Assignment 8

Harsh Goyal (CS21BTECH11020)

May 31, 2022

1/9

Outline

Problem Statement

Solution

Problem Statement

Papoulis Ch-6 Ex 6.34

x and **y** are independent and identically distributed normal random variables with zero mean and variance σ^2 . Define

$$\mathbf{u} = \frac{\mathbf{x}^2 - \mathbf{y}^2}{\sqrt{\mathbf{x}^2 + \mathbf{y}^2}} \quad \mathbf{v} = \frac{2\mathbf{x}\mathbf{y}}{\sqrt{\mathbf{x}^2 + \mathbf{y}^2}}$$
 (1)

- (a) Find the joint p.d.f $f_{uv}(u, v)$ of the random variables **u** and **v**.
- (b) Show that ${\bf u}$ and ${\bf v}$ are independent normal random variables.
- (c) Show that $\frac{[(x-y)^2-2y^2]}{\sqrt{x^2+y^2}}$ is also a normal random variables.

Thus nonlinear function of normal random variables can lead to normal random variables!(This result is due to Shepp.)

Joint Density

Let g(x,y) and h(x,y) be two continuous and differentiable function such that

$$g(x,y)y = z \quad h(x,y) = w \tag{2}$$

For a given point (z,w), (2) can have many solutions. Let us say $(x_1,y_1),(x_2,y_2),(x_3,y_3),\ldots,(x_n,y_n)$ represent these multiple solutions such that

$$g(x_i, y_i) = z \quad h(x_i, y_i) = w \tag{3}$$

Finally,

$$f_{zw}(z, w) = \sum_{i} \frac{1}{|J(x_i, y_i)|} f_{xy}(x_i, y_i)$$
 (4)

where the determinant $J(x_i, y_i)$ represents the Jacobian of orignal transformation given by:

$$J(x_i, y_i) = \begin{vmatrix} \frac{\delta g}{\delta x} & \frac{\delta g}{\delta y} \\ \frac{\delta h}{\delta x} & \frac{\delta h}{\delta y} \end{vmatrix}_{x = x_i, y = y_i}$$
(5)

Joint Density Function

If x and y are zero mean independent random variables, then

$$f_{x,y}(x,y) = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$
 (6)

Let $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(y/x)$ where θ vary in the interval $(-\pi, \pi)$.

$$f_{r,\theta}(r,\theta) = rf_{xy}(x,y) = \frac{r}{2\pi\sigma^2}e^{-r^2/2\sigma^2} = f_r(r)f_{\theta}(\theta) \quad 0 < r < \infty \quad |\theta| < \pi$$
(7)

Note: r and θ are independent random variables

(a) Let,

$$r = \sqrt{x^2 + y^2}$$
 $\theta = \tan^{-1}(y/x)$ (8)

From (7), we have r and θ as independent random variables. In term of r and θ we get, $x = r \cos \theta$ and $y = r \sin \theta$ and hence we obtain

$$u = \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} = r \cos 2\theta = g(r, \theta)$$
 (9)

$$v = \frac{2xy}{\sqrt{x^2 - y^2}} = r\sin 2\theta = h(r, \theta)$$
 (10)

This gives Jacobian $J(r, \theta)$ (independent of θ) as

$$J(r,\theta) = \begin{vmatrix} \frac{\delta g}{\delta r} & \frac{\delta g}{\delta \theta} \\ \frac{\delta h}{\delta r} & \frac{\delta h}{\delta \theta} \end{vmatrix} = \begin{vmatrix} \cos 2\theta & -2r\sin 2\theta \\ \sin 2\theta & 2r\cos 2\theta \end{vmatrix} = 2r = 2\sqrt{u^2 + v^2}$$
 (11)

Since x and y are independent and identically distributed normal random variables. Therefor There will be two soution (x_1,y_1) and (x_2,y_2) or (r_1,θ_1) and (r_2,θ_2) of the equation $(u,v)=(g(r,\theta),h(r,\theta))$ for some u and v

And, Since x and y are i.i.d random variables, there p.d.f are same at these two solution, Therefore

$$r_1 = r_2 \quad 2\theta_2 = \pi + 2\theta_1 \implies f_{r\theta}(r_1, \theta_1) = f_{r\theta}(r_2, \theta_2)$$
 (12)

Now, By (4) and (7), we get

$$f_{uv}(u,v) = \frac{f_{r\theta}(r_1,\theta_1)}{J(r_1,\theta_1)} + \frac{f_{r\theta}(r_2,\theta_2)}{J(r_2,\theta_2)}f = \frac{2}{J(r,\theta)}f_{r\theta}(r_1,\theta_1)$$
(13)

$$= \frac{2}{2r} \frac{r}{2\pi\sigma^2} e^{-r^2/2\sigma^2} = \frac{1}{2\pi\sigma^2} e^{-(u^2+v^2)/2\sigma^2}$$
(14)

Soltuion

(b) From equation (14), we obtain

$$f_{uv}(u,v) = \frac{1}{2\pi\sigma^2} e^{-(u^2+v^2)/2\sigma^2}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-u^2/2\sigma^2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-v^2/2\sigma^2}$$
(15)

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-u^2/2\sigma^2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-v^2/2\sigma^2}$$
 (16)

$$=f_{u}(u)f_{v}(v) \tag{17}$$

Thus, u and v are independent normal random variables.

(c) Let z be a random varaible such that

$$z = \frac{[(x-y)^2 - 2y^2]}{\sqrt{x^2 + y^2}} = \frac{[(x^2 - y^2) - 2yx]}{\sqrt{x^2 + y^2}}$$
(18)

$$= u - v \sim N(0, 2\sigma^2) \tag{19}$$

Thus, z is a normal random variable.

