পক্ষম অধ্যায় (5C) মহাযায়ার পদাহিহন

(প্রাথের মেনা কত পুর্নো?)

বন্যা আহমেদ

{ शक्ष्य वर्षशृर्जित অভिনন্দন यूङ्यमारक। आयात এই विवर्जन लिशांगित शिष्टान यूङ्यमात সদস্যদের অবদান আসলে অনেকখানি। এতদূর যে লিখতে পারবো তা কল্পনাতেও ভাবতে পারিনি। পপুলার সাইন্সের লেখা বাংলায় লিখতে হবে, সাধারণ পাঠকের কাছে তা পৌছে দিতে হবে, জনপ্রিয় করতে হবে - ইন্টারনেটে এই উদ্যোগ বোধ হয় যুङ্यमाরই প্রথম। আর তারই প্রথম উদ্যোগ অভিজ্ঞিতের সেই আলো হাতে চলিয়াছে আঁধারের যাত্রী' সিরিজটি এখন ইন্টারনেটের উঠোন পেরিয়ে বই হিসেবে প্রকাশিত হয়েছে, সমাদৃতও হয়েছে। আরও অনেকেই এখন লিখছেন যুক্তমনায়, অত্যন্ত দক্ষতার সাথে দেখিয়ে দিচ্ছেন যে বাংলা ভাষায় অত্যাধুনিক বিজ্ঞানকেও খুবই সহজ ও বোধগম্য করে উপস্থাপন করা সম্ভব। অনন্ত, অভিজিত, ফতেমোল্লা এবং কালাম মাহমুদের অনুরোধে লেখাটা শুরু করেছিলাম, তারপর তারা প্রতিটি লেখা পরে মতামত দিয়েছেন, সংশোধন, পরিবর্তন, পরিমার্জন করে দিয়েছেন প্রকাশের আগেই। এছাড়াও ফরিদ, বিপ্লব, জাহিদ রাসেল সহ অনেকেই কন্ট করে লেখাটা পড়েছেন, ইমেইল করেছেন, মতামত জানিয়েছেন, সময়ে সময়ে থেমে গেলে আবারও লিখতে আনুপ্রেরনা দিয়েছেন। প্রতিদ্ধে ডঃ অজয় রায় সিরিজটা সম্পাদনা করে বিচিত্রায় প্রকাশের ব্যবস্থা করে দিয়েছেন। এত সাহায্য সহযোগিতা না পেলে লেখাটা হয়তো আর হয়েই উঠতো না। বিদেশে বসে এত জনের এত সহদয় সহযোগীতা পাওয়া আসলেই অকল্পনীয় একটা ব্যাপার। যুক্তমনা না থাকলে সেটা সম্ভব হতো কিনা জানি না। নিন্দেই অকল্পনীয় একটা ব্যাপার। যুক্তমনা না থাকলে সেটা সম্ভব হতো কিনা জানি না।

পূর্ববর্তী অধ্যায়ের পরঃ

মহাজাগতিক কালের পাল্লায় ফেলে হিসেব করলে 'হাজার বছর' চট করে পার হয়ে যাওয়া এক ধূসর সন্ধ্যা ছাড়া আর কিছুই নয়। মোটা মোটা বই লেখা হয় মহামনিষীদের জীবন কাহিনী নিয়ে, কিন্তু কতদিনের জীবন সেটা? সত্তর-আশি-নব্দই বা একশো বছর? আর ওদিকে আমাদের এই বুড়ো পৃথিবীর বয়স হাজার নয়, লক্ষ নয়, এমনকি দুই এক কোটিও নয়, প্রায় সাড়ে চারশো কোটি বছর। মহাকালের বিস্তৃতিকে ঠিকমত উপলব্ধি করে ওঠা বা মাথা দিয়ে বুঝতে পারা আমাদের মত ক্ষণজন্মা প্রাণীর জন্য এক দুসাঃধ্য প্রচেন্টাই বলতে হবে। আমরা যখন আমাদের ইতিহাসের কথা বলি আমরা হিসেব করি বছর, যুগ, শতাব্দীর বা খুব বেশি হলে সম্রাব্দের। কিন্তু পৃথিবীর বয়সের হিসেব তো আর সেভাবে করলে হবে না! মহাজগতের সওয়ারী হয়ে ছুটে চলা আমাদের এই পৃথিবী নামক গ্রহটার ইতিহাস বিচার করতে হবে মহাকালের ঘড়ির কাঁটার হিসেব দিয়ে। শুধু প্রচলিত হিসেবের পদ্ধতিটাকেই নয়, আমাদের চিন্তার পদ্ধতিটাকেও বদলে ফেলতে হবে, টেনে লম্বা করে নিয়ে যেতে হবে অনেকখানি - লক্ষ, কোটি বছরের চৌহন্দিতে।

চলুন, এই কোটি কোটি বছরের বিশাল ব্যপ্তিটাকে একটা সহজ এবং বোধগম্য উদাহরণ দিয়ে বোঝার

চেষ্টা করি। ধরুন, সাড়ে চারশো কোটি বছর ইতিহাসটাকে আমরা ১২ মাসের ক্যালেন্ডারে ফেলে প্রাণের বিকাশের সময়সীমাণ্ডলো সম্পর্কে একটা আপেক্ষিক বা তুলনামূলক ধারণা পেতে চাই। সেক্ষেত্রে ব্যাপারটা দাঁড়াবে অনেকটা এরকমঃ পৃথিবী সৃষ্টির প্রক্রিয়াটা শুরু হয়েছিলো বছরের প্রথম দিন বা পয়লা জানুয়ারীতে, আর ফেব্রুয়ারী বা মার্চে প্রথম উৎপত্তি ঘটলো ব্যকটেরিয়া বা নীলাভ শৈবাল জাতীয় প্রথম আদি প্রাণের। এই আদি প্রাণীদের প্রতিপত্তি চলেছে বহুকাল ধরে। বছরের অর্ধেকেরও বেশী পেরিয়ে অক্টোবর মাস এসে গেছে বহুকোষী প্রাণীর বিকাশ হতে হতে। জটিল ধরণের কোন প্রাণীর সন্ধান পেতে হলে আপনাকে কিন্তু সেই নভেম্বর মাসে এসে পৌঁছাতে হবে. যদিও তাদের রাজত তখনও শুধুমাত্র পানিতেই সীমিত। নভেম্বরের শেষের দিকে প্রথমবারের মত পানিতে চোয়ালওয়ালা মাছ আর মাটিতে উদ্ভিদের সন্ধান পাওয়া যাচ্ছে, আর ওদিকে পানি থেকে ডাঙ্গায় বিবর্তিত হওয়া প্রাণীগুলো পৃথিবীর মাটিতে রীতিমত জাঁকিয়ে বসেছে ডিসেম্বর মাসের প্রথম দিকে। জুরাসিক পার্ক সিনেমায় দেখা সেই বড বড় ডায়নোসরগুলোর আধিপত্য শুরু হলো এ মাসের মাঝামাঝি, কিন্তু ২৬ তারিখ আসতে না আসতেই তারা আবার চিরতরে বিলুপ্ত হয়ে গেলো পৃথিবীর বুক থেকে। খেয়াল করে দেখুন যে বছর শেষ হতে আর মাত্র ৫ দিন বাকি. কিন্তু এখনও মানুষ নামক আমাদের এই বিশেষ প্রজাতিটির কোন নাম গন্ধও পাওয়া যাচ্ছে না পৃথিবীর বুকে। ডিসেম্বরের ২৬ তারিখের দিকে আমাদের পুর্বপুরুষের বিবর্তন শুরু হয়ে গেলেও বানর জাতীয় প্রাণীর দেখা মিলছে ২৯ তারিখে আর নর বানরের উৎপত্তি ঘটতে দেখা যাচ্ছে ৩০ তারিখে। বছরের শেষ দিনে এসে উৎপত্তি ঘটলো শিম্পাঞ্জির আর আমাদের এই মানুষ প্রজাতির কথা যদি বলেন তাহলে তাদের দেখা মিললো বছর শেষের ঘন্টা বাজার মাত্র ২০ মিনিট আগে। আমরা এই আধুনিক মানুষেরা ইউরোপ অক্টেলিয়ায় ছড়িয়ে পড়েছি এই তো মাত্র ৬ মিনিট আগে আর কৃষি কাজ করতে শিখেছি ঘড়িতে রাত বারোটা বাজার ১ মিনিট আগে (১)।

এক্কেবারে হলফ করে সঠিক বয়সটা নির্ধারণ করতে না পারলেও ডারউইনের অনেক আগেই ভূতত্ত্ববিদেরা মোটামুটি ভাবে পৃথিবীর বিভিন্ন স্তরের আপেক্ষিক বয়সের ব্যাপারটা বের করে ফেলেছিলেন। দ্বিতীয় এবং তৃতীয় অধ্যায়েই আমরা দেখছিলাম যে ডারউইনের বিবর্তন তত্ত্ব আবিষ্কারের পিছনে পৃথিবীর এই দীর্ঘ বয়সের ব্যাপ্তি এক অনিবার্য ভূমিকা পালন করেছিলো। ধীরে ধীরে কোটি কোটি বছরের সময়ের বিস্তৃতিতে জীবের মধ্যে গড়ে ওঠা মিউটেশন, হাজারো রকমের প্রকরণ, ভৌগলিকভাবে একত্রীকরণ বা বিচ্ছিন্নতা, তাদের টিকে থাকার জন্য নিয়ত সংগ্রাম ইত্যাদির সমন্বয় ঘটাতে না পারলে ডারউইনের পক্ষে প্রাকৃতিক নির্বাচনের তত্ত্বকে কোনভাবেই ব্যাখ্যা করা সম্ভব হত না।

বিংশ শতান্দীর বেশ কিছুটা সময় পার করে দেওয়ার পরও কিন্তু বিজ্ঞানীদের ভূতাত্ত্বিক সময় মাপার জন্য আপেক্ষিক সময় (Relative time) বা আপেক্ষিক ডেটিং পদ্ধতি নিয়েই সন্তুন্ট থাকতে হয়েছিলো। শতান্দীর মাঝামাঝি এসে রেডিওমেট্রিক বা তেজদ্ভিয় ডেটিং পদ্ধতির মাধ্যমে পরম সময় (Absolute Time) নির্ধারণের উপায় আবিষ্কৃত হওয়ার আগে পর্যন্ত আপেক্ষিক পদ্ধতিতেই শীলান্তর বা ফসিলের বয়স নির্ধারণ করা হত। কিন্তু আপেক্ষিক বা পরম ডেটিং পদ্ধতি বলতে কি বোঝায়? এখনও য়েহেতু আপেক্ষিক এবং পরম উভয় পদ্ধতি ব্যবহার করেই ভুত্বক, শিলান্তর বা ফসিলের বয়স নির্ধারণ করা হয়, তাই পদ্ধতিগুলো নিয়ে একটু বিস্তারিতভাবে আলোচনা করলে বোধ হয় মন্দ হয় না। ফসিল কিভাবে সৃষ্টি হয়, সেগুলো কিভাবে প্রাণের বিবর্তনের পক্ষে সাক্ষী বহন করে তা নিয়ে আগে অনেক কথাই বলা হয়েছে, বিজ্ঞানমনষ্ক কৌতুহলী পাঠকের মনে এখন প্রশ্ন আসাই স্বাভাবিক – তাহলে বিজ্ঞানীরা কিভাবে এত নিশ্চিত হয়ে বলে দিচ্ছেন কোন ফসিলের বয়স কত, তারা কোন ভূতাত্ত্বিক সময়সীমার প্রতিনিধিত্ব করে, কি করেই বা ভূত্বকের বিভিন্ন স্তরের বয়স নির্ধারণ করা হয়, এর জন্য কি ধরণের বৈজ্ঞানিক পদ্ধতি ব্যবহার করা হছে, ইত্যাদি, ইত্যাদি?

ভারউইনের বেশ আগে উনবিংশ শতাব্দীতেই ভূতত্ত্ববিদেরা যে ভূতৃকের বিভিন্ন স্তরের আপেক্ষিক বয়স নির্ধারণ করতে শুরু করে দিয়েছিলেন তার ভিত্তি ছিলো কিন্তু বেশ সহজ। তারা বুঝতে পেরেছিলেন যে, আগের পাললিক শীলা স্তরের উপর ধীরে ধীরে নতুন পলিমাটি এসে জমা হতে হতে নতুন শীলাস্তরের জন্ম হয়, অর্থাৎ, খুব বেশি বড় ধরণের কোন ভূতাত্ত্বিক পরিবর্তন বা ওলটপালট ঘটে না গেলে আগের স্তরটি পরবর্তী সময়ে তৈরি নতুন স্তরের নীচেই অবস্থান করে। এই স্তরগুলোকে বলে স্ট্র্যাটা (strata) বা স্তর। নীচে, বিশ্ব বিখ্যাত গ্র্যুন্ড ক্যানিয়নের ছবিতে, পরিষ্কারভাবে এই বিভিন্ন স্তরের খাঁজগুলো দেখা যাচ্ছে, এখানকার অনেক শীলাস্তরই তাদের সেই উৎপত্তির সময় থেকে এখন পর্যন্ত একই অবস্থাতে রয়ে গেছে। যোলশো শতান্দীতেই বিখ্যাত ডেনিশ বিজ্ঞানী নিকোলাস স্টেনো এই শীলাস্তরের আপেক্ষিক অবস্থানের ব্যাপারটি ব্যাখ্যা করেছিলেন। স্তরে স্তরে জমা হওয়াটা পাললিক শীলার অন্যতম বৈশিল্ট্য। এভাবে পুরনো স্তরের উপর নতুন স্তরের জমা হওয়াটা পাললিক শীলার অন্যতম বৈশিল্ট্য। এভাবে পুরনো স্তরের উপর নতুন স্তরের জমা হওয়াটা পাললিক শীলার অন্যতম বৈশিল্ট্য। এভাবে পুরনো স্তরের উপরিপাতন। আর এ থেকেই হিসেব কয়ে বের করা সন্তব বিভিন্ন স্ট্র্যাটামের আপেক্ষিক বয়স। তারপর জেমস হাটন এবং চার্লস লায়েল যে পৃথিবী এবং তার বিভিন্ন শীলাস্তরের বয়স নির্ধারণের ক্ষেত্রে এক বিশাল ভূমিকা রেখেছিলেন তা তো আমরা আগের আধ্যায়েই দেখেছি। বিভিন্ন শীলাস্তরের আপেক্ষিক বয়স নির্ধারণের স্তরে স্তরে স্তরে প্রত্তে পাওয়া ফসিলগুলোও এক গুরুত্বপূর্ণ ভূমিকা পালন করেছেলো। সেই সময়েই বিজ্ঞানীরা খেয়াল করতে শুরু করেনে যে, একেক স্তরে একেক ধরণের ফসিল পাওয়া যাচ্ছে।

বিখ্যাত গিরিখাত গ্র্যান্ড ক্যানিয়নের স্তর

http://www.edu-source.com/CVOsuprt/gcstrata3.jpg

আঠার এবং উনিশশো শতাব্দীতে ভুতত্ত্ববিদ উইলিয়াম স্মিথ এবং ফসিলবিদ জর্জ কুঁভিয়ে প্রথম দেখালেনঃ একই বয়সের পাথর বা শীলাস্তরে সাধারণভাবে একই রকমের ফসিল পাওয়া যাচ্ছে, এমনকি এই শীলাস্তরগুলো একটা আরেকটা থেকে অনেক দুরে অবস্থিত হলেও বেশীরভাগ ক্ষেত্রেই তাদের ভিতর একই রকমের ফসিল খুঁজে পাওয়া যাচ্ছে। হাজার হাজার মাইল দুরের শীলাস্তরে যখন একই ধরণের প্রাণীগুলোর ফসিল পাওয়া যায় তখন তাদেরকে বলা হয় নির্দেশক ফসিল (Indicator Fossil)। এদের মাধ্যমে

বিজ্ঞানীরা শীলাস্তরের বয়স সম্পর্কে একটা আপাত ধারণায় পৌছুতে পারেন - শীলাস্তরগুলো একটা আরেকটা থেকে বহুদূরে অবস্থিত হলেও তারা আসলে একই ভূতাত্ত্বিক সময়ের প্রতিনিধিত্ব করে কারণ সেই নির্দিষ্ট সময়সীমার মধ্যেই শুধুমাত্র এ ধরণের প্রাণীর অস্তিত্ব ছিলো।

এরকম বিভিন্ন ধরণের পর্যবেক্ষণগুলো থেকেই বিজ্ঞানীরা ধীরে ধীরে পারস্পরিক সম্পর্কযক্ত দ'টো অত্যন্ত গুরুতুপূর্ণ সিদ্ধান্তে আসতে গুরু করেন, ব্যাপারটা যেনো অনেকটা একই মুদ্রার এ পিঠ আর ও'পিঠ। একদিকে তারা বিভিন্ন স্তরের অবস্থান অনুযায়ী ফসিলের আপেক্ষিক বয়স বের করতে শুরু করলেন, আর ঠিক উলটোভাবে একেক স্তরে পাওয়া ফসিলের বিশেষ বিশেষ বৈশিষ্ট্যেণ্ডলোর উপর নির্ভর করে ভূতাত্তিক স্তরগুলোর আপেক্ষিক বয়স এবং নামকরণ করলেন। উনিশ'শো শতাব্দীর প্রথম দিক থেকেই বিজ্ঞানীরা বুঝতে পারছিলেন যে, নীচের স্তরের ফসিলগুলো অপেক্ষাকৃত আদিমতর জীবের ফসিল বহন করে চলেছে. ধীরে ধীরে যতই উপরের স্তরে উঠে আসা হচ্ছে ততই আধুনিকতর জীবের ফসিল দেখা যেতে শুরু করছে (২)। ব্যাপারটা অনেকটা এরকম, ধরুন, আমি বা আপনি, ভৃতত্ত্ববিদ্যা এবং ফসিলবিদ্যা সম্পর্কে অত্যন্ত জ্ঞানী দু'জন ব্যক্তি. মাটি খুঁড়তে শুরু করলাম - আর আমরা এমনি ভাগ্যবান বা বুদ্ধিমান যেটাই বলুন না কেনো. এমন সব জায়গায়ই খোডার সিদ্ধান্ত নিলাম যেখানে ভুরিভুরি ফসিল পাওয়া যাচ্ছে (যুক্তির খাতিরেই কেবল এটা ধরে নিচ্ছি, বাস্তবে মাটি খুড়লেই যে ফসিল পাওয়া যাবে না সেটা নিয়ে তো আগেই আলোচনা করেছি)। সেক্ষেত্রে যতই আমরা নীচের দিকে খুড়তে থাকবো ততই আমরা কি দেখবো? আমরা যা দেখবো তার সারাংশ অনেকটা এরকমঃ উপরের দিকের স্তরে পর্যায়ক্রমিকভাবে খঁজে পাবো মানুষ, তারপর বন মানুষ এবং বানরের ফসিল। কিন্তু যত নীচের দিকে যেতে থাকবো সময়ের সাথে সাথে ততই আর এদের ফসিলগুলো খুঁজে পাওয়া যাবে না। একটা একটা করে আরও নীচের দিকের স্তরগুলোতে নামতে থাকলে পর্যায়ক্রমিকভাবে দেখা যাবে প্রথমে ফুল ফোটা উদ্ভিদের ফসিলগুলো হারিয়ে যাচ্ছে, ধীরে ধীরে হারিয়ে যাচ্ছে পাখি, স্তন্যপায়ী প্রাণী, সরীসপ, চারপায়ী মেরুদন্টী প্রাণী, স্থলজ উদ্ভিদ, মাছগুলো, শেল বা খোলস-ওয়ালা শামুকজাতীয় প্রাণীগুলো, আদিম সরল বহুকোষী এবং এক কোষী জীবগুলোর ফসিল(৩)। আর তারপর এক্কেবারে নীচে, প্রায় সাডে তিনশো কোটি বছরের চেয়েও পুরনো স্তরগুলোতে নেমে আসলে কোনরকম কোন প্রাণেরই হদিস পাওয়া যাবে না।

অর্থাৎ, সঠিক সময়সীমাটা না জানলেও উনবিংশ শতাব্দীতেই এই আপেক্ষিক ভূতাত্ত্বিক সময়ের স্কেলটি তৈরি করা ফেলে হয়েছিল। এখানে মজার ব্যাপারটা হচ্ছে এই যে, বিভিন্ন শিলাস্তরে ধারাবাহিকভাবে পাওয়া ফসিল রেকর্ডগুলো এই সময়ক্রম নির্ধারণে অত্যন্ত গুরুত্বপূর্ণ ভূমিকা রাখলেও, ডারউইনের পূর্ববর্তী সময়ের এই বিজ্ঞানীরা কিন্তু প্রাণের বিবর্তনের ধারণাটাকে গ্রহনযোগ্য মনে করতেন না। অথচ, এই সময়সীমাগুলোকে ভাগ করা হয়েছিলো ফসিল রেকর্ডে পাওয়া প্রাণীকুলের বিবর্তনের অনুক্রম এবং বিভিন্ন যুগে ঘটা বিশাল গণ-বিলুপ্তিগুলোর উপর ভিত্তি করেই। তারপর ১৮৫৯ সালে ডারউইন তার অরিজিন অফ স্পেশিজ বইটি বের করার পর সব কিছুই আমাদের সামনে পানির মত পরিষ্কার হয়ে গেলো - বিবর্তনের ব্যাপারটা অস্বীকার করেই হোক বা না বুঝেই হোক বিজ্ঞানীরা এতদিন ধরে যে ভূতাত্ত্বিক সময়ক্রমটি তৈরি করেছেন তা আসলে সামগ্রিকভাবে প্রাণের বিবর্তনের ধারাবাহিকতাকেই যথাযথভাবে তুলে ধরে!

তবে প্রতিনিয়ত বিজ্ঞানের নতুন নতুন আবিষ্কারের ভিত্তিতে এই ভুতাত্ত্বিক সময়ের ক্ষেল বা অনুক্রমটিকেও অনবরত আপডেট করার প্রয়োজন হয় বৈ কি। বিজ্ঞান বলেই তা করতে হয়। বিজ্ঞান তো স্থবির নয়, সতত গতিশীল সে। সে যাই হোক, এখন তাহলে চলুন দেখা যাক, এই ভুতাত্ত্বিক সময়ের ক্ষেল বা সময়ক্রমটিকে কিভাবে ভাগ করা হয়েছে। আমাদের এই ইতিহাসকে প্রথমে ৪ টি বড় ইয়ন বা অতিকল্পে ভাগ করা হয়েছেঃ ৪৫০ কোটি বছর আগে পৃথিবীর উৎপত্তি থেকে শুরু করে প্রায় ৩৮০ কোটি বছর পর্যন্ত বিস্তৃত রয়েছে প্রি-আরকিয়ান

EON	FORMS OF LIFE					
Phanerozoic	Animals with shells or bones; land animals and plants	*河の				
Proterozoic	Single and complex single-celled organisms, algae, wormlike organisms					
Archean	Microscopic single-celled or fliament-shaped organisms	512				
pre-Archean	No record of life					

বিভিন্ন ইয়ন বা কল্পে প্রধান ধরণের প্রাণগুলোর উৎপত্তিঃ http://pubs.usgs.gov/gip/fossils/rocks-layers.html

যে সময়টাতে কোন জীবনের সন্ধান পাওয়াযায়নি। তারপর থেকে শুরু করে প্রায় ২৫০ কোটি বছর আগে পর্যন্ত সময়টাকে বলা হয় আরকিয়ান। এ সময়ই ব্যকটেরিয়া জাতীয় বিভিন্ন ধরণের আদি কোষীজীবের উৎপত্তি ঘটতে শুরু করে। এর পরে প্রটেরোযোয়িক অতি কল্পটির বিস্তৃতি ব্যাপক, ২৫০ কোটি বছর আগে থেকে শুর করে প্রায় ৫৫ কোটি বছর পর্যন্ত। এ সময়েই বহুকোষী জীবের বিবর্তন ঘটে, আর তার সাথে সাথে দেখা যায় নরম শরীরের কিছু অমেরুদন্ডী প্রাণী। এর পরের সময়টিকে বলা হয় ফ্যানেরোযোয়িক

অতিকল্প. যাকে পর্যায়ক্রমিকভাবে শুরু থেকে আজকের আধুনিক সময় পর্যন্ত তিনটি ইরা বা কল্পে ভাগ করা হয়ঃ প্যালিওযোয়িক. মেসযোয়িক। এবং সিনযোয়িক। বিকাশের ধারার উপর ভিত্তি করে এই কল্পগুলোকে আবার বিভিন্ন পিরিয়ড বা কালে ভাগ করা হয়েছে। এই তিনটি কালেই পৃথিবী বিভিন্ন ধরণের আধুনিক প্রাণী এবং উদ্ভিদের মুখরিত হয়ে উঠেছে। আমাদের কাছে কালগুলোর নাম বেশ খটমটা শোনালেও ভৃতত্ত্ববিদদের কাছে তারা কিন্তু বিশেষ অর্থ বহন করে। যেমন ধরুন, 'যোয়িক' অর্থ হচ্ছে প্রাণীর জীবন, আর 'প্যালিও' মানে প্রাচীন, 'মেস' মানে মধ্যবর্তী এবং 'সিন' র অর্থ হচ্ছে আধুনিক। সুতরাং, সময়ের ধারাবাহিকতা অনুযায়ী জীবের বিকাশের সাথে অর্থবহুল করেই কল্পগুলোর নাম রাখা প্যালিওযোয়িক, মেসযোয়িক এবং সিনযোয়িক। পাশের টেবিলটিতে এই অতিকল্প, কল্প, কাল এবং যুগের ভাগগুলোকে খুব সহজ করে দেখানো হয়েছে। আর নীচের টেবিলটিতে

EON	ERA	PERIOD	ЕРОСН
		Quaternary	Holocene Pleistocene
	Cenozolc	Tertiary	Pliocene Miocene Oligocene Eocene Paleocene
		Cretaceous	Late Early
	Mesozole	Jurassic	Late Middle Early
		Triassic	Late Early
Phanerozoic		Permian	Late Early
		Pennsylvanian	Late Middle Early
	Paleozoic	Mississippian	Late Early
	Paneozoic	Devonian	Late Middle Early
		Silurian	Late Middle Early
		Ordovician	Late Middle Early
		Cambrian	Middle Early
Proterozoic	Late Proterozoic Middle Proterozoic Early Proterozoic		
Archean	Late Archean Middle Archean Early Archean		
A CONTRACTOR OF THE PARTY OF TH	pre-Arche	an	

আপেক্ষিক ভূতাত্ত্বিক স্কেলঃ http://pubs.usgs.gov/gip/fossils/scale.html

চমৎকারভাবে তুলে ধরা হয়েছে বিভিন্ন কালের সাপেক্ষে প্রাণের সামগ্রিক বিবর্তনের ধারাটিকে। এরকম ধারাভিকভাবে বিভিন্ন স্তরে ফসিল পাওয়া যাওয়াটকে বলে ফসিলের পর্যায়ক্রমের নীতি (Law of Fossil Succession), যা থেকে আমরা ৩ টি বিষয় সম্পর্কে অত্যন্ত স্বচ্ছ ধারণা পাইঃ প্রথমতঃ ফসিলগুলো কোন এক সময়ের জীবিত প্রাণের নিদর্শন বহন করে, দ্বিতীয়তঃ এদের মধ্যে অনেকের অস্তিত্ই বিলুপ্ত হয়ে গেছে পৃথিবীর বুক থেকে এবং তৃতীয়তঃ বিভিন্ন ভূতাত্ত্বিক স্তরে এত ধরণের ফসিল পাওয়া যাওয়ার কারণ একটাই, আর তা হল সুদীর্ঘ সময়ের বিস্তৃতিতে প্রাণের বিবর্তন ঘটে অনবরতই নতুন নতুন প্রজাতির জন্ম হয়ে চলেছে।ফসিলের পর্যায়ক্রম এবং শিলাস্তরের পর্যায়ক্রমিক উপরিপাতনের নীতির উপর ভিত্তি করে ভূতত্ত্ববিদ এবং ফসিলবিদরা ১৮৪১ সালে, ডারউইনের বিবর্তন তত্ত্ব আবিষ্কারেরও প্রায় ১৮ বছর আগেই, আপেক্ষিক সময়ক্রমের ছকটি তৈরি করে ফেলেন। অবাক করা ব্যাপার হল যে, তারপর গত দেড়শো বছরে কালজয়ী সব আবিষ্কারের ভিত্তিতে এর অনেক পরিবর্তন করা হলেও মূল ছকটি আজও প্রায় একই

PERIOD	ANIMALS					PLANTS							
Quaternary							SIIIS				the same		इ
Tertiary						Birds							plants
Cretaceous					slei	Bir							20 03
Jurassic		onune.	4.00		uu	4			S			90	_ £ 2000-
Triassic	ells	11000	- 00	100	Mammals	wes.	*		shes		જી	Gmkos	wo
Permian	she	1000000	ans	Reptiles		N		ક્	2		Pines	51	_6
Pennsylvanian	with		- ig	de	1	(1-		So	tai	3000		. 9	2
Mississippian	3 8		nphibi		Je875			=	lorsetail	Ferms		-	
Devonian	mals	90	₹.	. 9	9			 _	H	2	2		
Silurian		Fishe	- CS	N.				4		-	y>		
Ordovician	3	100000000000000000000000000000000000000								£		Security Inc.	
Cambrian	-83	VIEW I						- F	#=-				

বিভিন্ন কালে প্রধান প্রধান প্রাণী এবং উদ্ভিদের বিবর্তনের আরেকটু বিস্তারিত চিত্রঃ http://pubs.usgs.gov/gip/fossils/succession.html

রকমই রয়ে গেছে। আধুনিক সব ডেটিং পদ্ধতি ব্যবহার করে আমরা আজকে বেশীরভাগ ফসিলের বয়সই আরও সঠিক এবং সুনির্দিন্টভাবে বলে দিতে পারছি, এবং তার ফলে এই টেবিলটি প্রতিদিনই আরও সঠিক এবং পুর্নাংগ রূপ ধারণ করছে। এক নজরে এই বিশাল সময় ধরে প্রাণের বিবর্তনের ধারাটিকে তুলে ধরার জন্য নীচের টেবিলটিতে ভূতাত্ত্বিক সময়সীমা এবং বিভিন্ন যুগে প্রাণের বিবর্তনের প্রধান ঘটনাগুলোর সংক্ষিপ্ত বর্ণনা দেওয়া হল। কয়েকটি বিভিন্ন ধরণের ভূতাত্ত্বিক সময়ক্রমের প্রচলন থাকলেও বিভিন্ন পাঠ্যপুস্তকে বহুলভাবে ব্যবহৃত ছকটাই এখানে তুলে ধরা হল। সেই প্রাণের উৎপত্তি শুরু থেকে বর্তমান সময় পর্যন্ত কতদিন এই যুগগুলো টিকে ছিলো তার একটা মোটামুটি সময়সীমা এবং সেই সময়ে প্রাণের বিবর্তনের প্রধাণ ঘটনাগুলো দেখানো হলো নীচের টেবিলটাতে।

[_এক নজরে ভূতাক্ট্রিক অময়ন্সীমা এবং বিবর্তনের প্রধান ঘটনাশুনো (২)]

		যুগ(Epoch) এবং	
কম্প (Era)	1 (4(3)) 39 (4(4) (-		বিবর্তনের মূল ঘটনা বা ধাপগুলো
আরকিয়ান		২৫০ কোটি বছরেরও আগের সময়। (∼ 2.5B – 4.5B)	পৃথিবী সৃষ্টি থেকে পাললিক শীলার উৎপত্তি হওয়ার আগে পর্যন্ত সময়ে কোন ফসিল পাওয়া যায়নি, ৩৯০ কোটি বছর আগে পাললিক শীলার উৎপত্তি ঘটে। ঠিক কখন প্রাণের জন্ম হয় তা এক্কেবারে সঠিকভাবে নির্ধারণ করা না গেলেও বিজ্ঞানীরা এখন পর্যন্ত প্রায় সাড়ে তিনশো কোটি বছর আগের প্রাণের ফসিলের সন্ধান পেয়েছেন। এ সময়ই নীলাভো সবুজ আ্যুলজি, আরকিয়ান এবং ব্যকটেরিয়া জাতীয় বিভিন্ন প্রোক্যারিয়ট বা আদি কোষী জীবের বিবর্তন ঘটে; অবায়ুজীবী বা অ্যুনারোবিক ব্যকটেরিয়াদের সালোকসংশ্লেষন বা ফটোসিম্থেসিসের ফলে ধীরে ধীরে বায়ুমন্ডলে মুক্ত আক্সিজেনের সৃষ্টি হয় এবং তার ফলশ্রুতিতেই এ সময়ের শেষ দিকে জীবের মধ্যে প্রথম অ্যুরোবিক বা বায়ুজীবী শ্বাস প্রক্রিয়ার বিবর্তন ঘটে।
প্রটেরোযোয়িক		প্রায় ৫৫ কোটি বছর থেকে ২৫০ কোটি বছর আগে পর্যন্ত (~ 490 M- 2.5 B)	প্রায় ১৭০-১৯০ কোটি বছর আগে প্রথম ইউক্যারিয়টের (সুগঠিত নিউক্লিয়াস সহ জীব) উৎপত্তি ঘটে। বড় আকারের ইউক্যারিয়ট প্রাণী বিকাশ লাভ করতে থাকে এবং যৌন প্রজননের উদ্ভব ঘটে; প্রায় সাড়ে পয়ষট্টি কোটি বছর আগে দেখা যেতে শুরু করে বহুকোষী প্রাণী। সম্ভবত এই সময়েই আথ্রপপোডা, আ্যনেলিডা জাতীয় প্রাণীর উদ্ভব ঘটে। এসময়ের অনেক বহুকোষী জেলিফিস, কৃমিজাতীয় প্রাণী, আ্যলজি ইত্যাদির ফসিল পাওয়া গেছে।
	ক্যম্ভিয়ান	প্রায় ৪৯ কোটি বছর থেকে ৫৪.৩ কোটি বছর আগে পর্যন্ত (~ 490M- 543 M)	এই যুগেই, খুব কম সময়ের ব্যবধানে, বিভিন্ন ধরণের প্রাণীর মধ্যে বিভিন্ন পর্বের (phyla) এবং শ্রেনীর (class) বিবর্তন ঘটে। অনেকে একে ক্যাম্ব্রিয়ান বিস্ফোরণ বা Cambrian Explosion হিসেবে আভিহিত করে থাকেন। প্রথম আদিম মেরুদন্ডী প্রাণী, শেল সহ বিভিন্ন ধরণের সামুদ্রিক প্রাণী এবং আ্যালজির বিকাশ ঘটতে থাকে অত্যন্ত দ্রুত গতিতে। এক বিশাল গণ-বিলুপ্তি ঘটে এ সময়ে, যার ফলশ্রুতিতে প্রায় ৫০% জীবের বিলুপ্তি ঘটে যায়।
भ <u>ुगा</u> निख्द्याहिक	অরডোভিসিয়ান	প্রায় 88.৩ কোটি বছর থেকে ৪৯ কোটি বছর আগে পর্যন্ত (~ 443M- 490 M)	প্রথম চোয়ালহীন মাছ এবং প্রবালের আবির্ভাব ঘটে, আদি মেরুদন্ডী প্রাণী দেখা গোলেও, বিভিন্ন ধরণের অমেরুদন্ডী প্রাণীরই প্রাধান্য চলতে থাকে। আদি স্থলজ উদ্ভিদের আবির্ভাব ঘটে। সম্ভবত, হিমায়নের ফলে এই যুগের শেষের দিকেও আরেক বিশাল গণ-বিলুপ্তি ঘটে।
श्रीहि	সিলুরিয়ান	প্রায় ৪১.৭ কোটি বছর থেকে ৪৪.৩ কোটি বছর আগে পর্যন্ত (~417M- 443 M)	প্রথম চোয়ালসহ মাছের আবির্ভাব ঘটে। ট্যিসু বা সংবহনতন্ত্রসহ আদি স্থলজ উদ্ভিদ দেখতে পাওয়া যায় এসময়ে। বিভিন্ন ধরণের শামুক জাতীয় প্রাণীর বিকাশ ঘটতে থাকে।
	ডেভোনিয়ান	প্রায় ৩৫.৪ কোটি বছর থেকে ৪১.৭ কোটি বছর আগে পর্যন্ত (~354M - 417 M)	প্রথম উভচর প্রাণী, ফার্ণ, বীজসহ উদ্ভিদ, পাখাহীন পতঙ্গের উৎপত্তি ঘটে। স্থলজ উদ্ভিদ এবং মাছেরও প্রাধান্য দেখা যায়। আরেক গণ-বিলুপ্তির নিদর্শন পাওয়া যায় এই যুগে।

	কারবোলিফেরাস পারমিয়ান	প্রায় ২৯ কোটি বছর থেকে ৩৫.৪ কোটি বছর আগে পর্যন্ত (~290M - 354 M) প্রায় ২৫.১ কোটি বছর থেকে ২৯ কোটি বছর আগে পর্যন্ত (~251M- 290 M	প্রথম সরীসৃপের আবির্ভাব ঘটলো, পাখাওয়ালা পতঙ্গ, আদিম হাঙ্গরের দেখা মিললো। উভচর প্রাণী, ফার্ণ, আদি উদ্ভিদের বিস্তার ঘটতে থাকে এসময়েই। মহাদেশগুলো একসাথে হয়ে প্রকান্ড প্যাঞ্জিয়া গঠন করেছে। হিমায়নের ফলে সমুদ্রের লেভেল নীচে নেমে এসেছে, আর ওদিকে উভচর প্রাণীর সংখ্যাও কমে যেতে শুরু করেছে। সরীসৃপ, বিভিন্ন ধরণের উন্নত জাতের মাছ এবং পতঙ্গের দ্রুত বিকাশ ঘটছে। সামুদ্রিক জীবের গণ-বিলুপ্তি ঘটতে শুরু করে এই যুগে.
মেসযোগ্নিক	ট্রায়াসিক জুরাসিক ক্রেন্টাসিয়াস	২০.৬ কোটি বছর থেকে ২৫.১ কোটি বছর আগে পর্যন্ত (206 - 251M) প্রায় ১৪.৪ কোটি বছর থেকে ২০.৬ কোটি বছর (~144M -206 M) ৬.৫ কোটি থেকে ১৪.৪ কোটি বছর (65M -	মহাদেশগুলো আলাদা হতে শুরু করেছে, প্রথম ডায়নোসরের উৎপত্তি ঘটে, সরীসৃপথেকে স্তন্যপায়ী জাতীয় সরীসৃপ এবং প্রথম স্তন্যপায়ী প্রাণীর আবির্ভাব ঘটলো এ সময়েই। প্রথম পাখী এবং সপুষ্পক উদ্ভিদের আবির্ভাব ঘটলো এসময়ে, ডায়নোসর প্রবল প্রতাপ চলেছে সারাটা যুগ ধরে, সাথে সাথে অন্যান্য সরীসৃপেরও দ্রুত প্রসার ঘটছে। ইতিমধ্যেই বেশীরভাগ মহাদেশগুলোই আলাদা হয়ে গেছে, স্তন্যপায়ী প্রাণী, পাখি এবং সপুষ্পক উদ্ভিদের বিকাশ অব্যাহত থাকে। আদি মারসুপিয়াল, সাপ, মৌমাছির উৎপত্তি ঘটে। এই ক্রেটাসিয়াস যুগের শেষের দিকেই ডায়নোসরের বিলুপ্তি ঘটে যায়।
সিন্থোয়িক	টারশিয়ারি	প্যালিয়োসিন যুগঃ ৫.৫ কোটি থেকে ৬.৫ কোটি বছর (55-65 M) ইয়োসিন যুগঃ ৩.৪ কোটি থেকে ৫.৫ কোটি বছর(~34-55 M) ওলিগোসিন যুগঃ ২.৪ কোটি থেকে ৩.৪ কোটি বছর (24M-3.4M) মিয়োসিন যুগঃ ৫৩ লক্ষ থেকে ২.৪ কোটি বছর (~5.3M – 24M) প্রিয়োসিন যুগঃ ২০ লক্ষ থেকে ৫৩ লক্ষ বছর (~2.0M-5.3 M)	মহাদেশগুলো আধুনিক অবস্থানের কাছাকাছি পৌছুতে শুরু করেছে। জলবায়ু ক্রুমাগতভাবে ঠান্ডা এবং শুকনো হয়ে যেতে শুরু করেছে যার ফলশ্রুতিতে দেখা দিতে শুরু করেছে বিস্তীর্ণ তৃণভূমির এবং তার সাথে বিবর্তন ঘটতে শুরু করেছে তার সাথে খাপ খাওয়ানো প্রাণী এবং উদ্ভিদের। এসময়েই স্তন্যপায়ী প্রাণী, পাখি, সাপ, ফুলের পরাগ ঘটানো পোকা মাকড়ের বিকাশ ঘটতে শুরু করে। প্রাইমেটের বিবর্তন ঘটে প্যালিওসিন যুগে, লেমুর বা টারসিয়ারদের ইয়োসিন যুগে, বানরের দেখা পাওয়া যায় ওলিগোসিন যুগে, বন মানুষ বা এপ দের বিকাশ ঘটে মিয়োসিন যুগে, মানুষের আদি পুর্ব পুরুষ Australopithecus এর দেখা মিলছে প্লিয়োসিন যুগে এসে.

কোয়াটারনারি

প্লিস্টোসিন যুগঃ ১০ হাজার থেকে ২০ লক্ষ বছর (~ .01-2.0 M)

হলোসিন যুগঃ এখন থেকে ১০ হাজার বছর আগে পর্যন্ত। (.Recent time-.01 M) গত ১৮ লক্ষ বছরে, কোয়াটারনারি যুগে, ক্রমাগত ধীর সঞ্চরণের ফলশ্রুতিতে মহাদেশগুলো এখনকার এই আধুনিক অবস্থানে এসে পৌছেছে, মা্যমথ, প্রকান্ড আকৃতির স্লখসহ বিভিন্ন বৃহৎ স্তন্যপায়ী প্রাণী এবং পাখির বিলুপ্তি ঘটেছে। প্লিস্টোসিন যুগে ঘন ঘন হিমায়নের ফলে সমুদ্রের পানির লেভেল নীচে নেমে যেতে থাকে। শেষ বরফ যুগের সমাপ্তি ঘটে হলোসিন যুগে, এই যুগকেই মানব সভ্যতা বিকাশের যুগ হিসেবে ধরা হয়। এতদিন বিজ্ঞানীরা ধারণা করতেন যে, দেড় লক্ষ বছর আগে আধুনিক মানুষ homo sapiens (আমরা) এর বিবর্তন ঘটেছে homo erectus থেকে। এখন উন্নত ধরণের ডেটিং পদ্ধতি ব্যবহার করে বিভিন্ন পরীক্ষা থেকে মনে হচ্ছে যে, আধুনিক মানুষ হয়তো তারও কিছু সময় আগেই বিকাশ লাভ করেছিলো। পরবর্তী অধ্যায়ে আমাদের নিজেদের বিবর্তন নিয়ে বিস্তারিত আলোচনার ইচ্ছা রইলো।

এই আপেক্ষিক ডেটিং পদ্ধতি দিয়ে মোটামুটিভাবে একটা আপেক্ষিক বয়স নির্ধারণ করা গেলেও কোন একটা ফসিলের আসল বয়সটা কত তা তো আর বলে দেওয়া সম্ভব হচ্ছে না। এর জন্য বিজ্ঞানীদের অপেক্ষা করতে হয়েছে বিংশ শতাব্দীর মাঝামাঝি পর্যন্ত। পরম ডেটিং পদ্ধতি দিয়ে আজকে আমরা বেশীরভাগ ক্ষেত্রেই বলে দিতে পারি কত বছর আগে কোন শীলাটি তৈরি হয়েছিলো, পৃথিবীর বয়স কত এবং কোন একটা ফসিলেরই বা বয়সটা কত। আর এর জন্য প্রধানত রেডিওমেট্রিক বা তেজস্ক্রিয় ডেটিং পদ্ধতি ব্যবহার করা হয়। আপেক্ষিক ডেটিং ঘটনাগুলোকে তাদের ক্রমানুসারে সাজিয়ে দেয় আর তেজষ্ক্রিয় ডেটিং তাদেরকে বেঁধে দেয় নির্দিষ্ট সময়ের ছকে। স্থভাবতই প্রশ্ন জাগে, হিসেব নিকেশ করে যদি সুনির্দিষ্ট বয়সটাই যদি বলে দেওয়া যায় তবে আর আপেক্ষিক বয়স নিয়ে মাথা ঘামানো দরকারটা কি। আসলে শুনতে যতটা সহজ শোনায় ব্যাপারটা ঠিক সেরকম নয়, ভূপুষ্ঠের সব শীলা বা ফসিলের বয়স এই তেজন্ত্রিয় ডেটিং পদ্ধতি দিয়ে নির্ধারণ করা সম্ভব নয়. তাই সেসব ক্ষেত্রে বিজ্ঞানীদের আপেক্ষিক ডেটিং এর আশ্রয় নিতে হয়। আর তা ছাড়া, এই কোটি কোটি বছরের পুরনো শীলা বা ফসিলের বয়স বের করাটা তো আর কোন মুখের কথা নয়. এর জন্য বিজ্ঞানীদের বহু রকমের পদ্ধতি ব্যবহার করতে হয়। অনেক সময়ই বিজ্ঞানীরা একাধিক পরম এবং আপেক্ষিক পদ্ধতি ব্যবহার করে তবেই নিশ্চিতভাবে একটা ফসিলের বা শীলার বয়স নির্ধারণ করতে পারেন। একদিক থেকে চিন্তা করলে স্মীকার করতেই হয় যে. আমরা এ ব্যাপারে বেশ সৌভাগ্যবান, এত ধরণের পদ্ধতি না থাকলে বিজ্ঞানীরা বারবার ক্রস-নিরীক্ষণ করে এতো আস্থা নিয়ে হয়তো বয়সগুলো বলে দিতে পারতেন না।

সুনির্দিষ্টভাবে সময় নির্ধারণের জন্য প্রয়োজন ছিলো একধরণের ভূতাত্ত্বিক ঘড়ির, যা আমাদেরকে বলে দিবে পৃথিবীর বিভিন্ন শীলাস্তরের কবে তৈরি হয়েছিলো আর কোন প্রাণী বা উদ্ভিদের ফসিলটির বয়সই বা কত। আর বিজ্ঞানীরা সেটাই খুজেঁ পেলেন বিভিন্ন ধরণের তেজদ্ভিয় (Radioactive) পদার্থের মধ্যে, এই ভূতাত্ত্বিক ঘড়িগুলোকে বলা হয় রেডিওমেটিক ঘড়ি কারণ তারা প্রাকৃতিক তেজদ্ভিয়তার মাপ থেকে আমাদেরকে সময়ের হিসেব বলে দেয়। পদার্থের তেজদ্ভিয়তার ব্যাপারটা ঠিকমত বুঝতে হলে আমাদেরকে একটু জীববিদ্যার আঙিনা পেরিয়ে পদার্থবিদ্যা ও রসায়নবিদ্যার উঠোনে পা রাখতে হবে। আধুনিক বিজ্ঞান আজকে এমনি এক অবস্থায় চলে এসেছে যে, তার এক শাখা আরেক শাখার সাথে ওতপ্রতোভাবে জড়িয়ে গেছে, কোন এক শাখার মধ্যে গন্ডীবদ্ধ থেকে পুরোটা বোঝা প্রায় অসম্ভব হয়ে দাঁড়িয়েছে। সে যাই হোক, চলুন দেখা যাক, এত যে আমরা অহড়হ তেজদ্ভিয়তা, তেজদ্ভিয় ক্ষয় (Radioactive decay) অথবা রাসায়নিক বা নিউক্লিয়ার বিক্রিয়ার কথা শুনি তার মুলে আসলে কি রয়েছে। চট করে, খুব সংক্ষেপে, একবার চোখ বুলিয়ে নেওয়া যাক অণু পরমাণুর গঠন এবং তাদের মধ্যে ঘটা বিভিন্ন বিক্রিয়া এব তেজদ্ভিয়তার মূল বিষয়টির উপর।

বিংশ শতাব্দী পর্যন্তও কিন্তু আমরা ভেবে এসেছি যে. কোন পদার্থের পরমাণু অবিভাজ্য, তাকে আর কোন মৌলিক অংশে ভাগ করা যায় না। একশোটির মত মৌলিক পদার্থ রয়েছে - লোহা সোনা, অক্সিজেন, ক্লোরিণ বা হাইড্রোজেনের মত মৌলিক পদার্থগুলোর পরমাণুই হচ্ছে তার সবচেয়ে ক্ষুদ্রতম অংশ. একে আর ছোট অংশে ভেঙ্গে ফেলা সম্ভব নয়। কিন্তু আধুনিক বিজ্ঞান আমাদেরকে নিয়ে গেছে জ্ঞানের এক নতুন দিগন্তে। আমরা এখন জানি যে. প্রত্যেকটি মৌলিক পদার্থের পরমাণই ইলেক্টন, প্রটোন এবং নিউটনের সমন্নয়ে তৈরি। পরমাণুর মাঝখানে কেন্দ্রে রয়েছে নিউক্লিয়াস যা প্রটোন এবং নিউটনের সমন্বয়ে তৈরি আর তার চারপাশের অক্ষে ঘুরছে ইলেক্ট্রনগুলো। নিউট্রনের কোন চার্জ নেই, সে নিরপেক্ষ, ইলেকট্রন ঋণাত্মক আর প্রটোন ধুনাতাক চার্জবিশিষ্ট্য। সাধারণতঃ একটি পরমাণতে ইলেক্ট্রন, প্রটোনের সংখ্যা

সমান থাকে বলে তাদের ধ্বনাত্মক এবং ঋণাত্মক চার্জ কাটাকাটি হয়ে তার মধ্যে নিরপেক্ষতা প্রতিষ্ঠিত হয়ে যায়। মৌলিক পদার্থগুলোর বৈশিষ্ট্যের মধ্যে আমরা যে আকাশ পাতাল পার্থক্য দেখি তার কারণ আর কিছুই নয়, তাদের পরমাণুর ভিতরে ইলেকটেন, প্রটোন এবং নিউট্রনের সংখ্যার তারতম্য। অর্থাৎ সোনার পরমাণু বা নিউক্লিয়াস কিন্তু সোনা দিয়ে তৈরি নয়, তাদের মধ্যে সোনার কোন নাম গন্ধও নেই। অক্সিজেন বা হাইডোজেন বলুন, সোনা বলুন, রূপা বলুন, হেলাফেলা করা তামা বা সীসাই বলুন সব মৌলিক পদার্থই এই তিনটি মূল কণা, ইলেকটেন, প্রটোন এবং নিউট্রনের সমন্বয়েই গঠিত। লোহার সাথে সোনার পার্থক্যের কারণ এই নয় যে তার নিউক্লিয়াস সোনার মত দামী বা চকচকে কণা দিয়ে তৈরি! এর কারণ তাদের পরামাণুর ভিতরে এই মূল কণাগুলোর সংখ্যার পার্থক্য- সোনার নিউক্লিয়াসে রয়েছে ৭৯টি প্রোটন এবং ১১৮টি নিউট্রন; আর ওদিকে লোহার নিউক্লিয়াসে রয়েছে ২৬টি প্রোটন এবং ৩০টি নিউট্রন। একই ধরণের ব্যাপার দেখা যায় আমাদের ডি এন এর গঠনের ক্ষেত্রেও। মানুষ, ঘোড়া, ফুলকপি বা আরশোলার জিনের উপাদানে তাদের আলাদা আলাদা কোন বিশেষ বৈশিষ্ট্য খুঁজে পাওয়া যাবে না, তারা সবাই ডি এন এর সেই চারটি নিউক্লিওটাইডের (A=adenine, G= guanine, C=cytosine T=thymine) বিভিন্ন রকমফেরে তৈরি (৫)।

আমাদের চারদিকে আমরা যে সব পদার্থ দেখি তার বেশীরভাগই যৌগিক পদার্থ, সাধারণভাবে বলতে গেলে বিভিন্ন মৌলিক পদার্থগুলোর মধ্যে ইলেকটেন বিনিময়ের ফলে রাসায়নিক বিক্রিয়ার মাধ্যমেই এই যৌগিক পদার্থগুলোর সৃষ্টি হয়। একটা ইলেকটেন কণা শুষে নিয়ে একটা প্রোটন কণা নিউটনে পরিণত হয়ে যেতে পারে, আবার ঠিক উলটোভাবে একটা নিউটন তার ভিতরের একটি ঋণাত্মক চার্জ বের করে দিয়ে পরিণত হতে পারে প্রোটন কণায়। কিন্তু শুনতে যতটা সোজা সাপটা শোনাচ্ছে ব্যাপারটা আসলে কিন্তু ঠিক সেরকম নয়। এ ধরণের পরিবর্তন সম্ভব শুধুমাত্র নিয়ক্লিয়ার বা পারমানবিক বিক্রিয়ার মাধ্যমে। এর জন্য প্রয়োজন হয় বিশাল পরিমাণ শক্তির (energy), আর তাই যে কোন পারমানবিক বিক্রিয়া থেকে যে শক্তি নির্গত হয় তার সাথে রাসায়নিক বিক্রিয়ার কোন তুলনাই করা সম্ভব নয়। সাধারণ বোমার চেয়ে

নিউক্লিয়ার বোমা বহুগুন শক্তিশালী, হিরোসিমায় পারমানবিক বোমা বিজ্ফোরণের ভয়াবহতা তাই আমাদেরকে স্তস্তিত করে দেয়। নিউক্লিয়ার বিক্রিয়ার ফলে পরমাণুর নিউক্লিউয়াসের গঠন বদলে যায়, কিন্তু রাসায়নিক বিক্রিয়ায় নিউক্লিয়াসের কোন পরিবর্তন ঘটে না। আর ঠিক এ কারণেই সেই আরবীয় আ্যালকেমিন্টরা বহু শতকের চেন্টায়ও অন্য ধাতুকে সোনায় পরিণত করতে পারেননি, কারণ এর জন্য প্রয়োজন ছিলো নিউক্লিয়ার বিক্রিয়ার। প্রায় হাজার বছর আগে, সে সময়ে পরমাণুর গঠন বা পারমানবিক বিক্রিয়ার কথা জানা না থাকায় তারা রাসায়নিক বিক্রিয়ার মাধ্যমেই মৌলিক ধাতুর পরিবর্তনের ব্যর্থ প্রচেন্টা চালিয়ে গিয়েছিলেন যুগ যুগ ধরে (৫)।

প্রত্যেকটি মৌলিক পদার্থের নিউক্লিউয়াসেই নির্দিষ্ট সংখ্যক প্রটোন কণা থাকে, আর নিউক্লিয়াসে প্রটোনের এই সংখ্যাকে বলে পারমানবিক সংখ্যা (atomic number) যা দিয়ে মুলতঃ মৌলিক পদার্থের বেশীরভাগ রাসায়নিক বৈশিষ্ট্য নির্ধারিত হয় (পরোক্ষভাবে একে ইলেকটনের সংখ্যাও বলা যেতে পারে কারণ সাধারণভাবে পরামাণুর কক্ষ পথে বিপরীত চার্জবিশিষ্ট্য ইলেকট্রনের সংখ্যাও সমান থাকে)। ইলেক্টনের তুলনায় প্রটোন এবং নিউটনের ভার অপেক্ষাকৃত অনেক বেশী. তাই কোন পদার্থের ভর সংখ্যা (mass number) মাপা হয় তার প্রটোন এবং নিউট্রনের সংখ্যা দিয়ে। যেমন ধরুন, সাধারণত কার্বনের নিউক্লিউয়াসে ৬টি প্রটোন এবং ৬টি নিউট্রন থাকে. তাই তার ভর সংখ্যা হচ্ছে ১২. একে বলে কার্বন-১২। সাধারণভাবে নিউক্লিউয়াসে নিউট্রনের সংখ্যা প্রটোনের সংখ্যার সমান বা কয়েকটা বেশী থাকে। কিন্তু আবার কখনও কখনও কোন কোন পদার্থের নিউক্রিয়াসে সমান সংখ্যক প্রটোন থাকলেও তাদের বিভিন্ন ভারশান এর মধ্যে নিউট্রনের সংখ্যায় ভিন্নতা দেখা যায়। যেমন, কার্বন-১৩ এ রয়েছে ৭টি নিউট্রন আর কার্বন-১৪এ থাকে ৮টি নিউট্রন, যদিও তাদের প্রত্যেকেরই প্রটোনের সংখ্যা সেই ৬টিই। আর মৌলিক পদার্থগুলোর মধ্যে যখন প্রটোনের সংখ্যা সমান থাকে কিন্তু নিউট্রনের সংখ্যায় তারতম্য দেখা যায় তখন তাদেরকে বলা হয় আইসোটোপ (Isotope)। তেজন্ত্রিয় ক্ষয় এবং তেজন্ত্রিয় ডেটিং বঝতে হলে এই আইসোটোপের ব্যাপারটা ভালো করে বোঝা দরকার। এই আইসোটোপগুলোরই কোন কোনটা প্রকৃতিতে অস্থিত অবস্থায় থাকে এবং তারা ধীরে ধীরে ক্ষয়ের মাধ্যমে নিজেদের নিউক্লিয়াসের গঠনের পরিবর্তনের মাধ্যমে আরেক মৌলিক পদার্থে রূপান্তরিত হয়। আইসোটোপের এই অস্থিরতারই আরেক নাম হচ্ছে 'রেডিওআ্যকটিভিটি' বা 'তেজঙ্ক্রিয়তা'। আর যে পদ্ধতিতে ক্ষয় হতে হতে তারা আরেক পদার্থে পরিণত হয় তাকেই বলে 'তেজন্ক্রিয় ক্ষয়'। যেমন ধরুন, সীসার ৪টি সৃস্থিত, কিন্তু ২৫টি অস্থিত আইসোটোপ আছে, আর এই ২৫টি অস্থিত আইসোটোপই হচ্ছে তেজষ্ক্রিয় পদার্থ। আবার ইউরেনিয়ামের সবগুলো আইসোটোপই অস্থিত এবং তেজব্রিয়(৫)। আর আমাদের এই পরম ডেটিং পদ্ধতির মূল চাবিকাঠিই হচ্ছে পদার্থের এই তেজঙ্কিয় বৈশিষ্ট্য এবং তার ফলশ্রুতিতে ঘটা তেজঙ্কিয় ক্ষয়।

এই তেজদ্রিয় ক্ষয় ঘটতে পারে বিভিন্নভাবে। আলফা এবং বেটা ক্ষয়ের কথা অনেক শুনি আমরা। আলফা ক্ষয়ের সময় আইসোটোপটি একটা আলফা কণা (দু'টো প্রোটন এবং দু'টো নিউট্রনের সমন্বয়ে তৈরি এই আলফা কণা) হারায় তার নিউক্রিয়াস থেকে। অর্থাৎ তার ভারসংখ্যা ৪ একক কমে গেলেও পারমানবিক সংখ্যা বা প্রটোনের সংখ্যা কমছে মাত্র ২ একক। কিন্তু এর ফলাফল কি দাঁড়াচ্ছে? আর কিছুই নয়, নিউক্রিউয়াসের গঠনের পরিবর্তন হয়ে আইসোটোপটি এক মৌলিক পদার্থ থেকে আরেক মৌলিক পদার্থে পরিণত হয়ে যাচ্ছে। একটা উদাহরণ দেখলে বোধ হয় ব্যাপারটা আরেকটু খোলাসা হবে - আলফা ক্ষয়ের ফলে ইউরেনিয়াম ২৩৮ (৯২ টি প্রটোন এবং ১৪৬ নিউট্রনের সমন্বয়ে তৈরি এই মৌলিক পদার্থটি) পরিণত হচ্ছে সম্পুর্ণ নতুন এক মৌলিক পদার্থ থোরিয়াম ২৩৪ এ (যা ৯০ টি প্রটোন এবং ১৪৪ নিউট্রনের সমন্বয়ে তৈরি)। ওদিকে আবার বেটা ক্ষয়ের ক্ষেত্রে কিন্তু ঘটে আরেক ঘটনা। আইসোটোপের পরমাণু থেকে একটি ইলেকটন বের করে দিয়ে নিউক্রিয়াসের ভিতরের একটি নিউট্রন প্রোটনে পরিণত হয়ে যায়। আরও বিভিন্ন ধরণের প্রক্রিয়ায় তেজদ্ধিয় ক্ষয় ঘটতে পারে, সময় এবং জায়গার অভাবে এখন

আর বিস্তারিত বর্ণনায় যাচ্ছি না। তেজদ্ভিয় ক্ষয়ের মুলে রয়েছে বিভিন্ন আইসোটোপের ভিতরের নিউক্লিয়াসের গঠনের পরিবর্তন বা পারমানবিক পরিবর্তন এবং তার ফলশ্রুতিতেই এক মৌলিক পদার্থ থেকে আরেক নতুন মৌলিক পদার্থে রূপান্তরিত হয় - এই ব্যাপারটা বোধ হয় এতক্ষনে আমাদের কাছে বেশ পরিষ্কার হয়ে উঠেছে। আর যেহেতু ভূত্বকের বিভিন্ন শীলাস্তরে বিভিন্ন ধরনের আইসোটোপ পাওয়া যায় তাই এই তেজদ্ভিয় ক্ষয়ের বৈশিল্ট্যকে কাজে লাগিয়ে শীলা বা ফসিলের বয়স নির্ধারণ করা হয়। চলুন তাহলে দেখা যাক কিভাবে এই তেজদ্ভিয় আইসোটোপগুলোকে ভূতাত্ত্বিক ঘড়ি হিসেবে ব্যবহার করে পৃথিবী এবং তার প্রাণের বিবর্তনের ধারাবাহিক ইতিহাসের চিত্রটিকে বিজ্ঞানীরা কালি কলমে পরিষ্কারভাবে ফুটিয়ে তুলতে সক্ষম হয়েছেন।

বিভিন্ন শীলার মধ্যে বিভিন্ন ধরণের খনিজ পদার্থ বিদ্যমান থাকে, আর এই খনিজ পদার্থের মধ্যেই থাকে তেজস্ক্রিয় আইসোটোপগুলো। আধুনিক তেজস্ক্রিয় ডেটিং পদ্ধতিগুলোর মধ্যে ইউরেনিয়াম-সিরিজ ডেটিং বহুলভাবে ব্যবহৃত হয়। তেজষ্ক্রিয় ইউরেনিয়াম-২৩৮ ক্ষয় হতে হতে সীসা-২০৬ এ পরিণত হয় সুদীর্ঘ সাড়ে চারশো কোটি বছরে। এক এক করে, পুর্বনির্ধারিত একটি নির্দিষ্ট হারে এই তেজঞ্জিয় আইসোটোপগুলো নতুন এক স্থিত এবং অতেজদ্ধিয় পদার্থে পরিণত হয়ে যেতে থাকে। দীর্ঘ সময়ের বিস্তৃতিতে ঘটতে থাকলেও এই ক্ষয় কিন্তু ঘটে একটি সুনির্দিষ্ট হারে. আর সেখানেই লুকিয়ে রয়েছে আমাদের রেডিওমেট্রিক বা তেজস্ক্রিয় ডেটিং পদ্ধতির জীয়ণকাঠি। অত্যন্ত নির্ভরযোগ্য এই ক্ষয়ের হার মাপার জন্য আইসোটোপের হাফ-লাইফ (Half-Life) বা অর্ধ-জীবন এর হিসাবটি ব্যবহার করা হয়। বিজ্ঞানীরা প্রথমে বিভিন্ন পরীক্ষা নিরীক্ষার মাধ্যমে, কোন এক আইসোটোপের নমুণার পারমাণুর অর্ধেকাংশের ক্ষয় হয়ে যেতে কত সময় লাগবে তার হিসেবটা বের করে ফেলেন। আইসোটোপের অর্ধ-জীবনের ব্যাপারটা একটা উদাহরণের মধ্যমে ব্যাখ্যা করে দেখা যাকঃ ধরুন, কোন একটি তেজস্ক্রিয় আইসোটোপ 'ক' এর অর্দ্ধ-জীবন ১ লাখ বছর, সে ধীরে ধীরে তেজষ্ক্রিয় ক্ষয়ের মাধ্যমে মৌলিক পদার্থ 'ক' থেকে 'খ' এ পরিণত হয় এবং ১ লাখ বছরের শুরুতে পরমাণর সংখ্যা ছিলো ১০০০। এখন প্রথম এক লাখ বছর বা এক অর্দ্ধ-জীবন পার করে দেওয়ার পর আমরা আইসোটোপটিকে কি অবস্থায় দেখতে পাবো? আইসোটোপ 'ক' এর ১০০০ পরমাণুর অর্ধেক ৫০০ পরামাণু এখনও সেই আগের অবস্থা 'ক' তেই রয়ে গেছে আর বাকী অর্দ্ধেক বা ৫০০ পরমাণু 'খ'তে পরিণত হয়ে গেছে। তাহলে কি ২ লাখ বছর 'ক' এর সবটাই 'খ' তে পরিণত হয়ে যাবে? না. অর্দ্ধ-জীবনের হিসেবের কায়দাটা বেশ সোজা হলেও ঠিক এরকম সরলরৈখিক নয়। ২ লাখ বছর পরে দেখা যাবে যে, 'ক' এর অবশিষ্ট ৫০০ পরমাণুর অর্দ্ধেক অর্থাৎ আরও ২৫০টি 'খ' তে পরিণত হয়ে 'খ' এর পরমাণুর মোট সংখ্যা দাঁড়িয়েছে ৭৫০ এ, আর তেজন্ত্রিয় ক্ষয়ের ফলশ্রুতিতে 'ক' তে এখন অবশিষ্ট রয়েছে ২৫০টি পরমাণু (৬)। তারপর ৩ লাখ বছর পর 'খ' এর পরমাণুর সংখ্যা এসে দাঁড়াবে ৮৭৫ এ। এখন ধরুন, ৩ লাখ বছর পর আজকে এখানে দাঁড়িয়ে একজন বিজ্ঞানী খুব সহজেই বের করে ফেলতে পারবেন এই আইসোপটিসহ শীলাটির বয়স কত। আর তার জন্য তাকে জানতে হবে দু'টো তথ্যঃ আইসোটোপ 'ক' এর অর্দ্ধ-জীবন কত (বিজ্ঞানীরা ইতোমধ্যেই তার বিস্তারিত তালিকা তৈরি করে রেখেছেন), আর ওই শীলায় 'ক' এবং 'খ' এর পরিমানের আনুপাতিক হার কত।

ভূমিকম্প, আগ্নেয়গিরী ইত্যাদির ফলশ্রুতিতে ভুপৃষ্ঠে লাভা নির্গত হয়, তারা যে মুহূর্তে ঠান্ডা এবং শক্ত হয়ে কেলাষিত হতে শুরু করে তখন থেকেই ঘুরতে শুরু করে এই তেজদ্ভিয়ে ঘড়ির কাঁটা। তখন থেকেই ক্রমাগতভাবে নির্দিষ্ট হারে তেজদ্ভিয় বিকিরণ এবং ক্ষয়ের প্রক্রিয়া শুরু হয়ে যায়, নির্দিষ্ট এই নিয়ম মেনে এই তেজদ্ভিয় মৌলিক পদার্থগুলো রূপান্তরিত হতে শুরু করে আরও সুস্থিত অন্য কোন মৌলিক পদার্থে। কিন্তু এই প্রক্রিয়া যখন চলতে থাকে তখন আংশিকভাবে রূপান্তরিত পদার্থটির অংশটিও শিলান্তরে

ভিতরেই রয়ে যায়। তাই এদের দু'জনেরই পরিমাণের আনুপাতিক হার নির্ধারণ করা কোন কঠিন কাজ নয়। যেমন ধরুন, পটাসিয়াম ৪০ যখন সুস্থিত আর্গন ৪০ এ পরিণত হতে থাকে, তখন আর্গন ৪০ লাভার কেলাষের মধ্যে গ্যাসের আকারে আটকে থাকে। বিভিন্ন শীলার মধ্যে বহুল পরিমাণে পটাসিয়াম-আর্গন পাওয়া যায় বলে বিজ্ঞানীরা বহুলভাবে পটাসিয়াম-আর্গন ডেটিং পদ্ধতি ব্যবহার করেন। ইউরেনিয়াম সিরিজের ডেটিং এর কথা আর্গেই উল্লেখ করেছিলাম। ইউরেনিয়াম ২৩৮ এর অর্ধ-জীবন সাড়ে চারশো কোটি বছর, পটাসিয়াম ৪০ এর হচ্ছে ১৩০ কোটি বছর, ইউরেনিয়াম ২৩৫ এর ৭৫ কোটি বছর, ওদিকে আবার কার্বন ১৫ এর অর্ধ-জীবন হচ্ছে মাত্র ২.৪ সেকেন্ড। এত বিশাল সময়ের পরিসরে বিস্তৃত অর্ধ-জীবন সম্পন্ন তেজদ্রিয় পদার্থগুলো রয়েছে বলেই বিজ্ঞানীরা আজকে একটি দু'টি নয়, বহু রকমের তেজদ্রিয় ডেটিং বা অন্যান্য ডেটিং এর সাহায্য নিতে পারেন কোন ফসিলের বয়স নির্ধারণের জন্য। ফসিলের আপেক্ষিক বয়স সম্পর্কে একটা ধারণা করতে পারলে সেই অনুযায়ী প্রযোজ্য ডেটিং পদ্ধতিটা ব্যবহার করেন তারা। বিভিন্ন পদ্ধতিতে ক্রস-নিরীক্ষণ করে তবেই তারা নিশ্চিত হন ফলাফল সম্পর্কে। আর তার ফলেই সম্ভব হয়ে ওঠে এত সুনির্দিণ্টভাবে এত প্রাচীন সব ফসিলের বয়স নির্ধারণ করা। চলুন দেখা যাক বিভিন্ন ধরণের ডেটিং পদ্ধতি ব্যবহার করে কি করে ফসিলের বয়স বের করা হয়।

অনেক শীলান্তরে বিশেষ করে আগ্নেয় শীলান্তর ইগনিয়াসে প্রচুর পরিমাণে ইউরেনিয়াম, পটাসিয়াম জাতীয় তেজদ্রিয় পদার্থ পাওয়া যায়, আবার পাললিক শীলার মধ্যে তেমন কোন তেজদ্রিয় পদার্থের অন্তিতই থাকে না। কিন্তু আমরা জানি যে, ইগনিয়াস শীলায় ফসিল সংরক্ষিত হয় না, ফসিল পাওয়া যায় শুধু পাললিক শীলান্তরে। তাহলে পাললিক শীলান্তরের এই ফসিলগুলোর বয়স কিভাবে নির্ধারণ করা হয়? এক্ষেত্রে আপেক্ষিক এবং পরম দু'টো পদ্ধতিই ব্যবহার করা যেতে পারে। প্রথমে পাললিক শীলা ন্তরের উপরে এবং নীচে যে ইগনিয়াস শিলান্তরে দু'টো তাকে স্যান্ডইচের মত আটকে রেখেছে, তাদের বয়স নির্ধারণ করা হয়। এখান থেকে বিজ্ঞানীরা বুঝতে পারেন যে মধ্যবর্তী পাললিক শিলান্তরে সংরক্ষিত ফসিলের বয়স এই দুই ইগনিয়াস শিলান্তরের বয়সের মাঝামাঝিই হবে। এখন যদি দেখা যায় যে, ফসিলটির নিজের মধ্যে যথেন্ট পরিমাণে তেজদ্রিয় পদার্থ আটকে গেছে তাহলে তেজদ্রিয় ডেটিং এর মাধ্যমে ফসিলটির বয়স সরাসরিই নির্ধারণ করা যেতে পারে। সরাসরি ফসিলের বয়স হিসেব করার জন্য তেজদ্রিয় ডেটিং পদ্ধতিগুলোর মধ্যে রেডিওকার্বন ডেটিং হচ্ছে অত্যন্ত বহুলভাবে ব্যবহৃত আরেকটি পদ্ধতি। এই পদ্ধতি দিয়ে শিলান্তরের বয়স নয়, ফসিলের মধ্যে মৃত ট্যিসুরই বয়স সরাসরি নির্ধারণ করে ফেলা যায়। কয়েক হাজার বছরের অর্থাৎ ভূতাল্পিক সময়ের বিচারে অপেক্ষাকৃত সাম্প্রতিক কালের ইতিহাস জানার জন্য এই পদ্ধতি অত্যন্ত গুরুত্বপূর্ণ ভূমিকা পালন করে। বিশেষ করে মানুষ এবং তার পূর্বপুরুষদের ফসিলের বয়স নির্ধারণে ব্যাপকভাবে রেডিও কার্বন ডেটিং পদ্ধতি ব্যবহার করা হয়।

সাধারণত আমরা প্রকৃতিতে যে কার্বনের কথা শুনি তার প্রায় সবটাই সুস্থিত আইসোটোপ কার্বন ১২। তবে খুবই সামান্য পরিমাণে হলেও অস্থিত কার্বন ১৪ এর অস্তিত্বও দেখতে পাওয়া যায় প্রকৃতিতে। কসমিক রেডিয়েশন বা বিচ্ছুরণের ফলে বায়ুমন্ডলে অনবরতই একটি নির্দিষ্ট হারে সুস্থিত নাইটজেন ১৪ থেকে এই কার্বন ১৪ তৈরি হতে থাকে। এই কার্বন ১৪ এর অর্ধ-জীবন হচ্ছে ৫,৭৩০ বছর, অর্থাৎ প্রতি ৫৭৩০ বছরে কার্বন ১৪ এর অর্ধেকাংশ তেজদ্ভিয় ক্ষয়ের মাধ্যমে নাইটজেন ১৪ এ রূপান্তরিত হয়। কার্বন ১৪ এর অর্ধ-জীবন এত ছোট যে, খুবই অলপ পরিমাণে হলেও ক্রমাগতভাবে নাইটজেন ১৪ থেকে কার্বন ১৪ তৈরি হতে না থাকলে প্রকৃতিতে এর অস্তিত বেশীদিন টিকে থাকতে পারতো না। যাই হোক, এর উৎপত্তি এবং ক্ষয়ের হার ধ্রুব হওয়ার কারণে প্রকৃতিতে কার্বন ১২ আর কার্বন ১৪ এর আনুপাতিক হার সব সময় সমান থাকে। এই দুই রকমের কার্বন আইসোটোপই বায়ুমন্ডলে রাসায়নিকভাবে অক্সিজেনের সাথে যুক্ত হয়ে কার্বন ডাই অক্সাইডে পরিণত হয়ে যায়। উদ্ভিদ তার খাদ্য তৈরির জন্য এই কার্বন ডাই অক্সাইড

গ্রহন করে, আর ওদিকে প্রাণীকুল গ্রহন করে উদ্ভিদকে তার খাদ্য হিসেবে, আবার তারাই হয়তো পরিণত হয় অন্য কোন প্রাণীর খাদ্যে। উদ্ভিদ যেহেতু কার্বন ১২ আর কার্বন ১৪ দিয়ে তৈরি উভয় কার্বন ডাই অক্সাইডই গ্রহন করে তাই সমগ্র ফুড চেইন বা খাদ্য শৃংখল জুড়েই এই দুই কার্বন আনুপাতিক হারে সমানভাবেই বিরাজ করে। বায়মন্ডল থেকে উদ্ভদে, উদ্ভিদ থেকে প্রাণীর দেহে সঞ্চারিত হয় এই কার্বন ১২ এবং কার্বন ১৪। কিন্তু এই চক্রের সব কিছুই বদলে যায় যেই মাত্র প্রাণী বা উদ্ভিদের মৃত্যু ঘটে, সে আর নতুন কোন কার্বন ১৪ গ্রহন করতে পারে না, তখন তার দেহে বিদ্যমান কার্বন ১৪ একটি নির্দিষ্ট হারে নাইটেজেন ১৪ এ রূপান্তরিত হতে থাকে। সুতরাং একটা মৃত জীবের দেহে কার্বন ১২ এর তুলনায় কার্বন ১৪ এর পরিমান আনুপাতিক হারে কমে যেতে শুক্ত করে। আর সে কারণেই ফসিলের দেহে বিদ্যমান কার্বন ১২ এবং কার্বন ১৪ এর এই আনুপাতিক হার হিসেব করে সহজেই তার বয়স নির্ধারণ করে ফেলা যায়। তবে রেডিও কার্বন ডেটিং পদ্ধতি দিয়ে শুধুমাত্র অপেক্ষাকৃত সাম্প্রতিক কালের ফসিলের বয়স নের করা সন্তব এই পদ্ধতিতে। আমরা আগেই দেখেছি, কার্বন ১৪ এর অর্ধ-জীবন ভূতাত্ত্বিক সময়ের অনুপাতে খুবই ক্ষদ্র, মাত্র ৫৭৩০ বছর (৬)। তাই, ৩০-৫০ হাজার বছরের চেয়েও পুরনো ফসিলে যে অতি সামান্য পরিমাণে কার্বন ১৪ বিদ্যমান থাকে তা দিয়ে আর যাই হোক সঠিকভাবে তার বয়স নির্ধারণ করা সন্তব নয়। তবে কয়েক হাজার বছরের ফসিলের ডেটিং এর জন্য এই পদ্ধতির জুড়ি মেলা ভার।

তাহলে দেখা যাছে যে. তেজষ্ক্রিয় পদার্থগুলোর এই সুনির্দিন্ট অর্দ্ধ-জীবনের ব্যাপারটি আমাদের সামনে শীলাস্তরের এবং ফসিলের বয়স বের করার এই অনবদ্য সুযোগের দরজাটি খুলে দিয়েছে। বহু আগে থেকেই ধারণা করে আসলেও ১৯২০ সালের দিকেই প্রথম তেজব্রিয় ডেটিং পদ্ধতি ব্যবহার করে দেখানো হয়েছিলো যে. পৃথিবীর বয়স কয়েকশো কোটি বছর(৭)। তারপর থেকে বিজ্ঞানীরা নানাভাবেই নানা রকমের তেজস্ক্রিয় পদ্ধতিতে ভূতাত্মিক বয়স নির্ধারণের উপায় বের করেছেন। আর শুধু তেজস্ক্রিয় ডেটিং ই তো নয়, এর সাথে সাথে আরও বিভিন্ন ধরণের আধুনিক পদ্ধতিও আবিষ্কার করা হয়েছে পৃথিবীর এই মহায়াত্রার সময়কাল নির্ধারণের জন্য। যেমন ধরুন, বিজ্ঞানীরা এখন জানেন যে, পৃথিবীর চৌম্বক ক্ষেত্র প্রায়শঃই তার দিক পরিবর্তন করে। 'প্রায়শঃ' বলতে আমাদের সাধারণ হিসেবে ন্য়, ভূতাত্ত্বিক বিশাল সময়ের তুলনায় 'প্রায়শঃই' বোঝানো হচ্ছে এখানে। গত এক কোটি বছরে পৃথিবী নাকি মোট ২৮২ বার উত্তর থেকে দক্ষিণে এবং দক্ষিণ থেকে উত্তরে তার চৌম্বক ক্ষেত্রের দিক পরিবর্তন করেছে(৫)। আর তার সাথে সাথে আমাদের পৃথিবীর অভ্যন্তরের আগ্নেয়গিরীর গলিত শীলার ভিতরের খনিজ পদার্থগুলোও কম্পাসের মতই দিক পরিবর্তন করে এবং তার একটা সুনির্দিষ্ট রেকর্ড রেখে দেয়। তারপর যখন এই লাভাগুলো শক্ত হয়ে শীলাস্তরে পরিণত হয় তখন এই রেকর্ডগুলো অবিকৃত অবস্থায় ওইভাবেই থেকে যায়। এ থেকেও ভূতত্ত্ববিদেরা অনেক শিলাস্তরেরই আপেক্ষিক বয়স নির্ধারণ করতে পারেন। এছাড়া আরও মজার মজার ধরণের কিছু ডেটিং পদ্ধতি রয়েছে, যেমন ধরুন, বড় বড় গাছের চারদিকে যে রিং বা বৃত্ত তৈরি হয় তার মাধ্যমেও উদ্ভিদের ফসিলের বা কাঠের বয়স বের করে ফেলা সম্ভব। বাৎসরিক বৃদ্ধির ফলে গাছের গোড়ায় যে স্তর বা বৃক্ষ-বৃত্তের সৃষ্টি হয় তা এক ধরণের প্রাকৃতিক নিয়ম মেনেই ঘটে, আর এর থেকেই বিজ্ঞানীরা হিসেব করে বের করতে পারেন তার বয়স। এরকম আরও বহু ধরণের ডেটিং পদ্ধতি রয়েছে, নীচের ছবিটিতে(৮) এরকম বিভিন্ন ধরণের ডেটিং পদ্ধতি এবং তাদের দিয়ে কোন কোন সময়ের সীমা নির্ধারণ করা যায় তার একটা সংক্ষিপ্ত তালিকা দেওয়া হল। এখন আর আমাদের একটি বা দু'টি ডেটিং পদ্ধতির উপর নির্ভর করে শীলাস্তর বা ফসিলের বয়স নির্ধারণ করার প্রয়োজন হয় না.

বিভিন্ন রেঞ্জের সময়ের জন্য বিভিন্ন ধরণের ডেটিং পদ্ধতি:

আমাদের হাতে আছে বহু রকমের পদ্ধতি যা দিয়ে কোন একটা ফলাফলকে বারবার বিভিন্নভাবে ক্রস চেক বা নিরীক্ষণ করে নিতে পারি। পদ্ধতিগুলো শুধু যে বৈজ্ঞানিক তাইই নয়, প্রয়োজন এবং গুরুত্ব অনুযায়ী বিজ্ঞানীরা এত রকমের পদ্ধতি ব্যবহার করেন যে, এর ফলাফলের সঠিকতা নিয়ে আর দ্বিমত বা সন্দেহ প্রকাশ করার তেমন অবকাশ থাকে না। খ্রিন্টীয় ধর্মাবলম্বী বিভিন্ন রক্ষণশীল দলগুলো এখনও যখন বাইবেলের সেই ছয় হাজার বছরের পৃথিবীর সৃষ্টির ইতিহাস নিয়ে হইচই করেন এবং এই ডেটিং পদ্ধতিগুলোকে ভুল বলে চালিয়ে দেওয়ার প্রচারণায় লিপ্ত হন তখন তাদের অজ্ঞতা দেখে স্তম্ভিত হয়ে যাওয়া ছাড়া আর কি বা করার থাকে? উট পাখীর মত বালিতে মাথা গুঁজে পড়ে থাকলেই তো আর

বাস্তবতাকে অস্বীকার করা যাবে না, সত্যকে মেনে নিয়ে জ্ঞানের সীমাকে প্রসারিত করাই হচ্ছে মানব সভ্যতার রীতি, এভাবেই আমরা এগিয়েছি, একটু একটু করে, সেই গুহাবাস থেকে আজকের এই সীমাহীন মহাজাগতিক এক আধুনিক ভবিষ্যতের দিগন্তরেখার দিকে।

References

- 1) C. Stringer and P. Andrews, The Complete World of Human Evolution, (2005) pg, 22; Thames and Hudson Ltd, London.
- 2) http://www.actionbioscience.org/evolution/benton.html
- 3)http://pubs.usgs.gov/gip/fossils/intro.html

- 4) Ridley, Mark (2004), Evolution, pg 526; BlackwellPublishing, Oxford, UK
- Dr. Douglus J Futuyma (2005), Evolution, pg.70 Sinauer Associates, INC, MA, USA
- Dr. Berra, M, Tim (1990), Evolution and the Myth of Creationism.pg 35 & 78. StanfordUniversity Press, Stanford, California
- ডঃ ম আখতারজ্জামান, (২০০২), বিবর্তনবাদ, পুঃ ১৮১। হাসান বুক হাউস, ঢাকা, বাংলাদেশ।
- http://www.enchantedlearning.com/subjects/Geologictime.html
- 5) Dawkins, Richard (2004), The Ancester's tale, pg 516-523; Houghton Miffin Company, NY, Boston: USA.
- 6) Dr. Berra, M, Tim (1990), Evolution and the Myth of Creationism.pg 36-37. Stanford University Press, Stanford, California
- 7) http://www.actionbioscience.org/evolution/benton.html
- 8) C. Stringer and P. Andrews, The Complete Wrold of Human Evolution, (2005) pg, 32; Thames and Hudson Ltd, London.