Variant 11

$$AF=(Q, \sum, \delta, q_0, F),$$

$$Q = \{ q_0, q_1, q_2, q_3 \},$$

$$\sum = \{ a, b, c \}, F = \{ q_3 \}.$$

$$\delta (q_0, a) = q_1,$$

$$\delta (q_1, b) = q_2,$$

$$\delta (q_2, c) = q_0,$$

$$\delta (q_1, a) = q_3,$$

$$\delta (q_0, b) = q_2,$$

$$\delta (q_2, c) = q_3.$$

As we can see, this automaton is non-deterministic (NFA) because it has 2 transitions from current state (q_2) on a single input (c).

NFA transition table:

	a	b	c
-> q ₀	q_1	q2	-
\mathbf{q}_1	q_3	q_2	-
\mathbf{q}_2	-	-	q_0q_3
*q ₃	-	-	-

NFA graph:

DFA transition table:

	a	b	c
-> q ₀	q_1	q2	-
q ₁	q_3	q_2	-
\mathbf{q}_2	-	-	q_0q_3
*q3	-	-	-
*q ₀ q ₃	q_1	q_2	-

Analytical representation:

DFA =
$$(Q, \Sigma, \delta, q_0, F)$$

$$Q=\{q_0,\,q_1,\,q_2,\,q_3,\,q_0q_3\}$$

$$\Sigma = \{a,\,b,\,c\},\,F = \{q_3,\,q_0q_3\}$$

$$\delta(q_0,\,a)=q_1$$

$$\delta(q_0, a) = q_2$$

$$\delta(q_1, a) = q_3$$

$$\delta(q_1, b) = q_2$$

$$\delta(q_2, c) = q_0 q_3$$

$$\delta(q_0q_3,\,a)=q_1$$

$$\delta(q_0q_3,\,b)=q_2$$

DFA graph:

