Math 611 Homework 4

Paul Hacking

October 28, 2015

- (1) Let G be a group such that |G| = mn where gcd(m, n) = 1. Suppose there exists a normal subgroup $H \triangleleft G$ of order |H| = m and a subgroup $K \leq G$ of order |K| = n. Show that G is isomorphic to a semi-direct product of H and K.
- (2) Express the following groups as a semi-direct product of two non-trivial groups.
 - (a) The group O(2) of orthogonal 2×2 matrices.
 - (b) The symmetric group S_n on n objects, for $n \geq 3$.
 - (c) The general linear group $GL_n(F)$ of invertible $n \times n$ matrices over a field F, for $n \geq 2$ and $F \neq \mathbb{Z}/2\mathbb{Z}$.
- (3) Show that the general linear group $GL_n(F)$ of invertible $n \times n$ matrices over a field F is a direct product of two non-trivial groups in the following cases.
 - (a) $F = \mathbb{R}$ and n is odd.
 - (b) $F = \mathbb{Z}/p\mathbb{Z}$ and gcd(n, p 1) = 1.
- (4) In class we discussed the automorphism group $Aut(Q_8)$ of the quaternion group Q_8 .
 - (a) Show carefully that $Aut(Q_8)$ is isomorphic to S_4 .
 - (b) Using your answer to part (a) or otherwise, express S_4 as a semi-direct product $(\mathbb{Z}/2\mathbb{Z})^2 \rtimes_{\varphi} S_3$. What is the homomorphism $\varphi \colon S_3 \to \operatorname{Aut}((\mathbb{Z}/2\mathbb{Z})^2)$?

- (5) Compute the number of Sylow *p*-subgroups of *G* in each of the following cases.
 - (a) p = 2 and $G = D_{60}$, the dihedral group of symmetries of a regular 60-gon.
 - (b) p = 3 and $G = S_6$, the symmetric group on 6 objects.
 - (c) p = 5 and $G = GL_3(\mathbb{Z}/5\mathbb{Z})$, the general linear group of invertible 3×3 matrices over $\mathbb{Z}/5\mathbb{Z}$.
- (6) What are the possibilities for the number of elements of order 5 in a group G of order 50? Include examples showing that each case occurs.
- (7) Classify groups G of order 45.
- (8) Let G be a non-abelian group of order 57. Describe G (a) as a semi-direct product and (b) in terms of generators and relations.
- (9) Let G be a group of order $|G| = p^a q^b$ where p and q are distinct primes and $a, b \in \mathbb{N}$. Suppose that the order of p in the multiplicative group $(\mathbb{Z}/q\mathbb{Z})^{\times}$ is greater than a. Show that G is isomorphic to the semi-direct product of two non-trivial groups.
- (10) Let G be a group of order |G| = pqr where p, q, r are distinct primes. Show that one of the Sylow subgroups of G is normal.
- (11) Classify groups G of order (a) |G| = 18, (b) |G| = 28. (Express the groups as semi-direct products. You should also write the groups in terms of generators and relations and identify them with direct products of known groups where possible.)
- (12) Let G be a finite group and let $\varphi: G \to S_G$ be the homomorphism given by the action of G on itself by left multiplication. (Here S_G denotes the symmetric group of permutations of the set G.)
 - (a) Show that $\varphi(g)$ is an odd permutation iff the order $\operatorname{ord}(g)$ is even and $|G|/\operatorname{ord}(g)$ is odd.
 - (b) Suppose |G| = 2m where m is odd. Prove that G contains a normal subgroup of index 2.

(13) Let $G = \operatorname{GL}_n(\mathbb{Z}/p\mathbb{Z})$ and let $H \leq G$ be a subgroup of order a power of p. Prove that there exists $g \in G$ such that ghg^{-1} is upper triangular for all $h \in H$.

Hints:

- (1) By a result proved in class, it suffices to show that $H \cap K = \{e\}$ and HK = G.
- (2) (a) Compare HW3Q3. (b) Consider $A_n \triangleleft S_n$. (c) Consider $\operatorname{SL}_n(F) \triangleleft \operatorname{GL}_n(F)$.
- (3) Compute the intersection $\mathrm{SL}_n(F) \cap Z(\mathrm{GL}_n(F))$. (b) Recall that the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.
- (4) (a) Recall that S_4 is isomorphic to the group of rotations of the cube. Consider the cube with vertices $(\pm 1, \pm 1, \pm 1)$ in \mathbb{R}^3 , so that the centers of the faces are $\pm i$, $\pm j$, $\pm k$, where i = (1,0,0), j = (0,1,0), k = (0,0,1). Note that the quaternion multiplication agrees with the cross product (i.e., $ij = i \times j$ etc.). (b) Recall that $S_3 \simeq \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) = \operatorname{Aut}((\mathbb{Z}/2\mathbb{Z})^2)$.
- (5) Recall that all Sylow *p*-subgroups are conjugate. Find one Sylow subgroup and compute the number of conjugate subgroups.
- (6) As a special case of Sylow theorem 2, any element of order p is contained in a Sylow p-subgroup. What is the classification of groups of order p^2 ?
- (12) (a) What is the cycle type of the permutation $\varphi(g)$?
- (13) What is a Sylow p-subgroup of $GL_n(\mathbb{Z}/p\mathbb{Z})$?