# Unified Simplified Grapheme Acoustic Modeling for Medieval Latin LVCSR



Table 2: Word Error Rate (WER[%]) results for monolingual grapheme-based acoustic models of

AM Language CZ HU PL SK

Figure 2: Latin digraph context-insensitive rewrite rules and context-sensitive rewrite rules.

Speaker

Knowledge-based grapheme-to-phoneme (G2P) mapping

V: vowel, VP: palatal vowel, ^VP: everything but a palatal vowel, C: consonant, \*: zero or any, ^:

53.6 73.8 62.9 45.7 59.0

33.7 28.6 47.1 29.1 **34.6** 

65.0 67.6 46.4 51.1 57.5

53.6 69.1 44.7 43.8 52.8

• Only those grapheme models are retained that are part of the Latin alphabet, e.g.



**THINKTech** 



### Lili Szabó, Péter Mihajlik, András Balog, Tibor Fegyó

lili@speechtex.com

#### Motivation

• Digitizing medieval charters when optical character recognition in not sufficient

#### Challenges

- Latin is not spoken natively
- There is no available speech database, and it is resource-heavy to create one
- Many variants/dialects exists, and we can only make guesses about the pronunciation
- The pronunciation mainly depends on
- the **era** of the read text
- the **georaphical region** where the text originates from
- the **native language** of the speaker

#### Text data

- In-domain (Monasterium): medieval charters (HU)
- -480k/35k token/type
- Background (Latin Library): historical texts
- 1.3M/115k token/type

### **Spelling variants**

| jam    | iam    |
|--------|--------|
| judex  | iudex  |
| gracia | gratia |

### Language model

- 3-gram language model
- Kneser-Ney smoothing
- Interpolating the two corpora
- SRILM [2]

# Perplexity measures on

Table 1: Perplexity/OOV rate (%)

System diagram

| Corpus        | CZ       | HU     | PL        | All      |
|---------------|----------|--------|-----------|----------|
| Monasterium   | 551/11.8 | 82/0.9 | 3130/18.3 | 479/10.5 |
| Latin Library |          |        |           |          |
| Interpolated  | 924/3.9  | 82/0.9 | 2288/5.5  | 672/3.5  |

#### Speech data

- CZ: 76 hours
- HU:
- -G2P model: 567 hours
- -GRA and USG models: 112 hours
- PL: 31 hours
- RO: 35 hours

#### Test data

- Independent medieval charters read by historians
- Region of test text origin: CZ, HU, PL
- Native language of test speakers: CZ, HU, PL, SK

#### **Acoustic model**

- 6-hidden-layer DNN
- 2000 neurons per layer
- p-norm activation function
- 7000-11000 senones (softmax size)

• Kaldi toolkit [1]

# Table 3: WER[%] for Czech-Latin source-

| set: 76 hours. |         |       |        |      |        |  |  |
|----------------|---------|-------|--------|------|--------|--|--|
|                |         | Latir | n Test | Text |        |  |  |
|                | Speaker | CZ    | HU     | PL   | $\sum$ |  |  |
|                | CZ      |       |        | 49.1 |        |  |  |
|                | HU      |       |        | 58.7 |        |  |  |
|                | PL      | 53.3  | 18.2   | 53.2 | 41.6   |  |  |
|                | SK      | 30.3  | 30.0   | 44.0 | 34.8   |  |  |

target G2P model. Acoustic model training

43.9 28.9 50.8 41.2

**Baseline Grapheme Model** 

Czech, Hungarian, Polish and Romanian (CZ, HU, PL, RO).

HU

VP:VP

• All graphemes are trained

-keeping model of r

- throwing away model of ř

beginning of word,  $[\hat{s}tx]$ : not s, t or x.

Table 4: WER[%] for Hungarian-Latin source-target G2P model. Acoustic model training set: 567 hours. Latin Test Text

|         | Laui |      |      |        |
|---------|------|------|------|--------|
| Speaker | CZ   | HU   | PL   | $\sum$ |
| CZ      | 19.4 | 6.4  | 28.0 | 17.9   |
| HU      | 25.0 | 25.4 | 20.2 | 23.5   |
| PL      | 28.9 | 15.4 | 41.3 | 28.5   |
| SK      | 20.4 | 9.1  | 22.9 | 17.5   |
| $\sum$  | 22.6 | 12.5 | 28.1 | 21.1   |



**GRA**: baseline grapheme model **G2P**: grapheme-to-phoneme model **USG**: Unified Simplified Grapheme model

Test text

**Dimensions of data** 

- Region of training text: Kingdom of Hungary (HU), mixed
- Region of test text origin: Kingdom of Bohemia (CZ), Kingdom of Hungary (HU), Kingdom of Poland (PL)
- Speech data: Czech (CZ), Hungarian (HU), Polish (PL), Romanian (RO)
- Native language of test speakers: CZ, HU, PL, Slovak (SK)
- Model type: GRA, G2P, USG

## Table 6: WER[%] for all the three-language

over different pronunciations

| USG models. |             |         |      |      |      |        |  |
|-------------|-------------|---------|------|------|------|--------|--|
|             |             | Speaker |      |      |      |        |  |
|             | AM Language | CZ      | HU   | PL   | SK   | $\sum$ |  |
|             | CZ+HU+PL    | 28.2    | 28.2 | 27.7 | 22.4 | 26.6   |  |
|             | CZ+HU+RO    | 23.3    | 21.4 | 23.9 | 19.2 | 21.9   |  |
|             | CZ+PL+RO    | 24.6    | 33.1 | 25.6 | 19.8 | 25.8   |  |
|             | HU+PL+RO    | 24.8    | 21.5 | 25.7 | 20.7 | 23.2   |  |

Table 7: WER[%] for USG model of Czech, Hungarian, Polish and Romanian (CZ+HU+PL+RO).

|         | Latir |      |      |        |
|---------|-------|------|------|--------|
| Speaker | CZ    | HU   | PL   | $\sum$ |
| CZ      | 20.4  | 11.8 | 30.7 | 21.0   |
| HU      | 21.1  | 14.6 | 25.7 | 20.5   |
| PL      | 23.0  | 10.0 | 33.0 | 22.0   |
| SK      | 14.5  | 12.7 | 24.8 | 17.3   |
| $\sum$  | 19.9  | 12.2 | 29.0 | 20.4   |

### **Conclusions**

• Knowledge-based G2P modeling is good, but time consuming and restricted

Unified Simplified Grapheme (USG) Model

Language

• Utilizing many available language resources in the hopes that statistical variations help generalizing

Table 5: Simplification examples for the unified model.

Orthographic form řekl őz miś apă

USG transcription | rekl | oz mis apa

CZ HU PL RO

- Four-language USG modeling is the best
- It is able to generalize over different speaker test sets

#### References

- [1] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
- [2] Stolcke, A.: Srilm an extensible language modeling toolkit. In: In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP). pp. 901–904 (2002)

