STAT406- Methods of Statistical Learning Lecture 16

Matias Salibian-Barrera

UBC - Sep / Dec 2018

Classification Trees - Bagging

 We can obtain a "large" number of trees and have them "vote" on the classification of future observations, or average their conditional probabilities estimates P (g_i X)

Classification Trees - Bagging

Our aggregated classifier is

$$ar{f}(\mathbf{X}) = \left\{ egin{array}{l} \left(ar{P}(g_1 | \mathbf{X}), \dots, ar{P}(g_K | \mathbf{X})
ight) \\ lpha rg \max \left(\mathbf{n}_1, \mathbf{n}_2, \dots, \mathbf{n}_K
ight) \end{array}
ight\}$$

where $(\bar{P}(g_1|\mathbf{X}),...,\bar{P}(g_K|\mathbf{X}))$ are averaged conditional probabilities over the boostrap samples;

 (n_1, n_2, \dots, n_K) are the number of times each class was selected and $n_1 + n_2 + \dots + n_K =$

number of bootstrap samples

Bagged trees -original data

Bagged trees -modified data

Bagged trees -original data

Bagged trees - modified data

Bagged trees -original data

Bagged trees - modified data

- Bagging averaging identically distributed trees (which may be "correlated")
- Random forests making the "bagged" trees "less correlated"
- The bootstrapped trees are "de-correlated" by making them use different features for the splits

- (1) for (b in 1:B)
 - (a) Draw a bootstrap sample from the training data
 - (b) Grow a "random forest tree" as follows: for each terminal node:
 - (i) Randomly select m features
 - (ii) Pick the best split among these
 - (iii) Split the node into two children
 - (c) Repeat (b) to grow a (very very) large tree
- (2) Return the ensemble of trees $(T_b)_{1 \le b \le B}$

Given a new point x, for regression we use

$$\hat{f}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} T_b(\mathbf{x})$$

For classification:

$$\hat{f}(\mathbf{x}) = \text{majority vote among} \Big\{ T_b(\mathbf{x}) \, , \ 1 \leq b \leq B \, \Big\}$$

Q: why not average conditional prob's?

Out-of-bag error estimates

- Each bagged tree is trained on a bootstrap sample
- Predict the observations not in the bootstrap sample with that tree
- One will have "about" B/3 predictions for each point in the training set
- These can be used to estimate the prediction error (classification error rate) without having to use CV

Out-of-bag error estimates

- For each training observation (y_i, \mathbf{x}_i) , obtain a prediction using only those trees in which (y_i, \mathbf{x}_i) was **NOT** used
- In other words, let \mathcal{I}_i the set of trees (bootstrap samples) where (y_i, \mathbf{x}_i) does not appear, then

$$\hat{y}_i = \frac{1}{|\mathcal{I}_i|} \sum_{i \in \mathcal{I}} T_j(\mathbf{x}_i)$$

- This error estimate can be computed at the same time as the trees are being built
- When this error estimate is stabilized we can stop adding trees to the ensemble

Example

OOB example on GitHub