Analise sobre erro quântico no computador da IBM	1Q
Teo Haeser Gallarza	

UFSC Florianópolis , 2021

FOLHA DE APROVAÇÃO DE PROPOSTA DE TCC

Acadêmico(s)	Teo Haeser Galalrza
Título do trabalho (subtítulo)	Análise sobre o Erro Quântico no Computador da IBMQ
Curso	Ciência da Computação /INE/UFSC
Área de Concentração	Computação quântica

Instruções para preenchimento pelo <u>ORIENTADOR DO TRABALHO</u>:

- Para cada critério avaliado, assinale um X na coluna SIM apenas se considerado aprovado. Caso contrário, indique as alterações necessárias na coluna Observação.

		Apro	vado		
Critérios	Sim	Parcial	Não	Não se aplica	Observação
1. O trabalho é adequado para um TCC no CCO/SIN (relevância / abrangência)?					
2. O titulo do trabalho é adequado?					
3. O tema de pesquisa está claramente descrito?					
4. O problema/hipóteses de pesquisa do trabalho está claramente identificado?					
5. A relevância da pesquisa é justificada?					
6. Os objetivos descrevem completa e claramente o que se pretende alcançar neste trabalho?					
7. É definido o método a ser adotado no trabalho? O método condiz com os objetivos e é adequado para um TCC?					
8. Foi definido um cronograma coerente com o método definido (indicando todas as atividades) e com as datas das entregas (p.ex. Projeto I, II, Defesa)?					
9. Foram identificados custos relativos à execução deste trabalho (se houver)? Haverá financiamento para estes custos?					
10. Foram identificados todos os envolvidos neste trabalho?					
11. As formas de comunicação foram definidas (ex: horários para orientação)?					
12. Riscos potenciais que podem causar desvios do plano foram identificados?					
13. Caso o TCC envolva a produção de um software ou outro tipo de produto e seja desenvolvido também como uma atividade realizada numa empresa ou laboratório, consta da proposta uma declaração (Anexo 3) de ciência e concordância com a entrega do código fonte e/ou documentação produzidos?					

Avaliação	☐ Aprovado	□ Não Aprovado
Professor Responsável	Jerusa Machi	15/11
Co-Orientador	Evandro Chagas	15/11

1 1. Resumo

Um computador quântico é um computador que se utiliza de propriedades da física quântica para acelerar o processamento de dados em relação a um computador comum, conhecido na área como computador clássico.

O IBMQ, computador quântico da IBM, é uma solução de computação quântica disponível via nuvem. Embora amplamente utilizado em diversos experimentos, ele ainda possui erros inerentes ao hardware. Em decorrência disso, o trabalho visa quantificar o erro das portas lógicas e gerar uma análise utilizando um benchmark. Para o benchmark será desenvolvido uma implementação do algoritmo de Grover, um algoritmo simples de busca quântica.

É esperado que a implementação do algoritmo, mesmo que correta, apresente erros no resultado final, e apartir desses erros, será feito análises estatísticas para tentar chegar a conclusões sobre o funcionamento do computador quântico e sobre como o erro das portas lógicas quânticas influencia no resultado final de uma implementação real de um algoritmo qualquer.

Palavras-chave: Algoritmo de Grover, IBMQ, Erro Quântico, Efeito de decaimento.

Sumário

Analise sobre erro quântico no computador da IBMQ	1
1 1. Resumo	
2. Elementos textuais.	
2.1 Introdução	
2.2 Objetivos.	
2.3 Método de pesquisa	
2.5 Custos	
2.6 Recursos humanos	
3. Elementos pós-textuais	

2. Elementos textuais

2.1 Introdução

Desde a criação dos computadores, tem se dedicado muitos estudos para o aparfeiçoamento de suas peças e algoritmos com o intuito de conseguir executar os programas cada vez de maneira mais rápida. E apartir desses estudos vieram grandes avanços tecnológicos, mas nunca se mudou a estrutura básica dos computadores, a sua execução apartir de códigos binários.

Apartir dessa noção, e dos avanços ciêntificos feitos na área da física quântica, foi criada uma nova área de pesquisa chamada Computação Quântica, que tem por objetivo, tentar criar um computador que tenha mais processamento que os computadores atuais, conhecidos como clássicos, apartir de propriedades físicas apenas vistas no campo quântico.

Existem já computadores quânticos, porém ainda não são tão eficientes e, como será mostrado nesse trabalho, não tem um funcionamento tão correto como o esperado. E para testar o erro de um computador quântico real, será feito uma análise sobre o computador quântico da IBM, conhecido como IBMQ, pois este é disponibilizado para acesso remoto de qualquer pessoa, com o objetivo de incentivar a pesquisa acadêmica.

Para o teste será feito uma implementação do algoritmo de Grover, um algoritmo de busca quântica, que foi escolhido pela sua simplicidade e por ser reconhecido na área da computação quântica.

Investigar tanto algoritmos quânticos quanto modelos teóricos quânticos, trazendo luz àsquestões envolvidas na qualidade das respostas obtidas ainda é um problema em aberto e quemerece atenção. Neste sentido, este projeto visa o estudo e o desenvolvimento de algoritmosquânticos e de autômatos quânticos na plataforma de computação quântica da IBM, buscandocompreender as questões relacionadas à qualidade das respostas e aos aspectos de complexidadecomputacional de tais modelos e algoritmos.

2.2 Objetivos

O objetivo principal deste projeto de pesquisa é investigar e desenvolver conhecimentos naárea da Computação Quântica. Para isto, partiremos de duas vertentes, uma prática, investigandoalgoritmos quânticos conhecidos, buscando compreender como a ocorrência de erros oriundos decomputadores quânticos (tempo de decoerência dos qbits) afeta os resultados e como a técnicade amplificação de amplitude atua nestes algoritmos e se, com ela, é possível melhorar a resposta dos algoritmos. A segunda vertente é teórico-prática, onde pretende-se investigar modelosteóricos de autômatos quânticos e suas complexidades, buscando implementá-los e analisá-los.

São objetivos específicos:

- •Compreender e implementar o algoritmo de Grover;
- Aplicar a técnica de amplificação de amplitude, buscando melhorar o percentual de acertodo algoritmo, quando implementado na plataforma quântica da IBM;
 - •Investigar como a decoerência dos qbits influencia o resultado do algoritmo;
- •Investigar modelos teóricos de autômatos quânticos, buscando compreender a relação entreeles e as classes de linguagens que conseguem representar;

- •Implementar autômatos quânticos na plataforma IBM-Q e analisar as taxas de erros noreconhecimento de palavras (falsos-positivos);
- •Investigar se tais falsos positivos são fruto da decoerência dos qbits ou se são erros de fasenos qbits.
- •Investigar quais são as classes quânticas de complexidade e qual é a relação delas com asclasses clássicas.
- •Estruturar conhecimento relativo as bases da computação quântica, modelos de máquinasquânticas, suas classes de complexidade e tipos de linguagens que reconhecem na formade material para disciplinas de "Introdução a Computação Quântica" e "Computação Quântica: Modelos de Máquinas e Classes de Complexidade".

2.3 Método de pesquisa

O projeto envolve o estudo das bases da mecânica quântica e da computação quântica. Oestudo será feito com base no livro clássico de Chang et al. e em artigos encontrados na literatura. A parte teórica será realizada na plataforma de computação quântica da IBM (IBM-Q Experience- https://quantum-computing.ibm.com/).

2.4 Cronograma

		Meses																		
Etapas	J	J	Α	s	0	N	D	J	f	D	J	F	М	Α	М	J	J	Α	S	О
Liupus	u	u	g	е	u	0	е	a	е	е	a	е	a	b	a	u	u	g	е	u
	n	ı	0	t	t	٧	Z	n	V	Z	n	V	r	r	i	n	ı	0	t	t
Estudo Bibliográfico																				
Implementação do algoritmo de Grover																				
Investigação da técnica de amplificação de amplitude																				
Estudo sobre modelos de máquinas quânticas																				
Implementação de modelos de máquinas quânticas na plataforma IBM-Q																				
Publicação dos Resultados Obtidos																				
Estruturação do conhecimento e preparação das disciplinas																				

2.5 Custos

Não haverá custos envolvidos na produção do trabalho pois é apenas necessário utilizar-se da máquina disponibilizada pela IBM através da internet, podendo assim ser utilizado qualquer computador que tenha acesso a internet para realizar o trabalho.

2.6 Recursos humanos

Nome	Função
Teo Haeser Gallarza	Autor
Jerusa Machi	Orientador
Evandro ChagasEvandro Chagas	(Co-orientador)
Eduardo Inacio Duzzioni	Membro da banca

2.7 Comunicação

O que precisa ser comunicado	Por quem	Para quem	Melhor forma de comunicação	Quando e com que freqüência
Ante-projeto	Autor	Coordenador de projetos	Grupo em rede social dedicada ao projeto	Semanalmente

2.8 Riscos

Risco	Probabilida de	Impacto	Prioridade	Estratégia de resposta	Ações de prevenção
Perda de dados (HD)	Baixa	Muito Alto	Alta	Recuperaçã o do backup	Realização de backup diário
Perder acesso ao computador quântico da IBM	Muito Baixa	Alto	Alta	Rodar os teste em simuladores.	
Resultados insatisfatório	Baixa	Alto	Baixa	Aceitar	
Ajuste no Escopo do TCC	Baixa	Baixo	Média		Ajustar apenas o mínimo possível o escopo, revisando bem o trabalho para que o mínimo de esforço seja perdido.

3. Elementos pós-textuais

Referências

- [1] Andris Ambainis and Abuzer Yakaryilmaz. Automata and quantum computing.CoRR,abs/1507.01988, 2015.
- [2] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. InProceedings of the April 18-20, 1967, spring joint computer conference, AFIPS '67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.
- [3] Amandeep Singh Bhatia and Ajay Kumar. Quantum finite automata: survey, status andresearch directions. ArXiv, abs/1901.07992, 2019.
- [4] Richard Cleve. An introduction to quantum complexity theory. Quantum Physics, 1999.
- [5] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc.Design of ion-implanted mosfet's with very small physical dimensions.IEEE Journal ofSolid-State Circuits, 9(5):256–268, 1974.
- [6] David Deutsch. Quantum theory, the churchâ Ă Sturing principle and the universal quantum computer. In Proceedings of the Royal Society of London A. Mathematical and Physical Sciences, volume 400, 1985.
- [7] Vedran Dunjko, Yimin Ge, and J. Ignacio Cirac. Computational speedups using smallquantum devices. Phys. Rev. Lett., 121:250501, Dec 2018.
- [8] Richard P. Feynman. Simulating physics with computers. International journal of theore-tical physics, 21(6):467–488, 1982.
- [9] John L. Hennessy and David A. Patterson.Computer Architecture: A Quantitative Ap-proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 6th edition edition, 2017.
- [10] Attila Kondacs and John Watrous. On the power of quantum finite state automata. InPro-ceedings 38th Annual Symposium on Foundations of Computer Science, pages 66–â Ă Ş75,1997.
- [11] Cristopher Moore and James P. Crutchfield. Quantum automata and quantum grammars. Theoretical Computer Science, 237:275–306, 2000

DECLARAÇÃO DE CONCORDÂNCIA COM AS CONDIÇÕES PARA O DESENVOLVIMENTO DO TCC NA INSTITUIÇÃO

Declaro estar ciente das premissas para a realização de Trabalhos de Conclusão de Curso (TCC) de Ciência da Computação e Sistema de Informações da UFSC, particularmente da necessidade de que se o TCC envolver o desenvolvimento de um software ou produto específico (ex: um protocolo, um método computacional, etc.) o código fonte e/ou documentação completa correspondente deverá ser entregue integralmente, como parte integrante do relatório final do TCC.

Ciente dessa condição básica, declaro estar de acordo com a realização do TCC identificado pelos dados apresentados a seguir.

Instituição

Nome do responsável	
Cargo/Função	
Fone de contato	
Acadêmico(s)	
Título do trabalho	
Curso	Ciência da Computação /INE/UFSC
	(local e data)
Assinatura do respons	ável·