

Chapitre 5 : routage dynamique

CCNA Routing and Switching

Scaling Networks v6.0

Chapitre 5 – Sections et objectifs

- 5.1 Protocoles de routage dynamique
 - Expliquez les fonctions et les caractéristiques des protocoles de routage dynamique.
 - Comparer les différents types de protocoles de routage.
- 5.2 Routage dynamique à vecteur de distance
 - Expliquez le fonctionnement des protocoles de routage à vecteur.
 - Expliquer comment les protocoles de routage dynamique permettent la convergence.
 - Décrire l'algorithme utilisé par les protocoles de routage à vecteur de distance pour déterminer le meilleur chemin
 - Identifier les types de protocoles de routage à vecteur de distance
- 5.3 Routage dynamique à état de liens
 - Expliquez le fonctionnement des protocoles à état de liens.
 - Décrire l'algorithme utilisé par des protocoles de routage à état de liens pour déterminer le meilleur chemin
 - Expliquer comment le protocole de routage à état de liens utilise les informations envoyées dans une mise à jour d'état de liens
 - Expliquer les avantages et les inconvénients des protocoles de routage à état de liens

5.1 Protocoles de routage dynamique

Classification des protocoles de routage

- La fonction des protocoles de routage dynamique inclut les éléments suivants :
 - Découverte des réseaux distants.
 - Actualisation des informations de routage.
 - Choix du meilleur chemin vers des réseaux de destination.
 - Capacité à trouver un nouveau meilleur chemin si le chemin actuel n'est plus disponible

Protocoles de routage IGP et EGP

- Protocole IGP (Interior Gateway Protocol) – Utilisé pour le routage au sein d'un système autonome (SA).
 - RIP, EIGRP, OSPF et IS-IS.
- Protocoles EGP (Exterior Gateway Protocol) – Utilisés pour le routage entre des systèmes autonomes (SA).
 - BGP

Protocoles de routage à vecteur de distance

- Le vecteur de distance signifie que les routes sont annoncées grâce à deux caractéristiques :
 - Distance Identifie la distance par rapport au réseau de destination et se base sur une métrique comme le nombre de sauts, le coût, la bande passante, le délai, etc.
 - Vecteur Indique la direction de l'interface du routeur de tronçon suivant ou de l'interface de sortie pour atteindre sa destination.
- RIPv1 (ancien), RIPv2, protocole IGRP de Cisco (obsolète), protocole EIGRP.

Protocoles de routage à état de liens

- Un routeur à état de liens utilise les données d'état de liens issues des autres routeurs :
 - Pour créer une carte topologique.
 - Pour sélectionner le meilleur chemin vers tous les réseaux de destination dans la topologie.
- Les protocoles de routage à état de liens n'utilisent pas de mises à jour régulières.
 - Les mises à jour sont uniquement envoyées en cas de modification de la topologie
- OSPF et IS-IS

Protocoles de routage par classe

- Les protocoles de routage sans classe incluent les informations de masque de sous-réseau dans les mises à jour de routage.
- Les protocoles de routage par classe n'envoient pas les informations de masque de sous-réseau dans les mises à jour de routage.
- Les protocoles de routage par classe ne peuvent pas prendre en charge les masques de sous-réseau de longueur variable (VLSM) ni le routage interdomaine sans classe (CIDR).
- Les protocoles de routage par classe créent également des problèmes sur les réseaux discontinus.

```
192.168.1.0/30
  172.16.1.0/24
                                                  192.168.2.0/30
                                                                            172.16.2.0/24
                                                   S0/0/1 S0/0/1
                                                                          G0/0
R2# ping 172.16.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2
seconds:
Success rate is 0 percent (0/5)
R2#
R2# traceroute 172.16.1.1
Type escape sequence to abort.
Tracing the route to 172.16.1.1
VRF info: (vrf in name/id, vrf out name/id)
  1 192.168.1.1 4 msec
    192.168.2.1 4 msec
    192.168.1.1 4 msec
```

Protocoles de routage sans classe

- Les protocoles de routage IPv4 sans classe (RIPv2, EIGRP, OSPF et IS-IS) incluent toutes les informations de masque de sous-réseau dans les mises à jour de routage.
- Les protocoles de routage sans classe prennent en charge le masquage de sous-réseau de longueur variable (VLSM) et le routage interdomaine sans classe (CIDR).
- Les protocoles de routage IPv6 sont sans classe.

Caractéristiques des protocoles de routage

 Les protocoles de routage peuvent être comparés selon les caractéristiques indiquées dans le graphique.

	Vecteur de distance				État des liens	
	RIPv1	RIPv2	IGRP	EIGRP	OSPF	IS-IS
Vitesse de convergence	Lent	Lent	Lent	Rapidité	Rapidité	Rapidité
Évolutivité : taille du réseau	Petite	Petite	Petite	Grande	Grande	Grande
Utilisation de VLSM	Non	Oui	Non	Oui	Oui	Oui
Utilisation des ressources	Faible	Faible	Faible	Moyen	Élevé	Élevé
Implémentation et maintenance	Simple	Simple	Simple	Complexe	Complexe	Complexe

Métriques des protocoles de routage

- Une métrique est une valeur mesurable attribuée par le protocole de routage à différentes routes selon l'utilité de la route spécifique.
- Les métriques de routage permettent de déterminer le « coût » total d'un chemin depuis la source vers la destination.
- Le meilleur chemin est la route dont le coût est le plus faible.
- Voici les métriques utilisées par différents protocoles dynamiques :
 - RIP: nombre de sauts
 - OSPF : coût basé sur la bande passante cumulée
 - EIGRP : bande passante, délai, charge et fiabilité.

5.2 Routage dynamique à vecteur de distance

Fonctionnement des protocoles de routage dynamique

- Le fonctionnement d'un protocole de routage dynamique peut être décrit de la manière suivante :
 - Le routeur envoie et reçoit des messages de routage sur ses interfaces.
 - Le routeur partage les messages et les informations de routage avec d'autres routeurs qui utilisent le même protocole de routage.
 - Les routeurs échangent des informations de routage pour découvrir des réseaux distants.
 - Lorsqu'un routeur détecte une modification de topologie, le protocole de routage peut annoncer cette modification aux autres routeurs.

Démarrage à froid

- Une fois qu'un routeur démarre correctement, il applique la configuration enregistrée, puis le routeur détecte d'abord ses propres réseaux connectés directement.
 - Il ajoute l'adresse IP de ces interfaces à sa table de routage.

Découverte du réseau

- Si un protocole de routage est configuré, le routeur échange des mises à jour de routage pour détecter les routes distantes.
 - Il envoie un paquet de mise à jour avec les informations de sa table de routage à toutes les interfaces.
 - Le routeur reçoit également les mises à jour des routeurs connectés directement et ajoute les nouvelles informations à sa table de routage.

Échange des informations de routage

- Pour se rapprocher de la convergence, les routeurs échangent la série suivante de mises à jour régulières.
- Les protocoles de routage à vecteur de distance utilisent le découpage d'horizon pour éviter les boucles.
- Le découpage d'horizon empêche l'envoi d'informations via l'interface qui les a envoyées.

Exécution de la convergence

- Le réseau a convergé lorsque tous les routeurs disposent d'informations complètes et précises sur l'ensemble du réseau
- Le temps de convergence est le temps nécessaire aux routeurs pour partager des informations, calculer les meilleurs chemins et mettre à jour leurs tables de routage.
- Les protocoles de routage peuvent être classés en fonction de leur vitesse de convergence : une convergence rapide améliore un protocole de routage.

Analyse de la convergence

Fonctionnement des protocoles de routage à vecteur de distance

Technologies liées au vecteur de distance

- Les protocoles de routage à vecteur de distance partagent les mises à jour entre voisins.
- Les routeurs utilisant le routage à vecteur de distance ne connaissent pas la topologie du réseau.
- Certains protocoles de routage à vecteur de distance envoient des mises à jour périodiques.
 - RIPv1 envoie des mises à jour en tant que diffusions 255.255.255.255.
 - RIPv2 et EIGRP peuvent utiliser des adresses de multidiffusion pour atteindre uniquement certains routeurs voisins.
 - EIGRP peut utiliser un message de monodiffusion pour atteindre un routeur voisin particulier.
 - EIGRP n'envoie les mises à jour que lorsque cela s'avère nécessaire, au lieu de le faire à intervalles réguliers.

Fonctionnement des protocoles de routage à vecteur de distance

Algorithme du vecteur de distance

- L'algorithme du vecteur de distance définit les processus suivants :
 - Mécanisme d'envoi et de réception des informations de routage
 - Mécanisme de calcul des meilleurs chemins et d'installation de routes dans la table de routage
 - Mécanisme de détection des modifications topologiques et de réaction à celles-ci
- Le protocole RIP utilise l'algorithme Bellman-Ford en tant qu'algorithme de routage.
- IGRP et EIGRP utilisent l'algorithme de routage DUAL (Diffusing Update Algorithm) développé par Cisco.

Types de protocoles de routage à vecteur de distance

Protocole RIP

- Protocole RIP (Routing Information Protocol)
 - Facile à configurer
 - Les mises à jour de routage sont diffusées (255.255.255.255) toutes les 30 secondes
 - La métrique est le nombre de sauts
 - Limite de 15 sauts
- RIPv2
 - Protocole de routage sans classe: prend en charge le masquage de sous-réseau de longueur variable (VLSM) et le routage interdomaine sans classe (CIDR).
 - Efficacité améliorée : envoi des mises à jour à l'adresse de multidiffusion 224.0.0.9.
 - Réduction des entrées de routage : prend en charge la récapitulation de route manuelle.
 - Sécurisation : prend en charge l'authentification.

Caractéristiques et fonctions	RIPv1	RIPv2	
Métrique	Les deux technologies utilisent le nombre de sauts comme simple métrique. Le nombre maximal de sauts correspond à 15.		
Mises à jour transmises à l'adresse	255.255.255.255	224.0.0.9	
Prise en charge de VLSM	X	√	
Prise en charge de CIDR	X	√	
Prise en charge de la récapitulation	X	√	
Prise en charge de l'authentification	X	√	

RIPng

- Version IPv6 du protocole RIP
- Limite de 15 sauts et la distance administrative équivalent à 120

Types de protocoles de routage à vecteur de distance

Protocole EIGRP

Caractéristiques et fonctions	IGRP	EIGRP	
Métrique	Utilisez à la fois une métrique composée consistant en la bande passante et le délai. La fiabilité et la charge peuvent également être incluses dans le calcul de la métrique.		
Mises à jour transmises à l'adresse	255.255.255.255	224.0.0.10	
Prise en charge de VLSM	X	√	
Prise en charge de CIDR	X	√	
Prise en charge de la récapitulation	X	√	
Prise en charge de l'authentification	Χ	y	

- Le protocole EIGRP a été remplacé par IGRP en 1992. Cet outil inclut les fonctionnalités suivantes :
 - Mises à jour déclenchées limitées : envoie des mises à jour uniquement aux routeurs qui en ont besoin.
 - Mécanisme de conservation des messages hello: les messages Hello sont échangés régulièrement afin de conserver les contiguïtés.
 - **Gestion d'une table topologique** : gère toutes les routes reçues des voisins (pas seulement les meilleurs chemins) dans une table topologique.
 - Convergence rapide : grâce aux routes alternatives.
 - Prise en charge de plusieurs protocoles de couche réseau : utilise des modules dépendants d'un protocole (PDM) pour prendre en charge les protocoles de couche 3.

Types de protocoles de routage à vecteur de types de distance

Packet Tracer : comparaison de la sélection du chemin du protocole RIP et du protocole EIGRP

5.3 Routage dynamique à état de liens

Fonctionnement du protocole de routage à état de liens

Protocoles du plus court chemin

- Les protocoles de routage à état de liens sont également connus sous le nom de protocoles du plus court chemin et sont élaborés à partir de l'algorithme du plus court chemin (SPF) d'Edsger Dijkstra.
- Protocoles de routage IPv4 à état de liens
 - Le protocole OSPF (Open Shortest Path First)
 - Le protocole IS-IS (Intermediate System-to-Intermediate System)

Fonctionnement du protocole de routage à état de liens

Algorithme de Dijkstra

- Tous les protocoles de routage à état de liens appliquent l'algorithme de Dijkstra (également connu comme protocole du plus court chemin [SPF]) pour calculer le meilleur chemin :
 - Utilise les coûts cumulés avec chaque chemin, depuis la source vers la destination.
 - Chacun d'eux détermine son propre coût vers chaque destination de la topologie.

Fonctionnement du protocole de routage à état de liens

Exemple SPF

 La table illustre le chemin le plus court et le coût cumulé pour accéder aux réseaux de destination identifiés du point de vue de R4.

Processus de routage à état de liens

Processus de routage à état de liens

- Chaque routeur reçoit des informations sur les réseaux auxquels il est directement connecté.
- Chaque routeur est chargé de « se présenter » à ses voisins sur les réseaux connectés directement.
- Chaque routeur construit un paquet à état de liens (Link-State Packet LSP) contenant l'état de chacun des liens connectés directement.
- Chaque routeur diffuse le LSP à tous ses voisins, qui stockent ensuite l'ensemble des LSP reçus dans une base de données.
- Chaque routeur utilise la base de données pour élaborer une carte complète de la topologie et calcule le meilleur chemin vers chaque réseau de destination.

Remarque : ce processus est identique à la fois pour OSPF pour IPv4 et OSPF pour IPv6.

Lien et état de liens

 La première étape du processus de routage à état de liens consiste à faire en sorte que chaque routeur prenne connaissance de ses réseaux connectés directement.

Dites Hello

- La deuxième étape dans la procédure de routage à état de liens consiste à faire en sorte que chaque routeur utilise un protocole Hello pour détecter les voisins sur ses liaisons.
- Lorsque deux routeurs à état de liens apprennent qu'ils sont voisins, ils forment une contiguïté.
- Si un routeur cesse de recevoir des paquets Hello d'un voisin, ce dernier est considéré comme injoignable.

Création du LSP (paquet à état de liens)

- La troisième étape du processus de routage à état de liens consiste à faire en sorte que chaque routeur crée un paquet à état de liens (LSP) contenant l'état de chaque lien connecté directement.
- Le LSP de R1 (dans le diagramme) contient :
 - R1 ; réseau Ethernet ; 10.1.0.0/16 ; coût 2
 - R2 ; réseau série point à point ;
 10.2.0.0/16 ; coût 20
 - R3 ; réseau série point à point ;
 10.3.0.0/16 ; coût 5
 - R4; réseau série point à point;
 10.4.0.0/16; coût 20

Inondation de LSP

- La quatrième étape dans la procédure de routage à état de liens consiste à faire en sorte que chaque routeur diffuse le LSP à tous ses voisins.
- Un LSP doit être envoyé uniquement :
 - Lors du démarrage initial du processus de protocole de routage sur ce routeur (par exemple, le redémarrage du routeur)
 - Chaque fois qu'une modification est apportée à la topologie (en cas de défaillance d'une liaison, par exemple)
- Un paquet LSP comprend également des numéros de séquence et des informations sur l'obsolescence :
 - Utilisé par chaque routeur pour déterminer s'il a déjà reçu le LSP.
 - Permet de déterminer si le paquet LSP a des informations plus récentes.

Contenu de l'état de la liaison de R1

- R1 ; réseau Ethernet ; 10.1.0.0/16 ; coût 2
- R1 -> R2; réseau série point à point; 10.2.0.0/16; coût 20
- R1 -> R3; réseau série point à point; 10.3.0.0/16; coût 5
- R1 -> R4; réseau série point à point; 10.4.0.0/16; coût 20

Création de la base de données d'états de liens

 L'étape finale du processus de routage d'état de liens est la suivante : chaque routeur utilise la base de données pour créer une carte topologique complète et calcule le meilleur chemin vers chaque réseau de destination.

Base de données d'état des liaisons R1 États de liens de R1: Connecté au réseau 10.1.0.0/16, coût = 2 Connecté à R2 sur le réseau 10.2.0.0/16, coût = 20 Connecté à R3 sur le réseau 10.3.0.0/16, coût = 5 Connecté à R4 sur le réseau 10.4.0.0/16, coût = 20 États de liens de R2 : Connecté au réseau 10.5.0.0/16, coût = 2 Connecté à R1 sur le réseau 10.2.0.0/16, coût = 20 Connecté à R5 sur le réseau 10.9.0.0/16, coût = 10 États de liens de R3: Connecté au réseau 10.6.0.0/16, coût = 2 Connecté à R1 sur le réseau 10.3.0.0/16, coût = 5 Connecté à R4 sur le réseau 10.7.0.0/16, coût = 10 États de liens de R4 : Connecté au réseau 10.8.0.0/16. coût = 2 Connecté à R1 sur le réseau 10.4.0.0/16. coût = 20 • Connecté à R3 sur le réseau 10.7.0.0/16, coût = 10 Connecté à R5 sur le réseau 10.10.0.0/16, coût = 10 États de liens de R5 : Connecté au réseau 10.11.0.0/16, coût = 2 • Connecté à R2 sur le réseau 10.9.0.0/16, coût = 10 Connecté à R4 sur le réseau 10.10.0.0/16. coût = 10

Création de l'arborescence SPF

- Chaque routeur utilise la base de données à états de liens et l'algorithme SPF pour construire l'arborescence SPF.
 - R1 identifie ses réseaux directement connectés et les coûts.
 - R1 ajoute les réseaux inconnus et les coûts associés.
 - L'algorithme SPF calcule ensuite les chemins les plus courts pour atteindre chaque réseau individuel résultant dans l'arborescence SPF comme indiqué dans le diagramme.
- Chaque routeur construit sa propre arborescence SPF indépendamment des autres routeurs.

Ajout des routes OSPF dans la table de routage

- Grâce aux informations de plus court chemin déterminées par l'algorithme SPF, les meilleurs chemins sont ensuite ajoutés à la table de routage.
- Les routes connectées directement et les routes statiques sont également incluses dans la table de routage.

Les bénéfices des protocoles de routage à état de liens

Pourquoi utiliser des protocoles à état de liens ?

Avantages des protocoles de routage à état de liens

- Chaque routeur crée sa propre carte topologique du réseau pour déterminer le chemin le plus court.
- L'inondation immédiate de paquets LSP permet d'obtenir une convergence plus rapide.
- Les LSP sont envoyés uniquement en cas de modification de la topologie et contiennent uniquement les informations concernant cette modification.
- La conception hiérarchique est utilisée lors de la mise en œuvre de plusieurs zones.

Les bénéfices des protocoles de routage à état de liens

Inconvénients des protocoles à état de liens

- Inconvénients des protocoles à état de liens :
 - Besoins en matière de mémoire : les protocoles à état de liens nécessitent de la mémoire supplémentaire.
 - Besoins en matière de traitement : les protocoles à état de liens peuvent nécessiter plus de capacité de traitement du processeur.
 - Besoins en matière de bande passante : la diffusion de paquets à état de liens peut affecter la bande passante.
- L'utilisation de plusieurs zones permet de réduire la taille des bases de données à état de liens.
- Les zones multiples permettent de limiter la quantité d'informations d'état de liens et permettent de n'envoyer les paquets LSP qu'aux routeurs qui en ont besoin.

Les bénéfices des protocoles de routage à état de liens Protocoles utilisant l'état de liens

- Deux protocoles de routage à état de liens, OSPF et IS-IS. Protocole OSPF – implémentation la plus populaire avec deux versions disponibles :
 - OSPFv2 OSPF pour les réseaux IPv4 (RFC 1247 et RFC 2328)
 - OSPFv3 OSPF pour les réseaux IPv6 (RFC 2740)
- Integrated IS-IS ou Dual IS-IS a intégré la prise en charge des réseaux IP.
- Utilisé par les FAI et les opérateurs télécoms.

5.4 Synthèse du chapitre

Conclusion

Chapitre 5 : routage dynamique

- Expliquer les fonctions et les caractéristiques des protocoles de routage dynamique.
- Expliquer le fonctionnement des protocoles de routage à vecteur.
- Expliquer le fonctionnement des protocoles à état de liens.

