COMP0009. Incompleteness

November 23, 2023

Gödel's Incompleteness Theorem

Countable Sets

Let $f: A \rightarrow B$ be any function.

- ▶ f is surjective if $\forall b(b \in B \rightarrow \exists a(a \in A \land f(a) = b))$.
- f is injective if $\forall a \forall a' ((f(a) = f(a')) \rightarrow (a = a'))$
- ▶ A <u>bijection</u> $f: A \rightarrow B$ is injective and surjective (one-to-one and onto).
- ▶ If there is a bijection from A to B then |A| = |B| (same cardinality)
- ▶ Set S is countable if either it is finite, or there is a bijection $f: \mathbb{N} \to \overline{S}$.

Problems

- Finite ordinals: $0 = \emptyset$, $1 = \{0\}, ..., n = \{0, 1, ..., n 1\}$.
- A set S is inductive if $0 \in S$ and $n \in S \Rightarrow (n+1) \in S$.
- $\mathbb{N} = \{0, 1, \ldots\}$ is the intersection of all inductive sets.
 - 1. Prove that if S and T are both countably infinite, then there is a bijection from S to T
 - 2. Let $m, n \in \mathbb{N}$, finite natural numbers. When is there a bijection from m to n?
 - 3. Prove that S is countable if and only if there is an injection from S to \mathbb{N} .
 - 4. Prove that $\mathbb{N} \times \mathbb{N}$ is countably infinite.
 - 5. Prove that the set of all rational numbers is countably infinite.
 - 6. Let Σ be a finite alphabet. Prove that Σ^* is countably infinite.

\mathbb{R} is not countable

Assume $f: \mathbb{N} \to \mathbb{R} \cap [0,1]$ is a bijection (for contradiction).

n		f(n	9 8 6 8 1			
0	8	2	9	0	4	
1	2	2	8	7	1	
2	0	3	6	2	5	
3	6	4	8	9	1	
4	6	4	1	3	8	
:						

\mathbb{R} is not countable

Assume $f: \mathbb{N} \to \mathbb{R} \cap [0,1]$ is a bijection (for contradiction).

$$0 \cdot 93719 \dots \notin ran(f)$$

Let $r = 0 \cdot r_0 r_1 r_2 \dots$ where r_n is one more than n'th decimal place of f(n) if ≤ 9 , else 1. Then $r \notin rng(f)$, contradicting surjectiveness of f. Hence no bijection f exists and so $\mathbb R$ is uncountable.

Paradoxes

Liar Paradox, "All Cretans are liars"

Paradoxes

- ► Liar Paradox, "All Cretans are liars"
- ▶ Russell's paradox. $R = \{S : S \notin S\}$. Does $R \in R$?

Paradoxes

- ► Liar Paradox, "All Cretans are liars"
- ▶ Russell's paradox. $R = \{S : S \notin S\}$. Does $R \in R$?
- Berry's paradox. Smallest natural number that cannot be defined uniquely by up to 80 characters.

Gödel's Incompleteness Theorem

Consider true statements of arithmetic.

$$C = \{0, 1, 2, ...\}$$

 $F = \{+, \times\}$
 $P = \{=, <\}$

Theorem (Gödel, 1931)

If S is any r.e. set of L-sentences then either

- ► There is a statement ϕ which is true in arithmetic (\mathbb{N}) but $\phi \notin S$ (incompleteness), or
- ▶ There is a statement ϕ which is false in arithmetic and $\phi \in S$ (inconsistency).

Proof Sketch

Idea: every character coded as a number

char		code		
	р	112	Х	120
	(040)	041
	\wedge	911	V	942
	\neg	045	y	121
	\forall	944	∃	945

```
e.g. p(x) has code 112 040 120 041.
So can code a formula as a number.
Write m++n for (10 \times 10 \times \cdots \times 10 \times m) + n (concatenation).
```

Decoding

String property	first-order formula
Form(n)	$Atom(n) \lor Neg(n) \lor Disj(n) \lor Exist(n)$
Atom(n)	$\exists y \exists z ((n = y ++040 ++ z ++041) \land (112 \le y \le 114) \land (120 \le z \le 122))$
Neg(n)	$\exists z (Form(z) \land n = 045 + + z)$
Disj(n)	$\exists v \exists w ((n = 040 + v + 942 + w + 041) \land Form(v) \land Form(w))$
Exists(n)	$\exists v ((n = 945 + 120/121 + v) \land Form(v))$

This recursion is well-founded.

This code number is called the "Gödel number" of the formula.

Gödel Coding

Similarly, every proof can be represented as a string using 000 as a delimeter, so every proof has a Gödel number.

We can express 'n is the code of a proof' by a first-order formula Proof(n). Let G_f, G_p, F, P be coding and decoding functions, so if ϕ is a formula and $\bar{\phi}$ is a proof then $G_f(\phi)$ and $G_p(\bar{\phi})$ are their codes numbers. If $n \in \mathbb{N}$ and Form(n) then F(n) is the formula ϕ such that $G_f(\phi) = n$, and if Proof(n) is true then P(n) is the proof $\bar{\phi}$ such that $G_p(\bar{\phi}) = n$.

The proof

Can write formulas

$$\mu(n,m) = P(n)$$
 is a proof of $F(m)$
 $\lambda(n) = F(n)$ is a formula with one free variable, x

Let

$$A_0(x), A_1(x), A_2(x), \dots$$

be an enumeration of all the formulas with one free variable x. If F(m) has just x as a free variable then $F(m) = A_k(x)$ (some k). Can write

$$\mu(n, k, q) = (P(n) \text{ is a proof of } A_k(q))$$

Consider

$$\neg \exists n \mu(n, x, x)$$

This is a formula with one free variable. So there is some n_0 such that

$$A_{m}(x) = \neg \exists n \mu(n, x, x)$$

We have $\mathbb{N} \models A_{n_0}(m)$ iff "there is no proof of $A_m(m)$ ".

Finally, consider

$$A_{n_0}(n_0)$$

We have

$$\mathbb{N} \models A_{n_0}(n_0) \iff$$
 there is no proof of $A_{n_0}(n_0)$!

If $\mathbb{N} \models A_{n_0}(n_0)$ then there is no proof of $A_{n_0}(n_0)$ (incompleteness).

If $\mathbb{N} \not\models A_{n_0}(n_0)$ then there is a proof of $A_{n_0}(n_0)$. (inconsistency).

Decidable, semi-decidable

- ► Finite alphabet Σ, language $S ⊆ Σ^*$.
- ▶ S is <u>decidable</u> if there is a program that takes $s \in \Sigma^*$ as input, runs, always terminates, returns 1 if $s \in S$ else 0.
- ➤ S is recursively enumerable (re) or semi-decidable if there is a program that outputs only strings in S and any given string in S is eventually output.

What we've learnt

Validity

- ► Validity, for FOL, is <u>semi-decidable</u>
- ► The set of satisfiable first-order formulas is co-recursively enumerable (we can enumerate the unsatisfiable formulas).

Validity in $\mathbb N$

- ▶ The set of first order formulas valid in \mathbb{N} is not even recursively enumerable.
- ► The theory $\Gamma = \{ \phi : \mathbb{N} \models \phi \}$ has <u>non-standard</u> models.

Decidable, re, co-re

- ▶ Finite alphabet Σ , $S \subseteq \Sigma^*$, $\bar{S} = \Sigma^* \setminus S$,
- ▶ If S is re then \bar{S} is co-re,
- ▶ If *S* is re and also co-re then *S* is decidable (how?)

First Order Logic

- Much more expressive than propositional logic
- Valdities are re but not decidable
- ▶ But first-order theories cannot define connectedness of graphs or finiteness of structures
- First-order validities of arithmetic not recursively enumerable.

First-order Logic Summary

- \triangleright Syntax, L(C, F, P), parsing
- \triangleright Semantics: structure (D, I), valid in structure, valid over all structures.
- ► Axiomatic proof ⊢
- ► Tableau proof (close tableau for negated formula)
- ▶ Soundness and Strong Completeness $\Gamma \vdash \phi \iff \Gamma \models \phi$
- ► Recursive sets, recursively enumerable sets.
- ▶ Validities of FOL recursively enumerable but not recursive.
- Compactness
- No first-order theory can define connectedness in graphs. No first-order theory can define $\mathbf{N} = (\mathbb{N}, \{0, 1, ...\}, \{+, \times\}, \{=\})$, non-standard models.
- ► Gödel incompleteness theorem validities of **N** are not even recursively enumerable
- ► First-order logic summary

```
a Spains, (Q, P, P)_{p,p,m}(Q, P)_{p,p} is because with case at least and the Spains of P \in \mathcal{P} is discuss proof P \in \mathcal{P}. Hence the Spains of the Spains of P \in \mathcal{P} is such that the Spains of the Spain
```