

Today's lecture

- Formalism of branching
- Vertex Cover
- Closest String

Next lecture: Branch-and-Bound (branching for ILP in practice)

Formalism of branching

Branching algorithms for decision problems

By "branching" on some decision, from an instance I we generate several **easier** instances I_1,\ldots,I_ℓ , $\ell\geq 2$, that we recurse on until we reach trivial instances. Formally, we require that I_1,\ldots,I_ℓ satisfy

- 1. They can be generated from I in polynomial time
- 2. At least one of I_1, \ldots, I_ℓ is YES-instance if and only if I is YES-instance
- 3. The complexities (or sizes) of I_1,\ldots,I_ℓ are each smaller than of I the ℓ is bounded. Sufficient for FPT algorithms: $k(I_1),k(I_2),\ldots,k(I_\ell)< k(I)$ and $\ell=g(k(I))$ for some function g

Branching algorithms for decision problems

By "branching" on some decision, from an instance I we generate several **easier** instances I_1, \ldots, I_ℓ , $\ell \geq 2$, that we recurse on until we reach trivial instances. Formally, we require that I_1, \ldots, I_ℓ satisfy

- 1. They can be generated from I in polynomial time
- 2. At least one of I_1, \ldots, I_ℓ is YES-instance if and only if I is YES-instance
- 3. The complexities (or sizes) of I_1, \dots, I_ℓ are each smaller than of I the ℓ is bounded. Sufficient for FPT algorithms: $k(I_1), k(I_2), \dots, k(I_\ell) < k(I)$ and $\ell = g(k(I))$ for some function g

Enumeration Tree

Execution of a branching algorithm is often represented by an **enumeration tree**

- The nodes are the instances, instance is child if generated from other instance
- Edges are labeled with the decisions

Enumeration tree for vertex cover of size 2

Branching algorithms for decision problems

By "branching" on some decision, from an instance I we generate several **easier** instances I_1, \ldots, I_ℓ , $\ell \geq 2$, that we recurse on until we reach trivial instances. Formally, we require that I_1, \ldots, I_ℓ satisfy

- 1. They can be generated from I in polynomial time
- 2. At least one of I_1, \ldots, I_ℓ is YES-instance if and only if I is YES-instance
- 3. The complexities (or sizes) of I_1, \dots, I_ℓ are each smaller than of I the ℓ is bounded. Sufficient for FPT algorithms: $k(I_1), k(I_2), \dots, k(I_\ell) < k(I)$ and $\ell = g(k(I))$ for some function g

Enumeration Tree

Execution of a branching algorithm is often represented by an **enumeration tree**

- The nodes are the instances, instance is child if generated from other instance
- Edges are labeled with the decisions

Enumeration tree for vertex cover of size 2

Why can this be more efficient than complete enumeration, e.g., of all $\binom{n}{k}$ sets? Sometimes decisions leading to infeasibility can be identified and ignored early. For example, $v_1, v_2 \notin S$ is never explored in example above.

Vertex Cover revisited

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose some $v \in V$. Then

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose some $v \in V$. Then

 \bullet Either add v to vertex cover, via recursion on $I_1 = (G-v, k-1)$

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose some $v \in V$. Then

- Either add v to vertex cover, via recursion on $I_1 = (G v, k 1)$
- • Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G - N[v], k - \deg(v))$

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose $v = \operatorname{argmax}_{v \in V} \operatorname{deg}(v)$. Then

- Either add v to vertex cover, via recursion on $I_1 = (G v, k 1)$
- • Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G - N[v], k - \deg(v))$

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose $v = \operatorname{argmax}_{v \in V} \operatorname{deg}(v)$. Then

- Either add v to vertex cover, via recursion on $I_1 = (G v, k 1)$
- • Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G-N[v], k-\deg(v))$

If maximum degree is ≤ 2 , instance is trivial and we can directly solve it

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose $v = \operatorname{argmax}_{v \in V} \operatorname{deg}(v)$. Then

- ullet Either add v to vertex cover, via recursion on $I_1=(G-v,k-1)$
- \bullet Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G-N[v], k-\deg(v))$

If maximum degree is ≤ 2 , instance is trivial and we can directly solve it

To analyze the running time, bound maximum number of leafs T(k) in enumeration tree:

$$T(k) \le T(k-1) + T(k-3) \quad \text{ if } k \ge 3 \qquad \qquad T(k) = 1 \quad \text{ if } k \le 2$$

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose $v = \operatorname{argmax}_{v \in V} \operatorname{deg}(v)$. Then

- Either add v to vertex cover, via recursion on $I_1 = (G v, k 1)$
- Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G N[v], k \deg(v))$

If maximum degree is ≤ 2 , instance is trivial and we can directly solve it

To analyze the running time, bound maximum number of leafs T(k) in enumeration tree:

$$T(k) \le T(k-1) + T(k-3)$$
 if $k \ge 3$ $T(k) = 1$ if $k \le 2$

Solving the recurrence

We want to bound T(k) by c^k for some c. It should satisfy:

$$c^{k'} \le c^{k'-1} + c^{k'-3} \quad \forall k'$$

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose $v = \operatorname{argmax}_{v \in V} \operatorname{deg}(v)$. Then

- Either add v to vertex cover, via recursion on $I_1 = (G v, k 1)$
- Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G N[v], k \deg(v))$

If maximum degree is ≤ 2 , instance is trivial and we can directly solve it

To analyze the **running time**, bound maximum number of leafs T(k) in enumeration tree:

$$T(k) \le T(k-1) + T(k-3) \quad \text{ if } k \ge 3 \qquad \qquad T(k) = 1 \quad \text{ if } k \le 2$$

Solving the recurrence

We want to bound T(k) by c^k for some c. It should satisfy:

$$c^{k'} \le c^{k'-1} + c^{k'-3} \quad \forall k' \quad \Leftrightarrow \quad c^3 \le c^2 + 1$$

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose $v = \operatorname{argmax}_{v \in V} \operatorname{deg}(v)$. Then

- ullet Either add v to vertex cover, via recursion on $I_1=(G-v,k-1)$
- \bullet Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G-N[v], k-\deg(v))$

If maximum degree is ≤ 2 , instance is trivial and we can directly solve it

To analyze the running time, bound maximum number of leafs T(k) in enumeration tree:

$$T(k) \le T(k-1) + T(k-3) \quad \text{ if } k \ge 3 \qquad \qquad T(k) = 1 \quad \text{ if } k \le 2$$

Solving the recurrence

We want to bound T(k) by c^k for some c. It should satisfy:

$$c^{k'} \le c^{k'-1} + c^{k'-3} \quad \forall k' \quad \Leftrightarrow \quad c^3 \le c^2 + 1 \quad \Leftarrow \text{ (taking } c \text{ as small as possible)} \quad c^3 = c^2 + 1$$

Branching algorithm

Input: graph G, bound k on size of vertex cover.

Choose $v = \operatorname{argmax}_{v \in V} \operatorname{deg}(v)$. Then

- Either add v to vertex cover, via recursion on $I_1 = (G v, k 1)$
- Or add entire neighborhood of v to vertex cover, via recursion on $I_2 = (G N[v], k \deg(v))$

If maximum degree is ≤ 2 , instance is trivial and we can directly solve it

To analyze the running time, bound maximum number of leafs T(k) in enumeration tree:

$$T(k) \le T(k-1) + T(k-3) \quad \text{ if } k \ge 3 \qquad \qquad T(k) = 1 \quad \text{ if } k \le 2$$

Solving the recurrence

We want to bound T(k) by c^k for some c. It should satisfy:

$$c^{k'} \leq c^{k'-1} + c^{k'-3} \quad \forall k' \quad \Leftrightarrow \quad c^3 \leq c^2 + 1 \quad \Leftarrow \text{ (taking c as small as possible)} \quad c^3 = c^2 + 1$$

Using computer tools we can solve the polynomial equation obtaining c=1.4656

Total number of nodes in enumeration tree is at most $2T(k) \rightsquigarrow \text{Running time}$: $T(k) \cdot n^{O(1)} \leq 1.4656^k \cdot n^{O(1)}$

Closest String

Input: strings x_1, \ldots, x_k of length L over an alphabet Σ , $d \in \mathbb{Z}_{\geq 0}$

Output: decide if there exists string y with $d(x_i, y) \leq d$ for all $i = 1, \dots, k$

Here, d(x,y) is the **Hamming distance**, the number of characters where the strings differ

Input: strings x_1,\ldots,x_k of length L over an alphabet Σ , $d\in\mathbb{Z}_{\geq 0}$

Output: decide if there exists string y with $d(x_i,y) \leq d$ for all $i=1,\ldots,k$

Here, d(x,y) is the $\operatorname{Hamming}$ distance, the number of characters where the strings differ

Input: strings x_1,\ldots,x_k of length L over an alphabet Σ , $d\in\mathbb{Z}_{\geq 0}$

Output: decide if there exists string y with $d(x_i, y) \leq d$ for all $i = 1, \dots, k$

Here, d(x,y) is the $\operatorname{Hamming}$ distance, the number of characters where the strings differ

Input: strings x_1,\ldots,x_k of length L over an alphabet $\Sigma,\ d\in\mathbb{Z}_{\geq 0}$

Output: decide if there exists string y with $d(x_i, y) \leq d$ for all $i = 1, \dots, k$

Here, d(x,y) is the $\operatorname{Hamming}$ distance, the number of characters where the strings differ

$$\Sigma = \{a,b,c\} \\ x_1 \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \\ x_2 \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{0} \\ x_3 \quad \textbf{a} \quad \textbf{a} \quad \textbf{c} \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{b} \quad \textbf{3} \\ x_4 \quad \textbf{c} \quad \textbf{b} \quad \textbf{b} \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{c} \quad \textbf{c} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{5} \\ x_5 \quad \textbf{a} \quad \textbf{b} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{c} \quad \textbf{d} \\ \hline y \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \\ \hline \end{array}$$

Input: strings x_1,\ldots,x_k of length L over an alphabet $\Sigma,\ d\in\mathbb{Z}_{\geq 0}$

Output: decide if there exists string y with $d(x_i, y) \leq d$ for all $i = 1, \dots, k$

Here, d(x,y) is the $\operatorname{Hamming}$ distance, the number of characters where the strings differ

$$\Sigma = \{a,b,c\} \\ x_1 \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \\ x_2 \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \\ x_3 \quad \textbf{a} \quad \textbf{c} \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{b} \\ x_4 \quad \textbf{c} \quad \textbf{b} \quad \textbf{b} \quad \textbf{a} \quad \textbf{a} \quad \textbf{b} \quad \textbf{c} \quad \textbf{c} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \\ x_5 \quad \textbf{a} \quad \textbf{b} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{c} \quad \textbf{a} \\ \hline y \quad \textbf{a} \quad \textbf{b} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{b} \quad \textbf{a} \quad \textbf{c} \quad \textbf{c} \quad \textbf{a} \quad \textbf{b} \quad \textbf{a} \\ \hline \end{array}$$

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \le d'$ and $d(y, x_i) \le d$ for all $i = 1, \dots, k$.

												$d(y', x_i)$
x_1	С	а	b	а	С	b	а	b	а	b	а	0
x_2	а	а	b	а	С	b	а	С	а	b	а	2
x_3	а	а	С	а	а	b	а	С	а	b	b	5
x_4	С	b	b	а	а	b	С	С	С	b	а	5
x_5	а	b	b	а	С	b	а	b	а	С	С	4
y'	С	а	b	а	С	b	а	b	а	b	а	

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \leq d'$ and $d(y, x_i) \leq d$ for all $i = 1, \dots, k$.

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \le d'$ and $d(y, x_i) \le d$ for all $i = 1, \dots, k$.

Start with $(y'=x_1,d'=d,x_1,\ldots,x_d,d)$ (equivalent to original problem)

• If $d(y', x_i) \leq d$ for all $i = 1, \dots, k$, return YES

												$d(y', x_i)$
x_1	С	а	b	а	С	b	а	b	а	b	а	0
x_2	а	а	b	а	С	b	а	С	а	b	а	2
x_3	а	а	С	а	а	b	а	С	а	b	b	5
x_4	С	b	b	а	а	b	С	С	С	b	а	5
x_5	а	b	b	а	С	b	а	b	а	С	С	4
y'	С	а	b	а	С	b	а	b	а	b	а	

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \le d'$ and $d(y, x_i) \le d$ for all $i = 1, \dots, k$.

- If $d(y', x_i) \leq d$ for all i = 1, ..., k, return YES
- Otherwise let $z \in \{x_1, \dots, x_k\}$ with d(y', z) > d. If d' = 0 return NO

												$d(y', x_i)$	
x_1	С	а	b	а	С	b	а	b	а	b	а	0	
x_2	а	а	b	а	С	b	а	С	а	b	а	2	
x_3	а	а	С	а	а	b	а	С	а	b	b	5	$\leftarrow z$
x_4	С	b	b	а	а	b	С	С	С	b	а	5	
x_5	а	b	b	а	С	b	а	b	а	С	С	4	
y'	С	а	b	а	С	b	а	b	а	b	а		

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \le d'$ and $d(y, x_i) \le d$ for all i = 1, ..., k.

- If $d(y', x_i) \leq d$ for all i = 1, ..., k, return YES
- Otherwise let $z \in \{x_1, \ldots, x_k\}$ with d(y', z) > d. If d' = 0 return NO
- Take any d+1 positions P where y' and z differ. P must contain at least one position j where y[j]=z[j] (if there exists solution y)

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \le d'$ and $d(y, x_i) \le d$ for all $i = 1, \dots, k$.

- If $d(y', x_i) < d$ for all i = 1, ..., k, return YES
- Otherwise let $z \in \{x_1, \ldots, x_k\}$ with d(y', z) > d. If d' = 0 return NO
- Take any d+1 positions P where y' and z differ. P must contain at least one position j where y[j]=z[j] (if there exists solution y)
- Branch over $j \in P$, obtaining instance $(y'', d'-1, x_1, \dots, x_k, d)$ where

$$y''[j'] = \begin{cases} y'[j'] & \text{if } j' \neq j \\ z[j] & \text{if } j' = j \end{cases}.$$

$$x_1 \quad \text{c} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{b} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{0} \\ x_2 \quad \text{a} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{2} \\ x_3 \quad \text{a} \quad \text{a} \quad \text{c} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{c} \quad \text{a} \quad \text{b} \quad \text{b} \quad \text{5} \quad \leftarrow z \\ x_4 \quad \text{c} \quad \text{b} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{b} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{c} \quad \text{4} \\ \hline y' \quad \text{a} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{c} \quad \text{b} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{b} \quad \text{a} \quad \text{b} \quad \text{a} \end{cases}$$

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \leq d'$ and $d(y, x_i) \leq d$ for all $i = 1, \dots, k$.

Start with $(y'=x_1,d'=d,x_1,\ldots,x_d,d)$ (equivalent to original problem)

- If $d(y', x_i) \leq d$ for all i = 1, ..., k, return YES
- Otherwise let $z \in \{x_1, \dots, x_k\}$ with d(y', z) > d. If d' = 0 return NO
- Take any d+1 positions P where y' and z differ. P must contain at least one position j where y[j]=z[j] (if there exists solution y)
- Branch over $j \in P$, obtaining instance $(y'', d'-1, x_1, \dots, x_k, d)$ where

$$y''[j'] = \begin{cases} y'[j'] & \text{if } j' \neq j \\ z[j] & \text{if } j' = j \end{cases}.$$

Running time analysis

Size of enumeration tree T(d, d'):

$$T(d, d') \le \begin{cases} (d+1) \cdot T(d, d'-1) & \text{if } d' > 0\\ 1 & \text{if } d' = 0 \end{cases}$$

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \dots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \leq d'$ and $d(y, x_i) \leq d$ for all $i = 1, \dots, k$.

Start with $(y'=x_1,d'=d,x_1,\ldots,x_d,d)$ (equivalent to original problem)

- If $d(y', x_i) \le d$ for all i = 1, ..., k, return YES
- Otherwise let $z \in \{x_1, \ldots, x_k\}$ with d(y', z) > d. If d' = 0 return NO
- Take any d+1 positions P where y' and z differ. P must contain at least one position j where y[j]=z[j] (if there exists solution y)
- Branch over $j \in P$, obtaining instance $(y'', d'-1, x_1, \dots, x_k, d)$ where

$$y''[j'] = \begin{cases} y'[j'] & \text{if } j' \neq j \\ z[j] & \text{if } j' = j \end{cases}.$$

Running time analysis

Size of enumeration tree T(d, d'):

$$T(d, d') \le \begin{cases} (d+1) \cdot T(d, d'-1) & \text{if } d' > 0\\ 1 & \text{if } d' = 0 \end{cases}$$

$$\rightsquigarrow T(d, d') < (d+1)^{d'}$$

Idea: start with some initial solution y' and reduce distance to actual solution y with every branch

Formally each recursive call has input $(y', d', x_1, \ldots, x_k, d)$.

Goal: decide if there exists y with $d(y, y') \le d'$ and $d(y, x_i) \le d$ for all i = 1, ..., k.

Start with $(y'=x_1,d'=d,x_1,\ldots,x_d,d)$ (equivalent to original problem)

- If $d(y', x_i) \le d$ for all i = 1, ..., k, return YES
- Otherwise let $z \in \{x_1, \ldots, x_k\}$ with d(y', z) > d. If d' = 0 return NO
- Take any d+1 positions P where y' and z differ. P must contain at least one position j where y[j]=z[j] (if there exists solution y)
- Branch over $j \in P$, obtaining instance $(y'', d'-1, x_1, \dots, x_k, d)$ where

$$y''[j'] = \begin{cases} y'[j'] & \text{if } j' \neq j \\ z[j] & \text{if } j' = j \end{cases}.$$

Running time analysis

Size of enumeration tree T(d, d'):

$$T(d, d') \le \begin{cases} (d+1) \cdot T(d, d'-1) & \text{if } d' > 0\\ 1 & \text{if } d' = 0 \end{cases}$$

$$\rightarrow T(d,d') < (d+1)^{d'} \rightarrow \text{Running time: } T(d,d) \cdot n^{O(1)} < (d+1)^{d} \cdot n^{O(1)}$$