

Revision Notes

Class 9 Mathematics

Chapter 8 - Quadrilaterals

Introduction:

- We're all familiar with planar figures with sides defined by straight line segments, which are known as **Polygons**.
- The word polygon comes from the Greek language.
- It refers to a figure with a lot of angles, meaning a lot of sides.
- Quadrilaterals are squares, rectangles, and other four-sided geometric shapes produced by the union of four line segments.
- A quadrilateral is a polygon with four sides.

Examples of Quadrilaterals:

(All images are drawn by using the paint)

Parallelograms:

- A **parallelogram** is a quadrilateral with parallel and equal opposite sides.
- Parallelograms include a rectangle, a rhombus, and a square.
- A trapezium is a quadrilateral with one pair of opposite sides that are parallel to one other. As a result, it isn't a parallelogram.
- The opposite sides of each pair are equal and parallel.

• In the diagram,

Opposite sides:

AB || DC and AD || BC

AB = DC and AD = BC

• Opposite angles are equal.

From figure,

A = C and B = D

• Diagonals of a parallelogram bisect each other.

In the diagram,

OD = OB and OA = OC

• Each diagonal divides the parallelogram into two congruent triangles.

In the diagram, △ABC ≅△CDA

△ABD≅△CDB

Opposite Sides of a quadrilateral:

- Two sides of a quadrilateral, which have **no common point**, are called **opposite sides**.
- In the diagram, AB and DC is one pair of opposite sides.
- DC and BC is the other pair of opposite sides.

Consecutive sides of a quadrilateral:

- Two sides of a quadrilateral, which have a common end point, are called consecutive sides.
- In the diagram,

AB and BC is one pair of consecutive sides.

BC, CD; CD, DA and DA, AB are the other three pairs of consecutive sides.

Opposite angles of a quadrilateral:

- Two angles, which do not include a side in their intersection, are called the **opposite angles** of a quadrilateral.
- In the diagram,

A and C is one pair of opposite angles, B and D are another pair of opposite angles.

Consecutive angles of a quadrilateral:

- Two angles of a quadrilateral, which include a side in their intersection, are called **consecutive angles**.
- In the diagram,

A and B is one pair of consecutive angles, B,C;CD and DA are other three pairs of consecutive angles.

Theorem 1:

Statement:

- o The diagonals of a parallelogram bisect each other.
- o If two sides of a triangle are unequal, the longer side has the greater angle

opposite to it.

o ABCD is a parallelogram in which diagonals AC and BD intersect each other at O.

To prove:

The diagonals AC and BD bisect each other that is,

AO = OC and

BO = DO.

Proof:

AB | CD (By definition of parallelogram)

AC is a transversal.

 \therefore OAB = OCB (i) (Alternate angles are equal in a parallelogram)

Also,

AB = DC (Opposite sides are equal in a parallelogram)

Now in $\triangle AOB$ and $\triangle COD$,

AB = DC (Opposite sides of parallelogram are equal)

OAB = OCD (Proved by (i))

AOB = COD (Vertically opposite angles are equal)

Therefore,

 $\triangle AOB \cong \triangle COD (AAS Congruency condition)$

Therefore,

AO = OC and BO = OD (corresponding parts of congruent triangles are congruent) that is the diagonals of a parallelogram bisect each other.

Sufficient Conditions for a Quadrilateral to be a Parallelogram:

We can state the defining property of a parallelogram as follows:

"If a quadrilateral is a parallelogram, then its opposite sides are equal".

Converse:

"If both pairs of opposite sides of a quadrilateral are equal, then the

quadrilateral is a parallelogram".

- For a quadrilateral to be a parallelogram, the converse assertion given above is a necessary condition.
- Similarly, for a quadrilateral to be a parallelogram, we can establish the following two requirements;
 - 1. "If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram".
 - 2. "If either pair of opposite sides of a quadrilateral are equal and parallel, the quadrilateral is a parallelogram".

Theorem 2:

Statement:

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

Given:

ABCD is a quadrilateral in which diagonals AC and BD intersect at O such that AO = OC and BO = OD.

To prove:

ABCD is a parallelogram.

Proof:

In triangles AOB and COD,

AO = CO (Given)

BO = OD (Given)

AOB = COD (Vertically opposite angles are equal)

Therefore,

 $\triangle AOB \cong \triangle COD$ (SAS Congruency condition)

Therefore,

OAB = OCD (cpct)

Since these are alternate angles made by the transversal AC intersecting AB and CD

Therefore,

AB||CD

Similarly,

AD||BC

Hence, ABCDis a parallelogram.

Theorem 3:

Statement:

A quadrilateral is a parallelogram if one pair of opposite sides are equal and parallel.

Given:

ABCD is a quadrilateral in which AB | CD and AB = CD.

To prove:

ABCD is a parallelogram.

Construction:

Join AC.

Proof:

In triangles ABC and ADC,

AB = CD (Given)

BAC = ACD (Alternate angles are equal)

AC = AC (Common side)

Therefore,

 $\triangle ABC \cong \triangle CDA$ (SAS Congruency condition)

BCA = DAC (Corresponding parts of corresponding triangles)

Since these are alternate angles,

AB||CD

Thus, in the quadrilateral ABCD, AB||CD and AD||BC

Therefore, ABCD is a parallelogram.

Special Parallelograms:

- The set of parallelograms includes rectangles, rhombuses, and squares.
- The following is a possible definitions for each of these:

A is a parallelogram that is both equilateral and equiangular. As a result, a square can be both a rectangle and a rhombus.

• The relationships between the special parallelograms can be visualized in the diagram below:

• Because every rectangle and rhombus must be a parallelogram, they're depicted as subsets of a parallelogram, and because a square is both a rectangle and a rhombus, it's represented by the overlapping shaded part.

Rectangle:

A rectangle is a parallelogram with one of its angles as a right angle.

In the above figure,

Let, $A = 90^{\circ}$

Since,

 $AD \parallel BC$

 $A + B = 180^{\circ}$

(Sum of interior angles on the same side of transversal AB) Therefore,

$$B = 90^{\circ}$$

Here,

 $AB \parallel CD$ and $A = 90^{\circ}$ (Given)

Therefore,

$$A + D = 90^{\circ}$$

$$\therefore D = 90^{\circ}$$

$$\therefore C = 90^{\circ}$$

Corollary: Each of the four angles of a rectangle is a right angle.

Rhombus:

A rhombus is a parallelogram with a pair of its consecutive sides equal.

ABCD is a rhombus in which AB = BC.

Since a rhombus is a parallelogram,

$$AB = DC$$
 and $BC = AD$

Thus,
$$AB = BC = CD = AD$$

Corollary: All the four sides of a rhombus are equal (congruent).

Square:

A square is a rectangle with a pair of its consecutive sides equal.

Since square is a rectangle, each angle of a rectangle is a right angle and AB = DC, BC = CD.

Thus,

$$AB = BC = CD = AD$$

Each of the four angles of a square is a right angle and each of the four sides is of the same length.

Theorem 4:

Statement:

The diagonals of a rectangle are equal in length.

Given:

ABCD is a rectangle.

AC and BDare diagonals.

To prove:

AC = BD

Proof:

Let, $A = 90^{\circ}$ (By definition of rectangle)

 $A + B = 180^{\circ}$ (Consecutive interior angle)

$$A = B = 90^{\circ}$$

Now in triangles, ABD and ABC,

AB = AB (Common side)

 $A = B = 90^{\circ}$ (Each angle is a right angle)

AD = BC (Opposite sides of parallelogram)

Therefore,

 $\triangle ABD \cong \triangle BAC$

Therefore,

BD = AC (Corresponding parts of corresponding triangles)

Hence the theorem is proved.

Converse of Theorem 4:

Statement:

If two diagonals of a parallelogram are equal, it is a rectangle.

ABCD is a parallelogram in which AC = BD.

To prove:

Parallelogram ABCD is a rectangle.

Proof:

In triangles ABC and DBC,

AB = DC (Opposite sides of parallelogram)

BC = BC (Common side)

AC = BD (Given)

Therefore,

 $\triangle ABC \cong \triangle DCB$ (SSS congruency condition)

Therefore,

ABC = DCB (Corresponding parts of corresponding triangles)

But these angles are consecutive interior angles on the same side of transversal BC and AB || DC.

Therefore,

$$ABC + DCB = 180^{\circ}$$

But,

$$ABC = DCB$$

Therefore,

$$ABC = DCB = 90^{\circ}$$

Therefore, by definition of rectangle, parallelogram ABCD is a rectangle.

Hence the theorem is proved.

Theorem 5:

Statement:

The diagonals of a rhombus are perpendicular to each other.

ABCD is a rhombus.

Diagonal AC and BD intersect at O.

To prove:

AC and BD bisect each other at right angles.

Proof:

A rhombus is a parallelogram such that

$$AB = DC = AD = BC$$
(i)

Also the diagonals of a parallelogram bisect each other.

Hence,

$$BO = DO$$
 and $AO = OC$ (ii)

Now, compare triangles AOB and AOD,

AB = AD (From (i) above)

BO = DO (From (ii) above)

AO = AO (Common side)

Therefore,

 $\triangle AOB \cong \triangle AOD$ (SSS congruency condition)

Therefore,

AOB = AOD (Corresponding parts of corresponding parts)

BD is a straight line segment.

Therefore,

 $AOB + AOD = 180^{\circ}$

But,

AOB = AOD (Proved)

Therefore,

$$AOB = AOD = \frac{180^{\circ}}{2}$$

 $AOB = AOD = 90^{\circ}$

That is, the diagonals bisect at right angles.

Hence the theorem is proved.

Converse of Theorem 5:

Statement:

If the diagonals of a parallelogram are perpendicular then it is a rhombus.

Given:

ABCD is a parallelogram in which AC and BD are perpendicular to each other.

To prove:

ABCD is a rhombus.

Proof:

Let AC and BD intersect at right angles at O.

$$AOB = 90^{\circ}$$

In triangles AOD and COD,

AO = OC (Diagonals bisect each other)

OD = OD (Common side)

$$AOD = COD = 90^{\circ}$$
 (Given)

Therefore,

 $\triangle AOD \cong \triangle COD$ (SAS congruency condition)

$$AD = DC$$

That is, the adjacent sides are equal.

Therefore, by definition, ABCD is a rhombus.

Hence the theorem is proved.

Theorem 6:

Statement:

The diagonals of a square are equal and perpendicular to each other.

Given:

ABCD is a square.

AC and BD are diagonals intersecting at O.

To prove:

AC = BD and $AC \perp BD$

Proof:

AB = AD (Sides of a square are equal)

AB | DC (Opposite sides of a square are parallel)

Therefore,

ABCD is parallelogram with consecutive sides equal.

Hence, ABCD is a rhombus. (By definition)

Since, the diagonals of a rhombus are perpendicular to each other,

AC \(\text{BD} \)

Therefore,

ABCD is a parallelogram.

AB = AD and $A = 90^{\circ}$

Therefore, ABCD is a rectangle with a pair of its consecutive sides equal.

Since the diagonals of a rectangle are equal, AC = BD.

Therefore,

Diagonal AC = Diagonal BD and AC \perp BD

Hence, the theorem is proved.

Converse of Theorem 6:

Statement:

If in a parallelogram, the diagonals are equal and perpendicular, then it is a square.

ABCD is a parallelogram.

AC = BD and $AC \angle BD$

To prove:

ABCD is a square.

Proof:

Since the diagonals AC and BD are equal,

ABCD is a rectangle - - - - (i)

(Diagonal property of rectangle)

Since the diagonals are perpendicular to each other.

ABCD is a rhombus.

Therefore,

$$AB = AD - - - - (ii)$$

ABCD is a rectangle. (From (i))

With consecutive sides equal. (From (ii))

Therefore,

ABCD is a square. (By definition of a square)

Hence, the theorem is proved.

The Mid-point Theorem:

Parallel lines and Triangles

So far, we've proved a number of parallelogram theorems. Now let's use these theorems to prove a few interesting and helpful triangle facts.

Statement:

"The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it".

In $\triangle ABC$,

AB = DB and AE = EC

To prove:

ii.
$$DE = \frac{1}{2}BC$$

Construction:

Analysis for construction shows that you need to draw CF||BD.

A parallelogram with DB and BC as consecutive sides.

Proof:

In triangles, ADE and CEF,

AE = EC (Given)

AED = CEF (Vertically opposite angles)

DAE = ECF (Alternate angles, $AD \parallel CF$ by construction)

Therefore,

 $\triangle ADE \cong \triangle CFE$ (ASA Congruency test)

Therefore,

AD = CF and DE = EF (Corresponding parts of corresponding triangles)

But

AD = DB (Given)

Therefore,

DB = CF(i)

(AD is equal to both DB and CF)

In quadrilateral DBCF,

DB = CF and $DB \parallel CF$

Therefore,

DBCF is a parallelogram. (By definition of parallelogram)

Therefore,

DF = BC (Opposite sides of a parallelogram are equal)

and

But

DE = EF (Proved above)

and

$$DF = DE + EF$$

$$DF = 2DE$$

and
$$DF = BC (From (ii))$$

Therefore,

$$BC = 2DE$$
 or

$$DE = \frac{1}{2}BC$$

Hence, the theorem is proved.

Converse of Mid-point Theorem:

Statement:

A straight line drawn through the mid-point of one side and parallel to another side of a triangle bisects the third side.

Given:

 \triangle ABC in which D is the mid-point of AB and DE || BC.

To prove:

E is the mid-point of AC. That is, to prove AE=EC.

Construction:

Since DE || BC, we can complete a parallelogram with DB and BC as consecutive sides.

Hence draw EF || BD to meet DE produced at F.

Proof:

In quadrilateral DBCF,

DB || CF (By construction)

DF || BC (Given)

Therefore,

DBCF is a parallelogram.

DB = CF(i) (Opposite sides of a parallelogram)

But

DB = AD(ii) (Given)

Now, from (i) and (ii),

AD = CF

Now compare triangles, AED and CEF,

AD=CF

AED = ECF (Vertically opposite angles)

DAE = ECF (Alternate angles, $AD \parallel CF$ by construction)

Therefore,

 $\triangle AED \cong \triangle CEF (ASA Congruency test)$

 $\angle AE = EC CPCT$

That is, E is the midpoint of AC.

Hence, the theorem is proved.

Recall the above theorem and apply it to the diagram given.

In the diagram if D is the mid-point of AB and DE is drawn parallel to BC, then E will be the midpoint of AC.

That is,

AE = EC

Now if AX is drawn parallel to BC, then also AE = EC if AD = DB.

Now draw three parallel lines AB, CD, EF as shown in the figure.

Draw a transversal t_1 such that AB = BC.

Now draw another transversal t₂.

Measure DE and EF.

We will get find that DE = EF and AB = BC.

In the diagram, AD, BE and CF are three parallel lines.

AB and BC are equal intercepts made on t₁.

If any transversal is drawn, the intercepts made on it will also be equal.

The Intercept Theorem:

Statement:

If there are three or more parallel lines and the intercepts made by them on one transversal are equal, the corresponding intercepts of any transversal are also equal.

1 || m || n

P is a transversal intersecting l,m and n at A,B and C respectively such that AB = BC.

Q is another transversal drawn to cut 1,m and n at D,E and F respectively.

DE and EF are the intercepts made on q.

To prove:

DE = EF

Construction:

Draw a line through E parallel to p intersecting 1 in G,n in H respectively.

Proof:

AG | BE (Given)

GE | AB (By construction)

Therefore,

AGEB is a parallelogram.

Therefore,

GE = AB(i) (Opposite sides of parallelogram)

Similarly, BEHC is a parallelogram.

Therefore,

EH = BC(ii) (Opposite sides of parallelogram)

But

AB = BC (Given)

From (i) and (ii),

GE = EH

Now, compare triangles GED and EFH,

GE = EH (Proved)

GED = FEH (Vertically opposite angles)

DGE = FHE (Alternate angles, GD|| FH by construction)

Therefore,

 Δ GED $\cong \Delta$ HEF (ASA Congruency test)

Therefore,

DE = EF (Corresponding parts of corresponding triangles)

Hence, the theorem is proved.