

4, 3, 2, 1

4, 3, 2, 1

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью исхода.

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью исхода.

Лемма

Если u — вершина c нулевой степенью исхода, а v_1, \ldots, v_n — топологическая сортировка $G \setminus \{u\}$, то v_1, \ldots, v_n, u — топологическая сортировка G.

Если в орграфе нет циклов, то в нем есть вершина с нулевой степенью исхода.

Лемма

Если u — вершина c нулевой степенью исхода, а v_1, \ldots, v_n — топологическая сортировка $G \setminus \{u\}$, то v_1, \ldots, v_n, u — топологическая сортировка G.

Лемма

Если в орграфе нет циклов, то алгоритм Тарьяна найдет топологическую сортировку.

Если в орграфе есть циклы, то алгоритм Тарьяна выдаст ошибку.

Если в орграфе есть циклы, то алгоритм Тарьяна выдаст ошибку.

Доказательство.

Пусть v_1, \ldots, v_n — цикл. Тогда, начав поиск в глубину из одной из вершин v_i , алгоритм отметит эту вершину серым цветом. Затем, пройдя по вершинам $v_{i+1}, v_{i+2}, \ldots, v_{i-1}$, он вернется в вершину v_i , которая все еще отмечена серым цветом, и выдаст ошибку.