Saudi Arabia 2022 - Math Camp

Day 3 - Level 4+

Geometry - Miscellaneous problems

Instructor: Regis Barbosa

0. (IMO/2015) Let ABC be an acute triangle with AB > AC. Let Γ be its circumcircule, H its orthocenter and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on Γ such that $\angle HQA = 90^\circ$, and let K be the point on Γ such that $\angle HKQ = 90^\circ$. Assume that the points A, B, C, K and Q are all different, and lie on Γ in this order.

Prove that the circumcircles of triangles KQH and FKM are tangent to each other.

1. (Tuymaada/2012) Point P is taken in the interior of the triangle ABC, so that

$$\angle PAB = \angle PCB = \frac{1}{4}(\angle A + \angle C)$$

Let L be the foot of the angle bisector of $\angle B$. The line PL meets the circumcircle of $\triangle APC$ at point Q. Prove that QB is the angle bisector of $\angle AQC$.

- 2. (IMO Shortlist/2005) Let ABCD be a parallelogram. A variable line g through the vertex A intersects the rays BC and DC at the points X and Y, respectively. Let K and L be the A-excenters of the triangles ABX and ADY. Show that the angle $\angle KCL$ is independent of the line g.
- 3. (Russia/2013) Let ω be the incircle of a triangle ABC, and let I be its incenter. Let Γ be the circumcircle of the triangle AIB. Denote by X and Y the two points of intersection of ω and Γ . Denote by Z the point of intersection of the common tangents to ω and Γ . Prove that the circumcircles of the triangles ABC and XYZ are tangent to each other.
- 4. (RMM/2012) Let ABC be a triangle and let I and O denote its incenter and circumcenter respectively. Let ω_A be the circle through B and C which is tangent to the incircle of the triangle ABC; the circles ω_B and ω_C are defined similarly. The circles ω_B and ω_C meet at a point A_0 distinct from A; the points B_0 and C_0 are defined similarly. Prove that the lines AA_0 , BB_0 and CC_0 are concurrent at a point on the line IO.