Databases and Information Systems CS303

Normalization 07-09-2023

Recap

- First Normal Form
- Functional Dependency
- Boyce Codd Normal Form
- Third Normal Form

Functional Dependency

- Let R be the set of all attributes of the relational schema r(R) and let $\alpha \subseteq R$ and $\beta \subseteq R$. Given an instance of r, we say $\alpha \Rightarrow \beta$ if for any two tuples t_1 and t_2 if $t_1[\alpha] = t_2[\alpha]$ then $t_1[\beta] = t_2[\beta]$
- Example: inst_dept (ID, name, salary, dept name, building, budget)
 - dept_name → building, budget
 - ID, dept_name → name, salary, building, budget

Boyce Codd Normal Form

- A relation schema R is in BCNF with respect to a set F of functional dependencies if, for all functional dependencies in F⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:
 - \circ $\alpha \rightarrow \beta$ is a trivial functional dependency (that is, $\beta \subseteq \alpha$)
 - \circ α is a superkey for schema R
- A database design is in BCNF if every relational schema of the design is in BCNF

Boyce Codd Normal Form : General decomposition Rule

- Let r(R) be a schema that is not in BCNF (There is a non-trivial functional dependency $\alpha \rightarrow \beta$ where α is not a superkey)
- Replace r(R) with two new schemas
 - \circ $\alpha \cup \beta$
 - $\circ \quad (R (\beta \alpha))$
- Example: inst_dept (ID, name, salary, dept_name, building, budget)
 - dept_name → building, budget
- Application of the rule might result in smaller relations that are not in BCNF
 - Repeat for procedure for smaller relations till the resulting schema is in BCNF

Boyce Codd Normal Form : Dependency Preservation

- dept_advisor (s_ID, i_ID, dept_name)
 - s_ID, dept_name → i_ID
 - i_ID → dept_name
 (every instructor can be advisor for a single department)
 - Not in BCNF because i_ID is not superkey
 - (s_ID, i_ID)
 - o (i_ID, dept_name)
 - s_ID, dept_name → i_ID
 decomposition makes it computationally hard to enforce this functional dependency
- BCNF is not dependency preserving
 - 3NF (weaker than BCNF) is always dependency preserving

Third Normal Form

- A relation schema r(R) is in Third Normal Form (3NF) with respect to a set F of functional dependencies if, for all functional dependencies in F⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:
 - $\circ \quad \alpha \rightarrow \beta$ is a trivial functional dependency (that is, $\beta \subseteq \alpha$).
 - \circ α is a superkey for schema R.
 - \circ Each attribute A in β α is contained in some candidate key of R
- Each such A can be part of different candidate keys
- Any schema that is in BCNF is also in 3NF

Third Normal Form

- A relation schema r(R) is in Third Normal Form (3NF) with respect to a set F of functional dependencies if, for all functional dependencies in F⁺ of the form $\alpha \Rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:
 - $\circ \quad \alpha \rightarrow \beta$ is a trivial functional dependency (that is, $\beta \subseteq \alpha$).
 - \circ α is a superkey for schema R.
 - \circ Each attribute A in β α is contained in some candidate key of R
- dept_advisor (s_ID, i_ID, dept_name) is in 3NF
 - o s_ID, dept_name → i_ID
 - i_ID → dept_name
 (every instructor can be advisor for a single department)

Decomposition Algorithms

- Real life schema diagrams are typically Huge
- Cannot be done manually
- We need Algorithms that take a schema as an input and decompose them into BCNF or 3NF
- For that we need subroutines to compute F⁺, Check if a set of attributes is a superkey

- Testing BCNF and 3NF needs F⁺ obtained from the initial set of functional dependencies F
- Suppose r (A, B, C, G, H, I) is a relational schema

$$A \rightarrow B$$

 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H$

$$A \rightarrow H$$

Use the following Axioms to compute F⁺ (Armstrong's axioms)

 $\circ \quad \text{Reflexivity Rule}: \qquad \quad \text{If } \beta \subseteq \alpha \text{ then } \alpha \to \beta$

• Augmentation Rule : If $\alpha \rightarrow \beta$ and γ is a set of attributes then $\gamma \alpha \rightarrow \gamma \beta$

○ Transitive Rule : If $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ then $\alpha \rightarrow \gamma$

Armstrong's axioms are sound
 (They do not generate any incorrect functional dependencies)

Armstrong's axioms are complete
 (All functional dependencies can be deduced using these rules)

Use the following Axioms to compute F⁺ (Armstrong's axioms)

 \circ Reflexivity Rule : If $\beta \subseteq \alpha$ then $\alpha \rightarrow \beta$

• Augmentation Rule : If $\alpha \rightarrow \beta$ and γ is a set of attributes then $\gamma \alpha \rightarrow \gamma \beta$

○ Transitive Rule : If $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ then $\alpha \rightarrow \gamma$

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

add the resulting functional dependency to F^+

until F^+ does not change any further
```

- Correctness of the algorithm?
- Running time of the algorithm?

Use the following Axioms to compute F⁺ (Armstrong's axioms)

 $\circ \quad \text{Reflexivity Rule}: \qquad \quad \text{If } \beta \subseteq \alpha \text{ then } \alpha \to \beta$

• Augmentation Rule : If $\alpha \rightarrow \beta$ and γ is a set of attributes then $\gamma \alpha \rightarrow \gamma \beta$

○ Transitive Rule : If $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ then $\alpha \rightarrow \gamma$

Other userful rules (Can be derived using the above axioms)

 \circ Decomposition Rule: If $\alpha \to \beta \gamma$ then $\alpha \to \beta$ and $\alpha \to \gamma$ holds

• Pseudotransitivity Rule: If $\alpha \rightarrow \beta$ and $\beta \gamma \rightarrow \delta$ then $\alpha \gamma \rightarrow \delta$

Closure of Attribute set

- An Attribute B is functionally dependent on α if $\alpha \rightarrow B$
- To check if α is a superkey, we should compute the set of all attributes functionally dependent on α
- One way to do this is to compute F^+ , take all FDs with α as left-hand side and right-hand side will be the union of the right-hand side of all such FDs
 - This is expensive

Closure of Attribute set

There is an efficient algorithm

```
result := \alpha;
repeat

for each functional dependency \beta \rightarrow \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma;
end

until (result does not change)
```

```
A \rightarrow B
A \rightarrow C
CG \rightarrow H
CG \rightarrow I
B \rightarrow H
```

Over schema r(A,B,C,G,H,I) Compute (AG)⁺

```
\circ result = {A,G}
```

$$\circ$$
 result = {A,G,B}

$$\circ$$
 result = {A,G,B,C}

$$\circ$$
 result = {A,G,B,C,H}

$$\circ \quad \text{result} = \{A,G,B,C,H,I\}$$

Closure of Attribute set

There is an efficient algorithm

```
 \begin{array}{l} \textit{result} := \alpha; \\ \textbf{repeat} \\ \textbf{for each} \ \textit{functional dependency} \ \beta \rightarrow \gamma \ \textbf{in} \ \textit{F} \ \textbf{do} \\ \textbf{begin} \\ \textbf{if} \ \beta \subseteq \textit{result} \ \textbf{then} \ \textit{result} := \textit{result} \cup \gamma; \\ \textbf{end} \\ \textbf{until} \ (\textit{result} \ \textit{does} \ \textit{not} \ \textit{change}) \\ \end{array}
```

- Correctness of the Algorithm
 - Soundness and Completeness
- Running time of the Algorithm

Closure of Attribute set: Uses

- To test if α is a superkey
- Check if a functional dependency $\alpha \rightarrow \beta$ holds
- Alternative way to compute F⁺

- Suppose database has functional dependency set F:
- Whenever a database is updated, the system should ensure all functional dependencies are satisfied
- If we have a minimal set of functional dependencies F^{*} that imply all the functional dependencies of F then the check can be made faster

- An attribute of a functional dependency is extraneous if we can remove it without changing the closure set of the functional dependencies.
- Consider a set of functional dependencies F and let $\alpha \rightarrow \beta$ be in F
 - Attribute A in α is extraneous if F logically implies (F $\{\alpha \rightarrow \beta\}$) U $\{(\alpha A) \rightarrow \beta\}$
 - Attribute A in β is extraneous if the set (F { $\alpha \rightarrow \beta$ }) U { $\alpha \rightarrow (\beta A)$ } logically implies F

- An attribute of a functional dependency is extraneous if we can remove it without changing the closure set of the functional dependencies.
- Consider a set of functional dependencies F and let $\alpha \rightarrow \beta$ be in F
 - Attribute A in α is extraneous if F logically implies (F $\{\alpha \rightarrow \beta\}$) U $\{(\alpha A) \rightarrow \beta\}$
 - Attribute A in β is extraneous if the set (F { $\alpha \rightarrow \beta$ }) U { $\alpha \rightarrow (\beta A)$ } logically implies F
- Example:
 - In $F = \{AB \rightarrow C, A \rightarrow C\}$, B is extraneous in $AB \rightarrow C$
 - In $F = \{AB \rightarrow CD, AB \rightarrow C\}$ C is extraneous in $AB \rightarrow CD$
- Note: In both cases the other direction of the implication trivially holds always

Canonical Cover: Checking for extraneous attributes

- Consider a set of functional dependencies F and let $\alpha \rightarrow \beta$ be in F
 - Attribute A in α is extraneous if F logically implies (F $\{\alpha \rightarrow \beta\}$) U $\{(\alpha A) \rightarrow \beta\}$
 - Attribute A in β is extraneous if the set (F { $\alpha \rightarrow \beta$ }) U { $\alpha \rightarrow (\beta A)$ } logically implies F
- For a relational schema R and functional dependencies F and $\alpha \rightarrow \beta$ in F, Let A be an attribute in $\alpha \rightarrow \beta$
 - o If A is in β : To check if A is extraneous, consider the set of functional dependencies: $F^* = (F \{\alpha \Rightarrow \beta\}) \cup \{\alpha \Rightarrow (\beta A)\}$ and check if $\alpha \Rightarrow \beta$ can be inferred from F^* (By computing α^+ under F^*)
 - If A is in α : To check if A is extraneous, consider $\gamma = \alpha \{A\}$ and check if $\gamma \rightarrow \beta$ can be inferred under F (By computing γ^+)

- Canonical Cover of a set of functional dependencies F is given by F_c such that F logically implies F_c and vice-versa, such that the following conditions hold:
 - No functional dependencies in F_c contains extraneous attributes
 - Each left side of a functional dependency in F_c is unique (There are no two dependencies $\alpha_1 \Rightarrow \beta_1$ and $\alpha_2 \Rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$)

```
repeat
Use the union rule to replace any dependencies in F_c of the form \alpha_1 \to \beta_1 and \alpha_1 \to \beta_2 with \alpha_1 \to \beta_1 β<sub>2</sub>.

Find a functional dependency \alpha \to \beta in F_c with an extraneous attribute either in \alpha or in \beta.

/* Note: the test for extraneous attributes is done using F_c, not F */

If an extraneous attribute is found, delete it from \alpha \to \beta in F_c.

until (F_c does not change)
```

- Canonical Cover of a set of functional dependencies F is given by F_c such that F logically implies F_c and vice-versa, such that the following conditions hold:
 - No functional dependencies in F_c contains extraneous attributes
 - Each left side of a functional dependency in F_c is unique (There are no two dependencies $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$)

- F and F have same closures.
- Testing if F is satisfied is equivalent to testing if F_c is satisfied
- It is cheaper to test F_c than F itself

Canonical Cover: Example

• Let r(A, B, C) be a relational schema with the following functional dependencies:

$$A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C$$

- Step 0: $F_c = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \}$
- Step 1 : Combine 1st and 3rd FD and obtain F_c = { A → BC, B → C, AB → C }
- Step 2: A is extraneous in AB → C
 - o because F_c implies { B → C, A → BC } U { B → C } o $F_c = \{A \rightarrow BC, B \rightarrow C\}$
- Step 3 : C is extraneous in A → BC
 - Because { A → B, B → C} logically implies A → BC
 F_c = { A → B , B → C }

Dependency Preservation

- Let F be a set of functional dependencies on R and let R₁ R₂..... R_n be a decomposition of R
- Restriction of F to R_i is the set F_i is the set of all functional dependencies that includes only the attributes of R_i
- Example: If r(A,B,C) is a schema with
 F = { A → B, B → C, A → C } and the decomposition is
 R₁ = (A,B) and R₂ = (A,C)
 Then F₁ = { A → B } and F₂ = { A → C }
- Decomposition of R to $R_1 R_2 \dots R_n$ is said to be dependency preserving if:

```
F^{+} = (F_1 \cup F_2 \cup ... \cup F_m)^{+}
```

```
compute F^+;
for each schema R_i in D do
   begin
       F_i: = the restriction of F^+ to R_i;
   end
F' := \emptyset
for each restriction F_i do
   begin
       F' = F' \cup F_i
   end
compute F'^+;
if (\overline{F'}^+ = F^+) then return (true)
                else return (false);
```

Decomposition Algorithms: BCNF

- A relation schema R is in BCNF with respect to a set F of functional dependencies if, for all functional dependencies in F⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:
 - $\circ \quad \alpha \rightarrow \beta$ is a trivial functional dependency (that is, $\beta \subseteq \alpha$)
 - \circ α is a superkey for schema R
- Testing for BCNF
 - Goal is to see if there exists a non-trivial $\alpha \Rightarrow \beta$ in F⁺ where α is not a superkey
 - For every non-trivial $\alpha \rightarrow \beta$ in F^+ Compute α^+ and see if it contains all the attributes of R
 - There are Other clever ways to do it that avoids computing F⁺

Decomposition Algorithms : BCNF

- A relation schema R is in BCNF with respect to a set F of functional dependencies if, for all functional dependencies in F⁺ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:
 - $\circ \quad \alpha \rightarrow \beta$ is a trivial functional dependency (that is, $\beta \subseteq \alpha$)
 - \circ α is a superkey for schema R
- BCNF Decomposition Algorithm

```
result := {R};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency that holds

on R_i such that \alpha \to R_i is not in F^+, and \alpha \cap \beta = \emptyset;

result := (result -R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Decomposition Algorithms : BCNF

- Example: class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- course_id
- building, room_number
- course_id, sec_id, semester, year

- → title, dept_name, credits
- → capacity
- → building, room_number, time_slot_id
- Candidate Key = { course_id, sec_id, semester, year }
- course_id → title, dept_name, credits (is non-trivial FD and course_id is not superkey)
 - course (course_id , title, dept_name, credits)
 - o class1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- building, room_number → capacity (is non-trivial FD and course_id is not superkey)
 - course (course_id , title, dept_name, credits)
 - class11 (building, Room_number, capacity)
 - class12 (course_id, sec_id, year, time_slot_id)
- All 3 are in BCNF (This is lossless and dependency preserving decomposition)
- Algorithm ensures losslessness but dependency preservation might be violated

Decomposition Algorithms: 3NF

 A relation schema r(R) is in Third Normal Form (3NF) with respect to a set F of functional dependencies if, for all functional dependencies in F⁺ of the form

 $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$: at least one of the following holds:

- ∘ $\alpha \rightarrow \beta$ is a trivial functional dependency (that is, $\beta \subseteq \alpha$).
- \circ α is a superkey for schema R.
- \circ Each attribute A in β α is contained in some candidate key of R

```
let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \rightarrow \beta in F_c
     i := i + 1;
     R_i := \alpha \beta;
if none of the schemas R_i, i = 1, 2, ..., i contains a candidate key for R
  then
    i := i + 1;
     R_i := any candidate key for R_i;
/* Optionally, remove redundant relations */
repeat
     if any schema R_i is contained in another schema R_k
       then
         /* Delete R_i */
         R_i := R_i;
         i := i - 1;
until no more R_is can be deleted
return (R_1, R_2, \ldots, R_i)
```

Decomposition Algorithms: 3NF

Example:

```
dept_advisors (s_ID, i_ID, dept_name)
```

- i_ID → dept_name
- s_ID, dept_name → i_ID
- $F = F_c$ (no extraneous attributes)
- R₁ (i_ID, dept_name)
- R₂ (s_ID, dept_name, i_ID)
- Delete R₁ and retain only R₂
- Algorithm results in Lossless and Dependency preserving 3NF decomposition

```
let F_c be a canonical cover for F;
i := 0:
for each functional dependency \alpha \rightarrow \beta in F_c
     i := i + 1;
     R_i := \alpha \beta;
if none of the schemas R_i, i = 1, 2, ..., i contains a candidate key for R
  then
     i := i + 1;
     R_i := any candidate key for R_i;
/* Optionally, remove redundant relations */
repeat
     if any schema R_i is contained in another schema R_k
       then
         /* Delete R_i */
         R_i := R_i;
         i := i - 1:
until no more R_is can be deleted
return (R_1, R_2, \ldots, R_i)
```

Comparing BCNF and 3NF

- It is always possible to obtain 3NF without sacrificing dependency preservation and losslessness
 - But might lead to having many nulls and repetition of information
- Goal:
 - BCNF + Lossless decomposition + Dependency Preservation
 - All 3 are not possible simultaneously
 - Choose BCNF or Dependency Preservation + 3NF
- SQL does not allow specification of FDs (except primary key and super keys using unique)
 - Can be done using assertions

Multivalued dependencies

- In some cases BCNF does not reduce repetitions
- Suppose one instructor can be associated with multiple departments. Moreover Instructors can have several addresses (office, current address, permanent address..)
 - inst (ID, dept_name, name, street, city)
 - FD: ID → name (but ID is not the key for inst)
 - \circ r₁ (ID, dept_name, street, city) and r₂ (ID, name)
- Decomposition is in BCNF but there still can be repetition in r₁
 r₁₁ (ID, dept_name) and r₁₂ (ID, street, city)
- How to identify this in the absence of additional constraints?

Multivalued dependencies

• A relation schema r(R) be a relational schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The multivalued dependency $\alpha \twoheadrightarrow \beta$ holds if for every legal instance r of r(R) and tuples t_1 and t_2 of r such that $t_1[\alpha] = t_2[\alpha]$ then there exists t_3 and t_4 such that

$$\circ \quad \mathsf{t}_{1}[\alpha] = \mathsf{t}_{2}[\alpha] = \mathsf{t}_{3}[\alpha] = \mathsf{t}_{4}[\alpha]$$

$$\circ \quad \mathsf{t}_{3}[\beta] = \bar{\mathsf{t}_{1}}[\beta]$$

$$\circ \quad \mathsf{t}_{\Delta}[\beta] = \mathsf{t}_{2}[\beta]$$

$$\circ t_{\Delta}[R - \beta] = t_{1}[R - \beta]$$

	α	β	$R-\alpha-\beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

- Multivalued dependencies are part of more general tuple generating dependencies
- Functional dependencies are part of more general equality generating dependencies

Multivalued dependencies : Closure

 If D is a set of FDs + MVDs then let D⁺ denote the closure of D that contains all the dependencies that are logically implied by D

- Computed using axioms. Sample axioms:
 - \circ If $\alpha \rightarrow \beta$ then $\alpha \gg \beta$
 - \circ If $\alpha \twoheadrightarrow \beta$ then $\alpha \twoheadrightarrow R \alpha \beta$

Multivalued dependencies : Fourth Normal Form

- MVD $\alpha * \beta$ over r(R) is trivial if $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$
- A relational schema r(R) is in Fourth Normal Form (4NF) with respect to a set D of FD + MVD if for all MVDs $\alpha * \beta$ in D⁺ where $\alpha \subseteq R$ and $\beta \subseteq R$ one of the following holds:
 - \circ $\alpha * \beta$ is a trivial MVD
 - \circ α is a superkey of R
- A database design in in 4NF if every relational schema is in 4NF
- Note that 4NF implies BCNF

Multivalued dependencies: 4NF decomposition

- Preverves Losslessness
- But does not preserve dependencies

```
result := \{R\};

done := false;

compute D^+; Given schema R_i, let D_i denote the restriction of D^+ to R_i

while (not done) do

if (there is a schema R_i in result that is not in 4NF w.r.t. D_i)

then begin

let \alpha \to \beta be a nontrivial multivalued dependency that holds

on R_i such that \alpha \to R_i is not in D_i, and \alpha \cap \beta = \emptyset;

result := (result -R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Higher Normal Forms

- Join dependencies generalize multivalued dependencies
 - Leads to Project-Join Normal Form (5NF)
- Domain Key Normal Form
- Disadvantages of higher normal forms:
 - Hard to reason
 - No sound and complete axiom set

Database Design and Normalization

- Generated while converting an E-R diagram into a relational schema
 - Good E-R diagram does not need too much normalization when translated to relational schemas
 - Relationship sets involving more than two entities can result in non-normalized schema
 - Universal-relation approach: Design one big relational schema that contains everything and then normalize
- Naming Relationship and Attributes
 - Unique Role assumption : Every name of attribute has a unique meaning
 - Convention to designate primary key attributes at the beginning
 - Prefix helps in disambiguation : student_ID, instructor_ID

Database Design and Normalization

- Denormalization for Performance
 - Occasionally designers choose to retain redundancy
 - Improves performance
 (Normalized databases need join operations to evaluate queries)
 - Alternative is to use normalized database and store denormalized database as materialized views

Database Design and Normalization

- Some aspects not considered in normalization process
- Example:
 - Store number of instructors in each department in various years (dept_name, year, num_inst)
 with dept_name, year → num_inst as FD
 - Alternative is to have one table for each year inst_count_2020 (dept_name num_inst) inst_count_2021 (dept_name, num_inst)
 With dept_name → num_inst as FD in each table
 - Another Alternative
 dept_year (dept_name, num_inst_2020, num_inst_2021)
 With dept_name → num_inst_2020, num_inst_2021
 Close to spreadsheet representation
- Last 2 alternatives are bad design choices though they are in BCNF

Modelling Temporal Data

- Temporal Data is associated with a time interval where the data is valid (called snapshot)
- Functional dependency should take temporal aspect into account
- Example: (ID, street, city, from, to)
- Temporal functional dependency : X → Y
 - Makes the design and functional dependence analysis complicated
 - First design without temporal data (by considering a snapshot) then decide what temporal constraints are needed
- What should be the end time if it is currently ongoing?
 - Null? (Problem with primary key)
 - Something far in future
- Relationship between time dependent and time independent data
 - Advisor relationship and department budget (though depends on current budget)
 - Solution: Not to add time in main relation, but maintain history separately

Reference:

Database System Concepts by Silberschatz, Korth and Sudarshan (6th edition)

Chapter 8