

TC88 meeting Feldkirch Austria May 2015

Maintenance team MT12-1

Wind Turbines – Part 12-1: Power performance measurements of electricity producing wind turbines

Troels Friis Pedersen DTU Wind Energy

TC88 Status of MT12-1 May 2015

Update on documents:

MCR	88_319e_MCR	2008-06
RR	88_421_RR	2011-11
CD	88_422_CD circulated	2011-11
CD2	88 460e CD circulated	2013-07

Meetings	Dates	Agenda
Seattle	7-8 January 2009	Organising work
Risø	13-15 May 2009	Presentations/subgr
Boston	6-8 October 2009	Subgr/presentations
Madrid	9-11 February 2010	Subgr/improvements
Hamburg	8-10 June 2010	Subgr/proposals/docs
Glasgow	5-7 October 2010	WD1 Subgr/drafting
Greenville	10-12 May 2011	WD1 Comments
Aarhus	16-19 August 2011	WD2 Comments ->CD
London	24-26 April 2012	CD National comments
Bremen	18-20 June 2012	CD National comments
Burlington	9-11 October 2012	CD Drafting -> CD2
		continued

Continued...

Meetings	Dates	Agenda
Paris	14-16 January 2014	CD2 SG/Nat. Comments
Beijing	6-8 May 2014	CD2 Consistency
Louisville	7-9 October 2014	CD2 Open issues
Glasgow	5-7 May 2015	CDV fine tuning
Frankfurt	Spring 2016	National CDV comments

Main issues at CD2 stage:

- √ National comments (893, 216 technical) considered in subgroups
- Definition of rotor equivalent wind speed by energyequivalent wind speed or by averaged equivalent wind speed
- ✓ Inclusion of flow inclination angle
- ✓ Reduction of options in measurement procedures: site calibration and power curve
- ✓ Re-definition of rotor-equivalent wind speed taking wind veer into account
- Verification of procedures in annex L for remote sensing equipment, calibration, classification, verification

Main issues at CD2 stage:

- ✓ Example classification of cup anemometer included
- Making annex I and J (classification of cups and sonics) normative
- Uncertainty annex E (major revision by subgroup combining all uncertainty issues in annex)
- Handling equivalent wind speed in relation to hub height wind speed in a way that the wind energy community will understand and accept the concept

"Fine Tuning" - Glasgow May 2015

Liaisons:

- PCWG investigate the introduction of eqivalent wind speed with inclusion of vertical wind speed shear, wind veer and turbulence normalization
- Round robin of power performance measurements
- Reports provided on web site
 <u>http://www.ewea.org/events/workshops/past-</u>
 workshops/resource-assessment-2013/power-curve-working-group/
- Meetings arranged in connection with MT12-1 to share experience:
 - Louisville 6-9 October 2014 and
 - Glasgow 5-8 May 2015

Update on documents:

MCR	88_319e_MCR	2008-06
RR	88_421_RR	2011-11
CD	88_422_CD circulated	2011-11
CD2	88_460e_CD circulated	2013-07
CDV	planned	2015-06
FDIS	expected	2016-06
IS	expected	2016-06
Stability date		2017

Recommandation for future revisions:

From existing docs split into smaller docs and add new items:

Testing			Model validation	Design
Measurements	Corrections	PC method		
Met mast	Site calibration	Analysis/	Measurements	Basic document
Lidar	NTF	AEP/	versus	Wsp definitions
Nacelle anem.	Induction	Comb. Unc./	Modelling	PC definitions
	Numerical SC	Reporting		All parameter defs.
		Relative PC		PC definitions
				Reporting
				Classes of shear/
				veer/turbulence
3 docs	3 (4) docs	2 docs	2 doc	1doc

Status of -12 docs

IEC61400-12-1:2005

IEC61400-12-1:2016 rev. 2

$$U_{eq} = \frac{1}{A} \left(\int_{z} U_{z}^{3} dA_{z} \right)^{1/3} \cong \frac{1}{A} \left(\sum_{z,i} U_{z,i}^{3} dA_{z,i} \right)^{1/3}$$

IEC61400-12-2:2013

$$U = U_{hub}$$

Use of nacelle anemometer

IEC61400-12-2:2013

$$U = U_{hub}$$

Use of spinner anemometer

Recommendation for future revisions

TC88 Performance measurements in wind farm free sector (hub height measurements)

Re ROMOWind

TC88 Performance measurements in wind farm wake situations (hub height measurements)

Re ROMOWind

Recommendation for future revisions

Nacelle Lidar 2-beam

Nacelle Scanning Lidar

$$U_{eq} = \frac{1}{A} \left(\int_{A} U_{y,z}^{3} dA_{y,z} \right)^{1/3}$$

Nacelle Scanning Lidar

$$U_{eq} = \frac{1}{A} \left(\int_{A} U_{y,z}^{3} dA_{y,z} \right)^{1/3}$$

Scanning Lidar

$$U = ?$$

Thank you!