Limitations of Traditional Scaling

Sub V_T leakage do not scale: Difficult to reduce V_T with scaling L

Supply V_{DD} does not scale to maintain overdrive $(V_G - V_T)$

Increase in lateral field ($\sim V_D/L$), vertical field ($\sim V_G/L$), reduction in mobility (μ) – ON current suffers

Use strain to boost mobility

Drain Current – Impact of Stress

Scaling \rightarrow increase in E field \rightarrow reduction in mobility \rightarrow reduction in I_D

Stress → increase in mobility → increase in I_D

Recap – Energy Bands (E-K plots)

Physics of Strain (NMOS)

Electrons in conduction band: 4 in plane and 2 out of plane valleys

Projection of out of plane valleys

Mobility depends on valley occupancy

Uchida, IEDM'05

Physics of Strain (NMOS)

Strain → Splitting of energy levels → change in population

Higher m_L for in-plane; lower m_T for out of plane \rightarrow Lower overall m^* due to population of out of plane valleys

Physics of Strain (PMOS)

Strain → Lowering of transport effective mass (top band)

Thomson, TED'06

Physics of Strain (PMOS)

Stressor Technology

Stressor Technology

IBM

Scaling – Advanced Solutions

Successful scaling → control short L effect (OFF current)

UTB-SOI: Reduce body thickness (Silicon On Insulator)

FinFET: Wrap Gate around Channel

Nanowire FET: Full Gate wrapping

Scaling – Advanced Solutions

Real Life Scaling Examples

2003 <u>90 nm</u> 2005 65 nm 2007 45 nm 2009 32 nm 2011

22 nm

Strain - mobility

HKMG - leakage

FinFET - SCE

Intel

Intel 22nm FinFET

Different Performance Boosters

Scaling Trends → Performance Metrics

Thinner Channel Enables L Scaling

FinFET Scaling

2011 (Intel) L=26nm W=10nm (avg.) H=34nm

2014 (Intel) L=20nm W=8nm (avg.) H=42nm

2018 (Intel) L=18nm W=7nm (avg.) H=50nm

Tall and skinny fins → Mechanical stability

Scaling: Node and Channel Lenth

