- 06) stow many intégues greatere than 5400 houre holls of the following properties
 - a) the digits are distinct
 - b) the digits 2 and 7 do not occure
- Ins) a) since the digits are destind so me can format most 8 digits
 - (i) 5-diget numbers:

since, the first diget cannot be zero, we have 7 ofitions in 1st diget. Here the 100's -digit we have 6 ofitions, 10's -digit 5 ofitions and for writes 4 ofition

so, 7·7·6.5·4 = 5 soo

- (ii) 6-digit numbers; -7x7x6x5x4x3 = 17,640
- (iii) 7-digit numbers:-7 x 7 x 6 x 5 x 9 x 3 x 2 = 35, 280
 - (hu) sodigits numbers; -
- b) since 2 and 7 down't occur, and all digits are distinct, the numbers should have at most of digit and at least 4 digit

3x7x6x5 + 4x6x5 = 750 90, tolal is = 750 + 5880 + 17,640 + (2x35380) = 94830.

- ocht ere enallaturent -8 gram evet ? ESESSES? Stove of the letters of the event of these wire letters?
- (Arrs) (a) Jotal letteres in the would ADDRESSES = 9

Jotal S's = 3

Total no of fermulations = 9! = 15,120

(b) when we durinate letter 'A'

No. of permutations = 87 21.81

= 1680.

Juhan sue eliminate 'D'

No. of formitations = 8! 8131.

when we eliminate 'R'

No. of premutations = 8! 3! 3! 3!

= 1680

when we elemenate 'E'

No. of formulations = 8!

= 3360

when we eliminate 's'

No. of pormulations = 81 81.81.81 = 50.00

: fotal no. of ferenulations = (2×1680) + (2×3360) + 5040

= 15120

- evicular arrangement around a table. In how many ways can this he done If no boy is to sit next to a hory and no girl is to sit next to a hory and no girl is to sit next to a long and are 3 porents?
- (dros) a) Jotal no. of averangements = 51, x 51, = 14400

give no log is to set next to a log and no god is to sit next to a give, so

let quieds be G1, G2, G3, G4, G5 and boys be B1, B2, B3, B4, B5 and but parent be P1

$$(5)$$
 g_1 g_2 g_3 g_4 g_5 g_5 g_7 g_8 g_8 g_8 g_8 g_8 g_8 g_9 g_9

so, total no. of averangement is

2 × 14400 = 28 800

b) If P1 is flanked by different genolies, all me need to do now is to fit P2 (let P2 be 2nd parent) in any of the 11 gaps

90, 11·2. (5!)²

Now, another posselvelity oxuets, with P2 being flanked by identical genders, say GP1G and BP2B in any of 4 places

10, 2.4. (5!)²

40, total no. of averangement = $11.2.(5!)^2 + 2.4.(5!)^2$ = 43200

934) Determine the numbers of 11-permutations of the multiset $S = \frac{2}{3}a$, 3.6, 3.c, 3.d

(drs) store we will decrease the refetition number of the object a

Now, the multiset is & 2.a, 3.b, 3.c, 3.d}

26 has 11 elements

30, 11; 2! 3! 3! 3! 2! 3! 3! 3!

= 92,400

similarly, we will decrease the refetition no. of the object b, we will get

23a, 2.b, 3.c, 3.d}

fine that we will have some results for multisets 23.a, 3.b, 2.c, 3.d and 23.a, 3.b, 2.c, 3.d

so, total sun = 4 x 92400 = 369600

Q38) How many integral solutions of $x_1 + x_2 + x_3 + x_4 = 30$ satisfy $x_1 > 3$, $x_2 > 0$, $x_3 > -5$ and $x_4 > 8$?

(Ans) Let us introduce the new variables

 $y_1 = x_1 - 2, y_2 = x_2, y_3 = x_3 + 5, y_4 = x_4 - 8$

Now, the given equation becomes

 $y_1 + y_2 + y_3 + y_4 = x_1 + x_2 + x_3 + x_4 - 2 - 8 + 5$

>> y1+42+99+4u=29

store, 18=4 and x=25

Now, the no- of non-regative solutions of the original equ is

$$= \frac{28!}{25!}$$

$$= \frac{28!}{25!3!}$$

$$= \frac{25 \times 27 \times 26 \times 25!}{25! \times 3 \times 2!}$$

= 3276 ways