Teoria della misura per la Geometria Algebrica

Filippo \mathcal{L} Troncana

A.A. 2024/2025

Sommario

Durante lo studio della teoria della misura, generalmente si cercano misure σ -finite, boreliane, Borel-regolari, di Radon e così via, ma il problema è che la topologia di Zariski (o le topologie noetheriane in generale) non si comportano bene da questo punto di vista, in quanto tutti i sottoinsiemi sono compatti e tutti gli aperti sono densi, quindi i risultati di teoria della misura applicabili su queste topologie risultano... poco interessanti?

Notazione

 \mathbb{P}^n sarà lo spazio proiettivo su $\mathbb{C}^{n+1}.$

S sarà l'anello di $\mathbb{C}[x_0,...,x_n]$. Spec(S) è l'insieme degli ideali primi, Spec $_h(S)$ di quelli omogenei e Spec $_m(S)$ di quelli massimali in S.

1 Richiami di geometria algebrica e teoria della misura

Definizione 1.1: Topologia di Zariski

Sia $\zeta \subset 2^{\mathbb{P}^n}$ la famiglia definita da

$$\zeta = \{X \subset \mathbb{P}^n : \exists I \in \operatorname{Spec}_h(S) : X = Z(I)\}$$

Questa è la famiglia dei chiusi di una topologia (definita per chiusi) detta topologia di Zariski.