Obesity Risk Prediction: Model Development Documentation

1. Introduction

Objective: Develop a classification model to predict obesity risk levels ("NObeyesdad") using health and lifestyle features.

Dataset: Training data (train.csv) and test data (test.csv) containing features like age, dietary habits, physical activity, and BMI-related metrics.

2. Data Loading & Initial Exploration

Approach

- Loaded train.csv and test.csv using pd.read csv().
- Verified data integrity by checking dimensions, missing values, and data types.

Key Steps & Outputs

- 1. Dimensions:
- Training data: (20758, 18) rows and columns.
- Test data: (13840, 17) rows and columns.
- 2. Missing Values:
- No missing values found in training or test datasets.
- 3. Data Types:
- Identified categorical (Gender, FAVC, CAEC) and numerical (Age, Height, Weight) features.

3. Data Visualization & Feature Engineering

Approach

- **Visualization**: Analyzed target distribution, feature correlations, and relationships between variables.
- **Feature Engineering:** Created new features to improve model performance.

Key Steps & Outputs

1. Target Distribution:

• Used sns.countplot() to visualize NObeyesdad classes.

2. Categorical Features:

 Plotted relationships between Gender, FAVC (Frequent Caloric Consumption), and the target

3. Numerical Features:

- Generated histograms for Age, Height, and Weight.
- Used sns.boxplot() to compare Age across obesity classes.

4.New Features:

• Created a new feature **BMI** using the **height** and **weight** columns.

4. Data Preprocessing

Approach

- Categorical Encoding: Converted text categories to numerical labels.
- Scaling: Standardized numerical features to normalize their ranges.

Key Steps & Outputs

1. Label Encoding:

- o Mapped categorical variables (e.g., Gender: Male \rightarrow 0, Female \rightarrow 1).
- 2. Target Variable Encoding:
 - o Mapped NObeyesdad classes to numerical labels (e.g., Obesity_Type_I → 3).

3. **Standard Scaling**:

o Applied StandardScaler to numerical features like Age and Height.

5. Model Training & Evaluation

Approach

- Algorithms: Tested XGBoost, LightGBM, Decision Tree, and an ensemble.
- Hyperparameter Tuning: Used Optuna for automated optimization.

Key Steps & Outputs

1. XGBoost with Optuna:

- Best parameters: max_depth=7, learning_rate=0.1.
- Validation accuracy: 90.6%.

2. LightGBM with Optuna:

- Best parameters: num_leaves=31, min_child_samples=20.
- o Validation accuracy: 90.9%.

3. Decision Tree:

Achieved 84% accuracy with max_depth=10.

4. Ensemble Model:

- o Combined XGBoost and LightGBM predictions using majority voting.
- o Improved accuracy to 91%.

5. Feature Importance:

Top features: Weight, BMI, FAF (physical activity frequency).