

$oldsymbol{\mathbb{L}}$ Base d'un plan $oldsymbol{(P)}$ – repère d'un plan $oldsymbol{(P)}$ – coordonnées d'un point du plan $oldsymbol{(P)}$.

A. Base du plan - repère du plan :

a. Définition:

i et j deux vecteurs non colinéaires du plan (P).

- Le couple (\vec{i}, \vec{j}) est appelé base du plan (P); on dit que le plan (P) est rapporté à la base (\vec{i}, \vec{j}) .
- Si on prend un point quelconque de (P); le triplet (O,i,j) est appelé repère du plan (P).
 on dit que le plan (P) est rapporté au repère (O,i,j). (ou le plan est muni au repère (O,i,j).
- O et I et J trois points non alignés de (P), le couple $(\overrightarrow{OI}, \overrightarrow{OJ})$ est une base de (P); le triplet $(O, \overrightarrow{OI}, \overrightarrow{OJ})$ est un repère de (P).
- En général on pose $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$ on aura (O,i,j) repère du plan (P).
- Si $(OJ) \perp (OI)$ la base (\vec{i}, \vec{j}) est appelée base orthogonale et le repère (O, i, j) est appelé repère orthogonal.
- Si $|\vec{j}| = |\vec{i}| = 1$ la base (\vec{i}, \vec{j}) est appelée base normée et le repère $(\vec{O}, \vec{i}, \vec{j})$ est appelé repère normé.
- Si $(OJ) \perp (OI)$ et $||\vec{j}|| = ||\vec{i}|| = 1$ la base (\vec{i}, \vec{j}) est appelé base orthonormée et le repère (O, \vec{i}, \vec{j}) est appelé repère orthonormé .

<u>b.</u> Exemples :

B. Coordonnées d'un point du plan (P):

a. Activité:

Le plan (P) est rapporté au repère (O,i,j). On considère :

• La droite $(D_x) = (OI)$ tel que : $\overrightarrow{OI} = \overrightarrow{i}$.

DROITE DANS LE PLAN (analytique) page

- La droite $(D_y) = (OJ)$ tel que : $\overrightarrow{OJ} = \overrightarrow{i}$.
- M est un point du plan (P).
- \mathbf{M}_{x} est la projection de M sur la droite $\left(\mathbf{D}_{\mathrm{x}}\right)$ parallèlement à $\left(\mathbf{D}_{\mathrm{y}}\right)$.
- $\mathbf{M}_{\mathbf{y}}$ est la projection de M sur la droite $\left(\mathbf{D}_{\mathbf{y}}\right)$ parallèlement à $\left(\mathbf{D}_{\mathbf{x}}\right)$.
 - 1. Ecrire le vecteur \overrightarrow{OM}_x en fonction de \overrightarrow{i} ou \overrightarrow{OI} .(on utilise le réel x)
 - 2. Ecrire le vecteur $\overrightarrow{OM_y}$ en fonction de \overrightarrow{j} ou \overrightarrow{OJ} ... (on utilise le réel y)
 - 3. Ecrire le vecteur \overrightarrow{OM} en fonction de \vec{i} et \vec{j} (ou bien \overrightarrow{OI} ou \overrightarrow{OJ}).

b. Définition et théorème :

Le plan (P) est rapporté au repère (O,i, j).

Pour tout point M du plan (P), il existe un et un seul couple $(x,y) \in \mathbb{R} \times \mathbb{R}$ tel que : $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$

- Le couple (x,y) est appelé couple des coordonnées du point M par rapport au repère (O,i,j).
- On note $\overrightarrow{OM} = x\vec{i} + y\vec{j}$: par M(x,y) ou $M\begin{pmatrix} x \\ y \end{pmatrix}$; d'où: M(x,y) équivaut à $\overrightarrow{OM} = x\vec{i} + y\vec{j}$
- Le nombre x est appelé abscisse du point M.
- Le nombre y est appelé ordonnée du point M .
- La droite $(D_x) = (OI)$ est appelée axe des abscisses.
- La droite $(D_y) = (OJ)$ est appelée axe des ordonnées.
- Pour tout vecteur \vec{u} du plan (P) il existe un point unique de (P) tel que $\vec{u} = \overrightarrow{OM}$ (\overrightarrow{OM} est le représentant d'origine O) d'où les coordonnées du point sont aussi les coordonnées de \vec{u} par suite si M(x,y) et $\vec{u} = \overrightarrow{OM}$ alors $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ ou $\vec{u}(x,y)$.
- L'écriture $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ signifie $\vec{u} = x\vec{i} + y\vec{j}$.
 - $x\vec{i} + y\vec{j} = x'\vec{i} + y'\vec{j}$ équivaut à x = x' et y = y'
- Coordonnées de la somme de deux vecteurs -Coordonnées du produit d'un vecteur par un réel :
 - a. Activité:
 - 1. Construire les vecteurs $\vec{v}(1,-2)$ et $\vec{u}(2,3)$ à partir de O.
 - 2. Construire le vecteur $\vec{u} + \vec{v}$ puis déterminer graphiquement les coordonnées du vecteur $\vec{u} + \vec{v}$.
 - Construire le vecteur $2\vec{u}$ puis déterminer graphiquement les coordonnées du vecteur $2\vec{u}$.
 - 4. Donner la propriété.

DROITE DANS LE PLAN (analytique) page

<u>b.</u> Propriété:

Le plan (P) est rapporté au repère (O,i,j).

- $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont deux vecteurs de (P).
- $B(x_B, y_B)$ et $A(x_A, y_A)$ et $I(x_I, y_I)$ sont des points de (P).
- $\alpha \in \mathbb{R}$, On a:
 - Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$ on note : $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix} + \overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix} = (\overrightarrow{u} + \overrightarrow{v}) \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.
 - Le vecteur $\vec{k.u}$ a pour coordonnées $\begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$ on note : $\vec{\alpha u} \begin{pmatrix} x \\ y \end{pmatrix} = (\vec{\alpha u}) \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix} = \vec{\alpha u} \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}$.
 - **Le vecteur** \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B x_A \\ y_B y_A \end{pmatrix}$ on note :

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$
 ou $\overrightarrow{AB} (x_B - x_A, y_B - y_A)$.

❖ $I(x_1,y_1)$ est le milieu du segment [A,B] on a : $x_1 = \frac{x_A + x_B}{2}$ et $y_1 = \frac{y_A + y_B}{2}$.

c. Exemple:

- 1. donner les coordonnées de \overrightarrow{AB} sachant que I B(1,2) et A(3,4).
- 2. donner les coordonnées de $-5\overrightarrow{AB} + 3\overrightarrow{u}$. sachant que $\overrightarrow{u}(2,0)$
- 3. Donner les coordonnées de $I(x_1, y_1)$ tel que $I(x_1, y_1)$ est le milieu du segment [A, B].

Déterminant de deux vecteurs – condition de colinéarité de deux vecteurs :

A. Déterminant de deux vecteurs :

<u>a.</u> <u>Définition</u>:

Soient $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan (P) qui est rapporté au repère (O,i,j).

- Le nombre xy'-x'y est appelé le déterminant des vecteurs \overrightarrow{u} et \overrightarrow{v} .
- On note: $\det(\overrightarrow{u}, \overrightarrow{u'}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' yx'$.

B. Condition de colinéarité de deux vecteurs :

<u>b.</u> Propriété :

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs du plan (P) qui est rapporté au repère (O,i,j).

• \vec{u} et \vec{v} sont colinéaires équivaut à $\det(\vec{u}, \vec{v}) = 0$ (ou $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx' = 0$).

c. Exemple:

Etudier la colinéarité de $\vec{u}(2,3)$ et $\vec{v}(-4,-9)$ puis de $\vec{w}=-\vec{i}+2\vec{j}$ et $\vec{u}=5\vec{i}-4\vec{j}$.

DROITE DANS LE PLAN (analytique) page

Norme d'un vecteur - Distance entre deux points (<u>uniquement dans un repère orthonormé</u>)

a. Propriété:

Le plan (P) est rapporté à un repère <u>orthonormé</u> (O,i,j)

- $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ est un vecteur de (P). $A(x_A, y_A)$ et $B(x_B, y_B)$ sont de points de (P) on a :
- La norme (ou la longueur) du vecteur \vec{u} est $\|\vec{u}\| = \sqrt{x^2 + y^2}$
- la distance entre A et B est $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$.
 - **b.** Exemple :

Calculer la distance AB sachant que A(1,4) et B(1,2).

Wecteur directeur d'une droite -représentation paramétrique et équation cartésienne d'une droite :

- A. Vecteur directeur d'une droite :
 - a. Définition :

Soit (D) une droite du plan (P) qui est rapporté au repère (O,i,j). A et B sont deux points de (P).

- Tout vecteur non nul u est colinéaire avec le vecteur \overrightarrow{AB} est appelé vecteur directeur de la droite (D).
- La droite (D) est appelée la droite passant par A (ou B) a pour vecteur directeur u.
- La droite (D) est notée par : $D(A, \vec{u})$ ou $D(B, \vec{u})$ ou $D(A, \overrightarrow{AB})$.
- **B.** Représentation paramétrique d'une droite :
 - a. Activité:

Soit $D(A, \vec{u})$ une droite du plan (P) qui est rapporté au repère (O, i, j). (voir figure ci-contre)

- $\underline{\mathbf{1}}_{\mathbf{r}}$ Construire un point \mathbf{M} de (\mathbf{P}) tel que $\overrightarrow{\mathbf{A}\mathbf{M}}$ et $\overrightarrow{\mathbf{u}}$ sont colinéaires.
- 2. Ecrire le vecteur \overrightarrow{AM} en fonction de \overrightarrow{u} .
- On pose: M(x,y) et $A(x_A,y_A)$ et $\vec{u}(a,b)$. exprimer x et y en fonction de a et b et x_A et y_A .
 - **b.** Définition

Soit $D(A, \vec{u})$ une droite du plan (P) qui est rapporté au repère (O, i, j) tel que $A(x_A, y_A)$ et $\vec{u}(a, b)$.

L'écriture $\begin{cases} x = x_A + at \\ y = y_A + bt \end{cases}; t \in \mathbb{R} \text{ est appelée représentation paramétrique de la droite } D(A, \vec{u}).$

<u>c.</u> Exemple :

Soit $D(A, \vec{u})$ une droite du plan (P) tel que A(2,1) et $\vec{u}(-4,0)$.

On donne une représentation paramétrique de la droite $D(A, \vec{u})$.

La représentation paramétrique de la droite est : $t \in \mathbb{R}$; $\begin{cases} x = 2 - 4t \\ y = 1 \end{cases}$.

C. Equation cartésienne de d'une droite :

a. Activité:

On considère la droite $D(A(4,5); \vec{u}(2,3))$ du plan (P) qui est rapporté au repère (O,i,j) et M(x,y) est un point de (P).

- 1. Déterminer le couple des coordonnées du vecteur \overrightarrow{AM} .
- 2. Donner la condition nécessaire et suffisante pour que $M \in (D)$ (donner deux réponses différentes)
- 3. En déduit que M(x,y) vérifie 3x-2y-2=0.

<u>**b.**</u> <u>Définition et propriété</u> :

Le plan (P) est rapporté à un repère (O,i,j).

Toute droite $D(A(x_A, y_B); \vec{u})$ du plan (P) a une équation de la forme ax + by + c = 0. avec

$$c = -x_u y_A + y_u x_A$$
 et $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ vecteur directeur de la droite (D).

L'écriture ax + by + c = 0 est appelée équation cartésienne de la droite (D) avec $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ vecteur

directeur de la droite (D).

c. Démonstration :

Soit
$$D\left(A(x_A, y_B); \overrightarrow{u}\begin{pmatrix} x_u \\ y_u \end{pmatrix}\right)$$
 une droite de (P) et $M\begin{pmatrix} x \\ y \end{pmatrix} \in (P)$.

On a:

$$M \begin{pmatrix} x \\ y \end{pmatrix} \in (D) \Leftrightarrow \overrightarrow{u} \begin{pmatrix} x_u \\ y_u \end{pmatrix} \text{ et } \overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix} \text{ sont colinéaires}$$

$$\Leftrightarrow \det(\overrightarrow{u}, \overrightarrow{AM}) = 0$$

$$\Leftrightarrow \begin{vmatrix} x_u & x - x_A \\ y_u & y - y_A \end{vmatrix} = 0$$

$$\Leftrightarrow x_u (y - y_A) - y_u (x - x_A) = 0$$

$$\Leftrightarrow x_u y - y_u x - x_u y_A + y_u x_A = 0$$

$$\Leftrightarrow -y_u x + x_u y - x_u y_A + y_u x_A = 0$$

$$\Leftrightarrow -y_u x + x_u y - x_u y_A + y_u x_A = 0$$

$$\Leftrightarrow ax + by + c = 0 \qquad \text{avec } \overrightarrow{u} \begin{pmatrix} x_u \\ y \end{pmatrix} = \overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$$

DROITE DANS LE PLAN (analytique) page

Conclusion: la droite $D(A(x_A, y_B); \vec{u})$ du plan (P) a pour équation de la forme ax + by + c = 0. avec $c = -x_u y_A + y_u x_A$ et $\overrightarrow{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ vecteur directeur de la droite (D).

D. Etude de l'ensemble des points M(x,y) de (P) qui vérifie ax + by + c = 0 avec $(a,b) \neq (0,0)$:

a. Activité:

Le plan (P) est rapporté à un repère (O,i,j).

On considère (E) l'ensemble des points M(x,y) de (P) qui vérifie ax + by + c = 0 et $(a,b) \neq (0,0)$

- 1. Démontrer que le point $C\left(0,-\frac{c}{b}\right) \in (E)$.est-ce que $(E) \neq \emptyset$? (on suppose que $b \neq 0$)
- Soit le point $A(x_A, y_A)$ de (E), montrer que si $M(x,y) \in (E)$ on a $a(x-x_A) + b(y-y_A) = 0$
- On considère le vecteur $\vec{u}(-b,a)$ en déduit que :
 - $\det(\overrightarrow{AM}, \overrightarrow{u}) = 0$.
 - Ecrire AM en fonction de u ; puis déterminer l'ensemble des points (E).
 - Donner la propriété :

<u>**b.**</u> Propriété :

Le plan (P) est rapporté à un repère (O,i,j).

a et b et c de \mathbb{R} avec $(a,b) \neq (0,0)$.

l'ensemble des points M(x,y) de (P) qui vérifient ax + by + c = 0 est la droite passant par

le point $C\left(0,-\frac{c}{b}\right)$ si $b \neq 0$ (ou $C'\left(-\frac{c}{a},0\right)$ si $a \neq 0$) et $\overrightarrow{u}\left(-b,a\right)$ comme vecteur directeur.

Exemple:

On considère (E) l'ensemble des points M(x,y) de (P) qui vérifie 2x+3y+5=0.

- 1. Donner un point A de (P) qui appartient à (E).
- $\mathbf{2}$. Déterminer l'ensemble des points de (\mathbf{E}) .

V. Droites parallèles dans le plan :

a. Activité:

- On considère deux droites d'équations cartésiennes : (D): ax + by + c = 0 et (D'): a'x+b'y+c'=0 du plan (P) est rapporté à un repère (O,i,j).
- 1. Déterminer \vec{u} et \vec{v} deux vecteurs directeurs respectivement à (D) et (D').
- **2.** Donner une condition nécessaire et suffisante tel que (D) et (D') sont parallèles .
- 3. En déduit que : ab'-a'b = 0 $\left(\text{ ou } \frac{a}{b} = \frac{a'}{b'} \right)$.

- ❖ On considère les droites (D) et (D') d'équations réduites (ou simplifiées)
 (D): y = mx + p et (D'): y = m'x + p'.
- 4. Donner une condition nécessaire et suffisante tel que (D) et (D') sont parallèles.
- 5. Donner la propriété .

<u>b.</u> Propriété:

Le plan (P) est rapporté à un repère (O,i,j).

- > (D) et (D') sont deux droites de (P) tel que : (D): y = mx + p et (D'): y = m'x + p'. (D) $\|$ (D') équivaut à m = m'.

c. Exercice:

- 1. Donner équation cartésienne de la droite (Δ) passant par le point B(2,1) et parallèle à la droite (D) d'équation cartésienne : (D): 3x-5y+7=0.
- 2. On considère la droite (Δ ') a pour coefficient directeur m = -3 passant par C(-1,4)
 - \checkmark Donner un vecteur directeur de (Δ') .
 - \checkmark Donner une équation d'une droite (D') qui est parallèle à (Δ ').