TARGET

- 1) Importing the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table
- 2. Time period for which the data is given
- 3. Cities and States of customers ordered during the given period

Data type of columns in a table

CUSTOMERS

select column_name ,data_type from information_schema.columns

where table_name="customers";

COLUMN_NAME	DATA_TYPE
customer_city	varchar
customer_id	varchar
customer_state	char
customer_unique_id	varchar
customer_zip_code_prefix	int

GEOLOCATION

select column_name ,data_type from information_schema.columns
where table_name="geolocation";

COLUMN_NAME	DATA_TYPE
geolocation_lat	float
geolocation_Ing	float
geolocation_city	varchar

geolocation_state	char
geolocation_zip_code_prefix	int
geolocation_id	int

ORDER_REVIEWS

select column_name ,data_type from information_schema.columns
where table_name="order_reviews"

COLUMN_NAME	DATA_TYPE
review_id	varchar
order_id	varchar
review_score	int
review_comment_title	varchar
review_comment_message	varchar
review_creation_date	timestamp
review_answer_timestamp	timestamp

ORDER_ITEMS

select column_name ,data_type from information_schema.columns
where table_name="order_items";

COLUMN_NAME	DATA_TYPE
order_id	varchar
order_item_id	int
product_id	varchar
seller_id	varchar
shipping_limit_date	timestamp
price	float
freight_value	float

ORDERS

select column_name ,data_type from information_schema.columns

where table_name="orders";

COLUMN_NAME	DATA_TYPE
order_id	varchar
customer_id	varchar
order_status	varchar
order_purchase_timestamp	timestamp
order_approved_at	timestamp
order_delivered_carrier_date	timestamp
order_delivered_customer_date	timestamp
order_estimated_delivery_date	timestamp

PAYMENTS

select column_name ,data_type from information_schema.columns
where table_name="payments";

COLUMN_NAME	DATA_TYPE
order_id	varchar
payment_sequential	int
payment_type	varchar
payment_installments	int
payment_value	float

PRODUCTS

select column_name ,data_type from information_schema.columns
where table_name="products";

COLUMN_NAME	DATA_TYPE
product_id	varchar
product_category_name	varchar
product_name_lenght	int
product_description_lenght	int

product_photos_qty	int
product_weight_g	int
product_length_cm	int
product_height_cm	int
product_width_cm	int

SELLERS

select column_name ,data_type from information_schema.columns
where table_name="sellers";

COLUMN_NAME	DATA_TYPE
seller_city	varchar
seller_id	varchar
seller_state	char
seller_zip_code_prefix	int

Time period for which the data is given

Select min(order_purchase_timestamp) as start_date,
max(order_purchase_timestamp) as end_date
from orders;

start_date	end_date
04-09-2016 21:15	17-10-2018 17:30

Count of Cities & States of customers who ordered during the given period.

Select count(distinct customer_city) AS distinct_city_count, count(distinct customer_state) AS distinct_state_count from customers

Join orders on customers.customer_id = orders.customer_id where order_purchase_timestamp BETWEEN '2016-09-04' AND '2018-10-17';

2)In-depth Exploration:

- Is there a growing trend on e-commerce in Brazil?
- How can we describe a complete scenario?
- Can we see some seasonality with peaks at specific months?
- What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)
- Is there a growing trend on e-commerce in Brazil?
- How can we describe a complete scenario?
- Can we see some seasonality with peaks at specific months?

Total number of orders per month

Select date_format (order_purchase_timestamp, '%Y-%m') as mon count(*) as num_orders from orders group by month order by mo

Total revenue per month

Select date_format(order_purchase_timestamp, '%Y-%m') as mont Sum(payment_value) as total_revenue From orders o Join payments p on o.order_id = p.order_id Group by month Order BY month;

What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select case
```

when hour (order_purchase_timestamp) >= 0 and hour(order_purc then 'Dawn' when hour (order_purchase_timestamp) >= 6 and hou then

'Morning' when hour (order_purchase_timestamp) >= 12 and hour 'Afternoon'

else 'Night' end as purchase_time, count(*) AS num_orders from group by purchase_time

limit 0, 10;

3) Evolution of E-commerce orders in the Brazil region:

- 1.Get month on month orders by states
- 2.Distribution of customers across the states in Brazil

Get month on month orders by states

```
select date_format (order_purchase_timestamp, '%Y-%m') AS mon
count(*) AS num_orders from orders o
join customers c ON o.customer_id = c.customer_id
group by month, customer_state
order by month, customer_state;
```


Distribution of customers across the states in Brazil

select customer_state, count(distinct customer_unique_id) AS
from customers group by customer_state
order by num_customers desc;

4) Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

1) Mean & Sum of price and freight value by customer state

Mean & Sum of price and freight value by customer state

```
select c.customer_state, round(avg(op.price), 2) AS avg_price
round(sum(op.price), 2) AS sum_price,
round(avg(op.freight_value), 2) AS avg_freight,
round(sum(op.freight_value), 2) AS sum_freight from order_ite
join orders o on op.order_id = o.order_id
join customers c on o.customer_id = c.customer_id
where o.order_status in ('delivered', 'approved') group by c.
```

customer_state	avg_price	sum_price	avg_freight	sum_freight
SP	109.1	5067803.06	15.12	702079.55
RS	118.83	728897.47	21.61	132575.32
SC	123.75	507012.13	21.51	88115.65
BA	134.02	493584.14	26.49	97553.67
MS	142.33	115429.97	23.35	18937.58
RJ .	124.42	1759651.13	20.91	295750.44
PI	161.99	84721	39.12	20457.19
MG	120.18	1552521.53	20.62	266431.76
ES	120.74	268643.45	22.03	49014.48
RO	167.34	45682.76	41.33	11283.24

5)Analysis on sales, freight and delivery time

Find time_to_delivery & diff_estimated_delivery
Group data by state, take mean of freight_value, time_to_delivery,
diff_estimated_delivery

Sort the data to get the following:

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5 Top 5 states with highest/lowest average time to delivery

Top 5 states where delivery is really fast/ not so fast compared to estimated date

time_to_delivery = order_purchase_timestamporder_delivered_customer_date

Find time_to_delivery & diff_estimated_delivery

select o.order_id,

```
timestampdiff(day, o.order_purchase_timestamp, o.order_delive
as time_to_delivery,
timestampdiff(day, o.order_estimated_delivery_date, o.order_d
as diff_estimated_delivery from orders o
where o.order_status = 'delivered';
```

order_id	time_to_delivery	diff_estimated_delivery
e481f51cbdc54678b7cc49136f2d6af7	8	-7
53cdb2fc8bc7dce0b6741e2150273451	13	-5
47770eb9100c2d0c44946d9cf07ec65d	9	-17
949d5b44dbf5de918fe9c16f97b45f8a	13	-12
ad21c59c0840e6cb83a9ceb5573f8159	2	-9
a4591c265e18cb1dcee52889e2d8acc3	16	-5
6514b8ad8028c9f2cc2374ded245783f	9	-11
76c6e866289321a7c93b82b54852dc33	9	-31
e69bfb5eb88e0ed6a785585b27e16dbf	18	-6
e6ce 16cb79ec 1d90b 1da9085a6 118aeb	12	-8

Grouping data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

select c.customer_state, avg(oi.freight_value) as mean_freight_value, avg(timestampdiff(DAY, o.order_purchase_timestamp, o.order_delivered_customer_date)) as mean_time_to_delivery, avg(timestampdiff(DAY, o.order_estimated_delivery_date, o.order_delivered_customer_date)) as mean_diff_estimated_delivery

from orders o join customers c on o.customer_id = c.customer_id join order_items oi on o.order_id = oi.order_id group by c.customer_state;

Sorting the data to get the following:

```
select c.customer_state, avg(oi.freight_value) as mean_freight_value, avg(timestampdiff(day, o.order_purchase_timestamp, o.order_delivered_customer_date)) as mean_time_to_delivery, AVG(timestampdiff(day, o.order_estimated_delivery_date, o.order_delivered_customer_date)) as mean_diff_estimated_delivery from orders o join customers c on o.customer_id = c.customer_id join order_items oi on o.order_id = oi.order_id group by c.customer_state order by mean_freight_value desc, mean_time_to_delivery asc;
```

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
select c.customer_state, avg(oi.freight_value) as mean_freigh
join customers c on o.customer_id = c.customer_id
join order_items oi on o.order_id = oi.order_id
group by c.customer_state
order by mean_freight_value DESC
limit 5;
```

customer_state	mean_freight_value
RR	42.98442307692309
PB	42.723803986711
RO	41.06971223021582
AC	40.0733695652174
PI	39.147970479704824

lowest average freight value

```
select c.customer_state, avg(oi.freight_value) as mean_freigh
join customers c on o.customer_id = c.customer_id
join order_items oi on o.order_id = oi.order_id
group by c.customer_state
order by mean_freight_value asc
limit 5;
```


Top 5 states with highest/lowest average time to delivery

```
select c.customer_state,
avg(timestampdiff(day, o.order_purchase_timestamp, o.order_de.
AS mean_time_to_delivery
from orders o
join customers c on o.customer_id = c.customer_id
join order_items oi on o.order_id = oi.order_id
group by c.customer_state
order by mean_time_to_delivery desc
limit 5;
```


lowest average time to delivery

```
select c.customer_state, avg(timestampdiff(day, o.order_purchase_timestamp, o.order_delivered_customer_date))
AS mean_time_to_delivery from orders o
join customers c on o.customer_id = c.customer_id
join order_items oi on o.order_id = oi.order_id
```

group by c.customer_state
order by mean_time_to_delivery asc
limit 5;

Top 5 states where delivery is really fast/ not so fast compared to estimated date

Select c.customer_state,
avg(timestampdiff(day, o.order_estimated_delivery_date,
o.order_delivered_customer_date)) as mean_diff_estimated_delivery
from orders o
join customers c on o.customer_id = c.customer_id
join order_items oi on o.order_id = oi.order_id
group by c.customer_state having mean_diff_estimated_delivery < 0
order BY mean_diff_estimated_delivery ASC
limit 5;

customer_state	mean_diff_estimated_delivery
AC	-20.0110
RO	-19.0806
AM	-18.9755
AP	-17.4444
RR	-17.4348

6) Payment type analysis:

- · year on year count of orders for different payment types
- Count of orders based on the no. of payment instalments

year on year count of orders for different payment types

```
select Year(o.order_purchase_timestamp) as year,
month(o.order_purchase_timestamp) as month,
p.payment_type, count(distinct o.order_id) as order_count from
join orders o on p.order_id = o.order_id
group by year(o.order_purchase_timestamp),
month(o.order_purchase_timestamp), p.payment_type;
```


Count of orders based on the no. of payment instalments

select p.payment_installments,count(distinct o.order_id) as o
from payments p
join orders o on p.order_id = o.order_id
group by p.payment_installments

Key Findings:

1. Time Period and Data Overview:

- The data spans from September 4, 2016, to October 17, 2018.
- There are 4119 distinct cities and 27 states from which customers placed orders during this period.

2. E-commerce Trends:

- There is a growing trend in e-commerce orders over time in Brazil.
- Monthly order counts and revenue show variations, indicating possible seasonality.
- Analysis of purchase times shows distinct trends with orders placed during dawn, morning, afternoon, and night.

3. Customer Distribution:

- The distribution of customers varies significantly across different states in Brazil.
- A detailed breakdown by state reveals differences in the number of unique customers.

4. Economic Impact:

- There is significant variation in mean and total order prices and freight values across different states.
- Some states have higher average order values and freight costs compared to others.

5. **Delivery Analysis**:

- The average delivery time and the difference between estimated and actual delivery dates vary by state.
- Identified the top states with the highest and lowest average freight values and delivery times.

6. Payment Methods:

- The count of orders varies based on payment types and the number of installments.
- Year-on-year analysis of payment methods shows trends and preferences among customers.

Recommendations:

1. Growth and Seasonality:

- Focus marketing and promotional efforts during peak months identified in the seasonal analysis.
- Use the insights from purchase time trends to optimize advertising and sales strategies throughout the day.

2. State-Specific Strategies:

- Tailor strategies to target states with higher customer distributions and order values.
- For states with lower average order values, consider localized promotions to boost sales.

3. Delivery Optimization:

- Work on improving delivery times in states with higher than average delivery durations.
- Investigate the reasons behind the discrepancies between estimated and actual delivery dates to enhance customer satisfaction.

4. Freight Cost Management:

- Negotiate better shipping rates or explore alternative logistics partners for states with high freight costs.
- Offer incentives for bulk orders in states with lower freight costs to maximize profitability.

5. Payment Method Diversification:

- Promote payment methods that are preferred by customers to increase convenience and potentially boost sales.
- Consider offering flexible installment options, especially in regions where this payment method is popular.

6. Further Analysis:

- Conduct deeper analysis into the factors influencing order values and delivery times, such as product categories and seller performance.
- Regularly update the analysis to track changes and adjust strategies accordingly.

These recommendations can help in optimizing operations, enhancing customer satisfaction, and driving growth in the e-commerce space.