Learning Multilevel Optimized Domain Decomposition

Ali Taghibakhshi, Nasim Gholizadeh

Fall 2022

Statement of the problem

- Domain Decomposition Methods (DDMs) among the most popular in solving PDEs
- Discretized PDE system: Ax = b, but A^{-1} is expensive
- Decompose $A \rightarrow A_1, A_2, ..., A_s$ and solve A_i^{-1} instead

Statement of the problem (continued)

- For multilevel, a coarse level is concerned
- The interpolation operator can also be optimized
- Interpolation weights = edges between coarse and fine grids

Our approach

Learning interface values and the prolongation operator (R_0 and L_i).

$$C = R_0^T \left(R_0 A R_0^T \right)^{-1} R_0$$

$$M = \sum_{i=1}^{S} (\tilde{R}_i)^T (\tilde{A}_i^{\delta})^{-1} R_i^{\delta}$$

Error propagation operator : T = (I - CA)(I - MA)

(1)

 $ilde{\mathcal{A}}_{i}^{\delta}=\mathcal{A}_{i}^{\delta}+h\mathbf{L_{i}},\qquad \mathbf{R_{0}}$: Interpolationoperator

L: Learned interface values, δ : Overlap, D_i^{δ} : Subdomains

 R_i^{δ} : Restriction to D_i^{δ} , \tilde{R}_i^{δ} : Modified restriction to D_i^{δ}

Sci-ML Learning DDM Fall 2022 4/13

Loss function

Recap: error propagation operator: T = (I - CA)(I - MA)

For $K \in \mathbb{N}$, and m uniformly random vectors x_i :

$$Y_{K} = \left\{ \left\| (T)^{K} x_{1} \right\|, \left\| (T)^{K} x_{2} \right\|, \dots, \left\| (T)^{K} x_{m} \right\| \right\},$$

To prevent vanishing gradients:

$$Z = \left(\max((Y_1)^1), \max((Y_2)^{\frac{1}{2}}), ..., \max((Y_K)^{\frac{1}{K}}) \right).$$

$$\mathcal{L} = \left\langle \operatorname{softmax}(Z) \cdot Z \right\rangle.$$

We use K = 10 for our experiments.

Sci-ML Learning DDM Fall 2022 5 / 13

Training

- 100 unstructured grids of size 800-999 (shown below).
- Subdomains obtained by Lloyd (K-means based) clustering.
- Batch size of 10, for 30 epochs, and with learning rate of 10^{-4} .

Sci-ML Learning DDM Fall 2022 6 / 13

Learning L_0 , R_0 , or both

Overtraining the HGNN on a single grid:

Sci-ML Learning DDM

Graph U-net architecture

1 layer of graph U-net:

Fall 2022

8/13

Hierarchical GNN architecture

1 layer of hierarchical GNN:

Sci-ML Learning DDM Fall 2022 9/13

Results: Loss function variants

- Un-normalized R_0 : No restriction of row sum = 1
- Old loss: Loss from 1 ($\mathcal{L} = \max(Y_K)$).
- P-loss: Inspired by ², adding $\gamma \sum_{i \in \text{columns}} ||R_{0_i}||_A^2$ to the loss.
- Sparser R_0 :

Denser R0

Sci-ML Learning DDM Fall 2022 10 / 13

¹Taghibakhshi et. al., Learning Interface Conditions in Domain Decomposition Solvers, NeurIPS 2022

²Olson et. al., A general interpolation strategy for algebraic multigrid using energy minimization, SIAM. 4 👼 🕨 💈 🥠 🔾

Results: Loss function variants

Results: HGNN vs. Graph U-net

Conclusions

In this project, we studied:

- Learning interpolation operator and interface conditions for 2-level ORAS
- A modified loss function to facilitate leaning 2-level ORAS
- Hierarchical GNN for learning ORAS and comparison with Graph U-net
- An ablation study on number of each architecture's number of layers
- Testing for larger grids than training grid size.

Future directions:

- Neural operator learning for multilevel ORAS.
- Leaning smoothers for AMG using HGNN.
- Trying 3D grids.

