

Основные компоненты ОС Процессы Оперативная память Ввод-вывод Устройства долговременного хранения данных Файловые системы Защита Журналирование (обработка статистических данных) Пользовательские оболочки (командный интерпретатор или интерфейс пользователя ОС) Графический интерфейс пользователя Сетевое взаимодействие

Внешняя память (secondary storage)

- Как правило, функции, взаимодействующие с дисками, отделены и независимы от подсистемы управления файлами
 - в частных случаях между ними может быть более тесное взаимодействие
 - использование подсистемой управления файлами информации о внутреннем устройстве внешней памяти может повысить производительность
 - например, размещение связанных файлов близко на диске

- Непосредственное использование устройств внешней памяти очень неудобно
 - напр., "записать блок размером 4096 байт в сектор 12"
- Файловая система удобная абстракция
 - определяет логические объекты, такие как "файлы" и
 - скрывает подробности фактического размещения объектов на жестком диске
 - определяет операции над объектами
 - например, чтение и запись
 - чтение/запись логических последовательностей байт, а не блоков жесткого диска

- Файл основной объект долговременного хранения файл – уникально именованный набор долговременно хранящихся данных
- Каталог специальный тип объекта файловой системы каталог – файл, содержащий имена других файлов и метаданные, относящиеся к этим файлам (например, размер)
- Замечание: использование последовательного потока данных - это только один из возможных вариантов!

Операции файловых систем

- Интерфейс подсистемы управления файлами определяет набор стандартных операций:
 - создание и удаления файла или каталога
 - чтение, запись, изменение размера, переименование, изменение атрибутов защиты
 - копирование
 - блокировка (lock)
- Файловые системы также предоставляют высокоуровневые сервисы
 - журналирование операций и квотирование (accouning, quotas)
 - резервное копирование (backup)
 - (должно быть инкрементным и выполняться в реальном времени)
 - (иногда) индексирование или поиск
 - (иногда) поддержка использования версий файлов

- Защита основополагающий механизм. пронизывающий всю ОС
 - все ресурсы должны быть защищены
 - оперативная память
 - процессы
 - файлы
 - устройства
 - время ЦП
 - механизмы защиты помогают обнаруживать и пресекать некорректные действия, являющиеся следствием как неумышленных ошибок, так и злонамеренных вторжений

- Специальная программа, интерпретирующая команды пользователя и помогающая управлять процессами
 - пользовательский ввод может приниматься
 - с клавиатуры (интерфейс командной строки)
 - из файлов-скриптов
 - с мыши (графический интерфейс)
- позволяет пользователям запускать программы и управлять ими
- В одних случаях командный интерпретатор может являться неотъемлемой частью ОС (MS DOS, Apple II)
- В других случаях это обычная непривилегированная программа, предоставляющая пользовательский интерфейс
 - например, bash (или csh, tcsh, zsh, ash, sh) в UNIX
- Существуют системы, в которых не предусмотрен интерфейс командной строки
 - например, MacOS

Слоеные/многоуровневые системы (Layering)

- Традиционный подход к упрощению архитектуры вертикальная композиция или разбиение на слои/уровни

 - ОС реализуется в виде набора уровней каждый уровень предоставляет вышележащему "виртуальную машину"
 - сложность и функциональность "виртуальных машин" при этом

- Первое описание данного подхода дал Дийкстра в системе ТНЕ
 - Уровень 5: Менеджеры задач Выполняют программы пользователей
 - Уровень 4: Менеджеры устройств
 - Управляют устройствами и выполнят буферизацию
 - Уровень 3: Менеджер консоли.
 - Обеспечивает функционирова ие виртуальных консолей Уровень 2: Менеджер страниц
 - Обеспечивает виртуальное адресное пространство для каждого процесса
 - Уровень 1: Ядро • Обеспечивает выделение каждому процессу виртуального процессора

 - Уровень 0: Аппаратное обеспечение

 - Каждый уровень может разрабатываться и отлаживаться независимо от остальных

- Устанавливают иерархическую структуру
 - но реальные системы более сложны
 - подсистема управления файлами требует сервиса со стороны подсистемы виртуальной памяти (буфера)
 - подсистема виртуальной памяти может захотеть использовать файл в качестве пространства подкачки
 - строгое разделение на уровни недостаточно гибкий подход
- Низкая производительность
 - переход через каждый уровень порождает дополнительные накладные расходы (overhead)
- Имеет место противоречие между моделью и реальностью
 - системы моделируются как многоуровневые, но их реализации таковыми не являются

Микроядерная архитектура (Microkernels)

- Была популярна в конце 80-х начале 90-х
 - происходит возрождение интереса
- Основная цель:
 - минимизировать обработку в ядре
 - реализовать остаток ОС в виде пользовательских процессов
- Результаты:
 - надежность (компоненты ОС изолированы)
 - упрощение расширения и настройки
 - низкая производительность (из-за частых пересечений рубежа между уровнями ядра и пользователя)
- Первая микроядерная система Hydra (СМU, 1970)
 - Последователи: Mach (CMU), Chorus (французская UNIX-like OS), OS X (Apple), в некоторой степени – Windows NT (Microsoft)

