USN					
			and Same		

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

I/II Semester B. E. Supplementary Examinations May-2024

Common to all Branches

ELEMENTS OF ELECTRICAL ENGINEERING

Time: 03 Hours
Instructions to candidates:

Maximum Marks: 100

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. Question number 2 is compulsory. Choose any one full question from 3 or 4, 5 or 6, 7 or 8 and 9 or 10.

PART-A

M BT CO

1	1.1	Define renewable and non-renewable energy sources.	02	1	3
	1.2	What is synchronous generator? What is the principle of operation	200 S		
		of synchronous generator?	02	1	1
	1.3	List the raw material required for power generation in case of hydel,			1
		thermal, nuclear and PV power plants.	02	1	1
	1.4	What do you mean by lagging power factor and leading power			
		factor?	02	1	2
	1.5	List any four advantages of three phase system.	02	1	2
	1.6	What do you mean by 1unit of electricity?	02	1	2
	1.7	What is the difference between fuse and MCB?	02	1	1
	1.8	What is the difference between transformer and auto transformer?	02	1	3
	1.9	Define slip of induction motor.	02	1	1
	1.10	Why DC series motor should never be started without any load on		3	
To the	11-27	it?	02	2	3

PART-B

2	а	With neat sketch, explain the operation of Hydel power plant.	06	1	1
	b	Explain $I - V$ and $P - V$ characteristics of a PV cell.	06	1	4
	С	What is a Battery? Why batteries are connected in:		4 7	- 3
		i) Series,			
		ii) Parallel	04	2	2
EFE	-8/70		WIT I	8. 1	
3	а	With circuit and phasor representation obtain current, voltage and	Mil t		
		power relations in a series <i>RL</i> crcuit.	06	2	2
	b	Define the following terms:			·
		i) Real power			
		ii) Reactive power			
		iii) Apparent power, and			
		iv) Power factor	04	1	2
	С	A delta connected load consists of a resistance of 10Ω and a			
		capacitance of $100\mu F$ in each phase. A supply of $410V$ at $50Hz$ is			
		applied to the loads. Find the line current, power factor and power			
		consumed by the loads.	06	1	2
		OR			

4	а	Derive the relation between phase and line voltages and current in a	0.6	1	
	b	star connected system. With phasor representation show that Two wattmeters are sufficient	06	4	2
	D	to measure the power in a three phase system.	06	2	2
	С	Find an expression for the current and calculate the power, when a	100 500		
		voltage of $e = 283 \sin(100\pi t)$ is applied to a coil having $R = 50\Omega$ and			
		L - 0.159 H.	04	1	2
_		Will the different toward of Electric mining along a Develop			
5	а	What are the different types of Electric wiring schemes? Explain with diagram any two types.	06	1	1
	b	Discuss the power ratings of different household appliances.	04	$\frac{1}{2}$	1
	С	List the merits and demerits of fuse, MCB and ELCB.	06	1	1
		OR			
6	а	What is earthing? Why earthing is required? Explain anyone type of			
		earthing.	06	1	1
	b	With block diagram, explain the working of Uninterrupted power	0.4	1	
	0	supply. Estimate Total Daily Energy Requirement for the following loads:	04	1	2
	С	Name of the Power Rating Avg. Daily Usage No. of			
		appliance (W) Hrs Appliances			
		CFL 12 6 4			
		Fan 50 8 2			
		TV (21") 150 2 1			
		Computer 250 3 1			
		Water heater 1000 2 1	0.5		0
		Take electricity cost to be Rs. 5 per unit.	06	2	2
7	a	What is a transformer? From basics, derive <i>EMF</i> equation of			
,	а	transformer.	06	1	3
	b	100-0-000-00-00-00-00-00-00-00-00-00-00-			_
		Discuss about the losses that occur in a transformer. Hence write			
		efficiency equation of the transformer.	04	2	3
	С	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full	04		3
	С	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and		2	
	С	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full	04		3
	С	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and		2	
8		efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss.		2	
8	c a	efficiency equation of the transformer. A $250kVA$, single phase transformer has an efficiency of 96% on full load $0.8pF$ lagging and at half $0.85pF$ lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a $3-phase$	06	2	3
8	a	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a 3-phase induction motor.		2	
8		efficiency equation of the transformer. A $250kVA$, single phase transformer has an efficiency of 96% on full load $0.8pF$ lagging and at half $0.85pF$ lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a $3-phase$	06	2	3
8	a	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a 3-phase induction motor. Discuss about the different types of rotors used in a three phase	06	2	3
8	a b	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a 3-phase induction motor. Discuss about the different types of rotors used in a three phase induction motor. A 4 pole 50Hz, induction motor has a slip of 1% at no load. When operated at full load, the slip is 2.5%. Find the change in speed from	06 06 04	1 2 2	3 3
8	a b	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a 3-phase induction motor. Discuss about the different types of rotors used in a three phase induction motor. A 4 pole 50Hz, induction motor has a slip of 1% at no load. When	06	2	3
	a b c	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a 3-phase induction motor. Discuss about the different types of rotors used in a three phase induction motor. A 4 pole 50Hz, induction motor has a slip of 1% at no load. When operated at full load, the slip is 2.5%. Find the change in speed from no load to full load.	06 06 04	1 2 2	3 3
8	a b	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a 3-phase induction motor. Discuss about the different types of rotors used in a three phase induction motor. A 4 pole 50Hz, induction motor has a slip of 1% at no load. When operated at full load, the slip is 2.5%. Find the change in speed from no load to full load. With a cross sectional view, explain the construction and operation	06 06 04 06	2 1 1 2	3 3 3
	a b c	efficiency equation of the transformer. A 250kVA, single phase transformer has an efficiency of 96% on full load 0.8pF lagging and at half 0.85pF lagging. Find the iron loss and full load copper loss. OR Explain how rotating magnetic field is generated in a 3-phase induction motor. Discuss about the different types of rotors used in a three phase induction motor. A 4 pole 50Hz, induction motor has a slip of 1% at no load. When operated at full load, the slip is 2.5%. Find the change in speed from no load to full load.	06 06 04	1 2 2	3 3

	С	A 4 pole 220V lap connected DC shunt motor has 36 slots, each slot		g 1 = 1	
		containing 16 conductors. It draws a current 40 amps from the		ite.	3-11
		supply. The field resistance and armature resistance are 110Ω and			- 33
		0.1Ω respectively. The motor develops an output power of $6kW$. The			
		flux per pole is $40mWb$. Calculate the:		774	
		i) Speed		- 1	- 5
		ii) The torque developed by the armature, and			
e e		iii) The shaft torque.	06	2	3
		OR			
10	a	What is the significance of back <i>EMF</i> in a <i>DC</i> motor?	04	1	3
	b	Derive an equation for the torque developed in the armature of a	01		
		DC motor.	06	4	3
	С	Explain the construction and working principle of stepper motor.	06	1	3

e and Soluting Lourse = Element & Elevarial evorinee ving

1,9) Renewable energy sources energy that gets replenish itself Men Renewable energy somes: That is not replanished with the speed at which it is konsumed.

- (1.2) Synchronous genrales generales Ac Voltage, Here field is so taking & armentune is stationary. When votor votates the Bator cuts the flux & hence emf is induced.
- 1.3) hydrel went, thermal- wal, mchan-wanium PV- Sun days.
- 1.4) longering Pf = current lugs voltage Leaching Pf = current beach voltage 4/5/3e
- (-8). Adv q 30 2) more efficient, les cost than simplephense for agiven power, regulates here material to transfer power, 34 motors we self-staliting
- 1 KWH8.
- FUSE = b wins out I need to be oreplaced when overcover MCB = trips & Noneed to replace.
 - (.8) toansformer= 2 winding Autotoans from = 1 winding
 - 1.9).18/12 HS-HX (00)
 - Mu(01.1 at 100 land Ia is very small & treate speed will be dangerowdy high. Nat
 - Held power plant Simple skeller -3 & openhim -3
 - 26) IV prehenacteristing proces.

20) Buttery => A device that Converts Chemical energy into electrical energy by means of an ebeltro chemical oriclation reduction reaction. series Connection is done to increase voltage ruting Parallel _ 11 3 CL) poser blade 2 to war & and annellin 30) Advantages & chisalwantages & Botan Mant Hardr-2 rect Continuous Renewable 4 chisadr-2 Weed more specce pollution frep Fligh initial GISA foer of wort Needs buttery for storage reach remote places 30) Smoot of of Matimal [localorist Sterrage) 3 Ka) RL Liouit Z= TR2+x2 Z=Insin(wt- 4) EL=IXL D= tan XL P= = Em Ima f = EI cond

