School of Computer Science and Engineering, UNSW

WK 01-02: Network Architectures and Security

COMP4337/9337 Securing Fixed and Wireless Networks

Never Stand Still

Sanjay Jha, Nadeem Ahmed

Today's Agenda

- Network architectures
- Security in IP protocol stack
- Review of wired and wireless networks and security concerns

WK01-02 2

Course Coverage

- Introduction to security properties
- Internet Architecture
- Network Protocols and Vulnerabilities
- Application Layer Security
- Transport Layer Security
- Network Layer Security
- Link Layer Security
- Wireless LAN Security

NOTE: We may not take exactly the layered approach to accommodate for labs/assignments during the term

3

Introduction

- Internet connectivity is essential but is vulnerable to threats
- Our heavy reliance on networking technology, that provides unprecedented access to a whole range of applications and services anytime, anywhere, makes it an attractive target for malicious users
 - Malicious users attempt to compromise the security of our communications and/or cause disruption to services
- Certain original protocols are either designed without bearing security in mind, or with poor security design decisions
 - Not merely of historical interest: contemporary designs are often constrained by their predecessors for pragmatic reasons

Introduction

We explore

- The challenges in securing networks under a variety of attacks
- Widely used security protocols
- Emerging security challenges and solutions

A basic understanding of networking protocol stack and TCP/IP suite is assumed from 3331/9331 or equivalent

Internet Architecture

- A complex system such as distributed applications running over a range of networking technologies is best understood when viewed as layered architecture
- We will revise the 7-layer ISO OSI protocol stack and the interaction between various layers
 - TCP/IP protocol stack uses only five layers from OSI model i.e., layers 1- 4 and 7
 - Presentation and Session layers are optional, and their functionality can be offloaded to the application layer
- The model also allows us to understand the security issues on each layer and the interplay between them.

Security Analysis of Layered Protocol Architectures

At which interface does the attack take place?

WK01-02 7

Network Vulnerabilities

- Security research literature use Dolev-Yao (DY) adversarial model for formal analysis of security protocols
 - DY model describes the worst possible adversary that has complete control over the entire network allowing it to read any message, prevent delivery of any message, duplicate any message or otherwise synthesize any message for which the adversary has the relevant cryptographic keys (if any).
 - Real adversaries may have limited capabilities

Network Security Attacks

- Network security characters Alice, Bob, Eve and Mallory back again
- Alice and Bob want to exchange messages securely while Eve (an eavesdropper) and Mallory (a malicious attacker) are waiting to compromise their communications
 - In real world Alice and Bob -> Webservers and clients, two email clients, DNS servers etc.
- Eve can capture (eavesdrop) the traffic and extract confidential information such as passwords, credit card details etc., while Mallory can launch a person in the middle (PiTM) attack by placing itself between Alice and Bob
 - Real world Eve and Mallory -> compromised gateways/routers/access-points, or malware

Network Security Attacks

- Denial of Service (DoS): attacker sends an avalanche of bogus packets to a server to keep the server constantly busy or clog up the access link
- Distributed DoS (DDoS): attack using a large number of compromised devices (bots)
 - Mirai is an example of DDoS in 2016, compromised Linuxbased IP cameras, utility meters, home routers and others
 - Done by exploiting weak authentication configurations including use of default passwords
- In IP spoofing attacks: impersonate as an authorised user by crafting a packet with forged IP address and adjusting certain other fields to make it look legitimate

Desirable properties of secure communication

- confidentiality: only sender, intended receiver should "understand" message contents
- authentication: sender, receiver want to confirm identity of each other
- message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
- non-repudiation: no one (including the sender) can deny that message was sent by the sender
- access and availability: services must be accessible and available to users

Emerging Network Trend

WK01-02

Security Aspects of Networks

- Networks face several threats.
 - Masquerade,
 - Eavesdropping,
 - Authorization violation,
 - Loss or modification of transmitted information,
 - Repudiation of communication acts,
 - Forgery of information,
 - Sabotage

What is different in Wireless?

- Wireless Network is more accessible due to broadcast domain
 - Eavesdropping
 - Jamming
 - Packet injection/replay
- Authentication has to be re-established when the mobile device moves
- Key management gets harder as peer identities can not be predetermined
- The location of a device / user becomes a more important information that is worthwhile to eavesdrop on and thus to protect

WK01-02

Review of Network Architecture and Associated Security Challenges

WK01-02 16

Internet architecture

déjà vu; 3331/9331

WiFi - WLAN

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

BSS₂

18

Security in WLAN

- We will treat this topic in detail in later weeks
 - WEP, why failed, what lesson did we learn
 - WPA versions

WK01-02

WLAN:

(AP = access point)

Wireless mesh network (WMN):

Features: Mesh routers; Multi-hop routing

City-wide WiFi

UNSW.

WMN Security

- Several verifications need to be performed:
 - Wireless Access Point has to authenticate the user terminal.
 - Each user has also to authenticate the next hop mesh router
 - Each mesh router authenticates the other mesh routers in the WMN
 - The data sent or received by user has to be protected (e.g., to ensure data integrity, non-repudiation and/or confidentiality).
 - Denial of service attack possible
- Performing these verifications has to be efficient and lightweight, especially for the user terminal.

22

Wireless Sensor Networks

- Large number of sensor nodes, a few base stations
- Sensors are usually battery powered:
 - Main design criteria: reduce the energy consumption
 - Energy harvesting
- Multi-hop communication reduces energy consumption:

WK01-02 23

Sensor Network Security

- Resource constraint
 - Limited CPU processing power
 - Limited Battery attacker can deplete
 - Need lightweight crypto protocols
- Physical Security
 - Capture, Cloning, and Tampering easy
- Wireless Programming on devices possible
 - Additional security risk

Vehicular Ad hoc NETwork (VANET)

- Communication: typically, over the Dedicated Short-Range Communications (DSRC)
 (5.9 GHz)
- IEEE 802.11p: applications such as toll collection, vehicle safety services, and commerce transactions via cars

Vehicular communications: why?

- Combat the awful side-effects of road traffic
 - In the EU, around 40'000 people die yearly on the roads; more than 1.5 millions are injured
 - Traffic jams generate a tremendous waste of time and of fuel
- Most of these problems can be solved by providing appropriate information to the driver or to the vehicle

Why Security important?

- Bogus Traffic Information
- Disruption of road network/traffic movement
- Cheating with identity, speed, location
- Jamming
- Location/privacy issues
- Security requirements:
 - Sender authentication, Verification of data consistency, Availability,
 Non-repudiation, Privacy, Real-time constraints

27

IoT Devices and Security

- The market for IoT device projected to grow to more than 27 Billion devices by 2025.
- Security is critical because these devices generate medical data, and challenging given that they have low power and computation capabilities.

1. Apple iPhone SensorStrip

2. Nike + iPod Sports
Kit

3. Nokia Sports Tracker

4. Toumaz Life Pebble

WK01-02 28

References

- Chapter8, Kurose Ross, Computer Networking: A Top-Down Approach, for wireless network architecture overview
- Chapter 1 and 2, L. Buttyan and J. P. Hubaux, Security and Cooperation in Wireless Networks (note: the book leans towards game theory, restrict your reading to security. Cellular security is covered in detail the book is reasonably old missing 4G networks)
- Günter Schäfer, Security in Fixed and Wireless Networks, Wiley
- Acknowledgement: foils are adapted from Buttyan, Kurose-Ross, Schafer primarily. Special thanks to Prof Schafer for sharing foils.