uferen

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e Tecnologia Departamento de Computação

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia Departamento de Computação

Arquitetura e Organização de Computadores 1

Prática 1 Implementação de um testbench em Verilog

Professores: Luciano de Oliveira Neris e Mauricio Fernandes Figueiredo

Autores (Grupo R)

Guilherme Campos Marques, 727338 e Engenharia da Computação Leticia Bossatto Marchezi, 791003 e Ciência da Computação Marcos Cardoso Vendrame, 790725 e Ciência da Computação Mateus Grota Nishimura Ferro, 771043 e Ciência da Computação

São Carlos, 11 de Março de 2021

Centro de Ciências Exatas e Tecnologia Departamento de Computação

1. Introdução

Utilizando a plataforma de aprendizado online EDA playground, foi designado ao grupo realizar a tarefa de gerar projetos Verilog, primeiramente foi gerado um projeto correspondente ao Multiplexador 4x1 (Parte A) e testado todas as possibilidades, adotando a simulação por varredura. Na segunda parte do trabalho, foi realizado um projeto com registradores, comparando atribuições blocantes e não-blocantes (Parte B).

2. Descrição da execução do experimento

Para a Parte A¹ utilizou-se do ambiente de simulação online EDA Playground para a implementação dos circuitos e dos testes. O primeiro circuito implementado foi o seguinte multiplexador 4x1:

Imagem 1: Multiplexador de 4 entradas usando soma de produtos.

Desta forma, a implementação do circuito na plataforma EDA Playground através da descrição procedural está representada na imagem abaixo.

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e Tecnologia Departamento de Computação

Imagem 2: Circuito "multiplex4x1" projetado no EDA Playground

Em seguida, na Parte B², foi implementado o design.sv do circuito com as variáveis a, b, c e d, usando atribuições blocantes e não-blocantes, assim como a lista de sensibilidade(borda de subida nas entradas clock e reset). Nesse projeto, os valores das saídas em T = 0s são a=1 e c=1, e nos intervalos de tempo posteriores ocorrem atribuições descritas pelas sentenças no Caso 1 e Caso 2. O módulo do caso 1 usa atribuição blocante(=), como descrito na imagem:

```
module caso1(b,d, clock, reset, a, c);
output a,c;
reg [3:0] a, c;
input b, d, clock, reset;
logic [3:0] b, d;

always @(posedge clock, reset) begin
   if(reset)begin
    a = 1;
    c = 1;
end

else begin
   c = b + d;
   a = b + c;
end

end
endmodule
```

Imagem 3: Circuito "caso1" projetado no EDA Playground

ufeca

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e Tecnologia Departamento de Computação

Já no caso 2, a atribuição ocorre de forma não-blocante(<=), onde ambos processos ocorrem de forma simultânea. Ou seja, a ordem dos comandos não interfere no resultado.

```
module caso2(b,d, clock, reset, a, c);
  output a,c;
  reg [3:0] a, c;
  input b, d, clock, reset;
  logic [3:0] b, d;

always @(posedge clock, reset) begin
  if(reset)begin
    a = 1;
    c = 1;
  end

  else begin
    c <= b + d;
    a <= b + c;
  end

end
endmodule</pre>
```

Imagem 4: Circuito "caso2" projetado no EDA Playground

3. Apresentação dos resultados do experimento

A saída fornecida pelo multiplexador 4x1 da parte A descreve as entradas(x0, x1, x2, x3) e os dois bits de sinal de controle s0 e s1, que tem como saída "f":

UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Exatas e Tecnologia Departamento de Computação

Parte A:

THE STREET	276 E S	1397 9597	18 U.S.	189 201	Har sky	W 201	TEN BOST
	10ns: $x0 = 0$,	$\times 1 = 0$,	x2 = 0,	x3 = 0,	and the second second	s1 = 0 =>	f = 0
	20ns: x0 = 0,	x1 = 0,	x2 = 0,	x3 = 1,		s1 = 0 =>	f = 0
	30ns: x0 = 0,	$\times 1 = 0$,	x2 = 1,	x3 = 0,	175	s1 = 0 =>	f = 0
	40ns: x0 = 0,	x1 = 0,	x2 = 1,	x3 = 1,	1350 SA		f = 0
	50ns: $x0 = 0$,	x1 = 1,	$x^2 = 0$,	x3 = 0,	s0 = 0,	s1 = 0 =>	f = 0
	60ns: x0 = 0,	x1 = 1,	$x^2 = 0$,	x3 = 1,	s0 = 0,	s1 = 0 =>	f = 0
	$70 \text{ns}: \times 0 = 0,$	x1 = 1,	x2 = 1,	x3 = 0,	s0 = 0,	s1 = 0 =>	f = 0
	80ns: x0 = 0,	x1 = 1,	x2 = 1,	x3 = 1,	s0 = 0,	s1 = 0 =>	f = 0
	90ns: $x0 = 1$,	x1 = 0,	x2 = 0,	x3 = 0,	s0 = 0,	s1 = 0 =>	f = 1
	100ns: x0 = 1,	x1 = 0,	x2 = 0,	x3 = 1,	s0 = 0,	s1 = 0 =>	f = 1
	110ns: x0 = 1,	x1 = 0,	x2 = 1,	x3 = 0,	s0 = 0,	s1 = 0 =>	f = 1
	120ns: x0 = 1,	x1 = 0,	x2 = 1,	x3 = 1,	s0 = 0,	s1 = 0 =>	f = 1
	130ns: $x0 = 1$,	x1 = 1,	x2 = 0,	x3 = 0,	s0 = 0,	s1 = 0 =>	f = 1
	140ns: $x0 = 1$,	x1 = 1,	x2 = 0,	x3 = 1,	s0 = 0,	s1 = 0 =>	f = 1
	150ns: x0 = 1,	x1 = 1,	x2 = 1,	x3 = 0,	s0 = 0,		f = 1
	160ns: $x0 = 1$,	x1 = 1,	x2 = 1,	x3 = 1,	s0 = 0,	s1 = 0 =>	f = 1
	170ns: x0 = 0,	x1 = 0,	x2 = 0,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 0
	180ns: x0 = 0,	x1 = 0,	x2 = 0,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 0
	190ns: $x0 = 0$,	x1 = 0,	x2 = 1,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 0
	200ns: x0 = 0,	x1 = 0,	x2 = 1,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 0
	210ns: $x0 = 0$,	x1 = 1,	x2 = 0,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 1
	220ns: x0 = 0,	x1 = 1,	x2 = 0,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 1
	230ns: $x0 = 0$,	x1 = 1,	$x^2 = 1$,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 1
	240ns: $x0 = 0$,	x1 = 1,	x2 = 1,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 1
	250ns: x0 = 1,	x1 = 0,	x2 = 0,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 0
	260ns: x0 = 1,	x1 = 0,	$x^2 = 0$,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 0
	270ns: x0 = 1,	x1 = 0,	x2 = 1,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 0
	280ns: $x0 = 1$,	x1 = 0,	x2 = 1,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 0
	290ns: x0 = 1,	x1 = 1,	$x^2 = 0$,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 1
	300ns: x0 = 1,	x1 = 1,	x2 = 0,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 1
	310ns: x0 = 1,	x1 = 1,	$x^2 = 1$,	x3 = 0,	s0 = 1,	s1 = 0 =>	f = 1
	320ns: x0 = 1,	x1 = 1,	x2 = 1,	x3 = 1,	s0 = 1,	s1 = 0 =>	f = 1
	330ns: x0 = 0,	x1 = 0,	$x^2 = 0$,	x3 = 0,	s0 = 0,	s1 = 1 =>	f = 0
	340ns: x0 = 0,	x1 = 0,	$x^2 = 0$,	x3 = 1,	s0 = 0,	s1 = 1 =>	f = 0
	350ns: x0 = 0,	x1 = 0,	$x^2 = 1$,	×3 = 0,	s0 = 0,	s1 = 1 =>	f = 1
	360ns: x0 = 0,	x1 = 0,	$x^2 = 1$,	x3 = 1,	s0 = 0,	s1 = 1 =>	f = 1
	370ns: x0 = 0,	x1 = 1,	x2 = 0,	x3 = 0,	s0 = 0,	s1 = 1 =>	f = 0
	380ns: x0 = 0,	×1 = 1,	$x^2 = 0$,	x3 = 1,	s0 = 0,	s1 = 1 =>	f = 0
	390ns: x0 = 0,	x1 = 1,	x2 = 1,	x3 = 0,	50 = 0,	s1 = 1 =>	f = 1
	400ns: x0 = 0,	x1 = 1,	x2 = 1,	x3 = 1,	s0 = 0,	s1 = 1 => s1 = 1 =>	f = 1
	410ns: x0 = 1,	x1 = 0,	x2 = 0,	x3 = 0,	s0 = 0,		f = 0
	420ns: x0 = 1,	x1 = 0,	$x^2 = 0$,	x3 = 1,	s0 = 0,	s1 = 1 =>	f = 0
	430ns: x0 = 1, 440ns: x0 = 1.	x1 = 0,	x2 = 1,	x3 = 0,	s0 = 0,	s1 = 1 =>	f = 1
	32 S S S S S S S S S S S S S S S S S S S	x1 = 0,	x2 = 1,	x3 = 1,	s0 = 0,	s1 = 1 =>	f = 1
	450ns: x0 = 1,	x1 = 1,	x2 = 0,	x3 = 0,	s0 = 0,	s1 = 1 =>	f = 0
	460ns: x0 = 1,	x1 = 1,	$x^2 = 0$,		50 = 0,	s1 = 1 =>	f = 0
	470ns: x0 = 1,	x1 = 1,	$x^2 = 1$,	x3 = 0,	50 = 0,	s1 = 1 =>	f = 1
	480ns: x0 = 1,	x1 = 1,	$x^2 = 1$,	$x^3 = 1$,	s0 = 0,	s1 = 1 =>	f = 1
	490ns: $x0 = 0$,	x1 = 0, x1 = 0,	$x^2 = 0$,	x3 = 0,	s0 = 1, s0 = 1,	s1 = 1 =>	f = 0 f = 1
	500ns: $x0 = 0$,		$x^2 = 0$,	x3 = 1,	50 = 1, 50 = 1,	s1 = 1 =>	f = 0
	510ns: x0 = 0, 520ns: x0 = 0,	x1 = 0,	$x^2 = 1$,	x3 = 0, x3 = 1,	15-16-5-1 15-16-5-5-16-5-16-5-16-5-16-5-	s1 = 1 =>	f = 1
	530ns: $x0 = 0$,	x1 = 0,	$x^2 = 1$,	15-54 A.345	s0 = 1,	s1 = 1 => s1 = 1 =>	3 <u>2000</u>
		x1 = 1,	$x^2 = 0$,	$x^3 = 0$,	s0 = 1,		f = 0 f = 1
+ VENNET:	540ns: x0 = 0,	x1 = 1,	x2 = 0,	x3 = 1,	s0 = 1,	s1 = 1 =>	f = 1

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e Tecnologia Departamento de Computação

# KERNEL: 550ns: x0 = 0,	x1 = 1,	x2 = 1,	x3 = 0,	s0 = 1,	s1 = 1 =>	f = 0
# KERNEL: 560ns: x0 = 0,	x1 = 1,	x2 = 1,	x3 = 1,	s0 = 1,	s1 = 1 =>	f = 1
# KERNEL: 570ns: x0 = 1,	x1 = 0,	x2 = 0,	x3 = 0,	s0 = 1,	s1 = 1 =>	f = 0
# KERNEL: 580ns: x0 = 1,	x1 = 0,	x2 = 0,	x3 = 1,	s0 = 1,	s1 = 1 =>	f = 1
# KERNEL: 590ns: x0 = 1,	x1 = 0,	x2 = 1,	x3 = 0,	s0 = 1,	s1 = 1 =>	f = 0
# KERNEL: 600ns: x0 = 1,	x1 = 0,	x2 = 1,	x3 = 1,	s0 = 1,	s1 = 1 =>	f = 1
# KERNEL: 610ns: x0 = 1,	x1 = 1,	x2 = 0,	x3 = 0,	s0 = 1,	s1 = 1 =>	f = 0
# KERNEL: 620ns: x0 = 1,	x1 = 1,	x2 = 0,	x3 = 1,	s0 = 1,	s1 = 1 =>	f = 1
# KERNEL: 630ns: x0 = 1,	x1 = 1,	x2 = 1,	x3 = 0,	s0 = 1,	s1 = 1 =>	f = 0
# KERNEL: 640ns: x0 = 1,	x1 = 1,	x2 = 1,	x3 = 1,	s0 = 1,	s1 = 1 =>	f = 1

Imagem 5: Resultado da simulação do circuito "multiplex4x1" no site EDA Playground

A saída fornecida pelos circuitos de soma blocante e não-blocante em forma de tabela foi a seguinte:

Parte B:

# KERNEL:	KERNEL: CASO 1			CASO 2						Entradas			
# KERNEL: t	38	a	b	C	d	I	a	b	C	d	1	a	c
# KERNEL: -													
KERNEL: 1	Ons	1	2	1	2	1	1	2	1	2	1	3	4
KERNEL: -													
KERNEL: 2	20ns	6	2	4	2	1	3	2	4	2	1	6	4
KERNEL: -													
KERNEL: 3	Ons	6	2	4	2	1	6	2	4	2	1	6	4
KERNEL: -													
KERNEL: 4	0ns	6	2	4	2	Ĭ.	6	2	4	2	1	6	4

Imagem 6: Resultado do testbench "case tb" no site EDA Playground

Simulando a alteração das sentenças nos módulos³, pode-se observar que em comparação ao resultado anterior, a saída 'a' no caso 1(blocante) apresenta resultado diferente:

# KERNEL:	# KERNEL: CASO 1				1		CASO 2			Entradas			
# KERNEL:	t	a	b	C	d	1	a	b	C	d	I	a	c
# KERNEL:													
# KERNEL:	10ns	1	2	1	2	1	1	2	1	2	1	3	4
# KERNEL:													
# KERNEL:	20ns	3	2	4	2	1	3	2	4	2	1	6	4
# KERNEL:													
# KERNEL:	30ns	6	2	4	2	1	6	2	4	2	1	6	4
# KERNEL:													
# KERNEL:	40ns	6	2	4	2	1	6	2	4	2	1	6	4

Imagem 7: Alternando as sentenças de atribuição da parte B no site EDA Playground

4. Conclusão

A parte A do experimento consistiu na implementação de um multiplexador 4x1, que, como observado nos resultados, faz a seleção de qual entrada terá seu valor

ufisica

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e Tecnologia Departamento de Computação

expresso na saída, dependendo de um seletor (entrada s). Com o seletor recebendo o valor 00, é selecionada a entrada x0; com o valor 01, a entrada x1; com o valor 10, a entrada x2 e com valor 11, a entrada x3 é a selecionada.

A parte B da atividade apresentou a diferença entre as atribuições blocantes (=) e não blocantes (<=). Como foi observado, nas atribuições blocantes, a ordem dos comandos é importante para a obtenção do sinal, pois considera o valor já atualizado para o comando seguinte, enquanto que nas atribuições não-blocantes, a ordem não interfere nos resultados, pois são utilizados os valores anteriores (ainda não atualizados) nos comandos a serem executados.

Essa distinção foi observada na realização dos dois casos, em que o Caso 2, por ser não-blocante, precisou de um ciclo a mais de clock para atualizar o sinal "a" para 6 que no Caso 1, recebendo o valor 3 antes, que equivale a soma dos sinais "b" e "c" anteriores, enquanto que, no Caso 1, o sinal "c" já foi atualizado no comando anterior. Os resultados dos demais ciclos de clock se mantêm constantes por conta dos sinais "b" e "d" não serem alterados, assim, o sinal "c" é atualizado somente uma vez e o sinal "a" apenas uma vez no Caso 1 e duas vezes no Caso 2.

Ao inverter a ordem das sentenças, a atualização do sinal "c" no Caso 1 foi deixada para o final, não interferindo no resultado do sinal "a" no mesmo ciclo de clock, por isso foi observado a semelhança de resultados entre os dois casos, tendo em vista que ao realizar a soma b+c, o sinal "c" ainda apresenta o mesmo valor anterior, pois ainda não foi atualizado.

uferea

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e Tecnologia Departamento de Computação

5. Referências Bibliográficas:

- 1.Projeto Parte A https://www.edaplayground.com/x/u3Gn
- 2.Projeto Parte B https://www.edaplayground.com/x/8fqK
- 3.Projeto Parte B com sentenças alternada Eda Playground https://www.edaplayground.com/x/dTFN

Tocci, Ronald J. - Sistemas digitais : princípios e aplicações / Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss ; revisão técnica Renato Giacomini ; tradução Jorge Ritter. - 11. ed. - São Paulo : Pearson Prentice Hall, 2011.