Ground Cloud Dispersion Measurements During The Titan IV Mission #K24 (23 February 1997) at Cape Canaveral Air Station

Volume 1—Test Overview and Data Summary

10 October 1997

Assembled by

Environmental Systems Directorate Systems Engineering Space Launch Operations

Prepared for

Launch Programs
SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

TAMO CONTRACA DESERVAÇÃO

Space Systems Group

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. F04701-93-C-0094 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corporation by N. F. Dowling, Systems Director, Environmental Systems, Systems Engineering Directorate.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

T. Deloney, Lt Col, USAF

SMC/CLNE

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arilligion, VA 22202-4302, and to the Office of Management		,,
AGENCY USE ONLY (Leave blank)	2. REPORT DATE 10 October 1997	3. REPORT TYPE AND DATES COVERED
4. TITLE AND SUBTITLE Ground Cloud Dispersion Measure #K24 (23 February 1997) at Cape Overview and Data Summary 6. AUTHOR(S) Environmental Systems Directorate		Mission ol. 1 Test F04701-93-C-0094
7. PERFORMING ORGANIZATION NAME(S) AND The Aerospace Corporation Technology Operations El Segundo, CA 90245-4691	D ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER TR-97(1410)-7
9. SPONSORING/MONITORING AGENCY NAME Space and Missile Systems Cer Air Force Materiel Command 2430 E. El Segundo Boulevard Los Angeles Air Force Base, C	nter	10. SPONSORING/MONITORING AGENCY REPORT NUMBER SMC-TR-98-01
11. SUPPLEMENTARY NOTES		
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; dist		12b. DISTRIBUTION CODE
Mission #K24 at Cape Canavera improve the accuracy of the Roo from four sites measured a cloud predicted stabilization height at compared to a REEDM predicti	al Air Station on 23 Februar cket Exhaust Effluent Diffu d stabilization height of 803 920 m AGL. This height v on of 3.89 min. The imager	shed during the launch of Titan IV ry 1997. These data will be used to usion Model (REEDM). The imagery 8 m AGL compared to a REEDM- was reached in 2.75 to 3.75 min ry-derived cloud trajectory was 76° easurements of aerial and ground-

	xic hazard corridors, Atmo levelopment and dispersion		15. NUMBER OF PAGES 75 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT

level concentrations of hydrogen chloride (HCl) were not taken during this launch.

Preface

The Air Force Space and Missile Systems Center's Launch Programs Office (SMC/CL) is sponsoring the Atmospheric Dispersion Model Validation Program (MVP). This program is collecting launch cloud dispersion data that will be used to determine the accuracy of atmospheric dispersion models, such as REEDM, in predicting toxic hazard corridors at the launch ranges. This report presents launch cloud dispersion and meteorological measurements performed during the #K24 Titan IV launch at Cape Canaveral Air Station on 23 February 1997.

An MVP Integrated Product Team (IPT), led by Capt Brian Laine (SMC/CLNM), is directing the MVP effort. Dr. Bart Lundblad of The Aerospace Corporation's Environmental Systems Directorate (ESD) is the MVP technical manager. This report was prepared by Mr. Norman Keegan (ESD) and Dr. Lundblad from materials contributed by personnel participating in the #K24 launch cloud dispersion measurements.

Visible and infrared imagery measurements were made of the launch cloud by Dr. Robert Abernathy, Ms. Karen Foster, Ms. Janet Webb, Mr. Gary Harper, Mr. Brian Kasper, Mr. Jess Valero, and Mr. Tom Knudtson of The Aerospace Corporation's Environmental Monitoring and Technology Department (EMTD). Field assistance was provided by Mr. Noble Dowling. Mr. Doug Schulthess of Aerospace's Eastern Range Directorate coordinated site selection and logistical support with Range organizations. Ms. Foster digitized the imagery data for analysis by Dr. Abernathy. The description of the cloud imagery results was prepared by Dr. Abernathy.

Ground and aerial HCl measurements were not conducted during this launch.

The #K24 mission was the tenth Titan IV launch for which usable launch cloud dispersion data were collected by MVP. The previous missions were #K7, #K23, #K19, #K21, #K15, #K16, #K2, #K22, and #K13.

Contents

Exec	utive S	Summar	y	vii
1.	Intro	duction.		1
2.	Imag	ery of th	ne Titan IV #K24 Ground Cloud	3
	2.1	Backgr	round	3
	2.2	Introdu	action	3
	2.3	Field I	Deployment	4
		2.3.1	Planning	4
		2.3.2	Equipment	5
	2.4	Proces	sing of Imagery Data	6
	2.5	Results	s and Discussion	9
		2.5.1	Correlation of Ground Cloud Bearing with Wind Direction	9
		2.5.2	Cloud Rise Times and Stabilization Heights	15
		2.5.3	Comparison of REEDM Prediction to Imagery Data: Stabilization Height	20
		2.5.4	Comparison of REEDM Prediction to Imagery Data: Bearing and Speed	21
		2.5.5	Comparison of REEDM Prediction to Imagery Data: Summary Table	24
	2.6	Summ	ary and Conclusions	24
App	endix	A-T-0	.53h REEDM Version 7.08 Runs for the #K24 Ground Cloud	27
App	endix	B— Me	teorological Data for the #K24 Mission	57
			Figures	
1	. Imp	lementa	tion of the "box" method with two imagers	7
2	Imp	lementa	tion of the polygon method for two imagers	8

3.	Map documenting the imagery sites, the rawinsonde release site	9
4.	Imagery from Press site at 2020:30 GMT (30 s after launch)	11
5.	Imagery from Tower Site at 2020:30 GMT (30 s after launch)	12
6.	Imager from UCS-04 Site 2022:00 GMT (2 min after launch)	13
7.	Infrared imagery from UCS-02 Site	14
8.	Images from two sites at 2024:30 GMT (4.5 min after launch)	15
9.	Cloud rise plots for the bottom of the #K24 ground cloud as determined using the PLMTRACK Box Method with pairs of imagery	17
10.	Cloud rise plots for the middle of the #K24 ground cloud as determined using the PLMTRACK Box Method with pairs of imagery	18
11	Cloud rise plots for the top of the #K24 ground cloud as determined using the PLMTRACK Box Method with pairs of imagery	19
12	Imagery-derived stabilization heights compared to T-0.53h REEDM prediction	20
13.	Cartesian plot documenting the imagery-derived ground cloud bearing for the #K24 mission	21
14.	Time plot of the ground distance from SLC-40 for the #K24 exhaust	22
15.	Time plot of imagery-derived average speed and average direction	23
	Tables	
1.	Field of View (FOV) for Imagery Sites during #K24 Mission	5
2.	Labels Used to Identify Imagery-Pairs used by PLMTRACK	16
3.	Summary of #K24 Ground Cloud Data Derived from Infrared Imagery, T-0.53h Rawinsonde Sounding Data, and T-0.53h REEDM Predictions	24

Executive Summary

This report presents plume imagery documenting the development and dispersion of the Titan IV #K24 launch ground cloud at Cape Canaveral Air Station (CCAS). It is significant to note that this launch was the first launch of a Titan IV utilizing the larger Solid Rocket Motor Upgrade (SRMU) as Stage Zero. The launch took place on 23 February 1997 at 2020 Zulu time. The report also presents pertinent meteorological data taken from towers and rawinsonde balloons.

The imaging team successfully tracked the trajectory and time evolution of the vehicle's exhaust ground cloud for 6 min following launch using four infrared and visible light camera systems.

Meteorological data were collected to improve understanding of cloud dispersion and to use as input during model simulations and evaluations. Rawinsonde balloon data from shortly before launch and meteorological tower data from shortly before and after launch were collected and archived. These data and similar data on other Titan IV launches (past and future) will be used to determine the accuracy of atmospheric dispersion models such as the Rocket Exhaust Effluent Diffusion Model (REEDM) in predicting toxic hazard corridors (THCs) at the USAF Eastern and Western Ranges. These THCs assess the risk of exposing the public to HCl exhaust from solid rocket motors or hypergolic propellant vapors accidentally released during launch operations.

Reduction of imagery data from the first 6 min following launch yielded the stabilization height, rise time, ground track, and speed of the ground cloud. Comparison to REEDM 7.08 predictions show that the imagery-derived stabilization height (803 m) is lower than the height predicted by REEDM (920 m), and that the imagery-derived time to stabilization (2.75 to 3.75 min) is faster than the REEDM-predicted stabilization time of 3.89 min. The imagery-derived cloud trajectory was 76° compared to the 300° trajectory predicted by REEDM. The imagery-derived velocity of the cloud (5 to 9 m/s) is up to 119% greater than the rawinsonde wind measurement (4.1 m/s) and 157% greater than the velocity predicted by REEDM (3.5 m/s).

1. Introduction

Launch vehicles that employ solid-propellant rocket motors release exhaust ground clouds containing large quantities of hydrogen chloride (HCl) into the launch areas at Cape Canaveral Air Station (CCAS) and Vandenberg Air Force Base (VAFB). Large quantities of hazardous liquid fuels and oxidizers could also be released as a result of propellant transfer accidents or launch vehicle failures. The Air Force uses atmospheric dispersion models to predict the downwind diffusion and concentration of toxic launch clouds. There exists a strong need to collect launch cloud data that can be used to test and validate the performance of these dispersion models.

The Air Force range safety organizations at Patrick Air Force Base (45 SW/SE) and VAFB (30 SW/SE) are responsible for assuring that launches are occur only when meteorological conditions will not expose nearby public areas to hazardous levels of launch exhausts and propellant vapors. Predictions of toxic hazard corridors that extend into public areas can lead to costly launch delays. The present use of non-validated models requires the use of conservative launch criteria. The development and validation of accurate atmospheric dispersion models is expected to increase launch opportunities and significantly reduce launch costs. The Space and Missile Systems Center's Launch Programs Office (SMC/CL) established the Atmospheric Dispersion Model Validation Program (MVP) to collect launch cloud data and to use the data to test and validate current and future atmospheric dispersion models at the ranges.

The MVP effort involves the collection of data during Titan IV launches at CCAS and VAFB to characterize HCl launch cloud rise, growth, and stabilization, as well as launch cloud transport and diffusion. These data, along with data collected during tracer gas releases, will be used to determine the capability of the Rocket Exhaust Effluent Diffusion Model (REEDM) for predicting toxic hazard corridors at the ranges. REEDM is used at CCAS and VAFB to predict the locations of toxic hazard corridors in support of launch operations. It is applied to large heated sources of toxic air emissions such as nominal launches, catastrophic failure fireballs, and inadvertent ignitions of solid rocket motors. It uses launch vehicle and meteorological data to generate ground-level concentration isopleths of HCl, hydrazine fuels, nitrogen dioxide, and other toxic launch emissions. Launch holds may occur when REEDM toxic concentration predictions exceed adopted exposure standards. REEDM is a unique and complex model based on relatively simple modeling physics. It has a long development history with the Air Force and NASA, but has never been fully validated. Validation of REEDM has been identified as a range safety priority.

The MVP has been organized and is being directed by the MVP Integrated Product Team (IPT). SMC/CL is serving as the IPT leader, while The Aerospace Corporation's Environmental Systems Directorate serves as the IPT technical manager. The IPT consists of personnel with expertise in atmospheric dispersion modeling, meteorology, and atmospheric dispersion field studies. MVP participants include personnel from SMC, 30 SW, 45 SW, Armstrong Laboratory, The Aerospace Corporation, NASA, NOAA, and contractors. Key functions include program planning, field data collection, data review and compilation, range coordination, and model validation.

This report presents the results of measurements performed at CCAS during the Titan IV #K24 launch on 23 February 1997. This was the first launch to employ the larger solid rocket motors called the Solid Rocket Motor Upgrade (SRMUs). Visible and infrared measurements were made on the ground cloud to monitor its growth, stabilization, and trajectory. The imagery results are presented in Section 2. REEDM 7.08 predictions of ground cloud stabilization heights and surface concentrations are presented in Appendix A. REEDM 7.08 includes revised exhaust values for Titan SRMU launches. Measurements of meteorological data are tabulated in Appendix B. The imagery results presented in this, as well as other MVP reports, will allow the accuracy of REEDM and other launch range atmospheric dispersion models to be determined over the range of possible meteorological conditions.

2. Imagery of the Titan IV #K24 Ground Cloud

[The material in this section was contributed by R. N. Abernathy, J. Y. Webb, K. L. Foster, and B. P. Kasper of the Environmental Monitoring and Technology Department of The Aerospace Corporation's Space and Environment Technology Center.]

2.1 Background

On 23 February 1997, the Titan IVB #K24 mission was successfully launched from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Station (CCAS) at 1520 EST (2020 GMT). This section describes the quantitative exhaust cloud imagery data collected by each of four imagery sites during the 6 min immediately following the launch from SLC-40. This section also describes the data acquisition hardware and analysis software. The two-dimensional cloud images obtained by the various imagery sites were combined in a pair-wise fashion to produce stereoscopic 3-D information. This analysis yielded the cloud's rise time, stabilization height, speed, and bearing.

The quantitative imagery-derived ground cloud data are reported here in several graphical formats to facilitate comparison with REEDM predictions (Appendix A) and rawinsonde sounding data (Appendix B). For clarity, this section includes some data from the appendices. It is apparent from review of this section that these data are useful for validating current and future dispersion models.

The purpose of this report was to document the quality and quantity of the #K24 exhaust cloud imagery data available for validating dispersion models. However, it is difficult to extract the data for a single instant in time from summary plots that contain many minutes of ground cloud data. Therefore, in order to facilitate the comparison of these data to individual dispersion model runs, a subsequent report will provide a detailed review of the imagery. This subsequent detailed analyses will provide the data in a format that will allow direct comparison to model runs for specific times, altitudes, and distances from the release site.

The imagery-derived #K24 exhaust cloud imagery data are also available as comma-separated-variable files providing time and position for various ground cloud features. The raw visible imagery data are archived on VCR tapes. The raw infrared imagery are archived on DAT. The selected visible and infrared images analyzed for this report are also archived on magneto-optical disks as digital image files.

2.2 Introduction

This section summarizes the results of quantitative visible and infrared imagery of the exhaust cloud from the Titan IVB #K24 launch from SLC-40 at CCAS on 23 February 1997 at 1520 EST (2020 GMT). Personnel from the Aerospace Corporation's Environmental Monitoring and Technology Department (EMTD) supported this launch with the deployment of four complete

platforms of the Titan IVB-dedicated Visible and Infrared Imaging System (VIRIS). For the #K24 afternoon launch, the imagery from four sites permitted the post-launch quantitative analysis of the ground cloud's movement and growth as a function of time. The imagery sites chosen for the #K24 launch were (1) along Beach Road across from UCS-4 (north-northeast of SLC-40), (2) at the third bollard along the northeast edge of the pond at Press Site (northwest of SLC-40), (3) at UCS-2 (southwest of SLC-40), and (4) on top of tower 60691 along Hangar Road near Skid Strip (south of SLC-40). Each site recorded both visible and infrared imagery. The infrared imagery provided better contrast for the ground cloud against the abundant atmospheric clouds and haze. Therefore, we used the infrared imagery to track the ground cloud.

Quantitative analysis of the infrared imagery for the first 6 min after launch documented the cloud's rise time, stabilization height, bearing, and speed without recourse to other data. The "ground cloud" is defined as the lower and more concentrated portion of the rocket's exhaust cloud that can diffuse to the ground. The "launch column" or contrail is defined as the trail of the rapidly moving rocket that extends above the more spherical "ground cloud."

The T-0.53h rawinsonde pre-launch meteorology data are documented in Appendix B and referenced in this section. Those rawinsonde wind data were used to run the "normal launch" REEDM predictions. The complete output for the T-0.53h REEDM predictions is documented in Appendix A and referenced in this section.

2.3 Field Deployment

2.3.1 Planning

The Aerospace Corporation's participants are listed in various teams below (members of the imaging teams for #K24 are indicated with asterisks):

Technology Operations

Space and Environment Technology Center

Environmental Monitoring and Technology Department

R. N. Abernathy* and G. N. Harper* (Tower 60691)
J. Y. Webb* and J. T. Knudtson* (East of UCS-04)

P. Kasper* (UCS-02)

K. L. Foster* and J. T. Valero* (Pond at Press Site)

Space Launch Operations

Systems Engineering Directorate

Environmental Systems

N. F. Dowling* (UCS-02 Site), Systems Director

H. L. Lundblad

Eastern Range

Systems Engineering Directorate

D. R. Schulthess

2.3.2 Equipment

The equipment at each site included all the hardware and software necessary to record and document the launch, to communicate between sites, and to supply backup power in case of an outage at the fixed power distribution points. The VIRIS consists of an array of three full and one backup (excluding the IR imager) cloud tracking systems and was designed and fabricated at the request of Space Launch Operations, Systems Engineering Directorate, at The Aerospace Corporation. Each full tracking system consists of coaligned visible and infrared (IR = 8–12 μ m) imagers, mounted on an azimuth- and elevation-encoding tripod, with an associated data acquisition and display console. The combination of visible and IR imagers permits cloud tracking in both daylight and darkness. The unique capabilities built into the VCR hardware include digital insertion of imager azimuth (AZ), elevation (EL), time, and GPS location. The system electronics is integrated in a single package, which has been ruggedized for field use. Pre-wiring of this package makes deployment of these imager systems straightforward, usually requiring less than 45 min for instrumentation at a site to become fully operational.

For the Titan IVB #K24 mission, the operators at each site set the FOV of the visible imager using the adjustable 10- to 110-mm electronic zoom lens (see Table 1). They also selected the best lens for the infrared imager. All operators rotated the tripod head to keep the ground cloud within the FOV as it moved from the launch pad.

All four imaging systems deployed for the Titan IVB #K24 mission were capable of total autonomy. Each VIRIS has an on-board differential-ready GPS receiver that can be used to document each imager's position with moderate spatial resolution. Typically, 35 m is the precision in the horizontal plane and 100 m is the precision in the vertical plane. This was the case for the Tower 60691 site. For two imagery sites (UCS-2 and Press), we obtained more accurate GPS data (2-m resolution). Due to a hardware failure at UCS-4 site, we had to interpolate its position (35-m resolution) using a map of Kennedy Space Center and Cape Canaveral Air Station. Gasoline powered AC generators (Honda Ex1000) are insurance against loss or absence of facility power. The Stirling cooler option for the AGEMA 900 series IR imager was chosen so that liquid nitrogen would not be required at the sites. Each unit is transportable in a standard utility wagon (e.g., Ford Explorer).

The Az/El angle encoder for all imager systems was calibrated using reference objects (e.g., SLC-40) within the field of view of the imager. When reference objects are not part of the geodetic survey database, the GPS location uncertainty is the dominant term in the positional accuracy. Imager pixelation and operator error in edge detection contribute as well to the error in defining

Table 1. Field of View (FOV) for Imagery Sites during #K24 Mission

Imagery Site	Imager Type (Visible or IR)	FOV(horizontal) (°)	FOV(vertical) (°)
(1) East of UCS-04	AGEMA Infrared	20.35	10.17
(1) East of UCS-04	Hitachi CCD Visible	22.98	17.52
(2) Pond at Press Site	AGEMA Infrared	41.45	19.56
(3) UCS-02	AGEMA Infrared	40.53	21.00
(4) Tower 60691	AGEMA Infrared	41.40	20.92

the cloud boundary. The 0.07° step-size in the tripod angle encoders is a third source of error. The analysis accuracy is determined either by the availability of optimal references for Az/El calibration or by the step size for the tripod angle encoder. Typically the VIRIS system provides 0.1° accuracy in both elevation and azimuth.

2.4 Processing of Imagery Data

The processing of the imagery data requires several transformations that are performed upon return to The Aerospace Corporation:

- 1. Digitizing frames of the visible imagery.
- 2. Measuring the pixel locations of the reference sites within each image (i.e., FOV and angular calibration).
- 3. Measuring the pixel locations of cloud features in digitized images.
- 4. Converting pixel locations to azimuth and elevation readings.
- 5. Calculating cloud characteristics (i.e., position in Cartesian coordinates relative to the launch pad).

The processing requires the use of specialized hardware and software. Visible images of the cloud are digitized at precise times, beginning with time intervals of 15 s, then 30 s, then 1 min as the cloud evolves. The AGEMA 900 infrared imagers produce digital images every 15 s in the field. A set of digitized images is selected for specific times following the launch and from each of the available imagery sites. Time, AZ, and EL are tabulated for each set. A setup file is created for each of these sets, containing all relevant information necessary to compute the cloud geometry using the imagery. The Aerospace program **PLMTRACK** is run to digitize the x, y, and z coordinates of cloud features. The x and y coordinates are reported relative to the launch pad while the z coordinate is reported as height above MSL. We converted the height MSL to height above ground level (AGL) by subtracting the 7 m MSL for the height of SLC-40. This allows direct comparison to REEDM's output.

PLMTRACK is a software program developed and maintained in the Environmental Monitoring and Technology Department (EMTD) of The Aerospace Corporation by Brian P. Kasper. It is designed to analyze pairs of cloud images synchronized in time. When using the **PLMTRACK Line Method**, the operator selects the location of a particular cloud feature in the images from the two imager sites by moving a screen pointer to the desired feature in each image and clicking a mouse button. **PLMTRACK** then calculates the point of nearest approach to the two rays defined by the selected points. The three-dimensional location of this feature is then written to a data file.

Another implementation of **PLMTRACK** is illustrated in Figure 1. When using the **PLMTRACK Box Method**, the operator draws a rectangle about a cloud feature in the images from the two imager sites by moving a screen pointer to the extreme corners of the rectangles and clicking a mouse button. **PLMTRACK** then calculates the closest approach for various rays as illustrated in Figure 1 and described below. The top of the cloud is defined by rays determining T1 and T2 (i.e., $T1 \times T2$); the bottom is determined by rays defining B1 and B2 (i.e., $B1 \times B2$); and the middle is defined by the geometric mean of top and bottom (i.e., $M1 \times M2$). To define

Figure 1. Implementation of the "box" method with two imagers.

the "faces" of the "box," the points of closest approach for ray M1 with L2 and R2 (the left and right tangents to the cloud from Imager 2) are defined (i.e., M1 \times L2 and M1 \times R2). A similar procedure is used to define the points of closest approach for M2 with L1 and R1, yielding M2 \times R1 and M2 \times L1. In addition to the centers of the faces of the "box," the intersects of the left and right rays document the four vertices for the XY polygon. Thus, eleven points are defined for the six-faced "box" surrounding the cloud (a point in the center of each of the six faces, four vertices for the XY polygon, plus a middle point for the "box"). These eleven sets of x, y, and z coordinates are written to a file.

When three imagers are viewing the cloud simultaneously, a six-sided polygon method (documented in Figure 2) has been employed as a way to document the maximum extent of the cloud (i.e., a ground-plane projection) for each set of images. With three imagers, there is a triply redundant determination of the top, middle, and bottom of the cloud by **PLMTRACK**. The horizontal extent of the cloud is determined by defining the rays from each imager that are tangential to the widest part of the cloud as seen from that site. Projection of these extreme rays for each imager on the x-y ground plane forms a polygon that bounds all material in the cloud at all altitudes, as shown in Figure 2. Thus, when an aircraft is flown against the ground cloud (i.e., #K15, #K16, #K22, and #K23 missions), one expects to see aircraft HCl sampling "hits" fall within this polygon, regardless of the sampling altitude. When the polygon area is combined with the mean cloud height (i.e., the difference between the top and the bottom of the cloud), one can obtain an upper bound for cloud volume. As illustrated in Figure 2 (a ground projection of the

Figure 2. Implementation of the polygon method for two imagers. The imager positions and rays are actual #K24 data for T+01:30 (mm:ss) after launch. The cloud's shape was synthesized for heuristic purposes to illustrate that the shaded polygon can overestimate the clouds extent.

cloud's extent), the shaded area within the polygon typically overestimates the extent of the cloud (i.e., the smaller shape drawn within the polygon).

The utility of the polygon method has been documented in a previous report for the #K23 mission. In that report, the polygons from imagery were correlated with aircraft's HCl measurements of cloud dimensions and average HCl concentrations for the Titan IVA #K23 launch cloud. After correcting for Geomet time response, the #K23 dataset established that HCl concentrations detectable by an aircraft-based Geomet total HCl detector were mostly contained by the six-sided polygon areas for the first 20 min after launch. The #K23 data established that the imagery-derived position of the visible cloud correlates with the measurable HCl concentrations. A similar treatment is possible with the #K24 imagery (without aircraft data) and allows a mapping of the growth and position of the cloud over time.

R. N. Abernathy, R. F. Heidner III, B. P. Kasper, and J. T. Knudtson, Visible and Infrared Imagery of the Launch of the Titan IV #K23 from Cape Canaveral Air Force Station on 14 May 1995, Aerospace Report No. TOR-96(1410)-1, The Aerospace Corporation, El Segundo, CA (15 September 1996).

2.5 Results and Discussion

2.5.1 Correlation of Ground Cloud Bearing with Wind Direction

Figure 3 presents the imagery-derived cloud track (i.e., as x-y position data) and the T-0.53h REEDM-predicted ground cloud trajectories (i.e., as arrows for the surface and stabilization height calculations). Figure 3 also documents the rawinsonde wind directions at the imagery-derived top, middle, and bottom of the stabilized ground cloud. Lastly, Figure 3 documents the locations of the rawinsonde release site and of the four imager sites (UCS-4, Press, UCS-2, and Tower) used by The Aerospace Corporation while imaging the #K24 cloud. All directions are reported in rawinsonde convention (defined fully in Subsection 2.5.4). Briefly, the arrows indicate the direction the cloud would move for a wind coming from the indicated angle (clockwise from north).

As illustrated in Figure 3, the quantitative imagery documented a shifting cloud bearing from 0° at lowest altitudes to 99° after stabilization. REEDM predicts a shift in cloud bearing during rise: 0° during rise shifting to 53° at stabilization. However, REEDM predicts the cloud's bearing as 352° to the maximum cloud concentration at the predicted stabilization height (i.e., 920 m AGL). This is substantially different from the predicted cloud bearing of 28° to the maximum cloud concentration at ground level. After stabilization, REEDM predicts a 300° cloud bearing at

Figure 3. Map documenting the imagery sites, the rawinsonde release site, the #K24 ground cloud's bearing (derived from infrared imagery), the T-0.53h REEDM prediction for the ground cloud's bearings (surface and stabilization height), and the 1948 GMT (T-0.53h) rawinsonde wind directions at the measured cloud stabilization heights (bottom, middle and top).

920 m AGL (based upon the average wind in the second mixing layer). At ground level, the cloud's predicted bearing was 207° after stabilization. Figure 3 also presents the rawinsondederived wind directions (14°, 76°, and 286°) associated with the rawinsonde sounding heights (210, 810, and 1458 m AGL) nearest the bottom, middle, and top of the stabilized ground cloud, respectively. These wind directions are from the T-0.53h rawinsonde data and at the indicated sounding heights closest to the imagery-derived heights of 205, 803, and 1465 m AGL for the bottom, middle, and top of the ground cloud, respectively. Since SLC-40 is at 7 m MSL, you must add 7 m to height AGL to convert it to height MSL.

Figures 4 through 8 are selected visible and infrared images of the Titan IVB #K24 launch cloud from the indicated sites at the specified times after launch. Each figure contains two images to allow direct comparison. It is immediately obvious that the cloud is not spherically symmetrical in any of these images, and that the geometry of the cloud changes rapidly in the first few minutes after launch.

Figures 4 and 5 document imagery from Press and Tower sites, respectively, at an early time (2020:30 GMT = 30 s after launch). In each figure, the upper image is infrared, and the lower image is visible. It is apparent that the infrared provides better contrast for detecting the exhaust cloud against the cloudy and hazy background. In these images, the ground cloud is the broader low-altitude portion of the exhaust and is easily distinguishable from the thinner contrail.

Figure 6 documents infrared and visible imagery from the UCS-4 site at a slightly later time (2022 = 2 min after launch). It is apparent that the infrared continues to provide better edge detection for the exhaust cloud. There is less of a difference in widths of the ground cloud and contrail. Therefore, the analyst will use eddy structure features to track the rising ground cloud based upon review of all of the imagery.

Figure 7 documents infrared imagery for two times (30 s and 3 min after launch) from the UCS-2 site. These images document that the relative position and size of the ground and contrail clouds dramatically change over the first few minutes after launch. By three minutes after launch, the ground cloud fills over half of the FOV from this site. The ground cloud has risen to the same height as part of the contrail that now lies to the left (i.e., north) of the ground cloud.

Figure 8 documents simultaneous infrared imagery of the ground cloud from both Press and UCS-4 sites. These images reveal that the identification of the ground cloud is extremely difficult by 4.5 min after launch. Atmospheric moisture clouds surround the exhaust cloud. Some lie between the imagery sites and the cloud. In addition to these complications, it is difficult to distinguish the contrail from the ground cloud.

The imagery data were subjected to an iterative analysis to ensure that only cloud features contributing to the stabilized ground cloud (as documented by the entire 6 min of imagery) were included in the **PLMTRACK** "boxes."

Figure 4. Imagery from Press site at 2020:30 GMT (30 s after launch): upper image is infrared; lower image is visible.

Figure 5. Imagery from Tower Site at 2020:30 GMT (30 s after launch): upper image is infrared; lower image is visible.

Figure 6. Imager from UCS-04 Site 2022:00 GMT (2 min after launch): upper image is infrared; lower image is visible.

Figure 7. Infrared imagery from UCS-02 Site: upper image at 2020:30 (30 s after launch); lower image at 2023:00 (3 min after launch).

Figure 8. Images from two sites at 2024:30 GMT (4.5 min after launch): upper image from press site; lower image from UCS-04 Site.

2.5.2 Cloud Rise Times and Stabilization Heights

Figure 9 through 11present the imagery-derived, time-dependent altitude for the "bottom," the "middle," and the "top" of the ground cloud. These plots document the rise time and the stabilization height for each portion of the cloud. In these plots, all data are plotted as height in meters above SLC-40 (i.e., m Above Ground Level). The analyst used the **PLMTRACK Box Method** separately for each of seven pairs of imagery. In the upper plots, symbols identify the imagery-pairs used to track the cloud as defined in Table 2.

Table 2. Labels Used to Identify Imagery-Pairs used by PLMTRACK

Label	Imagery Site 1	Imagery Site 2	
4ipi	UCS-4; Infrared	Press; Infrared	
4i2i	UCS-4; Infrared	UCS-2; Infrared	
4iti	UCS-4; Infrared	Tower; Infrared	
4vtv	UCS-4; Visible	Tower, Visible	
pi2i	Press; Infrared	UCS-2; Infrared	
piti	Press; Infrared	Tower; Infrared	
2iti	UCS-2; Infrared	Tower; Infrared	

For clarity, most plots include a polynomial fit to the combined data (i.e., all data independent of the imagery pair). It is apparent from the upper plots that some imagery pairs bias the data significantly. In the lower plots, it was important not to differentiate based upon the imagery pairs so that one obtains the average trend. The lower plots also include lines documenting the average stabilization height as well as the $\pm 3\sigma$ error bars for the stabilization height. It is apparent from review of these plots that the loss of imagery from UCS-2 at times later than 3.75 min significantly alters the average measured height. Therefore, we only used the data out to 3.75 min after launch (i.e., while still using imagery from all four sites) to calculate the average stabilization heights (i.e., the lower plots in Figures 9 through 11.

The variances (R^2) of the polynomial fits to the data indicate the quality of the fits. A polynomial fit was used in these figures as a convenient method to permit the representation of cloud overshoot and subsequent damped oscillation around the stabilization height. To be consistent with REEDM, stabilization time and height refer to the first maximum in these fits. REEDM predicts that the cloud goes through damped oscillatory motion with a period of $2\pi/S^{1/2}$, where S is the static stability parameter [Ref. 1, Eq. (7)]. Sensitivity of REEDM predictions to input parameters has been examined by Womack. Careful imaging of launch ground clouds under a variety of meteorological conditions is a vital element in REEDM evaluation.

J. R. Bjorklund, User's Manual for the REEDM Version 7 (Rocket Exhaust Effluent Diffusion Model) Computer Program, Vol. I, TR-90-157-01, AF Systems Command, Patrick AFB, FL (April 1990).

^{3.} J. M. Womack, Rocket Exhaust Effluent Diffusion Model Sensitivity Study, TOR-95(5448)-3, The Aerospace Corporation, El Segundo, CA (May 1995).

Figure 9. Cloud rise plots for the bottom of the #K24 ground cloud as determined using the PLMTRACK Box Method with pairs of imagery. The upper plots identify the imagery pairs used by PLMTRACK. The lower plots treat all data, independent of the imagery pairs, as one dataset. Lines document the polynomial fit, the average stabilization height, and the 3 σ error bands for the stabilization height.

Figure 10. Cloud rise plots for the middle of the #K24 ground cloud as determined using the PLMTRACK Box Method with pairs of imagery. The upper plots identify the imagery pairs used by PLMTRACK. The lower plots treat all data, independent of the imagery pairs, as one dataset. Lines document the polynomial fit, the average stabilization height, and the 3σ error bands for the stabilization height. The variance (R²) of 0.9643 indicates the high quality of the polynomial fit.

Figure 11. Cloud rise plots for the top of the #K24 ground cloud as determined using the PLMTRACK Box Method with pairs of imagery. The upper plots identify the imagery pairs used by PLMTRACK. The lower plots treat all data, independent of the imagery pairs, as one dataset. Lines document the polynomial fit, the average stabilization height, and the 3σ error bands for the stabilization height. The variance (R²) of 0.9824 indicates the high quality of the polynomial fit.

2.5.3 Comparison of REEDM Prediction to Imagery Data—Stabilization Height

Figure 12 presents the imagery-derived heights for the ground cloud's top, middle, and bottom plotted as a function of time following the launch. It can be seen that the measured stabilization height of the middle of the ground cloud (803 m AGL \pm 55 m) is 13% lower (approximately 2 standard deviations) than predicted (920 m AGL) by the T-0.53h REEDM modeling run (Appendix A). The time required to reach the stabilization height (i.e., between 2.75 and 3.75 min documented by quantitative imagery) is 4% to 29% faster than the 3.89 min predicted by the T-0.53h REEDM modeling run. This is excellent agreement between model and imagery for the first Titan IVB launch. REEDM has predicted stabilization heights 50% lower than observed for several Titan IVA launches at CCAS.

Figure 12. Imagery-derived stabilization heights compared to T-0.53h REEDM prediction. The plot includes the quantitative imagery data for the top, middle, and bottom of the ground cloud. For comparison, the plot also includes the T-0.53h REEDM modeling run prediction for the cloud's middle. The predicted stabilization height was 920 m AGL while the imagery-derived stabilization height was 803 ± 55 m AGL. This is excellent agreement for the Titan IVB.

2.5.4 Comparison of REEDM Prediction to Imagery Data—Bearing and Speed

Figures 13 and 14 document the plots typically used to derive the ground cloud's bearing and speed, respectively, from the quantitative imagery data. The **PLMTRACK Box Method** does not yield independent values for the top, middle, and bottom of the cloud. We have chosen to plot the data for the middle of the ground cloud.

Figure 13 plots the Cartesian coordinates for the middle of the ground cloud as distance north/south and distance east/west of SLC-40. This plot reveals that the cloud was ejected to the east by the exhaust duct. For about 0.5 min, the cloud moved south (0° bearing). Between 0.5 and 3 min after launch, the cloud had an average bearing of 27° (southwesterly movement). Between 3 and 6 min after launch, the stabilized cloud moved to the west (average bearing of 99°). The imagery documented a stretching of the ground cloud as it approached stabilization height. This is consistent with the wind shear documented by the rawinsonde sounding.

Figure 13. Cartesian plot documenting the imagery-derived ground cloud bearing for the #K24 mission. The symbols document the PLMTRACK imagery pairs used to derive the data. The lines are a least-squares linear fits to the combined data (i.e., independent of imagery pair) for the specified times. Therefore, the ground cloud moved along a bearing that varied from 0° to 99° during rise and after stabilization. This is qualitatively consistent with rawinsonde data.

In this report, the angles conform to the convention of rawinsonde wind vectors (the angle from which the wind originates that would push the cloud into its imaged position). Thus, the angles are related by

$$\vartheta = 180 + \Phi \,, \tag{2}$$

where ϑ is the equivalent rawinsonde wind angle and Φ is the measured polar angle of the cloud relative to SLC-40 and clockwise of true north. For example, when the cloud is due east of SLC-40, Φ is 90° and ϑ is 270°.

Figure 14 plots the ground distance from the middle of the exhaust cloud to SLC-40 against time after launch. As with the cloud track (i.e., Figure 13), the determination of cloud speed is complicated by the fact that it did not move directly away from SLC-40. Therefore, the least-squares line fits the combined data (i.e., independent of imagery pair) for times shorter than 1.5 min after launch. The slope of this least-squares linear fit to the combined data documents a 10 m/s speed away from SLC-40 for the rising ground cloud. The decrease in speed away from SLC-40 at later times is due to the shift in cloud direction.

Figure 14. Time plot of the ground distance from SLC-40 for the #K24 exhaust cloud. The symbols document the PLMTRACK imagery pairs used to derive the data. The line is a linear fit to the combined data (i.e., independent of imagery pair) for times shorter than 1.5 min. Therefore, the ground cloud moved at 10 m/s away from SLC-40 during its rise.

Figure 15 documents the 1-min differential direction and speed for the ground cloud during the entire 6 min of imagery. These data are the result of calculations using data separated by 1-min intervals. This plot documents quantitatively that the cloud's bearing shifted from south to northwest while its speed dropped from over 11 m/s to as low as 4 m/s during its rise and stabilization. The average and standard deviations for the wind direction and wind speed at 3.5 min after launch are 5.2 ± 1 m/s and $31^{\circ} \pm 20^{\circ}$. The imagery data document that the cloud is stabilized by this time.

Figure 15. Time plot of imagery-derived average speed and average direction. These data are calculated from the change in position for the middle of the ground cloud using a 1-min differential. For example, the cloud was moving at 5.2 ± 1 m/s at $31^{\circ} \pm 20^{\circ}$ at 3.5 min.

2.5.5 Comparison of REEDM Prediction to Imagery Data—Summary Table

Table 3 summarizes the imagery derived, the T-0.53h rawinsonde measured, and the T-0.53h REEDM-predicted data for the #K24 ground cloud. Several conclusions can be derived from review of the contents of this table and from the discussions in previous sections of this section:

- (1) the imagery-derived stabilization height (803 m AGL) is 13% lower (more than 2 standard deviations) than the T-0.53h REEDM predicted stabilization height (920 m AGL);
- (2) the imagery-derived stabilization time (2.75-3.75 min) is 4 to 29% faster than the T-0.53h REEDM predicted stabilization time (3.89 min);
- (3) the imagery-derived bearing (shifting from 27° to 99°) is dramatically different from REEDM's predicted bearing (300°) at 920 m after stabilization;
- (4) the imagery-derived cloud speed (5-9 m/s after stabilization) is faster than the wind speeds measured by rawinsonde at the imagery-derived height of the middle of the ground cloud; and
- (5) the imagery-derived cloud speed (5-9 m/s after stabilization) is faster than the 3.5 m/s average wind for the second mixing layer (i.e., REEDM's predicted speed for the stabilized ground cloud).

Table 3. Summary of #K24 Ground Cloud Data Derived from Infrared Imagery, T-0.53h Rawinsonde Sounding Data, and T-0.53h REEDM Predictions

Attributes	Feature	Imagery (IR only)	Rawinsonde (T-0.53h)	REEDM 7.08 (T-0.53h)
Height (m)	Тор	1465	1458	1596
above SLC-40	Middle	803	810	920
(SLC = 7 m MSL)	Bottom	205	210	417
Time (min)	Тор	3.75	#N/A	#N/A
after launch	Middle	2.75-3.75	#N/A	#N/A
	Bottom	1.25-2.25	#N/A	#N/A
Bearing (°)	Тор	#N/A	286°	#N/A
(rawinsonde)	Middle	27° to 99°	76°	300
,	Bottom	#N/A	14°	#N/A
Speed (m/s)	Тор	#N/A	2.1	#N/A
along trajectory	Middle	5 to 9	4.1	3.5
	Bottom	#N/A	7.7	#N/A

2.6 Summary and Conclusions

The Titan IVB #K24 mission was launched successfully from the Eastern Range (SLC-40) at 1520 EST (2020 GMT) on 23 February 1997. Personnel from The Aerospace Corporation deployed four VIRIS platforms (using both visible and infrared imagery) to monitor the event and to track the evolution of the solid rocket motor exhaust cloud. The four chosen sites (UCS-4, Press, UCS-2, and Tower Site) were located to the north-northwest, northwest, southwest, and south relative to SLC-40. The VIRIS systems imaged the ground cloud for 6 min after the launch. When combined with the AZ/EL readings and the IRIG-B time data, the **PLMTRACK Box Method** documented the rise, stabilization, growth, speed, and bearing of the ground cloud for the

first 6 min after the launch. The imagery documented that the middle of the ground cloud remained within the first mixing layer throughout the tracking period. This quantitative imagery data for the #K24 ground cloud will be extremely useful for tuning current and future dispersion models.

The definition of the #K24 exhaust cloud's geometric features is complicated by its three-dimensional shape (i.e., not spherical). However, the imagery successfully documented this complex shape as the cloud evolved (i.e., asymmetric ejection from the exhaust duct, rapid rise of the hot ground cloud, and shear between the top and bottom of the ground cloud). The analyst included only the portions of the exhaust cloud that became incorporated into the stabilized ground cloud as revealed by infrared imagery.

Analysis of the imagery data presented in this report has focused on determining parameters that are directly comparable to REEDM predictions. For the Titan IVB #K24 launch, T-0.53h REEDM predictions were substantially different from those measured by imagery. According to the quantitative infrared imagery from four imagery sites, the ground cloud took 2.75–3.75 min to stabilize (4 to 29% faster than predicted), stabilized at 803 m AGL [13% Lower (approximately 2 standard deviations) than predicted], moved in a southwesterly to westerly direction (dramatically different from the southeasterly predicted bearing), and moved at an average speed of 5–9 m/s (significantly faster than predicted). The speed, direction, and the stabilization height are all important parameters that drive the hazard zone predictions.

The Aerospace Corporation has imaged 12 Titan IVA launches as part of the Model Validation Program. All of the available Titan IVA imagery documents that REEDM consistently underestimates the stabilization height of the ground cloud. Such overly conservative REEDM predictions can result in unnecessary launch holds at a considerable cost to the Air Force. Compared to previous Titan IVA launches, REEDM did a much better job with this first Titan IVB launch. Additional Titan IV A and B exhaust cloud data are needed to validate and to tune current and future dispersion models for both ranges (Vandenberg AFB and CCAS) and for the various meteorological conditions associated with round-the-clock and year-round launch schedules.

Appendix A-T-0.53h REEDM Version 7.08 Runs for #K24 Ground Cloud

[The material in this appendix was contributed by R. N. Abernathy of the Environmental Monitoring and Technology Department of The Aerospace Corporation's Space and Environment Technology Center.]

1. Background

On 23 February 1996, the Titan IV #K24 mission was successfully launched from Space Launch Complex (SLC-40) at Cape Canaveral Air Station (CCAS) at 1520 EST (2020 GMT). As part of the Model Validation Program (MVP), the resulting exhaust cloud was imaged from three camera sites. The analysis of the quantitative imagery documented the rise time, stabilization height, and the trajectory of the ground cloud. Ten regular Titan IV launches have been imaged in a similar manner by The Aerospace Corporation as part of the MVP. This was the first Titan IV "B" launch. The Titan IV "B" uses the Solid Rocket Motor Upgrade (SRMU). Titan IV exhaust cloud data are needed to validate and tune current and future dispersion models. Exhaust cloud data are needed for various meteorological conditions for both ranges (Vandenberg AFB and CCAS).

This appendix summarizes the Rocket Exhaust Effluent Diffusion Model (REEDM) predictions for the rise and dispersion of the exhaust cloud from the Titan IV #K24 launch. REEDM version 7.08 defaults were used in these normal launch runs. REEDM used the rawinsonde data from T-0.53h prior to the launch. This appendix includes figures and tables that document the output of REEDM. The predictions are compared in tabular and graphical form to the imagery-derived cloud characteristics and to the rawinsonde wind data at the imagery-derived heights for the bottom, middle, and top of the stabilized launch cloud. In addition, the REEDM predictions for cloud trajectory are compared to the imagery-derived cloud trajectory (Section 2) and to the rawinsonde wind directions (Appendix B). It is apparent from review of these data that these data are useful for the validation of current and future dispersion models.

When comparing imagery-derived cloud vectors to rawinsonde wind directions, we reported all angles (cloud bearings and wind directions) in the convention of rawinsonde wind vectors. This is the angle from which the wind originates that would push the cloud into its imaged position. For example, when the cloud is due east of SLC-40, (i.e., the cloud is at 90° clockwise from north), we report the bearing to the cloud as 270° (i.e., the rawinsonde equivalent wind direction). This allows direct comparison of the imagery-derived cloud data to rawinsonde data. This is not the case for the detailed REEDM output. REEDM reports its cloud bearings as the direction the cloud is moving (i.e., 180° out of phase with the rawinsonde wind direction).

Figure 1 shows the imagery-derived ground cloud track, the T-0.53h rawinsonde-measured winds, and the T-0.53h REEDM-predicted ground cloud tracks.

Figure 1. Map documenting the imagery-derived ground cloud track, the T-0.53h rawinsonde-measured winds, and the T-0.53h REEDM-predicted ground cloud tracks. The map also documents the positions of the three imagery sites and the rawinsonde release site.

2. T-0.5h REEDM Version 7.08 Normal Launch Predictions

REEDM version 7.08 was run for a normal launch using its operational defaults and the T-0.53h rawinsonde data (Appendix B). This section of the appendix begins with a figure that graphically compares the imagery-derived cloud trajectory, the rawinsonde-measured wind directions, and the REEDM-predicted cloud bearings (converted to rawinsonde equivalent wind directions). Next are the standard REEDM figures documenting the concentration isopleths and the centerline maximum HCl concentrations at the surface and at the predicted stabilization height. The last figure documents the REEDM meteorological summary plot. A summary table quantifies the similarities and differences between the imagery-derived cloud characteristics, the rawinsonde-measured winds, and the REEDM-predicted cloud characteristics. The table documents all angles as rawinsonde equivalent. The remainder of Appendix A is filled with the detailed tabular output for stabilization and surface runs.

Figure 2. T-0.53h REEDM prediction for surface impact.

Figure 3. T-0.53h REEDM prediction of ground level center line HCl concentrations.

Figure 4. T-0.53 Hour REEDM prediction for stabilization height (m AGL = m MSL).

Figure 5. T-0.53 Hour REEDM prediction of the centerline hcl concentration at the stabilization height.

Figure 6. T-0.53 Hour REEDM Meteorological Plot from Stabilization Height Run.

Review of Table 1 reveals several interesting observations since it allows comparison of the observed #K24 cloud behavior with both the T-0.53h rawinsonde data and the T-0.53h REEDM predictions for the stabilized exhaust cloud. The imagery-derived stabilization height (803m AGL \pm 55m standard deviation) was 13% lower than predicted (920m AGL). The difference is slightly larger than 2 standard deviations. The observed stabilization time (between 2.75 and 3.75 min) was 4% to 29% faster than predicted (3.89 min). This represents a relatively small difference. The imagery

Table 1. Summary of Imagery-Derived, T-0.53 hour Rawinsonde, and T-0.53 hour REEDM Data.

Attributes	Feature	Imagery (IR only)	Rawinsonde (T-0.53h)	REEDM 7.08 (T-0.53h)
Height (m)	Тор	1465	1458	1596
above SLC-40	Middle	803	810	920
(SLC = 7 m MSL)	Bottom	205	210	324
Time (min)	Тор	3.75	#N/A	#N/A
after launch	Middle	2.75-3.75	#N/A	#N/A
	Bottom	1.25-2.25	#N/A	#N/A
Bearing (°)	Тор	#N/A	286°	#N/A
(rawinsonde)	Middle	27° to 99°	76°	300
	Bottom	#N/A	14°	#N/A
Speed (m/s)	Тор	#N/A	2.1	#N/A
along trajectory	Middle	5 to 9	4.1	3.5
	Bottom	#N/A	7.7	#N/A

documented that the ground cloud's trajectory shifted from a bearing of 27° (i.e., between 0.5 and 3 min) to 99° (i.e., between 3 and 6 min). This is reasonable considering the strong wind shears apparent in the rawinsonde data (ranging from 14° to 286° over the altitudes occupied by the stabilized ground cloud) and the fact that the cloud was rising until 3.75 min after launch. REEDM predicts a shift in cloud direction during rise (i.e., 0° initially to 55° at the end of rise). This is qualitatively consistent with the imagery-derived cloud direction data. However, REEDM predicts a bearing of 352° to the maximum concentration at 920m AGL and a bearing of 300° for the stabilized cloud. The REEDM surface impact predictions are 28° to the maximum concentration at ground level and 27° for the cloud's ground impact trajectory at later times. The imagery-derived cloud speed ranges from 5 to 9 m/s for times longer than 3 min (i.e., after stabilization). For times longer than 3.75 min, there is a large uncertainty in the imagery data due to the loss of imagery from UCS-2 (i.e., the cloud overfilled the FOV).

3. Detailed REEDM Output for T-0.53h Runs

3.1 REEDM Stabilization Height Report for T-0.53 hour

The following 11 pages contain the detailed REEDM Version 7.08 report for the T-0.53h calculations relevant to the predicted stabilization height. The analyst accepted the default settings for all parameters including the heights for the first and second mixing layers. The first page of the REEDM output contains trouble shooting error codes that are beyond the scope of this report, and, therefore, that page is not included in this appendix. The REEDM report is presented in a different font so that the column headings align with the columns.

REEDM reports heights for the exhaust cloud as height above ground level (AGL). For the rawinsonde data, REEDM assumes 0 m AGL = 4.9 m MSL = the height of the rawinsonde release site. However, for the Titan IV exhaust cloud, one assumes 0 m AGL = 7 m MSL = the height of SLC-40.

1*****************		
ROCKET EXHAUST EFFLUENT DIFFUSION MODE VERSION 7.08 AT KSC 1334 EDT 28 APR 1997 launch time: 1520 EST 23 FEB 199 RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB	7 97 T -0.5 H	
PROGRAM OPTIONS		
MODEL		TRATION
RUN TYPE	OPER	ATIONAL
WIND-FIELD TERRAIN EFFECTS MODEL		NONE
LAUNCH VEHICLE	TITAN I	
LAUNCH TYPE		NORMAL
LAUNCH COMPLEX NUMBER		40
TURBULENCE PARAMETERS ARE DETERMINED FROM	CLIMATOLOGIC	
SURFACE CHEMISTRY MODEL	absorption coef	
SPECIES SURFACE FACTOR	HCL	0.000
CLOUD SHAPE		IPTICAL
CALCULATION HEIGHT	STABIL	IZATION
PROPELLANT TEMPERATURE (DEG. C)		19.59
CONCENTRATION AVERAGING TIME (SEC.)		3600.00
mixing layer reflection coefficient (RNG- 0 TO 1, no	reflection=U)	1.0000
DIFFUSION COEFFICIENTS	VERTICAL	1.0000
	GAMMAE	0.6400
VEHICLE AIR ENTRAINMENT PARAMETER	LATERAL	100.00
DOWNWIND EXPANSION DISTANCE (METERS)	VERTICAL	
	V 23.0 3.3.2	
DATA FILES		
INPUT FILES		
RAWINSONDE FILE DATA BASE FILE	and a second	.948.raw base.ksc

OUTPUT FILES

PRINT FILE PLOT FILE

k2481948.stb k2481948.stp

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 3

VERSION 7.08 AT KSC 1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS

TIME- 1948 Z DATE- 23 FEB 97

ASCENT NUMBER 0

---- T -0.5 HR SOUNDING ----

MET. LEV. NO.		ALTITUD GND (FT)	GND	WIND DIR (DEG)	SPE	ED (KTS)	(DEG C)		AIR PRESS (MB)	(%) 1	H INT- M ERP
1	16	0.0	0.0		5.1	10.0	21.2			1024.7	75.0	**
2	62	45.5	13.9		6.4	12.5	20.7	20.8		1023.1	75.5 75.5	**
3	107	91.0	27.7		7.7	15.0	20.1	20.3		1021.4		**
4	153	136.5	41.6		9.0	17.5	19.6	19.9		1019.8	75.6	~ ~
5	198	182.0	55.5		10.3	20.0	19.1	19.4		1018.2	75.0	**
6	325		94.1		9.6	18.7	18.9	19.6		1013.6	78.3 81.1	**
7	452	435.5	132.7	5	9.0	17.5	18.6	19.8		1009.1	84.0	**
8	578	562.3	171.4	9	8.4	16.2	18.4	20.0		1004.5	87.0	
9	705	689.0	210.0	14	7.7	15.0	18.2	20.2	16.3	994.8	89.0	**
10	853	836.5	255.0	18	7.4	14.4	18.1		16.5		91.0	
11	1000	984.0	299.9	22	7.1	13.8	18.0 17.9	21.0 21.1	16.7		92.0	
12	1078	1062.0	323.7	24	7.2	14.0	17.7	21.1	16.7		93.9	**
13	1385	1369.3	417.4	33	6.4	12.5	17.6	22.7	16.8		95.1	**
14	1693	1676.7	511.0	42	5.7	11.1 9.6	17.4	23.5	16.8		96.0	
15	2000	1984.0	604.7	51	4.9		17.1	23.7	16.6	950.0	97.0	
16	2150	2134.0	650.4	57	4.6	9.0	17.0	23.7	16.5	948.1	97.0	
17	2210	2194.0	668.7	59	4.6	9.0		24.0	15.5	932.6	97.0	k
18	2674	2658.0	810.2	76	4.1	8.0	16.0	24.0	15.4	927.2	94.7	**
19	2837	2821.0	859.8	88	3.4	6.5	16.3		15.4		92.0	
20	3000	2984.0	909.5		2.6	5.1	16.6	25.6	15.4		92.0	
21	3040	3024.0			2.6	5.0	16.7	25.9	14.7		88.1	**
22	3131	3115.5			2.3	4.5	16.7	26.0		917.5	84.0	
23	3223	3207.0			2.1	4.0	16.7	26.2	14.0 13.7		85.8	**
24	3444	3428.0			1.8	3.5	16.1	26.3	13.7		88.5	**
25	3788	3772.0			1.3	2.5	15.2	26.4	12.4		85.0	
26	4000	3984.0			1.0	2.0	14.8 14.4	26.5 27.1	9.8		73.9	**
27	4399	4383.0			1.5	3.0	14.4	27.1	7.1		63.0	
28	4798	4782.0	1457.6	286	2.1	4.0	13.6	28.4	3.0		49.0	
29	5253	5237.0			4.2	8.2	13.0	29.6		827.6	28.0	
30	6000	5984.0			5.1	10.0	10.9		3.0		58.0	
31	6922	6906.0	2104.9	302	5.7	11.0	10.4		3.6	793.8	63.0	
32	7147	7131.0	21/3.5	303	7.2	14.0	7.4	32.6	-0.1		59.0	
33	8679	8663.0			6.4	12.3	5.6	33.2	-2.5	728.0	56.9	**
34	9500	9484.0 ICATES T	∠89U./	כעט חת דוזים	ס.4 ז∩יים חשי		उ.ए स्याप्ट स				50.5	
*	- IND	ICATES T	IL CAL	COTAI	ED IOE	DIV IN	TOOK!	ATED E	ROM TN	PUT MET	FOROLO	GY

^{** -} INDICATES THE CALCULATED FOR THE STATE OF THE STATE

1************	*****	****	*****
ROCKET EXHAUST EFFLUENT DI VERSION 7.08 A 1334 EDT 28 AF	FFUSION MODEL REAT KSC PR 1997 ST 23 FEB 1997 18 Z 23 FEB 9	EDM 7 T	PAGE 4
METEOROLOGICAL RAV	VINSONDE DATA		
SURFACE AIR DENSITY (GM/M**3) DEFAULT CALCULATED MIXING LAYER HEIGHT CLOUD COVER IN TENTHS OF CELESTIAL DOME CLOUD CEILING (M) PLUME RISE			1204.28 810.16 0.0 9999.0
EXHAUST RATE OF MATERIAL INTO GRN CLD- TOTAL GROUND CLD MATERIAL- HEAT OUTPUT PER GRAM- VEHICLE RISE HEIGHT DEFINING GROUND CLD- VEHICLE RISE TIME PARAMETERS-	(GRAMS/SEC) (GRAMS) (CALORIES) (M) (TK=(A*Z**B)+C)	A= B=	5.34133E+06 5.31244E+07 1555.6 199.9 0.9519 0.4429
EXHAUST RATE OF MATERIAL INTO CONTRAIL- CONTRAIL HEAT OUTPUT PER GRAM-	(GRAMS/SEC) (CALORIES)	C=	0.0000 5.34133E+06 1555.6

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 5

VERSION 7.08 AT KSC 1334 EDT 28 APR 1997

---- EXHAUST CLOUD -----

MET. LAYER NO.	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING (DEGREES)	CLOUD RANGE	CLOUD BEARING
1	13.9	1.4	3.8	179.6	0.0	0.0
2	27.7		10.7	179.1	0.0	0.0
3	41.6					0.0
4	55.5		23.5		0.0	0.0
5	94.1	6.0	39.0	177.1		0.0
6	132.7	8.7	63.0	178.1	0.0	0.0
7	171.4	11.8	88.8	180.0	0.0	0.0
8	210.0	15.3	116.1	182.2	0.0	0.0
9	255.0	19.9		184.7		0.0
			182.7		0.0	0.0
	323.7		211.1		0.0	0.0
12	417.4		266.4		1569.5	205.9
	511.0			197.9	1409.9	212.7
14	604.7		448.6	203.1	1258.7	218.4
15	650.4	97 5	517 4	206.9	1182.8	
16	668.7	92.3	549.7	208.8	1165.1	
17	810 2	138.7	648.2	214.4	1021.0	
18	859.8	163.0	765.9	221.3	981.1	231.4
19	909.5	204.0	843.4	226.6	905.7	
20	921.7	233.5 *	930.6	233.2	930.6	233.2
21	949.6	233.5 *	930.6	233.2	930.6	233.2
22	977.5	233.5 *	930.6	233.2	930.6	233.2
23	1044.9	233.5 *	930.6	233.2	930.6	233.2
24	1149.7	233.5 *	930.6	233.2	930.6	
25	1214.3	233.5 *	930.6	233.2	930.6	
26	1335.9	233.5 * 233.5 *	930.6	233.2	930.6	
27	1457.6	233.5 *	930.6	233.2		
28	1596.2	233.5 *	930.6	233.2	930.6	
29	1823.9	233.5 *	930.6	233.2	930.6	
30	2104.9	233.5 *	930.6	233.2	930.6	
31	2173.5	233.5 *	930.6	233.2	930.6	
32	2640.5	233.5 *	930.6	233.2	930.6	233.2
33	2890.7	233.5 *	930.6	233.2	930.6	233.2

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 6

VERSION 7.08 AT KSC 1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR *************

---- EXHAUST CLOUD -----

CHEMICAL SPECIES = HCL

MET. LAYER NO.	TOP OF LAYER (METERS)	LAYER SOURCE STRENGTH (GRAMS)	CLOUD UPDRAFT VELOCITY (M/S)	CLOUD S RADIUS (METERS)	STD. DEVIATIO ALONGWIND (METERS)	N MATERIAL D CROSSWIND (METERS)	IST.
1	13.9	0.00000E+00	15.9	0.0	0.0	0.0	
2	27.7	0.00000E+00	18.3	0.0	0.0	0.0	
3	41.6	0.00000E+00	18.4	0.0	0.0	0.0	
4	55.5	0.00000E+00	17.9	0.0	0.0	0.0	
5	94.1	0.00000E+00	15.6	0.0	0.0	0.0	
6	132.7	0.00000E+00	13.4	0.0	0.0	0.0	
7	171.4	0.00000E+00	11.7	0.0	0.0	0.0	
8	210.0	0.00000E+00		0.0	0.0	0.0	
9	255.0	0.00000E+00	9.1	0.0	0.0	0.0	
10	299.9	0.00000E+00		0.0	0.0	0.0	
11	323.7	0.00000E+00		0.0	0.0	0.0	
12	417.4	1.63887E+05	6.4	235.5	109.7	109.7	
13	511.0	5.15401E+05	5.4	417.2	194.4	194.4	
14	604.7	8.02679E+05		520.2	242.4	242.4	
15	650.4	4.76267E+05		572.8	266.9	266.9	
16	668.7	2.03565E+05		591.9	275.8	275.8	
17	810.2	1.76430E+06		628.3	292.8	292.8	
18	859.8	6.73154E+05		653.2	304.4	304.4	
19	909.5	6.85041E+05		659.0	307.1	307.1	
20	921.7 *	1.87063E+05		660.1	307.6	307.6	
21	949.6 *	6.79765E+05		659.9	307.5	307.5	
22	977.5 *	6.73152E+05		658.3	306.8	306.8	
23		1.58928E+06		652.2	303.9	303.9	
24		2.32761E+06		629.4	293.3	293.3	
25		1.31421E+06		591.0	275.4	275.4	
26		2.14308E+06		526.2	245.2	245.2	
27		1.59715E+06		386.6	180.2	180.2	
28		1.17151E+06		267.9	124.8	124.8	
29		1.71601E+06		199.9	93.2	93.2	
30		1.96076E+06		199.9	93.2	93.2	
31		4.55979E+05		199.9	93.2	93.2	
32		2.91115E+06		199.9	93.2	93.2	
33	2890.7 *	1.44239E+06	0.0	199.9	93.2	93.2	

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 7

VERSION 7.08 AT KSC 1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997
RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR ****************

---- CLOUD STABILIZATION -----

CALCULATION HEIGHT STABILIZATION HEIGHT STABILIZATION TIME FIRST MIXING LAYER HEIGHT-	(METERS) (METERS) (SECS) (METERS)	920.00 920.00 233.53 TOP = 810.16
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT-	(METERS)	TOP = 2890.72
DEGULD CELEVISION		BASE= 810.16
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	9.4281
SIGMER(EL) AT THE SURFACE	(DEGREES)	3.1198

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	6.02	1.29	359.38	-1.25	8.1796	3.5890
2	7.07	1.29	358.13	-1.25	6.6612	4.2038
3	8.36	1.29	356.88	-1.25	6.2432	4.4394
4	9.65	1.29	355.63	-1.25	5.9943	4.5955
5	9.97	-0.64	357.38	4.75	5.7167	4.7881
5 6	9.32	-0.64	2.13	4.75	5.3491	4.7850
7	8.68	-0.64	6.88	4.75	5.0311	4.5481
8	8.04	-0.64	11.63	4.75	4.7665	4.3247
8 9	7.56	-0.31	16.00	4.00	4.4811	4.0838
10	7.25	-0.31	20.00	4.00	4.2202	3.8635
11	7.15	0.10	23.00	2.00	3.9139	3.6049
12	6.82	-0.75	28.50	9.00	3.4125	3.1817
13	6.07	-0.75	37.50	9.00	2.7961	2.6614
14	5.32	-0.75	46.50	9.00	2.2586	2.2077
15	4.78	-0.31	54.00	6.00	1.9328	1.9252
16	4.63	0.00	58.00	2.00	1.6146	1.6146
17	4.37	-0.51	67.50	17.00	1.1964	1.1964
18	3.74	-0.75	82.00	12.00	1.0000	1.0000
19	3.00	-0.75	94.00	12.00	1.0000	1.0000
20	2.60	-0.05	102.00	4.00	1.0000	1.0000 1.0000
21	2.44	-0.26	112.25	16.50	1.0000	1.0000
22	2.19	-0.26	128.75	16.50	1.0000	1.0000
23	1.93	-0.26	144.50	15.00	1.0000	1.0000
24	1.54	-0.51	169.00	34.00	1.0000	1.0000
25	1.16	-0.26	203.50	35.00	1.0000 1.0000	1.0000
26	1.29	0.51	237.25	32.50		1.0000
27	1.80	0.51	269.75	32.50	1.0000 1.0000	1.0000
28	2.83	1.54	293.50	15.00	1.0000	1.0000
29	3.91	0.62	300.50	-1.00	1.0000	1.0000
30	4.68	0.93	301.00	2.00	1.0000	1.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 8

VERSION 7.08 AT KSC

1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS ----

MET.		WIND		WIND		
LAYER NO.	WIND SPEED (M/SEC)	SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
31 32 33	5.40 6.43 6.78	0.51 1.54 -0.85	302.50 304.50 300.50	1.00 3.00 -11.00	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

ALTITUDE RANGE USED IN COMPUTING TRANSITION LAYER AVERAGES IS 255.0 TO 2890.7 METERS.

TRANSITION LAYER NUMBER- 1

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	810.16	297.15	4.12 5.41 5.14	1.15	76.00 42.05 360.00	16.84	1.0000 2.4551 9.4281	1.0000 2.3421 3.1198

TRANSITION LAYER NUMBER- 2

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	2890.72 810.16	306.32 297.15	6.35 3.48 4.12	3.24	295.00 299.55 76.00	14.32	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 9

VERSION 7.08 AT KSC 1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 920.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 810.2 AND 2890.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
1021.4396 2001.2214 3000.1116 4000.0244 5000.0161 6000.0073 7000.0034 8000.0020 9000.0010 10000.0000 12000.0000 13000.0000 15000.0000 15000.0000 17000.0000 18000.0000 19000.0000 20000.0000 20000.0000 22000.0000 23000.0000 24000.0000 25000.0000 25000.0000 25000.0000 25000.0000 27000.0000 28000.0000 29000.0000	(DEGREES) 171.9464 144.7041 136.0572 131.8640 129.3356 127.9512 126.7043 125.7712 125.0465 124.4672 123.9937 123.5993 123.5630 123.2757 123.0267 122.8089 122.6168 122.4461 122.2933 122.1559 122.0315 121.9185 121.9185 121.9185 121.6336 121.7207 121.6336 121.5533 121.7207 121.6336 121.4099 121.4099 121.3456 121.2856	19.0770 14.0310 10.1095 7.4482 5.6623 4.4412 3.5701 2.9284 2.4414 2.0624 1.7614 1.5182 1.3178 1.1530 1.0151 0.8985 0.7994 0.7144 0.6411 0.5777 0.5224 0.4740 0.4314 0.3939 0.3607 0.3311 0.3048 0.2812 0.2601 0.2410	4.6214 8.9634 12.9079 16.6601 20.3118 23.8849 27.84392 30.9689 34.4815 37.9818 41.4731 44.9575 48.4209 51.8958 55.3672 58.8358 62.3021 65.7664 69.2291 72.6903 76.1504 79.6094 83.0675 86.5247 89.9813 93.4372 96.8926 100.3475 103.8019 107.2559	12.8219 18.8160 24.8683 30.9476 37.0430 43.1136 49.2202 55.3300 61.4422 67.5564 73.6722 79.7891 85.8794 91.9982 98.1177 104.2377 110.3582 116.4790 122.6002 128.7216 134.8434 140.9653 147.0873 153.2096 159.3320 165.4546 171.5772 177.7000 183.8229 189.9458
30000.0000 31000.0000 32000.0000 33000.0000 34000.0000 35000.0000	121.2856 121.2295 121.1768 121.1274 121.0809 121.0370	0.2410 0.2238 0.2083 0.1942 0.1814 0.1697	107.2539 110.7096 114.1629 117.6159 121.0687 124.5212	196.0689 202.1920 208.3151 214.4383 220.5616

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 10

VERSION 7.08 AT KSC 1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- MAXIMUM CENTERLINE CALCULATIONS -----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 920.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 810.2 AND 2890.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
36000.0000 37000.0000 38000.0000 39000.0000 40000.0000 41000.0000 42000.0000 44000.0000 45000.0000 47000.0000 48000.0000 50000.0000 51000.0000 52000.0000 53000.0000 54000.0000 55000.0000 55000.0000 57000.0000 57000.0000 58000.0000 59000.0000	120.9956 120.9564 120.9193 120.8841 120.8506 120.8188 120.7596 120.7596 120.7057 120.6804 120.6563 120.6563 120.6332 120.6110 120.5897 120.5692 120.5692 120.5495 120.5306 120.4948 120.4948 120.4779 120.4615 120.4457 120.4305 120.4157	0.1590 0.1492 0.1403 0.1321 0.1245 0.1175 0.1110 0.1051 0.0995 0.0944 0.0896 0.0852 0.0811 0.0772 0.0736 0.0772 0.0671 0.0641 0.0641 0.0587 0.0562 0.0539 0.0518 0.0497 0.0478	127.9734 131.4255 134.8773 138.3290 141.7805 145.2319 148.6831 152.1341 155.5851 159.0359 162.4866 165.9372 169.3878 172.8382 176.2885 179.7388 183.1890 186.6391 190.0891 193.5391 196.9890 200.4389 203.8887 207.3385 210.7881	226.6849 232.8083 238.9318 245.0552 251.1787 257.3022 263.4258 269.5494 275.6730 281.7967 287.9203 294.0440 300.1677 306.2915 312.4152 318.5390 324.6628 330.7866 336.9104 343.0343 349.1581 355.2820 367.5297 373.6536

PANGE BEARING
19.077 IS THE MAXIMUM PEAK CONCENTRATION
1021.4
171.9

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 11

VERSION 7.08 AT KSC 1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- MAXIMUM CENTERLINE CALCULATIONS -----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 920.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 810.2 AND 2890.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
1021.4396 2001.2214 3000.1116 4000.0244 5000.0161 6000.0073 7000.0034 8000.0020 9000.0010 10000.0010 11000.0000 12000.0000 13000.0000 14000.0000 15000.0000 17000.0000 18000.0000 19000.0000 20000.0000 20000.0000 20000.0000 21000.0000 22000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000 25000.0000	171.9464 144.7041 136.0572 131.8640 129.3356 127.9512 126.7043 125.7712 125.0465 124.4672 123.9937 123.5993 123.5630 123.2757 123.0267 122.8089 122.6168 122.4461 122.2933 122.1559 122.0315 121.9185 121.8153 121.7207 121.6336 121.5533 121.4790 121.4099 121.3456 121.2295 121.1768	1.2980 1.1771 1.0540 0.9444 0.8521 0.7759 0.7122 0.6575 0.6098 0.5674 0.5295 0.4951 0.4632 0.4347 0.4084 0.3839 0.3612 0.3401 0.3202 0.3016 0.2842 0.2679 0.2526 0.2382 0.2247 0.2121 0.2022 0.1892 0.1788 0.1691 0.1600 0.1515	4.6214 8.9634 12.9079 16.6601 20.3118 23.8849 27.4392 30.9689 34.4815 37.9818 41.4731 44.9575 48.4209 51.8958 55.3672 58.8358 62.3021 65.7664 69.2291 72.6903 76.1504 79.6094 83.0675 86.5247 89.9813 93.4372 96.8926 100.3475 103.8019 107.2559 110.7096 114.1629	12.8219 18.8160 24.8683 30.9476 37.0430 43.1136 49.2202 55.3300 61.4422 67.5564 73.6722 79.7891 85.8794 91.9982 98.1177 104.2377 110.3582 116.4790 122.6002 128.7216 134.8434 140.9653 147.0873 153.2096 159.3320 165.4546 171.5772 177.7000 183.8229 189.9458 196.0689 202.1920
33000.0000 34000.0000	121.1274	0.1436 0.1361	117.6159 121.0687	208.3151 214.4383

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 12
VERSION 7.08 AT KSC

1334 EDT 28 APR 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 920.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 810.2 AND 2890.7 METERS

35000.0000 121.0370 0.1291 124.5212 220.5616 36000.0000 120.9956 0.1226 127.9734 226.6849 37000.0000 120.9564 0.1165 131.4255 232.8083 38000.0000 120.9193 0.1107 134.8773 238.9318 39000.0000 120.8841 0.1054 138.3290 245.0552 40000.0000 120.8506 0.1003 141.7805 251.1787 41000.0000 120.8188 0.0956 145.2319 257.3022 42000.0000 120.7596 0.0869 152.1341 269.5494 44000.0000 120.7320 0.0830 155.5851 275.6730 45000.0000 120.7057 0.0793 159.0359 281.7967 46000.0000 120.66804 0.0758 162.4866 287.9203 47000.0000 120.6563 0.0725 165.9372 294.0440 48000.0000 120.6332 0.0694 169.3878 300.1677 49000.0000 120.5897 0.0638 176.2885 312.4152 51000.0000 120.5495 0.0587	RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
60000.0000 120.4157 0.0431 210.7881 373.6536	36000.0000 37000.0000 37000.0000 38000.0000 40000.0000 41000.0000 42000.0000 43000.0000 45000.0000 47000.0000 48000.0000 50000.0000 51000.0000 52000.0000 53000.0000 54000.0000 55000.0000 57000.0000 57000.0000 58000.0000	120.9956 120.9564 120.9193 120.8841 120.8506 120.8188 120.7596 120.7320 120.7057 120.6804 120.6563 120.6332 120.6110 120.5897 120.5692 120.5495 120.5306 120.5124 120.4948 120.4779 120.4615 120.4305	0.1226 0.1165 0.1107 0.1054 0.1003 0.0956 0.0911 0.0869 0.0830 0.0793 0.0758 0.0725 0.0694 0.0665 0.0638 0.0612 0.0587 0.0564 0.0542 0.0542 0.0521 0.0501 0.0482 0.0464 0.0447	127.9734 131.4255 134.8773 138.3290 141.7805 145.2319 148.6831 152.1341 155.5851 159.0359 162.4866 165.9372 169.3878 172.8382 176.2885 179.7388 183.1890 186.6391 190.0891 193.5391 196.9890 200.4389 203.8887 207.3385	226.6849 232.8083 238.9318 245.0552 251.1787 257.3022 263.4258 269.5494 275.6730 281.7967 287.9203 294.0440 300.1677 306.2915 312.4152 318.5390 324.6628 330.7866 336.9104 343.0343 349.1581 355.2820 361.4059

									RANGE	BEARING
1.	298	IS	THE	MAXIMUM	60.0	MIN.	MEAN	CONCENTRATION	1021.4	171.9

*** REEDM HAS TERMINATED

3.2 REEDM Surface Impact Report for T-0.53h Run

The following 11 pages contain the detailed REEDM report for the T-0.53h calculations relevant to the surface impact (i.e., 0 m AGL) of the exhaust cloud. The analyst accepted the default settings for all parameters including the heights for the first and second mixing layers. The first page of the REEDM output contains trouble shooting error codes that are beyond the scope of this report, and, therefore, that page is not included in this appendix. The REEDM report is presented in a different font so that the column headings align with the columns.

REEDM reports heights for the exhaust cloud as height above ground level (AGL). For the rawinsonde data, REEDM assumes 0 m AGL = 4.9 m MSL = the height of the rawinsonde release site. However, for the Titan IV exhaust cloud, one assumes 0 m AGL = 7 m MSL = the height of SLC-40.

ROCKET EX	HAUST EFFLUENT DIFFUSION	MODEL REEDM	PAGE
	VERSION 7.08 AT KSC		
l aug	1645 EDT 1 JUL 1997 ch time: 1520 EST 23 FE	B 1007	
	UMBER 0, 1948 Z 23		HR
**********	******	******	*****
	PROGRAM OPTIONS	ud 500 mm	
VODET.	•	CONC	ENTRATION
MODEL RUN TYPE			ERATIONAL
IND-FIELD TERRAIN EFFE	CTS MODEL		NONE
AUNCH VEHICLE		TITAN	IVB SRMU
AUNCH TYPE	·		NORMAL
AUNCH COMPLEX NUMBER			40
URBULENCE PARAMETERS A	RE DETERMINED FROM	CLIMATOLOG	
SURFACE CHEMISTRY MODEL		absorption co	
PECIES SURFACE FA	CTOR	HCL	0.000
LOUD SHAPE		E	LLIPTICAL SURFACE
ALCULATION HEIGHT	(DEG G)		19.59
PROPELLANT TEMPERATURE	•		3600.00
CONCENTRATION AVERAGING	coefficient (RNG- 0 TO	1.no reflection=0)	
TITLE TAYER RELIECTION OF THE STATE OF THE S	coefficient (RNG- 0 TO :	LATERAL	1.0000
TIPEOSION COEFFICIENTS		VERTICAL	1.0000
EHICLE AIR ENTRAINMENT	PARAMETER	GAMMAE	0.6400
DOWNWIND EXPANSION DIST.		LATERAL	100.00
		VERTICAL	100.00
	DATA FILES	-	
	INPUT FILES		
RAWINSONDE FILE		k24	_1948.raw
DATA BASE FILE		rd	mbase.ksc
	OUTPUT FILES		
			01040

PRINT FILE PLOT FILE

k2481948.sur k2481948.sup

1********************** ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 3

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997
RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS

TIME- 1948 Z DATE- 23 FEB 97

0 ASCENT NUMBER

---- T -0.5 HR SOUNDING -----

MET LEV NO.		ALTITUI GND (FT)	GND	WIND DIR (DEG)	SPE (M/S)	(KTS)	TEMP (DEG C)		AIR PRESS (MB)	(왕) 1	H INT- M ERP
1	16	0.0	0.0					21.2		1024.7	75.0	**
2	62	45.5	13.9		6.4	12.5	20.7			1023.1	75.5	**
3	107	91.0			7.7	15.0	20.1	20.3		1021.4	75.5	**
4	153	136.5			9.0	17.5	19.6	19.9		1019.8	75.6	* *
5	198	182.0			10.3	20.0	19.1	19.4		1018.2	75.0 78.3	**
6	325	308.8			9.6	18.7	18.9	19.6		1013.6	81.1	**
7	452	435.5		5	9.0	17.5 16.2	18.6 18.4	19.8		1009.1	84.0	**
8	578	562.3	171.4		8.4 7.7	15.0	18.2	20.2		1000.0	87.0	
9	705	689.0	210.0	14 18	7.4	14.4	18.1	20.2		994.8	89.0	**
10	853 1000	836.5 984.0	255.0 299.9	22	7.1	13.8	18.0	21.0		989.7	91.0	
11 12	1078	1062.0	323.7	24	7.2	14.0	17.9	21.1		986.9	92.0	
13	1385	1369.3		33	6.4	12.5	17.7	21.9	16.7		93.9	**
14	1693	1676.7		42	5.7	11.1	17.6	22.7	16.8		95.1	**
15	2000	1984.0				9.6	17.4	23.5	16.8	955.2	96.0	
16	2150	2134.0		57	4.6	9.0	17.1	23.7	16.6	950.0	97.0	
17	2210	2194.0			4.6	9.0	17.0	23.7	16.5	948.1	97.0	
18	2674	2658.0				8.0	16.0	24.0	15.5	932.6	97.0 *	r
19	2837	2821.0		88		6.5	16.3	24.8	15.4	927.2	94.7	**
20	3000	2984.0				5.1	16.6	25.6	15.4	921.8	92.0	
21	3040	3024.0				5.0	16.7	25.9	15.4	920.5	92.0	
22	3131	3115.5			2.3	4.5	16.7	26.0	14.7	917.5	88.1	**
23	3223	3207.0			2.1	4.0	16.7	26.2	14.0		84.0	
24	3444		1044.9	152	1.8	3.5	16.1	26.3	13.7	907.2	85.8	**
25	3788	3772.0	1149.7	186	1.3	2.5	15.2	26.4	13.3		88.5	**
26	4000		1214.3			2.0	14.8	26.5			85.0	
27	4399		1335.9			3.0	14.4		9.8		73.9	**
28	4798	4782.0	1457.6	286		4.0	14.0		7.1		63.0	
29	5253		1596.2			7.0	13.6	28.4			49.0	
30	6000		1823.9			8.2	13.0		-5.1		28.0	
31	6922	6906.0	2104.9	302	5.1	10.0	10.9		3.0		58.0	
32	7147	7131.0	2173.5	303	5.7	11.0	10.4		3.6		63.0	
33	8679		2640.5		7.2		7.4				59.0	alle alle
34	9500	9484.0	2890.7	295	6.4	12.3	5.6	33.2	-2.5	728.0	56.9	**
*	- IND	ICATES 1	THE CAL	CULAT	ED TOP	OF TH	E SURF	ACE MI	XING I	AYER	TODOTO:	737

^{** -} INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1*************	*******	*****	*****
ROCKET EXHAUST EFFLUENT D VERSION 7.08 1645 EDT 1 J launch time: 1520 E RAWINSONDE ASCENT NUMBER 0, 19	AT KSC UL 1997 ST 23 FEB 1997 48 Z 23 FEB 9	97 T	PAGE 4
**********	*****	*****	*****
METEOROLOGICAL RA	WINSONDE DATA		
111111111111111111111111111111111111111			
SURFACE AIR DENSITY (GM/M**3)			1204.28
DEFAULT CALCULATED MIXING LAYER HEIGHT			810.16
CLOUD COVER IN TENTHS OF CELESTIAL DOME			0.0
CLOUD CEILING (M)			9999.0
PLUME RISE	DATA		
EXHAUST RATE OF MATERIAL INTO GRN CLD-	(GRAMS/SEC)	5	5.34133E+06
	(GRAMS)	5	5.31244E+07
HEAT OUTPUT PER GRAM-	(CALORIES)		1555.6
VEHICLE RISE HEIGHT DEFINING GROUND CLD-			199.9
VEHICLE RISE TIME PARAMETERS-	(TK = (A*Z**B) + C)		
			0.4429
	(000)	C=	
EXHAUST RATE OF MATERIAL INTO CONTRAIL-		٤	5.34133E+06 1555.6
CONTRAIL HEAT OUTPUT PER GRAM-	(CALORIES)		1999.6

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 5

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR ****************

---- EXHAUST CLOUD -----

MET. LAYER NO.	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING (DEGREES)	CLOUD RANGE	CLOUD BEARING
1	13.9	1 4	3.8	179.6	0.0	0.0
2	27 7	2 2	10.7	179.1	0.0	0.0
3	41.6	2.9				0.0
4	55.5		23.5		0.0	0.0
5				177.1	0.0	0.0
6	132.7		63.0		0.0	0.0
7	171.4	11.8	88.8	180.0	0.0	0.0
8	210.0		116.1	182.2	0.0	0.0
9		19.9			0.0	0.0
	299.9		182.7	187.3	0.0	0.0
	323.7		211.1	189.3	0.0	0.0
12	417.4		266.4	192.7	1569.5	205.9
13	511.0	57.3	355.7	197.9	1409.9	212.7
14	604.7	76.6	448.6	203.1		
15	650.4	87.5	517.4	206.9	1182.8	
16	668.7	92.3		208.8		
17	810.2	138.7	648.2	214.4		227.2
18	859.8	163.0	765.9	221.3		231.4
19	909.5	204.0	843.4	226.6	905.7	230.8
20	921.7	233.5 *	930.6	233.2	930.6	233.2 233.2
21		233.5 *		233.2	930.6	233.2
22		233.5 *			930.6	233.2
23		233.5 *			930.6 930.6	233.2
24	1149.7	233.5 *	930.6		930.6	233.2
25		233.5 *	930.6	233.2	930.6	
26	1335.9	233.5 *	930.6 930.6	233.2	930.6	233.2
27	1457.6	233.5 *	930.6	233.2	930.6	
28	1596.2	233.5 *	930.6	233.2	930.6	
29 30	2104 0	233.5 *	930.6	233.2	930.6	
31	2104.3	233.5 *	930.6	233.2		233.2
32	2640 5	233.5 *	930.6	233.2	930.6	233.2
33	2890.7	233.5 *	930.6	233.2	930.6	233.2

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 6

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- EXHAUST CLOUD -----

CHEMICAL SPECIES = HCL

MET. LAYER NO.	TOP OF LAYER (METERS)		CLOUD UPDRAFT VELOCITY (M/S)		TD. DEVIATION ALONGWIND (METERS)	N MATERIAL CROSSWIND (METERS)	DIST.
1	13.9	0.00000E+00	15.9	0.0	0.0	0.0	
2	27.7	0.00000E+00	18.3	0.0	0.0	0.0	
3	41.6	0.00000E+00	18.4	0.0	0.0	0.0	
4	55.5	0.00000E+00			0.0	0.0	
5	94.1	0.00000E+00	15.6	0.0	0.0	0.0	
6	132.7	0.00000E+00	13.4	0.0	0.0	0.0	
7	171.4	0.00000E+00	11.7		0.0	0.0	
8	210.0	0.00000E+00			0.0	0.0	
9	255.0	0.00000E+00	9.1		0.0	0.0	
10	299.9	0.00000E+00	8.2	0.0	0.0	0.0	
11	323.7	0.00000E+00	7.8	0.0	0.0	0.0	
12	417.4	1.63887E+05	6.4	235.5	109.7	109.7	
13	511.0	5.15401E+05	5.4	417.2	194.4	194.4	
14		8.02679E+05	4.4	520.2	242.4	242.4	
15	650.4	4.76267E+05	4.0	572.8	266.9	266.9	
16	668.7	2.03565E+05	3.8			275.8	
17		1.76430E+06				292.8	
18		6.73154E+05			304.4	304.4	
19		6.85041E+05				307.1	
20	•	1.87063E+05		660.1	307.6	307.6	
21		6.79765E+05		659.9		307.5	
22		6.73152E+05		658.3	306.8	306.8	
23		1.58928E+06		652.2	303.9	303.9	
24		2.32761E+06		629.4		293.3	
25		1.31421E+06		591.0		275.4	
26		2.14308E+06		526.2		245.2	
27	1457.6 *	1.59715E+06	0.0	386.6		180.2	
28	1596.2 *	1.17151E+06	0.0	267.9		124.8	
29	1823.9 *	1.71601E+06	0.0	199.9		93.2	
30	2104.9 *	1.96076E+06	0.0	199.9		93.2	
31		4.55979E+05				93.2	
32		2.91115E+06		199.9		93.2	
33	2890.7 *	1.44239E+06	0.0	199.9	93.2	93.2	

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1********************** ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 7

VERSION 7.08 AT KSC

1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- CLOUD STABILIZATION -----

(METERS)	0.00
(METERS)	920.00
(SECS)	233.53
(METERS)	TOP = 810.16
	BASE= 0.00
(METERS)	TOP = 2890.72
	BASE= 810.16
(DEGREES)	9.4281
(DEGREES)	3.1198
	(METERS) (SECS) (METERS) (METERS)

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	6.02	1.29	359.38	-1.25	8.1796	3.5890
	7.07	1.29	358.13	-1.25	6.6612	4.2038
2 3	8.36	1.29	356.88	-1.25	6.2432	4.4394
4	9.65	1.29	355.63	-1.25	5.9943	4.5955
	9.97	-0.64	357.38	4.75	5.7167	4.7881
5 6	9.32	-0.64	2.13	4.75	5.3491	4.7850
7	8.68	-0.64	6.88	4.75	5.0311	4.5481
8	8.04	-0.64	11.63	4.75	4.7665	4.3247
9	7.56	-0.31	16.00	4.00	4.4811	4.0838
10	7.25	-0.31	20.00	4.00	4.2202	3.8635
11	7.15	0.10	23.00	2.00	3.9139	3.6049
12	6.82	-0.75	28.50	9.00	3.4125	3.1817
13	6.07	-0.75	37.50	9.00	2.7961	2.6614
14	5.32	-0.75	46.50	9.00	2.2586	2.2077
15	4.78	-0.31	54.00	6.00	1.9328	1.9252
16	4.63	0.00	58.00	2.00	1.6146	1.6146
17	4.37	-0.51	67.50	17.00	1.1964	1.1964
18	3.74	-0.75	82.00	12.00	1.0000	1.0000
19	3.00	-0.75	94.00	12.00	1.0000	1.0000
20	2.60	-0.05	102.00	4.00	1.0000	1.0000
21	2.44	-0.26	112.25	16.50	1.0000	1.0000
22	2.19	-0.26	128.75	16.50	1.0000	1.0000
23	1.93	-0.26	144.50	15.00	1.0000	1.0000
24	1.54	-0.51	169.00	34.00	1.0000	1.0000
25	1.16	-0.26	203.50	35.00	1.0000	1.0000
26	1.29	0.51	237.25	32.50	1.0000	1.0000
27	1.80	0.51	269.75	32.50	1.0000	1.0000
28	2.83	1.54	293.50	15.00	1.0000	1.0000
29	3.91	0.62	300.50	-1.00	1.0000	1.0000
30	4.68	0.93	301.00	2.00	1.0000	1.0000

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 8

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS ----

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
31	5.40	0.51	302.50	1.00	1.0000	1.0000
32	6.43	1.54	304.50	3.00	1.0000	1.0000
33	6.78	-0.85	300.50	-11.00	1.0000	1.0000

ALTITUDE RANGE USED IN COMPUTING TRANSITION LAYER AVERAGES IS 0.0 TO 1596.2 METERS.

TRANSITION LAYER NUMBER- 1

VALUE AT	HEIGHT (METERS)	TEMP. (DEG K)	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	810.16	297.15 294.34	4.12 6.03 5.14	1.85	76.00 26.58 360.00	22.12	1.0000 3.3836 9.4281	1.0000 2.9986 3.1198

TRANSITION LAYER NUMBER- 2

VALUE AT	HEIGHT (METERS)	TEMP. (DEG K)	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	2890.72 810.16	306.32	6.35 0.45 4.12	1.13	295.00 206.69 76.00	78.05	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

1******************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 9

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 810.2 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
4000.0251 5000.1226 6000.0000 7000.0000 8000.0000 10000.0000 11000.0000 12000.0000 13000.0000 14000.0000 15000.0000 17000.0000 17000.0000 19000.0000 20000.0000 21000.0000 22000.0000 23000.0000 24000.0000 25000.0000 25000.0000 27000.0000 28000.0000 28000.0000 29000.0000 3000.0000 3000.0000 31000.0000 32000.0000 32000.0000 33000.0000 34000.0000 34000.0000 35000.0000	206.7796 207.5074 207.9543 208.2618 208.3016 208.0010 208.2054 208.0127 207.8520 207.7160 207.5995 207.4985 207.4101 207.3321 207.2628 207.2007 207.6132 207.5638 207.5190 207.4780 207.4780 207.4058 207.3739 207.3444 207.3170 207.3444 207.3170 207.2914 207.2676 207.2453 207.2914 207.2676 207.2453 207.2244 207.1862 207.1688 207.1524 207.1524	0.0498 0.2574 0.4908 0.6526 0.7344 0.7549 0.7342 0.6900 0.6339 0.5742 0.5161 0.4621 0.4137 0.3709 0.3336 0.3011 0.2729 0.2483 0.2268 0.2079 0.1913 0.1765 0.1634 0.1517 0.1411 0.1317 0.1231 0.1153 0.1083 0.0906 0.0906 0.0906 0.0857 0.0811	6.5116 9.0826 11.6343 14.1708 16.7012 19.2301 21.7502 24.2724 26.7926 29.3113 31.8287 34.3451 36.8608 39.3759 41.8905 44.4047 46.9127 49.4263 51.9396 54.4527 56.9655 59.4783 61.9908 64.5033 67.0156 69.5278 72.0399 74.5520 77.0639 79.5758 82.0876 84.5994 87.1111 89.6228	12.6337 15.5114 18.4155 21.3364 24.2750 27.2305 30.1899 33.1629 36.1424 39.1270 42.1160 45.1086 48.1042 51.1023 54.1026 57.1048 60.1017 63.1069 66.1134 69.1209 72.1294 75.1386 78.1487 81.1594 84.1707 87.1825 90.1948 93.2075 90.1948 93.2075 96.2206 99.2341 102.2479 105.2620 108.2764 111.2910
37000.0000 38000.0000	207.1300	0.0769	92.1344	114.3059

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 10

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 810.2 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
3900.0000 4000.0000 41000.0000 42000.0000 43000.0000 44000.0000 45000.0000 47000.0000 47000.0000 50000.0000 51000.0000 52000.0000 53000.0000 54000.0000 55000.0000 57000.0000 58000.0000	207.1080 207.0948 207.0821 207.0701 207.0586 207.0476 207.0372 207.0271 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 207.0175 206.9911 206.9911 206.9829 206.9751 206.9676 206.9604 206.9534 206.9466 206.9401 206.9339	0.0730 0.0694 0.0661 0.0630 0.0601 0.0574 0.0549 0.0525 0.0503 0.0482 0.0463 0.0444 0.0427 0.0411 0.0395 0.0381 0.0367 0.0354 0.0342	94.6460 97.1576 99.6691 102.1806 104.6920 107.2035 109.7149 112.2262 114.7376 117.2489 119.7602 122.2715 124.7828 127.2941 129.8053 132.3166 134.8278 137.3390 139.8502 142.3614	117.3210 120.3363 123.3518 126.3674 129.3832 132.3992 135.4153 138.4315 141.4478 144.4643 147.4809 150.4975 153.5143 156.5312 159.5481 162.5651 165.5822 168.5994 171.6167 174.6339
59000.0000 60000.0000	206.9278 206.9220	0.0319 0.0308	144.8725 147.3837	177.6513 180.6687

RANGE BEARING
0.755 IS THE MAXIMUM PEAK CONCENTRATION 9000.0 208.0

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 11

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 810.2 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
4000.2095 5000.0000 6000.0000 7000.0000 8000.0000 10000.0000 11000.0000 12000.0000 13000.0000 15000.0000 15000.0000 15000.0000 17000.0000 18000.0000 20000.0000 21000.0000 22000.0000 23000.0000 24000.0000 25000.0000 25000.0000 25000.0000 3000.0000 31000.0000 31000.0000 32000.0000 32000.0000 32000.0000 33000.0000 34000.0000 35000.0000	207.1627 207.9094 207.9543 208.2618 208.3016 208.0010 208.2054 208.0127 207.8520 207.7160 207.5995 207.4985 207.4985 207.4101 207.3321 207.2628 207.2007 207.5638 207.5638 207.5638 207.5638 207.3444 207.4058 207.3739 207.3444 207.3170 207.3170 207.2914 207.2676 207.2453 207.2244 207.2047 207.1862 207.1688	0.0010 0.0069 0.0161 0.0249 0.0316 0.0360 0.0383 0.0391 0.0387 0.0376 0.0362 0.0345 0.0328 0.0311 0.0295 0.0280 0.0267 0.0255 0.0243 0.0233 0.0215 0.0207 0.0199 0.0192 0.0192 0.0195 0.0179 0.0174 0.0168 0.0163 0.0158 0.0158	6.5116 9.0826 11.6343 14.1708 16.7012 19.2301 21.7502 24.2724 26.7926 29.3113 31.8287 34.3451 36.8608 39.3759 41.8905 44.4047 46.9127 49.4263 51.9396 54.4527 56.9655 59.4783 61.9908 64.5033 67.0156 69.5278 72.0399 74.5520 77.0639 79.5758 82.0876 84.5994	12.6337 15.5114 18.4155 21.3364 24.2750 27.2305 30.1899 33.1629 36.1424 39.1270 42.1160 45.1086 48.1042 51.1023 54.1026 57.1048 60.1017 63.1069 66.1134 69.1209 72.1294 75.1386 78.1487 81.1594 84.1707 87.1825 90.1948 93.2075 96.2206 99.2341 102.2479 105.2620
36000.0000 37000.0000	207.1524 207.1368	0.0150 0.0146	87.1111 89.6228	108.2764 111.2910

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 12

VERSION 7.08 AT KSC 1645 EDT 1 JUL 1997

launch time: 1520 EST 23 FEB 1997

RAWINSONDE ASCENT NUMBER 0, 1948 Z 23 FEB 97 T -0.5 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 810.2 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
38000.0000 39000.0000 40000.0000 41000.0000 42000.0000 43000.0000 44000.0000 45000.0000 46000.0000 47000.0000 48000.0000 49000.0000 50000.0000	207.1220 207.1080 207.0948 207.0821 207.0701 207.0586 207.0476 207.0372 207.0271 207.0175 207.0084 206.9995 206.9911 206.9829	0.0142 0.0138 0.0135 0.0132 0.0128 0.0126 0.0123 0.0120 0.0117 0.0115 0.0113 0.0110 0.0108	92.1344 94.6460 97.1576 99.6691 102.1806 104.6920 107.2035 109.7149 112.2262 114.7376 117.2489 119.7602 122.2715 124.7828	114.3059 117.3210 120.3363 123.3518 126.3674 129.3832 132.3992 135.4153 138.4315 141.4478 144.4643 147.4809 150.4975 153.5143
52000.0000 53000.0000 54000.0000 55000.0000 56000.0000 57000.0000 58000.0000 59000.0000 60000.0000	206.9751 206.9676 206.9604 206.9534 206.9466 206.9401 206.9339 206.9278 206.9220	0.0104 0.0102 0.0100 0.0098 0.0097 0.0095 0.0093 0.0092 0.0090	127.2941 129.8053 132.3166 134.8278 137.3390 139.8502 142.3614 144.8725 147.3837	156.5312 159.5481 162.5651 165.5822 168.5994 171.6167 174.6339 177.6513 180.6687

	RANGE	BEARING
0.039 IS THE MAXIMUM 60.0 MIN. MEAN CONCENTRATION	11000.0	208.0

*** REEDM HAS TERMINATED

Appendix B-Meteorological Data for the #K24 Mission

This Appendix contains two types of meteorological data recorded at several points on base before and after the #K24 launch, which occurred at 1520 EST (2020Z):

Rawinsonde Data

This data was taken on a rawinsonde balloon launched at 1948Z (T-32 min). This data was used as an input to the REEDM 7.08 run by R. N. Abernathy, and was provided by ACTA Inc.

Meteorological Tower Data

This data was taken at a series of towers on and adjacent to Cape Canaveral AFS, located at the noted latitude and longitude. Data was taken every 15 min beginning at 2015Z (T-5 min) until 2035Z (T+15 min). Data is taken at the elevation Z, in feet, above tower base, and includes wind direction, DIR, speed, SPD in knots, temperature, T, in °F, and dew point, TD, in °F.

RH ABHUM DENSITY I/R V/S VPS PW SPD SHR TEMP DPT PRESS ALT DIR PCT G/M3 G/M3 N KTS MBS KTS /SEC DEG C DEG C MBS GEOMFT DEG 75 13.96 1204.28 352 671 18.96 16 360 10.0 .000 21.2 16.7 1024.70 16.5 989.66 91 13.99 1175.82 347 667 18.80 13.8 .010 18.0 1000 22 96 14.28 1136.72 340 667 19.14 955.19 17.4 16.8 2000 51 9.6 .012 16.6 15.4 921.80 92 13.07 1100.27 325 666 17.48 12 5.1 .012 3000 100 85 10.87 1069.34 305 664 14.45 16 889.47 2.0 .011 14.8 12.4 4000 221 858.07 62 7.42 1037.28 277 662 9.83 19 5.4 .009 13.8 6.7 5000 298 13.0 -5.1 827.61 28 3.18 1005.83 244 660 4.20 20 8.2 .005 6000 300 5.86 975.68 254 658 7.68 22 3.2 798.08 60 7000 303 10.4 .004 10.8 769.43 67 5.83 947.17 247 656 7.59 23 3.0 8000 309 15.0 .008 8.8 4.24 920.29 232 653 5.48 25 6.8 -1.5 741.60 55 13.7 .003 9000 303 3.71 894.31 223 650 4.75 26 714.57 56 11.0 .007 4.5 - 3.410000 287 2.71 868.52 211 648 3.44 27 9.9 .005 2.4 -7.7 688.30 47 11000 271 662.81 40 2.02 842.64 201 645 2.55 28 12000 262 10.5 .003 .5 -11.8 638.12 22 1.00 814.80 188 644 1.26 28 -.5 -20.114.3 .007 13000 252 -2.0 -14.5 614.25 38 788.22 186 642 2.03 29 1.62 14000 255 18.7 .008 763.42 188 640 3.50 29 20.7 .004 -4.0 -7.5 591.14 77 2.81 15000 252 -5.5 -9.7 568.77 72 738.82 180 638 2.92 30 2.37 16000 246 23.8 .006 -6.9 -10.7 547.13 75 2.22 714.45 174 637 2.73 31 27.6 .007 17000 244 1.70 693.25 166 634 2.07 31 -9.1 -14.0 526.19 68 18000 247 32.4 .008 505.88 28 .62 671.25 154 632 34.3 .004 -10.7 -26.1 .75 32 19000 246 .35 647.34 147 631 31.7 .007 -11.6 -31.7 486.24 17 .43 32 20000 241 .31 625.96 142 629 31.8 .004 -13.1 -33.0 467.30 17 34.0 .009 -15.5 -34.7 448.95 17 .38 32 21000 245 606.85 137 626 .32 32 34.0 .009 -15.5 -34.7 .27 22000 254 .27 32 431.18 17 .23 587.48 132 623 39.0 .010 -17.5 -36.3 23000 259 .21 565.55 127 623 .24 32 414.01 17 397.51 17 44.4 .010 -18.2 -37.3 24000 256 .20 545.02 123 621 .23 32 48.8 .011 -19.1 -37.8 25000 251 50.2 .005 -21.4 -38.0 381.55 21 .20 527.81 119 619 .23 32 26000 248 .19 32 .17 512.00 115 615 50.7 .001 -24.1 -39.5 366.09 22 27000 247 496.07 111 612 .14 32 52.2 .003 -26.6 -42.6 351.09 20 .12 28000 247 336.56 20 481.02 108 609 .11 32 54.2 .003 -29.4 -44.9 .10 29000 247 .08 .09 32 466.08 104 605 55.2 .002 -32.1 -46.6 322.47 22 30000 246 .07 33 55.1 .001 -35.3 -48.2 308.82 25 .07 452.29 101 601 31000 246 .07 33 295.59 28 .06 437.23 98 598 55.6 .001 -37.6 -49.4 32000 246 .08 422.28 95 595 .08 33 57.4 .007 -39.9 -47.2 282.81 45 33000 250 407.38 91 593 .08 33 270.48 54 .08 60.1 .011 -41.9 -47.5 34000 256 .06 393.87 88 589 258.56 53 .06 33 63.3 .012 -44.5 -50.1 35000 262 .04 33 .04 380.75 85 586 66.2 .009 -47.1 -53.0 247.06 50 36000 266 .03 368.17 82 582 .03 33 68.1 .009 -49.9 -56.1 235.92 47 37000 270 68.3 .007 -52.7 -59.1 .02 33 79 579 225.17 46 .02 355.89 38000 274 214.77 45 343.70 77 575 .01 33 68.7 .007 -55.5 -61.7 .01 39000 277 74 572 .01 33 69.1 .006 -57.8 -64.1 204.74 44 .01 331.27 40000 280 71 569 .00999 67.7 .002 -60.3 99.9 195.08 999 99.99 319.35 41000 280 306.34 68 567 .00999 185.78 999 99.99 42000 272 63.6 .017 -61.9 99.9 293.01 65 565 .00999 62.9 .022 -62.8 99.9 176.88 999 99.99 43000 260 66.1 .013 -64.1 99.9 168.36 999 99.99 280.62 63 564 .00999 44000 254 160.22 999 99.99 .00999 267.28 60 563 69.4 .006 -64.3 99.9 45000 253 .00999 253.15 56 565 70.5 .003 -63.3 99.9 152.50 999 99.99 46000 254 70.3 .004 -64.7 99.9 145.14 999 99.99 54 563 .00999 242.54 47000 252 232.94 52 560 70.8 .002 -66.6 99.9 138.08 999 99.99 48000 253 68.2 .010 -68.2 99.9 131.31 999 99.99 223.19 50 558 .00999 49000 258 61.7 .011 -68.4 99.9 124.84 999 99.99 212.38 47 558 .00999 50000 257 51000 250 56.7 .015 -68.6 99.9 118.69 999 99.99 202.13 45 558 52000 999 999.0 .999 -70.0 99.9 112.82 999 99.99 193.45 43 556 .00999 .00999 52281 GEOPFT 15935 GEOPM 110.0 MBS TERMINATION .0 C .0 C O FEET .00 MB TROPOPAUSE

MANDATO	DRY I	EVE	LS			
GEOPFT	DIR	KTS	TEMP	DPT	PRESS	RH
705	14	15	18.2	16.0	1000.0	87
2150	57	9	17.1	16.6	950.0	97
3665	167	3	15.5	13.4	900.0	87
5253	301	7	13.6	3.0	850.0	49
6922	302	10	10.9	3.0	800.0	58
8679	306	14	7.4	1	750.0	59
10530	278	10	3.2	-5.8	700.0	52
12489	257	11	2	-19.6	650.0	22
14582	254	20	-3.1	-7.6	600.0	73
16828	245	27	-6.7	-9.9	550.0	78
19250	242	33	-11.1	-29.8	500.0	19
21887	254	34	-15.4	-34.6	450.0	17
24781	251	48	-18.8	-37.6	400.0	17
27996	247	52	-26.8	-42.8	350.0	20
31569	246	55	-36.9	-49.4	300.0	26
35628	265	66	-46.4	-52.2	250.0	51
40350	281	69	-58.9	-65.1	200.0	43
43066	258	63	-63.1	99.9	175.0	999
46166	254	70	-63.6	99.9	150.0	999
49784	257	62	-68.4	99.9	125.0	999

```
SIGNIFICANT LEVELS
GEOMFT DIR KTS TEMP
                        DPT PRESS
                                   IR RH
    16 360 10 21.2 16.7 1024.7 352
                                        75
   198 355
            20
                19.1
                       14.7 1018.2 343
                                        75
                17.9
                       16.7 986.9 347
  1078
       24
            14
                                        97
  2210
       59
             9
                17.0
                       16.5
                             948.1 337
        76
             8
                16.0
                       15.5
                             932.6 329
                                        97
  2674
                             920.5 324
                                        92
                16.7
                       15.4
  3040 104
             5
  3223 137
                16.7
                      14.0
                             914.5 316
                                        24
                             892.3 308
                                        89
  3911 205
             2
                14.9
                      13.2
                             864.3 279
                                        63
  4798 286
             4
                14.0
                        7.1
  4987 298
             5
                13.8
                        6.9
                             858.5 277
                                        63
                             846.8 260
             7
                13.5
                       1.5
                                        44
  5365 301
  5973 300
             8
                13.0
                       -5.5
                             828.4 243
                                        27
  6561 301
             9
                11.9
                       1.9
                             810.9 253
                                        50
                            793.8 254
                                        63
  7147 303
            11
                10.4
                       3.6
  7998 309
                       3.0
                             769.5 247
                                        67
            15
                 8.8
                     -4.2
                            709.5 220
                                        55
 10189 283
                 4.0
            11
 10764 274
                 2.8 -6.7
                             694.4 213
                                        49
            10
                  .6 -10.5
                             665.0 202
                                        43
 11912 262
            1.0
 12600 256
            12
                 -.3 -20.9
                             647.9 190
                                        19
                 -.3 -22.1
                             642.2 188
                                        17
 12832 252
            13
                             631.0 188
 13296 253
            16
                 -.9 -16.6
                                        29
                             624.8 195
 13555 254
            18
                -1.4 - 7.9
                                        61
                             612.6 185
 14072 256
            19
                -2.1 -15.6
                                        35
 14670 254
            20
                -3.2 -6.7
                             598.7 191
                                        77
                            569.9 180
                -5.4 -9.9
                                        71
 15950 247
            24
 16556 245
            26
                -6.3 -8.2
                            556.7 179
                                        86
 17266 244
            28
                -7.2 -12.2
                            541.5 171
                                        67
                            529.7 167
 17831 245
            31
                -8.7 -13.5
                                        68
 18032 247
            33
                -9.2 -14.1
                            525.5 166
                                        68
            35 -9.7 -16.4
                            517.3 162
                                        58
 18432 248
 18636 248
            35 -10.3 -17.9
                            513.2 160
                                        54
            34 -10.8 -27.0
                            505.0 153
                                        25
 19044 245
            33 -11.0 -29.7
                            500.8 151
                                        20
 19253 242
 20262 241
            32 -11.6 -32.2
                            481.2 145
                                        16
                            448.8 137
                                        17
 22007 254
            34 -15.5 -34.7
            40 -18.0 -36.7
                            427.5 132
                                        18
 23209 259
 24425 254
            47 -17.8 -37.3
                            406.9 125
                                        16
                            328.8 106
            55 -30.8 -46.0
                                        21
 29544 247
            55 -36.5 -49.4
                            302.7 100
                                        25
 31462 246
            56 -37.9 -49.3
                            294.1 97
                                        29
 32119 247
            58 -40.8 -47.0
                            278.0
                                   93
                                        51
 33389 252
 37916 273
            68 -52.5 -58.8
                            226.1 80
                                        46
            69 -58.9 -65.2
                            199.9 72
                                       43
 40502 281
                            170.0 63 999
            65 -63.8 99.9
 43808 254
 45766 255
            71 -63.1
                      99.9
                            154.3 57 999
           71 -66.9 99.9 136.8 51 999
 48185 254
 51640 999 999 -69.6 99.9 114.9 44 999
 52488 999 999 -70.5 99.9 110.0 42 999
TERMINATION
047 047
NNNN
```

Meteorological Tower Data -- 23 February 1997 2015Z

97054 201500 28.4438 80.5734 12 352 5.1	DAY TIME	LAT	LON	Z	DIR	SPD	T	TD	TIDN
\$7054 \$201500 \$28,4338 \$0.5734 \$54 \$347 \$11.1 \$67 \$7054 \$201500 \$28,4443 \$0.5621 \$12 \$353 \$7.0 \$27054 \$201500 \$28,4443 \$0.5621 \$12 \$355 \$14.0 \$68 \$60 \$29 \$27054 \$201500 \$28,4443 \$0.5621 \$16.9 \$17054 \$201500 \$28,4443 \$0.5621 \$16.9 \$17054 \$201500 \$28,4443 \$0.5621 \$16.9 \$17054 \$201500 \$28,4443 \$0.5621 \$16.9 \$17054 \$201500 \$28,4443 \$0.5621 \$16.9 \$17054 \$201500 \$28,4443 \$0.5621 \$204 \$355 \$14.0 \$67 \$60 \$29 \$27054 \$201500 \$28,4443 \$0.5621 \$204 \$355 \$14.0 \$67 \$60 \$29 \$27054 \$201500 \$28,4443 \$0.5621 \$204 \$354 \$14.0 \$67 \$60 \$29 \$27054 \$201500 \$28,4443 \$0.5621 \$204 \$355 \$20.0 \$67 \$60 \$29 \$27054 \$201500 \$28,4443 \$0.5621 \$204 \$355 \$20.0 \$27054 \$201500 \$28,4443 \$0.5621 \$204 \$355 \$20.0 \$27054 \$201500 \$28,4443 \$0.5621 \$204 \$355 \$20.0 \$27054 \$201500 \$28,4598 \$0.5267 \$6 \$60 \$29 \$27054 \$201500 \$28,4598 \$0.5267 \$6 \$60 \$29 \$27054 \$201500 \$28,4598 \$0.5267 \$6 \$60 \$29 \$27054 \$201500 \$28,4598 \$0.5267 \$54 \$377 \$20.0 \$37054 \$201500 \$28,4598 \$0.5267 \$54 \$377 \$20.0 \$37054 \$201500 \$28,4598 \$0.5267 \$54 \$377 \$20.0 \$37054 \$201500 \$28,4598 \$0.5267 \$54 \$377 \$20.0 \$37054 \$201500 \$28,4598 \$0.5267 \$54 \$370 \$20.0 \$37054 \$201500 \$28,4598 \$0.5267 \$54 \$370 \$20.0 \$37054 \$201500 \$28,4598 \$0.5267 \$54 \$370 \$20.0			80.5734 80.5734	6 12	352	5.1	69		1
97054 201500 28.4466 80.5652 6		28.4338	80.5734	54					
97054 201500 28.4466 80.5652 6					252	7.0	69	61	2
97054 201500 28.4466 80.5652 6							68	60	2
97054 201500 28.4466 80.5652 6					356	16.9			2
97054 201500 28.4466 80.5652 6							65	60	2
97054 201500 28.4466 80.5652 6					354	21.0	65	60	2
97054 201500 28.4466 80.5652 6					350	8.0			2
97054 201500 28.4466 80.5652 6	97054 201500						67	60	2
97054 201500 28.4466 80.5652 6									2
97054 201500 28.4466 80.5652 6							65	60	2
97054 201500 28.4466 80.5652 6	97054 201500	28.4598	80.5267	6					3
97054 201500 28.4466 80.5652 6									3
97054 201500 28.7435 80.7005 6 64 60 19 97054 201500 28.7435 80.7005 54 344 22.9 19 97054 201500 28.7975 80.7378 6 64 62 22 97054 201500 28.4721 80.5393 6 36 36 97054 201500 28.4721 80.5393 6 36 36 97054 201500 28.5622 80.5785 6 40 36 97054 201500 28.5622 80.5785 54 347 16.9 40 97054 201500 28.5836 80.5842 6 41 40 97054 201500 28.5130 80.5613 6 68 61 61 97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 162 360 15.9<					337	22.0			17
97054 201500 28.7975 80.7378 6 64 62 22 97054 201500 28.7975 80.7378 54 342 21.0 22 97054 201500 28.4721 80.5393 6 36 36 97054 201500 28.5622 80.5785 6 40 97054 201500 28.5622 80.5785 6 40 97054 201500 28.5636 80.5842 6 41 97054 201500 28.5836 80.5842 54 340 15.0 41 97054 201500 28.5130 80.5613 6 68 61 61 97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 162 360 15.9 61 97054 201500 28.5130 80.5613 162 360 15.9 66 61							64	60	19
97054 201500 28.7975 80.7378 54 342 21.0 22 97054 201500 28.4721 80.5393 6 36 97054 201500 28.4721 80.5393 90 351 18.1 366 97054 201500 28.5622 80.5785 6 40 97054 201500 28.5622 80.5785 54 347 16.9 40 97054 201500 28.5836 80.5842 6 41 97054 201500 28.5836 80.5842 54 340 15.0 41 97054 201500 28.5130 80.5613 6 68 61 61 97054 201500 28.5130 80.5613 54 1 11.1 67 61 61 97054 201500 28.5130 80.5613 54 1 11.1 67 61 61 97054 201500 28.5130 80.5613 54 1 11.1 67 61 61 97054 201500 28.5130 80.5613 54 1 11.1 67 61 61 97054 201500 28.5130 80.5613 54 1 15.9 65 60 61 97054 201500 28.5130 80.5613 54 1 15.9 65 60 61 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 54 349 18.1 62 97054 201500 28.5358 80.5747 6 108 97054 201500 28.5358 80.5747 6 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.6141 80.6203 54 344 16.9 66 303 300 97054 201500 28.4600 80.5711 6 67 303 300 97054 201500 28.4600 80.5711 6 67 303 300 97054 201500 28.4600 80.5711 6 67 303 300 97054 201500 28.4600 80.5711 6 67 303 300 97054 201500 28.4600 80.5711 6 67 303 300					344	22.9	<i>C</i> 4	60	
97054 201500 28.4721 80.5393 6 97054 201500 28.4721 80.5393 90 351 18.1 36 97054 201500 28.5622 80.5785 6 40 97054 201500 28.5622 80.5785 54 347 16.9 40 97054 201500 28.5836 80.5842 6 41 41 97054 201500 28.5836 80.5842 54 340 15.0 41 97054 201500 28.5130 80.5613 6 68 61 61 97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 162 360 15.9 61 97054 201500 28.5130 80.5613 162 349 11.1 67 61 61 97054 201500 28.5130 80.5613 54 349					342	21 0	64	62	
97054 201500 28.4721 80.5393 90 351 18.1 36 97054 201500 28.5622 80.5785 6 40 97054 201500 28.5622 80.5785 54 347 16.9 40 97054 201500 28.5836 80.5842 6 41 41 97054 201500 28.5130 80.5613 6 68 61 61 97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 162 360 15.9 61 97054 201500 28.5130 80.5613 162 360 15.9 61 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 12					342	21.0			
97054 201500 28.5622 80.5785 54 347 16.9 40 97054 201500 28.5836 80.5842 6 41 41 97054 201500 28.5130 80.5613 6 68 61 61 97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 162 360 15.9 65 60 61 97054 201500 28.5130 80.5613 162 360 15.9 65 60 61 97054 201500 28.5130 80.5613 12 6 6.0 62 62 97054 201500 28.5130 80.5613 12 6 6.0 62 62 67 66 62 62 67 62 87054 201500 28	97054 201500	28.4721		90	351	18.1			
97054 201500					3/17	16 9			
97054 201500 28.5836 80.5842 54 340 15.0 41 97054 201500 28.5130 80.5613 6 68 61 61 97054 201500 28.5130 80.5613 12 8 4.1 97054 61 61 97054 201500 28.5130 80.5613 162 360 15.9 61 61 97054 201500 28.5130 80.5613 204 1 15.9 65 60 61 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 162 349 18.1					247	10.5			
97054 201500 28.5130 80.5613 12 8 4.1 61 97054 201500 28.5130 80.5613 54 1 11.1 67 61 61 97054 201500 28.5130 80.5613 204 1 15.9 65 60 61 97054 201500 28.5130 80.5613 204 1 15.9 65 60 61 97054 201500 28.5130 80.5613 6 68 60 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 12 6 6.0 62 62 62 67 60 62 62 62 67 60 62 62 67 60 62 62 67 60 62 62 67 108 62 62 67 108 6	97054 201500	28.5836	80.5842	54	340	15.0			
97054 201500 28.5130 80.5613 54 1 11.1 67 61 61 97054 201500 28.5130 80.5613 162 360 15.9 61 97054 201500 28.5130 80.5613 204 1 15.9 65 60 61 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 162 349 18.1 66 60 62 97054 201500 28.5130 80.5613 162 349 18.1 65 60 62 97054 201500 28.5358 80.5747 6 67 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500					0	A 1	68	61	
97054 201500 28.5130 80.5613 162 360 15.9 65 60 61 97054 201500 28.5130 80.5613 204 1 15.9 65 60 61 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 162 349 18.1 66 60 62 97054 201500 28.5130 80.5613 204 350 18.1 65 60 62 97054 201500 28.5130 80.5613 204 350 18.1 65 60 62 97054 201500 28.5358 80.5747 12 344 6.0 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108							67	61	
97054 201500 28.5130 80.5613 6 68 60 62 97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 162 349 18.1 62 97054 201500 28.5130 80.5613 204 350 18.1 65 60 62 97054 201500 28.5358 80.5747 6 67 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500 28.6141 80.6203 6 65 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.6141 80.6203 54 344 16.9 6			80.5613	162	360	15.9			61
97054 201500 28.5130 80.5613 12 6 6.0 62 97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 162 349 18.1 65 60 62 97054 201500 28.5358 80.5747 6 67 108 97054 201500 28.5358 80.5747 12 344 6.0 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500 28.6141 80.6203 6 65 112 97054 201500 28.6141 80.6203 12 343 13.0 65 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.6141 80.6519 6 70 63 300 97054 201500 28.4600 80.5711 16					1	15.9			
97054 201500 28.5130 80.5613 54 349 11.1 66 60 62 97054 201500 28.5130 80.5613 162 349 18.1 62 97054 201500 28.5130 80.5613 204 350 18.1 65 60 62 97054 201500 28.5358 80.5747 6 67 108 97054 201500 28.5358 80.5747 12 344 6.0 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500 28.6141 80.6203 6 65 112 97054 201500 28.6141 80.6203 12 343 13.0 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.4048 80.6519 54 6 15.0					6	6.0	00	00	
97054 201500 28.5130 80.5613 204 350 18.1 65 60 62 97054 201500 28.5358 80.5747 6 67 108 97054 201500 28.5358 80.5747 12 344 6.0 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500 28.6141 80.6203 6 65 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.4048 80.6519 6 70 63 300 97054 201500 28.4600 80.5711 6 67 303 97054 201500 28.4600 80.5711 54 354 9.9		28.5130	80.5613	54	349	11.1	66	60 ,	62
97054 201500 28.5358 80.5747 6 67 108 97054 201500 28.5358 80.5747 12 344 6.0 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500 28.6141 80.6203 6 65 112 97054 201500 28.6141 80.6203 54 344 16.9 64 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.4048 80.6519 6 70 63 300 97054 201500 28.4600 80.5711 6 67 303 97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6105<							65	60	
97054 201500 28.5358 80.5747 12 344 6.0 108 97054 201500 28.5358 80.5747 54 345 15.9 65 108 97054 201500 28.6141 80.6203 6 65 112 97054 201500 28.6141 80.6203 54 344 16.9 64 97054 201500 28.6141 80.6203 54 344 16.9 64 97054 201500 28.4048 80.6519 6 70 63 300 97054 201500 28.4008 80.5711 6 67 303 97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.4600 80.5711 54 354 9.9 66 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 <td></td> <td></td> <td></td> <td></td> <td>350</td> <td>10.1</td> <td></td> <td>00</td> <td></td>					350	10.1		00	
97054 201500 28.6141 80.6203 6 65 112 97054 201500 28.6141 80.6203 12 343 13.0 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.4048 80.6519 6 70 63 300 97054 201500 28.4048 80.6519 54 6 15.0 67 303 97054 201500 28.4600 80.5711 6 67 303 97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.4600 80.5711 54 354 9.9 66 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6105 80.6069 6 347 18.1 64 60 393 </td <td></td> <td></td> <td></td> <td></td> <td>344</td> <td>6.0</td> <td></td> <td></td> <td>108</td>					344	6.0			108
97054 201500 28.6141 80.6203 12 343 13.0 112 97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.4048 80.6519 6 70 63 300 97054 201500 28.4048 80.6519 54 6 15.0 67 303 97054 201500 28.4600 80.5711 6 67 303 97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.4600 80.5711 54 354 9.9 66 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6105 80.6069 6 347 18.1 64 60 97054 201500 28.6057 80.6016 6 341 20.0 63					345	15.9			
97054 201500 28.6141 80.6203 54 344 16.9 64 112 97054 201500 28.4048 80.6519 6 70 63 300 97054 201500 28.4048 80.6519 54 6 15.0 300 97054 201500 28.4600 80.5711 6 67 303 97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.4600 80.5711 54 354 9.9 66 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6027 80.6414 54 355 14.0 64 311 97054 201500 28.6105 80.6069 6 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 341 20.0					343	13.0	65		
97054 201500 28.4048 80.6519 54 6 15.0 300 97054 201500 28.4600 80.5711 6 67 303 97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.4600 80.5711 54 354 9.9 66 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6027 80.6414 54 355 14.0 64 311 97054 201500 28.6105 80.6069 6 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 341 20.0 63 60 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394				54					112
97054 201500 28.4600 80.5711 6 67 303 97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.4600 80.5711 54 354 9.9 66 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6027 80.6414 54 355 14.0 64 311 97054 201500 28.6105 80.6069 6 393 97054 201500 28.6057 80.6016 6 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 341 20.0 63 60 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394					_	15.0	70	63	
97054 201500 28.4600 80.5711 12 358 5.1 303 97054 201500 28.4600 80.5711 54 354 9.9 66 303 97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6027 80.6414 54 355 14.0 64 311 97054 201500 28.6105 80.6069 6 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 341 20.0 63 60 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394					6	15.0	67		
97054 201500 28.6027 80.6414 6 67 311 97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6027 80.6414 54 355 14.0 64 311 97054 201500 28.6105 80.6069 6 393 97054 201500 28.6105 80.6069 60 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 65 61 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394					358	5.1	0,		303
97054 201500 28.6027 80.6414 12 347 8.0 311 97054 201500 28.6027 80.6414 54 355 14.0 64 311 97054 201500 28.6105 80.6069 6 393 97054 201500 28.6105 80.6069 60 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 65 61 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394					354	9.9			
97054 201500 28.6027 80.6414 54 355 14.0 64 311 97054 201500 28.6105 80.6069 6 393 97054 201500 28.6105 80.6069 60 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 65 61 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394					347	8 0	67		
97054 201500 28.6105 80.6069 6 393 97054 201500 28.6105 80.6069 60 347 18.1 64 60 393 97054 201500 28.6057 80.6016 6 65 61 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394							64		311
97054 201500 28.6057 80.6016 6 65 61 394 97054 201500 28.6057 80.6016 60 341 20.0 63 60 394	97054 201500	28.6105	80.6069	6			٠.		
97054 201500 28.6057 80.6016 60 341 20.0 63 60 394					347	18.1			
					341	20.0			394
									397

97054	201500	28.6294	80.6235	60	346	18.1	63	59	397
	201500	28.6248	80.6182	6			64	58	398
	201500	28.6248	80.6182	60	341	18.1	63	58	398
97054 97054		28.4586 28.4586	80.5923 80.5923	6 12	2	12.1	68		403 403
	201500	28.4586	80.5923	54	359	15.9	67		403
97054		28.6062	80.6739	6			67		412
97054	201500	28.6062	80.6739	12	17	4.1			412
97054		28.6062	80.6739	54	347	14.0	65		412
97054		28.6586	80.6998	6	222	7 0	65		415
	201500 201500	28.6586 28.6586	80.6998 80.6998	12 54	333 354	7.0 15.9	63		415 415
97054		28.7055	80.7265	6	234	10.9	64	60	418
	201500	28.7055	80.7265	54	349	15.0			418
97054		28.7755	80.8043	6			65	58	421
97054		28.7755	80.8043	54	357	14.0			421
97054	201500	28.5158	80.6400	6	240	0 0	68		506
97054	201500 201500	28.5158 28.5158	80.6400 80.6400	12 54	348 353	8.0 11.1	66		506 506
97054		28.5623	80.6694	6	333	11.1	67		509
97054		28.5623	80.6694	12	5	9.9	0 /		509
97054	201500	28.5623	80.6694	54	5	14.0	65		509
	201500	28.5986	80.6817	6					511
97054		28.5986	80.6817	30	353	13.0			511
	201500	28.6160	80.6930	6	250	15.0	68	60	512
97054	201500 201500	28.6160 28.6307	80.6930 80.7027	30 6	352	15.0			512 513
97054	201500	28.6307	80.7027	30	357	19.1			513
	201500	28.6431	80.7482	6	337		65		714
97054	201500	28.6431	80.7482	12	353	11.1			714
	201500	28.6431	80.7482	54	349	15.9	64		714
	201500	28.4632	80.6702	6	0.1	7 0	69		803
	201500 201500	28.4632 28.4632	80.6702 80.6702	12 54	21 9	7.0 11.1	67		803 803
97054	201500	28.5184	80.6962	6	,	11.1	67		805
	201500	28.5184	80.6962	12	343	6.0			805
97054	201500	28.5184	80.6962	54	353	8.9	67		805
	201500	28.7464	80.8707	6		0 0	66	58	819
97054	201500 201500	28.7464 28.4079	80.8707 80.7604	54 6	0	8.9	71	63	819 1000
97054 97054	201500	28.4079	80.7604	54	9	11.1	/ 1	65	1000
	201500	28.5272	80.7742	6			70	64	1007
	201500	28.5272	80.7742	54	1	15.0			1007
	201500	28.6056	80.8248	6			67	59	1012
	201500	28.6056	80.8248	54	15	9.9	<i>c</i> =	60	1012
	201500 201500	28.5697 28.5697	80.5864 80.5864	6 12	336	4.1	67	62	1101 1101
	201500	28.5697	80.5864	54	354	15.0	65	60	1101
	201500	28.5697	80.5864	162	351	18.1			1101
97054	201500	28.5697	80.5864	204	350	19.1	63	60	1101
	201500	28.5697	80.5864	6			67	61	1102
	201500	28.5697	80.5864	12	298	2.9	65	60	1102
	201500 201500	28.5697 28.5697	80.5864 80.5864	54 162	349 347	15.0 19.1	65	60	1102 1102
	201500	28.5697	80.5864	204	344	20.0	63	59	1102
	201500	28.4843	80.7856	6			-		1204
97054	201500	28.4843	80.7856	54	9	11.1			1204
	201500	28.6445	80.9034	6					1215
	201500 201500	28.4114 28.4114	80.9284 80.9284	6 54	29	4.1	73	72	1500 1500
	201500	28.4475	80.8538	6	23	4.7			1500
J . J J I			30.0000	0					2002

97054 97054 97054		28.4960 28.4960 28.5583	80.8843 80.8843 80.9132	6 54					1605 1605
97054	201500	28.6173	80.9581	6 6			69	61	1609 1612
97054	201500	28.6173	80.9581	54	0	8.9			1612
97054	201500	28.6762	80.9987	6					1617
97054	201500	28.6762	80.9987	54					1617
97054	201500	28.5231	81.0100	6			70	61	2008
97054	201500	28.5231	81.0100	54	14	11.1			2008
97054		28.6489	81.0693	_ 6			68	58	2016
97054	201500	28.6489	81.0693	54	18	11.1			2016
97054	201500	28.4417	81.0291	_6					2202
97054	201500	28.4417	81.0291	54					2202
97054	201500	28.6256	80.6571	6			66	60	3131
97054	201500	28.6256	80.6571	12	340	12.1			3131
97054	201500	28.6256	80.6571	54	344	18.1	64	60	3131
97054	201500	28.6256	80.6571	162	342	22.9			3131
97054	201500	28.6256	80.6571	204	341	23.9	63	60	3131
97054		28.6256	80.6571	295	344	25.1			3131
97054	201500	28.6256	80.6571	394	341	25.1			3131
97054 97054	201500	28.6256	80.6571	492	337	25.1	61	59	3131
97054	201500 201500	28.6256	80.6571	6	220	10.0	66	59	3132
97054	201500	28.6256 28.6256	80.6571	12	339	13.0	<i>C</i> 4	5.0	3132
97054	201500	28.6256	80.6571 80.6571	54	347	19.1	64	59	3132
97054	201500	28.6256	80.6571	162	348	23.9	C 2	F 0	3132
97054	201500	28.6256	80.6571	204 295	352	25.1	63	59	3132
97054	201500	28.6256	80.6571	394	348	25.1			3132
97054	201500	28.6256	80.6571	492	351 351	26.0 26.0	61	F 0	3132
97054	201500	28.3932	80.8211	492	331	26.0	61	59	3132
97054	201500	28.3932	80.8211	54	8	0 0	71	61	9001
97054	201500	28.3382	80.7321	6	0	8.9	72	6.4	9001
97054	201500	28.3382	80.7321	54	355	8.9	73	64	9404
21034	201000	20.3302	00./321	24	355	0.7			9404

DAY TIME	LAT	LON	Z	DIR	SPD	T	TD	TIDN
97054 202000 97054 202000	28.4338 28.4338	80.5734 80.5734	6 12	353	5.1	69		1 1
97054 202000	28.4338	80.5734	54	346	9.9	67		1 2
97054 202000	28.4443	80.5621	6	251	7.0	69	61	2
97054 202000 97054 202000	28.4443 28.4443	80.5621 80.5621	12 54	351 355	7.0 12.1	67	60	2
97054 202000	28.4443	80.5621	90	357	15.0			2
97054 202000 97054 202000	28.4443	80.5621 80.5621	162 204	356 355	18.1 18.1	65	61	2
97054 202000	28.4443 28.4443	80.5621	204	333	10.1	65	01	2
97054 202000	28.4443	80.5621	12	349	6.0			2
97054 202000 97054 202000	28.4443 28.4443	80.5621 80.5621	54 90	352 351	12.1 15.0	67	60	2
97054 202000	28.4443	80.5621	162	354	18.1			2
97054 202000	28.4443	80.5621	204	356	18.1	65	60	2 2 2 2 2 2 2 2 2 2 3 3 3
97054 202000 97054 202000	28.4598 28.4598	80.5267 80.5267	6 12	351	15.9	66		3
97054 202000	28.4598	80.5267	54	338	22.0			
97054 202000	28.4466	80.5652	6			<i>C</i> A	60	17
97054 202000 97054 202000	28.7435 28.7435	80.7005 80.7005	6 54	344	23.9	64	60	19 19
97054 202000	28.7975	80.7378	6	011	20.5	64	62	22
97054 202000	28.7975	80.7378	54	341	22.0			22 36
97054 202000 97054 202000	28.4721 28.4721	80.5393 80.5393	6 90	355	15.9			36
97054 202000	28.5622	80.5785	6					40
97054 202000	28.5622	80.5785	54	354	14.0			40 41
97054 202000 97054 202000	28.5836 28.5836	80.5842 80.5842	6 54	340	12.1			41
97054 202000	28.5130	80.5613	6			69	62	61
97054 202000 97054 202000	28.5130 28.5130	80.5613 80.5613	12 54	1 4	2.9 9.9	67	62	61 61
97054 202000	28.5130	80.5613	162	3	15.9			61
97054 202000	28.5130	80.5613	204	2	16.9	65 68	61 61	61 62
97054 202000 97054 202000	28.5130 28.5130	80.5613 80.5613	6 12	1	4.1	00	01	62
97054 202000	28.5130	80.5613	54	353	9.9	66	61	62
97054 202000 97054 202000	28.5130 28.5130	80.5613 80.5613	162 204	354 355	16.9 18.1	65	60	62 62
97054 202000	28.5358	80.5747	6	555	10.1	67		108
97054 202000	28.5358	80.5747	12	346	7.0	65		108 108
97054 202000 97054 202000	28.5358 28.6141	80.5747 80.6203	54 6	343	15.9	65 66		112
97054 202000	28.6141	80.6203	12	347	9.9			112
97054 202000	28.6141	80.6203 80.6519	54 6	347	15.0	65 69	63	112 300
97054 202000 97054 202000	28.4048 28.4048	80.6519	54	6	15.9	0,5	00	300
97054 202000	28.4600	80.5711	6	0.5.6		67		303
97054 202000 97054 202000	28.4600 28.4600	80.5711 80.5711	12 54	356 350	6.0 12.1	66		303 303
97054 202000	28.6027	80.6414	6	550	12.1	66		311
97054 202000	28.6027	80.6414	12	349	8.0	C 1		311 311
97054 202000 97054 202000	28.6027 28.6105	80.6414 80.6069	54 6	353	15.0	64		393
97054 202000	28.6105	80.6069	60	345	19.1	64	60	393
97054 202000	28.6057	80.6016 80.6016	6 60	340	19.1	65 63	61 61	394 394
97054 202000 97054 202000	28.6057 28.6294	80.6235	6	240	10.1			397
97054 202000	28.6294	80.6235	60	348	20.0	63	59 58	397 398
97054 202000 97054 202000	28.6248 28.6248	80.6182 80.6182	6 60	339	18.1	64 63	58 58	398
3,004 202000				-				

97054	202000	28.4586	80.5923	6			67		403
	202000	28.4586	80.5923	12	2	12.1			403
97054	202000	28.4586	80.5923	54	360	15.9	67		403
97054	202000	28.6062	80.6739	6			66		412
97054	202000	28.6062	80.6739	12	8	4.1			412
97054	202000	28.6062	80.6739	54	350	15.9	65		412
97054	202000	28.6586	80.6998	6			65		415
97054	202000	28.6586	80.6998	12	320	8.0			415
97054		28.6586	80.6998	54	346	16.9	63		415
	202000	28.7055	80.7265	6			65	60	418
	202000	28.7055	80.7265	54	348	14.0			418
97054	202000	28.7755	80.8043	6			64	58	421
97054		28.7755	80.8043	54	352	15.0			421
97054	202000	28.5158	80.6400	6			67		506
	202000	28.5158	80.6400	12	346	9.9			506
97054	202000	28.5158	80.6400	54	350	13.0	66		506
97054		28.5623	80.6694	6			66		509
97054	202000	28.5623	80.6694	12	1	11.1			509
97054	202000	28.5623	80.6694	54	360	15.0	65		509
97054	202000	28.5986	80.6817	6					511
97054		28.5986	80.6817	30	358	15.0			511
97054	202000	28.6160	80.6930	6			67	60	512
	202000	28.6160	80.6930	30	349	15.9			512
97054	202000	28.6307	80.7027	6	0.0				513
97054	202000	28.6307	80.7027	30	352	15.9			513
97054	202000	28.6431	80.7482	6			65		714
97054	202000	28.6431	80.7482	12	357	11.1			714
97054	202000	28.6431	80.7482	54	352	18.1	63		714
	202000	28.4632	80.6702	6	-		69		803
97054	202000	28.4632	80.6702	12	19	6.0			803
	202000	28.4632	80.6702	54	9	8.9	67		803
97054	202000	28.5184	80.6962	6	-		67		805
	202000	28.5184	80.6962	12	352	6.0			805
97054	202000	28.5184	80.6962	54	5	8.0	66		805
97054	202000	28.7464	80.8707	6			66	58	819
97054	202000	28.7464	80.8707	54	357	8.9			819
	202000	28.4079	80.7604	6			71	63	1000
97054	202000	28.4079	80.7604	54	13	11.1			1000
97054	202000	28.5272	80.7742	6			70	64	1007
97054	202000	28.5272	80.7742	54	3	16.9			1007
97054	202000	28.6056	80.8248	6			67	59	1012
97054	202000	28.6056	80.8248	54	12	9.9			1012
	202000	28.5697	80.5864	6			67	62	1101
	202000	28.5697	80.5864	12	333	6.0			1101
	202000	28.5697	80.5864	54	349	15.0	65	61	1101
		28.5697	80.5864	162	348	19.1			1101
	202000	28.5697	80.5864	204	349	19.1	63	60	1101
	202000	28.5697	80.5864	6			67	62	1102
	202000	28.5697	80.5864	12	289	4.1			1102
		28.5697	80.5864	54	343	15.0	65	60	1102
	202000	28.5697	80.5864	162	344	19.1			1102
	202000	28.5697	80.5864	204	343	20.0	63	60	1102
	202000	28.4843	80.7856	6					1204
97054	202000	28.4843	80.7856	54	11	12.1			1204
	202000	28.6445	80.9034	6					1215
	202000	28.4114	80.9284	6			73	72	1500
	202000	28.4114	80.9284	54	18	2.9			1500
97054	202000	28.4475	80.8538	6					1502
	202000	28.4960	80.8843	6					1605
	202000	28.4960	80.8843	54					1605
	202000	28.5583	80.9132	6					1609
		28.6173	80.9581	6			69	61	1612
	202000	28.6173	80.9581	54	357	8:0			1612
	202000	28.6762	80.9987	6			68	58	1617
	202000	28.6762	80.9987	54	8	8.9			1617

97054	202000	28.5231	81.0100	6	15	11.1	70	60	2008 2008
97054 97054	202000	28.5231 28.6489	81.0100 81.0693	54 6	13	11.1	68	59	2016
97054	202000	28.6489	81.0693	54	20	11.1			2016
97054	202000	28.4417	81.0291	6					2202
97054	202000	28.4417	81.0291	54					2202
97054	202000	28.6256	80.6571	6			66	60	3131
97054	202000	28.6256	80.6571	12	340	12.1	<i>c</i>	60	3131
97054	202000	28.6256	80.6571	54	344	19.1	64	60	3131
97054	202000	28.6256	80.6571	162	341	22.9	63	60	3131 3131
97054	202000	28.6256	80.6571 80.6571	204 295	341 344	23.9 25.1	63	80	3131
97054	202000	28.6256 28.6256	80.6571	394	341	25.1			3131
97054 97054	202000	28.6256	80.6571	492	337	25.1	61	59	3131
97054	202000	28.6256	80.6571	6	55,	20.1	65	59	3132
97054	202000	28.6256	80.6571	12	339	13.0			3132
97054	202000	28.6256	80.6571	54	347	19.1	64	59	3132
97054	202000	28.6256	80.6571	162	347	23.9			3132
97054	202000	28.6256	80.6571	204	352	23.9	63	59	3132
97054	202000	28.6256	80.6571	295	348	26.0			3132
97054	202000	28.6256	80.6571	394	350	26.0			3132
97054	202000	28.6256	80.6571	492	351	26.0	61	58	3132
97054	202000	28.3932	80.8211	6			70	61	9001
97054	202000	28.3932	80.8211	54	2	8.9	7.0	63	9001
97054	202000	28.3382	80.7321	6	254	0 0	72	63	9404 9404
97054	202000	28.3382	80.7321	54	354	9.9			2404

97054 202500 28.4438 80.5734 12 354 5.1 97054 202500 28.44338 80.5734 54 352 9.9 67 1 97054 202500 28.4443 80.5621 6 6 68 61 22 97054 202500 28.4443 80.5621 12 350 7.0 2 97054 202500 28.4443 80.5621 54 355 14.0 67 60 22 97054 202500 28.4443 80.5621 54 355 14.0 67 60 22 97054 202500 28.4443 80.5621 54 355 14.0 67 60 22 97054 202500 28.4443 80.5621 204 354 21.0 65 61 22 97054 202500 28.4443 80.5621 204 354 21.0 65 61 22 97054 202500 28.4443 80.5621 204 354 21.0 65 61 22 97054 202500 28.4443 80.5621 54 355 15.0 67 60 22 97054 202500 28.4443 80.5621 54 355 15.0 67 60 22 97054 202500 28.4443 80.5621 54 355 15.0 67 60 22 97054 202500 28.4443 80.5621 54 355 15.0 67 60 22 97054 202500 28.4443 80.5621 52 348 8.0 77 60 22 97054 202500 28.4443 80.5621 54 355 15.0 67 60 22 97054 202500 28.4443 80.5621 54 355 15.0 67 60 22 97054 202500 28.4443 80.5621 52 353 21.0 70 65 60 22 97054 202500 28.4443 80.5621 204 354 22.0 65 60 22 97054 202500 28.4598 80.5267 6 67 60 22 97054 202500 28.4598 80.5267 6 67 60 60 33 97054 202500 28.4598 80.5267 54 338 21.0 3 39 97054 202500 28.4598 80.5267 54 338 21.0 3 39 97054 202500 28.7435 80.7005 6 6 64 60 19 97054 202500 28.7435 80.7005 6 67 60 63 61 22 97054 202500 28.7435 80.7005 6 67 60 63 61 22 97054 202500 28.7435 80.7005 6 67 60 63 61 22 97054 202500 28.7435 80.7005 6 67 60 63 61 22 97054 202500 28.7435 80.7378 6 67 60 63 61 22 97054 202500 28.7435 80.7505 54 341 23.9 40 19 97054 202500 28.7435 80.5861 6 67 60 63 61 22 97054 202500 28.7536 80.5862 6 70 60 60 60 60 60 60 60 60 60 60 60 60 60	DAY TIME	LAT	LON	Z	DIR	SPD	T	TD	TIDN
197054 202500 28.4438 80.5734 54 352 9.9 67 1 1 1 1 1 1 1 1 1					254	F 1	68		
\$\frac{97054}{97054} 202500							67		
\$\frac{97054}{97054} 202500					332	J. J		61	2
\$\frac{97054}{97054} 202500									2
\$\frac{97054}{97054} 202500							67	60	2
\$\frac{97054}{97054} 202500									2
\$\frac{97054}{97054} 202500							65	61	2
\$\frac{97054}{97054} 202500					001	22.0			2
\$\frac{97054}{97054} 202500	97054 202500								2
\$\frac{97054}{97054} 202500							67	60	2
\$\frac{97054}{97054} 202500									2
\$\frac{97054}{97054} 202500							65	60	2
\$\frac{97054}{97054} 202500				6			66		3
\$\frac{97054}{97054} 202500									3
97054 202500					338	21.0			3 17
97054 202500 28.7435 80.7005 54 341 23.9 63 61 22 97054 202500 28.7975 80.7378 54 343 22.0 22 97054 202500 28.4721 80.5393 6 36 36 97054 202500 28.4721 80.5393 90 357 15.0 36 97054 202500 28.5622 80.5785 6 40 97054 202500 28.5622 80.5785 54 348 15.9 40 97054 202500 28.5836 80.5842 6 399 41 97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 12 345 4.1 99 67 62 61 97054 202500 28.5130 80.5613 162 358 15.0 65 61 61							64	60	
97054 202500 28.7975 80.7378 6 63 61 222 97054 202500 28.4721 80.5393 6 36 97054 202500 28.4721 80.5393 90 357 15.0 36 97054 202500 28.5622 80.5785 6 40 97054 202500 28.5836 80.5842 6 41 97054 202500 28.5836 80.5842 6 41 97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 12 355 15.0 65 61 61 97054 202500 28.5130 80.5613 12 355 15.0 65 <t< td=""><td></td><td></td><td></td><td></td><td>341</td><td>23.9</td><td></td><td></td><td>19</td></t<>					341	23.9			19
97054 202500 28.4721 80.5393 6 97054 202500 28.4721 80.5393 90 357 15.0 36 97054 202500 28.5622 80.5785 6 40 40 97054 202500 28.5836 80.5842 6 41 41 97054 202500 28.5836 80.5842 6 41 41 97054 202500 28.5836 80.5842 54 339 14.0 41 97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 16 356 9.9 67 62 61 97054 202500 28.5130 80.5613 16 355 15.0 65 61 61 97054 202500 28.5130 80.5613 16 69 67 61 62 97054 202500 28.5130 80.56	97054 202500	28.7975					63	61	
97054 202500 28.4721 80.5393 90 357 15.0 36 97054 202500 28.5622 80.5785 6 40 97054 202500 28.5622 80.5785 54 348 15.9 40 97054 202500 28.5836 80.5842 54 339 14.0 41 97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 162 358 15.0 61 97054 202500 28.5130 80.5613 162 358 15.0 61 97054 202500 28.5130 80.5613 204 355 15.0 65 61 61 97054 202500 28.5130 80.5613 162 348 16.9 62 67 62 <t< td=""><td></td><td></td><td></td><td></td><td>343</td><td>22.0</td><td></td><td></td><td></td></t<>					343	22.0			
97054 202500 28.5622 80.5785 6 40 97054 202500 28.5622 80.5785 54 348 15.9 40 97054 202500 28.5836 80.5842 6 41 41 97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 162 358 15.0 61 97054 202500 28.5130 80.5613 162 358 15.0 65 61 61 97054 202500 28.5130 80.5613 16 358 15.0 65 61 62 97054 202500 28.5130 80.5613 16 348 16.9 62 97054 20					357	15.0			
97054 202500 28.5622 80.5785 54 348 15.9 40 97054 202500 28.5836 80.5842 6 41 97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 162 358 15.0 61 97054 202500 28.5130 80.5613 162 358 15.0 65 61 61 97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 12 348 16.9 66 61 62 97054 202500 28.5130 80.5613 162 348 16.9 67 61					00.				
97054 202500 28.5836 80.5842 54 339 14.0 41 97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 162 358 15.0 61 97054 202500 28.5130 80.5613 162 358 15.0 65 61 61 97054 202500 28.5130 80.5613 6 69 61 62 97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 12 348 16.9 61 62 97054 202500 28.5130 80.5613 204 348 18.1 65		28.5622		54	348	15.9			
97054 202500 28.5130 80.5613 6 69 62 61 97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 54 356 9.9 67 62 61 97054 202500 28.5130 80.5613 162 358 15.0 61 61 97054 202500 28.5130 80.5613 204 355 15.0 65 61 61 97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 162 348 16.9 62 97054 202500 28.5130 80.5613 162 348 16.9 67 61 62 97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 54 3					220	3.4.0			
97054 202500 28.5130 80.5613 12 345 4.1 61 97054 202500 28.5130 80.5613 54 356 9.9 67 62 61 97054 202500 28.5130 80.5613 162 358 15.0 61 97054 202500 28.5130 80.5613 204 355 15.0 65 61 61 97054 202500 28.5130 80.5613 12 355 4.1 62 62 67054 202500 28.5130 80.5613 12 355 4.1 62 62 62 67054 202500 28.5130 80.5613 14 346 9.9 67 61 62 62 67054 202500 28.5130 80.5613 204 348 16.9 62 67 61 62 62 67054 202500 28.5358 80.5747 6 67 108 67 108 67 108					339	14.0	69	62	
97054 202500 28.5130 80.5613 54 356 9.9 67 62 61 97054 202500 28.5130 80.5613 204 355 15.0 65 61 61 97054 202500 28.5130 80.5613 204 355 15.0 65 61 62 97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 162 348 16.9 62 97054 202500 28.5130 80.5613 204 348 16.9 62 97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.6141 80.6203 6 65 108					345	4.1	0,5	0.2	
97054 202500 28.5130 80.5613 204 355 15.0 65 61 62 97054 202500 28.5130 80.5613 6 69 61 62 97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 54 346 9.9 67 61 62 97054 202500 28.5130 80.5613 204 348 16.9 62 97054 202500 28.5130 80.5613 204 348 16.9 62 97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.6141 80.6203 6 65 112 97054 202500 28.6141 80.6203 12 347 12.1 112 9		28.5130	80.5613	54	356	9.9	67	62	
97054 202500 28.5130 80.5613 6 69 61 62 97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 54 346 9.9 67 61 62 97054 202500 28.5130 80.5613 162 348 16.9 62 97054 202500 28.5130 80.5613 204 348 18.1 65 60 62 97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.6141 80.6203 6 65 112 97054 202500 28.6141 80.6203 12 347 12.1 112 97054 202500 28.4048 80.6519 6 69 63 300 97054							6 E	61	
97054 202500 28.5130 80.5613 12 355 4.1 62 97054 202500 28.5130 80.5613 54 346 9.9 67 61 62 97054 202500 28.5130 80.5613 162 348 16.9 62 97054 202500 28.5138 80.5747 6 67 108 97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.5358 80.5747 54 345 15.0 65 108 97054 202500 28.6141 80.6203 6 65 112 112 97054 202500 28.6141 80.6203 12 347 12.1 112 97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4600 80.5711 6 69 63					335	15.0			
97054 202500 28.5130 80.5613 54 346 9.9 67 61 62 97054 202500 28.5130 80.5613 162 348 16.9 67 61 62 97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.5358 80.5747 54 345 15.0 65 108 97054 202500 28.6141 80.6203 6 65 112 97054 202500 28.6141 80.6203 12 347 12.1 112 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4048 80.6519 54 7 16.9 69 63 300 97054 202500 28.4600 80.5711 12 347 7.					355	4.1			62
97054 202500 28.5130 80.5613 204 348 18.1 65 60 62 97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.5358 80.5747 54 345 15.0 65 108 97054 202500 28.6141 80.6203 6 65 112 97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 54 342 13.0 66 303	97054 202500	28.5130	80.5613	54			67	61	
97054 202500 28.5358 80.5747 6 67 108 97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.5358 80.5747 54 345 15.0 65 108 97054 202500 28.6141 80.6203 6 65 112 97054 202500 28.6141 80.6203 54 343 19.1 64 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4600 80.6519 54 7 16.9 69 63 300 97054 202500 28.4600 80.6519 54 7 16.9 69 63 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 54 342 13.0 66 303 97054 202500 28.6027 80.6414 6 66 311							65	60	
97054 202500 28.5358 80.5747 12 348 6.0 108 97054 202500 28.5358 80.5747 54 345 15.0 65 108 97054 202500 28.6141 80.6203 6 65 112 97054 202500 28.6141 80.6203 12 347 12.1 112 97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 12 347 7.0 303 97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311					340	10.1		80	
97054 202500 28.5358 80.5747 54 345 15.0 65 108 97054 202500 28.6141 80.6203 6 65 112 97054 202500 28.6141 80.6203 12 347 12.1 112 97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 12 347 7.0 303 97054 202500 28.4600 80.5711 54 342 13.0 66 303 97054 202500 28.6027 80.6414 6 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 393 97054 202500 28.6105 80.6069 60 346 20.0 64					348	6.0	•		
97054 202500 28.6141 80.6203 12 347 12.1 112 97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.400 80.6519 54 7 16.9 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 12 347 7.0 303 97054 202500 28.4600 80.5711 54 342 13.0 66 303 97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 393 393 393 393 393 393 393 393 393 393 393 393 393 393<	97054 202500	28.5358			345	15.0			
97054 202500 28.6141 80.6203 54 343 19.1 64 112 97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4048 80.6519 54 7 16.9 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 12 347 7.0 303 97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 346 20.0 64 60 393 97054 202500 28.6057 80.6016 6 341 20.0					247	10 1	65		
97054 202500 28.4048 80.6519 6 69 63 300 97054 202500 28.4048 80.6519 54 7 16.9 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 12 347 7.0 303 97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 346 20.0 64 60 393 97054 202500 28.6057 80.6016 6 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9							64		
97054 202500 28.4048 80.6519 54 7 16.9 300 97054 202500 28.4600 80.5711 6 67 303 97054 202500 28.4600 80.5711 12 347 7.0 303 97054 202500 28.4600 80.5711 54 342 13.0 66 303 97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 393 393 97054 202500 28.6057 80.6016 6 341 20.0 64 60 393 97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9					0.10			63	300
97054 202500 28.4600 80.5711 12 347 7.0 303 97054 202500 28.4600 80.5711 54 342 13.0 66 303 97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 346 20.0 64 60 393 97054 202500 28.6057 80.6016 6 341 20.0 64 60 393 97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 347 16.9 63 60 397 <t< td=""><td>97054 202500</td><td>28.4048</td><td></td><td></td><td>7</td><td>16.9</td><td></td><td></td><td></td></t<>	97054 202500	28.4048			7	16.9			
97054 202500 28.4600 80.5711 54 342 13.0 66 303 97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 393 393 97054 202500 28.6057 80.6016 6 65 61 394 97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 347 16.9 63 60 397					217	7.0	67		
97054 202500 28.6027 80.6414 6 66 311 97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 393 97054 202500 28.6105 80.6069 60 346 20.0 64 60 393 97054 202500 28.6057 80.6016 6 65 61 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6294 80.6235 60 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 347 16.9 63 60 397							66		
97054 202500 28.6027 80.6414 12 348 8.9 311 97054 202500 28.6027 80.6414 54 354 15.9 64 311 97054 202500 28.6105 80.6069 6 393 97054 202500 28.6057 80.6016 6 65 61 394 97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6294 80.6235 60 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 64 58 398					542	10.0			
97054 202500 28.6105 80.6069 6 393 97054 202500 28.6105 80.6069 60 346 20.0 64 60 393 97054 202500 28.6057 80.6016 6 65 61 394 97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6294 80.6235 60 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 64 58 398				12					
97054 202500 28.6105 80.6069 60 346 20.0 64 60 393 97054 202500 28.6057 80.6016 6 65 61 394 97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6294 80.6235 60 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 64 58 398					354	15.9	64		
97054 202500 28.6057 80.6016 6 65 61 394 97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6294 80.6235 60 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 64 58 398					346	20 0	64	60	
97054 202500 28.6057 80.6016 60 341 20.0 63 60 394 97054 202500 28.6294 80.6235 6 347 16.9 63 60 397 97054 202500 28.6294 80.6235 60 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 64 58 398					240	20.0			
97054 202500 28.6294 80.6235 6 397 97054 202500 28.6294 80.6235 60 347 16.9 63 60 397 97054 202500 28.6248 80.6182 6 64 58 398		28.6057	80.6016	60	341	20.0			394
97054 202500 28.6248 80.6182 6 64 58 398	97054 202500	28.6294			2.5	16.0	63	C O	
27031 202300 20:0210 00:021					347	16.9			
					343	16.9			

97054 2025	00 28.4586	80.5923	6			67		403
97054 2025		80.5923	12	360	12.1			403
		80.5923	54	358	15.9	66		403
97054 2025				220	13.5			412
97054 2025	00 28.6062	80.6739	6			66		
97054 2025	00 28.6062	80.6739	12	13	5.1			412
97054 2025		80.6739	54	352	15.9	65		412
		80.6998	6			65		415
97054 2025				200	7 0	0.5		415
97054 2025		80.6998	12	320	7.0			
97054 2025	00 28.6586	80.6998	54	348	13.0	64		415
97054 2025		80.7265	6			65	60	418
		80.7265	54	351	15.9			418
97054 2025				221	13.9	<i>-</i> 1	F 7	421
97054 2025	00 28.7755	80.8043	6			64	57	
97054 2025	00 28.7755	80.8043	54	353	15.0			421
97054 2025		80.6400	6			67		506
		80.6400	12	346	11.1			506
97054 2025						~ ~		506
97054 2025	00 28.5158	80.6400	54	350	14.0	66		
97054 2025	00 28.5623	80.6694	6			66		509
97054 2025		80.6694	12	357	9.9			509
				357	14.0	65		509
97054 2025		80.6694	54	357	14.0	05		
97054 2025	00 28.5986	80.6817	6					511
97054 2025	00 28.5986	80.6817	30	2	13.0			511
		80.6930	6			68	60	512
97054 2025				240	160	00	00	512
97054 2025		80.6930	30	348	16.9			
97054 2025	00 28.6307	80.7027	6					513
97054 2025		80.7027	30	349	16.9			513
				242	10.5	65		714
97054 2025		80.7482	6			65		
97054 2025	00 28.6431	80.7482	12	353	9.9			714
97054 2025		80.7482	54	350	15.9	64		714
		80.6702	6			69		803
97054 2025				0	6 0	0,5		803
97054 2025		80.6702	12	8	6.0			
97054 2025	00 28.4632	80.6702	54	1	11.1	67		803
97054 2025		80.6962	6			67		805
97054 2025		80.6962	12	6	5.1			805
			54	10	8.9	66		805
97054 2025		80.6962		10	0.9		E 0	819
97054 2025	00 28.7464	80.8707	6			66	58	
97054 2025	00 28.7464	80.8707	54	5	8.9			819
97054 2025		80.7604	6			71	63	1000
		80.7604	54	18	12.1			1000
97054 2025				10	12.1	70	64	1007
97054 2025		80.7742	6			70	64	
97054 2025	00 28.5272	80.7742	54	2	16.9			1007
97054 2025		80.8248	6			67	60	1012
		80.8248	54	13	8.9			1012
				13	0.5	C7	60	1101
97054 2025	00 28.5697	80.5864	6			67	62	
97054 2025	00 28.5697	80.5864	12	333	5.1			1101
97054 2025		80.5864	54	352	16.9	65	60	1101
		80.5864	162	347	20.0			1101
						63	60	1101
97054 2025		80.5864	204	348	20.0	63		
97054 2025	00 28.5697	80.5864	6			67	61	1102
97054 2025		80.5864	12	292	4.1			1102
97054 2025		80.5864	54	346	16.9	65	60	1102
						05	00	1102
97054 2025		80.5864	162	344	21.0			
97054 2025	00 28.5697	80.5864	204	342	21.0	63	59	1102
97054 2025	00 28.4843	80.7856	6					1204
97054 2025		80.7856	54	6	12.1			1204
				O	A			
97054 2025		80.9034	6					1215
97054 2025	00 28.4114	80.9284	6			72	72	1500
97054 2025		80.9284	54	34	2.9			1500
97054 2025		80.8538	6	_				1502
								1605
97054 2025		80.8843	6					
97054 2025	00 28.4960	80.8843	54					1605
97054 2025		80.9132	6					1609
97054 2025		80.9581	6			69	60	1612
				257	0 0	55	00	1612
97054 2025		80.9581	54	357	8.9			
97054 2025	00 28.6762	80.9987	6			67	58	1617

97054	202500	28.6762	80.9987	54	358	8.9			1617
97054	202500	28.5231	81.0100	6			70	61	2008
97054	202500	28.5231	81.0100	54	16	8.0			2008
97054	202500	28.6489	81.0693	6			68	59	2016
97054	202500	28.6489	81.0693	54	7	11.1			2016
97054	202500	28.4417	81.0291	6					2202
97054	202500	28.4417	81.0291	54					2202
97054	202500	28.6256	80.6571	6			65	60	3131
97054	202500	28.6256	80.6571	12	345	12.1			3131
97054		28.6256	80.6571	54	346	19.1	64	60	3131
97054	202500	28.6256	80.6571	162	342	22.0			3131
97054	202500	28.6256	80.6571	204	341	22.9	63	60	3131
97054		28.6256	80.6571	295	344	22.9			3131
97054	202500	28.6256	80.6571	394	340	23.9			3131
97054	202500	28.6256	80.6571	492	336	23.9	61	59	3131
97054		28.6256	80.6571	6			65	59	3132
97054	202500	28.6256	80.6571	12	343	12.1			3132
97054	202500	28.6256	80.6571	54	351	19.1	64	59	3132
97054	202500	28.6256	80.6571	162	348	22.9			3132
97054	202500	28.6256	80.6571	204	353	23.9	62	59	3132
97054	202500	28.6256	80.6571	295	348	22.9	-		3132
97054	202500	28.6256,	80.6571	394	351	23.9			3132
97054	202500	28.6256	80.6571	492	350	25.1	61	59	3132
97054	202500	28.3932	80.8211	6	500	20.2	70	61	9001
97054	202500	28.3932	80.8211	54	11	9.9	. •	-	9001
97054	202500	28.3382	80.7321	6		٠. ٧	71	63	9404
97054		28.3382	80.7321	54	351	8.9	, _	00	9404
9/054	202500	40.3302	00.7321	24	201	0.9			2404

Meteorological Tower Data -- 23 February 1997 2030Z

		7.037		DTD	CDD	Т	TD	TIDN
DAY TIME 97054 203000	LAT 28.4338	LON 80.5734	Z 6	DIR	SPD	68	10	1
97054 203000	28.4338	80.5734	12	353	5.1			1
97054 203000	28.4338	80.5734	54	352	9.9	67		1
97054 203000	28.4443	80.5621	6			68	61	2
97054 203000	28.4443	80.5621	12	346	6.0	67	60	2
97054 203000	28.4443 28.4443	80.5621 80.5621	54 90	352 355	12.1 15.0	67	60	2
97054 203000 97054 203000	28.4443	80.5621	162	355	18.1			2
97054 203000	28.4443	80.5621	204	354	19.1	65	61	2
97054 203000	28.4443	80.5621	6					2
97054 203000	28.4443	80.5621	12	348	7.0	67	60	2
97054 203000	28.4443	80.5621 80.5621	54 162	348 353	12.1 18.1	67	00	2
97054 203000 97054 203000	28.4443 28.4443	80.5621	204	355	20.0	65	60	2
97054 203000	28.4598	80.5267	6			66		3
97054 203000	28.4598	80.5267	12	349	15.0			1 2 2 2 2 2 2 2 2 2 2 3 3 3
97054 203000	28.4598	80.5267	54	337	21.0			3 17
97054 203000	28.4466	80.5652	6			64	60	19
97054 203000	28.7435 28.7435	80.7005 80.7005	6 54	342	22.9	04	00	19
97054 203000 97054 203000	28.7975	80.7378	6	342	22.5	63	61	22
97054 203000	28.7975	80.7378	54	342	22.9			22
97054 203000	28.4721	80.5393	6					36
97054 203000	28.4721	80.5393	90	352	15.0			36 40
97054 203000	28.5622	80.5785 80.5785	6 54	352	15.0			40
97054 203000 97054 203000	28.5622 28.5836	80.5842	6	332	13.0			41
97054 203000	28.5836	80.5842	54	339	14.0			41
97054 203000	28.5130	80.5613	6			68	61	61
97054 203000	28.5130	80.5613	12	343	5.1	<i>c</i> ¬	60	61 61
97054 203000	28.5130	80.5613 80.5613	54 162	349 352	9.9 16.9	67	62	61
97054 203000 97054 203000	28.5130 28.5130	80.5613	204	353	15.9	65	61	61
97054 203000	28.5130	80.5613	6			68	61	62
97054 203000	28.5130	80.5613	12	339	5.1			62
97054 203000	28.5130	80.5613	54	338	11.1	66	61	62 62
97054 203000	28.5130 28.5130	80.5613 80.5613	162 204	343 345	19.1 20.0	65	60	62
97054 203000 97054 203000	28.5358	80.5747	6	545	20.0	66		108
97054 203000	28.5358	80.5747	12	343	5.1			108
97054 203000	28.5358	80.5747	54	342	13.0	65		108
97054 203000	28.6141	80.6203	6 12	345	13.0	65		112 112
97054 203000 97054 203000	28.6141 28.6141	80.6203 80.6203	54	344	18.1	64		112
97054 203000	28.4048	80.6519	6	011		69	63	300
97054 203000	28.4048	80.6519	54	5	16.9			300
97054 203000	28.4600	80.5711	6		6.0	67		303
97054 203000	28.4600	80.5711	12	350	6.0	66		303 303
97054 203000	28.4600 28.6027	80.5711 80.6414	54 6	346	12.1	66		311
97054 203000 97054 203000	28.6027	80.6414	12	344	9.9			311
97054 203000	28.6027	80.6414	54	351	16.9	64		311
97054 203000	28.6105	80.6069	6			<i>C</i> 1	60	393
97054 203000	28.6105	80.6069	60	345	19.1	64 65	60 61	393 394
97054 203000 97054 203000	28.6057 28.6057	80.6016 80.6016	6 60	341	21.0	63	60	394
97054 203000	28.6294	80.6235	6	011				397
97054 203000	28.6294	80.6235	60	348	19.1	63	60	397
97054 203000	28.6248	80.6182	6	242	20.0	64	58 50	398 398
97054 203000	28.6248	80.6182	60	343	20.0	63	58	390

97054	203000	28.4586	80.5923	6			66		403
	203000	28.4586	80.5923	12	359	14.0			403
	203000	28.4586	80.5923	54	356	18.1	66		403
					336	10.1			
	203000	28.6062	80.6739	6			66		412
	203000	28.6062	80.6739	12	8	4.1			412
	203000	28.6062	80.6739	54	346	15.0	65		412
97054	203000	28.6586	80.6998	6			65		415
97054	203000	28.6586	80.6998	12	327	7.0			415
	203000	28.6586	80.6998	54	352	14.0	64		415
	203000	28.7055	80.7265	6	002	11.0	64	60	418
					252	1 F O	04	00	
	203000	28.7055	80.7265	54	352	15.0			418
	203000	28.7755	80.8043	6			64	57	421
97054	203000	28.7755	80.8043	54	350	15.9			421
97054	203000	28.5158	80.6400	6			67		506
	203000	28.5158	80.6400	12	352	9.9			506
	203000	28.5158	80.6400	54	356	13.0	65		506
	203000	28.5623	80.6694	6	550	10.0	66		509
					25.0	0 0	00		
	203000	28.5623	80.6694	12	356	8.0			509
		28.5623	80.6694	54	358	11.1	65		509
97054	203000	28.5986	80.6817	6					511
97054	203000	28.5986	80.6817	30	349	13.0			511
	203000	28.6160	80.6930	6			68	60	512
		28.6160	80.6930	30	346	15.0			512
	203000	28.6307	80.7027	6	240	13.0			513
					251	10 1			
	203000	28.6307	80.7027	30	351	19.1			513
	203000	28.6431	80.7482	6			65		714
97054	203000	28.6431	80.7482	12	349	11.1			714
97054	203000	28.6431	80.7482	54	349	15.0	64		714
97054	203000	28.4632	80.6702	6			68		803
	203000	28.4632	80.6702	12	6	6.0			803
	203000	28.4632	80.6702	54	354	11.1	67		803
		28.5184		6	224	++-+	66		805
	203000		80.6962		25.4	- 1	00		
	203000	28.5184	80.6962	12	354	5.1			805
	203000	28.5184	80.6962	54	0	8.9	65		805
97054	203000	28.7464	80.8707	6			65	58	819
97054	203000	28.7464	80.8707	54	4	8.0			819
97054	203000	28.4079	80.7604	6			70	63	1000
	203000	28.4079	80.7604	54	17	15.0			1000
	203000	28.5272	80.7742	6	- '		69	63	1007
	203000	28.5272	80.7742	54	3	15.9	0,5	03	1007
					3	13.9	c7	59	1012
	203000	28.6056	80.8248	6		0 0	67	39	
	203000	28.6056	80.8248	54	4	9.9			1012
	203000	28.5697	80.5864	6			67	62	1101
97054	203000	28.5697	80.5864	12	331	6.0			1101
97054	203000	28.5697	80.5864	54	350	15.0	65	61	1101
97054	203000	28.5697	80.5864	162	348	18.1			1101
	203000	28.5697	80.5864	204	349	18.1	63	60	1101
	203000	28.5697	80.5864	6	0.15		67	61	1102
					200	E 1	07	OI	
	203000	28.5697	80.5864	12	288	5.1	c=	CO	1102
	203000	28.5697	80.5864	54	344	15.0	65	60	1102
	203000	28.5697	80.5864	162	344	19.1			1102
97054	203000	28.5697	80.5864	204	343	19.1	63	60	1102
97054	203000	28.4843	80.7856	6					1204
	203000	28.4843	80.7856	54	6	13.0			1204
	203000	28.6445	80.9034	6	-				1215
	203000	28.4114	80.9284	6			72	72	1500
					7	4.1	12	14	1500
	203000	28.4114	80.9284	54	/	4.1			
	203000	28.4475	80.8538	6					1502
	203000	28.4960	80.8843	6					1605
	203000	28.4960	80.8843	54					1605
97054	203000	28.5583	80.9132	6					1609
97054	203000	28.6173	80.9581	6			69	60	1612

97054	203000	28.6173	80.9581	54	359	11.1			1612
97054	203000	28.6762	80.9987	6					1617
97054	203000	28.6762	80.9987	54					1617
97054	203000	28.5231	81.0100	6			70	61	2008
97054	203000	28.5231	81.0100	54	13	8.9			2008
97054	203000	28.6489	81.0693	6			68	58	2016
97054	203000	28.6489	81.0693	54	3	14.0			2016
97054	203000	28.4417	81.0291	6					2202
97054	203000	28.4417	81.0291	54					2202
97054	203000	28.6256	80.6571	6			66	60	3131
97054	203000	28.6256	80.6571	12	339	12.1			3131
97054	203000	28.6256	80.6571	54	344	21.0	64	60	3131
97054	203000	28.6256	80.6571	162	342	23.9	60	CO	3131
97054	203000	28.6256	80.6571	204	342	23.9	63	60	3131
97054	203000	28.6256	80.6571	295	346	23.9			3131
97054	203000	28.6256	80.6571	394	343	25.1	<i>~</i> 1	- 0	3131
97054	203000	28.6256	80.6571	492	339	25.1	61	59	3131
97054	203000	28.6256	80.6571	6			65	59	3132
97054	203000	28.6256	80.6571	12	337	13.0			3132
97054	203000	28.6256	80.6571	54	347	22.0	64	59	3132
97054	203000	28.6256	80.6571	162	348	25.1			3132
97054	203000	28.6256	80.6571	204	353	25.1	63	59	3132
97054	203000	28.6256	80.6571	295	350	25.1			3132
97054	203000	28.6256	80.6571	394	353	25.1			3132
97054	203000	28.6256	80.6571	492	353	25.1	61	58	3132
97054	203000	28.3932	80.8211	6			70	61	9001
97054	203000	28.3932	80.8211	54	6	9.9			9001
97054	203000	28.3382	80.7321	6			71	63	9404
97054	203000	28.3382	80.7321	54	358	9.9			9404

Meteorological Tower Data -- 23 February 1997 2035Z

DAY TIME	LAT	LON	Z	DIR	SPD	Т	TD	TIDN
97054 20350	0 28.4338	80.5734	6			69		1
97054 20350 97054 20350		80.5734 80.5734	12 54	348 345	6.0 11.1	67		1
97054 20350		80.5621	6	0.10		69	61	1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
97054 20350		80.5621	12	354	8.0	65		2
97054 20350 97054 20350		80.5621 80.5621	54 90	357 356	13.0 15.0	67	60	2
97054 20350		80.5621	162	357	18.1			2
97054 20350	0 28.4443	80.5621	204	354	19.1	65	61	2
97054 20350		80.5621	6	252	0 0			2
97054 20350 97054 20350		80.5621 80.5621	12 54	353 354	8.0 13.0	67	60	2
97054 20350		80.5621	90	353	15.9	•		2
97054 20350		80.5621	162	355	18.1	<i>~</i> =	60	2
97054 20350 97054 20350		80.5621 80.5267	204 6	354	19.1	65 66	60	2
97054 20350		80.5267	12	348	15.9	00		3
97054 20350	0 28.4598	80.5267	54	335	22.0			
97054 20350		80.5652	6			C 1	60	17
97054 20350 97054 20350		80.7005 80.7005	6 54	342	22.9	64	60	19 19
97054 20350		80.7378	6	0.2		63	61	22
97054 20350		80.7378	54	340	22.9			22
97054 20350 97054 20350		80.5393 80.5393	6 90	350	15.0			36 36
97054 20350		80.5785	6	330	13.0			40
97054 20350	0 28.5622	80.5785	54	353	15.0			40
97054 20350		80.5842	6	337	14 0			41
97054 20350 97054 20350		80.5842 80.5613	54 6	337	14.0	68	62	41 61
97054 20350	0 28.5130	80.5613	12	351	2.9			61
97054 20350		80.5613	54	353	8.9	67	62	61
97054 20350 97054 20350		80.5613 80.5613	162 204	351 351	13.0 13.0	65	61	61 61
97054 20350		80.5613	6	551	13.0	68	61	62
97054 20350		80.5613	12	354	4.1			62
97054 20350 97054 20350		80.5613 80.5613	54 162	345 345	9.9 15.0	66	61	62 62
97054 20350		80.5613	204	346	15.9	65	60	62
97054 20350	0 28.5358	80.5747	6			66		108
97054 20350		80.5747 80.5747	12 54	345 343	7.0 16.9	64		108 108
97054 20350 97054 20350		80.6203	6	343	10.9	65		112
97054 20350		80.6203	12	348	12.1			112
97054 20350		80.6203	54	344	16.9	64	63	112
97054 20350 97054 20350		80.6519 80.6519	6 54	7	19.1	69	63	300 300
97054 20350		80.5711	6			67		303
97054 20350		80.5711	12	357	6.0			303
97054 20350 97054 20350		80.5711 80.6414	54 6	349	12.1	66 65		303 311
97054 20350		80.6414	12	348	9.9	0.5		311
97054 20350	0 28.6027	80.6414	54	356	18.1	63		311
97054 20350		80.6069	6 60	345	21.0	64	60	393 393
97054 20350 97054 20350		80.6069 80.6016	6	545	21.0	65	61	394
97054 20350	0 28.6057	80.6016	60	342	20.0	64	61	394
97054 20350		80.6235	6	240	21 ^	C 2	EO	397
97054 20350	0 28.6294	80.6235	60	348	21.0	63	59	397

97054	203500	28.6248	80.6182	6			64	58	398
97054		28.6248	80.6182	60	342	16.9	63	59	398
	203500	28.4586	80.5923	6			68		403
97054	203500	28.4586	80.5923	12	2	11.1			403
	203500	28.4586	80.5923	54	359	13.0	67		403
97054	203500	28.6062	80.6739	6			65		412
	203500	28.6062	80.6739	12	10	4.1			412
97054	203500	28.6062	80.6739	54	351	16.9	64		412
	203500	28.6586	80.6998	6			64		415
97054	203500	28.6586	80.6998	12	331	8.0			415
	203500	28.6586	80.6998	54	352	18.1	63		415
	203500	28.7055	80.7265	6	000		64	60	418
	203500	28.7055	80.7265	54	348	15.0	0.		418
	203500	28.7755	80.8043	6	310	10.0	63	57	421
	203500	28.7755	80.8043	54	352	14.0		•	421
	203500	28.5158	80.6400	6	552	23.0	67		506
	203500	28.5158	80.6400	12	349	9.9	0,		506
	203500	28.5158	80.6400	54	355	13.0	66		506
			80.6694	6	555	13.0	66		509
	203500	28.5623			255	11 1	00		509
_	203500	28.5623	80.6694	12	355	11.1	CE		509
	203500	28.5623	80.6694	54	356	15.0	65		
	203500	28.5986	80.6817	6					511
97054		28.5986	80.6817	30	358	14.0			511
	203500	28.6160	80.6930	6			68	60	512
	203500	28.6160	80.6930	30	346	15.0			512
97054	203500	28.6307	80.7027	6					513
	203500	28.6307	80.7027	30	352	15.0			513
97054	203500	28.6431	80.7482	6			65		714
97054	203500	28.6431	80.7482	12	356	8.9			714
97054	203500	28.6431	80.7482	54	351	14.0	64		714
97054		28.4632	80.6702	6			68		803
	203500	28.4632	80.6702	12	10	6.0			803
	203500	28.4632	80.6702	54	356	9.9	66		803
	203500	28.5184	80.6962	6		2.5	66		805
	203500	28.5184	80.6962	12	350	6.0			805
	203500	28.5184	80.6962	54	356	9.9	65		805
	203500	28.7464	80.8707	6			65	58	819
97054		28.7464	80.8707	54	5	8.9			819
	203500	28.4079	80.7604	6			70	63	1000
	203500	28.4079	80.7604	54	14	12.1			1000
97054	203500	28.5272	80.7742	6			69	63	1007
	203500	28.5272	80.7742	54	2	15.9			1007
97054	203500	28.6056	80.8248	6			66	59	1012
	203500	28.6056	80.8248	54	10	9.9			1012
97054	203500	28.5697	80.5864	6			66	62	1101
	203500	28.5697	80.5864	12	333	5.1			1101
	203500	28.5697	80.5864	54	351	18.1	65	60	1101
97054	203500	28.5697	80.5864	162	350	21.0			1101
97054	203500	28.5697	80.5864	204	349	22.0	63	60	1101
97054	203500	28.5697	80.5864	6			66	61	1102
97054	203500	28.5697	80.5864	12	298	4.1			1102
97054	203500	28.5697	80.5864	54	345	16.9	65	60	1102
97054	203500	28.5697	80.5864	162	346	22.0			1102
97054	203500	28.5697	80.5864	204	343	22.9	63	59	1102
97054	203500	28.4843	80.7856	6					1204
	203500	28.4843	80.7856	54	5	12.1			1204
	203500	28.6445	80.9034	6					1215
97054	203500	28.4114	80.9284	6			72	71	1500
	203500	28.4114	80.9284	54	30	4.1			1500
97054	203500	28.4475	80.8538	6					1502
		28.4960	80.8843	6					1605
97054	203500	28.4960	80.8843	54					1605
	203500	28.5583	80.9132	6					1609
97054	203500	28.6173	80.9581	6			68	60	1612
	-								

97054		28.6173	80.9581	54	7	9.9			1612 1617
97054	203500	28.6762	80.9987	6					1617
97054		28.6762	80.9987 81.0100	54 6			70	60	2008
97054		28.5231 28.5231	81.0100	54	9	8.0	70	00	2008
97054	203500		81.0693	6	9	0.0			2016
97054	203500	28.6489 28.6489	81.0693	54					2016
97054	203500		81.0693	6					2202
97054	203500	28.4417	81.0291						2202
97054	203500	28.4417		54 6			65	60	3131
97054	203500	28.6256	80.6571		212	10 1	65	60	3131
97054		28.6256	80.6571	12	343	12.1	<i>C</i> 1	CO	3131
97054	203500	28.6256	80.6571	54	346	18.1	64	60	
97054		28.6256	80.6571	162	343	21.0	63	CO	3131
97054	203500	28.6256	80.6571	204	344	21.0	63	60	3131
97054	203500	28.6256	80.6571	295	346	22.9			3131
97054	203500	28.6256	80.6571	394	342	25.1	C1	- 0	3131
97054		28.6256	80.6571	492	338	26.0	61	59	3131
97054		28.6256	80.6571	6			65	59	3132
97054		28.6256	80.6571	12	341	13.0			3132
97054		28.6256	80.6571	54	349	19.1	64	59	3132
97054		28.6256	80.6571	162	349	21.0			3132
97054	203500	28.6256	80.6571	204	354	22.0	63	59	3132
97054	203500	28.6256	80.6571	295	350	22.9			3132
97054	203500	28.6256	80.6571	394	352	26.0			3132
97054	203500	28.6256	80.6571	492	352	27.0	61	59	3132
97054	203500	28.3932	80.8211	6			70	61	9001
97054	203500	28.3932	80.8211	54	358	8.0			9001
97054	203500	28.3382	80.7321	6			71	63	9404
97054	203500	28.3382	80.7321	54	356	9.9			9404