Scratch paper

Anonymous Università di Torino April 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Abstract samples

Let M be a structure of signature L. The finite (fractional) sample expansion of M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , as ordered field, and a sort, called the sample-sort, for the set of functions $f: M \to \mathbb{R}$ that are almost always 0. We write $M^f = \langle M, \mathbb{R}, F \rangle$ for the expansion above.

Variables of sample-sort are denoted with symbols x^s, y^s and variations thereof. The language of M^f is denoted by L^f . It expands the laguage of each sort, that is, L, the language of orders, the language of real vector spaces. Moreover, for every $\varphi(x;z,z^s) \in L^f$ there is a symbol for a function

$$\overline{\varphi}(x^s; z, z^s) : F^{|x|} \times M^{|z|} \times F^{|z^s|} \longrightarrow \mathbb{R}.$$

Below, ε always ranges over the positive standard reals. If a and b are (hyper)reals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε .

2.1 Definition Let \mathcal{U} be a monster model of cardinality $\kappa > |L|$ and let $\mathcal{U}^f = \langle \mathcal{U}, \mathbb{R}, \mathcal{F} \rangle$ be the corresponding expansion. We denote by \mathcal{U}^{f*} a saturated elementary extension of \mathcal{U}^f of cardinality κ . As all saturated models of cardinality κ are isomorphic, we can assume that \mathcal{U} is the home-sort of \mathcal{U}^{f*} . Elements $r \in \mathcal{U}^f$ are called finite samples, elements in $s \in \mathcal{U}^{f*}$ are called internal samples.

Finally, a global sample is a type
$$p(x^s) \in S(\mathcal{U}^f)$$
.

Note that U^f is not saturated but it is homogeneous.

2.2 Definition A global sample
$$p(x^s)$$
 is smooth if it is realized in \mathcal{U}^{f*} .

The following notions are standard

- **2.3 Definition** Let M be given. A global sample $p(x^s)$ is
 - 1. invariant if for every formula $\varphi(x^s;z,z^s)$ the set $\varphi(p;\mathcal{U},\mathcal{F})$ is invariant over M^f ;

- 2. finitely satisfiable if for every finite subset of $p(x^s)$ is realized in M^f .
- 3. definable if, for every $\psi(x^s; z, z^s) \in L^f$, the set $\psi(p; \mathcal{U}, \mathcal{F})$ is definable over M^f .
- **2.4 Notation** For any global type $p(x^s) \in S(\mathcal{U})$ and formula $\psi(x^s;z) \in L^f$ we write

$$|\psi(p;\mathcal{U})| = \{b \in \mathcal{U}^{|z|} : \psi(x^{s};b) \in p\}$$

(the same notation applies with x for x^s). This notation intentionally confuses p with any of its realizations in some elementary extension of \mathcal{U}^f . Sets of this form are called externally definable. The type $p(x^s)$ may be identified with a collection of externally definable sets.

We extend this notation to functions. If $\varphi(x;z) \in L$ and $p(x^s)$ is a global sample, we write $\overline{\varphi}(p;b)$ for the unique $\mu \in \mathbb{R}$ such that $p(x^s) \vdash \overline{\varphi}(x^s;b) \approx \mu$. In analogy to the terminology above, we may say that $\overline{\varphi}(p;z)$ is an externally definable real valued function. A global sample may be identified with a family of externally definable functions.

Explicitely, 2 above means that if $\overline{\psi}_i(x^s) \approx_{\varepsilon} \mu_i$ are some finitely many formulas in p, then there is an $r \in M^f$ such that $\overline{\psi}_i(r) \approx_{\varepsilon} \mu_i$ for all i. We may also rephrase this by saying that for every finitely many $\psi_i(x) \in L(\mathcal{U})$ there is an $r \in M^f$ such that $\overline{\psi}_i(r) \approx_{\varepsilon} \overline{\psi}_i(p)$ for all i.

2.5 Fact Let M be given. Let $p(x^s)$ be a global sample. Then, if p is finitely satisfiable, it is is invariant.

Proof Let $b \equiv_{M^f} b'$ be given. Let $r \in M^f$ be such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ and $\overline{\varphi}(p;b') \not\approx_{\varepsilon} \overline{\varphi}(r;b')$. But $\overline{\varphi}(r;b) \approx \overline{\varphi}(r;b')$ and therefore $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(p;b')$. As ε is arbitrary, $\overline{\varphi}(p;b) \approx \overline{\varphi}(p;b')$ follows.

2.6 Fact Let M be given. Let $p(x^s)$ be a smooth sample. Then, if p is invariant, it is also finitely satisfiable and definable.

Proof Let s be an internal sample that realizes an invariant global sample $p(x^s)$. Let $\overline{\varphi}_i(x^s;b) \approx_{\varepsilon} \mu_i$ be some finitely many formulas in p. Let b' be such that $s \downarrow_{M^f} b' \equiv_{M^f} b$. By invariance, $\overline{\varphi}_i(s;b') \approx \mu_i$. Therefore there is an $r \in M^f$ such that $\overline{\varphi}_i(r;b') \approx_{\varepsilon} \mu_i$. As $b' \equiv_{M^f} b$, we obtain $\overline{\varphi}_i(r;b) \approx_{\varepsilon} \mu_i$. This proves finite satisfiability. Now, let $\psi(x^s;z) \in L^f$. As $\psi(p;\mathcal{U}) = \psi(s;\mathcal{U})$ is definable in \mathcal{U}^{f*} . By invariance it is definable in M^f .

2.7 Fact Let M be given. Let $p(x^s)$ be a smooth sample. Then for every $\varphi(x;z) \in L$ and every ε there are some finitely many $r_i \in M^f$, say $0 \le i < n$, such that for every $b \in \mathcal{U}^{|z|}$ we have $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r_i;b)$ for some i.

Proof Let *s* be an internal sample that realizes $p(x^s)$. Let $\varphi(x;z) \in L$ and ε be fixed. The type

$$p(z) = \left\{ \overline{\varphi}(s;z) \not\approx_{\varepsilon} \overline{\varphi}(r;z) \, : \, r \in M^{\mathrm{f}} \right\}$$

is inconsistent by Fact 2.6. Hence compatness yields the required $r_i \in M^f$.

- **2.8 Fact** Let M be given. For every global sample $p(x^s)$ the following are equivalent
 - 1. p is smooth;
 - 2. p is definable and for every $\varphi(x;z) \in L$ and every ε there are some finitely many $r_i \in M^f$, say $0 \le i < n$, such that for every $b \in \mathcal{U}^{|z|}$ we have $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r_i;b)$ for some i.
 - 3. p is definable and for every $\varphi(x) \in L(\mathcal{U})$ and every ε there is an $r \in M^f$ such that $\overline{\varphi}(p) \approx_{\varepsilon} \overline{\varphi}(r)$.

Proof $1\Rightarrow 2$ definability has been proved above. Let s be an internal sample that realizes $p(x^s)$. Let $\varphi(x;z)\in L$ and ε be fixed. The type

$$p(z) \ = \ \left\{ \overline{\varphi}(s\,;z) \not\approx_{\varepsilon} \overline{\varphi}(r\,;z) \,:\, r \in M^{\mathrm{f}} \right\}$$

is inconsistent by Fact 2.6. Hence compatness yields the required $r_i \in M^f$.

2⇒1 For every $r \in M^f$ and $\varphi(x;z) \in L$ let $\vartheta_{r,\varphi}(z)$ ∈ the formula defining the set $\{b: \overline{\varphi}(p;b) \not\approx_{\varepsilon} \overline{\varphi}(r;b)\}$. By assumption, the following type is finitely consistent

$$p(x^{s}) = \left\{ \forall z \Big[\vartheta_{r,\varphi}(z) \to \overline{\varphi}(x^{s};z) \not\approx_{\varepsilon} \overline{\varphi}(r;z) \Big] : r \in M^{f} \right\}$$

3 Less abstract samples

In this section we assume that for every $\varphi(x)$, $\psi(x) \in L(\mathcal{U})$ if $\varphi(x) \to \psi(x)$ then $\overline{\varphi}(x^s) \leq \overline{\psi}(x^s)$.

3.1 Fact Let M be given. Let $p(x^s)$ be global sample. Suppose for every $\varphi(x) \in L(\mathbb{U})$ and ε there are $\vartheta_1(x), \vartheta_2(x) \in L(M)$ such that $\vartheta_1(x) \to \varphi(x) \to \vartheta_2(x)$ and $\overline{\vartheta}_2(p) \approx_{\varepsilon} \overline{\vartheta}_1(p)$. Then p is finitely satisfiable.

Proof Let $\varphi_i(x)$, for $0 \le i < n$, be given. We claim that there is an $r \in M^f$ such that $\overline{\varphi}_i(p) \approx_{3\varepsilon} \overline{\varphi}_i(r)$ for every i.

Let $\theta_{i,1}(x)$ and $\theta_{i,2}(x)$ be as in the fact. As $\theta_{i,1}(p) \leq \varphi_i(p) \leq \theta_{i,2}(p)$, then $\theta_{i,1}(p) \approx_{\varepsilon} \varphi_i(p)$. By elementarity there is an $r \in M^f$ such that $\theta_{i,1}(r) \approx_{\varepsilon} \theta_{i,1}(p)$ and $\theta_{i,2}(r) \approx_{\varepsilon} \theta_{i,2}(p)$. Then the claim follows immediately.

- **3.2 Lemma** The following are equivalent for every global sample $p(x^s)$
 - 1. p is smooth and invariant;
 - 2. for every finite $B \subseteq \mathcal{U}^{|z|}$ and every ε , there is an $r \in M^f$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in B$;
 - 2. for every $\varphi_i(x;z) \in L$, every $b_i \in \mathcal{U}^{|z|}$, and every ε , there is an $r \in M^f$ such that

 $\overline{\varphi}_i(p;b_i) \approx_{\varepsilon} \overline{\varphi}_i(r;b_i)$, for every $0 \leq i < n$;

- 2. for every $\psi_0(x), \ldots, \psi_{n-1}(x) \in L(\mathcal{U})$ and every ε , there is an $r \in M^f$ such that $\overline{\psi}_i(p) \approx_{\varepsilon} \overline{\psi}_i(r)$, for every i < n;
- 4. there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathbb{U}^{|z|}$ we have that $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_j(x)$ and $\bar{\vartheta}_j(p) \bar{\vartheta}_i(p) < \varepsilon$ for some i,j.

Proof Let *s* be an internal sample that realizes $p(x^s)$.

1⇒2. Let B and ε be given. Let $\bar{b} = \langle b_i : i < n \rangle$ be an enumeration of B. Let $\mu_i \in \mathbb{R}$ be such that $\overline{\varphi}(p;b_i) \approx \mu_i$ for every i < n. Let \bar{b}' be such that $s \downarrow_{M^f} \bar{b}' \equiv_{M^f} \bar{b}$. By invariance, $\overline{\varphi}(s;b_i') \approx \mu_i$. Therefore there is an $r \in M^f$ such that $\overline{\varphi}(r;b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{M^f} \bar{b}$, we obtain $\overline{\varphi}(r;b_i) \approx_{\varepsilon} \mu_i$.

1⇒2. Let $\psi_i(x) = \varphi_i(x; b_i)$ for some $\varphi_i(x; z) \in L$ and $b_i \in \mathcal{U}^{|z|}$. Let $\bar{b} = \langle b_i : i < n \rangle$. Let $\mu_i \in \mathbb{R}$ be such that $\overline{\varphi}_i(p; b_i) \approx \mu_i$. Let \bar{b}' be such that $s \downarrow_{M^f} \bar{b}' \equiv_{M^f} \bar{b}$. By invariance, $\overline{\varphi}_i(s; b_i') \approx \mu_i$. Therefore there is an $r \in M^f$ such that $\overline{\varphi}_i(r; b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{M^f} \bar{b}$, we obtain $\overline{\varphi}_i(r; b_i) \approx_{\varepsilon} \mu_i$.

1 \Rightarrow 3. By smoothness we it suffices to prove 3 with *s* for *p*. The type

$$p(z) = \left\{ \overline{\varphi}(s;z) \not\approx_{\varepsilon} \overline{\varphi}(r;z) : r \in M^{f} \right\}$$

is inconsistent by 2. Hence compatness yields the required $r_1, \ldots, r_n \in M^f$.

3⇒2. Clear.

2 \Rightarrow 1 Assume 2. We prove that p is invariant. Pick some $b \equiv_{M^f} b'$ and some ε . Let $r,r' \in M^f$ be such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ and $\overline{\varphi}(p;b') \not\approx_{\varepsilon} \overline{\varphi}(r';b')$. As $\overline{\varphi}(r;b) \approx \overline{\varphi}(r';b')$ follows from $b \equiv_{M^f} b'$, we obtain $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(p;b')$.

We prove that p is smooth.

$$p(x^s) = \left\{ \overline{\varphi}(x^s; b) \approx_{\varepsilon} \mu_b : b \in \mathcal{U}^{|z|} \right\}$$

3.3 Definition Let $\varphi(x;z) \in L$ and M be given. A global sample $p(x^s)$ is

- 1. invariant if $\bar{\varphi}(p;b) \approx \bar{\varphi}(p;b')$ for every $b \equiv_{Mf} b'$;
- 2. (pointwise) approximable if, for every $b \in \mathcal{U}^{|z|}$ and every ε , there is an $r \in M^f$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;
- 3. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(p;b) < \varepsilon\}$ is definable over M^f .

The following is a useful characterization of smooth samples.

4 Old stuff/garbage

We write $\operatorname{supp}(p)$ for the support of p, that is, the set of those a in \mathcal{U} such that $p \vdash (a \in x^s) > \varepsilon$ for some standard positive ε . If s is a smooth sample $\operatorname{supp}(s)$ is

defined to be supp(p) for $p(x^s) = tp(s/\mathcal{U}^f)$.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_{x/s}\varphi(x;b) \ = \ \frac{\left|\left\{a\in s\ :\ \varphi(a;b)\right\}\right|}{|s|},$$

When possible we abbreviate $\operatorname{Av}_{x/s}\varphi(x;b)$ with $\overline{\varphi}(s;b)$.

We write $\operatorname{ft}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathcal{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

All definitions and facts in this section are relative to some given formula $\varphi(x;z) \in L$ and some model M.

- **4.1 Definition** Let $\varphi(x;z) \in L$ and M be given. We say that a sample s is smooth if, for every $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\overline{\varphi}(s';b) \approx \overline{\varphi}(s;b)$.
- **4.2 Definition** Let $\varphi(x;z) \in L$ and M be given. An external sample s is
 - 1. invariant if, for every $b, b' \in \mathcal{U}^{|z|}$ such that $b \equiv_M b'$, we have $\overline{\varphi}(s;b) \approx \overline{\varphi}(s;b')$;
 - 2. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(s;b) < \varepsilon\}$ is definable over M;
 - 3. finitely satisfiable if, for all $b \in \mathcal{U}^{|z|}$ there is an $r \in M^f$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;

4. generically stable if all of the above hold.

Smooth roughly means internal and invariant.

- **4.3 Fact** Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external sample s
 - 1. s is smooth;
 - 2. there is an invariant internal sample $s' \equiv_M s$.

Proof 1 \Rightarrow 2. Let s be smooth and let $s' \equiv_M s$ be any internal sample. If $b, b' \in \mathcal{U}^{|z|}$ and $b \equiv_M b'$, then b' = fb for some $f \in \operatorname{Aut}(\mathcal{U}^{f*}/M)$. Then $\overline{\varphi}(s';fb) \approx \overline{\varphi}(f^{-1}s';b)$. Moreover, by smothness $\overline{\varphi}(f^{-1}s';b) \approx \overline{\varphi}(s';b)$. The infariace in s' follows.

2⇒1. It suffices to prove that if s is internal and invariant then it is smooth. Suppose for a contradiction that there is an $s' \equiv_M s$ such that $\overline{\varphi}(s';b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$. Pick a internal sample $s'' \equiv_{M,s} s'$. Then $\overline{\varphi}(s'';b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$. As $s'' \equiv_M s$ are both in \mathfrak{U}^{f*} , then s'' = fs for some $f \in \operatorname{Aut}(\mathfrak{U}^{f*}/M)$. Hence we obtan $\overline{\varphi}(s;f^{-1}b) \not\approx_{\varepsilon} \overline{\varphi}(s;b)$ which contradics the invariance of s.

4.4 Definition Let $\varphi(x;z) \in L$ and M be given. Let $\mathcal{B} \subseteq \mathcal{U}^{|z|}$ be arbitrary. We say that s

	is (uniformly) approximable on $\mathbb B$ if for every ε there is a finite sample $r \in M^f$ such that $\overline{\varphi}(s,b) \approx_{\varepsilon} \overline{\varphi}(r,b)$ for every $b \in \mathbb B$. (The sample r depends on ε , not on b .)	
4.5	Lemma Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on $\mathbb B$ and such that $\overline{\varphi}(s;b) > \varepsilon$ for every $b \in \mathbb B$. Then there is a finite cover of $\mathbb B$, say $\mathbb B_1, \ldots, \mathbb B_n$, such that all the types $p_i(x) = \{\varphi(x;b) : b \in \mathbb B_i\}$ are consistent.	
	Proof Let $r \in M^f$ be as in Definition 4.4. As r is finite, we may assume that $\operatorname{supp}(r) = \{a_1, \ldots, a_n\}$. Let $\mathcal{B}_i = \{b \in \mathcal{B} : \varphi(a_i; b)\}$. As $\overline{\varphi}(r; b) > 0$ for all $b \in \mathcal{B}$, these \mathcal{B}_i are the required cover of \mathcal{B} .	
4.6	Corollary Let $\varphi(x;z) \in L$ and M be given. If s be approximable on $\langle b_i : i < \omega \rangle$, where $\langle b_i : i < \omega \rangle$ is a sequence of indiscernibles such that $\overline{\varphi}(s;b_i) > \varepsilon$ for every $i < \omega$, then the type $\{\varphi(x;b_i) : i < \omega\}$ is consistent.	
4.7	Corollary Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on $\mathfrak C$. Then for every ε there is a pair of distict $c,c' \in \mathfrak C$ such that $\operatorname{Av}_{x/s} \big[\varphi(x;c) \not \leftrightarrow \varphi(x;c') \big] < \varepsilon$	
	Proof Suppose for a contradiction that $\operatorname{Av}_{x/s}[\varphi(x;c) \not\leftrightarrow \varphi(x;c')] \geq \varepsilon$ for all distict $c,c' \in \mathbb{C}$. Apply Lemma 4.5 to the folmula $\psi(x;z,z') = [\varphi(x;z) \not\leftrightarrow \varphi(x;z')]$ and the set $\mathbb{B} = \{\langle c,c' \rangle \in \mathbb{C}^2 : c \neq c' \}$. The sets \mathbb{B}_i obtained from Lemma 4.5 induce a finite coloring of the complete graph on \mathbb{C} . By the Ramsey theorem there is an infinite monochromatic set $A \subseteq \mathbb{C}$. Hence $\{\varphi(x;a) \not\leftrightarrow \varphi(x;a') : a,a' \in A, a \neq a' \}$ is consistent. As $ A > 2$, this is impossible.	
5	The nip formulas	
	The nip formulas $ \text{Theorem Let } \varphi(x;z) \in \textit{L and M be given and assume that } \varphi(x;z) \textit{ is nip. Then every } $	
	The nip formulas Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M .	
5.1	The nip formulas Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M . Proof Questo è Vapnik-Chervonenkis. For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as fol-	
5.1	The nip formulas Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M . Proof Questo è Vapnik-Chervonenkis. For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathfrak{U}^{ z }$.)	
5.1	The nip formulas Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M . Proof Questo è Vapnik-Chervonenkis. For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathfrak{U}^{ z }$.) Corollary Let $\varphi(x;z) \in L$ be nip. Every smooth sample s is approximable on \mathfrak{U} over M . Proof By Theorem 5.1, there is an $r \in M^f$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in \mathbb{R}$	

such that for every finite set $B \subseteq \mathcal{U}$ and every $a \in \mathcal{U}^{|x|}$ there are $b_1, \ldots, b_n \in B$ such that $\psi(a; b_1, \ldots, b_n)$ and $\psi(x; b_1, \ldots, b_n)$ decides all formulas $\varphi(x; b)$ for $b \in B$.

5.4 Definition ??* We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x_1,\ldots,x_n;z) \in L$ such that for every finite set $A \subseteq \mathcal{U}^{|x|}$ and every $b \in \mathcal{U}^{|z|}$ there are $a_1,\ldots,a_n \in B$ such that $\psi(a_1,\ldots,a_n,z)$ and $\psi(a_1,\ldots,a_n,z)$ decides all formulas $\varphi(a;z)$ for $a \in A$.

For every finite sample $r \in M^f$ and every $\mu \in \mathbb{R}$ there is a formula $\psi(z) \in L(\operatorname{supp} r)$ such that $\overline{\varphi}(r;z) = \mu \leftrightarrow \psi(z)$. The formula $\psi(z)$ depends on r.

When $\varphi(x;z)$ is distal

If $\varphi(x;z)$ is distal then there is a formula ψ such that for every $r \in M^f$ there is $r_0 \in M$

- **5.5** Theorem (false) The following are equivalent
 - 1. $\varphi(x;z) \in L$ is distal;
 - 2. for every sample $s \in \mathcal{U}_*^{f_*^+}$, if s is generically stable then s is smooth.

There is a formula $\psi(x_1,...,x_n;z)$ such that for every $r \in M^f$ there are $a_1,...,a_n$ such that $\varphi(r;b) = \mu \ \psi(x_1,...,x_n;z)$