2. Weak lensing basics

We use the perturbed metric in Newtonian Gauge

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(t)(1-2\Phi)\delta_{ij}dx^{i}dx^{j}.$$

With this convention, the weak field limit gives

Geodesic equation:
$$\ddot{x} + H(t)\dot{x} = -\frac{1}{a}\nabla\Psi(x,t)$$

Poisson equation:
$$\frac{1}{a^2}\nabla^2\Phi(\boldsymbol{x},t) = 4\pi G\rho_m(t)\delta_m(\boldsymbol{x},t)$$
 (In GR)

In the absence on anisotropic stresses (also assuming GR) $\Psi=\Phi$. e.g, this is the case of Λ CDM from the matter dominated epoch to today ($z\lesssim 100$),

Christoffel symbols:

$$\Gamma^{0}_{00} = \dot{\Psi}, \quad \Gamma^{i}_{00} = \frac{\partial \Psi}{\partial x_{i}}, \quad \Gamma^{i}_{j0} = \delta^{i}_{j}(H - \dot{\Phi}),$$

$$\Gamma^{i}_{00} = \delta_{ij}a^{2}[H + \dot{\Phi} - 2H(\Phi + \Psi)],$$

$$\Gamma^{i}_{jk} = \left(\delta_{jk}\frac{\partial}{\partial x_{i}} - \delta^{i}_{j}\frac{\partial}{\partial x^{k}} - \delta^{i}_{k}\frac{\partial}{\partial x^{j}}\right)\Phi.$$

4-momentum of photons: $g_{\mu\nu}P^{\mu}P^{\nu}=0$ with $P^{\mu}=\frac{dx^{\mu}}{dx}$.

Hence, defining the generalized spatial momentum p,

$$p = g_{ij}P^iP^j,$$

and

$$P^0 = \frac{1}{\sqrt{1+2\Psi}} = p(1-\Psi).$$

This is the generalization to a perturbed FRW of the relativistic expression E=p. In the metric convention we are following, an overdense region has $\Psi<0$. Therefore, photons loose energy (and redshift) as they move away from an overdense region.

Geodesic equation $P^{\mu}\nabla_{\mu}P^{\mu}=0$:

$$\frac{d^2x^i}{d\lambda^2} = -\Gamma^i_{\mu\nu} \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda}.$$

The LHS is, remind $x^i = \chi \theta^i = \chi(\theta^1, \theta^2, \chi)$,

$$\begin{split} \frac{d^2x^i}{d\lambda^2} &= \frac{dt}{d\lambda} \frac{d\chi}{dt} \frac{d}{d\chi} \left[\frac{d\chi\theta^i}{d\chi} \frac{dt}{d\lambda} \frac{d\chi}{dt} \right] = -\frac{p}{a} \frac{d}{d\chi} \left[-\frac{p}{a} \frac{d\chi\theta^i}{d\chi} \right] \\ &= p^2 \frac{d}{d\chi} \left[\frac{1}{a^2} \frac{d}{d\chi} (\chi\theta^i) \right] \\ &= \frac{p^2}{a^2} \left[\frac{d^2}{d\chi^2} (\chi\theta^i) + 2aH \frac{d}{d\chi} (\chi\theta^i) \right] \end{split}$$

where we used the definition of the radial comoving distance $\chi=\int_a^{a_0}dt/a(t)$ and $P^0\equiv dt/d\lambda=p(1-\Psi).$ We have assumed the deflection angle is small, and set $\theta\times\Psi=0$. In the second line, we use the background evolution of the momentum $p\propto 1/a$, so at the lowest order ap is a constant that we can pull out of the derivative.

Using the Christoffel symbols we obtain

$$-\Gamma^{i}_{\mu\nu}\frac{dx^{i}}{d\lambda}\frac{dx^{j}}{d\lambda} = -p^{2}\left[-\frac{\partial}{\partial x_{i}}(\Psi + \Phi) + 2\frac{H}{a}\frac{d}{d\chi}(\chi\theta^{i})\right]$$

Hence, the geodesic equation becomes

$$\frac{d^2}{d\chi^2}(\chi\theta_m) = -a^2 \frac{\partial}{\partial x^m}(\Psi + \Phi)$$

In the ΛCDM model at late times, the anisotropic stresses are neglibible, so $\Psi=\Phi$ and

$$rac{d^2}{d\chi^2}(\chi heta_m)=-2a^2rac{\partial\Psi}{\partial x^m}$$

We can integrate twice to obtain the true source position $\theta_S^m = \theta^m(\chi)$, subject to the initial condition that the observed position is $\theta_O^m = \theta^m(\chi = 0)$

$$heta_S^m = heta^m(\chi) = heta_O^m - \int_0^\chi d\chi' rac{\chi - \chi'}{\chi} rac{\partial}{\partial x^m} \Big[\Psi(m{x}) + \Phi(m{x}) \Big]$$

with $x \equiv x(\theta(\chi'), \chi')$.

This is a non-linear relation between the observed and true source positions.

The first approximation considers $\theta(\chi') = \theta_O$ in the arguments of the gravitational potentials, corresponding to integrate the potential gradient along the unperturbed ray, which is called the Born approximation.

Defining the lensing potential ψ (from now on, we simplify the notation and name θ the observed position)

$$\psi(\boldsymbol{\theta}, \chi) = -\int_0^{\chi} \frac{d\chi'}{\chi'} \frac{\chi - \chi'}{\chi} \Big[\Psi(\boldsymbol{x}(\chi')) + \Phi(\boldsymbol{x}(\chi')) \Big],$$

the true and observed position are related by

$$\theta_S^m = \theta^m + \partial^m \psi(\theta),$$

where we used $\frac{\partial}{\partial x^m} = \frac{1}{\chi} \frac{\partial}{\partial \theta^m}$ inside the integral. And we denote m, n = 1, 2, so $\partial_m = \left(\frac{\partial}{\partial \theta^1}, \frac{\partial}{\partial \theta^2}\right)$.

This equation is valid for a single background source at, radial comoving distance χ , whose light travels toward us and deviates due to the foreground matter distribution

We are interested in small deflections of path light rays. In such a case, the relation between observed and true coordinates is linear:

$$A_{mn} \equiv \frac{\partial \theta_m^S}{\partial \theta^n} = I_{mn} + \partial_m \partial_n \psi \equiv \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}.$$

Assuming small deflection angles we expand

$$\theta_m^S(\theta) = \underbrace{A_{mn}\theta_n}_{\text{Convergence + Shear}} + \underbrace{\frac{1}{2}D_{mns}\theta_n\theta_s}_{\text{Flexion}} + \cdots$$

Weak lensing:
$$\theta_m^S = A_{mn}\theta_n$$
.

That is, weak lensing is described by a linear map relating the observed and true positions of the sources.

Weak lensing assumes that the value the derivatives of the lensing potential $\partial_m \partial_n \psi$ do not change along the source surface (e.g., through a galaxy subtended solid angle), otherwise we would have to account for $D_{mns} = \partial_m \partial_n \partial_s \psi$.

Weak lensing:

$$\begin{pmatrix} \theta_1^S \\ \theta_2^S \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} + \begin{pmatrix} -\kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & -\kappa + \gamma_1 \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}.$$

Using $\theta_i^S = \theta_i + (\partial_i \partial_j \psi) \theta^j + \cdots$, with ψ the lensing potential

$$\begin{split} \kappa &= -\frac{1}{2}(\partial_1 \partial_1 + \partial_2 \partial_2) \psi = -\frac{1}{2} \partial^2 \psi \\ \gamma_1 &= -\frac{1}{2}(\partial_1 \partial_1 - \partial_2 \partial_2) \psi, \qquad \gamma_2 = -\partial_1 \partial_2 \psi \end{split}$$

The inverse Jacobian A^{-1} describes the local mapping of the source light distribution to image coordinates.

The convergence κ is an isotropic increase or decrease of the observed size of a source image. The shear (γ_1, γ_2) , the trace-free part of A, quantifies an anisotropic stretching, turning a circular into an elliptical light distribution.

$$oldsymbol{ heta}_s = oldsymbol{A} \, oldsymbol{ heta} + rac{1}{2} oldsymbol{ heta}^T oldsymbol{D} \, oldsymbol{ heta}$$

In a right-handed orthonormal coordinate basis $(\hat{\theta}_1, \hat{\theta}_2, \hat{z} = \hat{n})$

$$A_{mn} = \begin{pmatrix} 1 - \kappa & 0 \\ 0 & 1 - \kappa \end{pmatrix} + \begin{pmatrix} -\gamma_1 & -\gamma_2 \\ -\gamma_2 & \gamma_1 \end{pmatrix} \equiv (1 - \kappa)I_{mn} + \Gamma_{mn}.$$

Notice that if the convergence is not observable what we actually measure is the reduced shear $g \equiv \gamma/(1-\kappa) \simeq \gamma$.

Against a rotation by an angle φ , Γ_{mn} transforms as

$$\Gamma'_{mn} = (R\Gamma R^{-1})_{mn} = \begin{pmatrix} -\gamma_1 \cos(2\varphi) + \gamma_2 \sin(2\varphi) & -\gamma_2 \cos(2\varphi) - \gamma_1 \sin(2\varphi) \\ -\gamma_2 \cos(2\varphi) - \gamma_1 \sin(2\varphi) & +\gamma_1 \cos(2\varphi) - \gamma_2 \sin(2\varphi) \end{pmatrix}$$
$$= \begin{pmatrix} -\gamma'_1 & -\gamma'_2 \\ -\gamma'_2 & \gamma'_1 \end{pmatrix}$$

That is, the shear components γ_1 and γ_2 transform between themselves against the rotation of coordinates $R(\varphi): (\hat{\theta}_1, \hat{\theta}_2) \to (\hat{\theta}_1', \hat{\theta}_2')$ as

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} \rightarrow \begin{pmatrix} \gamma_1' \\ \gamma_2' \end{pmatrix} = \begin{pmatrix} \gamma_1 \cos(2\varphi) - \gamma_2 \sin(2\varphi) \\ \gamma_2 \cos(2\varphi) + \gamma_1 \sin(2\varphi) \end{pmatrix},$$

that is, they transform with the double angle.

Define the helicity basis

$$\epsilon_{\pm} = \frac{1}{\sqrt{2}} (\hat{\theta}_1 \pm i \hat{\theta}_2).$$

We use the components

$$\gamma \equiv \Gamma_{++} = \Gamma_{mn} \epsilon_{+}^{m} \epsilon_{+}^{n} = \gamma_{1} + i \gamma_{2}$$
$$\bar{\gamma} \equiv \Gamma_{--} = \Gamma_{mn} \epsilon_{-}^{m} \epsilon_{-}^{n} = \gamma_{1} - i \gamma_{2}$$

and $\Gamma_{+-} = \Gamma_{-+} = 0$.

With this, the transformation becomes

$$\gamma_1' \pm i\gamma_2' = e^{\pm 2i\varphi} (\gamma_1 \pm i\gamma_2),$$

or, equivalently

$$\gamma \rightarrow \gamma' = e^{2i\varphi}\gamma.$$

That is, γ and $\bar{\gamma}$ transform as spin-2 functions against rotation.

Convergence as a projected density

$$\kappa(\boldsymbol{\theta}, \chi) = -\frac{1}{2} \partial^2 \psi = \int_0^{\chi} \frac{d\chi'}{\chi'} \frac{\chi - \chi'}{\chi} \partial^2 \Phi$$

$$= \int_0^{\chi} d\chi' \, \chi' \frac{\chi - \chi'}{\chi} \nabla_{\boldsymbol{x}}^2 \Phi$$

$$= \frac{3}{2} \Omega_m H_0^2 \int_0^{\chi} \frac{d\chi'}{a(\chi')} \chi' \frac{\chi - \chi'}{\chi} \delta(\chi' \boldsymbol{\theta}, \chi'),$$

where we used $\partial^2 = \chi^2 \nabla_x^2$ in the third equality, and the Poisson equation to relate the gravitational potential Φ with the overdensity field δ .

Notice that the geometrical factor $\chi'(\chi-\chi')$ is a parabola with maximum at $\chi'=\chi/2$. Hence, structures at half the distance between the source and the observers are more efficient to produce lensing distortions.

The total convergence from a population of source galaxies is obtained by weighting $\kappa(\theta,\chi)$ expression with the galaxy probability distribution $W_g(\chi)$:

$$\kappa(\boldsymbol{\theta}) = \int_0^\infty d\chi W_g(\chi) \kappa(\boldsymbol{\theta}, \chi)$$

$$= \frac{3}{2} \Omega_m H_0^2 \int_0^\infty d\chi W_g(\chi) \int_0^\chi d\chi' \frac{1}{a(\chi')} \chi' \frac{\chi - \chi'}{\chi} \delta(\boldsymbol{\theta}, \chi')$$

$$= \frac{3}{2} \Omega_m H_0^2 \int_0^\infty d\chi' \int_{\chi'}^\infty d\chi W_g(\chi) \frac{1}{a(\chi')} \chi' \frac{\chi - \chi'}{\chi} \delta(\boldsymbol{\theta}, \chi')$$

$$= \int_0^\infty d\chi' q(\chi') \delta(\chi' \boldsymbol{\theta}, \chi')$$

with the lens efficiency q defined as

$$q(\chi) = \frac{3}{2} \Omega_m H_0^2 \frac{\chi}{a(\chi)} \int_{\chi}^{\infty} d\tilde{\chi} W_g(\tilde{\chi}) \frac{\tilde{\chi} - \chi}{\tilde{\chi}}$$

The convergence becomes a linear measure of the total matter density, projected along the line of sight and weighted by the source galaxy distribution W_g .

q yields the lensing strength at a distance χ of the combined background galaxy distribution.

There are different conventions/definition for the lens efficiency

The convergence angular power spectrum is computed through the definition,

$$\langle \kappa(\boldsymbol{\ell})\kappa(\boldsymbol{\ell}')\rangle = (2\pi)^2 \delta_{\mathrm{D}}(\boldsymbol{\ell} + \boldsymbol{\ell}')C_{\kappa}(\boldsymbol{\ell}),$$

under the Limber/flat sky approximation, we have

$$C_{\kappa}(\ell) = \int_0^{\infty} \frac{d\chi}{\chi^2} q^2(\chi) P_{\delta}\left(\frac{\ell+1/2}{\chi}, \chi\right).$$

Compare it to the galaxy angular power spectrum in

$$C_g(\ell) = \int_0^\infty \frac{d\chi}{\chi^2} W_g^2(\chi) P_g\left(\frac{\ell + 1/2}{\chi}, \chi\right)$$

 $W_g(\chi) \longrightarrow q(\chi)$, but more important $P_g(\chi) \longrightarrow P_{\delta}(\chi)$. That is, weak lensing probes the whole power spectrum, including the dark matter.

Convergence angular power spectrum

$$C_{\kappa}(\ell) = \int_{0}^{\infty} \frac{d\chi}{\chi^{2}} q^{2}(\chi) P_{\delta}\left(\frac{\ell+1/2}{\chi},\chi\right).$$

Shear power spectra

We comeback to the equations relating the components of A with the lensing potential ψ_l :

$$\kappa = -\frac{1}{2}(\partial_1 \partial_1 + \partial_2 \partial_2)\psi_l = -\frac{1}{2}\nabla^2 \psi_l$$
$$\gamma_1 = -\frac{1}{2}(\partial_1 \partial_1 - \partial_2 \partial_2)\psi_l, \quad \gamma_2 = -\partial_1 \partial_2 \psi_l$$

Configuration space:
$$\gamma(\boldsymbol{\theta}) = (\partial_1 + i\partial_2)^2 \nabla^{-2} \kappa(\boldsymbol{\theta})$$
 Fourier space:
$$\gamma(\boldsymbol{\ell}) = \frac{(\ell_1 + i\ell_2)^2}{\ell^2} \kappa(\boldsymbol{\ell})$$