Zusammenfassung BI

Data Warehouse - Warum

Motivation für DWH:

- Aktuelle Situation ergibt neue Problemstellungen
 - Technologischer Fortschritt
 - o Internationale Verflechtung von Unternehmen
 - Liberalisierung der Märkte

- steigende Dynamik
- hohe Vernetzung Intransperenz

Problem: Die Beherrschung derartig komplexer Situationen stellt hohe Anforderungen an das Entscheidungsverhalten.

Digitale Transformation:

Wird auch als "Digitaler Wandel" bezeichnet und beschreibt den fortlaufenden Veränderungsprozess, denn neue digitale Technologien auf die gesamte Gesellschaft und insbesondere Unternehmen ausüben.

Als Basis ist die immer schneller fortschreitende Entwicklung und damit immer leistungsstärkere digitale Technologien.

Definition Data Warehouse

- aus einer oder mehreren operativen Datenbanken extrahierte Datenbank
- fasst alle relevanten Daten für den Geschäftsprozess eines Unternehmen zusammen
- aggregiert die Daten und bereitet diese auf
- aggregeiert \rightarrow anhäufen, zusammenballen, zusammentragen
- umfasst Meta-, die Dimensions- und Aggregationsdaten
- ermöglicht Informationsgestützte Entscheidungen
- beinhaltet notwendige Verwaltungsprozesse (CRUD)

<u>Ziele / Anforderungen an Data Warehouse – Systeme</u>

- Aufbau einer zentralen und konsistenten Datenbasis
- für verschiedene Anwendungen
- zur Unterstützung analytischer Aufgaben von Fach- und Führungskräfte
- losgelöst betrieben von den operativen Datenbanken

Anforderungen nach INMON an ein DWH

- Struktur- und Formatvereinheitlichung (Integration):
 - o Ablage der Daten einer Datenstruktur mit einheitlichen Format
- Subjektorientierung:
 - Speicherung orientiert an den Subjekten eines Unternehmens
- Zielraumbezug (time variant):
 - Speicherung aller Daten mit Zeitraumbezug (nicht zeitpunktbezogen)
- Nicht-Volatilität
 - o keine Änderung einmal gespeicherter Daten

<u>Denormalisierung</u> →

Auf eine Normalisierung nach Codd wird verzichtet, bzw. ist eine Normalisierung vorhanden, wird diese rückgängig gemacht.

Grund: Reduzierung der Zugriffzeiten und damit Gewinn an Performance.

- Keine 3. Normalform
- Entfernen vorhandener Normalformen
- Steigerung der Performance → keine Joins notwendig

Beispiel:

OLTP-Syste	em: 3. NF		joi	in	
product_ID	name	category_I	D	category_ID	name
210	2 Blueberry Milk		8	8	Milk
150	Buttermilk		8	12	Yogurt
130	2 Schoklade Milk		8		
210	3 Blueberry Yogurt	1	2		
130	7 Strawberry Yogurt	1	2		

DWH-System: not 3. NF

product_ID	productname	category_ID	categoryname
2102	Blueberry Milk	8	Milk
1508	Buttermilk	8	Milk
1302	Schoklade Milk	8	Milk
2103	Blueberry Yogurt	12	Yogurt
1307	Strawberry Yogurt	12	Yogurt

kein JOIN in Abfrage notwenig

<u>Daten-orientiert <-> Subjekt-orientierte Modellierung</u>

Subjektorientiert:

- Datenbankschema an den Subjekten der Business Analyse und nicht an den Datenbankobjekten (OLTP - Online-Transaction-Processing Datenbank) orientiert
- Sinnvoll da unterschiedliche Unternehmensfunktionen gleiche Subjekte des DWH für die Analyse nutzen.
- Beispiel:

Daten-orientierte versus Subjekt-orientierte Modellierung

Subjektorientierung

- Fakten Kennzahlen
 - o Nummerische Messgröße betriebliche Kennzahlen
 - o Bsp. Umsatz, Deckungsbeitrag, Anzahl an Zugriff (Webseite)
- Dimensionen
 - Auswertrichtungen nach den Kennzahlen ausgewertet werden können
 - o Beschreiben den Rahmen für die Auswertung der Kennzahlen
 - o Sind eine unabhängige Liste an Analyseelemente
 - Orthogonale Struktur des Datenraumes
 - o Spannen die Kennzahlen im Raum auf
 - o Bsp. Zeit, Geografie, Sortiment, Zahlungsweise
 - Produkt besitzt Attribute → Name, Preis, Subkategorie, Kategorie
- !! Beide Subjekte gehören im großen ganzen Zusammen
- Hierarchien Sortiment (Hierarchien werden auch Level(Ebene) genant
 - Kategorie → Subkategorie → Name
- Attribute sind Eigenschaften von Dimensionen
 - o werden für die Klassifizierung und Filterung der Kennzahlen verwendet
 - o können zur Bildung der Hierarchien in der Dimension verwendet werden
 - o verwendete Attribute bilden Ebenen der Hierarchie

Dimension: Zeit besitzt Attribute:

• Jahr, Quartal, Monat, Woche, Tag

Hierarchien:

- Kalender: Jahr → Quartal→Monat
- Gaswirtschaftsjahr: Gasjahr→Quartal→Monat
 - o Bsp. GWJ2018
 - Q4/2017 → Okt. Nov. Dez.
 - ... Q3/2018 → Juli, Aug, Sept

Analyse und Synthese

primäres Ziel: Bewältigung der Komplexität von Systemen

Arten der Dimensionshierarchien

• Normal = ausgeglichen

- o Jeder Knoten hat genau einen Vorgänger (Ausnahme: Wurzel)
- o Jeder Weg von der Wurzel zum Blatt hat die gleiche Länge
- o Es existieren keine Lücken in den Werten der Knoten
- o Es existieren keine Lücken in den Werten der Knoten
- Beispiel:

Produkt

Parallel

- o es gibt Knoten mit mehr als einem übergeordneten Knoten
- o es sind mehr Wege von der Wurzel zu einzelnen Blättern vorhanden
- o es gibt keine Lücken in den Werten der Knoten
- o Beispiel:

Name: Zeit

unausgeglichen

- o jeder Knoten hat genau einen Vorgänger (Ausnahme: Wurzel)
- o die Wege von der Wurzel zu den Blättern haben unterschiedliche Länge
- o es existieren keine Lücken in den Werten der Knoten
- o Beispiel:

- unregelmäßig
 - o jeder Knoten hat genau einen Vorgänger
 - o in den Zwischenebenen sind zum Teil keine Werte in den Knoten vorhanden
 - Beispiel:

Kennzahlen

- additive
 - beim Wechsel in ein h\u00f6heres Level der Hierarchie ist die Summenbildung immer erlaubt
- nicht additiv
 - beim Wechsel in ein h\u00f6heres Level der Hierarchie ist die Summenbildung nicht erlaubt
- halb additiv
 - beim Wechsel in ein h\u00f6heres Level der Hierarchie ist die Summenbildung teilweise erlaubt

Relational

- Datenspeicherung im rel. DBMS
- Modellierung der Cubestruktur mittels Relationen (Tabellenform)
- Verwendung des SQL-Standards zur Datenabfrage und manipulation

Beispiele:

- Star Schema
- Snowflake Schema

ROLAP

- Relational Online Analytical Processing

Nicht Relational

- Datenspeicherung nicht in relationaler Art
- Speicherung des Cube mit klassischen Methoden der Informatik
- Fehlende Standards für die Datenabfrage und -manipulation

Beispiele:

- Arrays
- Hash-Tables
- Bitmap indicies

MOLAP

- Multidimensional Online Analytical Processing

Spezifikation eines Cubes:

Anforderungsdiagramm:

Fakten	Mengenumsatz, Wer	Mengenumsatz, Wertumsatz		
Dimensionen	Produkt	Zeit	Geografie	
Attribute	KategorieNameFarbe	JahrMonat	LandRegionFilliale	
Hierarchien - Level	Sortiment	Kalender		
	Kalender → Name	Jahr → Monat		

DWH-SCHEMA

Star-Schema

- Struktur ermöglicht zur Entscheidungsfindung eine typische Abfrage genutzt werden kann
- Zentrum des Schemas ist die Fakt-Tabelle
- Um die Fakt-Tabelle ordnen sich die Dimensionstabellen
- Verbindungen klassisch über Primär / Fremdschlüssel
- Verwendet das relationale Datenmodell zur Abbildung multidimensionaler Strukten

Aufbau eines Starschemas:

Eigenschaften:

- Bezug mehrere Dimensionstabellen auf eine Fakttabelle
- Große Datensatzanzahl in der Fakttabelle gegenüber den Dimensionstabelle
- 1:n Beziehung jeder Dim-Tabelle zur Fakttabelle
- hohe Abfrageeffizenz
 - o Abfrage auf großer Fakttabelle mit einfachem JOIN zu kleinen Dim-Tabellen
 - o Bildung des JOIN nur zwischen Fakttabelle und der jeweiligen Dim-Tabelle
- Einfache Anfrageerstellung durch geringe Tabellenanzahl
- Hoher Aufwand bei Änderung der Dimensionshierarchien

<u>Vorteile</u>	<u>Nachteile</u>
 Intuitives Datenmodell 	Schlechte Antwortzeiten bei großen
Geringe Anzahl an JOIN-Operationen	Dimensionstabellen
 Veränderungen und Erweiterungen 	 Erhöhter Speicherbedarf in den
können leicht umgesetzt werden	Dimensionstabellen durch NICHT-
	Normalisierung
	 Mehrfaches Speichern identischer
	Werte → Redundanz in den
	Dimensionstabellen

Anwendung bei:

- wenn schnelle Abfrageverarbeitungen notwendig sind
- schnell ändernde Datenstrukturen vorliegen
- Dimensionstabellen in ihrer Größe überschaubar bleiben
- viele Nutzer Zugriff benötigen

Star-Schema mit Levelattribut	Fact constellation
Aggregate vorberechnen und IN Fakttabelle speichern	Aggregate vorberechnen und in NEUE Fakttabellle speichern
DimTabelle: Level-Attribute einfügen	Keien Änderung der DimTabelle
Nachteil Zugriff auf aggr. Werte = Zugriff auf Detailwerte, da eine Faktabelle	Vorteil - Zugriff auf aggr. Werte schnell - keine LevelAttribute nötig
<u>Vorteil</u> einfaches Schema → einfache Abfrage von aggr. Werten und Detailwerten	Nachteil komplexes Schema → komplexere Abfrage von aggr. Werten und Detailwerten

Snow-Flake-Schema

- abgeleitet aus dem Star-Schema
- normalisiert die Dimensionstabellen
- in jeder Dimension wird für jede Hierarchieebene eine eigene Tabelle eingeführt
- Verbindungen zwischen Dim-Tabellen und Fakttabelle über Fremdschlüssel-Primärschlüssel-Beziehungen realisiert

Dimensionstabelle	Fakttabelle
Enthält:	Enthält:
 Primärschlüssel für den Hierarchieknoten (z.B. P_Nr) beschreibendes Attribut (z.B. Name) 	 Fremdschlüssel der jeweils nierdrigsten Hierarchiestufe der Dimensionen (z.B. P_Nr) Primärschlüssel als zusammengesetzten Schlüssel,

 Fremdschlüssel der nächst höheren Hierarchieebene (z.B. K_Nr) bestehend aus den Fremdschlüsseln der niedrigsten Hierarchiestufen der Dimensionen (z.B. P_Nr, F_Nr, M_Nr)

<u>Vorteile</u>	<u>Nachteile</u>
 Geringer Speicherplatzverbrauch (Dimensionstabellen enthalten durch Normalisierung keine Redundanzen) N:M Beziehungen zwischen den Aggregationsstufen können über Relationstabellen aufgelöst werden Browsing-Funktionalität: häufige Abfragen über sehr große Dimensionstabellen erbringen Zeitersparnis und Geschwindigkeitsvorteile 	 Geschwindigkeitsnachteil: durch zusätzliche Verbunde der Dimensionstabellen Große Tabellenanzahl durch komplexe Strukturierung Reorganisationsproblem: Änderungen im semantischen Modell führen zu umfangreicher Reorganisation

Bewegen im Cube

Slice → Filtern im Cube "Scheibe herausschneiden"
Rollup → Aggregieren von Detailwerten
Drill Down → Detaillieren von Detailwerten
Drill Acrose → Zellinhalte wechseln
Dice → Darstellungsbereich ändern Ergebnis: kleinerer Cube
Pivoting → Achsen vertauschen

ETL-Prozess

Extraktion: → holen von Daten aus der Datenquelle

- macht Änderungen in den Quelldaten
- möglich über:
 - o Trigger
 - o Replikationen
 - o Log basierend
 - o Zeitstempel basierend
 - SnapShot basierend

Transformation:

Überführung in die DWH - Struktur				
inhaltlich (Instanzintegration)	strukturtechnisch			
 bereinigen 	 Schemaintegration 			
 harmonisieren 	 → nicht verträgliche Datentypen 			
 Verdichtung 				
Anreicherung				
Bereinigung				
automatisch	manuell			
	(Falsch- bzw. Fehlereingaben			

Harmonisierung:

- Kodierung: bsp. Geschlecht
- Synonyme: unterschiedliche Attributs Namen → gleiche Bedeutung
- Homonyme: gleiche Attributs Namen → unterschiedliche Bedeutung

Verdichtung

Anreicherung: → betriebswirtschaftliche Kennzahlen bilden – Berechnungen

Laden:

Aufgabe:

• Übertragen der bereinigten und aufbereiteten (z.B. aggregierten) Daten in das Data Warehouse

Besonderheiten:

- i.A. Verwendung spezieller Ladewerkzeuge (z.B. SQL*Loader von Oracle)
- Anwendung von Bulk-Laden
- Historisierung: kein Überschreiben von Daten im DWH bei Änderungen in den Quelldaten, sondern zusätzliches Abspeichern

Ladevorgang

- online: Quelldatenbank und DWH stehen weiterhin zur Verfügung
- offline: Quelldatenbank und DWH stehen nicht zur Verfügung (i.A. Verwendung von Zeitfenstern mit Schwachlast, z.B. nachts oder an Wochenenden)

Data Mininig

Ist die Anwendung von Methoden und Algorithmen zur möglichst automatischen Extraktion empirischer Zusammenhänge zwischen Planungsobjekten, deren Daten in einer hierfür aufgebauten Datenbasis bereitgestellt werden.

→ Anwendung effizienter Algorithmen, die in einer Datenbank, einem Data Warehouse enthaltenen Muster liefern.

Anwendungen:

- Warenkorbanalyse im Handel
- Bewertung Kreditwürdigkeit Banken
- Analyse von Textinhalten alle Branchen
- Bewertung Werbewirksamkeit alle Branchen

Bestandteile:

- Statistik
- Maschinelles Lernen
- Datenbank
- Softcomputing (FUZZY)

<u>Klassen</u>

<u>Klasse</u>	Gegenstand	Anwendung-bsp.	Methoden-bsp.
	(Aufgabe)		
Klassifikation	Individuen	Bonitätsprüfung	 Diskriminanzanalyse
	bekannten		 Entscheidungsbaum/
	Klassen zuordnen		Entscheidungsregeln
Clustering	Gruppen auf	Ermittlung von	Clusterverfahren
	Basis von	Kundengruppen	
	Ähnlichkeiten		
	bilden		
Vorhersage	Zukünftige Werte	Aktienkursprognose	Regression
	berechnen	Strompreisprognose	ARIMAX –
			Verfahren(ARIMA-Gruppe)
			KNN (künstliche neuronale
			Netze)
Assoziation	Abhängigkeiten	Warenkorbanalyse	Assoziationsregeln
	bestimmen		
Text Mining	Textmuster	Information retival	KNN
	suchen		Word2Vec(google)

Ziel der Klassifikationsregelgenerierung:

• Redundanzarme, vollständige, widerspruchsfreie und effiziente Menge an Klassifikationsregeln erzeugen.

Datenkategorien

Kategorial - kategorisch		Numerisch - kontinuierlich	
(auflistend, diskret)			
Nominal (auflistend)	Ordinal (sortierend)	Intervall (Abstand)	Raito (Verhältnis)
- vordefinierte	- endlicher	- unendlicher	- Unendlicher
endlicher	Wertebreich	Wertebereich	Wertebreich
Wertebereich	 Ausprägung sind 	 ausprägungen sind 	- Meßverfahren def.
- Wert ist	Namen	Zahlen	zusätzlich den
Beschriftung	- Sortierung	- Differenzbildung	Nullpunkt
 keine Relationen 	Sinnvoll	möglich	- Alle math.
zwischen den	- Kein Abstand	- Summe nicht	Operationen
Werten	sinnvoll	sinnvoll	erlaubt
- keine mathem.	- Prüfung: = > <	Beispiele:	Beispiel:
Operationen	Beispiele:	- Datum:	Alter einer Person
 keine Sortierung 	- Temperatur:	2010-2007 = 3;	oder Abstand
und Abstand	heiß, mild,	2010+2007=nicht	zweier Objekte
- Prüfung auf	kalt	sinnvoll	
Gleichheit	- heiß > mild >		
Beispiele:	kalt		
- Aussicht:			
sonnig,			
bewölkt,			
regnerisch			
- wenn Ansicht			
== sonnig,			
dann			

Bsp:

ID	Alter	Autotyp	Risikoklasse
1	23	Familie	hoch
2	17	Sport	hoch
3	43	Sport	hoch
4	68	Familie	niedrig
5	32	Lkw	niedrig

Ratio Attribut nominales Attribut

ordinales Attribut

Prediktorvariablen

unabhängige Variablen:d.h. Variablen, die die Werte der Zielvariablen vorhersagen

Zielvariable

= abhängige Variable:

d.h. Variable, deren Wert mittels Prediktorvariablen vorhersagt wird

Statistische Unabhängigkeit / Abhängigkeit

Statistische Unabhängigkeit	Statistische Abhängigkeit	
Merkmale variieren in Be	ezug auf eine Zielvariable	
nicht gemeinsam	gemeinsam	
 gleiches Zentrum der Verteilung und gleicher Verlauf der Verteilung 	 unterschiedliches Zentrum der Verteilung und/oder unterschiedlicher Verlauf der Verteilung 	

Beispiel: Abhängigkeit der Reaktionszeit t von der Körpergröße g bei Testpersonen

keine gemeinsame Variation

statistische Unabhängigkeit

statistische Abhängigkeit

Overfitting

• Überanpassung eines Modells (z.B. Entscheidungsbaum) an die zu lernenden Datensätze

Folge:

- Modell bildet gelernte Daten sehr genau ab
- Bei Anwendung des Modells auf unbekannte Datensätzen treten große Fehler
- \rightarrow fehlerhafte Klassifikationen

Lösungswege:

- aufteilen der Gesamtdatenmenge in
 - Lerndatenmenge → Modellerstellung
 - Testdatenmenge → Modellvalidierung
 - o Modellvalidierung mit Kennzahlen
- Pruning

		Realität (reale Ergebnisse in der Testdatenmenge)		
		positiv	negativ	
Ergebnis der Modellanwendung auf die Testdatenmenge	positiv	richtig Positive rp	falsch Positive <i>fp</i>	
	negativ	falsch Negative <i>fn</i>	richtig Negative <i>rn</i>	

Pruning

• Vermeiden bzw. verringern von Overfitting eines Entscheidungsbaums durch kürzen ("zurückschneiden").

Verfahren:

- Begrenzen des Baumaufbaus durch Stoppkriterien(prepruning):
 - O Vorgabe der maximalen Anzahl an Ebenen im Baum
 - o Vorgabe einer Mindestanzahl an Elementen in einem Knoten
- Reduzierung der Komplexität des Baumes
 - o Einsatz von Knoten oder Teilbäume durch Blätter (postpruning)
- Bagging
- Boosting
- Stacking

Größe der Testdatenmenge

- > zu klein: Fehler in der Testdatenmenge nicht signifikant
- > zu groß: Lerndatenmenge zu klein (ggf. fehlen wichtige Daten darin)
- verschiedene Wege zur Bestimmung einer möglichst optimalen Aufteilung,

Bagging → Bootstrap Aggregation

- Kombination von N Modellen zu einem besseren Gesamtmodell(Metalerner):
 - Ziehen von N Bootstrap-Sampeln als Lerndatensätze
 - o Erzeugen eines Modells je Bootstrap-Sample mit dessen Lerndatensätzen
- Klassifikation eines neuen (dem Gesamtmodell) unbekannten Datensatz:
 - o Klassifikation des Datensatzes durch jedes einzelne Modell
 - Gesamtergebnis = Mehrheitsentscheidung über die Klassifikation der einzelnen als Modell

Boosting

- trainiert eine Folge von Modellen auf einer Stichprobe der Lerndatenmenge
- fehlerhaft klassifizierte Datensätze werden im späteren Modell bevorzugt

Stacking

- es werden mehrere unterschiedliche Modelle (Basisdatenklassifikatoren) auf auf den selben Daten trainiert
- Modelle haben verschiedene Stärken und Schwächen
- aus den Ergebnissen wird ein weiteres Modell trainiert (Metaklassifikator)
- Metaklassifikator sucht den besten Basisklassifikator für eine Entscheidung heraus

Neuronale Netze Ausgangsmuster Neuronales Netz this impangsmuster

Funktionsweise

- Eingangsmuster wird mit Hilfe der vernetzten Verarbeitungselemente des neuronalen Netzes verarbeitet und erzeugt daraus ein entsprechendes Ausgangsmuster
- Gewichtete Summierung mit nahfolgender Nichtlinearität

Lernphase \rightarrow erhält entsprechende Ein-/Ausgangsmusterpaare und entwickelt daraus entsprechende Netzparameter

Gebrauchsphase → neue Eingabemuster werden übergeben und das Netz erzeugt entsprechende Ausgangsmuster

Definition

- System zur Informationsverarbeitung mit Hilfe von einfachen vernetzten Elementen
- hat gerichtete Ein- und Ausgaben

Eingangsmuster

Assoziationsregeln

Eine Assoziationsregel ist eine Regel, die eine beliebige Kombination unterschiedlicher Attribut/Werte-Paare enthält.

- beliebige Kombination bedeutet > Verwendung von Attributen aus dem Bedingungs- und dem Entscheidungsteil
- Attribut/Werte-Paar wird auch als **Gegenstand (item)** bezeichnet

Abdeckung: Anzahl an Instanzen, die die Assoziationsregel korrekt vorhersagt Genauigkeit: Verhältnis von der Abdeckung zur Anzahl der Instanzen, auf die die Regel angewendet wird.

Beispiel:

	Aussicht	Temperatur	Luftfeuchte	Wind	Spiel
1.	sonnig	heiß	hoch	nein	nein
2.	sonnig	heiß	hoch	ja	nein
3.	bewölkt	heiß	hoch	nein	ja
4.	regnerisch	mild	hoch	nein	ja
5.	regnerisch	kalt	normal	nein	ja
6.	regnerisch	kalt	normal	ja	nein
7.	bewölkt	kalt	normal	ja	ja
8.	sonnig	mild	hoch	nein	nein
9.	sonnig	kalt	normal	nein	ja
	regnerisch	mild	normal	nein	ja
	sonnig	mild	normal	ja	ja
	bewölkt	mild	hoch	ja	ja
13.	bewölkt	heiß	normal	nein	ja
	regnerisch	mild	hoch	ja	nein

Assoziationsregeln:

1. WENN Temperatur = kalt

2. WENN Luftfeuchte = normal UND Wind = nein

3. WENN Aussicht = sonnig

UND Spiel = nein 4. WENN Wind = nein UND Spiel = nein

DANN Luftfeuchte = normal

DANN Spiel = ja

DANN Luftfeuchte = hoch

DANN Aussicht = sonnig UND Luftfeuchtigkeit = hoch

Abdeckung: I (Kaffee, Milch)=3/6=50%

II (Kaffee, Milch, Kuchen)=2/6=33%

Kaffe, Milch → Kuchen=II/I=33%/50%=67% Genauigkeit

> Abdeckung von allen Werten bilden 1-items set Kombination

- 1. Betrachtung von Itemsets, die eine Mindestabdeckung besitzen Bildung 1-Itemsets → 2-Itemsets ... (Abstand dazwischen ist Mindestabdeckung)
- 2. Umwandlung der Sets in Regeln, die eine Mindestgenauigkeit aufweisen

Berechnen:

Abdeckung (I2) = 6 (DS: 5, 7, 9, 10, 11, 13)

rule R2: Luftfeuchte = normal UND Spiel = ja => Wind = nein

Abdeckung (R2) = 4 (DS: 5, 9, 10, 13)

	Lower- Management	Middle- Management	Top- Management
Verwendung externer Daten			
Verwendung interner Daten			
Verknüpfung von Variablen			
Detaillierung			
Erforderliche Zugriffszeit			
Häufigkeit des Zugriffs			
Einsatz von analytischen Verfahren			
Einsatz von heuristischen Verfahren (z.B. Simulation)			

Scharfe und unscharfe Mengen

Schritte des Chaid Algorithmus:

Idee:

- Signifikanz eines statistischen Tests nutzen

- Werte der Prädiktorvariable ähnlich (1. Schritt)

Ja: zusammen führen Nein: erhalten

- Auswahl der Prädiktorvariable des nächsten Knotens (2. Schritt)

Merkmal ist intervallskaliert: Korrelation Merkmal ist ordinalskaliert: Assoziation Merkmal ist nominalskaliert: Kontingenz

Beispiel:

Merkmale: "Abschalten" während der Vorlesung nach Geschlecht

Merkmal: Abschalten: stimmt /stimmt nicht

Geschlecht: männl. / weibl.

 Schritt: Preparing Predictors (kontinuierliche Werte -> kategorische Werte) (Klassenbildung)

2. Schritt: Merging categories (Werte zusammenfassen; Klassifikation)

3. Schritt: Selecting the Splitvariable

Schritt 2 & 3 wiederholen sich je Ast

<u>Arten von IS</u>

- Transaktionssysteme (OLTP) Leistungsschicht
- Büroinformationssysteme (OIS) Adminschicht
- Abfrage und Berichtssystem (QRS) Managementschicht
- Managementunterstützungssysteme (MSS) Managementschicht
- Managementinformationssysteme (MIS) Managementschicht
- Executive Information Systeme (EIS) Managementschicht

ROLAP-Abfragen (SQL)

STAR-JOIN

SELECT > Attribute der Dimensionen

Kennzahlen [aggregiert]

Dimensionstabellen FROM

> Fakttabelle

> JOIN-Bedingungen JOIN

ON

[] ... Schemavariante > Explizite Bedingungen WHERE ohne level-Attribut

[Level = Wert]

[GROUP BY] ➤ Kenngrößen]

Beispiel: Ermittlung der 2015 im Land "Deutschland" verkauften

Produkte mit Namen "Radeberger"

Dimensionen: Zeit: Jahr, Quartal, Monat

> Produkt: Name, Kategorie Geografie: Land, Region, Staat

[] ... Schemavariante

mit level-Attribut

Kennzahlen: Mengenumsatz, Wertumsatz

SELECT Jahr, Land, Sum(Mengenumsatz) FROM Verkauf V

JOIN Produkt P on V.P Nr = P.P Nr JOIN Geografie G on V.G Nr = G.G Nr JOIN Zeit Z on V.Z Nr = Z.Z Nr

Where Land = 'Deutschland'

And Jahr = 2015

And Name = Radeberger

Group by Land, Jahr

Group by – Erweiterungen:

Gruppierung mit Rollup

WITH ROLLUP

Jahr	Q_ID	Umsatzbetrag			
2013	201301	975509,41			
2013	201302	1049897,62			
2013	201303	1125466,82			
2013	201304	1047118,45			
2013	NULL	4197992,30			
2014	201401	1156138,95			
2014	201402	1314491,31			
2014	201403	1218761,16			
2014	201404	1238545,65			
2014	NULL	4927937,07			
NULL	NULL	9125929,37			

Gruppierung mit CUBE

SELECT Z.Jahr, G.Staat, SUM(U.Umsatzbetrag) AS Umsatzbetrag
FROM Umsatzdaten U

JOIN Zeit Z ON U.Mon_ID = Z.Mon_ID

JOIN Geografie G ON U.Land_ID = G.Land_ID

GROUP BY Z.Jahr, G.Staat
WITH CUBE

Jahr	Staat	Umsatzbetrag
2013	Deutschland	1823634,11
2014	Deutschland	2134530,02
NULL	Deutschland	3958164,13
2013	Österreich	564187,80
2014	Österreich	662805,93
NULL	Österreich	1226993,73
2013	Schweiz	1810170,39
2014	Schweiz	2130601,12
NULL	Schweiz	3940771,51
NULL	NULL	9125929,37
2013	NULL	4197992,30
2014	NULL	4927937,07

Kreuztabellen (Pivot)

- Über das "Group By" wird normal gruppiert
- In einer zweiten Ebene eine Gruppierung durchgeführt, unabhängig vom ersten "Group By" Attribut
- Werte des PIVOT-Attributs werden neue Spalten in der Ereignisrelation

Gruppierungsabfrage				
ArtikelNr	Verkaufsgebiet	Verkaufte Einheiten		
ALG-001	Ost	150		
ALG-002	Nord	53		
ALG-002	Ost	150		
ALG-003	Nord	20		
ALG-003	Süd	30		
ALG-003	West	30		
ALG-004	Süd	30		
ALG-004	West	80		
ALG-005	Nord	40		
ALG-005	Ost	10		
ALG-006	Nord	200		

	Kreuztabellenabfrage					
ArtikelNr	Gesamt- summe	Nord	Ost	Süd	West	
ALG-001	150		150			
ALG-002	203	53	150			
ALG-003	80	20		30	30	
ALG-004	110			30	80	
ALG-005	50	40	10			
ALG-006	243	200	43			
ALG-007	5		5			
EDV-001	55		25	15	15	
EDV-002	78	3	50	25		
EDV-003	55	40	10	5		
EDV-004	52	17		15	20	

OLAP-Operationen im Front-End

- Pivoting: Drehen eines Würfels in eine andere Achse
- Roll-UP eine Hierarchie-Ebene höher

• Drill-Down – eine Hierarchie-Ebene niedriger

	2015	2016 Zeit		2015
Nord	12116	Drill drown,	Hamburg	5550
West	11814	Roll up	Hannover	2890
Mitte	10414		Bremen	3676

 Slice – eine "Scheibe" eines Würfels, in der Tiefe Filtern, Filter auf nicht-Anzeige-Achse → Ergebnis ist eine zweidimensionale Matrix

• Dice – kleiner mehrdimensionaler Ausschnitt des Cubes → neuer mehrdimensionaler Datenraum, der wiederum extrahiert und weiter verarbeitet werden kann

- Visualize
- Drill-trough: Einzelwerte anzeigen

Elemente des Cubes aus Abfrage Sicht

- Dimension
 - o Produkt besitzt Attribute
 - Name, Preis, Subkategorie, Kategorie, Lieferant)
 - o Hierarchie Sortiment
 - Level: Kategorie → Subkategorie → Name

MDX

- Multidimensional Expression
- Von MS entwickelt für OLAP-Datenbanken
- Mittlerweile Industriestandard
- Relativ komplex → für IT-Entwickler bzw. Abfragesprache für Applikationen, nicht für Endanwender

<u>Abgrenzung</u>

MDX	SQL				
Abfragesprache für Datenbanken					
Microsoft	ANSI und ISO Standard				
Abfrageschema basiert auf SELECT, FROM, WHERE					
Basis ist eine multidimensionale OLAP Datenbank (CUBE)	Basis ist eine relationale Datenbank				
Versteht Hierarchien, Vorgänger / Nachfolger, Cousin, und kann Eigenschaften von Elementen, Zellen auslesen und definieren					
2 – n dimensionales Ergebnis, also Tabelle oder Cube	2 dimensionale Ergebnis, also Tabelle				
Ähnliche Basisoperatoren und -funktionen					

<u>Abfrageschema</u>

• Aufbau einer MDX – Abfrage

SELECT
 <Abfrageachse> ON COLUMNS,
 <Abfrageachse> ON ROWS
FROM <Cube>
WHERE <Slicerachse>

- <Abfrageachse> → Menge aus denen die Daten abgerufen werden
- <Cube> → Cube(s) der (die) abgefragt werden sollen
- <Slicerachse> → Menge oder Tupel auf die die Ergebnismenge eingeschränkt wird

Parent und PrevMember - Beispiel

Parent und PrevMember am Beispiel der Dimension Zeit level: values: alle Jahre all Jahr 2006 2007 Quartal 2. Q Jan Feb Mär Apr Mai Jun Jul Aug Sep Okt Nov Dez Jan Feb Mär Apr Mai Monat **PrevMember Parent** level: values: alle Jahre all Jahr 2007 2006 Quartal 1. Q 3. Q 2. Q |Feb||Mär||Apr||Mai| Monat Mai Jun Okt Nov Dez Jul **FirstChild** LastChild

Beispiel MDX - Abfragen

- (1.) Zeigen Sie Umsatzbetrag und Umsatzmenge der Bundesländer Sachsen und Thüringen an.
- Select {[Measures].[Umsatzbetrag],[Measures].[Umsatzmenge]} on columns, {[Geografie].[Bundesland].&[01],[Geografie].[Bundesland].&[15]} on rows from [Umsatz]
 - (2.) Erweitern Sie die Abfrage (1), so dass nur Umsatzbetrag und Umsatzmenge des Jahres 2018 angezeigt werden.
- Select {[Measures].[Umsatzbetrag],[Measures].[Umsatzmenge]} on columns, {[Geografie].[Bundesland].&[01],[Geografie].[Bundesland].&[15]} on rows from [Umsatz] Where ([Zeit].[Jahr].&[2018])
 - (3.) Zeigen Sie die Umsatzbeträge für alle Produktkategorien in den Bundesländern Sachsen und Thüringen für das Jahr 2018 an.
- Select {[Produkt].[Kategorie].AllMembers} on columns, {[Geografie].[Bundesland].&[01],[Geografie].[Bundesland].&[15]} on rows from [Umsatz] Where ([Zeit].[Jahr].&[2018],[Measures].[Umsatzbetrag])
 - (4.) Zeigen Sie die Umsatzbeträge für alle Subkategorien der Produktkategorie Backwaren in den Bundesländern Sachsen und Thüringen für das Jahr 2018 an.
- Select {[Produkt].[Backwaren].Children} on columns, {[Geografie].[Bundesland].&[01],[Geografie].[Bundesland].&[15]} on rows from [Umsatz] Where ([Zeit].[Jahr].&[2018],[Measures].[Umsatzbetrag])
 - (5.) Zeigen Sie die Umsatzbeträge für alle Produktkategorien und alle Staaten für das Jahr 2018 an.
- Select {[Produkt].[Kategorie].Members} on columns, {[Geografie].[Staat].Members} on rows from [Umsatz] Where ([Zeit].[Jahr].&[2018],[Measures].[Umsatzbetrag])

(6.) Zeigen Sie die Umsatzbeträge und Umsatzmengen für alle Produktkategorien und alle Staaten für das Jahr 2018 an.

Select{[Produkt].[Kategorie].children}*{[Measures].[Umsatzbetrag],[Measures].[Umsatzmen ge]} on columns,

```
{[Geografie].[Staat].children} on rows
From [Umsatz]
Where ([Zeit].[Jahr].&[2018])
```

(7.) Zeigen Sie den Umsatzbetrag für alle Produktkategorien im Jahr, im Quartal und im Monat an.

```
Select {[Produkt].[Kategorie].Members} on columns,
{[Zeit].[Jahr].children}*{[Zeit].[Quartal].children}*{[Zeit].[Monat].children} on rows
From [Umsatz]
Where ([Measures].[Umsatzbetrag])
```

(8.) Ändern Sie die Abfrage (7) so ab, dass nun Umsatzbetrag und Umsatzmenge für alle Produktkategorien und die Quartale und Monate des Jahres 2018 angezeigt werden.

Select

from [Umsatz]

{[Measures].[Umsatzbetrag],[Measures].[Umsatzmenge]}*{[Produkt].[Kategorie].children} on columns,

```
{[Zeit].[Quartal].children}*{[Zeit].[Monat].children} on rows
From [Umsatz]
Where ([Zeit].[Jahr].&[2018])
```

(9.) Wie groß ist die Differenz zwischen Plan- und Ist-Umsatz für die Produktsubkategorien in den Jahren 2017, 2018 und insgesamt? Hinweis: Verwenden Sie zur Lösung WITH MEMBER und weisen Sie neben der Differenz den Umsatzbeitrag und den Planumsatz aus.

<u>Unscharfes schließen</u>

Einstellungskriterium:

• (Ausbildung ODER Erfahrung) UND (Selbstständigkeit ODER Teamarbeit) UND Alter

Kandidaten

Fuzzy Entscheidungsfindung

UND: Minimum
ODER: Maximum

Beispiel Mitarbeiterauswahl

Kriterium (Ausbildung ODER Erfahrung) UND (Selbstständigkeit ODER Teamfähigkeit) UND Alter

Zugehörigkeit	Kandidaten				
	1	2	3	4	5
1. M-Alter	1	0,5	0,7	0,1	0,6
M-Ausbildung	0,2	0,8	0,5	0,8	0,6
M-Erfahrung	0,3	0,2	0,9	1	0,6
M-	0,6	0,4	0,7	1	0,5
Selbstständigkeit					
M-	0,4	0,5	0,2	1	0,8
Teamfähigkeit					
<mark>1. M-Ausb.</mark>	0,3	0,8	0,9	1	0,6
ODER M-Erf.					
2. M-Selbst.	0,6	0,5	0,7	1	0,8
ODER M-Team					
M-Krit = M1 und	0,3	0,5	0,7	0,1	0,6
M2 und M3					

ODER \rightarrow MAX; UND = Min(m1,m2,m3); optimaler Kandidat \rightarrow Kandidat 3 nach den Kriterien

<u>Gegenüberstellung OLTP – DWH</u>

Kriterium	OLTP-Sytem	DWH-System
Anfragearten	Lesen, Schreiben, Ändern, Löschen	Lesen, periodisches Hinzufügen
Transaktions- dauer und typ	kurze Lese- und Schreibtrans- aktionen	lange Lesetransaktionen
Anfragestruktur	einfach strukturiert	komplex
Datenvolumen je Anfrage	wenige Datensätze	viele Datensätze
Datenmodell	anfragebezogen	analysebezogen
Datenquelle	meist eine	mehrere
Eigenschaften der Daten	nicht abgeleitet, zeitpunkt-bezogen, autonom, dynamisch	abgeleitet, konsolidiert, zeitraum- bezogen, integriert, stabil
Datenvolumen	MByte GByte	GByte TByte
Zugriffsart	Einzeltupelzugriff	Tabellenzugriff
Anwendertyp	Ein- und Ausgabe durch Angestellte oder Anwendungssoftware	Manager, Controller, Analyst
Anwenderzahl	sehr viele	wenige (bis einige hundert)
Antwortzeit	ms sec	sec min

ROLAP - MOLAP

	ROLAP	MOLAP
Bedeutung	Relationales-OLAP	Multidimensionales-OLAP
Datenspeicherung	Daten liegen in relationalen Datenbanken vor.	Daten werden in multidimensionalen Datenbanken als Datenwürfel gespeichert
Daten Form	Relationale Tabellen	Multidimensionale Arrays
Datenvolumen	Hohes Datenvolumen und hohe Nutzerzahl	Mittleres Datenvolum, da Detaildaten in komprimiertem Format vorliegen
Technologie	Benötigt Komplexe SQL Abfragen, um Daten zu beziehen	Vorberechneter Datenwürfel hält Aggregationen vor
Skalierbarkeit	Beliebig	Eingeschränkt
Antwortgeschwindigkeit	Langsam	Schnell