INTRODUCTION

INTRODUCTION

- In this project, we will learn how to define and invoke lambda functions in AWS.
 Lambda is the most popular and used service in AWS.
- AWS lambda free developers from the worry of provisioning resources, specifying operating systems, managing Hardware, and performing maintenance.
- Simply write your code and run it on Lambda!

KEY LEARNING OUTCOMES

- Understand Machine Learning workflow automation using AWS Lambda, Step functions and SageMaker Pipelines.
- 2. Learn how to define a lambda function in AWS management console.
- 3. Understand the anatomy of Lambda functions.
- 4. Learn how to configure a test event in Lambda.
- 5. Monitor Lambda invocations in CloudWatch.

ML WORKFLOWS 101

ML WORKFLOW AUTOMATION

- So far, we have been manually performing AI/ML model training, testing and deployment.
- Now, we would like to automate the process using Lambda, step functions and SageMaker Pipelines.
- This is critical to improve efficiency, reduce complexity and reduce human error.

AWS Lambda

A serverless event driven service that is perfect for mini tasks that are repeated frequently. AWS lambda empowers anyone to run code without thinking about servers or underlying infrastructure.

AWS Step Functions

allows for creating **serverless workflows** in which the output from a step is fed as an input to the next step.

•AWS Step functions converts a workflow into a **state machine diagram** that's easy to debug and understand.

AWS SageMaker Pipelines

Is a specialized continuous integration and continuous delivery (CI/CD) service for machine learning. With SageMaker Pipelines, you can create, automate, and manage end-to-end ML workflows at scale.

WHAT IS A ML WORKFLOW?

- Machine learning workflows is an orchestrated series of steps that include: (1) data collection and pre-processing, (2) model training and refinement, (3) evaluation, and (4) deployment to production.
- This process needs to be repeated frequently if data becomes available or if a new model is trained and ready for deployment in production.
- The end of each step should kick start the next step! For example, if the trained ML model meets a certain KPI, it should be ready for deployment in production.

ML WORKFLOW EXAMPLE

- This is an example of an automated ML workflow.
- · If data becomes available, an ETL and training jobs are launched.
- Trained model is evaluated and if accuracy exceeds 92%, model is deployed in production.

A new endpoint is created and replaces the existing one. Keep the existing endpoint **Perform ETL** Model Launch a ML (Extract, inference using End **Save Model Model Training** Accuracy > 92% Start **Transform and** batch Job Load) processing job Deploy a new

endpoint

WHAT IS AWS LAMBDA?

AWS LAMBDA 101

- AWS lambda free developers from the worry of provisioning resources, specifying operating systems, managing Hardware, and performing maintenance.
- Simply write your code and run it on Lambda! You only pay per milliseconds for the compute power so no need to provision infrastructure upfront.
- AWS lambda is one of the most frequently used services in AWS.
- Link to documentation: https://aws.amazon.com/lambda/
- Serverless applications offer the following benefits:
 - 1. No infrastructure management required
 - 2. Autoscaling based on demand
 - 3. Pay for value due to autoscaling
 - 4. High Security AWS manages this on your behalf with shared responsibility model
 - 5. High availability

AWS LAMBDA 101

- AWS lambda empowers anyone to run code without thinking about servers or underlying infrastructure (you don't have to specify t2.medium as an example anymore).
- AWS Lambda is serverless event driven service that is perfect for mini tasks that are repeated frequently.
- AWS Lambda works as an orchestrator between multiple decoupled AWS Services.

AWS LAMBDA 101

- AWS Lambda function could be written in many programming languages such as Python, Java, C#, Go, Ruby, and Node.js
- Lambda functions are event driven, they are triggered when an event takes place such
 as an object that is uploaded to S3 or request to a given endpoint.
- Lambda functions can be used to invoke other AWS services.
- Note that with AWS Free Tier, you have 1 Million Lambda triggers for free!
- AWS Pricing is powerful and efficient:
 - 1. Compute time is charged every 100ms increments
 - 2. No hourly minimums
 - 3. No payments for idle resources

AWS LAMBDA 101: DEMO

https://console.aws.amazon.com/lambda/home?region=us-east-1#/begin

AWS LAMBDA 101: BENEFITS

Enhanced Agility

Reduced Costs

Fast Time to Market

No hassle in Provisioning HW and Managing SW

Allows Developers to Focus on the product

AWS LAMBDA 101: WHAT DOES LAMBDA HANDLE?

Load Balancing by routing requests to available instances

Autoscaling

Failures and retry

Security and isolation

Operating System Management Utilization and Billing

AWS LAMBDA FUNCTION ANATOMY

AWS LAMBDA FUNCTION ANATOMY

- Handler() Function: Function to be executed upon invocation and it requires two
 arguments "event" and "context".
- **Event Object:** data sent during lambda function invocation, for example if a request is made from S3, the event object will contain the bucket key and what kind of action has been performed on the bucket.
- **Context object:** this is generated by the platform and contains information about the underlying infrastructure and execution environment such as allowed runtime and memory.

```
import json

def lambda_handler(event, context):
    # TODO implement

return {
    'statusCode': 200,
    'body': json.dumps('Hello From 50 Days of AWS ML Course!')
}
```

DEMO: DEFINE AN AWS LAMBDA FUNCTION USING CONSOLE – EXAMPLE 1

GO TO AWS LAMBDA AND CLICK ON CREATE FUNCTION

THIS FUNCTION RETURNS STATUS CODE AND "HELLO FROM LAMBDA"

CONFIGURE A TEST EVENT BELOW. A TEST EVENT IS A JSON OBJECT THAT MOCKS THE STRUCTURE OF REQUESTS EMITTED BY AWS SERVICES TO INVOKE A LAMBDA FUNCTION.

DEMO EXAMPLE 2: DEFINE AN AWS LAMBDA FUNCTION USING CONSOLE

SELECT AUTHOR FROM SCRATCH, GIVE A UNIQUE LAMBDA FUNCTION NAME, SELECT A RUNTIME AND CLICK CREATE FUNCTION

WELCOME TO YOUR FIRST LAMBDA FUNCTION! YOU CAN SEE THE CODE SOURCE BELOW

WRITE THIS FUNCTION BELOW AND CLICK DEPLOY

DEMO EXAMPLE 2: TEST AN AWS LAMBDA FUNCTION USING CONSOLE

LET'S TEST THIS FUNCTION, CLICK ON "CONFIGURE TEST EVENT"

PROVIDE A NAME TO THE EVENT AND CLICK "CREATE"

NOTE THAT YOU CAN SELECT SEVERAL TEST EVENT FROM THIS MENU.

EXPLORE THE S3-PUT EVENT FOR EXAMPLE

CLICK TEST AND OBSERVE THE FUNCTION RESPONSE

LET'S TEST THE FUNCTION AGAIN BY SETTING "BANK CLIENT ID": 005

NOTE THAT THE ELSE BRANCH HAS BEEN EXECUTED

DEMO EXAMPLE 2: MONITOR AN AWS LAMBDA FUNCTION USING CONSOLE

GO TO MONITOR AND LOGS TO TRACK THE LAMBDA FUNCTION REQUESTS, DURATION, BILLING..ETC

CLICK ON A SAMPLE LOG EVENT TO VIEW DETAILS ON CLOUDWATCH

GO TO MONITOR AND METRICS TO VIEW DASHBOARD WITH ALL METRICS INCLUDING INVOCATIONS

FINAL END-OF-DAY CAPSTONE PROJECT

FINAL CAPSTONE PROJECT

- Define a Lambda Function that takes in the number of stock units and stock price and calculates the total value of the portfolio.
- Return the total value of the portfolio.
- Configure the following test events:
 - Stock Units = 20, stock value = \$1000
 - Stock Units = 5, stock value = \$2000
- Assume that the default currency in the previous lambda function is in USD, we would like to enhance this function to either return USD or CAD currencies (assume exchange rate 1 USD = 1.3 CAD).
- Define and test the new Lambda Function.

FINAL END-OF-DAY CAPSTONE PROJECT SOLUTION

