目次

第1章	微分論	3		
1.1	l'Hospital の定理	3		
	1.1.1 一般形	3		
	1.1.2 複素関数について	3		
	1.1.3 多変数の平均値の定理	3		
1.2	最適化問題	3		
	1.2.1 極値判定法	3		
	1.2.2 等式制約付き最適化	4		
1.3	Taylor の定理	4		
	1.3.1 理論標準形	4		
	1.3.2 Cauchy の平均値の定理	5		
1.4	導関数の連続性	5		
第2章	Riemann-Stieltjes 積分			
2.1				
2.2	可積分性	6		
第3章	多変数関数論 8			
3.1	行列の Banach 代数			
3.2	微分	8		
3.3	逆関数定理			
3.4	陰関数定理	9		
3.5	高階微分	10		
3.6	定積分の微分			
3.7	写像の分解			
3.8	変数変換			
3.9	微分の積分			
第4章	By B	12		
4.1	級数論	12		
	4.1.1 基本的な 2 つの収束判定法	12		
	4.1.2 Cauchy の二重級数定理	12		
	4.1.3 収束級数のなす線型空間	13		
	4.1.4 級数の積の収束の Abel の判定法	13		
	4.1.5 交代級数の収束判定	14		
	4.1.6 級数の Cauchy 積	14		
	4.1.7 条件収束級数に関する Riemann の定理	14		
	4.1.8 Cesaro 総和法	14		
4.2	関数列の一様収束	15		
	4.2.1 一様ノルム Cauchy 列としての特徴付け	15		

<u>目</u>次 <u>2</u>

参考文	献	20
4.5.4	Stirling の公式	19
4.5.3	Beta 関数	19
4.5.2	無限積表示	19
4.5.1	定義と特徴付け	19
Gamn	na 関数	19
4.4. 2	部分代数	18
4.4.1	Weierstrass の定理	18
連続関	数環	18
4.3.5	同程度連続な関数族	18
4.3.4	Arzelà の有界収束定理	17
4.3.3	Ascoli-Arzelà の定理	17
4.3.2	一様収束と導関数	17
4.3.1	一様収束極限と積分の可換性	17
極限と	微積分の可換性	16
4.2.8	整級数による関数定義	16
4.2.7	級数の一様収束の判定法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
4.2.6	一様収束列の構成....................................	16
4.2.5	一様収束列の必要条件	16
4.2.4	各点収束列が一様収束するための十分条件	15
4.2.3	一様収束は連続性を保つ....................................	15
4.2.2	極限の交換	15
	4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 極限と 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 連続関 4.4.1 4.4.2 Gamm 4.5.1 4.5.2 4.5.3 4.5.4	4.2.3 一様収束は連続性を保つ 4.2.4 各点収束列が一様収束するための十分条件 4.2.5 一様収束列の必要条件 4.2.6 一様収束列の構成 4.2.7 級数の一様収束の判定法 4.2.8 整級数による関数定義 極限と微積分の可換性 4.3.1 4.3.2 一様収束と導関数 4.3.3 Ascoli-Arzelà の定理 4.3.4 Arzelà の有界収束定理 4.3.5 同程度連続な関数族 連続関数環 4.4.1 Weierstrass の定理 4.4.2 部分代数 Gamma 関数 4.5.1 定義と特徴付け 4.5.2 無限積表示 4.5.3 Beta 関数

第1章

微分論

1.1 l'Hospital の定理

平均値の定理の消息であり、多変数の場合(または複素関数の場合)には崩れる.

1.1.1 一般形

定理 1.1.1 (一般形). $f,g:(a,b)\to\mathbb{R}$ を可微分関数, $\forall_{x\in(a,b)} g'(x)\neq 0$ とする.次の 2 条件のいずれかが成り立てば,

$$\frac{f'(x)}{g'(x)} \xrightarrow{x \to a} A \quad \Rightarrow \quad \frac{f(x)}{g(x)} \xrightarrow{x \to a} A$$

- (1) $f(x), g(x) \xrightarrow{x \to a} 0$.
- (2) $g(x) \xrightarrow{x \to a} +\infty$.

要諦 1.1.2. すなわち,分数関数 f/g の $\alpha \in \mathbb{R}$ での 0/0 または ∞/∞ の不定型極限について,ある片側近傍 (α,b) 上で f,g が可微分かつ g' が消えないならば,f'/g' と同じ $x=\alpha$ 極限を持つ.

1.1.2 複素関数について

命題 1.1.3 (複素関数にも成り立つ消息). $f,g:(a,b)\to\mathbb{C}$ を可微分関数, $g'(x)\neq 0, f(x)=g(x)=0$ とする. このとき,

$$\lim_{t\to x}\frac{f(t)}{g(t)}=\frac{f'(x)}{g'(x)}.$$

命題 1.1.4. $f,g \in H((0,1);\mathbb{C})$ を正則関数とし、 $f(x),g(x) \to 0,f'(x) \to A,g'(x) \to B (x \to 0)$ とする. $B \neq 0$ のとき、

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}.$$

1.1.3 多変数の平均値の定理

定理 1.1.5 . $f \in C([a,b]; \mathbb{R}^k)$ は微分可能であるとする. このとき,

$$\exists_{x \in (a,b)} |f(b) - f(a)| \leq (b - a) \sup_{x \in (a,b)} |f'(x)|.$$

1.2 最適化問題

1.2.1 極値判定法

定理 1.2.1 . $A \stackrel{\text{open}}{\subset} \mathbb{R}^n$ を開集合, $f:A \to \mathbb{R}$ を C^2 -級, $\alpha \in A$ で f' は消えるとし, $Q(X_1,\cdots,X_n) := \sum_{i,j=1}^n f_{x_ix_j}(\alpha)X_iX_j \in \mathbb{R}[X_1,\cdots,X_n]$ を 2 次形式とする.

第1章 微分論 4

- (1) Qが正定値ならば、f は a で極小.
- (2) Qが負定値ならば、f は a で極大.
- (3) Q が不定符号ならば、f は a で極小でも極大でもない.

1.2.2 等式制約付き最適化

定理 1.2.2. $f, g_1, \dots, g_m \in C^1(A)$ $(A \subset \mathbb{R}^n)$, $S := \bigcap_{i \in [m]} g_i^{-1}(0)$ を実行可能領域とする. f が a において極値を取り (局所最適解), $\operatorname{rank}(Dg) Dx = m$ ならば,

$$\exists_{\lambda_1,\dots,\lambda_m\in\mathbb{R}}\forall_{j\in[n]}\quad \frac{\partial f}{\partial x_j}(\alpha)=\sum_{i=1}^m\lambda_i\frac{\partial g_i}{\partial x_j}(\alpha)$$

要諦 1.2.3. Jacobian がランク落ちしていないという仮定は,勾配 ∇g_i が 1 次独立であることをいう (1 次独立制約想定). $F(x,\lambda) := f - \sum_{i=1}^m \lambda_i g_i$ で定まる $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ を Lagrange 関数といい,極値点の候補を探す問題は,Lagrange 関数の微分係数に関する連立方程式 (停留条件) に還元される.

注 1.2.4. 不等式制約付き最適化は, さらに多様な制約想定の下で理論展開されている. Slater と Mangasarian-Fromovitz である. このとき, Lagrange 乗数 (の一般化) が満たすべき連立方程式 (停留条件と相補性条件と呼ばれる条件) を **Karush-Kuhn-Tucker** 条件という. ここには明らかに,

1.3 Taylor **の定理**

1.3.1 理論標準形

可微分実関数については、多項式による最良近似が標準的に存在して、近似誤差とが n 階の微分係数で予測出来る.

<u>補題 1.3.1</u> (可微分関数の多項式近似). $f:[a,b] \to \mathbb{R}$ は n 階微分可能とし, $\alpha \in [a,b]$ を点とする.ある n-1 次の多項式 P_{α} について,

$$f(x) - P_{\alpha}(x) = O((x - \alpha)^n) \quad (x \to \alpha)$$

が成り立つならば,

$$P_{\alpha}(t) := \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha^k)$$

と表せる.

[証明].

$$Q_{\alpha}(t) := \alpha_0 + \alpha_1(x - \alpha) + \cdots + \alpha_n(x - \alpha)^n$$

も条件を満たすとする. $P_{\alpha}(\alpha)=Q_{\alpha}(\alpha)$ より、 $\alpha_0=f(\alpha)$. 続いて、 $P'_{\alpha}(\alpha)=Q'_{\alpha}(\alpha)$ と比較して行けば良い.

定理 1.3.2 (Taylor の定理 [Rudin, 1976] Th'm 5.15). $f:[a,b] \to \mathbb{R}$ は n 階微分可能とする. 任意の $\{\alpha < \beta\} \subset [a,b]$ について, $\alpha \in [a,b]$ での n-1 次多項式近似の近似誤差は、ある $x \in (\alpha,\beta)$ が存在して、

$$f(\beta) - \underbrace{\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k}_{=P_{\alpha}(\beta)} = \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n.$$

と表せる. 右辺をn次の剰余項という.

[証明].

Step1 任意の $\{\alpha < \beta\} \subset [\alpha, b]$ を取り、問題の係数を

$$M := \frac{f(\beta) - P_{\alpha}(\beta)}{(\beta - \alpha)^n}$$

第1章 微分論 5

と定め, 値の変化

$$g(t) := f(t) - P_{\alpha}(t) - M(t - \alpha)^n \qquad (t \in [\alpha, b])$$

を考える. 両辺を n 階微分すると,

$$g^{(n)}(t) = f^{(n)}(t) - n!M$$
 $(t \in (a,b))$

であるが、このとき $\exists_{x \in (\alpha,\beta)} g^{(n)}(\alpha) = 0$ より結論を得る.

Step2 いま $\forall_{k\in n} P^{(k)}(\alpha) = f^{(k)}(\alpha)$ より, $g(\alpha) = g'(\alpha) = \cdots = g^{(n-1)}(\alpha) = 0$ が成り立っている.よって, $g(\beta) = 0$ であることは,平均値の定理より $\exists_{x_1\in(\alpha,\beta)} g'(x_1) = 0$ を含意する.これを繰り返すと, $\exists_{x_n\in(\alpha,x_{n-1})} g^{(n)}(x_n) = 0$.

要諦 1.3.3. このとき f は $C^{n-1}([a,b])$ -級ではあるから,

$$f(x) = P_{\alpha}(x) + O((x - \alpha)^n), \quad (x \to \alpha)$$

が従う.

命題 1.3.4 (Lagrange's form). さらに $f:[a,b] \to \mathbb{R}$ が C^n -級のとき、n 次の剰余項は

$$f(\beta) - P_{\alpha}(\beta) = \int_{\alpha}^{x} \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt$$

と表示出来る.

1.3.2 Cauchy **の平均値の定理**

随伴が存在する. いまなら超関数法の萌芽に見える.

定理 1.3.5 (generalized mean value theorem). $f,g \in C([a,b];\mathbb{R})$ は微分可能とする. このとき,

$$\exists_{x \in (a,b)} (f(b) - f(a))g'(x) = (g(b) - g(a))f'(x).$$

1.4 導関数の連続性

定義 1.4.1 (simple discontinuity / first kind). $f \in \operatorname{Map}((a,b);\mathbb{R})$ は $x \in (a,b)$ で不連続とする. f(x+),f(x-) がいずれも存在するとき, 第一種不連続という. そうでない場合を第二種という. 第一種不連続性は, $f(x+) \neq f(x-)$ と $f(x+) = f(x-) \neq f(x)$ との 2 通りに分類出来る.

<u>定理 1.4.2</u>. $f \in \text{Map}([a,b];\mathbb{R})$ は微分可能で、 $f'(a) < \lambda < f'(b)$ を満たすとする.このとき、ある $x \in (a,b)$ が存在して $f'(x) = \lambda$ を満たす.

系 1.4.3. $f \in \text{Map}([a,b];\mathbb{R})$ は微分可能ならば、導関数 f' は第一種の不連続点を持ち得ない.

第2章

Riemann-Stieltjes 積分

Lebesgue 積分とは違って, \mathbb{R} の順序構造に強く依存した,Euclid 空間上にオーダーメイドの積分が定義できる.これについての古典論を復習する.

(1) 多変数の積分の変数変換が苦手. Jacobi 行列周り.

2.1 定義と存在

<u>定義 2.1.1</u> ((Riemann-)Stieltjes integral). I := [a,b] を閉区間とし、 $f : [a,b] \to \mathbb{R}$ を有界関数, $\alpha : [a,b] \to \mathbb{R}$ を単調増加関数とする.

- (1) 分割 P とは、[a,b] の有限集合 $P = \{a = x_0 \le x_1 \le \cdots \le x_n = b\}$ をいう.
- (2) 各分割 $P \in P([a,b])$ に対して、 $\Delta \alpha_i := \alpha(x_i) \alpha(x_{i-1})$ と表し、

$$M_i(P) := \sup_{x \in [x_{i-1}, x_i]} f(x),$$
 $m_i(P) := \inf_{x \in [x_{i-1}, x_i]} f(x) \ (i \in [n])$

とし,

$$U(P,f,\alpha) := \sum_{i=1}^n M_i(P) \Delta \alpha_i, \qquad \qquad L(P,f,\alpha) := \sum_{i=1}^n m_i(P) \Delta \alpha_i$$

とする.

(3) 分割の全体 $\mathcal{P} := \{P \in P([a,b]) \mid |P| < \infty\}$ は有向集合をなす.包含関係 \subset について分割は順序をなし,任意の 2 つの分割 P,Q について $P \cup Q$ は上界である.このとき, 2 つのネット $(U(P,f,\alpha))_{P \in \mathcal{P}}, (L(P,f,\alpha))_{P \in \mathcal{P}}$ は収束する.すなわち,

$$\overline{\int_a^b} f d\alpha := \inf_{P \in P([a,b]), |P| < \infty} U(P,f,\alpha), \qquad \qquad \int_{\underline{a}}^b f d\alpha = \sup_{P \in P([a,b]), |P| < \infty} L(P,f,\alpha).$$

として得る実数を、上/下 Stieltjes 積分と呼ぶ.

(4) 上積分と下積分が一致するとき、Stieltjes 可積分であるといい、 $f \in \mathcal{R}([a,b],\alpha)$ と表す.

2.2 可積分性

復習する.

定理 2.2.1 (可積分性の特徴付け). 関数 $f: [a,b] \to \mathbb{R}$ について, 次の 2 条件は同値.

- (1) $f \in \mathcal{R}(\alpha)$.
- (2) $\forall_{\epsilon>0} \exists_{P \in P([a,b])} |P| < \infty \land U(P,f,\alpha) L(P,f,\alpha) < \epsilon.$

定理 2.2.2 (可積分条件). 関数 $f:[a,b] \to \mathbb{R}$ は,

- (1) 連続ならば $f \in \Re(\alpha)$.
- (2) 単調ならば、 α が連続ならば $f \in \mathcal{R}(\alpha)$.

(3) 有界であり、 $[\alpha,b]$ 上に高々有限の不連続点をもち、その任意の点で α は連続であるならば、 $f \in \mathcal{R}(\alpha)$.

第3章

多変数関数論

3.1 **行列の** Banach **代数**

Euclid 空間の間の写像について,接空間の間に引き起こされる微分の空間 $B(\mathbb{R}^n,\mathbb{R}^m)$ が Jacobi 行列の空間である. Jacobi 行列への対応 $x\mapsto Jf(x)$ が連続であるとき,f を C^1 -級という.

定理 3.1.1 (行列の代数). 任意の行列 $A, B \in B(\mathbb{R}^n, \mathbb{R}^m)$ について,

- (1) A は一様連続である.
- (2) $B(\mathbb{R}^n, \mathbb{R}^m)$ は有限次元 Banach 空間である.
- (3) 劣乗法性が成り立つ: $\|BA\| \leqslant \|B\|\|A\|$.

定理 3.1.2 (行列の空間).

- (1) $A \in \text{Iso}(\mathbb{R}^n)$, $B \in B(\mathbb{R}^n)$ とついて、 $\|B A\| \|A^{-1}\| < 1$ ならば、 $B \in \text{Iso}(\mathbb{R}^n)$.
- (2) $\operatorname{Iso}(\Omega) \subset B(\mathbb{R}^n)$ は開集合で、 $A \mapsto A^{-1}$ は $\operatorname{Iso}(\Omega)$ 上の位相同型である.

定理 3.1.3.S を距離空間, $a_{11}, \dots, a_{mn}: S \to \mathbb{R}$ を連続とする.このとき, $S \to B(\mathbb{R}^n, \mathbb{R}^m); p \mapsto A_p := (a_{ij}(p))$ は連続である. 定理 3.1.4 (Jacobi 行列から Jacobian への対応). $\det: B(\mathbb{R}^n) \to \mathbb{R}$ は行列積と実数積について群準同型を与える: $\det(BA) = \det(B) \det(A)$.

定義 3.1.5. 可微分関数 $f: E \to \mathbb{R}^m$ に対して,微分と行列式の合成 $J_f := \det \circ D: E \to B(\mathbb{R}^m) \to \mathbb{R}$ を Jacobian という.

3.2 微分

定義 3.2.1. $f: \mathbb{R}^n \stackrel{\text{open}}{\supset} E \to \mathbb{R}^m$ が

(1) $x \in E$ で微分可能であるとは、

$$\exists_{A \in B(\mathbb{R}^n, \mathbb{R}^m)} \lim_{h \to 0 \in \mathbb{R}^n} \frac{|f(x+h) - f(x) - Ah|}{|h|} = 0$$

が成り立つことをいう. このとき, $f'(x) = df_x = A$ として $f': E \to B(\mathbb{R}^n; \mathbb{R}^m)$ を定める.

- (2) C^1 -級であるとは, $f' = df : E \to B(\mathbb{R}^n; \mathbb{R}^m)$ が連続であることをいう: $\forall_{x \in E} \ \forall_{\epsilon > 0} \ \exists_{\delta > 0} \ \forall_{y \in E} \ |x y| < \delta \Rightarrow \|f'(y) f'(x)\| < \epsilon$.
- (3) 写像 $f: E \to \mathbb{R}^m$ の微分 $Df: R^n = T(\mathbb{R}^n) \to T(\mathbb{R}^m) = \mathbb{R}^m$ は,係数の対応 $D_i f: E \to \mathbb{R}$ によって完全に定まる.これを偏微分という.
- (4) $\nabla f(x) := \sum_{i=1}^{n} D_i f(x) e_i$ によって定まる対応 $\nabla f : E \to T(\mathbb{R}^m) = \mathbb{R}^m$ を**勾配**または**発散**という.
- (5) 任意の $u \in \mathbb{R}^n$ に対して、 $(D_u f)(x) := (\nabla f)(x) \cdot u$ によって定まる対応 $D_u f : E \to \mathbb{R}$ を**方向微分**という.

命題 3.2.2.

(1) $A_1, A_2 \in M_{mn}(\mathbb{R})$ がいずれも f の $x \in E$ における微分係数ならば、 $A_1 = A_2$.

第3章 多変数関数論

(2) f が C^1 -級であることは、任意の偏微分 $D_i f_i$ ($i \in [m]$) が E 上連続であることに同値.

命題 3.2.3. $f: E \to \mathbb{R}$ を関数, $\gamma: I \to E$ を可微分曲線とする. $g:= f \circ \gamma$ とすると,

$$g'(t) = (\nabla f)(\gamma(t)) \cdot \gamma'(t).$$

<u>定理 3.2.4</u> (平均値の定理の一般化). E は凸開集合, $f:E\to\mathbb{R}^m$ は可微分で E 上有界な導関数を持つとする. このとき, $\forall_{a,b\in E}|f(b)-f(a)|\leqslant \sup_{a\in E}\|f'(x)\||b-a|$.

系 3.2.5. f'=0 on E ならば f は定数.

3.3 逆関数定理

定理 3.3.1. $f: E \to \mathbb{R}^n$ を C^1 -級で, $f(\alpha) = b$ において $f'(\alpha)$ は可逆であるとする.

- (1) 開近傍 $U \in O(a)$, $V \in O(b)$ が存在して、 $f|_U$ は全単射 $U \simeq_{Set} V$ を定める.
- (2) 逆写像 $g: V \to U$ も C^1 -級である.

要諦 3.3.2 (陽関数定理としての見方). 成分毎に表せば,n 元連立 n 次方程式 $y_i = f_i(x_1, \cdots, x_n)$ ($i \in [n]$) は f が C^1 -級で f'(x) が可逆ならば必ず局所解 $x_i = g_i(y_1, \cdots, y_n)$ を持ち,g も C^1 -級になる.

系 3.3.3. $f: E \to \mathbb{R}^n$ を C^1 -級で、 $f'(E) \subset \operatorname{Iso}(\mathbb{R}^n)$ とする. このとき、f は開写像である.

3.4 陰関数定理

注 3.4.1. $A \in B(\mathbb{R}^{n+m}, \mathbb{R}^m)$ について、A(h,k) = A(h,0) + A(0,k) であるから、 $A_x(h) := A(h,0), A_y(k) := A(0,k)$ と定める と $A_x \in B(\mathbb{R}^n), A_y \in B(\mathbb{R}^m, \mathbb{R}^n)$ で、 $A(h,k) = A_x h + A_y k$ が成り立つ。(h,k) = (h,0) + (0,k) は縦ベクトルに関する分解、 $A = [A_x; A_y]$ は横長行列の分解である.

補題 3.4.2 (n 元連立方程式の解). 線型写像 $A \in B(\mathbb{R}^{n+m},\mathbb{R}^n)$ は $A_x \in \mathrm{Iso}(\mathbb{R}^n)$ が可逆であるとする. このとき,

- (1) $\forall_{k \in \mathbb{R}^m} \exists_{h \in \mathbb{R}^n} A(h, k) = 0.$
- (2) $h = -(A_x)^{-1}A_v k$ を満たす.

要諦 3.4.3. 陰関数表示された n+m 元連立 n 次方程式系 A(h,k)=0 は, $\operatorname{rank} A\geqslant n$ ならば,与えられた k に対して h について解け,解の対応は線形写像として表される.

<u>定理 3.4.4</u> (陰関数定理). $f: \mathbb{R}^{n+m} \stackrel{\text{open}}{\supset} E \to \mathbb{R}^n$ を C^1 -級,f(a,b) = 0 とする. $A:=f'(a,b) \in B(\mathbb{R}^{n+m},\mathbb{R}^n)$ の首座行列 $A_x \in \operatorname{Iso}(\mathbb{R}^n)$ は可逆とする.

- (1) 開近傍 $U \in \mathcal{O}_{\mathbb{R}^{n+m}}(a,b)$, $W \in \mathcal{O}_{\mathbb{R}^m}(b)$ が存在して、 $\forall_{y \in W} \exists_{x \in U_v} f(x,y) = 0$.
- (2) x =: g(y) で定まる対応 $\mathbb{R}^m \stackrel{\text{open}}{\supset} W \to \mathbb{R}^n$ は C^1 -級で g(b) = a を満たし、 $\forall_{y \in W} f(g(y), y) = 0$ かつ $g'(b) = -(A_x)^{-1}A_y$ を満たすものとする.

要諦 3.4.5. 式 $g'(b) = -(A_x)^{-1}A_y$ は f(g(b),b) = 0 の Chain Rule に関する必要条件

$$\sum_{i=j}^{n} \left(\frac{\partial f_i}{\partial x_j} \right) \left(\frac{\partial g_j}{\partial y_k} \right) = - \left(\frac{\partial f_i}{\partial y_k} \right)$$

である.

<u>定理 3.4.6</u> (変数変換の存在 (rank theorem)). $m,n\geqslant r$ について、 C^1 -級写像 $F:E\to\mathbb{R}^m$ の微分 F'(x) は E 上常に階数 r を持つとする. このとき,任意の $\alpha\in E,A:=F'(\alpha)\in M_{mn}(\mathbb{R})$ に対して,ある開近傍 $U,V\in \mathcal{O}_E(\alpha)$ と C^1 -級全単射 $H:V\overset{\sim}{\longrightarrow}U$ と C^1 -級写像 $\varphi:A(V)\to(\operatorname{Im} A)^\perp$ が存在して, $\forall_{x\in V}F(H(x))=Ax+\varphi(Ax)$.

第 3 章 多変数関数論 **10**

3.5 高階微分

<u>定理 3.5.1</u> (平均値の定理). $f: \mathbb{R}^2 \stackrel{\text{open}}{\supset} E \to \mathbb{R}$ は $D_1 f, D_{21} f$ を E 上で持つとし, $Q:=[a,a+k] \times [b,b+h] \subset E$ を閉矩形とする.このとき,ある $(x,y) \in Q^\circ$ が存在して,

$$\Delta(f,Q) := f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b) = hk(D_{21}f)(x,y).$$

定理 3.5.2. $f: \mathbb{R}^2 \stackrel{\text{open}}{\supset} E \to \mathbb{R}$ は $D_1 f, D_{21} f, D_2 f$ を E 上で持ち, $D_{21} f$ はある $(a,b) \in E$ 上で連続とする.このとき, $D_{12} f$ も (a,b) 上で存在し,値が $D_{21} f(a,b)$ に一致する.特に, C^2 -級ならば,2 つの偏微分作用素は可換.

3.6 定積分の微分

記法 3.6.1.

- (1) $\varphi^t(x) := \varphi(x,t) \ \mathcal{E}[a,b] \times [c,d] \to \mathbb{R} \ \mathcal{E} \ \mathcal{E} \ \mathcal{E}$
- (2) α は [a,b] 上の増加関数とする.

定理 3.6.2. 次が成り立つとき, $(D_2\varphi)(-,s) \in \mathbb{R}(\alpha)$ で,

$$\frac{d}{dt}\int_{a}^{b}\varphi(x,t)d\alpha(x)=\int_{a}^{b}(D_{2}\varphi)(x,s)d\alpha(x).$$

- (1) 第1引数可積分性: $t \mapsto \varphi^t$ は $[c,d] \to \Re(\alpha)$ を定める.
- (2) 第2引数一様連続性: $\forall_{s \in (c,d)} \forall_{\epsilon > 0} \exists_{\delta > 0} \forall_{x \in [a,b]} \forall_{t \in (s-\delta,s+\delta)} |(D_2\varphi)(x,t) (D_2\varphi)(x,s)| < \epsilon.$

3.7 **写像の分解**

定義 3.7.1 (primitive, flip).

- (1) $G: E \to \mathbb{R}^n$ が高々 1 つの成分しか変えない場合, **原始的**であるという.
- (2) $B \in B(\mathbb{R}^n)$ がある 2 つの成分を入れ替え、その他を変えない場合、入れ替えという.

<u>定理 3.7.2</u> (原始的写像への分解). C^1 -級写像 $F: \mathcal{O}_{\mathbb{R}^n}(0) \ni E \to \mathbb{R}^n$ は F(0) = 0 かつ F'(0) は可逆とする. このとき, ある近傍 $U \in \mathcal{O}_{\mathbb{R}^n}(0)$ と U 上原始的な写像 G_i で可逆なものと入れ替えまたは恒等作用素 B_i とが存在して,

$$F = B_1 \cdots B_{n-1} G_n \circ \cdots G_1$$
 on U .

<u>定理 3.7.3</u>. $K \subset \mathbb{R}^n$, (V_α) を K の被覆とする. $\{\psi_i\}_{i \in [s]} \subset C(\mathbb{R}^n; [0,1])$ が存在して,

- (1) 従属性: $\exists_{\alpha \in A} \text{ supp } \psi_i \subset V_\alpha$.
- (2) 1 の分解: $\psi_1 + \cdots + \psi_s = 1$ on K.

3.8 **変数変換**

定理 3.8.1. $T: E \to \mathbb{R}^k$ を単射な C^1 -級写像で、 J_T は消えないとする: $T'(E) \subset \operatorname{Iso}(\mathbb{R}^k)$. このとき、

$$\forall_{f \in C_c(\mathbb{R}^k)} \int_{\mathbb{R}^k} f(y) dy = \int_{\mathbb{R}^k} f(T(x)) |J_T(x)| dx.$$

なお、Lebesgue 積分の立場からは次のようになる.

定理 3.8.2 . $T: V \to \mathbb{R}^k$ が次の条件を満たすとき,

$$\forall_{f \in L(\mathbb{R}^k; \overline{\mathbb{R}_+})} \int_{T(X)} f dm = \int_X (f \circ T) |J_T| dm.$$

第3章 多変数関数論 11

- (1) $T: V \to \mathbb{R}^k$ は $X \subset V \stackrel{\text{open}}{\subset} \mathbb{R}^k$ 上の連続写像.
- (2) X は Lebesgue 可測で $T|_X$ は単射かつ微分可能.
- (3) $m(T(V \setminus X)) = 0$.

系 3.8.3. $\varphi: [\alpha,b] \to [\alpha,\beta]$ は絶対連続で全射な単調写像, $f \in L(\mathbb{R})_+$ を Lebesgue 可測とする. このとき,

$$\int_{\alpha}^{\beta} f(t)dt = \int_{\alpha}^{b} f(\varphi(x))\varphi'(x)dx.$$

3.9 微分の積分

<u>定義 3.9.1</u> . $\omega \in \Omega^k(E)$ は $dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ を基底とする線型空間の元とし、次の方法によって k-曲面 $\Phi: I^k \to E$ に実数 $\omega(\Phi)$ を対応させるとする.

 $\int_{\Phi} \omega = \int_{I^k} \sum a_{i_1 \cdots i_k}(\Phi(u)) \frac{\partial (x_{i_1}, \cdots, x_{i_k})}{\partial (u_1, \cdots, u_k)} du.$

Jacobian に絶対値がつかないことに注意.

定義 3.9.2 (simplex, chain).

第4章

関数論

級数論 4.1

基本的な2つの収束判定法 4.1.1

基本は優級数を見つけるだけで、ただ標準的な見つけ方が2通り存在するのみである。そして関数級数の一様収束とは、一 様ノルムに関して収束級数を定めることに他ならないが、これに関する優級数定理は Weierstrass M-判定法と呼ばれて いる.

定理 4.1.1. 正数列 $\{c_n\}\subset \mathbb{R}_{>0}$ について,

$$\liminf_{n\to\infty}\frac{c_{n+1}}{c_n}\leqslant \liminf_{n\to\infty}\sqrt[n]{c_n}\leqslant \limsup_{n\to\infty}\sqrt[n]{c_n}\leqslant \limsup_{n\to\infty}\frac{c_{n+1}}{c_n}.$$

定理 4.1.2 (root test (Cauchy)). 級数 $\sum a_n$ に対して、 $\alpha := \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ とする.

- (1) $\alpha < 1$ ならば $\sum a_n$ は収束する. (2) $\alpha > 1$ ならば $\sum a_n$ は発散する.

[証明].

- (1) $\alpha < 1$ ならば,幾何級数 $\sum \alpha^n$ が $\sum \alpha_n$ の収束優級数となる.実際, $\forall_{n \in \mathbb{N}} \; |\alpha_n| \leqslant k^n$ となるため.
- (2) 同様.

定理 4.1.3 (ratio test (d'Alembert)). 級数 $\sum a_n$ に対して,

(1)
$$\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
 ならば、収束する.
(2) $\left| \frac{a_{n+1}}{a_n} \right|$ f.e.1 f.e. ならば、発散する.

(2)
$$\left| \frac{a_{n+1}}{a_n} \right|$$
 f.e.1 f.e. ならば,発散する.

4.1.2 Cauchy **の二重級数定理**

特に,両側無限列 $(a_n)_{n\in\mathbb{Z}}$ の極限は $\lim_{n,m\to\infty}\sum_{k=-m}^n a_k$ と定義するが,2 つの級数 $\sum_{n=0}^\infty a_n$, $\sum_{n=1}^\infty a_{-n}$ がいずれも収束することに 同值.

定義 4.1.4 (convergence of double series). 2 重級数 $\sum_{n,m=1}^{\infty} a_{nm} \subset \mathbb{C}$ が収束するとは,2 方向の部分和 $S_{nm} = \sum_{i=1}^{n} \sum_{j=4}^{m} a_{ij}$ につ いて、

$$\exists_{S \in \mathbb{C}} \ \forall_{\epsilon > 0} \ \lim_{n,m \to \infty} |S_{nm} - S| \leqslant \epsilon.$$

第4章 関数論

が成り立つ.

定理 4.1.5 (二重級数が定める σ -有限測度に関する Fubini の定理). $(a_{m,n})$ について,次の 2 条件は同値:

(1) 逐次和の収束:任意の m について $\sum_{n\in\mathbb{N}}|a_{m,n}|$ は収束し、かつ $\sum_{m\in\mathbb{N}}\sum_{n\in\mathbb{N}}|a_{m,n}|$ も収束する.

(2) 絶対和の収束: $(a_{m,n})$ の並べ替え (b_n) が絶対収束する.

このとき、
$$\sum_{n\in\mathbb{N}}b_n=\sum_{m\in\mathbb{N}}\sum_{n\in\mathbb{N}}|a_{m,n}|.$$

4.1.3 収束級数のなす線型空間

級数は収束するならば、和とスカラー倍を定義できる.

定理 4.1.6. $\sum a_n = A$, $\sum b_n = B$ とする.

(1)
$$\sum (a_n + b_n) = A + B$$
.

(2)
$$\forall_{c \in \mathbb{R}} \sum_{i} c \alpha_n = cA$$
.

4.1.4 級数の積の収束の Abel の判定法

大数の法則で $\frac{x_n}{b_n}$ という形の級数を調べる際に用いる.

<u>補題 4.1.7</u> (Cauchy の部分和公式). $\{a_n\}$, $\{b_n\}\subset\mathbb{R}$ に対して,部分和を $A_n:=\sum_{k=0}^n a_k$, $A_{-1}=0$ とする.

$$\forall_{0 \leq p \leq q} \quad \sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p.$$

[証明].

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q} (A_n - A_{n-1}) b_n = \sum_{n=p}^{q} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1}$$

定理 4.1.8 (級数の積の収束条件 (Cauchy)). $\sum a_n b_n$ は、次の 2 条件のいずれかを満たすとき収束する:

- (1) (a) (a_n) の定める部分和の列 $A_n := \sum_{k=1}^n a_k$ は有界である.
 - (b) b_n は 0 に収束する正な単調減少列である.
- (2) (a) $\sum_{n} a_n$ は収束する.
 - (b) (b_n) は有界な単調列である.
- (3) (a) $\sum a_n$ は絶対収束する.
 - (b) (b_n) は有界列である.

例 4.1.9.

$$\sum_{n=1}^{\infty} \frac{\cos 2\pi nx}{n}$$

は x=0 のとき明らかに発散する.しかし x=1/2 のとき交代級数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ は収束する.この収束判定を突破したのが Cauchy であった. $a_n=\cos 2\pi n x$, $b_n=n^{-p}$ (p>0) とすると, $n\notin\mathbb{Z}$ について A_n は有界で, b_n は 0 に収束する単調列.よって非整数については収束する.

要諦 4.1.10. 積分について次のような事実が対応する. $f,g:[1,\infty)\to\mathbb{R}$ に対して、次の 2 条件が成り立てば、 $\int_{0}^{\infty}fgdx$.

- (1) 不定積分の $1 \supset F(x) = \int_{1}^{x} f dt$ は有界.
- (2) $g \in C_0^1([1,\infty))$ かつ $g' \leq 0$.

4.1.5 交代級数の収束判定

絶対値が単調減少しながら 0 に収束する交代列の級数は収束する.

定義 4.1.11. 数列 $\{c_n\}$ が $\forall_{m\in\mathbb{N}}$ $c_{2m} \leq 0$, $c_{2m-1} \geq 0$ を満たすとき,交代的であるという.

 $\underline{\mathbf{X}}$ 4.1.12 (Leibnitz). 交代数列 $\{c_n\}\subset\mathbb{C}$ は次の条件を満たすならば、交代級数 $\sum c_n$ は収束する.

- (1) $\{|c_n|\}$ は単調減少数列である.
- (2) $\lim_{n\to\infty} c_n = 0$.

 $\underline{\mathbf{x}}$ 4.1.13 . $\sum c_n \mathbf{z}^n$ の収束半径を 1 とし, $\{c_n\}\subset\mathbb{R}_+$ は 0 に収束する単調減少列とする.このとき,整級数は $\partial\Delta\setminus\{1\}$ 上で収束する.

4.1.6 級数の Cauchy 積

収束列の極限については、積が取れるが、級数の場合はそうはいかない.

定義 4.1.14 (Cauchy product).

(1) $\overline{(b_1,\cdots,b_n)}=(b_n,\cdots,b_1)$ とする.

(2)
$$c_n := (a_1, \cdots, a_n) \cdot \overline{(b_1, \cdots, b_n)} = \sum_{k=0}^n a_k b_{n-k}$$
 を積という.

4.1.7 条件収束級数に関する Riemann の定理

定理 4.1.15 (Riemann). $\sum a_n$ を条件収束級数とする. 任意の $\alpha \leq \beta \in \mathbb{R}$ について,ある番号の付替え $\sum a_{n(m)}$ が存在して,この部分和 s_n は

$$\liminf_{n\to\infty} s_n = \alpha, \quad \limsup_{n\to\infty} s_n = \beta$$

を満たす.

定理 4.1.16 . $\sum a_n$ を複素数項の絶対収束級数とすると、任意の並べ替えに対して、級数は同じ和へ収束する.

4.1.8 Cesaro 総和法

記法 4.1.17. $\{s_n\}\subset\mathbb{C}$ に対して、Cesaro 平均を $\sigma_n:=rac{s_0+s_1+\cdots+s_n}{n+1}$ とする.

命題 4.1.18 (収束は同値).

- (1) 収束列の Cesaro 平均は収束する: $\lim s_n = s$ ならば、 $\lim \sigma_n = s$.
- (2) (s_n) が収束しない場合でも、 σ_n は収束しえる.

$$s_n - \sigma_n = \frac{1}{n+1} \sum_{k \in [n]} k \alpha_k.$$

(4) Cesaro 平均が収束し,差分列が弱く有界ならば元の数列も収束する: (na_n) が有界かつ (σ_n) が収束するならば, (s_n) も同じ極限へ収束する.

4.2 関数列の一様収束

一様収束する級数によって正則関数を構成するのが、人類に許された大事な構成手段である.

記法 4.2.1. E を距離空間の部分集合とする.

4.2.1 **一様ノルム** Cauchy **列としての特徴付け**

命題 **4.2.2** (一様収束の判定法). $\{f_n\} \subset \operatorname{Map}(E,\mathbb{C})$ について,

- (1) (f_n) は一様収束する.
- (2) (Cauchy criterion) $\forall_{\epsilon>0} \exists_{n_0\in\mathbb{N}} \forall_{m,n\geqslant n_0} \forall_{x\in E} |f_n(x)-f_m(x)| < \epsilon$.

4.2.2 極限の交換

<u>定理 4.2.3</u>. x を E の集積点とし、 $\{f_n\}\subset \operatorname{Map}(E,\mathbb{C})$ は f に一様収束するとする.このとき、 $\lim_{n\to\infty}\lim_{n\to\infty}\int_{\mathbb{R}}f_n(t)=\lim_{n\to\infty}\lim_{n\to\infty}\int_{\mathbb{R}}f_n(t)$.

4.2.3 一様収束は連続性を保つ

<u>系 4.2.4</u> (一様収束は連続性を保つ). (f_n) を $E \subset \mathbb{C}$ 上の連続関数列とし,極限 f に一様収束するとする.このとき,f は連続である.

[証明]. 任意の $x_0 \in E$ と $\epsilon > 0$ をとる.

- (1) f は (f_n) の一様収束極限だから、 $\exists_{n\in\mathbb{N}} \forall_{x\in E} |f_n(x) f(x)| < \epsilon/3$.
- (2) f_n は連続だから、 $\exists_{\delta>0} \ \forall_{x\in E} \ |x-x_0| < \delta \Rightarrow |f_n(x_0)-f_n(x)| < \epsilon/3$.

以上より、任意の $|x-x_0| < \delta$ を満たす $x \in E$ に対して、

$$|f(x)-f(x_0)| \leq |f(x)-f_n(x)|+|f_n(x)-f_n(x_0)|+|f_n(x_0)-f(x_0)|<\epsilon.$$

4.2.4 各点収束列が一様収束するための十分条件

一方で、連続関数の列が連続関数に収束するとき、そのモードが一様収束であるとは限らない。が、(Arzela の有界収束定理と併せて) 単調収束定理の消息が成り立つために、次の消息が底支えしている。

定理 4.2.5. (f_n) をコンパクト集合 K 上の連続関数の列とする. このとき,

- (1) (f_n) はある連続関数 f に各点収束する.
- (2) (f_n) は単調増加/減少列である.

ならば、 (f_n) は f に一様収束する.

[証明]. [?] に載っていない方 $, (f_n)$ を広義単調増加として示す.

- (a) $g_n := f f_n \ge 0$ とすると、これは単調減少である. g_n が 0 に一様収束することを示せば良い.
- (b) $\epsilon > 0$ を任意に取り, $K_n := \{x \in K \mid g_n(x) \ge \epsilon\}$ と定めると,これはコンパクト集合の減少列である. $K_\infty := \cap_{n \in \mathbb{N}} K_n$ とすると, g_n は 0 に各点収束するから, $K_\infty = 0$.距離空間のコンパクト集合は完備かつ全有界であるから,空でないコンパクト集合の減少列の共通部分は空でない.よって,ある $N \in \mathbb{N}$ が存在して $\forall_{n \ge N} K_n = \emptyset$ である.

系 4.2.6 (Dini's theorem). コンパクト集合 K 上の連続関数 C(K) の単調ネットがある $f \in C(K)$ に各点収束するならば一様収束する.

4.2.5 一様収束列の必要条件

<u>命題 4.2.7</u>. $\{f_n\} \subset \operatorname{Map}(E;\mathbb{R})$ を一様収束列とする. 任意の $x \in E$ に収束する列 $\{x_n\} \subset E$ について, $\lim_{n \to \infty} f_n(x_n) = f(x)$.

4.2.6 一様収束列の構成

命題 **4.2.8** . $\{f_n\}$, $\{g_n\} \subset \operatorname{Map}(E;\mathbb{R})$ を一様収束列とする.

- (1) $\{f_n + g_n\}$ も一様収束する.
- (2) $\{f_n\}$, $\{g_n\} \subset l^\infty(E)$ でもあるとき, $\{f_ng_n\}$ は一様収束する.

4.2.7 級数の一様収束の判定法

一様ノルムについて優級数が存在することを示せば良い.

命題 4.2.9 (Weierstrass M-test). 関数列 (f_n) は収束する優級数 $\{M_n\} \subset \mathbb{R}$ を持つとする: $\forall_{n \in \mathbb{N}} \|f_n\|_{\infty} \leqslant M_n$, $\sum_{n \in \mathbb{N}} M_n \in \mathbb{R}$. このとき,級数列 $\sum_{i=1}^n f_i$ は一様収束する.

4.2.8 整級数による関数定義

整級数の収束は特に理想的な振る舞い方をする.

<u>定理 4.2.10</u> (整級数には収束半径が定まる). $f(z)=\sum_{n\in\mathbb{N}}a_nz^n$ はある $R\in\mathbb{R}_{>0}$ 上で収束するとする.このとき,f は $\Delta(0,r)$ 上広義一様収束する.すなわち,任意の閉円板 $[\Delta(0,r)]$ (r< R) 上で一様に絶対収束する.

定理 4.2.11 (Cauchy-Hadamard).
$$\sum_{n\in\mathbb{N}}a_nz^n$$
 の収束半径は $R=\left(\limsup_{n\to\infty}\sqrt[n]{|a_n|}\right)^{-1}$.

[証明]. 根号判定法 4.1.2 と

$$\limsup_{n\to\infty} \sqrt[n]{|c_n z^n|} = |z| \limsup_{n\to\infty} \sqrt[n]{|c_n|} = \frac{|z|}{R}$$

より、|z| < R ならば収束し、|z| > R ならば発散するため.

定理 4.2.12 (Abel's theorem). 収束半径 1 を持つ整級数 $\sum_{n\in\mathbb{N}}a_nz^n$ の係数列 (a_n) も収束するとする.このとき,閉区間 [0,1] 上でも一様収束し, $\lim_{x\to 1-0}f(x)=\sum_{n\in\mathbb{N}}a_n$ が成り立つ.

要諦 4.2.13. 収束円周上では絶対収束するかどうかは分からない. 係数列の議論になる.

4.3 極限と微積分の可換性

微積分は連続性同様,極限によって定まる操作であるから,同様に一様収束列に対する可換性が成り立つ.

第4章 関数論 17

4.3.1 一様収束極限と積分の可換性

可積分列の一様収束極限も可積分であり、積分領域上で一様収束するならば積分と極限は可換である.

定理 4.3.1.単調増加関数 $\alpha: [a,b] \to \mathbb{R}$ に関して,[a,b] 上の可積分関数の列 $\{f_n\} \subset \mathfrak{R}(\alpha)$ が,ある f に一様収束しているとす る. このとき,

(1) $f \in \mathcal{R}(\alpha)$.

(2)
$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_{n} d\alpha.$$

<u>系 4.3.2</u> (項別積分). 可積分列 $\{f_n\}\subset \mathcal{R}(\alpha)$ が定める級数は各点収束しているとする: $\forall_{x\in[a,b]}f(x)=\sum_{i=1}^{\infty}f_n(x)$. このとき、

$$\int_a^b f d\alpha = \sum_{n=1}^\infty \int_a^b f_n d\alpha.$$

4.3.2 一様収束と導関数

定理 4.3.3 \cdot [a,b] 上の可微分関数の列 (f_n) は,ある $x_0 \in [a,b]$ において収束するとする: $f_n(x_0) \to f(x_0)$. 導関数が定める列 (f_n') が一様収束するならば、元の列 (f_n) も一様収束し、極限と微分が可換になる: $\forall_{x \in [a,b]} f'(x) = \lim_{n \to \infty} f_n'(x)$.

4.3.3 Ascoli-Arzelà の定理

一様位相を備えた C(X) の相対コンパクト集合の特徴付けを与える定理である.なお,X がコンパクト距離空間のとき, C(X) はコンパクト開位相に一致する.

定義 4.3.4 . $\mathcal{F} \subset \operatorname{Map}(X,\mathbb{C})$ が

- (1) 同程度連続であるとは、 \mathcal{F} の元が同一の連続度を持つことをいう. すなわち、 $\forall_{\epsilon>0} \exists_{\delta>0} \forall_{f \in \mathcal{F}} \forall_{x,y \in X} |x-y| < \delta \Rightarrow$ $|f(x) - f(y)| < \epsilon$ に同値.
- (2) **各点一様有界**であるとは、 $\forall_{x \in X} \sup_{t \in \mathcal{I}} |f(x)| < \infty$ が成り立つことをいう.

要諦 4.3.5. 一様連続とは、 $x \in X$ に依らずに $\delta > 0$ を取れる性質であった.これを関数族についてさらに一段階強くし、 $f \in \mathcal{F}$ に も依らずに取れるときを日本語では同程度連続という.

定理 4.3.6.X をコンパクトハウスドルフ空間とする. $\mathcal{F} \subset C(X,\mathbb{C})$ について、次の 2 条件は同値.

- (1) 牙は有界で、任意の部分列は一様収束する部分列を持つ(一様ノルムについて相対コンパクトである).
- (2) 牙 は各点一様有界かつ同程度連続である.

系 4.3.7.列 $\{f_n\}\subset \operatorname{Map}(K,\mathbb{C})$ が同程度連続で各点収束するならば,一様収束する.

4.3.4 Arzelà の有界収束定理

Lebesgue の有界収束定理を、可測関数ではなく、連続関数について述べたのが Arlezà の有界収束定理である. これを用 いて、Lebesque の優収束定理を、可測関数ではなく、連続関数について述べることができる.

定理 4.3.8 (Arzelà の有界収束定理 (1885)). 有界閉区間上の連続関数列 {ƒ_n} ⊂ C(I) は一様ノルムについて一様に有界で,連続

関数 f_0 に各点収束するとする: $\exists_{M\in\mathbb{R}}\sup_{n\in\mathbb{N}}\|f\|_\infty\leqslant M$. このとき,極限関数 f も連続だから Riemann 可積分で,

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b f_0(x)dx.$$

[証明].

方針 Ascoli-Arzelà の定理より, $\{f_n\}$ が相対コンパクトであることを示す.すると, f_0 への収束モードは実は一様収束であることが分かる.すると,結論は,一様収束列に対する極限と積分の可換性から従う. $\{f_n\}$ が相対コンパクトであるためには, $\{f_n\}$ が一様有界であるから,あとは同程度連続性を示せば良い.これは,各 f_n の連続度を ω_n とすると, f_n の一様連続性よりこれは $\delta=0$ において連続であるが, $\omega:=\sup_{n\in\mathbb{N}}\omega_n$ としたものも $\omega(0)=0$ について連続であることを示せば良い.これをするに当たって, $h_n:=\max_{1\leqslant i\leqslant n}\omega_i$ とおくと,これも $\delta=0$ において連続であり, $h_n\to\omega$ に各点収束するが,これが一様収束もすることを示せば良い.

証明 これは、連続関数に各点収束する単調増加関数列は一様収束すること 4.2.5 による.

<u>系 4.3.9</u> . 関数列 $\{f_n\}$, f_0 はいずれも有限個の点を除いて連続であり、列 (f_n) は区分的に連続な優関数 g を持ちながら、 f_0 に有限個の点を除いて収束するとする: $|f_n(x)| \leq g(x)$. このとき、

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f_n(x)dx=\int_{-\infty}^{\infty}f_0(x)dx.$$

4.3.5 同程度連続な関数族

Arzela の定理の証明は、本質的に同程度連続な関数族を見つけることによる、一様収束列の極限の可換性の応用であった. そこで、単調族以外の同程度連続な関数族を見つけたい.

定理 4.3.10 (Helly's selection theorem). $\{f_n\} \subset \operatorname{Map}(\mathbb{R}; [0,1])$ を単調増加列とする.

- (1) ある $f \in \text{Map}(\mathbb{R}; [0,1])$ が存在して、これに各点収束する部分列が存在する.
- (2) 極限関数 f が連続ならば、この部分列の収束は一様である.

4.4 連続関数環

4.4.1 Weierstrass の定理

連続関数環 C(X) の稠密な部分環を特徴づける.

定理 4.4.1 (Weierstrass's theorem). 多項式の空間 $\mathbb{C}[X]$ は $C([a,b];\mathbb{C})$ 上稠密である. すなわち,任意の $f \in \operatorname{Map}([a,b];\mathbb{C})$ に対して,多項式の列 $\{P_n\} \subset \mathbb{C}[X]$ が存在して,f に一様収束する.

4.4.2 部分代数

<u>補題 4.4.2</u> (補間多項式の一般化). $\mathcal{A} \subset \operatorname{Map}(E,\mathbb{C})$ を E の点を分離する部分代数とする. \mathcal{A} が E 上で消えない $\forall_{x \in E} \exists_{f \in \mathcal{A}} f(x) \neq 0$ ならば,任意の $x_1 \neq x_2 \in E$, c_1 , $c_2 \in \mathbb{C}$ について, $f(x_1) = c_1$, $f(x_2) = c_2$ を満たすものが存在する.

<u>定理 4.4.3</u>. K をコンパクト集合, $\mathcal{A} \subset C(K,\mathbb{R})$ を K の点を分離し,K 上で消えない部分代数とする.このとき, \mathcal{A} は $C(K;\mathbb{R})$ 上稠密である.

要諦 4.4.4. 複素数値であるとき、 允 は更に自己共役であることが必要.

4.5 Gamma **関数**

4.5.1 定義と特徴付け

定義 4.5.1 . $\Gamma:(0,\infty)\to(0,\infty)$ を

$$\Gamma(x) := \int_{\mathbb{R}_+} t^{x-1} e^{-t} dt$$

で定める.

定理 4.5.2 (Gamma 関数の性質).

- (1) 汎関数の等式 $\forall_{x \in (0,\infty)} \Gamma(x+1) = x\Gamma(x)$ が成り立つ.
- (2) $\forall_{n=1,2,\dots} \Gamma(n+1) = n!$.
- (3) $\log \Gamma$ は $(0,\infty)$ 上の凸関数である.

定理 4.5.3 (Gamma 関数の特徴付け). 関数 $f:(0,\infty)\to (0,\infty)$ が次の 3 条件を満たすならば、 $f=\Gamma$ である:

- (1) f(x + 1) = xf(x).
- (2) f(1) = 1.
- (3) $\log f$ は凸関数である.

4.5.2 無限積表示

命題 4.5.4 (無限積表示).

$$\forall_{x \in (0,\infty)} \ \Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1) \cdots (x+n)}.$$

4.5.3 Beta **関数**

定義 4.5.5 . $B:(0,\infty)\times(0,\infty)\to(0,\infty)$ を

$$B(x,y) := \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

で定める.

系 4.5.6.

(1) 変数変換 $t = \sin^2 \theta$ より,

$$2\int_0^{\pi/2} (\sin\theta)^{2x-1} (\cos\theta)^{2y-1} d\theta = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

- (2) x = y = 1/2 とすることで、 $\Gamma(1/2) = \sqrt{\pi}$ を得る.
- (3) 変数変換 $t = s^2$ より,

$$\Gamma(x) = 2 \int_0^\infty s^{2x-1} e^{-s^2} ds$$

(4) x = 1/2 とすることで,

$$\int_{-\infty}^{\infty} e^{-s^2} ds = \sqrt{\pi}.$$

4.5.4 Stirling **の公式**

定理 4.5.7 (Stirling の公式).

$$\lim_{x \to \infty} \frac{\Gamma(x+1)}{(x/e)^x \sqrt{2\pi x}} = 1.$$

第5章

参考文献

参考文献

[Rudin, 1976] Rudin, W. (1976). Principles of Mathematical Analysis. McGraw Hill, 3 edition.