Machine Learning

Krystian Mikolajczyk & Deniz Gunduz

Department of Electrical and Electronic Engineering
Imperial College London

Machine Learning - Part 3 Summary

Department of Electrical and Electronic Engineering Imperial College London

- Non-linear feature transform: polynomial, Legendre
- Overfitting/underfitting: match the hypothesis class to data
- Structural risk minimization
- Regularisation: L_2 , L_1 ...
- Validation

Limits of Linear Representations

Data:

Hypothesis:

Non-linear feature transformation

Non-linear features with linear classifier

Feature transformation and linear classifier

$$\mathbf{x} = (x_0, x_1, \dots, x_d) \quad \stackrel{\Phi}{\longrightarrow} \quad \mathbf{z} = (z_0, z_1, \dots, z_{\bar{d}})$$

$$\mathbf{x}_1, \dots, \mathbf{x}_n \quad \stackrel{\Phi}{\longrightarrow} \quad (\mathbf{z}_1, \dots, \mathbf{z}_n)$$

$$y_1, \dots, y_n \quad \stackrel{\Phi}{\longrightarrow} \quad y_1, \dots, y_n$$

$$\text{No weights in } \mathcal{X} \quad \stackrel{\Phi}{\longrightarrow} \quad \mathbf{w} = (w_0, w_1, \dots, w_{\bar{d}})$$

$$g(\mathbf{x}) \quad = \quad \text{sign}(\mathbf{w}^\top \Phi(\mathbf{x}))$$

$$\text{Linear in } \mathbf{z} \text{ space } g(\mathbf{x}) \quad = \quad \text{sign}(\mathbf{w}^\top \mathbf{z})$$

Е

Transformation of Features

$$\mathbf{x} = (x_0, x_1, \dots, x_d) \xrightarrow{\Phi} \mathbf{z} = (z_0, z_1, \dots, z_{\bar{d}})$$
 that is, $\mathbf{z} = \Phi(\mathbf{x})$

Polynomial of degree q (largest power) $\Phi(x) = \sum_{k=0}^{q} a_k x^k$ • Example: $\mathbf{x} = (1, x_1, x_2) \xrightarrow{\Phi} \mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$

Final hypothesis with ERM

$$g(\mathbf{x}) = \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{R}_n(h) \quad g(\mathbf{x}) = \sum_{j=0}^d w_j z_j$$

- classification $g(\Phi(\mathbf{x}), \mathbf{w}) = \operatorname{sign}(\mathbf{w}^{\top} \Phi(\mathbf{x}))$ • regression $g(\Phi(\mathbf{x}), \mathbf{w}) = \mathbf{w}^{\top} \Phi(\mathbf{x})$
- Increased complexity of \mathcal{H} :
 - Original VC dimension: $d_{VC} = d + 1$.
 - New VC dimension: $d_{VC} \leq \bar{d} + 1$.

Learning with noisy data

• Data points $(\mathbf{x} \sim P(\mathbf{x}))$:

$$(\mathbf{x}, y) \sim P(\mathbf{x}, y)$$
, that is $P(\mathbf{x}, y) = P(y|\mathbf{x})P(\mathbf{x})$

• Target with noise (e.g. $\exists \mathbf{x}_a = \mathbf{x}_b : f(\mathbf{x}_a) \neq f(\mathbf{x}_b)$):

$$y = f(\mathbf{x}) + noise$$
 where $f(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$ and $\mathbb{E}[noise|\mathbf{x}] = 0$.

Example: $y = w^{\top}x + N$ where $N \sim \mathcal{N}(0, \Sigma)$ is independent of \mathbf{x} .

• Deterministic target is a special case: noise = 0 and $P(y|\mathbf{x})$ is concentrated on the single point $f(\mathbf{x})$.

Learning problem

Choosing hypothesis class ${\cal H}$

Learning $h(\mathbf{x}) = P(y|\mathbf{x})$.

Target: polynomial of degree q with noise = 0.1 and n = 50 samples

Target: polynomial of degree q with noise = 0.1 and n = 1000 samples

• Target A: q = 1 (linear)

• Target B: q = 2 (quadratic)

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top} \Phi(\mathbf{x}))$$

• Features:

Fitting $f(x) = 0.5(x-1) * (x-2) * (x-3) + \mathcal{N}(0,4)$

- Target function: $f(x) = \sum_{k=0}^{q} a_k x^k + N$ a polynomial of degree q=8 on [0,1] (can fit any 9 data points)
- No noise: N = 0
- Data: n = 4 samples
- Hypothesis class: \mathcal{H}_i of degree q_i ($q \sim$ complexity)

	\mathcal{H}_1	\mathcal{H}_2
	$q_1 = 2$	$q_2 = 3$
\widehat{R}_4	0.0013	0
R	5.97	28.47

• Target function: $f(x) = \sum_{k=0}^{q} a_k x^k + N$ a polynomial of degree q=8 on [0,1] (can fit any 9 data points)

• Noise: $N \sim \mathcal{N}(0, \sigma^2 = 0.25)$

• Data: n = 20 samples

• Hypothesis class: \mathcal{H}_i of degree q_i ($q \sim$ complexity)

	\mathcal{H}_1	\mathcal{H}_2	\mathcal{H}_3
	$q_1 = 2$	$q_2 = 3$	$q_3 = 10$
\widehat{R}_{20}	0.12	0.084	0.022
R	10.66	12.28	79.72

- Target function: $f(x) = \sum_{k=0}^{q} a_k x^k + N$ a polynomial of degree q = 8 on [0,1] (can fit any 9 data points)
- Noise: $N \sim \mathcal{N}(0, \sigma^2 = 0.25)$
- Data: n = 40 samples
- Hypothesis class: \mathcal{H}_i of degree q_i ($q \sim$ complexity)

	\mathcal{H}_1	\mathcal{H}_2	\mathcal{H}_3
	$q_1 = 2$	$q_2 = 3$	$q_3 = 10$
\widehat{R}_{40}	1.56	1.47	0.12
R	7.54	6.30	0.25

• Target function: $f(x) = \sum_{k=0}^{q} a_k x^k + N$ a polynomial of degree q = 8 on [0,1] (can fit any 9 data points)

• Noise: $N \sim \mathcal{N}(0, \sigma^2 = 0.25)$

• Data: n = 100 samples

• Hypothesis class: \mathcal{H}_i of degree q_i ($q \sim$ complexity)

	\mathcal{H}_1	\mathcal{H}_2	\mathcal{H}_3
	$q_1 = 2$	$q_2 = 3$	$q_3 = 10$
\widehat{R}_{100}	3.29	2.76	0.18
R	5.88	4.33	0.03

Learning with noisy data: overfitting

Overfitting

Occurs when $\hat{R}_n(h) \downarrow R(h) \uparrow$, moving away from the target.

Fitting to noise instead of the underlying target function/distribution.

Remember n matters too!

Noise types: stochastic ($N \sim \mathcal{N}(0, \sigma^2)$), deterministic (complexity)

```
deterministic noise ↑ overfitting ↑
stochastic noise ↑ overfitting ↑
number of data points ↑ overfitting ↓
```

Learning with noisy data: deterministic and stochastic noise

Target function: $y = f(\mathbf{x}) + N$ with $N \sim \mathcal{N}(0, \Sigma)$

Deterministic noise–pointwise bias: $f(\mathbf{x}) - h^*(\mathbf{x})$

• h^* is the best approximation to f in \mathcal{H}

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathbb{E}_{\mathsf{x}} \left[\ell(h(\mathbf{x}), f(\mathbf{x})) \right]$$

- ullet deterministic noise depends on ${\cal H}$ and f
- fixed for a given x

Bias-variance decomposition:

$$\mathbb{E}_{\mathcal{D},N}\left[(g^{(\mathcal{D})}(\mathbf{x}) - y)^{2}\right] = \mathbb{E}_{\mathcal{D},N}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) - N(\mathbf{x}))^{2}\right]$$

$$= \underbrace{\mathbb{E}_{\mathcal{D}}\left[(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}))^{2}\right]}_{\text{var}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[(\bar{g}(\mathbf{x}) - f(\mathbf{x}))^{2}\right]}_{\text{bias}} + \underbrace{\mathbb{E}_{N}\left[(N(\mathbf{x}))^{2}\right]}_{\sigma^{2}}$$
deterministic noise

Learning with noisy data: Improving features

$$\mathbf{x} = (1, x_1, x_2) \to \mathcal{H}_1$$

 $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2) \to \mathcal{H}_2$

But why not
$$\mathbf{z} = (1, x_1^2, x_2^2) \rightarrow \mathcal{H}_3$$

or even better
$$\mathbf{z} = (1, x_1^2 + x_2^2) \rightarrow \mathcal{H}_4$$

or simply
$$\mathbf{z} = (x_1^2 + x_2^2 - 0.49) \to \mathcal{H}_5$$

Data snooping

Incorporating prior knowledge is good, but Looking at the data before choosing the model may be risky!

Better features: Legendre polynomials

$$y = f(x) + N = \sum_{q=1}^{Q_f} a_q L_q(x) + N$$

• $L_q(x)$: Legendre polynomials, form an **orthogonal basis** for piecewise smooth functions on [-1,1].

$$L_q(x) = \frac{1}{2^q a!} \frac{d^q}{dx^q} (x^2 - 1)^q \qquad \text{with} \quad \mathbb{E}_x \left[L_q^2(x) \right] = \frac{2}{2q + 1}$$

- $\frac{d^q}{dx^q}$: q-order derivative.
- a_q standard normal, normalized such that $\mathbb{E}_{a,x}\left[f(x)^2\right]=1$.
- N zero-mean Gaussian noise, with variance σ^2
- ullet Hypothesis class of degree Q, $\mathcal{H}_Q = \left\{\sum_{q=0}^Q w_q L_q(x)
 ight\}$

Constraining the hypothesis class → **regularisation!**

Learning with noisy data: Which $\mathcal{H} \sim \Phi(\mathbf{x})$ should we choose?

Given many hypotheses classes $\mathcal{H}_1, \mathcal{H}_2, \dots$

Which \mathcal{H}_i should we choose g from?

Use data to select g!

Structural Risk Minimization

Regularisation

Validation