Tema 12: Integración múltiple.

José M. Salazar

Noviembre de 2016

Tema 12: Integración múltiple.

- Lección 17. Integrales dobles.
- Lección 18. Integrales triples.

Indice

- Integrales de funciones de dos variables en rectángulos.
 - Motivación, definición y resultados básicos.
 - Continuidad e integrabilidad. Propiedades básicas de las integrales dobles.
 - Integración iterada. Teorema de Fubini.
- Integración sobre regiones más generales.
 - Integración sobre regiones elementales.
 - Área de una superficie.
- Cambio de variable
 - Teorema del cambio de variable.
 - Cambio de variable a coordenadas polares.

Introducción

Sea $f:R\subset\mathbb{R}^2\to\mathbb{R}$ una función acotada de dos variables, definida sobre el rectángulo

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, c \le y \le d\}$$

Se consideran dos particiones P y Q de [a, b] y [c, d] respectivamente, con

$$\mathcal{P} \equiv \{x_0 = a < x_1 < x_2 < \dots < x_{n_1} = b\}$$

$$Q \equiv \{ y_0 = c < y_1 < y_2 < \dots < y_{n_2} = d \}$$

Introducción

Estas particiones determinan los rectángulos $[x_{i-1}, x_i] \times [y_{j-1}, y_j]$ de la partición de R. Se tendrán $n = n_1 n_2$ subrectángulos, R_i , con $i = 1, \ldots, n$.

La partición será $\Delta = \{R_1, \dots, R_n\}$. Al área de cada R_i la denotaremos por $A(R_i)$.

Introducción

Si $f \ge 0$ en R, llamamos S al sólido cuya tapa superior es la gráfica de f y cuya tapa inferior es el rectángulo R. Sean M_i y m_i el supremo y el ínfimo de f en R_i . La suma

$$s_{\Delta} = \sum_{i=1}^{n} m_i A(R_i)$$

es el volumen de un sólido inscrito en S. De igual manera, la suma

$$S_{\Delta} = \sum_{i=1}^{n} M_i A(R_i)$$

es el volumen de un sólido circunscrito en S. Si llamamos V al volumen del sólido S, es claro que $s_{\Delta} \leq V \leq S_{\Delta}$.

Introducción

Se cumplen las propiedades:

- $s_{\Delta} \leq S_{\Delta}$.
- Si Δ' es más fina que Δ (\mathcal{P}' más fina que \mathcal{P} y \mathcal{Q}' más fina que \mathcal{Q}), entonces

$$s_{\Delta} \leq s_{\Delta'} \quad y \quad S_{\Delta'} \leq S_{\Delta}$$

- Para todo par de particiones Δ, Δ' , se tiene $s_{\Delta} \leq S_{\Delta'}$
- Si s es el supremo de los s_{Δ} y S es el ínfimo de los S_{Δ} , entonces s < S.

Sis = S, se dice que f es integrable en R, y el límite, al que llamamos integral doble de f sobre R, se escribe así

$$\int \int_{B} f(x,y) dA \quad \phi \int \int_{B} f(x,y) dx dy$$

Observación

Para definir $\int \int_R f(x,y) dx dy$ no es necesario $f \ge 0$. Si f toma valores negativos, la integral se puede interpretar como un volumen con signo.

Teorema

Sea f acotada en R. Entonces f es integrable en R si y sólo si para todo $\epsilon > 0$ existe una partición Δ tal que $S_{\Delta} - s_{\Delta} < \epsilon$

Definición

Dada la partición $\Delta = \{R_1, \ldots, R_n\}$,

$$s_{\Delta} \leq \sum_{i=1}^{n} f(x_i^*, y_i^*) A(R_i) \leq S_{\Delta}$$

para cualquier selección de $(x_i^*, y_i^*) \in R_i$. A la suma $\sum_{i=1}^n f(x_i^*, y_i^*) A(R_i)$ se la llama suma de Riemann asociada a Δ .

Definición

Una partición Δ_n de $R = [a, b] \times [c, d]$ es regular si \mathcal{P}_n y \mathcal{Q}_n son particiones regulares de n+1 puntos de [a, b] y [c, d] respectivamente.

Observación

Dada la partición regular $\Delta_n = \{R_1, \dots, R_{n^2}\}$, la integrabilidad se puede reescribir como la existencia del límite

$$\lim_{n\to\infty}\sum_{i=1}^{n^2}f(x_i^*,y_i^*)A(R_i)$$

para cualesquiera $(x_i^*, y_i^*) \in R_i$.

Integrabilidad de funciones continuas

Teorema

Toda función continua $f:R\to\mathbb{R}$ definida sobre un rectángulo R es integrable. De hecho, basta con que f sea acotada g que el conjunto de puntos donde es discontinua esté formado por una unión finita de gráficas de funciones continuas de una variable definidas en compactos.

Propiedades

Propiedades (Propiedades de las integrales dobles)

Si f, g son integrables en R, f + g y kf también lo son, cumpliéndose:

- 1. $\int \int_{R} (f+g) dA = \int \int_{R} f dA + \int \int_{R} g dA.$
- 2. $\iint_R kf dA = k \iint_R f dA$.
- 3. Si $f \ge g$, entonces $\iint_R f \, dA \ge \iint_R g \, dA$.
- 4. Si R_1 , R_2 son rectángulos con un lado común, y $R=R_1\cup R_2$, $\int \int_{R_1} f \ dA + \int \int_{R_2} f \ dA = \int \int_R f \ dA$.
- 5. $\left| \int \int_{R} f \, dA \right| \leq \int \int_{R} |f| \, dA$

Integración respecto de una variable

Definición (Integración parcial)

Sea $f: R \to \mathbb{R}$ continua en $R = [a, b] \times [c, d]$. La integración parcial de f con respecto a y, $\int_{c}^{d} f(x, y) dy$, (resp. integración parcial de f con respecto a x, $\int_{a}^{b} f(x, y) dx$ consiste en calcular la integral en la que se considera x fija y se integra f(x,y) con respecto a y (resp. con y fija e integrando con respecto a x). En el primer caso, $A(x) = \int_{0}^{d} f(x, y) dy$ depende de la variable x y en el segundo, $A(y) = \int_{0}^{b} f(x, y) dx$ depende de la variable y.

Integración iterada

Definición (Integración iterada)

Si se integra la función $A(x) = \int_{c}^{d} f(x, y) dy$, se obtiene la integral iterada:

$$\int_a^b A(x) dx = \int_a^b \left[\int_c^d f(x, y) dy \right] dx$$

Se denota:

$$\int_a^b \int_c^d f(x, y) \, dy \, dx = \int_a^b \left[\int_c^d f(x, y) \, dy \right] dx$$

Teorema de Fubini

Teorema (Fubini)

Sea f continua en $R = [a, b] \times [c, d]$. Entonces:

$$\int \int_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

De hecho, si f es acotada y sus discontinuidades forman una unión finita de gráficas de funciones continuas cumpliéndose que $\int_c^d f(x,y) dy$ existe para todo $x \in [a,b]$, entonces

$$\int_a^b \int_c^d f(x, y) \, dy \, dx = \int \int_R f(x, y) \, dA$$

Corolario

Si f(x,y) = g(x)h(y) es continua en R, entonces

$$\int \int_{R} g(x)h(y) dA = \int_{a}^{b} g(x) dx \int_{c}^{d} h(y) dy$$

Regiones elementales

Definición (Regiones elementales)

Una región del plano D se dice que es de tipo 1 si se encuentra encerrada entre las gráficas de dos funciones continuas $g_1(x)$ y $g_2(x)$, esto es,

$$D = \{(x, y) : a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

Se dice que D es de tipo 2 si se encuentra encerrada entre las gráficas de dos funciones continuas $h_1(y)$ y $h_2(y)$, esto es,

$$D = \{(x, y) : c \le y \le d, h_1(y) \le x \le h_2(y)\}$$

A estas regiones las llamaremos regiones elementales.

Regiones elementales

yd $x = h_2(y)$ cx

Integrales en regiones elementales

Definición (Integral sobre una región elemental)

Dada $f: D \to \mathbb{R}$ continua, con D región elemental, se define la integral de f sobre D, $\int \int_D f(x,y) dA$, del siguiente modo:

Sea un rectángulo R, con $D \subset R$, y sea $F : R \to \mathbb{R}$

$$F(x,y) = \begin{cases} f(x,y) & si(x,y) \in D \\ 0 & si(x,y) \notin D \end{cases}$$

Entonces

$$\int \int_D f(x,y) dA = \int \int_R F(x,y) dA$$

La definición no depende del rectángulo R elegido.

Observación

Si $f \ge 0$, $\int \int_D f(x, y) dA$ representa el volumen encerrado entre la gráfica de f y la región D. Si f = 1, se obtiene el área de D.

Integrales en regiones elementales

Teorema

Si $f: D \to \mathbb{R}$ es continua en una región D de tipo 1, entonces

$$\int \int_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx$$

Si la región D es de tipo 2, entonces

$$\int \int_{D} f(x, y) \, dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx \, dy$$

Propiedades de la integración en regiones elementales

Propiedades

- 1. $\int \int_D (f+g) dA = \int \int_D f dA + \int \int_D g dA.$
- 2. $\int \int_D kf \, dA = k \int \int_D f \, dA.$
- 3. Si $f \ge g$, entonces $\int \int_D f \, dA \ge \int \int_D g \, dA$.
- 4. Si $D=D_1\cup D_2$ sin que D_1 y D_2 se solapen salvo, quizá, en los bordes, entonces $\int\int_D f\ dA=\int\int_{D_1} f\ dA+\int\int_{D_2} f\ dA$.
- 5. $\int \int_D 1 dA = A(D)$ siendo A(D) el área de D.
- 6. Si $m \le f(x,y) \le M$ para todo $(x,y) \in D$, entonces

$$mA(D) \leq \int \int_{D} f dA \leq MA(D)$$

7. $\int_{D} f \, dA = f(x_0, y_0)A(D)$ para algún $(x_0, y_0) \in D$.

Áreas de superficies

Teorema (Áreas de superficies)

Dada una superficie S de ecuación z=f(x,y) con $(x,y)\in D$, una región elemental, y tal que f_x y f_y son continuas, entonces el área de S, A(S), es

$$A(S) = \int \int_{D} \sqrt{1 + f_{x}(x, y)^{2} + f_{y}(x, y)^{2}} dA$$

Cambio de variable en integrables dobles

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación C^1 del plano uv en el plano xy, T(u,v)=(x,y), esto es, con x=x(u,v) e y=y(u,v).

Definición

El jacobiano de T es el determinante de su matriz jacobiana:

$$det(JT(u,v)) = det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Cambio de variable en integrables dobles

Teorema (Cambio de variable en integrales dobles)

Sea $T:D_2\to D_1$ una transformación C^1 y biyectiva definida entre dos regiones elementales, D_2 contenida en el plano uv y D_1 contenida en el plano xy. Entonces, si $f:D_1\to\mathbb{R}$ es integrable,

$$\int \int_{D_1} f(x,y) \, dx \, dy = \int \int_{D_2} f(T(u,v)) \, \left| det(JT(u,v)) \right| \, du \, dv$$

Cambio de variable a coordenadas polares

Corolario

Si la función T transforma coordenadas polares en cartesianas, $T(r,\theta) = (x,y)$ con

$$x = r \cos \theta$$
 $y = r \sin \theta$,

y con $r \in [0, \infty)$, $\theta \in [0, 2\pi)$, entonces el jacobiano es

$$det(JT(r,\theta)) = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r$$

De modo que el teorema del cambio de variable nos da

$$\int \int_{D_1} f(x, y) \, dx \, dy = \int \int_{D_2} f(r \cos \theta, r \sin \theta) r \, dr \, d\theta$$

Cambio de variable a coordenadas polares

Coordenadas polares