Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Лекция L8 Язык программирования для вычислимых функционалов, II

Вадим Пузаренко

6 апреля 2020 г.

Мотивация

Лекция L8 Язык программирования для вычислимых функционалов, ТТ

> Вадим Пузаренко

> > Применяем результаты лекции L7 к PCF.

Константы и непрерывные функции

Лекция L8
Язык
программирования для
вычислимых
функциона-

Вадим Пузаренка

По результатам лекции L7, функционал \mathbb{Y}_D непрерывен.

Константы и непрерывные функции

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

По результатам лекции L7, функционал \mathbb{Y}_D непрерывен.

Упражнение.

Проверить, что функции succ , pred , isnull и cond_σ непрерывны.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко Пусть $M^{\sigma} - PCF$ -терм и $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}$ — список всех попарно различных переменных, входящих в M. Значение $[\![M]\!]$ будет зависеть только от означивания ϱ переменных x_1, x_2, \ldots, x_n . Будем писать $[\![M]\!]$ (a_1, a_2, \ldots, a_n) вместо $[\![M]\!]_{\varrho}$ в случае, когда $\varrho(x_1) = a_1, \ \varrho(x_2) = a_2, \ldots, \varrho(x_n) = a_n$. Можно также воспринимать $[\![M]\!]$ как функцию $(a_1, a_2, \ldots, a_n) \mapsto [\![M]\!]$ (a_1, a_2, \ldots, a_n) : $D_{\sigma_1} \times D_{\sigma_2} \times \ldots \times D_{\sigma_n} \to D_{\sigma}$. Покажем индукцией по построению терма, что эта функция непрерывна.

Лекция L8
Язык
программирования для
вычислимых
функциона-

Вадим Пузаренко Пусть $M^{\sigma}-PCF$ -терм и $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}$ — список всех попарно различных переменных, входящих в M. Значение $[\![M]\!]$ будет зависеть только от означивания ϱ переменных x_1, x_2, \ldots, x_n . Будем писать $[\![M]\!](a_1, a_2, \ldots, a_n)$ вместо $[\![M]\!]_{\varrho}$ в случае, когда $\varrho(x_1)=a_1, \, \varrho(x_2)=a_2, \ldots, \, \varrho(x_n)=a_n$. Можно также воспринимать $[\![M]\!]$ как функцию $(a_1,a_2,\ldots,a_n)\mapsto [\![M]\!](a_1,a_2,\ldots,a_n):D_{\sigma_1}\times D_{\sigma_2}\times\ldots\times D_{\sigma_n}\to D_{\sigma}$. Покажем индукцией по построению терма, что эта функция непрерывна.

(1) $M \equiv x_i^{\sigma_i}$, где $1 \leqslant i \leqslant n$. Тогда $[\![x_i^{\sigma_i}]\!](a_1,a_2,\ldots,a_n) = a_i$ и $(a_1,a_2,\ldots,a_n) \mapsto a_i : D_{\sigma_1} \times D_{\sigma_2} \times \ldots \times D_{\sigma_n} \to D_{\sigma_i}$ непрерывна, как проекция на i-ую координату. Для констант доказывать нечего, поскольку любая постоянная функция непрерывна.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко (2) $M^{\tau} \equiv (N^{(\sigma \to \tau)}P^{\sigma})$. По индукционному предположению, $(a_1,a_2,\ldots,a_n) \mapsto \llbracket N \rrbracket (a_1,a_2,\ldots,a_n) : D_{\sigma_1} \times D_{\sigma_2} \times \ldots \times D_{\sigma_n} \to D_{(\sigma \to \tau)},$ $(a_1,a_2,\ldots,a_n) \mapsto \llbracket P \rrbracket (a_1,a_2,\ldots,a_n) : D_{\sigma_1} \times D_{\sigma_2} \times \ldots \times D_{\sigma_n} \to D_{\sigma}$ непрерывны. Таким образом, функция $(a_1,a_2,\ldots,a_n) \mapsto \llbracket N \rrbracket (a_1,a_2,\ldots,a_n) (\llbracket P \rrbracket (a_1,a_2,\ldots,a_n)) : D_{\sigma_1} \times D_{\sigma_2} \times \ldots \times D_{\sigma_n} \to D_{\tau}$ непрерывна, поскольку $\operatorname{app} : [D_{\sigma} \to D_{\tau}] \times D_{\sigma} \to D_{\tau}, (f,x) \mapsto f(x)$ непрерывна.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

(3) $M \equiv \lambda x^{\sigma}.N^{\tau}$. Пусть $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}$ — переменные, входящие свободно в M. Переменные, входящие свободно в N — это $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}, x^{\sigma}$. По индукционному предположению, функция $(a_1, a_2, \ldots, a_n, a) \mapsto$

 $\mapsto [\![N]\!](a_1,a_2,\ldots,a_n,a):D_{\sigma_1}\times D_{\sigma_2}\times\ldots\times D_{\sigma_n}\times D_{\sigma}\to D_{\tau}$ непрерывна. Используя преобразование Карри, приходим к непрерывному отображению

$$(a_1,a_2,\ldots,a_n)\mapsto \ \mapsto (a\mapsto \llbracket N \rrbracket(a_1,a_2,\ldots,a_n,a)): D_{\sigma_1}\times D_{\sigma_2}\times\ldots\times D_{\sigma_n}\to [D_{\sigma}\to D_{\tau}];$$
 В частности,

$$\llbracket \lambda x^{\sigma}.N^{\tau} \rrbracket (a_1, a_2, \ldots, a_n) = (a \mapsto \llbracket N \rrbracket (a_1, a_2, \ldots, a_n, a) : D_{\sigma} \to D_{\tau}).$$

Лекция L8 Язык программирования для вычислимых функционалов, ТТ

> Вадим Пузаренко

Семантика корректна в том смысле, что интерпретации термов остаются неизменными в процессе редукции. А именно,

Теорема о корректности (L17)

Если $M \to^* N$, то $[\![M]\!]_{\varrho} = [\![N]\!]_{\varrho}$ для всех ϱ .

Лекция L8
Язык
программирования для
вычислимых
функционалов,

ТТ

Вадим Пузаренко Семантика корректна в том смысле, что интерпретации термов остаются неизменными в процессе редукции. А именно,

Теорема о корректности (L17)

Если
$$M \to^* N$$
, то $\llbracket M \rrbracket_{\varrho} = \llbracket N \rrbracket_{\varrho}$ для всех ϱ .

Доказательство.

Необходимо доказать данное условие отдельно для всех правил вывода. Для большинства этих правил условие очевидно. Проверим, к примеру, аксиому $(YM) \to (M(YM))$: $[\![(YM)]\!]_{\varrho} = [\![Y]\!]_{\varrho}([\![M]\!]_{\varrho}) = \mathbb{Y}([\![M]\!]_{\varrho})$. По теореме L16, $\mathbb{Y}([\![M]\!]_{\varrho})$ — наименьшая неподвижная точка $[\![M]\!]_{\varrho}$. В частности, $\mathbb{Y}([\![M]\!]_{\varrho}) = [\![M]\!]_{\varrho}(\mathbb{Y}([\![M]\!]_{\varrho}))$.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко Семантика корректна в том смысле, что интерпретации термов остаются неизменными в процессе редукции. А именно,

Теорема о корректности (L17)

Если $M \to^* N$, то $\llbracket M \rrbracket_{\varrho} = \llbracket N \rrbracket_{\varrho}$ для всех ϱ .

Доказательство.

Необходимо доказать данное условие отдельно для всех правил вывода. Для большинства этих правил условие очевидно. Проверим, к примеру, аксиому $(YM) \to (M(YM))$: $[\![(YM)]\!]_{\varrho} = [\![Y]\!]_{\varrho}([\![M]\!]_{\varrho}) = \mathbb{Y}([\![M]\!]_{\varrho})$. По теореме L16, $\mathbb{Y}([\![M]\!]_{\varrho})$ — наименьшая неподвижная точка $[\![M]\!]_{\varrho}$. В частности, $\mathbb{Y}([\![M]\!]_{\varrho}) = [\![M]\!]_{\varrho}(\mathbb{Y}([\![M]\!]_{\varrho}))$.

Упражнение.

Дать детальное доказательство теоремы L17.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Утверждение, обратное теореме L17, не имеет места, что вытекает из того, что посылка симметрична, чего нельзя сказать о заключении.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Утверждение, обратное теореме L17, не имеет места, что вытекает из того, что посылка симметрична, чего нельзя сказать о заключении.

Что можно сказать в случае, когда теорему о корректности переформулировать следующим образом: Если $[\![M]\!]_\varrho = [\![N]\!]_\varrho$, то существует P такое, что $M \to^* P$ и $N \to^* P$?

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренка

Утверждение, обратное теореме L17, не имеет места, что вытекает из того, что посылка симметрична, чего нельзя сказать о заключении.

Что можно сказать в случае, когда теорему о корректности переформулировать следующим образом: Если $[\![M]\!]_{\varrho} = [\![N]\!]_{\varrho}$, то существует P такое, что $M \to^* P$ и $N \to^* P$? Такая переформулировка не приводит к цели.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко Утверждение, обратное теореме L17, не имеет места, что вытекает из того, что посылка симметрична, чего нельзя сказать о заключении.

Что можно сказать в случае, когда теорему о корректности переформулировать следующим образом: Если $[\![M]\!]_{\varrho} = [\![N]\!]_{\varrho}$, то существует P такое, что $M \to^* P$ и $N \to^* P$?

Такая переформулировка не приводит к цели.

Однако покажем, что обращение теоремы о корректности выполняется, если ограничиться рассмотрением *PCF*-термов специального вида.

Лекция L8
Язык
программирования для
вычислимых
функционалов.

Вадим Пузаренко

Определение.

Замкнутый PCF-терм типа ω или β назовём **программой**.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Определение.

Замкнутый PCF-терм типа ω или β назовём **программой**.

Конечно, можно было бы любой *PCF*-терм назвать программой, однако данное ограничение оправдано вследствие того, что только такие термы могут быть редуцированы к термам конкретного вида.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

ТТ

Вадим Пузаренко

Определение.

Замкнутый PCF-терм типа ω или β назовём **программой**.

Конечно, можно было бы любой *PCF*-терм назвать программой, однако данное ограничение оправдано вследствие того, что только такие термы могут быть редуцированы к термам конкретного вида.

Замечание.

Для каждого замкнутого *PCF*-терма может выполняться одно из следующих условий:

- ullet $M o M_1 o M_2 o \ldots$, т. е. цепочка редукций не обрывается;
- $M \to^* k_n$, $M \to^* TRUE$ или $M \to^* FALSE$.

Лекция L8 Язык программирования для вычислимых функционалов, II

> Вадим Пузаренко

Определение.

Замкнутый *PCF*-терм типа ω или β назовём **программой**.

Конечно, можно было бы любой *PCF*-терм назвать программой, однако данное ограничение оправдано вследствие того, что только такие термы могут быть редуцированы к термам конкретного вида.

Замечание.

Для каждого замкнутого *PCF*-терма может выполняться одно из следующих условий:

- ullet $M o M_1 o M_2 o \ldots$, т. е. цепочка редукций не обрывается;
- $M \to^* k_n$, $M \to^* TRUE$ или $M \to^* FALSE$.

Исключениями, например, служат $M \to^* PRED \ k_0$ и похожие последовательности, к примеру, $M \to^* (SUCC(PRED \ k_0))$, $M \to^* PRED(PRED \ k_0)$ и т. д.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Возьмём в качестве ${\bf C}$ одну из констант k_n , TRUE или FALSE. Пусть также M — программа. Из теоремы о корректности следует, что справедлива импликация $M \to^* {\bf C} \Longrightarrow [\![M]\!] = [\![{\bf C}]\!]$.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко Возьмём в качестве **C** одну из констант k_n , *TRUE* или *FALSE*. Пусть также M — программа. Из теоремы о корректности следует, что справедлива импликация $M \to^* \mathbf{C} \Longrightarrow \llbracket M \rrbracket = \llbracket \mathbf{C} \rrbracket$.

Теорема об адекватности (L18)

Для программы M имеет место следующая эквивалентность: $M \to^* \mathbf{C} \iff \llbracket M \rrbracket = \llbracket \mathbf{C} \rrbracket.$

Лекция L8
Язык
программирования для
вычислимых
функционалов,

II

Вадим Пузаренко Возьмём в качестве **C** одну из констант k_n , *TRUE* или *FALSE*. Пусть также M — программа. Из теоремы о корректности следует, что справедлива импликация $M \to^* \mathbf{C} \Longrightarrow \llbracket M \rrbracket = \llbracket \mathbf{C} \rrbracket$.

Теорема об адекватности (L18)

Для программы M имеет место следующая эквивалентность: $M \to^* \mathbf{C} \iff \llbracket M \rrbracket = \llbracket \mathbf{C} \rrbracket.$

Следствие L5

Для программы M имеет место следующая эквивалентность: $\llbracket M \rrbracket = \bot \iff$ цепочка редукций M не обрывается или $M \to^* PRED \ k_0, \ldots$ (аварийная остановка).

Лекция L8
Язык
программирования для
вычислимых
функциона-

Вадим Пузаренко Пусть D_{σ} — семантический домен и пусть PCF_{σ} — множество всех замкнутых термов типа σ . Далее, пусть ι — один из атомарных PCF -типов ω и β . Определим бинарное отношение $\lhd_{\sigma} \subseteq D_{\sigma} \times \mathrm{PCF}_{\sigma}$ индукцией по построению типа σ :

$$\sigma \equiv \iota$$
: для $d \in D_{\iota}$ и $M \in \mathrm{PCF}_{\iota}$ положим $d \lhd_{\iota} M \Longleftrightarrow [M \to^* \mathbf{C}\&d = [\mathbf{C}]] \lor [d = \bot\&M -$ любое];

$$\sigma\equiv (\pi o au)$$
: для $f\in D_{(\pi o au)}=[D_\pi o D_ au]$ и $M\in {
m PCF}_{(\pi o au)}$ положим $f\lhd_{(\pi o au)}M\Longleftrightarrow f(a)\lhd_ au(MN)$ для всех $a\in$

 $D_{\pi}, N \in \mathrm{PCF}_{\pi}$ таких, что $a \lhd_{\pi} N$.

Лекция L8 Язык программирования для вычислимых функционалов.

> Вадим Пузаренко

Замечание.

Пусть σ — произвольный тип; тогда он имеет вид $\sigma \equiv (\tau_1 \to (\tau_2 \to (\dots (\tau_k \to \iota) \dots)))$. Нетрудно проверить, что для всех $f \in D_{\sigma}$ и $M \in \mathrm{PCF}_{\sigma}$ выполняется следующее: $f \lhd_{\sigma} M \iff [$ для всех $a_i \in D_{\tau_i}$ и $N_i \in \mathrm{PCF}_{\tau_i}$,

$$f \lhd_{\sigma} M \Longleftrightarrow [$$
 для всех $a_i \in D_{\tau_i}$ и $N_i \in \mathrm{PCF}_{\tau_i}$, удовлетворяющих условию $a_i \lhd_{\tau_i} N_i$ $(1 \leqslant i \leqslant k)$, имеем $f(a_1, a_2, \ldots, a_k) \lhd_{\iota} ((\ldots((MN_1)N_2)\ldots)N_k).]$

Лекция L8
Язык
программирования для
вычислимых
функционалов,

II

Вадим Пузаренко

Замечание.

Пусть σ — произвольный тип; тогда он имеет вид $\sigma \equiv (\tau_1 \to (\tau_2 \to (\dots (\tau_k \to \iota) \dots)))$. Нетрудно проверить, что для всех $f \in D_\sigma$ и $M \in \mathrm{PCF}_\sigma$ выполняется следующее: $f \lhd_\sigma M \Longleftrightarrow [$ для всех $a_i \in D_{\tau_i}$ и $N_i \in \mathrm{PCF}_{\tau_i}$, удовлетворяющих условию $a_i \lhd_{\tau_i} N_i$ $(1 \leqslant i \leqslant k)$, имеем $f(a_1, a_2, \dots, a_k) \lhd_\iota ((\dots ((MN_1)N_2) \dots)N_k).]$

Предложение L13

Пусть заданы тип σ и терм $M\in \mathrm{PCF}_\sigma$. Тогда множество $\{d\in D_\sigma|d\lhd_\sigma M\}$ непусто и замкнуто по Скотту, т. е.

- $(1) \perp \triangleleft_{\sigma} M$;
- (2) $d' \sqsubseteq d$, $d \triangleleft_{\sigma} M \Longrightarrow d' \triangleleft_{\sigma} M$;
- (3) для всякой ω -цепи $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$, удовлетворяющей условию $d_i \lhd_\sigma M$ для всех $i \in \omega$, имеем $\bigsqcup_{i \in \omega} d_i \lhd_\sigma M$.

Лекция L8
Язык
программирования для
вычислимых
функциона-

Вадим Пузаренко

Доказательство.

Индукцией по построению типа σ .

 $\sigma \equiv \iota$. Утверждение непосредственно вытекает из определения отношения \lhd_ι .

 $\sigma\equiv(\eta\to au)$. Предположим, что утверждение выполняется для η и au; докажем, что оно выполняется и для $(\eta\to au)$. Пусть $M\in\mathrm{PCF}_{(\eta\to au)}$.

- (1) Наименьшим элементом $D_{(\eta \to \tau)}$ является постоянная функция const_{\perp} , принимающая значение \perp . По предположению индукции, $\mathrm{const}_{\perp}(a) = \perp \lhd_{\tau}(MN)$ для всех $a \in D_{\eta}$ и $N \in \mathrm{PCF}_{\eta}$, а следовательно, $\mathrm{const}_{\perp} \lhd_{\tau} M$;
- (2) Пусть $g \supseteq f \in D_{(\eta \to \tau)}$ и $f \lhd_{(\eta \to \tau)} M$. Тогда для всех $a \in D_{\eta}$ и $N \in \mathrm{PCF}_{\eta}$ имеем $f(a) \lhd_{\tau} (MN)$. Так как $f \sqsubseteq g$, имеем $f(a) \sqsubseteq g(a)$, а по предположению индукции, $g(a) \lhd_{\tau} (MN)$. Следовательно, $g \lhd_{(\eta \to \tau)} M$.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Доказательство (продолжение).

(3) Пусть $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \ldots - \omega$ -цепь, удовлетворяющая условию $f_i \lhd_{(\eta \to \tau)} M$ для всех $i \in \omega$. Тогда из определения вытекает, что $f_i(a) \lhd_{\tau} (MN)$ для всех $a \in D_{\eta}$, $N \in \mathrm{PCF}_{\eta}$, удовлетворяющих условию $a \lhd_{\eta} N$ $(i \in \omega)$. Так как $f_0(a) \sqsubseteq f_1(a) \sqsubseteq f_2(a) \sqsubseteq \ldots - \omega$ -цепь, имеем $\bigsqcup_{i \in \omega} f_i(a) \lhd_{\tau} (MN)$ $(a \in D_{\eta}, N \in \mathrm{PCF}_{\eta})$. Следовательно, $\bigsqcup_{i \in \omega} f_i \lhd_{(\eta \to \tau)} M$.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Доказательство (продолжение).

(3) Пусть $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \ldots - \omega$ -цепь, удовлетворяющая условию $f_i \lhd_{(\eta \to \tau)} M$ для всех $i \in \omega$. Тогда из определения вытекает, что $f_i(a) \lhd_{\tau} (MN)$ для всех $a \in D_{\eta}, \ N \in \mathrm{PCF}_{\eta},$ удовлетворяющих условию $a \lhd_{\eta} N \ (i \in \omega)$. Так как $f_0(a) \sqsubseteq f_1(a) \sqsubseteq f_2(a) \sqsubseteq \ldots - \omega$ -цепь, имеем $\bigsqcup_{i \in \omega} f_i(a) \lhd_{\tau} (MN)$ ($a \in D_{\eta}, \ N \in \mathrm{PCF}_{\eta}$). Следовательно, $\bigsqcup_{i \in \omega} f_i \lhd_{(\eta \to \tau)} M$.

Предложение L14

Пусть M — замкнутый λ -терм типа σ и $M \to^* M'$. Тогда справедливо соотношение $d \lhd_\sigma M \Longleftrightarrow d \lhd_\sigma M'$ для любого $d \in D_\sigma$.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко

Доказательство.

Индукцией по построению типа σ .

 $\sigma \equiv \iota$. Если $d = \bot$, то $d \lhd_{\sigma} M$ и $d \lhd_{\sigma} M'$. Пусть теперь $d \neq \bot$.

 (\Rightarrow) Пусть $d \lhd_{\iota} M$; тогда $d = \llbracket \mathbf{C} \rrbracket$ и $M \to^* \mathbf{C}$, согласно определению отношения \lhd_{ι} . Так как $M \to^* M'$, терм M' должен присутствовать в цепи редукций $M \to^* \mathbf{C}$, в силу детерминированности цепи редукций. Следовательно, $M' \to^* \mathbf{C}$ и, в свою очередь, $d \lhd_{\iota} M'$.

(\Leftarrow) Пусть $d \lhd_{\iota} M$; тогда $d = \llbracket \mathbf{C} \rrbracket$ и $M' \to^* \mathbf{C}$, согласно определению отношения \lhd_{ι} . Так как $M \to^* M'$, имеем $M \to^* M' \to^* \mathbf{C}$ и, в свою очередь, $d \lhd_{\iota} M$.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко

Доказательство (продолжение).

```
\sigma \equiv (\tau_1 \to (\tau_2 \to \dots \to (\tau_k \to \iota) \dots)). Согласно замечанию, имеем f \lhd_{\sigma} M \iff \forall (a_i \lhd_{\tau_i} N_i).[f(a_1,a_2,\dots,a_k) \lhd_{\iota} ((\dots((MN_1)N_2)\dots)N_k]); f \lhd_{\sigma} M' \iff \forall (a_i \lhd_{\tau_i} N_i).[f(a_1,a_2,\dots,a_k) \lhd_{\iota} ((\dots((M'N_1)N_2)\dots)N_k]). Так как M \to^* M', имеем ((\dots((MN_1)N_2)\dots)N_k) \to ((\dots((M'N_1)N_2)\dots)N_k), согласно правилам \operatorname{PCF}-редукций. Далее, по доказанному выше, f(a_1,a_2,\dots,a_k) \lhd_{\iota} ((\dots((MN_1)N_2)\dots)N_k) \iff f(a_1,a_2,\dots,a_k) \lhd_{\iota} ((\dots((M'N_1)N_2)\dots)N_k) для всех a_i \lhd_{\tau_i} N_i (1 \leqslant i \leqslant k). Таким образом, f \lhd_{\sigma} M \iff f \lhd_{\sigma} M'.
```

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Предложение L15

Для любой PCF-константы **C** выполняется соотношение $[\![\mathbf{C}]\!] \lhd_{\sigma} \mathbf{C}.$

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко

Предложение L15

Для любой PCF -константы ${\bf C}$ выполняется соотношение $[\![{\bf C}]\!] \lhd_{\sigma} {\bf C}.$

Доказательство.

- Утверждение очевидно для PCF-констант атомарных типов: $\{k_n\}_{n\in\mathbb{N}}$, TRUE и FALSE.
- Для того, чтобы показать соотношение $\operatorname{succ} \lhd_{(\omega \to \omega)} \operatorname{SUCC}$, необходимо проверить, что выполняется соотношение $d \lhd_{\omega} M \Longrightarrow \operatorname{succ}(d) \lhd_{\omega} (\operatorname{SUCC} M)$.

 $d=\bot$. $\mathrm{succ}(\bot)=\bot\vartriangleleft_{\omega}$ (SUCCM), по предложению L13(1).

 $d=n\in\mathbb{N}$. Если $n\lhd_{\omega}M$, то $M\to^*k_n$, согласно определению отношения \lhd_{ω} ; далее, $(\mathrm{SUCC}M)\to^*(\mathrm{SUCC}k_n)\to k_{n+1}$, согласно правилам PCF-редукции. Таким образом, $\mathrm{succ}(n)=n+1\lhd_{\omega}(\mathrm{SUCC}M)$.

Лекция L8 Язык программирования для вычислимых функционалов, ТТ

> Вадим Пузаренко

Доказательство (продолжение).

- Случаи $\operatorname{pred} \vartriangleleft_{\omega} \operatorname{PRED}$ и $\operatorname{isnull} \vartriangleleft_{\omega} \operatorname{ISNULL}$ рассматриваются аналогично (упражнение!!!)
- Для того, чтобы показать соотношение $\mathrm{cond}_\sigma \lhd_{(\beta \to (\sigma \to \sigma)))} \mathrm{COND}_\sigma$, необходимо проверить, что выполняется следующее соотношение

 $d \lhd_{\beta} M, \ a \lhd_{\sigma} P, \ b \lhd_{\sigma} Q \Longrightarrow \operatorname{cond}_{\sigma}(d, a, b) \lhd_{\sigma} (((\operatorname{COND}_{\sigma} M)P)Q).$ $d = \bot. \ \operatorname{cond}_{\sigma}(\bot, a, b) = \bot \lhd_{\sigma} (((\operatorname{COND}_{\sigma} M)P)Q), \ \operatorname{no}$

предложению L13(1).

 $d={
m true}$. Если ${
m true}\lhd_{eta}M$, то $M\to^*{
m TRUE}$ и, следовательно, $((({
m COND}_{\sigma}M)P)Q)\to^*((({
m COND}_{\sigma}{
m TRUE})P)Q)\to P$, согласно правилам PCF-редукций. Так как ${
m cond}_{\sigma}({
m true},a,b)=a\lhd_{\sigma}P$, получаем ${
m cond}_{\sigma}({
m true},a,b)\lhd_{\sigma}((({
m COND}_{\sigma}M)P)Q)$.

d = false. Этот случай рассматривается аналогично предыдущему (упражнение !!!)

Лекция L8
Язык
программирования для
вычислимых
функциона-

Вадим Пузаренко

Доказательство (продолжение).

• Для того, чтобы доказать соотношение $\mathbb{Y}_{\sigma} \lhd_{((\sigma \to \sigma) \to \sigma)} Y_{\sigma}$, необходимо проверить справедливость следующего соотношения $f \lhd_{(\sigma \to \sigma)} M \Longrightarrow \coprod f^n(\bot) = \mathbb{Y}_{\sigma}(f) \lhd_{\sigma} (Y_{\sigma} M)$.

Пусть $f \lhd_{(\sigma \to \sigma)} M$; по предложению L13(1), $\bot \lhd_{\sigma} (Y_{\sigma}M)$. Следовательно, $f(\bot) \lhd_{\sigma} (M(Y_{\sigma}M))$; так как $(Y_{\sigma}M) \to (M(Y_{\sigma}M))$, имеем $f(\bot) \lhd_{\sigma} (Y_{\sigma}M)$. Используя данный аргумент, можно доказать индукцией доказать, что $f^n(\bot) \lhd_{\sigma} (Y_{\sigma}M)$ для всех $n \in \mathbb{N}$. Из предложения L13(3) получаем требуемое.

Лекция L8 Язык программирования для вычислимых функционалов, ТТ

> Вадим Пузаренко

Доказательство (продолжение).

• Для того, чтобы доказать соотношение $\mathbb{Y}_{\sigma} \lhd_{((\sigma \to \sigma) \to \sigma)} Y_{\sigma}$, необходимо проверить справедливость следующего соотношения $f \lhd_{(\sigma \to \sigma)} M \Longrightarrow \coprod f^n(\bot) = \mathbb{Y}_{\sigma}(f) \lhd_{\sigma} (Y_{\sigma}M)$.

Пусть $f \lhd_{(\sigma \to \sigma)} M$; по предложению L13(1), $\bot \lhd_{\sigma} (Y_{\sigma}M)$. Следовательно, $f(\bot) \lhd_{\sigma} (M(Y_{\sigma}M))$; так как $(Y_{\sigma}M) \to (M(Y_{\sigma}M))$, имеем $f(\bot) \lhd_{\sigma} (Y_{\sigma}M)$. Используя данный аргумент, можно доказать индукцией доказать, что $f^n(\bot) \lhd_{\sigma} (Y_{\sigma}M)$ для всех $n \in \mathbb{N}$. Из предложения L13(3) получаем требуемое.

Основная теорема о логических отношениях (L19)

Для каждого замкнутого PCF -терма M типа σ выполняется соотношение $\llbracket M \rrbracket \lhd_{\sigma} M$.

Лекция L8 Язык программирования для вычислимых функционалов,

> Вадим Пузаренко

Сформулируем и докажем более общую форму основной теоремы.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко Сформулируем и докажем более общую форму основной теоремы.

Теорема L20

Пусть M — произвольный PCF-терм типа σ со свободными переменными $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}$. Тогда для всех $a_1 \lhd_{\sigma_1} N_1$, $a_2 \lhd_{\sigma_2} N_2, \ldots, a_n \lhd_{\sigma_n} N_n$ выполняется следующее:

$$[\![M]\!]_{[x_1^{\sigma_1}\mapsto a_1,x_2^{\sigma_2}\mapsto a_2,\ldots,x_n^{\sigma_n}\mapsto a_n]}\lhd_\sigma [\![M]\!]_{N_1}^{x_1^{\sigma_1}x_2^{\sigma_2}\ldots x_n^{\sigma_n}}.$$

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко Сформулируем и докажем более общую форму основной теоремы.

Теорема L20

Пусть M — произвольный PCF -терм типа σ со свободными переменными $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}$. Тогда для всех $a_1 \lhd_{\sigma_1} N_1$, $a_2 \lhd_{\sigma_2} N_2, \ldots, a_n \lhd_{\sigma_n} N_n$ выполняется следующее: $\llbracket M \rrbracket_{[x_1^{\sigma_1} \mapsto a_1, x_2^{\sigma_2} \mapsto a_2, \ldots, x_n^{\sigma_n} \mapsto a_n]} \lhd_{\sigma} \llbracket M \rrbracket_{N_1}^{x_1^{\sigma_1} x_2^{\sigma_2}} \ldots X_n^{\sigma_n}.$

Доказательство.

Индукцией по построению PCF-терма.

- Если M константа, то утверждение вытекает из предложения L15.
- Пусть $M \equiv x^\sigma$ и пусть также $a \lhd_\sigma N$; тогда $[\![x^\sigma]\!]_{[x^\sigma\mapsto a]} = a \lhd_\sigma N = [x^\sigma]_N^{x^\sigma}$.

Вадим Пузаренко

Доказательство (продолжение),

• Пусть $M \equiv (P^{(\tau \to \sigma)}Q^{\tau})$; по предположению индукции, считаем, что утверждение выполняется для P и Q. Далее, пусть $x_1^{\sigma_1}$, $x_2^{\sigma_2}$, ..., $x_n^{\sigma_n}$ — свободные переменные терма M; заметим, что эти переменные свободно входят в P и Q. Возьмём $a_1 \lhd_{\sigma_1} N_1$, $a_2 \lhd_{\sigma_2} N_2$, ..., $a_n \lhd_{\sigma_n} N_n$; по предположению индукции,

$$\llbracket P \rrbracket_{[x_1^{\sigma_1} \mapsto a_1, x_2^{\sigma_2} \mapsto a_2, \dots, x_n^{\sigma_n} \mapsto a_n]} \lhd_{(\tau \to \sigma)} [P]_{N_1}^{x_1^{\sigma_1} x_2^{\sigma_2} \dots x_n^{\sigma_n}} ;$$

$$\llbracket Q \rrbracket_{[x_1^{\sigma_1} \mapsto a_1, x_2^{\sigma_2} \mapsto a_2, \dots, x_n^{\sigma_n} \mapsto a_n]} \lhd_{\tau} [Q]_{N_1}^{x_1^{\sigma_1} x_2^{\sigma_2} \dots x_n^{\sigma_n}} .$$

Следовательно,

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко

Доказательство (продолжение).

• Пусть $M \equiv \lambda x^{\tau_1}.Q^{\tau_2}$; по предположению индукции, считаем, что утверждение выполняется для Q. Далее, пусть $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}$ — свободные переменные терма M; заметим, что $x_1^{\sigma_1}, x_2^{\sigma_2}, \ldots, x_n^{\sigma_n}, x^{\tau_1}$ свободно входят в Q. Возьмём $a_1 \lhd_{\sigma_1} N_1$, $a_2 \lhd_{\sigma_2} N_2$, ..., $a_n \lhd_{\sigma_n} N_n$; нам необходимо показать, что выполняется соотношение

$$\forall_{x_1} x_1^{\sigma_1} \mapsto_{a_1, x_2^{\sigma_2} \mapsto a_2, \dots, x_n^{\sigma_n} \mapsto a_n} (a) = \mathbb{E} \mathbb{E}[x_1^{\sigma_1} \mapsto_{a_1, x_2^{\sigma_2} \mapsto a_2, \dots, x_n^{\sigma_n} \mapsto a_n, x_1^{\sigma_n} \\ } \\ \Rightarrow_{\tau_2} ([\lambda x^{\tau_1} \cdot Q]_{N_1}^{X_1^{\sigma_1} X_2^{\sigma_2} \dots X_n^{\sigma_n}}^{X_1^{\sigma_n} X_2^{\sigma_n}} N) \equiv (\lambda x^{\tau_1} \cdot [Q]_{N_1}^{X_1^{\sigma_1} X_2^{\sigma_2} \dots X_n^{\sigma_n}}^{X_1^{\sigma_n} X_2^{\sigma_n} \dots X_n^{\sigma_n}} N) \\ \Rightarrow [[Q]_{N_1}^{X_1^{\sigma_1} X_2^{\sigma_2} \dots X_n^{\sigma_n}}^{X_1^{\sigma_n} X_2^{\sigma_n} \dots X_n^{\sigma_n}}]_{N_1}^{\chi_1} \equiv [Q]_{N_1}^{X_1^{\sigma_1} X_2^{\sigma_2} \dots X_n^{\sigma_n}}^{\chi_n^{\sigma_n} X_1^{\sigma_n}},$$

однако справедливость данного соотношения следует из индукционного предположения.

Лекция L8
Язык
программирования для
вычислимых
функционалов,

Вадим Пузаренко

Доказательство теоремы L18 (об адекватности).

Пусть M — замкнутый PCF -терм типа $\iota \in \{\omega, \beta\}$. По теореме L19, имеем $[\![M]\!] \lhd_\iota M$, а именно, $[\![M]\!] = \bot$ или ($[\![M]\!] = [\![\mathbf{C}]\!]$ и $M \to^* \mathbf{C}$). В случае, когда $[\![M]\!] \in \mathbb{N} \cup \mathbb{B}$ (в частности, $[\![M]\!] \neq \bot$), должно выполняться соотношение $\to^* \mathbf{C}$. В обратную сторону, утверждение следует из теоремы корректности (L17).

Лекция L8
Язык
программирования для
вычислимых
функциона-

Вадим Пузаренко

Спасибо за внимание.