TMA4183

Optimisation II

Spring 2020

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 5

1 Assume that $\vec{b} \in C^1(\bar{\Omega}; \mathbb{R}^d)$ is a continuously differentiable, divergence free vector field on Ω (that is, div $\vec{b} = 0$ in Ω) and that $f \in L^2(\Omega)$. Consider the PDE

$$\operatorname{div}(\vec{b}u) - \Delta u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \Gamma$$
(1)

a) Provide a weak formulation of this PDE and show that it has a unique solution in $H_0^1(\Omega)$.

Hint: Recall the Poincaré inequality $||u||_{H^1} \leq C_{\Omega} ||\nabla u||_{L^2}$ for $u \in H_0^1(\Omega)$.

- b) Assume that $f_k \rightharpoonup f$ in $L^2(\Omega)$ and denote by u_k the solution of (1) with right hand side f_k , and by u the solution of (1) with right hand side f. Show that $u_k \rightharpoonup u$ in $H^1(\Omega)$.
- Possible solution:
 - a) For the weak formulation of the PDE, we multiply with a test function $v \in H_0^1(\Omega)$ (since we have Dirichlet boundary conditions on the whole of Γ , the test functions need to be zero on the whole boundary) and integrate, obtaining the equation

$$\int_{\Omega} (\operatorname{div}(\vec{b}u) - \Delta u) v \, dx = \int_{\Omega} f v \, dx.$$

Now we integrate the second term by parts, which gives us

$$-\int_{\Omega} (\Delta u) v \, dx = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} (\partial_{\nu} u) v \, dx.$$

However, the boundary integral is zero, because the test function v is zero on Γ . Thus we obtain the weak formulation

$$\int_{\Omega} \operatorname{div}(\vec{b}u)v + \nabla u \cdot \nabla v \, dx = \int_{\Omega} fv \, dx \qquad \text{for all } v \in H_0^1(\Omega).$$

For existence and uniqueness, we use the Lax–Milgram theorem. To that end, we write

$$a(u,v) = \int_{\Omega} \operatorname{div}(\vec{b}u)v + \nabla u \cdot \nabla v \, dx,$$
$$\ell(v) = \int_{\Omega} fv \, dx.$$

Since

$$\ell(v) = \int_{\Omega} f v \, dx \le \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \le \|f\|_{L^{2}(\Omega)} \|v\|_{H^{1}(\Omega)},$$

it follows that ℓ is a bounded linear form on $H_0^1(\Omega)$. Because div $\vec{b}=0$ we have that

$$\operatorname{div}(\vec{b}u) = \operatorname{div}(\vec{b})u + \vec{b} \cdot \nabla u = \vec{b} \cdot \nabla u.$$

Thus we have

$$a(u,v) = \int_{\Omega} (\vec{b} \cdot \nabla u)v + \nabla u \cdot \nabla v \, dx \le ||\vec{b}||_{L^{\infty}} ||\nabla u||_{L^{2}} ||v||_{L^{2}} + ||\nabla u||_{L^{2}} ||\nabla v||_{L^{2}}$$

$$\le (||\vec{b}||_{L^{\infty}} + 1) ||u||_{H^{1}} ||v||_{H^{1}},$$

which shows that a is a bounded bilinear form on $H_0^1(\Omega)$. It thus remains to show that a is coercive, that is, that

$$a(u, u) \ge C \|u\|_{H^1}^2$$

for some C>0 and all $u\in H^1_0(\Omega)$. In order to show such an estimate, we note first that

$$\int_{\Omega} \operatorname{div}(\vec{b}u)u \, dx = -\int_{\Omega} (\vec{b}u) \cdot \nabla u \, dx + \int_{\Gamma} (\vec{b}u) \cdot \nu u \, dx$$
$$= -\int_{\Omega} (\vec{b}u) \cdot \nabla u \, dx = -\int_{\Omega} \operatorname{div}(\vec{b}u)u \, dx$$

for all $u \in H_0^1(\Omega)$. Here we have again used the assumption that $\operatorname{div}(\vec{b}) = 0$. This shows that, actually,

$$\int_{\Omega} \operatorname{div}(\vec{b}u)u \, dx = 0,$$

and therefore

$$a(u, u) = \int_{\Omega} \operatorname{div}(\vec{b}u)u + \nabla u \cdot \nabla u \, dx = \|\nabla u\|_{L^{2}}^{2}.$$

By the Poincaré inequality, we can estimate this further by

$$a(u, u) = \|\nabla u\|_{L^2}^2 \ge C_{\Omega}^2 \|u\|_{H^1}^2,$$

which shows the coercivity of a.

As a consequence, a is bounded and coercive, and ℓ is bounded linear, and thus the Lax–Milgram theorem implies that the PDE has a unique solution in $H_0^1(\Omega)$. In addition, the solution u satisfies the stability estimate

$$C_{\Omega}^{2} \|u\|_{H^{1}}^{2} = a(u, u) = \ell(u) \le \|f\|_{L^{2}} \|u\|_{L^{2}} \le \|f\|_{L^{2}} \|u\|_{H^{1}}$$

and therefore

$$C_{\mathcal{O}}^2 \|u\|_{H^1} < \|f\|_{L^2}.$$
 (2)

b) Since we have a linear PDE, the solution mapping $f \mapsto u$ is linear as well. Moreover, because of (2) it is bounded and thus weakly continuous, that is, if $f_k \rightharpoonup f$ in $L^2(\Omega)$ then the corresponding solutions u_k converge weakly to the solution u of (1).

Alternatively, one can verify the convergence $u_k \rightharpoonup u$ by hand: Because of the bound (1), the sequence u_k is bounded, and thus has a weakly convergent subsequence. Now let $\{u_{k'}\}$ be any convergent subsequence and denote its weak limit by \tilde{u} . We have to show that \tilde{u} solves the PDE. However, if $v \in H^1_0(\Omega)$ is any test function, then the weak convergence of $u_{k'}$ to \tilde{u} implies that

$$a(u_{k'}, v) = \int_{\Omega} v\vec{b} \cdot \nabla u_{k'} + \nabla u_{k'} \cdot \nabla v \, dx \to \int_{\Omega} v\vec{b} \cdot \nabla \tilde{u} + \nabla \tilde{u} \cdot \nabla v \, dx = a(\tilde{u}, v)$$

and

$$\int_{\Omega} f_{k'} v \, dx \to \int_{\Omega} f v \, dx.$$

Since

$$a(u_k, v) = \int_{\Omega} f_k v \, dx$$

for all k, this shows that

$$a(\tilde{u}, v) = \int_{\Omega} f v \, dx$$

and thus \tilde{u} solves (1), that is, $\tilde{u} = u$ (since the solution is unique). Because this holds for any convergent subsequence, the whole sequence u_k converges weakly to u.

We now consider the same basic PDE (1) but add a non-linear sink term: We assume that $g \in L^2(\Omega)$ with $g(x) \geq 0$ for a.e. x and consider the PDE

$$g \arctan u + \operatorname{div}(\vec{b}u) - \Delta u = f \quad \text{in } \Omega,$$

 $u = 0 \quad \text{on } \Gamma.$ (3)

- a) Provide a weak formulation of this PDE and show that it has a unique solution in $H_0^1(\Omega)$.
- b) Assume that $g_k(x) \geq 0$ for a.e. $x \in \Omega$ and that $g_k \rightharpoonup g$ in $L^2(\Omega)$. Denote by u_k the solution of (3) with sink term $g_k \arctan u$, and by u the solution of (3) with sink term $g \arctan u$. Show that $u_k \rightharpoonup u$ in $H^1(\Omega)$.

Hint: At some point it might help to verify that the convergence $u_k \to u$ weakly in $H^1(\Omega)$ implies that $\arctan u_k \to \arctan u$ strongly in $L^q(\Omega)$ for every $1 \le q < \infty$.

- Possible solution:
 - a) The weak formulation for this PDE can be obtained in the same way as for the previous problem, the only difference being the additional term $g \arctan u$. We obtain

$$\int_{\Omega} g \arctan(u)v + \operatorname{div}(\vec{b}u)v + \nabla u \cdot \nabla v \, dx = \int_{\Omega} fv \, dx \qquad \text{for all } v \in H_0^1(\Omega).$$

For proving existence and uniqueness, we can no longer make use of the Lax–Milgram theorem, as we are now dealing with a non-linear PDE. Instead, we have to use the Browder–Minty theorem. The right hand side of the PDE is, as above, a bounded linear form. Thus we "only" have to show that the operator $A: H_0^1(\Omega) \to H_0^1(\Omega)^*$,

$$u\mapsto A(u)=\left[v\mapsto \int_{\Omega}g\arctan(u)v+\operatorname{div}(\vec{b}u)v+\nabla u\cdot\nabla v\,dx\right]$$

is coercive, strictly monotone and demi-continuous (or hemi-continuous).

We start by proving the coercivity. Since $g \ge 0$ and $\operatorname{sgn}(\arctan(t)) = \operatorname{sgn}(t)$ for all t, it follows that

$$\int_{\Omega} g \arctan(u) u \, dx \ge 0$$

for all u. Thus, using the results of the previous exercise,

$$A(u)(u) \ge \int_{\Omega} \operatorname{div}(\vec{b}u)u + \nabla u \cdot \nabla u \, dx \ge C_{\Omega}^2 \|u\|_{H^1}^2 \tag{4}$$

and thus

$$\lim_{\|u\|_{H^1} \to \infty} \frac{A(u)(u)}{\|u\|_{H^1}} \geq \lim_{\|u\|_{H^1} \to \infty} C_{\Omega}^2 \|u\|_{H^1} = +\infty,$$

which shows the coercivity of A.

Next we show the strict monotonicity of A. Here we have that

$$A(u)(u-v) - A(v)(u-v) = \int_{\Omega} g(\arctan(u) - \arctan(v))(u-v) dx$$
$$+ \int_{\Omega} \operatorname{div}(\vec{b}(u-v))(u-v) + \nabla(u-v) \cdot \nabla(u-v) dx.$$

As in the previous exercise, we have that

$$\int_{\Omega} \operatorname{div}(\vec{b}(u-v))(u-v) \, dx = 0.$$

Moreover, because $g \geq 0$ and arctan is increasing, it follows that

$$\int_{\Omega} g(\arctan(u) - \arctan(v))(u - v) \, dx \ge 0.$$

Thus

$$A(u)(u-v) - A(v)(u-v) \ge \int_{\Omega} \nabla(u-v) \cdot \nabla(u-v) \, dx = \|\nabla(u-v)\|_{L^{2}}^{2} \ge C_{\Omega}^{2} \|u-v\|_{H^{1}}^{2} \ge 0$$

with equality if and only if u = v. Thus A is strictly monotone.

Finally, we show that A is demi-continuous. To that end, we assume that $u_k \to u$ in $H_0^1(\Omega)$ and that $v \in H_0^1(\Omega)$ is fixed. Then we immediately see that

$$\int_{\Omega} \operatorname{div}(\vec{b}u_k)v + \nabla u_k \cdot \nabla v \, dx \to \int_{\Omega} \operatorname{div}(\vec{b}u)v + \nabla u \cdot \nabla v \, dx.$$

Moreover, after possibly passing to a subsequence, we have that

$$g(x) \arctan(u_k(x))v(x) \to g(x) \arctan(u(x))v(x)$$

for almost every $x \in \Omega$. In addition, $|\arctan(t)| \leq \pi/2$ for all t, and thus

$$|g \arctan(u_k)v| \le \frac{\pi}{2}|gv|.$$

Since

$$\int_{\Omega} |gv| \, dx \le ||g||_{L^2} ||v||_{L^2} < \infty,$$

it follows that |gv| is summable. Thus we can use Lebesgue's theorem of dominated convergence and obtain that

$$\int_{\Omega} g \arctan(u_k) v \, dx \to \int_{\Omega} g \arctan(u) v \, dx.$$

This proves that A is demi-continuous, and thus the Browder–Minty theorem implies that the PDE (3) has a unique solution.

b) Because of (4), we have that

$$C_{\Omega}^{2} \|u_{k}\|_{H^{1}}^{2} \leq A(u_{k})(u_{k}) = \int_{\Omega} fu_{k} \, dx \leq \|f\|_{L^{2}} \|u_{k}\|_{L^{2}} \leq \|f\|_{L^{2}} \|u_{k}\|_{H^{1}},$$

which implies that the sequence u_k is bounded in $H^1(\Omega)$. Thus it admits a weakly convergent sub-sequence. Choose now any weakly convergent sub-sequence and denote by \tilde{u} its weak limit. We need to show that \tilde{u} solves the limiting PDE (3). Let therefore $v \in H^1_0(\Omega)$ be any test function. Because of the weak convergence of u_k to \tilde{u} in $H^1_0(\Omega)$, we have that

$$\int_{\Omega} \operatorname{div}(\vec{b}u_k)v + \nabla u_k \cdot \nabla v \, dx \to \int_{\Omega} \operatorname{div}(\vec{b}\tilde{u})v + \nabla \tilde{u} \cdot \nabla v \, dx. \tag{5}$$

Moreover.

$$\left| \int_{\Omega} g_{k} \arctan(u_{k}) v \, dx - \int_{\Omega} g \arctan(\tilde{u}) v \, dx \right|$$

$$\leq \left| \int_{\Omega} g_{k} (\arctan(u_{k}) - \arctan(\tilde{u})) v \, dx \right| + \left| \int_{\Omega} (g_{k} - g) \arctan(\tilde{u}) v \, dx \right|$$

$$\leq \|g_{k}\|_{L^{2}} \|(\arctan(u_{k}) - \arctan(\tilde{u})) v\|_{L^{2}} + \left| \int_{\Omega} (g_{k} - g) \arctan(\tilde{u}) v \, dx \right|.$$
(6)

Because $|\arctan(t)| \leq \pi/2$ and $v \in H^1_0(\Omega)$ (and thus in $L^2(\Omega)$), it follows that $\arctan(\tilde{u})v \in L^2$. The weak convergence $g_k \to g$ in L^2 therefore implies that the last term in (6) tends to zero.

Moreover, the weak convergence $u_k \to \tilde{u}$ in $H_0^1(\Omega)$ implies strong convergence $u_k \to \tilde{u}$ in L^2 . After passing to a subsequence, we can thus assume that $u_k(x) - \tilde{u}(x) \to 0$ for almost every $x \in \Omega$. In addition,

$$(\arctan(u_k) - \arctan(\tilde{u}))^2 v^2 \le \frac{\pi^2}{4} v^2,$$

which is a summable function. Lebesgue's theorem of dominated convergence implies therefore that

$$\|(\arctan(u_k) - \arctan(\tilde{u}))v\|_{L^2}^2 = \int_{\Omega} (\arctan(u_k) - \arctan(\tilde{u}))^2 v^2 dx \to 0.$$

As a consequence, the right hand side in (6) converges to zero. Together with (5), we obtain that

$$\int_{\Omega} g_k \arctan(u_k)v + \operatorname{div}(\vec{b}u_k)v + \nabla u_k \cdot \nabla v \, dx \to \int_{\Omega} g \arctan(\tilde{u})v + \operatorname{div}(\vec{b}\tilde{u})v + \nabla \tilde{u} \cdot \nabla v \, dx.$$
(7)

Since u_k solves the PDE with sink term $g_k \arctan(u_k)$, it follows that the left hand side in (7) is equal to $\int_{\Omega} f v \, dx$ for all k. Thus we have that

$$\int_{\Omega} g \arctan(\tilde{u})v + \operatorname{div}(\vec{b}\tilde{u})v + \nabla \tilde{u} \cdot \nabla v \, dx = \int_{\Omega} f v \, dx.$$

Since this holds for all test functions $v \in H_0^1(\Omega)$, we obtain that \tilde{u} solves the PDE (3). The uniqueness of the solution of (3) now implies that $\tilde{u} = u$ and that the whole sequence u_k converges weakly in $H^1(\Omega)$ to u.