Sequential Circuit Waveform

State Machine Analysis

Input signals?

Output signals?

What are the states?

How many flip-flops?

State Table

CURR STATE		INPUT A	NEXT STATE	OUTPUT Y
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Memory

What is the memory's capacity?

How do you write to a location?

How do you read from a location?

FSM Design

Draw a state diagram for an FSM that will flash a light in two repeating sequences, either OFF-**ON**-... or OFF-OFF-OFF-**ON**-... (i.e., $\frac{1}{2}$ or $\frac{1}{4}$ time)

Inputs:

- FLASH flash light if 1, leave light ON constantly otherwise (always finish current flash sequence)
- SLOW flash ¼ time if 1, ½ time otherwise (ignore SLOW except when starting a flash sequence)

Output:

• LIGHT - light is ON if 1, OFF if 0

Example Waveform

State Diagram