

### Série d'exercices: Intégrale dépendant d'un paramètre

**Exercice 1.** Soit I un intervalle non vide de  $\mathbb{R}$  on réduit à un point et  $f: I \longrightarrow \mathbb{R}$  une fonction. Montrer que si pour tout segment  $[a,b] \subset I$  la restriction de f à [a,b] est continue sur [a,b], alors f est continue sur I.

**Exercice 2.** Soient I et J deux intervalles de  $\mathbb{R}$ . Soit  $f: J \times I \longrightarrow \mathbb{R}$  une fonction. On pose  $F(x) = \int_I f(x,t) dt$  avec  $x \in J$ .

- 1. Supposons que les conditions suivantes sont satisfaites:
  - i) pour tout  $t \in I$ , la fonction  $x \mapsto f(x,t)$  est continue sur J,
  - ii) pour tout  $x \in J$ , la fonction  $t \mapsto f(x,t)$  est continue par morceaux sur I,
  - iii) pour tout  $[a,b] \in J$ , il existe une fonction  $\varphi$  positive et intégrable sur I telle que :

$$\forall x \in [a, b], \ \forall t \in I, \ |f(x, t)| \le \varphi(t).$$

- (a) Montrer que F est bien définie sur J.
- (b) Montrer que F est continue sur J.
- 2. Soit c un réel ou infini, adhèrent à J. Supposons que les conditions suivantes sont satisfaites :
  - i) pour tout  $t \in I$ , la fonction  $x \mapsto f(x,t)$  a une limite l(t) quand  $x \to c$ , de plus la fonction l est continue par morceaux sur I,
  - ii) pour tout  $x \in J$ , la fonction  $t \mapsto f(x,t)$  est continue par morceaux sur I,
  - iii) il existe une fonction  $\varphi$  positive, continue par morceaux et intégrable sur I telle que :

$$\forall x \in [a, b], \ \forall t \in I, \ |f(x, t)| \le \varphi(t).$$

- (a) Si c est un réel, montrer que  $\lim_{x\to c} \int_I f(x,t)dt = \int_I l(t)dt$ .
- (b) Vérifier la question (1) si  $c = +\infty$ .

**Exercice 3.** Pour  $n \in \mathbb{N}^*$ , on pose  $I_n = \int_0^{+\infty} \frac{\ln(1+\frac{x}{n})}{x} e^{-x} dx$ .

- 1. Montrer que :  $\forall t > -1$ ,  $\ln(1+t) \le t$ .
- 2. Justifier l'existence de  $I_n$ , pour tout  $n \in \mathbb{N}^*$ , et déterminer  $\lim_{n \to +\infty} I_n$ .

Exercice 4. Pour  $n \in \mathbb{N}^*$ , on pose  $I_n = \int_0^n (1 - \frac{t}{n})^n e^{\frac{t}{2}} dt$ .

Pour  $n \in \mathbb{N}^*$ , on note  $1_{[0,n]}$  la fonction indicatrice de l'intervalle [0,n] et l'on considère

$$\begin{array}{ccc} f_n: [0,+\infty[ & \longrightarrow & \mathbb{R} \\ & t & \longmapsto & (1-\frac{t}{n})^n e^{\frac{t}{2}} \mathbf{1}_{[0,n]}. \end{array}$$

- 1. Montrer que pour tout  $n \in \mathbb{N}^*$ , la fonction  $f_n$  est continue par morceaux et intégrable sur  $[0, +\infty[$ .
- 2. Montrer que  $\lim_{n\to+\infty} I_n = 2$ .

### Exercice 5.

Soit p et q deux réels strictement positifs. On considère la fonction f définie sur [0,1] par:

$$f(x) = \frac{x^{p-1}}{1 + x^q}.$$

- 1. Montrer que f est intégrable sur [0,1].
- 2. a) Montrer que:  $\forall x \in ]0,1], f(x) = \sum_{n=0}^{+\infty} u_n(x) \text{ avec } u_n(x) = (-1)^n x^{nq+p-1}.$ 
  - b) Montrer que  $u_n$  est intégrable sur [0,1] pour tout  $n \in \mathbb{N}$ .
  - c) Posons  $S_n(x) = \sum_{k=0}^n u_n(x)$  pour  $n \in \mathbb{N}$  et  $x \in ]0,1]$ . Vérifier que

$$\forall n \in \mathbb{N}, \ \forall x \in ]0,1], \ |S_n(x)| \le 2f(x).$$

d) Montrer que 
$$\int_0^1 f(x)dx = \sum_0^{+\infty} \frac{(-1)^n}{nq+p}$$
.

## Exercice 6.

1. Montrer que: 
$$\forall x > 0$$
,  $\frac{\cos(x)}{1 + e^x} = \sum_{n=1}^{+\infty} (-1)^{n-1} e^{-nx} \cos(x)$ .  
Pour  $n \in \mathbb{N}^*$ , on note  $u_n : x \mapsto (-1)^{n-1} e^{-nx} \cos(x)$ .

2. En appliquant le T.C.D, montrer que 
$$\int_0^{+\infty} \frac{\cos(x)}{1+e^x} dx = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{n^2+1}$$
.

3. Quelle est la nature de la série  $\sum \int_{]0,+\infty[} |u_n|$ ? Le théorème d'integration terme à terme s'applique-t-il à la série  $\sum u_n \ sur \ ]0,+\infty[$ ?

## Exercice 7.

Pour 
$$x > 0$$
 on pose  $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ .

1. Montrer que: 
$$\forall n \in \mathbb{N}^* \int_0^{+\infty} t^{x-1} e^{-nt} dt = \frac{\Gamma(x)}{n^x}$$
.

2. Montrer que: 
$$\frac{t^{x-1}}{e^t - 1} = \sum_{n=1}^{+\infty} t^{x-1} e^{-nt}$$
.

3. Montrer que: 
$$\int_0^{+\infty} \frac{t^{x-1}}{e^t - 1} dt = \Gamma(x) \sum_{n=1}^{+\infty} \frac{1}{n^x}$$
.

**Exercice 8.** Soit 
$$F(x) = \int_0^{+\infty} \frac{\sin t}{t^x} dt$$
.

1. Vérifier que 
$$F$$
 est bien définie sur  $]0,2[$ .

2. Montrer que: 
$$\forall x \in ]0, 2[, F(x) = x \int_0^{+\infty} \frac{1 - \cos t}{t^{x+1}} dt.$$

3. Montrer que 
$$F$$
 est continue sur  $]0,2[$ .

**Exercice 9.** Soit f la fonction définie sur  $]0, +\infty[\times[0, +\infty[$  par:

$$f(x,t) = \frac{e^{-xt}}{\sqrt{1+t}}.$$

On définie la fonction F sur  $]0,+\infty[$  par:  $F(x)=\int_0^{+\infty}f(x,t)dt.$ 

1. Vérifier que: 
$$\forall a > 0$$
,  $\frac{te^{-at}}{\sqrt{1+t}} = o(\frac{1}{t^2})$ .

2. Montrer que 
$$F$$
 est de classe  $C^1$  sur  $]0, +\infty[$ .

3. Déduire que 
$$F'(x) = \int_0^{+\infty} \frac{-te^{-xt}}{\sqrt{1+t}} dt \ pour \ x \in ]0, +\infty[$$
.

4. Déterminer 
$$\lim_{x\to 0^+} F(x)$$
.

Exercice 10. On considère deux réels fixés a > 0 et b et on pose

$$g(x) = \int_0^{+\infty} \frac{e^{-xt} - e^{-at}}{t} \cos(bt) dt.$$

2

1. Justifier la définition de g sur 
$$]0, +\infty[$$
.

2. Montrer que g est de classe 
$$C^1$$
 sur  $]0, +\infty[$ .

3. Calculer 
$$g'$$
 puis  $g$ .

# Exercice 11.

1. Soit 
$$x \in \mathbb{R}$$
. Montrer que  $\int_0^{+\infty} \frac{\sin(xt)}{sh(t)} dt = \sum_{n=0}^{+\infty} \frac{2x}{(1+2n)^2 + x^2}$ .

2. Soit 
$$p$$
 et  $q$  deux réels strictement positifs. Montrer que 
$$\int_0^1 \frac{x^{p-1}}{1+x^q} dx = \sum_{k=0}^{+\infty} \frac{(-1)^k}{kq+p}.$$