Chapitre 18 et 19 - TD - 18 mai 2020

TD 19 - Exercice 1

Soit $E = \mathbb{R}^3$. Soit \mathscr{B} la base canonique de E et \mathscr{B}' la base de E formée des vecteurs $v_1 = (-1, 1, -3)$, $v_2 = (3, 2, 1)$ et $v_3 = (2, 1, 1)$ dans la base \mathscr{B} .

- 1. Calculer la matrice du vecteur (5,1,2) dans la base \mathcal{B}' .
- 2. Calculer la matrice dans la base \mathcal{B}' de l'endomorphisme f défini dans \mathcal{B} par f(x,y,z)=(2x+z,x-3y,-x+z).
- 3. Calculer la matrice de l'endomorphisme g défini par $g(v_i) = i.v_i$ pour i = 1, 2, 3 dans les bases \mathcal{B} et \mathcal{B}' .

TD 18 - Exercice 7

On pose
$$u_0 = v_0 = 0$$
 et pour tout $n \in \mathbb{N}^*$,
$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n \quad \text{ et } \quad v_n = u_n - u_{n-1}.$$

- 1. Déterminer un équivalent de (v_n) et en déduire la nature de $\sum v_n$.
- 2. En déduire que la suite (u_n) est convergente.

	on calcule four $n > 1$ $V_n = \sum_{k=1}^{m} 1 - \ln(n) - \sum_{k=1}^{m-1} 1 + C_n(m-1)$
	$\sqrt{m} = \frac{1}{m} + \frac{m}{m} = \frac{1}{m} + \frac{m}{m} = \frac{1}{m}$
	On utilise le DL ln(1+a) = ll-u² +o(u²) d'après la formule de Taylor. Rus, on jose u=-1
	$V_m = 1$ $form = 1$
	Z1 est une série de licronann avecd=271 donc convergente. Ona -2 vn v 1 donc -2 vn >0 a jartin ol un certain rang.
	D'après le cultère d'équivalence des séries à termes (estifs)
	E vn converge Parojonation, sur les séries convergents
2)	on: In, Vn= un-un-s donc Eun-un-s) converge alors parthérieme des véries télescojuques, (un) converge
	$S_{m} = 2 u_{2} - u_{2} \cdot i = u_{m} - u_{0}$
	(culture générale $\sum_{k=1}^{m} \frac{1}{k} r \ln(m) \text{ et } \sum_{k=1}^{m} \frac{1}{k} - \ln(m) \xrightarrow{n \to \infty} $)

Connote $S_n = \sum_{k=1}^n \sum_k S_{annue} juticles de$ Carine harmingue Mais $S_n - S_{n,1} = 1$ Marine $S_n - S_{n,1} = 1$								
On	note Sn=	E de Sommes jarti	elles de					
mais	$\int dx dx dx$	résultat comme						
	$Sm - S_{MA} = \frac{1}{\Lambda}$	n moto						
Joen W.	$f_n = lm(m)/ma$	$Wn - Wu = 0$ $Wn \rightarrow + \infty$						

TD 18 - Exercice 6

Soit $\alpha > 0$, on définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = \alpha$ et pour $n \in \mathbb{N}$, $u_{n+1} = u_n e^{-\frac{1}{u_n}}$.

- 1. Étudier la suite (u_n) .
- 2. Comparer la série $\sum u_n$ à une série géométrique et en déduire sa nature.

dun+s cs/ defini et un+1>0 ca esp est strictement forti ve: Dépies le princi je de néavreura, ThéN, un >0 (et est défini) On a jour nEN, une = e tim et - di <0 = 0 et x 2 = 1 car esp est strictement avoissante donc une < 2 sparném Alas (un) est dévoissante et minorie par 0, alus d'u près le lhèvement de le limite monotone, (un) awage van l'el. On suffere que (±0, elons - din noise et e un -> e t car exp est continue en - 1/2. On suffere que (±0, elons - din noise en - 1/2. On a egalement l'im uner : lim un qui dance l'elé t el = 1 = 1 = 0 car expertorization de la l'imite; I enste un rong N à partir duquel alus Vanzo : Une < - 10 et e tim < e e Vanzo : Une < - 10 Alors on matte juréaurane que d'un, N, un < (e on mente.) In un contration : Jour n = N, un < 1. un cost van 2 notation attent : Jour n = N, un < 1. un cost van 2 notation : Jour n = N, un < 1. un cost van 2 notation : Jour n = N, un < 1. un cost van 2 notation : Jour n = N, un < 1. un cost van	1.) On a 110=d>0. Si joeu un entice n EN, Un=0, alors
On a four mEN, unex = e tim et - 1 <0 = 10 e tim 2 e s prun EN Car esp est strictement orissante donc unex 2 sprun EN Alas (un) est strictement décroissante. (un) est dé roissante et minorie par 0, alas d'u près le l'héroème de la limite monotone, (un) canage vera l'eIR. On suffere que (\$\pm\$0, alons - d	
car esp est strictement oroissante donc white 2 spainter Alas (un) est strictement décroissante. (un) est décroissante et minorie par 0, alas d'u près le lhévième de la limite monotone, (un) canage vers l'eIR. On suffére que l + 0, alors - d - d projetation et e un -> e t car esp est continue en - 1/e. On a egalement lim uner : lim un qui dance l'e e e e e e e e e e e e e e e e e e	
Alas (un) et strictoment décrossante. (un) est décrossante et minorée par 0, alas d'u près le lhévième de la limite monotone, (un) coneige von le IR. On suffére que l to, eluis - d - d farojointen et e un -> e † cai exp est continue en - 1/e. On a egalement lim uner = lim un qui donne le le t e e e e e e e e expertoixetive. Castim passible. Con l = 0 lun converge veris 0, alas jurdifination de la limili d'enste un rang N à jurtir duquel alus alus - d = -10 et e un e e e e e e e e e e e e e e e e e	
(un) est dé voissante et minorie pu 0, alus d'u près le lhévreme de la limite monotone, (un) conveye veu l'eIR. On suffére que l 0, alus - 2 - 2 paroporation et e un -> et car exp est continue en - 16. On a egalement lim uner = lim un qui donne l'elé é e e = 5 = 5 = 2 = 1 = 0 car expertoixetive. Cast in passible. On auxerge vers 0, alus jardefinition de la limite i Dens te un rong N à partir duquel alus vn > N = 10 et e tim 2 e 10 Et vn > N = 10 et e tim 2 e 10 Alors on monte jurécurane que vn N, N, Un « (e 10) m - N UN	car espest strictement oroissante donc une 1 < 1 pour EM
On suffere que l + 0, clas - d	Alas (un) en strictement décrocusante.
On suffere que l + 0, clas - d	(un) est de voissante et minerée par 0, alas d'uprès le lhévième
et e un -> e t car esp est continue en - 1/e. On a egalement lim une = lim un qui dance l'e te e e = s = - 2 = 0 car espentioixective. Costini passible. donc l= 0 Un converge vers 0, alors jardefinition de la limite Denste un rang N à justir duquel alus alus - 10 et e un z e et pron) Une = Une = 10 Alors on matte juréaurance que yn, N, Un \((e^{-10})^{m-N} UN	al la limite monorone, lun consigéres les les
et e un -> e t car esp est continue en - 1/e. On a egalement lim une = lim un qui dance l'e te e e = s = - 2 = 0 car espentioixective. Costini passible. donc l= 0 Un converge vers 0, alors jardefinition de la limite Denste un rang N à justir duquel alus alus - 10 et e un z e et pron) Une = Une = 10 Alors on matte juréaurance que yn, N, Un \((e^{-10})^{m-N} UN	On suffere que (+0) clars - 1
Om a egalement lim Unen = lim un qui dance & = le e E = 1 ==	et e un -> e t car esp est continue en - 1/2.
and $l=0$ (Un) converge vers 0, alors jurdefinition de la limite Denste un rang N à juitir duquel alus Vn > N - L < - 10 et e in \neq e et Vn > N Un Une Une Une Alors on matter Une aurana que Vn > N Un (e 10) m - N UN	An a egalement lim Uner = lim un qui donne l'= le +
and $l=0$ (Un) converge vers 0, alors jurdefinition de la limite Denste un rang N à juitir duquel alus Vn > N - L < - 10 et e in \neq e et Vn > N Un Une Une Une Alors on matter Une aurana que Vn > N Un (e 10) m - N UN	e e = 1 <= - 21 = 0 car expertsigetive. Cestim parsible.
alux $\forall n > N$ $-4 < -10$ et e^{-10} e^{-1	anc l=0
alux $\forall n > N$ $-4 < -10$ et e^{-10} e^{-1	Un anverge vers 0, alors jardefinition de la
alux $\forall n > N$ $-4 < -10$ et e^{-10} e^{-1	limite, Denste un rang Nà portir duquel
et from lune una que de la como montre la récurare que front N, un s (como montre la récurare que d'ent N, un s (como montre la récurare que d'ent N, un s (como montre la récurare que d'ent N, un s (como montre la récurare que d'ent N, un s (como montre la récurare que d'ent N, un s (como montre la récurare que d'ent d'ent d'ent de la récurare que d'ent d'ent de la récurare que d'ent d'ent de la récurare que d'ent d'ent d'ent d'ent de la récurare que d'ent d	alus $0 < u_{\text{m}} < \frac{1}{10}$
Alors on matte la récurance que fort N, le m & (c 10) m - N	Vm>N - 10 et p in 2 p - 10
Alors on mathe functioning que you N Un & Colinar Initialization: 1000 M=N, Un & 1. UN Colinar	et to une sune to
Initialization: 10en n=N, un < 1. UN Collinar	Alors on martin purecurance que you No Un & Colo) m-N
	Initialization: 10en n=N, un < 1. UN C'odinae

Hénédite:
Alas jarde principe de réaurcue, In = N Un < un le la rérie = un le los une série génnétrique
de raison q=e to ave 02e 21 dans elle cenerge. Alors farcities de compraison des séries à termes positifs Zun caverge
danc Eum cenverge.

TD 19 - Exercice 8

Soit $M = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ la matrice de l'endomorphisme u de \mathbb{R}^3 dans la base $\mathscr{B} = (\vec{i}, \vec{j}, \vec{k})$.

Montrer qu'il existe une base $\mathcal{B}_1 = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ dans laquelle la matrice de u est $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$.

alors on the one $\overline{e_1}, \overline{e_2}, \overline{e_3}$ telsque $\overline{e_1}$ $\overline{e_2}$ $\overline{e_3}$ $\overline{e_3}$ $u(\vec{e}_2) = 0\vec{e}_1 + 2\vec{e}_2 + 0\vec{e}_3 = 2\vec{e}_2$ M(ez) = 3 ez On écrit ei dans la Care B: ei = 72 + 413 + 31 te sa matrice $\Pi_B(\bar{e_i}) = X_1 = \begin{pmatrix} y_1 \\ y_1 \end{pmatrix}$ et $u(\bar{e_i})$ a jour matrice T_i^T . X_1 $0me_{u(e_1)} = \delta \stackrel{>}{=} 57$ $77x_1 = \binom{6}{0} \stackrel{>}{=} \begin{cases} 2\ell_1 - y_1 = 0 \\ -2\ell_1 + y_1 + y_1 = 0 \end{cases}$ $33\ell = 0$ => \(\frac{\pi_1 - \pi_1}{31 - 0} \) = \(\frac{\pi_2 \in \in \text{Ell}}{0 - 0} \) On whoisit \(\text{Ell} \cdot \frac{\pi_1 \pi_2 \text{All}}{0 - \text{Cl}} \) On whoisit \(\text{Ell} \cdot \frac{\pi_1 \pi_2 \text{All}}{0 - \text{Cl}} \) on résult su (E2)= 2 E2 avec E2 de matrice X2= (42) dans B another > 17 X2 = 2 X2 33 EIR! (x2 142 132) = B(+1,-1,0) (12,42 132) EVect (1,1,0) on choist (2 : (1,-1,0) ez= i-s Coordonies de éz dan B

On result	v(E3) = 3 E3	avec Es de M	atue dan Bix 3= $\begin{pmatrix} n_3 \\ 43 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 = -3n_3$
On howe to my	Deml (33-0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{3}{3} = -2n3$
=> 38 E 12:	(m3,43, g3)	= 8 (1, -2, -3)	m character (1-2
la matrice de	- (E1/e2/e3) CN, is 2 vectours (e	une base delle :	es=i-2j+36 Cax B = (inj, b)
$\frac{1}{2}$	$\frac{1}{0} = \frac{1}{0} = \frac{1}{0} = \frac{1}{0}$	Et on proc	ive que Pest
PV (1 1 1 la m 0 -2 -3 Dia	ahice en echelo	mie et a 3
de rang ma	simal olane.	inversible d'une	mie et a 3 (P) = 3: Pest (E1, E2, E3) ost me Crase
	10=971	2 P Chengernaut	
	John de de	_ evengeview	se vuse :

TD 19 - Exercice 7

Soit
$$A = \begin{pmatrix} 3 & 3 & -3 \\ -2 & -2 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$
 et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A .

- 1. Déterminer l'image et le noyau de f avec le minimum de calcul.
- 2. Déterminer une base $\mathscr{B}'=(u,v,w)$ de \mathbb{R}^3 dans laquelle la matrice de f est $A'=\begin{pmatrix}0&1&0\\0&0&0\\0&0&0\end{pmatrix}$.

TD 19 - Exercice 6

Soit $f_1: x \mapsto e^{2x}$, $f_2: x \mapsto xe^{2x}$ et $f_3: x \mapsto x^2e^{2x}$ trois fonctions de $\mathscr{C}^1(\mathbb{R})$.

- 1. On pose $E = \text{Vect}(f_1, f_2, f_3)$ sous-espace vectoriel de $\mathscr{C}^1(\mathbb{R})$. Montrer que (f_1, f_2, f_3) est une base de E et donner la dimension de E.
- 2. On considère $\varphi: E \longrightarrow E$, définie par $f \mapsto \varphi(f) = f'$. Montrer que φ est un endomorphisme de E.
- 3. Déterminer la matrice de φ dans la base (f_1, f_2, f_3) . Montrer que φ est un automorphisme, donner la matrice de sa réciproque et déterminer une primitive de $x \mapsto (7-8x+3x^2)e^{2x}$.

