|              | Student information     | Date       | Number of session |
|--------------|-------------------------|------------|-------------------|
| Algorithmics | UO: UO282276            | 21/03/2022 | 5                 |
|              | Surname: Cadenas Blanco | Escuela de |                   |



Name: Andrés

Ingeniería Informática
Universidad de Oviece

## Activity 1. Create a table with the times you get for the different sizes of the problem using LevenshteinDistanceTest.java.

| Size n | Time in ms |
|--------|------------|
| 100    | 19         |
| 200    | 19         |
| 400    | 36         |
| 800    | 153        |
| 1600   | 605        |
| 3200   | 2426       |
| 6400   | 9726       |
| 12800  | 39099      |
| 25600  | 156823     |



| Algorithmics | Student information     | Date       | Number of session |
|--------------|-------------------------|------------|-------------------|
|              | UO: UO282276            | 21/03/2022 | 5                 |
|              | Surname: Cadenas Blanco |            |                   |
|              | Name: Andrés            |            |                   |

## What is the complexity of the algorithm?

The complexity of the algorithm is O(n\*m) being n the length of the first string and m the length of the second string. As this experiment obeys the rule that n = m in this case O is quadratic.

## Do the empirical results make sense?

Yes, it does make sense applying that we have  $O(n^2)$  the formula says:

$$t2 = t1 \frac{n2^2}{n1^2}$$

From here we can obtain the theoretical result of:

| 800  | 153 |
|------|-----|
| 1600 | 605 |

The theoretical time with n2 being 1600 would be

$$t_{1600} = 153 \frac{1600^2}{800^2}$$

The result is 612 ms in theory which is near to the 605 ms that were real. So we can agree the empirical results make sense.