MATH 235 Honours Linear Algebra 2

Sachin Kumar* University of Waterloo

Winter 2023[†]

^{*}skmuthuk@uwaterloo.ca

[†]Last updated: January 12, 2023

Contents

Chapte	Intgeration	
1	Basis for Row Space, Null space, Left Null Space	1

I. Intgeration

1 Basis for Row Space, Null space, Left Null Space

The key lemma in understanding Col(A) was to show $Col(PA) = P \cdot Col(A)$, where P is invertible.

1.1 Lemma. If $A \in M_{m \times n}$ and $P \in M_{n \times n}$, then Col(AP) = Col(A), where P is invertible.

PROOF To prove equality, we need to show that $Col(AP) \subseteq Col(A)$ and $Col(A) \subseteq Col(AP)$. First, we will show $Col(AP) \subseteq Col(A)$. So let $v \in Col(AP)$, then by definition $\exists \vec{X} \in \mathbb{R}^n$ such that

$$y = AP\vec{x}$$
$$= A(P\vec{x}) \in Col(A)$$

Next, we will show that $Col(A) \subseteq Col(AP)$ (use the hypothesis that P is invertible). Let $y \in Col(A)$, so $\exists \vec{x} \in \mathbb{R}^n$ such that

$$y = A\vec{x}$$

$$= AP(P^{-1}\vec{x}) \in \text{Col}(AP)$$

Pro-tip: We just showed that for all matrix A and invertible P, then $Col(AP) \subseteq Col(A)$ Now choose the matrix AP^{-1} and P, so

$$Col(AP^{-1} \cdot P) = Col(A) \subseteq Col(AP^{-1})$$

and that's true for all *P* invertible so choose $P^{-1} \Longrightarrow \operatorname{Col}(A) \subseteq \operatorname{Col}(AP)$.

1.2 Theorem. If $A \in M_{m \times n}$, then Row(A) = Row(R), where R = RREF(A)

Proof By definition, $Row(A) = Col(A^T)$, where A = PR for some invertible P.

$$A^T = R^T P^T$$

From the previous lemma we know that

$$Col(A^T) = Col(R^T P^T)$$

and

$$Col(A^T) = Col(R^T)$$

since P^T is invertible, therefore

$$Row(A) = Col(A^T) - Col(R^T) = Row(R)$$

1.3 Corollary. A basis for Row(A) is the non-zero rows of its RREF.

Example: If $A \in M_{3\times 3}$

$$A = \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{bmatrix} \longrightarrow R = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Basis for Row(A) =
$$\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\3 \end{bmatrix} \right\}$$

Important: The Basis for Row(A) is not the row 1 and 2 of A.