The Devil Is In The Details... And The Data — Tutorial On Preparing Data for Multi-state Modelling

Enoch Yi-Tung Chen

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet

The 2022 Northern European Stata Conference 12 Oct 2022

https://github.com/enochytchen/NordicStata2022

Illness-death model

Figure: Illness-death model

Illness-death model

Example data from Crowther2017 (1)

Illness-death model

Transition matrix for Illness-death model

Figure: Illness-death model

from:Death

multistate::msset

- . msset, id(pid) states(rfi osi) times(rf os) transm(tmat)
- . list pid rf rfi os osi _trans _start _stop if pid == 1 | pid ==1371, sepby(pid)

+-								+
1	pid	rf	rfi	os	osi	_trans	_start	_stop
-	1	59.1	0	59.1	alive	1	0	59.104721
-	1	59.1	0	59.1	alive	2	0	59.104721
١.								
	1371	16.6	1	24.3	deceased	1	0	16.558521
	1371	16.6	1	24.3	deceased	2	0	16.558521
1	1371	16.6	1	24.3	deceased	3	16.558521	24.344969

Figure: Illness-death model

Reversible illness-death model

Figure: Reversible illness-death model

Example data from Crowther2017

. use http://fmwww.bc.edu/repec/bocode/m/multistate_example, clear (Rotterdam breast cancer data, truncated at 10 years) . // Assume recovery indicator and recovery time . set seed 12345 . // Recovery indicator . gen rei = cond(runiform() < 0.5, 0, 1) if rfi == 1 & rf!= os (1,464 missing values generated) . // Recovery . gen re = runiform(rf, os) if rei == 1 (2,243 missing values generated) . save multistate_example_temp.dta, replace . // List one patient to see the variables . list pid rf rfi re rei os osi if pid == 2778 , sepby(pid) noobs | pid rf rfi re rei os osi | 2778 40.3 1 53.36185 1 114.0 alive

Transition matrix for reversible illness-death model

```
. matrix rtmat = (.,1,2\ 3,.,4\.,...)
. matrix colnames rtmat = to:Health to:Relapse to:Death
. matrix rownames rtmat = from:Health from:Relapse from:Death
. matrix list rtmat
rtmat[3,3]
```


Figure: Reversible illness-death model

Common mistake 1

- . msset, id(pid) states(rfi osi rei) times(rf os re) transm(rtmat)
 All elements of the lower triangle of transmatrix() must be coded missing = .
- . matrix list rtmat
 rtmat[3,3]

Common mistake 2

- . msset, id(pid) states(rfi osi rei) times(rf os re)
- . list pid rf rfi re rei os osi _trans _start _stop _status if pid == 2778

	pid	rf	rfi	re	rei	os	osi	_trans	_start	_stop	_status
11725.	2778	40.3	1	53.36185	1	114.0	alive	1	0	40.279263	1
11726.	2778	40.3	1	53.36185	1	114.0	alive	2	0	40.279263	0
11727.	2778	40.3	1	53.36185	1	114.0	alive	3	0	40.279263	0
11728.	2778	40.3	1	53.36185	1	114.0	alive	4	40.279263	53.361855	0
11729.	2778	40.3	1	53.36185	1	114.0	alive	5	40.279263	53.361855	1
	+										+

msset created the following variables /* from float %9.0g Starting state float %9.0g Receiving state to status byte %8.0g Event (transition) indicator start double %10.0g Starting time for each transition double %10.0g Stopping time for each transition stop %8.0g Data modified _flag byte trans float %9.0g Transition number _trans1 %8.0g _trans== 1.0000 byte _trans2 %8.0g _trans== 2.0000 byte trans3 %8.0g trans== 3.0000 byte */ // Generate variables

gen _from = .
gen _to = .
gen _start = .
gen _stop = .
gen _status = .

Target: make wide-format data into long-format

Figure: Reversible illness-death model

```
// Make 4 duplicates for each patient to define transitions
expand 4

// Mannually make msset format
bysort pid: gen _trans = _n

// Generate _episode for potential recurrent events after recovery
gen _episode = 1
expand 2 if (_tran == 1 | _tran == 2) & rei == 1, gen(du)
replace _episode = 2 if du == 1
drop du
```


Figure: Reversible illness-death model

```
// Check the duplicates were done correctly
list pid rf rfi re rei os osi _trans _episode if pid == 2778 , sepby(pid) noobs
        rf rfi re rei os osi _trans _episode |
   pid
  2778
       40.3 1 53.36185 1 114.0 alive
      40.3 1 53.36185 1 114.0 alive
  2778
  2778
       40.3 1 53.36185 1 114.0 alive
  2778
      40.3 1 53.36185 1 114.0 alive
      40.3 1 53.36185 1 114.0 alive
  2778
  2778
      40.3 1 53.36185 1 114.0
                                  alive
```


Figure: Reversible illness-death model

```
Specify _from _to
. matrix list rtmat
rtmat[3,3]
                  to: to: to:
              Health Relapse Death
 from:Health
from:Relapse
  from:Death
replace _from = 1 if _trans == 1 | _trans == 2
replace from = 2 if trans == 3 | trans == 4
replace to = 1 if trans == 3
replace _to = 2 if _trans == 1
replace _to = 3 if _trans == 2 | _trans == 4
```

Specify _start _stop

Figure: Reversible illness-death model

Specify _start _stop

Figure: Reversible illness-death model

Specify _start _stop

Figure: Reversible illness-death model

Specify _status

Figure: Reversible illness-death model

Specify _status

Figure: Reversible illness-death model

Specify _status

Figure: Reversible illness-death model

Check

```
// List those who are not at risk in each transition
// There shouldn't be any missing tho
// If there is, it means there's something wrong
list pid _start _stop _from _to _status _trans ///
    if _start == . | _stop == . | _status == .
```


Figure: Reversible illness-death model

Check

. list pid rf rfi re rei os osi _trans _episode _start _stop _status if pid == 2846

	pid	rf	rfi	re	rei	os	osi	_trans	_episode	_start	_stop	_status
11281.			1		1	72.7	deceased	1	1	-	24.34	1
11282.	2846	24.3	1	26.14	1	72.7	deceased	2	1	0	24.34	0
11283.	2846	24.3	1	26.14	1	72.7	deceased	3	1	24.34	26.14	1
11284.	2846	24.3	1	26.14	1	72.7	deceased	4	1	24.34	26.14	0
13397.	2846	24.3	1	26.14	1	72.7	deceased	1	2	26.14	72.73	0
13398.	2846	24.3	1	26.14	1	72.7	deceased	2	2	26.14	72.73	1
	+											+

Figure: Reversible illness-death model

Check

. tab _tr_epi _status

_tr_epi	 	_status 0	1	I	Total
1_1 1_2 2_1 2_2 3_1 4_1	 2, 	464 739 787 217 779 963	1,518 0 195 522 739 555	 	2,982 739 2,982 739 1,518 1,518
Total	l 6,	,949	 3,529	1	10,478

preserve

restore

. use multistate_example_temp, clear

(Rotterdam breast cancer data, truncated at 10 years)

. tab rfi

Relapse indicator	 Freq.	Percent	Cum.
0 1	1,464 1,518	49.09 50.91	49.09 100.00
Total	2,982	100.00	

Health Relapse

Death

Figure: Reversible illness-death model

Check

. tab _tr_epi _status

_tr_epi		tatus	Total
1_1 1_2 2_1 2_2 3_1 4_1	739 2,787 217 779	1,518 0 195 522 739 555	2,982 739 2,982 739 1,518 1,518
Total	-+ 6,949	3,529	10,478

preserve

. use multistate_example_temp, clear (Rotterdam breast cancer data, truncated at 10 years)

. tab rei

rei	Freq.	Percent	Cum.
0 1	779 7 39	51.32 48.68	51.32 100.00
Total	1,518	100.00	
restore			

Figure: Reversible illness-death model

Check

. tab _tr_epi _status

_tr_epi	1	_status 0	1	I	Total
1_1 1_2 2_1 2_2 3_1 4_1	 	1,464 739 2,787 217 779 963	1,518 0 195 522 739 555		2,982 739 2,982 739 1,518 1,518
Total	-+- 	6,949	3,529	1	10,478

preserve

. restore

. use multistate_example_temp, clear

(Rotterdam breast cancer data, truncated at 10 years)

. tab osi

Overall survival	Freq.	Percent	Cum.
alive deceased	1,710 1,272	57.34 42.66	57.34 100.00
Total	2,982	100.00	

Figure: Reversible illness-death model

Summary

- 1. Always put the diagram aside
- Thinking about competing risk (What has happened? What may happen next? Risk set?)
- 3. No error \neq correct data. The devil is in the details and the data!
- 4. Then...happy hour for multi-state modelling!

Acknowledgements

Nikolaos Skourlis (Karolinska Institutet)

Appendix

Slides and syntax of this presentation can be found at: https://github.com/enochytchen/NordicStata2022

References

 Crowther MJ, Lambert PC. Parametric multi-state survival models: flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. Statistics in Medicine 2017;36:4719–4742.