Ficher LRC à partir des TD

Charles Vin

M1-S1 2022

1 Formule

- F insatisfiable $\Leftrightarrow \neg F$ valide
- F satisfiable $\Leftrightarrow \neg F$ non valide
- $-\neg F$ satisfiable $\Leftrightarrow F$ non valide
- F valide $\Leftrightarrow \neg F$ insatisfiable
- $-A \rightarrow B \equiv \neg A \lor B$
- On développe \lor comme un + et \land comme un \times

2 Méthode des tableaux

- S'entrainer! TME1, exo 2
- Règle α = règles conjonctive, β règles disjonctive = On sépare en deux branches
- On s'arrete lorsque full atome dans la boite
- Feuille fermé ⇔ contradiction entre atome,
- Feuille ouverte = une solution, avec toutes les combinaisons possible qui respecte ce qu'il y a dans la feuille (penser à l'ensemble vide si tout est faux).
- Si toute les feuilles de l'arbre sont fermées alors F unsat \Leftrightarrow Une feuille ouverte $\to F$ satisfiable
- Indiquer quelle règle on utilise sur le coté.

3 Système de Hilbert

3.1 Preuve dans Hilbert

- S'entrainer! TME1, exo3-4
- On a: 3 axiomes + Modus Ponens
- Théorème de la déduction : $A_1, \ldots, A_n \models B \Leftrightarrow A_1, \ldots, A_{n-1} \models A_n \rightarrow B$
- Les HP de départ sont déduite à partir du théorème de la déduction : on passe tout à gauche pour n'avoir plus qu'un atome à droite et bim voilà nos HP de départ. Par exemple : $\models (P \to Q) \to ((Q \to R) \to (P \to R))$ devient $(P \to Q), (Q \to R), P \models R$
- Avoir des hp de départ sous forme de clause.

3.2 Traduction d'énoncé en Hilbert

— Les \exists n'aime pas les \rightarrow à cause de $A \rightarrow B \equiv \neg A \lor B$

4 Logique du première ordre

- Définition d'un modèle : fonction($|M| \rightarrow |M|$) + prédicat ($|M| \rightarrow \text{vrais/faux}$)
- Lors de la traduction d'énoncé en LPPO, c'est pas mal de garder des ∀,∃ à l'intérieur de la clause, ça permet de la simplifier pas mal finalement. Evite vraiment de se tromper genre pour la transformation en clause.

- Dans l'annale ils se sont pas fait chier sur ça, je cherchais compliqué avec les implications alors que c'était simple
- Ne pas oublier de mettre des ∧, pas des virgules
- Pas de $\exists !$. Pour avoir l'unicité on utilise une implication avec égalité au bout : $\forall x \forall y \forall z (tableau(x) \land a_peint(y,x) \land a_peit(z,x)) \rightarrow eq(y,z)$
- On défini les variables qu'on déclare avec les précida unaire (tableau(x)) mais pas quand on envoie un paramètre (tableau("LesMenines")) t'as capté (exo1 annale 2019)

4.1 Preuve par résolution

— On ne peut simplifier qu'un truc à la fois :

$$\frac{\neg a \vee b \vee c \qquad a \vee \neg b \vee c}{b \vee \neg b \vee c}.$$

— Mieux de le faire en version Hilbert, permet de réutiliser les lignes plutôt que de les réécrire.

$$R_1: R(c,d) \qquad [Res(C_2,C_4); \{Y\backslash d\}]$$

- A refaire au moins une fois
- Pour prouver $\models \phi$ on prouve $\neg \phi \models \varnothing$ on prouve qu'il y a une contradiction dans les clauses

4.2 Unification

- Unification : on peut changer les variables des deux cotés.
- Filtrage : On ne peut changer que les variables de F_1
- Classiquement, on cherche $F_2 = \sigma(F_1)$ avec $\sigma = \{X/X', Z/g(a, X'), \ldots\}$ un ensemble de substitution.
- Utiliser des X['] pour pas se tromper
- Écrire les variables en majuscule, et les constante en minuscule!
- On ne peux pas changer les constantes, on ne remplace pas une constante par une variable.
- A refaire au moins une fois

4.3 Transformation de formule en clause

Définition d'une clause :

- Pas de∃
- Pas de ∧
- Pas de ∀ implicite
- 1. Mettre les quantificateurs au début :

$$F_3: \forall x, \forall y (R(x,y) \rightarrow \exists z (R(x,z) \land R(z,y))).$$

Deviens

$$F_3: \forall x, \forall y, \exists z (\neg R(x,y)R(x,z) \land R(z,y)).$$

2. Skolenisation : supprimer les \exists en inventant des constante.

$$F_1 = \forall X, \exists Y, R(X, Y)$$

$$F_2 = \exists X, \forall Y, R(X, Y)$$

$$F_3 = \forall x, \forall y, \exists z (\neg R(x, y) R(x, z) \land R(z, y))$$

Devient

$$F_1 = \forall X, R(X, f(X))$$

$$F_2 = \forall Y, R(x_0, Y)$$

$$F_3 = \begin{cases} \neg R(X, Y) \lor R(X, g(X, Y)) \\ \neg R(X, Y) \lor R(g(X, Y), Y) \end{cases}$$

5 Graph conceptuel

5.1 Représentation des connaissances

- "Rocher: #" = "Le" rocher
- Bien choisir les relation dans les cercles

5.2 Joiture et généralisation

- Jointure maximale: Est-ce que les deux phrases représente la même chose → Fusion; /!\au contradiction
- Généralisation : Généralisation de ce qu'on dit, vrais pour les deux. On vas au plus générale qui rend vrais les deux
- Subsumption : Un graph en subsume un autre si il est plus général

6 Logique de description

6.1 \mathcal{FL}^-

- S'entrainer pas compris TD3 \rightarrow Ca va en faite
- TBox : Concept atomique $C \equiv D$, $C \subseteq D \Leftrightarrow \forall x, C(x) \to D(x)$
- ABox: a : C, < a, b >: Role
- Grammaire : pas de variable lol
- Bien utiliser les définition de ∃. ∀

$$\exists R = \{x \in \Delta | \exists y, (x, y) \in R\}$$
$$\forall R.C = \{x \in \Delta | \forall y, (x, y) \in R \to y \in C\}$$

6.2 ALC

- S'entrainer RIEN RIEN compris TD3 → Ca va en faite
- Same de \mathcal{FL}^- plus :
- $-\exists R.C$ toujours role + concept atomique
- ¬, ⊥, \top autorisé → Pratique
- Bien utiliser les définition de ∃, ∀

$$\begin{split} &\exists R.C = \{x \in \Delta | \exists y, (x,y) \in R \land y \in C\} \\ &\forall R.C = \{x \in \Delta | \forall y, (x,y) \in R \rightarrow y \in C\} \text{ (comme } \mathcal{FL}^-\text{)} \end{split}$$

Penser aux □ dans la TBox

6.3 Interprétation

- On a un graph avec des flèches qui représente les appartenances aux rôles $(x,y) \in R$ avec x monde de départ et y monde d'arrivé.
- Les appartenances au concept sont les attribues des mondes.
- Lister les mondes appartenant aux rôles \rightarrow Peut aider a appliquer la définition du \forall , \exists
- $-\exists s. \neg A$ se lit "Tous les mondes qui ont une flèche s qui pointe vers un monde qui vérifie $\neg A$ "

6.4 Méthode des tableaux

TD4 mais pas beaucoup de correction

- On veux prouver ϕ un truc vrais ou faux
- On part d'une TBox acyclique + tout sous forme normale négative : Développer les \neg
- Puis notre première case du tableau contient $Tbox \sqcap ABox \sqcap \phi$ avec ϕ sous FNN et **avec les definitions remplacé!** OU avec $\neg \phi$ il faut aller vers la contradiction
- Then on cherche à appliquer les bonnes règles pour arriver rapidement à notre objectif.
- On peut traduire les $A \sqsubseteq B$ par $i : A \sqcap B$

7 Logique Modale

- On développe les formule □, ◊ comme un arbre en explorant les possibilités.
- On peut donner des contres exemples.
- Règle de necessitation : $M \models \phi \equiv M \models \Box \Phi$
- Penser que parfois les flèches de récursion ne sont pas dessiné
- /!\. Au implication, parfois une traduction en vaut la penne $a \to b$ toujours vrais pour les mondes où a est faux \to vérifier surtout les mondes où a est vrais
- s'entraîner vite fait fin exo 1 TD5
- Penser au démo par l'absurde pour les trucs cons (TD5, fin exo3)
- Loi de Morgan
 - $\diamond \phi \equiv \neg \Box \neg \phi$
 - $-\Box\phi\equiv\neg\diamond\neg\phi$

Liste des axiomes logique épistémique S5 :

- T : Réflexivité des mondes $\forall w: (w,w) \in R : \Box \phi \to \phi$
- D : Sérialité des mondes = aucun monde seul $\forall w, \exists w' : (w, w') \in R : \Box \phi \rightarrow \diamond \phi$
- 4 : Transitivité : classiquement en math : $\forall x, y, z \in E \quad (x\mathcal{R}y \land y\mathcal{R}z) \Rightarrow x\mathcal{R}z$. bah pareil avec les mondes : si je sais phi je sais que je sais phi : $\Box \phi \rightarrow \Box \Box \phi$
- 5 : Euclidienne : $\diamond \phi \to \Box \diamond \phi$ Ca implique qu'il existe un lien entre chaque monde presque : $\forall w, w', w'', (w, w') \in R, (w', w'') \in R \to (w', w'') \in R$. D'après le prof c'est l'introspection negative : je sais ce que je ne sais pas.
- B : Symétrie des flèches : $\phi \to \Box \diamond \phi$ Implique qu'il existe toujours le chemin retour : $\forall w,w',(w,w') \in R \to (w',w) \in R$

7.1 Logique épistémique

- $-M, w_1 \models K_i p \equiv M, w_1 \models \Box p$ en utilisant les flèches indicées i
- Croire possible $p \equiv B_i \phi \equiv \diamond \phi \equiv \neg \Box \neg \phi \equiv \neg K \neg \phi$
- Savoir si $p: K^{si}p \equiv Kp \vee K \neg p$ Bien le traduire lui, il est piège
- Savoir leguel parmi $a, b, c \equiv Ka \vee Kv \vee Kc$

8 Connaissance commune et distribué

Définition 8.1. Connaissance commune : tout le monde sait que tout le monde sait

JE ME SOUVIENS DE RIEN

9 Intervale de Allen

On a 13 relations possible entre les noeuds, par défault un noeud a toutes les relations. L'ordre est toujours important, si on veut prendre l'inverse on met des x^t partout Savoir faire un graph temporel :

Définition 9.1. On a une pile de chose à faire. On doit propager toutes les relations du graph.

- Prendre une relation $R_{i,j}$ dans la pile de chose à faire.
- Pour tout noeud k faire $\ddot{:}$
 - $-ik = ik \cap ij \circ jk$
 - $-kj = kj \cap ki \circ ij$
- Si $\varnothing \rightarrow$ contradiction
- Si changement d'une relation, ajouter cette relation dans la pile de chose a faire!

Logique réifié de Allen = juste de la logique comme d'hab avec des intervalles de Allen. On peut faire des résolutions dedans c'est plus pratique que la propagation pour prouver des contradictions.

10 Réseau de pétri

- Il faut rester un max concentré

- On a des transitions □ et des états ○. Les états contiennent des jetons. Et pour déclancher une transition on regarde toute les flèches qui pointe vers lui et on somme le nombre de jeton nécéssaire
- Une transition par pas de temps

10.1 Matrice d'incidence

On fait toujours transition d'un rond vers un carré : donc Pre c'est de $\bigcirc \rightarrow \Box$ et Post c'est de $\Box \rightarrow \bigcirc$ toujours les transitions en colonne

Définition 10.1 (Transition franchissable). Une transition t_0 est franchissable si

$$\forall pM(p) \geq Pre(p, t_0).$$

La colonne lié à la transition doit être supérieur ou égale au vecteur ${\cal M}^T$

Définition 10.2 (Nouvel état M). Soit t_0 et M_0 respectivement une transition franchissable et une répartition de jeton initiale. Appliquer t_0

$$\forall p M_1(p) = M(p) + Post(p, t_0) - Pre(p, t_0).$$

On peut calculer Post - Pre directement pour aller plus vite. Puis on somme la colonne associté à t_0

Théorème 10.1 (Factorisation d'une série de transition). Soit $L=(t_0,t_1,t_0,\dots)$ une liste de transitions toutes franchissable

- 1. Compter le nombre d'apparition de chaque transition : $T=(nbt_0,nbt_1,\dots)$
- 2. alors la répartition des jetons finale se définis comme

$$M_{final} = M_0 + (Post - Pre) * T.$$

Définition 10.3 (Graph de marquage). Comme l'arbre des transition mais avec les boucles indiquées. Utile pour voir les propriétés du réseau de pétrie pour un M_0 .

Définition 10.4 (Propriété des réseaux de Pétrie). Liste des propriétés des réseaux de Pétrie, à savoir par coeur

- **Borné** $\forall M_i, \forall t_j, M_i \leq k$ II y a convergence du nombre de jeton max pour tout M du graph de marquage
- Vivant : toute les transitions du réseau sont vivante.
- **Transition vivante** $\forall (M_i,M_j)$ accessible $\exists \sigma tqM_i \rightarrow^\sigma M_j, T_j \in \sigma$ Une transition T_j est vivante pour un marquage initial M_0 , si pour tout marquage accessible, il existe une séquence de franchissement qui contienne T_k à partir de ce marquage accessible. Il existe toujours un chemin pour revenir à la transition, un peu comme avec un état récurent de Markov.
- **Quasi Vivant** toute les transition du réseau sont quasi-vivante
- **Transition quasi vivante** $\forall t, \exists M$ accessible depuis M_0 tel que t franchissable. Toute les transition apparaisse au moins une fois dans le graph
- **Sans blocage** $\forall M$ accessible, $\exists t$ franchissable. ie. pas d'état puis
- Inversible $\forall M$ accessible, M_0 accessible depuis M. On peut toujours retourner au point de départ