Coherent Laser Light

Incoherent LED Light

Module - 3 Optical Transmitters

Single Mode Lasers

SLM Lasers

- Single Mode Lasers
 - Single longitudinal mode & Single transverse mode
 - External Cavity Lasers
 - Quantum Well Lasers
 - DFB Distributed FeedBack Lasers
 - □ Reflector function distributed over the AR
 - DBR Distributed Bragg Reflectors
 - □ Signal Current, Control Current
 - VCSEL Vertical Cavity Surface Emitting Lasers

DFB - Distributed FeedBack Lasers

- Reflector function distributed over the AR
- Distributed Bragg Diffraction Grating etched on a passive cladding layer above AR
- Grating period $\Lambda = m \lambda_B / 2 n_e$; $m \sim 1$

 $\lambda_{\rm B} \rightarrow$ Bragg wavelength

p-type
n-type

DBR - Distributed Bragg Reflector Laser

- Reflector function distributed but separated from the AR (pumped region)
- High efficiency & high output capability
- Loss slightly increased
- Useful for tuning purpose; temp. tuned / current tuned
- $(0.1 \text{ nm} / {}^{\circ}\text{C}, 0.8 \times 10^{-2} \text{ to } 4.0 \times 10^{-2} \text{ nm} / \text{mA})$

VCSEL - Vertical Cavity Surface Emitting Lasers

- AR volume small , threshold currents < $100 \,\mu\text{A}$
- Greater modulation bandwidths
- Integration of multiple lasers on a single chip; 1D / 2D array

OPTICAL MODULATORS

Line coding schemes

Flash light – Simplest modulator

Types of optical modulation

Direct Modulation

Indirect Modulation

Direct Modulation (Internal)

Direct Modulation

- Direct modulation on semiconductor lasers:
 - Output frequency drifts
 - □ carrier induced (chirp)
 - Limited modulation depth
 - ➤ Limited bit rate (<10 Gb/s) and distance (< 100 Km)

External Modulation

- Mach Zehnder (MZ) Modulator
- Electro Absorption (EA) Modulator

Mach Zehnder Modulator (MZM)

- Constructive interference (Output = on)
- Destructive interference (Output = off)

Mach Zehnder Modulator (MZM)

- MZM works on electro optic effect
- R.I changes with respect to applied voltage

$$\Delta n = -\frac{1}{2}\Gamma n^3 r_{33}(V/d_{\rm e}) \Rightarrow \Delta \phi = \frac{2\pi}{\lambda}\Delta nL$$

 Δn – change in the R.I

 $\Delta\Phi$ - phase change

r₃₃ – electro optic coefficient of LiNbo3

d_e- separation of electrodes

L – length of electrodes

Mach Zehnder Modulator (MZM)

$$E_{\text{out}}(t) = \frac{1}{2} \left[\exp \left(j \frac{\pi}{V_{\pi}} V_1(t) \right) + \exp \left(j \frac{\pi}{V_{\pi}} V_2(t) \right) \right] E_{\text{in}}$$

 v_{π} – differential drive voltage $(V_1-V_2=V_{\pi})$

Electroabsorption Modulator (EAM)

Electroabsorption Modulator (EAM)

The optical power exiting at the modulator is

$$P_{\text{out}} = \begin{cases} P_{\text{max}} = P_0 \exp\left(-\alpha_0 L\right) & \text{when } V(t) = 0 \\ P_{\text{min}} = P_0 \exp\left(-\alpha_1 L\right) & \text{when } V(t) = V_0 \end{cases}$$

L – Length of the modulator P_0 – Input power

The extinction ratio is

$$\delta = \frac{P_{\text{max}}}{P_{\text{min}}} = \frac{\exp(-\alpha_0 L)}{\exp(-\alpha_1 L)}.$$

Merits and demerits of EAM

• Easily integrated with laser diode

- Residual chirps
- Low extinction ratio