1	The title
2	First $Author^1$
3	¹ Wilhelm-Wundt-University
4	Course Title
5	Professor Name
6	Due Date
7	Author Note
8	
9	Enter author note here.
10	The authors made the following contributions. First Author: Conceptualization.
11	Correspondence concerning this article should be addressed to First Author,
12	Postal address. E-mail: my@email.com

The title

Table 1

Overview of the Included Papers for Hypothesis 1

Citation Study Design	Population	Research Ques- ions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Beilock et al. Experimental (2007)	Female college students E	Behavioral tasks	Stereotype threat, working memory effi- ciency	ANOVA	Reduced performance on high-demand problems under threat	Yes
Dunst et al. Experimental (2013)	58 secondary school students in Austria	EEG	Stereotype threat, neural efficiency, task performance	ANOVA	Higher cortical activation under threat	Partially
Forbes et al. Experimental (2015)	58 participants (25 White, 33 minorities)	EEG	DMN phase-locking, error estimates, self-doubt	Regression models	DMN phase-locking may mitigate stereo- type threat effects	Yes

Table 1 continued

Citation Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Forbes et al. Experimental (2008)	57 minority undergradu- ates	EEG	ERN, Pe, task performance	Repeated measures analysis	Smaller ERN amplitudes under threat	Partially
Jończyk et al. Experimental (2022)	23 female undergraduates in US	EEG	Creativity, alpha power	Repeated measures ANOVA	Increased alpha power after threat	Partially
Krendl et al. Experimental (2008)	28 female un- dergraduates	fMRI	Neural activation, math	Mixed-model ANOVA	Increased vACC activation, decreased cognitive region activation under threat	Partially

Table 1 continued

Citation	Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Mangels et al. (2012)	Prospective	68 partici- pants	EEG	Math performance, ERP responses, learning success	ANOVA	LPP and learning success link more pronounced under threat	Partially
Wu and Zhao (2021)	Experimental	48 female undergraduates in China	RS-fMRI	RSDC of brain regions	Mixed-effect analysis	Increased RSDC in DMN areas, de- creased in cerebel- lum and hippocam- pus	Partially

Note. This table summarizes studies investigating neural activation patterns under stereotype threat. The 'Variables' column focuses on brain areas and networks of interest, such as the amygdala, prefrontal cortex, default mode network, and salience network. 'Methods of Data Analysis' includes neuroimaging techniques like fMRI and EEG. 'Results' highlight changes in neural activation patterns related to stereotype threat.

Table 2

Overview of the Included Papers for Hypothesis 2

Citation Study Design	Research Quartion tions	es- Methods of Dat Variables Analysis	a Results	Hypothesis confirmed
Guardabassi and Cross-sectional Tomasetto (2020)	176 primary school chil- N-back task dren	BMI, stereotype threat, working memory Mixed-effects models	zBMI negatively correlated with working memory under threat	Partially
Hirnstein et al. Factorial (2014)	136 participants (66 Cognitive tests male, 70 female)	Stereotype threat, sex, group composi- ANOVA tion, cognitive performance	Performance decreased on 4W and perceptual speed under threat	Weakly

Table 2 continued

Citation	Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Jordano and Touron (2017)	Experimental	120 female un- dergraduates	OSPAN task, mind-wandering probes	Stereotype threat, mind- wandering, task performance	ANOVA	Increased mind-wandering, decreased math performance under threat	Partially
Krendl et al. (2008)	Experimental	28 female undergraduates	fMRI	Neural activation, math	Mixed-model ANOVA	Increased vACC activation, decreased cognitive region activation under threat	Yes

Table 2 continued

Citation	Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Lin et al. (2023)	Cross-sectional	153 female un- dergraduates	Spatial perspective- taking, executive function tests	Stereotype threat, executive function, spatial performance	ANCOVA, mediation analysis	Decreased performance, impaired inhibition and updating under threat	Partially
Rydell et al. (2014)	Experimental	340 undergraduates across 3 experiments	Executive function tasks, math tests	Stereotype threat, executive function, math performance	ANOVA, mediation analysis	Impaired inhibition and updating, decreased math performance under threat	Mostly

Table 2 continued

Citation Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Ståhl et al. Experimental (2012)	335 students across 3 exper- iments	Stroop task, math task	Stereotype threat, regulatory focus, cognitive control	ANOVA	Initial increase then decrease in cognitive control under threat (prevention focus)	Mostly
Wister et al. Experimental (2013)	92 female undergraduates	Stroop test, SAT-like math test	Menstruation threat, cognitive performance	MANOVA	$\begin{array}{ccc} Impaired & Stroop \\ performance & under & menstruation \\ threat & & & \end{array}$	Partially

Table 2 continued

Citation Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Wulandari and Hen- Experimental drawan (2020)	168 undergraduates (91 female)	Letter fluency test	Stereotype threat activation, gender, task difficulty	ANOVA	No significant effects of threat on performance	No

Note. This table presents studies examining cognitive control processes under stereotype threat. The 'Variables' column includes both cognitive processes (e.g., inhibition, updating, shifting) and related performance measures. 'Methods of Data Analysis' specifies cognitive tasks used, such as the Stroop task, n-back task, or task-switching paradigms. 'Results' emphasize changes in cognitive control performance under stereotype threat conditions.

Table 3

Overview of the Included Papers for Hypothesis 3

Citation Study Design	Research Population tions	Ques- Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Bedyńska et al. Cross-sectional (2020)	319 male sec- Working a ondary school tasks students	Chronic stereo- type threat, working mem- ory, language achievement	Mediation analysis	Stereotype threat negatively impacted working memory ca- pacity	Yes
Bedyńska et al. Cross-sectional (2018)	624 female secondary Working reschool stu-tasks dents	Chronic stereo- type threat, working memory, math achieve- ment	Mediation analysis	Working memory mediated stereo- type threat and math achievement	Yes

Table 3 continued

Citation Study Design	Population	Research Ques- ions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Beilock et al. Experimental (2007)	lege students	netic task	Stereotype threat, working memory effi- ciency	ANOVA	Reduced performance on high-demand problems under threat	Yes
Brown and Experimental Harkins (2016)	73 female un- SA dergraduates	ART, math test	Stereotype threat, SART framing, mind- wandering	ANOVA	Support for mere effort account, not working memory impairment	No
Guardabassi and Cross-sectional Tomasetto (2020)	176 primary school chil- N- dren		BMI, stereotype threat, working memory	Mixed-effects models	zBMInegativelycorrelatedwithworkingmemoryunder threat	Yes

Table 3 continued

Citation Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis confirmed
Hutchison et al. Experimental (2013)	187 men	Stroop task, OSPAN	Working memory capacity, stereotype threat, Stroop performance	Regression analysis	Stroop effect larger under threat for low WMC individuals	Partially
Jamieson and Experimental Harkins (2007)	224 undergraduates across 4 experiments	Saccade tasks, N-back task	Stereotype threat, task type, cognitive load	ANOVA	Support for mere effort account in most conditions	Mostly No
Johns et al. Experimental (2008)	176 participants across 3 experiments	Working memory task, math test	Stereotype threat, emotion regulation, work- ing memory	ANOVA, mediation analysis	Working memory impaired under threat, mediated math performance	Yes

Table 3 continued

Citation Study Design	Population	esearch Ques- ons	Variables	Methods of Data Analysis	Results	Hypothesis con-firmed
Pennington et al. Experimental (2019)	university	nti-saccade ask, math task	Stereotype condition, task performance	ANOVA	No significant effects of threat on performance	No
Rydell et al. Experimental (2009)	57 female un-	lowel counting ask, math prob-	Gender stereo- type, college student stereo- type, working memory	ANOVA, mediation analysis	Working memory capacity mediated stereotype effects on math performance	Yes
Schmader et al. Experimental (2009)	188 partici- Re pants across 2 experiments	eading Span est	Stereotype threat, anxiety, working memory	Regression analysis	Anxiety predicted lower working memory under stereotype threat	Partially

Table 3 continued

Citation	Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis con-firmed
Schmader and Johns (2003)	r Experimental	159 undergraduates across 3 experiments	OSPAN, math test	Stereotype threat, working memory capacity, math performance	ANCOVA, mediation analysis	Working memory capacity reduced under threat, mediated math performance	Yes
Tine and Gotlieb (2013)	Experimental	71 undergrad- uates	Math test, working memory test	Multiple stereo- type threats, math and work- ing memory performance	ANOVA	Working memory impaired under various stereotype threats	Yes

Table 3 continued

Citation	Study Design	Population	Research Questions	Variables	Methods of Data Analysis	Results	Hypothesis con- firmed
Van Loo and Rydell (2013)	Experimental	131 female undergraduates	Letter-memory task, math test	Power prime, stereotype threat, working memory	ANOVA, mediation analysis	High power prime protected working memory from stereotype threat effects	Mostly

Note. This table outlines studies investigating working memory impairment under stereotype threat. The 'Variables' column focuses on working memory measures and associated performance indicators. 'Methods of Data Analysis' details specific working memory tasks employed, such as complex span tasks, operational span tasks, or reading span tests. 'Results' highlight changes in working memory capacity and performance under stereotype threat.

14 Methods

We report how we determined our sample size, all data exclusions (if any), all manipulations, and all measures in the study.

17 Participants

18 Material

19

HELLO WORLD

This is the anova result: F(2, 27) = 4.85, MSE = 0.39, p = .016.

21 Procedure

22 Data analysis

We used R (Version 4.4.1; R Core Team, 2024) and the R-packages *citr* (Version 0.3.2; Aust, 2019), *kableExtra* (Version 1.4.0; Zhu, 2024), *papaja* (Version 0.1.2.9000; Aust & Barth, 2023), *RefManageR* (Version 1.4.0; McLean, 2017), *rmarkdown* (Version 2.27; Xie et al., 2018, 2020), and *tinylabels* (Version 0.2.4; Barth, 2023) for all our analyses.

27 Results

28 Discussion

29 References

- Aust, F. (2019). Citr: 'RStudio' add-in to insert markdown citations.
- https://github.com/crsh/citr
- Aust, F., & Barth, M. (2023). papaja: Prepare reproducible APA journal articles with R
- 33 Markdown. https://github.com/crsh/papaja
- Barth, M. (2023). tinylabels: Lightweight variable labels.
- https://cran.r-project.org/package=tinylabels
- McLean, M. W. (2017). RefManageR: Import and manage BibTeX and BibLaTeX
- references in r. The Journal of Open Source Software.
- 38 https://doi.org/10.21105/joss.00338
- ³⁹ R Core Team. (2024). R: A language and environment for statistical computing. R
- Foundation for Statistical Computing. https://www.R-project.org/
- ⁴¹ Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R markdown: The definitive guide.
- 42 Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown
- ⁴³ Xie, Y., Dervieux, C., & Riederer, E. (2020). R markdown cookbook. Chapman;
- 44 Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook
- ⁴⁵ Zhu, H. (2024). kableExtra: Construct complex table with 'kable' and pipe syntax.
- https://CRAN.R-project.org/package=kableExtra

Table 4

Hypothesis	Query
Hypothesis 1	SELECT * FROM papers WHERE hypothesis = 1