પ્રશ્ન 1(અ) [3 ગુણ]

FinFET ની રચના દોરો અને તેના ફાયદા લખો.

જવાબ:

કોષ્ટક: FinFET ના ફાયદા

ફાયદો	વર્ણન
બેહતર નિયંત્રણ	ગુણાકાર gates બહેતર channel control આપે છે
ઘટાડેલ લીકેજ	3D રચનાના કારણે ઓછું off-state current
સુધારેલ કામગીરી	વધુ drive current અને ઝડપી switching

याहास्त देइनिंड: "BCR - Better Control Reduces leakage"

પ્રશ્ન 1(બ) [4 ગુણ]

એક્સટર્નલ બાયઝ હેઠળ MOS રચનાનું ડેપ્લીશન અને ઇનવર્શન સમજાવો

જવાબ:

કોષ્ટક: MOS બાયઝ પરિસ્થિતિઓ

બાયઝ પ્રકાર	ગેટ વોલ્ટેજ	ચેનલ સ્થિતિ	ચાર્જ કેરિયર્સ
ડેપ્લીશન	થોડું પોઝિટિવ	Depleted	Holes દૂર ધકેલાય છે
ઇનવર્શન	વધુ પોઝિટિવ	Inverted	Electrons આકર્ષાય છે

ડાયાગ્રામ:

```
      VG > 0 (Depletion)
      VG >> 0 (Inversion)

      +
      +

      Gate
      ----

      -
      -

      Depletion
      Electron

      Region
      Channel

      ------
      p-substrate
```

• **ડેપ્લીશન**: પોઝિટિવ ગેટ વોલ્ટેજ electric field બનાવે છે જે holes ને દૂર ધકેલે છે

• **ઇનવર્શન**: વધુ વોલ્ટેજ electrons ને આકર્ષે છે અને conducting channel બનાવે છે

યાદાશ્ત ટેકનિક: "DI - Depletion Inverts to conducting channel"

પ્રશ્ન 1(ક) [7 ગુણ]

n-ચેનલ MOSFET ને તેની કરંટ-વોલ્ટેજ લાક્ષણિકતાઓની મદદથી સમજાવો.

જવાબ:

કોષ્ટક: MOSFET ઓપરેટિંગ વિભાગો

વિભાગ	શરત	ડ્રેઇન કરંટ	લાક્ષણિકતાઓ
કટ-ઓફ	VGS < VTH	ID ≈ 0	કોઈ conduction નથી
લિનિયર	VDS < VGS-VTH	ID ∝ VDS	Resistive વર્તન
સેચ્યુરેશન	VDS ≥ VGS-VTH	ID ∝ (VGS-VTH)²	કરંટ VDS પર આધારિત નથી

મુખ્ય સમીકરણો:

• Linear: ID = μnCox(W/L)[(VGS-VTH)VDS - VDS²/2]

• Saturation: ID = (µnCox/2)(W/L)(VGS-VTH)²

• રચના: ગેટ source અને drain વચ્ચે channel ને નિયંત્રિત કરે છે

• કામગીરી: ગેટ વોલ્ટેજ channel conductivity ને modulate કરે છે

• ઉપયોગો: ડિજિટલ switching અને analog amplification

याद्दारत टेडनिड: "CLS - Cut-off, Linear, Saturation regions"

પ્રશ્ન 1(ક OR) [7 ગુણ]

સ્કેલિંગ વ્યાખ્યાયિત કરો. full voltage સ્કેલિંગ સાથે constant voltage સ્કેલિંગની તુલના કરો. સ્કેલિંગના ગેરફાયદા લખો.

જવાબ:

વ્યાખ્યા: સ્કેલિંગ એ ડેન્સિટી અને performance વધારવા માટે device dimensions ઘટાડવાની પ્રક્રિયા છે.

કોષ્ટક: સ્કેલિંગ તુલના

પેરામીટર	Full Voltage Scaling	Constant Voltage Scaling
વોલ્ટેજ	α દ્વારા ઘટાડાય છે	સ્થિર રહે છે
પાવર ડેન્સિટી	સ્થિર	α દ્વારા વધે છે
ઇલેક્ટ્રિક ફિલ્ડ	સ્થિર	α દ્વારા વધે છે
પરફોર્મન્સ	બેહતર	મધ્યમ સુધારો

ગેરફાયદા:

• **શોર્ટ ચેનલ ઇફેક્ટ્સ**: ચેનલ લેન્થ modulation વધે છે

• હોટ કેરિયર ઇફેક્ટ્સ: વધુ electric fields devices ને નુકસાન કરે છે

• **ક્વોન્ટમ ઇફેક્ટ્સ**: ટનલિંગ currents નોંધપાત્ર રીતે વધે છે

યાદાશ્ત ટેકનિક: "SHQ - Short channel, Hot carriers, Quantum effects"

પ્રશ્ન 2(અ) [3 ગુણ]

CMOS ની મદદથી બે ઇનપુટ NAND ગેટ દોરો.

કોષ્ટક: NAND સત્ય કોષ્ટક

А	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

યાદાશ્ત ટેકનિક: "PP-SS: Parallel PMOS, Series NMOS"

પ્રશ્ન 2(બ) [4 ગુણ]

nMOS ઇન્વર્ટર માટે નોઇઝ ઇમ્યુનિટી અને નોઇઝ માર્જિન સમજાવો.

જવાબ:

કોષ્ટક: નોઇઝ પેરામીટર્સ

પેરામીટર	વ્યાખ્યા	ફોર્મ્યુલા
NMH	હાઇ નોઇઝ માર્જિન	VOH - VIH
NML	લો નોઇઝ માર્જિન	VIL - VOL
નોઇઝ ઇમ્યુનિટી	નોઇઝ રિજેક્ટ કરવાની ક્ષમતા	Min(NMH, NML)

• VIL: મહત્તમ લો ઇનપુટ વોલ્ટેજ

• VIH: લઘુત્તમ હાઇ ઇનપુટ વોલ્ટેજ

• **સારી નોઇઝ ઇમ્યુનિટી**: મોટા નોઇઝ માર્જિન ખોટી switching ને રોકે છે

याहास्त टेडिनिड: "HILOL - High/Low Input/Output Levels"

પ્રશ્ન 2(ક) [7 ગુણ]

CMOS ઇન્વર્ટરની વોલ્ટેજ ટ્રાન્સફર લાક્ષણિકતાઓ (VTC) સમજાવો.

જવાબ:

કોષ્ટક: VTC વિભાગો

વિભાગ	ઇનપુટ રેન્જ	આઉટપુટ	ટ્રાન્ઝિસ્ટર સ્થિતિઓ
Α	0 to VTN	VDD	pMOS ON, nMOS OFF
В	VTN to VDD/2	ટ્રાન્ઝિશન	બંને આંશિક રીતે ON
С	VDD/2 to VDD- VTP	ટ્રાન્ઝિશન	બંને આંશિક રીતે ON
D	VDD- VTP to VDD	OV	pMOS OFF, nMOS ON

મુખ્ય લક્ષણો:

• **તીક્ષ્ણ ટ્રાન્ઝિશન**: આદર્શ switching વર્તન

• હાઇ ગેઇન: ટ્રાન્ઝિશન વિભાગમાં મોટો slope

• **રેઇલ-ટુ-રેઇલ**: આઉટપુટ સંપૂર્ણ સપ્લાય રેન્જમાં swing કરે છે

याद्दारत रेडिनेड: "ASH - A-region, Sharp transition, High gain"

પ્રશ્ન 2(અ OR) [3 ગુણ]

ડિપ્લીશન લોડ nMOS નો ઉપયોગ કરીને NOR2 ગેટનો અમલ કરો.

જવાબ:

કોષ્ટક: NOR2 સત્ય કોષ્ટક

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

યાદાશ્ત ટેકનિક: "DPN - Depletion load, Parallel NMOS"

પ્રશ્ન 2(બ OR) [4 ગુણ]

એન્હાન્સમેન્ટ લોડ ઇન્વર્ટર અને ડિપ્લીશન લોડ ઇન્વર્ટર વચ્ચે તફાવત શોદ્યો.

જવાબ:

કોષ્ટક: લોડ ઇન્વર્ટર તુલના

પેરામીટર	એન્હાન્સમેન્ટ લોડ	ડિપ્લીશન લોડ
થ્રેશોલ્ડ વોલ્ટેજ	VT > 0	VT < 0
ગેટ કનેક્શન	VGS = VDS	VGS = 0
લોજિક હાઇ	VDD - VT	VDD
પાવર કન્ઝમ્પશન	વધુ	ઓછું
સ્વિચિંગ સ્પીડ	ધીમું	ઝડપી

• **એન્હાન્સમેન્ટ**: conduction માટે પોઝિટિવ ગેટ વોલ્ટેજની જરૂર

• **ડિપ્લીશન**: ઝીરો ગેટ વોલ્ટેજ સાથે conduct કરે છે

• પરફોર્મન્સ: ડિપ્લીશન લોડ બેહતર લાક્ષણિકતાઓ આપે છે

यादाश्त रेडनिड: "EPDLH - Enhancement Positive, Depletion Lower power, Higher speed"

પ્રશ્ન 2(ક OR) [7 ગુણ]

ડિપ્લીશન લોડ nMOS ઇન્વર્ટરને તેના VTC સાથે સમજાવો.

જવાબ:

સર્કિટ ઓપરેશન:

• **લોડ ટ્રાન્ઝિસ્ટર**: હંમેશા conducting (VGS = 0, VT < 0)

• ડ્રાઇવર ટ્રાન્ઝિસ્ટર: ઇનપુટ વોલ્ટેજ દ્વારા નિયંત્રિત

• આઉટપુટ: વોલ્ટેજ ડિવાઇડર એક્શન દ્વારા નક્કી થાય છે

કોષ્ટક: ઓપરેટિંગ પોઇન્ટ્સ

ઇનપુટ સ્થિતિ	ડ્રાઇવર	લોડ	આઉટપુટ
VIN = 0	OFF	ON	VDD
VIN = VDD	ON	ON	≈ 0V

VTC લાક્ષણિકતાઓ:

• **VOH**: VDD (એન્હાન્સમેન્ટ લોડ કરતાં બેહતર)

• **VOL**: ડિપ્લીશન લોડ લાક્ષણિકતાઓના કારણે ઓછું

• ટ્રાન્ઝિશન: સ્થિતિઓ વચ્ચે તીક્ષ્ણ switching

યાદાશ્ત ટેકનિક: "DLB - Depletion Load gives Better high output"

પ્રશ્ન 3(અ) [3 ગુણ]

ડિપ્લીશન લોડ nMOS નો ઉપયોગ કરીને EX-OR નો અમલ કરો.

જવાબ:

કોષ્ટક: XOR સત્ય કોષ્ટક

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

અમલીકરણ: Y = A⊕B = A'B + AB'

યાદાશ્ત ટેકનિક: "XOR - eXclusive OR, અલગ inputs 1 આપે છે"

પ્રશ્ન 3(બ) [4 ગુણ]

ડિઝાઇન હાઇરાર્કીને ઉદાહરણ સાથે સમજાવો.

જવાબ:

કોષ્ટક: હાઇરાર્કી લેવલ્સ

લેવલ	કમ્પોનન્ટ	ઉદાહરણ
સિસ્ટમ	સંપૂર્ણ ચિપ	માઇક્રોપ્રોસેસર
મોક્યુલ	ફંક્શનલ બ્લોક્સ	ALU, મેમરી
ગેટ	લોજિક ગેટ્સ	NAND, NOR
ટ્રાન્ઝિસ્ટર	વ્યક્તિગત ડિવાઇસેસ	MOSFET

ફાયદા:

• **મોક્યુલારિટી**: સ્વતંત્ર ડિઝાઇન અને ટેસ્ટિંગ

• **પુનઃઉપયોગ**: સામાન્ય બ્લોક્સ ઘણી વખત વપરાય છે

• જાળવણીયોગ્યતા: સરળ debugging અને modification

યાદાશ્ત ટેકનિક: "SMG-T: System, Module, Gate, Transistor levels"

પ્રશ્ન 3(ક) [7 ગુણ]

Y ચાર્ટ ડિઝાઇન ફ્લો દોરો અને સમજાવો.

કોષ્ટક: Y-ચાર્ટ ડોમેન્સ

ડોમેન	นญ์า	ઉદાહરણો
બિહેવિયરલ	સિસ્ટમ શું કરે છે	એલ્ગોરિધમ્સ, RTL
સ્ટ્રક્ચરલ	તે કેવી રીતે ગોઠવાયેલું છે	આર્કિટેક્ચર, ગેટ્સ
ફિઝિકલ	કમ્પોનન્ટ્સ ક્યાં મૂકાયેલા છે	ફ્લોરપ્લાન, લેઆઉટ

ડિઝાઇન ફ્લો:

• **ટોપ-ડાઉન**: બિહેવિયરલ → સ્ટ્રક્યરલ → ફિઝિકલ

• **બોટમ-અપ**: ફિઝિકલ constraints ઉપરના લેવલ્સને પ્રભાવિત કરે છે

• **પુનરાવર્તી**: ઓપ્ટિમાઇઝેશન માટે બહુવિધ passes

याद्दारत देइनिङ: "BSP - Behavioral, Structural, Physical domains"

પ્રશ્ન 3(અ OR) [3 ગુણ]

CMOS નો ઉપયોગ કરીને NAND2 - SR લેચનો અમલ કરો

કોષ્ટક: SR લેચ ઓપરેશન

S	R	Q	Q'	સ્થિતિ
0	0	Q	Q'	હોલ્ડ
0	1	0	1	રીસેટ
1	0	1	0	સેટ
1	1	1	1	અમાન્ય

યાદાશ્ત રેકનિક: "SR-HRI: Set, Reset, Hold, Invalid states"

પ્રશ્ન 3(બ OR) [4 ગુણ]

સિલિકોન વેફર પર પેટર્ન અથવા માસ્ક ટ્રાન્સફર કરવા માટે કઈ પદ્ધતિનો ઉપયોગ થાય છે? તેને સ્વચ્છ આકૃતિઓ સાથે સમજાવો.

જવાબ:

પદ્ધતિ: લિથોગ્રાફી - પ્રકાશ એક્સપોઝર વાપરીને પેટર્ન ટ્રાન્સફર

પ્રક્રિયાના પગલાં:

પગલું	ક્રિયા	પરિણામ
કોટિંગ	ફોટોરેસિસ્ટ લગાવો	સમાન સ્તર
એક્સપોઝર	માસ્ક દ્વારા UV	રાસાયણિક ફેરફાર
ડેવલપમેન્ટ	એક્સપોઝ્ડ રેસિસ્ટ દૂર કરો	પેટર્ન ટ્રાન્સફર

ઉપયોગો: ગેટ્સ, interconnects, contact holes બનાવવા

याद्दारत टेडनिड: "CED - Coating, Exposure, Development"

પ્રશ્ન 3(ક OR) [7 ગુણ]

MOSFET ફેબ્રિકેશનમાં મેટલ deposit કરવા માટે કઈ પદ્ધતિઓનો ઉપયોગ થાય છે? યોગ્ય ડાયાગ્રામ સાથે ડિપોઝિશનને વિગતવાર સમજાવો.

જવાબ:

કોષ્ટક: મેટલ ડિપોઝિશન પદ્ધતિઓ

પદ્ધતિ	ટેકનિક	ઉપયોગ
ફિઝિકલ વેપર ડિપોઝિશન	Sputtering, Evaporation	એલ્યુમિનિયમ, કોપર
કેમિકલ વેપર ડિપોઝિશન	CVD, PECVD	ટંગસ્ટન, ટાઇટેનિયમ
ઇલેક્ટ્રોપ્લેટિંગ	ઇલેક્ટ્રોકેમિકલ	કોપર interconnects

સ્પટરિંગ પ્રક્રિયા:

• આચન બોમ્બાર્ડમેન્ટ: આર્ગોન આયન્સ ટાર્ગેટ મટેરિયલને અથડાવે છે

• એટમ ઇજેક્શન: ટાર્ગેટ એટમ્સ બહાર નીકળે છે

• ડિપોઝિશન: એટમ્સ વેફર સપાટી પર સ્થિર થાય છે

• નિયંત્રણ: દબાણ અને પાવર દર નક્કી કરે છે

ફાયદા:

• સમાન જાડાઈ: ઉત્તમ સ્ટેપ કવરેજ

• **ઓછું તાપમાન**: ડિવાઇસ integrity જાળવે છે

• વિવિદ્યતા: બહુવિધ મટેરિયલ્સ શક્ય

यादाश्त रेडनिड: "IBE-DC: Ion Bombardment Ejects atoms for Deposition Control"

પ્રશ્ન 4(અ) [3 ગુણ]

ડિપ્લીશન nMOS લોડ સાથે Z= ((A+B+C)·(D+E+F). G)' અમલમાં મૂકો.

લોજિક અમલીકરણ:

• **પ્રથમ સ્તર**: (A+B+C) અને (D+E+F) OR ફંક્શન્સ

• **બીજું સ્તર**: G સાથે AND

• **આઉટપુટ**: nMOS રચનાના કારણે ઉલટાવેલું પરિણામ

याद्दारत रेडनिड: "POI - Parallel OR, Inversion at output"

પ્રશ્ન 4(બ) [4 ગુણ]

VERILOG માં વપરાતી ડિઝાઇન શૈલીઓની સૂચિ બનાવો અને સમજાવો.

જવાબ:

કોષ્ટક: વેરિલોગ ડિઝાઇન શૈલીઓ

શૈલી	વર્ણન	ઉપયોગનો કેસ	ઉદાહરણ	
બિહેવિયરલ	એલ્ગોરિદ્યમ વર્ણન	ઉચ્ચ-સ્તરીય મોડેલિંગ	always blocks	
ડેટાફ્લો	બૂલિયન expressions	કમ્બિનેશનલ લોજિક	assign statements	
સ્ટ્રક્ચરલ	કમ્પોનન્ટ instantiation	હાઇરાર્કિકલ ડિઝાઇન	module connections	
ગેટ-લેવલ	પ્રિમિટિવ ગેટ્સ	લો-લેવલ ડિઝાઇન	and, or, not gates	

લાક્ષણિકતાઓ:

• બિહેવિયરલ: સર્કિટ શું કરે છે તેનું વર્ણન

• સ્ટ્રક્ચરલ: કમ્પોનન્ટ્સ કેવી રીતે જોડાય છે તે બતાવે છે

• મિશ્રિત: જટિલ ડિઝાઇન માટે બહુવિધ શૈલીઓ જોડે છે

યાદાશ્ત ટેકનિક: "BDSG - Behavioral, Dataflow, Structural, Gate-level"

પ્રશ્ન 4(ક) [7 ગુણ]

CMOS નો ઉપયોગ કરીને NAND2 SR લેચનો અમલ કરો અને CMOS નો ઉપયોગ કરીને NOR2 SR લેચનો પણ અમલ કરો.

જવાબ:

NAND2 SR લેચ:

```
module nand_sr_latch(
    input S, R,
    output Q, Q_bar
);
    nand(Q, S, Q_bar);
    nand(Q_bar, R, Q);
endmodule
```

NOR2 SR લેચ:

```
module nor_sr_latch(
    input S, R,
    output Q, Q_bar
);
    nor(Q_bar, R, Q);
    nor(Q, S, Q_bar);
endmodule
```

કોષ્ટક: લેચ તુલના

уѕіғ	સક્રિય સ્તર	સેટ ઓપરેશન	રીસેટ ઓપરેશન
NAND	લો (0)	S=0, R=1	S=1, R=0
NOR	હાઇ (1)	S=1, R=0	S=0, R=1

મુખ્ય તફાવતો:

• NAND: લો ઇનપુટ્સ સાથે Set/Reset

• NOR: હાઇ ઇનપુટ્સ સાથે Set/Reset

• ફ્રીડબેક: ક્રોસ-કપલ્ડ ગેટ્સ સ્થિતિ જાળવે છે

याद्याश्त देइनिङ: "NAND-Low, NOR-High active"

પ્રશ્ન 4(અ OR) [3 ગુણ]

Y= (ABC + DE + F)' ને ડિપ્લીશન nMOS લોડ સાથે અમલમાં મૂકો.

અમલીકરણ લોજિક:

• **ABC**: સીરિઝ કનેક્શન (AND ફંક્શન)

• **DE**: સીરિઝ કનેક્શન (AND ફંક્શન)

• **F**: સિંગલ ટ્રાન્ઝિસ્ટર

• **પરિણામ**: ઇનવર્શનના કારણે Y = (ABC + DE + F)'

યાદાશ્ત ટેકનિક: "SSS-I: Series-Series-Single with Inversion"

પ્રશ્ન 4(બ OR) [4 ગુણ]

કુલ એડરને અમલમાં મૂકવા માટે વેરિલોગ કોડ લખો.

જવાબ:

```
module full_adder(
    input a, b, cin,
    output sum, cout
);
    assign sum = a ^ b ^ cin;
    assign cout = (a & b) | (cin & (a ^ b));
endmodule
```

કોષ્ટક: ફુલ એડર સત્ય કોષ્ટક

A	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

લોજિક ફંક્શન્સ:

• **સમ**: ટ્રિપલ XOR ઓપરેશન

• કેરી: ઇનપુટ્સનું મેજોરિટી ફંક્શન

યાદાશ્ત ટેકનિક: "XOR-Sum, Majority-Carry"

પ્રશ્ન 4(ક OR) [7 ગુણ]

ડિપ્લીશન લોડનો ઉપયોગ કરીને Y = (S1'S0'I0 + S1'S0 I1 + S1 S0' I2 + S1 S2 I3) લાગૂ કરો

જવાબ:

નોંધ: છેલ્લા ટર્મમાં S2 એ S0 હોવું જોઈએ.

કોષ્ટક: મલ્ટિપ્લેક્સર સિલેક્શન

S1	S0	પસંદ કરેલ ઇનપુટ	આઉટપુટ
0	0	10	Y = 10
0	1	I1	Y = I1
1	0	12	Y = I2
1	1	13	Y = I3

સર્કિટ અમલીકરણ:

• **slsìsર**: S1, S0 select signals જનરેટ કરે છે

• AND ગેર્સ: દરેક ઇનપુટ સંબંધિત select સાથે ANDed

• **OR ગેટ**: બધા AND આઉટપુટ્સને જોડે છે

याहाश्त देइनिङ: "DAO - Decoder, AND gates, OR combination"

પ્રશ્ન 5(અ) [3 ગુણ]

CMOS નો ઉપયોગ કરીને લોજિક ફંક્શન G = (PQR +U(S+T))' નો અમલ કરો

જવાબ:

અમલીકરણ:

• pMOS: OR માટે Parallel, AND માટે Series (ઉલટી લોજિક)

- nMOS: AND માટે Series, OR માટે Parallel (સામાન્ય લોજિક)
- પરિણામ: ડી મોર્ગનનો નિયમ આપોઆપ લાગુ થાય છે

યાદાશ્ત રેકનિક: "PSSP - Parallel Series Series Parallel"

પ્રશ્ન 5(બ) [4 ગુણ]

વેરિલોગનો ઉપયોગ કરીને 8×1 મલ્ટિપ્લેક્સર અમલમાં મૂકો.

જવાબ:

```
module mux_8to1(
   input [7:0] data, // 8 data inputs
   output reg Y
                     // Output
);
   always @(*) begin
       case(sel)
          3'b000: Y = data[0];
          3'b001: Y = data[1];
          3'b010: Y = data[2];
          3'b011: Y = data[3];
          3'b100: Y = data[4];
          3'b101: Y = data[5];
          3'b110: Y = data[6];
          3'b111: Y = data[7];
       endcase
   end
endmodule
```

કોષ્ટક: 8:1 MUX સિલેક્શન

S2	S1	S0	આઉટપુટ
0	0	0	data[0]
0	0	1	data[1]
0	1	0	data[2]
0	1	1	data[3]
1	0	0	data[4]
1	0	1	data[5]
1	1	0	data[6]
1	1	1	data[7]

યાદાશ્ત ટેકનિક: "Case-Always: always block માં case statement વાપરો"

પ્રશ્ન 5(ક) [7 ગુણ]

વેરિલોગમાં સ્ટ્રક્ચરલ મોડેલિંગ શૈલીનો ઉપયોગ કરીને 4 બીટ કુલ એડરને લાગૂ કરો.

જવાબ:

```
module full_adder_4bit(
    input [3:0] a, b,
   input cin,
   output [3:0] sum,
   output cout
);
   wire c1, c2, c3;
    full_adder fa0(.a(a[0]), .b(b[0]), .cin(cin),
                   .sum(sum[0]), .cout(c1));
    full\_adder\ fal(.a(a[1]),\ .b(b[1]),\ .cin(c1),
                   .sum(sum[1]), .cout(c2));
    full_adder fa2(.a(a[2]), .b(b[2]), .cin(c2),
                   .sum(sum[2]), .cout(c3));
    full_adder fa3(.a(a[3]), .b(b[3]), .cin(c3),
                   .sum(sum[3]), .cout(cout));
endmodule
module full_adder(
    input a, b, cin,
    output sum, cout
);
    assign sum = a ^ b ^ cin;
    assign cout = (a & b) | (cin & (a ^ b));
endmodule
```

સ્ટ્રક્ચરલ લક્ષણો:

- **મોક્યુલ instantiation**: ચાર 1-બીટ ફુલ એડર્સ
- **કેરી ચેઇન**: સ્ટેજો વચ્ચે carries કનેક્ટ કરે છે
- **હાઇરાર્કિકલ ડિઝાઇન**: બેસિક ફુલ એડર મોડ્યુલનો પુનઃઉપયોગ

કોષ્ટક: રિપલ કેરી એડિશન

સ્ટેજ	ઇનપુટ્સ	કેરી ઇન	સમ	કેરી આઉટ
FA0	A[0], B[0]	Cin	S[0]	C1
FA1	A[1], B[1]	C1	S[1]	C2
FA2	A[2], B[2]	C2	S[2]	C3
FA3	A[3], B[3]	C3	S[3]	Cout

યાદાશ્ત ટેકનિક: "RCC - Ripple Carry Chain connection"

પ્રશ્ન 5(અ OR) [3 ગુણ]

CMOS નો ઉપયોગ કરીને લોજિક ફંક્શન Y = ((AF(D + E))+ (B+ C))' ને અમલમાં મૂકો.

લોજિક વિભાજન:

• พ่เสโร ะห์: AF(D + E) = A AND F AND (D OR E)

• **અંતિમ**: Y = (AF(D + E) + (B + C))'

CMOS અમલીકરણ:

• PMOS નેટવર્ક: ફંક્શનનું complement અમલ કરે છે

• NMOS નેટવર્ક: મૂળ ફંક્શન અમલ કરે છે

• પરિણામ: કુદરતી inversion Y આપે છે

યાદાશ્ત રેકનિક: "PNAI - PMOS Network Applies Inversion"

પ્રશ્ન 5(બ OR) [4 ગુણ]

વેરિલોગનો ઉપયોગ કરીને 4 બીટ અપ કાઉન્ટર અમલમાં મૂકવું

જવાબ:

```
module counter_4bit_up(
    input clk, reset,
    output reg [3:0] count
);
    always @(posedge clk or posedge reset) begin
        if (reset)
            count <= 4'b0000;
        else
            count <= count + 1;
    end
endmodule</pre>
```

કોષ્ટક: કાઉન્ટર સિક્વન્સ

ક્લોક	રીસેટ	કાઉન્ટ	નેક્સ્ટ કાઉન્ટ
↑	1	X	0000
↑	0	0000	0001
1	0	0001	0010
↑	0		
↑	0	1111	0000

લક્ષણો:

• સિંકોનસ રીસેટ: ક્લોક એજ પર રીસેટ

• **ઓટો રોલઓવર**: 1111 → 0000

• 4-બીટ રેન્જ: 0 થી 15 સુધી ગણે છે

યાદાશ્ત ટેકનિક: "SRA - Synchronous Reset with Auto rollover"

પ્રશ્ન 5(ક OR) [7 ગુણ]

વેરિલોગમાં બિહેવિયરલ મોડેલિંગ સ્ટાઈલનો ઉપયોગ કરીને 3:8 ડીકોડરનો અમલ કરો

```
module decoder_3to8(
    input [2:0] select,
    input enable,
    output reg [7:0] out
);
    always @(*) begin
        if (enable) begin
            case(select)
                3'b000: out = 8'b00000001;
                3'b001: out = 8'b00000010;
                3'b010: out = 8'b00000100;
                3'b011: out = 8'b00001000;
                3'b100: out = 8'b00010000;
                3'b101: out = 8'b00100000;
                3'b110: out = 8'b01000000;
                3'b111: out = 8'b10000000;
                default: out = 8'b00000000;
            endcase
        end else begin
            out = 8'b00000000;
        end
    end
endmodule
```

કોષ્ટક: 3:8 ડીકોડર સત્ય કોષ્ટક

Enable	A2	A1	Α0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	X	X	Х	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

મુખ્ય લક્ષણો:

- **બિહેવિયરલ મોડેલિંગ**: always બ્લોક અને case statement વાપરે છે
- Enable કંટ્રોલ: enable = 0 હોય ત્યારે બધા આઉટપુટ્સ disabled
- વન-હોટ આઉટપુટ: એક સમયે માત્ર એક આઉટપુટ active
- 3-બીટ ઇનપુટ: 8 આઉટપુટ્સમાંથી એક પસંદ કરે છે

ઉપયોગો:

• **મેમરી એડ્રેસિંગ**: ચિપ select જનરેશન

• ડેટા રાઉટિંગ: ચેનલ સિલેક્શન

• કંટ્રોલ લોજિક: સ્ટેટ મશીન આઉટપુટ્સ

ขเยเลด วัรโคร: "BEOH - Behavioral Enable One-Hot decoder"