Digital Clock Implementation using Arduino with Multiplexing and Editing Features

Dhawal

Department of Electrical Engineering Indian Institute of Technology Hyderabad Email: ee24btech11015@iith.ac.in

Electrical Engineering Department Indian Institute of Technology, Hyderabad

Outline

- Introduction
- Components
- Circuit Connections
- Multiplexing Technique
- Digit Editing Logic
- 6 Increment Logic
- Decrement Logic
- Hardware Build
- Conclusion

Introduction

- Digital clock system with editing features using Arduino
- Multiplexing six 7-segment displays using minimal I/O pins
- Pause/play functionality and digit-by-digit editing
- Boolean logic for increment/decrement and constraints for each digit

Components List

Component	Value	Quantity
Arduino Uno		1
USB Cable	Type B	1
Seven Segment Display	Common Cathode	6
Push Buttons		4
IC 7447		1
Jumper Wires	M-M	16
Breadboard		1
Resistors	220Ω	7
Resistors	$10k\Omega$	4

Arduino Pin Connections

ltem	Arduino Pin	Function
Button 1	D10	Edit Mode Toggle
Button 2	D11	Next Digit Selection
Button 3	D12	Increment Digit
Button 4	D13	Decrement Digit
IC 7447 Pin 7	D0	BCD Bit 0 (A)
IC 7447 Pin 1	D1	BCD Bit 1 (B)
IC 7447 Pin 2	D2	BCD Bit 2 (C)
IC 7447 Pin 6	D3	BCD Bit 3 (D)
Display 1	D4	Hours Tens Digit
Display 2	D5	Hours Units Digit
Display 3	D6	Minutes Tens Digit
Display 4	D7	Minutes Units Digit
Display 5	D8	Seconds Tens Digit
Display 6	D9	Seconds Units Digit

Multiplexing

- All BCD inputs shared among six 7-segment displays
- Arduino controls enable pins D4-D9
- ullet Each digit displayed for 1ms o appears continuous
- Saves I/O pins, enables six-digit display

Editing System

- PAUSE button toggles run/edit mode
- NEXT button selects which digit to edit
- INC button increments selected digit (rollover constraints)
- DEC button decrements selected digit (rollunder constraints)
- Selected digit blinks every 500ms

Digit Constraints

- Seconds/Minutes Ones: 0–9
- Seconds/Minutes Tens: 0–5
- Hours Ones: 0-9 (if tens = 0/1), 0-3 (if tens = 2)
- Hours Tens: 0–2

Seconds / Minutes / Hours (Tens= 0/1) Ones (0-9)

Ζ	Υ	Χ	W	D	С	В	Α
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0 0 0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

$$A = W'_1$$

$$B = (W_1 X'_1 Z'_1) + (W'_1 X_1)$$

$$C = (X'_1 Y_1) + (W'_1 Y_1) + (W_1 X_1 Y'_1)$$

$$D = (W'_1 Z_1) + (W_1 X_1 Y_1)$$

Seconds / Minutes Tens (0-5)

Z	Υ	Χ	W	D	С	В	Α
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	0	0

$$A = W'_2$$

$$B = (W_2 X'_2 Y'_2) + (W'_2 X_2)$$

$$C = (W_2 X_2) + (W'_2 X'_2 Y_2)$$

$$D = 0$$

Hours Ones (Tens = $2 \rightarrow 0-3$)

Χ	W	D	С	В	Α
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1
1	1	0	0	0	0

$$A = W'_5$$

 $B = (W_5 X'_5) + (W'_5 X_5)$
 $C = 0$
 $D = 0$

Hours Tens (0-2)

Χ	W	D	С	В	Α
0	0	0	0	0	1
0	1	0	0	0	0
1	0	0	0	0	0

$$A = W'_6 X'_6$$

$$B = W_6 X'_6$$

$$C = 0$$

$$D = 0$$

Seconds / Minutes / Hours(Tens = 0/1) Ones (0-9)

Z	Υ	Χ	W	D	С	В	Α
0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	0	1	1
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	1
0	1	1	1	0	1	1	0
1	0	0	0	0	1	1	1
1	0	0	1	1	0	0	0

$$A = W'_1$$

$$B = (X'_1 W'_1((Z'_1 Y_1) + (Z_1 Y'_1))) + (Z'_1 W_1)$$

$$C = (Z'_1 Y_1(X_1 + W_1)) + (Z_1 X'_1 W'_1 Y'_1)$$

$$D = X'_1 Y'_1((Z_1 W_1) + (Z'_1 W'_1))$$

Seconds / Minutes Tens (0-5)

Z	Υ	Χ	W	D	С	В	Α
0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	0	1	1
0	1	0	1	0	1	0	0

$$A = W_2'$$

$$B = (Y_2 X_2' W_2') + (Y_2' X_2 W_2)$$

$$C = X_2'((Y_2 W_2) + (Y_2' W_2'))$$

$$D = 0$$

Hours Ones (Tens = $2 \rightarrow 0-3$)

Χ	W	D	С	В	Α
0	0	0	0	1	1
0	1	0	0	0	0
1	0	0	0	0	1
1	1	0	0	1	0

$$A = W'_5$$

 $B = (X_5 W_5) + (X'_5 W'_5)$
 $C = 0$
 $D = 0$

Hours Tens (0-2)

Χ	W	D	С	В	Α
0	0	0	0	1	0
0	1	0	0	0	0
1	0	0	0	0	1

$$A = X_6 W_6'$$

$$B = X_6' W_6'$$

$$C = 0$$

$$D = 0$$

Hardware Implementation

- Connect seven-segment displays to breadboard
- Connect all segment outputs together (through resistors)
- Make connections to IC7447 and buttons to Arduino
- Add current-limiting resistors for LEDs
- Add pull-down resistors for buttons

Tinkercad Simulation

Clock Tinkercad Simulation

Summary

- Successfully implemented digital clock with editing features
- Efficient multiplexing and minimal I/O usage
- Complete increment/decrement logic implemented via Boolean expressions
- Full digit-by-digit editing with constraints for hours, minutes, seconds

Acknowledgment

The complete source code and documentation can be found at: https://github.com/Dhawal24112006/projects.git

Thank You!