Microbiome Project: Structural Equation Model

Rudradev Sengupta, Nolen Joy Perualila and Ziv Shkedy

Microbiome Statistics Meeting 16.01.2017

Part 1: The Setting

Interdependence in the Gut

The Biomarker Setting

Typical Data:

Y = Biological Response (IgA)

X = Candidate biomarker for Y(Microbiome data)

Z = Factor (Treatment)

PAT Studies

- PAT Pulsed Antibiotic Treatment model of pediatric exposures.
- Hypothesis: A series of short, therapeutic-dose pulses of antibiotic administered early in life will perturb the intestinal microbiota and lead to long-lasting alterations in metabolic and immune profiles.
- exPAT with 2 antibiotics amoxicillin & tylosin tylosin was found to be effective and hence continued.
- pulsePAT tylosin at 2 different dose levels over time PAT1 & PAT3.
- transPAT tylosin only at one dose level.

transPAT Study

(2 days post-PAT)

Is the (PAT)-altered microbiota sufficient to alter intestinal immunity?

Biological Response: IgA

- Post-transplant:
 Development of the immune system as microbiome colonizes the gut.
- Low IgA Level could mean the immune system is under stress or compromised.

Biological Response: IgA

- Post-transplant:
 Development of the immune system as microbiome colonizes the gut.
- Low IgA Level could mean the immune system is under stress or compromised.
- Day 20: largest observed difference (weakened host immunity for PATpurturbed microbiota).

Aim: Discover OTUs associated with IgA at day 20.

Data

- transPAT study.
- Data available on 355 OTUs and IgA level for 15 subjects.
- 2 treatment groups Control (8), PAT (7).
- 6 available common timepoints between IgA and OTU:
 Day 1, Day 6, Day 12, Day 20, Day 64 and Day 76(14 subjects).
- Analysis based on initial 4 timepoints.

$m = 355 \mathrm{OTUs}$		x_{11} x_{21}	$x_{12} \\ x_{22}$		$x_{18} \\ x_{28}$	<i>x</i> ₁₉ <i>x</i> ₂₉	$x_{1,10}$ $x_{2,10}$	 $\begin{pmatrix} x_{1,15} \\ x_{2,15} \end{pmatrix}$
		<i>x</i> _{i1}	x _{j2}		x_{i8}	X _j 9	$x_{i,10}$	 $x_{i,15}$
		. x _{355,1}	$x_{355,2}$		$x_{355,8}$	$x_{355,9}$	$x_{355,10}$	 $x_{355,15}$
CONTROL						, ,	PAT	555,15

Biomarker Setting: Data Structure

Per timepoint:

X = Microbiome Data

$$\mathsf{E} \left\{ \left(\begin{array}{ccccc} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{j1} & x_{j2} & \cdots & x_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{array} \right) \right.$$

$$Y = IgA Level$$

 $y_1, y_2, ..., y_n$

$$Z = Treatment Vector (Binary)$$

 $z_1, z_2, ..., z_n$

OTU-level Biomarker Setting

- IgA level at day 20 is significantly different between the treatment groups.
- Which of the OTUs are differentially abundant?
- Which of the OTUs are significantly associated with the IgA level after taking treatment effect into account?
- What is the source of the correlation ?

Part 2: Structural Equation Model

SEM

- Dependent variable= endogenous variable.
- Independent variable= exogenous variable.
- An endogenous variable in one equation can be exogenous in another equation.
- Instead of minimizing functions of observed and predicted individual values, difference between the sample covariances and the predicted covariances are minimized in SEM.
- The treatment total effect is split into a direct and an indirect effect components.

SEM: Simple Model

Independent model (model 1)

- No relation at all

Single effect model (model 2)

- Direct effect between Z and Y

Single effect model (model 3)

- Direct effect between Z and X

Single effect model (model 4)

- Direct effect between X and Y

Indirect effect model (model 5)

 Indirect effect between Z and Y (complete mediation)

common effect model (model 6)

- Z affects X as well as Y

common effect model (model 7)

- Z as well as X influence Y

Partial mediation model (model 8)

- Z affects X which in turn affects Y. In addition Z affects Y

Partial Mediation Model Formulation

The structural equations model corresponding to the partial mediation model is given by

$$\begin{split} X_{ij} &= \lambda_{1j} Z_i + \varepsilon_{1i}, \\ Y_i &= \lambda_3 Z_i + \lambda_{2j} X_{ij} + \varepsilon_{2i}. \end{split}$$

$$\begin{bmatrix} \varepsilon_{1i} \\ \varepsilon_{2i} \end{bmatrix} \sim N \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Direct and Indirect Effects

Direct effect: influence of
 Treatment on the IgA Level that is unmediated with by the OTU Counts

 Indirect effect: the effect of the Treatment is mediated by the OTU Counts

$$\lambda_{1j} * \lambda_{2j}$$

 Total effect: sum of the direct and indirect effects.

$$\lambda_{1j} \times \lambda_{2j} + \lambda_3$$

Direct Effect

Direct effect of Treatment on IgA γ_2 Direct effect of OTU on IgA β

IgA is a collider, X and Z mutually cause the effects on Y.

Indirect Effect

Results: Partial Mediation Model

OTU 264734

implies model 3 should be fitted.

Results: Partial Mediation Model

Results: Partial Mediation Model

OTU 206324

implies model 7 should be fitted.

SEM: Complex Models – with 1 lag

Independent Errors

SEM: Complex Models – with 2 lags

Independent Errors

SEM: Complex Models – with 3 lags

Independent Errors

Independent Errors

264734

Independent Errors

 $\beta_{41} = 4.34901*$

264734

 $\beta_{31} = 3.12032$

Independent Errors, t = 20

New.ReferenceOTU513

Day = 1Day = 6Day = 12Day = 20r_{UnAdj}=NA: α=0 $r_{UnAdi}=0.4047$: $\alpha=0.3616$ $r_{UnAdi}=0.5886$: $\alpha=0.042$ $r_{UnAdi}=0.6215$: $\alpha=-0.0587$ IgA levels_day20 0.25 0.00 0.25 log(OTU Counts) 0.5 1.0 log(OTU Counts) 0.5 1.0 1.5 log(OTU Counts) log(OTU Counts) $\rho = 0.7676$ $\rho = 0.744$ $\rho = NA$ $\rho = 0.7196$ gA levels_day20 -0.25 0.00 0.25 log(OTU Counts) -0.5 0.0 0.5 log(OTU Counts) -1.0 -0.5 0.0 0.5 log(OTU Counts) log(OTU Counts) Treatment Grp Ocontrol PAT Treatment Grp Ocontrol PAT Treatment Grp Ocontrol PAT

Independent Errors

 $\Upsilon_{11} = -0.05868$ $\Upsilon_{13} = 0.04204$ $\beta_{11} = 7.70733*$ $\beta_{21} = 3.39927$ $\beta_{31} = 6.93994*$

Conclusions

- The SEM approach allows to chose different types of OTUs depending on decomposition of the total effect.
- It allows to account for multiple sources of data.
- Computational issues related the (high) dimension of the data or complexity of the model.
- Explore more in this direction.
- Development of models that use more than one OTU.

Thank You for Your Attention ..!!