Final Exam <u>Distributed Systems</u> and Network Communication Bachelor Robotics (IRO)

 $21^{\rm st} \ {\rm of} \ {\rm July} \ 2022, \ 12:00\text{--}13:30$

ame and MatrNo.:
Authorized aids: • lecture notes
• personal notes
• standard pocket calculator
Important remarks:
 The examination is to be done independently and without any hele Cheating and attempted cheating is sanctioned according to §19(1) RaPe Mobile phones, smartwatches, notebooks or programmable calculators are not permitted. Mobile phones must be switched off. Write down your name and matriculation number on the cover sheet. Write your solutions in the prepared empty boxes or or on the blank pages. Only if your approach to a solution/answer is written down comprehensibly and transparently, it is graded. Hand back all task sheets.
 Do not remove the staple. Do not use a red pen.
Good~luck!

Task:	1	2	3	Σ
Points:	15	15	15	45
Scored points:				

Task 1: Concurrent Programming

15 points

Implement a concurrent program in Java: implement a class $\mathtt{ExamThread}$ that prints an arbitrary text to the command line. The text should be repeated every n milliseconds. The text and the waiting time n is defined at the creation of the thread object. $\mathtt{ExamThread}$ should be prepared for future use in an inheritance hierarchy. In addition, all $\mathtt{ExamThread}$ objects should be stoppable in a consistent way.

Implement also a main() method that creates two objects of your ExamThread class and starts them concurrently.

– Blank Page –

15 points

Task 2: Request-Allocation-Graph

Given is the following request-allocation-graph with three threads T_1, T_2, T_3 and two resources R_1, R_2 .

Which of the following statements is correct. Tick the correct answers!

- \bigcirc There are two exemplars of resource R_1 and one exemplar of resource R_2 .
- \bigcirc T_1 uses one exemplar of resource R_2 .
- \bigcirc T_1 and T_2 can be executed.
- \bigcirc T_1 and T_2 must wait for release of R_1 .
- \bigcirc T_3 cannot be executed.
- \bigcirc R_1 is the bottleneck in this system.
- O In this graph a deadlock is possible.
- \bigcirc The graph states that T_3 is executed before T_1 and T_2 . In which sequence T_1 and T_2 are executed is not defined.
- O The request-allocation-graph describes the dependencies between threads and resources and the timing of execution.
- O In this graph a deadlock is not possible.

Task 3: Design Principles of Client/Server-Software

15 points

In a sequence, a server receives three client requests R_1 , R_2 and R_3 . Let R_1 have a processing time of 3t, let R_2 have a processing time of 1t, and let R_3 have a processing time of 2t.

The server is implemented two times with different design principles: firstly, a connection-less, iterative server with first-come-first-served is used; secondly, a connection-oriented, parallel server with round-robin is used.

	Draw a sketch in which sequence the requests are processed for both designation principles.
b) (Calculate for both design principles the average processing time t_{avg} ! What did you notice?
c) \(\bar{V} \)	Which of the two servers in this special case performs better?

– Blank Page –