

Real Single Particle Passing Thru Finite Surface ΔS

Fig.1

Fig.2

Subset of Rays Traversing 2D Grid System from Reference Surface ${\it Fig.3}$

Rays within a particular Ray Set $\Delta\Re$ from a Reference ΔS Occupying Solid Angle Group $\Delta\Omega$ Traversing Voxels

Fig.4

An LVG From A Reference Voxel Surface 2D or Overhead View

Fig.5

Pointer/Transport Multiplier Memory Device

Fig.6

Fig. 7

Pre-Computed Ray Set Geometric Properties (Figure 7, Block 2AI Embodiment)

Fig.8

```
7/15
1 12927 [0][0][0] - 10
2 [0][0][0]-336-:336-|0,4:1,2:37,2:73,2:109,4:110,2:146,2:182,1:188,4:189,2:
3 336
4 336
57.850558564946638e-056.784620633418995e+006.623391839641562e+002.81960000000000e-06
6 - [0][0][0] - 4 - 1.019279586938127e+00
7 - [0][0][1] - 2 - 9.413711183984186e-02
8 - [1][0][1] - 2 - 1.113416698777977e+00
9 - [2][0][1] - 2 - 1.113416698777977e+00
10 - [3][0][1] - 4 - 8.578329108772469e-02
11 - [3][0][2] - 2 - 1.027633407690246e+00
12 - [4][0][2] - 2 - 1.113416698777977e+00
13 - [5][0][2] - 1 - 1.205002778411613e-01
14 - [5][1][2] - 4 - 1.452034161741309e-01
15 - [5][1][3] - 2 - 8.477130047626756e-01
16 3 detail
17 0 6.659682137068683e+00 6.677133394014817e+00 6.623885099075124e+00
    5.176445578231292e-01 - 6.677134770900707e+00
19
       9.869710645786067e-01
20
       1.229759582661787e-01
21
       1.109947022844781e+00
22
       1.109947022844781e+00
23
       9.590364158782305e-02
24
       1.014043381256952e+00
25
       1.109947022844781e+00
26
       1.418524854996891e-01
27
       1.729307559421361e-01
28
       7.951637814029552e-01
29 1 6.697852583372446e+00 6.730875835863125e+00 6.677135463944154e+00
   4.295457766439909e-01 - 6.730877702159851e+00
31
       1.049588508542006e+00
32
      6.672025535341053e-02
33
       1.116308763895405e+00
34
       1.116308763895405e+00
35
       8.023541120737232e-02
36
       1.036073352688041e+00
37
       1.116308763895405e+00
38
       1.034249093947345e-01
39
       1.237661683734199e-01
40
       8.891176861272597e-01
41 2 6.743640693621075e+00 6.780941997558494e+00 6.730879046744218e+00
42 5.280966553287982e-02 - 6.784620633418995e+00
43
       1.094353538739710e+00
44
       2.958657686380297e-02
45
       1.123940115603512e+00
46
       1.123940115603512e+00
47
       3.584565699482696e-02
48
       1.088094458608688e+00
                                    Sample Prototype Code Output Fragment from
49
       1.123940115603512e+00
                                         Figure 8 Pre-Computational Process
50
       4.868157770248906e-02
51
       5.259631315096771e-02
                                      Fig.9
52
       1.022662224750057e+00
```


Inline Ray Set Based LVG Discrete Particle Transport Multipliers (Figure 7, Block 2 Embodiment)

Fig.111

Sample Interaction Model for Radiation (Figure 7, Block 5 Non-Fissile Embodiment)

Sample Problem

Fig. 13

0.21%

Plane 4 Total Sum 7.2516E-03

7.2366E-03

2.02% 0.08% 2.95% 5.2384E-05 5.1326E-05 3.2430E-05 3.1472E-05 2.8368E-05 2.8356E-05 3.4570E-05 3.4150E-05 2.10% %00.0 1.15% 8.2537E-05 8.0804E-05 5.8650E-05 5.7375E-05 1.3739E-04 1.3899E-04 0.0000E+00 0.0000E+00

1.69%

0.08%

1.69%

0.33%

7.7734E-05

5.9359E-05 6.0540E-05

4.8330E-05 4.8612E-05

4.8680E-05 4.9014E-05

7.7144E-05

0.76%

-1.99%

-0.58%

-0.69%

6.4404E-05 6.2589E-05

4.2318E-05

2.3141E-05 2.2726E-05

1.4523E-05 1.4176E-05

4.2186E-05

0.31%

1.80%

239%

Planer Interaction Rate Results Plane 4

Fig. 14

Present Invention Monte Carlo

% Difference

0.92%

0.16%

0.47%

-1.2%

-0.83%

-1.23% 8.4715E-04

2.3132E-04

4.5825E-04

5.9632E-04

5.8915E-04

6.8796E-04 6.9370E-04

8.3684E-04

4.6043E-04

2.3168E-04

7.4409E-05 7.2760E-05

2.0184后-04

3.9478E-04 3.8819E-04

4.9065E-04 4.9042E-04

5.6220E-04

6.8319E-04 6.8121E-04

5.6004E-04

1.9937E-04

8.4336E-05 8.3562E-05 2.22%

1.2%

1.67%

0.05%

0.38%

0.29%

2.60436-04 2.5564E-04 1.84%

0.96%

0.83%

0.98%

2.9424E-04

3.1720E-04

3.1986E-04

3.8524E-04 3.8161E-04

2.9711E-04

1.4031E-04 1.379AE-04

1.3593E-04

1.3441E-04 1.3213E-04

1.5681E-04 1.5629E-04

1.3582E-04

&

S ×											
<u>မ</u>		(GMVP) Base Case	Case								
×	(cm)	Point Flux	FSD	Node Avg. Flux	Absolute	Point Flux	Absolute	Point Flux	Absolute	Point Flux	Absolute
	X, y, z	cm ⁻² s ⁻¹	(%) •	cm ⁻² s ⁻¹	% Error	cm² s⁴	% Error	cm² s¹	% Error	cm ² s ⁻¹	% Error
5, (5,5	5.9566E+00	0.000	6.0400E+00	1.40%	5.9216E+00	0.59%	5.7700E+00	3.13%	5.9670E+00	0.17%
15, 5,	5,5	1.3719E + 00	0.000	1.3560E+00	1.16%	1.3062E + 00	4.79%	1.6300E+00	18.82%	•	,
25, 5,	, 5, 5	5.0087E-01	0.000	5.0290E-01	0.41%	4.8947E-01	2.28%	4.4600E-01	10.96%	•	•
1 Ai 35,	5,5	2.5243E-01	0.000	2.5460E-01	0.86%	2.4824E-01	1.66%	2.9200E-01	15.68%	•	•
45, 5,	5,5	1.5026E-01	0.000	1.5060E-01	0.23%	1.4818E-01	1.38%	1.6000E-01	6.48%	•	•
55, 5,	5,5	5.9529E-02	0.000	5.8166E-02	2.29%	5.8810E-02	1.21%	6.6900E-02	12.38%	7.0861E-02	19.04%
65, 5,	5,5	1.5328E-02	0.000	1.5283E-02	0.30%	1.5165E-02	1.07%	1.7100E-02	11.56%	1.8687E-02	21.91%
75, 5,	5,5	4.1769E-03	0.000	4.2170E-03	%96.0	4.1358E-03	0.98%	3.3300E-03	20.28%	5.0464E-03	20.82%
85, 5,	5,5	1.1853E-03	0.000	1.2186E-03	2.81%	1.1743E-03	0.93%	7.4400E-04	37.23%	1.3882E-03	17.11%
95,	5,5	3.4685E-04	0.000	3.2850E-04	5.29%	3.4377E-04	0.89%	3.2200E-04	7.16%	3.8732E-04	11.67%
5,5,	5, 5	8.2926E+00	0.021	8.290E+00	0.03%	8.2597E+00	0.40%	7.9400E+00	4.25%	8.2595E+00	0.40%
15,	15, 5, 5	1.8703E + 00	0.005	1.827E+00	2.31%	1.8345E+00	1.91%	2.1800E+00	16.56%	•	•
25, 5,	5,5	7.1398E-01	0.003	7.051E-01	1.24%	7.1045E-01	0.49%	6.4500E-01	899.6	1,	•
1Aii 35, 5,	5,5	3.8469E-01	0.004	3.692E-01	4.03%	3.6632E-01	4.77%	4.3000E-01	11.78%		•
45	5,5	2.5398E-01	9000	2.485E-01	2.16%	2.3171E-01	8.77%	2.6200E-01	3.16%		,
52	5,5	1.3722E-01	0.073	1.304E-01	4.97%	1.3236E-01	3.54%	1.4600E-01	6.40%	1.5426E-01	12.42%
85	5,5	4.6591E-02	0.117	4.611E-02	1.03%	4.7617E-02	2.20%	4.8400E-02	3.88%	5.3594E-02	15.03%
75,	5,5	1.5877E-02	0.197	1.604E-02	1.03%	1.6049E-02	1.09%	1.5400E-02	3.00%	1.8164E-02	14.41%
₩ ₩	5,5	5.4704E-03	0.343	5.496E-03	0.47%	5.2495E-03	4.04%	5.0800E-03	7.14%	6.1428E-03	12.29%
92	5,5	1.8508E-03	0.619	1.903E-03	2.80%	1.6929E-03	8.53%	1.2400E-03	33.00%	2.0208E-03	9.19%

Kobayashi International 3D Benchmark Problem 1A Comparison

Fig. 15

8 8	Distance	Monte Carlo (GMMP) Base Case	ese Case	Present Invention No Sunface Out	Or effor	Present Invention 2/2 Surface Out	ention te Out	Present Invention 2/2 6th Order Coeff.	ention r Coeff.
	(au)	Pairt Flux	65 65 65	Node Avg Rux	Absolute	Point Rux	Absolute	Point Flux	Absolute
	x, y, z	am² s¹	(%) •	cm² s¹	%Ena	am² s¹	%Enor	cm² s¹	%Enor
 	5,5,5	5.9566E+00	0.000	6.0645E+00	1.81%				
	15, 5, 5	1.3719E+00	0.000	1.3911E+00	1.40%				
	25, 5, 5	5.0087E-01	0.000	5.0110E-01	0.05%	-			
	35, 5, 5	25243E-01	0.000	25332E-01	3.53%				
	45, 5, 5	1.5026E-01	0.000	1.4900E-01	0.84%				
	56, 5, 5	5.9529E-02	0.000	5.8632E-02	1.51%	5.9734E-02	0.34%	6.5482E-02	10.00%
	65, 5, 5	1.5328E-02	0000	1.5302E-02	0.17%	1.4735E-02	387%	1.55421E-02	1.40%
	75, 5, 5	4.1769E-03	0.000	4.2007E-03	0.57%	4.0044E-03	4.13%	4.1066E-03	1.68%
	85, 5, 5	1.1853E-03	0.000	1.2104E-03	212%	1.0669E-03	%66'6	1.0993E-03	7.26%
	95, 5, 5	3.4685E-04	0.000	3.3002E-04	4.85%	3.4674E-04	0.03%	3.4294E-04	1.13%

Problem 1Ai No Scatter Surface Cut at x=50 cm Fig. 16

Problem/Method	Machine	Process Time (sec)
Present Invention 1Ai	Pentium Xeon 2.2 GHz 32 bit	236 Setup 0.01 Exec
Present Invention 1Ai Cut	Pentium Xeon 2.2 GHz 32 bit	163 / 0.021
Present Invention 1Ai Coeff	Pentium Xeon 2.2 GHz 32 bit	120/ 1.798
Present Invention 1Aii	Pentium Xeon 2.2 GHz 32 bit	4996 / 33.34
TORT FNSUNCL3 1Ai	FUJITSU AP3000/24 - 296 MHz	9944
TORT FNSUNCL3 1Aii	FUJITSU AP3000/24 - 296 MHz	12781
GMVP Base 1Ai	FUJITSU VPP500 100MHz	1440
GMVP Base 1Aii	FUJITSU VPP500 100MHz	378,000
ARDRA 1Ai	IBM ASCI Blue-Pacific	7847
ARDRA 1Åii	IBM ASCI Blue-Pacific	10223
EVENT 1Ai	AXP1000 667 MHz Alpha	6344
EVENT 1Aii	AXP1000 667 MHz Alpha	8357

Time Comparison of Present Invention Problem 1Ai and 1Aii

*Fig.*17