SECTION 8.2 Complexity

BIG O

Let f and g be functions $N \rightarrow \mathbb{R}$. (of magnitude) We say that "f is big 0 of g" and write $f = \mathcal{O}(g)$ or $f \in \mathcal{O}(g)$ if there is a natural number n_0 and a positive real number c such that $|f(n)| \leq c|g(n)|$ for $n \geq n_0 \leq 2$ "for large n"

Note: If $f,g: \mathbb{N} \to [G,\infty)$ we can drop the absolute values.

Note: There are infinitely many choices for no and c.

Observation: If $f(n) \leq g(n)$ for all n, then f is O(g)

BIG O

BIG O

We say that "f is big 0 of g" and write $f = \mathcal{O}(g)$ or $f \in \mathcal{O}(g)$ if there is a natural number no and a positive real number c such that $|f(n)| \le c|g(n)|$ for $n \ge n_0$.

First examples: 1)
$$f(n) = n^2$$
, $g(n) = 7n^2$
 $f \in \mathcal{O}(g)$ $c = 1, n = 1$
 $g \in \mathcal{O}(f)$ $c = 7, n = 1$

2
$$f(n) = 4n+2$$
, $g(n) = n$
 $f \in O(g)$ $c = 5$, $n_0 = 2$
 $g \in O(f)$ $c = 1$, $n_0 = 1$

ANOTHER EXAMPLE

```
Example: f(n)=n^2, g(n)=n^2+n

f \in \mathcal{O}(g) \quad c=1, n_0=1
g \in \mathcal{O}(f)?
\text{Want} \quad n^2+n \leq cn^2 \quad \text{for } n \text{ large}
(c-1)n^2 \geq n
(c-1)n \geq 1
\Rightarrow c=2, n_0=1
So q \in \mathcal{O}(f).
```

We say fand g have the same order.

NOT BIG O

How do we show f is not O(g)?

Need to show no c, no work.

Example: $f(n) = n g(n) = \sqrt{n}$

First, $g \leq O(f): C=1, n_0=1$

But, is it possible that $n \leq cvn$ for large $n (n \geq n_0)$? This would mean $m \leq c$ for large n. Impossible!

We conclude f is not O(g).

COMPARING FUNCTIONS

Let f and g be functions $N \rightarrow \mathbb{R}$.

We say	and write	if
f has smaller order than g	f < 9	f ∈ O(g) g ∉ O(f)
f has the same order as g	f ≒ g	f ∈ O(9) g ∈ O(f)

MORE EXAMPLES

Show that $5n^3+12n \times n^3$

Clearly
$$n^3 \in \mathcal{O}(5n^3 + 12n)$$

Also, $5n^3 + 12n \leq 6n^3$ for $n > 4$
 $\longrightarrow 5n^3 + 12n \in \mathcal{O}(n^3)$.

Show that n+1 = n

MORE EXAMPLES

1) Compare n! & n"

2 Compare n! & 2"

COMBINING FUNCTIONS

Theorem: Let f,g be functions
$$\mathbb{N} \to \mathbb{R}$$
.

(a) If $f \in \mathcal{O}(F)$, then $f + F \in \mathcal{O}(F)$

(b) If $f \in \mathcal{O}(F)$ and $g \in \mathcal{O}(G)$ then $fg \in \mathcal{O}(FG)$.

$$Proof: (a) |f(n) + F(n)| \le |f(n)| + |F(n)| \le c |F(n)| + |F(n)| |n > n.$$

$$= (c+1)|F(n)| |n > n.$$

For example,
$$(n+1)(5n^3+12n) = 5n^4+5n^3+12n^2+12n$$
 is $O(n^4)$ by (b)

What about
$$19n^{58} + n^{18} - 3n^{10}$$
?
 $\approx n^{58}$ by (a).

BIG O VIA LIMITS

THEOREM: Let f,g be functions
$$\mathbb{N} \to [0,\infty)$$

(a) If $\lim_{n \to \infty} f(n)/g(n) = 0$, then $f < g$

(b) If $\lim_{n \to \infty} f(n)/g(n) = \infty$, then $g < f$

(c) If $\lim_{n \to \infty} f(n)/g(n) = L \neq 0$, then $f = g$

Proof: (a)
$$\lim_{f(n)} |g(n)| = 0$$
 means: For all $\varepsilon > 0$, there exists no so that $|f(n)|g(n)| < \varepsilon$ when $n > n_0$. $|n|$ other words $|f(n)| < \varepsilon |g(n)|$, $|n > n_0|$ (*) $\sim f \in \mathcal{O}(g)$ On the other hand, need $g \neq \mathcal{O}(f)$.

 $g = \mathcal{O}(f)$ means $|g(n)| \leq c|f(n)|$ $|n > n_0|$ i.e. $\frac{1}{\varepsilon}|g(n)| \leq |f(n)| n > n_0$ Contradicting (*)

POLYNOMIALS

Theorem: Let $f(n) = adn^d + \cdots + a_1 n + a_0$ be a degree of polynomial $(ad \neq 0)$. Then $f(n) \neq n^d$.

Can prove using either of the last two theorems.

Proof:
$$\lim_{n\to\infty} |f(n)| g(n)| = \lim_{n\to\infty} \left| \frac{\alpha_d n^d + \dots + \alpha_o}{n^d} \right|$$

$$= \lim_{n\to\infty} \left| \frac{\alpha_d + \alpha_{d-1/n} + \dots + \alpha_{1/n} d^{-1} + \alpha_o/n^d}{1} \right|$$

$$= |\alpha_d|.$$

MORE COMPARISONS

Theorem: (a) If
$$k < l$$
, then $n^k < n^l$
(b) If $k > 1$, then $\log_k n < n$
(c) If $k > 0$, then $n^k < 2^k$

Proof: (b)
$$\lim_{n\to\infty} \frac{\log_k n}{n} = \lim_{n\to\infty} \frac{\ln n}{\ln k n} = \lim_{n\to\infty} \frac{\ln n}{\ln k \cdot 1} = 0.$$

Apply the limit theorem.

HIERARCHY

 $1 < \log n < n < n^k < k^n < n! < n^n$ $const < \log < linear < poly < exp < fact < tower$

MORE DETAILED HIERARCHY

$$1 < \log n < m < n / \log n < n < n \log n < n^{3/2}$$

$$< n^2 < n^3 < \cdots$$

$$< 2^n < 3^n < \cdots$$

$$< n!$$

$$< n^n < n^{n^n} < \cdots$$

COMPARING DIFFERENT ORDERS

	7	1 10	50	100	300	1000		
	5n	50	250	500	1500	5,000	_	
	n logn	33	282	665	2469	9966	66	
	n²	100	2500	10,000	90,000	1,000,000	# <i>M</i> secs Since	
	n^3	1,000	125,000	1 mil	27 mil	1 bil	big bang: ~10 ²⁴	
	2 ⁿ	10 ²⁴	16 digits	31 dig.	91 dig.	302 dig.	# protons in the known	
•	n!	3.6 mil	65 dig.	161 dig.	623 dig.	unimaginable	universe: ~10 ¹²⁶	
	n"	10 bil.	85 dig.	201 dig.	744 dig.	Unimaginable	D. Harel, Algorithmics	

COMPARING DIFFERENT ORDERS How long would it take at 1 step per usec?

	10	20	50	100	300
n²	1/10,000 Sec.	1/2500 Sec.	1/400 Sec	1/100 Sec.	9/100 Sec.
n^{5}	1/10 Sec.	3.2 sec	5.2 min	2.8 hr	28.1 days
2 ⁿ	1/1,000 Sec	1 sec	35.7 yr	400 trillion cent.	75 digit # of centuries
n^n	2.8 hr	3.3 trillion	70 digit # of centuries	185 digit # of centuries	728 digit # of centuries.

D. Harel, Algorithmics