Time limits for measurement of gravitational waves with dynamical Casimir effect in solid-state detectors

Andrii M. Sokolov of Institute of Physics, Kyiv

Can a gravitational wave change a resonator state?

Space-time metric periodically varies in two perpendicular directions linearly-polarized gravitational wave

A distributed on-chip resonator: a planar microwave resonator or a surface-acoustic wave resonator

Resonator length varies as

 $L = L_0(1 + h_+)$

Metric perturbation $h_+ = \epsilon \sin \Omega t$ **Dynamical Casimir effect**

At $\Omega = \omega_0/2$, fluctuations are parametrically amplified—if the resonator length varies vigorously

 $\Omega = 100 \, \text{kHz}$

 $\epsilon \sim 10^{-20}$ Gravitational waves are far too weak near Earth to excite $t \sim 1/\Omega \epsilon^2 \sim 10^{27} \, \text{years}$ weak field Lartifito to the photons of phonons

100 kHz

interesting

Some

sources

primordial black holes and exotic compact objects

axion decay superradiance 750 MHz

phase transitions in the early Universe

oscillons

Many mutually-incoherent measurements

$$t \sim \left(\frac{\omega_0/2\pi}{MHz}\right)^{-1} 10^{-13-\lg\langle\Delta\epsilon^2\rangle-\lg QD-\frac{1}{5}V_{dB}} \text{ years}$$

D = 100 devices operate simultaneously. Each measurement bin ten is times shorter than the coherence time Q/ω , where $Q=10^6$.

Such squeezing may be gained already

this millenium. Currently, $V_{\rm dB} \lesssim 10\,{\rm dB}$.

Still, they alter a quantum state. Can that be measured?

 $H_{\epsilon}(t) = 2\omega_0^2 t^2 (1 + \sinh^4 r)$ information encoded by a wave

 $N = \frac{1}{\langle \Delta \epsilon^2 \rangle H_{\epsilon}(t_{\text{bin}})}$ measurements —each t_{bin} long—

yield at least $\sqrt{\langle \Delta \epsilon^2 \rangle}$ error in the metric magnitude ϵ

Infinite coherence limit

N = 1measurement with D = 1device

This can be done even sooner—if a robust quantum error-correction is ever reached.

 $t \sim \left(\frac{\omega_0/2\pi}{\text{MHz}}\right)^{-1} 10^{-14 - \frac{1}{2} \lg(\Delta \epsilon^2) - \frac{1}{10} V_{\text{dB}}} \text{ years}$

I thank D. E. Bruschi and F. Wilhelm-Mauch for stimulating discussions. This work was partly supported by Saarland University and the President's scholarship for young scientists.