lecture 19

average case

- amortization
- discrete probability

https://class.coursera.org/algo-004/lecture/29

- · random variables
- · linearity of expectation

Averages that don't involve probabilities

Suppose you devote 40 hours per week to your studies. You take 5 courses: 8 work hours per week per course.

The semester is 13 weeks. Thus, you devote 104 hours per course.

For COMP 251, this 104 hours breaks down to:

- 39 hours of scheduled lecture time (3 hours per week)
- ~40 hours of review/exercises, including studying for exams (~3 hours average per week)
- ~25 hours = 6 hours *4 assignments (~2 hours average per week)

Common notion of "average"

Sometimes averages do not involve random events i.e. pababilities. Sometimes they do.

When I say that you spend an average of 2 hours per week on assignments (etc), I don't have any "randomness" in mind.

Rather, I mean that this is the amount of work you do per week, averaged or "amortized" over the semester.

Wikipedia:

Amortization is the process of accounting for an amount over a period.

Example 2

When you buy a house for SOOK, you don't pay the whole amount up front and then live in it for free for n = 25 years. Rather, you pay say look and the bank you pays 400K, and you make regular (equal) mortgage payments to the bank for n = 25 years. The amount is determined by a amortization table. There is nothing random going on here.

Wikipedia: In computer science, **amortized analysis** is a method of analyzing the execution cost of algorithms over a sequence of operations.

- e.g. building a heap fast (recall lecture 4)
 - building an Array list or Hashtable
 with n elements

• performing n union-find ops.

There is nothing random going on when you do amortized analysis.

Other times when we talk about averages, e.g. average grade, we have in mind a random distribution Here we need the language of probability theory.

Probability Theory

<u>Definition</u>: Sample space S.

a set of possible outcomes of some "experiment" (loose definition)

Definition

An event is a subset of a sample space

4 different events shown

Q: If a sample space has n outcomes, |S|=n, how many events can one define?

A: 2ⁿ.

(Usually we are interested in only

some of these 2ⁿ possible events.)

When we say quicksort is O(n logn) in the "average case", we could mean two different things:

- 1) A quicksort algorithm that chooses pivots in some deterministic way has average performance O(n logn), namely
 - input averaging over all possible inputs which are equally like to occur. randomized

randomized

2) For any given input, a quicksort algorithm that chooses pivots randomly takes time O(nlegn). algorithm NEXT CLASS)

Sample space: Examples

- flip a coin 2 H, T3
- flip a coin 3 times & HAH, HHT, HTH, HTT, TTH, TTT]
- roll a die once {1,2,3,4,5,6}
- roll a die twice { (1,1),(1,2),.... (5,4),(6,6)
- write a midterm {0, \(\frac{1}{2}, \land \) \(\frac{1}{2}, \land \) \(\frac{1}{2}, \land \) \(\frac{1}{2}, \land \)
- take a course {A, A-, B+, B, .. C, D, F}
- when is your birthday? { 1,2,3,4, --. 365}
- instance of a sorting algorithm of size 3 { (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) }

Events: Examples

- you flip a coin 3 times and you get m heads e.g. m=2 { THH, HTH, HHT }
- you roll a die twice and the sum is less than meg. m=5 {(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)}
- you get some letter grade on the midterm eg. A { 25.5, 26, 26.5, }
- your birthday is after some date e.g. after February 5 { 36,37, --. 365}

Infinite Sample Spaces

- Discrete probability allows us to talk about finite or "countably infinite"

 Sample spaces i.e. the integers. eg. S = the number of times you flip a coin until you get heads.
- If you want to use the real numbers as your sample space, you need Continuous probability (we won't go there)

e.g. flip a coin
$$p(H) = p(T) = \frac{1}{2}$$

e.q. roll a die
$$p(1) = p(2) = \cdots = p(6) = \frac{1}{6}$$

Probability distribution on a sample space

definition:

mapping
$$p: S \rightarrow [0,1]$$

 $\leq p(s) = 1$
 $s \in S$

e.g. uniform probability distribution |S| = n, $p(s) = \frac{1}{n}$ for all $s \in S$. Note: if S is all integers, you cannot define a uniform probability distribution.

Let
$$E \subseteq S$$
 be some event.

$$p(E) = \underbrace{S}_{p(S)}$$

$$S \in E$$

Note:

$$P(\{3\}) = 0$$
, $P(S) = 1$
 $P(S) = 1$

· If p() is a uniform distribution the $p(E) = \frac{|E|}{|S|}$

Random Variable

mapping $X: S \rightarrow \mathbb{R}$

eg. we roll a di three times.

- What is Sum?
 How many times did a 6 appear?
 what is largest value?

Note:

a random variable

o is not a mapping from events to numbers

to numbers

o is not a mapping

- - is not random
 is not a variable (well, it sort of is ...)

f is a mapping from R to R. f is not a variable.

However, when we say y = f(x), then $y = \frac{1}{5}a$ "variable." In the case of a random variable, the se values (and hence the y values) occur with some probability.

$$X: S \longrightarrow f_{R}$$

Define the event $X = 2c_0$ to be $\begin{cases} 5 \in \\ \\ \end{cases}$ such that $X(s) = x_0 \\ \end{cases}$.

$$\chi$$
: $\stackrel{\overset{\star}{\longrightarrow}}{\longrightarrow}$ $\stackrel{\overset{\star}{\longrightarrow}}{\nearrow}_{R}$

- you flip a coin 3 times and you get $X=x_0$ heads e.g. $x_0=2$ { THH, HTH, HHT }

- you roll a die twice and the sum is
$$X = x_0$$
 eg. $x_0 = 5 \{(1,4), (2,3), (3,2), (4,1)\}$

Define $Pr(X = x_0) \equiv \{ p(s) \}$

We call this a "distribution on the random variable X.

Think of it as probabilities on the values of

the random variable X.

e-g. you flip a coin 3 times. What is the distribution of the number of heads? $x_0=2$ { THH, HTH, HHT }

$$7_{6} = 2$$

$$7_{1} + 1_{1} + 1_{2} + 1_{3} + 1_{4} +$$

You roll a die twice and the sum is $X = x_0$.

e.g. $x_0 = 4$

$$Pr \left(\begin{array}{c} 1/36, & x = 2 \\ 2/36, & x = 3 \\ 3/36, & x = 3 \\ 3/36, & x = 4 \\ 4/36, & x = 5 \end{array} \right)$$

$$= \begin{cases} 1/36, & x = 2 \\ 2/36, & x = 4 \\ 4/36, & x = 5 \\ 5/36, & x = 7 \\ 5/36, & x = 9 \\ 4/36, & x = 9 \\ 4/36, & x = 9 \\ 3/36, & x = 10 \\ 2/36, & x = 12 \end{cases}$$

Expected Value of a Random Variable Weighted average of values taken by the random variable. The veights are the probabilities.

$$\mathcal{E} \times = \sum_{s \in S} p(s) \cdot X(s)$$

$$= \sum_{r \in X(S)} p_r \{ X = r \} \cdot r$$

$$= \sum_{r \in X(S)} p_r \{ X = r \} \cdot r$$

Example

What is the expected value of a roll of a di? Note: for this example, X(s)=5.

$$\mathcal{E}(X) = \sum_{s \in S} p(s) \cdot X(s) = \sum_{r \in X(S)} \Pr\{X = r\} \cdot r$$

$$= \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 2 + \frac{1}{6} \cdot 3 + \frac{1}{6} \cdot 4 + \frac{1}{6} \cdot 5 + \frac{1}{6} \cdot 6$$

$$= 3.5$$

$$\frac{\text{Nok}}{\text{one}} \mathcal{E}(X) \text{ does not have to be}$$

$$\text{one of the values taken by } X.$$

Example:

Lets play a game. I flip a coin.
You pay me \$5 if its a head.
I pay you \$10 if its a tail. Anyone want to play? What is the expected value of your

winnings if you play?

$$\mathcal{E}(x) = \frac{1}{2}(-5) + \frac{1}{2} \cdot 10 = 2.5$$

Example

What is the expected value of the Sum of two rolls of a di?

$$\mathcal{E}(X) = \sum_{s \in S} p(s) \cdot X(s)$$

$$= \frac{1}{36} \left(2 + 3 + 3 + \dots + 11 + 11 + 12 \right)$$

$$= \sum_{r \in X(S)} \Pr\{X = r\} \cdot r$$

$$= \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \frac{3}{36} \cdot 4 + \dots \qquad \frac{1}{36} \cdot 12$$

Lets play the game 3 times. Let random variable Y be your total winnings.

$$\mathcal{E}(y) = \frac{1}{8} \cdot (30 + 15 + 15 + 0 + 15 + 0 + 0 - 15)$$

$$TTT, TTH, THT, THH, HTT, HTH, HHT. HHH$$

$$= \frac{1}{8} \cdot 30 + \frac{3}{8} \cdot 15 + \frac{3}{8} \cdot 0 + \frac{1}{8} \cdot (-15)$$

$$= 7.5$$

Let Y = X, + X2 + ... + Xm be a sum of random Variables.

for
$$i=1$$
 to m , X_i :

Note: Y also maps 5 to R.

Linearity of Expectation .

$$e y = \sum_{i=1}^{m} e x_i$$

" the expected value of the sum is the sum of the expected values "

Linearity of Expectation (Proof):

$$EY = \sum_{s \in S} p(s) Y(s)$$

$$= \sum_{s \in S} p(s) (X_1(s) + X_2(s) + + X_m(s))$$

$$= \sum_{s \in S} \sum_{i=1}^{m} p(s) X_i(s)$$

$$= \sum_{i=1}^{m} \sum_{s \in S} p(s) X_i(s)$$

$$= \sum_{i=1}^{m} \sum_{s \in S} P(s) X_i(s)$$

Suppose we flip a coin until we get a head.

$$Pr(X=1) = \frac{1}{2}$$
 $Pr(X=2) = \frac{1}{8}$
 $Pr(X=i) = \frac{1}{2}$
 $Pr(X=3) = \frac{1}{8}$

What is the expected value of the number X of coin flips?

$$= \frac{1}{2} \frac{d}{dx} \left(\sum_{i=0}^{\infty} x^{i} - 1 \right)$$

$$= \frac{1}{2} \frac{d}{dx} \left(\frac{1}{1-x} - 1 \right)$$

$$= \frac{1}{2} \frac{d}{dx} \left(\frac{x}{1-x} \right)$$

$$= \frac{1}{2} \frac{1-x-(-1)x}{(1-x)^{2}}$$

$$= \frac{1}{2} \frac{1}{(1-x)^{2}}$$
substitute $x = \frac{1}{2}$

Example 2 (Example I was the coin flip game)

Suppose we coll 4 dice.

What is the expected value of the sum?

The sample space S has 64 outcomes,

each with probability / 1/4.

Applying linearity of expectation:

EY = 4 EX = roll of one di

= 4.3.5

= 14

$$\mathcal{E} = \sum_{i=1}^{\infty} i \operatorname{Pr} (X = i)$$

$$= \sum_{i=1}^{\infty} i \left(\frac{1}{2}\right)^{i} \qquad \text{recall lecture } Y$$

$$= \chi \sum_{i=1}^{\infty} i \left(\chi\right)^{i-1} \qquad \chi = \frac{1}{2}$$

$$= \frac{1}{2} \sum_{i=1}^{\infty} \frac{d}{d\chi} \chi^{i}$$

$$= \frac{1}{2} \frac{d}{d\chi} \sum_{i=1}^{\infty} \chi^{i}$$

We will use this result next class.

A few classes from now (lecture 22)

I will return to this example

and consider "unfair" coins,

also known as Bernoulli trials.