E7020e

HARDWARE

OTHER DEVICE

OTHER DEVICE

PROBLEM

PROBLEM

SENSOR

SENSOR

PMW3389

System-on-a-Chip (SoC)
IR LED + Camera + DSP
SPI communication

SENSOR

MOTION DATA

USB POWER 5V

SPI -> USB MCU

HARDWARE DESIGN PROCESS

"Single chip computer"
CPU
Memory
Peripherals
GPIO

GPIO

"General purpose input/output"

Voltage levels to represent bits/booleans

Tri-state: Low/Hi/Hi-Z (floating)

INPUTS:

Active low / active high Pull up/down resistors (/internal)

OUTPUTS:

Push-pull
Open drain
Pull-up resistor

Open drain output

Push-pull output ("totem-pole")

GPIO

RATINGS

Max current (sink/source)
Max voltage (5v tolerant?)
Input/output resistance
Capacitance
Rise/fall time

GPIO

Associated special functionality

Peripherals

"INTERFACES TO OUTSIDE WORLD"

UART / SERIAL

SPI

I2C

USB

TIMER

PWM

QUADRATURE DECODER

. .

Table 9. Alternate	function	mapping
--------------------	----------	---------

Port	Bost .	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	
	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	12C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO				
+	PA0	-	TIM2_CH1/ TIM2_ETR	TIM5_CH1	-	-	-	-	USART2_ CTS	-	-	-	-	-	-	-	E
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_ RTS	-	-	-	-	-	-	-	E
	PA2	-	TIM2_CH3	тім5_СН3	TIM9_CH1	-	-	-	USART2_ TX	-	-	-	-	-	-	-	E
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-		-	USART2_ RX	-	-	-	-	-	-	-	E
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	USART2_ CK	-	-	-	-	-	-	-	E
	PA5	-	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_SCK	-	-	-	-	-	-	-	-	-	E
	PA6	-	TIM1_BKIN	TIM3_CH1	-	-	SPI1_ MISO	-	-	-	-	-	-	-	-	-	E
	PA7	-	TIM1_CH1N	TIM3_CH2	-	-	SPI1_ MOSI	-	-	-	-	-	-	-	-	-	E
	PA8	MCO_1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_ CK	-	-	OTG_FS_ SOF	-	-	-	-	E
	PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	-	-	USART1_ TX	-	-	OTG_FS_ VBUS	-	-		-	E
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_ RX	-	-	OTG_FS_I	-	-	-	-	E
	PA11	-	TIM1_CH4	-	-	-	-	-	USART1_ CTS	USART6_ TX	-	OTG_FS_ DM	-	-	-	-	E
	DA42		TIM4 ETD						USART1_	USART6_		OTG_FS_					E

MCU

STM32F411
ARM Cortex M4F
SPI Peripheral
USB PHY

STM32F411

STM CubeMX Software

SPI

SCK

MISO

MOSI

NCS

USB D+ D-

SPI2_SCK

POWER SUPPLY UNIT (PSU)

SOURCE

AC/DC?

Voltage? (+/- tolerance?)

Current? (battery?)

DESTINATION

Voltage? (+/- tolerance?)

Current draw?

Noise?

Heat?

Efficiency?

Reliability?

Space constraints?

Cost?

POWER SUPPLY UNIT (PSU) VOLTAGE REGULATORS

LINEAR REGULATOR SWITCHING REGULATOR

POWER SUPPLY UNIT (PSU) LINEAR REGULATOR

"3-terminal" device (in, out, ref) Fixed/adjustable output voltage

Vin >= Vout + Vdropout
Low dropout regulator (LDO)

V_{IN}

| V_{OUT} | V_{IN} | IN OUT | AP7361C | R1 | C_{OUT} | 4.7 µF | C_{IN} | AP7361C | C_{OUT} | 4.7 µF | C_{IN} | AP7361C | C_{OUT} | AP7361C | C_{OUT}

PROS:

Low noise

Good line/load regulation

Cheap

CONS:

Excess voltage → HEAT

POWER SUPPLY UNIT (PSU) SWITCHING REGULATOR

BUCK (higher voltage → lower voltage)

BOOST (lower voltage → higher voltage)

INVERTING

Transistor as switch \rightarrow Low loss

PROS:

(Generally) higher efficiency

"trades voltage for current"

Can provide ISOLATION

Can generate INVERTED voltage

CONS:

More complicated

(ready-made on-board-modules available)

Higher ripple/noise (LC filtering)

EMI

Load regulation

POWER DISTRIBUTION NETWORK

DECOUPLING

LOW INDUCTANCE POWER SOURCE STABLE SUPPLY VOLTAGE PREVENT UNDEFINED BEHAVIOUR

HARDWARE DESIGN PROCESS

POWER DISTRIBUTION NETWORK

DECOUPLING

LOW INDUCTANCE POWER SOURCE STABLE SUPPLY VOLTAGE PREVENT UNDEFINED BEHAVIOUR

LOW INDUCTANCE

"Large enough" capacitance

$$C > \frac{\Delta Q}{\Delta V} = \frac{I\Delta t}{\Delta V}$$

POWER SUPPLY UNIT (PSU)

DESTINATION I: MCU

STM32F411

Vdd = 1.7 - 3.6VI(max) = 160mA

= 3.3V

POWER SUPPLY UNIT (PSU)

SOURCE

AC/DC?

Voltage? (+/- tolerance?)

Current? (battery?)

DESTINATION

Voltage? (+/- tolerance?)

Current draw?

Noise?

Heat?

Efficiency?

Reliability?

Space constraints?

Cost?

LDO

POWER SUPPLY UNIT (PSU)

DESTINATION 2: SENSOR SoC

PMW3389

Vddio = 1.8 - 3.6V

= 3.3V

Vdd = 1.8 - 2.1V I(max) = 21mA = 1.9V

POWER SUPPLY UNIT (PSU)

SOURCE

AC/DC?

Voltage? (+/- tolerance?)

Current? (battery?)

DESTINATION

Voltage? (+/- tolerance?)

Current draw?

Noise?

Heat?

Efficiency?

Reliability?

Space constraints?

Cost?

LDO

INTERNAL (HSI/LSI)

RC OSCILLATOR LOW ACCURACY

EXTERNAL (HSE/LSE)

QUARTZ CRYSTAL HIGH ACCURACY TEMPERATURE STABILITY

CRYSTAL OSCILLATOR

QUARTZ CRYSTAL

PIERCE OSCILLATOR

$$CI = C2 = 2 \times (Cload - Cstray)$$

S_JTCK-SWCLK

STM32F411

Additional connections

NRST

Reset pin
Active low
Internal pull-up
Button shorts to GND
Bypass capacitor

BOOT0

DFU mode Jumper to Vdd

SWCLK SWDIO

