UNIT-1 NUMBER SYSTEMS & CODES

TOPIC 1.1
NUMBER SYSTEM &
CONVERSION

Introduction

Signals-

Types of signals

- 1. Analog Signals
- 2. Digital Signals

Digital Systems

 $\begin{array}{c} 2 \\ \pm 1 \\ = 3 \end{array}$

HOW THE COMPUTER GETS THE ANSWER

- A computer understands information composed of only zeros and ones.
- The decimal number system is convenient for the programmer.
- The computer uses binary digits for its operation.

Radix or base-MSD (Most Significant Digit)-LSD (Least Significant Digit)-

DECIMAL NUMBER SYSTEM

DIGITS • 0,1,2,3,4,5,6,7,8,9.

BASE

• 10

DECIMAL NUMBER 4598

BINARY NUMBER SYSTEM

DIGITS • 0, 1

BASE • 2

BINARY NUMBER 1011

HEXADECIMAL NUMBER SYSTEM

- 0,1,2,3,4,5,6,7, 8,9,A,B,C,D,E,F.

BASE

• 16

HEXADECIMAL NUMBER 1A5D

OCTAL NUMBER SYSTEM

DIGITS

•0,1,2,3,4,•5,6,7.

BASE

8.

OCTAL NUMBER 5273

CONVERSIONS IN BASIC NUMBER SYSTEM

Decimal Number Convertor Table				
Decimal Number	Binary Number	Hexadecimal Number	Octal Number	
1	1	1	1	
2	10	2	2	
3	11	3	3	
4	100	4	4	
5	101	5	5	
6	110	6	6	
7	111	7	7	
8	1000	8	10	
9	1001	9	11	
10	1010	а	12	
11	1011	b	13	
12	1100	С	14	
13	1101	d	15	
14	1110	е	16	
15	1111	f	17	

OCTAL TO DECIMAL

OCTAL TO DECIMAL

OCTAL TO DECIMAL

Base 5 TO DECIMAL

(4021.2)₅

BIT POSITION

4 3 2 1.1

 $4 \times 5^{3} + 0 \times 5^{2} + 2$ $\times 5^{1} + 1 \times 5^{0} + 2 \times$ 5^{-1} MUL WITH

BASE

DECIMAL

511.4

Base 5 TO DECIMAL

CONVERSION IN DECIMAL

Note-NUMBER MULTIPLY WITH BASE VALUE

Binary

octal_

Decimal

Hexadecimal[/]

DECIMAL TOBINARY

DECIMAL = 34.625 convert into binary

<u>2)34</u>	Remainder	LSB
2)17	O †	
2) 8	1	
2) 4	0	
2) 2	0	
2) 1	0	
0	1 l	MSB

	arry	
Fraction		625
x Radix		_x2
Result	1	250
x Radix		_x2
Result	0	500
x Radix		_x2
Result	† 1	000

DECIMAL TOBINARY

Divide through out by 2

DECIMAL TOBINARY

Divide through out by 2

DECIMAL = **156 BINARY** = **??** **Q**= Quotient **R**=Remainder

DECIMAL TO HEX

Find the Hex equivalent for the Decimal 3509

MSD LSD - least significant digit For Hex value 13 = D, 11 = B & 5 = 5Therefore, the equivalent Hex number for decimal 3509 is DB5

MSD - most significant digit

DECIMAL = 3509HEX = DB5

DECIMAL TO HEX

Divide through out by 16

LSB

MSB

DECIMAL = **35 HEX** = **23**

DECIMAL TO HEX

Divide through out by 16

DECIMAL =157 **HEX** = ??

DECIMAL TO OCTAL

Divide through out by 8

To Convert Decimal To Octal

Remainder

DECIMAL = 123 **OCTAL** = 173

DECIMAL TO OCTAL

Divide through out by 8

DECIMAL = 2980 OCTAL = 5644

DECIMAL TO OCTAL

Divide through out by 8

DECIMAL = 461 **OCTAL** = 715

DECIMAL TO OCTAL

Divide through out by 8

CONVERSION from DECIMAL

Note-DECIMAL NUMBER DIVIDE BY BASE VALUE

BINARY

• $(010111011001)^2$

4BITS DIV

• (0101)(1101)(1001)

HEX

• (5) (D) (9) =(5D9)¹⁶

BINARY

• (1001001.10)

4BITS DIV

(0100)(1001).(1000)

HEX

$$(4) (9).(8) = (49.8)$$

BINARY

 $(1111001010.111101)^2$

4BITS DIV ??

?? **HEX**

BINARY

• (101010101)²

4BITS DIV ??

?? **HEX**

BINARY TO OCTAL

BINARY

• (101111100)₂

3BIT DIV

• (101)(111)(100)

OCTAL

• (5) (7) (4) = $(574)_8$

BINARY TO OCTAL

BINARY

• (11010101.1)₂

3BIT DIV

• (011)(010)(101).(100)

OCTAL

 $=(325.4)_8$

BINARY TO OCTAL

BINARY

• (101010101)₂

3BIT DIV

??

OCTAL

??

HEXADECIMAL TOBINARY

HEXADECIMAL TOBINARY

OCTAL TO BINARY

OCTAL TO BINARY

HEXADECIMAL TO OCTAL

HEX

• (4DF)₁₆

EXP

(0100)(1101)(1111)

BINARY

• (010011011111)₂

3BIT DIV

(010)(011)(011)(111)

OCTAL

• $(2337)_8$

HEXADECIMAL TO OCTAL

HEX

• (1EA)₁₆

EXP

• (----)(----)

BINARY

• (----)2

3BIT DIV

• (---)(---)(---)

OCTAL

• (----)8

HEXADECIMAL TO OCTAL

HEX

• (9AE1)₁₆

EXP

• (----)(----)(----)

BINARY

• (-----)2

3BIT DIV

• (---)(---)(---)

OCTAL

• (----)8

OCTAL TO HEXADECIMAL

OCTAL

• (456)₈

EXP

(100)(101)(110)

BINARY

• (100101110)₂

4BIT DIV

(0001)(0010)(1110)

HEX

• (12E)₁₆

OCTAL TO HEXADECIMAL

OCTAL

• $(6371)_8$

EXP

• (---)(---)

BINARY

• (-----)2

4BIT DIV

• (----)(----)

HEX

• (---) 16