Find the smallest range for the chromatic number of a graph

Group 10

Tu Anh Dinh Michal Jarski Louis Mottet Vaishnavi Velaga Rudy Wessels Oskar Wielgos

Summited: Wednesday January 23, 2019

MAASTRICHT UNIVERSITY

Department of Data Science and Knowledge Engineering

Project block 1.3

Find the smallest range for the chromatic number of a graph

Group 10

Tu Anh Dinh Michal Jarski Louis Mottet Vaishnavi Velaga Rudy Wessels Oskar Wielgos

Summited: Wednesday January 23, 2019

Project coordinator: Prof. Jan Paredis

Preface

Summary

Contents

Summary

List of abbreviations and symbols

1	Introduction				
2	Methods				
	2.1	Decomposing the graph	2		
	2.2	Greedy algorithm	2		
	2.3	Lower-bound	2		
	2.4	Special cases	2		
		2.4.1 Bipartite	2		
		2.4.2 Odd cycle	2		
		2.4.3 Complete graph	2		
	2.5	Genetic algorithm	3		
		2.5.1 Fitness function	3		
		2.5.2 Selection method	3		
		2.5.3 Crossover	3		
		2.5.4 Mutation	3		
	2.6	Brute force search	3		
3	Exp	eriments	4		
4	Results 5				
5	Discussion				
6	Con	clusion	7		
Re	References				
$\mathbf{A}_{\mathbf{J}}$	Appendix				

Abbreviations and symbols

Introduction

Methods

2.1 Decomposing the graph

Divide the graph into disconnected parts Use breadth-first search Usage: Allow other methods to work on smaller graphs

2.2 Greedy algorithm

Sort the vertices based on their constraints Try to reuse available colors Usage: Find the upper-bound

2.3 Lower-bound

2.4 Special cases

2.4.1 Bipartite

Use breadth-first search Chromatic number = 2

2.4.2 Odd cycle

Chromatic number = 3

2.4.3 Complete graph

Check if every vertex is connected to all other vertices Chromatic number = number of vertices

2.5 Genetic algorithm

2.5.1 Fitness function

Based on the number of invalid colorings of each graph

- 2.5.2 Selection method
- 2.5.3 Crossover
- 2.5.4 Mutation
- 2.6 Brute force search

Experiments

Results

Discussion

Conclusion

References

Appendix