HCS08 CPU INSTRUCTION SET

Tsinghua Freescale MCU/DSP Application Center

HCS08 CPU指令表

Bit-Mani	ipulation	Branch		Rea	d-Modify-W	/rite		Cor	ntrol			Register	r/Memory		
00 5 BRSET0 3 DIR	10 5 BSET0 2 DIR	20 3 BRA 2 REL	NEG 2 DIR	40 1 NEGA 1 INH	50 1 NEGX 1 INH	60 5 NEG 2 IX1	70 4 NEG 1 IX	80 9 RTI 1 INH	90 3 BGE 2 REL	SUB	BO 3 SUB 2 DIR	SUB	SUB	E0 3 SUB 2 IX1	F0 3 SUB 1 IX
01 5 BRCLR0 3 DIR	11 5 BCLR0 2 DIR	21 3 BRN 2 REL	31 5 CBEQ 3 DIR	41 4 CBEQA 3 IMM	51 4 CBEQX 3 IMM	61 5 CBEQ 3 IX1+	71 5 CBEQ 2 IX+	81 6 RTS 1 INH	91 3 BLT 2 REL	A1 2 CMP 2 IMM	B1 3 CMP 2 DIR	C1 4 CMP 3 EXT	D1 4 CMP 3 IX2	E1 3 CMP 2 IX1	F1 3 CMP 1 IX
02 5 BRSET1 3 DIR	12 5 BSET1 2 DIR	22 3 BHI 2 REL	3CHX 3CHX	42 5 MUL 1 INH	52 6 DIV 1 INH	62 1 NSA 1 INH	72 1 DAA 1 INH	BGND 1	92 3 BGT 2 REL	A2 2 SBC 2 IMM	B2 3 SBC 2 DIR	C2 4 SBC 3 EXT	D2 4 SBC 3 IX2	E2 3 SBC 2 IX1	F2 3 SBC 1 IX
03 5 BRCLR1 3 DIR	13 5 BCLR1 2 DIR	23 3 BLS 2 REL	COM 2 DIR	43 1 COMA 1 INH	53 1 COMX 1 INH	63 5 COM 2 IX1	73 4 COM 1 IX	83 11 SWI 1 INH	93 3 BLE 2 REL	A3 2 CPX 2 IMM	B3 3 CPX 2 DIR	C3 4 CPX 3 EXT	CPX 3 IX2	CPX 2 IX1	F3 3 CPX 1 IX
04 5 BRSET2 3 DIR	14 5 BSET2 2 DIR	24 3 BCC 2 REL	34 5 LSR 2 DIR	44 1 LSRA 1 INH	54 1 LSRX 1 INH	64 5 LSR 2 IX1	74 4 LSR 1 IX	84 1 TAP 1 INH	94 2 TXS 1 INH		B4 3 AND 2 DIR	C4 4 AND 3 EXT	aND 3 IX2	E4 3 AND 2 IX1	F4 3 AND 1 IX
05 5 BRCLR2 3 DIR	15 5 BCLR2 2 DIR	25 3 BCS 2 REL	35 4 STHX 2 DIR	45 3 LDHX 3 IMM	55 4 LDHX 2 DIR	65 3 CPHX 3 IMM	75 5 CPHX 2 DIR	85 1 TPA 1 INH	95 TSX 1 INH	BIT 2 IMM	B5 3 BIT 2 DIR	C5 4 BIT 3 EXT	D5 4 BIT 3 IX2	E5 3 BIT 2 IX1	F5 3 BIT 1 IX
06 5 BRSET3 3 DIR	16 5 BSET3 2 DIR	26 3 BNE 2 REL	36 5 ROR 2 DIR	46 1 RORA 1 INH	56 1 RORX 1 INH	66 5 ROR 2 IX1	76 4 ROR 1 IX	86 3 PULA 1 INH	96 5 STHX 3 EXT	LDA 2 IMM	B6 3 LDA 2 DIR	LDA 3 EXT	LDA 3 IX2	E6 3 LDA 2 IX1	F6 3 LDA 1 IX
07 5 BRCLR3 3 DIR	17 5 BCLR3 2 DIR	27 3 BEQ 2 REL	37 5 ASR 2 DIR	47 1 ASRA 1 INH	57 1 ASRX 1 INH	67 5 ASR 2 IX1	77 4 ASR 1 IX	87 2 PSHA 1 INH	97 1 TAX 1 INH	AIS	B7 3 STA 2 DIR	C7 4 STA 3 EXT	D7 4 STA 3 IX2	E7 3 STA 2 IX1	F7 2 STA 1 IX
08 5 BRSET4 3 DIR	18 5 BSET4 2 DIR	28 3 BHCC 2 REL	38 5 LSL 2 DIR	48 1 LSLA 1 INH	58 1 LSLX 1 INH	68 5 LSL 2 IX1	78 LSL 1 IX	88 3 PULX 1 INH	98 1 CLC 1 INH	A8 2 EOR 2 IMM	B8 3 EOR 2 DIR	C8 4 EOR 3 EXT	D8 4 EOR 3 IX2	E8 3 EOR 2 IX1	F8 3 EOR 1 IX
09 5 BRCLR4 3 DIR	19 5 BCLR4 2 DIR	29 3 BHCS 2 REL	39 5 ROL 2 DIR	49 1 ROLA 1 INH	59 1 ROLX 1 INH	69 5 ROL 2 IX1	79 4 ROL 1 IX	89 2 PSHX 1 INH	99 1 SEC 1 INH	A9 2 ADC 2 IMM	B9 3 ADC 2 DIR	C9 4 ADC 3 EXT	D9 4 ADC 3 IX2	E9 3 ADC 2 IX1	F9 3 ADC 1 IX
0A 5 BRSET5 3 DIR	1A 5 BSET5 2 DIR	2A 3 BPL 2 REL	3A 5 DEC 2 DIR	4A 1 DECA 1 INH	5A 1 DECX 1 INH	6A 5 DEC 2 IX1	7A DEC 1 IX	8A 3 PULH 1 INH	9A 1 CLI 1 INH	AA 2 ORA 2 IMM	BA 3 ORA 2 DIR	CA 4 ORA 3 EXT	DA 4 ORA 3 IX2	EA 3 ORA 2 IX1	FA 3 ORA 1 IX
0B 5 BRCLR5 3 DIR	1B 5 BCLR5 2 DIR	2B 3 BMI 2 REL	3B 7 DBNZ 3 DIR	4B 4 DBNZA 2 INH	5B 4 DBNZX 2 INH	6B 7 DBNZ 3 IX1	7B 6 DBNZ 2 IX	8B 2 PSHH 1 INH	9B 1 SEI 1 INH	AB 2 ADD 2 IMM	BB 3 ADD 2 DIR	CB 4 ADD 3 EXT	DB 4 ADD 3 IX2	EB 3 ADD 2 IX1	FB 3 ADD 1 IX
0C 5 BRSET6 3 DIR	1C 5 BSET6 2 DIR	2C 3 BMC 2 REL	3C 5 INC 2 DIR	4C 1 INCA 1 INH	5C 1 INCX 1 INH	6C 5 INC 2 IX1	TO 4 INC 1 IX	8C 1 CLRH 1 INH	9C 1 RSP 1 INH		BC 3 JMP 2 DIR	3 EXT	DC 4 JMP 3 IX2	JMP IX1	FC 3 JMP 1 IX
0D 5 BRCLR6 3 DIR	1D 5 BCLR6 2 DIR	2D 3 BMS 2 REL	3D 4 TST 2 DIR	4D 1 TSTA 1 INH	5D 1 TSTX 1 INH	6D 4 TST 2 IX1	7D 3 TST 1 IX		9D 1 NOP 1 INH	BSR 2 REL	BD 5 JSR 2 DIR	SP SXT	DD 6 JSR 3 IX2	SD 5 JSR 2	FD 5 JSR 1 IX
0E 5 BRSET7 3 DIR	1E 5 BSET7 2 DIR	2E 3 BIL 2 REL	CPHX 3 EXI	4E 5 MOV 3 DD	5E 5 MOV 2 DIX+	6E 4 MOV 3 IMD	7E 5 MOV 2 IX+D	8E 2+ STOP 1 INH	Page 2	LDX 2 IMM	BE 3 LDX 2 DIR	CE 4 LDX 3 EXT	LDX 3 IX2	LDX 2 IX1	FE 3 LDX 1 IX
0F 5 BRCLR7 3 DIR	1F 5 BCLR7 2 DIR	2F 3 BIH 2 REL	3F 5 CLR 2 DIR	4F 1 CLRA 1 INH	5F 1 CLRX 1 INH	6F 5 CLR 2 IX1	7F 4 CLR 1 IX	8F 2+ WAIT 1 INH	9F 1 TXA 1 INH	AF 2 AIX 2 IMM	BF 3 STX 2 DIR	CF 4 STX 3 EXT	DF 4 STX 3 IX2	EF 3 STX 2 IX1	FF 2 STX 1 IX

Bit-Manipulation	Branch	Re	ad-Modify-Write	Cor	ntrol			Register	Memory		
			9E60 6 NEG 3 SP1						9ED0 5 SUB 4 SP2	3 SP1	
			9E61 6 CBEQ 4 SP1						9ED1 5 CMP	9EE1 4 CMP	
									9ED2 5 SBC 4 SP2	9EE2 4 SBC	
			9E63 6 COM 3 SP1						oED2 5	9EE3 4 CPX 3 SP1 9EE4 4	9EF3 6 CPHX 3 SP1
			9E64 6 LSR 3 SP1						AND 4 SP2	3 SP1	
									9ED5 5 BIT 4 SP2	9EE5 4 BIT 3 SP1 9EE6 4	
			9E66 6 ROR 3 SP1						4 SP2	3 SP1	
			9E67 6 ASR 3 SP1						9ED7 5 STA 4 SP2	STA 3 SP1	
			9E68 6 LSL 3 SP1						9ED8 5 EOR 4 SP2	EOR 3 SP1	
			9E69 6 ROL 3 SP1						9ED9 5 ADC 4 SP2	ADC 3 SP1	
			9E6A 6 DEC 3 SP1						9EDA 5 ORA 4 SP2	ORA 3 SP1	
			9E6B 8 DBNZ 4 SP1						9EDB 5 ADD 4 SP2	IOFER 4	
			9E6C 6 INC 3 SP1								
			9E6D 5 TST 3 SP1								
						PEAE 5 LDHX 2 IX	9EBE 6 LDHX 4 IX2	9ECE 5 LDHX 3 IX1	9EDE 5 LDX 4 SP2	9EEE 4 LDX 3 SP1 9EEF 4	9EFE 5 LDHX 3 SP1
			9E6F 6 CLR 3 SP1						9EDF 5 STX 4 SP2	STX	9EFF 3 STHX 3 SP1

INH IMM	Inherent Immediate	REL IX	Relative Indexed, No Offset	SP1 SP2	Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset
DIR	Direct	IX1	Indexed, 8-Bit Offset	IX+	Indexed, No Offset with
EXT	Extended	IX2	Indexed, 16-Bit Offset		Post Increment
DD	DIR to DIR	IMD	IMM to DIR	IX1+	Indexed, 1-Byte Offset with
IX+D	IX+ to DIR	DIX+	DIR to IX+		Post Increment

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal 9E60 6 NEG Instruction Mnemonic Addressing Mode

Addressing Modes

INHERENT CLRA

IMMEDIATE LDA #\$12

DIRECT LDA \$50

EXTENDED LDA \$4000

INDEXED LDA 30000,X

LDA \$8,X+

•••••

RELATIVE BNE LOOP

INSTRUCTION SET (By Functions)

Data Movement

Arithmetic

Logical

Data Manipulation (shift)

Bit Manipulation

Program Control

Binary Coded Decimal

Special

- Load CPU Registers -

Source			I	Eff€	ct	on	CC	R	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
LDA #opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP	Load Accumulator from Memory	A <— (M)	0	l	_	У	у	ı	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
LDX #opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP	Load Index Register X from Memory	X <— (M)	0	_	_	У	у	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
LDHX #opr LDHX opr	Load Index Register H:X from Memory	H:X <— (M:M + 1)	0	ı	1	у	у		IMM DIR	3 4

- Store CPU Registers -

Source			П	ff	ec	or	C	CR	Address	Bus
Forms	Description	Operation	٧	ŀ		I N	Z	<u> </u>	Modes	Cycles
STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP	Store Accumulator in Memory	M ← (A)	0		_			у	DIR EXT IX2 IX1 IX SP1 SP2	3 4 4 3 2 4 5
STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP	Store Index Register X in Memory	M ← (X)	0	_	_			у	DIR EXT IX2 IX1 IX SP1 SP2	3 4 4 3 2 4 5
STHX opr	Store Index Register H:X in Memory	M:M+1 <- (H:X)	0	_	_	_		у	DIR	4

- Stack Operations -

Source				Eff	ect	on	C	CR	Address	Bus
Forms	Description	Operation	V	H	I	N	Z	2 (Modes	Cycles
PSHA	Push Accumulator onto Stack	Push (A); SP <- (SP -\$01)	ı	-	_	_	_	у	INH	2
PSHH	Push Index Reg H onto Stack	Push (H); SP <- (SP -\$01)	ı		_	_		у	INH	2
PSHX	Push Index Reg X onto Stack	Push (X); SP <- (SP -\$01)	l		_	_		У	INH	2
PULA	Pull Accumulator from Stack	SP <- (SP + \$01); Pull (A)	ı		_	_		у	INH	2
PULH	Pull Index Reg H from Stack	SP <- (SP + \$01); Pull (H)		_	_		_	у	INH	2
PULX	Pull Index Reg X from Stack	SP <- (SP + \$01); Pull (X)			_			у	INH	2

- Register to Register -

Source				Eff	ect	on	СС	R	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
TAP	Transfer Accumulat	or CCR <- (A)	I	•	-	-	I	У	INH	2
ТРА	Transfer CCR to Accumulator	A <- (CCR)	-	-	-	-	•	у	INH	1
TAX	Transfer A to Index X	X <- (A)	-	-	-	-	•	У	INH	1
TXA	Transfer Index X to A	A <- (X)	-		-	-	1	У	INH	1
TXS	Transfer Index Register to SP	SPH:SP <- (H:X) -\$0001	-	-	_	-		У	INH	2
TSX	Transfer SP to Index Register	H:X <- (SPH:SP) + \$0001	-	-	-	-	-	У	INH	2

- Memory to Memory -

Source				Eff	ect	on	CC	CR	Addres	s Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
MOV opr,opr MOV opr,X+ MOV #opr,op MOV X+,opr	Movo	(M)Destination— (M)Source H:X <— (H:X) + 1 in X+ mode	es	_	-	-	-	у	DD DIX+ IMD IX+D	5 4 4 4

See Addressing Modes, Memory to Memory, for MOV instruction usage notes.

- Addition -

Source				Eff	ec	t OI	า C	CF	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
ADD #opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP	Add Memory to Accumulator without Carry	A <- (A) + (M)	ı	-	ı	_	1	у	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
ADC #opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP	Add Memory to Accumulator with Carry	A <- (A) + (M) + (C)	-	_	-	_	-	У	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5

- Subtraction -

Source				Eff	ect	or	ı C	CF	Addres	s Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
SUB #opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP	Subtract Memory from Accumulator without Carry	A <- (A) -(M)	1	ı	ı	-	1	У	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
SBC #opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP	Subtract Memory from Accumulator with Carry	A <- (A) -(M) -(C)	-	-	-	-	-	У	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5

- Multiplication & Division -

Source				Eff	ect	on	CC	R	Addres	s Bus
Forms	Description	Operation	V	Н	I	N	Z	С	Mode	Cycle
MUL	Unsigned 8-bit x 8-bit Multiply	X:A <- (X) x (A)	-	0	-	-	-	0	INH	5
DIV	Unsigned 16-bit x 8-bit Divide	A <- (H:A) -(X) H <- Remainder	-	-	_	-	-	у	INH	7

MUL

- X will contain the MSB of product
- A will contain the LSB of product

DIV

- · H is MSB of dividend
- · A is LSB of dividend
- · X is unaffected

- Increment & Decrement -

Source				Effe	ect	on	CC	R	Addres	s Bus
Forms	Description	Operation	٧	Н	I	N	Z	C	Modes	Cycles
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	M <- (M) + 1 A <- (A) + 1 X <- (X) + 1 M <- (M) + 1 M <- (M) + 1 M <- (M) + 1	-		-	-	-	у	DIR INH INH IX1 IX SP1	4 1 1 4 3 5
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	M <- (M) -1 A <- (A) -1 X <- (X) -1 M <- (M) -1 M <- (M) -1 M <- (M) -1	-	-	-	-	_	у	DIR INH INH IX1 IX SP1	4 1 1 4 3 5

- Complement & Negation -

Source				Eff	ect	or	ı C	CR	Address	Bus
Forms	Description	Operation	V	Н	I	N	Z	С	Modes	Cycles
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	M <- \$FF -(M) A <- \$FF -(A) X <- \$FF -(X) M <- \$FF -(M) M <- \$FF -(M) M <- \$FF -(M)	C	-	-	-	-	1	DIR INH INH IX1 IX SP1	4 1 1 4 3 5
NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP	Negate (Two's Complement)	M <- \$00 -(M) A <- \$00 -(A) X <- \$00 -(X) M <- \$00 -(M) M <- \$00 -(M) M <- \$00 -(M)	-	-	-	-	-	у	DIR INH INH IX1 IX SP1	4 1 1 4 3 5

One's Complement

Unsigned operation

Two's Complement

Signed operation

- Comparison -

Source				Eff	ect	or	C	CR	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
CMP #opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare Accumulator with Memory	A - (M)	-	-	-	-	-	у	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
CPX #opr CPX opr CPX opr,X CPX opr,X CPX ,X CPX opr,SP CPX opr,SP	Compare Index Register X with Memory	X - (M)	-	-	-	-	-	у	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
CPHX #opr CPHX opr	Compare Index Register H:X with Memory	H:X - (M:M + 1)	-	-	-	-	-	у	IMM DIR	3 4

- Miscellaneous -

Source			E	€ff€	ct	on	CC	R	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	M <— \$00 A <— \$00 X <— \$00 H <— \$00 M <— \$00 M <— \$00 M <— \$00	0	1	ı	0	1	_	DIR INH INH INH IX1 IX SP1	3 1 1 3 2 4
TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP	Test for Negative or Zero	(M) - \$00 (A) - \$00 (X) - \$00 (M) - \$00 (M) - \$00 (M) - \$00	0	ı		у	у	_	DIR INH INH IX1 IX SP1	3 1 1 3 2 4
AIS #opr	Add Immediate Value (Signed) to Stack Pointer	SPH:SP <— (SPH:SP) + (16 << N	1)_	ı	ı	_	_	_	IMM	2
AIX #opr	Add Immediate Value (Signed) to Index Register H:X	H:X <— (H:X) + (16 << M)	_	_	_	_	_	_	IMM	2

AIS (Add Imm to Sp)

AIS can be used to quickly allocate or deallocate stack space

- Temporary variables
- Procedure frames

AIX (Add Imm to H:X)

- Efficiently increment or decrement the H:X register
 - AIX only affect the X register
 - INCX / DECX affect the CCR, AIX does not!
- INCX / DECX Looping over blocks of memory
 - Indexed addressing with post increment only
- AIX, Only available for MOV and CBEQ instructions!

Logical Operators

Source		_	E	Effe	ect	on	CC	R	Address	Bus
Forms	Description	Operation	V	Н	I	N	Z	С	Modes	Cycles
AND #opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP	Logical AND Accumulator and Memroy	A <- (A) Λ (M)	0	1	1	-	ı	у	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 3 2 4 5
ORA #opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP	Inclusive OR Accumulator and Memory	A <- (A) + (M)	0	-	-	-	1	у	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
EOR #opr EOR opr EOR opr,X EOR opr,X EOR,X EOR opr,SP EOR opr,SP	Exclusive OR Accumulator and Memory	A <一 (A) 舽(M)	0	-	-	-	1	у	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5

Bit Manipulation

Source			E	Eff€	ct	on	CC	R	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
BIT #opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP	Bit test (AND) Accumulator with Memory	Α Λ (M)	0	1	l	у	У	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	2 3 4 4 3 2 4 5
BCLR n,opr	Clear bit n in Memory	Mn <— 0	ı	ı	ı	_	_	_	DIR	4
BSET n,opr	Set bit n in Memory	Mn <— 1	ı	ı	-	_	_	_	DIR	4
CLC	Clear Carry Bit	C < 0	-	1	-	_	_	0	INH	1
SEC	Set Carry Bit	C <— 1		ı	_	_	_	1	INH	1
CLI	Clear Interrupt Mas	k I <— 0	_	_	0	_	_	_	INH	2
SEI	Set Interrupt Mask	I <— 1	_	_	1	_	_	_	INH	2

Data Manipulation

- Shifts -

Source			E	=ffe	ct	on	CC	R	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP	Arithmetic Shift Left (Same as LSL)	C	1	1	1	-	-	у	DIR INH INH IX1 IX SP1	4 1 1 4 3 5
ASR opr ASRA ASRX ASR opr,X ASR ,X ASR opr,SP	Arithmetic Shift Right	b7 b0 C	1	1	1	-	-	у	DIR INH INH IX1 IX SP1	4 1 1 4 3 5
LSL opr LSLX LSL opr,X LSL ,X LSL opr,SP	Logical Shift Left	C0	1	1	1	-	-	у	DIR INH INH IX1 IX SP1	4 1 1 4 3 5
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP	Logical Shift Right	0 - C b0		ı		0	-	у	DIR INH INH IX1 IX SP1	4 1 1 4 3 5

Data Manipulation - Rotates -

Source			Е	ffe	ct (on (CC	R	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	C	Modes	Cycle
ROLopr ROLA ROLX ROLopr,X ROL,X ROLopr,SP	Rotate Left through Carry	b7 b0	-	-	-	-	-	Y	DIR INH INH IX1 IX SP1	4 1 1 4 3 5
RORopr RORA RORX RORopr,X ROR,X RORopr,SP	Rotate Right through Carry	b7 b0	-	ε	-	_	-	Y	DIR INH INH IX1 IX SP1	4 1 1 4 3 5

Program Control - Branches -

Dianonos	
Instruction	Mnemonic
Branch if Carry Clear	BCC
Branch if Carry Set	BCS
Branch if Equal	BEQ
Branch if Greater Than or Equal (Signed)	BGE
Branch if Greater Than (Signed)	BGT
Branch if Half-Carry Clear	ВНСС
Branch if Half-Carry Set	BHCS
Branch if Higher	BHI
Branch if Higher or Same	BHS (BCC)
Branch if Interrupt Line High	BIH
Branch if Interrupt Line Low	BIL
Branch if Less Than or Equal (Signed)	BLE

- Branches -

Branch if Lower	BLO (BCS)
-----------------	-----------

Branch if Lower or Same BLS

Branch if Less Than (Signed) BLT

Branch if Interrupt Mask Clear BMC

Branch if Minus BMI

Branch if Interrupt Mask Set BMS

Branch if Not Equal BNE

Branch if Plus BPL

Branch Always BRA

Branch if Bit n in Memory Clear BRCLR

Branch if Bit n in Memory Set BRSET

Branch Never BRN

Branch to Subroutine BSR

- Branches -

Source				Ξff	ect	on	C	CR	Address	Bus
Forms	Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
Bcc rel	Branch if conditions true (CC, CS, HCC, HC HI, HS, LO, LS, PL MI, EQ, NE, GE, G LE, LT, IH, IL, MC, MS)	S, _{PC} < (PC) + \$0002 + rel - cc	-	- 1	-	-	-	у	REL	3
BRA rel	Branch Always	PC <- (PC) + \$0002 + rel	ı	ı	•	-	-	у	REL	3
BRN rel	Branch Never	PC <- (PC) + \$0002	•	•	•	-	-	у	REL	3
BRCLRn,opr,re	Branch if Bit n in Memory is Clear	PC <- (PC) + \$0003 + rel - Mn = 0	•	•	-	-	•	у	DIR/ REL	5
BRSETn,opr,re	Branch if Bit n in Memory is Set	PC < (PC) + \$0003 + rel Mn = 1	•	-	-	-	-	у	DIR/ REL	5

- Special Branching -

Source			E	Eff€	ect	Effect on CCR			Address	Bus
Forms	Description	Operation	۷	Н	I	N	Z	С	Modes	Cycles
CBEQ opr,rel		PC <— (PC) + \$0003 +rel ? (A) - (M) = \$00							DIR	5
CBEQA #opr,rel		PC <— (PC) + \$0003 +rel ? (A) - (M) = \$00							IMM	4
CBEQX #opr,rel	Compare and	PC <— (PC) + \$0003 +rel ? (X) - (M) = \$00							IMM	4
CBEQ X+,rel	Compare and Branch if Equal	PC < (PC) + \$0003 +rel	-	-	-	-	-	-	IX+	4
CBEQ opr,X+,rel		? (A) – (M) = \$00 PC <— (PC) + \$0002 +rel							IX1+	5
CBEQ opr,SP,rel		? (A) - (M) = \$00 PC < (PC) + \$0004 +rel ? (A) - (M) = \$00							SP1	6
DBNZ opr,rel		M <— (M) – \$01 PC <— (PC) + \$0003 + rel ? (M) ° 0							DIR	5
DBNZA rel		A <— (A) – \$01 PC <— (PC) + \$0002 + rel ? (A) ° 0							INH	3
DBNZX rel	Decrement and	X <— (X) – \$01 PC <— (PC) + \$0002 + rel ? (X) ° 0							INH	3
DBNZ X,rel	Branch if not Zero	M <— (M) – \$01 PC <— (PC) + \$0002 + rel ? (M) ° 0	-	_	-	_	_	-	IX	4
DBNZ opr,X,rel		M ← (M) – \$01							IX1	5
DBNZ opr,SP,rel		PC <— (PC) + \$0003 + rel ? (M) ° 0 M <— (M) – \$01 PC <— (PC) + \$0004 + rel ? (M) ° 0							SP1	6

CBEQ and **DBNZ**

CBEQ combines the CMP and BEQ instruction

Faster table lookup/search operations

DBNZ combines the DEC and BNE instructions

Faster more efficient looping

CBEQ Example

- * Subroutine that searches a string for the next blank character
- * and then points the H:X register to the character immediately
- * following the blank.
- * H:X is assumed to already point to a location in the string.

String	ORG RMB	\$00A0 50	;The character string

ORG \$6E00

Search LDA #\$20 ;Load search character

Loop CBEQ X+,Out ;Match?

BRA Loop ;No match, do it again.

- * X post increment will occur regardless of whether the branch is
- * taken. Therefore when a match is found H:X already points to the
- * next character.

Out RTS

How could you change this example to avoid searching past the end of the string?

DBNZ Example

```
* Time delay routine
* Delay = N \times (160.0+0.375) \mu s for an 8 MHz CPU clock
* For example, for delay = 10ms N = 63
                                    ;Loop counter for 10 ms delay
Ν
            EQU
                     63
            ORG
                     $50
Count
            RMB
                                    ;Loop counter
            ORG
                     $6E00
            LDA
Delay
                     #N
                                    ;Set delay constant
Loop
            DBNZ
                     Count, Loop
                                    ;Inner loop, Count starts at $00
            DBNZA
                     Loop
            RTS
```

How were the values 160.0 and 0.375 derived?

- Jumps and Subroutines -

Source					Eff	ect	or	ı C	CF	Addres	s Bus
Forms		Description	Operation	٧	Н	I	N	Z	С	Modes	Cycles
JMP JMP JMP JMP JMP	opr opr,X opr,X ,X	Jump to location	PC <-Jump Address	-	-	1	-	1	У	DIR EXT IX2 IX1 IX	2 3 4 3 2
JSR JSR JSR JSR JSR	opr opr,X opr,X ,X	Jump to subrouti	PC <- (PC) + n (n=1, 2 or Push (PCL); SP <- (SP) -1 Push (PCH); SP <- (SP) -1 PC <- Unconditional Addre	-	-	-	-		У	DIR EXT IX2 IX1 IX	4 5 6 5 4
BSR	rel	Branch to subroutine	PC <- (PC) + 2 Push (PCL); SP <- (SP) -1 Push (PCH); SP <- (SP) -1 PC <- (PC) + rel		-	•	_	ı	у	REL	4
RTS		Return from subroutine	SP <- (SP) + 1; Pull (PCH SP <- (SP) + 1; Pull (PCL))	-	-	-	-	у	INH	4

- Interrupt -

Source			I	Ξff	ect	t o	n C	CF	Addres	s Bus
Forms	Description	Operation	٧	ŀ	ł		N	Z	C Modes	Cycles
SWI	Software Interrup	PC <- (PC) + 1 Push (PCL); SP <- (SP) - Push (PCH); SP <- (SP) - Push (X); SP <- (SP) -1 Push (A); SP <- (SP) -1 Push (CCR); SP <- (SP) - I <- 1 PCH <- Interrupt Vector H Byte PCL <- Interrupt Vector L Byte	1 1- igl	1	1	-	-	у	INH	9
RTI	Return from Interrupt	SP <- (SP) + 1; Pull (CCR SP <- (SP) + 1; Pull (A) SP <- (SP) + 1; Pull (X) SP <- (SP) + 1; Pull (PCH SP <- (SP) + 1; Pull (PCL	, -)	1	-	-	-	у	INH	7

Binary Coded Decimal

Source			Effect on CCR						Address	Bus
Forms	Description	Operation	V	Н	I	N	Z	С	Modes	Cycles
DAA	Decimal Adjust Accumulator	(A) ₁₀	U	_	_	у	у	у	INH	2
NSA	Nibble Swap contents of Accumulator	A <— (A[3:0]:A[7:4])		_	_	_	_		INH	3

Special Instructions

Source			Effect on CCR						Address	Bus
Forms	Description	Operation	٧	ŀ		N	2	(Modes	Cycles
RSP	Reset Stack Pointe	r SPL <— \$FF	_	_	_	_		_	INH	1
NOP	No Operation	None	_	_	_	_	_	_	INH	1
STOP	Stop Processor and wait for interrupt	d I <— 0 Stop Oscillator	_	_	0	-	_	_	INH	1
WAIT	Halt Processor and wait for interrupt	I <— 0	_	_	0	_	_	_	INH	1

WAIT:

- CPU08 stops processing instructions
- waits for an interrupt

STOP:

- CPU08 stops processing instructions
- Stops the oscillator circuit
 - Puts MPU in low power state
- Waits for interrupt