

Lecture «Robot Dynamics»: Kinematics 1

151-0851-00 V

lecture: HG F3 Tuesday 10:15 – 12:00, every week

exercise: HG F3 Wednesday 8:15 – 10:00, according to schedule

Marco Hutter, Roland Siegwart, and Thomas Stastny

ETHzürich

17.09.2019	Intro and Outline	Course Introduction; Recapitulation Position, Linear Velocity			
24.09.2019	Kinematics 1	Rotation and Angular Velocity; Rigid Body Formulation, Transformation	25.09.2019	Exercise 1a	Kinematics Modeling the ABB arm
01.10.2019	Kinematics 2	Kinematics of Systems of Bodies; Jacobians	02.10.2019	Exercise 1a	Differential Kinematics of the ABB arm
08.10.2019	Kinematics 3	Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation Error; Multi-task Control	09.10.2019	Exercise 1b	Kinematic Control of the ABB Arm
15.10.2019	Dynamics L1	Multi-body Dynamics	16.10.2019	Midterm 1	Programming kinematics with matlab
22.10.2019	Dynamics L2	Floating Base Dynamics	23.10.2019	Exercise 2a	Dynamic Modeling of the ABB Arm
29.10.2019	Dynamics L3	Dynamic Model Based Control Methods	30.10.2019	Exercise 2b	Dynamic Control Methods Applied to the ABB arm
05.11.2019	Legged Robot	Dynamic Modeling of Legged Robots & Control	06.11.2019	Midterm 2	Programming dynamics with matlab
12.11.2019	Case Studies 1	Legged Robotics Case Study	13.11.2019	Exercise 3	Legged robot
19.11.2019	Rotorcraft	Dynamic Modeling of Rotorcraft & Control	20.11.2019		
26.11.2019	Case Studies 2	Rotor Craft Case Study	27.11.2019	Exercise 4	Modeling and Control of Multicopter
03.12.2019	Fixed-wing	Dynamic Modeling of Fixed-wing & Control	04.12.2019		
10.12.2019	Case Studies 3	Fixed-wing Case Study (Solar-powered UAVs - AtlantikSolar, Vertical Take-off and Landing UAVs – Wingtra)	11.12.2019	Exercise 5	Fixed-wing Control and Simulation
17.12.2019	Summery and Outlook	Summery; Wrap-up; Exam		Robot	Dynamics - Kinematics 2 24.09.2019 2

Last Time: Position Parameterization

Position vector: $\mathbf{r}_e = \mathbf{r}_e (\chi) \in \mathbb{R}^3$

• Parameterization: $\chi_P \in \mathbb{R}^3$

- Cartesian $\chi_{Pc} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- Cylindrical coordinates $\chi_{Pz} = \begin{pmatrix} \rho \\ \theta \\ z \end{pmatrix}$
- Spherical coordinates $\chi_{Ps} = \begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}$
- Relation between linear velocity and parameter differentiation ... with the parameterization specific matrix $\mathbf{E}_P(\chi_P) \in \mathbb{R}^{3\times 3}$

$$\dot{\mathbf{r}}_e = \frac{\partial \mathbf{r}_e}{\partial \mathbf{\chi}_P} \dot{\mathbf{\chi}}_P = \mathbf{E}_P \dot{\mathbf{\chi}}_P$$

Rotation Parameterization

- Rotation matrix:
 - 3x3 = 9 parameters
 - Orthonormality = 6 constraints
- Euler Angles
 - 3 parameters, singularity problem
- Angle Axis
 - 4 parameters, unitary constraint, singularity problem
- Rotation vector
 - 3 parameters, singularity problem
- Quaternions
 - 4 parameters
 - no singularity

$$\mathbf{C}_{\mathcal{A}\!\mathcal{B}} = egin{bmatrix} _{\mathcal{A}}\mathbf{e}_{x}^{\mathcal{B}} & _{\mathcal{A}}\mathbf{e}_{z}^{\mathcal{B}} \end{bmatrix}$$

$$oldsymbol{\chi}_{R,AngleAxis} = egin{pmatrix} heta \ \mathbf{n} \end{pmatrix}$$

$$\chi_{R,rotvec} = \mathbf{\phi} = \theta \mathbf{n}$$

$$oldsymbol{\chi}_{R,quat} = oldsymbol{\xi} = egin{pmatrix} \xi_0 \ \check{oldsymbol{\xi}} \end{pmatrix}$$

Euler Angles

Consecutive elementary rotations

Last time: Elementary rotation

Euler Angles

Consecutive elementary rotations

Three elementary rotations

ZYZ and ZXZ: proper Euler angles

ZYX: Tait-Bryan angles

XYZ: Cardan angles

From Euler Angles to Rotation Matrix ZYZ example

$$\mathbf{C}_{\mathcal{A}\mathcal{D}} = \mathbf{C}_{\mathcal{A}\mathcal{D}} \left(\chi_{R,eulerZYZ} \right) = \mathbf{C}_{\mathcal{A}\mathcal{B}} \left(z_1 \right) \mathbf{C}_{\mathcal{B}\mathcal{C}} \left(y \right) \mathbf{C}_{\mathcal{C}\mathcal{D}} \left(z_2 \right)$$

From Euler Angles to Rotation Matrix ZYZ example

$$\mathbf{C}_{\mathcal{A}\mathcal{D}} = \mathbf{C}_{\mathcal{A}\mathcal{D}} \left(\chi_{R,eulerZYZ} \right) = \mathbf{C}_{\mathcal{A}\mathcal{B}} \left(z_1 \right) \mathbf{C}_{\mathcal{B}\mathcal{C}} \left(y \right) \mathbf{C}_{\mathcal{C}\mathcal{D}} \left(z_2 \right)$$

$$\mathbf{C}_{\mathcal{A}\mathcal{D}} = \mathbf{C}_{\mathcal{A}\mathcal{B}}(z_{1})\mathbf{C}_{\mathcal{B}\mathcal{C}}(y)\mathbf{C}_{\mathcal{C}\mathcal{D}}(z_{2}) \Rightarrow \mathbf{A}\mathbf{r} = \mathbf{C}_{\mathcal{A}\mathcal{D}\mathcal{D}}\mathbf{r} \\
= \begin{bmatrix} \cos z_{1} & -\sin z_{1} & 0 \\ \sin z_{1} & \cos z_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{bmatrix} \begin{bmatrix} \cos z_{2} & -\sin z_{2} & 0 \\ \sin z_{2} & \cos z_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
= \begin{bmatrix} c_{y}c_{z_{1}}c_{z_{2}} - s_{z_{1}}s_{z_{2}} & -c_{z_{2}}s_{z_{1}} - c_{y}c_{z_{1}}s_{z_{2}} & c_{z_{1}}s_{y} \\ c_{z_{1}}s_{z_{2}} + c_{y}c_{z_{2}}s_{z_{1}} & c_{z_{1}}c_{z_{2}} - c_{y}s_{z_{1}}s_{z_{2}} & s_{y}s_{z_{1}} \\ -c_{z_{2}}s_{y} & s_{y}s_{z_{2}} & c_{y} \end{bmatrix}.$$

From Rotation Matrix to Euler Angles ZYZ example

A rotation matrix has the following form

$$\mathbf{C}_{\mathcal{A}\mathcal{D}} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

As a function of ZYZ Euler Angles, we found

$$\mathbf{C}_{\mathcal{A}\mathcal{D}} = \begin{bmatrix} c_y c_{z_1} c_{z_2} - s_{z_1} s_{z_2} & -c_{z_2} s_{z_1} - c_y c_{z_1} s_{z_2} & c_{z_1} s_y \\ c_{z_1} s_{z_2} + c_y c_{z_2} s_{z_1} & c_{z_1} c_{z_2} - c_y s_{z_1} s_{z_2} & s_y s_{z_1} \\ -c_{z_2} s_y & s_y s_{z_2} & c_y \end{bmatrix}$$

$$\chi_{R,eulerZYZ} = \begin{pmatrix} z_1 \\ y \\ z_2 \end{pmatrix} :$$

$$= \begin{pmatrix} atan2 (c_{23}, c_{13}) \\ atan2 (\sqrt{c_{13}^2 + c_{23}^2}, c_{33}) \\ atan2 (c_{32}, -c_{31}) \end{pmatrix}$$

Atan2 function: uses sign of both arguments to determine the correct quadrant

Euler Angles ⇔ Rotation Matrix ZYX example

Rotation parameters

$$\chi_{R,eulerZYX} = \begin{pmatrix} z \\ y \\ x \end{pmatrix}$$

$$\mathbf{C}_{\mathcal{A}\mathcal{D}} = \mathbf{C}_{\mathcal{A}\mathcal{B}}(z)\mathbf{C}_{\mathcal{B}C}(y)\mathbf{C}_{\mathcal{C}\mathcal{D}}(x) \Rightarrow \mathcal{A}\mathbf{r} = \mathbf{C}_{\mathcal{A}\mathcal{D}\mathcal{D}}\mathbf{r} \\
= \begin{bmatrix} \cos z & -\sin z & 0 \\ \sin z & \cos z & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos x & -\sin x \\ 0 & \sin x & \cos x \end{bmatrix} \\
= \begin{bmatrix} c_y c_z & c_z s_x s_y - c_x s_z & s_x s_z + c_x c_z s_y \\ c_y s_z & c_x c_z + s_x s_y s_z & c_x s_y s_z - c_z s_x \\ -s_y & c_y s_x & c_x c_y \end{bmatrix}.$$

Euler Angles from Rotation matrix

$$\chi_{R,eulerZYX} = \begin{pmatrix} z \\ y \\ x \end{pmatrix} = \begin{pmatrix} atan2 (c_{21}, c_{11}) \\ atan2 (-c_{31}, \sqrt{c_{32}^2 + c_{33}^2}) \\ atan2 (c_{32}, c_{33}) \end{pmatrix}$$

Angle Axis and Rotation Vector

Angle axis parameterize the rotation by:

$$oldsymbol{\chi}_{R,AngleAxis} = egin{pmatrix} heta \\ extbf{n} \end{pmatrix} \qquad egin{matrix} ext{Rotation angle } heta \\ ext{Rotation axis} & extbf{n} \in \mathbb{R}^3 \end{cases}$$

Rotation vector (aka Euler vectors)

$$\boldsymbol{\varphi} = \boldsymbol{\theta} \cdot \mathbf{n} \in \mathbb{R}^3$$

Rotation matrix is given by:

Use unit-rotations to align z axis with n Idea for the proof:

- Rotate with angle θ around \mathbf{n}
- Use unit-rotations to rotate back [Robotics – Modelling, Planning and Control (Siciliano), p.53]

$$\mathbf{C}_{\mathcal{AB}}(\theta, \mathbf{n}) = \cos(\theta) \mathbf{I}_{3\times 3} - \sin(\theta) [\mathbf{n}]_{\times} + (1 - \cos(\theta)) \mathbf{n} \mathbf{n}^{T}$$

$$\mathbf{C}_{\mathcal{AB}} = \begin{bmatrix} n_x^2 (1 - c_{\theta}) + c_{\theta} & n_x n_y (1 - c_{\theta}) - n_z s_{\theta} & n_x n_z (1 - c_{\theta}) + n_y s_{\theta} \\ n_x n_y (1 - c_{\theta}) + n_z s_{\theta} & n_y^2 (1 - c_{\theta}) + c_{\theta} & n_y n_z (1 - c_{\theta}) - n_x s_{\theta} \\ n_x n_z (1 - c_{\theta}) - n_y s_{\theta} & n_y n_z (1 - c_{\theta}) + n_x s_{\theta} & n_z^2 (1 - c_{\theta}) + c_{\theta} \end{bmatrix}$$

Parameters from rotation matrix

$$\theta = \cos^{-1}\left(\frac{c_{11} + c_{22} + c_{33} - 1}{2}\right)$$

$$\frac{1}{c_{32} - c_{23}}$$

$$\mathbf{n} = \frac{1}{2sin(\theta)} \begin{pmatrix} c_{32} - c_{23} \\ c_{13} - c_{31} \\ c_{21} - c_{12} \end{pmatrix}$$

ETH zürich

Unit Quaternions

Rotation parameterization w/o singularity problem

• Complex numbers in 4D $\xi = \xi_0 + \xi_1 i + \xi_2 j + \xi_3 k$

$$\xi = \xi_0 + \xi_1 i + \xi_2 j + \xi_3 k$$

Hamiltonian conventior

$$i^2 = j^2 = k^2 = ijk = -1$$

$$oldsymbol{\chi}_{R,quat} = oldsymbol{\xi} = egin{pmatrix} \xi_0 \ \check{oldsymbol{\xi}} \end{pmatrix} \in \mathbb{H}$$

Real part

$$\xi_0 = \cos\left(\frac{\|\varphi\|}{2}\right) = \cos\left(\frac{\theta}{2}\right)$$

Imaginary part

$$\check{\boldsymbol{\xi}} = \sin\left(\frac{\|\boldsymbol{\varphi}\|}{2}\right) \frac{\boldsymbol{\varphi}}{\|\boldsymbol{\varphi}\|} = \sin\left(\frac{\theta}{2}\right) \mathbf{n} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix}$$

Unitary constraint
$$\xi_0^2 + \xi_1^2 + \xi_2^2 + \xi_3^2 = 1$$

Inverse

$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{\xi} \\ \dot{\boldsymbol{\xi}} \end{pmatrix} \quad \overset{inverse}{\rightarrow} \quad \boldsymbol{\xi}^{-1} = \begin{pmatrix} \boldsymbol{\xi} \\ -\dot{\boldsymbol{\xi}} \end{pmatrix}$$

Identity

$$\boldsymbol{\xi} = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}^T$$

Unit Quaternions ⇔ Rotation matrix

Rotation matrix from unit quaternion

$$\mathbf{C}_{\mathcal{A}\mathcal{D}} = \mathbb{I}_{3\times3} + 2\xi_0 \left[\check{\boldsymbol{\xi}} \right]_{\times}^{\times} + 2 \left[\check{\boldsymbol{\xi}} \right]_{\times}^{2} = \left(2\xi_0^2 - 1 \right) \mathbb{I}_{3\times3} + 2\xi_0 \left[\check{\boldsymbol{\xi}} \right]_{\times}^{\times} + 2\check{\boldsymbol{\xi}}\check{\boldsymbol{\xi}}^{T}$$

$$= \begin{bmatrix} \xi_0^2 + \xi_1^2 - \xi_2^2 - \xi_3^2 & 2\xi_1\xi_2 - 2\xi_0\xi_3 & 2\xi_0\xi_2 + 2\xi_1\xi_3 \\ 2\xi_0\xi_3 + 2\xi_1\xi_2 & \xi_0^2 - \xi_1^2 + \xi_2^2 - \xi_3^2 & 2\xi_2\xi_3 - 2\xi_0\xi_1 \\ 2\xi_1\xi_3 - 2\xi_0\xi_2 & 2\xi_0\xi_1 + 2\xi_2\xi_3 & \xi_0^2 - \xi_1^2 - \xi_2^2 + \xi_3^2 \end{bmatrix}.$$

 Unit quaternions from rotation matrix

$$\chi_{R,quat} = \xi_{\mathcal{A}\mathcal{D}} = \frac{1}{2} \begin{pmatrix} \sqrt{c_{11} + c_{22} + c_{33} + 1} \\ sgn(c_{32} - c_{23})\sqrt{c_{11} - c_{22} - c_{33} + 1} \\ sgn(c_{13} - c_{31})\sqrt{c_{22} - c_{33} - c_{11} + 1} \\ sgn(c_{21} - c_{12})\sqrt{c_{33} - c_{11} - c_{22} + 1} \end{pmatrix}$$

3:00 Quizz 3min 60 1min

Quiz

Rotation matrix C_{AB}

$$\chi_{R,eulerZYX} = \begin{pmatrix} z \\ y \\ x \end{pmatrix} = \begin{pmatrix} atan2(c_{21}, c_{11}) \\ atan2(-c_{31}, \sqrt{c_{32}^2 + c_{33}^2}) \\ atan2(c_{32}, c_{33}) \end{pmatrix}$$

Angle Axis

$$\theta = \cos^{-1} \left(\frac{c_{11} + c_{22} + c_{33} - 1}{2} \right)$$
$$\mathbf{n} = \frac{1}{2\sin(\theta)} \begin{pmatrix} c_{32} - c_{23} \\ c_{13} - c_{31} \\ c_{21} - c_{12} \end{pmatrix}$$

Quaternions

$$\chi_{R,quat} = \frac{1}{2} \begin{pmatrix} \sqrt{c_{11} + c_{22} + c_{33} + 1} \\ sgn(c_{32} - c_{23})\sqrt{c_{11} - c_{22} - c_{33} + 1} \\ sgn(c_{13} - c_{31})\sqrt{c_{22} - c_{33} - c_{11} + 1} \\ sgn(c_{21} - c_{12})\sqrt{c_{33} - c_{11} - c_{22} + 1} \end{pmatrix}$$

Unit QuaternionsAlgebra

- Product of quaternions
 - Given two quaternions **q** and **p**, the product is defined as

$$\mathbf{q} \otimes \mathbf{p} = (q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k})(p_0 + p_1 \mathbf{i} + p_2 \mathbf{j} + p_3 \mathbf{k})
= q_0 p_0 + q_0 p_1 \mathbf{i} + q_0 p_2 \mathbf{j} + q_0 p_3 \mathbf{k}
+ q_1 p_0 \mathbf{i} + q_1 p_1 \mathbf{i} \mathbf{i} + q_1 p_2 \mathbf{i} \mathbf{j} + q_1 p_3 \mathbf{i} \mathbf{k}
+ q_2 p_0 \mathbf{j} + q_2 p_1 \mathbf{j} \mathbf{i} + q_2 p_2 \mathbf{j} \mathbf{j} + q_2 p_3 \mathbf{j} \mathbf{k}
+ q_3 p_0 \mathbf{k} + q_3 p_1 \mathbf{k} \mathbf{i} + q_3 p_2 \mathbf{k} \mathbf{j} + q_3 p_3 \mathbf{k} \mathbf{k}$$

$$= q_0 p_0 - q_1 p_1 - q_2 p_2 - q_3 p_3
+ (q_0 p_1 + q_1 p_0 + q_2 p_3 - q_3 p_2) \mathbf{i}
+ (q_0 p_2 - q_1 p_3 + q_2 p_0 + q_3 p_1) \mathbf{j}
+ (q_0 p_3 + q_1 p_2 - q_2 p_1 + q_3 p_0) \mathbf{k}$$

$$= \begin{bmatrix} q_0 & -q_1 & -q_2 & -q_3 \\ q_2 & q_3 & q_0 & -q_1 \\ q_3 & -q_2 & q_1 & q_0 \end{bmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{bmatrix} q_0 & -\mathbf{q}^T \\ \mathbf{q} & q_0 \mathbf{I} + [\mathbf{q}] \times \\ \mathbf{q} & q_0 \mathbf{I} + [\mathbf{q}] \times \end{bmatrix} \mathbf{p} = \mathbf{M}_{\mathbf{I}}(\mathbf{q}) \mathbf{p}$$

$$= \begin{bmatrix} p_0 & -p_1 & -p_2 & -p_3 \\ p_1 & p_0 & p_3 & -p_2 \\ p_2 & -p_3 & p_0 & p_1 \\ p_3 & p_2 & -p_1 & p_0 \end{bmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{bmatrix} p_0 & -\mathbf{p}^T \\ \mathbf{p} & p_0 \mathbf{I} - [\mathbf{p}] \times \\ \mathbf{p} & -\mathbf{p}^T \end{bmatrix} \mathbf{q} = \mathbf{M}_{\mathbf{r}}(\mathbf{p}) \mathbf{q}$$

Hamiltonian convention

$$\xi = \xi_0 + \xi_1 i + \xi_2 j + \xi_3 k$$

$$i^2 = j^2 = k^2 = ijk = -1$$

$$ij = -ji = -ijk^2 = k$$

$$jk = -kj = i$$

$$ki = -ik = j$$

Unit Quaternions

Rotating a vector

• The pure (imaginary) quaternion of a coordinate vector, r is given by

$$\boldsymbol{p}({}_{\boldsymbol{I}}\boldsymbol{r}) = \begin{pmatrix} 0 \\ {}_{\boldsymbol{I}}\boldsymbol{r} \end{pmatrix}$$

• Given the unit quaternion ζ_{BI} :

$$p(_{B}r) = \zeta_{BI} \otimes p(_{I}r) \otimes \zeta_{BI}^{T} \qquad \longleftrightarrow \qquad _{B}r = C_{BI} \cdot _{I}r$$

- Proof (see Quaternion Kinematics by Joan Solà)
 - Decompose vector in parallel and orthogonal part to get vector rotation formula

$$\mathbf{x}' = \mathbf{x}_{||} + \mathbf{x}_{\perp} \cos \phi + (\mathbf{u} \times \mathbf{x}) \sin \phi$$

Show that equation above does exactly the same

$$\mathbf{x} = \mathbf{x}_{||} + \mathbf{x}_{\perp}$$
 $\mathbf{x}_{||} = \mathbf{u} \, \mathbf{u}^{\top} \, \mathbf{x}$
 $\mathbf{x}_{\perp} = \mathbf{x} - \mathbf{u} \, \mathbf{u}^{\top} \, \mathbf{x}$

Unit Quaternion

Derivation of rotation matrix

• Derivation of rotation matrix ($\zeta = \zeta_{BI}$):

•
$$p(_B r) = \zeta \otimes p(_I r) \otimes \zeta^T = M_l(\zeta) M_r(\zeta^T) \begin{pmatrix} 0 \\ I r \end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 \\ {}_{B}\boldsymbol{r} \end{pmatrix} = \begin{bmatrix} \zeta_{0} & -\boldsymbol{\xi}^{T} \\ \boldsymbol{\xi} & \zeta_{0}\boldsymbol{I} + \left[\boldsymbol{\xi}^{T}\right]_{\times} \end{bmatrix} \begin{bmatrix} \zeta_{0} & \boldsymbol{\xi}^{T} \\ -\boldsymbol{\xi} & \zeta_{0}\boldsymbol{I} + \left[\boldsymbol{\xi}^{T}\right]_{\times} \end{bmatrix} \begin{pmatrix} 0 \\ {}_{I}\boldsymbol{r} \end{pmatrix}$$

$$\bullet \begin{pmatrix} 0 \\ {}_{B}\boldsymbol{r} \end{pmatrix} = \begin{bmatrix} \zeta_0^2 + |\boldsymbol{\xi}|^2 & \zeta_0\boldsymbol{\xi}^T - \zeta_0\boldsymbol{\xi}^T - \boldsymbol{\xi}^T[\boldsymbol{\xi}]_{\times} \\ \zeta_0\boldsymbol{\xi} - \zeta_0\boldsymbol{\xi} - [\boldsymbol{\xi}]_{\times}\boldsymbol{\xi} & \boldsymbol{\xi}\boldsymbol{\xi}^T + \zeta_0^2\boldsymbol{I} + 2\zeta_0[\boldsymbol{\xi}]_{\times} + [\boldsymbol{\xi}]_{\times}[\boldsymbol{\xi}]_{\times} \end{bmatrix} \begin{pmatrix} 0 \\ {}_{I}\boldsymbol{r} \end{pmatrix}$$

•
$$C(\zeta) = (2\zeta_0^2 - 1)I + 2\zeta_0[\check{\zeta}]_{\times} + 2\check{\zeta}\check{\zeta}^T$$

$$M_{r}(\zeta) = \begin{bmatrix} \zeta_{0} & -\xi^{T} \\ \xi & \zeta_{0}I - [\xi]_{\times} \end{bmatrix}$$
$$[\xi^{T}]_{\times} = -[\xi]_{\times}$$
$$\zeta^{-1} = \zeta^{T} = \begin{pmatrix} \zeta_{0} \\ -\xi \end{pmatrix}$$

2:00 Quizz 2 2min 60 1min

Quiz 2

- Given a vector in \mathcal{A} frame $\mathcal{A}^{\mathbf{r} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}}$
- Rotate this to B frame using quaternions

$$\mathbf{p}(\mathbf{p}(\mathbf{p}) = \begin{pmatrix} 0 \\ \mathbf{p} \end{pmatrix} = \mathbf{\xi}_{\mathcal{B}\mathcal{A}} \otimes \mathbf{p}(\mathbf{p}) \otimes \mathbf{\xi}_{\mathcal{B}\mathcal{A}}^{T} = \mathbf{M}_{l}(\mathbf{\xi}_{\mathcal{B}\mathcal{A}}) \mathbf{M}_{r}(\mathbf{\xi}_{\mathcal{B}\mathcal{A}}^{T}) \begin{pmatrix} 0 \\ \mathbf{p} \end{pmatrix}$$

60

Quiz 2b

- Given a vector in \mathcal{A} frame $\mathcal{A}^{\mathbf{r}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
- Rotate this to B frame using directly the complex numbers
 - $\mathbf{q} \otimes \mathbf{p} = (q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k})(p_0 + p_1 \mathbf{i} + p_2 \mathbf{j} + p_3 \mathbf{k})$

Hamiltonian conventior

$$\xi = \xi_0 + \xi_1 i + \xi_2 j + \xi_3 k$$

$$i^2 = j^2 = k^2 = ijk = -1$$

$$ij = -ji = -ijk^2 = k$$

$$jk = -kj = i$$

$$ki = -ik = j$$

Quiz 3

Quiz 3 $e_{z}^{A} \land e_{z}^{B} \qquad e_{z}^{C} \land e_{z}^{B} \qquad e_{z}^{C} \qquad y = 60^{\circ}$ $z = 60^{\circ} \qquad y = 60^{\circ}$ Potation matrix $C_{AC} = ?$ $C_{AB} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $C_{BC} = \begin{bmatrix} 1/2 & 0 & \sqrt{3}/2 \\ 0 & 1 & 0 \\ -\sqrt{3}/2 & 0 & 1/2 \end{bmatrix}_{e^{A}}$ $= \begin{bmatrix} \xi_{0} & -\xi_{1} & -\xi_{2} & -\xi_{3} \\ \xi_{1} & \xi_{0} & -\xi_{3} & \xi_{2} \\ \xi_{2} & \xi_{3} & \xi_{0} & -\xi_{1} \\ \xi_{3} & -\xi_{2} & \xi_{1} & \xi_{0} \end{bmatrix}_{E} \begin{pmatrix} \xi_{0} \\ \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{pmatrix}_{EC}$

$$e_{z}^{A} \uparrow e_{z}^{B} \qquad e_{z}^{C} \downarrow fe_{z}^{B}$$

$$z = 60^{\circ} \qquad y = 60^{\circ}$$

$$\xi_{AB} \otimes \xi_{BC} = \begin{pmatrix} \xi_{0,AB} \cdot \xi_{0,BC} - \check{\xi}_{AB}^{T} \cdot \check{\xi}_{BC} \\ \xi_{0,AB} \cdot \check{\xi}_{BC} + \xi_{0,BC} \cdot \check{\xi}_{AB} + [\check{\xi}_{AB}]_{\times} \cdot \check{\xi}_{BC} \end{pmatrix}$$

$$= \begin{bmatrix} \xi_{0} & -\xi_{1} & -\xi_{2} & -\xi_{3} \\ \xi_{1} & \xi_{0} & -\xi_{3} & \xi_{2} \\ \xi_{2} & \xi_{3} & \xi_{0} & -\xi_{1} \\ \xi_{3} & -\xi_{2} & \xi_{1} & \xi_{0} \end{bmatrix}_{AB} \begin{pmatrix} \xi_{0} \\ \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{pmatrix}_{BC}$$

■ Quaternion $\xi_{\mathcal{AB}} = \frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 0 \\ 0 \\ 1 \end{pmatrix}$ $\xi_{\mathcal{BC}} = \frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 0 \\ 1 \\ 0 \end{pmatrix}$ $\xi_{\mathcal{AC}} = \xi_{\mathcal{AB}} \otimes \xi_{\mathcal{BC}} = \frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 0 \\ 0 \\ 1 \end{pmatrix} \otimes \frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{2} \frac{1}{2} \begin{pmatrix} \sqrt{3} & 0 & 0 & -1 \\ 0 & \sqrt{3} & -1 & 0 \\ 0 & 1 & \sqrt{3} & 0 \\ 0 & 1 & \sqrt{3} & 0 \end{pmatrix} = \frac{1}{2} \frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 0 \\ 1 \\ 0 \end{pmatrix}$

$$\mathbf{C} = \mathbb{I}_{3\times3} + 2\xi_0 \left[\boldsymbol{\xi} \right]_{\times} + 2 \left[\boldsymbol{\xi} \right]_{\times}^2 = (2\xi_0^2 - 1) \mathbb{I}_{3\times3} + 2\xi_0 \left[\boldsymbol{\xi} \right]_{\times} + 2\boldsymbol{\xi} \boldsymbol{\xi}^T \\
= \begin{bmatrix} \xi_0^2 + \xi_1^2 - \xi_2^2 - \xi_3^2 & 2\xi_1\xi_2 - 2\xi_0\xi_3 & 2\xi_0\xi_2 + 2\xi_1\xi_3 \\ 2\xi_0\xi_3 + 2\xi_1\xi_2 & \xi_0^2 - \xi_1^2 + \xi_2^2 - \xi_3^2 & 2\xi_2\xi_3 - 2\xi_0\xi_1 \\ 2\xi_1\xi_3 - 2\xi_0\xi_2 & 2\xi_0\xi_1 + 2\xi_2\xi_3 & \xi_0^2 - \xi_1^2 - \xi_2^2 + \xi_3^2 \end{bmatrix}.$$

$$C_{AC} = \left(\frac{1}{2}\frac{1}{2}\right)^2 \begin{vmatrix} 9+1-3-3 & -2\sqrt{3}-6\sqrt{3} & 6\sqrt{3}-2\sqrt{3} \\ 6\sqrt{3}-2\sqrt{3} & 9-1+3-3 & 2\sqrt{3}\sqrt{3}+6\sqrt{3} \\ 2\sqrt{3}-6\sqrt{3} & 6\sqrt{3}-2\sqrt{3} & 9-1+3-3 & 2\sqrt{3}\sqrt{3}+6\sqrt{3} \end{vmatrix}$$

Time Derivatives and Rotational Velocity

- What is the relation $\omega_{\mathcal{A}\mathcal{D}} \Leftrightarrow \dot{\chi}_{\mathcal{A}\mathcal{D}}$
- Analog to linear velocity: Find $\mathbf{E}_R(m{\chi}_R)$, s.t. $_{\mathcal{A}}m{\omega}_{\mathcal{A}\mathcal{B}}=\mathbf{E}_R(m{\chi}_R)\cdot\dot{m{\chi}}_R$

Time Derivatives and Rotational Velocity

ZYX example

Time Derivatives and Rotational Velocity

ZYX example

$$\mathcal{A}\boldsymbol{\omega}_{\mathcal{A}\mathcal{D}} = \mathcal{A}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} + \mathcal{A}\boldsymbol{\omega}_{\mathcal{B}\mathcal{C}} + \mathcal{A}\boldsymbol{\omega}_{\mathcal{C}\mathcal{D}}$$

$$= \mathcal{A}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} + \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{B}\boldsymbol{\omega}_{\mathcal{B}\mathcal{C}} + \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{C}_{\mathcal{B}\mathcal{C}} \cdot \mathbf{C}\boldsymbol{\omega}_{\mathcal{C}\mathcal{D}}$$

$$= \mathcal{A}\mathbf{e}_{z}^{\mathcal{A}} \cdot \dot{z} + \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{B}\mathbf{e}_{y}^{\mathcal{B}} \cdot \dot{y} + \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{C}_{\mathcal{B}\mathcal{C}} \cdot \mathbf{C}\mathbf{e}_{x}^{\mathcal{C}} \cdot \dot{x} \overset{e_{z}^{\mathcal{A}}}{e_{z}^{\mathcal{A}}}$$

$$= \begin{bmatrix} \mathcal{A}\mathbf{e}_{z}^{\mathcal{A}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{B}\mathbf{e}_{y}^{\mathcal{B}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{C}_{\mathcal{B}\mathcal{C}} \cdot \mathbf{C}\mathbf{e}_{x}^{\mathcal{C}} \end{bmatrix} \overset{e_{z}^{\mathcal{B}}}{\dot{y}}$$

$$= \begin{bmatrix} \mathcal{A}\mathbf{e}_{z}^{\mathcal{A}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{B}\mathbf{e}_{y}^{\mathcal{B}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{C}_{\mathcal{B}\mathcal{C}} \cdot \mathbf{C}\mathbf{e}_{x}^{\mathcal{C}} \end{bmatrix} \overset{e_{z}^{\mathcal{B}}}{\dot{y}}$$

$$= \begin{bmatrix} \mathcal{A}\mathbf{e}_{z}^{\mathcal{A}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{B}\mathbf{e}_{y}^{\mathcal{B}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{C}_{\mathcal{B}\mathcal{C}} \cdot \mathbf{C}\mathbf{e}_{x}^{\mathcal{C}} \end{bmatrix} \overset{e_{z}^{\mathcal{B}}}{\dot{y}}$$

$$= \begin{bmatrix} \mathcal{A}\mathbf{e}_{z}^{\mathcal{A}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{B}\mathbf{e}_{y}^{\mathcal{B}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{C}_{\mathcal{B}\mathcal{C}} \cdot \mathbf{C}\mathbf{e}_{x}^{\mathcal{C}} \end{bmatrix} \overset{e_{z}^{\mathcal{B}}}{\dot{y}}$$

$$= \begin{bmatrix} \mathcal{A}\mathbf{e}_{z}^{\mathcal{A}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{B}\mathbf{e}_{y}^{\mathcal{B}} & \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{C}_{\mathcal{B}\mathcal{C}} \cdot \mathbf{C}\mathbf{e}_{x}^{\mathcal{C}} \end{bmatrix} \overset{e_{z}^{\mathcal{B}}}{\dot{y}} \overset{e_{z}^{\mathcal{B}}}{\dot{y}} \overset{e_{z}^{\mathcal{B}}}{\dot{z}} \overset{e_{z}^{\mathcal{B}}}{\dot{z}}$$

$$\mathbf{\omega} = \begin{bmatrix} 0 & -s_z & c_y c_z \\ 0 & c_z & c_y s_z \\ 1 & 0 & -s_y \end{bmatrix} \dot{\mathbf{\chi}} \det \left(\mathbf{E}_{R,eulerZYX} \right) = -\cos(y)$$

$$\mathbf{E}_{R,eulerZYX}^{-1} = \begin{bmatrix} \frac{\cos(z)\sin(y)}{\cos(y)} & \frac{\sin(y)\sin(z)}{\cos(y)} & 1\\ -\sin(z) & \cos(z) & 0\\ \frac{\cos(z)}{\cos(y)} & \frac{\sin(z)}{\cos(y)} & 0 \end{bmatrix}$$

Derivative Angle Axis, Rotation Vector, Quaternions

⇔ Angular Velocity

$$_{\mathcal{A}}oldsymbol{\omega}_{\mathcal{A}\mathcal{B}}=\mathbf{E}_{R}(oldsymbol{\chi}_{R})\cdot\dot{oldsymbol{\chi}}_{R}$$

Angle Axis

$$\mathbf{E}_{R,angleaxis} = \begin{bmatrix} \mathbf{n} & \sin \theta \mathbb{I}_{3 \times 3} + (1 - \cos \theta) [\mathbf{n}]_{\times} \end{bmatrix}$$

$$\mathbf{E}_{R,angleaxis}^{-1} = \begin{bmatrix} \mathbf{n}^{T} \\ -\frac{1}{2} \frac{\sin \theta}{1 - \cos \theta} \left[\mathbf{n} \right]_{\times}^{2} - \frac{1}{2} \left[\mathbf{n} \right]_{\times} \end{bmatrix}$$

Rotation Vector

$$\mathbf{E}_{R,rotationvector} = \left[\mathbb{I}_{3\times3} + \left[\boldsymbol{\varphi} \right]_{\times} \left(\frac{1 - \cos \|\boldsymbol{\varphi}\|}{\|\boldsymbol{\varphi}\|^2} \right) + \left[\boldsymbol{\varphi} \right]_{\times}^2 \left(\frac{\|\boldsymbol{\varphi}\| - \sin \|\boldsymbol{\varphi}\|}{\|\boldsymbol{\varphi}\|^3} \right) \right]$$

$$\mathbf{E}_{R,rotationvector}^{-1} = \left[\mathbb{I}_{3\times3} - \frac{1}{2} \left[\boldsymbol{\varphi} \right]_{\times} + \left[\boldsymbol{\varphi} \right]_{\times}^{2} \frac{1}{\|\boldsymbol{\varphi}\|^{2}} \left(1 - \frac{\|\boldsymbol{\varphi}\|}{2} \frac{\sin \|\boldsymbol{\varphi}\|}{1 - \cos \|\boldsymbol{\varphi}\|} \right) \right]$$

Quaternion

$$\mathbf{E}_{R,quat} = 2\mathbf{H}(\boldsymbol{\xi}),$$
$$\mathbf{E}_{R,quat}^{-1} = \frac{1}{2}\mathbf{H}(\boldsymbol{\xi})^{T}$$

with

$$\mathbf{H}(\boldsymbol{\xi}) = \begin{bmatrix} -\boldsymbol{\xi} & \left[\boldsymbol{\xi}\right]_{\times} + \xi_0 \mathbb{I}_{3\times 3} \end{bmatrix} \in \mathbb{R}^{3\times 4}$$
$$= \begin{bmatrix} -\xi_1 & \xi_0 & -\xi_3 & \xi_2 \\ -\xi_2 & \xi_3 & \xi_0 & -\xi_1 \\ -\xi_3 & -\xi_2 & \xi_1 & \xi_0 \end{bmatrix}.$$

Position and Orientation of a Single Body

Position vector:

$$\mathbf{r}_e = \mathbf{r}_e \left(\mathbf{\chi} \right) \in \mathbb{R}^3$$

Cartesian

- $\chi_{Pc} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- Cylindrical coordinates
- $\chi_{Pz} = \begin{pmatrix}
 ho \\ heta \\ z \end{pmatrix}$
- Spherical coordinates
- $\chi_{Ps} = \begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}$

$$\phi_e = \phi_e(\chi_R) \in SO(3)$$

$$\mathbf{C}_{\mathcal{A}\!\mathcal{B}} = egin{bmatrix} _{\mathcal{A}}\mathbf{e}_{x}^{\mathcal{B}} & _{\mathcal{A}}\mathbf{e}_{z}^{\mathcal{B}} \end{bmatrix}$$

Euler Angles:

$$\chi_{R,eulerZYX} = \begin{pmatrix} z \\ y \\ x \end{pmatrix}$$

Quaternions:

$$oldsymbol{\chi}_{R,quat} = oldsymbol{\xi} = egin{pmatrix} \xi_0 \ \check{oldsymbol{\xi}} \end{pmatrix}$$

ARR

Classical Serial Kinematic Linkages Generalized robot arm

- n_j joints
 - revolute (1DOF)
 - prismatic (1DOF)
- $n_l = n_j + 1$ links
 - n_j moving links
 - 1 fixed link

Ang

Configuration ParametersGeneralized coordinates

Generalized coordinates

A set of scalar parameters **q** that describe the robot's configuration

- Must be complete
- (Must be independent)=> minimal coordinates
- Is not unique

number of Gene. Coor. is unique

Degrees of Freedom

Nr of minimal coordinates

End-effector Configuration ParametersSimple example

- Planar robot arm
 - 3 revolute joints
 - 1 end-effector (gripper) <= don't consider this for the moment

What are the joint coordinates (generalized coordinates)?

What are the end-effector parameters?

Configuration Space ⇔ Joint Space

Joint Coordinates

Operational Coordinates

Joint Space ⇔ Task Space

Joint Coordinates

Task Coordinates

Forward Kinematics

End-effector configuration as a function of generalized coordinates

$$\chi_e = \chi_e \left(\mathbf{q} \right) \in \mathbb{R}^{n_e}$$

For multi-body system, use transformation matrices

$$\mathbf{T}_{\mathcal{I}\mathcal{E}}(\mathbf{q}) = \mathbf{T}_{\mathcal{I}0} \cdot \left(\prod_{k=1}^{n_j} \mathbf{T}_{k-1,k}(q_k) \right) \cdot \mathbf{T}_{n_j\mathcal{E}} = \begin{bmatrix} \mathbf{C}_{\mathcal{I}\mathcal{E}}(\mathbf{q}) & \mathbf{I}^{\mathbf{r}_{IE}}(\mathbf{q}) \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix}$$

 Note: depending on the selected end-effector parameterization, it is not possible to analytically write down end-effector parameters!

Quizz 3:00 Quizz 3min 1min

Forward Kinematics Simple example

• What is the end-effector configuration as a function of generalized coordinates?

$$T_{IE} =$$

