Nama: Serly Mulanty

Nim : 230741090

Prodi: Ilmu komputer

fakultas: Teknik dan sains

1. Buatlah folder

Buatlah folder baru untuk Proyek, Contoh: UAS KECERDASAN BUATAN

Masukkan file Yollo 11,lalu buatlah file.py untuk menjalankankode python.

2. Importing libraries

```
from ultralytics import YOLO
import cv2
import streamlit as st
from PIL import Image
import numpy as np
from collections import Counter
import base64
```

- ➤ YOLO: Digunakan untuk memuat model YOLO (You Only Look Once) yang digunakan untuk deteksi objek.
- > cv2: Modul OpenCV untuk menangani gambar dan video.
- > streamlit: Digunakan untuk membuat aplikasi web dengan antarmuka interaktif.
- > PIL.Image: Modul untuk memproses gambar.
- > numpy: Modul untuk bekerja dengan array multidimensi.
- > collections.Counter: Digunakan untuk menghitung frekuensi kemunculan objek yang terdeteksi.

3. Menampilkan Hasil Deteksi

```
# Load YOLO model
@st.cache_resource
def load_model(model_path):
    return YOLO(model_path)
```

- Fungsi load_model digunakan untuk memuat model YOLO dari file .pt (file model terlatih).
- @st.cache_resource adalah decorator dari Streamlit yang memastikan bahwa model hanya dimuat sekali dan tidak diulang setiap kali aplikasi dijalankan. Ini meningkatkan efisiensi aplikasi.

4. Menampilkan Hasil Deteksi

```
# Process and display the detection results

off display_results(image, results):

boxes - results.boxes.resy.repul.numpy() # [x1, y1, x2, y2]

scores - results.boxes.com(.cpul).numpy() # Collidence scores

labels = results.boxes.cs.com(.cpul).numpy() # Class indices

names = results.boxes.s class names

detected_objects = []

for i in rampe(len(boxes)):
    if scores(i) > 0.5: # Confidence threshold
        xi, y1, x2, y2 = boxes(i].astyre(int)
        label = names[in(labels[i]))
        score = scores[i]
    ident.cut_objects.append(label)
        cv2.rectample(lampe, (x1, y1), (x2, y2), (0, 255, 0), 2)
        cv2.pottex(image, "(label): (score::2i)", (x1, y1 - 10), cv2.font_MERSMEY.SIMPLEX, 0.5, (0, 255, 0), 2)

return image, detected_objects
```

- Fungsi display_results digunakan untuk menampilkan hasil deteksi pada gambar (frame) dan menggambar kotak pembatas (bounding box) di sekitar objek yang terdeteksi.
- results.boxes.xyxy adalah koordinat dari kotak pembatas objek dalam format [x1, y1, x2, y2].
- results.boxes.conf adalah skor kepercayaan (confidence score) untuk setiap deteksi objek.
- results.boxes.cls adalah indeks kelas objek yang terdeteksi.
- > Hanya objek dengan skor kepercayaan lebih besar dari 0.5 yang akan digambar dan ditampilkan.
- > cv2.rectangle menggambar kotak pembatas, dan cv2.putText menambahkan label dengan skor kepercayaan pada objek yang terdeteksi.

5.Menambahkan Latar Belakang kustom

```
# Fungsi untuk menambahkan latar belakang
def set_background(image_path):
    with open(image_path, "rb") as file:
        base64_image = base64.b64encode(file.read()).decode()
    css = f"""
        <style>
        .stApp {{
        background-image: url("data:image;base64,{base64_image}");
        background-size: cover;
        background-repeat: no-repeat;
        background-attachment: fixed;
    }}
    </style>
    st.markdown(css, unsafe_allow_html=True)
```

- Fungsi set_background digunakan untuk mengubah latar belakang aplikasi Streamlit dengan gambar yang dikodekan dalam format base64.
- ➤ Gambar pertama-tama dibaca sebagai byte dengan mode 'rb', kemudian dikodekan menjadi format base64.
- ➤ CSS disisipkan di dalam aplikasi Streamlit untuk mengatur gambar latar belakang (background-image) menggunakan data yang sudah dikodekan base64.

6. Fungsi Utama (Main Function)

- > Fungsi utama main adalah pusat dari aplikasi Streamlit.
- > set background("image.jpg") menambahkan gambar latar belakang ke aplikasi.
- > st.title("Serly Mulanty") menampilkan judul aplikasi di bagian atas.
- > st.sidebar.title("Settings") menambahkan judul di sidebar aplikasi untuk pengaturan.
- ➤ Model YOLO dimuat dengan load model("yolo11n.pt").

- > st.sidebar.checkbox("Start/Stop Object Detection") menambahkan checkbox untuk mengaktifkan atau menonaktifkan deteksi objek.
- ➤ Jika checkbox aktif (run_detection), aplikasi akan membuka kamera (menggunakan cv2.VideoCapture(0)) untuk menangkap video.
- > Di dalam loop, frame video diambil dan diproses menggunakan YOLO untuk deteksi objek.
- ➤ Hasil deteksi digambar pada frame, dan objek yang terdeteksi akan dihitung frekuensinya menggunakan Counter.
- ➤ Hasil deteksi ditampilkan di aplikasi Streamlit dalam bentuk gambar dan teks.

7. Menjalankan Aplikasi

```
if __name__ == "__main__":
    main()
```

> Ini adalah bagian yang memastikan bahwa fungsi main() dijalankan jika file ini dieksekusi langsung. Dengan kata lain, aplikasi Streamlit akan dimulai di sini.

8. Jika telah berhasil lanjut saja Deteksi real-time!

Objek yang terdeteksi akan ditampilkan seperti contoh dibawah ini.

