Integral Calculus

Riemann Integration

Riemann Condition! f is integrable on [a,b]

(=) For every \$70, there exists a partition PE of [a,b] such that $U(P_{E},f) - L(P_{E},f) < \epsilon$.

Suppose that f is integrable. Let E>0 be given.

There is a partition Pr such that $U(P_1,f) < U(f) + \frac{\epsilon}{2} - \left[U(f) = \inf_{x \in \mathbb{R}} \left\{ U(P_1,f) \mid P \text{ is a partition} \right\} \right]$ \Rightarrow $U(f)+\frac{\epsilon}{2}$ is not a lower bound Similarly, there exists a bartition of [a, b]

L(P2) + L(P2) + L(P3) > L(P3) > L(P3) > L(P3) = Take PE:= PIUP2. Now PE is a refinement of PI and PZ $U(P_{\varepsilon},f)-L(P_{\varepsilon},f)\leq U(P_{0},f)-L(P_{2},f)$ $= \lambda L(P_{\varepsilon},f) \geq L(P_{\varepsilon},f)$ $= \lambda L(P_{\varepsilon},f) \leq L(P_{\varepsilon},f)$ Given, $\varepsilon > 0$, there exists a partition P_{ε} of [a,b] such that $0 \le U(P_{\varepsilon},f) - L(P_{\varepsilon},f) < \varepsilon$ Now, $U(f) \le U(P_{\varepsilon},f)$ and $L(f) \ge L(P_{\varepsilon},f)$. $U(f) - L(f) \le U(P_{\varepsilon},f) - L(P_{\varepsilon},f) < \varepsilon$. $U(f) - L(f) \le U(P_{\varepsilon},f) - L(P_{\varepsilon},f) < \varepsilon$. $U(f) - L(f) \le U(f) - L(f) < \varepsilon$. U(f) - L(f) = 0 U(f) - L(f) = 0

Running assumption: f: [a,b] - IR bounded funct. Corollary:

Jis integrable on [a,b]

there is a sequence (Pn) of partitions of [a,b] such that $U(P_n, f) - L(P_n, f) \rightarrow 0$ as $n \rightarrow \infty$. In such a case $L(Pn,f) \rightarrow S^b f$ and $U(Pn,f) \rightarrow S^b f$.

Proof: (=) Suppose f is integrable. By Riemann's Condition; given Exo, there exists a partition

PE such that $U(P_{E},f)-L(P_{E},f)< E=\frac{1}{n}$

For $n=1,2,\ldots$ take $\varepsilon=\frac{1}{n}$. For each no there exists a partition Pn s.t. $U(P_n,f) - L(P_n,f) < \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$.

There is a sequence (Pn) of partitions of [a, b] such that $U(P_n,f)-L(P_n,f)\to 0$ as $n\to\infty$ => Given E>0, there exists an no>0 s.t.

anto U(Pn,f)-L(Pn,f)<E whenever n>no

Put PE=Pno to get the Riemann condition.

=> S is integrable on [a,b] To show that L(Pn,f) -> Sof.

Running assumption: f: [a,b] > IR bounded funct.

Let (Pn) be a sequence of partitions such that $U(P_n,f)-L(P_n,f)\to 0$

 $0 \le L(f) - L(P_n, f) \le U(f) - L(P_n, f) \le U(P_n, f) - L(P_n, f)$ $\Rightarrow L(P_n,f) \rightarrow L(f) = \int_{a}^{b} f$ Exercise: $U(P_n,f) \rightarrow \int_{a}^{b} f$

J(x) = x for $x \in [a,b]$. Example: Take a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a,b]. $[x_{i-1}, x_i]$ $i = b_{---}, n$. f(x) is an increasing function. $\Rightarrow m_{i}(f) = x_{i-1} \left(x_{i} - x_{i-1} \right) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) = \sum_{i=1}^{n} x_{i} (x_{i} - x_{i-1}) \left(x_{i} - x_{i-1} \right) \left(x_{i}$ $|U(P,f)-L(P,f)| = \sum_{i=1}^{n} (x_i - x_{i-1})^2.$ $|U(P,f)-L(P,f)| = \sum_{i=1}^{n} (x_i - x_{i-1})^2.$ For neIN, let Pn denote the partition of [a,b] into n equal parts. $\Rightarrow ((P_n,f) = \frac{b^2 - a^2}{2} + (\frac{1}{2} \sum_{i=1}^{n} \frac{(b-a)^2}{(n^2)}) \Rightarrow \frac{b^2 - a^2}{2} |_{as \ n \to as}$ $L(P_n,f) = \frac{b^2 - a^2}{2} - \frac{1}{2} \sum_{i=1}^{n} \frac{(b-a)^2}{n^2} \Rightarrow \frac{b^2 - a^2}{2} |_{as \ n \to as}$

$$U(P_n,f) - L(P_n,f) \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$\Rightarrow \begin{cases} f \text{ is integrable} \\ f \text{ is integrable} \end{cases}$$

$$\Rightarrow \begin{cases} f \text{ is integrable} \\ f \text{ is now } L(P_n,f) = \frac{b^2 - a^2}{2} \cdot H \end{cases}$$

Results on integrable functions of fire, by R is monotones then	ons (proofs omitted).
	If f: [a,b] → IR has at 1
f is integrable. $f(x)=x^2$. Examples:	finite number of discont then f is integrable.
	Examples: @ Any continuous function integrable
	6 A polynomial is inte
$g: [0, \square \rightarrow \mathbb{R}]$ For $x. \in [0,1]$	(0 mor
G. [0, 1]→ [R. For x. ∈ [0,1] Exercise!! there exists nem 1 < x ≤ n n+1 Produce to more examples!!	

If f: [a,b] - IR has at most a 'finite number of discontinuities, then f is integrable.

- @ Any continuous function integrable
- (b) A polynomial is integrable.

Algebraic Properties
let f.g: Tabil - IR be integrable functions, cell a constant.
Let 5,9: [a,b] -IR be integrable functions, cell a constant. (a) 5+9 is integrable and 5 (5+8) = 55+ 59.
(b) cf is integrable and $\int_{0}^{b} cf = e \int_{0}^{b} s$.
(b) ct is integrated (f. 19.)
© fig is integrable. Jig to a a then (=) is
(a) If there exists 8>0 s.t. (+(x)) is bounded
© cf is integrable and sef = e so. © sig is integrable. (sig ≠ so. so.) © there exists 8>0 st. Hex >8 ×× e [ab], then is bounded integrable. Order properties Order properties Of the f(x) < g(x) for all x ∈ [a,b], then sig ≤ sign.
(a) If $f(x) \le g(x)$ for all $x \in [a,b]$, then $\int_a^b f \le \int_a^b g(x)$.
(a) 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(b) If is integrable and [st] = SIFI.

Area of planar regions $f(x) > 0$ $f(x) > 0$ $f(x) > 0$ Area of planar regions $f(x) > 0$ $f(x)$	ce[a,b]
If $(3>0)$ then we say that the region R_f given by $R_f = \{(x,y) \in \mathbb{R}^2 \mid a \le x \le b, 0 \le y \le f(x)\}$	1
has an area if I is integrable on laby and	
such a case we define $\int f(x) dx$. Area $(Rf) = \int f(x) dx$.	(J=f(x))
Note: $(Ra) > 0.$	
Area $(x) = c$ $\forall x \in [a,b]$ $x = 0$	

What happens if £ \$0?

Note: If f,g are integrable, then so are max(f,g) and min(f,g).

$$max(f,g) = \frac{f+g+|f-g|}{2}$$

 $min(f,g) = \frac{f+g-|f-g|}{2}$

J, g are intograble.

⇒ J+g, N J-g, Lf-81 "

⇒ J+2+ | f-9| integrable.

⇒ J+9+)5-8| "

Define
$$f^+ = \max(f,0)$$

 $f^- = \min(f,0)$

 $M_i(f) \leq 0$ $m_i(f) \leq 0$

We have

$$\int_{\alpha}^{b} f(x)dx = Area(Rg+) - Area(Rg-)$$

What follows:

Fundamental Theorem of Calculus

Differential calculus

Integration