Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

MIT 6.036 Spring 2022 1

Our procedure

So, we have our parameter **update**, $\Delta\theta$. We'll start at t = 0.

Before, we represented the i^{th} data point with $x^{(i)}$. We'll reuse this notation.

Notation 1

Here, we're changing θ over time: each step happens at $t = \{1, 2, 3, ...\}$ so we need **notation** for that.

We'll **reuse** the notation from $x^{(i)}$, for the i^{th} data point.

In this case, we'll do $\theta^{(t)}$: the value of θ after t steps are taken.

Earlier, we introduced θ_{old} and θ_{new} : these are $\theta^{(t-1)}$ and $\theta^{(t)}$.

Example: After **10 steps** of 1-D gradient descent, we have gone from $\theta^{(0)}$ to $\theta^{(10)}$.

So, we move the **first** time using $J'(\theta^{(0)})$.

Once we've moved in parameter space **one** time, though, our **derivative** has changed: we're in a different part of the **surface**.

So, we'll take a **second** step with a **new** derivative, $J'(\theta^{(1)})$.

We want to do this **repeatedly**. We'll take our equation

$$\theta_{new} = \theta_{old} + \Delta\theta \tag{1}$$

And combine it with our **chosen** step size.

Key Equation 2

In 1-D, Gradient Descent is implemented as follows:

At each time step t, we **improve** our hypothesis θ using the following rule:

$$\theta_{\text{new}} = \theta_{\text{old}} - \eta J'(\theta_{\text{old}})$$

Using $\theta^{(t)}$ notation:

$$\theta^{(t)} = \theta^{(t-1)} - \eta J'(\theta^{(t-1)})$$

We repeat until we reach whatever our chosen termination condition is.

We can also write it as:

$$\theta_{\text{new}} = \theta_{\text{old}} - \eta \left(\frac{dJ}{d\theta_{\text{old}}} \right)$$

We've got our gradient descent update rule in 1-D!

Termination Conditions

When do we stop? We can't let it run forever.

We have some options:

- Stop after a **fixed** T steps.
 - This has the advantage of being simple, but how do you know what the correct number of steps is?
- Stop when θ **isn't changing** much: $|\Delta \theta| < \epsilon$, for example.
 - If our θ isn't changing much, our algorithm isn't **improving** our hypothesis much. So, it makes sense to stop: we've stabilized.
- Stop when the **derivative** is small: $|J'(\theta)| < \epsilon$.
 - Mathematically equivalent to our last choice. But a different perspective: if the slope is small, our surface is relatively flat, and we're near a minimum (probably).
 - "The derivative is **small**" is weaker, but in the same spirit as "the derivative is **zero**", $J'(\theta) = 0$, from last chapter.