Generative Models

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Generative vs. Discriminative Models

Generative vs. Discriminative

Discriminative approach

- How do we separate classes?
 - Estimate parameters of a decision boundary from labeled samples.
- Requires only a model for the conditional probability $p(y \mid \mathbf{x})$.
- Maximizes the conditional likelihood $\sum_i \log p(y_i \mid \mathbf{x}_i)$.
- Model to learn mapping directly from feature space to the labels.

Generative approach

- What does the distribution of each class look like?
 - Estimate the distribution of the characteristics of each class.
- Model the joint probability p(x, y) and thus maximizes the joint likelihood $\sum_i \log p(\mathbf{x}_i, y_i)$.
- The generative models learn both $p(\mathbf{x} \mid y)$ and p(y).

Discriminative Model

- \succ The classifiers involve estimating $f: \mathbf{x} \to \mathbf{y}$ or $p(\mathbf{y} \mid \mathbf{x})$.
- \triangleright Assume a functional form for $p(y \mid x)$.
- \triangleright Estimate parameters of $p(y \mid x)$ directly from training data.

Generative Model

- \succ The classifiers involve estimating $f: \mathbf{x} \to \mathbf{y}$ or $p(\mathbf{y} \mid \mathbf{x})$.
- \succ Assume a functional form for p(y) and $p(x \mid y)$.
- \succ Estimate parameters of $p(\mathbf{x} \mid \mathbf{y})$ and $p(\mathbf{y})$ to learn the distribution of training data.

P(Y = Bedroom, X=

) = 0.5

P(Y = Bedroom, X=

) = 0.02

P(Y = Dining room, X=

) = 0.01

P(Y = Dining room, X=

Discriminative vs. Generative Models

> Discriminative models

> Generative models

> Classification function

Discriminative vs. Generative Models

	Discriminative models	Generative models
Goal	Directly estimate $p(y \mid \mathbf{x})$	Estimate $p(\mathbf{x}, y)$ to then deduce $p(y \mid \mathbf{x})$
What's learned	Decision boundary	Probability distributions of the data
Illustration		
Examples	Logistic regression, decision trees, neural networks, SVM	Gaussian discriminative analysis, Naïve Bayes

Naïve Bayes Classifier

Review: Bayes' Theorem

- \triangleright Posterior $p(y \mid x)$ is the probability of output y given x.
- \triangleright Likelihood $p(\mathbf{x} \mid y)$ is the function of y given fixed \mathbf{x} .
- \triangleright Prior p(y) encapsulates our subjective prior knowledge of the output y before observing any data.

Likelihood Prior

$$P(y \mid x) = \frac{P(x \mid y)P(y)}{p(x)}$$

Posterior

Evidence

Bayes Classifiers

> Statistical classifiers

- Perform probabilistic prediction, i.e., predicts class membership probabilities.
- Based on Bayes' Theorem

> The Naïve Bayes classifier is a simple Bayesian classifier.

Bayes Classifiers

- ➢ Given an input vector x, we compute class probabilities using the Bayes rule.
 - Suppose that there are k classes $c_1, c_2, ..., c_k$.
 - Find the maximum posterior $p(C = c_i \mid \mathbf{x})$.

$$p(c_i|\mathbf{x}) = \frac{p(\mathbf{x}|c_i)p(c_i)}{p(\mathbf{x})} \propto p(\mathbf{x}|c_i)p(c_i)$$

 \triangleright Because p(x) is constant for all classes, only the nominator needs to be maximized.

Classification: Good vs. Bad

> How to building a Bayes classifier?

Training data

	Gender	Mask	Саре	Tie	Ears	Smokes
Batman	Male	Yes	Yes	No	Yes	No
Robin	Male	Yes	Yes	No	No	No
Alfred	Male	No	No	Yes	No	No
Penguin	Male	No	No	Yes	No	Yes
Catwoman	Female	Yes	No	No	Yes	No
Joker	Male	No	No	No	No	No

Label
Good
Good
Good
Bad
Bad
Bad

Classification: Good vs. Bad

> How to compute the class probability?

• Let $\mathbf{x} = [male, yes, yes, no, yes, no]$.

$$p(\textit{Good} \mid \textit{male}, \textit{yes}, \textit{yes}, \textit{no}, \textit{yes}, \textit{no}) = \frac{p(\textit{male}, \textit{yes}, \textit{yes}, \textit{no}, \textit{yes}, \textit{no} \mid \textit{Good})p(\textit{Good})}{p(\textit{male}, \textit{yes}, \textit{yes}, \textit{no}, \textit{yes}, \textit{no})}$$

$$p(Bad \mid male, yes, yes, no, yes, no) = \frac{p(male, yes, yes, no, yes, no \mid Bad)p(Bad)}{p(male, yes, yes, no, yes, no)}$$

Training data

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batman	Male	Yes	Yes	No	Yes	No	Good
Robin	Male	Yes	Yes	No	No	No	Good
Alfred	Male	No	No	Yes	No	No	Good
Penguin	Male	No	No	Yes	No	Yes	Bad
Catwoman	Female	Yes	No	No	Yes	No	Bad
Joker	Male	No	No	No	No	No	Bad

Challenge of Bayes Classifiers

- > Assume that we have two classes.
- \triangleright We have d binary features $\mathbf{x} = [x_1, ..., x_d]$.
- > If we define a joint distribution $p(c, x_1, ..., x_d)$, it should give useful information to determine p(c) and $p(x \mid c)$.
- > Problem: a joint distribution over d+1 binary variables requires 2^{d+1} entries.
 - It is computationally prohibitive.
 - It also would require a huge amount of data to fit.

Conditional Independence

- \triangleright Assume that each feature x_i is conditionally independent given the class c.
 - x_i and x_j are independent under the conditional distribution $p(\mathbf{x} \mid c)$.

$$p(x_1, ..., x_d \mid c) = \prod_{i=1}^d p(x_i \mid c)$$

- > Compact representation of the joint distribution
 - Prior probability of class: $p(c = 1) = \theta_c$
 - Conditional probability of features given a class: $p(x_j = 1 \mid c) = \theta_{jc}$
 - It only requires 2d + 1 parameters total.
- Discussion: is it really true for our data?

Naïve Bayes Classifiers (NBC)

- \triangleright What is the most probable value $p(c \mid \mathbf{x})$?
 - We have d binary features $\mathbf{x} = [x_1, ..., x_d]$.
- > Let's estimate as follows.

$$f(\mathbf{x}) = \underset{c \in \mathcal{C}}{\operatorname{argmax}} p(c \mid x_1, x_2, \dots, x_d)$$

➤ It is equivalent to

$$f(\mathbf{x}) = \underset{c \in \mathcal{C}}{\operatorname{argmax}} \frac{p(x_1, x_2, \cdots, x_d \mid c) p(c)}{p(x_1, x_2, \cdots, x_d)} = \underset{c \in \mathcal{C}}{\operatorname{argmax}} p(x_1, x_2, \cdots, x_d \mid c) p(c)$$

Training Naïve Bayes Classifiers

> Learn the parameters efficiently because the log-likelihood decomposes into independent terms for each feature.

$$\log p(\mathcal{D}) = \sum_{i=1}^{n} \log p(c^{(i)}, \mathbf{x}^{(i)})$$

$$= \sum_{i=1}^{n} \log p(\mathbf{x}^{(i)} | c^{(i)}) p(c^{(i)}) = \sum_{i=1}^{n} \log \prod_{j=1}^{d} p(x_{j}^{(i)} | c^{(i)}) p(c^{(i)})$$

$$= \sum_{i=1}^{n} \left[\sum_{j=1}^{d} \log p(x_{j}^{(i)} | c^{(i)}) + \log p(c^{(i)}) \right]$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{n} \log p(x_{j}^{(i)} | c^{(i)}) + \sum_{i=1}^{n} \log p(c^{(i)})$$

Bernoulli log-likelihood for feature x_i

Bernoulli log-likelihood of labels

Training Naïve Bayes Classifiers

- > We want to maximize $\sum_{i=1}^{n} \log p\left(x_{j}^{(i)} | c^{(i)}\right)$.
 - This is similar to a coin-tossing example.
 - Let $\theta_{11} = p(x_j = 1 \mid c^{(i)} = 1)$ and $\theta_{01} = 1 \theta_{11}$

> Calculate the log-likelihood estimation.

$$\begin{split} \sum_{i=1}^{n} \log p\left(x_{j}^{(i)} \mid c^{(i)}\right) &= \sum_{i=1}^{n} c^{(i)} x_{j}^{(i)} \log \theta_{11} + \sum_{i=1}^{n} c^{(i)} (1 - x_{j}^{(i)}) \log (1 - \theta_{11}) \\ &+ \sum_{i=1}^{n} (1 - c^{(i)}) x_{j}^{(i)} \log \theta_{10} + \sum_{i=1}^{n} (1 - c^{(i)}) (1 - x_{j}^{(i)}) \log (1 - \theta_{10}) \end{split}$$

Training Naïve Bayes Classifiers

- > Use the maximum likelihood estimation.
 - Let n_{ab} is the counts for $x_i = a$ and c = b.

$$\theta_{11} = \frac{n_{11}}{n_{11} + n_{01}} \qquad \theta_{10} = \frac{n_{10}}{n_{10} + n_{00}}$$

$$\theta_{10} = \frac{n_{10}}{n_{10} + n_{00}}$$

- Given a specific class, we count the number of samples for each value in x_i .
- > Similarly, we can also calculate $\sum_{i=1}^n \log p(c^{(i)})$.

Inference of Naïve Bayes Classifiers

- > Apply the Bayes rule.
 - We can ignore computing the denominator to determine the most probable class c_i .

$$p(c_i|\mathbf{x}) = \frac{p(\mathbf{x}|c_i)p(c_i)}{p(\mathbf{x})} \propto p(\mathbf{x}|c_i)p(c_i)$$

> Assume the conditional independence assumption.

$$p(c_i | \mathbf{x}) \propto \prod_{i=1}^d p(\mathbf{x}_i | c_i) p(c_i)$$

Two terms are computed by MLE.

Figure 6 Given sample $\mathbf{x} = (male, yes, yes, no, no, no)$, predict one of the two classes Good and Bad.

Training data

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batman	Male	Yes	Yes	No	Yes	No	Good
Robin	Male	Yes	Yes	No	No	No	Good
Alfred	Male	No	No	Yes	No	No	Good
Penguin	Male	No	No	Yes	No	Yes	Bad
Catwoman	Female	Yes	No	No	Yes	No	Bad
Joker	Male	No	No	No	No	No	Bad

Test data

Superman	Male	Yes	Yes	No	No	No
_						

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Batman	Male	Yes	Yes	No	Yes	No	Good
Robin	Male	Yes	Yes	No	No	No	Good
Alfred	Male	No	No	Yes	No	No	Good

> For each attribute, the conditional probability is

•
$$p(G = Male \mid Good) = 1.0$$
, $p(M = Yes \mid Good) = 0.67$,

•
$$p(C = Yes | Good) = 0.67$$
, $p(T = No | Good) = 0.67$,

•
$$p(E = No \mid Good) = 0.67$$
, $p(S = No \mid Good) = 0.67$

	Gender	Mask	Саре	Tie	Ears	Smokes	Label
Penguin	Male	No	No	Yes	No	Yes	Bad
Catwoman	Female	Yes	No	No	Yes	No	Bad
Joker	Male	No	No	No	No	No	Bad

> For each attribute, the conditional probability is

•
$$p(G = Male \mid Bad) = 0.67$$
, $p(M = Yes \mid Bad) = 0.33$

•
$$p(C = Yes \mid Bad) = 0.00$$
, $p(T = No \mid Bad) = 0.67$

•
$$p(E = No \mid Bad) = 0.67$$
, $p(S = No \mid Bad) = 0.67$

> Prior probability

$$P(Good) = 0.5, P(Bad) = 0.5$$

	Gender	Mask	Саре	Tie	Ears	Smokes
Superman	Male	Yes	Yes	No	No	No

- > For Good class,
 - $1.0 \times 0.67 \times 0.67 \times 0.67 \times 0.67 \times 0.67 \times 0.5$
- > For Bad class,
 - $0.67 \times 0.33 \times 0.00 \times 0.67 \times 0.67 \times 0.67 \times 0.5$
- > Therefore, we predict Good for x.

Example: Buying Laptops

$$>$$
 $x = (A \le 30, I = Medium, S = Yes, C = Fair)$

Training data

Age	Income	Student	Credit	Buy
<= 30	High	N	Fair	No
<= 30	High	N	Excellent	No
31 40	High	N	Fair	Yes
> 40	Medium	N	Fair	Yes
> 40	Low	Υ	Fair	Yes
> 40	Low	Υ	Excellent	No
31 40	Low	Υ	Excellent	Yes
<= 30	Medium	N	Fair	No
<= 30	Low	Υ	Fair	Yes
> 40	Medium	Υ	Fair	Yes
<= 30	Medium	Υ	Excellent	Yes
31 40	Medium	N	Excellent	Yes
31 40	High	Υ	Fair	Yes
> 40	Medium	N	Excellent	No

Example: Buying Laptops

- $\mathbf{x} = (A \le 30, I = Medium, S = Yes, C = Fair)$
- \triangleright Prior probability $p(c_i)$
 - p(Buy = Yes) = 9/14 = 0.643,
 - p(Buy = No) = 5/14 = 0.357
- \triangleright Conditional probability $p(x_i | c_i)$
 - $p(Age = \le 30 \mid Buy = Yes) = 2/9 = 0.222$
 - $p(Age = \le 30 \mid Buy = No) = 3/5 = 0.6$
 - $p(Income = Medium \mid Buy = Yes) = 4/9 = 0.444$
 - $p(Income = Medium \mid Buy = No) = 2/5 = 0.4$
 - $p(Student = Yes \mid Buy = Yes) = 6/9 = 0.667$
 - $p(Student = Yes \mid Buy = No) = 1/5 = 0.2$
 - $p(Credit = Fair \mid Buy = Yes) = 6/9 = 0.667$
 - $p(Credit = Fair \mid Buy = No) = 2/5 = 0.4$

Example: Buying Laptops

$$\mathbf{x} = (A \le 30, I = Medium, S = Yes, C = Fair)$$

Conditional probability

- $p(\mathbf{x} \mid Buy = Yes) = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$
- $p(\mathbf{x} \mid Buy = No) = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

\triangleright Which class maximizes $p(x \mid c_i) \times p(c_i)$?

- $p(\mathbf{x} \mid Buy = Yes) \times p(Buy = Yes) = 0.028$
- $p(\mathbf{x} \mid Buy = No) \times p(Buy = No) = 0.007$
- > We predict the class Yes for x.

Zero Probability Problem

 \triangleright Given a sample $\mathbf{x} = (Male, Yes, Yes)$

$$p(Good \mid Male, Yes, Yes) = p(G = Male \mid Good)p(M = Yes \mid Good)p(C = Yes \mid Good)p(Good)$$
$$= 1.0 \times 0.0 \times 0.33 \times 0.5 = 0.0$$

$$p(Bad | Male, Yes, Yes) = p(G = Male | Bad)p(M = Yes | Bad)p(C = Yes | Bad) P(Bad)$$
$$= 0.67 \times 1.0 \times 0.0 \times 0.5 = 0.0$$

	Gender	Mask	Саре	Label
Batman	Male	No	Yes	Good
Robin	Male	No	No	Good
Alfred	Male	No	No	Good
Penguin	Male	Yes	No	Bad
Catwoman	Female	Yes	No	Bad
Joker	Male	Yes	No	Bad

Laplace Smoothing

- ➢ Given 1000 samples, they have Income = low (0), Income = medium (990), and Income = high (10).
- > Use Laplacian correction (or Laplacian estimator).
 - Adding 1 to each case
 - The corrected probability estimates are close to their uncorrected counterparts.
- > Update the probability for each value.
 - p(Income = low) = 1/1003
 - p(Income = medium) = 991/1003
 - p(Income = high) = 11/1003

Laplace Smoothing

\triangleright Adding k to every outcome

$$p_{LAP,k}(X) = \frac{c(x_i) + k}{n + k|X|}$$

- $c(x_i)$ is the number of samples for $X = x_i$
- n is the number of entire samples.
- k is the strength of prior.
- |X| is the number of values in X.

$$p_{LAP,0}(X) = \left\langle \frac{4}{4}, \frac{0}{4} \right\rangle$$

$$p_{LAP,1}(X) = \left\langle \frac{5}{6}, \frac{1}{6} \right\rangle$$

$$p_{LAP,10}(X) = \left\langle \frac{14}{24}, \frac{10}{24} \right\rangle$$

$$p_{LAP,100}(X) = \left\langle \frac{104}{204}, \frac{100}{204} \right\rangle$$

Application: Spam Detection

1398

Classify text into spam/non-spam

- > Example: "You are the winner for the free \$1000 gift card."
- > Use bag-of-words features.
 - Each word is conditionally independent of each class.

а	•••	car	card	•••	win	winner	 you	
0		0	1		0	1	 1	

Summary of Naïve Bayes Classifiers

- ➤ It is an amazingly cheap model!
- > Training time: estimate parameters using maximum likelihood.
 - Compute co-occurrence counts of each feature with the labels.
 - Requires only one pass through the data!
- > Test time: apply Bayes' Rule.
- > It is easily extended to other probability distributions.
 - Unfortunately, it is usually less accurate in practice compared to discriminative models due to the naïve independence assumption.

Gaussian Discriminant Analysis (GDA)

Motivation

- > We want to model what each class like look.
 - However, $p(\mathbf{x} \mid C = k)$ may be very complex.
 - Naïve Bayes used the conditional independence assumption.
- > Q: What else can we do? choose a simple distribution.
- > A: Fit the Gaussian distribution to our data.

Why the Gaussian Distribution?

- > It commonly appears by nature.
 - Almost all variables are distributed approximately normally.

- > The idea behind it is the central limit theorem.
 - The sampling distribution is approximately normally distributed if the sample size is large enough.

Univariate Normal Distribution

➢ Given a mean and a variance, we can calculate the probability distribution function of a normal distribution.

$$p(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- > It has two parameters.
 - Mean μ and variance σ^2

Example: Diabetes Classification

> Binary classification: People with/without diabetes

- ➤ Q: What if we have two or higher dimensional data?
- A: Use the multivariate Gaussian distribution.

Multivariate Gaussian Distribution

 \succ Assume that $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} \in \mathbb{R}^d$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$.

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right)$$

Let $|\Sigma|$ be the determinant of the matrix Σ .

Let Σ^{-1} be inverse matrix of Σ .

Multivariate Data

- Multiple measurements (sensors)
- > d features/attributes
- ➤ n samples/instances/examples

$$\mathbf{X} = \begin{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} \end{bmatrix}^{\mathrm{T}} \\ \begin{bmatrix} \mathbf{x}^{(2)} \end{bmatrix}^{\mathrm{T}} \\ \vdots \\ \begin{bmatrix} \mathbf{x}^{(n)} \end{bmatrix}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(n)} & x_2^{(n)} & \dots & x_d^{(n)} \end{bmatrix}$$
of samples # of features

Multivariate Parameters

> Mean

$$\mathbb{E}[\mathbf{x}] = [\mu_1, \dots \mu_d]^{\mathrm{T}} \in \mathbb{R}^d$$

> Covariance

$$\Sigma = Cov(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \mathbf{\mu})^{\mathrm{T}}(\mathbf{x} - \mathbf{\mu})] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{12} & \sigma_2^2 & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_d^2 \end{bmatrix}$$
of features

Bivariate Gaussian Distribution

Bivariate Gaussian Distribution

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Var(x_1) = Var(x_2)$$

$$\Sigma = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Var(x_1) > Var(x_2)$$

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

 $Var(x_1) < Var(x_2)$

Contour plot of the pdf

Bivariate Gaussian Distribution

Contour plot of the pdf

-3

-3

Gaussian Discriminant Analysis (GDA)

- > Assume that $p(\mathbf{x} \mid C = k)$ is distributed according to a multivariate normal (Gaussian) distribution.
- Multivariate Gaussian distribution

$$p(\mathbf{x} \mid C = k) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \mathbf{\mu}_k)\right)$$

- Let $|\Sigma_k|$ denote the determinant of the matrix.
- Let d denote the dimensionality of x.
- \succ Each class has associated with the mean vector μ_k and the covariance matrix Σ_k .
 - Note: Σ_k has $O(d^2)$ parameters, which is difficult to estimate.

Example: Determining Genders

> Red = Female, Blue = Male

Example: Determining Genders

\triangleright Modeling the joint distribution of p(x, y)

x_1	x_2	Label
65	185	1
52	125	0
56	140	1
62	240	0
57	130	1
	•••	•••

> For each class, we assume multivariate Gaussian distributions.

Modeling the Joint Distribution (1D)

What are the parameters to learn?

$$p(\mathbf{x}, y) = p(y)p(\mathbf{x} \mid y)$$

$$= \begin{cases} p_0 \frac{1}{\sqrt{2\pi} |\mathbf{\Sigma}_0|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_0)^{\mathrm{T}} \boldsymbol{\Sigma}_0^{-1} (\mathbf{x} - \boldsymbol{\mu}_1)\right) & \text{if } y = 0 \\ p_1 \frac{1}{\sqrt{2\pi} |\mathbf{\Sigma}_1|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_1)^{\mathrm{T}} \boldsymbol{\Sigma}_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1)\right) & \text{if } y = 1 \end{cases}$$

 $p_0 + p_1 = 1$ are prior probabilities, and $p(\mathbf{x} \mid y)$ is a conditional distribution.

Parameter Estimation (d = 1)

- > Log likelihood of training data $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$.
 - Assume that we have binary classes $y^{(i)} \in \{0,1\}$

$$\ln p(\mathcal{D}) = \sum_{i} \ln p(x^{(i)}, y^{(i)})$$

$$= \sum_{i:y^{(i)}=0} \ln \left(p_0 \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left(-\frac{(x-\mu_0)^2}{2\sigma_0^2}\right) \right) + \sum_{i:y^{(i)}=1} \ln \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right) \right)$$

- > Max log likelihood $(p_0^*, p_1^*, \mu_0^*, \mu_1^*, \sigma_0^*, \sigma_1^*) = \operatorname{argmax} \log p(\mathcal{D})$
 - For d=2, we compute Σ_0^* and Σ_1^* instead of σ_0^* and σ_1^* .

> Assume that each sample is independent and identically distributed.

$$p(x^{(1)}, ..., x^{(n)} | y) = \prod_{i=1}^{n} p(x^{(i)} | y) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}\right)$$

> We minimize negative log-likelihood.

$$-\ln p(x^{(1)}, ..., x^{(n)} | y) = -\ln \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x^{(i)} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{i=1}^{n} \ln \sqrt{2\pi}\sigma + \sum_{i=1}^{n} \frac{(x - \mu)^{2}}{2\sigma^{2}} = \frac{n}{2} \ln 2\pi\sigma^{2} + \sum_{i=1}^{n} \frac{(x^{(i)} - \mu)^{2}}{2\sigma^{2}}$$

> Compute the partial derivative and set it to zero.

$$-\ln p(x^{(1)}, ..., x^{(n)} | y) = \frac{n}{2} \ln 2\pi \sigma^2 + \sum_{i=1}^{n} \frac{(x^{(i)} - \mu)^2}{2\sigma^2}$$

$$\frac{\partial \mathcal{L}}{\partial \mu} = \frac{1}{2\sigma^2} \sum_{i=1}^{n} -2(x^{(i)} - \mu) = -\sum_{i=1}^{n} \frac{(x^{(i)} - \mu)}{\sigma^2} = \frac{n\mu - \sum_{i=1}^{n} x^{(i)}}{\sigma^2}$$

$$\frac{\partial \mathcal{L}}{\partial \mu} = 0 = \frac{n\mu - \sum_{i=1}^{n} x^{(i)}}{\sigma^2} \Rightarrow \qquad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

Compute the partial derivative and set it to zero.

$$-\ln p(x^{(1)}, ..., x^{(n)} | y) = \frac{n}{2} \ln 2\pi \sigma^2 + \sum_{i=1}^{n} \frac{(x^{(i)} - \mu)^2}{2\sigma^2}$$

$$\frac{\partial \mathcal{L}}{\partial \sigma^2} = \frac{n}{2} \frac{1}{2\pi\sigma^2} 2\pi + \sum_{i=1}^{n} \frac{\left(x^{(i)} - \mu\right)^2}{2} \left(-\frac{1}{\sigma^4}\right) = \frac{n}{2\sigma^2} - \frac{\sum_{i=1}^{n} \left(x^{(i)} - \mu\right)^2}{2\sigma^4}$$

$$\frac{\partial \mathcal{L}}{\partial \sigma^2} = 0 = \frac{n}{2\sigma^2} - \frac{\sum_{i=1}^{n} (x^{(i)} - \mu)^2}{2\sigma^4} = \frac{n\sigma^2 - \sum_{i=1}^{n} (x^{(i)} - \mu)^2}{2\sigma^4}$$

$$\Rightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x^{(i)} - \mu)^2$$

➤ We can compute the parameters of a Gaussian distribution by taking the training samples for a specific class.

$$\hat{\mu} = \frac{\sum_{i=1}^{n} \mathbb{I}\left[y^{(i)} = k\right] \cdot x^{(i)}}{\sum_{i=1}^{n} \mathbb{I}\left[y^{(i)} = k\right]} = \frac{\sum_{j:y^{(i)} = k} x^{(j)}}{\text{# of training samples in class } k}$$

$$\sigma^{2} = \frac{\sum_{i=1}^{n} \mathbb{I}[y^{(i)} = k](x^{(i)} - \mu)^{2}}{\sum_{i=1}^{n} \mathbb{I}[y^{(i)} = k]} = \frac{\sum_{j:y^{(i)} = k} (x^{(j)} - \mu)^{2}}{\text{# of training samples in class } k}$$

> It can be extended to the multivariate Gaussian distribution.

Parameter Estimation (d > 1)

- > Learning the parameter for each class using MLE.
 - Assume that the prior is Bernoulli (we have two classes).

$$p(y^{(i)}) = \phi^{y^{(i)}} (1 - \phi)^{1 - y^{(i)}}$$

Compute the ML estimate for parameters.

$$\phi = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left[y^{(i)} = k \right]$$

$$\mathbf{\mu}_k = \frac{\sum_{i=1}^n \mathbb{I}\left[y^{(i)} = k\right] \cdot \mathbf{x}^{(i)}}{\sum_{i=1}^n \mathbb{I}\left[y^{(i)} = k\right]}$$

$$\Sigma_{k} = \frac{1}{\sum_{i=1}^{n} \mathbb{I}[y^{(i)} = k]} \sum_{i=1}^{n} \mathbb{I}[y^{(i)} = k] \left(\mathbf{x}^{(i)} - \mathbf{\mu}_{y^{(i)}}\right) \left(\mathbf{x}^{(i)} - \mathbf{\mu}_{y^{(i)}}\right)^{\mathrm{T}}$$

Parameter Estimation (d > 1)

- > For binary classification, we estimate parameters using MLE.
 - Similarly, we can compute p_0 , μ_0 , and Σ_0 .

$$p_1 = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \left[y^{(i)} = 1 \right] = \frac{\text{# of training samples in class 1}}{\text{# of training samples}}$$

$$\mu_1 = \frac{\sum_{j=1}^n \mathbb{I}\left[y^{(j)} = 1\right] \cdot \mathbf{x}^{(j)}}{\sum_{i=1}^n \mathbb{I}\left[y^{(i)} = 1\right]} = \frac{\sum_{j:y^{(i)} = 1} \mathbf{x}^{(j)}}{\text{# of training samples in class 1}}$$

$$\Sigma_{1} = \frac{1}{\sum_{i=1}^{n} \mathbb{I}[y^{(i)} = 1]} \sum_{j=1}^{n} \mathbb{I}[y^{(j)} = 1] \left(\mathbf{x}^{(j)} - \boldsymbol{\mu}_{y^{(j)}}\right) \left(\mathbf{x}^{(j)} - \boldsymbol{\mu}_{y^{(j)}}\right)^{\mathrm{T}}$$

$$= \frac{\sum_{j:y^{(i)}=1} (\mathbf{x}^{(j)} - \mathbf{\mu}_1)^2}{\text{# of training samples in class 1}}$$

Example

> Each class consists of four samples.

x_1	x_2	y
2	2	0
3	3	0
4	2	0
3	1	0
6	6	1
8	5	1
10	6	1
8	7	1

$$\mathbf{\Sigma}_0 = \begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix} \qquad \mathbf{\Sigma}_1 = \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix}$$

Decision Boundary

> Under the joint distribution, the prediction depends on

$$p(y = 1 \mid \mathbf{x}) \ge p(y = 0 \mid \mathbf{x})$$

$$p(\mathbf{x} \mid y = 1)p(y = 1) \ge p(\mathbf{x} \mid y = 0)p(y = 0)$$

Under the Gaussian distribution,

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \ln\sqrt{2\pi}\sigma_1 + \ln p_1 \ge -\frac{(x-\mu_0)^2}{2\sigma_0^2} - \ln\sqrt{2\pi}\sigma_0 + \ln p_0$$

This inequality represents $ax^2 + bx + c \ge 0$. The decision boundary is not linear.

Visualizing the Decision Boundary

- > The boundary is characterized by a quadrative function.
 - The shape of the boundary looks like a parabolic curve.

Special Case: Same Variance

> Equal variance for classes can be a strong assumption.

> Example:

 The male distribution has a higher variance than the female distribution.

- > The assumption might not be applicable.
 - However, it can significantly reduce the number of parameters.

Special Case: Same Variance

What if assuming two Gaussians have the same variance?

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \ln\sqrt{2\pi}\sigma_1 + \ln p_1 \ge -\frac{(x-\mu_1)^2}{2\sigma_1^2} - \ln\sqrt{2\pi}\sigma_1 + \ln p_0$$

$$\sigma_0 = \sigma_1$$

$$-\frac{(x-\mu_1)^2}{2\sigma^2} - \ln\sqrt{2\pi}\sigma + \ln p_1 \ge -\frac{(x-\mu_0)^2}{2\sigma^2} - \ln\sqrt{2\pi}\sigma + \ln p_0$$

 \triangleright We get a linear decision boundary: $bx + c \ge 0$

Visualizing Decision Boundaries

- > Are all the covariance matrices modeled separately?
 - If separate, the decision boundaries are quadratic.
 - If shared, the decision boundaries are linear.

Quadratic decision boundary

Linear decision boundary

Summary of GDA

> It is a generative approach, assuming the data modeled by

$$p(\mathbf{x}, y) = p(\mathbf{x} \mid y)p(y)$$

- Assume that $p(\mathbf{x} \mid y)$ is a Gaussian distribution.
- The parameters are determined by maximum likelihood estimation.

Decision boundary

- In general, it shows quadratic functions.
- It is linear under various assumptions about Gaussian covariance matrices.
 - Single arbitrary matrix, i.e., linear discriminant analysis
 - Single or multiple diagonal matrices

Discussion on GDA

Recap: Naïve Bayes

> Assume that each feature is independent give the class.

$$p(\mathbf{x} \mid y = k) = \prod_{i=1}^{d} p(x_i \mid y = k)$$

- > When the likelihoods are Gaussian, how many parameters are necessary for Naïve Bayes classifiers?

► It is equivalent to assuming
$$\Sigma_i$$
 is diagonal.

• The other parts in the covariance matrix are zero.

$$\begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{bmatrix}$$

Gaussian Naïve Bayes

> It assumes that the likelihoods are Gaussian.

$$p(x_i | y = k) = \frac{1}{\sqrt{2\pi}\sigma_{ik}} \exp\left[\frac{-(x_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right]$$

- It is just 1-dim Gaussian, one for each input dimension.
- Model the same as GDA with diagonal covariance matrix.

> Maximum likelihood estimate of parameters

$$\mu_{ik} = \frac{\sum_{j=1}^{n} \mathbb{I}\left[y^{(j)} = k\right] \cdot x_i^{(j)}}{\sum_{j=1}^{n} \mathbb{I}\left[y^{(j)} = k\right]} = \frac{\sum_{j:y^{(i)} = k} x_i^{(j)}}{\text{\# of training samples in class } k}$$

$$\sigma_{ik}^{2} = \frac{\sum_{j=1}^{n} \mathbb{I}\left[y^{(j)} = k\right] \cdot \left(x_{i}^{(j)} - \mu_{ik}\right)^{2}}{\sum_{j=1}^{n} \mathbb{I}\left[y^{(j)} = k\right]} = \frac{\sum_{j:y^{(i)} = k} \left(x_{i}^{(j)} - \mu_{ik}\right)^{2}}{\text{# of training samples in class } k}$$

Decision Boundary: Isotropic

- > Same variance across all classes and input dimensions.
 - All class priors are equal.

> Classification only depends on the distance to the mean.

GDA vs. Logistic Regression (LR)

> If assuming $\Sigma_0 = \Sigma_1 = \Sigma$ in GDA, the conditional distribution for a linear decision boundary can be represented by

$$p(y \mid \mathbf{x}) = \sigma[bx + c] = \frac{1}{1 + \exp(-bx + c)}$$

- > It looks very similar to logistic regression.
 - Note that we only consider the conditional probability, not the joint probability.
- When should we prefer GDA to LR and vice versa?

Various GDA vs. Logistic Regression

Covariance matrices are different.

Covariances are zero.

Covariance matrices are same.

Summary: GDA vs. LR

- > GDA makes a stronger assumption than LR.
 - When data follows this assumption, GDA can be better than LR.
 - With shared covariance, it collapses to logistic regression similarly.
- > However, LR is more robust and less sensitive to incorrect modeling assumptions.
 - When distributions are non-Gaussian, LR usually beats GDA.
- > The generative models tend to address a hard problem to solve an easy problem.
 - It is useful if the assumption for data distribution holds.

Q&A

Central Limit Theorem (CLT)

> The sampling distribution is approximately normally distributed if the sample size is large enough (e.g., 30).

