Predicting Future Ocean Acidification

Importing Data and Packages

```
In [2]:
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         pd.plotting.register_matplotlib_converters()
         import matplotlib.dates as mdates
         from sklearn.feature selection import chi2
         from sklearn.model_selection import train_test_split
         import numpy as np
         from scipy import stats
         from statsmodels.tsa.vector_ar.vecm import coint_johansen
         from statsmodels.tsa.vector_ar.var_model import VAR
         from statsmodels.tsa.stattools import adfuller
         from statsmodels.tools.eval measures import rmse, aic
         import matplotlib.pyplot as plt
         %matplotlib inline
         from statsmodels.stats.stattools import durbin watson
In [3]:
        # readina CSV
         df1 = pd.read_csv(r"C:\Users\datre\OneDrive\Documents\Graduate School\Spring '21\Project\2013_2014.csv")
In [4]: # Looking at data types and numbers
         print(df1.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4123 entries, 0 to 4122
        Data columns (total 26 columns):
                                       Non-Null Count Dtype
         # Column
             Mooring Name
                                        4123 non-null
                                                       object
             Latitude
                                       4123 non-null
                                                       float64
         1
                                                      float64
             Longitude
                                       4123 non-null
                                       4123 non-null object
         4
             Time
                                       4123 non-null
                                                       object
             xCO2 SW (wet) (umol/mol) 4123 non-null
                                                       float64
             CO2 SW QF
                                       4123 non-null
                                                       int64
                                                       float64
         7
             H2O SW (mmol/mol)
                                       4123 non-null
             xCO2 Air (wet) (umol/mol) 4123 non-null
                                                       float64
             CO2 Air QF
                                        4123 non-null
                                                       int64
         10 H2O Air (mmol/mol)
                                       4123 non-null
                                                      float64
         11 Licor Atm Pressure (hPa) 4123 non-null
                                                       float64
         12 Licor Temp (C)
                                       4123 non-null
                                                       float64
         13 MAPCO2 %02
                                       4123 non-null
                                                      float64
         14 SST (C)
                                       4123 non-null
                                                       float64
                                       4123 non-null
         15 Salinity
                                                       float64
         16 xCO2 SW (dry) (umol/mol) 4123 non-null
                                                       float64
         17 xCO2 Air (dry) (umol/mol) 4123 non-null
                                                       float64
         18 fCO2 SW (sat) uatm
                                        4123 non-null
                                                       float64
         19 fCO2 Air (sat) uatm
                                        4123 non-null
                                                       float64
         20 dfC02
                                        4123 non-null
                                                       float64
                                       4123 non-null
                                                       float64
         21 pCO2 SW (sat) uatm
                                        4123 non-null
         22 pCO2 Air (sat) uatm
                                                       float64
         23 dpC02
                                        4123 non-null
                                                       float64
         24 pH (Total Scale)
                                        4123 non-null
                                                       float64
         25 pH QF
                                        4123 non-null
        dtypes: float64(20), int64(3), object(3)
        memory usage: 837.6+ KB
        None
        # Removing features where every instance has the same thing
         # Data was taken from the same mooring, with the same latitude and longitude
         del df1["Mooring Name"]
         del df1["Latitude"]
         del df1["Longitude"]
In [5]:
         # creating one datetime column with seperate date and time columns
         df1["Datetime"] = pd.to_datetime(df1["Date"] + " " + df1["Time"])
         # setting index as datetime column
In [6]:
         df1 = df1.set_index("Datetime")
```

localhost:8889/lab 1/33

In [7]: # grouping data by day versus by hour
 df1 = df1.groupby(pd.Grouper(freq='1D')).mean()
 df1.head(3)

Out[7]:

•	Latitude	Longitude	xCO2 SW (wet) (umol/mol)	CO2 SW QF	H2O SW (mmol/mol)	xCO2 Air (wet) (umol/mol)	CO2 Air QF	H2O Air (mmol/mol)	Licor Atm Pressure (hPa)	Licor Temp (C)	 xCO2 SW (dry) (umol/mol)	x ⁽
Datetime												
2013-04- 24	7.464	151.898	397.9250	2.0	9.56000	394.375	2.0	8.70500	1006.9750	30.6750	 401.7750	
2013-04- 25	7.464	151.898	396.5750	2.0	10.11625	393.775	2.0	9.10875	1006.8125	30.9125	 400.6250	
2013-04- 26	7.464	151.898	398.0875	2.0	10.34625	393.600	2.0	9.18375	1006.7750	31.2625	 402.2625	

3 rows × 23 columns

In [8]: # Checking for Null values
df1.isnull().sum()

H2O Air (mmol/mol)
Licor Atm Pressure (hPa)
Licor Temp (C)
MAPCO2 %O2
SST (C)
Salinity
xCO2 SW (dry) (umol/mol)
xCO2 Air (dry) (umol/mol)
fCO2 SW (sat) uatm
fCO2 Air (sat) uatm
dfCO2

pCO2 SW (sat) uatm pCO2 Air (sat) uatm dpCO2 pH (Total Scale) pH QF dtype: int64

In [9]: # Checking for recording errors, either extreme highs or extreme lows
df1.describe()

0 0

0

0

0

0

0

0

0

0

0

0

Out[9]:

:		Latitude	Longitude	xCO2 SW (wet) (umol/mol)	CO2 SW QF	H2O SW (mmol/mol)	xCO2 Air (wet) (umol/mol)	CO2 Air QF	H2O Air (mmol/mol)	Licor Atm Pressure (hPa)	Licor Temp (C)
	count	5.160000e+02	5.160000e+02	516.000000	516.000000	516.000000	516.000000	516.000000	516.000000	516.000000	516.000000
	mean	7.464000e+00	1.518980e+02	406.902962	2.014535	8.971283	381.955655	2.014535	8.165870	1006.099062	30.692577
	std	3.467257e-14	7.396815e-13	46.034660	0.061589	3.128491	42.350616	0.061589	2.975783	1.378662	1.067312
	min	7.464000e+00	1.518980e+02	63.300000	2.000000	3.516250	43.437500	2.000000	3.041429	999.387500	27.537500
	25%	7.464000e+00	1.518980e+02	398.065625	2.000000	6.370625	389.371875	2.000000	5.702813	1005.262500	29.971875
	50%	7.464000e+00	1.518980e+02	410.993750	2.000000	9.059375	391.293750	2.000000	8.245000	1006.125000	30.706250
	75%	7.464000e+00	1.518980e+02	430.593750	2.000000	11.713750	392.862500	2.000000	10.827188	1007.090625	31.450000
	max	7.464000e+00	1.518980e+02	463.575000	2.500000	14.833750	398.862500	2.500000	13.052500	1008.925000	33.162500

8 rows × 23 columns

localhost:8889/lab 2/33

```
In [10]:
           chuuk = df1
           # Removing all extreme value instances
In [11]:
           chuuk = chuuk[chuuk["xCO2 SW (wet) (umol/mol)"] != -999]
           chuuk = chuuk[chuuk["xCO2 Air (wet) (umol/mol)"] != -999]
           chuuk = chuuk[chuuk["SST (C)"] != -999]
            chuuk = chuuk[(chuuk["SST (C)"]>0) & (chuuk["pH (Total Scale)"]>0) & (chuuk["dfCO2"]>0) & (chuuk["dpCO2"]>0)]
           chuuk = chuuk[chuuk["xCO2 SW (dry) (umo1/mo1)"] != -999]
           chuuk = chuuk[chuuk["xCO2 Air (dry) (umol/mol)"] != -999]
            chuuk = chuuk[chuuk["fCO2 SW (sat) uatm"] != -999]
           chuuk = chuuk[chuuk["fCO2 Air (sat) uatm"] != -999]
chuuk = chuuk[chuuk["dfCO2"] != -999]
           chuuk = chuuk[chuuk["dpCO2"] != -999]
            chuuk = chuuk[chuuk["pH (Total Scale)"] != -999]
            # Dropping QF values
           chuuk = chuuk.drop(["CO2 SW QF", "CO2 Air QF"], axis = 1)
In [12]:
           # checking that all extreme values were removed
           chuuk.describe()
Out[12]:
                                                xCO2 SW
                                                                         xCO2 Air
                                                                                                  Licor Atm
                                                             H20 SW
                                                                                       H<sub>2</sub>O Air
                                                                                                                  Licor
                                                                                                                          MAPCO2
                      Latitude
                                   Longitude
                                                   (wet)
                                                                             (wet)
                                                                                                   Pressure
                                                                                                                                       SST (C)
                                                                                                              Temp (C)
                                                                                                                              %02
                                                          (mmol/mol)
                                                                                   (mmol/mol)
                                              (umol/mol)
                                                                       (umol/mol)
                                                                                                      (hPa)
           count 3.790000e+02 3.790000e+02
                                              379.000000
                                                           379.000000
                                                                       379.000000
                                                                                    379.000000
                                                                                                 379.000000
                                                                                                             379.000000
                                                                                                                        379.000000 379.000000
                  7.464000e+00 1.518980e+02
                                              416.996735
                                                                       391.358212
                                                                                                1006.205541
                                                                                                              30.793701
           mean
                                                             9.524825
                                                                                       8.681078
                                                                                                                         99.151405
                                                                                                                                     29.439762
                  2.668057e-14
                                6.545634e-13
                                                             3.127114
                                                                          2.358320
                                                                                       2.942537
                                                                                                   1.282512
                                                                                                               1.037521
                                                                                                                          0.428422
                                                                                                                                      0.489045
             std
                                               17.664458
                                                                                                 999.387500
                                                                                                              27 937500
                 7.464000e+00 1.518980e+02
                                              390 600000
                                                             4.002500
                                                                       386 837500
                                                                                       3.295000
                                                                                                                         97.632500
                                                                                                                                     28 331125
            min
                 7.464000e+00 1.518980e+02
                                              400.931250
                                                             6.601875
                                                                       389.400000
                                                                                       5.907500
                                                                                                1005.393750
                                                                                                              30.131250
                                                                                                                         98.908125
                                                                                                                                     29.089437
            25%
            50%
                 7.464000e+00
                               1.518980e+02
                                              413.337500
                                                             9.965000
                                                                       391.575000
                                                                                      9.195000
                                                                                                1006.212500
                                                                                                              30.800000
                                                                                                                         99.158750
                                                                                                                                     29.429125
                 7 464000e+00
                               1518980e+02
                                              430 687500
                                                            12 386875
                                                                       393 006250
                                                                                      11 499375
                                                                                                1007 125000
                                                                                                                         99 441250
            75%
                                                                                                              31 493750
                                                                                                                                     29 799625
            max 7.464000e+00 1.518980e+02
                                              463.575000
                                                            14.833750
                                                                       398.862500
                                                                                      13.052500
                                                                                                1008.925000
                                                                                                              33.162500
                                                                                                                        100.767500
                                                                                                                                     30.775875
         8 rows × 21 columns
In [13]:
           # Copying dataset
           chuuk corr = chuuk.copy()
           chuuk corr.describe()
In [14]:
                                                xCO2 SW
                                                                         xCO2 Air
Out[14]:
                                                                                                  Licor Atm
                                                             H20 SW
                                                                                       H2O Air
                                                                                                                  Licor
                                                                                                                          MAPCO2
                      Latitude
                                   Longitude
                                                   (wet)
                                                                             (wet)
                                                                                                   Pressure
                                                                                                                                       SST (C)
                                                          (mmol/mol)
                                                                                   (mmol/mol)
                                                                                                              Temp (C)
                                                                                                                              %O2
                                              (umol/mol)
                                                                       (umol/mol)
                                                                                                      (hPa)
           count 3.790000e+02 3.790000e+02
                                              379.000000
                                                           379.000000
                                                                       379.000000
                                                                                    379.000000
                                                                                                 379.000000
                                                                                                             379.000000
                                                                                                                        379.000000
                                                                                                                                    379.000000
                 7.464000e+00 1.518980e+02
                                              416.996735
                                                                       391.358212
                                                                                                1006.205541
                                                                                                              30.793701
                                                             9.524825
                                                                                      8.681078
                                                                                                                         99.151405
                                                                                                                                     29.439762
           mean
             std
                  2.668057e-14
                                6.545634e-13
                                               17 664458
                                                             3.127114
                                                                          2 358320
                                                                                      2.942537
                                                                                                   1 282512
                                                                                                               1 037521
                                                                                                                          0.428422
                                                                                                                                      0.489045
                 7.464000e+00 1.518980e+02
                                              390.600000
                                                             4.002500
                                                                       386.837500
                                                                                      3.295000
                                                                                                 999.387500
                                                                                                              27.937500
                                                                                                                         97.632500
                                                                                                                                     28.331125
            min
                                              400.931250
                                                                        389.400000
                                                                                       5.907500
                                                                                                1005.393750
                                                                                                                                     29.089437
                 7.464000e+00 1.518980e+02
                                                             6.601875
                                                                                                              30.131250
                                                                                                                         98.908125
                 7.464000e+00
                               1.518980e+02
                                              413.337500
                                                             9.965000
                                                                       391.575000
                                                                                      9.195000
                                                                                                1006.212500
                                                                                                              30.800000
                                                                                                                         99.158750
                                                                                                                                     29.429125
            50%
                 7.464000e+00 1.518980e+02
                                              430.687500
                                                            12.386875
                                                                       393.006250
                                                                                      11.499375
                                                                                                1007.125000
                                                                                                              31.493750
                                                                                                                         99.441250
                                                                                                                                     29.799625
                 7.464000e+00 1.518980e+02
                                              463.575000
                                                            14.833750
                                                                       398.862500
                                                                                      13.052500
                                                                                                1008.925000
                                                                                                              33.162500
                                                                                                                        100.767500
                                                                                                                                     30.775875
          8 rows × 21 columns
In [15]:
           # Creating correlation matrix
           corr_matrix = chuuk_corr.corr()
           corr_matrix
```

localhost:8889/lab 3/33

Out[15]:

	Latitude	Longitude	xCO2 SW (wet) (umol/mol)	H2O SW (mmol/mol)	xCO2 Air (wet) (umol/mol)	H2O Air (mmol/mol)	Licor Atm Pressure (hPa)	Licor Temp (C)	'
Latitude	1.000000e+00	-1.000000e+00	-2.429664e- 14	-1.339909e- 15	-6.852107e- 15	-2.982314e- 15	5.213248e-13	8.414180e-15	1.25
Longitude	-1.000000e+00	1.000000e+00	2.442846e-14	7.177709e-16	7.151686e-15	3.742963e-15	-5.213147e- 13	-8.666888e- 15	-1.2
xCO2 SW (wet) (umol/mol)	-2.429664e-14	2.442846e-14	1.000000e+00	-6.065765e- 03	-2.730888e- 01	-1.793784e- 02	2.442229e-02	4.062362e-01	-1.7
H2O SW (mmol/mol)	-1.339909e-15	7.177709e-16	-6.065765e- 03	1.000000e+00	-5.132088e- 01	9.960826e-01	-4.135096e- 02	3.332468e-01	4.114
xCO2 Air (wet) (umol/mol)	-6.852107e-15	7.151686e-15	-2.730888e- 01	-5.132088e- 01	1.000000e+00	-5.100476e- 01	1.221732e-01	-2.138960e- 01	-8.8
H2O Air (mmol/mol)	-2.982314e-15	3.742963e-15	-1.793784e- 02	9.960826e-01	-5.100476e- 01	1.000000e+00	-6.266097e- 02	2.766740e-01	3.82
Licor Atm Pressure (hPa)	5.213248e-13	-5.213147e-13	2.442229e-02	-4.135096e- 02	1.221732e-01	-6.266097e- 02	1.000000e+00	1.644344e-01	3.983
Licor Temp (C)	8.414180e-15	-8.666888e-15	4.062362e-01	3.332468e-01	-2.138960e- 01	2.766740e-01	1.644344e-01	1.000000e+00	5.03
MAPCO2 %O2	1.253603e-13	-1.252280e-13	-1.748042e- 01	4.114359e-01	-8.814678e- 02	3.821659e-01	3.983958e-02	5.033865e-01	1.000
SST (C)	3.363916e-14	-3.361552e-14	8.417755e-01	2.369253e-01	-3.200275e- 01	2.104537e-01	1.166726e-01	6.572118e-01	2.196
Salinity	-3.747761e-15	3.710776e-15	-6.453285e- 02	6.636009e-01	-3.326869e- 01	6.461309e-01	3.318696e-02	3.317037e-01	3.259
xCO2 SW (dry) (umol/mol)	-2.282160e-15	2.678035e-15	9.971867e-01	6.885311e-02	-3.114377e- 01	5.670892e-02	2.112733e-02	4.301949e-01	-1.4
xCO2 Air (dry) (umol/mol)	1.811631e-13	-1.812928e-13	-3.284913e- 01	-2.579151e- 02	8.700751e-01	-1.984712e- 02	1.059009e-01	-9.062602e- 02	1.162
fCO2 SW (sat) uatm	1.370838e-14	-1.360384e-14	9.971339e-01	6.254226e-02	-3.059022e- 01	5.018098e-02	5.026538e-02	4.268245e-01	-1.5
fCO2 Air (sat) uatm	8.024809e-15	-7.979930e-15	-4.537848e- 01	-7.866870e- 02	8.630614e-01	-7.285439e- 02	2.978609e-01	-1.747817e- 01	6.738
dfCO2	-1.385843e-16	-9.104510e-16	9.917377e-01	6.834997e-02	-3.938823e- 01	5.604111e-02	1.029266e-02	4.220163e-01	-1.5
pCO2 SW (sat) uatm	-2.994030e-15	3.123264e-15	9.971347e-01	6.242631e-02	-3.058729e- 01	5.007342e-02	5.037229e-02	4.266586e-01	-1.5
pCO2 Air (sat) uatm	1.934314e-13	-1.934268e-13	-4.555326e- 01	-7.934766e- 02	8.630323e-01	-7.353538e- 02	2.977787e-01	-1.759563e- 01	6.72
dpCO2	1.312365e-15	-5.178742e-16	9.917409e-01	6.835485e-02	-3.938582e- 01	5.604738e-02	1.038784e-02	4.219782e-01	-1.5
pH (Total Scale)	3.525734e-13	-3.526486e-13	-9.552045e- 01	1.708242e-01	1.416996e-01	1.860399e-01	-1.006334e- 01	-3.797438e- 01	1.647
pH QF	4.491916e-15	-4.463443e-15	-1.330350e- 01	-7.422357e- 02	4.878880e-02	-7.427450e- 02	-4.801234e- 02	-6.347305e- 02	-4.2

21 rows × 21 columns

localhost:8889/lab 4/33


```
In [116... chuuk_df = chuuk.copy()
    chuuk_df
```

Out[116		Latitude	Longitude	xCO2 SW (wet) (umol/mol)	H2O SW (mmol/mol)	xCO2 Air (wet) (umol/mol)	H2O Air (mmol/mol)	Licor Atm Pressure (hPa)	Licor Temp (C)	MAPCO2 %O2	SST (C)	 xCO2 ((umol/r
	Datetime											
	2013-04- 24	7.464	151.898	397.9250	9.56000	394.3750	8.70500	1006.9750	30.6750	99.67750	28.855500	 401.7
	2013-04- 25	7.464	151.898	396.5750	10.11625	393.7750	9.10875	1006.8125	30.9125	99.57625	28.933125	 400.€
	2013-04- 26	7.464	151.898	398.0875	10.34625	393.6000	9.18375	1006.7750	31.2625	99.49250	28.989875	 402.2

localhost:8889/lab 5/33

		Latitude	Longitude	xCO2 SW (wet) (umol/mol)	H2O SW (mmol/mol)	xCO2 Air (wet) (umol/mol)	H2O Air (mmol/mol)	Licor Atm Pressure (hPa)	Licor Temp (C)	MAPCO2 %O2	SST (C)		xCO2 ((umol/r
	Datetime												
	2013-04- 27	7.464	151.898	399.6750	10.49250	393.6625	9.42500	1006.7125	31.1000	99.44250	28.981000		403.9
	2013-04- 28	7.464	151.898	395.5625	10.24000	393.0375	9.39875	1007.1500	30.6375	99.57750	28.957750		399.6
	2014-08- 04	7.464	151.898	437.6375	4.93750	389.7375	3.80625	1008.1000	33.1125	99.15875	30.236125		439.8
	2014-08- 05	7.464	151.898	435.6250	5.13125	391.2875	3.98875	1007.7000	32.1500	99.17625	30.186875		437.8
	2014-08- 08	7.464	151.898	415.6625	4.00250	390.9625	3.29500	1008.0250	30.1875	99.24625	29.501750		417.3
	2014-08- 09	7.464	151.898	430.1250	4.17125	392.2500	3.63750	1006.9750	28.7625	98.73875	29.435375		431.9
	2014-08- 10	7.464	151.898	437.9625	4.35625	393.3250	3.76375	1006.3750	29.7625	98.43250	29.442875		439.8
	379 rows :	× 21 colur	nns										
	4												•
Out[18]:	chuuk_d	f.head(3) Latitude	axis =		t) Pressui	m re SST (C	xCO2 S) (dr (umol/mo	y) (sa	t) dfCO	pCO 2 SW (sat uatn) dpCO2	•	pH otal ale)
	Datetime			(, (-,	(,					,
	2013-04-	7.464	151.898	397.925	50 1006.975	50 28.85550	0 401.77	50 382.67	50 3.700	0 383.825	3.7250	8.03	300
	2013-04- 25	7.464	151.898	396.575	0 1006.812	25 28.93312	5 400.62	50 381.42	50 3.050	0 382.587	5 3.0625	8.04	000
	2013-04- 26	7.464	151.898	398.087	75 1006.775	50 28.98987	5 402.26	25 382.93	75 4.787	5 384.087	5 4.8000	8.03	475
In [24]:	chuuk_d	f = chuuk	_df.drop(["Latitude",	, "Longitude	"], axis =	1)						
In [19]:	xCO2w = AtmP = cl SST = cl xCO2d = fCO2 = dfCO2 = pCO2 = dpCO2 = dpCO2 = cl	chuuk_df chuuk_df[" huuk_df[" chuuk_df chuuk_df[chuuk_df chuuk_df chuuk_df	["xCO2 SW "Licor Atr 'SST (C)"] ["xCO2 SW "fCO2 SW ["dfCO2"]	ce for feature (wet) (umol meressure (dry) (umol (sat) uatm"]	<pre>L/mo1)"] (hPa)"] L/mo1)"]]</pre>								
In [25]:		<i>lot to se</i> rplot(chu		tions and hi	istograms								

Out[25]: <seaborn.axisgrid.PairGrid at 0x1f24d065d90>

localhost:8889/lab 6/33


```
In [26]: # Subplot for boxplots of each feature
          plt.style.use('seaborn')
          fig, axis = plt.subplots(nrows = 5, ncols = 2)
          fig.set size inches(10,10)
          fig.subplots_adjust(wspace = 0.5, hspace = 0.8)
          # plot 1
          sns.boxplot(xCO2w, color = 'mistyrose', ax = axis[0,0]).set\_title("Concentration of Carbon Dioxide (wet)")
          # plot 2
          sns.boxplot(AtmP, color = 'mistyrose', ax = axis[0,1]).set_title("Pressure (atm)")
          # plot 3
          sns.boxplot(SST, color = 'mistyrose', ax = axis[1,0]).set_title("Sea Surface Temperature (C)")
          # plot 4
          sns.boxplot(xCO2d, color = 'mistyrose', ax = axis[1,1]).set_title("Concentration of Carbon Dioxide (dry)")
          # plot 5
          sns.boxplot(fCO2, color = 'mistyrose', ax = axis[2,0]).set_title("Water Fungacity")
          # plot 6
          sns.boxplot(dfC02, color = 'mistyrose', ax = axis[2,1]).set_title("Difference in Water and Air CO2")
          sns.boxplot(pCO2, color = 'mistyrose', ax = axis[3,0]).set_title("Partial Pressure Carbon Dioxide")
          sns.boxplot(dpCO2, color = 'mistyrose', ax = axis[3,1]).set_title("Difference in Water and Air Fungacity")
          # plot 9
          sns.boxplot(pH, color = 'mistyrose', ax = axis[4,0]).set_title("pH")
```

localhost:8889/lab 7/33

ax = axis[4,1].set visible(False)

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

 $\verb|C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py: 36: Future \verb|Warning: Pass the following variable as the following variable a$ a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

C:\Users\datre\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

warnings.warn(

pH (Total Scale)

```
plt.style.use('seaborn')
fig, axis = plt.subplots(nrows = 5, ncols = 2)
fig.set size inches(10,10)
fig.subplots_adjust(wspace = 0.5, hspace = 0.8)
# plot 1
sns.histplot(xCO2w, color = 'lightgreen', bins = 8, ax = axis[0,0]).set_title("Concentraiton of Carbon Dioxide (wet
# plot 2
sns.histplot(AtmP, color = 'lightgreen', bins = 8, ax = axis[0,1]).set_title("Pressure (atm)")
# plot 3
sns.histplot(SST, color = 'lightgreen', bins = 8, ax = axis[1,0]).set_title("Sea Surface Temperature (C)")
# pLot 4
sns.histplot(xCO2d, color = 'lightgreen', bins = 8, ax = axis[1,1]).set_title("Concentration of Carbon Dioxide (dr)
# plot 5
sns.histplot(fCO2, color = 'lightgreen', bins = 8, ax = axis[2,0]).set_title("Water Fungacity")
# plot 6
sns.histplot(dfCO2, color = 'lightgreen', bins = 8, ax = axis[2,1]).set_title("Difference in Water and Air CO2")
# plot 7
sns.histplot(pCO2, color = 'lightgreen', bins = 8, ax = axis[3,0]).set_title("Partial Pressure Carbon Dioxide")
sns.histplot(dpCO2, color = 'lightgreen', bins = 8, ax = axis[3,1]).set_title("Difference in Water and Air Fungacit
# plot 9
sns.histplot(pH, color = 'lightgreen', bins = 8, ax = axis[4,0]).set_title("pH")
ax = axis[4,1].set_visible(False)
```



```
In [28]: # Looking at trends of all data
fig, axes = plt.subplots(nrows=5, ncols=2, dpi=120, figsize=(10,6), )
for i, ax in enumerate(axes.flatten()):
    data = chuuk_df[chuuk_df.columns[i]]
    ax.plot(data, color='red', linewidth=1)
    # Decorations
    ax.set_title(chuuk_df.columns[i])
    ax.xaxis.set_ticks_position('none')
    ax.yaxis.set_ticks_position('none')
    ax.spines["top"].set_alpha(0)
    ax.tick_params(labelsize=6)
```

localhost:8889/lab 9/33

subplots.adjust(wspace=4, hspace=20)

plt.show();

```
IndexError
                                          Traceback (most recent call last)
<ipython-input-28-5383668cfdfb> in <module>
      2 fig, axes = plt.subplots(nrows=5, ncols=2, dpi=120, figsize=(10,6), )
      3 for i, ax in enumerate(axes.flatten()):
  --> 4
            data = chuuk_df[chuuk_df.columns[i]]
            ax.plot(data, color='red', linewidth=1)
            # Decorations
~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in __getitem__(self, key)
                if is scalar(key):
   4100
                    key = com.cast_scalar_indexer(key, warn_float=True)
-> 4101
                    return getitem(key)
   4102
                if isinstance(key, slice):
   4103
```

IndexError: index 9 is out of bounds for axis 0 with size 9


```
# setting subplots to look at different ways pH can be grouped
In [29]:
          fig = plt.figure(figsize=(18,16))
          fig.subplots_adjust(hspace=.4)
          # Danily average
          ax1 = fig.add_subplot(5,1,1)
          ax1.plot(chuuk_df['pH (Total Scale)'].resample('D').mean(),linewidth=1)
          ax1.set_title('Mean pH (total scale) resampled over day')
          ax1.tick_params(axis='both', which='major')
          # Weekly Average
          ax2 = fig.add_subplot(5,1,2, sharex=ax1)
          ax2.plot(chuuk_df['pH (Total Scale)'].resample('W').mean(),linewidth=1)
          ax2.set_title('Mean pH (total scale) resampled over week')
          ax2.tick_params(axis='both', which='major')
          # Monthly Average
          ax3 = fig.add_subplot(5,1,3, sharex=ax1)
          ax3.plot(chuuk_df['pH (Total Scale)'].resample('M').mean(),linewidth=1)
          ax3.set_title('Mean pH (total scale) resampled over month')
          ax3.tick params(axis='both', which='major')
          # Quarterly Average
          ax4 = fig.add_subplot(5,1,4, sharex=ax1)
          ax4.plot(chuuk_df['pH (Total Scale)'].resample('Q').mean(),linewidth=1)
          ax4.set_title('Mean pH (total scale) resampled over quarter')
          ax4.tick_params(axis='both', which='major')
          # Yearly Average
          ax5 = fig.add_subplot(5,1,5, sharex=ax1)
```

localhost:8889/lab 10/33

```
ax5.plot(chuuk_df['pH (Total Scale)'].resample('A').mean(),linewidth=1)
            ax5.set_title('Mean pH (total scale) resampled over year')
            ax5.tick params(axis='both', which='major');
                                                                    Mean pH (total scale) resampled over day
           8.06
           8.04
           8.02
           7.98
           7.96
                    2013-05
                                             2013-09
                                                         2013-11
                                                                                                                                                2015-01
                                 2013-07
                                                                      2014-01
                                                                                  2014-03
                                                                                              2014-05
                                                                                                           2014-07
                                                                                                                       2014-09
                                                                                                                                    2014-11
                                                                    Mean pH (total scale) resampled over week
           8.04
           8.02
           8.00
           7.98
                    2013-05
                                 2013-07
                                             2013-09
                                                          2013-11
                                                                                              2014-05
                                                                                                           2014-07
                                                                                                                                                2015-01
                                                                    Mean pH (total scale) resampled over month
           8.04
           8.02
           8.00
                    2013-05
                                 2013-07
                                             2013-09
                                                          2013-11
                                                                                                                       2014-09
                                                                                                                                    2014-11
                                                                                                                                                2015-01
                                                                   Mean pH (total scale) resampled over quarter
           8.04
           8.03
           8.02
           8.01
           8.00
                    2013-05
                                 2013-07
                                             2013-09
                                                          2013-11
                                                                                              2014-05
                                                                                                           2014-07
                                                                                                                                    2014-11
                                                                                                                                                2015-01
                                                                    Mean pH (total scale) resampled over year
                1e-5+8.0133
                    2013-05
                                 2013-07
                                             2013-09
                                                         2013-11
                                                                      2014-01
                                                                                  2014-03
                                                                                              2014-05
                                                                                                          2014-07
                                                                                                                       2014-09
                                                                                                                                    2014-11
                                                                                                                                                2015-01
            chuuk_df.index = pd.DatetimeIndex(chuuk_df.index).to_period("D")
In [26]:
            chuuk_df.info()
           <class 'pandas.core.frame.DataFrame'>
           PeriodIndex: 379 entries, 2013-04-24 to 2014-08-10
           Freq: D
           Data columns (total 9 columns):
            #
                 Column
                                                 Non-Null Count Dtype
                                                                     float64
            0
                 xCO2 SW (wet) (umol/mol)
                                                 379 non-null
                 Licor Atm Pressure (hPa)
                                                                     float64
            1
                                                 379 non-null
                 SST (C)
                                                  379 non-null
                                                                     float64
            3
                 xCO2 SW (dry) (umol/mol)
                                                 379 non-null
                                                                     float64
            4
                 fCO2 SW (sat) uatm
                                                                     float64
                                                 379 non-null
            5
                 dfC02
                                                 379 non-null
                                                                     float64
                 pCO2 SW (sat) uatm
                                                                     float64
            6
                                                 379 non-null
                 dpC02
                                                 379 non-null
                                                                     float64
            8
                                                                     float64
                 pH (Total Scale)
                                                 379 non-null
           dtypes: float64(9)
           memory usage: 29.6 KB
In [30]:
            # Splitting test and train set
            train = chuuk_df[:int(0.8*(len(chuuk_df)))]
            valid = chuuk_df[int(0.8*(len(chuuk_df))):]
            print(train.shape)
            print(valid.shape)
           (303, 9)
```

localhost:8889/lab 11/33

```
(76, 9)
         def cointegration test(df, alpha=0.05):
              """Perform Johanson's Cointegration Test and Report Summary"""
              out = coint_johansen(df,-1,5)
             d = \{ 0.90:0, 0.95:1, 0.99:2 \}
             traces = out.lr1
             cvts = out.cvt[:, d[str(1-alpha)]]
             def adjust(val, length= 6): return str(val).ljust(length)
             # Summary
             print('Name :: Test Stat > C(95%)
                                                    => Signif \n', '--'*20)
              for col, trace, cvt in zip(df.columns, traces, cvts):
                 print(adjust(col), ':: ', adjust(round(trace,2), 9), ">", adjust(cvt, 8), ' => ' , trace > cvt)
          cointegration test(chuuk df)
         Name :: Test Stat > C(95%)
                                       => Signif
         xCO2 SW (wet) (umol/mol) :: 285.21 > 179.5199 =>
         Licor Atm Pressure (hPa) :: 202.63
                                             > _
True
                                              > 143.6691 =>
                                                               True
         SST (C) :: 131.67
                             > 111.7797 =>
         xCO2 SW (dry) (umol/mol) :: 81.44
                                             > 83.9383
                                                         =>
                                                               False
                                       > 60.0627 =>
         fCO2 SW (sat) uatm :: 47.12
                                                        False
         dfC02 :: 23.24
                            > 40.1749 =>
                                             False
         pCO2 SW (sat) uatm :: 9.84
                                        > 24.2761 =>
                                                         False
         dpCO2 :: 3.21 > 12.3212 => False
         pH (Total Scale) :: 0.16
                                   > 4.1296 => False
In [32]: def adfuller test(series, signif=0.05, name='', verbose=False):
              """Perform ADFuller to test for Stationarity of given series and print report"""
              r = adfuller(series, autolag='AIC')
              output = \{'test\_statistic': round(r[0], 4), 'pvalue': round(r[1], 4), 'n\_lags': round(r[2], 4), 'n\_obs': r[3]\}
              p_value = output['pvalue']
             def adjust(val, length= 6): return str(val).ljust(length)
             # Print Summary
                        Augmented Dickey-Fuller Test on "{name}"', "\n ", '-'*47)
              print(f' Null Hypothesis: Data has unit root. Non-Stationary.')
             print(f' Significance Level = {signif}')
             print(f' Test Statistic
                                         = {output["test_statistic"]}')
             print(f' No. Lags Chosen
                                           = {output["n_lags"]}')
              for key,val in r[4].items():
                 print(f' Critical value {adjust(key)} = {round(val, 3)}')
              if p value <= signif:</pre>
                 print(f" => P-Value = {p_value}. Rejecting Null Hypothesis.")
                 print(f" => Series is Stationary.")
             else:
                 print(f" => P-Value = {p_value}. Weak evidence to reject the Null Hypothesis.")
                 print(f" => Series is Non-Stationary.")
         # ADF Test on each column
In [33]:
          for name, column in train.iteritems():
             adfuller test(column, name=column.name)
             print('\n')
            Augmented Dickey-Fuller Test on "xCO2 SW (wet) (umol/mol)"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                               = -1.4415
          No. Lags Chosen
                              = 10
          Critical value 1%
                              = -3.453
          Critical value 5%
                              = -2.871
          Critical value 10%
                               = -2.572
          => P-Value = 0.5622. Weak evidence to reject the Null Hypothesis.
          => Series is Non-Stationary.
            Augmented Dickey-Fuller Test on "Licor Atm Pressure (hPa)"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                               = -6.1375
                              = 3
          No. Lags Chosen
          Critical value 1%
                            = -3.452
          Critical value 5%
                               = -2.871
```

localhost:8889/lab 12/33

```
Critical value 10%
                    = -2.572
=> P-Value = 0.0. Rejecting Null Hypothesis.
=> Series is Stationary.
  Augmented Dickey-Fuller Test on "SST (C)"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic
                     = -1.6993
No. Lags Chosen
                     = 5
                    = -3.453
Critical value 1%
                   = -2.871
Critical value 5%
Critical value 10%
                    = -2.572
=> P-Value = 0.4315. Weak evidence to reject the Null Hypothesis.
=> Series is Non-Stationary.
  Augmented Dickey-Fuller Test on "xCO2 SW (dry) (umol/mol)"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
                  = -1.398
Test Statistic
No. Lags Chosen = 10
Critical value 1% = -3.453
                   = -2.871
= -2.572
Critical value 5%
Critical value 10%
=> P-Value = 0.5832. Weak evidence to reject the Null Hypothesis.
=> Series is Non-Stationary.
  Augmented Dickey-Fuller Test on "fCO2 SW (sat) uatm"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
                     = -1 4348
Test Statistic
No. Lags Chosen
                     = 10
Critical value 1% = -3.453
                     = -2.871
Critical value 5%
                    = -2.572
Critical value 10%
=> P-Value = 0.5655. Weak evidence to reject the Null Hypothesis.
=> Series is Non-Stationary.
  Augmented Dickey-Fuller Test on "dfCO2"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic
                 = 10
                     = -1.3926
No. Lags Chosen
Critical value 1% = -3.453
Critical value 5%
                     = -2.871
                    = -2.572
Critical value 10%
=> P-Value = 0.5858. Weak evidence to reject the Null Hypothesis.
=> Series is Non-Stationary.
  Augmented Dickey-Fuller Test on "pCO2 SW (sat) uatm"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic
                     = -1.4353
No. Lags Chosen
                    = 10
Critical value 1% = -3.453
Critical value 5%
                     = -2.871
Critical value 10%
                    = -2.572
=> P-Value = 0.5653. Weak evidence to reject the Null Hypothesis.
=> Series is Non-Stationary.
  Augmented Dickey-Fuller Test on "dpCO2"
Null Hypothesis: Data has unit root. Non-Stationary.
Significance Level = 0.05
Test Statistic
                     = -1.3925
No. Lags Chosen
                    = 10
Critical value 1%
                     = -3.453
Critical value 5%
                     = -2.871
Critical value 10%
                    = -2.572
=> P-Value = 0.5858. Weak evidence to reject the Null Hypothesis.
=> Series is Non-Stationary.
```

localhost:8889/lab 13/33

```
Augmented Dickey-Fuller Test on "pH (Total Scale)"
             _____
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                              = -1.5639
                             = 6
          No. Lags Chosen
          Critical value 1%
                             = -3.453
                              = -2.871
         Critical value 5%
          Critical value 10%
                             = -2.572
          => P-Value = 0.5017. Weak evidence to reject the Null Hypothesis.
          => Series is Non-Stationary.
         # 1st difference
In [34]:
         train diff = train.diff().dropna()
In [35]: # ADF Test on each column
         for name, column in train diff.iteritems():
             adfuller_test(column, name=column.name)
             print('\n')
            Augmented Dickey-Fuller Test on "xCO2 SW (wet) (umol/mol)"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
                              = -8.012
          Test Statistic
          No. Lags Chosen
                             = 9
          Critical value 1% = -3.453
          Critical value 5%
                              = -2.871
                            = -2.572
         Critical value 10%
          => P-Value = 0.0. Rejecting Null Hypothesis.
         => Series is Stationary.
            Augmented Dickey-Fuller Test on "Licor Atm Pressure (hPa)"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
                              = -7.3988
          Test Statistic
                             = 13
          No. Lags Chosen
          Critical value 1%
                             = -3.453
         Critical value 5%
                              = -2.872
                             = -2.572
         Critical value 10%
          => P-Value = 0.0. Rejecting Null Hypothesis.
          => Series is Stationary.
            Augmented Dickey-Fuller Test on "SST (C)"
                _____
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                              = -8.4613
          No. Lags Chosen
                             = 8
          Critical value 1%
                             = -3.453
         Critical value 5%
                              = -2.871
          Critical value 10%
                             = -2.572
          => P-Value = 0.0. Rejecting Null Hypothesis.
         => Series is Stationary.
            Augmented Dickey-Fuller Test on "xCO2 SW (dry) (umol/mol)"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                             = -7.9435
                             = 9
          No. Lags Chosen
          Critical value 1%
                             = -3.453
          Critical value 5%
                             = -2.871
         Critical value 10%
                              = -2.572
          => P-Value = 0.0. Rejecting Null Hypothesis.
          => Series is Stationary.
            Augmented Dickey-Fuller Test on "fCO2 SW (sat) uatm"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                              = -7.8566
          No. Lags Chosen
                              = 9
```

localhost:8889/lab 14/33

```
Critical value 1%
                               = -3.453
          Critical value 5%
                               = -2.871
          Critical value 10% = -2.572
          => P-Value = 0.0. Rejecting Null Hypothesis.
          => Series is Stationary.
             Augmented Dickey-Fuller Test on "dfCO2"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
                               = -7.7811
          Test Statistic
                               = 9
          No. Lags Chosen
          Critical value 1%
                               = -3.453
          Critical value 5%
                               = -2.871
          Critical value 10%
                               = -2.572
          => P-Value = 0.0. Rejecting Null Hypothesis.
          => Series is Stationary.
             Augmented Dickey-Fuller Test on "pCO2 SW (sat) uatm"
                -----
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level
                              = 0.05
          Test Statistic
                               = -7.8536
                               = 9
          No. Lags Chosen
          Critical value 1%
                               = -3.453
                               = -2.871
          Critical value 5%
          Critical value 10%
                              = -2.572
          => P-Value = 0.0. Rejecting Null Hypothesis.
          => Series is Stationary.
             Augmented Dickey-Fuller Test on "dpCO2"
          Null Hypothesis: Data has unit root. Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                                = -7.7804
                               = 9
          No. Lags Chosen
          Critical value 1%
                               = -3.453
          Critical value 5%
                               = -2.871
                                = -2.572
          Critical value 10%
          => P-Value = 0.0. Rejecting Null Hypothesis.
          => Series is Stationary.
             Augmented Dickey-Fuller Test on "pH (Total Scale)"
          Null Hypothesis: Data has unit root, Non-Stationary.
          Significance Level = 0.05
          Test Statistic
                               = -10.6787
          No. Lags Chosen
                               = 5
                               = -3.453
          Critical value 1%
                               = -2.871
          Critical value 5%
          Critical value 10%
                               = -2.572
          => P-Value = 0.0. Rejecting Null Hypothesis.
          => Series is Stationary.
In [36]:
          model = VAR(train_diff)
          x = model.select order(maxlags=10)
          x.summary()
         C:\Users\datre\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa model.py:581: ValueWarning: A date index has be
         en provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
           warnings.warn('A date index has been provided, but it has no'
            VAR Order Selection (* highlights the
Out[36]:
                      minimums)
               AIC
                       BIC
                                FPE
                                      HQIC
            -34.86 -34.75*
                            7.230e-16
                                     -34.82
             -35.81
                    -34.67
                           2.814e-16
                                    -35.35
             -36.28
                    -34.13
                           1.753e-16 -35.42*
          3 -36 64*
                    -33.46 1.234e-16*
                                    -35 37
             -36.62
                    -32.43
                          1.263e-16 -34.94
```

localhost:8889/lab 15/33

-36.55 -31.34 1.370e-16 -34.46

```
6 -36.59 -30.36 1.333e-16 -34.10
         7 -36.52
                 -29.26 1.475e-16 -33.61
                 -28.17 1.646e-16 -33.13
         8
           -36.44
            -36.45
                  -27.16
                       1.698e-16 -32.73
          -36.30 -25.99 2.088e-16 -32.17
        10
In [37]:
        # Using fit 3 from results above
        model fitted = model.fit(3)
        model_fitted.summary()
Out[37]: Summary of Regression Results
        _____
        Model:
        Method:
                                  OLS
        Date: Thu, 03, Jun, 2021
Time: 16:51:17
        No. of Equations: 9.00000 BIC: -33.6672
Nobs: 299.000 HQIC: -35.5377
Log likelihood: 1933.14 FPE: 1.06221e-16
AIC: -36.7860 Det(Omega_mle): 4.74593e-17
        -----
        Results for equation xCO2 SW (wet) (umol/mol)
        ______
                                 coefficient std. error t-stat
       -47.685990 92.412470
-1.783413 1.663797
-8.321198 5.367704
18.195817 13.228480
-17.627894 12.379860
-8.647903 24.211936
10.246204 26.618213
30.189244 24.505240
-11.701242 26.539818
-12.199291 102.448626
-0.575889 1.507157
-4.663817 5.459729
12.061142 13.441163
-8.038954 12.651793
26.234863 22.114256
-16.486678 22.938355
-16.372867 22.520665
15.549094 22.872544
-91.223112 89.219420
                                                                      1.376
        L2.SST (C)
        L2.xCO2 SW (dry) (umol/mol)
                                                                      -1.424
                                                                                     0.154
        L2.fCO2 SW (sat) uatm
                                                                      -0.357
                                                                                     0.721
        L2.dfC02
                                                                     0.385
                                                                                     0.700
                                                              -0.
-0.3\(\cdot\) -0.854
0.897
-0.635
1.186
-0.71'
-0.7
        L2.pCO2 SW (sat) uatm
                                                                                     0.218
                                                                                     0.659
        L2.dnC02
        L2.pH (Total Scale)
                                                                                     0.905
        L3.xCO2 SW (wet) (umol/mol)
                                                                                     0.702
        L3.Licor Atm Pressure (hPa)
                                                                                     0.393
        L3.SST (C)
                                                                                     0.370
        L3.xCO2 SW (dry) (umol/mol)
                                                                                     0.525
        L3.fCO2 SW (sat) uatm
                                                                                     0.235
        L3.dfCO2
        L3.pCO2 SW (sat) uatm
                                                                                     0.467
        L3.dpCO2
                                                                                     0.497
        L3.pH (Total Scale)
                                                                      -1.022
        ______
        Results for equation Licor Atm Pressure (hPa)
        ______
                                   coefficient std. error t-stat
       ------
                                    -2.707458
0.535578
-3.612027
                                                    3.359488
                                                                      -1.075
        L2.dfC02
                                                                                     0.282
```

localhost:8889/lab 16/33

3.092809

0.797

0.426

2.464582

L2.pCO2 SW (sat) uatm

L2.dpCO2	3.561548	3.349594	1.063	0.288
L2.pH (Total Scale)	16.531170	12.930054	1.279	0.201
L3.xCO2 SW (wet) (umol/mol)	-0.329881	0.190218	-1.734	0.083
L3.Licor Atm Pressure (hPa)	-0.732929	0.689073	-1.064	0.287
L3.SST (C)	2.133611	1.696411	1.258	0.208
L3.xCO2 SW (dry) (umol/mol)	-1.386550	1.596784	-0.868	0.385
L3.fCO2 SW (sat) uatm	-0.388050	2.791043	-0.139	0.889
L3.dfCO2	-3.455190	2.895053	-1.193	0.233
L3.pCO2 SW (sat) uatm	2.256208	2.842336	0.794	0.427
L3.dpCO2	3.393023	2.886747	1.175	0.240
L3.pH (Total Scale)	14.029620	11.260394	1.246	0.213

Results for equation SST (C)

	coefficient	std. error	t-stat	prob
const	0.002209	0.009134	0.242	0.809
L1.xCO2 SW (wet) (umol/mol)	-0.056959	0.038773	-1.469	0.142
L1.Licor Atm Pressure (hPa)	-0.258584	0.135373	-1.910	0.056
L1.SST (C)	0.484565	0.335995	1.442	0.149
L1.xCO2 SW (dry) (umol/mol)	-0.538131	0.315847	-1.704	0.088
L1.fCO2 SW (sat) uatm	0.137743	0.549640	0.251	0.802
L1.dfC02	-0.033927	0.568036	-0.060	0.952
L1.pCO2 SW (sat) uatm	0.527215	0.567810	0.929	0.353
L1.dpCO2	-0.004108	0.566290	-0.007	0.994
L1.pH (Total Scale)	0.143478	2.278598	0.063	0.950
L2.xCO2 SW (wet) (umol/mol)	-0.027693	0.041024	-0.675	0.500
L2.Licor Atm Pressure (hPa)	-0.150573	0.132351	-1.138	0.255
L2.SST (C)	0.134937	0.326172	0.414	0.679
L2.xCO2 SW (dry) (umol/mol)	-0.311925	0.305248	-1.022	0.307
L2.fCO2 SW (sat) uatm	-0.001185	0.596989	-0.002	0.998
L2.dfC02	0.074056	0.656321	0.113	0.910
L2.pCO2 SW (sat) uatm	0.382840	0.604221	0.634	0.526
L2.dpCO2	-0.098967	0.654388	-0.151	0.880
L2.pH (Total Scale)	0.531486	2.526058	0.210	0.833
L3.xCO2 SW (wet) (umol/mol)	-0.003007	0.037162	-0.081	0.936
L3.Licor Atm Pressure (hPa)	-0.391636	0.134620	-2.909	0.004
L3.SST (C)	0.916084	0.331416	2.764	0.006
L3.xCO2 SW (dry) (umol/mol)	-0.977053	0.311953	-3.132	0.002
L3.fCO2 SW (sat) uatm	0.576808	0.545267	1.058	0.290
L3.dfC02	-0.258749	0.565587	-0.457	0.647
L3.pCO2 SW (sat) uatm	0.466794	0.555288	0.841	0.401
L3.dpC02	0.250450	0.563964	0.444	0.657
L3.pH (Total Scale)	1.721753	2.199867	0.783	0.434

Results for equation xCO2 SW (dry) (umol/mol)

	coefficient	std. error	t-stat	prob
const	0.083434	0.375026	0.222	0.824
L1.xCO2 SW (wet) (umol/mol)	-1.249596	1.592017	-0.785	0.433
L1.Licor Atm Pressure (hPa)	4.392606	5.558385	0.790	0.429
L1.SST (C)	-7.713459	13.795889	-0.559	0.576
L1.xCO2 SW (dry) (umol/mol)	12.107051	12.968614	0.934	0.351
L1.fCO2 SW (sat) uatm	11.731047	22.568127	0.520	0.603
L1.dfCO2	27.344869	23.323456	1.172	0.241
L1.pCO2 SW (sat) uatm	-22.163864	23.314206	-0.951	0.342
L1.dpCO2	-28.543549	23.251792	-1.228	0.220
L1.pH (Total Scale)	-44.702176	93.558882	-0.478	0.633
L2.xCO2 SW (wet) (umol/mol)	-1.504923	1.684437	-0.893	0.372
L2.Licor Atm Pressure (hPa)	-8.298165	5.434293	-1.527	0.127
L2.SST (C)	17.940149	13.392584	1.340	0.180
L2.xCO2 SW (dry) (umol/mol)	-17.857475	12.533437	-1.425	0.154
L2.fCO2 SW (sat) uatm	-8.518789	24.512295	-0.348	0.728
L2.dfCO2	10.173068	26.948422	0.378	0.706
L2.pCO2 SW (sat) uatm	30.014711	24.809237	1.210	0.226
L2.dpCO2	-11.621240	26.869054	-0.433	0.665
L2.pH (Total Scale)	-3.494614	103.719541	-0.034	0.973
L3.xCO2 SW (wet) (umol/mol)	-0.335608	1.525854	-0.220	0.826
L3.Licor Atm Pressure (hPa)	-5.530004	5.527459	-1.000	0.317
L3.SST (C)	13.978028	13.607905	1.027	0.304
L3.xCO2 SW (dry) (umol/mol)	-10.324755	12.808743	-0.806	0.420
L3.fCO2 SW (sat) uatm	28.965959	22.388592	1.294	0.196
L3.dfC02	-16.622964	23.222914	-0.716	0.474
L3.pCO2 SW (sat) uatm	-16.931223	22.800043	-0.743	0.458
L3.dpCO2	15.687631	23.156287	0.677	0.498
L3.pH (Total Scale)	-82.156275	90.326221	-0.910	0.363

Results for equation fCO2 SW (sat) uatm

	coefficient	std. error	t-stat	prob
const	0.078580	0.352747	0.223	0.824
L1.xCO2 SW (wet) (umol/mol)	-1.248528	1.497441	-0.834	0.404
L1.Licor Atm Pressure (hPa)	3.788152	5.228180	0.725	0.469
L1.SST (C)	-6.232155	12.976321	-0.480	0.631
L1.xCO2 SW (dry) (umol/mol)	10.515089	12.198192	0.862	0.389
L1.fCO2 SW (sat) uatm	10.332736	21.227430	0.487	0.626
L1.dfCO2	24.456185	21.937888	1.115	0.265
L1.pCO2 SW (sat) uatm	-19.182407	21.929187	-0.875	0.382
L1.dpCO2	-25.559329	21.870480	-1.169	0.243
L1.pH (Total Scale)	-38.770750	88.000861	-0.441	0.660
L2.xCO2 SW (wet) (umol/mol)	-1.435642	1.584370	-0.906	0.365
L2.Licor Atm Pressure (hPa)	-8.255483	5.111460	-1.615	0.106
L2.SST (C)	17.825060	12.596975	1.415	0.157
L2.xCO2 SW (dry) (umol/mol)	-17.517951	11.788867	-1.486	0.137
L2.fCO2 SW (sat) uatm	-8.427194	23.056101	-0.366	0.715
L2.dfCO2	7.953231	25.347506	0.314	0.754
L2.pCO2 SW (sat) uatm	29.437847	23.335403	1.262	0.207
L2.dpCO2	-9.326528	25.272853	-0.369	0.712
L2.pH (Total Scale)	2.477995	97.557909	0.025	0.980
L3.xCO2 SW (wet) (umol/mol)	-0.445770	1.435208	-0.311	0.756
L3.Licor Atm Pressure (hPa)	-5.051109	5.199091	-0.972	0.331
L3.SST (C)	12.949352	12.799505	1.012	0.312
L3.xCO2 SW (dry) (umol/mol)	-9.141870	12.047818	-0.759	0.448
L3.fCO2 SW (sat) uatm	26.392153	21.058560	1.253	0.210
L3.dfC02	-16.817885	21.843318	-0.770	0.441
L3.pCO2 SW (sat) uatm	-15.514153	21.445568	-0.723	0.469
L3.dpCO2	15.912611	21.780649	0.731	0.465
L3.pH (Total Scale)	-73.972096	84.960242	-0.871	0.384

Results for equation dfCO2

	coefficient	std. error	t-stat	prob
const	0.085502	0.358798	0.238	0.812
L1.xCO2 SW (wet) (umol/mol)	-1.558477	1.523126	-1.023	0.306
L1.Licor Atm Pressure (hPa)	3.519844	5.317857	0.662	0.508
L1.SST (C)	-4.803112	13.198900	-0.364	0.716
L1.xCO2 SW (dry) (umol/mol)	10.764447	12.407424	0.868	0.386
L1.fCO2 SW (sat) uatm	11.371767	21.591538	0.527	0.598
L1.dfCO2	26.477545	22.314181	1.187	0.235
L1.pCO2 SW (sat) uatm	-19.472306	22.305331	-0.873	0.383
L1.dpCO2	-28.246858	22.245618	-1.270	0.204
L1.pH (Total Scale)	-41.538403	89.510313	-0.464	0.643
L2.xCO2 SW (wet) (umol/mol)	-1.336675	1.611546	-0.829	0.407
L2.Licor Atm Pressure (hPa)	-7.995554	5.199135	-1.538	0.124
L2.SST (C)	17.217440	12.813047	1.344	0.179
L2.xCO2 SW (dry) (umol/mol)	-16.817832	11.991078	-1.403	0.161
L2.fCO2 SW (sat) uatm	-12.888049	23.451575	-0.550	0.583
L2.dfCO2	13.767077	25.782284	0.534	0.593
L2.pCO2 SW (sat) uatm	33.442265	23.735668	1.409	0.159
L2.dpCO2	-15.503424	25.706351	-0.603	0.546
L2.pH (Total Scale)	3.010460	99.231290	0.030	0.976
L3.xCO2 SW (wet) (umol/mol)	0.164513	1.459826	0.113	0.910
L3.Licor Atm Pressure (hPa)	-5.485900	5.288269	-1.037	0.300
L3.SST (C)	14.873767	13.019051	1.142	0.253
L3.xCO2 SW (dry) (umol/mol)	-10.874368	12.254471	-0.887	0.375
L3.fCO2 SW (sat) uatm	25.532102	21.419771	1.192	0.233
L3.dfCO2	-12.792057	22.217990	-0.576	0.565
L3.pCO2 SW (sat) uatm	-13.286067	21.813417	-0.609	0.542
L3.dpCO2	11.755703	22.154246	0.531	0.596
L3.pH (Total Scale)	-69.829534	86.417539	-0.808	0.419

Results for equation pCO2 SW (sat) uatm

======================================	==========			
	coefficient	std. error	t-stat	prob
const	0.079086	0.353763	0.224	0.823
L1.xCO2 SW (wet) (umol/mol)	-1.262789	1.501752	-0.841	0.400
L1.Licor Atm Pressure (hPa)	3.791559	5.243233	0.723	0.470
L1.SST (C)	-6.255130	13.013684	-0.481	0.631
L1.xCO2 SW (dry) (umol/mol)	10.532871	12.233314	0.861	0.389
L1.fCO2 SW (sat) uatm	11.041147	21.288550	0.519	0.604
L1.dfCO2	24.509455	22.001053	1.114	0.265
L1.pCO2 SW (sat) uatm	-19.889548	21.992327	-0.904	0.366
L1.dpCO2	-25.616366	21.933451	-1.168	0.243
L1.pH (Total Scale)	-38.570252	88.254239	-0.437	0.662
L2.xCO2 SW (wet) (umol/mol)	-1.451897	1.588932	-0.914	0.361

localhost:8889/lab 18/33

L2.Licor Atm Pressure (hPa)	-8.279183	5.126177	-1.615	0.106
L2.SST (C)	17.845996	12.633245	1.413	0.158
L2.xCO2 SW (dry) (umol/mol)	-17.555099	11.822810	-1.485	0.138
L2.fCO2 SW (sat) uatm	-7.937543	23.122486	-0.343	0.731
L2.dfC02	7.966565	25.420488	0.313	0.754
L2.pCO2 SW (sat) uatm	29.011724	23.402592	1.240	0.215
L2.dpCO2	-9.346441	25.345621	-0.369	0.712
L2.pH (Total Scale)	2.614778	97.838804	0.027	0.979
L3.xCO2 SW (wet) (umol/mol)	-0.455358	1.439340	-0.316	0.752
L3.Licor Atm Pressure (hPa)	-5.065401	5.214060	-0.971	0.331
L3.SST (C)	12.989717	12.836358	1.012	0.312
L3.xCO2 SW (dry) (umol/mol)	-9.159099	12.082507	-0.758	0.448
L3.fCO2 SW (sat) uatm	26.680817	21.119194	1.263	0.206
L3.dfC02	-16.974872	21.906211	-0.775	0.438
L3.pCO2 SW (sat) uatm	-15.768379	21.507316	-0.733	0.463
L3.dpCO2	16.062845	21.843362	0.735	0.462
L3.pH (Total Scale)	-74.292738	85.204865	-0.872	0.383
=======================================	===========	===========		

Results for equation dpCO2

	coefficient	std. error	t-stat	prob					
const	0.085789	0.359846	0.238	0.812					
L1.xCO2 SW (wet) (umol/mol)	-1.565772	1.527576	-1.025	0.305					
L1.Licor Atm Pressure (hPa)	3.518926	5.333394	0.660	0.509					
L1.SST (C)	-4.795990	13.237463	-0.362	0.717					
L1.xCO2 SW (dry) (umol/mol)	10.773844	12.443675	0.866	0.387					
L1.fCO2 SW (sat) uatm	11.400152	21.654621	0.526	0.599					
L1.dfCO2	27.310832	22.379376	1.220	0.222					
L1.pCO2 SW (sat) uatm	-19.497779	22.370500	-0.872	0.383					
L1.dpCO2	-29.083445	22.310613	-1.304	0.192					
L1.pH (Total Scale)	-41.271882	89.771834	-0.460	0.646					
L2.xCO2 SW (wet) (umol/mol)	-1.341758	1.616254	-0.830	0.406					
L2.Licor Atm Pressure (hPa)	-8.036132	5.214325	-1.541	0.123					
L2.SST (C)	17.312291	12.850483	1.347	0.178					
L2.xCO2 SW (dry) (umol/mol)	-16.910472	12.026112	-1.406	0.160					
L2.fCO2 SW (sat) uatm	-12.892249	23.520093	-0.548	0.584					
L2.dfC02	14.324418	25.857611	0.554	0.580					
L2.pCO2 SW (sat) uatm	33.554133	23.805016	1.410	0.159					
L2.dpC02	-16.064717	25.781457	-0.623	0.533					
L2.pH (Total Scale)	3.098095	99.521212	0.031	0.975					
L3.xCO2 SW (wet) (umol/mol)	0.169428	1.464091	0.116	0.908					
L3.Licor Atm Pressure (hPa)	-5.488298	5.303720	-1.035	0.301					
L3.SST (C)	14.886692	13.057089	1.140	0.254					
L3.xCO2 SW (dry) (umol/mol)	-10.877461	12.290275	-0.885	0.376					
L3.fCO2 SW (sat) uatm	25.540628	21.482353	1.189	0.234					
L3.dfC02	-12.531884	22.282904	-0.562	0.574					
L3.pCO2 SW (sat) uatm	-13.293905	21.877149	-0.608	0.543					
L3.dpC02	11.493638	22.218974	0.517	0.605					
L3.pH (Total Scale)	-69.867510	86.670023	-0.806	0.420					
	=========								

Results for equation pH (Total Scale)

	coefficient	std. error	t-stat	prob
const	-0.000193	0.000432	-0.446	0.655
L1.xCO2 SW (wet) (umol/mol)	0.000427	0.001833	0.233	0.816
L1.Licor Atm Pressure (hPa)	-0.003322	0.006400	-0.519	0.604
L1.SST (C)	-0.000410	0.015885	-0.026	0.979
L1.xCO2 SW (dry) (umol/mol)	-0.007417	0.014932	-0.497	0.619
L1.fCO2 SW (sat) watm	-0.025563	0.025986	-0.984	0.325
L1.dfC02	-0.033246	0.026855	-1.238	0.216
L1.pCO2 SW (sat) uatm	0.030793	0.026845	1.147	0.251
L1.dpCO2	0.034841	0.026773	1.301	0.193
L1.pH (Total Scale)	-0.525504	0.107727	-4.878	0.000
L2.xCO2 SW (wet) (umol/mol)	0.001799	0.001940	0.927	0.354
L2.Licor Atm Pressure (hPa)	0.002632	0.006257	0.421	0.674
L2.SST (C)	-0.005165	0.015421	-0.335	0.738
L2.xCO2 SW (dry) (umol/mol)	0.002826	0.014431	0.196	0.845
L2.fCO2 SW (sat) uatm	0.003436	0.028224	0.122	0.903
L2.dfCO2	-0.003430	0.031029	-0.111	0.912
L2.pCO2 SW (sat) uatm	-0.009973	0.028566	-0.349	0.727
L2.dpCO2	0.005079	0.030938	0.164	0.870
L2.pH (Total Scale)	-0.324060	0.119426	-2.713	0.007
L3.xCO2 SW (wet) (umol/mol)	0.000850	0.001757	0.484	0.629
L3.Licor Atm Pressure (hPa)	0.004782	0.006364	0.751	0.452
L3.SST (C)	-0.013854	0.015669	-0.884	0.377
L3.xCO2 SW (dry) (umol/mol)	0.009078	0.014748	0.616	0.538
L3.fCO2 SW (sat) uatm	-0.041563	0.025779	-1.612	0.107
L3.dfC02	0.038496	0.026740	1.440	0.150

localhost:8889/lab

0.030067

0.026253

1.145

0.252

L3.pCO2 SW (sat) uatm

```
L3.dpC02
                                              -0.037602
                                                                0.026663
                                                                                    -1.410
                                                                                                     0.158
         L3.pH (Total Scale)
                                             -0 154808
                                                                                    -1 488
                                                                0.104004
                                                                                                     0 137
          _____
         Correlation matrix of residuals
                                      xCO2 SW (wet) (umol/mol) Licor Atm Pressure (hPa)
                                                                                             SST (C) xCO2 SW (dry) (umol/mol)
         fCO2 SW (sat) uatm
                                 dfCO2 pCO2 SW (sat) uatm
                                                                dpCO2 pH (Total Scale)
         xCO2 SW (wet) (umol/mol)
                                                       1,000000
                                                                                 -0.016383
                                                                                            0.374658
                                                                                                                       0.999053
         0.998142 0.973060
                                                                    -0.832916
                                        0.998138 0.973085
                                                                                  1.000000 0.020791
         Licor Atm Pressure (hPa)
                                                      -0.016383
                                                                                                                      -0.021967
         0.031772 -0.010622
                                        0.031790 -0.010468
                                                                    -0.041978
         SST (C)
                                                       0.374658
                                                                                  0.020791 1.000000
                                                                                                                       0.395850
         0.375797 0.414584
                                        0 375321 0 414352
                                                                    -0 267610
         xCO2 SW (dry) (umol/mol)
                                                       0.999053
                                                                                 -0.021967 0.395850
                                                                                                                       1.000000
         0.998284 0.976087
                                        0.998272 0.976102
                                                                    -0.830490
         fCO2 SW (sat) uatm
                                                       0.998142
                                                                                  0.031772 0.375797
                                                                                                                       0.998284
         1.000000 0.974394
                                        0.999996
                                                  0.974423
                                                                    -0.833739
         dfC02
                                                       0.973060
                                                                                 -0.010622 0.414584
                                                                                                                       0.976087
         0.974394 1.000000
                                        0.974385 0.999997
                                                                    -0.814025
         pCO2 SW (sat) uatm
                                                       0.998138
                                                                                  0.031790 0.375321
                                                                                                                       0.998272
         0.999996 0.974385
                                        1,000000
                                                  0.974414
                                                                    -0.834033
         dpC02
                                                       0.973085
                                                                                 -0.010468 0.414352
                                                                                                                       0.976102
         0.974423 0.999997
                                        0.974414 1.000000
                                                                    -0.814034
                                                      -0.832916
         pH (Total Scale)
                                                                                 -0.041978 -0.267610
                                                                                                                      -0.830490
          -0.833739 -0.814025
                                        -0.834033 -0.814034
                                                                      1.000000
          out = durbin watson(model fitted.resid)
In [38]:
          for col, val in zip(chuuk_df.columns, out):
              print(col, ':', round(val, 2))
         xCO2 SW (wet) (umol/mol): 1.97
         Licor Atm Pressure (hPa) : 2.0
         SST (C): 2.05
         xCO2 SW (dry) (umol/mol) : 1.97
         fCO2 SW (sat) uatm : 1.98
         dfC02 : 1.99
         pCO2 SW (sat) uatm : 1.98
         dpCO2 : 1.99
         pH (Total Scale): 1.98
In [39]:
          # Get the Lag order
          lag_order = model_fitted.k_ar
          print(lag_order)
          # Input data for forecasting
          forecast input = train diff.values[-lag order:]
          forecast_input
Out[39]: array([[ 5.11250e+00,
                                 8.75000e-02,
                                               4.53750e-02,
                                                             5.13750e+00,
                   4.87500e+00.
                                 5.27500e+00.
                                               4.88750e+00.
                                                              5.31250e+00.
                  -6.00000e-03],
                 [ 4.52500e+00, 4.52500e+00,
                                 3.12500e-01, 1.25125e-01, 4.73750e+00,
                                 5.32500e+00,
                                               4.51250e+00, 5.33750e+00,
                  -8.87500e-03],
                 [-7.50000e-02, -6.25000e-02, -1.50000e-02, -1.87500e-01, -2.00000e-01, -3.50000e-01, -2.00000e-01, -3.25000e-01,
                  -2.25000e-03]])
In [40]:
          # Forecast
          fc = model_fitted.forecast(y=forecast_input, steps = len(train_diff))
          df_forecast = pd.DataFrame(fc, index=train_diff.index, columns = chuuk_df.columns + "_1d")
          df_forecast
                                        Licor Atm
                                                                             fCO2 SW
                                                                                                  pCO2 SW
Out[40]:
                     xCO2 SW (wet)
                                                             xCO2 SW (dry)
                                                      SST
                                                                                                                     pH (Total
                                                                                 (sat) dfCO2_1d
                                                                                                           dpCO2_1d
                                         Pressure
                                                                                                      (sat)
                     (umol/mol)_1d
                                                    (C)_1d
                                                            (umol/mol)_1d
                                                                                                                     Scale)_1d
                                        (hPa)_1d
                                                                              uatm_1d
                                                                                                  uatm_1d
         Datetime
          2013-04-
                          -3.011511
                                        -0.113039 -0.032469
                                                                 -3.052355
                                                                             -2.919747 -3.185919
                                                                                                  -2.920522
                                                                                                            -3.220280
                                                                                                                      0.005145
               25
          2013-04-
                           1.503981
                                        -0.063022
                                                  0.016578
                                                                  1.531379
                                                                              1.411335
                                                                                       1.539328
                                                                                                   1.414204
                                                                                                             1.548054 -0.002005
               26
          2013-04-
                           1.754687
                                        -0.029876
                                                  0.007649
                                                                  1.746079
                                                                              1.636270
                                                                                       1.805490
                                                                                                   1.640750
                                                                                                            1.812185 -0.002062
               27
```

localhost:8889/lab 20/33

	xCO2 SW (wet) (umol/mol)_1d	Licor Atm Pressure (hPa)_1d	SST (C)_1d	xCO2 SW (dry) (umol/mol)_1d	fCO2 SW (sat) uatm_1d	dfCO2_1d	pCO2 SW (sat) uatm_1d	dpCO2_1d	pH (Total Scale)_1d
Datetime									
2013-04- 28	-1.666134	-0.044382	-0.027470	-1.692304	-1.589906	-1.692350	-1.597855	-1.692765	0.002181
2013-05- 02	-0.337657	0.052205	0.000268	-0.351231	-0.312635	-0.333211	-0.310113	-0.339033	0.000169
•••	•••								
2014-05- 18	0.043320	-0.001188	0.001062	0.038493	0.035133	0.041571	0.035227	0.041692	-0.000092
2014-05- 19	0.043320	-0.001188	0.001062	0.038493	0.035133	0.041571	0.035227	0.041692	-0.000092
2014-05- 20	0.043320	-0.001188	0.001062	0.038493	0.035133	0.041571	0.035227	0.041692	-0.000092
2014-05- 21	0.043320	-0.001188	0.001062	0.038493	0.035133	0.041571	0.035227	0.041692	-0.000092
2014-05- 22	0.043320	-0.001188	0.001062	0.038493	0.035133	0.041571	0.035227	0.041692	-0.000092

302 rows × 9 columns

In [41]: model_fitted.plot_forecast(20)

localhost:8889/lab 21/33

In [42]: fevd = model_fitted.fevd(5)
 fevd.summary()

	SW (wet) (umol/mol)	La Barrer (IsBa)	SST (S)	602 CH (de) (==1 (==1)	5602 GH (I)	
	(wet) (umol/mol) Licor At W (sat) uatm dpCO2 pH	tm Pressure (nPa) H (Total Scale)	551 (C)	xCO2 SW (dry) (umol/mol)	TCO2 SW (Sat) uatm	
0	1.000000	0.000000	0.000000	0.000000	0.000000	0.
000000	0.000000 0.000000	0.000000				
1	0.927590	0.000072	0.002589	0.000009	0.001887	0.
060801	0.001849 0.004411	0.000791				
2	0.902973	0.001953	0.011743	0.000025	0.005128	0.
060891 3	0.011055 0.005438 0.872782	0.000794 0.005558	0.013027	0.000025	0.007405	0
o69973	0.872782 0.017816 0.012222	0.005558	0.013027	0.000023	0.007405	0.
4	0.865162		0.012950	0.000845	0.007709	a
073648	0.017696 0.014317	0.002080	0.012330	0.000043	0.007703	٠.
FEVD for Lico	or Atm Pressure (hPa)					
	(wet) (umol/mol) Licor At		SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) uatm	
'	` '	H (Total Scale)				
0	0.000268	0.999732	0.000000	0.000000	0.000000	0.
000000 1	0.000000 0.000000 0.000686	0.000000 0.958052	0.000033	0.011521	0.016710	0
000176	0.006489 0.004539	0.001794	0.000033	0.011321	0.010/10	٥.
2	0.001939	0.941586	0.000590	0.010772	0.021175	۵.
003848	0.006369 0.005578	0.008142		*******	****	
3	0.003851	0.929918	0.002824	0.012698	0.021477	0.
008760	0.006271 0.005763	0.008439				
4	0.004272	0.917413	0.003469	0.014499	0.024451	0.
009209	0.006491 0.009469	0.010727				
FF\/D	(6)					
FEVD for SST	(wet) (umol/mol) Licor At	tm Draccura (hDa)	SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) watm	
dfC02 pC02 S		H (Total Scale)	331 (C)	xco2 3w (dry) (dmo1/mo1)	1002 SW (Sac) datiii	
0	0.140368	0.000725	0.858906	0.000000	0.000000	0.
000000	0.000000 0.000000	0.000000				
1	0.126070	0.002368	0.776007	0.001661	0.005496	0.
085941	0.002446 0.000000	0.000012				
2	0.140640	0.002733	0.765963	0.001673	0.005396	0.
080648	0.002473 0.000001	0.000472	0.740660	0.000150	0.001300	•
3	0.136769	0.025534	0.718610	0.002169	0.021389	0.
087900	0.002316 0.003809	0.001503				

localhost:8889/lab 22/33

		IV	laster Doc			
4 087077	0.137000 0.002292 0.004114	0.026785 0.001820	0.713234	0.002713	0.024966	0.
	SW (dry) (umol/mol) wet) (umol/mol) Licor	Atm Pressure (hPa)	SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) uatm	
dfCO2 pCO2 SW 0		pH (Total Scale)	0.000548	0.001313	0.000000	
000000	0.000000 0.000000	0.000000				
1 059187	0.927157 0.001905 0.004571			0.001486	0.001947	
2 059540	0.900559 0.010840 0.005696	0.002014 0.000737	0.013969	0.001421	0.005225	0.
3 068835	0.870568 0.017560 0.012220	0.005171 0.001092	0.014784	0.001380	0.008391	0.
4 072498	0.862769 0.017537 0.014191	0.005186 0.001722	0.014790	0.002416	0.008890	0.
FEVD for fCO2 S						
	vet) (umol/mol) Licor (sat) uatm dpCO2		SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) uatm	
0 000000	0.996287 0.000000 0.000000	0.002317 0.000000	0.000000	0.001374	0.000023	0.
1 056594	0.929031 0.001608 0.004152	0.002057 0.000580	0.002876	0.001409	0.001691	0.
2	0.902075 0.010915 0.005512	0.002836	0.013318	0.001339	0.005411	0.
057863 3	0.872220	0.006983	0.014427	0.001295	0.008062	0.
066079 4 070076	0.017885 0.011969 0.864168	0.006918	0.014381	0.002169	0.008630	0.
	0.017825 0.014220	0.001613				
,	vet) (umol/mol) Licor	,	SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) uatm	
dfCO2 pCO2 SW 0	(sat) uatm dpCO2 0.946846	pH (Total Scale) 0.000028	0.002896	0.005627	0.000250	0.
044353 1	0.000000 0.000000 0.816702	0.000000 0.000048	0.005469	0.005337	0.002256	0.
163522 2	0.001466 0.004596 0.794952		0.019797	0.005329	0.004607	0.
156728 3	0.011471 0.005171 0.767663	0.000755	0.020441	0.005235	0.008182	
163452 4	0.019003 0.012222 0.760630			0.007680	0.008402	
166014	0.018948 0.013705		0.020393	0.007660	0.008402	υ.
FEVD for pCO2 S	• •	Atm Pressure (hPa)	SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) watm	
dfCO2 pCO2 SW		pH (Total Scale)	0.000000	0.001382	0.000014	
000000	0.000007 0.000000	0.000000				
1 056673	0.928908 0.001748 0.004145	0.000570	0.002865	0.001408	0.001626	
2 057947	0.901973 0.011014 0.005505	0.002825 0.000719	0.013337	0.001338	0.005342	0.
3 066134	0.872152 0.017927 0.011997	0.006973 0.001072	0.014481	0.001295	0.007970	0.
4 070187	0.864006 0.017869 0.014282	0.006907	0.014428	0.002170	0.008536	0.
FEVD for dpCO2						
xCO2 SW (v dfCO2 pCO2 SW	, , , ,	Atm Pressure (hPa) pH (Total Scale)	SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) uatm	
0 044338	0.946894 0.000000 0.000007	0.000030	0.002868	0.005613	0.000250	0.
1	0.816539	0.000052	0.005461	0.005315	0.002246	0.
163492 2	0.001456 0.004847 0.794773	0.001213	0.019796	0.005311	0.004605	0.
156693 3	0.011459 0.005412 0.767505	0.000738 0.002791	0.020439	0.005221	0.008144	0.
163422 4	0.018982 0.012474 0.760508	0.001022 0.002861	0.020393	0.007683	0.008359	0.
165967	0.018926 0.013929	0.001374				
			SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) uatm	
0	0.693749	0.003095	0.002458	0.000021	0.000529	0.
000990 1	0.008792 0.000069 0.570901	0.006868	0.015183	0.000801	0.000462	0.
082193 2	0.017320 0.004213 0.579775	0.009198	0.020795	0.001561	0.000459	0.
078065	0.021261 0.008165	0.280721				

localhost:8889/lab 23/33

0.552060

0.025524 0.015224

3

4

089315

```
089891
                                                     0.026865 0.022284
                                                                                                          0.268510
                    def invert_transformation(df_train, df_forecast, second_diff=False):
In [43]:
                             """Revert back the differencing to get the forecast to original scale."""
                            df_fc = df_forecast.copy()
                            columns = df train.columns
                            for col in columns:
                                   # Roll back 2nd Diff
                                   if second diff:
                                           df_fc[str(col)+'\_1d'] = (df_train[col].iloc[-1]-df_train[col].iloc[-2]) + df_fc[str(col)+'\_2d'].cumsum(col).iloc[-2]) + df_fc[str(col)+'\_2d'].cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(col)-cumsum(c
                                   # Roll back 1st Diff
                                   df_fc[col] = df_train[col].iloc[-1] + df_fc[str(col)+'_1d'].cumsum()
                            return df fc
In [45]:
                   # Creating result dataframe
                    df_results = invert_transformation(train, df_forecast, second_diff=False)
                    df_results["Type"] = "Forecast"
                    df_results.head(2)
Out[45]:
                                                                    Licor
                                                                                                                           fCO2 SW
                                                                                                                                                              pCO2 SW
                                                                                                                                                                                                                       xCO2 SW
                                                                                                                                                                                                                                           Lic
                                                                                        SST xCO2 SW (dry)
                                    xCO2 SW (wet)
                                                                     Atm
                                                                                                                                                                                                  pH (Total
                                                                                                                                  (sat)
                                                                                                                                          dfCO2 1d
                                                                                                                                                                     (sat)
                                                                                                                                                                             dpCO2 1d
                                                                                                                                                                                                                             (wet)
                                                                                                                                                                                                                                             P
                                    (umol/mol)_1d
                                                               Pressure
                                                                                    (C)_1d (umol/mol)_1d
                                                                                                                                                                                                  Scale)_1d
                                                                                                                           uatm_1d
                                                                                                                                                               uatm_1d
                                                                                                                                                                                                                    (umol/mol)
                                                               (hPa)_1d
                  Datetime
                   2013-04-
                                            -3.011511 -0.113039
                                                                              -0.032469
                                                                                                         -3.052355 -2.919747
                                                                                                                                          -3.185919 -2.920522
                                                                                                                                                                                 -3.220280
                                                                                                                                                                                                   0.005145
                                                                                                                                                                                                                    410.188489 1006
                             25
                   2013-04-
                                             1.503981 -0.063022
                                                                                0.016578
                                                                                                          1.531379 1.411335
                                                                                                                                            1.539328
                                                                                                                                                              1.414204
                                                                                                                                                                                  1.548054 -0.002005
                                                                                                                                                                                                                    411.692470 1006
                             26
                    # Dropping all features that did not have significant correlation with target, pH
In [46]:
                    df_results = df_results.drop(["xC02 SW (wet) (umol/mol)_1d", "Licor Atm Pressure (hPa)_1d", "SST (C)_1d", "xC02 SW
                                                        axis = 1
                    df results["Type"] = "Forecast"
                    df_results.head(3)
                                            xCO2 SW
                                                                                                               xCO2 SW
Out[46]:
                                                                   Licor Atm
                                                                                                                                                                                                                    рΗ
                                                                                                                                    fCO2 SW
                                                                                                                                                                        pCO2 SW
                                                  (wet)
                                                                     Pressure
                                                                                         SST (C)
                                                                                                                     (dry)
                                                                                                                                                          dfCO2
                                                                                                                                                                                               dpCO2
                                                                                                                                                                                                                (Total
                                                                                                                                                                                                                                 Type
                                                                                                                                  (sat) uatm
                                                                                                                                                                       (sat) uatm
                                         (umol/mol)
                                                                          (hPa)
                                                                                                           (umol/mol)
                                                                                                                                                                                                                Scale)
                  Datetime
                   2013-04-
                                          410.188489
                                                                1006.661961 29.310906
                                                                                                            412.885145
                                                                                                                                 392.705253 16.126581
                                                                                                                                                                      393.879478 16.167220 8.009645 Forecast
                             25
                   2013-04-
                                          411 692470
                                                                1006 598939 29 327484
                                                                                                            414 416524
                                                                                                                                394.116588 17.665909 395.293681 17.715274 8.007640 Forecast
                             26
                   2013-04-
                                          413 447156
                                                                1006 569063 29 335133
                                                                                                            416.162603 395.752858 19.471398 396.934431 19.527458 8.005578 Forecast
                             27
In [47]:
                    df results.index
'2014-05-13', '2014-05-14', '2014-05-15', '2014-05-16', '2014-05-17', '2014-05-18', '2014-05-19', '2014-05-20',
                                               '2014-05-17',
                                               '2014-05-21', '2014-05-22'],
                                             dtype='datetime64[ns]', name='Datetime', length=302, freq=None)
                    df_results.index = df_results.index.to_timestamp()
In [44]:
In [48]:
                    fig, axes = plt.subplots(nrows=5, ncols=2, dpi=120, figsize=(10,6), )
                    for i, ax in enumerate(axes.flatten()):
                            data = df_results[df_results.columns[i]]
                            ax.plot(data, color='red', linewidth=1)
```

0.009211 0.020912

0.009076 0.020606

0.270025

0.001541

0 002063

0.008083 0.

0.008645 0.

24/33 localhost:8889/lab

```
# Decorations
ax.set_title(df_results.columns[i])
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
ax.spines["top"].set_alpha(0)
ax.tick_params(labelsize=6)
plt.show();
```


In [49]:	<pre>df_actual = pd.DataFrame(chuuk_df, index = df_results.index, columns = chuuk_df.columns)</pre>
	df_actual["Type"] = "Actual"
	df_actual

Out[49]:		xCO2 SW (wet) (umol/mol)	Licor Atm Pressure (hPa)	SST (C)	xCO2 SW (dry) (umol/mol)	fCO2 SW (sat) uatm	dfCO2	pCO2 SW (sat) uatm	dpCO2	pH (Total Scale)	Туре
	Datetime										
	2013-04- 25	396.5750	1006.8125	28.933125	400.6250	381.4250	3.0500	382.5875	3.0625	8.040000	Actual
	2013-04- 26	398.0875	1006.7750	28.989875	402.2625	382.9375	4.7875	384.0875	4.8000	8.034750	Actual
	2013-04- 27	399.6750	1006.7125	28.981000	403.9000	384.5125	6.2000	385.6500	6.2125	8.035625	Actual
	2013-04- 28	395.5625	1007.1500	28.957750	399.6500	380.6250	2.7375	381.7625	2.7625	8.040250	Actual
	2013-05- 02	397.1625	1007.3375	28.946375	401.4875	382.4500	4.6000	383.6250	4.6125	8.034500	Actual
	2014-05- 18	403.8875	1007.1750	29.228875	406.6750	387.0750	9.7500	388.2625	9.7875	8.015125	Actual
	2014-05- 19	403.6375	1006.4375	29.187875	406.2500	386.4250	9.0625	387.6000	9.0625	8.021625	Actual
	2014-05- 20	408.7500	1006.5250	29.233250	411.3875	391.3000	14.3375	392.4875	14.3750	8.015625	Actual
	2014-05- 21	413.2750	1006.8375	29.358375	416.1250	395.8250	19.6625	397.0000	19.7125	8.006750	Actual

localhost:8889/lab 25/33

6/5/2021

Master Doc рΗ xCO2 SW (wet) **Licor Atm** xCO2 SW (dry) fCO2 SW pCO2 SW dpCO2 SST (C) dfCO2 (Total Type (umol/mol) Pressure (hPa) (umol/mol) (sat) uatm (sat) uatm Scale) Datetime 2014-05-413.2000 1006.7750 29.343375 415.9375 395.6250 19.3125 396.8000 19.3875 8.004500 Actual 22 302 rows × 10 columns # combining dataframes for better visual dfs = [df_actual, df_results] df vis = df actual.append(df results) df_vis xCO2 SW xCO2 SW Out[50]: Licor Atm pН fCO2 SW pCO2 SW dpCO2 dfCO2 (wet) Pressure SST (C) (dry) (Total Type (sat) uatm (sat) uatm (umol/mol) (hPa) (umol/mol) Scale) Datetime 2013-04-

396.575000 1006.812500 28.933125 400.625000 381.425000 3.050000 382.587500 3.062500 8.040000 Actual 25 2013-04-398.087500 1006.775000 28.989875 402.262500 382.937500 4.787500 384.087500 4.800000 8.034750 Actual 26 2013-04-6.200000 399.675000 1006.712500 28 981000 403 900000 384.512500 385.650000 8.035625 6 212500 Actual 27 2013-04-395.562500 1007 150000 28 957750 2 737500 2 762500 8 040250 399 650000 380 625000 381 762500 Actual 28 2013-05-397.162500 1007.337500 28.946375 401.487500 382.450000 4.600000 383.625000 4.612500 8.034500 Actual 02 2014-05-424 805184 1006 237609 29 631702 426 087817 30 292703 405 993113 30 381310 7 980094 404 788438 Forecast 18 2014-05-424.848504 1006.236421 29.632764 426.126310 404.823572 30.334274 406.028341 30.423002 7.980002 Forecast 19 2014-05-424.891824 1006.235234 29.633827 426.164803 404.858705 30.375845 406.063568 30.464694 7.979910 Forecast 20 2014-05-424.935143 1006.234046 29.634889 426.203297 404.893838 30.417416 406.098795 30.506387 7.979817 Forecast 21 2014-05-424.978463 1006.232859 29.635951 426.241790 404.928971 30.458987 406.134023 30.548079 7.979725 Forecast 22

604 rows × 10 columns

```
type(df_vis.index)
In [51]:
```

Out[51]: pandas.core.indexes.datetimes.DatetimeIndex

```
In [52]:
          plt.style.use('seaborn')
          fig, axis = plt.subplots(nrows = 5, ncols = 2)
          fig.set_size_inches(10,10)
          fig.subplots_adjust(wspace = 0.5, hspace = 0.8)
          # plot 1
          sns.lineplot(df_vis.index, df_vis["xCO2 SW (wet) (umol/mol)"], hue = df_vis["Type"], ax = axis[0,0]).set_title("Cor
          # plot 2
          sns.lineplot(df_vis.index, df_vis["Licor Atm Pressure (hPa)"], hue = df_vis["Type"], ax = axis[0,1]).set_title("Pre
          # plot 3
          sns.lineplot(df_vis.index, df_vis["SST (C)"], hue = df_vis["Type"], ax = axis[1,0]).set_title("Sea Surface Temperat
          sns.lineplot(df_vis.index, df_vis["xCO2 SW (dry) (umol/mol)"], hue = df_vis["Type"], ax = axis[1,1]).set_title("Cor
          # plot 5
          sns.lineplot(df_vis.index, df_vis["fCO2 SW (sat) uatm"], hue = df_vis["Type"], ax = axis[2,0]).set_title("Water Fur
          # plot 6
          sns.lineplot(df_vis.index, df_vis["dfCO2"], hue = df_vis["Type"], ax = axis[2,1]).set_title("Difference in Water ar
```

26/33 localhost:8889/lab

6/5/2021

```
Master Doc
# pLot 7
sns.lineplot(df vis.index, df vis["pCO2 SW (sat) uatm"], hue = df vis["Type"], ax = axis[3,0]).set title("Partial F
sns.lineplot(df_vis.index, df_vis["dpCO2"], hue = df_vis["Type"], ax = axis[3,1]).set_title("Difference in Water ar
# nlot 9
sns.lineplot(df vis.index, df vis["pH (Total Scale)"], hue = df vis["Type"], ax = axis[4,0]).set title("pH")
ax = axis[4,1].set visible(False)
C:\Users\datre\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass the following variables a
s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum
ents without an explicit keyword will result in an error or misinterpretation.
C:\Users\datre\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables a
s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum
ents without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(
C:\Users\datre\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables a
s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum
ents without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(
```

C:\Users\datre\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\datre\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables a s keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation. warnings.warn(

27/33 localhost:8889/lab


```
In [53]: # Isolating pH results
sns.scatterplot(x = df_vis.index, y = df_vis["pH (Total Scale)"], hue = df_vis.Type)
```

Out[53]: <AxesSubplot:xlabel='Datetime', ylabel='pH (Total Scale)'>

2013-02013-072013-02013-112014-02014-032014-05 Datetime


```
In []:

In [54]: from keras.preprocessing.sequence import TimeseriesGenerator import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Flatten from sklearn.preprocessing import MinMaxScaler
```

localhost:8889/lab 28/33

```
from sklearn.metrics import mean_squared_error
          import math
          from keras.models import load model
          from sklearn.metrics import r2_score
          import plotly.graph_objects as go
In [55]: def create_dataset(dataset, lookback=1):
              dataX = []
              dataY = []
              for i in range(len(dataset) - lookback - 1):
                  a = dataset[i: (i+lookback), 0]
                  dataX.append(a)
                  dataY.append(dataset[i+lookback,0])
              return np.array(dataX), np.array(dataY)
In [56]: | # input data
          data = chuuk df["pH (Total Scale)"].values
          data = data.astype("float32")
In [57]: | # correcting shape of data
          scaler = MinMaxScaler(feature_range=(0,1))
          data = data.reshape(-1,1)
          data = scaler.fit transform(data)
          # Splitting into test and train sets
In [58]:
          train = data[:int(len(data)*0.8), :]
          test = data[int(len(data)*0.8):, :]
          lookback = 1
In [59]:
          trainX, trainY = create_dataset(train, lookback)
          testX, testY = create_dataset(test, lookback)
          trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
In [60]:
          testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
          model = Sequential()
In [61]:
          # Check LSTM
          model.add(LSTM(4, input_shape=(1, lookback)))
          #return_sequences=True, model.add(LSTM(4))
          model.add(Dense(1))
          model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])
          model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
         Epoch 1/100
         301/301 - 5s - loss: 0.1952 - mae: 0.3815
         Epoch 2/100
         301/301 - 1s - loss: 0.0227 - mae: 0.1272
         Epoch 3/100
         301/301 - 1s - loss: 0.0180 - mae: 0.1118
         Epoch 4/100
         301/301 - 1s - loss: 0.0156 - mae: 0.1039
         Epoch 5/100
         301/301 - 1s - loss: 0.0135 - mae: 0.0952
         Epoch 6/100
         301/301 - 1s - loss: 0.0116 - mae: 0.0867
         Epoch 7/100
         301/301 - 1s - loss: 0.0099 - mae: 0.0780
         Epoch 8/100
         301/301 - 1s - loss: 0.0087 - mae: 0.0723
         Epoch 9/100
         301/301 - 1s - loss: 0.0079 - mae: 0.0674
         Epoch 10/100
         301/301 - 1s - loss: 0.0073 - mae: 0.0625
         Epoch 11/100
         301/301 - 1s - loss: 0.0071 - mae: 0.0621
         Epoch 12/100
         301/301 - 1s - loss: 0.0071 - mae: 0.0617
         Epoch 13/100
         301/301 - 1s - loss: 0.0070 - mae: 0.0610
         Epoch 14/100
         301/301 - 1s - loss: 0.0070 - mae: 0.0612
         Epoch 15/100
         301/301 - 1s - loss: 0.0069 - mae: 0.0608
         Epoch 16/100
         301/301 - 1s - loss: 0.0069 - mae: 0.0608
         Epoch 17/100
         301/301 - 1s - loss: 0.0069 - mae: 0.0606
```

localhost:8889/lab 29/33

- 1 10/100						
Epoch 18/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0608
Epoch 19/100						
301/301 - 1s Epoch 20/100	-	loss:	0.0070	-	mae:	0.0608
301/301 - 1s	_	loss:	0.0069	_	mae:	0.0605
Epoch 21/100		1	0.0000			0.0610
301/301 - 1s Epoch 22/100	-	loss:	0.0069	-	mae:	0.0610
301/301 - 0s	-	loss:	0.0069	-	mae:	0.0606
Epoch 23/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0613
Epoch 24/100			0.0003		mac.	0.0013
301/301 - 0s Epoch 25/100	-	loss:	0.0069	-	mae:	0.0609
301/301 - 1s	_	loss:	0.0070	_	mae:	0.0608
Epoch 26/100		1	0.0000			0.000
301/301 - 1s Epoch 27/100	-	loss:	0.0069	-	mae:	0.0608
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0608
Epoch 28/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0600
Epoch 29/100		2000.	0.0002			0.000
301/301 - 1s Epoch 30/100	-	loss:	0.0070	-	mae:	0.0616
301/301 - 1s	_	loss:	0.0069	_	mae:	0.0601
Epoch 31/100		1	0.0070			0.0616
301/301 - 1s Epoch 32/100	-	loss:	0.0070	-	mae:	0.0616
301/301 - 1s	-	loss:	0.0070	-	mae:	0.0609
Epoch 33/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0603
Epoch 34/100		2000.	0.0002			0.0005
301/301 - 1s Epoch 35/100	-	loss:	0.0069	-	mae:	0.0606
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0607
Epoch 36/100		10001	0.0070		m20:	0 0607
301/301 - 1s Epoch 37/100	-	1055;	0.0070	-	mae:	0.0607
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0608
Epoch 38/100 301/301 - 1s	_	loss:	0.0070	_	mae:	0.0608
Epoch 39/100						
301/301 - 1s Epoch 40/100	-	loss:	0.0069	-	mae:	0.0606
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0621
Epoch 41/100 301/301 - 1s	_	1055.	0.0068	_	mae:	0.0600
Epoch 42/100		1033.	0.0008		mac.	0.0000
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0617
Epoch 43/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0605
Epoch 44/100		1	0 0070			0.0640
301/301 - 1s Epoch 45/100	-	loss:	0.0070	-	mae:	0.0612
301/301 - 1s	-	loss:	0.0068	-	mae:	0.0605
Epoch 46/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0608
Epoch 47/100						
301/301 - 1s Epoch 48/100	-	loss:	0.0070	-	mae:	0.0610
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0608
Epoch 49/100		10001	0.0067			0.0506
301/301 - 0s Epoch 50/100	-	1055:	0.0067	-	mae:	0.0596
301/301 - 0s	-	loss:	0.0069	-	mae:	0.0601
Epoch 51/100 301/301 - 0s	_	loss:	0.0069	_	mae:	0.0610
Epoch 52/100						
301/301 - 1s Epoch 53/100	-	loss:	0.0069	-	mae:	0.0604
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0609
Epoch 54/100 301/301 - 1s	_	1055.	0.0069	_	mae.	0 0608
Epoch 55/100	_	1033.	3.0003	-	mue.	0.0000
301/301 - 1s	-	loss:	0.0070	-	mae:	0.0605
Epoch 56/100 301/301 - 1s	_	loss:	0.0069	-	mae:	0.0612
Epoch 57/100		locar	0 0070		m	0 0600
301/301 - 1s Epoch 58/100	-	1022;	0.0070	-	mae:	פטסט.ט
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0604

localhost:8889/lab

30/33

F						
Epoch 59/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0602
Epoch 60/100						
301/301 - 1s Epoch 61/100	-	loss:	0.0069	-	mae:	0.0614
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0603
Epoch 62/100		1000	0.0070	_	m20:	0.0605
301/301 - 1s Epoch 63/100	-	loss:	0.0070	-	mae:	0.0003
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0608
Epoch 64/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0607
Epoch 65/100						
301/301 - 1s Epoch 66/100	-	loss:	0.0070	-	mae:	0.0604
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0608
Epoch 67/100		1000	0.0069	_	mae:	0 0605
301/301 - 1s Epoch 68/100	-	loss:	0.0009	-	mae.	0.0605
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0610
Epoch 69/100 301/301 - 1s	_	loss:	0.0067	_	mae:	0.0612
Epoch 70/100						
301/301 - 1s Epoch 71/100	-	loss:	0.0069	-	mae:	0.0609
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0610
Epoch 72/100	_	loss:	0.0070	_	mae:	0.0605
301/301 - 1s Epoch 73/100	-	1055.	0.0070	-	mae.	0.0003
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0603
Epoch 74/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0606
Epoch 75/100						
301/301 - 1s Epoch 76/100	-	loss:	0.0068	-	mae:	0.0603
301/301 - 0s	-	loss:	0.0070	-	mae:	0.0617
Epoch 77/100 301/301 - 0s	_	loss:	0.0069	_	mae:	0.0607
Epoch 78/100	_	1033.	0.0003	_	mac.	0.0007
301/301 - 0s	-	loss:	0.0070	-	mae:	0.0607
Epoch 79/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0596
Epoch 80/100						
301/301 - 1s Epoch 81/100	-	loss:	0.0067	-	mae:	0.0605
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0607
Epoch 82/100 301/301 - 1s	_	loss:	0.0068	_	mae:	0.0602
Epoch 83/100		1033.	0.0000		mac.	0.0002
301/301 - 1s Epoch 84/100	-	loss:	0.0070	-	mae:	0.0601
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0606
Epoch 85/100		1	0.0070			0.000
301/301 - 1s Epoch 86/100	-	1055;	0.0070	-	mae:	0.0008
301/301 - 1s	-	loss:	0.0070	-	mae:	0.0616
Epoch 87/100 301/301 - 1s	_	loss:	0.0068	_	mae:	0.0604
Epoch 88/100						
301/301 - 1s Epoch 89/100	-	loss:	0.0070	-	mae:	0.0607
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0598
Epoch 90/100 301/301 - 1s		1000	0.0069		mao:	0 0603
Epoch 91/100	-	1055;	0.0009	-	mae:	0.0003
301/301 - 1s	-	loss:	0.0069	-	mae:	0.0612
Epoch 92/100 301/301 - 1s	_	loss:	0.0069	_	mae:	0.0611
Epoch 93/100						
301/301 - 1s Epoch 94/100	-	loss:	0.0069	-	mae:	0.0606
301/301 - 1s	-	loss:	0.0068	-	mae:	0.0606
Epoch 95/100 301/301 - 1s	_	lossi	0.0069	_	mae.	0.0607
Epoch 96/100						
301/301 - 1s Epoch 97/100	-	loss:	0.0070	-	mae:	0.0620
301/301 - 1s	_	loss:	0.0069	-	mae:	0.0607
Epoch 98/100		locar	0 0000		m	0 0612
301/301 - 1s Epoch 99/100	-	1022;	0.0069	-	mae:	0.0012
301/301 - 1s	-	loss:	0.0070	-	mae:	0.0609

localhost:8889/lab 31/33

6/5/2021

7.96

50

100

```
Master Doc
          Epoch 100/100
          301/301 - 1s - loss: 0.0068 - mae: 0.0597
Out[61]: <tensorflow.python.keras.callbacks.History at 0x1f25c186970>
          # make predictions
In [62]:
           trainPredict = model.predict(trainX)
           testPredict = model.predict(testX)
          #nsamples, nx, ny = trainY.shape
In [63]:
           #trainY = trainY.reshape((nsamples,nx*ny))
In [64]:
          # invert predictions
          trainPredict = scaler.inverse_transform(trainPredict)
          trainY = scaler.inverse_transform([trainY])
          testPredict = scaler.inverse_transform(testPredict)
          testY = scaler.inverse_transform([testY])
           # calculate root mean squared error
          trainScore = math.sqrt(mean squared error(trainY[0], trainPredict[:,0]))
          print('Train Score: %.2f RMSE' % (trainScore))
          testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
          print('Test Score: %.2f RMSE' % (testScore))
          Train Score: 0.01 RMSE
          Test Score: 0.01 RMSE
In [65]: | trainPredictPlot = np.empty_like(data)
          trainPredictPlot[:, :] = np.nan
          trainPredictPlot[lookback:len(trainPredict)+lookback, :] = trainPredict
           # shift test predictions for plotting
          testPredictPlot = np.empty_like(data)
          testPredictPlot[:, :] = np.nan
          testPredictPlot[len(trainPredict)+(lookback*2)+1:len(data)-1, :] = testPredict
          # plot baseline and predictions
          plt.plot(scaler.inverse_transform(data), label="pH Data")
          plt.plot(trainPredictPlot, label="Train Prediction")
plt.plot(testPredictPlot, label="Test Prediction")
          plt.xlabel("Observations")
          plt.ylabel("pH (total scale)")
          plt.legend()
          plt.show()
            8.06
                                                                       pH Data
                                                                       Train Prediction
                                                                       Test Prediction
            8.04
            8.02
          scale)
          (total s
            8.00
          핍
            7.98
```

```
model.save("pH model.h5")
In [66]:
          model = load_model("pH_model.h5")
In [67]:
          trainScore = math.sqrt(r2_score(trainY[0], trainPredict[:,0]))
In [68]:
          print('Train Score: %.2f R2' % (trainScore))
          testScore = math.sqrt(r2_score(testY[0], testPredict[:,0]))
          print('Test Score: %.2f R2' % (testScore))
         Train Score: 0.92 R2
         Test Score: 0.77 R2
```

350

250

200 Observations

32/33 localhost:8889/lab

In []:

localhost:8889/lab 33/33