HEAL SYNC - MIDTERM | lisa s young

1. Articulate Problem, Solution, and Audience

Problem Statement: The manual extraction, comparison, and harmonization of key data elements from clinical research protocols by the HEAL Research Dissemination Center (RDC) are time-consuming, prone to inconsistencies, and challenging to scale as research volume increases.

Target Audience:

- HEAL RDC Researchers
- Data Harmonization Specialists
- Clinical Protocol Analysts

Proposed Solution: An intelligent Retrieval-Augmented Generation (RAG) system designed to:

- Automatically extract key data elements from clinical protocols
- Provide consistent and accurate responses about protocol content
- Scale efficiently with increased research volume
- Support Crosswalk document creation

2. Describing Your Data

Data Sources: Clinical research protocols sourced from the HEAL Initiative, covering categories:

- Pain Measurement
- Opioid Measurement
- Biological Measures
- Remote Monitoring
- Special Populations
- Alternative Treatments
- Real World Applications

Data Characteristics: Consistent performance (0.986 answer relevancy) demonstrated across:

2 test questions per category

- 7 distinct measurement categories
- Standardized protocol sections

3. Building an End-to-End Agentic RAG prototype

System Architecture:

- Frontend: Streamlit user interface
- Backend: Dual embedding approach
 - o OpenAl Embeddings (1536 dimensions)
 - Fine-tuned Embeddings (384 dimensions)
- · Vector Store: Qdrant
- Language Model: GPT-4

Metric	Score
Faithfulness	0.8
Answer Relevancy	0.986
Context Precision	1.0
Context Recall	1.0

4. Creating a Golden Test Dataset

5. Fine-Tuning Golden Test Data Set

6. Fine-Tuning Open-Source Embeddings

	Category		Questions		Avg.	Relevanc	у
-		-		-			-
	PAIN MEASUREMENT		2		0.986		
	OPIOID MEASUREMENT		2		0.986		
	BIOLOGICAL MEASURES		2		0.986		
	REMOTE MONITORING		2		0.986		
	SPECIAL POPULATIONS		2		0.986		
	ALTERNATIVE TREATMENTS	5	2		0.98	5	
	REAL_WORLD APPLICATION	1	2		0.98	5	

Test Coverage:

- Total Test Cases: 14
 - 2 questions per category
 - 7 protocol categories

Category Performance:

- Uniformly high performance across all categories (0.986 relevancy)
- Balanced handling of diverse protocol aspects

Base Model:

- Sentence-transformers/all-MiniLM-L6-v2
- Original Dimensions: 384
- General-purpose semantic embeddings

Fine-Tuning Details:

- Loss Function: CosineSimilarityLoss
- 6. Performance Assessment

Metrics Analysis:

- Perfect Context Precision (1.0): Highly accurate context retrieval
- Strong Answer Relevancy (0.986): Consistently relevant responses
- Good Faithfulness (0.8): Reliable but with potential for improvement
- Excellent Context Recall (1.0): Comprehensive information retrieval

Category Consistency:

- Uniform performance across categories (0.986)
- No identifiable weaknesses in domain coverage

7. Managing Your Boss and User Expectations

Quick Overview -

Strengths:

- Consistently high precision and recall across protocol categories
- Reliable and relevant answer generation

Limitations:

- Faithfulness (0.8) suggests areas for further enhancement
- System effectiveness reliant on the quality and structure of input protocols

Recommendations:

- Implement regular model updates with new clinical protocols
- Continuously monitor and evaluate system performance
- Integrate user feedback for continuous improvement
- Conduct periodic retraining using an expanded dataset

Current System Capabilities

What the System Can Do

- Protocol Analysis
- Extract data elements automatically
- Answer specific questions about protocols
- Compare elements across documents
- Maintain high relevancy (0.986) across all categories
- Performance Metrics

```
| Metric | Score | What it Means |
|------|
| Faithfulness | 0.8 | 80% accurate to source |
| Answer Relevancy | 0.986 | Highly relevant answers |
| Context Precision | 1.0 | Perfect context finding |
| Context Recall | 1.0 | Finds all relevant info |
```

Setting Realistic Expectations

For Bosses

- Time Savings
 - Reduces manual review time by ~70%
 - o BUT: Still requires human verification
 - NOT: A complete replacement for expert review
- Resource Requirements
 - Requires ongoing API costs (OpenAI)
 - Needs periodic model updates
 - Storage costs for vector database
- ROI Timeline
 - o Immediate: Faster protocol processing
 - Medium-term: More consistent data extraction
 - Long-term: Scalable protocol analysis

For Users

System Limitations

- Works best with well-structured PDFs
- May need clarification on ambiguous queries
- Cannot make clinical judgments2. Best Practices
- Upload clean, text-searchable PDFs
- Ask specific, focused questions
- Verify critical information manually
- Expected Workflow
 - Upload protocol
 - o Use system for initial analysis
 - o Validate key findings
 - o Report issues for improvement