Yakeen NEET 2.0 2026

Physics By Manish Raj Sir Units and Measurements

DPP: 2

- **Q1** A physical quantity has the dimensions $\left[M^1L^2T^{-3}\right]$. Which of the following could it represent?
 - (A) Power
- (B) Force
- (C) Work
- (D) Energy
- **Q2** The speed of light in a medium is v. The refractive index of the medium is n. If the dimensions of n are $\left[M^0L^0T^0\right]$, which of the following is the correct dimensional formula for the speed of light v?
 - (A) $[M^0L^1T^{-1}]$
 - (B) $M^1L^1T^{-1}$
 - (C) $M^0L^0T^{-1}$
 - (D) $\left[M^0L^1T^{-1}
 ight]$
- Q3 Match the columns I and II.

Column- I		Column-II	
(a)	Angle	(p)	ML^2T^{-3}
(b)	Power	(q)	$M^0L^0T^0$
(c)	Work	(r)	ML^2T^{-2}
(d)	Force	(s)	MLT^{-2}

- $\text{(A) (a)} \rightarrow \text{(r)}; \text{(b)} \rightarrow \text{(s)}; \text{(c)} \rightarrow \text{(p)}; \text{(d)} \rightarrow \text{(r)}$
- (B) (a) \rightarrow (q); (b) \rightarrow (p); (c) \rightarrow (r); (d) \rightarrow (s)
- (C) (a) \rightarrow (r); (b) \rightarrow (p); (c) \rightarrow (s); (d) \rightarrow (q)
- (D) (a) \rightarrow (q); (b) \rightarrow (r); (c) \rightarrow (p); (d) \rightarrow (s)
- Q4 Match list I with List II:

List-I		List-II		
(a)	Torque	I.	$kg \ m^{-1}s^{-2}$	

(b) Energy density II. $kg \\ ms^{-1}$ (c) Pressure gradient III. $kg \\ m^{-2}s^{-2}$ (d) Impulse IV. $kg \\ m^2s^{-2}$

Choose the correct answer from the options given below:

- (A) a IV, b I, c III, d II
- (B) a I, b IV, c III, d I
- (C) a IV, b III, c I, d II
- (D) a IV, b I, c II, d III
- Q5 If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are:
 - (A) $\lceil FVT^{-1} \rceil$
 - (B) $\left\lceil FVT^{-2} \right\rceil$
 - (C) $[F^{-1}VT^{-2}]$
 - (D) $\left[FV^{-1}T\right]$
- Q6 If momentum (p), area (A) and time (T) are taken to be fundamental quantities, then energy has the dimensional formula:
 - (A) $pA^{-1}T^1$
 - (B) p^2AT
 - (C) $pA^{-1/2}T$
 - (D) $pA^{1/2}T^{-1}$
- **Q7** If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be:
 - (A) $\left\lceil EV^{-1}T^{-2}
 ight
 ceil$

- (C) $\left[E^{-2}V^{-1}T^{-3}
 ight]$
- (D) $\left[EV^{-2}T^{-1}\right]$
- **Q8** The force F on a sphere of radius a' moving in a medium with velocity 'v' is given by $F=6\pi\eta av$. The dimensions of η are:
 - (A) $\left[ML^{-1}T^{-1}\right]$
 - (B) $\left\lceil MT^{-1} \right\rceil$
 - (C) $\lceil MLT^{-2} \rceil$
 - (D) $\lceil ML^{-3}
 ceil$
- Q9 The equation of a wave is given by $y = A \sin \omega \left\{ rac{x}{v} - k
 ight\}$; where ω is the angular velocity and v is the linear velocity. The dimensions of k is:
 - (A) LT
 - (B) T
 - (C) T^{-1}
 - (D) T^2
- Q10 The expression for the force is given by $F \, = b + rac{c}{t^3}$ where 'b' and 'c' are some physical quantities and 't' is the time. then the dimensions

of 'c' are:

- (A) $\lceil M^0LT
 ceil$ (B) $\left\lceil MLT^{-1} \right\rceil$
- (C) $\left\lceil MLT^{-2} \right\rceil$ (D) $\left\lceil MLT \right\rceil$
- **Q11** A force 'F' is given as $F=Pt^{-1}+Qt$, where 't' denotes time. Then, the unit of 'P' must be same as that of_____.
 - (A) Displacement
- (B) Velocity
- (C) Acceleration
- (D) Momentum
- Q12 The dimensions of universal gravitational constant are
 - (A) $M^2L^2T^{-2}$
 - (B) $M^{-1}L^3T^{-2}$
 - (C) $ML^{-1}T^{-2}$
 - (D) ML^2T^{-2}

- Q13 Which of the following is the correct dimensional formula for Planck's constant h?
 - (A) $M^1L^2T^{-1}$
 - (B) $\lceil M^1L^2T^{-2}
 ceil$
 - (C) $M^0L^2T^{-1}$
 - (D) $M^0L^1T^{-1}$
- Q14 The dimensions of universal gas constant is
 - (A) $\left[ML^2T^{-2}\theta^{-1}\right]$
 - (B) $\left[M^2LT^{-2}\theta\right]$
 - (c) $\left[ML^3T^{-1}\theta^{-1}\right]$
 - (D) None of these
- Q15 The quantities which have the same dimensions as those of solid angle are:
 - (A) strain and angle
 - (B) stress and angle
 - (C) strain and arc
 - (D) angular speed and stress
- Q16 A dimensionless physical quantity ______.
 - (A) may have a unit
 - (B) always has a unit
 - (C) never has a unit
 - (D) does not exist
- The dimensional formula of k in $y = \sin(kx)$ is (if x is the distance)
 - (A) $M^0 L^0 T^{-1}$
 - (B) $M^{-1}L^{-1}T^0$
 - (C) $M^0 L^{-1} T^0$
 - (D) $M^0 L^0 T^0$
- **Q18** For $10^{(at+3)}$, if t is time, then the dimension of ais
 - (A) $\left[M^0L^0T^0
 ight]$
 - (B) $[M^0L^0T^1]$
 - (c) $M^0L^0T^{-1}$
 - (D) $\left[M^0L^{-1}T^0
 ight]$

Q19

In the relation: $y=a\cos(\omega t+Kx)$, the dimensional formula for Kx is same as that of: (Symbols have their usual meaning)

- (A) a/ω
- (B) a/y
- (C) $\omega t/a$
- (D) $ya/\omega t$
- **Q20** The velocity (v) of a particle depends upon the time (t) according to the equation:

$$v = \sqrt{ab} + bt + rac{c}{d+t}.$$

The physical quantities which are represented by a,b,c and d, are in the following order:

- (A) distance, distance, acceleration, time
- (B) distance, acceleration, distance, time
- (C) acceleration, distance, distance, time
- (D) acceleration, acceleration, distance, time

Answer Ke	y
------------------	---

Q1	(A)	Q11	(D)
Q2	(A)	Q12	(B)
Q3	(B)	Q13	(A)
Q4	(A)	Q14	(A)
Q5	(D)	Q15	(A)
Q6	(D)	Q16	(A)
Q7	(B)	Q17	(C)
Q8	(A)	Q18	(C)
Q9	(B)	Q19	(B)
Q10	(D)	Q20	(B)

Master NCERT with PW Books APP