Car-following Models, Newell Model

CIVE.5490, UMass Lowell

Zhengbing He, Ph.D.

https://www.GoTrafficGo.com

March 29, 2024

Introduction

- Newell, G. F. (2002). A simplified car-following theory: a lower order model. Transportation Research Part B, 36(3), 195-205.
- The model gives the exact solution of KWT with TFD.
- The model is very simple and is able to reflect the essence of car-following behaviors.

Tianya Zhang, et al., Car-Following Models: A Multidisciplinary Review, arXiv:2304.07143v, 2024

Triangular fundamental diagram

- Only three parameters: u, $-\omega$, and κ
- The only FD to produce kinematic wave solutions where acceleration and deceleration waves travel upstream at a nearly constant speed (because the congestion branch is linear) and without rarefaction fans (because the capacity carries all transition states).

Spacing vs. speed

 From the congested branch in the macroscopic level, we can obtain a linear microscopic relationship between spacing and speed for vehicles:

$$S(v) = \tau v + \delta \tag{1}$$

where $\tau = \frac{1}{\omega \kappa}$ is the wave trip time between two consecutive trajectories, and $\delta = \frac{1}{\kappa}$ is the jam spacing.

• Note: it is in equilibrium states

Spacing vs. speed

Deduction: $S(v) = \tau v + \delta$

- Congested branch in TFT: $q_{\text{cong}} = -\omega(k \kappa)$
- We have $S(v) = \frac{1}{k}$
- Then, we obtain: $S(v) = \frac{1}{\omega \kappa} v + \frac{1}{\kappa} = \tau v + \delta$. How?
- by $q = kv \rightarrow q_{\text{cong}}$; get k, and $k \rightarrow S(v)$.

Newell model

The Newell model is proposed as follows,

$$x_i(t+\tau) = \min\left\{x_i(t) + u\tau, x_{i-1}(t) - \delta\right\} \tag{2}$$

- where the first term is for free-flow conditions, and the second term is for congested conditions.
- When these terms are equal, it means the traffic is in capacity.

Free-flow conditions

In free-flow conditions, the model is

$$x_i(t+\tau) = x_i(t) + u\tau. \tag{3}$$

It turns out that vehicle i moves with free-flow speed u, How? distance = speed \times time

Congested conditions

In congested conditions, the model is

$$x_i(t+\tau) = x_{i-1}(t) - \delta \tag{4}$$

which implies that the trajectory of vehicle i is identical to that of its leader (i-1) but shifted τ forward in time and δ upstream in space.

It turns out shifting vehicle (i-1) along the wave direction $-\omega$, and the spacing S(v).

Examples

Extended reading

- Laval, J. A., Leclercq, L. (2010). A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1928), 4519-41.
- Chen, D., Laval, J., Zheng, Z., Ahn, S. (2012). A behavioral car-following model that captures traffic oscillations. Transportation Research Part B, 46(6), 744-761.

Homework

Comparing the Gipps model and the Newell model coding by using Matlab.

- Plotting the time-space diagrams as shown in the slides of the Gipps model and the Newell model.
 - For the Gipps model, a straight roadway (sudden speed drop) and a ring road (inhomogeneous vehicle distributions in the initial condition);
 - For the Newell model, a straight roadway with different speed drops.
- Trying to use different time steps with Euler and Heun methods.
- Make analyses, not only the influence of the time steps, but also the traffic.

Thank you!