Calculus II Lecture (not covered in class)

Todor Milev

https://github.com/tmilev/freecalc

2020

- Exponential Functions and logarithms, Review
- Derivatives of Exponential Functions
 - Natural Exponent

- Exponential Functions and logarithms, Review
- Derivatives of Exponential Functions
 - Natural Exponent
- A More Advanced Approach to Exponents
 - Derivative using series definition

- Exponential Functions and logarithms, Review
- Derivatives of Exponential Functions
 - Natural Exponent
- A More Advanced Approach to Exponents
 - Derivative using series definition
- 4 Logarithmic Functions, Review
 - Natural Logarithms

- Exponential Functions and logarithms, Review
- 2 Derivatives of Exponential Functions
 - Natural Exponent
- A More Advanced Approach to Exponents
 - Derivative using series definition
- 4 Logarithmic Functions, Review
 - Natural Logarithms
- Derivatives of Logarithms, Review
 - The Natural Logarithm
 - The Number e as a Limit
 - Derivatives of Exponents with Arbitrary Base
 - Derivatives of Arbitrary Exponents with Arbitrary Base

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0: https://creativecommons.org/licenses/by/3.0/us/and the links therein.

X	У
2	
1	
0	
-1	
-2	

X	y
2	?
1	
0	
-1	
-2	

X	y
2	4
1	
0	
-1	
-2	

X	y
2	4
1	?
0	
-1	
-2	

X	y
2	4
1	2
0	
-1	
-2	

X	y
2	4
1	2
0	?
-1	
-2	

X	<i>y</i>
2	4
1	2
0	1
-1	
-2	

X	y
2	4
1	2
0	1
-1	?
-2	

Χ	y
2	4
1	2
0	1
-1	$\frac{1}{2}$
-2	_

X	y
2	4
1	2
0	1
-1	1/2 ?
-2	?

X	y
2	4
1	2
0	1
-1	1 2 1
-2	$\frac{1}{4}$

X	y
2	4
1	2
0	1
-1	$\frac{1}{2}$
-2	$\frac{1}{4}$

The function $f(x) = 2^x$ is called an exponential function because the variable x is the exponent.

X	y
2	4
1	2
0	1
-1	1/2 1
-2	$\frac{1}{4}$

(Exponential Function Terminology)

An exponential function is a function of the form $f(x) = a^x$, where a is a positive constant.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - a^0}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - a^0}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$

$$= \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$= a^x f'(0).$$

We have shown that, if $f(x) = a^x$ is differentiable at 0, then it is differentiable everywhere, and

$$f'(x)=f'(0)a^x.$$

We have shown that, if $f(x) = a^x$ is differentiable at 0, then it is differentiable everywhere, and

$$f'(x)=f'(0)a^x.$$

We leave the following theorem without proof.

Theorem

Let a be a positive number and let $f(x) = a^x$. Then the limit

$$f'(0) = \lim_{h \to 0} \frac{a^h - 1}{h}$$

exists.

We have shown that, if $f(x) = a^x$ is differentiable at 0, then it is differentiable everywhere, and

$$f'(x)=f'(0)a^x.$$

We leave the following theorem without proof.

Theorem

Let a be a positive number and let $f(x) = a^x$. Then the limit

$$f'(0) = \lim_{h \to 0} \frac{a^h - 1}{h}$$

exists.

We will later show that

$$f'(0) = \lim_{h \to 0} \frac{a^h - 1}{h} = \ln(a).$$

Here, In is the natural logarithm function.

8/28

The Natural Exponential Function

• One base for an exponential function is especially useful.

Todor Miley

- One base for an exponential function is especially useful.
- It has a special property: its tangent line at x = 0 has slope m = 1.

Todor Miley

- One base for an exponential function is especially useful.
- It has a special property: its tangent line at x = 0 has slope m = 1.
- We call this number e, known as Euler's number or Napier's constant.

- One base for an exponential function is especially useful.
- It has a special property: its tangent line at x = 0 has slope m = 1.
- We call this number e, known as Euler's number or Napier's constant.
- e is a number between 2 and 3.

- One base for an exponential function is especially useful.
- It has a special property: its tangent line at x = 0 has slope m = 1.
- We call this number e, known as Euler's number or Napier's constant.
- e is a number between 2 and 3.
- In fact, $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots \approx 2.71828$.

Definition (Natural Exponential Function)

 e^x is called the natural exponential function. Its derivative is

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(e^{x}\right)=e^{x}.$$

• For integer x, we know how to compute a^x as a function of a.

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.
- Then we give an alternative second definition.

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.
- Then we give an alternative second definition.
- The second definition will be studied in sufficient depth only much later.

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.
- Then we give an alternative second definition.
- The second definition will be studied in sufficient depth only much later.
- The two definitions are equivalent: if we choose one definition the other becomes a theorem and the other way round.

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.
- Then we give an alternative second definition.
- The second definition will be studied in sufficient depth only much later.
- The two definitions are equivalent: if we choose one definition the other becomes a theorem and the other way round.
- Choosing one definition makes some statements easier to prove and others more difficult.

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.
- Then we give an alternative second definition.
- The second definition will be studied in sufficient depth only much later.
- The two definitions are equivalent: if we choose one definition the other becomes a theorem and the other way round.
- Choosing one definition makes some statements easier to prove and others more difficult.
- We shall discuss pros and cons of the two. In a nutshell:

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.
- Then we give an alternative second definition.
- The second definition will be studied in sufficient depth only much later.
- The two definitions are equivalent: if we choose one definition the other becomes a theorem and the other way round.
- Choosing one definition makes some statements easier to prove and others more difficult.
- We shall discuss pros and cons of the two. In a nutshell:
 - the first elementary definition is easier to motivate;

- For integer x, we know how to compute a^x as a function of a.
- How do we compute $f(x) = a^x$ when x is not an integer?
- We need to go back to the definition of a^x (for x non-integer).
- In what follows we give/recall an elementary way to define exponent.
- Then we give an alternative second definition.
- The second definition will be studied in sufficient depth only much later.
- The two definitions are equivalent: if we choose one definition the other becomes a theorem and the other way round.
- Choosing one definition makes some statements easier to prove and others more difficult.
- We shall discuss pros and cons of the two. In a nutshell:
 - the first elementary definition is easier to motivate;
 - the second alternative definition is easier to compute with.

• For integer p we know to compute a^p .

- For integer p we know to compute a^p .
- Therefore for integer q we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \max\{x | \text{ for which } x^q \leq a\}.$

- For integer p we know to compute a^p .
- Therefore for integer q we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \max\{x | \text{ for which } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.

- For integer p we know to compute a^p .
- Therefore for integer q we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \max\{x | \text{ for which } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y \to x \ y\text{-rational}}} a^y$$

For example, a^{π} would be defined as the limit of the sequence $a^{3.14}$, $a^{3.141}$, $a^{3.1415}$,....

- For integer *p* we know to compute *a^p*.
- Therefore for integer q we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \max\{x | \text{ for which } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y \to x \ y\text{-rational}}} a^y$$

For example, a^{π} would be defined as the limit of the sequence $a^{3.14}$, $a^{3.141}$, $a^{3.1415}$,

Cons: not computationally effective; not how computers compute.

- For integer p we know to compute a^p .
- Therefore for integer q we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \max\{x | \text{ for which } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y \to x \ y\text{-rational}}} a^y$$

For example, a^{π} would be defined as the limit of the sequence $a^{3.14}$, $a^{3.141}$, $a^{3.1415}$,....

- Cons: not computationally effective; not how computers compute.
- Pros: for non-integer x and y, it is very easy to prove that $a^{x+y} = a^x a^y$ this follows from the definition of limit above.

- For integer p we know to compute a^p.
- Therefore for integer q we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \max\{x | \text{ for which } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^{x} = \lim_{\substack{y \to x \ y\text{-rational}}} a^{y}$$

For example, a^{π} would be defined as the limit of the sequence $a^{3.14}$, $a^{3.141}$, $a^{3.1415}$,....

- Cons: not computationally effective; not how computers compute.
- Pros: for non-integer x and y, it is very easy to prove that $a^{x+y} = a^x a^y$ this follows from the definition of limit above.
- This is the definition assumed in many elementary courses.

 The following formula (studied much later) can be used as alternative definition.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

 The following formula (studied much later) can be used as alternative definition.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ and is read "n factorial".

 The following formula (studied much later) can be used as alternative definition.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ and is read "n factorial".

• For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

 The following formula (studied much later) can be used as alternative definition.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ and is read "n factorial".

• For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied much later.

 The following formula (studied much later) can be used as alternative definition.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ and is read "n factorial".

• For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied much later.

• For arbitrary a > 0 define a^x as $a^x = e^{x \ln a}$.

 The following formula (studied much later) can be used as alternative definition.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ and is read "n factorial".

• For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied much later.

- For arbitrary a > 0 define a^x as $a^x = e^{x \ln a}$.
- Cons: more difficult to prove $e^{x+y} = e^x e^y$ and $e^{\ln(1+x)} = 1 + x$, proof done later.

 The following formula (studied much later) can be used as alternative definition.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n$ and is read "n factorial".

• For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied much later.

- For arbitrary a > 0 define a^x as $a^x = e^{x \ln a}$.
- Cons: more difficult to prove $e^{x+y} = e^x e^y$ and $e^{\ln(1+x)} = 1 + x$, proof done later.
- Pros: this is how e^x and a^x are actually computed (by modern computers and by humans in the past).

Example

Derive the exponent rule $(e^x)' = e^x$

Example Derive the

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

$$(e^x)' = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots\right)'$$

Example

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule

$$(f_1+f_2+f_3+\dots)'=f_1'+f_2'+f_3'+\dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

Example Derive the

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$.

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Example

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

$$\frac{n}{n!} =$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Example Derive the

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

$$\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n} =$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Example Derive the

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

$$\tfrac{n}{n!} = \tfrac{n}{1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n} = \tfrac{1}{1 \cdot 2 \cdot \cdots \cdot (n-1)} =$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Example

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

$$\tfrac{n}{n!} = \tfrac{n}{1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n} = \tfrac{1}{1 \cdot 2 \cdot \cdots \cdot (n-1)} = \tfrac{1}{(n-1)!}.$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

Example

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

$$\frac{\frac{n}{n!}}{\frac{1}{\cdot 2 \cdot \cdots \cdot (n-1) \cdot n}} = \frac{1}{1 \cdot 2 \cdot \cdots \cdot (n-1)} = \frac{1}{(n-1)!}.$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

$$= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots =$$

Example Derive the 6

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$. We have that $\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n} = \frac{1}{1 \cdot 2 \cdot \dots \cdot (n-1)} = \frac{1}{(n-1)!}$.

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

$$= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots = e^{x}$$

Example

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f'_1 + f'_2 + f'_3 + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$. We have that $\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n} = \frac{1}{1 \cdot 2 \cdot \dots \cdot (n-1)} = \frac{1}{(n-1)!}$.

$$\begin{aligned} (e^{x})' &= \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)' \\ &= \left(1\right)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots \\ &= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots \\ &= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots = e^{x} \end{aligned}$$

as desired.

• Suppose a > 0, $a \neq 1$.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore *f* is one-to-one.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore *f* is one-to-one.
- Therefore f has an inverse function, f^{-1} .

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore *f* is one-to-one.
- Therefore f has an inverse function, f^{-1} .

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarithmic function with base a, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore *f* is one-to-one.
- Therefore f has an inverse function, f^{-1} .
- The graph shows $y = a^x$ for a > 1.

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarithmic function with base a, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
 - Then f is either increasing or decreasing.
 - Therefore *f* is one-to-one.
- $y = \log_a x$ Therefore f has an inverse function, f^{-1} .
 - The graph shows $y = a^x$ for a > 1.
 - The graph of $y = \log_a x$ is the reflection of this in the line y = x.

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarithmic function with base a, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

Example

- $\log_3 81 =$
- $\log_{25} 5 =$

Example

- $\log_3 81 = ?$
- $\log_{25} 5 = ?$
- $\log_{10} 0.001 = ?$

Example

- $\log_{25} 5 = ?$
- $\log_{10} 0.001 = ?$

Example

- $\log_{25} 5 = ?$
- $\log_{10} 0.001 = ?$

Example

- 2 $\log_{25} 5 = \frac{1}{2}$ because $25^{\frac{1}{2}} = \sqrt{25} = 5$.
- $\log_{10} 0.001 = ?$

Example

- ② $\log_{25} 5 = \frac{1}{2}$ because $25^{\frac{1}{2}} = \sqrt{25} = 5$.
- $\log_{10} 0.001 = ?$

Example

- ② $\log_{25} 5 = \frac{1}{2}$ because $25^{\frac{1}{2}} = \sqrt{25} = 5$.
- $\log_{10} 0.001 = -3$ because $10^{-3} = 0.001$.

• Suppose *a* > 1.

- Suppose *a* > 1.
- Domain of a^x: ?
- Range of a^x: ?
- Domain of $\log_a x$:
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : ?
- Range of a^x: ?
- Domain of $\log_a x$:
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : ?
- Domain of $\log_a x$:
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : ?
- Domain of $\log_a x$:
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$:
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$:
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: $(0, \infty)$.
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: $(0, \infty)$.
- Range of log_a x: ?

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: $(0, \infty)$.
- Range of $\log_a x$: \mathbb{R} .

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: $(0, \infty)$.
- Range of $\log_a x$: \mathbb{R} .
- $\log_a(a^x) = x$ for $x \in \mathbb{R}$.
- $a^{\log_a x} = x \text{ for } x > 0.$

Graphs of various logarithmic functions with a > 1

Graphs of various logarithmic functions with a > 1

Graphs of various logarithmic functions with a > 1

Graphs of various logarithmic functions with a > 1

Definition (ln x)

The logarithm with base e is called the natural logarithm, and has a special notation:

$$\log_e x = \ln x$$
.

Definition (ln x)

The logarithm with base e is called the natural logarithm, and has a special notation:

$$\log_e x = \ln x$$
.

- $\ln x = y$ \Leftrightarrow $e^y = x$.

Definition (ln x)

The logarithm with base *e* is called the natural logarithm, and has a special notation:

$$\log_e x = \ln x$$
.

- $\ln x = y$ \Leftrightarrow $e^y = x$.
- $ln(e^x) = x$ for $x \in \mathbb{R}$.

Definition (ln x)

The logarithm with base *e* is called the natural logarithm, and has a special notation:

$$\log_e x = \ln x$$
.

- $\ln x = y$ \Leftrightarrow $e^y = x$.
- $ln(e^x) = x$ for $x \in \mathbb{R}$.
- $e^{\ln x} = x \text{ for } x > 0.$

Theorem (Properties of Logarithmic Functions)

If a>1, the function $f(x)=\log_a x$ is a one-to-one, continuous, increasing function with domain $(0,\infty)$ and range $\mathbb R$. If x,y,a,b>0 and r is any real number, then

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

Proof.

• Let $y = \ln x$.

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.
- Differentiate this implicitly with respect to *x*:

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.
- Differentiate this implicitly with respect to *x*:
- $e^{y} \frac{dy}{dx} = 1$.

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.
- Differentiate this implicitly with respect to *x*:
- $e^{y} \frac{dy}{dx} = 1$.
- Rearrange:

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.
- Differentiate this implicitly with respect to *x*:
- $e^{y} \frac{dy}{dx} = 1$.
- Rearrange:
- $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{e^y}$

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.
- Differentiate this implicitly with respect to x:
- $e^{y} \frac{dy}{dx} = 1$.
- Rearrange:
- $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{e^{\mathrm{y}}} = \frac{1}{e^{\ln x}}$

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.
- Differentiate this implicitly with respect to x:
- $e^{y} \frac{dy}{dx} = 1$.
- Rearrange:
- $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\mathrm{e}^y} = \frac{1}{\mathrm{e}^{\ln x}} = \frac{1}{x}.$

Theorem (The Derivative of ln x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(\ln x) = \frac{1}{x}.$$

- Let $y = \ln x$.
- Then $e^y = x$.
- Differentiate this implicitly with respect to x:
- $e^{y} \frac{dy}{dx} = 1$.
- Rearrange:
- $\frac{d}{dx}(\ln x) = \frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}$.

Differentiate
$$y = \ln(x^3 + 1)$$
.

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = ?$

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.
Then $y = \ln u$.

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.
Then $y = \ln u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.
Then $y = \ln u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (?)$

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.
Then $y = \ln u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{u}\right) \left(\frac{1}{u}\right)$

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.
Then $y = \ln u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{u}\right) \left(\frac{2}{u}\right)$

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.
Then $y = \ln u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{u}\right) \left(3x^2\right)$

Differentiate
$$y = \ln(x^3 + 1)$$
.
Let $u = x^3 + 1$.
Then $y = \ln u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\frac{1}{u}\right) \left(3x^2\right)$
 $= \frac{3x^2}{x^3 + 1}$.

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let $f(x) = \ln x$.

┙

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let $f(x) = \ln x$. Then $f'(x) = \frac{1}{x}$, so f'(1) = 1.

_

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x}$$

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$

$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}.$$

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$

$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}.$$

Then use the fact that the exponential function is continuous:

$$e = e^{1} =$$

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$

$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}.$$

Then use the fact that the exponential function is continuous:

$$e = e^1 = e^{\lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}} =$$

Theorem (The Number *e* as a Limit)

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$

$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}.$$

Then use the fact that the exponential function is continuous:

$$e = e^1 = e^{\lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}} = \lim_{x \to 0} e^{\ln(1+x)^{\frac{1}{x}}} =$$

Theorem (The Number *e* as a Limit)

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} \left(1+\frac{1}{y}\right)^{y}.$$

Proof.

Let
$$f(x) = \ln x$$
. Then $f'(x) = \frac{1}{x}$, so $f'(1) = 1$.

$$1 = f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln(1)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$

$$= \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}.$$

Then use the fact that the exponential function is continuous:

$$e = e^1 = e^{\lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}} = \lim_{x \to 0} e^{\ln(1+x)^{\frac{1}{x}}} = \lim_{x \to 0} (1+x)^{\frac{1}{x}}.$$

$$\lim_{x\to\infty} \left(\frac{x+3}{x}\right)^x$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$
$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$
$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{\frac{3}{3}}$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$
$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

Set
$$\frac{x}{3} = y$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{y}{y}} \right)^{3y}$$

$$\left| \text{ Set } \tfrac{x}{3} = y \right|$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

$$= \lim_{\substack{x \to \infty \\ \frac{x}{3} = y \to \infty}} \left(1 + \frac{1}{y} \right)^{3y}$$

$$\left| \text{ Set } \tfrac{x}{3} = y \right|$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

$$= \lim_{\substack{x \to \infty \\ \frac{x}{3} = y \to \infty}} \left(1 + \frac{1}{y} \right)^{3y}$$

$$= \lim_{\substack{y \to \infty \\ y \to \infty}} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^3$$

$$\int \operatorname{Set} \frac{x}{3} = y$$

Compute

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

$$= \lim_{\substack{x \to \infty \\ \frac{x}{3} = y \to \infty}} \left(1 + \frac{1}{y} \right)^{3y}$$

$$= \lim_{\substack{y \to \infty \\ y \to \infty}} \left(\left(1 + \frac{1}{y} \right)^y \right)^3 =$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

$$= \lim_{\substack{x \to \infty \\ \frac{x}{3} = y \to \infty}} \left(1 + \frac{1}{y} \right)^{3y}$$

$$= \lim_{\substack{x \to \infty \\ \frac{x}{3} = y \to \infty}} \left(\left(1 + \frac{1}{y} \right)^y \right)^3 = e^3 .$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^x = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^x$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x}{3}} \right)^{3\frac{x}{3}}$$

$$= \lim_{\substack{x \to \infty \\ \frac{x}{3} = y \to \infty}} \left(1 + \frac{1}{y} \right)^{3y}$$

$$= \lim_{\substack{x \to \infty \\ \frac{x}{3} = y \to \infty}} \left(\left(1 + \frac{1}{y} \right)^y \right)^3 = e^3 .$$

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$\lim_{x \to \infty} \left(\frac{x}{x-2} \right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(\frac{x-2+2}{x-2} \right)^{2x+2}$$

$$\lim_{x \to \infty} \left(\frac{x}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(\frac{x-2+2}{x-2}\right)^{2x+2} = \lim_{x \to \infty} \left(1 + \frac{2}{x-2}\right)^{2x+2}$$

$$\lim_{x \to \infty} \left(\frac{x}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(\frac{x-2+2}{x-2}\right)^{2x+2} = \lim_{x \to \infty} \left(1 + \frac{2}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x-2}{2}}\right)^{2(x-2+2)+2}$$

$$\lim_{x \to \infty} \left(\frac{x}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(\frac{x-2+2}{x-2}\right)^{2x+2} = \lim_{x \to \infty} \left(1 + \frac{2}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x-2}{2}}\right)^{2(x-2+2)+2}$$

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(\frac{x - 2 + 2}{x - 2} \right)^{2x + 2} = \lim_{x \to \infty} \left(1 + \frac{2}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{2(x - 2 + 2) + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6}$$

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(\frac{x - 2 + 2}{x - 2} \right)^{2x + 2} = \lim_{x \to \infty} \left(1 + \frac{2}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{2(x - 2 + 2) + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6}$$

Set
$$y = \frac{x-2}{2}$$

Compute

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(\frac{x - 2 + 2}{x - 2} \right)^{2x + 2} = \lim_{x \to \infty} \left(1 + \frac{2}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{2(x - 2 + 2) + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6} = \lim_{x \to \infty} \left(1 + \frac{1}{y} \right)^{4y + 6}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6} = \lim_{x \to \infty} \left(1 + \frac{1}{y} \right)^{4y + 6}$$
Set $y = \frac{x - 2}{2}$

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(\frac{x - 2 + 2}{x - 2} \right)^{2x + 2} = \lim_{x \to \infty} \left(1 + \frac{2}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{2(x - 2 + 2) + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6} = \lim_{\frac{x - 2}{2} = y} \left(1 + \frac{1}{y} \right)^{4y + 6}$$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{6}$$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{6}$$

Compute

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(\frac{x - 2 + 2}{x - 2} \right)^{2x + 2} = \lim_{x \to \infty} \left(1 + \frac{2}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{2(x - 2 + 2) + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6} = \lim_{\frac{x - 2}{2} = y \\ y \to \infty} \left(1 + \frac{1}{y} \right)^{4y + 6}$$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{6}$$
Set $y = \frac{x - 2}{2}$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{6}$$

Compute

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(\frac{x - 2 + 2}{x - 2} \right)^{2x + 2} = \lim_{x \to \infty} \left(1 + \frac{2}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{2(x - 2 + 2) + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6} = \lim_{\frac{x - 2}{2} = y} \left(1 + \frac{1}{y} \right)^{4y + 6}$$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{6}$$

$$= e^{4} \cdot (1 + 0)^{6}$$
Set $y = \frac{x - 2}{2}$

$$\lim_{x \to \infty} \left(\frac{x}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(\frac{x-2+2}{x-2}\right)^{2x+2} = \lim_{x \to \infty} \left(1 + \frac{2}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x-2}{2}}\right)^{2(x-2+2)+2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x-2}{2}}\right)^{4\frac{x-2}{2}+6} = \lim_{\frac{x-2}{2}=y} \left(1 + \frac{1}{y}\right)^{4y+6}$$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y}\right)^{y}\right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^{6}$$

$$= e^{4} \cdot (1 + 0)^{6}$$
Set $y = \frac{x-2}{2}$

$$\lim_{x \to \infty} \left(\frac{x}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(\frac{x-2+2}{x-2}\right)^{2x+2} = \lim_{x \to \infty} \left(1 + \frac{2}{x-2}\right)^{2x+2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x-2}{2}}\right)^{2(x-2+2)+2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x-2}{2}}\right)^{4\frac{x-2}{2}+6} = \lim_{\frac{x-2}{2}=y} \left(1 + \frac{1}{y}\right)^{4y+6}$$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y}\right)^{y}\right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^{6}$$

$$= e^{4} \cdot (1 + 0)^{6}$$
Set $y = \frac{x-2}{2}$

Compute

$$\lim_{x \to \infty} \left(\frac{x}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(\frac{x - 2 + 2}{x - 2} \right)^{2x + 2} = \lim_{x \to \infty} \left(1 + \frac{2}{x - 2} \right)^{2x + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{2(x - 2 + 2) + 2}$$

$$= \lim_{x \to \infty} \left(1 + \frac{1}{\frac{x - 2}{2}} \right)^{4\frac{x - 2}{2} + 6} = \lim_{\frac{x - 2}{2} = y} \left(1 + \frac{1}{y} \right)^{4y + 6}$$

$$= \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^{y} \right)^{4} \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{6}$$

$$= e^{4} \cdot (1 + 0)^{6} = e^{4} .$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x)=a^x\ln a.$$

Proof.

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$

Proof.

Use the fact that $a = e^{\ln a}$.

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x)=a^x\ln a.$$

Proof.

Use the fact that $a=e^{\ln a}$. $\frac{\mathrm{d}}{\mathrm{d}x}(a^{\mathrm{x}})=$

$$\frac{d}{dx}(a^x) =$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$

Proof.

Use the fact that
$$\frac{a}{a} = \frac{e^{\ln a}}{dx}$$
.
$$\frac{d}{dx}(a^x) = \frac{d}{dx}\left((e^{\ln a})^x\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$

Proof.

Proof.
Use the fact that $a = e^{\ln a}$. $\frac{d}{dx}(a^x) = \frac{d}{dx}\left((e^{\ln a})^x\right)$ $= \frac{d}{dx}\left(e^{x \ln a}\right)$

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x)=a^x\ln a.$$

Proof.

Proof.
Use the fact that $a = e^{\ln a}$. $\frac{d}{dx}(a^x) = \frac{d}{dx}\left((e^{\ln a})^x\right)$ $= \frac{d}{dx}\left(e^{x \ln a}\right)$ $= e^{x \ln a} \frac{d}{dx} (x \ln a)$

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x)=a^x\ln a.$$

Proof.

Use the fact that $a = e^{\ln a}$. $\frac{d}{dx}(a^x) = \frac{d}{dx}\left((e^{\ln a})^x\right)$ $= \frac{d}{dx}\left(e^{x \ln a}\right)$ $= e^{x \ln a} \frac{d}{dx}(x \ln a)$ $= (e^{\ln a})^x \ln a$

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$

Proof.

Use the fact that $a = e^{\ln a}$. $\frac{d}{dx}(a^x) = \frac{d}{dx}\left((e^{\ln a})^x\right)$ $= \frac{d}{dx}\left(e^{x \ln a}\right)$ $= e^{x \ln a} \frac{d}{dx}(x \ln a)$ $= (e^{\ln a})^x \ln a$ $= a^x(\ln a).$

Example (Chain Rule)

Differentiate $y = 10^{x^2}$.

Differentiate
$$y = 10^{x^2}$$
.
Let $u =$?

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.
Then $y = 10^u$.

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.
Then $y = 10^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.
Then $y = 10^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (?)$

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.
Then $y = 10^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (10^u (\ln 10)) ($

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.
Then $y = 10^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (10^u (\ln 10))$ (?)

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.
Then $y = 10^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (10^u (\ln 10)) (2x)$

Differentiate
$$y = 10^{x^2}$$
.
Let $u = x^2$.
Then $y = 10^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (10^u (\ln 10)) (2x)$
 $= (2 \ln 10) x 10^{x^2}$.

Compute
$$\frac{d}{dx}\left((\tan x)^{\frac{1}{x}}\right)$$
, where $x\in(0,\frac{\pi}{2})$.

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((\tan x)^{\frac{1}{x}}\right) =$$

$$\frac{d}{dx}\left((\tan x)^{\frac{1}{x}}\right) = \frac{d}{dx}\left((e^{\ln \tan x})^{\frac{1}{x}}\right)$$

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((\tan x)^{\frac{1}{x}}\right) \ = \ \frac{\mathsf{d}}{\mathsf{d}x}\left(\left(e^{\ln\tan x}\right)^{\frac{1}{x}}\right) = \frac{\mathsf{d}}{\mathsf{d}x}\left(e^{\frac{1}{x}\ln\tan x}\right)$$

$$\frac{d}{dx}\left((\tan x)^{\frac{1}{x}}\right) = \frac{d}{dx}\left((e^{\ln \tan x})^{\frac{1}{x}}\right) = \frac{d}{dx}\left(e^{\frac{1}{x}\ln \tan x}\right)$$
$$= e^{\frac{1}{x}\ln(\tan x)}\frac{d}{dx}\left(\frac{1}{x}\ln(\tan x)\right)$$

$$\frac{d}{dx}\left((\tan x)^{\frac{1}{x}}\right) = \frac{d}{dx}\left((e^{\ln \tan x})^{\frac{1}{x}}\right) = \frac{d}{dx}\left(e^{\frac{1}{x}\ln \tan x}\right)$$

$$= e^{\frac{1}{x}\ln(\tan x)}\frac{d}{dx}\left(\frac{1}{x}\ln(\tan x)\right)$$

$$= (\tan x)^{\frac{1}{x}}\left($$

$$\frac{d}{dx}\left((\tan x)^{\frac{1}{x}}\right) = \frac{d}{dx}\left((e^{\ln \tan x})^{\frac{1}{x}}\right) = \frac{d}{dx}\left(e^{\frac{1}{x}\ln \tan x}\right)$$

$$= e^{\frac{1}{x}\ln(\tan x)}\frac{d}{dx}\left(\frac{1}{x}\ln(\tan x)\right)$$

$$= (\tan x)^{\frac{1}{x}}\left($$

$$\frac{d}{dx}\left((\tan x)^{\frac{1}{x}}\right) = \frac{d}{dx}\left((e^{\ln \tan x})^{\frac{1}{x}}\right) = \frac{d}{dx}\left(e^{\frac{1}{x}\ln \tan x}\right)$$

$$= e^{\frac{1}{x}\ln(\tan x)}\frac{d}{dx}\left(\frac{1}{x}\ln(\tan x)\right)$$

$$= (\tan x)^{\frac{1}{x}}\left(-\frac{1}{x^2}\ln(\tan x) + \frac{1}{x}\frac{(\tan x)'}{\tan x}\right)$$

$$\frac{d}{dx}\left((\tan x)^{\frac{1}{x}}\right) = \frac{d}{dx}\left((e^{\ln \tan x})^{\frac{1}{x}}\right) = \frac{d}{dx}\left(e^{\frac{1}{x}\ln \tan x}\right)$$

$$= e^{\frac{1}{x}\ln(\tan x)}\frac{d}{dx}\left(\frac{1}{x}\ln(\tan x)\right)$$

$$= (\tan x)^{\frac{1}{x}}\left(-\frac{1}{x^2}\ln(\tan x) + \frac{1}{x}\frac{(\tan x)'}{\tan x}\right)$$

$$= (\tan x)^{\frac{1}{x}}\left(-\frac{1}{x^2}\ln(\tan x) + \frac{1}{x}\frac{\frac{1}{\cos^2(x)}}{\frac{\sin x}{\cos x}}\right)$$

$$\frac{d}{dx} \left((\tan x)^{\frac{1}{x}} \right) = \frac{d}{dx} \left((e^{\ln \tan x})^{\frac{1}{x}} \right) = \frac{d}{dx} \left(e^{\frac{1}{x} \ln \tan x} \right) \\
= e^{\frac{1}{x} \ln(\tan x)} \frac{d}{dx} \left(\frac{1}{x} \ln(\tan x) \right) \\
= (\tan x)^{\frac{1}{x}} \left(-\frac{1}{x^2} \ln(\tan x) + \frac{1}{x} \frac{(\tan x)'}{\tan x} \right) \\
= (\tan x)^{\frac{1}{x}} \left(-\frac{1}{x^2} \ln(\tan x) + \frac{1}{x} \frac{\frac{\cos^2(x)}{\cos x}}{\frac{\cos x}{\cos x}} \right) \\
= (\tan x)^{\frac{1}{x}} \left(-\frac{1}{x^2} \ln(\tan x) + \frac{1}{x} \frac{1}{\sin x \cos x} \right)$$

Suppose g(x) and f(x) are differentiable functions and suppose g(x) > 0. Prove that

$$\frac{\mathsf{d}}{\mathsf{d}x}\left(g(x)^{f(x)}\right) = g(x)^{f(x)}\left(f'(x)\ln(g(x)) + f(x)\frac{g'(x)}{g(x)}\right)$$

Proof.

$$\frac{d}{dx} \left(g(x)^{f(x)} \right) = \frac{d}{dx} \left(\left(e^{\ln g(x)} \right)^{f(x)} \right) = \frac{d}{dx} \left(e^{f(x) \ln g(x)} \right)$$

$$= e^{f(x) \ln g(x)} \frac{d}{dx} (f(x) \ln g(x))$$

$$= g(x)^{f(x)} \left(f'(x) \ln(g(x)) + f(x) \frac{g'(x)}{g(x)} \right)$$

as desired.

Ш