A Methodology to estimate the probability of rare events in the transmission level power system dynamics.

THE UNIVERSITY OF ARIZONA

For more in depth results, check my Github repsository:

Ayrton Almada¹, Laurent Pagnier¹, and Michael (Misha) Chertkov¹

¹Program in Applied Mathematics and Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

Introduction

We study rare failures associated with cleared faults in the transmission level power system dynamics described by swing equations. Assumptions:

- Prior to a fault the system was in a balanced state.
- Fault is cleared within a few seconds.
- A failure is counted at a power line of the system if during the post-fault transient (before or after the fault is cleared) power flow along the line exceeded a safe limit.

The study aims to address questions such as the expected time to observe a failure and the probability distribution of failures occurring within a specific interval.

Objectives

■ The goal of this project is to develop a procedure to understand, estimate and analyze the dynamics of any given power grid that satisfies the linear swing equations.

- We are looking for a way to determine the distribution of the magnitude of the overloading of the system over time.
- This way we can determine how reliable and stable the system is even if there are failures in the grid for a random period of time.

Motivation

The power system dynamics described by swing equations are crucial for understanding/ensuring the stability/reliability of electrical power systems:

- **System Stability:** Swing equations analyze transient stability, ensuring a power system can recover from disturbances and maintain generation-consumption balance [1].
- **Grid Reliability:** Understanding power system dynamics allows operators to implement preventive measures, avoiding blackouts and ensuring reliable grid operation [2].

Materials and Methods

- A mathematical model simulating phase evolution in a power system, based on swing equations, incorporating post-fault and cleared fault dynamics.
- Implement numerical and analytical solutions to the swing equations using Julia 1.10.4 and the SciMLBase package.
- Estimate failure time, probabilities, and prolonged failure likelihood using brute-force MCMC for statistical analysis.

Swing Equations

We will work with the swing equation in the linear approximation [3]:

$$\forall i \in \mathcal{V}: \ m_i \ddot{\theta}_i(t) + d_i \dot{\theta}_i(t) + \sum_{\{i,j\} \in \mathcal{E}} a_{ij}(\theta_i(t) - \theta_j(t)) = P_i, \quad (1)$$

where \mathcal{V} and \mathcal{E} are the sets of nodes and (undirected) edges of the power system graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$. The set of nodes \mathcal{V} , the vectors of internal voltage angles/phases $\theta(t)=(\theta_i(t)|i\in\mathcal{V})$, inertia $\boldsymbol{m}=(m_i|i\in\mathcal{V})$, damping $\boldsymbol{d}=(d_i|i\in\mathcal{V})$ and the power injection $\boldsymbol{P}=(P_i|i\in\mathcal{V})$ (where $\sum_{i\in\mathcal{V}}P_i=0$) stay constant through out the dynamics considered. We will also define the safety polytope:

$$\mathcal{P}_{\boldsymbol{\vartheta}} \doteq \left(\forall \{i, j\} \in \mathcal{E} : \left| \theta_i - \theta_j \right| \leqslant \vartheta_{ij} \right) : \boldsymbol{\vartheta} \doteq (\vartheta_{ij} | \{i, j\} \in \mathcal{E}). \tag{2}$$

The problem is initialized at the **steady state:**

$$\forall i \in \mathcal{V} : \sum_{\{i,j\} \in \mathcal{E}} a_{ij}(\theta_i(0) - \theta_j(0)) = P_i, \ \ddot{\theta}_i(0) = \dot{\theta}_i(0) = 0.$$
 (3)

Assuming that $\theta(0) \doteq (\theta_i(0)|i \in \mathcal{V}) \in \mathcal{P}_{\vartheta}$.

Simulating Faults

We are interested in the process $\theta(t)$ that follows (1) up to a certain time τ , at that moment we imitate a fault in the system by changing the set of edges/lines $\mathcal E$ removing a pre-selected edge $\alpha \in \mathcal E$ thus transitioning abruptly:

$$\mathcal{E} \to \mathcal{E}_f \doteq \mathcal{E} \backslash \alpha$$
.

The fault lasts for time τ which results in the evolution of $\theta(t)$ according (1) with a different set of edges for $t \in [0, \tau]$:

$$\forall i \in \mathcal{V}: \ m_i \ddot{\theta}_i(t) + d_i \dot{\theta}_i(t) + \sum_{\{i,j\} \in \mathcal{E}_f} a_{ij}(\theta_i(t) - \theta_j(t)) = P_i, \quad \textbf{(4)}$$

Then for $t>\tau$ we fix the fault, that is $\theta(t)$ will follow (1) for $t>\tau$.

Measuring the degree of line overload

To quantify the degree of line overload, given a solution

$$X = \begin{bmatrix} \dot{\bar{\theta}}(t) \\ \bar{\theta}(t) \end{bmatrix}_{t=0}^{t=T}$$

to (1), (2), (3) and (4), (and thus it also satisfies (Ω)) we introduce the following indicator:

$$S(X) \doteq \int_0^T dt \sum_{\{i,j\} \in \mathcal{E}} \mathbb{I}\left(|\beta_{ij}(\theta_i(t) - \theta_j(t))| - \bar{p}_{ij}\right), \tag{5}$$

The indicator function S(X) is the primary characteristic we aim to evaluate across various failure scenarios.

Case Study 1: Israeli Power Grid

Figure 1: Israel Power Grid.

We will simulate and sample solutions to the system

$$\begin{cases} \Upsilon \cdot \dot{X}(t) = \Xi_2 \cdot X(t) + b \text{ for } t \in [0, \tau], \\ \Upsilon \cdot \dot{X}(t) = \Xi_1 \cdot X(t) + b \text{ for } t > \tau, \\ X(t) = \begin{bmatrix} \dot{\bar{\theta}}(t) \\ \bar{\theta}(t) \end{bmatrix}, \Upsilon = \begin{bmatrix} M & \bar{0}_{n \times n} \\ \bar{0}_{n \times n} & \mathsf{Id}_{n \times n} \end{bmatrix}, \Xi_i = \begin{bmatrix} -D_i & -L_i \\ \mathsf{Id}_{n \times n} & \bar{0}_{n \times n} \end{bmatrix}, \\ \tau \sim \mathsf{Exp}(0.1), b = \begin{bmatrix} \bar{P} \\ \bar{0}_n \end{bmatrix}, \theta(0) = L_1^+ \cdot \bar{P} \in \mathcal{P}_{\vartheta}, \dot{\theta}(0) = \bar{0}, \\ \mathcal{V} = \{1, \dots, 32\}, \mathcal{E} = \{\{1, 2\}, \{1, 4\}, \dots, \{29, 32\}\} : \|\mathcal{E}\| = 36, \end{cases}$$

and estimate the probability of exiting the \mathcal{P}_{ϑ} using S(X).

Statistics of Three Phase Fault Simulation

Distribution of First Exit Time and Distribution of Last Return Time Removed Line(s) = Random [Random Time of Clearance] - Distribution of First Exit Time - Distribution of Last Return Time - Distribution of Last Return Time Survival Function of the Overheating Indicator Removed Line(s) - Random Survival Function of the Overheating Indicator Removed Line(s) - Random

Figure 2: a). Distribution of First Exit Time and Distribution of Last Return Time, d). Cubic Regression: Overheating indicator vs Duration of Fault, c). Survival Function of Overheating Indicator.

Statistics of Single Phase Fault Simulation

Figure 3: a). Distribution of First Exit Time and Distribution of Last Return Time, b). Quadratic Regression: Overheating indicator vs Duration of Fault, c). Survival Function of Overheating Indicator

Future Directions

- Apply sampling techniques, such as cross-entropy, adaptive importance sampling, and quasi-Monte Carlo, to enhance efficiency and results.
- Analyze and sample from a stochastic model to add noise and simulate a realistic power grid:

$$m_i D^2 \theta_i(t) + d_i D \theta_i(t) + \sum_{\{i,j\} \in \mathcal{E}} a_{ij}(\theta_i(t) - \theta_j(t)) Dt = P_i Dt + DW_i(t),$$

where D is the derivative operator, Dt is the differential w.r.t. t and $DW(t) = (DW_i(t)|i \in \mathcal{V})$ is a vector of Brownian noise.

 Perform statistical analysis of large power systems to improve methodology efficiency (e.g. Texas Interconnection, Mexico's National Power System, or the UCTE grid)

References

- [1] Leonard L Grigsby. *Power system stability and control*. CRC press,
- [2] Prabha Kundur. Power system stability. *Power system stability and control*, 10:7–1, 2007.
- [3] D Ruiz-Vega, D Olguín Salinas, and M Pavella. Simultaneous optimization of transient stability-constrained transfer limits of multi-area power systems. In *Proceedings of Med Power 2002 Conference*, 2002.