Álge	ebra Linear e Geon	netria Analítica	
EGI+EI	C		
Exame d	a 2ª chamada da Época Normal — ano le	ectivo $2005/2006 - 2$ de Fevereiro de	2006
Departar	nento de Matemática para a Ciência e Te	ecnologia – Guimarães – Universidade	e do Minho
Curso:	Nome:	Número:	Classificação:
	cem a duração de 120 minutos, é sem cons ção da prova os telemóveis devem estar de		
	prova é constituído por três grupos e te na escala de 0 a 200.	rmina com a palavra "Fim". No iníci	o de cada grupo indicam-se as
proposiçõ	 I — Indique, na folha do enunciado d ões são verdadeiras ou falsas usando para resposta em branco: 0; resposta errada: 	tal os caracteres "V" ou "F", respecti	vamente. Cotações — resposta
I.1	Seja $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$ tal que $f(p,q,r) = p$	+q-r. Então, a matriz da aplicação	p linear $f \in A_f = [1 \ 1 \ -1].$
I.2	Seja $S = \{(1,0), (2,1), (0,0), (2,0)\}$. Ent	tão, $L(S) = \mathbb{R}^4$.	
I.3	Seja A uma matriz invertível. Então, de	$\operatorname{tt}(A) \neq 0.$	
I.4	$\{(x_1, x_2, x_3) \in \mathbb{R}^3 x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$	é um subespaço de \mathbb{R}^3 .	
I.5	$\langle (1, -2, 0), (2, 1, 0) \rangle = \langle (3, -1, 0), (-1, 1, 0) \rangle$	$0)\rangle$.	
I.6	Seja a aplicação $f: \mathbb{R}^2 \longrightarrow \mathbb{R}, f(x,y) =$	$x + y + 1$. Então, $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R})$.	
I.7	Seja $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ tal que $f(a, b) = (a, b)$	$(a+b)$. Então, $c_f=2$.	
I.8	Sejam V um espaço vectorial com dimense $X = V$.	são finita e X um subespaço de V . E	Então, $\dim(X) = \dim(V)$ se e só
	II — Complete, na folha do enunciado modo a obter proposições verdadeiras. O		
		,	

II.1 $\acute{\rm e}$ uma matriz real singular de ordem 2.

é uma base do espaço vectorial real $\left\{ \left[\begin{smallmatrix} x & y \\ 0 & x+y \end{smallmatrix} \right] | x,y \in \mathbb{R} \right\}$. II.2

- II.3 À quádrica $x^2 + y^2 + 2z^2 = 1$ chama-se
- II.4 Considere o parabolóide circular cuja representação gráfica é

são equações possíveis para o descrever.

Grupo III — Responda, nas folhas que lhe foram distribuídas e por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efectuar, bem como as respectivas justificações. Cotações: 15+20+15+(5+5)+20+20+20+20.

- III.1 Sejam $n \in \mathbb{N} \setminus \{1\}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $A^2 = nA$. Mostre que $(I_n A)^{-1} = I_n \frac{1}{n-1}A$.
- III.2 Demonstre o seguinte resultado: "Seja A uma matriz invertível. Então, a sua inversa é única."
- III.3 Considere o conjunto $V = \{(x, x^2) | x \in \mathbb{R}\}$ munido das operações $(x, x^2) \oplus (y, y^2) = (x + y, (x + y)^2)$ e $\alpha \odot (x, x^2) = (\alpha x, \alpha^2 x^2)$, $\alpha \in \mathbb{R}$. Verifique se é válida a afirmação: $\forall \alpha, \beta \in \mathbb{R}, \forall \underline{x} \in V : (\alpha + \beta) \odot \underline{x} = \alpha \odot \underline{x} \oplus \beta \odot \underline{x}$.
- III.4 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 3 \\ -5 & 7 \end{bmatrix}$ e o vector dos termos independentes é $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
 - (a) Mostre, sem o resolver, que o sistema de equações lineares dado é possível e determinado.
 - (b) Considere o seguinte teorema, conhecido por Regra de Cramer: "Seja Ax = b um sistema de n equações lineares a n incógnitas. Se o sistema é possível e determinado então $x_i = \frac{\Delta_i}{|A|}, i = 1, \ldots, n$, em que Δ_i é o determinante da matriz que se obtém a partir da matriz A, na qual se substitui a coluna i pelo vector b." Resolva o sistema de equações lineares dado através da Regra de Cramer.
- III.5 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ -1 & -2 & 3 & 3 \end{bmatrix}$] e cujo vector dos termos independentes é $b = \begin{bmatrix} 8 & 1 \\ 10 & 1 \end{bmatrix}$]. Resolva-o através do método de Gauss e do método de Gauss-Jordan.
- III.7 Determine o espectro da matriz $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$, bem como o conjunto dos vectores próprios associados ao valor próprio de menor módulo.
- III.8 Considere, em \mathbb{R}^3 , o plano α definido pelos pontos $A=(1,0,0),\,B=(1,1,0)$ e C=(1,1,1). Determine a distância do plano α à origem.

Fim.