

David Medeiros Santos João Gabriel Tavares Vasconcelos Souza

Teoria dos Grafos:

Detecção de Fraudes em Cartões de Crédito

Campina Grande

06/02/2025

SUMÁRIO

1 INTRODUÇÃO	3
2 IMPACTOS	3
3 FERRAMENTAS UTILIZADAS	3
4 TRANSAÇÕES FRAUDULENTAS POR PAÍSES	4
4.1 ANÁLISE DE FRAUDE COM GRAFOS	4
4.2 PAÍSES COM MAIOR INCIDÊNCIA E VALORES DE FRAUDES	10
5 PERFIL DE FRAUDADORES DE CADA PAÍS	10
5.1 GRAFO DE PERFIL DE FRAUDADOR	10
5.2 ANÁLISE DE PERFIL DE FRAUDADOR	1 2
6 FRAUDES POR SETOR COMERCIAL	12
6.1 FRAUDES EM SETORES COM GRAFOS	13
6.2 ANÁLISE DOS SETORES COMERCIAIS MAIS FRAUDADOS	16
7 CONCLUSÃO	17
REFERÊNCIAS	17

1 INTRODUÇÃO

A fraude financeira é um problema crescente que afeta milhões de pessoas e instituições em todo o mundo. Com o aumento do uso de cartões de crédito e débito, as transações fraudulentas se tornaram um desafio significativo, resultando em prejuízos bilionários anuais para bancos e empresas em diversos países no mundo. Assim, a detecção de fraudes tem se mostrado uma tarefa difícil, especialmente considerando o volume elevado de transações realizadas diariamente. Métodos tradicionais, como a análise manual e o uso de regras fixas, apresentam limitações em termos de escalabilidade e precisão, especialmente em um ambiente dinâmico e em constante evolução.

Este projeto visa abordar a detecção de fraudes financeiras utilizando grafos, estruturas de dados eficazes para modelar relações complexas. As transações financeiras serão representadas como grafos, onde vértices representam entidades como usuários e transações, e as arestas indicam conexões entre elas. Além disso, os dados utilizados para essa análise foram obtidos da plataforma Kaggle, proporcionando uma base robusta para a construção dos grafos e aplicação dos algoritmos.

2 IMPACTOS

A análise das transações fraudulentas em cartões permite identificar padrões e setores vulneráveis, aumentando a segurança e confiança nas transações financeiras. Com isso, é possível direcionar esforços para as áreas mais críticas, promovendo soluções que minimizem os riscos e fortaleçam a proteção contra fraudes.

Além disso, a identificação de padrões de colaboração entre agentes maliciosos pode incentivar o desenvolvimento de sistemas de detecção em tempo real e melhorar a infraestrutura de segurança. Parcerias entre instituições bancárias, empresas de tecnologia e órgãos reguladores podem criar inovações para bloquear transações suspeitas de forma mais eficaz, garantindo maior proteção nas regiões com maior incidência de fraudes.

3 FERRAMENTAS UTILIZADAS

Para o desenvolvimento deste projeto, foram utilizadas ferramentas como o VSCode e o Jupyter Notebook, que facilitaram a programação e a análise interativa dos dados. Além disso, foram empregadas bibliotecas essenciais como Pandas, NetworkX, MatPlotLib e CO,

que permitiram a manipulação de dados, a construção de grafos e a aplicação de algoritmos para detecção de fraudes.

4 TRANSAÇÕES FRAUDULENTAS POR PAÍSES

A análise de fraudes financeiras por países é fundamental para compreender as diferentes vulnerabilidades que afetam cada região. As características econômicas e sociais de cada país podem influenciar significativamente o tipo e a frequência das fraudes que ocorrem. Visualizar como estas fraudes se distribuem permite identificar áreas com maior risco. Além disso, essa abordagem auxilia o aprimoramento de sistemas de monitoramento financeiro, garantindo maior proteção e confiança para os usuários em todo o mundo.

4.1 ANÁLISE DE FRAUDE COM GRAFOS

Com o intuito de visualizar as transações ilegais em cada país, foi necessário organizar grafos diferentes de forma que o núcleo de cada grafo representasse um país. Além disso, os vértices do grafo corresponderam aos usuários que realizaram transações fraudulentas, e as arestas conectavam esses usuários ao país em que a fraude ocorreu. Por fim, o peso das arestas foi atribuído com base no valor da transação, refletindo a magnitude da fraude associada a cada conexão.

Essa estrutura permitiu visualizar a quantidade de fraudes em cada país através do grau do vértice principal, que representa o país, além da soma dos pesos das arestas que forneceu uma medida do total das fraudes cometidas, facilitando a identificação de países com maior risco de fraudes e ajudando a priorizar os esforços para aprimorar a segurança financeira. Abaixo, seguem os grafos gerados para cada país:

Imagem 1 - Grafo de transações fraudulentas da Austrália.

Fraudulent graphs in Australia

- Quantidade de Transações Fraudulentas: 13
- Valor Total das Transações Fraudulentas: US\$ 6733.98

Imagem 2 - Grafo de transações fraudulentas do Brasil.

Fraudulent graphs in Brazil

- Quantidade de Transações Fraudulentas: 20
- Valor Total das Transações Fraudulentas: US\$ 8298.94

Imagem 3 - Grafo de transações fraudulentas dos Estados Unidos.

Fraudulent graphs in USA

- Quantidade de Transações Fraudulentas: 22
- Valor Total das Transações Fraudulentas: US\$ 11254.51

Imagem 4 - Grafo de transações fraudulentas da África do Sul.

Fraudulent graphs in South Africa

- Quantidade de Transações Fraudulentas: 19
- Valor Total das Transações Fraudulentas: US\$ 9210.79

Imagem 5 - Grafo de transações fraudulentas do Canadá.

Fraudulent graphs in Canada

- Quantidade de Transações Fraudulentas: 14
- Valor Total das Transações Fraudulentas: US\$ 5999.84

Imagem 6 - Grafo de transações fraudulentas da França.

Fraudulent graphs in France

- Quantidade de Transações Fraudulentas: 16
- Valor Total das Transações Fraudulentas: US\$ 7811.82

Imagem 7 - Grafo de transações fraudulentas do Japão.

Fraudulent graphs in Japan

- Quantidade de Transações Fraudulentas: 17
- Valor Total das Transações Fraudulentas: US\$ 9424.72

Imagem 8 - Grafo de transações fraudulentas da Alemanha.

Fraudulent graphs in Germany

- Quantidade de Transações Fraudulentas: 9
- Valor Total das Transações Fraudulentas: US\$ 4114.28

Imagem 9 - Grafo de transações fraudulentas do Reino Unido.

Fraudulent graphs in UK

- Quantidade de Transações Fraudulentas: 18
- Valor Total das Transações Fraudulentas: US\$ 9219.07

Imagem 10 - Grafo de transações fraudulentas da Índia.

Fraudulent graphs in India

- Quantidade de Transações Fraudulentas: 13
- Valor Total das Transações Fraudulentas: US\$ 7795.29

4 2 PAÍSES COM MAIOR INCIDÊNCIA E VALOR DE FRAUDES

Através da análise dos grafos, foi possível identificar que os países com a maior quantidade de fraudes são os Estados Unidos e o Brasil, respectivamente. O número de transações fraudulentas nesses países se destacou em relação aos demais, evidenciando uma maior frequência de ocorrências.

Além disso, a análise dos pesos das arestas revelou que os países com os maiores valores de fraudes foram os Estados Unidos e o Japão. Isso indica que, além da quantidade de fraudes, esses países registraram transações fraudulentas de maior valor.

Com isso, percebeu-se que os Estados Unidos lideraram em ambos os critérios, sendo o país com o maior número de fraudes e o maior montante financeiro fraudado, reforçando a necessidade de medidas mais rigorosas para mitigar esse problema.

5 PERFIL DE FRAUDADORES DE CADA PAÍS

Compreender o perfil dos fraudadores é essencial para o desenvolvimento de estratégias eficazes de combate às fraudes financeiras. Identificar padrões de comportamento, e possíveis conexões entre fraudadores permite criar medidas preventivas mais assertivas e minimizar os impactos desse tipo de crime.

5.1 GRAFO DE PERFIL DE FRAUDADOR

Para visualizar melhor as características dos fraudadores em cada país, foi criado um grafo para cada um dos três países, onde o vértice central representa o respectivo país e os vértices adjacentes representam as informações dos usuários envolvidos em transações fraudulentas, como faixa etária, gênero e localidade, enquanto as arestas indicam conexões entre eles. Além disso, o peso das arestas reflete a frequência ou o valor total das transações, possibilitando identificar o perfil dos fraudadores. Abaixo, seguem os grafos de perfil dos respectivos países:

Imagem 11 - Grafo de perfil dos Estados Unidos.

Profile graph in USA

Imagem 12 - Grafo de perfil do Brasil.

Profile graph in Brazil

Imagem 13 - Grafo de perfil do Japão.

5.2 ANÁLISE DE PERFIL DE FRAUDADOR

A análise dos grafos revelou perfis distintos de fraudadores em cada país. No Japão, a maioria dos envolvidos são homens e mulheres entre 30 e 50 anos, além de um grupo significativo entre 70 e 80 anos, predominantemente residentes em áreas urbanas. No Brasil, o perfil predominante é de homens jovens, entre 18 e 29 anos, também localizados em regiões urbanas. Já nos Estados Unidos, observou-se um padrão dividido entre mulheres de 18 a 29 anos e de 70 a 80 anos, evidenciando diferentes faixas etárias atuando nesse tipo de crime.

6 FRAUDES POR SETOR COMERCIAL

Para entender quais esferas comerciais são mais propensas a fraudes, é essencial identificar cada setor de forma separada, pois estes apresentam características e vulnerabilidades específicas que podem ser exploradas por fraudadores, exigindo abordagens diferentes formas de prevenção. Desta maneira, identificar esses mercados permite direcionar esforços de prevenção de forma mais eficaz, aprimorando a segurança e minimizando os impactos financeiros. Este capítulo analisa as fraudes por esfera comercial, destacando os setores mais afetados.

6.1 FRAUDES EM SETORES COM GRAFOS

Para visualizar as diferentes esferas comerciais, foram construídos grafos com o núcleo central, representando seus respectivos setores de mercado. Os vértices conectados a esse núcleo correspondem aos usuários envolvidos em transações fraudulentas. Por fim, o peso das arestas, por sua vez, representa o valor de cada transação fraudulenta realizada, permitindo uma análise detalhada não só da quantidade de fraudes, mas também da magnitude financeira envolvida em cada setor. Essa estrutura facilita a visualização das relações entre os diferentes elementos e como as fraudes estão distribuídas nos diversos setores comerciais. Abaixo, seguem os respectivos grafos:

Imagem 14 - Grafo do setor comercial de viagens.

- Valor Montante em Fraudes por Mercado: US\$ 15312.71
- Quantidade de Fraudes por Mercado: 36

Imagem 15 - Grafo do setor comercial de comidas e bebidas.

Grafo - Food & Beverage

- Valor Montante em Fraudes por Mercado: US\$ 16624.28
- Quantidade de Fraudes por Mercado: 28

Imagem 16 - Grafo do setor comercial de varejo.

Grafo - Retail

- Valor Montante em Fraudes por Mercado: US\$ 12003.69
- Quantidade de Fraudes por Mercado: 24

• Imagem 17 - Grafo do setor comercial de combustível.

Grafo - Fuel

- Valor Montante em Fraudes por Mercado: US\$ 11757.37
- Quantidade de Fraudes por Mercado: 28

Imagem 18 - Grafo do setor comercial de eletrônicos.

Grafo - Electronics

- Valor Montante em Fraudes por Mercado: US\$ 11322.33
- Quantidade de Fraudes por Mercado: 22

Imagem 19 - Grafo do setor saúde e bem estar.

- Valor Montante em Fraudes por Mercado: US\$ 12842.86
- Quantidade de Fraudes por Mercado: 23

6.2 ANÁLISE DOS SETORES COMERCIAIS MAIS FRAUDADOS

Em conclusão, a análise das fraudes por categoria de mercado revela que o setor de viagens lidera em número de transações fraudulentas, seguido pelas categorias de comidas e bebidas, juntamente com combustível, que apresentam quantidades semelhantes de fraudes. No entanto, quando se considera o montante total de valores envolvidos nas fraudes, comidas e bebidas se destacam em primeiro lugar, com viagens ocupando a segunda posição. Esses dados indicam que, embora o número de fraudes em viagens seja maior, as fraudes em comidas e bebidas envolvem valores mais elevados, o que pode indicar transações de maior impacto financeiro dentro dessas categorias.

7 CONCLUSÃO

Este projeto proporcionou uma análise detalhada das fraudes financeiras utilizando grafos para identificar padrões e comportamentos em transações fraudulentas. Através da construção de grafos, foi possível destacar as principais regiões, perfis de fraudadores e esferas comerciais mais afetadas. Desta forma, observou-se que os Estados Unidos se destacaram tanto em número de fraudes quanto em valor, o que indica a necessidade urgente de estratégias de segurança mais eficazes nesse país. Além disso, a utilização dos grafos permitiu visualizar a relação entre usuários, valores de transações e categorias comerciais, oferecendo uma nova perspectiva sobre o comportamento de fraudes no sistema financeiro global.

Ao mapear as fraudes dessa maneira, o projeto revelou informações valiosas para a prevenção e mitigação de crimes financeiros. Ademais, a análise detalhada dos dados permitiu identificar quais países, perfis de usuários e setores são mais vulneráveis a fraudes, facilitando o direcionamento de ações de segurança. Dessa forma, as informações obtidas poderão auxiliar na criação de soluções mais robustas e personalizadas, focadas nas regiões e áreas comerciais de maior risco, promovendo maior proteção para os consumidores e as instituições financeiras.

REFERÊNCIAS

KUSHAGRA. *Credit_Card_Fraud_Detection_Set*. Kaggle. Disponível em: https://www.kaggle.com/datasets/kushagraddata/credit-card-fraud-detectionset. Acesso em: 6 de fevereiro de 2025.

KUSHAGRA. *Planilha de dados de cartões de crédito fraudados*. Kaggle. Disponível em: https://docs.google.com/spreadsheets/d/1laV7j6wxVYQIX-RaOV3Lhhu8B3-xqft9zuaAe_zH https://docs.google.com/spreadsheets/d/1laV7j6wxVYQIX-RaOV3Lhu8B3-xqft9zuaAe_zH https://docs.google.com/spreadsheets/d/1laV7j6wxVYQIX-RaOV3Lhu8B3-xqft9zuaAe_zH <a href="https://docs.google