

# OPERATION AND METRIC ANALYTICS

-RANAPRATAP GHOSH

- Operations analysis is the analysis of the complete end-toend operations of a business. With this, the compa nies, can identify areas for improvement. You work closely with operations teams, support teams and marketing teams to help them better understand the data they collect.
- Since it is one of the most important parts of a business, this analysis is further used to predict the e overall growth or downfall of a startup or established business. This means better automation, better understanding between Cross functional teams, and more efficient workflows.
- Studying improving metrics is also an important part of operational analysis because you are a data analyst and you need to be able to understand or make other teams understand the following questions: Why engage daily decrease? Why are sales down? ETC. Questions like these need to be answered on a daily basis, so it's important to check that the metrics are increasing or decreasing.

# Project Description

# Approach

- We'll go through the data already available in csv form, tables can be created from for the respective databases using different tools.
- When the tables are finally created, a query is written and executed to obtain the tables most relevant to the problem. The resulting table is then exported for further processing.
- These charts help us better understand the data, help us research and provide our te ams with the information they need.

# Tech-Stack Used

PostgreSQL server
PostgreSQL documentation
MySQL Workbench 8.0

The software offer s better data sec urity, more than builtin features and ondemand scalabili ty, and it also pro vides autocompletion functi onality that allow developers to ea sily write queries.

Case Study 1

### Number of jobs reviewed per hour per day for Nov 2020

Query-

select ds,count(job\_id) as jobs\_per\_day, sum(time\_spent)/3600 as hours\_spent

from case\_study\_1

where ds >='2020-11-01' and ds <='2020-11-30'

group by ds

order by ds;



### 2. 7 day rolling average of throughput

#### Query:

```
WITH A AS (SELECT ds, COUNT (job_id) AS jobs, SUM (time_spent) AS total_time FROM case_study_1
GROUP BY ds)
SELECT ds, SUM (jobs) OVER (ORDER BY ds ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) / SUM (total_time) OVER (ORDER BY ds ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS 7d_rolling_throughput_avg FROM A
```

|   | ds         | 7d_rolling_throughput_avg |
|---|------------|---------------------------|
| ٠ | 2020-11-25 | 0.0222                    |
|   | 2020-11-26 | 0.0198                    |
|   | 2020-11-27 | 0.0146                    |
|   | 2020-11-28 | 0.0210                    |
|   | 2020-11-29 | 0.0233                    |
|   | 2020-11-30 | 0.0268                    |

# 3. The percentage share of each language used in last 30 days

Query: SELECT language, count(\*) as num\_jobs, sum(count(\*)) over() as total\_jobs,

count(\*) \* 100.0 / sum(count(\*)) Over() as 'language Percentage'

FROM case\_study\_1

GROUP BY language;

|   | language | num_jobs | total_jobs | language<br>Percentage |
|---|----------|----------|------------|------------------------|
| ۰ | English  | 1        | 8          | 12.50000               |
|   | Arabic   | 1        | 8          | 12.50000               |
|   | Persian  | 3        | 8          | 37.50000               |
|   | Hindi    | 1        | 8          | 12.50000               |
|   | French   | 1        | 8          | 12.50000               |
|   | Italian  | 1        | 8          | 12.50000               |

### 4. Display duplicates from the table

Query:

SELECT ds, any\_value(job\_id) as job\_id, any\_value(actor\_id) as actor\_id, any\_value(event) as event, any\_value(language) as language, any\_value(time\_spent) as time\_spent, any\_value(org) as

org

FROM case\_study\_1

GROUP BY ds

HAVING count(ds) > 1;



Case Study 2

## Calculate the weekly user engagement

#### Query:

```
select date_trunc('week', e.occurred_at) as date, count(distinct e.user_id) as weekly_user_engagement from events e where e.event_type = 'engagement' AND e.event_name = 'login' group by 1 order by 1
```

### Calculate the weekly user engagement

| date                | weekly_user_engagement |
|---------------------|------------------------|
| 2014-04-28 00:00:00 | 701                    |
| 2014-05-05 00:00:00 | 1054                   |
| 2014-05-12 00:00:00 | 1094                   |
| 2014-05-19 00:00:00 | 1147                   |
| 2014-05-26 00:00:00 | 1113                   |
| 2014-06-02 00:00:00 | 1173                   |
| 2014-06-09 00:00:00 | 1219                   |
| 2014-06-16 00:00:00 | 1262                   |
| 2014-06-23 00:00:00 | 1249                   |
| 2014-06-30 00:00:00 | 1271                   |
| 2014-07-07 00:00:00 | 1355                   |
| 2014-07-14 00:00:00 | 1345                   |
| 2014-07-21 00:00:00 | 1363                   |
| 2014-07-28 00:00:00 | 1442                   |
| 2014-08-04 00:00:00 | 1266                   |
| 2014-08-11 00:00:00 | 1215                   |
| 2014-08-18 00:00:00 | 1203                   |
| 2014-08-25 00:00:00 | 1194                   |
|                     |                        |



### Calculate the user growth for product

#### Query:

select date\_trunc('month', u.created\_at) as month, count(\*) as all\_users, count(case when u.activated\_at is not null then u.user\_id else null end) as activated\_users from users u where u.created\_at >= '2013-01-01' and u.created\_at <= '2014-08-31' group by 1 order by 1



|    | month           | all_users | activated_users |
|----|-----------------|-----------|-----------------|
| 1  | 2013-01-01 00:0 | 332       | 160             |
| 2  | 2013-02-01 00:0 | 328       | 160             |
| 3  | 2013-03-01 00:0 | 383       | 150             |
| 4  | 2013-04-01 00:0 | 410       | 181             |
| 5  | 2013-05-01 00:0 | 486       | 214             |
| 6  | 2013-06-01 00:0 | 485       | 213             |
| 7  | 2013-07-01 00:0 | 608       | 284             |
| 8  | 2013-08-01 00:0 | 636       | 316             |
| 9  | 2013-09-01 00:0 | 699       | 330             |
| 10 | 2013-10-01 00:0 | 826       | 390             |
| 11 | 2013-11-01 00:0 | 816       | 399             |
| 12 | 2013-12-01 00:0 | 972       | 486             |
| 13 | 2014-01-01-00:0 | 1083      | 552             |
| 14 | 2014-02-01 00:0 | 1054      | 525             |
| 15 | 2014-03-01 00:0 | 1231      | 615             |
| 16 | 2014-04-01 00:0 | 1419      | 726             |
| 17 | 2014-05-01 00:0 | 1597      | 779             |
| 18 | 2014-06-01 00:0 | 1728      | 873             |
| 19 | 2014-07-01 00:0 | 1983      | 997             |
| 20 | 2014-08-01 00:0 | 1958      | 1013            |

Calculate the user growth for product (Charts)

# Calculate the weekly retention of users-sign up cohort

select date\_trunc('week', z.occurred\_at) as 'week'', Query: avg(z.age\_at\_event) as "Average age during week", count(distinct case when z.user\_age > 70 then z.user\_id else null end) as "10+ weeks", count(distinct case when z.user\_age < 70 and z.user\_age >= 63 then z.user\_id else null end) as "9 weeks", count(distinct case when z.user\_age < 63 and z.user\_age >= 56 then z.user\_id else null end) as "8 weeks", count(distinct case when z.user\_age < 56 and z.user\_age >= 49 then z.user\_id else null end) as "7 weeks", count(distinct case when z.user\_age < 49 and z.user\_age >= 42 then z.user\_id else null end) as "6 weeks", count(distinct case when z.user\_age < 42 and z.user\_age >= 35 then z.user\_id else null end) as "5 weeks", count(distinct case when z.user\_age < 35 and z.user\_age >= 28 then z.user\_id else null end) as "4 weeks",

# Calculate the weekly retention of users-sign up cohort

Query:

```
count(distinct case when z.user_age < 28 and z.user_age >= 21 then
z.user_id else null end) as "3 weeks",
count(distinct case when z.user_age < 21 and z.user_age >= 14 then
z.user_id else null end) as "2 weeks",
count(distinct case when z.user_age < 14 and z.user_age >= 7 then
z.user_id else null end) as "1 week",
count(distinct case when z.user_age < 7 then z.user_id else null end) as
"less than a week"
from( select e.occurred_at, u.user_id, date_trunc('week', u.activated_at)
as activation_week, extract('day' from e.occurred_at - u.activated_at)
as age_at_event,
extract('day' from '2014-08-31'::timestamp - u.activated_at) as user_age
from users u
```

# Calculate the weekly retention of users-sign up cohort

Query:

```
join events e on e.user_id = u.user_id and e.event_type = 'engagement' and e.event_name = 'login' and occurred_at >= '2014-05-01' and occurred_at < '2014-08-31' where u.activated_at is not null) z group by 1 order by 1
```

# Calculate the weekly retention of users-sign up cohort (Charts)

| _              |             |           |         |         |         |         |         |         |         |         |        |               |
|----------------|-------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------------|
| week           | Average age | 10+ weeks | 9 weeks | 8 weeks | 7 weeks | 6 weeks | 5 weeks | 4 weeks | 3 weeks | 2 weeks | 1 week | less than a w |
| 2014-04-28 0   | 124.0072    | 701       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-06-06 0   | 124.3817    | 1054      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-05-12 0   | 131.9396    | 1094      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-05-19 0   | 132.3266    | 1147      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-05-26 0   | 132.3454    | 1113      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-06-02 0   | 131.8311    | 1173      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-06-09 0   | 131.0426    | 1219      | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 3 2014-06-16 0 | 136,4806    | 1246      | 7       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-06-23 0   | 136.2789    | 1025      | 205     | 10      | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-06-30 0   | 136.4193    | 912       | 146     | 200     | 8       | 0       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-07-07 0   | 135,8888    | 896       | 96      | 129     | 222     | 9       | 0       | 0       | 0       | 0       | 0      | 0             |
| 2014-07-14 0   | 143.4488    | 830       | 60      | 81      | 149     | 214     | 9       | 0       | 0       | 0       | 0      | 0             |
| 2014-07-21 0   | 141.7028    | 788       | 41      | 59      | 94      | 143     | 219     | 16      | 0       | 0       | 0      | 0             |
| 2014-07-28 0   | 144.0787    | 903       | 29      | 43      | 80      | 91      | 147     | 235     | 12      | 0       | 0      | 0             |
| 2014-08-04 0   | 140.7322    | 677       | 22      | 35      | 51      | 52      | 77      | 152     | 191     | 8       | 0      | 0             |
| 2014-08-11 0   | 125.9943    | 562       | 19      | 32      | 37      | 35      | 55      | 92      | 127     | 243     | 13     | 0             |
| 2014-08-18 0   | 128.0217    | 520       | 15      | 25      | 27      | 18      | 37      | 64      | 68      | 156     | 260    | 11            |
| 2014-08-25 0   | 131.7819    | 469       | 16      | 14      | 23      | 18      | 33      | 43      | 50      | 75      | 168    | 258           |

# Calculate the weekly engagement per device

```
Query: select date_trunc('week', e.occurred_at) as week,
       count(distinct e.user_id) as weekly_users,
       count(distinct case when e.device in ('macbook pro', 'acer aspire
       notebook', 'acer aspire desktop', 'lenovo thinkpad', 'mac mini', 'dell inspiron
       desktop','dell inspiron notebook','windows surface','macbook air','asus
       chromebook', 'hp pavilion desktop') then e.user_id else null end) as
       computer,
       count(distinct case when e.device in ('iphone 5s', 'nokia lumia 635', 'amazon
       fire phone', 'iphone 4s', 'htc one', 'iphone 5', 'samsung galaxy s4') then
       e.user_id else null end) as phone,
       count(distinct case when e.device in ('kindle fire', 'samsung galaxy
       note','ipad mini','nexus 7', 'nexus 10','samsung galaxy tablet','nexus 5','ipad
       air') then e.user_id else null end) as tablet from events e where e.event_type
       = 'engagement' and e.event_name = 'login'
       group by 1
       order by 1
```



|     | week                | weekly_users | computer | phone | tablet |
|-----|---------------------|--------------|----------|-------|--------|
| 1   | 2014-04-28 00:00:00 | 701          | 423      | 231   | 140    |
| 2   | 2014-05-05 00:00:00 | 1054         | 720      | 373   | 240    |
| 3   | 2014-05-12 00:00:00 | 1094         | 724      | 386   | 263    |
| 4   | 2014-05-19 00:00:00 | 1147         | 772      | 409   | 272    |
| 5   | 2014-05-26 00:00:00 | 1113         | 727      | 386   | 257    |
| 6   | 2014-06-02 00:00:00 | 1173         | 800      | 391   | 275    |
| 7   | 2014-06-09 00:00:00 | 1219         | 808      | 446   | 269    |
| 8   | 2014-06-16 00:00:00 | 1262         | 825      | 437   | 296    |
| 9   | 2014-06-23 00:00:00 | 1249         | 849      | 422   | 284    |
| 10  | 2014-06-30 00:00:00 | 1271         | 820      | 482   | 277    |
| 11  | 2014-07-07 00:00:00 | 1355         | 898      | 494   | 282    |
| 12  | 2014-07-14 00:00:00 | 1345         | 924      | 485   | 266    |
| 13  | 2014-07-21 00:00:00 | 1363         | 921      | 503   | 277    |
| 1.4 | 2014-07-28 00:00:00 | 1442         | 965      | 492   | 300    |
| 15  | 2014-08-04 00:00:00 | 1266         | 921      | 412   | 221    |
| 16  | 2014-08-11 00:00:00 | 1215         | 89.4     | 360   | 211    |
| 17  | 2014-08-18 00:00:00 | 1203         | 887      | 344   | 208    |
| 18  | 2014-08-25 00:00:00 | 1194         | 879      | 361   | 199    |

Calculate the weekly engagement per device (Charts)

### Calculate the email engagement matrices

Query:

select date\_trunc('week',e.occurred\_at) as week, count(case when e.action = 'sent\_weekly\_digest' then e.user\_id else null end) as weekly\_emails, count(case when e.action = 'sent\_reengagement\_email' then e.user\_id else null end) as reengagement\_emails, count(case when e.action = 'email\_open' then e.user\_id else null end) as email\_opens, count(case when e.action = 'email\_clickthrough' then e.user\_id else null end) as email\_clickthroughs from email\_events e group by 1 order by 1

# Calculate the email engagement matrices (Charts)

|     | week                | weekly_emails | reengagement_emails | email_opens | email_clickthroughs |
|-----|---------------------|---------------|---------------------|-------------|---------------------|
| 1   | 2014-04-28 00:00:00 | 908           | 98                  | 332         | 187                 |
| 2   | 2014-05-05 00:00:00 | 2602          | 164                 | 919         | 434                 |
| 3   | 2014-05-12 00:00:00 | 2665          | 175                 | 971         | 479                 |
| 4   | 2014-05-19 00:00:00 | 2733          | 179                 | 995         | 498                 |
| 5   | 2014-05-26 00:00:00 | 2822          | 179                 | 1026        | 453                 |
| 6   | 2014-06-02 00:00:00 | 2911          | 199                 | 993         | 492                 |
| 7   | 2014-06-09 00:00:00 | 3003          | 190                 | 1070        | 533                 |
| 8   | 2014-06-16 00:00:00 | 3105          | 234                 | 1161        | 563                 |
| 9   | 2014-06-23 00:00:00 | 3207          | 187                 | 1090        | 524                 |
| 10  | 2014-06-30 00:00:00 | 3302          | 222                 | 1168        | 559                 |
| 11  | 2014-07-07 00:00:00 | 3399          | 214                 | 1230        | 622                 |
| 12  | 2014-07-14 00:00:00 | 3499          | 226                 | 1260        | 607                 |
| 13  | 2014-07-21 00:00:00 | 3592          | 206                 | 1211        | 584                 |
| 1.4 | 2014-07-28 00:00:00 | 3706          | 230                 | 1386        | 633                 |
| 15  | 2014-08-04 00:00:00 | 3793          | 206                 | 1336        | 432                 |
| 16  | 2014-08-11 00:00:00 | 3897          | 224                 | 1357        | 430                 |
| 17  | 2014-08-18 00:00:00 | 4012          | 257                 | 1421        | 487                 |
| 18  | 2014-08-25 00:00:00 | 4111          | 263                 | 1533        | 493                 |



### Conclusion

- In conclusion, operational analysis is one of the most powerful tools for examining matrix spikes in a organization's data and determining why that organization is succeeding or failing. This information then helps team members make recommendations that can help resolve the issues that the organization has faced.
- We can see from Case Study 1 that the throughput moving average is better because it gives us those large occasional fluctuations, helping analysts and team members better under stand the data.
- From Case Study 2, we can see how users interact with the business and help the product grow. We can also see how well the organization is able to retain its leg acy users using the User Retention Group. We can also understand what type of device the users pri marily use to access products and how users interact with messaging services.

# Thank You