

Relational Database Management System

Prof. Manish Kumar Joshi, Assistant Professor, **Prof. Nishant P Khatri,** Assistant Professor Parul Institute Of Computer Application.

CHAPTER-5

Relational Algebra and calculus

Relational Algebra

Relational database systems are to be equipped with a query language that can assist its users to query the database instances. There are two types of query languages – relational algebra and relational calculus.

Relational algebra is a procedural query language, which are takes instances of relations as input and instances of relations as output. It uses operators to perform queries. An operator can be either **unary** or **binary**. They accept relations as their input and relations as it is their output. It performed recursively on a relation and intermediate results are also considered relations.

Relational Algebra

The fundamental operations of relational algebra are as shown below -

- Select
- Project
- Union
- Set different
- Cartesian product
- •Rename

Select Operation (σ)

It selects rows that satisfy the given predicate from a relation.

Notation – $\sigma_{n}(\mathbf{r})$

Where σ for selection predicate and \mathbf{r} for relation. p is prepositional logic formula which may use connect like and, or, and not. terms use relational operators like -=, ≠, ≥, < , >, ≤.

For example –

 $\sigma_{subject = "data"}$ (Books) **Output** – Selects rows from books where subject is 'data'. $\sigma_{subject = "data" \text{ and price} = "450"}$ (Books) **Output** – Selects tuples from books where subject is 'data' and 'price' is 450.

 $\sigma_{\text{subject = "data" and price = "450" or year > "2010"}}$ (Books) **Output** – Selects rows from books where subject is 'data' and 'price' is 450 or those books published after 2010.

Project Operation (∏)

- •It projects column(s) that satisfied a given predicate.
- •Notation $\prod_{A1, A2, An}$ (r)
- •Where A_1 , A_2 , A_n are attribute of relation \mathbf{r} .
- •Duplicate tuples are automatically eliminated, as relation is a set.
- •For example -
- $\bullet \prod_{\text{subject, author}}$ (Books) Selects and projects columns named as subject and author from the relation Books.

Union Operation (\cup)

- •It performs binary union within two given relations and is defined as $-r \cup s = \{t \mid t \in r \text{ or } t \in s\}$ **Notation** $-r \cup s$
- •Where **r** and **s** are database relations or relation result set temporary relation.
- •For a union operation can be valid, the following conditions must hold $-\mathbf{r}$, and \mathbf{s} must have the same number of attributes.
- domains attributes must be compatible.
- •Duplicate rows are automatically eliminated.
- • \prod_{author} (Books) \bigcup \prod_{author} (Articles) **Output** –names of the authors who have written a book or an article or both.

Set Difference (-)

- •The result of set difference operation is rows, which are present in one relation but are not in the second relation.
- •Notation r s
- •all the rows are present in **r** but not in **s**.
- •∏ _{author} (Books) ∏ _{author} (Articles)
- •Output Provides the name of authors who have written books but not written articles.

Cartesian Product (X)

- •Combines information of different relations into one.
- •Notation r X s
- •Where \mathbf{r} and \mathbf{s} are relations and their output will be shows as $-\mathbf{r} \times \mathbf{s} = \{ q t \mid q \in \mathbf{r} \}$
- •σ_{author = 'tutorialspoint'} (Books X Articles) **Output** a relation, which shows all the books and articles written by tutorialspoint.

Rename Operation (ρ)

- •The results of relational algebra are relations but without any name. The rename operation allowed us to rename the output relation. 'rename' operation is denoted by small Greek **rho** ρ .
- •Notation ρ_{x} (E)
- •Where the result of expression **E** is showed with name of **x**.
- •Additional operations are -
- Set intersection
- Assignment
- Natural join

DIGITAL LEARNING CONTENT

Parul[®] University

