CSCI 2300 — Algo Homework 2

Hayden Fuller

• Q1

Is
$$4^{1536} \equiv 9^{4824} \mod 35$$

 $4^4 \mod 35 = 256 \mod 35 = 11$
 $9^2 \mod 35 = 81 \mod 35 = 11$
 $4^{1536} \equiv 4^{4*384} \equiv 11^384 \mod 35$
 $9^{4824} \equiv 9^{2*2412} \equiv 11^{2412} \equiv 11^{6*384+108} \equiv 11^{6*384} * 11^{108} \mod 35$
 $11^{108} \equiv 121^{54} \equiv 6^{54} \equiv 36^{27} \equiv 1^27 \mod 35 = 1$
 $11^{6*384} \equiv 11^{384} \mod 35$

Yes, $4^{1536} \equiv 9^{4824} \mod 35$

• Q2

$$x^{86} \equiv 6 \mod 29$$

$$x^{28} \equiv 1 \mod 29$$

$$x^{86} \equiv x^2 \mod 29$$

$$x^2 \equiv 6 \mod 29$$

$$x^2 \equiv 64 \mod 29$$

$$x = 8$$

• Q3

Prove that $GCD(F_{n+1}, F_n) = 1$, for $n \ge 1$, where F_n is the n-th Fibonacci element. We prove this with induction

Base:
$$n = 1$$
, $F_2 = 1$, $F_1 = 1$, $GCD(F_2, F_1) = GCD(1, 1) = 1$.
Induction: Assume $GCD(F_{n+1}, F_n) = 1$
 $F_{n+2} = F_{n+1} + F_n$, $F_n = F_{n+2} - F_{n+1}$
 $GCD(F_{n+1}, F_n) = GCD(F_{n+1}, F_{n+2} - F_{n+1}) = GCD(F_{n+1}, F_{n+2}) = GCD(F_{n+2}, F_{n+1}) = 1$
 $GCD(F_{n+1}, F_n) = 1 \rightarrow GCD(F_{n+2}, F_{n+1}) = 1$
therefore, $GCD(F_{n+1}, F_n) = 1$, for $n \ge 1$