Stability Analysis of Control System

Prof.Kamlesh K. Madavi Government Polytechnic, Amravati

Concept of stability

The concept of stability can be illustrated by a cone placed on a plane horizontal surface.

Stable system

- A linear time invariant system is stable if following conditions are satisfied.
- A bounded input is given to the system, the response is bounded and controllable.
- In absence of the inputs, the output should tend to zero as time increases.

Bounded i/p bounded o/p for stable system

Location of roots for stable system

Unstable system

- A linear time invariant system is said to be unstable if system is excited by a bounded input, response is unbounded.
- i.e. output goes on increasing and does not have any control on it.

Bounded i/p Unbounded o/p for unstable system

Location of roots for unstable system

Critically stable systems

- When the input is given to a linear time invariant system, for critically stable systems the output does not go on increasing infinitely nor does it go to zero as time increases.
- The output usually oscillates in finite range or remains steady at some value.
- This systems are neither stable nor unstable.

Bounded i/p & o/p response for critically stable system

Location of roots for critically stable system

Conditionally stable systems

This type of systems are stable if a particular condition is satisfied otherwise it is unstable.

Relative stable systems

- A system may be absolutely stable i.e. it may have passes the Routh's stability test.
- As a result response decays to zero under zero input conditions.
- The ratio at which these decay to zero is important to check the concept of relative stability.
- When the poles are located far away from jw axis in LHP of s-plane, the response decays to zero much faster, as compared to the poles close to jw axis.
- The more the poles are located far away from jw-axis the more is the system relatively stable.

Response comparison

Routh's stability criterion

For the transfer function;

$$\frac{C(s)}{R(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}$$

In this criterion, the coefficients of denominator are arranged in an Array called "Routh's Array";

$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

For next row i.e.
$$s^{n-2}$$
;

The coefficients of s^n and s^{n-1} row are directly written from the given equation.

$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

For next row i.e.
$$s^{n-2}$$
; $b_1 = \frac{a_1.a_2 - a_3a_0}{a_1}$; $b_1 = \frac{a_1.a_2 - a_3a_0}{a_1}$ $b_2 = \frac{a_1.a_4 - a_0.a_5}{a_1}$

$$s^0$$

The coefficients of s^n and s^{n-1} row are directly written from the given equation.

$$a_0s^n + a_1s^{n-1} + \dots + a_n = 0$$

For next row i.e.
$$s^{n-2}$$
; $b_1 = \frac{a_1.a_2 - a_3a_0}{a_1}$ $b_2 = \frac{a_1.a_4 - a_0.a_5}{a_1}$ $b_3 = \frac{a_1.a_6 - a_0.a_7}{a_1}$

$$s^0$$

Now the same technique is used, for the next row i.e. s^{n-3} row, but only previous two rows are used i.e. s^{n-1} and s^{n-2}

The Routh's array as below;

For next row i.e.
$$s^{n-2}$$
; $b_1 = \frac{a_1.a_2 - a_3a_0}{a_1}$ $b_2 = \frac{a_1.a_4 - a_0.a_5}{a_1}$

$$b_3 = \frac{a_1.a_6 - a_{0.a}}{a_1}$$

For next row i.e. s^{n-3}

$$c_1 = \frac{b_1 \cdot a_3 - b_2 a_1}{b_1}$$

Now the same technique is used, for the next row i.e. s^{n-3} row, but only previous two rows are used i.e. s^{n-1} and s^{n-2}

For next row i.e. s^{n-2} ;

Each column will reduce by one as we move down the array.

➤This process is obtained till last row is obtained.

Routh's Criterion

- ➤ The necessary & sufficient conditions for a system to be stable is all terms in the first column at Routh's Array should have same sign.
- ➤ There should not be any sign change in first column.

Routh's Criterion

- ➤ When there are sign changes in the first column of Routh's array then the system is unstable.
- There are roots in RHP.
- ➤ The number of sign changes equal the number of roots in RHP.

Example 1

$$\int_{a_0}^{s^3} + 6s^2 + 12s + 8 = 0$$

s^3	1	12
s^2	6	8
s^1	b_1	b_2
s^0	a_n	

$$s^3 + 6s^2 + 12s + 8 = 0$$

s^3	1	12	0
s^3 s^2 s^0	6	8	0
s^1	10.67	0	
s^0	8		

sign. Hence system is stable

Example 2

Comment on stability.

$$2s^3 + 4s^2 + 4s + 12 = 0$$

$$b_1 = \frac{a_1.a_2 - a_3.a_0}{a_1}$$

$$b_1 = \frac{(4 \times 4) - (2 \times 12)}{4}$$

$$b_1 = -2$$

$$b_2 = 0$$

 $b_2 = \frac{(4 \times 0) - (2 \times 0)}{4}$

s^3	2	4	0	
s^2	4	12		There are two sign changes
s^1	-2	0		+4 to -2 and -2 to +12. Hence two roots are in RHP
s^{0}	12			S-plane and system is unstable

Example 3

Comment on stability. $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$

$$s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$$

				$(1\times 2)-(2\times 1)$
s^5	1	2	3	$b_1 = \frac{(1 \times 2) - (2 \times 1)}{1}$
s^4	1	2	5	$b_1 = 0$
s^3	b_1	b_2		
s^2	C1	2 2 b2 c2		$b_2 = \frac{(1 \times 3) - (5 \times 1)}{1}$
s^1	d_1			
s^{0}	a_n			$b_2 = -2$

Comment on stability. $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$

<u>Case I</u> – "When the first of any row is zero and the rest of the row is non-zero." Here the next row cannot be formed as division by 0 will take place.

Method to Overcome: A method to overcome above problem is to replace s by $\frac{1}{z}$ and complete the Routh's test for z.

Replace s by (1/z)

$$(\frac{1}{z})^5 + (\frac{1}{z})^4 + 2(\frac{1}{z})^3 + 2(\frac{1}{z})^2 + 3(\frac{1}{z}) + 5 = 0$$

Take L.C.M

$$\frac{1+z+2z^2+2z^3+3z^4+5z^5}{z^5} = 0$$

$$1+z+2z^2+2z^3+3z^4+5z^5 = 0$$

$$5z^5 + 3z^4 + 2z^3 + 2z^2 + z + 1 = 0$$

Use above characteristics equation and complete Routh's Test

z^5 z^4	5 3	2 2	1
z^3	$-\frac{4}{3}$	$-\frac{2}{3}$	There are two sign changes in first column.
z^2	$\frac{1}{2}$	1	Hence two roots are in RHP S-plane and system is unstable
z^1	2		
z^{0}	1		

Comment on stability. $s^4 + 6s^3 + 11s^2 + 6s + 10 = 0$

$$s^4 + 6s^3 + 11s^2 + 6s + 10 = 0$$

	$\overline{}$			_
s^4	1	11 6 b ₂	10	$b_1 = \frac{(6 \times 11) - (1 \times 6)}{6}$
s^3	6	6	0	$b_1 = 10$
s^2	b_1	b_2		
s^1	<i>C</i> 1			$b_2 = \frac{(6 \times 10) - (1 \times 0)}{6}$
s^{0}	a_n			$b_1 = 10$

Case II - "When all elements in any one row is zero."

Method to Overcome:

- ✓ Here form an auxillary equation with the help of the coefficients of the coefficients of the row just above the row of zeros.
- ✓ Take the derivative of this equation and replace it's coefficients in the present row of zeros.
- ✓ Then proceed for Routh's test.

1				
s^4	1	11	10	
s^3	6	6	0	
s^2	10	10		
s^1	0			
s^{0}	a_n			
s^4 s^3 s^1 s^0				

Here s¹ row breaks down. Hence write auxiliary equation for s².

$$A(s) = 10 s^2 + 10$$

(Note each term of next column differs by degree of 2)

Take derivative of auxiliary equation $\frac{d}{ds}A(s) = 20s$

Use these for s row coefficients.

$$\begin{vmatrix}
s^4 \\
s^3 \\
6 \\
6 \\
6 \\
0
\end{vmatrix}$$

$$a_n = \frac{(20 \times 10) - (10 \times 0)}{20}$$

$$s^2 \\
10 \\
10 \\
20 \\
a_n = 10$$

$$a_n = 10$$

s^4	1	11	10	
s^3	6	6	0	
s^2	10	10		
s^1	20			
s^{0}	10			

As no sign change in first column; system is stable

Comment on stability. $s^6 + 3s^5 + 5s^4 + 9s^3 + 8s^2 + 6s + 4 = 0$

s^6 s^5		5 9 6	8	4	Here s^3 row breaks down. Hence write auxiliary equation for s^4 . $A(s) = 2 s^4 + 6 s^2 + 4$
s^4 s^3 s^2 s^1 s^0	0	6 0	4		(Note each term of next column differs by degree of 2)
s^2	d_1				Take derivative of auxiliary equation
s^1	e 1				$\frac{d}{ds}A(s) = 8s^3 + 12s$
s^0	a_n				Use these for s ³ row coefficients.

 a_n

 $(3\times12)-(8\times4)$

 $e_1 = 4$

8				
s^6	1	5	8	4
s^6 s^5	3	9	6	
s^4	2	6	4	
s^3	8	12		
s^2	3	4		
s^1	4			
s^0	4			

As no sign change in first column; system is stable

Problem: Using routh's criteria find the stability for given figure.

$$G(s) = \frac{100}{s^2 + 10s}$$

$$H(s) = 1$$

$$\therefore \frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

$$\therefore \frac{C(s)}{R(s)} = \frac{\frac{100}{s^2 + 10s}}{1 + \frac{100}{s^2 + 10s}} = \frac{\frac{100}{s^2 + 10s}}{\frac{s^2 + 10s + 100}{s^2 + 10s}} = \frac{100}{s^2 + 10s + 100}$$

Characteristics equation is the denominator of the CLTF

Characteristics equation

$$s^2 + 10s + 100 = 0$$

$$s^2 + 10s + 100 = 0$$

$$s^2 + 10s + 100 = 0$$

$$s^{2}$$
 1 100 s^{1} 100 s^{0} 100

As no sign change in first column; system is stable

Applications of Routh's criterion

√ The gain is kept in terms of k and Routh's array

is solved to find k for stable operation.

Determine the range of k for stable system.

$$s^4 + 5s^3 + 5s^2 + 4s + k = 0$$

s^4	1	5	k
s^3	5	4	0
s^3 s^2	4.2	k	
s^{1}	$\frac{16.8 - 5k}{4.2}$		
s^{0}	k		

For stability all elements of first column 1 should be positive

i.e.
$$k > 0$$

For S^0 row -----(1)

and $\frac{16.8 - 5k}{4.2} > 0$ For s^1 row

i.e.
$$16.8 > 5k$$
 or $k < \frac{16.8}{5}$

k < 3.36

Thus combining equations (1) and (2), 0 < k < 3.36

This is the range of k stable operation.

Determine the range of k for stable system.

$$s^4 + 4s^3 + 4s^2 + 3s + k = 0$$

.			
s^4	1	4	k
s^3	4	3	0
s^3 s^2	$\frac{13}{4}$	k	
s^1	$\frac{39-16k}{13}$		
s^0	k		

For stability,

i.e.
$$k > 0$$
 and $\frac{39 - 16k}{13} > 0$

i.e.
$$39-16k > 0$$
 or $k < \frac{39}{16}$
 $k < 2.43$

Thus
$$0 < k < 2.43$$

This is the range of k stable operation.

Advantages of Routh's criterion

- ➤ It is a simple algebraic method to determine the stability of closed loop without solving for roots of higher order polynomial of the characteristics equation.
- ➤ It is not tedious or time consuming.
- It progress systematically.
- ➤ It is frequently used to determine the conditions of absolute & relative stability of a system.
- It can determine range of k for stable operation.

Disadvantages of Routh's criterion

- ➤ It is valid only for real coefficients of characteristics equation. Any coefficient that is a complex number or contains exponential factors, the test fails.
- ➤ It is applicable only to the linear systems.
- Exact location of poles is not known.
- ➤ Only idea is obtained about stability. A method to stabilize the system is not suggested.

Thank You