



Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 204 (2008) 21-34

www.elsevier.com/locate/entcs

# Decidability of Innermost Termination and Context-Sensitive Termination for Semi-Constructor Term Rewriting Systems

Keita Uchiyama <sup>1</sup> Masahiko Sakai <sup>2</sup> Toshiki Sakabe <sup>3</sup>

Graduate School of Information Science Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan

#### Abstract

Yi and Sakai [13] showed that the termination problem is a decidable property for the class of semi-constructor term rewriting systems, which is a superclass of the class of right-ground term rewriting systems. Decidability was shown by the fact that every non-terminating TRS in the class has a loop. In this paper we modify the proof of [13] to show that both innermost termination and  $\mu$ -termination are decidable properties for the class of semi-constructor TRSs.

Keywords: Context-Sensitive Termination, Dependency Pair, Innermost Termination

#### 1 Introduction

Termination is one of the central properties of term rewriting systems (TRSs for short), where we say a TRS terminates if it does not admit any infinite reduction sequence. Since termination is undecidable in general, several decidable classes have been studied [6,8,9,12,13]. The class of semi-constructor TRSs is one of them [13], where a TRS is in this class if for every right-hand side of rules all its subterms having a defined symbol at root position are ground.

Innermost reduction, the strategy which rewrites innermost redexes, is used for call-by-value computation. Context-sensitive reduction is a strategy in which rewritable positions are indicated by specifying arguments of function symbols. Some non-terminating TRSs are terminating by context-sensitive reduction without loss of computational ability. The termination property with respect to innermost

<sup>&</sup>lt;sup>1</sup> Email: uchiyama@sakabe.i.is.nagoya-u.ac.jp

<sup>&</sup>lt;sup>2</sup> Email: sakai@is.nagoya-u.ac.jp

<sup>&</sup>lt;sup>3</sup> Email: sakabe@is.nagoya-u.ac.jp

(resp. context-sensitive) reduction is called innermost (resp. context-sensitive) termination. Since innermost termination and context-sensitive termination are also undecidable in general, methods for proving these terminations have been studied [2,4].

In this paper, we prove that innermost termination and context-sensitive termination for semi-constructor TRSs are decidable properties. We show that context-sensitive termination for  $\mu$ -semi-constructor TRSs having no infinite variable dependency chain is a decidable property. We also extend the classes by using dependency graphs.

### 2 Preliminaries

We assume the reader is familiar with the standard definitions of term rewriting systems [5], dependency pairs [4], and context-sensitive rewriting [2]. Here we just review the main notations used in this paper.

A signature  $\mathcal{F}$  is a set of function symbols, where every  $f \in \mathcal{F}$  is associated with a non-negative integer by an arity function: arity:  $\mathcal{F} \to \mathbb{N}$ . The set of all terms built from a signature  $\mathcal{F}$  and a countably infinite set  $\mathcal{V}$  of variables such that  $\mathcal{F} \cap \mathcal{V} = \emptyset$ , is represented by  $\mathcal{T}(\mathcal{F}, \mathcal{V})$ . The set of ground terms is  $\mathcal{T}(\mathcal{F}, \emptyset)$ . The set of variables occurring in a term t is denoted by  $\mathrm{Var}(t)$ .

The set of all positions in a term t is denoted by  $\mathcal{P}os(t)$  and  $\varepsilon$  represents the root position.  $\mathcal{P}os(t)$  is:  $\mathcal{P}os(t) = \{\varepsilon\}$  if  $t \in \mathcal{V}$ , and  $\mathcal{P}os(t) = \{\varepsilon\} \cup \{iu \mid 1 \leq i \leq n, u \in \mathcal{P}os(t_i)\}$  if  $t = f(t_1, \ldots, t_n)$ . Let C be a context with a hole  $\square$ . We write  $C[t]_p$  for the term obtained from C by replacing  $\square$  at position p with a term t. We sometimes write C[t] for C[t]p by omitting the position p. We say t is a subterm of s if s = C[t] for some context C. We denote the subterm relation by  $\subseteq$ , that is,  $t \subseteq s$  if t is a subterm of s, and  $t \triangleleft s$  if  $t \subseteq s$  and  $t \neq s$ . The root symbol of a term t is denoted by root(t).

A substitution  $\theta$  is a mapping from  $\mathcal{V}$  to  $\mathcal{T}(\mathcal{F},\mathcal{V})$  such that the set  $\mathrm{Dom}(\theta) = \{x \in \mathcal{V} \mid \theta(x) \neq x\}$  is finite. We usually identify a substitution  $\theta$  with the set  $\{x \mapsto \theta(x) \mid x \in \mathrm{Dom}(\theta)\}$  of variable bindings. In the following, we write  $t\theta$  instead of  $\theta(t)$ .

A rewrite rule  $l \to r$  is a directed equation which satisfies  $l \notin \mathcal{V}$  and  $\mathrm{Var}(r) \subseteq \mathrm{Var}(l)$ . A term rewriting system TRS is a finite set of rewrite rules. A redex is a term  $l\theta$  for a rule  $l \to r$  and a substitution  $\theta$ . A term containing no redex is called a normal form. A substitution  $\theta$  is normal if  $x\theta$  is in normal forms for every x. The reduction relation  $\overrightarrow{R} \subseteq \mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})$  associated with a TRS R is defined as follows:  $s \xrightarrow{R} t$  if there exist a rewrite rule  $l \to r \in R$ , a substitution  $\theta$ , and a context  $C[\ ]_p$  such that  $s = C[l\theta]_p$  and  $t = C[r\theta]_p$ , we say that s is reduced to t by contracting redex  $l\theta$ . We sometimes write  $\xrightarrow{p}$  for  $\xrightarrow{R}$  by displaying the position p.

A redex is *innermost* if all its proper subterms are in normal forms. If s is reduced to t by contracting an innermost redex, then  $s \to_R t$  is said to be an *innermost reduction* denoted by  $s \xrightarrow[in,R]{} t$ .

**Proposition 2.1** For a TRS R, if there is a reduction  $s \xrightarrow[in,R]{} t$ , then  $C[s] \xrightarrow[in,R]{} C[t]$  for any context C.

A mapping  $\mu: \mathcal{F} \to \mathcal{P}(\mathbb{N})$  is a replacement map (or  $\mathcal{F}$ -map) if  $\mu(f) \subseteq \{1, \ldots, \operatorname{arity}(f)\}$ . The set of  $\mu$ -replacing positions  $\mathcal{P}\operatorname{os}_{\mu}(t)$  of a term t is:  $\mathcal{P}\operatorname{os}_{\mu}(t) = \{\varepsilon\}$ , if  $t \in \mathcal{V}$  and  $\mathcal{P}\operatorname{os}_{\mu}(t) = \{\varepsilon\} \cup \{iu \mid i \in \mu(f), u \in \mathcal{P}\operatorname{os}_{\mu}(t_i)\}$ , if  $t = f(t_1, \ldots, t_n)$ . A context  $C[\ ]_p$  is  $\mu$ -replacing denoted by  $C_{\mu}[\ ]_p$  if  $p \in \mathcal{P}\operatorname{os}_{\mu}(C)$ . The set of all  $\mu$ -replacing variables of t is  $\operatorname{Var}_{\mu}(t) = \{x \in \operatorname{Var}(t) \mid \exists C, C_{\mu}[x]_p = t\}$ . The  $\mu$ -replacing subterm relation  $\leq_{\mu}$  is given by  $s \leq_{\mu} t$  if there is  $p \in \mathcal{P}\operatorname{os}_{\mu}(t)$  such that  $t = C[s]_p$ . A context-sensitive rewriting system is a TRS with an  $\mathcal{F}$ -map. If  $s \xrightarrow{p} t$  and  $p \in \mathcal{P}\operatorname{os}_{\mu}(s)$ , then  $s \xrightarrow{p} t$  is said to be a  $\mu$ -reduction denoted by  $s \xrightarrow{\mu} t$ .

Let  $\to$  be a binary relation on terms, the transitive closure of  $\to$  is denoted by  $\to^+$ . The transitive and reflexive closure of  $\to$  is denoted by  $\to^*$ . If  $s \to^* t$ , then we say that there is a  $\to$ -sequence starting from s to t or t is  $\to$ -reachable from s. We write  $s \to^k t$  if t is  $\to$ -reachable from s with k steps. A term t terminates with respect to  $\to$  if there exists no infinite  $\to$ -sequence starting from t.

**Example 2.2** Let  $R_1 = \{g(x) \to h(x), \ h(d) \to g(c), \ c \to d\}$  and  $\mu_1(g) = \mu_1(h) = \emptyset$ . A  $\mu_1$ -reduction sequence starting from g(d) is  $g(d) \xrightarrow{\mu_1, R_1} h(d) \xrightarrow{\mu_1, R_1} g(c)$ . We can not reduce g(c) to g(d) because c is not a  $\mu_1$ -replacing subterm of g(c).

**Proposition 2.3** For a TRS R and  $\mathcal{F}$ -map  $\mu$ , if there is a reduction  $s \xrightarrow{\mu,R} t$ , then  $C_{\mu}[s] \xrightarrow{\mu,R} C_{\mu}[t]$  for any  $\mu$ -replacing context  $C_{\mu}$ .

For a TRS R (and  $\mathcal{F}$ -map  $\mu$ ), we say that R terminates (resp. innermost terminates,  $\mu$ -terminates) if every term terminates with respect to  $\rightarrow_R$  (resp.  $\overrightarrow{in,R}$ ,  $\overrightarrow{\mu,R}$ ).

For a TRS R, a function symbol  $f \in \mathcal{F}$  is defined if f = root(l) for some rule  $l \to r \in R$ . The set of all defined symbols of R is denoted by  $D_R = \{\text{root}(l) \mid l \to r \in R\}$ . A term t has a defined root symbol if  $\text{root}(t) \in D_R$ .

Let R be a TRS over a signature  $\mathcal{F}$ . The signature  $\mathcal{F}^{\sharp}$  denotes the union of  $\mathcal{F}$  and  $D_R^{\sharp} = \{f^{\sharp} \mid f \in D_R\}$  where  $\mathcal{F} \cap D_R^{\sharp} = \emptyset$  and  $f^{\sharp}$  has the same arity as f. We call these fresh symbols dependency pair symbols. We define a notation  $t^{\sharp}$  by  $t^{\sharp} = f^{\sharp}(t_1, \ldots, t_n)$  if  $t = f(t_1, \ldots, t_n)$  and  $f \in D_R$ ,  $t^{\sharp} = t$  if  $t \in \mathcal{V}$ . If  $l \to r \in R$  and u is a subterm of r with a defined root symbol and  $u \not \lhd l$ , then the rewrite rule  $l^{\sharp} \to u^{\sharp}$  is called a dependency pair of R. The set of all dependency pairs of R is denoted by  $\mathrm{DP}(R)$ .

**Example 2.4** Let  $R_2 = \{a \to g(f(a)), f(f(x)) \to h(f(a), f(x))\}$ . We have  $DP(R_2) = \{a^{\sharp} \to a^{\sharp}, a^{\sharp} \to f^{\sharp}(a), f^{\sharp}(g(x)) \to a^{\sharp}, f^{\sharp}(g(x)) \to f^{\sharp}(a)\}$ .

A rule  $l \to r$  is said to be right ground if r is ground. Right-ground TRSs are TRSs that consist of right-ground rules.

**Definition 2.5** [Semi-Constructor TRS] A TRS R is a *semi-constructor* system if every rule in DP(R) is right ground.

Remark 2.6 The class of semi-constructor TRSs in this paper is a larger class of semi-constructor TRSs by the original definition because a rule  $l^{\sharp} \to u^{\sharp}$  is not dependency pair if  $u \lhd l$ . The original definition of semi-constructor TRS is as follows [11]. A term  $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$  is a *semi-constructor* term if every term s such that  $s \unlhd t$  and root $(s) \in D_R$  is ground. A TRS R is a semi-constructor system if r is a semi-constructor term for every rule  $l \to r \in R$ .

**Example 2.7** The TRS  $R_2$  (in Example 2.4) is a semi-constructor TRS but not in the original definition.

# 3 Decidability of Innermost Termination for Semi-Constructor TRSs

Decidability of termination for semi-constructor TRSs is proved based on the observation that there exists an infinite reduction sequence having a loop if it is not terminating [13]. In this section, we prove the decidability of innermost termination in a similar way.

**Definition 3.1** [loop] Let  $\rightarrow$  be a relation on terms. A reduction sequence *loops* if it contains  $t \rightarrow^+ C[t]$  for some context C, and *head-loops* if containing  $t \rightarrow^+ t$ .

**Proposition 3.2** If there exists an innermost sequence that loops, then there exists an infinite innermost sequence.

**Definition 3.3** [Innermost DP-chain] For a TRS R, a sequence of the elements of DP(R)  $s_1^{\sharp} \to t_1^{\sharp}, s_2^{\sharp} \to t_2^{\sharp}, \ldots$  is an *innermost dependency chain* if there exist substitutions  $\tau_1, \tau_2, \ldots$  such that  $s_i^{\sharp} \tau_i$  is in normal forms and  $t_i^{\sharp} \tau_i \xrightarrow[in,R]{}^* s_{i+1}^{\sharp} \tau_{i+1}$  holds for every i.

**Theorem 3.4 ([4])** For a TRS R, R does not innermost terminate if and only if there exists an infinite innermost dependency chain.

Let  $\mathcal{M}_{\geq}^{\rightarrow}$  denote the set of all *minimal non-terminating terms* for a relation on terms  $\rightarrow$  and an order on terms  $\geq$ .

**Definition 3.5** [\$\mathcal{C}\$-min] For a TRS \$R\$, let \$\mathcal{C} \subseteq \mathrm{DP}(R)\$. An infinite reduction sequence in \$R \cup \mathcal{C}\$ in the form \$t\_1^{\sharp} \frac{1}{in,R \cup \mathcal{C}}\$ \$t\_2^{\sharp} \frac{1}{in,R \cup \mathcal{C}}\$ \$t\_3^{\sharp} \frac{1}{in,R \cup \mathcal{C}}\$ \cdots with \$t\_i \in \mathcal{M}\_{\subseteq}^{\overline{in},R}\$ for all \$i \geq 1\$ is called a \$\mathcal{C}\$-min innermost reduction sequence. We use \$\mathcal{C}\_{min}^{in}(t^{\sharp})\$ to denote the set of all \$\mathcal{C}\$-min innermost reduction sequences starting from \$t^{\sharp}\$.

**Proposition 3.6** ([4]) Given a TRS R, the following statements hold:

- (i) If there exists an infinite innermost dependency chain, then  $C_{min}^{in}(t^{\sharp}) \neq \emptyset$  for some  $C \subseteq DP(R)$  and  $t \in \mathcal{M}_{\trianglerighteq}^{in,R}$ .
- (ii) For any sequence in  $C_{min}^{in}(t^{\sharp})$ , reduction by rules of R takes place below the root while reduction by rules of C takes place at the root.

(iii) For any sequence in  $C_{min}^{in}(t^{\sharp})$ , there is at least one rule in C which is applied infinitely often.

**Lemma 3.7** ([4]) For two terms s and s',  $s^{\sharp} \xrightarrow[in,R \cup C]{}^* s'^{\sharp}$  implies  $s \xrightarrow[in,R]{}^* C[s']$  for some context C.

**Proof.** We use induction on the number n of reduction steps in  $s^{\sharp} \xrightarrow[in,R\cup\mathcal{C}]{}^{n} s'^{\sharp}$ . In the case that n=0,  $s\xrightarrow[in,R\cup\mathcal{C}]{}^{*} C[s']$  holds where  $C=\square$ . Let  $n\geq 1$ . Then we have  $s^{\sharp} \xrightarrow[in,R\cup\mathcal{C}]{}^{n-1} s''^{\sharp} \xrightarrow[in,R\cup\mathcal{C}]{}^{*} S'^{\sharp}$  for some  $s''^{\sharp}$ . By the induction hypothesis,  $s\xrightarrow[in,R]{}^{*} C[s'']$ .

- Consider the case that  $s''^{\sharp} \xrightarrow[in,R]{} s'^{\sharp}$ . Since  $s'' \xrightarrow[in,R]{} s'$ , we have  $C[s''] \xrightarrow[in,R]{} C[s']$  by Proposition 2.1. Hence  $s \xrightarrow[in,R]{} C[s']$ .
- Consider the case that  $s''^{\sharp} \xrightarrow[in,C]{} s'^{\sharp}$ . Since s'' is a normal form with respect to  $\to_R$ , we have  $s'' \xrightarrow[in,R]{} C'[s']$  by the definition of dependency pairs.  $C[s''] \xrightarrow[in,R]{} C[C'[s']]$ , by Proposition 2.1. Hence  $s \xrightarrow[in,R]{} C[C'[s']]$ .

**Lemma 3.8** For a semi-constructor TRS R, the following statements are equivalent:

- (i) R does not innermost terminate.
- (ii) There exists  $l^{\sharp} \to u^{\sharp} \in \mathrm{DP}(R)$  such that sq head-loops for some  $\mathcal{C} \subseteq \mathrm{DP}(R)$  and  $sq \in \mathcal{C}^{in}_{min}(u^{\sharp})$ .

**Proof.** ((ii)  $\Rightarrow$  (i)): It is obvious from Lemma 3.7, and Proposition 3.2. ((i)  $\Rightarrow$  (ii)): By Theorem 3.4 there exists an infinite innermost dependency chain. By Proposition 3.6(i), there exists a sequence  $sq \in \mathcal{C}^{in}_{min}(t^{\sharp})$ . By Proposition 3.6(ii),(iii), there exists some rule  $l^{\sharp} \to u^{\sharp} \in \mathcal{C}$ , which is applied at root position in sq infinitely often. By Definition 2.5,  $u^{\sharp}$  is ground. Thus sq contains a subsequence  $u^{\sharp} \xrightarrow[in,R\cup DP(R)]{}^{*} \cdot \to_{\{l^{\sharp}\to u^{\sharp}\}} u^{\sharp}$ , which head-loops.

**Theorem 3.9** Innermost termination of semi-constructor TRSs is decidable.

**Proof.** The decision procedure for the innermost termination of a semi-constructor TRS R is as follows: consider all terms  $u_1, u_2, \ldots, u_n$  corresponding to the right-hand sides of  $DP(R) = \{l_i^{\sharp} \to u_i^{\sharp} \mid 1 \leq i \leq n\}$ , and simultaneously generate all innermost reduction sequences with respect to R starting from  $u_1, u_2, \ldots, u_n$ . The procedure halts if it enumerates all reachable terms exhaustively or it detects a looping reduction sequence  $u_i \xrightarrow[in,R]{} C[u_i]$  for some i.

Suppose R does not innermost-terminate. By Lemma 3.8 and 3.7, we have a looping reduction sequence  $u_i \xrightarrow[in,R]{}^+ C[u_i]$  for some i and C, which we eventually detect. If R innermost terminates, then the execution of the reduction sequence generation eventually stops since the reduction relation is finitely branching. In the latter case, the procedure does not detect a looping sequence, otherwise it contradicts Proposition 3.2. Thus the procedure decides innermost termination of R in finitely many steps.

# 4 Decidability of Context-Sensitive Termination for Semi-Constructor TRSs

The proof of decidability for innermost termination is straightforward. However, the proof for context-sensitive termination is not so straightforward because of the existence of a dependency pair whose right-hand side is variable.

**Definition 4.1**  $[\mu\text{-Loop}]$  Let  $\to$  be a relation on terms and  $\mu$  be an  $\mathcal{F}$ -map. A reduction sequence  $\mu$ -loops if it contains  $t \to^+ C_{\mu}[t]$  for some context  $C_{\mu}$ .

**Example 4.2** Let  $R_3 = \{a \to g(f(a)), f(g(x)) \to h(f(a), x)\}, \mu_2(f) = \{1\}, \mu_2(g) = \emptyset \text{ and } \mu_2(h) = \{1, 2\}.$  The  $\mu_2$ -reduction sequence with respect to  $R_3$   $f(a) \xrightarrow{\mu_2, R_3} f(g(f(a))) \xrightarrow{\mu_2, R_3} h(f(a), f(a)) \xrightarrow{\mu_2, R_3} \cdots$  is  $\mu_2$ -looping.

**Proposition 4.3** If there exists a  $\mu$ -looping  $\mu$ -reduction sequence, then there exists an infinite  $\mu$ -reduction sequence.

**Definition 4.4** [Context-Sensitive Dependency Pairs [2]] Let R be a TRS and  $\mu$  be an  $\mathcal{F}$ -map. We define  $\mathrm{DP}(R,\mu) = \mathrm{DP}_{\mathcal{F}}(R,\mu) \cup \mathrm{DP}_{\mathcal{V}}(R,\mu)$  to be the set of context-sensitive dependency pairs where:

$$DP_{\mathcal{F}}(R,\mu) = \{ l^{\sharp} \to u^{\sharp} \mid l \to r \in R, u \leq_{\mu} r, \operatorname{root}(u) \in D_{R}, u \not \leq_{\mu} l \}$$
$$DP_{\mathcal{V}}(R,\mu) = \{ l^{\sharp} \to x \mid l \to r \in R, x \in \operatorname{Var}_{\mu}(r) \setminus \operatorname{Var}_{\mu}(l) \}$$

**Example 4.5** Consider TRS  $R_3$  and  $\mathcal{F}$ -map  $\mu_2$  (in Example 4.2).  $\mathrm{DP}_{\mathcal{F}}(R_3, \mu_2) = \{f^{\sharp}(g(x)) \to f^{\sharp}(a)\}$  and  $\mathrm{DP}_{\mathcal{V}}(R_3, \mu_2) = \{f^{\sharp}(g(x)) \to x\}.$ 

For a given TRS R and an  $\mathcal{F}$ -map  $\mu$ , we define  $\mu^{\sharp}$  by  $\mu^{\sharp}(f) = \mu(f)$  for  $f \in \mathcal{F}$ , and  $\mu^{\sharp}(f^{\sharp}) = \mu(f)$  for  $f \in D_R$ . We write  $s \trianglerighteq_{\mu}^{\sharp} t^{\sharp}$  for  $s \trianglerighteq_{\mu} t$ .

**Definition 4.6** [Context-Sensitive Dependency Chain] For a TRS R and  $\mathcal{F}$ -map  $\mu$ , a sequence of the elements of  $\mathrm{DP}(R,\mu)$   $s_1^{\sharp} \to t_1^{\sharp}, \ s_2^{\sharp} \to t_2^{\sharp}, \dots$  is a context-sensitive dependency chain if there exist substitutions  $\tau_1, \tau_2, \dots$  satisfying both:

- $t_i^{\sharp} \tau_i \xrightarrow{\mu^{\sharp}, R} s_{i+1}^{\sharp} \tau_{i+1}$ , if  $t_i^{\sharp} \notin \mathcal{V}$
- $x\tau_i \trianglerighteq_{\mu}^{\sharp} u_i^{\sharp} \xrightarrow{\mu^{\sharp}, R} s_{i+1}^{\sharp} \tau_{i+1}$  for some term  $u_i$ , if  $t_i^{\sharp} = x$ .

**Example 4.7** Consider TRS  $R_3$  and  $\mathcal{F}$ -map  $\mu_2$  (in Example 4.2).  $f(a), f(g(f(a))) \in \mathcal{M}_{\succeq_{\mu}} \xrightarrow{\mu_2, R_3}$  and  $f(f(a)), h(f(a), f(a)) \notin \mathcal{M}_{\succeq_{\mu}} \xrightarrow{\mu_2, R_3}$ .

**Theorem 4.8 ([2])** For a TRS R and an  $\mathcal{F}$ -map  $\mu$ , there exists an infinite context-sensitive dependency chain if and only if R does not  $\mu$ -terminate.

Let R be a TRS,  $\mu$  be an  $\mathcal{F}$ -map and  $\mathcal{C} \subseteq \mathrm{DP}(R,\mu)$ . We define  $\xrightarrow{\mu,R,\mathcal{C}}$  as  $\left(\xrightarrow{\mu^{\sharp},\mathcal{C}_{\mathcal{F}}} \cup \left(\xrightarrow{\mu^{\sharp},\mathcal{C}_{\mathcal{V}}} \cdot \trianglerighteq_{\mu}^{\sharp}\right) \cup \xrightarrow{\mu^{\sharp},R}\right)$  where  $\mathcal{C}_{\mathcal{F}} = \mathcal{C} \cap \mathrm{DP}_{\mathcal{F}}(R,\mu)$  and  $\mathcal{C}_{\mathcal{V}} = \mathcal{C} \cap \mathrm{DP}_{\mathcal{V}}(R,\mu)$ .

**Definition 4.9**  $[\mu\text{-}C\text{-min}]$  Let R be a TRS,  $\mu$  be an  $\mathcal{F}$ -map. An infinite sequence of terms in the form  $t_1^{\sharp} \stackrel{\smile}{\leftarrow}_{\mu,R,\mathcal{C}} t_2^{\sharp} \stackrel{\smile}{\leftarrow}_{\mu,R,\mathcal{C}} t_3^{\sharp} \stackrel{\smile}{\leftarrow}_{\mu,R,\mathcal{C}} \cdots$  is called a  $C\text{-min }\mu\text{-sequence}$  if

 $t_i \in \mathcal{M}_{\geq \mu}^{\overrightarrow{\mu,R}}$  for all  $i \geq 1$ . We use  $\mathcal{C}_{min}^{\mu}(t^{\sharp})$  to denote the set of all  $\mathcal{C}$ -min  $\mu$ -sequences starting from  $t^{\sharp}$ .

Note that 
$$C_{min}^{\mu}(t^{\sharp}) = \emptyset$$
 if  $t \notin \mathcal{M}_{\succeq_{\mu}}^{\overrightarrow{\mu,R}}$ .

**Example 4.10** Let  $C = DP(R_3, \mu_2)$ , the sequence  $f^{\sharp}(a) \underset{\mu_2, R_3, C}{\longleftarrow} f^{\sharp}(g(f(a)))$  $\stackrel{\longleftarrow}{\mu_{2},R_{3},\mathcal{C}} f^{\sharp}(a) \stackrel{\longleftarrow}{\mu_{2},R_{3},\mathcal{C}} \cdots$  is a  $\mathcal{C}$ -min  $\mu$ -sequence.

**Proposition 4.11** ([2]) Given a TRS R and an  $\mathcal{F}$ -map  $\mu$ , the following statements hold:

- (i) If there exists an infinite context-sensitive dependency chain, then  $C_{min}^{\mu}(t^{\sharp}) \neq \emptyset$ for some  $C \subseteq \mathrm{DP}(R,\mu)$  and  $t \in \mathcal{M}_{\geq_{\mu}}^{\overrightarrow{\mu,R}}$ .
- (ii) For any sequence in  $C^{\mu}_{min}(t^{\sharp})$ , a reduction with  $\xrightarrow{\mu^{\sharp},R}$  takes place below the root while reductions with  $\xrightarrow{\mu^{\sharp}, \mathcal{C}_{\mathcal{F}}}$  and  $\xrightarrow{\mu^{\sharp}, \mathcal{C}_{\mathcal{V}}}$  take place at the root.
- (iii) For any sequence in  $C^{\mu}_{min}(t^{\sharp})$ , there is at least one rule in C which is applied infinitely often.

**Lemma 4.12** For two terms s and t,  $s^{\sharp} \xrightarrow{\mu.R.C} t^{\sharp}$  implies  $s \xrightarrow{\mu,R} C_{\mu}[t]$  for some context  $C_{\mu}$ .

**Proof.** We use induction on the length n of the sequence. In the case that n=0, it holds trivially. Let  $n \geq 1$ . Then we have  $s^{\sharp} \xrightarrow{\mu,R,\mathcal{C}} u^{\sharp} \xrightarrow{\mu,R,\mathcal{C}} t^{\sharp}$  for some u.

• In the case that  $u^{\sharp} \xrightarrow{\mu^{\sharp},\mathcal{C}_{\mathcal{F}}} t^{\sharp}$ , we have  $u \xrightarrow{\mu,R} C'_{\mu}[t]$  by the definition of dependency

- pairs.
- In the case that  $u^{\sharp} \xrightarrow{\mu^{\sharp}, C_{\mathcal{V}}} v \trianglerighteq_{\mu}^{\sharp} t^{\sharp}$ , we have  $u \xrightarrow{\mu, R} C''_{\mu}[v]$  by the definition of dependency pairs and  $v = C'''_{\mu}[t]$ . Thus  $u \xrightarrow{\mu, R} C''_{\mu}[C'''_{\mu}[t]] = C'_{\mu}[t]$ .
- In the case that  $u^{\sharp} \xrightarrow{\mu^{\sharp}.R} t^{\sharp}$ , we have  $u \xrightarrow{\mu,R} C'_{\mu}[t]$  for  $C'_{\mu}[t] = \square$ . Therefore  $s \xrightarrow{\mu R} C_{\mu}[u] \xrightarrow{\mu R} C_{\mu}[C'_{\mu}[t]]$  by the induction hypothesis and Proposition 2.3.

#### Context-Sensitive Semi-Constructor TRS

In this subsection, we discuss the decidability of  $\mu$ -termination for context-sensitive semi-constructor TRSs.

**Definition 4.13** [Context-Sensitive Semi-Constructor TRS] For an  $\mathcal{F}$ -map  $\mu$ , a TRS R is a context-sensitive semi-constructor ( $\mu$ -semi-constructor) TRS if all rules in  $DP_{\mathcal{F}}(R,\mu)$  are right ground.

For an  $\mathcal{F}$ -map  $\mu$ , the class of  $\mu$ -semi-constructor TRSs is a superclass of the class of semi-constructor TRSs from Definition 2.5 and 4.13.

For a TRS R and  $\mathcal{F}$ -map  $\mu$ , we say R is free from the infinite variable dependency chain (FFIVDC) if and only if there exists no infinite context-sensitive dependency

chain consisting of only elements in  $\mathrm{DP}_{\mathcal{V}}(R,\mu)$ . If R is FFIVDC, then  $\mathcal{C}^{\mu}_{min}(t^{\sharp}) = \emptyset$  for any  $\mathcal{C} \subseteq \mathrm{DP}_{\mathcal{V}}(R,\mu)$  and any term t.

**Lemma 4.14** Let  $\mu$  be an  $\mathcal{F}$ -map. If a  $\mu$ -semi-constructor TRS R is FFIVDC, then the following statements are equivalent:

- (i) R does not  $\mu$ -terminate.
- (ii) There exists  $l^{\sharp} \to u^{\sharp} \in \mathrm{DP}_{\mathcal{F}}(R,\mu)$  such that sq head-loops for  $\mathcal{C} \subseteq \mathrm{DP}(R,\mu)$  and some  $sq \in \mathcal{C}^{\mu}_{min}(u^{\sharp})$ .

**Proof.** ((ii)  $\Rightarrow$  (i)): It is obvious from Lemma 4.12, and Proposition 4.3. ((i)  $\Rightarrow$  (ii)): By Theorem 4.8 there exists an infinite context-sensitive dependency chain. By Proposition 4.11(i), there exists a sequence  $sq \in \mathcal{C}^{\mu}_{min}(t^{\sharp})$ . By Proposition 4.11(ii),(iii) and the fact that R is FFIVDC, there is some rule in  $l^{\sharp} \to u^{\sharp} \in \mathcal{C}_{\mathcal{F}}$  which is applied at the root position in sq infinitely often.

By Definition 4.13,  $u^{\sharp}$  is ground. Thus sq contains a subsequence  $u^{\sharp} \underset{\mu,R,\mathcal{C}}{\longleftarrow} u^{\sharp}$ , which head-loops and is in  $\mathcal{C}^{\mu}_{min}(u^{\sharp})$ .

**Theorem 4.15** Let  $\mu$  be an  $\mathcal{F}$ -map. If a  $\mu$ -semi-constructor TRS R is FFIVDC, then  $\mu$ -termination of R is decidable.

**Proof.** The decision procedure for  $\mu$ -termination of a  $\mu$ -semi-constructor TRS R is as follows: consider all terms  $u_1, u_2, \ldots, u_n$  corresponding to the right-hand sides of  $\mathrm{DP}_{\mathcal{F}}(R,\mu) = \{l_i^{\sharp} \to u_i^{\sharp} \mid 1 \leq i \leq n\}$ , and simultaneously generate all  $\mu$ -reduction sequences with respect to R starting from  $u_1, u_2, \ldots, u_n$ . The procedure halts if it enumerates all reachable terms exhaustively or it detects a  $\mu$ -looping reduction sequence  $u_i \xrightarrow[\mu,R]{} C_{\mu}[u_i]$  for some i.

Suppose R does not  $\mu$ -terminate. By Lemma 4.14 and 4.12, we have a  $\mu$ -looping reduction sequence  $u_i \xrightarrow{\mu,R}^+ C_{\mu}[u_i]$  for some i and  $C_{\mu}$ , which we eventually detect. If R  $\mu$ -terminates, then the execution of the reduction sequence generation eventually stops since the reduction relation is finitely branching. In the latter case, the procedure does not detect a  $\mu$ -looping sequence, otherwise it contradicts to Proposition 4.3. Thus the procedure decides  $\mu$ -termination of R in finitely many steps.

We have to check the FFIVDC property in order to use Theorem 4.15. However, The FFIVDC property is not necessarily decidable. The following proposition provides a sufficient condition. The set  $\mathrm{DP}^1_{\mathcal{V}}(R,\mu)$  is a subset of  $\mathrm{DP}_{\mathcal{V}}(R,\mu)$  defined as follows:

$$DP_{\mathcal{V}}^{1}(R,\mu) = \{ f^{\sharp}(u_{1},\ldots,u_{k}) \to x \in DP_{\mathcal{V}}(R,\mu) \mid \exists i, 1 \leq i \leq k, i \notin \mu(f), x \in Var(u_{i}) \}$$
Proposition 4.16 ([2]) Let R be a TRS who as T man and C  $\subseteq DP_{\mathcal{V}}^{1}(R,\mu)$ 

**Proposition 4.16 ([2])** Let R be a TRS,  $\mu$  be an  $\mathcal{F}$ -map and  $\mathcal{C} \subseteq \mathrm{DP}^1_{\mathcal{V}}(R,\mu)$ .  $\mathcal{C}^{\mu}_{min}(t^{\sharp}) = \emptyset$  for any term t.

If  $\mathrm{DP}^1_{\mathcal{V}}(R,\mu) = \mathrm{DP}_{\mathcal{V}}(R,\mu)$  then R is FFIVDC by Proposition 4.16. Hence the following corollary directly follows from Theorem 4.15 and the fact that  $\mathrm{DP}^1_{\mathcal{V}}(R,\mu) = \mathrm{DP}_{\mathcal{V}}(R,\mu)$  is decidable.

Corollary 4.17 For an  $\mathcal{F}$ -map  $\mu$  and a  $\mu$ -semi-constructor TRS R,  $\mu$ -termination of R is decidable if  $DP_{\mathcal{V}}(R,\mu) = DP_{\mathcal{V}}^1(R,\mu)$ .

#### Semi-Constructor TRS

In this subsection, we try to remove FFIVDC condition from the results of the previous subsection. As a result, it appears that  $\mu$ -termination of semi-constructor TRSs (not  $\mu$ -semi-constructor) is decidable. The arguments of following Lemma 4.18 and 4.19 are similar to those of Lemma 3.5 and Proposition 3.6 in [3].

**Lemma 4.18** Consider a reduction  $s^{\sharp} = C_{\mu^{\sharp}}[l\theta]_p \xrightarrow{\mu^{\sharp}_R} t^{\sharp} = C_{\mu^{\sharp}}[r\theta]_p = C'[u]_q$ where  $s, u \in \mathcal{M}_{\triangleright_u}^{\overrightarrow{\mu,R}}$  and  $q \in \mathcal{P}os(t) \setminus \mathcal{P}os_{\mu}(t)$ . Then one of the following statements

- (i)  $s \triangleright u$
- (ii)  $v\theta = u$  and  $r = C''[v]_{q'}$  for some  $\theta$ ,  $v \notin \mathcal{V}$ , C'', and  $q' \in \mathcal{P}os(r) \setminus \mathcal{P}os_{u}(r)$

**Proof.** Since  $q \in \mathcal{P}os(t) \setminus \mathcal{P}os_u(t)$ , p is not below or equal to q. In the case that p and q are in parallel positions,  $s \triangleright u$  trivially holds. In the case that p is above q, it is obvious that  $s \triangleright u$  holds or,  $v\theta = u$  and  $r = C''[v]_{\sigma'}$  for some  $\theta, v \notin \mathcal{V}, C''$ . Here the fact that  $q' \in \mathcal{P}os(r) \setminus \mathcal{P}os_{\mu}(r)$  follows from  $p \in \mathcal{P}os_{\mu}(t)$  and  $q \notin \mathcal{P}os_{\mu}(t)$ .

**Lemma 4.19** Let R be a semi-constructor TRS,  $\mu$  be an  $\mathcal{F}$ -map. For a  $\mathcal{C}$ -min  $\mu$ -sequence  $s_1^{\sharp} \xrightarrow{\mu^{\sharp}, R} t_1^{\sharp} \xrightarrow{\mu^{\sharp}, C_{\mathcal{V}}} u_1 \trianglerighteq_{\mu}^{\sharp} s_2^{\sharp} \xrightarrow{\mu^{\sharp}, R} t_2^{\sharp} \xrightarrow{\mu^{\sharp}, C_{\mathcal{V}}} u_2 \trianglerighteq_{\mu}^{\sharp} \cdots$  with no reduction by rules in  $C_{\mathcal{F}}$ , one of the following statements holds for each i:

- (i)  $s_i \triangleright s_{i+1}$
- (ii) There exists  $l^{\sharp} \to s_{i+1}^{\sharp} \in \mathrm{DP}(R)$  for some l

**Proof.** Since  $t_i^{\sharp} \xrightarrow{\mu^{\sharp}, C_{\mathcal{V}}} u_i \trianglerighteq_{\mu}^{\sharp} s_{i+1}^{\sharp}$ , we have  $t_i^{\sharp} = C[s_{i+1}]_q$  for some  $q \in \mathcal{P}os(t_i) \setminus \mathcal{P}os_{\mu}(t_i)$ . We show (i) or the following (ii') by induction on the number n of steps of  $s_i^{\sharp} \xrightarrow{\iota^{\sharp} R} {}^n t_i^{\sharp} = C[s_{i+1}].$ 

- (ii') There exists a reduction by  $l \to r$  in  $s_i^{\sharp} \xrightarrow{\mu^{\sharp}_R} t_i^{\sharp}$  and  $l^{\sharp} \to s_{i+1}^{\sharp} \in DP(R)$
- In the case that n=0, trivially  $s_i=t_i \rhd s_{i+1}$ . In the case that n>0, let  $s_i^{\sharp} \xrightarrow{\mu^{\sharp}, R} s'^{\sharp} \xrightarrow{\mu^{\sharp}, R} {}^{n-1} t_i^{\sharp} = C[s_{i+1}]_q$ . By the induction hypothesis,  $s' > s_{i+1}$  or the condition (ii') follows. In the former case, we have  $s_i \triangleright s_{i+1}$ , or, we have  $v\theta = s_{i+1}$  and  $r = C'[v]_{q'}$  for some  $l \to r \in R$ ,  $\theta, v \notin \mathcal{V}$ , C'and  $q' \in \mathcal{P}os(r) \setminus \mathcal{P}os_{\mu}(r)$  by Lemma 4.18. Hence  $v\theta = v$  due to  $root(s_{i+1}) \in D_R$ and Definition 2.5. Therefore (ii') follows.

One may think that the Lemma 4.19 would hold even if DP(R) were replaced with  $DP(R, \mu)$ . However, it does not hold as shown by the following counter example.

**Example 4.20** Consider the semi-constructor TRS  $R_4 = \{f(g(x)) \to x, g(b) \to a\}$ g(f(g(b))),  $\mu_3(f) = \{1\}$  and  $\mu_3(g) = \emptyset$ . There exists a C-min  $\mu_3$ -sequence  $f^{\sharp}(g(b)) \xrightarrow{\mu_3^{\sharp}, R_4} f^{\sharp}(g(f(g(b))) \xrightarrow{\mu_3^{\sharp}, \mathcal{C}_{\mathcal{V}}} f(g(b)) \stackrel{\models}{\trianglerighteq}_{\mu_3} f^{\sharp}(g(b))$  where  $\mathcal{C}_{\mathcal{V}} = \mathrm{DP}_{\mathcal{V}}(R_4, \mu_3)$ . However there exists no dependency pair having  $f^{\sharp}(g(b))$  in the right-hand side in  $\mathrm{DP}(R, \mu)$ .

**Lemma 4.21** For a semi-constructor TRS R and an  $\mathcal{F}$ -map  $\mu$ , the following statements are equivalent:

- (i) R does not  $\mu$ -terminate.
- (ii) There exists  $l^{\sharp} \to u^{\sharp} \in \mathrm{DP}(R)$  such that sq head-loops for  $\mathcal{C} \subseteq \mathrm{DP}(R,\mu)$  and some  $sq \in \mathcal{C}^{\mu}_{min}(u^{\sharp})$ .

**Proof.** ((ii)  $\Rightarrow$  (i)): It is obvious from Lemma 4.12, and Proposition 4.3. ((i)  $\Rightarrow$  (ii)): By Theorem 4.8 there exists a context-sensitive dependency chain. By Proposition 4.11(i), there exists a sequence  $sq \in \mathcal{C}^{\mu}_{min}(t^{\sharp})$ . By Proposition 4.11(ii),(iii), there exists a rule in  $\mathcal{C}$  applied at root position in sq infinitely often.

- Consider the case that there exists a rule  $l^{\sharp} \to r^{\sharp} \in \mathcal{C}_{\mathcal{F}}$  with infinite use in sq. Since u is ground by Proposition 4.11(ii) and  $\mathcal{C}_{\mathcal{F}} \subseteq \mathrm{DP}(R)$ , sq has a subsequence  $u^{\sharp} \xrightarrow{\mu,R,\mathcal{C}} u^{\sharp}$ .
- Otherwise, sq has an infinite subsequence without the use of the rules in  $\mathcal{C}_{\mathcal{F}}$ . The subsequence is in  $\mathcal{C}_{min}^{\mu}(s^{\sharp})$  for some  $s^{\sharp}$ . Then the condition (ii) of Lemma 4.19 holds for infinitely many i's; otherwise, we have an infinite sequence  $s_k \rhd s_{k+1} \rhd \cdots$  for some k, which is a contradiction. Hence there exists a  $l^{\sharp} \to u^{\sharp} \in \mathrm{DP}(R)$  such that  $u^{\sharp}$  occurs more than once in sq. Thus the sequence  $u^{\sharp} \xrightarrow{\iota_{n}R.\mathcal{C}} u^{\sharp}$  appears in sq.  $\square$

**Theorem 4.22** The property  $\mu$ -termination of semi-constructor TRSs is decidable.

**Proof.** The decision procedure for  $\mu$ -termination of a semi-constructor TRS R is as follows: consider all terms  $u_1, u_2, \ldots, u_n$  corresponding to the right-hand sides of  $\mathrm{DP}(R) = \{l_i^\sharp \to u_i^\sharp \mid 1 \le i \le n\}$ , and simultaneously generate all  $\mu$ -reduction sequences with respect to R starting from  $u_1, u_2, \ldots, u_n$ . The procedure halts if it enumerates all reachable terms exhaustively or it detects a  $\mu$ -looping reduction sequence  $u_i \xrightarrow{\mu,R} {}^+ C_{\mu}[u_i]$  for some i.

Suppose R does not  $\mu$ -terminate. By Lemma 4.21 and 4.12, we have a  $\mu$ -looping reduction sequence  $u_i \xrightarrow{\mu,R} {}^+ C_{\mu}[u_i]$  for some i and  $C_{\mu}$ , which we eventually detect. If R  $\mu$ -terminates, then the execution of the reduction sequence generation eventually stops since the reduction relation is finitely branching. In the latter case, the procedure does not detect a  $\mu$ -looping sequence, otherwise it contradicts to Proposition 4.3. Thus the procedure decides  $\mu$ -termination of R in finitely many steps.

# 5 Extending the Classes by DP-graphs

#### 5.1 Innermost Termination

In this subsection, we extend the class for which innermost termination is decidable by using the dependency graph.

**Lemma 5.1** Let R be a TRS whose innermost termination is equivalent to the non-existence of an innermost dependency chain that contains infinite use of right-ground dependency pairs. Then innermost termination of R is decidable.

**Proof.** We apply the procedure used in the proof of Lemma 3.9 starting with terms  $u_1, u_2, \ldots, u_n$ , where  $u_i^{\sharp}$ 's are all ground right-hand sides of dependency pairs. Suppose R is innermost non-terminating, then we have an innermost dependency chain with infinite use of a right-ground dependency pair. Similarly to the semi-constructor case, we have a looping sequence  $u_i \xrightarrow[in,R]{}^+ C[u_i]$ , which can be detected by the procedure.

**Definition 5.2** [Innermost DP-Graph [4]] The innermost dependency graph (innermost DP-graph for short) of a TRS R is a directed graph whose nodes are the dependency pairs and there is an arc from  $s^{\sharp} \to t^{\sharp}$  to  $u^{\sharp} \to v^{\sharp}$  if there exist normal substitutions  $\sigma$  and  $\tau$  such that  $t^{\sharp}\sigma \xrightarrow[in,R]{}^* u^{\sharp}\tau$  and  $u^{\sharp}\tau$  is a normal form with respect to R.

An approximated innermost DP-graph is a graph that contains the innermost DP-graph as a subgraph. Such computable graphs are proposed in [4], for example.

**Theorem 5.3** Let R be a TRS and G be an approximated innermost DP-graph of R. If at least one node in the cycle is right-ground for every cycle of G, then innermost termination of R is decidable.

**Proof.** From Lemma 5.1.

**Example 5.4** Let  $R_5 = \{f(s(x)) \to g(x), g(s(x)) \to f(s(0))\}$ . Then  $DP(R_5) = \{f^{\sharp}(s(x)) \to g^{\sharp}(x), g^{\sharp}(s(x)) \to f^{\sharp}(s(0))\}$ . The innermost DP-graph of  $R_5$  has one cycle, which contains a right-ground node [Fig. 1]. The innermost termination of  $R_5$  is decidable by Theorem 5.3. Actually we know  $R_5$  is innermost terminating from the procedure in the proof of Theorem 3.9 since all innermost reduction sequences from f(s(0)) terminate.



Fig. 1. The innermost DP-graph of  $R_5$ 

**Example 5.5** Let  $R_6 = \{a \to b, f(a,x) \to x, f(x,b) \to g(x,x), g(b,x) \to h(f(a,a),x)\}$ . Then  $\mathrm{DP}(R_6) = \{f^{\sharp}(x,b) \to g^{\sharp}(x,x), g^{\sharp}(b,x) \to f^{\sharp}(a,a), g^{\sharp}(b,x) \to a^{\sharp}\}$ . The innermost DP-graph of  $R_6$  has one cycle, which contains a right-ground node [Fig. 2]. The innermost termination of  $R_6$  is decidable by Theorem 5.3. Actually we know  $R_6$  is not innermost terminating from the procedure in the proof of Theorem 3.9 by detecting the looping sequence  $f(a,a) \xrightarrow[in,R_6]{} f(b,b) \xrightarrow[in,R_6]{} g(b,b) \xrightarrow[in,R_6]{} h(f(a,a),b)$ .



Fig. 2. The innermost DP-Graph of  $R_6$ 

#### 5.2 Context-Sensitive Termination

We extend the class for which  $\mu$ -termination is decidable by using the dependency graph. The class extended in this subsection is the class that satisfies the condition of Corollary 4.17.

**Lemma 5.6** Let R be a TRS and  $\mu$  be an  $\mathcal{F}$ -map. If  $\mu$ -termination of R is equivalent to the non-existence of a context-sensitive dependency chain that contains infinite use of right-ground rules in  $\mathrm{DP}_{\mathcal{F}}(R,\mu)$ , then  $\mu$ -termination of R is decidable.

**Proof.** We apply the procedure used in the proof of Lemma 4.22 starting with terms  $u_1, u_2, \ldots, u_n$ , where  $u_i^{\sharp}$ 's are all ground right-hand sides of rules in  $\mathrm{DP}_{\mathcal{F}}(R,\mu)$ . Suppose R is non- $\mu$ -terminating, then we have a context-sensitive dependency chain with infinite use of right-ground rules in  $\mathrm{DP}_{\mathcal{F}}(R,\mu)$ . Similar to the  $\mu$ -semi-constructor case, we have a looping sequence  $u_i \xrightarrow{\mu,R} C_{\mu}[u_i]$ , which can be detected by the procedure.

**Definition 5.7** [Context-Sensitive DP-Graph [2]] The context-sensitive dependency graph (context-sensitive DP-graph for short) of a TRS R and an  $\mathcal{F}$ -map  $\mu$  is a directed graph whose nodes are elements of  $DP(R, \mu)$ :

- (i) There is an arc from  $s \to t \in \mathrm{DP}_{\mathcal{F}}(R,\mu)$  to  $u \to v \in \mathrm{DP}(R,\mu)$  if there exist substitutions  $\sigma$  and  $\tau$  such that  $t\sigma \xrightarrow{\mu^{\sharp}.R}^* u\tau$ .
- (ii) There is an arc from  $s \to t \in \mathrm{DP}_{\mathcal{V}}(R,\mu)$  to each dependency pair  $u \to v \in \mathrm{DP}(R,\mu)$ .

Similar to the innermost case, a computable approximated context-sensitive DP-graph is proposed [2,3].

**Theorem 5.8** Let R be a TRS,  $\mu$  be an  $\mathcal{F}$ -map and G be an approximated context-sensitive DP-graph of R. The property  $\mu$ -termination of R is decidable if one of following holds for every cycle in G.

- (i) The cycle contains at least one node that is right-ground.
- (ii) All nodes in the cycle are elements in  $DP^1_{\mathcal{V}}(R,\mu)$ .

**Proof.** From Lemma 5.6 and Theorem 4.16.

**Example 5.9** Let  $R_7 = \{h(x) \to g(x,x), g(a,x) \to f(b,x), f(x,x) \to h(a), a \to b\}$  and  $\mu_4(f) = \mu_4(g) = \mu_4(h) = \{1\}$  [10]. Then  $DP(R_7, \mu_4) = \{h^{\sharp}(x) \to g^{\sharp}(x,x), g^{\sharp}(a,x) \to f^{\sharp}(b,x), f^{\sharp}(x,x) \to h^{\sharp}(a), f^{\sharp}(x,x) \to a^{\sharp}\}$ . The context-sensitive DP-graph of  $R_7$  and  $\mu_4$  has one cycle, which contains a right-ground node [Fig.3]. The  $\mu_4$ -termination of  $R_7$  is decidable by Theorem 5.8. Actually we know

 $R_7$  is  $\mu_4$ -terminating from the procedure in the proof of Theorem 4.15 since all  $\mu_4$ -reduction sequences from h(a) terminate.



Fig. 3. The context-sensitive DP-Graph of  $R_7$  and  $\mu_4$ 

**Example 5.10** Let  $\mu_5(g) = \{2\}$  and  $\mu_5(f) = \mu_5(h) = \{1\}$ . Consider the  $\mu_5$ -termination of  $R_7$ . The context-sensitive DP-graph for  $R_7$  and  $\mu_5$  is the same as the one for  $R_7$  and  $\mu_4$  [Fig.3]. The  $\mu_5$ -termination of  $R_7$  is decidable by Theorem 5.8. By the decision procedure, we can detect the  $\mu_5$ -looping sequence  $h(a) \xrightarrow[\mu_5, R_7]{} g(a, a) \xrightarrow[\mu_5, R_7]{} g(a, b) \xrightarrow[\mu_5, R_7]{} f(b, b) \xrightarrow[\mu_5, R_7]{} h(a)$ . Thus  $R_7$  is non- $\mu_5$ -terminating.

The class of TRSs that satisfy the conditions of Theorem 5.8 is a superclass of the class of TRS that satisfy the conditions of Corollary 4.17. The class of semi-constructor TRSs and the class of TRSs that satisfy the conditions of Theorem 5.8 are not included in each other.

**Example 5.11** The TRS  $R_7$  with an  $\mathcal{F}$ -map  $\mu_4$  satisfies the condition of Theorem 5.8, but is not semi-constructor TRS. On the other hand, the TRS  $R_3$  with an  $\mathcal{F}$ -map  $\mu_2$  is a semi-constructor TRS, but does not satisfy the second condition of Theorem 5.8.

### 6 Conclusion

We have shown that innermost termination for semi-constructor TRSs is a decidable property and  $\mu$ -termination for semi-constructor TRSs and  $\mu$ -semi-constructor TRSs are decidable properties.

It is not difficult to implement the procedures in proofs of Theorem 3.9, Theorem 4.15 and Theorem 4.22. The class of semi-constructor TRSs are a rather small class: approximately 3 % of the TRSs in the termination problem data base 4.0 [1] are in this class. We can extend the decidable classes if we succeed in developing a method for good approximated DP-graphs.

In the future we will study the decidability of innermost termination and  $\mu$ -termination by applying known techniques for termination results [7,13]. Currently, innermost termination for shallow TRSs is known to be decidable [7]. There are several future works, studying whether the condition FFIVDC is removed from Theorem 4.15 or not, and extending the class of semi-constructor TRSs by using notions of context-sensitive DP-graph.

## Acknowledgement

We would like to thank the anonymous referees for their helpful comments and remarks. This work is partly supported by MEXT.KAKENHI #18500011 and #16300005.

### References

- [1] The termination problems data base. http://www.lri.fr/~marche/tpdb/.
- [2] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency pairs. In the 26th Conference on Foundations of Software Technology and Theoretical Computer Science, volume 4337 of Lecture Notes in Computer Science, pages 298–309, 2006.
- [3] B. Alarcón, R. Gutiérrez, and S. Lucas. Improving the context-sensitive dependency graph. Electronic Notes in Theoretical Computer Science, 188:91–103, 2007.
- [4] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer Science, 236:133-178, 2000.
- [5] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
- [6] N. Dershowitz. Termination of linear rewriting systems. In the 8th International Colloquium on Automata, Languages and Programming, volume 115 of Lecture Notes in Computer Science, pages 448–458, 1981.
- [7] G. Godoy, E. Huntingford, and A. Tiwari. Termination of rewriting with right-flat rules. In the 18th International Conference on Rewriting Techniques and Applications, volume 4533 of Lecture Notes in Computer Science, pages 200 – 213, 2007.
- [8] G. Godoy and A. Tiwari. Termination of rewrite systems with shallow right-linear, collapsing, and right-ground rules. In the 20th International Conference on Automated Deduction, volume 3632 of Lecture Notes in Computer Science, pages 164–176, 2005.
- [9] G. Huet and D. Lankford. On the uniform halting problem for term rewriting systems. Technical report, INRIA, 1978.
- [10] S. Lucas. Proving termination of context-sensitive rewriting by transformation. Information and Computation, 204:1782–1846, 2006.
- [11] I. Mitsuhashi, M. Oyamaguchi, Y. Ohta, and T. Yamada. The joinability and unification problems for confluent semi-constructor trss. In the 15th International Conference on Rewriting Techniques and Applications, volume 3091 of Lecture Notes in Computer Science, pages 285 – 300, 2004.
- [12] T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems. Information and Computation, 178:499–514, 2002.
- [13] Y. Wang and M. Sakai. Decidability of termination for semi-constructor trss, left-linear shallow trss and related systems. In the 17th International Conference on Rewriting Techniques and Applications, volume 4098 of Lecture Notes in Computer Science, pages 343–356, 2006.