Impact of Car Features

Project Description:

Automotive industry is rapidly growing due to its increased demand which increases the importance to understand the factors that drive the consumer demand for cars. The main purpose of this project is to analyse the impact of various car features on the manufacturing price and to find the relationships between them. A dataset containing the details on various car features is provided.

The dataset is first cleaned by removing all the duplicates and null values. Appropriate values are replaced in place of missing values and further analysis is done on this dataset.

Approach:

I performed the analysis in a systematic manner to ensure better results by making use of all concepts that I have learned so far. For each of the tasks, I used pivot tables to get the values in an ordered and tabular form and I made use of different visualisation techniques including the scatter plot, column charts, line plot etc for better understanding. I have also performed regression analysis for one of the tasks to identify the variable with strongest relationship with the car price.

Tech-Stack Used:

I have used python and tableau for this project. Python is very useful because of its high flexibility and support. It is a free and open source programming language. It is extremely powerful. I used python to clean the data and to perform regression analysis. For the rest of the tasks, I used tableau for visualisation. Tableau is a leading visualisation tool for data analysis and business intelligence. Tableau makes the visualisation purpose very easy.

Insights:

I have gained several insights from doing this project. As this project mainly deals with the impact of car features, I saw how it affects the market price. I came to know that bugatti has the most average price compared to other brands, the average manufacturing price and the engine horsepower share a positive exponential curve which means that price is increasing with respect to engine horsepower. Most people prefer crossovers whereas hybrid performance cars have the least popularity. All these insights gained plays a crucial role in automobile industries as it helps them in many ways to increase their turnovers.

Result:

Task analysis:

• **Task 1.A:** Create a pivot table that shows the number of car models in each market category and their corresponding popularity scores.

task1a

Market Cate 2	Count of	Popularity
Flex Fuel, Hybrid	2	310
Flex Fuel,Luxury	39	29,115
Flex Fuel,Luxury,	32	28,746
Flex Fuel,Luxury,	28	38,642
Flex Fuel, Perfor	87	146,201
Flex Fuel, Perfor	2	310
Hatchback	574	751,167
Hatchback, Diesel	14	12,222
Hatchback,Facto	13	15,667
Hatchback, Facto	9	7,982
Hatchback,Facto	21	45,648
Hatchback,Flex F	7	39,599
Hatchback, Hybrid	64	135,114
Hatchback,Luxury	45	59,541
Hatchback,Luxur	3	1,362
Hatchback,Luxur	36	58,761
Hatchback,Perfo	198	212,585
High-Performance	198	361,029
Hybrid	121	256,107
Luxury	819	883,877
Luxury, High-Perf	334	557,118
Luxury, High-Perf	12	6,826
Luxury,Hybrid	52	35,029
Luxury,Performa	659	852,128
Luxury,Performa	11	25,665
Performance	520	735,909
Performance,Hy	1	155

• **Task 1.B:** Create a combo chart that visualizes the relationship between market category and popularity.

• **Task 2:** Create a scatter chart that plots engine power on the x-axis and price on the y-axis. Add a trendline to the chart to visualize the relationship between these variables.

 Task 3: Use regression analysis to identify the variables that have the strongest relationship with a car's price. Then create a bar chart that shows the coefficient values for each variable to visualize their relative importance.

```
In [31]: \mathbf{y} = df['MSRP']
In [32]: N x = df[['Engine HP', 'Engine Cylinders', 'Number of Doors', 'highway MPG', 'city mpg', 'Popularity']]
In [33]: \forall x = sm.add_constant(x)
In [34]: \triangleright model = sm.OLS(y, x).fit()
         summary = model.summary()
In [35]: ▶ print(summary)
                              OLS Regression Results
          ______
         Dep. Variable:
                                 MSRP R-squared:
                                                                0.461
                                  OLS Adj. R-squared:
                                                                0.461
          Model:
                       Least Squares F-statistic:
Wed, 11 Oct 2023 Prob (F-statistic):
                                                                1598.
          Method:
         -1.3592e+05
                                                             2.719e+05
                                                             2.719e+05
          Df Model:
          Covariance Type:
                              nonrobust
          ------
```

 Task 4.A: Create a pivot table that shows the average price of cars for each manufacturer.

ask4a		
Make		
Acura	35,087	
Alfa Romeo	61,600	
Aston Martin	198,123	
Audi	54,574	
Bentley	247,169	
BMW	62,163	
Bugatti	1,757,224	
Buick	29,034	
Cadillac	56,368	
Chevrolet	29,075	
Chrysler	26,723	
Dodge	24,857	
errari	238,219	
FIAT	22,670	
ord	28,511	
Genesis	46,617	
GMC	32,444	
Honda	26,655	
HUMMER	36,464	
Hyundai	24,926	
Infiniti	42,640	
Kia	25,514	
Lamborghini	331,567	
Land Rover	68,067	
Lexus	47,549	
Lincoln	43,861	
Lotus	68,377	

• **Task 4.B:** Create a bar chart or a horizontal stacked bar chart that visualizes the relationship between manufacturer and average price.

• Task 5.A: Create a scatter plot with the number of cylinders on the x-axis and highway MPG on the y-axis. Then create a trendline on the scatter plot to visually estimate the slope of the relationship and assess its significance.

• **Task 5.B:** Calculate the correlation coefficient between the number of cylinders and highway MPG to quantify the strength and direction of the relationship.

task5b	
Laskon	
Make	
Acura	-0.525
Alfa Romeo	
Aston Martin	-0.505
Audi	-0.224
Bentley	0.079
BMW	-0.701
Bugatti	
Buick	-0.719
Cadillac	-0.854
Chevrolet	-0.615
Chrysler	-0.595
Dodge	-0.649
Ferrari	-0.406
FIAT	-0.973
Ford	-0.739
Genesis	-0.803
GMC	-0.590
Honda	-0.674
HUMMER	-1.000
Hyundai	-0.713
Infiniti	-0.582
Kia	-0.732
Lamborghini	-0.857
Land Rover	-0.854
Lexus	-0.722
Lincoln	-0.739
Lotus	-0.317

Dashboard:

Doing this project has proven to be very beneficial for me as it got me started with tableau. Now all the visualisation process seems very easier. I have gained one more relevant skill. I learned to do regression analysis in python . Building regression models, getting coefficients , identifying the relationships and significant patterns has become very familiar to me. I also explored a lot of different charts while doing the analysis. Overall doing this project has sharpened my skills and equipped with more as a data analyst .