通信电子线路

第一章 无线通信技术概论

通信的概念

- 通信是将信息(消息)由一个地方穿向另一个地方(或多个地方)。现代通信通常的实质就是电子通信。
- 通信中所传递的信息有各种不同的形式,如语音、音乐、文字、数据等。根据所传递消息的不同通信业务可以分为语音、数据传输等。
- 从广义的角度来看,广播电视、导航等也属于通信的范畴。

- ■1837年摩尔斯(Samuel Morse)发明了第一个电子通信系统。
- ■1876年贝尔(Alexander Graham Bell)和华迪生(Thomas A Watson)发明了电话机。
- ■1873年麦克斯韦(James C. Maxwell)发表了电磁辐射理论,为无线电通信奠定了理论基础。
- ■1894年马可尼(Guglielmo Marconi)试验无线电通信获得成功。

■1904年弗莱明(Fleming)发明真空电子二极管,人类社会进入无线电电子学时代。

■ 1907年李 德 福雷斯特(Lee De Forest)发明了电子 三极管,为各种电子线路提供了"心脏"器件。 这是电子技术发展史上第一个重要里程碑。

• 1948年,贝尔实验室的威廉·肖克利(William Shockley)和两位同事发明了晶体管。这是电子技术发展史上第二个重要里程碑。他们获得了1956年度诺贝尔物理学奖,肖克利后来被誉为"晶体管之父"。

■1956年,诺依斯、摩尔等八位年轻的科学家到达 硅谷,加盟"肖克利半导体实验室"。次年,八 人在诺伊斯的带领下成立了仙童半导体公司。

- 20世纪60年代末期仙童公司销售部主任桑德斯等七名员工创建AMD公司。诺伊斯等人则创办了Intel公司。目前硅谷主要集成电路公司中的半数以上,是仙童公司的直接或间接后裔。
- 20世纪70年代以来,随着大规模集成电路与计算机技术的迅速发展,使得无线通信的设备更加小型化,寿命延长,可靠性提高,从而进一步推动了新兴通信业务的发展。

通信频率的分配

电信号的频率是一个周期性运动,在一个给定的时间内出现的次数就是频率的定义。波形的每一个完整的交替为一个周期。频率就是每秒内的周期数,频率的基本单位是赫兹(Hz)。

通信频率的分配

■波长与频率、速度之间的数学关系为:

$$> \lambda = c/f$$

- ✓为波长,单位为米(m);
- ✓ c为光速, c= 3×108m/s;
- ✓f为频率,单位为赫兹(Hz)。

无线电波段划分

频带号	频带范围	名称	频带号	频带范围	名称
2	30-300Hz	ELF(极低频)	11	30-300GHz	EHF(极高频)
3	0.3-3kHz	VF(话音频 率)	12	0.3-3THz	红外光
4	3-30kHz	VLF(甚低频)	13	3-30THz	红外光
4	3-30KI 12	VLI (安成例)	10	3-301112	とエクトノし
5	30-300kHz	LF(低频)	14	30-300THz	红外光
6	0.3-3MHz	MF(中频)	15	0.3-3PHz	可见光
7	3-30MHz	HF(高频)	16	3-30PHz	紫外光
8	30-300MHz	VHF(甚高频)	17	30-300PHz	X射线
9	0.3-3GHz	UHF(特高频)	18	0.3-3EHz	伽马射线
10	3-30GHz	SHF(超高频)	19	3-30EHz	宇宙射线

通信系统模型

- ■根据电信号传递的媒质不同,通信可分为 有线通信和无线通信两大类。
- ■有线通信——指电信号通过导线、电缆线、 光缆线等有线媒质传递的。
- ■无线通信——指电信号利用空间电磁波的 传播来作为媒质传递的。

通信系统模型

点对点通信系统的通用系统模型如下图所示。根据应用环境不同,会出现不同形式的具体的通信系统模型。

模拟通信系统

 模拟通信系统传送的是模拟信号,发送端的信息源将 所需传输的语音、图像等连续变化的低频的模拟信息 转变为连续变化的原始电信号。

数字通信系统

数字通信系统是传输数字信号的,在发送端必须把由信息源产生的连续变化的模拟基带信号,变换成离散的数字脉冲信号。

混合通信系统

通信方式

- 单工通信:指消息只 能单方向进行传输的 工作方式。
- 半双工通信:指通信 双方都能收发消息, 但不能同时进行收和 发的工作方式。
- 全双工通信:通信双 方可同时进行双向传 输消息的工作方式。

通信网络系统

无线通信网络体系结构划分

军用无线通信装备

机动雷达

卫星通信车

军用无线通信装备

无人机

预警飞机

北斗卫星导航系统

- ●北斗卫星导航系统由空间端、地面端和用户端三部分组成,空间端包括5颗静止轨道卫星和30颗非静止轨道卫星
 - ,地面端包括主控站、注入站和监测站等若干个地面站
 - ,用户端可与等其他卫星导航系统兼容。

23

- 利用无线传感网络, 在农作物种植区域大 量部署传感器。

- · 东南大学生物电子学国家重点实验室利用"微电子神经桥"和3G无线电子神经桥。两只相隔1000多公里的蟾蜍,实现了坐骨神经信号相互感应。
- 该实验在探索截瘫病人 新的康复训练模式方面 具有重要的应用价值。

无锡物联网产业研究院

南京无线谷

- 1G: 模拟制式,在公众应用领域已完全被 淘汰。
- 2G: GSM、GPRS、EDGE和CDMA-1X。
- · 3G: 2009年工信部正式发放了3G牌照。
- ▶中国移动: TD-SCDMA
- >中国联通: WCDMA
- >中国电信: CDMA2000

- · 4G性能要求:
- ▶用户速率在低速移动和固定情况下达20Mbps以上,在高速移动情况下达2Mbps以上;
- ➤ 容量要达到3G系统的5~10倍,传输质量、覆盖范围相当于甚至优于3G系统;
- ▶具有不同速率间的自动切换能力,以保证通信质量,网络的每比特成本要比3G低。
- ▶ 支持下一代因特网和所有的信息设备、家用电器等;实现与固定网或专用网的无缝化连接。

- · 4G演进趋势:
- \triangleright TD-SCDMA \rightarrow TD-HSDPA \rightarrow LTE TDD
- \triangleright WCDMA \rightarrow HSDPA \rightarrow LTE FDD
- \gt CDMA2000 \rightarrow EV-DO \rightarrow LTE FDD

移动通信基站系统

· 摩托罗拉中文寻呼机 (BP机)。

摩托罗拉 8900 (1995年), GSM。

• 摩托罗拉 m3688 (2000年), GSM, 英文短信接收发。

• 摩托罗拉 L2000 (2000 年), GSM, 中文短 信收发。

诺基亚 8310 (2001年), GSM/GPRS, 大 容量中文通讯录。

诺基亚 3100 (2003年), GSM/GPRS,彩色显示屏。

· 诺基亚 N73 (2006年), GSM/GPRS/EDGE,智能机,Symbian S60 V3。

· 诺基亚 N97 (2009年), GSM/GPRS/EDGE/WCDMA , Symbian S60 V5,全触屏+ 全键盘。

摩托罗拉 A3300C (2009年)
 CDMA2000 , Windows
 Mobile 6 。

· 诺基亚 6788i (2010年), GSM/GPRS/EDGE/TD-SCDMA, Symbian S60 V3。

摩托罗拉 Droid X (2010年)
, CDMA2000 , Android (安
卓) OS v2.1 。

苹果 iPhone 4(2010年),
 GSM/GPRS/EDGE/WCDMA,
 iPhone iOS 4。

· 苹果 iPad(2010年), WiFi/3G, Mac OS。

· 汉王 TouchPad B10 (2010年), WiFi/3G, Windows 7。

3G无线上网卡

无线网卡内部结构

机械零件

0

有源器件

无源器件

无线通信集成电路

封装后的集成电路

无线通信集成电路设计流程

课程培养目标

- 通过本课程的学习,掌握现代通信系统的 电路原理和通信电路的基本知识。
- 了解和熟悉通信系统的组成电路,通信集成电路原理和应用方法,掌握通信电路技术和电路设计。
- 本课程主要以介绍无线通信电路基本概念 和相关技术为主。

课程内容

- 第二章 选频回路与阻抗变换
- 第三章 电子通信系统基础
- 第四章 调制与解调
- 第五章 发射机、接收机结构
- 第六章 低噪声放大器
- 第七章 混频器
- 第八章 锁相环与频率合成
- 第九章 射频功率放大器
- 第十章 通信系统实例