

An Invitation to 3D Vision: Visual SLAM and Odometry

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SEOULTECH sunglok@seoultech.ac.kr | https://mint-lab.github.io/

Applications

- **Structure-from-Motion (SfM)** → 3D Reconstruction, Photo Browsing
 - Bundler, COLMAP, MVE, Theia, openMVG, OpenSfM, Toy SfM / VisualSFM (GUI, binary only)
- Visual SLAM → Augmented Reality, Navigation (Mapping and Localization)
 - PTAM (Parallel Tracking and Mapping), <u>DTAM</u> (Dense Tracking and Mapping), <u>ORB-SLAM2</u>, <u>LSD-SLAM</u>
 - cf. Visual loop closure (a.k.a. visual place recognition): <u>DBoW2</u>, <u>FBoW</u>, <u>PoseNet</u>, <u>NetVLAD</u>
- Visual Odometry → Navigation (Localization)
 - <u>LIBVISO2</u> (C++ Library for Visual Odometry 2), <u>SVO</u> (Semi-direct Monocular Visual Odometry), <u>DVO</u> (Direct Sparse Odometry), <u>DeepVO</u>, <u>UnDeepVO</u>

Visual Odometry and SLAM: History

Paradigm #1: Bayesian Filtering v.s. Bundle Adjustment

"Real-time Monocular SLAM: Why Filter?"

[Strasdat et al., ICRA, 2010]

Paradigm #2: Feature-based Method v.s. Direct Method

• e.g. Image stitching

Feature-based Method

$$\operatorname*{arg\,min}_{\mathbf{H}} \sum_{i} \left\| \mathbf{H} \mathbf{x}_{i} - \mathbf{x}_{i}' \right\|^{2}$$

VS

Direct Method

$$\underset{\mathbf{H}}{\operatorname{arg\,min}} \sum_{u,v} \left\| I(\begin{bmatrix} \begin{smallmatrix} u \\ v \end{smallmatrix}]) - I'(\mathbf{H}\begin{bmatrix} \begin{smallmatrix} u \\ v \end{smallmatrix}]) \right\|^2$$

Paradigm #2: Feature-based Method v.s. Direct Method

Feature-based/Direct SLAM

Feature-Based SLAM

Minimize Feature Reprojection Error

Sparse Reconstruction

Direct SLAM

Minimize Photometric Error

Semi Dense / Dense Reconstruction

PTAM, ORB-SLAM

DTAM, LSD-SLAM, DPPTAM

The Future of Real-Time SLAM (ICCV'15 Workshop), Raúl Mur Artal. University of Zaragoza.

Why should we still use features?

Robustness

Reliable two-view monocular initialization

Good invariance to viewpoint and illumination

Less affected by auto-gain and auto-exposure

Less affected by dynamic elements

Accuracy

Bundle adjustment (joint map-trajectory optimization)

Place Recognition (loop detection, relocalization) **Bags of Words**

But sparse reconstructions ...

Input **Images**

Extract & Match Features (SIFT / SURF / BRIEF /...)

Track:

min. reprojection error

(point distances)

Map:

est. feature-parameters

(3D points / normals)

abstract images to feature observations

Chiuso '02, Nistér '04, Eade '06, Klein '06,

Davison '07, Strasdat '10, Mur-Artal '14,

Track:

Map:

min. photometric error (intensity difference) est. per-pixel depth (semi-dense depth map)

Matthies '88, Hanna '91, Comport '06 Newcombe '11, Engel '13, .

Jakob Engel

Semi-Dense Direct SLAM

Comparison

Feature-Based

Direct

can only use & reconstruct corners

faster

flexible: outliers can be removed retroactively.

robust to inconsistencies in the model/system (rolling shutter).

decisions (KP detection) based on less complete information.

no need for good initialization.

~20+ years of intensive research

can use & reconstruct whole image

slower (but good for parallelism)

inflexible: difficult to remove outliers retroactively.

not robust to inconsistencies in the model/system (rolling shutter).

decision (linearization point) based on more complete information.

needs good initialization.

~4 years of research (+5years 25 years ago)

Jakob Engel

Visual odometry

Wheel odometry

- + direct motion measure
- + six degree-of-freedoms
- + easy to install
- heavy computation
- visual disturbance (e.g. moving objects)

- indirect motion measure (e.g. slippage)
- two degree-of-freedoms
- necessary to be on rotor/shaft
- + simple calculation

Visual odometry

Wheel odometry

- two degree-of-freedoms
- necessary to be on rotor/shaft
- + simple calculation

no wheels / rough terrains, in-the-sky, under-the-water

Visual odometry

Wheel odometry

- two degree-of-freedoms
- necessary to be on rotor/shaft
- + simple calculation

no wheels / rough terrains, in-the-sky, under-the-water

Visual Odometry

Visual SLAM

no assumption on trajectories → navigation / large space (outdoor) closed-loop is preferred for convergence → mapping / small space (indoor, campus)

Visual odometry

Wheel odometry

- two degree-of-freedoms
- necessary to be on rotor/shaft
- + simple calculation

no wheels / rough terrains, in-the-sky, under-the-water

Visual SLAM

closed-loop is preferred for convergence→ mapping / small space (indoor, campus)

real navigation situations

Feature-based Monocular Visual Odometry

Two-view Motion Estimation

- Feature: **Good-Feature-to-Track** [Shi94_CVPR] with bucketing to distribute features
- Correspondence: Lucas-Kanade optical flow [Lucas81_IJCAI]
- Adaptive MSAC [Choi09_IROS]
- **Iterative 5-point algorithm** [Choi15_IJCAS]
- Error measure: Sampson distance
- Normalized 8-point algorithm
- Scale-from-ground with asymmetric kernels [Choi13_URAI]

Feature-based Monocular Visual Odometry

PnP Pose Estimation

- Feature: **Good-Feature-to-Track** [Shi94_CVPR] with bucketing to distribute features
- Correspondence: Lucas-Kanade optical flow [Lucas81_IJCAI]
- Adaptive MSAC
- **Iterative PnP algorithm** (3-point algorithm)
- Error measure: Projection error
- Iterative PnP algorithm
- Scale-from-ground with **asymmetric kernels** [Choi13_URAI]
- **Bundle adjustment** over last *K* keyframes Reprojection error with Cauchy loss function

Feature-based Monocular Visual Odometry

Summary

- What is 3D Vision?
- Single-view Geometry
 - Camera Projection Model
 - Pinhole Camera Model
 - Geometric Distortion Models
 - General 2D-3D Geometry
 - Camera Calibration
 - Absolute Camera Pose Estimation (PnP Problem)
- Two-view Geometry
 - Planar 2D-2D Geometry (Projective Geometry)
 - Planar Homography
 - General 2D-2D Geometry (Epipolar Geometry)
 - Fundamental/Essential Matrix
 - Relative Camera Pose Estimation
 - Triangulation (Point Localization)
- Multi-view Geometry
 - Bundle Adjustment (Non-linear Optimization)
 - Applications: Structure-from-motion, Visual SLAM, and Visual Odometry
- Correspondence Problem
 - Feature Correspondence: Feature Matching and Tracking
 - Robust Parameter Estimation: (Hough Transform), RANSAC, M-estimator

Slides and example codes are available:

https://github.com/sunglok/3dv_tutorial

$$\therefore \operatorname{argmin} \sum_{i}^{n} \sum_{j}^{m} \left\| \mathbf{x}_{i}^{j} - P_{j} \mathbf{X}_{i} \right\|_{\Sigma}^{2}$$

Applications in Deep Learning Era

- There are still many researches and applications.
 - 3D reconstruction
 - Real-time visual odometry/SLAM
 - Augmented reality (mixed reality), virtual reality

model-based problem solving

(e.g. calculating camera pose; minimizing a cost function)

unknown models and procedures

(e.g. recognizing objects, finding correspondence)

- 3D understanding of results from deep learning
 - e.g. Bounding boxes from object recognition → metric position and size
- Designing cost functions for deep learning
 - e.g. Left-right consistency in <u>MonoDepth</u> [CVPR 2017]
 - e.g. <u>Eigendecomposition-free training</u> of deep learning [ECCV 2018]
- Building datasets for deep learning
 - e.g. <u>LIFT</u> [ECCV 2016]

Appendix: Further Information

- Beyond Point Features
 - Other features: OPVO, Kimera
 - Direct methods (w/o features): Already mentioned (including deep learning)
- Real-time / Large-scale SfM
- (Spatially / Temporally) Non-static SfM
 - Deformable (or moving) objects: <u>Non-rigid SfM</u>
- Depth, Object, and Semantic Recognition
- Sensor Fusion and New Sensors
 - + Depth (ORB-SLAM2, LSD-SLAM, DVO have their variants with depth.)
 - RGB-D: <u>ElasticFusion</u>, <u>RGB-D SLAM</u>, <u>BaMVO</u>, <u>RTAB-Map</u>
 - Stereo cameras: S-PTAM, ProSLAM
 - LiDAR: LIMO / cf. Cartographer
 - + IMU: OKVIS, ROVIO, VINS-Mono
 - Visual-inertia Calibration: Kalib
 - + GPS
 - Omni-directional cameras: Multi-FoV datasets
 - Light-field cameras
 - Event camera: <u>ETAM</u>*
- Minimal Solvers / Self-calibration
 - OpenGV, Minimal Problems in Computer Vision
- Public Datasets and Evaluations
 - Datasets: <u>Awesome Robotics Datasets</u>
 - Evaluations: <u>KITTI Odometry/SLAM Evaluation 2012</u>, <u>GSLAM</u>, <u>evo</u>

SLAM: Simultaneous Localization and Mapping

~ positioning, tracking

- Localization: Finding position (and also orientation; pose) of something
 - e.g. robot/vehicle/pedestrian/... localization, GPS (Global Positioning System), ..., sound localization
- Localization w.r.t. its data sources [Choi14_ICRA]

Localization: Data Sources

- 1) LIBVISO2: http://www.cvlibs.net/software/libviso/
 - 2) openFABMAP: https://github.com/arrenglover/openfabmap
 - 3) OpenCellID: http://www.opencellid.org/
 - 4) UTIAS MRCLAM: http://asrl.utias.utoronto.ca/datasets/mrclam/

Landmark-based Localization: Data Sources

~ feature, tag, (radio) beacon, satellite, ...

Landmark-based Localization: Data Sources

~ feature, tag, (radio) beacon, satellite, ...

SLAM: Simultaneous Localization and Mapping

~ map building

- (Robotic) mapping: Constructing a map of the environment
- Map representations w.r.t. their contents

Overview

- SLAM: Joint estimation of robot poses (or path) and a map (used in localization)
 - A chicken-and-egg problem
 - One of the most popular topics in robot navigation (mobile robot)

Why SLAM?

- Autonomous navigation needs information about robot pose.
 - In indoor, GPS is not available.
 - In outdoor, GPS is not perfect and complete.
 - e.g. inaccurate (due to multi-path) and unavailable (due to urban canyons, tunnels, ...)
 - Dead-reckoning with IMUs or encoders suffers from drift error.
- Map-based localization (e.g. using landmark maps or HD maps)
 - If a robot starts to navigate on an unknown environment.
 - If the environment was changed. (e.g. new or removed landmarks)

Overview

Why many variants?

- Sensor modalities: Camera, LiDAR, GPS, ... / encoders, IMU, ...
 - Data utilization: Feature-based (indirect) vs.. direct / sparse vs.. dense
- Map representations: Feature maps vs.. metric maps, keyframe maps, topological maps (~ pose graphs), ...
 - Dimension of robot pose and features (space): 2D vs.. 3D
- Working scenarios: Indoor, on-road, underwater, flying (~ handheld, wearable), ...

Applications

- Robot/vehicle navigation
- Augmented/virtual reality
- 3D capture and reconstruction
- **–** ...

Useful References

- Books and papers (ordered by their difficulties)
 - SLAM Tutorial @ ICRA 2016 and @ RSS 2015
 - A Tutorial on Graph-based SLAM [ITSM, 2010]
 - SLAM Course by Cyrill Stachniss [2013-14]: Slides, YouTube
 - SLAM Summer School 2006 and SLAM Part I and II-[RAM, 2006] (Outdated)
 - Probabilistic Robotics [The MIT Press, 2005] (Outdated, but still the best bible)
 - Past, Present, and Future of SLAM [T-RO, 2016]
 - The Future of Real-time SLAM @ ICCV 2015 (mostly focused on visual SLAM)

Codes

- Github: https://github.com/topics/slam
 - Visual SLAM: ORB-SLAM2 (mono, stereo, RGB-D), DSO, VINS-Mono (mono+IMU), RTAB-Map (RGB-D), ...
 - LiDAR SLAM: <u>GMapping</u>, <u>Cartographer</u>, ...
 - Optimizer (backend): <u>g2o</u>, <u>GTSAM</u>, <u>Ceres Solver</u>, ...
- OpenSLAM (outdated), MRPT
- Base libraries: <u>OpenCV</u>, <u>PCL</u> (Point Cloud Library), <u>Open3D</u>
- My open tutorial on 3D vision for beginners (contains basics for visual odometry and SLAM)

Communities

SLAM KR (Korean Facebook group)

SLAM with a Gaussian Filter

Start: robot has zero uncertainty

First measurement of feature A

SLAM with a Gaussian Filter

Robot moves forwards: uncertainty grows

Robot makes first measurements of B & C

SLAM with a Gaussian Filter

Predict how the robot has moved

Robot moves again: uncertainty grows more

Correct the robot pose and map

Robot re-measures A: "loop closure" uncertainty shrinks

SLAM in Graphical Representation

Notation

- x_t : Robot pose at time $t / \{x_0, x_1, \dots, x_t\}$: Robot path
- m_i : *i*-th feature / $\{m_0, m_1, \dots, m_N\}$: Map
- u_t : Robot motion between t-1 and t (a.k.a. control input)
- \mathbf{z}_i : Observation of i-th feature

Problem Formulation

Online SLAM estimates most recent pose and map

Markov assumption

~ Maximize the posterior $P(x_t, m_{0:N} | \mathbf{z}_{0:k}, \mathbf{u}_{1:t})$ or more simply $P(x_t, m_{n:N} | \mathbf{z}_{n:k}, \mathbf{u}_t, \mathbf{x}_{t-1})$

- Full SLAM estimates entire path and map
 - ~ Maximize the posterior $P(\boldsymbol{x}_{0:t}, m_{0:N} | \boldsymbol{z}_{0:k}, \boldsymbol{u}_{1:t})$

Bayesian Filtering

- Approaches
 - Follow prediction (with motion) and correction (with observation) steps
 - Use probabilistic representation
 - Kalman filter: Gaussian / Particle filter: a set of samples
 - Usually based on Markov assumption
- Pros
 - + **Run online** (but it does not mean real-time)
- Cons
 - Does not scale to high-dimensional problems
 - Kalman filter: Unimodal / Particle filter: Need many particles for good convergence

Graph Optimization

- Approaches
 - Minimize the nonlinear least-squares cost function (~ reprojection error)
 - Use a batch maximum likelihood (ML) approach
 - Assume Gaussian noise distribution
- Pros
 - + Information can move backward
 - + Best possible results given from the data and models
- Cons
 - Computational burden
 - Difficult to provide the online result for control

Graph Optimization

- Approaches
 - Minimize the nonlinear least-squares cost function (~ reprojection error)
 - Use a batch maximum likelihood (ML) approach
 - Assume Gaussian noise distribution
- Pros
 - + Information can move backward
 - + Best possible results given from the data and models
- Cons
 - Computational burden → Sparsify the graph or apply sliding window or parallelize the burden
 - Difficult to provide the online result for control

Keyframe-based SLAM

Graph Optimization

- Approaches
 - Minimize the nonlinear least-squares cost function (~ reprojection error)
 - Use a batch maximum likelihood (ML) approach
 - Assume Gaussian noise distribution
- Pros
 - + Information can move backward
 - + Best possible results given from the data and models
- Cons
 - Computational burden → Sparsify the graph or apply sliding window or parallelize the burden
 - Difficult to provide the online result for control

MonoSLAM (2003)

The <u>first</u> successful visual SLAM with <u>pure vision</u>, drift-free, and <u>real-time</u> ability

References

- Code repositories
 - <u>SceneLib v1</u>, <u>Andrew Davison</u> (LGPL)
 - <u>SceneLib v2</u>, Hanme Kim (MIT license)
 - MonoSLAM Implementation in ROS, rrg-polito (MPL)
- Papers
 - Andrew Davison, Real-Time Simultaneous Localisation and Mapping with a Single Camera, ICCV, 2003 DOI PDF
 - Andrew Davison et al., MonoSLAM: Real-Time Single Camera SLAM, T-PAMI, 2007 DOI PDF

EKF-SLAM

- State variable (robot state, feature map): $\mathbf{x} = [\mathbf{x}_v, \mathbf{y}_1, \mathbf{y}_2, \dots]^T$
 - Robot state (position, quaternion, linear velocity, angular velocity): $\mathbf{x}_v = [\mathbf{r}^W, \mathbf{q}^{WR}, \mathbf{v}^W, w^R]^{\mathsf{T}}$
 - Feature map (position, direction): $\mathbf{y}_i = [\mathbf{r}_i^W, \mathbf{h}_i^W]$
 - \mathbf{h}_i^W : A unit vector describing the feature direction (~ normal vector)
- Motion model: Constant velocity motion model

Observation model: Pinhole camera model with radial distortion

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u_0 + f_u \frac{h_{L_X}^R}{h_{L_Z}^R} \\ v_0 + f_v \frac{h_{L_Y}^R}{h_{L_Z}^R} \end{bmatrix} \text{ with } \mathbf{u}_{di} = \begin{bmatrix} u_d \\ v_d \end{bmatrix} = \begin{bmatrix} u_0 + \frac{u - u_0}{\sqrt{1 + 2K_1 r^2}} \\ v_0 + \frac{v - v_0}{\sqrt{1 + 2K_1 r^2}} \end{bmatrix} \text{ where } \mathbf{h}_L^R = \mathbf{R}^{RW} (\mathbf{r}_i^W - \mathbf{r}^W) \text{ and } r^2 = (u - u_0)^2 + (v - v_0)^2$$

$$S_{i} = \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{x}_{v}} P_{xx} \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{x}_{v}} + \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{x}_{v}} P_{xr_{i}} \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{r}_{i}} + \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{r}_{i}} P_{r_{i}x} \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{x}_{v}} + \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{r}_{i}} P_{r_{i}r_{i}} \frac{\partial \mathbf{u}_{di}}{\partial \mathbf{r}_{i}} + R$$

Feature and Map

- Feature detection
 - Feature point: <u>Good-feature-to-track</u>
 - Feature descriptor: 11x11-pixel patch
 - MonoSLAM does not update the saved templates for features over time.
 - Bucketing (for feature addition): 80x60-pixel box (~ 4x4 boxes)
- Feature matching
 - Feature prediction (by camera projection)
 - Feature uncertainty: 2-by-2 covariance matrix S_i (in pixel domain)
 - Active elliptical search: Window size 3σ
 - MonoSLAM removes a feature from the map when feature is failed with less than 50%.
- Feature orientation estimation
- Map initialization
 - Starting from the known object (typically 4 features)

Experiments

Configuration

- Camera: 320x240 with 30 Hz

• $f_u = f_v = 195$ pixels, $(u_0, v_0) = (162, 125)$, and $K_1 = 6 \times 10^{-6}$

• Nearly 100 degrees FOV

– Map size: 100 features

Processing time: Approx. 52.6 Hz

• Observation size: <u>10-12 features per a frame</u>

Total	19 ms
Graphical rendering	5 ms
Feature initialization search	4 ms
Kalman Filter update	5 ms
Image correlation searches	3 ms
Image loading and administration	2 ms

PTAM (2007)

■ The <u>first</u> successful <u>keyframe-based BA</u> approach with <u>real-time ability</u>

References

- Code repositories
 - <u>PTAM-GPL</u>, Oxford-PTAM (GPL v3)
 - The modified version of PTAM for ROS, ETHZ-ASL
- Papers
 - Georg Klein and David Murray, Parallel Tracking and Mapping for Small AR Workspaces, ISMAR, 2007 DOI PDF
 Slides

PTAM (2007)

PTAM (Parallel Tracking and Mapping)

- Feature: FAST-10 corner (8x8-pixel patch, SSD matching)
- Tracking
 - Coarse-to-fine tracking
 - Computing time: 20 ms with 4000 features
- Mapping
 - Keyframe-based bundle adjustment with 5-point algorithm + RANSAC
 - Computing time: 1.7 sec with 50-99 keyframes

ORB-SLAM Series (2015, 2017, 2021)

The best successor of PTAM with support of <u>large-scale</u> spaces and <u>long-term</u> operation

References

- Code repositories
 - ORB-SLAM (monocular), Raul Mur-Artal (GPL v3)
 - ORB-SLAM2 (monocular, stereo, and RGB-D), Raul Mur-Artal (GPL v3)
 - ROS wrappers: <u>appliedAl-Initiative</u>, <u>ethz-asl</u>
 - ORB-SLAM3 (visual, visual-inertial, and multi-map), UZ-SLAMLab (GPL v3)
 - Project webpage, Raul Mur-Atral
- Papers
 - Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos, *ORB-SLAM: A Versatile and Accurate Monocular SLAM System*, T-RO, 2015 DOI arXiv
 - Raul Mur-Artal and Juan D. Tardos, ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras, T-RO, 2017 DOI arXiv
 - Carlos Campos et al., ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap
 SLAM, T-RO, 2021 DOI arXiv

Overview

- Feature: ORB (Oriented FAST and Rotated BRIEF) for all tasks
 - Note) SIFT/SURF (~300 ms), A-KAZE (~100 ms), ORB (~33 ms), BRIEF/LDB (rotation variant)
- Three threads: Tracking, local mapping, and loop closing

Fig. 9. Lifelong experiment in a static environment where the camera is always looking at the same place from different viewpoints. PTAM is always inserting keyframes, while ORB-SLAM is able to prune redundant keyframes and maintains a bounded-size map.

Map initialization

- Two models: 1) homography for planar scenes and 2) fundamental matrix for general scenes
- Model parameter estimation: <u>RANSAC</u> (MSAC)
 - Symmetric transfer errors S
 - Threshold: Chi-square test at 95% (H = 5.99, F = 3.84 @ σ = 1 pixel)
- Model selection: $\frac{S_H}{S_H + S_F}$ > 0.45 → (nearly) planar and low parallax → homography
 - Map initialization is delayed until enough parallax and low reprojection error.
- Map refinement: Full <u>BA</u>

Tracking

- ORB extraction: <u>FAST</u> corners (scale levels: 8, scale factor: 1.2) with <u>ORB</u> descriptors
 - 2000 corners for 1241x376 resolution, 1000 corners 512x384 to 752x480 resolutions
 - <u>Bucketing</u> for uniform feature distribution (max 5 features/cell)
- Initial pose estimation
 - Tracking: Constant velocity motion model → motion-only <u>BA</u> using the previous frame
 - Global relocalization (if lost): <u>RANSAC</u> and E<u>PnP</u> algorithm for each keyframe
- Pose refinement: Motion-only BA using a local visible map
- New keyframe selection if
 - Passing more than 20 frames from last global relocalization
 - Local mapping is idle or passing more than 20 frames from last keyframe insertion.
 - Tracking at least 50 points
- Tracking less than 90% points than the reference keyframe.

Local mapping

- Keyframe insertion: Updating covisibility graph, spanning tree, and bag-of-words
- Recent map point <u>culling</u> if not
 - Tacking and visible more than 25%
 - Observable at least 3 keyframes
- New map point addition: <u>Triangulation</u> if
 - Positive depth
 - Satisfying parallax, reprojection error, and scale consistency condition
- Local <u>BA</u> (for the current keyframe and its connecting keyframes)
- Local keyframe culling if
 - 90% of map points are visible in at least 3 other keyframes (in same or finer scale)

Loop closing (of the last keyframe)

- Loop candidate detection: <u>DBoW2</u>
 - The candidates should be consistent (~ at least 3 consecutively connected in the covisibility graph).
- Similarity transformation computation: RANSAC with 3D points \rightarrow optimization over inliers
 - Why <u>similarity</u>? (Why 7 DOF?) 3 for translation, 3 for rotation, and 1 for scale (due to scale drift)
- Loop fusion: Fusing duplicated map points and adding new edges in the covisibility graph
- Essential graph optimization: Pose graph optimization over similarity transformation, Sim(3)

- An ORB-SLAM extension for <u>stereo and RGB-D cameras</u>
- Two types of keypoints for different
 - Camera configurations: Monocular, stereo, and RGB-D cameras
 - Monocular keypoints: $\mathbf{x}_m = (u_L, v_L)$
 - Projection function: $\pi_m(\mathbf{X}) = \begin{bmatrix} f_x \frac{X}{Z} + c_x \\ f_y \frac{Y}{Z} + c_y \end{bmatrix}$ where $\mathbf{X} = (X, Y, Z)$
 - Stereo keypoints: $\mathbf{x}_S = (u_L, v_L, u_R)$

- Far stereo keypoints are considered as monocular keypoints whose criteria is 40 times of baseline, b.
- After loop closing, ORB-SLAM2 performs pose graph optimization over rigid-body transform instead of similarity transform (due to no drift error).

■ An ORB-SLAM2 extension for 1) fisheye cameras and 2) inertia sensors with 3) multi-session support

	SLAM or VO	Pixels used	Data association	Estimation	Relocali- zation	Loop	Multi Maps	Mono	Stereo	Mono IMU	Stereo IMU	Fisheye	Accuracy	Robustness	Open source
Mono-SLAM [13], [14]	SLAM	Shi Tomasi	Correlation	EKF	-	-	-	✓	-	-	-	-	Fair	Fair	[15] ¹
PTAM [16]–[18]	SLAM	FAST	Pyramid SSD	BA	Thumbnail	-	-	✓	-	-	-	-	Very Good	Fair	[19]
LSD-SLAM [20], [21]	SLAM	Edgelets	Direct	PG	-	FABMAP PG	-	✓	✓	-	-	-	Good	Fair	[22]
SVO [23], [24]	VO	FAST+ Hi.grad.	Direct	Local BA	-	-	-	✓	√	-	-	✓	Very Good	Very Good	$[25]^2$
ORB-SLAM2 [2], [3]	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	-	✓	✓	-	-	-	Exc.	Very Good	[26]
DSO [27]–[29]	VO	High grad.	Direct	Local BA	-	-	-	✓	✓	-	-	✓	Fair	Very Good	[30]
DSM [31]	SLAM	High grad.	Direct	Local BA	-	-	-	✓	-	-	-	-	Very Good	Very Good	[32]
MSCKF [33]–[36]	vo	Shi Tomasi	Cross correlation	EKF	-	-	-	√	-	√	√	-	Fair	Very Good	[37] ³
OKVIS [38], [39]	VO	BRISK	Descriptor	Local BA	-	-	-	-	-	✓	✓	✓	Good	Very Good	[40]
ROVIO [41], [42]	vo	Shi Tomasi	Direct	EKF	-	-	-	-	-	✓	✓	✓	Good	Very Good	[43]
ORBSLAM-VI [4]	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	-	✓	-	✓	-	-	Very Good	Very Good	-
VINS-Fusion [7], [44]	VO	Shi Tomasi	KLT	Local BA	DBoW2	DBoW2 PG	✓	-	✓	✓	✓	✓	Good	Exc.	[45]
VI-DSO [46]	VO	High grad.	Direct	Local BA	-	-	-	-	-	✓	-	-	Very Good	Exc.	-
BASALT [47]	VO	FAST	KLT (LSSD)	Local BA	-	ORB BA	-	-	-	-	√	√	Very Good	Exc.	[48]
Kimera [8]	VO	Shi Tomasi	KLT	Local BA	-	DBoW2 PG	-	-	-	-	✓	-	Good	Exc.	[49]
ORB-SLAM3 (ours)	SLAM	ORB	Descriptor	Local BA	DBoW2	DBoW2 PG+BA	✓	√	✓	✓	✓	√	Exc.	Exc.	[5]

Last source code provided by a different author. Original software is available at [50].
 Source code available only for the first version, SVO 2.0 is not open source.

³ MSCKF is patented [51], only a re-implementation by a different author is available as open source.

Camera models

- A pinhole camera model and <u>Kannala-Brandt fisheye model</u>
- Relocalization: EPnP → MLPnP (using projective rays as input)
- Non-rectified stereo

Visual-Inertia optimization

- State vector: $S_i = \{\mathbf{R}_i, \mathbf{p}_i, \mathbf{v}_i, \mathbf{b}_i^g, \mathbf{b}_i^a\}$ (orientation, position, velocity, gyroscope bias, and accelerometer bias)
- Reprojection error: $\mathbf{r}_{ij} = \mathbf{x}_{ij} \pi (\mathbf{T}_{CB} \mathbf{T}_i^{-1} \oplus \mathbf{X}_j)$ where $\mathbf{T}_i = [\mathbf{R}_i, \mathbf{p}_i] \in SE(3)$
- Inertia residual (∆: preintegrated term)
 - Orientation residual: $\mathbf{r}_{\Delta \mathbf{R}_{i,i+1}} = \text{Log}(\Delta \mathbf{R}_{i,i+1}^{\mathsf{T}} \mathbf{R}_{i}^{\mathsf{T}} \mathbf{R}_{i+1})$
 - Position residual: $\mathbf{r}_{\Delta \mathbf{p}_{i,i+1}} = \mathbf{R}_i^{\mathsf{T}} (\mathbf{p}_{i+1} \mathbf{p}_i \mathbf{v}_i \Delta t \frac{1}{2} \mathbf{g} \Delta t^2) \Delta \mathbf{p}_{i,i+1}$
 - Velocity residual: $\mathbf{r}_{\Delta \mathbf{v}_{i,i+1}} = \mathbf{R}_i^{\mathsf{T}} (\mathbf{v}_{i+1} \mathbf{v}_i \mathbf{g} \Delta t) \Delta \mathbf{v}_{i,i+1}$

Multi-session operation

– ...

Experiments

ORB-SLAM

- TUM RGB-D dataset
 - ORB-SLAM was more accurate than PTAM and LSD-SLAM.
- KITTI odometry dataset
 - ORB-SLAM was failed in KITTI 01 (highway sequence).

ORB-SLAM2

- KITTI odometry dataset
 - ORB-SLAM2 (stereo) was more accurate than stereo LSD-SLAM.
 - ORB-SLAM2 (stereo) overcame KITTI 01 (highway sequence).
- TUM RGB-D dataset
 - ORB-SLAM (RGB-D) was more accurate than ElasticFusion, Kintinuous, DVO-SLAM, and RGB-D SLAM.

ORB-SLAM3

– ...