Quality of Wines Exported from

Portugal

CSIT456_01

By: William Bautista and Teresa Luz Miller

Introduction

Can we determine the quality of wine based on a certain chemical makeup?

Let's see if it is possible to do so through machine learning

Description of the data set

Through the UCI ML Repository,* we selected a dataset detailing red vinho (wine) samples from the north of Portugal.

The datasets contained 12 attributes based on physicochemical tests ranging from:

- fixed acidity
- volatile acidity
- citric acid
- residual sugar
- chlorides
- free sulfur dioxide
- total sulfur dioxide
- density
- pH
- Sulphates
- alcohol level
- quality

https://archive.ics.uci.edu/ml/datase ts/wine+quality

Data Preparation

```
In [30]: red = pd.read_csv('winequality-red.csv',sep=";")
    red
```

Out[30]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
	***	55 2.5				***				55		
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows x 12 columns

Data Normalization

Although our dataset was cleaned up prior to loading it, we realized that the data contained numerous outliers.

We used sklearn preprocessing module to normalize our data in order to have a more defined accuracy in our predictions.

```
In [67]: from sklearn import preprocessing
X = preprocessing.StandardScaler().fit(X).transform(X)
```

Data Processing

We began processing our data by setting our target variable, Y, to "quality" and then split the dataset into training and test sets (80% and 20% respectively)

```
In [69]: X = np.asarray(red.iloc[:,:-1])
y = np.asarray(red["quality"])
```

Train and test set

```
In [70]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=0)
print ("Train set:", X_train.shape, y_train.shape)
print ("Test set:", X_test.shape, y_test.shape)
Train set: (1279, 11) (1279,)
Test set: (320. 11) (320.)
```

Data Visualization

Data Visualization

```
In [7]: correlation = red.corr()
  fig = plt.subplots(figsize=(10,10))
  sns.heatmap(correlation,vmax=1,square=True,annot=True,cmap='Blues')
```

Out[7]: <AxesSubplot:>

```
In [55]: plt.hist(red['quality'],color='red',bins=10)
    plt.xlabel('Quality')
    plt.ylabel('Count')
```

Out[55]: Text(0, 0.5, 'Count')

-0.6

-0.4

-0.2

-0.0

--0.2

--0.4

--0.6

Model Selection

Logistic Regression

+

K-Nearest Neighbors

Model Implementation for Logistic Regression

```
In [71]: from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import cross_val_score
    from sklearn.metrics import roc_auc_score

logreg = LogisticRegression(multi_class="multinomial",solver ="newton-cg")
logreg.fit(X_train, y_train)

y_pred = logreg.predict(X_test)

print(metrics.classification_report(y_test, y_pred, digits=3, zero_division = 1))
print("accuracy", accuracy_score(y_test, y_pred))

accuracy = cross_val_score(logreg, X, y, scoring = "roc_auc_ovr",cv=10)

print("cross validation score with roc_auc", accuracy.mean())
print("roc_auc_score",roc_auc_score(y_test,logreg.predict_proba(X_test), multi_class="ovr"))
```

```
precision
                          recall f1-score support
                  1.000
                            0.000
                                      0.000
                                      0.000
                  1.000
                            0.000
                                                   11
                  0.658
                            0.756
                                      0.703
                                                  135
                  0.622
                            0.627
                                      0.625
                                                  142
                  0.409
                            0.333
                                      0.367
                                                  27
                  1.000
                            0.000
                                      0.000
                                      0.625
                                                  320
    accuracy
                  0.782
                            0.286
                                      0.283
                                                  320
   macro avo
weighted avg
                  0.638
                            0.625
                                      0.605
                                                  320
```

cross validation score with roc_auc 0.7910407311982046

accuracy 0.625

roc auc score 0.7312427759625839

Model Implementation for K-Nearest Neighbors

K-Nearest Neighbors

```
In [17]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)

Out[17]: KNeighborsClassifier(n_neighbors=3)

In [18]: knn.score(X_test,y_test)

Out[18]: 0.49828178694158076
```

Tuning Hyper Parameter

```
In [19]: from sklearn.model_selection import StratifiedKFold
         skfold = StratifiedKFold(n splits=5,shuffle=True)
In [20]: from sklearn.model_selection import cross_val_score
         neighbors = np.arange(1, 16, 2)
         cross val scores = []
         for i in neighbors:
             knn = KNeighborsClassifier(n neighbors=i)
             scores = cross_val_score (knn, X_train, y_train, cv = skfold)
             cross val scores.append(np.mean(scores))
         print("Best cross-validation score: {:.3f}".format(np.max(cross_val_scores)))
         best = neighbors[np.argmax(cross val scores)]
         print("Best neighbors: {}".format(best))
         Best cross-validation score: 0.625
         Best neighbors: 1
In [21]: knn = KNeighborsClassifier(n_neighbors=best)
         knn.fit(X train,y train)
         knn.score(X test.v test)
Out[21]: 0.6116838487972509
```

Conclusion:

We applied classification to answer how several variables are related — specifically how the 11 categorized features of our data set impacts quality of wine.

Comparing the two models, we have found that they are more or less equally accurate in predicting new data although we would consider Logistic Regression as the better model due to the higher AOC score it produces.

Thank you!