2 - COMO FUNCIONA A SIMULAÇÃO (2)

Referencia principal:

Freitas, P. J. <u>Introdução à Modelagem e Simulação de Sistemas</u>, 2ª Ed., Visual Books, 2008, Cap. 2.

Tratando a Variabilidade dos Sistemas

- Na solução analítica: dados empregados para determinar valores dos parâmetros (comportamento médio) das variáveis do sistema;
- Na modelagem e simulação: dados visam compreender o comportamento dinâmico e aleatório das variáveis, com a intenção de incorporá-lo ao modelo via funções probabilísticas.

Incorporando Aleatoriedade

13,6	27,9	1,1	12,3	9,7	12,7	15,3	4,1	13,5	0,7
10,8	29,5	5,8	9,9	6,1	5,5	7,7	17,4	7,7	26,4
15,9	5,9	11,6	2,7	2,9	1,7	4,6	35,5	15,8	17,5
0,6	4,0	18,1	21,8	3,8	14,6	12,9	8,5	0,4	2,5
33,1	39,8	6,4	1,8	8,3	11,9	4,4	16,2	6,8	0,3
18,0	12,1	16,5	8,5	12,5	1,4	5,6	8,2	0,9	17,9
10,9	24,4	1,02	28,1	2,0	42,7	29,9	4,9	3,1	8,1
0,4	10,4	8,1	2,74	13,0	0,7	4,8	2,8	4,3	3,4
28,5	28,4	3,02	15,5	17,3	1,6	17,7	1,2	13,4	14,1
14,9	4,3	1,6	0,6	6,9	22,6	10,2	7,3	3,8	10,4

Dados brutos dos tempos entre chegadas de 100 automóveis (min.)

Distribuição de Freqüências dos TEC

Classes	Observações
0 → 5	35
5 → 10	19
10 → 15	19
15 → 20	13
$20 \rightarrow 25$	3
$25 \rightarrow 30$	7
$30 \rightarrow 35$	1
$35 \rightarrow 40$	2
$40 \rightarrow 45$	1
Mais de 45	0

Distribuição de frequências das observações efetuadas para os tempos entre chegadas.

Distribuição de Freqüências dos TEC

Histograma das observações efetuadas para os

Tempos entre Chegadas.

Distribuição de Frequências dos TS

Classes	Observações
$9,00 \Rightarrow 9,55$	6
$9,55 \rightarrow 10,10$	5
$10,10 \rightarrow 10,65$	23
10,65 →11,20	20
11,20 →11,75	21
11,75 →12,30	12
12,30 → 12,85	9
12,85 → 13,40	1
13,40 → 13,95	2
$13,95 \rightarrow 14,50$	1

Distribuição de frequências das observações efetuadas para os tempos de serviço

Distribuição de Frequências dos TS

Histograma das observações efetuadas para os tempos de serviço

Instruções para Sorteio

- ◆ Procedimento sistemático semelhante ao das rifas ou loterias. Desta forma, a seguinte estratégia é adotada:
 - ✓ Um total de 100 bilhetes, são confeccionados e colocados numa urna;
 - ✓ Cada número representa o ponto médio da classe a qual pertence.
 - ✓ Um bilhete representante da classe que inicia em 10 e termina em 15, deve estar marcado com o número 12,5 (min.).
 - ✓ As diversas classes devem concorrer com um número de bilhetes equivalentes aos percentuais de participação na amostra levantada.
 - ✓ Por exemplo: Classe de 0 a 5, deve concorrer com 35 bilhetes do total de 100 bilhetes. O valor 2,5 (min.) estará anotado em cada um deles.

Tabela de Simulação

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)	-	(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	17,5	17,5	11,5	17,5	0,0	29,0	11,5	17,5
2	7,5	25,0	12,6	29,0	4,0	41,6	16,6	0,0
3	12,5	37,5	12,0	41,6	4,1	53,6	16,1	0,0
4	2,5	40,0	11,5	53,6	13,6	65,1	25,1	0,0
5	2,5	42,5	12,0	65,1	22,6	77,1	34,6	0,0
6	2,5	45,0	10,4	77,1	32,1	87,5	42,5	0,0
7	2,5	47,5	11,5	87,5	40,0	99,0	51,5	0,0
8	37,5	85,0	13,1	99,0	14,0	112,1	27,1	0,0
9	17,5	102,5	10,4	112,1	9,6	122,5	20,0	0,0
10	17,5	120,0	11,5	122,5	2,5	134,0	14,0	0,0
11	32,5	152,5	11,5	152,5	0,0	164,0	11,5	18,5
12	37,5	190,0	9,8	190,0	0,0	199,8	9,8	26,0
13	7,5	197,5	10,9	199,8	2,3	210,7	13,2	0,0
14	12,5	210,0	11,5	210,7	0,7	222,2	12,2	0,0
15	12,5	222,5	10,4	222,5	0,0	232,9	10,4	0,3
			170,6		145,5		316,1	62,3

Novo modelo e simulação do posto de serviços

9

Resultados

Tempo médio de espera na fila =
$$\frac{\sum \text{tempos de espera na fila}}{\text{Número total de clientes}} = \frac{145,5}{15} = 9,7 \text{ min.}$$

Probabilidade de um cliente esperar na fila =
$$\frac{\text{Numero de clientes que esperaram}}{\text{Numero total de clientes}} = \frac{11}{15} = 0,73$$

Probabilidade do operador livre =
$$\frac{\sum \text{tempo livre do operadordor}}{\text{Tempo total de simulação}} = \frac{62,3}{240} = 0,26$$

Tempo médio de serviço =
$$\frac{\sum \text{Tempo de serviço}}{\text{Numero total de clientres}} = \frac{170,6}{15} = 11,37 \text{ min}$$

Tempo médio despendido no sistema =
$$\frac{\sum \text{tempos no sistema}}{\text{Número de clientes}} = \frac{316,1}{15} = 21,07 \text{ min.}$$

Nº de Carros no Sistema

Gráfico do comportamento da variável número de carros no sistema ao longo do período simulado.

Cronologia dos Eventos

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio
1	17,5	17,5	11,5	17,5	0,0	29,0
2	7,5	25,0	12,6	29,0	4,0	41,6
3	12,5	37,5	12,0	41,6	4,1	53,6
4	2,5	40,0	11,5	53,6	13,6	65,1
5	2,5	42,5	12,0	65,1	22,6	77,1
6	2,5	45,0	10,4	77,1	32,1	87,5
7	2,5	47,5	11,5	87,5	40,0	99,0
8	37,5	85,0	13,1	99,0	14,0	112,1
9	17,5	102,5	10,4	112,1	9,6	122,5
10	17,5	120,0	11,5	122,5	2,5	134,0
11	32,5	152,5	11,5	152,5	0,0	164,0
12	37,5	190,0	9,8	190,0	0,0	199,8
13	7,5	197,5	10,9	199,8	2,3	210,7
14	12,5	210,0	11,5	210,7	0,7	222,2
15	12,5	222,5	10,4	222,5	0,0	232,9
			170,6		145,5	

- As mudanças de estado do sistema acontecem na medida em que os eventos ocorrem.
- Os eventos ocorrem em pontos discretos no tempo (..17,5; 25,0;..232,9; 240,0).

		Carros no	Estado do
Evento	Relógio	Sistema	Operador
Início	0,0	0	Livre
Chegada	17,5	1	Ocupado
Chegada	25,0	2	Ocupado
Saída	29,0	1	Ocupado
Chegada	37,5	2	Ocupado
Chegada	40,0	3	Ocupado
Saída	41,6	2	Ocupado
Chegada	42,5	3	Ocupado
Chegada	45,0	4	Ocupado
Chegada	47,5	5	Ocupado
Saída	53,6	4	Ocupado
Saída	65,1	3	Ocupado
Saída	77,1	2	Ocupado
Chegada	85,0	3	Ocupado
Saída	87,5	2	Ocupado
Saída	99,0	1	Ocupado
Chegada	102,5	2	Ocupado
Saída	112,1	1	Ocupado
Chegada	120,0	2	Ocupado
Saída	122,5	1	Ocupado
Saída	134,0	0	Livre
Chegada	152,5	1	Ocupado
Saída	164,0	0	Livre
Chegada	190,0	1	Ocupado
Chegada	197,5	2	Ocupado
Saída	199,8	1	Ocupado
Chegada	210,0	2	Ocupado
Saída	210,7	1	Ocupado
Saída	222,2	0	Livre
Chegada	222,5	1	Ocupado
Saída	232,9	0	Livre
Fim	240,0	0	Livre

Dúvidas

- ◆ É possível tirar conclusões definitivas sobre o comportamento deste sistema com os elementos calculados pelo modelo de simulação?
- Será que os resultados obtidos são decorrentes da própria natureza do sistema simulado ou foram provocados pelo modelo e pelos processos envolvidos na execução da simulação?
 - ✓ Lembre-se que geramos, por sorteio, valores das variáveis aleatórias relativas aos tempos entre chegadas de carros e os tempos de serviços.

Dúvidas

- A resposta é não.
- Não se pode tirar conclusões definitivas sobre o comportamento deste sistema apenas com os resultados obtidos de uma "rodada" de simulação. Motivos
 - 1. As estatísticas obtidas nesta simulação dependem dos valores aleatórios sorteados. Fossem outros os valores sorteados e os resultados seriam diferentes.
 - 2. É o pequeno número de elementos amostrados para que se possa chegar a conclusões definitivas.
- Estes problemas são, no entanto, tratáveis.

Tratamento dos Resultados

- ◆ O primeiro problema pode ser resolvido pela aplicação de métodos que permitam controlar a variabilidade dos procedimentos utilizados.
 - ✓ É preciso ter a certeza de que a variabilidade encontrada nos resultados seja decorrente somente da aleatoriedade dos processos envolvidos no sistema modelado e não de um descontrole sobre a geração das variáveis aleatórias obtidas pelos sorteios, o qual se refletirá nos resultados da simulação.
 - ✓ Veremos como se faz esse controle mais adiante.

Tratamento dos Resultados

- ◆ O segundo problema é uma questão de tratamento estatístico adequado.
 - ✓ Processos experimentais (como a simulação), devem ser adequadamente (estatisticamente) tratados.
 - ✓ Toda a afirmação ou conclusão a partir de elementos resultantes de simulações exige um mínimo de atenção, sobre os dados obtidos.
 - ✓ Tirar conclusões com base em uma pequena quantidade de dados que apresentam alta variabilidade pode ser arriscado.

Incorporando Distribuições Empíricas

- ◆ Como vimos é possível o emprego de variáveis aleatórias em modelos de simulação predeterminando empiricamente seu comportamento e empregar as distribuições de freqüências.
- Dificuldade: como realizar os sorteios.
- ◆ No exemplo anterior, sugerimos o emprego de uma sistemática semelhante a sorteios lotéricos. Nem sempre esta é a técnica apropriada ou mesmo possível.
- Com o advento dos computadores, uma técnica matemática, conhecida desde o século passado, deu origem ao Método de Monte Carlo (MMC).

O Método de Monte Carlo (MMC)

- ◆ O MMC é um método de solução numérica de problemas que se baseia na simulação de variáveis aleatórias.
- ◆ Na aplicação do MMC, os dados são artificialmente obtidos por meio de sorteios que geram valores associados a variável aleatória de interesse.
- ◆ Para a realização dos sorteios emprega-se um mecanismo gerador de números aleatórios (tabela ou um programa) e uma distribuição de freqüência da variável aleatória.

Tabelas de números aleatórios

- ◆ Tippett em 1927, com 41.600 dígitos gerados a partir de estatísticas obtidas em censos
- ◆ Kendall e Babington-Smith em 1939, com 100.000 dígitos, gerados a partir de um sistema mecânico, criado pelos próprios autores.
- ◆ Os esforços de tabulação praticamente se encerraram com a publicação, em 1955, da monumental tabela com um milhão de dígitos aleatórios da Rand Corporation (http://www.rand.org/publications/classics/randomdigits/) obtidos a partir de uma roleta eletrônica, feita especialmente para este propósito.

Tabela de números aleatórios

98543	59525	21114	73109	69095	
87060	95250	50277	17486	07962	
82170	68014	07937	98003	40146	
48673	26100	23776	66959	84477	
08560	52600	66188	63746	05849	
68708	28373	27635	52562	18148	
80511	00208	61965	66983	70232	
02253	27120	53172	99800	74603	
37110	07752	38216	54843	22496	
01548	06209	79410	99823	17603	
81417	85771	25961	84381	88582	
36602	77275	35226	53601	91939	
79337	00250	64655	89710	19526	
60564	55609	64304	10940	69422	
87552	78655	14220	30037	07403	
04951	65135	00626	99163	34098	
01761	01488	35218	11762	11586	
41451	57175	88050	23528	46360	
03646	98017	51286	18545	02393	
02863	33742	19979	10905	34863	

Tabela de números aleatórios

O Método de Monte Carlo (MMC)

- O nome do método está associado a idéia de uso de roletas para a realização dos sorteios.
- No exemplo do lava rápido:

		TEC		TS		
Tempos (min.)	10	12	15	9	10	11
Probabilidades	1/3	1/3	1/3	1/3	1/3	1/3

Proporcionalidade das divisões do disco à freqüência observada para cada possível valor da variável.

O Método de Monte Carlo (MMC)

- ◆ No método de Monte Carlo, a idéia da proporcionalidade é associada a subintervalos proporcionais ao intervalo [0, 1].
- ◆ A obtenção destes subintervalos é melhor determinada a partir da distribuição de freqüências acumulada.
- Considere o TEC do exemplo anterior:

		TEC		
Tempos	10	12	15	
Probabilidade	0,33	0,33	0,33	
Prob. Acumulada	0,33	0,66	1,00	
Sub-intervalo	[0,01 - 0,33]	[0,34 - 0,66]	[0,67 - 0,00]	
Digitos Aleatórios (tab)	01 - 33	34 - 66	67 - 00	

No exemplo, se o número sorteado for 0,76 (ou 76 de uma tabela), TEC valerá 15.

Simulação com uso do MMC

Classes	Freqüência	Freqüência	Intervalo de
		Acumulada	Valores
$0 \rightarrow 5$	0,35	0,35	[0,01;0,35]
5 → 10	0,19	0,54	[0,36;0,54]
10 → 15	0,19	0,73	[0,55;0,73]
15 → 20	0,13	0,86	[0,74;0,86]
$20 \rightarrow 25$	0,03	0,89	[0,87;0,89]
$25 \rightarrow 30$	0,07	0,96	[0,90;0,96]
$30 \rightarrow 35$	0,01	0,97	[0,97]
$35 \rightarrow 40$	0,02	0,99	[0,98;0,99]
$40 \rightarrow 45$	0,01	1,00	[0,00]
Mais de 45	0,00	1,00	-

Tabela 2.10: Freqüências e valores empregados no MMC no exemplo do posto de serviços

Obtenção de TEC Usando o MMC

Classes	Ponto Médio	Intervalo de Valores	
$0 \rightarrow 5$ $5 \rightarrow 10$ $10 \rightarrow 15$ $15 \rightarrow 20$ $20 \rightarrow 25$ $25 \rightarrow 30$ $30 \rightarrow 35$ $35 \rightarrow 40$ $40 \rightarrow 45$	2,5 7,5 Valor 17,5 22,5 TEC 27,5 32,5 37,5 42,5	[0,01; 0,35] [0,36; 0,54] [0,55; 0,73] [0,74; 0,86] [0,87; 0,89] [0,90; 0,96] [0,97] [0,98; 0,99] [0,00]	Número aleatório sorteado

Atribuição do valor de TEC após o sorteio

Programas Geradores de Números Aleatórios

- ◆ Um GNA, é um programa computacional que deve ser capaz de gerar valores aleatórios independentes e uniformemente distribuídos (isto é, todos com a mesma probabilidade de ocorrência) no intervalo de 0 a 1.
- ◆ A busca de bons algoritmos geradores de números aleatórios só se desenvolveu plenamente quando do advento dos primeiros computadores digitais.

Números Pseudo-Aleatórios

- ◆ Por serem gerados artificialmente, os valores aleatórios obtidos são conhecidos como números pseudo-aleatórios.
- ◆ Isto significa que a seqüência de números gerada por um destes algoritmos é reproduzível e, portanto, não aleatória no sentido estrito do termo.
- ◆ Estatisticamente falando, a comparação entre um conjunto de valores gerados em um computador com outro, verdadeiramente aleatório, gerado, por exemplo, pela natureza, não apresenta diferenças.
 - ◆ E os números **VERDADEIRAMENTE** aleatórios?
 - ◆ Você conhece algum gerador natural?

O MMC

- ◆ O MMC é básico para compreender os procedimentos que ocorrem dentro de um programa de simulação.
- Com MMC é possível reproduzir, no modelo, o comportamento das inúmeras variáveis aleatórias que compõem os sistemas do mundo real.
- ◆ Quando se está lidando com uma linguagem de simulação, os procedimentos para traduzir este comportamento podem ser realizados de diversas formas.
- ◆ Uma delas é descrever ao modelo ou programa a distribuição de frequências das variáveis aleatórias de forma semelhante ao que acabamos de realizar.

Exercícios MMC

- ◆ Exercício 2 (Lista do Capítulo 2)
 - ✓ As tabelas de dados apresentadas a seguir foram obtidas de um sistema que oferece um serviço realizado por um único servidor.
 - ✓ Monte as tabelas para poder realizar uma simulação manual usando o MMC.

Exercício MMC...dados

4,54	9,31	0,36	4,11	3,24	4,26	5,12	1,38	4,51	0,24
3,62	9,82	1,95	3,30	2,06	1,85	2,58	5,79	2,55	8,79
5,32	1,98	3,88	0,92	0,99	0,58	1,52	11,84	5,27	5,85
0,21	1,35	6,05	7,29	1,29	4,87	4,30	2,86	0,13	0,84
11,04	13,27	2,13	0,60	2,77	3,99	1,47	5,38	2,26	0,08
6,02	4,02	5,51	2,82	4,17	0,47	1,87	2,72	0,31	5,99
3,62	8,14	0,34	9,38	1,00	14,24	9,99	1,63	1,03	2,67
0,14	3,48	2,68	0,91	4,34	0,25	1,61	0,95	1,42	1,16
9,49	9,50	1,03	5,19	5,77	0,54	5,91	0,40	4,46	4,71
4,95	1,45	0,52	0,21	2,31	7,55	3,40	2,42	1,26	3,48

Tempos decorridos entre chegadas no sistema

Exercício MMC...dados

0,65	3,76	0,59	0,71	0,89	2,00	8,59	1,32	1,27	0,85
5,06	4,36	1,62	5,98	0,38	3,45	3,36	4,63	3,07	0,02
1,09	2,42	0,26	5,71	12,09	1,60	5,79	2,12	0,87	0,21
1,33	4,02	1,59	2,76	3,48	1,13	1,77	1,17	2,94	1,40
1,41	7,85	1,36	1,48	2,06	0,00	1,94	3,37	7,27	0,11
1,38	2,02	0,78	5,57	1,13	0,44	0,51	0,01	5,65	3,25
0,54	0,70	1,13	11,65	1,60	1,22	0,72	1,15	2,02	3,76
2,66	7,81	2,61	0,63	0,21	5,16	5,46	0,43	0,38	2,00
0,52	2,11	1,44	0,52	7,40	3,83	1,84	3,91	0,40	2,32
18,92	0,16	7,73	2,63	1,54	1,02	3,55	1,77	1,50	1,56

Tempos dos serviços realizados