Algorytmy rozwiązywania gier o sumie zerowej

Sprawozdanie z ćwiczenia 3.

Sztuczna Inteligencja i Inżynieria Wiedzy - laboratorium

Spis treści

Connect4 – założenia implementacyjne	3
Implementacja heurystyk oceny planszy	3
Porównanie średniego czasu przetwarzania	4
Porównanie średniego czasu przetwarzania dla min-max i alfa-beta	4
Porównanie średniego czasu przetwarzania w zależności od heurystyki	8
Badanie skuteczności algorytmów	10
Porównanie liczby ruchów gracza wygrywającego w zależności od jego parametrów	10
Porównanie liczby ruchów gracza wygrywającego w zależności od przeciwnika	13
Inne wnioski	15
Podsumowanie	17

Connect4 – założenia implementacyjne

W celu badania zaimplementowano dwa algorytmy rozwiązywania gier o sumie zerowej. Rozważaną grą jest Connect4. Zaimplementowano algorytm *min-max* oraz *alfa-beta* z maksymalną głębokością przeszukiwania drzewa rozwiązań. Porównano także trzy funkcje oceny planszy.

Implementacja heurystyk oceny planszy

1. (SimpleEvaluator) Funkcja oceny przyznająca punkty tylko za planszę z wygraną (4 żetony jednego koloru w linii pionowej, poziomej lub ukośnej). Liczba punktów przyznawanych za taką planszę (ruch) była równa maksymalnej liczbie punktów za wygraną (przyjęłam za nią podwojoną maksymalną głębokość przeszukiwania) pomniejszonej o głębokość – liczbę ruchów wymaganą do wygranej:

$$val = 2 * maxDepth - currentDepth$$

W przypadku wygranej jednego z graczy plansza miała wartość *val*, w przypadku drugiego gracza - wartość przeciwną.

2. (ThreeEvaluator) Drugi sposób oceny przyznawał punkty za wygraną w sposób opisany w punkcie 1., jednak dodatkowo używał heurystyki do oceny planszy, jeżeli osiągnął maksymalną głębokość, a nie było wygranej. Przy ocenie planszy brał pod uwagę wystąpienia w linii długości 4 trzech żetonów jednego gracza oraz pustego pola (na dowolnej pozycji z tych czterech). Jeżeli znalazł w dowolnym miejscu taki ciąg, plansza otrzymywała 40% maksymalnej liczby punktów za wygraną, a więc

$$val = 0.8 * maxDepth$$

3. (ThreeEvaluator v2) Trzeci sposób oceny bazował na dwóch poprzednich i je ulepszał – w przypadku planszy z wygraną punkty były przyznawane jak w punkcie 1. Jednak jeżeli osiągnął maksymalną głębokość, a nie było wygranej, nie tylko szukał wystąpienia w linii długości 4 trzech żetonów jednego gracza oraz pustego pola, ale także sprawdzał liczbę pustych pól pod pustym polem z ciągu – potrzebnych do zapełnienia przed położeniem czwartego żetonu w ciągu. Plansza z takim ciągiem dostawała liczbę punktów o 1 mniejszą niż połowa maksymalnej liczby punktów (połowę punktów dostałaby plansza wygrana na maksymalnej głębokości) pomniejszoną o liczbę pustych pól pod brakującym żetonem. Gdyby liczba punktów spadła w ten sposób poniżej 0, przypisywano 1. W przypadku znalezienia na planszy większej liczby takich ciągów, plansza dostawała maksymalną znalezioną w ten sposób liczbę punktów.

$$val = max (depth - 1 - emptyCells_i)$$

Wymogiem badań był także losowy wybór pierwszego ruchu gracza rozpoczynającego.

Porównanie średniego czasu przetwarzania

Porównanie średniego czasu przetwarzania dla min-max i alfa-beta

Badanie 1: Porównanie średniego czasu przetwarzania dla min-max i alfa-beta przy prostej funkcji oceny w zależności od głębokości przeszukiwania

Cel badania: porównanie wzrostu czasu przetwarzania w zależności od głębokości przeszukiwania oraz wyboru algorytmu

Stałe w badaniu:

funkcja oceny: SimpleEval

Zmienne w badaniu:

algorytmy: min-max i alfa-beta

głębokość przeszukiwania: od 3 do 9 dla min-maxa i od 3 do 13 dla alfa-bety

Przebieg badania: Uruchomienie rozgrywki w trybie AI vs AI dla min-maxa z każdą wartości głębokości z zakresu wybranego dla min-maxa vs alfa-beta z każdą z wartości głębokości z zakresu dla alfa-bety. Powtórzyć dwa razy z zamianą gracza rozpoczynającego. Zapis danych o pierwszym ruchu, parametrach graczy, liczbie ruchów oraz średnim czasie przetwarzania gracza wygrywającego.

Tabela 1 Średnie czasy przetwarzania jednego ruchu w ms - wyniki badania 1

Głębokość przeszukiwania	AlphaBeta	MinMax
4	0.67	2.29
5	0.00	20.38
6	1.57	117.50
7	1.86	659.19
8	33.00	3744.53
9	21.50	36225.50
10	482.79	
11	908.00	
12	6253.27	
13	7746.31	

Wykres 1 Średnie czasy przetwarzania w zależności od głębokości i algorytmu dla prostej ewaluacji planszy

Użycie alfa-beta cięć znacząco zmniejsza czas przetwarzania algorytmu.

Badanie 2: Porównanie średniego czasu przetwarzania dla min-max i alfa-beta z użyciem heurystyk w zależności od głębokości przeszukiwania

Cel badania: porównanie wzrostu czasu przetwarzania w zależności od głębokości przeszukiwania oraz wyboru algorytmu

Zmienne w badaniu:

algorytmy: min-max i alfa-beta

głębokość przeszukiwania: od 3 do 8 dla min-maxa i od 3 do 12 dla alfa-bety

funkcje oceny: ThreeEvaluator i ThreeEvaluator v2

Przebieg badania: Uruchomienie rozgrywki w trybie AI vs AI dla min-maxa z każdą wartości głębokości z zakresu wybranego dla min-maxa vs alfa-beta z każdą z wartości głębokości z zakresu dla alfa-bety. Powtórzyć dwa razy dla każdej heurystyki i z zamianą gracza rozpoczynającego. Zapis danych o pierwszym ruchu, parametrach graczy, liczbie ruchów oraz średnim czasie przetwarzania gracza wygrywającego.

Tabela 2 Średni czas przetwarzania w ms dla heurystyki ThreeEvaluator

Głębokość przeszukiwania	AlphaBeta	MinMax
3	0.50	0.00
4	0.29	5.50
5	1.43	65.00
6	6.07	199.76
7	12.96	1466.58
8	55.06	9273.67
9	243.85	
10	666.98	
11	4132.72	
12	12058.33	

Wykres 2 Średnie czasy przetwarzania z użyciem ThreeEvaluator

Tabela 3 Średnie czasy przetwarzania w ms z użyciem ThreeEvaluator v2

Głębokość przeszukiwania	AlphaBeta	MinMax
3	0.60	1.00
4	1.00	8.13
5	2.33	92.80
6	27.50	447.62
7	25.41	2286.42
8	227.33	20741.39
9	602.18	
10	2614.99	
11	9895.62	
12	28238.43	

Wykres 3 Średnie czasy przetwarzania z użyciem ThreeEvaluator v2

Użycie alfa-beta cięć znacząco zmniejsza czas przetwarzania algorytmu. Wraz ze zwiększaniem się głębokości przeszukiwania czas przetwarzania rośnie wykładniczo.

Porównanie średniego czasu przetwarzania w zależności od heurystyki

Badanie 3: Porównanie średniego czasu przetwarzania dla różnych funkcji oceny dla min-max i alfabeta w zależności od głębokości przeszukiwania

Cel badania: porównanie czasu przetwarzania w zależności od funkcji oceny, głębokości i algorytmu

Zmienne w badaniu:

algorytmy: min-max i alfa-beta

głębokość przeszukiwania: od 3 do 8 dla min-maxa i od 3 do 12 dla alfa-bety

funkcje oceny: SimpleEvaluator, ThreeEvaluator i ThreeEvaluator v2

Przebieg badania: Uruchomienie rozgrywki w trybie AI vs AI dla min-maxa z każdą wartości głębokości z zakresu wybranego dla min-maxa vs alfa-beta z każdą z wartości głębokości z zakresu dla alfa-bety. Powtórzyć dwa razy dla każdej heurystyki i z zamianą gracza rozpoczynającego. Zapis danych o pierwszym ruchu, parametrach graczy, liczbie ruchów oraz średnim czasie przetwarzania gracza wygrywającego.

Tabela 4 Średnie czasy przetwarzania w ms w zależności od funkcji oceniającej, głębokości i algorytmu

Głębokość przeszukiwania	SimpleEval	ThreeEval	ThreeEval2	Średnia
i algorytm	SimpleEval	IIIIeeEvai	TilleeEvaiz	końcowa
4	2.00	3.07	5.75	3.69
AlphaBeta	1.00	0.29	1.00	0.62
MinMax	2.29	5.50	8.13	5.43
5	15.18	30.77	49.95	31.17
AlphaBeta	1.33	1.43	2.33	1.77
MinMax	20.38	65.00	92.80	51.38
6	81.31	108.97	287.57	142.68
AlphaBeta	1.70	6.07	27.50	9.94
MinMax	117.50	199.76	447.62	226.92
7	476.75	460.23	493.21	479.08
AlphaBeta	2.40	12.96	25.41	18.59
MinMax	659.19	1466.58	2286.42	1243.50
8	1885.90	2513.36	4961.35	3638.32
AlphaBeta	27.27	55.06	227.33	146.91
MinMax	3744.53	9273.67	20741.39	12017.71
9	23.94	243.85	602.18	396.45
AlphaBeta	23.94	243.85	602.18	396.45
10	358.54	666.98	2614.99	1541.80
AlphaBeta	358.54	666.98	2614.99	1541.80
11	671.35	4132.72	9895.62	6656.44
AlphaBeta	671.35	4132.72	9895.62	6656.44
12	6253.27	12058.33	28238.43	14410.95
AlphaBeta	6253.27	12058.33	28238.43	14410.95
Średnia				
końcowa	823.88	1430.78	4002.91	2451.19

Wykres 4 Średnie czasy przetwarzania w zależności od funkcji oceniającej, głębokości i algorytmu

Najprostsza funkcja oceniająca przyznająca punkty tylko za wygraną ma najkrótszy czas przetwarzania, użycie heurystyk dodatkowo wydłuża ten czas. *ThreeEvaluator v2* jest najwolniejszy, dość znacząco potrafi wydłużać czas przetwarzania ruchu.

Badanie skuteczności algorytmów

Porównanie liczby ruchów gracza wygrywającego w zależności od jego parametrów

Badanie 4: Zbadanie liczby ruchów gracza wygrywającego w zależności od jego parametrów

Cel badania: wybór najskuteczniejszych parametrów gracza

Zmienne w badaniu:

algorytmy: min-max i alfa-beta

głębokość przeszukiwania: od 3 do 8 dla min-maxa i od 3 do 12 dla alfa-bety

funkcje oceny: SimpleEvaluator, ThreeEvaluator i ThreeEvaluator v2

Przebieg badania: Uruchomienie rozgrywki w trybie AI vs AI dla min-maxa z każdą wartości głębokości z zakresu wybranego dla min-maxa vs alfa-beta z każdą z wartości głębokości z zakresu dla alfa-bety. Powtórzyć dwa razy dla każdej heurystyki i z zamianą gracza rozpoczynającego. Zapis danych o pierwszym ruchu, parametrach graczy, liczbie ruchów oraz średnim czasie przetwarzania gracza wygrywającego.

Tabela 5 Zestawienie średniej liczby ruchów gracza wygrywającego

Głębokość i algorytm	SimpleEval	ThreeEval	ThreeEval2	Średnia końcowa
4	14.78	18.00	16.50	16.69
AlphaBeta	15.50	17.86	15.25	16.69
MinMax	14.57	18.13	17.13	16.70
5	17.23	17.15	18.16	17.54
AlphaBeta	19.00	18.00	18.67	18.55
MinMax	16.56	16.17	17.70	16.84
6	15.34	18.31	14.86	16.34
AlphaBeta	17.80	18.73	14.00	17.30
MinMax	14.23	17.94	15.38	15.73
7	16.00	17.05	17.14	16.80
AlphaBeta	17.90	16.93	16.87	17.01
MinMax	15.27	17.33	18.17	16.46
8	16.33	16.69	15.47	16.00
AlphaBeta	16.67	16.64	15.78	16.17
MinMax	16.00	16.83	14.44	15.60
9	19.24	15.82	14.63	15.74
AlphaBeta	19.24	15.82	14.63	15.74
10	17.50	17.25	15.34	16.38
AlphaBeta	17.50	17.25	15.34	16.38
11	16.74	15.56	13.39	14.59
AlphaBeta	16.74	15.56	13.39	14.59
12	15.91	10.00	10.14	13.14
AlphaBeta	15.91	10.00	10.14	13.14
Średnia końcowa	16.57	16.76	15.21	16.01

Wykres 5 Zestawienie średniej liczby ruchów gracza wygrywającego

Na podstawie zebranych danych ciężko jest wyciągnąć jednoznaczne wnioski. Możemy zobaczyć, że powyżej głębokości 10 alfa-beta staje się bardziej skuteczny. Bardzo dużo zależy prawdopodobnie także od przeciwnika, nie jesteśmy także w stanie zawsze przewidzieć zwycięzcy, aby mieć jak najbardziej Do kolejnego badania jednak zawężę AI biorące w nim udział.

Badanie 5: Zbadanie liczby ruchów gracza wygrywającego w zależności od funkcji oceniającej

Cel badania: znalezienie najskuteczniejszej funkcji oceniającej

Stałe w badaniu: algorytm: alfa-beta

Zmienne w badaniu:

głębokość przeszukiwania: od 7 do 11

funkcje oceny: SimpleEvaluator, ThreeEvaluator i ThreeEvaluator v2

Przebieg badania: Uruchomienie rozgrywki w trybie AI vs AI dla alfa-beta z każdą z wartości głębokości z zakresu "każdy z każdym". Powtórzyć dwa razy dla każdej heurystyki i z zamianą gracza rozpoczynającego. Zapis danych o pierwszym ruchu, parametrach graczy, liczbie ruchów oraz średnim czasie przetwarzania gracza wygrywającego.

Tabela 6 Średnia liczba ruchów wykonana przez gracza wygrywającego alfa-beta w zależności od jego parametrów

Głębokość	SimpleEval	ThreeEval	ThreeEval2
7	20.67	18.36	19.03
8	20.00	18.33	18.11
9	19.29	17.87	16.55
10	19.89	18.62	17.25
11	18.30	16.52	14.24
Średnia			
końcowa	19.34	17.88	16.79

Wykres 6 Średnia liczba ruchów wykonana przez gracza wygrywającego alfa-beta w zależności od jego parametrów

Wykres 7 Porównanie liczby ruchów gracza wygrywającego w zależności od wyboru heurystyki

Na podstawie danych Tabeli 6, a szczególnie ich wizualizacji na Wykresie 7, można stwierdzić, że SimpleEval jest najprostszy, ma najkrótszy czas przetwarzania, ale jest słabszy i potrzebuje więcej ruchów na pokonanie przeciwnika. ThreeEvaluator v2 ma najdłuższy czas przetwarzania, ale jest najbardziej skuteczny.

Porównanie liczby ruchów gracza wygrywającego w zależności od przeciwnika

Badanie 6: Zbadanie liczby ruchów gracza wygrywającego w zależności od parametrów przeciwnika

Cel badania: porównanie, jak długo gracz jest w stanie odpierać ataki, w zależności od parametrów

Zmienne w badaniu:

algorytmy: random, min-max i alfa-beta

głębokość przeszukiwania: od 3 do 9 dla min-maxa i od 3 do 13 dla alfa-bety

funkcje oceny: SimpleEvaluator, ThreeEvaluator i ThreeEvaluator v2

Przebieg badania: Uruchomienie rozgrywki w trybie AI vs AI dla min-maxa z każdą wartości głębokości z zakresu wybranego dla min-maxa vs alfa-beta z każdą z wartości głębokości z zakresu dla alfa-bety. Rozegrać także rozgrywki z graczem losowym. Powtórzyć dwa razy dla każdej heurystyki i z zamianą gracza rozpoczynającego. Zapis danych o pierwszym ruchu, parametrach graczy, liczbie ruchów oraz średnim czasie przetwarzania gracza wygrywającego.

Wyniki:

Tabela 7 Liczba ruchów gracza wygrywającego w zależności od algorytmu i głębokości przeszukiwania przeciwnika

Głębokość przeszukiwania	AlphaBeta	MinMax	Random
			7.13
3	15.26	15.72	
4	15.14	14.52	
5	16.31	17.31	
6	15.13	15.39	
7	17.68	17.90	
8	17.68	17.53	
9	18.56	20.00	
10	18.30		
11	19.43		
12	19.50		
13	21.00		

Wykres 8 Średnia liczba ruchów gracza wygrywającego w zależności od przeciwnika

Wnioski:

Na podstawie danych z Tabeli 7 można zauważyć, że zazwyczaj im większa głębokość przeszukiwania, tym algorytm "mądrzejszy" i dłużej będzie w stanie się bronić. Na wykresie 8 jako ciekawostkę zestawiono wyniki z przeciwnikiem wybierającym kolumny w sposób losowy oraz kilkoma testami przeciwko grze z człowiekiem.

Inne wnioski

W ramach badań 1-6 oraz dodatkowego losowego generowania rozgrywek zebrano dane o 1258

rozgrywkach.

Tabela 8 Stosunek liczby remisów do wszystkich gier

Liczba remisów	341
Liczba gier z wygranym	917
Liczba wszystkich gier	1258

Liczba remisów
Liczba gier z wygranym

Wykres 9 Stosunek liczby remisów do wszystkich gier

Co ciekawe, to który gracz jest graczem rozpoczynającym, zdaje się nie mieć wpływu na jego szanse wygranej.

Tabela 9 Liczba wygranych gracza rozpoczynającego oraz drugiego w kolejce

Gracz wygrywający:			
Rozpoczynający 451			
Drugi	466		

Wykres 10 Liczba wygranych gracza rozpoczynającego oraz drugiego w kolejce

Wylosowany pierwszy ruch

Postanowiłam także sprawdzić, jak kończyły się gry dla gracza rozpoczynającego, w zależności od losowo przydzielonego pierwszego ruchu.

Tabela 10 Wyniki rozgrywki w zależności of pierwszego ruchu oraz funkcji oceny

Wynik gry w zależności od pierwszego ruchu	SimpleEval	ThreeEval	ThreeEval2	Suma końcowa
0	67	56	56	179
remis	7	18	12	37
wygrana	1	11	28	40
przegrana	59	27	16	102
1	72	44	56	172
remis	64	12	12	88
wygrana	1	15	31	47
przegrana	7	17	13	37
2	54	57	48	159
remis	35	22	14	71
wygrana	5	12	21	38
przegrana	14	23	13	50
3	60	49	51	160
remis	19	5	9	33

wygrana	32	26	27	85
przegrana	9	18	15	42
4	73	46	51	170
remis	9	7	6	22
wygrana	41	24	29	94
przegrana	23	15	16	54
5	65	62	51	178
remis	11	15	12	38
wygrana	10	19	26	55
przegrana	44	28	13	85
6	81	55	67	203
remis	25	16	10	51
wygrana	31	23	38	92
przegrana	25	16	19	60

Wykres 11 Wyniki rozgrywki w zależności of pierwszego ruchu oraz funkcji oceny

Jak widać na Wykresie 11, największe szanse na przegraną są w przypadku startu od kolumny 0, szczególnie w przypadku SimpleEval (ta praktycznie nie jest w stanie wygrać startując od tego pola). Największe szanse na wygraną są w przypadku rozpoczęcia od kolumny 3, 4 oraz 6.

Pewne anomalie od matematycznych reguł w tym przypadku wynikają z tego, że ograniczając głębokość przeszukiwania drzewa nie mamy do czynienia z graczami grającymi optymalnie. Co więcej, w momencie, gdy algorytm nie znajdzie dobrego ruchu lub znajdzie kilka ruchów o takiej samej wartości, wybiera pierwszą znalezioną wartość.

Skuteczność funkcji oceny

Porównano także stosunek liczby wygranych gier do liczby przegranych gier dla każdego z trzech sposobów oceny planszy:

Tabela 11 Liczby wygranych i przegranych dla SimpleEval

SimpleEval	
Liczba wygranych	229
Liczba przegranych	371
Liczba gier bez remisu:	600

Wykres 12 Stosunek wygranych do przegranych dla SimpleEval

Tabela 12 Liczby wygranych i przegranych dla ThreeEval

ThreeEval	
Liczba wygranych	278
Liczba przegranych	266
Liczba gier bez remisu:	544

Wykres 13 Stosunek wygranych i przegranych dla ThreeEval

Tabela 13 Liczby wygranych i przegranych dla ThreeEval v2

ThreeEval v2	
Liczba wygranych	405
Liczba przegranych	210
Liczba gier bez remisu:	615

Wykres 14 Stosunek wygranych i przegranych dla ThreeEval v2

Podsumowanie

Na różne sposoby można implementować algorytmy rozwiązywania gier o sumie zerowej. Znacznym ulepszeniem algorytmu min-max jest metoda alfa-beta cięć, która znacząca skraca czas przetwarzania i pozwala na głębszą analizę drzewa rozwiązań. Bardzo istotny jest także dobór heurystyki do oceny planszy w razie osiągnięcia maksymalnej głębokości oraz sposób przyznawania punktów.