Symbolisches Lernen in Go

Seminar Knowledge Engineering und Lernen in Spielen, SS 04

Frank Steinmann

Motivation (1)

- Was kann gelernt werden?
- Globaler Ansatz:
 - eine Funktion
 - f: Stellungen x Züge -> Belohnung
 - gut für kleine Brettgrößen
 - beim 19x19 Brett spezifische Methoden für verschiedene Subprobleme besser

Motivation (2)

Suchstrategien verbessern

- Programme verwenden oft lokale Suche, um ein bestimmtes Ziel in einem lokalen Teil des Spielbretts zu erreichen
- typischerweise Verwendung von Alpha-Beta-Suche
- Alpha-Beta-Suche profitiert von guter Sortierung der Züge
- ALernen einer Heuristik zum Sortieren der Züge
- Ermitteln der "Temperatur" einer Stellung zur Vermeidung des Horizont-Effekts

Ein deduktiver Ansatz (1)

- Ziel: striktes Wissen lernen
- verschiedene Regeln werden aus einem einzelnen Trainingsbeispiel gelernt
- vereinfachte Spielregeln: wer zuerst gegnerische Steine fängt, gewinnt

Ein deduktiver Ansatz (2)

- zwei Arten von Regeln
 - Basic Rules: Hintergrundwissen (Definition von Begriffen wie "fangen", "atari" etc.)
 - Forcing Rules: Zugregeln, die zum Sieg führen
- das System spielt (gegen irgendwen) und versucht, Forcing Rules zu lernen

Das System im Überblick

- Decision Maker
 - wendet Regeln an
- Rule Acquisition
 - lernt Regeln
- Rule Refinement
 - verfeinert Regeln
- Knowledge Base
 - Aufbewahrung der Regeln

Rule Acquisition (1)

- Schritt 1:
 - versuche, die gemachten Züge mit Forcing Rules zu interpretieren, beginnend beim letzten

Rule Acquisition (2)

- Schritt 2:
 - Identifiziere für den zu lernenden Zug die relevanten Teile des Spielbretts

Rule Acquisition (3)

- Schritt 3:
 - Generalisierung der Stellung und des Zuges durch Änderung der Koordinaten von Konstanten zu Variablen

Ein evolutionärer Ansatz

- Ziel: nützliche (heuristische) Regeln lernen, die auf die gegebenen Trainingsdaten passen
- Regeln = Individuen
- Trainingsbeispiele = Nahrung
- jede Regel hat einen Aktivierungswert

Entwicklung von Regeln (1)

- Anfangszustand: keine Regeln
- Regeln, die auf ein Trainingsbeispiel passen, erhalten Nahrung, Aktivierungswert erhöht sich
- passt keine Regel, so wird eine neue Regel erzeugt, die auf das Beispiel passt und genau eine Bedingung enthält

Entwicklung von Regeln (2)

- Überschreitet ein Aktivierungswert einen bestimmten Grenzwert, wird die Regel in zwei geteilt:
 - 1. Originale Regel
 - 2. Komplexere Regel
- die komplexere Regel entsteht durch das Hinzufügen einer Bedingung
- Aktivierungswert wird auf beide Regeln aufgeteilt

Entwicklung von Regeln (3)

- In jedem Schritt wird den Regeln ein bestimmter Wert vom Aktivierungswert subtrahiert
- Regeln mit Aktivierungswert 0 sterben
- passen mehrere Regeln auf ein Beispiel, wird die Nahrung unter den Regeln aufgeteilt, für die unter den passenden Regeln keine speziellere existiert

Vergleichsalgorithmen

- Zwei Algorithmen, die sich durch die Struktur der Regeln unterscheiden:
 - Fixed Algorithm
 - Semi-Fixed Algorithm

Fixed Algorithm

 Patterns einer festgelegten Form, variable Größe

 Lernen: Für jedes Beispiel werden Patterns jeder Größe abgespeichert

Semi-Fixed Algorithm

 Wie Fixed Algorithm, mit dem Unterschied, dass man von der Mitte aus maximal bis zum ersten nicht leeren Feld schaut

Regelauswahl

- Es werden meist mehrere Regeln auf eine Stellung passen
- Welche Regel bestimmt den Zug?
- Zwei Algorithmen:
 - Priority Assignment
 - Probability of Rule Accuracy

Priority Assignment

- Ziel: Gewichtung der Regeln
- Initialisierung: Alle Regeln erhalten Gewicht 200
- Für jeden möglichen Zug m: Gewichte der Regeln, die m vorschlagen, aufsummieren
- Züge in absteigender Reihenfolge nach Punkten sortieren
- Gewichte aller Regeln, die Züge vorschlagen, welche höher rangieren als der korrekte Zug, um 1 reduzieren
- Gewichte aller Regeln, die den korrekten Zug vorschlagen, um S/n erhöhen
- S = Summe der subtrahierten Gewichte
- n = Anzahl der Regeln, die den korrekten Zug vorschlagen

Probability of Rule Accuracy

- Ziel: Wahrscheinlichkeit ermitteln, mit der eine Regel den korrekten Zug liefert
- match: IF-Teil trifft zu
- hit: IF-Teil und THEN-Teil treffen zu
- Korrektheit für Regel i:
 a_i = Anzahl hits / Anzahl matches
- Wahrscheinlichkeit für einen Zug m:

$$A_{m_1} = 1 - \prod_{i \in R_{m_1}} (1 - a_i)$$

wobei R_m = Menge der Regeln, die m vorschlagen

Lernerfolg in Tsume-Go (1)

- 1039 Tsume-Go Probleme und ihre Antworten (insgesamt 3993 Züge) als Trainingsdaten
- 1. Schritt: Patterns lernen
- 2. Schritt: Patterns verfeinern
- zum Testen 3 Klassen von Problemen
 - einfache Probleme (100 Bsp.)
 - Probleme für 3 Dan (100 Bsp.)
 - Probleme für 5 Dan (100 Bsp.)

Lernerfolg in Tsume-Go (2)

Gelöste Probleme in Prozent:

		first step			
		Flexible	Semi-Fixed	Fixed	
second	weights	31.0	13.3	1/1,0	
step	probabilities	25.0	15.0	13.3	

Wie hoch wird der korrekte Zug bewertet?

Rank	Basic	3 Dan	5 Dan	Average
1 st	36 (36)	31 (31)	26 (26)	31 (31)
2 nd	15 (51)	26 (57)	20 (46)	20 (51)
3 rd d	12 (63)	10 (67)	9 (55)	11 (62)
4 th	10 (73)	7 ₇ (74)	14 (69)	10 (72)
5 th	6 (79)	6 (80)	8 (77)	7 (79)

TILDE (1)

- TILDE = Top Down Induction of Logical Decision
 Trees
- Ziel: Lernen eine Heuristik, die Züge bewertet
- Ansatz: propositionale Repräsentationen (Attribut -Wert) können komplizierte Konzepte so nicht gut darstellen
- Besser relationale Repräsentation:
 - BOARD(X, Y, GroupID): ordnet jedem Feld eine Gruppe zu
 - GROUP(GroupID, Color): Gruppe von Steinen oder einzelnes leeres Feld
 - LINK(Group, Adjacent_Group): benachbarte Gruppen

TILDE (2)

- Erzeugung weiterer Konzepte (Hintergrundwissen) mit Hilfe der gegebenen Relationen
- Beispiel:

```
liberty(Group,Liberty) :-
link(Group,Liberty),
group(Liberty,empty).
```

TILDE (3)

- TILDE ist eine Erweiterung des C4.5 Algorithmus
- Prädikatenlogik in den Tests in den Knoten
- Regression Mode zum Vorhersagen von reellen Zahlen anstelle von Klassen

Beispiel: Entscheidungsbaum

Lösen von Tsume-Go Problemen (1)

- 3600 Tsume-Go Probleme, davon 2600 zum Lernen, 1000 zum Testen
- Probleme können mehrere Lösungen haben, die geordnet sind nach ihrer Qualität
- Beste Lösung erhält Wert 1, zweitbeste 0.9 usw.,
 Wert 0 für falsche Züge
- TILDE versucht, im Regression Mode diese Werte zu lernen
- Blätter des Entscheidungsbaums enthalten Mittelwert der Trainingsbeispiele

Lösen von Tsume-Go Problemen (2)

- Zwei Konfigurationen
 - relational (mit Hintergrundwissen)
 - propositional (nur Verwendung der Relation exists)

```
exists(RelativeCoordinate,Color) :-
  move(Side,Move),
  group_on_pos(Move,RelativeCoordinate,Group),
  group(Group,Color).
```

Ergebnisse (1)

Ergebnisse (2)

 Abschneiden der Algorithmen im Vergleich:

System	Testset(size)	11	2	33	4,	5-
Propositional Decision Tree	GoTools(1000)	29%	49%	61%	69%	73%
Relational Decision Tree	GoTools(1000)	35%	58%	73%	79%	87%
Flexible rules with Weights	Basic(100)	36%	51%	63%	73%	79%
Flexible rules with Weights	3 ₃ dan(100) ₎	31%	57%	57%	74%	80%
Flexible rules with Weights	5 ₅ dan(100) ₎	26%	46%	55%	69%	77%

Bewertung und Ausblick

- Die vorgestellten Algorithmen sind einigermaßen erfolgreich bei Tsume-Go
- Suche kann nicht ersetzt, aber unterstützt werden (durch gute Sortierung und/oder Vorauswahl der Züge)
- Nächster Schritt: Einsatz im richtigen Spiel (oder zumindest Teilen davon, z.B. Eröffnung, Endspiel)
- Schwierigkeiten: Strategisches Spiel, besonders auf dem großen Brett
- Besser geeignet zum Lösen lokaler Probleme

Quellen

- J. Ramon und H. Blockeel, A survey of the application of machine learning to the game of go, Proceedings of the First International Conference on Baduk (Sang-Dae Hahn, ed.), pp.1-10, 2001
- J. Ramon, T.Francis und H. Blockeel, *Learning a Tsume-Go Heuristik with Tilde*, Computers and Games, CG2000, Revised Papers (Marsland, T.A. and Frank, I., eds.), vol. 2063, Lecture Notes in Computer Science, pp.151-169, 2001
- Takuya Kojima und Atsushi Yoshikawa, Knowledge acquisition from game records, Prodeedings of the ICML-99 on Machine Learning in Game Playing, Bled, 1999