应用离散数学

杭州电子科技大学

代数结构

- 1 代数运算
- 2 代数系统
- 3 半群与群
- 4 子群和陪集
- 5 循环群

定义8 (代数系统)

非空集合G和G上的k个代数运算 f_1, \dots, f_k (其中 f_i 是 n_i 元代数运算)组成的系统称为代数系统,简称代数,记为 $\langle G, f_1, \dots, f_k \rangle$,而 $\langle n_1, \dots, n_k \rangle$ 称为该代数系统的类型。

定义11 (半群)

设G是非空集合,*是G上的二元运算。如果*满足结合律,则称 $\langle G,*\rangle$ 是半群。

若半群 $\langle G, * \rangle$ 中存在单位元,则称 $\langle G, * \rangle$ 是有幺半群。

	$\mathbb{N}, +$	$\mathbb{N}, imes$	$\mathbb{R},-$	\mathbb{R}^*, \div
半群	是	是	否	否
有幺半群	是	是		
	\mathbb{Z}_m, \times_m	$M_n(R), +$	$\hat{M}_n(R), \times$	$\rho(X),\cup\rangle$
半群	是	Ħ.	Ħ	Ħ
十一十	疋	是	是	是

基本概念

习颢1

设集合

$$G = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ 0 & 0 \end{pmatrix} \middle| a_{11}, a_{12} \in \mathbb{R} \right\}$$

*表示矩阵乘法, 试问 $\langle G, * \rangle$ 是否是半群, 是否是有幺半群?

设 $\langle G, * \rangle$ 是有幺半群,如果 $\forall x \in G$,都存在逆元 $x^{-1} \in G$, 则称 $\langle G, * \rangle$ 是群。

- G非空
- 2 *是G上的运算
- 3 *满足结合律
- 4 存在单位元
- 5 G中的每个元素都有逆元

 $\dot{A}\langle G,*\rangle$ 是群且*满足交换律,则称 $\langle G,*\rangle$ 为交换群或阿贝尔群

基本概念

	$\mathbb{N},+$	$\mathbb{R}, +$	$\mathbb{N}, imes$	$\mathbb{R}, imes$	\mathbb{R}^* , ×
群	×	\checkmark	×	×	\checkmark
	$\mathbb{Z}_m, +_m$	\mathbb{Z}_m, \times_m	$M_n(R), +$	$M_n(R), \times$	$\hat{M}_n(R)_{,+}$
群	\checkmark	×	\checkmark	×	×
	$\hat{M}_n(R), \times$	$\rho(X), \cap$	$\rho(X), \cup$		
群	✓	×	×		

半群与群

习题3

在整数集合Z上定义运算*如下

$$x * y = x + y - 2, \forall x, y \in \mathbb{Z}$$

半群与群 0000000000000

判断(ℤ,*)是否是群?

例4.11

设 $\langle G, * \rangle$ 是群, $\forall a \in G$, 定义 $G \to G$ 的映射 f_a 如下:

$$f_a(x) = x * a, \forall x \in G$$

 $\Diamond H = \{f_a | a \in G\}$, 证明 $\langle H, \circ \rangle$ 是群, 其中 \circ 表示复合运算。

定义13(幂)

 $\mathcal{C}(G,*)$ 是半群, $x \in G, n \in \mathbb{Z}^+$,定义

$$x^n = \begin{cases} x & n = 1\\ x^{n-1} * x & n \ge 2 \end{cases}$$

半群与群 00000000000000

 $\dot{\mathbf{z}}(G,*)$ 还是有幺半群, e为单位元, 则定义 $x^0 = e$

$$x^{-n} = (x^{-1})^n.$$

例9

■ 分别在群 $\langle \mathbb{R}^*, \times \rangle$, $\langle \mathbb{R}, + \rangle$ 中计算 $[0.5^4, 0.5^0, (-2)^3, (-2)^{-3}]$

半群与群 0000000000000

■ 分别在 $\langle \hat{M}_r(R), \times \rangle$, $\langle M_2(R), + \rangle$ 中计 算 $\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$ 的2、-1, -2次幂

定理3

设
$$\langle G, * \rangle$$
是一个群,则

- $\forall x \in G, (x^{-1})^{-1} = x$:
- $\forall x, y \in G, (x * y)^{-1} = y^{-1} * x^{-1};$
- $\forall m, n \in \mathbb{Z}, x^m * x^n = x^{m+n}, (x^m)^n = x^{mn}$:

定义14 (有限群、无限群、阶数、平凡群)

 $\mathcal{C}(G,*)$ 是一个群,如果G是有限集合,则称(G,*)是有 限群, G中元素的个数被称为其阶数, 记为|G|。阶等于1的 群被称为平凡群,即其只有一个元素(单位元)。若G是无限 集合,则称 $\langle G,*\rangle$ 是无限群。

半群与群 00000000000000

定义15 (次数)

设 $\langle G, * \rangle$ 是一个群, e为其单位元。对于 $x \in G$, 使得 $x^n = e$ 成立 的最小正整数n被称为是x的次数,记为|x|=n。若不存在这样的正 整数n,则称x是无限次元。

半群与群 0000000000000

$注1 (若 \langle G, * \rangle$ 是一个群, $x \in G$ 且|x| = n, 则)

- $x^n = e$:
- $x^k \neq e, k = 1, 2, \cdots, n-1;$

例10 (证明 $\mathbb{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\}$ 在 \times_{7} 运算下构成群,并求 出各个元素的逆元以及次数)

\times_7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

设 $\langle G, * \rangle$ 是一个半群,则 $\langle G, * \rangle$ 是群的充要条件是: $\forall a, b \in G$, $\forall a : x = b, x * a = b \land G = b$

定理5

设 $\langle G, * \rangle$ 是一个群, e为单位元, 则

■ 若|G| > 1,则 $\langle G, * \rangle$ 没有零元;

群的性质

设 $\langle G, * \rangle$ 是群,则运算*在G上满足消去律。 即 $\forall x, y, z \in G$ 、有

$$x * y = x * z \Rightarrow y = z,$$
 $y * x = z * x \Rightarrow y = z$

半群与群

例4.15

设
$$\langle G, * \rangle$$
是有限群, $G = \{x_1, \cdots, x_n\}$ 。令

$$x_iG = \{x_i * x_j | j = 1, 2, \cdots, n\}$$

证明 $x_iG = G_0$

群的性质

定理7

设 $\langle G, * \rangle$ 是群, e为单位元, $a \in G$ 且|a| = n, 则

半群与群 00000000000000

- $\mathbf{1} a^k = e$ 的充要条件是 $n \mid k$;
- $|a^k| = \frac{n}{\gcd(k,n)} = \frac{\text{lcm}(k,n)}{k};$
- $|a| = |a^{-1}|$:
- $a^s = a^t$ 的充要条件是 $s \equiv t \mod n$;

群的性质

例12

设 $\langle G, * \rangle$ 是群, e是单位元, $a \in G$ 且|a| = 12,

- **II** 求 a^2 , a^5 , a^{-3} 的次数;
- 2 求整数t, 0 < t < 11, 使得 $a^{-14} = a^t$;
- ③求所有满足 $a^t = a^7$ 的整数t:

作业 习题4.3 第 2, 6, 8 题