Вспоминаем основы тригонометрии

Внимание! Перед изучением этой информации настоятельно рекомендую ПОЛНОСТЬЮ прочитать пункт V Приложения Школьные материалы.

Итак, начнём с угла. **Угол** – это геометрическая фигура, образованная двумя *луча- ми*, исходящими из одной точки. Заметьте, что эта конструкция задаёт два угла (зелёная и малиновая стрелки), но из контекста задач обычно понятно, о каком угле идёт речь.

Обозначения: $\angle O$, $\angle AOB$, маленькие греческие буквы α , β , γ , ϕ , φ и др. Существуют и другие способы.

Угол чаще отсчитывают **против часовой стрелки**, такой порядок называют положительным направлением отсчёта или положительной ориентацией угла. «Открутку» угла можно провести и в противоположном направлении —

от луча OB к лучу OA, в результате получится отрицательно ориентированный угол. К такому углу добавляется знак «минус», так, если $\varphi = 30^\circ$, то $-\varphi = -30^\circ$. Во многих задачах ориентация угла не имеет значения и его принимают положительным.

Углы измеряют в градусах, радианах и более редких единицах. В высшей математике в ходу радианы, и немногие помнят, что это такое. Изобразим на чертеже окружность произвольного радиуса $r \neq 0$ с центром в точке O:

Радиан — это угол α , **такой**, что длина *дуги* $\widehat{A}B$ (малиновый цвет), **равна** радиусу r окружности. Радиан не зависит от радиуса окружности и примерно равен $\alpha \approx 57^{\circ}$.

Радианная мера угла — это **отношение** длины дуги \hat{l} между сторонами угла к радиусу окружности: $\alpha_{pab} = \frac{\left|\hat{l}\right|}{r}$. Выясним, сколько радиан содержит, например, passephymbi угол $\angle AOC = 180^\circ$. Из известной формулы длины окружно-

сти $L=2\pi\cdot r$ следует, что длина верхней *полуокружности* равна $|\widehat{A}C|=\pi\cdot r$, таким обра-

зом, в **180 градусах содержится**: $\alpha_{pa\hat{o}} = \frac{\left| \widehat{A}C \right|}{r} = \frac{\pi \cdot r}{r} = \pi \approx 3,14$ радиан. Соответственно, полный оборот (360°) включает в себя $2\pi \approx 6,28$ радиан (примерно 6,28 углов α).

Для перевода градусов в радианы удобно использовать формулу $\alpha_{pao} = \frac{\alpha_{cpao} \cdot \pi}{180}$. Переведём в радианы, например, угол $\alpha_{cpao} = 30^\circ$: $\alpha_{pao} = \frac{30 \cdot \pi}{180} = \frac{\pi}{6}$ радиан.

Обратно, радианы переводятся в градусы по формуле: $\alpha_{\it град} = \alpha_{\it рад} \cdot \frac{180}{\pi}$. Например, переведём в градусы $\alpha_{\it pad} = \frac{\pi}{3}$: $\alpha_{\it град} = \frac{\pi}{3} \cdot \frac{180}{\pi} = 60^\circ$.

В высшей математике почти все вычисления проводятся в радианах, поэтому первая формулу более актуальна.

В Приложении **Школьные материалы** (п. V) были определены синус, косинус, тангенс и котангенс острого угла и сейчас мы распространим эти отношения на произвольный угол. Изобразим на чертеже декартову систему координат и окружность единичного радиуса r = 1 (можно взять любой ненулевой радиус) с центром в начале координат:

Рассмотрим **произвольную** точку $M(\widetilde{x},\widetilde{y})$, принадлежащую окружности, и *положительно ориентированный* угол $\alpha = \angle AOM$ (зелёная стрелка).

Синусом угла α называют отношение $op \partial u$ наты точки M к радиусу окружности: $\sin \alpha = \frac{\widetilde{y}}{r}$.

Косинусом угла α называют отношение $a \delta c$ -*циссы* точки M к радиусу окружности: $\cos \alpha = \frac{\widetilde{x}}{r}$.

Тангенс угла α — есть отношение $\operatorname{tg}\alpha = \frac{\widetilde{y}}{\widetilde{x}}$ (если $\widetilde{x} \neq 0$), и котангенс: $\operatorname{ctg}\alpha = \frac{\widetilde{x}}{\widetilde{y}}$ (если $\widetilde{y} \neq 0$).

Так, **углам** 0°, 360°, 720°, ... (да-да, угол можно «накручивать» и дальше!) соответствуют точка A(1,0), и поэтому: $\sin 0 = \frac{0}{1} = 0$, $\cos 0 = \frac{1}{1} = 1$, $\operatorname{tg} \alpha = \frac{0}{1} = 0$, и котангенса не существует, ибо ордината этой точки равна нулю.

Углу $\angle AOB = \frac{\pi}{2}$ (90°) соответствует точка B(0,1), следовательно:

$$\sin \frac{\pi}{2} = \frac{1}{1} = 1$$
, $\cos \frac{\pi}{2} = \frac{0}{1} = 0$, тангенса не существует, $\cot \frac{\pi}{2} = \frac{0}{1} = 0$.

Углу $\angle AOC = \frac{2\pi}{3}$ (120°) соответствует точка $C\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, следовательно:

$$\sin\frac{2\pi}{3} = \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2}, \ \cos\frac{2\pi}{3} = \frac{-\frac{1}{2}}{1} = -\frac{1}{2}, \ \ \text{tg} \frac{2\pi}{3} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}, \ \ \text{ctg} \frac{2\pi}{3} = -\frac{1}{\sqrt{3}}$$

Угол $\angle AOD = \pi$ (180°) — самостоятельно (сверьтесь по таблице ниже).

Аналогично для отрицательно ориентированных углов. В частности, углу $\angle AOE = -\frac{\pi}{2}$ (-90°) (красная стрелка на чертеже), соответствует точка E(0,-1), следовательно: $\sin\left(-\frac{\pi}{2}\right) = \frac{-1}{1} = -1$, $\cos\left(-\frac{\pi}{2}\right) = \frac{0}{1} = 0$, тангенса не существует, $\operatorname{ctg}\left(-\frac{\pi}{2}\right) = \frac{0}{1} = 0$. Если к этому углу прибавить 2π (оборот), то получится угол в $\frac{3\pi}{2}$ радиан (270 градусов) с теми же самыми значениями синуса, косинуса и котангенса.

В курсе математического анализа рассматриваются непрерывные функции $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$, аргументы которых («иксы») измеряются в радианах

Эти функции определены для любого допустимого угла «икс» и периодичны:

1. График функции $y = \sin x$ называется синусоидой:

При его ручном построении следует проявить аккуратность, поскольку $\pi \approx 3,14$.

2. График $y = \cos x$ представляет собой синусоиду, сдвинутую на $\frac{\pi}{2}$ влево:

Синус и косинус *ограничены* и могут принимать значения лишь из отрезка[0;1]:

$$-1 \le \sin x \le 1$$
, $-1 \le \cos x \le 1$

3-4. График тангенса y = tgx *(слева)* и котангенса y = ctgx:

В точках, через которые проходят пунктирные асимптоты, функции не определены.

При построении графиков желательно находить дополнительные опорные точки, в частности, для тангенса и котангенса таковыми являются:

$$tg\left(-\frac{\pi}{4}\right) = -1, \ tg\frac{\pi}{4} = 1, \ ctg\frac{\pi}{4} = 1, \ ctg\frac{3\pi}{4} = -1.$$

Для нахождения значений тригонометрических отношений / функций удобно использовать специальную таблицу:

Таблица значений тригонометрических функций:

	Аргумент x (угол φ)																
Функция	0	$\frac{\pi}{6}$ 30°	$\frac{\pi}{4}$ 45°	$\frac{\pi}{3}$ 60°	$\frac{\pi}{2}$ 90°	$\frac{2\pi}{3}$ 120°	$\frac{3\pi}{4}$ 135°	$\frac{5\pi}{6}$ 150°	π 180°	$\frac{7\pi}{6}$ 210°	$\frac{5\pi}{4}$ 225°	$\frac{4\pi}{3}$ 240°	$\frac{3\pi}{2}$ 270°	$\frac{5\pi}{3}$ 300°	$\frac{7\pi}{4}$ 315°	$\frac{11\pi}{6}$ 330°	2π 360°
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tgx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	I	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
ctgx	I	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_

Примечание: прочерк «–» означает, что этого значения функции / отношения не существует.

Запоминать эти значения без надобности не нужно, но полезно помнить, что:

$$\sin 0 = 0$$
, $\sin \frac{\pi}{2} = 1$, $\cos 0 = 1$, $\cos \frac{\pi}{2} = 0$ (см. чертежи выше), это ускорит решение заданий.

Если вам попался «плохой» угол (которого нет в таблице), то значение функции следует вычислить приближенно, например, с помощью *Приложения Алгебраический Калькулятор*: $\sin \frac{\pi}{13} \approx 0.24$, $\operatorname{tg} \frac{7\pi}{5} \approx 3.08$ и так далее (в Экселе число «пи» обозначается так: $\Pi U()$).

Важно! Синус и косинус могут принимать значения лишь от –1 до +1 включительно, и если у вас получилось другое число, ищите ошибку. Тангенс и котангенс могут быть любыми – от «минус» до «плюс» бесконечности.

Обратная задача: как найти угол, если известен его синус, косинус, тангенс или котангенс?

С помощью обратных функций: арксинуса, арккосинуса, арктангенса и арккотангенса:

 $x = \arcsin y$, $x = \arccos y$, $x = \operatorname{arcctgy}$, при этом в общем случае ориентироваться на вышеприведенную таблицу нельзя!!!

Ориентируйтесь на таблицу и информацию, которая приведена ниже:

Таблица значений обратных тригонометрических функций:

	37	Аргумент у (значение синуса, косинуса, тангенса или арктангенса)												
	Угол x =	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\sqrt{3}$
	arcsin y		$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	###	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	###	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	
	arccos y		π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	###	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	###	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	
	arctgy	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	###	###	$-\frac{\pi}{6}$	###	0	###	$\frac{\pi}{6}$	###	###	$\frac{\pi}{4}$	$\frac{\pi}{3}$
	arcctgy	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	###	###	$\frac{2\pi}{3}$	###	$\frac{\pi}{2}$	###	$\frac{\pi}{3}$	###	###	$\frac{\pi}{4}$	$\frac{\pi}{6}$

Например, $\arccos\left(-\frac{\sqrt{2}}{2}\right) = \frac{3\pi}{4}$, $\operatorname{arcctg} \frac{\sqrt{3}}{3} = \frac{\pi}{3}$ и так далее. Внимание! Углы выражены в радианах и только в них!

Значком «###» обозначены «плохие» углы, которые следует вычислить приближённо с помощью калькулятора:

$$\arctan\left(-\frac{\sqrt{3}}{2}\right) \approx -0.71$$
 радиан (!)

То же самое касается значений «игрек», которых нет в таблице, например:

$$\arcsin \frac{1}{3} \approx 0.34$$
 радиан

Аргумент арксинуса и арккосинуса может быть лишь из промежутка $-1 \le y \le 1$!

Аргументы арктангенса и арккотангенса могут быть любыми.