NOTE ON AWFS

KEISUKE HOSHINO

Notation 0.1. We employ the following notations.

- The arrow category of a category C is denoted by C^2 .
- For each class S of morphisms in C, we write \bar{S} for the corresponding full subcategory of C^2 .
- Given two morphisms f, g, we write $f \perp g$ if the lifting problem solves uniquely; i.e., the canonical function $\mathbf{C}(\operatorname{cod}(f), \operatorname{dom}(g)) \longrightarrow \mathbf{C}^2(f, g)$ is a bijection.
- We write Pmor(C) for the (large) poset of classes of morphisms in C. This is isomorphic to the (large) poset of full subcategories of C^2 .

1. ORTHOGONAL FACTORISATION SYSTEMS

Let **C** be a category.

1.1. Orthogonality for classes of morphisms.

Definition 1.1. A class S of morphisms is called *reflective* / *coreflective* / *replete* if the full subcategory \bar{S} of C^2 is reflective, coreflective, and replete respectively.

Definition 1.2. Define a monotone function

$$-\perp -: \mathbf{Pmor}(\mathbf{C})^{op} \times \mathbf{Pmor}(\mathbf{C})^{op} \longrightarrow \mathbf{2}$$

by $S \perp T := \forall s \in S$, $\forall t \in T$, $s \perp t$. One can easily check $S \perp -$ and $- \perp S$ preserve limits for any $S \in \mathbf{Pmor}(\mathbf{C})$, and hence they are representable. We write $^{\perp}(-) : \mathbf{Pmor}(\mathbf{C}) \xrightarrow{\perp} \mathbf{Pmor}(\mathbf{C})^{op} : (-)^{\perp}$ for the induced Galois connection.

Definition 1.3. An *orthogonal system* (E, M) is a pair of classes of morphisms satisfying ${}^{\perp}M = E$ and $E^{\perp} = M$.

1.2. Wide class of morphisms as subdouble category.

Definition 1.5. A *(strict) double category* \mathbb{S} is a category internal to **Cat**. In particular, \mathbb{S} consists of the following data.

$$\bar{\mathbf{H}} \, \mathbb{S} \,_{\mathsf{bs}} \times_{\mathsf{ts}} \bar{\mathbf{H}} \, \mathbb{S} \xrightarrow{-\, \mathfrak{f} \,\to\, } \bar{\mathbf{H}} \, \mathbb{S} \xrightarrow{\overset{\mathsf{bs}}{\leftarrow} \, \mathsf{id} \,\to\, } \mathbf{H} \, \mathbb{S}$$

A (strict) double functor $F: \mathbb{S} \longrightarrow \mathbb{S}'$ is a pair of functors $\mathbf{H} F: \mathbf{H} \mathbb{S} \longrightarrow \mathbf{H} \mathbb{S}'$ and $\bar{\mathbf{H}} F: \bar{\mathbf{H}} \mathbb{S} \longrightarrow \mathbf{H} \mathbb{S}'$ making the obvious diagram commute. We write **SDbl** for the category of double categories and double functors.

A horizontally full subdouble category of \mathbb{S} is a double category equipped with a double functor F towards \mathbb{S} such that both $\mathbf{H} F$ and $\bar{\mathbf{H}} F$ are full subcategory-inclusions. A horizontally full subdoble category is called wide if $\mathbf{H} F$ is an identitity and $\bar{\mathbf{H}} F$ defines a replete subcategory. We write $\mathbf{hfSub}(\mathbb{S})$ for the poset of horizontally full subdouble categories, and $\mathbf{whfSub}(\mathbb{S})$ for its subposet consisting of wide ones.

Example 1.6. Finite ordinals ([2], [1], [0]) form a category object in \mathbf{Cat}^{op} , and hence the internal hom functor $(-_2)^{(-_1)} \colon \mathbf{Cat}^{op} \times \mathbf{Cat} \longrightarrow \mathbf{Cat}$ induces a functor $\mathbb{S}q \colon \mathbf{Cat} \longrightarrow \mathbf{SDbl}$ since $\mathbf{C}^{(-)} \colon \mathbf{Cat}^{op} \longrightarrow \mathbf{Cat}$ preserves limits for each $\mathbf{C} \in \mathbf{Cat}$.

For each $C \in Cat$, vertical arrows and horizontal arrows in Sq(C) are morphisms in C, while a (unique) cell exists for a square in Sq(C) if and only if it is a commutative square in C.

Date: May 5, 2024.

Definition 1.7. A *wide subcategory* W of C is a replete subcategory of C whose inclusion $W \hookrightarrow C$ is (essentially) surjective.

Proposition 1.8 (Subcategory axiom). There is an isomorphism of posets

$$Sub(C) \cong hfSub(\mathbb{S}q(C)),$$

where **Sub**(**C**) is the poset of subcategories of **C**. Moreover, it restricts to another isomorphism

$$\mathbf{wSub}(\mathbf{C}) \cong \mathbf{whfSub}(\mathbb{Sq}(\mathbf{C})),$$

where $\mathbf{wSub}(\mathbf{C})$ is the poset of wide subcategories.

Proof. A subcategory of \mathbb{C} and a horizontally full subdouble category of $\mathbb{S}q(\mathbb{C})$ specify the same data: a class of arrows \mathbb{S} such that \mathbb{S} is closed under composition, and for each $f \in \mathbb{S}$, the identities on dom(f) and cod(f) are in \mathbb{S} . The subcategory and the subdouble category are wide simultaneously if and only if \mathbb{S} contains all isomorphisms in \mathbb{C} .

Notation 1.9. We say a class S of morphisms is wide if it is closed under composition and contains isomorphisms. We write S and S for the corresponding wide subcategory and wide horizontally full subdouble category. Note that \bar{S} coincide with $\bar{H}S$.

1.3. Functorial factorisation.

Definition 1.10. A functorial factorisation on \mathbb{C} is a factorisation of the canonical natural transformation $\operatorname{dom} \Longrightarrow \operatorname{cod} \colon \mathbb{C}^2 \longrightarrow \mathbb{C}$. In other words, a functorial factorisation $F = (E, \eta, \varepsilon)$ consists of the following data.

- A functor $E: \mathbb{C}^2 \longrightarrow \mathbb{C}$.
- Two natural transformations dom $\stackrel{\eta}{\Rightarrow} E \stackrel{\varepsilon}{\Rightarrow}$ cod whose composite is the canonical natural transformation dom \Rightarrow cod.

References

Email address: hoshinok@kurims.kyoto-u.ac.jp

RESEARCH INSTITUTE OF MATHEMATICAL SCIENCE, KYOTO UNIVERSITY