激光原理与技术

第八章 激光器参数及测试技术

丁铭

仪器科学与光电工程学院

1、激光器主要参数

▶ 输出功率:

连续运转的激光器单位时间内的输出能量,通常以W为单位。若激光器在时间t内输出能量为E,则输出功率P=E/t。

▶ 光谱:

波长及谱线宽度是光谱的两个重要特性指标。

▶ 光束质量:

是激光器的一个重要技术指标,是从质的方面来评价激光的特性。目前,常用激光光束质量因子来衡量光束质量。

> 激光线宽:

激光输出光谱曲线的半高全宽。

▶ 噪声:

激光器的噪声主要包括相对强度噪声和相位噪声。

2、功率测量

图8-1 功率测量流程图

图8-3 功率计

3、光谱测量

3.1 光谱分析仪

□基本原理

图8-4 原理图

图8-5 光谱分析仪

3、光谱测量

3.2 双光栅单色仪

□基本原理

图8-6 双光栅单色仪原理图

3、光谱测量

3.3 单光栅双程单色仪式光谱仪

□基本原理

图8-7 单光栅双程单色仪式光谱仪

4、噪声测量

4.1 相位噪声

图8-8 相位噪声测量系统示意图

4、噪声测量

4.2 强度噪声

图8-9 强度噪声示意图

▶ 测量公式:

图8-10 强度噪声测量系统流程图

5、光束质量测量

□光束质量因子

由于激光光束经过理想光学系统后,腰斑尺寸和远场发散角的乘积保持恒定不变。因此,目前国际上普遍将光束质量因子M²作为衡量激光光束质量的参数。

定义: M²= 实际光束的腰斑半径与远场发散角的乘积 基模高斯光束的腰斑半径与远场发散角的乘积

5、光束质量测量

□基于数字波前相机的光束参数测量

图8-9 测量结果图