Cryptography and Network Security Chapter 18

Intruders

- significant issue for networked systems is hostile or unwanted access
- either via network or local
- can identify classes of intruders:
 - masquerader
 - misfeasor
 - clandestine user
- varying levels of competence

Intruders

- clearly a growing publicized problem
 - from "Wily Hacker" in 1986/87
 - to clearly escalating CERT stats
- may seem benign, but still cost resources
- may use compromised system to launch other attacks
- awareness of intruders has led to the development of CERTs

Intrusion Techniques

- aim to gain access and/or increase privileges on a system
- basic attack methodology
 - target acquisition and information gathering
 - initial access
 - privilege escalation
 - covering tracks
- key goal often is to acquire passwords
- so then exercise access rights of owner

Password Guessing

- one of the most common attacks
- attacker knows a login (from email/web page etc)
- then attempts to guess password for it
 - defaults, short passwords, common word searches
 - user info (variations on names, birthday, phone, common words/interests)
 - exhaustively searching all possible passwords
- check by login or against stolen password file
- success depends on password chosen by user
- surveys show many users choose poorly

Password Capture

- another attack involves password capture
 - watching over shoulder as password is entered
 - using a trojan horse program to collect
 - monitoring an insecure network login
 - eg. telnet, FTP, web, email
 - extracting recorded info after successful login (web history/cache, last number dialed etc)
- using valid login/password can impersonate user
- users need to be educated to use suitable precautions/countermeasures

Intrusion Detection

- inevitably will have security failures
- so need also to detect intrusions so can
 - block if detected quickly
 - act as deterrent
 - collect info to improve security
- assume intruder will behave differently to a legitimate user
 - but will have imperfect distinction between

Approaches to Intrusion Detection

- statistical anomaly detection
 - threshold
 - profile based
- rule-based detection
 - anomaly
 - penetration identification

Audit Records

- fundamental tool for intrusion detection
- native audit records
 - part of all common multi-user O/S
 - already present for use
 - may not have info wanted in desired form
- detection-specific audit records
 - created specifically to collect wanted info
 - at cost of additional overhead on system

Statistical Anomaly Detection

- threshold detection
 - count occurrences of specific event over time
 - if exceed reasonable value assume intrusion
 - alone is a crude & ineffective detector
- profile based
 - characterize past behavior of users
 - detect significant deviations from this
 - profile usually multi-parameter

Audit Record Analysis

- foundation of statistical approaches
- analyze records to get metrics over time
 - counter, gauge, interval timer, resource use
- use various tests on these to determine if current behavior is acceptable
 - mean & standard deviation, multivariate, markov process, time series, operational
- key advantage is no prior knowledge used

Rule-Based Intrusion Detection

- observe events on system & apply rules to decide if activity is suspicious or not
- rule-based anomaly detection
 - analyze historical audit records to identify usage patterns & auto-generate rules for them
 - then observe current behavior & match against rules to see if conforms
 - like statistical anomaly detection does not require prior knowledge of security flaws

Rule-Based Intrusion Detection

- rule-based penetration identification
 - uses expert systems technology
 - with rules identifying known penetration, weakness patterns, or suspicious behavior
 - compare audit records or states against rules
 - rules usually machine & O/S specific
 - rules are generated by experts who interview
 & codify knowledge of security admins
 - quality depends on how well this is done

Base-Rate Fallacy

- practically an intrusion detection system needs to detect a substantial percentage of intrusions with few false alarms
 - if too few intrusions detected -> false security
 - if too many false alarms -> ignore / waste time
- this is very hard to do
- existing systems seem not to have a good record

Distributed Intrusion Detection

- traditional focus is on single systems
- but typically have networked systems
- more effective defense has these working together to detect intrusions
- issues
 - dealing with varying audit record formats
 - integrity & confidentiality of networked data
 - centralized or decentralized architecture

Distributed Intrusion Detection Architecture

Distributed Intrusion Detection – Agent Implementation

Honeypots

- decoy systems to lure attackers
 - away from accessing critical systems
 - to collect information of their activities
 - to encourage attacker to stay on system so administrator can respond
- are filled with fabricated information
- instrumented to collect detailed information on attackers activities
- single or multiple networked systems
- cf IETF Intrusion Detection WG standards

Password Management

- front-line defense against intruders
- users supply both:
 - login determines privileges of that user
 - password to identify them
- passwords often stored encrypted
 - Unix uses multiple DES (variant with salt)
 - more recent systems use crypto hash function
- should protect password file on system

Password Studies

- Purdue 1992 many short passwords
- Klein 1990 many guessable passwords
- conclusion is that users choose poor passwords too often
- need some approach to counter this

Managing Passwords - Education

- can use policies and good user education
- educate on importance of good passwords
- give guidelines for good passwords
 - minimum length (>6)
 - require a mix of upper & lower case letters, numbers, punctuation
 - not dictionary words
- but likely to be ignored by many users

Managing Passwords - Computer Generated

- let computer create passwords
- if random likely not memorisable, so will be written down (sticky label syndrome)
- even pronounceable not remembered
- have history of poor user acceptance
- FIPS PUB 181 one of best generators
 - has both description & sample code
 - generates words from concatenating random pronounceable syllables

Managing Passwords - Reactive Checking

- reactively run password guessing tools
 - note that good dictionaries exist for almost any language/interest group
- cracked passwords are disabled
- but is resource intensive
- bad passwords are vulnerable till found

Managing Passwords - Proactive Checking

- most promising approach to improving password security
- allow users to select own password
- but have system verify it is acceptable
 - simple rule enforcement (see earlier slide)
 - compare against dictionary of bad passwords
 - use algorithmic (markov model or bloom filter) to detect poor choices

Summary

- have considered:
 - problem of intrusion
 - intrusion detection (statistical & rule-based)
 - password management