We claim:

1. A method of inhibiting cathepsin L, comprising administering to a patient in need thereof an effective amount of a compound of Formula I:

5

wherein:

R1 is

$$\mathbb{R}^4$$
 \mathbb{R}^7
 \mathbb{R}^3

10

 $R^2 \text{ is H, C$_{1-6}$alkyl, C$_{3-6}$cycloalkyl-C$_{0-6}$alkyl, Ar-C$_{0-6}$alkyl, Het-C$_{0-6}$alkyl, R$^9C(O)-, R$^9C(S)-, R9SO_{2-}, R$^9OC(O)-, R$^9C(S)-, R9SO_{2-}, R$^9OC(O)-, R$^9C(S)-, R9SO_{2-}, R$^9OC(O)-, R9SO_{2-}, R9SO_{2$

R⁹R¹¹NC(O)-, R⁹R¹¹NC(S)-, R⁹(R¹¹)NSO₂-

 $R^7 \nearrow N \nearrow Z$

15

 $R^3 \text{ is H, C$_{1$-6alkyl}$, C$_{2$-6alkenyl}$, C$_{2$-6alkynyl}$, HetC$_{0$-6alkyl}$ and ArC$_{0$-6alkyl}$;}$

 R^3 and R' may be connected to form a pyrrolidine, piperidine or morpholine ring; R^4 is $R^5OC(O)$ -;

20

R⁵ is quinolin-6-yl;

 R^6 is H, C_{1-6} alkyl, Ar- C_{0-6} alkyl, or Het- C_{0-6} alkyl;

30

```
R<sup>7</sup> is H, C<sub>1-6</sub>alkyl, C<sub>3-6</sub>cycloalkyl-C<sub>0-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl, Het-C<sub>0-6</sub>alkyl,
          R^{10}C(O)-, R^{10}C(S)-, R^{10}SO_2-, R^{10}OC(O)-, R^{10}R^{14}NC(O)-, or R^{10}R^{14}NC(S)-;
                       R<sup>8</sup> is H, C<sub>1</sub>-6alkyl, C<sub>2</sub>-6alkenyl, C<sub>2</sub>-6alkynyl, HetC<sub>0</sub>-6alkyl or ArC<sub>0</sub>-6alkyl;
                       R^9 is C_{1-6}alkyl, C_{3-6}cycloalkyl-C_{0-6}alkyl, Ar-C_{0-6}alkyl or Het-C_{0-6}alkyl;
                      R<sup>10</sup> is C<sub>1-6</sub>alkyl, C<sub>3-6</sub>cycloalkyl-C<sub>0-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl or Het-C<sub>0-6</sub>alkyl;
  5
                      R<sup>11</sup> is H, C<sub>1-6</sub>alkyl, Ar-C<sub>0</sub>-6alkyl, or Het-C<sub>0-6</sub>alkyl;
                      R<sup>12</sup> is H, C<sub>1-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl, or Het-C<sub>0-6</sub>alkyl;
                       R<sup>13</sup> is H, C<sub>1-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl, or Het-C<sub>0-6</sub>alkyl;
                       R<sup>14</sup> is H, C<sub>1-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl, or Het-C<sub>0-6</sub>alkyl;
10
                       R' is H, C<sub>1-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl, or Het-C<sub>0-6</sub>alkyl;
                       R" is H, C<sub>1-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl, or Het-C<sub>0-6</sub>alkyl;
                       R''' is H, C<sub>1-6</sub>alkyl, C<sub>3-6</sub>cycloalkyl-C<sub>0-6</sub>alkyl, Ar-C<sub>0-6</sub>alkyl, or Het-C<sub>0-6</sub>alkyl;
                       X is CH2, S, or O; and
                       Z is C(O) or CH_2;
```

- and pharmaceutically acceptable salts, hydrates and solvates thereof.
 - 2. A method according to Claim 1 wherein in said compound R^3 is $C_{1\text{-}6}$ alkyl and Ar- $C_{0\text{-}6}$ alkyl.
- 20 3. A method according to Claim 2 wherein in said compound R³ is isobutyl, napthalen-2-ylmethyl, benzyl, or benzyloxymethyl.
 - 4. A method according to Claim 1 wherein in said compound R' is H.
- 25 5. A method according to Claim 1 wherein in said compound R" is H.
 - 6. A method according to Claim 1 wherein in said compound R''' is H.
 - 7. A method according to Claim 1 wherein in said compound R" and R" are both H.
 - 8. A method according to Claim 1 wherein in said compound:

10

25

 R^2 is H, C_{1-6} alkyl, C_{3-6} cycloalkyl- C_{0-6} alkyl, Ar- C_{0-6} alkyl, Het- C_{0-6} alkyl, R^9 C(O)-, R^9 C(S)-, R^9 SO₂-, R^9 OC(O)-, R^9 R¹¹NC(O)-, R^9 R¹¹NC(S)-, R^9 R¹¹NSO₂-,

$$C(0)$$
, CH_2 R^7 R^6 Z or R^8

- 5 R⁶ is H, C₁₋₆alkyl, Ar-C₀₋₆alkyl, or Het-C₀₋₆alkyl;
 - $R^7 \text{ is H, C$_{1-6}$alkyl, C$_{3-6}$cycloalkyl-C$_{0-6}$alkyl, Ar-C$_{0-6}$alkyl, Het-C$_{0-6}$alkyl, $$R^{10}C(O)-, $R^{10}C(S)-, $R^{10}SO_2-, $R^{10}OC(O)-, $R^{10}R^{14}NC(O)-, or $R^{10}R^{14}NC(S)$; $$R^8 \text{ is H, C$_{1-6}$alkyl, C$_{2-6}$alkenyl, C$_{2-6}$alkynyl, HetC$_{0-6}$alkyl or ArC$_{0-6}$alkyl; $$R^9 \text{ is C$_{1-6}$alkyl, C$_{3-6}$cycloalkyl-C$_{0-6}$alkyl, Ar-C$_{0-6}$alkyl, or Het-C$_{0-6}$alkyl; $$R^{10} \text{ is C$_{1-6}$alkyl, C$_{3-6}$cycloalkyl-C$_{0-6}$alkyl, Ar-C$_{0-6}$alkyl or Het-C$_{0-6}$alkyl; and Z is C(O) or CH$_{2}. $$$
 - 9. A method according to Claim 8 wherein in said compound R² is R⁹SO₂.
- 15 10. A method according to Claim 9 wherein in said compound R⁹ is Het-C₀₋₆alkyl.
 - 11. A method according to Claim 10 wherein in said compound R⁹ is pyridinyl or 1-oxy-pyridinyl.
- 20 12. A method according to Claim 11 wherein in said compound R⁹ is pyridin-2-yl or 1-oxy-pyridin-2-yl
 - 13. A method according to Claim 12 wherein said compound is:
 quinoline-6-carboxylic acid {(S)-naphthylen-2-yl-1-[(S)-oxo-1-(pyridine-2-sulfonyl)-azepan-4-yl carbamoyl]-ethyl}-amide, or

 $\label{eq:quinoline-6-carboxylic acid {(S)-1-[(S)-3-oxo-1-(pyridine-2-sulfonyl)-azepan-4-yl carbamoyl]-2-phenyl-ethyl}-amide; or$

a pharmaceutically acceptable salt, hydrate or solvate thereof.

14. A method of treating a disease characterized by positive selection of CD4⁺T⁻cells by cortical thymic epithelial cells comprising inhibiting said positive selection of CD4⁺T⁻cells by cortical thymic epithelial cells by administering to a patient in need thereof an effective amount of a compound according to claim 1.

5