# **Project Report**

| Team ID       | PNT2022TMID33196                                                    |
|---------------|---------------------------------------------------------------------|
| Project Name  | Real-Time Communication System Powered by AI for Specially<br>Abled |
| Team Lead     | HARIHARAN P(Reg no:922119106030)                                    |
| Team Member 1 | BALAJI G(Reg no:922119106015)                                       |
| Team Member 2 | DHEENU GOWTHAM S(Reg no:922119106020)                               |
| Team Member 3 | DOMNIC VISHAL J(Reg no:922119106025)                                |
| Team Member 4 | GAJENDRAN B(Reg no:922119106027)                                    |

#### 1.INTRODUCTION

#### 1.1PROJECT OVERVIEW

The project developed is a system that converts hand gesturesof a Deaf-Mute individual into its respective ASL (American Sign Language) alphabets for a normal individual for communication. The main customer for our project are: People who want to communicate with deaf-mute individual who desire to communicate with others, and deaf-mute individual who desire to communicate with others. This project tries to solve the communication during the time of emergencies. The project is developed on Python Platform using CNN (Convolutional Neural Network) model from TensorFlowpackage.

**1.2.PURPOSE** Everybody cannot afford to have a human translators of sign language, they may not be available all the time and they are quite expensive. People who engage in conversation with deaf-mute individual will find it hard and tedious. Deaf-mute individual may lose a lot of opportunities because they cannot speak or express their thoughts verbally in situationslike an interview. This projectaims to overcome the said challenges.

## 2.LITERATURE SURVEY

## **2.1.EXISTING PROBLEMS**

- Existing system(or) frameworks has too many false positives. The system predicts the gestures inaccurately.
- Real Time recognition of gestures into text/speech and text/speech into gestures is not available.

## 2.2.REFERENCES

- i. Saed Mian Qaisar, Sarah Niyazi, Abdulhamit Subasi, "Efficient Isolated Speech to Sign Conversion Based on the Adaptive Rate Processing"; Procedia Computer Science, Vol. 163, PP. 35–40, 2019.
- ii. T. Bohra, S. Sompura, K. Parekh and P. Raut, "Real-Time Two Way Communication System for Speech and Hearing ImpairedUsing Computer Visionand Deep Learning" International Conference on Smart Systems and InventiveTechnology (ICSSIT), pp. 734-739, 2019.
- iii. Ma, Jiyong, Wen Gao, Jiangqin Wu, and Chunli Wang. "Acontinuous Chinese Sign Language recognition system." In Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), pp. 428-433. IEEE, 2000.
- iv. Vogler, C., and D. Handshapes Metaxas. "Movements: Multiple-Channel American Sign Language Recognition." Gesture-Based Communication in Human-Computer Interaction. Lecture Notes in Computer Science: 247-258.
- v. Pavlovic, V, Sharma, R., &Huang T., "Visual Interpretation of Hand Gesturesfor Human-ComputerInteraction (HCI): A Review",IEEE TOPAMI, VOL. 19, NO. 7, 1999.

## 2.3.PROBLEM STATEMENTDEFINITION

The study of human-computer interaction has shown a great deal of interest in hand gesture recognition. In many areas of human-computer interaction, including virtual reality, gaming, automobile system control, and robotic control, quick and precise hand gesture recognition is crucial. As more sensors are added, there are numerous different ways to categorise hand motions. Since gesture identification is a problem of image classification and 2D CNNs are effective in image classification, we have chosen to employ a convolutional neural network for this task. A system that converts the sign language into the respective ASL (American Sign Language)alphabet to convey a message to normal people is developed in this project.

## **3.IDEATION & PROPOSED SOLUTION**

## **3.1.EMPATHY MAP CANVAS**



## 3.2.IDEATION & BRAINSTORMING



## 3.3.PROPOSED SOLUTION

| S.NO | Parameters                  | Descriptions                                                                                                                                                         |  |  |
|------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | Problem Statement (Problem  | To solve their communication                                                                                                                                         |  |  |
|      | to be solved)               | trouble with AI.                                                                                                                                                     |  |  |
| 2    | Idea / Solution description | Al technology can empower                                                                                                                                            |  |  |
|      |                             | people living with limited                                                                                                                                           |  |  |
|      |                             | physical mobility. Al for                                                                                                                                            |  |  |
|      |                             | Accessibility program uses                                                                                                                                           |  |  |
|      |                             | the potential of Artificial                                                                                                                                          |  |  |
|      |                             | Intelligence to develop                                                                                                                                              |  |  |
|      |                             | solutions to many physical                                                                                                                                           |  |  |
|      |                             | and cognitive challenges                                                                                                                                             |  |  |
|      |                             | disabled individuals face at                                                                                                                                         |  |  |
|      |                             | work and in daily life to                                                                                                                                            |  |  |
|      |                             | •                                                                                                                                                                    |  |  |
|      |                             |                                                                                                                                                                      |  |  |
| 3    | Novelty / Uniqueness        |                                                                                                                                                                      |  |  |
|      |                             |                                                                                                                                                                      |  |  |
|      |                             | •                                                                                                                                                                    |  |  |
|      |                             | _                                                                                                                                                                    |  |  |
|      |                             | language for the deaf and                                                                                                                                            |  |  |
|      |                             | <u> </u>                                                                                                                                                             |  |  |
| 4    | Social Impact / Customer    | dumb. •Emergency button. The customer can convey their information without any trouble. Selling this product to specially abled perosons as well as normal people.To |  |  |
|      | Satisfaction                |                                                                                                                                                                      |  |  |
|      |                             | dumb. •Emergency button. The customer can convey their information without any trouble. Selling this product to                                                      |  |  |
| 5    | Business Model (Revenue     |                                                                                                                                                                      |  |  |
|      | Model)                      | '                                                                                                                                                                    |  |  |
|      |                             | 1                                                                                                                                                                    |  |  |
|      |                             | access more features must                                                                                                                                            |  |  |
|      | 0 1122 (2 0 1 2             | pay(Freemium model).                                                                                                                                                 |  |  |
| 6    | Scalability of the Solution | Al based real time                                                                                                                                                   |  |  |
|      |                             | communication system To                                                                                                                                              |  |  |
|      |                             | empower specially abled to                                                                                                                                           |  |  |
|      |                             | chase their dreams without                                                                                                                                           |  |  |
|      |                             | any communication trouble.                                                                                                                                           |  |  |

## 3.4.PROBLEM SOLUTION FIT



## 4. Functional Requirements:

Following are the functional requirements of the proposed solution.

| FR No | Functional Requirement (Epic)       | Sub Requirement (Story /       |
|-------|-------------------------------------|--------------------------------|
|       |                                     | SubTask)                       |
| 1     | User Registration                   | To get required informations   |
|       |                                     | from cutomer for registration  |
|       |                                     | process                        |
| 2     | User Confirmation                   | Confirm the details with Email |
|       |                                     | and OTP verifications.         |
| 3     | Permission access                   | Permit the required functions  |
|       |                                     | like GPS,Micro phone and       |
|       |                                     | Camera.                        |
| 4     | Information provide priority based. | From the frequent              |
|       |                                     | information provide the        |
|       |                                     | particular information first.  |
| 5     | Feedback                            | To get feedback from           |

|   |              | customer via product or software.                    |
|---|--------------|------------------------------------------------------|
| 6 | Troubleshoot | To solve problems in product with customer feedback. |

# **Non-functional Requirements:**

Following are the non-functional requirements of the proposed solution

| FR No. | Non-Functional Requirement | Description                  |
|--------|----------------------------|------------------------------|
| 1      | Usability                  | Easily access sign languages |
|        |                            | during process.              |
| 2      | Security                   | To ensure customer personal  |
|        |                            | informations from malware    |
|        |                            | and hackers.                 |
| 3      | Reliability                | To perform sign language     |
|        |                            | conversion without any       |
|        |                            | interruptions.               |
| 4      | Performance                | Sign language conversion     |
|        |                            | should not load more than    |
|        |                            | one minute.                  |
| 5      | Availability               | Availability describes how   |
|        |                            | likely the system is         |
|        |                            | accessible to a user at a    |
|        |                            | given point in time.         |
| 6      | Scalability                | Handle many sign languages   |
|        |                            | conversions without any      |
|        |                            | product degradation.         |

# **5.PROJECT DESIGN**

5.1:Data Flow Diagram:



## **User Stories:**

| User Type                       | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story / Task                                                                                                         | Acceptance criteria                                          | Priority | Release  |
|---------------------------------|-------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|----------|
| Customer (Deaf-<br>Mute people) | User Input                          | USN-1                   | As a user, I can input my sign-language to<br>the system for processing.                                                  | The user can input sign<br>language into the system          | Low      | Sprint-3 |
|                                 |                                     | USN-2                   | As a user, I can input sign-language images to the system for processing.                                                 | The user can input images into the system                    | High     | Sprint-1 |
|                                 |                                     | USN-3                   | As a user, I can make sure the input is<br>captured correctly by the system.                                              | The system should<br>capture the input<br>correctly          | Medium   | Sprint-2 |
|                                 | Processing                          | USN-4                   | As a user, I can ensure that the sign<br>language input is correctly getting<br>translated into normal message and voice. | The user can ensure that the processing is done correctly.   | Medium   | Sprint-2 |
|                                 |                                     | USN-5                   | As a user, I can get acknowledgement from<br>the system about the processing of the<br>input.                             | The user should get an acknowledgement                       | High     | Sprint-1 |
|                                 |                                     | USN-6                   | As a user, I will get feedback about the processing of the system.                                                        | The user should get<br>feedback from the<br>system           | Low      | Sprint-3 |
|                                 | System Output                       | USN-7                   | As a user, I can acknowledge the output of<br>the system by ensuring messages are<br>displayed.                           | The user should get an<br>acknowledgement from<br>the system | High     | Sprint-1 |
|                                 |                                     | USN-8                   | As a user, I can get feedback about the<br>system from its output.                                                        | The user should get feedback from the system                 | Medium   | Sprint-2 |

## **5.2:Solution Architecture:**

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- $\bullet$  Find the best tech solution to solve existing business problems.  $\ensuremath{\text{cv}}$
- Describe the structure, characteristics, behaviour, and other aspects of the software to project stake holders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.



## 5.3:Technical Architecture:



Table-1: Components & Technologies:

|       | -                |                                                                                                                                        |                                                                              |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| S. No | Component        | Description                                                                                                                            | Technology                                                                   |
| 1.    | User (Deaf-mute) | The deaf-mute user will benefit from the system which uses several technologies.                                                       | Cloud tech, OpenCV and AI tech like<br>Machine Learning, Deep Learning, etc. |
| 2.    | User Interface   | The user interface lets the user interact with the system which is hosted in the cloud.                                                | Suitable UI Technology, Cloud Hosting                                        |
| 3.    | Models           | A machine learning model is used to classify our gesture image dataset.                                                                | Machine Learning                                                             |
| 4.    | Image Prediction | The image prediction is done with the help of deep learning which<br>implements neural networks of various kinds to solve the problem. | ANN, CNN                                                                     |
| 5.    | Image            | Image processing is done on input image.                                                                                               | OpenCV                                                                       |
| 6.    | Speech           | The output of the system is speech (voice) to be heard for normal users.                                                               | Suitable Speech System                                                       |

#### Table-2: Application Characteristics:

| S. No | Characteristics          | Description                                                                       | Technology                                                          |
|-------|--------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|
|       |                          |                                                                                   |                                                                     |
| 1.    | Open-Source Frameworks   | Our system implements many open-source frameworks.                                | Al frameworks, OpenCV, Speech<br>System, Ul system, Python Language |
| 2.    | Security Implementations | Necessary security measures will be implemented in the system.                    | Necessary Security Technologies                                     |
| 3.    | Scalable Architecture    | The architecture is very much scalable to accommodate any future needs.           | Scalable Technologies                                               |
| 4.    | Availability             | The system will be made ubiquitous so that it is available everywhere.            | Necessary Technologies                                              |
| 5.    | Performance              | The model will be fine-tuned to strike a balance between accuracy vs performance. | Optimization of code and trained model                              |

## **6.PROJECT PLANNING & SCHEDULING:**

#### Product Backlog, Sprint Schedule, and Estimation (4 Marks)

| Sprint   | Functional<br>Requirement (Epic) | User Story<br>Number | User Story / Task                                                                                    | Story Points | Priority | Team<br>Members   |
|----------|----------------------------------|----------------------|------------------------------------------------------------------------------------------------------|--------------|----------|-------------------|
| Sprint-1 | Data collection                  | USN-1                | Collection of required data, login information from user                                             | 2            | Low      | GAJENDRAN         |
| Sprint-1 |                                  | USN-2                | Image pre-processing                                                                                 | 3            | High     | HARIHARAN         |
| Sprint-2 | Model building                   | USN-3                | Import the required libraries, add the necessary layers, and compile the model                       | 2            | Low      | DOMINIC<br>VISHAL |
| Sprint-2 |                                  | USN-4                | Training the image classification model using CNN                                                    | 3            | High     | BALAJI            |
| Sprint-3 | Training and testing             | USN-5                | Training the model and testing the model's performance                                               | 3            | High     | GAJENDRAN         |
| Sprint-3 |                                  | USN-6                | Converting the input sign language images into<br>English alphabets and save model for<br>deployment | 2            | Low      | DHEENU<br>GOWTHAM |
| Sprint-4 | Implementation and dashboard     | USN-7                | As a user, I can acknowledge the output of the<br>system by ensuring messages are displayed.         | 2            | Low      | BALAJI            |
| Sprint-4 |                                  | USN-8                | As a user, I can get and give feedback about the<br>system from its output.                          | 3            | High     | HARIHARAN         |

## Project Tracker, Velocity & Burndown Chart: (4 Marks)

| Sprint   | Total Story<br>Points | Duration | Sprint Start Date | Sprint End Date<br>(Planned) | Story Points Completed (as on Planned End Date) | Sprint Release Date<br>(Actual) |
|----------|-----------------------|----------|-------------------|------------------------------|-------------------------------------------------|---------------------------------|
| Sprint-1 | 05                    | 6 Days   | 24 Oct 2022       | 29 Oct 2022                  | 05                                              | 05 Nov 2022                     |
| Sprint-2 | 05                    | 6 Days   | 31 Oct 2022       | 05 Nov 2022                  | 05                                              | 08 Nov 2022                     |
| Sprint-3 | 05                    | 6 Days   | 07 Nov 2022       | 12 Nov 2022                  | 05                                              | 12 Nov 2022                     |
| Sprint-4 | 05                    | 6 Days   | 14 Nov 2022       | 19 Nov 2022                  | 05                                              | 19 Nov 2022                     |
|          |                       |          |                   |                              |                                                 |                                 |
|          |                       |          |                   |                              |                                                 |                                 |
|          |                       |          |                   |                              |                                                 |                                 |
|          |                       |          |                   |                              |                                                 |                                 |

Velocity:
Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity}$$

$$AV = 5/10 = 0.5$$

## Burndown Chart





## 7.1IMAGE PREPROCESSING

#### 7.1IMAGE PREPROCESSING

- Image pre-processing includes zooming, shearing,flipping to increasethe robustness of the model after itis built. Keras package is used for pre-processing images.
- Importing ImageDataGenerator Library to create an instancefor which include shearing, rescale,zooming,etc to make the model robust with differenttypes of images.

```
In [1]: from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale = 1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) shear_range=0.2,zoom_range=0.2,horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) shear_range=0.2,horizontal_flip=True) test_datagen = ImageDataGe
```

Applying ImageDataGenerator Functionality To Train And Test Set

```
In [2]: x_train = train_datagen.flow_from_directory('dataset/training_set',target_size-(64,64),batch_size-300,class_mode-'categorical',cc
    x_test = test_datagen.flow_from_directory('dataset/test_set',target_size-(64,64),batch_size-300,class_mode-'categorical',color_mc
    found 15750 images belonging to 9 classes.

Found 2550 images belonging to 9 classes.
```

#### 7.2.MODEL BUILDING

#### Importing The RequiredModel Building Libraries

```
In [3]: from heres.models import Sequential
from heres.layers import Convolution20
from heres.layers import Temport Description20
from heres.layers import Temport Description
from heres.layers import Platten
```

## Initializing The Model

## Adding The Convolution Layer

```
In [5]: model.add(Convolution20(12,(8,3),input_shape+(64,64,1),actination='relu'))
wWWINE:tensorflow:from c:\users\adars\appdeta\local\programs\gython\gython\57\lib\site-packages\keras\backend\tensorflow_backen
d.gytS17: The name tf.placeholder is deprecated. Please use tf.compat.ul.glaceholder instead.
```

WWWDMS:tensorflow:From c:\users\adars\appdata\local\programs\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\python\pyth

## · Adding The Pooling Layer

```
In [0]: model.add(MaxPoolingID(pool_size-(2,2)))
id#ADMS(tensorflow)From (s\users\adars\appdata\local\programs\python\D\tau\intersor\Data\atta\programs\python\D\tau\intersor\Data\atta\programs\python\D\tau\intersor\Data\atta\programs\python\D\tau\intersor\Data\atta\programs\python\D\tau\intersor\Data\atta\programs\python\D\tau\intersor\Data\atta\programs\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\tau\intersor\Data\atta\python\D\ta\python\D\tau\intersor\Data\atta\python\Data\atta\python\Data\atta\python\Data\python\Data\python\Data\atta\python\Data\atta\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\python\Data\pytho
```

## Adding The Flatten Layer

```
In [7]: model.add(Flatten())
```

#### Compiling The Model

```
In [9]: model.compile(loss-'categorical_crossentropy',optimizer-'adam',metrics-['accuracy'])

WANDMG:tensorflow:from c:\users\adams\appdata\local\grograms\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\gython\g
```

#### Fit And Saving the Model

```
In [18]: model.fit_generator(s_train, steps_per_spech=16, spechs=16, validation_data=s_test_validation_steps=48)

model.asse('signingsage.M')

model.asse('signin
```

#### 7.3.TESTING THE MODEL

#### Importing The Packagesand Loading the Saved Model

```
in [1] the terms anothed impact to anothed in pact to a process of the package of
```

· Loading the Test Image, Pre-Processing it And Prediction

- ➤ The output [6] in the above image represents the index value in the array['A','B','C','D','E','F','G','H','I'].
- > Thus, the predicted alphabetis G.

#### 7.4.FLASK APPLICATION

Loading the requiredpackages

```
import numpy as np
import cv2
import cs
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.backend import set_session
from flask import Flask, render_template, Response
import tensorflow as tf
from gtts import gTTS
global graph
global writer
from skimage.transform import resize
```

· Initializing graph, loading the model, initializing the flask app and loading the video.

 Graph element is required to work with TensorFlow. So, graph element is created explicitly.

```
graph = tf.get_default_graph()
model = load_model('signlanguagel.h5')
vals = ['A','B','C','D','E','F','G','H','I']
app = Flask(_name__)
print("[INFO] accessing video stream...")
camera = cv2.VideoCapture(1)
camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
pred=""
```

· Configuring the home page

```
@app.route('/')
def index():
    return render_template('index.html')
```

· Pre-processingthe frames capturedfrom the camera

```
def detect(frame):
    global pred
    global graph
    img = resize(frame, (64,64,1))
    x = image.img_to_array(img)
    x = np.expand_dims(x,axis=0)
    with graph.as_default():
        predictions = model.predict_classes(x)
    print(predictions)
    pred=vals[predictions[0]]
    print(pred)
```

· Video Feed call from the HTML PAGE

```
@app.route('/video_feed')
def video_feed():
    return Response(gen(),mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__=='__main__':
    app.run()
```

#### 7.5.HTML PAGE

 HTML page to display the processedvideo on the screen, so that the person can show signs which canbe detected.

```
contact Characteristics of the contents with the contents of t
```

## 8.Testing:

| S.No. | Parameter                                   | Values                                                                                                                                                             | Screenshot          |
|-------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1.    | Model Summary                               | Model - Sequential model<br>Layers:<br>Conv2D-(None,62,62,32)<br>MaxPooling2D-<br>(None,31,31,32)<br>Flatten-(None,30752)<br>Dense-(None,200)<br>Dense_1 -(None,9) | Model: "sequential" |
| 2.    | Accuracy                                    | Training Accuracy - 0.9622  Validation Accuracy -0.9826                                                                                                            |                     |
| 3     | Confidence<br>Score (Only Yolo<br>Projects) | Class Detected - NA Confidence Score -NA                                                                                                                           | NA NA               |

## 1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of project-Real Time Communication System Powered By Al For Specially Abled at the time of the release to User Acceptance Testing (UAT).

# 2. Defect Analysis

| Section             | Total<br>Cases | Not<br>Tested | Fail | Pas<br>s |
|---------------------|----------------|---------------|------|----------|
| View Home Page      | 7              | 0             | 1    | 6        |
| Click Reference     | 15             | 0             | 3    | 12       |
| Image displayed     | 12             | 0             | 0    | 12       |
| Allow camera access | 11             | 0             | 2    | 9        |

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

| Resolution     | Severity<br>1 | Severity 2 | Severity<br>3 | Severity<br>4 | Subtota |  |
|----------------|---------------|------------|---------------|---------------|---------|--|
| By Design      | 0             | 0          | 0             | 2             | 2       |  |
| Duplicate      | 1             | 0          | 0             | 0             | 1       |  |
| External       | 0             | 0          | 1             | 0             | 1       |  |
| Fixed          | 0             | 1          | 1             | 0             | 2       |  |
| Not Reproduced | 0             | 1          | 0             | 0             | 1       |  |
| Skipped        | 0             | 0          | 0             | 0             | 0       |  |
| Won't Fix      | 0             | 1          | 0             | 0             | 1       |  |
| Totals         | 1             | 3          | 2             | 2             | 8       |  |

# 3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

| Gesture prediction | 9 | 0 | 2 | 7 |
|--------------------|---|---|---|---|
| Final Output       | 9 | 0 | 2 | 7 |
| Version Control    | 5 | 0 | 2 | 3 |



## 9.Results

## 9.1:Performance Metrics:

## **Model summary**



## Accuracy



## **10.ADVANTAGES & DISADVANTAGES**

## Advantages

- The application is conveniently simple for the end user.
- The user interfaceis not complex.

## Disadvantages

- The dataset in limited. The alphabets only range from 'A' to 'J'.
- As of now, only static gestures are converted.

#### 11.CONCLUSION

The main objective of this project is to develop gesture recognition so that the deaf can communicate with normal individuals. One of the crucial tasks is the extraction of features, and various gestures should yield various, effectively distinguishable characteristics. To identify the character from the gesture images, we used a trained dataset for the CNN algorithm. These features combined with a labelled data enable accurate realtime ASL alphabet recognition. Our analysis found that accuracy is influenced by a variety of elements, including the camera, dataset, and approach. The accuracy drastically declines in low light and noisy backgrounds.

#### 12.FUTURE SCOPE

The proposed system can be translated into multiple languages, enhancing its dependability and effectiveness. In the near future, it might only be accessible through mobile devices, makingthe system more convenient and portable. This system is unable to detect gestures made with both hands. Therefore, detecting gesturesdone with both hands could be a future project.

#### 13.APPENDIX

#### 13.1.SOURCE CODE

- Source Code is available in the GitHub link provided in Section 13.2.
- GitHub: <a href="https://github.com/IBM-EPBL/IBM-Project-2282-1658469092">https://github.com/IBM-EPBL/IBM-Project-2282-1658469092</a>
- Project Demo Link:

https://drive.google.com/file/d/1QiXsJGflEszoXGfV\_hbrlgFpV4DI92Qr/view?usp=share\_link