1 December 2020

PRESS

PRESS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_{(i)})^2$$

= $\sum_{i=1}^{n} \frac{\hat{e}_i^2}{(1 - h_{ii})^2}$

where h_{ii} is the $(i, i)^{th}$ of $\mathcal{H} = \mathcal{X}(\mathcal{X}^T \mathcal{X})^{-1} \mathcal{X}^T$.

Properties of h_{ii}

- 1. $\sum_{i=1}^{n} h_{ii} = p'$
- 2. $\frac{1}{n} \le h_{ii} \le 1$

Summary on Best Subset Selection Methods

- 1. Choose the model with the smallest Cp statistic.
- 2. Choose the model with the smallest PRESS.
- 3. Choose the model with the largest R^2 .
- 4. Choose the model with the largest R_{adj}^2 , where $R_{adj}^2 = 1 \frac{MSE|_p}{TotalS.S./(n-1)}$.
 - \Rightarrow Choose the model with the smallest $\hat{\sigma}^2$.
- 5. Choose the model with the smallest AIC, where AIC = $n \log(\frac{\text{Res.S.s.}}{n}) + 2p'$.
- 6. Choose the model with the smallest BIC, where BIC = $n \log(\frac{\text{Res.S.S.}}{n}) + p' \log n$.

Residual Analysis

The mean and variance of \hat{e} are

$$E(\hat{\boldsymbol{e}}) = \boldsymbol{0}$$
$$Var(\hat{\boldsymbol{e}}) = \sigma^2 (\boldsymbol{I} - \boldsymbol{H})$$

where
$$\boldsymbol{H} = \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T$$
.

$$\Rightarrow$$
 E(\hat{e}_i) = 0, var(\hat{e}_i) = $\sigma^2(1 - h_{ii})$

Studentized residual

1. The first uses $\hat{\sigma}^2$ to estimate σ^2 , giving the formula

$$r_i = \frac{\hat{e}_i}{\hat{\sigma}\sqrt{1 - h_{ii}}}$$

The r_i are called *internally Studentized residuals* because the estimate of σ^2 uses all of the data including the *i*th case.

2. The second scaling uses an estimate of σ^2 obtained when the *i*th case is excluded from the regression, externally Studentized residual, i.e.

38

$$t_i = \frac{\hat{e}_i}{\hat{\sigma}_{-i}\sqrt{1 - h_{ii}}}.$$

Model Diagnostic

- 1. Use Residual Plot(s) ($\hat{e}_i = \text{RESIDUAL}$; $r_i = \text{STUDENT}$; $t_i = \text{RSTUDENT}$ vs \hat{y}_i , x_{i1} ,, x_{ik}) to check zero mean, homoscedasticity and linearity.

 no pattern \Rightarrow assumptions on zero mean, homoscedasticity and linearity are valid.
- 2. Use QQ Plot to check normality. straight line \Rightarrow assumption on normality is valid.

Transformation

Box-Cox Transformation - transformation on y

$$z_i^{\lambda} = \begin{cases} \frac{y_i^{\lambda} - 1}{\lambda [GM(y)]^{\lambda - 1}} & \lambda \neq 0 \\ GM(y) \log(y_i) & \lambda = 0 \end{cases}$$

Find λ such that $L(\lambda)$ is maximized or $RSS_{\lambda}(\mathbf{Z})$ is minimized.