FINAL PROJECT REPORT

Solar Power Viability

MIS 6356 Business Analytics With R Fall – 2020

Prepared By

Igor Rakonjac Harshit Gupta Karmani Rajput Macdonald Ezeruo

NAVEEN JINDAL SCHOOL OF MANAGEMENT The University of Texas at Dallas

Table of Contents

Business Questions and Null Hypothesis	3
Business Questions/Issues	3
♦ Null Hypothesis	3
Data Set Description	3
Availability on Public Domain/Source of Data Set:	3
♦ Basics of Data:	4
♦ Major Data Attributes:	4
Explanatory Data Analysis	6
Overall Data Summary:	6
Selection of Variables:	7
Data Processing	8
Missing Values and Outliers:	8
♦ Installation Price – Customer Segment:	8
♦ Data Cleaning:	10
Empirical Data Analysis	12
♦ Multiple Linear Regression	12
Ridge and Lasso Regression	13
Conclusion	15
APPENDIX – A	16
References	18

Business Questions and Null Hypothesis

♦ Business Questions/Issues

• The main idea for our project was to explore the viability of solar power and its usability as a means for a long-term future renewable power source.

- Furthermore, we wanted to determine what is the ideal site (state) for a solar panel installation, based on the observations and measurements recorded within the applicable data set, such as Installation Date, PV (photo-voltaic) pricing by system size and across different states, total installed price, appraised value flag, customer segment (pricing for tax-exempt vs. for-profit commercial sites), pricing for residential new construction vs. retrofits, tracking equipment, ground mounted (pricing by mounting configuration), battery system, third party owned, self-installed, sales taxes costs, rebate or grant.
- An example that can be utilized as an opportunistic idea to support solar power promotion, is the amount of sunlight available in Texas. It can be represented by the following, which in turn classifies Texas as one of the top candidates to be a "Sunlight" state (it is also the main driving factor for the undertaking of this project):
 - o % of Sun: 61, which represents the percentage of time between sunrise and sunset when sunshine reaches the ground.
 - Total Hours: 2850, which is the average number of sunny hours that a given place in Texas normally has in a year.
 - Clear Days: 135, which is the average number of days annually when clouds cover at most 30% of the sky during daylight hours.
 - Average temperature of >82°F in the summer months (5+ months).

♦ Null Hypothesis

Installation cost for solar plants varies for different customer segments.

Data Set Description

♦ Availability on Public Domain/Source of Data Set:

- The data is available on public domain and maintained by US Department of Energy and National Renewable Energy Laboratory (NREL). The data is related to installation cost for various sites in collaboration with <u>Lawrence Berkeley</u> <u>National Laboratory</u>.
- Other than the data set we found, there are other articles and resources available online regarding the development and growth of renewable energy industry across the United States, as well as globally. We have utilized this information to support

our research, determine the validity of our Null Hypothesis and arrive at a conclusion. See References section for more details.

♦ Basics of Data:

- o Data set provides installed prices and other trends among grid-connected, distributed solar photo-voltaic systems across different states in the United States.
- o The available data covers the period between 1998 and 2018, with preliminary trends for the first half of 2019.
- o Data set includes only grid-connected systems, mainly defined as rooftop, or ground mounted systems, up to 5MW (AC).
- o Data set includes data for more than 1.5 million PV systems installed by the end of 2018, with over 60 data fields describing key attributes of each system.
- o The observations are stored in two separate ".csv" files, which were combined using RStudio for the purpose of our analysis.

♦ Major Data Attributes:

The main data variables are explained in Table-1. After reviewing and analyzing the data available, we are utilizing a total of 14 variables we believe would best assist us in determining the validity of our Null Hypothesis.

Table-1: Description of Data Variables

Data Field Name	Units	Description of Data Field	Data Type
Installation Date	date	For some data providers, the installation date may be based on the best available proxy, such as the date that an incentive claim was submitted or when the inspection was performed.	Char
System Size	kW (DC)	The total rated direct-current (DC) output of the module arrays at standard test conditions. These data are generally reported directly by the data provider, but in some cases must be estimated, for example, based on the module model and quantity or based on reported alternating-current (AC) capacity.	Num
Total Installed \$ (nominal) Price		The total installed price for the system, prior to receipt of any incentives, as reported by the installer, host customer, or other incentive applicant. For third-party owned systems, the data may represent one of two things. If the third-party owner procured the system from an independent installation contractor, then the reported installed price likely refers to the	Num

		intermediate sale price between the		
		installation contractor and the third-party		
		owner. If the third-party owner instead		
		installed the system itself, then the		
		reported installed price likely represents		
		an appraised value. The installed price		
		1		
		data may be subject to any number of other reporting inconsistencies, which		
		ı c		
		may or may not be readily identifiable. In		
		addition, the data may suffer simply from		
		self-reporting errors, and the level of		
		verification vary across data providers.		
		A flag used to indicate whether the		
		reported installed price is likely to		
Appraised	NT/A	represent an appraised value. Caution	T	
Value Flag	N/A	should be used in relying on appraised	Log	
		values for analysis or benchmarking		
		purposes, as such data do not represent a		
		transaction price.		
	N/A	Data on customer segment is mapped to		
		one of six general types: RES, COM,		
Customer		SCHOOL, GOV, NON-PROFIT, and	Char	
Segment		NONRES, the last one being used only if		
		more-specific information on non-		
		residential customer type is unavailable.		
	N/A	Indicates if the system was installed at the		
		time of building construction. Data		
New		generally available for only those states or	Int	
Construction		utilities that have separate programs or		
		incentive rates for new construction vs.		
		retrofits.		
Tracking	N/A	Indicates if the system includes tracking	Int	
		equipment.		
		Indicates if the system is ground-mounted		
		(which may include pole-mounted		
Ground	N/A	systems). PV systems consisting of a	Int	
Mounted	1,112	combination of rooftop and ground-	2220	
		mounted arrays are coded as ground-		
		mounted.		
Battery	N/A	Indicates if the system includes batteries.	Int	
System	- 1/4	·	1110	
		Indicates if the system is third-party		
Third-Party	N/A	owned; that is, owned by an entity other	_	
Owned		than the site host and either leased or sold	Int	
J 1104		under a power purchase agreement to the		
		site host.		

Self- Installed	N/A Indicates if the system was installed by the site-host.		Int
Sales Tax Cost	\$ (nominal)	The calculated cost of sales taxes. This is estimated based on average sales tax rates for the given state and year, accounting for any sales tax exemptions that may exist for PV systems. Sales taxes, if applicable, are assumed to be levied only on hardware costs, which are assumed to represent 55% of the total installed price.	Num
Rebate or Grant	\$ (nominal)	The pre-tax value of any up-front rebate or grant provided by the entity supplying the data.	Num
State	N/A	Host customer state.	Char

Explanatory Data Analysis

♦ Overall Data Summary:

- o Two ".csv" files joined before conducting the analysis.
- As per the data source recommendation, any missing values within the data set(s) have been replaced with '-9999' value(s).
- From Figure-1 it is clear that data has more than 1.5 million observations and 60 variables. All these variables are classified as character, numeric or logical type of data.

Name	data.df
Number of rows	1543831
Number of columns	60
Column type frequency:	
character	26
logical	1
numeric	33

Figure-1 Data Summary for Original Data

- o "str()" function was used to see type of class for each variable and type of observations.
- o From reviewing the output, it is clear that we require data selection and data cleaning for implementation of effective predictive model.
- Output is too large to include in report hence viewed in knit.pdf file.

♦ Selection of Variables:

 Out of 60 variables present within the data sets some of the variables have 50% or more number of observations are missing values. Hence those variables have not been considered for further analysis. Some of such variables are Azimuth, Tilt, BIPV Module, Module Efficiency, etc.

- O Some of variables have P25= 0 or -9999 and P100 =1. These variables are more suited as Factor type. However, they were analyzed as numeric data points only.
- As per Null Hypothesis, Total Installed Price for the PV systems would be predicted based on selected variables. Thus, the selected variables for the analysis are Installation Date, System Size, Total Installed Price, Appraised Value Flag, Customer Segment, New Construction, Ground Mounted, Tracking, Battery System, Third-Party Owned, Self-Installed, Sales Tax Cost, Rebate/Grant, State.
- Summary for selected data set is shown in Figure-2 and details for each type of variables are also shown in Figure-3 and Figure-4 for character type and numeric type of data respectively.

${ m data_na.df}$
1187660
18
_
7
1
10

Figure-2 Data Summary for Selected Data

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
Installation.Date	0	1.00	8	10	0	6104	0
Customer.Segment	24250	0.98	3	10	0	6	0
State	0	1.00	2	2	0	24	0
Installer.Name	109090	0.91	1	66	0	11460	0
Module.Technology1	175796	0.85	3	14	0	11	0
Module.Technology2	1135985	0.04	3	14	0	11	0
Module.Technology3	1172889	0.01	4	11	0	9	0

Figure-3 Data Summary for Character Type Variables

Variab	le t	vpe:	numeric	
variab.		y po.	Humber to	۰

skim_variable	n_missin	gomplete_r	at m ean	sd	p0	p25	p50	p75	p100	hist
System.Size	0	1.00	11.21	76.61	0.00	4.22	6.00	8.41	10000	
Total.Installed.Pr	ice 0	1.00	50564.41	4448807.	250.01	18270.00	26433.00	37440.00	48065849	94
Sales.Tax.Cost	195	1.00	889.58	7978.94	0.00	0.00	360.15	642.43	1735160	
Rebate.or.Grant	89336	0.92	3686.92	32337.18	0.00	0.00	0.00	2402.00	5500000	
New.Construction	459005	0.61	0.07	0.25	0.00	0.00	0.00	0.00	1	
Tracking	355624	0.70	0.01	0.08	0.00	0.00	0.00	0.00	1	
Third.Party.Owne	£102732	0.91	0.43	0.49	0.00	0.00	0.00	1.00	1	
Self.Installed	204171	0.83	0.02	0.14	0.00	0.00	0.00	0.00	1	
Ground.Mounted	506633	0.57	0.03	0.17	0.00	0.00	0.00	0.00	1	
Battery.System	400119	0.66	0.01	0.12	0.00	0.00	0.00	0.00	1	

Figure-4 Data Summary for Numeric/Int Type Variables

Data Processing

♦ Missing Values and Outliers:

- o The Data containing missing values has been replaced with "-9999".
- While conducting our data cleaning phase, we have noticed that the presence of dummy values in place of missing values, created a challenge of getting actual statistics of variables. Hence, to avoid false analysis we have replaced these values with "NA" values.
- We have noticed that the actual installation price data contains 356171 null values and 63336 outliers, whose value is much higher than the upper control limit of all data. As we are analyzing installation price, we have removed the observation where the installation price has any null values. However, we are keeping the outliers for our analysis, as we feel that removing those outliers might result in false prediction(s). Therefore, the box plot has only one visible line (see Figure-A1). Similarly, if we remove the outliers, we can see a more visible box plot. (see Figure-A2) (FigureA1 and A2 are in Appendix-A)

♦ Installation Price – Customer Segment:

After selecting 14 predictors, Average Installation Price is compared over the various customer categories. See Figure-5 and Table-2.

Table-2: Average Installation Price – Customer Segment

##		Customer_Segment	Average_Price
##	1	COM	524197.09
##	2	GOV	890683.31
##	3	NON-PROFIT	230882.56
##	4	NON-RES	297257.60
##	5	RES	34382.72
##	6	SCHOOL	738943.93

Figure-5 Average Installation Price – Customer Segment

♦ Data Cleaning:

• We have removed all the observations which have "NA" values from all the variables, so that our model is our more accurate.

- o In the given data set(s), installation date had two different formats of representation, one with "MM/DD/YYYY" and another as "MM-DD-YYYY".
- o To unionize the data, first we have replaced all dates in mm-dd-yyyy format and then split the data into separate columns as "MM", "DD" and "YYYY".
- o For Appraised Valued Flag, which is a logistic variable, we have converted TRUE into "1" and FALSE into "0".
- For Customer Segment predictor, we have assigned the different categories into 1-6 numbers, as shown in the Table-3 below:

Table-3: Average Installation Price – Customer Segm	ent
--	-----

Customer Segment	Numerical Representation
Non-Residential	1
Residential	2
Government	3
School	4
Commercial	5
Non-Profit	6

 Variables type are changed as described above. See Table-4 for more details regarding the clean data through str() function. Output for the same is shown in Appendix-B

Table-2: Description of Cleaned Data Variables

Data Field Name	Data Type	Cleaned Data Type	
Installation Date (split into 3			
subcategories below)	CI	Int	
Installation.Data.1 = Month	Char		
Installation.Data.2 = Day			
Installation.Data.3 = Year			
System Size	Num	Num	
Total Installed Price	Num	Num	
Appraised Value Flag	Log	Num	
Customer Segment	Char	Num	
New Construction	Int	Int	
Tracking	Int	Int	
Ground Mounted	Int	Int	
Battery System	Int	Int	
Third-Party Owned	Int	Int	

Self-Installed	Int	Int
Sales Tax Cost	Num	Num
Rebate or Grant	Num	Num
State	Char	Char

Empirical Data Analysis

♦ Multiple Linear Regression

 As we have both categorical and numerical data types, and our model choice depends on our target variable (pricing), we have determined that due to it being continuous, Multiple Linear Regression approach was utilized.

- As we have converted the categorical variables to numeric variables, after running the Multiple Linear Regression all other variables are significant except for "Tracking"
- While we were testing the accuracy of the model (in validation data), we were able to reduce the RMSE (Root Mean Square Error), which means we have a much lesser error in the accuracy of our model.
- O After running the regression (see Figure-6 below), we obtained the following results:

Residual standard error: 14720 on 427199 degrees of freedom; a square root of the residual sum of squares divided by the residual degrees of freedom, which shows us a good fit via our linear regression model.

Multiple R-squared: 0.7129; a statistical measured of how close the data are to our fitted regression line. As we are relatively close to 100% and in conjunction with the residual plot, our model successfully explains the variability of the response data around its mean.

Adjusted R-squared: 0.7129; a comparator of the explanatory power of regression models that contain different number of predictors. Similarly, as with the multiple R-squared, as our model has virtually no non-significant variables, there is no gap between two.

F-statistic: 8.84e+04 on 12 and 427199 DF; a value we get when we ran a regression analysis which shows that it provides a good fit to the data.

p-value: < 2.2e-16; as the p-value is less than the significance level, our sample data provides sufficient evidence to conclude that our regression model first the data better than say a model with no independent variables.

```
Min
            1Q Median
                             3Q
                                    Max
-84.786 -0.156 -0.020 0.148 104.857
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      2.145e-14 8.148e-04 0.000 1.0000
Installation Month -1.421e-02 8.170e-04 -17.397 <2e-16 ***
Installation_Year 7.049e-02 9.760e-04 72.228 <2e-16 ***
                    2.943e-01 1.322e-03 222.663 <2e-16 ***
System.Size
                   5.076e-01 1.515e-03 334.998 <2e-16 ***
Sales.Tax.Cost
Rebate.or.Grant
                    1.576e-01 1.010e-03 156.016 <2e-16 ***
Customer.Segment -1.815e-02 8.173e-04 -22.202 <2e-16 ***
New.Construction -4.641e-02 8.396e-04 -55.270 <2e-16 ***
Tracking -1.550e-03 8.164e-04 -1.898 0.0577
                   -1.550e-03 8.164e-04 -1.898 0.0577 .
Tracking
Appraised.Value.Flag 1.013e-01 8.924e-04 113.472 <2e-16 ***
Third.Party.Owned -5.817e-02 8.942e-04 -65.056 <2e-16 ***
Ground. Mounted
                    1.827e-02 8.276e-04 22.079 <2e-16 ***
Battery.System
                    -4.339e-02 8.228e-04 -52.737 <2e-16 ***
Self.Installed
                   -3.772e-02 8.227e-04 -45.844 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5326 on 427198 degrees of freedom
Multiple R-squared: 0.7164, Adjusted R-squared: 0.7164
```

Figure-6: Multiple Linear Regression Outputs

F-statistic: 8.3e+04 on 13 and 427198 DF, p-value: < 2.2e-16

♦ Ridge and Lasso Regression

 After running the ridge regression (see Figure-7 below), we obtained the following results:

Resampling results across tuning parameters:

```
        lambda
        RMSE
        Rsquared
        MAE

        0.000100
        0.5661909
        0.6840889
        0.2321530

        0.250075
        0.5623917
        0.6899127
        0.2395345

        0.500050
        0.5727698
        0.6914021
        0.2515130

        0.750025
        0.5893555
        0.6911202
        0.2627119

        1.000000
        0.6077200
        0.6904307
        0.2727575
```

Tuning parameter 'alpha' was held constant at a value of 0 RMSE was used to select the optimal model using the smallest value. The final values used for the model were alpha = 0 and lambda = 0.250075.

Figure-7: Ridge Regression Outputs

o After running the lasso regression (see Figure-8 below), we obtained the following results:

Resampling results across tuning parameters:

lambda	RMSE	Rsquared	MAE
0.00010000	0.5608799	0.6940474	0.2302283
0.03342222	0.5678021	0.6864005	0.2377812
0.06674444	0.5786567	0.6771553	0.2495095
0.10006667	0.5885492	0.6710239	0.2563024
0.13338889	0.5977653	0.6677306	0.2596131
0.16671111	0.6084028	0.6646077	0.2635947
0.20003333	0.6205438	0.6615302	0.2682478
0.23335556	0.6340062	0.6585473	0.2736155
0.26667778	0.6486526	0.6555987	0.2795941
0.30000000	0.6646892	0.6523531	0.2861135

Tuning parameter 'alpha' was held constant at a value of 1 RMSE was used to select the optimal model using the smallest value. The final values used for the model were alpha = 1 and lambda = 1e-04.

Figure-8: Lasso Regression Outputs

Conclusion

o Based on our analysis, as the Customer Segment and Sales Tax Cost are significant to Total Installation Price of Solar Panel(s), we can say with certainty that we have enough evidence to support out Null Hypothesis.

• From figure-6 to 8 we can say that multiple linear regression has highest R squared value hence we predicted our validation data by using that model which output is shown in Fig.-9 and Fig.-10.

```
## ME RMSE MAE MPE MAPE
## Test set -0.002341334 0.4440154 0.2300935 6.974286 249.1205
```

Figure-9: Accuracy Output for Multiple Linear Regression

Figure-10: Actual-Predicted Output for Multiple Linear Regression

APPENDIX – A

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000e+00 1.827e+04 2.643e+04 5.056e+04 3.744e+04 4.807e+09

Installation Price with Outliers

Figure-A1: 5-Number Summary and Box Plot for Total Installation Price (with Outliers)

LCL Q1 Median Mean Q3 UCL -10485.00 18270.00 26433.00 50564.41 37440.00 66195.00

Installation Price without Outliers

Figure-A2: 5-Number Summary and Box Plot for Total Installation Price (without Outliers)

APPENDIX-B

```
str(Clean_data.df)
## Classes 'data.table' and 'data.frame': 534012 obs. of 14 variables:
## $ Installation_Month : num 6 2 9 8 1 12 9 10 10 3 ...
## $ Installation_Year : num 2010 2010 2010 2011 2010 ...
## $ System.Size : num 4.42 2.99 2.99 2.99 2.99 4.42 3.04 5.33 2.99 2.99 ...
## $ Total.Installed.Price: num 26862 20884 18877 18305 20884 ...
## $ Sales.Tax.Cost : num 0 0 0 0 0 0 0 0 0 ...
## $ Rebate.or.Grant
                      : num 11934 8073 6428 4036 8073 ...
## $ Customer.Segment : num 2 2 2 2 2 2 2 2 2 2 ...
## $ New.Construction : int 1 1 1 1 1 1 1 1 1 ...
## $ Tracking
                       : int 00000000000...
## $ Appraised. Value. Flag : num 0 0 0 0 0 0 0 0 0 ...
## $ Third.Party.Owned : int 0 0 0 0 0 0 0 0 0 ...
## $ Ground.Mounted : int 0 0 0 0 0 0 0 0 0 ...
## $ Battery.System : int 0 0 0 0 0 0 0 0 0 0 ...
                       : int 0000000000...
## $ Self.Installed
## - attr(*, ".internal.selfref")=<externalptr>
```

Figure-B1 Summary for Clean Data

References

1. "Tracking the Sun." Tracking the Sun | Electricity Markets and Policy Group, emp.lbl.gov/tracking-the-sun.

- 2. "Which States Are Best for Solar Power?" Which States Are Best for Solar Power? | Vivint Solar Learning Center, www.vivintsolar.com/learning-center/top-states-for-solar.
- 3. "How Much Do Solar Panels Cost in Texas? See Prices, Rebates & Tax Credits." Solar Reviews, 7 Nov. 2020, www.solarreviews.com/blog/how-much-do-solar-panels-cost-intexas.
- 4. "Solar Power Incentives In Texas." DIY Solar For Your Home, 29 June 2015, www.mydiysolarhouse.com/solar-power-incentives-in-texas/.
- 5. "Days of Sunshine Per Year in Texas." Annual Days of Sunshine in Texas Current Results, www.currentresults.com/Weather/Texas/annual-days-of-sunshine.php.