

2N3304

PNP HIGH-SPEED SWITCH

SILICON PLANAR EPITAXIAL TRANSISTOR

The 2N3304 is a very high speed PNP silicon epitaxial PLANAR device intended primarily for use in high speed logic application. A 500 mc minimum f_T and a 30 nsec maximum τ_s make it an ideal alternative to germanium devices for applications requiring the greater margin of reliability afforded by its silicon PLANAR construction.

ABSOLUTE MAXIMUM RATINGS [Note 1]

Maximum Temperatures

Storage Temperature	-65°C to +200°C
Operating Junction Temperature	200°C Maximum
Lead Temperature (Soldering, 60 sec time limit)	300°C Maximum

Maximum Power Dissipation

Total Dissipation at 100°C Case Temperature [Notes 2 and 3]	0.5 Watt
at 25°C Ambient Temperature [Notes 2 and 3]	0.3 Watt

Maximum Voltages and Current

V_{CB} Collector to Base Voltage	-6.0 Volts
V_{CE} Collector to Emitter Voltage [Note 4]	-6.0 Volts
V_{EB} Emitter to Base Voltage	-4.0 Volts

ELECTRICAL CHARACTERISTICS (25°C free air temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
τ_s	Charge Storage Time [Note 6]		22	30	nsec	$I_c \approx 10 \text{ mA}$ $I_{B1} \approx 10 \text{ mA}$ $I_{B2} \approx -10 \text{ mA}$
t_{on}	Turn On Time [Note 6]		27	60	nsec	$I_c \approx 10 \text{ mA}$ $I_{B1} \approx 0.5 \text{ mA}$
t_{off}	Turn Off Time [Note 6]		34	60	nsec	$I_c \approx 10 \text{ mA}$ $I_{B1} \approx 0.5 \text{ mA}$ $I_{B2} \approx -0.5 \text{ mA}$
h_{fe}	High Frequency Current Gain ($f = 100 \text{ mc}$)	5.0	7.0			$I_c = 10 \text{ mA}$ $V_{CE} = -5.0 \text{ V}$
h_{FE}	DC Pulse Current Gain [Note 5]	30	63	120		$I_c = 10 \text{ mA}$ $V_{CE} = -0.3 \text{ V}$
h_{FE}	DC Pulse Current Gain [Note 5]	20	50			$I_c = 50 \text{ mA}$ $V_{CE} = -1.0 \text{ V}$
h_{FE}	DC Pulse Current Gain [Note 5]	15	60			$I_c = 1.0 \text{ mA}$ $V_{CE} = -0.5 \text{ V}$
V_{CE} (sat)	Collector Saturation Voltage		-0.05	-0.15	Volts	$I_c = 1.0 \text{ mA}$ $I_B = 0.1 \text{ mA}$
V_{CE} (sat)	Collector Saturation Voltage		-0.07	-0.16	Volts	$I_c = 10 \text{ mA}$ $I_B = 1.0 \text{ mA}$
V_{CE} (sat)	Collector Saturation Voltage		-0.2	-0.5	Volts	$I_c = 50 \text{ mA}$ $I_B = 5.0 \text{ mA}$

Additional Electrical Characteristics on page 2

Copyright 1965 by Fairchild Semiconductor, a division of Fairchild Camera and Instrument Corporation

NOTES:

- (1) These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
- (2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
- (3) These ratings give a maximum junction temperature of 200°C and junction-to-case thermal resistance of 200°C/watt (derating factor of 2.0 mW/°C); junction-to-ambient thermal resistance of 583°C/watt (derating factor of 1.72 mW/°C).
- (4) This rating refers to a high-current point where collector-to-emitter voltage is lowest. For more information send for Fairchild Publication APP-4.
- (5) Pulse Conditions: length = 300 μsec ; duty cycle = 1%.
- (6) See switching circuit for exact values of I_c , I_{B1} and I_{B2} .

FAIRCHILD
SEMICONDUCTOR

A DIVISION OF FAIRCHILD CAMERA AND INSTRUMENT CORPORATION

313 FAIRCHILD DRIVE, MOUNTAIN VIEW, CALIFORNIA, (415) 962-5011, TWX: 910-379-6435

FAIRCHILD TRANSISTOR 2N3304

ELECTRICAL CHARACTERISTICS (25°C free air temperature unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
h_{FE} (-55°C)	DC Pulse Current Gain [Note 5]	12	33	-0.8	Volts	$I_C = 10 \text{ mA}$	$V_{CE} = -0.3 \text{ V}$
V_{BE} (sat)	Base Saturation Voltage	-0.7	-0.76	-0.8	Volts	$I_C = 1.0 \text{ mA}$	$I_B = 0.1 \text{ mA}$
V_{BE} (sat)	Base Saturation Voltage	-0.8	-0.88	-1.0	Volts	$I_C = 10 \text{ mA}$	$I_B = 1.0 \text{ mA}$
V_{BE} (sat)	Base Saturation Voltage	-1.1	-1.5	-1.5	Volts	$I_C = 50 \text{ mA}$	$I_B = 5.0 \text{ mA}$
V_{CE} (sat)(125°C)	Collector Saturation Voltage	-0.09	-0.23	-0.23	Volts	$I_C = 10 \text{ mA}$	$I_B = 1.0 \text{ mA}$
I_{CES}	Collector Reverse Current	0.003	10	nA	$V_{CE} = -3.0 \text{ V}$	$V_{EB} = 0$	
I_{CES} (125°C)	Collector Reverse Current	0.001	10	μA	$V_{CE} = -3.0 \text{ V}$	$V_{EB} = 0$	
C_{ob}	Output Capacitance	1.9	3.5	pf	$V_{CB} = -5.0 \text{ V}$	$I_E = 0$	
C_{TE}	Emitter Transition Capacitance	1.8	3.5	pf	$V_{EB} = -0.5 \text{ V}$	$I_E = 0$	
BV_{CBO}	Collector to Base Breakdown Voltage	-6.0			Volts	$I_C = 100 \text{ } \mu\text{A}$	$I_E = 0$
BV_{CES}	Collector to Emitter Breakdown Voltage	-6.0			Volts	$I_C = 100 \text{ } \mu\text{A}$	$I_B = 0$
V_{CEO} (sust)	Collector to Emitter Sustaining Voltage [Notes 4 and 5]	-6.0			Volts	$I_C = 10 \text{ mA}$	$I_B = 0$
BV_{EBO}	Emitter to Base Breakdown Voltage	-4.0			Volts	$I_E = 100 \text{ } \mu\text{A}$	$I_C = 0$

TYPICAL COLLECTOR AND BASE CHARACTERISTICS*

ACTIVE REGION

SATURATION REGION

PULSED DC CURRENT GAIN VERSUS COLLECTOR CURRENT

COLLECTOR SATURATION VOLTAGE VERSUS COLLECTOR CURRENT

* Single family characteristics on Transistor Curve Tracer.

FAIRCHILD TRANSISTOR 2N3304

FAIRCHILD TRANSISTOR 2N3304

TYPICAL COMMON Emitter "Y" PARAMETERS

INPUT ADMITTANCE VERSUS FREQUENCY-OUTPUT SHORT CIRCUIT

OUTPUT ADMITTANCE VERSUS FREQUENCY-INPUT SHORT CIRCUIT

FORWARD TRANSFER ADMITTANCE VERSUS FREQUENCY-OUTPUT SHORT CIRCUIT

REVERSE TRANSFER ADMITTANCE VERSUS FREQUENCY-INPUT SHORT CIRCUIT

INPUT ADMITTANCE VERSUS COLLECTOR CURRENT — OUTPUT SHORT CIRCUIT

OUTPUT ADMITTANCE VERSUS COLLECTOR CURRENT — INPUT SHORT CIRCUIT

FORWARD TRANSFER ADMITTANCE VERSUS COLLECTOR CURRENT — OUTPUT SHORT CIRCUIT

REVERSE TRANSFER ADMITTANCE VERSUS COLLECTOR CURRENT — INPUT SHORT CIRCUIT

NON SATURATED SWITCHING PERFORMANCE

FIVE STAGE RING OSCILLATOR FOR MEASUREMENT OF PROPAGATION DELAY

IDEALIZED SMALL SIGNAL POWER GAIN VERSUS FREQUENCY

NOISE FIGURE VERSUS SOURCE RESISTANCE AND COLLECTOR CURRENT

NOISE FIGURE VERSUS FREQUENCY

PROPAGATION DELAY TIME VERSUS COLLECTOR SUPPLY VOLTAGE

Fairchild cannot assume responsibility for use of any circuitry described. No circuit patent licenses are implied.