

CMSC 170: Introduction to Artificial intelligence

Week 06: Linear Classification using Perceptron

John O-Neil V. Geronimo Institute of Computer Science University of the Philippines Los Baños

Content

- I. Background
- II. Implementation of Linear Classification Using Perceptrons

Content

- I. Background
- II. Implementation of Linear Classification Using Perceptrons

Background

A perceptron is a form of simple neural network, consisting of a **single neuron** that takes a feature vector with n coordinates, assigns each coordinate with a corresponding weight, and outputs the feature vector's classification based on a threshold function.

Background

The perceptron algorithm was conceptualized by Frank Rosenblatt in 1957, and it was one of the first neural networks to be implemented.

Background

Perceptron only works on **linearly separable** data. If the training data is not linearly separable, the perceptron algorithm will not converge

Given values:

- m feature vectors with n coordinates and a corresponding target label/classification, y, each: $[x_0, x_1, ..., x_n \rightarrow y]$
- n weights, $w_0, w_1, ... w_n$, for each coordinate of a feature vector
- Learning rate, r
- Threshold, **t**
- Bias, **b**

Step 1

Choose initial weights (may be random, but are usually initialized to 0)

Step 2

For each individual feature vector (row)

a. Compute perceptron value, a

$$a = \sum_{i=0}^n (x_i w_i) + b w_b$$

b. Determine classification, y

$$y = (a \ge threshold)?1:0$$

c. Adjust weights

$$ar{w}_a = w_c + r x_p (z-y)$$

Step 3

if (weights converge):

stop learning

else:

repeat step 2 for the next feature vector.

The weights have converged if they stay the **same** throughout all feature vectors in the training data set.

Content

- I. Background
- II. Implementation of Linear Classification Using Perceptrons

Example

Consider the given values for our perceptron:

Learning rate = 0.1 Threshold = 0.5

Bias = 1

X_0	X ₁	Z
0	0	0
0	1	1
1	0	1
1	1	1

Step 1

Choose initial weights (may be random, but are usually initialized to 0)

X _o	X ₁	b	W_0	\mathbf{W}_1	$\mathbf{w_b}$	a	y	Z
0	0	1						0
0	1	1						1
1	0	1						1
1	1	1						1

Step 1

Choose initial weights (may be random, but are usually initialized to 0)

X _o	X ₁	b	W_0	\mathbf{W}_1	$\mathbf{w_b}$	a	y	Z
0	0	1	0	0	0			0
0	1	1						1
1	0	1						1
1	1	1						1

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

where, w_a is the adjusted weight, w_c is the most recent/current value of the weight, and x_p pertains to the x-value of the previous feature vector

X ₀	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0			0
0	1	1				1		1
1	0	1						1
1	1	1						1

Start of our iteration

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0			0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0(0) + 0(0) + 1(0)$$

 $a = 0$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0	0	0	0		0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0(0) + 0(0) + 1(0)$$

 $a = 0$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0		0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \geq threshold)$? 1:0
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{W}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	X	1						1
1	0	1						1
1	1	1						1

$$W_0 = 0 + (0.1)(0)(0-0) = 0$$

$$W_1 = O + (O.1)(O)(O-O) = O$$

$$W_b = O + (O.1)(1)(O-O) = O$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0			1
1	0	1						1
1	1	1						1

$$W_0 = 0 + (0.1)(0)(0-0) = 0$$

$$W_1 = O + (O.1)(O)(O-O) = O$$

$$W_b = O + (0.1)(1)(0-0) = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0			1
1	0	1						1
1	1	1						1

$$a = 0(0) + 1(0) + 1(0)$$

 $a = 0$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0		1
1	0	1						1
1	1	1						1

$$a = 0(0) + 1(0) + 1(0)$$

 $a = 0$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{W}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0		1
1	0	1						1
1	1	1						1

$$a = 0$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1						1
1	1	1						1

$$a = 0$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y y = (a > threshold)?1:0
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	$\mathbf{w_0}$	\mathbf{W}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	7 1
1	0	1						1
1	1	7						1

$$W_0 = 0 + (0.1)(0)(1-0) = 0$$

$$W_1 = O + (O.1)(1)(1-O) = O.1$$

$$W_b = 0 + (0.1)(1)(1-0) = 0.1$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + b w_b$
- b. Determine classification, y y = (a > threshold)?1:0
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1			1
1	1	1						1

$$W_0 = 0 + (0.1)(0)(1-0) = 0$$

$$W_1 = 0 + (0.1)(1)(1-0) = 0.1$$

$$W_b = 0 + (0.1)(1)(1-0) = 0.1$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1			1
1	1	1						1

$$a = 1(0) + 0(0.1) + 1(0.1)$$

 $a = 0.1$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1		1
1	1	1						1

$$a = 1(0) + 0(0.1) + 1(0.1)$$

 $a = 0.1$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1		1
1	1	1						1

$$a = 0.1$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1						1

$$a = 0.1$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{W}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	7 0	7 1
1	1	1						1

$$W_0 = 0 + (0.1)(1)(1-0) = 0.1$$

$$W_1 = 0.1 + (0.1)(0)(1-0) = 0.1$$

$$W_b = 0.1 + (0.1)(1)(1-0) = 0.2$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{W}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2			1

$$W_0 = 0 + (0.1)(1)(1-0) = 0.1$$

$$W_1 = 0.1 + (0.1)(0)(1-0) = 0.1$$

$$W_b = 0.1 + (0.1)(1)(1-0) = 0.2$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{W}_1	$\mathbf{w_b}$	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2			1

$$a = 1(0.1) + 1(0.1) + 1(0.2)$$

 $a = 0.4$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2	0.4		1

$$a = 1(0.1) + 1(0.1) + 1(0.2)$$

 $a = 0.4$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{W}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2	0.4		1

$$a = 0.4$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2	0.4	0	1

$$a = 0.4$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

where, w_a is the adjusted weight, w_c is the most recent/current value of the weight, and x_p pertains to the x-value of the previous feature vector

X ₀	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2	0.4	0	1

$$a = 0.4$$
 $t = 0.5$

Therefore,
$$y = 0$$

Our iteration is not finished yet

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

where, w_a is the adjusted weight, w_c is the most recent/current value of the weight, and x_p pertains to the x-value of the previous feature vector

X _o	X ₁	b	W_0	\mathbf{W}_1	W_{b}	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2	0.4	0	1

$$W_0 = 0.1 + (0.1)(1)(1-0) = 0.2$$

 $W_1 = 0.1 + (0.1)(1)(1-0) = 0.2$
 $W_b = 0.2 + (0.1)(1)(1-0) = 0.3$

Final adjusted weights

Step 3

if (weights **converge**):

stop learning

else:

repeat step 2 for the next feature vector.

The weights have converged if they stay the **same** throughout all feature vectors in the training data set.

X_0	X ₁	b	W_0	W ₁	w _b	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2	0.4	0	1
			0.2	0.2	0.3			

Final adjusted weights

Step 3

if (weights converge):

stop learning

else:

repeat step 2 for the next feature vector.

The weights have converged if they stay the **same** throughout all feature vectors in the training data set.

X ₀	X ₁	b	W_0	w ₁	w _b	a	y	Z
0	0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0	1
1	0	1	0	0.1	0.1	0.1	0	1
1	1	1	0.1	0.1	0.2	0.4	0	1
			0.2	0.2	0.3			

Do these weights converge? No. Repeat step 2.

Iteration 1

X ₀	X ₁	b)	$\mathbf{W_0}$	\mathbf{W}_1	W _b		a	y	Z
0	0	1		0	0	0		0	0	0
0	1	1		0	0	0	(0	0	1
1	0	1		0	0.1	0.1	С).1	0	1
1	1	1		0.1	0.1	0.2	0	.4	0	1
				0.2	0.2	0.3				

Iteration 2

X_0	X_1	b	$\mathbf{w_0}$	\mathbf{W}_1	$\mathbf{w_b}$	a	y	Z
0	0	1	0.2	0.2	0.3			0
0	1	1	1					1
1	0	1						1
1	1	1						1

Bring final adjusted weights as initial weights for the next iteration. Then, repeat step 2

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

where, w_a is the adjusted weight, w_c is the most recent/current value of the weight, and x_p pertains to the x-value of the previous feature vector

X _o	X ₁	b	W_0	\mathbf{w}_1	$\mathbf{w_b}$	a	y	Z
0	0	1	0.2	0.2	0.3			0
0	1	1			1	(1
1	0	1						1
1	1	1						1

Start of our iteration

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0.2	0.2	0.3			0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0(0.2) + 0(0.2) + 1(0.3)$$

 $a = 0.3$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^n (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0.2	0.2	0.3	0.3		0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0(0.2) + 0(0.2) + 1(0.3)$$

 $a = 0.3$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0.2	0.2	0.3	0.3		0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0.3$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X ₀	X ₁	b	W_0	\mathbf{w}_1	W_{b}	a	y	Z
0	0	1	0.2	0.2	0.3	0.3	0	0
0	1	1						1
1	0	1						1
1	1	1						1

$$a = 0.3$$
 $t = 0.5$

Therefore,
$$y = 0$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{w}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0.2	0.2	0.3	0.3	0	0
0	1	1						1
1	0	1						1
1	1	1						1

$$W_0 = 0.2 + (0.1)(0)(0-0) = 0.2$$

$$W_1 = 0.2 + (0.1)(0)(0-0) = 0.2$$

$$W_b = 0.3 + (0.1)(1)(0-0) = 0.3$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + bw_b$
- b. Determine classification, y $y = (a \geq threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

X _o	X ₁	b	W_0	\mathbf{W}_1	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0.2	0.2	0.3	0.3	0	0
0	1	1	0.2	0.2	0.3			1
1	0	1						1
1	1	1						1

$$W_0 = 0.2 + (0.1)(0)(0-0) = 0.2$$

$$W_1 = 0.2 + (0.1)(0)(0-0) = 0.2$$

$$W_b = 0.3 + (0.1)(1)(0-0) = 0.3$$

Step 2

For each individual feature vector (row)

- a. Compute perceptron value, a $a = \sum_{i=0}^{n} (x_i w_i) + b w_b$
- b. Determine classification, y $y = (a \ge threshold)?1:0$
- c. Adjust weights $w_a = w_c + r x_p (z-y)$

where, w_a is the adjusted weight, w_c is the most recent/current value of the weight, and x_p pertains to the x-value of the previous feature vector

X_0	X ₁	b	W_0	W ₁	$W_{\mathbf{b}}$	a	y	Z
0	0	1	0.2	0.2	0.3	0.3	0	0
0	1	1	0.2	0.2	0.3			1
1	0	1						1
1	1	1						1

Continue to do this until the weights converge.

Iteration 2

X ₀	X ₁	b	$\mathbf{w_0}$	\mathbf{W}_1	$\mathbf{w_b}$	a	y	Z
0	0	1	0.2	0.2	0.3	0.3	0	0
0	1	1	0.2	0.2	0.3	0.5	0	1
1	0	1	0.2	0.3	0.4	0.6	1	1
1	1	1	0.2	0.3	0.4	0.9	1	1
			0.2	0.3	0.4	0.4		

Iteration 3

X_0	X_1	b	$\mathbf{W_0}$	\mathbf{W}_1	$W_{\mathbf{b}}$	A	y	Z
0	0	1						0
0	1	1						1
1	0	1						1
1	1	1						1

Iteration 2

X ₀	X ₁	b	W_0	\mathbf{w}_1	$\mathbf{w_b}$	a	y	Z
0	0	1	0.2	0.2	0.3	0.3	0	0
0	1	1	0.2	0.2	0.3	0.5	0	1
1	0	1	0.2	0.3	0.4	0.6	1	1
1	1	1	0.2	0.3	0.4	0.9	1	1
			0.2	0.3	0.4	C.4		

Iteration 3

X _o	X_1	b	$\mathbf{w_0}$	W ₁	W_{b}	A	y	Z
0	0	1	0.2	0.3	0.4			0
0	1	1						1
1	0	1						1
1	1	1						1

Bring final adjusted weights as initial weights for the next iteration. Then, repeat step 2

Iteration 2

X ₀	X ₁	b	$\mathbf{w_0}$	\mathbf{W}_1	W _b	a	y	Z
0	0	1	0.2	0.2	0.3	0.3	0	0
0	1	1	0.2	0.2	0.3	0.5	0	1
1	0	1	0.2	0.3	0.4	0.6	1	1
1	1	1	0.2	0.3	0.4	0.9	1	1
			0.2	0.3	0.4	0.4		

Iteration 3

X_0	X_1	b	W_0	\mathbf{W}_1	W _b	A	y	Z
0	0	1	0.2	0.3	0.4	0.4	0	0
0	1	1	0.2	0.3	0.4	0.7	1	1
1	0	1	0.2	0.3	0.4	0.6	1	1
1	1	1	0.2	0.3	0.4	0.9	1	1
			0.2	0.3	0.4			

Did the weights converge? YES. Stop computation

Are there instances where the weights do not converge? Yes. This happens when the data is **not linearly separable**.

Content

- I. Background
- II. Implementation of Linear Classification Using Perceptrons

Keep safe!