学	院	
	•	•
班	级	
- 9		
学	몽	
4		
姓	名	

东北大学研究生院考试试卷 (A/闭卷) 2017—2018 学年第 1 学期 课程名称: 数值分析

一. 简答题 (每题6分,共48分)

1. 已知x=6.732认具有 5 位有效数字,问由此计算 $f(x)=x^3+4x^2-10$ 至少具有几位有效

3. 写出矩阵
$$A = \begin{pmatrix} 2 & 4 & -2 \\ 3 & 5 & 3 \\ 1 & 4 & 2 \end{pmatrix}$$
 的 $Crout$ 分解式 $A = TM$.
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & -1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

3 对给出简化 Newton 迭代法的收敛性条件并加以证明

(本题 12 分) 设有线性方程组 Ax = b 的迭代格式 $Bx^{(k+1)} + Cx^{(k)} = b$, $k = 0,1,\cdots$

即 3<1.,7<1 建筑性格式收敛

三. (本題 15分) 设 f(x) 在区间 [a,b] 上有 4 阶连续导数。

1. 求一个次数不超过 3 次的多项式 p(x) ,使 p(x) 满足

$$p(a) = f(a), p(b) = f(b), p'(a) = f'(a), p'(b) = f'(b)$$

2. 证明 $R(x) = f(x) - p(x) = \frac{f^{(4)}(\xi_x)}{4!} (x-a)^2 (x-b)^2, \xi_x \in (a,b)$ 且与x有关.

学	院
<	

班 级

学号

姓名

四 (本题 15分)已知求解常微分方程初值问题:

$$\begin{cases} y' = f(x, y), & x \in [a, b] \\ y(a) = \alpha \end{cases}$$

的差分公式:

$$y_{n+1} = y_n + \frac{h}{4}(k_1 + 3k_2)$$

$$k_1 = f(x_n, y_n)$$

$$k_2 = f(x_n + \frac{2}{3}h, y_n + \frac{2}{3}hk_1)$$

$$y_0 = \alpha$$

- 1. 证明: 此差分公式是二阶方法
- 2. 讨论此差分公式的收敛性.
- 3. 用此差分公式求解初值问题 y' = -10y, y(0) = 1 时, 取步长 h = 0.25, 所得数值制 程序,为什么?

ķ,

分	- (1-3)	- (4-5)	- (6-8)			四	五
		981	2 (8)	5	Ē	2.67	

4. 公定富贵数据

x_i	1	. 0	1	2
<i>y</i> ₁	1	-1	0	. 2

武求形如
$$y = a + bx^3$$
 的报合曲线.
 $y = (1, 1, 1, 1)^7$ $y = (-1, 0, 1, 8)^7$ $y = (1, -1, 0, 2)^7$ $y = (1, 1, 1, 1)^7$ $y = (-1, 0, 1, 8)^7$ $y = (1, -1, 0, 2)^7$ $y = (1, 0, 1, 8)^7$ $y = (1, 0, 1, 8)$

入man 为 Q Q m 就特化直 11 Q 11 = 「入max = 2

 6. 对积分 $\int_0^1 f(x)$ 办 建立两点 Gauss 公式

7. 设求积公式 $\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k), (n \ge 3)$ 是插值型求积公式,求 $\sum_{k=0}^n A_k x_k^3$.

8. 利用复化 Simpson 公式 S_2 计算定积分 $I=\int_0^1 cosx dx$ 的近似值,并估计误整

五.证明题(本题10分)

设A 是n阶非奇异矩阵,B 是n阶奇异矩阵,试证明

$$Cond(A) \ge \frac{\|A\|}{\|A-B\|}$$