CS70-Spring 2022 — Disc00b Solutions

lam thai nguyen

January 24, 2025

Collaborators: NONE

1. Propositional Practice

- (a) $(\exists x \in \mathbb{R})(x \notin \mathbb{Q})$ is true with $x = \sqrt{2}$
- (b) $(\forall x \in \mathbb{Z})(x \in \mathbb{N} \lor x \le 0)$ is false with x = 0
- (c) Let P(x) be "x is divisible by 6", Q(x) be "x is divisible by 2", R(x) be "x is divisible by 3". We have $P(x) \Longrightarrow Q(x) \lor R(x)$ that is true because 2 and 3 are factors of 6.
- (d) For all x in the set of integers, x is in the set of rational numbers, which is true because \mathbb{Z} is a proper subset of \mathbb{Q} .
- (e) For all x in the set of integers, if x is divisible by 2 or x is divisible by 3 is true, then x is divisible by 6, which is false with x = 2.
- (f) For all x in the set of natural numbers, if x is greater than 7, then there exists a and b in the set of natural numbers such that the sum of a and b is equal to x, which is true with x = 8, a = b = 4.

2. Truth Tables

(a) The two proposition forms are not logically equivalent.

\overline{P}	Q	$P \wedge (Q \vee P)$	$P \wedge Q$
T	T	T	T
T	F	T	F
F	T	F	F
F	F	F	F

(b) The two proposition forms are logically equivalent.

P	Q	R	$(P\vee Q)\wedge R$	$(P \wedge R) \vee (Q \wedge R)$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

(c) The two proposition forms are logically equivalent.

P	Q	R	$(P \wedge Q) \vee R$	$(P\vee R)\wedge (Q\vee R)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	T
F	T	F	F	F
F	F	T	T	T
F	F	F	F	F

3. Implication

N.B. An implication $P \Longrightarrow Q$ is only false when P is true and Q is false.

- (a) $\forall x \forall y P(x, y) \Longrightarrow \forall y \forall x P(x, y)$ is true.
- (b) $\forall x \exists y P(x,y) \Longrightarrow \exists y \forall x P(x,y)$ is false with the predicate P(x,y) being "the number x is greater than y".
- (c) $\exists x \forall y P(x,y) \Longrightarrow \forall y \exists x P(x,y)$ is true (source: StackExchange).