Probability Theory & Statistics

Innopolis University, BS-I,II Spring Semester 2016-17

Lecturer: Nikolay Shilov

Part I

RANDOM VARIABLES AND THEIR DISTRIBUTIONS

For sake of simplicity...

- Let us concentrate one-dimension case (R) but please keep in mind that 2D (R²), 3D (R³) and higher dimensional cases are very similar.
- Exercise: draw 1D, 2D, 3D and 4D cubes in R².
- Evening suggestion: read and enjoy Flatland: A Romance of Many Dimensions, a story (1884) by the English schoolmaster Edwin Abbott.
- Alternative: find and watch a movie inspired by the story!

Update on random variable (definition)

- In particular: a discrete random variable is any (total) real function on finite domain $X:\Omega \to R$. (Ref. Lecture for week 6.)
- In general: a random variable is any (total) function $X:\Omega \rightarrow \mathbb{R}$ that range (co-domain) is an interval of real numbers (finite or infinite).

Example

- Consider all circles
 within a circle region
 of radius R on the
 Euclidean plane.
- A random variable S assigning area to each of these circles.

Discrete probability distribution (recall from lecture 6)

• Every discrete random variable defines probability mass function P_X and cumulative distribution function

$$F_X(x) = P_X(X \le x) = \sum_{y \le x} P_X(y).$$

Cumulative probability distribution

- Assume that
 - the domain of a random variable X is the sample space of some probability space with probability function P,
 - —and for each $x \in R$ the pre-image of $(-\infty,x]$ is an event in this space;
- then (cumulative probability) distribution function (CDF) is the following function $\Phi: R^+ \rightarrow [0,1]$ defined as $\Phi(x) = P(-\infty < X < x)$.

Probability Space Definition (recall from week 11)

- A probability space is a triple (Ω, \mathcal{F}, P) where
 - $-\Omega$ is a finite event/sample space,
 - $-\mathcal{F}\subseteq 2^{\Omega}$ is the set of events,
 - -and P: $\mathcal{F} \rightarrow [0,1]$ a (total) probability function satisfying *axioms*.

Probability Axioms (recall from week 11)

- Non-negativity: 0≤P(A) for every event;
- Normalization: $P(\Omega)=1$;
- Countable additivity: $P(\bigcup_{k \in \mathbb{N}} A_k) = \sum_{k \in \mathbb{N}} P(A_k)$ assuming all events are pair-wise exclusive.

A variant of event space in the circle example

- Let basic event be a set of circles with radiuses r that fill some range interval ([r₁,r₂]).
- Let event be any countable set of basic events with disjoint range

A variant of probability function in the circle example

- Let P for a basic
 event with range
 interval ([r₁,r₂]) be
 |r₂-r₁|/R.
- Expand the probability function on events by countable additivity $P(\bigcup_{k\in\mathbb{N}}A_k)=\sum_{k\in\mathbb{N}}P(A_k).$

Probability distribution function in the circle example

Properties of distribution function of a random variable

- If $\Phi: \mathbb{R}^+ \to [0,1]$ is the distribution probability function for a random variable X then
 - $-\Phi(a) \le \Phi(b)$ for all a \le b (monotonicity);
 - $-\Phi(-\infty)$ =0 and $\Phi(\infty)$ =1;
 - $-P(a \le X < b) = \Phi(b) \Phi(a)$ for all $a \le b$.

Part II

CONTINUOUS DISTRIBUTIONS AND PROBABILITY DENSITY

Continuous random variables and their distributions

- if distribution Φ of a random variable X is a continuous function then
 - —the distribution Φ is called a *continuous* distribution and
 - —the variable X is called a continuous random variable.
- If Φ is a continuous distribution than Φ(a)=0 for all a∈R.

Example of non-continuous distribution

• Let Ω =[0,1) and X= Geom(p) be the staircase function (ref. lecture 7):

$$X(t)=k \text{ on } [(1-q^{(k-1)}p), (1-q^kp)).$$

Example of non-continuous distribution (cont.)

• Then distribution Φ for X with p=1/3 is depicted below:

Back to probability distribution in the circle example

• Distribution Φ for circle example in case R=1:

When distribution is differentiable...

• If
$$\Phi(x) = \int_{\infty} \varphi(t)dt$$
 then

 $-\phi(x) = \Phi'(x)$ and $\phi(x)$ is called *probability* density function (PDF); b $-P(a \le X < b) = \Phi(b) - \Phi(a) = \int_{a}^{b} \varphi(t) dt$ for all $a \le b$.

Probability density function in the circle example

$$\Phi(s) = \begin{cases} 1, & \text{if } s > \pi R^2; \\ (s/\pi R^2)^{1/2}, & \text{if } 0 < s \le \pi R^2; \\ 0, & \text{if } s \le 0; \end{cases}$$

$$\varphi(s) = \begin{cases} 0, & \text{if } s > \pi R^2; \\ 1/[2R(\pi s)^{1/2}], & \text{if } 0 < s \le \pi R^2; \\ 0, & \text{if } s \le 0. \end{cases}$$

Probability distribution in the circle example revised

Since the area of the red region where can be placed the center of a circle with area s is

$$\pi R^2 - 2R\sqrt{\pi s} + s$$

Probability distribution in the circle example revised (cont.)

hence $\varphi(s) = \frac{\pi R^2 - 2R\sqrt{\pi s} + s}{\pi R^2}$ may be adopted as a probability density function.

• Exercises:

- draw graph of the probability density;
- find the probability distribution;
- draw graph of the probability distribution.

Moments of a random variable with probability density

- Let k>0 be an integer and X be a continuous random variable with distribution $\Phi(x)$ and density $\phi(x)$.
- Hint: think interval $[x, x+\Delta x]$ as a "fat real value" (with intention $\Delta x \rightarrow 0$) and probability $\phi(x)^*\Delta x$ in the definition of k-th moment $M(X^k) = \sum_{x \in R} x^k * (\phi(x)^*\Delta x).$

Moments of a random variable with probability density

- Then
 - -k-th (initial) moment of X must be defined as

$$M(X^k) = \int_{-\infty}^{\infty} x^k \varphi(x) dx$$

— and k-th central moment — as

$$M[(X - E(X))^k] = \int_{-\infty}^{\infty} [x - E(X)]^k \varphi(x) dx$$

Variance

In particular, variance is the second central moment, i.e.

$$D(X) = M[(X - E(X))^{2}] = \int_{-\infty}^{\infty} [x - E(X)]^{2} \varphi(x) dx$$

• Exercise: prove that $D(X) = M(X^2) - [M(X)]^2$.

Part III

NORMAL DISTRIBUTION AND CENTRAL LIMIT THEOREM

The standard normal distribution: PDF

The standard normal distribution has the probability density function

$$\varphi_0(x) = e^{-x^2/2} / \sqrt{2\pi}$$

(please r lecture 9).

https://en.wikipedia.org/wiki/ File:Normal Distribution PDF.svg

The standard normal distribution: PDF

The standard normal distribution has the probability density function

$$\varphi_0(x) = e^{-x^2/2} / \sqrt{2\pi}$$

(please refer to Moivre-Laplace theorems in lecture 9).

https://en.wikipedia.org/wiki/ File:Normal Distribution PDF.svg

Exercises (with a non-trivial part)

Prove that:

$$-\int_{-\infty}^{\infty} \varphi_0(x)dx = 1$$
 What are these integrals for (in terms of) the standard normal distribution?

Normal (Gaussian) distribution: PDF

Every normal distribution is a version of the standard one with stretched domain with factor σ and then translated by μ :

$$f(x \mid \mu, \sigma^2) = \varphi_0 \left(\frac{x - \mu}{\sigma} \right) /$$

https://en.wikipedia.org/wiki/ File:Normal Distribution PDF.svg

Exercises (simple this time)

Prove that:

$$-\int_{-\infty}^{\infty} f(x|\mu,\sigma^2)dx = 1$$

$$-\int_{-\infty}^{\infty} xf(x|\mu,\sigma^2)dx = \mu$$

$$-\int_{-\infty}^{\infty} x^2 f(x|\mu,\sigma^2)dx = \sigma^2$$

What are these integrals for (in terms of) the normal distribution?

Normal (Gaussian) distribution: CDF

If
$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 then
$$\Phi(x) = \int_{-\infty}^{x} \varphi(t)dt = \frac{1}{2} + \Phi_0\left(\frac{x-\mu}{\sigma}\right)$$

where function Φ_0 is defined in lecture 9.

https://en.wikipedia.org/wiki/
File:Normal Distribution CDF.svg

Notation

- $X = N(\mu, \sigma^2)$ means that X is a random variable with normal distribution.
- In particular: X=
 N(0,1) means that X
 has the standard
 normal distribution.

Central Limit Theorem

- Let X_1 , X_2 , ... be an infinite sequence of IID (i.e. independent and identically distributed) random variables with a finite expectation μ and finite non-zero deviation σ .
- Let $S_n = X_1 + ... + X_n$.
- Then $\frac{S_n n\mu}{\sigma\sqrt{n}}$ converges in distribution to N(0,1) (as $n \to \infty$).

Why???

• De Moivre-Laplace theorems: for every series of Bernoulli trials $X_1, ... X_n, ...$ where $X_n = binomial(n, p)$ and 0

$$\frac{X_n - np}{\sqrt{npq}} \xrightarrow{n \to \infty} N(0,1)$$

• Khintchin's law of large numbers: for every X_1 , X_2 , ... sequence of IID random variables with expectation μ and deviation $\sigma \neq 0$, for every $\epsilon > 0$ the probability $P(|X_n - \mu| > \epsilon) \rightarrow 0$.

IID's can't be "very random" but must form a *fractal*

68-95-99.7 rule

- The 68–95–99.7 rule is a shorthand to remember the percentage of values that lie within a band around the mean in a normal distribution:
 - -68.27%,
 - -95.45% and
 - -99.73%

of the values lie within distance σ , 2σ and 3σ of the mean μ .

Toward 68-95-99.7 rule

• If $X=N(\mu,\sigma^2)$ then

P(a≤X≤b) =
$$\Phi$$
(b) – Φ (a) =
= (1/2 + Φ ₀[(b- μ)/ σ]) – ([1/2 + Φ ₀[(a- μ)/ σ]) =
= Φ ₀[(b- μ)/ σ] – Φ ₀[(a- μ)/ σ];

In particular, for any k>0:

$$\begin{split} P(|X - \mu| < k\sigma) = \\ &= P(\mu - k\sigma < X < \mu + k\sigma) = \\ &= \Phi_0(k) - \Phi_0(-k) = 2\Phi_0(k). \end{split}$$

68-95-99.7 rule

According to lecture 9:

X	0	0.5	1	1.5	2	2.5	3
Φ_0	0	0.192	0.341	0.433	0.477	0.494	0.499

• In particular – правило трех сигм:

$$P(|X - \mu| < 3\sigma) \approx 0.998.$$