Electrodynamics: Homework 4

Iván Mauricio Burbano Aldana

April 13, 2018

1. We have

$$T^{i0} = F_{\gamma}^{i} F^{0\gamma} - \frac{1}{4} \eta^{i0} F_{\gamma\delta} F^{\gamma\delta}. \tag{1}$$

Given that $\eta^{\mu\nu}=0$ if $\mu\neq\nu$ and $i\in\{1,2,3\}$ we conclude

$$T^{i0} = F_{\gamma}^{i} F^{0\gamma} = \eta_{\rho\gamma} F^{i\rho} F^{0\gamma} \tag{2}$$

Remembering that $F^{\mu\nu}$ is antisymmetric and thus that $F^{00}=0,$ we notice that

$$T^{i0} = \eta_{\rho j} F^{i\rho} F^{0j} = -\sum_{j=1}^{3} F^{ij} F^{0j}.$$
 (3)

Recalling that $F^{0j} = E_j$ and $F^{ij} = \sum_{k=1}^3 \epsilon_{ijk} B_k$ we have

$$T^{i0} = -\sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{ijk} B_k E_j = -(\mathbf{E} \times \mathbf{B})_i$$

$$\tag{4}$$

2. (i) Indeed, \mathcal{L} is real. This is because \mathcal{L}_{ϕ} , \mathcal{L}_{A} and $\mathcal{L}_{\mathrm{int}}$ are.