

MLE Program, Cohort 11 (MLE11)

Week 9: Computer Vision Benchmarks, Dealing with Images, Object Detectors, Semantic Segmentation, Explainability & Saliency

FourthBrain Update!

- Following up from our <u>slack message</u> in December
- FourthBrain has continued evolving since then (i.e., Andrew's post)
- If you are looking for a job, we strongly encourage you to maximize the Career Services resources starting now
- Do not underestimate the benefits capstone + interviewing!

Career Services To-Do

- Confirm that you are actively looking for a job here: <u>Survey</u>
- Join a job search weekly meetup group now!: <u>Job Search Groups</u>
- James' booking link: https://calendly.com/jamesfourthbrain
- Greg's booking link: https://calendly.com/ai-greg/30min

Becoming a Machine Learning Engineer

ML Modeling

Data Centric Al

MLE Software Basics (7)

Our Updated Curriculum!

- . ML Project Scoping
- 2. Real, Live Data Streams
- Data Wrangling & Exploratory Analysis
- 4. Big Data

DATA CENTRIC Al

- 5. Supervised ML
- 6. Deep Learning & AutoML
- 7. Unsupervised, Semi-
- & Self-supervised Learning

ML MODELING

8. Computer Vision

- 9. Natural Language Processing
- 10. Transformers & Fine Tuning Pre-Trained Networks

AI APPLICATIONS

- 11. Building ML Web Apps
- 12. Containerization
- 13. Model Serving
- 14. Machine Learning in Production

MLOps

Last Week!

Concepts

- Dealing with Unstructured Data
- Clustering
- Dimensionality Reduction
- Label propagation/label spreading
- Co-training algorithms
- Zero-shot learning

Hands on

- Predicting customer responses and metadata tagging using data visualization with Tensorboard
- Midterm Project Assignment

Concepts

- Dealing with Images
- Convolutional Networks
- Object Detectors
- Semantic Segmentation
- Computer Vision Benchmarks
- Explainability & Saliency

Hands on

Few-shot object detection

What questions do you have?

Dealing with Images

RGB vs Grayscale

- RGB:
 - Red Green Blue
 - Image consists of 3 channels (one for each color)
 - These channels are superposed on each other to give us the colors we know
- Grayscale:
 - Could be referred to as black and white
 - Consist of only one channel

 The concept of image channels is very important in order to fully understand how Computer Vision algorithms work

What is HSV?

- Unlike RGB, which uses primary colors, HSV is closer to how humans perceive colors
- It has 3 components:
 - Hue
 - Saturation
 - Value

- This color space describes colors (hue or tint) in terms of their shade (saturation or amount of gray) and their brightness value.
- Some people call HSV as HSB where "B" represents "Brightness"

Hue

- Hue is the color portion of the model, expressed as a number from 0 to 360 degrees:
 - Red: 0 to 60 degrees
 - Yellow: 61 to 120 degrees
 - Green: 121 to 180 degrees
 - O Cyan: 181 to 240 degrees
 - o Blue: 241 to 300 degrees
 - Magenta: 301 to 360 degrees

Saturation and Value

Saturation:

- Describes the amount of gray in a particular color
- Ranges from 0 to 100
- Reducing this component toward zero introduces more grey and produces a faded effect
- O Sometimes, saturation appears as a range from 0 to 1, where 0 is grey and 1 is a primary color

Value (Brightness)

- Value works in conjunction with saturation
- It describes the intensity of the color, from 0 to 100 percent
- o 0 is completely black and 100 is the brightest and reveals the most color

Dealing with Images | Python

- There are many libraries that handle images in python
- Examples:
 - o PIL
 - OpenCV
- These libraries provide general image handling and a lot of basic image operations like:
 - Resizing
 - Cropping
 - Rotating

Dealing with Images | Example

Dealing with images | Augmentation

- Image Augmentation is a technique that can be used to artificially expand the size of a training set by creating modified Images from the existing one
- It is mainly used to:
 - Generate more images
 - Prevent Overfitting
- There are many ways to work with image augmentations in python:
 - Tensorflow / Keras
 - PyTorch
 - Augmentor
 - > Imgaug

Dealing with images | Augmentation

- You can do a lot of things to augment images:
 - Perspective Skewing: look at the image from a different angle
 - Elastic distortions: add distortions to an image
 - Mirroring: apply different types of flips
 - Shearing: tilt an image along with one of its sides
 - Rotating
 - Cropping

What questions do you have?

Convolutional Networks

Convolution

- Captures space relationships
- Kernel/Filter (Yellow)
- Local receptive field
- Parameter sharing
- Location independent features

1,	1,0	1,1	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4		
3. 3.	5 (d 6 (d	
a.	6 50	5 S

Convolved Feature

Convolution

Convolutional Layer

Discussion

15 min

- 1. What is the difference between CNN vs. Dense?
- 2. What are some applications of:
 - Classification
 - Detection
 - Segmentation
- 3. How would the architecture look like in each case?

Designate <u>one person to share</u> from your breakout room

Classification

Classifier

Object Detectors

Object Detectors

 Object Detection models attracted a lot of attention due to the boom in the Computer Vision market

 To interpret an image / video, the computer has to first detect the objects and also precisely estimate their location in the image / video before classifying them.

There are multiple architectures from traditional techniques to modern and state-of-the-art techniques. These architectures differ from each other based on the accuracy, speed, and hardware resources required.

- The traditional object detection has usually 3 stages
 - o Informative Region Selection

Classification

Step 1: Informative Region Selection

- Try to find the object's location
- Objects have different sizes and aspect ratios
- Object might appear at different locations in the images
- This is why we scan the whole image using a multiscale sliding window
- Note: This method is computationally expensive and produces many irrelevant candidates

Step 2: Feature Extraction

- Using techniques like SIFT, and HOG to extract the visual feature for recognizing the object
- These visual features provide a semantic and robust representation
- Note: It is very difficult to manually design a robust feature descriptor to perfectly describe all types of objects due to the differences in:
 - Illumination conditions
 - Viewpoint
 - Backgrounds

Step 3: Classification Stage

- Make the representations more hierarchical, semantic, and informative for visual recognition
- Make the classification of target objects from all other categories using:
 - Support Vector Machine (SVM)
 - Adaboost

Problems

- O Generation of candidate bounding boxes using the sliding window technique is computationally expensive
- Hand-engineered features are not always sufficient to perfectly describe all types of objects

Solution?

- Usage of modern approaches with Deep Learning
- O R-CNN
- SPP-Net
- Fast R-CNN
- Faster R-CNN
- YOLO
- O SSD

Regression/Classification Based Frameworks

- Really good for real-time object detection
- One-Step frameworks based on global regression/classification maps straightly from image pixels to bounding box coordinates and class probabilities
- Reduce the time complexity
- Examples:
 - SSD
 - YOLO

YOLO

- YOLO You Only Look Once
- A single convolutional network predicts the bounding boxes and the class probabilities for these boxes
- Yolo divides the input image into an S x S grid and each grid cell is responsible for predicting the object centered in that grid cell
- Each grid cell predicts bounding boxes and their correspondence confidence scores
- Multiple versions of YOLO algorithms emerged lately, the latest are YOLOv4,
 YOLOv5 and YOLOv7

YOLO architecture

YOLO - Limitations

- Sometimes has lower accuracy compared to R-CNN family of algorithms due to having a one-step object detection
- Difficulties in dealing with small objects in groups
- Difficulties in generalizing to objects in new/unusual aspect ratios or configurations
- Produces relatively coarse features due to multiple down-sampling operations

SAHI: Slicing Aided Hyper Inference

YOLO

Yolo

SSD

- SSD Single Shot Detector
- Avoids some of the limitations of YOLO
- Uses a specific feature map instead of fixed grids
- Takes advantage of a set of default anchor boxes with different aspect ratios and scales to discretize the output space of bounding boxes
- The network fuses predictions from multiple feature maps with different resolutions to handle objects from various sizes
- Limitation: Accuracy

SSD | Architecture

What questions do you have?

Semantic Segmentation

Semantic Segmentation

Semantic Segmentation

- The goal is to label each pixel of an image with a corresponding class
- Because we're predicting for every pixel in the image, this task is commonly referred to as dense prediction
- Note:
 - We're not separating instances of the same class
 - We only care about the category of each pixel
 - o If you have 2 objects of the same category in your input image, the segmentation map v...

Person Bicycle Background

- 0: Background/Unknown
- 1: Person
- 2: Purse
- 3: Plants/Grass
- 4: Sidewalk
- 5: Building/Structures

Semantic Segmentation | Applications

- Autonomous vehicles
- Biomedical Image Diagnosis
- Geo Sensing
- Precision Agriculture

Semantic Segmentation | UNET

Semantic Segmentation | UNET

- The architecture contains 2 paths:
 - <u>First Path:</u> contraction path **encoder**
 - Is used to capture the context in the image
 - A traditional stack of convolutional and max-pooling layers

- Second Path: symmetric expanding path decoder
 - Is used to enable precise localization using transposed convolutions
 - It is an end-to-end fully convolutional network (FCN)
 - It only contains Convolutional layers
 - It does not contain any Dense layer, which means that it can accept an image of any size

What questions do you have?

Computer Vision Benchmarks

Computer Vision Benchmark Datasets

- Good Computer Vision benchmark datasets will reflect the setting of the real-world application of the model you are developing.
- Examples of Datasets:
- CIFAR-10
- MS COCO
- Fashion-MNIST
- ImageNet
- IMDB-Wiki dataset
- Kinetics-700

- ObjectNet
- MPII Human Pose Dataset
- Open Images
- Cityscapes
- The 20BN-something something Dataset V2
- KITTI
- Waymo OD
- nuScenes

Having the right Dataset Benchmark

- The first and most important question to ask while working for computer vision is "how can you identify the right dataset benchmark"?
- Many publicly available real-world and simulated benchmark datasets have emerged lately
- Problems we're facing:
 - The organization and adoption as standards between the sources are inconsistent
 - Many existing benchmarks lack diversity to benchmark computer vision algorithms effectively

Good Benchmarks

- Good benchmark datasets allow you to evaluate several machine learning methods in a direct and fair comparison
- A common problem with these benchmarks is that they are not an accurate depiction of the real world
- Methods ranking high on popular computer vision benchmarks could perform low on average when tested outside the data they were created with

How to spot a Bad Benchmark Dataset?

- Contains mainly images that were taken in ideal / perfect / unrealistic conditions
- Inadequate at handling the messiness found in the real world
- Example: ImageNet
 - Although it is a very popular dataset for computer vision, the images do not adequately represent reality, and thus, ImageNet is not the best computer vision benchmark.

What type of dataset benchmarks exist?

- Best dataset benchmarks for segmentation
 - The Berkeley Segmentation Dataset and Benchmark (<u>link</u>)
 - KITTI semantic segmentation benchmark (<u>link</u>). Check out the Hub equivalent for the <u>test</u>, <u>train</u>,
 and <u>validation</u> KITTI datasets.
- Best dataset benchmarks for classification
 - ObjectNet Benchmark Image Classification (<u>link</u>)
- Best dataset benchmarks for scene understanding
 - Scene Understanding on ADE20K val (<u>link</u>)
 - Scene Understanding on Semantic Scene Understanding Challenge Passive Actuation & Ground-truth Localisation (link)

What questions do you have?

Explainability and Saliency

Explainability

- Often referred to as "Interpretability"
- It is the concept that a Machine Learning Model and its output can be explained in a way that "makes sense" to a human being at an acceptable level
- Certain classes of algorithms (like traditional ML algorithms) tend to be more readily explainable, with potential less performance
- Deep Learning systems, are more performant, but are also much harder to explain

Class Activation Map

31

Class Activation Map Intuition

What led to the positive feature?

- Class Activation Mapping (CAM) indicates the discriminative region of the image for a particular class (category), which influenced the Deep Learning model to make the Decision
- The architecture is very similar to a convolutional neural network
- It comprises several convolution layers, with the layer just before the final output performing Global Average Pooling

- The features that are obtained are fed into the Fully Connected Neural Network layer governed by the SoftMax activation function
- Then we get the output required probabilities
- The importance of the weights with respect to a category can be found by projecting back the weights onto the last convolution layer's feature map

Grad CAM

Saliency | History

- Saliency maps in Deep learning were first witnessed in the paper titled "Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps"
- The paper was presented by researchers of the Visual Geometry Group at the University of Oxford
- It highlighted the visualization techniques to compute images, saliency maps being one of them

Saliency Maps

- This method is derived from the concept of saliency in images
- Saliency refers to unique features (pixels, resolution, etc.) of the image in the context of visual processing
- These unique features depict the visually alluring locations in an image
- Saliency maps are topographical representations of them.

Saliency

Vanilla Saliency Method

$$Y_c = score \ of \ class \ c$$

$$saliency = \max_{r,g,b} \left(\left| \frac{\partial Y_c}{\partial I} \right| \right)$$

How to create Saliency Maps? | Example

What questions do you have?

Feedback on Lecture and Concepts?

See you next week!