Thermodynamics I

Lecture 19

Energy Analysis of Cycles (Ch-4)

Example: A gas within a piston–cylinder assembly undergoes a thermodynamic cycle consisting of three processes in series, beginning at state 1 where $p_1 = 1$ bar, $V_1 = 1.5$ m³, as follows:

Process 1–2: Compression with pV = constant, $W_{12} = -104$ kJ, $U_1 = 512$ kJ, $U_2 = 690$ kJ.

Process 2–3: $W_{23} = 0$, $Q_{23} = -150$ kJ.

Process 3–1: $W_{31} = +50 \text{ kJ}.$

There are no changes in kinetic or potential energy. (a) Determine Q_{12} , Q_{31} , and U_3 , each in kJ. (b) Can this cycle be a power cycle? Explain

Example: A gas within a piston–cylinder assembly undergoes a thermodynamic cycle consisting of three processes in series, beginning at state 1 where $p_1 = 1$ bar, $V_1 = 1.5$ m³, as follows:

Process 1–2: Compression with pV = constant, $W_{12} = -104$ kJ, $U_1 = 512$ kJ, $U_2 = 690$ kJ.

Process 2–3: $W_{23} = 0$, $Q_{23} = -150$ kJ.

Process 3–1: $W_{31} = +50 \text{ kJ}.$

There are no changes in kinetic or potential energy. (a) Determine Q_{12} , Q_{31} , and U_3 , each in kJ. (b) Can this cycle be a power cycle? Explain

Process 1–2: Constant pressure,
$$p = 1.4$$
 bar, $V_1 = 0.028$ m³, $W_{12} = 10.5$ kJ

Process 2–3: Compression with pV = constant, $U_3 = U_2$

Process 3–1: Constant volume, $U_1 - U_3 = -26.4 \text{ kJ}$

There are no significant changes in kinetic or potential energy.

- (a) Sketch the cycle on a p–V diagram.
- **(b)** Calculate the net work for the cycle, in kJ.
- (c) Calculate the heat transfer for process 1–2, in kJ

Process 1–2: Constant pressure, p = 1.4 bar, $V_1 = 0.028$ m³, $W_{12} = 10.5$ kJ

Process 2–3: Compression with pV = constant, $U_3 = U_2$

Process 3–1: Constant volume, $U_1 - U_3 = -26.4 \text{ kJ}$

There are no significant changes in kinetic or potential energy. (a) Sketch the cycle on a p—V diagram.

Process 1–2: Constant pressure, p = 1.4 bar, $V_1 = 0.028$ m³, $W_{12} = 10.5$ kJ

Process 2–3: Compression with pV = constant, $U_3 = U_2$

Process 3–1: Constant volume, $U_1 - U_3 = -26.4 \text{ kJ}$

There are no significant changes in kinetic or potential energy. (b) Calculate the net work for the cycle, in kJ.

$$W_{\text{cycle}} = W_{12} + W_{23} + W_{31}.$$

$$W_{23} = \int_{V_2}^{V_3} p dV = \int_{V_2}^{V_3} \frac{const}{V} dV$$

$$= (p_2 V_2) \ln \left(\frac{V_3}{V_2}\right) = (p_2 V_2) \ln \left(\frac{V_1}{V_2}\right)$$

$$W_{\text{cycle}} = W_{12} + W_{23} + W_{31}$$
. $W_{12} = 10.5 \text{ kJ}$,

$$W_{23} = \int_{V_2}^{V_3} p dV = \int_{V_2}^{V_3} \frac{const}{V} dV$$

$$= (p_2 V_2) \ln \left(\frac{V_3}{V_2}\right) = (p_2 V_2) \ln \left(\frac{V_1}{V_2}\right)$$

$$W_{12} = \int_{V_1}^{V_2} p \, dV = p(V_2 - V_1)$$

$$V_2 = \frac{W_{12}}{p} + V_1 = 0.103 \text{ m}^3$$

$$W_{23} = (1.4 \text{ bar})(0.103 \text{ m}^3) \ln \left(\frac{0.028}{0.103}\right) \left|\frac{10^5 \text{N/m}^2}{1 \text{ bar}}\right| \left|\frac{1 \text{ kJ}}{10^3 \text{N·m}}\right| = -18.78 \text{ kJ}$$

$$W_{\text{cycle}} = 10.5 \text{ kJ} + (-18.78 \text{ kJ}) + 0 = -8.28 \text{ kJ}$$

Process 1–2: Constant pressure, p = 1.4 bar, $V_1 = 0.028$ m³, $W_{12} = 10.5$ kJ

Process 2–3: Compression with pV = constant, $U_3 = U_2$

Process 3–1: Constant volume, $U_1 - U_3 = -26.4 \text{ kJ}$

There are no significant changes in kinetic or potential energy.

(c) Calculate the heat transfer for process 1–2, in kJ

$$\Delta KE + \Delta PE + (U_2 - U_1) = Q_{12} - W_{12}$$

$$Q_{12} = (U_3 - U_1) + W_{12} = (+26.4 \text{ kJ}) + (10.5 \text{ kJ}) = 36.9 \text{ kJ}$$

Process 1–2: Constant pressure, p = 1.4 bar, $V_1 = 0.028$ m³, $W_{12} = 10.5$ kJ

Process 2–3: Compression with pV = constant, $U_3 = U_2$

Process 3–1: Constant volume, $U_1 - U_3 = -26.4 \text{ kJ}$

There are no significant changes in kinetic or potential energy.

(c) Calculate the heat transfer for process 1–2, in kJ

$$\Delta KE + \Delta PE + (U_2 - U_1) = Q_{12} - W_{12}$$

$$Q_{12} = (U_3 - U_1) + W_{12} = (+26.4 \text{ kJ}) + (10.5 \text{ kJ}) = 36.9 \text{ kJ}$$

Example: Energy Balance of Cycles

A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes:

Process 1-2: Compression with pV = constant, from p_1 = 1 bar, V_1 = 1.6 m³ to V_2 = 0.2 m³, U_2 – U_1 = 0

Process 2-3: Constant pressure to $V_3 = V_1$

Process 3-1: Constant volume, $U_1 - U_3 = -3549 \text{ kJ}$

There are no changes in K.E. and P.E. Determine the heat transfer and work for Process 2-3, in kJ. Is this a power cycle or a refrigeration cycle?