

Now let as wate 
$$f(x,b\tau,\mu,5)$$
 in terms of  $f(x,b\tau,\mu,5)$ :

$$f(x,b\tau,\mu,5) = \tilde{f}(x,bx,\mu,3) \left[ \tilde{f}(x,b\tau,\mu,3) \right] = \frac{1}{2} \left[ \tilde{f}(x,b\tau,\mu,5) \right] = \frac{1}{2} \left[ \tilde$$

Let as ase  $\mu_b = \mu_b = \frac{2e^{-\delta \Xi}}{b \times}$ }. = Q. 1 ~ 1-2 (6eV²) Then:,  $5 = Q^2$  (the scale)  $\int (x,b_T,Q,Q^1) = \int (x,b_X,p_b,Q_0^2) \left(\frac{Q}{Q_0}\right)^{\chi} (b_X,p_b) - g_{\chi}(b)$ exp[ $\int \frac{dh'}{dh} (\delta F(h',1) - \ln \frac{Q}{h'} \delta \kappa(h'))$ ] 2 Sadakos formfactor · exp[-g(x,b]] Contains result of gluon rediction  $\tilde{f}(x,b_{7},Q,Q^{2}) = \tilde{f}(x,b_{x},\mu_{b},Q_{o}^{2}) = \frac{-g(x,b_{7})}{e}$ almost like GPM!  $= \int (x, jrb) e^{-g(x,b\tau)} e^{s'} \left( \int g(x,b\tau) \sim \frac{b^2 - (k\tau)}{4} \right)$ study in Mathemetica.

We will ass differs from Mathemetice to study how it 6PM at higher scales.