Algoritmos de Reconhecimento

- ♦ Uma palavra pertence ou não a uma linguagem?
 - uma das principais questões relacionadas com o estudo de Ling.Formais
- ♦ "Dispositivo" de reconhecimento
 - pode ser especificado como um
 - * modelo de autômato ou algoritmo implementável em computador
 - em qualquer caso, é importante determinar
 - * "quantidade de recursos" necessários
 - * ex: tempo e espaço
 - objetivo
 - * gerar dispositivos de reconhecimento válidos para qualquer linguagem dentro de uma classe
 - * algoritmos apresentados: específicos para LLC

♦ Algoritmos de reconhecimento

- construídos a partir de uma GLC
- reconhecedores que usam Autômato com Pilha
 - * muito simples
 - * em geral, ineficientes
 - * tempo de processamento é proporcional a k | w | (w entrada; k depende do autômato)
 - * não são recomendáveis para entradas de tamanhos consideráveis
- existe uma série de algoritmos bem mais eficientes
 - * tempo de processamento proporcional a | w | 3
 - * ou até um pouco menos
 - * não é provado se o tempo proporcional a | w | 3 é efetivamente necessário para que um algoritmo genérico reconheça LLC

♦ Tipos de reconhecedores

- *Top-Down* ou *Preditivo*
- Bottom-Up

♦ Top-Down ou Preditivo

- constrói uma árvore de derivação para a entrada
 - * a partir da raiz (símbolo inicial da gramática)
 - * gera os ramos em direção às folhas (símbolos terminais que compõem a palavra

♦ Bottom-Up

- basicamente, o oposto do Top-Down
- parte das folhas e constrói a árvore de derivação em direção à raiz

AP como Reconhecedor

- ♦ Construção de reconhecedores usando AP
 - relativamente simples e imediata
 - Existe uma relação quase direta entre
 - * produções da gramática
 - * transições do AP
 - algoritmos
 - * tipo Top-Down
 - * simulam a derivação mais à esquerda da palavra a ser reconhecida
 - não-determinismo
 - * testa as diversas produções alternativas da gramática para gerar os símbolos terminais

AP Descendente

♦ Forma alternativa de construir um AP a partir de uma GLC

- algoritmo igualmente simples
- mesmo nível de eficiência
- construção:
 - * gramática sem recursão à esquerda
 - * simula a derivação mais à esquerda

♦ Algoritmo

- inicialmente, empilha o símbolo inicial
- sempre que existir uma variável no topo da pilha, substitui (de forma nãodeterminística) por todas as produções da variável
- se o topo da pilha for um terminal, verifica se é igual ao próximo símbolo da entrada

♦ Construção de um Autômato com Pilha Descendente

- seja G =(V, T, P, S)
 - * GLC
 - * sem recursão à esquerda
- $M = (T, \{q_0, q_1, q_f\}, \delta, q_0, \{q_f\}, V \cup T)$, onde
 - * $\delta(q_0, \epsilon, \epsilon) = \{(q_1, S)\}$
 - * $\delta(q_1, \epsilon, A) = \{(q_1, \alpha) \mid A \rightarrow \alpha \in P\}$
 - * $\delta(q_1, a, a) = \{(q_1, \epsilon)\}$
 - * $\delta(q_1, ?, ?) = \{(q_f, \epsilon)\}$

Eliminação da Recursividade à Esquerda

$$A \rightarrow A\alpha_1 | A\alpha_2 | \dots | A\alpha_n | \beta_1 | \beta_2 | \dots | \beta_m$$

$$\begin{array}{l} A \rightarrow \beta_1 A' \mid \beta_2 A' \mid ... \mid \beta_m A' \\ A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid ... \mid \alpha_n A' \mid \epsilon \end{array}$$

$$E \rightarrow E + T$$

$$|E - T|$$

$$|T$$

$$T \rightarrow c$$

$$|(E)$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'$$

$$|-TE'$$

$$|\epsilon$$

$$T \rightarrow c$$

$$|(E)$$

♦ Exemplo. L = $\{a^nb^n \mid n \ge 1\}$

- G = ({S}, {a, b}, P, S), onde
 P = {S → aSb | ab} (sem recursão à esquerda)
- $M = (\{a, b\}, \{q_0,q_1, q_f\}, \delta, q_0, \{q_f\}, \{S\})$

Algoritmo de Cocke-Younger-Kasami

♦ Cocke-Younger-Kasami (CYK)

- desenvolvido independentemente por
 - * Cocke, Younger e Kasami
 - * em 1965
- construído sobre uma gramática na FNC
- tipo *bottom-up*
- gera todas as árvores de derivação da entrada
- tempo de processamento proporcional a | w | 3

♦ Algoritmo

- construção de uma tabela triangular de derivação
- cada célula representa o conjunto de raízes que pode gerar a correspondente subárvore

♦ Algoritmo de CYK

- G = (V, T, P, S) na FNC onde T = {a₁, a₂, ..., a_t}
- V_{r_s} representa as células da tabela triangular de derivação (suponha w = a₁a₂...a_n)

a) Variáveis q. geram terminais diretamente $A \rightarrow a$

```
para r variando de 1 até n faça V_{r_1} = \{A \mid A \rightarrow a_r \in P\}
```

b)Produção que gera duas variáveis A → BC

```
para $ variando de 2 até n faça para r variando de 1 até n-s+1 faça V_{r_s} = \emptyset para k variando de 1 até s-1 faça V_{r_s} = V_{r_s} \cup \{A \mid A \rightarrow BC \in P, B \in V_{r_k} e C \in V_{(r+k)_{(s-k)}}\}
```

- Note-se que:
 - * limite de iteração para r é n s + 1, pois a tabela de derivação é triangular
 - * os vértices V_{r_k} e $V_{(r+k)_{(r-k)}}$ são as raízes das sub-árvores de V_{r_s}
 - * se uma célula for vazia, significa que esta célula não gera qualquer sub-árvore
- c) Condição de aceitação da entrada

• se o símbolo inicial pertence ao vértice V_{1n} (raiz da árvore de derivação de toda palavra), então a entrada é aceita

♦ Exemplo

- G = ($\{S, A\}, \{a, b\}, P, S$), onde P = $\{S \rightarrow AA \mid AS \mid b, A \rightarrow SA \mid AS \mid a\}$
- Tabela triangular de derivação para abaab

