Relational Data Model

A Database model defines the logical design and structure of a database and defines how data will be stored, accessed and updated in a database management system.

S. Ranbir Singh

CS344@iitg

Adapted from

Chapter 3: Database Management System, 3rd Ed. Ramakrishnan & Gehrke

Ref:

Chapter 2: Database System Concept, Silberschatz, Korth, Sudarshan

Data Models

Before the data available in an enterprise can be put in a DBMS, an overall abstract view of the enterprise data must be developed. The view can then be translated into a form that is acceptable by the DBMS.

- DBMS models real world
- Data Model is link between user's view of the world and bits stored in computer
- Many models exist
 - Hierarchical
 - Network
 - Relational
- We will concentrate on the Relational Model

Students(sid: string, name: string, login: string, age: integer, gpa:real)

Relational Database: Definitions

- Relational database: a set of relations.
- *Relation:* made up of 2 parts:
 - *Instance*: a *table*, with rows and columns.
 - *Schema*: specifies name of relation, plus name and type of each column.
 - E.g.

Students(sid: string, name: string, login: string, age: integer, gpa: real)

- Can think of a relation as a set of rows or tuples.
 - i.e., all rows are distinct
 - Some relational databases support duplicate records

9	Students String	String	String	integer	real
	sid	name	login	age	gpa
	53666	Jones	jones@cs	18	3.4
	53688	Smith	smith@eecs	18	3.2
	53650	Smith	smith@math	19	3.8

In RDBMS, a relation is defined by a table with columns and rows.

Relational Database: Definitions

Attribute: An attribute is a named column of a relation.

Ex: sid, name, login, age, gpa

Domain: A domain is the set of allowable values for one or more attributes.

Ex: domain(sid) – String domain(age) – integer

Cardinality of a relation: number of rows/tuples it contains

Tuple: A tuple is a row of a relation.

Degree/Arity of a relation: number of attributes it contains

Students

String	String	String	integer	real
sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

Cardinality = 3 Degree = 5 All rows distinct

Relational Database: A collection of normalized relations with distinct relation names.

Relational Database: Mathematical Definitions

Let D_1 , D_2 , D_n be n number of sets, then Cartesian product of these sets is

```
D = D_1 \times D_2 \times ... \times D_n = \{(a_1, a_2, ..., a_n) | a_1 \in D_1, a_2 \in D_2 ... a_n \in D_n\}
```

Any subset of D is a relation

A relation is a set of *n*-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$

Example: If

```
    customer_name = {Jones, Smith, Curry, Lindsay, ...} /* Set of all customer names */
    customer_street = {Main, North, Park, ...} /* set of all street names*/
    customer_city = {Harrison, Rye, Pittsfield, ...} /* set of all city names */
    Then r = { (Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield) }
```

is a relation over *customer_name x customer_street x customer_city*

Relation Schema

Let a_1 , a_2 , ..., a_n be attributes with domains D_1 , D_2 , D_n .

Then the set $\{a_1: D_1, a_2: D_2, \dots, a_n: D_n\}$ is a relational schema.

Relational Schema: A named relation defined by a set of attribute and domain name pairs. **Ex.**

Students(sid: string, name: string, login: string, age: integer, gpa: real)

A Relation is a set of tuples $(a_1: d_1, a_2: d_2, ..., a_n: d_n)$ such that $d_1 \in D_1$, $d_2 \in D_2$... $d_n \in D_n$. We denote a relation r of a relation schema R by r(R) i.e. s(Student)

Each element in the *n*-tuple consists of an attribute and a value for that attribute.

Students String	String	String	integer	real
sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

Relation Name

Domain Attributes

Relations Instance

Relation Schema

Let a_1 , a_2 , ..., a_n be attributes with domains D_1 , D_2 , D_n .

Then the set $\{a_1: D_1, a_2: D_2, ..., a_n: D_n\}$ is a relational schema.

Relational Schema: A remed relation de tribute de domain name pairs.

Students(sid: strin

A Relation is a sec

Database Schema

$$R = \{ R_1, R_2, ..., R_n \}$$

 $d_2 \in D_2 \dots d_n \in D_n$

Yor that attribute.

Each elem

Students	5				
String	String	3 1		nteger	real
sid	name		ogin	age	gpa
53666	Jones	jo	ones@cs	18	3.4
53688	Smith	S	mith@eecs	18	3.2
53650	Smith	S	mith@math	19	3.8

Regation Name

Domain Attributes

Relations Instance

Properties of Relations

- Relation has a name that is distinct from all other relation names in the relational schema
- Each cell of the relation contains exactly one atomic (single) value (This is known as First Normal Form)
- Each attribute has a distinct name
- The values of an attribute are all from the same domain
- Each tuple is distinct; there are no duplicate tuples (Some RDBMS supports duplicates)
- The order of attributes has no significance
- The order of tuples has no significance.

INTEGRITY CONSTRAINTS OVER RELATIONS

An integrity constraint (IC) is a condition specified on a database schema and restricts the data that can be stored in an instance of the database.

Types

- Domain Constraints
- Key Constraints
- Referential Integrity

```
CREATE TABLE Students ( sid CHAR(20) ,
name CHAR(30) ,
login CHAR(20) ,
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY KEY (sid) )
```

Relational Keys

Super key: An attribute, or set of attributes, that uniquely identifies a tuple within a relation.

Candidate Key: A superkey such that no proper subset is a Superkey within the relation.

A candidate key **K** for a relation **R** has two properties:

- Uniqueness: In each tuple of R, the values of K uniquely identify that tuple.
- Irreducibility: No proper subset of K has the uniqueness property.

Composite key: A key with more than one attribute

Candidate Key is a Superkey. But a Superkey may not be a Candidate key.

Primary Key: The candidate key that is selected to identify tuples uniquely within the relation.

Foreign Key: An attribute, or set of attributes, within one relation that matches the candidate key of some (possibly the same) relation.

Foreign Keys (Referential Integrity)

- A Foreign Key is a field whose values are Primary keys in another relation.
- Set of fields in one relation that is used to 'refer' to a tuple in another relation

•	sid	cid	grade		Students		
	53666	Carnatic 101	C		sid	name	
		Reggae203	В -		53666	Jones	jor
		Topology112	A	7	53688	Smith	sm
			B		53650	Smith	sm
	53666	History105	B /		53650	Smith	

	sid	name	login	age	gpa
_	53666	Jones	jones@cs	18	3.4
	53688	Smith	smith@eecs	18	3.2
	53650	Smith	smith@math	19	3.8

```
CREATE TABLE Enrolled
   (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid, cid),
    FOREIGN KEY (sid) REFERENCES Students )
```

Enforcing Referential Integrity

- Remember Students and Enrolled; sid in Enrolled is a foreign key that references Students.
- What should be done if an Enrolled tuple with a nonexistent student id is inserted?
 - (Reject it!)
- What should be done if a Students tuple is deleted?
 - Also delete all Enrolled tuples that refer to it.
 - Disallow deletion of a Students tuple that is referred to.
 - Set sid in Enrolled tuples that refer to it to a default sid.

Integrity Constraints (ICs)

- A data model has two other parts:
 - a manipulative part, defining the types of operation that are allowed on the data
 - a set of integrity constraints, which ensure that the data is accurate.
- Integrity Constraints: condition that must be true for any instance of the database. ICs are specified when schema is defined. ICs are checked when relations are modified.
 - Domain Constraint
 - Referential Constraint: If a foreign key exists in a relation, either the foreign key value must match a candidate key value of some tuple in its home relation or the foreign key value must be wholly null.
 - Entity Integrity: In a base relation, no attribute of a primary key can be null. However, a candidate key may be NULL
 - Multiplicity Constraint
 - **General Constraints:** Additional rules specified by the users or database administrators of a database that define or constrain some aspect of the enterprise.

NULL: Represents a value for an attribute that is currently unknown or is not applicable for this tuple. Nulls are a way to deal with incomplete or exceptional data. A null represents the absence of a value.