

<110> Ni et al.

<120> 31 Human Secreted Proteins

<130> PZ034P1

<140> Unassigned

<141> 2000-05-05

<150> PCT/US99/26409

<151> 1999-11-09

<150> 60/108,207

<151> 1998-11-12

<160> 115

<170> PatentIn Ver. 2.0

<210> 1

<211> 733

<212> DNA

<213> Homo sapiens

<400> 1

gggatccgga	gcccaaatct	tctgacaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	60
aattcggagg	tgcaccgtca	gtcttcctct	tccccccaaa	acccaaggac	accctcatga	120
tctcccgac	tcctgaggtc	acatgcgtgg	tggtggacgt	aagccacgaa	gaccctgagg	180
tcaagttcaa	ctggtagctg	gacggcgtgg	aggtagctaa	tgccaagaca	aaggccgcggg	240
aggagcagta	caacagcactg	taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	300
ggctgaatgg	caaggagtagc	aagtgcagg	tctccaacaa	agccctccca	acccccatacg	360
agaaaaaccat	ctccaaagcc	aaagggcagc	cccgagaacc	acaggtgtac	accctgcccc	420
catcccgsga	tgagctgacc	aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	480
atccaagcga	catcgccgtg	gagtgggaga	gcaatgggca	gccggagaac	aactacaaga	540
ccacgcctcc	cgtgctggac	tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	600
acaagagcag	gtggcaggcag	gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
gactctagag	gat					733

<210> 2

<211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> Site

<222> (3)

<223> Xaa equals any of the twenty naturally occurring L-amino acids

<400> 2

Trp Ser Xaa Trp Ser

1

5

<210> 3

<211> 86
<212> DNA
<213> Homo sapiens

<400> 3
gcccctcgag atttccccga aatcttagatt tcccccggaaat gatttccccg aaatgatttc
cccgaaaatat ctgccatctc aattag

60
86

<210> 4
<211> 27
<212> DNA
<213> Homo sapiens

<400> 4
gcggcaagct ttttgcaaag cctaggc

27

<210> 5
<211> 271
<212> DNA
<213> Homo sapiens

<400> 5
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tcccccggaaat gatttccccg
aaataatctgc catctcaatt agtcagcaac catagtccccg cccctaactc cgcccatccc
gcccctaact ccgcccagtt ccgcccattc tccgccccat ggctgactaa ttttttttat
ttatgcagag gcccggccg cctccggctc tgagctattc cagaagttagt gaggaggctt
ttttggaggc ctaggctttt gcaaaaagct t

60
120
180
240
271

<210> 6
<211> 32
<212> DNA
<213> Homo sapiens

<400> 6
gcgctcgagg gatgacagcgt atagaacccc gg

32

<210> 7
<211> 31
<212> DNA
<213> Homo sapiens

<400> 7
gcgaagcttc gcgactcccc ggatccgcct c

31

<210> 8
<211> 12
<212> DNA
<213> Homo sapiens

<400> 8
ggggactttc cc

12.

<210> 9
<211> 73
<212> DNA
<213> Homo sapiens

<400> 9
gccccctcga ggggactttc ccggggactt tccggggact ttccggact ttccatcctg
ccatctcaat tag

60
73

<210> 10
<211> 256
<212> DNA
<213> Homo sapiens

<400> 10
ctcgagggga ctttccccgg gactttccgg ggactttccg ggactttcca tctgccatct
caattagtca gcaaccatag tcccgcctt aactccgccc atcccccccc taactccgccc
cagttccgccc catttcgc cccatggctg actaattttt tttattttatg cagaggccga
ggccgcctcg gcctctgagc tattccagaa gtatgtggaa ggctttttttagg gaggcctagg
cttttgcaaa aagctt

60
120
180
240
256

<210> 11
<211> 723
<212> DNA
<213> Homo sapiens

<400> 11
cactcattag gcaccccaagg ctttacactt tatgcttccg gctcgatgt ttttgtggaaat
tgtgagcggtaaacaatttca acacagggaaac agctatgacc atgattacgc caagctctaa
tacgactcac tatagggaaa gctggtaacgc ctgcaggtac cggtccggaa ttcccggtc
gacccacgcg tccgcagggaa agcagttAAC cagcgcagtc ctccgtgcgt cccggccgc
gctgcctca ctcccgccca ggatggcata ctgtctggcc ctgcgcatgg cgctgctgct
ggtctccggg gttctggccc ctgcggtgct cacagacgt gttccacagg agcccggtcc
cacgctgtgg aacgagccgg ccgagctgccc gtcggggagaa ggcccccgtgg agagcaccag
ccccggccgg gagcccggtgg acaccggtcc cccagcccccc accgtcgcgc caggaccggaa
ggacagcacc gcgcaggagc ggctggacca gggcgccggg tcgctgggc ccggcgctat
cgccggccatc gtgatcgccg ccctgctggc cacctgcgtg gtgctggcgc tcgtggtcgt
cgcgctgaga aagttttctg cctctgaag cgaataaaagg ggccgcggccc ggccgcggcg
cgactcggca aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
aaa

60
120
180
240
300
360
420
480
540
600
660
720
723

<210> 12
<211> 870
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (743)
<223> n equals a,t,g, or c

<400> 12
ggcacgagca gatattaaat ctcacagaaa ggtgttcctt attaatcttt aaaaaattgt

60

cattccccg gtgaagccaa tttacattaa aaataatgtt cagaaaatgc tgctgcctgc	120
tttcctcctt cttttaccca ccccttgttc tcccagcaat ctgcgcctg tatgtttatg	180
tggacaattt ctattgtAAC atttcctcatt ccattaactc tgccctctcc tctgaggggg	240
gaaaataaaaa cccttaaatgg ctctaatagt tatgtatTTT attttgcttc agaggTTTCC	300
aaacttctgc tttagcttc cttttcaCTG ggacAAATGG atgtAAGTTA tttccAGTT	360
tcctgaaaaaa taatcagggA ctatTTTCTT catctatCTC aggtgctca tgaggTTTCTT	420
aagatattaa ttacggTTTC catacattCA gaatcaAGGG actcacGGAT atggTACTGT	480
gttcaCTGCT acacAGAGTT tttagaaaa AAAAATTCTT ttatTTTAT CTTCTATTTG	540
tatccAAACG atggtaAAAC AAAATTCTC tttagCTAGG tactGGGATT TTTCTTAA	600
gaaataCTAA tagAGTTACA aaggTTAGCT tatAGGTAGA caaaAGACTG GCGGCCAAAC	660
agAGCAGTGG gtgAAATGGG tccCTGGGTG acatGTCAGA tCTTTGTACG taatTTAAAAA	720
tattgtggca gGATTAATAG canaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	780
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	840
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaactc	870

<210> 13
<211> 926
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (10)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (15)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (18)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (80)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (921)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (925)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (926)
<223> n equals a,t,g, or c

<400> 13

gcgcggcgn taaantngt gcccattccct agagtcttca ttatgaaaat atcaataaat	60
atttcattag ttacattt actctggtat aaaatgaaac tttaaaaat aagtgaaatg	120
gatgatttcc cagtggagt atgtcaacag tcttaagatc attgccagat ttcataaaat	180
attnaagtat ttgaaaaaga aacaataatgt cttcataactt tagggaaacg aatacmctgt	240
ataccttctg tacaatgtt tgtgtttca ttgttacact ttggggttt acttttgc	300
tgtgaccat gttgggcatt ttatataat caacaactaa atctttgcc aaatgcacgc	360
ttgccttttta ttcttaata tatgataata acgagcaaaa ctggtagat ttgcataaa	420
atggttctga aaggtaagag gaaaacagac ttggaggtt gttagttt gaatttctga	480
cagagataaa gtagttaaa atctctcgta cactgataac tcaagctttt cattttctca	540
tacagttgtt cagatthaac tgggaccatc agttttaaac ttgtgtcaag ctaactaata	600
atcatctgtt ttaagacgca agattctgaa tttaacttta tataaggata gatacatctg	660
ttgtttcttt gtatttcagg aaagggtgata gtatgtttt ttgataactga taaatattga	720
attgattttt tagttattt ttatcatttt ttcaatggag tagtataggc ctgtgttttgc	780
ttctttttat gaatgaaaaa attagtataa agtaataaat gtcttatgtt acccaagaaaa	840
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	900
aaaaaaaaaaaa aaaaaaaaaaaa naaann	926

<210> 14
<211> 1308
<212> DNA
<213> Homo sapiens

<400> 14

ccgtttctt gaagcagctg gaagtcctgg atagttccca cctgaaagtc tgtttgc	60
ggcaatgcgc actcaggcac cagagggcag aggggctcaa gttccagggt tttaaggtgc	120
ttgaaactcc caggagccctg qcaaaccttc atccagaacc tcttcctcaa gcaagacaaa	180
aagctgctaa gcactgctcc ctccgctct gtgaagagac cagttctaa cagacgggtgc	240
cgggctgacc cccccatcatg ccaggctggc tcaccctccc cacactctgc cggttccccc	300
tttgggcctt caccatcttc cacaagccc aaggagaccc agcatccac ccggggccccc	360
actacctctt gccccccatc cacgaggctca ttcaactctca tcgtgggccc acggccacgc	420
tgcctgcgt cttgggcacc acgcctccca gctacaagggt ggcgtggagc aaggtggagc	480
ctggggagct cggggaaacg ctgatccctca tcaccaacgg actgcacgccc cgggggtatg	540
ggccccctggg agggcgcgc aggatgcgga gggggcatcg actagacgccc tcctggtca	600
tcgcggcggt ggcctggag gacgaggccc ggtaccgctg cgagctccatc aacggcatcg	660
aggacgagag cgtggcgctg accttgagct tggagggtgt ggtttcccg taccaaccca	720
gccccggcccg gtaccaggcc aattactacg aggcgaaagca ggcgtgcgag gacgaggacg	780
gacgcctggc cacctactcc cagctctacc aggcttggac cgagggtctg gactgggtgt	840
acgcgggctg gctgctcgag ggctccgtgc gtcaccctgt gtcaccgcga cgcccccgt	900
gccccggcccg agggccggccc gggatccgcga gtcacggacc cgcgcaccgg atgcgcgacc	960
gctacgacgc ctctgtcttc acctccgcgc tggcgggcca agtgttcttc gtccccggcc	1020
ggctgacgct gtctgaagcc cacgcggcgt gcccggcagc cggcgcgtg gtggccaagg	1080
ttgggcaccc ctacgcgc tggaaagttt cggggctaga ccagtgcgcac ggccggctggc	1140
tggctgcacgg cagtgtgcgc ttcccaatca ccacgcgcagc gccgcgtgc ggggggctcc	1200
cgatcccccgg agtgcgcagt ttgcgttcc ccaggccccca acaggcagcc tatgggrccct	1260
astgtacgc cgagaattag ggcgcaccgc ttccctcc agcgcgcgc	1308

<210> 15
<211> 2136
<212> DNA
<213> Homo sapiens

<400> 15

gaattcggca cgagccagta actctgcgag gagtcgctgt agcgcctgct cagggccatc	60
ctgggtacac catgggttcc caggcttcag tagagaatgg atgtaccagg catgacttca	120
ttccctgtcc tggagggtg gagggccctt gtcctaggc tgagtgcgtga gttccaagggg	180

<210> 16
<211> 4129
<212> DNA
<213> *Homo sapiens*

<400> 15
ccacgcgtcc gcttttctc aggatgaata ttttcctggc cgactcattg atccttgta 60.
caaataaact tctggagac ccagagagag gaaaacacag gagaatttga gcgatgtac 120.
tacatcaaat accactactc ctcagcaacc atccccagga acctcacttt caatatcagc 180.
aagaccatcc gtcaggatga gtggcatgcc ctacacctgc gcagaatgac ggctggcttc 240.
atgggcatgg cggtggccat catcctcttt ggctggatca tcggcgtgct gggctgctgc 300.
tgggaccggag gccttatgca gtacgtggca ggctgcttt cctcatggga gggaaaaacag 360.
tggaaattaaa gagtgctgc cccagccccgg cagggtgaag taggatgggg aaaaacgttct 420.
caccagacccc tgggacttct atgctgcagc atcgtgacct gagggtgga tgcatgtggc 480.
acagctcttt gaggcaaagg ccccgatgct ctgtggacag cctcaggctt gggatggatt 540.
tggcagttag gaaatttattg taacagaaga aagtcatcca agatgcctga ggaaagaaaa 600.
cttcaatttga gccagccggc tggaaaatgt ggccaagaaa acccgagaga ccaatgttcg 660.
gaggagaaaa ccagaaaagag gggcctgcct ggcccccttg atccctttag gccgattccg 720.
tggacatttc tgctcctcac gccggcagcc tcttttgagt acctcaatttgc cagttctccag 780.
accctcaccct cgcaggcatt cctgggttcgg tggcccaatgc ggtcacagtc atggatcctc 840.
tgcagagcag tagaaagtgcg ggagggggccc gtggccatgg tcagggaaagg agcggcagga 900.
ggaaaagagga gcatgagaac tcagaagaaaa ttgtacccatc tcagatgtgg agtgaggata 960.

gacgttccca gattcaaagg catcatgaag tgtcatgaca agatagaaaa gactttgggc	1020
tggccaagaa ggaactggat aaaattatga gtgaggtaca gcaggtggga acagtgtcac	1080
tgaaccctat caacagcaga gcatgagaac gtgaattccct gctgctgggg aggcaatgaa	1140
atgatatggg ctttcagat tctatgaatc ctgaccacc gcgggtgcca gtttcaaga	1200
gggttccca tcaaataattg tgcgcaaagg atggatggat gaaaggaaga gtgagccaat	1260
aaacgagggaa acgcccggaa aggccgcctc aagccggtgg gccctggcac ccccacccgtc	1320
cctgagcatc gagccgggtc ccgcggccgc cccgaaactggc cccgcgcgc tcgcagcccc	1380
gcggcggaaac ccgaggggcg cggcagcggt tccttgaacg agccggggaa tctggaggga	1440
gcacacagga aaggcagagc cgccgagctgg accagccgtg caaatctcta gaagatgacg	1500
gtgttcttta aaacgcttcg aaatcactgg aagaaaacta cagctggct ctgcctgctg	1560
acctggggag gccattggct ctatggaaaa cactgtgata acctccctaag gagagcagcc	1620
tgtcaagaag ctcaggttgg tggcaatcaa ctcattccctc ccaatgcaca agtgaagaag	1680
gccactgttt tctcaatctc gcagcttgca aaggaaaagc caggactcta ttggaaaaaa	1740
atgctgcccatttttacatttatactggcat ggatgtgact attgtaaagac agattatgag	1800
ggacaagcca agaaaactcct ggaactgtatg gaaaacacgg atgtatcat ttttgcagga	1860
ggagatgggaa cactgcagga ggtttaact ggttcttc gacgaacaga tgaggctacc	1920
ttcagtaaga ttcccatgg atttatccca ctgggagaga ccagtagttt gagtcataacc	1980
ctctttgcgg aaagtggaaa caaagtccaa cataattactg atgcccacact tgccattgt	2040
aaaggagaga cagttccact tgatgtcttgcagatcaagg gtgaaaagga acagcctgt	2100
tttgcataatgc cccgccttcg atggggatct ttcagagatg ctggcgtcaa agttagcaag	2160
tactggatc ttgggcctct aaaaatcaaa gcagccact ttttcagcac tcttaaggag	2220
tggcctcaga ctcatcaagc ctctatctca tacacggac ctacagagag acctcccaat	2280
gaaccagagg agaccctgt acaaaggcct tctttgtaca ggagaatatt acgaaggcct	2340
gcgtcctact gggcacaacc acaggatgcc ctttcccaag aggtgagccc ggaggcttgg	2400
aaagatgtgc agctgtccac cattgaactg tccatcacaa cacggataa tcagcttgc	2460
ccgacaagca aagaagattt tctgaatatc tgcatgttgc ctgacaccat cagcaaagga	2520
gactttataa ctataggaag tcgaaagggtg agaaacccca agctgcacgt ggagggcabc	2580
gagtgtctcc aagccagcca gtgcactttg ttatcccgg agggagcagg gggctttttt	2640
agcattgaca gtgaggagta tgaagcgtat cctgtggagg taaaactgtt ccccaggaag	2700
ctgcagttct tctgtatcc taggaagaga gaacagatgc tcacaagccc cacccagtga	2760
gcagcagaag acaagcactc tgagaccaca ctttaggcca ccgggtggac caaaaggaa	2820
caggtgcctc agccatccca acagtgtcgt cagagggtcc ccaggccatt ttcatggcaa	2880
gtaccctctc gccccactc cagcagtgtc tcccaaagtg tgctctgtca cctgcttgc	2940
aatcggttcc cattagcgtca ttgtttatgg tgggtgtgac gttggccctc ctaaacacgg	3000
actttccatca ggctgggtca agacggaaaa ggactttctt ctgtttctt ccaaagtgc	3060
accacagtgg agagcccacg gtggcttag cttgcctagg cccttcatt tctttcttt	3120
gaccgtgtca ggaattccag gaaagtgcatt tctgcctctg gtgacctttt cctatgtcta	3180
ggctccatca caggtgtgc tattttgtga gtcgggctc ctgttagct ttatattcag	3240
ttctaacctc agtccagaaa cataatgtgag ttgtttccc tcttcagcca cggctacaat	3300
accggaaaaat gctagttttt atttattttt ttaagtagtg cttcctaaat ggtttgcatt	3360
agagccaccc ggggtacatg ttgaaaactt atttgggttc taccctaaac ctaataaccc	3420
aaatttgggg atggggccca ggaatatgca tttttaaaaaa gtcatctgccc cttccaggt	3480
gattctgtaa ttgtccctc aactgtactt ggagaaaatcg ttgtttaaag cagtagtcca	3540
caaagtattc tgctcatgtg cccctaaaag tattttgaaa aatcatgtat accctcacc	3600
atctaagttt atatctaaaa ttatctaa ttgtgtatct aaaatttttc atggaaagtt	3660
aaatagttga caaaatgtt atttgttgtt gtcgtgtaaa tattgttatt taaaataaa	3720
aactgttaca tcactatcc aaacatatcc agtacaattt aaatatcaca acaatttgac	3780
acccttcatt catttataaa aataaatgag ctgtttctt agtagtaaa catttcaaat	3840
tggctttctt ctttctgtat ttccatcca cttttcagcc aagaatctta tcataatgt	3900
atctattatg cccgacatct ttatctaa ttccatcca ttacttctgtt caacaaaaaa	3960
tataaatggaa aattttttttt tttagtcttgc ctttaagtgt ttgtttgtta tctcagtc	4020
gaaccaatata ttcgttattt aatttttgtt atataatgaa aacggatttta attcttggat	4080
gattaaaaatg ttatctttttttaa gaatgttaaa aaaaaaaaaa aaaaaaaaaa	4129

<212> DNA
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (2045)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (2107)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (2117)
 <223> n equals a,t,g, or c

<400> 17

tcgaccacg	cgtccggact	ctggggccca	ctcaatctgt	ttctctcacg	cacactttgt	60
ctctggggca	cccaggccctt	ccctgccatg	cgacacctgtca	gtgtctggca	gtggagcccc	120
tgggggctgc	tgctgtgcct	gctgtgcagt	tcgtgcttgg	ggtctccgtc	cccttccacg	180
ggccctgaga	agaaggccgg	gagccagggg	cttcgggttcc	ggctggctgg	ctttcccagg	240
aagccctacg	agggcccgcgt	ggagatacag	cgagctgggt	aatggggcac	catctgcgat	300
gatgacttca	cgctgcaggc	tgcccacatc	ctctgcccggg	agctgggctt	cacagaggcc	360
acargctgga	cccacagtgc	caaatatggc	cctggaaacag	gccgcacatcg	gctggacaac	420
tttagctgca	gtgggaccga	gcagagtgtg	actgaatgtg	cctcccccggg	ctgggggaaac	480
agtgactgt	cgcacgatga	ggatgctggg	gtcatctgca	aagaccagcg	cctccctggc	540
ttctcgact	ccaatgtcat	tgaggtagag	catcacctgc	aagtggagga	ggtgcgaatt	600
cgaccggccg	ttgggtgggg	cagacgaccc	ctgcccgtga	cggaggggct	ggtggaaagtc	660
aggcttcctg	acggctggtc	gcaagtgtgc	gacaaaaggct	ggagcggccca	caacagccac	720
gtggctcg	ggatgctggg	cttccccagc	aaaaagaggg	tcaacgcggc	cttctacagg	780
ctgtctagccc	aacggcagca	acactccctt	ggtctgcatg	gggtggcgtg	cgtgggcacg	840
gaggcccacc	tctccctctg	ttccctggag	ttctatctgt	ccaatgacac	cgccaggtgc	900
cctgggggggg	gcccctgcagt	ggtgagctgt	gtgccaggcc	ctgtctacgc	ggcatccagt	960
ggccagaaga	agcaacaaca	gtcgaaggcct	cagggggagg	cccgtgtccg	tctaaagggc	1020
ggcgcacc	ctggagaggg	ccgggttagaa	gtcctgaagg	ccagcacatg	gggcacagtc	1080
tgtgaccgc	agtgggacct	gcatgcagcc	agcgtgggt	gtcgggagct	gggttccggg	1140
agtgctcgag	aagctctgag	tggcgctcgc	atggggcagg	gcatgggtgc	tatccacctg	1200
agtgaagttc	gctgctctgg	acaggagctc	tccctctgg	agtgcacccca	caagaacatc	1260
acagctgagg	attgttcaca	tagccaggat	gccgggggtcc	ggtgcaacct	accttacact	1320
ggggcagaga	ccaggatccg	actcagtggg	ggccgcagcc	aacatgaggg	gcgagtcgag	1380
gtgcaaata	ggggacctgg	gcccccttcgc	tggggcctca	tctgtgggg	tgactggggg	1440
accctggagg	ccatgggtggc	ctgttaggca	ctgggtctgg	gctacgcacaa	cywccggcctg	1500
caggagac	ggtaactggga	ctctgggaat	ataacagagg	tggwgatgag	tggagtgcgc	1560
tgcacaggga	ctgagctgtc	cctggatcag	tgtgcccattc	atggcacccca	catcacctgc	1620
aagaggacag	ggaccggctt	cactgctgga	gtcatctgtt	ctgagactgc	atcagatctg	1680
ttgctgcayt	cagcacttgt	gcargagacc	gcctacatcg	aagaccggcc	cctgcata	1740
ttgtactgt	ctggggaaaga	gaactgcctg	gccagctcg	cccgctcagc	caactggccc	1800
tatgtcacc	ggcgtctgt	ccgattctcc	tcccaatgc	acaacccctgg	acgagctgac	1860
ttcaggccca	aggctggcg	ccactccctgg	gtgtggcacy	agtgcacatgg	gcattaccac	1920
agcatggaca	tcttcactca	ctatgatatac	ctcaccacccaa	atggcacccaa	ggtggctgaa	1980
ggggccacaaa	ctagttctgt	ctcgaaagacc	tgaatgtcag	gaggatgtct	ccaagccggt	2040
atgantgtc	cacttttgg	aaacaaaaggc	ttccctgtggg	ttgctggaa	ctctaccggc	2100
ttgaacntga	atggtcngtg	gaattgaact				2130

<210> 18
<211> 1386
<212> DNA
<213> Homo sapiens

<400> 18

ggcacgaag gttgatggac/ cgccacggct acaaggccgg gatcctgctg ggctgtgcc	60
tgtatcgccc gggcgcgctg ctgttcatgc cggcgccggc agcggcgagc ttccgtttt	120
tccgttcgc gctgtttgtc atcgccctgcg gcctgggctg cctggagacc gtcgccaacc	180
cctatgccac ggtgctgggg gaaccccagg gcgccgagcg gcgggttgaac ctggcgcaat	240
cattcaatgg ccttgccag ttcttggccc cgctgattgg cggcgcgatg ttcttcagcg	300
ccgcgcac accggcctcg gacatgagtt cggtgcagac cacctacgtg gtgatcgccg	360
ttctggtaact gctgggtggcg ctgctgatcg cccgcacgccc gctgcccggat ttgcgcgcccc	420
aggaacaggc actgcaaccc acggccggca aagggtctgt gcagcaccgg gagtttgcg	480
gtgggggtgat cacgcagtt ttctatgtgg cggcccagggt cgagtcggc gcattttca	540
tcaactacgt caccgagcat tgggcacaga tggcaatca gcaagccggc tatctgtgt	600
cgatcgcaat gctggccttc atgttcgggc gctttttca tacctggctg atggggccggg	660
tcagcgcgca gaagctgctg ctgatttatg cgctgatcaa tatcgcttgc tgccgcctgg	720
tggtgatcggt cctggaaaggat atctcagtga tcgcgtgtat cgcaatgttcc ttcttcatgt	780
cgatcatgtt cccgacgcgtg ttgcgcattgg gctgtgaagaa cctcgccggc cacaccaagc	840
gcggcagttc gttcatgatc atggcgtatcg tcggccggcgc cctgatgccc tacttgatgg	900
gcaagggtggc ggacaacacgc acgggtggcgc tggcttaccc gttgcctatg ggggtttcg	960
tgattgtggc ggtgtatgcc cgtagtcgt tgcgcattcc gtgaagtacc gccccggcgt	1020
cgtccccgaac gtacgcccggaa acatcgcaat aaaggcactg acgttttcat aaccagggtc	1080
cagcgcaacc cgggtcacgg gtgcgtgcgc cgccagcaac tccagggcgc gcaacaatcg	1140
cgcgcgttgg cgccactggc tgaaggtgaa cccggctctcg gcaacaaaacc gccggggccag	1200
ggtcgcgcggc gagacacccgg cccactgcgc ccagtgttcc agcaggcggt tgcgtcgcc	1260
actgtcgccggc agcgccctggg cgatcgcaaa caggcgcggg tcccggggca gggcaagcc	1320
gaatggttcc tggggcaacc cggcgatttc atcaaggatc atctggcga tccgtgactg	1380
tggcg	1386

<210> 19
<211> 3495
<212> DNA
<213> Homo sapiens

<400> 19

ccacgcgtcc ggatgctgca acccatattc ttcatgttc acttcgtttc tgccttttgt	60
gttttatgtg taccatcatc tccccacatg gactgtgtat agtctgttct aattctctct	120
tatcattgtat tcctggact ggacagacac gaacaatgtt tgacagagag tcattctcat	180
aaactagatt aaatacatat ggggccctt atgagaggta tccaatttctt gtttctctgc	240
tatttcagtt cttctgttt acctagttag gtgcagaaca cataccaga ggttaatttg	300
ccctttaatt ggggaccta actactggac ttcaaatgtt caagaattta ctgcagtgt	360
cacaactaaa taaagaaat tcaacaatta gttatctgca aaacacaaaat ttctgattgc	420
aaacccagac ctaccatatac tccaatttcc acaagcaagg cattaaacac taaaatcaa	480
gtattgtatt agctttatct cctgggtggag gccttaaaag acacaaaatgc attacgggtc	540
cattaaataa gtggtttgc ggtcgactg gtttacaggg attgtaccta ggtaacaat	600
ctgatccact agcaataaaat tgggtgtca gatatctgtt tgccttcaca ctcagcaatt	660
ggcatttaca tgacaatag ttcttctc aaaattgttt aggtataat gctttattgc	720
cttccattta taaagacaaa tcctctgca gtaaaaaagac agccacaaga ataaagcata	780
tgtaatggtg gtattccata aattgaccaa tttttccatt agagctttac agatttggaa	840
gaccttagtc tccccacaaa acttacatac aatgtgtt tcagggtat tattaaacag	900
tgagtgacat tcatattgaa agcaaggtaa tgagttagtt gaatggctac aggaggccaa	960
tttttaggtgc ttgttttatt taaaaggaaa taacattgtt ctgttagttaa ttttgcctgt	1020
agtggaaagc tggagttaggc tccaaaggccag caagcagaca ggataacctt gtcctctaggg	1080
aaaatgcaat tggaaaacag tccctataag ataaaaagat aactgcatttgc attcagatct	1140

cctcagcctc	atcttcttgg	aggctgtatt	tgtgtgtctt	cacctgatca	tttgtgaaag	1200
aatatctgcctt	cagctcgaa	tgctttcat	tttctttaaa	aggtagagga	aaaatagtat	1260
aataaaaat	atattgcctt	ggagttgatt	actttttaat	aggaaaaagaa	cactgtattc	1320
taggtgagaa	ttagctgcat	gccttgtaa	agagcagtat	caatccaggc	atatatattt	1380
gtatgaaaca	tgttttagaaa	tgctatgagc	tagctgtgtt	atttttgtt	ttgtcattgt	1440
cattattgtt	atgccctggc	ttctgaggat	ggaggcaagg	gcatgtgagt	tagagtttg	1500
tctccataag	aataaaatgtt	tgtcccttag	agatttccc	tttcaacag	cagagcaggc	1560
tgaagctgga	aatattaaaa	tacacatgac	ttctcgaaga	cagttggat	ccttttagcaa	1620
aaaaaaatca	aaaactcaa	aaagggtgat	taactaaatg	cccaacagga	aattcagaaa	1680
ataataaacc	ctaaaatcaa	tgtatttat	tttctaaata	tcacactaag	atacttattg	1740
gtaagatata	tacatatctc	tggactataa	tttttttctg	gaaatggata	tctctgacca	1800
gtgatgaagt	ccactattga	aaaagtataa	ctccttact	ggttgcgtt	agaatctaag	1860
atgggctctg	taaactctgt	aagaatgaa	tttcttacct	acccaaaccc	ctctcccac	1920
aatatctgatt	tgatgagaat	tctctaaatg	agaattttca	ccttctaacc	tattggaaat	1980
tcagtaactgt	gaacaaatat	tacaacttta	tacctgtctg	aaaggctata	attggagtagc	2040
tatgttattt	taatgcatac	aagataattt	tatgcctata	tacctgtaca	gacatacacaca	2100
gcaaatgcac	aacatctacc	ccacacacac	aataagcatg	catcacacac	acacacacac	2160
tctgcacaca	cagactccca	catgcaccac	acacccacaa	actgcagtct	ctgttattgt	2220
tggctcatct	acatttctac	tcatgtgcac	agcacccctt	attttccaag	aaatttctaa	2280
atactgtata	cgatttagatt	ggcacaaagg	tagttgtgg	ttttgcacatc	attttttagta	2340
gcgccatttt	aaaaaaaccac	tattttaaaa	ataatcgcaa	aaaccgcagt	tacctttgcc	2400
ccaaacctata	tttcacagac	attgtccact	ttgaaaactg	tacgtttaga	aatacgaggt	2460
tttgcgtgt	tcattttaaac	ccccccagac	aagtctactc	tcattgttaa	cttggagctg	2520
ctcagttggg	ttgacctttc	tagcaggaag	cagtgcgcct	gagtaccact	aactttaaga	2580
gctttctgc	agggctgagg	ctcaggagag	accacagtga	aggaggaagt	agataacttgc	2640
tgccttactt	ccttttaagca	gggtgtacac	tggttgagct	gagcctgcag	atgcaccatg	2700
gaccagtctt	gtttttccca	tgacagaaag	gctgtgcagc	aaactaacct	gcaggcaaat	2760
ggggaaatct	actggaaatg	gaagagaaaa	aaataaaatga	attatccaag	cattctcgat	2820
aatgaagaag	taatcaatgg	caaatgccaa	aaagctcaac	aggttaaaaa	acttggaaata	2880
aagataaaat	gtaataaggaa	agtaataact	gaagtggaa	gaaatgaata	ggaggtgcct	2940
taccaattgc	tcaattttagg	acttgtaat	cctgtcatca	tgtacatgt	tcttaatctt	3000
aagcaactatg	tttctgttac	tcttaattcc	taatggtact	tttggggcca	tttaatggaa	3060
atggattcaa	atgcattgtc	aatggaaagcc	aggtttctgc	ccccccgtt	cttagattca	3120
gtgatgatgc	catttccgga	ttggatagcc	tatctaactg	aaaatagtt	gaatttgagca	3180
tgttaaaaca	taacataggc	cgggccccgt	ggctcacgc	tgtatccca	gcactttggg	3240
aggccgaggc	gggcagatca	cgagggtcagg	agatcgagac	catcccgct	aaaacgggtga	3300
aaccccgct	ctactaaaaa	tacaaaaaaat	tagccggcgc	tagtggcggg	cgcctgttagt	3360
cccagctact	tgggaggctg	aggcaggaga	atggcgtgaa	cccgggaggc	ggagcttgca	3420
gtgagccgag	atcccgccac	tgcactccag	cctggcgcac	agagcaagac	tccgtctcaa	3480
aaaaaaaaaaaa	aaaaaa					3495

<210> 20
<211> 3881
<212> DNA
<213> Homo sapiens

<400> 20

ccacgcgtcc	ggcacaaacgt	gcaggtttgc	taacatatgt	ataaaatgtc	catgttggtg	60
tgctgcacccc	attaactcgt	catttagcat	taggtatattc	tcctaatgct	atccctcccc	120
cctccaccca	cccaactcct	gggcctcaagg	gatcctccca	ctcagcctcc	ttagtagctg	180
ggactacgggt	gtgtgtgact	ctgtgggctc	tattttctgt	ttttgttcgt	ttgtttgttt	240
atagcagcca	tactaatggg	tgtgagatgg	tatctcattt	tgttggttt	cattttccctt	300
ataatttagt	atgttcagta	tttttccaca	tgcttatttgg	tcattttgtat	atcttcctt	360
gagaatattt	tattcaactc	ctttggccat	ttttaaaatca	ggttatttgg	gtttttgttg	420
ttgatgttga	gttgttaggag	ttctttgtat	attctagata	ttcacccctc	atataatatga	480
tttgc当地	aattctccctg	ttctataggt	tgcctttca	ctctgttaat	tgtgtccctt	540

<210> 21
<211> 1180
<212> DNA
<213> Homo sapiens

<400> 21

gtctgcctag	agattctgac	tgggtcgtag	ggggAACAGG	tctgctgtac	ccatggacag	60
ccactcatct	ctgagttgac	tttgcgtgagg	tgcatgtgtg	ctgatagggt	gagaggggca	120
agctcgccct	ctgaatggct	acactcctcc	aggtcatgcc	tgcttcctgt	ccagggccag	180
gggggtggtaa	tcagggactg	ttgctgttt	ttgtttgtt	gtttgtttgt	ttgtttttaa	240
cagcttgggg	ttctcgaagg	acactgaagg	ctgaattttg	ctgtcccaa	gggtggacag	300
caatgatccc	taagtgaccc	ctctctagat	ttccctctgg	gaaggcaggg	cctctacccc	360
acagagacca	ccccatcccc	ccaggaccag	ctccctcacct	gttgcctgg	atgttttttc	420
ccaggaggac	catgcttata	atgaccacca	cagctgccag	ggcaaggatg	aatgattcc	480
agggagatgc	tggggaaagga	cacacaggac	agagccctga	ggaatggcca	ggcacctctc	540
aagcccgcta	acagctgggg	cctgggctca	gaccaggctt	acagcatcaa	ctgtcctttg	600
cgtggagacc	ctaataaag	atggggccct	tggccctgggg	caactccagt	ctaacagggt	660
ggagggttgg	agacagtctc	tactctggag	aagccctaat	ctaataggagg	agacagtaact	720
gcagttaaat	aatagtgggg	caacaggggt	gaagggcaga	ggcctacgga	ggcaggaga	780
caggtggggcc	aagataaaact	tcacaatctt	cagttttgcc	agcctgggct	ggacctgcgg	840
agcacaagga	aaagaaaagaa	ggctgggctc	agtggctcac	gcctataatc	ccagcacttt	900
gggaagccga	gtcaggtgga	tcacctgagg	tcgggagttc	aagaccagcc	tggccaacat	960
ggtaagtgc	tgtctctact	agaaatacaa	aaatttagctg	ggtgtggtgg	catacgctgt	1020
aatcccagct	actcaggaga	ctgaggcatg	agaatcactt	gaatccagga	ggcagagctt	1080
gcagtgagcc	aagattgcac	cactgcactc	cagcctgggc	aacagagtga	ccctgcctca	1140
aaaaaaaaagg	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1180

<210> 22
<211> 1910
<212> DNA
<213> Homo sapiens

<400> 22

ggcacgagt	aaggcttaca	aaaagatcca	agccatgatt	tgtttgcatt	agcatca	60
cccaatccaa	ggtgttaac	cagacaatcc	cagatgtaa	caagtccacca	accaccagt	120
ctgatacata	ttctacttgt	atctctttt	cttcaaaacc	ccctgtgtt	tggactgtt	180
agtgtatgcc	ccctacaaaa	ttcttatgtt	gaagccctaa	ccccaaacat	gacattat	240
ggagatgagg	ctttagataat	tattnagggt	tagacttagt	catgtatgg	ggggccctcat	300
gatgggatta	gtggccttat	gagaagaggg	agccctctct	tcctctgc	ttaccaaggg	360
aaggccatga	gaggatatac	gagaaaatgg	tcatctgc	gccaggaaga	gaccctcacc	420
agaaacctaa	tcaagctacac	attgtatctc	ggcttccag	catcctgagc	tgtgagaaaa	480
taaattcctg	ttgtttaaac	cacccagtct	acggtat	gttatgacag	cctgagctgc	540
ctaagacaag	ttcatatttc	acttggttt	ctccttctt	caacccctt	cctactcctt	600
tgatggggaa	gattccaaaa	tcccaaggt	agttccaagg	cgaagaaagg	gaaataaaac	660
agtc当地	atagtcaaaa	agtatgggtt	tccaaactg	aaaaaaactga	caatcaaact	720
tccttcaata	aaaactggct	atgcagttac	gaaatgtgtt	tggaaagtcc	aaaaaaagaaa	780
taatacagta	tttagaatcaa	agagggttaa	taaagcatac	attatctgag	gtaaccacat	840
tcagagtaat	aaaaaaat	aactaaatag	gtatattgac	aaggatatac	acaccctccc	900
agcagcaaga	aacatgagta	tgaacgaaa	taaataactat	agatctat	atacagaaaac	960
cctcagcaat	tcttgcgc	gactgcctgg	cagccctcat	gtcttcagta	ttctgtgc	1020
tgaaaaagta	accgtcaagg	ataatagaaa	cataatttga	cctactttc	cctggattcc	1080
tgc当地	ataactccag	ttcttggtaa	ttccgcacacc	acatctgg	gacacatttc	1140
ctcaactact	ttgcaggc	tcctaaatgc	cacacatgtt	aaggtaactt	gtgggcaatt	1200
cctaaactct	ctgggtcacc	gactttaaga	atgtcccattc	acacacagag	aatccctcaga	1260
acatcttctg	agatggac	gggatggacc	atttccacc	tgagatggaa	aatgcctagg	1320

aaaagagaga	tgcagcctcg	agaagctgaa	gaccgacatc	agttcagacc	cttccctacc	1380
caaaggaggg	cgcataaaaa	caagtggta	tccctcaactc	tcaagtttac	acaaacccat	1440
ctctgaaaga	gctagaagtc	tcccagcaag	gtcttggtt	aagtcaagaca	agactgcatt	1500
ttaaaaatta	cagccaaacg	ggaaagaaaa	accacattga	tgcagcttct	cattaaagac	1560
cacttaataa	taaattttta	aaagatgagt	agaacccacc	aaagggtgccg	ccaaaccctg	1620
gtgagcaggg	aatctgagt	aagtcaagtc	tgtgtccctga	ggccctggcg	ggccctccct	1680
ggtggcttct	taaagatccc	aggagacaaat	cagcagacct	tcctgcttct	cttaaaaata	1740
caaaacatgc	ctgacactgct	caggtcatta	gatgcactta	gaactcaatg	agggacactc	1800
cttcaccagg	aaatcgatc	tgaacacacc	atcaggaat	caatattgaa	ggttcttggg	1860
ggcgtgcacc	tctgtccgaa	tgcataatca	agtttatcga	taccgtcgcac		1910

<210> 23
<211> 2652
<212> DNA
<213> Homo sapiens

<400> 23						
ccacgcgtcc	gttctgaggt	gcatttttt	tttgatgaga	ggcatctcta	gttaccatcc	60
ctgaccttgt	cctcatgtcg	ccgaggctgt	tgctgttgc	ctgtgctcca	ctctgtgaac	120
ctggcgagct	gttttgata	gccagcccc	cccatcccc	agaggggagc	ccagtgaccc	180
tgacgtgtaa	gatgcccctt	ctacagagtt	cagatgcccc	gttccagttc	tgctttttca	240
gagacacccg	ggccttggc	ccaggctgg	gcagctcccc	caagctccag	atcgctgcca	300
tgtggaaaga	agacacaggg	tcatactgg	gcgaggcaca	gacaatggcg	tccaaagtct	360
tgaggagcag	gagatcccg	ataaaatgtgc	acatcccggt	gtctcgcccc	atccatgc	420
tcagggctcc	cagggcccg	gctcagttgg	aggatgtgt	ggagcttcac	tgtgaggccc	480
tgagaggctc	tcctccaaatc	ctgtactgg	tttattcacga	ggatatcacc	ctggggagca	540
ggtcggccccc	ctctggagga	ggagcctcct	tcaacctttc	cctgaactgaa	gaacattctg	600
gaaactactc	ctgtgaggcc	aacaatggcc	tggggggccca	gchgagttgag	gcccgtgacac	660
tcaacttcac	agtgcctact	ggggccagaa	gcaatcatct	tacctcagga	gtcattgagg	720
ggctgctcag	cacccttgg	ccagccacc	tggccttatt	attttgcata	ggccctaaaa	780
gaaaaatagg	aagacgttca	gccagggatc	cactcaggag	ccttccagcc	ttaccccaag	840
agttcaccta	cctcaactca	cctaccccg	ggcagctaca	gcctatatat	gaaaatgtga	900
atgtttaaag	tggggatgag	gtttattcac	tggcgtacta	taaccagccg	gagcaggaat	960
cagtagcagc	agaaaaccc	gggacacata	tggaggacaa	gtttcccta	gacatctatt	1020
ccaggctgag	gaaagcaaa	attacagatg	tggactatga	agatgcata	taaggttatg	1080
gaagattctg	ctctttgaaa	accatccatg	accccaagcc	tcagggctga	tatgttcttc	1140
agagatcctg	gggcatttagc	tttccagtgat	acctttctg	gatgccattc	tccatggcac	1200
tattccttca	tctactgtga	agtgaagtt	gcccagccct	gaagaaaacta	cctaggagaa	1260
ctaatacgaca	caggagtgc	agggacttt	ttatcagaac	cagattctg	ccggctcctt	1320
tgaaaacagg	tcatattgt	ctcttctgtt	tacaagagga	aacaagatgg	aataaaaagaa	1380
atggggatct	tgggttggag	ggacagtgaa	gttttagagca	catgaactca	aggttagtga	1440
ctctgcagga	tttcacagag	agagctgtgc	ccatcattca	gttccaagtgc	tttctctgccc	1500
cagacagcac	agaactccag	ccccctact	tacatggatc	atcgagttc	cacccat	1560
atgattctat	ttattttgag	tcactgttac	caaattagaa	ctaaaacaaa	gttacataaa	1620
aagttattgt	gactccactt	aattttagt	acgtat	gtatata	gccaacctat	1680
accacatcca	aaattatgt	tctattacag	cccccagaag	ctttataaaat	acagtgtgtc	1740
tttttttatt	cacaaaattt	ttgaaatcg	gtaatatgg	tttggaaac	gtatcttaat	1800
tat	ttaaaatttgag	acagggctc	actctgtc	tcaatctgga	atgcagtggc	1860
acaatcttgc	ctcaactgca	cccccgcctc	tcaggctca	gcaaaacct	cacccat	1920
tgctgagtag	ctgggactac	aggcacatgc	caccaaactt	ggccattttt	tgtcttacgt	1980
agagacaaga	tttcaccgtt	ttgcccaggc	tggctc	ctccctggcg	caagcaatgt	2040
atggaaat	aaaataacca	ggcactca	cttatgaa	aataaacatt	tggaggtata	2100
taaagtaaaa	agttaaagtc	tttcctgtaa	gttacacaa	atgttaacta	ttgttaaaaa	2160
ctttacaggt	agctctctag	atat	tttttgtat	gtatactt	gcatacatgt	2220
aagtatataa	acat	tttttagaa	gtgtacctat	ctaaacaaact	attatgaaat	2280
ctgttaat	atctattata	ctat	ttttaaa	agtc	tata	2340

atcataactt	ttttcttttt	ttattttagt	aaatatgcac	aacataaaaat	tgatcatttt	2400
aaccatffff	aagtgtacaa	ttcagtgca	ttaagtacta	tcataatata	ttttaatccct	2460
tctcatca	ggtggacatt	aaggagactc	tcaaaaaatt	cataattataa	aaacaaaagtt	2520
caaacaat	tctttgtact	agcatattat	ggcactcctg	ctggattatc	tgaaggataa	2580
atttgtaaat	ctagtattgc	tagattatgc	atattaaata	ttcttgttaa	atagtcaaaa	2640
aaaaaaaaaa	aa					2652

<210> 24
<211> 2972
<212> DNA
<213> Homo sapiens

<400> 24						
ggcacgagt	aaaatgacca	gattgtgcc	actacttttta	agtaaaagtt	acaacaaact	60
tacatgatgc	tgtgttaggtt	atacagcggtt	ttcatgttca	tcatggtcag	aggcagcctg	120
gatgcaaagt	ggatgttatg	gggtgtggg	gggcgggtgag	tagtttcatg	aacttttaaa	180
aagcaactcc	attaaaaaat	tcttcttaga	tcttctgtaa	acctttttta	aagacggcta	240
caatgaccct	ggcttatttg	ctactatttc	tctgctttgt	tatattatca	cccaagcccc	300
ccatggaccc	catgctagag	agggctaaga	cttcttttttc	ctcatgtcca	cgctcccaag	360
tcatgtttgt	gtatcacctg	tttcttatgg	acttccagtg	tgttatgttg	tgttagaatt	420
cccagttcag	tttgagacag	attttgcact	tggcatatta	gtagttccca	ccttgccatt	480
catacttgct	ttgttgtttc	atatttatgt	tttcttagca	tgaaaatgttag	ccgctggaat	540
tgtattattg	gccacattgt	ctctgattgg	ttcaaaagcaa	atagagattt	gatggggaaaa	600
gtcagtggat	tatgggcctg	tacaaaagt	cttgcgtgaa	cgtcctgcca	tgtacatctc	660
ctcagggtat	gccagaacct	ctctaggaca	cattcctcaa	actgctgggt	catagcatgg	720
acacatgctt	tattctacta	gttattgtca	gaaaagcattt	aaagtgtttt	accaattttat	780
aatcctacca	gctgggtatg	agagttctag	tttccctgtt	tccttattaa	tgcataatgtc	840
cccaaacttt	aaaatatttg	tcagtttgat	gggctgaaga	aatgtgatct	cattgctttt	900
catttgcgtt	ttccttagttg	agtgtcattt	tgtatattga	ttgaccattt	gggttttctt	960
ttctgtcatt	tgcccttttt	tcatttaaaa	aaaatgcctt	gtttgacttt	ttgtattgtat	1020
ttgtacaat	tctttatata	ttttctgcac	gtcaatcctt	tgttatctgc	tgcagataacc	1080
ctccagtcgt	tgccattcat	ttgttatttt	tgtggctttt	gtgtacagaa	gttttttgtt	1140
ttcatgttgt	cagatgtatc	catcttttc	tttgcgtttt	gtgggtttt	tgggggtggg	1200
tagttttgg	attttgtctt	attnaagaaa	tcttctgtaa	cccgaggtca	tttatgcaca	1260
cctgtttgtt	tatactttatg	tgtattgctt	ttctcggtaa	tcttccagg	gcttgttcat	1320
gtctgttttag	cctgtcatc	ctcattatgt	tgtttctcaa	ggacaaggat	tataatctccc	1380
tcgccttttgc	actcttcctg	gtacaggcca	gtgccttagca	cattagtcg	tagaacagaa	1440
agtaggatttgc	gcccgggttca	gtttgaggtt	tatcttcgtc	tgtgtgatct	tgaacaagtt	1500
acataacctt	tctggggcttc	agtttttata	aaatgaggat	gataatggta	ctttcctcat	1560
agggttatttgc	atttggcaga	gtatcttgg	tatggtaagc	acccataatc	tgcctatcag	1620
tgttattttgtt	agtagttaag	atattagaaa	ccatgccaaa	acgtgggacc	taaagtgc	1680
catacaaattt	ttacagttca	gtgtatgtt	cgattnaat	cagtttacatg	ttggcatcag	1740
aaaaatttgc	tttccctgact	gaagcgtgt	.gattactcct	gtctcaactca	tttccctcctc	1800
ttcctttgtat	aggcagggtcc	acgagatcca	gtcttgcatt	ggacgcctgg	agacggcaga	1860
caagcagtct	gtgcacagt	agtaattaac	tgtggagacc	agagtccctt	ctctgtatgac	1920
agggtgtctaa	tgggctgggc	ttccttgcact	cactctgcct	tgggggctta	atgattcagc	1980
gtggaatgag	ttttgttgtt	aggggtggaca	aaaaaaccct	atggcaaaat	cactgatttc	2040
cctgagtgtg	ccctttggaa	tccacaagt	tttacccccc	attacccttc	cactcaacact	2100
gacatggccc	tatgggaatg	gaagcgttgc	cctccatcta	tcttaatcta	attacctagt	2160
ccttagagga	atgtactcca	taaaaattca	gagatgttta	actggaaatttgc	gccatttttt	2220
ctgagctgag	aactgtgttgt	tttttaggagg	attattcaga	aacgaacagc	aatattaatt	2280
agtttagttc	ccacagcat	gttttttttgc	agaagcatgc	tggtttttttgc	ttttttttca	2340
ttttttttttt	tttttctatt	ctgagggaaag	gtccttttttgc	tgagttggtc	atatggacac	2400
cacctgcggg	ggctgcctac	ccacccact	gctgggctcc	ctcaggaccc	attccctcctg	2460
ttctctcatg	tctcccttcg	cagttcaaa	agcagctctg	ttcttggttc	tgtgccccac	2520
cttgcctcaa	tctcaactgt	tttttttgcac	tgtggcaca	aagggttggc	aggggctagg	2580

gtcactgctg tcacttcttt atggggcaag aaggcagtctg gatgcttct tttgtgcaca	2640
gttagcttc ttgttcatc ggactttgtt tgccctctca gcaatctcat tgttacatga	2700
ttagaaatgg aaagagggtca ttttgcactgt ctatcgaaa gggataggaa aaatgaccgt	2760
atttatcgta tctctttacc tctgtggatt ctttcctggg ctttccttat tgatatttgg	2820
tttattttgg ggacgtcaac attgctcagc ccaccattc ttacagaag cttaaggga	2880
agaaaaggctt aagggaactic ttctctgtat gttcacata ctaatcttcc ctttccttta	2940
tgctttttt ttttaataaa aaaaaaaaaaa aa	2972

<210> 25
<211> 653
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (429)
<223> n equals a,t,g, or c

<400> 25	
tcgacccacg cgtccgctga ttctggcccc agactgagcc tggatccctag tcacagactg	60
agcttgcgt ccagttattt actgagcctt agtcttggtc acagaatgag ccccaacctt	120
ggtcctcaaat ggatatccat gattctgatc acatattggg ccctgaacct ggctccagta	180
gtggcctcaa tcaatcttt cacatctacc attgttctga aggagggtga gggaaatgaa	240
gatgagtcag tgccagggtgc taatgaaaga ccccaaaccac caggtgccag ttcttc	300
ccaggactta aaccgcattt ggtattgtgg gaaagagctg ggacactggg agccagggtca	360
acttgggtcc catcaagtgc ccagtggtt actgacagct ggggttaagg gcagtctagc	420
agcaaatgnc ctaacccctt tggcttcatt ccagattggg tcccagtggc ttggccacc	480
cccttatagc atctccctcc aggaagctgc tgccaccacc taaccagcgt gaaaggctga	540
gtccccaccag aaggaccttc ccagataccc ttctccctca cagtcagaac agcagcctct	600
acacatgttg tcctggccct ggcaataaaag gcccatttct gcacccttca aaa	653

<210> 26
<211> 1776
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (9)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (24)
<223> n equals a,t,g, or c

<400> 26	
ggcagaggna gacgggggt tctnccatgt tgcccaggct ggtctcgaaac tcctggactc	60
aagaatccg cccacccatra cttcccaaag tgctggatt atgggygggt gtraggccatt	120
gcgcgcagcc ttagaagtcat gttctaaattt gtatttgaat ttgtgcctct ttgtttttcc	180
ccaaacccaaa gcccctcaaattt tgtagtctct gtcggcttct gcagaattct ggaaaaatgcc	240
agttttccctt ccccgccctt gtttccata aaacatattt atatattgtg atgaggagta	300
cttctgaag agtacttcgt attttttttt aattgccttg tttgccttca acttccttga	360
ttttcatagt ttacatgggt gtgttaggg gtgtgtgtgt gtatgtgtgt gggtagggc	420
tttttcgtt gcatgtgtat gttctgtgga catatgatcc ccacaaaactg tggagtgat	480

tggccaggcc ttgtttktt tgtttgtttg ttgtgtttt tgttctttt aagaatagag	540
tggtagtttag aaaataaaatt gcattgcaaa gctcttatcg gctcatatga gagagcaggt	600
tcctgcctt gaaaatgcgc gtaagctata gcatatgttt ttaagactt aagcatttca	660
tgctttaaaa taccttcaca agtgaacatt acacacagaa gttcatttgg tttcctttg	720
tttatggtg catatagcaa taaagacccc cttccacccct gcaaccccca tcccccaccg	780
ggccttgc cctgccttgg ctttctccc ctctcatc tcctctcccc tttctcaact	840
gaaggctgtg agttgcttc aatgtacaa cactatgt tcatttgaa ggatttgcca	900
ggacagactg attctgagtc ctgggtgccc tatgtgtatg cggcagtgtt gtcaggcgat	960
cttgtttcaa gctctatgtt gccataatta ccatcaagta cacactgtt gcaaaaggct	1020
aacacctgac ttttagaaaat gctgatgtga gaacaaaagg aaaggtctt tttcaactgct	1080
taaagtgggg tcactttgat accttgcgg tcatgtctgt gtctgtatg tgtagaatct	1140
ctggatgtgc actgtcagtc atgtgtccac caggcctcga atatcatatg gaaatgtca	1200
tagttaaaaa cgtagccca ggcccgtgt ctgttaatag tgtgaaattt tcatgttaaa	1260
aaaaaaaaaca aaacaggaac caaatgtgac ctgtgcata tattggtagc tgaaaatctt	1320
caaggctact gatgggtggc cccttaatct tgcctttgat tgctgtgtgc aggaaagg	1380
gtccccgtt gttcatgtcg ttttgggggg tgggggggta tttgcaagaa tactcatttt	1440
gacataatag gtcctcttgt cagagatcc ctaccacaga cattaatagc tgagcaggag	1500
ccacatggat tgattgtatc cactcaccat tgacgatggc attgagcgta gctagctt	1560
ttccaatcct acgtgtttt gagctgctc ttacgttttta agaggtgcca ggggtacatt	1620
tttgcactga aatctaaaga tttttaaaaa aacacttttc acaaaaatag tccttgcata	1680
ttacattatt tactcatgtg tttgtacatt tttgtatgtt aatttatgaa tgatttttc	1740
agtaaaaaat acatattcaa gaacaaaaaa aaaaaaa	1776

<210> 27
<211> 4285
<212> DNA
<213> Homo sapiens

<400> 27	
ctgtgccat cgaatctata aaacaaaacac aggaagaaaat taaaagaaaat attatggctc	60
ttcgaaatca tttagttca agcacaccgg ccacgratta ttttctgcaaa caaaaagact	120
acttcatcat ttctctctcg attttgcctc aagtctataat aaacttcatg ttcaagtaga	180
agttctctac cattgaatca gtgaactaga aagatctgat ttggcttggg accagtgttc	240
aagttggttt ggtcttttatt aaaaatcaca atattccgaa aacaaaaaaaaa cctaggagat	300
aaatgttagag gtattgactt ttctatctt ttatcttcac actgaaacaa gagctatcct	360
atttgattat taaagttagc tatgtgttaa gtgccaggac atttctagct tttgtgagaa	420
tgtgtctaca tatgagtata ataaaacccac atgtatacac aattgtctct tatgtactcc	480
tacctgacag tagtctttgtt attctatagt atgttctgag atataatggtt aacattgttc	540
ataacaaaaaa atgctatcaa tcttataaat atatgtatc tattttcttc ataaaacagg	600
cacaaaaagtt ttatcagtaa ggaattacag attgagaaaat gatggaataa tagrcataat	660
trattcaata cactactgtt aaaatcattt gcaaggactc agctcaatta tcttctttaga	720
aagaaaagaaaa aagtatgaat ggtcaaaaatg aatacatcg aagagataaa tggcaatttg	780
ctttttaaa agtttacata agttttttt aacccttaga atttaatatt ttagatgca	840
ggtaaatata tataacttagc tttatctatc tataaaaaca ctgggtgtca attaattgg	900
ttgattataa taccaccttta agcacttgct gaaaaaaatg tggtaaaaat ttagtgcgt	960
ccttttgtct tattttttgtt ttcycttaagt cagctggttc ataacatagg ccaaattcta	1020
gagatgttta tagagcattt gaagtgtcga taattttatgt ttttcttta tggaaactta	1080
tttttagctt agactccagt gtgtcagtgt aataagttaga atataaaaaaa atataaccag	1140
tattttactt caaaaagccaa aaagaggccaa taagaaaaaga cactttgtgg tggcctttag	1200
gtgtgcatta aaattggttt ctgtaaaacg tttatataatgt tgtagtatcta cgaagagtt	1260
caagttctga agtttaattt ttttattatc ctccctctctt ctttagtaact tctttctgt	1320
gcaaaaaccac aattctttaa gttccattt gttcaggctt aggcaattt tttgtttgt	1380
ttcttcagtt taatattttg atttgtgtt ttacgtaaa tatttatattt ctttgaaaagc	1440
aatttttgcc aaggttagtc agtttaggaa tatgtgtttc taaaatatgt cttagaatcc	1500
tggaaagcata gattttgaaa tggttttta atgaaaatga aggtcagaga gaataattgc	1560
cctgaccaca tttgccttcc agtaggagga ggctgtgaaa tagaaaaattt ataatcgttt	1620

atgccatgat	aaatacaaga	ttggtaaata	aatacattga	ttggtaaattt	atgagaatca	1680
aatgataaa	aagagcctgc	ttttccct	aaccaatata	gctatcttaa	gtatccttag	1740
gttctgtga	agaaccat	cccatttt	cttggcaaaa	taatgcgt	tccatcatgt	1800
acatgtgaaa	tgatgtttt	aattgataaa	agcttaaata	agatctac	atacccagta	1860
tttcattgtat	attagaacaa	atgggtttt	ggttatattt	tatatttgc	aatataattt	1920
ttgttattcac	attctgttac	actctgccta	tccattgata	tatgatattc	tgtaaataattt	1980
gtacaatttg	atcttttta	tggtttaaaat	tagttaatta	catacaaatt	gattggctta	2040
tcacaaaaat	catttcatca	gtaaaacctt	ttaacatttt	gtactgttgc	cccacctt	2100
aggactttgg	tcttatccac	gtgtatgttgc	ttttcatttt	gtccaataaa	tatTTTattt	2160
gtatgggtat	cttctaaagac	taaaataggta	gttgtgttct	ttatTTTaa	aatttctttt	2220
tagagcaaat	gttatgggtt	cttacccaaa	gagtcaaaaa	ctatttctta	agaaagagca	2280
gagttattca	tgactgttct	ttatacacta	aaagcatgc	tctaatttca	tagtcctt	2340
attatgtttt	tagttgtatg	agtctctt	tatgaactga	acacaaaact	cagaattgg	2400
tggcttaatt	ttagatcgt	gcttacta	gctttagtta	tatgaatctt	tataacacat	2460
aattactaac	ttttagcca	tataatgtat	tgactttgaa	tgttatttac	ctgaaattaa	2520
tcttccttca	cacatggacc	gtaaaacggtt	cccagttgtc	tgagagcctc	atgagggttt	2580
ctaggattta	tgacctttag	accagttttt	tccatttacc	aagattttat	tttcttacat	2640
gaaaatttaa	ttgagaataa	attattcaca	tgtcatttt	cttttagct	gttaaataatgt	2700
ctatgccatc	atccaccatt	tagttaaaatg	tagctggccc	aggacatgt	aaaaaaaaaaa	2760
aaaaaacaaca	acaataaata	gggcattgt	aatgttaagt	tacagcaata	gatattttat	2820
ttgttattca	tgtttagtact	ttttgtttt	atatcactt	taaaggta	gtgtactt	2880
tgtcacagct	cagttggtaa	ccgcatttcca	tgtttttttt	ggccttgtaa	aatacaactc	2940
tcatttaata	ttcatgctt	tgtgccttta	agaaaatatt	ttttgtcatt	ttttgtgtt	3000
cagaactata	atgtgattca	agggtttat	aggcttgc	taaaagggtc	atttctgtgt	3060
gttactttct	ttttatata	ctatgtata	ttaaacaat	aatactatct	tttatagggg	3120
tttgcattt	tacatatct	ttactcagac	attgtatgt	acttgcaga	ttattctgag	3180
tattgttaac	agtgccttt	cgatggaatc	acacttttgc	gctgtcac	tgtccat	3240
acacacaaaa	ttttgtggaa	ggcagttttt	actttctgaa	gaatatctgt	caaaatttaa	3300
gaaaacaaat	gtataaaatt	ccatTTTTC	cagtgtttt	catttcttagt	aacgcgtgag	3360
gttgcatttgc	atacagtgt	gatggcatta	tgtataagcc	atacatgaga	ctgcagat	3420
tattgaatca	tattaaatgt	acagaaaataa	aatatttagat	ttatataaaa	tttccaatt	3480
tgaaccagg	ggggaaatcc	cacagaaatc	agtaagttt	catttcaatt	tctatctt	3540
ttgactaagt	ggaaaagagat	tctttaaaat	gtataac	ccattatgt	atttgcattt	3600
attttattct	acctgttgc	tgagtttagt	atatttaatt	tacttttgc	tactctt	3660
atactgttta	ttttgttag	tttttaattt	aaagatggact	gttgcattt	tataggacca	3720
gtgtcttatt	aatatgatta	atataattt	aaagagccac	tgcattt	gacaaaatga	3780
atgtgaatat	tctttctaaa	aatttagaaa	atgttatctt	tttgcattt	ttatgtaaaa	3840
ctgttttaca	gtatcaaaat	ttttactt	aaagaaaaaaa	atgcattt	acatttgaac	3900
tgatgagcc	cagaacttca	gttgcattt	ttttcactt	ttagcatgt	aaatatacat	3960
ctgagttttaa	atgttctt	taatggccat	tcaaaattt	aagcactacc	actggcagt	4020
tttgcattt	agaataaaaa	tatgttac	gttgcattt	tacagcacac	tgtcaattt	4080
ttttctttaa	ggtgcacat	aaatgtac	atgttata	gccactt	tgtatgt	4140
tacatttctt	atcttattt	cctaaccat	tataactgtt	tgcagaaaga	aaagaattt	4200
tctaataatc	tgtaaaat	tgcataactt	tacaagttag	cttctt	aataattt	4260
aaagagcaaa	aaaaaaaaaa	aaagg				4285

<210> 28
<211> 775
<212> DNA
<213> Homo sapiens

<400> 28

ggcacgagca	cttccctg	tttagtaaaca	gagttact	gagagtattt	aaccttttct	60
tgtatgatca	tggtcat	tataaacatc	agcccccttt	ataccttgc	acgggtcagt	120
gatatcattt	agagctatca	atatgttgc	ggcttgcgtt	ggcctttt	aggatgtt	180
gctgttctca	ctgtatgg	tttactgtc	tctgtctgt	cagtgg	gct atccggggca	240

attttagcgt ttgggtccctt ttacccctat gtccccggc tatactttta aaacagcttt	300
agctgttctt tatcttggtgc acatgataca aaatatgttc ccgtacaata tggggctgtc	360
actttttgcc aaccaggcac ccttttcctc ttcttaacctg ctttctgagg cttctgtct	420
tcaccttcctg ctgcgtgatg gaaacctcca gggcaaagct gaaggtttct tggggaaagcc	480
aggaaagcca gtatcccta tgtgtcagat ctgccttggct tccaagaagg gatgcatggg	540
ctttttggcc agtttccagg aggctctggg cttcctgttt cttcccgct tccccagag	600
ttcacagatg ttgaagtttc tgaagggtga cgtcaactgga agtctgacca caaacaagtt	660
ggctgttact gtatccaaa cccagttaccc ttggcagctc acctctaacc agtaaaaaaaaaa	720
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa	775

<210> 29
<211> 1044
<212> DNA
<213> Homo sapiens

<400> 29	
gctaatctca acgttttaag aaagtttatg aatttgtgtt ggactgtttc aaagccatcc	60
taggcccgcag gttggacaag cttgccttat acctcatagt tagagaaggt aatatttagc	120
aaggcagatg gttaaaggagg aaggccttgg ctactcaggt tatatgacag ataggattca	180
tttaggtcaa tgcaaggatc caggggagag aacctctgtt tacttcattt gtctccccat	240
ctcaaaaagga ctaatatcct tgtaaatagg agtgtgcaga gctgttttag aacactgctc	300
gtcacttcca aaccccacag gctgaatgat gattggccctc ctgatctcta agaaatggag	360
tatgttaggg cttagggctg gggcccttta tcttcctctgt ctcatctct tcttaggtga	420
tctcacccat taccatgtc tcaataagct gatgactccc aaatctatat atccagccct	480
ggttcccttc tgggctccac tcaacatctc ctcccccaacc ttccctctct caatgaaaag	540
cactcaaattt cccagttgt aagacaaaa acatggatg tctcacttcc cctcacctcc	600
cacatctaat ccattcagcag ttccctgtcag ttttacatct aaaatactgt gtacctgaat	660
ttgaccactc ctcatcatc ccactcttac caccatataat ttccatgtcat ctcccccttc	720
ctggactgtt gcaatggctt ctcccccccg tctctgtttc cattccatc ccccaacaat	780
atattctgca cagaactgtg agagatgatc atacgaaaata atataagggt tgagatgtac	840
ttcaaaaagaa ttggaaaat agggggctag atgggtatag agatgaaaag attatccata	900
caatgataat tattgaagct gactgaaaag ggtacatggg gttcatgata ctatccatc	960
tactgtgtt gtttggaaatt ttccataata aaaaaagttt aaggaaaaaaa aaaaaaaaaa	1020
aaaaaaaaaaa aaaaaaaaaaaa aaaa	1044

<210> 30
<211> 2259
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (1919)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1960)
<223> n equals a,t,g, or c

<400> 30	
gataatattt aatgttggtc tgccatctc tatacagttt actttttggc tttcattctg	60
tatagataag aaaatgttat attataaaca gcctactcag tgcaaatattt tatctgttta	120
tcaaatccac aatatgtctgt ataataccgg ttttactata taatctattt tagacatagc	180
tgtttagaac tagagtgtgc tattttgtg ttttctgtat gtgtggctt agacaaagttt	240

cttttgtgaa	caacaaaaat	tatccctttt	attcctagac	aataccacct	ttgggtcttg	3.00
ttaatttcac	tgagtataac	tatatatattt	tatataaaaa	catatatata	tatatctacc	360
tatgcccaac	tggcagctgt	atcagagtgc	tggattttgg	acatgctttt	ctctttaaat	420
acataatatac	attatataaaa	tatattctaga	gtgtatttaa	ttaggataaa	attactttct	480
tagtatggat	atttgacatc	tatagggtga	atttgtttat	aaatatggct	atatggaaac	540
ttatttagcat	ttactttatg	tttgctactt	ggctttacag	cataatctct	aagctgaaaa	600
ataattttgcc	aggcctcaa	gatcctaaag	aaacttggtt	aatggagtaa	tataatffff	660
tttcttatta	aggaattgt	ttactggcac	ctaacacagt	tgtattctt	gctcttattt	720
tagataatgg	gcatttacat	aaaatatccc	agatggcttg	atggcagaat	aaacctttcc	780
cctccctaccc	gagtcatgag	aaggatggag	acgtccctctg	ccataacatg	ggccataaaag	840
caaattcgac	atgggatgtt	ctgtttcagt	atgaccccaa	ccagttccat	gaactgagtg	900
aaggaccctc	attttcaaag	ttattnaaaa	agtagcttaa	ttaagccccc	ctacccattt	960
tcccaagatc	tattggcatt	attgaaaagc	aaagtttatac	aaatatctaa	ctaaggatgt	1020
agttaacctt	attaaatatt	gattagaatt	gttctgtat	attactgaat	ttgttaagatc	1080
tttagcaaag	atttttggc	aatttataaa	tgttagagca	atgtttctgt	ttactgcact	1140
ttttgttaact	gaagggtgata	atttctcaag	ccatgattat	tggcttccat	gcactgcatt	1200
atttatccac	aatttctagac	attttccatt	tttgtgaaag	agttgtctgt	accttaattt	1260
taaatgcaat	tgtgtggta	atgagagcta	atgctagtag	ttaacccccc	aaagtggatt	1320
ggctacagtt	gagggagaaaa	tctcttttaa	tataaaatcac	atcatccccc	aactgcctct	1380
cttggaaaga	gattgaaacc	ttttttttaa	agcacgattt	agcatcccaa	gcttcctgag	1440
ggtagagatt	gkaccccccc	gcgtctgcac	aatggcttagc	acatgtcagc	atttgacaat	1500
tgttaaatga	taacaagtgt	gcccccaatta	aaacgtttty	cctgggttgt	ttkgtttaat	1560
ttacaaagta	agccaagcct	tacgggtaac	atttccctct	acaaccaagt	attaaaaggca	1620
cattaaaaaa	gaccacatga	aatgctgatt	ctaatgtgt	gttaggtcttg	aggattaagc	1680
acacaaattt	cacaaacttc	tgtttgagta	aacaaactca	gccttctgt	aatatacatg	1740
caagtttgg	aacagtaata	ctgtacccat	aaatataatgc	tgtctgtttt	gtgtacagta	1800
tgtaaaaact	cctttctgc	cacactaaaa	atgcaagcca	tttatgggg	atcctaaaac	1860
tagtattgaa	ctaaaaacttt	gctaattgatc	tttatttagag	gatcgtccaa	ctttycacnt	1920
taccytgggt	tttcttttcc	aattcactct	tacactagtn	ctgcttattt	cccagctgtt	1980
tatTTTATTG	agtctgtat	ttaaaaaaaaaa	aatattttga	ttcattttgt	aaatacaagc	2040
tgtacaaaaa	agagagattt	aatgttgtct	tttaataact	ccaaatttca	ttctaatatg	2100
aatgttggta	tattgtactt	agaaaactgt	cctttaatat	tacattacct	ttattaaaaag	2160
tgcattgttac	acatcaattt	tagatgtgt	ttatgtactg	ttatcctata	ataaaaacttc	2220
agcttctaat	ggaaaaaaaaa	aaaaaaaaaa	aaactcggag			2259

<210> 31
<211> 1313
<212> DNA
<213> Homo sapiens

<400> 31	
ctcgaggaaat tcggcacgag gtcttgctgt gttgctaata g ttgaactccct ggcccctaagt	60
gatcctcctg ccttacctgg gattacaggc atgcacccctt t tgtctcacta atagatttgc	120
tttcttaggtc tttctctgtca ggtccaccaa tattttagat ggatggagca cttgattaga	180
tcaggaggtaa aaattcttatt cctgaatcta ttacttacca gttgtactac tttgaatgaa	240
tggcttaatt ttttagtgac tttgaattgt tccagatata aaatgacagg ataggtctag	300
agagttgcct tagatgaatt aggaaacagt ttctgagata gagatgttag tgcagttagt	360
ttattgggaa gtgttctcag gaatgcctgt ggggaagtga aggatgtgga ggaggaagat	420
ggactggaaat tcatttgcac gaggcttcag cagatccctac cagcwctaga gctgggatgg	480
cccttcagag ttatccctgat ccacaagggg tcagccccata ggcattcata agtcactttg	540
tccagtcat tgggttgcacc ccaggaaaag gtatggtttgg gggtaagagg actcttcagt	600
tgagggtagt tccttaggaag ctatgtgagct atgagttggc atcaggcaac atttccagca	660
atttggtcaa tgagttcccc ttaaggctgg atctggccca cggaccatgg cactcactgc	720
catattcaca gcgtcgaaaa cagtgtgaaa ttctactgtg ttaaaagtatt gtacagtcac	780
tgaaatgaga gtattttat atttggctac ccatgcacatt tattctcttc tgattatatt	840
gtttctctcc tgatctagag ttttagattt gtttggttgt tttgttttgt tttccctgtac	900

ttttctgtct gttgaggaaa aagagttta ttcttctagt atgagagttt ctattagtcc	960
tccttttag acagatgaac accctgtac aattcccttt gtctttgt ggcgtgtaaa	1020
aaaaaagaaa tccataaata gagtcgttac gcaagtcttc atgagttaat ttctctc	1080
agtttctta ctacttttc cagtttcat ttcttcaac agaaagcttc ttctctggc	1140
tggcacacage gtcacgcct gtagccccag cactttggaa ggctgagggg gatgtaatcc	1200
cagcacttg gaaggctgaa ctccctgagtt caggagttcc agaccagcct gggcaacatg	1260
gcgawactcc caactctaca aaaaatacaa aaaaaaaaaa aaaawactcg tag	1313

<210> 32
<211> 418
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (396)
<223> n equals a,t,g, or c

aattccattt cttatgtatg gttaacctta cggttccctcc tcttcttcta ctctatgtgc	60
ttggccatgg aaagccaaag gaatgcctac ggtgtcttcc tggcctctcc aaaagctaca	120
cagacctggg aaggaggctt gcagattcca aacattcatt gaagtgagag gatgttttt	180
ccttcttggc gtctacatac ttactctcag tgattctctc gaagtctcta ctctgactc	240
agagagatga aagagaagga actgtccctt accacaaaact gcactccccca caaaagcttac	300
taccccttcc tacctgagtc tcgcttgaac tcggggaggc agagggttgca gtgagccgag	360
attgcgccac tgccttccaa cctggccgac agagcnagat cttgtctcag gaaaagga	418

<210> 33
<211> 3102
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (3096)
<223> n equals a,t,g, or c

tcgaccacg cgtccggcca cgcgtccggc ccagtagttt ttattgttgg gttttgaaa	60
aaacctctac caagaatatg gtgtttttt tttttgtttt ttttagaaaa attgggattt	120
ccccccaccc cgccccaccc agataaaacta tatctacact gtctcgtaa gttctctgac	180
acgatcttc tgggctctac atttctact agtttgtgtc cagaaaactgc aagttgacat	240
gaatagagga caaagggtgt gtctgtctt tttttttttt tttttttttt gcaactctct	300
ckssccctct cccactctt tcccccccccc cttttttttt ctgtctctca cttttttttt	360
ccccccactct ctctcatctc tcgctgtgtc ctgtgtatgt gtgggtgtgt gtgtattttgg	420
gtgtgttaat gttggttttt ccactactgg atttttaat cttaggataaa tcactttttt	480
tggggacttt gattttgcct cattacgttt tttttttttt tgagcactga ctgttctgaa	540
agctgcacaa aacgtggaaa gaagacatag cgcctgcccag ggaataggaa atgagggcac	600
ttacacatta atgtgaatta gtaattgtgg tatagaaaatg tttttatgtg aaagattcaa	660
atttgctttt caagaaaaat gccaaaagct attaaataa ttgcagggtt catcgatgt	720
tttgatttt ctcaatttaa gatacagaaa tacagcaagc ctttatataa agtttccctaa	780
agtttcttca agtattttt aaggtggaga atgcaggaa ttgtataacc agaattgttt	840
ctgccttttag cttttcagaa cttgagatgt ggcagcactg gactgggttt ttttaatgt	900
taggactagg aatgttttgc tttttttttt atgaatataat tgattattaa gtttagaaatg	960
catttttaca agtatctaa tatcaaattt tgtttagtaa cttgagttgtc tgccacaatgt	1020

tgatcaacag caaaaatagag ttctgaattt cttttaaagt gatgatatat tattttgtga	1080
aactttgtgt ttgaaaaatgt ttatctctgt ttatgggtga atcattctga ggtgaggctt	1140
ttcttatttc ctttgcattt tgcttagagct gtgctgagtt cagcatttgc ttatctaacc	1200
actacataat gacagaccag ttatttaggtt ttagcatgtg tggtaataat aatagtggaa	1260
cttcacactt acatcaattt agtgcagggg catagaataa aatattaaat attggcagat	1320
gtatgaaaag aagtgtgagt taaaatattt gaatattggc aggtgtgaaa acaagtgtca	1380
aaattccctca tatagagaaa ataatttga gtttagagta ttatctttta attaagtgtta	1440
gtctaaactt aactttctgt aaaggcactt tgggtttty ccaaagatgt tctagatcta	1500
tttggttgct ctatagtcaa acagctctt tgaagacaac tgcatttattt tattacaaat	1560
tggcttgaca tattyatact gtaacattgt aatattgctg tgctgtacat ttggccctt	1620
ackaaatacg tcttttcag aactgtttaa gtttgatgt acatcragct gaattctgtt	1680
tttaccagtt tcaaaacctt caagtgatat gtggaaaaaa gtgaatgaga cctctgatag	1740
gggggtttca gaaccttgtt cacacaaaaa tggacagtt ctttcatgtt ttctaaacc	1800
aagttaaaat tacatgtata ttttgggtt aaggttgatt ttaagatac ttctgatttg	1860
tacaaaagga atgtttccctt tataaatcac agaagaaaat gacaatatct gttggatatt	1920
tgatataatt taatgggtt ataaaacctt taagaggatt catggtaat atatgtgata	1980
acatctttat actttgaaaaa atgtttcact tacccttcag atatttttg taagttattt	2040
caattcttaa tactttaatt tgctccaac aagggtttta tggtgttgt aagagaattt	2100
atttactaaa tgcaactatgt ataaagtgaa agatagtttta cttatctgac tttgatattt	2160
gatggctgac attagtgcac ataatgcaga gtttaacctt gattctcaa cagagtccag	2220
atttaaatgt ctacttagtt aatttagttt ctgatattct tccacaattt atatattcaa	2280
tttccccatca gtatatcact taaaattttt tgttttcttta aggaaacttt ccacagaatt	2340
ttaaacaact gatgcatttca tactcagggt gtagggagaa tactttgcat taaaacccc	2400
tgtccacctg tcaccagcac aagagaatta gagcttcagt gagaatttag aaaaattata	2460
ctaaagttag atgcattttt tctcattttc agcaagactc ctctaaagcat ttactcattt	2520
actgtattcc tgctctgaag atgtggatac agaatttagtc acttttgtca ctttattttat	2580
ttattggttt ttttttaacc atctgtgtac attcctttca tagggtagag ttctagttct	2640
agaagttctt attttggttt tggttataatg ttgaataact atttaatatc cggttttaat	2700
attgctggat ttgctacctt tggttacttg tgcaagtgtt aaagtaatcc actttcttgt	2760
ttaatataacc agatacatag caaaaagcagc ttggaataat tatagtgtt tatttggctg	2820
tgctcagttt ctatattaag atcttgcactt gtgtaacagt aactctttt tgctttcag	2880
taatttataa tggttactta aaaaaatacg aactttgaga tgcaactaaag ttttggcttca	2940
gcagtggctc aaaaaatttc agaaattact tttgttataa tttgttataa attttcttt	3000
tatcttacaa ttgtttaaagc ctgtgtatctt tcttctccca gctaagagttt ctcaataaaa	3060
ttaagaaaat aaaaaaaaaaaa aaaaaaaaaaaa aaaaaanaaaaa aa	3102

<210> 34
<211> 2441
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (2408)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2409)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2435)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2438)
<223> n equals a,t,g, or c

<400> 34

gggtttctcc atagcataaa	tgaaaaaaaaaaaaaaa	gtaaaacaggg	cagtgtgtgc	60
tttttctttt ctccccccctc	aactatatta agaactccta	gtttcacccct	ttctccatcc	120
catcatccca cctatctgtg	gttgcttccc aagacctcct	cccaagatag	acatctccta	180
cccagtgcggc ttgtgtgacc	ccaggactca agtctcagac	tgtgaacaga	tgtggccatg	240
cccagagacg ccagcctggc	cagaagggca tgccctcagct	tactactca	tctctcctgg	300
ttccctccct gcagtgcggc	gggtgtcattc ttctccact	ctgggtacca	gggattctac	360
cacataggct tcccaaagcc	ccattcttaac tcccctctct	cagggaaagcc	ctagagagag	420
gtccaaaaaaag cattcacagc	tgtatcacac tctatgcagg	tggggtagga	gactgatcag	480
gcctgctgtg gggaaagcagt	atgtatgaac acagccagaa	atgtcatagt	ccaaacagga	540
tgccttcagg ccattctcagc	tgcttgatgg tgagatgggt	cccttattcc	ttcaggaaag	600
gcttagcatt gggccacata	ggggaaagcag ctttgaacaa	atcagtcata	gcactgccta	660
tagcattagc cagtgaccaa	attagggaca acktcttggc	acagaattgc	ttatcaagga	720
acatttccac aaaaaaaaat	atattaaggg gttatccca	cagargccca	aaacgtcttg	780
gaaacacaga ggtgaggagg	aggaatagta attgtcaatg	agcttttaat	accaagatac	840
acccctcgcc cccaaagaag	agtcctcttt tagggaatca	gaaccttcat	tgtcctagaa	900
gctgaaaagat tcttggaaaca	tttttagctt tactctcaac	ttgctttct	tttacattc	960
cttaagtttag actttcgggt	gtggcttctc tcccaggggt	aacatttact	tccatttct	1020
agaccgaacc aaaagtcttc	tgcagaatct cccaccgggt	gtggtaagaa	ggaaggacaa	1080
aaggctttag gatataaaatt	tcatgttaca gagcatgtca	ytgtcaaagg	aaatctgtgg	1140
ccctgagatt ttaagaacat	aaaatgtgac atttgatatt	tctccagccc	agggaaagtaa	1200
gatggtttagc aatgggtgcc	ttaatcaaattt ggtcccattt	ttaaccccaa	aggaagtgcc	1260
cacagcaaga ggtttgtgt	atgcacttat gtcctccgg	gaggaaaggg	ggccacatata	1320
gaaaaggcccc ttaggtcaga	tcctgagagt agcacatgg	agtgcagatt	cctggggcccc	1380
acctcaaaacc tactaattt	gaatctctgg gaatagggcc	agggaaatctg	ccctttctac	1440
aaactaccca agttgttctg	ttgcacatca atgtttggga	accactgctg	taagggaaatc	1500
attctggtca cttttagttt	ttagcttaccatcata	aaagaaaaata	catcatacag	1560
ggaagagaga agggaggagg	ttccaaagtatcactt	taactggcag	atcctctgt	1620
caccttctat tctggtttct	gactttctt tctttagac	catagatgtg	ttccagaggc	1680
aaaagagaca cattatccca	gatggcagaa catgctttca	aaacatataa	aatgtcaaag	1740
ttccagatcc ttcttacatct	tttagtccctgt	ctgaggatgg	tagctggctc	1800
atagatggct agagttccat	ccaaatccctt	gaccacgact	tcatggagat	1860
tattttagtga gatttctatt	tcaataaacc	acctctctca	ccccacattc	1920
atttgaccctt ctggggccgag	tcacattacc	ttcaggagac	ttgatcccag	1980
tcttcccttt cagcagaaag	atttcatttc	cctggcttgc	cagtggcact	2040
cacccaatga gtttaatatt	ctttcttccct	tggcattact	gccccagcct	2100
tttttgtgtg tgcataataa	ccaggaaaaaa	aataaagctt	aggttttaaa	2160
aataatctgt ttcagaaact	gtcaaatgtt	ccatattttgt	aatggggaaatt	2220
tttgcataat gaattttatc	ttatttatgg	tgacatattt	acgcttgcata	2280
atgttaaattt cttaaatcat	atttgctatg	cagctgaaga	tgcataattttg	2340
tgggggtacc tgcattgtgt	tgataaaacat	ttccatcttc	attaaaaactg	2400
agtaaaan	aaaaaaaagg	ggggncncc	c	2441

<210> 35
<211> 1092
<212> DNA
<213> Homo sapiens

<400> 35

cagcttggaa aaattgttgg	ccattgtctt	tcaaaaata	tccttgcctc	60
tctttttttt	agactctagt	tgacatattt	gtgcata	120

atgctctgtt tttctccctc	ctggccgcga ctcttttc	ctctcctatt tcagtgtaga	180
tggttttttt tgaacctgac	tcctttctct tggcccagt	gtggcaataa gtccagtgaa	240
agaattcatc tttgataacc	tgttttcat tccacttcc	atttggctt taaaaatgt	300
tagctccat ttctctgcg	aaatttcctg tctttcaca	gatatttac acagttattt	360
taaatcttca tctgatgagt	ccaacatcca ggcttggcc	ctcattctgt taactgtttg	420
tttcttaca gtgggtcaca	tcacttctc gagggtctt	taattttaa gtaaagtaaa	480
acctgggtgt	taaaaagaatg acagagacag	aaataaacact agaagctgaa	540
tttacatcg tccagaaaaac	agcatgcctt ttctgttcaa	accattcgt gtgtgtgt	600
gtgtgtgtgt	gtgtgtgtga gttaatttag	tatttatagt tgaacccggc	660
ttgctgctta agttagatc	aagacctcac aaatatcaa	ttaatttgaag gtaggattat	720
aacctccca ttgttagtgg	tttagatata gaatgcctgg	aagggtgtgc tattttctgg	780
ccctgccatt ggacttcage	aggctctgtg tggctgtga	gccttgggg cgagagccct	840
tcagttccct catcccttc	caaccaagat ggacctcttc	ttggctctgg gtgaggccta	900
gagtgcctgtt gggaaatcata	atattgcct catgtgatta	taatttactg gtcaattaga	960
caacatataaa aaacacctca	accatctcag tcacgttata	agtgatagct gttattacat	1020
ctgtgggtat tttttaaaac	tttttgtttt gaaataattt	cagacataca gaaaattgc	1080
aaaaaaaaaa aa			1092

<210> 36
<211> 711
<212> DNA
<213> Homo sapiens

<400> 36			
ctcgtgccgt ttggatgtgc	tccctagagg ctgcgcctga	cacagggagc tggatataca	60
tgatttatta aaaggaaatc	ctcttagggag	aaacatatta gcaggataaa cacaagaaag	120
aatgcagtt caagtggagt	ctcaatcaat	cccagaggaa attctggac ttcaagcctca	180
gctgaccta tgggggggct	ctggaatgtc	agatttctcc tgatccaaac tggctctgg	240
ggcttccatt gcagccaaga	gagagcattc	cccagaaaac tccaggtgag gactctccag	300
tggcccaagg gtatccccc	agaggaggaa	acactgcggc actgggacat tggccccc	360
gatttgaata tctagagagg	gcaccaatg	gtcataactaa tggccat aacagtctct	420
tctaggtcta gacttgaagc	atatggagg	gtccttgggg tagagccaa ccaagccccag	480
gctgactccc ttttaataact	tctaattttc	cctgaagatc tggctctctc cctaccacca	540
ctaccctatt acataagaga	aaaggattgg	agaatgtctc tggaaagaat gtgatgtttt	600
cccatacaag gaatataactc	aaggaaaaat	ttcatggcac aaaatgtgaa ttctgtccaa	660
tttatcccat gaataaaattt	tgacacata	aaaaaaaaaa aaaaaaaaaa a	711

<210> 37
<211> 1209
<212> DNA
<213> Homo sapiens

<400> 37			
ggccacgaga gtggatgcca	tccaccaacc	ggggccgc当地 ggacggagca atgtttttcc	60
actggcgacg tgcagcgag	gaggcaagg	actacccttc tgccaggttc aataagactg	120
tgcaggtgcc tggactcg	gaggcaggat	accagcttta tctccacat gatgcttgg	180
ctaaggcaga aactgaccac	ctcttgcacc	ttagccggcc ctggacactg cgttttgg	240
ttatccatga ccggatgac	caccaggat	tcaagaagcg ttctgtggaa gacactgaagg	300
agcggtaata ccacatctgt	gtcaagcttg	ccaacgtgcg ggctgtgcca ggcacagacc	360
ttaagatacc agtatttgc	gttgggcacg	aacgacggcg gaaggaacag ctggcg	420
tctacaaccg gaccccgag	cagggtggcag	aggaggagta cctgctacag gagctgcgc	480
agatggggc ccggaaagaa	gaggcgggaga	aacgcagccca ggacctgcag aagctgtatca	540
cagcggcaga caccactgca	gaggcaggcgc	gcacggaaacg caaggcccccc aaaaagaagc	600
taccccgagaa aaaggaggt	gagaagccgg	ctgttccctga gactgcaggc atcaagttt	660
cagacttcaa gtctgcaggt	gtcactgc	ggagccaaacg gatgaagctg ccaagctctg	720

tgggacagaa	gaagatcaag	gcccttggAAC	agatgctgct	ggagcttggT	gtggagctGA	780
gcccgcACCC	tacggaggAG	ctggTgcaca	tgttcaatGA	gctgcgaAGC	gacCTGGTGC	840
tgctctacGA	gctcaAGCAG	gcCTGtGCCA	actgcgAGTA	tgagctgcAG	atgcTGCGGC	900
accgtcatGA	ggcactGGCC	cgggctGGGT	tgctagGGGG	ccctGCCACA	ccagcatcAG	960
gcccaggCCC	ggcctctGCT	gagccggcAG	tgactgaACC	cggacttGGT	cctgACCCCCA	1020
aggacaccAT	cattgatGTG	gtggggcGAC	ccctcacGCC	caattcgAGA	aagcgacGGG	1080
agtccggcCTC	cagctcatCT	tccgtGAAGA	aagccaAGAA	gccgtgAGAG	gccccacGGG	1140
gtgtggcGA	cgctgttatG	taaatAGAGC	tgctgagTTG	aaaaaaaaaaa	aaaaaaaaaaa	1200
aaaaaaaaaa						1209

<210> 38
<211> 1457
<212> DNA
<213> Homo sapiens

<400> 38						
cccacgcgtc	cggtgatctg	cctgcctcac	cctcccaaAG	tgctgggatt	acaggtgtGA	60
gacaccacgc	tttggggcc	atgctggct	tgaactcctg	acctcagatg	atccacacTAC	120
ctcagcctcc	caaagtgtG	ggattacagg	cgtgagcacc	acgctcggcc	acaaggattG	180
ttttgatgaa	ggcattgtG	ggatttttG	acagggctca	gcatccgatg	tccccacatC	240
tcatggagac	agcagagtg	acctccccTG	gatttttgc	tcagaaacga	gggTTgttC	300
tgctcagcct	gtgcttctt	ccttggcctt	tgtgtgtG	gtccttcc	cctgcacatg	360
accagcttcc	ctctgctgag	gggaaactcc	tgaaagtggA	gatcctgagt	tctccccat	420
tattctccag	gaagcttagC	ctagagctgt	gccctgtgag	gcacagaaca	ctagcaaggG	480
gattgaatga	ctgaacagaa	tgggtggcag	tggtgatctt	ggtcccctgc	tttgcTTggA	540
cgttgaggcc	agccttttaa	ggagaaacatc	ttgtttgaag	aatgggtat	aatttgcTCT	600
ctgaatcttg	agttgcttca	agcttacacc	atccatccct	ctgtccatcc	atccaccatg	660
taccagattt	ttgccaatgt	aaatatctac	taaaagttaa	gcaatttcaa	catggaggTT	720
gggggtctcc	ttgcactttt	catgcccTCT	gaggtagata	gtactcccct	atttgcaga	780
tgaggaatca	gataatttcc	cccggtcaca	cacaagtggT	agaggtggga	ttcacacCCA	840
ggtttgcCAA	cttcaaAGCC	cccggtct	caatcactcg	tgtagaggc	ctccctggag	900
agaagatgac	catgtattt	attatccaaa	ttggaatct	ttataaaaaa	gttttattGA	960
gttataagtt	acataaccata	gcattcacct	atcgaaagta	caatctttt	agtttttagC	1020
atgcttacag	agctatgtAG	ctactaccat	aatctaattt	tagaacattt	tcatcctccc	1080
caaaatagac	actttgggag	gcccggggcgg	gcagatcAcG	agggcaagag	atttagagacCA	1140
tgcccagcta	atttttgtat	tttttagtagA	gataggattt	caccatattG	accaggctGA	1200
tctccagctc	ctgacctcgT	ggtcaggctc	ccaaagcgcG	gggactacag	gtgtgagCCA	1260
ccgcgcctgg	cctgattttag	tcttgttG	ccactgcacG	ccagctggg	caacaaaAGG	1320
cgaaactctg	tcaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1380
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1440
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1457

<210> 39
<211> 1580
<212> DNA
<213> Homo sapiens

<400> 39						
cccacgcgtc	cgcttttGA	tcatggctgt	gattcactat	caacagttt	tgtggttctt	60
ggaacttGta	ttgcagtGca	gctggggaca	aaccctgatt	ggatgtttt	tttgttGTTT	120
gcggggacat	ttatgttcta	ttgtgcgcac	tggcaaACGT	atgtttctgg	aacattgcGA	180
tttggaaataa	ttgatgtgac	tgaagtgcAA	atcttcataa	taatcatgca	tttgctggca	240
gtgattggag	gaccacctt	ttggcaatct	atgattccag	tgctgaatat	tcaaatgaaa	300
attttcctg	cactttgtac	tgtagcaggg	accatattt	cctgtacaaa	ttactccgt	360
gtaatctca	caggtggtgt	ttggcaaaaat	ggatcaacaa	tagcaggAAC	aagtgtccTT	420

<210> 40
<211> 1405
<212> DNA
<213> *Homo sapiens*

```

<400> 40
gctggcctga attatagttc ttaatcaaag taaaacatga gaaggtaaat atgctaccat
aacaaaactt cacaatttam agccaaagag acaagaaaata tgagacctgg agagagtgg
atatttatct tgtttggAAC ctttatttt tagtggagac accaagtctc agagagataa
tgtgacttat caaaggacac aaagtgattt aatggaaaaa tcaagatttag agcctccaaa
gttctgatct actgtttctc catgttgcattt ctgatttattt attttggatg tattattcaa
ctaatgatag caagagctga cattcctcag atagctactg tgtttccagg gcagtgtgtt
aaaagtgtcc tgttatgcat tatcttattt aatccctcaca gttacctttt gtgtgtctc
attttatgga tagagatgct gagagttaga aaggttaagc caccttttca gagtcmcata
gctagttatc tgcaagggaa attcagcaact gatttataat mcagtccaca tacttaagtg
tgtgtgtgtg tgtgtgtgtg tgtgtgtatg tgtgcataaca ctgkctcccc atccagtgt
aacttctcc tgcaattttaa gaccaagaag caagggcaag cttgcacgac ctgaaaagact
gaagggttat gctgcctgtg gcacattttt ttttttgtaa aatctccagt tgacttctga
atagttcttc tctgttgatc ttaccaggtt cttctatgtc ctacccctgc tttagggcctg
gaacatagga ggcactcatt agatgacagc tgaattaatg aatgggatgt ttggatgaat
tgcaattttt aaatctcatt ctgttaaaaa gagggggaaat ggkaaactca gacactagag
gaacaggttc tyaatccatt ccaactttga ttaacattct atgkttccact cacattccaa
gaaaaccagg tgactttgtc tttttcggaa tcatgaaaatt ttggattgaa agtagatttc
tagaccatct ttctgtgtat tctaaaaatgt aactttgaaa gtacgcttct cttaatgact
acaggcatta aaaccagatg cagctggcg tgggtggctcg cgcctgtaat cccagcactt
tggggaggcca aggaggccag atcacgaggt caggagattg agaccatccg gctaacacag
tgaaacacctcg tctctactag aaatacaaaa aatttagccgg gcgtgggtggc gggcgccctgt
agtcccagct acttgggagg ctgaggcagg agaattgctt gagccccggga ggcggaggtt
gcagtgagct gagatcccat cactgcactc cagccgggc gacagagtga gacttcatct
aaaaaaaaaa aaaaaaaaaac tcgag

```

<210> 41
<211> 2761
<212> DNA

<213> Homo sapiens

```
<220>
<221> SITE
<222> (1006)
<223> n equals a,t,g, or c
```

```
<220>
<221> SITE
<222> (1376)
<223> n equals a,t,g, or c
```

```
<220>
<221> SITE
<222> (2211)
<223> n equals a,t,g, or c
```

<400> 41
gattaaaatt tattaataa taaggggagg aataaaaataa ctatgcattt ttttgtgaa 60
agcacaattg tgtctgatac ttaattaca ctatctaatt taaccccca taaatgccca 120
gaatatgaga atatcatcca agatttaaat accaattacc aaaatttaca gctatcaa 180
ggaagactca ggtttatgct atgccacgtt ttcttttttc tcctttttgt gatgggttcc 240
caaattgtgg agaaaagaaaa cattctattt gtgattgctt ctgtctgttta cttctgcaaa 300
acaaactact caaattcagt ggtgtgatgc aataaccatt tgcatttcctc atatattctg 360
gggtcagggg tcaaaaatgc aaagtgggtt gacatctcg ggtctacagt aattggggcc 420
tctgagaatt cctagctatc taggaatgaa ttaaacgttg gacaatgaag ttttctgaaa 480
gcttcttac gtttggctcc tgcatkggta tgacttaaag gctgcgctca aaataatctc 540
ttaaccagag kgtctgaata ttgcatttcctc atgtaacttg agttccctca caacatggaa 600
tcatacaggt agcttgcctg agtgttgcag ttaatgggtc aatgtattgc ctttataat 660
cttgcctcag aagtcacata gaattacttt aatgtcgatg tggtttaagc aatcacagcc 720
tgtctgactt cagggggaaag aaacatgtg tctacccttt gatgtgagga cattcaaaatg 780
attcgtggct aymttttaaa aaagccacag ttatcttctt ttaaagaga tgccatatcc 840
tttattatcag caatagaatc aggatttggaa aatagttttt atgctacata tgcattttt 900
ataatcattt ttttattat aatcttttc agaaagggtg aagggttaag gattatgttt 960
catacttgk gaaattctgk gctctataag catttttatt tttgnccat aatagattat 1020
ggtacaaagt aactcaaaac tagagtgtat aaacataaaaa aatacaagtt ttcataatcca 1080
agctgtggat aagatattca aatataaaaa agattgtgaa tttgttttaa aaagtcttct 1140
aattttgtaa aaagamctaa gataattgtc cactaatcac tcattaaatc tcctcccttag 1200
ttctacttcc acaaaagcta ttaccatcta tgatttaattt ggatttcaga ggaagaaaaat 1260
acagttttag gaaaatggat ttgttggagca atctcaatgt taactacata aaatagctta 1320
ttacttgaaa aataggata ttgtatgaat ttgcgaatgtt caattggtag caaaancgac 1380
atttaaatgtg ttgtaaatataat gtcataatata aaactatctt gtaaagatgt tacagagata 1440
ttatataatgtt ctagttctg gattcagaaaa aataactgga acagatttaa gttgggttaat 1500
tgttagtggt ctaataattt taatacaagg taaaacatt ttctgttga aatcagttt 1560
aatattgttt ggttttattt atattttgaa aatttaagga ttcttgaata ttcttaagta 1620
aattgcattt taatgcattt gtatgtatc tcagtaatat agttacmctt gattraagcc 1680
attataaagg aaatgtatc ccatactgtat tatcttcaca tttctttgg ttaaagatca 1740
gtctatttca ttgagataac agttcaggag aaaagtttatt gactacatgt atctataatg 1800
ttgtctaaac aacaggagtt tagtttgcattt gttttttattttt tttgagagta catcaacgt 1860
atgaaatgtt tttaaaattt gttttttttt tacccatata tacataatga tatataatata tattttatgtt 1920
ttmcagcagt gttttttttt gggatgattt caatcaaattt gcaaaagrrggc acttctatattt 1980
aattatttggg aagtmcacgc taggatattt gttttttttt gttttttttt acgtttttttt gttttttttt 2040
tctcttmcag acgtgggggtt ctggmcactt ggacccataaa ttggaaatgg ttaaaaaattt 2100
gttatccaaa gaatgacaat gttttttttt gggatgattt ccaagttttt ttgtttttttt gttttttttt 2160
tttttggagacg gaatctgtca ccctgcactc cagccctgggtt gatagagtga nactccgtct 2220
aaaaaaagaaaa aaaaaaaaaatc aacacccataaa aattttactttt cttctgttca atttattttcg 2280
atgtgcattca taaaatttata acaaaaagggg tagatattttt atttgagctat gttttttttt gttttttttt 2340

tcaaaaaccac	aatctggagg	tttccgtctc	ttcataaaaag	aagttaaaac	tcagtgcatg	2400
ttgcttagacg	tcatttaatg	atcttcattc	ttctctgtcc	agagcatgtg	tgaagtatta	2460
ggccagaaaag	agagagataa	ataatctttt	cccatgcacc	cctgctggtc	acagaagctg	2520
gtcttttaaa	gtttgagtaa	ctgtcaactt	gtcaggcatg	gttataaaagt	ttccagaaaag	2580
zaactagtaag	gagcattaat	ataagatttc	cccagatgcc	aattttgttt	tctgctatat	2640
ctcaactcctc	tttgaatttc	c _t cataacaat	tttccattta	aatggagaa	ttcagcttc	2700
ttgatcctat	aataaacaca	tttgtcttta	tttgatacaa	aaaaaaaaaa	aaagkgcggc	2760
c						2761

<210> 42

<211> 3758

<212> DNA

<213> Homo sapiens

<400> 42

cgacaagcaa agaagattt ctgaatatct gcattgaacc tgacaccatc agcaaaggag	2520
actttataac tataggaagt cgaaaggtga gaaaacccaa gctgcacgtg gagggcacgg	2580
agtgtctcca agccagccag tgcacttgc ttatcccgga gggagcaggg ggctctttta	2640
gcattgacag tgaggagtt gaagcgatgc ctgtggaggt gaaactgctc cccaggaagc	2700
tgcagttctt ctgtgatcct aggaagagag aacagatgtc cacaageccc acccagttag	2760
cagcagaaga caagcactct gagaccacac ttttaggccac cgggtgggacc aaaagggaaac	2820
aggtgcctca gccatccaa cagtgtcgtc agagggtccc cagggcattt tcatggcaag	2880
tacccctctg cccccactcc agcagtgcct cccaaagtgt gctctgtcac ctgctttca	2940
atcggttcc attagcgcat gtttattttt ggtgtgacgg ttggccctcc taaacacgga	3000
ctttccctca gctggtcaa gacggaaaag gactttcttc tgtttcttc caaagtgc当地	3060
ccacagtggg gagccccacgg tgggcttagc ctgccttaggc cttccattt ctcttcttg	3120
accgtgttag gaattccagg aaagtgcatt cctgcctgg tgacctttc ctatgtctag	3180
gctccctcc acagggtctgat attttgttag ctccggctcc tgtttagctt tatttcagt	3240
tctaaccctca gtccagaaac atatgtgagg ttgtttccct cttcagccac ggctacaata	3300
ccggaaaaatg ctatgtttta tttatTTTT taagttagtgc ttccataatg gtttgcatga	3360
gagccacctg gggtacatgt tgaaaaactta tttggggctt accccaaacc taataaccca	3420
aatttggggta tggggccctag gaatatgcatt tttaaaaag tcatgtccc ttcccagggt	3480
attctgttaag ttgtccctca actgtacttg gagaaatctgt gttttaaagc agtagtccac	3540
aaagtattct gctcatgtgc ccccaaaaatg attttgaaaa atcatgtata ccctcaccct	3600
tctaagttga tatctaaaat tttatctaa gttgttatcta aaattttca tgggaagtt	3660
aatagttgac aaagtatgtt tttgtgggtc tcgtgttaat attgttattt taaaataaaaa	3720
actgttacat cactaaaaaa aaaaaaaaaa aaaaaaaaaa	3758

<210> 43
<211> 2860
<212> DNA
<213> Homo sapiens

<400> 43	
ccacgcgtcc ggactctggg ccccaactcaa tctgtttctc tcacgcacac tttgtctctg	60
gggcacccaa gcctccctg ccatgcgacc tgcactgtc tggcagtggaa gcccctgggg	120
gctgctgctg tgcctgtgt gcagttcgctt cttggggctt ccacggggcc	180
tgagaagaag gcccggagcc agggggcttcg gttccggctg gctggcttcc ccaggaagcc	240
ctacgagggc cgcgtggaga tacagcgacg tggtaatgg ggcaccatct gcgatgtga	300
cttcaagctg caagctgccc aaatccctg cccggagctg ggcttcacag agccacagct	360
ggacccacag tgccaaatat ggcctggaa cagccgcata tggctggaca acttgagctg	420
catgggaccc agcagatgtg actgaatgtg ctteccccgggg ctggggaaac agtgaactgt	480
cgcacgatga ggtgtctggg gtcatctgca aagaccagcg cctctgggtt ctcggactcc	540
aatgtcattt aggttagagca tcaacctgca gttggaggagg tgcgaattcg accccgggtt	600
gggtggggca gacgaccctt gcccgtgacg gagggggctgg tggaaatctg gtttcctgac	660
ggtgtgtcgca aagtgtcgca caaaggctgg agcggccaca acagccacgt ggtgtcgccc	720
atgctgggtt tccccagcga aaagagggtc aacgcggcct tctacaggct gctagccaa	780
cggcagcaac actcccttgg tctgcattgg gttggcgtcg tggcacggaa agcccaccc	840
tccctctgtt ccctggaggctt ctatctgtcc aatgacaccg ccagggtcccc tggggggggc	900
cctgcagtgg tgagctgtgt gccaggccct gtcacgcgg catccagtgcc ccagaagaag	960
caacaacagt cgaaggctca gggggaggcc cgtgtccgtc taaagggcgg cgcccaccc	1020
ggagagggcc gggtagaaatg cctgaaggcc agcacatggg gcacagtctg tgaccgcaag	1080
tgggacctgc atgcagccag cgtgggtgtgt cgggagctgg gtttgggag tgctcgagaa	1140
gctctgagtg gcgctcgcat gggcaggggc atgggtgcta tccacctgag tgaagtcgt	1200
gctctggaca ggagctctcc ctctggaaatg gccccacaa gaacatcaca gctgaggatt	1260
gtcacatagc caggatggcc gggccgggtc caacctaccc tacactgggg cagagaccag	1320
gatccgactc agtggggggcc gagccaaacat gagggggcgg tgcagggtgca aataggggg	1380
cctggggccc ttgcgtgggg cctcatctgt ggggatgact gggggaccct ggaggccatg	1440
gtggccctgtt ggcaactggg tctgggctac gccaaccacg gcctgcagga gacctggtag	1500
tgggactctg ggaatataac agaggtgggt atgagtggag tgcgtgtcac agggactgag	1560
ctgtccctgg atcagtgatgc ccatcatggc accccacatca cctgcagag gacaggacc	1620

cgcttcactg	ctggagtcat	ctgttctgag	actgcacatcg	atctgttgct	gcactcagca	1680
ctgggtcagg	agaccgccta	catcgaaagac	cggcccccgc	atatgttgta	ctgtgctgcg	1740
gaagagaact	gcctggccag	ctcagccccgc	ttagccaact	ggccctatgg	tcacccggcgt	1800
ctgctccat	tctccctccca	gatccacaac	ctggggacgag	ctgacttcag	gcccaaggct	1860
gggcgccact	cctgggtgtg	gcacgagtgc	catgggcatt	accacagcat	ggacatcttc	1920
actcactatg	atatcctcac	cccaaataatggc	accaaggtgg	ctgaggccac	aaagcttagtt	1980
tctgtctcg	agacactgag	tgtcaggagg	atgtctccaa	gcggtatgag	tgtgccaact	2040
ttggagagca	aggcatcaact	gtgggttgct	gggatctcta	ccggcatgac	attgtactgtc	2100
agtggattga	catcacggat	gtgaagccag	aaaactacat	tctccaggtt	gtcatcaacc	2160
caaactttga	agtagcagag	agtgacttta	ccaacaatgc	aatgaaatgt	aactgcaaat	2220
atgatggaca	tagaatctgg	gtgcacaact	gccacattgg	tgatgccttc	agtgaagagg	2280
ccaaacaggag	gtttgaacgc	tacccctggcc	agaccagcaa	ccagattatc	taagtgcac	2340
tgcctctgc	aaaccaccac	tggcccttaa	tggcagggggt	ctgaggctgc	cattacctca	2400
ggagcttacc	aagaaaccca	tgtcagcaac	cgcactcattc	agaccatgca	ctatggatgt	2460
ggaactgtca	agcagaagtt	ttcacccctcc	ttcagaggcc	agctgtcagt	atctgttagcc	2520
aagcatggga	atctttgtctc	ccaggcccag	caccgagcag	aacagaccag	agccaccac	2580
accacaaaaga	gcagcacctg	actaactgcc	cacaaaagat	ggcagcagct	cattttcttt	2640
aataggaggt	caggatggtc	agctccagta	tcccccataa	gttttaggggg	atacagcttt	2700
acctctagcc	ttttgggtgg	ggaaaagatc	cagccctccc	acctattttt	tactataata	2760
tgtgctagg	tataattttt	tttatataaa	aaagtgtttc	tgtgaaaaaaa	aaaaaaaaaa	2820
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2860

<210> 44
<211> 1691
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (167)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1631)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1653)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (1660)
<223> n equals a,t,g, or c

<400> 44
aacaaaaaaag ctggaaagct tcggggcggc cttgcaaggt tcgaccacta agtggattcc 60
aaagaatttc gggcacaaag ttgtatggac cgccacggct tacaaggccg ggatcctgct 120
ggccctgtgc ctgtatgcgg cggcgccgt gctgttcatg ccggcgnccg carcggcgg 180
cttccctttt ttcctgttgc cgctgtttgt catgcctgc ggccctggct gcctggagac 240
cgctgccaac ccctatgccca cggtgctggg ggaaccccaag ggccggcggc ggcgggtgaa 300
cctggcgcaa tcattcaatg gccttggcca gtttttcggc ccgctgatttgc gggcgccgat 360
gttcttcagc gccggcagca caccggccctc ggacatgagt tcgttgcaga ccacctacgt 420
gttgcgtcgttgc gttctgttgc gctgctgatc gcccgcacgc cgctgcccgg 480

tttgcgcgcc	caggaacagg	caactgcaacc	gacggccggc	aaaggctctgt	ggcagcaccg	540
ggagtttgc	ggtggsgtga	tcacgcagtt	tttctatgtg	gcggcccagg	tccgagtcgg	600
cgcattttc	atcaactacg	tcacccgagca	ttgggcacag	atgggaatac	agaagccgc	660
ctatctgctg	tcgatcgcaa	tgctggcctt	catgttcggg	cgcttttca	gtacctggct	720
gatggggccgg	gtcagcgcgc	agaagctgct	gctgatttat	gcgctgatca	atatcgcggt	780
gtgcggccctg	gtgggtatcg	gccttggaaagg	tatctcagtg	atcgcgctga	tccgagtgtt	840
cttcttcatg	tcgatcatgt	tcccacgcgt	tttcgcctatg	ggcgtgaaga	acctcgggcc	900
gcacaccaag	cgcggcagtt	cgttcatgtat	catggcgatc	gtcggccggcg	ccctgtatgcc	960
ctacttgatg	ggcaagggtgg	cggacaacag	cacgggtggcg	ctggcttacc	tgttgcctat	1020
gggggttttc	gtgattgtgg	cggtgtatgc	ccgttagtcgc	ttgcggccatc	cgtgaagttac	1080
cgccccggcg	tcgtccgaa	cgtacgcccgg	aacatcgca	twawggact	gacgttttca	1140
taacccaggt	ccagcgcaac	ccgggtcacg	ggtgcacg	ccgcccacaa	ctccaggcg	1200
cgcaacaatc	gcccgcgtcg	gcccactgg	ctgaaggtga	acccggcttc	ggcaacaaac	1260
cgcggggcca	gggtgcgcgg	cgagacaccg	gcccactgcg	cccagtgttc	cagcaggcgg	1320
ttgtcgtcgg	gactgtcggc	cagccctgg	gcgatgcgc	acaggcgcgg	gttyccggggc	1380
agccggcaagc	cgaatggttc	ctggggcaac	ccggcgattt	catcaaggat	catctggcg	1440
awccgtgact	gtggcggttc	gagagtactt	ctagagcggc	cgccggccca	tgcattttca	1500
cccggggtggg	gtaccagta	aagtgtaccc	aattcggctt	atagtgagtc	gtattacaat	1560
tcactggccg	tcggtttaca	acgtcgtgac	tggaaaacc	tggcgttacc	caacttaatc	1620
ggcttgcaag	nacattttcc	ccctttgcag	tgngaatacn	aaggccgacg	atgcctttc	1680
aaagtggca.a						1691

<210> 45

<211> 121

<212> PRT

<213> Homo sapiens

<400> 45

Met	Ala	Ser	Cys	Leu	Ala	Leu	Arg.	Met	Ala	Leu	Leu	Leu	Val	Ser	Gly
1								10						15	

Val	Leu	Ala	Pro	Ala	Val	Leu	Thr	Asp	Asp	Val	Pro	Gln	Glu	Pro	Val
								20					30		

Pro	Thr	Leu	Trp	Asn	Glu	Pro	Ala	Glu	Leu	Pro	Ser	Gly	Glu	Gly	Pro
								35					45		

Val	Glu	Ser	Thr	Ser	Pro	Gly	Arg	Glu	Pro	Val	Asp	Thr	Gly	Pro	Pro
								50					60		

Ala	Pro	Thr	Val	Ala	Pro	Gly	Pro	Glu	Asp	Ser	Thr	Ala	Gln	Glu	Arg
								65					75		80

Leu	Asp	Gln	Gly	Gly	Ser	Leu	Gly	Pro	Gly	Ala	Ile	Ala	Ile		
								85					95		

Val	Ile	Ala	Ala	Leu	Leu	Ala	Thr	Cys	Val	Val	Leu	Ala	Leu	Val	Val
								100					105		110

Val	Ala	Leu	Arg	Lys	Phe	Ser	Ala	Ser							
								115					120		

<210> 46

<211> 64

<212> PRT

<213> Homo sapiens

<400> 46				
Met Phe Met Trp Thr Ile Ser Ile Val Thr Phe Ser Ile Pro Leu Thr	1	5	10	15
Leu Pro Leu Pro Leu Arg Gly Glu Asn Lys Thr Leu Asn Gly Ser Asn	20	25	30	
Ser Tyr Val Phe Tyr Phe Val Ser Glu Val Ser Lys Leu Leu Leu Leu	35	40	45	
Ala Ser Phe Ser Leu Gly Gln Met Asp Val Ser Tyr Phe Pro Val Ser	50	55	60	

<210> 47

<211> 40

<212> PRT

<213> Homo sapiens

<400> 47				
Met Phe Val Phe Ser Leu Leu His Phe Gly Val Leu Leu Leu Gln Cys	1	5	10	15
Asp Pro Cys Trp Ala Phe Leu Tyr Asn Gln Gln Leu Asn Leu Leu Pro	20	25	30	
Asn Ala Cys Leu Pro Phe Ile Phe	35	40		

<210> 48

<211> 340

<212> PRT

<213> Homo sapiens

<220>			
<221> SITE			
<222> (334)			
<223> Xaa equals any of the naturally occurring L-amino acids			

<220>			
<221> SITE			
<222> (335)			
<223> Xaa equals any of the naturally occurring L-amino acids			

<400> 48				
Met Pro Gly Trp Leu Thr Leu Pro Thr Leu Cys Arg Phe Leu Leu Trp	1	5	10	15
Ala Phe Thr Ile Phe His Lys Ala Gln Gly Asp Pro Ala Ser His Pro	20	25	30	

Gly Pro His Tyr Leu Leu Pro Pro Ile His Glu Val Ile His Ser His
 35 40 45

Arg Gly Ala Thr Ala Thr Leu Pro Cys Val Leu Gly Thr Thr Pro Pro
 50 55 60

Ser Tyr Lys Val Arg Trp Ser Lys Val Glu Pro Gly Glu Leu Arg Glu
 65 70 75 80

Thr Leu Ile Leu Ile Thr Asn Gly Leu His Ala Arg Gly Tyr Gly Pro
 85 90 95

Leu Gly Gly Arg Ala Arg Met Arg Arg Gly His Arg Leu Asp Ala Ser
 100 105 110

Leu Val Ile Ala Gly Val Arg Leu Glu Asp Glu Gly Arg Tyr Arg Cys
 115 120 125

Glu Leu Ile Asn Gly Ile Glu Asp Glu Ser Val Ala Leu Thr Leu Ser
 130 135 140

Leu Glu Gly Val Val Phe Pro Tyr Gln Pro Ser Arg Gly Arg Tyr Gln
 145 150 155 160

Phe Asn Tyr Tyr Glu Ala Lys Gln Ala Cys Glu Glu Gln Asp Gly Arg
 165 170 175

Leu Ala Thr Tyr Ser Gln Leu Tyr Gln Ala Trp Thr Glu Gly Leu Asp
 180 185 190

Trp Cys Asn Ala Gly Trp Leu Leu Glu Gly Ser Val Arg Tyr Pro Val
 195 200 205

Leu Thr Ala Arg Ala Pro Cys Gly Gly Arg Gly Arg Pro Gly Ile Arg
 210 215 220

Ser Tyr Gly Pro Arg Asp Arg Met Arg Asp Arg Tyr Asp Ala Phe Cys
 225 230 235 240

Phe Thr Ser Ala Leu Ala Gly Gln Val Phe Phe Val Pro Gly Arg Leu
 245 250 255

Thr Leu Ser Glu Ala His Ala Ala Cys Arg Arg Arg Gly Ala Val Val
 260 265 270

Ala Lys Val Gly His Leu Tyr Ala Ala Trp Lys Phe Ser Gly Leu Asp
 275 280 285

Gln Cys Asp Gly Gly Trp Leu Ala Asp Gly Ser Val Arg Phe Pro Ile
 290 295 300

Thr Thr Pro Arg Pro Arg Cys Gly Gly Leu Pro Asp Pro Gly Val Arg
 305 310 315 320

Ser Phe Gly Phe Pro Arg Pro Gln Gln Ala Ala Tyr Gly Xaa Xaa Cys
 325 330 335

Tyr Ala Glu Asn
340

<210> 49
<211> 43
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (39)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 49
Met Asp Val Pro Gly Met Thr Ser Phe Leu Leu Leu Gly Trp Arg
1 5 10 15

Ala Leu Val Leu Gly Leu Ser Ala Glu Phe Gln Gly Ser Leu Thr Cys
20 25 30

Pro Cys Pro Ser Phe Pro Xaa Trp Ala Pro Ser
35 40

<210> 50
<211> 421
<212> PRT
<213> Homo sapiens

<400> 50
Met Thr Val Phe Phe Lys Thr Leu Arg Asn His Trp Lys Lys Thr Thr
1 5 10 15

Ala Gly Leu Cys Leu Leu Thr Trp Gly Gly His Trp Leu Tyr Gly Lys
20 25 30

His Cys Asp Asn Leu Leu Arg Arg Ala Ala Cys Gln Glu Ala Gln Val
35 40 45

Phe Gly Asn Gln Leu Ile Pro Pro Asn Ala Gln Val Lys Lys Ala Thr
50 55 60

Val Phe Ser Ile Leu Gln Leu Ala Lys Glu Lys Pro Gly Leu Tyr Leu
65 70 75 80

Lys Lys Met Leu Pro Asp Phe Thr Phe Ile Trp His Gly Cys Asp Tyr
85 90 95

Cys Lys Thr Asp Tyr Glu Gly Gln Ala Lys Lys Leu Leu Glu Leu Met
100 105 110

Glu Asn Thr Asp Val Ile Ile Val Ala Gly Gly Asp Gly Thr Leu Gln
115 120 125

Glu Val Val Thr Gly Val Leu Arg Arg Thr Asp Glu Ala Thr Phe Ser
130 135 140

Lys Ile Pro Ile Gly Phe Ile Pro Leu Gly Glu Thr Ser Ser Leu Ser
 145 150 155 160

His Thr Leu Phe Ala Glu Ser Gly Asn Lys Val Gln His Ile Thr Asp
 165 170 175

Ala Thr Leu Ala Ile Val Lys Gly Glu Thr Val Pro Leu Asp Val Leu
 180 185 190

Gln Ile Lys Gly Glu Lys Glu Gln Pro Val Phe Ala Met Thr Gly Leu
 195 200 205

Arg Trp Gly Ser Phe Arg Asp Ala Gly Val Lys Val Ser Lys Tyr Trp
 210 215 220

Tyr Leu Gly Pro Leu Lys Ile Lys Ala Ala His Phe Phe Ser Thr Leu
 225 230 235 240

Lys Glu Trp Pro Gln Thr His Gln Ala Ser Ile Ser Tyr Thr Gly Pro
 245 250 255

Thr Glu Arg Pro Pro Asn Glu Pro Glu Glu Thr Pro Val Gln Arg Pro
 260 265 270

Ser Leu Tyr Arg Arg Ile Leu Arg Arg Leu Ala Ser Tyr Trp Ala Gln
 275 280 285

Pro Gln Asp Ala Leu Ser Gln Glu Val Ser Pro Glu Val Trp Lys Asp
 290 295 300

Val Gln Leu Ser Thr Ile Glu Leu Ser Ile Thr Thr Arg Asn Asn Gln
 305 310 315 320

Leu Asp Pro Thr Ser Lys Glu Asp Phe Leu Asn Ile Cys Ile Glu Pro
 325 330 335

Asp Thr Ile Ser Lys Gly Asp Phe Ile Thr Ile Gly Ser Arg Lys Val
 340 345 350

Arg Asn Pro Lys Leu His Val Glu Gly Thr Glu Cys Leu Gln Ala Ser
 355 360 365

Gln Cys Thr Leu Leu Ile Pro Glu Gly Ala Gly Gly Ser Phe Ser Ile
 370 375 380

Asp Ser Glu Glu Tyr Glu Ala Met Pro Val Glu Val Lys Leu Leu Pro
 385 390 395 400

Arg Lys Leu Gln Phe Phe Cys Asp Pro Arg Lys Arg Glu Gln Met Leu
 405 410 415

Thr Ser Pro Thr Gln
 420

<211> 641
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (93)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (469)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (486)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 51
Met Arg Pro Val Ser Val Trp Gln Trp Ser Pro Trp Gly Leu Leu Leu
1 5 10 15

Cys Leu Leu Cys Ser Ser Cys Leu Gly Ser Pro Ser Pro Ser Thr Gly
20 25 30

Pro Glu Lys Lys Ala Gly Ser Gln Gly Leu Arg Phe Arg Leu Ala Gly
35 40 45

Phe Pro Arg Lys Pro Tyr Glu Gly Arg Val Glu Ile Gln Arg Ala Gly
50 55 60

Glu Trp Gly Thr Ile Cys Asp Asp Phe Thr Leu Gln Ala Ala His
65 70 75 80

Ile Leu Cys Arg Glu Leu Gly Phe Thr Glu Ala Thr Xaa Trp Thr His
85 90 95

Ser Ala Lys Tyr Gly Pro Gly Thr Gly Arg Ile Trp Leu Asp Asn Leu
100 105 110

Ser Cys Ser Gly Thr Glu Gln Ser Val Thr Glu Cys Ala Ser Arg Gly
115 120 125

Trp Gly Asn Ser Asp Cys Thr His Asp Glu Asp Ala Gly Val Ile Cys
130 135 140

Lys Asp Gln Arg Leu Pro Gly Phe Ser Asp Ser Asn Val Ile Glu Val
145 150 155 160

Glu His His Leu Gln Val Glu Val Arg Ile Arg Pro Ala Val Gly
165 170 175

Trp Gly Arg Arg Pro Leu Pro Val Thr Glu Gly Leu Val Glu Val Arg
180 185 190

Leu Pro Asp Gly Trp Ser Gln Val Cys Asp Lys Gly Trp Ser Ala His

195	200	205
Asn Ser His Val Val Cys Gly Met Leu Gly Phe Pro Ser Glu Lys Arg		
210	215	220
Val Asn Ala Ala Phe Tyr Arg Leu Leu Ala Gln Arg Gln Gln His Ser		
225	230	235
Phe Gly Leu His Gly Val Ala Cys Val Gly Thr Glu Ala His Leu Ser		
245	250	255
Leu Cys Ser Leu Glu Phe Tyr Arg Ala Asn Asp Thr Ala Arg Cys Pro		
260	265	270
Gly Gly Gly Pro Ala Val Val Ser Cys Val Pro Gly Pro Val Tyr Ala		
275	280	285
Ala Ser Ser Gly Gln Lys Lys Gln Gln Ser Lys Pro Gln Gly Glu		
290	295	300
Ala Arg Val Arg Leu Lys Gly Gly Ala His Pro Gly Glu Gly Arg Val		
305	310	315
Glu Val Leu Lys Ala Ser Thr Trp Gly Thr Val Cys Asp Arg Lys Trp		
325	330	335
Asp Leu His Ala Ala Ser Val Val Cys Arg Glu Leu Gly Phe Gly Ser		
340	345	350
Ala Arg Glu Ala Leu Ser Gly Ala Arg Met Gly Gln Gly Met Gly Ala		
355	360	365
Ile His Leu Ser Glu Val Arg Cys Ser Gly Gln Glu Leu Ser Leu Trp		
370	375	380
Lys Cys Pro His Lys Asn Ile Thr Ala Glu Asp Cys Ser His Ser Gln		
385	390	395
Asp Ala Gly Val Arg Cys Asn Leu Pro Tyr Thr Gly Ala Glu Thr Arg		
405	410	415
Ile Arg Leu Ser Gly Gly Arg Ser Gln His Glu Gly Arg Val Glu Val		
420	425	430
Gln Ile Gly Gly Pro Gly Pro Leu Arg Trp Gly Leu Ile Cys Gly Asp		
435	440	445
Asp Trp Gly Thr Leu Glu Ala Met Val Ala Cys Arg Gln Leu Gly Leu		
450	455	460
Gly Tyr Ala Asn Xaa Gly Leu Gln Glu Thr Trp Tyr Trp Asp Ser Gly		
465	470	475
Asn Ile Thr Glu Val Xaa Met Ser Gly Val Arg Cys Thr Gly Thr Glu		
485	490	495
Leu Ser Leu Asp Gln Cys Ala His His Gly Thr His Ile Thr Cys Lys		

500

505

510

Arg Thr Gly Thr Arg Phe Thr Ala Gly Val Ile Cys Ser Glu Thr Ala
 515 520 525

Ser Asp Leu Leu Leu His Ser Ala Leu Val Gln Glu Thr Ala Tyr Ile
 530 535 540

Glu Asp Arg Pro Leu His Met Leu Tyr Cys Ala Ala Glu Glu Asn Cys
 545 550 555 560

Leu Ala Ser Ser Ala Arg Ser Ala Asn Trp Pro Tyr Gly His Arg Arg
 565 570 575

Leu Leu Arg Phe Ser Ser Gln Ile His Asn Leu Gly Arg Ala Asp Phe
 580 585 590

Arg Pro Lys Ala Gly Arg His Ser Trp Val Trp His Glu Cys His Gly
 595 600 605

His Tyr His Ser Met Asp Ile Phe Thr His Tyr Asp Ile Leu Thr Pro
 610 615 620

Asn Gly Thr Lys Val Ala Glu Gly Pro Gln Thr Ser Ser Val Ser Lys
 625 630 635 640

Thr

<210> 52

<211> 329

<212> PRT

<213> Homo sapiens

<400> 52

Met Asp Arg His Gly Tyr Lys Ala Gly Ile Leu Leu Gly Leu Cys Leu
 1 5 10 15

Tyr Ala Ala Gly Ala Leu Leu Phe Met Pro-Ala Ala Ala Ala Ser
 20 25 30

Phe Pro Phe Phe Leu Phe Ala Leu Phe Val Ile Ala Cys Gly Leu Gly
 35 40 45

Cys Leu Glu Thr Ala Ala Asn Pro Tyr Ala Thr Val Leu Gly Glu Pro
 50 55 60

Gln Gly Ala Glu Arg Arg Leu Asn Leu Ala Gln Ser Phe Asn Gly Leu
 65 70 75 80

Gly Gln Phe Phe Gly Pro Leu Ile Gly Gly Ala Met Phe Phe Ser Ala
 85 90 95

Gly Ser Thr Pro Ala Ser Asp Met Ser Ser Leu Gln Thr Thr Tyr Val
 100 105 110

Val Ile Ala Val Leu Val Leu Leu Val Ala Leu Leu Ile Ala Arg Thr
 115 120 125

 Pro Leu Pro Asp Leu Arg Ala Gln Glu Gln Ala Leu Gln Pro Thr Ala
 130 135 140

 Gly Lys Gly Leu Trp Gln His Arg Glu Phe Val Gly Gly Val Ile Thr
 145 150 155 160

 Gln Phe Phe Tyr Val Ala Ala Gln Val Gly Val Gly Ala Phe Phe Ile
 165 170 175

 Asn Tyr Val Thr Glu His Trp Ala Gln Met Gly Asn Gln Gln Ala Ala
 180 185 190

 Tyr Leu Leu Ser Ile Ala Met Leu Ala Phe Met Phe Gly Arg Phe Phe
 195 200 205

 Ser Thr Trp Leu Met Gly Arg Val Ser Ala Gln Lys Leu Leu Leu Ile
 210 215 220

 Tyr Ala Leu Ile Asn Ile Ala Leu Cys Gly Leu Val Val Ile Gly Leu
 225 230 235 240

 Glu Gly Ile Ser Val Ile Ala Leu Ile Ala Val Phe Phe Met Ser
 245 250 255

 Ile Met Phe Pro Thr Leu Phe Ala Met Gly Val Lys Asn Leu Gly Pro
 260 265 270

 His Thr Lys Arg Gly Ser Ser Phe Met Ile Met Ala Ile Val Gly Gly
 275 280 285

 Ala Leu Met Pro Tyr Leu Met Gly Lys Val Ala Asp Asn Ser Thr Val
 290 295 300

 Ala Leu Ala Tyr Leu Leu Pro Met Gly Cys Phe Val Ile Val Ala Val
 305 310 315 320

 Tyr Ala Arg Ser Arg Leu Arg His Pro
 325

<210> 53
<211> 40
<212> PRT
<213> Homo sapiens

<400> 53
Met Gly Ala Leu Met Arg Gly Ile Gln Phe Leu Phe Leu Cys Tyr Phe
1 5 10 15

Ser Ser Ser Cys Leu Pro Ser Glu Val Gln Asn Thr Tyr Pro Glu Val
20 25 30

Asn Leu Pro Phe Asn Trp Gly Pro
35 40

<210> 54
<211> 74
<212> PRT
<213> Homo sapiens

<400> 54
Met Gly Val Arg Trp Tyr Leu Ile Val Leu Val Cys Ile Ser Leu Ile
1 5 10 15
Ile Ser Asp Val Gln Tyr Phe Phe Thr Cys Leu Leu Val Ile Cys Ile
20 25 30
Ser Ser Leu Glu Lys Tyr Leu Phe Asn Ser Phe Ala His Phe Lys Ile
35 40 45
Arg Leu Phe Gly Phe Leu Leu Met Leu Ser Cys Arg Ser Ser Leu
50 55 60
Tyr Ile Leu Asp Ile His Pro Ser Tyr Ile
65 70

<210> 55
<211> 53
<212> PRT
<213> Homo sapiens

<400> 55
Met Pro Ala Ser Cys Pro Gly Pro Gly Gly Asn Gln Gly Leu Leu
1 5 10 15
Leu Phe Phe Val Cys Leu Phe Val Cys Leu Phe Leu Thr Ala Trp Gly
20 25 30
Ser Arg Arg Thr Leu Lys Ala Glu Phe Cys Cys Pro Lys Gly Trp Thr
35 40 45
Ala Met Ile Pro Lys
50

<210> 56
<211> 57
<212> PRT
<213> Homo sapiens

<400> 56
Met Leu Thr Ser His Gln Pro Thr Ser Leu Ile His Ile Leu Leu Val
1 5 10 15
Ser Leu Phe Leu Ser Asn Pro Leu Cys Phe Gly Leu Leu Ser Val Cys
20 25 30
Pro Leu Gln Asn Ser Tyr Val Glu Ala Leu Thr Pro Asn Met Thr Leu
35 40 45

Phe Gly Asp Glu Ala Leu Ile Ile Ile
 50 55

<210> 57
 <211> 332
 <212> PRT
 <213> Homo sapiens

<400> 57
 Met Leu Pro Arg Leu Leu Leu Ile Cys Ala Pro Leu Cys Glu Pro
 1 5 10 15

Ala Glu Leu Phe Leu Ile Ala Ser Pro Ser His Pro Thr Glu Gly Ser
 20 25 30

Pro Val Thr Leu Thr Cys Lys Met Pro Phe Leu Gln Ser Ser Asp Ala
 35 40 45

Gln Phe Gln Phe Cys Phe Phe Arg Asp Thr Arg Ala Leu Gly Pro Gly
 50 55 60

Trp Ser Ser Ser Pro Lys Leu Gln Ile Ala Ala Met Trp Lys Glu Asp
 65 70 75 80

Thr Gly Ser Tyr Trp Cys Glu Ala Gln Thr Met Ala Ser Lys Val Leu
 85 90 95

Arg Ser Arg Arg Ser Gln Ile Asn Val His Ile Pro Val Ser Arg Pro
 100 105 110

Ile Leu Met Leu Arg Ala Pro Arg Ala Gln Ala Ala Val Glu Asp Val
 115 120 125

Leu Glu Leu His Cys Glu Ala Leu Arg Gly Ser Pro Pro Ile Leu Tyr
 130 135 140

Trp Phe Tyr His Glu Asp Ile Thr Leu Gly Ser Arg Ser Ala Pro Ser
 145 150 155 160

Gly Gly Gly Ala Ser Phe Asn Leu Ser Leu Thr Glu Glu His Ser Gly
 165 170 175

Asn Tyr Ser Cys Glu Ala Asn Asn Gly Leu Gly Ala Gln Arg Ser Glu
 180 185 190

Ala Val Thr Leu Asn Phe Thr Val Pro Thr Gly Ala Arg Ser Asn His
 195 200 205

Leu Thr Ser Gly Val Ile Glu Gly Leu Leu Ser Thr Leu Gly Pro Ala
 210 215 220

Thr Val Ala Leu Leu Phe Cys Tyr Gly Leu Lys Arg Lys Ile Gly Arg
 225 230 235 240

Arg Ser Ala Arg Asp Pro Leu Arg Ser Leu Pro Ala Leu Pro Gln Glu

Phe Thr Tyr Leu Asn Ser Pro Thr Pro Gly Gln Leu Gln Pro Ile Tyr
 260 265 270

Glu Asn Val Asn Val Val Ser Gly Asp Glu Val Tyr Ser Leu Ala Tyr
275 280 285

Tyr Asn Gln Pro Glu Gln Glu Ser Val Ala Ala Glu Thr Leu Gly Thr
290 295 300

His Met Glu Asp Lys Val Ser Leu Asp Ile Tyr Ser Arg Leu Arg Lys
 305 310 315 320

Ala Asn Ile Thr Asp Val Asp Tyr Glu Asp Ala Met
325 330

<210> 58

<211> 57

<212> PRT

<213> Homo sapiens

<400> 58

Met Thr Leu Ala Tyr Leu Leu Leu Phe Leu Cys Phe Val Ile Leu Ser
1 5 10 15

Pro Lys Pro Thr Met Asp Pro Met Leu Glu Arg Ala Lys Thr Ser Phe
· 20 · 25 · 30

Ser Ser Cys Pro Arg Ser Gln Val Met Leu Val Tyr His Leu Phe Leu
 35 40 45

Met Asp Phe Gln Cys Val Met Leu Cys
50 55

<210> 59

<211> 100

<212> PRT

<213> Homo sapiens

<400> 59

Met Ser Pro

1

20 25 30

35 40 45

Val Pro Gly Ala Asn Gln Arg Pro Gln Thr Thr Gly Ala Ser Thr Thr
50 55 60

65 70 75 80

Leu Gly Ala Arg Ser Thr Trp Val Pro Ser Ser Ala Gln Trp Met Thr
 85 90 95

Asp Ser Trp Val
 100

<210> 60
 <211> 106
 <212> PRT
 <213> Homo sapiens

<400> 60
 Met Val His Ile Ala Ile Lys Thr Pro Leu His Pro Ala Thr Pro Ile
 1 5 10 15

Pro His Arg Ala Phe Val Pro Ala Leu Ala Phe Leu Pro Phe Ser Phe
 20 25 30

Ser Ser Pro Leu Ser Ser Leu Lys Ala Val Ser Cys Phe Gln Cys Asp
 35 40 45

Asn Thr Met Met Ser Phe Gly Arg Ile Cys Gln Asp Arg Leu Ile Leu
 50 55 60

Ser Pro Gly Cys Arg Met Cys Met Arg Gln Cys Cys Gln Ala Ile Leu
 65 70 75 80

Phe Glu Ala Leu Cys Cys His Asn Tyr His Gln Val His Thr Val Gly
 85 90 95

Lys Arg Leu Thr Pro Asp Phe Arg Lys Cys
 100 105

<210> 61
 <211> 90
 <212> PRT
 <213> Homo sapiens

<400> 61
 Met Leu Val Leu Phe Cys Phe Ile Ser Leu Ile Lys Val Gln Cys Thr
 1 5 10 15

Leu Cys His Ser Ser Val Gly Asn Arg Ile Pro Leu Lys Ser Trp Pro
 20 25 30

Cys Lys Ile Gln Leu Ser Phe Asn Ile His Ala Phe Val Pro Leu Arg
 35 40 45

Lys Tyr Phe Leu Ser Phe Phe Val Leu Gln Asn Tyr Asn Val Ile Gln
 50 55 60

Gly Val Tyr Arg Leu Val Ile Lys Gly Ser Phe Leu Cys Val Thr Phe
 65 70 75 80

Phe Leu Tyr Ser Tyr Ser Ile Phe Lys Gln
 85 90

<210> 62
 <211> 148
 <212> PRT
 <213> Homo sapiens.

<400> 62
 Met Ser Pro Gly Tyr Thr Phe Lys Thr Ala Leu Ala Val Leu Tyr Leu
 1 5 10 15

Val His Met Ile Gln Asn Met Phe Pro Tyr Asn Met Gly Leu Ser Leu
 20 25 30

Leu Ala Asn Pro Ala Pro Ser Ser Ser Asn Leu Leu Ser Glu Ala
 35 40 45

Ser Ala Leu His Leu Leu Leu Ala Asp Gly Asn Leu Gln Gly Lys Ala
 50 55 60

Glu Gly Phe Leu Gly Lys Pro Gly Lys Pro Val Phe Pro Met Cys Gln
 65 70 75 80

Ile Cys Leu Ala Ser Lys Lys Gly Cys Met Gly Phe Leu Ala Ser Phe
 85 90 95

Gln Glu Ala Leu Gly Phe Leu Leu Leu Pro Arg Phe Pro Gln Ser Ser
 100 105 110

Gln Met Leu Lys Phe Leu Lys Val Asp Val Thr Gly Ser Leu Thr Thr
 115 120 125

Asn Lys Leu Ala Val Thr Val Phe Glu Thr Gln Tyr Leu Trp Gln Leu
 130 135 140

Thr Ser Asn Gln
 145

<210> 63
 <211> 78
 <212> PRT
 <213> Homo sapiens

<400> 63
 Met Met Ile Ala Leu Leu Ile Ser Lys Lys Trp Ser Met Leu Gly Leu
 1 5 10 15

Arg Pro Gly Ala Leu Tyr Leu Leu Cys Leu His Leu Phe Leu Gly Asp
 20 25 30

Leu Thr Gln Tyr His Ala Val Asn Lys Leu Met Thr Pro Lys Ser Ile
 35 40 45

Tyr Pro Ala Leu Val Pro Leu Trp Ala Pro Leu Asn Ile Ser Ser Pro

50

55

60

Thr Phe Leu Leu Ser Met Lys Ser Thr Gln Met Pro Ser Cys
 65 70 75

<210> 64
 <211> 41
 <212> PRT
 <213> Homo sapiens

<400> 64
 Met Ala Ile Trp Lys Leu Ile Ser Ile Tyr Phe Met Phe Ala Thr Trp
 1 5 10 15

Leu Tyr Ser Ile Ser Pro Lys Leu Lys Asn Asn Leu Pro Gly Leu Gln
 20 25 30

Asp Pro Lys Glu Thr Cys Leu Met Glu
 35 40

<210> 65
 <211> 43
 <212> PRT
 <213> Homo sapiens

<400> 65
 Met Glu His Leu Ile Arg Ser Gly Val Lys Ile Leu Phe Leu Asn Leu
 1 5 10 15

Leu Leu Thr Ser Cys Thr Thr Leu Asn Glu Trp Leu Asn Phe Leu Val
 20 25 30

Thr Leu Asn Cys Ser Arg Tyr Lys Met Thr Gly
 35 40

<210> 66
 <211> 49
 <212> PRT
 <213> Homo sapiens

<400> 66
 Met Val Asn Leu Thr Val Pro Pro Leu Leu Leu Tyr Val Leu Gly
 1 5 10 15

His Gly Lys Pro Lys Glu Cys Leu Arg Cys Ser Ser Gly Leu Ser Lys
 20 25 30

Ser Tyr Thr Asp Leu Gly Arg Arg Ser Ala Asp Ser Lys His Ser Leu
 35 40 45

Lys

<210> 67
 <211> 76
 <212> PRT
 <213> Homo sapiens

 <220>
 <221> SITE
 <222> (22)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 67			
Met Asn Arg Gly Gln Arg Leu Cys Leu Ala Phe Val Ser Leu Phe Pro			
1	5	10	15
Pro Cys Asn Ser Leu Xaa Pro Pro Pro Thr Leu Phe Pro Ser Pro Leu			
20	25	30	
Leu Pro Leu Ser Leu Thr Ser Pro Thr Pro His Ser Leu Ser Ser Leu			
35	40	45	
Ala Val Ser Cys Val Cys Val Gly Val Cys Val Phe Gly Cys Val Asn			
50	55	60	
Val Gly Ser Ser Thr Thr Gly Phe Cys Asn Leu Gly			
65	70	75	

<210> 68
 <211> 58
 <212> PRT
 <213> Homo sapiens

 <400> 68

Met Pro Arg Asp Ala Ser Leu Ala Arg Arg Ala Cys Leu Ser Leu Leu			
1	5	10	15
Leu His Leu Ser Trp Phe Pro Pro Cys Ser Ala Pro Gly Val Ile Phe			
20	25	30	
Ser His Ser Gly Tyr Gln Gly Phe Tyr His Ile Gly Phe Pro Lys Pro			
35	40	45	
His Ser Asn Ser Pro Leu Ser Gly Lys Pro			
50	55		

<210> 69
 <211> 44
 <212> PRT
 <213> Homo sapiens

 <400> 69

Met Leu Cys Phe Ser Pro Leu Cys Arg Arg Leu Phe Phe Pro Leu Leu			
1	5	10	15
Phe Gln Cys Arg Trp Phe Leu Leu Asn Leu Thr Pro Phe Ser Cys Ala			
20	25	30	

Gln Cys Gly Asn Lys Ser Ser Glu Arg Ile His Leu
 35 40

<210> 70
 <211> 61
 <212> PRT
 <213> Homo sapiens

<400> 70
 Met Gly Gly Leu Trp Asn Val Arg Phe Leu Leu Ile Pro Thr Val Leu
 1 5 10 15

Trp Gly Phe His Cys Ser Gln Glu Arg Ala Phe Pro Arg Lys Leu Gln
 20 25 30

Val Arg Ser Leu Gln Trp Pro Lys Gly Asp Pro Pro Glu Glu Val Thr
 35 40 45

Leu Pro Asn Trp Asp Ile Gly Thr Leu Asp Leu Asn Ile
 50 55 60

<210> 71
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 71
 Met Met Leu Gly Leu Arg Gln Lys Leu Thr Thr Ser Leu Thr Ser Ala
 1 5 10 15

Ala Ala Leu Thr Cys Val Leu Leu Ser Met Thr Gly Met Thr Thr
 20 25 30

Ser Ser Ser Arg Ser Val Leu Trp Lys Thr
 35 40

<210> 72
 <211> 83
 <212> PRT
 <213> Homo sapiens

<400> 72
 Met Glu Thr Ala Glu Leu Thr Ser Pro Gly Leu Phe Ala Gln Lys Arg
 1 5 10 15

Gly Leu Leu Leu Ser Leu Cys Phe Phe Pro Trp Pro Leu Cys Val
 20 25 30

Leu Ser Ser Ser Pro Ala His Asp Gln Leu Pro Ser Ala Glu Gly Lys
 35 40 45

Leu Leu Lys Val Glu Ile Leu Ser Ser Pro Pro Leu Phe Ser Arg Lys
 50 55 60

Leu Ser Leu Glu Leu Cys Pro Val Arg His Arg Thr Leu Ala Arg Gly
 65 . 70 75 80

Leu Asn Asp

<210> 73
 <211> 55
 <212> PRT
 <213> Homo sapiens

<400> 73
 Met Ala Val Ile His Tyr Gln Gln Phe Leu Trp Phe Leu Glu Leu Val
 1 5 10 15

Leu Gln Cys Ser Trp Gly Gln Thr Leu Ile Gly Cys Phe Phe Val Val
 20 25 30

Leu Arg Gly His Leu Cys Ser Ile Val Arg Thr Gly Lys Arg Met Phe
 35 40 45

Leu Glu His Cys Asp Leu Glu
 50 55

<210> 74
 <211> 85
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (72)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 74
 Met Leu His Leu Ile Tyr Tyr Phe Val Val Ile Ile Gln Leu Met Ile
 1 5 10 15

Ala Arg Ala Asp Ile Pro Gln Ile Ala Thr Val Phe Pro Gly Gln Cys
 20 25 30

Val Lys Ser Val Leu Leu Cys Ile Ile Leu Phe Asn Pro His Ser Tyr
 35 40 45

Leu Leu Cys Val Leu Ile Leu Trp Ile Glu Met Leu Arg Val Arg Lys
 50 55 60

Val Lys Pro Pro Phe Gln Ser Xaa Ile Ala Ser Tyr Leu Gln Arg Lys
 65 70 75 80

Phe Ser Thr Asp Leu
 85

<210> 75
<211> 94
<212> PRT
<213> Homo sapiens

<400> 75
Met His Phe Phe Val Glu Ser Thr Ile Val Ser Asp Thr Leu Ile Thr
1 5 10 15
Leu Ser Asn Leu Thr Phe His Lys Cys Pro Glu Tyr Glu Asn Ile Ile
20 25 30
Gln Asp Leu Asn Thr Asn Tyr Gln Asn Leu Gln Leu Ser Asn Gly Arg
35 40 45
Leu Arg Phe Met Leu Cys His Val Phe Ser Ser Phe Leu Phe Val Met
50 55 60
Val Phe Gln Ile Val Glu Lys Glu Asn Ile Leu Phe Val Ile Ala Ser
65 70 75 80
Ala Ser Tyr Phe Cys Lys Thr Asn Tyr Ser Asn Ser Val Val
85 90

<210> 76
<211> 47
<212> PRT
<213> Homo sapiens

<400> 76
Met Thr Ala Gly Phe Met Gly Met Ala Val Ala Ile Ile Leu Phe Gly
1 5 10 15
Trp Ile Ile Gly Val Leu Gly Cys Cys Trp Asp Arg Gly Leu Met Gln
20 25 30
Tyr Val Ala Gly Cys Ser Ser Ser Trp Glu Gly Lys Gln Trp Asn
35 40 45

<210> 77
<211> 120
<212> PRT
<213> Homo sapiens

<400> 77
Met Arg Pro Val Ser Val Trp Gln Trp Ser Pro Trp Gly Leu Leu Leu
1 5 10 15
Cys Leu Leu Cys Ser Ser Cys Leu Gly Ser Pro Ser Pro Ser Thr Gly
20 25 30
Pro Glu Lys Lys Ala Gly Ser Gln Gly Leu Arg Phe Arg Leu Ala Gly
35 40 45
Phe Pro Arg Lys Pro Tyr Glu Gly Arg Val Glu Ile Gln Arg Ala Gly

50

55

60

Glu Trp Gly Thr Ile Cys Asp Asp Asp Phe Lys Leu Gln Ala Ala Gln
 65 70 75 80

Ile Leu Cys Arg Glu Leu Gly Phe Thr Glu Pro Gln Leu Asp Pro Gln
 85 90 95

Cys Gln Ile Trp Pro Trp Asn Ser Arg Ile Trp Leu Asp Asn Leu Ser
 100 105 110

Cys Met Gly Pro Ser Arg Cys Asp
 115 120

<210> 78

<211> 305

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (4)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (6)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 78

Met Pro Ala Xaa Ala Xaa Ala Ser Phe Pro Phe Phe Leu Phe Ala Leu
 1 5 10 15

Phe Val Ile Ala Cys Gly Leu Gly Cys Leu Glu Thr Ala Ala Asn Pro
 20 25 30

Tyr Ala Thr Val Leu Gly Glu Pro Gln Gly Ala Glu Arg Arg Leu Asn
 35 40 45

Leu Ala Gln Ser Phe Asn Gly Leu Gly Gln Phe Phe Gly Pro Leu Ile
 50 55 60

Gly Gly Ala Met Phe Phe Ser Ala Gly Ser Thr Pro Ala Ser Asp Met
 65 70 75 80

Ser Ser Leu Gln Thr Thr Tyr Val Val Ile Ala Val Leu Val Leu Leu
 85 90 95

Val Ala Leu Leu Ile Ala Arg Thr Pro Leu Pro Asp Leu Arg Ala Gln
 100 105 110

Glu Gln Ala Leu Gln Pro Thr Ala Gly Lys Leu Trp Gln His Arg
 115 120 125

Glu Phe Val Gly Gly Val Ile Thr Gln Phe Phe Tyr Val Ala Ala Gln
 130 135 140

Val Gly Val Gly Ala Phe Phe Ile Asn Tyr Val Thr Glu His Trp Ala
 145 150 155 160

Gln Met Gly Asn Gln Gln Ala Ala Tyr Leu Leu Ser Ile Ala Met Leu
 165 170 175

Ala Phe Met Phe Gly Arg Phe Phe Ser Thr Trp Leu Met Gly Arg Val
 180 185 190

Ser Ala Gln Lys Leu Leu Ile Tyr Ala Leu Ile Asn Ile Ala Leu
 195 200 205

Cys Gly Leu Val Val Ile Gly Leu Glu Gly Ile Ser Val Ile Ala Leu
 210 215 220

Ile Ala Val Phe Phe Met Ser Ile Met Phe Pro Thr Leu Phe Ala
 225 230 235 240

Met Gly Val Lys Asn Leu Gly Pro His Thr Lys Arg Gly Ser Ser Phe
 245 250 255

Met Ile Met Ala Ile Val Gly Gly Ala Leu Met Pro Tyr Leu Met Gly
 260 265 270

Lys Val Ala Asp Asn Ser Thr Val Ala Leu Ala Tyr Leu Leu Pro Met
 275 280 285

Gly Cys Phe Val Ile Val Ala Val Tyr Ala Arg Ser Arg Leu Arg His
 290 295 300

Pro
 305

<210> 79
 <211> 184
 <212> PRT
 <213> Homo sapiens

<400> 79
 Gln Phe His Thr Gly Thr Ala Met Thr Met Ile Thr Pro Ser Ser Asn
 1 5 10 15

Thr Thr His Tyr Arg Glu Ser Trp Tyr Ala Cys Arg Tyr Arg Ser Gly
 20 25 30

Ile Pro Gly Ser Thr His Ala Ser Ala Gly Lys Gln Leu Thr Ser Ala
 35 40 45

Val Leu Arg Ala Ser Arg Pro Pro Leu Pro Ser Leu Pro Ala Arg Met
 50 55 60

Ala Ser Cys Leu Ala Leu Arg Met Ala Leu Leu Val Ser Gly Val
 65 70 75 80

Leu Ala Pro Ala Val Leu Thr Asp Asp Val Pro Gln Glu Pro Val Pro

85

90

95

Thr Leu Trp Asn Glu Pro Ala Glu Leu Pro Ser Gly Glu Gly Pro Val
 100 105 110

Glu Ser Thr Ser Pro Gly Arg Glu Pro Val Asp Thr Gly Pro Pro Ala
 115 120 125

Pro Thr Val Ala Pro Gly Pro Glu Asp Ser Thr Ala Gln Glu Arg Leu
 130 135 140

Asp Gln Gly Gly Ser Leu Gly Pro Gly Ala Ile Ala Ala Ile Val
 145 150 155 160

Ile Ala Ala Leu Leu Ala Thr Cys Val Val Leu Ala Leu Val Val Val
 165 170 175

Ala Leu Arg Lys Phe Ser Ala Ser
 180

<210> 80

<211> 46

<212> PRT

<213> Homo sapiens

<400> 80

Cys Glu Glu Gln Asp Gly Arg Leu Ala Thr Tyr Ser Gln Leu Tyr Gln
 1 5 10 15

Ala Trp Thr Glu Gly Leu Asp Trp Cys Asn Ala Gly Trp Leu Leu Glu
 20 25 30

Gly Ser Val Arg Tyr Pro Val Leu Thr Ala Arg Ala Pro Cys
 35 40 45

<210> 81

<211> 47

<212> PRT

<213> Homo sapiens

<400> 81

Cys Arg Arg Arg Gly Ala Val Val Ala Lys Val Gly His Leu Tyr Ala
 1 5 10 15

Ala Trp Lys Phe Ser Gly Leu Asp Gln Cys Asp Gly Gly Trp Leu Ala
 20 25 30

Asp Gly Ser Val Arg Phe Pro Ile Thr Thr Pro Arg Pro Arg Cys
 35 40 45

<210> 82

<211> 47

<212> PRT

<213> Homo sapiens

<400> 82

Met	Thr	Ala	Gly	Phe	Met	Gly	Met	Ala	Val	Ala	Ile	Ile	Leu	Phe	Gly
1					5				10					15	

Trp	Ile	Ile	Gly	Val	Leu	Gly	Cys	Cys	Trp	Asp	Arg	Gly	Leu	Met	Gln
							20		25				30		

Tyr	Val	Ala	Gly	Cys	Ser	Ser	Ser	Trp	Glu	Gly	Lys	Gln	Trp	Asn
							35		40		45			

<210> 83

<211> 120

<212> PRT

<213> Homo sapiens

<400> 83

Met	Arg	Pro	Val	Ser	Val	Trp	Gln	Trp	Ser	Pro	Trp	Gly	Leu	Leu	Leu
1					5				10				15		

Cys	Leu	Leu	Cys	Ser	Ser	Cys	Leu	Gly	Ser	Pro	Ser	Pro	Ser	Thr	Gly
						20		25				30			

Pro	Glu	Lys	Lys	Ala	Gly	Ser	Gln	Gly	Leu	Arg	Phe	Arg	Leu	Ala	Gly
						35		40		45					

Phe	Pro	Arg	Lys	Pro	Tyr	Glu	Gly	Arg	Val	Glu	Ile	Gln	Arg	Ala	Gly
						50		55		60					

Glu	Trp	Gly	Thr	Ile	Cys	Asp	Asp	Asp	Phe	Lys	Leu	Gln	Ala	Ala	Gln
						65		70		75		80			

Ile	Leu	Cys	Arg	Glu	Leu	Gly	Phe	Thr	Glu	Pro	Gln	Leu	Asp	Pro	Gln
						85		90		95					

Cys	Gln	Ile	Trp	Pro	Trp	Asn	Ser	Arg	Ile	Trp	Leu	Asp	Asn	Leu	Ser
						100		105		110					

Cys	Met	Gly	Pro	Ser	Arg	Cys	Asp
						115	120

<210> 84

<211> 38

<212> PRT

<213> Homo sapiens

<400>	84	Gly	Ala	His	Pro	Gly	Glu	Gly	Arg	Val	Glu	Val	Leu	Lys	Ala	Ser	Thr
1					5				10				15				

Trp	Gly	Thr	Val	Cys	Asp	Arg	Lys	Trp	Asp	Leu	His	Ala	Ala	Ser	Val
						20		25		30					

Val	Cys	Arg	Glu	Leu	Gly
				35	

<210> 85
<211> 323
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (28)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (30)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (116)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (158)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 85
Met Asp Arg His Gly Leu Gln Gly Arg Asp Pro Ala Gly Pro Val Pro
1 5 10 15

Val Cys Gly Gly Arg Ala Ala Val His Ala Gly Xaa Gly Xaa Gly Glu
20 25 30

Leu Ser Val Phe Pro Val Arg Ala Val Cys His Arg Leu Arg Pro Gly
35 40 45

Leu Pro Gly Asp Arg Cys Gln Pro Leu Cys His Gly Ala Gly Gly Thr
50 55 60

Pro Gly Arg Arg Ala Ala Val Glu Pro Gly Ala Ile Ile Gln Trp Pro
65 70 75 80

Trp Pro Val Leu Arg Pro Ala Asp Trp Arg Arg Asp Val Leu Gln Arg
85 90 95

Arg Gln His Thr Gly Leu Gly His Glu Phe Val Ala Asp His Leu Arg
100 105 110

Gly Asp Arg Xaa Ser Gly Thr Ala Gly Gly Ala Ala Asp Arg Pro His
115 120 125

Ala Ala Ala Gly Phe Ala Arg Pro Gly Thr Gly Thr Ala Thr Asp Gly
130 135 140

Arg Gln Arg Ser Val Ala Ala Pro Gly Val Cys Arg Trp Xaa Asp His
145 150 155 160

Ala Val Phe Leu Cys Gly Gly Pro Gly Arg Ser Arg Arg Ile Phe His
 165 170 175

Gln Leu Arg His Arg Ala Leu Gly Thr Asp Gly Gln Ser Ala Ser Arg
 180 185 190

Leu Ser Ala Val Asp Arg Asn Ala Gly Leu His Val Arg Ala Leu Phe
 195 200 205

Gln Tyr Leu Ala Asp Gly Pro Gly Gln Arg Ala Glu Ala Ala Asp
 210 215 220

Leu Cys Ala Asp Gln Tyr Arg Val Val Arg Pro Gly Gly Asp Arg Pro
 225 230 235 240

Gly Arg Tyr Leu Ser Asp Arg Ala Asp Arg Ser Val Leu Leu His Val
 245 250 255

Asp His Val Pro Asp Ala Val Arg His Gly Arg Glu Glu Pro Arg Ala
 260 265 270

Ala His Gln Ala Arg Gln Phe Val His Asp His Gly Asp Arg Arg Arg
 275 280 285

Arg Pro Asp Ala Leu Leu Asp Gly Gln Gly Gly Gln Gln His Gly
 290 295 300

Gly Ala Gly Leu Pro Val Ala Tyr Gly Val Phe Arg Asp Cys Gly Gly
 305 310 315 320

Val Cys Pro

<210> 86
 <211> 35
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (28)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (30)
 <223> Xaa equals any of the naturally occurring L-amino acids'

<400> 86
 Met Asp Arg His Gly Leu Gln Gly Arg Asp Pro Ala Gly Pro Val Pro
 1 5 10 15

Val Cys Gly Gly Arg Ala Ala Val His Ala Gly Xaa Gly Xaa Gly Glu
 20 25 30

Leu Ser Val
35

<210> 87
<211> 36
<212> PRT
<213> Homo sapiens

<400> 87
Phe Pro Val Arg Ala Val Cys His Arg Leu Arg Pro Gly Leu Pro Gly
1 5 10 15

Asp Arg Cys Gln Pro Leu Cys His Gly Ala Gly Gly Thr Pro Gly Arg
20 25 30

Arg Ala Ala Val
35

<210> 88
<211> 41
<212> PRT
<213> Homo sapiens

<400> 88
Glu Pro Gly Ala Ile Ile Gln Trp Pro Trp Pro Val Leu Arg Pro Ala
1 5 10 15

Asp Trp Arg Arg Asp Val Leu Gln Arg Arg Gln His Thr Gly Leu Gly
20 25 30

His Glu Phe Val Ala Asp His Leu Arg
35 40

<210> 89
<211> 35
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (4)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 89
Gly Asp Arg Xaa Ser Gly Thr Ala Gly Gly Ala Ala Asp Arg Pro His
1 5 10 15

Ala Ala Ala Gly Phe Ala Arg Pro Gly Thr Gly Thr Ala Thr Asp Gly
20 25 30

Arg Gln Arg
35

<210> 90
<211> 35
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (11)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 90
Ser Val Ala Ala Pro Gly Val Cys Arg Trp Xaa Asp His Ala Val Phe
1 5 10 15
Leu Cys Gly Gly Pro Gly Arg Ser Arg Arg Ile Phe His Gln Leu Arg
20 25 30
His Arg Ala
35

<210> 91
<211> 36
<212> PRT
<213> Homo sapiens

<400> 91
Leu Gly Thr Asp Gly Gln Ser Ala Ser Arg Leu Ser Ala Val Asp Arg
1 5 10 15
Asn Ala Gly Leu His Val Arg Ala Leu Phe Gln Tyr Leu Ala Asp Gly
20 25 30
Pro Gly Gln Arg
35

<210> 92
<211> 34
<212> PRT
<213> Homo sapiens

<400> 92
Ala Glu Ala Ala Ala Asp Leu Cys Ala Asp Gln Tyr Arg Val Val Arg
1 5 10 15
Pro Gly Gly Asp Arg Pro Gly Arg Tyr Leu Ser Asp Arg Ala Asp Arg
20 25 30
Ser Val

<210> 93
<211> 37
<212> PRT
<213> Homo sapiens

<400> 93

Leu	Leu	His	Val	Asp	His	Val	Pro	Asp	Ala	Val	Arg	His	Gly	Arg	Glu
1				5					10					15	

Glu	Pro	Arg	Ala	Ala	His	Gln	Ala	Arg	Gln	Phe	Val	His	Asp	His	Gly
					20			25				30			

Asp	Arg	Arg	Arg	Arg											
					35										

<210> 94

<211> 34

<212> PRT

<213> Homo sapiens

<400> 94

Pro	Asp	Ala	Leu	Leu	Asp	Gly	Gln	Gly	Gly	Gly	Gln	Gln	His	Gly	Gly
1					5			10					15		

Ala	Gly	Leu	Pro	Val	Ala	Tyr	Gly	Val	Phe	Arg	Asp	Cys	Gly	Gly	Val
				20				25				30			

Cys Pro

<210> 95

<211> 305

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (4)

<223> Xaa equals any of the naturally occurring L-amino acids

<220>

<221> SITE

<222> (6)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 95

Met	Pro	Ala	Xaa	Ala	Xaa	Ala	Ser	Phe	Pro	Phe	Phe	Leu	Phe	Ala	Leu
1					5				10				15		

Phe	Val	Ile	Ala	Cys	Gly	Leu	Gly	Cys	Leu	Glu	Thr	Ala	Ala	Asn	Pro
				20				25				30			

Tyr	Ala	Thr	Val	Leu	Gly	Glu	Pro	Gln	Gly	Ala	Glu	Arg	Arg	Leu	Asn
					35			40				45			

Leu	Ala	Gln	Ser	Phe	Asn	Gly	Leu	Gly	Gln	Phe	Phe	Gly	Pro	Leu	Ile
					50			55				60			

Gly Gly Ala Met Phe Phe Ser Ala Gly Ser Thr Pro Ala Ser Asp Met

65

70

75

80

Ser Ser Leu Gln Thr Thr Tyr Val Val Ile Ala Val Val Leu Leu
 85 90 95

Val Ala Leu Leu Ile Ala Arg Thr Pro Leu Pro Asp Leu Arg Ala Gln
 100 105 110

Glu Gln Ala Leu Gln Pro Thr Ala Gly Lys Gly Leu Trp Gln His Arg
 115 120 125

Glu Phe Val Gly Gly Val Ile Thr Gln Phe Phe Tyr Val Ala Ala Gln
 130 135 140

Val Gly Val Gly Ala Phe Phe Ile Asn Tyr Val Thr Glu His Trp Ala
 145 150 155 160

Gln Met Gly Asn Gln Gln Ala Ala Tyr Leu Leu Ser Ile Ala Met Leu
 165 170 175

Ala Phe Met Phe Gly Arg Phe Phe Ser Thr Trp Leu Met Gly Arg Val
 180 185 190

Ser Ala Gln Lys Leu Leu Leu Ile Tyr Ala Leu Ile Asn Ile Ala Leu
 195 200 205

Cys Gly Leu Val Val Ile Gly Leu Glu Gly Ile Ser Val Ile Ala Leu
 210 215 220

Ile Ala Val Phe Phe Met Ser Ile Met Phe Pro Thr Leu Phe Ala
 225 230 235 240

Met Gly Val Lys Asn Leu Gly Pro His Thr Lys Arg Gly Ser Ser Phe
 245 250 255

Met Ile Met Ala Ile Val Gly Gly Ala Leu Met Pro Tyr Leu Met Gly
 260 265 270

Lys Val Ala Asp Asn Ser Thr Val Ala Leu Ala Tyr Leu Leu Pro Met
 275 280 285

Gly Cys Phe Val Ile Val Ala Val Tyr Ala Arg Ser Arg Leu Arg His
 290 295 300

Pro
 305

<210> 96
 <211> 88
 <212> PRT
 <213> Homo sapiens

<400> 96
 Gly Thr Ser Glu Gly Leu Gln Lys Asp Pro Ser His Asp Leu Phe Ala
 1 5 10 15

Leu Ala Ser Leu Pro Asn Pro Arg Trp Leu Thr Arg Gln Ser Gln Met
 20 25 30

Leu Thr Ser His Gln Pro Thr Ser Leu Ile His Ile Leu Leu Val Ser
 35 40 45

Leu Phe Leu Ser Asn Pro Leu Cys Phe Gly Leu Leu Ser Val Cys Pro
 50 55 60

Leu Gln Asn Ser Tyr Val Glu Ala Leu Thr Pro Asn Met Thr Leu Phe
 65 70 75 80

Gly Asp Glu Ala Leu Ile Ile Ile
 85

<210> 97

<211> 120

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (66)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 97

Lys Asn Trp Asp Phe Pro Pro Pro Arg Pro Thr Gln Ile Asn Tyr Ile
 1 5 10 15

Tyr Thr Val Ser Ser Ser Ser Leu Thr Arg Ser Phe Trp Ala Leu His
 20 25 30

Phe Leu Leu Val Cys Val Gln Lys Leu Gln Val Asp Met Asn Arg Gly
 35 40 45

Gln Arg Leu Cys Leu Ala Phe Val Ser Leu Phe Pro Pro Cys Asn Ser
 50 55 60

Leu Xaa Pro Pro Pro Thr Leu Phe Pro Ser Pro Leu Leu Pro Leu Ser
 65 70 75 80

Leu Thr Ser Pro Thr Pro His Ser Leu Ser Ser Leu Ala Val Ser Cys
 85 90 95

Val Cys Val Gly Val Cys Val Phe Gly Cys Val Asn Val Gly Ser Ser
 100 105 110

Thr Thr Gly Phe Cys Asn Leu Gly
 115 120

<210> 98

<211> 370

<212> PRT

<213> Homo sapiens

<400> 98

Met Pro Phe Thr Asn Pro Ala Arg Lys Asp Gly Ala Met Phe Phe His		
1	5	10
		15

Trp Arg Arg Ala Ala Glu Glu Gly Lys Asp Tyr Pro Ser Ala Arg Phe		
20	25	30

Asn Lys Thr Val Gln Val Pro Val Tyr Ser Glu Gln Glu Tyr Gln Leu		
35	40	45

Tyr Leu His Asp Asp Ala Trp Thr Lys Ala Glu Thr Asp His Leu Phe		
50	55	60

Asp Leu Ser Arg Arg Phe Asp Leu Arg Phe Val Val Ile His Asp Arg		
65	70	75
		80

Tyr Asp His Gln Gln Phe Lys Lys Arg Ser Val Glu Asp Leu Lys Glu		
85	90	95

Arg Tyr Tyr His Ile Cys Ala Lys Leu Ala Asn Val Arg Ala Val Pro		
100	105	110

Gly Thr Asp Leu Lys Ile Pro Val Phe Asp Ala Gly His Glu Arg Arg		
115	120	125

Arg Lys Glu Gln Leu Glu Arg Leu Tyr Asn Arg Thr Pro Glu Gln Val		
130	135	140

Ala Glu Glu Glu Tyr Leu Leu Gln Glu Leu Arg Lys Ile Glu Ala Arg		
145	150	155
		160

Lys Lys Glu Arg Glu Lys Arg Ser Gln Asp Leu Gln Lys Leu Ile Thr		
165	170	175

Ala Ala Asp Thr Thr Ala Glu Gln Arg Arg Thr Glu Arg Lys Ala Pro		
180	185	190

Lys Lys Lys Leu Pro Gln Lys Lys Glu Ala Glu Lys Pro Ala Val Pro		
195	200	205

Glu Thr Ala Gly Ile Lys Phe Pro Asp Phe Lys Ser Ala Gly Val Thr		
210	215	220

Leu Arg Ser Gln Arg Met Lys Leu Pro Ser Ser Val Gly Gln Lys Lys		
225	230	235
		240

Ile Lys Ala Leu Glu Gln Met Leu Leu Glu Leu Gly Val Glu Leu Ser		
245	250	255

Pro Thr Pro Thr Glu Glu Leu Val His Met Phe Asn Glu Leu Arg Ser		
260	265	270

Asp Leu Val Leu Leu Tyr Glu Leu Lys Gln Ala Cys Ala Asn Cys Glu		
275	280	285

Tyr Glu Leu Gln Met Leu Arg His Arg His Glu Ala Leu Ala Arg Ala		
290	295	300

Gly Val Leu Gly Gly Pro Ala Thr Pro Ala Ser Gly Pro Gly Pro Ala
 305 310 315 320

Ser Ala Glu Pro Ala Val Thr Glu Pro Gly Leu Gly Pro Asp Pro Lys
 325 330 335

Asp Thr Ile Ile Asp Val Val Gly Ala Pro Leu Thr Pro Asn Ser Arg.
 340 345 350

Lys Arg Arg Glu Ser Ala Ser Ser Ser Ser Val Lys Lys Ala Lys
 355 360 365

Lys Pro
 370

<210> 99
<211> 39
<212> PRT
<213> Homo sapiens

<400> 99
Met Pro Phe Thr Asn Pro Ala Arg Lys Asp Gly Ala Met Phe Phe His
 1 5 10 15

Trp Arg Arg Ala Ala Glu Glu Gly Lys Asp Tyr Pro Ser Ala Arg Phe
 20 25 30

Asn Lys Thr Val Gln Val Pro
 35

<210> 100
<211> 41
<212> PRT
<213> Homo sapiens

<400> 100
Val Tyr Ser Glu Gln Glu Tyr Gln Leu Tyr Leu His Asp Asp Ala Trp
 1 5 10 15

Thr Lys Ala Glu Thr Asp His Leu Phe Asp Leu Ser Arg Arg Phe Asp
 20 25 30

Leu Arg Phe Val Val Ile His Asp Arg
 35 40

<210> 101
<211> 42
<212> PRT
<213> Homo sapiens

<400> 101
Tyr Asp His Gln Gln Phe Lys Lys Arg Ser Val Glu Asp Leu Lys Glu
 1 5 10 15

Arg Tyr Tyr His Ile Cys Ala Lys Leu Ala Asn Val Arg Ala Val Pro
20 25 30

Gly Thr Asp Leu Lys Ile Pro Val Phe Asp
35 40

<210> 102
<211> 43
<212> PRT
<213> *Homo sapiens*

<400> 102
Ala Gly His Glu Arg Arg Arg Lys Glu Gln Leu Glu Arg Leu Tyr Asn
1 5 10 15

Arg Thr Pro Glu Gln Val Ala Glu Glu Glu Tyr Leu Leu Gln Glu Leu
 20 . 25 30

Arg Lys Ile Glu Ala Arg Lys Lys Glu Arg Glu
35 40

<210> 103
<211> 41
<212> PRT
<213> *Homo sapiens*

<400> 103
Lys Arg Ser Gln Asp Leu Gln Lys Leu Ile Thr Ala Ala Asp Thr Thr
1 5 . 10 15

Ala Glu Gln Arg Arg Thr Glu Arg Lys Ala Pro Lys Lys Lys Leu Pro
20 25 30

Gln Lys Lys Glu Ala Glu Lys Pro Ala
35 40

<210> 104
<211> 42
<212> PRT
<213> *Homo sapiens*

<400> 104
Val Pro Glu Thr Ala Gly Ile Lys Phe Pro Asp Phe Lys Ser Ala Gly
1. 5 10 15

Val Thr Leu Arg Ser Gln Arg Met Lys Leu Pro Ser Ser Val Gly Gln
20 25 30

Lys Lys Ile Lys Ala Leu Glu Gln Met Leu
 35 40

<210> 105

<211> 43
<212> PRT
<213> Homo sapiens

<400> 105
Leu Glu Leu Gly Val Glu Leu Ser Pro Thr Pro Thr Glu Glu Leu Val
1 5 10 15

His Met Phe Asn Glu Leu Arg Ser Asp Leu Val Leu Leu Tyr Glu Leu
20 25 30

Lys Gln Ala Cys Ala Asn Cys Glu Tyr Glu Leu
35 40

<210> 106
<211> 40
<212> PRT
<213> Homo sapiens

<400> 106
Gln Met Leu Arg His Arg His Glu Ala Leu Ala Arg Ala Gly Val Leu
1 5 10 15

Gly Gly Pro Ala Thr Pro Ala Ser Gly Pro Gly Pro Ala Ser Ala Glu
20 25 30

Pro Ala Val Thr Glu Pro Gly Leu
35 40

<210> 107
<211> 39
<212> PRT
<213> Homo sapiens

<400> 107
Gly Pro Asp Pro Lys Asp Thr Ile Ile Asp Val Val Gly Ala Pro Leu
1 5 10 15

Thr Pro Asn Ser Arg Lys Arg Arg Glu Ser Ala Ser Ser Ser Ser
20 25 30

Val Lys Lys Ala Lys Lys Pro
35

<210> 108
<211> 112
<212> PRT
<213> Homo sapiens

<400> 108
Ala Pro Arg Ser Ala Thr Arg Ile Val Leu Met Lys Ala Leu Leu Gly
1 5 10 15

Leu Phe Asp Arg Ala Gln His Pro Met Ser Pro His Leu Met Glu Thr

20

25

30

Ala Glu Leu Thr Ser Pro Gly Leu Phe Ala Gln Lys Arg Gly Leu Leu
 35 40 45

Leu Leu Ser Leu Cys Phe Phe Pro Trp Pro Leu Cys Val Leu Ser Ser
 50 55 60

Ser Pro Ala His Asp Gln Leu Pro Ser Ala Glu Gly Lys Leu Leu Lys
 65 70 75 80

Val Glu Ile Leu Ser Ser Pro Pro Leu Phe Ser Arg Lys Leu Ser Leu
 85 90 95

Glu Leu Cys Pro Val Arg His Arg Thr Leu Ala Arg Gly Leu Asn Asp
 100 105 110

<210> 109

<211> 235

<212> PRT

<213> Homo sapiens

<400> 109

Met Phe Phe Cys Cys Phe Ala Gly Thr Phe Met Phe Tyr Cys Ala His
 1 5 10 15

Trp Gln Thr Tyr Val Ser Gly Thr Leu Arg Phe Gly Ile Ile Asp Val
 20 25 30

Thr Glu Val Gln Ile Phe Ile Ile Met His Leu Ala Val Ile
 35 40 45

Gly Gly Pro Pro Phe Trp Gln Ser Met Ile Pro Val Leu Asn Ile Gln
 50 55 60

Met Lys Ile Phe Pro Ala Leu Cys Thr Val Ala Gly Thr Ile Phe Ser
 65 70 75 80

Cys Thr Asn Tyr Phe Arg Val Ile Phe Thr Gly Gly Val Gly Lys Asn
 85 90 95

Gly Ser Thr Ile Ala Gly Thr Ser Val Leu Ser Pro Phe Leu His Ile
 100 105 110

Gly Ser Val Ile Thr Leu Ala Ala Met Ile Tyr Lys Lys Ser Ala Val
 115 120 125

Gln Leu Phe Glu Lys His Pro Cys Leu Tyr Ile Leu Thr Phe Gly Phe
 130 135 140

Val Ser Ala Lys Ile Thr Asn Lys Leu Val Val Ala His Met Thr Lys
 145 150 155 160

Ser Glu Met His Leu His Asp Thr Ala Phe Ile Gly Pro Ala Leu Leu
 165 170 175

Phe Leu Asp Gln Tyr Phe Asn Ser Phe Ile Asp Glu Tyr Ile Val Leu
 180 185 190

Trp Ile Ala Leu Val Phe Ser Phe Asp Leu Ile Arg Tyr Cys Val
 195 200 205

Ser Val Cys Asn Gln Ile Ala Ser His Leu His Ile His Val Phe Arg
 210 215 220

Ile Lys Val Ser Thr Ala His Ser Asn His His
 225 230 235

<210> 110
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 110
 Met Phe Phe Cys Cys Phe Ala Gly Thr Phe Met Phe Tyr Cys Ala His
 1 5 10 15

Trp Gln Thr Tyr Val Ser Gly Thr Leu Arg Phe Gly Ile Ile Asp Val
 20 25 30

Thr Glu Val Gln
 35

<210> 111
 <211> 38
 <212> PRT
 <213> Homo sapiens

<400> 111
 Ile Phe Ile Ile Ile Met His Leu Leu Ala Val Ile Gly Gly Pro Pro
 1 5 10 15

Phe Trp Gln Ser Met Ile Pro Val Leu Asn Ile Gln Met Lys Ile Phe
 20 25 30

Pro Ala Leu Cys Thr Val
 35

<210> 112
 <211> 38
 <212> PRT
 <213> Homo sapiens

<400> 112
 Ala Gly Thr Ile Phe Ser Cys Thr Asn Tyr Phe Arg Val Ile Phe Thr
 1 5 10 15

Gly Gly Val Gly Lys Asn Gly Ser Thr Ile Ala Gly Thr Ser Val Leu
 20 25 30

Ser Pro Phe Leu His Ile
 35

<210> 113
 <211> 38
 <212> PRT
 <213> Homo sapiens

<400> 113
 Gly Ser Val Ile Thr Leu Ala Ala Met Ile Tyr Lys Lys Ser Ala Val
 1 5 10 15

Gln Leu Phe Glu Lys His Pro Cys Leu Tyr Ile Leu Thr Phe Gly Phe
 20 25 30

Val Ser Ala Lys Ile Thr
 35

<210> 114
 <211> 37
 <212> PRT
 <213> Homo sapiens

<400> 114
 Asn Lys Leu Val Val Ala His Met Thr Lys Ser Glu Met His Leu His
 1 5 10 15

Asp Thr Ala Phe Ile Gly Pro Ala Leu Leu Phe Leu Asp Gln Tyr Phe
 20 25 30

Asn Ser Phe Ile Asp
 35

<210> 115
 <211> 48
 <212> PRT
 <213> Homo sapiens

<400> 115
 Glu Tyr Ile Val Leu Trp Ile Ala Leu Val Phe Ser Phe Phe Asp Leu
 1 5 10 15

Ile Arg Tyr Cys Val Ser Val Cys Asn Gln Ile Ala Ser His Leu His
 20 25 30

Ile His Val Phe Arg Ile Lys Val Ser Thr Ala His Ser Asn His His
 35 40 45