Question 2 (11.10 from the textbook)

Suppose we have the postulated the model:

$$Y_i = \beta_1 x_i + \epsilon_i, \quad i = 1, 2, ..., n,$$

where the ϵ_i 's are independent and identically distributed random variables with $\mathbb{E}(\epsilon_i)=0$. Then $\hat{y}_i=\hat{\beta}_1x_i$ is the predicted value of y when $x=x_i$ and $SSE=\sum_{i=1}^n[y_i-\hat{\beta}_1x_i]^2$. Find the least-squares estimator of β_1 . (Notice that the equation $y=\beta x$ describes a straight line passing through the origin. The model just described often is called the no-intercept model.)

Review the definition of the last-square estimator.

$$Q(\hat{\beta}_i) = \sum_{i=1}^n (\gamma_i - \hat{\beta}_i \chi_i)^2$$

Try to minimize the error, summation of Ei.

Then differentiate the $Q(\hat{\beta}_1)$ with respect to $\hat{\beta}_1$

Set it to 0 to find the value of $\widehat{\beta}_i$

$$\frac{\partial Q}{\partial \hat{\beta}_{i}} = 2 \sum_{i=1}^{n} (\gamma_{i} - \hat{\beta}_{i} \chi_{i}) \cdot (-\chi_{i})$$

$$=-2\left(\frac{n}{2}\gamma_{i}\cdot\chi_{i}-\hat{\beta}_{i}\chi_{i}^{2}\right)$$

$$=-2\left(\sum_{i=1}^{n} \gamma_{i} \chi_{i} - \hat{\beta}_{i} \sum_{i=1}^{n} \chi_{i}^{2}\right) = 0$$

$$\Rightarrow \sum_{i=1}^{n} \gamma_{i} \chi_{i} - \hat{\beta}_{i} \sum_{\bar{i}=i}^{n} \chi_{i}^{2} = 0$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \gamma_{i} \chi_{i}}{\sum_{i=1}^{n} \chi_{i}}$$