Sapienza University of Rome

Master in Engineering in Computer Science

Artificial Intelligence & Machine Learning

A.Y. 2024/2025

Prof. Fabio Patrizi

Sapienza University of Rome, Italy - Artificial Intelligence & Machine Learning (2024/2025)

1. Introduction

Fabio Patrizi

Info

- Teacher (ML): Fabio Patrizi
- 3CFU
- Personal webpage: www.diag.uniroma1.it/patrizi
- Course website: from "teaching" section in personal webpage
- Student hour: all info in personal webpage
- Textbooks:
 - [AIMA] S. Russel, P. Norvig, Artificial Intelligence, a Modern Approach, 4th Ed.
 - R.S. Sutton, A.G Barto. Reinforcement Learning 2nd Edition.
 (Available at: incompleteideas.net/book/RLbook2020.pdf)

Overview

- What is a Machine Learning problem
- ML problem classes
- Overview of ML
- Machine Learning issues

References

• [AIMA] 19.1, 19.2

Machine Learning

Machine Learning:

 Programming computers to make them improve in a task using example data or past experience

Useful when:

- No expertise available
- Humans are unable to explain how they carry out a task
- A general solution must be (fine-)tuned for specific cases
- No need to (fully) understand the solution (if it works, it's good)

What is a Learning Problem?

- Task: what is to be done
- Performance measure: how well it is done
- Experience (data): examples of ideal performance or samples

Example: Tic Tac Toe

Task: Tic Tac Toe

• Performance measure: win/loss

• Experience: Matches played so far

Example: Image Classification

- Task: Classify pictures as: cat, horse, dog
- Performance measure: # of correct classifications
- Experience: Classification examples

Example: Stock Price Prediction

- Task: Predict next stock price
- Performance measure: # predicted-vs-actual price difference
- Experience: Price chart

General Problem Formulation

Problem formulation:

- Find: function $f: X \to Y$ (X is the *instance space*)
- Given: dataset D providing partial information about f

Observe:

- D represents experience and its form depends on specific problem
- D does not allow for learning exactly f
- Need for *hypothesis* function (or *data model*) *h* approximating f: $h(x) \approx f(x)$
- h taken from hypothesis space H (data model class), e.g.:
 - linear, polynomial, exponential functions
 - boolean formulas, decision trees
 - ...

$$D = \begin{cases} 40, 0, < 1, 2, < 2, 4, < 3, 6, < 4, 8, 3 \end{cases}$$

$$0 0 0$$

$$1 2 \begin{cases} (x) = 2 \end{cases}$$

$$3 6 \begin{cases} 4 : N \rightarrow N \end{cases}$$

$$4 8$$

Machine Learning Problems

Three classes of ML Problems:

- Supervised Learning
 - Training data: input-output examples
 - Task: learn (approximate) function relating input to output
 - Two specific tasks:
 - Classification: given input data, return class (e.g., dog, cat, horse)
 - Regression: given input data, return (real) value (e.g., stock price)
- Unsupervised Learning
 - Training data: input, no output
 - Task: Cluster similar data
- 3 Reinforcement Learning
 - Training data: state-action-reward sequences
 - Task: learn optimal policy π
 - ullet mapping $\pi:$ states o actions that maximizes total (expected) reward

Supervised Learning

- Given a training set $D = \{(x_i, y_i = f(x_i))\}$ (samples from $f: X \to Y$)
- Learn function $h: X \to Y$ approximating f
 - (Discrete input): $X = A_1 \times ... \times A_m$ (finite A_i)
 - (Continuous input): $X = \mathbb{R}^n$
 - (Classification): $Y = \{c_1, \ldots, c_k\}$
 - (Regression): $Y = \mathbb{R}$

Supervised Learning: Classification

Learn $h: X \to Y$

- $Y = C = \{c_1, \ldots, c_k\}$ (each c_i is called *Class*)
- $D = \{(x_i, y_i)\} \subset X \times C$: classified instances
- $y_i = f(x_i) \in C$ (samples of f)

Examples:

- Image classification:
 - X: images; $C = \{cat, dog, horse\}$; D: classified images
- Character recognition:
 - X: handwritten characters (different styles);
 C = {a, b, c, ..., 1, 2, 3, ...};
 D: classified (images of) handwritten characters
- Speech recognition
- Medical diagnosis

Supervised Learning: Regression

Learn $h: X \to Y$

- $Y = \mathbb{R}$
- $D = \{(x_i, y_i)\} \subset X \times \mathbb{R}$: input-output examples (orange dots)
- $y_i = f(x_i) \in \mathbb{R}$ (samples of f)

Example

Unsupervised Learning

Learn $h: X \to Y$

- $Y = 2^X$; $x_i \in h(x_i)$ (x_i belongs to its own cluster); h partitions X
- $D = \{x_i\} \subset X$: input samples (no output available)

Reinforcement Learning

Learn $h: X \to Y$

- X: states; Y: actions;
- *D*: set of state-action-reward sequences $\langle s_0, a_0, r_0, \dots, s_\ell, a_\ell, r_\ell \rangle$
- $r_i \in \mathbb{R}$
- D is not given, sequences must be generated by acting
- f must maximize (expected) sum of rewards along sequences

Example:

- Tic Tac Toe
 - X: board configurations
 - Y: possible moves
 - Reward: 1 if win; 0 if loss

Machine Learning Overview

Issues: Dataset Representativeness

- D provides only partial information about f:
 - Typically, X infinite (or extremely large): |D| << |X|
 - D not enough to fully characterize f
- We look for *generalization*: h learnt on D must work well on $X \setminus D$
- (Even if bad on D!)

Inductive Learning Hypothesis

Given:

- training set D
- hypothesis $h: X \to Y$ approximating target function f

Performance measure based on evaluating h(x) vs f(x) over all $x \in D$

Inductive learning hypothesis

Any hypothesis h that approximates f well over a sufficiently large dataset D will also approximate f well over unobserved (new) instances $x \in X \setminus D$

Issues: Data Availability

- Data is the essence of ML
- Limited availability, cannot just get more data as needed
- Data collection is a major task
 - core business of many companies
- Must get the most out of available dataset D
 - training and testing

Issues: Noisy Data

Noisy data is normality

- D may be noisy, even inconsistent
 - sampling errors: $f(x) \neq y$, for $(x, y) \in D$
 - f(x) = 3 and f(x) = 4
 - No solution?

Statistical approaches needed to obtain noise-robust solutions

Summary

- Machine Learning amounts to approximating a function from samples
- Performance evaluated on dataset
- Inductive Learning Hypothesis
- Limited data availability
- Noisy/inconsistent data
- Statistical approaches needed