GREASELM: GRAPH REASONING ENHANCED LANGUAGE MODELS FOR QUESTION ANSWERING

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren Percy Liang, Christopher D. Manning, Jure Leskovec

International Conference on Learning Representations (ICLR) 2022.

Motivation

- Answering questions about textual narratives requires reasoning over both stated context and the unstated world knowledge.
- Pretrained language models (LM), do not robustly represent latent relationships between concepts, which is necessary for reasoning.
- Knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge in a shallow and non-interactive manner.

Motivation

 It remains an open question how to fuse and reason over the KG representations and the language context, effectively and interactively to leverage knowledge from both modalities.

Related Works

- Prior works (Kagnet, MHGRN, KT-NET) use one modality to ground the other, such as using an encoded representation of a linked KG to augment the textual representation of a QA example.
- QA-GNN (Yasunaga et al., 2021) propose to jointly update the LM and GNN representations via message passing. However, they use a single pooled representation of the LM to seed both modalities.

PROPOSED APPROACH

- A set of unimodal LM layers (N) which learn an initial representation of the input tokens.
- A set of upper cross-modal GreaseLM layers (M) which learn to jointly represent the language sequence and linked knowledge graph.
- A special interaction token w_{int} is used for LM and a special interaction node e_{int} is used for KG.

KG Retrieval

- Node name are concatenated with the context of the QA example, and pass it through a LM.
- The output score of the node name is considered as the relevance score. Top 200 scores nodes are retained.
- A subgraph is formed with all the edges that connect any two nodes.
- Each node in the subgraph is assigned a type according to whether its corresponding entity was linked from the context, question, answer, or from a bridge path.

Language Pre-Encoding

 In the unimodal encoding component, given the sequence of tokens w_{int}, w₁, ..., w_T, an output representation for each layer is computed:

$$\{\boldsymbol{h}_{int}^{(\ell)},\boldsymbol{h}_{1}^{(\ell)},\ldots,\boldsymbol{h}_{T}^{(\ell)}\} = \text{LM-Layer}(\{\boldsymbol{h}_{int}^{(\ell-1)},\boldsymbol{h}_{1}^{(\ell-1)},\ldots,\boldsymbol{h}_{T}^{(\ell-1)}\})$$
 for $\ell=1,\ldots,N$

Language Representation

 In each LM layer of GreaseLM, the input token embeddings are fed into additional transformer LM encoder blocks that continue to encode the textual context based on the LM's pretrained representations:

$$\begin{split} \{\tilde{h}_{int}^{(N+\ell)}, \tilde{h}_{1}^{(N+\ell)}, \dots, \tilde{h}_{T}^{(N+\ell)}\} &= \text{LM-Layer}(\{h_{int}^{(N+\ell-1)}, h_{1}^{(N+\ell-1)}, \dots, h_{T}^{(N+\ell-1)}\}) \\ & \text{for } \ell = 1, \dots, M \end{split}$$

Graph Representation

 in each layer of the GNN, the current representation of the node embeddings is fed into the layer to perform information propagation between nodes in the graph:

$$\begin{split} \{\tilde{e}_{int}^{(\ell)}, \tilde{e}_{1}^{(\ell)}, \dots, \tilde{e}_{J}^{(\ell)}\} &= \text{GNN}(\{e_{int}^{(\ell-1)}, e_{1}^{(\ell-1)}, \dots, e_{J}^{(\ell-1)}\}) \\ &\quad \text{for } \ell = 1, \dots, M \end{split}$$

Node Embedding Computation

 The GNN computes node representations for each node via message passing between neighbors on the graph using graph attention network:

$$\tilde{e}_j^{(\ell)} = f_n \left(\sum_{e_s \in \mathcal{N}_{e_j} \cup \{e_j\}} \alpha_{sj} m_{sj} \right) + e_j^{(\ell-1)}$$

$$r_{sj} = f_r(\tilde{r}_{sj}, u_s, u_j) \qquad m_{sj} = f_m(e_s^{(\ell-1)}, u_s, r_{sj})$$

$$q_s = f_q(e_s^{(\ell-1)}, u_s) \qquad k_j = f_k(e_j^{(\ell-1)}, u_j, r_{sj}) \qquad \gamma_{sj} = \frac{\boldsymbol{q}_s^{\top} \boldsymbol{k}_j}{\sqrt{D}}$$

$$\alpha_{sj} = \frac{\exp(\gamma_{sj})}{\sum_{e_s \in \mathcal{N}_{e_j} \cup \{e_j\}} \exp(\gamma_{sj})}$$

Modality Interaction

Finally, after using a transformer LM layer and a GNN layer to update token embeddings and node embeddings respectively, a modality interaction layer,
 MInt (a two-layer MLP) is used to let the two modalities fuse information through the bottleneck of the interaction token w_{int} and the interaction node e_{int}:

$$[\boldsymbol{h}_{int}^{(\ell)};\boldsymbol{e}_{int}^{(\ell)}] = \; \mathrm{MInt}([\tilde{\boldsymbol{h}}_{int}^{(\ell)};\tilde{\boldsymbol{e}}_{int}^{(\ell)}])$$

Learning & Inference

• Given a question **q** and an answer **a** from all the candidates **A**, we compute the probability of **a** being the correct answer as:

$$p(a \mid q, c) \propto \exp(\text{MLP}(h_{int}^{(N+M)}, e_{int}^{(M)}, g))$$

Datasets

- CommonsenseQA is a 5-way multiple-choice question answering dataset that requires background commonsense knowledge beyond surface language understanding.
- **OpenbookQA** is a 4-way multiple-choice question answering dataset that tests elementary scientific knowledge.
- **MedQA-USMLE** a 4-way multiple-choice question answering dataset, which requires biomedical and clinical knowledge.

Dataset	Example
CommonsenseQA	A weasel has a thin body and short legs to easier burrow after prey in a what? (A) tree (B) mulberry bush (C) chicken coop (D) viking ship (E) rabbit warren
OpenbookQA	Which of these would let the most heat travel through? (A) a new pair of jeans (B) a steel spoon in a cafeteria (C) a cotton candy at a store (D) a calvin klein cotton hat
MedQA-USMLE	A 57-year-old man presents to his primary care physician with a 2-month history of right upper and lower extremity weakness. He noticed the weakness when he started falling far more frequently while running errands. Since then, he has had increasing difficulty with walking and lifting objects. His past medical history is significant only for well-controlled hypertension, but he says that some members of his family have had musculoskeletal problems. His right upper extremity shows forearm atrophy and depressed reflexes while his right lower extremity is hypertonic with a positive Babinski sign. Which of the following is most likely associated with the cause of this patients symptoms? (A) HLA-B8 haplotype (B) HLA-DR2 haplotype (C) Mutation in SOD1 (D) Mutation in SMN1

Experimental Results

CommonsenseQA

- test performance improves by 5.5% over fine-tuned LMs.
- 0.9% improvement over existing LM+KG models.
- The boost over QA-GNN suggests that GREASELM's multi-layer fusion component passes more expressive information than other LM+KG methods.

Methods	IHdev-Acc. (%)	IHtest-Acc. (%) 68.7 (±0.6)	
RoBERTa-Large (w/o KG)	$73.1 (\pm 0.5)$		
RGCN (Schlichtkrull et al., 2018)	$72.7 (\pm 0.2)$	68.4 (±0.7)	
GconAttn (Wang et al., 2019)	$72.6 (\pm 0.4)$	$68.6 (\pm 1.0)$	
KagNet (Lin et al., 2019)	$73.5 (\pm 0.2)$	$69.0 (\pm 0.8)$	
RN (Santoro et al., 2017)	$74.6 (\pm 0.9)$	$69.1 (\pm 0.2)$	
MHGRN (Feng et al., 2020)	$74.5 (\pm 0.1)$	$71.1 (\pm 0.8)$	
QA-GNN (Yasunaga et al., 2021)	$76.5 (\pm 0.2)$	$73.4 (\pm 0.9)$	
GREASELM (Ours)	78.5 (±0.5)	74.2 (±0.4)	

Experimental Results

OpenbookQA

- test performance improves by 6.4% over fine-tuned LMs.
- 2.0% improvement over existing LM+KG models.

Model	Acc.	
AristoRoBERTa (no KG)	78.4	
+ RGCN	74.6	
+ GconAttn	71.8	
+ RN	75.4	
+ MHGRN	80.6	
+ QA-GNN	82.8	
GREASELM (Ours)	84.8	

Experimental Results

OpenbookQA (Public Leaderboard)

- competitive results to other systems on the leaderboard of OpenbookQA, posting the third highest score.
- Parameter-wise 8x efficient.

Model	Acc.	# Params
ALBERT (Lan et al., 2020) + KB	81.0	~235M
HGN (Yan et al., 2020)	81.4	≥355M
AMR-SG (Xu et al., 2021)	81.6	\sim 361M
ALBERT + KPG (Wang et al., 2020)	81.8	\geq 235M
QA-GNN (Yasunaga et al., 2021)	82.8	\sim 360M
T5* (Raffel et al., 2020)	83.2	$\sim 3B$
T5 + KB (Pirtoaca)	85.4	≥11B
UnifiedQA* (Khashabi et al., 2020)	87.2	$\sim 11B$
GREASELM (Ours)	84.8	~359M

Domain generality

MedQA-USMLE

- Outperforms SOTA model (SapBERT).
- LM-agnostic: improvements by GREASELM when it is seeded with other LMs, such as PubmedBERT and BioBERT.
- GreaseLM is an effective augmentation of pretrained LMs for different domains.

Methods	Acc. (%)		
Baselines (Jin et al., 2021)			
CHANCE	25.0		
PMI	31.1		
IR-ES	35.5		
IR-CUSTOM	36.1		
CLINICALBERT-BASE	32.4		
BIOROBERTA-BASE	36.1		
BIOBERT-BASE	34.1		
BIOBERT-LARGE	36.7		
Baselines (Our implementation)			
SapBERT-Base (w/o KG)	37.2		
QA-GNN	38.0		
GREASELM (Ours)	38.5		

Quantitative Analysis

Reasoning over complex questions

- Number of prepositional phrases.
- Explicit negation mentions (e.g., no, never).
- Hedging terms indicating uncertainty (e.g. sometimes; maybe).
- GreaseLM generally outperform RoBERTa-Large and QA-GNN for both questions with negation terms and hedge terms.
- GREASELM performs better than the baselines across all questions with prepositional phrases.
- GreaseLM outperforms QA-GNN where the increasing complexity of questions requires deeper cross-modal fusion between language and knowledge representations.

Model	# Prepositional Phrases				Negation	Hedge	
	0	1	2	3	4	Term	Term
n	210	429	316	171	59	83	167
RoBERTa-Large	66.7	72.3	76.3	74.3	69.5	63.8	70.7
QA-GNN	76.7	76.2	79.1	74.9	81.4	66.2	76.0
GREASELM (Ours)	75.7	79.3	80.4	77.2	84.7	69.9	78.4

Qualitative Analysis

- GNN layers' node-node attention weights are analyzed to examine whether they reflect more expressive reasoning.
- In the example, GreaseLM correctly predicts that the answer is "airplane".
- The attention by the interaction node increases on the "bug" entity in the intermediate GNN layers, but drops again by the final layer, resembling a suitable intuition surrounding the hedge term "unlikely".

Summary

- This work enables interactive fusion through joint information exchange between knowledge from language models and knowledge graphs.
- GreaseLM shows improved capability of modeling questions exhibiting textual nuances, such as negation and hedging.

References

- Zhang et al. "GreaseLM: Graph REASoning Enhanced Language Models for Question Answering", ICLR 2022. Link: https://arxiv.org/abs/2201.08860
- Yasunaga et al. "QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering", NAACL 2021. Link: https://arxiv.org/abs/2104.06378

Thank You