Finite Automata

Lin Chen

Email: Lin.Chen@ttu.edu

An automatic door opens in one direction

- An automatic door opens in one direction
 - -- Open to let people in
- -- Do not knock people on the opening side

How to design a machine fulfilling the function?

- An automatic door opens in one direction
 - -- Check front people: Yes/No
 - -- Check rear people: Yes/No
 - -- Check current status: Open/Close
 - -- Determine the next status:

Open/Close

- An automatic door opens in one direction
 - -- Check front people: Yes/No
 - -- Check rear people: Yes/No
 - -- Check current status: Open/Close
 - -- Determine the next status:

Open/Close

input signal

		NEITHER	FRONT	REAR	BOTH
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

An automatic door opens in one direction

input signal

		NEITHER	FRONT	REAR	ВОТН
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

An automatic door opens in one direction

State Diagram

• An automatic door opens in one direction

Two states: Open/Closed

• An automatic door opens in one direction

Start states: Closed

• An automatic door opens in one direction

Transitions: arrows that bring the machine from one state to another

• An automatic door opens in one direction

Accept state/final state: state with a double cycle

We want to restrict our attention to a simplified scenario where machines are used to "compute" Yes/No

• An automatic door opens in one direction

Accept state/final state: state with a double cycle

We want to restrict our attention to a simplified scenario where machines are used to "compute" Yes/No

Example

Example

Example

Example

Example

Example

Example

What happens when we input 1101?

Machines ends at an accept state, i.e., machine output: Yes

Yes

Example

What happens when we input 1101?

Machines ends at an accept state, i.e., machine output: Yes

What happens when we input 101000?

Yes

Deterministic Finite Automata -- Formal

- A quintuple $M = (Q, \Sigma, \delta, q_0, F)$ where
 - Q is a finite set of states
 - Σ is an alphabet
 - $-q_0 \in Q$ is the initial state
 - $F \subseteq Q$ is the set of final/accept states (can be multiple)
 - δ , the transition function, a function from $Q \times \Sigma$ to Q

Deterministic Finite Automata

Example

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

Deterministic Finite Automata

- A deterministic finite automaton M can be viewed as a classifier that filters out all the strings it accepts
- -- The set *A* of all the strings *M* accepts is the language of machine *M*
 - -- Denote as L(M) = A
 - -- M recognizes/accepts A

Deterministic Finite Automata

- A deterministic finite automaton M can be viewed as a classifier that filters out all the strings it accepts
- -- The set A of all the strings M accepts is the language of machine M
 - -- Denote as L(M) = A
 - -- M recognizes/accepts A

What if *M* rejects all inputs? *M* accepts Ø

DFA Examples

•
$$Q = \{q_0, q_1, q_2, q_3\}$$

•
$$\Sigma = \{a, b\}$$

a, b

 \boldsymbol{a}

 \boldsymbol{a}

- start state = q_0
- $F = \{q_2\}$

- Deterministic finite automata are
- Deterministic: given the current state and next input symbol, it moves deterministically to a next state.

- Deterministic finite automata are
- Deterministic: given the current state and next input symbol, it moves deterministically to a next state.
 - Finite: consists of finite number of states
 - Automata: machine

- We have learned two ways of describing a DFA
 - A quintuple $M = (Q, \Sigma, \delta, q_0, F)$
 - A state diagram
- How do we characterize the computation of a DFA?

- We have learned two ways of describing a DFA
 - A quintuple $M = (Q, \Sigma, \delta, q_0, F)$
 - A state diagram
- How do we characterize the computation of a DFA?
 - the computation of a DFA has to be defined on a specific input
 - use a sequence of configurations to represent the computation

- Configuration for a DFA $M = (K, \Sigma, \delta, s, F)$
 - any element of $K \times \Sigma^*$
 - the state the DFA currently in
 - the remaining part of the string to be processed

- Configuration for a DFA $M = (K, \Sigma, \delta, s, F)$
 - any element of $K \times \Sigma^*$
 - the state the DFA currently in
 - the remaining part of the string to be processed

Input string: aabba

$$(q_0, aabba) \vdash_M (q_0, abba)$$
 $\vdash_M (q_0, bba)$
 $\vdash_M (q_1, ba)$
 $\vdash_M (q_0, a)$
 $\vdash_M (q_0, e)$

- We use a binary relation \vdash_M to denote that DFA pass from one state to another state as a result of a single move
- \vdash_M is a function from $K \times \Sigma^*$ to $K \times \Sigma^+$ (L⁺ = LL^*)

Input string: aabba

$$(q_0, aabba) \vdash_M (q_0, abba)$$
 $\vdash_M (q_0, bba)$
 $\vdash_M (q_1, ba)$
 $\vdash_M (q_0, a)$
 $\vdash_M (q_0, e)$

Regular language

- M accepts a string w if $(q_0, w) \vdash_M^* (q, e)$ for some $q \in F$
- M recognize language A if $A = \{w: M \text{ accepts } w\}$
- A language is regular if some finite automaton recognizes it.

DFA -> regular language

• All binary strings containing an odd number of 1s

DFA -> regular language

- Example Deterministic Finite Automaton
 - All strings over $\{a, b\}$ that have length 3.

DFA -> regular language

• All strings over $\{0,1\}$ that contain the substring 101

DFA -> regular language

• All strings over $\{a,b\}$ that does not contain three consecutive b' s

DFA Examples

• All strings over $\{a,b\}$ that contains three consecutive b's

Regular language

- So far we have learned: given an automaton, determine the language it accepts
- Given a regular language, can we design an automaton recognizing it?

• All strings consisting of $\{0,1\}$ and have an odd number of 1s.

- All strings consisting of $\{0,1\}$ and have an odd number of 1s.
 - -- how would you design an algorithm achieving this?
 - 1. read every symbol and check if it is 1;
 - 2. set up a counter, counter -> counter +1 if the symbol is 1;
 - 3. check odd/even of the counter

- All strings consisting of $\{0,1\}$ and have an odd number of 1s.
 - -- how would you design an algorithm achieving this?
 - 1. read every symbol and check if it is 1;
 - 2. set up a counter, counter -> counter +1 if the symbol is 1;
 - 3. check odd/even of the counter

Can we do better without memory?

- All strings consisting of $\{0,1\}$ and have an odd number of 1s.
 - -- how would you design an algorithm achieving this?
 - 1. read every symbol and check if it is 1;
 - 2. set up a counter, counter -> counter +1 if the symbol is 1;
 - 3. check odd/even of the counter

Identify states

- All strings consisting of $\{0,1\}$ and have an odd number of 1s.
 - -- how would you design an algorithm achieving this?
 - 1. read every symbol and check if it is 1;
 - 2. set up a counter, counter -> counter +1 if the symbol is 1;
 - 3. check odd/even of the counter

Identify transitions

- All strings consisting of $\{0,1\}$ and have an odd number of 1s.
 - -- how would you design an algorithm achieving this?
 - 1. read every symbol and check if it is 1;
 - 2. set up a counter, counter -> counter +1 if the symbol is 1;
 - 3. check odd/even of the counter

Identify start and final states

• All strings consisting of $\{0,1\}$ and have 001 as a substring.

Identify states: what are the states?

• All strings consisting of $\{0,1\}$ and have 001 as a substring.

Identify states: what are the states?

- 1. haven't just seen any symbols of the pattern,
- 2. have just seen a 0,
- 3. have just seen 00, or
- **4.** have seen the entire pattern 001.

• All strings consisting of $\{0,1\}$ and have 001 as a substring.

Start and final states?

• All strings consisting of $\{0,1\}$ and have 001 as a substring.

Transitions

• How to design DFA for very complicated regular language? Is there a systematic way (or "Algorithm" or designing DFA)?

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

```
• Union: A \cup B = \{x | x \in A \text{ or } x \in B\}.
• Concatenation: A \circ B = \{xy | x \in A \text{ and } y \in B\}.
• Star: A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.
   A = \{\text{good}, \text{bad}\}, B = \{\text{boy}, \text{girl}\}
A \cup B = \{ \text{good}, \text{bad}, \text{boy}, \text{girl} \},
A \circ B = \{ \text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl} \}, \text{ and } \}
A^* = \{ \varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad},
```

goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, . . . }.

- How to design DFA for very complicated regular language? Is there a systematic way (or "Algorithm" or designing DFA)?
- Regular language is closed under union, concatenation and star, but how can we prove it? We will need a more flexible version of automata...