Gov 51: Interactions with Continuous Variables

Matthew Blackwell

Harvard University

Social pressure experiment

- We'll look at the Michigan social pressure get-out-the-vote experiment.
- · Load the data and create an age variable:

Heterogeneous effects

- · Last time:
 - Effect of the Neighbors mailer differ for previous voters vs nonvoters?
 - · Used an interaction term to assess effect heterogeneity between groups.
- · How does the effect of the Neighbors mailer varies by age?
 - · Not just two groups, but a continuum of possible age values.
- Remarkably, the same interaction term will work here too!

$$Y_i = \alpha + \beta_1 \text{age}_i + \beta_2 \text{neighbors}_i + \beta_3 (\text{age}_i \times \text{neighbors}_i) + \epsilon_i$$

Predicted values from non-interacted model

• Let
$$X_i= {\rm age}_i$$
 and $Z_i= {\rm neighbors}_i$:
$$\widehat{Y}_i=\widehat{\alpha}+\widehat{\beta}_1X_i+\widehat{\beta}_2Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 25$	$\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2$
26 year-old ($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 26$	$\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2$

· Effect of Neighbors for a 25 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2$$

• Effect of Neighbors for a 26 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2) - (\widehat{\alpha} + \widehat{\beta}_1 26) = \widehat{\beta}_2$$

Predicted values from interacted model

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

	Control ($Z_i = 0$)	Neighbors ($Z_i = 1$)
25 year-old ($X_i = 25$)	$\widehat{\alpha} + \widehat{\beta}_1 25$	$\widehat{\alpha} + \widehat{\beta}_1 25 + \widehat{\beta}_2 + \widehat{\beta}_3 25$
26 year-old ($X_i = 26$)	$\widehat{\alpha} + \widehat{\beta}_1 26$	$\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2 + \widehat{\beta}_3 26$

• Effect of Neighbors for a 25 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 \times 25 + \widehat{\beta}_2 + \widehat{\beta}_3 25) - (\widehat{\alpha} + \widehat{\beta}_1 25) = \widehat{\beta}_2 + \widehat{\beta}_3 25$$

• Effect of Neighbors for a 26 year-old:

$$(\widehat{\alpha} + \widehat{\beta}_1 26 + \widehat{\beta}_2 + \widehat{\beta}_3 26) - (\widehat{\alpha} + \widehat{\beta}_1 26) = \widehat{\beta}_2 + \widehat{\beta}_3 26$$

• Effect of Neighbors for a x year-old: $\widehat{eta}_2 + \widehat{eta}_3 x$

Visualizing the interaction

Interpreting coefficients

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 \mathrm{age}_i + \widehat{\beta}_2 \mathrm{neighbors}_i + \widehat{\beta}_3 (\mathrm{age}_i \times \mathrm{neighbors}_i)$$

- $\widehat{\alpha}$: average turnout for 0 year-olds in the control group.
- $\widehat{\beta}_1$: slope of regression line for age in the control group.
- $\widehat{\beta}_2$: average effect of Neighbors mailer for 0 year-olds.
- \widehat{eta}_3 : change in the **effect** of the Neighbors mailer for a 1-year \uparrow in age.
 - Effect for x year-olds: $\widehat{\beta}_2 + \widehat{\beta}_3 x$
 - Effect for (x + 1) year-olds: $\widehat{\beta}_2 + \widehat{\beta}_3(x + 1)$
 - Change in effect: $\widehat{\boldsymbol{\beta}}_3$

Interactions in R

You can use the: way to create interaction terms like last time:

```
## (Intercept) age neighbors
## 0.097473 0.003998 0.049829
## age:neighbors
## 0.000628
```

 Or you can use the var1 * var2 shortcut, which will add both variable and their interaction:

```
int.fit2 <- lm(primary2006 ~ age * neighbors, data = social.neighbors) coef(int.fit2)
```

```
## (Intercept) age neighbors
## 0.097473 0.003998 0.049829
## age:neighbors
## 0.000628
```

General interpretation of interactions

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- $\widehat{\alpha}$: average outcome when X_i and Z_i are 0.
- \cdot $\widehat{\beta}_1$: average change in Y_i of a one-unit change in X_i when $Z_i=0$
- $\widehat{\beta}_2$: average change in Y_i of a one-unit change in Z_i when $X_i=0$
- $\widehat{\beta}_3$ has two equivalent interpretations:
 - Change in the effect/slope of X_i for a one-unit change in Z_i
 - Change in the effect/slope of Z_i for a one-unit change in X_i
- These hold no matter what types of variables they are!