Grassmannian Cohomology and Symmetric Polynomiale

(I) Modivedion & Definitions

A problem in enumerative geometry:

fix four lines in \mathbb{CP}^3 in general position. How wany lines intersect all four of them?

Ans: 2 (!)

We can answer this by understanding $H^*(Gr(2,4))$

<u>Defn</u>: Let Gr(k,n) denote the space of k-dimensional linear subspaces of \mathbb{C}^n . $Eq: \mathbb{CP}^n = Gr(1,n+1)$

Fact: (complex) dim Gr(k,n) = k(n-k)(real) dim Gr(k,n) = 2k(n-k)

• Gr(k,n) is compact and orientable

1 Topological Preliminaries

1. Computing (co)homology using cell structure

X: CW-complex

Cn: free abelian gp. generated by n-cells

 $H_n(x) = \frac{\text{ker } \partial_n}{\text{im } \partial_{n+1}}$

In particular, if all calls are even dim, on = 0. So $H_{2n}(x) \stackrel{\sim}{=} C_{2n}$.

2. Poincave duality & Intersection

Thm: If X is a compact oriented manifold of den n, then $H_i(X) \cong H^{n-i}(X)$ $\Gamma A \Gamma \mapsto \Gamma A \Gamma^*$

Moreover, if A, B intersect transversely, then

$$[A]^* \cup [B]^* = [A \cap B]^*$$

ABC represent the same homology
class

AB intersect transversely

AC do not

-> Will use this idea of intersection = products throughout the talk.

(III) Cell Structure on Gr(k,n)

Fix a complete flag F:

$$O = F_0 \subset F_1 \subset F_2 \subset \dots \subset F_n = \mathbb{C}^n$$

where $f_i = \langle e_1, e_2, ..., e_i \rangle$ $\langle e_i \rangle$ some basis of \mathbb{C}^n

Have cells indexed by partitions $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ $(n-k \ge \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k \ge 0)$

 $G_{\lambda}(F) = \begin{cases} \times \in Gr(k,n) \mid dim(X \cap F_{n-k-\lambda_i+i}) = i, dim(X \cap F_{n-k-\lambda_i+i-1}) = i-1 \end{cases}$ ¥ 1 ≤ i ≤ le ?

$$\lambda = (2,1)$$
 $F_{5-2-2+1} = F_2$

$$F_{5-2-1+2} = F_{4}$$

 $O_{\lambda}(F) = \left\{ \times \mid dim(F_2) = 1 \mid dim(F_1) = 0 \right\}$

$$\overline{G_{\lambda}(F)} = \left\{ \times \mid \dim(X \cap F_{n-k-\lambda_{i}+i}) \ge i \right\}$$

$$\left\{ \begin{array}{ccc} * * & 0 & 0 & 0 \\ * * & * & * & 0 \end{array} \right\}$$

• (complex) dim
$$\sigma_{\lambda}(F) = k(n-k) - |\lambda|$$
 ($|\lambda| = \lambda_1 + \lambda_2 + \cdots$) (real) dim $\sigma_{\lambda}(F) = 2k(n-k) - 2|\lambda|$

$$H^{2m}(Gr(k,n)) \stackrel{\sim}{=} free abelian gp generated by $[G_{\lambda}(F)]$
 $k \cdot k \cdot l(\lambda) \leq k, |\lambda| = l$$$

In fact this shows that as an abelien group, $H^{+}(Gr(k,n)) \stackrel{\mathcal{U}}{=} \bigoplus_{\lambda_{1} \leq n-k}^{\bigoplus} G_{\lambda}$ $= (\lambda_{1} \leq k)$

Multiplicative Structure on H*(Gr(k,n))

 Λ : ring of symmetric polynomials in $x_1, x_2, ..., x_m, ...$

Schur polynomials Sx form a basis for A correspond to SSYT

Theorem: $H^*(Gr(k,n)) \cong \Lambda / \langle S_{\lambda} | \lambda_i > n-k \text{ or } l(\lambda) > k \rangle$

· <u>Pieri's Rule</u>:

$$S_{\lambda} \cdot S_{Cm} = \sum_{|\lambda'|=|\lambda|+m} S_{\lambda'}$$

Strategy: Prove Pieri's rule for the O_{λ} $O_{\lambda} \cdot O_{cm} = \sum_{|\lambda|' = |\lambda| + m} O_{\lambda'}$

frozing lieri's rule for ox:

• Reverse flags: Given F, its reverse flag \tilde{F} is given by $\tilde{F}_i = \langle e_n, e_{n-1}, ..., e_{n-i+1} \rangle$

Eq:
$$Gr(2,5)$$
 $\mu:(2,1)$

$$O_{\mu}(\tilde{F}) = \begin{cases} \times | \dim(\times \cap \langle e_{1}, e_{5} \rangle) = 1 & \dim(\times \cap \langle e_{5} \rangle) = 0 \\ \dim(\times \cap \langle e_{2}, e_{3}, e_{4}, e_{5} \rangle) = 2 & \dim(\times \cap \langle e_{3}, e_{4}, e_{5} \rangle) \end{cases}$$

$$= 1 \end{cases}$$

(Contrast with $G_{(2,1)}(F)$ $\begin{bmatrix} * & 1 & 0 & 0 & 0 \\ * & 0 & * & 1 & 0 \end{bmatrix}$

Not a coincidence! (2,1) + (1,2) = (3,3) = (5-2,5-2)

· Duality Theorem:

$$6\lambda(F) \cap 6\mu(\tilde{F}) = \begin{cases} 1 \cdot 6_{\text{cork } n-k} \dots n-k) & \text{if } \lambda_i + \mu_{k-i+1} = n-k + i \\ 0 & \text{if } \lambda_i + \mu_{k-i+1} > n-k \text{ for any } i \end{cases}$$

$$[6\lambda] \sim [6\mu] = \begin{cases} 1 & \text{if } \lambda_i + \mu_{k-i+1} = h \cdot k \\ 0 & \text{if } \lambda_i + \mu_{k-i+1} > n \cdot k \end{cases}$$

$$[\mu = \lambda, \text{ dual to } \lambda''$$

We wanted:

Multiply by oxi :

$$6_{\tilde{\chi}'} \cdot 6_{\lambda} \cdot 6_{cm} = 6_{\tilde{\chi}'} \cdot 6_{\lambda'} = 1$$

Can prove this by studying intersections of calls

Deach to our original problem ...

Lines intersecting in CP3 = Planes intersecting in C4

e₁e₂ plane \cap e₁e₃ plane
= e₁-axis

Given a plane \times in \mathbb{C}^4 , can pick a basis e_1, e_2, e_3, e_4 8.t. $\times = \langle e_1, e_2 \rangle$.

Let L(x) be corresponding line in CIP3. lines intersecting with L(x) correspond to planes $Y \subset \mathbb{C}^4$ so that $\dim(Y \cap \langle e_1, e_2 \rangle) = 1$. Thus $Y \in \mathcal{T}_{(1,0)}(F)$.

 $G_{(1,0)}(F^1) \cap G_{(1,0)}(F^2) \cap G_{(1,0)}(F^3) \cap G_{(1,0)}(F^4)$

Look at product of cohomology closes instead: