Solució al problema 5 l

- a) Cal veure que $\frac{\partial f}{\partial x}=2x+\cos x\neq 0$ quan $x=\lambda=0$, cosa que és certa, ja que és igual a 1.
- b) Derivada primera:

$$\frac{\partial f}{\partial x}x'(\lambda) + \frac{\partial f}{\partial \lambda} = 0.$$

Quan $x = \lambda = 0$ tenim x'(0) + 1 = 0, o x'(0) = -1.

Derivada segona: Tornem a derivar l'expressió anterior:

$$(2x + \cos(x))x'(\lambda) + 1 = 0.$$

Tenim

$$(2x'(\lambda) - \sin(x(\lambda))x'(\lambda))x'(\lambda) + (2x + \cos(x))x''(\lambda) = 0.$$

Fent $\lambda = 0$ queda:

$$2+x''(0)=0,$$

Solució al problema 5 II

o x''(0) = -2. Aleshores

$$x(\lambda) \approx -\lambda - \lambda^2,$$

 $x(0.01) \approx -0.0101.$

c) Cal resoldre el sistema

$$f(x^*, \lambda^*) = 0$$

 $\frac{\partial f}{\partial x}(x^*, \lambda^*) = 0,$

és a dir

$$x^{2} + \sin(x) + \lambda = 0$$
$$2x + \cos x = 0$$

Solució al problema 5 III

Resolem la segona equació pel mètode de Newton:

$$x^* \approx -0.45018361129$$
, i $\lambda^* = -(x^*)^2 - \sin(x^*) \approx 0.23246557516$.

No hi ha més solucions perquè la funció $2x + \cos x$ és creixent. Com que $\frac{\partial f}{\partial \lambda}(x^*, \lambda^*) = 1$, existeix $\lambda(x)$ per x en un entorn de x^* tal que

$$\lambda(x^*) = \lambda^* i f(x, \lambda(x)) = 0.$$

Sabem, a mès, que $\lambda'(x^*) = 0$ i derivant l'expressió

$$x^2 + \sin(x) + \lambda(x) = 0,$$

obtenim

$$2x + \cos(x) + \lambda'(x) = 0,$$
 $2 - \sin(x) + \lambda''(x) = 0.$

Per tant, $\lambda''(x) = \sin(x) - 2 < 0$, per a tot x, i en particular per a $x = x^*$. En conclusió, $\lambda(x)$ té un màxim local en x^* , i

Solució al problema 5 IV

si
$$\lambda > \lambda^*$$
 no hi ha solució per a x , si $\lambda < \lambda^*$ hi ha dues solucions,

i $x(\lambda)$ no està definit en cap entorn de λ^* .

- d) Aquí aplicarem el teorema de Newton-Kantorovich: Fixada una λ tenim la funció d'una variable: $g(x) = x^2 + \sin(x) + \lambda$. Agafem $x_0 = 0$. Tenim
 - $g'(x_0) = 2x_0 + \cos(x_0) = 1$, i per tant $a = 1/g'(x_0) = 1$.
 - $|x_1 x_0| = \left| \frac{g(x_0)}{g'(x_0)} \right| = |\lambda| = b.$
 - $|g''(x)| = |2 + \sin(x)| \le 3 = c$, per $x \in [x_0 2\lambda, x_0 + 2\lambda]$.

Aleshores si $h=abc=3|\lambda|<\frac{1}{2},$ i per tant, si $|\lambda|<1/6\approx 0.16,$ tenim que existeix un zero $x=x(\lambda)$, que és únic en $[x_0-2\lambda,x_0+2\lambda]$. Per tant, està clar que tendeix a zero quan $\lambda\to 0$.