PROJET 3 SOUTENANCE

PREPAREZ DES DONNEES POUR UN ORGANISME DE SANTE PUBLIQUE:

EXPLORATION ET VISUALISATION DE DONNEES

#CLEANING

#ANALYSE DESCRIPTIVE UNIVARIEE, BIVARIEE, MULTIVARIEE
#ANOVA #ACP

#VOILA (dashboarding interactif)

#ANALYSE EXPLICATIVE MULTIVARIEE

#REGRESSION LINEAIRE

#PANDAS #MATPLOTLIB

#STATISTICS #SCIPY.STATS #STATSMODELS #SKLEARN

Ingénieur IA

Développez et intégrez des algorithmes de Deep Learning au sein d'un produit IA

OUDDANE NABIL

SOMMAIRE

Projet 3

Préparez des données pour un organisme de santé publique

A. INTRODUCTION

- Contexte
- 2. Objectifs

B. PREREQUIS AU PROJET

- Voila
- 2. Données: openfood facts

C. Projet: Nettoyage de données

D. Projet: Analyse statistique

- 1-A: DESCRIPTIVE Quantitative Univariée
- 1-B: DESCRIPTIVE Catégories Univariée
- 1-C: DESCRIPTIVE Bivariée
- 1-D: DESCRIPTIVE / EXPLICATIVE Multivariée
- 1-E: Analyse explicative multivariée: Régression multiple

A INTRODUCTION

1. Contexte

- ENJEU global: rendre les données de santé publique plus accessibles, pour qu'elles soient utilisables par les agents de santé publique France
- ENJEU DU P3: exploration et visualisation des données
- DONNEES SOURCES
 - le jeu de données : openfood
 - https://world.openfoodfacts.org/
 - https://s3-eu-west-1.amazonaws.com/static.ocstatic.com/prod/courses/files/parcours-datascientist/P2/fr.openfoodfacts.org.products.csv.zip
 - Descriptif: https://s3-eu-west-
 1.amazonaws.com/static.oc static.com/prod/courses/files/AI+Engineer/Project+3
 +-

+Pr%C3%A9parez+des+donn%C3%A9es+pour+un+or ganisme+de+sant%C3%A9+publique/Open_Food_Fa cts_data-fields.txt

2. Objectifs

SCRIPT:

- repérer des variables pertinentes
- Automatiser les traitements en les rendant flexibles
- produire des visualisations et des analyses
 univariées pour chaque variable jugée pertinente
- Confirmer ou infirmer des hypothèses à l'aide
 d'une analyse multivariée descriptive et
 explicative
 - avec tests statistiques appropriés

PREREQUIS AU PROJET

1. Voila

- INSTALLATION du package VOILA
 - Jupyter est un outils exceptionnel pour fluidifier les workflows allant de l'analyse exploratoire à la communication des résultats
 - Il n'est cependant pas adapté à toutes les audiences et en particulier au personnes non techniques
 - **Voila** vient pallier ce problème en rendant les notebooks interactifs dans une application web sécurisée interactive dont le code n'est pas accessible

Dashboarding et applications web:

2 mondes

• Dev sur mesure en javascript
• Beau mais couteux car nécessite un développeur web

• Outils automatique avec peu de développement web

• Dokeh

• Shiny

• Outils automatique avec peu de développement web

2. Données: openfood

- Descriptif pas complètement à jour: https://s3-eu-west-1.amazonaws.com/static.oc-static.com/prod/courses/files/AI+Engineer/Project+3+-+Pr%C3%A9parez+des+donn%C3%A9es+pour+un+organisme+de+sant%C3%A9+publique/Open_Food_Facts_data-fields.txt
- 162 champs: 4 types de champs:
 - Les informations générales sur la fiche du produit : nom, date de modification, etc.
 - 10 champs
 - Un ensemble de tags : catégorie du produit, localisation, origine, etc.
 - 24 champs
 - Les ingrédients composant les produits et leurs additifs éventuels.
 - 29 champs
 - Des informations nutritionnelles : quantité en grammes d'un nutriment pour 100 grammes du produit.
 - 99 champs
- Generalités sur les champs

suffixe du champs		
_t	date unix depuis 01/01/1970	
_datetime	date format yyyy-mm-ddThh:mn:ssZ	
_tags	iste de tags separés par une virgule	
_(2letter language code)	iste de tags dans le anguage	
_100g	montant de nutriment en g ou kj pour	100g ou 100ml
_serving	montant de nutriment en g ou kj pour	1 dose

2. Données: openfood 320772 lignes – Presque 1Go de données

Information générales 10 champs

champs	type	observations
code	object	320749
url	object	320749
creator	object	320770
created_t	object	320769
created_datetime	object	320763
last_modified_t	object	320772
last_modified_datetime	object	320772
product_name	object	303010
generic_name	object	52795
quantity	object	104819

Tags 24 champs

packaging	object	78960
packaging_tags	object	78961
brands	object	292360
brands_tags	object	292352
categories	object	84410
categories_tags	object	84389
categories_fr	object	84411
origins	object	22190
origins_tags	object	22153
manufacturing_places	object	36501
manufacturing_places_tags	object	36495
labels	object	46559
labels_tags	object	46644
labels_fr	object	46666
emb_codes	object	29306
emb_codes_tags	object	29303
first_packaging_code_geo	object	18803
cities	object	23
cities_tags	object	20320
purchase_places	object	58193
stores	object	51722
countries	object	320492
countries_tags	object	320492
countries_fr	object	320492

Ingrédients 29 champs

248962	object	ingredients_text
28344	object	allergens
19	object	allergens_fr
24353	object	traces
24329	object	traces_tags
24352	object	traces_fr
211331	object	serving_size
0	float64	no_nutriments
248939	float64	additives_n
248905	object	additives
154680	object	additives_tags
154680	object	additives_fr
248939	float64	ingredients_from_palm_oil_n
0	float64	ingredients_from_palm_oil
4835	object	ingredients_from_palm_oil_tags
248939	float64	ingredients_that_may_be_from_palm_oil_n
0	float64	ingredients_that_may_be_from_palm_oil
11696	object	ingredients_that_may_be_from_palm_oil_tags
0	float64	nutrition_grade_uk
221210	object	nutrition_grade_fr
91513	object	pnns_groups_1
94491	object	pnns_groups_2
320726	object	states
320726	object	states_tags
320726	object	states_fr
84366	object	main_category
84366	object	main_category_fr
75836	object	image_url
75836	object	image_small_url

2. Données: openfood 320772 lignes – Presque 1Go de données

Information nutritionnelles- 99 champs

5240	float64	vitamin-b9_100g	0	float64	mead-acid_100g	261113	float64	energy_100g
3042	float64	folates_100g	0	float64	erucic-acid_100g	857	float64	energy-from-fat_100g
5300	float64	vitamin-b12_100g	0	float64	nervonic-acid_100g	243891	float64	fat_100g
330	float64	biotin_100g	143298	float64	trans-fat_100g	229554	float64	saturated-fat_100g
2483	float64	pantothenic-acid_100g	144090	float64	cholesterol_100g	0	float64	butyric-acid_100g
38	float64	silica_100g	243588	float64	carbohydrates_100g	0	float64	caproic-acid_100g
81	float64	bicarbonate_100g	244971	float64	sugars_100g	1	float64	caprylic-acid_100g
24748	float64	potassium_100g	72	float64	sucrose_100g	2	float64	capric-acid_100g
158	float64	chloride_100g	26	float64	glucose_100g	4	float64	lauric-acid_100g
141050	float64	calcium_100g	38	float64	fructose_100g	1	float64	myristic-acid_100g
5845	float64	phosphorus_100g	262	float64	lactose_100g	1	float64	palmitic-acid_100g
140462	float64	iron_100g	4	float64	maltose_100g	1	float64	stearic-acid_100g
6253	float64	magnesium_100g	11	float64	maltodextrins_100g	24	float64	arachidic-acid_100g
3929	float64	zinc_100g	266	float64	starch_100g	23	float64	behenic-acid_100g
2106	float64	copper_100g	414	float64	polyols_100g	0	float64	lignoceric-acid_100g
1620	float64	manganese_100g	200886	float64	fiber_100g	0	float64	cerotic-acid_100g
79	float64	fluoride_100g	259922	float64	proteins_100g	1	float64	montanic-acid_100g
1168	float64	selenium_100g	27	float64	casein_100g	0	float64	melissic-acid_100g
20	float64	chromium_100g	16	float64	serum-proteins_100g	22823	float64	monounsaturated-fat_100g
11	float64	molybdenum_100g	9	float64	nucleotides_100g	22859	float64	polyunsaturated-fat_100g
259	float64	iodine_100g	255510	float64	salt_100g	841	float64	omega-3-fat_100g
78	float64	caffeine_100g	255463	float64	sodium_100g	186	float64	alpha-linolenic-acid_100g
29	float64	taurine_100g	4133	float64	alcohol_100g	38	float64	eicosapentaenoic-acid_100g
49	float64	ph_100g	137554	float64	vitamin-a_100g	78	float64	docosahexaenoic-acid_100g
3036	float64	fruits-vegetables-nuts_100g	34	float64	beta-carotene_100g	188	float64	omega-6-fat_100g
165	float64	collagen-meat-protein-ratio_100g	7057	float64	vitamin-d_100g	149	float64	linoleic-acid_100g
948	float64	cocoa_100g	1340	float64	vitamin-e_100g	8	float64	arachidonic-acid_100g
0	float64	chlorophyl_100g	918	float64	vitamin-k_100g	24	float64	gamma-linolenic-acid_100g
268	float64	carbon-footprint_100g	140867	float64	vitamin-c_100g	23	float64	dihomo-gamma-linolenic-acid_100g
221210	float64	nutrition-score-fr_100g	11154	float64	vitamin-b1_100g	21	float64	omega-9-fat_100g
221210	float64	nutrition-score-uk_100g	10815	float64	vitamin-b2_100g	13	float64	oleic-acid_100g
0	float64	glycemic-index_100g	11729	float64	vitamin-pp_100g	0	float64	elaidic-acid_100g
0	float64	water-hardness_100g	6784	float64	vitamin-b6_100g	14	float64	gondoic-acid_100g

PROJET: NETTOYAGE DE DONNEES

C: Nettoyage de données

1-A: jeu volumineux de 320000 lignes/observations et 162 colonnes/variables

- 10 champs d'informations générales : nom du produit, date de modification etc ...
- 24 champs de tags : categorie de produit, localisation, origine
- 29 champs d'ingrédients et d'additifs
- 99 champs quantitatifs d'informations nutritionnelles pour 100gr de produit

1-B: filtrage des colonnes / variables par seuil de population

- De nombreuses variables sont peu renseignées.
 - nous décidons d'oublier les colonnes dont le seuil de remplissage est inférieur à un certain seuil autour de 20%.
 - nous passons de 162 variables à 54

• 1-C: suppression des doublons de lignes en filtrant sur la variable "CODE"

- · filtre sur la variable "code" avec la fonction drop_duplicates correctement paramétré
- suppression de 22 doublons

1-D: suppression des colonnes/variables redondantes

- <u>3 variables de temps : c'est 2 de trop</u>
- suppression de colonnes en doublons ou inutiles:
 - 'packaging', 'brands', 'categories', 'categories_fr', 'countries',
 - 'countries_tags','additives','additives_fr','states','states_fr',
 - 'main_category','nutrition-score-uk_100g
- On uniformise les syntaxes.
 - tiret remplacé par un espace
 - mise en minuscule
 - n-a, na, unknown passés en np.nan
 - extraction des prefix de langues dans les colonnes de groupe

1-E: Réduction du nombre de lignes

- · Vision sous l'angle d'un seul pays suffisamment représenté: La France
- · Suppression de la colonne pays et des variables peu représentées dans l'univers France
- · Suppression des lignes:
 - · sans données numériques de nutriment
 - · sans caracteristique de nom de produit, ni de marque

C: Nettoyage de données

1-E: Réduction du nombre de lignes

- · Vision sous l'angle d'un seul pays suffisamment représenté: La France
- · Suppression de la colonne pays et des variables peu représentées dans l'univers France
- · Suppression des lignes:
 - · sans données numériques de nutriment
 - sans caracteristique de nom de produit, ni de marque

1-F: Nettoyage des catégories

- 3 variables de catégories différentes sont disponibles:
 - main_category / pnns1 / pnns2
- · Création d'un algorithme permettant de remplir les pnns manquants.
 - 600/700 observations vont être regagnées

• 1-G: Nettoyage de bon sens des données numériques

- Suppression de lignes aux données aberrantes:
 - L'energie pour 100g ne peut etre superieur à 3700kj
 - Les valeurs nutritionnelles ne peuvent être négatives (sauf pour le nutriscore qui peut aller à -15)
 - Les valeurs nutritionnelles ne peuvent depasser les 100g
 - 100gr de sel doit représenter 38.8g de sodium
 - · les graisses saturées doivent etre inferieures en quantité aux graisses
 - le nutriscore doit etre compris entre -15 et +40

1-H: Nettoyage des outliers des données numériques

- Filtre IQR
 - filtre appliqué par catégorie pnns 2 afin d'etre plus fin
 - 1/3 des lignes sont retirées

1-I: Passage du nombre d'additif en booléen (avec/sans)

- On simplifie la variable nombre d'additifs
- 1-J: Suppression des variables sans interet pour notre analyse
- 1-K: Imputation des données quantitatives manquantes
 - un bon tiers de la variable fibre, élément semblant important, n'est pas renseigné.
 - Pour les analyses suivantes, de nombreuses techniques ne peuvent fonctionner avec des données manquantes comme l'ACP
 - Nous allons faire appel a un simple imputer / median qui est plus rapide que le KNN imputer
 - ce dernier imputera par groupe pnns2 afin d'etre relativement fin

C: Nettoyage de données

```
Résumé sur la table néttoyée:
20613 lignes / observations
17 colonnes / variables
3 variables descriptives: code - nom de produit - nom de marque
2 variables de catégories: pnns1 et pnns2
9 variables quantitatives de nutriments
1 variable booléenne: presence ou non d'additif
1 variable quantitative de nutriscore
1 variable catégéorie de nutrigrade
```


D

ANALYSE STATISTIQUE

1-A: DESCRIPTIVE - Quantitative - Univariée

statistiques descriptives des données quantitatives

	energy_100g	fat_100g	saturated- fat_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g	sodium_100g	nutrition- score- fr_100g	addit
count	20,613.00	20,613.00	20,613.00	20,613.00	20,613.00	20,613.00	20,613.00	20,613.00	20,613.00	20,613.00	20,613.00
mean	1,131.77	13.66	5.93	27.30	12.02	1.91	8.53	0.80	0.31	8.37	0.63
std	752.07	14.90	8.42	27.11	16.55	2.01	7.12	0.73	0.29	9.26	0.48
min	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-12.00	0.00
25%	448.00	2.00	0.50	3.00	0.80	0.20	3.30	0.13	0.05	1.00	0.00
50%	1,055.00	7.40	2.30	13.70	3.50	1.50	6.60	0.70	0.28	7.00	1.00
75%	1,730.00	23.50	9.00	54.00	18.00	2.90	11.80	1.20	0.47	16.00	1.00
max	3,700.00	100.00	70.00	93.00	77.40	15.20	33.00	4.61	1.81	29.00	1.00

BoxPlot:VARIABLES o energy_100g
O fat 100g

saturated-fat_100g

ocarbohydrates_100g

sugars_100g

O fiber_100g

oproteins_100g

salt_100g

osodium_100g

onutrition-score-fr_100g

addit

D: Analyse statistique 1-B:DESCRIPTIVE - Catégories - Univariée

- •Toutes les 5 catégories du nutrigrade sont bien représentées:
 - les meilleurs grades
 a et b sont
 legerement moins
 bien représentés que
 les mauvais grades
 d,c,e
- •Toutes les 9 catégories du PNNS groupe 1 sont également bien représentés:
 - les sucreries
 représentent 20%
 des données alors
 que les snacks salés,
 les boissons, le gras
 et sauces ainsi que
 les fruits et legumes
 ne représentent
 chacun que 5% des
 données
- •Concernant les 36 catégories du PNNS groupe 2:
 - les gateaux/biscuits ainsi que les plats cuisinés représentent à eux 2
 20% des données.
- •Concernant les 3600 marques, les marques des hypermarchés sont le mieux représentées. Mais c'est une variable avec trop de modalité qui ne nous apportera pas d'information utile

statistique descriptive des grades/scores

	nutrition-score-fr_100g							
	count	mean	std	min	25%	50%	75%	max
nutrition_grade_fr								
a	3,632.00	-3.65	2.25	-12.00	-5.00	-3.00	-2.00	0.00
b	3,334.00	0.95	0.84	-4.00	0.00	1.00	2.00	2.00
С	4,552.00	5.29	2.36	2.00	3.00	4.00	7.00	10.00
d	5,111.00	13.96	2.48	6.00	12.00	14.00	16.00	18.00
e	3,984.00	21.89	3.53	10.00	20.00	22.00	25.00	29.00

2-C-1: Relation visuelle claire entre nutrigrade et nutriscore

•chaque grade correspond à un intervalle de nutriscore

 les scores les moins élevés correspondent aux meilleurs grades alors que les scores les plus élevées correspondent aux moins bons grade

2-C-2: Relation entre nutrigrade et nutriscore : ventilation par PNNS groupe 1

- on s'aperçoit d'une relation grade/score légèrement différente par catégories
 - la relation
 ne semble
 pas avoir
 exactement
 les mêmes
 intervalles
 de score
 pour les
 boissons
- •Les fruits et légumes n'ont pas de mauvais grades d et e comme on peut s'en douter
- •Les sucreries et snacks salés n'ont pas de bons grades a et b

2-C-3: Relation entre pnns groupe 1 et nutrigrade/nutriscore

- •Une relation existe entre nutri score et catégorie de produit
 - · les fruits et légumes , les céréales ont les nutriscores les plus faibles donc les meilleurs grades
 - les fruits et légumes ne sont pas représentés dans les moins bons grades
 - à l'opposé les sucreries sont très mal placées
 - les sucreries et les snacks salés ne sont pas représentés dans les meilleures nutrigrades a/b

2-C-4: Relation entre pnns groupe 2 et nutriscore

•Ce qui est vrai pour le Pnns groupe 1 l'est également pour le Pnns groupe 2 qui constitue un découpage plus fin

2-C-5: Relation entre additifs et nutrigrade

on observe une relation entre la présence ou non d'additif avec le nutri score et le nutri grade.

- · les produits du grade e ont en très grande majorité des additifs .
- le groupe a possède la plus faible proportion de présence d'additif. Cette proportion moyenne augmente avec les grades

2-C-5: Relation entre données quantitatives nutritionnelles et nutriscore

2-C-5-A: Nuages de points bivariés

•Quelques relations qu'on devine visuellement

2-C-5-B: Relation lineaire? - corrélation de Pearson

- •Des corrélations de **pearson** significatives
 - corrélation positive avec le nutriscore :

- corrélation positive entre gras et Energie
- corrélation positive entre protéine et sel
- corrélation positive entre sucre et hydrates de carbone
- corrélation positive entre fibre et hydrates de carbone
- corrélation négative entre sucre et sel
- corrélation parfait entre sel et sodium

•Mais l'hypothèse de normalité non respectée ne permet pas de valider les résultats de relation de linearité

2-C-5: Relation entre données quantitatives nutritionnelles et nutriscore.

2-C-5-C: Relation monotone non paramétrique? - corrélation de Spearman

- ·Corrélation de rang de spearman
 - les relations précédemment décrites mais monotones, cette fois ci, sont significatives

- •On peut identifier deux grandes familles de méthode d'analyse multivariée
 - les méthodes descriptives
 - visant à structurer et résumer l'information:
 - ACP, AFC-ACM, analyse factorielle, clustering, MDS (positionnement multidimensionnel)
 - les méthodes explicatives
 - visant à expliquer une ou des variables dites « dépendantes » (variables à expliquer) par un ensemble de variables dites « indépendantes » (variables explicatives).
 - analyse de régression multiple
 - analyse de variance multivariée (ANOVA: bivariée)
 - analyse discriminante
 - régression logistique
 - arbre de décision
 - réseau de neurones, etc...

2-D-1: Analyse explicative entre variables catégorielles et score quantitatif : ANOVA

- •l'analyse de la variance [ANOVA : analysis of variance] est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes [modalités d'une variable explicative] proviennent d'une même population.
 - Ce test s'applique lorsque l'on mesure une ou plusieurs variables explicatives catégorielle (facteurs, leurs différentes modalités étant parfois appelées « niveaux ») qui ont de l'influence sur la loi d'une variable continue à expliquer.
 - On parle d'analyse à un facteur lorsque l'analyse porte sur un modèle décrit par un seul facteur de variabilité, d'analyse à deux facteurs ou d'analyse multifactorielle sinon.
 - L'analyse de la variance permet d'étudier le comportement d'une variable quantitative à expliquer en fonction d'une ou de plusieurs variables qualitatives, aussi appelées nominales catégorielles.

2-D-1-a: Analyse explicative entre la variable catégorielle: GROUPE 1 et score quantitatif: NUTRISCORE : ANOVA

- ·L'anova montre des valeurs significatifs mais l'hypothèse de normalité des résidus n'est pas respectée
- •L'anova non paramétrique Kruskall wallis valide le fait que la variable qualitative pnns groupe 1 possède une valeur explicative sur le nutriscore
- •Le test post hoc non paramétrique montrent que toutes les modalités sont différentes 2 à 2

2-D-1-b: Analyse explicative entre la variable catégorielle: GROUPE 2 et score quantitatif: NUTRISCORE : ANOVA¶

- ·L'anova montre des valeurs significatifs mais l'hypothèse de normalité des résidus n'est pas respectée
- •L'anova non paramétrique Kruskall wallis valide le fait que la variable qualitative pnns groupe 2 possède une valeur explicative sur le nutriscore

kurtosis de 0.55 >0 legerement leptokurtique et skewness de 0.06 >0 legerement décalée à gauche la distribution semble visuellement au QQplot proche d etre normale mais pas complètement

test normalité des residus - test d'Agostino/omnibus pour echantillon moyen grand Agostino Pvalue:0.00 Si P-VALUE < 0.05: hypothèse HO est rejetée (i.e. peu probable d etre normalement distribuées).

Hypothèse de normalité non respectée => ANOVA NON PARAMETRIQUE kruskall wallis: 0.0 Si pval< 0.05, alors on peut parler de différence significative

2-D-1-b: Analyse explicative entre la variable catégorielle: GROUPE 2 et score quantitatif: NUTRISCORE : ANOVA¶

•Le test post hoc non paramétrique montrent que toutes les modalités sont différentes 2 à 2

post hoc: Les modalités ne sont pas toutes différentes entre elles 2 à 2

2-D-1-c: Analyse explicative entre la variable catégorielle: additif(présence ou non) et score quantitatif: NUTRISCORE : ANOVA

- ·L'anova montre des valeurs significatifs mais l'hypothèse de normalité des résidus n'est pas respectée
- •L'anova non paramétrique Kruskall wallis valide le fait que la variable qualitative présence d'additif possède une valeur explicative sur le nutriscore

2-D-2: Analyse descriptive multivariée : ACP : réduction de dimension des variables quantitatives

- •entre 85 et 90% de la variance est expliquée par les 4 premiers facteurs
 - Par ailleurs la qualité de représentation des variables sur les composantes , exprimée par le cos2, est quasi nulle à partir de la composante 5
- ·les 2 premiers facteurs sont relativement corrélés au nutriscore
 - La première composante est une composante gras/sucrée
 - La 2 -ème composantes est plutôt sel/gras
 - La 3 -ème est plutôt une composante anti fibre
 - et la 4 -ème anti protéine
- •Au final le **premier plan factoriel** représente un angle de vision **"mal-bouffe"**
- •Alors que le **2éme** est plutot **anti "nourriture saine"**

2-D-2: Analyse descriptive multivariée : ACP : réduction de dimension des variables quantitatives

- ·les 2 premiers facteurs sont relativement corrélés au nutriscore
 - La première composante est une composante gras/sucrée
 - La 2 -ème composantes est plutôt sel/gras
 - La 3 -ème est plutôt une composante anti fibre
 - et la 4 -ème anti protéine
- •Au final le premier plan factoriel représente un angle de vision "mal-bouffe"
- •Alors que le **2éme** est plutôt anti "nourriture saine"

2-D-2: Analyse descriptive multivariée : ACP : réduction de dimension des variables quantitatives

- •Au final le premier plan factoriel représente un angle de vision "mal-bouffe"
- •Alors que le **2éme** est plutôt **anti "nourriture saine"**

- •Au final le premier plan factoriel représente un angle de vision "mal-bouffe"
- •Alors que le **2éme** est plutôt **anti "nourriture saine"**

- •Au final le premier plan factoriel représente un angle de vision "mal-bouffe"
- •Alors que le **2éme** est plutôt anti "nourriture saine"

1-E: Analyse explicative multivariée: Régression multiple

- •Suite à notre analyse, nous pouvons tenter une explication multivariée du nutriscore sous forme de régression multiple.
 - concernant les données quantitatives nutritionnelles, nous avons le choix d'utiliser:
 - quelques facteurs de l'ACP: les 4 premiers par exemple
 - ou bien les variables elles mêmes en veillant à ne pas garder des variables trop colinéaires (sodium ou sel par exemple mais pas les 2)
 - concernant les données catégorielles, nous pouvons garder la présence d'additif et au choix le groupe 1 ou le groupe 2
 - le groupe 2 possédant certainement un peu trop de catégories quasi redondantes
- •Nous obtenons avec L'ACP, les additifs ainsi que le groupe 1: un **R2 de 0.85** avec tous les **coefficients significatifs**:
 - les facteurs 1 et 2, dits de "malbouffe" et la présence d'additif augmente le score modélisé
 - le facteur 3 dit "nourriture saine" est pris en négatif ce qui fait du sens
 - les résidus sont quasi normaux, homoscédastiques et la linéarité est presque respectée
- •Nous obtenons avec les variables nutritionnelles (sans sodium ni fat), les additifs ainsi que le groupe 1: un R2 de 0.90 avec tous les coefficients significatifs:
 - L'Energie, les acides gras, le sucre, le sel et la présence d'additif augmente le nutriscore et donc le grade
 - Les hydrates de carbone, les fibres et les protéines diminue le nutriscore
 - les résidus sont quasi normaux, homoscédastiques et la linéarité est presque respectée

1-E: Analyse explicative multivariée: Régression multiple

•Régression 1 avec les facteurs ACP, le groupe 1 et l'additif

	OLS Regre	ssion Resu	llts 			
	Least Squares hu, 30 Sep 2021 19:08:35 20613 20599 13 nonrobust	F-stati Prob (F Log-Lik AIC: BIC:	squared: .stic: ?-statistic): :elihood:		0.852 0.852 9093. 0.00 358.40 -688.8 -577.7	
	coef	std err		P> t	[0.025	0.975]
fat and sauces fish meat eggs fruits and vegetables milk and dairy product	0.2393 -0.0968 0.0711 -0.9081 -0.7021 -0.5407 -0.4917 -0.8301	0.003 0.002 0.003 0.004 0.011 0.009 0.011 0.011 0.010	18.102 -80.252 -75.364 -47.109 -44.213 -81.047 -38.031 -44.148	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.162 0.236 -0.103 0.063 -0.930 -0.720 -0.563 -0.513 -0.850 -0.381 -0.662	0.243 -0.090 0.079 -0.886 -0.684 -0.518 -0.470 -0.810
Omnibus: Prob(Omnibus): Skew: Kurtosis:		Jarque- Prob(JE	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.363 100.853 1.26e-22 22.9	

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

HO independance des données, Durbin Watson: 1.36 , pas d'autocor si=2

HO homogeneite des résidus, Pvalue Breusch Pagan: 0.00 , HO rejeté si p<0.05

HO homogeneite des résidus, Pvalue Goldfeld-Quandt: 0.00, HO rejeté si p<0.05

 $^{{\}tt H0}$ normalité des résidus, Pvalue Jarque Bera: 0.00 , ${\tt H0}$ rejeté si ${\tt p}{<}0.05$

1-E: Analyse explicative multivariée: Régression multiple

•Régression 1 avec les facteurs ACP, le groupe 1 et l'additif

1-E: Analyse explicative multivariée: Régression multiple

•Régression 2 avec les variables nutritionnelles, le groupe 1 et l'additif

	OLS Regre	ssion Resu	ults			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squares Thu, 30 Sep 2021 19:12:12	Adj. R- F-stati Prob (H Log-Li) AIC: BIC:	-squared: istic: ?-statistic):		0.901 0.901 1.174e+04 0.00 4551.7 -9069.	
=======================================	coef	std err	t	P> t	[0.025	0.975]
const energy_100g saturated-fat_100g carbohydrates_100g sugars_100g fiber_100g proteins_100g salt_100g cereals and potatoes composite foods fat and sauces fish meat eggs fruits and vegetables milk and dairy produc salty snacks sugary snacks additif		0.003	64.583 36.888 -18.817 66.977 -19.588 -30.965	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.371 0.508 0.113 -0.173 0.214 -0.064 -0.096 0.345 -0.771 -0.642 -0.720 -0.505 -0.782 -0.388 -0.643 -0.320 0.072	0.400 0.540 0.125 -0.140 0.227 -0.052 -0.085 0.356 -0.725 -0.612 -0.683 -0.466 -0.745 -0.358 -0.356
Omnibus: Prob(Omnibus): Skew: Kurtosis:	380.526 0.000 0.327 3.205	Jarque- Prob(JI	•		1.365 404.486 1.47e-88 29.7	

Notes

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

HO independance des données, Durbin Watson: 1.36 , pas d'autocor si=2

HO homogeneite des résidus, Pvalue Breusch Pagan: 0.00 , HO rejeté si p<0.05

HO homogeneite des résidus, Pvalue Goldfeld-Quandt: 0.04, HO rejeté si p<0.05

HO normalité des résidus, Pvalue Jarque Bera: 0.00 , HO rejeté si p<0.05

1-E: Analyse explicative multivariée: Régression multiple

•Régression 2 avec les variables nutritionnelles, le groupe 1 et l'additif

