Machine Learning Project Procedure

Exploratory Data Analysis

- Data Visualization
- Descriptive Statistics
- Data Processing
 - Treat outliers
 - Treat missing values
 - Re-Categorize/Regroup values
 - E.g. Airlines: Korean Carriers vs. Foreign Carriers
 - E.g. Age: less than 50, 50 or more
 - E.g. Trip Purpose: Business, Leisure

 EDA (especially data processing) may determine overall results and quality of the project.

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Missing Values

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases
 (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

Modeling

- Description Methods
 - Find human-interpretable patterns that describe the data
 - Vs. prediction methods
 - Purpose of this study is not prediction.
- Classification Problem
 - Dependent (y) variable is categorical.
 - Airport choice
 - · Airline choice
 - Vs. regression problem

Methodologies

- Discrete Choice Models: Traditional approach (Econometrics)
 - Logit (Logistic regression)
 - Multinomial Logit
- Data Mining Models (You can explore other models as well.)
 - Decision Tree
 - Neural Networks*
 - Support Vector Machines*

Variable Selection Procedure

- Iterative Approach
 - Stepwise
 - Forward selection
 - Backward selection
- Best-subset approach

one independent variable at a time is added or deleted based on selected measures (p-value, *F* statistic, R², ...)

Different subsets of the independent variables are evaluated

Variable Selection Procedure

- General tips on initial model building
 - Visualization and simple exploratory data analysis help a lot to identify key independent variables.
 - Correlation analysis and ANOVA can be used to identify initial set of independent variables.
 - Numerical dependent variable: High correlations between dependent and independent variables
 - Classification problem: ANOVA test

Model Evaluation for Statistical Models

- AIC, BIC, adjusted R²
 - Can be used to measure training and test errors
 - often used for model selection on training data sets.
 - Usually works for statistical models
 - Regression
 - Logit models (logistic regression)
 - Other variations of linear models such as discrete choice models (multinomial logit, nested logit, mixed logit)

AIC, BIC, Adjusted R²

AIC (Akaike Information Criterion)

$$AIC = -2\log L + 2 \cdot d$$

- d: # of parameters, L: likelihood
 - The AIC criterion is defined for a large class of models fit by maximum likelihood.
- BIC (Bayesian information criterion)

$$\mathrm{BIC} = \frac{1}{n} \left(\mathrm{RSS} + \log(n) d\hat{\sigma}^2 \right)$$
 – RSS: Iesiuuai suiti vi squares

- - BIC will tend to take on a small value for a model with a low test error, and so generally we select the model that has the lowest BIC value

AIC, BIC, Adjusted R²

adjusted R²

Adjusted
$$R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$
.

- TSS: total sum of squares
- Unlike the R² statistic, the adjusted R² statistic pays a price for the inclusion of unnecessary variables in the model.

Model Evaluation for Classification

Confusion Matrix:

- Can be used to measure training and test accuracy
- Usually requires hold-out (test) dataset

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Validation

- Holdout method
- Cross validation
 - Random subsampling
 - K-fold cross validation

Holdout Method

- Split dataset into two groups
 - Training set
 - Test set

Drawback

- In problems where we have a sparse dataset we may not be able to afford the "luxury" of setting aside a portion of the dataset for testing
- Since it is a single train-and-test experiment, the holdout estimate of error rate will be misleading if we happen to get an "unfortunate" split

Random Subsampling

- Random Subsampling performs K data splits of the entire dataset
 - Each data split randomly selects a (fixed) number of examples without replacement

Error estimate E: average of the separate errors E_i

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

K-fold Cross Validation

- Create a K-fold partition of the dataset
 - For each of K experiments, use K-1 folds for training and a different fold for testing

- all the examples in the dataset are eventually used for both training and testings
- Error estimate E: average of the separate errors E;

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

How many folds are needed?

- With a large number of folds
 - (+) The bias of the true error rate estimator will be small (the estimator will be very accurate)
 - (-) The variance of the true error rate estimator will be large
 - (-) The computational time will be very large as well (many experiments)
- The choice of the number of folds depends on the size of the dataset
 - For large dataset, smaller K may be enough.
- A common choice for K-Fold Cross Validation is K=10