Structure of Input Vectors

Time-Dependent, Cabin-Specific Information

M Cabir

HELD_BUS_PSJs
HELD_BUS_PSJs_HIST
HELD_BUS_PSJs_vLW
HELD_BUS_PSJs_vLW_HIST
HELD_BUS_PSJs_vL4W
HELD_BUS_PSJs_vL4W_HIST
HELD_BUS_PSJs_vFW HIST

HELD_PSJs
HELD_PSJs_HIST
HELD_PSJs_vLW
HELD_PSJs_vLW_HIST
HELD_PSJs_vL4W
HELD_PSJs_vL4W

HELD_PSJs_vFW_HIST

C Cabin

HELD_BUS_PSJs
HELD_BUS_PSJs_HIST
HELD_BUS_PSJs_vLW
HELD_BUS_PSJs_vLW_HIST
HELD_BUS_PSJs_vL4W
HELD_BUS_PSJs_vL4W_HIST
HELD_BUS_PSJs_vFW_HIST

HELD_PSJs
HELD_PSJs_HIST
HELD_PSJs_vLW
HELD_PSJs_vLW_HIST
HELD_PSJs_vL4W

HELD_PSJs_vL4W HELD_PSJs_vL4W_HIST HELD_PSJs_vFW_HIST 14 variables

14 variables

* In principle, these can depend on time (capacity can change leading up to flight day), but are (for a given flight) constant in more than 95% of cases. As such, they are treated as constant (time-independent) variables.

† This variable is a categorical string and has been one-hot-encoded into 5 variables, with one of them being dropped so as to not have a redundant variable (i.e. drop_first = True in Pandas). As such, MACRO_GROUP_NM is 4 binary variables (macro_group_nm1, macro_group_nm2, etc).

Constant, 'Summary' Information

DOW_NO
YEAR
MONTH
DAY
PSJs_LY_c
PSJs_LY_m
CAPACITY_c*
CAPACITY_m*
MACRO GROUP NM[†]

12 variables

* This is the overall lowest ticket price at that particular snapshot of any competitor, for the equivalent flight leaving on the same day (see my competitor query).

† This is the overall lowest ticket price at that particular snapshot for BA (again, see my query).

‡ This is the number of available seats for this flight at that particular snapshot, as queried from the SEATS_AVL_QTY table (see Toby's query). This number is often zero and can be negative (depends on whether the booking system is opening / closing tickets for this flight at that time).

Time-Dependent, but *not* Cabin-Specific Information

MIN_COMP_PRICE*
MIN_BA_PRICE†
SEATS_AVL‡

3 variables

Example: Predict Passengers Flown at 21 DTD

(in this case, a total of (14+14)x3 + 3x3 + 12 = 105 variables are fed to the model)

Example: Predict Passengers Flown at 28 DTD

(in this case, a total of $(14+14)x^2 + 3x^2 + 12 = 74$ variables are fed to the model)