Álgebra Linear e Geometria Analítica

Agrupamento IV: Mestrado Integrado em Eng. ^a Eletrónica e Telecomunicações | Mestrado Integrado em Eng. ^a de Computadores e Telemática | Licenciatura em Eng. ^a Informática

15 de Janeiro de 2020 Duração: 1h15

3ª prova de avaliação

Justifique devidamente todas as suas respostas.

- 1. Considere a matriz $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ e a transformação linear $\phi : \mathbb{R}^4 \to \mathbb{R}^2$ dada por $\phi(X) = CX$ para todo o $X \in \mathbb{R}^4$.
 - (a) Determine a imagem de ϕ , im(ϕ), e uma sua base.
 - (b) ϕ é sobrejetiva? Justifique.
 - (c) ϕ é injetiva? Justifique.
 - (d) Encontre a matriz G representativa da transformação ϕ relativamente às bases $S = (X_1, X_2, X_3, X_4)$ de \mathbb{R}^4 com $X_1 = (1, 1, 1, 1), X_2 = (0, 1, 1, 1), X_3 = (0, 0, 1, 1), X_4 = (0, 0, 0, 1)$ e $\mathcal{T} = ((1, 1), (0, 1))$ de \mathbb{R}^2 .
 - (e) Considere o vetor $X = 2X_1 X_2 + X_3 2X_4$. Usando a matriz G obtida na alínea anterior, determine $\phi(X)$.

Caso não tenha resolvido a alínea anterior, use a matriz C.

- 2. Considere a cónica de equação $-2x^2 + 4xy 2y^2 + x + y + 1 = 0$. Determine uma sua equação reduzida e classifique-a.
- 3. Classifique as quádricas definidas pelas seguintes equações:

(a)
$$x^2 + 2x = 2y^2 + 4y + z^2$$
;

(b)
$$x^2 - 6x = -y^2 - z^2$$
:

4. Considere a base $\mathcal{B} = ((1,1,1),(0,1,1),(0,0,1))$ de \mathbb{R}^3 e o **isomorfismo** $f:\mathbb{R}^3 \to \mathbb{R}^3$ definido por $f(1,1,1) = (0,1,1), \quad f(0,1,1) = (0,0,1)$ e f(0,0,1) = (1,1,1).

Seja $f \circ f$ a função composta $f \circ f : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $(f \circ f)(x,y,z) = f(f(x,y,z))$. A função composta $f \circ f$ é uma transformação linear.

Determine o núcleo de $f \circ f$.

Questão	1	2	3	4
Cotação	9	6	3	2