第二章 随机变量及其分布

专	lk	学号	姓名 	_ 分数
	W. W. D.T. W. H. L. D. D.			
		题,每小题 4 分,共 20 >コロ Ma		, ,
1.				······()
			(C) 标准正态分布.	
2.		•		2)=:····()
	•	,	(C) 1/3.	•
3.	_	_		则 $P(Y < 1.16)$ 的概率
				()
	(A) 0.8.	(B) 0.2.	(C) 0.16.	(D) 0.4.
4.				$\sim N(0,3^2), \ p_j = P(-1 <$
	$X_j < 1$), $j = 1, 2, 3$,	则 p_1 , p_2 和 p_3 的大小	关系为:	••••••()
	(A) $p_1 < p_2 < p_3$.	(B) $p_1 < p_3 < p_2$.	(C) $p_3 < p_1 < p_2$	(D) $p_3 < p_2 < p_1$
5.	已知一强地震发生	后 48 小时内还会发生	3级以上余震的次数	X 服从参数为 4 的泊松
				生3级以上余震的次数
				()
	(A) 0.3.	(B) 0.5.	(C) 0.4.	(D) 0.7.
=	、填空题 (共 5 小是	题,每小题4分,共2	0分)	
1.	设随机变量 X 服从	泊松分布,且 $P(X = $	$1) = P(X = 2), \emptyset P(X)$	=4)=
2.	设随机变量 X 服人	人正态分布 $N(\mu, \sigma^2)$.	求 <i>X</i> 落在区间 (<i>μ</i> – 2	$(\sigma, \mu + 2\sigma)$ 内的概率为
	•			- 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7
3.	———— 设 <i>E</i> (x)与 <i>E</i> (x)分别	引是随机变量 X , 和 X 。	的分布函数,为了使得	$f(x) = aF_1(x) - bF_2(x)$
				$\Gamma(w) = \Gamma(w) = \Gamma(w)$
	乃未一随机文里的 分	分布函数,则 <i>a</i> =		
1	设体特刑随机亦导	V 的脚家家鹿 与 <i>f(:.</i>)		
4.	以 仁	A 即佩宇宙皮/ソ∫(X)	$=\frac{A}{(1+x)^2}(x>0), \text{M} A=$	·
5.	设随机变量 X 的分	·布律为 $P(X=k)=\frac{1}{2}$	$\frac{1}{k}(k=1,2,\ldots), \Leftrightarrow Y=$	$\sin(\frac{\pi}{2}X), \vec{\mathfrak{R}} \ P(Y=0)$
			•	

三、(本题20分)已知随机变量的分布律如下:

\overline{X}	-1	0	$\pi/6$
概率	0.3	p	0.3

求: (1) 未知量 p, X 的分布函数 F(x). (2) 随机变量 $Y = |\sin(X)|$,求 $Y \ge 0.5$ 的概率

四、(本题20分)本学期某门课周一早上 8:30 上课,某同学从宿舍出发到达该门课教室所需的时间 X 服从正态分布 N(15,25) (单位: min).

- (1) 求他能在10 分钟内到达教室的概率.
- (2) 已知该同学周一早上8:20 出发,现在是8:25,求他8:30 之前到达教室的概率.
- (3) 本学期这门课一共18 周,他每周一早上8:20 出发,不考虑放假调休等因素,本门课迟到不超过1次的概率.

五、(本题20分)设随机变量X的密度函数为

$$f(x) = \begin{cases} a - |x|, & |x| \le 2, \\ 0, & others \end{cases}$$

用 "分布函数法" 求随机变量 $Y = X^2 + 1$ 在区间 [1,5] 上的密度函数 $f_Y(y)$.