Estacionariedad débil

Detección en series electrofisiológicas

Julio Cesar Enciso Alva Neuroscience Short Course 6 de julio de 2017

Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo

Introducción

Motivación

El estudio y diagnóstico de una gran cantidad de enfermedades depende de nuestra habilidad para registrar y analizar señales electrofisiológicas.

Se suele asumir que estas señales son complejas: no lineales, no estacionarias y sin equilibrio por naturaleza. Pero usualmente no se comprueban formalmente estas propiedades.

Conceptos

Definición (Estacionariedad débil)

Un proceso estocástico es débilmente estacionario si y sólo si para cualesquiera tiempos admisibles t, s se tiene que

- $E[X(t)] = \mu_X$
- $Var(X(t)) = \sigma_X^2$
- $Cov(X(t), X(s)) = \rho_X(s-t)$

Con $\mu_X,\,\sigma_X^2$ constantes, $\rho_X(\tau)$ únicamente depende de τ

Conceptos

Definición (Función de densidad espectral (SDF))

Sea $\{X(t)\}$ un proceso estocástico a tiempo continuo, débilmente estacionario

$$h(\omega) = \lim_{T \to \infty} E\left[\frac{|G_T(\omega)|^2}{2T}\right]$$

Donde
$$G_T(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-T}^T X(t) e^{-i\omega t} dt$$

Teorema (Wiener-Khinchin)

Una condición suficiente y necesaria para que ρ sea función de autocorrelación para algún proceso a tiempo continuo débilmente estacionario y estocásticamente continuo, $\{X(t)\}$, es que exista una función F tal que

- Es monótonamente creciente
- $F(-\infty) = 0$
- $F(+\infty) = 1$
- Para todo $\tau \in \mathbb{R}$ se cumple que

$$\rho(\tau) = \int_{-\infty}^{\infty} e^{i\omega\tau} dF(\omega)$$

Espectro evolutivo

Se consideran procesos no-estacionarios, estocásticamente continuos, de media cero y varianza finita, y que admitan una representación de la forma

$$X(t) = \int_{-\pi}^{\pi} A(t, \omega) e^{it\omega} dZ(\omega)$$

tal que

- $\operatorname{Cov}(dZ(\omega), dZ(\lambda)) = 0 \Leftrightarrow \omega \neq \lambda$
- $\bullet \ \mathrm{E}\left[\left|\mathrm{dZ}(\omega)\right|^2\right] = \mu(\omega)$

El espectro evolutivo fue definido por Priestley¹ como

$$f(t, \omega) = |A(t, \omega)|^2$$

 $^{^1\}mathrm{Maurice}$ B Priestley. "Evolutionary spectra and non-stationary processes". En: Journal of the Royal Statistical Society. Series B (Methodological) (1965), págs. 204-237.

Definición (Estimador de doble ventana) Se define a \hat{f} , estimador para la f, como

$$\widehat{f}(t,\omega) = \int_{t-T}^t w_{T'}(u) |U(t-u,\omega)|^2 du$$

- $U(t, \omega) = \int_{t-T}^{t} g(u)X(t-u)e^{i\omega(t-u)}du$
- $2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)|^2 d\omega = 1$
- $w_{\tau}(t) \geqslant 0$ para cualesquiera t, τ
- $w_{\tau}(t) \to 0$ cuando $|t| \to \infty$, para todo τ
- $\int_{-\infty}^{\infty} w_{\tau}(t)dt = 1$ para todo τ
- $\int_{-\infty}^{\infty} (w_{\tau}(t))^2 dt < \infty$ para todo τ
- $\exists C \text{ tal que } \lim_{\tau \to \infty} \tau \int_{-\infty}^{t} |W_{\tau}(\lambda)|^2 d\lambda = C$

Sujetos

Criterios de inclusión:

- Firma del consentimiento informado
- Edad entre 60 y 85 años
- Diestros (mano derecha dominante)
- Sin ansiedad, depresión o síndromes focales
- No usar medicamentos o sustancias para dormir
- Voluntario para el registro de PSG
- 9 participantes: 4 control, 5 PDC

Sujetos

	Sexo	Edad	Esc.	Neuropsi	MMSE	SATS	KATZ	Gds
Gpo. Control								
VCR	F	59	12	107	29	21	0	3
MJH	F	72	9	113	30	18	0	0
JAE	F	78	5	102	28	19	0	5
GHA	M	65	9	107.5	30	23	0	7
MFGR	F	67	11	110	30	18	0	
$\widehat{\mu}$		68.20	9.20	107.90	29.40	19.80	0.00	3.00
$\widehat{\sigma}$		7.19	2.68	4.07	0.89	2.17	0.00	3.08
Gpo. PDC								
CLO	F	68	5	81	28	22	1	6
RLO	F	63	9	90	29	20	0	3
RRU	M	69	9	85	27	10	0	3
$_{ m JGZ}$	M	65	11	87	25	20	0	1
$\widehat{\mu}$		66.25	8.50	85.75	27.25	18.00	0.25	3.25
$\widehat{\sigma}$		2.75	2.52	3.77	1.71	5.42	0.50	2.06
Sujetos excluidos	S							
FGH	M	71	9	83.5	21	23	0	4
MGG	F	61	9	114	28	29	1	14
EMT	M	50	22	106	30	15	0	4

Gracias por su atención

El cerebro es, quizá, el único órgano capaz de estudiarse a sí mismo.