Robust_estimator

zhao hongqiang

5/24/2021

Robust estimator of a parameter of the probability distribution

data choise Percentage changes in quarterly personal consumption expenditure, personal disposable income, production, savings and the unemployment rate for the US, 1960 to 2016.

summary(uschange)

##	Consumption	Income	Production	Savings
##	Min. :-2.2741	Min. :-4.2652	Min. :-6.85104	Min. :-68.788
##	1st Qu.: 0.4198	1st Qu.: 0.3378	1st Qu.: 0.05568	1st Qu.: -4.218
##	Median : 0.7721	Median : 0.7237	Median : 0.65793	Median : 1.280
##	Mean : 0.7465	Mean : 0.7176	Mean : 0.50806	Mean : 1.222
##	3rd Qu.: 1.0898	3rd Qu.: 1.1650	3rd Qu.: 1.30572	3rd Qu.: 6.651
##	Max. : 2.3183	Max. : 4.5365	Max. : 4.14957	Max. : 50.758
##	Unemployment			
##	Min. :-0.900000			
##	1st Qu.:-0.200000			
##	Median : 0.000000			
##	Mean : 0.007487			
##	3rd Qu.: 0.100000			
##	Max. : 1.400000			

head(uschange)

##			${\tt Consumption}$	Income	${\tt Production}$	Savings	Unemployment
##	1970	Q1	0.6159862	0.9722610	-2.4527003	4.8103115	0.9
##	1970	Q2	0.4603757	1.1690847	-0.5515251	7.2879923	0.5
##	1970	QЗ	0.8767914	1.5532705	-0.3587079	7.2890131	0.5
##	1970	Q4	-0.2742451	-0.2552724	-2.1854549	0.9852296	0.7
##	1971	Q1	1.8973708	1.9871536	1.9097341	3.6577706	-0.1
##	1971	Q2	0.9119929	1.4473342	0.9015358	6.0513418	-0.1

plot(uschange)

uschange

Robust parameter estimation, using M estimation

M-estimation defines a weight function such that the estimating equation becomes $\sum_{i=1}^{n} w_i (y_i - x'b) x_i' = 0$. But the weights depend on the residuals and the residuals on the weights

```
MM=rlm(Consumption ~ Income + Production + Unemployment + Savings,
    data=uschange)
summary(MM)
##
## Call: rlm(formula = Consumption ~ Income + Production + Unemployment +
##
       Savings, data = uschange)
## Residuals:
##
        Min
                                              Max
                   1Q
                        Median
   -0.86476 -0.15486 -0.01866 0.15042
                                          1.27733
##
##
## Coefficients:
##
                 Value
                          Std. Error t value
## (Intercept)
                   0.2252
                            0.0322
                                        6.9877
                            0.0365
## Income
                   0.7525
                                       20.5901
## Production
                   0.0479
                            0.0224
                                        2.1385
                                       -1.7027
## Unemployment
                  -0.1556
                            0.0914
## Savings
                  -0.0476
                            0.0024
                                      -19.7573
##
## Residual standard error: 0.2293 on 182 degrees of freedom
hweights <- data.frame( resid = MM$resid, weight = MM$w)</pre>
hweights2 <- hweights[order(MM$w), ]</pre>
hweights2[1:15, ]
```

```
weight
##
           resid
       1.2773344 0.2414257
## 23
## 21
       1.0159620 0.3035509
## 52
       0.9899880 0.3115075
## 145 0.8928082 0.3454242
## 16 -0.8647649 0.3566168
## 141 -0.8441995 0.3653320
## 63
       0.7683315 0.4013531
## 22 -0.7318210 0.4213963
## 154 0.7268712 0.4243003
## 61
       0.7200283 0.4282826
## 20 -0.6720621 0.4588468
## 142 -0.6618753 0.4659621
## 129 0.6464282 0.4770988
## 13
       0.6172414 0.4996050
## 47 -0.6164972 0.5002263
```

We can see that roughly, as the absolute residual goes down, the weight goes up.