1. RDBMS, 오라클

홍형경 chariehong@gmail.com 2020.01

1. DBMS 개요

(1) 데이터, 데이터베이스, DBMS

- 데이터(data) 란? 현실세계에 있는 가공되지 않은 단순한 형태의 사실(fact), 값
 - 예) 이름, 나이, 약속 일자, 날씨 정보 등
 - 의미 있는 정보(Information)가 되기 위해 임의의 처리(process) 과정 필요
- 정보 (Information)
 - 데이터를 체계적으로 처리, 가공해 의미 있는 실체로 만든 결과
- 몇 년간 대한민국 날씨 데이터 수집
 - 데이터: 일자, 시간, 온도, 강수량, 미세먼지 농도, 풍향 등
 - 정보 : 일기예보 등

1. DBMS 개요

(1) 데이터, 데이터베이스, DBMS

- 데이터베이스 (Database)
 - 데이터베이스는 데이터를 체계적으로 모아 놓은 논리적인 집합.

DBMS

- 데이터베이스를 관리하는 시스템

1. DBMS 개요

(2) **DBMS**

- DataBase Management System의 약자. 데이터베이스 관리 시스템
- 데이터베이스를 관리하는 컴퓨터 프로그램(소프트웨어)
- 1960년대에 처음 소개됨
- 계층형(Hierarchical), 네트워크형(Network), 관계형(Relational), 객체지향형(Object Oriented), 객체관계형(Object Relational) DBMS, NoSQL
- 관계형 DBMS가 대표 주자로 오랫동안 널리 사용되고 있음

(1) RDBMS 개요

- Relational Database Management System의 약자. 관계형 데이터베이스
- 1970년대 초 E.F.Codd 박사가 "A Relational Model of Data for Large Shared Data Banks" (대용량 공유 데이터 뱅크를 위한 데이터의 관계형 모델) 라는 논문 발표
- 당시는 H/W 성능도 낮고 값도 비싸 데이터의 효율적인 처리와 저장이 큰 이슈
- 관계형 모델은 중복 데이터를 제거한 데이터의 효율적 저장 방식 제안
- 관계형 모델에 기반한 상용 DBMS, 즉 RDBMS 제품이 출시되기 시작
- SQL을 지원하는 최초의 상용 RDBMS → 오라클

- 데이터 중복 최소화
- · 데이터 무결성(Integrity)
- 트랜잭션 처리
- · SQL을 이용한 손 쉬운 데이터 처리
- 데이터 보안성 강화

- 데이터 중복 최소화
 - RDBMS는 2차원 형태의 테이블이라는 객체에 데이터를 저장
 - 데이터 성격에 따라 여러 테이블에 분할해 데이터 저장
 - 중복 데이터 저장을 최소화 → 데이터 스토리지 비용 절감
 - 관련된 여러 테이블에 분산된 데이터를 연결해 데이터 추출

(2) RDBMS의 특징 – 데이터 중복 최소화

이름	성별	나이	주소	
홍길동	남	35	서울시 종로구 율곡로 111	
김유신	남	27	서울시 종로구 율곡로 111	
강감찬	남	47	서울시 종로구 율곡로 112	

이름	성별	나이	주소ID	
홍길동	남	35	1	
김유신	남	27	1	
강감찬	남	47	2	

주소ID	주소 상세	
1	서울시 종로구 율곡로 111	
2	서울시 종로구 율곡로 112	
3	서울시 종로구 율곡로 550	

- · 데이터 무결성(Integrity)
 - 데이터베이스에 저장된 데이터의 일관성과 정확성, 신뢰성을 보장
 - 한 마디로 데이터의 품질 보장
 - 예) 날짜를 입력해야 하는데 숫자를 입력했을 경우, RDBMS는 입력을 불허
 - 잘못된 형태의 데이터는 입력 자체가 되지 않도록 해서 데이터 무결성 보장
 - 각종 객체, 기본키, NULL, 참조키, 제약조건 등을 사용해 데이터 무결성 보장

(2) RDBMS의 특징

- 트랜잭션 처리
- 트랜잭션(Transaction)은 거래라는 뜻

- 오류가 났을 경우는 거래 자체가 없었던 것으로 처리, 입금 계좌에 돈이 확인된 다음에야 거래를 성사시킴

- 트랜잭션의 4가지 특성
 - 원자성(Atomicity)
 - : 트랜잭션 작업 시 실행되다가 중단되지 않는 것을 보장, 중단되면 작업 자체 실패 처리
- 일관성(Consistency)
 - : 트랜잭션 후 DB는 일관된 상태를 유지되어야 함
- 고립성(Isolation)
 - : 한 트랜잭션 수행 시 다른 트랜잭션 작업이 방해하지 않도록 보장
- 지속성(Durability)
 - : 성공한 트랜잭션은 영구적으로 DB에 반영(저장)

- · SQL을 이용한 손 쉬운 데이터 처리
- 데이터의 저장, 삭제, 변경 추출을 SQL로 수행
- SQL은 사람과 RDBMS간 데이터 처리를 위한 의사소통 언어
- SQL은 직관적이며 배우고 사용하기 쉬움
- 본 강의의 주 내용은 SQL을 사용해 데이터 처리를 다루는 것

- 데이터 보안
- 사용자 별 권한 관리를 통해 데이터 조회, 저장, 수정, 삭제
- 권한이 없는 사용자는 다른 사용자의 데이터 접근 불가
- 기본적으로 자신이 만든 데이터만 접근해 사용 가능

- · 관계형 모델이 소개된 이후, 여러 회사에서 상용 RDBMS 출시
- · 오라클
 - 최초의 SQL 기반의 상용 RDBMS 제품
 - 1979년 Oracle V2라는 이름으로 출시
 - 이후 현재까지 꾸준히 기능 개선을 하며 제품 출시
 - 거의 매년 시장 점유율 1위를 유지하고 있고 RDBMS 역사와 함께해 온 제품

- · IBM의 DB2
 - IBM에서 1983년 출시한 상용 RDBMS
- · 마이크로소프트의 SQL Server
 - 1989년 Sybase DB를 모태로 만든 RDBMS 제품
 - 타사 제품에 비해 출시는 늦었으나 꾸준한 기능 개선을 통해 상위권 시장 점유율 유지

- MySQL
 - 1995년에 출시된 오픈소스 RDBMS 제품
 - 무료로 사용할 수 있어 큰 인기
 - 2008년 썬 마이크로시스템즈에서 인수 → 2010년 오라클이 인수
 - 현재는 무료 버전과 상용 버전이 존재
 - 전 세계적으로 많은 고객층 보유

- MariaDB
 - MySQL을 개발했던 개발자가 만든 오픈소스로 RDBMS
 - MySQL과 동일한 소스를 기반으로 만듬
- · 이 외에도 사이베이스, PostgreSQL 등의 RDBMS 제품이 있음
- · DB Engines(https://db-engines.com/en/) 에서 매월 전 세계적인 DBMS 순위를 발표
- · 오라클 → MySQL → MS SQL Server

※ 오라클 18c Express Edition 설치

https://www.oracle.com/database/technologies/xe-downloads.html

(오라클 회원 가입 필요)

(1) 개요

- · 가장 대표적인 상용 RDBMS 제품
- · 오라클 : 회사 이름 & 오라클 사에서 만든 RDBMS 제품 이름
- · 1979년 V2 버전을 시작으로 향상된 기능을 탑재한 버전 출시
- . 전 세계적으로 여러 기업과 조직에서 사용
- . 대용량 데이터 처리에 있어 안정적이며 탁월하다는 평가

(2) 주요 버전 별 특징

버전	출시 년도	특징
Oracle V2	1979	최초의 SQL 기반의 상용 RDBMS
Oracle V5	1985	C/S 컴퓨팅, 분산 데이터베이스 시스템
Oracle 7	1992	저장 프로시저, 트리거, CBO 등
Oracle 9i	2001	RAC (Real Application Cluster) – 하나의 서버에 여러 개의 인스턴스 구성
Oracle 10g	2003	그리드(Grid) 개념 도입, 여러 대의 물리적 서버를 한 대의 논리적 서버로 구성
Oracle 12c	2014	멀티 태넌트 아키텍처. 하나의 CDB에 여러 개의 PDB를 구성
Oracle 18c	2018	자율 운영 데이터베이스(Autonomous Database), 머신러닝 알고리즘 탑재
Oracle 19c	2019	기능 개선

(3) 에디션(Edition)

- · 버전과는 별도로 에디션이란 개념이 있음
- · 에디션 별 제공되는 기능이 다름
- · Enterprise Edition(EE) : 가장 많은 기능 제공
- Standard Edition(SE) : EE 보다 적은 기능 제공
- · Express Edition(XE): 무료 버전, 데이터 저장 용량, 메모리, CPU 제한, 11g, 18c , 제공됨
- · 본 강의에서는 Oracle 18c Express Edition을 사용

(4) 멀티 태넌트 아키텍처

- · 12c 이전
 - 하나의 DB(예, ERP DB)를 사용하던 중 추가 DB가 필요한 경우, ERP DB를 분할해 사용하거나 신규 DB를 구매해 사용

(4) 멀티 태넌트 아키텍처

- · 12c 이후
 - 하나의 CDB(Container DB)에 여러 개의 PDB(Pluggable DB)를 만들어 사용
 - 전기 플러그 처럼 꽂아서 사용할 수 있어 Pluggable DB 라고 함

(4) 멀티 태넌트 아키텍처

- CDB, PDB 들 간 시스템 자원을 공용으로 사용
- 각 PDB 별 데이터는 독립적으로 생성해 사용
- 비용, 관리 측면에서 큰 장점