ÁLGEBRA 1

CURSO 20-21

DOBLE GRADO MATEMÁTICAS INFORMÁTICA

RELACIÓN DE EJERCICIOS 5

5.1. En el anillo $\mathbb{Z}[x]$ de los polinomios con coeficientes en \mathbb{Z} , estudiar si son ideales los subconjuntos:

I formado por todos los polinomios con término independiente cero,

J formado por los polinomios con término independiente par y

K formado por los polinomios que tienen todos sus coeficientes pares.

- **5.2.** Determinar los ideales del cuerpo \mathbb{R} de los números reales.
- **5.3.** Dados I, J ideales de un anillo A tales que $I \subseteq J$, se denota $J/I = \{x + I \in A/I \mid x \in J\}$. Probar que todo ideal de A/I es de la forma J/I para algún ideal J de A tal que $I \subseteq J$.
- **5.4.** Sean I, J ideales de un anillo A tales que $I \subseteq J$. Probar que existe un isomorfismo de anillos:

 $\frac{A/I}{J/I} \cong \frac{A}{I}.$

- **5.5.** Probar que todos los ideales de \mathbb{Z} son principales. Dar condiciones para que se verifique que $n\mathbb{Z} \subseteq m\mathbb{Z}$.
- **5.6.** Describir los ideales de \mathbb{Z}_{14} enumerando los elementos de cada uno de ellos.
- **5.7.** Estudiar qué ideales de los del ejercicio 5.1 son principales.
- **5.8.** En el anillo $\mathbb{Z} \times \mathbb{Z}$ se considera el subconjunto $I = \{(x, y) \mid x, y \text{ son múltiplos de 3}\}$. Probar que I es un ideal de $\mathbb{Z} \times \mathbb{Z}$. ¿Es principal?
- **5.9.** Sea A un anillo conmutativo no trivial e I un ideal de A, $I \neq A$. Decimos que I es maximal si no existe ningún ideal J de A verificando $I \subsetneq J \subsetneq A$. Probar que I es un ideal maximal si, y sólo si, A/I es un cuerpo. Determinar los ideales maximales de \mathbb{Z}