Heurísticas e Metaheuristicas

Simulated Annealing

Prof. Guilherme de Castro Pena guilherme.pena@ufsj.edu.br Sala: DCOMP 3.11

Departamento de Ciência da Computação Universidade Federal de São João del-Rei

Material adaptado do Prof. André (UFV) e Prof. Marcone (UFOP)

Agenda

- Heurísticas Clássicas
 - Heurísticas Construtivas
 - Heurísticas de Refinamento
- Simulated Annealing
 - Introdução
 - Metodologia
 - Considerações

Heurísticas Clássicas

- Para relembrar, quando citamos heurísticas clássicas, podemos classificálas de duas formas:
 - Heurísticas Construtivas: Consistem em construir uma solução passo a passo, elemento por elemento.
 - ▶ Heurísticas de Refinamento: Consistem em efetuar modificações na solução construída, de forma a tentar melhorá-la.

Heurísticas Construtivas

- Das heurísticas construtivas, que constroem uma solução passo a passo, basicamente existem:
 - Construção aleatória.
 - Construção gulosa.
 - Construção parcialmente gulosa, que é uma mistura de ambos.

Heurísticas Construtivas - Construção Aleatória

- Constrói uma solução, elemento por elemento.
- ▶ A cada passo é adicionado um único elemento candidato na solução parcial.
- O candidato a ser adicionado é escolhido aleatoriamente dentre os elementos candidatos.
- O método se encerra quando todos os elementos candidatos foram analisados.

Heurísticas Construtivas - Construção Aleatória

Pseudo-código (Aleatório)

Algorithm 1: Template do método de construção aleatória

```
s \leftarrow \emptyset
2 Inicializa o conjunto C de elementos candidatos
3 while C \neq \emptyset do
4 Aleatoriamente escolha t \in C
5 if t pode ser inserido em s then
6 |s \leftarrow s \cup \{t\}|
7 |C \leftarrow C \setminus \{t\}|
8 end
9 end
10 return s (solução completa)
```

A ideia principal para o método é que a cada escolha, um candidato aleatório entra na solução e é removido do conjunto C. Podemos considerar que a entrada do problema permite isso para qualquer escolha.

Heurísticas Construtivas - Construção Gulosa

- Constrói uma solução, elemento por elemento
- A cada passo é adicionado um único elemento candidato na solução parcial
- O candidato escolhido é o "melhor" segundo um certo critério
- O método se encerra quando todos os elementos candidatos foram analisados

Heurísticas Construtivas - Construção Gulosa

Pseudo-código (Guloso)

return s (solução completa)

Algorithm 2: Template do método de construção gulosa

- Nesse caso, a função g() entrega o melhor candidato segundo o critério guloso utilizado. Nesse caso,
 - Melhor = max se o problema for de maximização.
- ▶ Melhor = min se o problema for de minimização.

- As heurísticas de refinamento são as heurísticas de **busca local**.
- ► Elas atuam sobre soluções completas.
- E como vimos, elas são baseadas no conceito de vizinhança.
- ▶ Dentre os métodos, destacam-se:
 - Método da Descida (Descent Method)
 - Método da Subida (Uphill Method ou Hill Climbing)
 - ▶ Importante: Sem perda de generalidade, ambos são similares, altera-se o fato de ser um problema de min ou de max.

- As heurísticas de refinamento são as heurísticas de **busca local**.
- ► Elas atuam sobre soluções completas.
- E como vimos, elas são baseadas no conceito de vizinhança.
- ▶ Dentre os métodos, destacam-se:
 - ► Método da Descida (Descent Method)
 - Método da Subida (Uphill Method ou Hill Climbing)
 - ▶ Importante: Sem perda de generalidade, ambos são similares, altera-se o fato de ser um problema de min ou de max.

- As heurísticas de refinamento são as heurísticas de **busca local**.
- ► Elas atuam sobre soluções completas.
- E como vimos, elas são baseadas no conceito de vizinhança.
- ▶ Dentre os métodos, destacam-se:
 - ► Método da Descida (Descent Method)
 - ► Método da Subida (*Uphill Method* ou *Hill Climbing*)
 - ▶ Importante: Sem perda de generalidade, ambos são similares, altera-se o fato de ser um problema de min ou de max.

- ▶ As heurísticas de refinamento são as heurísticas de **busca local**.
- ► Elas atuam sobre soluções completas.
- E como vimos, elas são baseadas no conceito de vizinhança.
- ▶ Dentre os métodos, destacam-se:
 - ► Método da Descida (Descent Method)
 - ► Método da Subida (Uphill Method ou Hill Climbing)
 - ▶ Importante: Sem perda de generalidade, ambos são similares, altera-se o fato de ser um problema de min ou de max.

- Partir de uma solução inicial qualquer.
- Caminhar, a cada iteração, de vizinho para vizinho de acordo com a definição de vizinhança adotada, tentando melhorar a solução construída.
- ▶ Dentre as estratégias de busca temos:
 - Completa: Best Improvement
 - Primeira melhora: First Improvement
 - Randômica: Random Improvement

- Partir de uma solução inicial qualquer.
- Caminhar, a cada iteração, de vizinho para vizinho de acordo com a definição de vizinhança adotada, tentando melhorar a solução construída.
- ▶ Dentre as estratégias de busca temos:
 - Completa: Best Improvement
 - Primeira melhora: First Improvement
 - Randômica: Random Improvement

- Partir de uma solução inicial qualquer.
- Caminhar, a cada iteração, de vizinho para vizinho de acordo com a definição de vizinhança adotada, tentando melhorar a solução construída.
- ▶ Dentre as estratégias de busca temos:
 - Completa: Best Improvement
 - ▶ Primeira melhora: First Improvement
 - Randômica: Random Improvement

- Partir de uma solução inicial qualquer.
- Caminhar, a cada iteração, de vizinho para vizinho de acordo com a definição de vizinhança adotada, tentando melhorar a solução construída.
- ▶ Dentre as estratégias de busca temos:
 - ► Completa: Best Improvement
 - Primeira melhora: First Improvement
 - Randômica: Random Improvement

Procedimento - Best Improvement

Algorithm 3: Template da Descida/Subida com Best Improvement

```
1 s \leftarrow s_0 (Solucao inicial)

2 V = \{s' \in N(s) | f(s') < f(s)\} (Vizinhos de s)

3 while |V| > 0 do

4 Seleciona s' \in V, onde s' = argmin\{f(s') | s' \in V\} (Melhor vizinho)

5 s \leftarrow s'

6 V = \{s' \in N(s) | f(s') < f(s)\} (Gera Vizinhos do novo s)

7 end

8 return s
```

- A ideia é selecionar o melhor vizinho da solução corrente s até não haver mais, i.e., |V| = 0.
- Nesse caso, para ser o método da subida altera-se as vizinhanças para f(s') > f(s) nas linhas 2 e 6.
- E altera-se para argmax na linha 4.

Procedimento - First Improvement

Algorithm 4: Template da Descida/Subida com First Improvement

```
s \leftarrow s_0 (Solucao inicial)

Melhora \leftarrow true

while Melhora do

Melhora \leftarrow false

for each \ s' \in N(s) do

if f(s') < f(s) then

s \leftarrow s'

Melhora \leftarrow true

holdsymbol{break}

end

end

end
```

return s

- A ideia é selecionar o primeiro melhor vizinho da solução corrente s até não haver mais, quando a variável Melhora se manter false.
- Nesse caso, para ser o método da subida altera-se o teste do *if* para f(s') > f(s) nas linha 6.

Procedimento - Estratégia Randômica

- ▶ Variante do Método de Descida/Subida.
- Evita a pesquisa exaustiva pelo melhor vizinho.
- Consiste em escolher aleatoriamente um vizinho e o aceitar somente se ele for de melhora.
- ➤ Se o vizinho escolhido não for de melhora, a solução corrente permanece inalterada e outro vizinho é aleatoriamente gerado.
- O procedimento é interrompido após um certo número fixo de iterações sem melhora no valor da melhor solução obtida até então.
- A solução final não é necessariamente um ótimo local.

Procedimento - Estratégia Randômica

Algorithm 5: Template da Descida Randômica (Random Descent Method)

```
1 Iter \leftarrow 0 (Contador de solucoes sem melhora)

2 s \leftarrow s_0 (Solucao inicial)

3 while Iter < IterMAX do

4 Iter \leftarrow Iter + 1

5 Seleciona aleatoriamente s' \in N(s)

6 if f(s') < f(s) then

7 Iter \leftarrow 0

8 s \leftarrow s'

end

9 end

1 return s
```

- A ideia é selecionar soluções vizinhas aleatórias que tem valor objetivo melhor, até atingir um máximo de iterações sem melhora.
- Nesse caso, para ser o método da subida altera-se o teste do if para f(s') > f(s) nas linha 6.

Agenda

- Heurísticas Clássicas
 - Heurísticas Construtivas
 - Heurísticas de Refinamento
- 2 Simulated Annealing
 - Introdução
 - Metodologia
 - Considerações

Referência

Livro

- Esse conteúdo está baseado no livro:
- ▶ MICHLEWICZ, Zbigniew; FOGEL, David B. How to solve it: modern heuristics. 2nd. ed. Berlin: Springer c2010 554 p. ISBN 9783642061349 (Capítulo 5, seção 5.1).

- Até agora vimos como métodos de busca, a Busca Exaustiva e a Busca Local:
 - Um é caro computacionalmente
 - Outro fica preso em ótimo local
- Como resolver isso?
 - Não há muita esperança de acelerar (alg. polinomial) a Busca Exaustiva.
 - A opção que resta é um algoritmo capaz de escapar de ótimo local
- O Simulated Annealing é uma meta-heurística que tenta escapar de ótimos locais.

- Até agora vimos como métodos de busca, a Busca Exaustiva e a Busca Local:
 - ▶ Um é caro computacionalmente
 - Outro fica preso em ótimo local
- ► Como resolver isso?
 - ▶ Não há muita esperança de acelerar (alg. polinomial) a Busca Exaustiva.
 - A opção que resta é um algoritmo capaz de escapar de ótimo local
- O Simulated Annealing é uma meta-heurística que tenta escapar de ótimos locais.

- Até agora vimos como métodos de busca, a Busca Exaustiva e a Busca Local:
 - ▶ Um é caro computacionalmente
 - Outro fica preso em ótimo local
- ► Como resolver isso?
 - Não há muita esperança de acelerar (alg. polinomial) a Busca Exaustiva.
 - A opção que resta é um algoritmo capaz de escapar de ótimo local
- O Simulated Annealing é uma meta-heurística que tenta escapar de ótimos locais.

- Até agora vimos como métodos de busca, a Busca Exaustiva e a Busca Local:
 - ▶ Um é caro computacionalmente
 - Outro fica preso em ótimo local
- ► Como resolver isso?
 - Não há muita esperança de acelerar (alg. polinomial) a Busca Exaustiva.
 - A opção que resta é um algoritmo capaz de escapar de ótimo local
- O Simulated Annealing é uma meta-heurística que tenta escapar de ótimos locais.

- Até agora vimos como métodos de busca, a Busca Exaustiva e a Busca Local:
 - Um é caro computacionalmente
 - Outro fica preso em ótimo local
- Como resolver isso?
 - Não há muita esperança de acelerar (alg. polinomial) a Busca Exaustiva.
 - A opção que resta é um algoritmo capaz de escapar de ótimo local
- O Simulated Annealing é uma meta-heurística que tenta escapar de ótimos locais.

- Até agora vimos como métodos de busca, a Busca Exaustiva e a Busca Local:
 - ▶ Um é caro computacionalmente
 - Outro fica preso em ótimo local
- Como resolver isso?
 - ▶ Não há muita esperança de acelerar (alg. polinomial) a Busca Exaustiva.
 - A opção que resta é um algoritmo capaz de escapar de ótimo local
- O Simulated Annealing é uma meta-heurística que tenta escapar de ótimos locais.

- Até agora vimos como métodos de busca, a Busca Exaustiva e a Busca Local:
 - Um é caro computacionalmente
 - Outro fica preso em ótimo local
- Como resolver isso?
 - Não há muita esperança de acelerar (alg. polinomial) a Busca Exaustiva.
 - A opção que resta é um algoritmo capaz de escapar de ótimo local
- ▶ O Simulated Annealing é uma meta-heurística que tenta escapar de ótimos locais.

Visão geral:

▶ De forma breve vamos ver um comparativo entre os procedimentos:

```
      Algorithm 6: Busca Local
      Algorithm 7: Simulated Annealing

      1 s \leftarrow s_0 (Solucao inicial)
      1 s \leftarrow s_0 (Solucao inicial)

      2 while melhora(s) \neq 'nao' do
      2 while Nao condicao de termino do

      3 | s \leftarrow melhora(s)
      3 | s \leftarrow melhora?(s, T)

      4 end
      4 atualiza(T)

      5 end
      6 return s
```

- ightharpoonup melhora(s) retorna uma solução melhor ou um nao (em caso de ótimo local).
- No SA, a função *melhora(s)* é subustituída pela *melhora?(s, T)*, por alguns motivos.

- Existem 3 diferenças importantes entre eles:
 - A forma como os métodos param: O SA tem uma condição de parada externa (num. iterações por exemplo); A busca local, para ao atingir um ótimo local.
 - A função melhora? não necessariamente retorna uma sol. vizinha melhor, porque uma sol. pior pode ser aceita segundo o valor da temperatura T.
 - A temperatura T é atualizada periodicamente, e esse valor influencia diretamente em melhora?. A busca local, não tem isso.

- Existem 3 diferenças importantes entre eles:
 - A forma como os métodos param: O SA tem uma condição de parada externa (num. iterações por exemplo); A busca local, para ao atingir um ótimo local.
 - A função melhora? não necessariamente retorna uma sol. vizinha melhor, porque uma sol. pior pode ser aceita segundo o valor da temperatura T.
 - A temperatura T é atualizada periodicamente, e esse valor influencia diretamente em melhora?. A busca local, não tem isso.

- Existem 3 diferenças importantes entre eles:
 - A forma como os métodos param: O SA tem uma condição de parada externa (num. iterações por exemplo); A busca local, para ao atingir um ótimo local.
 - A função melhora? não necessariamente retorna uma sol. vizinha melhor, porque uma sol. pior pode ser aceita segundo o valor da temperatura T.
 - A temperatura T é atualizada periodicamente, e esse valor influencia diretamente em melhora?. A busca local, não tem isso.

- Existem 3 diferenças importantes entre eles:
 - A forma como os métodos param: O SA tem uma condição de parada externa (num. iterações por exemplo); A busca local, para ao atingir um ótimo local.
 - A função melhora? não necessariamente retorna uma sol. vizinha melhor, porque uma sol. pior pode ser aceita segundo o valor da temperatura T.
 - A temperatura T é atualizada periodicamente, e esse valor influencia diretamente em melhora?. A busca local, não tem isso.

Metodologia

return s

Visão geral - Hill-Climbing:

Vamos chegar no pseudocódigo do **Simulated Annealing** partindo do *Hill-Climbing* (Lembrando que o Hill-Climbing é a busca local).

Algorithm 8: Método da Subida com Best Improvement - Hill Climbing

```
1 s \leftarrow s_0 (Solucao inicial aleatoria)

2 V = \{s' \in N(s) | f(s') > f(s)\} (Vizinhos de s)

3 while |V| > 0 do

4 |s'| = argmax\{f(s') | s'| \in V\} (Melhor vizinho)

5 |s| \leftarrow s'

6 |V| = \{s' \in N(s) | f(s') > f(s)\} (Gera Vizinhos do novo s)

7 end
```

- O próximo passo é o método *Iterated Hill-Climbing*
 - Ele inclui um número máximo de iterações (MAX).
 - E vários pontos de início para tentar buscar por melhores soluções no espaço.

Metodologia

return s

Visão geral - *Hill-Climbing*:

▶ Vamos chegar no pseudocódigo do **Simulated Annealing** partindo do *Hill-Climbing* (Lembrando que o Hill-Climbing é a busca local).

Algorithm 9: Método da Subida com Best Improvement - Hill Climbing

```
1 s \leftarrow s_0 (Solucao inicial aleatoria)

2 V = \{s' \in N(s) | f(s') > f(s)\} (Vizinhos de s)

3 while |V| > 0 do

4 |s'| = argmax\{f(s') | s' \in V\} (Melhor vizinho)

5 |s \leftarrow s'|

6 |V| = \{s' \in N(s) | f(s') > f(s)\} (Gera Vizinhos do novo s)

7 end
```

- O próximo passo é o método *Iterated Hill-Climbing*:
 - Ele inclui um número máximo de iterações (MAX).
 - E vários pontos de início para tentar buscar por melhores soluções no espaço.

Visão geral - *Iterated Hill-Climbing*:

Algorithm 10: Iterated Hill Climbing

```
t \leftarrow 0
s_{best} \leftarrow \emptyset
while t < MAX do
      s \leftarrow s_0 (Solução inicial aleatoria)
      V = \{s' \in N(s) | f(s') > f(s)\} (Vizinhos de s)
      while |V| > 0 do
           s' = argmax\{f(s')|s' \in V\} (Melhor vizinho)
           s \leftarrow s'
           V = \{s' \in N(s) | f(s') > f(s)\} (Gera Vizinhos do novo s)
     end
     if f(s) > f(s_{best}) then
           s_{best} \leftarrow s
     end
     t \leftarrow t + 1
end
return s_{best}
```

Visão geral - Stochastic Hill-Climbing:

- ightharpoonup O próximo passo é o método $Iterated \rightarrow Stochastic \ Hill-Climbing$:
 - Em vez de verificar todos os vizinhos de s e escolher o melhor, selecionar somente um vizinho s' qualquer.
 - Em vez de aceitá-lo somente se for melhor, aceitá-lo com certa probabilidade, dependendo da diferença relativa entre os méritos (avaliações).

Algorithm 11: Stochastic Hill Climbing

Visão geral - Stochastic Hill Climbing:

- Probabilidade de aceitação (p): $p = \frac{1}{1+e^{\frac{f(s)-f(s')}{T}}}$
 - Depende da diferença entre a avaliação da solução corrente (s) e da próxima (s').
 - ightharpoonup Depende de certo valor constante T.

Visão geral - Stochastic Hill Climbing:

Probabilidade de aceitação (p): $p = \frac{1}{1 + e^{\frac{f(s) - f(s')}{T}}}$

- p é muito alta para T pequeno (para T=1 praticamente Hill-Climbing)
- p é cerca de 50% para T grande (praticamente aleatório)

- Suponha f(s) = 107 e f(s') = 120
- i.e., a nova solução é melhor por 13 un.
- Nesse caso f(s) f(s') = -13

T	$e^{-13/T}$	p
1	0.000002	1.00
5	0.0743	0.93
10	0.2725	0.78
20	0.52	0.66
50	0.77	0.56
1010	0.9999	0.5

Probabilidade de aceitação em função de T

Visão geral - Stochastic Hill Climbing:

- Probabilidade de aceitação (p): $p = \frac{1}{1 + e^{\frac{f(s) f(s')}{T}}}$
- Suponha f(s) = 107 e T = 10
- A probabilidade de aceitação depende do valor da nova solução

- Note que p é:
 - alta para soluções boasbaixa para soluções
 - ruins
 - ▶ 50% para soluções de mesmo valor (tanto faz)

f(s')	f(s) - f(s')	$e^{(f(s)-f(s'))/10}$	p
80	27	14.88	0.06
100	7	2.01	0.33
107	0	1.00	0.50
120	-13	0.27	0.78
150	-43	0.01	0.99

Probabilidade de aceitação em função de f(s')

Visão geral - $Simulated \ Annealing \ (SA)$:

- ightharpoonup Stochastic Hill Climbing ightarrow Simulated Annealing
- O valor do parâmetro T muda durante a execução:
 - Começa alto: quase uma busca randômica pura.
 - Termina baixo: quase um hill-climber puro.
- Uma solução melhor é sempre aceita.

return Sheet

Visão geral - Simulated Annealing (SA):

Algorithm 12: Simulated Annealing

```
T \leftarrow t_0 (Temperatura inicial)
   s \leftarrow s_0 (Solução inicial aleatoria)
   s_{best} \leftarrow \emptyset
   while nao condicao parada do
         while nao condicao termino do
              s' \in N(s) (Seleciona um vizinho qualquer de s)
              if f(s') > f(s) then s \leftarrow s'
                    if f(s') > f(s_{best}) then
                    s_{best} \leftarrow s' (Melhor sol. até agora)
              end
              else if random[0,1) < e^{\frac{f(s')-f(s)}{T}} then
13
                    s \leftarrow s'
              end
         end
16
         T \leftarrow \alpha.T (Atualiza temperatura)
   end
```

Visão geral - $Simulated \ Annealing \ (SA)$:

- ▶ Note que, então, na linha 7, se uma sol. vizinha for melhor ela é aceita.
- Caso seja pior, ela pode ser aceita segundo a probabilidade, que considera o valor da temperatura atual.
- Esse mecanismo de aceitar piores soluções traz a característica do SA de escapar de possíveis ótimos locais.
- \blacktriangleright A melhor solução encontrada até então, sempre será guardada no $s_{best}.$

Observações:

- Esse algoritmo representa um problema de max.
- Se fosse um de minimização, as mudanças seriam
 - Linha 8: f(s') < f(s)
 - Linha 12: random $[0,1) < e^{\frac{red}{T}}$, porque o e deve ficar elevado a um valor negativo, para gerar uma probabilidade entre $0 \in 1$.

Visão geral - Simulated Annealing (SA):

- Note que, então, na linha 7, se uma sol. vizinha for melhor ela é aceita.
- Caso seja pior, ela pode ser aceita segundo a probabilidade, que considera o valor da temperatura atual.
- Esse mecanismo de aceitar piores soluções traz a característica do SA de escapar de possíveis ótimos locais.
- ightharpoonup A melhor solução encontrada até então, sempre será guardada no s_{best} .

Observações:

- Esse algoritmo representa um problema de max.
- Se fosse um de minimização, as mudanças seriam:
 - Linha 8: f(s') < f(s)
 - Linha 12: random $[0,1) < e^{\frac{f(s)-f(s')}{T}}$, porque o e deve ficar elevado a um valor negativo, para gerar uma probabilidade entre 0 e 1.

Observações:

- Em relação às condições de término e parada, geralmente pode ser utilizado o seguinte:
 - ▶ Condição de parada: Relaciona-se com a Temperatura T atual, T>0, para quando a temperatura diminui para 0, processo de resfriamento usando algum $\alpha<1$.
 - Condição de termino: Pode utilizando um número pré-definido de iterações, denominado SA_{max} , que caracteriza, um número fixo de iterações para cada temperatura.
- Com tais mudanças o algoritmo fica assim, próximo slide.

Visão geral - Simulated Annealing (SA):

Algorithm 13: Simulated Annealing

```
1 T \leftarrow t_0 (Temperatura inicial)
   s \leftarrow s_0 (Solução inicial aleatoria)
  s_{best} \leftarrow \emptyset
   i \leftarrow 0
   while T > 0 do
         while i < SA_{max} do
              i \leftarrow i + 1
              s' \in N(s) (Seleciona um vizinho qualquer de s)
               if f(s') > f(s) then
10
                    if f(s') > f(s_{best}) then
11
                     s_{best} \leftarrow s' (Melhor sol. até agora)
               end
               else if random[0,1) < e^{\frac{f(s')-f(s)}{T}} then
15
                     s \leftarrow s'
               end
         end
         T \leftarrow \alpha.T (Atualiza temperatura)
19
         i \leftarrow 0
   end
   return Sheet
```

Considerações:

- ► Simulated Annealing significa Recozimento Simulado.
- A ideia básica do SA é uma analogia da termodinâmica para recozimento de metais (recristalização).
- Para produzir um material cristalino, sem imperfeições:
 - Aquecer o material até um estado fundido
 - ► Resfriar bem lentamente
- Se não aquecer o suficiente no início ou se resfriar rapidamente, irregularidades acabam ficando dentro da estrutura

Comparativo:

- No SA a analogia está na temperatura T que deve iniciar alta, e o seu processo de resfriamento pela fórmula $T \leftarrow \alpha$. T que deve ser lento.
- \blacktriangleright Além disso, à medida que T diminui, o aceite de soluções piores também diminuirá.

Considerações

Considerações:

- ► Simulated Annealing significa Recozimento Simulado.
- A ideia básica do SA é uma analogia da termodinâmica para recozimento de metais (recristalização).
- Para produzir um material cristalino, sem imperfeições:
 - Aquecer o material até um estado fundido
 - Resfriar bem lentamente
- Se não aquecer o suficiente no início ou se resfriar rapidamente, irregularidades acabam ficando dentro da estrutura

Comparativo:

- No SA a analogia está na temperatura T que deve iniciar alta, e o seu processo de resfriamento pela fórmula $T \leftarrow \alpha$. T que deve ser lento.
- \blacktriangleright Além disso, à medida que T diminui, o aceite de soluções piores também diminuirá.

Considerações

Questões:

- ► Como qualquer outro algoritmo de busca:
 - Como representar uma solução?
 - Como determinar uma solução inicial?
 - Como avaliar o custo de uma solução?
 - Quem são os vizinhos de uma dada solução?

Questões específicas do SA:

- ightharpoonup Como determinar a temperatura inicial T?
- Como determinar o condição de término (mudança de temperatura) ?
- \triangleright Como determinar a taxa de resfriamento α ?
- Como determinar o critério de parada (ponto de congelamento)?

Considerações

Questões:

- Como qualquer outro algoritmo de busca:
 - Como representar uma solução?
 - Como determinar uma solução inicial?
 - Como avaliar o custo de uma solução?
 - Quem são os vizinhos de uma dada solução?

Questões específicas do SA:

- ightharpoonup Como determinar a temperatura inicial T?
- Como determinar o condição de término (mudança de temperatura) ?
- \triangleright Como determinar a taxa de resfriamento α ?
- Como determinar o critério de parada (ponto de congelamento)?

Temperatura inicial - Parâmetro a ser calibrado:

- Muito alta fica randômico, muita baixa fica busca local
- ► Accept all: alta o bastante para aceitar qualquer vizinho no início
- ► Acceptance ratio: experimento preliminar sobre taxa de aceitação
- Pode-se gerar várias soluções iniciais e definir como o MAIOR valor encontrado dentre todas as avaliações.

Condição de término (mudança de temperatura):

- \triangleright SA_{max} : Número máximo de iterações em uma dada temperatura.
- **Static:** determinado antes
- ► Adaptive: definido durante a busca
- Exemplo: Caixeiro Viajante, $SA_{max} = k.n$, n = num de cidades, k = constante a ser calibrada.

Temperatura inicial - Parâmetro a ser calibrado:

- Muito alta fica randômico, muita baixa fica busca local
- ► Accept all: alta o bastante para aceitar qualquer vizinho no início
- ► Acceptance ratio: experimento preliminar sobre taxa de aceitação
- Pode-se gerar várias soluções iniciais e definir como o MAIOR valor encontrado dentre todas as avaliações.

Condição de término (mudança de temperatura):

- \triangleright SA_{max} : Número máximo de iterações em uma dada temperatura.
- ► Static: determinado antes
- ► Adaptive: definido durante a busca
- Exemplo: Caixeiro Viajante, $SA_{max} = k.n$, n = num de cidades, k = constante a ser calibrada.

Taxa de Resfriamento - Parâmetro a ser calibrado:

- Deve-se balancear custo computacional (tempo) e qualidade da solução.
- ▶ Linear: $T \leftarrow T \beta$
- ▶ Geométrico: $T \leftarrow \alpha . T \mid \alpha \in (0,1)$, (mais usado)
- ▶ Logarítmico: $T_i \leftarrow T_0/\log(i)$

Critério de parada (ponto de congelamento)

- Temperatura final (estado de "congelamento", temperatura bem baixa).
- $ightharpoonup T_{final} =$ zero da máquina
- $T_{final} = 0.01 \text{ (ou } 0.001).$
- Número de iterações sem melhora.
- ▶ **Obs:** Os valores dos parâmetros mais adequados são dependentes do problema e da instância.

Taxa de Resfriamento - Parâmetro a ser calibrado:

- Deve-se balancear custo computacional (tempo) e qualidade da solução.
- ▶ Linear: $T \leftarrow T \beta$
- ▶ Geométrico: $T \leftarrow \alpha . T \mid \alpha \in (0, 1)$, (mais usado)
- Logarítmico: $T_i \leftarrow T_0/\log(i)$

Critério de parada (ponto de congelamento):

- ► Temperatura final (estado de "congelamento", temperatura bem baixa).
- $ightharpoonup T_{final} = zero da máquina.$
- $T_{final} = 0.01$ (ou 0.001).
- Número de iterações sem melhora.
- ▶ **Obs:** Os valores dos parâmetros mais adequados são dependentes do problema e da instância.

Taxa de Resfriamento - Parâmetro a ser calibrado:

- Deve-se balancear custo computacional (tempo) e qualidade da solução.
- ▶ Linear: $T \leftarrow T \beta$
- ▶ Geométrico: $T \leftarrow \alpha . T \mid \alpha \in (0, 1)$, (mais usado)
- Logarítmico: $T_i \leftarrow T_0/\log(i)$

Critério de parada (ponto de congelamento):

- ► Temperatura final (estado de "congelamento", temperatura bem baixa).
- $ightharpoonup T_{final} = zero da máquina.$
- $T_{final} = 0.01$ (ou 0.001).
- ▶ Número de iterações sem melhora.
- ▶ **Obs:** Os valores dos parâmetros mais adequados são dependentes do problema e da instância.

Exercício

- Faça um Simulated Annealing para o TSP baseado no Algoritmo 13 da página 30:
 - (a) Gere soluções iniciais de forma aleatória.
 - (b) Defina uma vizinhança à sua escolha.
 - (c) Baseado na aula, defina uma temperatura inicial, o número de iterações por temperatura (SA_{max}) , um valor α para um resfriamento lento e uma condição de parada.

Obs: Podemos usar a mesmas instâncias utilizadas na busca local anteriormente.

Bibliografias

Bibliografia Básica

- MICHLEWICZ, Zbigniew; FOGEL, David B. How to solve it: modern heuristics. 2nd. ed. Berlin: Springer c2010 554 p. ISBN 9783642061349.
- Talbi, El-Ghazali; Metaheuristics: From Design to Implementation, Wiley Publishing, 2009.
- GENDREAU, Michel. Handbook of metaheuristics. 2.ed. New York: Springer 2010 648 p. (International series in operations research & management science; 146).
- T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 3rd edition, 2009 (Pergamum).

Bibliografias

Bibliografia Complementar

- GLOVER, Fred; KOCHENBERGER, Gary A. (ed.). Handbook of metaheuristics. Boston: Kluwer, 2003. 556 p. (International series in operations research & management science; 57).
- BLUM, Christian Et Al. Hybrid metaheuristics: an emerging approach to optimization. Berlin: Springer 2008 289 p. (Studies in Computational intelligence; 114).
- DOERNER, Karl F. (ed.) Et Al. Metaheuristics: progress in complex systems optimization. New York: Springer 2007 408 p. (Operations research / computer science interfaces series).
- GLOVER, Fred; LAGUNA, Manuel. Tabu search. Boston: Kluwer Academic, 1997. 382 p.
- AARTS, Emile. Local search in combinatorial optimization. Princeton: Princeton University Press, 2003 512 p.
- Gaspar-Cunha, A.; Takahashi, R.; Antunes, C.H.; Manual de Computação Evolutiva e Metaheurística; Belo Horizonte: Editora UFMG; Coimbra: Imprensa da Universidade de Coimbra; 2013.