NAME:

COLLABORATOR(S): Please write down the names of your collaborators. If none, please write so. Otherwise, you'll be deducted 10 points. You need to write your own solutions.

CS480 – HOMEWORK 5 Assigned on: Wednesday, 11/19/2014 Due: Sunday, 11/30/2014, 11:59pm

Please submit your solutions through blackboard assignment page.

1. We are given the following decision network.

Υ	Action	U(Y, Action)	
Т	а	800	
Т	~a	400	
F	а	200	
F	~a	1000	

- a. What action should you take?
- **b.** What is the value of information of Z?
- c. What is the value of information of X?

2. We are given the following Bayesian network structure and the dataset. X and Y are binary with values T and F, Z has three possible values: R, G, B. In the data table, if a count is zero, it is not listed. For example, the count for <T, T, B> is zero, the count for <T, F, B> is zero, etc.

X	Υ	Ζ	Counts
Т	Т	R	56
Т	Т	G	24
Т	F	R	84
Т	F	G	36
F	Т	R	400
F	Т	G	240
F	Т	В	160

- **a.** Please estimate the necessary parameters for the network using maximum likelihood estimation.
- **b.** Please estimate the necessary parameters for the network using Laplace smoothing.
- **3.** We are given the following dataset. The class variable is C. Please answer the following questions.

F1	F2	С	Counts
Т	Т	Т	9
Т	Т	F	3
Т	F	Т	27
Т	F	F	9
F	Т	Т	3
F	Т	F	21
F	F	Т	1
F	F	F	7

- **a.** Estimate the necessary parameters for a naïve Bayes model using maximum likelihood estimation. (Do not prove maximum likelihood estimation.)
- **b.** Using the naïve Bayes model from part a, compute P(C|F1=F, F2=T). That is, compute P(C=T|F1=F, F2=T) and P(C=F|F1=F, F2=T). Simplify the terms as much as you can. Important: use the naïve Bayes model for this question, not the data.
- c. Estimate the necessary parameters for a naïve Bayes model using Laplace smoothing.

4. We have the following data.

F1		F2		С
	-3		32	FALSE
	-2		16	FALSE
	-1		8	FALSE
	1		4	TRUE
	2		2	TRUE
	3		1	TRUE

- **a.** Assuming $w_b=0$, $w_1=0$, $w_2=0$, what is the conditional log likelihood (CLL). Write down the equation and then calculate it using a calculator.
- **b.** Assuming $w_b=0$, $w_1=0$, $w_2=0$, what is the value of the gradient of the CLL with respect to w_b ? You should be able to calculate it without using a calculator.
- **c.** Assuming $w_b=0$, $w_1=0$, $w_2=0$, what is the value of the gradient of the CLL with respect to w_1 ? You should be able to calculate it without using a calculator.
- **d.** Assuming $w_b=0$, $w_1=0$, $w_2=0$, what is the value of the gradient of the CLL with respect to w_2 ? You should be able to calculate it without using a calculator.