## **Big Data**

Chapter 19
Principles of Database Management
Lemahieu et. al.
Cambridge

#### Introduction

- The 5 Vs of Big Data
- Hadoop
- SQL on Hadoop
- Apache Spark

## The 5 Vs of Big Data

- Every minute:
  - more than 300,000 tweets are created
  - Netflix subscribers are streaming more than 70,000 hours of video at once
  - Apple users download 30,000 apps
  - Instagram users like almost two million photos
- Big Data encompasses both structured and highly unstructured forms of data

## The 5 Vs of Big Data

- Volume: the amount of data, also referred to the data "at rest"
- Velocity: the speed at which data comes in and goes out, data "in motion"
- Variety: the range of data types and sources that are used, data in its "many forms"
- Veracity: the uncertainty of the data; data "in doubt"
- Value: TCO and ROI of the data

## The 5 Vs of Big Data

#### Examples:

- Large-scale enterprise systems
  - e.g., ERP Enterprise Resource Planning
  - CRM Customer Relationship Management
  - SCM Supply chain management
- Social networks (e.g., Twitter, Weibo, WeChat)
- Internet of Things
- Open data

## Hadoop

- Open-source software framework used for distributed storage and processing of big datasets
- Can be set up over a cluster of computers built from normal, commodity hardware
- Many vendors offer their implementation of a Hadoop stack (e.g., Amazon, Cloudera, Dell, Oracle, IBM, Microsoft)

# Hadoop

- History of Hadoop
- The Hadoop stack

# History of Hadoop

- Key building blocks:
  - Google File System: a file system that could be easily distributed across commodity hardware, while providing fault tolerance
  - Google MapReduce: a programming paradigm to write programs that can be automatically parallelized and executed across a cluster of different computers
- Nutch web crawler prototype developed by Doug Cutting
  - Later renamed to Hadoop
- In 2008, Yahoo! open-sourced Hadoop as "Apache Hadoop"

#### The Hadoop Stack

#### Four modules:

- Hadoop Common: a set of shared programming libraries used by the other modules
- Hadoop Distributed File System (HDFS): a Java-based file system to store data across multiple machines
- MapReduce framework: a programming model to process large sets of data in parallel
- YARN (Yet Another Resource Negotiator): handles the management and scheduling of resource requests in a distributed environment

- Distributed file system to store data across a cluster of commodity machines
- High emphasis on fault tolerance
- HDFS cluster is composed of a NameNode and various DataNodes

#### NameNode

- A server that holds all the metadata regarding the stored files (i.e., registry)
- Manages incoming file system operations
- Maps data blocks (parts of files) to DataNodes

#### DataNode

- Handles file read and write requests
- Creates, deletes, and replicates data blocks among their disk drives
- Continuously loop, asking the NameNode for instructions
- Note: size of one data block is typically 64 megabytes









 HDFS provides a native Java API to allow for writing Java programs that can interface with HDFS

```
String filePath = "/data/all_my_customers.csv";
Configuration config = new Configuration();
org.apache.hadoop.fs.FileSystem hdfs =
org.apache.hadoop.fs.FileSystem.get(config);
org.apache.hadoop.fs.Path path = new
org.apache.hadoop.fs.Path(filePath);
org.apache.hadoop.fs.FSDataInputStream inputStream =
hdfs.open(path);
byte[] received = new byte[inputStream.available()];
inputStream.readFully(received);
```

```
// ...
org.apache.hadoop.fs.FSDataInputStream inputStream = hdfs.open(path);
byte[] buffer=new byte[1024]; // Only handle 1KB at once
int bytesRead;
while ((bytesRead = in.read(buffer)) > 0) {
    // Do something with the buffered block here
}
```

| hadoop fs -mkdir mydir          | Create a directory on HDFS                          |
|---------------------------------|-----------------------------------------------------|
| hadoop fs -1s                   | List files and directories on HDFS                  |
| hadoop fs -cat myfile           | View a file's content                               |
| hadoop fs -du                   | Check disk space usage on HDFS                      |
| hadoop fs -expunge              | Empty trash on HDFS                                 |
| hadoop fs -chgrp mygroup myfile | Change group membership of a file on HDFS           |
| hadoop fs -chown myuser myfile  | Change file ownership of a file on HDFS             |
| hadoop fs -rm myfile            | Delete a file on HDFS                               |
| hadoop fs -touchz myfile        | Create an empty file on HDFS                        |
| hadoop fs -stat myfile          | Check the status of a file (file size, owner, etc.) |
| hadoop fs -test -e myfile       | Check if a file exists on HDFS                      |
| hadoop fs -test -z myfile       | Check if a file is empty on HDFS                    |
| hadoop fs -test -d myfile       | Check if myfile is a directory on HDFS              |

- Programming paradigm made popular by Google and subsequently implemented by Apache Hadoop
- Focus on scalability and fault tolerance
- A map—reduce pipeline starts from a series of values and maps each value to an output using a given mapper function

High-level Python example

#### – Map

```
>>> numbers = [1,2,3,4,5]
>>> numbers.map(lambda x : x * x) # Map a
function to our list
[1,4,9,16,25]
```

#### Reduce

```
>>> numbers.reduce(lambda x : sum(x) + 1)
# Reduce a list using given function
16
```

- A MapReduce pipeline in Hadoop starts from a list of key value pairs, and maps each pair to one or more output elements
- The output elements are also key—value pairs
- Next, the output entries are grouped so all output entries belonging to the same key are assigned to the same worker (e.g., physical machine)
- These workers then apply the reduce function to each group, producing a new list of key-value pairs
- The resulting, final outputs can then be sorted

- Reduce-workers can already get started on their work even although not all mapping operations have finished yet
- Implications:
  - The reduce function should output the same key-value structure as the one emitted by the map function
  - The reduce function itself should be built in such a way that it provides correct results, even if called multiple times

- In Hadoop, MapReduce tasks are written in Java
- To run a MapReduce task, a Java program is packaged as a JAR archive and launched as:

```
hadoop jar myprogram.jar TheClassToRun [args...]
```

 Example: Java program to count the appearances of a word in a file

```
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
 // Following fragments will be added here
```

 Define mapper function as a class extending the built-in Mapper<KeyIn, ValueIn, KeyOut, ValueOut> class, indicating which type of key– value input pair we expect and which type of key– value output pair our mapper will emit

```
public static class MyMapper extends Mapper<Object, Text, Text, IntWritable> {
              // Our input key is not important here, so it can just be any generic object. Our input value is a piece of text (a line)
              // Our output key will also be a piece of text (a word). Our output value will be an integer.
              public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
                            // Take the value, get its contents, convert to lowercase,
                            // and remove every character except for spaces and a-z values:
                            String document = value.toString().toLowerCase().replaceAll("[^a-z\\s]", "");
                            // Split the line up in an array of words
                            String[] words = document.split(" ");
                            // For each word...
                            for (String word : words) {
                                           // "context" is used to emit output values
                                           // Note that we cannot emit standard Java types such as int, String, etc. Instead, we need to use
                                           // a org.apache.hadoop.io.* class such as Text (for string values) and IntWritable (for integers)
                                           Text textWord = new Text(word);
                                           IntWritable one = new IntWritable(1);
                                           // ... simply emit a (word, 1) key-value pair:
                                           context.write(textWord, one);
```

| Input key-value pairs |                                              |
|-----------------------|----------------------------------------------|
| Key <object></object> | Value <text></text>                          |
| 0                     | This is the first line                       |
| 23                    | And this is the second line, and this is all |



 Reducer function is specified as a class extending the built-in Reducer<KeyIn, ValueIn, KeyOut, ValueOut> class

```
public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
         public void reduce(Text key, Iterable<IntWritable> values, Context context)
                            throws IOException, InterruptedException {
                  int sum = 0:
                  IntWritable result = new IntWritable();
                  // Summarise the values so far...
                  for (IntWritable val : values) {
                            sum += val.get();
                   }
                  result.set(sum);
                  // ... and output a new (word, sum) pair
                  context.write(key, result);
```

| Mapped key–value pairs |                                   |  |
|------------------------|-----------------------------------|--|
| Key <text></text>      | Value <intwritable></intwritable> |  |
| this                   | 1                                 |  |
| is                     | 1                                 |  |
| the                    | 1                                 |  |
| first                  | 1                                 |  |
| line                   | 1                                 |  |
| and                    | 1                                 |  |
| this                   | 1                                 |  |
| is                     | 1                                 |  |

| Mapped key-value pairs for "this" |                                   |  |
|-----------------------------------|-----------------------------------|--|
| Key <text></text>                 | Value <intwritable></intwritable> |  |
| this                              | 1                                 |  |
| this                              | 1                                 |  |



| Reduced key-value pairs for "this" |                                   |  |
|------------------------------------|-----------------------------------|--|
| Key <text></text>                  | Value <intwritable></intwritable> |  |
| this                               | 1+1=2                             |  |

```
public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    // Set up a MapReduce job with a sensible short name:
                                                                // The second argument is the output directory on
    Job job = Job.getInstance(conf, "wordcount");
                                                                // HDFS
                                                                Path outputDir = new Path(args[1]);
    // Tell Hadoop which JAR it needs to distribute
                                                                // Tell Hadoop what our desired output structure is
    // to the workers.
    // We can easily set this using setJarByClass
                                                                FileOutputFormat.setOutputPath(job, outputDir);
    job.setJarByClass(WordCount.class);
                                                                // Delete the output directory if it exists
                                                                FileSystem fs = FileSystem.get(conf);
    job.setMapperClass(MyMapper.class);
                                                                fs.delete(outputDir, true);
    job.setReducerClass(MyReducer.class);
                                                                // Stop after our job has completed
    // What does the output look like?
                                                                System.exit(job.waitForCompletion(true) ? 0 : 1);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    // Our program expects two arguments, the first one is the input
    // file on HDFS
    // Tell Hadoop our input is in the form of TextInputFormat
    // (Every line in the file will become value to be mapped)
    TextInputFormat.addInputPath(job, new Path(args[0]));
```

hadoop jar wordcount.jar WordCount /users/me/dataset.txt /users/me/output/

```
Command Prompt
[root@sandbox Desktop]$ hadoop jar wordcount.jar WordCount /users/me/dataset.txt /users/me/output/
17/03/16 15:14:23 INFO impl.TimelineClientlmpl: Timeline service address: http://sandbox.hortonworks.com:8188/ws/v1/timeline/
17/03/16 15:14:23 INFO client.RMProxy: Connecting to ResourceManager at sandbox.hortonworks.com/172.17.0.2:8050
17/03/16 15:14:23 INFO client.AHSProxy: Connecting to Application History server at sandbox.hortonworks.com/172.17.0.2:10200
17/03/16 15:14:23 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed.
                       Implement the Tool interface and execute your application with ToolRunner to remedy this.
17/03/16 15:14:23 INFO input.FilelnputFormat: Total input paths to process : 1
17/03/16 15:14:23 INFO lzo.GPLNativeCodeLoader: Loaded native gpl library
17/03/16 15:14:23 INFO lzo.LzoCodec: Successfully loaded & initialized native-lzo library
                       [hadoop-lzo rev 7a4b57bedce694048432dd5bf5b90a6c8ccdba80]
17/03/16 15:14:24 INFO mapreduce.JobSubmitter: number of splits:1
17/03/16 15:14:24 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1489673597052_0001
17/03/16 15:14:24 INFO impl.YarnClientlmpl: Submitted application application 1489673597052 0001
17/03/16 15:14:25 INFO mapreduce.Job: The url to track the job: http://sandbox.hortonworks.com:8088/proxy/application 1489673597052 0001/
17/03/16 15:14:25 INFO mapreduce.Job: Running job: job_1489673597052 0001
17/03/16 15:14:42 INFO mapreduce.Job: Job job 1489673597052 0001 running in uber mode : false
|17/03/16 15:14:42 INFO mapreduce.Job: map 0% reduce 0%
17/03/16 15:14:49 INFO mapreduce.Job: map 100% reduce 0%
17/03/16 15:14:57 INFO mapreduce.Job: map 100% reduce 100%
17/03/16 15:14:57 INFO mapreduce.Job: Job job 1489673597052 0001 completed successfully
17/03/16 15:14:57 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=5269
                FILE: Number of bytes written=298885
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations-0
                HDFS: Number of bytes read-2826
                HDFS: Number of bytes written=2069
                HDPS: Number of read operations=6
```

```
$ hadoop fs -ls /users/me/output
Found 2 items
-rw-r-r--1 root
                  hdfs
                              2017-05-20 15:11
                                                        /users/me/output/ SUCCESS
-rw-r-r--1 root
                  hdfs
                         2069 2017-05-20 15:11
                                                        /users/me/output/part-r-00000
$ hadoop fs -cat /users/me/output/part-r-00000
and
first
is
line
second
the
this
```

- MapReduce task can consist of more than mappers and reducers
- Can also include
  - Partitioners
  - Combiners
  - Shufflers
  - Sorters

# MapReduce Partitioner

- condition in processing an input dataset.
- partition phase takes place after the Map phase and before the Reduce phase.
- The number of partitioners is equal to the number of reducers.
  - partitioner will divide the data according to the number of reducers.

# MapReduce Partitioner

- A partitioner partitions the key-value pairs of intermediate Map-outputs.
- partitions data using a user-defined condition,
  - works like a hash function.

- Code for below example can be found at <u>https://www.tutorialspoint.com/map\_reduce/map\_reduce\_map\_reduce\_partitioner.htm</u>
- Dataset

Id Name Age Gender Salary

- Task
  - find highest salaried employee by gender in different age groups (for example, below 20, between 21 to 30, above 30).

#### Map task:

- Read the value (record data), which comes as input value from the argument list in a string.
- Using the split function, separate the gender and store in a string variable.
- Output of map task
  - gender data and the record data value as key-value pairs.

#### Partitioner input

- input key-value paired data output from mapper
- key = Gender field value in the record.
- value = Whole record data value of that gender.
- The whole data of key-value pairs are segmented into three collections of key-value pairs
  - Based on age

#### Partitioner output

 key-value pairs are segmented into three collections of key-value pairs.

- Reducer works individually on each collection.
- Reducer Input three reducers with different collection of key-value pairs.
  - key = gender field value in the record.
  - value = the whole record data of that gender.

#### Output of Reducer

- set of key-value pair data in three collections of different age groups.
- max salary from the Male collection in each age group respectively
- max salary from the Female collection in each age group respectively

- the three collections of key-value pair data are stored in three different files as the output.
- requirements and specifications of these jobs should be specified in the Configurations –
  - Job name
  - Input and Output formats of keys and values
  - Individual classes for Map, Reduce, and Partitioner tasks

- Output will be in three files
  - three partitioners and three Reducers
- Files generated by HDFS
  - Part-00000
  - Part-00001
  - Part-00002

Code can be found at

https://www.tutorialspoint.com/map reduce/map
reduce combiners.htm

- optional class
  - accepts inputs from Map class and passes output keyvalue pairs to Reducer class.
- summarizes map output records with the same key
- output (key-value collection) of combiner sent over network to the actual Reducer task as input

- Combiner class used in between Map class and Reduce class to reduce volume of data transfer between Map and Reduce.
  - Usually, output of map task is large and data transferred to reduce task is high.



- implements Reducer interface's reduce() method.
- operates on each map output key.
  - must have same output key-value types as Reducer class
- can produce summary information from a large dataset because it replaces original Map output
- optional helps segregating data into multiple groups for Reduce phase

#### Input text file:

What do you mean by Object

What do you know about Java

What is Java Virtual Machine

How Java enabled High Performance

#### Key value pairs

- <1, What do you mean by Object>
- <2, What do you know about Java>
- <3, What is Java Virtual Machine>
- <4, How Java enabled High Performance>

- Key-value pairs input to Map phase
- Output of Map phase

```
<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1>
<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1>
<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1>
<How,1> <Java,1> <enabled,1> <High,1> <Performance,1>
```

This is input to combiner

#### Output of combiner

```
<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> 
<Now,1> <about,1> <Java,1,1,1> 
<is,1> <Virtual,1> <Machine,1> 
<How,1> <enabled,1> <High,1> <Performance,1>
```

This is input to reducer

#### Output from Reducer

```
<What,3> <do,2> <you,2> <mean,1> <by,1> <Object,1> <know,1> <about,1> <Java,3> <is,1> <Virtual,1> <Machine,1> <How,1> <enabled,1> <High,1> <Performance,1>
```

## MapReduce

- Constructing MapReduce programs requires a certain skillset in terms of programming
- Tradeoffs in terms of speed, memory consumption, and scalability

Yet Another Resource Negotiator (YARN)
 distributes a MapReduce program across different
 nodes and takes care of coordination

- Three important services
  - ResourceManager: a global YARN service that receives and runs applications (e.g., a MapReduce job) on the cluster
  - JobHistoryServer: keeps a log of all finished jobs
  - NodeManager: responsible for overseeing resource consumption on a node
    - ApplicationMaster responsible for the execution of a single application.
      - Asks for containers from the Resource Manage) and executes specific programs (e.g., the main of a Java class) on the obtained containers

Client

ResourceManager

JobHistoryServer

NodeManager

NodeManager







- Complex setup
- Allows running programs and applications other than MapReduce

### SQL on Hadoop

- MapReduce very complex when compared to SQL
- Need for a more database-like setup on top of Hadoop

## SQL on Hadoop

- HBase
- Pig
- Hive

- Hadoop batch processing
  - data accessed in a sequential manner.
- Need to access any point of data in a single unit of time (random access).

- distributed column-oriented database built on top of Hadoop file system.
- horizontally scalable.
- similar to Google's big table to provide quick random access to huge amounts of structured data.
- provides random real-time read/write access to data in the Hadoop File System.
- Structured and semi-structured data



| HDFS                                              | HBase                                                                                                      |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| distributed file system - for storing large files | database built on top of the HDFS                                                                          |
| does not support fast individual record lookups   | fast lookups                                                                                               |
| high latency batch processing                     | low latency access to single rows from billions of records (Random access)                                 |
| sequential access of data                         | uses Hash tables and provides random access<br>and stores data in indexed HDFS files for<br>faster lookups |

- NoSQL-like data storage platform
  - No typed columns, triggers, advanced query capabilities, etc.
- Offers a simplified structure and query language in a way that is highly scalable and can tackle large volumes

- Similar to RDBMSs, HBase organizes data in tables with rows and columns
- HBase table consists of multiple rows
- A row consists of a row key and one or more columns with values associated with them
- Rows in a table are sorted alphabetically by the row key

- Each column in HBase is denoted by a column family and qualifier (separated by a colon, ":")
- A column family physically co-locates a set of columns and their values
- Every row has the same column families, but not all column families need to have a value per row
- Each cell in a table is hence defined by a combination of the row key, column family and column qualifier, and a timestamp

- Example: HBase table to store and query users
- The row key will be the user id
- column families:qualifiers
  - name:first
  - name:last
  - email (without a qualifier)

```
hbase(main):001:0> create 'users', 'name', 'email'
0 row(s) in 2.8350 seconds
=> Hbase::Table - users
hbase(main):002:0> describe 'users'
Table users is ENABLED
users
COLUMN FAMILIES DESCRIPTION
{NAME => 'email', BLOOMFILTER => 'ROW', VERSIONS => '1', IN MEMORY => 'false', K
EEP DELETED CELLS => 'FALSE', DATA BLOCK ENCODING => 'NONE', TTL => 'FOREVER', C
OMPRESSION => 'NONE', MIN VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '6
5536', REPLICATION SCOPE => '0'}
{NAME => 'name', BLOOMFILTER => 'ROW', VERSIONS => '1', IN MEMORY => 'false', KE
EP DELETED CELLS => 'FALSE', DATA BLOCK ENCODING => 'NONE', TTL => 'FOREVER', CO
MPRESSION => 'NONE', MIN VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65
536', REPLICATION SCOPE => '0'}
2 \text{ row(s)} in 0.3250 \text{ seconds}
```

```
hbase(main):003:0> list 'users'
TABLE
users
1 row(s) in 0.0410 seconds
=> ["users"]
```

```
hbase(main):006:0> put 'users', 'seppe', 'name:first', 'Seppe'
0 row(s) in 0.0200 seconds
hbase(main):007:0> put 'users', 'seppe', 'name:last', 'vanden Broucke'
0 row(s) in 0.0330 seconds
hbase(main):008:0> put 'users', 'seppe', 'email', 'seppe.vandenbroucke@kuleuven'
0 row(s) in 0.0570 seconds
hbase(main):009:0> scan 'users'
ROW
                     COLUMN+CELL
                     column=email:, timestamp=1495293082872, value=seppe.vanden
seppe
                     broucke@kuleuven.be
                     column=name:first, timestamp=1495293050816, value=Seppe
seppe
                     column=name:firstt, timestamp=1495293047100, value=Seppe
seppe
                     column=name:last, timestamp=1495293067245, value=vanden Broucke
seppe
1 row(s) in 0.1170 seconds
```

#### **HBase**

```
hbase(main):011:0> get 'users', 'seppe'
COLUMN
                              CELL
 email:
                              timestamp=1495293082872,
value=seppe.vandenbroucke@kuleuven.be
name:first
                              timestamp=1495293050816, value=Seppe
name:firstt
                              timestamp=1495293047100, value=Seppe
name:last
                              timestamp=1495293067245, value=vanden Broucke
4 row(s) in 0.1250 seconds
hbase(main):018:0> put 'users', 'seppe', 'email', 'seppe@kuleuven.be'
0 row(s) in 0.0240 seconds
hbase(main):019:0> get 'users', 'seppe', 'email'
COLUMN
                              CFLL
email:
                              timestamp=1495293303079, value=seppe@kuleuven.be
1 row(s) in 0.0330 seconds
```

#### **HBase**

- HBase's query facilities are very limited
- Essentially a key-value, distributed data store with simple get/put operations
- Includes facilities to write MapReduce programs
- Hbase (similar to Hadoop) doesn't perform well on less than five HDFS DataNodes with an additional NameNode
  - Only makes the effort worthwhile when you can invest in, set up, and maintain at least 6–10 nodes

# Pig

- Yahoo! Developed "Pig" which was made open source as Apache Pig in 2007
- High-level platform for creating programs that run on Hadoop (in Pig Latin), which uses MapReduce underneath
- Somewhat resembles querying facilities of SQL
- procedural language platform used to develop a script for MapReduce operations.

### Pig

```
timesheet = LOAD 'timesheet.csv' USING PigStorage(',');
raw_timesheet = FILTER timesheet by $0 > 100;
timesheet_logged = FOREACH raw_timesheet GENERATE $0 AS
driverId, $2 AS hours_logged, $3 AS miles_logged;
grp_logged = GROUP timesheet_logged by driverId;
sum_logged = FOREACH grp_logged GENERATE group as driverId,
SUM(timesheet_logged.hours_logged) as sum_hourslogged,
SUM(timesheet_logged.miles_logged) as sum_mileslogged;
```

## Pig

- Some have argued that RDBMSs and SQL are substantially faster than MapReduce – and hence Pig
  - Especially for relatively sized, structured data
- Pig Latin is relatively procedural versus declarative
   SQL
- No wide adoption

- Initially developed by Facebook but open-sourced afterwards
- Data warehouse solution offering SQL querying facilities on top of Hadoop
- Converts SQL-like queries to a MapReduce pipeline
- Also offers a JDBC and ODBC interface
- Can run on top of HDFS, as well as other file systems

- Hive Metastore stores metadata for each table such as its schema and location on HDFS (using an RDBMS)
- Driver service is responsible to receive and handle incoming queries
  - Query is first converted to an abstract syntax tree, which is then converted to a directed acyclic graph representing an execution plan
  - The directed acyclic graph will contain a number of MapReduce stages and tasks
- Optimizer optimizes the directed acyclic graph
- Executer sends MapReduce stages to Hadoop's resource manager (e.g., YARN) and monitors their progress

- HiveQL does not completely follow the full SQL-92 standard
  - e.g., lacks strong support for indexes, transactions, materialized views, and only has limited subquery support
- Example: SELECT genre, SUM(nrPages) FROM books GROUP BY genre

- HiveQL also allows querying datasets other than structured tables as long as it is possible to express a statement to extract data out of them in a tabular format
- Example: Word count CREATE TABLE docs (line STRING); -create a docs table-- load in file from HDFS to docs table, overwrite existing data:

```
LOAD DATA INPATH '/users/me/doc.txt' OVERWRITE INTO
TABLE docs;
-- perform word count
SELECT word, count(1) AS count
FROM (
  SELECT explode(split(line, '\s')) AS word FROM docs
) t
GROUP BY t.word
ORDER BY t.word;
```

- One difference with traditional RDBMS is that Hive does not enforce the schema at the time of loading the data
  - Hive: schema-on-read
  - RDBMS: schema-on-write
- Recent versions of Hive support full ACID transaction management
- Performance and speed of SQL queries still forms the main disadvantage of Hive today
  - Solutions to bypass MapReduce (e.g., Apache Tez, Cloudera Impala, Facebook Presto)

### **Apache Spark**

- Open-source alternative for MapReduce
- New programming paradigm centered on a data structure called the resilient distributed dataset (RDD), which can be distributed across a cluster of machines and is maintained in a fault-tolerant way
- RDDs can enable the construction of iterative programs that have to visit a dataset multiple times, as well as more interactive or exploratory programs
- Many orders of magnitude faster than MapReduce implementations
- Rapidly adopted by many Big Data vendors

### **Apache Spark**

- Similar to Hadoop, Spark works with HDFS and requires a cluster manager (e.g., YARN)
- Key components
  - Spark Core
  - Spark SQL
  - MLib, Spark Streaming, GraphX

- Foundation for all other components
- Provides functionality for task scheduling and a set of basic data transformations that can be used through many programming languages (e.g., Java, Python, Scala, and R)
- RDDs are the primary data abstraction in Spark
  - Designed to support in-memory data storage and operations, distributed across a cluster

- Once data are loaded into an RDD, two basic types of operations can be performed:
  - Transformation, which creates a new RDD through changing the original one
  - Actions (such as counts), which measure but do not change the original data
- Transformations are lazily evaluated
  - They are not executed until a subsequent action has a need for the result
- RDDs will also be kept as long as possible in memory
- A chain of RDD operations gets compiled by Spark into a directed acyclic graph which is then spread out and calculated over the cluster

A programmer writes a Spark program using its API:

rdd1.join(rdd2).groupBy(...).filter(...)



 Spark's RDD API is relatively easy to work with compared to writing MapReduce programs

```
# Set up connection to the Spark cluster
sconf = SparkConf()
sc = SparkContext(master='', conf=sconf)
# Load in an RDD from a text file, the RDD will represent a collection of
# text strings (one for each line)
text file = sc.textFile("myfile.txt")
# Count the word occurrences
counts = text file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)
print(counts)
```

- Spark SQL runs on top of Spark Core and introduces another data abstraction called DataFrames
- DataFrames can be created from RDDs by specifying a schema on how to structure the data elements in the RDD, or can be loaded in directly from various sorts of file formats
- Even although DataFrames continue to use RDDs behind the scenes, they represent themselves to the end-user as a collection of data organized into named columns

```
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Spark
example").getOrCreate()
# Create a DataFrame object by reading in a file
df = spark.read.json("people.json")
df.show()
# | age| name|
# +----+
# |null| Seppe|
# | 30|Wilfried|
# | 19| Bart|
# +----+
# DataFrames are structured in columns and rows:
df.printSchema()
# root
# |-- age: long (nullable = true)
 |-- name: string (nullable = true)
```

```
df.select("name").show()
# +----+
# | name|
# +----+
# | Seppe|
# |Wilfried|
# | Bart|
# +----+
# SQL-like operations can now easily be expressed:
df.select(df['name'], df['age'] + 1).show()
# +----+
# | name|(age + 1)|
# +----+
# | Seppe | null|
# |Wilfried| 31|
# | Bart| 20|
# +----+
```

```
df.filter(df['age'] > 21).show()
# +---+
# |age| name|
# +---+
# | 30|Wilfried|
# +---+
df.groupBy("age").count().show()
# +---+
# | age|count|
# +---+
# | 19 | 1 |
# |null| 1|
# | 30| 1|
# +---+
```

 Spark implements a full SQL query engine that can convert SQL statements to a series of RDD transformations and actions

- MLlib is Spark's machine learning library
  - Offers classification, regression, clustering, and recommender system algorithms
- MLlib was originally built directly on top of the RDD abstraction
- New MLlib version works directly with SparkSQL's DataFrames based API

- Spark Streaming leverages Spark Core and its fast scheduling engine to perform streaming analytics
- Spark Streaming provides another high-level concept called the DStream (discretized stream), which represents a continuous stream of data
  - Internally a DStream is represented as a sequence of RDD fragments
- DStreams provide windowed computations, which allow applying transformations over a sliding window of data

#### Example: word counting

```
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
sc = SparkContext("local[2]", "StreamingWordCount")
ssc = StreamingContext(sc, 1)
# Create a DStream that will connect to server.mycorp.com:9999 as a source
lines = ssc.socketTextStream("server.mycorp.com", 9999)
# Split each line into words
words = lines.flatMap(lambda line: line.split(" "))
# Count each word in each batch
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)
# Print out first ten elements of each RDD generated in the wordCounts Dstream
wordCounts.pprint()
# Start the computation
ssc.start()
ssc.awaitTermination()
```

- GraphX is Spark's component implementing programming abstractions to deal with graphbased structures, again based on the RDD abstraction.
- GraphX comes with a set of fundamental operators and algorithms (such as PageRank) to work with graphs and simplify graph analytics tasks

#### Conclusion

- The 5 Vs of Big Data
- Hadoop
- SQL on Hadoop
- Apache Spark