Nepali To English Speech Translation With Prosody Prediction

Team Members

Pragyan Bhattarai (THA077BEI030)

Prashant Raj Bista (THA077BEI032)

Shakshi Kejriwal (THA077BEI044)

Sudipti Upreti (THA077BEI045)

Supervised By

Er. Kshetraphal Bohara

Department of Electronics and Computer Engineering IOE, Thapathali Campus

Presentation Outline

- Problem statement
- Objective
- Methodology
- Results
- Discussion and Conclusion
- References

Problem Statement and Objectives

Problem Statement

 Current translation systems lacks to convey the prosody and emotional nuances of spoken Nepali in English

Objective

 To develop a Nepali-to-English speech-to-speech translation system with prosody prediction on the translated language.

Methodology-

Methodology - [2] (Description of System Block Diagram)

- wav2vec 2.0 processes the recording.
- wav2vec 2.0 produces the corresponding Nepali text as output.
- mBART processes the Nepali text and outputs with an English Text.
- FastSpeech 2 takes English text and speaker embedding.
- FastSpeech 2 synthesizes the corresponding English audio with desired prosody.

Methodology - [3] (Data Flow in wav2vec 2.0)

7/21/2024 6

Methodology - [4] (wav2vec 2.0 Description)

- Feature encoder extracts the features and converts the data into the latent feature representation from recording sampled at 16KHz.
- Context network converts the latent feature into contextual representation.
- Classification head converts contextualized representation into the logits.
- CTC converts the logits into the corresponding Nepali text spoken in audio.

Methodology - [5] (mBART)

Methodology - [6] (mBART Description)

- Tokenizer converts the Nepali text into the tokens.
- Bidirectional encoder produces the hidden representation of the data.
- Encoded hidden representation is passed to the autoregressive decoder.
- Decoder produces the transcribed English text.
- The transcribed English text is passed to a TTS model.

Methodology - [7] (FastSpeech 2)

Methodology - [8] (FastSpeech 2 Description)

- English text is converted to the respective phonemes.
- Phonemes encoder that produces the phoneme embedding.
- Variance adapter predicts parameters for the generation of the speech.
- Speaker Embedding is concatenated with the output of the variance.
- Mel-Spectrogram generator generates the spectrogram for the speech to be synthesized.

Methodology - [9] (Speaker Encoder)

Methodology - [10] (Speaker Encoder Description)

- 2D convolution blocks captures features from the input data
- The output of the final Conv2D block is flattened into a 1D vector.
- Max pooling is applied to reduce the dimensionality of the input features from Mel spectrogram.
- These pooled features are fed to Transformer encoder to capture dependencies in the data.

Methodology - [11] (Speaker Encoder Description)

- Output of the transformer encoder is averaged which Summarizes the temporal features.
- Output of Conv2D and Transformer are concatenated forming single feature vector.
- Concatenation combines the local features captured by Conv2D blocks with the global features captured by Transformer encoder.
- The combined feature vector is fed into the Variance Adapter of FastSpeech
 2.

Methodology - [11] (Hyperparameters Table for ASR)

Batch Size	4
Evaluation Strategy	steps
fp16	TRUE
Training Epochs	15
Steps to Model Saving	100
Steps to Model Evaluation	100

Gradient Accumulation Steps	4
Steps to Log Results	100
Learning Rates	3.00E-05
Load Best Model	TRUE
Metrics	WER

Training and Validation Loss over Steps Training Loss 1.0 Validation Loss 0.9 0.8 SS 0.7 0.6 0.5 0.4 500 1500 1000 2000 2500 3000 Steps

Training and Validation Loss per Step

Results and Analysis

Training and Validation Loss per Step

WER vs. Steps

Result and Analysis - [5] (Top Error Rate on Validation Data)

True Word	Predicted Word	Count
छ	र	37
र	ভ	31
छ	पनि	21
छ	हो	19
हो	ন্ত	18
छ	यो	18
हो	र	18
र	पनि	17
छ	रहेको	16
7/21/2024	र	16

Validation Dataset = 10% of

Training Set

= 264 Audio Samples

Average WER = 0.422

Word	Confused With	Count
विधायन	विधान	5
र		4
संशोधन	संसोधन	3
<ins></ins>	हाम्रो	3
अध्यक्षज्यू	अध्यक्ष	3
चाहन्छु	चाहन्छ	3
यो	य	3
हुनेमाननीय	हुने	3
सदस्यहरूले	माननीय	3
सम्माननीय	सम्माननीय	3

Total Test Audios:

625

Average WER: 0.28

Substituted: 2414

Inserted: 47

Deleted: 59

7/21/2024 21

Discussion and Conclusion

- Achieved WER of 0.422 on Validation set and 0.2824 on Test set.
- Consistent decrease in WER suggests wav2vec 2.0 as a good model for ASR.
- On self-recorded audio, model could not produce satisfactory results.
- Model showed signs of overfitting, as validation loss showed fluctuations over number of steps.
- Results suggest on the need for adjusting learning rates and applying regularization techniques to reduce overfitting.

Remaining Tasks

- Increasing Accuracy in wav2vec 2.0
- Finetuning mBART
- Speaker Encoder
- Finetuning FastSpeech 2
- Concatenation of TTS with Speaker Embedding from Speaker Encoder
- Creating a pipeline.

7/21/2024 23

References

- [1] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations," *arXiv.org*, Jun. 20, 2020. https://arxiv.org/abs/2006.11477
- [2] Y. Liu *et al.*, "Multilingual Denoising Pre-training for Neural Machine Translation," *arXiv.org*, Jan. 22, 2020. https://arxiv.org/abs/2001.08210 (accessed Jul. 18, 2024).
- [3] Y. Ren *et al.*, "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech," *arXiv.org*, Jun. 08, 2020. https://arxiv.org/abs/2006.04558