

Department of Computer Science & Information Technology United College of Engineering and Research Prayagraj-211010 (India)

Unit-1: DAA Question Bank

Section-A

	Question	CO	Level
1	What is the time complexity of a binary search algorithm?	1	L1
2	What is an algorithm?	1	L1
3	Write the recurrence relation that arises in relation with the complexity of	1	L3
	binary search. Solve $T(n)=2$ $T(n/2)+n$.		
4	An algorithm is made up of 2 modules M1 and M2. If order of M1 is f(n)	1	L3
	and M2 is g(n) then what is the order of the algorithm?		
5	What is the time complexity of a insertion sort algorithm in all cases?	1	L1
6	Write Heap Sort algorithm.	1	L3
7	What is Pseudo code?	1	L1
8	Discuss any one sorting algorithm having linear time complexity.	1	L2
9	What is stable sort? Name any two stable sort algorithms.	1	L1
10	Explain the term analysis of algorithm.	1	L2
11	Write the Master Theorem.	1	L3
12	What is heap and max heap?	1	L1
14	Write an algorithm for counting sort.	1	L3
15	Discuss the analysis of Heap sort.	1	L2
16	Write an algorithm for Randomized Quick Sort.	1	L2
17	Write the algorithm for Quick sort.	1	L2
18	You are given an array of n integers $a_1 < a_2 < a_3 \dots < a_n$. Give an $O(\log n)$	1	L3
	Algorithm that finds index i where $a_i=i$ or prove that i does not exist.		
19	Show that $2^{n+1} = O(2^n)$.	1	L3
20	Write an algorithm for Bucket Sort.	1	L2

Section-B

	Question	CO	Level
1	Solve the following recurrences:	1	L3
	$T(n) = T(\alpha.n) + T((1-\alpha).n) + n, 0 < \alpha < 1$		
2	Consider $T(n) = 2T(n/2) + n^2$, we have to obtain the asymptotic bound	1	L2
	using recursion tree method.		
3	Find the solution of the following recurrence relation:	1	L1
	a) $T(n) = 8T(n/2) + 3n^2$, where n>1.		
	b) $T(n) = T(n-1) + n$, where $n > 1$		
4	Illustrate the functioning of Heap sort on the following array:	1	L3
	$A = \{25, 57, 48, 37, 12, 92, 86\}$		
5	Illustrate the operation of Counting sort on the array	1	L3
	$A = \{6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2\}$		
6	Write an algorithm for counting sort.	1	L2
7	Discuss the analysis of Insertion Sort.	1	L2
8	Write an algorithm for Randomized Quick Sort.	1	L2
9	Use a recursion tree to give an asymptotically tight solution to the	1	L3
	recurrence $T(n) = T(n-a) + T(a) + cn$, where $a>=1$ and $c>0$		

10	Write the Merge Sort Algorithm.	1	1.2
10	while the Merge Bort Argorium.	1	

Section-C

	Question	CO	Level
1	Write the algorithm for Quick sort. Prove that the running time complexity	1	L2
	of Quick sort is O(nlogn) in average.		
2	Determine the asymptotic order of the following functions:	1	L3
	(i) $f(n)=3n^2+5$		
	(ii) $f(n)=2^n + n + 3$		
	(iii) $f(n)=5$		
	(iv) f(n)=n+7		
3	Find the solution of the following recurrence relation using recursion tree	1	L1
	method $T(n) = T(n/3) + T(2n/3) + O(n)$		
4	Why do we use asymptotic notation in the study of algorithm? Explain in	1	L4
	brief various asymptotic notations and give their significance.		
5	Solve the following recurrences	1	L3
	$(i)T(n) = 2T(n^{1/2})+1$		
	(ii)T(n)=5T(n/5)+n/logn		
6	Solve the following By Recursion Tree Method	1	L3
	T(n) = T(n/5) + T(4n/5) + n		