

28377D一体板硬件用户手册

声明

南京研旭电气科技有限公司保留随时对其产品进行修改、改进和完善的权利,同时也保留在不作任何通告的情况下,终止其任何一款产品的供应和服务的权利。用户在下订单前应获取相关信息的最新版本,并验证这些信息是当前的和完整的。

1 芯片特点

- ◆ 双核架构
 - ➤ 两个TMS320C28x32位CPU
 - ➤ 主频200MHz
 - ▶ IEEE-754单精度浮点单元(FPU)
 - ➤ 三角法数学单元(TMU)
 - ▶ Viterbi/复杂数学单元(VCU-II)
- ◆ 两个可编程控制律加速器(CLA)
 - ➤ 主频200MHz
 - ▶ IEEE754单精度浮点指令
 - ▶ 独立于主CPU之外执行代码
- ◆ 片上存储器
 - ▶ 512KB (256KW) 或 1MB (512KW) 闪存 (ECC保护)
 - ▶ 172KB (86KW) 或 204KB (102KW) RAM (ECC保护或奇偶校验保护)
 - > 支持第三方开发的双区安全
- ◆ 时钟和系统控制
 - ▶ 两个内部零引脚10MHz振荡器
 - ▶ 片上晶体振荡器
 - ▶ 窗口化看门狗定时器模块
 - ▶ 丢失时钟检测电路
- ◆ 1.2V内核, 3.3VI/0设计
- ◆ 系统外设
 - ▶ 两个支持ASRAM和SDRAM的外部存储器接口EMIF
 - ▶ 两个6通道直接存储器存取(DMA)控制器
 - ▶ 多达169个支持输入滤波的独立可编程、复用通用输入/输出(GPIO)引脚
 - ▶ 外设中断控制器(ePIE)
 - ➤ 多个支持外部唤醒的低功耗模式(LPM)

◆ 通信外设

- USB2.0(MAC+PHY)
- ▶ 支持12引脚3.3V兼容通用并行端口(UPP)
- ▶ 两个控制器局域网(CAN)模块
- ➤ 三个高速(最高50MHz)串行外设接口(SPI)
- ▶ 两个多通道缓冲串行端口(McBSP)
- ▶ 四个串行通信接口(SCI)
- ▶ 两个集成电路总线接口(I2C)

◆ 模拟子系统

- ➤ 四个模数转换器(ADC)
- ▶ 16位模式
- ◆ 每个转换器的吞吐量为1.1MSPS(系统吞吐量高达4.4MSPS)
- ◆ 差分输入
- ◆ 多达12个外部通道
- ▶ 12位模式
- ◆ 每个转换器的吞吐量为3.5MSPS(系统吞吐量高达14MSPS)
- ◆ 单端输入
- ◆ 多达24个外部通道
- ▶ 每个ADC上有一个采样与保持电路
- > ADC转换的硬件集成后置处理
- ▶ 饱和偏移电压校准
- ▶ 定点计算误差
- ▶ 具有中断功能的高、低和过零比较
- ▶ 触发至采样延迟捕捉

◆ 增强型控制外设

- ▶ 24个具有增强功能的脉宽调制器(PWM)通道
- ▶ 16个高分辨率脉宽调制器(HRPWM)通道
- ▶ 8个PWM模块的A和B通道均可实现高分辨率

- ▶ 死区支持(对于标准和高分辨率均支持);
- ▶ 6个增强型捕捉(eCAP)模块;
- ▶ 3个增强型正交编码器脉冲(eQEP)模块;
- ▶ 8个 Δ Σ滤波器模块 (SDFM) 输入通道,每个通道有2个并联滤波器
- ▶ 标准SDFM数据滤波
- ▶ 用于快速响应超范围情况的比较器滤波器

2 硬件特点

2.1 技术指标

- ➤ PWM: 22路
- ➤ QEP: 2组
- ➤ ADC: 20通道
- ➤ I2C: 1路
- ➤ SPI: 1路
- ➤ CAN: 1路
- ▶ JTAG接口: 1个
- ▶ 外扩512K*16位 SRAM
- ▶ 外扩512K*16位 FLASH
- ➤ USB OTG: 1个
- ▶ SD卡插槽: 1个
- ▶ UPP接口: 1组
- ▶ RS232串行接口: 1个 (2通道: SCIA和SCIC)
- ➤ RS485接口: 1个
- ▶ 用户按钮: 5个(1个复位按钮,4个外部中断按钮)
- ▶ 电源指示灯:1个
- ▶ 信号灯:6个
- ▶ 电源摇头开关: 1个
- ▶ 启动方式选择拨码开关: 1个
- ▶ 测试点: 7个

- ➤ W5300网口: 1个
- ▶ 蜂鸣器: 1个
- ▶ +5V电源接口:1个
- ➤ 5V继电器: 1个
- ▶ 继电器接口: 1个
- ▶ 步进电机接口:1个
- ▶ 直流电机接口;1个
- ▶ 四位七段数码管
- ➤ RTC时钟

2.2 板卡资源

28377D一体板资源如图2.2所示:

图2.2 28377D一体板资源图

2.3 外设接口

- JTAG接口: 1个,一体板和DSP仿真器连接接口,可进行在线仿真和烧写程序。
- 电源接口:1个,供电电源为5V。
- CAN: 1路, 用于CAN总线组网。
- RS232接口: 2路,方便与上位机进行RS232通信。
- RS485接口: 1路,方便与上位机进行RS485通信。
- PWM接口: 22路PWM接口, (其中12路带驱动缓冲能力), 方便对电机控制。
- ADC输入接口: 20路AD输入接口,方便反馈电机的状态。
- SD卡接口: 1个,用户可自配SD卡。
- USB接口: 1个USB2.0主设备接口。
- CAP接口: 6路CAP捕捉口。
- QEP接口: 2组正交编码脉冲接口。
- 以太网接口: 1个,可以与计算机或HUB连接,进行通信。
- 直流电机接口:1个,用于连接直流电机。
- 步进电机接口:1个,用于连接步进电机。
- 测试口:7个测试口可测5.0V、3.3V、模拟端3.0V(ADC参考电压输入)、1.2V、DGND、AGND、RESET信号。
- 外部存储器接口(EMIF):用于连接CPU、CLA、DMA和各个存储器设备。
- SDFM接口: SDFM是一个4通道数字滤波器,专用于电机控制中的电流测量和旋转变压器位置解码。
- 通用并行端口(UPP): UPP是个高速并行接口,可用于ADC和DAC传输,也可与FPGA和其它 UPP互连。

2.4 功能框图

28377D一体板功能框图如图2.4.1所示:

图2.4.1 28377D一体板功能框图

3. 最小系统

3.1 供电电路

28377D一体板的供电图如图3.1所示:

图3.1 28377D一体板电源电路

28377D芯片的内核额定工作电压是1.2V, I/0口及大部分外围芯片需要的工作电压为3.3V。28377D一体板采用了LM26420芯片作为电源芯片,输出1.2V的内核电压和3.3V的I0口电压。

LM26420稳压器是一个单片式、高效率的双PWM降压DC/DC变换器。输入电压范围是3-5.5V,输出电压范围是0.8V-4.5V,且具有过压保护和热关机保护,非常适合作为28377D一体板的电源芯片。

3.2 JTAG电路

28377D一体板的JTAG接口电路采用TI公司提出的标准14脚JTAG仿真调试器接口,JTAG接口的 定义以及F28377的连接电路如下图3.2所示:

图3.2 28377D一体板JTAG电路

3.3 时钟电路

F28377D芯片有4个时钟源可以给内部的DSP核提供时钟(见下图3.3),它们分别是:

- ➤ OSCCLK(从X1或者X1及X2输入)
- ➤ GPIO XCLKIN (从特定的GPIO口输入)
- ▶ 内部的10MHz时钟源(INTOSC)
- ➤ 32kHz时钟(由内部INTOSC分频得到)

图3.3 DSP时钟源

F28377D一体板时钟电路如下图3.4所示:

图3.4 28377D一体板时钟源

28377D一体板采用了20MHZ的外部晶振。经过芯片内部锁相环倍频与分频后,产生28377D所需的200MHz时钟,CPU再进行分频,给不同的高低速外设提供时钟。

3.4 复位电路

28377D一体板的复位电路如图3.5所示:

图3.5 28377D一体板复位电路

一体板采用了TPS3808芯片,TPS3808是一款监测电压芯片,当感测电压低于阈值或手动复位引脚置低时,可以产生复位信号。如图,当按下RESET复位按键后,U17的/RESET脚产生一个低电平输入给U15的/MR引脚,此时U15的/RESET的引脚产生一个复位信号给F28377,28377芯片复位。

4 外扩插针引脚

28377D一体板外扩了2个2*15的插针引脚和2个2*17的插针引脚方便用户使用,分别为 J2, J5, J7, J8。

28377D一体板J2的定义如表4.1所示:

XEM1DO	1	2	XEM1D1
XEM1D2	3	4	XEM1D3
XEM1D4	5	6	XEM1D5
XEM1D6	7	8	XEM1D7

表4.1 28377D一体板J2定义

XEM1D8	9	10	XEM1D9
XEM1D10	11	12	XEM1D11
XEM1D12	13	14	XEM1D13
XEM1D14	15	16	XEM1D15
XEM1BAO	17	18	XEM1BA1
XEMEAO	19	20	XEM1A1
XEM1A2	21	22	XEM1A3
XEM1A4	23	24	XEM1A5
XEM1A6	25	26	XEM1A7
XEM1A8	27	28	XEM1A9
XEM1A10	29	30	XEM1A11
DVDD5. 0	31	32	DVDD5. 0
DGND	33	34	DGND

28377D一体板J5的定义如表4.2所示:

表4.2 28377D一体板J5的定义

XPWM1	1	2	XPWM2
XPWM3	3	4	XPWM4
XPWM5	5	6	XPWM6
XPWM7	7	8	XPWM8
XPWM9	9	10	XPWM10
XPWM11	11	12	XPWM12
EPWM6A/UPP_WAIT	13	14	EPWM6B/UPP_START
EPWM7A/UPP_ENA	15	16	EPWM7B/UPP_D7
EPWM8A/UPP_D6	17	18	EPWM8B/UPP_D5
EPWM9A/UPP_D4	19	20	EPWM9B/UPP_D3
EPWM10A/UPP_D2	21	22	EPWM10B/UPP_D1
EQEP1A/CAP1/UPP_D0	23	24	EQEP1B/CAP2/UPP_CLK

XQEP1A/CAP1	25	26	XQEP1B/CAP2
XQEP1I/CAP3	27	28	XQEP1S/CAP4
DGND	29	30	DVDD5. 0

28377D一体板J7的定义如表4.3所示:

表4.3 28377D一体板J7的定义

XQEP2A	1	2	XQEP2B
XQEP2I	3	4	XQEP2S
DGND	5	6	DVDD5. 0
	7	8	
ADCINC4	9	10	ADCINC3
ADCINC2	11	12	ADCINA5
ADCINA4	13	14	ADCINA3
ADCINA2	15	16	ADCINA1
ADCINA0	17	18	ADCIN14
ADCIN15	19	20	ADCINB0
ADCINB1	21	22	ADCINB2
ADCINB3	23	24	ADCIND0
ADCIND1	25	26	ADCIND2
ADCIND3	27	28	ADCIND4
AGND	> 29	30	AGND

28377D一体板J8的定义如表4.4所示:

表4.4 28377D一体板J8的定义

XEM1A12	1	2	XEM1A13
XEM1A14	3	4	XEM1A15
XEM1A16	5	6	XEM1A17
XEM1A18	7	8	XEM10En
XEM1CS3	9	10	XEM1CS2

XEM1RnW	11	12	XEM1CSO
XEM1WEn	13	14	XEM1SDCKE
XEM1CS4	15	16	XEM1CLK
XEM1WAJT	17	18	
	19	20	
SCITXDC/SD2_D1	21	22	SCIRXDC/SD2_C1
SPICLKB/SD2_D2	23	24	SPISTEBn/SD2_C2
SPISIMOB/SD2_D3	25	26	SPISOMIB/SD2_C3
CANRXA/SD2_D4	27	28	CANTXA/SD2_C4
DVDD3.3	29	30	DVDD3.3
DVDD5.0	31	32	DVDD5. 0
DGND	33	34	DGND