# **Optimizing the Internet**

Daniel P. Palomar

Hong Kong University of Science and Technology (HKUST)

ELEC5470 - Convex Optimization

Fall 2017-18, HKUST, Hong Kong

#### **Outline of Lecture**

- Introduction to TCP/IP
- Overview of TCP congestion control
- Steady-state analysis via convex optimization
- Dynamic analysis via convex optimization
- Summary

# TCP/IP Protocol Stack

- TCP/IP protocol stack (OSI model):
  - Application layer: ftp, http, etc.
  - Transport layer: adds reliability to network layer. The predominant protocol is TCP (also UDP).
  - Network layer: protocols for routing, IP (Internet Protocol)
  - Data link layer:frames overthe link
    - + error correction
  - Physical layer: bits
     and waveforms



# Success of TCP/IP

WWW, Email, Napster, FTP, ...



- TCP/IP has been extremely successful because it is simple and robust:
  - robust against failure
  - robust against technological evolution
  - provides a service to applications (doesn't tell applications what to do)

#### **TCP**

• TCP (Transmission Control Protocol) was introduced in the 1970s for file transfer in the Internet.

- TCP protocol:
  - end-to-end control
  - session initiation and termination
  - in-order recovery of packets
  - flow control/congestion control

**–** ...

• Why congestion control?

# TCP (II)

- Initially TCP had little to control congestion in the network:
  - If several users started transferring files over a bottleneck link exceeding its capacity, then the packets had to be dropped. This resulted in retransmission of lost packets, making things worse.
  - This phenomenon is known as congestion collapse and occured many times in the mid-1980s.
- In Oct. 1986, the Internet had its first collapse: throughput dropped by a factor of 1000 from 32 kbps to 10 bps.
- In 1988, Jacobson proposed a congestion control mechanism for TCP, which has been a remarkably successful algorithm for the growth of the Internet.

# **TCP Congestion Control**

- TCP congestion control:
  - window-based end-to-end flow control, where the destination sends
     ACK for correctly received packets and the source updates the window size (which is proportional to allowed transmission rate).
  - several instances of TCP congestion control distributively dissolve congestion in bottleneck links by reducing window sizes.
  - sources update window sizes and links update (sometimes implicitly) congestion measures that are fed back to sources using the link.

#### Window Flow Control



- W packets per Round-Trip Time (RTT).
- Lost packet detected by missing ACK.

# **Evolution of TCP Congestion Control**

- With the growth of the Internet over the past decade by several orders of magnitude, there was a need to develop more scalable mechanisms for Internet congestion control (good behavior unaffected by number of nodes, capacities of links, RTT, etc.)
- TCP congestion control algorithms for the Internet were devised based on heuristics, common sense, and trial-and-error in the 1980s-1990s. There was no solid understanding of the convergence and stability properties of the algorithms.
- Mathematical modeling of congestion control based on convex optimization initiated by Kelly and Low in the mid-1990s.

# **Cronology of TPC Congestion Control**

- Tahoe (Jacobson 1988): slow start, congestion avoidance, fast retransmit.
- Reno (Jacobson 1990): fast recovery.
- Vegas (Brakmo & Peterson 1994): new congestion avoidance.
- RED (Floyd & Jacobson 1993): probabilistic making.
- REM (Athuraliya & Low 2000): clear buffer, match rater.
- etc.

## **NUM Perspective**

- Optimization-theoretic perspective of TCP congestion control:
  - a TCP congestion control algorithm carries out a distributed algorithm to solve an implicit global convex optimization problem, a Network Utility Maximization (NUM)
  - source rates are primal variables updated at the sources
  - congestion measures are dual variables (prices) updated at the links.

Daniel P. Palomar

10

# **Overview of TCP Congestion Control**

- TCP uses a window-based flow control to pace the transmission of packets.
- Each source maintains a "window size" variable that limits the maximum number of packets that can be unacknowledged.

#### • Two features:

- 1. the algorithm is "self-clocking": TCP automatically slows down the source when the network becomes congested.
- 2. the window size variable determines the source rate: one window is worth the packets sent every roundtrip time.

### **TCP Tahoe**

• TCP Tahoe (Jacobson 1988):



SS: Slow Start

CA: Congestion Avoidance

## **TCP Tahoe: Algorithm**

• TCP Tahoe (relies on packet loss):

**Slow-start phase:** start with a window of cwnd = 1, increase the window size by 1 for every ACK received cwnd = cwnd + 1 (this doubles the window every RTT: exponential growth). If window reaches a threshold, cwnd  $\geq$  ssthresh, enter next phase.

**Congestion avoidance phase:** increase the window by its reciprocal, cwnd = cwnd+1/cwnd, for every ACK received (this increases the window by one every RTT: linear growth).

### **TCP Tahoe: Slow Start**



## **TCP Tahoe: Congestion Avoidance**



### **TCP Reno**

• TCP Reno (Jacobson 1990):



## **TCP Reno: Algorithm**

• TCP Reno (relies on packet loss):

**Slow-start phase:** start with a window of 1, increase the window size by 1 for every ACK received (this doubles the window every RTT: exponential growth). If window reaches a threshold enter next phase. If a packet loss is detected, halve threshold and set window to 1.

Congestion avoidance phase: increase the window by its reciprocal for every ACK received (this increases the window by one every RTT: linear growth). If a packet loss is detected, halve threshold, set window to some given value, and enter slow-start phase again.

# **TCP Vegas**

• TCP Vegas (Brakmo & Peterson 1994)



- Converges, no retransmission
- ... provided buffer is large enough

## **TCP Vegas: Algorithm**

 Window update for TCP Vegas (relies on queuing delay) in the congestion avoidance phase:

$$w_s(t+1) = \begin{cases} w_s(t) + \frac{1}{D_s(t)} & \text{if } \frac{w_s(t)}{d_s} - \frac{w_s(t)}{D_s(t)} < \alpha_s \\ w_s(t) - \frac{1}{D_s(t)} & \text{if } \frac{w_s(t)}{d_s} - \frac{w_s(t)}{D_s(t)} > \alpha_s \\ w_s(t) & \text{else} \end{cases}$$

#### where

- $D_s(t)$  is the RTT (Round Trip Time)
- $d_s$  is the propagation time (minimum  $D_s(t)$ )
- $w_s(t)/d_s$  is the expected rate
- $w_s(t)/D_s(t)$  is the actual rate

# TCP Vegas: Algorithm (II)

- Observe that
  - the difference  $\frac{w_s(t)}{d_s} \frac{w_s(t)}{D_s(t)}$  should be kept between  $\alpha_s$  and  $\beta_s$  (for simplicity we will assume  $\alpha_s = \beta_s$ )
  - $w_s(t)-d_sx_s(t)$  = total backlog buffered in the path of s ( $x_s(t) = w_s(t)/D_s(t)$ ).
- Therefore, we can think of a source incrementing/decrementing its window according to whether the total backlog is smaller/larger than  $\alpha_s d_s$ .

# TCP Vegas: Algorithm (II)

- We will now show that:
  - 1. Steady-state analysis: the objective of TCP Vegas is to maximize the aggregate source utility subject to capacity constraints of network resources.
  - 2. Dynamic analysis: the TCP Vegas algorithm is a dual method to solve the maximization problem.

# Steady-State Analysis (I)

• When the algorithm converges, the equilibrium windows  $w_s^*$  and the associated equilibrium round-trip times  $D_s^*$  satisfy:

$$\frac{w_s^{\star}}{d_s} - \frac{w_s^{\star}}{D_s^{\star}} = \alpha_s \qquad \text{for all } s.$$

Consider now the following NUM:

$$\begin{array}{ll} \underset{\mathbf{x} \geq \mathbf{0}}{\text{maximize}} & \sum_{s} U_{s}\left(x_{s}\right) \\ \text{subject to} & \sum_{s:l \in \mathcal{L}(s)} x_{s} \leq c_{l} \quad \forall l \end{array}$$

with utilities:  $U_s(x_s) = \alpha_s d_s \log x_s$ .

# **Steady-State Analysis (II)**

- ullet Since the NUM problem is convex, we know that a rate vector  $\mathbf{x}^*$  is optimal if and only if we can find Lagrange multipliers so that the KKT conditions are satisfied.
- The Lagrangian and its gradient are

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{s} U_{s}(x_{s}) + \sum_{l} \lambda_{l} \left( c_{l} - \sum_{s:l \in \mathcal{L}(s)} x_{s} \right)$$

$$\nabla_{x_s} L = U_s'(x_s) - \sum_{l \in \mathcal{L}(s)} \lambda_l = \frac{\alpha_s d_s}{x_s} - \sum_{l \in \mathcal{L}(s)} \lambda_l$$

# Steady-State Analysis (III)

KKT conditions:

$$\sum_{s} x_{s} \leq c_{l}, \qquad \lambda_{s} \geq 0$$

$$\frac{\alpha_{s} d_{s}}{x_{s}} = \sum_{l \in \mathcal{L}(s)} \lambda_{l}$$

$$\lambda_{s} \left(\sum_{s} x_{s} - c_{l}\right) = 0$$

ullet Let's verify that, indeed, the equilibrium point satisfies the KKT conditions for some  $\lambda$ .

# Steady-State Analysis (IV)

- The rate at equilibrium is  $x_s^* = \frac{w_s^*}{D_s^*}$ .
- Let  $b_l^*$  be the equilibrium backlog at link l. The fraction of  $b_l^*$  that belongs to source s is  $b_l^* \frac{x_s^*}{c_l}$  where  $c_l$  is the link capacity.
- ullet Hence, the source s maintains a backlog of  $\sum_{l\in\mathcal{L}(s)}b_l^\star\frac{x_s^\star}{c_l}$  along its path in equilibrium.
- On the other hand, recall that the expression for the total backlog buffered along the path of source s is  $w_s(t) d_s x_s(t)$ .

# **Steady-State Analysis (V)**

• Thus, we can write

$$w_s^{\star} - d_s x_s^{\star} = \sum_{l \in \mathcal{L}(s)} b_l^{\star} \frac{x_s^{\star}}{c_l}$$

and then

$$\alpha_s = \frac{w_s^{\star}}{d_s} - \frac{w_s^{\star}}{D_s^{\star}} = \frac{1}{d_s} \left( w_s^{\star} - d_s x_s^{\star} \right) = \frac{1}{d_s} \left( \sum_{l \in \mathcal{L}(s)} b_l^{\star} \frac{x_s^{\star}}{c_l} \right).$$

ullet If we now denote  $\lambda_l^\star = b_l^\star/c_l$ , we can rewrite the above as

$$\frac{\alpha_s d_s}{x_s^{\star}} = \sum_{l \in \mathcal{L}(s)} \lambda_l^{\star}$$

which is one of the KKT conditions.

# Steady-State Analysis (VI)

- Regarding the primal and dual feasibility KKT conditions, clearly  $\lambda_l^{\star} \geq 0$  (by definition) and  $\sum_s x_s^{\star} \leq c_l$  (otherwise we would be magically transmitting at a rate higher than capacity).
- The only remaining condition to verify is the complementary slackness. Since the backlog  $b_l^{\star}=0$  at link l if the aggregate rate is strictly less than the capacity (implying  $\lambda_l^{\star}=0$ ), we have

$$\lambda_s^{\star} \left( \sum_s x_s - c_l \right) = 0.$$

# **Steady-State Analysis (VII)**

 Summarizing the steady-state analysis, we have seen that an equilibrium point of TCP Vegas satisfies the KKT conditions and, therefore, is an optimal solution of the following NUM:

$$\begin{array}{ll} \underset{\mathbf{x} \geq \mathbf{0}}{\text{maximize}} & \sum_{s} U_{s}\left(x_{s}\right) \\ \text{subject to} & \sum_{s:l \in \mathcal{L}(s)} x_{s} \leq c_{l} & \forall l \end{array}$$

with utilities  $U_s(x_s) = \alpha_s d_s \log x_s$ .

• The following analysis will deal not just with the final equilibrium point of the algorithm but with the dynamics of the updates in the TCP Vegas algorithm.

# **Dynamic Analysis (I)**

- Let's now derive the dual algorithm to solve the NUM.
- The Lagrangian is

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \sum_{s} U_{s}(x_{s}) + \sum_{l} \lambda_{l} \left( c_{l} - \sum_{s:l \in \mathcal{L}(s)} x_{s} \right)$$
$$= \sum_{s} \left( U_{s}(x_{s}) - x_{s} \sum_{l \in \mathcal{L}(s)} \lambda_{l} \right) + \sum_{l} \lambda_{l} c_{l}$$

where  $\lambda^s = \sum_{l \in \mathcal{L}(s)} \lambda_l$ .

# **Dynamic Analysis (II)**

The dual function is then

$$g\left(\boldsymbol{\lambda}\right) = \max_{\mathbf{x}} L\left(\mathbf{x}, \boldsymbol{\lambda}\right) = \sum_{s} \max_{x_{s}} \left[U_{s}\left(x_{s}\right) - x_{s}\lambda^{s}\right] + \sum_{l} \lambda_{l} c_{l}$$

• Therefore, the dual method consists of the master problem:

$$\underset{\boldsymbol{\lambda} \geq \mathbf{0}}{\operatorname{minimize}} \quad \sum_{s} g_{s}^{\star} \left( \lambda^{s} \right) + \sum_{l} \lambda_{l} c_{l}$$

and the subproblems

$$g_s^{\star}(\lambda^s) = \max_{x_s} \ U_s(x_s) - x_s \lambda^s$$
 for all  $s$ .

# **Dynamic Analysis (III)**

A simple way to solve the master problem is with a gradient/subgradient projection method:

$$\lambda_{l}(t+1) = \left[\lambda_{l}(t) - \gamma \theta_{l} \nabla_{\lambda_{l}} g\left(\boldsymbol{\lambda}\left(t\right)\right)\right]^{+}$$

where  $\gamma \theta_l$  denotes the stepsize for the lth element,  $[\cdot]^+ = \max(0, \cdot)$ , and the gradient/subgradient of the dual function is

$$\nabla_{\lambda_{l}}g\left(\boldsymbol{\lambda}\left(t\right)\right) = c_{l} - \sum_{s:l\in\mathcal{L}\left(s\right)} x_{s}^{\star}\left(\lambda^{s}\right).$$

# **Dynamic Analysis (IV)**

• The solution to the subproblems for the particular choice of the utilities  $U_s(x_s) = \alpha_s d_s \log x_s$  is

$$x_s^{\star} \left( \lambda^s \right) = \frac{\alpha_s d_s}{\lambda^s}.$$

• The gradient update can then be written as

$$\lambda_l(t+1) = \left[\lambda_l(t) + \gamma \theta_l \left( \sum_{s:l \in \mathcal{L}(s)} \frac{\alpha_s d_s}{\lambda^s} - c_l \right) \right]^+.$$

• For sufficiently small  $\gamma$  the algorithm will converge to a primal-dual optimal point  $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ .

# **Dynamic Analysis (V)**

- Let's now go back to the TCP Vegas algorithm.
- The evolution of the buffer occupancy  $b_l(t)$  at link l is

$$b_l(t+1) = \left[b_l(t) + \sum_{s:l \in \mathcal{L}(s)} x_s(t) - c_l\right]^+$$

or

$$\frac{b_l(t+1)}{c_l} = \left[ \frac{b_l(t)}{c_l} + \frac{1}{c_l} \left( \sum_{s:l \in \mathcal{L}(s)} x_s(t) - c_l \right) \right]^+.$$

# **Dynamic Analysis (VI)**

• Recalling that we had interpreted  $b_l(t)/c_l$  as the Lagrange multiplier  $\lambda_l(t)$ , we can rewrite the previous expression as

$$\lambda_l(t+1) = \left[\lambda_l(t) + \frac{1}{c_l} \left( \sum_{s:l \in \mathcal{L}(s)} x_s(t) - c_l \right) \right]^+$$

which is exactly the gradient update that we previously derived for the master dual problem:

$$\lambda_{l}(t+1) = \left[\lambda_{l}(t) + \gamma \theta_{l} \left( \sum_{s:l \in \mathcal{L}(s)} x_{s}^{\star}(t) - c_{l} \right) \right]^{+}$$

with stepsize  $\gamma = 1$  and scaling factor  $\theta_l = 1/c_l$ .

# **Dynamic Analysis (VII)**

- Thus, the dual update based on the gradient projection algorithm coincides with the TCP Vegas algorithm with the difference that the source rates  $x_s(t)$  are updated differently:
  - in the dual method, we use the optimum (one-shot update)

$$x_s^{\star}(t) = \frac{\alpha_s d_s}{\lambda^s(t)}$$

– in TCP Vegas algorithm, the window  $w_s(t)$  is updated based on whether

$$w_s(t) - x_s(t)d_s < \alpha_s d_s$$
 or  $w_s(t) - x_s(t)d_s > \alpha_s d_s$ .

# **Dynamic Analysis (VIII)**

Interestingly, recalling how this quantity is related to the backlog:

$$w_s(t) - x_s(t)d_s = \sum_{l} \frac{x_s(t)}{c_l} b_l(t) = x_s(t) \sum_{l} \lambda_l(t) = x_s(t) \lambda^s(t),$$

the conditions for the update become

$$x_s(t) < \frac{\alpha_s d_s}{\lambda^s(t)}$$
 or  $x_s(t) > \frac{\alpha_s d_s}{\lambda^s(t)}$ .

• Observe now that, at equilibrium, the previous TCP Vegas update will imply  $x_s(t) = \frac{\alpha_s d_s}{\lambda^s(t)}$ , which coincides with the one-shot update of the dual-based algorithm  $x_s^{\star}(t) = \frac{\alpha_s d_s}{\lambda^s(t)}$ .

## **Different Congestion Control and Utilities**

 We have seen how TCP Vegas algorithm can be interpreted as an approximate dual-based gradient method corresponding to a NUM with a particular choice of utilities.

#### • TCP Reno:

– source utility: arctan

link price: packet loss

### TCP Vegas

source utility: weighted log

link price: queuing delay

# Summary (I)

- TCP Reno/Vegas algorithms for the Internet were devised based on heuristics, common sense, and trial-and-error in the 1980s-1990s.
   There was no solid understanding of the convergence and stability properties of the algorithms.
- More recently, in the early 21st century, it was realized that one can reinterpret those algorithms as approximate dual-based gradient methods solving implicitly a NUM problem.

# **Summary (II)**

- In particular,
  - a careful inspection of the KKT conditions shows that a steadystate solution of the TCP Vegas algorithm solves a NUM with logarithmic utilities
  - the window update in TCP Vegas is in fact an approximation of a dual-based gradient projection method solving the NUM.
- Convex optimization has been used to reverse-engineer and understand existing protocols.
- Even more than that, convex optimization is being used to devise better protocols for the Internet.

#### References

- Steven H. Low and David E. Lapsley, "Optimization Flow Control, I: Basic Algorithm and Convergence," *IEEE/ACM Trans. on Networking*, vol. 7, no. 6, Dec. 1999.
- Steven H. Low, Larry L. Peterson, and Liming Wang, "Understanding Vegas: a duality model," *Journal of the ACM*, vol. 49, no. 2, March 2002.
- Steven H. Low, Fernando Paganini, and John C. Doyle, "Internet Congestion Control," *IEEE Control Systems Magazine*, Feb. 2002.
- Steven H. Low, "A Duality Model of TCP and Queue Management Algorithms," *IEEE/ACM Trans. on Networking*, Oct. 2003.