Applicants: RIESS et al Serial No. 09/836,281

Response to Office Action mailed December 21, 2004

IN THE SPECIFICATION:

Beginning on Page 2, please amend the application as follows:

[4] ISI phenomena may be modeled mathematically. In the case where the data signal \mathbf{X} is populated by a number of data symbols x_n , captured signals y_n at the destination 120 may be represented as:

$$y_n = a_0 \cdot x_n + f(x_{n-K_1}, \dots, x_{n-1}, x_{n+1}, \dots, x_{n+K_2}) + \omega_n.$$
 (1)

where a_0 represents a gain factor associated with the channel 130, $f(x_{n-K_1},...x_{n+K_2})$ is a functional representation that relates the ISI to the symbols, $x_{n-K_1},...x_{n+K_2}$ causing ISI corruption and ω_n represents corruption from other sources. In linear systems, Eq. 1 may reduce to:

$$y_n = x_n + \sum_{\substack{i = -K_1 \\ i \neq 0}}^{K_2} a_i \cdot x_{n-i} + \omega_n$$
 (2)

where $a_{-K_1}...a_{K_2}$ represent the sampled-values of the impulse response of the channel. In accordance to common practice, the values a_i have been normalized by the value of a_0 in Eq. 2.