

EKSAMEN

Kursus: ETSMP - Stokastisk modellering og behandling

Eksamensdato: 9. januar 2020

Eksamenstermin: Vintereksamen 2019/20

Ingeniørhøjskolen udleverer: 4 stk. hvidt papir

Praktiske informationer:

Digital eksamen

Opgaven tilgås og afleveres gennem den digitale eksamensportal. Håndskrevne dele af opgavebesvarelsen skal digitaliseres og afleveres i den digitale eksamensportal. Opgavebesvarelsen skal afleveres i PDF-format.

Husk angivelse af navn og studienummer på alle sider, samt i dokumenttitel/filnavn.

Husk at uploade og aflevere i Digital eksamen. Du vil modtage en elektronisk afleveringskvittering, straks du har afleveret.

Husk at aflevere til tiden, da der ellers skal indsendes dispensationsansøgning.

Hjælpemidler:

Alle hjælpemidler må benyttes, herunder internettet som opslagsværktøj, men det er IKKE tilladt at kommunikere med andre digitalt.

Særlige bemærkninger: Alle delspørgsmål vægtes ens

Ansvarlig underviser: Lars Mandrup, Gunvor Elisabeth Kirkelund

Eksamenstermin: Vintereksamen 2019/20

Prøve: ETSMP Dato: 9. januar 2020

Opgave 1: Sandsynlighedsregning

En virksomhed producerer et elektrisk apparat. Inden apparaterne forlader fabrikken kvalitetstjekkes de. Ved kvalitetskontrollen godkendes 86% af apparaterne. De ikke-godkendte apparater kan have to typer fejl: Fejl A og fejl B. En opgørelse viser, at 42% af de ikke-godkendte apparater har fejl A og 72% har fejl B.

- a) Hvor mange procent af de producerede apparater har fejl.
- b) Hvor mange procent af de producerede apparater har fejl A?
- c) Hvor mange procent af de producerede apparater har både fejl A og fejl B?
- d) Hvis et apparat har fejl A, hvad er sandsynligheden for at apparatet også har fejl B?

Eksamenstermin: Vintereksamen 2019/20

Prøve: ETSMP Dato: 9. januar 2020

Opgave 2: Stokastiske variable

To stokastiske variable X og Y med værdimængderne $R_X = \{-1, 0, 1\}$ og $R_Y = \{1, 2, 3, 4\}$ har følgende simultane pmf (probability mass function) $f_{X,Y}(x,y)$:

$X \setminus Y$	1	2	3	4	
-1	1/20	3/20	2/20	0	
0	0	2/20	?	1/20	
1	4/20	1/20	1/20	2/20	

- a) Bestem sandsynligheden $Pr(X = 0 \cap Y = 3)$.
- b) Bestem de marginale pmf'er (probability mass functions) $f_X(x)$ og $f_Y(y)$ for de stokastiske variable X og Y.
- c) Bestem middelværdierne E[X] og E[Y] af de stokastiske variable X og Y.
- d) Bestem sandsynligheden $Pr(X \le 0 \mid Y \ge 3)$.

Eksamenstermin: Vintereksamen 2019/20

Prøve: ETSMP Dato: 9. januar 2020

Opgave 3: Stokastiske processer

En WSS (stationær) og ergodisk diskret-tids stokastisk proces Y[n] er defineret som:

$$Y[n] = 3 \cdot X[n] + W[n]$$

hvor $X[n] \sim \mathcal{U}(1,3)$ er i.i.d. (uafhængigt og ens fordelt) og $W[n] \sim \mathcal{N}(0,0.5)$ er i.i.d. Desuden er X[n] og W[n] indbyrdes uafhængige.

- a) Plot tre realisationer af processen Y[n], hvor der medtages 10 samples af Y[n]. Brug en tilfældighedsgenerator og vis med kode (Matlab, Maple, Prime, Python el.lign.) hvordan realisationen er fremkommet. I Matlab kan rand() og randn() benyttes.
- b) Bestem ensemble middelværdien og variansen for processen Y[n]. Vis desuden med mellemregninger, hvordan resultatet er fremkommet.
- c) Bestem auto-korrelationen $R_{YY}(\tau)$ for processen Y[n] for tids-lag $\tau=0,1,2,$ og 3. Dvs. værdierne $R_{YY}(0)$, $R_{YY}(1)$, $R_{YY}(2)$ og $R_{YY}(3)$ skal beregnes. Vis desuden med mellemregninger, hvordan resultaterne er fremkommet.

Eksamenstermin: Vintereksamen 2019/20

Prøve: ETSMP Dato: 9. januar 2020

•

Opgave 4: Statistik

En flødebolle-producent laver flødeboller, som skal veje 30.0 gram. Producenten får besøg af fødevarekontrollen, som tilfældigt udtager 12 flødeboller til kontrolvejning. De 12 flødeboller vejer:

Måling	1	2	3	4	5	6	7	8	9	10	11	12
Vægt [g]	30.09	28.78	31.01	27.02	30.11	29.35	28.37	29.65	27.71	30.58	28.06	29.04

- a) Lav et Q-Q plot af målingerne. Er målingerne normalfordelte (svaret skal begrundes)?
- b) Hvilken test-statistik skal bruges til at teste om flødebollerne overholder den lovede vægt?
- c) Opstil en nul-hypotese og en alternativ hypotese for testen.
- d) Bestem sample middelværdi og sample varians af målingerne.
- e) Beregn p-værdien. Kan nul-hypotesen afvises med et signifikantniveau på 5%?
- f) Bestem 95% konfidensintervallet for flødebollernes vægt. Hvad fortæller det beregnede konfidensinterval?