CS294-158 (Spring 2020)

Deep unsupervised learning from @ucb

class video from(SP19) https://www.bilibili.com/video/BV1Eb411Y7J5?p=1

(SP20)https://www.bilibili.com/video/BV1oE411F7iz?p=2

Notes by Haotian Xue from @sjtu

homepage: https://htxue.info

email: xavihart@sjtu.edu.cn

Week 1

1.Motivation

- likelihood-based models: estimate p_{data} from samples $\{x^{(i)}\}$
- trade-off(to get the data distribution):
 - Efficient training and model representation
 - Expressiveness and generalization
 - Sampling quality and speed
 - Compression rate and speed

2. Simple generative models

- Just count it
 - JUST A histogram
 - fail in high dimension, poor in generalization
 - \circ Solutions: function approximation $p_{\theta}(x)$
- To get $p_{\theta}(x)$, maximum likelihood:

$$argmin_{ heta}loss(heta,x^{(1)},x^{(2)},\ldots,x^{(n)}) = rac{1}{n}\sum_{i=1}^n -log(p_{ heta}(x^{(i)}))$$

等价于计算数据01分布和 $p_{\theta}(x)$ 的KL散度最小

- -> Maximum likelihood + SGD
- (*) Bayes Network(Belif net / causal net)
 - DAG: vertex->property & edge->dependency & define parents and children
 - PGM(probability graph model) = Markov(无向) Net + Bayes Net(有向)
 - \circ sparsity the 2^i sized tabular

	В	P(B)	
	+b	0.001	
	-b	0.999	
7		P(J A)	
+j		0.9	

(B) (E)	Е
	+e
Y	-е
(A)	
	Α
	+a
	+a
(I) (M)	-a

Е	P(E)	
+e	0.002	
-е	0.998	

Α	М	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

A	,	P(J/A)	
+a	+j	0.9	
+a	-j	0.1	
-a	+j	0.05	
-a	-j	0.95	

- Autoregressive Models
 - o a fully expressive Bayes Net (just a chain rule model)
 - \circ $logp(x) = \sum logp(x_i|x_{1:i-1})$
 - A toy example: p(x1, x2) = p(x1)p(x2 | x1)
 - \blacksquare p(x1): histogram
 - p(x2|x1): MLP with input x1 and output joint distribution of p(x2|x1)
 - Extent to high dimensions:
 - only need O(d) Param instead of O(e^d) tabular Param
 - no share of information between different conditional distribution
 - o popular models:
 - RNN
 - Mask
 - masked MLP (MADE[masked auto encoder for distribution estimation])
 - satisfy the autoregressive property, the output of d dimension is only related to the input before the d dimension.
 - **more** to referred to in the MADE arxiv paper
 - masked convolutions

use the convolutional kernel

- limited receptive filed; faster
- Wave-Net

dilated convolution

- pixel-CNN (2016):
 - combines two kind of convs together: vertical + horizontal

- gated pixel CNN:
 - with improved conv structure : Gate Residual Block
- self-attention 注意力机制

3. Modern NN-based autoregressive models

Week 2

- Foundation of flows (1-D)
 - o how to fit a density model
 - mixture of gaussians?

$$p_{ heta}(x) = \sum_{i=1}^k \pi_i \mathcal{N}(x; \mu_i; \sigma_i)$$

not right for high dimensional data!

Generally: $z \sim p_Z(z)$

Normalizing Flow: $z \sim \mathcal{N}(0,1)$

How to train? How to evaluate $p_{\theta}(x)$? How to sample?

- \circ x -> z , can calculate and get a bridge between p(x) and p(z)
- After SGD optimization to get z, we sample z and project back to x to get the real sample
- 。 有点类似DIP里的直方图均衡
- 2-D flow: the same as 1-D
- N-D flow
 - Autoregressive flows and inverse autoregressive flow

- RealNVP-like arch
- o Glow, Flow++, FFJORD
- dequantization

----- TO P3 60:00 -----