VLSI Implementation of a Pipelined 128 points 4-Parallel radix-2³ FFT Architecture via Folding Transformation

James J. W. Kunst jjwk89@gmail.com
Kevin H. Viglianco kevinviglianco@gmail.com
Daniel R. Garcia dani6rg@gmail.com

June 15, 2020

Tabla de Contenidos

Introduction

2 The Radix-2³ FFT Algorithm

Table of Contents

Sección 1

Introduction

Introduction

Introduction:

Objetives

- Design and implement a 4-parallel pipelined architecture for the Complex Fast Fourier Transform (CFFT) based on the radix- 2^3 algorithm with 128 points using folding transformation and register minimization techniques based on
- Frecuency of implementation: 500MHz.
- Optimization with CSD^a multipliers.
- Test the design with a mixture of two sinusoids using MATLAB.
- Generate power-area-timing report with different optimizations.

^aCanonic Signed Digit

Introduction

Introduction:

Workflow

- Obtain the equations that correspond to Butterfly structure of radix-2³ FFT for 8 points.
- Apply this idea to design a 2-parallel pipelined architecture radix-2³ 16-points FFT via folding transformation.
- 3 Traslate this to a 128-points model.
- Elaborate a float-point simulator in Matlab of the 128-points.
- Elaborate a synthesizable verilog code HDL and verify the DFT functionality.
- Generates power-area-timing report with different optimizations.

Introduction

Introduction:

Types of pipelined Radix-2 FFT architectures

- Feedfoward Multi-Path Delay Commutator (MDC).
- Single-Path Delay Feedback architectures (SDF).
 - Both butterflies and multipliers are in 50% utilization ...
- The SDF use registers more efficiently.
- We will focus on the feedfoward MDC asrchitecture.

Table of Contents

Sección 2

The Radix-2³ FFT Algorithm

The Radix-2³ FFT Algorithm:

N-point DFT of an input sequence x[n]

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{nk}, \quad k = 0, 1, ..., N-1$$
 (1)

where $W_N^{nk} = e^{-j\frac{2\pi}{N}nk}$.

- Direct computation of the DFT is inefficient because it does not exploit the properties of:

 - 2 Periodicity: $W_N^{k+N} = W_N^k$
- The FFT based on Cooley-Tukey algorithm reduce the number of operations from $O(N^2)$ for the DFT to $O(Nlog_2N)$ for the FFT.

The Radix-2³ FFT Algorithm:

Divide and Conquer approach

- We can calculate the DFT in series of $s = log_{\rho}N$ stages, where ρ is the base of the radix.
- This is based on the decomposition of an N point DFT into successively smaller DFTs.
- In our case, the numeber of stages is:

$$s = log_2(128) = 7$$
 (2)

Methods to design FFT algorithms

- **Decimation In Time (DIT):** Splitting successively data sequence x[n] by a factor of 2.
- **2 Decimation In Freuency (DIF):** Splitting successively the data sequence X[k] by a factor of 2.

The Radix-2³ FFT Algorithm:

DIT and DIF Butterflies

The difference is the instant in which the multiplication by W_N^{ϕ} is accomplished.

The Radix-2³ FFT Algorithm:

Order of samples in DIT and DIF

- The input samples in FFT algorithms DIF are organized in natural order but its output has not in order.
- The opposite is for DIT.

Order of intpus and outputs for DIF FFT.

The Radix-2³ FFT Algorithm:

Mathematic expression of radix-8 butterfly element

$$\begin{split} &C_{8k+0} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{4}}) + (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] + \left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) + (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{0n} W_{N/8}^{nk} \\ &C_{8k+4} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{2}}) + (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] - \left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) + (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{0n} W_{N/8}^{nk} \\ &C_{8k+2} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{2}}) - (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] - j \left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) - (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{2n} W_{N/8}^{nk} \\ &C_{8k+6} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{2}}) - (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] + j \left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) - (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{6n} W_{N/8}^{nk} \\ &C_{8k+1} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) - j (x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] + W_N^{N/8} \left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) - j (x_{n+\frac{3N}{8}} - x_{n+\frac{7N}{8}}) \right] \right\} W_N^{6n} W_{N/8}^{nk} \\ &C_{8k+5} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) - j (x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{N/8} \left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) - j (x_{n+\frac{3N}{8}} - x_{n+\frac{7N}{8}}) \right] \right\} W_N^{6n} W_{N/8}^{nk} \\ &C_{8k+3} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) - j (x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] + W_N^{N/8} \left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) - j (x_{n+\frac{3N}{8}} - x_{n+\frac{7N}{8}}) \right] \right\} W_N^{3n} W_N^{n/8} \\ &C_{8k+7} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) + j (x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8} \left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j (x_{n+\frac{3N}{8}} - x_{n+\frac{7N}{8}}) \right] \right\} W_N^{3n} W_N^{n/8} \\ &C_{8k+7} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) + j (x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8} \left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j (x_{n+\frac{3N}{8}} - x_{n+\frac{7N}{8}}) \right] \right\} W_N^{3n} W_N^{n/8} \\ &C_{8k+7} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) + j (x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8} \left[(x_n - x_n - x_$$

The Radix-2³ FFT Algorithm:

Radix-2^k Implementation

The quantity of rotators of an architecture radix- 2^k (with k > 1) is less than the radix-2.

Flow graph of a radix-2³ 16-point DIF DFT.

The Radix-2³ FFT Algorithm:

The Radix-2³ FFT Algorithm

 Applying (12) for the 128 point DFT and calculating each coefficient for k = 0, 1, ..., (128/8) - 1:

$$C_{8k+i} = \sum_{n=0}^{128/8-1} \{\cdot\}$$

We get a sequence in chain of butterflies with its corresponding rotation factor

• The 128 point DFT goes through a processes that involve tree stages of butterflies to arrive finally to a set of eight DFT where each of one is a 16 point DFT.

Questions

Thanks!

