安徽大学 2015—2016 学年第一学期

《高等数学 A (三)》(概率论与数理统计)考试试卷(A卷) (闭卷 时间120分钟)

考场登记表序号

题 号	_	11	Ξ	四	五	总分
得 分						
阅卷人						

一、 填空题(每小题3分,共15分)

得分

- 1. A , B 为随机事件, \overline{A} 为 A 的对立事件,已知 $P(\overline{A}) = 0.6$,P(B) = 0.5 , $P(A \cup B) = 0.6$,则 $P(A \mid B) = ______$.
- 2. 设 $X \sim N(3, \sigma^2)$, 且P(3 < X < 6) = 0.3, 则P(X < 0) =______
- 3. 已知随机变量 X 与 Y 相互独立, X 在区间 (2,8) 上服从均匀分布, $Y \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$,

则 D(X-3Y) =_____.

- 4. 已知 X_1 , X_2 , X_3 和 $aX_1 2aX_2 + 2X_3$ 均为非零参数 θ 的无偏估计量,则 a =______.

二、选择题(每小题3分,共15分)

得分

- 6. 设随机事件 A , B 满足 P(A) > 0 , P(B) > 0 , P(AB) = 0 , 则必有 () .
- (A) A 与 B 互斥 (B) A 与 B 对立 (C) A 与 B 独立 (D) P(A|B) = 0
- 7. 设随机变量 X 服从(0,2)上均匀分布,则随机变量 $Y = X^2$ 在(0,4) 内概率密度为().

- (A) \sqrt{y} (B) $\frac{1}{\sqrt{y}}$ (C) $\frac{1}{2\sqrt{y}}$ (D) $\frac{1}{4\sqrt{y}}$
- 8. 设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立同服从参数为 λ 的指数分布,则(
- (A) $\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i n\lambda}{\sqrt{n\lambda}} \le x\right) = \Phi(x)$ (B) $\lim_{n \to \infty} P\left(\frac{\lambda \sum_{i=1}^{n} X_i n}{\sqrt{n}} \le x\right) = \Phi(x)$
- (C) $\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i \lambda}{\sqrt{n}} \le x\right) = \Phi(x)$ (D) $\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i \lambda}{\sqrt{n}\lambda} \le x\right) = \Phi(x)$
- 9. 设 X_1, X_2, \cdots, X_8 与 Y_1, Y_2, \cdots, Y_{10} 分别来自两个正态总体N(-1,4)与N(2,5)的样本,且 相互独立, S_1^2 和 S_2^2 分别为两个样本的样本方差,则服从F(7,9)的统计量是().

- (A) $\frac{5S_1^2}{4S_2^2}$ (B) $\frac{5S_1^2}{2S_2^2}$ (C) $\frac{2S_1^2}{5S_2^2}$ (D) $\frac{4S_1^2}{5S_2^2}$
- 10. 设某高校学生身高 X 服从正态分布 $N(\mu, \sigma^2)$, 其中 σ^2 未知, 对同一批样本数据, 下列关于平均身高 μ 的置信区间与假设检验陈述错误的是().
- (A) 对假设检验问题 H_0 : $\mu=165$ (厘米), H_1 : $\mu\neq165$ (厘米),若在显著性水平 $\alpha = 0.05$ 下拒绝 H_0 ,则在显著性水平 $\alpha = 0.1$ 下必定拒绝 H_0
- (B) 显著性水平 α 的意义是在 H_0 为真时,由样本数据拒绝 H_0 的最大概率
- (C) 对应区间估计,当置信水平 $1-\alpha$ 变大时, μ 的置信区间长度变长
- (D) 当 $\alpha = 0.05$, 若由样本数据得到 μ 的置信区间为(165,168) (厘米),则此区间覆 盖参数 μ 的置信水平为1- α = 0.95

三、分析计算题(每小题12分,共60分)

得 分

- 11. 盒中有6只乒乓球,其中2只旧球4只新球,第一次比赛时从中任取出一只球, 赛完后仍放回盒中,第二次比赛时再从盒中任取2只.
- (1) 求第二次取出的两只球都是新球的概率;
- (2) 若已知第二次取出的两个球都是新球,求第一次取出的球是旧球的概率。

Ж,

江

$$f(x) = \begin{cases} \frac{A}{x^2} & x > 100, \\ 0, & x \le 100. \end{cases}$$

- (1) 求A值; (2) 求P(X > 1000); (3) 求分布函数F(x);
- (4) 对随机变量 X 做 5 次重复独立观测,记 Y 为事件 (X > 1000) 出现的次数,求 Y 分布律.

13. 设随机变量 X 与 Y 的分布律分别为:

	X	-1	0	1		Y	0	1
_	P	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	_	P	$\frac{1}{2}$	$\frac{1}{2}$

且P(XY=0)=1,求:

(1) (X,Y)的联合分布律; (2) $Z = \max(X,Y)$ 的分布律; (3) Cov(X,Z).

14. 设二维随机变量 (X,Y) 服从区域 $D = \{(x,y) | x^2 + y^2 \le 1\}$ 上的均匀分布. 试判断 X , Y 的 独立性和相关性,并给出理由.

答题勿超策订线

15. 设总体 X 的概率密度函数为 $f(x;\theta) = \begin{cases} 2e^{-2(x-\theta)}, & x > \theta, \\ 0, & x \le \theta. \end{cases}$ 其中 $\theta > 0$ 为未知参数. 设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本,试求参数 θ 的矩估计量和极大似然估计量.

四、应用题(每小题5分,共5分)

得 分

16. 设某次考试考生成绩服从正态分布,从中随机抽取 36 位考生的成绩,算得平均成绩为 66.5 分,标准差为 15 分. 问在显著性水平 0.05 下,是否可以认为这次考生全体考生的平均成绩为 70 分?($t_{0.05}(35)=1.69$, $t_{0.025}(35)=2.03$)

五、证明题(每小题5分,共5分)

得分

17. 设随机变量 X 和 Y 的数学期望分别为 – 2 和 2,方差分别为1和 4,而相关系数为 – 0.5,根据切比雪夫不等式证明 $P(|X+Y| \ge 6) \le \frac{1}{12}$.