

General information

Designation

Prunus avium

Typical uses

Furniture; turnery; decorative ware;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O			
Material family	Natural		
Base material	Wood (hardwood)		
Renewable content	100	%	

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 6.7	-	10.8	USD/kg
Price per unit volume	* 3.69e3	-	7.21e3	USD/m^3

Physical properties

Mechanical properties

wechanical properties				
Young's modulus	* 10.2	-	12.5	GPa
Yield strength (elastic limit)	* 44.7	-	54.7	MPa
Tensile strength	88.2	-	108	MPa
Elongation	* 2.33	-	2.85	% strain
Compressive strength	45	-	55	MPa
Flexural modulus	9.3	-	11.3	GPa
Flexural strength (modulus of rupture)	87.3	-	107	MPa
Shear modulus	* 0.75	-	0.93	GPa
Shear strength	* 10.3	-	12.5	MPa
Bulk modulus	* 0.7	-	0.78	GPa
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.2			
Hardness - Vickers	* 4.88	-	5.97	HV
Hardness - Brinell	49.5	-	60.5	НВ
Hardness - Janka	* 4.88	-	5.97	kN
Fatigue strength at 10^7 cycles	* 26.2	-	32	MPa

Water (salt)

Weak acids

Strong acids

Weak alkalis

Strong alkalis

Organic solvents

Cherry (prunus avium) (I)

EDUPACK						
Mechanical loss coefficient (tan delta)	* 0.0074	-	0.0091			
Differential shrinkage (radial)	0.16	-	0.18	%		
Differential shrinkage (tangential)	0.26	-	0.3	%		
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%		
Tangential shrinkage (green to oven-dry)	* 6.8	-	11.5	%		
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%		
Work to maximum strength	* 74.6	-	91.2	kJ/m^3		
Impact & fracture properties						
Fracture toughness	* 4.7	-	5.7	MPa.m^0.5		
Thermal properties						
Glass temperature	77	-	102	$\mathcal C$		
Maximum service temperature	120	-	140	$\mathcal C$		
Minimum service temperature	* -73	-	-23	$\mathcal C$		
Thermal conductivity	* 0.27	-	0.32	W/m.℃		
Specific heat capacity	1.66e3	-	1.71e3	J/kg.℃		
Thermal expansion coefficient	* 2	-	11	µstrain/℃		
Electrical properties						
Electrical resistivity	* 6e13	-	2e14	µohm.cm		
Dielectric constant (relative permittivity)	* 6.08	-	7.44			
Dissipation factor (dielectric loss tangent)	* 0.07	-	0.086			
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m		
Magnetic properties						
Magnetic type	Non-mag	Non-magnetic				
Optical properties						
Transparency	Opaque	Opaque				
Critical materials risk						
Contains >5wt% critical elements?	No					
Durability						
Water (fresh)	Limited u	se				
14/ (/ 14)						

Limited use

Limited use

Acceptable

Acceptable

Unacceptable

Unacceptable

Cherry (prunus avium) (I)

Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	- 12.8	MJ/kg		
-------------------------------------	------	--------	-------	--	--

Sources

 $0.5~\mathrm{MJ/kg}$ (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production 0.574 - 0.633 kg/kg

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

* 665 - 735 I/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.25	-	1.39	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.094	-	0.104	kg/kg
Fine machining energy (per unit wt removed)	* 8.26	-	9.13	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.62	-	0.685	kg/kg
Grinding energy (per unit wt removed)	* 16	-	17.7	MJ/kg
Grinding CO2 (per unit wt removed)	* 1.2	-	1.33	kg/kg

Recycling and end of life

recogning and end of me	
Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

rocessUniverse	
Reference	
hape	