An Overview of the R Language

Luis Francisco Gómez López

FAEDIS

2025-03-31

Table of contents I

Please Read Me

2 Purpose

3 Sales and product satisfaction survey

Acknowledgments

• This presentation is based on (Chapman and Feit 2019, chap. 2)

 Equip beginners with a programming foundation by leveraging the R language, enabling practical application in marketing research and analytics

Ordinal 7 point scale

- Extremely satisfied: 7
- Moderately satisfied: 6
- Slightly satisfied: 5
- Neither satisfied or dissatisfied: 4
- Slightly dissatisfied: 3
- Moderately dissatisfied: 2
- Extremely dissatisfied: 1

Variables

- iProdSAT: satisfaction with a product
- iSalesSAT: satisfaction with sales experience
- iProdREC: likelihood to recommend the product
- iSalesREC: likelihood to recommend the sales person
- Segment: market segment assigned by a clustering algorithm (Chapman and Feit 2019, chap. 11)

Import data: the base R way

```
satisfaction_data <- read.csv(file = "http://goo.gl/UDv12g")
satisfaction data |> head(n=5)
```

```
iProdSAT iSalesSAT Segment iProdREC iSalesREC
1 6 2 1 4 3
2 4 5 3 4 4 4
3 5 3 4 5 4
4 3 3 3 2 4 4
5 3 3 3 2 2 2
```


Import data: the tidyverse way

```
library(tidyverse) # Remember to load the tidyverse library
satisfaction_data <- read_csv(file = "http://goo.gl/UDv12g")
satisfaction_data |> head(n=5)
```

A tibble: 5 x 5

| iProdSAT | iSalesSAT | Segment | iProdREC | iSalesREC | (dbl) | (dbl

Transform data: the base R way

iProdSAT	iSalesSAT	Segment	iProdREC	iSalesREC
Min. :1.00	Min. :1.000	1: 54	Min. :1.000	Min. :1.000
1st Qu.:3.00	1st Qu.:3.000	2:131	1st Qu.:3.000	1st Qu.:3.000
Median :4.00	Median :4.000	3:154	Median :4.000	Median :3.000
Mean :4.13	Mean :3.802	4:161	Mean :4.044	Mean :3.444
3rd Qu.:5.00	3rd Qu.:5.000		3rd Qu.:5.000	3rd Qu.:4.000
Max. :7.00	Max. :7.000		Max. :7.000	Max. :7.000

Transform data: the skimr and the tidyverse way

 Ups the table is really big!!! Try it in your console to see the complete table

```
table
library(skimr) # Remember to install the package if it is not installed
satisfaction_data <- satisfaction_data |>
mutate(Segment = factor(x = Segment, ordered = FALSE))
satisfaction_data |> skim()
```


- R objects: everything in R is an object (object-oriented). For now, we will only inspect a few selected objects:
 - Atomic vectors¹
 - Logical
 - Integer
 - Double
 - Factors
 - Data Frames
 - Tibbles

¹In R the atomic vectors are logical, integer, double, numeric (which includes integer and double), character, complex and raw but for pedagogical purposes we are going to check later character, numeric includes integer and double and we are not going to use complex and raw

Atomic vectors

Logical

```
as.integer(satisfaction_data$Segment)[1:5] == 1

[1] TRUE FALSE FALSE FALSE FALSE
as.integer(satisfaction_data$Segment)[1:5] > 1

[1] FALSE TRUE TRUE TRUE TRUE
as.integer(satisfaction_data$Segment)[1:5] >= 1
```

[1] TRUE TRUE TRUE TRUE TRUE

Atomic vectors

Integer

```
as.integer(satisfaction_data$Segment)[1:5]
```

```
[1] 1 3 4 2 3
```

Atomic vectors

Double

```
sprintf("%-2f", satisfaction_data$iProdSAT[1:5])
```

```
[1] "6.00" "4.00" "5.00" "3.00" "3.00"
```


Factors

satisfaction_data\$Segment[1:5]

[1] 1 3 4 2 3 Levels: 1 2 3 4

Data Frames

as.data.frame(satisfaction_data) |> head(n=5)

	${\tt iProdSAT}$	iSalesSAT	Segment	${\tt iProdREC}$	iSalesREC
1	6	2	1	4	3
2	4	5	3	4	4
3	5	3	4	5	4
4	3	3	2	4	4
5	3	3	3	2	2

Tibble

```
class(satisfaction_data)
```


Add new variables: the base R way

```
\label{lem:satisfaction_data} satisfaction\_data \\ satisfaction\_data) = -1: nrow(satisfaction\_data) \\ satis
```

	iProdSAT	iSalesSAT	Segment	iProdREC	iSalesREC	customer
1	6	2	1	4	3	1
2	4	5	3	4	4	2
3	5	3	4	5	4	3
4	3	3	2	4	4	4
5	3	3	3	2	2	5

Add new variables: the tidyverse way

```
satisfaction_data |>
mutate(customer = 1:nrow(satisfaction_data)) |>
head(n=5)
```

A tibble: 5 x 6

	iProdSAT	iSalesSAT	Segment	iProdREC	iSalesREC	customer	
	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	
1	6	2	1	4	3	1	
2	4	5	3	4	4	2	
3	5	3	4	5	4	3	
4	3	3	2	4	4	4	
5	3	3	3	2	2	5	

Picks variables based on their names: the base R way

Picks variables based on their names: the tidyverse way

```
satisfaction_data |>
select(customer, Segment, iProdSAT, iSalesSAT, iProdREC, iSalesREC) |>
head(n=5)
```


Picks cases based on their values: the base R way

as.data.frame(satisfaction_data)[satisfaction_data\$Segment == 2,] |>
head(n=5)

	iProdSAT	iSalesSAT	Segment	iProdREC	1SaleskEC	customer
4	3	3	2	4	4	4
14	4	3	2	3	2	14
18	3	5	2	3	3	18
19	4	4	2	1	1	19
23	4	2	2	4	6	23

Picks cases based on their values: the tidyverse way

```
satisfaction_data |>
  filter(Segment == 2) |>
  head(n=5)
```

A tibble: 5 x 6

iProdSAT iSalesSAT Segment iProdREC iSalesREC customer

dbl> <dbl> <dbl> <dct> <dbl> <dbl> <dbl> <dbl> <int>

1 3 3 2 4 4 4 4

2 4 3 2 3 2 3 2 14

3 3 5 2 3 3 18

4 4 4 2 1 1 1 19

23

Reduces multiple values to a single summary: the base R way

Reduces multiple values to a single summary: the tidyverse way

4.13

Does product and sales satisfaction differ by segment?: the base R way

```
satisfaction_data[c("iProdSAT", "iSalesSAT")] |>
aggregate(by = satisfaction_data[c("Segment")], FUN = mean) |>
setNames(nm = c("Segment", "mean_iProdSAT", "mean_iSalesSAT"))
```

```
        Segment
        mean_iProdSAT
        mean_iSalesSAT

        1
        1
        3.462963
        2.981481

        2
        2
        3.725191
        3.381679

        3
        3
        4.103896
        3.11688

        4
        4
        4.708075
        4.409938
```

Does product and sales satisfaction differ by segment?: the tidyverse way

```
satisfaction_data |>
group_by(Segment) |>
select(iProdSAT, iSalesSAT) |>
summarise(mean_iProdSAT = mean(iProdSAT), mean_iSalesSAT = mean(iSalesSAT))
```

A tibble: 4 x 3

```
Segment mean_iProdSAT mean_iSalesSAT
 <fct>
                  <db1>
                                  <db1>
1 1
                   3.46
                                   2.98
2 2
                   3.73
                                  3.38
3 3
                                  3.81
                   4.10
4 4
                   4.71
                                  4.41
```


- To my family that supports me
- To the taxpayers of Colombia and the UMNG students who pay my salary
- To the Business Science and R4DS Online Learning communities where I learn R and π -thon
- To the R Core Team, the creators of RStudio IDE, Quarto and the authors and maintainers of the packages tidyverse, skimr and tinytex for allowing me to access these tools without paying for a license
- To the Linux kernel community for allowing me the possibility to use some Linux distributions as my main OS without paying for a license

References I

Chapman, Chris, and Elea McDonnell Feit. 2019. *R For Marketing Research and Analytics*. 2nd ed. 2019. Use R! Cham: Springer International Publishing: Imprint: Springer. https://doi-org.ezproxy.umng.edu.co/10.1007/978-3-030-14316-9.

