

Improved analysis of the infrared spectrum of D2H+

O. L. Polyansky and A. R. W. McKellar

Citation: The Journal of Chemical Physics 92, 4039 (1990); doi: 10.1063/1.457817

View online: http://dx.doi.org/10.1063/1.457817

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/92/7?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

The infrared spectrum of D2HF

J. Chem. Phys. 89, 7180 (1988); 10.1063/1.455296

Analysis of the far infrared H2-He spectrum

J. Chem. Phys. 77, 4933 (1982); 10.1063/1.443710

Infrared spectrum of D2O vibrationally decoupled in glassy H2O

J. Chem. Phys. 67, 4779 (1977); 10.1063/1.434611

Infrared Spectrum of Solid and Matrix-Isolated H2O2 and D2O2

J. Chem. Phys. 54, 2212 (1971); 10.1063/1.1675155

Infrared Spectrum and Vibrational Analysis of Dibromoborane and Dibromoborane-d

J. Chem. Phys. **43**, 3775 (1965); 10.1063/1.1696562

Improved analysis of the infrared spectrum of D₂H⁺

O. L. Polyansky

Institute of Applied Physics, Academy of Sciences of the USSR, 603600 Gorky, USSR

A. R. W. McKellar

Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada

(Received 6 November 1989; accepted 15 December 1989)

The rotational analysis of the Coriolis-coupled v_2/v_3 bands in the infrared spectrum of the D_2H^+ molecular ion has been reexamined. By making four reassignments and adding one new transition, it has been possible to achieve a much better fit of the bands using fewer molecular parameters. The reassigned v_2/v_3 data were combined in a simultaneous least-squares analysis with existing v_1 band infrared data and with two newly measured pure rotational transitions. The resulting molecular parameters and calculated energy levels are the best currently available for this fundamental molecular ion.

I. INTRODUCTION

Infrared spectra of H₃⁺ and its deuterated isotopes have been extensively studied¹⁻¹³ since their first observation in 1980 by Oka¹ and by Shy, Farley, Lamb, and Wing.² Because of their lightness, these molecular ions show much larger centrifugal distortion effects than most molecules, and their spectra are correspondingly more difficult to assign and fit. On the other hand, because only two electrons are involved, very reliable potential surfaces can be calculated, ¹⁴ and it has thus been possible to predict the infrared spectra with increasing accuracy from first principles. ¹⁵

In the case of the isotope D_2H^+ , 31 infrared transitions were first detected by Shy⁴ in the 1780-1970 cm⁻¹ region, but no assignments were made at that time. Later, Lubic, and Amano⁹ observed 35 lines of D₂H⁺ in the 2600-3000 cm⁻¹ region and assigned them to the v_1 fundamental band. In 1986, Foster et al. 11 reported 72 new lines of the v_2 and v_3 bands in the 1800-2300 cm⁻¹ region and were able to analyze these together with 16 of the lines measured by Shy.⁴ The analysis of the v_2 and v_3 bands was complicated not only by centrifugal distortion effects, but also by the strong Coriolis coupling that exists between the $(v_1v_2v_3) = (010)$ and (001) states. Although the experimental measurement accuracy was about 0.002 cm⁻¹ or better, Foster et al. 11 were only able to obtain a standard deviation of 0.025 cm⁻¹ in their fit of 88 lines, using a 39-parameter Hamiltonian containing terms up to J^6 .

Foster et al. ¹¹ also suggested slight changes in the original ⁹ analysis of the v_1 band: the omission of one line and an interchange in the assignment of two others. These changes were confirmed in a later reanalysis of the ground and (100) excited states of D_2H^+ made by Kozin et al., ¹⁶ who also made one further reassignment in v_1 . Energy levels and molecular parameters for D_2H^+ were calculated from first principles by Tennyson and Sutcliffe ¹⁷ in 1985. Very recently, Miller et al. ¹⁸ have improved these results, added intensity calculations, and presented comprehensive tables of the rotational and fundamental vibrational spectra of D_2H^+ and H_2D^+ . These calculations tended to confirm the aforementioned reassignments in the v_1 band of D_2H^+ , with one

exception, and they also suggested a new assignment for one line in the v_2 band.

In the present paper, we have critically examined the analysis of the v_2 and v_3 bands of D_2H^+ . By making four reassignments (one of which is that of Miller et al. 18), it has been possible to achieve a greatly improved fit of these bands. The new standard deviation of about 0.0046 cm⁻¹, obtained using 30 parameters with terms up to J^4 , represents a reduction by a factor of 5 as compared with the earlier 11 39parameter fit. The new assignments for v_2 and v_3 have been incorporated into a simultaneous least-squares fit of all the assigned lines in the v_1 , v_2 , and v_3 infrared bands, which also includes two highly accurate recent far infrared measurements of pure rotational transitions by Jennings et al. 19 By combining all the available data in this way we obtain a reliable and consistent set of experimental molecular parameters and energy levels for D₂H⁺. The results should be of help in searches for further pure rotational transitions of D_2H^+ , as well as for future comparisons of the observed and ab initio calculated energy levels.

II. REASSIGNMENT OF V2 BAND TRANSITIONS

The difficulties that have been encountered in assigning the spectrum of D_2H^+ , which have resulted in the continuing reassignments of transitions, are connected with the molecule's large centrifugal distortion effects and with the Coriolis interaction between the (010) and (001) excited states. The problem has been compounded by the fact that the spectra were recorded using laser techniques so that the wave number coverage was not complete and the experimental relative intensities of the lines were not reliable.

The centrifugal distortion and Coriolis effects require the use of a Hamiltonian with many adjustable parameters. Thus for the v_1 band, 35 transitions were fitted with 20 parameters, and for v_2 and v_3 , 88 transitions were fitted with 39 parameters. Under these circumstances, incorrect assignments can be difficult to identify; the least-squares fitting program tries hard to mask any such errors by adjusting the many parameters available to it. In order to combat such difficulties, we began the reanalysis of the v_2/v_3 region in

TABLE I. Reassigned transitions in the v_2 and v_3 bands of D_2H^+ .

Obs. line (cm ⁻¹)	Assignment Comment
2038.634	v_2 $3_{30} \leftarrow 3_{21}$ Assignment interchanged v_2 $5_{05} \leftarrow 4_{14}$ As suggested by Miller <i>et al.</i> (Ref. 18)
2038.936	$v_2 5_{05} \leftarrow 4_{14}$
2040.760	v_2 $5_{15} \leftarrow 4_{04}$ As suggested by Miller <i>et al.</i> (Ref. 18) Previously (Ref. 11) assigned to v_2 $6_{06} \leftarrow 5_1$
2106.497	v_2 5 ₂₄ \leftarrow 4 ₁₃ Previously (Ref. 11) assigned at 2106.301 cm ⁻¹
2275.870	v_2 $4_{32} \leftarrow 3_{03}$ Newly added transition

 D_2H^+ by limiting the number of adjustable parameters and by including all the known^{9,11,16} ground state combination differences explicitly in the fit. One pure rotational transition, $2_{20} \leftarrow 2_{11}$, that was available¹⁹ at the time was also included. The effect of adjusting fewer parameters and constraining the ground state was to restrict the freedom of the least-squares fit and thus to make any misassigned transitions more noticeable. The less well-fitting transitions among the original¹¹ assignments were then examined in detail to see how the fit was affected by their omission and whether an alternate assignment was possible.

This procedure resulted in four reassignments and one added transition, as summarized in Table I. All involved the v_2 band. First, the correct assignments of the $3_{30} \leftarrow 3_{21}$ and $5_{05} \leftarrow 4_{14}$ transitions near 2040 cm⁻¹ were found to be interchanged from those given previously¹¹. Second, the line observed at 2040.760 cm⁻¹ was found to be much better fitted when assigned to $5_{15} \leftarrow 4_{04}$, rather than to $6_{06} \leftarrow 5_{15}$, in agreement with the suggestion made by Miller *et al.*¹⁸ Third, the

TABLE II. Unassigned lines in the ν_2/ν_3 band regions of H_2D^+ and D_2H^+ (in cm⁻¹).^a

H_2D^+	D_2H^+
1995.953	1909.451
2134.930	2034.113
2215.966	2106.301
2242,960	2167.812
2274.932	
2302.478	
2413.832	
2418.019	

^a These lines were observed by Foster *et al.* (Refs. 10 and 11) but not reported in the original papers. The assignments to one or the other isotope are not certain.

 $5_{24} \leftarrow 4_{13}$ transition, previously assigned to an observed line at 2106.301 cm⁻¹, was found to be much better fitted when assigned instead to a nearby observed line at 2106.497 cm⁻¹. And fourth, with help from the calculations of Miller *et al.*, ¹⁸ a line observed at 2275.870 cm⁻¹ was assigned to the transition $4_{32} \leftarrow 3_{03}$.

The lines at 2106.497 and 2275.870 cm⁻¹ were among a handful of transitions that were observed by Foster *et al.* 10,11 but not reported in the original papers since they could not be assigned. Indeed, the 2275.870 cm⁻¹ line was originally believed to be due to H_2D^+ , but this assignment was uncertain because of the difficulty in distinguishing experimentally between the two isotopes, especially for weaker lines. We are confident of the new assignment to D_2H^+ given here because of the good fit achieved, and the lack 18 of any suitable alternative assignment to H_2D^+ . For the sake of completeness, we list here in Table II the remaining unassigned

TABLE III. Observed infrared transitions of D_2H^+ (in cm⁻¹).

$ u_2$ band $^{ m a}$			$ u_3$ band*			v_1 band ^b			
J_{KaKc}	Obs.	R ^c	J_{KaKc}	Obs.	R°	J_{KaKc}	Obs.	R°	
4 ₂₃ ←5 ₁₄	1782.287 ^d	– 6	4 ₁₄ ← 4 ₃₁	1916.451 ^d	0	2 ₀₂ ←3 ₁₃	2637.524	1	
$3_{12} \leftarrow 4_{23}$	1786.330 ^d	0	$4_{13} \leftarrow 5_{14}$	1933.801 ^d	5	$1_{01} \leftarrow 2_{12}$	2661.258	- 3	
6 ₁₅ ← 6 ₂₄	1807.347 ^d	1	$3_{12} \leftarrow 4_{13}$	1951.920 ^d	5	$1_{11} \leftarrow 2_{02}$	2683:613	-6	
$3_{03} \leftarrow 4_{14}$	1816.249	- 1	$2_{21} \leftarrow 3_{22}$	1971.355	4	$2_{02} \leftarrow 2_{11}$	2701.189	0	
$1_{11} \leftarrow 2_{20}$	1832.041 ^d	0	$2_{11} \leftarrow 3_{12}$	1973.852	-2	$1_{10} \leftarrow 1_{01}$	2759.036	- 1	
$3_{22} \leftarrow 4_{13}$	1837.312 ^d	– 7	$2_{02} \leftarrow 3_{03}$	1997.962	-1	$2_{11} \leftarrow 2_{02}$	2769.753	-2	
$1_{10} \leftarrow 2_{21}$	1847.885	2	$1_{10} \leftarrow 2_{11}$	1999.879	- 2	$3_{21} \leftarrow 3_{12}$	2777.196	0	
$3_{13} \leftarrow 3_{22}$	1853.182 ^d	8	$2_{12} \leftarrow 3_{13}$	2002.750	0	2 ₂₀ ←2 ₁₁	2779.238	1	
$5_{14} \leftarrow 5_{23}$	1854.231 ^d	– 3	$3_{03} \leftarrow 3_{22}$	2014.263	- 3	4 ₂₂ ←4 ₁₃	2782.543	2	
$2_{02} \leftarrow 3_{13}$	1855.068	1	1 ₁₁ ← 2 ₁₂	2018.437	0	$1_{11} \leftarrow 0_{00}$	2785.332	- 1	
$2_{12} \leftarrow 3_{03}$	1866.841 ^d	1	$0_{00} \leftarrow 1_{01}$	2043.515	1	$2_{02} \leftarrow 1_{11}$	2788.300	3	
$3_{03} \leftarrow 3_{12}$	1882.201d	1	$2_{12} \leftarrow 2_{11}$	2066.415	0	$3_{12} \leftarrow 3_{03}$	2788.990	-2	
$2_{12} \leftarrow 2_{21}$	1883.777	0	$3_{31} \leftarrow 3_{30}$	2068.461	1	$2_{21} \leftarrow 2_{12}$	2802.436	2	
$1_{01} \leftarrow 2_{12}$	1888.280 ^d	4	$3_{30} \leftarrow 3_{31}$	2069.869	0	$2_{12} \leftarrow 1_{01}$	2810.800	4	
$2_{21} \leftarrow 3_{12}$	1894.316	0	$1_{11} \leftarrow 1_{10}$	2070.708	0	$4_{13} \leftarrow 4_{04}$	2815.314	-3	
$5_{23} \leftarrow 5_{32}$	1895.431 ^d	-3	$2_{21} \leftarrow 2_{20}$	2072.607	0	$3_{22} \leftarrow 3_{13}$	2815.778	2	
$1_{11} \leftarrow 2_{02}$	1912.387 ^d	 2	$2_{20} \leftarrow 2_{21}$	2078.419	6	$3_{03} \leftarrow 2_{12}$	2820.564	3	
$2_{11} \leftarrow 2_{20}$	1917.857 ^d	2	1 ₁₀ - 1 ₁₁	2086.990	1	$3_{13} \leftarrow 2_{02}$	2832.828	3	
$2_{02} \leftarrow 2_{11}$	1918.732	- 1	$2_{11} \leftarrow 2_{12}$	2114.895	1	$4_{04} \leftarrow 3_{13}$	2849.066	_ 4	
$0_{00} \leftarrow 1_{11}$	1918.908	-7	$1_{01} \leftarrow 0_{00}$	2118.588	2	$4_{14} \leftarrow 3_{03}$	2854.421	2	
$1_{01} \leftarrow 1_{10}$	1940.551	- 3	$2_{12} \leftarrow 1_{11}$	2153.525	1	$2_{21} \leftarrow 1_{10}$	2854.707	3	
$2_{20} \leftarrow 3_{13}$	1949.533	6	$2_{02} \leftarrow 1_{01}$	2159.145	0	$2_{20} \leftarrow 1_{11}$	2866.350	4	
$1_{10} \leftarrow 1_{01}$	1992.130	1	$2_{11} \leftarrow 1_{10}$	2167.166	1	$5_{05} \leftarrow 4_{14}$	2874.948	- 6	
$4_{22} \leftarrow 4_{13}$	1995.508	-7	$3_{03} \leftarrow 2_{02}$	2195.861	- 9	$5_{15} \leftarrow 4_{04}$	2876.954	2	
$2_{11} \leftarrow 2_{02}$	1998.203	0	$3_{13} \leftarrow 2_{12}$	2196.475	– 2	$3_{22} \leftarrow 2_{11}$	2879.442	1	

TABLE III. (continued).

ν_2 band ^a			ν_3 band ^a			ν_1 band ^b		
J_{KaKc}	Obs.	R ^c	J_{KaKc}	Obs.	R ^c	J_{KaKc}	Obs.	R °
$3_{21} \leftarrow 3_{12}$	2001.744	1	3 ₂₂ ←2 ₂₁	2210.331	4	4 ₂₃ ← 3 ₁₂	2899.242	- 1
L ₀₂ ← 1 ₁₁	2005.844	2	3 ₁₂ ←2 ₁₁	2214.605	3	6 ₀₆ ←5 ₁₅	2899.362	2
$3_{12} \leftarrow 3_{03}$	2009.696	- 1	$3_{21} \leftarrow 2_{20}$	2215.437	– 5	5 ₂₄ ← 4 ₁₃	2915.899	3
2 ₂₀ ←2 ₁₁	2013.196	4	$4_{14} \leftarrow 3_{13}$	2239.809	7	$3_{21} \leftarrow 2_{12}$	2918.238	2
11 ←000	2014.106	2	5 ₁₅ ← 4 ₁₄	2248.033	- 1	$3_{31} \leftarrow 2_{20}$	2924.524	– 3
31 ← 4 ₂₂	2014.433	11	$4_{13} \leftarrow 3_{12}$	2257.293	2	$3_{30} \leftarrow 2_{21}$	2928.067	- 3
03 ← 2 ₁₂	2023.243	1	$4_{23} \leftarrow 3_{22}$	2257.968	– 2	$4_{32} \leftarrow 3_{21}$	2951.532	– 5
13 ← 4 ₀₄	2024.230	8	$5_{05} \leftarrow 4_{04}$	2263.828	4	$4_{31} \leftarrow 3_{22}$	2968.334	1
$3_{12} \leftarrow 2_{21}$	2026.631	-2	$4_{22} \leftarrow 3_{21}$	2267.719	– 2	$4_{40} \leftarrow 3_{31}$	2990.154	2
$2_{12} \leftarrow 1_{01}$	2028.024	2	5 ₁₄ ← 4 ₁₃	2290.873	- 6	- J		
₀₄ ←3 ₁₃	2033.393	2	.,					
$3_{13} \leftarrow 2_{02}$	2034.780	1						
21 ← 2 ₁₂	2035.359	2						
$3_{22} \leftarrow 3_{13}$	2036.333	– 7						
14 ← 3 ₀₃	2038.310	0						
30 ← 3 ₂₁	2038.634	3						
5 ₀₅ ← 4 ₁₄	2038.936	5						
l ₂₃ ← 4 ₁₄	2039.834	4						
$5_{15} \leftarrow 4_{04}$	2040.760	1						
$3_{31} \leftarrow 3_{22}$	2056.416	- 1						
$2_{21} \leftarrow 1_{10}$	2087.630	3						
3 ₂₂ ← 2 ₁₁	2099.998	-7						
$2_{20} \leftarrow 1_{11}$	2100.307	6						
5 ₂₄ ← 4 ₁₃	2106.497	6						
$3_{31} \leftarrow 2_{20}$	2157.667	– 6						
$3_{31} \leftarrow 2_{02}$	2238.014	– 8						
$4_{32} \leftarrow 3_{03}$	2275.870	3						
$1_{40} \leftarrow 3_{31}$	2279.090	- 1						
$4_{41} \leftarrow 3_{30}$	2279.521	2						

^a From Foster et al. (Ref. 11) except as noted.

lines from the diode laser studies 10,11 of the v_2 and v_3 bands of H_2D^+ and D_2H^+ . One of them is, of course, the 2106.301 cm $^{-1}$ line mentioned above, which had previously been assigned as v_2 , $5_{24} \leftarrow 4_{13}$. It should be noted that these are mostly weak and/or poorly measured lines, and that the experimental assignment to one or the other isotope is subject to uncertainty.

III. LEAST-SQUARES ANALYSIS

Our final analysis of D_2H^+ incorporated the ν_2 band reassignments already mentioned, and simultaneously included the ν_1 band along with the coupled ν_2/ν_3 bands. Thus

TABLE IV. Observed pure rotational transitions of D_2H^+ .

Assignment $J_{_{KaKc}}$	Observed frequency ^a (MHz)	ObsCalc. (MHz)
2 ₂₀ ←2 ₁₁	1 370 051.6	+ 0.02
1 ₁₁ ←0 ₀₀	1 476 605.5	- 0.05

^a From Jennings, Demuynck, Banek, and Evenson (Ref. 19). The experimental uncertainty is about 0.3 MHz.

all the infrared data were automatically fitted with the same ground vibrational state parameters. The collected infrared transitions are listed in Table III; they were all given equal weight in the fit. The ν_1 band data were taken from Lubic and Amano,9 and incorporated the same reassignments as already suggested in the literature, 11,16,18 except that 2990.154 cm⁻¹ was assigned to $4_{40} \leftarrow 3_{31}$, contrary to Kozin et al. 16 but in agreement with the other analyses. 9.11,18 The fit also included two far infrared pure rotational transitions, $2_{20} \leftarrow 2_{11}$ as already mentioned, and $1_{11} \leftarrow 0_{00}$ which became available while our analysis was in progress.19 These rotational transitions are listed in Table IV; they were given an increased weight of 104 in the fit to reflect their higher accuracy relative to the infrared data. The final fit did not explicitly include the ground state combination differences from the infrared spectra, but, of course, this information is implicitly contained in the infrared data.

The Hamiltonian and computer program used were those described by Foster et al., $^{10.11}$ except that only terms up to J^4 were included. We tested both Padé and conventional forms of the Hamiltonian and found that they gave very similar results. The final fit reported here is that which was obtained using a conventional Hamiltonian. The Hamiltonian was the same as that described in Eqs. (1)–(4) of Ref. 10, except for the replacement of Eq. (2) by

^b From Lubic and Amano (Ref. 9).

^c Indicates the residual (Obs.-Calc.) in units of 0.001 cm⁻¹ from the present least-squares fit.

d From Shy (Ref. 4).

TABLE V. Molecular parameters (in cm⁻¹) for D₂H⁺ from the present analysis.^a

Parameter	(010) state	(001) state	(100) state	(000) state
G_v	1968.168 8 (21)	2078.430 0 (24)	2736.981 4 (24)	0.0
A	38.128 61(154)	34.876 98 (178)	35.423 88(87)	36.199 12(38)
В	20.813 99(152)	23.053 67(147)	21.626 98(108)	21.868 98(41)
\boldsymbol{c}	12.294 11(4258)	12.671 45(4247)	12.936 04(50)	13.069 88(33)
$10^2 \Delta^{KK}$	3.353 0 (385)	0.860 0 (469)	2.448 9 (87)	1.977 8 (133)
$10^2 \Delta^{JK}$	-0.2059(357)	0.790 4 (383)	-0.238 1 (102)	0.231 1 (89)
$10^2 \Delta^{JJ}$	0.387 88(370)	0.847 55(551)	0.588 36(274)	0.559 42(157)
$10^2 \delta^K$	0.508 7 (192)	2.520 5 (172)	1.309 8 (96)	1.179 1 (94)
$10^2 \delta^J$	0.275 08(243)	0.208 32(268)	0.221 80(149)	0.211 37(69)
£23	19.87	70 (120)		
$\overset{\cancel{\xi}_{23}}{\alpha_{23}^{ab}}$	1.25	597(213)		
$10^2 \eta_{23}^K$	1.46	572(160)		
10 ² β aaab	- 0.7 5	554(200)		

^a The quantities in parentheses are standard deviations (1σ) from the least-squares fit in units of the last quoted digit. The parameters are defined in Eq. (1) and in Ref. 11.

$$(H_{\text{diag}})_v = H_{2v} + H_{4v},$$

 $(H_{\text{off-diag}})_v = [J_b^2 - J_c^2, \{h_{2v} + h_{4v}\}]_+.$ (1)

The off-diagonal block connecting the (010) and (001) vibrational states was exactly the same as described in Ref. 11. It involves the Coriolis coupling parameter ξ_{23} , an off-diagonal-type H_{22} coupling described by the parameter α_{23}^{ab} , and k_a -dependent centrifugal distortion corrections to these terms given, respectively, by η_{23}^K and β_{23}^{aaab} . No interactions terms were included between the (100) state and either (010) or (001), since the latter two states are well separated from (100).

The molecular parameters resulting from the least-

squares fit are given in Table V, and the residuals (observed minus calculated line positions) are given in Tables III and IV. The overall standard deviation for the infrared data was $0.0043 \, \mathrm{cm}^{-1}$, with that for v_1 being about $0.0035 \, \mathrm{cm}^{-1}$ and that for v_2/v_3 being about $0.0046 \, \mathrm{cm}^{-1}$. These values are greatly improved from the previous standard deviations for v_1 of about $0.030 \, \mathrm{cm}^{-1}$ (Ref. 9) or $0.007 \, \mathrm{cm}^{-1}$ (Ref. 16), and for v_2/v_3 of about $0.025 \, \mathrm{cm}^{-1}$ (Ref. 11). The new pure rotational data were also fitted very well in the present analysis (see Table IV).

Most of the parameters in Table V are better determined than in previous analyses, as would be expected from the lower standard deviation and the simultaneous nature of the

TABLE VI. Energy levels (in cm⁻¹) for the ground and first three excited vibrational states of D_2H^+ , as calculated from the present molecular parameters (Table V).

		Vibrational s	state $(v_1v_2v_3)$,	Vibrational s	state $(v_1v_2v_3)$	
J_{KaKc}	(010)	(001)	(100)	(000)	J_{KaKc}	(010)	(001)	(100)	(000)
000	1968.1688	2078.4300	2736.9814	0.0000	4 ₄₀	2656.1636	2703.3018	3367.2247	643.2357
101	1998.5435	2118.5852	2771.5209	34.9165	505	2356.1926	2579.5685	3192.2057	460.4333
1,,	2014.1038	2128.6967	2785.3331	49.2543	515	2356.5041	2565.2847	3192.6961	460.9535
110	2027.0453	2136.2436	2793.9539	57.9893	514	2497.5528	2689.9286	3304.6532	574.7953
202	2055.0962	2194.0616	2837.5517	101.7142	524	2505.5395	2722.2398	3314.9456	585.6174
212	2062.9386	2202.7786	2845.7128	110.2594	523	2605.0660	2766.3333	3371.9443	643.3191
2,1	2099.9178	2225.1539	2871.4688	136.3631	533	2637.3927	2739.4005	3422.5792	696.0154
221	2145.6165	2254.6699	2912.6935	179.1620	532	2637.5153	2753.6435	3436.1909	709.6317
220	2149.5549	2257.5873	2915.6004	182.0631	542	2849.4997	2869.9642	3542.9327	820.3066
303	2133.5005	2297.5849	2930.8207	196.0983	541	2843.5275	2871.5001	3543.8598	821.2198
313	2136.4933	2306.7370	2934.5393	200.0285	551	2998.1387	3023.9599	3692.4963	975.5682
312	2205.7956	2350.9646	2985.0900	251.3001	550	2998.0279	3023.9917	3692.5132	975.5846
322	2236.3681	2389.4894	3015.8042	283.3190	606	2502.6715	2759.4826	3360.3138	630.3473
321	2253.0429	2397.5050	3028.4958	296.0483	616	2502.7696	2754.6465	3360.4748	630.5165
331	2339.7365	2446.1648	3106.5904	377.0731	615	2676.6515	2892.2781	3502.4892	774.9820
330	2334.6795	2446.9421	3107.2321	377.7044	625	2679.9410	2932.1905	3507.1356	779.8520
404	2233.4192	2425.6232	3049.0988	315.7443	624	2806.9233	2998.9379	3595.1917	869.3053
414	2234.4082	2439.8305	3050.5173	317.2512	634	2832.2278	2941.8815	3629.7418	905.2470
413	2339.9658	2508.5911	3131.0614	399.0492	633	2848.3340	3081.6854	3661.1428	936.9484
423	2357.0884	2541.2882	3150.5431	419.4655	643	2967.0717	3071.8745	3753.5160	1032.6404
422	2394.5642	2563.7691	3181.5901	450.7627	642	3063.2725	3079.5862	3757.5700	1036.6855
432	2471.9656	2574.1787	3247.5854	519.3494	652	3216.3794	3224.7604	3901.4402	1185.7729
431	2465.1850	2578.7024	3251.6524	523.3798	651	3215.4165	3225.1312	3901.6089	1185.9396
441	2657.2234	2703.1327	3367.1123	643.1263					

present fit. An exception to this occurs for the C rotational constants in the (010) and (001) states, and for the Coriolis coupling parameter ξ_{23} . Their relatively large uncertainties are a reflection of the strong correlations that exist among these three parameters, which for some reason are larger in the present fit than they were previously. ^{11,20} A set of energy levels for the ground and fundamental vibrational states of D_2H^+ , as determined from the present molecular parameters, is given in Table VI.

IV. CONCLUSIONS

The present results serve as a reminder of the extreme care that must be exercised in the least-squares fitting of complex molecular spectra when there are limited data and many adjustable parameters. In the present analysis, we benefited from the availability of the pure rotational transitions of Jennings $et\ al.^{19}$ and the new calculations of Miller $et\ al.^{18}$ It is hoped that our results will, in turn, be of assistance in searches for further rotational transitions of D_2H^+ and in future comparisons between experiment and $ab\ initio$ theory for this basic molecular ion.

In conclusion, the analysis of the Coriolis-coupled v_2/v_3 infrared bands of D_2H^+ , as originally studied by Foster et al., has been reexamined. Four reassignments have been made and one new transition added, and the net effect is that the bands can be fitted using fewer parameters and with a five times smaller standard deviation. These data have been combined with measurements of the v_1 band and with new pure rotational transitions in a simultaneous least-squares fit to obtain an optimized set of molecular parameters. A table of energy levels has been calculated from these parameters which should be helpful in future studies of the D_2H^+ molecular ion.

ACKNOWLEDGMENTS

We are grateful to K. M. Evenson for communicating the pure rotational data (see Ref. 19) for D_2H^+ prior to its

publication, and to P. R. Bunker and J. K. G. Watson for their comments on the manuscript.

- ¹T. Oka, Phys. Rev. Lett. 45, 531 (1980).
- ²J.-T. Shy, J. W. Farley, W. E. Lamb, Jr., and W. H. Wing, Phys. Rev. Lett. **45**, 535 (1980).
- ³J.-T. Shy, J. W. Farley, and W. H. Wing, Phys. Rev. A 24, 1146 (1981).
 ⁴J. T. Shy, Ph.D. dissertation, University of Arizona, 1982 (University Microfilms International, Ann Arbor, Michigan, U.S.A., No. 8305995).
- ⁵T. Oka, in *Molecular Ions: Spectroscopy, Structure and Chemistry*, edited by T. A. Miller and V. Bondybey (North-Holland, Amsterdam, 1983), pp. 73–90.
- ⁶J. K. G. Watson, S. C. Foster, A. R. W. McKellar, P. Bernath, T. Amano, F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, Can. J. Phys. **62**, 1875 (1984).
- ⁷T. Amano and J. K. G. Watson, J. Chem. Phys. 81, 2869 (1984).
- ⁸T. Amano, J. Opt. Soc. Am. B 2, 790 (1985).
- ⁹K. G. Lubic and T. Amano, Can. J. Phys. 62, 1886 (1984).
- ¹⁰S. C. Foster, A. R. W. McKellar, I. R. Peterkin, J. K. G. Watson, F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, J. Chem. Phys. 84, 91 (1986).
- ¹¹S. C. Foster, A. R. W. McKellar, and J. K. G. Watson, J. Chem. Phys. 85, 664 (1986).
- ¹²W. A. Majewski, M. D. Marshall, A. R. W. McKellar, J. W. C. Johns, and J. K. G. Watson, J. Mol. Spectrosc. 122, 341 (1987).
- ¹³J. K. G. Watson, S. C. Foster, and A. R. W. McKellar, Can. J. Phys. 65, 38 (1987).
- ¹⁴For example, W. Meyer, P. Botschwina, and P. G. Burton, J. Chem. Phys. 84, 891 (1986).
- ¹⁵For example, S. Miller, J. Tennyson, and B. T. Sutcliffe, Mol. Phys. 66, 429 (1989), and references therein.
- ¹⁶I. N. Kozin, O. L. Polyansky, and N. F. Zobov, J. Mol. Spectrosc. 128, 126 (1988).
- ¹⁷J. Tennyson and B. T. Sutcliffe, Mol. Phys. 56, 1175 (1985).
- ¹⁸S. Miller, J. Tennyson, and B. T. Sutcliffe, Mol. Phys. 66, 429 (1989).
- ¹⁹D. A. Jennings, C. Demuynck, M. Banek, and K. M. Evenson (private communication).
- ²⁰The correlations (κ , as defined by Watson, Refs. 10–13) for the parameters C_2 , C_3 , and ξ_{23} in the present fit were 227×10^3 , 126×10^3 , and 168×10^3 , respectively. These are about 50 times larger than obtained previously (Ref. 11) for D_2H^+ , and are similar in magnitude to those obtained for H_2D^+ (Ref. 10).