

R-IN32M4-CI 3

Compared to conventional technologies, Ethernet communications in the industrial field are strongly required to have high-performance functions such as higher speed real-time response. These requirements are not necessarily realized by traditional methods such as making the Ethernet processing itself hardware or using a dedicated CPU for high-speed network processing.

The R-IN32M4-CL3 Ethernet communications LSI from Renesas Electronics has the following functions to realize "higher speed real-time response" and "high-accuracy communications control (low jitter communications)" which are important for Ethernet communications in the factory automation field.

■ CPU

- Integrated Arm® Cortex®-M4 core
- Integrated hardware real-time OS accelerator (HW-RTOS)
- Peripheral
- Timers, WDT, I²C, UART, CSI, CAN, and general-purpose I/O ports (GPIO)
- Serial flash memory controller
- External memory/external MCU (microcontroller) interface
- External memory connection mode: 16- or 32-bit bus connection to external devices such as SRAM
- External MCU connection mode: 16- or 32-bit bus connection to host MCU
- Ethernet
- Integrated Gigabit Ethernet MAC
- Integrated switching hub with cut-through transfer, IEEE 1588 timer, and Device Level Ring (DLR) functions
- Integrated 2-port 10/100/1000BASE-PHY
- Dedicated DMA controller and buffer for the network processor
- Supported industrial Ethernet protocol
- CC-Link IE Field intelligent device station and remote device station
- CC-Link IE TSN remote station (authentication Classes: A and B)
- PROFINET RT
- EtherNet/IP
- Modbus TCP
- Target application
- Remote I/O
- · Inverter and servo drive
- Industrial Ethernet communication unit
- Others
- Pin assignment considering a replacement from R-IN32M4-CL2
- Integrated 2.5 V regulator for PHY

1. Overview

1.1 Functional Overview

Table 1.1 Functional Overview of R-IN32M4-CL3 (1/3)

_				
	Product	R9A06G064MGBG	R9A06G064SGBG	
Item		(23 mm Square Package)	(17 mm Square Package)	
CPU core		Arm Cortex-M4 32-bit RISC CPU		
		+ Real-Time OS Accelerator (Hardware Real-Time OS)		
	Operating frequency	100 MHz		
	Instruction set	Thumb®-2 instruction Armv7-M architectu	re	
	Floating-point UNIT	Armv7M FPv4-SP (32-bit single precision)	
Ir	nstruction RAM	768 Kbytes (RAM with ECC)		
С	Pata RAM	512 Kbytes (RAM with ECC)		
В	suffer RAM	64 Kbytes (RAM with ECC)		
Ν	letwork RAM	128 Kbytes (RAM with ECC)		
Ir	nternal system bus	32-bit system bus at 100 MHz (AHB-Lite)		
		64-bit system bus at 125 MHz (AXI)		
		128-bit communication bus at 100 MHz		
С	MA function (system bus side)	4 channels + 1 channel (for real-time port),		
		Supports software and various interrupt-triggered DMA.		
В	oot modes	Serial flash ROM boot,		
		External memory boot,		
		External MCU boot		
S	support for external memory	Bus-size selection (16 or 32 bits)		
а	ccess	Paged ROM/ROM/SRAM interface		
		Synchronous burst memory interface		
١,		Programmable wait function		
	Chip select signals for static	4-line	4- or 3-line*1	
	memory			
	External memory space	256 Mbytes	256 or 192 Mbytes	
E	xternal MCU interface	Bus-size selection (16 or 32 bits)		
		General-purpose interface for static memory		
		Address space: 2 Mbytes (Instruction RAM, Data RAM, Register area)		
		Internal address space mapping switching function		
Serial flash ROM memory controller		Supports serial interface compatible with SPI of companies.		
		Supports direct boot from serial memory device.		
		Supports Fast Read, Fast Read Dual Output, Fast Read Dual I/O,		
		Fast Read Quad Output, and Fast Read Quad I/O modes.		
		Direct layout in memory space		
lr	nterrupt	30 external interrupt ports		

Note 1. When using an asynchronous SRAM controller in the 17 mm square package, the external memory areas of CSZ0–CSZ2 can be accessed.

Table 1.1 Functional Overview of R-IN32M4-CL3 (2/3)

Product	R9A06G064MGBG	R9A06G064SGBG	
Item	(23 mm Square Package)	(17 mm Square Package)	
Internal peripheral modules	(23 IIIII Square Fackage)	(17 IIIIII Square Fackage)	
I/O port	CMOS I/O: 106 maximum	CMOS I/O: 101 maximum	
Timers (4 sub-systems)	• Internal timer of hardware RTOS		
Timers (4 sub-systems)	Internal timer of the CPU		
	32-bit timer (4 channels) 16-bit timer (16 channels)		
Watchdog timer	• 1 channel		
Waterlady times	Software-triggered start mode		
	Watchdog error response options:		
	- Watchdog error response options: - Generation of a non-maskable interrupt (NMI)		
	Generation of a reset	(((((((((((((((((((
	 Interrupt when the counter reaches 75% 	of its overflow value	
Asynchronous serial interface	• 2 channels	or its overnow value	
Asylicilionous serial interface	Full duplex transfer		
	•	16 transmit	
	 FIFOs: 10 bits x 16 receive and 8 bits x 16 transmit Support output of receive errors and status 		
		us	
	Character length: 7 or 8 bits Parity bit entings: Odd even 0, none		
	Parity bit options: Odd, even, 0, noneTransmit stop bits: 1 bit or 2 bits		
I ² C serial interface			
1 C Serial interface			
	Transfer modes: Single-transfer mode or continuous-transfer mode Transfer data length: 8 bits		
CAN controller	• 2 channels	Not available	
O/ WY CONTROLLED	Conforming to ISO11898	Not available	
	Support for transmission and reception		
	of standard and expanded frames		
	Transfer rate: Up to 1 Mbps		
Clocked serial interface	• 2 channels		
Glocked Schai interface	Synchronized serial data transmission by three-wire system		
	Master mode or slave mode selectable		
	Built-in baud-rate generator		
	Transfer data length: 7 to 16 bits		
10/100/1000Mbps Ethernet MAC	-		
10, 100, 1000Mispo Ethomot Will to	Built-in 2-port switch		
Ethernet PHY	• 2 ports IEEE 802.3		
Luiometriii	• 10BASE-T, 100BASE-TX, 1000BASE-T		
CC-Link IE	Two types of CC-Link IE (CC-Link IE Field and CC-Link IE TSN) are supported.		
	They can be used exclusively		
CC-Link IE Field	CC-Link IE Field (intelligent device station / remote device station)		
CC-Link IE TSN	CC-Link IE TSN		
CO-LIIIK IE TON CO-LIIIK IE TON			

Table 1.1 Functional Overview of R-IN32M4-CL3 (3/3)

Product	R9A06G064MGBG	R9A06G064SGBG	
Item	(23 mm Square Package)	(17 mm Square Package)	
On-chip debugging	Selecting serial wire or JTAG		
	• Full trace (built-in ETM)		
Internal PLL	Generates various clocks from 25 MHz input clock		
Built-in regulator	2.5V power supply dedicated to PHY can be generated from 3.3V power supply		
Power supply voltage	$VDD33 = 3.3 \pm 0.165 V^{*2}$		
	$VDD11 = 1.15 \pm 0.06 V^{*2}$		
	$VDD25 = 2.5 \pm 0.125 V^{*1, *2}$		
Operating temperature	-40°C ≤ Tj ≤ +125°C, -40°C ≤ Ta ≤ +85°C		
Packages	484-ball PBGA	356-ball FBGA	
	23 mm × 23 mm, 1.0-mm Pitch	17 mm × 17 mm, 0.8-mm Pitch	

Note 1. 2.5 V power supply (VDD25) can be generated with the built-in regulator.

2. Ripple incorporated value. As a target value, set the DC component to within ±3% and the ripple component to within ±2%.

1.2 Internal Block Diagram

R-IN32M4-CL3

- 1.3 Pin Assignments (Top View)
- 1.3.1 23 mm Square Package Pin Assignments (Top View)

Figure 1.1 23 mm Square Package Pin Assignments (Top View)

1.3.2 17 mm Square Package Pin Assignments (Top View)

Figure 1.2 17 mm Square Package Pin Assignments (Top View)

1.4 External Pin List

1.4.1 23 mm Square Package

Table 1.2 23 mm Square Package External Pin List (1/4)

Pin ID	Pin Name
A1	GND
A2	GND
А3	A2
A4	P40
A5	P42
A6	P43
A7	P45
A8	P47
A9	P16
A10	P14
A11	P11
A12	P10
A13	RDZ
A14	D0
A15	D2
A16	D4
A17	D6
A18	BUSCLK
A19	RP31
A20	RP30
A21	GND
A22	GND
B1	GND
B2	PHY0_LED0
В3	А3
B4	A5
B5	A7
B6	P41
B7	P46
B8	P44
B9	P17
B10	P15
B11	P13
B12	P12
B13	WRSTBZ
B14	D1

Pin ID	Pin Name
B15	D3
B16	D5
B17	RP35
B18	RP34
B19	RP33
B20	RP32
B21	RP20
B22	GND
C1	GND
C2	PHYADD4
C3	A4
C4	A6
C5	A8
C6	A9
C7	A11
C8	A13
C9	A15
C10	A17
C11	WRZ1
C12	WRZ0
C13	CSZ0
C14	D7
C15	D9
C16	D11
C17	D13
C18	RP36
C19	RP37
C20	RP10
C21	RP22
C22	RP21
D1	GND
D2	GND
D3	PHYADD3
D4	PHYADD2
D5	PHYADD1
D6	A10

Pin ID	Pin Name
D7	A12
D8	A14
D9	A16
D10	GND
D11	A18
D12	A19
D13	A20
D14	D8
D15	D10
D16	D12
D17	D14
D18	D15
D19	RP14
D20	RP11
D21	RP24
D22	RP23
E1	GND
E2	GND
E3	GND
E4	AGND
E5	AGND
E6	REG_EN
E7	GND
E8	GND
E9	GND
E10	GND
E11	GND
E12	GND
E13	GND
E14	GND
E15	GND
E16	GND
E17	TEST3
E18	GND
E19	RP15
E20	RP12

Pin ID	Pin Name
E21	RP26
E22	RP25
F1	GND
F2	GND
F3	GND
F4	REG_OUT
F5	GND
F6	GND
F7	GND
F8	GND
F9	GND
F10	GND
F11	GND
F12	VDD33
F13	GND
F14	VDD33
F15	GND
F16	VDD33
F17	VDD33
F18	VDD33
F19	RP16
F20	RP13
F21	RP04
F22	RP27
G1	P0_D3P
G2	P0_D3N
G3	GND
G4	GND
G5	VDDREG_33
G6	AVDDREG_33
G7	GND
G8	GND
G9	GND
G10	GND
G11	
GII	GND

Table 1.2 23 mm Square Package External Pin List (2/4)

	- 1
Pin ID	Pin Name
G13	GND
G14	GND
G15	GND
G16	GND
G17	GND
G18	GND
G19	RP17
G20	RP07
G21	RP03
G22	RP02
H1	P0_D2P
H2	P0_D2N
H3	GND
H4	REG_FB
H5	GND
H6	GND
H7	GND
H8	GND
H9	GND
H10	GND
H11	GND
H12	GND
H13	VDD11
H14	VDD11
H15	VDD11
H16	VDD11
H17	VDD11
H18	VDD33
H19	RP06
H20	RP05
H21	RP01
H22	RP00
J1	P0_D1P
J2	P0_D1N
J3	GND
J4	GND
J5	GND
J6	VDD11
J7	VDD11
J8	VDD33

Package External Pin Lis		
Pin ID	Pin Name	
J9	VDD33	
J10	GND	
J11	GND	
J12	VDD33	
J13	VDD11	
J14	GND	
J15	GND	
J16	GND	
J17	VDD11	
J18	GND	
J19	GND	
J20	GND	
J21	GND/OPEN	
J22	GND/OPEN	
K1	P0_D0P	
K2	P0_D0N	
K3	VDD11A	
K4	GND	
K5	GND	
K6	GND	
K7	GND	
K8	GND	
K9	VDD33	
K10	GND	
K11	GND	
K12	GND	
K13	VDD11	
K14	GND	
K15	GND	
K16	GND	
K17	VDD11	
K18	VDD33	
K19	VDD33	
K20	VDD33	
K21	GND/OPEN	
K22	GND/OPEN	
L1	GND	
L2	GND	
L3	VDD11A	

Pin ID	Pin Name
L5	GND
L6	GND
L7	GND
L8	GND
L9	VDD33
L10	GND/OPEN
L11	GND
L12	VDD33
L13	VDD11
L14	GND
L15	GND
L16	GND
L17	VDD11
L18	VDD33
L19	GND/OPEN
L20	GND/OPEN
L21	GND/OPEN
L22	GND/OPEN
M1	REF_REXT
M2	REF_FILT
M3	GND
M4	GND
M5	GND
M6	GND
M7	GND
M8	GND
M9	VDD33
M10	GND
M11	GND
M12	VDD33
M13	VDD11
M14	GND
M15	GND
M16	GND
M17	VDD11
M18	GND
M19	GND
M20	GND
M21	P21
M22	P20

PIN ID	Pin Name
N1	GND
N2	GND
N3	VDD25A
N4	GND
N5	GND
N6	GND
N7	GND
N8	GND
N9	VDD33
N10	GND
N11	GND
N12	GND
N13	VDD11
N14	GND
N15	GND
N16	GND
N17	VDD11
N18	GND
N19	GND
N20	P24
N21	P23
N22	P22
P1	P1_D3P
P2	P1_D3N
P3	VDD25A
P4	GND
P5	GND
P6	VDD11
P7	VDD11
P8	VDD33
P9	VDD33
P10	GND
P11	GND
P12	VDD33
P13	VDD11
P14	GND
P15	GND
P16	GND
P17	VDD11
P18	VDD11

Pin ID

Pin Name

L4

GND

Table 1.2 23 mm Square Package External Pin List (3/4)

14510 1.2	zo mm equal
Pin ID	Pin Name
P19	TEST7
P20	EXTP0
P21	P26
P22	P25
R1	P1_D2P
R2	P1_D2N
R3	VDD25A
R4	GND
R5	GND
R6	GND
R7	GND
R8	GND
R9	GND
R10	GND
R11	GND
R12	GND
R13	VDD11
R14	VDD11
R15	VDD11
R16	VDD11
R17	VDD11
R18	GND
R19	CLK2MSEL
R20	EXTP1
R21	P27
R22	GND
T1	P1_D1P
T2	P1_D1N
Т3	GND
T4	GND
T5	GND
T6	GND
T7	GND
Т8	GND
Т9	GND
T10	GND
T11	GND
T12	VDD33
T13	GND
T14	GND

Pin ID	xternal Pin Lis Pin Name
T15	GND
T16	GND
T17	GND
T18	GND
T19	VDD33
T20	EXTP2
T21	P66
T22	P67
U1	P1_D0P
U2	P1_D0N
U3	GND
U4	GND
U5	GND
U6	GND
U7	GND
U8	GND
U9	GND
U10	GND
U11	GND
U12	VDD33
U13	VDD33
U14	GND
U15	GND
U16	VDD33
U17	VDD33
U18	VDD33
U19	MEMCSEL
U20	EXTP3
U21	P64
U22	P65
V1	GND
V2	GND
V3	GND
V4	GND
V5	GND
V6	GND
V7	GND
V8	GND
V9	GND
1440	CND

)/ - //	
Pin ID	Pin Name
V11	GND
V12	GND
V13	GND
V14	GND
V15	GND
V16	PLL_GND
V17	PLL_VDD
V18	TEST6
V19	ADMUXMODE
V20	HWRZSEL
V21	P62
V22	P63
W1	GND
W2	GND
W3	GND
W4	TEST5
W5	TMS
W6	TDI
W7	TCK
W8	TDO
W9	TRSTZ
W10	GND
W11	TRACEDATA1
W12	GND
W13	OSCTH
W14	EXTP5
W15	EXTP7
W16	EXTP9
W17	HIFSYNC
W18	MEMIFSEL
W19	BUS32EN
W20	HOTRESETZ
W21	P61
W22	P60
Y1	GND
Y2	GND
Y3	GND
Y4	TEST4
Y5	TMODE0
Y6	TMODE1

Pin ID	Pin Name
Y7	TMODE2
Y8	JTAGSEL
Y9	TRACEDATA3
Y10	TRACEDATA2
Y11	TRACEDATA0
Y12	TRACECLK
Y13	NMIZ
Y14	EXTP4
Y15	EXTP6
Y16	EXTP8
Y17	BOOT1
Y18	воото
Y19	RSTOUTZ
Y20	PONRZ
Y21	P31
Y22	P30
AA1	GND
AA2	PHY1_LED0
AA3	P57
AA4	P55
AA5	P53
AA6	P51
AA7	P07
AA8	P05
AA9	P03
AA10	P01
AA11	P77
AA12	P75
AA13	P73
AA14	P71
AA15	P70
AA16	P37
AA17	P36
AA18	GND
AA19	P35
AA20	P33
AA21	P32
AA22	GND
AB1	GND
AB2	GND

V10

GND

Table 1.2 23 mm Square Package External Pin List (4/4)

Pin ID	Pin Name
AB3	P56
AB4	P54
AB5	P52
AB6	P50
AB7	P06

Pin ID	Pin Name
AB8	P04
AB9	P02
AB10	P00
AB11	P76
AB12	P74

Pin ID	Pin Name
AB13	P72
AB14	XT1
AB15	XT2
AB16	GND
AB17	GND

Pin ID	Pin Name
AB18	CCI_CLK2
	_097M
AB19	P34
AB20	RESETZ
AB21	GND
AB22	GND

1.4.2 17 mm Square Package

Table 1.3 17 mm Square Package External Pin List (1/3)

Pin ID Pin Name	
A1 GND	
A2 GND	
A3 A5	
A4 A10	
A5 P42	
A6 P43	
A7 P45	
A8 P47	
A9 P16	
A10 P15	
A11 WRSTBZ	
A12 CSZ0	
A13 D2	
A14 D4	
A15 D11	
A16 BUSCLK	
A17 RP34	
A18 RP36	
A19 GND	
A20 GND	
B1 GND	
B2 PHY0_LED0)
B3 A4	
B4 A8	
B5 P40	
B6 P41	
B7 P46	
B8 P44	
B9 P17	
B10 P14	
B11 RDZ	
B12 D0	
B13 D3	
B14 D5	
B15 D12	
B16 RP35	
	- 1
B17 RP31	

Pin ID	Pin Name
B19	RP37
B20	GND
C1	VDDREG_33
C2	REG_OUT
C3	GND
C4	A2
C5	A9
C6	A7
C7	A14
C8	A13
C9	A17
C10	WRZ1
C11	WRZ0
C12	D1
C13	D7
C14	D6
C15	D13
C16	D14
C17	RP33
C18	RP32
C19	RP20
C20	GND
D1	AVDDREG_33
D2	AGND
D3	AGND
D4	A3
D5	A6
D6	A12
D7	A11
D8	A16
D9	A15
D10	A18
D11	A19
D12	A20
D13	D8
D14	D9
D15	D10
D16	D15

)	
Pin ID	Pin Name
D17	RP10
D18	RP14
D19	RP22
D20	RP21
E1	GND
E2	GND
E3	GND
E4	GND
E17	RP15
E18	RP11
E19	RP24
E20	RP23
F1	P0_D3P
F2	P0_D3N
F3	GND
F4	GND
F6	REG_EN
F7	VDD33
F8	GND
F9	GND
F10	GND
F11	VDD33
F12	VDD33
F13	GND
F14	GND
F15	GND
F17	RP12
F18	RP16
F19	RP26
F20	RP25
G1	P0_D2P
G2	P0_D2N
G3	GND
G4	GND
G6	GND
G7	GND
G8	VDD11
	i l

VDD11

Pin ID	Pin Name
G10	VDD11
G11	VDD11
G12	GND
G13	VDD11
G14	VDD11
G15	VDD33
G17	RP13
G18	RP17
G19	RP04
G20	RP27
H1	P0_D1P
H2	P0_D1N
НЗ	GND
H4	REG_FB
H6	GND
H7	GND
H8	GND
H9	GND
H10	GND
H11	GND
H12	GND
H13	GND
H14	GND
H15	VDD33
H17	RP07
H18	RP06
H19	RP03
H20	RP05
J1	P0_D0P
J2	P0_D0N
J3	GND
J4	GND
J6	GND
J7	VDD11
J8	GND
J9	GND
J10	GND
J11	GND

G9

Table 1.3 17 mm Square Package External Pin List (2/3)

Pin ID	Pin Name
J12	GND
J13	GND
J14	GND
J15	GND
J17	P20
J18	RP00
J19	RP01
J20	RP02
K1	GND
K2	GND
K3	GND
K4	VDD25A
K6	GND
K7	VDD11
K8	GND
K9	GND
K10	GND
K11	GND
K12	GND
K13	GND
K14	VDD11
K15	GND
K17	P23
K18	P22
K19	P21
K20	P24
L1	REF_REXT
L2	REF_FILT
L3	GND
L4	VDD25A
L6	GND
L7	GND
L8	GND
L9	GND
L10	GND
L11	GND
L12	GND
L13	GND
L14	VDD11
L15	GND

Pin ID	Pin Name
L17	TEST7
L18	EXTP0
L19	P26
L20	P25
M1	GND
M2	GND
M3	GND
M4	VDD25A
M6	GND
M7	GND
M8	GND
M9	GND
M10	GND
M11	GND
M12	GND
M13	GND
M14	GND
M15	VDD33
M17	CLK2MSEL
M18	EXTP1
M19	P67
M20	P27
N1	P1_D3P
N2	P1_D3N
N3	GND
N4	GND
N6	VDD11A
N7	GND
N8	GND
N9	GND
N10	GND
N11	GND
N12	GND
N13	GND
N14	GND
N15	VDD33
N17	EXTP14
N18	EXTP2
	Des
N19	P65

Pin ID	Pin Name
P1	P1_D2P
P2	P1_D2N
P3	GND
P4	GND
P6	VDD11A
P7	GND
P8	VDD11
P9	GND
P10	VDD11
P11	VDD11
P12	GND
P13	VDD11
P14	VDD11
P15	GND
P17	MEMCSEL
P18	P62
P19	P63
P20	P64
R1	P1_D1P
R2	P1_D1N
R3	GND
R4	GND
R6	GND
R7	VDD33
R8	VDD33
R9	GND
R10	GND
R11	GND
R12	VDD33
R13	VDD33
R14	GND
R15	GND
R17	HWRZSEL
R18	EXTP3
R19	P61
R20	P60
T1	P1_D0P
T2	P1_D0N
T3	GND
13	

Pin ID	Pin Name
T17	ADMUXMODE
T18	HOTRESETZ
T19	P31
T20	P30
U1	GND
U2	GND
U3	GND
U4	TEST5
U5	TCK
U6	TMODE2
U7	TRSTZ
U8	TRACEDATA3
U9	TRACEDATA1
U10	GND
U11	NMIZ
U12	EXTP5
U13	EXTP8
U14	EXTP9
U15	PLL_GND
U16	PLL_VDD
U17	TEST6
U18	EXTP13
U19	EXTP7
U20	PONRZ
V1	GND
V2	PHY1_LED0
V3	TMODE0
V4	TDI
V5	TMODE1
V6	TDO
V7	EXTP10
V8	TRACEDATA2
V9	TRACEDATA0
V10	TRACECLK
V11	OSCTH
V12	EXTP4
V13	EXTP6
V14	HIFSYNC
V15	BOOT1
V16	воото

Table 1.3 17 mm Square Package External Pin List (3/3)

Pin ID	Pin Name
V17	MEMIFSEL
V18	BUS32EN
V19	EXTP12
V20	GND
W1	GND
W2	TMS
W3	P57
W4	P52
W5	JTAGSEL
W6	P05
W7	P03

Pin ID	Pin Name
W8	P01
W9	P77
W10	P75
W11	P73
W12	P71
W13	P70
W14	P37
W15	P36
W16	P35
W17	RSTOUTZ
W18	P33

Pin ID	Pin Name		
W19	P32		
W20	GND		
Y1	GND		
Y2	GND		
Y3	P51		
Y4	P50		
Y5	EXTP11		
Y6	P04		
Y7	P02		
Y8	P00		
Y9	P76		

Pin ID	Pin Name
Y10	P74
Y11	P72
Y12	XT1
Y13	XT2
Y14	GND
Y15	CCI_CLK2_097M
Y16	GND
Y17	P34
Y18	RESETZ
Y19	GND
Y20	GND

2. Pin List by Function

The following tables list the meanings of the items, symbols, and abbreviations used in each pin table in this chapter. Some pins and functions are not available depending on the type of package. Refer to the PKG column.

Table 2.1 Meanings of the Items in the Pin Lists

Item	Meaning			
Function Name	Name of a function of the pin under "Pin Name" below.			
Pin Name	Name of the pin shown in Section 1.3 "Pin Assignments (Top View)".			
PKG	Type of package			
	23□: 23 mm Square Package			
	17⊡: 17 mm Square Package			
I/O	I/O direction of the given pin			
Description	Summary of the given pin function			
Active	Active level of the given pin			
Level during Reset	The pin state while RSTOUTZ is Low.			
	For details on the reset specifications, refer to the "R-IN32M4-CL3 User's			
	Manual: Hardware edition".			

Table 2.2 Meanings of the Symbols and Abbreviations in the Pin Lists

	Symbol and				
Target	Abbreviation	Meaning			
Pin Name	— (hyphen)	The pin is a dedicated pin that is not multiplexed with a port-pin function.			
PKG	\circ	The pin exists.			
	×	The pin does not exist.			
I/O	— (hyphen)	The pin does not have an I/O direction, such as a power supply or ground pin.			
Active	— (hyphen)	There is no active level (clock pins, data pins, and address pins).			
	High	The active level is high.			
	Low	The active level is low.			
Level during Reset	— (hyphen)	This is an input-dedicated pin that has no initial level or state following a reset.			
	High	The pin state during a reset is high.			
	Low	The pin state during a reset is low.			
	Hi-Z (High)	The pin state during a reset is Hi-Z (high) with the internal pull-up resistor			
		pulling it to the high level.			
	Hi-Z (Low)	The pin state during a reset is Hi-Z (Low) with the internal pull-down resistor			
		pulling it to the Low level.			

The pins described in Section 2.2 "Ethernet Pins" to Section 2.15 "Operating Mode Setting Pins" are multiplexed with port pins described in Section 2.1 "Port Pins and Real-Time Port Pins". For details, refer to Multiplexed function 1 to Multiplexed function 4 in Section 2.1 "Port Pins and Real-Time Port Pins".

2.1 Port Pins and Real-Time Port Pins

The LSI has 13 ports for the 3.3 V interface, all of which are 8-bit ports except for EXTP, which has 15 bits. Grouping them into sets of four ports allows 32-bit access: for example, through ports 0 to 3 (P00–P37), ports 4 to 7 (P40–P77), and real-time ports 0 to 3 (RP00–RP37).

(1/5)

Pin	PKG		Multiplexed	Multiplexed	Multiplexed	Multiplexed	Level during
Name	23 🗆	17 🗆	Function 1 Function 2 Function 3 Function 4		Reset		
P00	0	\circ	INTPZ0	_	CCI_RUNLEDZ	_	Hi-Z (High)
P01	0	\circ	INTPZ1	_	_	_	
P02	\circ	\circ	INTPZ2	_	CCI_DLINKLEDZ	_	
P03	0	0	INTPZ3	_	CCI_ERRLEDZ	_	
P04	0	0	INTPZ4	_	CCI_LERR1LEDZ	_	
P05	0	\circ	INTPZ5	_	CCI_LERR2LEDZ	_	
P06	0	×	_	_	CCI_SDLEDZ	_	
P07	0	×	_	_	CCI_RDLEDZ	_	
P10	0	×	SMIO2	_	_	_	
P11	0	×	SMIO3	_	_	_	
P12	0	×	CSZ3	_	CCI_WDTIZ	_	
P13	0	×	CSZ2	_	_	_	
P14	0	0	SMSCK	_	_	_	
P15	0	0	SMIO0	_	_	_	
P16	0	0	SMIO1	_	_	_	
P17	0	0	SMCSZ	_	_	_	
P20	0	\circ	RXD0	_	_	_	
P21	0	0	TXD0	_	_	_	
P22	\circ	\circ	INTPZ8	_	_	_	
P23	0	0	INTPZ9	_	_	_	
P24	0	\circ	INTPZ10	ETHSWSYNCOUT	_	_	
P25	0	\circ	WDTOUTZ	_	_	_	
P26	0		TINJ1 / TIND5*1	TOUTJ1 / TOUTD5*1	_	_	
P27			TINJ0 / TIND4*1	TOUTJ0 / TOUTD4*1	_	_	

Note 1. Enabling the TAUJ2 or TAUD pin function is selectable by using the TMISEL register. For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

(2/5)

Pin	PKG		Multiplexed	Multiplexed	Multiplexed	Multiplexed	Level during
Name	23 🗆	17 🗆	Function 1	Function 2	Function 3	Function 4	Reset
P30	0	0	RXD1	_	_	_	Hi-Z (High)
P31	0	0	TXD1	_	_	_	
P32	0	0	DMAREQZ1	_	_	_	
P33	\circ	\circ	DMAACKZ1	_	_	_	
P34	\circ	\circ	DMATCZ1	_	_	_	
P35	\bigcirc	\circ	CSISCK1	INTPZ22	_	_	Hi-Z (Low)
P36	0	\circ	CSISI1	INTPZ23	_	_	Hi-Z (High)
P37	0	\circ	CSISO1	INTPZ24	_	_	Hi-Z (Low)
P40	\circ	\bigcirc	A1 / MA0	HA1	_	_	Hi-Z (High)
P41	0	\circ	WAITZ	HWAITZ	INTPZ29	_	
P42	0	\circ	CSICS00	HERROUTZ	_	_	
P43	\circ	\bigcirc	CSICS01	HBUSCLK	_	_	
P44	0	\circ	CSZ1	HPGCSZ	_	_	
P45	\bigcirc	\circ	CSISCK0	WAITZ1	_	_	
P46	\circ	\bigcirc	CSISI0	WAITZ2	_	_	
P47	0	\circ	CSISO0	WAITZ3	_	_	
P50	0	\circ	INTPZ6	_	_	_	
P51	\circ	\bigcirc	INTPZ7	_	_	_	Hi-Z (Low)
P52	\bigcirc	\circ	TINJ3 / TIND7*1	TOUTJ3 / TOUTD7*1	CCI_NMIZ	_	Hi-Z (High)
P53	\bigcirc	×	CRXD0	CCI_INTZ	_	_	
P54	\bigcirc	×	CTXD0	_	_	_	
P55	0	×	CRXD1	_	_	_	
P56		×	CTXD1	_	_	_	
P57			TINJ2 / TIND6*1	TOUTJ2 / TOUTD6*1	_	_	

Note 1. Enabling the TAUJ2 or TAUD pin function is selectable by using the TMISEL register. For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

(3/5)

	1		1			T	(3/3)
	PKG		Multiplexed	Multiplexed	Multiplexed	Multiplexed	Level during
Pin Name	23□	17 🗆	Function 1	Function 2	Function 3	Function 4	Reset
P60	\circ	\circ	SCL0	_	_	_	Hi-Z (High)
P61	\circ	\bigcirc	SDA0	_	_	_	
P62	\circ	\bigcirc	RTDMAREQZ	_	_	_	
P63	0	\circ	RTDMAACKZ	_	_	_	
P64	\circ	\circ	RTDMATCZ	_	_	_	
P65	0	\circ	DMAREQZ0	_	_	_	
P66	\circ	\circ	DMAACKZ0	_	_	_	
P67	\circ	\circ	DMATCZ0	_	_	_	
P70	0	\circ	CSICS10	_	_	_	
P71	0	\circ	CSICS11	_	_	_	
P72	\circ	\circ	SLEEPING	_	_	_	
P73	0	\circ	INTPZ11	_	_	_	
P74	0	\circ	INTPZ12	_	_	_	
P75	0	\circ	INTPZ13	_			
P76	0		INTPZ14	_	_	_	
P77	0		INTPZ15	_	_	_	

(4/5)

	PKG		Multiplexed	Multiplexed	Multiplexed	Multiplexed	Level during
Pin Name	23 🗆	17 🗆	Function 1	Function 2	Function 3	Function 4	Reset
EXTP0	\circ	\circ	_	TOUTD0	_	TIND0	Hi-Z (High)
EXTP1	\circ	\circ	_	TOUTD1	_	TIND1	
EXTP2	\bigcirc	\bigcirc	_	TOUTD2	_	TIND2	
EXTP3	\bigcirc	\circ	WDTOUTZ	TOUTD3	_	TIND3	
EXTP4	\circ	\circ	_	_	_	_	
EXTP5	\bigcirc	\bigcirc	_	_	_	_	
EXTP6	\circ	\circ	_	_	_	_	Hi-Z (Low)
EXTP7	\bigcirc	\circ	_	_	_	_	Hi-Z (High)
EXTP8	\bigcirc	\bigcirc	_	_	_	_	
EXTP9	\circ	\circ	_	_	_	_	
EXTP10	×	\circ	SMIO2	CCI_INTZ	_	_	
EXTP11	×	\circ	SMIO3	CCI_WDTIZ	_	_	
EXTP12	×	\circ	CSZ3	CCI_SDLEDZ	_	_	
EXTP13	×	0	CSZ2	CCI_RDLEDZ	_	_	
EXTP14	×	\circ	IETYPE_LED	_	_	_	

Ports RP0x to RP3x (x: 0-7) operate as real-time ports. These ports can handle input and output in 32-bit units in synchronization with the DMA transfer trigger from the dedicated DMA controller for the real-time ports.

(5/5)

Pin	PKG		Multiplayed	Multiployed	Multiplayed	Multiplayed	(3/3)
		17	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Level during
Name RP00	23 🗆	17 🗆	Function 1 INTPZ16	Function 2 SCL1	Function 3	Function 4	Reset Hi-Z (High)
RP01	0	0	INTPZ17	SDA1	_	_	1 11 -
RP02	0		INTPZ18	_	_	_	
RP03			INTPZ19	_	_	_	
RP04			INTPZ20	_	_	_	
RP05			INTPZ21	_	_	_	
RP06	0	0	WRZ2 / BENZ2	HWRZ2 / HBENZ2	_	_	
RP07	0	0	WRZ3 / BENZ3	HWRZ3 / HBENZ3	_	_	
RP10	0	0	D24 / MD24 / HD24	LED0_PHY0	_	_	
RP11	0	0	D25 / MD25 / HD25	LED1_PHY0	_	_	
RP12	0	0	D26 / MD26 / HD26	LED2_PHY0	_	_	
RP13	0	0	D27 / MD27 / HD27	LED3_PHY0	_	_	
RP14	0	\circ	D28 / MD28 / HD28	LED0_PHY1	_	_	
RP15	0	\circ	D29 / MD29 / HD29	LED1_PHY1	_	_	
RP16	\circ	\circ	D30 / MD30 / HD30	LED2_PHY1	_	_	
RP17	0	\circ	D31 / MD31 / HD31	LED3_PHY1	_	_	
RP20	0	0	BCYSTZ / ADVZ	HBCYSTZ	_	_	
RP21	0	×	A21 / MA20	_	_	_	Hi-Z (Low)
	×	\circ					Hi-Z (High)
RP22	0	×	A22 / MA21	_	_	_	Hi-Z (Low)
	×	0					Hi-Z (High)
RP23	0	×	A23 / MA22	_	_	_	Hi-Z (Low)
	X	0					Hi-Z (High)
RP24	0	×	A24 / MA23	INTPZ25	_	_	Hi-Z (Low)
	X	0					Hi-Z (High)
RP25	0	×	A25 / MA24	INTPZ26	_	_	Hi-Z (Low)
	X	0					Hi-Z (High)
RP26	0	×	A26 / MA25	INTPZ27	_	_	Hi-Z (Low)
	X	0					Hi-Z (High)
RP27	0	X	A27 / MA26	INTPZ28	_	_	Hi-Z (Low)
	X	0					Hi-Z (High)
RP30	0	0	D16 / MD16 / HD16	TOUTD8	TIND8	_	
RP31	0	0	D17 / MD17 / HD17	TOUTD9	TIND9	_	
RP32	0	0	D18 / MD18 / HD18	TOUTD10	TIND10	_	
RP33	0	0	D19 / MD19 / HD19	TOUTD11	TIND11	_	
RP34	0	0	D20 / MD20 / HD20	TOUTD12	TIND12	_	
RP35	0	0	D21 / MD21 / HD21	TOUTD13	TIND13	_	
RP36	0	0	D22 / MD22 / HD22	TOUTD14	TIND14	_	
RP37	0	\bigcirc	D23 / MD23 / HD23	TOUTD15	TIND15	_	

2.2 Ethernet Pins

(1/2)

	Pin	PKG	1				Level during
Function Name	Name	23□	17	I/O	Description	Active	Reset
P0_D0N	_	0	0	I/O	PHY 0 Tx/Rx channel A negative signal	_	_
P0_D0P	_	0	\circ		PHY 0 Tx/Rx channel A positive signal		
P0_D1N	_	0	\circ		PHY 0 Tx/Rx channel B negative signal		
P0_D1P	_	0	0		PHY 0 Tx/Rx channel B positive signal		
P0_D2N	_	0	0		PHY 0 Tx/Rx channel C negative signal		
P0_D2P	_	0	0		PHY 0 Tx/Rx channel C positive signal		
P0_D3N	_	0	0		PHY 0 Tx/Rx channel D negative signal		
P0_D3P	_	0	0		PHY 0 Tx/Rx channel D positive signal		
P1_D0N	_	0	0		PHY 1 Tx/Rx channel A negative signal		
P1_D0P	_	0	0		PHY 1 Tx/Rx channel A positive signal		
P1_D1N	_	0	0		PHY 1 Tx/Rx channel B negative signal		
P1_D1P		0	0		PHY 1 Tx/Rx channel B positive signal		
P1_D2N		0	0		PHY 1 Tx/Rx channel C negative signal		
P1_D2P		0	0		PHY 1 Tx/Rx channel C positive signal		
P1_D3N		0	0		PHY 1 Tx/Rx channel D negative signal		
P1_D3P	_	0	0		PHY 1 Tx/Rx channel D positive signal		
PHYADD1	_	0	×	1	Device SMI Address bit 1 (with Pull-Down resistance)		
PHYADD2	_	0	×		Device SMI Address bit 2 (with Pull-Down resistance)		
PHYADD3	_	0	×		Device SMI Address bit 3 (with Pull-Down resistance)		
PHYADD4	_	0	×		Device SMI Address bit 4 (with Pull-Down resistance)		
REF_FILT	_	0	0	I/O	Copper media reference filter pin.		
REF_REXT	_	0	0		Copper media reference external pin.		
VDD11A	_	0	0	_	1.15 V analog power requiring additional PCB power		
					supply filtering		
VDD25A		0	0		2.5 V general analog power supply		
PHY0_LED0		0	0	0	GbE-PHY LED0_PHY0 output signal	Low	High
PHY1_LED0		0	0		GbE-PHY LED0_PHY1 output signal		
LED0_PHY0	RP10	0	0		GbE-PHY LED signal output		Hi-Z (High)
					(Same signal as external pin PHY0_LED0)		
LED1_PHY0	RP11	0	0		GbE-PHY LED signal output		
LED2_PHY0	RP12	0	0		GbE-PHY LED signal output		
LED3_PHY0	RP13	0	0		GbE-PHY LED signal output		
LED0_PHY1	RP14	0	0		GbE-PHY LED signal output		
					(Same signal as external pin PHY1_LED0)		
LED1_PHY1	RP15	0	0		GbE-PHY LED signal output		
LED2_PHY1	RP16	0	0		GbE-PHY LED signal output		
LED3_PHY1	RP17	0	0		GbE-PHY LED signal output		
ETHSWSYNCOUT	P24	0	0		Ethernet switch event output	High	

(2/2)

							(=,=)
	Pin	PKG	(G				Level during
Function Name	Name	23□	17□	I/O	Description	Active	Reset
VDDREG_33	_	0	0	_	3.3 V power for 2.5 V regulator	_	_
AVDDREG_33	_	0	0		3.3 V analog power for 2.5 V regulator		
REG_EN	_	0	0	1	2.5 V Regulator enable		
REG_FB	_	0	0		Feedback from the supply regulation point		
AGND	_	0	0	_	Analog ground for regulator		
REG_OUT*1	_	\circ	0	0	2.5 V Regulator output		

Note 1. The power supply of 2.5 V via the REG_OUT pin is dedicated to the VDD25A.

The pin is not available for the power supply of 2.5 V to other devices.

2.3 External SRAM and External MCU Interface Pins

Usage of the external SRAM interface pins and external MCU interface pins is exclusive.

This setting is selected by the level of the MEMIFSEL pin. (Setting value: Low level for the external SRAM interface pins and High level for the external MCU interface pins)

2.3.1 External SRAM Interface Pins

(a) External SRAM Interface Pins (when Asynchronous SRAM Controller is Selected (MEMCSEL = 0))

		PKG					Level during
Function Name	Pin Name	23 🗆	17 🗆	I/O	Description	Active	Reset
BUSCLK	_	0	0	0	Bus clock output	_	Clock output
CSZ0	_	\circ	\circ		Chip select signal output	Low	Hi-Z (High)
CSZ1	P44	\circ	\circ				
CSZ2	P13	\circ	×				
	EXTP13	×	0				
CSZ3	P12	\circ	×				
	EXTP12	×					
A1	P40	\circ	\circ		Address output	_	
A2-A20	_	0	0				Hi-Z (Low)
A21-A27	RP21-RP27	0	0				Hi-Z (High)
D0-D15	_	0	0	I/O	Data bus		Hi-Z (Low)
D16-D31	RP30-RP37,	\circ	\circ				Hi-Z (High)
	RP10-RP17						
RDZ	_	0	0	0	Read strobe output	Low	
WRSTBZ	_	0	0		Write strobe output		
WRZ0 / BENZ0*1	WRZ0	0	0		Valid byte lane strobe		
WRZ1 / BENZ1*1	WRZ1	0	0		output		
WRZ2 / BENZ2*1	RP06	\circ	\circ				
WRZ3 / BENZ3*1	RP07	0	0				
WAITZ	P41	0	0	1	Wait signal input		
BCYSTZ	RP20	\circ	\circ	0	Bus cycle start status output		

Remark. The external memory interface pins other than BUSCLK are inputs as long as the internal reset signal (HRESETZ) is active.

Note 1. The WREN register is used to switch the pin functions between WRZ3–WRZ0 and BENZ3–BENZ0. For details on this register, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

(b) External SRAM Interface Pins (When Synchronous Burst Access Memory Controller is Selected (MEMCSEL = 1))

		PKG					Level during
Function Name	Pin Name	23 🗆	17 🗆	I/O	Description	Active	Reset
BUSCLK	_	\circ	\circ	0	Bus clock output	_	Low
CSZ0	_	\circ	\bigcirc		Chip select signal output	Low	Hi-Z (High)
CSZ1	P44	\circ	\circ				
CSZ2	P13	\circ	×				
	EXTP13	×	0				
CSZ3	P12	0	×				
	EXTP12	×	\circ				
MA0	P40	0	0		Address output	_	
MA1-MA19	A2-A20	0	0				Hi-Z (Low)
MA20-MA26	RP21-RP27	0	0				Hi-Z (High)
MD0-MD15 /	D0-D15	\circ	\circ	I/O	Data bus		Hi-Z (Low)
MA0-MA15*1							
MD16-MD31 /	RP30-RP37,	\circ	\circ				Hi-Z (High)
MA16-MA31*1	RP10-RP17						
RDZ	_	0	0	0	Read strobe output	Low	
WRSTBZ	_	0	0		Write strobe output		
WRZ0 / BENZ0*2	WRZ0	0	0		Valid byte lane strobe		
WRZ1 / BENZ1*2	WRZ1	0	0		output		
WRZ2 / BENZ2*2	RP06	0	0				
WRZ3 / BENZ3*2	RP07	0	0				
WAITZ	P41	0	0	I	Wait signal input		
WAITZ1-WAITZ3	P45-P47	\circ	\circ				
ADVZ	RP20		\circ	0	Address valid output		

Remark. The external memory interface pins other than BUSCLK are inputs as long as the internal reset signal (HRESETZ) is active.

Note 1. When the ADMUXMODE pin is at the High level, these pin functions are multiplexed with address pin functions.

ADMUXMODE = 0: MD0-MD31 (separated address and data lines)

ADMUXMODE = 1: MD0-MD31 / MA0 to MA31 (multiplexed address and data lines)

2. The SET_OPMODE register is used to the switch pin functions between WRZ3–WRZ0 and BENZ3–BENZ0.

For details on this register, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

2.3.2 External MCU Interface Pins

(a) External MCU Interface Pins (When Asynchronous SRAM Memory Controller is Selected (MEMCSEL = 0))

		PKG					Level during
Function Name	Pin Name	23 🗆	17 🗆	I/O	Description	Active	Reset
HBUSCLK*1	P43	\circ	\circ	1	Bus clock input	_	Hi-Z (High)
HCSZ	CSZ0	\circ	\circ		Chip select signal input	Low	
HPGCSZ	P44	\circ	\circ		Page ROM mode chip		
					select signal input		
HWAITZ	P41	\circ	\circ	0	Wait signal output		
HA1	P40	\circ	\circ	1	Address signal input	_	
HA2-HA20	A2-A20	\circ	\circ				Hi-Z (Low)
HD0-HD15	D0-D15	\circ	\circ	I/O	Data bus		
HD16-HD31	RP30-RP37,	\circ	\circ				Hi-Z (High)
	RP10-RP17						
HRDZ	RDZ	\circ	\circ	1	Read strobe input	Low	
HWRSTBZ	WRSTBZ	\circ	\circ		Write strobe input		
HWRZ0 / HBENZ0*2	WRZ0	\circ	\circ		Valid byte lane strobe		
HWRZ1 / HBENZ1*2	WRZ1	\circ	\circ		input		
HWRZ2 / HBENZ2*2	RP06		\circ				
HWRZ3 / HBENZ3*2	RP07	\circ	0				
HERROUTZ	P42	\circ		0	Error interrupt output		High
HBCYSTZ	RP20			I	Bus cycle input		Hi-Z (High)

Note 1. The HBUSCLK pin is used only in case of synchronous SRAM supported MCU connection mode (HIFSYNC pin is High). The HBUSCLK pin is not used in case of asynchronous SRAM supported MCU connection mode (HIFSYNC pin is Low). Furthermore, the other signal connection is common in each mode.

For details on the connection example, refer to the "R-IN32M4-CL3 User's Manual: Board Design edition"

2. The level being input on the HWRZSEL pin controls switching between HWRZ3-HWRZ0 and HBENZ3-HBENZ0 signals.

Remark. The external MCU interface pins continue to operate as those pins even during a reset.

(b) External MCU Interface Pins (When Synchronous Burst Access Memory Controller is Selected (MEMCSEL = 1))

		PKG					Level during
Function Name	Pin Name	23□	17 🗆	I/O	Description	Active	Reset
HBUSCLK	P43	0	\circ	I	Bus clock input	_	Hi-Z (High)
HCSZ	CSZ0	\circ	\circ		Chip select signal input	Low	
HPGCSZ	P44	\circ	\circ		Page ROM mode chip		
					select signal input		
HWAITZ	P41	\circ	\circ	0	Wait signal output		
HA1*1	P40	\circ	\circ	1	Address signal input	_	
HA2-HA20*1	A2-A20	0	\circ				Hi-Z (Low)
HD0-HD15*1	D0-D15	\circ	\circ	I/O	Data bus		
HD16-HD31*1	RP30-RP37,	0	0				Hi-Z (High)
	RP10-RP17						
HRDZ	RDZ	\circ	\circ	I	Read strobe input	Low	
HWRSTBZ	WRSTBZ	0	\circ		Write strobe input		
HWRZ0 / HBENZ0*2	WRZ0	0	0		Valid byte lane strobe		
HWRZ1 / HBENZ1*2	WRZ1	0	0		input		
HWRZ2 / HBENZ2*2	RP06	0	\circ				
HWRZ3 / HBENZ3*2	RP07	0	\circ				
HERROUTZ	P42	0	\circ	0	Error interrupt output		High
HBCYSTZ	RP20	0		I	Bus cycle input]	Hi-Z (High)

Note 1. The address/data pin connection depends on address/data multiplex mode (ADMUXMODE pin is High) or address/data separate mode (ADMUXMODE pin is Low).

For details on the connection example, refer to the "R-IN32M4-CL3 User's Manual: Board Design edition".

2. When the MEMCSEL pin is High, setting the HWRZSEL pin to High is prohibited.

Remark. The external MCU interface pins continue to operate as those pins even during a reset.

2.4 Serial Flash ROM Interface Pins

The serial flash ROM interface pins are the pins of the serial flash ROM controller.

These pins support the following instruction formats: Fast Read, Fast Read Dual Output, Fast Read Dual I/O, Fast Read Quad Output, and Fast Read Quad I/O.

Function	Pin	PKG					Level during
Name	Name	23 🗆	17 🗆	I/O	Description	Active	Reset
SMSCK	P14	0	\circ	0	Serial clock output signal for serial flash ROM	_	Hi-Z (High)
SMIO0	P15	\circ	\circ	I/O	Serial data I/O signals for serial flash ROM		
					(Connected to the IO0 pin of serial flash ROM)		
SMIO1	P16	\circ	\circ		Serial data I/O signals for serial flash ROM		
					(Connected to the IO1 pin of serial flash ROM)		
SMIO2	P10	\circ	×		Serial data I/O signals for serial flash ROM		
			0		(Connected to the /WP(IO2) pin of serial flash		
	EXTP10	×	\circ		ROM)		
SMIO3	P11	0	×		Serial data I/O signals for serial flash ROM		
	EVTD44	X			(Connected to the /HOLD(IO3) pin of serial flash		
	EXTP11				ROM)		
SMCSZ	P17	0	\bigcirc	0	Chip select output signal for serial flash ROM	Low	

2.5 DMA Interface Pins

The DMA interface pins are the external interface pins of the DMA controllers.

Two types of DMA controllers built into the R-IN32M4-CL3, general-purpose DMA controllers (channels 0 and 1) and real-time port DMA controller, can be used as external DMA interfaces.

	Pin	PKG					Level during
Function Name	Name	23 🗆	17□	I/O	Description	Active	Reset
RTDMAREQZ	P62	\circ	\circ	I	RTDMAC DMA transfer request input	Low	Hi-Z (High)
RTDMAACKZ	P63	\circ	\circ	0	RTDMAC DMA acknowledge output		
RTDMATCZ	P64	\circ	\circ		RTDMAC terminal count output		
DMAREQZ0	P65	\circ	\circ	I	DMA transfer request input 0		
DMAACKZ0	P66	\circ	\circ	0	DMA acknowledge output 0		
DMATCZ0	P67	0	0		Terminal count output 0		
DMAREQZ1	P32	\circ	0	1	DMA transfer request input 1		
DMAACKZ1	P33	0	0	0	DMA acknowledge output 1		
DMATCZ1	P34	0	0		Terminal count output 1		

Note. These pins are fixed to channels of the DMA controllers. The pins cannot be assigned to the desired channel. For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

2.6 External Interrupt Input Pins

The LSI has one non-maskable interrupt and 30 maskable interrupt input pins.

		PKG					Level during
Function Name	Pin Name	23□	17	I/O	Description	Active	Reset
NMIZ	_	0	\circ	I	Non-maskable external	Low	Hi-Z (High)
					interrupt input		
INTPZ0-INTPZ5	P00-P05	\circ	\circ	ı	External interrupt input		
INTPZ6	P50	\circ	0				
INTPZ7	P51	0	0				Hi-Z (Low)
INTPZ8-INTPZ10	P22-P24	\circ	0				Hi-Z (High)
INTPZ11-INTPZ15	P73-P77	0	\circ				
INTPZ16-INTPZ21	RP00-RP05	0	\circ				
INTPZ22	P35	\circ	\circ				Hi-Z (Low)
INTPZ23	P36	0	0				Hi-Z (High)
INTPZ24	P37	0	0				Hi-Z (Low)
INTPZ25-INTPZ28	RP24-RP27	0					11: 7 (11: eds.)
INTPZ29	P41	0	0				Hi-Z (High)

2.7 Timer I/O Pins

		PKG					Level during
Function Name	Pin Name	23□	17□	I/O	Description	Active	Reset
TINJ0 / TOUTJ0*1	P27	\circ	\circ	I/O	Timer TAUJ2 I/O pin	_	Hi-Z (High)
TINJ1 / TOUTJ1*1	P26	\bigcirc	\bigcirc				
TINJ2 / TOUTJ2*1	P57	0	\circ				
TINJ3 / TOUTJ3*1	P52	0	\circ				
TIND0 / TOUTD0	EXTP0	\circ	\circ		Timer TAUD I/O pin		
TIND1 / TOUTD1	EXTP1	\circ	\circ				
TIND2 / TOUTD2	EXTP2	\circ	\circ				
TIND3 / TOUTD3	EXTP3	0	\circ				
TIND4 / TOUTD4*1	P27	0	\circ				
TIND5 / TOUTD5*1	P26	0	\circ				
TIND6 / TOUTD6*1	P57	0	\circ				
TIND7 / TOUTD7*1	P52	0	\circ				
TIND8 / TOUTD8	RP30	0	\circ				
TIND9 / TOUTD9	RP31	0	\circ				
TIND10 / TOUTD10	RP32	\bigcirc	\bigcirc				
TIND11 / TOUTD11	RP33	0	\circ				
TIND12 / TOUTD12	RP34	0	\circ				
TIND13 / TOUTD13	RP35	\circ	\circ				
TIND14 / TOUTD14	RP36	0	\circ				
TIND15 / TOUTD15	RP37	0	\bigcirc				

Note 1. TINJ0-TINJ3 and TIND4-TIND7, and TOUTJ0-TOUTJ3 and TOUTD4-TOUTD7 are assigned as multiplexed functions of the same port pins. Use the TMISEL register to select the pin functions to be used.

For details on this register, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition". When the external pin functions such as the interval timer function of the internal clock are not used, both TAUJ2 and TAUD channels can be used at the same time.

2.8 Watchdog Timer Output Pin

Function		PKG					Level during
Name	Pin Name	23□	17	I/O	Description	Active	Reset
WDTOUTZ	P25 / EXTP3	0	0	0	Watchdog timer output pin	Low	Hi-Z (High)

2.9 Serial Interface Pins

Function	Pin	PKG					Level during
Name	Name	23□	17	I/O	Description	Active	Reset
TXD0	P21	\circ	\circ	0	UART0 serial data output	_	Hi-Z (High)
RXD0	P20	\circ	0	1	UART0 serial data input		
TXD1	P31	0	0	0	UART1 serial data output		
RXD1	P30	0	\circ	1	UART1 serial data input		
CSISCK0	P45	\circ	0	I/O	CSI0 serial clock input/output		
CSISI0	P46	\circ	\circ	I	CSI0 serial data input		
CSISO0	P47	\circ	\circ	0	CSI0 serial data output		
CSICS00	P42	\circ	\circ		CSI0 chip select signal output 0	Low	
CSICS01	P43	\circ	\circ		CSI0 chip select signal output 1		
CSISCK1	P35	\circ	\circ	I/O	CSI1 serial clock input/output	_	Hi-Z (Low)
CSISI1	P36	\circ	\circ	I	CSI1 serial data input		Hi-Z (High)
CSISO1	P37	\circ	\circ	0	CSI1 serial data output		Hi-Z (Low)
CSICS10	P70	\circ	\circ		CSI1 chip select signal output 0	Low	Hi-Z (High)
CSICS11	P71	\circ	\bigcirc		CSI1 chip select signal output 1		
SCL0*1	P60	\circ	\circ	I/O	I ² C0 serial clock	_	
SDA0*1	P61	\circ	\bigcirc		I ² C0 serial data		
SCL1*1	RP00	\circ	\bigcirc		I ² C1 serial clock		
SDA1*1	RP01	\circ	\circ		I ² C1 serial data		
CRXD0	P53	\bigcirc	×	I	CAN0 receive data input (5 V tolerant)		
CTXD0	P54	\circ	×	0	CAN0 transmit data output (5 V tolerant)		
CRXD1	P55	\bigcirc	×	I	CAN1 receive data input (5 V tolerant)		
CTXD1	P56		×	0	CAN1 transmit data output (5 V tolerant)		

Note 1. The SCLn and SDAn pins (n = 0, 1) are open-drain outputs.

For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

2.10 CC-Link IE Pins

These pins are used for CC-Link IE Field and CC-Link IE TSN.

	Pin	PKG					Level during	
Function Name	Name	23□	17	I/O	Description	Active	Reset	
CCI_RUNLEDZ	P00	0	0	0	RUN status output	Low	Hi-Z (High)	
CCI_DLINKLEDZ	P02	\circ	\bigcirc		Cyclic communication status output			
CCI_ERRLEDZ	P03	\bigcirc	\bigcirc		Field network error status output			
CCI_LERR1LEDZ	P04	\bigcirc	\bigcirc		Link error status output 1			
CCI_LERR2LEDZ	P05	\circ	\bigcirc		Link error status output 2			
CCI_SDLEDZ	P06	\bigcirc	×		Transmission status output			
	EXTP12	×	\circ					
CCI_RDLEDZ	P07	\circ	×	Port reception status output				
	EXTP13	×	\circ					
CCI_NMIZ	P52	\bigcirc	\bigcirc		Output NMI interrupt to MCU			
CCI_WDTIZ	P12	\circ	×	1	Input from external WDT			
	EXTP11	×	\bigcirc					
CCI_INTZ	P53	\circ	×	0	Output interrupt to MCU			
	EXTP10	×	\bigcirc					
CCI_CLK2_097M	_	\circ	\bigcirc	1	2.097152 MHz clock	_	_	
					(crystal oscillator)			
CLK2MSEL*1	_	\circ	\circ		CC-Link IE Field clock selection signal input 0: 2.097152 MHz (CCI_CLK2_097M)			
					1: 2 MHz (PLL divided clock)			

Note 1. For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

2.11 System Pins

Function	Pin	PKG					Level during
Name	Name	23□	17	I/O	Description	Active	Reset
XT1	_	0	\circ	0	Clock input pin	_	_
XT2	_	0	\circ	I	When using an oscillator (OSCTH = 1):		
					XT1 is connected to GND and XT2 is		
					connected to the oscillator.		
					When using a Resonator (OSCTH = 0):		
					XT1 and XT2 are connected to the		
					resonator.		
RESETZ	_	0	\circ		Reset input	Low	
PONRZ	_	\bigcirc	\bigcirc		Power-on reset input		
HOTRESETZ		\circ	\circ		Hot reset input		
OSCTH	_	\circ	\circ		External clock input mode setting	High	
					0: Resonator connection mode		
					1: External clock input mode		
JTAGSEL	_	\circ	\circ		JTAG pin operating mode setting	_	
					0: Cortex-M4 JTAG mode		
					1: B-SCAN JTAG mode		
RSTOUTZ	_	\bigcirc	\bigcirc	0	External reset output	Low	Low
PLL_VDD		\circ	\circ	_	PLL power supply (1.15 V)	_	_
PLL_GND	_	\circ	\circ		PLL GND		
VDD33		0	\bigcirc		I/O power supply (3.3 V)		
VDD11	_	0			Internal power supply (1.15 V)		
GND	_	0	0		Power supply ground voltage (GND)		
GND/OPEN	_	0	×		Power supply ground voltage (GND) or		
					open		

2.12 Trace Pins

	Pin	PKG					Level during
Function Name	Name	23□	17	I/O	Description	Active	Reset
TRACECLK	_	\circ	0	0	Trace port clock output	_	Clock output
TRACEDATA3*1	_	0	0		Trace port data output		Hi-Z (High)
TRACEDATA2*1	_	0	0				
TRACEDATA1*1	_	0	0				
TRACEDATA0*1	_	0	0				

Note 1. These pins are used as an input port in the initial state. The pins are switched to an output port after the reset state is released (the RSTOUTZ pin is switched from Low to High) and 150 to 170 ns are passed.

2.13 CPU Power Control Pin

	Pin	PKG					Level during
Function Name	Name	23□	17	I/O	Description	Active	Reset
SLEEPING	P72	0	0	0	CPU core sleep mode output	High	Hi-Z (High)

2.14 Test Pins

	Pin	PKG					Level during
Function Name	Name	23□	17	I/O	Description	Active	Reset
TMODE0-TMODE2	_	\bigcirc	\circ	1	Renesas dedicated test pins	_	
TEST3		\circ	×				
TEST4, TEST5		\bigcirc	\circ	I/O			
TEST6		\bigcirc	\circ	I			
TEST7		\circ	\circ				
TMS		\bigcirc	\circ	I/O	Mode select signal		
TDI		\circ	\circ	1	Serial data input		
TDO		\circ	\circ	0	Serial data output		
TRSTZ		0	0	1	Reset signal	Low	
TCK		0	0		Clock signal (JTAG clock)	_	

2.15 Operating Mode Setting Pins

	Pin	PKG					Level during
Function Name	Name	23□	17	I/O	Description	Active	Reset
BOOT1-BOOT0	_	\circ	0	I	Boot mode selection	_	_
					00: External memory boot		
					01: External serial flash ROM boot		
					10: External MCU boot		
					11: Instruction RAM boot (only available		
					for debugging)		
MEMIFSEL	 —	\bigcirc	\circ		External memory interface selection		
					0: Slave memory interface		
					1: External MCU interface		
MEMCSEL	_	\bigcirc	\bigcirc		Internal memory controller selection		
					0: Asynchronous SRAM controller		
					1: Synchronous burst access memory		
					controller		
BUS32EN	_	\bigcirc	\circ		External memory interface bus width		
					selection		
					0: 16-bit bus		
					1: 32-bit bus		
HIFSYNC	 —	\bigcirc	\circ		External MCU interface operating mode		
					selection		
					0: Asynchronous SRAM interface		
					1: Synchronous SRAM interface		
HWRZSEL	_	\bigcirc	\circ		External MCU interface HWRZ/HBENZ		
					selection		
					0: Used as HBENZ		
					1: Used as HWRZ		
ADMUXMODE		\circ	\circ		Multiplexing of address and data lines		
					0: Separated address and data lines		
					1: Multiplexed address and data lines		

The following table lists the combinations of available operating mode setting pins for this product.

Boot mode	Ext	External memory boot				External MCU boot				External serial flash ROM boot							
External memory interface	Slav	Slave memory interface				External MCU interface				Slave memory interface				External MCU interface			
Memory controller type	Async	Asynchronous Synchronous		Async	hronous	Synch	nronous	Async	hronous	Synch	nronous	Asynchronous Synchronous			ronous		
External bus width	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	16-bit	32-bit	
BOOT1-0	00	00	00	00	10	10	10	10	01	01	01	01	01	01	01	01	
MEMIFSEL	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
MEMCSEL	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
BUS32EN	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
HIFSYNC	0	0	0	0	*1	*1	1	1	0	0	0	0	*1	*1	1	1	
HWRZSEL	0	0	0	0	*2	*2	0	0	0	0	0	0	*2	*2	0	0	
ADMUXMODE	0	0	*3	*3	0	0	*3	*3	0	0	*3	*3	0	0	*3	*3	

Note. Any combination of operating mode setting pins other than above is prohibited.

Note 1. The mode of the external MCU interface is selectable by the level on the HIFSYNC pin.

HIFSYNC = 0: Asynchronous SRAM supported MCU connection mode

HIFSYNC = 1: Synchronous SRAM supported MCU connection mode

For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

2. The external MCU interface HWRZ or HBENZ is selectable by the level on the HWRZSEL pin.

For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

3. Multiplexing of address and data lines is selectable by the level on the ADMUXMODE pin.

For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

Remarks 1. The combination of operating mode setting pins used to select booting for instruction RAM (BOOT1-0 = 11) is the same as that for booting from external memory (BOOT1-0 = 00).

2. Asynchronous: Asynchronous SRAM controller (MEMCSEL = 0)

Synchronous: Synchronous burst access memory controller (MEMCSEL = 1)

3. Electrical Characteristics

3.1 Terminology

Table 3.1 Terms Used in Absolute Maximum Ratings

Parameter	Symbol	Meaning
Power supply voltage	V_{DD}	Indicates the voltage range within which damage or reduced reliability will not result
		when power is applied to a VDD pin.
Input voltage	VI	Indicates the voltage range within which damage or reduced reliability will not result
		when power is applied to an input pin.
Output voltage	Vo	Indicates the voltage range within which damage or reduced reliability will not result
		when power is applied to an output pin.
Output current	Io	Indicates the absolute tolerance value for DC current to prevent damage or
		reduced reliability when a current flows out of or into an output pin.
Operating ambient	T _A	Indicates the ambient temperature range for normal logic operations.
temperature		
Storage temperature	T.Sgt.	Indicates the element temperature range within which damage or reduced reliability
		will not result while no voltage or current is being applied to the device.

Table 3.2 Terms Used in Recommended Operating Range

Parameter	Symbol	Meaning
Power supply voltage	V_{DD}	Indicates the voltage range for normal logic operations that occur when VSS = 0 V.
High-level input voltage	V _{IH}	A voltage, which is applied to the input pins of the R-IN32M4-CL3, indicating that
		the high level state for normal operation of the input buffer.
		- If a voltage that is equal to or greater than the minimum value is applied,
		the input voltage is guaranteed as a high level voltage.
Low-level input voltage	VIL	A voltage, which is applied to the input pins of the R-IN32M4-CL3, indicating that
		the low level state for normal operation of the input buffer.
		- If a voltage that is equal to or less than the maximum value is applied, the input
		voltage is guaranteed as a low level voltage.
Positive trigger voltage	VP	Indicates the input level at which the output level is inverted when the input to the
		R-IN32M4-CL3 is changed from the low-level side to the high-level side.
Negative trigger voltage	V _N	Indicates the input level at which the output level is inverted when the input to the
		R-IN32M4-CL3 is changed from the high-level side to the low-level side.
Hysteresis voltage	VH	Indicates the differential between the positive trigger voltage and the negative
		trigger voltage.
Input rising time	t _{ried} ,	Indicates the limit value for the time period when an input voltage applied to
	t _{ric} ,	R-IN32M4-CL3 rises from 10% to 90%. tried, tric, and tris each indicate the input
	t _{ris}	rising time for the data, clock, and Schmitt buffer.
Input falling time	t _{fid} ,	Indicates the limit value for the time period when an input voltage applied to
	t _{fic} ,	R-IN32M4-CL3 falls from 90% to 10%. tfid, tfic, and tfis each indicate the input falling
	t _{fis}	time for the data, clock, and Schmitt buffer.

Table 3.3 Terms Used for DC Characteristics

Parameter	Symbol	Meaning
Off-state output current	loz	Indicates the current that flows via an output pin when the rated voltage is applied when a tri-state output has high impedance.
Output short circuit current	los	Indicates the current that flows when the output pins are shorted to the ground when output is at high level.
Input leakage current	ILI	Indicates the current that flows via an input pin when a voltage is applied to that pin.
Low-level output current	I _{OL}	Indicates the current that flows through the output pin when the rated low-level voltage is outputting.
High-level output current	Іон	Indicates the current that flows from the output pin when the rated high-level voltage is outputting.
Low-level output voltage	V _{OL}	Indicates the output voltage at low level.
High-level output voltage	Vон	Indicates the output voltage at high level.

3.2 Absolute Maximum Ratings

Table 3.4 Absolute Maximum Ratings

Item	Symbol	Conditions		Ratings	Unit
Power supply voltage	V _{DD}	1.15 V power supply		-0.3 to +1.265	V
		2.5 V power supply		-0.3 to +2.75	V
		3.3 V power supply		-0.3 to +4.20	V
I/O voltage	Vı/Vo	3.3 V buffer	$V_1/V_0 < V_{DD} + 0.3 V$	-0.3 to +4.20	V
		Gigabit Ethernet PHY MDI		-0.3 to +2.75	V
		$(Px_DyP/Px_DyN) x = 0, 1, y = 0 \text{ to } 3$			
	Vı	5 V-tolerant buffer		-0.3 to +5.80	V
	Vo			-0.3 to +4.20	V
Output current (3.3 V buffer)	lo	8mA type		16.0	mA
		10mA type		22.3	mA
		12mA type		27.6	mA
Output current (5 V-tolerant	lo	4mA type (5 V-tolerant buffer)		10.2	mA
buffer)					
Operating ambient temperature	TA	_		-40 to +85	°C
Storage temperature	T.Sgt.	_		−55 to +125	°C
Junction temperature	Tj	_		-40 to +125	°C

Note. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark. Be sure to apply voltage to the I/O pins only after the supply voltage has been fixed.

3.3 Recommended Operating Conditions

Table 3.5 Recommended Operating Conditions

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage	V_{DD}	1.15 V power supply	1.09	1.15	1.21	V
		2.5 V power supply	2.375	2.5	2.625	V
		3.3 V power supply	3.135	3.3	3.465	V
Negative trigger voltage	V _N	3.3 V buffer	8.0	_	1.8	V
		5 V-tolerant buffer	8.0	_	1.8	V
Positive trigger voltage	VP	3.3 V buffer	1.1	_	2.4	V
		5 V-tolerant buffer	1.1	_	2.1	V
Hysteresis voltage	Vн	3.3 V buffer	0.15	_	1.1	V
		5 V-tolerant buffer	0.15	_	1.1	V
Low-level input voltage	V _{IL}	3.3 V buffer	-0.3	_	0.8	V
		3.3 V OSC buffer	-0.3	_	0.8	V
		5 V-tolerant buffer	-0.3	_	0.8	V
High-level input voltage	V _{IH}	3.3 V buffer	2.2	_	$V_{DD} + 0.3$	V
		3.3 V OSC buffer	2.4	_	V _{DD} + 0.3	V
		5 V-tolerant buffer	2.2	_	5.8	V
Input rising/falling time	t _{ried}	_	0	_	200	ns
	t _{fid}	_	0	_	200	ns
Input rising/falling time (clock)	tric	_	0	_	4	ns
	t _{fic}		0	_	4	ns
Input rising/falling time (Schmitt input)	t _{ris}	_	0		1	ms
	t _{fis}	_	0	_	1	ms
Operating ambient temperature	TA	_	-40	_	85	°C

3.4 DC Characteristics

Table 3.6 DC Characteristics ($V_{DD} = 3.3 \pm 0.165 \text{ V}$, $T_A = -40 \text{ to } +85^{\circ}\text{C}$) (1/2)

Item	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Operating current	IDD	$V_I = V_{DD}$ or	Without	VDD11,	_	325	515	mA
consumption		GND	2.5-V built-in	VDD11A				
			Regulator	VDD25A	—	280	320	
				VDD33*2	_	28	_	mA
			With 2.5-V	VDD11,	_	325	515	mΑ
			built-in	VDD11A				
			Regulator	VDD25A	_	_	_	
				VDD33*2	_	28	_	mΑ
				VDDREG_33,	_	248	289	mA
				AVDDREG_33				
Off-state current	loz	$V_I = V_{DD}$ or GND	3.3 V output		_	_	±10	μA
		Vı = GND	5 \/ 4 = l = = = + l = .	.tt	_	_	-10	μA
		V₁≤ 5.8 V	5 V-tolerant bu	итег	_	_	+10	μA
Output short circuit current*1	los	V _O = GND	_		_	_	-250	mA
Input leakage current	I _I	$V_I = V_{DD}$ or GND	Normal input		_	_	±10	μA
(3.3 V buffer)		V _I = GND	With pull-up re	esistor (130 kΩ)	-6.7	_	-195	μA
		$V_I = V_{DD}$	With pull-down resistor (160 kΩ)		6.7	_	195	μA
Input leakage current	l ₁	V _I = GND	With pull-up re	esistor (130 kΩ)	-6.7	_	-195	μA
(5 V-tolerant buffer)								

- Note 1. The output short circuit time is no more than one second and is only for one pin.
 - 2. The operating current of I/O differs depending on the conditions (for example, loads, waveform distortion, and toggle frequency). Measure actual current under the mounting environment.

Remark. The (+) and (–) signs in the table indicate the current direction. Current flowing to the device is indicated by (+) and current flowing out is indicated by (–).

Table 3.7 DC Characteristics (VDD = 3.3 ± 0.165 V, TA = -40 to +85°C) (2/2)

Item	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-level output current	loL	V _{OL} = 0.4 V	8 mA type	8.0	_	_	mA
(3.3 V buffer)			10 mA type	10.0	_	_	mA
			12 mA type	12.0	_	_	mΑ
Low-level output current (5 V-tolerant buffer)	loL	V _{OL} = 0.4 V	4 mA type	4.0	_	_	mA
High-level output current	Іон	V _{OH} = V _{DD} - 0.4 V	8 mA type	-8.0	_	_	mA
(3.3 V buffer)			10 mA type	-10.0	_	_	mΑ
			12 mA type	-12.0	_	_	mΑ
High-level output current (5 V-tolerant buffer)	Іон	V _{OH} = V _{DD} - 0.4 V	4 mA type	-4.0	_	_	mA
Low-level output voltage	Vol	I _{OL} = 0 mA	3.3 V buffer	_	_	0.1	٧
			5 V-tolerant buffer	_	_	0.1	٧
High-level output voltage	Vон	I _{OL} = 0 mA	3.3 V buffer	V _{DD} - 0.1 V	_	_	٧
			5 V-tolerant buffer	V _{DD} - 0.1 V	_	_	V

Table 3.8 DC Characteristics (2.5-V built-in Regulator: $V_{DD} = 3.3 \pm 0.165 \text{ V}$, $T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	V _{DD}	REG_OUT pin*	2.5 - 3%	_	2.5 + 3%	V
Output current	lo		_	1	400	mA
Conversion efficiency	_	_	_	80	1	%

Note. The power supply of 2.5 V via the REG_OUT pin is dedicated to the VDD25A.

The pin is not available for 2.5 V power supply to other devices.

3.5 Pull-Up/Pull-Down Resistor Values

Table 3.9 Pull-Up/Pull-Down Resistor Values ($V_{DD} = 3.3 \pm 0.165 \text{ V}$, $T_A = -40 \text{ to } +85 ^{\circ}\text{C}$)

Item	Library	MIN.	TYP.	MAX.	Unit
	Specification				
Pull-up resistor (3.3 V buffer)	130 kΩ	18	130	450	kΩ
Pull-down resistor (3.3 V buffer)	160 kΩ	18	160	450	kΩ
Pull-up resistor (5 V-tolerant buffer)	130 kΩ	18	130	450	kΩ

3.6 Pin Capacitance

Table 3.10 Pin Capacitance

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input buffer	Св	XT2 pin		_	7.0	pF
		Other than XT2 pin	_	_	10.0	pF
Output buffer		_	_	_	10.0	pF
I/O buffer		_		_	10.0	pF

3.7 Power-On/Off Sequence

Table 3.11 lists external power supplies to R-IN32M4-CL3. Figure 3.1 and Figure 3.3 show the power-on/off sequence. There is no particular rule for the power-on sequence. We recommend supplying external power voltage VDD11 first and then supplying external power voltage VDD33. On the other hand, when turning off the power, disconnect VDD33, then VDD11.

If VDD33 is supplied first, note that the I/O modes of the I/O buffers are not fixed and outputs become undefined over the period between VDD33 and VDD11 rising to their thresholds.

3.3 V must be applied to the input pins only after the power supply voltages have been applied.

Table 3.11 External Power Supplies

External power supply	Voltage [V]	External pin name
VDD33	3.3 ± 0.165*	VDD33
		VDDREG_33
		AVDDREG_33
VDD25	2.5 ± 0.125*	VDD25A
VDD11	1.15 ± 0.06*	VDD11
		VDD11A
		PLL_VDD

Note. Ripple incorporated value. As a target value, set the DC component to within ±3% and the ripple component to within ±2%.

3.7.1 Power-On/Off Sequence without 2.5-V built-in Regulator

(1) Supplying Power Voltages

Supply power voltages so that the following two conditions are both satisfied.

- 1) The period from when VDD33, VDD25, or VDD11 reaches 10% VDD to when all of them reach 90% VDD or higher is within 100 ms.
- 2) The period from when VDD33, VDD25, or VDD11 reaches 95% VDD to when all of them reach 95% VDD or higher is within 50 ms.

(2) Turning Off Power Voltages

Turn off power voltages so that the following two conditions are both satisfied.

- 1) The period from when VDD33, VDD25, or VDD11 reaches 90% VDD to when all of them reach 10% VDD or lower is within 100 ms.
- 2) The period from when VDD33, VDD25, or VDD11 reaches 95% VDD to when all of them reach 95% VDD or lower is within 50 ms.

Figure 3.1 Power-On/Off Sequence (without 2.5-V built-in Regulator)

Figure 3.2 Power Supply Path to R-IN32M4-CL3 (without 2.5-V built-in Regulator)

3.7.2 Power-On/Off Sequence with 2.5-V built-in Regulator

(1) Supplying Power Voltages

Supply power voltages so that the following two conditions are both satisfied.

- 1) The period from when VDD33 or VDD11 reaches 10% VDD to when both of them reach 90% VDD or higher is within 100 ms.
- 2) The period from when VDD33 or VDD11 reaches 95% VDD to when both of them reach 95% VDD or higher is within 49 ms.

(2) Turning Off Power Voltages

Turn off power voltages so that the following two conditions are both satisfied.

- 1) The period from when VDD33 or VDD11 reaches 90% VDD to when both of them reach 10% VDD or lower is within 100 ms.
- 2) The period from when VDD33 or VDD11 reaches 95% VDD to when both of them reach 95% VDD or lower is within 49 ms.

Figure 3.3 Power-On/Off Sequence (with 2.5-V built-in Regulator)

Figure 3.4 Power Supply Path to R-IN32M4-CL3 (with 2.5-V built-in Regulator)

3.8 AC Characteristics

3.8.1 Clock Pins

(1) Input Clocks

Item	Symbol	Conditions	MIN	MAX	Unit
		When the resonator			
XT1 and XT2 clock frequency	tsysclk	is used	25 ± 50 ppm, 5 ps-rms		MHz
		(OSCTH pin = 0)			
XT2 clock frequency		When the oscillator	25 ± 50 ppm, 5 ps-rms		MHz
VT2 aloak dutu		is used	45	55	%
XT2 clock duty		(OSCTH pin = 1)	45	55	%
CCI_CLK2_097M	tccliectk	_	2.097152 ± 100 ppr	m	MHz
HBUSCLK	thbusclk	_	_	50	MHz
CSISCK0, CSISCK1	tcsissck	Slave mode	_	16.6	MHz
TCK	t _{TCK}	_	_	50	MHz

(2) Output Clocks

Item	Symbol	Conditions	MIN	MAX	Unit
BUSCLK output cycle	t _{BUSCLK}		10	_	ns
BUSCLK High-level width	t _{BCKH}		0.5 × t _{BUSCLK} - 2.0	0.5 x t _{BUSCLK} + 2.0	ns
BUSCLK Low-level width	t _{BCKL}	C _L = 15 pF	0.5 x t _{BUSCLK} - 2.0	0.5 x t _{BUSCLK} + 2.0	ns
BUSCLK rising time	tBCKR		_	1.2	ns
BUSCLK falling time	t _{BCKF}		_	1.2	ns
CSISCK0 and CSISCK1 output	tcsimsck	Master mode		25	MHz
frequency		C _L = 15 pF	_	25	IVIHZ
SCL0 and SCL1 output	t _{SCL}	High-speed mode		400	kHz
frequency		C _L = 30 pF	_	400	KHZ
SMSCK output frequency	tsmsck	C _L = 15 pF	_	50	MHz
TRACECLK output frequency	t TRACECLK	C _L = 15 pF	_	50	MHz

Figure 3.5 Output Clock Timing

3.8.2 **Reset Pins**

Item	Symbol	Conditions	MIN	MAX	Unit
RESETZ input Low-level width	twrsl	_	Secure the time	_	ns
HOTRESETZ input Low-level width	twhrsl	_	(oscillation stabilization time of the	_	ns
PONRZ input Low-level width	twprsl	_	external oscillator circuit + 1 µ sec).	_	ns
PONRZ input timing (for RESETZ ↑)	t _{SKPR}	_	0	_	ns

Figure 3.6 Reset Timing

3.8.3 External Memory Interface Pins

(1) How to calculate a delay value due to the external load

For the external memory interface pins of R-IN32M4-CL3, the listed values are for a load of 0 pF, but the actual loads will differ with users. Calculate the timing in accordance with the load conditions of the user. The user must also consider the wiring delay on the board.

	Delay Value per pF (ns)		
Driving Ability	MIN.	MAX.	
8 mA	0.024	0.064	
12 mA	0.013	0.039	

Calculation Example:

When an address pin (8 mA output buffer) has a 30 pF load, the actual delay is as follows.

MIN. 1.0 ns (Minimum delay value for the load of 0 pF) + (0.024×30) ns = 1.72 ns

MAX. 7.0 ns (Maximum delay value for the load of 0 pF) + (0.064×30) ns = 8.92 ns

(2) Asynchronous SRAM controller access timing

Item	Symbol	MIN	MAX	Unit
Address and CSZ0–CSZ3 output delay time (for BUSCLK ↑)	toka	1.0 (1.72)*	7.0 (8.92)*	ns
RDZ output delay time (for BUSCLK ↑)	t _{DKRD}	1.0 (1.72)*	7.0 (8.92)*	ns
WRZ0–WRZ3 (BENZ0–BENZ3) and WRSTBZ output delay time (for BUSCLK ↑)	tokwr	1.0 (1.72)*	7.0 (8.92)*	ns
BCYSTZ output delay time (for BUSCLK↑)	tokbsl	1.0 (1.72)*	7.0 (8.92)*	ns
WAITZ input setup time (for BUSCLK↓)	tskw	4.0	_	ns
WAITZ input hold time (for BUSCLK↓)	t _{HKW}	0	_	ns
Data input setup time (for BUSCLK↑)	tskid	4.0	_	ns
Data input hold time (for BUSCLK↑)	thkid	0	_	ns
Data output delay time (for BUSCLK↑)	t _{DKOD}	1.0 (1.72)*	7.0 (8.92)*	ns
Data float delay time (for BUSCLK↑)	thkod	1.0 (1.72)*	7.0 (8.92)*	ns

Note. Values in parenthesis are the calculation results for the driving ability of 8 mA and the external load of 30 pF.

(a) Read timing

Figure 3.7 Memory Controller Read Timing (Asynchronous Memory)

Note. The WRZ0-WRZ3 pins are multiplexed with the BENZ0-BENZ3 pin functions. The pin names are WRZ0-WRZ3.

The WRZ0–WRZ3 pins are selected by default during a reset. Use the write enable switching register (WREN) to switch the pin functions of these pins.

For register details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

Remark. The above timing is for the case where the settings in the SMCn register for numbers of idle wait cycles, write recovery wait cycles, and address setting wait cycles are 0, and that for data wait cycles is 3.

(b) Write timing

Figure 3.8 Memory Controller Write Timing (Asynchronous Memory)

Note. The WRZ0-WRZ3 pins are multiplexed with the BENZ0-BENZ3 pin functions. The pin names are WRZ0-WRZ3.

The WRZ0–WRZ3 pins are selected by default during a reset. Use the write enable switching register (WREN) to switch the pin functions of these pins.

For register details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

Remark. The above timing is for the case where the settings in the SMCn register for numbers of idle wait cycles, write recovery wait cycles, and address setting wait cycles are 0, and that for data wait cycles is 3.

(3) Synchronous burst access memory controller access timing

Item	Symbol	MIN	MAX	Unit
BUSCLK output frequency	t _{BUSCLK}	_	50	MHz
Address and CSZ0–CSZ3 output delay time	toka	1.0 (1.72)*	7.8 (9.72)*	ns
RDZ output delay time	tokro	1.0 (1.72)*	7.8 (9.72)*	ns
WRZ0-WRZ3 (BENZ0-BENZ3) and WRSTBZ output delay time	t _{DKWR}	1.0 (1.72)*	7.8 (9.72)*	ns
ADVZ output delay time	tokbsl	1.0 (1.72)*	7.8 (9.72)*	ns
WAITZ and WAITZ1-WAITZ3 input setup time	tskw	5.3	_	ns
WAITZ and WAITZ1-WAITZ3 input hold time	t _{HKW}	0	_	ns
Data input setup time	tskid	5.3	_	ns
Data input hold time	thkid	0	_	ns
Data output delay time	t _{DKOD}	1.0 (1.72)*	7.8 (9.72)*	ns
Data float delay time	thkod	1.0 (1.72)*	7.8 (9.72)*	ns

Note. Values in parenthesis are the calculation results for the driving ability of 8 mA and the external load of 30 pF.

(a) Read timing

Figure 3.9 Memory Controller Read Timing (Clock Synchronous Memory)

Remark. The above timing is for the case where t_ceoe is 2 and t_rc is 4.

(b) Write timing

Figure 3.10 Memory Controller Write Timing (Clock Synchronous Memory)

Remark. The above timing is for the case where t_wp is 2 and t_wc is 5.

3.8.4 External MCU Interface Pins

The load condition for the external MCU interface pins: 65 pF (HD pin) and 35 pF (HWAITZ pin).

(1) Synchronous mode

No.	Item	Symbol	MIN	MAX	Unit
1	HBUSCLK High-level width	t _{нвнібн}	0.5 × t _{HBUSCLK} - 2.1	0.5 × t _{HBUSCLK} + 2.1	ns
2	HBUSCLK Low-level width	thblow	0.5 × theusclk − 2.1	0.5 × thbusclk + 2.1	ns
3	HBUSCLK input cycle	thbusclk	20.0	_	ns
4	Address, HCSZ, HPGCSZ, and HRDZ input setup time (for HBUSCLK ↑)	t skha	4.0	_	ns
5	HBENZ0–HBENZ3 (HWRZ0–HWRZ3) and HWRSTBZ input setup time (for HBUSCLK \uparrow)	tskhwr	4.0	_	ns
6	Address, HCSZ, HPGCSZ, and HRDZ input hold time (for HBUSCLK \uparrow)	tнкна	1.0	_	ns
7	HBENZ0-HBENZ3 (HWRZ0-HWRZ3) and HWRSTBZ input hold time (for HBUSCLK \uparrow)	thkhwr	1.0	_	ns
8	HWRZ0-HWRZ3, HWRSTBZ recovery time (High-level width)	twhwr	35.0	_	ns
9	Data input setup time (for HBUSCLK ↑)	tskihd	4.0	_	ns
10	Data input hold time (for HBUSCLK ↑)	thkihd	1.0	_	ns
11	HWAITZ output delay time (for HCSZ, HPGCSZ \downarrow)	t _{DKHD}	2.2	_	ns
12	HWAITZ output delay time (for HWRSTBZ, HWRZ0 to HWRZ3 ↓)	tokhwt	2.2	_	ns
13	HWAITZ valid data output delay time (for HBUSCLK ↑)	tokhwtv	2.0	11.0	ns
14	HWAITZ valid data hold time (for HWRSTBZ, HWRZ0–HWRZ3 ↑)	thkhwtv	4.2	_	ns
15	HWAITZ output hold time (for HWRSTBZ, HWRZ0–HWRZ3 ↑)	t _{HKWTWR}	_	16.8	ns
16	Data and HWAITZ output hold time (for HCSZ, HPGCSZ ↑)	thkwtcs	_	16.8	ns
17	HRDZ recovery time (High-level width)	twhrd	35.0	_	ns
18	Data and HWAITZ output delay time (for HRDZ \downarrow)	tokhohr	2.2	_	ns
19	Data fixing time (for HWAITZ ↑)	tskhdhwt	thbusclk - 10.0	_	ns
20	Data and HWAITZ valid data output hold time (for HRDZ ↑)	thkhwthr	2.2	_	ns
21	Data and HWAITZ output hold time (for HRDZ ↑)	tнконр	_	16.8	ns
22	Data and HWAITZ output delay time in on-page access (for addresses)	t _{DKPON}	4.2	15.4	ns
23	Data and HWAITZ output delay time in off-page access (for addresses) (when not crossing a 16-byte boundary)	tdkpoff	4.2	15.4	ns
	Data and HWAITZ output delay time in off-page access (for addresses) (when crossing a 16-byte boundary)	t _{DKPOFF}	4.2	49.5	ns
24	HWAITZ valid data output delay time (for HCSZ, HPGCSZ ↓)	tokwtvcs	_	15.4	ns

Figure 3.11 External MCU Interface Write Timing (MEMCSEL=L, HIFSYNC=H)

Figure 3.12 External MCU Interface Read Timing (MEMCSEL=L, HIFSYNC=H)

Figure 3.13 External MCU Interface Page Read Timing (MEMCSEL=L, HIFSYNC=H)

(2) Asynchronous mode

No.	Item	Symbol	MIN	MAX	Unit
1	Address, HCSZ/HPGCSZ, and HBENZ0−HBENZ3 input setup time (for HWRSTBZ, HWRZ0−HWRZ3 ↓)	t _{ADDWRS}	7.0*1 - 10 × n	_	ns
2	HWRZ0-HWRZ3, HWRSTBZ recovery time (High-level width)	twrw	35.0	-	ns
3	Data input setup time (for HWRSTBZ, HWRZ0–HWRZ3↓)	twrs	7.0*1 - 10 × n	_	ns
4	Data input hold time (for HWRSTBZ, HWRZ0−HWRZ3↑)	twrh	7.0	_	ns
5	HWAITZ output delay time (for HCSZ or HPGCSZ↓)	t _{CLZ}	2.2	-	ns
6	HWAITZ output delay time (for HWRSTBZ, HWRZ0–HWRZ3↓)	t _{WAITD}	2.2	-	ns
7	HWAITZ valid data output delay time (for HWRSTBZ, HWRZ0-HWRZ3↓)	twrwaitf	_	15.4	ns
8	HWAITZ valid data output hold time (for HWRSTBZ, HWRZ0–HWRZ3↑)	twaitvh	4.2	_	ns
9	HWAITZ output hold time (for HWRZ0–3, HWRSTBZ↑)	twaith	_	16.8	ns
10	Address and HWAITZ output hold time (for HCSZ, HPGCSZ↑)	tcHZ	_	16.8	ns
11	Address, HCSZ, and HPGCSZ input setup time (for HRDZ↓)	t _{ADDRDS}	6.2*² - 10 × n	_	ns
12	Address input hold time in page access (for HRDZ↑)	t _{ADDRDH}	7.0	_	ns
13	HRDZ recovery time (High-level width)	t _{RDW}	35.0	_	ns
14	Data and HWAITZ output delay time (for HRDZ↓)	t _{RDLZ}	2.2	_	ns
15	HWAITZ valid data output delay time (for HRDZ↓)	trdwaitf	_	15.4	ns
16	Data fixing time (for HWAITZ↑)	twaitr	_	-6.2*³ +10 × n	ns
17	Data and HWAITZ valid data output hold time (for HRDZ↑)	t _{DATAOH}	2.2	_	ns
18	Data and HWAITZ output hold time (for HRDZ↑)	t _{RDHZ}	_	16.8	ns
19	Data and HWAITZ output delay time in on-page access (for addresses)	t _{PAGEOND}	4.2	15.4	ns
20	Data and HWAITZ output delay time in off-page access (for addresses) (when not crossing a 16-byte boundary)	t PAGEOFD	4.2	15.4	ns
	Data and HWAITZ output delay time in off-page access (for addresses) (when crossing a 16-byte boundary)	t PAGEOFD	4.2	49.5	ns
21	HWAITZ valid data output delay time (for HCSZ, HPGCSZ↓)	twaitvd	_	15.4	ns

Note 1. When the value of WRSTD2-WRSTD0 in the HIFBTC register is 000B.

n: Setting of WRSTD2-WRSTD0

2. When the value of RDSTD1-RDSTD0 in the HIFBTC register is 00B.

n: Setting of RDSTD1-RDSTD0

3. When the value of RDDTS1-RDDTS0 in the HIFBTC register is 00B.

n: Setting of RDDTS1-RDDTS0

Figure 3.14 External MCU Interface Write Timing (MEMCSEL=L, HIFSYNC=L)

Figure 3.15 External MCU Interface Read Timing (MEMCSEL=L, HIFSYNC=L)

Figure 3.16 External MCU Interface Page Read Timing (MEMCSEL=L, HIFSYNC=L)

(3) Synchronous SRAM type transfer mode

No.	Item	Symbol	MIN	MAX	Unit
1	HBUSCLK High-level width	t _{нвнісн}	0.5 x t _{HBUSCLK} - 2.1	0.5 × t _{HBUSCLK} + 2.1	ns
2	HBUSCLK Low-level width	t _{HBLOW}	0.5 x t _{HBUSCLK} - 2.1	0.5 × t _{HBUSCLK} + 2.1	ns
3	HBUSCLK input cycle	tнвизськ	20	_	ns
4	Address and HCSZ/HPGCSZ input setup time (for HBUSCLK ↑)	tsкрна	4.0	_	ns
5	Address and HCSZ/HPGCSZ input hold time (for HBUSCLK ↑)	t _{HKPCS}	1.0	_	ns
6	Address and HCSZ/HPGCSZ input setup time (for HBUSCLK ↓)	tsknha	4.0	_	ns
7	Address, HCSZ, and HPGCSZ input hold time (for HBUSCLK ↓)	t _{HKNHA}	1.0	_	ns
8	HWRZ0–HWRZ3 input setup time (for HBUSCLK ↑)	t skphwr	4.0	_	ns
9	HWRZ0–HWRZ3 input hold time (for HBUSCLK ↑)	thkphwr	1.0	_	ns
10	HWRZ0–HWRZ3 input setup time (for HBUSCLK ↓)	tsknhwr	4.0	_	ns
11	HWRZ0–HWRZ3 input hold time (for HBUSCLK ↓)	t _{HKNHWR}	1.0	_	ns
12	HBCYSTZ, HWRSTBZ input setup time (for HBUSCLK ↑)	tskphbcy	4.0	_	ns
13	HBCYSTZ, HWRSTBZ input hold time (for HBUSCLK ↑)	tнкрнвсу	1.0	_	ns
14	HBCYSTZ, HWRSTBZ input setup time (for HBUSCLK ↓)	tsknhbcy	4.0	_	ns
15	HBCYSTZ, HWRSTBZ input hold time (for HBUSCLK ↓)	tнкинвсу	1.0	_	ns
16	HRDZ input setup time (for HBUSCLK ↑)	tskphrd	4.0	_	ns
17	HRDZ input hold time (for HBUSCLK ↑)	t _{HKPHRD}	1.0	_	ns
18	HRDZ input setup time (for HBUSCLK ↓)	t _{SKNHRD}	4.0	_	ns
19	HRDZ input hold time (for HBUSCLK ↓)	t _{HKNHRD}	1.0	_	ns
20	Data input setup time (for HBUSCLK ↑)	tskphd	4.0	_	ns
21	Data input hold time (for HBUSCLK ↑)	tнкрно	1.0	_	ns
22	Data input setup time (for HBUSCLK ↓)	tsknhd	4.0	_	ns
23	Data input hold time (for HBUSCLK ↓)	thknhd	1.0	_	ns
24	Data output delay time (for HRDZ ↓)	t _{DKNHRD}	2.2	_	ns
25	Data output hold time (for HRDZ ↑)	t _{HKPHRD}	_	16.8	ns
26	Data output delay time (for HBUSCLK ↑)	t _{DKPHD}	2.0	10.0	ns
27	Data output delay time (for HBUSCLK ↓)	t _{DKNHD}	2.0	10.0	ns
28	HWAITZ output delay time (for HBUSCLK ↑)	t _{DKPHWT}	2.0	11.0	ns
29	HWAITZ output delay time (for HBUSCLK ↓)	toknhwt	2.0	11.0	ns
30	Data output hold time (for HCSZ/HPGCSZ ↑)	thkphcs	_	16.8	ns

Figure 3.17 External MCU Interface Write Timing (MEMCSEL=H, ADMUXMODE=L)

Figure 3.18 External MCU Interface Read Timing (MEMCSEL=H, ADMUXMODE=L)

Figure 3.19 External MCU Interface Write Timing (MEMCSEL=H, ADMUXMODE=H)

Figure 3.20 External MCU Interface Read Timing (MEMCSEL=H, ADMUXMODE=H)

3.8.5 Serial Flash ROM Interface

Item	Symbol	Conditions	MIN	MAX	Unit
SMSCK output cycle	tsfrcyc	C _L = 15 pF	20	_	ns
SMSCK High-level width	tsмскн		0.5 x tsfrcyc - 2.0	0.5 x tsfrcyc + 2.0	ns
SMSCK Low-level width	tsmckl		0.5 x tsfrcyc - 2.0	0.5 x tsfrcyc + 2.0	ns
SMSCK rising time	t _{SMCKR}		_	1.9	ns
SMSCK falling time	tsmckf		_	1.9	ns
Delay time between SMCSZ falling	t _{DSMCSCK}	C _L = 15 pF,	6.0*	_	ns
and SMSCK rising		Freq = 50 MHz			
Hold time from SMSCK rising to	tosmckcs	$C_L = 15 pF$,	9.0*	_	ns
SMCSZ rising		Freq = 50 MHz			
SMCSZ High-level width	tsmcsh	C _L = 15 pF	14*	_	ns
SMIO0–SMIO3 input setup time	t _{SSMIO}	_	6.0	_	ns
(for SMSCK ↓)					
SMIO0–SMIO3 input hold time	t _{HSMIO}	_	0	_	ns
(for SMSCK ↓)					
SMIO0-SMIO3 output delay time	t _{DSMIO}	$C_L = 15 pF$	-1.0	5.0	ns
(for SMSCK ↓)					

Note. The timing can be extended by the setting of the SFMSSC register.

For details, refer to the "R-IN32M4-CL3 User's Manual: Hardware edition".

Figure 3.21 Serial Flash Memory Access Timing

3.8.6 External DMA Interface

Item	Symbol	Conditions	MIN	MAX	Unit
DMAREQZn and RTDMAREQZ input	tskdr	_	7.0	_	ns
setup time (for BUSCLK ↑)					
DMAREQZn and RTDMAREQZ input	thkdr1	_	Until DMAACKZ↓,	_	ns
hold time 1			RTDMAACKZ↓		
DMAREQZn and REDMAREQZ input	t _{HKDR2}	_	_	$t_{BUSCLK}^{*1} \times m^{*2} - 7.0$	ns
hold time 2 (for BUSCLK ↑)					
DMAACKZn and RTDMACKZ output	t _{DKDA}	$C_L = 30 pF$	2.0	10.0	ns
delay time (for BUSCLK ↑)					
DMAACKZ and RTDMAACKZ output	t _{WDAL}	_	t _{BUSCLK} *1 × m*2 - 8	$t_{BUSCLK}^{*1} \times m^{*2} + 8$	ns
Low-level width					
DMATCZn and RTDMATCZ output	t _{DKTC}	C _L = 30 pF	2.0	10.0	ns
delay time (for BUSCLK ↑)					

Note 1. tbusclk is one cycle (10 ns) of BUSCLK.

2. n = 0, 1, m = 1-31 (DMAIFC0, DMAIFC1, and RTMDAIFC registers)

Figure 3.22 External DMA Access Timing

3.8.7 CSI Interface

The clocked serial interface (CSI) supports master mode and slave mode.

(1) Master mode

Item	Symbol	Conditions	MIN	MAX	Unit
CSISCKn output cycle	tcsimsck	$C_L = 15 pF$	40	_	ns
CSISCKn output High-level width	twskh	C _L = 15 pF	0.5 × tcsimsck - 5.0	_	ns
CSISCKn output Low-level width	twskl	C _L = 15 pF	0.5 × tcsimsck - 5.0	_	ns
CSISIn input setup time (for CSISCKn ↑)	t _{SMSI}	_	8.5	_	ns
CSISIn input setup time (for CSISCKn ↓)	tsmsı	_	8.5	_	ns
CSISIn input hold time (for CSISCKn ↑)	t _{HMSI}	_	7.0	_	ns
CSISIn input hold time (for CSISCKn ↓)	t _{HMSI}	_	7.0	_	ns
CSISOn output delay time (for CSISCKn ↑)	tomso	C _L = 15 pF	_	7.0	ns
CSISOn output delay time (for CSISCKn ↓)	tomso		_	7.0	ns
CSISOn output hold time (for CSISCKn ↑)	t _{HMSO}		0.5 × t _{CSIMSCK} - 5.0	_	ns
CSISOn output hold time (for CSISCKn ↓)	t _{HMSO}		0.5 × tcsimsck - 5.0	_	ns

Figure 3.23 CSI Access Timing (Master Mode)

Remarks 1. n = 0, 1

2. The above is an example of the timing for data output of "for CSISCKn ↓" and data input of "for CSISCKn ↑". Read the timing for reference in accordance with the operating mode.

(2) Slave mode

Item	Symbol	Conditions	MIN	MAX	Unit
CSISCKn input cycle	tcsissck	_	60	_	ns
CSISCKn input High-level width	twskh	_	0.5 × tcsisscк - 5.0	_	ns
CSISCKn input Low-level width	twskl	_	0.5 × tcsisscк - 5.0	_	ns
CSISIn input setup time (for CSISCKn ↑)	t _{SSSI}	_	10.0	_	ns
CSISIn input setup time (for CSISCKn ↓)	tsssı	_	10.0	_	ns
CSISIn input hold time (for CSISCKn ↑)	tHSSI	_	15	_	ns
CSISIn input hold time (for CSISCKn ↓)	t _{HSSI}	_	15	_	ns
CSISOn output delay time (for CSISCKn ↑)	tosso	C _L = 15 pF	_	10.0	ns
CSISOn output delay time (for CSISCKn ↓)	tosso		_	10.0	ns
CSISOn output hold time (for CSISCKn ↑)	t _{HSSO}		0.5 x t _{CSISSCK} - 5.0	_	ns
CSISOn output hold time (for CSISCKn ↓)	t _{HSSO}		0.5 × tcsisscк - 5.0	_	ns

Figure 3.24 CSI Access Timing (Slave Mode)

Remarks 1. n = 0, 1

2. The above is an example of the timing for data output of "for CSISCKn ↓" and data input of "for CSISCKn ↑". Read the timing for reference in accordance with the operating mode.

3.8.8 I²C Interface

				Normal	Mode	High-Speed M	ode	
Item		Symbol	Conditions	MIN	MAX	MIN	MAX	Unit
SCLn input/output	frequency	tscL	C _L = 30 pF	0	100	0	400	kHz
Bus-free time bety start condition	ween the stop condition and	tBUF		4.7	_	1.3	_	μs
Hold time		thsta		4.0	_	0.6	_	μs
SCLn clock Low-le	evel width	t _{SCLL}		4.7	_	1.3	_	μs
SCLn clock High-l	SCLn clock High-level width			4.0	_	0.6	_	μs
Setup time for the	Setup time for the start and restart conditions			4.7	_	0.6	_	μs
Data hold time	For a CBUS compatible	t _{HDAT}		5.0	_	_	_	μs
	master							
	For an I ² C bus			0	_	0	0.9	μs
Data setup time		tsdat		250	_	100	_	ns
SDAn and SCLn r	ising time	tsclr		_	1000	20 + 0.1 × C _b	300	ns
SDAn and SCLn f	alling time	t _{SCLF}			300	20 + 0.1 × C _b	300	ns
Setup time for the stop condition		tssto		4.0	_	0.6	_	μs
Pulse width of spi	Pulse width of spike suppressed by input filter			_	_	0	50	ns
Capacitive load of	each bus line	Сь	_	_	400	_	400	pF

Figure 3.25 I²C Access Timing

Remark. n = 0, 1

3.8.9 CAN Interface

Item	Symbol	Conditions	MIN	MAX	Unit
Internal delay time	tnode	C _L = 30 pF		75	ns

Figure 3.26 CAN Access Timing

Internal delay time (t_{NODE}) = Internal transmission delay time (t_{OUTPUT}) + Internal reception delay time (t_{INPUT})

Figure 3.27 CAN Access Timing (Supplement)

Remarks 1. n = 0, 1

2. CAN internal clock (fcan): CAN baud-rate clock

Debugging Interface 3.8.10

Debugging Serial Interface (1)

Item	Symbol	Conditions	MIN	MAX	Unit
TCK input cycle	ttck	_	20	_	ns
TMS input setup time (for TCK ↑)	t _{STMS}	_	6.5	_	ns
TMS input hold time (for TCK ↑)	t _{HTMS}	_	0	_	ns
TDI input setup time (for TCK ↑)	tstdi	_	6.5	_	ns
TDI input hold time (for TCK ↑)	t _{HTDI}	_	0	_	ns
TDO output delay time (for TCK ↓)	t _{DTDO}	C _L = 30 pF	3.0	13.0	ns

Figure 3.28 Debugging Serial Interface

(2) Trace Interface

Item	Symbol	Conditions	MIN	MAX	Unit
TRACECLK output cycle	trcclk	C _L = 15 pF	20	_	ns
TRACEDATAn output delay time (for TRACECLK)	t _{DTRCDAT}	C _L = 15 pF	0.26	8.43	ns

Remark. n = 0-3

Figure 3.29 Trace Interface

3.9 2.5-V built-in Regulator Characteristics

Item	Symbol	Conditions	MIN	MAX	Unit
VDD25A rising time	tvdd25AH	REG_EN = High	_	1* ¹	ms
VDD25A falling time	tvdd25AL	REG_EN = High	_	_* ²	ms

- Note 1. This specification is based on the peripheral circuit configuration shown in the "R-IN32M4-CL3 User's Manual: Board design edition".
 - 2. There is no timing specification when the AVDDREG_33 and VDDREG_33 are falling since the power will be turned off.

Figure 3.30 VDD25A rise timing

R-IN32M4-CL3 REVISION HISTORY

REVISION HISTORY

		Description	
Rev.	Date	Page	Summary
1.00	Nov 21, 2019	_	First Edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

- Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
- Ethernet is a registered trademark of Fuji Xerox Co., Ltd.
- IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.
- TRON is an acronym for "The Real-time Operation system Nucleus".
- ITRON is an acronym for "Industrial TRON".
- $\mu ITRON$ is an acronym for "Micro Industrial TRON".
- TRON, ITRON, and μITRON do not refer to any specific product or products.
- CC-Link IE Field and CC-Link IE TSN are registered trademarks of CC-Link Partner Association (CLPA).
- Additionally all product names and service names in this document are a trademark or a registered trademark which belongs to the respective owners.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.