1. Máquinas de Turing

1.1 Considere a máquina de Turing

$$\mathcal{F} = (\{0, 1, 2, 3, 4, 5, 6, 7, 8\}, \{a, b\}, \{a, b, \Delta\}, \delta, 0, 8, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(1, a, D)	(1, b, D)	$(2, \Delta, E)$
2	$(3, \Delta, D)$	$(5, \Delta, D)$	$(8, \Delta, D)$
3			(4, a, D)
4	(4, a, D)	(4, b, D)	(7, a, E)
5			(6,b,D)
6	(6, a, D)	(6,b,D)	(7, b, E)
7	(7, a, E)	(7, b, E)	$(2, \Delta, E)$

- a) Represente a máquina de Turing $\mathcal T$ através de um grafo.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}ab)$; e a partir da configuração $(0, \underline{\Delta}baa)$?
- c) Indique informalmente o comportamento de \mathcal{T} , quando a configuração inicial é $(0, \underline{\Delta}u)$, onde u é uma palavra de $\{a, b\}^*$.
- **1.2** Considere a máquina de Turing $\mathcal{T} = (\{0,1,2\},\{a,b\},\{a,b,\Delta\},\delta,0,2,\Delta)$, onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0	(0, a, C)	(0,b,E)	$(1, \Delta, D)$
1	(1, a, D)		$(2, \Delta, C)$

- a) Indique a sequência de configurações que podem ser computadas a partir de $(0, \underline{\Delta}aab)$.
- b) Indique uma palavra $u \in \{a, b, \Delta\}^*$ tal que, a partir da configuração $(0, \underline{u})$ pode ser computada uma configuração de:
 - i) paragem;
 - ii) ciclo;
 - iii) aceitação;
 - iv) rejeição.
- c) Descreva informalmente o comportamento de \mathcal{T} quando a configuração inicial é (0, u), onde u é uma palavra sobre $\{a, b, \Delta\}$.
- **d)** Calcule a linguagem reconhecida por \mathcal{T} .

1.3 Considere a seguinte máquina de Turing \mathcal{T} de alfabeto de entrada $A = \{a, b\}$,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta abbbabaa)$.
- **b)** Identifique a linguagem reconhecida por \mathcal{T} .
- 1.4 Construa máquinas de Turing que reconheçam cada uma das seguintes linguagens:
 - a) ab^*a^+ , sobre o alfabeto $\{a,b\}$.
 - **b)** $\{a^nb^{2n} \mid n \in \mathbb{N}_0\}$, sobre o alfabeto $\{a,b\}$.
 - c) $\{a^nb^{2n}a^n \mid n \in \mathbb{N}_0\}$, sobre o alfabeto $\{a,b\}$.
 - **d)** $\{a^m b^n \mid m, n \in \mathbb{N}_0, m < n\}$, sobre o alfabeto $\{a, b\}$.
 - e) $\{a^nb^{mn} \mid m, n \in \mathbb{N}_0\}$, sobre o alfabeto $\{a, b\}$.
 - f) $\{a^mbc^n: m+n \text{ \'e par}\}$, sobre o alfabeto $\{a,b,c\}$.
 - **g)** $\{wcw^I \in A^* \mid w \in \{a, b\}^*\}$, sobre o alfabeto $\{a, b, c\}$.
 - h) $\{abab^2ab^3\cdots ab^na: n \ge 1\}$, sobre o alfabeto $\{a,b\}$.
- **1.5** Mostre que, para toda a máquina de Turing $\mathcal{T} = (Q, A, T, \delta, i, f, \Delta)$, existe uma máquina de Turing \mathcal{T}' que reconhece a mesma linguagem que \mathcal{T} , e tal que \mathcal{T}' nunca rejeita uma palavra (ou seja, para qualquer palavra $w \in A^*$, \mathcal{T}' aceita w ou a configuração inicial $(i, \Delta w)$ associada a w é uma configuração de ciclo).
- **1.6** Dada uma máquina de Turing \mathcal{T} , defina uma máquina de Turing \mathcal{T}_{aba} tal que:

 \mathcal{T} aceita a palavra vazia $\epsilon \Longleftrightarrow \mathcal{T}_{aba}$ aceita a palavra aba.

1.7 Considere a seguinte máquina de Turing \mathcal{M} de alfabeto de entrada $A = \{a, b\}$,

- a) Identifique a linguagem reconhecida pela máquina \mathcal{M} .
- b) Identifique a linguagem reconhecida pela máquina $\mathcal{M} \longrightarrow \mathcal{T}$, onde \mathcal{T} é a máquina de Turing do Exercício 1.3.
- **1.8** Construa uma máquina de Turing $\mathcal{T} = (Q, A, T, \delta, i, f, \Delta)$, com alfabeto de entrada $A = \{a, b\}$, que insira uma letra $x \in A$ na célula onde o cursor está posicionado: ou seja, em rigor, que seja capaz de efetuar a computação

$$(i, u\underline{v}) \stackrel{*}{\longrightarrow} (f, u\underline{x}v)$$

para quaisquer palavras $u \in T^*$ e $v \in A^*$.

1.9 Considere a seguinte máquina de Turing \mathcal{T} de alfabeto de entrada $A = \{a, b\}$,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta babba)$.
- b) Identifique o domínio D da função parcial $g:A^*\to A^*$ calculada por $\mathcal{T}.$
- c) Para cada palavra $u \in D$, determine a palavra g(u).
- **1.10** A seguinte máquina de Turing calcula uma função g de $\{a,b\}^*$ para $\{a,b\}^*$:

Dada uma palavra $u \in \{a, b\}^*$, descreva a palavra g(u).

1.11 Indique máquinas de Turing que calculem cada uma das seguintes funções:

$$\mathbf{a}) \quad g: \quad \{a,b\}^* \quad \longrightarrow \quad \{1\}^*$$

$$u \quad \longmapsto \quad 1^{|u|_a}$$

$$\begin{array}{cccc} \mathbf{e}) & g: & \mathbb{N}_0 & \longrightarrow & \mathbb{N}_0 \\ & n & \longmapsto & 2n \end{array}$$

$$f) \ g: \ \mathbb{N}_0 \longrightarrow \{0, 1, 2\}$$

$$n \longmapsto r, \text{ onde } n \equiv r \pmod{3}$$

c)
$$g: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$

$$n \longmapsto \begin{cases} 1 & \text{se } n = 3 \\ 0 & \text{senão.} \end{cases}$$

$$\mathbf{g}) \quad g: \quad \mathbb{N}_0 \quad \longrightarrow \quad \mathbb{N}_0$$

$$n \quad \longmapsto \quad \begin{cases} \frac{n}{2} & \text{se } n \neq \text{par} \\ n.d. & \text{senão} \end{cases}$$

$$\mathbf{d}) \quad g: \quad \mathbb{N}_0 \quad \longrightarrow \quad \mathbb{N}_0$$

$$\quad n \quad \longmapsto \quad n+2$$

$$\mathbf{h}) \quad p_2: \qquad \mathbb{N}_0^3 \quad \longrightarrow \quad \mathbb{N}_0$$
$$(n_1, n_2, n_3) \quad \longmapsto \quad n_2$$

- **1.12** Sejam \mathcal{T}_f , \mathcal{T}_g e \mathcal{T}_h máquinas de Turing que calculam funções $f: \mathbb{N}_0^2 \longrightarrow \mathbb{N}_0$ e $g, h: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ respetivamente. Mostre que as seguintes funções são ainda computáveis:
 - a) $[funç\~ao\ composta]$ $g \circ h: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ $n \longmapsto g(h(n))$
- d) [função troca de variáveis] $t: \mathbb{N}_0^2 \longrightarrow \mathbb{N}_0$ $(n,m) \longmapsto f(m,n)$
- **b**) $[funç\~ao\ soma]$ $g+h: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ $n \longmapsto g(n) + h(n)$
- e) [função identificação de variáveis] $i: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ $n \longmapsto f(n,n)$
- c) [função mínimo] $\min(g,h): \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ $n \longmapsto \min(g(n),h(n))$
- f) [função parametrização da $2^{\underline{a}}$ variável] $f_k: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ $n \longmapsto f(n,k), \text{ onde } k \in \mathbb{N}_0$
- **1.13** A máquina de Turing \mathcal{T} seguinte, com alfabeto de entrada $A = \{1\}$, calcula a função característica χ_L de uma linguagem L sobre A.

- a) Indique as configurações de \mathcal{T} que podem ser computadas a partir de $(0, \underline{\Delta}111)$.
- **b)** Indique, justificando, o valor de $\chi_L(1111)$.
- c) Diga qual é a linguagem L. Justifique.
- d) Diga, justificando, qual é a linguagem reconhecida por \mathcal{T} .
- e) Modifique a máquina \mathcal{F} de forma a obter uma máquina de Turing que reconheça L.

- **1.14** Considere a linguagem $L = (ba)^*b^+$ sobre o alfabeto $A = \{a, b\}$.
 - a) Construa uma máquina de Turing \mathcal{T} que calcule a função característica χ_L de L.
 - b) Indique a sequência de configurações de \mathcal{T} que podem ser computadas a partir da configuração $(i, \underline{\Delta}bab^3)$, onde i é o estado inicial de \mathcal{T} .
 - c) Qual é a linguagem reconhecida por \mathcal{T} ? Justifique.
- **1.15** Seja $A = \{a, b\}$ e seja $\mathcal T$ a seguinte máquina de Turing sobre A com duas fitas,

$$(a,a)/(a,a),(E,C)$$

$$(a,\Delta)/(a,a),(D,D) \qquad (a,\Delta)/(a,\Delta),(E,C)$$

$$(b,\Delta)/(b,\Delta),(D,C) \qquad (b,a)/(b,\Delta),(E,E)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(D,D) \qquad (\Delta,\Delta)/(\Delta,\Delta),(E,E)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(C,C) \qquad (\Delta,\Delta)/(\Delta,\Delta),(C,C)$$

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta abbaba, \Delta)$ e diga se a palavra abbaba é aceite por \mathcal{T} .
- **b)** Identifique a linguagem reconhecida por \mathcal{T} .
- **1.16** Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

Identifique a linguagem reconhecida por \mathcal{T} .

1.17 Considere a seguinte linguagem sobre o alfabeto $\{a, b\}$,

$$L = \{a^m b^n a^m : 1 \le n \le m\}.$$

Construa uma máquina de Turing com duas fitas que reconheça L.

 $\mathbf{1.18}$ Construa uma máquina de Turing \mathcal{T} , com duas fitas, que calcule a função

$$g: \mathbb{N}_0^2 \longrightarrow \mathbb{N}_0$$

 $(m,n) \longmapsto 2m+n.$

1.19 Considere a máquina de Turing não-determinista

$$\mathcal{T} = (\{q_0, q_1, q_2, q_3\}, \{1\}, \{1, \Delta\}, \delta, q_0, q_3, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	1	Δ
q_0	Ø	$\{(q_1, \Delta, D)\}$
q_1	Ø	$\{(q_1, 1, D), (q_2, \Delta, E)\}$
$ q_2 $	$\{(q_2, 1, E)\}$	$\{(q_3, \Delta, C)\}$

Indique o comportamento de \mathcal{T} a partir da configuração inicial $(q_0, \underline{\Delta}u)$ associada a uma palavra $u \in \{1\}^*$.

- 1.20 Seja \mathcal{T} a máquina de Turing do exercício anterior e sejam:
 - $\mathcal{T}_{\text{copiar}}$ a máquina de Turing capaz de copiar uma palavra, ou seja, de transformar o conteúdo da fita de Δu em $\Delta u \Delta u$;
 - $\mathcal{T}_{\text{mult}}$ a máquina de Turing capaz de multiplicar dois números, ou seja, de transformar o conteúdo da fita de $\underline{\Delta}1^m\Delta1^n$ em $\underline{\Delta}1^{mn}$;
 - \mathcal{T}_{igual} a máquina de Turing capaz de testar a igualdade entre palavras, ou seja, começando com a fita em $\underline{\Delta}u\Delta v$, atinge uma configuração de aceitação se e só se u=v.

Considere a seguinte máquina de Turing não-determinista.

Qual é a linguagem que esta máquina de Turing reconhece?

1.21 Seja

$$L = \{1^n : n > 1 \text{ \'e um natural n\~ao primo}\}.$$

Usando a ideia do exercício anterior, construa uma máquina de Turing que reconheça a linguagem L.

- **1.22** Prove que a linguagem $L = \{wa^n : w \in A^*, n \in \mathbb{N}_0, |w|_b = n\}$ sobre o alfabeto $A = \{a, b\}$ é recursiva.
- **1.23** Suponha que L_1, \ldots, L_k são linguagens recursivamente enumeráveis que formam uma partição de A^* . Mostre que cada L_i é uma linguagem recursiva.
- 1.24 Esboce uma prova de que, se L_1 e L_2 são linguagens recursivamente enumeráveis, então L_1L_2 e L_1^* são também recursivamente enumeráveis, construindo máquinas de Turing não-deterministas que aceitem estas linguagens.

Universidade do Minho

Folha 7

 ${f 1.25}\,$ Mostre que existe uma linguagem L tal que nem L nem \overline{L} são recursivamente enumeráveis.

- 1.26 Seja L uma linguagem sobre um alfabeto A. Indique quais das situações seguintes são possíveis e quais são impossíveis.
 - a) $L \in \overline{L}$ são recursivas.
 - b) $L \in \overline{L}$ são recursivamente enumeráveis.
 - c) L e \overline{L} são recursivamente enumeráveis, mas nenhuma delas é recursiva.
 - d) L é recursiva e \overline{L} é recursivamente enumerável mas não recursiva.
 - e) L é recursivamente enumerável e \overline{L} não é recursivamente enumerável.

1.27 Seja \mathcal{T} a máquina de Turing

que transforma uma dada palavra sobre o alfabeto $\{a,b\}$ numa outra em que a primeira ocorrência da letra a (caso exista) é substituída por b. Codifique a máquina \mathcal{T} .

1.28 Desenhe a máquina de Turing codificada por:

$$x^2yx^2yxyx^3yxyx^3y^2\ x^3yx^2yx^3yx^2yx^3y^2\ x^3yx^3yx^3yx^3y^2\ x^3yxyx^4yxyx^2y^2\ x^4yx^2yx^5yx^2yx^3y^2\ x^4yx^3yx^6yx^3yx^3y^2\ x^5yxyx^7yx^2yx^2y^2\ x^6yxyx^7yx^3yx^2y^2\ x^7yx^2yx^2y^2\ x^7yx^3yx^7yx^3yx^2y^2\ x^7yxyxyxyxyy^2$$

- **1.29** Dê exemplos de palavras u sobre $\{x,y\}$ tais que u não é codificação de uma máquina de Turing.
- 1.30 Desenhe a parte da máquina de Turing universal \mathcal{T}_U que é responsável por modificar as 3 fitas e por recolocar o cursor nas posições adequadas, depois da operação de procura ter identificado o quíntuplo correto na fita 1. Por exemplo, a configuração

$$\Delta xxyxyxxxyxyxxxyxxxyxxxyxxxyxxxyxxyxxy \cdots$$

$$\Delta xyxxy\underline{x}xyxxxy\Delta \cdots$$

$$\Delta xxx\Delta \cdots$$

seria transformada em

$$\Delta \underline{x} x x x \Delta \cdots$$