

DESIGN & ANALYSIS OF ALGORITHM (BCSC0012)

Chapter 5: Divide and Conquer Heap Sort

Prof. Anand Singh Jalal

Department of Computer Engineering & Applications

Trees: Overview

• Full Binary Tree:

A binary tree in which each node is either a leaf or has degree exactly 2.

Complete Binary Tree:

A binary tree in which all leaves are on the same level and all internal nodes have degree 2.

Complete binary tree

Trees: Overview ...

- **Height of a node** = the number of edges on the longest simple path from the node down to a leaf
- Level of a node = the length of a path from the root to the node
- **Height of tree** = height of root node

The Heap Data Structure

- **Def:** A **heap** is a <u>nearly complete</u> binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node X,

Parent(X) \geq X (in case of MaxHeap)

From the max heap property, it follows that: "The root is the maximum element of the heap!"

Heap Types

- Max-heaps (largest element at root), have the max-heap property:
 - for all nodes i, excluding the root:

 $A[PARENT(i)] \ge A[i]$

for all nodes i, excluding the root:

 $A[PARENT(i)] \leq A[i]$

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of A[i] = A[Li/2]
 - Heapsize[A] ≤ length[A]
- The elements in the subarray A[(⌊n/2⌋+1) ..
 n] are leaves

Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level (right to left)

Operations on Heaps

- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 - BUILD-MAX-HEAP
- Sort an array in place
 - HEAPSORT

Maintaining the Heap Property

- Suppose a node is smaller than a child
 - Left and Right subtrees of i are maxheaps
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until node is not smaller than children

Example

MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[4] violates the heap property

Heap property restored

Maintaining the Heap Property

- Assumptions:
 - Left and Right subtrees of i are 2. $r \leftarrow RIGHT(i)$ max-heaps
 - A[i] may be smaller than its children

Alg: MAX-HEAPIFY(A, i, n)

- 1. $I \leftarrow LEFT(i)$
- 3. if $| \leq n$ and A[l] > A[i]
- then largest ←l
- 5. Else
- largest ←i;
- 7. if $r \le n$ and A[r] > A[largest]
- then largest ←r
- 9. if largest ≠ i
- 10. then exchange $A[i] \leftrightarrow A[largest]$
- MAX-HEAPIFY(A, largest, n) 11.

MAX-HEAPIFY Running Time

- Intuitively:
 - It traces a path from the root to a leaf (longest path length: h)
 At each level, it makes exactly 2 comparisons

 - Total number of comparisons is 2h
 - Running time is O(h) or O(lgn)
- Running time of MAX-HEAPIFY is O(Iqn)
- Can be written in terms of the height of the heap, as being O(h)
 - Since the height of the heap is Llan.

Building a Heap

- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray A[(\[\ln/2 \]+1) .. n] are leaves
- Apply MAX-HEAPIFY on elements between 1 and \[\frac{1}{2} \]

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)

A: 4 1 3 2 16 9 10 14 8 7

Example:

Running Time of BUILD MAX HEAP

Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)
- ⇒ Running time: O(nlgn)
- This is not an asymptotically tight upper bound

Running Time of BUILD MAX HEAP

 HEAPIFY takes O(h) ⇒ the cost of HEAPIFY on a node i is proportional to the height of the node i in the tree

 $h_i = h - i$ height of the heap rooted at level i $n_i = 2^i$ number of nodes at level i

Running Time of BUILD MAX HEAP

$$T(n) = \sum_{i=0}^h n_i h_i \qquad \text{Cost of HEAPIFY at level i * number of nodes at that level}$$

$$= \sum_{i=0}^h 2^i \left(h - i \right) \qquad \text{Replace the values of n_i and h_i computed before}$$

$$= \sum_{i=0}^h \frac{h-i}{2^{h-i}} 2^h \qquad \text{Multiply by 2h both at the nominator and denominator and write 2i as } \frac{1}{2^{-i}}$$

$$= 2^h \sum_{k=0}^h \frac{k}{2^k} \qquad \text{Change variables: k = h - i}$$

$$\leq n \sum_{k=0}^\infty \frac{k}{2^k} \qquad \text{The sum above is smaller than the sum of all elements to } \infty$$
 and h = lgn

Running time of BUILD-MAX-HEAP: T(n) = O(n)

Heapsort

Goal:

Sort an array using heap representations

Idea:

- Build a max-heap from the array
- Swap the root (the maximum element) with the last element in the array
- "Discard" this last node by decreasing the heap size
- Call MAX-HEAPIFY on the new root
- Repeat this process until only one node remains

Heapsort ...

Example:

A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 4)

MAX-HEAPIFY(A, 1, 3)

MAX-HEAPIFY(A, 1, 2)

3

i 2 3 A 1 2

MAX-HEAPIFY(A, 1, 1)

Heapsort ...

1. BUILD-MAX-HEAP(A)

shown to be $\Theta(n|qn)$

- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. MAX-HEAPIFY(A, 1, i 1)

Running time: O(nlgn) --- Can be

Heapsort: HEAP-EXTRACT-MAX

Goal:

 Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heapsort: HEAP-EXTRACT-MAX ...

Heap size decreased with 1

Heapsort: HEAP-EXTRACT-MAX...

Alg: HEAP-EXTRACT-MAX(A, n)

- 1. if n < 1
- then error "heap underflow"
- 3. $\max \leftarrow A[1]$
- 4. $A[1] \leftarrow A[n]$
- 5. MAX-HEAPIFY(*A*, 1, n-1)
- 6. return max

>remakes heap

Running time: O(lgn)

Heapsort

We can perform the following operations on heaps:

– MAX-HEAPIFYO(lgn)

- BUILD-MAX-HEAP O(n)

HEAP-SORTO(nlgn)

– MAX-HEAP-INSERTO(Ign)

HEAP-EXTRACT-MAXO(lan)

HEAP-INCREASE-KEY

- HEAP-MAXIMUM

O(lgn) Average O(lgn)

O(1)

UNIVERSITY HEacognised by UGC Under Section 2|f) HeapSort

HEAP SORT				Array		Recursion	
Best	Average	Worst	R	7		necarsion	
O(n log n)	O(n log n)	O(n log n)	4 2	Binary He	eap		
sort (A)			05	03 16	02	10 14	
1. buildHeap(A)							
2. for $i = n-1$ downto 1 do			↓ buildHeap ————				
3. swap A[0] with A[i]			16	10 14	02	03 05	
4. heapify (A, 0, i)							
end		i = n - 1		10		14	
buildHeap (A)				02 03 05			
1. for $i = \lfloor n/2 \rfloor$	2 」 − 1 downto 0 d	lo	∖ ⊢≝			_	
2. heapify (A, i, n)	i=n-1	05	10 14	02	03 16	
end		/ /	Might	no longer	05	Sorted	
		/ /	be a he	eap 1 0		sub-array 4	
heapify (A, idx, i	max)	i=n-2	\\	02 0		-	

Heapsort ...

Any Questions?

Dr. Anand Singh Jalal Professor

Email: asjalal@gla.ac.in