## 1.3 Proportions de proportions

**Exemple.** Dans un stade de 1600 spectateurs, 40% sont venus supporter l'équipe bleue. Parmi les supporteurs de l'équipe bleue, seul 60% d'entre eux ont acheté une boisson. Combien de spectateurs sont à la fois supporteur de l'équipe bleue et ont acheté une boisson?

**Proposition 1.** Soit P une population,  $S_1$  une sous-population de P, et  $S_2$  une sous-population de  $S_1$ . Alors,  $S_2$  est une sous-population de P.

De plus, si on note  $p_1$  la proportion de  $S_1$  par rapport à P et  $p_2$  la proportion de  $S_2$  par rapport à  $S_1$ , alors la proportion de  $S_2$  par rapport à P est donnée par

$$p = p_1 \times p_2$$

**Remarque.** a) La situation peut-être schématisée ainsi :



 $Proportion = p_1$ 



 $Proportion = p_2$ 



 $Proportion = p_1 \times p_2$ 

b) Attention si les proportions sont données en pourcentages! Dans ce cas, si l'on a  $p_1$ % et  $p_2$ %, la proportion de proportions correspondante est

$$\frac{p_1}{100} \times \frac{p_2}{100}$$

**Exemple.** Dans un autre stade (**dont on ignore le nombre de spectateurs**), 40% sont venus supporter l'équipe bleue. Parmi les supporteurs de l'équipe bleue, seul 60% d'entre eux ont acheté une boisson. **Quelle est la proportion de spectateurs étant à la fois supporteur de l'équipe bleue et ayant acheté une boisson?**