Ryan Dang

(631)-662-1148 || ryan_dang@brown.edu

EDUCATION

Brown University, B.S. Computer Engineering, GPA 4.0

Expected Graduation May 2027

• Relevant Courses: Dynamics and Vibrations, Design Engineering, Calculus II and III, Object Oriented Design, Data Structures and Algorithms, Electricity and Magnetism, Material Science, Linear Algebra, Circuits, Computer Systems

EXPERIENCE

Wright State University Research Experience for Undergraduates (REU)

June 2025 - Present

Hardware Security Research Intern

Dayton, OH

- Implementing a ring oscillator physically unclonable function (PUF) on a **Basys 3** FPGA using **Vivado**, integrating 16 oscillators, dual 8-to-1 multiplexers, counters, and a comparator for secure challenge-response authentication
- Applying machine learning (SVM and Random Forest) to detect hardware Trojans using ring oscillator frequencies

Brown University Engineering Department

January 2025 - May 2025

Dynamics and Vibrations Teaching Assistant

Providence, RI

• Led office hours for 20+ students to clarify concepts in kinematics, force balance, and harmonic motion

AA Technology May 2024 - July 2024

PCB Manufacturing Engineer Intern

Ronkonkoma, NY

- Increased production speed by 1.5x by optimizing programming for a newly acquired conformal coating robotic arm
- Converted schematic drawings into PCBs using pick-and-place machines and automated optical inspection (AOI)
- Achieved a ~5% reduction in lead time by interpreting PCB schematics, developing a bill of materials in **Excel**, and cross-referencing customer part specifications with datasheets to ensure accuracy with design requirements

PROJECTS

UDP Packet Processor Present

• Developing a packet processor on an FPGA, enabling line-rate parsing, checksum verification, and header extraction

Dual-Clock FIFO May 2025

Designed and simulated a dual-clock FIFO in Verilog to safely transfer data between asynchronous 100 MHz and 25
 MHz clock domains using Gray-coded pointers and CDC-safe synchronizers

FPGA Pong Game

December 2024 - January 2025

Implemented a fully functional Pong game on a Lattice ICE40 FPGA board, utilizing Verilog to create modular
components for paddle control, ball movement, VGA display synchronization, score tracking, and game state tracking

Tetris and Custom Controller

January 2024- February 2024

• Developed Tetris from scratch in **Java** with custom game logic, collision detection, scoreboard, and a physical controller using a custom PCB (**Altium**) and 3D-printed housing (**Fusion 360**)

ACTIVITIES

Engineering Department Undergraduate Group

Providence, RI

Events Coordinator

October 2024 - Present

• Increased student engagement in Engineering Week by over **30**% through targeted outreach and events such as brunch with professors, engineering-themed trivia night, badminton with a professor, and Lego building challenges

Brown Formula Racing Providence, RI

Electrical Engineer

January 2024 - Present

- Redesigned the power distribution system to reduce weight and simplify wiring via a PCB designed in **Altium**
- Assembled a custom wiring harness for the car using DTM and ring connectors, wire strippers, and crimpers

SKILLS

Technical: FPGA, PCB Design, I2C, UART

Languages/Tools: Verilog, C/C++, Python, Java, Vivado, Lattice Diamond, Altium, LTSpice, Linux, Docker, Git

Instruments: Oscilloscope, Signal Analyzer, Waveform Generator, Multimeter

Interests: Club Volleyball, Piano, Guitar, Biking