Effect of Particle Shape on Motion in Microfluidic Channel

Fatemeh S. Ahmadi

Content

- ☐ Why microchannels?
- ☐ What's the history?
- ☐ A nature communication paper
- Conformity with experimental results
- ☐ Future works
- Conclusion

INTRODUCTION

What's the Difference?

- q2D motion
- Quicker damping
- More noises
- IT'S ABOUT OUR BODY

Once in the bloodstream, the cells move through

Tumor cells

Giving rise to new tumor cells

METASTASIS

Tumor cells enter

the bloodstream

Other Works

M. Nagel et al., J. Fluid Mech. 835, 444, 2018

M. Trofa et al., Phys. Fluids 31, 083603, 2019

H. Başağaoğlu et al., Sci. Rep. 8, 1, 2018

So what did W.Uspal, H.Eral & P.Doyle

do?

Pictures from Google Scholar

W. E. Uspal et al., Nat. Commun. 4,2666,2013

Channel and Particle Geometry

Figure 1

$$\tilde{R} \equiv \frac{R_1}{R_2}$$

- Oscillation
- Damped oscillation
- Over damped oscillation

Self-Interaction

Bipolar hydrodynamic fields

Figure 2

Particle-wall Interaction

A little trick...

A little trick..

$$\dot{\theta} = b\Delta - c\theta$$

NUMERICAL RESULTS

Critical Boundary

Figure 5,1 12/17

Individual Particle Trajectories

Channel Outlet

What's Next?

G. Fiorucci et al., Soft Matter 15, 321, 2019

CONCLUSION

- ✓ Importance
- ✓ Topics
- Engineering particle trajectories
- ✓ Future works

THANKYOU

fatemeh.sa.ahmadi@gmail.com

Special thanks to Dr Shaebani and Dr Hamzehpour

References

- Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer (2020).
- > Ory, E. C. et al. Extracting microtentacle dynamics of tumour cells in a nonadherent environment. Oncotarget 8, 111567–111580 (2017).
- > Bhandary, L. et al. ROCK inhibition promotes microtentacles that enhance reattachment of breast cancer cells. Oncotarget 6, 6251–6266 (2015).
- Nagel, M. et al. Oscillations of confined fibres transported in microchannels. J. Fluid Mech. 835, 444–470 (2018).
- Hwang, M. Y., Kim, S. G., Lee, H. S. & Muller, S. J. Elastic particle deformation in rectangular channel flow as a measure of particle stiffness. Soft Matter 14, 216–227 (2018).
- > Başağaoğlu, H., Succi, S., Wyrick, D. & Blount, J. Particle Shape Influences Settling and Sorting Behavior in Microfluidic Domains. Sci. Rep. 8, 1–11 (2018).
- Frofa, M., D'Avino, G. & Maffettone, P. L. Numerical simulations of a stick-slip spherical particle in Poiseuille flow. Phys. Fluids 31, 083603-10 (2019).
- > Uspal, W. E., Burak Eral, H. & Doyle, P. S. Engineering particle trajectories in microfluidic flows using particle shape. Nat. Commun. 4, 1–9 (2013).
- Fiorucci, G., Padding, J. T. & Dijkstra, M. Small asymmetric Brownian objects self-align in nanofluidic channels. Soft Matter 15, 321–330 (2019).
- > Ory, E. C. et al. Extracting microtentacle dynamics of tumour cells in a nonadherent environment. Oncotarget 8, 111567–111580 (2017).