Neural Networks Part 2

Jim Rehg

Based on slides prepared by Dr. Fuxin Li, Oregon State Univ.

With materials from Zsolt Kira, Roger Grosse, Nitish Srivastava, Michael Nielsen

XOR problem and linear classifier

- 4 points: X = [(-1,-1), (-1,1), (1,-1), (1,1)]
- Y=[-1 1 1 -1]
- Try using binomial log-likelihood loss:

$$\min_{\tau} w \sum_{i} log(1 + e^{2}y li(w) + x li + b))$$

• Gradient:

$$\nabla \mathbf{w} = \sum i \hat{1} = 2y \hat{i} e \hat{1} 2y \hat{i} (\mathbf{w} \hat{1} + \mathbf{x} \hat{i} + b) / 1 + e \hat{1} 2y \hat{i} (\mathbf{w} \hat{1} + \mathbf{x} \hat{i} + b) \mathbf{x} \hat{i}$$

Try w=0,b=0, what $\nabla b=\sum i \hat{1} = 2y i (w \hat{1} + x i + b) / 1 + e \hat{1} 2y i (w \hat{1} + b)$ see?

With 1 hidden layer

A hidden layer makes a nonlinear classifier

$$f(x) = \mathbf{w} \uparrow \top g(\mathbf{W} \uparrow \top \mathbf{x} + \mathbf{c}) + b$$

- g needs to be nonlinear
- Sigmoid: Sigm(x)= $1/(1+e\hat{t}x)$

• RELU: g(x) = max(0,x)

Taking gradient

$$\min_{\mathcal{T}} W, w E(f) = \sum_{i} \mathcal{T} \mathbb{Z} L(f(x \downarrow i), y \downarrow i)$$

$$f(x) = \mathbf{w} \uparrow \top g(\mathbf{W} \uparrow \top \mathbf{x} + \mathbf{c}) + b$$

- What is $\partial E/\partial W$?
- Consider chain rule: $dz/dx = dz/dy \, dy/dx$

Note: Vectorized Computations

On the left are the computations performed by a network. Write them in terms of matrix and vector operations. Let $\sigma(\mathbf{v})$ denote the logistic sigmoid function applied elementwise to a vector \mathbf{v} . Let \mathbf{W} be a matrix where the (i,j) entry is the weight from visible unit j to hidden unit i.

$$z_i = \sum_j w_{ij} x_j$$
 $p_i = \sigma(z_i)$
 $p_i = \sigma(z_i)$
 $p_i = \sum_j v_i h_i$
 $p_i = \sum_j v_i h_i$

Backpropagation

- Save the gradients and the gradient products that have already been computed to avoid computing multiple times
- In a multiple layer network:
 - (Ignore constant terms)

$$f(x)=w \ln \uparrow \top g(W \ln -1 \uparrow \top g(W \ln -2 \uparrow \top g(...(W \ln 1 \uparrow \top g(x)))))$$

$$\begin{split} \partial E/\partial \pmb{W} \!\!\!\downarrow \!\! k &= \! \partial E/\partial f \, \partial f/\partial f \!\!\!\downarrow \!\! k \, g(f \!\!\!\downarrow \!\! k \!\!\!- \!\!\! 1 \, (x)) \\ &= \! \partial E/\partial f \!\!\!\downarrow \!\! k \!\!\!+ \!\!\! 1 \, \partial f \!\!\!\downarrow \!\! k \, g(f \!\!\!\downarrow \!\! k \!\!\!\!- \!\!\! 1 \, (x)) \end{split}$$

$$f \downarrow k(x) = w \downarrow k \uparrow \top g(f \downarrow k-1(x)), f \downarrow 0(x) = x$$

Modules

- Each layer can be seen as a module
- Given input, return
 - Output $f \downarrow a(x)$
 - Network gradient $\partial f \downarrow a / \partial x$
 - Gradient of module parameters $\partial f \downarrow a / \partial u$
- During backprop, propagate/update
 - Backpropagated gradient

 $\partial E/\partial f \downarrow a$

$$\frac{\partial E}{\partial W} \downarrow k = \frac{\partial E}{\partial f} \frac{\partial f}{\partial f} \downarrow k \quad g(f \downarrow k-1 \quad (x))$$
$$= \frac{\partial E}{\partial f} \downarrow k+1 \quad \frac{\partial f}{\partial k} +1 \quad \frac{\partial f}{\partial f} \downarrow k \quad g(f \downarrow k-1 \quad (x))$$

Different DAG structures

The backpropation algorithm would work for any DAGs

3x3 conv, 128

 So one can imagine different architectures than the plain layerwise one

Inception

(b) Inception module with dimension reductions

Loss functions

• Regression:

- Least squares L(f) = (f(x) y) 12
- L1 loss L(f)=|f(x)-y|
- Huber loss $L(f) = \{ \blacksquare 1/2 \ (f(x) y) \uparrow 2 \ , |f(x) y| < \delta \delta (y) \}$ otherwise

Binary Classification

- Hinge loss $L(f) = \max(1 yf(x), 0)$
- Binomial log-likelihood $L(f) = \ln(1 + \exp(-2yf(x)))$
- Cross-entropy $L(f)=y\hat{1}* \operatorname{lnsigm}(f) + (1-y\hat{1}*)\operatorname{ln}(1-\operatorname{sigm}(f))$,
 - $y \uparrow * = (y+1)/2$

Multi-class: Softmax layer

Multi-class logistic loss function

$$P(y = j | \mathbf{x}) = \frac{e^{\mathbf{x}^\mathsf{T} \mathbf{w}_j}}{\sum_{k=1}^K e^{\mathbf{x}^\mathsf{T} \mathbf{w}_k}}$$

- Log-likelihood:
 - Loss function is minus log-likelihood

$$-\log P(y=j|x) = -x \uparrow \top w \downarrow j + \log \sum k \uparrow m e \uparrow x \uparrow \top w \downarrow k$$

Subgradients

- What if the function is non-differentiable?
- Subgradients:
 - For **convex** f(x) at $x \downarrow 0$:
 - If for any x, $f(y) \ge f(x) + g \uparrow \top (y x)$
 - g is called a subgradient
- Subdifferential: ∂*f*: set of all subgradients
- Optimality condition: $0 \in \partial f$

The RELU unit

- f(x) = max(x,0)
- Convex
- Non-differentiable
- Subgradient: $df/dx = \{ \blacksquare 1, x > 0 [0] \}$

Subgradient descent

Similar to gradient descent

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

- Step size rules:
 - Constant step size: $\alpha_k = \alpha$.
 - Square summable: $\alpha_k \geq 0, \qquad \sum_{k=1}^{\infty} \alpha_k^2 < \infty, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty.$
 - Usually, a large constant that drops slowly after a long while
 - e.g. 100/100+k

Universal Approximation Theorems

- Many universal approximation theorems proved in the 90s
- Simple statement: for every continuous function, there exist a function that can be approximated by a 1-hidden layer neural network with arbitrarily high precision

Formal statement [edit]

The theorem^{[2][3][4][5]} in mathematical terms:

Let $\varphi(\cdot)$ be a nonconstant, bounded, and monotonically-increasing continuous function. Let I_m denote the m-dimensional unit hypercube $[0,1]^m$. The space of continuous functions on I_m is denoted by $C(I_m)$. Then, given any function $f \in C(I_m)$ and $\varepsilon > 0$, there exists an integer N and real constants $v_i, b_i \in \mathbb{R}$, where $i = 1, \cdots, N$ such that we may define:

$$F(x) = \sum_{i=1}^{N} v_i \varphi\left(w_i^T x + b_i\right)$$

as an approximate realization of the function f where f is independent of φ ; that is,

$$|F(x) - f(x)| < \varepsilon$$

for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

Universal Approximation Theorems

 The approximation does not need many units if the function is kinda nice. Let

$$\mathcal{C}\downarrow f = \int \mathbf{R} \downarrow d \uparrow || |\omega| / |f(\omega)| d\omega$$

• Then for a 1-hidden layer neural network with n hidden nodes, we have for a finite ball with radius r,

$$\int B \downarrow r \uparrow (f(x) - f \downarrow n(x)) \uparrow 2 d\mu(x) \le 4r \uparrow 2 C \downarrow f \uparrow 2 / n$$