Regular Decision Processes

Alessandro Ronca

ronca@diag.uniroma1.it

An agent interacts with the environment

Performing actions, receiving observations and rewards

Non-Markov setting

history: $h = o_1 o_2 o_3 \dots o_n$

next observation: $h, a \mapsto P(O)$

next reward: $h, a \mapsto P(R)$

Automaton

- Given (LTLf/LDLf)
- Learned

finite state space: $S = \{s_1, \dots, s_m\}$

deterministic function: $h \mapsto s_i$

Markov setting (i.e., MDP)

next observation: $s_i, a \mapsto P(S)$

next reward: $s_i, a \mapsto P(R)$

An agent that has to avoid enemies across a corridor

An agent that has to avoid enemies across a corridor

An agent that has to avoid enemies across a corridor

An agent that has to avoid enemies across a corridor

???	???	???	???	???	???	???
???	???	???	???	???	???	???

An agent that has to avoid enemies across a corridor

An agent that has to avoid enemies across a corridor

References

Ronen I. Brafman, Giuseppe De Giacomo:

Regular Decision Processes: A Model for Non-Markovian Domains. IJCAI 2019: 5516-5522

Eden Abadi, Ronen I. Brafman:

Learning and Solving Regular Decision Processes. IJCAI 2020: 1948-1954

Alessandro Ronca, Giuseppe De Giacomo:

Efficient PAC Reinforcement Learning in Regular Decision Processes. Under review. (write to me at ronca@diag.uniroma1.it to obtain a personal copy)