Predicting Destination Of Taxi Rides CS4099 Project

End Semester Evaluation

Arpit Augustine, GVS Rahul, Harsh Parsuram Puria, Vineel Patnana Guided By: Dr.K A Abdul Nazeer, Mr. Ibrahim Abdul Majeed

May 10, 2016

Outline

Introduction

Problem Statement

Literature Survey

Design

Results

Conclusion

References

Introduction

- On-demand public transport solutions.
- Human mobility behavior.
- Shift to unicast based messages.
- Improves efficiency of Taxi dispatch systems.

Problem Statement

- ➤ To build a predictive framework that is able to infer the final destination of taxi rides based on their initial partial trajectories :
 - Our approach was to build a probabilistic model by learning the behavior of taxi.
 - ▶ Before building the model, we have to find the support points using a proper clustering algorithm.
 - Destination depends on various factors like working day/holidays, Time, passenger etc.
 - So given a sequence of GPS coordinates, we need to predict the destination GPS coordinate.

Literature survey

Name	Clustering	Model Used	Results
and Year			
J.A Alvarez-Gracia et al	Not mentioned	t mentioned Hidden	
and 2010		Markov Model	
Wesley Mathew et al	Hierarchical	Hidden	13.85%
and 2012	Triangular Mesh	Markov Model	
Sbastien Gambs et al	DJ Clustering	Extended Mobility	70% to 95%
and 2012		Markov Model	

▶ Vikas Thada, Dr.Vivek Jaglan, Comparison of Jaccard, Dice, Cosine Similarity Coefficient.

Statistics

Total number of trips	17,10,670
Number of trips with NULL Polyline	43,904
Number of co-ordinates	7,83,63,691
Resultant number of trips	16,66,766
Number of taxi stands	64
Number of different passengers	57,105
Number of trips with no missing values	10

Table: Statistics

Call_Type	Number of trips	
Α	3,64,770	
В	8,17,881	
С	5,28,019	

Table: Number of trips corresponding to each Call_Type

Day_Type	Number of trips		
Α	17,10,670		
В	0		
С	0		

Table: Number of trips

Design

Figure: Our Design

Data Pre-processing

Data Cleaning

- Exclusion of tuples.
- Timestamp conversion.
- Daytype fixing.

Day_Type	Number of trips	
А	11,02,229	
В	41,704	
С	41,336	
D	4,81,497	

Table: Number of trips corresponding to Day_Type after fixing

- Polyline fixing
- ► Origin stand fixing

Data Pre-processing

Figure: Noise in polyline

Data Pre-processing

Data Reduction

- Truncation
- Sampling

Figure: DBSCAN clustering of starting points for September and October

Figure: DBSCAN clustering of starting points for November and December

Support Points

Clustering

- k-means
- DBSCAN

Testing and Evaluation

Data of 60 days trips are trained and tested on next 7 days. This is repeated 10 times by moving the range by 7 days.

Evaluation Metric: Mean Haversine Distance

$$a = \sin^2(\frac{\theta_2 - \theta_1}{2}) + \cos(\theta_1)\cos(\theta_2)\sin^2(\frac{\phi_2 - \phi_1}{2}) \tag{1}$$

$$d = 2.r.a. \tan(\sqrt{\frac{a}{1-a}}) \tag{2}$$

 θ is the latitude, Φ is the longitude, d is the distance between two points, r is the Earth's radius.

Model

Matrix

- Weighted
- ► Most Probable

Forest

Weighted

Primitive Model

Matrix

- ▶ Destination = arg max F(Start)
- Destination = weighted (Mean) F(Start)
- Destination = arg max F(Start,transition)
- Destination = weighted (Mean) F(Start, transition)

Model

Figure: Round Trip

Figure: A Start point and its Destinations

Model

Forest

Figure: Model Forest

Improvements

- Call Type
- Day Type
- ► Time
- ► Taxi Grouping

Start	Transition	End	Probability	Mean Distance
			Туре	(Kms)
k-means	-	k-means	Maximum	4.95
k-means	-	k-means	Weighted	3.14
DBSCAN	-	DBSCAN	Maximum	3.13
DBSCAN	-	DBSCAN	Weighted	3.04
k-means	k-means	k-means	Maximum	2.84
k-means	k-means	k-means	Weighted	2.61
DBSCAN	k-means	DBSCAN	Maximum	3.24
DBSCAN	k-means	DBSCAN	Weighted	3.16

Table: Models

Туре	Weighted	GOOD-AVG-BAD
	Probable	(in %)
Call_Type A	1.954	65.7 - 27.3 - 7.0
Call₋Type B	1.938	68.3 - 24.4 - 7.3
Call_Type C	2.920	53.4 - 32.7 - 13.9
Call_Type C & Day_Type A	3.142	51.1 - 33.0 - 16. 0
Call_Type C & Day_Type D	2.782	54.1 - 32.5 - 13.4

Table: Results after segregation

Туре	Weighted	GOOD-AVG-BAD
	Probable	(in %)
Call_Type A	2.274	64.3 - 21.4 - 14.2
Call_Type B	2.426	64.2 - 20.9 - 14.9
Call_Type C	3.582	52.0 - 24.4 - 23.6
Call_Type C & Day_Type A	3.727	51.6 - 23.0 - 21.3
Call_Type C & Day_Type D	3.358	52.5 - 26.0 - 21.6

Table: Results for Model forest

Figure: Hours vs Number of Trips

Figure: Clusters based on time range

Conclusion

Improve upon current model using following methods:

- Features like which day the ride was taken and how the taxi was booked by the customer had a major role in the prediction.
- features like individual taxis and individual customers may have a particular pattern.
- ► Further improvements time, taxi grouping, city specific

References

- [1] Alvarez-Garcia, Juan Antonio, et al. *Trip destination prediction based on past GPS log using a hidden markov model*, Expert Systems with Applications 37.12 (2010): 8166-8171.
- [2] Mathew, Wesley, Ruben Raposo, and Bruno Martins. Predicting future locations with hidden Markov models, Proceedings of the 2012 ACM conference on ubiquitous computing. ACM, 2012.
- [3] Gambs, Sbastien, Marc-Olivier Killijian, and Miguel Nez del Prado Cortez. *Next place prediction using mobility markov chains*, Proceedings of the First Workshop on Measurement, Privacy, and Mobility. ACM, 2012.
- [4] Thada, Vikas, and Vivek Jaglan. Comparison of Jaccard,
 Dice, Cosine Similarity Coefficient To Find Best Fitness
 Value for Web Retrieved Documents Using Genetic
 Algorithm, International Journal of Innovations in
 Engineering and Technology (2013)