

Database Systems

Chapter # 1 Databases and Database Users

Lecture # 1,2

Subject's Marks Distribution

Class Activities	Max. Marks
Mid Term Examination	30
Assignments	10
Class Participation	1
Project	9
Final Examination	50

Books

Text Book

 Ramez Elmasri & Shamkant B. Navathe, Database Systems, Models, Languages, Design and Application Programming, 7th Edition, 2016.

Reference Material

- Thomas Connolly, Carolyn Begg, DatabasecSystems: A practical approach to design, implementation, and Management, 6thcEdition, 2015.
- C.J. Date, An Introduction to Database Systems, 8th Edition, 2004

Chapter Outlines

- 1. Introduction
- 2. Characteristics of Database Approach
- 3. Files Vs. Databases
- 4. Advantages of using DBMS
- 5. When not to use DBMS

Google Classroom Code

Class Code: m4appef

Invite Link:

https://classroom.google.com/c/MzgzMTAyNzMzMjA y?cjc=m4appef

General Idea

- Essential component of life: most of us encounter several activities every day that involve some interaction with a database.
 - Banking(money deposit and withdraw)
 - Hotel Reservation
 - Airline Reservation
 - Accessing online Library
 - Shopping (Daraz, AliExpress, Amazon etc.)
 - Car Booking (Careem, Uber etc.)

General Idea

- Traditional databases: Most of the information that is stored and accessed is either textual or numeric.
- Non-traditional databases/Bigdata storage systems/ NOSQL systems: created to manage data for social media applications.
 - Facebook (Posts, images and video clips)
 - Twitter (Tweets, images and video clips)
 - Google
 - Amazon
 - Yahoo
- A large amount of data now resides on the "cloud". which means it is in huge data centers using thousands of machines.

Introduction

- Data: Known facts that can be recorded and have an implicit meaning;
- **Database:** a highly organized, interrelated, and structured set of data.

Introduction

- A database can be of any size and complexity.
- An example of a large commercial database is Amazon.com. It contains:
 - Data for over 60 million active users, and millions of books, CDs, videos, DVDs, games, electronics, apparel, and other items.
 - The database occupies over 42 terabytes.

Properties of Database

- A database has the following implicit properties:
 - A database represents some aspect of the real world, sometimes called the miniworld or the universe of discourse (UoD). Changes to the miniworld are reflected in the database.
 - A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot correctly be referred to as a database.
 - A database is designed, built, and populated with data for a specific purpose.

It has an intended group of users and some preconceived applications in which these users are interested.

Database management system (DBMS)

- Computerized system that enables users to create and maintain a database.
 - For example: MySQL, Oracle, etc. are a very popular commercial database which is used in different applications.
- General-purpose software system: facilitates the processes of defining, constructing, manipulating, and sharing databases among various users and applications.

DBMS Functionality

- **Define a database**: in terms of data types, structures and constraints
- Construct or Load: storing data on a secondary storage medium.
- Manipulating the database: querying, generating reports, insertions, deletions and modifications to its content
- Concurrent Processing and Sharing by a set of users and programs – yet, keeping all data valid and consistent.

DBMS FUNCTIONALITY

- An application program accesses the database by sending queries for data to the DBMS.
 - Query: to retrieve and manipulate data.
 - Transaction: that reads and write data into the database.
- Other important functions provided by the DBMS include:
 - **Protection** against hardware or software malfunction and unauthorized or malicious access.
 - Maintenance: database can be maintained and updated for a long period of time.