MODELAGEM DE DADOS
Prof. Milton Palmeira Santana

- » No desenvolvimento de qualquer software devemos sempre considerar o seu ciclo de vida, que nada mais é do que o início do software através do estudo e do planejamento de sua viabilidade até o seu término na fase de manutenção ou abandono.
- » Também é assim com banco de dados. Pode-se citar seis fases do ciclo de vida de um banco de dados:
 - Estudo inicial do banco de dados: estudo dos requisitos do problema e suas restrições e definição dos objetivos, escopo e fronteiras do banco de dados.
 - Projeto do banco de dados: criação do projeto conceitual, escolha do sistema de gerenciamento do banco de dados (SGBD) que deverá ser usado e criação do projeto lógico e físico do banco de dados.

- Implementação e carga: instalação do SGBD, criação do banco de dados e carregamento ou conversão dos dados que serão armazenados no banco.
- **Teste e avaliação**: realização de testes na base de dados para encontrar possíveis erros.
- Operação: o banco entra em funcionamento nos aplicativos desenvolvidos em paralelo.
- Manutenção e evolução: assim que entra em operação, o banco de dados deve sempre receber manutenção para ficar o máximo possível em plena operação e a evolução do banco de dados acontece assim que novas necessidades do usuário surgem.

- » As manutenções em um banco de dados podem ser:
 - Preventiva: por causa do backup.
 - Corretiva: se houver necessidade de recuperação de informação.
 - Adaptativa: para melhor o desempenho, para acrescentar tabelas ou campos ou para dar permissões de acessos.
- » O foco da modelagem conceitual é detalhar e discutir o funcionamento do negócio do cliente e não o uso de determinada tecnologia, descartando dados de como as informações serão armazenadas e depois recuperadas em banco de dados.

- » Assim que o modelo lógico começar a ser implementado, o modelo conceitual servirá de apoio à construção do esquema do banco de dados.
- » Algumas normas devem ser adotadas durante a criação do modelo lógico do banco de dados:
 - Em casos de relacionamento 1 para N: a chave primária do lado 1 sempre deverá estar na tabela do lado N como uma chave estrangeira.
 - Em casos de relacionamento N para N: o relacionamento passa a ser implementado como tabela própria que possui campos específicos relacionados entre as duas tabelas que deram origem a esta nova tabela, chamada tabela associativa.

DER

As tabelas devem ter o número reduzido de chaves primárias ao mínimo possível, ou seja, sempre que possível, uma tabela deverá ter somente um identificador único, evitando chaves alternativas.

- » Na maioria dos projetos existe uma grande quantidade de tabelas e campos envolvidos. É necessário criar padrões de desenvolvimento para evitar problemas de conflito de nomes de atributos, por exemplo.
- » Em uma modelagem em que dois ou três analistas ou programadores estejam trabalhando, caso não haja um padrão, o mesmo campo pode ser criado e referenciado com nomes diferentes, dificultando uma consulta ou alguma manutenção realizada posteriormente. É necessário criar o dicionário de dados para estabelecer uma padronização e uma documentação sobre cada tabela criada.

- » O dicionário de dados pode ser definido como uma descrição dos dados, ou seja, contém metadados que são detalhes dos dados armazenados na tabela.
- » A seguir, um exemplo de um dicionário de dados de uma tabela funcionário retirado do livro Modelagem de Dados de CLAUDIA WERLICH.

Tab	ela:	funci	onário

	Campo	Descrição	Tipo	Tamanho	
PK	Cd_Func	Código do funcionário	VARCHAR	20	
	Nm_Func	Nome do funcionário	VARCHAR	100	
	CPF_Func	CPF do funcionário	VARCHAR	15	

Dt_Nasc_Func

Id_Cidade

FΚ

CPF_Func CPF do funcionario VARCHAR

Data de nascimento

funcionário

Cidade do funcionário

Date

Inteiro

- » Cada empresa possui o seu próprio padrão de dicionário de dados, mas de um modo geral, eles devem conter:
 - Descrição dos nomes das tabelas, relações e atributos.
 - Tipos dos dados (domínio) e seus respectivos tamanhos.
 - Descrição detalhada das chaves utilizadas.
 - Nomes dos usuários com suas permissões sobre a tabela.
- » Outra forma de criação de um dicionário de dados mais completa de uma tabela funcionário retirado do livro Modelagem de Dados de CLAUDIA WERLICH.

Tabela: funcionário			
Descrição:	Tabela responsável por armazenar as informações dos funcionários da empresa.		
Volume de dados:	Carga inicial de 140 registros e volume mensal estimado em 25% de acréscimo.		
Tempo de retenção:	Permanente.		
Permissões:	Leitura e cravação: funcionário RH nível A – leitura, gravação e alteração – nível A5		

Atributo	Campo	Tipo de dado	Tamanho	Descrição	Restrição
Código	Cd_Func	VARCHAR	20	Código do funcionário	Chave primária
Nome	Nm_Func	VARCHAR	100	Nome do funcionário	Nome completo
CPF	CPF_Func	VARCHAR	15	CPF do funcionário	CPF válido
Data Nasc	Dt_Nasc_ Func	Date	-	Data de nascimento funcionário	Data formato dd/mm/aaaa
Cidade	ld_Cidade	Inteiro	-	Cidade do funcionário	Chave estrangeira da tabela cidade obrigatória

DER – ESTUDO DE CASO

- » Uma imobiliária especializada em aluguel de casas e apartamentos do litoral de Santa Catarina necessita de um software para ajudar no gerenciamento dos aluguéis e oferecer melhores ofertas para seus clientes. Após diversos contatos com a imobiliária, ficou estabelecido que os seguintes requisitos deveriam ser atendidos pelo banco de dados:
 - Para cada imóvel deverá ter registrado: seu tipo (casa ou apartamento), quantidade de quartos e banheiros, se possui vista para o mar e preço da diária.
 - As informações dos proprietários e dos inquilinos deverão ser armazenadas separadamente. Os proprietários podem ter vários imóveis que podem ser alugados para vários inquilinos.

DER – ESTUDO DE CASO

- Além das informações sobre o munícipio ao qual o imóvel pertence, deverá também ser informado o nome da praia mais próxima a ele.
- Os imóveis são todos os itens que compõem a mobília, e os mais verificados são: cama, geladeira, freezer, televisor, arcondicionado, entre outros. Neste caso, é importante que seja informada a quantidade de cada item.
- Deverá ser realizado e registrado um contrato exclusivo para os aluguéis com os inquilinos e os imóveis respectivamente alugados por eles.

DER – ESTUDO DE CASO

- » A partir desses requisitos, podemos identificar primeiro as entidades:
 - Imóvel, tipo de imóvel, cidade, praia, proprietário, inquilino, contrato de aluguel e mobília.
- » Foi-se utilizada a notação Pé de galinha de James Martin para representar os dados graficamente. (WERLICH, 2018)

DER – ESTUDO DE CASO

» A seguir, temos o dicionário de dados da tabela imóvel para análise. (WERLICH, 2018)

Tamanho

20

True / False

150

Tipo

Varchar

Inteiro

Inteiro

Boolean

Varchar

Inteiro

Inteiro

Inteiro

Inteiro

ADONDAGEIN	CIVITOADE RE	LACIONAMENT

Campo

Nrlmóvel

QtdeQuartos

QtdeBanheiros

VistaParaMar?

Endereço

IdTpImóvel

CodCidade

IdPraia

IdProprietário

РΚ

FΚ

FΚ

FΚ

FΚ

ABORDAGEM ENTIDADE RELACIONAMENTO

Ta	be	la:	im	óvel

Descrição

Número do imóvel

Quantidade

de quartos

Quantidade

de banheiros

Tem vista para o mar?

Endereço completo

Tipo do imóvel

(apart, casa)

Cidade

Praia mais próxima

Proprietário

		•

EXERCÍCIO

» Elaborar um DER para uma seguradora de automóveis Entidades: Cliente, Apólice, Carro e Acidentes.

» REQUISITOS:

- Um cliente pode ter várias apólices (no mínimo uma);
- Cada apólice somente dá cobertura a um carro;
- Um carro pode ter zero ou n registros de acidentes a ele.

» ATRIBUTOS:

- Cliente: Número, Nome e Endereço;
- Apólice: Número e Valor;
- Carro: Registro e Marca;
- Acidente: Data, Hora e Local;

REFERÊNCIAS

- BARBOZA, Fabrício Felipe Meleto; FREITAS, Pedro Henrique Chagas. **Modelagem e desenvolvimento de banco de dados**. Porto Alegre: SAGAH, 2018.
- WERLICH, Claudia. **Modelagem de dados**. Londrina: Editora e Distribuidora Educacional S.A, 2018.
- MANZANO, Jose Augusto Navarro Garcia. **Microsoft SQL Server 2016 Express Edition Interativo**. [S. I.]: ÉRICA, 2016.
- MACHADO, Felipe Nery Rodrigues; ABREU, Mauricio Pereira de. **Projeto de Banco de Dados**: Uma Visão Prática Edição Revisada e Ampliada. [*S. I.*]: ÉRICA, 2009.

REFERÊNCIAS

RAMAKRISHNAN, Raghu; GEHRKE, Johannes. Sistemas de Gerenciamento de Bancos de Dados. [S. I.]: Amgh Editora, 2011.

ALVES, WILLIAM PEREIRA. Banco de Dados. São Paulo: Saraiva, 2014

CARDOSO, VIRGÍNIA M.; CARDOSO, GISELLE CRISTINA. SISTEMA DE BANCO DE DADOS. São Paulo: Saraiva, 2013

