

Probe Specification

SDQ Lerngruppe 2010 Philipp Merkle, Anne Martens | 04.02.10

Outline

- Motivation
- Overview
- Concepts
- Meta-Model
- Framework
- Demonstration
- References

Motivation

Concepts

Meta-Model

Outline

- Motivation

- Meta-Model
- Framework

Motivation

Demonstration

Concepts

Meta-Model

Framework

Motivation – General

- Specify measuring points / track by a model
- Simplify measurings in simulations, benchmarks, . . .
- Integrates persistence framework(s) soon

Concepts

Motivation - SimuCom

- Current situation
 - Where and what to measure hard coded
 - Persists measurements using SensorFramework
 - Some things cannot be measured
 - e.g. duration between two calls
 - What if some measurements are not needed?
- SimuCom with ProbeSpecification
 - Where and what defined by a model
 - Persistence: EDP2 applicable

Motivation – SimuCom

- Current situation
 - Where and what to measure hard coded
 - Persists measurements using SensorFramework
 - Some things cannot be measured
 - e.g. duration between two calls
 - What if some measurements are not needed?
- SimuCom with ProbeSpecification
 - Where and what defined by a model
 - Persistence: EDP2 applicable
 - Allows deactivation of certain measurements

Outline

- Motivation
- Overview
- Meta-Model
- Framework

Motivation

Concepts

Meta-Model

Overview

- Probe Specification
 - Meta-Model
 - Model specifies the measuring track
 - Framework
 - Supports concrete measurings
- - Filtering, aggregation, persistency of measurements

Concepts

Overview

- Probe Specification
 - Meta-Model
 - Model specifies the measuring track
 - Framework
 - Supports concrete measurings
- Pipes-and-Filters
 - Filtering, aggregation, persistency of measurements
 - Meta-Model
 - Model specifies a filter chain
 - Framework
 - Provides mechanism to build and use filter chains.

Probe Specification

- Meta-Model (EMF ECore)
 - Models define where and what to measure
 - Refers to another meta-model (e.g. PCM) containing "measurable" elements
 - Measurable (PCM): UsageScenario, ExternalCallAction, EntryLevelSystemCall, ...
 - Condition: ECore based too
- - Simplifies collecting and calculating measurements

Probe Specification

- Meta-Model (EMF ECore)
 - Models define where and what to measure
 - Refers to another meta-model (e.g. PCM) containing "measurable" elements
 - Measurable (PCM): UsageScenario, ExternalCallAction, EntryLevelSystemCall, ...
 - Condition: ECore based too
- Framework
 - Simplifies collecting and calculating measurements
 - Should support various measuring environments
 - SimuCom. ProtoCom. . . .
 - Depends on Pipes-and-Filters
 - Delegates results to persistence framework

Pipes-and-Filters

- Meta-Model (EMF ECore)
 - Models define concrete filter chains
- - Works with arbitrary persistence framework
 - SensorFramework, EDP2, ...
 - Independent of Probe Specification ⇒ reusable!

Concepts

Pipes-and-Filters

- Meta-Model (EMF ECore)
 - Models define concrete filter chains
- Framework
 - Provides PipesAndFiltersManager
 - Simplifies building filter chains
 - Works with arbitrary persistence framework
 - SensorFramework, EDP2, ...
 - Implement custom WriteStrategy
 - Independent of Probe Specification ⇒ reusable!

Outline

- Motivation
- Concepts
- Meta-Model
- Framework

Motivation

Meta-Model

Concepts – Illustration

- Szenario: Agriculture
 - Several deployed sensor nodes which measure temperature and humidity
 - Base Station collects node data

Probe - "Messfühler"

- Measures a single value + unit pair (JScience: "Measure")
 - A measured value/unit pair is called ProbeSample

- Specifies what to measure, depending on probe type
 - Knows how to take a measurement
- Probe types
 - Current Time, CPU State, CPU Demand, . . .

Overview

Motivation

References

ProbeSet – "Messpunkt"

- Encapsulates one or several Probes
- Measures a tuple of value + unit pairs
 - Dependent on contained probes
 - Multidimensional measurements possible
 - A set of measures is called ProbeSetSample
- Specifies where to take a measurement
- Example ProbeSet: (CurrentTime, CPUState)

Calculator

- Motivation: Measure (time) differences
- Input: ProbeSetSample(s)
 - i.e. the measurements from one or several ProbeSets
- Output: The measuring result (value + unit)
- Example: CPUStateCalculator
- Trivial calculator: Pass through
- Calculator types
 - Response Time, Waiting Time, CPU Demand, . . .

Calculator: Discussion

- Aren't the ProbeSetSamples already results?
 - Consider a response time measurement
 - 2 ProbeSets needed: At start position, at end position (e.g. of a service call)
 - Resulting ProbeSetSamples: (time_{start}), (time_{end})
 - Calculating time_{end} time_{start} produces result

Motivation

Overview

Outline

- Motivation

- Meta-Model
- Framework

Motivation

04.02.10

Concepts

Meta-Model

Meta-Model – Overview

- Why a Position attribute?
 - Consider e.g. an ExternalCallAction: Position specifies whether to measure before or after the call

•0000

Meta-Model - Overview

- Why a Position attribute?
 - Consider e.g. an ExternalCallAction: Position specifies whether to measure before or after the call

•0000

Meta-Model - Probes

04.02.10

Concepts

Motivation

Meta-Model

00000

Meta-Model – Calculators

Meta-Model

00000

Concepts

Meta-Model – Pipes-and-Filters

00000

Usage Example: SimuCom

Outline

- Motivation

- Meta-Model
- Framework

Motivation

Concepts

Meta-Model

ProbeStrategies

ATakeCurrentTimeStrategy

Concrete measuring method

Simulation time: SimulationControl.getCurrentSimulationTime()

- ExampleTakeCurrentTimeStrategy ExampleTakeActiveResourceStateStratege

ATakeActiveResourceStateStrategy

«schnittstelle» IProbeStratece

takeSample (

- Specific implementation for each measuring environment
- Different implementations for different environments

ProbeStrategyFactory

Blackboard

- Receives measurements
- Notifies calculators of new measurements
 - Observer Pattern
- Context aware
 - Simulation: Which simulated user raised the measurement?
 - Code instrumentation: Which thread caused the measurement?

Blackboard - Context awareness

- Implemented by framework class RequestContextID
 - Represents context
- Present
 - Context represented simply by a String
 - e.g. UserID or ThreadID
 - Encapsulated by class RequestContextID
 - Does not support forks

Concepts

- - Context represented by a stack of Strings

Blackboard - Context awareness

- Implemented by framework class RequestContextID
 - Represents context
- Present
 - Context represented simply by a String
 - e.g. UserID or ThreadID
 - Encapsulated by class RequestContextID
 - Does not support forks
- Planned
 - Context represented by a stack of Strings
 - Enables measuring e.g. response time within forks

Blackboard – Interaction (Case 1)

Case 1: Unary Calculator

 Not depicted: addProbeSample() and notify() has parameter ProbeSetSample

Blackboard – Interaction (Case 1)

Case 1: Unary Calculator

 Not depicted: addProbeSample() and notify() has parameter ProbeSetSample

Blackboard – Interaction (Case 2)

Case 2: Binary Calculator, MeasuringEnvironment adds start ProbeSetSample to Blackboard

Blackboard – Interaction (Case 2)

 Case 2: Binary Calculator, MeasuringEnvironment adds start ProbeSetSample to Blackboard

 ResponseTimeCalculator must wait for end ProbeSetSample (Case 3)

Blackboard – Interaction (Case 3)

Case 3: Binary Calculator, MeasuringEnvironment adds end ProbeSetSample to Blackboard

04.02.10

Concepts

Blackboard – Garbage Collection

- Obsolete ProbeSetSamples occupies memory
- Garbage Collection needed
- - Initial lifetime = 1 for each ProbeSetSample
 - Invoking getProbeSetSample() decreases lifetime by 1
 - Lifetime == 0 ⇒ Garbage

Concepts

Blackboard – Garbage Collection

- Obsolete ProbeSetSamples occupies memory
- Garbage Collection needed
- Currently: Basic implementation
 - Initial lifetime = 1 for each ProbeSetSample
 - Invoking getProbeSetSample() decreases lifetime by 1
 - Lifetime $== 0 \Rightarrow$ Garbage

Concepts

Blackboard – Garbage Collection

- Obsolete ProbeSetSamples occupies memory
- Garbage Collection needed
- Currently: Basic implementation
 - Initial lifetime = 1 for each ProbeSetSample
 - Invoking getProbeSetSample() decreases lifetime by 1
 - Lifetime == 0 ⇒ Garbage

Concepts

- Desireable future work
 - Get rid of side effects within getProbeSetSample()

Outline

- Motivation

- Meta-Model
- Framework
- Demonstration

Motivation

04.02.10

Concepts

Meta-Model

Demonstration

Live Demo: Test Case "CalculatorAndPipesTest"

Outline

- Motivation

- Meta-Model
- Framework
- References

Motivation

Concepts

Meta-Model

References, Further Information

- SPEEcl Praktikum 2009
 - Anforderungsanalyse version 0.2 is final
 - Review Anleitung
 - Abschlusspräsentation
- Javadoc there are extensive package documentations
- All documents resides in the SVN:

/code/Palladio.ProbeSpecification/trunk/de.uka.ipd.sdq.probespec.framework/doc

Omitted

- Pipes-and-Filter
 - PipesAndFiltersManager

Concepts

- Recorder: RawRecorder vs. AggregationRecorder
- MetaDataInit: Provides WriteStrategies details on the measurement