In the Claims

1-29. (canceled)

30. (currently amended) A compound of formula I, II or III

wherein

G₁ and G₁' are independently hydrogen or halogen,

 G_2 and G_2 ' are independently hydrogen, halogen, nitro, cyano, E_3SO_- , E_3SO_2 -, $-COOG_3$, perfluoroalkyl of 1 to 12 carbon atoms, $-P(O)(C_6H_5)_2$, $-CO-G_3$, $-CO-NH-G_3$, $-CO-N(G_3)_2$, $-N(G_3)-CO-G_3$,

$$-N$$
 CO
 G_3
 OT
 CO
 CO
 G_3

 G_3 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight of branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by 1 to 4 alkyl of 1 to 4 carbon atoms; or G_3 is T_1 or T_2 ,

 E_1 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 24 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by 1 to 4 alkyl of 1 to 4 carbon atoms; or E_1 is alkyl of 1 to 24 carbon atoms substituted by one or two hydroxy groups; or E_1 is the group -(CH_2)_m-CO-X- T_1 where m is 0, 1 or 2; or E_1 is the group -(CH_2)_p-X-CO- T_2 where p is 1, 2 or 3,

 E_2 and E_2 ' are independently straight or branched alkyl chain of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by one to three alkyl of 1 to 4 carbon atoms; or E_2 and E_2 ' are independently said alkyl of 1 to 24 carbon atoms or said alkenyl of 2 to 18 carbon atoms substituted by one or more -OH, -OCOE₁₁, -OE₄, -NH₂, -NHCOE₁₁, -NHE₄ or -N(E₄)₂, or mixtures thereof, where E_4 is straight or branched chain alkyl of 1 to 24 carbon atoms; or said alkyl or said alkenyl interrupted by one or more -O-, -NH- or -NE₄- groups or mixtures thereof and which can be unsubstituted or substituted by one or more -OH, -OE₄ or -NH₂ groups or mixtures thereof; or E_2 and E_2 ' are independently -(CH₂)_m-CO-X-T₁ or -(CH₂)_p-X-CO-T₂, or E_4 is T₁ or T₂,

X is -O- or -N(E_{16})-,

 E_{16} is hydrogen, C_1 - C_{12} -alkyl, C_3 - C_{12} -alkyl interrupted by 1 to 3 oxygen atoms, or is cyclohexyl or C_7 - C_{15} aralkyl,

 E_{11} is a straight or branched chain C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl, straight or branched chain C_2 - C_{18} alkenyl, C_6 - C_{14} aryl or C_7 - C_{15} aralkyl; or E_{11} is T_1 or T_2 ,

E₃ is alkyl of 1 to 20 carbon atoms, hydroxyalkyl of 2 to 20 carbon atoms, alkenyl of 3 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, aryl of 6 to 10 carbon atoms or said aryl substituted by one or two alkyl of 1 to 4 carbon atoms or 1,1,2,2-tetrahydroperfluoroalkyl where the perfluoroalkyl moiety is of 6 to 16 carbon atoms,

L is alkylene of 1 to 12 carbon atoms, alkylidene of 2 to 12 carbon atoms, benzylidene, p-xylylene, $\alpha, \alpha, \alpha', \alpha'$ -tetramethyl-m-xylylene or cycloalkylidene, and

T is -SO-, -SO₂-, -SO-E-SO-, -SO₂-E-SO₂-, -CO-, -CO-CH₂-CO-, -CO-E-CO-, -COO-E-OCO- or -CO-NG₅-E-NG₅-CO-,

where E is alkylene of 2 to 12 carbon atoms, cycloalkylene of 5 to 12 carbon atoms, or alkylene interrupted or terminated by cyclohexylene of 8 to 12 carbon atoms;

G₅ is G₃ or hydrogen,

T₁ is straight or branched chain alkyl of 25 to 100 carbon atoms, or said alkyl substituted by one hydroxyl group and interrupted by one oxa moiety, or a mixture of such alkyl moieties; or

 T_1 is -(R-O)_n-R-OG_x where R is ethylene, propylene, trimethylene, 1,2-butylene or tetramethylene, and n is 6 to 49 so that the total number of carbon atoms in T_1 is at least 25,

 G_x is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight of branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms, phenyl, or said phenyl or said phenylalkyl substituted on the phenyl ring by 1 to 4 alkyl of 1 to 4 carbon atoms,

T₂ is straight or branched alkyl of 23 to 100 carbon atoms; and

with the proviso that at least one of E_1 , E_2 and E_2 ' is a group -(CH₂)_m-CO-X-T₁ or a group -(CH₂)_p-X-CO-T₂ or at least one of G_2 and G_2 ' is a group -COOG₃, -CO-NH-G₃, -CO-NH-G₃, -CO-N(G₃)₂, -N(G₃)-CO-G₃,

$$-N$$
 CO
 G_3
 CO
 CO
 G_3

where G_3 is T_1 or T_2 .

31. (currently amended) A compound according to claim 30 of formula I

$$G_1 \longrightarrow N \longrightarrow P$$

$$G_2 \longrightarrow N \longrightarrow P$$

$$E_1 \longrightarrow P$$

$$E_2 \longrightarrow P$$

$$E_3 \longrightarrow P$$

$$E_4 \longrightarrow P$$

$$E_7 \longrightarrow P$$

$$E_8 \longrightarrow$$

wherein

G₁ is hydrogen,

 G_2 is hydrogen, chloro, fluoro, cyano, E_3SO_2 -, $-COOG_3$, CF_3 , $-CO-G_3$, $-CO-NH-G_3$ or $-CO-N(G_3)_2$,

 G_3 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight of branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or G_3 is T_1 or T_2 ,

 E_1 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 24 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or E_1 is the group -(CH_2)_m-CO-X- T_1 where m is 0, 1 or 2; or E_1 is the group

-(CH₂)_p-X-CO-T₂ where p is 1, 2 or 3,

 E_2 is straight or branched alkyl chain of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or E_2 is said alkyl of 1 to 24 carbon atoms or said alkenyl of 2 to 18 carbon atoms substituted by one or more -OH, -OCOE₁₁, -OE₄, -NHCOE₁₁, -NHE₄ or -N(E₄)₂, or mixtures thereof, where E_4 is straight or branched chain alkyl of 1 to 24 carbon atoms; or said alkyl or said alkenyl interrupted by one or more -O-, -NH- or -NE₄- groups or mixtures thereof and which can be unsubstituted or substituted by one or more -OH, -OE₄ or -NH₂ groups or mixtures thereof; or E_4 is T_1 or T_2 ,

X is -O- or -N(E_{16})-,

E₁₆ is hydrogen,

 E_{11} is a straight or branched chain C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{14} aryl or C_7 - C_{15} aralkyl; or E_{11} is T_1 or T_2 ,

 E_3 is alkyl of 1 to 20 carbon atoms, hydroxyalkyl of 2 to 20 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or aryl of 6 to 10 carbon atoms,

T₁ is straight or branched chain alkyl of 25 to 70 carbon atoms, or said alkyl substituted by one hydroxyl group and interrupted by one oxa moiety, or a mixture of such alkyl moieties; or

 T_1 is -(R-O)_n-R-OH where R is ethylene, propylene, trimethylene or tetramethylene, and n is 6 to 49 so that the total number of carbon atoms in T_1 is at least 25, and

T₂ is straight or branched alkyl of 23 to 70 carbon atoms; and

with the proviso that at least one of E_1 and E_2 is a group -(CH₂)_m-CO-OT₁or a group -(CH₂)_p-O-CO-T₂, or G_2 is a group -COOG₃, -CO-NH-G₃ or -CO-N(G₃)₂ where G_3 is T₁ or T₂.

32. (previously presented) A compound according to claim 30 of formula III

$$G_1 \longrightarrow N \longrightarrow OH \longrightarrow OH \longrightarrow N \longrightarrow G_2$$

$$G_2 \longrightarrow G_2$$

$$G_2 \longrightarrow G_2$$

$$G_2 \longrightarrow G_2$$

wherein

G₁ and G₁' are hydrogen,

 G_2 and G_2 ' are independently hydrogen, chloro, fluoro, cyano, E_3SO_2 -, $-COOG_3$, CF_3 , $-CO-G_3$, $-CO-NH-G_3$ or $-CO-N(G_3)_2$,

 G_3 is hydrogen, straight or branched chain alkyl of 1 to 24 carbon atoms, straight of branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or G_3 is T_1 or T_2 ,

 E_2 and E_2 ' are independently straight or branched alkyl chain of 1 to 24 carbon atoms, straight or branched chain alkenyl of 2 to 18 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or phenyl; or E_2 and E_2 ' are independently said alkyl of 1 to 24 carbon atoms or said alkenyl of 2 to 18 carbon atoms substituted by one or more -OH, -OCOE₁₁, -OE₄, -NHCOE₁₁, -NHE₄ or -N(E₄)₂, or mixtures thereof, where E_4 is straight or branched chain alkyl of 1 to 24 carbon atoms; or said alkyl or said alkenyl interrupted by one or more -O-, -NH- or -NE₄- groups or mixtures thereof and which can be unsubstituted or substituted by one or more -OH, -OE₄ or -NH₂ groups or mixtures thereof; or E_4 is T_1 or T_2 ,

E₁₆ is hydrogen,

 E_{11} is a straight or branched chain C_1 - C_{18} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{14} aryl or C_7 - C_{15} aralkyl; or E_{11} is T_1 or T_2 ,

 E_3 is alkyl of 1 to 20 carbon atoms, hydroxyalkyl of 2 to 20 carbon atoms, cycloalkyl of 5 to 12 carbon atoms, phenylalkyl of 7 to 15 carbon atoms or aryl of 6 to 10 carbon atoms,

L is alkylene of 1 to 12 carbon atoms, alkylidene of 2 to 12 carbon atoms, benzylidene, p-xylylene, $\alpha,\alpha,\alpha',\alpha'$ -tetramethyl-m-xylylene or cycloalkylidene,

T₁ is straight or branched chain alkyl of 25 to 70 carbon atoms, or said alkyl substituted by one hydroxyl group and interrupted by one oxa moiety, or a mixture of such alkyl moieties; or

 T_1 is -(R-O)_n-R-OH where R is ethylene, propylene, trimethylene or tetramethylene, and n is 6 to 49 so that the total number of carbon atoms in T_1 is at least 25, and

T₂ is straight or branched alkyl of 23 to 70 carbon atoms; and

with the proviso that at least one of E_2 and E_2 ' is a group -(CH₂)_m-CO-OT₁ or a group -(CH₂)_p-O-CO-T₂, or at least one of G_2 and G_2 ' is a group -COOG₃, -CO-OH-G₃ or -CO-N(G₃)₂ where G_3 is T₁ or T₂.

33. (previously presented) A compound according to claim 30 which is

- (a) C₂₀-C₄₀alkyl 3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 35-51°C;
- (b) C₂₀-C₄₀alkyl 3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 58-63°C;
- (c) C₂₀-C₄₀alkyl 3-(5-chloro-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 33°C;
- (d) C₂₀-C₄₀alkyl 3-(5-chloro-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 57-67°C:
- (e) C₂₀-C₄₀alkyl 3-(5-trifluoromethyl-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate:
- (f) C_{20} - C_{40} alkyl 3-(5-phenylsulfonyl-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 42°C;

- (g) C_{20} - C_{40} alkyl 3-(5-phenylsulfonyl-2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate melting at 65-74°C; or
 - (h) C₄₀-C₆₀alkyl 3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyhydrocinnamate.