF₂CI                                           |
| A942   |   | Н    | CH₃OCH₂                                             | Ph              | CF₂CI ·                                         |
| A943   |   | Н    | CH₃O(CH₂)₂                                          | Ph              | CF₂CI                                           |
| A944   |   | Н    | Ph                                                  | Ph              | CF₂CI                                           |
| A945   |   | Н    | PhO                                                 | Ph              | CF <sub>2</sub> Cl                              |
| A946   |   | Н    | PhS                                                 | Ph              | CF <sub>2</sub> Cl                              |
| A947   |   | Н    | PhSO                                                | Ph              | CF <sub>2</sub> CI                              |
| A948   |   | Н    | PhSO <sub>2</sub>                                   | Ph              | CF <sub>2</sub> CI                              |
| A949   |   | Н    | CH₃S                                                | Ph              | CF <sub>2</sub> CI                              |
| A950   |   | Н    | CH₃SO                                               | Ph              | CF <sub>2</sub> CI                              |
| A951   |   | Н    | CF <sub>3</sub>                                     | Ph              | CF₂CI                                           |
| A952   |   | Н    | F₂CH                                                | Ph              | CF <sub>2</sub> CI                              |
| A953   |   | Н    | HCC                                                 | Ph              | CF <sub>2</sub> CI                              |
| A954   |   | Н    | CH₃CC                                               | Ph              | CF <sub>2</sub> CI                              |
| A955   |   | Н    | CH₂=CH                                              | Ph              | CF <sub>2</sub> CI                              |
| A956   |   | Н    | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Ph              | CF <sub>2</sub> Cl                              |
| A957   |   | Н    | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Ph              | CF <sub>2</sub> CI                              |
| A958   |   | Н    | (CH₃)₂N                                             | Ph              | CF <sub>2</sub> Cl                              |
| A959   |   | Н    | (CH₃)₂NSO₂                                          | Ph              | CF <sub>2</sub> Cl                              |
| A960   |   | Н    | CH₃SCH₂                                             | Ph              | CF <sub>2</sub> Cl                              |
| A961   |   | Н    | CH₃SOCH₂                                            | Ph              | CF <sub>2</sub> Cl                              |

| C mpd. | R 79 | R 80                                                | R <sub>81</sub> | R <sub>82</sub>  |
|--------|------|-----------------------------------------------------|-----------------|------------------|
| no.    | •    |                                                     |                 |                  |
| A962   | н    | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Ph              | CF₂CI            |
| A963   | H    | CH₃                                                 | Ph              | CHF₂             |
| A964   | н    | CH₃CH₂                                              | Ph              | CHF₂             |
| A965   | н    | (CH₃)₃C                                             | Ph              | CHF <sub>2</sub> |
| A966   | н    | (CH₃)₂CH                                            | Ph              | CHF <sub>2</sub> |
| A967   | н    | cyclopropyl                                         | Ph              | CHF <sub>2</sub> |
| A968   | н    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CHF <sub>2</sub> |
| A969   | Н    | CH₃OCH₂                                             | Ph              | CHF <sub>2</sub> |
| A970   | н    | CH₃O(CH₂)₂                                          | Ph              | CHF <sub>2</sub> |
| A971   | н    | Ph                                                  | Ph              | CHF₂             |
| A972   | Н    | PhO                                                 | Ph              | CHF <sub>2</sub> |
| A973   | Н    | PhS                                                 | Ph              | CHF <sub>2</sub> |
| A974   | Н    | PhSO                                                | Ph              | CHF <sub>2</sub> |
| A975   | Н    | PhSO <sub>2</sub>                                   | Ph              | CHF₂             |
| A976   | Н    | CH₃S                                                | Ph              | CHF₂             |
| A977   | н    | CH₃SO                                               | Ph              | CHF₂             |
| A978   | н    | CF <sub>3</sub>                                     | Ph              | CHF <sub>2</sub> |
| A979   | н    | F <sub>2</sub> CH                                   | Ph              | CHF <sub>2</sub> |
| A980   | н .  | HCC                                                 | Ph              | CHF₂             |
| A981   | н ,  | CH₃CC                                               | Ph              | CHF₂             |
| A982   | Н    | CH <sub>2</sub> =CH                                 | Ph              | CHF₂             |
| A983   | н    | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Ph              | CHF₂             |
| A984   | н    | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Ph              | CHF₂             |
| A985   | н    | (CH₃) <sub>2</sub> N                                | Ph              | CHF₂             |
| A986   | н    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Ph              | CHF₂             |
| A987   | н    | CH₃SCH₂                                             | Ph              | · CHF₂           |
| A988   | н    | CH₃SOCH₂                                            | Ph              | CHF₂             |
| A989   | Н    | CH₃SO₂CH₂                                           | Ph              | CHF <sub>2</sub> |
| A990   | н    | CH₃                                                 | Ph              | CCl3             |
| A991   | н    | CH₃CH₂                                              | Ph              | CCl <sub>3</sub> |
| A992   | н    | (CH₃)₃C                                             | Ph              | CCI <sub>3</sub> |
| A993   | Н    | (CH₃)₂CH                                            | Ph              | CCl3             |

| Compd. | R 79       | R 80                                             | R <sub>81</sub> | R <sub>82</sub>  |
|--------|------------|--------------------------------------------------|-----------------|------------------|
| no.    |            |                                                  |                 |                  |
| A994   | н          | cyclopropyl                                      | Ph              | CCI <sub>3</sub> |
| A995   | н          | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Ph              | CCI <sub>3</sub> |
| A996   | Н          | CH₃OCH₂                                          | Ph              | ĈCl₃             |
| A997   | н          | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Ph              | CCI <sub>3</sub> |
| A998   | Н          | Ph                                               | Ph              | CCI <sub>3</sub> |
| A999   | Н          | PhO                                              | Ph              | CCI <sub>3</sub> |
| A1000  | н          | PhS                                              | Ph              | CCI <sub>3</sub> |
| A1001  | н          | PhSO                                             | Ph              | CCI <sub>3</sub> |
| A1002  | н          | PhSO₂                                            | Ph              | CCI <sub>3</sub> |
| A1003  | H          | CH₃S                                             | Ph              | CCl <sub>3</sub> |
| A1004  | Н          | CH₃SO                                            | Ph              | CCI <sub>3</sub> |
| A1005  | н          | CF <sub>3</sub>                                  | Ph              | CCl <sub>3</sub> |
| A1006  | н .        | F₂CH                                             | Ph              | CCl <sub>3</sub> |
| A1007  | . <b>H</b> | HCC                                              | Ph              | CCl <sub>3</sub> |
| A1008  | н          | CH₃CC                                            | Ph              | CCl <sub>3</sub> |
| A1009  | н          | CH <sub>2</sub> =CH                              | Ph              | CCl <sub>3</sub> |
| A1010  | н _        | CH₂=CHCH₂                                        | Ph              | CCl <sub>3</sub> |
| A1011  | Н          | CH₃SO₂N(CH₃)                                     | Ph              | CCl <sub>3</sub> |
| A1012  | н          | (CH₃)₂N                                          | Ph              | CCl3             |
| A1013  | Н , ,      | (CH₃)₂NSO₂                                       | Ph              | CCl <sub>3</sub> |
| A1014  | н          | CH₃SCH₂                                          | Ph              | CCI <sub>3</sub> |
| A1015  | н          | CH₃SOCH₂                                         | Ph              | CCl <sub>3</sub> |
| A1016  | ` н        | CH₃SO₂CH₂                                        | Ph              | CCl <sub>3</sub> |
| A1017  | F          | н                                                | Н               | CF <sub>3</sub>  |
| A1018  | . CI       | Н                                                | Н               | CF <sub>3</sub>  |
| A1019  | Br         | Н                                                | н               | CF <sub>3</sub>  |
| A1020  | CN .       | Н                                                | Н               | CF <sub>3</sub>  |
| A1021  | CH₃SO₂O    | Н                                                | Н               | CF <sub>3</sub>  |
| A1022  | CH₃O       | Н                                                | ļΗ              | CF <sub>3</sub>  |
| A1023  | CH₂CH₃O    | Н                                                | Н               | CF <sub>3</sub>  |
| A1024  | CH₂CH=CH₂O | Н                                                | н               | CF <sub>3</sub>  |
| A1025  | HCCCH₂O    | Н                                                | Н               | CF₃              |

| •      |                                   |                                  |                 |                 |
|--------|-----------------------------------|----------------------------------|-----------------|-----------------|
| Compd. | R 79                              | R 80                             | R <sub>81</sub> | R <sub>82</sub> |
| no.    |                                   |                                  |                 |                 |
| A1026  | S-benzyl                          | Н                                | н               | CF₃             |
| A1027  | SO <sub>2</sub> -benzył           | н                                | Н               | CF <sub>3</sub> |
| A1028  | CICH₂                             | Н                                | н               | CF <sub>3</sub> |
| A1029  | BrCH₂                             | н                                | Н               | CF <sub>3</sub> |
| A1030  | FCH₂                              | н                                | H.              | CF₃             |
| A1031  | CHF <sub>2</sub> CH <sub>2</sub>  | н                                | н               | CF₃             |
| A1032  | CF₃CH₂                            | н                                | Н               | CF₃             |
| A1033  | triazolylmethyl                   | Н                                | н               | CF₃             |
| A1034  | CHCl <sub>2</sub> CH <sub>2</sub> | н                                | Н               | CF₃             |
| A1035  | CICH=CH                           | н                                | Н               | CF₃             |
| A1036  | Cl₂C=CH                           | н                                | н               | CF₃             |
| A1037  | CF <sub>3</sub> CH=CH             | Н                                | Н               | CF <sub>3</sub> |
| A1038  | CICC                              | н                                | Н               | CF₃             |
| A1039  | Ph                                | Н                                | . н             | CF <sub>3</sub> |
| A1040  | СН₃                               | СН₃                              | Н               | CF₃             |
| A1041  | CH₃                               | ОН                               | Н               | CF₃             |
| A1042  | CH₃                               | F                                | Н               | CF₃             |
| A1043  | CH₃                               | CI                               | Н               | CF₃             |
| A1044  | F                                 | CH₃                              | Н               | . CF₃           |
| A1045  | CI                                | CH₃                              | • н             | CF₃             |
| A1046  | Н                                 | F                                | Н               | CF₃             |
| A1047  | н                                 | CI                               | Н               | CF <sub>3</sub> |
| A1048  | . Н                               | Br                               | Н               | CF <sub>3</sub> |
| A1049  | Н                                 | ОН                               | н.              | CF₃             |
| A1050  | Ĥ                                 | OCH <sub>3</sub>                 | Н               | CF₃             |
| A1051  | Н                                 | OCHF <sub>2</sub>                | Н               | CF₃             |
| A1052  | н                                 | OSO <sub>2</sub> CH <sub>3</sub> | н               | CF₃             |
| A1053  | Н                                 | OSO <sub>2</sub> CF <sub>3</sub> | Н               | CF <sub>3</sub> |
| A1054  | Н                                 | CICH <sub>2</sub>                | Н               | CF <sub>3</sub> |
| A1055  | Н                                 | BrCH₂                            | н               | CF₃             |
| A1056  | н                                 | FCH₂                             | н               | CF <sub>3</sub> |
| A1057  | Н                                 | CHF₂CH₂                          | Н               | CF₃             |

| Compd. | R 79 R 80       |                                 | R <sub>81</sub>                 | R <sub>82</sub> |
|--------|-----------------|---------------------------------|---------------------------------|-----------------|
| no.    |                 | <i>,</i>                        |                                 |                 |
| A1058  | Н               | CF₃CH₂                          | Н                               | CF₃             |
| A1059  | н               | triazolylmethyl                 | Н                               | CF₃             |
| A1060  | Н               | CHCl₂CH₂                        | Н                               | ĈF₃             |
| A1061  | . Н             | CICH=CH                         | Н                               | CF <sub>3</sub> |
| A1062  | н               | Cl <sub>2</sub> C=CH            | Н                               | CF <sub>3</sub> |
| A1063  | н               | CF₃CH=CH                        | Н                               | CF₃             |
| A1064  | Н               | CICC                            | н                               | CF₃             |
| A1065  | н               | CH₃C(O)                         | Н                               | CF₃             |
| A1066  | н               | phenyl                          | H                               | CF₃             |
| A1067  | н               | SO <sub>2</sub> CH <sub>3</sub> | н                               | CF <sub>3</sub> |
| A1068  | н               | SO₂CF₃                          | H                               | CF <sub>3</sub> |
| A1069  | H .             | CN                              | Н                               | CF <sub>3</sub> |
| A1070  | Н               | NO <sub>2</sub>                 | Н                               | CF₃             |
| A1071  | CH₃             | н                               | F                               | CF <sub>3</sub> |
| A1072  | CH <sub>3</sub> | H                               | CI                              | CF <sub>3</sub> |
| A1073  | CH₃             | н                               | Br                              | CF <sub>3</sub> |
| A1074  | CH <sub>3</sub> | н                               | CN                              | CF <sub>3</sub> |
| A1075  | CH₃             | н                               | CH₃O                            | CF <sub>3</sub> |
| A1076  | CH₃             | · H                             | CH₃S                            | CF <sub>3</sub> |
| A1077  | CH₃             | Н                               | CH₃SO                           | CF <sub>3</sub> |
| A1078  | CH₃             | Н                               | CH <sub>3</sub> SO <sub>2</sub> | CF₃             |

In the following Table 6 Q is Q<sub>3</sub>

and Q<sub>3</sub> represents the following radicals B:

## Table 6: Radicals B:

| Radical    | R <sub>44</sub>                                  | R <sub>37</sub>  | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w               |
|------------|--------------------------------------------------|------------------|-----------------|-----------------|-----------------|-----------------|
| B1         | н                                                | н                | Н               | Н               | ОН              | CH₂             |
| B2         | CH₃                                              | н                | н               | Н               | ОН              | CH₂             |
| В3         | CH₃CH₂                                           | Н                | Н               | Н               | ОН              | CH₂             |
| B4         | CH₃CH₂CH₂                                        | Н                | Н               | Н               | ОН              | CH₂             |
| B5         | (CH₃)₂CH                                         | н                | H               | Н               | ОН              | CH <sub>2</sub> |
| B6         | (CH <sub>3</sub> ) <sub>3</sub> C                | Н                | н               | Н               | ОН              | CH <sub>2</sub> |
| B7         | CH₃S                                             | Н                | н               | Н               | ОН              | CH₂             |
| B8         | CH₃SO                                            | Н                | Н.              | Н               | ОН              | CH₂             |
| <b>B</b> 9 | CH₃SO₂                                           | Н                | Н               | Н               | OH:             | CH₂             |
| B10        | Ph                                               | н                | Н               | Н               | ОН              | CH₂             |
| B11        | CH₃O                                             | Н                | н               | Н               | ОН              | CH₂             |
| B12        | CH <sub>3</sub> CO <sub>2</sub>                  | Н                | Н               | Н               | ОН              | CH₂             |
| B13        | CH₃CH₂CO₂                                        | Н                | Н               | Н               | ОН              | CH₂             |
| B14        | CH₂=CHCH₂                                        | Н                | н               | Н               | ОН              | CH₂             |
| B15        | HCCCH₂                                           | Н                | Н               | Н               | ОН              | CH₂             |
| B16        | CF₃                                              | Н                | Н               | Н               | ОН              | CH₂             |
| B17        | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н                | Н               | H               | OH .            | CH₂             |
| B18        | (CH₃)₂N                                          | Н                | Н               | Н               | ОН              | CH <sub>2</sub> |
| B19        | PhO                                              | Н                | H,              | Н               | ОН              | CH <sub>2</sub> |
| B20        | PhS                                              | Н                | Н               | H               | ОН              | CH₂             |
| B21        | PhSO                                             | źΗ               | н               | Н               | ОН              | CH <sub>2</sub> |
| B22        | PhSO₂                                            | Н                | Н               | H               | ОН              | CH₂             |
| B23        | CN                                               | Н                | Н               | Н               | ОН              | CH₂             |
| B24        | . CH₃                                            | CH <sub>3.</sub> | Н               | Н               | OH              | CH₂             |
| B25        | CH₃CH₂                                           | CH₃              | Н               | Н               | ОН              | CH <sub>2</sub> |
| B26        | CH₃CH₂CH₂                                        | CH₃              | H               | Н               | ОН              | CH₂             |
| B27        | (CH₃)₂CH                                         | CH₃              | Н               | H               | ОН              | CH₂             |
| B28        | (CH₃)₃C                                          | CH₃              | Н               | Н               | ОН              | CH₂ .           |
| B29        | CH₃S                                             | CH₃              | Н               | Н               | ОН              | CH <sub>2</sub> |
| B30        | CH₃SO                                            | CH₃              | Н               | Н               | ОН              | CH₂             |
| B31        | CH₃SO₂                                           | CH <sub>3</sub>  | Н               | Н               | ОН              | CH <sub>2</sub> |
| B32        | Ph                                               | CH₃              | Н               | Н               | ОН              | CH₂             |

 $\langle () \rangle$ 

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                 |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| B33     | CH₃O                                             | CH <sub>3</sub> | H               | Н               | ОН              | CH₂               |
| B34     | CH <sub>3</sub> CO <sub>2</sub>                  | CH₃             | • <b>H</b>      | Н               | ОН              | CH <sub>2</sub>   |
| B35     | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH₃             | Н               | Н               | ОН              | CH <sub>2</sub>   |
| B36     | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | Н               | Н               | ОН              | CH₂ ¯             |
| B37     | HCCCH₂                                           | CH₃             | Н               | Н               | ОН              | CH <sub>2</sub>   |
| B38     | CF <sub>3</sub>                                  | CH₃             | Н               | H               | ОН              | CH <sub>2</sub>   |
| B39     | (CH <sub>3</sub> )₂NSO₂                          | CH₃             | H               | Н               | ОН              | CH <sub>2</sub>   |
| B40     | (CH₃)₂N                                          | CH₃             | Н               | Н               | ОН              | CH <sub>2</sub>   |
| B41     | PhO                                              | CH₃             | Н               | Н               | ОН              | CH₂               |
| B42     | PhS                                              | CH₃             | H               | Н               | ОН              | CH₂               |
| B43     | PhSO                                             | CH₃             | Н               | Н               | ОН              | CH₂               |
| B44     | PhSO₂                                            | СН₃             | Н               | Н               | ОН              | CH₂               |
| B45     | CN                                               | CH₃             | Н               | Н               | ОН              | · CH <sub>2</sub> |
| B46     | CH₃                                              | Н.              | CH₃             | Н               | ОН              | CH₂               |
| B47     | CH₃CH₂                                           | Н               | CH₃             | Н               | ОН              | CH₂               |
| B48     | CH₃CH₂CH₂                                        | Н               | CH₃             | Н               | ОН              | CH <sub>2</sub>   |
| B49     | (CH₃)₂CH                                         | Н               | CH₃             | Н               | ОН              | CH <sub>2</sub>   |
| B50     | (CH <sub>3</sub> ) <sub>3</sub> C                | Н               | CH₃             | Н               | ОН              | CH₂               |
| B51     | CH₃S                                             | Н               | CH₃             | Н               | ОН              | CH <sub>2</sub>   |
| B52     | CH₃SO                                            | Н               | CH₃             | Н               | OH              | CH₂               |
| B53     | CH₃SO₂                                           | Н               | CH₃             | Н               | OH.             | . CH₂             |
| B54     | Ph                                               | н               | CH₃             | Н               | ОН              | CH₂ ·             |
| B55     | CH₃O                                             | Н               | CH₃             | Н               | ОН              | CH₂               |
| B56     | CH <sub>3</sub> CO₂                              | н               | CH₃             | H               | ОН              | CH₂               |
| B57     | CH₃CH₂CO₂                                        | н               | CH₃             | Н               | ОН              | . CH₂             |
| B58     | CH₂=CHCH₂                                        | н               | CH₃             | H               | ОН              | CH <sub>2</sub>   |
| B59     | HCCCH₂                                           | Н               | CH₃             | H               | OH              | CH₂               |
| B60     | CF <sub>3</sub>                                  | Н               | CH₃             | Н               | ОН              | CH₂               |
| B61 ·   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CH₃             | H               | ОН              | CH <sub>2</sub>   |
| B62     | · (CH <sub>3</sub> ) <sub>2</sub> N              | Н               | CH₃             | Н               | ОН              | CH₂               |
| B63     | PhO                                              | Н               | CH₃             | Н               | ОН              | CH <sub>2</sub>   |
| B64     | PhS                                              | Н               | CH <sub>3</sub> | Η.              | ОН              | CH₂               |
| B65     | PhSO                                             | н               | CH <sub>3</sub> | Н               | ОН              | CH₂               |
|         |                                                  |                 |                 |                 |                 |                   |

| Radical | R <sub>44</sub>                    | R <sub>37</sub> | R <sub>38</sub> R <sub>39</sub> R <sub>40</sub> | w               |
|---------|------------------------------------|-----------------|-------------------------------------------------|-----------------|
| B66     | PhSO₂                              | н               | СН₃ Н ОН                                        | CH₂             |
| B67     | CN                                 | Н               | СН₃ Н ОН                                        | CH₂             |
| B68     | CH₃                                | CH <sub>3</sub> | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B69     | CH₃CH₂                             | CH₃             | CH₃ H OH                                        | CH <sub>2</sub> |
| B70     | CH₃CH₂CH₂                          | CH <sub>3</sub> | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B71     | (CH₃)₂CH                           | CH₃             | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B72     | (CH₃)₃C                            | CH₃             | СН₃ Н ОН                                        | CH₂             |
| B73     | CH₃S                               | СН₃             | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B74     | CH₃SO                              | CH₃             | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B75     | CH₃SO₂                             | CH₃             | СН₃ Н ОН                                        | CH₂             |
| B76     | Ph                                 | CH₃             | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B77     | CH₃O                               | CH₃             | СН₃ Н ОН                                        | CH₂             |
| B78     | CH₃CO₂                             | CH₃             | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B79     | CH₃CH₂CO₂                          | CH₃             | СН₃ Н ОН                                        | CH₂             |
| B80     | CH <sub>2</sub> =CHCH <sub>2</sub> | CH₃             | CH₃ H OH                                        | CH <sub>2</sub> |
| B81     | HCCCH₂                             | CH₃             | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B82     | CF₃                                | CH₃             | СН₃ Н ОН                                        | CH₂             |
| B83     | (CH <sub>3</sub> )₂NSO₂            | CH <sub>3</sub> | СН₃ Н ОН                                        | CH <sub>2</sub> |
| B84     | (CH₃)₂N                            | CH <sub>3</sub> | ĊН₃ Н ОН                                        | CH₂             |
| B85     | PhO                                | CH <sub>3</sub> | СН₃ Н ОН                                        | CH₂             |
| B86     | PhS                                | CH₃             | СН₃ Н ОН                                        | CH₂             |
| B87     | PhSO                               | CH <sub>3</sub> | СН₃ Н ОН                                        | CH₂             |
| B88     | PhSO <sub>2</sub>                  | CH₃             | CH₃ H OH                                        | CH₂             |
| B89     | CN                                 | CH₃             | CH₃ H OH                                        | CH₂             |
| B90     | CH₃                                | CH₃             | CH <sub>3</sub> CH <sub>3</sub> OH              | CH₂             |
| B91     | CH₃CH₂                             | CH₃             | CH₃ CH₃ OH                                      | CH <sub>2</sub> |
| B92     | CH₃CH₂CH₂                          | CH <sub>3</sub> | CH₃ CH₃ OH                                      | CH <sub>2</sub> |
| B93     | (CH₃)₂CH                           | CH <sub>3</sub> | CH₃ CH₃ OH                                      | CH₂             |
| B94     | (CH₃)₃C                            | CH <sub>3</sub> | CH₃ CH₃ OH                                      | CH₂             |
| B95     | CH₃S -                             | CH <sub>3</sub> | CH₃ CH₃ OH                                      | CH <sub>2</sub> |
| B96     | CH₃SO                              | CH₃             | CH₃ CH₃ OH                                      | CH₂             |
| B97     | CH₃SO₂                             | CH₃             | CH₃ CH₃ OH                                      | CH₂             |
| B98     | Ph                                 | CH₃             | CH₃ CH₃ OH                                      | CH₂             |
|         |                                    |                 |                                                 | -               |

| Radical | R <sub>44</sub>                                 | R <sub>37</sub>                 | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W               |
|---------|-------------------------------------------------|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| B99     | CH₃O                                            | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CH₂             |
| B100    | CH₃CO₂                                          | CH <sub>3</sub>                 | CH₃             | CH₃             | ОН              | CH <sub>2</sub> |
| B101    |                                                 | CH <sub>3</sub>                 | CH₃             | CH₃             | ОН              | CH₂             |
| B102    | CH <sub>2</sub> =CHCH <sub>2</sub>              | CH <sub>3</sub>                 | CH <sub>3</sub> | СН₃             | ОН              | CH <sub>2</sub> |
| B103    | HCCCH₂                                          | CH <sub>3</sub>                 | CH₃             | CH <sub>3</sub> | ОН              | CH₂             |
| B104    | CF <sub>3</sub>                                 | CH₃                             | CH₃             | CH <sub>3</sub> | ОН              | CH <sub>2</sub> |
| B105    | $(CH_3)_2NSO_2$                                 | CH₃                             | CH₃             | CH₃             | ОН              | CH₂             |
| B106    | (CH₃)₂N                                         | CH₃                             | CH₃             | CH <sub>3</sub> | ОН              | CH <sub>2</sub> |
| B107    | PhO                                             | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CH <sub>2</sub> |
| B108    | PhS                                             | CH₃                             | CH₃             | CH <sub>3</sub> | ОН              | CH <sub>2</sub> |
| B109    | PhSO                                            | CH₃                             | CH₃             | CH₃             | ОН              | CH <sub>2</sub> |
| B110    | PhSO <sub>2</sub>                               | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CH₂             |
| B111    | CN                                              | CH₃                             | СН₃             | CH₃             | ОН              | CH₂             |
| B112    | CH₃CH₂                                          | CH₃CH₂                          | Н               | Н               | ОН              | CH <sub>2</sub> |
| B113    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B114    | (CH₃)₂CH                                        | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B115    | (CH <sub>3</sub> ) <sub>3</sub> C               | CH₃CH₂                          | H               | Н               | ОН              | CH₂             |
| B116    | CH₃S                                            | CH₃CH₂                          | Н               | Н               | ОН              | CH <sub>2</sub> |
| B117    | CH₃SO                                           | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B118    | CH₃SO₂                                          | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B119    | Ph                                              | CH₃CH₂                          | Н               | Н               | ОН              | CH <sub>2</sub> |
| B120    | CH₃O                                            | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B121    | CH₃CO₂                                          | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B122    | CH₃CH₂CO₂                                       | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B123    | CH₂=CHCH₂                                       | CH₃CH₂                          | <b>H</b> .      | Н               | ОН              | CH₂             |
| B124    | HCCCH₂                                          | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B125    | CF <sub>3</sub>                                 | CH₃CH₂                          | Н               | н               | ОН              | CH₂             |
| B126    | (CH₃)₂NSO₂                                      | ĊH₃CH₂                          | Н               | H               | ОН              | CH₂             |
| B127    | (CH₃)₂N                                         | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B128    | PhO                                             | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B129    | PhS                                             | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н               | ОН              | CH <sub>2</sub> |
| B130    | PhSO                                            | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
| B131    | PhSO₂                                           | CH₃CH₂                          | Н               | Н               | ОН              | CH₂             |
|         |                                                 |                                 |                 |                 |                 |                 |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                 |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| B132    | CN                                               | CH₃CH₂          | Н               | Н               | ОН              | CH₂               |
| B133    | Н                                                | Н               | Н               | Н               | ОН              | CHCH₃             |
| B134    | СН₃                                              | Н               | Н               | Н               | ОН              | CHCH₃             |
| B135    | CH₃CH₂                                           | H               | Н               | Н               | ОН              | CHCH₃             |
| B136    | CH₃CH₂CH₂                                        | Н               | Н               | H.              | ОН              | CHCH₃             |
| B137    | (CH₃)₂CH                                         | Н               | Н               | Н               | OH              | СНСН₃             |
| B138    | (CH₃)₃C                                          | н               | Н               | Н               | ОН              | CHCH₃             |
| B139    | CH₃S                                             | Н               | Н               | Н               | ОН              | CHCH <sub>3</sub> |
| B140    | CH₃SO                                            | Н               | Н               | Н               | ОН              | CHCH <sub>3</sub> |
| B141    | CH <sub>3</sub> SO <sub>2</sub>                  | Н               | H               | Н               | ОН              | CHCH <sub>3</sub> |
| B142    | Ph                                               | H.              | H               | Н               | ОН              | CHCH <sub>3</sub> |
| B143    | CH₃O                                             | H               | Н               | Н               | ОН              | CHCH <sub>3</sub> |
| B144    | CH₃CO₂                                           | н               | Н               | Н               | ОН              | CHCH <sub>3</sub> |
| B145    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | н               | н               | Н               | ОН              | CHCH₃             |
| B146    | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | Н               | н               | ОН              | CHCH <sub>3</sub> |
| B147    | HCCCH₂                                           | Н               | Н               | Н               | ОН              | CHCH₃             |
| B148    | CF <sub>3</sub>                                  | Н               | Н               | Н               | ОН              | CHCH₃             |
| B149    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | Н               | Н               | ОН              | CHCH₃             |
| B150    | (CH₃)₂N                                          | Н               | Н               | . <b>H</b>      | ОН              | CHCH <sub>3</sub> |
| B151    | . PhO                                            | н               | Н               | Н               | ОН              | СНСН₃             |
| B152    | PhS                                              | Н               | Ħ               | Н               | ОН              | CHCH₃             |
| B153    | PhSO                                             | Н               | Н               | Н               | ОН              | CHCH₃             |
| B154    | PhSO₂                                            | Н               | Н               | Н               | ОН              | CHCH₃             |
| B155    | CN                                               | Н               | Н               | Н               | ОН              | CHCH₃             |
| B156    | CH₃                                              | CH <sub>3</sub> | Н               | Н               | ОН              | CHCH₃             |
| B157    | CH₃CH₂                                           | CH₃             | Н               | Н               | ОН              | CHCH <sub>3</sub> |
| B158    | CH₃CH₂CH₂                                        | CH₃             | H               | Н               | ОН              | CHCH₃             |
| B159    | (CH₃)₂CH                                         | CH₃             | Н               | Н               | OH.             | CHCH₃             |
| B160    | (CH₃)₃C                                          | CH₃             | н               | Н               | ОН              | CHCH₃             |
| B161    | CH₃S                                             | CH₃ "           | Н               | H               | ОН              | CHCH₃             |
| B162    | CH₃SO                                            | CH₃             | Н               | Н               | ОН              | CHCH₃             |
| B163    | CH₃SO₂                                           | CH₃             | Н               | Н               | ОН              | CHCH₃             |
| B164    | <b>.</b> Ph                                      | CH₃             | н               | Н               | ОН              | CHCH <sub>2</sub> |

()

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                 |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| B165    | CH₃O                                             | CH₃             | н               | Н               | ОН              | СНСН₃             |
| B166    | CH₃CO₂                                           | CH₃             | н               | Н               | ОН              | CHCH₃             |
| B167    | CH₃CH₂CO₂                                        | CH₃             | Н               | Н               | ОН              | СНСН₃             |
| B168    | CH₂=CHCH₂                                        | CH₃             | Н               | Н               | ОН              | снсн₃             |
| B169    | HCCCH₂                                           | CH₃             | н               | Н               | ОН              | СНСН₃             |
| B170    | CF₃                                              | СН₃             | Н               | Н               | ОН              | СНСН₃             |
| B171    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | Н               | Н               | ОН              | CHCH <sub>3</sub> |
| B172    | (CH₃)₂N                                          | CH₃             | Н               | Н               | ОН              | СНСН₃             |
| B173    | PhO                                              | CH₃             | Н               | Н               | ОН              | CHCH₃             |
| B174    | PhS                                              | CH₃             | Н               | Н               | ОН              | CHCH₃             |
| B175    | PhSO                                             | CH <sub>3</sub> | Н               | Н               | ОН              | CHCH₃             |
| B176    | PhSO₂                                            | CH₃             | . Н             | Н               | ОН              | CHCH₃             |
| B177    | CN                                               | CH₃             | Н               | Н               | ОН              | CHCH3             |
| B178    | CH₃                                              | Н               | СН₃             | Н               | ОН              | CHCH₃             |
| B179    | CH₃CH₂                                           | Н               | СН₃             | H               | ОН              | CHCH₃             |
| B180    | CH₃CH₂CH₂                                        | Н               | CH₃             | Н               | ОН              | CHCH₃             |
| B181    | (CH₃)₂CH                                         | Ħ .             | CH₃             | Н               | ОН              | CHCH₃             |
| B182    | (CH₃)₃C                                          | Н               | СНз             | Н               | ОН              | CHCH₃             |
| B183    | CH₃S                                             | Н               | CH <sub>3</sub> | Н               | ОН              | CHCH3             |
| B184    | CH₃SO                                            | Н               | CH₃             | Н               | ОН              | CHCH₃             |
| B185    | CH₃SO <sub>2</sub>                               | Н               | CH <sub>3</sub> | Н               | ОН              | CHCH₃             |
| B186    | Ph                                               | Н               | CH₃             | Н               | ОН              | CHCH₃             |
| B187    | CH₃O                                             | Н               | CH₃             | Н               | ОН              | CHCH₃             |
| B188    | CH <sub>3</sub> CO <sub>2</sub>                  | Н               | CH <sub>3</sub> | Н               | OH              | CHCH₃             |
| B189    | CH₃CH₂CO₂                                        | н               | CH <sub>3</sub> | Н               | OH              | CHCH <sup>3</sup> |
| B190    | CH₂=CHCH₂                                        | Н               | CH₃             | H               | OH              | CHCH₃             |
| B191    | HCCCH₂                                           | н               | CH₃             | Н               | ОН              | CHCH₃             |
| B192    | CF <sub>3</sub>                                  | Н               | CH₃             | Н               | ОН              | CHCH₃             |
| B193    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CH <sub>3</sub> | Н               | ОН              | CHCH₃             |
| B194    | (CH₃)₂N                                          | н               | CH <sub>3</sub> | H <sub>.</sub>  | OH              | CHCH₃             |
| B195    | PhO                                              | Н               | CH₃             | Н               | ОН              | CHCH₃             |
| B196    | PhS                                              | Н               | CH <sub>3</sub> | Н               | ОН              | CHCH3             |
| B197    | PhSO                                             | Н               | CH₃             | H               | ОН              | CHCH₃             |
|         |                                                  |                 |                 |                 |                 |                   |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W      |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--------|
| B198    | PhSO <sub>2</sub>                                | Н               | СН₃             | Н               | ОН              | CHCH₃  |
| B199    | CN                                               | • н             | СН₃             | Н               | ОН              | CHCH₃  |
| B200    | CH <sub>3</sub>                                  | CH₃             | CH₃             | Н               | ОН              | CHCH₃  |
| B201    | CH₃CH₂                                           | CH₃             | СН₃             | H               | ОН              | CHCH₃  |
| B202    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | СН₃             | CH₃             | Н               | ОН              | СНСН₃  |
| B203    | (CH₃)₂CH                                         | СН₃             | CH₃             | Н               | ОН              | CHCH₃  |
| B204    | (CH <sub>3</sub> ) <sub>3</sub> C                | CH₃             | СН₃             | Н               | ОН              | СНСН₃  |
| B205    | CH₃S                                             | CH₃             | CH₃             | Н               | ОН              | CHCH₃  |
| B206    | CH₃SO                                            | CH <sub>3</sub> | СН₃             | Н               | ОН              | СНСН₃  |
| B207    | CH₃SO₂                                           | CH₃             | СН₃             | H               | ОН              | CHCH₃. |
| B208    | Ph                                               | CH₃             | CH₃             | Н               | ОН              | СНСН₃  |
| B209    | CH₃O                                             | СН₃             | CH₃             | Н               | ОН              | CHCH₃  |
| B210    | CH₃CO₂                                           | CH₃             | СН₃             | Н.              | ОН              | CHCH₃  |
| B211    | CH₃CH₂CO₂                                        | СН₃             | CH₃             | Н               | ОН              | СНСН₃  |
| B212    | CH <sub>2</sub> =CHCH <sub>2</sub>               | , CH₃           | CH₃             | Н               | ОН              | CHCH₃  |
| B213    | HCCCH₂                                           | СН₃             | CH₃             | Н               | ОН              | CHCH₃  |
| B214    | CF <sub>3</sub>                                  | СН₃             | CH₃             | Н               | ОН              | СНСН₃  |
| B215    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CH₃             | Н               | ОН              | СНСН₃  |
| B216    | (CH₃)₂N                                          | CH₃             | CH <sub>3</sub> | Н               | ОН              | СНСН₃  |
| B217    | PhO                                              | CH <sub>3</sub> | CH <sub>3</sub> | Н               | ОН              | СНСН₃  |
| B218    | PhS                                              | CH <sub>3</sub> | CH₃             | Н               | ОН              | СӉСН₃  |
| B219    | PhSO                                             | CH₃             | CH₃             | Н               | ОН              | СНСН₃  |
| B220    | PhSO₂                                            | CH₃             | CH₃             | Н               | ОН              | CHCH₃  |
| B221    | CN                                               | CH₃             | CH₃             | Н               | OH              | CHCH₃  |
| B222    | CH₃                                              | CH₃             | CH₃             | СНз             | ОН              | CHCH₃  |
| B223    | CH₃CH₂                                           | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | CHCH₃  |
| B224    | CH₃CH₂CH₂                                        | СН₃             | CH₃             | CH₃             | ОН              | CHCH₃  |
| B225 .  | (CH₃)₂CH                                         | СН₃             | СН₃             | CH <sub>3</sub> | ОН              | CHCH₃  |
| B226    | (CH <sub>3</sub> ) <sub>3</sub> C                | CH₃             | CH₃             | СН₃             | ОН              | CHCH₃  |
| B227    | CH₃S                                             | CH₃             | CH₃             | CH₃             | ОН              | CHCH₃  |
| B228    | CH₃SO                                            | СН₃             | CH₃             | CH₃             | ОН              | СНСН₃  |
| B229    | CH₃SO₂                                           | CH₃             | CH₃             | CH₃             | ОН              | CHCH₃  |
| B230    | :. <b>Ph</b>                                     | CH₃             | CH₃             |                 | OH              | CHCH₃  |

( )

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                 |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| B231    | CH₃O                                             | CH₃             | CH₃             | CH₃             | ОН              | CHCH₃             |
| B232    | CH₃CO₂                                           | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CHCH₃             |
| B233    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH <sub>3</sub> | CH₃             | СН₃             | ОН              | CHCH₃             |
| B234    | CH₂=CHCH₂                                        | CH₃             | CH₃             | СН₃             | ОН              | СНСН₃҈            |
| B235    | HCCCH₂                                           | CH₃             | CH₃             | СН₃             | ОН              | CHCH₃             |
| B236    | CF <sub>3</sub>                                  | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CHCH₃             |
| B237    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CHCH₃             |
| B238    | (CH₃)₂N                                          | CH₃             | CH₃             | CH₃             | ОН              | СНСН₃             |
| B239    | PhO <sub>_</sub>                                 | СН₃             | CH₃             | CH <sub>3</sub> | ОН              | CHCH₃             |
| B240    | PhS                                              | CH₃             | CH <sub>3</sub> | СН₃             | ОН              | CHCH <sub>3</sub> |
| B241    | PhSO                                             | CH₃             | CH₃             | СН₃             | ОН              | CHCH₃             |
| B242    | PhSO <sub>2</sub>                                | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | CHCH <sub>3</sub> |
| B243    | CN ·                                             | CH₃             | CH₃             | CH₃             | ОН              | CHCH <sub>3</sub> |
| B244    | CH₃CH₂                                           | CH₃CH₂          | Н               | H               | ОН              | CHCH₃             |
| B245    | CH₃CH₂CH₂                                        | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B246    | (CH₃)₂CH                                         | CH₃CH₂          | Н               | н               | ОН              | CHCH₃             |
| B247    | (CH <sub>3</sub> ) <sub>3</sub> C                | CH₃CH₂          | Н               | Н               | ОН              | CHCH <sub>3</sub> |
| B248    | CH₃S                                             | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B249    | CH₃SO                                            | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B250    | CH <sub>3</sub> SO <sub>2</sub>                  | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B251    | Ph                                               | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B252    | CH₃O                                             | CH₃CH₂          | H               | Н               | ОН              | CHCH₃             |
| B253    | CH <sub>3</sub> CO <sub>2</sub>                  | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B254    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH₃CH₂          | Н               | H               | ОН              | CHCH₃             |
| B255    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B256    | HCCCH₂                                           | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B257    | CF₃                                              | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B258    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃CH₂          | Н               | H '             | ОН              | CHCH <sub>3</sub> |
| B259    | (CH₃)₂N                                          | CH₃CH₂          | Н               | Н               | ОН              | СНСН₃             |
| B260    | PhO                                              | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |
| B261    | PhS                                              | CH₃CH₂          | Н               | н               | ОН              | CHCH₃             |
| B262    | PhSO                                             | CH₃CH₂          | н               | Н               | ОН              | CHCH₃             |
| B263    | PhSO <sub>2</sub>                                | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃             |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w     |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------|
| B264    | CN                                               | CH₃CH₂          | Н               | Н               | ОН              | CHCH₃ |
| B265    | н                                                | н               | Н               | Н               | ОН              | C=O   |
| B266    | CH₃                                              | Н               | Н               | Н               | ОН              | C=O   |
| B267    | CH₃CH₂                                           | н               | Н               | Н               | ОН              | C=O   |
| B268    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | н               | Н               | Н               | ОН              | C=O   |
| B269    | (CH₃)₂CH                                         | н               | Н               | Н               | ОН              | C=O   |
| B270    | (CH₃)₃C                                          | Н               | Н               | Н               | ОН              | C=O   |
| B271    | CH₃S                                             | Н               | Н               | Н               | ОН              | C=O   |
| B272    | CH₃SO                                            | Н               | Н               | Н               | ОН              | C=O   |
| B273    | CH <sub>3</sub> SO <sub>2</sub>                  | H               | Н               | Н               | ОН              | C=O   |
| B274    | Ph                                               | Н               | Н               | Н               | ОН              | C=O   |
| B275    | CH₃O.                                            | H               | н               | Н               | ОН              | C=O   |
| B276    | CH₃CO₂                                           | Н               | Н               | H               | ОН              | C=O   |
| B277    | CH₃CH₂CO₂                                        | Н               | Н               | Н               | ОН              | C=O   |
| B278    | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | Н               | Н               | ОН              | C=O   |
| B279    | HCCCH₂                                           | , н             | н               | Н               | ОН              | C=O   |
| B280    | CF <sub>3</sub>                                  | н               | Н               | Н               | ОН              | C=O   |
| B281    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | Н               | Н               | ОН              | C=O   |
| B282    | (CH <sub>3</sub> ) <sub>2</sub> N                | Н               | Н               | Н               | ОН              | C=O   |
| B283    | PhO                                              | н               | Н               | Н               | ОН              | C=O   |
| B284    | PhS                                              | н               | Н               | Н               | OH              | C≑O   |
| B285    | PhSO                                             | Н               | Н               | Н               | ОН              | C=O   |
| B286    | PhSO <sub>2</sub>                                | Н               | H,              | Н               | ОН              | C=O   |
| B287    | CN                                               | H               | Н               | Н               | ОН              | C=O   |
| B288    | CH₃                                              | CH <sub>3</sub> | Н               | Н               | OH              | C=O   |
| B289    | CH₃CH₂                                           | CH <sub>3</sub> | Н               | H               | ОН              | C=O   |
| B290    | CH₃CH₂CH₂                                        | CH₃             | Н               | Н               | ОН              | C=O   |
| B291    | (CH₃)₂CH                                         | СН₃             | Н               | Н               | ОН              | C=O   |
| B292    | (CH₃)₃C                                          | СН₃             | Н               | Н               | ОН              | C=O   |
| B293    | CH₃S                                             | СН₃             | Н               | Ή               | ОН              | C=O   |
| B294    | CH₃SO                                            | CH₃             | Н               | Н               | OH `            | C=O   |
| B295    | CH₃SO₂                                           | CH₃             | н               | Н               | ОН              | C=O   |
| B296    | Ph                                               | CH <sub>3</sub> | Н               | н               | ОН              | C=O   |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W     |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------|
| B297    | CH₃O                                             | CH₃             | Н               | Н               | ОН              | C=O   |
| B298    | CH₃CO₂                                           | CH <sub>3</sub> | Н               | Н               | ОН              | C=O   |
| B299    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH <sub>3</sub> | H               | Н               | ОН              | C=O   |
| B300    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | Н               | Н               | ОН              | C=O ¯ |
| B301    | HCCCH₂                                           | CH <sub>3</sub> | Н               | Н               | ОН              | C=O   |
| B302    | CF <sub>3</sub>                                  | CH₃             | Н               | Н               | ОН              | C=O   |
| B303    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | Н               | Н               | ОН              | C=O   |
| B304    | (CH₃)₂N                                          | CH₃             | Н               | Н               | ОН              | C=O   |
| B305    | PhO                                              | CH <sub>3</sub> | Н               | Н               | ОН              | C=O   |
| B306    | PhS                                              | CH₃             | Н               | Н               | ОН              | C=O   |
| B307    | PhSO                                             | CH <sub>3</sub> | Н               | Н               | ОН              | C=O   |
| B308    | PhSO₂                                            | CH₃             | Н               | Н               | ОН              | C=O   |
| B309    | CN                                               | CH₃             | Н               | H·              | ОН              | C=O   |
| B310    | CH₃                                              | Н               | CH₃             | Н               | ОН              | C=O   |
| B311    | CH₃CH₂                                           | Н               | CH₃             | H               | ОН              | C=O   |
| B312    | CH₃CH₂CH₂                                        | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B313    | (CH₃)₂CH                                         | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B314    | (ÇH₃)₃C                                          | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B315    | CH₃S                                             | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B316    | CH₃SO                                            | . н             | CH₃             | Н               | OH              | C=O   |
| B317    | CH₃SO₂                                           | H               | CH₃             | Н               | ОН              | C=O   |
| B318    | Ph ·                                             | Н               | CH₃             | Н               | ОН              | C=O   |
| B319    | CH₃O                                             | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B320    | CH₃CO₂                                           | Н               | CH₃             | Н               | ОН              | C=O   |
| B321    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | Н               | CH₃             | H               | ОН              | C=O   |
| B322    | CH₂=CHCH₂                                        | Н               | CH₃             | Н               | ОН              | C=O   |
| B323    | HCCCH₂                                           | Н               | CH₃             | Н               | ОН              | C=O   |
| B324    | CF₃                                              | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B325    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B326    | (CH₃)₂N                                          | Н               | СН₃             | Н               | ОН              | C=O   |
| B327    | PhO                                              | Н               | CH <sub>3</sub> | Н               | ОН              | C=O   |
| B328    | PhS                                              | Н               | CH₃             | Н               | ОН              | C=O   |
| B329    | PhSO                                             | Н               | CH₃             | Н               | ОН              | C=O   |

| Radical | R <sub>44</sub>                    | R <sub>37</sub> | R <sub>38</sub>   | R <sub>39</sub> | R <sub>40</sub> | · <b>W</b> |
|---------|------------------------------------|-----------------|-------------------|-----------------|-----------------|------------|
| B330    | PhSO₂                              | Н               | CH₃               | Н               | ОН              | C=O        |
| B331    | CN                                 | н               | CH₃               | Н               | ОН              | C=O        |
| B332    | CH₃                                | СН₃             | CH <sub>3</sub>   | Н               | OH              | .C=O       |
| B333    | CH₃CH₂                             | CH₃             | CH₃               | Н               | ОН              | C=0        |
| B334    | CH₃CH₂CH₂                          | CH₃             | CH₃               | Н               | ОН              | C=O        |
| B335    | (CH₃)₂CH                           | CH₃             | CH <sub>3</sub>   | Н               | ОН              | C=O        |
| B336    | (CH₃)₃C                            | CH₃             | CH₃               | Н               | ОН              | C=O        |
| B337    | CH₃S                               | CH₃             | CH <sub>3</sub>   | Н               | ОН              | C=O        |
| B338    | CH₃SO                              | CH <sub>3</sub> | CH₃               | Н               | ОН              | C=O        |
| B339    | CH <sub>3</sub> SO <sub>2</sub>    | CH₃             | CH <sub>3</sub>   | Н               | OH              | C=O        |
| B340    | Ph                                 | СНз             | СН₃               | Η.              | ОН              | C=O        |
| B341    | CH₃O                               | CH₃             | CH <sub>3</sub>   | Н               | ОН              | C=O        |
| B342    | CH₃CO₂                             | CH₃             | CH₃               | Ĥ               | ОН              | . C=O      |
| B343    | CH₃CH₂CO₂                          | CH₃             | СН₃               | Н               | ОН              | C=O        |
| B344    | CH <sub>2</sub> =CHCH <sub>2</sub> | CH₃             | CH₃               | Н               | ОН              | C=0        |
| B345    | HCCCH₂                             | CH₃             | CH <sub>3</sub>   | Н               | ОН              | C=O        |
| B346    | CF₃                                | CH <sub>3</sub> | CH <sub>3</sub>   | Н               | OH              | C=O        |
| B347    | (CH₃)₂NSO₂                         | CH <sub>3</sub> | CH₃               | Н               | OH              | C=O        |
| B348    | (CH₃)₂N                            | CH₃             | CH <sub>3</sub>   | Н               | ОН              | C=O        |
| B349    | PhO                                | CH₃             | CH₃               | Н               | OH              | C=0        |
| B350    | PhS                                | CH₃             | CH <sub>3</sub>   | Н               | ОН              | C=0        |
| B351    | PhSO                               | CH₃             | CH <sub>3</sub>   | Н               | ОН              | C=0        |
| B352    | PhSO₂                              | CH₃             | CH₃               | Н               | ОН              | C=0        |
| B353    | CN                                 | CH₃             | CH₃               | Н               | ОН              | C=O        |
| B354    | СН₃                                | CH₃             | CH₃               | СН₃             | ОН              | C=O        |
| B355    | CH₃CH₂                             | CH <sub>3</sub> | CH₃ (             | CH₃             | ОН              | . C=O      |
| B356    | CH₃CH₂CH₂                          | CH₃             | CH <sub>3</sub>   | CH₃             | ОН              | C=O        |
| B357    | (CH₃)₂CH                           | СН₃             | CH <sub>3</sub>   | СН₃             | ОН              | C=O        |
| B358    | (CH₃)₃C                            | СН₃             | CH <sub>3</sub>   | CH₃             | ОН              | · C=O      |
| B359    | CH₃S                               | CH₃             | СН <sub>3</sub>   | СН₃             | ОН              | C=O        |
| B360    | CH₃SO                              | CH₃             | CH₃ (             | CH₃             | ОН              | C=O        |
| B361    | CH₃SO₂                             | CH₃             | CH₃ (             | CH₃             | ОН              | C=0        |
| B362    | <b>..P</b> .h                      | СН₃             | CH <sub>3</sub> ( | CH <sub>2</sub> | ОН              | C=0        |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W     |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------|
| B363    | CH₃O                                             | CH <sub>3</sub> | CH₃             | CH <sub>3</sub> | ОН              | C≕O   |
| B364    | CH <sub>3</sub> CO <sub>2</sub>                  | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | C≕O   |
| B365    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH <sub>3</sub> | CH₃             | CH <sub>3</sub> | ОН              | C=O   |
| B366    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | C=O ~ |
| B367    | HCCCH₂                                           | CH₃             | CH₃             | CH₃             | ОН              | C=O   |
| B368    | CF <sub>3</sub>                                  | CH₃             | CH₃             | CH₃             | OH              | C≃O   |
| B369    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | C=O   |
| B370    | (CH <sub>3</sub> )₂N                             | CH₃             | СН₃             | CH <sub>3</sub> | ОН              | C≃O   |
| B371    | PhO                                              | СӉ₃             | CH₃             | CH₃             | ОН              | C=O   |
| B372    | PhS                                              | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | C=O   |
| B373    | PhSO                                             | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | C=O   |
| B374    | PhSO <sub>2</sub>                                | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | C=O   |
| B375    | CN                                               | CH₃             | CH₃             | СН₃             | ОН              | C=O   |
| B376    | CH₃CH₂                                           | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B377    | CH₃CH₂CH₂                                        | CH₃CH₂          | н               | Н               | ОН              | C=O   |
| B378    | (CH₃)₂CH                                         | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B379    | (CH <sub>3</sub> ) <sub>3</sub> C                | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B380    | CH₃S                                             | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B381    | CH₃SO                                            | CH₃CH₂          | Н               | Н               | ОН              | C≃O   |
| B382    | CH₃SO₂                                           | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B383    | Ph                                               | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B384    | CH₃O                                             | CH₃CH₂          | Н               | Н               | ОН              | C=O · |
| B385    | CH₃CO₂                                           | CH₃CH₂          | Н               | Н               | OH              | · C=O |
| B386    | CH₃CH₂CO₂                                        | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B387    | CH₂=CHCH₂                                        | CH₃CH₂          | Н               | Н               | OH              | C=O   |
| B388    | HCCCH₂                                           | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B389    | . CF <sub>3</sub>                                | CH₃CH₂          | Н               | н               | ОН              | C=O   |
| B390    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B391    | (CH₃)₂N                                          | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B392    | PhO                                              | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B393    | PhS                                              | CH₃CH₂          | Н               | Н               | ОН              | C=O   |
| B394    | PhSO                                             | CH₃CH₂          | Н               | Н               | ОН              | C≔O   |
| B395    | PhSO <sub>2</sub>                                | CH₃CH₂          | Н               | Н               | ОН              | C=O   |

| Radical | R <sub>44</sub>                                 | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w                 |
|---------|-------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| B396    | CN                                              | CH₃CH₂          | н               | Н               | ОН              | C=O               |
| B397    | н                                               | н               | Н               | Н               | ОН              | N-CH₃             |
| B398    | CH <sub>3</sub>                                 | н               | Н               | Н               | ОН              | N-CH₃             |
| B399    | CH₃CH₂                                          | Н               | Н               | Н               | ОН              | N-CH <sub>3</sub> |
| B400    | CH₃CH₂CH₂                                       | Н               | Н               | Н               | ОН              | N-CH₃             |
| B401    | (CH₃)₂CH                                        | н               | Н               | Н               | ОН              | N-CH₃             |
| B402    | (CH₃)₃C                                         | н .             | Н               | Н               | ОН              | N-CH₃             |
| B403    | CH₃S                                            | н               | Н               | Н               | ОН              | N-CH₃             |
| B404    | CH₃SO                                           | Н               | н               | Н               | ОН              | N-CH₃             |
| B405    | CH₃SO <sub>2</sub>                              | Н               | н .             | Н               | ОĤ              | N-CH₃             |
| B406    | Ph                                              | н               | Н               | Н               | ОН              | N-CH <sub>3</sub> |
| B407    | CH₃O                                            | н               | Н               | Н               | ОН              | N-CH₃             |
| B408    | CH₃CO₂                                          | H               | Н               | ٠н              | ОН              | N-CH <sub>3</sub> |
| B409    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub> | н               | Н               | Н               | ОН              | N-CH <sub>3</sub> |
| B410    | CH <sub>2</sub> =CHCH <sub>2</sub>              | Н               | Н               | Н               | ОН              | N-CH₃             |
| B411    | HCCCH₂                                          | Н               | Н               | Н               | ОН              | N-CH₃             |
| B412    | CF <sub>3</sub>                                 | н               | Н               | Н               | ОН              | N-CH₃             |
| B413    | (CH <sub>3</sub> )₂NSO₂                         | н               | Н               | Н               | ОН              | N-CH₃             |
| B414    | (CH₃)₂N                                         | Н               | Н               | Н               | ОН              | N-CH₃             |
| B415    | PhO                                             | Н               | Н               | Н               | ОН              | N-CH₃             |
| B416    | PhS                                             | Н               | Н               | Н               | ОН              | N-CH₃             |
| B417    | PhSO                                            | Н               | Н               | Н               | ОН              | N-CH₃             |
| B418    | PhSO <sub>2</sub>                               | Н               | Н               | H               | ОН              | N-CH₃             |
| B419    | CN                                              | Н               | Н               | Н               | ОН              | N-CH₃             |
| B420    | СН₃                                             | СН₃             | Н               | Н               | ОН              | N-CH₃             |
| B421    | CH₃CH₂                                          | ່ CH₃           | Н               | Н               | ОН              | N-CH₃             |
| B422    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH₃             | Н               | Ĥ               | ОН              | N-CH₃             |
| B423    | (CH₃)₂CH                                        | CH₃             | Н               | Н               | ЮН              | N-CH₃             |
| B424    | (CH₃)₃C                                         | CH₃             | Н               | н               | ОН              | N-CH₃             |
| B425    | CH₃S                                            | СН₃             | H               | H               | ОН              | N-CH₃             |
| B426    | CH₃SO                                           | СН₃             | Н               | Н               | ОН              | N-CH₃             |
| B427    | CH₃SO₂                                          | СН₃             | Н               | Н               | ОН              | N-CH₃             |
| B428    | <u>.</u> Ph                                     | СН₃             | Н               | Н               | ОН              | N-CH₃             |
|         |                                                 |                 |                 |                 |                 | •                 |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | $R_{40}$ | W                 |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|----------|-------------------|
| B429    | CH₃O                                             | CH₃             | Н               | Н               | ОН       | N-CH <sub>3</sub> |
| B430    | CH₃CO₂                                           | CH₃             | Н               | Н               | ОН       | N-CH <sub>3</sub> |
| B431    | CH₃CH₂CO₂                                        | CH₃             | Н               | Н               | ОН       | N-CH <sub>3</sub> |
| B432    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | Н               | Н               | ОН       | N-CH₃             |
| B433    | HCCCH₂                                           | CH₃             | Н               | Н               | ОН       | N-CH <sub>3</sub> |
| B434    | CF <sub>3</sub>                                  | СН₃             | Н               | Н               | ОН       | N-CH <sub>3</sub> |
| B435    | $(CH_3)_2NSO_2$                                  | CH₃             | : <b>H</b>      | Н               | ОН       | N-CH₃             |
| B436    | (CH₃)₂N                                          | CH <sub>3</sub> | Н               | Н               | ОН       | N-CH₃             |
| B437    | PhO                                              | CH₃             | Н               | Н               | ОН       | N-CH₃             |
| B438    | PhS                                              | CH₃             | Н               | Н               | ОН       | N-CH₃             |
| B439    | PhSO                                             | CH <sub>3</sub> | Н               | H               | ОН       | N-CH₃             |
| B440    | PhSO <sub>2</sub>                                | СН₃             | Н               | Н               | ОН       | N-CH₃             |
| B441    | CN                                               | . CH₃           | Н               | Н               | ОН       | N-CH₃             |
| B442    | CH <sub>3</sub>                                  | Н               | СН₃             | Н               | ОН       | N-CH₃             |
| B443    | CH₃CH₂                                           | н               | CH₃             | Н               | ОН       | N-CH₃             |
| B444    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | Н               | CH <sub>3</sub> | Н               | ОН       | N-CH₃             |
| B445    | (CH₃)₂CH                                         | Н               | CH₃             | Н               | ОН       | N-CH₃             |
| B446    | (CH₃)₃C                                          | Н               | CH₃             | Н               | ОН       | N-CH₃             |
| B447    | CH₃S                                             | Н               | CH₃             | Н               | ОН       | N-CH₃             |
| B448    | CH₃SO                                            | Н               | CH₃             | Н               | ОН       | N-CH₃             |
| B449    | CH₃SO₂                                           | н               | CH <sub>3</sub> | Н               | ОН       | N-CH <sub>3</sub> |
| B450    | Ph                                               | H ·             | CH₃             | Н               | ОН       | N-CH₃             |
| B451    | CH₃O                                             | Н               | CH₃             | Н               | OH       | N-CH₃             |
| B452    | CH₃CO₂                                           | н               | CH₃             | Н               | ОН       | N-CH₃             |
| B453    | CH₃CH₂CO₂                                        | н               | CH₃             | Н               | ОН       | N-CH <sub>3</sub> |
| B454    | CH <sub>2</sub> =CHCH <sub>2</sub>               | H               | CH₃             | Н               | ОН       | N-CH₃             |
| B455    | HCCCH₂                                           | Н               | CH₃             | Н               | ОН       | N-CH₃             |
| B456    | CF <sub>3</sub>                                  | Н               | СН₃             | Н               | ОН       | N-CH₃             |
| B457    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н               | СН₃             | Н               | ОН       | N-CH₃             |
| B458    | (CH₃)₂N                                          | Н               | CH₃             | Н               | ОН       | N-CH₃             |
| B459    | PhO                                              | Н               | СН₃             | Н               | ОН       | N-CH₃             |
| B460    | PhS                                              | н               | CH₃             | Н               | ОН       | N-CH₃             |
| B461    | PhSO                                             | Н               | CH <sub>3</sub> | Н               | ОН       | N-CH₃             |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub>   | R <sub>39</sub> | R <sub>40</sub> | w                 |
|---------|--------------------------------------------------|-----------------|-------------------|-----------------|-----------------|-------------------|
| B462    | PhSO₂                                            | н               | CH₃               | Н               | ОН              | N-CH₃             |
| B463    | CN                                               | Н               | CH₃               | Н               | ОН              | N-CH₃             |
| B464    | CH <sub>3</sub>                                  | CH₃             | CH₃               | Н               | ОН              | N-CH <sub>3</sub> |
| B465    | CH₃CH₂                                           | CH₃             | CH₃               | Н               | ОН              | N-CH <sub>3</sub> |
| B466    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | СН₃             | CH₃               | Н               | ОН              | N-CH <sub>3</sub> |
| B467    | (CH₃)₂CH                                         | CH₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B468    | (CH₃)₃C                                          | CH₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B469    | CH₃S                                             | СН₃             | CH₃               | Н               | ОН              | N-CH <sub>3</sub> |
| B470    | CH₃SO                                            | СН₃             | CH₃               | Н               | ОН              | N-CH <sub>3</sub> |
| B471    | CH₃SO₂                                           | СН₃             | CH₃               | Н               | OH              | N-CH <sub>3</sub> |
| B472    | Ph                                               | СН₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B473    | CH <sub>3</sub> O                                | СН₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B474    | CH <sub>3</sub> CO <sub>2</sub>                  | СН₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B475    | CH₃CH₂CO₂                                        | СН₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B476    | CH₂=CHCH₂                                        | CH₃             | CH <sub>3</sub>   | Н               | ОН              | N-CH₃             |
| B477    | HCCCH₂                                           | CH <sub>3</sub> | CH₃               | Н               | ОН              | N-CH₃             |
| B478    | CF₃                                              | CH₃             | CH₃               | Н               | ОН              | N-CH <sub>3</sub> |
| B479    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B480    | (CH <sub>3</sub> )₂N                             | СН₃             | CH₃               | Н               | ОН              | N-CH <sub>3</sub> |
| B481    | PhO                                              | СН₃             | CH <sub>3</sub>   | Н               | ОН              | N-CH₃             |
| B482    | PhS                                              | CH₃             | CH₃               | H               | ОН              | N-CH₃             |
| B483    | PhSO                                             | CH₃             | CH₃               | Н               | ОН              | N-CH₃             |
| B484    | PhSO <sub>2</sub>                                | CH₃             | СН₃               | Н               | ОН              | N-CH₃             |
| B485    | CN                                               | CH <sub>3</sub> | CH₃               | Н               | ОН              | N-CH₃             |
| B486    | CH <sub>3</sub>                                  | CH₃             | CH₃               | СН₃             | ОН              | N-CH₃             |
| B487    | CH₃CH₂                                           | CH₃             | CH₃ (             | CH <sub>3</sub> | ОН              | N-CH₃             |
| B488    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | CH₃             | CH <sub>3</sub>   | CH₃             | ОН              | N-CH₃             |
| B489    | (CH₃)₂CH                                         | CH₃             | CH <sub>3</sub> ( | СН₃             | ОН              | N-CH₃             |
| B490    | (CH₃)₃C                                          | CH₃             | CH₃ (             | CH₃             | ОН              | N-CH <sub>3</sub> |
| B491    | CH₃S                                             | ⁻CH₃            | CH <sub>3</sub> ( | CH₃             | OH .            | N-CH <sub>3</sub> |
| B492    | CH₃SO                                            | CH₃             | CH₃ (             | CH₃             | ОН              | N-CH₃             |
| B493    | CH <sub>3</sub> SO <sub>2</sub>                  | СН₃             | CH <sub>3</sub> ( | CH <sub>3</sub> | ОН              | N-CH₃             |
| B494    | <u>P</u> h                                       | СН₃             | CH₃ (             | CH₃             | ОН              | N-CH <sub>3</sub> |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub>                 | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w                 |
|---------|--------------------------------------------------|---------------------------------|-----------------|-----------------|-----------------|-------------------|
| B495    | CH₃O                                             | CH₃                             | CH <sub>3</sub> | СН₃             | ОН              | N-CH₃             |
| B496    | CH₃CO₂                                           | CH₃                             | CH₃             | CH₃             | ОН              | N-CH₃             |
| B497    | CH₃CH₂CO₂                                        | СН₃                             | СН₃             | СН₃             | ОН              | N-CH <sub>3</sub> |
| B498    | CH <sub>2</sub> =CHCH <sub>2</sub>               | СН₃                             | CH₃             | CH₃             | ОН              | N-CH₃             |
| B499    | HCCCH₂                                           | CH₃                             | СН₃             | CH <sub>3</sub> | ОН              | N-CH₃             |
| B500    | CF <sub>3</sub>                                  | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | N-CH₃             |
| B501    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | N-CH₃             |
| B502    | (CH₃)₂N                                          | CH₃                             | CH₃             | СН₃             | ОН              | N-CH₃             |
| B503    | PhO                                              | CH₃                             | CH <sub>3</sub> | CH₃             | ОН              | N-CH₃             |
| B504    | PhS                                              | CH₃                             | CH₃             | CH <sub>3</sub> | ОН              | N-CH₃             |
| B505    | PhSO                                             | СН₃                             | CH₃             | СН₃             | ОН              | N-CH₃             |
| B506    | PhSO₂                                            | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | N-CH₃             |
| B507    | CN                                               | CH₃                             | CH₃             | CH <sub>3</sub> | ОН              | N-CH₃             |
| B508    | CH₃CH₂                                           | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B509    | CH₃CH₂CH₂                                        | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B510    | (CH₃)₂CH                                         | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B511    | (CH₃)₃C                                          | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B512    | CH₃S                                             | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B513    | CH₃SO                                            | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B514    | CH <sub>3</sub> SO₂                              | CH₃CH₂                          | H ·             | Н               | ОН              | N-CH₃             |
| B515    | Ph                                               | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B516    | CH₃O                                             | CH₃CH₂                          | Н               | ٠н              | ОН              | N-CH₃             |
| B517    | CH <sub>3</sub> CO <sub>2</sub>                  | CH₃CH₂                          | H               | Н               | ОН              | N-CH₃             |
| B518    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B519    | CH₂=CHCH₂                                        | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B520    | HCCCH₂                                           | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B521    | CF₃                                              | CH₃CH₂                          | Н               | Н.              | ОН              | N-CH₃             |
| B522    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃CH₂                          | Н               | Н               | ОН              | N-CH₃             |
| B523    | (CH₃)₂N                                          | CH₃CH₂                          | н               | Н               | ОН              | N-CH₃             |
| B524    | PhO                                              | CH₃CH₂                          | Н               | Н               | ОН              | N-CH <sub>3</sub> |
| B525    | PhS                                              | CH₃CH₂                          | н               | Н               | ОН              | N-CH₃             |
| B526    | PhSO                                             | CH₃CH₂                          | н               | Н               | ОН              | N-CH₃             |
| B527    | PhSO <sub>2</sub>                                | CH <sub>2</sub> CH <sub>2</sub> | н               | н               | ОН              | N-CH <sub>2</sub> |

|                   | •                                                |                 |                 |                 |                 |       |
|-------------------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------|
| Radical           | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w     |
| B528              | CN                                               | CH₃CH₂          | Ή               | Н               | ОН              | N-CH₃ |
| B529              | н                                                | Н               | Н               | Н               | ОН              | . 0   |
| B530              | CH₃                                              | н               | Н               | Н               | ОН              | 0     |
| B531              | CH₃CH₂                                           | Н               | Н               | Н               | ОН              | . 0   |
| B532              | CH₃CH₂CH₂                                        | н               | Н               | Н               | ОН              | 0     |
| B533              | (CH₃)₂CH                                         | Н               | Н               | Н               | ОН              | 0     |
| B534              | (CH <sub>3</sub> ) <sub>3</sub> C                | ·H              | Н               | Н               | ОН              | 0     |
| B535              | CH₃S                                             | Н               | Н               | Н               | ОН              | 0     |
| B536              | CH₃SO                                            | Н               | Н               | Н               | ОН              | 0     |
| B537              | CH <sub>3</sub> SO₂                              | · Ho            | . н             | Н               | ОН              | . 0   |
| B538              | Ph.                                              | н               | Н               | Н               | ОН              | 0     |
| B539              | CH₃O                                             | Н               | Н               | Н               | ОН              | 0     |
| B540              | CH₃CO₂                                           | Н               | Н               | Н               | ОН              | 0     |
| B541              | CH₃CH₂CO₂                                        | Н               | Н               | Н               | ОН              | 0     |
| B542              | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | Н               | Н               | ОН              | 0     |
| B543              | HCCCH₂                                           | Н               | Н               | Н               | ОН              | · o   |
| B544              | CF <sub>3</sub>                                  | Н               | Н               | Н               | ОН              | . 0   |
| B545              | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | Н               | Н               | ОН              | 0     |
| B546              | (CH₃)₂N                                          | Н               | Н               | Н               | ОН              | 0     |
| B547              | PhO                                              | Н               | Н               | Н               | ОН              | 0     |
| B548              | PhS                                              | н               | Н               | Н               | ОН              | 0     |
| B549              | . PhSO                                           | н               | Н               | Н               | ОН              | 0     |
| B550              | PhSO <sub>2</sub>                                | Н               | Н               | Н               | ОН              | 0     |
| B551              | CN                                               | н               | Н               | Н               | ОН              | . 0   |
| B552              | CH₃                                              | CH₃             | н               | Н               | ОН              | 0     |
| B553              | CH₃CH₂                                           | CH₃             | Н               | H               | ОН              | 0     |
| B554              | CH₃CH₂CH₂                                        | CH₃             | н               | Н               | ОН              | 0     |
| B555              | (CH₃)₂CH                                         | CH₃             | Н               | Н               | ОН              | 0     |
| B556              | (CH₃)₃C                                          | CH₃             | Н               | Н               | ОН              | 0     |
| B557              | CH₃S                                             | CH₃             | Ħ               | н               | ОН              | 0     |
| B558              | CH₃SO                                            | CH₃             | H               | Н               | OH.             | 0     |
| B559 <sub>.</sub> | CH <sub>3</sub> SO <sub>2</sub>                  | СН₃             | н               | Н               | ОН              | 0     |
| B560              | <b>.Ph</b>                                       | СН₃             | Н               | Н               | ОН              | 0     |
|                   |                                                  |                 |                 |                 |                 | -     |

| Radical | R <sub>44</sub> .                                | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w   |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----|
| B561    | CH₃O                                             | ∵.₃,<br>CH₃     | н               | H               | OH              | . 0 |
| B562    | ÇH₃CO₂                                           | CH₃             | н               | Н               | ОН              | 0   |
| B563    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH₃             | н               | Н               | ОН              | 0   |
| B564    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | н               | Н               | ОН              | 0 * |
| B565    | HCCCH <sub>2</sub>                               | CH₃             | Н               | Н               | ОН              | 0   |
| B566    | CF <sub>3</sub>                                  | CH₃             | H               | Н               | ОН              | 0   |
| B567    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | Н               | Н               | ОН              | 0   |
| B568    | (CH <sub>3</sub> )₂N                             | CH₃             | н               | Н               | ОН              | 0   |
| B569    | PhO                                              | CH₃             | Н               | Н               | ОН              | 0   |
| B570    | PhS                                              | CH₃             | Н               | Н               | ОН              | 0   |
| B571    | PhSO                                             | CH <sub>3</sub> | Н               | н               | ОН              | 0   |
| B572    | PhSO <sub>2</sub>                                | CH₃             | Н               | Н               | ОН              | 0   |
| B573 -  | CN                                               | СН₃             | Н               | н               | ОН              | 0   |
| B574    | CH₃                                              | н               | CH₃             | н               | ОН              | 0   |
| B575    | CH <sub>3</sub> CH <sub>2</sub>                  | н               | CH₃             | Н               | ОН              | 0   |
| B576    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | н               | CH₃             | Н               | ОН              | 0   |
| B577    | (CH₃)₂CH                                         | н               | CH₃             | н               | ОН              | 0   |
| B578    | (CH₃)₃C                                          | н               | СН₃             | Ή.              | ОН              | 0   |
| B579    | CH₃S                                             | Н               | СН₃             | Н               | ОН              | 0   |
| B580    | CH₃SO                                            | Н               | CH₃             | Н               | ОН              | 0   |
| B581    | CH₃SO₂                                           | Н               | CH₃             | Н               | ОН              | 0.  |
| B582    | Ph                                               | Н               | CH <sub>3</sub> | Н               | ОН              | 0   |
| B583    | CH₃O                                             | Н               | СН₃             | Н               | ОН              | 0   |
| B584    | CH₃CO₂                                           | Н               | СН₃             | Н               | ОН              | 0   |
| B585    | CH₃CH₂CO₂                                        | н               | CH₃             | Н               | ОН              | 0   |
| B586    | CH₂=CHCH₂                                        | Н               | СН₃             | Н               | ОН              | . 0 |
| B587    | HCCCH₂                                           | Н               | CH₃             | Н               | ОН              | . 0 |
| B588    | CF₃                                              | н               | CH₃             | Н               | ОН              | 0   |
| B589    | (CH₃)₂NSO₂                                       | Н               | CH <sub>3</sub> | Н               | ОН              | 0   |
| B590    | (CH₃)₂N                                          | Н               | CH <sub>3</sub> | Н               | ОН              | 0   |
| B591    | PhO .                                            | н               | CH <sub>3</sub> | Н               | ОН              | 0   |
| B592    | PhS .                                            | Н               | СН₃             | Н               | ОН              | 0   |
| B593    | PhSO                                             | н               | СН₃             | Н               | ОН              | 0   |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub>   | R <sub>38</sub> R | 39 R <sub>40</sub> | w          |
|---------|--------------------------------------------------|-------------------|-------------------|--------------------|------------|
| B594    | PhSO <sub>2</sub>                                | H                 | CH₃ ⊦             |                    | 0          |
| B595    | CN                                               | н                 | CH₃ F             | н он               | 0          |
| B596    | CH₃                                              | CH₃               | CH₃ F             | I OH               | 0          |
| B597    | CH₃CH₂                                           | CH₃               | CH₃ F             | <b>І</b> ОН        | 0 -        |
| B598    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | СН₃               | CH₃ H             | і он               | 0          |
| B599    | (CH <sub>3</sub> )₂CH                            | CH₃               | СН₃ Н             | ОН                 | 0          |
| B600    | (CH <sub>3</sub> ) <sub>3</sub> C                | СН₃               | СН₃ Н             | ОН                 | 0          |
| B601    | CH₃S                                             | СН₃               | СН₃ Н             | ОН                 | 0          |
| B602    | CH₃SO                                            | CH₃               | СН₃ Н             | ОН                 | 0          |
| B603    | CH <sub>3</sub> SO <sub>2</sub>                  | CH₃               | СН₃ Н             | OH                 | 0          |
| B604    | Ph                                               | CH₃               | СН₃ Н             | ОН                 | . 0        |
| B605    | CH₃O                                             | CH₃.              | CH₃ H             | ОН                 | 0          |
| B606    | CH <sub>3</sub> CO <sub>2</sub>                  | СН₃               | СН₃ Н             | ОН                 | 0          |
| B607    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | СН₃               | СН₃ Н             | ОН                 | . 0        |
| B608    | CH <sub>2</sub> =CHCH <sub>2</sub>               | СН₃               | СН₃ Н             | ОН                 | 0          |
| B609    | HCCCH₂                                           | CH₃               | СН₃ Н             | ОН                 | 0          |
| B610    | CF₃                                              | CH₃               | СН₃ Н             | ОН                 | O .        |
| B611    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | . CH <sub>3</sub> | СН₃ Н             | OH                 | . 0        |
| B612    | (CH₃)₂N                                          | СН₃               | СН₃ Н             | ОН                 | 0          |
| B613    | PhO                                              | CH₃               | СН₃ Н             | ОН                 | 0          |
| B614    | PhS                                              | CH₃               | СН₃ Н             | ОН                 | 0          |
| B615    | PhSO                                             | CH₃               | СН₃ Н             | ОН                 | Ο.         |
| B616    | PhSO <sub>2</sub>                                | CH₃               | СН₃ Н             | ОН                 | . О        |
| B617    | CN                                               | CH₃               | СН₃ Н             | ОН                 | 0          |
| B618    | CH₃                                              | CH₃               | CH₃ CH            | ₃ ОН               | 0          |
| B619 ·  | CH₃CH₂                                           | CH₃               | CH₃ CH            | з ОН               | <b>O</b> . |
| B620    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | СН₃               | CH₃ CH            | 3 OH               | , <b>O</b> |
| B621    | (CH₃)₂CH                                         | CH₃               | CH₃ CH            | з ОН               | 0          |
| B622    | (CH <sub>3</sub> ) <sub>3</sub> C.               | СН₃               | CH₃ CH            | 3 OH               | 0          |
| B623    | CH₃S                                             | CH₃               | CH₃ CH            | oH                 | O          |
| B624    | CH₃SO                                            | CH₃               | CH₃ CH₃           | о ОН               | 0          |
| B625    | CH <sub>3</sub> SO₂                              | СН₃               | CH₃ CH₅           | OH                 | 0          |
| B626    | Ph                                               | CH₃               | CH₃ CH₃           | ОН                 | O          |

| Radical | R44                                              | R <sub>37</sub>                 | R <sub>38</sub> | R <sub>39</sub> | R40 | W          |
|---------|--------------------------------------------------|---------------------------------|-----------------|-----------------|-----|------------|
| B627    | CH₃O                                             | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН  | 0          |
| B628    | CH₃CO₂                                           | CH₃                             | CH₃             | CH <sub>3</sub> | ОН  | 0          |
| B629    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH <sub>3</sub> .               | CH₃             | CH₃             | ОН  | 0          |
| B630    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃                             | CH₃             | CH₃             | ОН  | 0          |
| B631    | HCCCH₂                                           | CH₃                             | CH₃             | CH₃             | ОН  | 0          |
| B632    | CF <sub>3</sub>                                  | CH₃                             | СН₃             | CH₃             | ОН  | 0          |
| B633    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃                             | CH₃             | CH₃             | ОН  | 0          |
| B634    | (CH₃)₂N                                          | CH <sub>3</sub>                 | CH₃             | CH₃             | ОН  | 0          |
| B635    | PhO                                              | CH <sub>3</sub>                 | CH₃             | CH <sub>3</sub> | ОН  | 0          |
| B636    | PhS                                              | CH <sub>3</sub>                 | CH₃             | CH <sub>3</sub> | ОН  | 0          |
| B637    | PhSO                                             | CH <sub>3</sub>                 | CH₃             | CH₃             | ОН  | 0          |
| B638    | PhSO <sub>2</sub>                                | CH₃                             | CH <sub>3</sub> | CH <sub>3</sub> | ОН  | 0          |
| B639    | CN                                               | CH₃                             | СН₃             | СН3             | ОН  | 0          |
| B640    | CH₃CH₂                                           | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B641    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B642    | (CH₃)₂CH                                         | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B643    | (CH₃)₃C                                          | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B644    | CH₃S                                             | CH <sub>3</sub> CH <sub>2</sub> | Н               | Н               | ОН  | 0          |
| B645    | CH₃SO                                            | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B646    | CH₃SO₂                                           | CH₃CH₂                          | Н               | H               | ОН  | , <b>o</b> |
| B647    | Ph                                               | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B648    | CH₃O                                             | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B649    | CH₃CO₂                                           | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B650    | CH₃CH₂CO₂                                        | CH₃CH₂                          | Н               | Н               | OH  | 0          |
| B651    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃CH₂                          | Н               | Н               | ОН  | .0         |
| B652    | HCCCH₂                                           | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B653    | CF₃                                              | CH₃CH₂                          | Н               | Н               | OH  | 0          |
| B654    | (CH₃)₂NSO₂                                       | CH₃CH₂                          | Н               | Н               | ОН  | Ο.         |
| B655    | (CH₃)₂N                                          | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B656    | PhO                                              | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B657    | PhS                                              | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B658    | PhSO                                             | CH₃CH₂                          | Н               | Н               | ОН  | 0          |
| B659    | PhSO <sub>2</sub>                                | CH₃CH₂                          | H               | Н               | ОН  | .0         |

| Radical | R <sub>44</sub>                                 | D               | р               | <b>D</b>        | -               | 347 |
|---------|-------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----|
| B660    | CN                                              | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W   |
| B661    |                                                 | CH₃CH₂          | Н               | Н               | OH              | 0   |
|         | Н                                               | Н               | Н               | Н               | OH              | S   |
| B662    | CH₃                                             | H               | Н               | Н               | ОН              | S   |
| B663    | CH₃CH₂                                          | H               | Н               | Н               | ОН              | S   |
| B664    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н               | Н               | Н               | ОН              | S   |
| B665    | (CH₃)₂CH                                        | Н               | Н               | Н               | ОН              | S   |
| B666    | (CH₃)₃C                                         | Н               | Н               | H               | ОН              | · S |
| B667    | CH₃S                                            | Н               | Н               | H               | OH              | S   |
| B668    | CH₃SO                                           | Н               | H ·             | Н               | ОН              | S   |
| B669    | CH <sub>3</sub> SO <sub>2</sub>                 | Н               | Н               | · H             | OH              | S   |
| B670    | Ph                                              | Н               | Н               | H               | ОН              | S.  |
| B671    | CH₃O                                            | н               | · H             | Н               | OH              | s   |
| B672    | CH₃CO <sub>2</sub>                              | Н               | Н               | Н               | ОН              | S   |
| B673    | CH₃CH₂CO₂                                       | Н               | H               | H               | OH              | s   |
| B674    | CH <sub>2</sub> =CHCH <sub>2</sub>              | • н             | Н               | Н               | ОН              | S   |
| B675    | HCCCH₂                                          | Н               | Н               | Н               | ОН              | S   |
| B676    | CF₃                                             | Н               | Н               | Н               | ОН              | S   |
| B677    | (CH <sub>3</sub> )₂NSO₂                         | . Н             | Н               | Н               | ОН              | S   |
| B678    | (CH₃)₂N                                         | H               | Н               | Н               | ОН              | S   |
| B679    | PhO                                             | Н               | Н               | Н               | ОН              | S   |
| B680    | PhS                                             | Н               | Ĥ               | н               | ОН              | s   |
| B681    | PhSO                                            | Н               | Н               | Н               | ОН              | s   |
| B682    | PhSO₂                                           | Н               | Н               | Н               | ОН              | s   |
| B683    | CN                                              | H               | Н               | Н               | ОН              | S   |
| B684    | СН₃                                             | CH₃             | Н               | ·H              | ОН              | s   |
| B685    | CH₃CH₂                                          | CH₃             | Н               | Н               | ОН              | s   |
| B686    | CH₃CH₂CH₂                                       | CH₃             | Н               | Н               | ОН              | S   |
| B687    | (CH₃)₂CH                                        | CH₃             | Н               | н               | ОН              | s   |
| B688    | (CH₃)₃C                                         | СН₃             | н               | Н               | ОН              | s   |
| B689    | CH₃S                                            | CH₃             | Н               | Ĥ               | ОН              | S   |
| B690    | CH₃SO                                           | CH₃             | Н               | Н               | ОН              | S   |
| B691    | CH₃SO₂                                          | CH₃             | Н               | Н               | ОН              | S   |
| B692    |                                                 | CH₃             | Н               | Н               | ОН              | S   |
|         |                                                 | <del>-</del>    | - •             | - •             | <b></b>         | •   |

| Radical | R <sub>44</sub>                                  | ' R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W   |
|---------|--------------------------------------------------|-------------------|-----------------|-----------------|-----------------|-----|
| B693    | CH₃O                                             | CH₃               | Н               | H               | ОН              | s   |
| B694    | CH₃CO₂                                           | CH₃               | Н               | Н               | ОН              | s   |
| B695    | CH₃CH₂CO₂                                        | CH₃               | Н               | Н               | ОН              | S   |
| B696    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃               | Н               | Н               | ОН              | S   |
| B697    | HCCCH₂                                           | CH₃               | Н               | Н               | ОН              | S   |
| B698    | CF <sub>3</sub>                                  | CH₃               | Н               | Н               | ОН              | S   |
| B699    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃               | Н               | Н               | ОН              | S   |
| B700    | (CH₃)₂N                                          | СН₃               | Н               | Н               | ОН              | S   |
| B701    | PhO                                              | СН₃               | Н               | Н               | ОН              | S   |
| B702    | PhS                                              | СН₃               | Н               | Н               | ОН              | S   |
| B703    | PhSO                                             | СН₃               | н               | Н               | ОН              | S   |
| B704    | PhSO <sub>2</sub>                                | СН₃               | Н               | Н               | ОН              | s   |
| B705    | CN .                                             | СН₃               | Н               | Н               | ОН              | · s |
| B706    | CH₃                                              | Н                 | СН₃             | Н               | ОН              | s   |
| B707    | CH₃CH₂                                           | н                 | CH₃             | Н               | ОН              | s   |
| B708    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | н                 | СН₃             | Н               | ОН              | s   |
| B709    | (CH₃)₂CH                                         | Н                 | CH <sub>3</sub> | Н               | ОН              | s   |
| B710    | (CH <sub>3</sub> ) <sub>3</sub> C                | Н                 | CH <sub>3</sub> | Н               | ОН              | s   |
| B711    | CH₃S                                             | Н                 | CH₃             | Н               | ОН              | S   |
| B712    | CH₃SO                                            | Н                 | CH₃             | Н               | ОН              | s   |
| B713    | CH₃SO₂                                           | н                 | CH <sub>3</sub> | Н               | ОН              | S   |
| B714    | Ph                                               | Н                 | CH₃             | Н               | ОН              | s   |
| B715    | CH₃O                                             | н                 | CH₃             | Н               | ОН              | s   |
| B716    | CH₃CO₂                                           | н                 | CH <sub>3</sub> | Н               | ОН              | s   |
| B717    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | Н                 | CH₃             | н               | ОН              | S   |
| B718    | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н                 | CH₃             | Н               | ОН              | S   |
| B719    | HCCCH₂                                           | н                 | CH₃             | Н               | ОН              | S   |
| B720    | CF₃                                              | Н                 | CH₃             | Н               | ОН              | S   |
| B721    | (CH <sub>3</sub> )₂NSO₂                          | Н                 | CH₃             | Н               | ОН              | S   |
| B722    | (CH₃)₂N                                          | н                 | CH₃             | Н               | ОН              | S   |
| B723    | PhO                                              | н                 | CH₃             | Н               | ОН              | S   |
| B724    | PhS                                              | н                 | CH₃             | Н               | ОН              | S   |
| B725    | PhSO                                             | Н                 | СН₃             | Н               | ОН              | s   |

()

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub>     | R <sub>39</sub> | R <sub>40</sub> | W  |
|---------|--------------------------------------------------|-----------------|---------------------|-----------------|-----------------|----|
| B726    | PhSO <sub>2</sub>                                | Н               | CH₃                 | Н               | OH              | S  |
| B727    | CN                                               | Н               | CH₃                 | Н               | OH              | S  |
| B728    | CH₃                                              | CH₃             | CH₃                 | Н               | ОН              | S  |
| B729    | CH₃CH₂                                           | СН₃             | CH₃                 | Н               | ОН              | s  |
| B730    | CH₃CH₂CH₂                                        | CH <sub>3</sub> | CH₃                 | Н               | ОН              | S  |
| B731    | (CH₃)₂CH                                         | СН₃             | CH₃                 | Н               | ОН              | s  |
| B732    | (CH₃)₃C                                          | CH₃             | CH <sub>3</sub>     | Н               | ОН              | S  |
| B733    | CH₃S                                             | СН₃             | CH₃                 | Н               | ОН              | S  |
| B734    | CH₃SO                                            | СН₃             | СН₃                 | Н               | ОН              | S  |
| B735    | CH <sub>3</sub> SO <sub>2</sub>                  | СН₃             | CH₃                 | Н               | OH              | S  |
| B736    | Ph                                               | CH₃             | CH₃                 | Н               | ОН              | s  |
| B737    | CH₃O                                             | CH₃             | CH <sub>3</sub>     | Н               | ОН              | s  |
| B738    | CH <sub>3</sub> CO <sub>2</sub>                  | СН₃             | CH₃                 | Ή               | ОН              | s  |
| B739    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH₃             | CH₃                 | Н               | ОН              | S  |
| B740    | CH₂=CHCH₂                                        | CH <sub>3</sub> | СН₃                 | Н               | ОН              | ·s |
| B741    | HCCCH₂                                           | CH₃             | CH <sub>3</sub>     | Н               | ОН              | S  |
| B742    | CF <sub>3</sub>                                  | CH <sub>3</sub> | CH₃                 | Н               | ОН              | S  |
| B743    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CH₃                 | Н               | ОН              | S  |
| B744    | (CH <sub>3</sub> )₂N                             | СН₃             | CH₃                 | Н               | ОН              | S  |
| B745    | PhO                                              | CH₃             | CH₃                 | Н               | ОН              | S  |
| B746    | PhS                                              | CH₃             | CH₃                 | Н               | ОН              | S  |
| B747    | PhSO                                             | CH₃             | CH₃                 | Н               | ОН              | S  |
| B748    | PhSO <sub>2</sub>                                | CH₃             | CH₃                 | Н               | ОН              | S  |
| B749    | CN                                               | CH₃             | CH <sub>3</sub>     | Н               | ОН              | S  |
| B750    | CH₃                                              | CH <sub>3</sub> | CH₃ (               | CH₃             | ОН              | S  |
| B751 .  | CH₃CH₂                                           | CH₃             | CH <sub>3</sub> C   | CH₃             | ОН              | S  |
| B752    | CH₃CH₂CH₂                                        | CH₃             | CH₃ C               | CH₃             | ОН              | S  |
| B753    | (CH₃)₂CH                                         | CH₃             | CH₃ C               | CH <sub>3</sub> | ОН              | S  |
| B754    | (CH₃)₃C                                          | CH₃             | CH <sub>3</sub> . C | CH <sub>3</sub> | ОН              | s  |
| B755    | CH₃S                                             | CH₃             | CH₃ C               | <b>H</b> 3      | OH              | S  |
| B756    | CH₃SO                                            | CH <sub>3</sub> | CH₃ C               | ЭН₃             | ОН              | s  |
| B757    | CH₃SO₂                                           | СН₃             | CH₃ C               | Ж₃              | ОН              | s  |
| B758    | Ph                                               | CH₃             | CH₃ C               | H <sub>3</sub>  | ОН              | s  |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub>  | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w   |
|---------|--------------------------------------------------|------------------|-----------------|-----------------|-----------------|-----|
| B759    | CH₃O                                             | CH₃              | СН₃             | CH <sub>3</sub> | ОН              | S   |
| B760    | CH <sub>3</sub> CO <sub>2</sub>                  | CH₃              | CH₃             | CH₃             | ОН              | s   |
| B761    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH <sub>3</sub>  | СН₃             | CH₃             | ОН              | S   |
| B762    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃              | CH₃             | CH <sub>3</sub> | ОН              | s f |
| B763    | HCCCH <sub>2</sub>                               | CH₃              | СН₃             | СН3             | ОН              | S   |
| B764    | CF₃                                              | СН₃              | CH₃             | CH₃             | ÓН              | S   |
| B765    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃              | CH₃             | CH₃             | ОН              | S   |
| B766    | (CH₃)₂N                                          | CH₃              | СН₃             | СН₃             | OH              | S   |
| B767    | PhO                                              | CH₃              | CH <sub>3</sub> | СН₃             | ОН              | S   |
| B768    | PhS                                              | CH₃              | CH₃             | CH₃             | ОН              | S   |
| B769    | PhSO                                             | CH₃              | CH₃             | CH <sub>3</sub> | ОН              | S   |
| B770    | PhSO <sub>2</sub>                                | CH₃ <sub>.</sub> | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | S   |
| B771    | CN                                               | CH₃              | CH₃             | CH₃             | ОН              | S   |
| B772    | CH₃CH₂                                           | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B773    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B774    | (CH₃)₂CH                                         | CH₃CH₂           | Н               | H               | ОН              | S   |
| B775    | (CH₃)₃C                                          | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B776    | CH₃S                                             | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B777    | CH₃SO                                            | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B778    | CH₃SO₂                                           | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B779    | Ph                                               | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B780    | CH₃O                                             | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B781    | CH₃CO₂                                           | CH₃CH₂           | Н               | Н               | OH              | S   |
| B782    | CH₃CH₂CO₂                                        | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B783    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B784    | HCCCH₂                                           | CH₃CH₂           | Н               | Н               | OH              | S   |
| B785    | CF₃                                              | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B786    | (CH₃)₂NSO₂                                       | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B787    | (CH₃)₂N                                          | CH₃CH₂           | Н               | Н               | ОН              | s   |
| B788    | PhO                                              | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B789    | PhS                                              | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B790    | PhSO                                             | CH₃CH₂           | Н               | Н               | ОН              | S   |
| B791    | PhSO₂                                            | CH₃CH₂           | Н               | н               | ОН              | s   |

| Radical           | R <sub>44</sub>                                 | R <sub>37</sub>                 | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W               |
|-------------------|-------------------------------------------------|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| B792              | CN                                              | CH <sub>3</sub> CH <sub>2</sub> | н               | Н               | OH              | S               |
| B793              | Н                                               | н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B794              | CH₃                                             | Н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B795              | CH₃CH₂                                          | Н                               | Н               | Н               | OH              | SO <sub>2</sub> |
| B796              | CH₃CH₂CH₂                                       | Н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B797 <sup>†</sup> | (CH₃)₂CH                                        | H,                              | Н               | Н               | OH              | SO <sub>2</sub> |
| B798              | (CH <sub>3</sub> ) <sub>3</sub> C               | Н                               | Н               | Н               | OH              | SO <sub>2</sub> |
| B799              | CH₃S                                            | н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B800              | CH₃SO                                           | н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B801              | CH₃SO₂                                          | . н                             | Н               | Н               | OH              | SO <sub>2</sub> |
| B802              | Ph                                              | Н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B803              | CH₃O                                            | Н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B804              | CH₃CO₂                                          | н                               | Ή.              | Η.              | ОН              | SO <sub>2</sub> |
| B805              | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub> | н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B806              | CH <sub>2</sub> =CHCH <sub>2</sub>              | н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B807              | HCCCH₂                                          | H                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B808              | CF₃                                             | н                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B809              | (CH₃)₂NSO₂                                      | ·H                              | Н               | Н               | ОН              | SO <sub>2</sub> |
| B810              | (CH₃)₂N                                         | Н                               | Н               | H               | ОН              | SO <sub>2</sub> |
| B811              | PhO                                             | Н                               | Н               | Н               | OH              | SO <sub>2</sub> |
| B812              | PhS                                             | Н                               | H               | Н               | ОН              | SO <sub>2</sub> |
| B813              | PhSO                                            | H                               | Н               | Н               | ОН              | SO <sub>2</sub> |
| B814              | PhSO <sub>2</sub>                               | H                               | н               | Н               | ОН              | SO <sub>2</sub> |
| B815              | CN                                              | H                               | Н               | H               | OH              | SO <sub>2</sub> |
| B816              | CH₃                                             | CH <sub>3</sub>                 | Н               | Н               | ОН              | SO₂             |
| B817              | CH₃CH₂                                          | CH₃ ·                           | Н               | Н               | OH              | SO <sub>2</sub> |
| B818              | CH₃CH₂CH₂                                       | CH₃                             | Н               | Н               | OH              | SO <sub>2</sub> |
| B819              | (CH₃)₂CH                                        | CH₃                             | Н               | Н               | ОН              | SO <sub>2</sub> |
| B820              | (CH₃)₃C                                         | CH <sub>3</sub>                 | Н               | Н               | ОН              | SO <sub>2</sub> |
| B821              | CH₃S                                            | CH₃                             | 'H'             | Ħ               | OH.             | SO <sub>2</sub> |
| B822              | CH₃SO                                           | CH₃                             | Н               | Н               | ОН              | SO <sub>2</sub> |
| B823              | CH <sub>3</sub> SO <sub>2</sub>                 | CH₃                             | Н               | Н               | ОН              | SO <sub>2</sub> |
| B824              | Ph                                              | СН₃                             | Н               | Н               | ОН.             | SO <sub>2</sub> |
|                   |                                                 |                                 |                 |                 |                 | -               |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                            |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------|
| B825    | CH₃O                                             | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B826    | CH₃CO₂                                           | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B827    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B828    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub> <sup>1</sup> |
| B829    | HCCCH₂                                           | CH₃             | н               | Н               | OH              | SO <sub>2</sub>              |
| B830    | CF <sub>3</sub>                                  | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B831    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B832    | (CH₃)₂N                                          | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B833    | PhO                                              | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B834    | PhS                                              | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B835    | PhSO                                             | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B836    | PhSO <sub>2</sub>                                | CH₃             | Н               | Н               | OH              | SO <sub>2</sub>              |
| B837    | CN                                               | CH₃             | Н               | Н               | ОН              | SO <sub>2</sub>              |
| B838    | CH₃                                              | Н               | СН₃             | Н               | ОН              | SO <sub>2</sub>              |
| B839    | CH₃CH₂                                           | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B840    | CH₃CH₂CH₂                                        | Н               | CH₃             | H               | ОН              | SO <sub>2</sub>              |
| B841    | (CH₃)₂CH                                         | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B842    | (CH₃)₃C                                          | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B843    | CH₃S                                             | н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B844    | CH₃SO                                            | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B845 ·  | CH₃SO₂                                           | Н               | CH <sub>3</sub> | Н               | ОН              | SO <sub>2</sub>              |
| B846    | Ph                                               | Н               | CH <sub>3</sub> | Н               | ОН              | SO <sub>2</sub>              |
| B847    | CH₃O                                             | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B848    | CH₃CO₂                                           | Н               | CH₃             | Н               | OH              | SO₂                          |
| B849    | CH3CH2CO2                                        | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub> .            |
| B850    | CH₂=CHCH₂                                        | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B851    | HCCCH₂                                           | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B852    | CF <sub>3</sub>                                  | Н               | CH <sub>3</sub> | Н               | ОН              | SO <sub>2</sub>              |
| B853    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CH <sub>3</sub> | Н               | ОН              | SO <sub>2</sub>              |
| B854    | (CH <sub>3</sub> ) <sub>2</sub> N                | Н               | CH <sub>3</sub> | Н               | ОН              | SO <sub>2</sub>              |
| B855    | PhO                                              | Н               | CH₃             | Н               | ОН              | SO <sub>2</sub>              |
| B856    | PhS                                              | Н               | СН₃             | Н               | ОН              | SO <sub>2</sub>              |
| B857    | PhSO                                             | Н               | СН₃             | <b>H</b> .      | ОН              | SO <sub>2</sub>              |
|         |                                                  |                 |                 |                 |                 |                              |

| Dadisəl | 5                                                | _               | _                 | _               | _        |                 |
|---------|--------------------------------------------------|-----------------|-------------------|-----------------|----------|-----------------|
| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub>   | R <sub>39</sub> | $R_{40}$ | W               |
| B858    | PhSO₂                                            | Н               | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B859    | CN                                               | Н               | CH₃               | Н               | OH       | SO <sub>2</sub> |
| B860    | CH₃                                              | CH₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B861    | CH₃CH₂                                           | CH <sub>3</sub> | CH <sub>3</sub>   | Н               | ОН       | SO <sub>2</sub> |
| B862    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | CH₃             | CH <sub>3</sub>   | Н               | ОН       | SO <sub>2</sub> |
| B863    | (CH₃)₂CH                                         | CH <sub>3</sub> | CH <sub>3</sub>   | Н               | OH       | SO <sub>2</sub> |
| B864    | (CH₃)₃C                                          | CH <sub>3</sub> | CH <sub>3</sub>   | Н               | ОН       | SO <sub>2</sub> |
| B865    | CH₃S                                             | CH₃             | CH₃               | H               | ОН       | SO <sub>2</sub> |
| B866    | CH₃SO                                            | CH₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B867    | CH <sub>3</sub> SO <sub>2</sub>                  | СН₃             | СН₃               | H               | OH       | SO₂             |
| B868    | · Ph                                             | CH₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B869    | CH <sub>3</sub> O                                | CH₃             | СН₃               | Н               | ОН       | SO <sub>2</sub> |
| B870    | CH <sub>3</sub> CO <sub>2</sub>                  | CH₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B871    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | СН₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B872    | CH <sub>2</sub> =CHCH <sub>2</sub>               | СН₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B873    | HCCCH₂                                           | СН₃             | CH <sub>3</sub>   | Н               | ОН       | SO <sub>2</sub> |
| B874    | CF₃                                              | CH₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B875    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH <sub>3</sub> | CH₃               | н               | ОН       | SO <sub>2</sub> |
| B876    | (CH₃)₂N                                          | CH <sub>3</sub> | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B877    | PhO                                              | CH <sub>3</sub> | СН₃               | Н               | OH       | SO <sub>2</sub> |
| B878    | PhS                                              | CH₃             | СН₃               | Н               | ОН       | SO <sub>2</sub> |
| B879    | PhSO                                             | CH₃             | CH₃               | Н               | ОН       | SO₂             |
| B880    | PhSO₂                                            | CH₃             | CH₃               | Н               | ОН       | SO <sub>2</sub> |
| B881    | CN                                               | CH₃             | CH₃               | Н               | ОН       | SO₂             |
| B882    | CH₃                                              | CH₃             | CH <sub>3</sub> ( | CH3             | ОН       | SO <sub>2</sub> |
| B883    | CH₃CH₂                                           | CH₃             | CH <sub>3</sub> ( | CH₃             | ОН       | SO <sub>2</sub> |
| B884    | CH₃CH₂CH₂                                        | CH₃             | CH₃ (             | CH₃             | ОН       | SO <sub>2</sub> |
| B885    | (CH₃)₂CH                                         | CH₃             | CH₃ (             | CH₃             | ОН       | SO <sub>2</sub> |
| B886    | (CH <sub>3</sub> ) <sub>3</sub> C                | CH₃             | CH₃ (             | CH₃             | ОН       | SO <sub>2</sub> |
| B887    | CH₃S                                             | CH₃             | CH₃ C             | CH <sub>3</sub> | ОН       | SO <sub>2</sub> |
| B888    | CH₃SO                                            | CH₃             | CH₃ C             |                 | ОН       | SO <sub>2</sub> |
| B889    | CH₃SO₂                                           | СН₃             | CH₃ C             | -               | ОН       | SO₂             |
| B890    | <b>.P</b> h                                      | CH₃             | CH <sub>3</sub> C | _               | ОН       | SO <sub>2</sub> |
|         |                                                  |                 | _                 | -               |          |                 |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                 |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| B891    | CH₃O                                             | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | SO <sub>2</sub>   |
| B892    | CH₃CO₂                                           | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | SO <sub>2</sub>   |
| B893    | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH <sub>3</sub> | CH₃             | CH₃             | ОН              | SO <sub>2</sub>   |
| B894    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | CH <sub>3</sub> | CH₃             | ОН              | SO <sub>2</sub>   |
| B895    | HCCCH₂                                           | CH <sub>3</sub> | CH₃             | CH <sub>3</sub> | ОН              | SO <sub>2</sub>   |
| B896    | CF <sub>3</sub>                                  | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | SO <sub>2</sub>   |
| B897    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | СН₃             | CH₃             | СН₃             | ОН              | SO <sub>2</sub>   |
| B898    | (CH <sub>3</sub> )₂N                             | СН₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | SO <sub>2</sub>   |
| B899    | PhO                                              | СН₃             | CH₃             | CH₃             | ОН              | SO <sub>2</sub>   |
| B900    | PhS                                              | СН₃             | CH <sub>3</sub> | СН₃             | ОН              | SO <sub>2</sub>   |
| B901    | PhSO                                             | СН₃             | CH₃             | СН₃             | ОН              | SO <sub>2</sub>   |
| B902    | PhSO <sub>2</sub>                                | CH₃             | CH <sub>3</sub> | СН₃             | ОН              | SO₂               |
| B903    | CN                                               | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | SO <sub>2</sub>   |
| B904    | CH₃CH₂                                           | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B905    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | CH₃CH₂          | Н               | Н               | ОН              | SO₂               |
| B906    | (CH₃)₂CH                                         | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B907    | (CH <sub>3</sub> ) <sub>3</sub> C                | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B908    | CH₃S                                             | CH₃CH₂          | Н               | H.              | ОН              | SO₂               |
| B909    | CH₃SO                                            | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B910    | CH₃SO₂                                           | CH₃CH₂          | Н               | .H              | ОН              | SO <sub>2</sub>   |
| B911    | Ph                                               | CH₃CH₂          | Н               | <b>H</b> 1      | ОН              | SO <sub>2</sub>   |
| B912    | CH₃O                                             | CH₃CH₂          | . <b>H</b>      | Н               | ОН              | SO <sub>2</sub>   |
| B913    | CH <sub>3</sub> CO₂                              | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B914    | CH₃CH₂CO₂                                        | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B915    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B916    | HCCCH₂                                           | CH₃CH₂          | Н               | Н               | ОН              | · SO <sub>2</sub> |
| B917    | CF₃                                              | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B918    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B919    | (CH₃)₂N                                          | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B920    | PhO                                              | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B921    | PhS                                              | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
| B922    | PhSO                                             | CH₃CH₂          | Н               | H               | ОН              | SO <sub>2</sub>   |
| B923    | PhSO₂                                            | CH₃CH₂          | Н               | Н               | ОН              | SO <sub>2</sub>   |
|         |                                                  |                 |                 |                 |                 |                   |

| Radical | $R_{44}$                                         | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | w                                                    |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------------------------------|
| B924    | CN                                               | CH₃CH₂          | Н               | Н               | OH              | SO <sub>2</sub>                                      |
| B925    | н                                                | Н               | Н               | Н               | ОН              | CH(CO₂CH₂CH₃)                                        |
| B926    | CH₃                                              | H               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B927    | CH₃CH₂                                           | Н               | Н               | Н               | ОН              | CH(CO₂CĤ₂CH₃)                                        |
| B928    | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | H               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B929    | (CH₃)₂CH                                         | Н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B930    | (CH₃)₃C                                          | н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B931    | CH₃S                                             | н               | н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B932    | CH₃SO                                            | Н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B933    | CH₃SO₂                                           | Н               | Η.              | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B934    | Ph                                               | Н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B935    | CH₃O                                             | Н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B936    | CH₃CO₂                                           | н               | Н               | ٠н              | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B937    | CH₃CH₂CO₂                                        | н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B938    | CH₂=CHCH₂                                        | н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B939    | HCCCH₂                                           | H               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B940    | CF₃                                              | н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B941    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B942    | (CH₃)₂N                                          | Н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B943    | PhO                                              | Н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B944    | PhS                                              | H               | Н               | H               | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B945    | PhSO                                             | Н               | H               | Н               | OH:             | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B946    | PhSO <sub>2</sub>                                | Н               | Н               | Н               | ЮĤ              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B947    | CN                                               | н               | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B948    | CH <sub>3</sub>                                  | CH <sub>3</sub> | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B949    | CH₃CH₂                                           | CH <sub>3</sub> | н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B950    | CH₃CH₂CH₂                                        | .CH₃            | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B951    | (CH₃)₂CH                                         | CH₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B952    | (CH₃)₃C                                          | CH₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B953    | - CH₃S                                           | CH₃             | н ·             | Н               | OH:             | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B954    | CH₃SO                                            | CH₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B955    | CH₃SO₂                                           | CH₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B956    | <u>P</u> h                                       | CH₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
|         |                                                  |                 |                 |                 |                 | ,                                                    |

| Radical | R44                                              | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | Ř <sub>40</sub> | W                                                    |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------------------------------|
| B957    | CH₃O                                             | CH <sub>3</sub> | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B958    | CH <sub>3</sub> CO <sub>2</sub>                  | CH₃             | Н               | . <b>H</b>      | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B959    | CH₃CH₂CO₂                                        | CH₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B960    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH <sub>3</sub> | Н               | Н               | ОН              | CH(CO₂CH₂CH₃)                                        |
| B961    | HCCCH₂                                           | CH <sub>3</sub> | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B962    | · CF <sub>3</sub>                                | CH₃             | Н               | н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B963    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | Н               | н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B964    | (CH₃)₂N                                          | CH₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B965    | PhO                                              | CH₃             | . н             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B966    | PhS                                              | CH₃ .           | н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B967    | PhSO                                             | СН₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B968    | PhSO <sub>2</sub>                                | СН₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B969    | CN                                               | СН₃             | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B970    | CH₃                                              | н               | СН₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B971    | CH₃CH₂                                           | н               | CH₃             | н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B972    | CH₃CH₂CH₂                                        | н               | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B973    | (CH₃)₂CH                                         | Н               | CH₃             | н               | ОН              | CH(CO₂CH₂CH₃)                                        |
| B974    | (CH₃)₃C                                          | н               | СН₃             | Н               | ОН              | CH(CO₂CH₂CH₃)                                        |
| B975    | CH₃S                                             | Н               | CH₃             | Н               | ОН              | CH(CO₂CH₂CH₃)                                        |
| B976    | CH₃SO                                            | Н               | CH <sub>3</sub> | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B977    | CH <sub>3</sub> SO <sub>2</sub>                  | Н               | CH <sub>3</sub> | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B978    | Ph                                               | . н             | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B979    | CH₃O                                             | Н               | CH <sub>3</sub> | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B980    | CH <sub>3</sub> CO <sub>2</sub>                  | Н               | CH <sub>3</sub> | H               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B981    | CH₃CH₂CO₂                                        | Н               | CH <sub>3</sub> | Ħ               | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B982    | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н               | CH <sub>3</sub> | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B983    | HCCCH₂                                           | Н               | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B984    | CF₃                                              | Н               | CH₃             | H               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B985    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B986    | (CH <sub>3</sub> ) <sub>2</sub> N                | Н               | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B987    | PhO                                              | н               | CH <sub>3</sub> | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B988    | PhS                                              | н               | CH <sub>3</sub> | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B989    | PhSO                                             | Н               | СН₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |

| Radical | R <sub>44</sub>                     | R <sub>37</sub>              | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                                                    |
|---------|-------------------------------------|------------------------------|-----------------|-----------------|-----------------|------------------------------------------------------|
| B990    | PhSO₂                               | н                            | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B991    | CN                                  | Н                            | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B992    | CH₃                                 | CH <sub>3</sub>              | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B993    | CH₃CH₂                              | CH <sub>3</sub>              | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B994    | CH₃CH₂CH₂                           | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B995    | (CH₃)₂CH                            | CH <sub>3</sub>              | СН₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B996    | (CH₃)₃C                             | CH₃                          | CH <sub>3</sub> | Н               | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B997    | CH₃S                                | CH <sub>3</sub>              | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B998    | CH₃SO                               | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B999    | CH₃SO₂                              | CH <sub>3</sub>              | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1000   | Ph                                  | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1001   | CH₃O                                | СН₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1002   | CH <sub>3</sub> CO <sub>2</sub>     | СН₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1003   | CH₃CH₂CO₂                           | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1004   | CH₂=CHCH₂                           | СН₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1005   | HCCCH₂                              | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1006   | CF <sub>3</sub>                     | CH₃                          | CH₃             | Ή               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1007   | (CH <sub>3</sub> )₂NSO <sub>2</sub> | CH <sub>3</sub>              | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1008   | (CH₃)₂N                             | CH₃                          | CH₃             | Н               | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1009   | PhO                                 | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1010   | PhS                                 | CH₃                          | CH <sub>3</sub> | H               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1011   | PhSO                                | CH <sub>3</sub>              | CH₃             | H               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1012   | PhSO <sub>2</sub>                   | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1013   | CN                                  | CH₃                          | CH₃             | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1014   | CH₃                                 | CH₃                          | CH <sub>3</sub> | CH3             | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1015   | CH₃CH₂                              | СН₃                          | CH₃             | CH₃             | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1016   | CH₃CH₂CH₂                           | CH <sub>3</sub>              | CH₃             | CH <sub>3</sub> | ОН              | CH(CO₂CH₂CH₃)                                        |
| B1017   | (CH₃)₂CH                            | CH <sub>3</sub>              | CH₃             | CH <sub>3</sub> | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1018   | (CH₃)₃C                             | CH <sub>3</sub>              | CH₃             | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1019   | CH <sub>3</sub> S                   | <sup>™</sup> CH <sub>3</sub> | CH₃             | CH <sub>3</sub> | OH.             | CH(CO₂CH₂CH₃)                                        |
| B1020   | CH₃SO                               | CH₃                          | СН₃             | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1021   | CH₃SO₂                              | CH₃                          | CH <sub>3</sub> | СНз             | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1022   | Ph                                  | СН₃                          | CH₃             | CH₃             | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |

| Radical | R <sub>44</sub>                                  | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | W                                                    |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------------------------------|
| B1023   | CH₃O                                             | CH₃             | CH₃             | CH₃             | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1024   | CH₃CO₂                                           | CH₃             | CH₃             | CH₃             | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1025   | CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub>  | CH <sub>3</sub> | CH₃             | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1026   | CH₂=CHCH₂                                        | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | CH(CO₂CH₂CH₃)                                        |
| B1027   | HCCCH₂                                           | CH₃             | CH₃             | СН₃             | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1028   | CF <sub>3</sub>                                  | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1029   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1030   | (CH₃)₂N                                          | CH₃             | CH₃             | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1031   | PhO                                              | CH <sub>3</sub> | CH₃             | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1032   | PhS                                              | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1033   | PhSO                                             | CH₃             | CH₃             | СН₃             | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1034   | PhSO <sub>2</sub>                                | CH₃             | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1035   | CN                                               | CH <sub>3</sub> | CH₃             | CH <sub>3</sub> | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1036   | CH₃CH₂                                           | CH₃CH₂          | Н               | H               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1037   | CH₃CH₂CH₂                                        | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1038   | (CH₃)₂CH                                         | CH₃CH₂          | Н               | H               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1039   | (CH₃)₃C                                          | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1040   | CH₃S                                             | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1041   | CH₃SO                                            | CH₃CH₂          | H               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1042   | CH₃SO₂                                           | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1043 . | Ph                                               | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1044   | CH₃O                                             | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1045   | CH₃CO₂                                           | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1046   | CH₃CH₂CO₂                                        | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1047   | CH₂=CHCH₂                                        | CH₃CH₂          | Н               | ,H              | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1048   | HCCCH₂                                           | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1049   | CF₃                                              | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1050   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃CH₂          | Н               | Н               | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1051   | (CH₃)₂N                                          | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1052   | PhO                                              | CH₃CH₂          | Н               | Н               | OH              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1053   | PhS                                              | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1054   | PhSO                                             | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1055   | PhSO₂                                            | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |

| Radical | R <sub>44</sub>                        | R <sub>37</sub> | R <sub>38</sub> | R <sub>39</sub> | R <sub>40</sub> | · w                                                  |
|---------|----------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------------------------------|
| B1056   | CN                                     | CH₃CH₂          | Н               | Н               | ОН              | CH(CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1057   | CH <sub>3</sub> OCO                    | н               | Н               | Н               | ОН              | CHPh                                                 |
| B1058   | Н                                      | н               | Н               | н               | ОН              | CHPh                                                 |
| B1059   | Н                                      | Н               | Н               | Н               | ОН              | CH(CH₂ĈĤ₃)                                           |
| B1060   | Н                                      | Н               | Н               | Н               | ОН              | CH(CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ) |
| B1061   | Н                                      | Н               | Н               | Н               | ОН              | CH(CH(CH <sub>3</sub> ) <sub>2</sub> )               |
| B1062   | Н                                      | Н               | Н               | н               | ОН              | CH(C(CH <sub>3</sub> ) <sub>3</sub> )                |
| B1063   | Н                                      | н               | Н               | Η.              | ОН              | C(CH <sub>3</sub> ) <sub>2</sub>                     |
| B1064   | Н                                      | н               | Н               | Н               | ОН              | CH(CF <sub>3</sub> )                                 |
| B1065   | CH₃OCO                                 | H               | Н               | H               | ОН              | C(CH <sub>3</sub> )(CF <sub>3</sub> )                |
| B1066   | н                                      | H.              | Н               | Н               | ОН              | C(CH <sub>3</sub> )(CF <sub>3</sub> )                |
| B1067   | CH₃OCO                                 | CH₃O            | Н               | Н               | ОН              | CH <sub>2</sub>                                      |
| B1068   | 7 H                                    | CH₃O            | Н               | Н               | ОН              | CH <sub>2</sub>                                      |
| B1069   | CH₃O                                   | CH₃OCO          | Н               | CH₃             | OH.             | CH <sub>2</sub>                                      |
| B1070   | CH₃O                                   | н .             | CH₃             | Н               | ОН              | CH <sub>2</sub>                                      |
| B1071   | CI                                     | Н               | Н               | Н               | ОН              | CH₂                                                  |
| B1072   | F                                      | Н               | Н               | Н               | ОН              | CH₂                                                  |
| B1073   | н                                      | H               | Н               | Н               | ОН              | CH(OCH₃)₂                                            |
| B1074   | Н                                      | Н               | H               | Н               | OH              | CH <sub>2</sub> OSO <sub>2</sub> CH <sub>3</sub>     |
| B1075   | CH₃                                    | CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> | ОН              | S(O)                                                 |
| B1076   | CICH <sub>2</sub> CH <sub>2</sub>      | Н               | Н               | Н               | OH              | CH₂                                                  |
| B1077   | HO(CH <sub>2</sub> ) <sub>2</sub>      | Н               | Н               | Н               | ОН              | CH₂                                                  |
| B1078   | MsO(CH <sub>2</sub> ) <sub>2</sub>     | Н               | Н               | Н               | ОН              | CH <sub>2</sub>                                      |
| B1079   | HOCH(CH₃)CH₂                           | Н               | Н               | Н               | ОН              | CH₂                                                  |
| B1080   | MsOCH(CH <sub>3</sub> )CH <sub>2</sub> | Н               | Н               | Н               | ОН              | CH₂                                                  |
| B1081   | (CH₃)₂CH                               | н               | СН3             | CH <sub>3</sub> | ОН              | CH₂                                                  |
| B1082   | HCCCH₂                                 | Н               | СН₃             | CH₃             | ОН              | CH₂                                                  |
| B1083   | H <sub>2</sub> C=CCH <sub>2</sub>      | Н               | CH <sub>3</sub> | CH₃             | ОН              | CH₂                                                  |
|         |                                        |                 |                 |                 |                 |                                                      |

In the following Table 7 Q is  $Q_{\theta}$ 

and Q<sub>6</sub> represents the following radicals C:

Table 7: Radicals C:

| Radical     | R <sub>84</sub>                    | R <sub>85</sub> | R <sub>86</sub> | R <sub>83</sub> | p | W               |
|-------------|------------------------------------|-----------------|-----------------|-----------------|---|-----------------|
| C1          | н                                  | н               | H               | ОН              | 1 | CH₂             |
| . <b>C2</b> | CH₃                                | Η.              | Н               | ОН              | 1 | CH₂             |
| СЗ          | CH₃CH₂                             | Н               | ļН              | ОН              | 1 | CH₂             |
| C4          | CH₃CH₂CH₂                          | н               | Н               | ОН              | 1 | CH₂             |
| C5          | (CH₃)₂CH                           | Н               | Н               | ОН              | 1 | CH <sub>2</sub> |
| C6          | (CH₃)₃C                            | H               | Н               | ОН              | 1 | CH₂             |
| C7          | CH₃S                               | н               | Н               | ОН              | 1 | CH₂             |
| C8          | CH₃SO                              | н .             | Н               | ОН              | 1 | CH₂             |
| C9          | CH <sub>3</sub> SO <sub>2</sub>    | н               | Н               | ОН              | 1 | CH₂             |
| C10         | Ph                                 | Н               | Н               | ОН              | 1 | CH <sub>2</sub> |
| C11         | CH₃O                               | H               | Н               | ОН              | 1 | CH₂             |
| C12         | CH₃OCO2                            | н               | н               | ОН              | 1 | CH₂             |
| C13         | CH₃CH₂OCO₂                         | Н               | Н               | ОН              | 1 | CH₂             |
| C14         | CH <sub>2</sub> =CHCH <sub>2</sub> | Н               | Н               | ОН              | 1 | CH₂             |
| C15         | HCCCH₂                             | Н               | Н               | ОН              | 1 | CH₂             |
| C16         | CF₃                                | н               | H.              | ОН              | 1 | CH₂             |
| C17         | (CH₃)₂NSO₂                         | Н               | Н               | ОН              | 1 | CH₂             |
| C18         | (CH₃)₂N                            | н               | Н               | ОН              | 1 | CH <sub>2</sub> |
| C19         | PhO                                | н               | H               | ОН              | 1 | CH <sub>2</sub> |
| C20         | PhS                                | н               | Н               | ОН              | 1 | CH₂             |
| C21         | PhSO                               | н               | н               | ОН              | 1 | CH₂             |
| C22         | PhSO <sub>2</sub>                  | н               | н.              |                 | 1 | CH              |

| Radical | R <sub>84</sub>                                  | R <sub>85</sub> | R <sub>86</sub> | R <sub>83</sub> | р   | W                |
|---------|--------------------------------------------------|-----------------|-----------------|-----------------|-----|------------------|
| C23     | CN                                               | Н               | Н               | ОН              | 1   | CH <sub>2</sub>  |
| C24     | CH₃                                              | СН₃             | H.              | ОН              | 1   | CH₂              |
| C25     | CH₃CH₂                                           | СН₃             | Н               | ОН              | 1   | CH₂              |
| C26     | CH₃CH₂CH₂                                        | СН₃             | Н               | ОН              | 1   | CH₂              |
| C27     | (CH₃)₂CH                                         | СН₃             | Н               | ОН              | 1   | CH₂              |
| C28     | (CH <sub>3</sub> ) <sub>3</sub> C                | CH₃             | Н               | ОН              | 1   | CH₂              |
| C29     | CH₃S                                             | СН₃             | Н               | ОН              | 1   | CH₂              |
| C30     | CH₃SO                                            | СН₃             | Н               | ОН              | 1   | CH₂              |
| C31     | CH₃SO₂                                           | СН₃             | Н               | ОН              | 1   | CH₂              |
| C32     | Ph                                               | СН₃             | Н               | ОН              | 1.  | CH₂              |
| C33     | CH <sub>3</sub> O                                | CH₃             | Н               | ОН              | 1   | CH₂              |
| C34     | CH <sub>3</sub> OCO <sub>2</sub>                 | СН₃             | Н               | ОН              | 1   | CH₂              |
| C35     | CH <sub>3</sub> CH <sub>2</sub> OCO <sub>2</sub> | СН₃             | Н               | ОН              | 1   | CH₂              |
| C36     | CH <sub>2</sub> =CHCH <sub>2</sub>               | СН₃             | Н               | ОН              | 1   | CH₂              |
| C37     | HCCCH₂                                           | СН₃             | Н               | ОН              | 1   | CH₂              |
| C38     | CF <sub>3</sub>                                  | CH₃             | Н               | ОН              | 1   | CH₂              |
| C39     | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | СН₃             | Н               | ОН              | 1   | CH₂              |
| C40     | (CH₃)₂N                                          | СН₃             | Н               | ОН              | 1   | CH <sub>2</sub>  |
| C41     | PhO                                              | CH₃             | Н               | ОН              | 1   | .CH <sub>2</sub> |
| C42     | PhS                                              | CH₃             | Н               | ОН              | 1   | CH₂              |
| C43     | PhSO                                             | CH₃             | Н               | ОН              | 1   | CH₂              |
| C44     | PhSO₂                                            | CH₃             | · <b>H</b>      | ОН              | 1   | CH₂              |
| C45     | CN                                               | CH₃             | Н               | ОН              | 1   | CH₂              |
| C46     | н                                                | Н               | Н               | OH 4            | 4   | CH₂              |
| C47 •   | CH₃                                              | Н               | Н               | OH 4            | 4   | CH₂              |
| C48     | CH₃CH₂                                           | н               | Н               | OH 4            | 4 · | CH₂              |
| C49     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub>  | н               | Н               | OH 4            | 4   | CH₂              |
| C50     | (CH₃)₂CH                                         | н               | Н               | OH 4            | 4   | CH₂              |
| C51     | (CH <sub>3</sub> ) <sub>3</sub> C                | н               | Н               | OH 4            | 4   | CH₂              |
| C52     | CH₃S                                             | H               | H               | ÓH 4            | 4   | CH₂              |
| C53     | CH₃SO                                            | Н               | Н               | OH 4            | 1   | CH₂ .            |
| C54     | CH₃SO₂                                           | Н               | Н               | OH 4            | 1   | CH₂              |
| C55     | Ph                                               | н               | Н               | OH 4            | 1   | CH₂              |

| Radical      | R <sub>84</sub>                                  | R <sub>85</sub> | R <sub>86</sub> | Res | р  | W   |
|--------------|--------------------------------------------------|-----------------|-----------------|-----|----|-----|
| C56          | CH₃O                                             | н               | Н               | ОН  | 4  | CH₂ |
| C57          | CH₃OCO₂                                          | н               | Н               | ОН  | 4  | CH₂ |
| C58          | CH <sub>3</sub> CH <sub>2</sub> OCO <sub>2</sub> | Н               | Н               | ОН  | 4  | CH₂ |
| C59          | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | Н               | ОН  | 4  | CH₂ |
| C60          | HCCCH₂                                           | Н               | Н               | ОН  | 4  | CH₂ |
| C61          | CF₃                                              | н               | Н               | ОН  | 4  | CH₂ |
| C62          | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | Н               | ОН  | 4  | CH₂ |
| C63          | (CH₃)₂N                                          | H               | Н               | ОН  | 4  | CH₂ |
| C64          | PhO-                                             | н               | Н               | ОН  | 4  | CH₂ |
| C65          | PhS                                              | Н               | Н               | ОН  | 4  | CH₂ |
| C66          | PhSO                                             | н               | Н               | ОН  | 4  | CH₂ |
| <b>C67</b> . | PhSO <sub>2</sub>                                | н               | Н               | ОН  | 4  | CH₂ |
| C68          | CN                                               | н               | Н               | ОН  | 4  | CH₂ |
| C69          | CH₃                                              | CH <sub>3</sub> | Н               | ОН  | 4  | CH₂ |
| C70          | CH₃CH₂                                           | CH₃             | Н               | ОН  | 4  | CH₂ |
| C71          | CH₃CH₂CH₂                                        | CH₃             | Н               | ОН  | 4  | CH₂ |
| C72          | (CH₃)₂CH                                         | CH₃             | Н               | ОН  | 4  | CH₂ |
| C73          | (CH <sub>3</sub> ) <sub>3</sub> C                | CH <sub>3</sub> | Н               | ОН  | 4  | CH₂ |
| C74          | CH₃S                                             | CH <sub>3</sub> | Н               | ОН  | 4  | CH₂ |
| C75          | CH₃SO                                            | CH <sub>3</sub> | Н               | ОН  | 4  | CH₂ |
| C76          | CH₃SO₂                                           | CH₃             | Н               | OH  | 4  | CH₂ |
| C77          | Ph                                               | CH₃             | Н               | ОН  | 4  | CH₂ |
| C78          | CH₃O                                             | CH₃             | Н               | ОН  | 4  | CH₂ |
| C79          | CH <sub>3</sub> OCO <sub>2</sub>                 | CH <sub>3</sub> | Н               | ОН  | 4  | CH₂ |
| C80          | CH <sub>3</sub> CH <sub>2</sub> OCO <sub>2</sub> | CH <sub>3</sub> | Н               | ОН  | 4  | CH₂ |
| C81          | CH₂=CHCH₂                                        | CH <sub>3</sub> | Н               | ОН  | ·4 | CH₂ |
| C82          | HCCCH₂                                           | CH₃             | Н               | ОН  | 4  | CH₂ |
| C83          | CF₃                                              | CH₃             | Н               | ОН  | 4  | CH₂ |
| C84          | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | Н               | ОН  | 4  | CH₂ |
| C85          | (CH₃)₂N                                          | CH₃             | Н               | ОН  | 4  | CH₂ |
| C86          | PhO                                              | CH₃             | Н               | ОН  | 4  | CH₂ |
| C87          | PhS                                              | CH₃             | Н               | ОН  | 4  | CH₂ |
| C88          | PhSO                                             | CH₃             | Н               | ОН  | 4  | CH₂ |

| Radical | R <sub>84</sub>                    | R <sub>85</sub> | R <sub>86</sub> | R <sub>83</sub> | р   | w               |
|---------|------------------------------------|-----------------|-----------------|-----------------|-----|-----------------|
| C89     | PhSO₂                              | СН₃             | Н               | ОН              | 4   | CH₂             |
| C90     | CN                                 | CH₃             | Н               | ОН              | 4   | CH₂             |
| C91     | н                                  | н               | Н               | ОН              | 3   | CH₂             |
| C92     | CH₃                                | Н               | Н               | ОН              | 3   | CH₂             |
| C93     | CH₃CH₂                             | Н               | Н               | ОН              | 3   | CH₂             |
| C94     | CH₃CH₂CH₂                          | Н               | Н               | ОН              | 3   | CH₂             |
| C95     | (CH₃)₂CH                           | Н               | н               | ОН              | 3   | CH₂             |
| C96     | (CH₃)₃C                            | н               | Н               | ОН              | 3   | CH₂             |
| C97     | CH₃S                               | н               | Н               | ОН              | 3   | CH <sub>2</sub> |
| C98     | CH₃SO                              | Н               | Н               | ОН              | 3   | CH₂             |
| C99     | CH <sub>3</sub> SO₂                | н               | Н               | ОН              | 3   | CH <sub>2</sub> |
| C100    | Ph                                 | Н               | Н               | ОН              | 3   | CH <sub>2</sub> |
| C101    | CH₃O                               | н               | Н               | OH              | 3   | CH <sub>2</sub> |
| C102    | CH <sub>3</sub> OCO <sub>2</sub>   | Н               | Н               | ОН              | 3   | CH <sub>2</sub> |
| C103    | CH₃CH₂OCO₂                         | Н               | Н               | ОН              | 3   | CH₂             |
| C104    | CH <sub>2</sub> =CHCH <sub>2</sub> | Н               | Н               | ОН              | 3   | CH₂             |
| C105    | HCCCH₂                             | Н               | H               | ОН              | 3   | CH₂             |
| C106    | CF <sub>3</sub>                    | Н               | Н               | OH              | 3   | CH <sub>2</sub> |
| C107    | (CH₃)₂NSO₂                         | . Н             | Н               | ОН              | 3 . | CH <sub>2</sub> |
| C108    | (CH₃)₂N                            | Н               | Н               | OH              | 3   | CH <sub>2</sub> |
| C109    | PhO                                | Н               | Н               | ОН              | 3   | CH <sub>2</sub> |
| C110    | PhS                                | Н               | Н               | OH :            | 3   | CH₂             |
| C111    | PhSO                               | Н               | Н               | OH :            | 3   | CH <sub>2</sub> |
| C112    | PhSO₂                              | Н               | Н               | OH :            | 3   | CH₂             |
| C113    | CN                                 | Н               | Н               | OH :            | 3   | CH <sub>2</sub> |
| C114    | СН₃                                | CH₃             | Н               | OH :            | 3   | CH <sub>2</sub> |
| C115    | CH₃CH₂                             | CH₃             | Н               | OH :            | 3   | CH <sub>2</sub> |
| C116    | CH₃CH₂CH₂                          | CH₃             | Н               | OH :            | 3   | CH <sub>2</sub> |
| C117    | (CH₃)₂CH                           | CH₃             | H               | OH :            | 3   | CH <sub>2</sub> |
| C118    | (CH₃)₃C                            | CH₃             | 'H'             | OH 3            | 3   | CH <sub>2</sub> |
| C119    | CH₃S                               | CH₃             | Ĥ               | он з            | 3   | CH₂             |
| C120    | CH₃SO                              | CH₃             | Н               | OH 3            | 3   | CH <sub>2</sub> |
| C121    | CH <sub>3</sub> SO₂                | CH₃             | Н               | OH 3            | 3   | CH <sub>2</sub> |

| Radical | R <sub>84</sub>                                  | R <sub>85</sub>                 | R <sub>86</sub> | R <sub>83</sub> | р | w                    |
|---------|--------------------------------------------------|---------------------------------|-----------------|-----------------|---|----------------------|
| C122    | Ph                                               | CH₃                             | Н               | OH              | 3 | CH₂                  |
| C123    | CH₃O                                             | CH₃                             | Н               | ОН              | 3 | CH <sub>2</sub>      |
| C124    | CH₃OCO₂                                          | CH₃                             | Н               | ОН              | 3 | CH₂                  |
| C125    | CH <sub>3</sub> CH <sub>2</sub> OCO <sub>2</sub> | CH₃                             | Н               | ОН              | 3 | CH₂                  |
| C126    | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃                             | Н               | ОН              | 3 | CH₂                  |
| C127    | HCCCH <sub>2</sub>                               | CH₃                             | Н               | ОН              | 3 | CH₂                  |
| C128    | CF <sub>3</sub>                                  | CH₃                             | Н               | ОН              | 3 | CH₂                  |
| C129    | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃                             | н               | ОН              | 3 | CH₂                  |
| C130    | (CH <sub>3</sub> ) <sub>2</sub> N                | CH₃                             | н               | ОН              | 3 | CH₂                  |
| C131    | PhO                                              | CH₃                             | Н               | ОН              | 3 | CH <sub>2</sub>      |
| C132    | PhS                                              | CH₃                             | Н               | ОН              | 3 | CH₂                  |
| C133    | PhSO                                             | CH₃                             | Н               | ОН              | 3 | CH₂                  |
| C134    | PhSO <sub>2</sub>                                | CH₃                             | H.              | ОН              | 3 | CH₂                  |
| C135    | CN                                               | CH₃                             | Н.              | ОН              | 3 | CH₂                  |
| C136    | CH₃CH₂                                           | CH₃CH₂                          | H               | ОН              | 1 | CH₂                  |
| C137    | H                                                | H                               | Н               | ОН              | 1 | CH(CH₃)              |
| C138    | CH₃                                              | Н                               | Н               | ОН              | 1 | CH(CH₃)              |
| C139    | CH₃                                              | CH <sub>3</sub>                 | Н               | ОН              | 1 | CH(CH <sub>3</sub> ) |
| C140    | CH₂CH₃                                           | Н                               | Н               | ОН              | 1 | CH(CH <sub>3</sub> ) |
| C141    | CH₂CH₃                                           | СН₃                             | н               | ОН              | 1 | CH(CH <sub>3</sub> ) |
| C142    | CH₃CH₂                                           | CH <sub>3</sub> CH <sub>2</sub> | Н               | ОН              | 1 | CH(CH₃)              |
| C143    | н                                                | Н                               | CH₃             | ОН              | 1 | CH₂                  |
| C144    | CH₃ .                                            | CH₃                             | CH₃             | ОН              | 1 | CH₂                  |
| C145    | CH₃CH₂                                           | CH₃CH₂                          | CH₃             | ОН              | 1 | CH₂                  |
| C146    | , Н                                              | Н                               | н               | ОН              | 2 | CH₂                  |
| C147    | СН₃                                              | СН₃                             | H.              | ОН              | 2 | CH₂                  |
| C148    | CH₃CH₂                                           | CH₃CH₂                          | н               | ОН              | 2 | CH₂                  |
| C149    | Н                                                | Н                               | н               | ОН              | 5 | CH₂                  |
| C150    | CH₃                                              | СН₃                             | Н               | ОН              | 5 | CH₂                  |
| C151    | CH₃CH₂                                           | CH₃CH₂                          | Н               | ОН              | 5 | CH₂                  |

In the following Table 8 Q is Q<sub>8</sub>

and Q<sub>8</sub> represents the following radicals D:

Table 8: Radicals D:

| Radical | R <sub>88</sub>                    | R <sub>89</sub> | R <sub>90</sub> | R <sub>91</sub> | R <sub>87</sub> | O |
|---------|------------------------------------|-----------------|-----------------|-----------------|-----------------|---|
| D1      | н                                  | н               | н               | Н               | ОН              | 2 |
| D2      | СН₃                                | н               | н               | Н               | ОН              | 2 |
| D3      | CH₃CH₂                             | Н               | H               | Н               | OH.             | 2 |
| D4      | CH₃CH₂CH₂                          | н               | Н               | H.              | ОН              | 2 |
| D5      | (CH₃)₂CH                           | Н               | н               | Н               | ОН              | 2 |
| D6      | (CH₃)₃C                            | н               | Н               | Н               | ОН              | 2 |
| D7      | CH₃S                               | н               | Н               | H               | ОН              | 2 |
| D8      | CH₃SO                              | Н               | Н               | Н               | ОН              | 2 |
| D9      | CH <sub>3</sub> SO <sub>2</sub>    | Н               | Н               | Н               | ОН              | 2 |
| D10     | Ph                                 | Н               | Н               | Н               | ОН              | 2 |
| D11     | CH₃O                               | н               | Н               | Н               | ОН              | 2 |
| D12     | CH <sub>2</sub> =CHCH <sub>2</sub> | н               | Н               | Н               | ОН              | 2 |
| D13     | HCCCH₂                             | Н               | Н               | Н               | ОН              | 2 |
| D14     | CF <sub>3</sub>                    | Н               | Н               | Н               | ОН              | 2 |
| D15     | PhO                                | Н               | Н               | Н               | ОН              | 2 |
| D16     | PhS                                | н               | н               | Н               | ОН              | 2 |
| D17     | PhSO                               | Н               | Н               | Н               | ОН              | 2 |
| · D18   | PhSO <sub>2</sub>                  | Н               | Н               | Н               | ОН              | 2 |
| D19     | CH₃                                | СН₃             | Н               | Н               | ОН              | 2 |
| D20     | CH₃CH₂                             | CH₃             | Ĥ               | Н               | ОН              | 2 |
| D21     | CH₃CH₂CH₂                          | СН₃             | Н               | Н               | ОН              | 2 |
| D22     | (CH₃)₂CH                           | CH₃             | Н               | Н               | ОН              | 2 |
| D23     | (CH <sub>2</sub> ) <sub>2</sub> C  | CH <sub>2</sub> | н               | н               | ОН              | 2 |

| Radical | R <sub>88</sub>                                 | Res | R <sub>90</sub> | R <sub>91</sub> | R <sub>87</sub> | 0 |
|---------|-------------------------------------------------|-----|-----------------|-----------------|-----------------|---|
| D24     | CH₃S                                            | CH₃ | H               | Н               | ОН              | 2 |
| D25     | CH₃SO                                           | CH₃ | H               | Н               | ОН              | 2 |
| D26     | CH₃SO₂                                          | CH₃ | Н               | Н               | ОН              | 2 |
| D27     | Ρh                                              | CH₃ | Н               | Н               | ОН              | 2 |
| D28     | CH₃O                                            | CH₃ | Н               | Н               | ОН              | 2 |
| D29     | CH <sub>2</sub> =CHCH <sub>2</sub>              | CH₃ | H               | Н               | ОН              | 2 |
| D30     | HCCCH₂                                          | CH₃ | Н               | Н               | ОН              | 2 |
| D31     | CF₃                                             | CH₃ | н               | Н               | ОН              | 2 |
| D32     | PhO                                             | CH₃ | Н               | Н               | ОĤ              | 2 |
| D33     | PhS                                             | CH₃ | H               | Н               | ОН              | 2 |
| D34     | PhSO                                            | CH₃ | Н               | Н               | ОН              | 2 |
| D35     | PhSO <sub>2</sub>                               | CH₃ | Н               | н               | ОН              | 2 |
| D36     | н                                               | Н   | Н               | Н               | ОН              | 3 |
| D37     | CH₃                                             | н   | Н               | Н               | ОН              | 3 |
| D38     | CH₃CH₂                                          | н   | Н               | Н               | ОН              | 3 |
| D39     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | Н   | Н               | Н               | ОН              | 3 |
| D40     | (CH₃)₂CH                                        | Н   | Н               | Н               | ОН              | 3 |
| D41     | (CH <sub>3</sub> ) <sub>3</sub> C               | Н   | H               | Н               | ОН              | 3 |
| D42     | CH₃S                                            | Н   | Н               | Н               | ОН              | 3 |
| D43     | CH₃SO                                           | н   | - <b>H</b>      | Н               | OH              | 3 |
| D44     | CH₃SO₂                                          | Н   | Н               | Н               | ОН              | 3 |
| D45     | Ph                                              | Н   | Н               | Н               | ОН              | 3 |
| D46     | CH³O.                                           | Н   | Н               | H               | ОН              | 3 |
| D47     | CH <sub>2</sub> =CHCH <sub>2</sub>              | Н   | Н               | Н               | ОН              | 3 |
| D48     | HCCCH₂                                          | н   | Н               | Н               | ОН              | 3 |
| D49     | CF <sub>3</sub>                                 | Н   | Н               | Н               | ОН              | 3 |
| D50     | PhO                                             | н   | Н               | Н               | ОН              | 3 |
| D51     | PhS                                             | н   | Н               | Н               | ОН              | 3 |
| D52     | PhSO                                            | н   | Н               | Н               | ОН              | 3 |
| D53     | PhSO <sub>2</sub>                               | н   | Н               | Н               | ОН              | 3 |
| D54     | CH <sub>3</sub>                                 | CH₃ | н               | Н               | ОН              | 3 |
| D55     | CH₃CH₂                                          | CH₃ | Н               | Н               | ОН              | 3 |
| D56     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | СН₃ | Н               | Н               | ОН              | 3 |

|                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                    |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|
| R <sub>88</sub>                    | Ras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R <sub>90</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R <sub>91</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R <sub>87</sub>                    | 0                                  |
| (CH₃)₂CH                           | СН₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| (CH₃)₃C                            | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| CH₃S                               | СН₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| CH₃SO                              | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| CH₃SO₂                             | СН₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| Ph                                 | СН₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| CH₃O                               | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| CH <sub>2</sub> =CHCH <sub>2</sub> | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| HCCCH₂                             | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| CF₃                                | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| PhO                                | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| PhS                                | СН₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| PhSO                               | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| PhSO <sub>2</sub>                  | СН₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 3                                  |
| н                                  | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH₃                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH₃CH₂                             | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH₃CH₂CH₂                          | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| (CH₃)₂CH                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| (CH₃)₃C                            | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | ·4                                 |
| CH₃S                               | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH₃SO                              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH₃SO₂                             | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| Ph                                 | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH <sub>3</sub> O                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH <sub>2</sub> =CHCH <sub>2</sub> | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| HCCCH₂                             | Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CF₃                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| PhO:                               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| PhS                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| PhSO                               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| PhSO <sub>2</sub>                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
| CH <sub>3</sub>                    | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОН                                 | 4                                  |
|                                    | (CH <sub>3</sub> ) <sub>2</sub> CH (CH <sub>3</sub> ) <sub>3</sub> C CH <sub>3</sub> SO CH <sub>3</sub> SO <sub>2</sub> Ph CH <sub>3</sub> O CH <sub>2</sub> =CHCH <sub>2</sub> HCCCH <sub>2</sub> CF <sub>3</sub> PhO PhS PhSO PhSO <sub>2</sub> H CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> SO CH <sub>2</sub> CHCH <sub>2</sub> Ph CH <sub>3</sub> O CH <sub>2</sub> =CHCH <sub>2</sub> Fh CH <sub>3</sub> O CH <sub>2</sub> SO CH <sub>3</sub> SO | (CH <sub>3</sub> ) <sub>2</sub> CH CH <sub>3</sub> (CH <sub>3</sub> ) <sub>3</sub> C CH <sub>3</sub> CH <sub>3</sub> S CH <sub>3</sub> CH <sub>3</sub> SO CH <sub>3</sub> CH <sub>3</sub> SO <sub>2</sub> CH <sub>3</sub> Ph CH <sub>3</sub> CH <sub>3</sub> O CH <sub>3</sub> CH <sub>2</sub> =CHCH <sub>2</sub> CH <sub>3</sub> HCCCH <sub>2</sub> CH <sub>3</sub> PhO CH <sub>3</sub> PhSO CH <sub>3</sub> PhSO CH <sub>3</sub> PhSO <sub>2</sub> CH <sub>3</sub> H H CH <sub>3</sub> H CH <sub>3</sub> CH <sub>2</sub> H CH <sub>3</sub> CH <sub>2</sub> H CH <sub>3</sub> CH <sub>2</sub> H CH <sub>3</sub> SO H CH <sub>3</sub> CH <sub>2</sub> H CH <sub>3</sub> SO | (CH₃)₂CH CH₃ H (CH₃)₃C CH₃ H CH₃S CH₃ H CH₃SO CH₃ H CH₃SO₂ CH₃ H Ph CH₃ H CH₃O CH₃ H CH₂=CHCH₂ CH₃ H PhO CH₃ H PhS CH₃ H PhS CH₃ H PhSO₂ CH₃ H CH₃CH₂ CH₃ H CH₃CH₂ CH₃ H CH₃ H PhSO CH₃ H PhSO CH₃ H CH₃ CH₃ H CH₃CH₂ CH H CCH₃S CH CH₃ CH₃ CH₃ CH₃ CH | (CH <sub>3</sub> ) <sub>2</sub> CH | (CH <sub>3</sub> ) <sub>2</sub> CH |

| Radical | R <sub>88</sub>                    | R <sub>89</sub> | R <sub>90</sub> | R <sub>91</sub> | R <sub>87</sub> | 0 |
|---------|------------------------------------|-----------------|-----------------|-----------------|-----------------|---|
| D90     | CH₃CH₂                             | CH₃             | Н               | Н               | ОН              | 4 |
| D91     | CH₃CH₂CH₂                          | CH₃             | Н               | Н               | ОН              | 4 |
| D92     | (CH₃)₂CH                           | CH₃             | Н               | Н               | ОН              | 4 |
| D93     | (CH₃)₃C                            | CH₃             | Н               | Н               | ОН              | 4 |
| D94     | CH₃S                               | CH₃             | Н               | Н               | ОН              | 4 |
| D95     | CH₃SO                              | CH₃             | Н               | Н               | ОН              | 4 |
| D96     | CH₃SO₂                             | CH₃             | Н               | Н               | ОН              | 4 |
| D97     | Ph                                 | CH₃             | Н               | Н               | ОН              | 4 |
| D98     | CH₃O                               | CH₃             | Н               | Н               | ОН              | 4 |
| D99     | CH <sub>2</sub> =CHCH <sub>2</sub> | CH₃             | Н               | Н               | ОН              | 4 |
| D100    | HCCCH₂                             | CH₃             | Н               | Н               | ОН              | 4 |
| D101    | CF₃                                | CH₃             | Н               | Н               | ОН              | 4 |
| D102    | PhO                                | CH₃             | Н               | Н               | ОН              | 4 |
| D103    | PhS                                | CH₃             | Н               | Н               | ОН              | 4 |
| D104    | PhSO                               | CH₃             | Н               | Н               | ОН              | 4 |
| D105    | PhSO <sub>2</sub>                  | CH <sub>3</sub> | Н               | Н               | ОН              | 4 |
| D106    | н                                  | Н               | Н               | CH <sub>3</sub> | ОН              | 4 |
| D107    | н                                  | Н               | Н               | CH₃             | ОН              | 3 |
| D108    | н                                  | Н "             | Н               | Н               | ОН              | 1 |
| D109    | СН₃                                | Н               | Н               | H               | ОН              | 1 |
| D110    | CH₃OCO                             | CH₃             | Н               | H               | ОН              | 1 |
| D111    | CH₃CH₂OCO                          | CH₃             | Н               | Н               | ОН              | 1 |
| D112    | CH₃O                               | CH₃             | Н               | Н               | ОН              | 1 |
| D113    | CH₃S                               | CH₃             | H               | Н               | OH              | 1 |
| D114    | CH₃SO                              | CH₃             | Н               | Н               | ОН              | 1 |
| D115    | CH₃SO₂                             | CH₃             | Н               | Н               | ОН              | 1 |
| D116    | CH₃CH₂                             | Н               | Н               | Н               | ОН              | 1 |
| D117    | CH <sub>3</sub> OCO                | CH₃CH₂          | Н               | Н               | ОН              | 1 |
| D118    | CH₃CH₂OCO                          | CH3CH5          | H               | Н               | ОН              | 1 |
| D119    | CH₃O                               | CH₃CH₂          | Н               | Н               | ОН              | 1 |
| · D120  | CH <sub>3</sub> S                  | CH₃CH₂          | Н               | Н               | ОН              | 1 |
| D121    | CH₃SO                              | CH₃CH₂          | Н               | H               | ОН              | 1 |
| D122    | CH₃SO₂                             | CH₃CH₂          | Н               | Н               | ОН              | 1 |

| Radical | R <sub>88</sub>                                 | R <sub>89</sub>  | R <sub>90</sub> | R <sub>91</sub> | R <sub>87</sub> | 0  |
|---------|-------------------------------------------------|------------------|-----------------|-----------------|-----------------|----|
| D123    | CH₃CH₂S                                         | CH₃              | Н               | Ή               | ОН              | 1  |
| D124    | CH₃CH₂SO                                        | CH₃              | Н               | H               | ОН              | 1  |
| D125    | CH₃CH₂SO₂                                       | CH <sub>3</sub>  | Н               | Н               | ОН              | 1  |
| D126    | CH₃CH₂S                                         | CH₃CH₂           | Н               | Н               | ОН              | 1  |
| D127    | CH₃CH₂SO                                        | CH₃CH₂           | Н               | Н               | ОН              | 1  |
| D128    | CH <sub>3</sub> CH <sub>2</sub> SO <sub>2</sub> | CH₃CH₂           | Н               | Н               | ОН              | 1  |
| D129    | н                                               | Н                | СН₃             | Η.              | ОН              | 1  |
| D130    | CH₃                                             | Н                | CH <sub>3</sub> | Н               | ОН              | 1  |
| D131    | CH₃OCO                                          | CH <sub>3</sub>  | CH <sub>3</sub> | Н               | ОН              | 1  |
| D132    | CH₃CH₂OCO                                       | CH <sub>3</sub>  | CH₃             | H               | ОН              | 1  |
| D133    | CH₃O                                            | CH₃              | СНз             | Н               | ОН              | 1  |
| D134    | CH₃S                                            | CH₃ <sup>′</sup> | CH <sub>3</sub> | н               | ОН              | 1  |
| D135    | CH₃SO                                           | СН₃              | СНз             | Н               | ОН              | 1  |
| D136    | CH <sub>3</sub> SO <sub>2</sub>                 | СН₃              | СН₃             | Н               | ОН              | 1  |
| D137    | H                                               | н                | Н               | CH <sub>3</sub> | ОН              | 1  |
| D138    | CH₃                                             | н                | Н               | СН₃             | ОН              | .1 |
| D139    | н                                               | Н                | CH <sub>3</sub> | СН₃             | ОН              | 1  |
| D140    | CH₃CH₂OCO                                       | CH₃              | . Н             | H               | ОН              | .4 |

Table 9: Compounds of formula If:

| Compd.<br>no. | R <sub>92</sub> | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub> | Q <sub>3</sub> |
|---------------|-----------------|-----------------|-----------------|-----------------|----------------|
| <b>A</b> 1    | Ĥ ·             | Н               | н               | CF <sub>3</sub> | B24            |
| A2            | CH₃             | н               | Н               | CF₃             | B24            |
| <b>A3</b>     | CH₃CH₂          | Н               | Н               | CF <sub>3</sub> | B24            |

| Compd.         | R <sub>92</sub>                                     | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>                 | $Q_3$ |
|----------------|-----------------------------------------------------|-----------------|-----------------|---------------------------------|-------|
| no.            |                                                     |                 |                 |                                 |       |
| A4             | (CH₃)₂CH                                            | Н               | Н               | CF₃                             | B24   |
| <b>A5</b>      | (CH₃)₃C                                             | Н               | Н               | CF₃                             | B24   |
| A6             | cyclopropyl                                         | Н               | н               | ĈF₃                             | B24   |
| A7             | CH₃(CH₂)₂                                           | Н               | н               | CF <sub>3</sub>                 | B24   |
| <b>A8</b>      | CH <sub>3</sub> OCH <sub>2</sub>                    | Н               | Н               | CF <sub>3</sub>                 | B24   |
| A9             | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н               | Н               | CF <sub>3</sub>                 | B24   |
| A10            | Ph                                                  | Н               | H               | CF <sub>3</sub>                 | B24   |
| A11            | PhO                                                 | Н               | Н               | CF₃                             | B24   |
| A12            | PhS                                                 | Н               | Н               | CF <sub>3</sub>                 | B24   |
| A13            | PhSO                                                | Н               | H               | CF₃                             | B24   |
| A14            | PhSO <sub>2</sub>                                   | н               | н               | CF <sub>3</sub>                 | B24   |
| A15            | CH₃S                                                | Н               | H               | CF <sub>3</sub>                 | B24   |
| A16            | CH₃SO                                               | Н               | н               | CF <sub>3</sub>                 | B24   |
| A17            | CF <sub>3</sub>                                     | н               | н               | CF₃                             | B24   |
| A18            | F₂CH                                                | Н               | Н               | CF <sub>3</sub>                 | B24   |
| A19            | HCC                                                 | Н               | . н             | CF₃                             | B24   |
| A20            | CH₃CC                                               | Н               | н               | CF <sub>3</sub>                 | B24   |
| A21            | CH₂=CH                                              | Н               | Н               | CF <sub>3</sub>                 | B24   |
| A22            | CH <sub>2</sub> =CHCH <sub>2</sub>                  | · H             | Н               | CF <sub>3</sub>                 | B24   |
| . <b>A23</b> . | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | ,H              | Н               | CF <sub>3</sub>                 | B24   |
| A24            | (CH₃)₂N                                             | Н               | Н               | CF₃                             | B24   |
| A25            | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Н               | H               | CF <sub>3</sub>                 | B24   |
| A26            | CICH₂                                               | H               | Н               | CF₃                             | B24   |
| A27            | CH₃SCH₂                                             | H               | Н               | CF <sub>3</sub>                 | B24   |
| A28            | CH₃SOCH₂                                            | Н               | н .             | CF₃                             | B24   |
| A29            | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | н               | Н               | CF₃                             | B24   |
| A30            | [1,2,4]-triazol-1-yl-methyl                         | Н               | Н               | CF₃                             | B24   |
| A31            | CH <sub>3</sub>                                     | CF <sub>3</sub> | Н               | CH₃                             | B24   |
| A32            | CH₃                                                 | СН₃             | Н               | CF <sub>3</sub>                 | B24   |
| A33            | Н                                                   | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A34            | CH₃                                                 | H               | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A35            | CH₃CH₂                                              | H               | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24   |

| Compd | . R <sub>92</sub>                                | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>                                 | $Q_3$ |
|-------|--------------------------------------------------|-----------------|-----------------|-------------------------------------------------|-------|
| no.   |                                                  |                 |                 |                                                 | -     |
| A36 . | cyclopropyl                                      | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A37   | (CH₃)₃C                                          | н               | н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A38   | (CH₃)₂CH                                         | н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A39   | CH₃(CH₂)₂                                        | н               | н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A40   | CH₃OCH₂                                          | н               | н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A41   | CH₃O(CH₂)₂                                       | н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A42   | Ph                                               | н               | н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A43   | PhO                                              | H               | н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A44   | PhS                                              | · <b>H</b> · ·  | H               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A45   | PhSO                                             | н               | . н.            | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A46   | PhSO <sub>2</sub>                                | н               | H               | CF₃CF₂                                          | B24   |
| A47   | CH₃S                                             | H               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A48   | CH₃SO                                            | . н             | H.              | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A49   | CF₃                                              | н               | Н               | CF₃CF₂                                          | B24   |
| A50   | F₂CH                                             | н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A51   | HCC                                              | ` н             | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A52   | CH₃CC                                            | , <b>H</b>      | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A53   | CH₂=CH                                           | H               | . <b>H</b> .    | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A54   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A55   | CH₃SO₂N(CH₃)                                     | н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A56   | (CH₃)₂N                                          | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A57   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н               | H               | CF₃CF₂                                          | B24   |
| A58   | CICH <sub>2</sub>                                | н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A59   | CH <sub>3</sub> SCH <sub>2</sub>                 | н               | Н.              | CF₃CF₂                                          | B24   |
| A60   | CH <sub>3</sub> SOCH <sub>2</sub>                | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A61   | CH₃SO₂CH₂                                        | Н               | Н               | CF₃CF₂                                          | B24   |
| A62   | [1,2,4]-triazol-1-yl-methyl                      | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub>                 | B24   |
| A63   | Н                                                | H               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |
| A64   | CH₃                                              | H               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |
| A65   | CH₃CH₂                                           | н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |
| A66   | cyclopropyl                                      | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |
| A67   | (CH₃)₃C                                          | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |

| Compd. | R <sub>92</sub>                                     | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>                                 | Q <sub>3</sub> |
|--------|-----------------------------------------------------|-----------------|-----------------|-------------------------------------------------|----------------|
| no.    |                                                     |                 |                 |                                                 |                |
| A68    | · (CH₃)₂CH                                          | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A69    | CH₃(CH₂)₂                                           | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A70    | CH₃OCH₂                                             | н               | н               | CF3CF2CF2                                       | B24            |
| A71    | CH₃O(CH₂)₂                                          | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A72    | Ph                                                  | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A73    | PhO                                                 | н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A74    | PhS                                                 | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A75    | PhSO                                                | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A76    | PhSO <sub>2</sub>                                   | H               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A77    | CH₃S                                                | Н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A78.   | CH₃SO                                               | н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A79    | CF <sub>3</sub>                                     | Н               | · H             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A80    | F₂CH                                                | Н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A81    | HCC                                                 | н               | H               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A82    | CH3CC                                               | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A83    | CH <sub>2</sub> =CH                                 | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A84    | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A85    | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A86    | (CH <sub>3</sub> ) <sub>2</sub> N                   | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A87    | (CH <sub>3</sub> )₂NSO₂                             | Н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A88    | . CICH₂                                             | H               | Η .             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A89    | CH₃SCH₂                                             | Н               | н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A90    | CH₃SOCH₂                                            | H               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A91    | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A92    | [1,2,4]-triazol-1-yl-methyl                         | Н               | Н               | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A93    | н                                                   | Н               | Н               | · CF <sub>2</sub> CI                            | B24            |
| A94    | CH₃                                                 | Н               | Н               | CF <sub>2</sub> CI                              | B24            |
| A95    | CH₃CH₂                                              | н               | Н               | CF <sub>2</sub> CI                              | B24            |
| A96    | cyclopropyl                                         | Н               | Н               | CF <sub>2</sub> CI                              | B24            |
| A97    | (CH₃)₃C                                             | Н               | Н               | CF <sub>2</sub> CI                              | B24            |
| A98    | (CH <sub>3</sub> )₂CH                               | Н               | Н               | CF <sub>2</sub> CI                              | B24            |
| A99    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Н               | Н               | CF <sub>2</sub> CI                              | B24            |

| Compd | . R <sub>92</sub>                                | D               |                 |                    | _              |
|-------|--------------------------------------------------|-----------------|-----------------|--------------------|----------------|
| no.   | • • • • • • • • • • • • • • • • • • • •          | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>    | Q <sub>3</sub> |
| A100  | CH₃OCH₂                                          | Н               |                 | 05.0               | <b>-</b>       |
| A101  | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> |                 | н               | CF₂CI              | B24            |
| A102  | Ph                                               | H               | Н               | CF₂CI              | B24            |
| A103  | PhO                                              | H               | Н               | ĈF₂CI              | B24            |
| A104  | PhS                                              | Н               | H               | CF <sub>2</sub> Cl | B24            |
| A104  |                                                  | H<br>           | Н               | CF <sub>2</sub> CI | B24            |
|       | PhSO                                             | H               | Н               | CF <sub>2</sub> CI | B24            |
| A106  | PhSO <sub>2</sub>                                | н ,             | Н               | CF <sub>2</sub> CI | B24            |
| A107  | CH₃S                                             | н               | Н               | CF <sub>2</sub> CI | B24            |
| A108  | CH₃SO                                            | Н               | H               | CF <sub>2</sub> CI | B24            |
| A109  | CF₃                                              | Н               | . н             | CF <sub>2</sub> CI | B24            |
| A110  | F₂CH                                             | Н               | . Н             | CF <sub>2</sub> CI | B24            |
| A111  | , HCC                                            | Н               | H               | CF <sub>2</sub> CI | B24            |
| A112  | CH₃CC                                            | Н               | H               | CF <sub>2</sub> CI | B24            |
| A113  | CH <sub>2</sub> =CH                              | н               | Н               | CF <sub>2</sub> CI | B24            |
| A114  | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н               | Н               | CF <sub>2</sub> Cl | B24            |
| A115  | CH₃SO₂N(CH₃)                                     | н               | Н               | CF <sub>2</sub> Cl | B24            |
| A116  | (CH₃)₂N                                          | н               | Н               | CF <sub>2</sub> CI | B24            |
| A117  | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | Н               | CF <sub>2</sub> CI | B24            |
| A118  | CICH <sub>2</sub>                                | Н               | H               | CF <sub>2</sub> CI | B24            |
| A119  | CH₃SCH₂                                          | н               | H               | CF <sub>2</sub> CI | B24            |
| A120  | CH₃SOCH₂                                         | H               | Н               | CF <sub>2</sub> CI | B24            |
| A121  | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н               | Н               | CF <sub>2</sub> Cl | B24            |
| A122  | [1,2,4]-triazol-1-yl-methyl                      | н               | Н               | CF <sub>2</sub> CI | B24            |
| A123  | Н                                                | Н               | . н             | CHF <sub>2</sub>   | B24            |
| A124  | CH₃                                              | Н               | н               | CHF <sub>2</sub>   | B24            |
| A125  | CH₃CH₂                                           | н               | Н               | CHF <sub>2</sub>   | B24            |
| A126  | cyclopropyi                                      | н               | Н               | CHF₂               | B24            |
| A127  | (CH <sub>3</sub> ) <sub>3</sub> C                | н               | н               | CHF₂               | B24            |
| A128  | (CH₃)₂CH                                         | Н               | H               | CHF <sub>2</sub>   | B24            |
| A129  | CH₃(CH₂)₂                                        | н               | Н               | CHF <sub>2</sub>   | B24            |
| A130  | CH₃OCH₂                                          | н               | Н               | CHF <sub>2</sub>   | B24            |
| A131  | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н               | н               | CHF <sub>2</sub>   | B24            |

| Compd. | $R_{92}$                                            | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>  | $Q_3$ |
|--------|-----------------------------------------------------|-----------------|-----------------|------------------|-------|
| no.    | · •                                                 |                 |                 | •                |       |
| A132   | Ph                                                  | н               | Н               | CHF <sub>2</sub> | B24   |
| A133   | PhO                                                 | н               | Ĥ               | CHF₂             | B24   |
| A134   | PhS                                                 | н               | н               | CHF₂             | B24   |
| A135   | PhSO                                                | н               | Н               | CHF <sub>2</sub> | B24   |
| A136   | PhSO <sub>2</sub>                                   | н               | Н               | CHF <sub>2</sub> | B24   |
| A137   | CH₃S                                                | н               | Н               | CHF <sub>2</sub> | B24   |
| A138   | CH₃SO                                               | н               | Н               | CHF₂             | B24   |
| A139   | CF₃                                                 | н               | Н               | CHF₂             | B24   |
| A140   | F₂CH                                                | н               | Н               | CHF₂             | B24   |
| A141   | HCC                                                 | н               | н               | CHF <sub>2</sub> | B24   |
| A142   | CH₃CC                                               | Н               | Н               | CHF₂             | B24   |
| A143   | CH₂=CH                                              | н '             | Н               | CHF₂             | B24   |
| A144   | CH <sub>2</sub> =CHCH <sub>2</sub>                  | н               | H               | CHF₂             | B24   |
| A145   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н               | н               | CHF₂             | B24   |
| A146   | (CH <sub>3</sub> )₂N                                | Н               | Н               | CHF₂             | B24   |
| A147   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | н               | н               | CHF₂             | B24   |
| A148   | CICH₂                                               | Н               | Н               | CHF₂             | B24   |
| A149   | CH₃SCH₂                                             | н               | н ·             | CHF₂             | B24   |
| A150   | CH₃SOCH₂                                            | н               | н               | CHF <sub>2</sub> | B24   |
| A151   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Н               | Н               | CHF₂             | B24   |
| A152   | [1,2,4]-triazol-1-yl-methyl                         | H.              | Н               | CHF <sub>2</sub> | B24   |
| A153   | Н                                                   | Н .             | · <b>H</b>      | CCl <sub>3</sub> | B24   |
| A154   | CH₃                                                 | н               | Н               | CCl <sub>3</sub> | B24   |
| A155   | CH₃CH₂                                              | н               | Н               | CCl <sub>3</sub> | B24   |
| A156   | cyclopropyl                                         | н               | Н               | CCI <sub>3</sub> | B24   |
| A157   | (CH <sub>3</sub> ) <sub>3</sub> C                   | Н               | Н               | CCI <sub>3</sub> | B24   |
| A158   | (CH₃)₂CH                                            | н `             | н               | CCI <sub>3</sub> | B24   |
| A159   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | н               | н               | CCl <sub>3</sub> | B24   |
| A160   | CH <sub>3</sub> OCH <sub>2</sub>                    | Н               | Н               | CCl <sub>3</sub> | B24   |
| A161   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | н               | н               | CCl <sub>3</sub> | B24   |
| A162   | Ph                                                  | Н               | Н               | CCl <sub>3</sub> | B24   |
| A163   | PhO                                                 | Н               | н               | CCl <sub>3</sub> | B24   |
|        |                                                     |                 |                 |                  |       |

| Compd. | R <sub>92</sub>                                     | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>  | $Q_3$ |
|--------|-----------------------------------------------------|-----------------|-----------------|------------------|-------|
| no.    |                                                     |                 |                 |                  |       |
| A164   | PhS                                                 | н               | н               | CCI <sub>3</sub> | B24   |
| A165   | PhSO                                                | Н               | Н               | CCl <sub>3</sub> | B24   |
| A166   | PhSO <sub>2</sub>                                   | Н               | Н               | _CCl³            | B24   |
| A167   | CH₃S                                                | Н               | Н               | CCl <sub>3</sub> | B24   |
| A168   | CH₃SO                                               | н               | H               | CCl3             | B24   |
| A169   | CF <sub>3</sub>                                     | Н               | Н               | CCl <sub>3</sub> | B24   |
| A170   | F₂CH                                                | н               | Н               | CCl <sub>3</sub> | B24   |
| A171.  | HCC                                                 | Н               | Н               | CCl3             | B24   |
| A172   | CH₃CC                                               | Н               | , <b>H</b>      | CCl <sub>3</sub> | B24   |
| A173   | CH₂=CH                                              | Н.              | н               | CCI <sub>3</sub> | B24   |
| A174   | CH₂=CHCH₂                                           | Н               | . н             | CCI <sub>3</sub> | B24   |
| A175   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | H               | H               | CCl <sub>3</sub> | B24   |
| A176   | (CH₃)₂N                                             | ' Н             | Н               | CCI <sub>3</sub> | B24   |
| A177   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Н               | Н               | CCI <sub>3</sub> | B24   |
| A178   | CICH <sub>2</sub>                                   | Н               | Н               | CCI <sub>3</sub> | B24   |
| A179   | CH₃SCH₂                                             | Н               | Н               | CCI <sub>3</sub> | B24   |
| A180   | CH₃SOCH₂                                            | Н               | Н               | CCl <sub>3</sub> | B24   |
| A181   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Н               | Н               | CCl <sub>3</sub> | B24   |
| A182   | [1,2,4]-triazol-1-yl-methyl                         | Н               | н               | CCI <sub>3</sub> | B24   |
| A183   | H ,                                                 | Н               | CH <sub>3</sub> | CF <sub>3</sub>  | B24   |
| A184   | CH₃                                                 | Н               | CH₃             | CF <sub>3</sub>  | B24   |
| A185   | CH₃CH₂                                              | H               | CH₃             | CF <sub>3</sub>  | B24   |
| A186   | cyclopropyl                                         | , н             | CH₃             | CF <sub>3</sub>  | B24   |
| A187   | (CH₃)₃C                                             | H.              | CH₃             | CF <sub>3</sub>  | B24   |
| A188   | (CH₃)₂CH                                            | Н               | CH₃             | CF <sub>3</sub>  | B24   |
| A189   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | н               | CH₃             | CF <sub>3</sub>  | B24   |
| A190   | CH₃OCH₂                                             | н               | CH₃             | CF <sub>3</sub>  | B24   |
| A191   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н               | CH₃             | CF <sub>3</sub>  | B24   |
| A192   | Ph                                                  | H               | CH₃             | CF <sub>3</sub>  | B24   |
| A193   | PhO                                                 | Н               | CH₃             | CF <sub>3</sub>  | B24   |
| A194   | PhS                                                 | Н               | CH₃             | CF <sub>3</sub>  | B24   |
| A195   | PhSO                                                | н               | CH₃             | CF <sub>3</sub>  | B24   |

| Compd. | R <sub>92</sub>                                  | R <sub>93</sub> | R <sub>94</sub> | <br>R <sub>95</sub>             | Q <sub>3</sub> |
|--------|--------------------------------------------------|-----------------|-----------------|---------------------------------|----------------|
| no.    | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;           |                 |                 |                                 | •              |
| A196   | PhSO₂                                            | н               | CH₃             | CF₃                             | B24            |
| A197   | CH₃S                                             | н               | CH <sub>3</sub> | CF₃                             | B24            |
| A198   | CH₃SO                                            | н               | СН₃             | ĈF₃                             | B24            |
| A199   | CF₃                                              | · н             | CH₃             | CF₃                             | B24            |
| A200   | F <sub>2</sub> CH                                | н .             | CH <sub>3</sub> | . CF₃                           | B24            |
| A201   | HCC                                              | н               | CH₃             | CF₃                             | B24            |
| A202   | CH₃CC                                            | н               | CH₃             | CF₃                             | B24            |
| A203   | CH₂=CH                                           | н               | CH₃ .           | CF₃                             | B24            |
| A204   | CH₂=CHCH₂                                        | н               | CH₃             | CF₃                             | B24            |
| A205   | CH₃SO₂N(CH₃)                                     | н               | CH₃             | CF₃                             | B24            |
| A206   | (CH₃)₂N                                          | н               | CH₃             | CF <sub>3</sub>                 | B24            |
| A207   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | . н             | CH₃             | CF₃                             | B24            |
| A208   | CICH <sub>2</sub>                                | Н               | ′ CH₃           | CF₃                             | B24            |
| A209   | CH₃SCH₂                                          | Н               | СН₃             | CF <sub>3</sub>                 | B24            |
| A210   | CH₃SOCH₂                                         | н               | CH₃             | CF <sub>3</sub>                 | B24            |
| A211   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | . н             | CH₃             | CF <sub>3</sub>                 | B24            |
| A212   | H                                                | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A213   | CH₃                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A214   | CH₃CH₂                                           | ; H             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A215   | cyclopropyl                                      | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A216   | (CH₃)₃C                                          | Н,              | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A217   | (CH₃)₂CH                                         | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A218   | CH₃(CH₂)₂                                        | н .             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A219   | CH₃OCH₂                                          | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A220   | CH₃O(CH₂)₂                                       | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A221   | · Ph                                             | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A222   | PhO                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A223   | PhS                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A224   | PhSO                                             | н               | CH₃             | CF₃CF₂                          | B24            |
| A225   | PhSO <sub>2</sub>                                | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A226   | CH₃S                                             | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |
| A227   | CH₃SO                                            | H               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24            |

| Compd. | R <sub>92</sub> .                                | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>                                 | Q₃         |
|--------|--------------------------------------------------|-----------------|-----------------|-------------------------------------------------|------------|
| no.    | •                                                |                 |                 |                                                 |            |
| A228   | CF₃                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A229   | F₂CH                                             | Н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A230   | HCC                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A231   | CH₃CC                                            | Н               | СН₃             | CF₃CF₂                                          | B24        |
| A232   | CH₂=CH                                           | · H             | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A233   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A234   | CH₃SO₂N(CH₃)                                     | ·H              | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A235   | (CH₃)₂N                                          | н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A236   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A237   | CICH₂                                            | H               | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A238   | CH₃SCH₂                                          | н               | CH₃             | CF₃CF₂                                          | B24        |
| A239   | CH₃SOCH₂                                         | н               | CH₃             | CF₃CF₂                                          | B24        |
| A240   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24        |
| A241   | н .                                              | Н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | <b>B24</b> |
| A242   | CH₃                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A243   | CH₃CH₂                                           | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A244   | cyclopropyl                                      | Н               | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A245   | (CH₃)₃C                                          | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A246   | (CH₃)₂CH                                         | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A247   | CH₃(CH₂)₂                                        | H               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A248   | CH₃OCH₂                                          | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A249   | CH₃O(CH₂)₂                                       | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A250   | Ph                                               | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A251   | PhO                                              | н               | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A252   | PhS                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A253   | PhSO                                             | Ĥ               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A254   | PhSO <sub>2</sub>                                | н               | CH₃             | CF₃CF₂CF₂                                       | B24        |
| A255   | CH₃S                                             | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A256   | CH₃SO                                            | H               | СН₃             | CF₃CF₂CF₂                                       | B24        |
| A257   | CF <sub>3</sub>                                  | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A258   | F₂CH                                             | н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |
| A259   | HCC                                              | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24        |

| Compd. | R <sub>92</sub>                                     | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>                                 | Q <sub>3</sub> |
|--------|-----------------------------------------------------|-----------------|-----------------|-------------------------------------------------|----------------|
| no.    |                                                     |                 |                 |                                                 |                |
| A260   | CH₃CC                                               | н               | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A261   | CH <sub>2</sub> =CH                                 | н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A262   | CH₂≃CHCH₂                                           | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A263   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н               | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A264   | (CH₃)₂N                                             | H               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A265   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Н               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A266   | CICH₂                                               | H               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A267   | CH₃SCH₂                                             | . н             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A268   | CH₃SOCH₂                                            | н               | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A269   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | • н             | CH₃             | CF₃CF2CF2                                       | B24            |
| A270   | н                                                   | н               | СН₃             | CF <sub>2</sub> CI                              | B24            |
| A271   | CH₃                                                 | Н               | СН₃             | CF <sub>2</sub> CI                              | B24            |
| A272   | CH₃CH₂                                              | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A273   | cyclopropyl                                         | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A274   | (CH₃)₃C                                             | н               | СН₃             | CF <sub>2</sub> Cl                              | B24            |
| A275   | (CH <sub>3</sub> ) <sub>2</sub> CH                  | н               | CH <sub>3</sub> | CF <sub>2</sub> Cl                              | B24            |
| A276   | CH₃(CH₂)₂                                           | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A277   | CH₃OCH₂                                             | н               | CH <sub>3</sub> | CF <sub>2</sub> Cl                              | B24            |
| A278   | CH₃O(CH₂)₂                                          | Н               | СН₃             | CF <sub>2</sub> CI                              | B24            |
| A279   | Ph                                                  | Н               | СН₃             | CF <sub>2</sub> CI                              | B24            |
| A280   | PhO                                                 | H               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A281 ' | , PhS                                               | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A282   | PhSO                                                | Н               | CH <sub>3</sub> | CF <sub>2</sub> CI                              | B24            |
| A283   | PhSO₂                                               | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A284   | CH₃S                                                | н               | CH₃             | CF <sub>2</sub> Cl                              | B24            |
| A285   | CH₃SO                                               | н               | CH₃             | CF <sub>2</sub> Cl                              | B24            |
| A286   | CF <sub>3</sub>                                     | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A287   | F₂CH                                                | , н             | CH₃             | CF <sub>2</sub> CI                              | B24 -          |
| A288   | HCC                                                 | , н             | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A289   | CH₃CC                                               | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A290   | CH₂=CH                                              | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A291   | CH <sub>2</sub> =CHCH <sub>2</sub>                  | н               | CH₃             | CF <sub>2</sub> CI                              | B24            |

| Compd.   | R <sub>92</sub>                                     | R <sub>ss</sub> | R <sub>94</sub>   | R <sub>95</sub>    | Q <sub>3</sub> |
|----------|-----------------------------------------------------|-----------------|-------------------|--------------------|----------------|
| no.      | <del>.</del> .                                      | - 33            | * 194             |                    | СkЗ            |
| A292     | CH₃SO₂N(CH₃)                                        | н               | CH₃               | CF₂CI              | B24            |
| A293     | (CH₃)₂N                                             | н               | CH₃               | CF <sub>2</sub> CI | B24            |
| A294     | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | . н             | CH₃               | ĈF₂CI              | B24            |
| A295     | CICH <sub>2</sub>                                   | н               | CH <sub>3</sub>   | CF <sub>2</sub> CI | B24            |
| A296     | CH₃SCH₂                                             | н               | CH₃               | CF <sub>2</sub> CI | B24            |
| A297     | CH₃SOCH₂                                            | н               | CH <sub>3</sub>   | CF <sub>2</sub> CI | B24            |
| A298     | CH₃SO₂CH₂                                           | н               | CH <sub>3</sub>   | CF <sub>2</sub> CI | B24            |
| A299     | H ·                                                 | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A300     | CH₃                                                 | н               | СНа               | - CHF₂             | B24            |
| A301     | CH₃CH₂                                              | н               | СН₃               | CHF <sub>2</sub>   | B24            |
| A302 ·   | cyclopropyl                                         | Н               | СН₃               | CHF <sub>2</sub>   | B24            |
| A303     | (CH₃)₃C                                             | н               | СН₃               | CHF <sub>2</sub>   | B24            |
| A304     | (CH₃)₂CH                                            | Н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A305     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A306     | CH₃OCH₂                                             | Н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A307     | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | н               | CH₃               | CHF₂               | B24            |
| A308     | Ph                                                  | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A309     | PhO                                                 | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A310     | PhS                                                 | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A311     | PhSO                                                | H               | . CH <sub>3</sub> | . CHF2             | B24            |
| A312 · · | PhSO <sub>2</sub>                                   | н               | CH <sub>3</sub>   | CHF <sub>2</sub>   | B24            |
| A313     | CH₃S                                                | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A314     | CH₃SO                                               | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A315     | CF <sub>3</sub>                                     | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A316     | F₂CH                                                | Н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A317     | HCC                                                 | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A318     | CH₃CC                                               | , Н             | CH <sub>3</sub>   | CHF <sub>2</sub>   | B24            |
| A319     | CH₂=CH                                              | Н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A320     | CH <sub>2</sub> =CHCH <sub>2</sub>                  | H               | CH₃               | CHF <sub>2</sub>   | B24            |
| A321     | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A322     | (CH₃)₂N                                             | н               | CH₃               | CHF <sub>2</sub>   | B24            |
| A323     | (CH <sub>3</sub> )₂NSO₂                             | Н               | CH₃               | CHF <sub>2</sub>   | B24            |

()

| Compd. | R <sub>92</sub>                                  | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>  | $Q_3$ |
|--------|--------------------------------------------------|-----------------|-----------------|------------------|-------|
| no.    |                                                  |                 |                 |                  |       |
| A324   | CICH <sub>2</sub>                                | Н               | CH <sub>3</sub> | CHF <sub>2</sub> | B24   |
| A325   | CH₃SCH₂                                          | н               | CH₃             | CHF₂             | B24   |
| A326   | CH₃SOCH₂                                         | н               | CH₃             | €HF <sub>2</sub> | B24   |
| A327   | CH₃SO₂CH₂                                        | н               | CH₃             | CHF₂             | B24   |
| A328   | Н                                                | н               | CH₃             | CCI <sub>3</sub> | B24   |
| A329   | CH <sub>3</sub>                                  | Н               | CH₃             | CCI <sub>3</sub> | B24   |
| A330   | CH₃CH₂                                           | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A331   | (CH <sub>3</sub> ) <sub>3</sub> C                | н               | CH₃             | CCl <sub>3</sub> | B24   |
| A332   | (CH₃)₂CH                                         | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A333   | cyclopropyl                                      | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A334   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Н               | CH <sub>3</sub> | CCl <sub>3</sub> | B24   |
| A335   | CH₃OCH₂                                          | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A336   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A337   | Ph                                               | н               | CH <sub>3</sub> | CCl <sub>3</sub> | B24   |
| A338   | PhO                                              | Н               | . CH₃           | CCl <sub>3</sub> | B24   |
| A339   | PhS                                              | н               | CH₃             | CCl <sub>3</sub> | B24   |
| A340   | PhSO                                             | н               | CH <sub>3</sub> | CCl <sub>3</sub> | B24   |
| A341   | PhSO₂                                            | Н               | CH <sub>3</sub> | CCl <sub>3</sub> | B24   |
| A342   | CH₃S                                             | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A343   | CH₃SO                                            | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A344   | CF₃                                              | н               | CH <sub>3</sub> | CCl <sub>3</sub> | B24   |
| A345   | F₂CH                                             | н               | CH₃             | CCI <sub>3</sub> | B24   |
| A346   | HCC                                              | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A347   | CH₃CC                                            | н               | CH <sub>3</sub> | CCl <sub>3</sub> | B24   |
| A348   | CH₂=CH                                           | Н               | CH₃             | CCl <sub>3</sub> | B24   |
| A349   | CH₂=CHCH₂                                        | Н               | CH₃             | CCl3             | B24   |
| A350   | CH₃SO₂N(CH₃)                                     | н               | CH₃             | CCl <sub>3</sub> | B24   |
| A351   | (CH₃)₂N                                          | н               | CH₃             | CCI <sub>3</sub> | B24   |
| A352   | (CH <sub>3</sub> )₂NSO <sub>2</sub>              | н               | CH₃             | CCl <sub>3</sub> | B24   |
| A353   | CICH <sub>2</sub>                                | н               | CH₃             | CCl <sub>3</sub> | B24   |
| A354   | CH₃SCH₂                                          | н               | CH₃             | CCl <sub>3</sub> | B24   |
| A355   | CH₃SOCH₂                                         | н               | CH₃             | CCl <sub>3</sub> | B24   |

| Compd. | R <sub>92</sub>                                  | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>                 | $Q_3$ |
|--------|--------------------------------------------------|-----------------|-----------------|---------------------------------|-------|
| no.    |                                                  |                 |                 |                                 |       |
| A356   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | . Н             | CH₃             | CCl3                            | B24   |
| A357   | Н                                                | Н               | Ph              | CF₃                             | B24   |
| A358   | CH₃                                              | Н               | Ph              | CF <sub>3</sub>                 | B24   |
| A359   | CH₃CH₂                                           | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A360   | cyclopropyl                                      | Н               | Ph              | CF <sub>3</sub>                 | B24   |
| A361   | (CH₃)₃C                                          | Н               | Ph              | CF <sub>3</sub>                 | B24   |
| A362   | (CH₃)₂CH                                         | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A363   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Ĥ               | Ph              | CF₃                             | B24   |
| A364   | CH₃OCH₂                                          | H               | Ph              | CF <sub>3</sub>                 | B24   |
| A365   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A366   | Ph                                               | н               | Ph ·            | CF <sub>3</sub>                 | B24   |
| A367   | PhO                                              | Ĥ               | Ph              | CF₃                             | B24   |
| A368   | PhS                                              | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A369   | PhSO                                             | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A370   | PhSO <sub>2</sub>                                | Н               | Ph              | CF₃                             | B24   |
| A371   | CH₃S                                             | Н               | Ph              | CF₃                             | B24   |
| A372   | CH₃SO                                            | н               | Ph              | CF₃                             | B24   |
| A373   | CF <sub>3</sub>                                  | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A374   | F₂CH                                             | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A375   | HCC                                              | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A376   | CH₃CC                                            | Н               | Ph              | CF₃                             | B24   |
| A377   | CH₂=CH                                           | н               | Ph              | CF₃                             | B24   |
| A378   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | · Ph            | CF <sub>3</sub>                 | B24   |
| A379   | CH₃SO₂N(CH₃)                                     | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A380   | (CH₃)₂N                                          | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A381   | (CH <sub>3</sub> )₂NSO₂                          | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A382   | CICH₂                                            | н               | Ph              | CF <sub>3</sub>                 | B24   |
| A383   | CH₃SCH₂                                          | Н               | Ph              | CF <sub>3</sub>                 | B24   |
| A384   | CH₃SOCH₂                                         | Н               | Ph              | CF <sub>3</sub>                 | B24   |
| A385   | CH₃SO₂CH₂                                        | Н               | Ph              | CF₃                             | B24   |
| A386   | Н                                                | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A387   | CH <sub>3</sub>                                  | Н               | Ph              | CF₃CF₂                          | B24   |

| Compd. | R <sub>92</sub>                                  | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>                                 | Q <sub>3</sub> |
|--------|--------------------------------------------------|-----------------|-----------------|-------------------------------------------------|----------------|
| no.    |                                                  |                 |                 |                                                 |                |
| A388   | CH₃CH₂                                           | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A389   | cyclopropyl                                      | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A390   | (CH <sub>3</sub> ) <sub>3</sub> C                | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A391   | (CH₃) <sub>2</sub> CH                            | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A392   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н               | . Ph            | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A393   | CH₃OCH₂                                          | H               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A394   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A395   | Ph                                               | Н               | Ph              | CF₃CF₂                                          | B24            |
| A396   | PhO                                              | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A397   | PhS                                              | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A398   | PhSO                                             | Н               | Ph              | CF <sub>3</sub> CF₂                             | B24            |
| A399   | PhSO <sub>2</sub>                                | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A400   | CH₃S                                             | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A401   | CH₃SO .                                          | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A402   | CF <sub>3</sub>                                  | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A403   | F₂CH                                             | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A404   | HCC                                              | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A405   | CH₃CC                                            | н               | Ph              | CF₃CF₂                                          | B24            |
| A406   | CH₂=CH                                           | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A407   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A408   | CH₃SO₂N(CH₃)                                     | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A409   | (CH₃)₂N                                          | н               | Ph              | CF₃CF₂                                          | B24            |
| A410   | (CH₃)₂NSO₂                                       | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A411   | CICH₂                                            | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A412   | CH₃SCH₂                                          | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A413   | CH₃SOCH₂                                         | Н               | Ph              | CF₃CF₂                                          | B24            |
| A414   | CH₃SO₂CH₂                                        | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A415   | Н                                                | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A416   | CH₃                                              | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A417   | CH₃CH₂                                           | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A418   | cyclopropyl                                      | н               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A419   | (CH <sub>3</sub> ) <sub>3</sub> C                | Н               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |

|        |                                                  |          |          | -                                                 |       |
|--------|--------------------------------------------------|----------|----------|---------------------------------------------------|-------|
| Compd. | R <sub>92</sub>                                  | $R_{83}$ | $R_{94}$ | R <sub>95</sub>                                   | $Q_3$ |
| no.    |                                                  |          |          |                                                   |       |
| A420   | (CH <sub>3</sub> ) <sub>2</sub> CH               | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A421   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A422   | CH₃OCH₂                                          | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A423   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A424   | Ph                                               | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A425   | PhO                                              | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A426   | PhS                                              | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A427   | PhSO                                             | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A428   | PhSO <sub>2</sub>                                | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A429   | CH <sub>3</sub> S                                | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A430   | CH₃SO                                            | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A431   | CF₃                                              | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A432   | F₂CH                                             | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A433   | HCC                                              | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A434   | CH₃CC                                            | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A435   | CH₂=CH                                           | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A436   | CH <sub>2</sub> =CHCH <sub>2</sub>               | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A437   | CH₃SO₂N(CH₃)                                     | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A438   | (CH₃)₂N                                          | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A439   | (CH <sub>3</sub> )₂NSO₂                          | , Н      | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A440   | CICH₂                                            | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A441   | CH₃SCH₂                                          | н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A442   | CH₃SOCH₂                                         | Н        | Ph       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub>   | B24   |
| A443   | CH₃SO₂CH₂                                        | Н        | Ph       | . CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |
| A444   | н                                                | н        | `Ph      | CF <sub>2</sub> CI                                | B24   |
| A445   | CH₃                                              | н        | Ph       | CF₂CI                                             | B24   |
| A446   | CH₃CH₂                                           | Н        | Ph       | CF₂CI                                             | B24   |
| A447   | cyclopropyl                                      | н        | Ph       | CF₂CI                                             | B24   |
| A448   | (CH₃)₃C                                          | - H      | Ph       | CF₂CI                                             | B24   |
| A449   | (CH <sub>3</sub> )₂CH                            | н        | Ph       | CF₂CI                                             | B24   |
| A450   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н        | Ph       | CF₂CI                                             | B24   |
| A451   | CH <sub>3</sub> OCH <sub>2</sub>                 | н        | Ph       | CF <sub>2</sub> Cl                                | B24   |

| Compd. | R <sub>92</sub>                                     | R <sub>93</sub> | R <sub>94</sub> | R <sub>95</sub>    | $Q_3$ |
|--------|-----------------------------------------------------|-----------------|-----------------|--------------------|-------|
| no.    |                                                     |                 |                 |                    | -3    |
| A452   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н               | Ph              | CF₂CI              | B24   |
| A453   | Ph                                                  | н               | Ph              | CF <sub>2</sub> CI | B24   |
| A454   | PhO                                                 | н               | Ph              | ĈF₂CI              | B24   |
| A455   | PhS                                                 | н               | Ph              | CF <sub>2</sub> CI | B24   |
| A456   | PhSO                                                | н               | Ph              | CF <sub>2</sub> Cl | B24   |
| A457   | PhSO₂                                               | н               | Ph              | CF <sub>2</sub> CI | B24   |
| A458   | CH₃S                                                | н               | Ph              | CF₂CI              | B24   |
| A459   | CH₃SO                                               | н               | Ph              | CF <sub>2</sub> Cl | B24   |
| A460   | CF₃                                                 | н               | Ph .            | CF <sub>2</sub> Cl | B24   |
| A461   | F₂CH                                                | н               | Ph              | CF <sub>2</sub> Cl | B24   |
| A462   | HCC                                                 | н 🕟             | Ph              | CF <sub>2</sub> Cl | B24   |
| A463   | CH₃CC                                               | н               | Ph              | CF <sub>2</sub> CI | B24   |
| A464   | CH <sub>2</sub> =CH                                 | н               | Ph              | CF <sub>2</sub> CI | B24   |
| · A465 | CH₂=CHCH₂                                           | н               | Ph              | CF₂CI              | B24   |
| A466   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н               | Ph              | CF₂CI              | B24   |
| A467   | (CH₃)₂N                                             | н               | Ph              | CF₂CI              | B24   |
| A468   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | н               | Ph              | CF <sub>2</sub> Cl | B24   |
| A469   | CICH₂                                               | н '             | Ph              | CF <sub>2</sub> Cl | B24   |
| A470   | CH₃SCH₂                                             | н               | Ph              | CF <sub>2</sub> Cl | B24   |
| A471   | CH₃SOCH₂                                            | н               | Ph              | CF <sub>2</sub> Cl | B24   |
| A472   | CH₃SO₂CH₂                                           | н               | ·Ph             | CF <sub>2</sub> Cl | B24   |
| A473   | Н                                                   | н               | Ph              | CHF <sub>2</sub>   | B24   |
| A474   | CH₃                                                 | н               | Ph              | CHF <sub>2</sub>   | B24   |
| A475   | CH₃CH₂                                              | <sup>*</sup> H  | Ph              | CHF <sub>2</sub>   | B24   |
| A476   | cyclopropyl                                         | н               | . Ph            | CHF <sub>2</sub>   | B24   |
| A477   | (CH₃)₃C                                             | н               | Ph              | CHF <sub>2</sub>   | B24   |
| A478   | (CH₃)₂CH                                            | н               | Ph              | CHF <sub>2</sub>   | B24   |
| A479   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | н               | Ph              | CHF₂               | B24   |
| A480   | CH₃OCH₂                                             | н               | Ph              | CHF <sub>2</sub>   | B24   |
| A481   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н               | Ph              | CHF <sub>2</sub>   | B24   |
| A482   | Ph                                                  | Н               | Ph              | CHF <sub>2</sub>   | B24   |
| A483   | PhO                                                 | Н               | Ph .            | CHF <sub>2</sub>   | B24   |

| Compd. | R <sub>92</sub>                                     | . R <sub>83</sub> | R <sub>94</sub> | R <sub>95</sub>   | Q <sub>3</sub> |
|--------|-----------------------------------------------------|-------------------|-----------------|-------------------|----------------|
| no.    |                                                     | •                 | •               |                   | 0              |
| A484   | PhS                                                 | н                 | Ph              | CHF₂              | B24            |
| A485   | PhSO                                                | Н.                | Ph              | CHF <sub>2</sub>  | B24            |
| A486   | PhSO <sub>2</sub>                                   | . н               | Ph              | TCHF <sub>2</sub> | B24            |
| A487   | CH₃S                                                | н                 | Ph              | CHF₂              | B24            |
| A488   | CH₃SO                                               | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A489   | CF₃                                                 | Н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A490   | F₂CH                                                | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A491   | HCC                                                 | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A492   | CH₃CC                                               | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A493   | CH₂=CH                                              | н                 | Ph              | CHF₂              | B24            |
| A494   | CH₂=CHCH₂                                           | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A495   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | H                 | Ph              | CHF <sub>2</sub>  | B24            |
| A496   | (CH₃)₂N                                             | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A497   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | н                 | Ph              | CHF₂              | B24            |
| A498   | CICH <sub>2</sub>                                   | н                 | Ph              | CHF₂              | B24            |
| A499   | CH₃SCH₂                                             | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A500   | CH₃SOCH₂                                            | , н               | Ph              | CHF <sub>2</sub>  | B24            |
| A501   | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | н                 | Ph              | CHF <sub>2</sub>  | B24            |
| A502   | н                                                   | н                 | Ph              | CCI <sub>3</sub>  | B24            |
| A503   | CH₃                                                 | Н                 | Ph              | CCl <sub>3</sub>  | B24            |
| A504   | CH₃CH₂                                              | Н                 | Ph              | CCl₃              | B24            |
| A505   | cyclopropyl                                         | Н                 | Ph              | CCl <sub>3</sub>  | B24            |
| A506   | (CH₃)₃C                                             | н                 | Ph              | CCI <sub>3</sub>  | B24            |
| A507   | (CH <sub>3</sub> )₂CH                               | н                 | Ph              | CCl₃              | B24            |
| A508   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | H                 | Ph              | CCl₃              | B24            |
| A509   | CH₃OCH₂                                             | · н               | Ph              | CCl₃              | B24            |
| A510   | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н                 | Ph              | CCl₃              | B24            |
| A511   | Ph                                                  | н                 | Ph              | CCl₃              | B24            |
| A512   | PhO                                                 | н                 | Ph              | CCl <sub>3</sub>  | B24            |
| A513   | PhS                                                 | н                 | Ph              | CCl₃              | B24            |
| A514   | PhSO                                                | н                 | Ph              | CCl <sub>3</sub>  | B24            |
| A515   | PhSO <sub>2</sub>                                   | Н                 | Ph              | CCI <sub>3</sub>  | B24            |

()

| Compd. | R <sub>92</sub>                                     | R <sub>93</sub>                                 | R <sub>94</sub> | R <sub>95</sub>  | $Q_3$ |
|--------|-----------------------------------------------------|-------------------------------------------------|-----------------|------------------|-------|
| no.    |                                                     |                                                 |                 |                  |       |
| A516   | CH₃S                                                | н                                               | Ph              | CCI <sub>3</sub> | B24   |
| A517   | CH₃SO                                               | н                                               | Ph              | CCl₃             | B24   |
| A518   | CF <sub>3</sub>                                     | Н                                               | Ph              | ℃Cl <sub>3</sub> | B24   |
| A519   | F₂CH                                                | Н                                               | Ph              | CCl <sub>3</sub> | B24   |
| A520   | HCC                                                 | н                                               | Ph              | CCI <sub>3</sub> | B24   |
| A521   | CH₃CC                                               | Н                                               | Ph              | CCI <sub>3</sub> | B24   |
| A522   | CH₂=CH                                              | Н                                               | Ph              | CCl <sub>3</sub> | B24   |
| A523   | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Н                                               | Ph              | CCl <sub>3</sub> | B24   |
| A524   | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н                                               | Ph              | CCl <sub>3</sub> | B24   |
| A525   | (CH₃)₂N                                             | н                                               | Ph              | CCl <sub>3</sub> | B24   |
| A526   | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | H                                               | Ph              | CCI <sub>3</sub> | B24   |
| A527   | CICH <sub>2</sub>                                   | н                                               | Ph              | CCl₃             | B24   |
| A528   | CH₃SCH₂                                             | Н                                               | Ph              | CCl₃             | B24   |
| A529   | CH₃SOCH₂                                            | н                                               | Ph              | CCl₃             | B24   |
| A530   | CH₃SO₂CH₂                                           | н                                               | Ph              | CCl <sub>3</sub> | B24   |
| A531   | Н                                                   | CH₃                                             | Н               | CF <sub>3</sub>  | B24   |
| A532   | н                                                   | CH₃CH₂                                          | н               | CF₃              | B24   |
| A533   | Н                                                   | cyclopropyl                                     | Н               | CF <sub>3</sub>  | B24   |
| A534   | Н                                                   | (CH₃)₃CH                                        | Н               | CF <sub>3</sub>  | B24   |
| A535   | Н                                                   | (CH₃)₂CH                                        | н               | CF₃              | B24   |
| A536   | Н                                                   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> | Н               | CF₃              | B24   |
| A537   | Н                                                   | CH <sub>3</sub> OCH <sub>2</sub>                | н               | CF₃              | B24   |
| A538   | H                                                   | CH <sub>3</sub> O(CH <sub>2</sub> )₂            | Н               | CF <sub>3</sub>  | B24   |
| A539   | Н                                                   | Ph                                              | Н               | CF <sub>3</sub>  | B24   |
| A540   | Н                                                   | PhO                                             | H,              | ĊF₃              | B24   |
| A541   | н `                                                 | PhS                                             | Н               | CF₃              | B24   |
| A542   | Н                                                   | PhSO                                            | Н               | CF <sub>3</sub>  | B24   |
| A543   | н                                                   | PhSO <sub>2</sub>                               | н               | CF <sub>3</sub>  | B24   |
| A544   | н                                                   | CH₃S                                            | Н               | CF₃              | B24   |
| A545   | н                                                   | CH₃SO                                           | Н               | CF <sub>3</sub>  | B24   |
| A546   | н                                                   | CF <sub>3</sub>                                 | н               | CF <sub>3</sub>  | B24   |
| A547   | Н                                                   | F₂CH                                            | Н               | CF₃              | B24   |

| Compd. | R <sub>92</sub> | R <sub>83</sub>                                  | R <sub>94</sub> | R <sub>95</sub>                 | Q₃  |
|--------|-----------------|--------------------------------------------------|-----------------|---------------------------------|-----|
| no.    |                 |                                                  |                 | -33                             | 3   |
| A548   | н               | HCC                                              | н               | CF₃                             | B24 |
| A549   | н               | CH₃CC                                            | н               | CF₃                             | B24 |
| A550   | н               | CH₂=CH                                           | н               | ¯CF₃                            | B24 |
| A551   | н               | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н               | CF₃                             | B24 |
| A552   | н               | CH₃SO₂N(CH₃)                                     | Ĥ               | CF <sub>3</sub>                 | B24 |
| A553   | н               | (CH₃)₂N                                          | Н               | CF <sub>3</sub>                 | B24 |
| A554   | н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CF₃                             | B24 |
| A555   | н               | CH₃SCH₂                                          | н               | CF <sub>3</sub>                 | B24 |
| A556   | Н               | CH₃SOCH₂                                         | н               | CF <sub>3</sub>                 | B24 |
| A557   | . н             | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | н               | CF <sub>3</sub>                 | B24 |
| A558   | н               | СН₃                                              | н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A559   | H               | CH₃CH₂                                           | н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A560   | н               | cyclopropyl                                      | H               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A561   | Н               | (CH₃)₃C                                          | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A562   | Н               | (CH₃)₂CH                                         | н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A563   | н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A564   | н               | CH₃OCH₂                                          | н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A565   | Н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A566   | Н               | Ph                                               | н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A567   | н               | PhO                                              | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A568   | н               | PhS                                              | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A569   | H               | PhSO                                             | Н               | CF₃CF₂                          | B24 |
| A570   | Н               | PhSO <sub>2</sub>                                | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A571   | Н               | CH₃S                                             | Н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A572   | н               | CH₃SO                                            | н               | CF₃CF₂                          | B24 |
| A573   | н               | CF <sub>3</sub>                                  | н               | CF₃CF₂.                         | B24 |
| A574   | Н               | F <sub>2</sub> CH                                | н               | CF₃CF₂                          | B24 |
| A575   | н               | HCC                                              | Н               | CF₃CF₂                          | B24 |
| A576   | н               | CH₃CC                                            | H               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A577   | Н               | CH₂=CH                                           | Н               | CF₃CF₂                          | B24 |
| A578   | Н               | CH <sub>2</sub> =CHCH <sub>2</sub>               | н               | CF <sub>3</sub> CF <sub>2</sub> | B24 |
| A579   | Н               | CH₃SO₂N(CH₃)                                     | Н               | CF <sub>3</sub> CF₂             | B24 |

| Compd. | R <sub>92</sub> | · R <sub>83</sub>                                | . R <sub>94</sub> | R <sub>95</sub>                                 | Q <sub>3</sub> |
|--------|-----------------|--------------------------------------------------|-------------------|-------------------------------------------------|----------------|
| no.    |                 |                                                  |                   |                                                 |                |
| A580   | н               | (CH₃)₂N                                          | Н                 | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A581   | н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н                 | CF₃CF₂                                          | B24            |
| A582   | н               | CH₃SCH₂                                          | н                 | CF₃CF₂                                          | B24            |
| A583   | н               | CH₃SOCH₂                                         | Н                 | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A584   | н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н                 | CF₃CF₂                                          | B24            |
| , A585 | н               | CH <sub>3</sub>                                  | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A586   | н               | CH₃CH₂                                           | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A587   | Н               | cyclopropyl                                      | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A588   | Н               | (CH₃)₃C                                          | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A589   | н               | (CH₃)₂CH                                         | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A590   | н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A591   | н               | CH₃OCH₂                                          | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A592   | Н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A593   | н               | Ph                                               | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A594   | н               | PhO                                              | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A595   | н               | PhS                                              | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A596   | Н               | PhSO                                             | H                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A597   | н               | PhSO₂                                            | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A598   | Н               | CH₃S                                             | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A599   | H               | CH₃SO                                            | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A600   | Н               | CF <sub>3</sub>                                  | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A601   | Н               | F <sub>2</sub> CH                                | H                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A602   | н               | HCC                                              | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A603   | Н               | CH₃CC                                            | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A604   | н               | CH₂=CH                                           | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A605   | н               | CH <sub>2</sub> =CHCH <sub>2</sub>               | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A606   | н               | CH₃SO₂N(CH₃)                                     | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A607   | н               | (CH₃)₂N                                          | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A608   | н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A609   | Н               | CH₃SCH₂                                          | н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A610   | Н               | CH₃SOCH₂                                         | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A611   | Н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н                 | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |

| Compd. | R <sub>92</sub> | R <sub>93</sub>                                  | R <sub>94</sub> | <br>R <sub>95</sub> | $Q_3$ |
|--------|-----------------|--------------------------------------------------|-----------------|---------------------|-------|
| no.    | 92              | • 193                                            | . 194           | ' '85               | O(3   |
| A612   | н               | CH₃                                              | • н             | CF₂CI               | B24   |
| A613   | н               | CH₃CH₂                                           | Н               | CF <sub>2</sub> CI  | B24   |
| A614   | н               | cyclopropyl                                      | н               | ĈF₂Cì               | B24   |
| A615   | н               | (CH <sub>3</sub> ) <sub>3</sub> C                | н               | CF <sub>2</sub> Cl  | B24   |
| A616   | н               | (CH₃)₂CH                                         | н               | CF₂CI               | B24   |
| A617   | н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | н               | CF₂CI               | B24   |
| A618   | н               | CH₃OCH₂                                          | Н               | CF <sub>2</sub> Cl  | B24   |
| A619   | н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Н               | CF <sub>2</sub> CI  | B24   |
| A620   | . Н             | Ph                                               | Н               | CF₂CI               | B24   |
| A621   | н               | PhO                                              | Н               | CF <sub>2</sub> Cl  | B24   |
| A622   | Н               | PhS                                              | н               | CF <sub>2</sub> Cl  | B24   |
| A623   | н               | PhSO                                             | н               | CF₂CI               | B24   |
| A624   | Н               | PhSO <sub>2</sub>                                | н               | CF <sub>2</sub> CI  | B24   |
| A625   | H               | CH₃S                                             | Н               | CF <sub>2</sub> CI  | B24   |
| A626   | Н               | CH₃SO                                            | Н               | CF <sub>2</sub> CI  | B24   |
| A627   | Н               | CF <sub>3</sub>                                  | Н               | CF <sub>2</sub> CI  | B24   |
| A628   | н               | F₂CH                                             | Н               | CF <sub>2</sub> CI  | B24   |
| A629   | н               | HCC                                              | Н               | CF <sub>2</sub> CI  | B24   |
| A630   | н,              | CH₃CC ·                                          | Н               | CF <sub>2</sub> Cl  | B24   |
| A631   | н               | CH₂=CH                                           | Н               | CF <sub>2</sub> Cl  | B24   |
| A632   | н               | CH₂=CHCH₂                                        | Н               | CF <sub>2</sub> Cl  | B24   |
| A633   | н               | CH₃SO₂N(CH₃)                                     | н               | CF <sub>2</sub> Cl  | B24   |
| A634   | н               | (CH₃)₂N                                          | Н               | CF <sub>2</sub> CI  | B24   |
| A635   | H               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Н               | CF <sub>2</sub> CI  | B24   |
| A636   | Н               | CH₃SCH₂                                          | Н               | CF <sub>2</sub> CI  | B24   |
| A637   | Н               | CH₃SOCH₂                                         | Н               | CF <sub>2</sub> CI  | B24   |
| A638   | н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Н               | CF <sub>2</sub> Cl  | B24   |
| A639   | Н               | CH₃                                              | Н               | CHF <sub>2</sub>    | B24   |
| A640   | Н               | CH₃CH₂                                           | Ή               | CHF₂                | B24   |
| A641   | Н               | cyclopropyl                                      | Н               | CHF <sub>2</sub>    | B24   |
| A642   | Н               | (CH₃)₃C                                          | Н               | CHF₂                | B24   |
| A643   | <b>H</b>        | (CH₃)₂CH                                         | Н               | CHF₂                | B24   |

.

| Compd. | R <sub>92</sub> | R <sub>93</sub>                                     | R <sub>94</sub> | R <sub>95</sub>  | Qз  |
|--------|-----------------|-----------------------------------------------------|-----------------|------------------|-----|
| no.    |                 |                                                     |                 |                  |     |
| A644   | н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | н               | CHF₂             | B24 |
| A645   | н               | CH₃OCH₂                                             | Н               | CHF <sub>2</sub> | B24 |
| A646   | н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | н               | CHF2             | B24 |
| A647   | н               | Ph                                                  | Н               | CHF <sub>2</sub> | B24 |
| A648   | н               | PhO                                                 | н               | CHF <sub>2</sub> | B24 |
| A649   | н               | PhS                                                 | н               | CHF <sub>2</sub> | B24 |
| A650   | ′H              | PhSO                                                | Н               | CHF₂             | B24 |
| A651   | н               | PhSO <sub>2</sub>                                   | н               | CHF <sub>2</sub> | B24 |
| A652   | н               | CH₃S                                                | Н               | CHF₂             | B24 |
| A653   | н               | CH₃SO                                               | Н               | CHF₂             | B24 |
| A654   | н               | CF <sub>3</sub>                                     | Н               | CHF <sub>2</sub> | B24 |
| A655   | н               | F₂CH                                                | Н               | CHF <sub>2</sub> | B24 |
| A656   | н               | HCC                                                 | Н               | CHF <sub>2</sub> | B24 |
| A657   | н               | CH₃CC                                               | н               | CHF <sub>2</sub> | B24 |
| A658   | Н               | CH <sub>2</sub> =CH                                 | Н               | CHF <sub>2</sub> | B24 |
| A659   | Н               | CH₂=CHCH₂                                           | Н               | CHF₂             | B24 |
| A660   | Н               | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Н               | CHF <sub>2</sub> | B24 |
| A661   | <b>H</b> .      | (CH₃)₂N                                             | Н               | CHF <sub>2</sub> | B24 |
| A662   | Н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Н               | CHF₂             | B24 |
| A663   | Н               | CH₃SCH₂                                             | Н               | · CHF2           | B24 |
| A664   | н               | CH₃SOCH₂                                            | Н               | CHF₂             | B24 |
| A665   | н               | CH₃SO₂CH₂                                           | Н               | CHF₂             | B24 |
| A666   | н               | CH₃                                                 | Н               | CCl <sub>3</sub> | B24 |
| A667   | Н               | CH₃CH₂                                              | Н               | CCl <sub>3</sub> | B24 |
| A668   | Н               | cyclopropyl                                         | н               | CCI <sub>3</sub> | B24 |
| A669   | н               | (CH₃)₃C                                             | н               | CCI <sub>3</sub> | B24 |
| A670   | · <b>H</b> ·    | (CH₃)₂CH                                            | Н               | CCl <sub>3</sub> | B24 |
| A671   | Н               | CH₃(CH₂)₂                                           | H               | CCI <sub>3</sub> | B24 |
| A672   | Н               | CH₃OCH₂                                             | Н               | CCI <sub>3</sub> | B24 |
| A673   | Н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Н               | CCI <sub>3</sub> | B24 |
| A674   | Н               | Ph                                                  | н               | CCI <sub>3</sub> | B24 |
| A675   | <b>H</b>        | PhO                                                 | н               | CCl <sub>3</sub> | B24 |

| Compd. | R <sub>92</sub> | R <sub>83</sub>                                     | R <sub>94</sub> | R <sub>95</sub>  | Q <sub>3</sub> |
|--------|-----------------|-----------------------------------------------------|-----------------|------------------|----------------|
| no.    |                 | ,                                                   | •               |                  | 3              |
| A676   | н               | PhS                                                 | н               | CCI <sub>3</sub> | B24            |
| A677   | н               | PhSO                                                | н               | CCI <sub>3</sub> | B24            |
| A678   | н               | PhSO <sub>2</sub>                                   | н               | CCI <sub>3</sub> | B24            |
| A679   | H               | CH₃S                                                | н               | CCl3             | B24            |
| A680   | H               | CH₃SO                                               | н               | CCl₃             | B24            |
| A681   | н               | CF <sub>3</sub>                                     | Н               | CCl <sub>3</sub> | B24            |
| A682   | н               | F <sub>2</sub> CH                                   | н               | CCl <sub>3</sub> | B24            |
| A683   | н               | HCC                                                 | н               | CCl₃             | B24            |
| A684   | H               | CH₃CC                                               | Н               | CCl <sub>3</sub> | B24            |
| A685   | н               | CH <sub>2</sub> =CH                                 | Н               | CCl₃             | B24            |
| A686   | . Н             | CH <sub>2</sub> =CHCH <sub>2</sub>                  | н .             | CCI3             | B24            |
| A687   | · H             | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | н               | CCl₃             | B24            |
| A688   | н               | (CH₃)₂N                                             | н               | CCl₃             | B24            |
| A689   | н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | н               | CCl <sub>3</sub> | B24            |
| A690   | н               | CH₃SCH₂                                             | н               | CCl₃             | B24            |
| A691   | Н               | CH₃SOCH₂                                            | Н               | CCI <sub>3</sub> | B24            |
| A692   | Н               | CH <sub>3</sub> SO₂CH <sub>2</sub>                  | Н               | CCl₃             | B24            |
| A693   | Н               | CH <sub>3</sub>                                     | CH <sub>3</sub> | CF <sub>3</sub>  | B24            |
| A694   | Н               | CH₃CH₂                                              | CH₃             | CF <sub>3</sub>  | B24            |
| A695   | Н               | cyclopropyl                                         | CH <sub>3</sub> | CF <sub>3</sub>  | B24            |
| A696   | • н             | (CH <sub>3</sub> ) <sub>3</sub> C                   | CH <sub>3</sub> | CF <sub>3</sub>  | B24            |
| A697   | Н               | (CH₃)₂CH                                            | CH₃             | CF <sub>3</sub>  | B24            |
| A698   | Н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | CH₃             | CF <sub>3</sub>  | B24            |
| A699   | Н               | CH₃OCH₂                                             | CH₃             | CF <sub>3</sub>  | B24            |
| A700   | н               | CH₃O(CH₂)₂                                          | СН₃             | CF <sub>3</sub>  | B24            |
| A701   | Н               | Ph                                                  | CH₃             | CF₃              | B24            |
| A702   | H               | PhO                                                 | CH₃             | CF <sub>3</sub>  | B24            |
| A703   | Н               | PhS                                                 | CH₃             | CF₃              | B24            |
| A704   | Н               | PhSO                                                | СН₃             | CF <sub>3</sub>  | B24            |
| A705   | Н               | PhSO <sub>2</sub>                                   | CH₃             | CF <sub>3</sub>  | B24            |
| A706   | Н               | CH₃S                                                | CH₃             | CF <sub>3</sub>  | B24            |
| A707   | H               | CH₃SO                                               | CH₃             | CF₃              | B24            |

| Compd. | R <sub>92</sub> | R <sub>93</sub>                                  | R <sub>94</sub> | R <sub>95</sub>                 | $Q_3$ |
|--------|-----------------|--------------------------------------------------|-----------------|---------------------------------|-------|
| no.    |                 | _                                                |                 |                                 |       |
| A708   | н               | CF <sub>3</sub>                                  | СН₃             | CF₃                             | B24   |
| A709   | н               | F₂CH                                             | СН₃             | CF <sub>3</sub>                 | B24   |
| A710   | Н               | HCC                                              | CH <sub>3</sub> | <b>℃</b> F₃                     | B24   |
| A711   | Н               | CH₃CC                                            | CH₃             | CF <sub>3</sub>                 | B24   |
| A712   | Н               | CH₂=CH                                           | СН₃             | CF₃                             | B24   |
| A713   | Н               | CH₂=CHCH₂                                        | CH₃             | CF <sub>3</sub>                 | B24   |
| A714   | Н               | CH₃SO₂N(CH₃)                                     | CH₃             | CF <sub>3</sub>                 | B24   |
| A715   | Н               | (CH <sub>3</sub> ) <sub>2</sub> N                | CH₃             | CF <sub>3</sub>                 | B24   |
| A716   | Н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | CH₃             | CF <sub>3</sub>                 | B24   |
| A717   | Н               | CH₃SCH₂                                          | CH₃             | CF <sub>3</sub>                 | B24   |
| A718   | Н               | CH₃SOCH₂                                         | СН₃             | CF <sub>3</sub>                 | B24   |
| A719   | н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | CH₃             | CF <sub>3</sub>                 | B24   |
| A720   | Н               | CH₃                                              | СН₃             | CF₃CF₂                          | B24   |
| A721   | н               | CH₃CH₂                                           | CH₃             | CF₃CF₂                          | B24   |
| A722   | н               | cyclopropyl                                      | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A723   | н               | (CH <sub>3</sub> ) <sub>3</sub> C                | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A724   | н               | (CH₃)₂CH                                         | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A725   | н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | CH₃             | CF₃CF₂                          | B24   |
| A726   | Н               | CH₃OCH₂                                          | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A727   | Н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | CH₃             | CF₃CF₂                          | B24   |
| A728   | н               | Ph                                               | CH₃             | CF₃CF₂                          | B24   |
| A729   | н               | PhO                                              | СН₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A730   | н               | PhS                                              | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A731   | н               | PhSO                                             | CH₃             | CF₃CF₂                          | B24   |
| A732   | , н             | PhSO <sub>2</sub>                                | CH₃             | CF₃CF₂                          | B24   |
| A733   | Н               | CH₃S                                             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A734   | н               | CH₃SO                                            | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A735   | н               | CF <sub>3</sub>                                  | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A736   | н               | F <sub>2</sub> CH                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A737   | н               | HCC                                              | CH <sub>3</sub> | CF₃CF₂                          | B24   |
| A738   | н               | CH₃CC                                            | CH₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A739   | н               | CH₂=CH                                           | СН₃             | CF <sub>3</sub> CF <sub>2</sub> | B24   |

| Compd. | R <sub>92</sub> | R₃₃                                                 | R <sub>94</sub> | R <sub>95</sub>                                 | Q <sub>3</sub> |
|--------|-----------------|-----------------------------------------------------|-----------------|-------------------------------------------------|----------------|
| no.    |                 |                                                     |                 | ~                                               |                |
| A740   | н               | CH <sub>2</sub> =CHCH <sub>2</sub>                  | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A741   | н               | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A742   | H               | (CH₃)₂N                                             | CH₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A743   | Н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A744   | н               | CH₃SCH₂                                             | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A745   | н               | CH₃SOCH₂                                            | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A746   | Н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | СН₃             | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A747   | H <sup>*</sup>  | CH₃                                                 | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A748   | Н               | CH₃CH₂                                              | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A749   | 1 · H           | cyclopropyl                                         | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A750   | н               | (CH₃)₃C                                             | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A751   | н               | (CH₃)₂CH                                            | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A752   | Н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A753   | Н               | CH₃OCH₂                                             | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A754   | н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A755   | н               | Ph                                                  | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A756   | н               | PhO                                                 | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A757   | Н               | PhS                                                 | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A758   | H               | PhSO                                                | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A759   | н               | PhSO <sub>2</sub>                                   | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A760   | н               | CH₃S                                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A761   | н               | CH₃SO                                               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A762   | Н               | CF <sub>3</sub>                                     | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A763   | Н               | F₂CH                                                | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A764   | Н               | HCC                                                 | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A765   | Н               | CH₃CC                                               | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A766   | Н               | CH₂=CH                                              | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A767   | н               | CH <sub>2</sub> =CHCH <sub>2</sub>                  | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A768   | Н               | CH₃SO₂N(CH₃)                                        | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A769   | н               | (CH₃)₂N                                             | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A770   | н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A771   | H               | CH₃SCH₂                                             | СН₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |

|        | •               |                                                     |                 |                                                 |                |
|--------|-----------------|-----------------------------------------------------|-----------------|-------------------------------------------------|----------------|
| Compd. | R <sub>92</sub> | R <sub>93</sub>                                     | R <sub>94</sub> | R <sub>95</sub>                                 | Q <sub>3</sub> |
| no.    |                 |                                                     |                 |                                                 |                |
| A772   | Н               | CH <sub>3</sub> SOCH <sub>2</sub>                   | CH₃             | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A773   | н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | CH <sub>3</sub> | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A774   | Н               | CH₃                                                 | CH₃             | ĈF₂CI                                           | B24            |
| A775   | Н               | CH₃CH₂                                              | CH <sub>3</sub> | CF <sub>2</sub> Cl                              | B24            |
| A776   | н               | cyclopropyl                                         | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A777   | н               | (CH₃)₃C                                             | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A778   | Н               | (CH₃)₂CH                                            | СН₃             | CF <sub>2</sub> CI                              | B24            |
| A779   | H               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | CH₃             | CF₂CI                                           | B24            |
| A780   | н               | CH₃OCH₂                                             | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A781   | Н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | СН₃             | CF <sub>2</sub> CI                              | B24            |
| A782   | н .             | Ph                                                  | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A783   | н               | PhO                                                 | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A784   | H               | PhS                                                 | CH₃             | CF <sub>2</sub> Cl                              | B24            |
| A785   | Н               | PhSO                                                | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A786   | н               | PhSO <sub>2</sub>                                   | СН₃             | CF <sub>2</sub> Cl                              | B24            |
| A787   | н               | CH₃S                                                | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A788   | н               | CH₃SO                                               | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A789   | н               | CF <sub>3</sub>                                     | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A790   | н               | F₂CH                                                | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A791   | H               | HCC                                                 | CH₃             | CF <sub>2</sub> Cl                              | B24            |
| A792   | н               | CH₃CC                                               | CH₃             | CF₂CI                                           | B24            |
| A793   | н               | CH₂=CH                                              | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A794   | н               | CH₂=CHCH₂                                           | CH₃             | CF <sub>2</sub> Ci                              | B24            |
| A795   | н               | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CH₃             | CF <sub>2</sub> CI                              | B24            |
| A796   | . Н             | (CH₃)₂N                                             | CH <sub>3</sub> | CF₂CI                                           | B24            |
| A797   | Н               | (CH <sub>3</sub> )₂NSO₂                             | CH <sub>3</sub> | CF₂CI                                           | B24            |
| A798   | н               | CH₃SCH₂                                             | CH <sub>3</sub> | CF₂CI                                           | B24            |
| A799   | н               | CH₃SOCH₂                                            | CH <sub>3</sub> | CF <sub>2</sub> CI                              | B24            |
| A800   | н               | CH₃SO₂CH₂                                           | CH₃             | CF₂CI                                           | B24            |
| A801   | н               | CH₃                                                 | CH₃             | CHF₂                                            | B24            |
| A802   | н               | CH₃CH₂                                              | CH₃             | CHF₂                                            | B24            |
| A803   | <b>H</b>        | cyclopropyl                                         | СН₃             | CHF₂                                            | B24            |

|        |                 | _                                                |                 |                  |     |
|--------|-----------------|--------------------------------------------------|-----------------|------------------|-----|
| Compd. | R <sub>92</sub> | R <sub>ss</sub>                                  | R <sub>94</sub> | R <sub>95</sub>  | Q₃  |
| no.    |                 |                                                  |                 |                  |     |
| A804   | н               | (CH₃)₃C                                          | СН₃             | CHF <sub>2</sub> | B24 |
| A805   | Н               | (CH₃)₂CH                                         | СН₃             | CHF₂             | B24 |
| A806   | Н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | СН₃             | CHF <sub>2</sub> | B24 |
| A807   | н               | CH <sub>3</sub> OCH <sub>2</sub>                 | СН₃             | CHF <sub>2</sub> | B24 |
| A808   | н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | CH₃             | CHF <sub>2</sub> | B24 |
| A809   | н               | Ph                                               | СН₃             | CHF <sub>2</sub> | B24 |
| A810   | н               | PhO                                              | CH₃             | CHF₂             | B24 |
| A811   | Н               | PhS                                              | СН₃             | CHF <sub>2</sub> | B24 |
| A812   | н               | PhSO                                             | СН₃             | CHF <sub>2</sub> | B24 |
| A813   | H .             | PhSO <sub>2</sub>                                | СН₃             | CHF <sub>2</sub> | B24 |
| A814   | H               | CH₃S                                             | СН₃             | CHF <sub>2</sub> | B24 |
| A815   | Н               | CH₃SO                                            | CH₃             | CHF₂             | B24 |
| A816   | н               | CF <sub>3</sub>                                  | СН₃             | CHF <sub>2</sub> | B24 |
| A817   | Н               | F₂CH                                             | ÇH₃             | CHF <sub>2</sub> | B24 |
| A818   | н               | HCC                                              | CH₃             | CHF <sub>2</sub> | B24 |
| A819   | Н               | CH₃CC                                            | CH₃             | CHF <sub>2</sub> | B24 |
| A820   | Н               | CH₂=CH                                           | CH₃             | CHF <sub>2</sub> | B24 |
| A821   | Н               | CH <sub>2</sub> =CHCH <sub>2</sub>               | CH₃             | CHF <sub>2</sub> | B24 |
| A822   | H               | CH₃SO₂N(CH₃)                                     | CH <sub>3</sub> | CHF <sub>2</sub> | B24 |
| A823   | . <b>H</b>      | (CH <sub>3</sub> )₂N                             | CH₃             | CHF <sub>2</sub> | B24 |
| A824   | Н               | (CH <sub>3</sub> )₂NSO₂                          | CH₃             | CHF <sub>2</sub> | B24 |
| A825   | Н               | CH₃SCH₂                                          | CH <sub>3</sub> | CHF <sub>2</sub> | B24 |
| A826   | Н               | CH₃SOCH₂                                         | CH₃             | CHF <sub>2</sub> | B24 |
| A827   | Н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | CH₃             | CHF <sub>2</sub> | B24 |
| A828   | Н               | CH₃                                              | CH₃             | CCl <sub>3</sub> | B24 |
| A829   | Н               | CH₃CH₂                                           | CH <sub>3</sub> | CCl <sub>3</sub> | B24 |
| A830   | Н               | cyclopropyl                                      | CH <sub>3</sub> | CCI <sub>3</sub> | B24 |
| A831   | н               | (CH₃)₃C                                          | CH <sub>3</sub> | CCl <sub>3</sub> | B24 |
| A832   | н               | (CH₃)₂CH                                         | CH <sub>3</sub> | CCl₃             | B24 |
| A833   | Н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | CH₃             | CCl₃             | B24 |
| A834   | Н               | CH₃OCH₂                                          | СН₃             | CCl₃             | B24 |
| A835   | Н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | СН₃             | CCl₃             | B24 |

| Compd. | R <sub>92</sub> | R <sub>93</sub>                                     | R <sub>94</sub> | R <sub>95</sub>   | $Q_3$ |
|--------|-----------------|-----------------------------------------------------|-----------------|-------------------|-------|
| no.    |                 |                                                     |                 |                   |       |
| A836   | н               | Ph                                                  | CH₃             | CCl <sub>3</sub>  | B24   |
| A837   | Н               | PhO                                                 | CH₃             | CCI <sub>3</sub>  | B24   |
| A838   | H               | PhS                                                 | CH₃             | ĈCl₃              | B24   |
| A839   | н               | PhSO                                                | CH <sub>3</sub> | CCI <sub>3</sub>  | B24   |
| A840   | H               | PhSO <sub>2</sub>                                   | CH₃             | CCI <sub>3</sub>  | B24   |
| A841   | Н               | CH₃S                                                | CH₃             | CCI₃              | B24   |
| A842   | н               | CH₃SO                                               | CH₃             | CCl₃              | B24   |
| A843   | Н               | CF <sub>3</sub>                                     | CH₃             | CCI <sub>3</sub>  | B24   |
| A844   | н               | F <sub>2</sub> CH                                   | . CH₃           | CCl₃              | B24   |
| A845   | н               | HCC                                                 | CH₃             | CCl₃              | B24   |
| A846   | Н               | CH₃CC                                               | CH₃             | CCl₃              | B24   |
| A847   | · H             | CH₂=CH                                              | CH₃             | CCl₃              | B24   |
| A848   | Н               | CH <sub>2</sub> =CHCH <sub>2</sub>                  | CH₃             | CCl₃              | B24   |
| A849   | н               | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CH₃             | CCl₃              | B24   |
| A850   | н               | (CH₃)₂N                                             | CH <sub>3</sub> | CCl3              | B24   |
| A851   | Н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | CH₃             | CCl <sub>3</sub>  | B24   |
| A852   | Н               | CH₃SCH₂                                             | CH₃             | CCI <sub>3</sub>  | B24   |
| A853   | H               | CH₃SOCH₂                                            | CH₃             | CCI <sub>3</sub>  | B24   |
| A854   | Н               | CH₃SO₂CH₂                                           | CH₃             | CCl₃              | B24   |
| A855   | н               | CH₃                                                 | Ph              | CF <sub>3</sub>   | B24   |
| A856   | Н               | CH₃CH₂                                              | Ph              | CF₃               | B24   |
| A857   | н               | (CH₃)₂CH                                            | Ph              | CF <sub>3</sub>   | B24   |
| A858   | Н               | (CH₃)₂CH                                            | Ph              | CF₃               | B24   |
| A859   | Н               | cyclopropyl                                         | Ph              | . CF <sub>3</sub> | B24   |
| A860   | Н               | CH₃(CH₂)₂                                           | Ph              | CF <sub>3</sub>   | B24   |
| A861   | Н               | CH₃OCH₂                                             | Ph              | CF₃               | B24   |
| A862   | ' Н             | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Ph              | CF₃               | B24   |
| A863   | Н               | Ph                                                  | Ph ·            | CF₃               | B24   |
| A864   | Н               | PhO                                                 | Ph              | CF <sub>3</sub>   | B24   |
| A865   | Н               | PhS                                                 | Ph              | · CF <sub>3</sub> | B24   |
| A866   | н               | PhSO                                                | Ph              | CF₃               | B24   |
| A867   | <b>H</b>        | PhSO <sub>2</sub>                                   | Ph              | CF₃               | B24   |

| Compd. | R <sub>92</sub> | R <sub>83</sub>                                     | $R_{94}$        | R <sub>95</sub>                 | $Q_3$ |
|--------|-----------------|-----------------------------------------------------|-----------------|---------------------------------|-------|
| no.    |                 |                                                     |                 |                                 |       |
| A868   | Н               | CH₃S                                                | Ph              | CF <sub>3</sub>                 | B24   |
| A869   | Н               | CH₃SO                                               | Ph              | CF <sub>3</sub>                 | B24   |
| A870   | Н               | CF₃                                                 | Ph              | ¯CF <sub>3</sub>                | B24   |
| A871   | н               | F₂CH                                                | Ph              | CF <sub>3</sub>                 | B24   |
| A872   | н               | HCC                                                 | Ph              | CF <sub>3</sub>                 | B24   |
| A873   | н               | CH₃CC                                               | Ph              | CF₃                             | B24   |
| A874   | H               | CH₂=CH                                              | Ph              | CF₃                             | B24   |
| A875   | Н               | CH₂=CHCH₂                                           | Ph              | CF <sub>3</sub>                 | B24   |
| A876   | ' <b>H</b>      | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | CF <sub>3</sub> | B24                             |       |
| A877   | н               | (CH <sub>3</sub> )₂N                                | CF₃             | B24                             |       |
| A878   | Н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Ph              | CF₃                             | B24   |
| A879   | Н               | CH₃SCH₂                                             | Ph              | CF <sub>3</sub>                 | B24   |
| A880   | Н               | CH₃SOCH₂                                            | Ph              | CF₃                             | B24   |
| A881   | Н               | CH₃SO₂CH₂                                           | Ph              | CF <sub>3</sub>                 | B24   |
| A882   | Н               | CH₃                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A883   | Н               | CH₃CH₂                                              | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A884   | Н               | cyclopropyl                                         | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A885   | Н               | (CH₃)₃C                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| - A886 | H               | (CH₃)₂CH                                            | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A887   | Н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A888   | · H             | CH <sub>3</sub> OCH <sub>2</sub>                    | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A889   | н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A890   | н               | Ph                                                  | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A891   | Н               | PhO                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A892   | н               | PhS                                                 | .Ph             | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A893   | н               | PhSO                                                | Ph              | CF₃CF₂                          | B24   |
| A894   | H               | PhSO₂                                               | Ph              | CF₃CF₂                          | B24   |
| A895   | H               | CH₃S                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A896   | н               | CH₃SO                                               | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A897   | Н               | CF₃                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A898   | Н               | F₂CH                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> | B24   |
| A899   | Н               | HCC                                                 | Ph              | CF₃CF₂                          | B24   |

1

|        |                 |                                                     |                 | ,                                               |                |
|--------|-----------------|-----------------------------------------------------|-----------------|-------------------------------------------------|----------------|
| Compd. | Ŕ <sub>92</sub> | R <sub>83</sub>                                     | R <sub>94</sub> | R <sub>95</sub>                                 | Q <sub>3</sub> |
| no.    |                 |                                                     |                 |                                                 |                |
| A900   | н               | CH₃CC                                               | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A901   | н               | CH₂=CH                                              | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A902   | н               | CH <sub>2</sub> =CHCH <sub>2</sub>                  | Ph              | ĈF₃CF₂                                          | B24            |
| A903   | н               | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A904   | н               | (CH₃)₂N                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A905   | Н               | (CH <sub>3</sub> )₂NSO₂                             | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A906   | Н               | CH₃SCH₂                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A907   | . н             | CH₃SOCH₂                                            | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A908   | Н               | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>     | Ph              | CF <sub>3</sub> CF <sub>2</sub>                 | B24            |
| A909   | н               | CH <sub>3</sub>                                     | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A910   | н               | .CH₃CH₂                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A911   | н               | cyclopropyl                                         | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A912   | н               | (CH₃)₃C                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A913   | Н               | (CH₃)₂CH                                            | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A914   | н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A915   | H               | CH₃OCH₂                                             | Ph              | CF₃CF₂CF₂                                       | B24            |
| A916   | н               | CH₃O(CH₂)₂                                          | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A917   | H               | Ph                                                  | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A918   | H ·             | PhO                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A919   | H·              | PhS                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A920   | • н             | PhSO                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A921   | н               | PhSO <sub>2</sub>                                   | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A922   | н               | CH₃S                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A923   | , н             | CH₃SO                                               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A924   | . Н             | CF₃                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A925   | Н               | F₂CH                                                | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A926   | Н               | HCC                                                 | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A927   | н               | CH₃CC                                               | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A928   | н               | CH₂=CH                                              | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A929   | н               | CH₂=CHCH₂                                           | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A930   | н               | CH₃SO₂N(CH₃)                                        | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |
| A931   | Н               | (CH₃)₂N                                             | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24            |

|        |                 |                                                  |                 | •                                               |       |
|--------|-----------------|--------------------------------------------------|-----------------|-------------------------------------------------|-------|
| Compd. | R <sub>92</sub> | R <sub>93</sub>                                  | R <sub>94</sub> | R <sub>95</sub>                                 | $Q_3$ |
| no.    | •               |                                                  |                 |                                                 |       |
| A932   | Н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Ph              | CF3CF2CF2                                       | B24   |
| A933   | Н               | CH₃SCH₂                                          | Ph              | CF3CF2CF2                                       | B24   |
| A934   | H               | CH₃SOCH₂                                         | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |
| A935   | H               | CH₃SO₂CH₂                                        | Ph              | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> | B24   |
| A936   | Н               | CH₃                                              | Ph              | CF₂CI                                           | B24   |
| A937   | н               | CH₃CH₂                                           | Ph              | CF <sub>2</sub> CI                              | B24   |
| A938   | н               | cyclopropyl                                      | Ph              | CF <sub>2</sub> CI                              | B24   |
| A939   | н               | (CH₃)₃C                                          | Ph              | CF <sub>2</sub> CI                              | B24   |
| A940   | • н             | (CH₃)₂CH                                         | Ph              | CF <sub>2</sub> Ci                              | B24   |
| A941   | . Н             | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>  | Ph              | CF <sub>2</sub> CI                              | B24   |
| A942   | н               | CH₃OCH₂                                          | Ph              | CF <sub>2</sub> CI                              | B24   |
| , A943 | • н             | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Ph              | CF <sub>2</sub> CI                              | B24   |
| A944   | Н               | Ph                                               | Ph              | CF <sub>2</sub> Cl                              | B24   |
| A945   | Н               | PhO                                              | Ph              | CF <sub>2</sub> CI                              | B24   |
| A946   | H               | PhS                                              | Ph              | CF <sub>2</sub> Cl                              | B24   |
| A947   | Н               | PhSO                                             | Ph              | CF <sub>2</sub> Cl                              | B24   |
| A948   | н               | PhSO <sub>2</sub>                                | Ph              | CF <sub>2</sub> CI                              | B24   |
| A949   | н               | CH₃S                                             | Ph              | CF <sub>2</sub> CI                              | B24   |
| A950   | н               | CH₃SO                                            | Ph              | CF₂CI .                                         | B24   |
| A951   | H .             | CF₃                                              | Ph              | CF <sub>2</sub> Cl                              | B24   |
| A952   | Н               | F₂CH                                             | Ph              | CF <sub>2</sub> Cl                              | B24   |
| A953   | . н             | HCC                                              | Ph              | CF <sub>2</sub> Cl                              | B24   |
| A954   | н               | CH₃CC                                            | Ph              | CF <sub>2</sub> CI                              | B24   |
| A955   | , , <b>H</b> .  | CH <sub>2</sub> =CH                              | Ph              | CF <sub>2</sub> CI                              | B24   |
| A956   | н               | CH <sub>2</sub> =CHCH <sub>2</sub>               | Ph              | CF <sub>2</sub> CI                              | B24   |
| A957   | Н               | CH₃SO₂N(CH₃)                                     | Ph              | CF₂CI                                           | B24   |
| A958   | · H             | (CH₃)₂N                                          | Ph              | CF <sub>2</sub> CI                              | B24   |
| A959   | H               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Ph              | CF <sub>2</sub> Cl                              | B24   |
| A960   | Н               | CH₃SCH₂                                          | Ph              | CF₂CI                                           | B24   |
| A961   | Н               | CH₃SOCH₂                                         | Ph              | CF₂CI                                           | B24   |
| A962   | Н               | CH <sub>3</sub> SO₂CH₂                           | , Ph            | CF₂CI                                           | B24   |
| A963   | <b>H</b>        | CH₃                                              | Ph              | CHF₂                                            | B24   |

| Compd. | R <sub>92</sub> | R <sub>s3</sub>                                     | R <sub>94</sub> | R <sub>95</sub>  | Q₃ .       |
|--------|-----------------|-----------------------------------------------------|-----------------|------------------|------------|
| no.    | V -92           | • • • • • • • • • • • • • • • • • • •               | :               | • 135            | <b>W</b> 3 |
| A964   | н               | CH₃CH₂                                              | Ph              | CHF₂             | B24        |
| A965   | Н               | (CH₃)₃C                                             | Ph              | CHF <sub>2</sub> | B24        |
| A966   | н               | (CH₃)₂CH                                            | Ph              | CHF₂             | B24        |
| A967   | Н               | cyclopropyl                                         | Ph              | CHF <sub>2</sub> | B24        |
| A968   | Н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CHF <sub>2</sub> | B24        |
| A969   | Н               | CH₃OCH₂                                             | Ph              | CHF <sub>2</sub> | B24        |
| A970   | Н               | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub>    | Ph              | CHF <sub>2</sub> | B24        |
| A971   | н               | Ph                                                  | Ph              | CHF <sub>2</sub> | B24        |
| A972   | Н               | PhO                                                 | Ph              | CHF <sub>2</sub> | B24        |
| A973   | Н               | PhS                                                 | Ph              | CHF <sub>2</sub> | B24        |
| A974   | Н               | PhSO                                                | Ph              | CHF <sub>2</sub> | B24        |
| A975   | Н               | PhSO <sub>2</sub>                                   | Ph              | CHF <sub>2</sub> | B24        |
| A976   | Н               | CH₃S                                                | Ph              | CHF <sub>2</sub> | B24        |
| A977   | Н               | CH₃SO                                               | Ph              | CHF <sub>2</sub> | B24        |
| A978   | н               | CF₃                                                 | Ph              | CHF <sub>2</sub> | B24        |
| A979   | Н               | F <sub>2</sub> CH                                   | Ph              | CHF₂             | B24        |
| A980   | Н.              | HCC                                                 | Ph              | CHF <sub>2</sub> | B24        |
| A981   | н               | CH₃CC                                               | Ph              | CHF₂             | B24        |
| A982   | н               | CH₂=CH                                              | Ph              | CHF₂             | B24        |
| A983   | н               | CH₂=CHCH₂                                           | Ph              | CHF₂             | B24        |
| A984   | H .             | CH <sub>3</sub> SO <sub>2</sub> N(CH <sub>3</sub> ) | Ph              | CHF₂             | B24        |
| A985   | Н               | (CH <sub>3</sub> )₂N                                | Ph              | CHF <sub>2</sub> | B24        |
| A986   | Н               | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub>    | Ph              | CHF <sub>2</sub> | B24        |
| A987   | н               | CH₃SCH₂                                             | Ph              | CHF <sub>2</sub> | B24        |
| A988   | Н               | CH₃SOCH₂                                            | Ph              | CHF <sub>2</sub> | B24        |
| A989   | н               | CH₃SO₂CH₂                                           | Ph              | CHF <sub>2</sub> | B24        |
| A990   | н               | CH₃                                                 | Ph              | CCI <sub>3</sub> | B24        |
| A991   | н               | CH₃CH₂                                              | Ph              | CCl₃             | B24        |
| A992   | н               | (CH <sub>3</sub> ) <sub>3</sub> C                   | Ph              | CCI <sub>3</sub> | B24        |
| A993   | н               | (CH₃)₂CH                                            | Ph              | CCl₃             | B24        |
| A994   | н               | cyclopropyl                                         | Ph              | CCI <sub>3</sub> | B24        |
| A995   | н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub>     | Ph              | CCl₃             | B24        |
|        |                 |                                                     |                 |                  |            |

| Compd. | R <sub>92</sub>                      | R <sub>93</sub>                                  | $R_{94}$ | R <sub>95</sub>  | Qз  |
|--------|--------------------------------------|--------------------------------------------------|----------|------------------|-----|
| no.    |                                      |                                                  |          | ,                |     |
| A996   | . н                                  | CH₃OCH₂                                          | Ph       | CCI <sub>3</sub> | B24 |
| A997   | н                                    | CH <sub>3</sub> O(CH <sub>2</sub> ) <sub>2</sub> | Ph       | CCI <sub>3</sub> | B24 |
| A998   | H .                                  | Ph                                               | Ph       | CCI <sub>3</sub> | B24 |
| A999   | Н                                    | PhO                                              | Ph       | CCl <sub>3</sub> | B24 |
| A1000  | Н                                    | PhS                                              | Ph       | CCI <sub>3</sub> | B24 |
| A1001  | . н                                  | PhSO                                             | Ph       | CCl <sub>3</sub> | B24 |
| A1002  | Н                                    | PhSO <sub>2</sub>                                | Ph       | CCl <sub>3</sub> | B24 |
| A1003  | Н                                    | CH₃S                                             | Ph       | CCI <sub>3</sub> | B24 |
| A1004  | Н                                    | CH₃SO                                            | Ph       | CCI <sub>3</sub> | B24 |
| A1005  | Н                                    | CF <sub>3</sub>                                  | Ph       | CCI <sub>3</sub> | B24 |
| A1006  | н .                                  | F₂CH                                             | Ph       | CCI <sub>3</sub> | B24 |
| A1007  | Н                                    | HCC                                              | Ph       | CCI <sub>3</sub> | B24 |
| A1008  | Н                                    | CH₃CC                                            | Ph       | CCI <sub>3</sub> | B24 |
| A1009  | н                                    | CH₂=CH                                           | Ph       | CCl <sub>3</sub> | B24 |
| A1010  | H                                    | CH <sub>2</sub> =CHCH <sub>2</sub>               | Ph       | CCI <sub>3</sub> | B24 |
| A1011  | Н                                    | CH₃SO₂N(CH₃)                                     | Ph       | CCI <sub>3</sub> | B24 |
| A1012  | н .                                  | (CH₃)₂N                                          | Ph       | CCI <sub>3</sub> | B24 |
| A1013  | , н                                  | (CH <sub>3</sub> ) <sub>2</sub> NSO <sub>2</sub> | Ph       | CCl <sub>3</sub> | B24 |
| A1014  | Н                                    | CH₃SCH₂                                          | Ph       | CCl <sub>3</sub> | B24 |
| A1015  | н                                    | CH₃SOCH₂                                         | Ph       | CCI <sub>3</sub> | B24 |
| A1016  | н                                    | CH <sub>3</sub> SO <sub>2</sub> CH <sub>2</sub>  | Ph       | CCI <sub>3</sub> | B24 |
| A1017  | F                                    | Н                                                | Η.       | CF <sub>3</sub>  | B24 |
| A1018  | CI                                   | Н                                                | Н        | CF <sub>3</sub>  | B24 |
| A1019  | Br                                   | Н                                                | Н        | CF <sub>3</sub>  | B24 |
| A1020  | CN                                   | Н                                                | Н        | CF <sub>3</sub>  | B24 |
| A1021  | CH₃SO₂O                              | Н                                                | H        | CF <sub>3</sub>  | B24 |
| A1022  | CH₃O                                 | Н                                                | н        | CF <sub>3</sub>  | B24 |
| A1023  | CH₂CH₃O                              | н                                                | Н        | CF <sub>3</sub>  | B24 |
| A1024  | CH <sub>2</sub> CH=CH <sub>2</sub> O | н                                                | Ħ        | CF <sub>3</sub>  | B24 |
| A1025  | HCCCH <sub>2</sub> O                 | н                                                | Н        | CF₃              | B24 |
| A1026  | S-benzyl                             | н                                                | н        | CF₃              | B24 |
| A1027  | SO <sub>2</sub> -benzyl              | н                                                | н        | CF₃              | B24 |

| Compd. | R <sub>92</sub>                   | R <sub>s3</sub>                  | R <sub>94</sub> | R <sub>95</sub> | Q₃  |
|--------|-----------------------------------|----------------------------------|-----------------|-----------------|-----|
| no.    |                                   |                                  |                 |                 | _   |
| A1028  | CICH <sub>2</sub>                 | H ·                              | Н               | CF₃             | B24 |
| A1029  | BrCH₂                             | н                                | Н               | CF₃             | B24 |
| A1030  | FCH₂                              | . н                              | Н               | ℃F <sub>3</sub> | B24 |
| A1031  | CHF <sub>2</sub> CH <sub>2</sub>  | Н                                | н               | CF₃             | B24 |
| A1032  | CF₃CH₂                            | н                                | Н               | CF <sub>3</sub> | B24 |
| A1033  | triazolylmethyl                   | н                                | Н               | CF₃             | B24 |
| A1034  | CHCl <sub>2</sub> CH <sub>2</sub> | н                                | Н               | CF <sub>3</sub> | B24 |
| A1035  | CICH=CH                           | н                                | Н               | CF₃             | B24 |
| A1036  | Cl <sub>2</sub> C=CH              | н                                | Н               | CF₃             | B24 |
| A1037  | CF₃CH=CH                          | н                                | н               | CF <sub>3</sub> | B24 |
| A1038  | CICC                              | н .                              | . Н             | CF <sub>3</sub> | B24 |
| A1039  | Ph                                | н                                | Н               | CF <sub>3</sub> | B24 |
| A1040  | CH₃                               | СН₃                              | н               | CF₃             | B24 |
| A1041  | СН₃                               | ОН                               | н               | CF₃             | B24 |
| A1042  | СН₃                               | F                                | Н               | CF₃             | B24 |
| A1043  | CH₃                               | . <b>Cl</b> .                    | Н               | CF₃             | B24 |
| A1044  | F                                 | ·<br>CH₃                         | Н               | CF <sub>3</sub> | B24 |
| A1045  | Cl                                | CH₃                              | Н               | CF₃             | B24 |
| A1046  | н                                 | F                                | Н               | CF <sub>3</sub> | B24 |
| A1047  | н                                 | CI                               | Н               | CF <sub>3</sub> | B24 |
| A1048  | . н                               | Br                               | Н               | CF <sub>3</sub> | B24 |
| A1049  | н                                 | ОН                               | Н               | CF <sub>3</sub> | B24 |
| A1050  | н                                 | OCH₃                             | Н               | CF <sub>3</sub> | B24 |
| A1051  | н                                 | OCHF <sub>2</sub>                | н               | CF <sub>3</sub> | B24 |
| A1052  | н                                 | OSO₂CH₃                          | Н               | CF <sub>3</sub> | B24 |
| A1053  | н                                 | OSO <sub>2</sub> CF <sub>3</sub> | Н               | CF <sub>3</sub> | B24 |
| A1054  | н                                 | CICH <sub>2</sub>                | Н               | CF <sub>3</sub> | B24 |
| A1055  | н                                 | BrCH₂                            | Н               | CF <sub>3</sub> | B24 |
| A1056  | н                                 | FCH₂                             | Н               | CF₃             | B24 |
| A1057  | Н                                 | CHF <sub>2</sub> CH <sub>2</sub> | Н               | CF <sub>3</sub> | B24 |
| A1058  | н.                                | . CF₃CH₂                         | Н               | CF₃             | B24 |
| A1059  | Н                                 | triazolylmethyl                  | Н               | CF <sub>3</sub> | B24 |

| _      |                 |                                 |                 |                 |       |
|--------|-----------------|---------------------------------|-----------------|-----------------|-------|
| Compd. | R <sub>92</sub> | R <sub>93</sub>                 | R <sub>94</sub> | R <sub>95</sub> | $Q_3$ |
| no.    |                 |                                 |                 |                 |       |
| A1060  | н               | CHCl₂CH₂                        | Н               | CF₃             | B24   |
| A1061  | н               | CICH=CH                         | Н               | CF <sub>3</sub> | B24   |
| A1062  | H .             | Cl <sub>2</sub> C=CH            | Н               | CF₃             | B24   |
| A1063  | н               | CF₃CH=CH                        | н               | CF <sub>3</sub> | B24   |
| A1064  | H               | CICC                            | н               | CF <sub>3</sub> | B24   |
| A1065  | Н               | CH₃C(O)                         | н               | CF <sub>3</sub> | B24   |
| A1066  | Н               | phenyl                          | н               | CF₃             | B24   |
| A1067  | Н               | SO₂CH₃                          | Н               | CF₃             | B24   |
| A1068  | н               | SO <sub>2</sub> CF <sub>3</sub> | Н               | CF₃             | B24   |
| A1069  | · н             | CN                              | н               | CF₃             | B24   |
| A1070  | н               | NO <sub>2</sub>                 | Н               | CF₃             | B24   |
| A1071  | CH₃             | H                               | F               | CF₃             | B24   |
| A1072  | CH₃             | н                               | CI              | CF₃             | B24   |
| A1073  | CH₃             | н                               | Br              | CF <sub>3</sub> | B24   |
| A1074  | CH₃             | н                               | CN              | CF₃             | B24   |
| A1075  | CH₃             | H                               | CH₃O            | CF₃             | B24   |
| A1076  | CH₃             | н                               | CH₃S            | CF₃             | B24   |
| A1077  | CH₃             | Н                               | CH₃SO           | CF₃             | B24   |
| A1078  | CH₃ ·           | н                               | CH₃SO₂          | CF₃             | B24   |

## Table 9a: Compounds of formula lg:

| <u>Q</u> ₃ | $Q_3$ | Q₃   | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | <u>Q</u> 3 | <u>Q</u> ₃ | <u>Q</u> <sub>3</sub> | <u>Q</u> <sub>3</sub> | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | <u>Q</u> 3 |
|------------|-------|------|------------|-----------------------|------------|------------|-----------------------|-----------------------|------------|-----------------------|------------|
| B1         | B2    | В3   | B4         | B5                    | В6         | <b>B</b> 7 | B8                    | В9                    | B10        | B11                   | B12        |
| B13        | B14   | B15  | B16        | B17                   | B18        | B19        | B20                   | B21                   | B22        | B23                   | B24        |
| B25        | B26   | B27  | B28        | B29                   | B30        | B31        | B32                   | B33                   | B34        | B35                   | B36        |
| B37        | B38   | -B39 | B40        | B41                   | B42        | B43        | B44                   | B45                   | B46        | B47                   | B48        |

4.)

| $Q_3$ | <u>Q</u> <sub>3</sub> | $Q_3$ | $Q_3$ | $Q_3$ | $Q_3$ | $Q_3$ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> 3 | $Q_3$ | <u>Q</u> ₃ |
|-------|-----------------------|-------|-------|-------|-------|-------|------------|------------|------------|-------|------------|
| B49   | B50                   | B51   | B52   | B53   | B54   | B55   | B56        | B57        | B58        | B59   | B60        |
| B61   | B62                   | B63   | B64   | B65   | B66   | B67   | B68        | B69        | B70        | B71   | B72        |
| B73   | B74                   | B75   | B76   | B77   | B78   | B79   | B80        | B81        | B82        | B83   | B84        |
| B85   | B86                   | B87   | B88   | B89   | B90   | B91   | B92        | B93        | B94        | B95   | B96        |
| B97   | B98                   | B99   | B100  | B101  | B102  | B103  | B104       | B105       | B106       | B107  | B108       |
| B109  | B110                  | B111  | B112  | B113  | B114  | B115  | B116       | B117       | B118       | B119  | B120       |
| B121  | B122                  | B123  | B124  | B125  | B126  | B127  | B128       | B129       | B130       | B131  | B132       |
| B133  | B134                  | B135  | B136  | B137  | B138  | B139  | B140       | ·B141      | B142       | B143  | B144       |
| B145  | B146                  | B147  | B148  | B149  | B150  | B151  | B152       | B153       | B154       | B155  | B156       |
| B157  | B158                  | B159  | B160  | B161  | B162  | B163  | B164       | B165       | B166       | B167  | B168       |
| B169  | B170                  | B171  | B172  | B173  | B174  | B175  | B176       | B177       | B178       | B179  | B180       |
| B181  | B182                  | B183  | B184  | B185  | B186  | B187  | B188       | B189       | B190       | B191  | B192       |
| B193  | B194                  | B195  | B196  | B197  | B198  | B199  | B200       | B201       | B202       | B203  | B204       |
| B205  | B206                  | B207  | B208  | B209  | B210  | B211  | B212       | B213       | B214       | B215  | B216       |
| B217  | B218                  | B219  | B220  | B221  | B222  | B223  | B224       | B225       | B226       | B227  | B228       |
| B229  | B230                  | B231  | B232  | B233  | B234  | B235  | B236       | B237       | B238       | B239  | B240       |
| B241  | B242                  | B243  | B244  | B245  | B246  | B247  | B248       | B249       | B250       | B251  | B252       |
| B253  | B254                  | B255  | B256  | B257  | B258  | B259  | B260       | B261       | B262       | B263  | B264       |
| B265  | B266                  | B267  | B268  | B269  | B270  | B271  | B272       | B273       | B274       | B275  | B276       |
| B277  | B278                  | B279  | B280  | B281  | B282  | B283  | B284       | B285       | B286       | B287  | B288       |
| B289  | B290                  | B291  | B292  | B293  | B294  | B295  | B296       | B297       | B298       | B299  | B300       |
| B301  | B302                  | B303  | B304  | B305  | B306  | B307  | B308       | B309       | B310       | B311  | B312       |
| B313  | B314                  | B315  | B316  | B317  | B318  | B319  | B320       | B321       | B322       | B323  | B324       |
| B325  | B326                  | B327  | B328  | B329  | B330  | B331  | B332       | B333       | B334       | B335  | B336       |
| B337  | B338                  | B339  | B340  | B341  | B342  | B343  | B344       | B345       | B346       | B347  | B348       |
| B349  | B350                  | B351  | B352  | B353  | B354  | B355  | B356       | B357       | B358       | B359  | B360       |
| B361  | B362                  | B363  | B364  | B365  | B366  | B367  | B368       | B369       | B370       | B371  | B372       |
| B373  | B374                  | B375  | B376  | B377  | B378  | B379  | B380       | B381       | B382       | B383  | B384       |
| B385  | B386                  | B387  | B388  | B389  | B390  | B391  | B392       | B393       | B394       | B395  | B396       |
| B397  | B398                  | B399  | B400  | B401  | B402  | B403  | B404       | B405       | B406       | B407  | B408       |
| B409  | B410                  | B411  | B412  | B413  | B414  | B415  | B416       | B417       | B418       | B419  | B420       |
| B421  | B422                  | B423  | B424  | B425  | B426  | B427  | B428       | B429       | B430       | B431  | B432       |
| B433  | B434                  | .B435 | B436  | B437  | B438  | B439  | B440       | B441       | B442       | B443  | B444       |
|       |                       |       |       |       |       |       |            |            |            |       |            |

| $Q_3$ | $Q_3$ | <u>Q</u> ₃ | $Q_3$ | $Q_3$ | <u>Q</u> 3 | <u>Q</u> 3 | $Q_3$ | <u>Q</u> 3 | $Q_3$ | $Q_3$ | <u>Q</u> 3 |  |
|-------|-------|------------|-------|-------|------------|------------|-------|------------|-------|-------|------------|--|
| B445  | B446  | B447       | B448  | B449  | B450       | B451       | B452  | B453       | B454  | B455  | B456       |  |
| B457  | B458  | B459       | B460  | B461  | B462       | B463       | B464  | B465       | B466  | B467  | B468       |  |
| B469  | B470  | B471       | B472  | B473  | B474       | B475       | B476  | B477       | B478  | B479  | B480       |  |
| B481  | B482  | B483       | B484  | B485  | B486       | B487       | B488  | B489       | B490  | B491  | B492       |  |
| B493  | B494  | B495       | B496  | B497  | B498       | B499       | B500  | B501       | B502  | B503  | B504       |  |
| B505  | B506  | B507       | B508  | B509  | B510       | B511       | B512  | B513       | B514  | B515  | B516       |  |
| B517  | B518  | B519       | B520  | B521  | B522       | B523       | B524  | B525       | B526  | B527  | B528       |  |
| B529  | B530  | B531       | B532  | B533  | B534       | B535       | B536  | B537       | B538  | B539  | B540       |  |
| B541  | B542  | B543       | B544  | B545  | B546       | B547       | B548  | B549       | B550  | B551  | B552       |  |
| B553  | B554  | B555       | B556  | B557  | B558       | B559       | B560  | B561       | B562  | B563  | B564       |  |
| B565  | B566  | B567       | B568  | B569  | B570       | B571       | B572  | B573       | B574  | B575  | B576       |  |
| B577  | B578  | B579       | B580  | B581  | B582       | B583       | B584  | B585       | B586  | B587  | B588       |  |
| B589  | B590  | B591       | B592  | B593  | B594       | B595       | B596  | B597       | B598  | B599  | B600       |  |
| B601  | B602  | B603       | B604  | B605  | B606       | B607       | B608  | B609       | B610  | B611  | B612       |  |
| B613  | B614  | B615       | B616  | B617  | B618       | B619       | B620  | B621       | B622  | B623  | B624       |  |
| B625  | B626  | B627       | B628  | B629  | B630       | B631       | B632  | B633       | B634  | B635  | B636       |  |
| B637  | B638  | B639       | B640  | B641  | B642       | B643       | B644  | B645       | B646  | B647  | B648       |  |
| B649  | B650  | B651       | B652  | B653  | B654       | B655       | B656  | B657       | B658  | B659  | B660       |  |
| B661  | B662  | B663       | B664  | B665  | B666       | B667       | B668  | B669       | B670  | B671  | B672       |  |
| B773  | B774  | B775       | B776  | B777  | B778       | B779       | B780  | B781       | B782  | B783  | B784       |  |
| B785  | B786  | B787       | B788  | B789  | B790       | B791       | B792  | B793       | B794  | B795  | B796       |  |
| B797  | B798  | B799       | B800  | B801  | B802       | B803       | B804  | B805       | B806  | B807  | B808       |  |
| B809  | B810  | B811       | B812  | B813  | B814       | B815       | B816  | B817       | B818  | B819  | B820       |  |
| B821  | B822  | B823       | B824  | B825  | B826       | B827       | B828  | B829       | B830  | B831  | B832       |  |
| B833  | B834  | B835       | B836  | B837  | B838       | B839       | B840  | B841       | B842  | B843  | B844       |  |
| B845  | B846  | B847       | B848  | B849  | B850       | B851       | B852  | B853       | B854  | B855  | B856       |  |
| B857  | B858  | B859       | B860  | B861  | B862       | B863       | B864  | B865       | B866  | B867  | B868       |  |
| B869  | B870  | B871       | B872  | B873  | B874       | B875       | B876  | B877       | B878  | B879  | B880       |  |
| B881  | B882  | B883       | B884  | B885  | B886       | B887       | B888  | B889       | B890  | B891  | B892       |  |
| B893  | B894  | B895       | B896  | B897  | B898       | B899       | B900  | B901       | B902  | B903  | B904       |  |
| B905  | B906  | B907       | B908  | B909  | B910       | B911       | B912  | B913       | B914  | B915  | B916       |  |
| B917  | B918  | B919       | B920  | B921  | B922       | B923       | B924  | B925       | B926  | B927  | B928       |  |
| B929  | B930  | .B931      | B932  | B933  | B934       | B935       | B936  | B937       | B938  | B939  | B940       |  |

WO 01/54501

 $Q_3$ <u>Q</u>₃ <u>Q</u>3 <u>Q</u>₃ <u>Q</u>₃ <u>Q</u>3  $Q_3$  $Q_3$ <u>Q</u><sub>3</sub>  $Q_3$  $Q_3$  $Q_3$ **B941** B942 B943 B944 **B945 B946 B947 B948** B949 B950 B951 B952 B953 B954 B955 B956 B957 B959 **B958 B960** B961 B962 **B963 B964** B965 B966 B967 B968 **B**969 B970 B971 **B972 B973 B974** B975 **B976 B977 B978** B979 B980 B982 B983 **B984** B981 B985 ~B986 B987 **B988 B989** B990 B991 B992 B993 **B994** B995 **B996 B997 B998** B999 B1000 B1001 B1002 B1003 B1004 B1005 B1006 B1007 B1008 B1009 B1010 B1011 B1012 B1013 B1014 B1015 B1016 B1017 B1018 B1019 B1020 B1021 B1022 B1023 B1024 B1025 B1026 B1027 B1028 B1029 B1030 B1031 B1032 B1033 B1034 B1035 B1036 B1037 B1038 B1039 B1040 B1041 B1042 B1043 B1044 B1045 B1046 B1047 B1048 B1049 B1050 B1051 B1052 B1053 B1054 B1055 B1056 B1057 B1058 B1059 B1060 B1061 B1062 B1063 B1064 B1065 B1066 B1067 B1068 B1069 B1070 B1071 B1072 B1073 B1074 B1075 B1076 B1077 B1078 B1079 B1080 B1081 B1082 B1083

Table 10: Compounds of formula Ih:

 $\{\ \}$ 

 $Q_3$ <u>Q</u>₃  $Q_3$ <u>Q</u>3  $Q_3$  $Q_3$  $Q_3$ Q₃ <u>Q</u>₃ <u>Q</u>3 <u>Q</u>3 <u>Q₃</u> **B1** B<sub>2</sub> **B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B32 B31 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B44 B43 B45 B46 B47 B48** B49 **B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60** B63 **B61 B62 B64 B65 B66 B67 B68 B69 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B90 B91 B92 B93 B94 B95 B96 B97 B98 B99 B100** B101 B102 B103 **B104** B105 B106 B107 **B108** B109 B110 B111 B115 B116 B112 B113 B114 **B117 B118** B119 B120 **B121 B122 B123 B124** B127 B125 B126 **B128 B129** B130 B131 B132 B133 B134 B135 B136 B137 B138 B139 **B140 B141** B142 B143

|            | •                          |       | •          |            |                       |            |            |       |            |            |       |
|------------|----------------------------|-------|------------|------------|-----------------------|------------|------------|-------|------------|------------|-------|
| <u>Q</u> 3 | $\underline{\mathbf{Q}_3}$ | $Q_3$ | <u>Q</u> ₃ | <u>Q</u> ₃ | <u>Q</u> <sub>3</sub> | <u>Q</u> ₃ | <u>Q</u> ₃ | $Q_3$ | <u>Q</u> 3 | <u>Q</u> ₃ | $Q_3$ |
| B145       | B146                       | B147  | B148       | B149       | B150                  | B151       | B152       | B153  | B154       | B155       | B156  |
| B157       | B158                       | B159  | B160       | B161       | B162                  | B163       | B164       | B165  | B166       | B167       | B168  |
| B169       | B170                       | B171  | B172       | B173       | B174                  | B175       | B176       | B177  | B178       | B179       | B180  |
| B181       | B182                       | B183  | B184       | B185       | B186                  | B187       | B188       | B189  | B190       | B191       | B192  |
| B193       | B194                       | B195  | B196       | B197       | B198                  | B199       | B200       | B201  | B202       | B203       | B204  |
| B205       | B206                       | B207  | B208       | B209       | B210                  | B211       | B212       | B213  | B214       | B215       | B216  |
| B217       | B218                       | B219  | B220       | B221       | B222                  | B223       | B224       | B225  | B226       | B227       | B228  |
| B229       | B230                       | B231  | B232       | B233       | B234                  | B235       | B236       | B237  | B238       | B239       | B240  |
| B241       | B242                       | B243  | B244       | B245       | B246                  | B247       | B248       | B249  | B250       | B251       | B252  |
| B253       | B254                       | B255  | B256       | B257       | B258                  | B259       | B260       | B261  | B262       | B263       | B264  |
| B265       | B266                       | B267  | B268       | B269       | B270                  | B271       | B272       | B273  | B274       | B275       | B276  |
| B277       | B278                       | B279  | B280       | B281       | B282                  | B283       | B284       | B285  | B286       | B287       | B288  |
| B289       | B290                       | B291  | B292       | B293       | B294                  | B295       | B296       | B297  | B298       | B299       | B300  |
| B301       | B302                       | B303  | B304       | B305       | B306                  | B307       | B308       | B309  | B310       | B311       | B312  |
| B313       | B314                       | B315  | B316       | B317       | B318                  | B319       | B320       | B321  | B322       | B323       | B324  |
| B325       | B326                       | B327  | B328       | B329       | B330                  | B331       | B332       | B333  | B334       | B335       | B336  |
| B337       | B338                       | B339  | B340       | B341       | B342                  | B343       | B344       | B345  | B346       | B347       | B348  |
| B349       | B350                       | B351  | B352       | B353       | B354                  | B355       | B356       | B357  | B358       | B359       | B360  |
| B361       | B362                       | B363  | B364       | B365       | B366                  | B367       | B368       | B369  | B370       | B371       | B372  |
| B373       | B374                       | B375  | B376       | B377       | B378                  | B379       | B380       | B381  | B382       | B383       | B384  |
| B385       | B386                       | B387  | B388       | B389       | B390                  | B391       | B392       | B393  | B394       | B395       | B396  |
| B397       | B398                       | B399  | B400       | B401       | B402                  | B403       | B404       | B405  | B406       | B407       | B408  |
| B409       | B410                       | B411  | B412       | B413       | B414                  | B415       | B416       | B417  | B418       | B419       | B420  |
| B421       | B422                       | B423  | B424       | B425       | B426                  | B427       | B428       | B429  | B430       | B431       | B432  |
| B433       | B434                       | B435  | B436       | B437       | B438                  | B439       | B440       | B441  | B442       | B443       | B444  |
| B445       | B446                       | B447  | B448       | B449       | B450                  | B451       | B452       | B453  | B454       | B455       | B456  |
| B457       | B458                       | B459  | B460       | B461       | B462                  | B463       | B464       | B465  | B466       | B467       | B468  |
| B469       | B470                       | B471  | B472       | B473       | B474                  | B475       | B476       | B477  | B478       | B479       | B480  |
| B481       | B482                       | B483  | B484       | B485       | B486                  | B487       | B488       | B489  | B490       | B491       | B492  |
| B493       | B494                       | B495  | B496       | B497       | B498                  | B499       | B500       | B501  | B502       | B503       | B504  |
| B505       | B506                       | B507  | B508       | B509       | B510                  | B511       | B512       | B513  | B514       | B515       | B516  |
| B517       | B518                       | B519  | B520       | B521       | B522                  | B523       | B524       | B525  | B526       | B527       | B528  |
| B529       | B530                       | B531  | B532       | B533       | B534                  | B535       | B536       | B537  | B538       | B539       | B540  |

 $Q_3$ <u>Q</u>3  $Q_3$  $Q_3$  $Q_3$ <u>Q</u>₃ <u>Q</u>3 <u>Q</u>3  $Q_3$ <u>Q</u>3  $Q_3$  $Q_3$ **B546 B541** B542 **B543 B544 B545 B547 B548 B549** B550 B551 B552 B553 B554 B555 **B556 B557** B558 **B559 B560** B561 **B562 B563 B564** B565 **B566 B567 B568 B569 B570** B571 B572 **B573 B574 B575 B576 B577 B578 B579** B580 B581 B582 **B583** B584 B585 **B**586 **B587 B588 B589 B590 B591 B592 B593** B594 B595 **B596 B597 B598 B599 B600** B601 B602 **B603** B604 B605 B606 **B607 B608 B609** B610 B611 B612 B613 **B614** B615 B616 B617 B618 B619 B620 B621 B622 B623 B624 B625 B626 B627 B628 **B629 B630** B631 B632 B633 B634 B635 B636 B637 **B638** B639 **B640** B641 B642 B644 B643 B645 B646 B647 **B648** B649 B650 B651 B652 B653 B654 B656 B655 **B657** B658 B659 **B660** B661 B662 B663 **B664** B665 **B666** B667 **B668 B669 B670 B671** B672 **B774 B773 B775 B776 B777 B778 B779 B780 B781** B782 **B783 B784 B785 B786 B787 B788 B789 B790 B791** B792 **B793 B794** B795 **B796 B797 B798 B799 B800 B801** B802 B803 B804 **B805 B806 B807 B808** B809 **B810** B811 B812 **B813 B814** B818 **B815 B816 B817 B819 B820** B821 B822 B823 **B824** B825 **B826 B827 B828 B829 B830 B831 B832** B833 **B834** B835 **B836 B837 B838 B839 B840 B841** B842 **B844 B843** B845 **B846 B847 B848 B849 B850** B851 B852 **B853 B854 B855 B856** B857 **B858 B859 B860 B861** B862 B863 **B864 B865 B866 B867 B868 B869 B870 B**371 **B872 B873 B874 B875 B876 B877 B878 B879 B880 B881** B882 **B883 B884 B885 B886 B887 B888 B889 B890 B891 B892 B893 B894** B895 **B896 B897 B898 B899 B900 B901 B902 B903 B904** B905 **B906 B907** B908 **B909 B910 B911** B912 **B913 B914 B915 B916** B917 **B918 B919 B920** B921 B922 **B924** B923 B925 **B926** B927 **B928 B929 B930** B931 **B932 B933 B934 B935 B936 B937 B938 B939 B940 B941** B942 **B943 B944** B945 **B946** B947 **B948 B949 B950** B951 B952 B953 **B954 B955 B956 B957** B958 **B959 B960** B961 B962 **B963 B964** B966 **B965 B967 B968 B969** B970 B971 **B972 B973 B974 B975 B976 B977 B978 B979** B980 **B981** B982 B983 **B984 B985 B986 B987 B988 B989 B990 B991** B992 **B993 B994 B995 B996** B997 **B998 B999** B1000 B1001 B1002 B1003 B1004 B1005 B1006 B1007 B1008 B1009 B1010 B1011 B1012 B1013 B1014 B1015 B1016 B1017 B1018 B1019 B1020 B1021 B1022 B1023 B1024 B1025 B1026 B1027 B1028 B1029 B1030 B1031 B1032 B1033 B1034 B1035 B1036

{

()

**B217** 

B229

B218

B230 B231

B219

B220

B232

B221

B233

**B222** 

**B234** 

B223

B235

**B224** 

B236

**B225** 

**B237** 

**B226** 

**B238** 

B227

B239

**B228** 

B240

 $Q_3$  $Q_3$ <u>Q₃</u>  $Q_3$  $Q_3$ <u>Q₃</u>  $Q_3$  $Q_3$  $Q_3$  $Q_3$ <u>Q</u>₃  $Q_3$ B1037 B1038 B1039 B1040 B1041 B1042 B1043 B1044 B1045 B1046 B1047 B1048 B1049 B1050 B1051 B1052 B1053 B1054 B1055 B1056 B1057 B1058 B1059 B1060 B1061 B1062 B1063 B1064 B1065 B1066 B1067 B1068 B1069 B1070 B1071 B1072 B1073 B1074 B1075 B1076 B1077 B1078 B1079 B1080 B1081 B1082 B1083

Table 11: Compounds of formula Ik:

¥ . ;

( )

<u>Q</u>3  $Q_3$  $Q_3$  $Q_3$  $Q_3$  $Q_3$ <u>Q₃</u>  $Q_3$ <u>Q</u>₃ <u>Q</u>₃  $Q_3$ <u>Q</u>3 **B244 B245 B246 B247 B248** B249 B250 B251 B252 **B241 B242 B243** B254 B255 **B256** B257 **B258 B259** B260 B261 **B262** B263 **B264** B253 **B265 B266** B267 **B268 B269 B270 B271 B272 B273 B274 B275 B276** B285 **B286 B287 B283** B284 **B277 B278 B279 B280** B281 **B282 B288 B289** B290 B291 B292 **B293** B294 **B295 B296 B297 B298 B299 B300** B301 B302 **B303 B304 B305 B306 B307 B308 B309 B310 B311** B312. **B320 B322 B314 B315 B316 B318 B319 B321 B323 B324 B313 B317 B325 B326 B330 B331 B332 B333 B334 B327 B328 B329 B335 B336 B338 B341 B342 B343 B344 B345 B346 B347 B337 B339 B340 B348 B349 B350 B351 B352 B353 B354 B355 B356 B357 B358 B359 B360** B362 **B364 B365 B366 B367 B368 B370 B361 B363 B369 B371 B372 B374 B376 B377 B378 B379 B380 B381** B382 **B383 B384 B373 B375 B388 B389 B390 B391 B385 B386 B387 B392 B393 B394 B395 B396** B403 **B404 B397 B398 B399 B400 B401** B402 B405 **B406 B407 B408 B409 B420 B410 B411** B412 B413 **B414** B415 B416 **B417** B418 **B419** B421 B422 **B423 B424 B425** B426 **B427 B428** B429 B430 **B431** B432 **B433 B434 B435 B436 B437 B438 B439 B440** B441 B442 **B443 B444 B445 B446 B448 B449** B450 B451 B452 B453 **B454** B455 **B456 B447** B457 **B458 B459 B460 B461** B462 B463 **B464 B465 B466 B467 B468 B469 B470 B471 B472 B475 B476 B477 B478 B479 B480 B473 B474** B481 **B482 B483 B484** B485 **B486 B487 B488 B489 B490 B491 B492** B493 **B494 B496 B499** B502 **B503 B504** B495 **B497 B498 B500** B501 B505 **B506 B507 B508 B509 B510 B511** B512 B513 **B514 B515 B516** B518 **B528** B517 B519 **B520** B521 B522 B523 **B524 B525 B526 B527 B529** B530. B535 **B538** B539 **B540 B531 B532 B533 B534** B536 **B537 B541** B542 **B543 B544 B545 B546 B547 B548 B549** B550 B551 **B552** B553 **B554** B562 **B563 B564 B555 B556 B557 B558** B559 **B560 B**561 **B565 B566 B576 B567 B568 B569 B570** B571 **B572 B573 B574 B575 B577 B578 B579 B580 B581** B582 **B583** B584 B585 **B586 B587 B588 B589 B590** B591 **B592 B593 B594 B595 B598 B599 B600 B596 B597** B601 B602 **B604 B606** B607 **B610** B611 **B603 B605 B608 B609 B612** B613 **B614** B615 B616 **B617 B619** B620 B621 B622 B623 B624 **B618** B625 B626 .... B627 B628 B629 **B630** B631 B632 **B633 B634** B635 **B636** 

| <u>Q</u> ₃ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> ₃ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> ₃ | <u>Q</u> 3 | $Q_3$ | <u>Q</u> ₃ | <u>Q</u> ₃ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------|------------|------------|
| B637       | B638       | B639       | B640       | B641       | B642       | B643       | B644       | B645       | B646  |            | B648       |
| B649       | B650       | B651       | B652       | B653       | B654       | B655       | B656       | B657       | B658  | B659       | B660       |
| B661       | B662       | B663       | B664       | B665       | B666       | B667       | B668       | B669       | B670  | B671       | B672       |
| B773       | B774       | B775       | B776       | B777       | B778       | B779       | B780       | B781       | B782  | B783       | B784       |
| B785       | B786       | B787       | B788       | B789       | B790       | B791       | B792       | B793       | B794  | B795       | B796       |
| B797       | B798       | B799       | B800       | B801       | B802       | B803       | B804       | B805       | B806  | B807       | B808       |
| B809       | B810       | B811       | B812       | B813       | B814       | B815       | B816       | B817       | B818  | B819       | B820       |
| B821       | B822       | B823       | B824       | B825       | B826       | B827       | B828       | B829       | B830  | B831       | B832       |
| B833       | B834       | B835       | B836       | B837       | B838       | B839       | B840       | B841       | B842  | B843       | B844       |
| B845       | B846       | B847       | B848       | B849       | B850       | B851       | B852       | B853       | B854  | B855       | B856       |
| B857       | B858       | B859       | B860       | B861       | B862       | B863       | B864       | B865       | B866  | B867       | B868       |
| B869       | B870       | B871       | B872       | B873       | B874       | B875       | B876       | B877       | B878  | B879       | B880       |
| B881       | B882       | B883       | B884       | B885       | B886       | B887       | B888       | B889       | B890  | B891       | B892       |
| B893       | B894       | B895       | B896       | B897       | B898       | B899       | B900       | B901       | B902  | B903       | B904       |
| B905       | B906       | B907       | B908       | B909       | B910       | B911       | B912       | B913       | B914  | B915       | B916       |
| B917       | B918       | B919       | B920       | B921       | B922       | B923       | B924       | B925       | B926  | B927       | B928       |
| B929       | B930       | B931       | B932       | B933       | B934       | B935       | B936       | B937       | B938  | B939       | B940       |
| B941       | B942       | B943       | B944       | B945       | B946       | B947       | B948       | B949       | B950  | B951       | B952       |
| B953       | B954       | B955       | B956       | B957       | B958       | B959       | B960       | B961       | B962  | B963       | B964       |
| B965       | B966       | B967       | B968       | B969       | B970       | B971       | B972       | B973       | B974  | B975       | B976       |
| B977       | B978       | B979       | B980       | B981       | B982       | B983       | B984       | B985       | B986  | B987       | B988       |
| B989       | B990       | B991       | B992       | B993       | B994       | B995       | B996       | B997       | B998  | B999       | B1000      |
| B1001      | B1002      | B1003      | B1004      | B1005      | B1006      | B1007      | B1008      | B1009      | B1010 | B1011      | B1012      |
| B1013      | B1014      | B1015      | B1016      | B1017      | B1018      | B1019      | B1020      | B1021      | B1022 | B1023      | B1024      |
| B1025      | B1026      | B1027      | B1028      | B1029      | B1030      | B1031      | B1032      | B1033      | B1034 | B1035      | B1036      |
| B1037      | B1038      | B1039      | B1040      | B1041      | B1042      | B1043      | B1044      | B1045      | B1046 | B1047      | B1048      |
|            |            | B1051      |            |            |            |            |            |            |       |            |            |
|            |            | B1063      |            |            |            |            |            |            |       |            |            |
| B1073      | B1074      | B1075      | B1076      | B1077      | B1078      | B1079      | B1080      | B1081      | B1082 | B1083      |            |

Table 12: Compounds of formula Im:

|                  |            | 0               |      |
|------------------|------------|-----------------|------|
| [                |            | Q <sub>3</sub>  | (lm) |
| CCI <sub>3</sub> | <b>N</b> / | CH <sub>3</sub> |      |

|            |              |            |                       |                       |            |       |            |                       | ·                     |                       |            |
|------------|--------------|------------|-----------------------|-----------------------|------------|-------|------------|-----------------------|-----------------------|-----------------------|------------|
| <u>Q</u> 3 | <u>Q</u> 3   | <u>Q</u> ₃ | <u>Q</u> <sub>3</sub> | <u>Q</u> <sub>3</sub> | <u>Q</u> 3 | $Q_3$ | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | <u>Q</u> <sub>3</sub> | <u>Q</u> <sub>3</sub> | <u>Q</u> 3 |
| B1         | B2           | В3         | B4                    | B5                    | B6         | B7    | B8         | B9                    | B10                   | B11                   | B12        |
| B13        | B14          | B15        | B16                   | B17                   | B18        | B19   | B20        | B21                   | B22                   | B23                   | B24        |
| B25        | B26          | B27        | B28                   | B29                   | B30        | B31   | B32        | B33                   | B34                   | B35                   | B36        |
| B37        | <b>B38</b> . | B39        | B40                   | B41                   | B42        | B43   | B44        | B45                   | B46                   | B47                   | B48        |
| B49        | B50          | B51        | B52                   | B53                   | B54        | B55   | B56        | B57                   | B58                   | . <b>B59</b>          | B60        |
| B61 ·      | B62          | B63        | B64                   | B65                   | B66        | B67   | B68        | B69                   | <b>B</b> 70           | B71                   | B72        |
| B73        | B74          | B75        | B76                   | B77                   | B78        | B79   | B80        | B81                   | B82                   | B83                   | B84        |
| B85        | B86          | B87        | B88                   | B89                   | B90        | B91   | B92        | B93                   | B94                   | B95                   | B96        |
| B97        | B98          | B99        | B100                  | B101                  | B102       | B103  | B104       | B105                  | B106                  | B107                  | B108       |
| B109       | B110         | B111       | B112                  | B113                  | B114       | B115  | B116       | B117                  | B118                  | B119                  | B120       |
| B121       | B122         | B123       | B124                  | B125                  | B126       | B127  | B128       | B129                  | B130                  | B131                  | B132       |
| B133       | B134         | B135       | B136                  | B137                  | B138       | B139  | B140       | B141                  | B142                  | B143                  | B144       |
| B145       | B146         | B147       | B148                  | B149                  | B150       | B151  | B152       | B153                  | B154                  | B155                  | B156       |
| B157       | B158         | B159       | B160                  | B161                  | B162       | B163  | B164       | B165                  | B166                  | B167                  | B168       |
| B169       | B170         | B171       | B172                  | B173                  | B174       | B175  | B176       | B177                  | B178                  | B179                  | B180       |
| B181       | B182         | B183       | B184                  | B185                  | B186       | B187  | B188       | B189                  | B190                  | B191                  | B192       |
| B193       | B194         | B195       | B196                  | B197                  | B198       | B199  | B200       | B201                  | B202                  | B203                  | B204       |
| B205       | B206         | B207       | B208                  | B209                  | B210       | B211  | B212       | B213                  | B214                  | B215                  | B216       |
| B217       | B218         | B219       | B220                  | B221                  | B222       | B223  | B224       | B225                  | B226                  | B227                  | B228       |
| B229       | B230         | B231       | B232                  | B233                  | B234       | B235  | B236       | B237                  | B238                  | B239                  | B240       |
| B241       | B242         | B243       | B244                  | B245                  | B246       | B247  | B248       | B249                  | B250                  | B251                  | B252       |
| B253       | B254         | B255       | B256                  | B257                  | B258       | B259  | B260       | B261                  | B262                  | B263                  | B264       |
| B265       | B266         | B267       | B268                  | B269                  | B270       | B271  | B272       | B273                  | B274                  | B275                  | B276       |
| B277       | B278         | B279       | B280                  | B281                  | B282       | B283  | B284       | B285                  | B286                  | B287                  | B288       |
| B289       | B290         | B291       | B292                  | B293                  | B294       | B295  | B296       | B297                  | B298                  | B299                  | B300       |
| B301       | B302         | B303       | B304                  | B305                  | B306       | B307  | B308       | B309                  | B310                  | B311                  | B312       |
| B313       | B314         | B315       | B316                  | B317                  | B318       | B319  | B320       | B321                  | B322                  | B323                  | B324       |

()

1

· . •

 $Q_3$  $Q_3$  $Q_3$  $Q_3$  $Q_3$  $Q_3$  $Q_3$ <u>Q</u>3  $Q_3$ <u>Q</u>₃  $Q_3$ <u>Q</u>3 **B325 B326 B327 B328 B329 B330 B331** B332 **B333 B334 B335 B336 B337 B338 B339 B340 B341 B342 B343 B344 B345 B346 B347 B348 B349 B350** B351 **B352 B353** B354 **B355 B356 B357 B358** B359 **B360 B361 B362 B363 B364 B365 B366 B367 B368** B369 **B370 B371 B372 B373 B374 B375 B376 B377 B378 B379 B380 B381** B382 **B383 B384 B385 B386** B387 · B388 **B389 B390 B391 B392 B393 B394 B395 B396 B397 B398 B399** B400 B401 B402 B403 **B404 B405 B406** B407 **B408 B409 B410** B411 B412 B413 **B414 B415 B416 B417** B418 B419 **B420** B421 B422 B423 **B424** B425 B426 **B427 B428** B429 B430 B431 B432 **B433 B434 B435 B436 B437 B438** B439 **B440** B441 B442 **B443 B444 B445 B446 B447 B448 B449** B450 B451 B452 B453 B454 **B455** B456 **B457 B458** B459 **B460 B461** B462 B463 **B464 B465 B466 B467 B468** B469 **B470 B471** B472 **B473 B474 B475 B476 B477 B478 B479 B480 B481** B482 B483 **B484** B485 **B486 B487 B488 B489** B490 **B491** B492 **B493 B494** B495 B496 **B497** B498 **B499 B500** B501 **B502 B503 B504 B505** B506 B507 **B508 B509** B510 B511 B512 B513 **B514** B515 **B516** B517 **B518** B519 **B520** B521 B522 **B523 B524 B525 B526 B527 B528** B529 B531 **B530** B532 B533 B534 **B535 B536 B537 B538** B539 **B540** B541 B542 **B543 B544 B545 B546** B547 **B548 B549 B550** B551 B552 **B553 B554 B555 B556 B557 B558** B559 **B560 B561** B562 B563 **B564 B565 B566 B567 B568 B569 B570 B571 B572 B573 B574 B575 B576 B577 B578 B579** B580 B581 B582 B583 **B584 B585 B586 B587 B588 B589 B590** B591 B592 **B593 B594 B595 B596 B597 B598 B599 B600** B601 B602 B603 **B604 B605 B606 B607 B608 B609 B610 B611** B612 B613 B614 B615 **B616 B617** B618 **B619 B620** B621 B622 B623 B624 B625 B626 **B627** B628 B629 **B630** B631 B632 B633 B634 B635 **B636 B637 B638 B639 B640 B641** B642 **B643 B644 B645 B646 B647 B648 B649 B650** B651 B652 B653 B654 B655 B656 B657 **B658** B659 **B660** B661 B662 **B663 B664 B665 B666 B667 B668 B669 B670** B671 B672 **B773 B774 B775 B776 B777 B778 B779 B780 B781 B782 B783 B784 B785 B786 B787 B788 B789 B790 B791 B792 B793 B794 B795 B796 B797 B798 B799 B800** B801 B802 B803 **B804** B805 **B806 B807 B808 B809** B810 - B811 **B812 B813 B814** B815 **B816 B817 B818 B819** B820

|                   |            |       |       |            |            |            |       |       | -          |       |            |
|-------------------|------------|-------|-------|------------|------------|------------|-------|-------|------------|-------|------------|
| $\underline{Q}_3$ | <u>Q</u> 3 | $Q_3$ | $Q_3$ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> ₃ | $Q_3$ | $Q_3$ | <u>Q</u> ₃ | $Q_3$ | $\Omega_3$ |
| B821              | B822       | B823  | B824  | B825       | B826       | B827       | B828  | B829  | B830       | B831  | B832       |
| B833              | B834       | B835  | B836  | B837       | B838       | B839       | B840  | B841  | B842       | B843  | B844       |
| B845              | B846       | B847  | B848  | B849       | B850       | B851       | B852  | B853  | B854       | B855  | B856       |
| B857              | B858       | B859  | B860  | B861       | . B862     | B863       | B864  | B865  | B866       | B867  | B868       |
| B869              | B870       | B871  | B872  | B873       | B874       | B875       | B876  | B877  | B878       | B879  | B880       |
| B881              | B882       | B883  | B884  | B885       | B886       | B887       | B888  | B889  | B890       | B891  | B892       |
| B893              | B894       | B895  | B896  | B897       | B898       | B899       | B900  | B901  | B902       | B903  | B904       |
| B905              | B906       | B907  | B908  | . B909     | B910       | B911       | B912  | B913  | B914       | B915  | B916       |
| B917              | B918       | B919  | B920  | B921       | B922       | B923       | B924  | B925  | B926       | B927  | B928       |
| B929              | B930       | B931  | B932  | B933       | B934       | B935       | B936  | B937  | B938       | B939  | B940       |
| B941              | B942       | B943  | B944  | B945       | B946       | B947       | B948  | B949  | B950       | B951  | B952       |
| B953              | B954       | B955  | B956  | B957       | B958       | B959       | B960  | B961  | B962       | B963  | B964       |
| B965              | B966       | B967  | B968  | B969       | B970       | B971       | B972  | B973  | B974       | B975  | B976       |
| B977              | B978       | B979  | B980  | B981       | B982       | B983       | B984  | B985  | B986       | B987  | B988       |
| B989              | B990       | B991  | B992  | B993       | B994       | B995       | B996  | B997  | B998       | B999  | B1000      |
| B1001             | B1002      | B1003 | B1004 | B1005      | B1006      | B1007      | B1008 | B1009 | B1010      | B1011 | B1012      |
| B1013             | B1014      | B1015 | B1016 | B1017      | B1018      | B1019      | B1020 | B1021 | B1022      | B1023 | B1024      |
| B1025             | B1026      | B1027 | B1028 | B1029      | B1030      | B1031      | B1032 | B1033 | B1034      | B1035 | B1036      |
| B1037             | B1038      | B1039 | B1040 | B1041      | B1042      | B1043      | B1044 | B1045 | B1046      | B1047 | B1048      |
| B1049             | B1050      | B1051 | B1052 | B1053      | B1054      | B1055      | B1056 | B1057 | B1058      | B1059 | B1060      |
| B1061             | B1062      | B1063 | B1064 | B1065      | B1066      | B1067      | B1068 | B1069 | B1070      | B1071 | B1072      |
| B1073             | B1074      | B1075 | B1076 | B1077      | B1078      | B1079      | B1080 | B1081 | B1082      | B1083 |            |

Table 13: Compounds of formula In:

<u>Q</u>3 <u>Q</u>3 <u>Q</u>3 <u>Q</u>3 <u>Q</u>3 <u>Q</u>3 <u>Q</u>3 <u>Q</u>₃ <u>Q</u>₃ <u>Q</u>3  $Q_3$ <u>Q</u>₃ B1 **B7** B2 **B3 B4 B**5 B10 **B6 B8 B9** B11 B12 B13 B14 B15 B16 **B17 B18 B**19 **B20 B21 B22 B23 B24** 

| $\Omega_3$ | <u>Q</u> 3 | <u>Q</u> 3 | $Q_3$ | $Q_3$ | $Q_3$ | $Q_3$ | <u>Q</u> 3 | $\underline{Q}_3$ | $\overline{Q_3}$ | $Q_3$ | <u>Q</u> ₃ |
|------------|------------|------------|-------|-------|-------|-------|------------|-------------------|------------------|-------|------------|
| B25        | B26        | B27        | B28   | B29   | B30   | B31   | B32        | B33               | B34              | B35   | B36        |
| B37        | B38        | B39        | B40   | B41   | B42   | B43   | B44        | B45               | B46              | B47   | B48        |
| B49        | B50        | B51        | B52   | B53   | B54   | B55   | B56        | B57               | B58              | B59   | B60        |
| B61        | B62        | B63        | B64   | B65   | B66   | B67   | B68        | B69               | B70              | B71   | B72        |
| B73        | B74        | B75        | B76   | B77   | B78   | B79   | B80        | B81               | B82              | B83   | B84        |
| B85        | B86        | B87        | B88   | B89   | B90   | B91   | B92        | B93               | B94              | B95   | B96        |
| B97        | B98        | B99        | B100  | B101  | B102  | B103  | B104       | B105              | B106             | B107  | B108       |
| B109       | B110       | B111       | B112  | B113  | B114  | B115  | B116       | B117              | B118             | B119  | B120       |
| B121       | B122       | B123       | B124  | B125  | B126  | B127  | B128       | B129              | B130             | B131  | B132       |
| B133       | B134       | B135       | B136  | B137  | B138  | B139  | B140       | B141              | B142             | B143  | B144       |
| B145       | B146       | B147       | B148  | B149  | B150  | B151  | B152       | B153              | B154             | B155  | B156       |
| B157       | B158       | B159       | B160  | B161  | B162  | B163  | B164       | B165              | B166             | B167  | B168       |
| B169       | B170       | B171       | B172  | B173  | B174  | B175  | B176       | B177              | B178             | B179  | B180       |
| B181       | B182       | B183       | B184  | B185  | B186  | B187  | B188       | B189              | B190             | B191  | B192       |
| B193       | B194       | B195       | B196  | B197  | B198  | B199  | B200       | B201              | B202             | B203  | B204       |
| B205       | B206       | B207       | B208  | B209  | B210  | B211  | B212       | B213              | B214             | B215  | B216       |
| B217       | B218       | B219       | B220  | B221  | B222  | B223  | B224       | B225              | B226             | B227  | B228       |
| B229       | B230       | B231       | B232  | B233  | B234  | B235  | B236       | B237              | B238             | B239  | B240       |
| B241       | B242       | B243       | B244  | B245  | B246  | B247  | B248       | B249              | B250             | B251  | B252       |
| B253       | B254       | B255       | B256  | B257  | B258  | B259  | B260       | B261              | B262             | B263  | B264       |
| B265       | B266       | B267       | B268  | B269  | B270  | B271  | B272       | B273              | B274             | B275  | B276       |
| B277       | B278       | B279       | B280  | B281  | B282  | B283  | B284       | B285              | B286             | B287  | .B288      |
| B289       | B290       | B291       | B292  | B293  | B294  | B295  | B296       | B297              | B298             | B299  | B300       |
| B301       | B302       | B303       | B304  | B305  | B306  | B307  | B308       | B309              | B310             | B311  | B312       |
| B313       | B314       | B315       | B316  | B317  | B318  | B319  | B320       | B321              | B322             | B323  | B324       |
| B325       | B326       | B327       | B328  | B329  | B330  | B331  | B332       | B333              | B334             | B335  | B336       |
| B337       | B338       | B339       | B340  | B341  | B342  | B343  | B344       | B345              | B346             | B347  | B348       |
| B349       | B350       | B351       | B352  | B353  | B354  | B355  | B356       | B357              | B358             | B359  | B360       |
| B361       | B362       | B363       | B364  | B365  | B366  | B367  | B368       | B369              | B370             | B371  | B372       |
| B373       | B374       | B375       | B376  | B377  | B378  | B379  | B380       | B381              | B382             | B383  | B384       |
| B385       | B386       | B387       | B388  | B389  | B390  | B391  | B392       | B393              | B394             | B395  | B396       |
| B397       | B398       | B399       | B400  | B401  | B402  | B403  | B404       | B405              | B406             | B407  | B408       |
| B409       | B410       | B411       | B412  | B413  | B414  | B415  | B416       | B417              | B418             | R419  | R420       |

:

( )

<u>Q</u>3  $Q_3$ <u>Q</u>3  $Q_3$ <u>Q</u>3  $Q_3$  $Q_3$ <u>Q</u>3  $Q_3$ <u>Q</u>₃  $Q_3$  $Q_3$ B428 B421 **B422** B423 **B424** B425 B426 B427 **B429 B430 B431** B432 **B433 B434 B435 B436 B437 B438 B439 B440 B441 B442 B443 B444 B445** B446 **B447 B448 B449 B450** B451 B452 **B453 B454** B455 B456 **B458 B460 B461** B462 **B464 B457 B459 B463** B465 \*\*B466 **B467 B468 B470** B471 B479 **B469 B472 B473 B474 B475 B476 B477 B478 B480 B481** B482 B483 **B484** B485 **B486** B487 **B488 B489 B490** B491 B492 B495 **B493 B494 B496 B497 B498 B499 B500 B501** B502 B503 **B504 B505 B506 B507 B508 B509** B510 B511 B512 **B513 B514** B515 B516 B517 **B518** B519 **B520 B521** B522 B523 B524 B525 **B526** B527 **B528 B529 B530 B531** B532 **B533 B534 B535 B536 B537 B538 B539 B540 B541 B542 B543 B544 B545 B546 B547 B548 B549 B550** B551 B552 B553 **B554** B555 **B556 B557 B558 B559 B560 B561** B562 B563 **B564 B565** B566 **B567 B568 B569 B570 B571 B572 B573** · B574 **B575 B576 B577 B578 B579 B580 B581** B582 **B583 B584 B585 B586 B587 B588 B589** B590 B591 **B592 B593 B**594 B595 **B596 B597 B598 B599** B600 B610 B601 B602 B603 **B604 B605** B606 B607 **B608** B609 B611 B612 B613 B614 B615 B616 B620 **B617 B618** B619 B621 B622 B624 B623 B625 **B626** B627 **B628** B629 **B630** B631 B632 **B633 B634** B635 B636 **B637 B638** B639 **B640 B641 B642 B643 B644 B645 B646** B647 **B648 B649 B650** B651 B652 B654 B653 B655 B656 **B657 B658** B659 **B660 B661** B662 B663 **B664 B665 B666 B667 B668 B669 B670** B671 B672 **B773 B774 B775 B776 B781 B784 B777 B778 B779 B780** B782 **B783 B785 B786 B787 B788 B789 B790 B791** B792 **B793 B794 B795 B796 B797 B798 B799** B805 **B800 B801 B802** B803 **B804 B806 B808 B807 B809 B810 B811** B812 **B813 B814 B815 B816 B817 B818 B819 B820** B821 B822 **B823** B824 B829 **B830** B825 B826 B827 **B828** B831 **B832 B833 B834** B835 **B836 B837 B838 B839 B840 B841** B842 **B843 B844 B845 B846 B847 B848** B851 B852 B853 B854 **B849 B850** B855 **B856 B859** B857 **B858 B860 B861** B862 **B863 B864 B865 B866 B867 B868 B869 B870 B871** B872 **B873 B878 B874 B875 B876 B877 B879 B880 B881 B882 B883 B884 B885 B886 B887 B889 B890** B888 B891 B892 B893 **B894 B895 B896 B897 B899** B901 B902 **B898 B900 B903 B904 B905** B906 **B907 B908 B909 B910** B911 B912 **B913 B914 B915 B916** 

|            |            |            |            |       |       |            |       |       | _     |            |       |  |
|------------|------------|------------|------------|-------|-------|------------|-------|-------|-------|------------|-------|--|
| <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> ₃ | $Q_3$ | $Q_3$ | <u>Q</u> 3 | $Q_3$ | $Q_3$ | $Q_3$ | <u>Q</u> ₃ | $Q_3$ |  |
| B917       | B918       | B919       | B920       | B921  | B922  | B923       | B924  | B925  | B926  | B927       | B928  |  |
| B929       | B930       | B931       | B932       | B933  | B934  | B935       | B936  | B937  | B938  | B939       | B940  |  |
| B941       | B942       | B943       | B944       | B945  | B946  | B947       | B948  | B949  | B950  | B951       | B952  |  |
| B953       | B954       | B955       | B956       | B957  | B958  | B959       | B960  | B961  | B962  | B963       | B964  |  |
| B965       | B966       | B967       | B968       | B969  | B970  | B971       | B972  | B973  | B974  | B975       | B976  |  |
| B977       | B978       | B979       | B980       | B981  | B982  | B983       | B984  | B985  | B986  | B987       | B988  |  |
| B989       | B990       | B991       | B992       | B993  | B994  | B995       | B996  | B997  | B998  | B999       | B1000 |  |
| B1001      | B1002      | B1003      | B1004      | B1005 | B1006 | B1007      | B1008 | B1009 | B1010 | B1011      | B1012 |  |
| B1013      | B1014      | B1015      | B1016      | B1017 | B1018 | B1019      | B1020 | B1021 | B1022 | B1023      | B1024 |  |
| B1025      | B1026      | B1027      | B1028      | B1029 | B1030 | B1031      | B1032 | B1033 | B1034 | B1035      | B1036 |  |
| B1037      | B1038      | B1039      | B1040      | B1041 | B1042 | B1043      | B1044 | B1045 | B1046 | B1047      | B1048 |  |
| B1049      | B1050      | B1051.     | B1052      | B1053 | B1054 | B1055      | B1056 | B1057 | B1058 | B1059      | B1060 |  |
| B1061      | B1062      | B1063      | B1064      | B1065 | B1066 | B1067      | B1068 | B1069 | B1070 | B1071      | B1072 |  |
| B1073      | B1074      | B1075      | B1076      | B1077 | B1078 | B1079      | B1080 | B1081 | B1082 | B1083      |       |  |
|            |            |            |            |       |       |            |       |       |       |            |       |  |

Table 14: Compounds of formula lo:

| <u>Q</u> 3 | $Q_3$ | <u>Q</u> ₃ | $Q_3$ | <u>Q</u> ₃ | $Q_3$ | <u>Q</u> <sub>3</sub> | <u>Q</u> ₃ | $Q_3$ | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | $Q_3$ |
|------------|-------|------------|-------|------------|-------|-----------------------|------------|-------|------------|-----------------------|-------|
| B121       | B122  | B123       | B124  | B125       | B126  | B127                  | B128       | B129  | B130       | B131                  | B132  |
| B133       | B134  | B135       | B136  | B137       | B138  | B139                  | B140       | B141  | B142       | B143                  | B144  |
| B145       | B146  | B147       | B148  | B149       | B150  | B151                  | B152       | B153  | B154       | B155                  | B156  |
| B157       | B158  | B159       | B160  | B161       | B162  | B163                  | B164       | B165  | B166       | B167                  | B168  |
| B169       | B170  | B171       | B172  | B173       | B174  | B175                  | B176       | B177  | B178       | B179                  | B180  |
| B181       | B182  | B183       | B184  | B185       | B186  | B187                  | B188       | B189  | B190       | B191                  | B192  |
| B193       | B194  | B195       | B196  | B197       | B198  | B199                  | B200       | B201  | B202       | B203                  | B204  |
| B205       | B206  | B207       | B208  | B209       | B210  | B211                  | B212       | B213  | B214       | B215                  | B216  |
| B217       | B218  | B219       | B220  | B221 .     | B222  | B223                  | B224       | B225  | B226       | B227                  | B228  |
| B229       | B230  | B231       | B232  | B233       | B234  | B235                  | B236       | B237  | B238       | B239                  | B240  |
| B241       | B242  | B243       | B244  | B245       | B246  | B247                  | B248       | B249  | B250       | B251                  | B252  |
| B253       | B254  | B255       | B256  | B257       | B258  | B259                  | B260       | B261  | B262       | B263                  | B264  |
| B265       | B266  | B267       | B268  | B269       | B270  | B271                  | B272       | B273  | B274       | B275                  | B276  |
| B277       | B278  | B279       | B280  | B281       | B282  | B283                  | B284       | B285  | B286       | B287                  | B288  |
| B289       | B290  | B291       | B292  | B293       | B294  | B295                  | B296       | B297  | B298       | B299                  | B300  |
| B301       | B302  | B303       | B304  | B305       | B306  | B307                  | B308       | B309  | B310       | B311                  | B312  |
| B313       | B314  | B315       | B316  | B317       | B318  | B319                  | B320       | B321  | B322       | B323                  | B324  |
| B325       | B326  | B327       | B328  | B329       | B330  | B331                  | B332       | B333  | B334       | B335                  | B336  |
| B337       | B338  | B339       | B340  | B341       | B342  | B343                  | B344       | B345  | B346       | B347                  | B348  |
| B349       | B350  | B351       | B352  | B353       | B354  | B355                  | B356       | B357  | B358       | B359                  | B360  |
| B361       | B362  | B363       | B364  | B365       | B366  | B367                  | B368       | B369  | B370       | B371                  | B372  |
| B373       | B374  | B375       | B376  | B377       | B378  | B379                  | B380       | B381  | B382       | B383                  | B384  |
| B385       | B386  | B387       | B388  | B389       | B390  | B391                  | B392       | B393  | B394       | B395                  | B396  |
| B397       | B398  | B399       | B400  | B401       | B402  | B403                  | B404       | B405  | B406       | B407                  | B408  |
| B409       | B410  | B411       | B412  | B413       | B414  | B415                  | B416       | B417  | B418       | B419                  | B420  |
| B421       | B422  | B423       | B424  | B425       | B426  | B427                  | B428       | B429  | B430       | B431                  | B432  |
| B433       | B434  | B435       | B436  | B437       | B438  | B439                  | B440       | B441  | B442       | B443                  | B444  |
| B445       | B446  | B447       | B448  | B449       | B450  | B451                  | B452       | B453  | B454       | B455                  | B456  |
| B457       | B458  | B459       | B460  | B461       | B462  | B463                  | B464       | B465  | B466       | B467                  | B468  |
| B469       | B470  | B471       | B472  | B473       | B474  | B475                  | B476       | B477  | B478       | B479                  | B480  |
| B481       | B482  | B483       | B484  | B485       | B486  | B487                  | B488       | B489  | B490       | B491                  | B492  |
| B493       | B494  | B495       | B496  | B497       | B498  | B499                  | B500       | B501  | B502       | B503                  | B504  |
| B505       | B506  | .B507      | B508  | B509       | B510- | B511                  | B512       | B513  | B514       | B515                  | B516  |

|       |        |       |       |                   |            |       |            |            |            | •                     |                              |
|-------|--------|-------|-------|-------------------|------------|-------|------------|------------|------------|-----------------------|------------------------------|
| $Q_3$ | $Q_3$  | $Q_3$ | $Q_3$ | $Q_3$             | <u>Q</u> 3 | $Q_3$ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> ₃ | <u>Q</u> <sub>3</sub> | $\underline{\mathbf{Q}}_{3}$ |
| B517  | B518   | B519  | B520  | B521              | B522       | B523  | B524       | B525       | B526       | B527                  | B528                         |
| B529  | B530   | B531  | B532  | B533              | B534       | B535  | B536       | B537       | B538       | B539                  | B540                         |
| B541  | B542   | B543  | B544  | B545              | B546       | B547  | B548       | B549       | B550       | B551                  | B552                         |
| B553  | B554   | B555  | B556  | B557              | B558       | B559  | B560       | B561       | B562       | B563                  | B564                         |
| B565  | B566   | B567  | B568  | B569              | B570       | B571  | B572       | B573       | B574       | B575                  | B576                         |
| B577  | B578   | B579  | B580  | B581              | B582       | B583  | B584       | B585       | B586       | B587                  | B588                         |
| B589  | B590   | B591  | B592  | B593              | B594       | B595  | B596       | B597       | B598       | B599                  | B600                         |
| B601  | B602   | B603  | B604  | B605              | B606       | B607  | B608       | B609       | B610       | B611                  | B612                         |
| B613  | B614   | B615  | B616  | B617              | B618       | B619  | B620       | B621       | B622       | B623                  | B624                         |
| B625  | B626   | B627  | B628  | B629              | B630       | B631  | B632       | B633       | B634       | B635                  | B636                         |
| B637  | B638   | B639  | B640  | B641              | B642       | B643  | B644       | B645       | B646       | B647                  | B648                         |
| B649  | B650   | B651  | B652  | B653              | B654       | B655  | B656       | B657       | B658       | B659                  | B660                         |
| B661  | B662   | B663  | B664  | B665              | B666       | B667  | B668       | B669       | B670       | B671                  | B672                         |
| B773  | B774   | B775  | B776  | B777              | B778       | B779  | B780       | B781       | B782       | B783                  | B784                         |
| B785  | B786   | B787  | B788  | B789              | B790       | B791  | B792       | B793       | B794       | B795                  | B796                         |
| B797  | B798   | B799  | B800  | B801              | B802       | B803  | B804       | B805       | B806       | B807                  | B808                         |
| B809  | B810   | B811  | B812  | B813              | B814       | B815  | B816       | B817       | B818       | B819                  | B820                         |
| B821  | B822   | B823  | B824  | B825              | B826       | B827  | B828       | B829       | B830       | B831                  | B832                         |
| B833  | B834   | B835  | B836  | B837              | B838       | B839  | B840       | B841       | B842       | B843                  | B844                         |
| B845  | B846   | B847  | B848  | B849              | B850       | B851  | B852       | B853       | B854       | B855                  | B856                         |
| B857  | B858   | B859  | B860  | B861              | B862       | B863  | B864       | B865       | B866       | B867                  | B868                         |
| B869  | B870   | B871  | B872  | B873              | B874       | B875  | B876       | B877       | B878       | B879                  | B880                         |
| B881  | B882   | B883  | B884  | B885 <sub>.</sub> | B886       | B887  | B888       | B889       | B890       | B891                  | B892                         |
| B893  | B894   | B895  | B896  | B897              | B898       | B899  | B900       | B901       | B902       | B903                  | B904                         |
| B905  | B906   | B907  | B908  | B909              | B910       | B911  | B912       | B913       | B914       | B915                  | B916                         |
| B917  | B918   | B919  | B920  | B921              | B922       | B923  | B924       | B925       | B926       | B927                  | B928                         |
| B929  | B930   | B931  | B932  | B933              | B934       | B935  | B936       | B937       | B938       | B939                  | B940                         |
| B941  | B942   | B943  | B944  | B945              | B946       | B947  | B948       | B949       | B950       | B951                  | B952                         |
| B953  | B954   | B955  | B956  | B957              | B958       | B959  | B960       | B961       | B962       | B963                  | B964                         |
| B965  | B966   | B967  | B968  | B969              | B970       | B971  | B972       | B973       | B974       | B975                  | B976                         |
| B977  | B978   | B979  | B980  | B981              | B982       | B983  | B984       | B985       | B986       | B987                  | B988                         |
| B989  | B990   | B991  | B992  | B993              | B994       | B995  | B996       | B997       | B998       | B999                  | B1000                        |
| B1001 | B1002. | B1003 | B1004 | B1005             | B1006      | B1007 | B1008      | B1009      | B1010      | B1011                 | B1012                        |

į

 Q3
 Q3<

Table 15: Compounds of formula lp:

<u>Q₃</u>  $Q_3$  $Q_3$ <u>Q</u>3 <u>Q₃</u> <u>Q</u>3  $Q_3$ <u>Q</u>₃ <u>Q</u>₃ <u>Q</u>3  $Q_3$ <u>Q</u>3 **B1** B2 **B3 B4 B**5 **B7 B8 B9 B10** B11 **B12 B6 B21 B24 B13 B14 B15 B16 B18 B19 B20 B22 B23 B17 B30 B33 B36 B25 B26 B27 B28 B29 B31 B32 B34 B35 B39 B37 B38 B40 B42 B43 B44 B45 B46 B47 B48 B41 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62** B63 -**B64 B65 B66 B67 B68 B69 B70 B71 B72 B73 B75 B78 B**79 **B80 B81 B82 B83 B84 B74 B76 B77 B85 B93 B96 B86 B87 B88 B89 B90 B91 B92 B94 B95 B97** B108 **B98 B99 B100** B101 B103 B104 B105 **B106 B107** B102 **B120** B109 **B110 B111 B112** B113 **B114 B115** B116 B117 B118 B119 B121 B122 B123 **B124** B125 B126 B127 B128 B129 B130 B131 B132 B135 B133 B134 B136 **B137** B138 B139 **B140** B141 B142 B143 **B144** B154 B156 B145 B146 B147 B148 B149 B150 B151 B152 B153 B155 B157 B158 B159 B160 **B161** B162 B163 **B164** B165 B166 B167 B168 **B169** B170 **B171** B172 **B173 B174** B175 B176 **B177 B178 B179** B180 **B181** B184 **B182** B183 B185 B186 B187 **B188 B189** B190 B191 B192 B193 **B194** B195 B196 **B197** B198 B199 **B200** B201 **B202** B203 **B204** 

| •          |            |            |            |       |                   |            |            |                       |                       |                       |            |  |
|------------|------------|------------|------------|-------|-------------------|------------|------------|-----------------------|-----------------------|-----------------------|------------|--|
| <u>Q</u> ₃ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> ₃ | $Q_3$ | $\underline{Q}_3$ | <u>Q</u> ₃ | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | <u>Q</u> <sub>3</sub> | <u>Q</u> <sub>3</sub> | <u>Q</u> ₃ |  |
| B205       | B206       | B207       | B208       | B209  | B210              | B211       | B212       | ₿213                  | B214                  | B215                  | B216       |  |
| B217       | B218       | B219       | B220       | B221  | B222              | B223       | B224       | B225                  | B226                  | B227                  | B228       |  |
| B229       | B230       | B231       | B232       | B233  | B234              | B235       | B236       | B237                  | B238                  | B239                  | B240       |  |
| B241       | B242       | B243       | B244       | B245  | B246              | B247       | B248       | B249                  | B250                  | B251                  | B252       |  |
| B253       | B254       | B255       | B256       | B257  | B258              | B259       | B260       | B261                  | B262                  | B263                  | B264       |  |
| B265       | B266       | B267       | B268       | B269  | B270              | B271       | B272       | B273                  | B274                  | B275                  | B276       |  |
| B277       | B278       | B279       | B280       | B281  | B282              | B283       | B284       | B285                  | B286                  | B287                  | B288       |  |
| B289       | B290       | B291       | B292       | B293  | B294              | B295       | B296       | B297                  | B298                  | B299                  | B300       |  |
| B301       | B302       | B303       | B304       | B305  | B306              | B307       | B308       | B309                  | B310                  | B311                  | B312       |  |
| B313       | B314       | B315       | B316       | B317  | B318              | B319       | B320       | B321                  | B322                  | B323                  | B324       |  |
| B325       | B326       | B327       | B328       | B329  | B330              | B331       | B332       | B333                  | B334                  | B335                  | B336       |  |
| B337       | B338       | B339       | B340       | B341  | B342              | B343       | B344       | B345                  | B346                  | B347                  | B348       |  |
| B349       | B350       | B351       | B352       | B353  | B354              | B355       | B356       | B357                  | B358                  | B359                  | B360       |  |
| B361       | B362       | B363       | B364       | B365  | B366              | B367       | B368       | B369                  | B370                  | B371                  | B372       |  |
| B373       | B374       | B375       | B376       | B377  | B378              | B379       | B380       | B381                  | B382                  | B383                  | B384       |  |
| B385       | B386       | B387       | B388       | B389  | B390              | B391       | B392       | B393                  | B394                  | B395                  | B396       |  |
| B397       | B398       | B399       | B400       | B401  | B402              | B403       | B404       | B405                  | B406                  | B407                  | B408       |  |
| B409       | B410       | B411       | B412       | B413  | B414              | B415       | B416       | B417                  | B418                  | B419                  | B420       |  |
| B421       | B422       | B423       | B424       | B425  | B426              | B427       | B428       | B429                  | B430                  | B431                  | B432       |  |
| B433       | B434       | B435       | B436       | B437  | B438              | B439       | B440       | B441                  | B442                  | B443                  | B444       |  |
| B445       | B446       | B447       | B448       | B449  | B450              | B451       | B452       | B453                  | B454                  | B455                  | B456       |  |
| B457       | B458       | B459       | B460       | B461  | B462              | B463       | B464       | B465                  | B466                  | B467                  | B468       |  |
| B469       | B470       | B471       | B472       | B473  | B474              | B475       | B476       | B477                  | B478                  | B479                  | B480       |  |
| B481       | B482       | B483       | B484       | B485  | B486              | B487       | B488       | B489                  | B490                  | B491                  | B492       |  |
| B493       | B494       | B495       | B496       | B497  | B498              | B499       | B500       | B501                  | B502                  | B503                  | B504       |  |
| B505       | B506       | B507       | B508       | B509  | B510              | B511       | B512       | B513                  | B514                  | B515                  | B516       |  |
| B517       | B518       | B519       | B520       | B521  | B522              | B523       | B524       | B525                  | B526                  | B527                  | B528       |  |
| B529       | B530       | B531       | B532       | B533  | B534              | B535       | B536       | B537                  | B538                  | B539                  | B540       |  |
| B541       | B542       | B543       | B544       | B545  | B546              | B547       | B548       | B549                  | B550                  | B551                  | B552       |  |
| B553       | B554       | B555       | B556       | B557  | B558              | B559       | B560       | B561                  | B562                  | B563                  | B564       |  |
| B565       | B566       | B567       | B568       | B569  | B570              | B571       | B572       | B573                  | B574                  | B575                  | B576       |  |
| B577       | B578       | B579       | B580       | B581  | B582              | B583       | B584       | B585                  | B586                  | B587                  | B588       |  |
| B589       | B590       | B591       | B592       | B593  | B594              | B595       | B596       | B597                  | B598                  | B599                  | B600       |  |

**(** )

....

<u>Q</u>3  $Q_3$  $Q_3$ <u>Q</u>₃  $Q_3$ <u>Q</u>3  $Q_3$  $Q_3$ <u>Q</u>₃  $Q_3$ <u>Q</u>3  $Q_3$ **B609** B610 B611 B612 B602 B605 **B606** B607 **B608** B601 B603 B604 B620 B621 B622 B623 B624 B619 B618 B613 B614 B615 B616 **B617** B630 B631 B632 B633 **B634** B635 B636 **B628** B629 **B625** B626 B627 B644 B645 **B646** B647 **B648** B637 **B638** B639 B640 B641 B642 **B643 B658** B659 **B660** B652 B653 B654 B655 B656 **B657 B649 B650** B651 B667 **B668 B669 B670** B671 B672 **B664 B665 B666** B661 B662 B663 **B784 B774** B775 **B776 B777 B778 B779 B780 B781** .B782 **B783** B773 B792 **B794 B795 B796** B790 **B791 B793 B785 B786 B787 B788 B789** B802 **B804** B805 **B806** B807 **B808 B798 B799 B800 B801** B803 **B797 B810 B811** B812 B813 B814 B815 **B816** B817 **B818** B819 **B820 B809** B832 **B828** B829 **B830** B831 **B827** B821 B822 B823 B824 B825 B826 **B844** B836 **B839 B840** B841 **B842 B843 B835 B837 B838 B833 B834 B856 B849** B850 B851 B852 **B853 B854 B855 B845 B846 B847** ·B848 **B864 B865 B866 B867 B868 B863 B857 B858 B859 B860 B861** B862 **B879 B880** B872 **B873 B875 B876 B877 B878 B869 B870 B871** B874 **B888** B890 B891 B892 B881 **B882 B883 B884** B885 B886 **B887 B889 B899 B900 B901** B902 B903 **B904** B894 B895 **B896 B897 B898 B893 B911 B912 B913 B914** B915 **B916 B905 B906 B907 B908** B909 **B910** B925 **B926** B927 **B928** B922 **B923 B924** B917 **B918** B919 **B920** B921 **B936 B937 B938 B939 B940 B929 B930 B931** B932 B933 **B934 B935** B951 **B952 B943 B944 B945 B946 B947 B948 B949** B950 B941 B942 **B963 B964 B953** B954 B955 B956 B957 **B958 B959 B960** B961 B962 **B972 B973 B974** B975 **B976 B970 B971 B965** B966 **B967 B968 B969 B988 B983** B984 B985 **B986 B987 B977** B978 **B979 B980** B981 B982 **B998** B999 B1000 **B995** B996 B997 **B989 B990** B991 B992 **B993 B994** B1001 B1002 B1003 B1004 B1005 B1006 B1007 B1008 B1009 B1010 B1011 B1012 B1013 B1014 B1015 B1016 B1017 B1018 B1019 B1020 B1021 B1022 B1023 B1024 B1025 B1026 B1027 B1028 B1029 B1030 B1031 B1032 B1033 B1034 B1035 B1036 B1037 B1038 B1039 B1040 B1041 B1042 B1043 B1044 B1045 B1046 B1047 B1048 B1049 B1050 B1051 B1052 B1053 B1054 B1055 B1056 B1057 B1058 B1059 B1060 B1061 B1062 B1063 B1064 B1065 B1066 B1067 B1068 B1069 B1070 B1071 B1072 B1073 B1074 B1075 B1076 B1077 B1078 B1079 B1080 B1081 B1082 B1083

Table 16: Compounds of formula Iq:

$$CF_3$$
  $N$   $Q_3$  (lq)

| <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | Q <sub>3</sub> | <u>Q</u> <sub>3</sub> | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | <u>Q</u> 3 | <u>Q</u> ₃ |
|------------|------------|------------|-----------------------|----------------|-----------------------|------------|------------|------------|-----------------------|------------|------------|
| B1         | B2         | В3         | B4                    | B5             | B6                    | <b>B</b> 7 | B8         | B9         | B10                   | B11        | · B12      |
| B13        | B14        | B15        | B16                   | B1.7           | B18                   | B19        | . B20      | B21        | B22                   | B23        | B24        |
| B25        | B26        | B27        | B28                   | B29            | B30                   | B31        | B32        | B33        | B34                   | B35        | B36        |
| B37        | B38        | B39        | B40                   | B41            | B42                   | B43        | B44        | B45        | B46                   | B47        | B48        |
| B49        | B50        | B51        | B52                   | B53            | B54                   | B55        | B56        | B57        | B58                   | B59        | B60        |
| B61        | B62        | B63        | B64                   | B65            | B66                   | B67        | B68        | B69        | B70                   | B71        | B72        |
| B73        | B74        | B75        | B76                   | B77            | B78                   | B79        | B80        | B81        | B82                   | B83        | B84        |
| B85        | B86        | B87        | B88                   | B89            | B90                   | B91        | B92        | B93        | B94                   | B95        | B96        |
| B97        | B98        | B99        | B100                  | B101           | B102                  | B103       | B104       | B105       | B106                  | B107       | B108       |
| B109       | B110       | B111       | B112                  | B113           | B114                  | B115       | B116       | B117       | B118                  | B119       | B120       |
| B121       | B122       | B123       | B124                  | B125           | B126                  | B127       | B128       | B129       | B130                  | B131       | B132       |
| B133       | B134       | B135       | B136                  | B137           | B138                  | B139       | B140       | B141       | B142                  | B143       | B144       |
| B145       | B146       | B147       | B148                  | B149           | B150                  | B151       | B152       | B153       | B154                  | B155       | B156       |
| B157       | B158       | B159       | B160                  | B161           | B162                  | B163       | B164       | B165       | B166                  | B167       | B168       |
| B169       | B170       | B171       | B172                  | B173           | B174                  | B175       | B176       | B177       | B178                  | B179       | B180       |
| B181       | B182       | B183       | B184                  | B185           | B186                  | B187       | B188       | B189       | B190                  | B191       | B192       |
| B193       | B194       | B195       | B196                  | B197           | B198                  | B199       | B200       | B201       | B202                  | B203       | B204       |
| B205       | B206       | B207       | B208                  | B209           | B210                  | B211       | B212       | B213       | B214                  | B215       | B216       |
| B217       | B218       | B219       | B220                  | B221           | B222                  | B223       | B224       | B225       | B226                  | B227       | B228       |
| B229       | B230       | B231       | B232                  | B233           | B234                  | B235       | B236       | B237       | B238                  | B239       | B240       |
| B241       | B242       | B243       | B244                  | B245           | B246                  | B247       | B248       | B249       | B250                  | B251       | B252       |
| B253       | B254       | B255       | B256                  | B257           | B258                  | B259       | B260       | B261       | B262                  | B263       | B264       |
| B265       | B266       | B267       | B268                  | B269           | B270                  | B271       | B272       | B273       | B274                  | B275       | B276       |
| B277       | B278       | B279       | B280                  | B281           | B282                  | B283       | B284       | B285       | B286                  | B287       | B288       |
| B289       | B290       | B291       | B292                  | B293           | B294                  | B295       | B296       | B297       | B298                  | B299       | B300       |

Ĺ

į

()

<u>Q</u>₃ <u>Q</u>3 <u>Q</u>3 <u>Q</u>₃ <u>Q₃</u>  $Q_3$  $Q_3$  $Q_3$  $Q_3$  $Q_3$  $Q_3$  $Q_3$ B301 B302 **B303 B304** B305 **B306 B307 B308 B311** B312 **B309 B310 B313 B314 B315 B316 B317 B318 B319 B320 B321 B322 B323 B324 B325** B326 **B327 B328** B329 **B330** B331 **B332 B333 B334 B335 B336 B337 B338 B339 B340 B341** B342 **B343 B344** B345 **B346 B347 B348 B349 B350 B351 B352 B353 B354 B355 B356 B357 B358 B359 B360 B361 B362 B363 B364 B365 B366 B367 B368 B369 B370 B371 B372 B373 B374 B375 B376 B377 B378 B379 B380 B381 B382 B383 B384 B385 B386 B387 B388 B389 B390 B391 B392 B393 B394 B395 B396 B398 B399** B404 **B397 B400** B401 B402 B403 **B405 B407 B406 B408 B409 B410** B411 B412 **B413 B414 B415 B416 B417 B418** B419 **B420** B422 **B421** B423 **B424** B425 B426 **B427 B428 B429** B430 B431 **B432 B440 B433 B434 B435 B436 B437 B438 B439 B441** B442 **B443 B444 B445 B446 B447 B448 B449 B450** B451 B452 B454 B455 **B453 B456 B457 B458 B459 B460 B461** B462 B463 **B464** B465 B466 **B467 B468 B469 B470 B471** B472 **B474 B476** B473 **B475 B477 B478 B479 B480** B481 B482 B483 **B484 B485 B486** B487 **B488 B489** B490 B491 B492 B493 **B494** B495 **B496 B497 B498 B499 B500** B501 B502 B503 **B504 B506** B505 **B507** B512 B513 B514 **B508 B509 B510 B511** B515 **B516 B517 B518** B519 **B520 B521** B522 **B523** B524 **B525 B526 B527 B528** B529 **B530** B531 **B532 B533** B534 **B535 B536 B537 B538 B539 B540 B541** B542 B543 **B544** B545 **B546 B547 B548 B549 B550** B551 B552 **B553 B554 B555 B556 B557 B558 B559 B560 B561** B562 B563 **B564 B565 B566 B567 B568 B569 B570 B571** B572 **B573 B574 B575 B576 B577 B578 B580 B579 B581 B582 B583 B584** B585 **B586 B587 B588 B589 B590 B**591 B592 **B593 B594 B595 B596 B597 B598 B599 B600** B601 B602 B603 B604 B605 **B606 B607 B608** B609 **B610** B611 B612 B613 **B614** B615 B616 **B617 B618** B619 B620 B621 B622 B623 B624 B625 **B626 B627 B628** B629 B630 B631 B632 B633 **B634** B635 B636 B637 B638 **B639 B640 B641** B642 **B644 B643** B645 **B646 B647 B648 B649** B650 B651 B652 B653 B654 B655 B656 B657 **B658 B659 B660 B661** B662 **B663 B664 B665 B666 B667 B668 B669 B670** B671 B672 **B773 B774 B775 B776 B777 B778** B780 **B783 B784 B779 B781 B782** B785 B786....B787 **B796 B788 B789 B790 B791 B792 B793 B794 B795** 

| <u>Q</u> 3 | <u>Q</u> ₃ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> ₃ | <u>Q</u> 3 | <u>Q</u> 3 | <u>Q</u> <sub>3</sub> | $Q_3$ | $\overline{Q_3}$ | <u>Q</u> 3 | <u>Q</u> ₃ |
|------------|------------|------------|------------|------------|------------|------------|-----------------------|-------|------------------|------------|------------|
| B797       | B798       | B799       | B800       | B801       | B802       | B803       | B804                  | B805  | B806             | B807       |            |
| B809       | B810       | B811       | B812       | B813       | B814       | B815       | B816                  | B817  | B818             | B819       | B820       |
| B821       | B822       | B823       | B824       | B825       | B826       | B827       | B828                  | B829  | B830             | B831       | B832       |
| B833       | B834       | B835       | B836       | B837       | B838       | B839       | B840                  | B841  | -<br>B842        | B843       | B844       |
| B845       | B846       | B847       | B848       | B849       | B850       | B851       | B852                  | B853  | B854             | B855       | B856       |
| B857       | B858       | B859       | B860       | B861       | B862       | B863       | B864                  | B865  | B866             | B867       | B868       |
| B869       | B870       | B871       | B872       | B873       | B874       | B875       | B876                  | B877  | B878             | B879       | B880       |
| B881       | B882       | B883       | B884       | B885       | B886       | B887       | B888                  | B889  | B890             | B891       | B892       |
| B893       | B894       | B895       | B896       | B897       | B898       | B899       | B900                  | B901  | B902             | B903       | B904       |
| B905       | B906       | B907       | B908       | B909       | B910       | B911       | B912                  | B913  | B914             | B915       | B916       |
| B917       | B918       | B919       | B920       | B921       | B922       | B923       | B924                  | B925  | B926             | B927       | B928       |
| B929       | B930       | B931       | B932       | B933       | B934       | B935       | B936                  | B937  | B938             | B939       | B940       |
| B941       | B942       | B943       | B944       | B945       | B946       | B947       | B948                  | B949  | B950             | B951       | B952       |
| B953       | B954       | B955       | B956       | B957       | B958       | B959       | B960                  | B961  | B962             | B963       | B964       |
| B965       | B966       | B967       | B968       | B969       | B970       | B971       | B972                  | B973  | B974             | B975       | B976       |
| B977       | B978       | B979       | B980       | B981       | B982       | B983       | B984                  | B985  | B986             | B987       | B988       |
| B989       | B990       | B991       | B992       | B993       | B994       | B995       | B996                  | B997  | B998             | B999       | B1000      |
| B1001      | B1002      | B1003      | B1004      | B1005      | B1006      | B1007      | B1008                 | B1009 | B1010            | B1011      | B1012      |
| B1013      | B1014      | B1015      | B1016      | B1017      | B1018      | B1019      | B1020                 | B1021 | B1022            | B1023      | B1024      |
| B1025      | B1026      | B1027      | B1028      | B1029      | B1030      | B1031      | B1032                 | B1033 | B1034            | B1035      | B1036      |
| B1037      | B1038      | B1039      | B1040      | B1041      | B1042      | B1043      | B1044                 | B1045 | B1046            | B1047      | B1048      |
| B1049      | B1050      | B1051      | B1052      | B1053      | B1054      | B1055      | B1056                 | B1057 | B1058            | B1059      | B1060      |
| B1061      | B1062      | B1063      | B1064      | B1065      | B1066      | B1067      | B1068                 | B1069 | B1070            | B1071      | B1072      |
| B1073      | B1074      | B1075      | B1076      | B1077      | B1078      | B1079      | B1080                 | B1081 | B1082            | B1083      |            |
|            |            |            |            |            |            |            |                       |       |                  |            |            |

Table 17: Compounds of formula Ir:

....

WO 01/54501 PCT/EP01/00720

- 199 -

|                       |       |            |                       |         |       |            |       |         |       | -       |       |
|-----------------------|-------|------------|-----------------------|---------|-------|------------|-------|---------|-------|---------|-------|
| <u>Q</u> <sub>6</sub> | $Q_6$ | <u>Q</u> 6 | <u>Q</u> <sub>6</sub> | $Q_{6}$ | $Q_6$ | <u>Q</u> 6 | $Q_6$ | $Q_{6}$ | $Q_6$ | $Q_{6}$ | $Q_6$ |
| C1                    | C2    | СЗ         | C4                    | C5      | C6    | <b>C7</b>  | C8    | C9      | C10   | C11     | C12   |
| C13                   | C14   | C15        | C16                   | C17     | C18   | C19        | C20   | C21     | C22   | C23     | C24   |
| C25                   | C26   | C27        | C28                   | C29     | C30   | C31        | C32   | C33     | C34   | C35     | C36   |
| C37                   | C38   | C39        | C40                   | C41.    | C42   | C43        | C44   | C45     | C46   | C47     | C48   |
| C49                   | C50   | C51        | C52                   | C53     | C54   | C55        | C56   | C57     | C58   | C59     | C60   |
| C61                   | C62   | C63        | C64                   | C65     | C66   | C67        | C68   | C69     | C70   | C71     | C72   |
| C73                   | C74   | C75        | C76                   | C77     | C78   | C79        | C80   | C81     | C82   | C83     | C84   |
| C85                   | C86   | C87        | C88                   | C89     | C90   | C91        | C92   | C93     | C94   | C95     | C96   |
| C97                   | C98   | C99        | C100                  | C101    | C102  | C103       | C104  | C105    | C106  | C107    | C108  |
| C109                  | C110. | C111       | C112                  | C113    | C114  | C115       | C116  | C117    | C118  | C119    | C120  |
| C121                  | C122  | C123       | C124                  | C125    | C126  | C127       | C128  | C129    | C130  | C131    | C132  |
| C133                  | C134  | C135       | C136                  | C137    | C138  | C139       | C140  | C141    | C142  | C143    | C144  |
| C145                  | C146  | C147       | C148                  | C149    | C150  | C151       |       |         |       |         |       |
|                       |       |            |                       |         |       |            |       |         |       |         |       |

Table 18: Compounds of formula Is:

 $Q_{Z}$  $Q_{Z}$  $Q_{z}$  $Q_{7}$  $Q_{z}$  $Q_{7}$  $Q_{z}$  $Q_{z}$ <u>Q</u>  $Q_{7}$ D1 **D2** D3 D4 D5 D6 **D7 D8** D9 D10 **D11 D12 D13** D14 **D15 D16 D17 D18 D19** D20 D21 D22 D23 **D24** D25 D26 **D27 D28** D29 **D30** D31 D32 **D33 D34 D35** D36 **D37 D38 D39 D40** D41 **D42 D43 D44 D45 D46 D47 D48 D49** D50 D51 **D52 D53 D54 D55 D56 D57 D58 D59 D60** D61 D62 **D63 D64 D65 D68 D70** D71 **D72 D66 D67** D69 **D73** D74 **D75 D76 D77 D78 D79 D80** D81 **D82** D83 **D84** D85 **D86 D87 D88 D94 D96 D89** D90 D91 D92 **D93** D95 **D97 D98** D99 D100 D101 D102 D103 D104 D105 D106 D107 D108 D109 D110 D111 D112 D113 D114 D115 D116 D117 D118 D119 D120 
 Qr
 D131
 D132

 D133
 D134
 D135
 D136
 D137
 D138
 D139
 D140
 D140

Table 19: Compounds of formula lv:

| R <sub>75</sub>                                                                   |  |  |  |
|-----------------------------------------------------------------------------------|--|--|--|
| CH₂OCH₃                                                                           |  |  |  |
| CH <sub>2</sub> OC <sub>2</sub> H <sub>5</sub>                                    |  |  |  |
| CH₂O-n-propyl                                                                     |  |  |  |
| CH₂O-isopropyl                                                                    |  |  |  |
| CH₂O-n-butyl                                                                      |  |  |  |
| CH₂O-isobutyl                                                                     |  |  |  |
| CH₂O-tert-butyl                                                                   |  |  |  |
| (CH <sub>2</sub> ) <sub>2</sub> OCH <sub>3</sub>                                  |  |  |  |
| (CH₂)₂O-ethyl                                                                     |  |  |  |
| (CH <sub>2</sub> ) <sub>2</sub> O-n-propyl                                        |  |  |  |
| (CH₂)₂O-isopropyl                                                                 |  |  |  |
| (CH <sub>2</sub> ) <sub>2</sub> O-n-butyl                                         |  |  |  |
| (CH₂)₂O-isobutyl                                                                  |  |  |  |
| (CH <sub>2</sub> ) <sub>2</sub> O-tert-butyl                                      |  |  |  |
| (CH <sub>2</sub> ) <sub>2</sub> O(CH <sub>2</sub> ) <sub>2</sub> OCH <sub>3</sub> |  |  |  |
| (CH <sub>2</sub> ) <sub>2</sub> O(CH <sub>2</sub> ) <sub>2</sub> OCH <sub>3</sub> |  |  |  |
| C <sub>2</sub> H <sub>5</sub>                                                     |  |  |  |
|                                                                                   |  |  |  |

Table 20: Physical data for Tables 5 to 19 (figures = m.p. in °C):

| Compound  | Phys. data  | Compound | Phys. data      | Compound   | Phys. data   |
|-----------|-------------|----------|-----------------|------------|--------------|
| Compound  | riiys. uala | Compound | Pilys. data     | Compound   | rilys. data  |
| A2        | 150-151     | C46      | 159-161         | A2-B1058   | 88-89        |
| А3        | 148-149     | C91      | 141-143         | A2-B1066   | viscous      |
| A4        | 143-144     | C146     | 99-101          | A2-B1067   | resinous oil |
| A5        | 81-82       | C149     | 148-150         | A2-B1069   | oil          |
| <b>A6</b> | 148-150     | A2-B1    | 90-92           | A2-B1069 . | viscous oil  |
| A7        | 105-106     | A2-B68   | 120-121         | A8-B1      | 97-98        |
| <b>A8</b> | 123-124     | A2-B2    | resin           | A7-B1      | oil          |
| <b>A9</b> | 73-74       | A2-B90   | resin           | A3-B1      | 42-44        |
| A10       | 165-167     | A2-B93   | 95-96           | A94-B1     | 57-58        |
| A15       | 164-166     | A2-B46   | 61-62 cis-rac   | A66-B24    | 80-82        |
| A17       | 99-100      | A2-B46   | 83-84 trans-rac | A64-B1     | 49-51        |
| A26       | 143-144     | A2-B91   | resin           | A154-B1    | 94-95        |
| A27       | 107-108     | A2-B1081 | oil             | A6-B1      | 123-124      |
| A29       | 173-174     | A2-B1082 | resin           | A6-B24     | oil          |
| A30       | 178-181     | A2-B1083 | resin           | A34-B1     | 53-54        |
| A31       | 209-210     | A2-B29   | 87-88           | A2-B25     | oil ·        |
| A32       | 145-146     | A2-B73   | resin           | A2-B925    | oil          |
| A34       | 170-171     | A2-B95   | 106-107         | E8         | 55-56        |
| A64       | 134-135     | A2-B31   | 151-153         | E17        | 99-101       |
| A94       | 134-135     | A2-B75   | amorphous       |            | ٠            |
| A154      | 108-110     | A2-B24   | oil             |            |              |
| B1057     | 166-167     | A2-B5    | resin           |            | •            |
| B1058     | crystalline | A2-C91   | resin           |            |              |
| B1061     | crystalline | A2-C146  | oil             |            |              |
| B1063     | crystalline | A2-B112  | resin           |            |              |
| B1065     | oil         | A2-D140  | oil             |            |              |
| B1066     | 150-152     | A2-B1057 | amorphous       |            |              |
| B1067     | 122-123     | A2-B1063 | oil             |            |              |
| B1069     | 117-118     | A2-B1061 | oil             |            |              |
| B1070     | crystalline | A2-B133  | oil             |            |              |

Compounds of formulae 2.1 and 2.3 to 2.13.c are known by the names imazamox, imazethapyr, imazaquin, imazapyr, dimethenamid, atrazine, terbuthylazine, simazine, terbutym, cyanazine, ametryn, terbumeton, prohexadione calcium, sethoxydim, clethodim. tepraloxydim, flumetsulam, metosulam, pyridate, bromoxynil, ioxynil, sulcotrione, carfentrazone, sulfentrazone, isoxaflutole, glufosinate, primisulfuron, prosulfuron, rimsulfuron, halosulfuron, nicosulfuron, ethoxysulfuron, flazasulfuron and thifensulfuron and are described in the Pesticide Manual, eleventh ed., British Crop Protection Council, 1997 under the entry numbers 412, 415, 414, 413, 240, 34, 692, 651, 693, 168, 20, 691, 595, 648, 146, 49, 339, 495, 626, 88, 425, 664, 112, 665, 436, 382, 589, 613, 644, 389, 519, 287, 325 and 704. The compound of formula 2.13 wherein  $Y_1$ ,  $Y_3$  and  $Y_4$  are methine,  $Y_2$  is C-I,  $R_{74}$  is COOMe, Y<sub>5</sub> is nitrogen, Y<sub>6</sub> is methyl and Y<sub>7</sub> is methoxy is known by the name iodosulfuron (especially the sodium salt) from AGROW No. 296, 16th January 1998, page 22. The compound of formula 2.13 wherein  $Y_1$ ,  $Y_2$ ,  $Y_3$  and  $Y_4$  are methine,  $R_{74}$  is trifluoromethyl,  $Y_5$  is nitrogen, Ye is trifluoromethyl and Y7 is methoxy is known by the name tritosulfuron and described in DE-A-40 38 430. The compound of formula 2.13 wherein  $Y_1$  is NH-CHO,  $Y_2$ ,  $Y_3$ and Y4 are methine, R74 is CONMe2, Y5 is methine and Y6 and Y7 are methoxy is described, for example, in WO 95/29899.

The S enantiomer of the compound of formula 2.12 is registered under the CAS-Reg. No. [35597-44-5]. The compound of the general formula 2.2, aRS,1'S(-)N-(1'-methyl-2'-methoxyethyl)-N-chloroacetyl-2-ethyl-6-methylaniline, and a compound of the general formula 2.3, (1S,aRS)-2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-acetamide, are described, for example, in WO 97/34485. The compound of formula 2.9 wherein  $R_{69}$  is NO<sub>2</sub> is known by the name mesotrione and is described, for example, in US-A-5 006 158. The compound of formula 2.6 wherein  $R_{62}$  is ethoxy,  $R_{63}$  is fluorine, Y is methine,  $R_{64}$  is methoxycarbonyl,  $R_{65}$  is hydrogen and  $R_{66}$  is chlorine is known by the name cloransulam, for example from AGROW No. 261, 2nd August 1996, page 21. The compound of formula 2.6 wherein  $R_{62}$  is methoxy,  $R_{63}$  is hydrogen, Y is C-F,  $R_{64}$  is fluorine,  $R_{65}$  is hydrogen and  $R_{66}$  is fluorine, is known by the name florasulam and described in US-A-5 163 995.

Furthermore, the following compounds of the composition according to the invention are described in the Pesticide Manual, eleventh ed., British Crop Protection Council, 1997:

Compound of formula (name)

Pesticide Manual eleventh ed., Entry No.:

2.14 (metribuzin)

WO 01/54501 PCT/EP01/00720

- 203 -

| Pesticide Manual eleventh ed., Entry No.: |
|-------------------------------------------|
| 8                                         |
| 383                                       |
| 65                                        |
| 557                                       |
| 210                                       |
| 100                                       |
| 150                                       |
| 192                                       |
| 340                                       |
| 359                                       |
| 356                                       |
| 341                                       |
| 550                                       |
| 37                                        |
| 51                                        |
| 383                                       |
| 33                                        |
| 526                                       |
| 689                                       |
| 702                                       |
| 259                                       |
| 400                                       |
| 260                                       |
| 455                                       |
| 459                                       |
| 683                                       |
|                                           |

The compound of formula 2.7 wherein  $R_{67}$  is hydrogen and its preparation are described in US-A-3 790 571; the compound of formula 2.6 wherein  $R_{62}$  is ethoxy, Z is nitrogen,  $R_{63}$  is fluorine,  $R_{64}$  is chlorine,  $R_{65}$  is hydrogen and  $R_{66}$  is chlorine is described in US-A-5 498 773. The compound of formula 2.21 and its preparation are described in US-A-5 183 492; the compound of formula 2.22 is described by the name isoxachlortole in AGROW No. 296, 16th January 1998, page 22. The compound of formula 2.31 is described under the name

. j

fentrazamide in The 1997 British Crop Protection Conference - Weeds, Conference Proceedings Vol. 1, 2-8, pages 67 to 72; the compound of formula 2.32 is described under the name JV 485 (isoxapropazol) in The 1997 British Crop Protection Conference - Weeds, Conference Proceedings Vol. 1, 3A-2, pages 93 to 98. The compound of formula 2.44 is known by the name pethoxamid and is described, for example in EP-Ā-0 206 251. The compound of formula 2.45 is known by the name procarbazone and is described, for example, in EP-A-0 507 171; the compound of formula 2.46 is known by the name fluazolate and is described, for example, in US-A-5 530 126. The compound of formula 2.47 is known by the name cinidon-ethyl and is described, for example, in DE-A-4 037 840. The compound of formula 2.48 is known by the name benzfendizone and is described, for example, in WO 97/08953. The compound of formula 2.49 is known as diffurenzopyr and is described, for example, in EP-A-0 646 315. The compound of formula 2.50 (amicarbazone) and its preparation are disclosed in DD 298 393 and in US-A-5 194 085. The compound of formula 2.51 (flufenpyr-ethyl) is described in Abstracts of Papers American Chemical Society, (2000) Vol. 220, No. Part 1, pp. AGRO 174.

It is extremely surprising that the combination of the active ingredient of formula I with one or more active ingredients selected from formulae 2.1 to 2.51 exceeds the additive effect on the weeds to be controlled that is to be expected in principle, and thus broadens the range of action of the individual active ingredients especially in two respects: Firstly, the rates of application of the individual compounds of formulae 1 and 2.1 to 2.51 are reduced while a good level of action is maintained and, secondly, the composition according to the invention achieves a high level of weed control also in those cases where the individual substances, in the range of low rates of application, have become unusable from the agronomic standpoint. The result is a considerable broadening of the spectrum of weeds and an additional increase in selectivity in respect of the crops of useful plants, as is necessary and desirable in the event of an unintentional overdose of active ingredient. The composition according to the invention, while retaining excellent control of weeds in crops of useful plants, also enables greater flexibility in succeeding crops.

The composition according to the invention can be used against a large number of agronomically important weeds, such as Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Phaseolus, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthlum,

WO 01/54501 PCT/EP01/00720

- 205 -

Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica. The composition according to the invention is suitable for all methods of application conventionally used in agriculture, e.g. pre-emergence application, post-emergence application and seed dressing. The composition according to the invention is suitable especially for controlling weeds in crops of useful plants, such as cereals, rape, sugar beet, sugar cane, plantation crops, rice, maize and soybeans, and also for non-selective weed control.

"Crops" are to be understood to mean also those crops which have been made tolerant to herbicides or classes of herbicides as a result of conventional methods of breeding or genetic engineering.

Č

The composition according to the invention comprises the active ingredient of formula I and the active ingredients of formulae 2.1 to 2.51 in any mixing ratio, but usually has an excess of one component over the others. Generally, the mixing ratios (ratios by weight) of the active ingredient of formula I and the mixing partners of formulae 2.1 to 2.51 are from 1:2000 to 2000:1, especially from 200:1 to 1:200.

The rate of application may vary within wide limits and depends on the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the weed to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. The active ingredient mixture according to the invention can generally be applied at a rate of from 1 to 5000 g of active ingredient mixture/ha.

The mixtures of the compound of formula I with the compounds of formulae 2.1 to 2.51 may be used in unmodified form, that is to say as obtained in the synthesis. Preferably, however, they are formulated in customary manner, together with the adjuvants conventionally used in formulation technology, such as solvents, solid carriers or surfactants, for example into emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microcapsules. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, wetting, scattering or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

. ,

The formulations, i.e. the compositions, preparations or mixtures comprising the compounds (active ingredients) of formulae I and 2.1 to 2.51 and, where appropriate, one or more solid or liquid formulation adjuvants, are prepared in a manner known *per se*, e.g. by intimately mixing and/or grinding the active ingredients with the formulation adjuvants, e.g. solvents or solid carriers. In addition, surface-active compounds (surfactants) may also be used in the preparation of the formulations.

Examples of solvents and solid carriers are given, for example, in WO 97/34485, page 6.

Depending on the nature of the compound of formula I to be formulated, suitable surfaceactive compounds are non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties.

Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, in WO 97/34485, pages 7 and 8.

Also suitable in the preparation of the herbicidal compositions according to the invention are the surfactants conventionally used in formulation technology, which are described, *inter alia*, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81.

The herbicidal formulations usually contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of active ingredient mixture comprising a compound of formula I and the compounds of formulae 2.1 to 2.51, from 1 to 99.9 % by weight of a solid or liquid formulation adjuvant, and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant.

Whereas commercial products are usually formulated as concentrates, the end user will normally employ dilute formulations. The compositions may also comprise further ingredients, such as stabilisers, e.g. vegetable oils or epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity

regulators, binders, tackifiers, and also fertilisers or other active ingredients. Preferred formulations have especially the following compositions:

(% = percent by weight)

**Emulsifiable concentrates:** 

active ingredient mixture:

1 to 90 %, preferably 5 to 20 %

surfactant:

1 to 30 %, preferably 10 to 20 %

liquid carrier:

5 to 94 %, preferably 70 to 85 %

**Dusts:** 

active ingredient mixture:

0.1 to 10 %, preferably 0.1 to 5 %

solid carrier:

99.9 to 90 %, preferably 99.9 to 99 %

Suspension concentrates:

active ingredient mixture:

5 to 75 %, preferably 10 to 50 %

water:

94 to 24 %, preferably 88 to 30 %

surfactant:

1 to 40 %, preferably 2 to 30 %

Wettable powders:

active ingredient mixture:

0.5 to 90 %, preferably 1 to 80 %

surfactant:

0.5 to 20 %, preferably 1 to 15 %

solid carrier:

5 to 95 %, preferably 15 to 90 %

**Granules:** 

active ingredient mixture:

0.1 to 30 %, preferably 0.1 to 15 %

solid carrier:

99.5 to 70 %, preferably 97 to 85 %

The following Examples illustrate the invention further, but do not limit the invention.

| F1. Emulsifiable concentrates   | a)  | b)   | c)   | d)   |
|---------------------------------|-----|------|------|------|
| active ingredient mixture       | 5 % | 10 % | 25 % | 50 % |
| calcium dodecylbenzenesulfonate | 6 % | 8 %  | 6 %  | 8 %  |
| castor oil polyglycol ether     | 4 % | -    | 4%.  | 4 %  |
| (36 mol of ethylene oxide)      |     |      |      |      |

•

| octylphenol polyglycol ether    | •    | 4 %  |             | 2 %    |
|---------------------------------|------|------|-------------|--------|
| (7-8 mol of ethylene oxide)     |      |      |             |        |
| cyclohexanone                   | -    | -    | 10 %        | · 20 % |
| arom. hydrocarbon mixture       | 85 % | 78 % | <b>55</b> % | 16 %   |
| C <sub>9</sub> -C <sub>12</sub> | ,    |      | -           |        |

Emulsions of any desired concentration can be obtained from such concentrates by dilution with water.

| F2. Solutions              | a)          | <b>b</b> ) | c)   | d)   |
|----------------------------|-------------|------------|------|------|
| active ingredient mixture  | 5%          | 10 %       | 50 % | 90 % |
| 1-methoxy-3-(3-methoxy-    |             |            |      |      |
| propoxy)-propane           | -           | 20 %       | 20 % | -    |
| polyethylene glycol MW 400 | 20 %        | 10 %       | -    | •    |
| N-methyl-2-pyrrolidone     | -           | -          | 30 % | 10 % |
| arom. hydrocarbon mixture  | <b>75</b> % | 60 %       | -    | -    |
| C9-C12                     |             |            |      |      |

The solutions are suitable for use in the form of microdrops.

| F3. Wettable powders          | a)   | b)   | c)   | d)   |
|-------------------------------|------|------|------|------|
| active ingredient mixture     | 5 %  | 25 % | 50 % | 80 % |
| sodium lignosulfonate         | 4 %  | -    | 3 %  | . •  |
| sodium lauryl sulfate         | 2 %  | 3 %  | -    | 4 %  |
| sodium diisobutylnaphthalene- |      |      |      |      |
| sulfonate .                   | -    | 6 %  | 5 %  | 6 %  |
| octylphenol polyglycol ether  | -    | 1 %  | 2 %  | -    |
| (7-8 mol of ethylene oxide)   |      |      |      |      |
| highly dispersed silicic acid | 1 %  | 3 %  | 5 %  | 10 % |
| kaolin                        | 88 % | 62 % | 35 % | -    |

The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.

| F4. Coated granules       | a)    | b)  | c)   |
|---------------------------|-------|-----|------|
| active ingredient mixture | 0.1 % | 5 % | 15 % |

| highly dispersed silicic acid | 0.9 %  | 2 %  | 2 %  |
|-------------------------------|--------|------|------|
| inorganic carrier             | 99.0 % | 93 % | 83 % |
| (Æ 0.1 - 1 mm)                |        |      |      |

e.g. CaCO<sub>3</sub> or SiO<sub>2</sub>

The active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off *in vacuo*.

| F5. Coated granules           | a)     | b)   | <b>c)</b> |
|-------------------------------|--------|------|-----------|
| active ingredient mixture     | 0.1 %  | 5 %  | 15 %      |
| polyethylene glycol MW 200    | 1.0 %  | 2%   | 3 %       |
| highly dispersed silicic acid | 0.9 %  | 1 %  | 2 %       |
| inorganic carrier             | 98.0 % | 92 % | 80 %      |
| (Æ 0.1 - 1 mm)                |        |      |           |

e.g. CaCO<sub>3</sub> or SiO<sub>2</sub>

(

The finely ground active ingredient is uniformly applied, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.

| F6. Extruder granules     | a)     | b)   | c)   | d)   |
|---------------------------|--------|------|------|------|
| active ingredient mixture | 0.1 %  | 3 %  | 5 %  | 15 % |
| sodium lignosulfonate     | 1.5 %  | 2 %  | 3 %  | 4 %  |
| carboxymethylcellulose    | 1.4 %  | 2 %  | 2 %  | 2 %  |
| kaolin                    | 97.0 % | 93 % | 90 % | 79 % |

The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.

| F7. Dusts                 | a)     | b)   | .c)  |
|---------------------------|--------|------|------|
| active ingredient mixture | 0.1 %  | 1 %  | 5 %  |
| talcum                    | 39.9 % | 49 % | 35 % |
| kaolin                    | 60.0 % | 50 % | 60 % |

Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

| F8. Suspension concentrates | a)  | b)   | <b>c)</b> | d)   |
|-----------------------------|-----|------|-----------|------|
| active ingredient mixture   | 3 % | 10 % | 25 %      | 50 % |

| ethylene glycol              | 5 %   | 5%          | 5 %   | 5 %   |
|------------------------------|-------|-------------|-------|-------|
| nonylphenol polyglycol ether | -     | 1 %         | 2 %   | -     |
| (15 mol of ethylene oxide)   |       |             |       |       |
| sodium lignosulfonate        | 3 %   | 3 %         | 4 %   | 5 %   |
| carboxymethylcellulose       | 1 %   | 1 %         | 1 %   | 1 %   |
| 37 % aqueous formaldehyde    | 0.2 % | 0.2 %       | 0.2 % | 0.2 % |
| solution                     |       |             |       |       |
| silicone oil emulsion        | 0.8 % | 0.8 %       | 0.8 % | 0.8 % |
| water                        | 87 %  | <b>79</b> % | 62 %  | 38 %  |

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

It is often more practical for the compound of formula I and the mixing partner or partners of formulae 2.1 to 2.51 to be formulated separately and to be brought together in the desired mixing ratio in the applicator in the form of a "tank mixture" in water shortly before application.

### **Biological Examples:**

A synergistic effect exists whenever the action of the active ingredient combination of compounds of formula I and 2.1 to 2.51 is greater than the sum of the actions of the active ingredients applied separately.

The herbicidal action to be expected We for a given combination of two herbicides can be calculated as follows (see COLBY, S.R., "Calculating synergistic and antagonistic response of herbicide combinations", Weeds 15, pages 20-22, 1967):

$$We = X + [Y \cdot (100 - X)/100]$$

### wherein:

X = percentage herbicidal action on treatment with the compound of formula I at a rate of application of p kg per hectare, compared with the untreated control (= 0 %).

Y = percentage herbicidal action on treatment with a compound of formula 2.1 to 2.51 at a rate of application of q kg per hectare, compared with the untreated control.

We = expected herbicidal action (percentage herbicidal action compared with the untreated control) following treatment with the compounds of formulae I and 2.1  $\hat{to}$  2.51 at a rate of application of p + q kg of active ingredient per hectare.

When the action actually observed is greater than the value to be expected We, there is a synergistic effect.

The synergistic effect of the combinations of a compound of formula I with the compounds of formulae 2.1 to 2.51 is demonstrated in the following Examples.

#### Experiment description - pre-emergence test:

Monocotyledonous and dicotyledonous test plants are sown in standard soil in plastics pots. Directly after sowing, the test substances are applied in aqueous suspension by spraying (500 litres of water/ha). The rates of application depend on the optimum doses ascertained under field conditions and greenhouse conditions. The test plants are then grown on in the greenhouse under optimum conditions. The tests are evaluated after 36 days (% action, 100 % = plant has died, 0 % = no phytotoxic action). Examples of the synergistic action of the compositions according to the invention are given in the following Tables B1 to B6:

Mixture A contains as active ingredients 915 g/litre of the compound of formula 2.2a and 45 g/litre of the compound of formula 3.1.

Table B1:

| Test plant: | Compd. 1.001<br>[25 g/ha] | Mixture A<br>[900 g/ha] | Compd. 1.001 [25 g/ha]<br>+ mixture A [900 g/ha] | We accord-<br>ing to Colby |
|-------------|---------------------------|-------------------------|--------------------------------------------------|----------------------------|
| Sorghum     | 30                        | 20                      | 90                                               | 44                         |
| Chenopodium | 0                         | 0                       | 100                                              | 0                          |
| Sida        | 0                         | 70                      | 100                                              | 70                         |

Table B2:

| Test plant: | Compd. 1.001<br>[12.5 g/ha] | Mixture A<br>[900 g/ha] | Compd. 1.001 [12.5 g/ha]<br>+ mixture A [900 g/ha] | We accord- |
|-------------|-----------------------------|-------------------------|----------------------------------------------------|------------|
| Sorghum     | 0                           | 20                      | 80                                                 | 20         |
| Chenopodium | 0                           | 0                       | 95                                                 | 0          |
| Sida        | 0                           | 70                      | 95                                                 | 70         |

# Table B3:

| Test plant: | Compd. 1.001 | Mixture A  | Compd. 1.001 [6.25 g/ha] | We accord-   |
|-------------|--------------|------------|--------------------------|--------------|
|             | [6.25 g/ha]  | [900 g/ha] | + mixture A [900 g/ha]   | ing to Colby |
| Sorghum     | 0            | 20         | 70                       | 20           |
| Chenopodium | 0            | 0          | 95                       | 0            |
| Sida        | 0            | 70         | 95                       | 70           |

# Table B4:

| Test plant: | Compd. 1.001<br>[25 g/ha] | Mixture A<br>[300 g/ha] | Compd. 1.001 [25 g/ha]<br>+ mixture A [300 g/ha] | We accord-<br>ing to Colby |
|-------------|---------------------------|-------------------------|--------------------------------------------------|----------------------------|
| Chenopodium | 0                         | 0                       | 90                                               | 0                          |
| Ipomoea     | 30                        | 0                       | 100                                              | 30                         |
| Sida        | 0                         | 0                       | 40                                               | 0                          |

# Table B5:

| Test plant: | Compd. 1.001<br>[12.5 g/ha] | Mixture A<br>[300 g/ha] | Compd. 1.001 [12.5 g/ha]<br>+ mixture A [300 g/ha] | We accord-<br>ing to Colby |
|-------------|-----------------------------|-------------------------|----------------------------------------------------|----------------------------|
| Chenopodium | 0                           | 0                       | 80                                                 | 0                          |
| Ipomoea     | 0                           | 0                       | 60                                                 | 0                          |
| Sida        | 0                           | 0                       | 40                                                 | 0                          |

Table B6:

| Test plant: | Compd. 1.001<br>[6.25 g/ha] | Mixture A [300 g/ha] | Compd. 1.001 [6.25 g/ha]<br>+ mixture A [300 g/ha] | We accord-<br>ing to Colby |
|-------------|-----------------------------|----------------------|----------------------------------------------------|----------------------------|
| Chenopodium | 0                           | 0                    | 80                                                 | 0                          |
| Ipomoea     | 0                           | 0                    | 60                                                 | 0                          |
| Sida        | 0                           | 0                    | 40                                                 | 0                          |

### **Experiment description - post-emergence test:**

The test plants are grown to the 2- to 3-leaf stage in plastics pots under greenhouse conditions. A standard soil is used as cultivation substrate. At the 2- to 3-leaf stage, the herbicide is applied to the test plants on its own and as a mixture. The application is carried out using an aqueous suspension of the test substances in 500 litres of water/ha. The rates of application depend on the optimum doses ascertained under field conditions and greenhouse conditions. The tests are evaluated after 33 days (% action, 100 % = plant has died, 0 % = no phytotoxic action). Examples of the synergistic action of the compositions according to the invention are given in the following Tables B7 to B10:

Mixture A contains as active ingredients 915 g/litre of the compound of formula 2.2a and 45 g/litre of the compound of formula 3.1.

Table B7: Post-emergence test:

| Compd. 1.001 | Mixture A             | Compd. 1.001 [12.5 g/ha]        | We accord-                                                      |
|--------------|-----------------------|---------------------------------|-----------------------------------------------------------------|
| [12.5 g/ha]  | [900 g/ha]            | + mixture A [900 g/ha]          | ing to Colby                                                    |
| 0            | 0                     | 80                              | 0                                                               |
| . 0          | 20                    | · 100                           | 20                                                              |
| 80           | 0                     | 100                             | 80                                                              |
|              | [12.5 g/ha]<br>0<br>0 | [12.5 g/ha] [900 g/ha] 0 0 0 20 | [12.5 g/ha] [900 g/ha] + mixture A [900 g/ha]  0 0 80  0 20 100 |

Table B8: Post-emergence test:

| Test plant: | Compd. 1.001<br>[12.5 g/ha] | Mixture A<br>[300 g/ha] | Compd. 1.001 [12.5 g/ha]<br>+ mixture A [300 g/ha] | We accord-<br>ing to Colby |
|-------------|-----------------------------|-------------------------|----------------------------------------------------|----------------------------|
| Ipomoea     | 0                           | 0                       | 80                                                 | 0 .                        |
| Polygonum   | 0                           | 0                       | 70                                                 | 0                          |
| Xanthium    | 80                          | 0                       | 98                                                 | 80                         |

Table B9: Post-emergence test:

| Test plant: | Compd. 1.001 | Mixture A  | Compd. 1.001 [6.25 g/ha] | We accord-   |
|-------------|--------------|------------|--------------------------|--------------|
| ·           | [6.25 g/ha]  | [900 g/ha] | + mixture A [900 g/ha]   | ing to Colby |
| Ipomoea     | 0 ·          | 0          | 70                       | 0            |
| Polygonum   | 0            | 20         | 70                       | 20           |
| Xanthium    | 70           | 0          | 80                       | 70           |

Table B10: Post-emergence test:

| Test plant: | Compd. 1.001<br>[6.25 g/ha] | Mixture A<br>[300 g/ha] | Compd. 1.001 [6.25 g/ha]<br>+ mixture A [300 g/ha] | We accord- |
|-------------|-----------------------------|-------------------------|----------------------------------------------------|------------|
| Ipomoea     | 0                           | 0                       | 80                                                 | 0          |
| Polygonum   | 0                           | 0                       | 70                                                 | 0          |
| Xanthium    | 70                          | 0                       | 70                                                 | 70         |

In the following Tables, evaluation is carried out after 14 days:

Table B11: Pre-emergence action:

| Polygonum   | 50        | .80         | 95                     | 90.          |
|-------------|-----------|-------------|------------------------|--------------|
|             | [50 g/ha] | [500 g/ha]  | compd. 2.18 [500 g/ha] | ing to Colby |
| Test plant: | Compd. E8 | Compd. 2.18 | Compd. E8 [50 g/ha] +  | We accord-   |

Table B12: Pre-emergence action:

| Test plant: | Compd. E8  | Compd. 2.14 | Compd. E8 [100 g/ha] + | We acord-    |
|-------------|------------|-------------|------------------------|--------------|
|             | [100 g/ha] | [250 g/ha]  | compd. 2.14 [250 g/ha] | ing to Colby |
| Polygonum   | 50         | 50          | 90                     | 75           |
|             |            |             |                        |              |

Table B13: Pre-emergence action:

| Polygonum   | 50         | 30          | 90                     | 65           |
|-------------|------------|-------------|------------------------|--------------|
|             | [100 g/ha] | [125 g/ha]  | compd. 2.14 [125 g/ha] | ing to Colby |
| Test plant: | Compd. E8  | Compd. 2.14 | Compd. E8 [100 g/ha] + | We accord-   |

WO 01/54501 PCT/EP01/00720

Table B14: Pre-emergence action: Compound no. 2.13a corresponds to formula 2.13 wherein  $R_{74}$  is -CH<sub>2</sub>CH<sub>2</sub>CF<sub>3</sub>,  $Y_1$ ,  $Y_2$ ,  $Y_3$  and  $Y_4$  are each methine,  $Y_5$  is nitrogen and  $Y_6$  is methyl.

| Test plant: | Compd. E8  | Compd. 2.13a | Compd. E8 [100 g/ha] + | We accord-   |
|-------------|------------|--------------|------------------------|--------------|
|             | [100 g/ha] | [60 g/ha]    | compd. 2.13a [60 g/ha] | ing to Colby |
| Polygonum   | 50 .       | 80           | 95                     | 90           |

# Table B15: Pre-emergence action:

()

()

| Test plant: | Compd. E8 | Compd. 2.30 | Compd. E8 [50 g/ha] + | We accord-   |
|-------------|-----------|-------------|-----------------------|--------------|
|             | [50 g/ha] | [60 g/ha]   | compd. 2.30 [60 g/ha] | ing to Colby |
| Polygonum   | 50        | 30          | 90                    | 65           |

### Table B16: Pre-emergence action:

| Test plant: | Compd. E8<br>[50 g/ha] | Compd. 2.21 [30 g/ha] | Compd. E8 [50 g/ha] + compd. 2.21 [30 g/ha] | We accord-<br>ing to Colby |
|-------------|------------------------|-----------------------|---------------------------------------------|----------------------------|
| Polygonum   | 50                     | 50                    | 100                                         | 75                         |

Table B17: Pre-emergence action: Compound no. 2.4.a corresponds to formula 2.4 wherein  $R_{57}$  is chlorine,  $R_{58}$  is ethyl and  $R_{59}$  is tert-butyl.

| Test plant: | Compd. E8 | Compd. 2.4.a | Compd. E8 [50 g/ha] +   | We accord-   |
|-------------|-----------|--------------|-------------------------|--------------|
|             | [50 g/ha] | [125 g/ha]   | compd. 2.4.a [125 g/ha] | ing to Colby |
| Polygonum   | 50        | 30           | 85                      | 65           |

## Table B18: Pre-emergence action:

| Test plant: | Compd. 1.001 | Compd. 2.2.b | Compd. 1.001 [25 g/ha] + | We accord-   |
|-------------|--------------|--------------|--------------------------|--------------|
|             | [25 g/ha]    | [300 g/ha]   | compd. 2.2.b [300 g/ha]  | ing to Colby |
| Chenopodium | 80           | 0            | 95                       | 80           |
| Solanum     | 80           | 40           | 98                       | 88           |
| Cyperus     | 0            | 0            | 50                       | 0            |

Table B19: Pre-emergence action:

Compound no. 2.3.a corresponds to formula 2.3 wherein  $\mbox{R}_{56}$  is  $\mbox{CH(Me)-CH}_2\mbox{OMe}.$ 

| Test plant: | Compd. 1.001 | Compd. 2.3.a | Compd. 1.001 [12.5 g/ha]  | We accord-   |
|-------------|--------------|--------------|---------------------------|--------------|
|             | [12.5 g/ha]  | [100 g/ha]   | + compd. 2.3.a [100 g/ha] | ing to Colby |
| Chenopodium | 80           | 20           | 90                        | 84           |
| Solanum     | 75           | 60           | 90 _                      | 90           |
| Cyperus     | 0            | 20           | · 60                      | 20           |

Table B20: Pre-emergence action:

Compound no. 2.2.c corresponds to formula 2.2 wherein  $R_{S3}$  and  $R_{54}$  are ethyl and  $R_{55}$  is  $CH_2OMe$ .

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001         | We        |
|-------------|--------------|------------|----------------------|-----------|
|             | [12.5 g/ha]  | 2.2.c      | [12.5 g/ha] + compd. | according |
| _           |              | [100 g/ha] | 2.2.c [100 g/ha]     | to Colby  |
| Chenopodium | 80           | 20         | 90                   | 84        |
| Solanum     | 75           | 50         | 95                   | 88        |
| Cyperus     | 0            | 0          | 30                   | 0         |

## Table B21: Pre-emergence action:

Compound no. 2.2.d corresponds to formula 2.2 wherein  $R_{53}$  is ethyl,  $R_{54}$  is methyl and  $R_{55}$  is  $CH_2O-CH_2CH_3$ .

| Test plant: | Compd. 1.001<br>[12.5 g/ha] | Compd.<br>2.2.d<br>[100 g/ha] | Compd. 1.001<br>[12.5 g/ha] + compd.<br>2.2.d [100 g/ha] | We according to Colby |
|-------------|-----------------------------|-------------------------------|----------------------------------------------------------|-----------------------|
| Solanum     | 75                          | 60                            | 95                                                       | 90                    |

## Table B22: Pre-emergence action:

| Test plant: | Compd. 1.001<br>[25 g/ha] | Compd.<br>2.30<br>[100 g/ha] | Compd. 1.001<br>[25 g/ha] + compd.<br>2.30 [100 g/ha] | We according to Colby |
|-------------|---------------------------|------------------------------|-------------------------------------------------------|-----------------------|
| Cyperus     | 10                        | 0.                           | 60                                                    | 10                    |

In the following Tables, evaluation is carried out after 31 days:

Table B23: Pre-emergence action: Compound no. 2.4.a corresponds to the compound of formula 2.4 wherein  $R_{57}$  is chlorine,  $R_{58}$  is ethyl and  $R_{59}$  is isopropyl.

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
|             | [25 g/ha]    | 2.4.a      | [25 g/ha] + compd. | according |
|             |              | [250 g/ha] | 2.4.a [250 g/ha]   | to Colby  |
| Polygonum   | 0            | 20         | 80                 | 20        |

Table B24: Pre-emergence action: Compound no. 2.4.b corresponds to the compound of formula 2.4 wherein  $R_{57}$  is chlorine,  $R_{58}$  is ethyl and  $R_{59}$  is ethyl.

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
|             | [25 g/ha]    | 2.4.b      | [25 g/ha] + compd. | according |
|             |              | [125 g/ha] | 2.4.b [125 g/ha]   | to Colby  |
| Polygonum   | 0            | 0          | 40                 | 0         |

Table B25: Pre-emergence action: Compound no. 2.4.c corresponds to the compound of formula 2.4 wherein  $R_{57}$  is chlorine,  $R_{58}$  is ethyl and  $R_{59}$  is tert-butyl.

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
|             | [25 g/ha]    | 2.4.c      | [25 g/ha] + compd. | according |
|             |              | [250 g/ha] | 2.4.c [250 g/ha]   | to Colby  |
| Ipomoea     | 70           | 0          | 90                 | 70        |
| Xanthium    | 80           | 0          | 100                | 80        |

Table B26: Pre-emergence action: Compound no. 2.4.d corresponds to the compound of formula 2.4 wherein  $R_{57}$  is methylthio,  $R_{58}$  is ethyl and  $R_{59}$  is tert-butyl.

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
| •           | [25 g/ha]    | 2.4.d      | [25 g/ha] + compd. | according |
|             |              | [250 g/ha] | 2.4.d [250 g/ha]   | to Colby  |
| Ipomoea     | 70           | 0          | 80                 | 70        |
| Xanthium    | 80 ·         | 10         | 95                 | 82        |

Table B27: Pre-emergence action:

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
|             | [25 g/ha]    | 2.14       | [25 g/ha] + compd. | according |
|             |              | [125 g/ha] | 2.14 [125 g/ha]    | to Colby  |
| Ipomoea     | 70           | 0          | 85                 | 70        |
| Xanthium    | 80           | 20         | 100                | 84        |

Table B28: Pre-emergence action: Compound no. 2.6.a corresponds to the compound of formula 2.6 wherein  $R_{62}$  is hydrogen,  $R_{63}$  is methyl,  $R_{64}$  is fluorine,  $R_{65}$  is hydrogen, Y is nitrogen, Z is methine and  $R_{66}$  is fluorine.

| Test plant: | Compd. 1.001<br>[50 g/ha] | Compd.<br>2.6.a<br>[30 g/ha] | Compd. 1.001<br>[50 g/ha] + compd.<br>2.6.a [30 g/ha] | We according to Colby |
|-------------|---------------------------|------------------------------|-------------------------------------------------------|-----------------------|
| Polygonum   | 0                         | 30                           | 90                                                    | 30                    |

In the following Tables, evaluation is carried out after 21 days:

Table B29: Post-emergence action: Compound no. 2.7.a corresponds to the compound of formula 2.7 wherein  $R_{67}$  is -C(O)-S-n-octyl.

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
|             | [25 g/ha]    | 2.7.a      | [25 g/ha] + compd. | according |
|             |              | [250 g/ha] | 2.7.a [250 g/ha]   | to Colby  |
| Ipomoea     | 30           | 10         | 80                 | 30        |
| Polygonum   | 75           | 0          | 95                 | 75        |
| Xanthium    | 90           | 10         | 100                | 91        |

Table B30: Post-emergence action:

| Test plant: | Compd. 1.001<br>[25 g/ha] | Compd.<br>2.19<br>[250 g/ha] | Compd. 1.001<br>[25 g/ha] + compd.<br>2.19 [250 g/ha] | We according to Colby |
|-------------|---------------------------|------------------------------|-------------------------------------------------------|-----------------------|
| Ipomoea     | 30                        | 60                           | 95                                                    | 72                    |

-219 -

Table B31: Post-emergence action:

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
|             | [25 g/ha]    | 2.16       | [25 g/ha] + compd. | according |
|             |              | [360 g/ha] | 2.16 [360 g/ha]    | to Colby  |
| Ipomoea     | 30           | 20         | 70                 | 46        |
| Polygonum   | 75           | 10         | 90                 | 84        |

Table B32: Post-emergence action:

()

()

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001         | We        |
|-------------|--------------|------------|----------------------|-----------|
|             | [12.5 g/ha]  | 2.33       | [12.5 g/ha] + compd. | according |
|             |              | [360 g/ha] | 2.33 [360 g/ha]      | to Colby  |
| Polygonum   | 30           | 0          | 90                   | 30        |

Table B33: Post-emergence action: Compound no. 2.12.a corresponds to the compound of formula 2.12 wherein  $R_{73}$  is  $NH_2$ .

| Test plant: | Compd. 1.001 | Compd.     | Compd. 1.001       | We        |
|-------------|--------------|------------|--------------------|-----------|
|             | [25 g/ha]    | 2.12.a     | [25 g/ha] + compd. | according |
|             |              | [400 g/ha] | 2.33 [400 g/ha]    | to Colby  |
| Ipomoea     | 30           | 20         | 90                 | 44        |

Table B34: Post-emergence action:

| Test plant: | Compd. 1.001 | Compd.   | Compd. 1.001         | We        |
|-------------|--------------|----------|----------------------|-----------|
|             | [12.5 g/ha]  | 2.25     | [12.5 g/ha] + compd. | according |
|             |              | [2 g/ha] | 2.25 [2 g/ha]        | to Colby  |
| lpomoea .   | 30           | 0        | 50                   | 30        |
| Polygonum   | 30           | 0        | 40                   | 30        |

تُون

Table B35: Post-emergence action: Compound no. 2.1.a corresponds to the compound of formula 2.1 wherein  $R_{\rm S2}$  is hydrogen and  $R_{\rm S1}$  is ethyl.

| Polygonum   | 30           | [30 g/ha] | 2.1.a [30 g/ha]      | to Colby  |
|-------------|--------------|-----------|----------------------|-----------|
|             | [12.5 g/ha]  | 2.1.a     | [12.5 g/ha] + compd. | according |
| Test plant: | Compd. 1.001 | Compd.    | Compd. 1.001         | We        |

Table B36: Post-emergence action: Compound no. 2.1.b corresponds to the compound of formula 2.1 wherein  $R_{51}$  is  $CH_2OMe$  and  $R_{52}$  is hydrogen.

| Test plant: | Compd. 1.001<br>[25 g/ha] | Compd.<br>2.1.b<br>[30 g/ha] | Compd. 1.001<br>[25 g/ha] + compd.<br>2.1.b [30 g/ha] | We according to Colby |
|-------------|---------------------------|------------------------------|-------------------------------------------------------|-----------------------|
| Polygonum   | 75                        | 30                           | 90                                                    | 83                    |

In the following Tables, evaluation is carried out after 23 days:

Table B37: Pre-emergence action: Compound no. 2.13.b corresponds to formula 2.13 wherein  $R_{74}$  is -COOMe,  $Y_1$ ,  $Y_2$ ,  $Y_3$  and  $Y_4$  are each methine,  $Y_5$  is methine and  $Y_6$  and  $Y_7$  are difluoromethoxy.

| Chenopodium | 50                       | 70            | 95                                    | 85                 |
|-------------|--------------------------|---------------|---------------------------------------|--------------------|
|             |                          | [15 g/ha]     | [6 g/ha] + compd.<br>2.13.b [15 g/ha] | according to Colby |
| Test plant: | Compd. 1.001<br>[6 g/ha] | Compd. 2.13.b | Compd. 1.001                          | We                 |

Table B38: Pre-emergence action:

| Test plant: | Compd. 1.001<br>[6 g/ha] | Compd.<br>2.13.c<br>[60 g/ha] | Compd. 1.001 [6 g/ha] + compd. 2.13.c [60 g/ha] | We according to Colby |
|-------------|--------------------------|-------------------------------|-------------------------------------------------|-----------------------|
| Chenopodium | 50                       | 10                            | 85                                              | 55                    |

Table B39: Pre-emergence action: Compound no. 2.13.d corresponds to the compound of formula 2.13 wherein  $Y_1$ ,  $Y_2$ ,  $Y_3$  and  $Y_4$  are methine,  $R_{74}$  is trifluoromethyl,  $Y_5$  is nitrogen,  $Y_6$  is trifluoromethyl and  $Y_7$  is methoxy.

| Test plant: | Compd. 1.001<br>[6 g/ha] | Compd.<br>2.13d<br>[7.5 g/ha] | Compd. 1.001 [6 g/ha] + compd. 2.13.d [7.5 g/ha] | We according to Colby |
|-------------|--------------------------|-------------------------------|--------------------------------------------------|-----------------------|
| Amaranthus  | 10 -                     | 80                            | 95                                               | 82                    |

It has surprisingly been shown that special safeners are suitable for mixing with the synergistic composition according to the invention. The present invention accordingly relates also to a herbicidally selective composition for controlling grasses and weeds in crops of useful plants, especially in maize crops, that comprises a compound of formula I, one or more compounds selected from the compounds of formulae 2.1 to 2.51, and a safener (counter agent, antidote), and that protects the useful plants, but not the weeds, against the phytotoxic action of the herbicide, as well as to the use of such a composition in the control of weeds in crops of useful plants.

There is also proposed in accordance with the invention a herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of a) a herbicidally-synergistically effective amount of a compound of formula I and one or more compounds selected from the compounds of formulae 2.1 to 2.51 and b) a herbicidally-antagonistically effective amount of a compound selected from the compound of formula 3.1

and the compound of formula 3.2

()

and the compound of formula 3.3

and the compound of formula 3.4

and the compound of formula 3.5

and the compound of formula 3.6

and the compound of formula 3.8

and of formula 3.9

CI<sub>2</sub>CHCON(CH<sub>2</sub>CH=CH<sub>2</sub>)<sub>2</sub> (3.9),

and of formula 3.10

and of formula 3.11

and of formula 3.12

## and of formula 3.13

## and of formula 3.14

## and of formula 3.15

and of formula 3.16

The invention relates also to a herbicidally selective herbicidal composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of

- a) a herbicidally effective amount of a compound of formula I and
- b) a herbicidally-antagonistically effective amount of a compound selected from the compounds of formulae 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16.

Preferred compositions according to the invention comprise as safener a compound selected from the compounds of formulae 3.1, 3.3 and 3.8. Those safeners are especially suitable for compositions according to the invention that comprise the above-mentioned preferred compounds of formula I and optionally of formulae 2.1 to 2.51.

Combinations of compounds of formula I with the compound of formula 3.1 have been shown to be especially effective compositions, with special preference being given to compound no. 1.001 as the compound of formula I. That composition is preferably used together with the compound of formula 2.2a

chloroacetyl-2-ethyl-6-methylaniline).

The invention relates also to a method for the selective control of weeds in crops of useful plants, which comprises treating the useful plants, seeds or cuttings thereof, or the area of cultivation thereof, with a herbicidally effective amount of the herbicide of formula I, as

appropriate one or more herbicides selected from the compounds of formulae 2.1 to 2.51, and a herbicidally-antagonistically effective amount of a safener of formulae 3.1 to 3.16.

The compounds of formulae 3.1 to 3.16 are known and are described, for example, in the Pesticide Manual, eleventh ed., British Crop Protection Council, 1997 under the entry numbers 61 (formula 3.1, benoxacor), 304 (formula 3.2, fenciorim), 154 (formula 3.3, cloquintocet), 462 (formula 3.4, mefenpyr-diethyl), 377 (formula 3.5, furilazol), 363 (formula 3.8, fluxofenim), 213 (formula 3.9, dichlormid) and 350 (formula 3.10, flurazole). The compound of formula 3.11 is known by the name MON 4660 (Monsanto) and is described, for example, in EP-A-0 436 483.

The compound of formula 3.6 (AC 304 415) is described, for example, in EP-A-0 613 618, and the compound of formula 3.7 in DE-A-2 948 535. The compounds of formula 3.12 are described in DE-A-4 331 448, and the compound of formula 3.13 in DE-A-3 525 205. The compound of formula 3.14 is known, for example, from US-A-5 215 570 and the compound of formula 3.15 from EP-A-0 929 543. The compound of formula 3.16 is described in WO 99/00020. In addition to the compound of formula 3.16, the other 3-(5-tetrazolyl-carbonyl)-2-quinolones described in WO 99/00020, especially the compounds specifically disclosed in Tables 1 and 2 on pages 21 to 29, are suitable for protecting the crop plants against the phytotoxic action of the compounds of formula I.

As crop plants that can be protected by the safeners of formulae 3.1 to 3.16 against the damaging effect of the above-mentioned herbicides there come into consideration especially cereals, cotton, soybeans, sugar beet, sugar cane, plantation crops, rape, maize and rice, more especially maize. "Crops" are to be understood to mean also those crops which have been made tolerant to herbicides or classes of herbicides as a result of conventional methods of breeding or genetic engineering.

The weeds to be controlled may be both monocotyledonous and dicotyledonous weeds, e.g. Stellaria, Agrostis, Digitaria, Avena, Apera, Brachiaria, Phalaris, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Panicum, Bromus, Alopecurus, Sorghum halepense, Sorghum bicolor, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

Areas of cultivation include the areas of ground on which the crop plants are already growing or which have already been sown with the seeds of those crop plants, as well as ground intended for cultivation with such crop plants.

Depending on the intended use, a safener of formula 3.1 to 3.16 can be used in the pretreatment of the seed of the crop plant (dressing of the seeds or cuttings) or can be introduced into the soil before or after sowing. It can, however, also be applied, either alone or together with the herbicide, after emergence of the plants. The treatment of the plants or seeds with the safener can therefore in principle be carried out independently of the time at which the herbicide is applied. The plants can, however, also be treated by simultaneous application of herbicide and safener (e.g. in the form of a tank mixture). The ratio of the rate of application of safener to the rate of application of herbicide depends largely on the method of application. In the case of field treatment, which is carried out either using a tank mixture comprising a combination of safener and herbicide or by separate application of safener and herbicide, the ratio of herbicides to safener is generally from 100:1 to 1:10, preferably from 20:1 to 1:1. In the case of field treatment it is usual to apply from 0.001 to 1.0 kg of safener/ha, preferably from 0.001 to 0.25 kg of safener/ha.

The rate of application of herbicides is generally from 0.001 to 2 kg/ha, but preferably from 0.005 to 0.5 kg/ha.

The compositions according to the invention are suitable for all methods of application conventionally used in agriculture, e.g. pre-emergence application, post-emergence application and seed dressing.

In the case of seed dressing, generally from 0.001 to 10 g of safener/kg of seed, preferably from 0.05 to 2 g of safener/kg of seed, are applied. When the safener is applied in liquid form shortly before sowing, with soaking of the seeds, then advantageously the safener solutions used contain the active ingredient in a concentration of from 1 to 10 000 ppm, preferably from 100 to 1000 ppm.

For the purpose of application, the safeners of formulae 3.1 to 3.16 or combinations of those safeners with the herbicide of formula I and, as appropriate, one or more herbicides selected from formulae 2.1 to 2.51 are advantageously formulated together with adjuvants customary

. j

2

in formulation technology, e.g. into emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microcapsules.

Such formulations are described, for example, in WO 97/34485, pages 9 to 13. The formulations are prepared in known manner, e.g. by intimately mixing and/or grinding the active ingredients with liquid or solid formulation adjuvants, e.g. solvents or solid carriers. In addition, surface-active compounds (surfactants) can also be used in the preparation of the formulations. Solvents and solid carriers suitable for that purpose are mentioned, e.g., in WO 97/34485, page 6.

Depending on the nature of the compounds of formulae I, 2.1 to 2.51 and 3.1 to 3.16 to be formulated, there come into consideration as surface-active compounds non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties. Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, on pages 7 and 8 of WO 97/34485. Also suitable for the preparation of the herbicidal compositions according to the invention are the surfactants conventionally employed in formulation technology, which are described, *inter alia*, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol. I-III, Chemical Publishing Co., New York, 1980-81.

The herbicidal formulations usually contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of active ingredient mixture comprising a compound of formula I, a compound selected from the compounds of formulae 2.1 to 2.51 and the compounds of formulae 3.1 to 3.16, from 1 to 99.9 % by weight of a solid or liquid formulation adjuvant and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant. Whereas commercial products are usually formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further ingredients, such as stabilisers, e.g. vegetable oils or epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity regulators, binders, tackifiers, and also

fertilisers or other active ingredients. For the use of safeners of formulae 3.1 to 3.16, or of compositions comprising them, in the protection of crop plants against the damaging effects of herbicides of formulae I and 2.1 to 2.51, various methods and techniques come into consideration, such as, for example, the following:

#### i) Seed dressing

- a) Dressing of the seeds with a wettable powder formulation of a compound of formulae 3.1 to 3.16 by shaking in a vessel until uniformly distributed over the seed surface (dry dressing). In that procedure approximately from 1 to 500 g of compound of formulae 3.1 to 3.16 (4 g to 2 kg of wettable powder) are used per 100 kg of seed.
- b) Dressing of the seeds with an emulsifiable concentrate of a compound of formulae 3.1 to 3.16 according to method a) (wet dressing).
- c) Dressing by immersing the seeds for from 1 to 72 hours in a liquor comprising from 100 to 1000 ppm of a compound of formulae 3.1 to 3.16 and optionally subsequently drying the seeds (immersion dressing).

Dressing the seed or treating the germinated seedling are naturally the preferred methods of application, because treatment with the active ingredients is directed entirely at the target crop. Generally from 1 to 1000 g of antidote, preferably from 5 to 250 g of antidote, are used per 100 kg of seed, but depending on the methodology, which also enables the addition of other active ingredients or micronutrients, the concentration limits indicated can be varied up or down (repeat dressing).

#### ii) Application as a tank mixture

A liquid formulation of a mixture of antidote and herbicide is used (ratio by weight of the one to the other from 10:1 to 1:100), the rate of application of herbicide being from 0.005 to 5.0 kg per hectare. Such tank mixtures are applied before or after sowing.

#### iii) Application to the seed furrow

The compounds of formulae 3.1 to 3.16 are introduced into the open, sown seed furrow in the form of an emulsifiable concentrate, wettable powder or granules. Once the seed furrow has been covered over, the herbicide is applied in the usual manner in the pre-emergence process.

### iv) Controlled release of active ingredient

The compounds of formulae 3.1 to 3.16 are applied in solution to mineral granule carriers or polymerised granules (urea/formaldehyde) and dried. If desired, it is also possible to apply a coating that allows the active ingredient to be released in metered amounts over a specific period of time (coated granules).

Preferred formulations have especially the following compositions: (% = percent by weight)

### **Emulsifiable concentrates:**

active ingredient mixture:

1 to 90 %, preferably 5 to 20 %

surfactant:

1 to 30 %, preferably 10 to 20 %

liquid carrier:

5 to 94 %, preferably 70 to 85 %

#### **Dusts:**

active ingredient mixture:

0.1 to 10 %, preferably 0.1 to 5 %

solid carrier:

99.9 to 90 %, preferably 99.9 to 99 %

## Suspension concentrates:

active ingredient mixture:

5 to 75 %, preferably 10 to 50 %

water:

94 to 24 %, preferably 88 to 30 %

surfactant:

1 to 40 %, preferably 2 to 30 %

#### Wettable powders:

active ingredient mixture:

0.5 to 90 %, preferably 1 to 80 %

surfactant:

0.5 to 20 %, preferably 1 to 15 %

solid carrier:

5 to 95 %, preferably 15 to 90 %

#### Granules:

active ingredient mixture:

0.1 to 30 %, preferably 0.1 to 15 %

solid carrier:

99.5 to 70 %, preferably 97 to 85 %

The following Examples illustrate the invention further, but do not limit the invention.

| Favorilettes Francisco for subdivino |                |                 |                    |             |
|--------------------------------------|----------------|-----------------|--------------------|-------------|
| Formulation Examples for mixture     |                |                 |                    |             |
| formulae 2.1 to 2.51, and safener    | ,              |                 |                    |             |
| F1. Emulsifiable concentrates        | a)             | b)<br>10 %      | C)                 | d)          |
| active ingredient mixture            | 5 %            |                 | 25 %               | 50 %        |
| calcium dodecylbenzenesulfonate      |                | 8 %             | 6 %                | 8 %         |
| castor oil polyglycol ether          | 4 %            | -               | 4 %                | 4 %         |
| (36 mol of ethylene oxide)           |                |                 | <del>:</del>       |             |
| octylphenol polyglycol ether         | •              | 4 %             | -                  | 2 %         |
| (7-8 mol of ethylene oxide)          |                |                 |                    |             |
| cyclohexanone                        | -              | -               | 10 %               | 20 %        |
| aromatic hydrocarbon mixture         | 85 %           | 78 %            | 55 %               | 16 %        |
| C <sub>9</sub> -C <sub>12</sub>      |                |                 |                    |             |
| Emulsions of any desired concent     | tration can be | obtained from s | uch concentrates l | by dilution |
| with water.                          |                |                 |                    | •           |
|                                      |                |                 |                    |             |
| F2. Solutions                        | a)             | b)              | с)                 | d)          |
| active ingredient mixture.           | 5 %            | 10 %            | 50 %               | 90 %        |
| 1-methoxy-3-(3-methoxy-              |                |                 | • •                |             |
| propoxy)-propane                     | -              | 20 %            | 20 %               | •           |
| polyethylene glycol MW 400           | 20 %           | 10 %            | -                  | -           |
| N-methyl-2-pyrrolidone               | -              | <del>.</del>    | 30 %               | 10 %        |
| aromatic hydrocarbon mixture         | 75 %           | 60 %            | -                  |             |
| C <sub>9</sub> -C <sub>12</sub>      |                |                 |                    |             |
| The solutions are suitable for use   | in the form of | microdrops.     |                    |             |
|                                      | •              |                 |                    |             |
| F3. Wettable powders                 | a)             | b)              | c)                 | d)          |
| active ingredient mixture            | 5 %            | 25 %            | 50 %               | . 80 %      |
| sodium lignosulfonate                | 4 %            | -               | 3 %                | -           |
| sodium lauryl sulfate                | 2 %            | 3 %             | -                  | 4 %         |
| sodium diisobutylnaphthalene-        | •              | 6 %             | 5 %                | 6 %         |
| sulfonate                            |                |                 |                    |             |
| octylphenol polyglycol ether         | •              | 1 %             | 2 %                | -           |
| (7-8 mol of ethylene oxide)          |                |                 |                    |             |
| highly dispersed silicic acid        | 1 %            | 3 %             | 5 %                | 10 %        |

kaolin 88 % 62 % 35 %

The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.

| F4. Coated granules           | a)     | b)   | c)   |
|-------------------------------|--------|------|------|
| active ingredient mixture     | 0.1 %  | 5 %  | 15 % |
| highly dispersed silicic acid | 0.9 %  | 2 %  | 2 %  |
| inorganic carrier             | 99.0 % | 93 % | 83 % |
| (Æ 0.1 - 1 mm)                |        |      |      |

e.g. CaCO<sub>3</sub> or SiO<sub>2</sub>

The active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off *in vacuo*.

| F5. Coated granules           | <b>a</b> ) | <b>b)</b> · | c)   |
|-------------------------------|------------|-------------|------|
| active ingredient mixture     | 0.1 %      | 5 %         | 15 % |
| polyethylene glycol MW 200    | 1.0 %      | 2 %         | 3 %  |
| highly dispersed silicic acid | 0.9 %      | 1 %         | 2 %  |
| inorganic carrier             | 98.0 %     | 92 %        | 80 % |
| (Æ 0.1 - 1 mm)                |            |             |      |

e.g. CaCO<sub>3</sub> or SiO<sub>2</sub>

The finely ground active ingredient is uniformly applied, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.

| F6. Extruder granules     | a) .   | b)   | c)   | d)   |
|---------------------------|--------|------|------|------|
| active ingredient mixture | 0.1 %  | 3 %  | 5 %  | 15 % |
| sodium lignosulfonate     | 1.5 %  | 2%   | 3 %  | 4 %  |
| carboxymethylcellulose    | 1.4 %  | 2 %  | 2 %  | 2 %  |
| kaolin                    | 97.0 % | 93 % | 90 % | 79 % |

The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.

| F7. Dusts                 | a)     | b)   | c)   |
|---------------------------|--------|------|------|
| active ingredient mixture | 0.1 %  | 1 %  | 5 %  |
| talcum                    | 39.9 % | 49 % | 35 % |
| kaolin                    | 60.0 % | 50 % | 60 % |

Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

| F8. Suspension concentrates  | a)    | b)    | c)    | d)    |
|------------------------------|-------|-------|-------|-------|
| active ingredient mixture    | 3 %   | 10 %  | 25 %  | 50 %  |
| ethylene glycol              | 5 %   | 5 %   | 5 %   | . 5 % |
| nonylphenol polyglycol ether | -     | 1 %   | 2 %   | •     |
| (15 mol of ethylene oxide)   |       |       |       |       |
| sodium lignosulfonate        | 3 %   | 3 %   | 4 %   | 5 %   |
| carboxymethylcellulose       | ·1 %  | 1 %   | 1 %   | 1 %   |
| 37 % aqueous formaldehyde    | 0.2 % | 0.2 % | 0.2 % | 0.2 % |
| solution                     | •     |       |       |       |
| silicone oil emulsion        | 0.8 % | 0.8 % | 0.8 % | 0.8 % |
| water                        | 87 %  | 79 %  | 62 %  | 38 %  |

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

It is often more practical for the compounds of formulae I, 2.1 to 2.51 and 3.1 to 3.16 to be formulated separately and then to be brought together in the desired mixing ratio in the applicator in the form of a "tank mixture" in water shortly before application.

The ability of the safeners of formulae 3.1 to 3.16 to protect crop plants against the phytotoxic action of herbicides of formula I is illustrated in the following Examples.

#### Biological Example: safening action

()

The test plants are grown in plastics pots under greenhouse conditions to the 4-leaf stage. At that stage, the herbicides alone, and the mixtures of the herbicides with the test compounds that are to be tested as safeners, are applied to the test plants. The application is in the form of an aqueous suspension of the test compounds prepared from a 25 %

wettable powder (Example F3, b)) with 500 litres of water/ha. 4 weeks after application, the phytotoxic action of the herbicides on the crop plants, e.g. maize and cereals, is evaluated using a percentage scale. 100 % denotes that the test plant has died, 0 % denotes no phytotoxic action.

The results obtained in this test demonstrate that damage to the crop plant caused by the herbicide of formula I in combination with one or more herbicides selected from formulae 2.1 to 2.51 can be significantly reduced by the compounds of formulae 3.1 to 3.16. Examples of the safening action are given in the following Table B40:

Tabl∈ B40:

| Test plant | Compd 1.001 [50 g/ha] | Compd. 1.001<br>[50 g/ha] +<br>compd. 3.3 [50 g/ha] | Compd. 1.001<br>[50 g/ha] + | Compd. 1.001<br>[50 g/ha] + |
|------------|-----------------------|-----------------------------------------------------|-----------------------------|-----------------------------|
|            | too ayual             | compa. 3.3 [50 g/na]                                | compd. 3.1 [50 g/ha]        | compd. 3.8 [50 g/ha]        |
| Maize      | 50                    | 5                                                   | 5                           | 0                           |
| Abutilon   | 100                   | 100                                                 | 100                         | 100                         |
| Setaria    | 100                   | 100                                                 | ·100                        | 100                         |

The same results are obtained when the mixtures are formulated in accordance with Examples F1, F2 and F4 to F8.

#### What is claimed is:

 A herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, comprises as active ingredient a mixture
 a) a herbicidally effective amount of a compound of formula I

wherein each R is independently hydrogen, C₁-C₅alkyl, C₂-C₅alkenyl, C₂-C₅haloalkenyl, C2-C6alkynyl, C2-C6haloalkynyl, C3-C6cycloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-Cealkylthio, C1-Cealkylsulfinyl, C1-Cealkylsulfonyl, C1-Cehaloalkyl, C1-Cehaloalkylthio, C1-Cehaloalkylsulfinyl, C1-Cehaloalkylsulfonyl, C1-Cealkoxycarbonyl, C1-Cealkylcarbonyl, C1-Cealkylamino, di(C1-Cealkyl)amino, C1-Cealkylaminosulfonyl, di(C1-Cealkyl)aminosulfonyl, -N(R<sub>1</sub>)-S-R<sub>2</sub>, -N(R<sub>3</sub>)-SO-R<sub>4</sub>, -N(R<sub>5</sub>)-SO<sub>2</sub>-R<sub>6</sub>, nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C1-C6alkyl, C1-C6haloalkyi, C<sub>3</sub>-C<sub>6</sub>alkenyi, C<sub>3</sub>-C<sub>6</sub>haloalkenyi, C<sub>3</sub>-C<sub>6</sub>alkynyi, C<sub>3</sub>-C<sub>8</sub>haloalkynyi, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, mercapto, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>-Cehaloalkylthio, C<sub>3</sub>-Cealkenylthio, C<sub>3</sub>-Cehaloalkenylthio, C<sub>3</sub>-Cealkynylthio, C<sub>2</sub>-C<sub>5</sub>alkoxyalkylthio, C<sub>3</sub>-C<sub>5</sub>acetylalkylthio, C<sub>3</sub>-C<sub>6</sub>alkoxycarbonylalkylthio, C<sub>2</sub>-C<sub>4</sub>cyanoalkylthio,  $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl, C<sub>1</sub>-C<sub>2</sub>alkylaminosulfonyl, C<sub>2</sub>-C<sub>4</sub>dialkylaminosulfonyl, C<sub>1</sub>-C<sub>3</sub>alkylene-R<sub>45</sub>, NR<sub>46</sub>R<sub>47</sub>, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by C<sub>1</sub>-C<sub>3</sub>alkyl, C<sub>1</sub>-C<sub>3</sub>haloalkyl, C<sub>1</sub>-C<sub>3</sub>alkoxy, C<sub>1</sub>-C<sub>3</sub>haloalkoxy, halogen, cyano or by nitro; or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C<sub>1</sub>-C<sub>4</sub>alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by

 $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ haloalkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_6$ haloalkylyl,  $C_1$ - $C_6$ alkoxy,  $C_1$ - $C_6$ haloalkoxy,  $C_3$ - $C_6$ alkenyloxy,  $C_3$ - $C_6$ alkynyloxy, mercapto,  $C_1$ - $C_6$ alkylthio,  $C_1$ - $C_6$ haloalkylthio,  $C_3$ - $C_6$ alkenylthio,  $C_3$ - $C_6$ alkenylthio,  $C_3$ - $C_6$ alkylylthio,  $C_3$ - $C_6$ alkoxycarbonylalkylthio,  $C_2$ - $C_4$ cyanoalkylthio,  $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_2$ alkylaminosulfonyl,  $C_2$ - $C_4$ dialkylaminosulfonyl,  $C_1$ - $C_3$ alkylene- $C_1$ ,  $C_3$ 0 halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen; or

each R is independently  $C_1$ - $C_4$ alkoxy- $C_1$ 

 $R_1$ ,  $R_3$  and  $R_5$  are each independently of the others hydrogen or  $C_1$ - $C_6$ alkyl;  $R_2$  is  $NR_{10}R_{11}$ ,  $C_1$ - $C_6$ alkoxy,  $C_1$ - $C_6$ haloalkoxy,  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_6$ cycloalkyl or phenyl, wherein phenyl may itself be substituted by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro;

 $R_4$  is NR<sub>12</sub>R<sub>13</sub>, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>3</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkoxyl, C<sub>3</sub>-C<sub>6</sub>cycloalkyl or phenyl, wherein phenyl may itself be substituted by C<sub>1</sub>-C<sub>3</sub>alkyl, C<sub>1</sub>-C<sub>3</sub>haloalkyl, C<sub>1</sub>-C<sub>3</sub>alkoxy, C<sub>1</sub>-C<sub>3</sub>haloalkoxy, halogen, cyano or by nitro;

 $R_{\theta}$  is NR<sub>14</sub>R<sub>15</sub>, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>3</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkynyl, C<sub>3</sub>-C<sub>6</sub>cycloalkyl or phenyl, wherein phenyl may itself be substituted by C<sub>1</sub>-C<sub>3</sub>alkyl, C<sub>1</sub>-C<sub>3</sub>haloalkyl, C<sub>1</sub>-C<sub>3</sub>alkoxy, C<sub>1</sub>-C<sub>3</sub>haloalkoxy, halogen, cyano or by nitro;

 $R_7$  and  $R_{45}$  are each independently of the other  $C_1$ - $C_3$ alkoxy,  $C_2$ - $C_4$ alkoxycarbonyl,  $C_1$ - $C_3$ -alkylthio,  $C_1$ - $C_3$ alkylsulfinyl,  $C_1$ - $C_3$ alkylsulfinyl or phenyl, wherein phenyl may itself be substituted by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro;

 $R_8$ ,  $R_{10}$ ,  $R_{12}$ ,  $R_{14}$  and  $R_{48}$  are each independently of the others hydrogen or  $C_1$ - $C_6$ alkyl;  $R_9$ ,  $R_{11}$ ,  $R_{13}$ ,  $R_{15}$  and  $R_{47}$  are each independently of the others  $C_1$ - $C_6$ alkyl or  $C_1$ - $C_6$ alkoxy; Q is the group  $Q_1$ 

wherein R<sub>16</sub>, R<sub>17</sub>, R<sub>18</sub> and R<sub>19</sub> are each independently of the others hydrogen, hydroxy,

C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>2</sub>-C<sub>6</sub>alkynyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-NHS(O)<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>haloalkyl, -NH-C<sub>1</sub>-C<sub>4</sub>alkyl, -N(C<sub>1</sub>-C<sub>4</sub>alkyl)<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>alkoxy, cyano, nitro, halogen, or phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, amino, C<sub>1</sub>-C<sub>4</sub>alkylamino, di(C<sub>1</sub>-C<sub>4</sub>alkyl)amino, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl-S(O)<sub>2</sub>O, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>NH, C<sub>1</sub>-C4alkyl-S(O)2N(C1-C4alkyl), halogen, nitro, COOH or by cyano; or two adjacent substituents out of R<sub>16</sub>, R<sub>17</sub>, R<sub>18</sub> and R<sub>19</sub> form a C<sub>2</sub>-C<sub>6</sub>alkylene bridge; R<sub>20</sub> is hydroxy, O⁻M⁺, halogen, C<sub>1</sub>-C<sub>12</sub>alkoxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, C<sub>2</sub>-C₄alkenylcarbonyloxy, C<sub>3</sub>-C<sub>6</sub>cycloalkylcarbonyloxy, C<sub>1</sub>-C<sub>1</sub>-alkoxycarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, R<sub>21</sub>R<sub>22</sub>N-C(O)O, C<sub>1</sub>-C<sub>12</sub>alkylthio, C<sub>1</sub>-C<sub>12</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>12</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfonyl, C<sub>2</sub>-C<sub>12</sub>alkenylthio, C<sub>2</sub>-C<sub>12</sub>alkenylsulfinyl, C<sub>2</sub>-C<sub>12</sub>alkenylsulfonyl,  $C_2$ - $C_{12}$ haloalkenylthio,  $C_2$ - $C_{12}$ haloalkenylsulfinyl,  $C_2$ - $C_{12}$ haloalkenylsulfonyl, C2-C12alkynylthio, C2-C12alkynylsulfinyl, C2-C12alkynylsulfonyl, C1-C4alkyl-S(O)2O, phenyi-S(O)<sub>2</sub>O,  $(C_1-C_4alkoxy)_2P(O)O$ ,  $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$ ,  $H(C_1-C_4alkoxy)P(O)O$ , C<sub>1</sub>-C<sub>12</sub>-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub>alkylamino, di(C<sub>1</sub>-C<sub>4</sub>alkyl)amino, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O, C<sub>1</sub>-C4haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, C1-C4haloalkyl-S(O)2O, C1-C<sub>4</sub>alkyl-S(O)<sub>2</sub>NH, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>N(C<sub>1</sub>-C<sub>4</sub>alkyl), halogen, nitro or by cyano; and R<sub>21</sub> and R<sub>22</sub> are each independently of the other hydrogen or C<sub>1</sub>-C<sub>4</sub>alkyl; or is the group Q2

wherein  $R_{23}$  is hydroxy, O'M', halogen,  $C_1$ - $C_{12}$ alkoxy,  $C_1$ - $C_{12}$ alkylcarbonyloxy,  $C_2$ - $C_4$ -alkenylcarbonyloxy,  $C_3$ - $C_6$ cycloalkylcarbonyloxy,  $C_1$ - $C_{12}$ alkoxycarbonyloxy,  $C_1$ - $C_{12}$ alkylcarbonyloxy,  $C_1$ - $C_{12}$ alkylcarbonyloxy,  $C_1$ - $C_{12}$ alkylcarbonyloxy,  $C_2$ - $C_1$ 2alkylcarbonyloxy,  $C_1$ - $C_1$ 2alkylcarbonyloxy,  $C_2$ - $C_1$ 2alkylcarbonyloxy,  $C_1$ - $C_1$ 2alkylcarbonyloxy,  $C_1$ - $C_1$ 2alkylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxylcarbonyloxyloxylcarbonyloxyloxy

 $R_{24}$  and  $R_{25}$  are each independently of the other hydrogen or  $C_1$ - $C_4$ alkyl; and Y is oxygen, sulfur, a chemical bond or a  $C_1$ - $C_4$ alkylene bridge; or is the group  $Q_3$ 

wherein R<sub>44</sub>, R<sub>37</sub>, R<sub>38</sub> and R<sub>39</sub> are each independently of the others hydrogen, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>2</sub>-C<sub>6</sub>alkynyl, C<sub>1</sub>-C<sub>6</sub>alkoxycarbonyl, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>-C<sub>6</sub>alkyl-sulfinyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub>alkyl-NHS(O)<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>alkylamino, di(C<sub>1</sub>-C<sub>6</sub>alkyl)amino, hydroxy, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, hydroxy-C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkyl-sulfonyloxy-C<sub>1</sub>-C<sub>6</sub>alkyl, tosyloxy-C<sub>1</sub>-C<sub>6</sub>alkyl, halogen, cyano, nitro, phenyl, or phenyl substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, amino, C<sub>1</sub>-C<sub>4</sub>alkylamino, di(C<sub>1</sub>-C<sub>4</sub>alkyl)amino, C<sub>1</sub>-C<sub>6</sub>alkylthio, C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O, C<sub>1</sub>-C<sub>6</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>haloalkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl-S(O)<sub>2</sub>NH, C<sub>1</sub>-C<sub>6</sub>alkylthio-N(C<sub>1</sub>-C<sub>4</sub>alkyl), C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl-N(C<sub>1</sub>-C<sub>4</sub>alkyl), C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl-N(C<sub>1</sub>-C<sub>4</sub>alkyl), halogen, nitro, COOH or by cyano; or adjacent R<sub>44</sub> and R<sub>37</sub> or R<sub>38</sub> and R<sub>39</sub> together are C<sub>3</sub>-C<sub>6</sub>alkylene;

( )

W is oxygen, sulfur, sulfinyl, sulfonyl, -CR<sub>41</sub>R<sub>42</sub>-, -C(O)- or -NR<sub>43</sub>-; R<sub>41</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy-C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkylthio-C<sub>1</sub>-C4alkyl, C1-C4alkylcarbonyloxy-C1-C4alkyl, C1-C4alkylsulfonyloxy-C1-C4alkyl, tosyloxy-C1-C<sub>4</sub>alkyl, di(C<sub>1</sub>-C<sub>3</sub>alkoxyalkyl)methyl, di(C<sub>1</sub>-C<sub>3</sub>alkylthioalkyl)methyl, (C<sub>1</sub>-C<sub>3</sub>alkoxyalkyl)-(C<sub>1</sub>- $C_3$ alkylthioalkyl)methyl,  $C_3$ - $C_5$ oxacycloalkyl,  $C_3$ - $C_5$ thiacycloalkyl,  $C_3$ - $C_4$ dioxacycloalkyl,  $C_3$ -C4dithiacycloalkyl, C3-C4oxathiacycloalkyl, formyl, C1-C4alkoxycarbonyl, or phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C4alkylcarbonyl, C1-C4alkoxycarbonyl, amino, C1-C4alkylamino, di(C1-C4alkyl)amino, C1-C4alkylthio, C1-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4alkylsul  $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfonyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ ,  $C_1$ - $C_4$ alkyl- $S(O)_2NH$ ,  $C_1$ - $C_6$ alkylthio- $N(C_1-C_4$ alkyl),  $C_1-C_6$ alkylsulfinyl- $N(C_1-C_4$ alkyl),  $C_1-C_6$ alkylsulfonyl- $N(C_1-C_4$ alkyl), halogen, nitro, COOH or by cyano; or R<sub>42</sub> together with R<sub>39</sub> is C<sub>1</sub>-C<sub>6</sub>alkylene; R<sub>42</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl or C<sub>1</sub>-C<sub>4</sub>haloalkyl; R<sub>40</sub> is hydroxy, O<sup>T</sup>M<sup>+</sup>, halogen, C<sub>1</sub>-C<sub>12</sub>alkoxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, C<sub>2</sub>-C<sub>4</sub>alkenylcarbonyloxy, C<sub>3</sub>-C<sub>6</sub>cycloalkylcarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkoxycarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, R<sub>96</sub>R<sub>97</sub>N-C(0)0, C<sub>1</sub>-C<sub>12</sub>alkylthio, C<sub>1</sub>-C<sub>12</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>12</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfonyl, C<sub>2</sub>-C<sub>12</sub>alkenylthio, C<sub>2</sub>-C<sub>12</sub>alkenylsulfinyl, C<sub>2</sub>-C<sub>12</sub>alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfonyl, C2-C12haloalkenylsulfonyl, C<sub>2</sub>-C<sub>12</sub>alkynylthio, C<sub>2</sub>-C<sub>12</sub>alkynylsulfinyl, C<sub>2</sub>-C<sub>12</sub>alkynylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>O. phenyl-S(O)<sub>2</sub>O,  $(C_1-C_4alkoxy)_2P(O)O$ ,  $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$ ,  $H(C_1-C_4alkoxy)P(O)O$ . C<sub>1</sub>-C<sub>12</sub>-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub>alkylamino, di(C<sub>1</sub>-C₄alkyl)amino, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁- $C_4$ haloalkyithio,  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfonyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ ,  $C_1$ -C4alkyl-S(O)2NH, C1-C4alkyl-S(O)2N(C1-C4alkyl), halogen, nitro or by cyano; R<sub>96</sub> and R<sub>97</sub> are each independently of the other hydrogen or C₁-C₄alkyl: R<sub>43</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, or phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkylcarbonyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, C<sub>1</sub>-C<sub>4</sub>alkylamino, di(C<sub>1</sub>-C<sub>4</sub>alkyl)amino, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4alkyl-S(O)2O, C1-C4haloalkylthio, C1-C4haloalkylsulfinyl, C1- $C_4$ haloalkylsulfonyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ ,  $C_1$ - $C_4$ alkyl- $S(O)_2NH$ ,  $C_1$ - $C_4$ alkyl- $S(O)_2N(C_1$ -C<sub>4</sub>alkyl), halogen, nitro or by cyano; or is the group Q<sub>4</sub>

wherein R<sub>30</sub> hydroxy, O'M<sup>+</sup>, halogen, C<sub>1</sub>-C<sub>12</sub>alkoxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy, C<sub>2</sub>-C<sub>4</sub>alkenylcarbonyloxy, C<sub>3</sub>-C<sub>6</sub>cycloalkylcarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkoxycarbonyloxy, C<sub>1</sub>-C<sub>12</sub>alkylcarbonyloxy,  $R_{31}R_{32}N-C(O)O,\ C_1-C_{12}alkylthio,\ C_1-C_{12}alkylsulfinyl,\ C_1-C_{12}alkylsulfonyl,\ C_1-C_4haloalkylthio,\ C_1-C_{12}alkylsulfonyl,\ C_1-C_4haloalkylthio,\ C_1-C_4haloal$  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfonyl,  $C_2$ - $C_{12}$ alkenylthio,  $C_2$ - $C_{12}$ alkenylsulfinyl,  $C_2$ - $C_{12}$ alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfonyl, C2-C12haloalkenylsulfonyl, C2-C12alkynylthio, C2-C12alkynylsulfinyl, C2-C12alkynylsulfonyl, C1-C4alkyl-S(O)2O, phenyl-S(O)<sub>2</sub>O,  $(C_1-C_4alkoxy)_2P(O)O$ ,  $C_1-C_4alkoxy)P(O)O$ ,  $H(C_1-C_4alkoxy)P(O)O$ , C<sub>1</sub>-C<sub>12</sub>-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1- $C_4$ alkoxy,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkylcarbonyl,  $C_1$ - $C_4$ alkoxycarbonyl,  $C_1$ - $C_4$ alkylamino, di( $C_1$ - $C_4$ alkyl)amino,  $C_1$ - $C_4$ alkylthio,  $C_1$ - $C_4$ alkylsulfinyl,  $C_1$ - $C_4$ alkylsulfonyl,  $C_1$ - $C_4$ alkyl- $S(O)_2O$ ,  $C_1$ -C4haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, C1-C4haloalkyl-S(O)2O, C1-C<sub>4</sub>alkyl-S(O)<sub>2</sub>NH, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)<sub>2</sub>N(C<sub>1</sub>-C<sub>4</sub>alkyl), halogen, nitro or by cyano; and R<sub>31</sub> and R<sub>32</sub> are each independently of the other hydrogen or C<sub>1</sub>-C<sub>4</sub>alkyl; R<sub>33</sub> and R<sub>34</sub> are each independently of the other hydrogen, hydroxy, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>2</sub>-C<sub>6</sub>alkynyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>aikyl-NHS(O)<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>haloalkyl, -NH-C<sub>1</sub>-C<sub>4</sub>aikyl, -N(C<sub>1</sub>-C<sub>4</sub>aikyl)<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>aikoxy, cyano, nitro, halogen, or phenyl which may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy, C1-C4haloalkoxy, C1-C4alkylcarbonyl, C1-C4alkoxycarbonyl, amino, C1-C4alkylamino,  $\label{eq:continuity} \mbox{di}(C_1-C_4\mbox{alkyl}) a mino, \ C_1-C_6\mbox{alkylthio}, \ C_1-C_6\mbox{alkylsulfinyl}, \ C_1-C_6\mbox{alkylsulfonyl}, \ C_1-C_4\mbox{alkyl-S(O)}_2\mbox{O},$  $C_1$ - $C_4$ haloalkylthio,  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ , C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)₂NH, C<sub>1</sub>-C<sub>4</sub>alkyl-S(O)₂N(C<sub>1</sub>-C<sub>4</sub>alkyl), halogen, nitro, COOH or by cyano; or  $R_{33}$  and  $R_{34}$  together form a  $C_2$ - $C_6$ alkylene bridge; and R<sub>35</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, or phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyi, C<sub>1</sub>-C<sub>4</sub>haloalkyi, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>1</sub>-C<sub>4</sub>alkyicarbonyi, C<sub>1</sub>-C4alkoxycarbonyl, amino, C1-C4alkylamino, di(C1-C4alkyl)amino, C1-C4alkylthio, C1- $C_4$ alkylsulfinyl,  $C_1$ - $C_4$ alkylsulfonyl,  $C_1$ - $C_4$ alkyl- $S(O)_2O$ ,  $C_1$ - $C_4$ haloalkylthio,  $C_1$ - $C_4$ haloalkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfonyl,  $C_1$ - $C_4$ haloalkyl- $S(O)_2O$ ,  $C_1$ - $C_4$ alkyl- $S(O)_2NH$ ,  $C_1$ -C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro, COOH or by cyano;

or is the group Q<sub>5</sub>

wherein Z is sulfur, SO or SO<sub>2</sub>;

· · · · · · · · · · · · ·

 $R_{01}$  is hydrogen,  $C_1$ - $C_8$ alkyl,  $C_1$ - $C_8$ alkyl substituted by halogen,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkylsulfinyl, hydroxy, cyano, nitro, -CHO, -CO $_2$ R $_{02}$ , -COR $_{03}$ , -COSR $_{04}$ , -NR $_{05}$ R $_{06}$ , CONR $_{036}$ R $_{037}$ , or by phenyl which may itself be substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ haloalkoxy,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyloxy, halogen, nitro, cyano, -COOH, COOC $_1$ - $C_4$ alkyl, COOphenyl,  $C_1$ - $C_4$ alkoxy, phenoxy, ( $C_1$ - $C_4$ alkoxy)- $C_1$ - $C_4$ alkyl, ( $C_1$ - $C_4$ alkylsulfinyl)- $C_1$ - $C_4$ alkyl, ( $C_1$ - $C_4$ alkylsulfinyl)- $C_1$ - $C_4$ alkyl, ( $C_1$ - $C_4$ alkyl, NHSO $_2$ -Phenyl, N( $C_1$ - $C_6$ alkyl)SO $_2$ - $C_1$ - $C_4$ alkyl, N( $C_3$ - $C_6$ alkyl)SO $_2$ -phenyl, N( $C_3$ - $C_6$ alkynyl)SO $_2$ -phenyl, N( $C_3$ - $C_6$ alkynyl)SO $_2$ -phenyl, N( $C_3$ - $C_6$ alkynyl)SO $_2$ -phenyl, N( $C_3$ - $C_6$ alkyl, N( $C_3$ - $C_6$ alkyl, N( $C_3$ - $C_6$ alkyl, N( $C_3$ - $C_6$ alkyl), N( $C_3$ - $C_6$ alkyl, N( $C_3$ - $C_6$ alkyl), N( $C_3$ - $C_6$ alkyl

or  $R_{01}$  is  $C_2$ - $C_8$ alkenyl or  $C_2$ - $C_8$ alkenyl substituted by halogen,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ alkylthio,  $C_1$ - $C_4$ alkylsulfinyl,  $-CONR_{032}R_{033}$ , cyano, nitro, -CHO,  $-CO_2R_{038}$ ,  $-COR_{039}$ , -COS- $C_1$ - $C_4$ alkyl,  $-NR_{034}R_{035}$ , or by phenyl which may itself be substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ haloalkoxy,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_6$ alkenyloxy,  $C_3$ - $C_6$ alkynyloxy, halogen, nitro, cyano, -COOH,  $COOC_1$ - $C_4$ alkyl, COOphenyl,  $C_1$ - $C_4$ alkoxy, phenoxy,  $(C_1$ - $C_4$ alkoxy)- $C_1$ - $C_4$ alkyl,  $(C_1$ - $C_4$ alkylthio)- $C_1$ - $C_4$ alkyl,  $(C_1$ - $C_4$ alkylsulfinyl)- $C_1$ - $C_4$ alkyl,  $(C_1$ - $C_4$ alkylsulfonyl)- $C_1$ - $C_4$ alkyl,  $(C_1$ - $C_4$ alkyl,  $(C_1$ - $C_6$ alkyl))SO $_2$ -phenyl,  $(C_1$ - $C_6$ alkyl)SO $_2$ -phenyl,  $(C_2$ - $C_6$ alkenyl)SO $_2$ -phenyl,  $(C_3$ - $C_6$ alkynyl)SO $_2$ -phenyl,  $(C_3$ - $C_6$ alkynyl)SO $_2$ -phenyl,  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_7$ cycloalkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_7$ cycloalkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_7$ cycloalkyl),  $(C_3$ - $C_7$ cycloalkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_6$ alkyl),  $(C_3$ - $C_7$ cycloalkyl),  $(C_3$ - $(C_4$ -alkyl),  $(C_3$ -(

. •∮

or Ro1 is C3-C6alkynyl or C3-C6alkynyl substituted by halogen, C1-C4haloalkyl, cyano, -CO<sub>2</sub>R<sub>044</sub>, or by phenyl which may itself be substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, halogen, nitro, cyano, -COOH, COOC1-C4alkyl, COOphenyl, C1-C4alkoxy, phenoxy, (C1-C4-sulfonyl)-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-phenyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl,  $N(C_1-C_6alkyl)SO_2$ -phenyl,  $N(C_2-C_6alkenyl)SO_2-C_1-C_4alkyl$ ,  $N(C_2-C_6alkenyl)SO_2$ -phenyl,  $N(C_3-C_6$ alkynyl) $SO_2-C_1-C_4$ alkyl,  $N(C_3-C_6$ alkynyl) $SO_2$ -phenyl,  $N(C_3-C_7$ cycloalkyl) $SO_2-C_1-C_4$ alkyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(phenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, CONR<sub>028</sub>R<sub>029</sub>, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>haloalkyl, OSO<sub>2</sub>-phenyl, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, phenylthio,  $C_1$ - $C_4$ alkylsulfonyl,  $C_1$ - $C_4$ haloalkylsulfonyl, phenylsulfonyl,  $C_1$ - $C_4$ alkylsulfinyl, C1-C4haloalkylsulfinyl, phenylsulfinyl, C1-C4alkylenephenyl or by -NR031CO2R030; or  $R_{01}$  is  $C_3$ - $C_7$ cycloalkyl or  $C_3$ - $C_7$ cycloalkyl substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4 alkylsulfinyl,\ C_1 - C_4 alkylsulfinyl,\ C_1 - C_4 alkylsulfonyl,\ or\ by\ phenyl\ which\ may\ itself\ be\ substituted$ by halogen, nitro, cyano, C1-C4alkoxy, C1-C4haloalkoxy, C1-C4alkylthio, C1-C4haloalkylthio, C<sub>1</sub>-C<sub>4</sub>alkyl or by C<sub>1</sub>-C<sub>4</sub>haloalkyl; or

 $R_{01}$  is  $C_1$ - $C_4$ alkylene- $C_3$ - $C_7$ cycloalkyl, phenyl, or phenyl substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_6$ haloalkyl, C1-C4alkoxy, C1-C4haloalkoxy, C2-C6alkenyl, C3-C6alkynyl, C3-C6alkenyloxy, C3-C6alkynyloxy, halogen, nitro, cyano, -COOH, COOC1-C4alkyl, COOphenyl, C1-C4alkoxy,  $phenoxy, (C_1-C_4alkoxy)-C_1-C_4alkyl, (C_1-C_4alkylthio)-C_1-C_4alkyl, (C_1-C_4alkylsulfinyl)-C_1-C_4alkyl, (C_1-C_4alkylsulfinyl)-C_1-C_4alkylsulfinyl)-C_1-C_4alkylsulfinyl, (C_1-C_4alkylsulfinyl)-C_1-C_4alkylsulfinyl, (C_1-C_4alkylsulfinyl)-C_1-C_4alkylsulfinyl, (C_1-C_4alkylsulfinyl)-C_1-C_4alkylsulfinyl, (C_1-C_4alkylsulfinyl)-C_1-C_4alkylsulfinyl, (C_1-C_4alkylsulfinyl) (C_1-C_4alkylsulfonyl)-C_1-C_4alkyl, \ NHSO_2-C_1-C_4alkyl, \ NHSO_2-phenyl, \ N(C_1-C_6alkyl)SO_2-C_1-C_4-c_6alkyl) + C_1-C_6alkyl + C_1-C$ alkyl,  $N(C_1-C_6alkyl)SO_2$ -phenyl,  $N(C_2-C_6alkenyl)SO_2-C_1-C_4alkyl$ ,  $N(C_2-C_6alkenyl)SO_2$ -phenyl,  $N(C_3-C_6 alkynyl)\\SO_2-C_1-C_4 alkyl,\ N(C_3-C_6 alkynyl)\\SO_2-phenyl,\ N(C_3-C_7 cycloalkyl)\\SO_2-C_1-C_4-C_4 alkyl)\\SO_2-C_1-C_4-C_4 alkyl)\\SO_2-C_1-C_4-C_4 alkyl)\\SO_2-C_1-C_4 alky$ alkyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(phenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, haloalkylthio, phenylthio, C1-C4alkylsulfonyl, C1-C4haloalkylsulfonyl, phenylsulfonyl, C1-C4alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, phenylsulfinyl or by -NR<sub>048</sub>CO<sub>2</sub>R<sub>047</sub>; or R<sub>01</sub> is C<sub>1</sub>-C<sub>4</sub>alkylenephenyl, COR<sub>07</sub> or from 4- to 6-membered heterocyclyl;  $R_{02}$ ,  $R_{038}$ ,  $R_{044}$  and  $R_{088}$  are each independently of the others hydrogen,  $C_1$ - $C_4$ alkyl, phenyl, or phenyl substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyi, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, halogen, nitro, cyano, -COOH, COOC<sub>1</sub>-C<sub>4</sub>alkyl, COOphenyl,  $C_1$ - $C_4$ alkoxy, phenoxy,  $(C_1$ - $C_4$ alkoxy)- $C_1$ - $C_4$ alkyl,  $(C_1$ - $C_4$ alkylthio)- $C_1$ - $C_4$ alkyl, ( $C_1$ - $C_4$ alkyl, ( $C_1$ - $C_4$ alkyl, ( $C_1$ - $C_4$ alkyl, NHSO<sub>2</sub>- $C_1$ - $C_4$ alkyl, NHSO<sub>2</sub>- $C_1$ - $C_4$ alkyl,  $NHSO_{2}\text{-}phenyl, \ N(C_{1}\text{-}C_{6}alkyl)SO_{2}\text{-}C_{1}\text{-}C_{4}alkyl, \ N(C_{1}\text{-}C_{6}alkyl)SO_{2}\text{-}phenyl, \ N(C_{2}\text{-}C_{6}alkenyl)\text{-}$ 

 $SO_2-C_1-C_4$ alkyl,  $N(C_2-C_6$ alkenyl) $SO_2$ -phenyl,  $N(C_3-C_6$ alkynyl) $SO_2-C_1-C_4$ alkyl,  $N(C_3-C_6-C_6)$ alkynyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(phenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>aikyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>aikyl, CONR<sub>049</sub>R<sub>050</sub>, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>haloalkyl, OSO<sub>2</sub>-phenyl, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, phenylthio, C<sub>1</sub>-C<sub>4</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfonyl, phenylsulfonyl, C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfinyl, phenylsulfinyl, -C<sub>1</sub>-C<sub>4</sub>-alkylphenyl or by -NR<sub>052</sub>CO<sub>2</sub>R<sub>053</sub>; R<sub>03</sub>, R<sub>039</sub> and R<sub>067</sub> are each independently of the others C<sub>1</sub>-C<sub>4</sub>alkyl, phenyl, or phenyl substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>aikenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, phenoxy, (C<sub>1</sub>-C<sub>4</sub>alkoxy)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylthio)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylsulfonyl)-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-phenyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-phenyl, N(C<sub>2</sub>-C<sub>6</sub>alkenyl)- $SO_2-C_1-C_4$ alkyl,  $N(C_2-C_6$ alkenyl) $SO_2$ -phenyl,  $N(C_3-C_6$ alkynyl) $SO_2-C_1-C_4$ alkyl,  $N(C_3-C_6$ alkynyl)-SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(phenyl)-SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, CONR<sub>068</sub>R<sub>054</sub>, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>haloalkyl, OSO<sub>2</sub>-phenyl, C<sub>1</sub>-C<sub>4</sub>alkylthio, C<sub>1</sub>-C<sub>4</sub>haloalkylthio, phenylthio, C<sub>1</sub>-C<sub>4</sub>alkylsulfonyl, C<sub>1</sub>-C<sub>4</sub>haloalkylsulfonyl, phenylsulfonyl,  $C_1$ - $C_4$ alkylsulfinyl,  $C_1$ - $C_4$ haloalkylsulfinyl, phenylsulfinyl, -(CH<sub>2</sub>)<sub>t</sub>-phenyl or by -NR<sub>056</sub>CO<sub>2</sub>R<sub>055</sub>;

 $R_{04}$  is  $C_1$ - $C_4$ alkyl;

R<sub>05</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>7</sub>cycloalkyl, phenyl, or phenyl substituted by C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, C<sub>1</sub>-C<sub>4</sub>haloalkoxy, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>3</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, halogen, nitro, cyano, -COOH, COOC<sub>1</sub>-C<sub>4</sub>alkyl, COOphenyl, C<sub>1</sub>-C<sub>4</sub>alkoxy, phenoxy, (C<sub>1</sub>-C<sub>4</sub>alkoxy)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylthio)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl)-C<sub>1</sub>-C<sub>4</sub>alkyl, (C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl)-C<sub>1</sub>-C<sub>4</sub>alkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-phenyl, N(C<sub>1</sub>-C<sub>6</sub>alkyl)SO<sub>2</sub>-phenyl, N(C<sub>2</sub>-C<sub>6</sub>alkenyl)-SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(C<sub>3</sub>-C<sub>6</sub>alkynyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>7</sub>cycloalkyl)SO<sub>2</sub>-phenyl, N(C<sub>3</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, N(phenyl)SO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, N(phenyl)SO<sub>2</sub>-phenyl, OSO<sub>2</sub>-phenyl, C<sub>1</sub>-C<sub>4</sub>alkyl-phenyl, OSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>alkyl, phenylthio, C<sub>1</sub>-C<sub>4</sub>alkylsulfinyl, phenylsulfinyl, C<sub>1</sub>-C<sub>4</sub>alkylenephenyl or by -NR<sub>060</sub>CO<sub>2</sub>R<sub>055</sub>;

 $R_{06}$  is hydrogen,  $C_1$ - $C_4$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl,  $C_3$ - $C_7$ cycloalkyl, phenyl, or phenyl substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_6$ haloalkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ haloalkoxy,  $C_2$ - $C_6$ alkenyl,

 $C_3\text{-}C_6\text{alkynyl},\ C_3\text{-}C_6\text{alkenyloxy},\ C_3\text{-}C_6\text{alkynyloxy},\ \text{halogen, nitro, cyano, -COOH, COOC}_1\text{-}C_4\text{-}alkyl,\ COOphenyl},\ C_1\text{-}C_4\text{alkoxy},\ \text{phenoxy},\ (C_1\text{-}C_4\text{alkoxy})\text{-}C_1\text{-}C_4\text{alkyl},\ (C_1\text{-}C_4\text{alkylthio})\text{-}C_1\text{-}C_4\text{-}alkyl},\ (C_1\text{-}C_4\text{alkylsulfinyl})\text{-}C_1\text{-}C_4\text{alkyl},\ (C_1\text{-}C_4\text{alkylsulfinyl})\text{-}C_1\text{-}C_4\text{alkyl},\ NHSO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(C_1\text{-}C_6\text{alkyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(C_1\text{-}C_6\text{alkyl})\text{-}SO_2\text{-}phenyl},\ N(C_2\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}phenyl,\ N(C_3\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}phenyl,\ N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}phenyl,\ N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}phenyl,\ N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}phenyl,\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl},\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{-}phenyl,\ N(phenyl)\text{-}SO_2\text{-}C_1\text{-}C_4\text{-}phenyl$ 

R<sub>07</sub> is phenyl, C<sub>1</sub>-C<sub>4</sub>alkyl, C<sub>1</sub>-C<sub>4</sub>alkoxy or -NR<sub>08</sub>R<sub>09</sub>;

 $R_{09}$  and  $R_{09}$  are each independently of the other  $C_1$ - $C_4$ alkyl, phenyl, or phenyl substituted by halogen, nitro, cyano,  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkoxy,  $C_1$ - $C_4$ thioalkyl, - $CO_2R_{066}$ , - $COR_{067}$ ,  $C_1$ - $C_4$ -alkylsulfonyl,  $C_1$ - $C_4$ alkylsulfinyl or by  $C_1$ - $C_4$ haloalkyl; or  $R_{08}$  and  $R_{09}$  together form a 5- or 6-membered ring, which may be interrupted by oxygen,  $NR_{065}$  or by S;

 $R_{015}$ ,  $R_{031}$ ,  $R_{048}$ ,  $R_{052}$ ,  $R_{056}$ ,  $R_{060}$  and  $R_{064}$  are each independently of the others hydrogen,  $C_1$ - $C_4$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_3$ - $C_6$ alkynyl or  $C_3$ - $C_7$ cycloalkyl;

Rozs, Rozs, Rozs, Rozs, Rozs, Ross, Ross,

or an agronomically acceptable salt of such a compound, and

cyano, nitro or by COOH:

b) a synergistically effective amount of one or more compounds selected from a compound of formula 2.1

wherein  $R_{51}$  is  $CH_2$ -OMe, ethyl or hydrogen;  $R_{52}$  is hydrogen or  $R_{51}$  and  $R_{52}$  together are the group -CH=CH-CH=CH-;

and a compound of formula 2.2

wherein R<sub>53</sub> is ethyl, R<sub>54</sub> is methyl or ethyl and R<sub>55</sub> is -CH(Me)-CH<sub>2</sub>OMe, <S>-CH(Me)-CH<sub>2</sub>OMe, CH<sub>2</sub>OMe or CH<sub>2</sub>O-CH<sub>2</sub>CH<sub>3</sub>; and a compound of formula 2.3

wherein R<sub>58</sub> is CH(Me)-CH<sub>2</sub>OMe or <S>CH(Me)-CH<sub>2</sub>OMe; and a compound of formula 2.4

wherein  $R_{57}$  is chlorine, methoxy or methylthio,  $R_{58}$  is ethyl and  $R_{59}$  is ethyl, isopropyl, -C(CN)(CH<sub>3</sub>)-CH<sub>3</sub> or tert-butyl;

wherein R<sub>60</sub> is ethyl or n-propyl, R<sub>61</sub> is COO<sup>-</sup> 1/2 Ca<sup>++</sup>, -CH<sub>2</sub>-CH(Me)S-CH<sub>2</sub>CH<sub>3</sub> or the group

and X is oxygen, N-O-CH<sub>2</sub>CH<sub>3</sub> or N-O-CH<sub>2</sub>CH=CH-Cl;

and a compound of formula 2.6

wherein  $R_{62}$  is hydrogen, methoxy or ethoxy,  $R_{63}$  is hydrogen, methyl, methoxy or fluorine,  $R_{64}$  is COOMe, fluorine or chlorine,  $R_{65}$  is hydrogen or methyl, Y is methine, C-F or nitrogen, Z is methine or nitrogen and  $R_{66}$  is fluorine or chlorine; and a compound of formula 2.7

wherein R<sub>67</sub> is hydrogen or -C(O)-S-n-octyl; and a compound of formula 2.8

wherein R<sub>68</sub> is either bromine or iodine; and a compound of formula 2.9

wherein  $R_{69}$  is chlorine or nitro; and a compound of formula 2.10

wherein  $R_{70}$  is fluorine or chlorine and  $R_{71}$  is -CH<sub>2</sub>-CH(Cl)-COOCH<sub>2</sub>CH<sub>3</sub> or -NH-SO<sub>2</sub>Me; and a compound of formula 2.11

wherein  $R_{72}$  is trifluoromethyl or chlorine; and a compound of formula 2.12

()

wherein R<sub>73</sub> is NH<sub>2</sub> or <S>NH<sub>2</sub>; and a compound of formula 2.13

wherein  $Y_1$  is nitrogen, methine, NH-CHO or N-Me,  $Y_2$  is nitrogen, methine or C-I,  $Y_3$  is methine,  $Y_4$  is methine or  $Y_3$  and  $Y_4$  together are sulfur or C-CI,  $Y_5$  is nitrogen or methine,  $Y_6$  is methyl, difluoromethoxy, trifluoromethyl or methoxy,  $Y_7$  is methoxy or difluoromethoxy and  $R_{74}$  is CONMe<sub>2</sub>, COOMe, COOC<sub>2</sub>H<sub>5</sub>, trifluoromethyl, CH<sub>2</sub>-CH<sub>2</sub>CF<sub>3</sub> or SO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, or a sodium salt thereof;

and the compound of formula 2.13.c

and the compound of formula 2.14

and the compound of formula 2.15

and the compound of formula 2.17

and the compound of formula 2.18

and the compound of formula 2.19

and the compound of formula 2.20

# and the compound of formula 2.22

# and the compound of formula 2.23

and the compound of formula 2.25

and the compound of formula 2.26

and the compound of formula 2.27

and the compound of formula 2.28

and the compound of formula 2.31

and the compound of formula 2.32

and the compound of formula 2.33

and the compound of formula 2.34  $H_2N - SO_2NHCO_2CH_3$  (2.34),

and the compound of formula 2.36  $CH_3$  N O CI N  $C(CH_3)_3$  (2.36),

and the compound of formula 2.37 
$$N = CO_2CH_3$$
 (2.37),  $CO_2CH_3$  (2.37),

and the compound of formula 2.38 CH<sub>3</sub>SOC COSCH<sub>3</sub> (2.38), CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>

and the compound of formula 2.40 CI NHCON(CH<sub>3</sub>)<sub>2</sub> (2.40),

$$(CH_3)_3C \xrightarrow{S} NCONHCH_3$$
 $N-N$ 
(2.43),

and the compound of formula 2.43 and the compound of formula 2.44

and the compound of formula 2.45

and the compound of formula 2.46

and the compound of formula 2.47

and the compound of formula 2.49

and the compound of formula 2.50

$$H_3C$$
 $CH_3$ 
 $CH_3$ 

and the compound of formula 2.51

$$CI \xrightarrow{F} O \xrightarrow{CH_3} F$$

$$O \xrightarrow{N} F$$

$$O \xrightarrow{CH_3} CH_3$$

$$O \xrightarrow{CH_3} CH_3$$

$$O \xrightarrow{CH_3} CH_3$$

# 2. A composition according to claim 1, wherein in formula I

each R is independently hydrogen, C1-C6alkyl, C2-C6alkenyl, C2-C6alkenyl, C2-C6alkynyl,  $C_2-C_6 haloalkynyl,\ C_3-C_6 cycloalkyl\ ,\ C_1-C_6 alkoxy,\ C_1-C_6 haloalkoxy,\ C_1-C_6 alkyl-C_6 haloalkoxy,\ C_1-C_6 haloalkynyl\ ,\ C_1-C_6 ha$ sulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkyl,  $C_1$ - $C_6$ haloalkylthio,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ -amino,  $C_1$ - $C_6$ alkylaminosulfonyl, di( $C_1$ - $C_6$ alkyl)aminosulfonyl, -N( $R_1$ )-S- $R_2$ , -N( $R_3$ )-SO- $R_4$ , -N(R<sub>5</sub>)-SO<sub>2</sub>-R<sub>6</sub>, nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C1-Cealkyl, C1-Cehaloalkyl, C3-Cealkenyl,  $C_3-C_6 \\ haloalkenyl, \ C_3-C_6 \\ haloalkynyl, \ C_1-C_6 \\ alkoxy, \ C_1-C_6 \\ haloalkoxy, \ C_3-C_6-C_6 \\ haloalkoxy, \ C_3-C_6 \\ halo$ alkenyloxy,  $C_3$ - $C_6$ alkynyloxy, mercapto,  $C_1$ - $C_6$ alkylthio,  $C_1$ - $C_6$ haloalkylthio,  $C_3$ - $C_6$ alkenylthio,  $C_3$ - $C_6$ haloalkenytthio,  $C_3$ - $C_6$ alkynytthio,  $C_2$ - $C_5$ alkoxyalkytthio,  $C_3$ - $C_6$ acetylalkytthio,  $C_3$ - $C_6$ alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-Cealkylsulfinyl, C₁-Cehaloalkylsulfinyl,  $C_1$ - $C_6$ alkylsulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_2$ alkylaminosulfonyl, C<sub>2</sub>-C<sub>4</sub>dialkylaminosulfonyl, C<sub>1</sub>-C<sub>3</sub>alkylene-R<sub>45</sub>, NR<sub>48</sub>R<sub>47</sub>, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro:

or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring *via* a C<sub>1</sub>-C<sub>4</sub>alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>3</sub>-C<sub>6</sub>haloalkyl, C<sub>3</sub>-C<sub>6</sub>haloalkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkenyl, C<sub>3</sub>-C<sub>6</sub>haloalkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, mercapto, C<sub>1</sub>-C<sub>6</sub>alkylthio,

 $C_1$ - $C_6$ haloalkylthio,  $C_3$ - $C_6$ alkenylthio,  $C_3$ - $C_6$ haloalkenylthio,  $C_3$ - $C_6$ alkynylthio,  $C_2$ - $C_5$ alkoxy-alkylthio,  $C_3$ - $C_6$ acetylalkylthio,  $C_3$ - $C_6$ alkoxycarbonylalkylthio,  $C_2$ - $C_4$ cyanoalkylthio,  $C_1$ - $C_6$ alkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl,  $C_1$ - $C_6$ haloalkylsulfinyl, aminosulfonyl,  $C_1$ - $C_6$ haloalkylsulfonyl, aminosulfonyl,  $C_1$ - $C_2$ alkylaminosulfonyl,  $C_2$ - $C_4$ dialkylaminosulfonyl,  $C_1$ - $C_3$ alkylene- $C_3$ ,  $C_4$ 0 halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen.

3. A composition according to claim 1, that comprises, as compound of formula I, a compound of formula Ia

wherein

R<sub>48</sub> is C<sub>1</sub>-C<sub>6</sub>alkyl, C<sub>2</sub>-C<sub>6</sub>alkenyl, C<sub>2</sub>-C<sub>6</sub>haloalkenyl, C<sub>2</sub>-C<sub>6</sub>haloalkynyl, C<sub>3</sub>-C<sub>6</sub>cycloalkyl, C<sub>1</sub>-C<sub>6</sub>haloalkyl, or a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C1-C4alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C1-C6alkyl, C1-C6haloalkyl, C3-C6alkenyl, C3-C6haloalkenyl, C3-C6alkynyl, C3-C6haloalkynyl, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>haloalkoxy, C<sub>3</sub>-C<sub>6</sub>alkenyloxy, C<sub>3</sub>-C<sub>6</sub>alkynyloxy, mercapto, C<sub>1</sub>-C<sub>6</sub>alkylthio,  $C_1$ - $C_6$ haloalkylthio,  $C_3$ - $C_6$ alkenylthio,  $C_3$ - $C_6$ haloalkenylthio,  $C_3$ - $C_6$ alkynylthio,  $C_2$ - $C_5$ alkoxyalkyithio,  $C_3$ - $C_5$ acetylalkyithio,  $C_3$ - $C_6$ alkoxycarbonylalkyithio,  $C_2$ - $C_4$ cyanoalkyithio,  $C_1$ - $C_6$ alkyisulfinyl, C1-C6haloalkylsulfinyl, C1-C6alkylsulfonyl, C1-C6haloalkylsulfonyl, aminosulfonyl, C<sub>1</sub>-C<sub>2</sub>alkylaminosulfonyl, C<sub>2</sub>-C<sub>4</sub>dialkylaminosulfonyl, C<sub>1</sub>-C<sub>3</sub>alkylene-R<sub>7</sub>, NR<sub>8</sub>R<sub>9</sub>, halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ alkoxy,  $C_1$ - $C_3$ haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen;

 $R_{49}$  is hydrogen,  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ haloalkyl, halogen, or phenyl which may be substituted by  $C_1$ - $C_3$ alkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ haloalkyl,  $C_1$ - $C_3$ haloalkyl, halogen, cyano or by nitro, and  $R_{50}$  is  $C_1$ - $C_6$ haloalkyl.

- 4. A composition according to claim 3, wherein  $R_{48}$  is  $C_1$ - $C_6$ alkyl,  $C_2$ - $C_6$ alkenyl,  $C_2$ - $C_6$ haloalkynyl,  $C_3$ - $C_6$ cycloalkyl or  $C_1$ - $C_6$ haloalkyl.
- 5. A composition according to claim 1, wherein in formula I Q is the group  $Q_2$  or  $Q_3$ .
- 6. A composition according to claim 5, wherein in the group  $Q_2$   $R_{23}$  is hydroxy.
- 7. A composition according to claim 5, wherein in the group  $Q_3 \ R_{40}$  is hydroxy.
- 8. A method of controlling undesired plant growth in crops of useful plants, which comprises allowing a herbicidally effective amount of a composition according to claim 1 to act on the crop plant or the locus thereof.
- 9. A method according to claim 8, wherein the crop plant is maize or sugar cane.
- 10. A method according to claim 8, wherein the crops of useful plants are treated with the mentioned composition at rates of application corresponding to a total amount of active ingredient of from 1 to 5000 g per hectare.
- 11. A herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of
- a) a herbicidally-synergistically effective amount of a compound of formula I according to claim 1 and one or more compounds selected from the compounds of formulae 2.1 to 2.51 according to claim 1 and
- b) a herbicidally-antagonistically effective amount of a compound selected from the compound of formula 3.1

and the compound of formula 3.3

CI (3.3), 
$$O-CH_2-C(O)-O-CH(CH_3)C_5H_{11}-n$$

and the compound of formula 3.4

and the compound of formula 3.5

and the compound of formula 3.6

# and the compound of formula 3.8

and of formula 3.9

Cl<sub>2</sub>CHCON(CH<sub>2</sub>CH=CH<sub>2</sub>)<sub>2</sub> (3.9),

## and of formula 3.10

## and of formula 3.12

#### and of formula 3.13

## and of formula 3.14

À

- 12. A method for the selective control of weeds and grasses in crops of useful plants, which comprises treating the useful plants, seeds or cuttings thereof, or the area of cultivation thereof, with a herbicidally-synergistically effective amount of a composition according to claim 10.
- 13. A method according to claim 12, wherein the rate of application of herbicides is from 1 to 5000 g/ha and the rate of application of safener is from 0.001 to 0.5 kg/ha.
- 14. A method according to claim 12, wherein the crops of useful plants are maize or sugar cane.
- 15. A herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of
- a) a herbicidally effective amount of a compound of formula I according to claim 1 and b) a herbicidally-antagonistically effective amount of a compound selected from the compound of formula 3.1

#### and the compound of formula 3.3

## and the compound of formula 3.4

#### and the compound of formula 3.5

#### and the compound of formula 3.6

and the compound of formula 3.8

and of formula 3.9

Cl<sub>2</sub>CHCON(CH<sub>2</sub>CH=CH<sub>2</sub>)<sub>2</sub> (3.9),

and of formula 3.10

# and of formula 3.12

# and of formula 3.13

## and of formula 3.14

and of formula 3.16

16. A method for the selective control of weeds and grasses in crops of useful plants, which comprises treating the useful plants, seeds or cuttings thereof, or the area of cultivation thereof, with a herbicidally-synergistically effective amount of a composition according to claim 14.