ECE368: Probabilistic Reasoning

Lab 2 – Part I: Bayesian Linear Regression

Name:	Student Number.
MB); 2) four figure	in: 1) A scanned .pdf version of this sheet with your answers (file size should be under so for Question 2 and three figures for Question 4 in the .pdf format; and 3) one Python contains your code. All these files should be uploaded to Quercus.
1. Express the po	sterior distribution $p(\mathbf{a} x_1, z_1, \dots, x_N, z_N)$ using $\sigma^2, \beta, x_1, z_1, x_2, z_2, \dots, x_N, z_N$. (1 pt)
$p(\mathbf{a} x_1, z_1, \dots, z_n)$ the y-axis repr	and $\beta = 1$. Draw four contour plots corresponding to the distributions $p(\mathbf{a})$, $p(\mathbf{a} x_1, z_1)$, x_5, z_5 , and $p(\mathbf{a} x_1, z_1, \dots, x_{100}, z_{100})$. In all contour plots, the x-axis represents a_0 , and resents a_1 . Please save the figures with names prior.pdf , posterior1.pdf , posterior100.pdf , respectively. (1.5 pt)
	here is a new input x , for which we want to predict the corresponding target value z . e distribution of the prediction z , i.e, $p(z x, x_1, z_1, \ldots, x_N, z_N)$. (1 pt)
	and $\beta = 1$. Given a set of new inputs $\{-4, -3.8, \dots, 3.8, 4\}$, plot three figures, whose put and y-axis is the prediction, corresponding to three cases:
` /	ctions are based on one training sample, i.e., based on $p(z x, x_1, z_1)$.
(b) The predi	ctions are based on 5 training samples, i.e., based on $p(z x, x_1, z_1, \dots, x_5, z_5)$.

with names predict1.pdf, predict5.pdf, predict100.pdf, respectively. (1.5 pt)

(c) The predictions are based on 100 training samples, i.e., based on $p(z|x, x_1, z_1, ..., x_{100}, z_{100})$. The range of each figure is set as $[-4, 4] \times [-4, 4]$. Each figure should contain the following three components: 1) the new inputs and the corresponding predicted targets; 2) a vertical interval at each predicted target, indicating the range within one standard deviation; 3) the training sample(s) that are used for the prediction. Use plt.errorbar for 1) and 2); use plt.scatter for 3). Please save the figures