Planar Graphs Have Bounded Queue-Number

Shengzhe Wang

ETH Zürich

April 6, 2023

Definition: Queue

Let G = (V, E), consider a linear odering \leq of V, a queue of G is a set of edges $E' \subseteq E$ such that any disjoint edges $vw, xy \in E'$, w.l.o.g, $v \prec w, x \prec y$ and $v \prec x$, we have $w \prec y$.

Queue-Number

Definition: K-Queue Layout

Let G = (V, E), consider a linear odering \leq of V, for an integer $k \geq 0$ a k-queue layout of G is a partition of E into $E_1, E_2, ..., E_k$ such that each E_i is a queue of G.

Queue-Number

Definition: K-Queue Layout

Let G = (V, E), consider a linear odering \leq of V, for an integer $k \geq 0$ a k-queue layout of G is a partition of E into $E_1, E_2, ..., E_k$ such that each E_i is a queue of G.

Definition: Queue-Number

The queue-number of G, denoted by qn(G), is the minimum integer k such that G has a k-queue layout.

Queue-Number: Tree

What is the queue-number of tree?

Queue-Number: Tree

What is the queue-number of tree?

Queue-Number: Tree

Queue Number: Cycle

Queue Number: Cycle

Queue Number: Cycle

Treewidth

Do we have some tools to help bound the queue-number?

Treewidth

Do we have some tools to help bound the queue-number?

Theorem (Veit, 2017)

Every graph with treewidth k has queue-number at most $2^k - 1$.

Definition: Tree-decomposition

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Tree-decomposition

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Tree-decomposition

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Tree-decomposition

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Tree-decomposition

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Tree-decomposition

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Tree-decomposition

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Treewidth

Definition: Tree-decomposition

A tree-decomposition of a graph G is a pair (B, T). T is a tree and $B = \{B_x | x \in V(T)\}$ where each B_x is a subset of V(G) for every vertex x in V(T) such that

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Width of Tree-decomposition

The width of a tree-decomposition of G is $\max_{x \in V(T)} |B_x| - 1$

Treewidth

Definition: Tree-decomposition

A tree-decomposition of a graph G is a pair (B, T). T is a tree and $B = \{B_x | x \in V(T)\}$ where each B_x is a subset of V(G) for every vertex x in V(T) such that

- $\forall \{v, w\} \in E(G)$, there exists $x \in V(T)$ with $v, w \in B_x$
- $\forall v \in V(G)$, the set $\{x | x \in V(T) \land v \in B_x\}$ induces a non -empty connected subtree of T.

Definition: Width of Tree-decomposition

The width of a tree-decomposition of *G* is $\max_{x \in V(T)} |B_x| - 1$

Definition: Treewidth

The treewidth of a graph *G* is the minimum width of all tree-decomposition of *G*.

Treewidth: Tree

Treewidth: Tree

Treewidth: Tree

Tree has treewidth 1

Treewidth: Planar graph

Theorem (Veit,2017)

Every graph with treewidth k has queue-number at most $2^k - 1$.

If planar graph has bounded treewidth, then planar graph has bounded queue-number.

Treewidth: Planar graph

Theorem (Veit,2017)

Every graph with treewidth k has queue-number at most $2^k - 1$.

If planar graph has bounded treewidth, then planar graph has bounded queue-number.

Theorem

Planar graph on n vertices has treewidth $O(\sqrt{n})$ and the bound is tight.

Treewidth: Planar graph

Theorem (Veit,2017)

Every graph with treewidth k has queue-number at most $2^k - 1$.

If planar graph has bounded treewidth, then planar graph has bounded queue-number.

Theorem

Planar graph on n vertices has treewidth $O(\sqrt{n})$ and the bound is tight.

Partitions

Maybe we need more structures

Partitions

Maybe we need more structures

Theorem (Vida et al.,2020)

For a graph G, if G has an H-partition of layered width I and H has treewidth k, then

$$qn(G) \leq 3l(2^k-1) + \lfloor \frac{3}{2}l \rfloor$$

Definition: Partition and Quotient

Definition: Partition and Quotient

Definition: Partition and Quotient

Definition: Partition and Quotient

Definition: Partition and Quotient

A partition of G is a set $\mathcal{P} = \{P_1, ..., P_n\}$ of non-empty subsets of V(G) and each vertex of G is in exactly one element (part) of \mathcal{P} . The quotient of \mathcal{P} is a graph, denoted by G/\mathcal{P} , with each vertex v_i corresponds P_i . For any two vertices v_i, v_j in G/\mathcal{P} , they are connected if and only if some vertex in P_i is connected to some vertex in P_j in graph G.

Definition: *H*-partition

A *H*-partition of a graph *G* is a pair (A, H). $A = \{A_x | x \in V(H)\}$ is a partition of V(G) and *H* is a graph isomorphic to the quotient G/A.

Definition: Partition and Quotient

A partition of G is a set $\mathcal{P} = \{P_1, ..., P_n\}$ of non-empty subsets of V(G) and each vertex of G is in exactly one element (part) of \mathcal{P} . The quotient of \mathcal{P} is a graph, denoted by G/\mathcal{P} , with each vertex v_i corresponds P_i . For any two vertices v_i, v_j in G/\mathcal{P} , they are connected if and only if some vertex in P_i is connected to some vertex in P_j in graph G.

Definition: *H*-partition

A *H*-partition of a graph *G* is a pair (A, H). $A = \{A_x | x \in V(H)\}$ is a partition of V(G) and *H* is a graph isomorphic to the quotient G/A.

Definition: Partition and Quotient

A partition of G is a set $\mathcal{P} = \{P_1, ..., P_n\}$ of non-empty subsets of V(G) and each vertex of G is in exactly one element (part) of \mathcal{P} . The quotient of \mathcal{P} is a graph, denoted by G/\mathcal{P} , with each vertex v_i corresponds P_i . For any two vertices v_i, v_j in G/\mathcal{P} , they are connected if and only if some vertex in P_i is connected to some vertex in P_j in graph G.

Definition: *H*-partition

A *H*-partition of a graph *G* is a pair (A, H). $A = \{A_x | x \in V(H)\}$ is a partition of V(G) and *H* is a graph isomorphic to the quotient G/A.

Layering

Layering

Definition: Layered width

Definition: Layered width

Definition: Layered width

Definition: Layered width

Definition: Vertical Path

Definition: Vertical Path

Definition: Vertical Path

Let T be a tree rooted at a vertex r, a non-empty path $(x_1, ..., x_p)$ in T is vertical if for some $d \ge 0$ and for all $1 \le i \le p$ we have $\operatorname{dist}_T(x_i, r) = d + i$.

A partition of the tree where each part is a vertical path has layered width 1.

Theorem (Vida et al.,2020)

For a graph G, if G has an H-partition of layered width I and H has treewidth k, then

$$qn(G) \leq 3l(2^k - 1) + \lfloor \frac{3}{2}l \rfloor$$

Theorem (Vida et al.,2020)

For a graph G, if G has an H-partition of layered width I and H has treewidth k, then

$$qn(G) \leq 3l(2^k-1) + \lfloor \frac{3}{2}l \rfloor$$

Theorem (Vida et al.,2020)

Every planar graph G has a connected partition $\mathcal P$ with layered width 1 such that $H=G/\mathcal P$ has treewidth at most 8.

Theorem (Vida et al.,2020)

For a graph G, if G has an H-partition of layered width I and H has treewidth k, then

$$qn(G) \leq 3l(2^k-1) + \lfloor \frac{3}{2}l \rfloor$$

Theorem (Vida et al.,2020)

Every planar graph G has a connected partition \mathcal{P} with layered width 1 such that $H = G/\mathcal{P}$ has treewidth at most 8.

Theorem (Vida et al.,2020)

Every planar graph G has queue-number at most

$$3(2^8-1)+\lfloor\frac{3}{2}\rfloor=766$$

Lemma (Vida et al.,2020)

- $|B_x| \le 9$ for any $x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \le 9 \text{ for any } x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \le 9 \text{ for any } x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \le 9 \text{ for any } x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \le 9 \text{ for any } x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \le 9 \text{ for any } x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \le 9 \text{ for any } x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \le 9 \text{ for any } x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \leq 9$ for any $x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- \bullet $|B_x| \le 9$ for any $x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Vida et al.,2020)

- $|B_x| \leq 9$ for any $x \in V(T)$
- $\exists x \in V(T)$, all vertices correspond to $P_1, ..., P_k$ in H is in B_x

Lemma (Sperner's Lemma)

Let G be an internally triangulated graph whose vertices are colored 1,2,3 with the outer-face $F = [P_1, P_2, P_3]$ where each vertex in P_i is colored i. Then G contains an internal face whose vertices are colored 1,2,3.

Lemma (Sperner's Lemma)

Let G be an internally triangulated graph whose vertices are colored 1,2,3 with the outer-face $F = [P_1, P_2, P_3]$ where each vertex in P_i is colored i. Then G contains an internal face whose vertices are colored 1,2,3.

Lemma (Sperner's Lemma)

Let G be an internally triangulated graph whose vertices are colored 1,2,3 with the outer-face $F = [P_1, P_2, P_3]$ where each vertex in P_i is colored i. Then G contains an internal face whose vertices are colored 1,2,3.

Theorem (Vida et al.,2020)

Every planar graph G has a connected partition \mathcal{P} with layered width 1 such that $H = G/\mathcal{P}$ has treewidth at most 8.

Theorem (Vida et al.,2020)

Every planar graph G has a connected partition $\mathcal P$ with layered width 1 such that $H=G/\mathcal P$ has treewidth at most 8.

Theorem (Vida et al.,2020)

For a graph G, if G has an H-partition of layered width I and H has treewidth k, then

$$qn(G) \leq 3l(2^k - 1) + \lfloor \frac{3}{2}l \rfloor$$

Theorem (Vida et al.,2020)

Every planar graph G has a connected partition $\mathcal P$ with layered width 1 such that $H=G/\mathcal P$ has treewidth at most 8.

Theorem (Vida et al.,2020)

For a graph G, if G has an H-partition of layered width I and H has treewidth k, then

$$qn(G) \leq 3l(2^k - 1) + \lfloor \frac{3}{2}l \rfloor$$

Theorem (Vida et al.,2020)

Every planar graph G has queue-number at most

$$3(2^8-1)+\lfloor\frac{3}{2}\rfloor=766$$

Portal

- Introduction to Queue-Number
 - Queue Layout
 - Queue-Number
- Introduction to Treewidth
 - Treewidth
- Introduction to Partitions
 - Partitions
 - Layering
 - Layered Width
 - Vertical Path
- Planar Graph Decomposition
 - The Decomposition Lemma
 - Induction
- Summary