LISTA DE EJERCICIOS 4: ANÁLISIS FUNCIONAL

UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ

PRIMER SEMESTRE 2025

PROFESOR: OSCAR RIAÑO

Observaciones.

- Salvo que se diga lo contrario, los espacios vectoriales considerados tienen como campo escalar \mathbb{R} .
- E^* denota el espacio de todos los funcionales continuos de E en \mathbb{R} .
- Dados E y F espacios vectoriales normados, L(E,F) denota el espacio de funciones lineales continuas de E en F. Si E=F, denotamos L(E)=L(E,E). $\mathcal{K}(E,F)$ denota el conjunto de los operadores lineales continuos y compactos de E en F. Si E=F, abreviamos como $\mathcal{K}(E)=\mathcal{K}(E,E)$.
- Dado un operador $A \in L(A)$, $\sigma(A)$ denota el espectro del operador A. $\rho(A)$ denota el resolvente del operador.

1. Operadores compactos y teorema espectral

Ejercicio 1. Sean E y F espacios de Banach, y sea $T \in \mathcal{K}(E,F)$. Asuma que el rango de T, es decir, R(T) es cerrado.

- (a) Demuestre que T es un operador de rango finito.
- (b) Si adicionalmente $dim(N(T)) < \infty$, muestre que E es un espacio de dimensión finita.

Ejercicio 2. Consideramos $1 \le p \le \infty$ y el espacio l^p . Sea $\{\lambda_n\}_{n\ge 1}$ una secuencia de números reales acotada. Considere el operador de multiplicación $M \in L(l^p)$ definido por

$$Mx = (\lambda_1 x_1, \lambda_2 x_2, \dots, \lambda_n x_n, \dots), \text{ para } x = (x_1, x_2, \dots, x_n, \dots).$$

- (a) Muestre que T es compacto si y solo si $\lim_{n\to\infty} \lambda_n = 0$.
- (b) Determine EV(M) y $\sigma(M)$.

Ejercicio 3. Considere los operadores de desplazamiento $S_r, S_l \in L(l^2)$, donde si $x = (x_1, x_2, \dots, x_n, \dots) \in l^2$, estos se definen como

$$S_r x = (0, x_1, x_2, \dots, x_{n-1}, \dots),$$

y

$$S_l x = (x_2, x_3, x_4, \dots, x_{n+1}, \dots).$$

 S_r se conoce como desplazamiento a derecha y S_l como desplazamiento a izquierda.

- (a) Determinar las normas de $||S_r|| y ||S_l||$.
- (b) Muestre que $EV(S_r) = \emptyset$,
- (c) Muestre que $\sigma(S_r) = [-1, 1]$.
- (d) Muestre que $EV(S_l) = (-1,1)$. Encuentre el espacio propio correspondiente.
- (e) Muestre que $\sigma(S_l) = [-1, 1]$.

- 2
- (f) Determine los adjuntos S_r^{\star} y S_l^{\star} .

Ejercicio 4. Sea $1 \le p < \infty$ y consideremos el espacio $L^p((0,1))$, Dado $u \in L^p((0,1))$, definimos

$$Tu(x) = \int_0^x u(t) \, dt.$$

- (a) Demuestre que $T \in \mathcal{K}(L^p((0,1)))$.
- (b) Determine EV(T) y $\sigma(T)$.
- (c) Dé una fórmula explícita para $(T-\lambda I)^{-1}$ cuando $\lambda \in \rho(T)$.
- (d) Determine T^* .

Ejercicio 5. Sea H un espacio de Hilbert $y \in L(H)$ un operador autoadjunto.

(a) Considere un polinomio $P(x) = \sum_{k=0}^{n} a_k x^k$ donde $a_k \in \mathbb{R}$ y defina P(A) =

$$\sum_{k=0}^{n} a_k A^k.$$

- (a.1) Muestre que $\sigma(p(A)) \subseteq p(\sigma(A))$.
- (a.2) Sean $\mathcal{J} = [a, b]$ un intervalo cerrado real tal que $\sigma(A) \subseteq J$. Muestre que $||p(A)|| \le ||p||_{L^{\infty}(\mathcal{J})}$
- (b) Muestre que las siguientes afirmaciones son equivalentes.
 - (b.1) $(Au, u) \ge 0$, para todo $u \in H$
 - (b.2) $\sigma(T) \subseteq [0, \infty)$.
- (c) Muestre que si A satisface las suposiciones en (b), entonces A tiene raíz cuadrada, esto es, existe un operador $B \in L(H)$ que satisface $(Bu, u) \ge 0$ para todo $u \in H$, tal que $B^2 = A$.

Ejercicio 6. Considere $g \in L^{\infty}(\mathbb{R}) \cap C(\mathbb{R})$ (es decir, g es continua y acotada). Definimos el operador de multiplicación $M_g: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ dado por

$$M_q(f)(x) = g(x)f(x).$$

- (a) Muestre que $\sigma(M_g) = \overline{\{g(x) : x \in \mathbb{R}\}}$.
- (b) $\dot{g}Es$ el operador M_g compacto?
 - 2. Ecuaciones diferenciales en espacios de Hilbert

Preliminares. En esta sección, supondremos que H es un espacio de Hilbert y que $\mathcal{J} \subseteq \mathbb{R}$ un intervalo abierto. Usamos $C(\mathcal{J}, H)$ para denotar el espacio de todas las funciones $u: \mathcal{J} \to H$ que son continuas, es decir, para todo $t \in \mathcal{J}$, se tiene que

$$\lim_{t' \to t} ||u(t) - u(t')||_H = 0.$$

Por otro lado, denotamos por $C^1(\mathcal{J}, H)$ como el conjunto de las funciones $u \in C(\mathcal{J}, H)$ para las cuales

$$u'(t) = \lim_{h \to 0} \frac{u(t+h) - u(t)}{h}$$

existe para todo $t \in \mathcal{J}$ (el límite anterior se toma en H) y $u'(t) \in C(\mathcal{J}, H)$. Luego, podemos definir $u \in C^2(\mathcal{J}, H)$ como la clase de funciones u para las cuales $u' \in C^1(\mathcal{J}, H)$.

Ejercicio 7. Suponga que \mathcal{J} es acotado.

(a) Muestre que $C(\mathcal{J}, H)$ es un espacio de Banach con la norma

$$||u||_C = \sup_{t \in \mathcal{J}} ||u(t)||.$$

(b) Muestre que $C^1(\mathcal{J}, H)$ es un espacio de Banach con la norma

$$||u||_{C^1} = \sup_{t \in \mathcal{J}} ||u(t)|| + \sup_{t \in \mathcal{J}} ||u'(t)||.$$

Ejercicio 8. Sea $A \in \mathcal{K}(H)$ un operador autoadjunto tal que $A \geq 0$ (es decir, $(Ax, x) \geq 0$ para todo $x \in H$). Dado $u_0 \in H$, considere el problema de Cauchy para la ecuación del calor abstracta

$$\begin{cases} u'(t) = -Au(t), & t \in (0, \infty), \\ u(0) = u_0. \end{cases}$$

Muestre que el problema de Cauchy anterior tiene una única solución $u \in C^1((0,\infty),H)$ dada por

$$u(t) = e^{-tA}u_0, \quad t > 0,$$

donde la exponencial se define vía cálculo funcional que es válido por el teorema espectral (recuerde que A es compacto y autoadjunto).

Ejercicio 9. Sea $A \in \mathcal{K}(H)$ un operador autoadjunto tal que $A \geq 0$ (es decir, $(Ax, x) \geq 0$ para todo $x \in H$). Asuma que $N(A) = \{0\}$ (núcleo de A). Dados $u_0, u_1 \in H$, considere el problema de Cauchy para la ecuación de onda abstracta

$$\begin{cases} u''(t) = -Au(t), & t \in \mathbb{R}, \\ u(0) = u_0, \\ u'(0) = u_1. \end{cases}$$

Muestre que el problema de Cauchy tiene una única solución $u \in C^2(\mathbb{R}, H)$ dada por

$$u(t) = (\cos A^{1/2}t)u_0 + (A^{-1/2}\sin A^{1/2}t)u_1, \quad t \in \mathbb{R},$$

y se tiene

$$u'(t) = (\cos A^{1/2}t)u_1 - (A^{1/2}\sin A^{1/2}t)u_0, \quad t \in \mathbb{R}.$$

Recuerde, que las funciones anteriores se definen vía cálculo funcional que es válido por el teorema espectral (A es compacto y autoadjunto).

UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ Email address: ogrianoc@unal.edu.co