2 order homogeneous linear ODE

$$\chi'' + a(t) \chi'(t) + b(t)\chi(t) = 0$$

$$--- (1)$$
Wroskian of two f's $x_1(t) \in \chi_2(t)$ is
$$W(\chi_1,\chi_2)(t) = \begin{cases} x_1(t) & \chi_2(t) \\ x_1(t) & \chi_2(t) \end{cases} = \chi_1(t) \chi_2'(t) - \chi_2(t) \chi_1'(t)$$

Thm L Suppose $x_1(t)$ & $x_2(t)$ are L.D. & sufficiently differentiable then $W(x_1, X_2)(t) = 0$.

Proof. Given N1(t) & x2(t) are L.D.

3 3 constants c1, c2 not both zero s.t.

 $V = C_1 \chi_1(t) + C_2 \chi_2(t) = 0$ — ②

~ (, x, (t) + 62 x2(t) =0 -3

Egn 2 & 3 can be sewriten as

$$\begin{cases}
 \begin{pmatrix}
 x_1(t) & x_2(t) \\
 x_1'(t) & x_2'(t)
 \end{pmatrix}
 \begin{pmatrix}
 c_1 \\
 c_2
 \end{pmatrix}
 =
 \begin{pmatrix}
 0 \\
 0
 \end{pmatrix}
 \xrightarrow{\text{4}}
 \xrightarrow{\text{4}}$$

_ u

We have $C(1,C_2)$ is a non-toinal solf of G (as we know that $C_1 + C_2$ one not both zero) AX = 0 $b(X_1, X_2)(t) = \begin{vmatrix} X_1(t) & X_2(t) \\ Y_1'(t) & Z_2'(t) \end{vmatrix} = 0$ det(A) = 0

 \mathcal{L}

If $W(x_1,x_2)(t) = 0$, does that imply that $x_1(t) = x_2(t)$ one L.D. ?)

No

The converse of the statement of last this is not true in general.

If $W(x_1,x_2)(t) = 0$ then $x_1(t) & x_2(t)$ need not be $L\cdot D\cdot \cdot$

 $= \left| \begin{array}{c} \pm 1 \pm 1 \\ \pm 1 \end{array} \right| = 0 \quad \forall \, \pm 1$

Consider,

$$C_{1}\chi_{1}(t) + C_{2}\chi_{2}(t) = 0 \qquad \forall t \in [-1,1]$$
(i.e.

$$c_1 t |t\rangle + c_2 t^2 = 0 \qquad \forall t \in [-1, 1]$$

Take
$$t=1$$
 & $t=-1$ in last eq, we get

$$c_{1} + c_{2} = 0$$
 $c_{1} + c_{2} = 0$
 $c_{1} = 0$
 $c_{1} = 0$
 $c_{2} = 0$

one l.I.

 $W(x_1,x_2)$ (+) \Rightarrow x_1,x_2 core (.D.

$$W(x_1,x_2)(t) = 0 + 21$$
 $\Rightarrow x_1,x_2 \text{ are } 1.D.$
 $x_1 \notin x_2 \text{ are } 50^{1/2}$

of a 2nd order linear DDE

Thm? Suppose $x_1(t)$ & $x_2(t)$ are two solls of x'' + a(t)x' + b(t)x = 0 then

Y. Qx, ane L.D.

$$W(x_1,x_2)(t)=U$$

thm 3 (Abelis formula)

Suppose $x_1(t)$ & $x_2(t)$ one two solls of ODE O then $W(x_1,x_2)(t) = Ce$

 $\frac{P_{000}f}{\chi_{1}(t)} = \chi_{2}(t) \quad \text{one} \quad \chi_{0}(t) \quad \text{ore} \quad$

.. We have

$$x_i'' + a(t) x_i' + b(t) x_i = 0$$
 — §

$$x_{2}^{"} + a(t)x_{2}^{1} + b(t)x_{2} = 0$$
 — 6

$$\left(\chi_{1}^{(1)}\chi_{2}-\chi_{2}^{(1)}\chi_{1}\right) + \alpha(t)\left(\chi_{1}^{\prime}\chi_{2}-\chi_{2}^{\prime}\chi_{1}\right) + \omega(t)\left(\chi_{1}\chi_{2}-\chi_{2}\chi_{1}\right) = 0$$

$$\left(x_1^{11}x_2 - x_2^{11}x_1\right) + \alpha(t) \left(x_1^{1}x_2 - x_2^{1}x_1\right) = 0$$

We have

$$w(t) = \ln(\alpha, x_1)(t) = x_1 x_2^{1} - x_2 x_1^{1}$$

```
21, x2 -> twoice differentiable
Sink
               WUS -> differentiable f
       Upon different ating,
          W'(t) = \alpha_2 \alpha_1 + \alpha_1/\alpha_2 - \alpha_2/\alpha_1 - \alpha_2 \alpha_1
                 = 72 x1 - 72 x1
      .: from (F), we have
                - w'(t) - a(t) w(t) = 0
                  W'(t) + a(t) W(t) = 0 (8)
       g
                 Sait) dt
        I.f.
      Upon multiplying by integrating factor the
                can be written as
     egn (8)
                \frac{d}{dt} \left( e^{\int a(t) dt} W(t) \right) = 0
                      fa(t) dt
e \qquad W(t) = C
           3
                  - Sactious - Sactious
```

0

Observations

W(t) = C é salts at

① If C=0 then W(t)=0.

3

If C=0 then W(t) is never zero.

Corollary 1 the Wroskian of two sol's of

2nd order linear ODE is either always zero

or never zero.

w(t) | never zero

x,x2 -> SOLY of ODE (1)

. If W(X1,X1)(to) \$ 0

for some to

> W(t) +O Y t

If Ways (to) = 0 for some to,

⇒ W(t) = 0 .

Proof of Thm 2

(E) Let x_2, x_2 are i.D.

then from thmo

$$\Rightarrow W(x_1,x_2)(t) = 0$$

(=)) To show that if
$$W(x_1,x_2)(t)=0 \Rightarrow x_1(t) \notin X_2(t) \text{ are l.D.}.$$

It suffies to prove that if

 $w(x_1,x_2)(to) = 0 \quad \text{for some to 6 I}$ then $x_1(t) \neq x_2(t) \quad \text{are} \quad \text{l.D.} \quad \text{in I}.$

we have

$$W(x_1, x_2) (to) = 0$$

$$|x_1(to)| = 0$$

$$\begin{bmatrix}
\chi_1(to) & \chi_2(to) \\
\chi'_1(to) & \chi_2(to)
\end{bmatrix}
\begin{bmatrix}
\zeta_1 \\
\zeta_2
\end{bmatrix} =
\begin{bmatrix}
0 \\
0
\end{bmatrix}$$

has a non-toin'al soly say $c_1 = \alpha$, $c_2 = \beta$.

Define

~ ~ (4)

y(t) = C, 2(1t) + (2~21~)

claim y(t) is a soin of ODE 1 Since 21th & 21th) are 201 of 1 & hence their linear combination y(t) = C(x(t) + C2N2H) is also a solution of O rie Jits satisfies ~ (xist a(t) x (t) + b(t) x(t) =0

from system (10) x(to) = 0 $y(to) = C_1 \chi_1(to) + C_2 \chi_2(to) = 0$ $\chi'(to) = 0$ y'(to) = c, x,'(to) + c2 x2 (to) =0

Thus y(t) is a sol of IVP (1). And ox(t)=0 is also a solh of IVP D.

By the existence & uniqueness thm, we have

ylt) 三〇

(<u>`</u> € ·

C1 x((t) + C2 x2(t) =0

where C14(2 are non- both zero

2 l 22 are L.D. シ

Corollary Let $x_1(t)$ & $x_2(t)$ be solve of ODE () +Ron Show that $\chi_1(t) \perp \chi_2(t) \quad \text{are L.I.} \implies W(\chi_1,\chi_2)(t) \neq 0.$

Thun3 Let $x_1(t)$ 4 $x_2(t)$ be two linearly independent solfs of x''+a(t)x'+b(t)x=0 4 let y(t) be any y(t)

 $y(t) = c_1 x_1(t) + c_2 x_2(t)$,

Proof.
Let y(t) be any so h of

 $x^{(1)} + a(t)x^{(1)} + b(t)x = 0$. — (1)

Given $x_1(t)$ & $x_2(t)$ are sols of 0

ore L.I. in I.

Using last corollary, we have

 $\chi_{(t)}$ l $\chi_{2}(t)$ are L.I. \Rightarrow \exists to \in I s.t. $W(x_1,\chi_1)$ (to) \dagger D

3) the system of en

AXED

has a unique 80° , say $c_1 = \alpha$, $c_2 = \beta$.

Define

 $\begin{aligned}
\mathcal{T}(t) &= c_1 \chi_1(t) + c_2 \chi_2(t) & (= d\chi_1 + \beta \chi_2) \\
\mathcal{T}(t) &= c_1 \chi_1(t) + c_2 \chi_2(t) \\
\chi_1 &\neq \chi_2 \quad \text{are sol's of OPED}
\end{aligned}$

=> Z(t) is also a soin of ODE ().

Using @

 $7(t_0) = c_1 x_1(t_0) + c_2 x_2(t_0) = f(t_0)$

 $z'(t_0) = c_1 x_1'(t_0) + c_2 x_2'(t_0) = y'(t_0) \checkmark$

Thus y(t) & Z(t) solve the same IVP

: By the existence of uniqueness than, we have

$\begin{cases} \exists (t) = \exists (t) = C_1 \alpha_1(t) + C_2 \alpha_2(t) \end{cases}.$

Observation

The sol" y(t) in (i) involves two arbitrary constants (1 & C2 hence it is the general sol" of ODEO.

21 + a(+)2 + b(+)2 = 0

Two linearly independent sols of 2(1 + a(t))x = 0 . — (1)

Let $x_1(t)$ be the soling (1) which satisfies $x_1(0) = 1$ & $x_1'(0) = 0$)

& $\chi_2(t)$ be the soin of () which sotisfies $\chi_2(0) = 0$, $\chi_2^{\dagger}(0) = 1$

then $x_1 \notin x_2$ core L.I. since $|x_1(0)| \times |x_2(0)| = |x_2(0)|$

 $W(x_1,x_2)(0) = \begin{vmatrix} x_1(0) & x_2(0) \\ x_1'(0) & x_2'(0) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 4$

(XILLY), XZ(t) \(\) \(\) \quad \text{fundamental set of so h} \\
\text{Def}^{\gamma}\) (Fundamental ket of so h's of ODFO)

Any set \(\) \\(\) \(

 $\{x_1(t), x_2(t)\}$ \longrightarrow fundamental Let of solves of \mathbb{D} . He general solves \mathbb{D} is $x(t) = c_1x_1(t) + c_2x_2(t)$.