Introduction to R for Epidemiologists

Jenna Krall, PhD

Thursday, March 5, 2015

Simple linear regression:

$$E(y|x) = \beta_0 + \beta_1 x$$

where

- \blacktriangleright E(y|x) is the expectation or mean of y
- β_0 is the intercept, E(y|x) when x=0
- $ightharpoonup eta_1$ is the slope, the change in E(y|x) for a one unit change in x

Assumptions

- 1. Linearity
- 2. Independence
- 3. Normality
- 4. Equal variances

```
library(dplyr)
diab <- read.csv("diabetes.csv")
diab <- dplyr::select(diab, chol, weight, glyhb, diab1, gender)
diab <- diab[complete.cases(diab), ]
head(diab)</pre>
```

```
##
    chol weight glyhb diab1 gender
## 1
    203
          121 4.31
                      0 female
## 2
    165
          218 4.44 0 female
## 3
    228
          256 4.64
                      0 female
## 4 78
          119 4.63
                      0
                        male
## 5 249
          183 7.72
                     1 male
## 6
    248
          190 4.81
                        male
```

```
ggplot(diab, aes(x = weight, y = glyhb)) + geom_point() +
    xlab("Weight (pounds)") + ylab("Glycosolated Hemoglobin") +
    ggtitle("Glycosolated Hemoglobin vs. Weight") +
    theme_bw() + theme(title = element_text(size = 10)) +
    geom_smooth(method = "lm", se = F)
```



```
lm1 <- lm(glyhb ~ weight, data = diab)
summary(lm1)$coef</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.918552481 0.500749206 7.825379 4.908947e-14
## weight 0.009315444 0.002750545 3.386763 7.799073e-04
```

```
ggplot(diab, aes(x = weight, y = diab1)) + geom_point() +
    xlim(c(0, 400)) + xlab("Weight (pounds)") +
    ylab("Diabetes status") + ggtitle("Diabetes status vs. Weight") +
    theme_bw() + geom_smooth(method = "lm", se = F, fullrange = T)
```


Simulated data

Simulated data

```
size1 <- 10
alpha1 <- 0.3
g1 <- ggplot(dat, aes(x = x, y = y)) + geom_point() +
    theme_bw() + ylab("Probability") + xlab("Predictor")
g1 + geom_line(aes(x = -12), color = "blue", alpha = alpha1, size = size1)</pre>
```


Simulated data

g1 + geom_line(aes(x = -9), color = "blue", alpha = alpha1, size = size1)

Simulated data

g1 + geom_line(aes(x = 0), color = "blue", alpha = alpha1, size = size1)

Simulated data

g1 + geom_line(aes(x = 5), color = "blue", alpha = alpha1, size = size1)

Simulated data

$$logit(E(y|x)) = \beta_0 + \beta_1 x$$
$$logit(p) = \beta_0 + \beta_1 x$$

- Recall that when y is binary (1 or 0), E(y|x) is simply the probability (e.g. of diabetes)
- ► Logit is the (natural) log odds
 - Recall: odds = p/(1-p)
 - So log(odds) = log(p/(1-p))

- \triangleright β_0 is the "left hand side" when x=0
 - ▶ For linear regresion: "left hand side" is mean outcome
 - ► For logistic regression: "left hand side" is log odds of outcome
- $ightharpoonup eta_1$ is the change in "left hand side" for a one unit change in x
 - ► For linear regression: E(y|x=1) E(y|x=0)
 - ▶ For logistic regression: logit(p|x = 1) logit(p|x = 0)
 - For logistic regression: difference in log odds of outcome for a unit change in x
 - ► The log odds ratio is the same as the difference in log odds
 - $ightharpoonup eta_1$ still quantifies the association between x and y

```
glm1 <- glm(diab1 ~ gender, data = diab, family = "binomial")</pre>
glm1
##
## Call: glm(formula = diab1 ~ gender, family = "binomial", data = diab)
##
## Coefficients:
## (Intercept) gendermale
##
      -1.7415 0.0551
##
## Degrees of Freedom: 387 Total (i.e. Null); 386 Residual
## Null Deviance:
                       330.8
## Residual Deviance: 330.7 AIC: 334.7
summary(glm1)$coef
```

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.74149763 0.1859204 -9.3668982 7.469540e-21
## gendermale 0.05509868 0.2863107 0.1924437 8.473947e-01
```

 β_0

$$\beta_0 + \beta_1$$

 β_1

 \blacktriangleright β_0 is the log odds of diabetes for females

```
# Restrict data to females
female <- filter(diab, gender == "female")
# Find proportion of diabetics among females
prop.table(table(female$diab1))

##
## 0 1
## 0.8508772 0.1491228

p1 <- prop.table(table(female$diab1))[2]
# Compute odds
fodds <- p1 / (1 - p1)</pre>
```

• β_0 is the log odds of diabetes for females

```
# Compute log odds
log(fodds)

## 1
## -1.741498

# Same as regression!
glm1$coef

## (Intercept) gendermale
## -1.74149763 0.05509868
```

 \triangleright $\beta_0 + \beta_1$ is the log odds for males

```
# Restrict data to males
male <- filter(diab, gender == "male")
# Find proportion of diabetics among males
prop.table(table(male$diab1))

##
## 0 1
## 0.84375 0.15625

p1 <- prop.table(table(male$diab1))[2]
# Compute odds
modds <- p1 / (1 - p1)</pre>
```

• $\beta_0 + \beta_1$ is the log odds for males

```
# Compute log odds
log(modds)

## 1
## -1.686399

# Same as regression!
glm1$coef[1] + glm1$coef[2]

## (Intercept)
## -1.686399
```

- \triangleright β_1 is the difference in log odds of diabetes comparing males to females
- \triangleright β_1 is the log odds ratio of diabetes comparing males to females

```
# Compute difference in log odds
log(modds) - log(fodds)
## 1
```

0.05509868

 $\qquad \mathsf{Recall} \; log(a) - log(b) = log(a/b)$

```
log(modds / fodds)
```

0.05509868

```
# Log odds ratio
log(modds / fodds)

## 1
## 0.05509868

# Same as regression!
glm1$coef[2]

## gendermale
## 0.05509868
```

We generally are not interested in log odds or log odds ratios, so exponentiate results from logistic regression:

```
# Odds for females
fodds
##
## 0.1752577
exp(glm1$coef[1])
## (Intercept)
     0.1752577
##
# Odds for males
modds
##
## 0.1851852
exp(glm1$coef[1] + glm1$coef[2])
  (Intercept)
     0.1851852
```

We generally are not interested in log odds or log odds ratios, so exponentiate results from logistic regression:

```
# Odds ratio comparing males to females
modds / fodds

## 1
## 1.056645

exp(glm1$coef[2])

## gendermale
## 1.056645
```

Confidence intervals

- confint in R computes confidence intervals on the LOG scale!
- We need to exponentiate the lower and upper bounds to get the confidence interval for the odds or odds ratio

Confidence intervals

```
exp(glm1$coef)

## (Intercept) gendermale
## 0.1752577 1.0566449

exp(confint(glm1))

## 2.5 % 97.5 %

## (Intercept) 0.1197137 0.2486991
## gendermale 0.5981188 1.8459350
```

Inference

Is gender associated with diabetes?

```
▶ Null hypothesis: \beta_1 = 0
```

▶ Alternative hypothesis: $\beta_1 \neq 0$

```
summary(glm1)$coef
```

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.74149763 0.1859204 -9.3668982 7.469540e-21
## gendermale 0.05509868 0.2863107 0.1924437 8.473947e-01
```

```
confint(glm1)
```

```
## 2.5 % 97.5 %
## (Intercept) -2.1226520 -1.3915117
## gendermale -0.5139659 0.6129859
```

Since 0 falls within the 95% confidence interval for the log odds ratio, we fail to reject the null hypothesis that the log odds ratio is equal to 0.

Inference

Is gender associated with diabetes?

- ▶ Null hypothesis: $OR = exp(\beta_1) = 1$
- Alternative hypothesis: $OR = exp(\beta_1) \neq 1$

exp(confint(glm1))

```
## 2.5 % 97.5 %
## (Intercept) 0.1197137 0.2486991
## gendermale 0.5981188 1.8459350
```

Since 1 falls within the 95% confidence interval for the odds ratio, we fail to reject the null hypothesis that the odds ratio is equal to 1.

Multiple logistic regression

```
glm2 <- glm(diab1 ~ gender + chol + weight, data = diab, family = "binomial")
glm2
##
## Call: glm(formula = diab1 ~ gender + chol + weight, family = "binomial",
##
      data = diab)
##
## Coefficients:
## (Intercept) gendermale
                                  chol
                                           weight
##
    -6.273769 0.007973
                              0.012363 0.010276
##
## Degrees of Freedom: 387 Total (i.e. Null); 384 Residual
## Null Deviance:
                      330.8
## Residual Deviance: 305.2 ATC: 313.2
```

Multiple logistic regression

summary(glm2)\$coef

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.273769295 0.998715467 -6.28183853 3.345923e-10
## gendermale 0.007973252 0.298553803 0.02670625 9.786940e-01
## chol 0.012362651 0.003144352 3.93170056 8.434709e-05
## weight 0.010275624 0.003492660 2.94206226 3.260344e-03
```

Multiple logistic regression: interpretation

Text

▶ β₀

 \triangleright β_1 (gender)

 \triangleright β_2 (chol)

 \triangleright β_3 (weight)

Multiple logistic regression: interpretation

- 1. What is the odds ratio of diabetes comparing males to females, adjusting for weight and cholesterol?
- 2. What is the odds ratio of diabetes corresponding to a 1 pound increase in weight, controlling for gender and cholesterol?

Multiple logistic regression: interpretation

```
exp(glm2$coef["gendermale"])

## gendermale
## 1.008005

exp(glm2$coef["weight"])

## weight
## 1.010329
```

Confidence interval and inference

Is weight associated with diabetes, after controlling for cholesterol and gender?

▶ Null hypothesis: $\beta_3 = 0$

▶ Alternative hypothesis: $\beta_3 \neq 0$

summary(glm2)\$coef

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.273769295 0.998715467 -6.28183853 3.345923e-10
## gendermale 0.007973252 0.298553803 0.02670625 9.786940e-01
## chol 0.012362651 0.003144352 3.93170056 8.434709e-05
## weight 0.010275624 0.003492660 2.94206226 3.260344e-03
```

For a hypothesis test with $\alpha = 0.05$, since the p-value is less than 0.05, we reject the null hypothesis that the log odds ratio is equal to 0.

Confidence interval and inference

Is weight associated with diabetes, after controlling for cholesterol and gender?

- ▶ Null hypothesis: $\beta_3 = 0$
- ▶ Alternative hypothesis: $\beta_3 \neq 0$

confint(glm2)

```
## 2.5 % 97.5 %
## (Intercept) -8.316662724 -4.38806199
## gendermale -0.585330243 0.58975335
## chol 0.006321040 0.01870552
## weight 0.003391084 0.01715061
```

Since 0 does not fall within the 95% confidence interval for the log odds ratio, we reject the null hypothesis that the log odds ratio is equal to 0.

Confidence interval and inference

Is weight associated with diabetes, after controlling for cholesterol and gender?

- ▶ Null hypothesis: $OR = exp(\beta_3) = 1$
- ▶ Alternative hypothesis: $OR = exp(\beta_3) \neq 1$

exp(confint(glm2))

```
## 2.5 % 97.5 %
## (Intercept) 0.0002444102 0.01242479
## gendermale 0.5569219117 1.80354351
## chol 1.0063410600 1.01888157
## weight 1.0033968404 1.01729853
```

Since 1 does not fall within the 95% confidence interval for the odds ratio, we reject the null hypothesis that the odds ratio is equal to 1.

Conclusions

- ▶ Logistic regression is used for a *binary* outcome
- ► Coefficients from logistic regression are log odds and log odds ratios
- Results from R need to be exponentiated to report the odds and odds ratios