Taylor's Theorem

Devere Anthony Weaver

Theorem (Taylor's Theorem). Let f be n times continuously differentiable on [a,b] and suppose $f^{(n+1)}$ derivative exists on [a,b]. Let $x_0 \in [a,b]$. Then for $x \in [a,b]$, f(x) can be expressed as Taylor expansion $f(x) = P_n(x) + R_n(x)$ where

$$\Rightarrow P_n(x) = \sum_{j=0}^n \frac{f^j x_0}{j!} (x - x_0)^j$$
$$= f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

and

$$\Rightarrow R_n(x) = \int_{x_0}^x \frac{f^{(n+1)}(s)}{n!} (x-s)^n ds$$
$$= \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x-x_0)^{n+1}$$

where $\xi(x)$ is between x_0 and x.

In the above theorem,

- $P_n(x)$ is called the Taylor Polynomial of f with center x_0
- $R_n(x)$ is called the Taylor Remainder of $P_n(x)$ (truncation error of $P_n(x)$

Also note, when the center $x_0 = 0$, the Taylor Polynomial is known as the nth Maclaurin Polynomial.