§3 Shortest Path Algorithms

Given a digraph G = (V, E), and a cost function c(e) for $e \in E(G)$. The length of a path P from source to destination is $\sum_{e_i \in P} c(e_i)$ (also called weighted path length).

1. Single-Source Shortest-Path Problem

Given as input a weighted graph, G = (V, E), and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G.

Note: If there is no negative-cost cycle, the shortest path from s to s is defined to be zero.

Nogativo_cost

Unweighted Shortest Paths

Sketch of the idea

***** Implementation

```
Table[i].Dist ::= distance from s to v_i /* initialized to be \infty except for s */
Table[i].Known ::= 1 if v_i is checked; or 0 if not
Table[i].Path ::= for tracking the path /* initialized to be 0 */
```

```
void Unweighted( Table T )
  int CurrDist;
  Vertex V, W;
  for ( CurrDist = 0; CurrDist < NumVertex; CurrDist ++ ) {</pre>
    for ( each vertex V )
        if ( !T[ V ].Known && T[ V ].Dist == CurrDist ) {
           T[ V ].Known = true,
           for ( each W adjacent to v
                                                    If V is unknown
              if ( T[ W ].Dist == Infinity ) {
                                                      yet has Dist <
                  T[W].Dist = CurrDist + 1;
                                                    Infinity, then Dist
                 T[W].Path = V;
                                                    is either CurrDist
             } /* end-if Dist == Infinity */
                                                     or CurrDist+1.
        } /* end-if !Known && Dist == CurrDist
  } /* end-for CurrDist */
                                      T = O(|V|^2)
```

The worst case: $v_9 \rightarrow v_8 \rightarrow v_7 \rightarrow v_6 \rightarrow v_5 \rightarrow v_4 \rightarrow v_3 \rightarrow v_2 \rightarrow v_1$

***** Improvement

```
void Unweighted( Table T )
{ /* T is initialized with the source vertex S given */
  Queue Q;
  Vertex V, W;
  Q = CreateQueue (NumVertex ); MakeEmpty( Q );
  Enqueue(S, Q); /* Enqueue the source vertex */
  while (!IsEmpty(Q)) {
    V = Dequeue(Q);
    T[ V ].Known = true; /* not really necessary */
    for ( each W adjacent to V )
        if ( T[ W ].Dist == Infinity ) {
          T[W].Dist = T[V].Dist + 1;
          T[W].Path = V;
          Enqueue(W, Q);
        } /* end-if Dist == Infinity */
  } /* end-while */
  DisposeQueue(Q); /* free memory */
```


$$T = O(|V| + |E|)$$

> Dijkstra's Algorithm (for weighted shortest paths)

Let $S = \{ s \text{ and } v_i \text{'s whose shortest paths have been found } \}$ For any $u \notin S$, define distance $[u] = \text{minimal length of path } \{ s \rightarrow (v_i \in S) \rightarrow u \}$. If the paths are generated in non-decreasing order, then

- ① the shortest path must go through $ONLY v_i \in S$;

distance w.] If It is not unique, then we may select any of them); /* Greedy Method */ there must be a vertex w on this path

if distance $[u_1]_f$ distance $[u_2]_f$ may change. If so, a shorter path from s to u_2 must go through u_1 and distance $[u_2]_f$ distance $[u_1]_f$ length $(\langle u_1, u_2 \rangle)_f$.

§3 Shortest Path Algorithms

Please read Figure 9.31 on p.304 for printing the path.

A Implementation 1

V = smallest unknown distance vertex;

/* simply scan the table - O(|V|) */

$$T = O(|V|^2 + |E|)$$

Good if the graph is dense

Implementation 2

V = smallest unknown distance vertex;

/* keep distances in a priority queue and call DeleteMin – O(log|V|) */

Decrease(T[W].Dist to T[V].Dist + Cvw);

/* Method 1: DecreaseKey - O(log|V|) */

 $T = O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$

Good if the graph is sparse

/* Method 2: insert W with updated Dist into the priority queue */

/* Must keep doing DeleteMin until an unknown vertex emerges */

 $T = O(|E| \log |V|)$ but requires |E| DeleteMin with |E| space

Other improvements: Pairing heap (Ch.12) and Fibonacci heap (Ch. 11)

Graphs with Negative Edge Costs

```
void WeightedNegative( Table T )
                                               T = O(|V| \times |E|)
{ /* T is initialized by Figure 9.30 on p.303 */
  Queue Q;
  Vertex V, W;
  Q = CreateQueue (NumVertex ); MakeEmpty( Q );
  Enqueue(S, Q); /* Enqueue the source vertex */
  while (!IsEmpty(Q)) { /* each vertex can dequeue at most |V|
    V = Dequeue(Q); times */
    for ( each W adjacent to V )
        if ( T[ V ].Dist + Cvw < T[ W ].Dist ) { /* no longer once
          T[W].Dist = T[V].Dist + Cvw; per edge */
          T[W].Path = V;
          if (W is not already in Q)
             Enqueue(W, Q);
        } /* end-if update */
  } /* end-while */
  DisposeQueue(Q); /* free memory */
  /* negative-cost cycle will cause indefinite loop */
```

> Acyclic Graphs

If the graph is acyclic, vertices may be selected in topological order since when a vertex is selected, its distance can no longer be lowered without any incoming edges from unknown nodes.

T = O(|E| + |V|) and no priority queue is needed.

Application: AOE (Activity On Edge) Networks —— scheduling a project $a_i := activity$ Signals the completion of a_i Index of vertex \angle EC[j] \ LC[j] ::= the earliest \ latest completion time for node v_i **EC** Time **Lasting Time ☆ CPM** (Critical Path Method) **Slack Time LC Time**

[Example] AOE network of a hypothetical project

- Calculation of EC: Start from v0, for any $a_i = \langle v, w \rangle$, we have $EC[w] = \max_{(v,w) \in E} \{ EC[v] + C_{v,w} \}$
- \gt Slack Time of $\langle v,w \rangle = LC[w] EC[v] C_{v,w}$
- Critical Path ::= path consisting entirely of zero-slack edges.

2. All-Pairs Shortest Path Problem

For all pairs of v_i and v_j ($i \neq j$), find the shortest path between.

- Method 1 Use single-source algorithm for |V| times. $T = O(|V|^3)$ – works fast on sparse graph.
- Method 2 $O(|V|^3)$ algorithm given in Ch.10, works faster on dense graphs.

Laboratory Project 2 Public Bike Management

Due: Monday, November 25th, 2019 at 10:00pm

Don't forget to sign you names and duties at the end of your report.