5T3: Sinusoidal Model (3 of 3)

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University

Index

- Sinusoidal model and spectral peak tracks
- Sinusoidal (additive) synthesis
- Sinusodal model system

Sinusoidal model

$$y[n] = \sum_{r=1}^{R} A_r[n] \cos(2\pi f_r[n]n)$$

Sinusoidal model

$$y[n] = \sum_{r=1}^{R} A_r[n] \cos(2\pi f_r[n]n)$$

Sinusoidal (additive) synthesis

Sinusoidal synthesis

$$y[n] = A_r[n]\cos(2\pi f_r[n]n + \varphi_r)$$

 $A_r[n]$: instantaneous amplitude ; $f_r[n]$: instantaneous frequency φ_r : initial phase

```
Ar = .8
fr = 2.0
phi = pi/2
fs = 100
t = arange(-1, 1, 1.0/fs)
x = Ar * cos(2*pi*fr*t+phi)
```


Sinusoidal synthesis: discrete frequency

$$y[n] = IDFT(mY[k] * e^{j*pY[k]})$$

$$mY[k] = A_0 \text{ for } k = k_0 \text{ and } 0 \text{ for } k \neq k_0; pY[k] = \varphi_0 \text{ for } k = k_0 \text{ and } 0 \text{ for } k \neq k_0$$

Sinusoidal synthesis: any frequency

 $y[n] = IDFT \left(A_0 * mW[k-k_0] * e^{j*(pW[k-k_0] + \varphi_0)} \right)$ mW[k], pW[k] magnitude and phase spectrum of window

Sinusoidal synthesis: only main lobe

Additive synthesis

$$y[n] = IDFT(\sum_{r=0}^{R} A_r * mWl[k-k_r] * e^{j*(pWl[k-k_r] + \varphi_r)})$$

mWl[k], pWl[k] magnitude and phase spectrum of window main lobe

Analysis / Synthesis

Synthesis window

Synthesis for overlap of 25%

Sinusoidal model system

References and credits

- More information in:
 - http://en.wikipedia.org/wiki/Additive_synthesis
 - http://en.wikipedia.org/wiki/Sinusoidal_model
- Reference on sine modeling by Julius O. Smith: https://ccrma.stanford.edu/~jos/sasp/Spectrum_Analysis_Sinusoids. html
- Sounds from: http://www.freesound.org/people/xserra/packs/13038/
- Slides and code released using the CC Attribution-Noncommercial-Share Alike license or the Affero GPL license and available from https://github.com/MTG/smstools

5T3: Sinusoidal Model (3 of 3)

Xavier Serra

Universitat Pompeu Fabra, Barcelona

&

Stanford University