CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 9/2
THE BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) P--ETC(U) AD-A072 273 JUN 79 D C HITTLE CERL-TR-E-153-VOL-2 UNCLASSIFIED NL of 2 blast AD 4072273 MINE Marie

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army or Air Force position, unless so designated by other authorized documents.

The program described in this report is furnished by the government and is accepted and used by any recipient with the express understanding that the United States Government makes no warranty, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the information and data contained in this program or furnished in connection therewith, and the United States shall be under no liability whatsoever to any person by reason of any use made thereof. This program belongs to the government. Therefore, the recipient further agrees not to assert any proprietary rights therein or to represent this program to anyone as other than a government program.

Acces	sion For	r	-
A STATE OF THE REAL PROPERTY.	GRA&I	X	-
DDC I	ounced		
A SECTION OF SECTION AND ASSESSMENT OF SECTION AND ASSESSMENT OF SECTION ASSESSMENT OF S	ficatio	n	_
Ву			-
Distr	ibution,		
Avai	lability	v Codes	
	Availa		1
Dist.	speci	al	l
A			l
//			

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
CERL-TR-E-153-VOL-2 (and)	FINAL L reption
THE BUILDING LOADS ANALYSIS SYSTEM THERMODYNAMICS (BLAST) PROGRAM, VERSION 2,00 USERS MANUAL, VOLUME II.	5. TYPE OF REPORT & PERIOD COVERED 6. PERFORMING ORG. REPORT NUMBER
7. Author(e) Douglas C./Hittle	ENE-SELE 042
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champaign, IL 61820	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Engineering and Services Center (AFESC) Tyndall Air Force Base, FL 32403 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	160
@167p.	Unclassified 154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimite 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different in	
Copies are obtainable from National Technical Info Springfield, VA 22151	rmation Service
19. KEY WORDS (Continue on reverse side it necessary and identity by block number buildings BLAST (computer program) energy consumption	97)
The Building Loads Analysis and System The program is a comprehensive set of subprograms for sumption in buildings. There are three major subprogram, which computes hourly space to based on user input and hourly weather data system simulation subprogram, which uses the computes describing the building air-handling system	nermodynamics (BLAST) for predicting energy con- lograms: (1) the space load face loads in a building or fa; (2) the air distribution for puted space load and user

405279

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Block 20 continued.

steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solar energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost. The program is written in Control Data Corporation (CDC) FORTRAN Extended, Version 4, and can be used on CDC 6000/7000 series computers with few or no modifications. Volume I of this report provides detailed user instructions, and Volume II contains a listing of the basic BLAST program library and a BLAST example. The Input Booklet explains each entry on the BLAST input forms and provides a complete input form example for a sample BLAST run.

FOREWORD

The BLAST program was developed by the U.S. Army Construction Engineering Research Laboratory (CERL) under the sponsorship of the Air Force Engineering and Services Center (AFESC), Tyndall Air Force Base, FL, and the Department of the Army, Office of the Chief of Engineers (OCE), Washington, D.C. After its original release in December 1977, the program was extended and improved under the sponsorship of the General Services Administration, Office of Professional Services. These improvements have led to the release of BLAST Version 2.0. Hence, this Users Manual supersedes the previous BLAST Users Manual (CEEDO-TR-77-35/CERL-TR-E-119) and completely describes the information necessary to use BLAST Version 2.0. The development of this new Users Manual and a companion Input Booklet for BLAST was sponsored by AFESC, under the Investigation Engineering Program (ENE-78IE 042).

Mr. D. Warne was the General Services Administration Technical Monitor, and Mr. F. Beason was the Air Force Technical Monitor. Mr. Douglas C. Hittle was the CERL Principal Investigator. Administrative support was provided by Dr. D. J. Leverenz and Mr. R. G. Donaghy, Chief, Energy and Habitability Division, CERL. Their assistance is gratefully acknowledged.

The substantial revisions to the original BLAST program* (known as BLAST 1.2) leading to BLAST Version 2.0 were accomplished by Mr. Dale Herron, Mr. George Walton, Ms. Linda Lawrie, and Mr. John Cameron. The success of BLAST and the hoped-for success of BLAST Version 2.0 are due in large measure to their special skills and determination.

Ms. M. L. Scala, Ms. Terry James, and Ms. D. P. Mann were consulting editors on this BLAST Users Manual and on its companion document, the BLAST Input Booklet.

All versions of the BLAST program are copyrighted by CERL.

COL J. E. Hays is Commander and Director of CERL, and Dr. L. R. Shaffer is Technical Director.

^{*}See Hittle, D. C., BLAST, The Building Loads Analysis and System Thermodynamics Program CEEDO-TR-77-35/CERL-TR-E-119/ADA048734 (U.S. Army Construction Engineering Research Laboratory [CERL], December 1977).

CONTENTS

17555	FORM 1473
F	DREWORD
1	INTRODUCTION 1 Background Outline of Report
2	BLAST LIBRARY 2
3	LIBRARY INPUT 41
4	BLAST EXAMPLE

and the state of t

1

Applements.

1

1

· Company of the property of t

1 INTRODUCTION

Background

The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption and energy system performance and costs in buildings. There are three major subprograms:

- 1. The space load predicting subprogram computes hourly space loads in a building or zone based on user input and weather data.
- 2. The air distribution system simulation subprogram uses computed space loads, weather data, and user inputs describing the building air handling system to calculate hot water, steam, gas, chilled water, and electric demand.
- 3. The central plant simulation subprogram uses weather data, results of the air distribution system simulation, and user input describing the central plant to simulate boilers, chillers, onsite power generating equipment, and solar energy systems, and computes monthly and annual fuel and electrical power consumption.

Volume I of this Users Manual and a companion Input Booklet explain how to prepare input for the BLAST program and help users interpret BLAST program results. Volume II contains reference data, including the BLAST program library.

Outline of Report

Chapter 2 of this volume contains a printout of the BLAST program library listing each of the library's subsets alphabetically. At the beginning of Chapter 2, information on how the library is keyed to the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Handbook of Fundamentals is provided. Note that this same printout can be produced by executing the BLAST program (see Volume I).

Chapter 3 provides a listing of the input deck used to create the BLAST library and is a good reference for users wishing to modify the library for their own projects. It provides hundreds of examples of how to define entries to the library.

Chapter 4 provides a complete example of the building simulated to produce the results summarized in Chapter 7 of Volume I. This example is produced to assist users in preparing input decks for the BLAST program.

¹Handbook of Fundamentals (American Society of Heating, Refrigeration and Air-Conditioning Engineers [ASHRAE], 1977).

2 BLAST LIBRARY

This chapter includes the entire current BLAST library. Most entries are from the 1977 edition of the ASHRAE Handbook of Fundamentals.

Table 1 lists BLAST library contents. Table 2 shows where data used to create the BLAST library can be found in the ASHRAE Handbook of Fundamentals.

The printouts on pages 4 and 39 are the computer run produced in response to the PRINT LIBRARY command. Note that the user must not insert special characters such as & or @ in library names for materials, walls, roofs, windows, floors, schedules, etc. Instead, the user should insert a slash (/) or hyphen (-), as necessary. Periods are used at the end of words in names, but decimal numbers such as 4.5 or 1.0 cannot be part of a name; e.g., 4 1/2 is used instead of 4.5. As a general rule, names can contain alphabetic characters, integer numbers, slashes, hyphens, and periods.

Table 3 lists keywords reserved for BLAST program language. These keywords cannot be used in library names.

Table 1 Library Contents

	Page
General Schedules	5- 7
Control Schedules	7- 8
Materials	8-24
Walls	25-33
Roofs	33-37
Floors	37-38
Doors	38
Windows	39

Table 2 Library-ASHRAE Correspondence

BLAST Materials Library		1977 ASHRAE Handbook of Fund	damentals
Key Name	Page	Key Name	Page
AIRSPACE	8	AIR SPACES	22.12
A-type coded names	8- 9	CODED LAYERS	25.10
BRICK	9	MASONRY UNITS	22.15
BUILDING BOARD	9-11	BUILDING BOARD	22.13-14
BUILDING MEMBRANE	11	BUILDING MEMBRANE	22.14
B-type coded names	11-12	CODED LAYERS	25.10
CLAY TILE	12	MASONRY UNITS	22.15
CONCRETE BLOCK	12-13	MASONRY UNITS	22.16
CONCRETE	13-15	MASONRY MATERIALS	22.15
C-type coded names	15-16	CODED LAYERS	25.10
DIRT	16		25.10
DRAPES	16	DRAPERIES	26.32
E-type coded names	16	CODED LAYERS	25.10
FINISH FLOORING	16-17	FINISH FLOORING MATERIALS	22.14
GLASS	17	GLASS	26.27-28
INSULATION	18-22	INSULATING MATERIALS	22.14-15
		INDUSTRIAL INSULATION	22.17-18
METAL	22	SOLIDS	37.3
PLASTER	22	PLASTERING MATERIALS	22.16
ROOFING	22-23	ROOFING	22.16
SHADE ROLL	23	ROLLER SHADES	26.31
SIDING	23-24	SIDING MATERIALS	22.16-17
VENETIAN BLINDS	24	VENETIAN BLINDS	26.31
WOOD	24	WOODS	22.17
WALLS LIBRARY		Table	Page
EXTWALLØ1 - EXTWALLØ6	25-31	TABLE 27	25.30-32
PARTITIONØ1 - PARTITION3Ø	31-33	TABLE 29	25.34-35
ROOFS LIBRARY			
CEILING31 - CEILING47	33-34	TABLE 29	25.34-35
ROOFØ1 - ROOF36	34-37	TABLE 26	25.29

Table 3 Reserved Keywords

TABLE 29

25.34-35

37-38

FLOORS LIBRARY

FLOOR31 - FLOOR47

ASSIGNMENT	LOCATION	STARTING
AT	ORIGIN	TEMPORARY
AVAILABLE	PART	USE
BEGIN	PERFORMANCE	(
DEFINE	PROJECT)
DESIGN	RATIOS	
DIMENSIONS	REDEFINE	
END	SELECTION	
ENERGY	SIDE	
FACING	SIZE	

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

20 MAR 79 12.47.06

LOCATION LIBRARY ENTY.

4

 20

SUNDAY MCHCAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY HOLIDAY

CERL -- B.L A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06 GENERAL SCHEDULE LIBRARY HOURLY PROFILES ARE DISPLAYED AS PERCENTAGES (0 - 100). BUT ARE INPUT AS FRACTIONS (0.0 - 1.0). STORE OCCUPANCY HOURLY PROFILE PERCENTAGES

LOCAL TIME: 0--1--2--3--4--5--6--7--8--9--10--11--12--13--14--15--16--17--18--19--20--21--22--23--24

HOUR NUMBER: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 SUNGAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY MOLIDAY 80 90 80 80 80 80 80 80 80 80 80 90 100 80 80 80 80 100 100 0 0 100 100 100 100 100 100 100 100 0 0 10000000 00000000 00000000 00000000 80 80 80 00000000 50 50 50 00 00000000 100 80 80 80 80 100 80 80 80 80 80 20 00000000 00000000 00000000 CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06 CONTROL SCHEOULE LIBRARY TEMPERATURES IN DEGREES F. DEAD BAND PROFILE 1 1.0 AT 68.00 0. AT 68.00 -0. AT 78.00 -1.0 AT 78.00 HOURLY PROFILE INDICATORS

LOCAL TIME* 0--1--2--3--4--5--6--7--8--9--10--11--12--13--14--15--16--17--18--19--20--21--22--23--24

HOUR NUMBER* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY HOLIDAY HEATING ON FROM 1 JAN THROUGH 31 DEC. HIGHT AND WEEKEND SETBACK WITH DUAL THROTTLING RANGES PROFILE 1 1.0 AT 67.00 0. AT 69.00 -0. AT 77.00 -1.0 AT 79.00 PROFILE 2 1.0 AT 60.00 0. AT 62.00 0---1---2---3---4--5--8---7--8---9---1 2 3 4 5 6 7 8 9 10 SUPPAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY HOLIDAY HEATING ON FROM 1 JAN THROUGH 31 DEC.

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06 CONTROL SCHEDULE LIBRARY TEMPERATURES IN DEGREES F. NIGHT AND WEEKEND SETBACK WITH SINGLE THROTTLING RANGE PROFILE 1 1.0 AT 73.00 0. AT 75.00 -0. AT 75.00 -1.0 AT 77.00 PROFILE 2 1.0 AT 60.00 0. AT 62.00 ---2---LOCAL TIME. 0---1 SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY HOLIDAY HEATING ON FROM 1 JAN THROUGH 31 DEC. SINGLE THROTTLING RANGE PROFILE 1 1.0 AT 73.00 0. AT 75.00 -0. AT 75.00 -1.0 AT 77.00 HOURLY PROFILE INDICATORS LOCAL TIME 0---1--2-SUNDAY MONDAY TUESDAY WEDNESDAY THUPSDAY FRIDAY HEATING ON FROM ! JAN THROUGH 31 DEC. CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06 Lothickness (feet), K-conductivity (Btu's per Hour-Foot-degree F), D-density (Pounds hass per cubic foot) of terials of terials of the first (Btu's per pound hass-degree F), Tabs-thermal absortivity, abs-solar absortivity of the first of t "ATERIALS AIRSPACE - CEILING AIR R = 1.000 AIRSPACE - HORIZONTAL DOWN AIR R = 1.230 AIRSPACE - HORIZONTAL UP .900 AIRSPACE - SLOPE DOWN AIR R = 1.050 AIRSPACE - SLOPE UP A1 - I IN STUCCO SMOOTH L. .0833 K. TABS* .90 ABS* .92 A2 - 4 IN DENSE FACE BRICK
ROUGH
L= .3330 K= .7200 D= 130.0 CP= .220 A3 - STEEL SIDING

SMOOTH - TABS - .90 ABS - .20 L- .0050 K- 26.0000 D- 480.0 CP- .100

VERY SMOOTH TABS - .90 ABS - .50 L- .0417 K- .2400 D- 78.0 CP- .260

A6 - FINISH

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                                           20 MAR 79
                                                                                                                                       12.47.06
                      L-THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

I A L S CP-SPECIFIC HEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY ABSORTIVITY
ARY ROVERALL RESISTANCE (MOURE-FEET SQUARED-DEGREE F) ER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR

IR-INDEX OF REFRACTION, TRANS-TRANSHITTANCE, REF-REFLECTIVITY
FILHTRANS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM
     - 4 IN FACE BRICK ROUGH TABS* 90 ABS* .93
L* .3330 K* .7700 D* 125.0 CP* .220
BRICK - COMMON 4 IN ROUGH
Le .3330 Ke
                                                              TABS* .90 ABS* .70
PPICK - COMMON 8 IN ROUGH TABS* .90 ABS* .70 L* .6670 K* .4200 D* 120.0 CP* .200
BRICK - FACE 4 IN
                                   ROUGH TABS* .90 ABS* .60
L* .030 K* .7700 D* 128.0 CP* .220
BUILDING BOARG - ACOUSTIC TILE 1 / 2 IN TABS* .90 ABS* .70 L* .0417 K* .0334 D* 10.0 CP* .320
BUILDING BOARD - ACCUSTIC TILE 3 / 4 IN

MEDIUM SMOOTH
L= .0625 K= .0334 D= 18.0 CP= .320
B'ILCING BOARD - ASSESTOS CEMENT 1 / 4 IN TABS .90 ABS .75 L. 0209 K. .3330 D. 120.0 CP .200
BUILDING BOARD - ASSESTOS CEMENT 1 / 8 IN TABS* .90 ABS* .75 L* .0104 K* .3330 D* 120.0 CP* .200
 BUILDING BOARD - GYPSUM PLASTER 1 / 2 IN
MEDIUM SMCOTH TABS* .90 ABS* .78
L* .0417 K* .9938 D* 80.0 CP* .200
         CERL -- B L A S.T. SYSTEM --- VERSION 2.0
                    ENGLISH UNITS

L-THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DEMSITY (POUNDS MASS PER CUBIC FOOT)

LIALS CP-SPECIFIC HEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SOLAR ABSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F) PER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR

IR-INDEX OF REFRACTION, TRANS-TRANSHITTANCE, REF-REFLECTIVITY
FILMTRANS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM
BUILDING BOARD - GYPSUM PLASTER 3 / 8 IN

MEDIUM SMOOTH TABS .90 ABS .75

L* .0313 K* .0938 D* 50.0 CP* .200
 BUILDING BOARD - HARDBOARD HI DENS TEMPERED 1 / 4 IN
SMOOTH TABS 90 ABS .70
L= 0209 K= .0833 D= 63.0 CP= .330
SUILDING SCARD - HARDSCARD HI DENS TEMPERED 1 / 8 IN SMOOTH TABS* .90 ABS* .70 L* .0104 K* .0833 D* $3.0 CP* .330
SUILDING BOARD - HARDGOARD HI DENS 1 / 4 IN TABS .50 ABS .70 L= .0209 K= .0340 D= 85.0 CP= .330
 BUILDING BOARD - HARDDOARD HI DENS 1 / 8 IN TABS .90 ABS .70 L- .0104 K- .0340 D- 85.0 CP .330
BUILDING SCARD - HARDSOARD MED DENS SIDING 7 / 16 IN TABS 90 ABS 70 L- 0365 K- 0620 D- 40.0 CP- .280
BUILDING BOARD - HARDROARD MED DENS 1 / 8 IN TABE- .90 ABS- .70 L- .0164 K- .0610 D- 50.0 CP- .310
BUILDING BOARD - HOMOGENEOUS PAPERBOARD 1 / 4 IN TABS* .90 ABS* .70 L* .0209 K* .0417 D* 30.0 CP* .200
```

SUILDING BOARD - HOMOGENEOUS PAPERSDARD 1 / 8 IN TABLE .90 ABS .70 L- .0104 K- .3417 D- 30.0 CP- .280

```
L*THICKNESS (FEET), K*CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D*OEMSITY (POUNDS MASS PER CUBIC FOOT)

M A T E R I A L S * CP*SPECIFIC HEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SOLAR ABSORPTIVITY

CR*GVERALL RESISTANCE (HOURS-FEET SOLARED-DEGREE F PER BTU), G/A/3*GLASS, AIR OR SHADE (HOLGATOR FILMTRAMS-TRANSHISTANCE), REFREFLECTIVITY

FILMTRAMS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM

FILMTRAMS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM
```

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06

L=THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DERSITY (POUNDS MASS PER CUBIC FOOT)
A T E R I A L S - CP-SPECIFIC HEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SOLAR ABSORTIVITY
R=OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F) PER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR
IR-INDEX OF REFRACTION, TRANS-TRANSHITTANCE, REF-REFLECTIVITY
FILMTRANS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM

BUILDING BOARD - PARTICLE MED DENS 1 / 4 IN

MEDIUM SMOOTH TABS* .90 ABS* .70
L* .0209 K* .0780 D* 50.0 CP* .310

BUILDING BOARD - PARTICLE MED DENS 1 / 8 IN MEDIUM SMOOTH TABS .90 ABS .70 L* .0104 K* .0780 D* 50.0 CP* .310

BUILDING BOARD - PARTICLE UNDERLAY 5 / 8 IN MEDIUM ROUGH TABS- .90 ABS- .70 L- .0521 K- .0540 D- 40.0 CP- .290

BUILDING BOARD - PLYHOOD 1 / 2 IN MEDIUM SMOOTN L= .0417 K= .0670 D= 34.0 CP= .290

BUILDING BOARD - PLYHOOD 1 / 4 IN MEDIUM SHOSTH L. .0209 K. .0670 D. 34.0 CP. .290

RUILDING BOARD - PLYHOOD 3 / 4 IN MEDILM SMOOTH L= .0625 K= .0670 0= 34.0 CP= .290

BUILDING SDARD - PLYWOOD 3 / 8 IN MEDIUM SHOOTH L. .0313 K. .0870 D. 34.0 CP. .290

BUILDING BOARD - SHEATHING INT DENS. 1 / 2 IN

MEDIUM ROUGH TABS* .90 ABS* .70

L* .0417 K* .0340 D* 22.0 CP* .310

SUILDING BOARD - SHEATHING NAIL BASE 1 / 2 IN

MEDIUM ROLOH TABS- .90 ABS- .70

L- .0417 K- .0367 D- 25.0 CP- .310

THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

CP-SPECIFIC MEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SOLAR ABSORTIVITY

R-GYERALL RESISTANCE (HOURS-FEET SOLAREO-DEGREE F PER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR

IR-INDEX OF REFRACTION, TRAMS-TRAMSHITTANCE, REF-REFLECTIVITY

FILMTRAMS-TRAMSHISSIVITY OF GLASS WITH REFLECTIVE FILM

BUILDING BGARD - SHEATHING REG. DENS. 1 / 2 IN HEDIUM PRUGH TABS* .90 ABS* .70 L* 0417 K* .0320 D* 18.0 CP* .310 BUILDING BOARD - SHEATHING REG. DENS: 25 / 32 IN
MEDIUM ROUGH TABS- .90 ABS- .70
L- .0651 K- .0320 D- 18.0 CP- .310 BUILDING BOARD - SHINGLE BACKER 3 / 8 IN MEDIUM SMOOTH TABS: .90 ABS: .70 L: .0313 K: .0334 D: 18.0 CP: .310 BUILDING BOARD - SHINGLE BACKER 5 / 16 IN
MEGIUM SMOOTH TABS- .90 ABS- .70
L- .0261 K- .0334 D- 18.0 CP- .310 BUILDING BOARD - SOUND DEAD 1 , 2 IN

MEDILM ROUGH TABS- .90 ABS- .75
L- .0417 K- .0301 D- 15.0 CP- .300 BUILDING BOARD - HOOD SUBFLOOR 3 / 4 IN TABS* .90 ABS* .78 L* .0625 K* .9670 D* 34.0 CP* .340 BUILDING HEMBRANE - MOPPED FELT ROUGH R = . 120 BUILDING MEMBRANE - PERMIABLE FELT ROUGH R = .060

CERL -- B.L.A.S.T. SYSTEM --- VERBION 2.0

20 MAR 79

Lethickness (Feet), K-conductivity (Btu's Per Hour-Foot-Degree F), D-density (Pounds Mass Per Cubic Foot) of the rial section of the rial section

- AIRSPACE RESISTANCE

810 - 2 IN WOOD

MEDIUM SMOOTH TABS* .90 ABS* .78

911 - 3 IN WOOD

MEDIUM SMOOTH TABS- .90 ABS- .78

TARS- .90 ARS- .50

.0250 D- 2.0 CP- .200

- 2 IN INSULATION VERY ROUGH L. 1670 Ke

.0250 D. .90 ABS- .50

1 IN DENSE INSULATION
VERY ROUGH
L* .0033 K*

.0250 0- 5.7 CP- .200

2 IN DENSE INSULATION VERY ROUGH L= .1670 K=

TABS* .90 ABS* .50

"CIERLA!	- L-THICKNET	S (FEET), K-CONDUCTIV	TTY (STU'S PER HOUR-FOOT-DE	N I T S REE F), D-DENSITY (POUNDS N. THERMAL ASSORTIVITY, ABS-SOI R BTU), G/A/S-GLASS, AIR OR SI ITANCE, REF-REFLECTIVITY WITH REFLECTIVE FILM	SS PER CUBIC FOOT) .
LIBRARY	CP-SPE	ECIFIC HEAT (BTU'S PER VERALL RESISTANCE (HOU	POUND MASS-DEGREE F), TABS- RS-FEET SQUARED-DEGREE F PET	THERMAL ABSORTIVITY, ABS-SOIR BTU), G/A/S-GLASS, AIR OR SI	AR ABSORPTIVITY .
•••••	:	FILMTR	ANS - TRANSMISSIVITY OF GLASS	WITH REFLECTIVE FILM	:
- 1 IN WOOD		TABS90 ABS-	70		
	L0033 K.	0700 D- 37.0 CP-	.600		
- 21 / 2 IN V	1000	••••			
	L. SOB3 K.	.0700 D- 37.0 CP-	. 600		
4 IN WOOD					
	HEDIUM SMOOTH	TABS* .90 ABS*	. 78		
TILE 1 CELL	SMOOTH	TABS 90 ABS-	•63		
	L2500 K-	.3100 D- 70.0 CP-	. 200		
Y TILE 1 CELL	- 4 IN SMOOTH	TABS90 ABS-	63		
	L3330 K-	.3000 D- 70.0 CP-	. 200		
TILE & CELL					
	SMOOTH L 8330 K-	.3700 D- 70.0 CP-	. 200		
TILE 2 CELL	- 6 IN				
	SHOOTH 5000 K-	TABS90 ABS-	63		
A LIFE S CETT	SMOOTH	TABS 90 ABS-			
	L6670 K-	.3500 D- 70.0 CP-	. 200		
TILE 3 CELL	- 12 IN SMOOTH	TABS 90 ABS	• .63		
	L. 1.0000 K.	.4000 D- 70.0 CP-	. 200		
CERL B.L.	A.S.T. SYSTEM	VERSION 2.0	20 MAR 79 12.47.06		
***********	. LeTHICKNES	S (FEET). K-CONDUCTIVE	TY (BTU'S PER HOUR-FOOT-DEG	REE F), D-DENSITY (POUNDS MA	SS PER CURIC FOOT) .
	The Cheste	CIPIC MEAT (BILL'S PER	POUND MASS-DEGREE P1. TABS.	THERMAL ABSORTIVITY, ABS-SOL BTU), G/A/S-GLASS, AIR OR SH TTANCE, REF-REFLECTIVITY	AR ARSORPTIVITY .
		IR-INDEX O	OF REFRACTION, TRANS-TRANSMI	TTANCE, REF-REFLECTIVITY WITH REFLECTIVE FILM	:
	and the second second second second	******************	***************************************	•••••	•••••
••••••	GYPSUM PART. TILE	SOLID 3 IN			
••••••	GYPSUM PART. TILE MEDIUM SMOOTH	SOLID 3 IN TABS" SO ABS"	75 .200		
CRETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L. 2500 K.	TABS90 ABS-	. 200		
RETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L. 2500 K.	TABS90 ABS-	. 200		
CRETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L* .2500 K* GYPSUM PART. TILE MEDIUM SMOOTH L* .3330 K*	TABS" .90 ABS* .1970 D* 100.0 CP* 2 CELL 4 IN TABS* .90 ABS* .2000 D* 30.0 CP*	. 75 . 200		
RETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L* .2500 K* GYPSUM PART. TILE MEDIUM SMOOTH L* .3330 K*	TABS" .90 ABS* .1970 D* 100.0 CP* 2 CELL 4 IN TABS* .90 ABS* .2000 D* 30.0 CP*	. 75 . 200		
RETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L* .2500 K* GYPSUM PART. TILE MEDIUM SMOOTH L* .3330 K*	TABS90 ABS-	. 75 . 200		
RETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L*	TABS" .90 ABS" 1970 D" 100.0 CP" 1 3 CELL 4 IN TABS" .90 ABS" .2000 D" 30.0 CP" 1 4 CELL 3 IN TABS" .90 ABS" .1850 D" 30.0 CP"	. 200 		
RETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L	TABS" .90 ABS". 1970 D" 100.0 CP" 3 CELL 4 IN TABS" .90 ABS". 2000 D" 30.0 CP" 4 CELL 3 IN TABS" .90 ABS". 1850 D" 30.0 CP"	. 75 . 200 		
RETE BLOCK -	GYPSUM PART. TILE MEDIUM SMOOTH L	TABS" .90 ABS" 1970 D= 100.0 CP= 1 3 CELL 4 IN	. 75 . 200 		

CONCRETE BLOCK - 2 CR LWA 9 IN HEDIUM ROUGH L. .5670 K. .3040 D. 61.0 CP. .200

CONCRETE SLOCK - 2 CR SGA FC 8 IN HEDILM ROUGH L- .8670 K- .3430 D- 81.0 CP- .200

CONCRETE BLOCK - 3 CO CA 12 IN MEDIUM ROUGH L- 1.0000 K- .500 D- 36.0 CP- .200

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
LOTHICKNESS (FEET), K-CONDUCTIVITY (STU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

MATERIALS CP-SPECIFIC HEAT (STU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SOLAR ABSORTIVITY

R-GVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F PER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR

IR-INDEX OF REFRACTION, TRANS-TRANSHITTANCE, REF-REFLECTIVITY

FILHTRANS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM
    NCRETE BLOCK - 3 CO CA 3 IN
MEDIUM ROUGH
L= .2500 K=
                                                       TABS- .90 ABS- .70
CONCRETE BLOCK - 3 CO CA 4 IN MEDIUM ROUGH L- .3330 K-
                                                        TABS- .90 ABS- .70
TABS* .90 ABS* .70
CONCRETE BLOCK - 3 CO LW AGG 12 IN
MEDIUM ROUGH
L= 1.0000 K=
                                                        TABS- .90 ABS- .70
CONCRETE BLOCK - 3 CO LW AGG 3 IN
MEDIUM ROUGH
L. .2500 K.
                                                         TABS- .90 ABS- .70
CONCRETE BLOCK - 3 CO LW AGG 4 IN
MEDIUM ROUGH
L= 3330 K=
                                                        TABS- .90 ABS- .70
CONCRETE BLOCK - 3 CO LW AGG 8 IN
MEDIUM ROUGH
L* . 6670 K*
                                                        TABS- .90 ABS- .70
CONCRETE BLOCK - 3 CO SGA 12 IN
MEDIUM ROUGH
L= 1.0000 K=
                                                         TABS- .90 ABS- .70
CONCRETE BLOCK - 3 CO SGA 4 IN
MEDIUM ROUGH
L* .3330 K*
                                                        TABS= .90 ABS= .70
        CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                              20 MAR 79
                                                                                                                       12.47.06
      Lothickness (feet), K-conductivity (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT) =

A T E R I A L S = CP-SPECIFIC HEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SOLAR ABSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F PER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR

IR-INDEX OF REFRACTION, TRANS-TRANSMITTANCE, REF-REFLECTIVITY

FILMTRAMS-TRANSMISSIVITY OF GLASS WITH REFLECTIVE FILM
CONCRETE BLCCK - 3 CG SGA 8 IN
MEDIUM ROUGH
L- .5670 K-
                                                        TABS* .90 ABS* .70
CONCRETE BLOCK - 3 CR LMA FC 12 IN HEDIUM ROUGH TABS- .90 ABS- .70 L- 1.0000 K- .1700 D- 61.0 CP- .200
CONCRETE BLOCK - 3 CR IMA FC 6 IN
HEDIUM ROUGH
L- 5000 K-
                                                        TABS* .90 ABS* .70
CONCRETE BLOCK - 3 CR LWA 12 IN
MEDIUM ROUGH
L= 1,0000 K=
                                                        TABS- .90 ABS- .70
CONCPETE BLOCK - 3 CR LWA 6 IN MEDIUM ROUGH L- . 5000 K-
                                                        TABS- .90 ABS- .70
CONCRETE - CETENT MORTAR 1 / 2 IN
MEDIUM ROUGH
L= .0417 K=
                                                        TABS- .90 ABS-
                                                                                           . 200
CONCRETE - DRIED SAND AND GRAVEL 2 IN
MEDIUM ROUGH
L= 1670 K= .79
                                                       788* .90 ABS* .60
CONCRETE - DRIED SAND AND GRAVEL 4 IN TABS - .90 ABS - .60 L* .3330 K* .7500 D* 140.0 CP* .200
CONCRETE - DRIED SAND AND GRAVEL S IN
HEDILM ROUGH
L. .5000 K. 75
```

7560 D- 140.0 CP-

CERL B.L.A.S.T. SYSTEM VERSION 2.0 80 MAR 79 18.47.06
하다 보이 하는데 아이들은 경영에 살아가면 하는데
L-TMICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DEMSITY (POUNDS MASS PER CUBIC FOOT) H A T E R I A L S CP-SPECIFIC HEAT (BTU'S PER POUND MASS-DEGREE F), TASS-THERNAL ABSORTIVITY, ASS-SOLAR ABSORTIVITY L I B R A R Y R-OVERALL RESISTANCE (MOUNS-FEET SQUARED-DEGREE F PER BTU), S/A/S-GLASS, AIR OR SHADE INDICATOR IR-INDEX OF REFACTION, TRANS-TRANSITITANCE, REF-REFLECTIVITY FILMTRAMS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM
FILATRAMS TRANSPORT OF GLASS WITH REFLECTIVE FILA
CONCRETE - DRIED SAND AND GRAVEL 8 IN TABS90 ABS50 P
CONCRETE - SYPSUM FIBER 2 IN MEDIUM ROUGH TABS* .90 ABS* .65 L* .1670 K* .1380 D* 51.0 CP* .200
CONCRETE - GYPSUM FIBER 4 IN TABS90 ABS85 L* .3330 K* .1380 D* \$1.0 CP* .800
CONCRETE - GYPSUM FIBER 6 IN TABS* .90 ABS* .85 L* .5000 K* .1360 0* 81.0 CP* .800
CONCRETE - GYPSUM FIBER 8 IN TABS* .90 ABS* .85 L* .6670 K* .1360 D* \$1.0 CP* .800
CONCRETE - PERLITE 20 LB / CU FT 4 IN TABS* .90 ABS* .88 L* 3330 K* .0417 D* 20.0 CP* .200
CONCRETE - PERLITE 30 LB / CU FT 4 IN TABS* .90 ABS* .85 L* .3330 K* .0882 D* 30.0 CP* .200
CONCRETE - PERLITE 40 LB / CU FT 4 IN TABS* .90 ABS* .85 L* 3330 k* .0778 D* 40.0 CP* .200
CONCRETE - SAND AND GRAVEL 2 IN TABS90 ABS80 L1670 K- 1.0000 B- 140.0 CP200
CERL B.L.A.S.T. SYSTEM VERSION 2.0 20 MAR 79 12.47.06
L-MICKMESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POLNDS MASS PER CUBIC POOT) H A T E R I A L S CP-SPECIFIC MEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THEMBLABSORTIVITY, ABS-SQLAR ABSORPTIVITY R-GVERALL RESISTANCE (MOURS-FEET SQUARED-DEGREE F PER BTU), G/A/S-GLASS,AIR OR SHADE INDICATOR IR-INDEX OF REFRACTION, TRANS-TRANSHITTANCE, REF-REFLECTIVITY FILHTRAMS-TRANSHISSIVITY OF GLASS WITH REFLECTIVE FILM
CONCRETE - SAND AND GRAVEL 4 IN MEDIUM ROUGH TABS* .80 L* .330 K* 1.0000 D* 140.0 CP* .800
CONCRETE - SAND AND GRAVEL 6 IN MEDIUM ROUGH L* .5000 K* 1.0000 D* 140.0 CP* .800
CONCRETE - SAND AND GRAVEL 8 IN MEDIUM ROUGH TABS= .50 ABS= .50 L= .6670 K= 1.0000 D= 140.0 CP= .800
CONCRETE - STUCCO 1 / 2 IN TABS90 ABS73 L0417 K4160 D- 116.0 CP200
CONCRETE - STUCCO 1 / 4 IN VERY ROUGH TABS* .90 ABS* .73 L* .0209 K* .4160 D* 116.0 CP* .200

CONCRETE - SAND AND GRAVEL 8 IN
MEDIUM ROUGH
L* .6670 K* 1.0000 D* 140.0 CP* .800

CONCRETE - STUCCO 1 / 2 IN
VERY ROUGH
L* .0417 K* .4160 D* 116.0 CP* .800

CONCRETE - STUCCO 1 / 4 IN
VERY ROUGH
L* .0209 K* .4160 D* 116.0 CP* .800

CONCRETE - 100 L8 / CU FT 4 IN
MEDIUM ROUGH
L* .3330 K* .4350 D* 120.0 CP* .800

CONCRETE - 20 L8 / CU FT 4 IN
MEDIUM ROUGH
L* .3330 K* .4350 D* 120.0 CP* .800

CONCRETE - 20 L8 / CU FT 4 IN
MEDIUM ROUGH
L* .3330 K* .550 D* .80 ABS* .65

CONCRETE - 30 L8 / CU FT 4 IN
MEDIUM ROUGH
L* .3330 K* .550 D* .80 ABS* .65

CONCRETE - 30 L8 / CU FT 4 IN
MEDIUM ROUGH
L* .3330 K* .550 D* .80 ABS* .65

CONCRETE - 30 L8 / CU FT 4 IN
MEDIUM ROUGH
L* .3330 K* .550 D* .80 ABS* .65

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06

- L-THICKNESS (FEET), K-CONDUCTIVITY (STU'S PER HOUR-FOOT-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- M A T E R I A L S - CP-SPECIFIC MEAT (STU'S PER POLNO MASS-DEGREE F), TABS-THERMAL ABBORTIVITY, ABS-SOLAR ABSORTIVITY

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), TABS-THERMAL ABBORTIVITY, ABS-SOLAR ABSORTIVITY

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (POLNOS MASS PER CUBIC FOOT)

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (MGURS -REFLECTIVITY

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (MGURS -REFLECTIVITY

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (MGURS -REFLECTIVITY

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (MGURS -REFLECTIVITY

- R-OVERALL RESISTANCE (MGURS -FEET SOUMRED-DEGREE F), D-DEMBITY (MGURS -FEET SO
```

C1 - 4 IN CLAY TILE TABS* .90 ABS* .88 L* .3330 K* .3500 D* 70.0 CP* .800

C10 - 8 IN HW CONCRETE REDIUM ROUGH L= .6670 K= 1.0000 D= 140.0 CP= .800

C11 - 12 IN HM CONCRETE HEDIUM ROUGH L* 1.0000 K* 1.0000 D* 140.0 CP* .800

C12 - 2 IN MN CONCRETE NEDIUM ROUGH TABS- .90 ASS- .65

C13 - 6 IN MM CONCRETE MEDIUM ROUGH L* .5000 K* 1,0000 D* 140.0 CP* .200

C14 - 4 IN LW CONCRETE HEDIUM ROUGH TABS- .90 ABS- .65
L- .3330 K- .1000 D- 40.0 CP- .200

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06

ENGL | SH U H | T S |

A T E R | A L S |

L I B R A R Y |

R-OVERALL RESISTANCE (HOURS-FEET SQUAREO-DEGREE F) PER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR

```
TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8 IN CONVICE BRICK

TABS* SO ABS* 72

CP - 8
```

DRAPES - CLOSE WEAVE LIGHT

DRAPES - CLOSE WEAVE REDIUM

DRAPES - CLOSE WEAVE REDIUM

DRAPES - OPEN WEAVE DARK

DRAPES - OPEN WEAVE DARK

DRAPES - OPEN WEAVE LIGHT

TRANS- .70 REF- 1.52

MAPES - OPEN WEAVE MEDIUM

TRANS- .70 REF- 1.52

DRAPES - OPEN WEAVE MEDIUM

TRANS- .70 REF- 1.52

DRAPES - SENI OPEN WEAVE DARK

TRANS- .45 REF- 1.52

CERL -- B L.A.S.T. SYSTEM --- VERSION 2.0

DRAPET - SEMI OPEN WEAVE LIGHT

DRAPES - SENT OPEN WEAVE HEDILM

20 MAR 79 12.47.06

L-THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DEGREITY (POUNDS MASS PER CURIC FOOT)

THAT ERIALS

CF-SPECIFIC MEAT (BTU'S PER HOUR-FOOT-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SORFTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F) FER BTU), G/A/S-BLASS, AIR OR SHADE INDICATOR

IR-INDEX OF REFRACTION, TRANS-TRANSMITTANCE, REY-REFLECTIVITY

FRINDEX OF REFRACTION, TRANS-TRANSMITTANCE, REY-REFLECTIVE FILM

.45 REF- 1.52

E1 - 3 / 4 IN PLASTER OR DYP BOARD

SHOOTH
L* 0428 K* 4200 0* 100.0 CP* 200

E2 - 1 / 2 IN SLAB OR STONE
ROLDH
L* 0417 K* 8300 0* 98.0 CP* 400

E3 - 3 / 8 IN FELT AND HEMBRANE
ROLDH
L* 0313 K* 1100 0* 70.0 CP* 400

E4 - CEILING AIRSPACE
AIR R* 1.000

E5 - ACCURTIC TILE
HEDIUM SHOOTH
L* 0350 K* 0300 0* 30.0 CP* 200

FINISH FLOORING - CARPET FLOORING PAD
R* 2.000

FINISH FLOORING - CARPET RUBER PAD
R* 1.230

FINISH FLOORING - CORK TILE 1 / 6 IN
HEDIUM SHOOTH
L* 0104 K* 0300 0* 23.0 CP* 300

FINISH FLOORING - CORK TILE 1 / 6 IN
HEDIUM SHOOTH
L* 0104 K* 0300 0* 23.0 CP* 300

FINISH FLOORING - CORK TILE 1 / 6 IN
HEDIUM SHOOTH
L* 0104 K* 0300 0* 23.0 CP* 300

FINISH FLOORING - TERRAZZO 1 IN
SHOOTH
L* 0104 K* 0300 0* 120.0 CP* 200

.50 TRANS- .33 FILHTRANS- O. IR- 1.52

CERL B.L.A.S.T				20 MAR 79	12.47.06				
********	L-THICKNES CP-SPE R-OV	S (FEET), K-C CIFIC HEAT (S	CHOUCTIVIT	Y (BTU'S PER OUND MASS-DES -FEET SQUARED	HOUR-FOOT-DECI REE F), TABS-	REE F). D-DEI THERMAL ASSOL	GITY (POLNOS NO ITIVITY, ASS-GOL GLASS, AIR OR SI MEPLECTIVITY IVE FILR	SE PER CUBIC PE	01)
			FILMTRAN	REFRACTION. 6-TRANSMISSIV	TRANS-TRANSHI	TTANCE REF-	EFLECTIVITY	•••••	:
HOULATION - ACQUETICA	L TILE WET P	ELTED 1 / 2 1 TABS- .0310 D- 2	N SO ABS-						
MOULATION - ACQUETICA	TILE WET P	ELTED 3 / 4 1 TABS- .0310 D-	. 90 ABE-	.70					
MBULATION - ACQUETICA	L TILE WET H	OLDED 1 / 2 1 TABS- .0350 D- 2	NO ARE	.70					
MBULATION - ACQUETICA	L TILE WET H	OLDED 3 / 4 I	N	.70					
L. MBULATION - ACQUISTICA NO.		0350 D- 1		.70					
HSULATION - ACQUETICA	.0417 K-	.0334 D+ 1	25.0 CP•	.300					
ľ.	.0625 K+	.0334 D-	80 AB8-	.300					
	. 0000 K-	.0334 D-	90 AB8-	.80					
MOLATION - CELLULAR VEF L-	GLASS 2 IN IT ROUGH . 1670 Ke	.0334 D-	90 ABS-	.80					
MOLATION - CELLULAR VEF L-	GLASS 3 IN RY ROUGH . 2500 K*	.0334 D-	9.0 CP-	.80					
CERL B.L.A.S.1	. SYSTEM	VERSION 2.0		80 MAR 79	12.47.06				
******	L-THICKNES CP-SPE R-OV	S (FEET), K-(CIFIC HEAT (I ERALL RESIST	CONDUCTIVIT BTU'S PER F ANCE (HOURS IR-INDEX OF FILMTRAN	Y (BTU'S PER OUND MASS-DEG FEET SQUARED REFRACTION, IS-TRANSMISSIV	L 1 S H U N HOUR-FOOT-DEG REE F), TABS- I-DEGREE F PER TRANS-TRANSRI ITY OF GLASS	REE F), D-DEI THERMAL ABSO BTU), S/A/S TTANCE, REF- WITH REFLECT	NEITY (POUNDS NO RTIVITY, ABS-SOI -GLASS, AIR OR SI REFLECTIVITY IVE FILM	SS PER CUBIC PI AR ABSORPTIVIT ADE INDICATOR	007)
MSULATION - CELLULOSI		7AB8+	. 90 ABS=	.75				•	•••••
MOREATION - CELLULOSI									
R -	7.200	TABS-	.90 ABR-	.78					
ROLATION - CELLULOSI	14.400	TABS-	.90 ABS-	.78					
60	GH 21.600	TABS-	.90 ABS-	.76					
NSULATION - EXPANDED	EXT POLYSTYR	TABS- .0160 D-	30 ABS-	. 80					
INSULATION - EXPANDED ROLL	EXT POLYSTYR	TABS* .0160 D*	3.5 CP-	.80					
INSULATION - EXPANDED ROLL		TABS"	.90 ABS-	. 80					
GOGNAÇAS - MOITALUZMI	EXT POLYSTYR	TARS-	90 ABS-	. 200					

```
L-THICKNESS (FEET), K-COMDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

H A T E R I A L S

CP-SPECIFIC HEAT (ETU'S PER POUND MASS-DEGREE F), D-DENSITY (POUND MASS PER CUBIC FOOT)

CP-SPECIFIC HEAT (ETU'S PER HOUND-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

R-OVERALL RESISTANCE (HOURS-FEET SQLARED-DEGREE F), D-DENSITY (HOURS-FEET SQL
```

INSULATION - EXPANDED POLYSTYRENE BEADS 2 IN VERY ROLEN TABS .90 ASS .80 L- .1870 K- .0230 D- 1.0 CP- .290 INSULATION - EXPANDED POLYURETHANE R11 1 IN VERY ROLUM TABS- .90 ABS- .50 L- .0830 K- .0130 D- 8.0 CP- .380 INSULATION - EXPANDED POLYLRETHANE R11 2 IN VERY ROLGH TABS- .90 ABS- .50 L- .1870 K- .0130 D- 8.0 CP- .380 INSULATION - EXPANDED POLYURETHANE R11 3 IN VERY ROUGH TABS .90 ABS .50 CP .380 L- .2500 K- .0130 D- 8.0 CP .380 (NBULATION - EXPANDED RUBBER 1 IN TABS- .90 ABS- .60 ROUGH L- .0050 K- .0100 D- 4.5 CP- .200

TABS- .90 ABS- .60

CERL -- P.L.A.S.T. SYSTEM --- VERSION 2.0

INSULATION - EXPANDED RUBBER 2 IN

20 NAR 79

L-THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POUNDS HASS PER CUSIC POOT)

H A T E R I A L S

CP-SPECIFIC HEAT (STU'S PER POUND MASS-DEGREE F), TASS-THERNAL ASSORTIVITY, ASS-SCLAR ASSORTIVITY

CP-SPECIFIC HEAT (STU'S PER POUND MASS-DEGREE F) REFLECTIVITY

R-GVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F) REFLECTIVITY

IR-INDEX OF REFRACTION, TRANS-TRANSHITTANCE, REF-REFLECTIVITY

FILITRANS-TRANSHITSIVITY OF GLASS WITH REFLECTIVE FILM TABS- .90 ABS- .60 RUURH L- .2500 K- .0100 D- 4.5 CP- .200 INSULATION - GLASS FISER SCHOOLD 1 IN TABLE .90 ABS- .50 CF- .190 L- .0830 K- .0206 D- 8.0 CF- .190 1MBULATION - GLASS FIBER BONDED 5 IN VERY ROUGH TABS: 90 ABS: .80 L- .8500 K- .0208 D- 6.0 CP- .180 INSULATION - INSULATING ROOF DECK 1 / S IN
MEDIUM SHOOTH TASS .90 ABS .78
L* .1250 K* .0270 0* 30.0 CP* .300 INSULATION - INSULATING ROOF DECK 2 IN TABS .90 ABS .78 HEDIUM SHOOTH L. .1870 K. .0270 D. 30.0 CP .300 IMBULATION - INSULATING ROOF DECK 3 IN TABS. .90 ABS. .78 L. .2500 K. 0270 D. 30.0 CP. .300 INSULATION - INTERIOR PLANKING 1 / 2 IN TABS- .90 ABS- .70 L- .0417 K- .0840 D- 15.0 CP- .380 INSULATION - MINERAL FIBER FIBROUS 2 IN TABS- .90 ABS- .75 ROUGH R - 7,000

12.47.06

PER CUBIC FOOT)
ABSORPTIVITY
E INDICATOR

***************************************	***************************************	*****	***********	E	NGLISH		S	
. HATERIAL	S . CP-SPECIFIC	HEAT	CONDUCTIVIT	Y (BTU'S	PER HOUR-FO	TARS THE	F), D-DENS	ITY (POUNDS MASS
LIBRARY	. ROVERALL	RESIST	TANCE (HOURS	-FEET SOL	MRED-DEGREE	E F PER BTL	1) . G/A/S+G	LASS AIR OR SHADE
			FILMTRA	S-TRANSMI	SSIVITY OF	GLASS WITH	REFLECTIV	E FILM
***************************************		******	••••••	********	*********	*********	*********	***************************************
INSULATION - MINE	RAL FIBER FIBROUS 3 IN ROUGH R = 11.000	TABS-	.90 ABS-	.75				
INSULATION - MINE	RAL FIBER FIBROUS 6 IN ROUGH R * 19.000	TABS-	.90 ABS-	.75				
INSULATION - MINE	RAL FIBER FILL 3 IN ROUGH R • 9.000	TABS-	. 90 ABS-	.75				
INSULATION - HINE	RAL FIBER FILL 4 1 / 2 ROUGH R = 13.000	TABS-	.90 AB\$-	.75				
INSLEATION - HINE	RAL FIBER FILL 6 1 / 4 ROLGH R = 19.000	IN TABS-	.90 ABS•	.75				
INSULATION - MINE	RAL FIBER FILL 7 1 / POLIGH R = 24.000	IN TABS-	.90 ABS+	.75				
INSULATION - MINE	PAL FIBER RESIN BOND TO VERY ROLLIN L	TABS-	90 ABS*	.60				
INSULATION - MINE	VERY ROUGH L. 1670 K	TABS-	90 ABS-	.170				
INSULATION - MINE	RAL FIBER RESIN BOND :	IN						
Inthe	VERY ROLGH	TABS-	.90 ABS-	.60				

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

MATERIALS CPSPECI CPSPECI CPSPECI R-GVER	(FEET), K-C IFIC HEAT (E RALL RESISTA	ONDUCTIVITY TU'S PER PO INCE (HOURS ReINDEX OF FILHTRAN	Y (BTU'S PEI DUND MASS-DI -FEET SQUARI REFRACTION S-TRANSMISS	CHOUR-FOOT-DEGREE F), E GREE F), TABS-THERNAL, ED-DEGREE F PER BTU), G, TRANS-TRANSHITTANCE, E VITY OF GLASS WITH REF	DENSITY (POUNDS HASS PER CUBIC FOO BESORTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR EEF-REFLECTIVITY ECTIVE FILM
INSULATION - PREFORMED ROOF INSULATI ROUGH R = 6.670			.75		N. V. S. STORAN STANSON IN ALL PRACTICAL PROPERTY AND ALL PRACTICAL PROPERTY AND ALL PROPER
INSULATION - PREFORMED ROOF INSULATI	ION 3 IN				
ROUGH R = 0.330	TABS-	.90 ABS-	.78		
INSULATION - SANDUST 1 IN ROUGH R = 2.220	TABS-	.90 ABS-	.78		
INSULATION - SANDUST 2 IN ROUGH R = 4.440	TARS-	.90 ABS-	.76		
INSULATION - SAMDUST 4 IN ROUGH R = 8.880	TABS-	.90 ABS-	.78		
INSULATION - SAWOUST 6 IN ROUGH R = 13.320	TABS-	. 90 ABS-	.75		
INSULATION - SILICA AEROGEL 1 IN ROUGH R = 5.680	TABS-	.90 ABS=	.75		10 to
INSULATION - SILICA AEROGEL 2 IN ROUGH R = 11.760	TABS-	.90 ABS-	.75		
INSULATION - SILICA AEROGEL 4 IN ROUGH R = 23.520	TABS-	. 90 ABS-	.76		
CERL B.L.A.S.T. SYSTEM V L-THICKNESS MATERIALS CP-SPECI CP-SPECI R-GVER		CONDUCTIVITY TU'S PER PI INCE (HOURS R-INDEX OF FILMTRAN	20 MAR 79 ***** E N E ****** E N E ***********	12.47.06 3 L 1 S H U N I T S = R HOUR-FOOT-DEGREE F), [GREE F), [TABS=THERNAL / TO-DEGREE F PER BTU), G, TRAMS=TRAMSHITTANCE, F VITY OF GLASS WITH REFI	D-DENSITY (POUNDS MASS PER CUBIC FOO BSORTIVITY ABS-SOLAR ABSORTIVITY "A/S-GLAS, AIR OR SHADE INDICATOR REF-REFLECTIVITY LECTIVE FILM
		ONDUCTIVIT TU'S PER PINCE (HOURS ReINDEX OF FILMTRAN			D-DENSITY (POUNDS MASS PER CUBIC FOO BSORTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR EEF-REFLECTIVITY ECTIVE FILM
MATERIALS CP-SPECI CP-SPECI R-OVER	(FEET), K=(IFIC HEAT (E PALL RESIST)		Y (BTU'S PE OUND MASS-DI -FEET SQUAR REFRACTION S=TRANSMISS		POENSITY (POUNDS MASS PER CUBIC FOO BESORTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR EEF-REFLECTIVITY LECTIVE FILM
INSULATION - VERMICULITE 1 IN ROUGH	(FEET), K-(FIC HEAT (FIC HEAT (FICHER))	.90 ABS-	Y (BTU'S PE JUND MASS-DI JUND MASS-DI FEET SQUAR REFRACTION S-TRANSHISS		DOESSITY (POUNDS MASS PER CUBIC FOO BESORTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR LECTIVE FILM
INSULATION - VERMICULITE 2 IN ROUGH	(FEET), K-(FIC HEAT (FIC HEAT (FIC)HEAT (FIC)H	.90 ABS=	Y (BTU'S PEI Y (BTU'S PEI OFFET SQUARE REFRACTION S-TRANSHISS .75		DOENSITY (POUNDS MASS PER CUBIC FOO BESORTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR LECTIVE FILM
INSULATION - VERMICULITE 4 IN ROUGH R - 3.520 INSULATION - VERMICULITE 4 IN ROUGH R - 3.520 INSULATION - VERMICULITE 4 IN ROUGH R - 4.260 INSULATION - VERMICULITE 4 IN ROUGH R - 8.520 INSULATION - VERMICULITE 5 IN ROUGH R - 12.760	TABS- TABS-	.90 ABS=	Y (BTU'S PEI Y (BTU'S PEI DI-FEET SQUARI REFRACTION STRANSHINS -75		DENSITY (POUNDS MASS PER CUBIC FOO BSGRTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR EEF-REFLECTIVITY ECTIVE FILM
INSULATION - VERMICULITE 4 IN ROUGH R - 4.260 INSULATION - VERMICULITE 4 IN ROUGH R - 5.520 INSULATION - VERMICULITE 4 IN ROUGH R - 4.260 INSULATION - VERMICULITE 4 IN ROUGH R - 5.520 INSULATION - VERMICULITE 4 IN ROUGH R - 5.520 INSULATION - VERMICULITE 6 IN ROUGH R - 5.520	TABS- TABS-	.90 ABS= .90 ABS=	Y (BTU'S PEOUND HAS PEO		D-DENSITY (POUNDS MASS PER CUBIC FOO USSORTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR LEGTREFLECTIVITY LECTIVE FILM
INSULATION - VERMICULITE 4 IN ROUGH R - 9.520 INSULATION - VERMICULITE 4 IN ROUGH R - 9.520 INSULATION - VERMICULITE 5 IN ROUGH R - 9.520 INSULATION - VERMICULITE 6 IN ROUGH R - 12.760 INSULATION - VERMICULITE 6 IN ROUGH R - 12.760 INSULATION - WOOD FIBER FILL 1 IN ROUGH	(FEET), K-(IFIC HEAT (E VALL RESIST/ TABS- TABS- TABS- TABS-	.90 ABS= .90 ABS= .90 ABS=	Y (BTU'S PEI OUND HAST-ON- FEET SOJARI REFRACTION S-TRANSHIS.		D-DENSITY (POUNDS MASS PER CUBIC FOO BSORTIVITY, ABS-SOLAR ABSORPTIVITY A/S-GLASS, AIR OR SHADE INDICATOR EEFREFLECTIVITY ECTIVE FILM

Contract

"CIERLAL"	L-THICKNESS CP-SPEC	IFIC HEAT (BTU	OUCTIVITY	(BTU'S PER HOU NO MASS-DEGREE	R-FOOT-DEGREE	FI. D-DENE T	Y (POUNDS MASS	PER CUBIC FOOT) ABSORPTIVITY E INDICATOR
	***********	IR-	INDEX OF R	EFRACTION, TRA	NE-TRANSMITTA OF GLASS WIT	NCÉ, REF-REFLI H REFLECTIVE	ECTIVITY FILM	
NSULATION - WOOD SHRE	DDED BOARD 1	/ 2 IN						
HEO	0417 K-	.0500 D. 82		·70				
NSULATION - WOOD SHRE	DOED BOARD 3	/ 4 IN						
[ieo	0625 K.	0500 D- 22		÷0				
ETAL - AGED COPPER 1	/ 16 IN @	TARS.	90 ABS-	.20				
	.0052 K- 2	7.000 De 556.	0 cP+ .0	90				
ETAL - BARE ALUMINUM	I / IE IN	TABS*	90 AB8+	.20				
·	.0052 K= 12	20.000 D= 171.	0 CP2	14				
	EL 1 / 16 IN	TABE-	90 ABS-	.go				
•	0025 K- 56	2000 0- 489.	. O CP 1	20				
LASTER - CEMENT BA 3	HTD	TABS-	90 ABS-	.20				
		.4179 0- 110.		~				
LASTER - CEMENT SA 3	HTD	TABS-	90 AB8-	70				
LASTER - GYPSUM LWA M	MID	TABS- 45	90 ABS-	70				
LASTER - GYPSUM LWA 1								
inc	.0417 K=	.1300 0- 45.	.0 CP+ .2					
sno	.0417 K=	.1300 0= 48.	.0 CP+ .2	20 MAR 79	12.47.06 S M U N I F F O T - DEGREE F F O T ABS - THE GREE F F ER BT M = T RANNI T T A	T 8	Y (POUNDE MASS TY, ABS-SOLAR IS, AIR OR SHAD	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T	.0417 K=	.1300 0= 48.	.0 CP+ .2	20 MAR 79	The second secon	T B	Y (POUNDS MASS TY, ABS-SOLAR S, AIR OR SHAD ECTIVITY FLLM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T	. 9417 K= . 9417 K=	VERSION 2.0 VERSION 2.0 IFFIC MEAT (BT) RALL RESISTANC	O CP 2 DUCTIVITY ''S PER POU E (HOURS-FI FILTTRANS-	20 MAR 79 20 MAR 79 20 MAR 79 20 EN 8 L I ETU'S PER HOU ND MASS-DEGREE EET SOUARED-DE EETAGTION TRA TRANSNISSIVITY	The second secon	T B	Y (POUNDS MASS ITY, ABS-SOLAR IS, AIR OR SHAD SCIJUTY FLM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T MATERIALS LIBRARY LASTER - GYPSUM LWAS	. SYSTEM L-TH CKNESS CP-SPEC R-OVE	VERSION 2 0	.0 CP+ .2	20 MAR 79 20 MAR 79 20 PR 8 L 1 (STU'S PER HOU ND MASS-DEGREE EET SOURMED-DE EFRACTION, TAA TRANSMISSIVITY	The second secon	T 8	Y (POUNDS MASS ITY, ABS-SOLAR SS, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T	. SYSTEM L-TH CKNESS CP-SPE R-OVE 1. SYSTEM L-TH CKNESS CP-SPE R-OVE TE 1 / 2 (N	VERSION 2.0 VERSION 2.0 I (FEET), K-CON IFIC MEAT IBTU IRALL RESISTANC IR- TABS- 1300 D- 48	DUCTIVITY J'S PER POUL E (HOURS-FI-INDEX OF RE-INDEX	20 MAR 79 20-2 E N 8 L 1 18TU'S PER HOU ND MASS-DEGREE EET SOURAED-DE EFRACTION TAA TRANSMISSIVITY	The second secon	T B	Y (POUNDS MASS ITY, ABS-SOLAR BAR ON SHAD SCIJUITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T	. SYSTEM L-TH! CKNESS CP-SPE R-OVE (/ 6 IN HOTH . 052) K- TE I / 2 IN	VERSION 2 0	DUCTIVITY J'S PER POUL E (HOURS-FI-INDEX OF RE-INDEX	20 MAR 79 20-2 E N 8 L 1 18TU'S PER HOU ND MASS-DEGREE EET SOURAED-DE EFRACTION TAA TRANSMISSIVITY	The second secon	T S	Y (POUNDS MASS TY, ABS-SOLAR S, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B. L. A. S. T M A T E R J A L S L J B R A R Y LASTER - GYPSUM LWA S ENG L- LASTER - GYPSUM PERLI SHG LASTER - GYPSUM SA HL BRG BRG LASTER - GYPSUM SA HL BRG	. SYSTEM L-TH CKNESS CP-SPEC R-QVE . SIN DOTH . O52) K- TE ! / 2 IN DOTH O417 K 3 / 4 IN DOTH	VERSION 2 0 VERSION 2 0 S (FEET), K-COD IFIC MEAT 18TO TABS* 1300 0* 45.	O CP20 O CP20 O CP20	20 MAR 79 20 MAR 79 20 PR NO L 1 18TU'S PER NOU NO MASS-DEGREE EET SOURAGE-DE EFRACTION TRA TRANSMISSIVITY .78 00 .78	The second secon	T B	Y (POUNDS MASS ITY, ABS-SOLAR SAIR OR SHAD SCIJUITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T H A T E R I A L S L I B R A R Y LASTER - GYPSUM LWA S CASTER - GYPSUM PERLI SHO LASTER - GYPSUM CA HL		VERSION 2.0 VERSION 2.0 I (FEET), K-CON IFIC MEAT IBTU IRALL RESISTANC IR- TABS- 1300 D- 48	O CP20 O CP20 O CP20	20 MAR 79 20 MAR 79 20 PR NO L 1 18TU'S PER NOU NO MASS-DEGREE EET SOURAGE-DE EFRACTION TRA TRANSMISSIVITY .78 00 .78	The second secon	T S	Y (POUNDS MASS TY, ABS-SOLAR S, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T H A T E R I A L B L I B R A R Y LASTER - GYPSUM LWA S LASTER - GYPSUM FERLI SHO L LASTER - GYPSUM SA HL SHO L LASTER - GYPSUM SA IL SHO		VERSION 2 0 3 (FEET), K-COD 15 (FEET), K-COD 16 (FEET), K	O CP* .2	20 MAR 79 20 MAR	The second secon	T B	Y (POUNDS MASS TY, ABS-SOLE B, AIR OR BHAD ECTIVITY TLM	PER CUBIC FOOT) ABSORT!VITY INDICATOR
CERL B.L.A.S.T H A T E R I A L S L I B R A R Y LASTER - GYPSUM LWA S SHO LASTER - GYPSUM FERLE LASTER - GYPSUM GA ML SHO LASTER - GYPSUM SA I SHO LASTER - GYPSUM SA I SHO L-	. SYSTEM L-TH CKNESS CP-SPE R-OVE 7 S IN OTH O417 K- 0625 K- 7 S IN OTH O417 K- 0625 K- 7 S IN OTH O417 K-	VERSION 2 0 3 (FEET), K-COD 15 (FEET), K-COD 16 (FEET), K	O CP* .2	20 MAR 79 20 MAR	The second secon	T S	Y (POUNDS MASS TY, ABS-SOLAR S, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T H A T E R I A L S L I B R A R Y LASTER - GYPSUM PERLI SHO LASTER - GYPSUM SA HL SHO LASTER - GYPSUM SA I		VERSION 2. 0 VERSION 2. 0 I (FEET), K-CON IFIC MEAT IBTI RALL RESISTANC INTABS1300 0- 48. .1250 0- 45. .4670 0- 105.	O CP2	DO MAR 79 TO MAR 79	The second secon	T B	Y (POUNDS MASS TY, ABS-SOLE S, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORT!VITY INDICATOR
CERL B. L. A. S. T. MATER - BYPSUM LWAS LASTER - GYPSUM PERLISHE LASTER - GYPSUM SA HL LASTER - GYPSUM SA I SHO L*	. SYSTEM L-TH CKNESS CP-SPE CP-SPE CP-SPE R-QVE / S IN DTH O521 K- 1 / S IN DTH O417 K- / S IN DTH O417 K- / S IN DTH O521 K-	VERSION 2 0 3 (FEET), K-COD 15 (FEET), K-COD 16 (FEET), K	O CP2	DO MAR 79 TO MAR 79	The second secon	T S	Y (POUNDS MASS TY, ABS-SOLAR S, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T H A T E R I A L S L I B R A R Y LASTER - GYPSUM LWA S SHO L LASTER - GYPSUM SA H L LASTER - GYPSUM SA I SHO L LASTER - GYPSUM VA II SHO L LASTER - GYPSUM VA II SHO L LASTER - GYPSUM VA II	. SYSTEM L-TH CKNESS CP-SPE CP-SPE CP-SPE R-QVE / S IN DTH O521 K- 1 / S IN DTH O417 K- / S IN DTH O417 K- / S IN DTH O521 K-	VERSION 2. 0 VERSION 2. 0 I (FEET), K-CON IFIC MEAT IBTI RALL RESISTANC INTABS1300 0- 48. .1250 0- 45. .4670 0- 105.	O CP2	PO MAR 79 **** E N 8 L *** E N 8 L **** E N 8 L **** E N 8 L **** E N 8 L *** E N 8 L ** E	The second secon	T 8	Y (POUNDS MASS TY, ASS-SOLAR S, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORT!VITY INDICATOR
CERL B.L.A.S.T H A T E R I A L S L I B R A R Y LASTER - GYPSUM LMA S EASTER - GYPSUM EA HL LASTER - GYPSUM SA I SHO L* LASTER - GYPSUM VA I SHO L*	. SYSTEM SYSTEM SYSTEM SYSTEM CP-SPEC . CP	TABS* .1250 0* 48. VERSION 2 0 IFFET), K*CON IFFIC MEAT IBTU IRALL RESISTAN IR* .1300 0* 46. .1300 0* 46. .1300 0* 46. .1480 0* 106. .4670 0* 106. .4670 0* 106.	O CP° .2	20 MAR 79 EN 8 L ! (STU'S PER HOU ND MASS-DERREE ET SOURCE ET SOURCE ET SOURCE TRANSMISSIVITY .78 00 .78 00 .78 00 .78 00 .78 00 .78	The second secon	T 8	Y (POUNDS MASS TY, ABS-SOLAR S, AIR OR SHAD ECTIVITY FILM	PER CUBIC FOOT) ABSORPTIVITY INDICATOR
CERL B.L.A.S.T H A T E R I A L S L I B R A R Y LASTER - GYPSUM PERLI SHO L- LASTER - GYPSUM SA HL SHO L- LASTER - GYPSUM SA S LASTER - GYPSUM SA	. SYSTEM SYSTEM SYSTEM SYSTEM CP-SPEC . CP	TABS* .1250 0= 48. VERSION 2 0 I (FEET), K-CON IFIC MEAT IBTU IR-	O CP° .2	20 MAR 79 EN 8 L ! (STU'S PER HOU ND MASS-DERREE ET SOURCE ET SOURCE ET SOURCE TRANSMISSIVITY .78 00 .78 00 .78 00 .78 00 .78 00 .78	The second secon	T S	Y (POUNDS HASE TY, ABS-SOLAR S, AIR OR SHAD ECTIVITY FLUM	PER CUBIC FOOT) ABSORTIVITY INDICATOR
CERL B.L.A.S.T H A T E R I A L S L I B R A R Y LASTER - GYPSUM LWA S SHO L- LASTER - GYPSUM SA HL SHO L- LASTER - GYPSUM SA I SHO L- LASTER - GYPSUM SA I SHO L- LASTER - GYPSUM SA I SHO L- COPING - ASB CEM SHIM VER L- COPING - COPING		TABS* .1250 0* 48. VERSION 2 0 IFFET), K*CON IFFIC MEAT IBTU IRALL RESISTANC IRALL RESISTANC IRALL TABS* .1250 0* 46. .1250 0* 45. .1250 0* 105. .4670 0* 106. .4670 0* 106.	O CP20 O ABS- O CP20 O ABS- O CP20 O ABS- O CP20 O ABS- O CP20 O CP-	DO MAR 79 TO MAR 79	The second secon	T S	Y (POUNDS MASS TY, ABS-SOLO SE, AIR OR SHAD SCOTIVITY TILM	PER CUBIC FOOT) ABSORT!VITY INDICATOR

.0230 D- 70.0 CP- .200

```
CERL -- B.L.A.S.T. SYSTEM --- VERBION 2.0
                                                                                                                                                                   20 MAR 79
                                                                                                                                                                                                              12.47.06
             L-THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (PGUNDS MASS PER CUBIC FOOT)

TERIALS CP-SPECIFIC HEAT (BTU'S PER POUND MASS-DEGREE F), TASS-THERNAL ASSORTIVITY, ASS-SOLAR ASSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL ASSORTIVITY, ASS-SOLAR ASSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL ASSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), D-DENSITY (PGUNDS MASS PER CUBIC POOT)

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), D-DENSITY (PGUNDS MASS PER CUBIC POOT)

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), D-DENSITY (PGUNDS MASS PER CUBIC POOT)

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), D-DENSITY (PGUNDS MASS PER CUBIC POOT)

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL ASSORTIVITY ASS-BOLAR ASSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL ASSORTIVITY ASS-BOLAR ASSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL ASSORTIVITY ASS-BOLAR ASSORTIVITY

R-OVERALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F), TASS-THERNAL ASSORTIVITY ASS-BOLAR ASSORTIVITY ASSOCIATED ASSOCI
       DFINE - BUILT UP ROOFING - 3 / 8 IN TABE .90 ABS .70 L- .0313 K- .0040 D- 70.0 CP- .380
                                                                                                . 8330 D- 88.0 CP- .400
.0960 00 48.0 CP+ .300
 SHADE ROLL - LIGHT OPAQUE
 SHADE ROLL - LIGHT TRANSLUCENT
SHADE ROLL - MEDIUM OPAQUE
SHADE ROLL - MEDIUM TRANSLUCENT
SIDING - ASS CEM. 1 / 4 IN
VERY ROUGH
L. . 0209 4-
SIDING - ASPHALT ING 1 / 2 IN
VERY ROUGH
L- .0417 K-
                                                                                                 .0290 D- 70.0 CP- .200
SIDING - ASPHALT ROLL VERY ROUGH K-
                                                                                           .0670 D- 70.0 CP- .800
             CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                                                                                                 20 MAR 79
                                                                                                                                                                                                              12.47.06
          L-THICKNESS (FEET), K-CONDUCTIVITY (BTU'S PER HOUR-FOOT-DEGREE F), D-DENSITY (POUNDS MASS PER CUBIC FOOT)

A T E R I A L S

CP-SPECIFIC NEAT (BTU'S PER POUND MASS-DEGREE F), TABS-THERMAL ABSORTIVITY, ABS-SOLAR ABSORTIVITY

I B R A R Y

R-OVEMALL RESISTANCE (HOURS-FEET SQUARED-DEGREE F PER BTU), G/A/S-GLASS, AIR OR SHADE INDICATOR

IR-INDEX OF REFRACTION, TRANS-TRANSHITTANCE, REF-REFLECTIVITY

FILMTRANS-TRANSHISVITY OF GLASS WITH REFLECTIVE FILM
 SIDING - INS BRD FB 3 / 8 IN TABS - 90 ABS - 90 CF - .910
SIGING - INS BRD 3 / 8 IN SHOOTH TABS- .90 ABS- .50 L- .0170 D- 60.0 CP- .310
SIDING - PLYMOOD LAPPED 3 / 8 IN TAGS- .90 ASS- .76 L- .0313 K- .0700 D- 37.0 CP- .250
 SIDING - MD SHINGLES 16 X7 1 / 2 EXP 3 / 4 IN VERY ROUGH TABS .90 ABS 76 L- .1247 K- .0700 D- 37.0 CP- .300
 SIDING - MOOD BEVEL LAPPED 1 / 2 IN TABLE .90 ABS: .70 Le .0417 Ke .0600 De 37.0 CP .310
```

SIDING - WOOD DROP 1 IN VERY ROUGH L" ,0830 K" ,0700 5" 37.0 C" ,310

SIDINS - MODD SHINGLES DEL 16 X12 EXP TABS- .90 ABS- .70 L- .2500 K- .0700 D- 37.0 CP- .300

20 MAR 79 12.47.06

SIDING - WOOD SHINGLES INS 8 / 16 IN

VERY ROUGH
L= .0521 K= .0450 D= 37.0 CP= .300

VENETIAN SLINDS - LIGHT
SHADE

TRANS= .65 REF= 1.52

VENETIAN SLINDS - MEDIUM
TRANS= .60 REF= 1.52

WOOD - HARDWOOD 1 1 / 2 IN
MEDIUM SHOOTH
L= .1247 K= .0920 D= 45.0 CP= .300

HOOD - HARDMOOD 1 / 8 IN MEDIUM SMOOTH L. 0104 K. 0920 D. 45.0 CP. 300

HODO - HAROMOOD 2 1 / 2 IN HEDILM SMOOTH L* , 2087 K* , 0920 D* 45.0 CP* , 300

HODD - HAROMOOD 3 1 / 2 IN HEDIUM SMOOTH L. .2917 K. .0920 D. 45.0 CP. .300

MODD - MARDMOOD 3 / 4 IN MEDIUM SMOOTH TABS= .90 ABS= .78 L= .0625 K= .0920 D= 45.0 CP= .300

HODD - SOFTMOOD 1 1 / 2 IN MEDIUM SMOOTH L* .1247 K* .0676 D* 32.0 CP* .330

MODD - SOFTWOOD 2 1 / 2 IN MEDIUM SMOOTH L= ,2067 K= ,0678 D= 32.0 CP= ,330

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79

12.47.06

MG00 - SOFTWOOD 3 1 / 2 IN
HEDIUM SMOTH
L* .2817 K* .0675 G* 32.0 CP* .330

MOOD - SOFTWOOD 3 / 4 IN MEDIUM SMOOTH L. .0625 K. .0675 D. .30 ABS. .70

EXTWALL29
A3 - STEEL SIDING
B5 - 1 (N DENSE INSU.ATION
A3 - STEEL SIDING

EXTWALLS6

A2 - 4 IN DENSE FACE BRICK

B3 - 2 IN INSULATION

C6 - 8 IN MW CONCRETE BLOCK

E1 - 3 / 4 IN PLASTER OR GYP BOARD

EXTWALLS7
A2 - 4 IN DENSE FACE BRICK
B3 - 2 IN INSULATION
C7 - 8 IN LW CONCRETE BLOCK
E1 - 3 / 4 IN PLASTER OR GYP SOARD

```
-- B.L.A.S.T. SYSTEM --- VERSION 2.0
  EXTWALLS8

A2 ~ 4 IN DENSE FACE BRICK
B3 ~ 2 IN INSULATION
C6 ~ 8 IN CLAY TILE
E1 ~ 3 / 4 IN PLASTER OR G/P BOARD
  EXTWALLS9
A2 ~ 4 IN DENSE FACE BRICK
B3 ~ 2 IN INSULATION
C5 ~ 4 IN MY CUNCRETE
E1 ~ 3 / 4 IN PLASTER OR GYP BOARD
  EXTMALLSO
A2 - 4 IN DENSE FACE BRICK
B3 - 2 IN INSULATION
C4 - 4 IN COMMON BRICK
E1 - 3 / 4 IN PLASTER OR GYP BOARD
  EXTWALLS1

A2 - 4 IN DENSE FACE BRICK

B2 - 1 IN INSULATION

C3 - 4 IN MY CONCRETE BLOCK

E1 - 3 / 4 IN PLASTER OR GYP BOARD
   EXTWALLS2
A2 - 4 IN DENSE FACE BRICK
C9 - 8 IN COMMON BRICK
E1 - 3 ' 4 IN PLASTER OR GYP BOARD
  EXTWALL69
A1 - 1 IN STUCCO
C8 - 8 ID HW CONCRETE BLOCK
B2 - 1 IN INSULATION
E1 - 3 / 4 IN PLASTER OR GYP BOARD
   EXTMALL64
A1 - 1 IN STUCCO
C8 - 8 IN MM CONCRETE BLUCK
E1 - 3 / 4 IN PLASTER OR GYP BOARD
CERL -- B.L.A.S.T. SYSTET --- VERSION 2.0
                                                                                                                        MATERIALS LISTED FROM OUTSIDE TO INSIDE
  EXTHALLSS
A' - 1 IN STUCCO
C7 - 8 IN LW CONCRETE BLOCK
B2 - 1 IN INSULATION
E1 - 3 / 4 IN PLASTER OR GYP BOARD
 EXTWALLES
A1 - 1 IN STUCCO
C7 - 8 IN LW CONCRETE BLOCK
E1 - 3 / 4 IN PLASTER OR GYP BOARD
  EXTWALLS7
A2 - 4 IN DENSE FACE BRICK
C5 - 8 IN CLAY TILE
B2 - 1 IN INSULATION
E1 - 3 / 4 IN PLASTER OR GYP BOARD
  EXTMALL68
A2 - 4 IN DENSE FACE BRICK
C6 - 8 IN CLAY TILE
B1 - AIRSPACE RESISTANCE
E1 - 3 / 4 IN PLASTER OR GYP BOARD
  EXTWALL69
A2 - 4 IN DENSE FACE BRICK
C6 - 8 IN CLAY TILE
E1 - 3 / 4 IN PLASTER OR GYP BOARD
  EXTMALL70
A1 - 1 IN STUCCO
C6 - 8 IN CLAY TILE
B2 - 1 IN INSULATION
E1 - 3 / 4 IN PLASTER OR GYP BOARD
  EXTMALL71
A1 - 1 IN STUCCO
C5 - 5 IN CLAY TILE
B1 - AIRSPACE RESISTANCE
E1 - 3 / 4 IN PLASTER OR GYP BOARD
```

EXTWALLOR
AR - 4 IN DENSE FACE BRICK
CR - 4 IN LW CONCRETE BLOCK
BR - 1 IN INSULATION
E1 - 3 / 4 IN PLASTER OR GYP BOARD

EXTMALLO3

AZ - 4 IN DENSE FACE BRICK
CZ - 4 IN LW CONCRETE BLOCK
B1 - AIRSPACE RESISTANCE
E1 - 3 / 4 IN PLASTER OR GYP BOARD

EXTWALL84
A2 - 4 IN DENSE FACE BRICK
C2 - 4 IN LW CONCRETE BLOCK
C1 - 3 / 4 IN PLASTER OR GYP BOARD

EXTUALLOS
A1 - 1 IN STUCCO
C2 - 4 IN LW CONCRETE BLOCK
62 - 1 IN INSULATION
E1 - 3 / 4 IN PLASTER OR --- BOARD

PARTITION22 C11 - 12 IN HW CONCRETE

PARTITION23
E1 - 3 / 4 IN PLASTER OR GYP BOARD
B1 - AIRSPACE RESISTANCE
E1 - 3 / 4 IN PLASTER OR GYP BOARD

```
20 HAR 79 12.47.06
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                MATERIALS LISTED FROM OUTSIDE TO INSIDE
 PARTITION24
87 - 1 IN WOOD
 PARTITION25
810 - 2 IN WOOD
 PARTITION26
811 - 3 IN WOOD
 PARTITIONET
B9 - 4 IN WOOD
 PARTITION28
67 - 1 IN MODD
81 - AIRSPACE RESISTANCE
87 - 1 IN MODD
 PARTITION29
BIO - 2 IN WOOD
BI - AIRSPACE RESISTANCE
BIO - 2 IN WOOD
 PARTITION30
811 - 3 IN 4000
81 - AIRSPACE RESISTANCE
811 - 3 IN 4000
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                MATERIALS LISTED FROM OUTSIDE TO INSIDE
 CEILING31
C12 - 2 IN HW CONCRETE
 CEILING32
C5 - 4 IN HM CONCRETE
 CEILING33
C2 - 4 IN LW CONCRETE BLOCK
 CEILING34
C10 - 8 IN HM CONCRETE
 CEILINGSS
C7 - 6 IN LW CONCRETE BLOCK
 CEILING38
C12 - 2 IN HW CONCRETE
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
 CEILING39
C5 - 4 IN HW CONCRETE
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
  CEILING40
C2 - 4 IN LW CONCRETE BLOCK
E4 - CFILING AIRSTACE
E5 - ACOUSTIC TILE
  CEILING41
C10 - 8 IN HW CONCRETE
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
  CEILING42
C7 - 8 IN LW CONCRETE BLOCK
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                                                    20 MAR 79
                                                                                                                                             12.47.00
MATERIALS LISTED FROM OUTSIDE TO INSIDE
            CEILING43
810 - 2 IN WOOD
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
            CEILING44
BIT - 3 IN WOOD
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
            CEILING45
C11 - 12 IN HW CONCRETE
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
           CEILING46

89 - 4 IN HOOD

E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
           CEILING47
A3 - STEEL SIDING
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
           RCOFO1

C12 - 2 IN MW CONCRETE

B1 - AIRSPACE RESISTANCE

B6 - 2 IN DENSE INSULATION

E2 - 1 / 2 IN SLAG OR STONE

E3 - 3 / 8 IN FELT AND MEMBRANE

C5 - 4 IN MW CONCRETE

E4 - CEILING AIRSPACE

E5 - ACCUSTIC TILE
                                                                                                                   20 MAR 79 12.47.06
         CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
ROOFS MATERIALS LISTED FROM GUTSIDE TO INSIDE
           ROOFO2

E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
86 - 2 IN DENSE INSULATION
G9 - 4 IN WOOD
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
           ROOFO3

E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
86 - 2 IN DENSE INSULATION
88 - 2 I / 2 IN MOOD
E4 - CEILING AIRSPACE
E5 - ACCUSTIC TILE
           ROOF04
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
86 - 2 IN DENSE INSULATION
B7 - 1 IN WOOD
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
           ROOF 05
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND HEMBRANE
B5 - 1 IN DENSE INSTANTION
B9 - 4 IN WOOD
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
           ROOFOG

E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 6 IN FELT AND MEMBRANE
B5 - 1 IN DENSE INSULATION
B6 - 2 I / 2 IN WOOD
E4 - CEILING AIRSPACE
E5 - ACOUSTIC TILE
```

RCOF25
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
B5 - 1 IN DENSE INSULATION
B7 - 1 IN WOOD

ROOF26 E2 - 1 / 2 IN SLAG OR STONE E3 - 3 / 8 IN FELT AND MEMBRANE C16 - 8 IN LM CONCRETE

ROOF27 E2 - 1 / 2 IN SLAG OR STONE E3 - 3 / 8 IN FELT AND MEMBRANE C15 - 6 IN LW CONCRETE

ROOF28 E2 - 1 / 2 IN SLAG OR STONE E3 - 3 / 8 IN FELT AND MEMBRANE C14 - 4 IN LW CONCRETE

ROOF29
1 / 2 IN SLAG OR STONE
E3 - 3 / 9 IN FELT AND MEMBRANE
B6 - 2 IN DENSE INSULATION
C13 - 6 IN HW CONCRETE

ROOF30
E3 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
86 - 2 IN DENSE INSULATION
C5 - 4 IN HW CONCRETE

```
20 MAR 78
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                                                       12.47.06
                                                                                     NATERIALS LISTED FROM OUTSIDE TO INSIDE
                                    ROOF31
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 3 IN FELT AND MEMBRANE
66 - 2 IN DENSE INSULATION
C12 - 2 IN HM CONCRETE
 ROOF32
E2 - 1 / 2 IN BLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
B5 - 1 IN DENSE INSULATION
C13 - 6 IN HM CONCRETE
  ROOF33
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
B5 - 1 IN DENSE INSULATION
C5 - 4 IN HW CONCRETE
  ROOF34
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRAME
B5 - 1 IN DENSE INSULATION
C12 - 2 IN MW CONCRETE
  ROOF35
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
86 - 2 IN DENSE INSULATION
A3 - STEEL SIDING
  ROOF36
E2 - 1 / 2 IN SLAG OR STONE
E3 - 3 / 8 IN FELT AND MEMBRANE
B5 - 1 IN DENSE INSULATION
A3 - STEEL SIDINS
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                                     MATERIALS LISTED FROM OUTSIDE TO INSIDE
 FLOOR SLAB 4 IN
DIRT 12 IN
C5 - 4 IN HW CONCRETE
 FLOOR SLAB 0 IN
DIRT 12 IN
C10 - 8 IN HW CONCRETE
 FLOCASI
C12 - 2 IN HN CONCRETE
 FLOORSE CS - 4 IN HW CONCRETE
 FLOORSS CE - 4 IN LW CONCRETE BLOCK
 FLOORS4
C10 - 0 IN HW CONCRETE
 FLOORDS
C7 - 8 IN LW CONCRETE BLOCK
 FLOOR36
810 - 2 IN WOOD
  FLOOR37
811 - 3 IN WOOD
  FLOORSE
ES - ACQUETIC TILE
E4 - CEILING A'REPACE
C12 - 2 IN HW CONCRETE
 FLOORSS
E5 - ACQUETIC TILE
E4 - CEILING AIRSPACE
C5 - 4 IN HW CONCRETE
```

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 FLOOR40 ES - ACOUSTIC TILE E4 - CEILING AIRSPACE C2 - 4 IN LW CONCRETE BLOCK FLC3R41 ES - ACOUSTIC TILE E4 - CEILING AIRSPACE C10 - S IN HW CONCRETE *LOOR42 E5 - ACOUSTIC TILE E4 - CEILING AIRSPACE C7 - 8 IN LW CONCRETE BLOCK FLOOR43 ES - ACOUSTIC TILE E4 - CEILING AIRSPACE B10 - 2 IN WOCD ELOCR44
ES - ACOUSTIC TILE
E4 - CEILING AIRSPACE
BII - 3 IN WOOD FLOOR45
ES - ACOUSTIC TILE
E4 - CEILING AIRSTACE
C11 - 12 IN HM CONCRETE FLOOR46 E5 - ACOUSTIC TILE E4 - CEILING AIRSPACE 89 - 4 IN WOOD FLOOR47 E5 - ACOUSTIC TILE E4 - CEILING AIRSPACE A3 - STEEL SIDING CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 MATERIALS LISTED FROM OUTSIDE TO INCIDE ALLMINUM DOOR
A3 - STEEL SIDING
B1 - AIRSPACE REVISTANCE
A3 - STEEL SIDING

GLASS DOOR GLASS - CLEAR PLATE 1 / 2 IN

HOLLOW WOOD DOOR WOOD - HARDWOOD - 1 / 8 IN 81 - AIRSPACE RESISTANCE WOOD - HARDWOOD - 1 / 8 IN

SLIDING PARTITION ES - 3 / 8 IN FELT AND MEMBRANE

SOLID WOOD DOOR

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06 WINDOWS MATERIALS LISTED FROM OUTSIDE TO INSIDE DOUBLE PANE TINTED WINDOW GLASS - GREY PLATE 3 / 8 IN 81 - AIRSPACE RESISTANCE GLASS - CLEAR PLATE 3 / 8 IN DOUBLE PANE WINDOW
GLASS - CLEAR SHEET 1 / 8 IN
B1 - AIRSPACE RESISTANCE
GLASS - CLEAR SHEET 1 / 8 IN DOUBLE PANE WITH BLINDS GLASS - CLEAR SHEET 1 / 8 IN B1 - AIRSPACE RESISTANCE GLASS - CLEAR SHEET 1 / 6 IN VENETIAN BLINDS - LIGHT DOUBLE PANE WITH DRAPES
GLASS - CLEAR SHEET 1 / 8 IN
B1 - AIRSPACE RESISTANCE
GLASS - CLEAR SHEET 1 / 6 IN
DRAPES - CLOSE WEAVE MEDIUM DOUBLE PANE WITH SHADE
GLASS - CLEAR SHEET 1 / 8 IN
81 - AIRSPACE RESISTANCE
GLASS - CLEAR SHEET 1 / 8 IN
SHADE ROLL - LIGHT OPAQUE SINGLE PANE HW WINDOW GLASS - CLEAR PLATE 1 / 4 IN SINGLE PANE LW WINDOW GLASS - CLEAR SHEET 1 / 8 IN SINGLE PANE TINTED WINDOW GLASS - GREY PLATE 1 / 4 IN SINGLE PANE WITH BLINDS GLASS - CLEAR SHEET 1 / 8 IN VENETIAN BLINDS - LIGHT CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06

WINDOWS MATERIALS LISTED FROM OUTSIDE TO INSIDE

SINGLE PANE WITH DRAPES QLASS - CLEAR PLATE 1 / 4 IN DRAPES - CLOSE WEAVE MEDIUM

SINGLE PANE WITH SHADE GLASS - CLEAR SHEET 1 / S IN SHADE ROLL - LIGHT OPAQUE

1

3 LIBRARY INPUT

The pages that follow show the input deck used to create the BLAST program library. The procedures described in Chapter 3, Volume I of the Users Manual were used to DEFINE the input.

Line numbers are part of BLAST output (BLAST echoes user input and adds these numbers). Line numbers are not part of the input.


```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
```

20 MAR 79 12.47.06

1 BEGIN INPUT: RUN CONTROLS UNITS (IN-ENGLISH, OUT-ENGLISH) PRINT LIBRARY TIME MATERIALSE BUILDING BOARD - ASBESTOS CEMENT 1/8 IN-(L=.0104,K=.333,D=120.,CP=.2,ABS=.75,MEDIUM ROUGH). BUILDING BOARD - ASBESTOS CEMENT 1/4 IN-(L=.0209, K=.333, D=120., CP=.2, ABS=.75, MEDIUM ROUGH), 10 BUILDING BOARD - GYPSUM PLASTER 3/8 IN . 11 IL-.0313, K-.0938, D-50., CP-.2, TABS-.9, ABS-.75, R-0, IR-1.52, 12 TRANS-O., FILMTRANS-O., REF-1., HEDILM SMOOTH), BUILDING BOARD - GYPSUM PLASTER 1/2 IN-13 14 (L-.0417, K-.0938, D-50., CP-.2, TABS-.9, ABS-.75, R-0., IR-1.52, 15 TRANS-O., FILMTRANS-O., REF-1., MEDIUM SMOOTH), 16 BUILDING BOARD - PLYWOOD 1/4 IN . 17 IL. 0209, K. . 067, D-34., CP. . 29, ABS- . 78, MEDIUM SMOOTH). 18 BUILDING BOARD - PLYWOOD 3/8 IN . (L=.0313,K=.067,D=34.,CP=.29,ABS=.78,MEDIUN SHOOTH), 20 BUILDING BOARD - PLYWOOD 1/2 IN . 21 (L. 0417.K. 067.0-34. CP. 29. ABS. 70. MEDIUM SMOOTH). 22 BUILDING BOARD - PLYWOOD 3/4 IN . (L=.0625,K=.067,D=34.,CP=.29,ABS=.78,MEDIUM SMOGTH), 23 BUILDING BOARD - SHEATHING REG. DENS. 1/2 IN .

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

20 MAR 79 12.47.08

(L. 0417,K. 032,D-18.,CF.31,ABS.7,HEDIUM ROUGH), BUILDING BOARD - SHEATHING REG. DENS. 25/32 IN . 26 (L=.0651,K=.032,D=18.,CP=.31,ABS=.7,HEDIUM ROUGH), 27 BUILDING BOAPD - SHEATHING INT. DENS. 1/2 IN (L=.0417,K=.034,D=22.,CP=.31,ABS=.7,MEDIUM ROUGH). 30 BUILDING BOARD SHEATHING MAIL BASE 1/2 IN . 31 (L. 0417,K-.0367,D-25.,CP-.31,A85-.7,MEDIUM ROUGH), BUILDING BOARD - SHINGLE BACKER 3/8 IN . 32 (L. . 0313 K. . 0334 De 18 . CP. 31 ARS. 7 MEDIUM SMOOTH) 33 BUILDING BOARD - SHINGLE BACKER 5/16 IN . 34 (L-.0261,K-.0334,D-18.,CP-.31,ABS-.7,MEDIUM SMOOTH), BUILDING BOARD - SOUND DEAD 1/2 IN . 36 37 (L. 0417.K. 0301.D.15.,CP. 30.ABS. 75.HEDIUH ROUGH). 38 BUILDING BOARD - ACQUETIC TILE 1/2 IN . (L. 0417.K. 0334, D.18., CP. 32, ABS. 7, MEDIUM SMOOTH), 39 BUILDING BOARD - ACQUSTIC TILE 3/4 IN . 40 41 (L. . 0625.K. . 0334.D. 18. . CP. . 32. ABS. . 7. MEDIUM SMOOTH) . 42 BUILDING BOARD - LAMINATED PAPERBOARD 1/8 IN . 43 (L. . 0104, K. . 0417, D-30., CP. . 20, ABS- . 7, SMOOTH), 44 BUILDING BOARD - LAMINATED PAPERBOARD 1/4 IN . 45 (L=.0209,K=.0417,D=30.,CP=.28,ABS=.7,SMOOTH), BUILDING BOARD - HOMOGENEOUS PAPERSOARD 1/8 IN . (L. . 0104, K. 0417, 0-30., CP. . 28, ABS. . 7, SHOOTH). BUILDING SGARS - HOHOGENEOUS PAPERSGARD 1/4 IN .

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
          (L. 0209 K. 0417 D. 30 . CP. 28 ABS. 7 SMOOTH).
 49
50
       BUILDING POARD - HARDBOARD MED DENS SIDING 7/16 IN .
51
          (L. 0365, K. 062, D. 40., CP. 28, ABS. 7, SMOOTH),
52
       BUILDING BOARD - HARDROARD MED DENS 1/8 IN .
          (L. 0104,K. 061, 0-50.,CP. 31, ABS. 7, SMOOTH),
53
54
       BUILDING BOARD - HARDBOARD HI DENS 1/8 IN .
55
          (L. 0104,K. 034,D-55.,CP. 33,A85.7 SHOOTH),
       BUILDING BOARD - HARDBOARD HI DENS 1/4 IN .
56
57
          (L=.0209,K=.034,D=55.,CP=.33,ABS=.7,SMOQTH),
       BUILDING BOARD - HARDBOARD HI DENS TEMPERED 1/8 IN-
50
          (L. . 0104, K. . 0833, D.63 . , CP. . 33, ABS. . 7, SMOOTH),
59
       BUILDING BOARD - HARDBOARD HI DENS TEMPERED 1/4 IN-
 60
          (L=.0209,K=.0833,0=63.,CP=.33,ABS=.7,SMOOTH),
61
       BUILDING BOARD - PARTICLE LO DENS 1/8 IN .
62
63
          (L. 0104, K. 045, D.37., CP. 31, ABS. 7, MEDIUM SMOOTH),
 64
       BUILDING BOARD - PARTICLE LO DENS 1/4 IN .
 65
          (L. . 0209, K. . 045, D-37 , CP. . 31, ABS. . 7, MEDIUM SMOOTH),
       BUILDING BOARD - PARTICLE LO DENS 1/2 IN .
 66
 67
          (L+.0417,K+.045,D+37.,CP+.31,ABS+.7,MEDIUM SMOOTH),
 68
       BUILDING BOARD - PARTICLE MED DENS 1/8 IN-
 69
          (L. . 0104, K. . 078, D.50., CP. . 31, ABS. . 7, MEDIUM SMOOTH).
 70
       BUILDING BOARD - PARTICLE MED DENS 1/4 IN-
71
          (L. . 0209, K. . 076, 0-50., CP. . 31, ABS. . 7, MEDIUM SMOOTH),
       BUILDING BOARD - PARTICLE MED DENS 1/2 IN-
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                       12.47.06
          (L=.0417,K=.078,D=50.,CP=.31,ABS=.7,MEDIUM SMOOTH).
73
       BUILDING BOARD - PARTICLE HI DENS 1/8 IN .
74
75
          (L=.0104,K=.098,D=62.,CP=.31,ABS=.7,MEDIUM SMOOTH),
 76
       BUILDING BOARD - PARTICLE HI DENS 1/4 IN .
          (L=.0209,K=.098,D=62.,CP=.31,ABS=.7,MEDIUM SMOOTH),
77
78
       BUILDING BOARD - PARTICLE HI DENS 1/2 IN .
          (L=.0417,K=.098,D=62.,CP=.31,ABS=.7,MEDIUM SMOOTH),
 79
       BUILDING BOARD - PARTICLE UNDERLAY 5/8 IN .
 80
 81
          (L=.0521,K=.054,D=40.,CP=.29,ABS=.7,MEDIUM ROUGH),
 12
       BUILDING BOARD - WOOD SUBFLOOR 3/4 IN .
 83
          (L=.0625,K=.067,D=34.,CP=.34,ABS=.78,MEDIUM ROUGH);
 84 END MATERIALS:
 85
    DEFINE MATERIALSE
 86
       BUILDING MEMBRANE - PERMIABLE FELT .
 87
       BUILDING MEMBRANE - MOPPED FELT .
 24
 19
          (R. 12).
       BUILDING MEMBRANE - PLASTIC FILM .
          (R=0.0001);
 91
    END MATERIALS:
    DEFINE MATERIALSE
       FINISH FLOORING - CARPET FIBROUS PAD .
          (R-2.08).
       FINISH FLOORING - CARPET RUBBER PAD .
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
 97
          (R-1.23).
       FINISH FLOORING - CORK TILE 1/8 IN .
 98
 33
          (L. 0104, K. 038.0-23., CP. 3, ABS. 8, MEDIUM SHOOTH),
100
       FINISH FLOORING - TERRAZZO 1 IN .
101
          (L. . 063, K-1. 04, D-120., CP. . 25, ABS. . 65, SHOOTH),
       FINISH FLOORING - TILE 1/16 IN .
102
103
          (L. OOS2, K. 103, D-120., CP. 3, A88. 3, SHOOTH).
       FINISH FLOORING - MODO 3/4 IN .
104
105
          (L. 0625, ABS. . 65, R. . 68),
106
       DIRT 12 IN .
107
            (L-1.0.K-0.1,D-68 ,CP-.2,ABS-.7,ROUGH);
100
     END MATERIALS:
     DEFINE MATERIALES
       INSULATION - MINERAL FIBER FIBROUS & IN .
110
111
          (8.7.).
       INSULATION - MINERAL FIRER FIREOUS 3 IN .
112
113
          (R-11.).
114
       INSULATION - MINERAL FIBER FIBROUS & IN .
113
          (R.19.).
116
       INSULATION - CELLULAR GLASS I IN .
117
          (L. .083, K. .0334, D.S. , CP. .24, ABS. . S, VERY ROUGH),
110
       INSULATION - CELLULAR GLASS 2 IN .
          (L=. 167,K=.0334,D=9.,CP=.24,ABS=.5,VERY ROUGH),
119
       INSULATION - CELLULAR GLASS 3 IN .
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                         20 NAR 79
                                                                         12.47.00
          (L. 25,K. 0334,D-9.,CP. 24,A85.5,VERY ROUGH),
       INSULATION - GLASS FIBER BONDED 1 IN .
155
```

(L. 083, K. 0208, D.S., CP. 19, ASS. 5, VERY ROUGH), 123 124 INSULATION - GLASS FIBER BONDED & IN . (L. 167, K. 0208, D.S., CP. 19, ABS. S, VERY ROUGH). 128 INSULATION - GLASS FIBER BONDED 3 IN . 127 (L. 25, K. 0208, D.6 , CP. 19, ABS. 5, VERY ROUGH), 120 INSULATION - EXPANDED RUBBER I IN . 129 (L. . 063, K. . 018, D.4. 5, CP. . 2, ABS. . 6, ROUGH). 130 INSTRATION - EVPANDED SURRED 9 IM . 131 (L. 167, K. 018, D.4.5, CP. 2, ABS. 6, ROUGH), 132 INSULATION - EXPANDED RUBBER 3 IN . 133 (L. . 25, K. . 018, D.4. 5, CP. . 2, ABS. . 6, ROUGH) . 134 INSULATION - EXPANDED EXT POLYSTYRENE I IN . 135 (L. . 093, K. . 0208, D. 1. 8, CP. . 29, ABS. . 5, ROUGH), 136 INSULATION - EXPANDED EXT POLYSTYRENE 2 IN . 137 (L. 167, K. 0208, D.1. 8, CP. 29, ABS. 5, ROUGH). 130 INSULATION - EXPANCED EXT POLYSTYRENE 3 IN . 139 (L. 25,K. 0208, 0-1.8 CP. 29, ABS. 5, ROUGH), 140 INSULATION - EXPANDED EXT POLYSTYRENE RIE 1 IN . 141 (L. . 083, K. . 016, D.3. 5, CP. . 29, ABS. . 8, ROUGH), 142 INSULATION - EXPANDED EXT POLYSTYRENE RIZ & IN . 143 (L. 167,K. 016,0-3.5,CP. 29,A88-,S. ROUGH). INSULATION - EXPANDED EXT POLYSTYRENE RIZ 3 IN .

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                    20 MAR 79
                                                                         12.47.06
145
          (L. 25, K. 016, D.3. 5, CP. 29, ABS. 5, ROUGH),
       INSULATION - EXPANDED POLYSTYRENE BEADS 1 IN .
146
147
          (La. 083, Ka. 023, Dal., CPa. 29, ABSa. 5, VERY ROUGH),
148
       INSULATION - EXPANDED POLYSTYRENE BEADS 2 IN .
149
          (L. 167, K. 023, D.1., CP. 29, ABS. 5, VERY ROUGH),
130
       INSULATION - EXPANDED POLYSTYRENE BEADS 3 IN .
151
          (L. 25, K. 023, D.1., CP. 29, ABS-15, VERY ROUGH),
152
       INSULATION - EXPANDED POLYURETHANE RII I IN .
153
          (L. . 083, K. . 013, D.2., CP. . 38, ABS. . 5, VERY ROUGH).
154
       INSULATION - EXPANDED POLYURETHANE RIL 2 IN .
155
          (L. 167, K. 013, D.2., CP. 38, ABS. 5, VERY ROUGH),
       INSULATION - EXPANDED POLYURETHANE RII 3 IN .
156
137
          (L. 25,K. 013, D.2., CP. 36, ABS. 5, VERY ROUGH),
150
       INSULATION - HINERAL FIBER RESIN BOND 1 IN .
159
          (L. . 083, K. . 027, D. 15., CP. . 17, ABS. . 6, VERY ROUGH),
160
       INSILATION - HINERAL FIBER RESIN BOND 2 IN .
161
          (L. 167.K., G27.D.15., CP. 17. ABS. 6. VERY ROUGH).
162
        INSULATION - HINERAL FIBER RESIN BOND 3 IN .
163
          (L. 25,K. 027, D.15., CP. 17, ABS. 6, VERY ROUGH),
       INSULATION - MINERAL FIBERSP. WET FELTED 1 IN .
184
165
          (L+.083,K+.028,D+16.,CP+.32,ABS+.6,ROUGH),
166
        INSULATION - ACCUSTICAL TILE WET FELTED 1/2 IN .
167
          (L. 0417,K. 031 D-21.,CP. 32,ABS-.7,ROUGH),
168
        INSULATION - ACCUSTICAL TILE WET FELTED 3/4 IN .
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
169
          (L. 0625, K. 031, D-21., CP. 32, ABS. 7, ROUGH),
170
        INSULATION - ACQUISTICAL TILE WET HOLDED 1/2 IN .
171
           (L. 0417,K. 035,0-23.,CP. 32,ABS.7,ROUGH),
172
        INSULATION - ACQUISTICAL TILE WET MOLDED 3/4 IN .
173
           (L-.0625,K-.035,D-23.,CP-.32,ABS-.7,RCUGH),
174
        INSULATION - ACQUITICAL TILE WOOD FIBER 1/2 IN .
175
           (L. 0417, K. 0334, D.25., CP. 3, ABS. 7, ROUGH),
176
        INSULATION - ACQUETICAL TILE WOOD FIBER 3/4 IN .
177
           (L. OS25, K. O334, D-25., CP. 3, ABS. 7, ROUGH).
178
        INSULATION - INTERIOR PLANKING 1/2 IN .
179
           (L. 0417, K. 028, 0-15., CP. 32, ABS. 7, NEDIUN SHOOTH).
180
        INSULATION - INSULATING ROOF DECK 1/3 IN-
181
           (L. 125,K. 027, D.30., CP. 3, ABS. 78, MEDIUM SHOOTH),
182
        INSULATION - INSULATING ROOF DECK 2 IN .
103
          (L. 167, K. 027, D.30., CP. 3, ABS. 78, MEDIUM SMOOTH).
184
        INSULATION - INSULATING ROOF DECK 3 IN .
105
           (L. 25,K. 027, D.30., CP. 3, ABS. 78, MEDIUM SMOGTH),
100
        INSULATION - WOOD SHREDOED BOARD 1/2 IN .
187
           (L. 0417,K. 05,0-22.,CP. 38,ABS. 78, MEDIUM SHOOTH),
188
        INSULATION - WOOD SHREDDED BOARD 3/4 IN .
189
           tL+.0625,K+.05,0+22.,CP+.38,AB8+.76,MEDILM SMOOTH),
190
        INSULATION - CELLULOSE FILL 1 IN .
191
          (Ro3.7).
        INSULATION - CELLULOSE FILL 2 IN .
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
193
          (R-7.2).
       INSULATION - CELLULOSE FILL 4 IN .
194
195
          (R-14.4),
       INSULATION - CELLULOSE FILL 6 IN-
196
          (R-21.6),
197
       INSULATION - SANOUST 1 IN .
198
199
          (R-2.22),
       INSULATION - SANDUST 2 IN .
200
          (R-4.44),
201
       INDULATION - SANDLET 4 IN .
505
203
          (R.S. 88),
       INSULATION - SANGUET 6 IN .
204
          (R-13.32),
205
       INSLATION - WOOD FIBER FILL 1 IN .
206
          (R-3.33),
       INSULATION - WOOD FIBER FILL 2 IN .
208
          (R-6.66),
209
       INSULATION - WOOD FIBER FILL 4 IN .
210
211
       INSULATION - WOOD FIBER FILL 6 IN .
212
213
          (R-19.96),
       INSULATION - PERLITE FILL 1 IN .
214
215
216
       INSULATION - PERLITE TILL 2 IN .
```

CEML	B.L.A.S.T. SYSTEM VERSION 2.0	20 MAR 79	12.47.06
217	(R=5.4),		
218	INSULATION - PERLITE FILL 4 IN .		
219	(R-10.8),		
220	INSULATION - PERLITE FILL 6 IN .		
221	(R=16.2),		
222	INSULATION - HINERAL FIBER FILL 3 IN .		
223	(R+9.),		,
224	INSULATION - HINERAL FIBER FILL 4 1/2 IN .		
225	(R•13.),		
226	INSULATION - MINERAL FIBER FILL 6 1/4 IN .		
227	(R-19.),		
220	INSULATION - MINERAL FIBER FILL 7 1/4 IN .		
229	(R=24.),		
230	INSULATION - SILICA AEROGEL 1 IN .		
231	(R-5.86),		
232	INSULATION - SILICA AFROSEL S IN .		
233	(R-11.76),		
734	INSULATION - SILICA APROGEL 4 IN .		
237	(R=23.52),		
236	INSULATION - SILICA AEROGEL 6 IN .		
237	(R+35.28),		
238	INSULATION - VERMICULITE 1 IN .		

INSULATION - VERMICULITE 2 IN .

```
CERL -- B.L.A.S.T. SYSTEM --- VERS:ON 2.0
                                                                         12.47.06
241
           (R.4.26).
       INSULATION - VERMICULITE 4 IN .
242
243
           (R.8.52)
       : NSULATION - VERMICULITE 6 IN .
244
245
           (R-12.78)
246
        INSULATION - PREFORMED ROOF INSULATION 1/2 IN .
247
           (R.1.39).
248
       INSULATION - PREFORMED ROOF INSULATION 1 IN .
249
           (R-2.78).
        INSULATION - PREFORMED ROOF INSULATION 1 1/2 IN .
250
251
           (R.4. 17).
       INSULATION - PREFORMED ROOF INSULATION 2 IN .
252
253
           (R.S. 56).
        INSULATION - PREFORMED ROOF INSULATION 2 1/2 IN .
254
255
           (R.6.67).
256
        INSULATION - PREFORMED ROOF INSULATION 3 IN .
257
           (R.0.33);
250
     END MATERIALS:
     DEFINE MATERIALSE
259
260
       CONCRETE - CEMENT MORTAR 1/2 IN-
           (L. 0417, K. 416, D-116., CP. 2, ABS. 54, HEDIUM ROUGH),
261
262
       CONCRETE - GYPSUM FIBER 2 IN .
263
           (L. 167, K. 138, D-51., CP. 2, ABS. 65, HEDIUM ROUGH),
        CONCRETE - GYPSUM FIBER 4 IN .
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                         20 MAR 79
                                                                         12.47.06
265
           (L+.333,K+.138,D+51.,CP+.2,ABS+ 65,MEDIUM ROUGH),
       CONCRETE - GYPSUM FIGER 6 IN .
266
267
           (L. 5,K. 138,D.51.,CP. 2,ABS. 65, MEDIUM ROUGH).
       CONCRETE - GYPSUM FIRER & IN .
268
269
           (L. . 667, K. . 138, D-51 . , CP. . 2, ABS- . 65, MEDIUM ROUGH),
270
       CONCRETE - 120 LB/CU FT 4IN .
           (L. . 333,K. . 433,D-120.,CP. . 2,ABS- . 65, MEDIUM ROUGH),
271
272
       CONCRETE - 100 LB/CU FT 4IN .
           (L. . 333, K. . 300, D-100. , CP. . 2, ABS. . 65, MEDIUM ROUGH),
274
        CONCRETE - BO LR/CU FT 4IN .
275
           (L. . 333, K. . 210, D. 80., CP. . 2, ABS. . 65, MEDIUM ROUGH),
276
        CONCRETE - 60 LB/CU FT 4IN .
277
           (L. 333,K. 142,D. 60.,CP. 2,ABS. 65, MEDIUM ROUGH),
       CONCRETE - 40 LB/CU FT 4IN .
278
279
           (L. . 333, K. . 096, D. 40., CP. . 2, ABS. . 65, MEDIUM ROUGH),
280
       CONCRETE - 30 LB/OU FT 4IN .
281
           (L. 333,K. 075, 3. 30.,CP. 2, ABS. 65, MEDIUM ROUGH),
282
       CONCRETE - 20 LB/CU FT 41N .
283
           (L. 333,K. 058, D. 20., CP. 2, ABS. 65, MEDIUM ROUGH),
284
        CONCRETE - PERLITE 40 LB/CU FT 4IN .
           (L. . 333, K. . 0778, 0-40. , CP. . 2, ABS. . 65, MEDIUM ROUGH),
285
286
       CONCRETE - PERLITE SO LB/CU FT 4IN .
287
           (L. 333, K. 0592, D. 30., CP. 2, ABS. 65, MEDIUM ROUGH),
        CONCRETE - PERLITE 20 LB/CU FT 4IN .
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                          20 MAR 79
                                                                          12.47.06
           (L. 333, K. 0417, D.20 , CP. 2, ABS. 65, MEDIUM ROUGH),
289
       CONCRETE - DRIED SAND AND GRAVEL 2 IN .
290
           (L. 167, K. 75, D-140., CP. 2, ABS- 6, MEDIUM ROUGH),
       CONCRETE - DRIED SAND AND GRAVEL 4 IN .
292
           (L. 333,K. 75,0-140.,CP. 2,A85-.6, MEDIUM ROUGH),
293
254
       CONCRETE - DRIED SAND AND GRAVEL & IN .
           (L. 50, K. 75, 0-140., CP. 2, ABS. 6, MEDIUM ROUGH),
295
       CONCRETE - DRIED SAND AND GRAVEL 8 IN .
236
           (L. 667, K. 75, D. 140., CP. 2, ABS. 6, HEDIUM ROUBH),
297
       CONCRETE - SAND AND GRAVEL & IN .
299
           (L. 167, K-1.0, D-140., CP. 2, ABS- 6, MEDIUM ROUGH),
       CONCRETE - SAND AND GRAVEL 4 IN .
300
301
           (L. . 333, K.1. 0, D.140. , CP. . 2, ABS. . 6, MEDIUM ROUGH),
       CONCRETE - SAND AND GRAVEL & IN .
305
           (L. . SO. K-1. O. D-140 . . CP. . 2. ABS. . 6. MEDIUM ROUGH).
303
       CONCRETE - SAND AND GRAVEL & IN .
304
           (L. 667, K-1.0, 0-140., CP-. 2, ABS-. 6, MEDIUM ROUGH);
306 END MATERIALS:
307 DEFINE MATERIALSE
         CONCRETE - STUCCO 1/4 IN .
           (L. 0209, K. 416, D-116., CP. . 2, ABS- . 73, VERY ROUGH),
309
        CONCRETE - STUCCO 1/2 IN .
310
311
           (L. 0417, K. 416, 0-116., CP. 2, ABS-. 73, VERY ROUGH),
         BRICK - COPPON 4 IN .
318
```

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 NAR 79 12.47.06 (L+. 333,K+. 42,0+120.,CP+. 2,ABS+.7,ROUGH), 313 314 BRICK - COMMON & IN . (L. 667, K. 42, D-120., CP. 2, ABS- 7, ROUGH), 315 316 BRICK - FACE 4 IN . 317 (L. 333,K. 77,D-125.,CP. 22,ABS. 6,ROUGH) 319 CLAY TILE 1 CELL - 3 IN . 319 (L. . 25, K. . 31, 0-70., CP. . 2, ABS. . 63, SHOOTH), 250 CLAY TILE I CELL - 4 IN . 321 (L. 333, K. 3, D.70., CP., 2, ABS. 63, SMOOTH), CLAY TILE 2 CELL - & IN . 322 323 (L. S.K. 33,0-70.,CP. 2,ABS. 63,SMOOTH), 324 CLAY TILE 2 CELL - 8 IN . (L. . 667, K. . 35, D.70., CP. . 2, ABS. . 63, SMOOTH), 325 CLAY TILE 2 CELL - 10 IN . 326 (L. 833,K.. 37, D.70., CP. 2, ABS-. 63, SHOOTH), 327 328 CLAY TILE 3 CELL - 12 IN . (L.1., K., 40, D.70., CP., 2, ABS., 63, SHOOTH), 329 CONCRETE BLOCK - 3CO SGA 4 IN . 330 331 (L+. 333, K+. 46, D+61., CP+. 2, ABS+. 7, HED) UH ROUGH), CONCRETE BLOCK - SCO SGA & IN . 332 333 (L. 667.K. 59.D.61., CP. 2.ABS. 7. HEDIUM ROUGH). 334 COMCRETE BLOCK - SCO SGA 12 IN . (L-1.0,K-.78,D-61.,CP-.2,ABS-.7,HEDIUM ROUGH), CONCRETE BLOCK - SCO CA S IN .

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                         20 MAR 79
                                                                         12.47.06
          (L. . 25, M. . 29, D. 36. , CP. . 2, ABS. . 7, MEDIUM ROUGH),
:30
        CONCRETE BLOCK - 300 CA 4 IN .
339
          (L. . 333, K. . 3, 0-38. , CP. . 2, ABS- . 7, MEDIUM ROUGH),
        CONCRETE BLOCK - 300 CA . IN .
          (L. . 667, K. . 39, D-38. , CP. . 2, ABS. . 7, MEDIUM ROUGH),
341
342
        CONCRETE BLOCK - 3CO CA 12 IN .
343
          (L-1.0,K-.53,0-38.,CP-.2.ABS-.7,HEDIUM ROUGH),
        CONCRETE BLOCK - 300 LW AGG 3 IN .
344
          (L. 25,K. 198,D-38.,CP. 2,ABS-.7,MEDIUM ROUGH),
3:5
        CONCRETE BLOCK - 300 LW AGG 4 IN-
346
347
          (L. 333,K. 223, D.38., CP. 2, ABS- 7, MEDIUM ROUGH),
        CONCRETE BLOCK - 3CO LW AGG 8 IN .
          (L. . 667, K. . 33, 0-38. , CP. . 2, ABS- . 7, MEDIUM ROUGH),
349
350
        CONCRETE BLOCK - 3CO LW AGG 12 IN .
351
          (L-1.,K-.44.0-38.,CP-.2,ABS-.7,HEDIUM ROUGH),
352
        CONCRETE BLOCK - 2CR SGA 8 IN .
          (L=.667,K=.634,D=61.,CP=.2,ABS=.7,NEDIUM ROUGH),
353
354
        CONCRETE BLOCK - 2CR SQA FC & IN .
          (L=.667,K=.343,D=61.,CP=.2,ABS=.7,MEDIUM ROUGH),
356
        CONCRETE BLOCK - SCR LWA 6 IN .
357
          (L. . 5, K. . 305, D.61., CP. . 2, ABS. . 7, MEDIUM ROUGH),
358
        CONCRETE BLOCK - SCR LWA FC 6 IN .
          (L. . 5, K. . 165, D.61., CP. . 2, ABS. . 7, NEDIUM ROUGH),
        CONCRETE BLOCK - 2CR LWA 8 IN .
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                         20 MAR 79
                                                                         12.47.06
361
          (L=.667,K=.304,D=61.,CP=.2,ABS=.7,MEDIUN ROUGH),
        CONCRETE BLOCK - 2CR LWA FC C IN .
362
363
          (L=.667,K=.132,D=61.,CP=.2,ABS=.7,MEDIUM ROUGH),
364
        CONCRETE BLOCK - SCR LWA 12 IN .
365
          (L=1.,K=.40,D=61.,CP=.2,ABS=.7,HEDIUH ROUGH),
366
        CONCRETE BLOCK - SCR LWA FC 12 IN .
          (L-1.,K-. 17, D-61., CP-. 2, ABS-. 7, MEDIUM ROUGH),
        CONCRETE BLOCK - STONE LINE SAND 4 IN .
368
369
          (L+.333,K+1.04,D+55.,CP+.4,ABS+.6,MEDIUM ROUGH),
370
        CONCRETE BLOCK - GYPSUM PART. TILE SOLID 3 IN .
371
          (L. 25, K. 197, D. 100., CP. 2, ABS. 75, MEDIUM SMOOTH).
        CONCRETE BLOCK - SYFSUM PART. TILE 4 CELL 3 IN .
372
373
          (L. 25, K. 185, 0-30., CP. 2, ABS. 75, HEDIUM SHOOTH),
374
        CONCRETE BLOCK - GYPSUM PART. TILE 3 CELL 4 IN .
          (L. 333, K. 20, D.30., CP. 2, ABS. 75, MEDIUM SMOOTH).
376
        METAL - BARE ALIMINEN 1/18 IN .
377
          (L. 0052, K-128., D-171., CP-. 214, ABS-. 2, SHOOTH),
378
        HETAL - SALVANIZED STEEL 1/16 IN .
          (L=.0052,K=26.2,D=489.,CP=.12,ABS=.23,SH00TH),
379
380
        METAL - AGED COPPER 1/16 IN .
381
          (L=.0052,K-227.,D-556.,CP-.09,ABS-.2,SHOOTH);
382 END MATERIALS:
    DEFINE MATERIALSE
       PLASTER - CEMENT SA 3/8 IN .
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                         20 MAR 79
          (L=.0313,K=.417,D=116.,CP=.2,ABS=.78,SHOGTH),
386
       PLASTER - CEMENT SA 3/4 IN .
          (L=.0625,K=.417,D=116.,CP=.2,ABS=.76,SHOOTH),
347
300
       PLASTER - GYPSUH LWA 1/2 IN .
          (L=.0417,K=.13,0=45.,CP=.2,ABS=.78,SHOOTH),
389
       PLASTER - GYPSUM LWA 5/8 IN .
390
          (L. . 0521, K. . 13, D.45. , CP. . 2, ABS. . 70, SHOOTH),
391
392
       PLASTER - GYPSUM LWA ML 3.4 IN .
           (L. . 0625, K. . 133, D-45. , CP. . 2, ABS. . 76, SMOOTH),
393
       PLASTER - GYPSUM PERLITE 1/2 IN .
394
           (L. . 0417, K. . 125, D-45. , CP. . 2, ABS. . 70, SHOOTH),
395
396
       PLASTER - GYPSUM SA 1/2 IN .
           (L=.0417,K=.467,D=105.,CP=.2,ABS=.78,SHOSTH),
397
       PLASTER - GYPSUM SA 5/8 IN .
398
           (L. . 0521, K. . 467, D. 105., CP. . 2, ABS. . 78, SHOOTH).
399
400
       PLASTER - GYPSUH SA ML 3/4 IN .
401
           (L=. 0625, K=. 467, D=105., CP=. 2, ABS=.78, SMGSTH),
       PLASTER - GYPSUM VA 1/2 IN .
402
           (L-.0417,K-.142,0-45.,CP-.2,ABS-.78,SMOOTH);
403
404 END MATERIALS;
405 DEFINE MATERIALSE
       ROOFING - ASB CEM SHINGLES .
           (L= 0104,K=.049,D=120.,CP=.2,ABS=.7,VERY ROUGH),
407
       ROOFING - ASPHALT ROLL .
408
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
409
          (L..0104,K..067,D.70.,CP..2,ABS...,VERY ROUGH),
       ROOFING - ASPHALT SHINGLES .
410
411
          (L-.0104,K-.023,D-70.,CP-.2,ABS-.7,VERY ROUGH),
412
       ROOFING - BUILT UP ROOFING - 3/8 IN .
          (L. . 0313, K. . 094, D-70., CP. . 35, ABS. . 7, VERY ROUGH),
413
       ROOFING - SLATE 1/2 IN .
414
415
          (L=.0417,K=.833,D=85.,CP=.4,AB$=.9,VERY ROUGH),
416
       ROOFING - WOOD SHINGLES .
          (L-.0625,K-.066,D-45.,CP-.3,A88-.78,VERY ROUGH);
417
418 END MATERIALS:
419 DEFINE MATERIALSE
       SIDING - WD SHINGLES 16X7 1/2 EXP 3/4 IN .
420
421
          (L. 1247, K. 07, D.37., CP. 3, ABS. 76, VERY ROUGH),
422
       SIDING - WOOD SHINGLES DEL 16X12 EXP .
423
          (L-.25,K-.07,D-37.,CP-.3,AB8-.70,VERY ROUGH),
424
       SIDING - WOOD SHINGLES INS 5/16 IN .
425
          (L. . 0521, K. . 045, D-37. . CP. . 3, ABS. 78, VERY ROUGH),
       SIDING - ASS CEM. 1/4 IN .
426
          (L-.0209,K-.099,D-120.,CP-.2,ARS-.7,VERY ROUGH),
427
420
       SIDING - ASPHALT ROLL .
          (L-.0164,K-.067,D-70.,CP-.2,ABS-.6,VERY ROUGH),
429
       SIDING - ASPHALT INS 1/2 IN .
430
          (L-.0417,K-.029,0-70.,CP-.2,ABS-.8,VERY ROUGH),
431
```

432

SIDING - WOOD DROP 1 IN .

12.47.06

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79
          (L-.083,K-.07,D-37.,CP-.31,ABS-.78,VERY ROUGH),
433
       SIDING - WOOD BEVEL LAPPED 1/2 IN-
434
          (L=.0417,K=.06,0=37.,CP=.31,ABS=.76,VERY ROUGH),
435
       SIDING - WOOD BEVEL LAPPED 3/4 IN-
436
437
          (L. . 0625, K. . 06, D. 37., CP. . 31, ABS. . 78, VERY ROUGH),
       SIDING - PLYWOOD LAPPED 3/8 IN .
          (L-.0313,K-.07,D-37.,CP-.29,ABS-.78,VERY ROUGH),
439
       SIDING - METAL HOLLOW BACKED .
440
441
          (L=.005,K=26.,D=480.,CP=.1,AB8=.5,SHOOTH),
       810!NG - INS BRD 3/8 IN .
442
          (L-.0313,K-.017.0-60.,CP-.31,A88-.5,8M00TH),
443
       5:DING - INS BRD FB 3/6 IN .
444
          (L. . 0313, K. . 011, D-60., CP. . 31, ABS. . 5, SHOOTH);
446 END MATERIALS:
447 DEFINE MATERIALSS
448
       MODO - HARDWOOD 3/4 IN .
449
          (L. . 0625.K. . 092, D-45. , CP. . 3, AEB. . 78, MEDIUM SHOOTH),
       W000 - HARDWOOD 1 1/2 IN 4
          (L. 1247, K. . 092, D-45., CP. . 3, ABS. . 78, MEDIUM SMOOTH),
451
       - MI S/1 S GOOMGRAH - GOOM
          (L. . 2087, K. . 092, D.45., CP. . 3, ABS. . 78, NEDIUM SHOOTH),
453
       WOOD - HARDWOOD 3 1/2 1N .
           (L. 2917, K. 092, D-45., CP. 3, ABS-. 78, MEDIUM SMOOTH),
       W000 - SOFTWOOD 3/4 IN .
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                                         12.47.06
           (L. . 0825, K. . 0875, D-32. , CP. . 33, ABS. . 78, MEDIUM SMOSTH),
       W000 - SOFTWOOD 1 1/2 IN .
           (Le. 1247,Ke. 0675, D-32., CP+. 33, ABS+. 76, MEDIUM SMOOTH),
       W000 - SOFTWOOD 2 1/2 IN .
           (L. . 2007, K. . 0675, 0-32., CP. . 33, ABS. . 76, MEDIUM SMOOTH).
       WOOD - SOFTWOOD 3 1/2 IN .
           (L=.2917,K=.0675,D=32.,CP=.33,ABS=.76,MEDIUM SMOSTH),
       MODD - HARDWOOD 1/8 IN .
           (L=.0104,K=.092,D=45.,CP=.3,ABS=.76,HEDIUN GHOOTH);
     END MATERIALS:
-
467 DEFINE "MATERIALSE
       GLASS - CLEAR SHEET 1/8 IN-
           (R=.0236, TRANS=.87, VERY SHOOTH, GLASS),
469
       GLASS - CLEAR PLATE 1/4 IN-
470
471
           (Re. 0472, TRANS-. 80, VERY SHOOTH, SLASS),
472
       GLASS - CLEAR PLATE 3/8 IN-
473
           (R., 0708, TRANS., 75, VERY SHOOTH, GLASS).
       GLASS - CLEAR PLATE 1/2 IN-
474
475
           (R. . 0944. TRANS. . 71, VERY SMOSTH, GLASS).
       GLASS - GREY SHEET 1/8 IN-
476
477
           (Re. 0236, TRANS - . SS, VERY SHOOTH, GLASS),
       GLASS - GREY SHEET 1/4 IN-
470
           (R-.0472, TRANS-.67, VERY SHOOTH, GLASS),
       GLASS - GREY PLATE 1/4 IN-
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
          (R. 0472, TRANS- . 44, VERY SHOOTH, GLASS),
401
       GLASS - GREY PLATE 3/8 IN-
482
          (R. OFCE, TRANS. 35, VERY SHOOTH, GLASS),
483
       GLASS - GREY PLATE 1/2 IN-
484
485
          (Re. 0944, TRANS-. 21, VERY SHOOTH, GLASS),
       GLASS - GREEN SHEET 1/4 IN-
406
487
          (R. . 0472, TRANS. . 78, VERY SHOOTH, GLASS),
400
       SLASS - BRONZE PLATE 1/4 IN-
          (R-. 0472, TRANS-. 49, VERY SHOOTH, GLASS),
409
       GLASS - BRONZE PLATE 1/2 IN-
          (R. . 0944, TRANE . . 25, VERY SHOOTH, GLASS),
491
       GLASS - HEAT ASSORBING PLATE 1/0 IN-
493
          (R. . 0236, TRANS. . SE, VERY SHOOTH, GLASS),
       GLASS - HEAT ABSORBING PLATE 1/4 IN-
          (R. 0472, TRANS. 46, VERY SHOOTH, GLASS).
       GLASS - HEAT ABSORBING PLATE 3/8 IN-
497
          (R. . 0708, TRANS. . 33, VERY SMOOTH, GLASS),
       GLASS - HEAT ABSORBING PLATE 1/2 IN-
          (R. 0944, TRANS. 24, VERY SMOOTH, GLASS):
    END MATERIALS:
     DEFINE MATERIALER
        VENETIAN BLINGS-LIGHT .
```

803

(REF=.25, TRANS=.65, SHADE), VENETIAN BLINGS-HEDIUM =

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 (REF-. 12, TRANS-. 60, SHADE), SHADE ROLL - LIGHT TRANSLUCENT . 807 (RFF+, 48, TRANS+, 40, SHADE), SHADE ROLL - MEDIUM TRANSLUCENT . -109 (REF . 25, TRANS - . 30, SHADE). SHADE ROLL - LIGHT GPAQUE . 810 (REF . . SO, TRANS . . OS, SHADE), 818 SHADE ROLL - MEDIUM OPAGLE . 813 . (REF+. 36, TRAMS+. 06, SHADE), 814 DRAPES - OPEN WEAVE LIGHT . 818 (REF . 25, TRANS - . 70, SHADE), -DRAPES - OFEN WEAVE MEDIUM . (REF .. 18, TRANS - . 70, SHADE), 817 DRAPES - OPEN WEAVE DARK (REF . . 08, TRANS - . 70, SHADE), . DRAPES - SENI OPEN WEAVE LIGHT . (REP. 40, TRANS. 48, SHADE). 821 828 DRAPES - SEHI OPEN WEAVE MEDIUM . (REF . 25, TRANG . 43, SHADE). 823 DRAPES - SERI OPEN WEAVE DARK . 204 (REF .. 18, TRANS -. 48, SHADE). DRAPES - CLOSE WEAVE LIGHT . (REF. . SS, TRANS-. OS, SHADE), DRAPES - CLOSE WEAVE MEDIUM .

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
529
          (REF .. 30, TRANS - 05, SHADE),
530
        DRAPES - CLOSE WEAVE DARK .
531
          (REF .. 10, TRANS - . 05, SHADE),
532
        AIRSPACE - CEILING .
          (R-1.0.AIR).
533
        AIRSPACE - HORIZONTAL UP .
534
          (R. . 90, AIR),
535
738
        AIRSPACE - HORIZONTAL DOWN .
          (R-1.23.AIR).
537
538
        AIRSPACE - VERTICAL .
          (R. . 97, AIR),
539
        AIRSPACE - SLOPE UP .
540
541
          (R. . 92, AIR),
542
        AIRSPACE - SLOPE DOWN .
543
          (R-1.05,AIR),
        A1-1 IN STUCCE .
544
545
          (L. 0833, K. 4, D-116., CP. 20, ABS-. 92, SMOOTH),
546
        A2-4 IN DENSE FACE BRICK .
          (L. 333, K. 72, D-130., CP. 22, ABS. 93, ROUGH),
547
548
        A3-STEEL SIDING .
549
          (L-.005, K-26.0,D-480.,CP-.10,A88-.20,SHOOTH),
550
          (L=.04:7,K=.24, D=78., CP=.26,ABS=.50,VERY SHOOTH),
551
        A7-4 IN FACE BRICK .
552
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
          (L=.333,K=.77,D=125.,CP=.22,ABS=.93,ROUGH),
553
554
        B1-AIRSPACE RESISTANCE .
          (R. . 91, AIR).
        B2-1 IN INSULATION .
556
557
          (L=.083, K=.025,D=2.0, CP=.2, ABS=.5, VERY ROUGH),
558
        83-2 IN INSULATION .
559
          (L=.167, K=.025,D=2.0, CP=.2, ABS=.5, VERY ROUGH),
        84-3 IN INSULATION .
560
561
          (L.25, K.025,D.2.0, CP.2, ABS.5, VERY ROUGH),
        85-1 IN DENSE INSULATION .
562
          (L-.0833,K-.025,D-5.7, CP-.2, ABS-.5, VERY ROUGH),
563
        86-2 IN DENSE INSULATION .
564
565
          (Le. 167, Ke 025, De5.7, CP. 2, ABS. 5, VERY ROUGH),
566
        87-1 IN WOOD .
567
          (L=.0833,K=.07, D=37.0,CP=.6, ABS=.78,MEDIUM SMOOTH),
568
        88-2 1/2 IN WOOD .
          (L=.2003,K=.07, D=37.0,CP=.6, ABS=.78,MEDIUM SMOOTH),
559
        89-4 IN WOOD .
570
571
          (L., 333, K. . 07, D.37.0, CP. . 6, ABS. . 78, MEDIUM SMOOTH),
572
          (L. 167, K. 07, D-37.0,CP. 6, ABS-.78,MEDIUM SHOOTH),
573
574
        811-3 IN WOOD .
575
          (L=.25, K=.07, D=37.0,CP=.6, ABS=.78,MEDIUM SMOQTH),
        812-3 IN DENSE INSULATION .
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
          (L. 25, K. 025, D.S. 7, CP. 2, ABS. 5, VERY ROUGH),
        CI-4 IN CLAY TILE .
578
379
          (L. 333, K. 33, D.70.0, CPs. 2, ABS. 82, SMOOTH),
        C2-4 IN LW CONCRETE BLOCK .
500
581
          (L. 333, K. 22, D.38., CP. 2, ASS-. 65, MEDIUM ROUGH),
582
        C3-4 IN HW CONCRETE BLOCK .
          (Lo.333, Ke. 47, De61.0,CPe.2, ABS-.65,MEDIUM ROUGH),
        C4-4 IN COMMON BRICK .
584
          (L. 333, K. 42, D. 120., CP. 2, ABS-. 76, ROUGH),
585
386
        CS-4 IN HW CONCRETE .
587
          (L+.333, K+1.0, 3-140.,CP+.2, ABS+.65,MEDIUM ROUGH),
        CG-0 IN CLAY TILE .
588
          (L. 667, K. 33, D.70., CP. 2, ABS-. 82, SHOOTH),
549
        C7-8 IN LW CONCRETE BLOCK .
591
          (L. . 667, K. . 33, D. 38. 0, CP. . 2, ABS. . 65, ROUGH),
        CO-S IN HW CONCRETE BLOCK .
592
593
          (L. 667, K. 6, D.61.0,CP.2, ABS-.65,ROUGH),
        C9-8 IN COMMON BRICK .
594
          (L. 667, K. 42, D-120.,CP. 2, ABS-.72,ROUGH),
595
        CIO-S IN MY CONCRETE .
596
597
          (L. 667, K-1.0, D-140., CP-.2, ABS-.65, MEDIUM ROUGH),
        C11-12 IN HW CONCRETE .
          (L-1.0, K-1.0, D-140., CP-. 2, ABS-. 65, MEDIUM ROUGH),
599
        C12-2 IN HW CONCRETE .
600
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
          (Le. 167, K-1.0, D-140., CP-.2, ABS-.65, MEDIUM ROUGH),
602
        C13-6 IN HW CONCRETE .
603
          (La.S. Kat.O. Da140.,CPa.2, ABS-.65,MEDIUM ROUGH),
604
        C14-4 IN LW CONCRETE .
605
          (L. 333, K. 1. 0.40., CP. 2, ABS- 65, MEDIUM ROUGH),
608
        CIS-6 IN LY CONCRETE .
607
          (L.S. K. 1. D.40., CP. 2, ABS-.65, MEDIUM ROUGH),
        CIG-S IN LW CONCRETE .
          (L+.667, K+.1, D+40., CP+.2, ABS+.65, MEDIUM ROUGH),
609
        E1-3/4 IN PLASTER OF GYP BOARD .
610
611
          (L+.0625,K+.42, D-100.,CP+.2, ABS+.92,SMOOTH),
612
        E2-1/2 IN SLAG OR STONE .
          (L+.0417,K+.83, D-55., CP+.40,A85+.55,ROUGH),
613
614
        E3-3/8 IN FELT AND MEMBRANE .
          1L+ .0313,K+.11, D-70., CP+.40,ABS+.75,ROUGH),
        E4-CEILING AIRSPACE .
616
617
          (R-1.0.AIR).
618
        ES-ACOUSTIC TILE .
619
          (L. . 0625, K. . 035 D-30 . . CP. . 20, ABS. . 32, MEDIUM SMOOTH) ;
GOO END MATERIALS:
621 DEFINE WALLSE
       EXTWALLO1-
623
           (A2-4 IN DENSE FACE BRICK, 83-2 IN INSULATION.
           CE-4 IN LW CONCRETE BLOCK, E1-3/4 IN PLASTER OR GYP BOARD),
```

424

```
CERL -- S.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
625
       EXTWALLO2.
628
           (C14-4 IN LW CONCRETE, E1-3/4 IN PLASTER OR GYP BOARD).
627
       EXTUALL 03.
628
           142-4 IN DENSE FACE BRICK, BI-AIRSPACE RESISTANCE,
629
           C9-8 IN COMMON BRICK, E1-3/4 IN PLASTER OR GYP BOARD),
630
       EYTWALL 04.
631
           (A2-4 IN DENSE FACE BRICK, B1-AIRSPACE RESISTANCE,
632
           CO-O IN HW CONCRETE BLOCK, E1-3/4 IN PLASTER OR GYP BOARD),
633
       EXTWALLOS.
634
           (A2-4 IN DENSE FACE BRICK, B1-AIRSPACE RESISTANCE,
           C7-6 IN LW CONCRETE BLOCK, E1-3/4 IN PLASTER OR GYP BOARD),
636
      EXTWALLOS-
637
           (A2-4 IN DENSE FACE BRICK, B1-AIRSPACE RESISTANCE, C6-8 IN CLAY TILE,
638
           E1-3/4 IN PLASTER OR GYP BOARD),
ورن
640
           (A2-4 IN DENSE FACE BRICK, B1-AIRSPACE RESISTANCE, C12-2 IN HW CONCRETE.
641
           E1-3/4 IN PLASTER OR GYP BOARD).
642
643
           (A2-4 IN DENSE FACE BRICK, B1-AIRSPACE RESISTANCE, C4-4 IN COMMON BRICK.
644
           E1-3/4 IN PLASTER OR GYP BOARD).
645
       EXTWALLOS-
         (A2-4 IN DENSE FACE BRICK, B1-AIRSPACE RESISTANCE, C3-4 IN HW CONCRETE BLOCK,
646
          E1-3/4 IN PLASTER OR GYP BOARD),
647
648
       EXTWALL10-
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
649
         (A2-4 IN DENSE FACE BRICK, E1-AIRSPACE RESISTANCE, C2-4 IN LW CONCRETE BLOCK,
$50
          E1-3/4 IN PLASTER OR GYP BOARD).
80%
       EXTWALL! 1:
652
           (A1-1 IN STUCCO, C11-12 IN HW CONCRETE, E1-3/4 IN PLASTER OR GYP BOARD),
653
       EXTWALL 12-
654
           (A1-1 IN STUCCO, C10-8 IN HW CONCRETE, 88-2 IN DENSE INSULATION,
655
            E1-3/4 IN PLASTER OR GYP BOARD).
656
       EXTWALL 13-
           (A1-1 IN STUCCO, C10-8 IN HW CONCRETE, 85-1 IN DENSE INSULATION,
657
658
            E1-3/4 IN PLASTER OR SYP BOARD),
659
860
           (A1-' IN STUCCO, C10-8 IN HW CONCRETE, B1-AIRSPACE RESISTANCE,
661
            E1-3/4 IN PLASTER OR GYP BOARD),
662
           (A1-1 IN STUCCO, C10-8 IN HW CONCRETE, E1-3/4 IN PLASTER OR GYP BOARD),
663
664
       EXTWALL 16.
665
           (A2-4 IN DENSE FACE BRICK, C9-8 IN COPPON BRICK, B2-1 IN INSULATION,
668
            E1-3/4 IN PLASTER OR GYP BOARD),
667
       EXTWALL 17.
...
           (A2-4 IN DENSE FACE BRICK, C9-8 IN COMMON BRICK, B1-AIRSPACE RESISTANCE,
669
            E1-3/4 IN PLASTER OR GYP BOARD),
670
871
           147-4 IN FACE BRICK, BI-AIRSPACE RESISTANCE, C14-4 IN LW CONCRETE),
479
       EXTWALL 19-
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
           (AG-FINISH, 84-3 IN INSULATION, AG-FINISH),
      EXTWALL20.
           147-4 IN FACE BRICK, BI-AIRSPACE RESISTANCE, A2-4 IN DENSE FACE BRICK).
675
676
677
           (A7-4 IN FACE BRICK, C7-8 IN LW CONCRETE BLOCK, A6-FINISH),
      EXTWALL22.
678
679
           147-4 IN FACE BRICK, BI-AIRSPACE RESISTANCE, C3-4 IN HW CONCRETE BLOCK,
680
           AG-FINISH).
      EXTWALL 23.
881
682
           147-4 IN FACE BRICK, BI-AIRSPACE RESISTANCE, CO-O IN HW CONCRETE BLOCK,
683
           AS-FINISH).
684
       EXTWALL24.
685
        (A7-4 IN FACE BRICK, B1-AIRSPACE RESISTANCE, C15-6 IN LW CONCRETE, A6-FINISH).
686
       EXTWALL 25
           (A7-4 IN FACE BRICK, B6-2 IN DENSE INSULATION, A6-FINISH),
688
       EXTWALL 26.
689
           (A6-FINISH, B6-2 IN DENSE INSULATION, A6-FINISH),
690
       EXTWALL270
           (A3-STEEL SIDING, B12-3 IN DENSE INSULATION, A3-STEEL SIDING),
691
692
       EXTWALL28.
693
           (A3-STEEL SIDING, B6-2 IN DENSE INSULATION, A3-STEEL SIDING),
694
       EXTWALL29.
           IA3-STEEL SIDING, 85-1 IN DENSE INSULATION, A3-STEEL SIDING),
693
696
       EXTWALL 30-
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
        (A3-STEEL SIDING, 86-2 IN DENSE INSULATION, C11-12 IN HW CONCRETE, A6-FINISH),
       EXTVALL31.
698
699
         (A3-STEEL SIDING, B6-2 IN DENSE INSULATION, CIQ-8 IN HW CONCRETE, A6-FINISH),
700
701
           (A3-STEEL SIGING, 86-2 IN DENSE INSULATION, C5-4 IN HW CONCRETE, A6-FINISH),
702
       FYTVALL 330
703
            (C11-12 IN HW CONCRETE, BG-2 IN DENSE INSULATION, AG-FINISH),
704
       EXTWALL34.
           (C10-8 IN HW CONCRETE, 86-2 IN DENSE INSULATION, A6-FINISH),
705
706
       EXTWALL35.
707
           (C5-4 IN HW CONCRETE, 26-2 IN DENSE INSULATION, A6-FINISH),
708
       EXTWALL36-
           (A)-1 IN STUCCO, BI-AIRSPACE RESISTANCE, 84-3 IN INSULATION,
709
            E1-3/4 IN PLASTER OR GYP BOARD),
710
711
       EXTWALL37.
           (A1-1 IN STUCCO, B1-AIRSPACE RESISTANCE, B3-2 IN INSULATION,
712
            E1-3/4 IN PLASTER OR GYP BOARD).
713
714
       EXTWALL38.
715
            (AT-1 IN STUCCO, BI-AIRSPACE RESISTANCE, B2-1 IN INSULATION,
716
            E1-3/4 IN PLASTER OR GYP BOARD),
717
       ENTWALL 300
716
            IA1-1 IN STUCCO, B1-AIRSPACE RESISTANCE, E1-3/4 IN PLASTER OR GYP BOARD).
719
       EXTWALL40.
720
           (A1-1 IN STUCCO, 83-2 IN INSULATION, C11-12 IN HM CONCRETE,
```

```
E1-3/4 IN PLASTER OR GYP BOARD),
721
722
      EXTWALL41.
723
           (A1-1 IN STUCCO, B3-2 IN INSULATION, C10-8 IN HW CONCRETE,
            E1-3/4 IN PLASTER OR GYP BOARD),
724
725
       EXTWALL 42.
726
           (A1-1 IN STUCCO, B3-2 IN INSULATION, C9-8 IN COMMON BRICK,
727
            E1-3/4 IN PLASTER OR GYP BOARD),
728
       EXTWALL 43.
729
           (A1-1 IN STUCCO, B3-2 IN INSULATION, CS-8 IN HW CONCRETE BLOCK,
            E1-3/4 IN PLASTER OR GYP BOARD),
730
731
       EXTWALL440
732
           (A1-1 IN STUCCO, B3-2 IN INSULATION, C7-8 IN LW CONCRETE BLOCK,
733
            E1-3/4 IN PLASTER OR GYP BOARD),
734
735
           (A1-1 IN STUCCO, 83-2 IN INSULATION, C6-8 IN CLAY TILE,
            E1-3/4 IN PLASTER OR GYP BOARD),
736
737
       EXTWALL46.
734
           (A1-1 IN STUCCO, B3-2 IN INSULATION, C5-4 IN HW CONCRETE,
            E1-3/4 IN PLASTER OR GYP BOARD),
739
740
       EXTWALL470
741
           (A1-1 IN STUCCO, 83-2 IN INSULATION, C4-4 IN COMMON BRICK,
742
            E1-3/4 IN PLASTER OR SYP BOARD),
743
       EXTWALL48-
           (A1-1 IN STUCCO, 83-2 IN INSULATION, C3-4 IN HW CONCRETE BLOCK,
744
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
745
            E1-3/4 IN PLASTER OR GYP BOARD).
746
           (A1-1 IN STUCCO, B3-2 IN INSULATION, C2-4 IN LW CONCRETE BLOCK,
747
            E1-3/4 IN PLASTER OR GYP BOARD),
742
749
           (A1-1 IN STUCCO, B3-2 IN INSULATION, C1-4 IN CLAY TILE,
750
            E1-3/4 ;N PLASTER OR GYP BOARD),
751
752
       EXTWALLS1.
           (A2-4 IN DENSE FACE BRICK, 83-2 IN INSULATION, C11-12 IN HW CONCRETE,
753
            E1-3/4 IN PLASTER OR GYP BOARD).
754
       EXTWALL 52.
755
           1A2-4 IN DENSE FACE BRICK, B3-2 IN INSULATION, C10-8 IN HW CONCRETE,
757
            E1-3/4 IN PLASTER OR GYP BOARD),
       EXTWALL53-
758
           1A2-4 IN CENSE FACE BRICK, B3-2 IN INSULATION, C9-8 IN COMMON BRICK,
759
760
            E1-3/4 IN PLASTER OR GYP BOARD),
761
           (A2-4 IN DENSE FACE BRICK, B1-AIRSPACE RESISTANCE, C11-12 IN HW CONCRETE,
762
763
            E1-3/4 IN PLASTER OR GYP BOARD),
764
           142-4 IN DENSE FACE BRICK, BI-AIRSPACE RESISTANCE, CIO-S IN HW CONCRETE,
765
            E1-3/4 IN PLASTER OR GYP BOARD),
766
767
       EXTWALLS6.
           (A2-4 IN DENSE FACE BRICK, B3-2 IN INSULATION, C8-8 IN HW CONCRETE BLOCK,
768
```

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

20 MAR 79

12.47.06

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                      20 MAR 79
                                                                      12.47.06
769
            E1-3/4 IN PLASTER OR GYP BOARD),
770
       EXTWALLS7.
           142-4 IN DENSE FACE BRICK, 83-2 IN INSULATION, C7-8 IN LM CONCRETE BLOCK,
771
772
            E1-3/4 IN PLASTER OR GYP BOARD).
           (A2-4 IN DENSE FACE BRICK, B3-2 IN INSULATION, C6-8 IN CLAY TILE.
774
775
            E1-3/4 IN PLASTER OR GYP BOARD).
776
777
           (A2-4 IN DENSE FACE BRICK, B3-2 IN INSULATION, C5-4 IN HW CONCRETE.
            E1-3/4 IN PLASTER OR GYP BOARD),
778
779
       EXTWALL60-
           1A2-4 IN DENSE FACE BRICK, B3-2 IN INSULATION, C4-4 IN COMMON BRICK,
            E1-3/4 IN PLASTER OR GYP BOARD),
781
       EXTWALL61.
782
783
           142-4 IN DENCE FACE BRICK, B2-1 IN INSULATION, C3-4 IN HW CONCRETE BLOCK,
784
            E1-3/4 IN PLASTER OR GYP BOARD).
785
       EXTWALL62.
           (A2-4 IN DENSE FACE BRICK, C9-8 IN COMMON BRICK,
            E1-3/4 IN PLASTER OR GYP BOARD),
787
       FYTWALL 63.
788
789
           (A1-1 IN STUCCO, C8-8 IN HW CONCRETE BLOCK, B2-1 IN INSULATION,
            E1-3/4 IN PLASTER OR GYP BOARD),
790
791
       EXTWALL64-
         (A1-1 IN STUCCO, C8-8 IN HW CONCRETE BLOCK, E1-3/4 IN PLASTER OR GYP BOARD),
792
```

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 20 MAR 79 12.47.06 793 EXTWALLES. (A1-1 IN STUCCO, C7-8 IN LW CONCRETE BLOCK, B2-1 IN INSULATION, 794 E1-3/4 IN PLASTER OR SYP BOARD), 795 796 EXTWALL66. (A1-1 IN STUCCO, C7-8 IN LW CONCRETE BLOCK, E1-3/4 IN PLASTER OR GYP BOARD). EXTWALL67-798 799 (A2-4 IN DENSE FACE BRICK, C6-8 IN CLAY TILE, B2-1 IN INSULATION, 800 E1-3/4 IN PLASTER OR GYP BOARD), 801 EXTWALLES-802 142-4 IN DENSE FACE BRICK, C6-8 IN CLAY TILE, BI-AIRSPACE RESISTANCE, 803 E1-3/4 IN PLASTER OR GYP BOARD). 804 1A2-4 IN DENSE FACE BRICK, C6-8 IN CLAY TILE, E1-3/4 IN PLASTER OR GYP BOARD). 805 106 EXTWALL 70-807 (A1-1 IN STUCCO, C6-8 IN CLAY TILE, 82-1 IN INSULATION, ... E1-3/4 IN PLASTER OR GYP BOARD), 809 EXTWALL71-.10 (A1-1 IN STUCCO, C6-8 IN CLAY TILE, B1-AIRSPACE RESISTANCE, .11 E1-3/4 IN PLASTER OR GYP BOARD), 812 EXTWALL72-(A1-1 IN STUCCO, C6-8 IN CLAY TILE, E1-3/4 IN PLASTER OR GYP BOARD), 913 814 EXTUALL730 815 (A1-1 IN STUCCO, CS-4 IN HW CONCRETE, B3-2 IN INSULATION, ... E1-3/4 IN PLASTER OR GYP BOARD),

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
817
       EXTWALL740
.18
           (A1-1 IN STUCCO, C5-4 IN HW CONCRETE, B2-1 IN INSULATION,
819
            E1-3/4 IN PLASTER OR GYP BOARD),
820
       EXTWALL75.
821
           (A1-1 IN STUCCO, C5-4 IN HW CONCRETE, B1-AIRSPACE RESISTANCE,
122
            E1-3/4 IN PLASTER OR GYP BOARD),
823
      EXTWALL 76.
824
           (A1-1 IN STUCCO, C5-4 IN HW CONCRETE, E1-3/4 IN PLASTER OR GYP BOARD),
825
       EXTWALL 77-
126
           (A2-4 IN DENSE FACE BRICK, C4-4 IN COMMON BRICK, B2-1 IN INSULATION.
827
            E1-3/4 IN PLASTER OR GYP BOARD).
828
       EXTWALL78.
           (A2-4 IN DENSE FACE BRICK, C4-4 IN COMMON BRICK, B1-AIRSPACE RESISTANCE,
829
            E1-3/4 IN PLASTER OR GYP BOARD),
830
831
       EXTWALL79.
832
     (A2-4 IN DENSE FACE BRICK, C4-4 IN COMMON BRICK, E1-3/4 IN PLASTER OR GYP BOARD),
833
           (A1-1 IN STUCCO, C4-4 IN COMMON BRICK, E1-3/4 IN PLASTER OR GYP BOARD),
834
835
       EXTWALL81.
836
        (A1-1 IN STUCCO, C3-4 IN HW CONCRETE BLOCK, E1-3/4 IN PLASTER OR GYP BOARD).
837
       EXTWALL82.
           (A2-4 IN DENSE FACE BRICK, C2-4 IN LW CONCRETE BLOCK, B2-1 IN INSULATION,
838
839
            E1-3/4 IN PLASTER OR GYP BOARD),
840
       EXTWALLES-
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
841
         (A2-4 IN DENSE FACE BRICK, C2-4 IN LW CONCRETE BLOCK, B1-AIRSPACE RESISTANCE,
            E1-3/4 IN PLASTER OR GYP ROARD).
842
843
       EXTVALLS4.
844
           1A2-4 IN DENSE FACE BRICK, C2-4 IN LW CONCRETE BLOCK,
845
            E1-3/4 IN PLASTER OR GYP BOARD),
846
           (A1-1 IN STUCCO, C2-4 IN LW CONCRETE BLOCK, B2-1 IN INSULATION,
847
848
            E1-3/4 IN PLASTER OR GYP BOARD),
849
       EXTWALL86-
850
           (A1-1 IN STUCCO, C2-4 IN LW CONCRETE BLOCK, B1-AIRSPACE RESISTANCE.
            E1-3/4 IN PLASTER OR GYP BOARD),
851
852
       EXTWALL87.
853
        (A1-1 IN STUCCO.C2-4 IN LW CONCRETE BLOCK, E1-3/4 IN PLASTER OR GYP BOARD),
854
       EXTWALL88.
255
           1A2-4 IN DENSE FACE BRICK, C1-4 IN CLAY TILE, B2-1 IN INSULATION,
156
            E1-3/4 IN PLASTER OR GYP BOARD),
857
       EXTWALL 89-
.56
           (A2-4 IN DENSE FACE BRICK, C1-4 IN CLAY TILE, B1-AIRSPACE RESISTANCE,
...
            E1-3/4 IN PLASTER OR GYP BOARD).
860
        (A2-4 IN DENSE FACE BRICK, C1-4 IN CLAY TILE, E1-3/4 IN PLASTER OR GYP BOARD),
861
       EXTWALLS1 -
162
           (A1-1 IN STUCCO, C:-4 IN CLAY TILE, 82-1 IN INSULATION,
953
864
            E1-3/4 IN PLASTER OR GYP BOARD),
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                      20 MAR 79
                                                                     12.47.06
865
       EXTWALL92-
           (A1-1 IN STUCCO, C1-4 IN CLAY TILE, B1-AIRSPACE RESISTANCE,
888
867
            E1-3/4 IN PLASTER OR GYP BOARD),
...
      EXTWALL93.
           (A1-1 IN STUCCO, C1-4 IN CLAY TILE, E1-3/4 IN PLASTER OR GYP BOARD),
169
870
      EXTWALL940
        (A3-STEEL SIDING, B2-1 IN INSULATION, B1-AIRSPACE RESISTANCE, A3-STEEL SIDING),
872
      EXTWALL95-
        (A3-STEEL SIGING B3-2 IN INSULATION B) -AIRSPACE RESISTANCE A3-STEEL SIDING).
173
874
        .A3-STEEL SIDING, 84-3 IN INSULATION, B1-AIRSPACE RESISTANCE, A3-STEEL SIDING);
876 END WALLS:
877 DEFINE WALLS:
.78
       PARTITIONOI-
879
           (E1-3/4 IN PLASTER OR GYP BOARD, C1-4 IN CLAY TILE,
          E1-3/4 IN PLASTER OR GYP BOARD),
460
...
       PARTITIONO2.
           (E1-3/4 IN PLASTER OR GYP BOARD, C2-4 IN LW CONCRETE BLOCK,
...
          E1-3/4 IN PLASTER OR GYP BOARD),
683
114
       PARTITIONO3.
           (E1-3/4 IN PLASTER OR GYP BOARD, C3-4 IN HW CONCRETE BLOCK,
...
          E1-3/4 IN PLASTER OR GYP BOARD).
106
887
       PARTITION04
...
           (E1-3/4 IN PLASTER OR GYP BOARD, C4-4 IN COMMON BRICK,
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                      20 MAR 79
                                                                      12.47.06
          E1-3/4 IN PLASTER OR GYP BOARD),
890
       PARTITIONOS.
           (E1-3/4 IN PLASTER OR GYP BOARD, C5-4 IN HW CONCRETE,
...
192
          E1-3/4 IN PLASTER OR GYP BOARD),
893
       PARTITIONOS.
           (E1-3/4 IN PLASTER CR GYP BOARD, C6-8 IN CLAY TILE,
894
895
          E1-3/4 IN PLASTER OR GYP BOARD),
           (E1-3/4 IN PLASTER OR GYP BOARD, C7-8 IN LW CONCRETE BLOCK,
897
          E1-3/4 IN PLASTER OR GYP BOARD),
198
899
       PARTITIONOS.
           (E1-3/4 IN PLASTER OR GYP BOARD, CO-0 IN HW CONCRETE BLOCK,
900
901
             E1-3/4 IN PLASTER OR GYP BOARD),
       PARTITIONOS.
902
903
           (E1-3/4 IN PLASTER OR GYP BOARD, C9-8 IN COMMON BRICK,
          E1-3/4 IN PLASTER OR GYP BOARD).
       PARTITIONIO-
905
           (E1-3/4 IN PLASTER OR GYP BOARD, C10-8 IN HW CONCRETE,
906
907
          E1-3/4 IN PLASTER OR GYP BOARD),
908
       PARTITIONII-
           (E1-3/4 IN PLASTER OR GYP BOARD, C11-12 IN HW CONCRETE.
909
910
          E1-3/4 IN PLASTER OR GYP BOARD),
       PARTITIONI2.
911
912
           (C1-4 IN CLAY TILE).
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
913
       PARTITIONIS.
           (C2-4 IN LW CONCRETE BLOCK),
914
915
       PARTITIONI4.
316
           (C3-4 IN HW CONCRETE BLOCK),
       PARTITIONIS.
917
310
           104-4 IN COMMON BRICK),
919
       PARTITIONIS.
920
           (CS-4 IN HW CONCRETE),
       PARTITION17-
921
325
           (CG-8 IN CLAY TILE),
       PARTITIONIS-
923
924
           (C7-8 IN LW CONCRETE BLOCK),
925
       PARTITIONIS.
926
           108-8 IN HW CONCRETE BLJCK),
927
       PARTITION20-
920
           (C9-8 IN COPPION BRICK).
323
       PARTITION21.
930
           (CIO-8 IN HW CONCRETE).
       PARTITION22-
931
932
           (C11-12 IN MY CONCRETE).
933
       PARTITION23-
934
           LET-3/4 IN PLASTER OR GYP BOARD, BI-AIRSPACE RESISTANCE,
935
          E1-3/4 IN PLASTER OR GYP BOARD).
       PARTITIONE4-
936
CFRL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
937
           (87-1 IN WOOD).
       PARTITIONES.
938
939
           (810-2 IN MODD),
940
       PARTITION26-
941
           (811-3 IN WOOD).
942
       PARTITION27-
943
           (89-4 IN WOOD),
944
       PARTI 710N28+
945
           (87-1 IN WOOD, B1-AIRSPACE RESISTANCE, 87-1 IN WOOD),
946
           1810-2 IN MOCO, 81-AIRSPACE RESISTANCE, 810-2 IN MOCO).
947
948
       PARTITION30+
949
           (811-3 IN MOOD, 81-AIRSPACE RESISTANCE, 811-3 IN MOOD) ;
950
951
     DEFINE ROOFSE
932
       ROOFOI -
           ICIZ-2 IN NY CONCRETE, BI-AIRSPACE RESISTANCE, BG-2 IN DENSE INSULATION.
953
            E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
954
955
            CS-4 IN HW CONCRETE.
956
            E4-CEILING AIRSPACE. ES-ACOUSTIC TILE),
937
950
           162-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
959
           86-2 IN DENSE INSULATION, 89-4 IN MODD.
            E4-CEILING AIRSPACE, ES-ACOUSTIC TILE).
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                      20 MAR 79
                                                                      12.47.06
-
       ROOF03+
362
           162-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
            86-2 IN DENSE INSULATION, 88-2 1/2 IN WOOD,
963
964
            E4-CEILING AIRSPACE, E5-ACOUSTIC TILE),
965
       ROOF 04-
966
           162-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
967
            86-2 IN DENSE INSULATION, 87-1 IN MODD,
963
            E4-CEILING AIRSPACE, ES-ACOUSTIC TILE),
970
           (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
971
            85-1 IN DENSE INSULATION, 89-4 IN WOOD,
972
            E4-CEILING AIRSPACE, E5-ACOUSTIC TILE),
973
       ROOFOS.
974
           (E2-1/2 IN CLAG OR STONE, E3-3/8 IN FELT AND HEMBRANE,
975
             85-1 IN DENSE INSULATION, 88-2 1/2 IN WOOD,
            E4-CEILING AIRSPACE, E5-ACOUSTIC TILE),
976
       R00F07+
977
978
           12-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
979
            85-1 IN DENSE INCULATION, 87-1 IN HOOD,
960
            E4-CEILING AIRSPACE, E5-ACOUSTIC TILE),
981
       ROOFORe
902
           182-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
983
            C16-8 IN LW CONCRETE,
            E4-CEILING AIRSPACE, ES-ACOUSTIC TILE).
984
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
985
       ROOF09.
986
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
            C15-6 IN LW CONCRETE.
947
            E4-CEILING AIRSPACE, ES-ACOUSTIC TILE),
988
983
        ROOF 10.
990
            122-1/2 IN SLAC OR STOLE, E3-3/8 IN FELT AND HEMBRANE,
991
            C:4-4 IN LY CONCRETE.
            E4-CEILING AIRSPACE, ES-ACOUSTIC TILE),
992
 994
            182-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
            86-2 IN DENSE INSULATION, C13-6 IN HW CONCRETE,
 995
 996
            E4-CEILING AIRSPACE, ES-ACOUSTIC TILE!.
997
 996
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND HEMBRANE,
999
            86-2 IN DENSE INSULATION, CS-4 IN HW CONCRETE,
1000
            E4-CEILING AIRSPACE, ES-ACOUSTIC TILE),
1001
1002
            162-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND HEMBRANE,
1003
            86-2 IN DENSE INSULATION, C12-2 IN HW CONCRETE,
1004
             E4-CEILING AIRSPACE, ES-ACOUSTIC TILE),
1005
        ROOF 14-
            (E2-1/2 IN SLAG OR STONE, E3-3/6 IN FELT AND HEMBRANE,
1006
1007
            85-1 IN DENSE INSULATION, C13-6 IN HW CONCRETE,
```

E4-CEILING AIRSPACE, ES-ACOUSTIC TILE),

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                        20 MAR 79
                                                                        12.47.06
1009
        ROOF 15.
1010
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1011
              85-1 IN DENSE INSULATION, C5-4 IN HW CONCRETE,
1012
             E4-CEILING AIRSPACE, E5-ACQUSTIC TILE).
        ROOF 16.
1013
1014
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1015
             85-1 IN DENSE INSULATION, C12-2 IN HW CONCRETE,
1016
             E4-CEILING AIRSPACE, E5-ACOUSTIC TILE),
        ROOF 17-
1017
1016
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1019
             B6-2 IN DENSE INSULATION, A3-STEEL SIDING,
1020
             E4-CEILING AIRSPACE, E5-ACOUSTIC TILE),
1021
        POOFIE.
1022
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1023
             85-1 IN DENSE INSULATION, A3-STEEL SIDING,
             E4-CEILING AIRSPACE, E5-ACOUSTIC TILE),
1024
1025
        ROOF19=
            (C12-2 IN HW CONCRETE, B1-AIRSPACE RESISTANCE, B6-2 IN DENSE INSULATION,
1026
1027
             E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1028
             C5-4 IN HW CONCRETE).
1029
1030
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1031
             86-2 IN DENSE INSULATION, 89-4 IN WOOD),
1032
        ROOF21 -
 CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                        20 MAR 79
                                                                        12.47.06
1033
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
             86-2 IN DENSE INSULATION, 88-2 1/2 IN WOOD),
1034
1035
        ROOF 22 -
1036
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1037
             86-2 IN DENSE INSULATION, 87-1 IN WOOD),
1038
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1039
1040
             85-1 IN DENSE INSULATION, 89-4 IN WOOD),
1041
        ROOF24=
1042
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1043
              85-1 IN DENSE INSULATION, 88-2 1/2 IN WOOD),
        ROOF25.
1044
1045
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1046
             85-1 IN DENSE INSULATION, 87-1 IN WOOD),
1047
1048
          (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE, C16-8 IN LW CONCRETE),
1049
1050
          182-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE C15-6 IN LM CONCRETE),
1051
1052
          (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE, C14-4 IN LW CONCRETE),
1053
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1054
             86-2 IN DENSE INSULATION, C13-6 IN HW CONCRETE).
1055
1056
         ROOF30
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
            1E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1057
            86-2 IN DENSE INSULATION, CS-4 IN HW CONCRETE),
1088
1059
        ROOF31 .
1060
            (E2-1/2 IN BLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
1061
            86-2 IN DENSE INSULATION, C12-2 IN HW CONCRETE).
1062
1063
            162-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
              88-1 IN DENSE INSULATION, CI3-6 IN HW CONCRETE),
1064
1065
        800F33+
1008
            182-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
1067
            85-1 IN DENSE INSULATION. CS-4 IN HW CONCRETE).
1068
        ROOF34+
1069
            162-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE.
            85-1 IN DENSE INSULATION, C12-2 IN HW CONCRETE),
1070
1071
        ROOF 35.
1072
            (E2-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1073
             BS-2 IN DENSE INSULATION, A3-STEEL SIDING),
1074
           162-1/2 IN SLAG OR STONE, E3-3/8 IN FELT AND MEMBRANE,
1075
             85-' IN DENSE INSULATION, AS-STEEL SIDING);
1076
1077
      END ROOFS:
1070
      DEFINE ROOFSE
1079
         CEILINGSE .
1000
            IC12-2 IN HW CONCRETE, E4-CEILING AIRSPACE, E8-ACOUSTIC TILE),
```

```
CERL -- B. L. A.S. T. SYSTEM --- VERSION P.O.
                                                        20 MAR 79
1081
1042
            ICS-4 IN HW CONCRETE, E4-CEILING AIRSPACE, ES-ACOUSTIC TILE).
.003
1084
            (C2-4 IN LW CONCRETE BLOCK, E4-CEILING AIRSPACE, E5-ACQUETIC TILE),
1085
         CEILING41 .
            IC10-8 IN HW CONCRETE, E4-CEILING AIRSPACE, E8-ACOUSTIC TILE).
1088
108:
         CEILING42 .
1000
            107-6 IN LW CONCRETE BLOCK, E4-CEILING AIRSPACE, E5-ACQUETIC TILE).
1009
         CEILING43
            IBIG-E IN HOGO, E4-CEILING AIRSPACE, E8-ACQUETIC TILE).
1080
1021
1092
            IBIT-3 IN WOOD, E4-CEILING AIRSPACE, E8-ACQUETIC TILE).
1093
         CEIL NG48 .
1094
            (CII-12 IN IN CONCRETE, E4-CEILING AIRSPACE, E5-ACQUETIC TILE).
1075
         CEILING 40.
1096
            189-4 IN WOOD, E4-CEILING AIRSPACE, ES-ACGUSTIC TILE).
1097
         CEILING47 .
1098
            (A3-STEEL SIDING, E4-CEILING AIRSPACE, ES-ACQUETIC TILE) :
1099
         CEILINGSI
1100
            (CI2-2 IN HW CONCRETE).
1101
         CEILINGSE
1102
            (CS-4 IN HW CONCRETE).
.103
         CEILINGSS
1104
            (CE-4 IN LW CONCRETE BLOCK).
```

```
CERL -- B.L.A S.T. SYSTEM --- VERSION 2.0
1105
        CEILING34
            (C10-8 IN HW CONCRETE),
1106
1107
        CEILINGS
1100
            (C7-6 IN LW CONCRETE BLOCK);
1109
     ENU ROOFS:
1110
      DEFINE FLOORSS
1111
        FLOORSI.
            (C12-2 IN HW CONCRETE).
1112
        FL00832+
1113
1114
            (CS-4 IN HW CONCRETE).
1115
        FLOOR33.
1116
            (C2-4 IN LW CONCRETE BLOCK).
1117
        FLCOR34.
1118
            (C10-0 IN HW CONCRETE).
1119
        FLOOR35.
1120
            (C7-6 IN LW CONCRETE BLOCK).
1121
        FLOOR36.
            (810-2 IN WOOD),
1122
        FLOOR37:
1123
1124
            (811-3 IN WOOD).
1125
        FLOOR38.
1126
            (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, C12-2 IN HW CONCRETE)
        FLOOR39-
1127
1128
            (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, C5-4 IN HW CONCRETE),
 CERL -- B.L.A.S.T SYSTEM --- VERSION 2.0
                                                        20 MAR 79
1129
        FL00R40-
1130
            (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, C2-4 IN LW CONCRETE BLOCK),
        FL00R41 -
1131
1132
             (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, C10-8 IN HW CONCRETE).
1133
        FL00842.
1134
            (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, C7-8 IN LW CONCRETE BLOCK),
1135
        FLOOR43.
            (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, B10-2 IN MOOD),
1136
1137
        FLOOR44.
1138
             (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, B11-3 IN MOOD),
1139
        FLOOR45.
1140
             (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, C11-12 IN HW CONCRETE).
1141
        FLOOR46-
1142
             (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, 89-4 IN WOOD),
1143
1144
            (ES-ACOUSTIC TILE, E4-CEILING AIRSPACE, A3-STEEL SIDING),
1145
         FLOOR SLAB 4 IN .
1146
           (DIRT 12 IN, CS-4 IN HW CONCRETE),
1147
         FLOOR SLAB & IN .
           (DIRT 12 IN, CIO-S IN HW CONCRETE);
1148
      END FLOORS:
1150 DEFINE DOORSE
1151
         SOLID WOOD DOOR .
1182
           (810-2 IN WOOD),
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                        20 MAR 79
                                                                       12.47.06
         HOLLOW WOOD DOOR .
1154
           (WOOD-HARDWOOD-1/8 IN, 81-AIRSPACE RESISTANCE, WOOD-HARDWOOD-1/8 IN),
1155
         ALUMINUM DOOR
            (A3-STEEL SIDING, B1-AIRSPACE RESISTANCE, A3-STEEL SIDING).
1157
        SLIDING PARTITION .
           (E3-3/8 IN FELT AND MEMBRANE),
1158
1159
         GLASS DOOR .
1160
           (GLASS-CLEAR PLATE 1/2 IN) ;
1161 END DOORS:
1162 DEFINE WINDOWSE
         SINGLE PANE LW WINDOW .
1164
           (GLASS-CLEAR SHEET 1/8 IN).
1165
         SINGLE PANE HW WINDOW .
           (GLASS-CLEAR F: ATE 1/4 IN),
1'66
1167
        SINGLE PANE TINTED WINDOW .
1168
           (GLASS-GREY PLATE 1/4 IN),
1169
         DOUBLE PANE WINDOW .
1170
           IGLASS-CLEAR SHEET 1/8 IN, B1-AIRSPACE RESISTANCE,
1171
                              GLASS-CLEAR SHEET 1/0 IN).
1172
         DOUBLE PANE TINTED WINDOW-
1173
           (GLASS-GREY PLATE 3/8 IN, B1-AIRSPACE RESISTANCE,
1174
                 GLASS-CLEAR PLATE 3/8 IN),
1175
         SINGLE PANE WITH DRAPES .
1176
           (GLASS-CLEAR PLATE 1/4 IN, DRAPES-CLOSE WEAVE MEDIUM),
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
1177
        DOUBLE PANE WITH DRAPES.
1178
           (GLASS-CLEAR SHEET 1/8 IN, 81-AIRSPACE RESISTANCE,
1179
                    GLASS-CLEAR SHEET 1/8 IN, DRAPES-CLOSE WEAVE MEDIUM).
1180
        SINGLE PANE WITH BLINDS .
1181
           (GLASS-CLEAR SHEET 1/8 IN, VENETIAN BLINDS-LIGHT),
         DOUBLE PANE WITH BLINDS.
1182
           (GLASS-CLEAR SHEET 1/8 IN, B1-AIRSPACE RESISTANCE,
1183
1184
                                   GLASS-CLEAR SHEET 1/8 IN, VENETIAN BLINDS-LIGHT),
        SINGLE PANE WITH SHADE .
1185
1186
          (GLASS-CLEAR SHEET 1/8 IN, SHADE ROLL-LIGHT OPAQUE),
1187
         DOUBLE PANE WITH SHADE .
1180
           (GLASS-CLEAR SHEET 1/8 IN, B1-AIRSPACE RESISTANCE,
1189
              GLASS-CLEAR SHEET 1/8 IN, SHADE ROLL-LIGHT OPAQUE) ;
1190 END WINDOWS:
1191 DEFINE SCHEDULE (HOSPITAL OCCUPANCY) %
        MONDAY THRU FRIDAY - (07 TO 17 - 1., 17 TO 20 - .8, 20 TO 07 - 6),
1193
       SATURDAY THRU SUNDAY . (07 TO 20 - .8, 20 TO 07 - .6),
        HOLIDAY . SUNDAY:
1194
        ENO;
1'96 DEFINE SCHEDULE (HOSPITAL LIGHTING)%
        MONDAY THRU FRIDAY . (04 TO 07 - .5, 07 TO 20 - .8, 20 TO 04 - .2 ),
1197
1198
        SATURDAY THRU SUNDAY . (04 TO 07 - .5, 07 TO 20 - .7, 20 TO 04 - .2),
1199
        HOLIDAY . SUNDAY:
```

END

```
CERL -- B L.A.S.T. SYSTEM --- VERSION 2.0
                                                        20 MAR 79
                                                                       12.47.06
1201 DEFINE SCHEDULE (HOSPITAL EQUIPMENT)S
1202
        MONDAY THRU FRIDAY . (07 TO 17 - 1., 17 TO 07 - .5).
1203
        SATURDAY THRU SUNDAY . (07 TO 17 - .6, 17 TO 07 - .5).
1204
        HULIDAY . SUNDAY:
1205
        FND:
     DEFINE SCHEDULE (CONSTANT)S
        SUNDAY THRU SATURDAY . (00 TO 24 - 1.).
1207
1233
        HOLIDAY . SUNDAY:
1209
1210 DEFINE SCHEDULE (RESIDENCE OCCUPANCY)S
        MONDAY THRU FRIDAY . (06 TO 15 - .3, .4, .7, 17 TO 07 - 1., .5).
1211
1212
        SATURDAY THRU SUNDAY . (23 TO 09 -1., 09 TO 16 - .3, .7, .7, .7,
1213
                                .3. .3. .3. .7).
1214
        HOLIDAY . SUNDAY:
1215
        ENO:
1216
     DEFINE SCHEDULE (RESIDENCE LIGHTING) %
        MONDAY THRU FRIDAY . (OR TO DE - .1, .2, .2, DE TO 16 - .1, .2,
1217
1218
                              .5, .5, 1., 1., 1., .5, .3),
1219
        SATURDAY THRU SUNDAY . (00 TO 16 - .1, .5, .5, 1., 1., 1., 1.,
1220
                                .8. .3).
1221
        HOLIDAY . SUNDAY:
1222
        END:
1223 DEFINE SCHEDULE (RESIDENCE EQUIPMENT)&
1224
        SUNDAY THRU SATURDAY . (22 TO 07 - 0., 1., .9, .8, 10 TO 16 - .3,
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                       12.47.06
1225
                                .7. .7, .7, .8, .8, .8),
1226
        HOLIDAY . SUNDAY:
1227
1228 DEFINE SCHEDULE (OFFICE OCCUPANCY)
        MONDAY THRU FRIDAY . (18 TO 06 - 0.,.1, .8, 1., 1., 1., 1.,
1229
1230
                              .5, 1., 1., 1., .5, .1),
1231
        SATURDAY THRU SUNDAY . (00 TO 24 - 0.).
1232
        HOLIDAY . SUNDAY:
1233
        END:
      DEFINE SCHEDULE (OFFICE LIGHTING)%
        MONDAY THRU FRIDAY . (18 TO 06 - .05, .2, 07 TO 17 - 1., .5),
1235
1236
        SATURDAY THRU SUNDAY . (00 TO 24 - .05).
1237
        HOLIDAY . SUNDAY;
1238
1239 DEFINE SCHEDULE (DORNITORY OCCUPANCY)
        MONDAY THRU FRIDAY . (22 TO 07 - 1., .6, .8, .2, .2, .6, .2, .2,
1240
1241
                              .2, .3, .6, .6, .5, .5, .8, .0),
        SATURDAY THRU SUNDAY . (23 TO 09 - 1., .0, .0, .0, .5, .5, .5, .5,
1242
1243
                                .0, .0, .5, .5, .5, .5, .0),
1244
        HOLIDAY . SUNDAY:
1245
        END;
     DEFINE SCHEDULE (DORNITORY LIGHTING)S
1246
1247
        MONDAY THRU FRIDAY . (.2, .1, .1, .1, .1, .1, .8, .5, .2, .1, .1, .5,
1248
                              .t. .t. .t. .t. .B. ... t., t., t., t., t., t.,
```

```
CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0
                                                       20 MAR 79
                                                                      12.47.06
       SATURDAY THRU SUNDAY . (1., .5, .1, .1, .1, .1, .1, .2, .2, .2, .1, .1,
                                .3, .1, .1, .1, .2, .4, .6, 1., 1., 1., 1., 1.),
1250
1251
       HOLIDAY . SUNDAY:
1252
       ENO:
1253 DEFINE SCHEDULE (STORE OCCUPANCY)$
       MONDAY THRU FRIDAY - (18 TO 07 - 0., .1, 08 TO 15 - .8, 1., 1., .2),
1254
       SATURDAY THRU SUNDAY . (13 TO 07 - 0., .1, .8, .9, 1., 1., .2),
1255
       HOLIDAY . SUNDAY:
1257
1258 DEFINE SCHEDULE (STORE LIGHTING) S
1259
       MONDAY THRU FRIDAY . (18 TO 07 - .2, .5, 08 TO 18 - 1.),
1260
       SATURDAY THRU SUNDAY - (12 TO 07 - .2, .5, 00 TO 12 - 1.),
1261
       HOLIDAY . SUNDAY;
       END:
1262
1263 DEFINE CONTROLS (NIGHT AND WEEKEND SETBACK WITH DUAL THROTTLING RANGES)
1264
          HEATANDCOOL . (1. AT 67, 0. AT 69, -0. AT 77, -1. AT 79),
1265
1266
          SETBACK . (1. AT 60, 0. AT 62);
       SCHEDULESE
1267
          MONDAY THRU FRIDAY . (07 TO 17 - HEATANDCOOL, 17 TO 07 - SETBACK),
1268
1269
          SATURDAY THRU SUNDAY . (00 TO 24 - SETBACK),
1270
          HOLIDAY . SUNDAY;
1271
1272 DEFINE CONTROLS (SINGLE THROTTLING RANGE) %
```

```
CERL -- B L.A.S.T. SYSTEM --- VERSION 2.0
                                                          20 MAR 79
                                                                         12.47.06
   1273
           PROFILESE
   1274
             HEATANOCOOL . (1. AT 73, 0. AT 75, -0. AT 75, -1. AT 77);
   1275
             SUNDAY THRU SATURDAY . (00 TO 24 - HEATANDCOOL).
   1276
   1277
             HOLIDAY . SUNDAY:
   1278
   1279 DEFINE CONTROLS (NIGHT AND WEEKEND SETBACK WITH SINGLE THROTTLING RANGE)
           PROFILESS
   1280
             HEATANDCOOL . (1. AT 73, 0. AT 75, -0. AT 75, -1. AT 77),
   1281
   1282
             SETBACK . (1. AT 60, 0. AT 62);
   1283
           SCHEDULESE
             MONDAY THRU FRIDAY . (07 TO 17 - HEATANDOODL, 17 TO 07 - SETBACK),
   1284
   1265
             SATURDAY THRU SUNDAY . (00 TO 24 - SETBACK),
   1286
             HOLIDAY . SUNDAY:
   1287
           END:
   1288 DEFINE CONTROLS (DEAD BAND) $
   1289
   1290
             HEATANDCOCK . (1. AT 68, G. AT 68, -0. AT 78, -1. AT 78);
           SCHEDULESS.
   1251
   1292
             SUNDAY THRU SATURDAY . (00 TO 24 - HEATANDCOOL):
    1293
             HOLIDAY . SUNDAY:
1294 END.
   1295 END INPUT:
```

4 BLAST EXAMPLE

The example which follows shows the input and part of the output for the dental clinic simulation described in Chapter 7, Volume I of the Users Manual.

Design Day Simulation

The following pages show the input deck describing the dental clinic. Design day data are temporarily added to the library (lines 9 and 10) and the required design days are requested on line 65. Results of the design day load calculations shown for zones 1 and 5 are typical of those for the remaining eight zones and the crawl space (not shown).

CERL 0-L-A-5-T. SYSTEM VERSION 2.0 10 APR 79 12 1 BEGIN IMPUT: 2 RUN CONTROL: NEW ZONES. 3 CENTRAL PLANT. 5 CENTRAL PLANT. 5 CENTRAL PLANT. 6 CENTRAL PLANT. 7 TEMPORARY LOCATION: FT HOOD = (LAT=31+LONG=97.6.TZ=6); END; 8 TEMPORARY LOCATION: FT HOOD = (LAT=31+LONG=97.6.TZ=6); END; 9 FT HOOD WINTER = (HIGH=32.LON=20.WEEKEND.WB=20.DATE=21.JAL.PRES=495. 10 FT HOOD SUMMER = (HIGH=32.LOW=20.WEEKEND.WB=20.DATE=21.JAL.PRES=495. 11 CONSTANT = (1 AT 66. 0 AT 69125 AT 701 AT 14;); 12 TEMPORARY CONTROLS (CLINIC CONTROLS); 13 PROFILES; 14 CONSTANT = (1 AT 66. 0 AT 69125 AT 701 AT 14;); 15 SCHEDULES; 16 HOOD SUMMER = SUMDAY; 17 HOLIDAY = SUMDAY; 18 END; 19 TEMPORARY WALLS; 20 EWALL: GRICK - FACE 4 IN. 21 CONCRETE - CENENT HORTAR 1/2 IN.

CER	CERT B.L.A.S.T. SYSTEM VERSION 2.0 10 MPR 79 12	12-62-40
×	C3 - 4 IN MY CONCRETE BLOCK.	
92	B1 - AIRSPACE RESISTANCE.	
r	BUILDING BOARD - GYPSUM PLASTER 1 / 2 IN).	
82	PWALLS . (BUILDING BOARD - GYPSUM PLASTER 1 / 2 IM.	
2	81 - AIRSPACE RESISTANCE,	
8	BUILDING BOARD - GYPSUM PLASTER 1 / 2 INI.	
=	PUALLE = ICR - 8 IN MY CONCRETE BLOCK.	
35	B1 - AIRSPACE RESISTANCE,	
8	BUILDING BOARD - GYPSUM PLASTER 1 / 2 INI.	
*	CPWALL = (A1 - 1 IN STUCCO.	
2	CIO - 8 IN MY CONCRETE.	
*	E1 - 3 / 4 IN PLASTER OR GYP BOARD) :	
31	1003	
*	TEMPORARY ROOFS!	
3	800F1 = (E2 - 1/ 2 IN SLAG OR STONE.	
;	E3 - 3/8 IN FELT AND MEMBRAME.	
7	A3 - STEEL STOING.	
24	E4 - CEILING AIRSPACE.	
:	84 - 3 IN INSULATION.	
\$	ES - ACOUSTIC TILE).	
\$	CPCEIL = IFINISH FLOORING - TILE 1/16 IN.	
\$	C10 - 8 IN HW CONCRETE.	
	81 - AIRSPACE RESISTANCE.	
:	82 - 1 IN INSULATION)!	

B

le television

Special

49 EMO! 50 TEMPORARY FLOORS! 51 FLOOR! = 182 - 1 IN INSULATION. 52 CIO - 8 IN HW CONCRETE, 53 CIPTLOR = (DIRT 12 IN)! 54 EMO! 55 COFLOR = (DIRT 12 IN)! 56 EMO! 57 TEMPORARY DOORS: 61 MINOOW PAMEL = (GLASS - HEAT ABSORBING PLATE 1/ 2 IN, 56 EMO! 57 TEMPORARY DOORS: 61 MINOOW PAMEL = (GLASS - HEAT ABSORBING PLATE 1/ 2 IN, 60 COT ON SHIPPER THOOD OF THE CLINIC"! 61 BOOJECT = "FT HOOD WINTER, FT HOOD SUMMER! 62 EMO! 63 PROJECT = "FT HOOD WINTER, FT HOOD SUMMER! 64 COCATION = FT HOOD WINTER, FT HOOD SUMMER! 65 GESIGN DAYS = FT HOOD WINTER, FT HOOD SUMMER! 66 GROUND TEMPERATURES = (62-61-62-65-68-71-75-71-68-65-62)! 67 GEGIN BUILDING DESCRIPTION! 68 OTHERSIONS: HEIGHT] = 9.1 71 ORIGIN: 00.0-2-5:1 72 WORTH AXIS = 01	N 2.0 10 APR 79 12.05.46		4710w,	ESISTANCE.	DMCKETĘ.	FINISH FLOORING - TILE 1/16 IN).			WINDOW PANEL = (GLASS - MEAT ABSORBING PLATE 1/ 2 IN.	INSULATION - CELLULAR GLASS 2 IM.	C3 - 4 IN MY CONCRETE BLOCK.	BUILDING BOARD - GYPSUM PLASTER 1 / 2 IN) ;			MOOD SUMMERS	.65.68.71.75.75.71.68.65.6211				
	YSTEM VERSION	0851	= (82 - 1 IN INSULA	81 - AIRSPACE RESISTANCE.	CIO - 8 IN HW CONCRETE.	FINISH FLOORING		DOORS:	ON PANEL = (GLASS - HE	INSULATION	C3 - 4 IN	BUTLDING	"FT HOOD DENTAL CLINIC	FT H90D1	YS = FT HOOD WINTER, FT HOOD SUMMERS	4PERATURES = 167.61.62	LOING DESCRIPTION:	ENSIONS: HEIGHTI = 9.1	GIN: (0.02.5)	

CRAWL SPACE CEILINGS

STARTING AT (0.0.2.5) FACING (180) CPCEIL (92 BY 102)

SLAB ON GRADE FLOOR:

STARTING AT (0.102.0) FACING (180) CPFLOOR (92 BY 102)

BASEMENT WALLS:

STARTING AT (0.0.0) FACING (180) CPWALL (92 BY 2.5).

STARTING AT (92.0.0) FACING (90) CPWALL (102 BY 2.5).

STARTING AT (92.102.0) FACING (0) CPUALL (92 BY 2.5).

STAPTING AT (0.102.0) FACING (270) CPWALL (102 BY 2.5);

82 END ZONE !

83 70NE 1 "NOPTH LAB":

ORIGIN: (14.83.0) 1

NORTH AXIS = 01

STARTING AT (31-19-5-0) FACING (0) EVALLI (31 BY MEIGHTL) EXTERIOR WALLS:

WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW

(6.66 BY 4.25) AT (10.4)

WITH DOORS OF TYPE WINDOW PANEL

(6.46 BY 4.0) AT (10.0)

WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW

26 63

16

(3.33 BY 4.25) AT (27.5,4)

WITH DOORS OF TYPE WINDOW PANEL

(3.33 BY 4.0) AT (27.5.0)

WITH OVERHANGS (50 BY 3) AT (-10.MEIGHT1)!

Constitution of the last

()

(Appendix)

Name and Address of the Owner, where

Contract of

Wilder of

-

in the second

and the same

Control of

Garden .

J

10 APR 79 12.05.48		L2 (19.5 BY HEIGHTI).	L1 (31 BY HEISHT1).	WALLI (13 BY HEIGHTI);) ROOF1 (31 BY 19.5) #		LOOR1 (31 BY 19.5) #		NGS		NG. 154.1 COOLING!				0		L1 (4 BY HEIGHT])	11GHT1)	9.	ILLI (18 BY MEIGHTI)	EIGHT1).	
CERL R.L.A.S.T. SYSTEM VERSION 2.0	PARTITIONS:	STAPTING AT (31.0.0) FACING (90) PWALL2 (19.5 BY MEIGHTI).	STARTING AT (0.0.0) FACING (180) PWALLI (31 BY HEIGHTI).	STARTING AT (0.19.5.0) FACING (270) PUALLI (13 BY HEIGHTI)!	ROOF S:	STAPTING AT (0.0, HEIGHT) FACING (180) ROOFI (31 BY 19.5)	FLOOR OVER CRAVL SPACE:	STAPTING AT (0.19.5.0) FACING (180) FLOOR1 (31 BY 19.5) #	PEOPLE = 3.0FFICE OCCUPANCYS	ELECTRIC EQUIPMENT = 14.0FFICE LIGHTINGS	LIGHTS = 9.0FFICE LIGHTINGS	CONTROLS = CLINIC CONTROLS, 104 MEATING, 154.1 COOLINGS	END ZONE:	ZONE 2 "NORTH WEST LAB":	ORIGIN: (0.84.0) #	NORTH AXIS = 01	EXTERIOR WALLS:	STAPTING AT (0.0.0) FACING (180) EWALL! (4 BY MEIGHT!)	WITH OVERHANGS (7 BY 83) AT (-3. MEIGHTI)	WITH WINGS (HEIGHT! BY 83) AT (4:0).	STARTING AT (0,18.0) FACING (270) EVALLI (18 BY MEIGHTI)	WITH OVERHANGS (108 BY 3) AT (-3.MEIGHTI).	

CERL B.L.A.S.T. SYSTEM VERSION 2.0 10 APR 79 12.05.48	(3,33 BY 4,25) AT (,5,4)	WITH DOOR OF TYPE WINDOW PANEL	(3.33 BY 4.0) AT (.5.0)	WITH OVERHANGS (60 BY 3) AT (-42. HEIGHT)):	PARTITIONS:	STARTING AT (14.6.5.0) FACING (90) PWALLI (11.5 BY HEIGHTI).	STARTING AT (4.0.0) FACING (180) PWALLI (10 BY HEIGHTI)!	ROOFS:	STARTING AT (0.0.HEIGHT) FACING (180) ROOF: (14 BY 18);	FLOOR OVER CRANL SPACE:	STARTING AT (0.19.0) FACING (180) FLOOR! (14 BY 18)!	PEOPLE = 1.0FFICE OCCUPANCY:	LIGHTS = 2.0FFICE LIGHTING:	ELECTRIC EQUIPMENT = 3.0FFICE LIGHTING;	CONTROLS = CLINIC CONTROLS, 23.68 HEATING, 35.1 COOLINGS	END ZONE 3	ZONE 3 "WFST OPER RMS":	ORIGIN: (0.13.0) #	NORTH AXIS = 0.1	EXTERIOR WALLS:	STARTING AT (0.81.0) FACING (270) EWALLI (81 BY MEIGHTI)	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW	(5 RY 8.9) REVEAL (3.67) AT (.5.0.05)	WITH OVERHANGS (87 BY 3) AT (-3. HEIGHTI)	
CERL	151	122	123	124	125	126	121	124	129	130	131	132	133	134	135	136 EN	137 20	138	139	140	141	145	143	144	

La Contractor

Total I

THE CASE OF

								0			Ц
CERL -	CERL B.L.A.S.T. SYSTEM VERSION 2.0	T. SYSTEM	VER	SION 2.0		10 %	10 APR 79	12.05.40	•		
145	5	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW	S OF TYP	E SINGLE	PANE TIN	ITED WIND	3				
146		16.46 BY	(6.46 BY 4.25) AT (13.4)	T (13,4)							
161	-	WITH DOORS OF TYPE WINDOW PANEL	OF TYPE	WINDOW PA	INEL						
148		16.66 BY	(6.56 BY 4.0) AT (13.0)	(13.0)							
149	3	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW	S OF TYP	E SINGLE	PANE TIN	ITED WIND	3				
150		(6.66 BY	(6.66 BY 4.25) AT (33.4)	T (33.4)							
151	5	WITH DOORS OF TYPE WINDOW PANEL	OF TYPE	MINDON PA	INEL						
152		16.66 BY	(6.66 BY 4.0) AT (33.0)	(33.0)							
153		WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW	S OF TYP	E SINGLE	PANE TIN	ITED WIND	3				
154		16.66 BY	(6.66 BY 4.25) AT (53.4)	T (53.4)							
155	5	WITH DOORS OF TYPE WINDOW PANEL	OF TYPE	WINDOW PA	INEL						
156		16.66 BY	(6.66 BY 4.0) AT (53.0)	(53.0) !							
151	PARTITIONS:	YS:									
158	START	STARTING AT (0.0.0) FACING (180) PWALL1 (19 BY HEIGHT1),	.0.0) FA	CING (180) PWALL!	(19 87)	4E16HT1) .				
159	STAPT	STAPTING AT (19,5,0) FACING (90) PWALLI (59 BY HEIGHTI),	9.5.01 F.	ACING 190	1) PVALL1	(S9 BY 1	4E16H11) .				
160	START	STARTING AT (19.81.0) FACING (0) PWALLI (19 BY HEIGHTI)!	9.81.0)	FACING (0) PWALL1	(19 87 1	4E16HT1) 4				
161	R00F5:										
162	START	STARTING AT (0.0.HEIGHTI) FACING (180) ROOF1 (19 BY 81)	.0.HE1GH	TI) FACIN	(081) 9	ROOF1 (15	9 BY 8111				
163	FLOOR OVE	FLOOR OVER CRAML SPACE:	SPACE								
164	START	STAPTING AT (0,81,0) FACING (180) FLOOR1 (19 BY 81)	.81.0) F.	ACING (18	10) FLOOR	11 (19 BY	8111				
165	PEOPLE =	PEOPLE = 12.0FFICE OCCUPANCY:	E OCCUPA	NCY 8							
166	L16HTS =	LIGHTS = 9.0FFICE LIGHTINGS	LIGHTIN								
167	ELECTRIC	ELECTRIC EQUIPMENT = 3.0FFICE LIGHTINGS	T = 3.0F	FICE LIGH	15N11						
168	CONTROLS	CONTROLS # CLINIC CONTROLS. 117 HEATING. 173.7 COOLINGS	CONTROL	S. 117 HE	ATING, 1	13.7 COO	INGE				

CER	CERL 8.L.A.S.T. SYSTEM VERSION 2.0 10 APR 79 12.05.
169	EWD ZONE!
170	ZOME 4 "LOCKER RMS":
171	ORIGIN: (18-19-0) #
172	MORTH AXIS = 0.1
173	PARTITIONS:
174	STARTING AT (0.0.0) FACING (180) PUALLI (13 BY HEIGHTI).
175	STARTING AT (13.0.0) FACING (90) PHALLI (59 BY HEIGHTI).
176	STARTING AT (13.59.0) FACING (0) PUALL! (13 BY HEIGHT!).
111	STARTING AT (0.59.0) FACING (270) PUALLI (59 BY HEIGHTI)
178	ROOFS:
179	STAPTING AT (0.0.HEIGHTI) FACING (180) ROOF1 (13 BY 59)#
180	FLOOR OVER CRAML SPACE:
181	STAPTIMG AT (0.59.0) FACING (180) FLOOR! (13 BY 59)!
182	PEOPLE = 3.0FFICE OCCUPANCYS
183	LIGHTS = 2.0FFICE LIGHTINGS
184	ELECTRIC EQUIPMENT * 1.0FFICE LIGHTINGS
185	CONTROLS = CLINIC CONTROLS, 44.4 MEATING, 65.8 COOLINGS
186	END ZOMES
187	ZONE 5 "LIBHARY CONF RMS":
188	ORIGIN: (31.47.0) ;
189	MORTH AXIS = 01
190	PARTITIOMS:
161	STARTING AT (0,0.0) FACING (180) PUALLI (6 BY HEIGHTI),
192	STARTING AT (6.0.0) FACING (90) PWALL! (3 BY MEIGHT!).

Total Control

ELECTRIC EQUIPMENT = .5.0FFICE LIGHTING: CONTROLS = CLINIC CONTROLS, 29.3 HEATING, 43.4 COOLING: END ZONE: ZONE 6 "MAITING ROOM": ORIGIN:(19.13.0): NORTH AXIS = 0.1	213 213 213 215 215 215 215 215 215 215 215 215 215
LIGHTS = 3.0FFICE LIGHTING; ELECTRIC EQUIPMENT = .5.0FFICE LIGHTING;	209
PEOPLE = 2.0FFICE OCCUPANCY;	207
STARTING AT (-12,35,0) FACING (180) FLOOR1 (12 BY 6)1	506
STARTING AT (0.34.0) FACING (180) FLOOR! (18 BY 33).	502
STAPTING AT (0.3.0) FACING (180) FLOOR! (6 BY 3).	502
FLOORS OVER CRAWL SPACE:	203
STAPTING AT (-12.30.HEIGHTI) FACING (180) ROOF1 (12 BY 6)1	202
STARTING AT (0.3.HEIGHTI) FACING (1R0) ROOFI (18 BY 33).	102
STARTING AT (0.0.HEIGHTI) FACING (180) ROOFI (6 BY 3).	200
ROOFS:	199
STARTING AT (0.30.0) FACING (270) PWALLI (30 BY HEIGHTI);	198
STAPTING AT (-12.30.0) FACING (180) PWALLI (12 BY HEIGHTI).	197
STARTING AT (-12,35,0) FACING (270) PHALLI (6 BY HEIGHTI).	196
STARTING AT (18.36.0) FACING (0) PWALLI (30 BY HEIGHTI).	195
STARTING AT (18.3.0) FACING (90) PWALLI (29 BY HEIGHTI).	194
STARTING AT (6.3.0) FACING (180) PWALL! (12 BY HEIGHT!).	193

- Comme

1

Ц				U		0		and the second			U
CERL	L B.L.4.S.T. SYSTEM VERSION 2.0	r. syste	M VER!	SION 2.0		10 APR 79	2 3	12.05.49			
25		ING AT (STARTING AT (0.0.0) FACING (180) PWALLI (12 BY HEIGHTI).	11NG (180	PWALL1	112 BY HE	164111.				
242		146 AT (STARTING AT (12.0.0) FACING (90) PWALLI (45 BY HEIGHTI).	NCING 190	PWALL!	(45 BY HE	16HT1) .				
243		ING AT C	STARTING AT (12.45.0) FACING (180) PWALLI (6 BY HEIGHTI).	FACING (1	80) PWALL	.1 (6 BY h	EIGHT1).				
546		ING AT (STAPTING AT (18.45.0) FACING (90) PWALL! (13 BY HEIGHT!).	FACING 19	O) PUALLS	(13 BY P	EIGHT1).				
542		ING AT C	STARTING AT (18.58.0) FACING (180) PWALLI (7 BY HEIGHTI).	FACING (1	80) PWALL	.1 (7 BY H	EIGHT11.				
942		1NG AT C	STAPTING AT (25.63.5.0) FACING (0) PWALL2 (25 BY HEIGHTI),	FACING	10) PWALL	.2 (25 BY	HEIGHTI)				
747		ING AT (STARTING AT (0.63.5.0) FACING (270) PHALLI (63.5 BY HEIGHTI)\$	FACING (270) PWAL	.11 (63.5	BY HEIGHT	1111			
248	ROOFS:										
549		ING AT (STARTING AT (0.0.HEIGHTI) FACING (1A0) ROOFI (12 BY 63.5),	II) FACIN	6 (180) 8	100F1 (12	87 63.51				
250		ING AT (STARTING AT (12.45.MEIGHT1) FACING (180) ROOF1 (6 BY 18.5).	SHT1) FAC	ING (180)	ROOF 1 (6	8Y 18.51	•			
152		ING AT (STARTING AT (18.58.HEIGHTI) FACING (180) ROOF1 (7 BY 5.5)	SHT1) FAC	ING (180)	R00F1 (7	8Y 5.51				
252	FLOOPS OVER CRAWL SPACE:	VER CRAN	L SPACE:								
253		ING AT (STARTING AT (0.63.5.0) FACING (180) FLOOR; (12 BY 63.5).	FACING (180) FLOC	IR1 (12 BY	63.5)				
52		1 14 5H1	STAPTING AT (12-63-5-0) FACING (1A0) FLOOR1 (6 BY 18-5).	FACING	(140) FLO	10R1 (6 BY	18.51.				
552		1 TA 5M1	STAPTING AT (18-63-5-0) FACING (180) FLOOR1 (7 BY 5-5)	FACING	(180) FLO	10R1 (7 BY	115.5				
556		6.0FF1C	PEOPLE = 6.0FFICE OCCUPANCYS	341							
152		S.OFFIC	LIGHTS = 5.0FFICE LIGHTINGS	3.							
258		EQUIPPE	ELECTRIC EQUIPMENT = 2.0FFICE LIGHTINGS	TICE LIGH	TINGS						
528		= CLINI	CONTROLS = CLINIC CUNTROLS. 51.5 HEATING. 76.4 COOLINGS	5. 51.6 H	EATING. 7	16.4 COOL!	194				
560	END ZONE:										
192	ZONE 8 "XPAY":	:									
292	08161	N: (61-13-0) 1	110.								
243		NOHTH AXIS = 0.8									
564	PARTITIONS:	3:									

CER	CERL 8.L.A.S.T. SYSTEM VEHSION 2.0 10 APR 79 12.05.48	
265	STARTING AT (0.0.0) FACING (180) PUALL! (16 BY HEIGHT!).	
266	STARTING AT (15.0.0) FACING (90) PUALLI (69 BY HEIGHTI).	
267	STARTING AT (15.69.0) FACING (0) PWALL? (4 BY HEIGHTI).	
268	STARTING AT (12.64.0) FACING (0) PUALLI (7 BY HEIGHTI).	
569	STARTING AT (5.64.0) FACING (270) PHALLI (14 BY HEIGHTI).	
270	STARTING AT (5.50.0) FACING (0) PHALLI (5 BY MEIGHTI).	
175	STARTING AT (0.50.0) FACING (270) PHALLI (45 BY HEIGHTIII	
272	P006 S:	
273	STAPTING AT 10.0.4EIGHTI) FACING (1A0) ROOF1 (16 BY 50).	
274	STARTING AT (5.50.4EIGHTI) FACING (180) ROOF1 (11 BY 14).	
275	STARTING AT (12.64.HEIGHTI) FACING (180) ROOF! (4 BY 5)!	
274	FLOORS OVER CRAWL SPACE:	
112	STARTING AT 10.50.0) FACING (180) FLOOR! (16 BY 50).	
278	STARTING AT (5-64-0) FACING (180) FLOOR: (11 BY 14).	
279	STARTING AT (12.69.0) FACING (180) FLCOR1 (4 BY 5)1	
280	PEOPLE = 7.0FFICE OCCUPANCY	
281	LIGHTS = 9.0FFICE LIGHTINGS	
282	ELECTRIC EQUIPMENT = 20.0FFICE LIGHTING:	
283	CONTROLS = CLINIC CONTROLS, 48.3 HEATING, 71.6 COOLING!	
294	END ZONE #	
582	ZONE 9 "SOUTH OPER RMS":	
286	OPIGIN: (0.0,011	
287	NORTH AXIS # 0.1	
288	EXTERIOR WALLS:	

a de la constanta

I

289 STARTING AT (0.0.0) FACING (180) EWALLI (92 BY HEIGHTI) 290 WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW 291 (6.66 BY 4.25) AT (9.4) 292 WITH WINDOWS OF TYPE WINDOW PANEL 293 (6.66 BY 4.0) AT (9.0) 294 WITH WINDOWS OF TYPE WINDOW PANEL 295 (6.66 BY 4.0) AT (9.0) 296 WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW 297 WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW 298 WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW 299 (6.66 BY 4.25) AT (28.0) 290 WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW 290 WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW 290 WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW 290 WITH WINDOWS OF TYPE WINDOW PANEL 290 WITH WOODS OF TYPE WINDOW PANEL 290 (6.66 BY 4.25) AT (58.0) 290 WITH WOODS OF TYPE WINDOW PANEL 291 WIT					
	CERL -	10 APR 79	94.		
	588	STARTING AT (0.0.0) FACING (180) EWALL! (92 BY HEIGHT!)			
	962	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW			
	162	(6.66 BY 4.25) AT (9.4)			
	262	WITH DODHS OF TYPE WINDOW PANEL			
	293	(6.66 BY 4.0) AT (9.0)			
	762	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW			
	562	(6.56 BY 4.25) AT (28.4)			
	962	WITH DOORS OF TYPE MINDOW PANEL			
	297	(6.56 HY 4.0) AT (28.0)			
	862	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW			
	562	(8 BY 8.9) REVEAL (4) AT (4205)			
	300	WITH OVERHANGS (98 BY 3) AT (-3, MEIGHTI)			
	301	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW			
	302	(6.66 BY 4.25) AT (58.4)			
	303	WITH DOORS OF TYPE WINDOW PANEL			
	304	(4.55 9Y 4.0) AT (58.0)			
	305	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW			
	306	(6.56 8Y 4.25) AT (78.4)			
	307	WITH DOORS OF TYPE WINDOW PANEL			
	308	(6.46 BY 4.0) AT (78.0).			
	309	STAPTING AT (92.0.0) FACING (90) EWALLI (13.5 BY MEIGHTI)			
	310	WITH OVERHANGS (100 BY 3) AT (-3. MEIGHTI).			
	311	STARTING AT (0.13.5.0) FACING (270) EMALLI (13.5 BY MEIGHTI)			
	312	WITH OVERHANGS (100 BY 3) AT (-93.5.HEIGHTI);			

ER	ERL 8.L.A.S.T. SYSTEM VERSION 2.0 10 APR 79 12.05.48	
13	PARTITIONS:	
*	STARTING AT (92.13.5.0) FACING (0) PUALLI (92 BY HEIGHTI)	
15	ROOFS:	
91	STARTING AT (0.0.4EIGHTI) FACING (180) ROOF1 (92 BY 13.5)	
11	FLOOR OVER CRAML SPACE:	
19	STARTING AT (0.13.5.0) FACING (180) FLOOR! (92 BY 13.5) \$	
6	PEOPLE = 15.0FFICE OCCUPANCY#	
50	LIGHTS = 9.0FFICE LIGHTINGS	
12	ELECTAIC EQUIPPENT = 4.0FFICE LIGHTINGS	
22	CONTROLS = CLINIC CONTROLS, 130.9 HEATING, 194.0 COOLINGS	
2	END ZOME!	
35	ZONE 10 "EAST OPER RMS":	
3	OHIGIN: (77,13,0):	
56	MORTH AXIS = 0.1	
121	PARTITIONS	
128	STARTING AT (0.0.0) FACING (180) PUALLI (15 BY HEIGHTI).	
\$	STAPTING AT (0.70.0) FACING (270) PWALLI (70 BY MEIGHTI).	
30	STARTING AT (15.70.0) FACING (0) PUALLE (15 BY HEIGHTISS	
3	EXTERIOR WALLS:	
35	STARTING AT (15.0.0) FACING (90) EVALLI (70 BY HEIGHTI)	
133	WITH WINDOWS OF TYPE SINGLE PANE TINTED WINDOW	
3	(6.66 BY 4.25) AT (12.4)	
35	WITH DOORS OF TYPE WINDOW PANEL	
2	(6.66 BY 4.0) AT (12.0)	

Parente

	12.05.48																							9.9.101	
П	67 2													8Y 7016		1011				DLINGS				MULTIZONE SYSTEM 1 "BASIC SYSTEM" SERVING ZONES 1,2,3,4,5,6,7,8,9,101	
physical	10 APR 79	WINDOWS OF TYPE SINGLE PANE TINTED WINDOW				WINDOWS OF TYPE SINGLE PANE TINTED WINDOW				WINDOWS OF TYPE SINGLE PANE TINTED WINDOW		1111		STAPTING 4T (0.0.HEJGHTI) FACING (180) ROOF1 (15 BY 70)		STAPTING AT (0.70.0) FACING (180) FLOOR! (15 BY 70);				CLINIC CONTROLS. 122.7 HEATING, 181.9 COOLINGS				KES 1.2.3	
		PANE TINI		NEL		PANE TINI		NEL		PANE TINI	AT (65.0)	(-3.HE1G		6 (180) 6		10) FLOOR			IT ING :	HEATING.				RVING ZON	
Tipone I	SION 2.0	E SINGLE	T (32.4)	DOORS OF TYPE WINDOW PANEL	(32.0)	E SINGLE	T (51.4)	DOORS OF TYPE WINDOW PANEL	(51.0)	E SINGLE	(5 RY 8.9) REVEAL (3.67) AT (65.0)	OVERHANGS (76 BY 3) AT (-3. HEIGHT!)!		TI) FACIN		ACING (18	NCY 8	• • • • • • • • • • • • • • • • • • • •	FICE LIGH	5. 122.7				YSTEM" SE	
	SYSTEM VERSION 2.0	IS OF TYP	(6.66 BY 4.25) AT (32.4)	OF TYPE	(6.66 HY 4.0) AT (32.0)	IS OF TYPE	(6.66 BY 4.25) AT (51.4)	OF TYPE	(6.66 BY 4.0) AT (51.0)	S OF TYPE	9) REVEA	1 9L1 SON		3.0.HE1GH	CRAML SPACE:	0.70.0) F.	CE OCCUPA	E LIGHTIN	VT = 3.0F	CONTROL		110Nt	SCHIPTION	BASIC S	
	T. SYSTE	WITH WINDO	(6.66 8)	WITH DOORS	(6.66 9)	WITH WINDO	(6.66 8)	WITH DOORS	(6.66 8)	WITH WINDOW	(5 AY A.	WITH OVERH		11NG 4T (ING AT (PEOPLE = 12.0FFICE OCCUPANCYS	LIGHTS = 8.0FFICE LIGHTINGS	ELECTRIC EQUIPMENT = 3.0FFICE LIGHTINGS			IG DESCRIPTIONS	YSTEM DE	SYSTEM 1	
	CERL B.L.A.S.T.	3		7		3		A				5	800FS:	STAPI	FLOOP OVER	STAPI	PEOPLE :	LIGHTS :	ELECTRIC	CONTROLS =	END ZONES	END BUILDING	REGIN FAN SYSTEM DESCHIPTIONS	LTIZONE S	FOR ZONE 1:
	CER	337	338	330	340	341	342	343	344	345	346	745	348	349	350	351	352	353	354	355	356 EN	357 EN	358 AE	359 MU	360 FO
																			,						
F3																									

10 APR 79 CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

12.05.48

EXMAUST AIR VOLUME = 10001

SUPPLY AIR VOLUME = 17845 362

363 END!

364 FOR 20NE 2:

SUPPLY AIR VOLUME = 4061 365

366 END!

SUPPLY AIR VOLUME = 20108 367 FOR ZONE 3:

369 ENDS

368

370 FOR ZONE 41

EXHAUST ATR VOLUME = 6008 371

SUPPLY AIR VOLUME = 7615

372

373 END!

374 FOR ZONE 51

SUPPLY ATR VOLUME = 5028 375

376 END!

377 FOR ZONE 41

SUPPLY AIR VOLUME = 8334 376

379 ENDS

380 FOR ZONE 71

SUPPLY AIR VOLUME = 8941

382 END:

383 FOR ZONE 8:

SUPPLY AIR VOLUME = 8291

- Control of

- Constant

reparent.

gradum

and delication and

Facilitation

- Constant

-

ST November

12.05.48 (Singapore) Secretaria 10 APR 79 HOT DECK CONTROL SCHEDULE = (120 AT 10. 80 AT 70) Spatistical and a second HOT DECK CONTROL . DUTSIDE AIR CONTROLLED! ENTERING AIR DRY BILB TEMPERATURE = 87.61 ENTERING AIR WET BINLY TEMPERATURE = 70.31 page and LEAVING AIR DRY BULB TEMPERATURE = 61.8 LEAVING AIR WET BULB TEMPERATURE . 59.1 COLD DECK CONTROL = FIXED SET POINTS LEAVING MATER TEMPERATURE = 55.41 MIXED AIR CONTHOL = FIXED AMOUNTS ENTFRING WATER TEMPERATURE = 451 CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0 Table Services COLD DECK TEMPERATURE = 55.1 OUTSIDE AIR VOLUME = 4114.1 COIL TYPE = CHILLED WATERS SUPPLY AIR VOLUME = 22451 400 COOLING COIL DESIGN PARAMETERS: SUPPLY AIR VOLUME = 21051 WATER VELOCITY = 275.41 OTHER SYSTEM PARAMETERS: FOR 20NE 10: FOR 20NE 9: 385 END! ENDS 399 END1 391 END! 403 392 393 397 401 707 707 507 904 404 394 396 398 401 395

12.05.48 10 APR 79 CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

WATER VOLUME FLOW RATE = 15-631 AIR FACE VELOCITY = 514.61 600 410

AIR VOLUME FLOW RATE . 15760; -

BAROMETRIC PRESSURE . 4051 412

413 END!

415

HEATING CAPACITY ON FROM 01 OCT THRU 31 MARE 414 EQUIPMENT SCHEDULES:

SYSTEM OPERATION . CONTINUOUS! 414

417 ENDS

418 END SYSTEMS

419 END FAN SYSTEM DESCRIPTIONS

420 BEGIN CENTRAL PLANT DESCRIPTIONS

PLANT 1 "PLANT FOR BASIC SYSTEM" SERVING SYSTEM 11 129

422 EQUIPMENT SELECTIONS

1 CHILLER OF SIZE 6001

423

1 BUILER OF SIZE BADS

425 END1

426 END PLANTS

427 END CENTRAL PLANT DESCHIPTIONS

428 END INPUTE

12.05.48 10 APR 79 CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

REPORTING WILL BE DONE IN UNITS ENGLISH

SIMULATIONS WILL BE ALLOWED FOR TYPES: BUILDINGS SYSTEMS T.E. PLANT

1,4 NUMBER OF SIMULATIONS TO BE ATTEMPTED The state of

- Constitution

i

I

I

I

THE STATE OF

Empleonia de

Total Control

- Brate-brat

- Constitution of the Cons

-

-

L. Constitution of the Con

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

12.05.48 10 APR 79

The same of

Palacati

The second

NEW BLOFL AND AMLOFL FILES WILL BE CREATED FHOW USER INPUT, AS NECESSARY

FT HOOD DENTAL CLINIC

LOCATION FT HOOD

DATE OF FILE CHEATE/UPDATE 10 APR 79 NUMBER OF ENVIRONMENTS 3. LONG* 97.80000 TIME ZONE* 6.0 NUMBER OF ZONES 11 WITH ZONE NUMBERS OF ZONES 11 WITH ZONE NUMBERS OF 2006 1 2 3 4 5 6 7 8 9 10

....

AHLDFL FOR FT MOOD DENTAL CLINIC

LOCATION FT HOOD

LOCATION FT HOOD

DATE OF FILE CPEATE/UPDATE 10 APR 79 NUMBER OF ENVIRONMENTS 2

NUMBER OF SYSTEMS 1 WITH SYSTEM NUMHERS

ENVINCAMENT NUMMER 1 FOR ALDFL TITLE IS FT HOOD SUMMER DESIGN DAY 21 JUL WITH GROUND TEMPERATURE 75.000

ENVIPONMENT NUMBER 1 FOM ANLUFL TITLE IS FT HOOD SUMMER

DESIGN DAY 21 JUL WITH GROUND TEMPERATURE 75.000

IN PSYMTP, MONTH= 1 DAY= 21 TDB=0. TWB=-,667E+01 PB= .101E+06 W=-,522E-03

W40 --> SET W FOW A RH=.01

/DEBUG/ PSYWTP AT LINE 53- TRACE ROUTINE CALLED

SUDNEN CALLED BY SUDDEN AT LINE 103, FROM 1 L

SUDNEN CALLED BY BLAST AT LINE 368, FROM 3 L

HFILE CALLED BY BLAST AT LINE 61, FROM 3 L

1 LEVELS BACK 2 LEVELS BACK 3 LEVELS BACK

ENVINONMENT NUMMER 2 FOR ALDFL TITLE IS FT HOOD WINTER DESIGN DAY 21 JAN WITH GROUND TEMPERATURE 62.000

ENVIRCHMENT NUMBER 2 FOR AHLDFL TILLE IS FT HOOD WINTER DESIGN DAY 21 JAN WITH GROUND TEMPERATURE 62.000

CONDUCTIVE PROPERTIES OF HEAT THANSFER SURFACE

CPCE IL

DESCRIPTION OF CONSTRUCTION

DENSITY SPECIFIC HEAT RESISTANCE LB/FT003 8TU/LB0F) HR0FT0020F/BTU				
SPECIFIC HEAT BTU/(LB*F)	.300			
DENSITY LB/FI**3	120.000 140.000 2.000			22.5
THICKNESS CONDUCTIVITY FEET BTU/(HROFTOF)	1.000		FLUX	1.04479715
THICKNESS FEET	.0052	DER 3	EXTERNAL	4.92376469 -7.64641648 2.96344495 -21420857
	/ 16 IN	UNCTIONS OF OR	CROSS	.010580A9 .01244756 .01345A17 .00135497
	FINISH FLOORING - TILE 1 / 16 IN CIO - 8 IN HW CONCRETE BI - AIRSPACE RESISTANCE BZ - 1 IN INSULATION	S CONDUCTION THANSFER FUNCTIONS OF ORDER 3	INTERNAL	.24325549 77459402 .06241409 00325577
LAYER	FINISH FLOORING - TIL C10 - B IN H4 CONCRE B1 - AIRSPACE RESIST B2 - 1 IN INSULATION	S CONDUC	1146	-NW 4W

1

- interest

constitution.

and the same

1

Lance Contract

U								
				ISTANCE				
				T RES				
				SPECIFIC HEAT RESISTANCE BTU/(LBOF) HROFT0020F/BTU	-200			
				DENSITY LB/FT**3	65.000			
Contract					.100		FLUX	2.61660597 -2.53859260 1.12308359 2212957 01536594
				CONDUCTIVITY BTU/(HR*FT*F)	•		2	
1	RFACE			THICKNESS CONDUCTIVITY FEET STU/(HR*FT*F)	1.0000	R 5	EXTERNAL	1,78655020 -4,12003859 5,11402233 -3,944413 -13266757 -00015509 -000171 -200171
	SFER SU					OF ORDE		000 355 373 342 381 117 117 108 108
	HEAT THAN		No.			10 CONDUCTION TRANSFER FUNCTIONS OF ORDER 5	CHOSS	
	TIES OF		NSTRUCTI			ANSFER FI	NAL	1 1.28655020 2 -4.12003859 5.11402233 4 -3.09784036 5 -9446403 6 -00615509 8 -006015709 8 -0060171 0 -00001010 C CONDUCTANCE = THERMAL ABSORPTANCE = THERMAL ABSORPTANCE = THERMAL ABSORPTANCE = THERMAL ABSORPTANCE = SOLAR ABSORPTANCE = SURFACE ROUGHNESS:
П	PROPER		N OF CC			T 101 T	INTERNAL	-11286 -4-120 -3-091 -1346 -000 -001 -000 -001 -000 -000 -000 -00
	CONDUCTIVE PROPERTIES OF HEAT THANSFER SURFACE	CPFLOOR	DESCRIPTION OF CONSTRUCTION	LAYER	DIRT 12 IN	10 CONDUC	11ME	1 1.28455020 .000 2 -4.12003859 .000 3 5.11402233 .000 4 -3.09744136 .000 5 -9444413 .000 7 .00615509 .000 7 .00615509 .000 10 .00000171 .000 10 .00000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .000000171 .000 10 .00000000000000000000000000000

CONDUCTIVE PROPERTIES OF HEAT TRANSFER SURFACE

CPUALL

DESCRIPTION OF CONSTRUCTION

THICKNESS CONDUCTIVITY DENSITY SPECIFIC HEAT RESISTANCE FEET BTU/LMH*FT*F1 LB/FT**3 BTU/LB*F) MR*FT**2*F/BTU	***			
SPECIFIC HEAT BTU/(LB*F)	.200			
DENSITY LB/FT003	116.000			36
CONDUCTIVITY 3TU/(HR*FT*F)	1.000		FLUX	
THICKNESS FEET B	.0833	DER 2	EXTERNAL	3.92431510 -5.43787400 1.88420264 -14138846 -00061564
	GYP BOARU	UNCTIONS OF OR	CHOSS	.08327275 .08327275 .12169120 .02052999
	A1 - 1 IN STUCCO C10 - 8 IN HW CONCRETE E1 - 3 / 4 IN PLASTER OR GYP BOARU	S CONDUCTION TRANSFER FUNCTIONS OF ORDER 2	INTERNAL	4.1459912 -5.72737589 1.93969478 -12953851
LAYER	A1 - 1 IN C10 - 8 IN E1 - 3 / 4	S CONDUC	TIME	~~~~

-

The same

- Charles

1805500

]

1

1

The second

CONDUCTIVE PROPERTIES OF HEAT THANSFER SURFACE

- Caronesia

ENALLI

DESCRIPTION OF CONSTRUCTION

		THICKNESS FEET	THICKNESS CONDUCTIVITY FEET BTU/(HROFTOF)	DENSITY LA/FT003	SPECIFIC HEAT BTU/ILBOF)	DENSITY SPECIFIC HEAT RESISTANCE LAFFICES BTU/ILBOF) HENFTO-20F/BTU
BRICK - FACE 4 IN		.3330	.770	125.000	.220	:
CONCRETE - CEMENT MORTAR 1 / 2	1 / 2 IN	.0417	416	116.000	.200	:
CONCRETE - CEMENT MORTAR	1 / 2 IN	.0417	.416	116.000	.200	•
CONCRETE - CEMENT MONTAN	1 / 2 IN	-0+17	914.	116.000	.200	:
CONCRETE - CEMENT MONTAR 1	1 / 2 IN	11+0-	914.	116.000	.200	:
- 4 IN MY CONCRETE HLOCK		•3330	.470	61.000	.200	•
81 - AIRSPACE RESISTANCE			•		•	.910
DARD - GYPSUM P	BUILDING BOARD - GYPSUM PLASTER 1 / 2 IN	.0417	***	20.000	.200	:
TON THANGEER F	6 CONDUCTION THANSFER FUNCTIONS OF GREER 3	6 93				
INTERNAL	CRASS	EXTERNAL	FLUT			
152033427	260900000	5.18872486	6 1.23934950	20		
-1.54340541	.00734523	-9.5279319		*		
151-6-08-	-02410195	5.24629546	002513200	90		
14649459	.00970943	89857256	•			
12987800.	-01054412	-03320806	•			
-00000000	-00000521	.66664776				

THERMAL CCNOUCTANCE = .345 BTU/(MROFT0020F)
OUTER THERMAL ABSOMPTANCE = .97
OUTER SOLAR ABSOMPTANCE = .90
INVER THERMAL ABSOMPTANCE = .97
INVER SOLAR ABSOMPTANCE = .75
OUTER SOLAR ABSOMPTANCE = .75

CONDUCTIVE PROPERTIES OF HEAT TRANSFER SURFACE

SINGLE PANE TINTED WINDOW

DESCRIPTION OF CONSTRUCTION

THICKNESS COMDUCTIVITY DEWSITY SPECIFIC MEAT RESISTANCE FEET BTU/(HROFTOF) LB/FTOO3 BTU/(LBof) HROFTOO20F/BTU I CONDUCTION TRANSFER FUNCTIONS OF ORDER 0 GLASS - GREY PLATE 1 / 4 IN LAYER

TIME INTERNAL CHOSS EXTERNAL FLUX

1 21.1844468 21.1864468 21.18644668
THERMAL CONDUCTANCE = 21.186 RTU/(HR-FT0-20F)
OUTER THERMAL ABSORPTANCE = .90
OUTER SOLAR ABSORPTANCE = .97
INNER THERMAL ABSORPTANCE = .97
INNER SOLAR ABSORPTANCE = .75
OUTER SURFACE ROUGHNESS: VHY \$MOOTH

CONDUCTIVE PROPERTIES OF HEAT TRAMSFER SURFACE

WINDOW PANEL

DESCRIPTION OF CONSTRUCTION

RESISTANCE RefTee2eF/BTU	ŧ			
THICKNESS CONDUCTIVITY DENSITY SPECIFIC HEAT RESISTANCE FEET BTU/(HROFTOF) LB/FT003 BTU/(LB0F) HROFT0020F/BTU	.200			
DENSITY LB/FT003	9.000 \$1.000			22
CONDUCTIVITY BTU/(HR*FT*F)			FLUX	.69726599
THICKNESS		8.2	EXTERNAL	-34189933 -08559298 -00133776
	HASS - HEAT ABSORPING PLATE 1 / 2 IN INSULATION - CELLULAR GLASS 2 IN IN W CONCRETE 9LOCK IN WE CONCRETE 9LOCK IN WE CONCRETE 9LOCK	4 CONDUCTION TRANSFER FUNCTIONS OF ORDER 2	CROSS	.00364769 .03244097 .01449152 .00040571
	GLASS - HEAT ABSORPING PLATE 1 / 2 IN INSCLATION - CELLULAR GLASS 2 IN C3 - 4 IN WW CONCRETE 9LOCK BUILDING BOARD - GYPSUM PLASTER 1 / 2	TION TRANSFER F	INTERNAL	1.53691496
LAYER	GLASS - HE INSULATION C3 - 4 IN BUILDING B	4 CONDUC	11%	

THERMAL CONDUCTANCE = .160 BTU/(HRFT==2=F)

OUTER THERMAL ABSORPTANCE = .90

OUTER SOLAR ABSORPTANCE = .75

INNER THERMAL ABSORPTANCE = .90

INNER SOLAR ABSORPTANCE = .75

OUTER SURFACE ROUGHNESS: VRY \$MOOTH

-

and the same

SECOND ST

The said

				CONDUCTIVITY DENSITY SPECIFIC HEAT RESISTANCE BIU/(HROFIOF) LB/FI003 BIU/(LBOF) HROFI0020F/BIU	.600 61.000 .200 0.90 0.094 \$0.000 0.200 0.90		run	04740407					CONDUCTIVITY DENSITY SPECIFIC HEAT RESISTANCE BTU/(ARPFIFE) LB/FT003 BTU/(LB0F) HR0FT0020F/BTU	.094 50.000 .200 0. 0.094 50.000 .200 0.		Por
	FACE			THICKNESS COND	.0417	2	EXTERNAL	3.05285736 -4.00969107 1.12491275 03759450	(30)	FACE			THICKNESS COND	.0417	-	EXTERNAL
0	CONDUCTIVE PROPERTIES OF HEAT THANSFER SURFACE				STER 1 / 2 IN	CONDUCTION TRANSFER FUNCTIONS OF ORDER 2	CROSS	.00765453 .07932507 .04211004	.405 HJU/(HRPFT0020F) .65 .65 90 .75 ROUGH	CONDUCTIVE PROPERTIES OF MEAT TRANSFER SUPFACE			•	ASTER 1 / 2 IN ASTER 1 / 2 IN	2 COMBUCTION TRANSFER FUNCTIONS OF ORDER 1	CROSS
	PROPERTIES OF H		DESCRIPTION OF CONSTRUCTION		CB - 8 IN MW CONCRETE BLOCK B1 - AIRSPACE RESISTANCE BUILDING POARD - GYPSUM PLASTER 1 / 2 IN	ION TRANSFER FU	INTEPNAL	.93131144 -1.07157488 -28516544 01442834	TANCE	PROPERTIES OF H		DESCRIPTION OF CONSTRUCTION		BUILDIWG ROARD - GYPSUM PLASTER 1 / 2 IN 81 - AIRSPACE RESISTANCE BUILDIWG ROARD - GYPSUM PLASTER 1 / 2 IN	ION TRANSFER FU	INTERNAL
	CONDUCTIVE F	PWALLE	DESCRIPTION	LAYER	CB - 8 IN HI B1 - AIRSPAC BUILDING POL	+ CONDUCT	1146	-004	THERNAL CONDUCTANCE OUTER THERNAL ABSORM OUTER SOLAR ABSORM INNER THERNAL ABSORM INNER SOLAR ABSORM OUTER SURFACE ROUGH	COMBUCTIVE	PVALLI	DESCRIPTION	LAYER	BUILDING PO	2 COMDUCT	1146

.88675893

.08606495

.84675493

CONDUCTIVE PROPERTIES OF HEAT THANSFER SURFACE

R00f1

DESCRIPTION OF CONSTRUCTION

THICKNESS CONDUCTIVITY DEMSITY SPECIFIC HEAT RESISTANCE FEET BTU/INROFIPE) LB/FI003 BTU/ILBOF) HAPFT0020F/BTU	.0417 .830 \$5.000 .0313 .110 70.000	,0050 26.680 480.800 .100	.2500 .025 2.000 .200 0.	4 CONDUCTION THANSFER FUNCTIONS OF ORDER 1	ROSS EATERNAL FLUX
	TONE MEMBRANE			FUNCTIONS (CROSS
	IN SEAS OF S	L SIDING	ES - ACOUSTIC TILE	CTION THANSFER	INTEHNAL
LAYER	62-1/	43 - STEE	ES - ACOU	* CONDO	1186

.04420510

.01998684 .04826369 .00453893 THERMAL CONDUCTANCE s .075 BTU/INROFTONZO
OUTER THERMAL ABSORPTANCE s .90
OUTER SOLAR ABSORPTANCE s .55
INMER THERMAL ABSORPTANCE s .90
INMER SOLAR ABSORPTANCE s .90

bacersa

North Control

1

) Indian

SURFACES OF ZONE 11 NORTH LAB

1	NUMBER TYPE OF SURFACE	AREA	>	H24	1111	COMSTRUCTION		
	TYPE OF SUBSURFACE							
-	EXTENSOR WALL	196.6	.35	:	90.06			
~	MIMOON	20.3	21.19	:	90'0		TED WINDOW	
-	9000	26.6	.16	:	90.0			
	Gwj	14.2	21.19	:	0.00	SINGLE PANE TINTED	TED WINDOW	
	0000	13.3	.16	:	90.0			
•	SHADDATWG SUBSURFA	2						
-	PARTITION	175.5	14.	90.0	90,0	PWALLE		
•	PARTITION	279.0	.56	180.0	0,00	PWALLI		
	PARTITION	117.0	.56	270.0	90,0	PVALLI		
	9000	604.5	.00	160.0	:	B0071		
=	FLOOR OVER CRAM, SPACE	604.5	.20	180.0	190,0	FLOORI		

DUMP OF SUPFACE VERTICES OF 20ME 1: NORTH LAR

980 SM	. DIREC	110N COSINES	C00801N	NATES									
1 48		1.900 0.	-	102.5.	10.6	45.0.	102.5.		10.0.	102.5.		14.0.	102.5.
2 BEL		1.000 0.	1 10.0.	9.3.		10.00	***		16.7.			16.7.	6.3.
3 951		1.000 0.	-	.0.4		1 10.0.			16.7.			16.7.	.0.4
4 REL		1.000 0.	-	8.3.		1 27.5.	.0.4		30.4.	.0.4		30.6.	8.3.
134 5		1.000 0.	-	4.0.		1 27.5.			30.0.			30.8.	
134 9		00 -1.000	-	9.0.	3.0)	1 -10.0.	9.0.		*0.04	9.0.		*0.0.	9.0.
7 485	1.000		-	83.0.	9.01	1 45.0.	83.0.		45.0.	102.5.		45.0.	102.5.
8 485		-1.090 0.	-	83.6.	6.01	14.0.	93.0.		.62.0.	83.0.	•	45.0.	83.0.
9 48	-1.000	-1.000 0. 0.	-	102.5.	4.00	1 14.0.	102.5.		14.0.	99.5		14.0.	89.5
10 46	.0 .	0. 1.000	•	102.5.	9.93	1 14.0.	83.0.	9.6	.65.0.	.9.0		45.0.	102.5.
		***	•				. S C.						

......

0

Company of the last

tours.

(Account)

PLAN VIEW OF ZONE MEAT TRANSFER SURFACES.

MIN X = 14.00

MIN X = 45.00

MIN Y = 93.00

MAX Y = 102.50

SCHEDULED LOADS FOR ZONE 1 NOHTH LAB

TUE 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	100 m	::	~::	~::	*::		*::	- · · ·			2,3	= .:	2.0	2.8	*.	2,3	2.5		2.8	=,=	=	2.0	16 19 28 21	10 19 20 21 22
15: DESIGN OUTPUT = 9.00 10000TUH: RADIANT FRACTION = .501 RETURN AIR FRACTION = 0.000 0	2	:::	:::	:::			:::		888		200	***		\$ \$ \$		***	:::							
15: DESIGN OUTPUT = 9.00 10009TUH: RADIANT FRACTION : .501 RETURN AIR FRACTION = .05 .05 .05 .05 .05 .05 .05 .05 .05 .05		***		:::		***	:::			:	:	:	:			1				*				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 10 10 10 10 10 10 10 10 10 10 10 10 10	LIGHTSI	01530	* OUT	104		00.0	10008	141	PADIA	MT FR	ACTIO		105	RE TURN		FRACT	10M .		-	1 FRAC	# FRACTION	1 FRACTION LOST	# FRACTION LOST =0.	# FRACTION LOST =0.
.05 .05 .05 .05 .05 .05 .05 .05 .05 .05	4	-							•	•	9	==	12	=	*	15	16	11		•	•	•	19 20 21	19 20 21
105 105 105 105 105 105 105 120 1100 110		.0.							50.	. 05	.05	.05	.05	.05	.05	.05	.05	.05		.05	.05	.05	50. 50. 50.	50. 50. 50.
.05 .05 .05 .05 .05 .05 .20 1.00 1.00 1.00 1.00 1.00 1.00 1.00		00							500	000	200	000	90	99	1.00	000	000	000		33	50	50	20. 20. 20.	20. 20. 20.
.05 .05 .05 .05 .05 .05 .20 1.00 1.00 1.00 1.00 1.00 1.00 1.00		.0.							1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		.50	.05	.05	50. 50. 50.	50. 50. 50.
.05 .05 .05 .05 .05 .05 .05 .05 .05 .05		0.0							1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	00.	00.		.50	50.		20. 20. 20.	20. 20.
18 C EQUIPMENT: UESIGN CHITCUT = 14.00 1000RTUN1 RADIANT FRACTION = .301 LATENT FRACTION E		0.							.05	.05	.05	.05	.05	.05	.05	.05	.05	50.					50. 50. 50.	50. 50. 50.
TRIC EQUIPMENT: UESIGN GNITUIT = 14.00 1000RTUN1 RADIANT FRACTION = .301 LATENT FRACTION =		.0.							\$6.	. 95	.05	.05	.05	.05	. S.	.05	.05	.05		.05			50. 50. 50.	50. 50. 50.
1	CTRIC	£0018	MENT:		151	MITTE		14.00	1000	STUHI	840	TANT 1	FRACT		.301	LATE	NT FR	ACTIO		•	.0	*0. I FRACTI	SO. I FRACTION LO	*0. I FRACTION LOST #
.05 .05 .05 .05 .05 .05 .05 .05 .05 .05	*	-								•	10	=	12	2	:	15	15	11				19	19 20	19 20 21
.05 .05 .05 .05 .05 .05 .20 1.00 1.00 1.00 1.00 1.00 1.00 1.00		.0.								.05	.05	50'	.05	.05	.05	.05	.05	.05		.05		50.	50. 50.	50. 50. 50.
.05 .05 .05 .05 .05 .05 .20 1.00 1.00 1.00 1.00 1.00 1.00 1.00		.0.							_	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00		.50		500	50. 50.	50. 50. 50.
.05 .05 .05 .05 .05 .05 .20 1.00 1.00 1.00 1.00 1.00 1.00 1.00		.0.							_	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00		.50		05	50. 50.	50. 50. 50.
.05 .05 .05 .05 .05 .05 .20 1.00 1.00 1.00 1.00 1.00 1.00 1.00		.0.								1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		.50		50.	50. 50.	50. 50. 50.
.05 .05 .05 .05 .05 .05 .05 .05 .06 1.00 1.00 1.00 1.00 1.00 1.00 1.00		0.							-	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		.50		.05	50. 50.	50. 50. 50.
50. 50. 50. 50. 50. 50. 50. 50. 50. 50.									_	1.00	1.00	1,00	1.00	1.00	1.00	1.00	00.	00.		25		s.	20. 20.	20. 20. 20.
											: 5	Š	: 5	ë ë	is	i s	: 5		• •	22	3		::	.05

Ц								
П								
_							2	
							23	
_							22	
							12 0	
							19 20	
							1.01	
							-	
							•	
							15	
					8		•	
					140.0/-1.00		2	
				LING	140.	*	12	
				CAPA		5	= 0	
				FUEL	-	0F E.	01 6	
n	3			100	70.00713	900		
	NOTH LAB	35		ES FROM MAXIMUM MEATING TO MAXIMUM COOLING R - (TEMPERATUME/FWACTION ON FULL CAPACITY)		PROFILES FOR EACH HOUR OF EACH DAY		
m ·	-	1.040E-02 10008TUH		HEAT /FHA	::	9 40	•	
J	w	1.5415.02		THUM ATUM	68.00/ 0. 32.00/ 0.	LES F	•	
п	LES FOR ZONE	.541	JAN 1	MAX	2 H	40F 11	•	
	9			FROM .	0/ 1.00	LES: P	-	
П	DULE		50 00 00 00 00 00 00 00 00 00 00 00 00 0	w 4	46.00/ 1.0 32.00/ 0.	DULES	~	
U	SCHE	CAPA	TURN TO NOT	PROF	3 %	SCHE	-	
П	CONTROL SCHEDU	HEATING CAPACIT	MEATING THRNED MEATING THRNED COOLING THRNED COOLING THRNED	CONTROL PROFILE		CONTROL SCHEDUL	- 140	SUN TUC THE TAN TAN TAN TAN
	NOS	HE A	##50 000	CON	-2	CON	6	WALALENA

LOADS SIMMARY FOR TONE 1: NORTH LAB

FT HOOD SUMMER

20		•
200	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	*2
8.	6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•
ì	669.7.7.669.9.7.7.7.7.7.7.7.7.7.7.7.7.7.	•
MEAT GAIN	•••••••	
MEAT LOSS (8TU)	•••••••	
645 L040 (870)	******************	
LOAD LOAD (BTU)	1.150E.03 1.150E.03 1.150E.03 1.150E.03 2.300E.04 2.300E.04 2.300E.04 2.300E.04 2.300E.04 2.300E.04 2.300E.04 2.300E.04 1.150E.03 1.150E.03 1.150E.03 1.150E.03	2.5995.05
BASEBOARD LOAD (BTU)		.0
MEAT GAIN	***************	.0
(67U)	0.00 0.00	4.5726.03
LOAD	6.472E 03 6.474E 03 6.474E 03 6.73E 03 8.673E 03 8.673E 04 2.772E 04 2.372E 04 2.372E 04 2.372E 04 2.372E 04 2.372E 04 2.372E 04 2.372E 04 3.474E 03 3.474E 03 3.474E 03 3.474E 03 3.472E 03 3.472E 03 3.472E 03 3.472E 03 3.472E 03	3.44AE . 05
LOAD (8TU)	****************	0.
ğ b	755 25 25 25 25 25 25 25 25 25 25 25 25 2	ب
0 04		FINAL

MAXIMUM MEATING LUAD = 0.

AT HOUR 10 ON DAY 0 OF MONTH 0 WITH A ZONE AIM TEMP OF 72.65 MAXIMUM COOLING LUAD = 2.436E-04 AT HOUR 16 ON DAY 21 OF MONTH 7 WITH A ZONE AIR TEMP OF 72.65 MAXIMUM ZONE AIR TEMP = 7.255E-01 AT HOUR 16 ON DAY 21 OF MONTH 7 MITH A ZONE AIR TEMP OF 72.65 MINIMUM ZONE AIR TEMP = 5.863E-01 AT HOUR 5 ON DAY 21 OF MONTH 7

INFILTRATION HEAT GAIN/LOSS REFERS TO SENSIBLE PORTION ONLY.
LATENT PORTION IS COMPUTED BY AIR HANDLING SYSTEM SUBPROGRAM.
LOSS # MASS FLOW * SPECIFIC HEAT * (ZONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

STORY OF THE

Souledin

3	500	LOADS SUPMANY FOR ZONE	OR ZUNE	=	NOWTH LAB										
-	H000	FT HOOD WINTER													
¥	MO DV 118	R LOAD		COOLING LOAD (BTU)	LOAD (BTU)	RETURN AIR HEAT GAIN (BTU)	BASEBOARD LOAD (BTU)	ELECTRIC LOAD (BTU)	6AS COAD OBTUI	MEAT LOSS (BTU)	INFILT HEAT GAIN (BTU)	1.	108	1000	2
	22	1 4.4616.03	.03		•	•		1.1506.03		66	•	67.9	21.6	3:	
	32	3 4.4076.03	.03 0.			::		1.1506.03	::	::	::	67.9	20.5	13.5	
-	12	4 4.577E-03	.03 9.		•	.0	••	1.1506.03	•	•	:	67.0	20.1	13.3	
	55	6 4.76.F.03	.03 0		•	•	•	1.1506-03	•	•	•	67.9	20.02	13.2	
-			.03 0.			:	::	1.1506.03	::	::	::	67.9	20.0	13.6	
		6 4.7801.03	.03 0.		•	•	•	1.1506-03		÷.	٠.	67.9	21.9	14.6	
	-		.03 0.		• •			1.1506.03	::	::		67.9	25.3	17.0	
-	21 11		.03 0.		٠.			1-1506-03		•		67.9	27.3	19.5	
		12 3.777E-03	.03		•	•	•	1.1506.03			•	61.0	26.5	19.8	
			.03		•			1.1506-03		•		67.9	31.6	21.6	
-			.03 0.		•		.0	1.150€-03				47.9	32.0	21.7	
-			.03 0.			:		1.1506.03	:	:		61.0	31.6	51.4	
-			.03		•	•		1-1506-03	•	•	•	67.0	30.8	50.0	
		14 3.5746.03	.03		••	•	:	1.150E-03	••	•	•	67.9	53.5	0.02	
			.0.		•	•		1.1505-03		•	•	20.00	24.4		
-	21 21							1-1506-03	: :	: -		67.0	25.0	16.0	
1					•	:		1.1506.03				67.9	23.8	16.0	
-					.0			1-1506-03	.0			67.9	22.9	15.3	
-			.93 0.		.0	0.		1.1506.03		0.		67.9	25.2	9.4	
FINAL	*	9.9156.04	.0 .0.			•		2.7605.04	:	••	•	•	2	•	•
1111	MAXING MA	HEATING COOLING 70NE AIR	1000 = 1	0.794	15-03 AT HOUR AT HOUR 15-01 AT HOUR	7 0N DAY 0 0N DAY 15 0N DAY	21 OF HONTH 0 OF HONTH 221 OF HONTH	23 11 11	ZONE AIR ZONE AIR	2 TEMP OF 67.91					
							5								

INFILTATION PEAT GAIN/LOSS MEFERS TO SENSIBLE PORTION ONLY.
LATENT POPTION IS COMPUTED BY AIR MANDLING SYSTEM SUBPROGRAM.
LOSS = MASS FLOW * SPECIFIC HEAT * (ZONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

SURFACES OF ZONE S: LIBRARY CONF RMS

CTION														
CONSTRUCTION	PWALL!	PWALLI	PWALL1	PWALLI	PWALLI	PWALLI	PWALLI	PWALLI	ROOF	ROOF 1	ROOF	FLOOR	FLOOR	F1 0001
111.1	90.0	90.0	90.0	90.06	90.0	90.0	90.0	90.0		•	•	180.0	180.0	180.0
M2M												180.0		
>	.56	•56	•56	•56	.56	.56	.56	.56	.08	.08	.08	.20	.20	.20
AMEA	54.0	27.0	108.0	261.0	270.0	54.0	109.0	270.0	18.0	594.0	72.0	18.0	594.0	72.0
TYPE OF SURFACE TYPE OF SUBSURFACE												SPACE	SPACE	SPACE
SURFAC												CRAML	CRANL	CRAML
PE OF	TION	110k	TION	TION	TION	TION	TION	TION				OVER	OVER	OVER
	PARTI	ROOF	ROOF	ROOF	FLOOR OVE	FLOOR	FLOOR							
MUMBER	-	~	6		~	•	1		•	9	1	12	13	:

DUMP OF SURFACE VERTICES OF 70NE S: LIBRARY CONF RMS

OSINES C	COORDINATES	TES									
31.0.		47.0.	9.00	31.0.	47.0.	0.0	37.0.	47.0.		37.00	47.0.
37.0.		47.0.	9.00	37.00	47.00	0.0	37.0.	50.00	•••	1 37.0.	50.00
37.0.		50.00	9.00	37.0.	50.00	0.0	49.0.	50.00	•	.0.67	50.00
49.0.		50.00	9.00	49.0.	50.00	0.0	*0.6*	79.0.	•••	1 49.0.	19.00
.0.65		83.0.	0.6	49.00	83.0.	0.0	19.0.	83.0.		19.00	83.0.
19.0.		83.0.	9.00.	19.00	83.0.	0.0	19.0.	77.0.	•	19.00	77.00
19.0.		77.0.	9.00	19.0.	77.00	0.0	31.0.	77.0.		1 31.0.	77.0
31.0.		77.0.	9.00	31.0.	77.00		31.0.	47.0.	•	31.00	47.00
31.0.		50.0.	9.00	31.0.	47.00	9.00	37.0.	47.0.	6.00	1 37.0.	50.00
31.0.		83.0.	0.6	31.0.	50.00	9.00	49.0.	50.00	6.00	.0.64	83.0
19.0.		83.0.	9.00	19.00	17.0.	0.6	31.0.	77.0.	6.00	1 31.0.	83.0
31.0.		47.0.	0.0	31.0.	50.00	0.0	37.0.	50.00		1 37.0.	47.00
31.0.		50.00	0.0	31.0.	83.0.	0.0	49.00	83.0.		.0.64	50.00
19.0.		77.0.	0.0	19.0.	83.0.	0.0	31.0.	83.0.		31.0.	77.0

(Automorphism

- Contraction

A COLUMN TO A COLU

Pagas Sir

SCHEDULED LOADS FOR ZONE 5 LIMPARY CONF RMS

				22	2	C &	2	2	2			3	2	2	3	35	2	3	35		
	*******															50.					
	2		2,	ë.			.05	.05	.05		23	.05	.05	.05	.05	.05	.05	.05	.05		
	8		2	ië	50.		.05	\$0.	.05	LOST .	22	.05	.05	.05	.05	.05	.05	.05	.05		
			-	ie	5	33	9	9	90	2	-	9	90	9	90	-05	90	90	8		
	~	150						_		CTIC										3	
	*********	3								Ē	20									110	
		CT	2,0		0.0					•	6		.0		.0	.05		0,	•	FRAC	
	2.22222	FR	9	. 8	S.	. 50	.50	.05	.0.		18	.05	.50	.50	.50	.50	.50	.05	.05	-	
	7 . 8 . 8 . 8	-	11		00		.0	•05	.05	CT 10	11	-05	00.	00	00.	.00	00.	.05	.05	:	
	4	2		.00			-			FAA			_	-	_	.00	_			110M	
3		CT10			_:		-			TENT			-	-	-	-	_			FRAC	
PACT	W	FRA		-			-			5			-	-	-	1.00	_			ENT	
TMI	*	1 A 1	7.		1.0		1.0	.0.		.30	-		1.00	1.0	1.00	1.00	9.			3	
RADI	6.0000000000000000000000000000000000000	ETUR	5		200		1.00	.05	• 05	N N	13	.05	1.00	00.1	1.00	00-	90.1	.05	.05	.301	
=	2 00000	=	12		00	88	.00	.05	•02	ACTI	12	.05	00.	.0	00.	.00	00.	.05	.05		
0810	- 00000	.50			_ :		_			T FR	11		_	_	_	_	_			CT10	
100		*			_	-	_			OIAN			_	-	_	_	_			FRA	
.450		ACTI		1.00			-			4	2		_	-	-	-	_			TANT	
	• • • • • • • • • • • • • • • • • • • •	17 F	0 6	1.00	-		1.0			T T	•		1.0	9.	1.00	1.00				PAG	
EVEL	*	AD IA		1.00	000	:	1.00	.05	.05	1000		.05	1.00	00.1	1.00	90.	00.	.05	.05	3	
77			~ 4	500	200	202	.20	500	•02	.50	1	.05	.20	.20	.20	.20	.20	.03	• 02	10008	
TIVI		HTCH		95	90	90	95	90	9							• 05				-	5
) AC	********	1000																_		•	
2.01		00-								UTPUT	5										
	********		1 6		20.	.00	.05	.05	.0.	DESTON 0	•	.05	.05	.05	.05	.05	.05	.05	.05	DESTON OUTPUT	
MBE	-	. 11	~ 4	.05	50.	.00	.05	.05	.05	0651	•	.05	.05	\$6.	.05	.05	.05	.05	• 02	10 M	. 620
OCCUPANTS: DESTON NUMBER #	^	DESIGN OUTPUT	~ "	.95	50.	98	50.	50.	50.		~	50.	50.	50.	56.	-05	50.	50.	.05	51530	DESIGN FLOW =
1530	-	16w		95						ELECTRIC EQUIPMENT:						. 50.					
3:		DES		• •	•		•	•	•	E00		•	•	•	•	•	•	•	•	GAS EQUIPMENT:	INFILTRATIONS
PANT		TSI								TRIC										EOUI	TRA
nood	SUN	LIGHTS:	AUG.	NO	30	1	Id	241	ğ	ELEC	MOCR	35	NO	TUE	034	2	10	SAT	2	SAS	INFI
		-	-	-		_	-	••	-	-	-	•	-	-	-	-			•		

Statement of the last

Liberarited

Live

-

1

							22 22	
							22	
n							12	
							20	
							61	
							•	
							11	
							9	
-							15	
					•		*	
u					1		13	
				1 X	.0.0		12	
u				PAC	70.00/13 140.0/-1.00	4 0 A	11 12	
	S LIBRARY CONF RMS			10	3	EAC	=	
U	CONF			MAXI P	/00	8 OF	•	~~~~~
n	ARY			N C	70.	5	•	
	L18R	9410		TING ACTI		EACH	-	
	r	50		INUM MEATING TO MAXIMUM COOLING	32.00/ 1.00 68.00/ 0. 32.00/ 0. 32.00/ 0.	ES FOR EACH HOUR OF EACH DAY	•	
		E-01 E-01		100	68.00/ 0. 32.00/ 0.	res	•	
n	107	.930	3030	NAM .	• "	HOE I	•	
	. 60		4848	FROM	1.00		•	
-	ULES	11	8666	LES ER	100	MES	~	
	3c-E	404	TURN TO THE PARTY OF THE PARTY	CONTROL PROFILES FROM MAXIMUM MEATING TO MAXIMUM COOLING PROFILE NUMBER - (TEMPERATUMF/FHACTION ON FULL CAPACITY)	3.5	SCHE	-	
	904	99	3333	SOL S		305	DAY -	774074
	CONTROL SCHEDULES FOR ZONE	HEATING CAPACITY = 2.930E-01 10008TUM COOLING CAPACITY = 4.340E-01 10009TUM	MEATING TURNED ON JAN 1 MEATING TURNED OFF DEC 31 COOLING TURNED OFF DEC 31	PROFILE NUMBER - LTEMPERA	- 2	CONTROL SCHEDULES: PROFIL	90	Sen Tree Tree Tree Tree Tree Tree Tree Tr
Keed								
0								

LOADS SUPPLARY FOR 70NE S: LIGGRAY CONF APS

000	FT HOOD CUMER												
4 60	HEATING LOAD (ATU)	COOLING	LOAD (9TU)	PETURN AIR HEAT GAIN (8TU)	BASEBOARD LOAD (BTU)	ELECTRIC LOAD (8TU)	645 1040 1970	MEAT LOSS (8TU)	INFILT MEAT GAIN (8TU)	¥.	85	38	20
-		2.5376.93	:	:	:	1.7505.02	:			6.64	96.9	7.00	
~		2.4426.93	.0			1.7505.02		::	:	68.9	65.9	9.00	
~		2.395£ + 03	9.			1.7508-02	:			6.89	6.48	80.2	
		2.374F . 93				1.7505.02				6.89	84.2	84.1	
5	.0	2.2796.03				1.750E-02			:	6.89	84.0	89.0	
•		2.5346.03	3.0436.01			7.000E-02			:	6.69		90.1	
1		4.1226.93	1.5296.02	:		3.500E.03	:			69.5	95.5	90.4	
•		6.5116.03	3.1536.02			3.500E . 03			:	69.7	87.5	6.09	
•	•	4.754E.03	3-176E + 02			3.5006.03			:	69.9	4.06	81.5	
9		4.997E+A3	3-1916+02			3.5006-03	:	:	:	60.09	93.7	82.3	
=		5.2348.03	3.2065.02		:	3.500E-03		:		6.69	97.4	93.1	
12		5.3576.03	1-4106-02			3.5006.03				70.0	100.9	83.9	
2		5.54AE . 83	3.7326.02			3.5006-03				70.7	103.6	84.5	
-		5.4548.03	3.270E . 02			3.500E-03				70.4	105.3	6.4	
15		5.7395.03	3.1036.02			3.500E-03				10.6	106.0	95.0	
15		5.73;6.03	1.464E.02	:		3.500E + 03				70.6	105.3	648	
11		5.0016.03	3.7326.01		:	1.7506-03			•	69.8	103.6	8.5	
2		3.8946.03	••			1.7505.02			:	4.69	101.4	**	
2		3.5556.03				1.7506-02	:	:	:	69.3	90.5	83.4	
20		3.2775.43	.0			1.7505.02	.0.		:	69.2	98.1	82.7	
12		3.0446.93		.0		1.7505.02	:		:	69.1	93.2	82.2	
22		2.067E+03	.0			1.7506.02				69.1	91.0	1.1	
23		2.7316.93	.0	.0		1.7505.02				69.0	89.3	61.3	
32		2.4256-03		:	:	1.750€-02			:		:	:	
		-		-			-	-					
FINAL		9.3196.94	2.7966.03	:	:	3.9556.04		•	:	•	•	2	•
					THE RESERVE THE PERSON NAMED IN								

INFILTMATION HEAT GAIN/LOSS MEFERS TO SENSIBLE PORTION ONLY.
LATENT PORTION IS COMPUTED BY AIR MANOLING SYSTEM SUBPROGRAM.
LOSS = MASS FLOW • SPECIFIC MEAT • (ZONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

MAXIMUM HEATING LOAD = 0. AT HOUR 0 ON DAY 0 OF MONTH MAXIMUM CCOLING LOAD = 5.734F.03 AT HOUR IS ON DAY 21 OF MONTH MAXIMUM ZCNE AIR TEMP = 7.058E.01 AT HOUR IS ON DAY 21 OF MONTH MINIMUM YONE AIR TEMP = 6.844E.01 AT HOUR S ON DAY 21 OF WONTH

0 MITH A ZONE AIR TEMP OF 0. 7 MITH A ZONE AIR TEMP OF 70.50 7 The same

CONTRACTOR OF THE PERSON OF TH

-

1

1

]

		200	3	13.9	13.5	13.3	13.2	13.8	14.6	15.7	17.0		20.8	*112	21.7	\$1.15	50.9	20.0	18.9	17.0	16.9	16.0	15.3	•
		1 00 H					20.02																	
		***	67.9	67.9	67.9	67.9	67.0	61.9	67.9	61.9	67.9	67.0	67.0	67.9	67.0	61.0	67.9	61.9	67.9	67.9	67.9	67.9	67.9	67.9
		HEAT GAIN	٠			:	•			:	:	•								0.			:	
		INFILT HEAT LOSS (8TU)		•	•	•	•		:			•							.0		:			
		GAS LOAD (BTU)				•	•	.0	.0		•	•					.0		.0	.0				
		ELECTRIC LOAD (9TU)	.750E.02	1.750E+02	.750E+02	1.7506-02	750F + 02	1.750E + 02	.750E+02	-750E+02	- 150E-02	1.7506.02	.750E-02	1.7505.02	.750E . 02	.750E . 02	.750E+02	.750E . 02	.750E+02	1.7505-02	.750E . 02	.750E+02	.750E . 02	1.750€ • 02
		BASEBOARD LOAD (BTU)	.0	0.		•••				-	•	•												0.
N BHS		RETURN AIR HEAT GAIN (8TU)	•	:	:	•				•	:.	: :	.0											0.
LIBRARY CONF BMS		LOAD			••	••	•			•	•		.0							.0				
ONE 51		COOLING LOAD (97U)			•				•	•		: .												0.
LOADS SUMMARY FOR 70%	INTER	HEATING LOAD (ATU)	2.0555.03	2.0056-03	2.111E-03	2.1336.03	2-1645-03	2.1476-03	2.1596.03	2-1145-03	1 7545 403	1.5116.03	1.2936.03	1.1376-03	1.0425.03	1.0785.03	1.1846.03	1.3776.03	1.5946-03	1.7516.03	1.8546.03	1.9256.03	1.9796.03	2.0236.03
LOADS SUP	FT HOOD WINTER	00 OF 18	1 21 1	~	•	1 21 6		1 21 1	1 21 8			1 21 12		1 21 14		1 21 16		1 21 18				1 21 22		

...

INFILTHATION PEAT GAIN/LOSS REFERS TO SENSIBLE PORTION ONLY.
LATENT POETION IS COMPUTED BY AIM MANDLING SYSTEM SUBPROGRAM.
LOSS # MASS FLOW * SPECIFIC MEAT * (20NE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

MAXIMUM MEATING LOAD = 2-167E-03 AT HOUR 7 ON DAY 21 OF MONTH MAXIMUM COLING LOAD = 0. AT HOUR 0 ON DAY 0 OF MONTH MAXIMUM 7CNE AIR TEMP = 6.793E-01 AT HOUR 15 ON DAY 21 OF MONTH MINIMUM 2CNE AIR TEMP = 6.785E-01 AT HOUR 7 ON DAY 21 OF MONTH

1 WITH A ZONE AIR TEMP OF 67.85 0 WITH A ZONE AIR TEMP OF 0. 1

								22 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 24 1 1 1	23 24	23 24 7 7 7 7				
:	••••			-	:			2	2	2	2				
	2							2021	20 21	20 21	20 21				:
:	=		•	5	SYS										
:	-			3	8										
:	- :			3	Es			92	8	8	8				
:	8 0 8		8	×	20%		URUZ	- 2	-2						
:	S :		I	- 5	5		310EC 31FAR 31DEC 0.1AN	2	2	2	2	222		-	
:	9 0		2	40	=						4	11 + 150 18 + 150 18 + 150		è.	
:	. :		SYSTEM LOCATION .	NO. OF DAYS IN SIMULATION	NO. DISTINCT ZONES ON SYS.		State	2	2	2	2			- 1	
:	w :		YST				30000	2	12	2	2			š	165
:	SYSTEM		~		•		COMPONENT SCHEDULES - 1JAN OFF - 10CT OFF - 1JAN OFF - 0JAN OFF	77	3=	72	31-1-	2.48914		60	100
:	-			13			=	9 10 11 7 7 7 7 7 7	9 10 11 7 7 7 7 7 7	9 10 11 7 T T T T T	SCHEDULE 9 10 11 7 7 7 7 7 7	3.0		95	2
:	"			- 21JUL1979			# Z = Z Z	\$0	30	30	30	100-	552	1	0
:		SYSTEM		3		5	\$ 20.23	C01L 7 9 1 1	50	1 1 T	100 T		555	1 3 A	3
:	AANDLIN		-			3	ONAL COMPONE ON - 1JAN ON - 1JAN ON - 1JAN		9			# # # #		0.5	-
:	-	BASIC		179		E	\$8888	446	20	20	ñ	55.	***	- 54	>
	2	94		13	¥	8	SEASONAL ON ON	PREMEAT 5 6 1 1 1 1	HEATING 5 6 7 7 7 7	C00L1	HEATREC 5 6 1 1 1 1 1	2 3 2	ENGE	* 64	DAILY VENTIALTION PROFILES
•	: 1			3	120	-	7	3	4		77.1	SUPPLY FAN PRESSURE RETURN FAN PRESSURE EMMUST FAN PRESSURE	000	222	0
•			*		2	Ĕ		DAILY T	1	NA T	OAL T		555	TNG C	
	•		118	8		13	2222	20	00	20	~~-	493	333	25.	
•	-		ž	103	SYS	0	-990					35		180	
:	!		SYSTEM NUMBER	SIM. PERIOD . 21JUL1979	TYPE SYS = MULTIZONE	SYSTEM OPERATION = CONTINUOUS	PREMEAT HEATING COOLING MEATHEC	MOUR WKDAY WKEND	MOJR WKDAY WKEND	HOUR WKDAY WKEND	WKDAY WKEND	101AL 101AL 101AL	SUPPLY FAN EFFICIENCY = RETURN FAN EFFICIENCY = EMMAUST FAN EFFICIENCY =	MIXED AIR CONT-OL & FIXED AMOUNT FIXED OUTSIDE AIR VOLUME = 4-114E-03 FT-+3/MIN DESIMED MIXED AIR TEMPERATUME = COLD DECK TEMP	

Total Control

Total Control

No.

-

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1									20ME HULT	:	:	2.5	:	?	:	:
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	00.	,88	200	, 88	F.				ZOWE TSTAT RR	HOT WATER				-		
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1	22 23 2 1.00 1.00 1 1.00 1.00 1	***	22 23 2 1.00 1.00 1 1.00 1.00 1	17 70.003 D				ZONE 15147 98					•		
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	00 1.00 1.00 10 1.00 1.00	20 21 09 1.00 1.00	90 1.00 1.00 10 1.00 1.00	20 21 10 1.00 1.00 10 1.00 1.00)6 . 80.00 A	TU/MR	E6. F 0E6. F		20NE PEHEAT	HOT WATER						~
11-00 1-00 1-00 1-00 1-00 1-00 1-00 1-0	13 14 15 16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.01	1.00 1.00	5 6 7 1.00 1.00 1.0	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		01 MATER	00000	E DATA SUMMA	ZONE REHEAT					• •	9.	.,
	N 1.00 1.00 N 1.00	1.00 1.00	15 16 1.00 1.00	1.00 1.00	15 16 1.00 1.00 1.00 1.00	UTS10E AIR (SUPPLY = M	1xEn 5ET PO	2046	70WE EXHAUST	1.000€-03		0. 6.000F.002		•		

		21/12
	AIR HANDLING SYSTEN ENERGY USE SURHARY	SIMULATION PERIOD = 7/21/1979
97.40	2 2 2	SIMA
16 APR 79 12.05.48) ()	•
10 APR 79	AIR HANDLING SYSTEM ENERGY USE SURRARY	SYSTEM LOCATION .
1510m 2.0		syste
EH WE		•
AL B.L.A.S.T. SYSTEM VERSION 2.0		SYSTEM NUMBER .

SYS	SYSTEM NUMBER = 1	-	SYSTEM LG	SYSTEM LOCATION		SIMILATION PERIOD . 7/21/1979 - 7/21/1979	- 6161/12/1	1/21/1979
			13	FLECTRICITY				*
-TWOM	SUILDING CONCUMPTION (HTU)	SUILDING LIGHTS CONSUMPTION PEAK DEPAND (HTU) (HTU)	CONSUMPTION (BTU)	PEAK DEMAND (BTU/HR)	CONSUMPTION (BTU)	CONSUMPTION PEAK DEHAND CONSUMPTION PEAK DEHAND CONSUMPTION PEAK DEHAND (BTU/HP) (BTU/HP)	CONSUMPTION (8TU)	USE PEAK DEHAND (BTU/HP)
*	1.255€ - 06	1.2556-46 1.1116-05	\$-3225.8	2.3036.04	•	•	1.9995.06	1.3416.05
		-			-			
1	1.75.6.06	1.1116.05	1.255E.06 1.111E.05 5.522E.05 2.301E.04 0.	2.3016-04	•	•	1.8085.96	1,8085-86 1,3415-85
	5.5	•	3.5	81644				
ONT	CONSUMPTION (9TU)	CONSUMPTION PEAK DEPAND (8TU/HR)	CONSUMPTION (BTU)	PEAK DEMAND (9TU/HR)	CONSUMPTION PEAK DEMAND CONSUMPTION PEAK DEMAND (8TU) (8TU)	PEAK DEMAND (8TU/MR)	CONSUMPTION PEAK DEMAND	USE PEAK DEMAND (8TU/HP)
*	:	•	•	•		•	90-3286-0	8.362E-06 5.17-E-05
		-	-					
-	:	:		:	:	:	8.382E.06	0.382E-06 5.174E-05

Lateratura

-

1

(SECOND)

1

1

П								
			81/18	82.2				
		 .	72 - 84	INDURS)				
0	9	:	1/13/1	8-				
			- 001H34	PR CAP EXCD		1.		1.
	24	0 4 0	MLATION			-1-		1.
	L.4.5.T. SYSTEM VEMSION 2.0 10 APR 79 12.05.40	AIR HANDLING SYSTEM COMPONENT LOAD SUNHARY	0 SIMALATION PERIOD - 7/21/1979 - 7/21/1979	HAS CHSHPTH (HOURS)			10.300	2.400(-01
0	2			•		-1-	2	12
0	•	ů	SYSTEM LOCATION .	PEAK DENAMD			345.98	5.1746-05
0			SYSTEM	A.		: :		13
	CER 8-1.4.5.7. SYSTEM VERSION 2.0	•		#110m			26.06	9-3056-00
	Š	7007	-	CONSUMPTION		: :	9:30	
	r. system			мОмтн			*	•
	Beloas.		SYSTEM MUMBERS		LCADS			
	*		£		HEATING COIL LCADS		COOLING COIL LOADS	
					MEA		93	

SYSTEM NUMBER: 1 SYSTEM NUMBER: 1 SYSTEM NUMBER: 1 SYSTEM LOADS NOT NET SUMMARY 1 SYSTEM LOADS NOT NET SUMMARY 2006 1 NO UNNET LOADS FOR THIS ZONE 2006 20		CERL 8.1.4.5.T. SY	SYSTEM VERSION 2.0	10 APR 70	12.05.40		
# E A T I N G # E A			HANDLING SY	STEH LOADS			
H E A T I N 4 COOD NOT WET PEAK NOT WET LOAD NOT WET PEAK NOT WET LOAD NOT WET PEAK NOT WET LOAD NOT WET LOAD NOT WET LOADS FOR THIS ZONE		SYSTEM NUMBER.		STEM LOCATION .	Similar of	A100 - 7/21/1979	- 1/21/1979
1 10 LOWET LOADS FOR THIS ZONE 10 LOWET LOADS FOR THIS ZONE 11 10 LOWET LOADS FOR THIS ZONE 12 10 LOWET LOADS FOR THIS ZONE 13 10 LOWET LOADS FOR THIS ZONE 14 10 LOWET LOADS FOR THIS ZONE 15 10 LOWET LOADS FOR THIS ZONE 16 LOADS FOR THIS ZONE 17 10 LOWET LOADS FOR THIS ZONE 18 LOADS FOR THIS ZONE 19 LOWET LOADS FOR THIS ZONE 10 LOWET LOADS FOR THIS ZONE 11 LOADS FOR THIS ZONE					1		
NO LIWEET LOADS FOR THIS ZONE	}					(BEANE)	(sund)
MO LOWEET LOADS FOR THIS ZONE	!	NO UNWET LOADS	FOR THIS 20ME				
MO LOWEET LOADS FOR THIS ZONE	302						
NO LIMPET LOADS FOR THIS ZONE		NO UNIET LOADS	FOR THIS ZONE				
MO LAWET LOADS FOR THIS ZONE	302	•					
MO LEWET LOADS FOR THIS ZONE		NO UNNET LOADS	FOR THIS ZONE				
MO LAWET LOADS FOR THIS ZONE	3102						
** *** *** *** *** *** *** *** *** ***		NO UNKET LOADS	FOR THIS ZONE				
NO LAWET LOADS FOR THIS ZONE	3102	•					
NO LAWET LOADS FOR THIS ZONE 14		NO UNET LOADS	FOR THIS ZONE				
NO LAWET LOADS FOR THIS ZONE NO LAWET LOADS FOR THIS ZONE NO LAWET LOADS FOR THIS ZONE 10	3002	•					
• • •		NO COMET LOADS	FOR THIS ZONE	•			
• • •	2002						
• • •		NO UNKET LOADS	FOR THIS ZONE				
•	302	•					
• •		NO UNKET LOADS	FOR THIS ZONE				
•	3102	N. Cappe addiger					
3		NO UNET LOADS	1 FOR THIS ZONE				
	20%		A Table 1 - Alb Table 2				

.1. SYSTEM VERSION 2.0 10 APR 79 12.05.48	AIR HANDLING SYSTEM DESCRIPTION	SYSTEM NUMBER = 1 SYSTEM LOCATION # 0 SIM. PERIOD = 21JAN1979 - 21JAN1979 NO. OF DAYS IN SIMULATION = 1	SYSTEM OPERATION = CONTINUOUS SYSTEM OPERATION = CONTINUOUS SEASONAL COMPONENT SCHEDULES PREHEAT COIL ON - 1 JAN FOR - 31 DEC ON - 1 JAN ON - 1	ILV PHEMEAT COIL SCHEDULE 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	MOUR 1 2 3 4 5 6 7 9 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 MKOAV T T T T T T T T T T T T T T T T T T T	MONT 1 2 3 4 5 6 7 A 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 MKOAY T T T T T T T T T T T T T T T T T T T	MOUR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 MKGMO 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TOTAL SUPPLY FAN PRESSURE = 2.48914 IN-H20 TOTAL RETURN FAN PRESSURE = 9. TOTAL ETHAUST FAN PRESSURE = 1.00369 IN-H20	SUPPLY FAN EFFICIENCY = .70 RETURN FAN EFFICIENCY = .70 ENHAUST FAN EFFICIENCY = .70 MIXED AIR CONTROL = FIXED AMOUNT	FINED OUTSIDE AIR VOLUME = 4.114E.03 FT0.3/MIN DESIMED MINED AIR TEMPERATURE = COLO DECK TEMP DAILY VENTIALTION PROFILES

17 18 19 19 19 19 100 1.00 1.00 1.00 1.00 1.0	100 100 100 100 100 100 100 100 100 100	200 000 200 200 200 200 200 200 200 200	
5 16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	19 20 19 20 19 20 19 20 10 10 10 10 06.	211 811	
5 16 17 18 19 -00 1-00 1-00 1-00 1-00 1-00 1-00 1-00	19 20 1.00 1.00 1.00 1.00 10.00 .	2	, 8.8. ·
R CONTROL 7-2000 120-00 AT 10- 1E-07 1000 HOT WATER 7-20000	16.66. 1 16.66. 1 19608TU/W	*	
POINT 7.20000			
FINED TEMPERATURE = 55.00000 0	TA SUMMARY		
ZONE ZONE	JONE ZONE		ZONE TSTAT BB
5	ENE		ENERGY HOT WATER
		•	0.33
6.000€.02 0.	HOT WAT	WATER 0.	HOT WATER
•		-	-
••	-	MATER 0.	
		000	

-

Durksing

consum.

Section 1

1

Total Control

COLORES I

1

Tions.

L											
			6161/12/	USE PEAK DEMAND (HTU/HR)	2.456E+04		2.856E.04		USE PEAK DEMAND (HTU/MR)	7.872E.04	7.872E.04
			1/21/1979 - 1	CONSUMPTION P	6.8556.05		6.855£ • 05	C . 1	TOTAL USE CONSUMPTION PEA	1.4016.06	1.4016.06
		LIR HANDLING SYSTEM ENERGY USE SURBARY	SIMULATION PERIOD . 1/21/1979 - 1/21/1979	AK DEMAND	٥.		:	A 1 E R	ONA!	3.0011.05	3.0016.05
Contracts Contracts Contracts Contracts	12.05.48	RGY USE		HEAT NSUMPTION	.,	-	••	# H O I	TOTAL USE CONSUMPTION PEA (BTU)	6.750€.06	6.76nE.06
Plantie Statuto	10 APR 79	SYSTEMENE	FLECTRICITY	FANS PEAK DEMAND (BTU/HR)	2.3016.04	-	2.301E-04	:	TOTAL USE TON PEAK DEMAND (BTU/HR)	:	.0
	5.0	3 4 8 9 4 1	SYSTEM LOCATION	CONSUMPTION (BTU)	5.5226.05	-	5.522E.05	S 1 E A M	CONSUMPTION (BTU)	:	.0
	H VERSION	RIANDLING	-	LIGHTS PEAK DEMAND (BTU/HH)	5.555E+03	-	5.55E • 03	5	USE PEAK DEPAND (HTU/HR)	••	ė
	CERL B.L.A.S.T. SYSTEM VERSION 2.0	4	SYSTEM NUMHER =	CONSUMPTION PEAK DE	1.3336.05		1.3336.05	8 4 9	TOTAL USE CONSUMPTION PEAN (8TU)	••	.0
	CERL B.L		SYSTER	HONTH	JAN		AMA		HONTH	JAN	ANN
П											

AIR HANDLING SYSTEM COMPONENT LOAD SUMMARY	= 1 SYSTEM LOCATION = 0 SIMULATION PERIOD = 1/21/1979 - 1/21/1979	TH CONSUMPTION PEAK DEMAND MAS CNSMPTN PK CAP EXCD (ATU) (BTU) (BTU/MR)		N 6.760E+06 3.001E+05 2.400E+01 0.	N 6.760E+06 3.001E+05 2.400E+01 0.		1.401€+06 7.872€+04	***************************************	1.401E+06 7.872E+04 2.400E+01 0.
	SYSTEM NUMBER=	HONTH	HEATING COIL LOADS	NAL	ANE	COOLING COIL LOADS	JAN		ANN

The country of

Toronto Const

the state of

1

1

1	ION 2.0 10 APR 79 12.05.48	SYSTEM LOCATION = 0 SIMLATION PERIOD = 1/21/1979 - 1/21/1979	PEATING PEAK NOT WET HOURS NOT WET LOAD NOT WET PEAK NOT WET HOURS NOT WET (8TU/WR) (14QURS)													10% 2.0 10 APR 79 12.05.46	
SYSTEM NUMBER: A 1 R H A 1 R	- VEASION 2.0		H E A T I N G T MET PEAK NOT MET (81U/MR)		7 CONT.	THIS 70ME	THIS 20NE		THIS ZONE	TM15 20NE	THIS ZONE	THIS 20NE		THIS ZONE	THIS ZONE	VERSION 2.0	THIS ZONE
	CEAL B.L.A.S.T. SYSTEM	SYSTEM NUMBER:		1		NO UNMET LOADS FOR	NO UMMET LOADS FOR	•	NO UNHET LOADS FOR	NO UNMET LOADS FOR	7	NO UNWET LOADS FOR	•	NO UNMET LOADS FOR	NC UNNET LOADS FOR	CEPL P.L.A.S.T. SYSTEH	NO UNMET LOADS FOR THIS ZONE

CER -- B.L.A.S.T. SYSTEM --- VERSION 2.0

10 APR 79 12.05.46

EQUIPMENT SIZE . AVAILABILITY (ES) DATA

5000		NUMBER NUMBER NUMBER NUMBER NUMBER	MBER		UMBER		UMBER		NUMBER .		NUMBER		
	(KBTUM) AVAIL	(KBTUM) AVAIL (KBTUM) AVAIL (KBTUM) AVAIL (KBTUM) AVAIL (KBTUM) AVAIL	AVAILO	S12E	AVAIL	S12E KBTUM)	AVAIL	SIZE (KBTUH)	AVAIL	SIZE (KBTUM)	AVAIL	SIZE	74
STM	STEAM BOILEP	A00. 1 1	-										
COMP	HERMETIC COMPRESSION CHILLER	.009	-										
	EQUIPMENT LOAD	RATIOS		(8)	DATA								
		9 4 9	1	0 4 0	PART LOAD RATIOS	105		ELECTRIC IMPUT	INPUT				
3000	EOUIPHENT	HINIME	5	MAXIMUM		OPTIMUM		CAPACITY RATIO	PATTO				
-								DIMENS	(DIMENSIONLESS)				
STM	STEAM BOILER	.0100		1.0000		.8700		•					
COMPT	MERMETIC COMPRESSION CHILLER	.1000		1.0500		.6500		.2275	2				

- Second

Summer

rath and

april 1

2	CERL B.L.A.S.T. SYSTEM VERSION 2.0	A.S.T. SY	STEM V	E45104 2.0		10 408 79		12.05.40				
	′ •	CENTRAL				1111	UTILIZATION					
	TOTAL HEAT ENERGY (69TU)	TOTAL ELECTP ENEPGY (GATU)	COOL ING ENEMGY (Setu)	RCVRED ENERGY (GGTU)	WASTED RCVRABL ENERGY (GBTU)	HEAT EN INPUT COOLING (68TU)	ELEC EN INPUT COOLING (68TU)	ENERGY INPUT HEATING (66TU)	ENERGY INPUT ELECTRC (GBTU)	107 A 706 L 18 9 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ENERGY INPUT (GBTU)	\$ spg
	3.											T
	:	:	:	:	•	:	:	:	:		:	T
_	:	:		:	:	:	:	•	:		:	T
	:	:			:	:	:	•	:	:	:	7
	:	:	:	:	:	:	:	:			:	7
	:	:		:	:	:	:				:	1
	:	.0040	*800*		:	:	.0055	:	.0133	:	.0133	Ā
-	:	:	•	:	:	:	:		:	:	:	T
	:	•	:	:	•	:	:	:	:	:	:	T
_		:	:	:	:	:	:	:	:	:	:	T
_	:					:	:	:	:	:	:	T
	•		•		:	:	:		:	:	:	1
W	9.	.0040	.0094				.0055		.0133		.0133	

PLANT FOR BASIC SYSTEM

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

10 4PR 79 12.05.40

	AV6 CAES PATIO	AVE PAX HON OPER LOAD DAY RATIONALLING	A A	1 . 11	\$17E OPER (K07UH) 1485		\$126 OPER	817E 0978 (NDTUN) 485	SIZE OPER (KBTUH) HRS	\$12E OPER (KGTUH) 1455	
STEAM BOILER		•		•	•	•					
HERMETIC COMPRESSION CHILLER .562	.502	\$17.4	7 21 15	2	:	2					
. 3 0 3 4 3	1			EAR	NEW SEA		2002				
		£		151	CKOTON		FACTOR				
ELECT		•			3.5						
	1										
UTILITY. FINERGY TOTAL											

1

NEW YORK

-

to distribute

land of

L

Time.

0

		AVERAGE PLANT EFFIC (PERCT)	12.	÷	÷	i	÷	÷	÷	÷	÷	i	÷	÷	!;
		TOTAL ENERGY INPUT (GBTU)	.0167	:	:	:	:	:	:	:	:	:	:	:	.0167
		TOTAL FUEL SWPUT	.0109	:	:	:	:	:	:	:	:	:			.0109
		ENERGY INPUT ELECTRC (GBTU)	.0059	:	:	:	:	:	:	:		:	:	:	.0059
12.05.48		ENERGY INPUT MEATING (68TU)	.0109	:	:	:	:	:	:	:	•	:	:		.0109
	U 1 1 L 1 2 A 7 1 0 W	ELEC EN INPUT COOLING (GBTU)	.0022		:	:		:	:	:	:	:	:	:	.0022
10 APR 79	01111	HEAT EN INPUT COOLING (GBTU)		:	:	:	:	:	:			:	:	:	
	F & G Y	MASTED RCVRABL ENERGY (GBTU)		:	:	:	:	:	:	:	:	:	:	:	
SYSTEM VERSION 2.0	* T * A	RCVMED ENERGY (GBTU)		:	:	:	:	:				:		:	
TEH V		COOL ING ENEMGY (GBTU)	.0014	:	:	:	•	•		:		•	:	:	-100.
	CENTRAL	TOTAL ELECTP ENEPGY (GHTU)	.0018	:			•	•	:	:		:	:		.0018
CERL 8.L.A.S.T.	v	TOTAL HEAT ENERGY (GBTU)	. 0069	:	:	:		:	:	:	:	:	:	:	.0066
2		MONTH	-	2	•	•	•	•		•	•	=	=	15	

PLANT FOR BASIC SYSTEM

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

10 APR 79

EQUIPMENT USE STATISTICS

	HATIO(KBTUH) HR	A :	(KBTUH) HRS	S (KBTUH) HPS	SIZE OPER (KBTUH) NAS	SIZE OPER	STZE OPER (KBTUM) HPS	
STEAM BOILER .352	300.1	300.1 1 21 6	0.006	2				
HERNETIC COMPRESSION CHILLER . 997		78.7 1 a 15	0.009	*				
UTILITY. ENERGY C	LOST COST (KS)	1-YEAR USAGE (GBTU)	PEAK USAGE (KBTUH)	COST ESCALATION FACTOR				
ELECT		200.	74.0	•				
BOILER	•	•	****					
UTILITY. EMERGY TOTAL	*							

Later Control

One-Year Loads Calculations

The input deck for 1-year load calculations is the same as that of the design day calculations and is not shown. The only change in input was the addition of:

WEATHER TAPE FROM Ø1 JAN 75 THRU 31 DEC 75;

in place of the DESIGN DAYS specification.

Output produced from the 1-year run which duplicates output from the design day calculations is not shown.

CEAL -- BOL.A.S.T. SYSTEM --- YENSTON 2.0

14.03.13 10 AFF 79

NEW HLUFL AND AMLOFL FILES WILL BE CHEATED FARM USEM INPUT. AS NECESSANY

LOCATION TAKEN FROM ATTACHED STHAFL TITLES FT SORTH TRY TAPE HUN

LATE 32.80000 LONGE 97.00000 TIME 70MEs 6.0

....

BLOFL FOR FT HOND DENTAL CLINIC

LOCATION FI WORTH TAY TAPE KUN DATE OF FILE CPEATL/UPDATE 10 APH 79 NUMBEH OF FNVIHUNMENTS 1 NUMMEN OF ZONES 11 WITH CONE NUMBERS 1000 1 2 3 4 5 6 7 8 9 10

ENVIJONMENT NUMMER I FOR BLUFL IIILE IS FI MONTH INY TAPE RUN WEATHER STATION 3937 STANT DATE OF 1 JAN 1975 NO. OF DAYS 365 WITH GRUUND TEMPERATURES JAN #62.00 FER #61.00 MAN #62.00 APM #65.00 MAY #68.00 JNN #71.00

1

I

]

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COTY FURBISHED TO DDC

SPACE	
CHABL	
10001	
31107	
F 08	
SUMMARY	
5040	

0

FT BOHTH TRY TAPE RUM													
0 -	C00L 1NG L0AD (81U)	LOAD (9TU)	RETURN AIR MEAT GAIN (970)		BASEBOAND LOAD (BTU)	ELECTRIC LOAD (81U)	GAS LOAD (BTU)	1NF JLT HEAT LOSS (6111)	NEAT GAIN	ì	36	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:
:		:	:	:		:	:	:	:	٠	۰	•	٥
:		:	:	3		:	:	•	:	•	•	•	•
		:	:	3		:	:	:	:	c	•	•	·
		:	:	•		:		•	:	٠	•	•	•
		:	:	5		:	:	:	:	•	•	•	•
100		:	:	•		:	:	:	:	•	•	•	•
		:	:	5		:	:	:	:	•	•	•	•
-		:	:	;		:	:	:	:	•	•	•	•
-		;	:	;		:	:	:	:	•	•	•	•
		:	•	;		:	:	÷	:	•	•	•	•
:		:	:	•		:	:	•	:	•	•	•	e
:1				31						•	•	•	٠
;		:	:	;		:	:		:	٠	•	•	•
NG LOAD =	LUAD = 0. LUAD = 7.667E.01 TEMP = 0.411E.01	AT HOUR AT HOUR 101 AT HOUR	5555	PAY 24 C	00 F 00 F 10 F 10 F 10 F 10 F 10 F 10 F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZONE AIR	TEMP OF 0.					

INFILIPATION HEAT GAIN/LOSS REFERS TO SENSINE POPTION UNLY.
LATENT POPTION IS COMPUTED BY AIM MANNLING SYSTEM SUBPRIGHM.
LOSS = MASS FLOW * SPECIFIC HEAT * (ZONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY PURISHED TO DDC

LUADS SIMMANY FOR 709E 1: WHTH LAN

C 04 C EX	. 414	340 0	503 6	6 679	744 0	720 0	744 0	. 746	720 0	0 962	0 295 1	6 529
8:	326	332	241	•	•	٠	•	•	٠	•	153	319
Ì.	•	•	•	•	•	•	•	•	•	•	•	•
MEAT GAIN (8TU)	:	:	:	:	:	.0	:		•	:	:	•
INFILT HEAT LOSS (BTU)		:	•	:	:	•	:	•	•	•	:	
1040 1040	:	•			:	:	•			.0	.0	
ELECTHIC LOAD (HTU)	5.965€.06	5.1846.06	5.7341.06	5.9396.06	5.7346.06	5.7056.06	5.9664.06	5.7346.06	S.706E.06	5.7346.00 0.	S.242E.06 0.	5.964E.06
BASEBUARD LUAD (97U)	•		.0				:			.0		
HETURN AIR HEAT GAIN (HTU)	:			:	.0	•		0.		0.	:	0.
1040 1040	n.4791.04 0.	1.6.26t + 04	H-4511.04	*0.3616°4	4.5596.04	4.591E.04 0.	40.492u.c	*0.3914.0	4.571E.04	4.5376.94 0.	7.4471.04 0.	3.4346.04
COOL 18.6 LOAD CHTU1	4.044.94	3.4576 - 114	4.3326.46	1.5316.04 5.5146.04	40.4007.4	1.1575.06	1.462 116	7.4216+46	4 104 - 04	40.3110.4	4.747	40.145.06
1040 1040 (411)	4.730E.05 4.044E.0A	5.417E-05 3.457E-0A	2.5518.95 4.3326.46	1.5316.04	٥.	•				sheiting the specest	1.78#Fons 4.282-in	54.3756.4
M VO 04	-	2	3	•	•	•	,		•	10		21

INFILTMATION MEAT GAIN/LOSS MEEKS TO SENCIALE PORTION ONLY.
LATENT MOSTION IS COMMITTED BY ALM MANCLING SYSTEM SLAFROGHAM.
LOSS = MASS FLO. * SPECIFIC HEAT * TONE TEMP * OUTSIDE TEMP IT IS INCLINDED IN TOTAL SPECIFIC LOAD.

MAXIMING MEATING LOAD = 4.267F + 0.3 AT FOUR 5 ON DAY 13 OF MONTH MAXIMING COOLING LOAD = 2.445F + 0.4 AT HOUN IS ON DAY 22 OF MONTH MAXIMING 70% ATK TEWE = 4.472F + 0.1 AT HOUN IS ON DAY 22 OF MONTH MINIMING 70.8 ETH TEWE = 4.742F + 0.1 AT HOUN 5 ON DAY 13 OF MONTH

1 WITH A ZONE AIR TEMP OF 67.92 7 WITH A ZONE AIR TEMP OF 69.72 1

Special Property

COMM

Disease

-

-

THIS PAGE IS BEST QUALITY FRACTIONS

1.44	
154	
"HINETE	
PUNE.	
101	
Advanti's	
LOADS	

Total Control

	3 0	•	•	•	•	•	•	•	•	•	•	•	•	•	
	30	12	922	36	530	746	120	35	74.6	716	672	;	304	*	
	85	*13	1	380	190	•	•	•	•	•	72	175	:	2276	
	15	•	•	•	•	•	•	•	•	•	•	•	•	•	
	MEAT GAIN	:	:	:	:		:	•	:	•	:	:		:	
	INFILT HEAT LOSS (8TU)			:	•	•	•	••	•		••	0.		:	P OF 57.70
	GAS LOAD (#TU)	:	•			••	••	••	•	٥.		••		•	1 MITH A ZONE AIR TEMP OF 67.70 7 MITH A ZONE AIR TEMP OF 68.23
	ELECTHIC LOAD (AT!))	1.297E-06	1-1286-06	1.246.06	1.2916.06	1.2465.06	1.2405.06	1.2975.06	1.246E . 06	1.240E . 06	1.246.06	1-1396-06	1.2976-06	1.4926.07	1 MITH A 7
	BASEHOAND LOAD (BTU)				٠.	.0		٥.	٥.		.0				13 OF MONTH 22 OF PONTH 22 OF MONTH
	HEAT GAIN (ATII)	•	0.0		••		••	••	0.		.0	.0	0.	•	CUE 4 ON DAY 12 CUE 15 ON DAY 22 CUE 15 ON DAY 22 CUE 5 ON DAY 1
	LOAD (-TU)	2.794E-04	2.4128.04	2.4701.04	2.1026.04	504/462	2.4H7E.04	2.412E + 04	2.444.6.04	2.440F -04	2.477F + 04	7-4166-04	2.7946.04	3.7106.05	4444
4	(-)Te)	S.707F.05				10. SEA4.1	2.4171.016	2.4186.06	2.4146.34	2.0416.04			50-406-05		
FT SOUTH THY TAPF BIN	MEAT 106 LOAU (ATU)	7-1346-05 5-7076-05	7.5242.05 4.4018.45	4.7476.95 7.4475.95	1.0476-05 1.2716.06		0.			5.594F . 112	2.2515.04 1.548F 6	3-1646-05 4-2506-05	4.4476.05	7.0426.04 1.7956.07	MAXIMUM HEATING LOAD = MAXIMUM COOLING LOAD = MAXIMUM GOVE LIN TEND = MINIMUM 70.0 LIN TEND =
FT #DATH	1 6			•	•	•	•		•	•	10	=	21	Final	MAXIMUM MEATING MAXIMUM COOLING MAXIMUM 7006 A12 MINIMUM 70.5 LIN

INFILTMATION PEAT GAINALOSS PEEMS TO SENSIBLE PURTION ONLY.
LATENT POPTION, IS COMPUTED BY AMOLING SYSTEM SUBPROGRAM.
LOSS & MACS FLOW & SPECIFIC MEAT & (ZONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

THIS PAGE IS BEST QUALITY PRACTICABLE

LOADS SUPMARY FOR 70NE 31 MEST OFEN AMS

FT WONTH TRY TANK DUP.

5	•	۰	٠	٠	•	•	•	•	•	°	•			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$2	502	342	35	1	120	755	3.	716	99	3	276	:	
HAT/ 008/ 048/ H EX H ON C ON	185		342	=	•	•	•	•	•	3	112	991	162	
	•	•	•	•	•	•	•	•	•	•	•	•	•	
INFILT HEAT GAIN (8TU)	:	:	:	:	:	:		:	:	:	:		•	
MEAT LOSS (BTU)	•	:	:	:			.0		:				:	
GAS LOAD (BTU)	:	:	:	:	:	:	:	:		:	•		:	
ELECTATC LOAD (BTU)	3.1136.06 0.	2.704E.06 0.	2.9426.06	3.0986.06 0.	2.4926.06	2.9776.06 0.	3-1136-06	2.9926.06 0.	2.9776.06	2.992E.06	2.7356.06 0.	3.1136.06 0.	3.580E.07 0.	
HASEBOARO ELECTRIC LOAD LOAD (BTU) (BTU)	÷		••	••			•				••	.0	•	
RETUPN AIR HEAT GAIN (BTU)	:	.0	:		٠.	0.	0.			.,		0.	.0	
LATENT LUAG (8TC)	3.3926.05 0.	50.3726.2	3.2596.05	3.4606.05	3.7436.05	3-1736-05	3.5546.05	3.743E + 05	3.7551.05	3.3266.05	2. 19-6-05	3.3HAE-65	3.9726.05 0.	
COOL INS LOAD (STU)	1.2446.06	50.3656.6	1.9576+04	3.92 16 + 16	4.2716.06	4.34.44.04	4.844.6.94	4.4076.06	4.4726.00	40-34-6-4		1.238.04	4.H 34E + 17	
LOAD LOAD (HTU)	2.497E-56 1.244E-06	2.94mmenh 9.9478.95	1.7746.00 1.9476.04	3.477E-05 3.977E-06			:		2.1446.93 4.4726.90	7.0712.04 4.2446.06	1.147F . 9. 74 7. 16. 16. 16.	2.546.16 1.2336.06	1.144E-07 5.474E-17	
1 60	-	~	•	•	•	•	1	•	•		=	21	FINE	

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COFY PARMISHED TO DDC

INFILTMATION PEAT GAIN/LOSS MEERS TO SENSIMLE POPTION ONLY.
LATE'IT POPTION IS COMPUTED BY ALM MANDLING SYSTEM SURPROGNAM.
LOSS = MASS FLOW * SPECIFIC MEAT * (/ONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

1

1.34 16-04 AT FOUR 6 ON DAY 13 OF PONTH 1 WITH A ZONE AIR TEMP OF 67.77 2-6105-04 AT FOUR 17 ON DAY 21 OF PONTH 7 WITH A ZONE AIR TEMP OF 69.58 6.54HE-01 AT FOUR 17 ON DAY 21 OF PONTH 7 F.177F-01 AT FOUR 6 ON DAY 13 OF PONTH 1

Marings Peating 1049 a marings COLING 1949 a marings 709 alp 1640 a missings 709 alp 1640 a

LOADS	LOADS SUMMARY FOR TONE		4: LUCKER HIMS										
FT WON	FT WORTH THY TAPE RUN	RIJA											
MO DY 48	HEATING LOAD (HTU)	COOLING LOAD (ATU)	L040 L040 (81U)	HETURN AIR HEAT GAIN (HTU)	BASEBOARD LOAD (BTU)	ELECTHIC LOAU (HTU)	6AS LOAO (8TU)	INFILT HEAT LOSS (BTU)	INFILT HEAT GAIN (BTU)	# EX	100 1	800	2
-	5-1196-05	5.1196.05 **1776.05	8-4736-04 0-	:	•	7.7826.05	:	•	:	•	*11	267	•
	5.5426.05	5.5626.05 3.4216.05	7.3116.04	••	:	6.765E + 05	••	•	••	•	452	922	•
•	3.5556.05	30.3020.0 50.3555.6	4-110E-64	••		7.4796.05	.0	•	:	•	124	323	•
•	7.9276.04	7.927E+04 A.440E+05	4.555E . 04		.0	7.746.05	••	••		•	201	615	•
•	1.5156.02	1.5156.02 1.3716.06	H.226E.04	• 0	٠.	7.4795.05	:	•		•	~	742	•
•		1.0446 . 15	A.273E.04			7.4436.05	•	•		•	•	120	•
1		2.3356.06	4.7136.04	.0	.0	7.782E.05	:	••	.0	•	•	74.6	•
•		3.3626.94	A.11HE-04	•	•	7.479E.05	.0	••		•	•	74.4	•
•		1.4495.06	4.7566.04			7.4436.05	:	.0		•	•	120	•
10	6.24-6-03	9.24-E-03 1-1976-0A	H-2066.04	•		7.4796.05	.0			•	15	693	•
=	1.30 16.05	5.9175.05	1.3596.04	•		6.H37E+05	•		•	•	586	÷	•
12	4.70%	4.1496.45	3.472E • 04	.0	9.	7.7826.05	.0			•	*11	267	•
FINAL	2.1896.04	2.189E.04 1.344E.07	4.4276.05			8.950€.06	:	:	:	۰	2367	6393	·

MAXIMUM MEATING LOAD = 2.345+03 AT MOUP & ON DAY 13 OF MONTH 1 WITH MAXIMUM CCOLING LOAD = 4.5216+03 AT MOUP 15 ON DAY 22 OF MONTH 7 WITH MAXIMUM 2016 ALG TEWN = 5.5996+01 AT MOUP 15 ON DAY 22 OF MONTH 7 WITH MINIMUM 2016 ALG TEWN = 4.7496+01 AT MOUP 4 GON DAY 22 OF MONTH 7 MINIMUM 2016 ALG TEWN = 4.7496+01 AT MOUNT 5 OF MONTH 1 INFILTMATION MEAT GAIN/LOSS #FERS TO SENSIBLE POPTION ONLY.
LATELT DOTTION 15 GOND JIED 47 ALM MANDLING SYSTEM SUMPROGRAM.
LOSS = MAKS FLOW = 546G/FIC HEAT = 7006 TEMP - 0UTSICE TEMP!
IT IS, INCLUDED IN TOTAL SENSINCE LOAD.

WITH A ZONE AIR TEMP OF 67.89 WITH A ZONE AIR TEMP OF 69.09

LOADS SIMMARY FILE 7016 S: LIMMARY CONF MMS

7 - ~	HEATT'NG	Cont. ING									/HU0		
- ~	CETU)	(310)	LOAD LOAD (HTU)	HEAT GAIN	HASEBOARD LOAD (HTU)	ELECTRIC LOAU (HTU)	CBTU)	MEAT LOSS (8TU)	HEAT GAIN (BTU)	i i	No.	No.	C Ex
, ,	¿11.3850.	4.0246.05 4.2706.05	5.70HE -04		:	9.079E+05		:	•	•	094	284	•
	200 H 2499.	4.447E+A5 4.077E+A	4.924E .04		:	7.892E+05	•	.0		•	:	123	•
3	.724E . 15	2.7246.15 5.5316.15	5.44AE +04	٥.	•	8.7256.05	•	•	•	•	368	356	•
•	+0. aui2.	5.237£ .0. 9.047£ .05	5.779£ +04		•0	9.0376.05	:	•	•	•	166	956	•
		1.3566.06	544E . 0+	.0	•	8.7256.05	•	••		•	•	74.6	•
		1.744.06	5.409E +04		••	8.683E+05		•	•	•	•	720	•
		2-1366-06	5.917E+04	0.	.0	9.079£.05		•0	•	•	•	145	•
•		3.1946.96	5.449E+04	••	.0	8.725E+05	•	:	•	•	•	744	•
	4.	1.5.44€ • 116	4.595£ • 04	•	•	8.643€+05	:	.0	•	•	•	720	•
, 01	10. 4566.	4.934F-03 1.194E-06	4.551F + 04	• •	••	8.725E+05	•	••		•	34	108	•
	1.474.15	400146.015	40.3446.4		•	7.9765.05	•	•	:	•	152	469	•
12 3.	3.7376.95	4.8715.35	5.707E.04	.0		9.0796.05	•			•	453	162	•
FINAL 1.	1.4996.04	1.177.	7.6446.05	.0	••	1.0446.07	:	•	:	•	2195	9959	•
MAXIMIN MEATING MAXIMIN CCOLING MAXIMIN 7046 AIR MINIMIN 70% AIR	TING LOAD = LING LOAD = E AID TEWP = E AID TEWP =	# 5-143F	-03 AT HOUR -03 AT HOUR -01 AT HOUR	15 ON DAY	13 OF MONTH 22 OF MONTH 22 OF MONTH 13 OF MONTH	1 WITH A ZONE 7 WITH A ZONE 1	AIR	TEMP OF 67.86 TEMP OF 69.54					

INFILTMATION MEAT GAINZINGS MERENS TO MENSIBLE PORTION ONLY.
LATENT MOSTION IS COMMUNED BY ALM MANNLING SYSTEM SUMPROGRAM.
LOSS = MACS FLOW * SMECIFIC MEAT * (ZONE TEMM - DITCIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

Contractor of the last

T vacan

plants.

8

1

Total Control

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY PARALSHED TO DDC

FORDS CHEMEN STATE OF HAITING MOUNTED

FT MO-TH TOY TAPE DUM.

0

0

20	\$\$	*	4	106	132	159	190	160	146	152	5	\$	1595	
18	3	369	**	563	219	295	554	3	574	619	535	3	6376	
8:	23	267	Ē	5	•	•	•	•	•	٠	115	622	1080	
12	•	•	•	•	•	•	•	•	•	•	•	•	•	
MEAT GAIN	:		:				:			:	:			
MEAT LOSS (8TU)	:	:				:					•		•	TEMP OF 67.91 TEMP OF 76.05
645 1040 (610)	:	:				:		:						I WITH A ZONE AIR TE
ELECTRIC LOAD (ATU)	1.1936.06	1-0372-06	1.1476.06	1.1446.06	1-1475-06	1-1416-06	1-1936-06	1-1476-06	1-1416-06	1-1476-06	1.0486.06	1-1936-06	1.3726.07	11 11 11 11 11 11 11 11 11 11 11 11 11
BASEBOARD LOAD (BTU)	:	:				:	•				:		:	3 OF MONTH 6 OF MONTH
PETUN AIP MEAT SAIN (ATU)	.0	9.	.0	0.	.0						.0		•	5 0% 047 15 0% 047 16 0% 047
LOAD (STU)	1.44.5.04 0.	1-4405-04	10-3605-1	1.70% -04	1.4726.06	1.7196.65	1-4596-06	1.756.06	1-7045-06	1-4766-04	1.45'0€ .06	1-4496-04	1.3~3€-67	7-2025-03 47 PGUR 1-6008-06 41 PGUR 7-5-78-61 47 PGUR
COLING COLO CATUI	3.0 345 -96	3.5706 .06	3.6446.96	3.446.004	40.360.70	40-3174-4	3.014E.34	40.378.04	41.7756.96	3.0106.16	3.0176.16	3-4196-75	16.5005.0	
1940 1940 (470)	Politens Bonderons	300000000000000000000000000000000000000	ויובחנייה זינקאנייור	1.1136 - 94	n.		:	•		pressent sealurent	90. 3075.5	56-3655-1	7.924.045 4.5406.077	MAXIMY WEATING LOSS = MAXIMY COULTS LOSS = MAXIMY TO THE TENS =
10 OF	-		3	•	•			•		10		21	F That.	MAKING OCCULING MAKING COCULING

INFILTMATION, MEAT GAINZLUSS METEMS TO WENGHLE PORTION ONLY.
LATENT POSTION IS COMMUTED OF ALM MANDLING SYSTEM SUMPROGRAM.
LOSS = MASS FLOW * SPECIFIC MEAT * (20NE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

THIS PAGE IS BEST QUALITY PRACTICARY.

LOADS SUMMARY FOR 7UNE 7: NECOMDS AND SUPPLY

FT WORTH	FT WORTH TRY TAPE OUN	5											
\$ \$	HEATING LOAD (FTU)	COOLING LOAD (9TU)	LOAD	HETURN ATR MEAT GAIN (STU)	BASEBOARD LOAD (BTU)	BASEBOARD ELECTRIC LOAD LOAD (BTU) (BTU)	6AS LOAD (87U)	INFILT HEAT LOSS (BTU)	INFILT HEAT GAIN (BTU)	15	801	MAT/ 008/ 048/ H ER H ON C ON C EX	5
-	4-1915-05	4-1916-05 1-7446-04	1.7326.05 0.	:		1.8166.06 0.	:	:	:	•	=	333	•
2	4.785E.05	4.785E-05 1-042F-06	1.6946.05		•	1.579€ * 00	:	:	:	•	*0*	268	•
	50.3059.5	2.6906-05 1.3356-06	1.4576.05	:	:	1.745€.06	:	:	:	•	327	417	•
•	3.5396.04	3.5396.04 1.9095.06	1.7496 -05	.0	.0	1.807E.06	:	:	:	•	==	610	•
5		2.5376.64	1-5425-05	.0	.0	1.745€.06 0.		:	:	•	•	74.	•
•		3.0765.96	1.4916.05	:	••	1.7376.06 0.	:	:		•	•	120	•
,		3.6405.06	1.7916.05	:		1.416.46	••	:		•	•	3	•
•		3.4708.06	1-7005-05	:	••	1.745€.06 0.	.0		•	•	•	744	•
	.0	2.8375.06	1.688E . 05	••	:	1.737€-06 0.	:		•	•	·	720	•
10	2.4126-63	2.4126-63 2.3076-06	1.6786.05		•	1.7456.06 0.				•	16	728	•
=======================================	1.3056.05	1.3456.05 1.4426.95	1.5946.05	:	••	1.595€.06 0.	:			•	506	115	•
21	3.4266-05	3.4256-05 1.2476-06	1.7316.05	9.	.0	1.816E.06				•	392	352	•
FINAL	1.7776.04	1.7776-06 2.4376-47	2.1096.00 0.	•	•	2.099E-07 0.	:			•	1866	1866 6494	•

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY PARMISHED TO DDC

1 WITH A ZONE AIR TEMP OF 67.90 7 WITH A ZONE AIR TEMP OF 69.56 7

MAXIMIM MEATING LOAD = 2.6154.63 AT HOUR 6 ON DAY 13 OF MONTH MAXIMIM 7016 AIR TEMM = 6.9556.01 AT HOUR 16 ON DAY 22 OF MONTH MAXIMIM 7016 AIR TEMM = 6.9556.01 AT HOUR 16 ON DAY 22 OF MONTH MINIMIM 7016 AIR TEMP = 6.7905.01 AT HOUS 6 ON DAY 13 OF MONTH

INFILTMATION PEAT GAIN/LOSS NEFEMS TO SENSIBLE POPTION ONLY.
LATENT POGTION IS COMPUTED BY AIM MANDLING SYSTEM SUBPROGMAM.
LOSS # MASS FLOW * SPECIFIC HEAT * (ZONE TEMP - OUTSICE TEMP)
IT IS INCLUDED IN TOTAL SENSIMLE LOAD.

U

Chapter of

The same

1464	
ï	
7.36	
3	
Sipustry	
10405	

Santa a

1

1

1

L

	333	243	212	182	563	563	112	309	662	212	258	122	24.7	3100
	28	624	37.1	\$81	154	=	3	+35	*	3	987	493	659	2457
	8.		:	22	•	•	•	•	•	•	•	•	*	233
	1.	•	•	•	•	•	•	•	•	•	•	•	•	•
	INFILT MEAT GAIN (9TU)		:	:						•	•			•
	HEAT LOSS (MTU)	:		:	•	•					:			:
	645 L040 (810)	:			٥.	:			:	••			9.	•
	ELECTHIC LOAD (HTU)	7.523€+06	6.539€.00	7.2306.00	7.4885.06	7.2306-06	7.195£ + 06	7.5236.06	7.2305.06	7.195E.06	7.230E-06	6.409E.06	7.523E • 06	A.651E-07 0.
	BASEBOAPD LOAD (HTU)	:										•		
	METUMN AIR MEAT GAIN (HTU)	:		.6		.0	.0	.0		.0	.0			•
	LATENT LOAD FATES	4.1246.05	3.5376.05	117E-05	4.4246.05	\$0.3129°	4.746.05		4.7646.05	4.5136.05	3.4236.05	4.1548.05	5.1356.04 0.	
	CONLING LOAD (*TU)	4.2776.04	4.4776 - 4.4	40.3-4.5	4.1486.74	9-1175-06	T.nasfega	7.7776 - 96	7.7476.44	41464	4.44KE - 98	90.3t.05.2	5.2536.46	1.440€ -07
FT WORTH TOY TAME OFF	MF & F13-45 LOAD (P TU)	4.Ange-n4 5.277E-n4	4.7016-04 4.4776-05	4.2521.013 5.346.04					:			20036005	1-0476-14	1.1036.05 7.4406.07
FT 80414	4 YO OF	•	2	•		•			•	•	10		21	f Inat

MAXIMUM MEATING, LOAD = 1.504F-0.3 AT HOUGH 6 ON DAY 13 OF MONTH I WITH A ZONE AIR TEMP OF 67.96 MAXIMUM COLLING, LOAD = 1.400F-0.6 AT HOUGH 9 ON DAY 2 OF HONTH I WITH A ZONE AIR TEMP OF 77.60 MAXIMUM 2016 AIR TEMP OF 77.60 AT HOUGH 17 ON DAY 8 OF MONTH 8

MINIMUM 2016 AIR TEMP = 6.746F-0.3 AT HOUGH 5 ON DAY 13 OF MONTH 1 INFILTMATION PEAT GAINZLOSS MEFEMS TO SENSIFIE POUTTON ONLY.
LATENT POUTTON IS COMPUTED ET ALM MANDLING SYSTEM SUBPHOGRAM.
LOSS # MASS FLOW * SMECIFIC MEAT * (70NE TEMP - OUTSIDE TEMP)
IT IS THICLODED IN TOTAL SENSIFIEL LOAD.

FROM DORY PARMISHED TO DOG

LOADS SIMMARY FUR 70NE ST SOUTH OPER HMS

FT WORTH TRY TAPE PLIN

3	•	•	•	•	•	•	•	•	•	•	•	•	
1 00 C 04 C EX	87.8	112	357	819	35	120	2	1	110	.19	3	36	
	:	•	36	507	~	•	•	•	=	5	\$2	1	
12	•	•	•	•	•	•	•	•	•	•	•	•	
INFILT MAT/ HEAT GAIN H EX (8TU)	:	:	:	:		:	:	:		:	:		
INFILT HEAT LOSS (8TU)	:	:	:	:	:	:	:	:		:		•	
645 1040 (970)		:	:	:	:	:	:	:	:	:	:		
ELECTHIC LOAD (870)	3.3726.06 0.	2.4316.06 0.	3.2416.06	3.3576.06 0.	3.2416.06	3.225E.06 0.	3.3776.06	3.2416.06 0.	3.225€ • 06	3.241E.06 0.	2,963€.06 0.	3.372€.06 0.	
BASEBOARD LOAD (BTU)	÷				:			:		:		•	
HETURN AIR MEAT GAIN (BTU)	:	:					:		:				
LOAD LOAD (mTu)	4.2536.05 0.	3.4616.05 0.	4.0746.05	725£ · 05 0.	\$0.3041.4	4.21AE-05 0.	4.646F.05 0.	4.243F.05 0.	\$0.37E1.0	4.1646.05 0.	3.7146.05 9.	4.252.05 9.	
CONLING LOAC (HTU)	1.7516.05	1.2276.06	2.1976.06	4.746.06	4.4556 + 94	4.2 346 - 94	1.0916.97	1.0976.97	7.7176.00	40-3441-9	3.2015.46	1.7646.36	
1049 (970)	2.9476.05 1.7516.05	3.3736.04 1.2276.06	2-131E-04 2-197E-04	5.1946.05 4.2966.06	24.3645.4		•		7.444E-43 7.717E-45	9.1156.94 6.1446.94	1-2176-04 3-2915-45	2.4276-04 1.744E-34	
4	-	2	•	•	•	•	,	•	•	10	=	21	

INFILTMATION FEAT GAINZINGS MEERS TO RENSIELE PORTION ONLY.
LATENT POGITION IS COMPUTED OF ALM MANCLING SYSTEM SUPPROGRAM.
LOSS = MACS FLOW • SMECIFIC MEAT • (ZONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIMLE LOAD.

9460

0 2300

:

.

3.878€-07

;

1.3116-07 4.6275-07 4.9746-06

SURFERIOR .

Thunsday.

DESCRIPTION OF THE PERSON OF T

The same

Sandania.

agreement .

1

1000

THIS PAGE IS BEST QUALITY PRACTICABLE FROM OOFY PARMISHED TO DDC

RMS	
•	
9740	
•	
_	
10	
-	
EAST	
2	
10: EA	
10:	
10:	
10:	4
10:	-
70NE 10:	PUN
70NE 10:	
70NE 10:	
70NE 10:	
10:	
FUN 70NE 10:	TAPE DUN
FUN 70NE 10:	1408
FUN 70NE 10:	18Y 14PE
FUN 70NE 10:	18Y 14PE
70NE 10:	18Y 14PE
SIMMARY FOR 70NE 10:	18Y 14PE
SIMMARY FOR 70NE 10:	18Y 14PE
SIMMARY FOR 70NE 10:	18Y 14PE
SIMMARY FOR 70NE 10:	18Y 14PE
FUN 70NE 10:	1408

U

L

0

0

33	•	•	•	•	•	•	•	•	•	e	•	•	•	
88	192	922	370	3	74.3	120	1	1	=	109	*	8	9059	
8 5 8 1	***	:	374	111	-	•	•	•	•	51	272	\$	5522	
I E	•	•	•	•	•	•	•	•	•	•	•	•	•	
MEAT GAIN	:	:	:	:		:				:			:	
MEAT LOSS (BTU)	:	:	•		:	•	:	•	:	•			:	TEMP OF 67.62 TEMP OF 69.37
GAS LOAD (BTU)	:	•	•	:	:	:			:	:	:	0.	:	ZONE AIR TE
LOAU (BTU)	2.853E.06 0.	2.440€.06	2.742E+06	2.840E+06	2.7426.00	2-7295-06	2.H53E+06	2.7426.06	2.7295.06	2-7426-06	2.507E.06	2.853£.06	3.282E.07 0.	1 WITH A 20NE AIR 7 WITH A 20NE AIR
BASEBOARD LOAD (BTU)	•						•							13 OF MONTH 22 OF MONTH 22 OF MONTH
HE TURN AIR HEAT GAIN (HTU)		•		•	٠.		•						•	6 0% 0AV 1
(8Tv)	3.1946.05	2.9336.05	3.2426.05	3.456€ +05	3.1356.05	3.155£ .05	3.5346.05	3-1734-05	1.7456.05	30.111.0	20-3191-05	3.1466.05	3.9476.05	-04 bt 10yp
C00C1NU L040 (970)	1-4996-04	1-1976-06	2.0036.04	3.4746.96		7.3945.96	A.4476.96	A. 640E . 96	40-3616-4	4.7415.04	2-3465-06	1.7406.06	20-3561.5	7-3366
LOAD (ATU)	2-1706-04 1-4096-04	2-324E-ns 1-197F-46	1-4106-05 2-0076-06	2.9976.05	2.444E-92 5.794E-04	•	:		3.0136.03	2.9176.04	Shelfons	2,0415.04	40-36-60	COLING LOAD :
\$ \$	•	2	•		•			•	•	10		15	FINAL	MARINIM COULDS

INFILTMATION MEAT UAITALUS METERS TO SENSIALE PUPTION CONLY.
LATELY MOSTION IS CONFILED MY ALM MANCLING SYSTEM SUBPAGNAM.
LOSS = MACS FLOA * CMECLFIC MEAT * (YONE TEMP - OUTSIDE TEMP)
IT IS INCLUDED IN TOTAL SENSIBLE LOAD.

THIS PAGE IS BEST QUALITY PRACTIONAL TROCK OOLY PARAISHED TO INC

One-Year	System	and	Central	Plant	Simulation
----------	--------	-----	---------	--------------	------------

Results of 1-year load calculations were used with the fan system and central plant input decks to produce the various reports that follow the input deck.

```
0
                                                                                     18.40.30
   MULTIZONE SYSTEM 1 "BASIC SYSTEM" SERVING LUNES 1.2.3.4.5.6.7.8.9.101
   0
                                                                                                                                                                                                        HEPORTSISYSTEM.COIL LOADS.EQUIPMENT PARAMETERS
                                                                                    10 APR 79
  0
 CEML -- B.L.A.S.T. SYSTEM --- VENSION 2.0
                                                                                                                                                                                                                                                   7 PRUJECT = "FT HOOD DENTAL CLINIC";
                                                                                                                                                                                                                                .ZONE . WALLS!
                                                                                                                                                                                                                                                                                                                                                  EXHAUST AIR VOLUME . 1000$
                                                                                                                                                                                                                                                                                                                                                                       SUPPLY AIM VOLUME = 17848
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SUPPLY AIR VOLUME = 20108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     EXPAUST AIR VOLUME = 6008
                                                                                                                                                               NEW AIR SYSTEMS.
                                                                                                                                                                                                                                                                                                                                                                                                                                        SUPPLY AIR VOLUME = 4061
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SUPPLY ATH VOLUME = 7618
                                                                                                                                                                                                                                                                                  & BEGIN FAN SYSTEM DESCHIPTIONS
                                                                                                                                                                                    CENTRAL PLANT.
                                                                                                                                          NEW ZONES.
                                                                                                                                         RUN CUNTHOL:
                                                                                                                    1 REGIN INPUTE
                                                                                                                                                                                                                                                                                                                              FOR ZONE 1:
                                                                                                                                                                                                                                                                                                                                                                                                                 14 FON /ONE 2:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    17 FOR 70NE 3:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  20 FOR 20%E 4:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              19 ENDS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               23 END1
                                                                                                                                                                                                                                                                                                                                                                                             13 END1
                                                                                                                                                                                                                                                                                                                                                                                                                                                               10 ENUS
                                                                                                                                                                                                                                                                                                                                                                        15
                                                                                                                                                                                                                                                                                                                                                                                                                                         15
```

```
CEM -- B.L.A.S.T. SYSTEM --- VERSION 2.0 10 APR 79
```

18.40.30

2+ FOR 70% 5:

SUPPLY AIR VOLUME = 5024

20 END1

27 FOR 7UNE 61

SUPPLY AIM VOLUME = 4334

20

10M3 42

30 FOR 20"E 7:

SUPPLY AIR VOLUME = 8841

32 61101

33 FON 20VE A:

SUPPLY AIN VOLUME = 8298

35 ENUS

30 FON 204E 95

SUPPLY AIR VOLUME = 22451

36 6401

39 FOR 704E 10:

SUPPLY ATH VOLUME = 21051

41 ENDS

42 OTMEN SYSTEM PARAMETERS:

-101 DECK CUNTHUL . OUTSIDE AIR CUNTROLLEDS

HOT DECK CUNTROL SCHEDULE = 1120 AT 10. 80 AT 7011

COLD DECK CONTHOL . FIXED SET POINTS

COLD DECK TEMPENATURE = 55.1

WINEL AIR CONTHOL . FINED ANDUNTS

1

Lincolnia

Castleson .

1

1

Total Control

1

1

1

U

assettered.

					*																				
0																									
0																									
0																									
	16.40.30																								
0	22.																								
0	10 APR 79							:																	E# 15
0							Rt = 87.0	Rt = 70.5	:	E = 61.5	E = 59.1								THRU 31						VING SYS
[]	SION 2.0	114.1		85:	TENE	TURE = 45	TEMPERATU	TEMPERATU		EMPERATUR	EMPERATUR		15.638	10.4	157601	150*			OH 01 OCT	INUOUSE				1001	STF#" SEH
	SYSTEM VEUSION 2.0	AIM VOLUME = 4114.8		DESIGN PANAMETERS:	COIL TYPE = CHILLEU WATEMS	ENTERING NATER TEMPERATURE = 451	ENTENING AIR DAY MULH TEMPERATURE = 87.65	ENIEHING AIR WET BULH TEMPERATURE = 70.38	LEAVING BATER TEMPERATURE = 55.48	AIM DAY BULB TEMPERATURE = 61.5	LEAVING AIM MET BULB TEMPERATURE = 59.8	** ** ** ** ** ** ** * * * * * * * * *	MATER VOLUME FLOW HATE # 15.638	A14 FACE VELUCITY = 514.65	ATH VOLUME FLOW KATE = 157601	TANOMETRIC PHESSURE = 4051			HEATING CAPACITY ON FHOM 01 OCT THRU 31 MARS	SYSTEM OPENATION = CONTINUOUS:			M DESCHIPTIONS	PLANT JESCHIPTIONS	ASJC ST
					TYPE = CI	I've dATE	ING AIR	ING AIR	NO BATER		N6 A1H W	VELGCIT	VOLUME !	ACE VELU	OLUME FLO	ETAIC PHI		CHEDULES	NG CAPAC	OPENATI			TEM DESC		ANT FUP
	CEML Bol.A.S.T.	0015106	10	COOL 145 COIL	COIL	Enles	ENTEN	ENIER	LEAVI	LEAVING	LEAVE	eATE.	.416.			-14.0	10	EUUTPHENT SCHEDULES:	#.41	SYSTE	•	END STSTEMS	END FAY SYSTE	PEGIN CENTHAL	PLANT I "PLANT FOR MASIC SYSTEM" SCHVING SYSTEM IS
0	כניו	:	** ENDS	90 05	15	,,	55	*	2	20	15	20	35	79	;	*	6.1 ENUS	••	s	:	1911	68 EN	** **	79 PE	2 2
13																									

CEML -- M.L.A.S.I. SYSTEM --- VEMSION 2.0

18.46.30 10 AFR 72

72 EQUIPMENT SELECTIONS

I CHILLER OF SIZE 6001

13 :

1 HOTLEH OF SIZE BOOF

75 ENDS

TO ENU PLANTS

71 END CENTRAL PLANT DESCHIPTIONS

THE END INPUTS

18.40.30 10 APR 79 CEML -- BOLOASSIT. SYSTEM --- YEASIUM 2.0

T.E. PLANT RFPONTING WILL ME DONE IN UNITS ENGLISH
SIMULATIONS WILL ME ALLOWED FOW TYPES: MUILDIMES SYSTEMS
MUMBER OF SIMULATIONS TO BE ATTEMPTED
?

CEML -- HOLOBOST. SYSTEM --- VEUSION 2.0

10.40.30 10 AFR 19

LOCATION AND ENVIRONMENTS WILL BE CUPIED TO AMEDFL IF NECESSART HLDFL FILE ATTACHEU

PLDFL FOR FT MOOD DENTAL CLINIC

LOCATION FT DUMTH THY TAPF HUN

LAT= 32.80000 LONG= 97.00000 TIME 70ME= 6.0

DATE OF FILE CHEATE/UPDATE 10 APH 74 MIMMEM OF ENVINOUMMENTS 1

NUMMEM OF 20'4ES 11 AITH LONE NUMMERS

1000 1 2 3 4 5 6 7 8 4 10

ENVIRONMENT NUMBER I FOR HEDFL TITLE IS FT HOWTH INY TAPE RUN
WENTHER STATION 3437 STAFF DATE OF 1 JAN 1475 NO. OF DAYS 305
WITH GRUDIN TEMPERATUMES JAN #62.00 FEB #61.00 MAN #64.00 JUN #71.00
JUL #75.00 AUG #75.00 SEP #71.00 OCT #68.00 NOV #65.00 DEC #67.00

Francis L

(protect)

0

11111

1

CEML B.L.A.S.I. SYSIEM VEWSION 2.0 10 APH IV 18.40.30	SYSTEM NUMBER = 1 SYSTEM LUCATION = 0 SIM, PEMIOD = 1JAN1975 - 31DEC1975 NO. OF DAYS IN SIMULATION = 365 TYPE SYS = WILT120NE NO. DISTINCT ZONES ON SYS. = 10	SEASONAL COMPONENT SCHEDULES SEASONAL COMPONENT SCHEDULES SEASONAL COMPONENT SCHEDULES SIDEC ON - 1 DCT OFF - 31 DEC ON - 1 JAN OFF - 31 DEC ON - 1 JAN OFF - 31 DEC ON - 1 JAN OFF - 0 JAN	## ## ## ## ## ## ## ## ## ## ## ## ##	DALLY COOLING COIL S 2	TOTAL SUPPLY FAN PPESSURE = 2.44914 IN-P20 TOTAL PATURY FAN PPESSURE = 0. TOTAL FAMAUST FAN PPESSURE = 1.00369 IN-P20 SUPPLY FAN FFICIENCY = .70 RETHEN FAN FFICIENCY = .70 EXHAUST FAN FFICIENCY = .70	MITTO EIR CONTROL = FIXED AMOUNT FIRED GUISIDE AIM VOLUME = 4-114E+03 FI+03/MIN DESIMED MIAED AIM TEMPEMATUME = COLD DECK TEMP UMILT VENTIALTION PMOFILES

							70MF	1.0	1.9		1.0	-	1.0	1.0
							ZUNE ISTAT BB ENERGY	HOT WATER		T WATER		HOT WATER	115	HOT WATER
	1.00	1:00	DE				2.4	101	Ĭ	2 5	101	ťΪ	Ĭ	Ĭ
1.00	15 14 15 16 17 19 19 20 21 24 24 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	13 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				# X							
1.00	1.00	9000	1.00				ZONE TSTAT BH	::		::		::	:	:
1.00	33:	,::	300					WATER	MATEH	MATER	MATEN	WATER	MATER	WATEN
1.00	1.00	****	00 1.00 00 1.00 00 1.00	NH/O	DEG. F.		ZONE REHEAT ENFRGY	HOT WATER		101		101		40 TOH
1.00		1.00	900	1000970/#8	30	-		īī	Ī	ĪĪ	I:	Ė	Ī	Ĭ
1.00	500	• • • • • • • • • • • • • • • • • • • •	00	16.	0000	IA SU	ZONE HEFEAT CAPCIT							
1.00	533	60.1	CUNTRO 1:	100	7.20000 55.00000	ZONE DATA SUMMANY	~#3	::	:	::	:	::	•	;
1.00	4::	****	1000 X	÷.		02		£ • 03		200				
1.00	1.00	1.00	1.00 1.00 1.00 1.00 1.00 1.00	SUPPL	TAED SANGE		F EMAUST	1.000€.03		6.000F.02				.,
1.00	1.00	5.00.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	194	ING									03
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	500	- :: :	DECK CONTROL = UUTSIDE AIN CONTROL DECK THROTTLING MANGE = 7.2000 DECK CONTROL = CUTSIDE AIN CONTROL DECK THROTTLING MANGE = 7.2000 DECK CONTROL SCHEDULE = (120.00 AT	11 5	TAKE TEE		SUPPLY SUPPLY	1.7946.03	2.010E.03	7.0106.00 5.020c.00	8. 330£ .02	8.240L.02	2.2452.003	2.105c.03
		1 1 1 X X	*	55	200		.24	-:	5		ż		2	2.
SAN TAGAN	SKDAY SIN	HOUS HIN WEND HIN	WKNU WAX	MEATING COIL CAPACITY = .341E+U1 HEATING COIL EVENGY SUPPLY = MOT WATEP	COLD DFC CUNTHOL = FIXED SET POINT COLD DFC INHUTILING HANGE = 1.24 COLD DFC FIXED TEMPENATURE = 554		ZUNF NUMFFH	1	3	+ 10	•	• •		2

TOTAL RESIGN SUPPLY ATH VOLUME = 1.23AE+04

Continued

]

1

1

1

U

0																			
0			***		PEAK DEWAND (BTU/-R)	1.3416.05	1.3416.05	1.3.15.05	1.3415.05	1.3416.05	1.3414.05	1.3416.05	1.3415.05	1.3416.05	1.3416.05	1.3416.05	1.3411.05		1.3416.05
			7		_	100.	1000	1000	1000	100.	1001	1000	1901	10.3	1000	10.1	1000	1	8000
0			3		CONSUMPTION (BTU)	4.5441 -07	4.0515.07	4.4815.07	4.5255.07	4.4811.007	4.4134.07	4.5945 -07	4.4811.67	4.4135.07	4.4811.007	4.1896 .07	4.5945.07		5.330r+0R
			STAMM ATTOM PEDIDIN = 1/ 1/10/75 - 12/11/10/75		PEAK DEMAND (97U/HR)							٥.				٠.			
		,			=													•	
	14.40.30	, ,			CUNSUMPTION (9TU)	:	:	:	:	:	:	:	:	:	:	•	:		:
0	10 APR 72	TAHULING SYSTEK ENFRGY USE SUMMAKY	2	U	PEAK UEWAND (HTU/HR)	\$0.3016.04	2.301F .04	2.301F.04	2.301F . 04	2.3015.04	2.3015.04	2.3016.04	2.301F . 04	2.301E +04	2.3016.04	2.3016.04	2.3016.04		2.301E.04
0	-	- ,	- MOLEAN DO NOT NOT NOT NOT NOT NOT NOT NOT NOT NO	110	4														
0	•	5 9 4			CONSULPTION	1.7126.07	1.5461.07	1.7126.07	1.0472.07	1.1124.07	1.64.72.07	1.712t.07	1.7124.07	1.6572.07	1./126.0/	1.6-76-01	1./12E-07		2.015E.08
0	S 1018	HAHULING				50.	50.	50.	.0.	.0.	.0.	50.	50.	.0.	-0.	-05	50.	-	500
	M VEFSION 2.0	1			PEAK DEPAND (STU/HR)	1.11111.05	1-1111 -05	1-11116.05	1-11116 -05	1.1111 -05	1.1111.05	1.1116 .05	1.1111 .05	1.1116.05	1.1111 -05	1.1111 -05	1.11116 -05		1.1116 + 05
	Ct B.L.A.S.T. SYSTEM	4			CONSTRETTION (+TUT)	C. Hock 07	4.505F-07	4.7706.07	C. 340#-5	4.7/01.07	2.7-66-07	6.43E.01	C.170E-67	10-3951-5	2.770£.07	10-326-07	4.43E.01	-	3.3146.04
0	8.4.4.5				5000	;	;	,	,	,		;	:		.;		,	1	3.
0	CF-11-1				-CMTH	340	12	-	440	***	,600	707	AUA	SEP	130	404	UEC		***
-																			

- h33	CEM M.L.A.S.T. SYSTEM VE-SION 2.9	H VE-SION	5.9	10 AFR 75	18-40-30			
	5 4 9	•	SIFAM		101	HOT . ATED	CHILLED WATE	BIVE
HONTH	TOTAL USE CONSUMPTION PEAN	USE PEAK DEMAND (HTU/HR)	TOTAL USE CONSUMPTION PEA (STU)	USE PEAK DEMAND (RTU/HR)	TOTAL USE CONSUMPTION PFAI	USF PFAK DFMAND (RTU/HP)	TOTAL USE CONSUMPTION PEAL	USE PLAK DEMAN (810/MR)
384	:	:	:		1.460£.08	2.9716.05	1.0396.08	3.0516.0
fee	;	:	:		1.3696.08	2.8116.05	R.7.9F -07	2.587E+0
HAL	;	:	:		1.3574.08	2.604€ • 05	1.1615.09	3.20hf .6
844	;	•	:		:	•	4.2235.07	2.0956.0
***	:	•	:		:		7.2641 -07	2.4776.0
30%	•	:	:	:	:		1.1165.00	3.4336.0
751	:		:	:	:	:	1.3424 .04	3.77.6
AUG		•	;	:	:		1.3645.08	3.69.6
826	:	:	:		:		N.5256.07	3.3376 +0
0.01	;	:	:		1.0335.08	2.1196.05	1.7111 - 08	4.2825.0
MON	;	;		:	1.2385.08	2.710E.05	1.2605-03	3.2765.0
Dec	;		:	:	1.453€.08	2.8246.05	1.0-86-08	3.246.6
	-		-			-	-	
Ana	•			:	7.9105.08	2.9716.05	1.2945.09	**2826*

Lorente de

B

Listeral I

			VEHSION 2.0 10 APR 79 18,7,30	19 18, 7, 30			
	CEML A.L.A.S.T. SYSTEM		7 O O O O O O O O O O O O O O O O O O O		************		
	χ 2	HANDLING			LOAD SUNHARY		
SYSTEM	SYSTEM NUMBER=	-	SYSTEM LOCATION =	3937 SIMUL	SIMULATION PEHIOD = 1/ 1/1475 - 12/31/1975	1/1975 - 12/31/197	
	HONTH	CONSUMPTION (HTU)	PEAK DEMAND	HHS CNSMPTN (HOUHS)	PR CAP EXCD INTU/HR)	HAS CAP EXCD	
HEATING COIL LOADS							
		1.4605+08	2.9715.05	7.440E + 02	•	• •	
	141	1.357E.08	2.608E + 05	7.44UE-02	•••	::	
	APH	0.	•		.0	0.	
	HAY	••	••		•		
	NON	;	••	••	••	0.	
	חת	••	••	•	.0		
	904	•	•		•	• •	
	120	1.0335 + 08	2-1195-05	7-440F-02			
	NO.	1.234F+08	2./10F+05	7.c00E+U2	•	•	
	uec	1.453F+08	2.026F+05	7.440E.02	••	۵.	
	NNA	7.410E+08	2.971E-05	4.368E.03	• •	••	
COOLING COIL LUANS							
	JAN	1.0391.08	3.091F.05	7.440E+02	••		
	£ .	8.7496 +07	2.587E.05	6.120E+02	••	:	
	HAN	1.1811.08	3.206.+05	7.440E+02	••	• 0	
	APR	4.2236 +07	2.043F +05	6.320E+02	••		
	MAY	1.2646.07	2.5776.05	7.440E.02	••	:	
	NON	1.1151 +08	3.4.338.+05	7.200E+02	••	••	
	JUL	1.3421.08	3.1741.05	7.4406.02	•	••	
	406	1.3545.08	3.0948.05	7.440E+02	•	•:	
	SEP	8.525E+01	3.332E+05	7.120E + 02	••		
	130	1.7115.08	4.5621+05	7.440E+02	••	٠,	
	10.7	1.2505+08	3.2765.05	7.c00E+02	•	•	
	חבר	1.048E+08	3.2781.05	1.440E+02	•0	••	
	1						

AIR ABRULING SYSTER LOAUS NOT BET SUBBRRY 16.40,30 10 APH 79 CEAL -- HOLOAOS.TO SYSTEM --- VF-SION 2.0

	SYSTFM NUMBERS	UMHERS 1	SYSTE HEATING	SYSTEM LOCATION = 3937	SIMULATION P	SIMULATION PERIOD = 1/ 1/1075 - 12/31/1975 C 0 0 L I N 6	12/31/1975
	RUNTA	LOAD NOT MET	PEAK NOT MET	HOUMS NOT MET	LOAS NOT MET	PEAK NOT MET IRTU/MR)	INOUPS)
ZONE	-						
784			•	••	••		:
633		•	:	•	•	•	
471		•	•	•			•
844		1.2765.00	2-1705-04	2.3805.02			•
***		5.5612.04	6.2406+03	3.2005.01	•		
2115		1.3396.04	3-1756-03	1.000€-01			•
JUL		.0	:	•		:	:
904		0.	:	•	•		
560		1.5546.05	6.4056.03	4.700€.01	•		
100		.0		•	••	•	:
NON		.,	••	:	••	:	:
230		:		:	•	:	:
					*************		***************************************
***		1.5001.06	2.1706.04	3.2705.02		•	•
3002	,						
JAN		:	•	•	•	•	:
FES				•			•
444		•		••			:
464		4.190E.05	6.309€.03	2.500€+04			
***		1.0262.64	1.5996.03	2.2005.01	•	•	
-		1.1696.03	4.3946.02	4.000E-00		;	••
J.K		.0	:	.,	2.166£ + 03	3.4345.02	1.3006.01
406		.0		••	5.437E.00	10.9006.0	8.000L.00
95		3.6685.04	1.9628.03	4.5006.01	1.5266.01	1.5265.01	1.0006 - 00
100			:	:	:		:
MON		:	:	••	:	:	
ינני		••		•	:	:	
			***************************************				************
***		4.4711.05	6.3096.03	3.2106.02	2.7256.03	3.4745.02	2.2005.01

September 1

Towns and the

1

1				
1				
E				
13		*********		
1				
1		•••••••		***********
1				
1	18.40.30	•••••••		
D	2	7179 0		00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I	10 APR 79	0. 2.700E - 0. 3.300E - 0. 5.000E - 0. 6.000E - 0.	3,600 6,100	3.500 F. 01
1		F F 603	2.466.04 0 9.456.03 3.3946.03 1.7246.03 0	712E - n3 - 114E - n3 - 044E - n3 - 494E - n3
0	SION 2.0	0. 0. 2.446E.04 8.550E.03 3.309E.03 0. 0. 0.	2.9466.04 0.00 0.9456.03 3.3946.03 1.7246.03 0.2546.03	6.712E-03 6.712E-03 7.114E-03 1.044E-03 0.00
	CEM B.L.A.S.T. SYSTEM VEPSION 2.0	0. 2.05/E.06 7.26/E.06 1.160/E.04 0. 7.045/E.05	2.355E.06 0.00 1.497E.05 4.308E.04 6.970E.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.000 0.000
13	1. SYSTE	200 C C C C C C C C C C C C C C C C C C	355 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 4.6871.05 2.2806.04 4.1022.03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
13	B.L.A.S.			
	CE	•	•	•
		20 LE LA	Property of the state of the st	PACA CANADA PACA PACA PACA PACA PACA PACA PACA P

|--|

(Solines)

Same.

SHOW STATE

les les

Steens

Sprenge.

1

1

1

0					
B					
1					
0		300030		*****	******
0		,			
1		•••••		30000	
1			3		
	16.40.30	300000			• • • • • • •
	8 Y	7000	F.01	- 105 - 05 - 05 - 05 - 05 - 05 - 05 - 05 -	F. 01
Control	10 APR 79	0. 0. 2.730£.02 3.500F.01	5.606.01 0. 0.	0. 2.640f.02 3.500f.01	9.900f.01 0.00 0.00 3.720f.02
		**************************************	.115E-04		F • 0 3
	310m 2.0	0. 0. 3.429E-n4 1.015F-04	0. 1.115€ 04 0. 0. 3.429€ 04	0. 0. 2.994E.04 4.218E.03	9.8M2E+03 0.00 0.00 2.9H9E+04
8	CEML M.L.A.S.T. SYSTEM VL. STON 2.0	0. 0. 2.453£.06 1.055£.05	2.675£.05 0. 0. 2.844£.06	0. 0. 2.062E.06 9.429E.04 1.516F.04	2.446E.05
	I. SYSTE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.675E+05	220771	2.446E-0
	B.L.A.S.				
	כליין -	•		2	
0		2421415	A GC SEE	241111	N DEC

CEML -- BoL.A.S.T. SYSTEM --- VEHSION 2.0

12.40.3	
2	
2	
2	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	

EQUIPMENT SIZE . AVAILABILITY (ES) DATA

				-		-	-	-			-	
3000	FOUIPHENT	NJAHEH NUHHER NUHBEH NUHBEP NIHBEP NIHPER NUHBER SIZE INSTO	TL (KB1UH)	NUMBER E INSTO	STZE (KBTUH)	E INSTO	SIZE	INSTO AVAIL	S12E (KBTUH)	INSTO AVAIL	SIZE	NUMBE !! INSTO AVAIL
STH	STEAM HUTLEM	800. 1 1	-									
COMPH	HEMMETIC COMPMESSION CHILLEN	600. 1 1	•									
	FUUIPHENT LOAD	RATIOS	(Fx)	PATA								
			PANT LUAD RATIOS	*	1 1 0 5		ELECTRIC INP	ELECTRIC INPUT				
GODE		HININGH	HAKIMUH		OPTIMUM		CAPACIT (DIMENS	CAPACITY PATTO (DIMENSIONLESS)				
STMB	STEAM HOTLEM	0010-	1.0000	00	.8700		:					
H4400	HEMMETIC CUMPHESSION CHILLER	.1000	1.0500	90	.6500		5.	.2275				

Total Control

September 1

Thursday.

Total I

(Sections)

(constant)

September 1

1

1

3
M.40
:
3
10 450 74
50
•
2
•
5
v
3
>
GYSTEM VEUSION 2.0
i
1
1
1
v
-
"
-
-
3
•
ff. 41 H.1. A.5. 1.
3

Contraction of the Contraction o

Process

0

0

				ישרמני ורישור וישור
3 4 0 3	3,12	C 0 E F F 1	2 33300	COEFF
1		***************************************	***************************************	*************
CAVLIA	CANACITY MATTO VS DEN TEMP (15 AHSOR	1.00000000	01511111	.,
KENIA	ENFERT IVU CUEF (1-5T6 ASS CAILR)	.15100000	.91000000	.3880000
12434	ENFMSY 1/10 CIVEF 12-516 ABS CHILA)	.11+57000	.47212000	.21212000
345434	EW #57 1/0 CUFF 12-576 AHS CHILH W ECONS	.12417000	.36902000	.511 .6000
-	AVEILANCE CAPACITY HATTO (PEAT PUMP)	1.00600000	0058AHB9	•
Puell	ENFAST IND COEFF INEMALTIC COMPR CHILAS	.1.017000	.31644000	.51894000
Schade	ENFROR IND COEFF LOPEN CENT COMPH CHILMS	.23900000	04041000	.77545000
35,000	ENEMAY IN COEPF INECIPHOC COMPR CHIERI	.144.0000	.956#1000	111-4000
-94.00	AVAILANCE CAFACITY HATEU (DR. HUNULE)	1.00600000	005AAH99	9.
40500	ENEMAY 170 COEFF (DAL HUMOLE)	.14017000	.71644000	.51844000
+0700	CONNENST COOLNO STR TEMP ADJUDIL MUNULES	00000000000	1.19000000	+3.5HB00000
POJEDE	ENFACY PATTO AUJSMNT FACTOR (DBL BUNULE)	3.15000000	-3.31300000	1.15400000
ינוו		000557+0.	.631+0000	4165.0000
47460		.34220000	43570000	.27724000
0407	LUME MEAT / FUEL INPUT CHEFF (DIESEL)	00006640.	13710000	00001 060*
46.81	INPUT COFFF	.314+0000	13530000	.04726000
EAD		344.01111111	18.5183333	
0110		4.41000000	-9.48000000	4.32000000
0EL26	1645	1.004+0000	00252500	
50,44	אנר נ	000005 [+ -	00200-140	
2000	THE COLUMN COLUMN TO A COLUMN	56644119161	00471660-	00000000-
91731	CAMEDIA TOTAL COLOR 1-5 1665 TOTAL	CH3.02464136	95-06172439	20851 169.42
9711		1.00500000	0026 4500	220.0000
	TEMP COST	000001101	000000000000000000000000000000000000000	71.0000
	COLFF 4- 6	00000255-056	22.44801200	1941000
163	Cutte 7- 9	126-23440000	-1-4240000	10000
7 30	COEFF 10-12	131.5.000000	-1-54134000	1000.
531	CUEFF 13-15	86.73500000	-1.00152000	.000.7645
440	MAILNG FACTOR TEMP COEFF 15-18 (10ms w)	10.12800000	40937000	.00022401
WE UELH	TEAM HUSILERS	. 60000000	. 86444449	49342716
SOJIED		95.00000000	1.19000000	*3.4#B00000
du ac ac	SMATFCIA	3.15800000	-3.31300000	1.15406000
direct.		.14017000	.31644000	000*c#15.
2010	SIFA TLUR COEFF (SIFAR TURBINE)	1.00000000	0.	•
200	STACE WEACTON A AUG COMES CORES TO A	19550050	00000000	•
200		13uuiiun.	00000000	
dendu	CIFUIS	1.0000000	00000-25-	
20.00	CONTRACTOR PURSE COSTS TO THE PARTY OF THE P	00000000	: -	
4000	C TOSER PURP POSEN CUEFFICIENTS	000000001		
2116	COND COOL ATM T ADJ CHMMTC COMPR CHIL4)	95.00000000	1.19000000	43.6#80000
PCAVIC	AVAIL CAPCTY MATTO CHMMIC COMPH CHILD)	1.00500000	00584889	.0
213601		3.15400000	-3.3130000	1.15.00000
10.17.C	COND COOL WIR T ADJ TOPN CENT CHPH CHLP)	000000000066	1.19000000	*3.9HB00000
CAV2C		1.00500000	00388889	.0
10 JESE		3.15800000	-3.31300000	1.15400000
103130	J (PECIP	00000000000	1.1900000	43.48800000
26.40	AVAIL CAPCITY MATIO (MECTO COMPR CHILE)	1.00600000		•
35 36 31				

	SPECIAL PANAMETENS (S.) DATA		
COOF	1-1	VALUE (ENGLISH)	
-			
STEAM	STEAM ENTHALPY	1168-67852447	
TSATUP	STEAM SATURATION TEMP	241.53023725	
FLASH	BUILEY FLASH WATEH/STEAM FEED (HEATMEC)	.07100000	
PELCL	ELPCT INP. TO CINC. PUMP/COOLING LOAD	.01800000	
PFLMT	ELECT INP. TO CIMC. PUMP/HEATING LOAD	00000900	
481 186	MEN COOL LOAD	•0130000	
2000	TOPE OF THE TOPE TYPE	2.000000000	
2000	MARY IN TATE TENN	1644022H-+21	
2000		000000000000	
METAP T	PARTURE SOLAR TANK TEMP	000000000000000000000000000000000000000	
TTOWN	EMP	00000000000	
10.	4	110.00000000	
141141	MIN TANK TEMP FOR HEATING ISOLUSE)	100.00*0000	
I INC	MIT TALL TENP FOR COULING (SOLUSE)	177.94600000	
TLEAVE	BUILER STACK LEAVING TEMP (HOILFR)	550.04000000	
PAVELDE	AVAILGE MECVAME MT MATTO (DBUNDLE)	.95000000	
PAVPINE	AVAILAL MECVALE HT MATTO (MTPUMP)	00000055.	
GRYKAN		1.44440000	
Telling		19.48000000	
PHXKE.		11.71520000	
HWCA	CHILR CAPAC	124.47266667	
K*CC	CAPAC	124.42204667	
4000	3	124.82206607	
SHATE	0	17.00000000	
HE UF LA		20013.34432122	
HELASH	MECUVO HEAT/FLASH STEAM ENEMGY (HEATHEC)	.500u0000	
STEAM		284.40494335	
PSTATIIR	S. (STFAM	6970-17046743	
TST#TUR	WING STEAM TEMP ISTEAM	572.00000000	
PEASTUR	FAM STEAM PPESS .	264.4095335	
HOWARD	NOW SPEED . PPM (C AM TURBINE)	3600-000-0000	
FASTUR	CONDENSATE/ENTERING STEAMISTEAM TUMBINE)	.4700000	
TOTUEF	TOT FFFIC OF UTIL ELEC GENERATION (EFFTC)	.30000000	
1111	SOLAP COLFCTON TILT ANGLE (SOLP HIC SYS)	40.000000000	
AZHUTH	COLLECTOR ARMAY AZMUTH ANGLE (SOL H/C)	180.0000000	
THECAP	STUMBGE TANK CAP/CUL. ANEA (SULAH H/C)	10.24060718	
MKTFM	INITIAL TANK TEMPERATURE (SOLAR H/C)	1+0.00000000	
FLOWPT	MASS FLOW/COLLECTON ANEA (SOLAN H/C)	9.21012646	
HTREFF	TANK-COLLECTOR MT EXCON EFFECTIVENESS	00000000	

the section of

(Cong)

Total Control

Thomas and

Springer

La Constant

E 0 U I P H E N T SIZE UMIT INSTALD COMSUM- MAINTA- EOPHT HRS TO MINOR OWNAUL COST (S) TACTOR (S/HR) (HRS/HR) (2 5	E O U I	ILER I	2 U	-	\$12£ (KBTUH)		0 E COST (KS)	INSTALD COST FACTOR	0 - 1	9	8 1 7	EQPHT LIFE (MGS)	HRS TO HINOR OVHAUL 6762.	ијмов Оунаце СОST (\$)	HPS TO MAJOL OVHALL	MAJOR OWHAUL COST (S)
FRENCTIC COMPRESSION CMILLER 12008.5 100.000 1.400 0. 900.0 200000. 10000. 2000. COST OF UTILITY . EMERGY (C.)) DATA EMERGY UNIFRH COST MIH PK LOAD	300	•				\$12E	ST REFE	PENCE NIT 0051	FOR EQU	CONSUM- ARLES (\$/HR)	•	. 4	A 200 H	HPS TO MINOR OVHAUL	HINOR OVHAUL COST (\$)		MAJOR OVHAUL COST (\$)
UNIFRM COST MIM PK HIM PK LOAD	51746 1049H	STEAM BO MERWETIC	COMPRE	5510w C	MILLER	12006 CC		0.000	1.400	0. 0. ENERGY	500		0000. 1A	20000.	5000.	50000.	15000.
	ENERGY		COST / CONIT	COST ESCAL- ATION FACTOR	HIH PK LOAD CHARGE (S) (MIN LOAD LOAD LOAD	PK LOAD UNIT COST (\$/UNIT		8 .	1 - 1	10 8	1250	BLOCK WULT (UNITS	10 1	BLOCK MULT (UNITS)	C051/ UM17	BLOCK MULT (UNITS)
	JESEL	=		•	:	•											
.0 0.0	ASTUR	-	-	:	:	•	:										
130.090 .40 0. 0. 0. 1.000.427 1.50 0. 0. 0. 0.	BOTLER																

Total Control

2			
79 06.54.13		SITE COST FACTOR	1.000
16 MAY 79	(1.) DATA	LABOR COST (\$//R)	20.00
2.0	â	PROJECT LIFE (YEARS)	×
CERL B.L.A.S.T. SYSTEM VERSION 2.0	LIFE CYCLE PARAMETERS	PAYMENT TIME (VEARS)	•
. SYSTEM	CYCLE	RATES	,
- 0.L.A.S.T	רוענ	IMPLATION RATES	
. Te		INTEREST RATE (PCT)	10.00

and desired

Carrella

risettes_{tot}

Total I

CERL -- 8.L.A.S.T. SYSTEM --- VERSION 2.0 16 MAY 79 0

E

I.

0

0

0

,			מופורים ביים וביים וביים וביים ביים									
	U	CENTRA	RAL PLA	- N	> 0 a w	U T 1 L	U T I L I Z A T I O N		S U H H A A Y			
HONTH	TOTAL HEAT ENERGY (GBTU)	TOTAL ELECTR ENERGY	COOL ING ENERGY (GBTU)	RCVRED ENERGY (GRTU)	WASTED RCVRABL ENERGY (GBTU)	HEAT EN INPUT COOLING	ELEC EN INPUT COOL ING	ENERGY INPUT HEATING	ENERGY INPUT ELECTRC	TOTAL FUEL INPUT	TOTAL ENERGY INPUT	AVERAGE PLANT EFFIC (PERCT)
1-	-1487		.1068				.0848	.2567	.2976	1455.	.5443	3
~	.1393	.0761	0060-	:	:	:	.0743	.2389	.2536	.2389	.4925	i
•	-1382	.0871	.1209	•	:	:	6680.	12421	.2903	.2421	.5324	.5.
	•	-0722	•0425		:	:	.0621	:	.2408	:	.2408	30.
S	•	.0786	.0726	:	:	:	.0778	:	.2620	:	.2620	30.
•	:	.0821	.1116	:	:	:	1680.	:	1875.	:	.2737	30.
-		.0878	-1342	:		:	1660.	:	12921	:	1262.	30.
	•	.0870	.1364		.,	•	6660.	:	.2900	:	.2900	30.
•	:	.0788	-0852			:	1080.	•	.2626	:	.2626	30.
2	.1049	.0953	1729	:		:	.1123	6261*	.3176	.1929	.5105	39.
=	1121.	*180*	.1247	:			0680.	.2153	+175.	.2153	9487	.24
21	.1679	.0865	-1077	:		:	.0853	*552*	.2883	+552+	.5437	.
	.8007	1999.	1.3052	9.			1.0444	1.4012	3.3304	1.4012	4.7316	36.

PLANT FOR BASIC SYSTEM

CERL -- B.L.A.S.T. SYSTEM --- VERSION 2.0

16 MAY 79

06.54.13

EQUIPMENT USE STATISTICS

COUIPHENT	AVG OPER	AVG MAX MON OPER LOAD DAY RATIO(KBTUH) HR	HON DAY	, £ !	SIZE OPER (KBTUM) HRS	ARS	SIZE OPER (KBTUH) HRS	E SE	SIZE OPER (KBTUH) HAS	SIZE OPER (KBTUH) HRS	i se i	SIZE OPER (KBTUH) MRS	8	last
STEAM BOILER	•230	298.9 1 13 6	-	•	800,0	800.0 4344								
HERNETIC COMPRESSION CHILLER .252	-252	428.2 10 10 14	10 10	2	600.0	600.0 \$760								
UTILITY, ENERGY	E	TYP UNADJ	1-YEA USAGE (GBTU)	1-YEAR USAGE (GBTU)	PEAK USAGE (KBTUH)	•	COST ESCALATION FACTOR							
ELECT		12.5		666.	242.5	1 0	•							
BOILER		1.5	-	104-1	476.5	8	:							
UTILITY, ENERGY TOTAL		16.6												

1

3

Total State

Name of the least

1					TOTAL	27507	15992	23745	23325	20144	19674	19672	164.36	15391	15555	14229	3446	12329	14331	11491	10905	10500	9792	9393	7206	-	415367
					GAS TURBINE FUEL																						
Anna Principal					DIESEL GAS																					-	
0		LARS	A 1.0001***	FUEL AND UTILITIES	BOTLER	2081	2043	1970	1934	1866	1830	1797	1732	1701	1670	1639	1580	1552	1523	1496	1409	2491	1390	1365	1340		42112
0	ą	(ALL COSTS IN BOLLARS)	(ADJUSTMENT FACTOR =	FUEL AND	ELECTRIC .	12343	12006	11360	11050	10749	10170	9893	9361	9105	8857	8616	A152	7930	7713	7503	1298	6604	6717	6534	9369		525856
	06.54.13	נשרר כנ																									
L	16 HAY 79	> a	RING COSTS	PLANT	PERTODIC		108	585	1405	797	096	7168	299		960	185	909	}	1052	139	•	511	7.8	33			16771
Ī		SUFFRY	INNUAL AND PERIODICALLY RECURRING COSTS	CENTRAL PLANT	ANNUAL	13083	11894	9830	8936	9124	6714	6103	5044	4585	4168	3789	2117	2847	2568	2353	2139	1764	1607	1991	1326	-	130628
0	VERSION 2.0	C 0 S T	NO PERTOD	STEH	PER 1001C																						
0		313		FAN SYSTEM	ANNUAL																						
0	.S.T. SYST	F CYC	IT WORTH O	DING	PERTODIC																						
0	CERL B.L.A.S.T. SYSTEM	LIFE	ADJUSTED PRESENT WORTH OF A	BUILDING	ANNUAL																						
	CER		SUCGROOM		YEAR	-	~~	•		٥٢	•	• •	:=	15	2		2.5	11	•-	6.5	02	22	2	*2	23		TOTAL

2.0
N
3
VERSION
2
1
i
SYSTE
2
S
:
š
0.L.A.S.T.
i
2

	•	TAL COSTS***	10 TAL LIFE CYCLE	- B.L.A.S.T. SYSTEM VERSION 2.0 LAPITAL COSTSOOO BUILDING O. TAM SYSTEM CENTRAL PLANT 46648.	CAPITAL COSTSOOO BUILDING FAN SYSTEM CENTRAL PLANT
	0. INT 46648.	0. TOTAL L 0. ************************************	***************************************	1	
***************************************	•	• •		*6648.	PAL PLANT
46448.		•	***************************************	•	SYSTEM
.0 0. 0. 4648.	TAL COSTSOO				3100

(Manual)

Deservo

administration of the last of

Kiloting I

Toronto.

SHICKLES

Phonedition

Total Control

To the same of

1

(New York)

To the last of the

Nittle, Douglas C
The Building Loads Analysis System Thermodynamics (BLAST) program, version 2.0:
users manual. -- Champaign, IL: Construction Engineering Research Laboratory;
Springfield, VA: available from National Technical Information Service, 1979.
160 p; 27 cm. (Technical report; E-153)
Contents. v. 1, BLAST user instructions. v. 2, BLAST program library and example.

BLAST (computer program).
 Buildings-energy consumption.
 Series:
 U.S. Army Construction Engineering Research Laboratory.
 Technical report; E-153.