Unidad VI: Funciones y Cardinalidad

Conjuntos no enumerables

Clase 18 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Conjuntos no enumerables

 $\cite{Existen conjuntos no enumerables?}$

Teorema:

 \mathbb{R} **no** es enumerable.

\mathbb{R} no es enumerable

- Como $\mathbb{R} \approx (0,1)$ entonces basta probar que (0,1) no es enumerable.
 - No existe biyección $f: \mathbb{N} \to (0,1)$.
- Cada real $r \in (0,1)$ se puede representar con una **secuencia infinita** de dígitos entre $\{0,\ldots,9\}$.
 - Esto es la representación decimal de r.

$$r = 0. d_0 d_1 d_2 d_3 \cdots$$

Ejemplos:

$$\frac{1}{2} = 0.50000 \cdots \frac{1}{3} = 0.33333 \cdots \frac{1}{4} = 0.25000 \cdots$$
$$\frac{\pi}{4} = 0.78539 \cdots \frac{e}{4} = 0.67957 \cdots$$

Algunos reales en (0,1) tienen dos posibles representaciones decimales. Por ejemplo:

$$\frac{1}{4}$$
 = 0. 2 5 0 0 0 ··· = 0. 2 4 9 9 9 ···

• En este caso escogemos la representación que termina con 0's.

\mathbb{R} no es enumerable

Por contradicción, supongamos que existe una biyección $f: \mathbb{N} \to (0,1)$.

Luego, existe una enumeración $(r_i)_{i \in \mathbb{N}}$ de (0,1):

- La secuencia no tiene repeticiones.
- **Todos** los reales en (0,1) aparecen en la secuencia.

Reales	Representación decimal									
<i>r</i> ₀	0.	d_{00}	d_{01}	d_{02}	d_{03}	d_{04}	d_{05}			
r_1	0.	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			
<i>r</i> ₂	0.	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}	d_{25}			
<i>r</i> ₃	0.	d_{30}	d_{31}	d_{32}	d ₃₃	d_{34}	d_{35}			
<i>r</i> ₄	0.	d_{40}	d_{41}	d_{42}	d_{43}	d ₄₄	d_{45}	•••		
<i>r</i> ₅	0.	d_{50}	d_{51}	d_{52}	d_{53}	d_{54}	d_{55}	•••		
:					÷			٠.		

 \mathbb{R} no es enumerable

Reales	Representación decimal									
<i>r</i> ₀	0.	d_{00}	d ₀₁	d ₀₂	d ₀₃	d ₀₄	d ₀₅	•••		
r_1	0.	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}	•••		
<i>r</i> ₂	0.	d_{20}	d_{21}	d ₂₂	d_{23}	d_{24}	d_{25}	•••		
<i>r</i> ₃	0.	d_{30}	d_{31}	d ₃₂	d ₃₃	d_{34}	d_{35}	•••		
<i>r</i> ₄	0.	d_{40}	d_{41}	<i>d</i> ₄₂	d ₄₃	d ₄₄	d_{45}	•••		
<i>r</i> ₅	0.	d_{50}	d_{51}	d_{52}	d_{53}	d_{54}	d ₅₅			
:					÷			٠.		

Para cada $i \ge 0$, definamos:

$$e_i = \begin{cases} 4 & d_{ii} \neq 4 \\ 5 & d_{ii} = 4 \end{cases}$$

Defina el número real s = 0. e_0 e_1 e_2 e_3 ...

¿Puede aparecer s en la lista r_0, r_1, r_2, \dots ?

\mathbb{R} no es enumerable

Para cada $i \ge 0$, definamos:

$$e_i = \begin{cases} 4 & d_{ii} \neq 4 \\ 5 & d_{ii} = 4 \end{cases}$$

Defina el número real s = 0. e_0 e_1 e_2 e_3 ...

Tenemos que:

- $s \neq r_0$ ya que difieren en el 0-ésimo dígito.
- $s \neq r_1$ ya que difieren en el 1-ésimo dígito.
- **.**..

Para cada $i \ge 0$, tenemos $s \ne r_i$ ya que difieren en el i-ésimo dígito.

Encontramos un real $s \in (0,1)$ que **no** aparece en la enumeración $(r_i)_{i \in \mathbb{N}}$. Esto es una contradicción.