Dario Cardamone

University of Notre Dame SEA 94th Annual Meeting

Figure 1: Tax Rebates During Economic Downturns

Figure 1: Tax Rebates During Economic Downturns

Aims of fiscal transfers:

- Alleviate economic hardship for households at risk
- Stimulate spending during downturns

Figure 1: Tax Rebates During Economic Downturns

Aims of fiscal transfers:

- Alleviate economic hardship for households at risk
- Stimulate spending during downturns

Challenges:

- Policy lags (e.g., decision-making/implementation)
- Determining the optimal size

Figure 1: Tax Rebates During Economic Downturns

Aims of fiscal transfers:

- Alleviate economic hardship for households at risk
- Stimulate spending during downturns

Challenges:

- Policy lags (e.g., decision-making/implementation)
- Determining the optimal size

Implications for welfare:

Suboptimal size and timing can limit welfare gains

This paper in a nutshell:

- Simple, automatic rules for fiscal transfers
- Optimal design in terms of size, timing, and targeting

This paper in a nutshell:

- Simple, automatic rules for fiscal transfers
- Optimal design in terms of size, timing, and targeting

- Should capture well mechanisms of fiscal transfers:
 - 1. Stimulate household consumption
 - 2. Provide partial insurance to households

This paper in a nutshell:

- Simple, automatic rules for fiscal transfers
- Optimal design in terms of size, timing, and targeting

- Should capture well mechanisms of fiscal transfers:
 - 1. Stimulate household consumption
 - 2. Provide partial insurance to households
- THANK model (Bilbiie, 2024)

This paper in a nutshell:

- Simple, automatic rules for fiscal transfers
- Optimal design in terms of size, timing, and targeting

- Should capture well mechanisms of fiscal transfers:
 - 1. Stimulate household consumption ✓
 - 2. Provide partial insurance to households X
- THANK model (Bilbiie, 2024)

This paper in a nutshell:

- Simple, automatic rules for fiscal transfers
- Optimal design in terms of size, timing, and targeting

- Should capture well mechanisms of fiscal transfers:
 - 1. Stimulate household consumption ✓
 - 2. Provide partial insurance to households X
- THANK model (Bilbiie, 2024)

This paper in a nutshell:

- Simple, automatic rules for fiscal transfers
- Optimal design in terms of size, timing, and targeting

Framework:

- Should capture well mechanisms of fiscal transfers:
 - 1. Stimulate household consumption ✓
 - 2. Provide partial insurance to households X
- THANK model (Bilbiie, 2024)

Solution:

■ THANK with endogenous switching (new!)

THANK with endogenous switching

Household block:

As in the THANK model, but with endogenous switching between Savers and Hand-to-Mouth households:

$$\left[egin{array}{ccc} \mathit{Sav}_t & \mathit{HtM}_t \end{array}
ight] = \left[egin{array}{ccc} \mathit{Sav}_{t-1} & \mathit{HtM}_{t-1} \end{array}
ight] \left[egin{array}{ccc} \mathit{s}_t & 1-\mathit{s}_t \ 1-\mathit{h}_t & \mathit{h}_t \end{array}
ight]$$

with probabilities $h_t = f(Y_t^D)$ and $s_t = g(Y_t^D)$ responding to changes in disposable income.

THANK with endogenous switching

Household block:

As in the THANK model, but with endogenous switching between Savers and Hand-to-Mouth households:

$$\left[egin{array}{cccc} {\it Sav}_t & {\it HtM}_t \end{array}
ight] = \left[egin{array}{cccc} {\it Sav}_{t-1} & {\it HtM}_{t-1} \end{array}
ight] \left[egin{array}{cccc} s_t & 1-s_t \ 1-h_t & h_t \end{array}
ight]$$

with probabilities $h_t = f(Y_t^D)$ and $s_t = g(Y_t^D)$ responding to changes in disposable income.

Log-linearized dynamics:

$$\widehat{HtM}_t = (s+h-1)\widehat{HtM}_{t-1} - (\tilde{\gamma}_s + \tilde{\gamma}_h)\Delta\hat{y}_t^D$$

Intuition: \uparrow disposable income leads to \downarrow in the share of HtM, for $\tilde{\gamma}_s, \tilde{\gamma}_h > 0$ full model

THANK with endogenous switching

Household block:

As in the THANK model, but with endogenous switching between Savers and Hand-to-Mouth households:

$$\left[egin{array}{cccc} {\it Sav}_t & {\it HtM}_t \end{array}
ight] = \left[egin{array}{cccc} {\it Sav}_{t-1} & {\it HtM}_{t-1} \end{array}
ight] \left[egin{array}{cccc} s_t & 1-s_t \ 1-h_t & h_t \end{array}
ight]$$

with probabilities $h_t = f(Y_t^D)$ and $s_t = g(Y_t^D)$ responding to changes in disposable income.

Log-linearized dynamics:

$$\widehat{HtM}_t = (s+h-1)\widehat{HtM}_{t-1} - (\tilde{\gamma}_s + \tilde{\gamma}_h)\Delta\hat{y}_t^D$$

Intuition: \uparrow disposable income leads to \downarrow in the share of HtM, for $\tilde{\gamma}_s, \tilde{\gamma}_h > 0$

Endogenous switching generalizes THANK:

- Probabilities of switching are **time-varying**: $s \rightarrow s_t$ and $h \rightarrow h_t$
- Household composition adjusts to economic shocks: $HtM \rightarrow HtM_t$

Welfare analysis

Ramsey planner's social welfare:

Second-order approximation following McKay and Wolf (2023):

$$\mathscr{L} = \frac{1}{2} \sum_{t=0}^{\infty} \beta^{t} \left[\chi_{w} \left(\pi_{t}^{w} \right)^{2} + \chi_{p} \left(\pi_{t}^{p} \right)^{2} + \chi_{y} \left(\hat{y}_{t} \right)^{2} + \chi_{s} \left(\hat{\omega}_{t}^{S} \right)^{2} + \chi_{h} \left(\hat{\omega}_{t}^{H} \right)^{2} \right]$$

where $\hat{\omega}_t^{\mathcal{S}}$ and $\hat{\omega}_t^{H}$ represent deviations in consumption shares for the two household types.

Welfare analysis

Ramsey planner's social welfare:

Second-order approximation following McKay and Wolf (2023):

$$\mathscr{L} = \frac{1}{2} \sum_{t=0}^{\infty} \beta^{t} \left[\chi_{w} \left(\pi_{t}^{w} \right)^{2} + \chi_{p} \left(\pi_{t}^{p} \right)^{2} + \chi_{y} \left(\hat{y}_{t} \right)^{2} + \chi_{s} \left(\hat{\omega}_{t}^{S} \right)^{2} + \chi_{h} \left(\hat{\omega}_{t}^{H} \right)^{2} \right]$$

where \hat{a}_t^S and \hat{a}_t^H represent deviations in consumption shares for the two household types.

Endogenous switching matters for optimal policy:

$$\hat{\omega}_{t}^{S} \equiv \omega^{S} \left(-\delta_{\omega_{S}} \widehat{\textit{HtM}}_{t} + \hat{c}_{t}^{S} - \hat{c}_{t}^{\textit{aggr}} \right), \qquad \hat{\omega}_{t}^{H} \equiv \omega^{H} \left(\delta_{\omega_{H}} \widehat{\textit{HtM}}_{t} + \hat{c}_{t}^{H} - \hat{c}_{t}^{\textit{aggr}} \right)$$

Intuition: Consumption shares depend on relative consumption and household composition (new!)

Government budget constraint:

$$T_t^S \cdot Sav_t - T_t^H \cdot HtM_t = 0$$

Intuition: fiscal policy is entirely financed through taxation of savers.

Redistribution follows a simple fiscal rule:

$$\hat{t}_t^H = \eta \cdot \widehat{target}_t$$

Government budget constraint:

$$T_t^S \cdot Sav_t - T_t^H \cdot HtM_t = 0$$

Intuition: fiscal policy is entirely financed through taxation of savers.

Redistribution follows a simple fiscal rule:

$$\hat{t}_t^H = \eta \cdot \widehat{target}_t$$

Target:	Benchmark	Aggregate Consumption	Consumption gap	Consumption inequality
$\left(\widehat{target}_t\right)$	0	(\hat{c}_t^{aggr})	$\left(\hat{c}_t^{gap} = \hat{c}_t^H - \hat{c}_t^S\right)$	$\left(\hat{\omega}_{t}^{\textit{H}} - \hat{\omega}_{t}^{\textit{S}} = \delta_{\textit{HtM}} \widehat{\textit{HtM}}_{t} + \hat{c}_{t}^{\textit{gap}} ight)$
Optimal η	0	-0.82	0.65	0.40
C.E.V.	0%	4.43%	4.45%	5.04%

Government budget constraint:

$$T_t^S \cdot Sav_t - T_t^H \cdot HtM_t = 0$$

Intuition: fiscal policy is entirely financed through taxation of savers.

Redistribution follows a simple fiscal rule:

$$\hat{t}_t^H = \eta \cdot \widehat{target}_t$$

Target:	Benchmark	Aggregate Consumption	Consumption gap	Consumption inequality
$\left(\widehat{target}_{t}\right)$	0	(\hat{c}_t^{aggr})	$\left(\hat{c}_t^{gap} = \hat{c}_t^H - \hat{c}_t^S\right)$	$\left(\hat{\omega}_{t}^{H}-\hat{\omega}_{t}^{S}=\delta_{HtM}\widehat{HtM}_{t}+\hat{c}_{t}^{gap} ight)$
Optimal η	0	-0.82	0.65	0.40
C.E.V.	0%	4.43%	4.45%	5.04%

Government budget constraint:

$$T_t^S \cdot Sav_t - T_t^H \cdot HtM_t = 0$$

Intuition: fiscal policy is entirely financed through taxation of savers.

Redistribution follows a simple fiscal rule:

$$\hat{t}_t^H = \eta \cdot \widehat{target}_t$$

Target:	Benchmark	Aggregate Consumption	Consumption gap	Consumption inequality
$\left(\widehat{\mathit{target}}_t\right)$	0	(\hat{c}_t^{aggr})	$\left(\hat{c}_t^{gap} = \hat{c}_t^H - \hat{c}_t^S\right)$	$\left(\hat{\omega}_{t}^{H}-\hat{\omega}_{t}^{S}=\delta_{HtM}\widehat{HtM}_{t}+\hat{c}_{t}^{gap} ight)$
Optimal η	0	-0.82	0.65	0.40
C.E.V.	0%	4.43%	4.45%	5.04%

Government budget constraint:

$$T_t^S \cdot Sav_t - T_t^H \cdot HtM_t = 0$$

Intuition: fiscal policy is entirely financed through taxation of savers.

Redistribution follows a simple fiscal rule:

$$\hat{t}_t^H = \eta \cdot \widehat{target}_t$$

Target:	Benchmark	Aggregate Consumption	Consumption gap	Consumption inequality
$\left(\widehat{target}_t\right)$	0	(\hat{c}_t^{aggr})	$\left(\hat{c}_t^{gap} = \hat{c}_t^H - \hat{c}_t^S\right)$	$\left(\hat{\omega}_{t}^{H}-\hat{\omega}_{t}^{S}=\delta_{HtM}\widehat{HtM}_{t}+\hat{c}_{t}^{gap} ight)$
Optimal η	0	-0.82	0.65	0.40
C.E.V.	0%	4.43%	4.45%	5.04%

Government budget constraint:

$$T_t^S \cdot Sav_t - T_t^H \cdot HtM_t = 0$$

Intuition: fiscal policy is entirely financed through taxation of savers.

Redistribution follows a simple fiscal rule:

$$\hat{t}_t^H = \eta \cdot \widehat{target}_t$$

Target:	Benchmark	Aggregate Consumption	Consumption gap	Consumption inequality
$\left(\widehat{target}_t\right)$	0	(\hat{c}_t^{aggr})	$\left(\hat{c}_t^{gap} = \hat{c}_t^{H} - \hat{c}_t^{S}\right)$	$\left(\hat{\omega}_t^{H} - \hat{\omega}_t^{S} = \delta_{HtM} \widehat{HtM}_t + \hat{c}_t^{gap}\right)$
Optimal η	0	-0.82	0.65	0.40
C.E.V.	0%	4.43%	4.45%	5.04%

IRFs to a negative productivity shock

IRFs to a negative productivity shock

Assessing the optimality of COVID-19 transfer payments

 $\label{eq:Question: Question: Was the timing and size of COVID-19 transfers payments optimal?}$

Assessing the optimality of COVID-19 transfer payments

 $\label{eq:Question: Question: Was the timing and size of COVID-19 transfers payments optimal?}$

- 1. Replicate observed dynamics using smoothed shocks:
 - Output
 - Inflation
 - Nominal interest rate
 - Fiscal transfers (i.e., stimulus checks)

Assessing the optimality of COVID-19 transfer payments

Question: Was the timing and size of COVID-19 transfers payments optimal?

- 1. Replicate observed dynamics using smoothed shocks:
 - Output
 - Inflation
 - Nominal interest rate
 - Fiscal transfers (i.e., stimulus checks)
- 2. Counterfactual analysis:
 - Replace observed fiscal transfers with optimal ones derived from an inequality-targeting rule

COVID-19 Counterfactual: Optimal fiscal transfers

Figure 2: COVID-19 counterfactual: Optimal fiscal transfers

COVID-19 Counterfactual: Optimal fiscal transfers

Figure 3: COVID-19 counterfactual: Optimal fiscal transfers

Thank you!

References

- Bilbiie, F. O. (2024). Monetary policy and heterogeneity: An analytical framework. Forthcoming, Review of Economic Studies.
- Bilbiie, F. O., Primiceri, G. E., & Tambalotti, A. (2023). Inequality and business cycles. NBER Working Paper 31729.
- McKay, A., & Wolf, C. K. (2023). Optimal policy rules in hank. Revise and Resubmit, Review of Economic Studies.

Remaining blocks of the model

New Keynesian block:

Labor unions: Set sticky wages to maximize expected social welfare

$$\frac{W_t^*}{P_t} = \mathcal{M}_w \left[\frac{HtM_t}{MRS_t^H} + \frac{Sav_t}{MRS_s^S} \right]^{-1}$$

Intermediate goods producers: Choose sticky prices to maximize expected profits

$$P_t^* = \mathscr{M}_p M C_t$$

■ Central bank: Sets the nominal interest rate according to a standard Taylor rule

$$i_t =
ho_i i_{t-1} + (1 -
ho_i) (\phi_\pi \pi_t + \phi_y \hat{y}_t) + u_t^v$$

Government:

Provides transfers to HtM agents according to a simple fiscal rule

$$\hat{t}_t^H = \eta \cdot \widehat{target}_t$$

Volatility gains under different rules

COVID-19 counterfactual under optimal transfers: broader effects

Figure 4: COVID-19 counterfactual: Optimal fiscal transfers

Decomposing inequality and output during COVID-19

Figure 5: COVID-19 counterfactual: No fiscal transfers

