CS 511, Fall 2020, Lecture Slides 19 First-Order Definability

Assaf Kfoury

October 06, 2020

Suppose $\mathcal{M}=(M,\ldots)$ is a relational structure with universe M, $\ell:\{\text{all variables}\}\to M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M},\ell\models\varphi.$

Suppose $\mathcal{M}=(M,\ldots)$ is a relational structure with universe M, $\ell:\{\text{all variables}\}\to M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M},\ell\models\varphi.$

If φ is **closed**, we may write $\mathcal{M} \models \varphi$ instead, which means that, for every ℓ , we have $\mathcal{M}, \ell \models \varphi$.

Suppose $\mathcal{M}=(M,\ldots)$ is a relational structure with universe M, $\ell:\{\text{all variables}\}\to M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M},\ell\models\varphi.$

- ▶ If φ is **closed**, we may write $\mathcal{M} \models \varphi$ instead, which means that, for every ℓ , we have $\mathcal{M}, \ell \models \varphi$.
- Suppose φ is **not closed**, *e.g.*, variables x_1, x_2 , and x_3 occur free in φ , with $\ell(x_1) = a_1, \ell(x_2) = a_2$, and $\ell(x_3) = a_3$, with $a_1, a_2, a_3 \in M$.
 - We may write $\mathcal{M}, a_1, a_2, a_3 \models \varphi(x_1, x_2, x_3)$ instead of $\mathcal{M}, \ell \models \varphi$.

Suppose $\mathcal{M}=(M,\ldots)$ is a relational structure with universe M, $\ell:\{\text{all variables}\}\to M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M},\ell\models\varphi.$

- ▶ If φ is **closed**, we may write $\mathcal{M} \models \varphi$ instead, which means that, for every ℓ , we have $\mathcal{M}, \ell \models \varphi$.
- Suppose φ is **not closed**, *e.g.*, variables x_1, x_2 , and x_3 occur free in φ , with $\ell(x_1) = a_1, \ell(x_2) = a_2$, and $\ell(x_3) = a_3$, with $a_1, a_2, a_3 \in M$.
 - We may write $\mathcal{M}, a_1, a_2, a_3 \models \varphi(x_1, x_2, x_3)$ instead of $\mathcal{M}, \ell \models \varphi$.
 - lackbox Or we may write $\mathcal{M} \models \varphi[a_1, a_2, a_3]$ instead of $\mathcal{M}, \ell \models \varphi$.

Let $\mathcal{M} = (M; P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a relational structure, where the vocabulary/signature $\Sigma = (\mathscr{P}, \mathscr{F})$ is:

$$\mathscr{P} = \{P_1, P_2, \ldots\}$$
 and $\mathscr{F} = \{f_1, f_2, \ldots\}$

▶ Let $\mathcal{M} = (M; P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a relational structure, where the vocabulary/signature $\Sigma = (\mathscr{P}, \mathscr{F})$ is:

$$\mathscr{P} = \{P_1, P_2, \ldots\}$$
 and $\mathscr{F} = \{f_1, f_2, \ldots\}$

Let $R \subseteq \underbrace{M \times \cdots \times M}_{k}$ be a k-ary **relation** on M for some $k \geqslant 1$.

▶ Let $\mathcal{M} = (M; P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a relational structure, where the vocabulary/signature $\Sigma = (\mathscr{P}, \mathscr{F})$ is:

$$\mathscr{P} = \{P_1, P_2, \ldots\}$$
 and $\mathscr{F} = \{f_1, f_2, \ldots\}$

- Let $R \subseteq \underbrace{M \times \cdots \times M}_{k}$ be a k-ary **relation** on M for some $k \geqslant 1$.
- ▶ R is first-order definable in \mathcal{M} if there is a first-order WFF with k free variables $\varphi(x_1, \ldots, x_k)$ such that

$$R = \{ (a_1, \ldots, a_k) \in M \times \cdots \times M \mid \mathcal{M}, a_1, \ldots, a_k \models \varphi(x_1, \ldots, x_k) \}$$

equivalently, using notational conventions earlier in this handout:

$$R = \left\{ (a_1, \ldots, a_k) \in M \times \cdots \times M \mid \mathcal{M} \models \varphi[a_1, \ldots, a_k] \right\}$$

▶ Let $f : \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary **function** on M.

- Let $f: \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary **function** on M.
- ▶ f is first-order definable in \mathcal{M} if the graph of f as a (k+1)-ary relation is first-order definable in \mathcal{M} .

- ▶ Let $f : \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary **function** on M.
- ▶ f is first-order definable in \mathcal{M} if the graph of f as a (k+1)-ary relation is first-order definable in \mathcal{M} .
- ► Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

- Let $f: \underbrace{M \times \cdots \times M}_{k} \to M$ be a k-ary function on M.
- ▶ f is first-order definable in \mathcal{M} if the graph of f as a (k+1)-ary relation is first-order definable in \mathcal{M} .

► Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

Important special case:

First-order definability of a single element $a \in M$:

a is first-order definable in ${\cal M}$ iff

there is a first-order WFF $\varphi(x)$ s.t. $\mathcal{M}, a \models \varphi(x)$

(THIS PAGE INTENTIONALLY LEFT BLANK)