

 (\blacksquare)

Wprowadzenie do sieci

1 Komunikacja sieciowa dziś

Podstawy konfiguracji przełącznika i urządzenia

Protokoły i modele

końcowego

4 Warstwa fizyczna

Systemy liczbowe

5.0 Wprowadzenie

5.0.1 Dlaczego powinienem przerobić ten moduł?

5.0.2 Czego się nauczę przerabiając ten moduł?

5.1 Binarny system liczbowy

5.1.1 Liczby binarne i adresy IPv4

Wideo - Konwersja między

1.2 systemami liczbowymi binarnym i
dziesiętnym

5.1.3 Binarna notacja pozycyjna

Sprawdź, czy zrozumiałeś -Binarny system liczbowy

Konwersia liczby binarnei na

1 / Systemy liczbowe / Moduł ćwiczeń i quizu

Moduł ćwiczeń i quizu

5.3.1

Czego się nauczyłem przerabiając ten moduł?

Binarny system liczbowy

Binarny jest system liczbowy, który składa się z liczb 0 i 1 nazywanych bitami. Natomiast system dziesiętny składa się z 10 cyfr składających się z liczb 0 – 9. System binarny jest dla nas ważny do zrozumienia, ponieważ hosty, serwery i urządzenia sieciowe używają binarnego adresowania, w szczególności binarnych adresów IPv4, do wzajemnej identyfikacji. Musisz znać adresowanie binarne i wiedzieć jak konwertować między binarnymi i dziesiętnymi adresami IPv4. W tym temacie przedstawiono kilka sposobów konwersji liczb dziesiętnych na binarne i binarne na dziesiętne.

Szesnastkowy system liczbowy

Podobnie jak system dziesiętny ma podstawę dziesięć, tak system szesnastkowy jest ma podstawę szesnaście. System liczbowy o podstawie szesnaście używa cyfr 0 do 9 i liter A do F. Używany w sieci do reprezentowania adresów IP w wersji 6 i adresów MAC Ethernet. Adresy IPv6 mają długość 128 bitów, a każde 4 bity są reprezentowane przez pojedynczą cyfrę szesnastkową; łącznie 32 wartości szesnastkowych. Aby przekonwertować liczbę szesnastkową na dziesiętną, należy najpierw przekonwertować szesnastkową na binarną, a następnie przekonwertować binarną na dziesiętną. Aby przekonwertować liczbę dziesiętną na szesnastkową, należy również najpierw przekonwertować dziesiętną na binarną.

5.3.2

Moduł quizu - Systemy liczbowe

 Która z następujących liczb jest dwójkowym odpowiednikiem dziesiętnej liczby 173?

10110101

10100101

Wprowadzenie do sieci

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	^
5.0	Wprowadzenie	~
5.0.1	Dlaczego powinienem przerob ten moduł?	oić
5.0.2	Czego się nauczę przerabiając moduł?	ten
5.1	Binarny system liczbowy	~
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarny dziesiętnym	m i
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczby binarnei na	

<u> </u>
<u> </u>
Biorąc pod uwagę adres binarny 11101100 00010001 00001100 00001010, który adres reprezentuje go w formacie dziesiętnym?
234.17.10.9
234.16.12.10
236.17.12.10
236.17.12.6
3. Ile cyfr binarnych (bitów) zawiera adres IPv6?
<u>64</u>
○ 32
<u>48</u>
<u></u>
<u>128</u>
4. Jaki jest binarny odpowiednik liczby dziesiętnej 232?
<u> </u>
<u></u>
<u></u>
<u></u>
5. Które dwa stwierdzenia o adresach IPv4 i IPv6 są prawidłowe? (Wybierz dwie odpowiedzi).
Adresy IPv4 mają długość 128 bitów.
Adresy IPv6 mają długość 32 bity.
Adresy IPv6 są reprezentowane przez liczby szesnastkowe.
Adresy IPv6 mają długość 64 bity.
Adresy IPv4 mają długość 32 bity.
Adresy IPv4 są reprezentowane przez liczby szesnastkowe.
6. Który format adresu IPv4 został stworzony dla łatwości obsługi przez ludzi i jest wyrażony jako 201.192.1.14?

Wprowadzenie do sieci

vvpiov	wadzeriic do sicci	
1	Komunikacja sieciowa dziś	,
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	,
3	Protokoły i modele	,
4	Warstwa fizyczna	,
5	Systemy liczbowe	
5.0	Wprowadzenie	,
5.0.1	Dlaczego powinienem przerobić ten moduł?	
5.0.2	Czego się nauczę przerabiając ten moduł?	
5.1	Binarny system liczbowy	,
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarnym i dziesiętnym	
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczby binarnei na	

szesnastkowy
binarny
notacja dziesiętna z kropkami
ASCII
7. Jaka jest dziesiętna reprezentacja następującego adresu IPv4 - 11001011.00000000.01110001.11010011?
203.0.113.211
192.0.2.199
209.165.201.223
198.51.100.201
8. Jaki jest dziesiętny odpowiednik liczby binarnej 10010101?
<u> </u>
<u> </u>
<u>149</u>
<u></u>
9. Co jest odpowiednikiem dziesiętnym liczby szesnastkowej 0x3F?
9. Co jest odpowiednikiem dziesiętnym liczby szesnastkowej 0x3F? 77
77
○ 77○ 93
77 93 63
77 93 63 87 10. Co jest dziesiętnym odpowiednikiem adresu IPv4, który jest reprezentowany
77 93 63 87 10. Co jest dziesiętnym odpowiednikiem adresu IPv4, który jest reprezentowany jako ciąg binarny 00001010.01100100.0001011.00000001?
77 93 63 87 10. Co jest dziesiętnym odpowiednikiem adresu IPv4, który jest reprezentowany jako ciąg binarny 00001010.01100100.0001011.00000001? 10.10.20.1
77 93 63 87 10. Co jest dziesiętnym odpowiednikiem adresu IPv4, który jest reprezentowany jako ciąg binarny 00001010.01100100.0001011.00000001? 10.10.20.1 10.100.21.1
77 93 63 87 10. Co jest dziesiętnym odpowiednikiem adresu IPv4, który jest reprezentowany jako ciąg binarny 00001010.01100100.0001011.00000001? 10.10.20.1 10.100.21.1 100.21.10.1
77 93 63 87 10. Co jest dziesiętnym odpowiednikiem adresu IPv4, który jest reprezentowany jako ciąg binarny 00001010.01100100.0001011.00000001? 10.10.20.1 10.100.21.1 100.21.10.1 100.10.11.1

Wprowadzenie do sieci

1	Komunikacja sieciowa dziś	~
2	Podstawy konfiguracji przełącznika i urządzenia końcowego	~
3	Protokoły i modele	~
4	Warstwa fizyczna	~
5	Systemy liczbowe	^
5.0	Wprowadzenie	~
5.0.1	Dlaczego powinienem przerob ten moduł?	oić
5.0.2	Czego się nauczę przerabiając moduł?	ten
5.1	Binarny system liczbowy	~
5.1.1	Liczby binarne i adresy IPv4	
5.1.2	Wideo - Konwersja między systemami liczbowymi binarnym i dziesiętnym	
5.1.3	Binarna notacja pozycyjna	
5.1.4	Sprawdź, czy zrozumiałeś - Binarny system liczbowy	
	Konwersia liczby binarnei na	

<u> </u>	
<u></u>	
12. Która to poprawna liczba szesnastkowa?	
○ h	
○ f	
○ j	
Оа	
13. Co jest binarną reprezentacja 0xCA?	
11001010	
11010101	
101111010	
11011010	
14. Ile bitów występuje w adresie IPv4?	Sprawdź
256	Sprawdz
<u>128</u>	Rozwiązanie
<u>32</u>	Resetuj
64	Resettly
Szesnastkowy system liczbowy	Wprowadzenie >