AArch64
Instructions

Index by Encoding

External Registers

TRCBBCTLR, Branch Broadcast Control Register

The TRCBBCTLR characteristics are:

Purpose

Controls the regions in the memory map where branch broadcasting is active.

Configuration

AArch64 System register TRCBBCTLR bits [31:0] are architecturally mapped to External register TRCBBCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_SR is implemented, TRCIDR0.TRCBB == 1 and UInt(TRCIDR4.NUMACPAIRS) > 0. Otherwise, direct accesses to TRCBBCTLR are undefined.

Attributes

TRCBBCTLR is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241	40	39	38	37	36	3
RES0						
RES0	MODE	RANGE[7]	RANGE[6]	RANGE[5]	RANGE[4]	RAN
31302928272625242322212019181716151413121110 9	8	7	6	5	4	-

Bits [63:9]

Reserved, res0.

MODE, bit [8]

Mode.

MODE	Meaning	
	9	

0b0	Exclude Mode.
	Branch broadcasting is not
	active for instructions in the
	address ranges defined by
	TRCBBCTLR.RANGE.
	If TRCBBCTLR.RANGE ==
	0x00 then branch broadcasting
	is active for all instructions.
0b1	Include Mode.
	Branch broadcasting is active
	for instructions in the address
	ranges defined by
	TRCBBCTLR.RANGE.
	If TRCBBCTLR.RANGE ==
	0×00 then the behavior of the
	trace unit is constrained
	unpredictable. That is, the trace
	unit might or might not
	consider any instructions to be
	in a branch broadcasting
	region.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

RANGE[<m>], bit [m], for m = 7 to 0

Address range field.

Selects whether Address Range Comparator <m> is used with branch broadcasting.

RANGE[<m>]</m>	Meaning
0b0	The address range that
	Address Range
	Comparator <m></m>
	defines, is not selected.
0b1	The address range that
	Address Range
	Comparator <m></m>
	defines, is selected.

This bit is res0 if $m \ge \frac{TRCIDR4}{NUMACPAIRS}$.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Accessing TRCBBCTLR

Must be programmed if $\overline{TRCCONFIGR}$.BB == 1.

Writes are constrained unpredictable if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCBBCTLR

O	p0	op1	CRn	CRm	op2
01	b10	0b001	0b0000	0b1111	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGRTR EL2.TRC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCBBCTLR;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = TRCBBCTLR;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
```

```
AArch64.SystemAccessTrap(EL3, 0x18);
else
X[t, 64] = TRCBBCTLR;
```

MSR TRCBBCTLR, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b1111	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCBBCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCBBCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCBBCTLR = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.