Теория автоматов и формальных языков Магазинные автоматы

Автор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

21 ноября 2019

В предыдущей серии

- Регулярные языки распознаются с помощью конечных автоматов
- Разные алгоритмы синтаксического анализа для контекстно-свободных языков
 - CYK
 - Рекурсивный спуск
 - ▶ LL(1)
 - ► LR(0), SLR(1), CLR(1), LALR(1)
- Есть ли универсальный распознаватель для КС-языков?

TLDR

- Произвольный КС язык можно распознать при помощи магазинного автомата (он же автомат с магазинной памятью, он же pushdown automata, он же pda)
- Магазинный автомат по сути автомат со стеком
- Детерминированные магазинные автоматы могут распознавать только детерминированные КС языки
- Недетерминированные магазинные автоматы могут распознавать произольные КС языки

Что такое магазинный автомат

Что такое магазинный автомат: неформально

- Автомат, переходы которого осуществляются по входному символу, текущему состоянию и символу на вершине стека
 - У конечного автомата не было стека
- Никакие состояния стека, кроме вершины, не доступны
- Во время перехода может изменяться стек
 - ▶ Положить что-то на стек (push)
 - Снять верхушку со стека (рор)
- А может и не изменяться
 - ▶ Магазинный автомат может вообще игнорировать стек
 - ▶ Или стек может не изменяться, хоть значение оттуда и читается
- Итого: по тройке (входной символ, состояние, символ на вершине стека) получается новое состояние, и модифицируется (или нет) стек

Формальное определение

Недетерминированный магазинный автомат это $(Q, \Sigma, \Gamma, \delta, q_0, Z, F)$

- Q конечное множество состояний
- Σ конечное множество символов, входной алфавит
- Г конечное множество символов, стековый алфавит
- $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to 2^{Q \times \Gamma^*}$ функция переходов
- $q_0 \in Q$ стартовое состояние
- $Z \in \Gamma$ начальный элемент стека
- $F \subseteq Q$ множество принимающих (конечных) состояний

Отношение переходов

$$(q, \alpha) \in \delta(p, a, A)$$
 означает

- ullet Если магазинный автомат находится в состоянии $p\in Q$,
- на вершине стека находится $A \in \Gamma$,
- а со входа читается символ $a \in \Sigma \cup \varepsilon$,
- ullet то изменяем состояние на $q\in Q$,
- ullet снимаем со стека символ A, записываем на стек строку $lpha \in \Gamma^*$
- $\Sigma \cup \varepsilon$ сигнализирует о том, что вход можно и не читать

Семантика магазинного автомата

- Мгновенное описание MA: $(p, \omega, \beta) \in Q \times \Sigma^* \times \Gamma^*$
 - ▶ р текущее состояние автомата
 - lacktriangle ω непрочитанный фрагмент входного потока
 - β содержимое стека (верхушка записана первой)
- Отношение ⊢ на мгновенных описаниях (шаг)
 - ▶ Для каждого $(q, a) \in \delta(p, a, A)$, верно $(p, ax, A\gamma)$ $\vdash (q, x, \alpha\gamma)$ для произвольных $x \in \Sigma^*, \gamma \in \Gamma^*$
- Шаг не определен, если стек пуст

Семантика магазинного автомата: вычисление

- Вычисление последовательность шагов
- Начальное мгновенное описание (q_0, ω, Z)
- Выбирается любой из подходящих шагов
- Если какой-нибудь выбор приведет к успеху, значит, строка распознается
- Два варианта окончания работы
 - ▶ По достижении конечного состояния

★
$$L(M) = \{\omega \in \Sigma^* \mid (q_0, \omega, Z) \vdash^* (f, \varepsilon, \gamma), f \in F, \gamma \in \Gamma^* \}$$

▶ По опустошении стека

*
$$N(M) = \{ \omega \in \Sigma^* \mid (q_0, \omega, Z) \} \vdash^* (q, \varepsilon, \varepsilon), q \in Q \}$$

- Эти варианты эквивалентны: по автомату, завершающемуся по первой схеме, можно посмотроить автомат, завершающийся по второй схеме, и наоборот
- ullet транзитивно рефлексивное замыкание отношения dash

Пример: язык $\{0^n 1^n \mid n \ge 0\}$

Вычисление на строке 0011:

- $(p,0011,Z) \vdash (q,0011,Z) \vdash (r,0011,Z)$ провал
- $(p, 0011, Z) \vdash (p, 011, AZ) \vdash (q, 011, AZ)$ провал
- $(p,0011,Z) \vdash (p,011,AZ) \vdash (p,11,AAZ) \vdash (q,11,AAZ) \vdash (q,1,AZ) \vdash (q,1,AZ) \vdash (q,\varepsilon,Z) \vdash (r,\varepsilon,Z)$ успех (по принимающему состоянию)

Пример: язык $\{0^n 1^n \mid n \ge 0\}$

Вычисление на строке 00111:

- $(p, 00111, Z) \vdash (q, 00111, Z) \vdash (r, 00111, Z)$ провал
- $(p, 00111, Z) \vdash (p, 0111, AZ) \vdash (q, 0111, AZ)$ провал
- $(p,00111,Z) \vdash (p,0111,AZ) \vdash (p,111,AAZ) \vdash (q,111,AAZ) \vdash (q,11,AZ) \vdash (q,1,Z) \vdash (r,1,Z)$ провал

Формальное определение ДМА

\mathcal{L} етерминированный магазинный автомат это $(Q, \Sigma, \Gamma, \delta, q_0, Z, F)$

- Q конечное множество состояний
- Σ конечное множество символов, входной алфавит
- Г конечное множество символов, стековый алфавит
- $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to Q \times \Gamma^*$ функция переходов
 - ▶ $\forall q \in Q, Z \in \Gamma$: если есть эпсилон-переход $\delta(q, \varepsilon, Z)$ то нет переходов по терминалам $\delta(q, a, Z)$
- $q_0 \in Q$ стартовое состояние
- $Z \in \Gamma$ начальный элемент стека
- $F\subseteq Q$ множество принимающих (конечных) состояний

Детерминированные магазинные автоматы vs недетерминированные

- В общем случае одной входной строке может соответствовать несколько вычислений
 - ▶ Некоторые из них могут завершаться в принимающих состояниях
- Если существует хотя бы одно вычисление, завершающееся в принимающем состоянии, строка принадлежит языку
- Если для каждой строки существует ровно одно вычисление в магазинном автомате, то он является детерминированным
 - Соответствующий язык является детерминированным КС языком
- Детерминированный магазинный автомат является частным случаем недетерминированного, поэтому детерминированные КС языки строгое подмножество контекстно-свободных

Неэквивалентность двух видов приема для детерминированных магазинных автоматов

Беспрефиксный язык — язык, в котором никакое слово не является префиксом другого

- Прием языка детерминированным магазинным автоматом по пустому стеку и по допускающему состоянию эквивалентно только для беспрефиксных языков
- Рассмотрим слово $\omega = \alpha\beta: \alpha, \beta \in \Sigma^*, \omega, \alpha \in L$, где $L \subseteq \Sigma^*$
- При попытке распознать слово ω ДМП завершит свою работу, как только прочитает α
- ullet ω никогда не будет принята
- Можно построить ДМП, принимающий по допускающему состоянию, который допускает префиксный язык

Построение магазинного автомата по КС-грамматике

- Интуиция:
 - ▶ Для каждого нетерминала: заменяем его на стеке на правую часть правила
 - Для каждого терминала: считываем со входа этот терминал и кладем его на стек
- Построение:
 - ▶ Для каждого правила $A \to \alpha$ добавляем $(1, \alpha)$ в $\delta(1, \varepsilon, A)$
 - ▶ Для каждого терминала a добавляем $(1, \varepsilon)$ в $\delta(1, a, a)$
- Относительно бесполезный автомат: как найти правильное вычисление?

Лемма о накачке для КС языков

Теорема

Если язык L является контекстно-свободным, то

 $\exists p \geq 1 : \forall s \in L : |s| \geq p$ можно разбить на подстроки

 $s = uvwxy : |vwx| \le p, |vx| \ge 1 u$

 $\forall n \geq 0. uv^n wx^n y \in L$

Лемма о накачке для КС языков: пример

Язык $L=\{a^nb^nc^n\}$ Предполагаем, что он КС, тогда по Лемме существует p... Рассмотрим слово $a^pb^pc^p=uvwxy,|vwx|\leq p,|vx|\geq 1$

- $vwx = a^j, j \le p$
- $vwx = a^j b^k, j + k \le p$
- $vwx = b^j, j \le p$
- $vwx = b^j c^k, j + k \le p$
- $vwx = c^j, j \leq p$

Строка uv^iwx^iy не содержит одинаковое количество букв для всех i. Например, рассмотреть i=2. Получили противоречие — успех