CSC 503 Homework Assignment 12

Out: October 30, 2015

Due: November 6, 2015

rsandil

- Q1. 1. Consider the modal logic formula $p \rightarrow \Box \Diamond q$.
 - (a) [10 points] Construct a modal frame of interpretation M in which $p \rightarrow \Box \Diamond q$ is valid.

Solution:

Consider the Frame (interpretation, model) M = (W, R, L) such that x, y and z are worlds of M.

 $p \rightarrow \Box \Diamond q$ is valid in above modal frame interpretation M.

(b) Explain why $p \rightarrow \Box \Diamond q$ is valid in M.

Solution:

c) [10 points] Present a formal modal frame of interpretation M' in which $p \rightarrow \Box \Diamond q$ is not valid.

Solution: Consider the Frame (interpretation, model) M' = (W, R, L) such that x, y, z, w and v are worlds of M' In the following Model $p \rightarrow \Box \Diamond q$ is not valid .

d) Explain why p $\rightarrow \Box \Diamond q$ is not valid in M2

Solution: To prove $p \to \Box \Diamond q$ as not valid in M2, we need to prove that $p \to \Box \Diamond q$ is not valid in all the worlds of M2. Every world in M₂ does not satisfy $p \to \Box \Diamond q$. For example world x does not satisfy $p \to \Box \Diamond q$. Thus $p \to \Box \Diamond q$ is not valid in M2

Q2. Solution:

We prove the validity of given expression by:

1	$(\Box (\Box p \rightarrow q) \land \Box (q \rightarrow \Box r))$	assumption
2	$\Box (\Box p \rightarrow q)$	Λ e ₁ 1
3	$\Box(q \rightarrow \Box r))$	Λ e ₂ 2
4	□p → q	□ e 2
5	$q \rightarrow \Box r$	□ e 3
6	□р	assumption
7	q	→ e 4, 6
8	or or	→ e 5, 7
9	□p → □r	→ i 6-8
10	$\Box(\Box p \rightarrow \Box r)$	□ i 4-9
11	$(\Box (\Box p \rightarrow q) \land \Box (q \rightarrow \Box r)) \rightarrow \Box (\Box p \rightarrow \Box r)$	→ i 1-10

Q3 **Solution**:

We prove the validity of given expression by:

1	¬□¬T	assumption
2	□р	assumption
3	□¬р	Assumption
4.	P	□ e 2
5.	¬р	□ e 3
6	1	¬e 4,5
7	¬T	⊥ e, 6
8	□¬T	□ i 4-7
9	1	¬e 8,1
10	¬□¬p	¬i 3-9
11	□p → ¬□¬p	→ i 2-9
12	$\neg \Box \neg T \rightarrow (\Box p \rightarrow \neg \Box \neg p)$	→ i 1-11

 $12 \qquad \neg \Box \neg I \rightarrow (\Box p \rightarrow \neg \Box \neg p)$ Note: $\neg \Box \neg T \rightarrow (\Box p \rightarrow \neg \Box \neg p)$ is equivalent to $\Diamond T \rightarrow (\Box p \rightarrow \Diamond p)$