Contraction Mapping Theorem

Professor David Barrett Transcribed by Thomas Cohn

10/3/18

 $f: X^{\text{complete metric space}} \to X \Rightarrow f$ has a unique fixed point.

We define $T_{\vec{y}}: \vec{x} \mapsto \vec{x} + \vec{y}$.

From Monday:

Lemma: Given $\vec{0} \in \mathcal{U}^{\text{open}} \subset \mathbb{R}^n$ $g: \mathcal{U} \to \mathbb{R}^n$ is at least C^1 $g(\vec{0}) = \vec{0}$ $Dg(\vec{0}) = \text{Id}$ $0 < \varepsilon < 1$

> Then $\exists \delta > 0$ s.t. $h = g - \text{Id satisfies } (1) ||h(\vec{y}) - h(\vec{a})|| \le \varepsilon ||\vec{y} - \vec{x}|| \text{ for } \vec{x}, \vec{y} \in \mathcal{U}(\vec{0}, \delta)$ $(2) (1 - \varepsilon) ||\vec{y} - \vec{x}|| \le ||g(\vec{y}) - g(\vec{x})|| \le (1 + \varepsilon) ||\vec{y} - \vec{x}||$ $(3) g \text{ is injective on } \mathcal{U}(\vec{0}, \delta).$

Let $f: A^{\text{t.s.}} \to B^{\text{t.s.}}$.

Defn: f is <u>continuous</u> $\leftrightarrow f^{-1}(\mathcal{U})$ open in A when \mathcal{U} open in B. f is open $\leftrightarrow f(\mathcal{U})$ open in B when \mathcal{U} open in A.

Suppose f is a bijection.

Then f is continuous $\leftrightarrow f^{-1}$ is open f is open $\leftrightarrow f^{-1}$ is continuous f is a homeomorphism $\leftrightarrow f$ is open and continuous.

Let $\psi_{\vec{y}}: \vec{x} \mapsto \vec{y} - h(\vec{x}) \ (\vec{x} \in \mathcal{U})$. Pick $0 < \widetilde{\delta} < \delta$. Then $\vec{y} \in \mathcal{U}(\vec{0}, (1 - \varepsilon)\widetilde{\delta})$, $\vec{x} \in \overline{\mathcal{U}(\vec{0}, \widetilde{\delta})} \Rightarrow ||\psi_{\vec{y}}(\vec{x})|| \le ||\vec{y}|| + ||h(\vec{x})|| \le (1 - \varepsilon)\widetilde{\delta} + \varepsilon\widetilde{\delta} = \widetilde{\delta}$. So $\psi_{\vec{y}}: \overline{\mathcal{U}(\vec{0}, \widetilde{\delta})} \to \overline{\mathcal{U}(\vec{0}, \widetilde{\delta})}$ with $||\psi_{\vec{y}}(\vec{x}_1) - \psi_{\vec{y}}(\vec{x}_2)|| = ||h(\vec{x}_2) - h(\vec{x}_1)|| \le \varepsilon ||\vec{x}_2 - \vec{x}_1||$.

Therefore, $\psi_{\vec{y}}: \overline{\mathcal{U}(\vec{0}, \widetilde{\delta})} \to \overline{\mathcal{U}(\vec{0}, \widetilde{\delta})}$ is a contraction. (We use the closure because $\mathcal{U}(\vec{0}, \widetilde{\delta})$ is not a complete metric space, but $\overline{\mathcal{U}(\vec{0}, \widetilde{\delta})}$ is.)

And so, by the contraction mapping theorem, $\exists \vec{x} \in \overline{\mathcal{U}(\vec{0}, \widetilde{\delta})}$ s.t. $\psi_{\vec{y}}(\vec{x}) = \vec{x}$. But $\psi_{\vec{y}}(\vec{x}) = \vec{y} - h(\vec{x}) = \vec{y} - g(\vec{x}) + \vec{x}$. So $\vec{y} = g(\vec{x})$. And thus, $g(\mathcal{U}) \supset g(\mathcal{U}(\vec{0}, \widetilde{\delta})) \supset \mathcal{U}(\vec{0}, (1 - \varepsilon)\widetilde{\delta})$.

Ex: Upgrade to $g(\mathcal{U}(\vec{0}, \delta)) \supset \mathcal{U}(\vec{0}, (1 - \varepsilon)\delta)$.

Conclude: Add $g(\mathcal{U}) \supseteq g(\vec{0}, (1-\varepsilon)\delta)$ to the lemma. In particular, $\vec{0} \in \text{Int } g(\vec{u})$.

Thm: (Cousin of Inverse Function Theorem) Given $E^{\text{open}} \subset \mathbb{R}^n$, $f \in C^1(E, \mathbb{R}^n)$, and $\det Df \neq 0$ on E, then the following are true:

- 1. $\vec{a} \in E \to f(\vec{a}) \in \text{Int } f[E]$.
- 2. f[E] is open in \mathbb{R}^n .
- 3. $f: E \to f[E]$ is an open map.

Cor: f as above and injective $\to f: E \to f[E]$, is a homeomorphism.

Proof:

(1) Apply lemma to $g = Df(\vec{a})^{-1} \circ T_{-f(\vec{a})} \circ f \circ T_{\vec{a}}$. We get $\vec{0} \in \text{Int}(\text{im}(g))$. $\vec{0} = Df(\vec{a})(\vec{0}) \in \text{im}(T_{-\vec{a}} \circ f \circ \mathcal{P}_{\vec{a}})$. We ignore $T_{\vec{a}}$ because it's bijective.

Apply $T_{f(\vec{a})}$. Then $f(\vec{a}) \in \text{Int } (\text{im}(f))$, so $f(\vec{a}) \in \text{Int } (f[E])$.

- (2) Since all $f(\vec{a}) \in \text{Int } (f[E]), f[E]$ is open.
- (3) For $\mathcal{U}^{\text{open}} \subset E$, apply (2) to $f|_{\mathcal{U}}$.

Prop: f as in cor and $f \in C^r \Rightarrow f^{-1} \in C^r$.

The inverse function theorem follows from the lemma, the corollary, and the proposition.

Proof: For
$$r = 1$$
, $g = f^{-1}$, $\vec{b} = f(\vec{a})$, $M = Df(\vec{a})$, we need $\frac{g(\vec{b} + \vec{k}) - g(\vec{b}) - M^{-1}\vec{k}}{\left| |\vec{k}| \right|} \to \vec{0}$ as $\vec{k} \to \vec{0}$.
$$\frac{g(\vec{b} + \vec{k}) - g(\vec{b}) - M^{-1}\vec{k}}{\left| |\vec{k}| \right|} - \frac{\vec{h} - M^{-1}\vec{k}}{\left| |\vec{k}| \right|} = -M^{-1} \left(\frac{\vec{k} - M\vec{h}}{\left| |\vec{k}| \right|} \right) = -M^{-1} \left(\frac{f(\vec{a} + \vec{h}) - f(\vec{a}) - M\vec{h}}{\left| |\vec{k}| \right|} \right) \left(\frac{\left| |\vec{h}| \right|}{\left| |\vec{k}| \right|} \right).$$

 $\left(\frac{||\vec{h}||}{||\vec{k}||}\right) \text{ is bounded for } \left|\left|\vec{k}\right|\right| < \delta \text{ by lemma (2). So it follows that } \vec{k} \to \vec{0} \text{ as } \vec{h} \to \vec{0}. \text{ So } \frac{f(\vec{a}+\vec{h})-f(\vec{a})-M\vec{h}}{||\vec{h}||} \to \vec{0}.$

So $M^{-1}\vec{0} = \vec{0}$. Thus, as $\vec{k} \to \vec{0}$, the other thing goes to $\vec{0}$.

We've now shown that g is differentiable. $Dg(\vec{b}) = Df(g(\vec{b}))^{-1}$. Still need Dg continuous.

$$f[\mathcal{U}] \xrightarrow[\text{cts}]{g} \mathcal{U} \xrightarrow[\text{cts}]{Df} \text{GL} (n, \mathbb{R}) \xrightarrow[\text{Thm 2.14}]{\text{inversion}} \text{GL} (n, \mathbb{R})$$

So Dg is the composition of continuous maps, and is therefore continuous. So Dg is continuous, and we're done for r = 1. For r > 1, recall that $g \in C^r \Leftrightarrow Dg \in Cr - 1$.

Lemma: C^{r-1} mapping closed under composition.

Proof: Will be done on Friday.

Induction on r. Assume that prop holds for C^{r-1} . Then

$$f(\mathcal{U}) \xrightarrow[C^{r-1}]{g} \mathcal{U} \xrightarrow[C^{r-1}]{Df} \operatorname{GL}(n,\mathbb{R}) \xrightarrow[C^{\infty}]{\operatorname{inversion}} \operatorname{GL}(n,\mathbb{R})$$

So $Dq \in C^{r-1}$. \square