

STM32MP1 MPU series

New microprocessor series with enhanced performance thanks to its multicore architecture and graphical processor

Rich Feature Set 2

Advanced & Flexible Architecture with 3D GPU

STM32MP1: A General Purpose MPU

Suitable for all Developer Types and Multiple Applications

STM32 **MP1**

Developer profile

MCU users new to MPU

Mixed MCU and MPU users

Pure MPU users

Possible applications

Supported by the STM32 Ecosystem

All the Tools for Successful MPU Development

Software

Hardware

Customer support

Discovery boards

Evaluation boards

STM32MP1 - HW ARCH

Hardware Architecture Revision 1.0

STM32MP1 Block Diagram 6

STM32MP1 bus architecture overview

0xFFFF FFFF		 			0xFFFF F	FFF
0,0.111	DDR extension				0xE00D [
	(CA7 only)		CA7 de		0xE00C	
	or Debug		System d	lebug IPs	0xE004 4	
0xE000 0000		 	CM4 de	bug IPs	0xE000 0	
	DDR					
	BBIX					
0xC000 0000		 			0xBFFF F	FFF
	CA7				0xA0027F	FFF
	0,11		G	IC	0xA002 1	
0xA000 0000		 			0xA000 0	
027 1000 0000	STM				0x90FF F	
0x9000 0000	OTIVI	 	STM 1	16 MB	0x9000 0	
0x3000 0000	FMC NAND				0x8FFF F	
0x8000 0000	I WO NAIND	 4	NAND 2	256 MB	0x8000 0	
0x0000 0000	QUADSPI				0x7FFF F	
0x7000 0000	QUADSFI		QUADSP	1 256 MB	0x7000 0	
0x7000 0000	FMC NOR				0.00000	000
0x6000 0000	FINIC NOR					
0.0000 0000						
	Peripherals 2					
0x5000 0000						
	Peripherals 1					
0x4000 0000						
0.4000 0000						
	RAM aliases					
0x3000 0000		 	SYSRAM	A DEC VD	0x2FFF F	FFF
			STORAN	1 230 KB	0x2FFC	0000
	SYSRAM					
042000 0000					0,2000 0	000
0x2000 0000		 			0x2000 0	
	SRAMs		SRAM3	128 KB	0x1006 0	
	SKAIVIS		SRAM2	128 KB		
0v4000 0000			SRAM1	128 KB	0x1002 0 0x1000 0	000
0x1000 0000					,,,,	0x0FFF FFFF 0x0002 0000
	BOOT					UXUUU2 UUUU
	BOOT		128 KB A7)	DETD.	M 64KB	0x0001 0000
0x0000 0000		(0)	,	RETRA (CI		00000 0000
XUUUU UUUU						0x0000 0000

	0x5FFF FFFF
APB5 Secure comm lps /	0x5C00 A3FF
TZC / TZPC	0x5C00 0000
	0x5A00 73FF
APB4 DDRC / DDRPHY / DDRPERFM / LTDC / DSIHOST / USBPHYC	0x5A00 0000
	0X5A00 0000
AHB6 USBH/ETH/ SDMMC/MDMA/ GPU	0x5903 FFFF
0.0	0x5800 0000
	0x570F FFFF
AXIMC	
	0x5700 0000
AHB5	0x5400 43FF
Backup RAM /	
HW accelerators	0x5400 0000
400.000	0x500D DFFF
APB-DBG Coresight IPs	
Our congrit in a	0x5008 0000
	0x5002 A3FF
APB3	UXOUUZ ASFF
SYSCFG / LPTIM /	
SAI / PMB / HDP	0x5002 0000 0x5001 FFFF
AHB4 PWR / RCC / GPIOs	0x5000 PPFF

	0x4C00 63FI
AHB3	0.4000 03F1
HSEM / IPCC / HW accelerators	
	0x4C00 0000
	0x4903 FFFF
AHB2	
DMA / ADC /	
SDMMC2	0x4800 0000
APB2	0x4401 37FF
CAN / SAI / TIM /	
USART	
	0x4400 0000
	0x4001 C3F
APB1	
I2C / DAC / TIM /	l
UART / USART	0x4000 0000
	07-000 0000

	0x3FFF FFFF
RETRAM 64 KB	0x3800 FFFF
RETRAIN 04 ND	0x3800 0000
	0x3006 0000
SRAM3 128 KB	0x3004 0000
SRAM2 128 KB	
SRAM1 128 KB	0x3002 0000
	0x3000 0000

Memory Map overview

- Uniform memory map
 - All peripherals visible at same address of every masters
 - No Remap

Power Supplies 9

Name	Typical or Range	Description		
VDD	1.7V – 3.6V	Power supply input for I/Os		
VDD_ANA		Power supply input for system analog like RCC, PWR. To be connected to VDD		
VDD_DSI**		Power supply input for DSI regulator. To be connected to VDD		
VDD_PLL		Power supply input for PLLs. To be connected to VDD		
VDD_CORE	1.2V	Power supply input for Digital Core domain		
VDDA	1.7V – 3.6V	Analog Power supply input for ADCs, DACs and voltage reference buffers		
VDDQ_DDR	1.2V / 1.35V / 1.5V*	Power supply input for DDR Physical Interface (PHY) and IOs		
VDD3V3_USBHS/FS	3.3V	Power supply input for USB Physical Interface (PHY) and IOs		
Internally generated	Power Supplies			
VDDA1V8_REG	1.8V	Analog Power Supply input or output, used internally for USB Physical Interface (PHY)		
VDDA1V8_DSI**		Analog Power supply input for DSI Physical Interface (PHY), to be connected to VDDA1V8_REG		
VDDA1V2_DSI_REG**	1.2V	Analog Power supply output, used internally for DSI PLL		
VDDA1V2_DSI_PHY**		Analog Power supply input for DSI Physical Interface (PHY), to be connected to VDDA1V2_DSI_REG		
VDDA1V1_REG	1.1V	Analog Power supply output for USB Physical Interface (PHY)		

- (*) LPDDR2/LPDDR3, DDR3L and DDR3 respectively
- (**) only on STM32MP157 line

STPMIC1 Block Diagram 10

Package: WFQFN 5x6x0.8 44L pitch 0.4mm

Peripherals (1) 11

	Advanced 16 bits		2		
	0	16 bits	8		
	General purpose	32 bits	2		
Ø	Basic 16 bits		2		
Timers	LP Timer 16 bits		5		
F	M4 Systick 24 bits		1		
	A7 Timers 64 bits		ן (Secure, Non-Secure, Virtual, Hypervisor)		
	RTC/AWU		1 (Securable)		
	Watchdog		3 (Independent, Independent Secure, Window)		
	SPI		6 (1 Securable)		
		having I2S	3		
	I2C (with SMB/PMB support)		6 (2 securable)		
SIE	USART (Smartcard, SPI, IrDA, LIN) + UART (IrDA, LIN)		4 + 4 (including 1 Securable USART)		
Communication Peripherals	SAI		4 (up to 8 audio channels), with I ² S master/slave, PCM input, SPDIF-TX		
ר Pe		ELIQUOLIQUE, et	2 ports		
atio	EHCI/OHCI Hos		embedded HS PHY with BCD		
unic	USB	OTG HS	Yes, Embedded FS or HS PHY with BCD		
E E		Embedded PHYs	3 (2 x High-Speed + 1 x Full-Speed)		
ပိ	SPDIFRX		4 inputs		
	IFDCAN		2 (1 x TT-FDCAN), Clock Calibration, 10 Kbytes shared buffer		
	CEC (HDMI Consumer Electronics Control)		1		
	Including the follo	owing securable	1 x USART, 1 x SPI, 2 x I2C on Securable GPIOs		

 All Peripherals Input/Output (when existing) are mapped through GPIO alternate **functions**

Boot Source

Boot Source

SDMMC (SD, SDIO, eMMC)			3 (8 + 8 + 4 bits), eMMC or SD		
QuadSPI			Yes (dual-quad)		
	Parallel Address/Data 8/16-bits		4 x CS, up to 4 x 64MBytes		
FMC	Parallel AD	-Mux 8/16-bits	4 x CS, up to 4 x 64MBytes		
	NAND 8/16	i-bits	Yes, 1 x CS, SLC, BCH4/8		
lGigabi	Ethernet		MII, RMII, GMII, RGMII with PTP and EEE		
DMA			3 instances (1 Securable) , 48 physical channels in total		
Crypto	graphy		DES, TDES, AES-256, dual instances (Secure and non- Secure)		
Hash			SHA-256, MD5, HMAC, dual instances (Secure and non- Secure)		
Rando	m number ge	enerator	True-RNG, dual instances (Secure and non-secure)		
Fuses (One Time Programming)		Programming)	3072 effective bits (Secure, >1500 bits available to user)		
Digital Interfac	Camera ce	bus width	8, 10, 12 or 14-bits		
GPIOs	with interrup	ot (total count)	98, <u>148 or 176</u> Idepending on package		
	Securable (GPIOs	8		
	Wakeup pir	 ns	4 <u>lor</u> 6ldepending on package		
	Tamper pins (Active tamper)		2 <u>lor 3</u> I(1) depending on package		
DFSDI	M		8 input channels with 6 filters		
16 bit s	synchronized	I ADC	2		
	ADC channels in total		ADC channels in total		17lor 22 depending on package
12 bit DAC			2		
Interna	al ADC/DAC	VREF generation	1.5V, 1.8V, 2.048V, 2.5V or VREF+ input		
	VREF+ input pin		Yes		

Peripherals (2) 12

Boot Source

Boot Source

Boot Source

Graphic and Display 13

- LCD-TFT controller, up to 24-bit // RGB888
 - up to WXGA (1366 × 768) @60 fps
 - Two layers with programmable colour LUT
- 3D GPU: Vivante® OpenGL® ES 2.0
 - 533 MHz, up to 26 Mtriangle/s, 133 Mpixel/s
- MIPI® DSI 2 data lanes up to 1 GHz each
 - up to WXGA (1366 × 768) @60 fps

OTP Fuses 14

OTP Fuses are One Time Programming memory

- Initial bits are '0' and are irreversibly programmed to '1'
- Incremental programing of bits in a 32-bit word is possible

Handled thru BSEC controller IP

- Programming, reading, status and locking handled by BSEC
- Lock mechanism to avoid read and/or program (32-bits granularity)

OTP Content

- Product configuration and Trimming values set by ST during production
- Secrets and unique identification numbers set by ST during production
- Device configuration set by OEM (e.g. MAC address, boot source, security mode, etc...)
- Secrets set by OEM (e.g. for secure boot)
- Up to 1184 bits available for other OEM purposes

STM32MP1 SWARCH

Embedded Software architecture Revision 1.0

From MCU to MPU 2

Source: ST Wiki article [Getting started with STM32 MPU devices]

Multiple-core architecture concepts 17

- Hardware execution context
 - « a core and a security mode »
- Firmwares executed runtime contexts
 - Arm Cortex-A secure (Trustzone) executes OP-TEE
 - Arm Cortex-A non secure executes Linux
 - Arm Cortex-M (non secure) executes STM32Cube
- Peripheral assignment to the runtime contexts
 - Assigned or shared

Peripherals sharing

Source: ST Wiki article [STM32MP1 peripherals overview]

Software memory mapping

• The memory mapping below is a subset of all regions that are really exposed at hardware level.

Shared RAM memory mapping

Notice that each core may not see the same regions at the same address, as already

explained on previous slide Cortex-A7 Non-Secure Cortex-M4 MCU SRAM4 (64kB) DMA buffers MCU SRAM3 (64kB) Inter Process Communication (IPC) buffers MCU SRAM2 (128kB) Data MCU SRAM1 (128kB) Code Code & Data RETRAM (64kB) Vector table

Each customer can of course tune this mapping (regions location and sizes) to fit with his product needs

STM32MPU Embedded Software 21

Source: ST Wiki article [STM32MPU Embedded Software architecture overview]

Linux framework & driver 22

OpenSTLinux + STM32Cube 23

Open-Embedded User space

 The components list shown here is not exhaustive and can be tuned by the customer to fit with applications needs.

User space

COMPATIBLE

Kernel space

STM32MP1 Platform boot

Platform boot

Revision 1.0

Standard Linux boot chain 26

STM32MP1 boot chain 27

STM32MP1 boot chains 28

Trusted boot chain 29

Secure Monitor: Trusted Firmware for Cortex-A (TF-A) Secure Monitor is used if there is no Secure OS (OP-TEE is optional)

TF-A is:

- **BSD** licence
- Trusted writing
- ARMv8 future proof

Basic boot chain 30

Boot mode selection 31

BOOT pins	TAMP_REG[20] (Force Serial)	OTP WORD 3 Primary boot source	OTP WORD 3 Secondary boot source	Boot source #1	Boot source #2 if #1 fails	Boot source if #2 fails
b000	x (don't care)	x (don't care)	x (don't care)	Serial	-	-
b001	!= 0xFF	0 (virgin)	0 (virgin)	QSPI NOR	Serial	-
b010	!= 0xFF	0 (virgin)	0 (virgin)	еММС	Serial	-
b011	!= 0xFF	0 (virgin)	0 (virgin)	FMC NAND	Serial	-
b100	x (don't care)	x (don't care)	x (don't care)	NoBoot	-	-
b101	!= 0xFF	0 (virgin)	0 (virgin)	SD-Card	Serial	-
b110	!= 0xFF	0 (virgin)	0 (virgin)	Serial	-	-
b111	!= 0xFF	0 (virgin)	0 (virgin)	QSPI NAND	Serial	-
!= b100	!= 0xFF	Primary ¹	0 (virgin)	Primary ¹	Serial	-
!= b100	!= 0xFF	0 (virgin)	Secondary ¹	Secondary ¹	Serial	-
!= b100	!= 0xFF	Primary ¹	Secondary ¹	Primary ¹	Secondary ¹	Serial
!= b100	0xFF	x (don't care)	x (don't care)	Serial	-	-

	0		No secondary boot source is defined	d
	1		FMC NAND	
0		No	primary boot source is defined	
1		FM	C NAND	
2	QS		PI NOR	
3		еММС		
4		SD		_
5	QS		PI NAND	
			<u> </u>	

¹Primary and Secondary are fields of OTP WORD3.

Reference: AN5031 - Getting started with STM32MP15 Series hardware development.

[STM32MP15_ROM_code_overview] Wiki article:

STM32CubeProgrammer for flash programming

OpenSTLinux distribution overview Revision 1.0

OpenSTLinux 34

- OpenSTLinux is a concept for STM32MPU embedded SW package
 - Concept = naming + associated pillars
- Pillars
 - Usage of a standard kernel interface (no proprietary interface)
 - Usage of Open Source software
 - Link to community (upstream)
 - Easy to use
- It supports OpenEmbedded build process
 - Yocto Compatible (target is to have a Board Support Package (BSP) hosted on Yocto server)

Available packages 35

Packages and use cases

Packages

Starter Package Flashable images

Developer Package Software Development Kit (SDK) and BSP tarballs

Distribution Package
 Open Embedded distribution full source

Rationale

- Cover all the possible usages from our customers
 - Discover -> Prototype -> Start new hardware -> Productize software
- Customer receives a board with an OpenSTLinux Starter package
 - Assess board capacities and performance
- Customer wants to run existing applications = Starter package
- Customer wants to develop their own application = Developer package
- Customer wants to start their own hardware = prototype with Developer package then Distribution

Productization of software = Distribution package

Starter Package 37

- STM32MPU Embedded Software Starter Package
 - ST images stored with HW diversity flashlayout.zip = Yocto based images

Focus on Starter Package

- Binaries ready to use by customer: Yocto/OpenEmbedded image (Weston)
 - Demonstrate the capacity of the platform
 - Available on microSD card or directly flashed onto the board
 - At this stage, Yocto starter package is only a prerequisite for developer kit

Deliverables

- Set of binaries with a specific flash layout
- Script to generate an SD card raw image
- Complete combinations (binaries x flash layouts) of microSD card ready to use images (aka stimg) are not provided by default; there are too many configurations

Developer Package

- Yocto based on st-image-weston =
 - SDK (Toolchain + Includes)
 - Sources (Community Tarball + ST Patches + ST configs)
 - Kernel
 - Boot (U-Boot, ATF)
 - STM32MP1-M4 Cube

STM32MPU Embedded Software Developer Package

Focus on Developer Package

- Developer package = SDK (Software Development Kit) + Source code
 - Uses Starter package images
 - Only Yocto/OpenEmbedded SDK, based on Weston images, is provided
 - Source code provided
 - Kernel, U-Boot, ATF, Optee (optional), STM32Cube
 - Pre-compiled toolchain
- Release mode depends on the project stages
 - Alpha customer
 - Source code (tar ball from community) + patch
 - Mass market
 - Source code (tar ball from community) + patch
 - Git (ST github) = community content + all patches pending upstream

Distribution Package 41

- Yocto based (ST layers + ST patches on Git community) =
 - Oe-manifest
 - meta-st-stm32mp
 - meta-st-openstlinux
 - STM32MP1-M4 Cube
 - meta-st-custo (to customise via appends per customer)

STM32MPU Embedded Software Distribution Package

Focus on Distribution package 42

Distribution package

- Yocto/OpenEmbedded environment
 - OpenSTLinux BSP (kernel, ST drivers)
 - OpenSTLinux application framework (e.g. Weston, GStreamer)
- OpenEmbedded recipes point to the developer git (SRC_URI)
- Everything is to be compiled (toolchain, kernel, images)

Kernel version

- Alpha stage
 - Latest stable kernel + all patches pending upstream
- Mass market
 - Alpha stage (delivered as example)
 - LTS kernel + all patches pending upstream (Default configuration)

OpenEmbedded 43

- Project initiated by the Linux Foundation in 2010 and is still managed by one of its fellows: Richard Purdie.
- Linux-based cross-compilation framework
- Open source (but can be used to build proprietary code)
- It is based on git for software configuration management

OpenEmbedded ecosystem

- People talk about Yocto, Poky or OpenEmbedded and this can be confusing:
 - OpenEmbedded:
 - Build Framework for embedded Linux
 - Maintained by the community
 - Source version of Poky
 - Setup mainly consolidated for ARM platforms
 - Yocto
 - A project that uses OpenEmbedded build system
 - Poky
 - Poky is a reference system of the Yocto Project a collection of Yocto Project tools and metadata that serves as a set of working examples. Poky uses OpenEmbedded Core
 - Poky is maintained by Intel. Setup is mainly consolidated for Intel platforms
- Some projects works on a Yocto base, some others on a Poky base, but in the end everything is compatible.

What OpenEmbedded does 45

- Source code download
- Patch application
- Cross compilation
- Package management

What OpenEmbedded generates 46

- Binary packages
- Linux-based system images
- Toolchains
- SDKs (Software Development Kits)

Compilation flow 47

Useful links 48

STM32MP1 Wiki: https://wiki.st.com/stm32mpu/index.php/Main_Page

Useful links 49

STM32MP1 Wiki: https://wiki.st.com/stm32mpu/index.php/Main_Page

STM32MP1 MPU series

www.st.com/stm32mp1

