	Sistemi Operativi – PRIMO COMP	ITINO - 20 aprile 2017 – Ver. A
Cognome e nome:	Matricola:	Posto:

Università degli Studi di Padova - Corso di Laurea in Informatica

Regole dell'esame

Il presente esame scritto deve essere svolto in forma individuale in un tempo massimo di 45 min dalla sua presentazione. Non è consentita la consultazione di libri o appunti in forma cartacea o elettronica, né l'uso di palmari e telefoni cellulari. La correzione avverrà in data e ora comunicate dal docente; i risultati saranno esposti sul sito del docente. Il candidato riporti generalità e matricola negli spazi indicati in alto e inserisca le proprie risposte interamente su questi fogli.

Per avere accesso al secondo compitino il candidato deve acquisire almeno 3 punti nel Quesito 1 e almeno 16 punti in totale.

Quesito 1: 1 punto per risposta giusta, diminuzione di 0,5 punti per ogni sbaglio, 0 punti per risposta vuota

DOMANDA	Vero/Falso
Una system call dà sempre luogo ad un mode switch tra modalità utente e modalità kernel	
Un process switch tra processi utente avviene sempre contestualmente a 2 mode switch (utente->kernel, kernel->utente)	V
Un interrupt viene gestito in modalità utente	F
Se <u>un processo</u> inizialmente attivo esegue il seguente codice, il sistema si troverà con 8 processi che eseguono InstrX, di cui uno è il processo iniziale. fork(); fork(); fork(); InstrX;	
Se un processo è in blocco da 10 ms significa che 10 ms fa ha eseguito una system call	
Ogni interrupt è associato ad un processo che ha richiesto una operazione di I/O	
L'inversione di priorità è una tecnica utilizzata per evitare la <i>starvation</i> dei processi a bassa priorità	
Un processo per lanciare un nuovo processo deve fare una system call	

Quesito 2:

Un sistema è composto da sette processi P1... P7 e da sei risorse condivise R1... R6 ciascuna diversa dalle altre, presente in singola istanza e ad accesso mutuamente esclusivo. La situazione corrente del sistema è la seguente:

- P1 occupa R1 e richiede R2;
- P2 non occupa risorse e richiede R3;
- P3 non occupa risorse e richiede R2;
- P4 occupa R4 e richiede sia R2 sia R3;
- P5 occupa R3 e richiede R5;
- P6 occupa R6 e richiede R2;
- P7 occupa R5 e richiede R4;

Si determini, utilizzando il grafo di allocazione delle risorse, se il sistema sia in stallo (deadlock) e, in caso affermativo, quali siano i processi e le risorse coinvolti.

Cognome e nome:		tivi – PRIMO COMPITINO -	
Quesito 3: Lo studente mostri con una figura i possibili stati di avar	nzamento di un n	rocesso.	
Lo studente mostri con una rigura i possiorii stati di avai	izamento di dii pi	rocesso.	
Quesito 4: Un sistema ha 4 processi (A, B, C, D) e 5 risorse (R1, R2)	2, R3, R4, R5) da	a ripartire. L'attuale allocazione	e e i bisogni massimi
sono i seguenti: Processo	Allocate	Massimo	
A	10211	3 1 2 1 3	
B C	2 0 1 1 1 1 1 0 1 0	3 3 4 2 1 2 1 4 1 0	
D	11110	11321	
[4.A] Considerando il vettore delle risorse disponibili ug	ruale a [0 0 3 1 2]	l, si discuta se il sistema sia in	uno stato sicuro.
	,	.,,	

[4.B] Il procedimento di verifica dello stato sicuro è uno dei passi ripetuti da un noto algoritmo che assegna risorse ai processi solo se l'assegnazione fa rimanere il sistema in uno stato sicuro. Come si chiama questo algoritmo?

Sistemi Operativi -	PRIMO	COMPITINO	- 20 aprile	2017 -	Ver. A

Cognome e nome: ______ Posto: ____ Posto: ____

Quesito 5:

[5.A] La seguente soluzione del problema dei lettori-scrittori contiene alcuni errori e mancanze. Lo studente ne modifichi il codice tramite aggiunte, cancellazioni e correzioni. Il risultato dovrà rappresentare una versione corretta, realizzata apportando il minor numero possibile di modifiche all'originale qui di seguito.

(Per coloro che avessero studiato solo sul libro di testo: P, corrisponde a down, V corrisponde a up)

```
void Lettore (void) {
                                            void Scrittore (void) {
  while (true) {
                                              while (true) {
    P(mutex);
                                                // prepara il dato da scrivere
                                                V(database);
    numeroLettori++;
    if (numeroLettori==1) V(database);
                                                // scrivi il dato
    V(mutex);
                                                P(database);
    // leggi il dato
                                              }
    numeroLettori--;
    if (numeroLettori==0) V(database);
    // usa il dato letto
  }
```

[5.B] Lo studente riporti qua sotto l'indicazione del tipo e del valore iniziale di ciascuna variabile.

Cognome e nome: ______ Matricola: _____ Posto: ____

Soluzione

Soluzione al Quesito 1

DOMANDA	Vero/Falso
Una system call dà sempre luogo ad un mode switch tra modalità utente e modalità kernel	
Un process switch tra processi utente avviene sempre contestualmente a 2 mode switch	V
(utente->kernel, kernel->utente)	
Un interrupt viene gestito in modalità utente	F
Se <u>un processo</u> inizialmente attivo esegue il seguente codice, il sistema si troverà con 8 processi che	F
eseguono InstrX, di cui uno è il processo iniziale.	
fork();	
fork();	
fork();	
fork();	
InstrX;	
Se un processo è in blocco da 10 ms significa che 10ms fa ha eseguito una system call	
Ogni interrupt è associato ad un processo che ha richiesto una operazione di I/O	
L'inversione di priorità è una tecnica utilizzata per evitare la starvation dei processi a bassa priorità	
Un processo per lanciare un nuovo processo deve fare una system call	

Soluzione al Quesito 2

 $P4 \rightarrow R3 \rightarrow P5 \rightarrow R5 \rightarrow P7 \rightarrow R4 \rightarrow P4$ sono in deadlock.

Soluzione al Quesito 3

Varie soluzioni possibili. Ad esempio:

Cognome e nome: ______ Posto: ____ Posto: ____

Soluzione al Quesito 4

[4.A] La matrice delle necessità (massimo numero di risorse richieste dal processo - risorse allocate al processo) è la seguente:

 $\begin{array}{c} 2\ 1\ 0\ 0\ 2 \\ 1\ 3\ 3\ 1\ 0 \\ 1\ 0\ 4\ 0\ 0 \\ 0\ 0\ 2\ 1\ 1 \end{array}$

Il proc. D potrebbe essere eseguito fino alla fine. Quando ha finito, il vettore delle risorse disponibili è [1 1 4 2 2]. Il proc. C potrebbe dunque essere eseguito e al suo completamento, il vettore delle risorse disponibili diverrebbe [2 2 4 3 2]. Questo permetterebbe di eseguire e terminare il processo A ottenendo [3 2 6 4 3] come vettore delle risorse disponibili. Questo non permetterebbe però di eseguire il processo B in quanto mancherebbe una risorsa di tipo R2. Il sistema NON è quindi in uno stato sicuro.

[4.B] L'Algoritmo del Banchiere (Banker's Algorithm)

Soluzione al Quesito 5

[5.A]

```
void Lettore (void) {
                                             void Scrittore (void) {
  while (true) {
                                               while (true) {
    P(mutex);
                                                 // prepara il dato da scrivere
    numeroLettori++;
                                                 P(database);
    if (numeroLettori==1) P(database);
                                                 // scrivi il dato
    V(mutex);
                                                 V(database);
    // leggi il dato
                                               }
    P (mutex);
                                             }
    numeroLettori--;
    if (numeroLettori==0) V(database);
    V(mutex);
    // usa il dato letto
```

[5.B]

Non importa la sintassi...
int numeroLettori = 0
semaforo mutex = 1
semaforo database = 1