Trabajo Final

Percolación

Lautaro Ochotorena

Contenidos

01

¿Qué es la percolación?

Tipos de problemas y conceptos básicos

02

Algoritmo

Cómo funciona el algoritmo elegido

03

Python vs C++

Primeros pasos para la extracción de datos

04

Números aleatorios

Comparación entre gsl y rand

05

Datos extraidos

Análisis de los datos obtenidos y comparación con resutados de otras personas 06

Bibliografía

Material teórico extraido

01

La percolación estudia el paso de un fluido a través de un material poroso

Bond percolation y site percolation

Diferente formas

Cluster

 $\prod(\mathbf{p,N})$

Cluster percolador

Grupo de celdas ocupadas conectadas (verticalmente u horizontalmete)

Probabilidad de percolación con número de filas N

El cluster que conecta la parte de arriba con la de abajo

Cluster infinito

El cluster percolador cuando N tiende a infinito

Observación

Puede haber más de un cluster percolador

Algoritmo de Hoshen-Kopleman

1			2	
	3	3	?	

02

Algoritmo de Hoshen-Kopleman

1			2	
	3	3	?	

1			2		
	2	2	2	2	
		2			
4	4		5	5	
		5	5		7

Python vs C++

En segundos

Mismo script

lautaro@lautaro-VirtualBox:~/Facultad/Trabajo final/Python\$./Computo.py
241.9622015953064

Python
C++

lautaro@lautaro-VirtualBox:~/Facultad/Trabajo final/C++/Probabilidad entre 0-1\$./Computo
Execution Time: 2.18262

Más rápido

120

C++ con script más complicado

lautaro@lautaro-VirtualBox:~/Facultad/Trabajo final/C++/Probabilidad entre 0.58-0.596\$./Computo Execution Time: 769.12

Números aleatorios

Con Rand de C++

04

Números aleatorios con GSL

Entre 0-1

 $\mathbf{P_c}$

Probabilidad crítica. $P_c = Sup \{p: \prod (p, \infty) = 0\}$

$$\lim_{N \to \infty} \prod(p,N) = \begin{cases} 1 & \text{si } p > p_c \\ 0 & \text{si } p \le p_c \end{cases}$$

Entre 0-1

Entre 0.58-0.596

Requiere tomar N más grandes

Se estabiliza en 0.5928

Resultados de otra gente

Se estima que se necesita 1000 veces más trabajo computacional por cada dígito nuevo

Table 1: Determinations of p_c for site percolation on the square lattice. Numbers in parentheses represent errors in last digit(s).

year	author	method	p_c
1960	Elliott, Heap, Morgan & Rushbrooke [1]	series	0.48
1961	Domb & Sykes [2]	series	0.55
1961	Frisch, Sonnenblick, Vyssotsky, Hammersley [3]	MC	0.581(15)
1963	Dean [4]	MC	0.580(18)
1964	Sykes & Essam [5]	series	0.59(1)
1967	Dean & Bird [6]	MC	0.591(5)
1972	Neal [7]	MC	0.593(5)
1976	Sykes, Gaunt & Glen [8]	series	0.593(2)
1976	Stauffer [9]	series	0.591(1)
1976	Leath [10]	MC	0.587(14)
1978	Hoshen, Kopelman & Monberg [11]	MC	0.5927(3)
1980	Reynolds, Stanley & Klein [11]	MC	0.5931(6)
1982	Derrida & de Seze [12]	TM	0.5927(2)
1982	Djordjevic, Stanley & Margolina [13]	series	0.5923(7)
1984	Gebele [14]	MC	0.59277(5)
1985	Rapaport [15]	MC	0.5927(1)
1985	Rosso, Gouyet & Sapoval [16]	MC	0.59280(1)
1985	Derrida & Stauffer [17]	TM	0.59274(10)
1986	Ziff [18]	MC	0.59275(3)
1986	Kertész [19]	TM	0.59273(6)
1986	Ziff & Sapoval [20]	MC	0.592745(2)
1988	Ziff & Stell [21]	MC	0.5927460(5)
1989	Yonezawa, Sakamoto & Hori [22]	MC	0.5930(1)
1992	Ziff [23]	MC	0.5927460(5)
2000	Newman & Ziff [24]	MC	0.59274621(13)
2003	de Oliveira, Nóbrega & Stauffer [25]	MC	0.59274621(33)
2005	Deng & Blöte [26]	MC	0.5927465(4)
2007	M. J. Lee [27]	MC	0.59274603(9)
2008	M. J. Lee [28]	MC	0.59274598(4)
2008	Feng, Deng & Blöte [29]	TM/MC	0.59274605(3)

P_∞ es la probabilidad de que un sitio o celda ocupada pertenezca al cluster infinito

 $\beta = 5/36$

Se elige una celda ocupada al azar y se calcula el tamaño del cluster al que pertenece

Probabilidad crítica en otras formas

Lattice	Site percolation	Bond percolation
1d	1	1
2d Honeycomb	0.6962	$1 - 2\sin(\pi/18) \approx 0.65271$
2d Square	0.592746	1/2
2d Triangular	1/2	$2\sin(\pi/18) \approx 0.34729$
3d Diamond	0.43	0.388
3d Simple cubic	0.3116	0.2488
3d BCC	0.246	0.1803
3d FCC	0.198	0.119
4d Hypercubic	0.197	0.1601
5d Hypercubic	0.141	0.1182
6d Hypercubic	0.107	0.0942
7d Hypercubic	0.089	0.0787
Bethe lattice	1/(z-1)	1/(z-1)

Bibliografía

- http://materias.df.uba.ar/compua2019c1/files/2019/03/hoshen-kopelman.pdf
- https://core.ac.uk/download/pdf/326226203.pdf
- https://arxiv.org/pdf/1103.3243.pdf
- https://www.math.arizona.edu/~tgk/541/chap2.pdf
- https://en.wikipedia.org/wiki/Percolation_theory