_

Table 1: Relative Average Bias of correctly specified Regression Parameters (Study 2)

Note. This figure shows the

Table 2: Absolute Average Bias of Regression Parameters not Present in the Population Model (Study 2)

	ı	qSAM			ISAM ML			ISAM ULS			SEM				
		0.07	-0.02	-0.04	0.14	0.05	0.01	0.13	0.05	0.02	0.09	-0.01	-0.02	- f4~f3	
	= 0.3	0.10	0.04	0.07	0.14	0.03	0.07	0.13	0.03	0.02	0.82	0.08	0.10	- f3~f2	
₩ M		0.08	0.04	0.01	0.08	0.04	0.01	0.09	0.04	0.00	0.05	0.04	0.01	- f3~f1	
snoueboxe														=	
gen	0.5	0.01	-0.03	-0.03	0.06	0.05	0.04	0.07	0.05	0.05	0.03	0.01	0.01	- f4~f3	
l ox		0.23	0.09	0.09	0.22	0.09	0.09	0.22	0.09	0.09	0.30	0.12	0.11	- f3~f2	
∞		0.10	0.03	0.00	0.10	0.03	0.00	0.10	0.03	-0.01	0.10	0.03	0.00	- f3~f1	
-opua	_	-0.07	0.02	-0.02	-0.02	0.05	0.09	-0.01	0.06	0.10	-0.04	0.05	0.04	- f4~f3	
e	= 0.7	0.17	0.09	0.09	0.17	0.09	0.09	0.17	0.09	0.09	0.18	0.10	0.10	- f3~f2	
	=	0.02	-0.01	0.00	0.02	-0.01	0.00	0.01	-0.02	-0.00	0.02	-0.01	0.00	- f3~f1	
	I _ I	0.02	0.11	0.07	0.09	0.13	0.09	0.08	0.13	0.09	0.07	0.12	0.09	- f4~f3	
	0.3	0.07	0.06	0.02	0.07	0.06	0.02	0.07	0.06	0.02	0.06	0.06	0.02	- f3~f2	
		0.11	0.01	0.00	0.10	0.01	0.01	0.10	0.02	0.00	0.09	0.02	0.00	- f3~f1	
MP		2.22	0.00	0.05	0.10	0.40	0.10	0.40	0.40	0.44	0.44	0.40	2.22		
snouagop	= 0.5	0.09 0.02	0.09	0.05	0.12	0.12	0.10	0.13	0.13 0.01	0.11	0.11	0.12 0.01	0.09 0.01	- f4~f3 - f3~f2	
ger		0.02	-0.01	0.01 0.01	0.03	0.01 -0.01	0.01 0.02	0.03 0.02	-0.02	0.01 0.01	0.01		0.01	- f3~f1	Bias
endo	Н	0.03	-0.01	0.01	0.03	-0.01	0.02	0.02	-0.02	0.01	0.03	-0.01	0.01		0.50
Φ	0.7	-0.07	0.03	0.03	-0.04	0.09	0.13	-0.04	0.10	0.14	-0.04	0.09	0.11	- f4~f3	
	0	-0.10	-0.00	0.00	-0.10	-0.00	0.00	-0.10	-0.01	-0.00	-0.10	-0.00	0.00	- f3~f2	0.25
	-	-0.04	-0.04	-0.00	-0.05	-0.04	-0.00	-0.05	-0.06	-0.01	-0.05	-0.05	-0.01	- f3~f1	
	ا _س ا	-0.11	-0.14	-0.10	0.21	-0.15	-0.10	0.19	-0.15	-0.11	-0.14	-0.21	-0.13	- f4~f3	0.00
	= 0.3	0.16	0.03	0.08	0.17	0.03	0.08	0.16	0.03	0.08	0.65	0.07	0.11	- f3~f2	
	-	0.02	0.02	0.00	0.02	0.02	0.00	0.01	0.02	0.00	0.05	0.02	-0.00	- f3~f1	-0.25
exogenous MP		-0.08	-0.08	-0.09	-0.08	-0.08	-0.09	-0.06	-0.09	-0.09	-0.07	-0.12	-0.11	- f4~f3	0.20
ons	= 0.5	0.11	0.13	0.10	0.11	0.13	0.10	0.11	0.13	0.10	0.13	0.19	0.13	- f3~f2	-0.50
ger		0.09	0.01	0.00	0.09	0.01	0.00	0.08	0.02	0.00	0.09	0.01	0.00	- f3~f1	-0.50
e e														_	
	0.7	-0.07	-0.05	-0.07	-0.07	-0.05	-0.07	-0.06	-0.06	-0.07	-0.06	-0.06	-0.07	- f4~f3	
	<u> </u>	0.10	0.12	0.10	0.10	0.12	0.10	0.10	0.12	0.10	0.10	0.13	0.11	- f3~f2	
		0.07	0.00	0.00	0.07	0.00	0.00	0.07	0.01	0.00	0.07	0.00	0.00	- f3~f1	
	0.3	-0.14	-0.06	-0.01	-0.14	-0.05	-0.01	-0.15	-0.06	-0.01	-0.30	-0.05	-0.01	- f4~f3	
	0	-0.06	-0.01	0.00	-0.07	-0.02	0.00	-0.08	-0.02	0.00	-0.33	-0.02	0.00	- f3~f2	
Ξ	-	-0.07	-0.03	-0.01	-0.07	-0.04	-0.01	-0.06	-0.02	-0.01	-0.02	-0.04	-0.01	- f3~f1	
Jen 1		-0.09	0.03	-0.01	-0.08	0.03	-0.01	-0.10	0.03	-0.01	-0.08	0.03	-0.01	- f4~f3	
rem	0.5	0.07	0.03	0.01	0.06	0.03	0.01	0.07	0.03	0.01	0.05	0.03	0.01	- f3~f2	
measurement MP		0.07	0.00	0.01	0.06	0.00	0.01	0.08	0.01	0.01	0.06	0.00	0.01	- f3~f1	
													2.21		
2	0.7	-0.02	0.01	-0.01	-0.02	0.01	-0.01	-0.02	0.01	-0.01	-0.02	0.01	-0.01	- f4~f3	
	<u>.</u>	0.07 0.07	0.02 0.01	0.01 0.01	0.07 0.07	0.02 0.00	0.01 0.01	0.08 0.08	0.02 0.01	0.01 0.01	0.07 0.07	0.02 0.00	0.01 0.01	- f3~f2 - f3~f1	
						-				-			-	13~11	
		100	400	6400	100	400	6400	100	400	6400	100	400	6400		

Note. This figure shows the

Table 3: Absolute Average Bias of Regression Parameters (Study 1)

			gSAM		ISAM_ML			ISAM_ULS			SEM				
MP	r = 0.3	0.05 -0.02 0.02 0.13 -0.20 -0.01 -0.18 0.08	0.02 0.01 -0.01 0.05 -0.05 0.05 -0.03	0.03 0.02 0.00 -0.00 -0.01 0.08 -0.04 -0.04	0.05 -0.01 -0.00 0.13 -0.20 -0.01 -0.19 0.08	0.01 0.01 -0.01 0.04 -0.05 0.05 -0.03	0.03 0.02 0.00 -0.00 -0.01 0.08 -0.04 -0.01	0.08 -0.03 0.09 0.15 -0.24 0.00 -0.19	0.02 0.02 -0.01 0.06 -0.05 0.05 -0.03 0.00	0.03 0.02 0.00 -0.00 -0.01 0.08 -0.04 -0.01		0.03 0.02 -0.00 0.07 -0.05 0.05 -0.02	0.03 0.02 0.00 -0.00 -0.01 0.08 -0.04 -0.01	15~14 15~13 15~11 14~12 14~11 13~14 13~12 13~11	
lirectional path M	r = 0.5	-0.19 0.02 -0.04 -0.01 -0.05 0.16 -0.02 -0.01	-0.07 0.04 0.07 0.01 0.04 0.04 0.03	-0.01 -0.01 0.02 0.01 0.01 0.10 -0.03 -0.01	-0.19 0.02 -0.04 -0.00 -0.05 0.16 -0.02 -0.01	-0.07 0.04 0.07 0.01 0.04 0.04 0.03 0.07	-0.01 -0.01 0.02 0.01 0.01 -0.10 -0.03 -0.01	-0.19 0.03 -0.04 -0.01 -0.05 0.16 -0.01	-0.07 0.03 0.08 0.01 0.04 0.04 0.02	-0.01 -0.01 0.02 0.01 0.01 0.10 -0.03 -0.01	-0.20 0.03 -0.04 -0.02 -0.04 0.16 -0.02 -0.01	-0.07 0.04 0.08 0.01 0.04 0.04 0.03	-0.01 -0.01 0.02 0.01 0.01 0.10 -0.03 -0.01	15~14 15~13 15~11 14~12 14~11 13~14 13~12 13~11	
piq	r = 0.7	-0.18 -0.04 -0.01 0.01 -0.02 0.13 -0.03 -0.01	-0.04 0.04 0.05 0.01 0.04 0.04 0.01	-0.01 -0.00 0.02 0.01 0.02 0.10 -0.03 -0.01	-0.18 -0.04 -0.01 0.01 -0.02 0.13 -0.03	-0.04 0.04 0.05 0.01 0.04 0.04 0.01	-0.01 -0.00 0.02 0.01 0.02 0.10 -0.03 -0.01	-0.18 -0.04 -0.01 0.02 -0.03 -0.13 -0.03 -0.01	-0.05 0.03 0.05 0.01 0.04 0.04 0.01	-0.01 -0.00 0.02 0.01 0.02 0.10 -0.03 -0.01	-0.18 -0.04 -0.01 0.01 -0.02 0.12 -0.03 -0.01	-0.04 0.04 0.05 0.01 0.04 0.04 0.01	-0.01 -0.00 0.02 0.01 0.02 0.10 -0.03 -0.01	15~14 15~13 15~11 14~12 14~11 13~14 13~12 13~11	
pat	r = 0.3	-0.16 -0.08 -0.08 -0.34 -0.30 -0.01 -0.11 -0.09	-0.08 -0.09 -0.01 -0.06 -0.07 0.05 -0.12 -0.09	-0.06 -0.07 -0.07 -0.07 -0.07 -0.03 -0.08	-0.16 -0.08 -0.08 -0.34 -0.30 -0.01 -0.11 -0.09	-0.08 -0.09 -0.01 -0.06 -0.07 -0.05 -0.12 -0.09	-0.06 -0.07 -0.07 -0.07 -0.07 -0.03 -0.08 -0.08	-0.15 -0.05 -0.06 -0.34 -0.31 -0.01 -0.11 -0.10	-0.08 -0.09 -0.01 -0.06 -0.07 -0.05 -0.12 -0.09	-0.06 -0.07 -0.07 -0.07 -0.07 -0.03 -0.08 -0.07				15~14 15~13 15~11 14~12 14~11 13~14 13~12 13~11	
rrors & reversed	r = 0.5	-0.04 -0.09 -0.13 0.01 -0.05 -0.00 -0.06 -0.05	-0.04 -0.08 -0.03 -0.06 -0.02 -0.09 -0.12 -0.01	-0.04 -0.06 -0.06 -0.04 -0.04 -0.05 -0.06 -0.04	-0.04 -0.09 -0.13 -0.01 -0.05 -0.00 -0.06	-0.04 -0.08 -0.03 -0.06 -0.02 -0.09 -0.12 -0.01	-0.04 -0.05 -0.05 -0.04 -0.04 -0.06 -0.06	-0.05 -0.10 -0.13 -0.01 -0.05 -0.00 -0.06 -0.05	-0.04 -0.08 -0.03 -0.06 -0.02 -0.09 -0.12 -0.01	-0.04 -0.05 -0.05 -0.04 -0.04 -0.05 -0.06 -0.06				15-14 15-13 15-11 14-12 14-11 13-14 13-12	Bias
correlated	r = 0.7	-0.07 -0.08 -0.01 -0.04 -0.08 -0.03 -0.01	-0.03 -0.03 -0.01 -0.00 -0.03 -0.09 -0.05	-0.02 -0.03 -0.02 -0.01 -0.01 -0.08 -0.04 -0.04	-0.07 -0.08 -0.01 0.04 -0.08 -0.03 0.01	-0.03 -0.03 0.01 -0.00 -0.03 -0.09 -0.05	-0.02 -0.03 -0.02 -0.01 -0.01 -0.08 -0.04 -0.01	-0.07 -0.08 -0.01 0.05 -0.08 -0.03 0.01	-0.03 -0.03 0.01 -0.00 -0.03 -0.09 -0.05	-0.02 -0.03 -0.02 -0.01 -0.01 -0.08 -0.04 -0.01	-0.17 -0.03 -0.02 -0.13 -0.08 -0.03 -0.13 -0.04	0.02 -0.09 0.04 -0.02 0.00 0.09 -0.07	-0.02 -0.03 -0.02 -0.01 -0.00 0.08 -0.04 -0.01	15-14 15-13 15-11 14-12 14-11 13-14 13-12 13-11	0.50 0.25
	r= 0.3	0.03 0.06 -0.13 0.02 -0.16 -0.07 -0.03 0.18	0.07 0.01 0.08 -0.05 0.16 0.07 0.19 -0.14	0.20 -0.06 0.14 -0.00 0.03 0.13 0.14 -0.03	0.03 0.07 -0.13 0.01 -0.16 -0.07 -0.03 0.18	0.07 0.01 0.08 -0.05 0.16 0.06 0.19 -0.14	0.20 -0.05 0.14 0.00 0.03 0.12 0.14 -0.04	0.03 0.06 -0.14 0.02 -0.16 -0.07 -0.02 0.18	0.06 -0.09 -0.05 0.16 0.07 0.17 -0.14	0.20 -0.06 0.13 -0.01 0.04 0.13 0.14 -0.03	-0.05 0.09 -0.23 0.03 -0.32 -0.04 0.16 0.19	0.04 0.03 0.15 -0.06 0.21 0.13 0.23 -0.17	0.35 -0.10 0.19 -0.02 0.02 0.20 0.21 -0.06	15~14 15~13 15~11 14~12 14~11 13~14 13~12 13~11	0.00
oss loadings MP	r= 0.5	-0.03 0.01 0.10 0.09 -0.02 0.09 0.19 -0.11	0.14 -0.05 0.09 -0.02 0.07 0.21 0.17 -0.03	0.12 -0.03 0.13 0.01 0.02 0.14 0.12 -0.02	-0.02 0.01 0.10 0.09 -0.02 0.09 0.20 -0.11	0.14 -0.05 0.09 -0.01 0.07 0.21 0.16 -0.03	0.12 -0.03 0.13 0.01 0.02 0.14 0.12 -0.03	-0.03 0.01 0.12 0.09 -0.02 0.09 0.19 -0.10	0.15 -0.06 0.09 -0.02 0.07 0.21 -0.03	0.12 -0.03 0.13 0.00 0.00 0.02 0.14 0.12 -0.02	-0.10 -0.10 0.20 0.08 -0.09 0.16 0.71 -0.01	0.20 -0.08 0.11 0.01 0.06 0.23 0.28 -0.04	0.19 -0.06 0.17 0.01 0.02 0.19 0.17 -0.04	15~14 15~13 15~11 14~12 14~11 13~14 13~12 13~11	-0.50
SUD C	r= 0.7	0.06 -0.08 0.01 0.04 0.03 0.16 -0.00 -0.13	0.09 -0.00 0.08 0.01 0.10 0.10 0.07 -0.07	0.11 -0.03 0.11 0.01 0.01 0.10 0.09 -0.02	0.06 -0.08 0.01 0.04 0.03 -0.16 -0.00 -0.13	0.09 -0.00 0.08 0.01 0.10 0.10 0.07 -0.07	0.11 -0.03 0.11 0.01 0.01 0.10 0.10 0.09 -0.02	0.06 -0.08 0.01 0.04 0.03 0.16 -0.00 -0.13	0.09 -0.01 0.08 0.00 0.10 0.10 0.07 -0.07	0.11 -0.03 0.11 0.01 0.01 0.10 0.10 -0.02	0.08 -0.09 0.02 0.04 0.03 0.20 0.00 -0.13	0.10 -0.01 0.10 0.01 0.11 0.12 0.09 -0.07	0.14 -0.04 0.12 0.01 0.01 0.12 0.10 -0.03	15~14 15~13 15~11 14~12 14~11 13~14 13~12 13~11	
	r= 0.3	0.11 0.01 -0.12 -0.06 -0.16 -0.04 0.11 -0.06	-0.00 0.05 0.02 0.07 -0.05 0.07 -0.10 -0.08	-0.01 0.00 -0.01 0.00 0.02 -0.00 -0.01 -0.01	0.11 0.00 -0.12 -0.06 -0.17 -0.04 0.11 -0.06	-0.00 0.05 0.02 0.07 -0.07 -0.09 -0.09	-0.01 0.00 -0.01 0.00 0.02 -0.00 -0.01 -0.01	0.10 0.03 -0.12 -0.05 -0.17 -0.04 0.12 -0.06	-0.01 0.05 0.02 0.07 -0.05 0.08 -0.10 -0.08	-0.01 0.00 -0.01 0.00 0.00 -0.00 -0.01 -0.01	-0.13 -0.13 -0.16 -0.16 -0.36 -0.05 0.20 0.01	-0.01 0.06 0.02 0.08 -0.05 0.07 -0.09	-0.01 0.00 -0.01 0.00 0.02 -0.00 -0.01	15-14 15-13 15-11 14-12 14-11 13-14 13-12 13-11	
neasurement MP	r= 0.5	0.07 -0.03 -0.21 0.01 -0.03 0.08 -0.06	0.02 -0.03 0.01 -0.01 0.02 0.05 -0.08 0.02	-0.00 0.01 -0.00 0.00 0.02 -0.01 -0.02 -0.01	0.07 -0.03 -0.21 0.01 -0.03 0.08 -0.06 -0.02	0.02 -0.03 0.01 -0.01 0.05 -0.08 0.02	-0.00 0.01 -0.00 0.00 0.02 -0.01 -0.02 -0.01	0.07 -0.03 -0.22 0.03 -0.02 0.08 -0.05 -0.05	0.02 -0.03 0.01 -0.00 0.02 0.05 -0.08 0.02	-0.00 0.01 -0.00 0.00 0.02 -0.01 -0.02 -0.01	0.07 -0.03 -0.21 0.02 -0.04 0.09 -0.06	0.02 -0.03 0.01 -0.00 0.02 0.05 -0.08 0.02	-0.00 0.01 -0.00 0.00 0.02 -0.01 -0.02	15~14 15~13 15~11 14~12 14~11 13~14 13~12	
n on	r = 0.7	-0.06 0.01 -0.10 0.03 0.07 -0.07 -0.05 -0.09	0.02 0.06 -0.01 -0.01 -0.00 0.07 -0.06 -0.04	-0.00 0.02 0.00 0.00 0.00 -0.00 -0.00 -0.01	-0.07 0.00 -0.09 0.03 0.07 -0.07 -0.05 -0.09	0.02 0.06 -0.00 -0.01 -0.00 0.07 -0.06 -0.04	-0.00 0.02 0.00 0.00 0.00 -0.00 -0.01 -0.00	-0.05 0.01 -0.10 0.04 0.07 -0.07 -0.04 -0.09	0.02 0.07 -0.01 -0.01 -0.00 0.07 -0.06 -0.04	-0.00 0.02 0.00 0.00 0.00 -0.00 -0.01	-0.07 0.01 -0.09 0.03 0.07 -0.06 -0.05 -0.09	0.02 0.06 -0.01 -0.01 -0.00 0.07 -0.06 -0.04	-0.00 0.02 0.00 0.00 0.00 -0.00 -0.01	15~14 15~13 15~13 15~11 14~12 14~11 13~14 13~12 13~11	
		100	-0.04 400	-0,00 6400	-0.09 100	-0,04 400	-0.00 6400	100	-0.04 400	-0.00 6400	-0.09 100	-0,04 400	-0.00 6400	13~[1	

Note. This figure shows the average absolute bias values for each parameter in the different conditions of simulation study 1.

Table 4: Absolute Average Bias of correctly specified Regression Parameters (Study 3)

Note. This figure shows the