

V TOMTO SEŠITĚ

Verordnungsblatt Seite 189	289
Cíl může Svatým přispět k oslavě Dne čs. armády	290
Jak hospodaříme my	291
Dva roky ORK Litomyšl	291
Také radisté musí být připraveni k civilní obraně	292
Na slovíčko	292
Příprava rychlotelegrafistů	293
Okénko do přijímače	294
Miniaturní akumulátor	295
Indikátor ladění u televizoru	297
Abeceda	301
Magnetofon M-9	304
Krystalové mikrofony a přenosky v NSR	306
Transistory v praxi VI (měřicí přístroje)	306
Látkovnice (elektronka ECC85)	307
Ztrojovač kmítoku 145—435 MHz	311
Víc hlav víc ví	313
QRP?	314
VKV	316
DX	317
Šíření KV a VKV	318
Soutěže a závody	319
Přečteme si	320
Nezapomeňte, že	320
Malý oznamovatel	320

Na titulní straně je obrázek „okénka do přijímače“ — poměrně jednoduchého přístroje pro sladování, obsahujícího osciloskop, frekvenci modulátor a multivibrátor. Křívka na stínitku je snímána s přijímače MWec.

Na druhé straně obálky je pohled do zbrojnice ing. Hanzecky — OK2HZ. Mezi výzvy chystané výpravy patří i řada elektronického zařízení.

Třetí a čtvrtá strana obálky doplňuje názornými obrázky návod na stavbu páskového nahrávače, který otiskujeme uvnitř čísla na str. 304.

AMATÉRSKÉ RADIO — Vydává Svatý pro spolu-práci s armádou ve Vydavatelství časopisů MNO, Praha II, Vladislavova 26. Redakce Praha I, Národní tř. 25 (Metro), telefon 23-30-27. — Řídí František Smolík s redakčním kruhem (J. Černý, ing. J. Čermák, V. Dancík, K. Donáth, A. Hálek, ing. M. Havlicek, K. Krbec nositel odznaku „Za oběťovou práci“, A. Lavante, ing. J. Navrátil, V. Nedvěd, ing. J. Nováková, ing. O. Petráček, A. Rambousek, J. Sedláček, mistr radioam., sportu a nositel odznaku „Za oběťovou práci“, J. Stehlík, mistr radioam., sportu a nositel odznaku „Za oběťovou práci“, A. Soukup, Z. Škoda, R. Štechmiller, L. Žváka, nositel odznaku „Za oběťovou práci“). — Vychází měsíčně, ročně vydaje 12 čísel. Inserci přijímá Vydavatelství časopisů MNO, Praha II, Jungmannova 13. Tiskárna Naši vojsko n. p., Praha. Rozšířuje Poštovní novinovou službu. Za případnost příspěvků ručí autor. Redakce příspěvky vraci jen byly-li vyžádány a byla-li přiložena frankovaná obálka se zpětnou adresou.

Toto číslo vyšlo 1. října 1958.

§ 1. Tajný vysílač se potrestá káznicí. V méně těžkých případech je trestem vězení
Kdo se dočistí činu uvedených v § 2. z nedbalosti, bude potrestán vězením.

Tak pravilo nařízení říšského protektora proti tajným vysílačům v území Protektorátu Böhmen und Mähren ze dne 11. října 1939, Verordnungsblatt Seite 189. A končilo: „K vyšetření a rozhodování o trestných činech proti tomuto nařízení jsou příslušny německé soudy.“

Za tři dny nato, 14. října 1939, byla potopena válečná loď Jeho Veličenstva Royal Oak ve Scapa Flow, v srdci britských ostrovů, hitlerovskou ponorkou. 16. října provedla Luftwaffe první útok na britské ostrovy — Firth of Forth.

Taková byla posloupnost událostí, které se začaly odvijet z klubka, upředeného společnou rukou Hitlera a Konráda Henleiná na jedné straně a lorda Runcimana, Halifaxe a Daladiera na straně druhé. Výsledkem úmluvy, již bylo obětováno Československo v zájmu „udržení míru“, byla smrt tisíců francouzských a britských občanů, výsledkem § 1 nařízení říšského ochránce — tajný vysílač se potrestá káznicí — byla smrt sedmnácti našich koncesionářů a utrpení mnoha desítek dalších amatérů v koncentráčích a káznících.

Je dobré si tyto události připomenout; blíží se totiž kvapem dvacetileté výročí nařízení říšského protektora o vysílačích stanicích a jak dějiny ukázaly, německý militarismus si na dvacetileté období potrpí. Nezdá se, že by si aktéři akce „Teutonský meč“ dopřáli zasloužený odpočinek. Právě naopak. Zprávy, které docházejí ze západní poloviny Německa, nasvědčují tomu, že by se našlo dost zájemců o opakování událostí z roku 1938—1939, dost zájemců o funkce protektorů, landesrátů, oberlandrátů, gau-leitů, leitů a frajtrů v ostgebietech. Viděli jsme zcela nedávno fotografie tryskových stíhaček s tak smutně proslulými černými kříži. Jejich předěl směrovaly na východ. Na východ bohatý naftou, zemědělskými produkty a jak by chtěli — i levnými pracovními silami. Na východ, který by se mohl v blízké budoucnosti stát zaslibenou zemí kšeftu. Na východ, do „Morgenlandu“, „Země zítřka“, je obrácen západoněmecký ministr Strauss, a pečlivě hildá jakoukoliv přiležitost, která by dávala naději na úspěšné oživení „Drangu nach Osten“. Proto se tak hbitě ujal velení nad jednotkami Bundeswehru, proto tak ochotně dal k disposici letiště, jakmile bylo zahájeno tažení na Střední východ proti mladým arabským státům.

Zatím na Blízký východ. Jenže na východ od 12° zeměpisné délky žijeme také my. Proto nám tah letadel s černými železnými kříži ze západu na východ nemůže zůstat lhostejný. Nemůže zůstat lhostejný ani Polákům, jejichž dějiny od dob založení pruského králického rádu jsou jedním pásmem bojů s rozdílností na východ. A nemůže zůstat lhostejný ani samotným Němcům, těm, kteří v dvacetiletých obdobích ztráceli příbuzné a přátele na bojištích Evropy, Afriky a Asie, těm, kteří vyrostli v letech nezměrného utrpení prostých lidí za poslední světové války, těm, kteří si nečiní naděje na vůdcovské funkce v dobytých územích, těm, kteří se chtějí žít, žít a radovat se z poctivé práce, těm, kteří by nikdy nevydal nařízení z 11. října 1939, Verordnungsblatt Seite 189. A tato nelhostejnost je naší silou. Nejenom „naší“, nás lidí žijících v kotlině střední Evropy, ale všech nás, kteří se nechceme už nikdy setkávat na bojištích se zbraní v ruce. A těch je mnohem více než aspirantů na funkce gauleitů — nebo na hrob zdobený železným křížem. — My spolu chceme bojovat s klíčem a slučátky tak jako v srpnu v Drážďanech na rychlotelegrafových závodech, my spolu chceme zápasit vytrvalostí a obratnosti tak jako o VKV závodu 6.—7. září, my chceme lidsky oceňovat dobrou práci každého z nás udělováním diplomů „S6S“, „WAE“, „Sea of Peace“, „W21M“, my chceme vyvítjet nové, lepší vysílače a přijímače a navazovat nová srdečná přátelství v éteru. A je nás mnohem více než těch, kteří by chtěli podle zelenavého paprsku radiolokátoru vést letadla a střely na ty druhé — a čekat, kdy ten druhý stejným elektronickým zařízením promění mne v hromádku popela. My chceme boj, ale boj za lepší život, boj za mír, boj za možnost v klidu pracovat a moci se věnovat své zálibě. A my už jej aktivně bojujeme: ve svém každodenním zaměstnání, tím, že se učíme ovládat zbraň pro případ obrany proti škůdci, tím, že navazujeme přátelství svými radiovými spojeními, tím, že ukazujeme — jako v Bruselu — jaké krásy lze vytvořit v tvorivé práci i bez kolonií a bez vykořisťování jiných. My jej prostě musíme bojovat; neboť kam to vede, když se jen trpně přihlíží a spolehá na Runcimany, nám kromě jiného ukázalo i nařízení z 11. října 1939, V. BI. S. 189.

ČÍM MŮŽE SVAZARM PŘISPĚT K OSLAVĚ DNE ČESkoslovenské armády

Podplukovník Miroslav Otruba

Již po osmé slaví naše armáda a s ní všechn pracující lid svátek – Den československé armády. Šestý říjen je svátkem naší armády jako trvalá památka historické události: toho dne roku 1944 v 9 hodin ráno překročily první jednotky 1. čs. armádního sboru v SSSR naše státní hranice v Dukelském průsmyku a po boku hrdinných sovětských vojáků 38. sovětské armády generála plukovníka Moskalenka přinesly naši vlasti svobodu.

Dukelské vítězství, zaplacené velkým počtem obětí sovětských a československých vojáků, stalo se symbolem boje sovětského a československého lidu proti nepříteli – fašistickému Německu, symbolem skutečně bratrské, nezáštné a obětavé pomoci Sovětského svazu našemu lidu v jeho boji za svobodu.

Sovětská armáda zvítězila a podala tak jasné důkaz své neporazitelnosti. Proto také při výstavbě naší lidové armády čerpáme co nejvíce z jejích velkých bojových zkušeností.

Naší armádě péčí Komunistické strany Československa se dostává všechno, aby mohla plnit úkoly moderního způsobu vedení boje. Tak jako v civilním odvětví technika stále více a více se rozrůstá a stává se náročnější na obsluhu, tak také v armádě se zavádí nová technika, dokonalejší a výkonnější, avšak zároveň složitější a náročnější na vědomosti těch, kteří ji mají obsluhovat a používat. To zvlášť platí o spojovací technice – o radiových pojítkách.

Do nedávna platil názor, že obsluhy např. radiových stanic stačí vycvičit tak, aby ovládaly provoz radiové stanice, kdežto o údržbu a opravy že se budou starat výhradně radiové mechanici. Včas jsme si uvědomili, kam by toto úzké odborničení mohlo vést a jak by se mohlo katastrofálně vymstít právě ve službě v poli. Vždyť co je to za specialistu-radistu, který sice dobré ví, jak nastavit kmitočet, který výtečně ovládá telegrafní abecedu a je radistou

1. třídy, když jeho odbornost je ta tam v okamžiku, kdy mu stanice z jakýchkoliv důvodů přestane fungovat. Z takového „specialisty“ se stává zbytečná osoba, která se zmůže jedině na hlášení, že jeho radiová stanice má poruchu a že žádá o vyslání mechanika. A často jde o nepatrnu poruchu, ježíž včasná oprava může v boji znamenat záchrana života mnoha tisíc lidí. Sebedokonalejší technika s takto jednostranně připravenou a vycvičenou obsluhou by nám nebyla nic platná a stávala by se brzdou.

Dominívám se, že v říjnu, kdy slavíme Den československé armády, by si měli naši svazarmovci uvědomit, že je sice třeba se i nadále učit např. telegrafním značkám, že to však není to podstatné. Takové znalosti jsou málo platné a dnešní armáda s nimi rozhodně nemůže vystačit. Naopak, má-li plnit všechny úkoly moderního vedení boje s použitím nové, složité a náročné techniky, je třeba, aby naši mladí lidé, kteří přicházejí do armády splnit svůj nejčestnější úkol občana republiky, byli po technické stránce daleko více připraveni, než tomu bylo kdy jindy. Z toho vyvstávají pro ně a Svazarm vážné úkoly. Pro mládež, pracující v elektronice a zvláště v oboru radia, předně v tom, aby využívala ekonomicky času, příležitosti a technického zařízení ve svém povolání k teoretickému i praktickému zvládnutí radiové techniky a aby si tak doplnila mezery ve vědomostech, neboť jen kvalitní jedinci dosahují v základní službě patřičného vojen-

ského uznání a v boji často rozhodují o jeho výsledcích. Zároveň je však třeba, aby si budoucí radisti uvědomili, že i jejich vlastní odbornost by jim v boji nebyla nic platná, kdyby se v základní službě poctivě neučili ostatním prvkům bojové přípravy, např. střelbě, chemické přípravě apod. Pro základní organizační Svazarmu vyvstává úkol udělat vše pro to, aby mládež se vedle telegrafní abecedy zdokonalovala v osvojování základů radiotechniky, aby se seznamovala s teoretickým a praktickým zvládnutím stavby alespoň těch radiových stanic, které má Svazarm k disposici a aby se seznámila se součástkovou základnou jak po teoretické, tak po praktické stránce. Je třeba si jasné uvědomit, že mládež a vojáci, vycvičení jen pro ovládnutí radiových stanic, pro přijímání a odesílání zpráv bez znalosti funkce jednotlivých částí, bez znalosti technické skladby stanice, nemohou při nejlepší vůli a snaze využít stanice na sto percent a spokojují se ve většině případů s jednostrannými výsledky, dosaženými často mechanickými návyky při výuce na učebně.

Podaří-li se Svazarmu již letos dobrě zorganizovat v tomto směru přípravu budoucích radistů, pak velitelé naší československé lidové armády budou moci kdykoli a kdekoli všechny prohlásit, že na lepších výsledcích v bojové přípravě a zvládnutí naší nové bojové spojovací techniky má velkou zásluhu činnost Svazarmu. A to bude nejkrásnější dar k tak významné události, jakou je Den československé armády.

S postupující technisací armády se mění i obsah pojmu „voják“. Tomuto přehodnocení se musí přizpůsobit i výcvik členů Svazu pro spolupráci s armádou.

JAK HOSPODÁŘÍME MY

Jako ve všem ostatním dění, i v životě a práci svazarmovských radistů se projevil vliv XI. sjezdu KSČ a jeho usnesení ovlivňuje naši činnost natolik, že nás přimělo zamyslet se i nad dosavadním hospodařením. Až dosud dotoval Ústřední výbor Svazarmu veškerou naši činnost. Napříště je však třeba opatřovat si prostředky svépomoci. Abychom mohli úspěšně hospodařit, musíme mít především přehled o tom, jaká vydání a příjmy máme nebo můžeme mít.

Do výdajů je nutno zahrnout: nájem z místnosti, poplatek za spotřebovanou elektřinu a z rozhlasové koncese, výdaje na poštovné a předplatné časopisů i za údržbu a vybavení místnosti potřebným zařízením, materiálové investice a náklady na výcvikovou a sportovní činnost. Do příjmů pak zahrnout podíl z členských příspěvků, poplatky za spojovací služby, po případě za instalaci rozhlasového zařízení při různých příležitostech, příjem z branných zábav a jiných výdelečných podniků i z darů.

Pokud se týká položky odběru časopisů, byl názor neodebírat je a ušetřit tak peníze. Domnívám se, že to není správné proto, že dva svazarmovské časopisy – Pracovníka Svazarmu a Amatérského rádia – by měl každý radioklub i sportovní družstvo radia odebírat. To proto, že Pracovník nejrychleji informuje členy o usneseních Ústředního výboru i o úkolech pro ně z nich vyplývajících. Amatérské rádio pak proto, že časopis mají mít při ruce stále členové při práci; vždyť každou chvíli potřebují nahlédnout i do starších čísel za návodem na stavbu některého přístroje.

Jinou otázkou jsou sportovní družstva radia. Usnesení 7. pléna ÚV Svazarmu doporučuje vytvářet pobočky radioklubů. Je možno je tvořit ze sportovních družstev radia, v nichž jsou předpoklady k dalšímu rozvoji činnosti. Zlepší se tak jejich materiálové vybavení i celkové hospodaření, zvýší se příjem z členských příspěvků a podobně. Tyto pobočky je výhodné ustavovat především na závodech, v JZD i na STS a vyvijet v nich takovou činnost, která pomůže podniku k plnění výrobních úkolů. Naopak tato pomoc se nám vrátí tím, že závody ochotněji podpoří materiálově i finančně naši činnost, případně nám propůjčí místnosti.

Zbývá ještě otázka inkurantního materiálu. Ve skladech je ho mnohde hodně a nepotřebného. Co bylo možno použít, vybralo se z různých přístrojů a použilo na stavbu nových, amatérských. Něco dostali začátečníci, kteří na kostrách, které si dosud vyrobili nedovedou, zkouší své znalosti z obrábění kovů, nebo ze statoru vyjmou vinutí a tak získají drát na první své civečky. Co se zbytky, které se nedají použít a ani se nesmějí prodat? Leží a zabírají místo, nebo se rozbití a dají do šrotu. A přece by se na ně našli kupci a za stržené peníze by se mohly koupit nové, tak potřebné součástky na stavbu přístrojů!

Se získanými finančními prostředky je třeba dobře hospodařit. Každý výdej peněz musí být rádně zdůvodněn a podložen účetními doklady. Aby kontrola hospodaření byla co nejlepší, je třeba skutečně odpovědně volit do revisních komisi radioklubů i okresních výborů Svazarmu takové kádry, u nichž jsou předpoklady, že úkoly budou plnit dobře.

Jsem hospodářem ORK již čtvrtý rok, a to je část mých zkušeností z hospodaření radioklubu. Uvítal bych, kdyby článek našel širší odezvu mezi ostatními hospodáři klubů a aby i oni napsali své zkušenosti – pomůžeme tak sobě i celku.

Vladimír Novotný, OK2GE
KV Svazarmu Olomouc

DVA ROKY ORK LITOMÝŠL

Vrátme-li se o dva roky zpět, kdy byl založen v Litomyšli okresní radioklub a porovnáme-li jeho činnost, tu zjistíme, že byl vykonán pěkný kus práce. Je to zásluhou iniciativních členů klubu v čele s náčelníkem Jaroslavem Pavlkem – nositelem zlatého odznaku Svazarmu Za obětavou práci. Litomyšlský radioklub nezůstává daleko v Pardubickém kraji za vyspělými radiokluby v Chrudimi a Lanškrouně. K aktivitě klubu přispívají zejména pravidelné čtrnáctenní pracovní porady, na nichž se vytyčují úkoly a kontroluje jejich plnění.

Na výstavbě naší kolektivní stanice OK1KGA se podílel technický kroužek – byly to stovky hodin poctivé práce. Stanice pracuje s příkonem 40 W na pásmu 80 a 10 m. Ve stavbě jsou TXy pro další pásmá 20 a 40 m. O provoz se stará pět operátorů, z nichž tři mají individuální stanici. Tito soudruzi soutěží mezi sebou o největší počet navázaných spojení v městci. I to napomáhá k zvyšování činnosti radiklubu.

Značný podíl na propagaci má technický kroužek, vedený soudruhem Koníčkem. Kroužek se zavázel mimo stav-

bu kolejivní stanice postavit i dispečerské zařízení pro velké podniky. Oba závazky jsou splněny. Dispečerské zařízení je instalováno podobně jako vysílací stanice na přenosném rámu a se stavá z těchto dílů: zesilovače 15 W, dispečerského zesilovače pro zapojení 30 telefonních stanic, telefonní ústředny se 4 voliči, vlastního rozhlasového přijímače, měřicí soupravy a dalších doplňků. Toto dispečerské zařízení včetně kolejivní stanice s okruhem stanic RM31 pracovalo úspěšně při mezinárodním závodu motocyklů a automobilů „Cena Litomyše“ a stejně úspěšně splnilo úkol na ECCE HOMO ve Šternberku.

Jak se staráme o propagaci? Nejlépe odpoví na tuto otázkou všichni, kteří navštíví Litomyšl. Vhodnou nástěnkou s fotografiemi z práce v klubu, z činnosti technického kroužku, ze spojovacích akcí a podobně je propagována činnost radioamatérů. Členové klubu pomáhají při zakládání sportovních družstev radia při ZO v Osíku, D. Újezdu, Cisté a v závodě VERTEX, zakládáním sportovních družstev radia, nad nimiž mají patronát členové rady. Do budoucna plánuje klub zvýšit členskou základnu, vyškoli nové RÓ operátory, radiotechniky I. a II. třídy. V říjnu byl zahájen kurs telegrafní abecedy. Úkolem je fotovat ve stejné panelové úpravě jako je kolejivní stanice a dispečerské zařízení a vysílací zařízení pro velmi krátké vlny, se kterým chceme jet na Polní den 1959.

Kř

Technický kroužek při posledních úpravách zařízení dispečinku. Bylo ho použito s úspěchem již při dvou velkých podnicích – mezinárodním závodu motocyklů „Cena města Litomyše“ a „Ecce Homo“ ve Šternberku na Moravě.

TAKÉ RADISTÉ
MUSÍ BÝT
PŘIPRAVENI
K CIVILNÍ
OBRANĚ

V radioklubech i sportovních družstvech radia se sice provádí výcvik operátorů, techniků a ostatních odborností příslušejících do našeho oboru, ale velmi malá pozornost se věnuje výcviku připravenosti k civilní obraně. Protože je nutno, a 7. plenum Ústředního výboru Svazarmu ve svém usnesení klade výcvik v CO na první místo, i v naší radioamatérské činnosti konečně přistoupit k tomuto výcviku, chcí ukázat, jakou formou se organisiuje výcvik v okresním radioklubu v Litvínově.

V roce 1954 jsem byl požádán jedním zdejším závodem o vyškolení skupiny lidí, kteří měli být zařazeni jako radisté v civilní obraně na závodě. Nebyl to snadný úkol, protože šlo o zcela jiný výcvik než se prováděl dosud v radioklubu i ve sportovních družstvech radia. Byl vypracován rozvrh zaměstnání ve spolupráci s pracovníkem CO. Výcvik vzbudil u frekventantů značný zájem pro svou zajímavou náplň, kterou byl zpestřen ostatní výcvik v civilní obraně. Využili jsme jej tak, že jsme získali do našich řad několik žen. Tehdy jsme si řekli, že když radiovýcvik do-

kázal zpestřit výcvik spojařů pro službu CO, zkusíme zařadit některé prvky z výcviku civilní obrany i do výcviku naší radioamatérské činnosti.

Hledali jsme vhodnou formu, aby členové radioklubu přijali výcvik v civilní obraně se zájmem. Na zkoušku jsme je při jedné pracovní schůzce seznámili s ochrannou maskou, nacvičili její nasazování a výměnu filtru. Tato změna podnítila zájem natolik, že se každý snažil ukázat, co se kde naučil. Postupně bylo přistoupeno ke zkouškám v plynové komoře, v kterou jsme proměnili operátorskou místnost a operátoři pracovali s radiostanicí v ochranných maskách. Možná, že mnohem se bude zdát tento způsob divný, ale nám se osvědčil a pomohl vzbudit zájem o tento výcvik. Od té doby bylo do každého radiovýcviku zařazeno několik prvků z výcviku civilní obrany. Takto byly soustavně doplněny znalosti členů v civilní obraně u nositelů odznaku PCO I, který získali na závodech a v učilištích.

Loňského roku se ukázala potřeba připravit několik nových soudruhů a soudružek získání odznaku PCO I. Uložili jsme si, že zodpoví předepsané otázky přímo na kótě, kde se konal Polní den. Příprava nedala mnoho práce, neboť jsme měli v našich řadách dva nositelé odznaku PCO II, a to soudruhy

Rybáře a Slapničku. Proto byl úkol hravě splněn a dnes mají všichni členové Okresního radioklubu i sportovního družstva Stalinovy závody odznak PCO I. Mají dobré znalosti v civilní obraně a ty si stále prakticky prověrují při každé příležitosti.

Při této příležitosti bych chtěl ještě něco říci o naší práci v radioklubu i ve sportovním družstvu radia. Litvínovský radioklub Svazarmu je známý v Ústeckém kraji spojovacími službami a instalací rozhlasového zařízení. Naše spolupráce s ostatními složkami Svazarmu je příkladná a kdykoliv jsme požádání o nějakou službu, rádi využíváme, protože v tom vidíme další možnost, jak získat zkušenosti i prohloubit praxi. Do všech akcí a praktických cvičení byl zaveden – možno říci – vojenský pořádek. Každá akce je připravována pečlivě, propracována do podrobnosti a časově rozdělena. Zahajuje se nastoupením zúčastněných a přečtením rozkazu k provedení akce, určením úkolů tak, že každý zná do konce svůj úkol. Takto provedené branné cvičení nebo spojovací služba má hladký průběh, utužuje kázeň a působí dobrým dojmem na přihlížející, ale hlavně pomáhá vychovávat mladé lidi k předvojenské výchově a ostatní k připravenosti k civilní obraně.

Václav Slapnička

Protichemické družstvo v akci má těžký úkol zjistit stupeň zamoření a provést odmolení v nezvyklém ištřeji. Nemůžeme proto spolehat, že by naši členové dovedli v těchto nezvyklých podmírkách pracovat bez důkladného výcviku. Nezapomeňme, že protichemická výstroj je nezbytná v případě použití jaderných zbraní!

Na slavě

TENTOKRÁT KONSTRUKTÉŘI!!

Obrátil se na mne jeden z amatérů se stížností, že mu nefunguje kompenzační elektronkový voltmetr z AR 9/57 str. 266, ač jej údajně pečlivě sestavil podle návodu. Hlavně si stěžoval na to, že nelze měřit záporná napětí.

Ihned jsem zmíněného amatéra vyzval, aby mi přístroj zaslal k prohlídce, případně uvedení do chodu.

Přístroj došel a při rozbalení chatrného obalu jsem zůstal jako omráčen, neboť přístroj byl vestavěn do plechovky od bonbonů! A ta byla ještě k tomu malá.

Ze spodní díry (otvorem to nelze nazvat) vychíňaly čtyři vodiče, jež nesly papírové praporky s nápisem „žhavení“, + a -. Tedy jako v době bateriáček.

Řekl jsem si – nevadí, kolega nemá peníze; připojil jsem „to“ na improvizovaný

eliminátor – a hle, ono „to“ opravdu nejde! Zapojení je přece tak prosté, že každý příslušník našeho cestu to musí dát dohromady za dvě hodiny. Tedy musí být chyba v součástkách.

Měřím odpor za odporem – vše v pořádku. Prohlížím zapojení, což je ztěžováno tím, že je nutno demontovat jeden přepínač, potenciometry a svorky, aby bylo možno přístroj vymotout z plechovky. Vodiče dobré izolované, aspoň 1 mm čistého průměru – celková tloušťka jako autokablik. Jejich změř zcela vyplňuje dutinu plechovky a do této spletenece se zatlačuje prastará, sotva svítící EM4, namontovaná na objímce z nějaké philipsovské SUPERINDUCTANCE.

Přepínače fórové, ale zdá se, že doteč mají, aspoň se kontaktní plíšky při styku pohnou. Pro jistotu je měřím – a hle, na přepínači rozsahu již první doteč vykazuje odpor nekonvenční. Vezmu na pomoc elektronkový ohmmetr a nekonvenčně se smršťuje pouze na 120 megaohmů!!!!

A tak to byla ta chyba! – Rozeberu přepínač, doteck oškrábnu a omyju tetrachlorem – a už „to“ funguje. Mizerně ovšem, neboť křidélka EM4 se nedotknou při sebevětším napětí na mřížce. (Nevhodná EM4).

Ještě přeměřit napětí – a neonkový stabilisátor nefunguje; ovšem, má ochranný odpor. To v článku, pravda, nebylo zdůrazněno, že neonka nesmí mít ochranný odpor, aby stabilisovala. A to je tím, že autor návodu mylně předpokládal, že je samozřejmé, že stavitec bude už tak obeznámen s funkcí jednotlivých součástí užívaných v elektronice, že nebude potřebi tuto okolnost vysvětlovat.

Přibližně jsem „to“ (neboť přístroj se tomu těžko dá říci) ocejchoval a násilím –

Vlevo: Soudružka Marta Gazdiková z Gottwaldova kontroluje na undulátoru jakost svého dávání. Vpravo: Soudruži Vitouš, Horský a Maryniak při zápisu skupin písmen rukou.

PŘÍPRAVA RYCHLOTELEGRAFISTŮ

V srpnu probíhalo v Houštce desetidenní soustředění rychlotelegrafistů. Bylo připravováno na mezinárodní střetnutí rychlotelegrafistů ČSR, Polska, Maďarska a Německé demokratické republiky, které pořádala bratrská organizace GST ve dnech 28. srpna—2. září v Drážďanech. Přípravy se zúčastnilo devět rychlotelegrafistů pod vedením trenéra Ing. Danese, OK1YG. Mezi závodníky se objevily nové tváře. V zápisu rukou to byl s. Petr z Prahy, s. Ko-

tulán z Brna, s. Gazdiková z Gottwaldova, s. Vitouš OK1GO z Prahy a s. Horský, OK3MM z Piešťan. Jediným starým známým je s. Maryniak, OK3MR z Piešťan. V zápisu na psacím stroji se soustředění zúčastnila s. Bohatová. Novými objevy jsou s. Činčura, OK3EA, který nás již úspěšně reprezentoval — ovšem v zápisu rukou, a rovněž již ostřílený závodník Karel Krbec ml., OK1ZU, který rovněž přešel z ručního zápisu na psací stroj. Desetidenní soustředění pomohlo zvýšit přijímaná tempa a závodníci získali také potřebný klid.

Podle výsledků pravidelných prověrek bylo vybráno toto reprezentační družstvo:

V zápisu na psacím stroji s. Bohatová, s. Činčura a s. Krbec, v zápisu rukou s. Gazdiková, s. Kotulán a s. Maryniak.

Presto, že soustředění bylo poměrně krátké, pomohlo zlepšit přijímané rychlosti. Dokonce byl při zkušebním příjmu překonán i československý rekord v příjmu číslic, při kterém soudruži Činčura a Krbec přijali 360 zn/min. Protože však nebyli přítomni potřební rozhodčí, nemůže být tento rekord bohužel uznán.

Vlevo: Soudruži Petr, Gazdiková a Kotulán při tréninku písmenného textu. Vpravo: Soudružka Bohatová, s. MUDr. Činčura a Krbec mladší při zápisu otevřeného textu na stroji. Jejich úsměv prozrazuje, že text musel být zábavný.

nikoliv mýrným — narval víko s EM4 na plechovku. Čímž „to“ ovšem zase přestalo fungovat. I povytáhl jsem „to“ zase z plechovky, čímž „to“ zase začalo fungovat. Přičinou byly silné vodiče, jež ohýbaly kontakty přepínáče.

Sednu si ke stroji a počnu psát dopis mílému příteli — amatéru, jenž mně poslal tuto vzácnost, jak sám tvrdí, přesně podle návodu sestavenou. (Ač jsem si návod znovu podrobň přečetl, nedopřídl jsem se někde, že by autor byl doporučoval stavbu do plechovky od bonbonů, tabáku, sledů v rosolu, ani do podobné jiné.) Slušně vypisuji všechny nedostatky přístroje a žádám tvůrce této kuriózity o laskavé uhrazení poštovního — vše ostatní zdarma.

Dopis se mu asi nelíbil, protože poštovná nezaslal. Ale něšt!

A z toho poslání:

Vážení přátele a soudruži konstruktéři, připomeňme si, že z níčeho nic není. Odbudu-li práci, je to totéž, jako bych ji nedělal, neboť výsledek je stejný — mám jen o tu zlost víc. A o nepotřebný krám.

Když už si někdo dá práci s tím, že popíše některý ze svých přístrojů (obyčejně proto, aby se trochu „vytáhl“), vyrobí fotografie

a dokonce i jeho článek je přijat redakcí, pak vězte, že tak činí ve prospěch všech. Chcete-li z článku vytěžit něco pro sebe, dobře, chcete-li postavit přístroj přesně podle návodu, ještě lépe; hlavně pro začátečníky. Ale dbejte při tom aspoň základních pravidel pro úspěšnou stavbu:

1. Než se pustíš do stavby, osvoj si aspoň základní teoretické vědomosti o funkci jednotlivých součástí.

2. Součástek používej jakostních, demonované staré prohlédni, přeměř a oprav. Stejně bys to musel udělat při uvádění do chodu, jen s tím rozdílem, že by Ti přibyla demontáž.

3. Drž se návodu, aspoň v hlavnicích rychých — nesnaž se o „lisované“ konstrukce. Na ty je dost času, až Ti budou fungovat přístroje postavené „vzduhnějí“.

4. Užívej přiměřených spojovacích vodičů. Jsou velmi levné — na ty naše miliampéry je vodič průměru 0,5 mm až dost silný — až ak pěkně se jím vyformují spoje!

5. Pájej jen s použitím kašafuny nebo stearinu, spoje dobře prohřej a udělej na nich kuličku z pásky. Pájecí vodičky a pasty raději ihned vyhod, abys nebyl v pokusení s nimi pájet, až Ti dojde kašafuna.

6. Užívej pro součástky přiměřené podpěrné body, ať už to jsou kontakty přepínače, nebo lišty s pájecími očky.

7. Věd spoje tak, aby ses v nich vyznal! Pak jistě budeš mít více úspěchů než dosud!

Tvůj

Pozn. redakce: Jsme sami udiveni, co se to s našim Amatérským Rejpalem stalo; dosud byly jeho poznámky vždycky prosluněné dobrou povodou a najednou se nějak rozkatil. To asi ta červencová parna, možná však, že mu na dovolené přešlo trochu nad míru, co člověk ví. Ale v zásadě má pravdu, však to známe; často se naše redakční místnosti nápadně podobají krámků železářského vetešníka, jenže slušnost velí nevyjadřovat se o umu původců takových „přístrojů“ tak, jak by to kázaly zákony pravidomluvnosti. Tedy to udělal Rejpal i za nás. Hlavně, že už je to venku!

OKÉNKO DO PŘIJÍMAČE

multivibrátor - kmitočtový modulátor - osciloskop

Bohuslav Špalíček

Jde o jednoduchý přístroj pro snímání resonančních křivek v frekvenci obvodů v přijímači a tudíž o jakési „okénko“ do přijímače při jeho sladování.

Dosud se k tomuto účelu používalo tří přístrojů – osciloskopu, oscilátoru a frekvenčního modulátoru a každý z těchto přístrojů je složitější než popisovaný universální přístroj, který v jednoduchší formě všechny tři přístroje plně nahrazuje.

Popis

Přístroj je složen ze dvou dílů: Z jednoduchého osciloskopu s jednostupňovým vertikálním zesilovačem a padesátiperiodovou časovou základnou. Dále z multivibrátoru, laditelného od 120 kHz do 700 kHz (plus harmonické násobky) a současně kmitočtové modulovaného (rozmitaného) 50 Hz o šíři zdvihu nastavitelné až na 200 kHz. Přístroj je zhotoven většinou z inkurantních součástí – elektronky, kondensátory, odpory, potenciometry. Obrazovka stará asi 25 let, DG 7/1, byla pro tento účel ještě zcela vhovující.

Transformátor, skřínka, kryt obrazovky a knoflíky, vše bylo zhotoveno amatérsky.

Stavba

Celý přístroj je montován na kostře ze železného plechu s oddělenými pří-

hrádkami pro eliminátor, obrazovku, vertikální zesilovač a multivibrátor.

Na předním panelu je 7 ovládacích knoflíků a obrazovka. Po levé straně obrazovky: ladění hrubé, ladění jemné, zdvih. Po pravé straně: jas, bod, časová základna. Pod obrazovkou uprostřed zesílení.

Na zadní stěně jsou pouze tři zdířky a přívodní síťový kabel. Celý přístroj je zamontován do skřínky o rozmeru 130 × 190 × 180 mm, tedy velmi malý.

Transformátor je navinut na kostře M70 o průřezu sloupku 6 cm². Napětí 600 V se po usměrnění „tužkovým“ usměrňovačem „Křížek 648 V 3,5 mA“ používá k napájení anod obrazovky. Střed vinutí 300 V střídavých se použije na časovou sinusovou základnu a napětí usměrněné osmnáctidestíkovým selektivním usměrňovačem o Ø 18 mm k napájení elektronek.

Osciloskop je nejjednodušší konstrukce, jak je popsán v „Amatérské radiotechnice“. Nemá celkem žádných závladností, jen pozor na C₁ (potlačení zpětného chodu paprsku); má být na provozní napětí 600 V, snesl to však MP 2 × 0,5 μF 250 V zapojený v sérii. C₂ stačí 1–2 μF na 1000 V MP. C₄, C₅ bezesvodu – MP, jinak utíká bod ze středu stínítka.

Vertikální zesilovač je také velmi jednoduchý s elektronkou RV12P2000, jejíž zapojení a předpěti umožňuje snímat napětí z výstupu obvodů bez použití zvláštní usměrňující sondy.

Multivibrátor je osazen 2 × RL12T1, které v tomto zapojení velmi dobře pracují.

Volbou hodnot kondensátorů C₁₂ a C₁₃, odporek R₂₀, R₂₁ a R₁₈, R₁₉ a potenciometru P₆, lze ladit multivibrátor od 120 kHz do 700 kHz, což je rozsah běžných mezinárodních přijímačů.

Samořejmě multivibrátor vyrábí také spektrum harmonických kmitočtů, které je též možno použít pro sladování.

Anodové napětí je sníženo odporem R₁₂ a stabilisováno stabilovoltrem 75/15 na 75 V, což je provozní napětí pro RL12T1.

Žhavení elektronek nesmí být uzemněno! Nepracovalo by ladění kmitočtu. Použijete-li hodnot uvedených v schématu, kmitočet sedí v uvedeném pásmu a díl pracuje správně na prvé zapojení.

Použití přístroje:

Pro demonstrování tvaru propouštěné kmitočtové křivky celého přijímače stačí zdířku „Do přijímače vf“ spojit se zdířkou antény přijímače a vysokoohmiový výstup z koncového nf stupně se zdířkou

„Z přijímače“. Při naladění přijímače na některý základní nebo harmonický kmitočet objeví se nám na stínítku propustná křivka celého přijímače. Lze ji snímat použitím harmonických až do 20 MHz.

Křivka na fotografii na titulní straně byla snímána uvedeným způsobem

z příjímače MWec při nastaveném širokém pásmu.

Samozřejmě je možné snímat křivky i jednotlivých výběrových příjímače, např. mezifrekvenčních, při čemž každé hnutí dodávacím trimrem neb jádrem se projeví jejím zvýšením, rozšířením, nebo posunutím.

MINIATURNÍ AKUMULÁTOR

Článek ing. Hyana v AR 11/57 popisuje výpočet a konstrukci olověného akumulátoru malého rozměru. Při konstrukci se však setkáme s jednou nepřijemnou záležitostí, totiž se slepováním krabice z plexitu, což vyžaduje hodně času a ještě více trpělivosti. Proto místo slepování z plexitu jsem použil hotové krabice na cigarety. Jsou dvojí velikosti: větší $60 \times 25 \times 75$ mm za Kčs 1,40, menší $45 \times 20 \times 73$ mm za Kčs 1,10. Obě krabičky se výborně hodí pro akumulátor; mají vhodnou vclikost, jsou průhledné, dobré se lepí acetolem i chloroformem; jsou netečné ke kyselinám. Sestavení jednoho článku nevyžádá ani půl hodiny práce.

Použil jsem veliké akumulátorové desky normalisované velikosti, koupené v opravně akumulátorů, síla 3 mm, cena 7,07 Kčs. Z této desky do větší krabičky výjdu čtyři desky 55 × 60 mm, do menší krabičky 40 × 60 mm šest desek. Desky se řežou luppenkovou pilkou

na dřevo, olověný kraj jsem ponechal jen na vrchní straně. Používám tři desky, jak to popisuje ing. Hyau, mezi nimi jsou decelitové desky (kus za 20 hal), které dávám i ke stěnám krabičky. Dvě negativní desky spojím olověným můstekem obyčejnou klempířskou pájkou, pak na můstek kolmo připájím asi 3 cm dlouhý olověný drát tlustý 4 mm, který odlévám do dřeva. Obdobný drát připájím i na pozitivní desku, desky složím s decelitem a vsunu do spodní části krabice.

Na uzávěru krabice opatrně vyvrátme, (když náhodou praskne, zlepí se rozpustným trolitolem v chloroformu) tři otvory: dva pro olověné včynívající dráty, to vyměříme podle pólů, jeden uprostřed asi 6 mm pro uzávěr. Nyní štětečkem dobře natřeme chloroformem nebo acetonom vnitřek vrchní části a osazení na podní části a krabičku uzavřeme, rukou přitlačíme a necháme uschnout. Spojení je pevné. Nalejeme

vodu a kdyby náhodou spojení bylo vadné, příslušné místo potřeme již zmíněným lepidlem. Jím také zalijeme olověné vývody, aby byly vodotěsné. Pak z trolitulové cívkové kostry (průměr asi 11 mm) urízneme polovičku a širší části přilepíme na střední otvor. Uzavíracím šroubem bude příslušné ferrocartové jádro – které zkrátíme, provrtáme pro únik plynu (asi 2 mm) a jeho klobouček bude s opravdové akumulátorové zátky, ze které jsem závit uřízlí.

Potom krabičky skládáme podle toho, jaké napětí potřebujeme. Olověné vývody zkrátíme a podobnými drátky spojujeme pájením. Rýhování na boku krabičky spilujeme a krabičky slepíme. Koncové elektrody opatříme šroubem pro přichycení kabelku a označíme je. Nakonec vrchní část zašijeme asfalem.

Kapacita většího článku je asi 2—2,5 Ah, menšího $1\frac{1}{2}$ Ah. Při 6 V to stačí na 80 resp. 40 blesků při 100 Ws, při 4 V na 60 resp. 30 výbojů stejně

Akumulátor s. M. Steklého

kapacity. A to úplně stačí, protože snad nikdy více obrazů najednou neděláme a přes noc akumulátor znova nabijeme.

Váha akumulátoru z velkých krabic 4 V je 65 dkg, z malých krabic 6 V 55 dkg – tedy opravdu minimum.

L. Kellner

Podobný akumulátor, jenž oceloniklový, si zhotovil Miroslav Steklý z Hradce Králové, který píše:

Když jsem provedl zkoušku chemické odolnosti krabiček na cigarety vůči ředěním kyselinám a loupám, bylo mi líto, že materiálem tak výborných chemických vlastností se doslova plýtvá, zatím co by z něho náš průmysl mohl vyrábět krásné moderní miniaturní akumulátory, a jiné užitečné potřeby.

Po nezbytných zkouškách jsem si zhotovil akumulátor, se kterým jsem velmi spokojen.

Technická data:

velikost:	62 × 76 × 30
Užitečný prostor	23 × 56 × 45
váha NiFe:	190 g s elektrolytem
kapacita:	NiFe ~ 1 Ah, olov. ~ 2 Ah při odběru 300 mA

Akumulátor podle s. L. Kellnera

napětí: 1,2 V
zvláštní výhoda: zařízení proti vylití elektrolytu

Rozpis detailů:

1. Krabička „Plastimat“ (větší) 1 ks
2. Desky kladné vel. 55 × 34 mm 3 ks
3. Desky záporné 55 × 43 mm 2 ks
4. Mezikruží isolační 55 × 43 mm 4 ks
5. Spojovací můstek pro (+) 1 ks desky 1 ks
6. Spojovací můstek pro (-) desky 1 ks
7. Držák desek 2 ks
8. Matice M 6 (z radiové zdířky) 2 ks
9. Šroub M 3 × 5 2 ks
10. Skleněná trubička Ø 6 × 37 mm 1 ks
11. Nalevávací otvor s víčkem (po- užito horní části tuby z lepidla „Syndetikon“ – pouze z prů- hledné hmoty) 1 ks
12. Mezikruží opracované z kra- bičky „Plastimat“ 1 ks
13. Těsnění z PVC Ø 10/Ø 6 mm 2 ks
14. Těsnění do víčka Ø 8 mm gu- mové s dírkou 1 ks
15. Roztok louhu draselného 21 % t. j. sp. v. 1,18 18–20 cm³
16. Lepidlo: – „Plastimat“, rozpuštěný v nitrozaponu. laku 5 cm³

Kamera K předává elektricky rozložený obraz do střádače S1, ze kterého jsou – poměrně pomalu – jednotlivé prvky odváděny do vedení V. Na příjmací straně dochází opět do střádače S2, tvořeného magnetickou pamětí. Je to otáčející se buben, opatřený vhodným povrchem, do kterého zapisuje signál řady magnetofonních hlaviček, upevněných vedle sebe ve směru osy bubnu. Jakmile dojde celý obraz a je zapsán, „přečte“ jej z bubnu speciální obrazovka – iatron O. Její stínítko obraz podrží po celou dobu, co se přenáší jednotlivé prvky dalšího obrazu. Pak se předešly obraz na stínítku rázem smaže a ihned nahradí obrazem dalším, který mezitím došel. Pozorovatel tedy vidi sled nehybných obrázků hovořícího partnera.

Aby bylo možno využít i nejnižší kmitočty v řádu Hz, které normálně telefonní vedení nepřenáší a které odpovídají větším plochám na obrazu, je obrazový signál před vysíláním namodulován na nosný kmitočet 1200 Hz. Šíře postranních pásem je 600 Hz.

Pokusná aparatura Picturephone rozkládá obraz na 60 řádek, každá řádka rozlišuje 40 bodů. Obrazový kmitočet je 0,5 Hz. Ke spojení dvou účastníků je třeba tří přenosových cest (vedení neboť kanálů, v telefonního vícecestného zařízení).

Zdá se, že šťastná myšlenka neobvyklého smlíčení obrazového kmitočtu otevírá nové možnosti použití televise. Č.

* * *

Náš denní tisk již přinesl zprávu o pokusném provozu telefonu s obrazovkou (Picturephone), který umožňuje hovořícím účastníkům se navzájem vidět. Časopis *Funkschau* (2/57) nyní uveřejnil některé podrobnosti o novém zařízení.

Myšlenka sama je už staršího data, neboť již v r. 1956 předvedla německá pošta telefon s televizí na lince Berlín-Drážďany. Tehdejší zařízení ovšem pracovalo s normální kmitočtovou šíří obrazového signálu, t. j. kolem několika MHz. Takové pásma ovšem nelze přenášet běžným telefonním kabelem, snad s výjimkou nejkratších vzdáleností desítek či set metrů. Další vývoj tedy sledoval zúžení pásm obrazového signálu do šíře, jež mohou telefonní vedení přenášet, t. j. 300–3400 Hz. Přímé omezení pásm má za následek změnění rozlišovací schopnosti zařízení a nejvyšší kmitočet 3400 Hz sám by uspokojil nejprimitivnější systém s několika málo rádky a obrázků za vteřinu. Jediná možnost při dostatečném množství rádků tedy je snížit počet přenášených obrazů za vteřinu na nejmenší možnou míru. V popisovaném systému dochází jeden obraz za 2 vteřiny. Divák tedy vidí po 2 vteřinách se měnící obrázky svého partnera. Během této dvou vteřin se obrázek nemění, je nepohybivý. Na obrázku je naznačena nejjednodušší systém přenášející obrazy ve směru zleva doprava.

Radioamatér si obvykle představuje pod pojmem stabilisátoru plynem plněnou diodou se studenými elektrodami, hořící při napětí řádu sta volt. Je proto zajímavé seznámit se s novým druhem stabilisátoru, pracujícím na docela odlišném principu již kolem 1,5 V. Nejhledě k obvyklému použití ve stabilisovaných zdrojích žhavení, osvědčuje se i v katodových obvodech elektronek na místě dosavadního předpřevodového ohřívacího odporu s kondensátorem. Hlavní přednosti je nezávislost předpřevodového napětí na protékajícím proudem, což je zvlášť výhodné pro zesilovače třídy B. i ostatní elektronkové obvody, kde bylo dosud třeba zvláštního zdroje pevného předpřevodového.

Nový stabilisátor je vyráběn belgickou firmou L'Akumulateur Etanche ve tvaru niklo-kadmiového akumulátoru. Obsahuje niklovou anodu, katodu složenou z kadmia a kyslíku kademnatého a separátor, nevodivou mřížkou, napuštěnou elektrolytem. Celek je umístěn v ocelovém pouzdru, utěsněném plastickou hmotou. Prochází-li článek proudem, redukuje se katodový kyslíčník kademnatý na kadmium a na anodě se vyvíjí kyslík. Tento proniká separátorem ke katodě, kde opět oxyslící kadmium, vzniklé elektrolytickým procesem. Tento cyklický pochod se neustále opakuje, nevzniká žádný přebytečný plyn, takže vnitřní tlak se nemění a článek může být herme-

ticky uzavřen. Může být tedy vyráběn a montován jako běžná radiová součástka.

Potenciální spád vzniká na katodě při redukci kysličníku a na anodě vyvýjením kyslíku na niklu. Tato dvě napětí jsou velmi málo závislá na protékajícím proudu, takže výsledné napětí na článku je prakticky konstantní. Obrázek ukazuje změnu tohoto napětí U se změnou protékajícího proudu I při různých teplotách t (plné křivky). Cárkováná křivka ukazuje změnu napětí U s teplotou t při konstantním proudu $I = 150$ mA.

Vyrábějí se dva druhy článků v několika typech s pracovním rozsahem od 20 mA do 1 A. První druh má velmi malou impedanci (kolem 1 Ω), nezávislou na kmitočtu a proudu, pokud ovšem amplituda střídavé složky nepřevýší ss proud, protékající článkem. Druhý druh je schopen udržet určitý elektrický náboj a dodávat proud po krátkou dobu při poruše nebo výměně zdrojů. Dosáhne se toho přidáním kysličníku nikelnatého do anody. Článek může dodávat po dobu 1 minutu maximální proud při napětí asi 1,2 V.

K dosažení potřebných hodnot je možno několik článků řadit paralelně nebo do série. Předpokládaná životnost článku je asi 10 000 hodin.

Wireless World, roč. 1956.

C.

Záznam televize v SSSR

Prvé zkoušky se záznamem televizních obrazů na film v SSSR byly uskutečněny již v r. 1939; šlo však v podstatě o laboratorní pokusy. Jedno z novějších zařízení pro filmový záznam televize bylo konstruováno v r. 1955 a 1956 a mělo za úkol zaznamenat úplný televizní obraz na kinofilm, pomocí využití dosvitu stínítka. Zobrazení jednoho půlsnímku na stínítku obrazovky (v okamžiku, kdy záznamový film je zatemněn) se vlivem dosvitu stínítka zachová pro další okamžik, kdy se na obrazovce zobrazí druhý půlsnímek, aoba půlsnímky jsou v této chvíli při otevření clony současně zaznamenány na film. Doba dosvitu stínítka musí být taková, aby např. při pohybu předmětu v obraze zůstaly jejich hrany ostré a neskeslené. U tohoto způsobu záznamu mají pochopitelně jednotlivé body stínítka různý jas a to podle toho, kdy byly zasaženy elektronovým paprskem; toto je odstraňeno použitím korekčního signálu, který umožňuje správně exponovat oba půlsnímky, nakreslené v různých časových intervalech. Je zřejmé, že amplituda impulsu, korigujícího první půlsnímek (kdy není prováděna expozice), je větší než amplituda korekčního impulsu při druhém půlsnímku (kdy se exponuje). Zavedením korekčních impulsů lze dosáhnout toho, že při expozici dochází ke správnému záznamu obou půlsnímků jako úplného televizního obrazu. Korekční impulsy pro první půlsnímek mají sestupný charakter, pro druhý vzestupný.

Prototyp záznamového zařízení je napojen třífázovou sítí 220 V; do zařízení jsou přiváděny obrazové a rádkové

synchronizační impulsy, aby bylo dosaženo správné synchronisace při expozici filmu. Obrazové signály jsou upraveny pomocí aperturové korekce a zesíleny a takto se dostávají na katodu obrazovky. Obrazové synchronizační impulsy jsou přivedeny do rozkladače a generátoru korekčních impulsů, zatím co rádkové synchronizační impulsy (kromě do rádkového rozkladového generátoru) i do vn. generátoru (vn. napětí 25 kV).

V zařízení se používá elektromagnetického ostření a vychylování, obrazovka má ploché stínítko a průměr 23 cm. Rozlišovací schopnost zařízení je 650 až 700 rádků, stínítko o rozmeru 127 × 170 mm má jas 45 až 50 msb. Napětí pro fokusační cívku se odebírá ze stabilisovaného zdroje. Ovládací a kontrolní panel je umístěn na přední straně a je koncipován tak, aby zařízení mohla obsluhovat jedna osoba. Sovětské zařízení pro záznam obrazů, označené jako UZTP, je doplněno dvěma kompletními magnetofony typu KZM-4, které jsou upraveny pro tyto účely a umožňují správně synchronisovat zvukový záznam se záznamem obrazovým. Zkoušky se zařízením UZTP ukázaly, že zařízení umožňuje záznam obrazů s rozlišovací schopností 600 rádků uprostřed obrazu a 550 rádků na okrajích obrazu, anž je přitom zhoršena linearita obrazu.

Zařízení UZTP provedlo záznam hry „Vasil Ťorkin“ v moskevském televizním studiu a tuto hru pak vysílalo leningradské televizní studio dne 29. dubna 1957; podle posudku odborníků i diváků bylo stezí rozpoznat, které části hry jsou prováděny přímými záběry ze studia a které ze záznamového filmu.

Radio SSSR, 1958, č. 5, str. 41—43.

INDIKÁTOR LADĚNÍ U TELEVISORU

Ing. J. Navrátil

Moderní televizní superhet má v průměru 12—15 ovládacích prvků a správně je nastavit na pěkný obraz není pro laika jednoduchou záležitostí. Největší potíže působí naladění oscilátoru tak, aby nosná obrazu i zvuku zájaly správné místo na kmitočtové charakteristice mf zesilovače a aby obraz nevykazoval ani protáhlé, neostré kontury, ani tzv. plastiku. Jako pomocný prostředek vyvinula řada zahraničních firem několik typů indikátorů naladění, které umožňují podobně jako magické oko u rozhlasového přijímače správně naladit televizor.

Podle provedení můžeme používané způsoby indikace rozdělit do tří skupin. Nejjednodušší provedení užívá v podstatě normálního magického oka, které je řízeno stejnosměrným napětím, získaným usměrněním v napětí z resonančního obvodu, naladěného na mf kmitočet nosné obrazu. Druhá, složitější zapojení, užívají jako indikátoru přímo televizní obrazovky, která je přes zvláštní zesilovač intenzitně modulována směsí stejnosměrného napětí, odvozeného jako v prvním případě, a tvarovaných impulsů, které na obrazovce vytvářejí různé geometrické obrazce, jejichž rozměry jsou

závislé na naladění. Indikace naladění je vypínatelná. Přijímače třetí skupiny jsou opatřeny samočinným doladováním oscilátoru pomocí diskriminátoru, naladěného na mf kmitočet nosné obrazu, který dodává stejnosměrné napětí příslušné polarity na reaktanční elektronku připojenou paralelně k oscilátoru.

V dalším uvedeme stručný přehled všech používaných zapojení a jejich stručný popis. U jednoho zapojení bude uveden podrobný popis funkce i uvedení do činnosti.

Indikace naladění magickým okreem

Nejjednodušší provedení používá magického oka PM84. Je to v podstatě normální magické oko se seriovým žhavením 0,3A, jehož havidice napětí je 4,5 V. Vlákno snese proti katodě napětí až 250 V. Dalším rozdílem proti u nás používaným typům EM80 a EM81 je světlukující vrstva nanesená přímo na sklo baňky podobně jako u obrazovky. Indikace ladění je prováděna světelným páskem proměnné délky. Oba rozdíly jsou pro použití nepodstatné a pokud amatér nepřekročí mezní hodnoty u našich výrobků (zejména napětí mezi vláknom

a katodou), může jich s dobrým výsledkem použít.

Zapojení, kterého používá ve svých přístrojích firma Metz, je nakresleno na obr. 1. Na obrazový detektor je volně vázán resonanční obvod, naladěný na mf kmitočet nosné obrazu. Napětí na tomto obvodu je usměrňováno germaniovou diodou D_1 a usměrněné napětí je přivedeno přes filtrační členy, které z něho odstraní zbytky obrazové modulace, na řídicí mřížku triodové části PM84. Je-li oscilátor televizoru naladěn tak, že mf nosná obrazu má předepsaný kmitočet (zde 38,9 MHz), pak vš. napětí na L_2 je maximální a světelny sloupec na indikátoru PM84 má nejmenší délku. Aby indikátor svým světlem nerušil, lze jej po skončeném ladění vypnout vypínačem S_2 . Protože resonanční obvod indikátoru by deformoval kmitočtovou charakteristiku mf zesilovače tím, že by odsával energii z obvodu obrazového detektora, současně s vypnutím indikátoru se zatlumí jeho obvod připojením odporu $10\text{k}\Omega$ na zem spínačem S_1 .

Zapojení, kterého používá firma Nordmende, je nakresleno na obr. 2. Toto zapojení má proti předchozímu větší citlivost, neboť první elektronka mf ze-

silovače zvuku (EF80) pracuje současně jako stejnosměrný zesilovač řídicího napětí. Jinak je funkce tohoto zapojení stejná jako v předešlém případě. Aby indikace pracovala stejně při slabých i silných stanicích, je pracovní bod ss zesilovače ovládán potenciometrem P_1 , který je současně regulátorem kontrastu. Induktance L_1 musí být s výstupem obvodem obrazového detektoru vázána velmi volně, aby nebyla deformována kmitočtová charakteristika mf zesilovače obrazu. Indikátor se po naladění nevypíná, neboť PM84 je umístěna skrytě a neruší svým světlem.

Indikace ladění obrazovkou

Složitějších zařízení druhé skupiny byla vyvinuta celá řada. Principem činnosti se od sebe v podstatě příliš neliší. Různé formy obrazů, které se objevují při zapojené indikaci na stínítku obrazovky, ukazuje obr. 3. Tyto způsoby indikace jsou sice poněkud složitější, vykají však nad první svou nesporou efektivností.

V dalším bude podrobně popsán způsob, užívaný firmou Lorenz-Schaub. Schéma tohoto indikátoru je na obr. 4. Z horizontálních vychylovacích cívek jsou napěťové impulsy, mající tvar podle obr. 5a, přivedeny přes kondenzátor C_1 a odporník R_1 na resonanční obvod L_3 , C_2 , který je vyladěn na rádkový kmitočet 15 625 Hz. Tento obvod vybere z impulsů jejich základní harmonickou, takže napětí v hodě b má téměř čistě sinusový průběh. Napětí indukované na cívce L_4 je dvoucestně usměrněno diodami D_1 a D_2 , takže na odporníku R_2 mezi body c a d má tvar podle obr. 5c. Z vertikálních vychylovacích cívek jsou přivedeny napěťové impulsy o tvaru podle obr. 5d. Přes integrační člen R_3 , C_3 do bodu e . Integrační člen přemění tyto impulsy v pilovité kmity podle obr. 5e. V bodě e se tyto pilovité kmity scítají s napětím na odporníku R_4 . Na mřížku pentody E_1 přivádíme z obrazového detektoru výstupní kmity. Obvody L_1 , C_4 a L_2 , C_5 jsou vyladěny na kmitočet, který má v mezifrekvenčním kanále nosná obrazu. Napětí nosné je zesíleno elektronkou E_1 a za anodovým obvodem usměrněno diodou D_3 . Toto usměrněné napětí záporné polarity se filtrace členem R_5 , C_6 , který z něho odstraní zbytek amplitudové modulace a přivádí současně s oběma sečtenými napětími na mřížku elektronky E_2 . Celkový průběh všech napěti na mřížce E_2 v hodě f je nakreslen na obr. 5f. Hodnota $-U_r$ znací záporné stejnosměrné napětí na diodi D_4 , hodnota $-U_{go}$ označuje mez, při které začíná elektronka E_2 téci anodový proud. To znamená, že elektronka bude zesilovat jen tu část napěťového průběhu, která je nad čarou označující hodnotu $-U_{go}$. Jak velká tato část bude, záleží na velikosti řídicího napětí $-U_r$, které opět závisí na tom, souhlasí-li kmitočet nosné obrazu s kmitočtem obvodů L_1 , C_4 a L_2 , C_5 . V případě souhlasu (tj. je-li televizor správně naladěn) bude mít řídicí napětí $-U_r$ maximální hodnotu a elektronka E_2 nebude zesilovat z přiváděného průběhu téměř nic, neboť bude skoro zavřena. Nesouhlasí-li naopak oba kmitočty (tj. je-li televizor rozladěn), bude napětí $-U_r$ malé a elektronka bude zesilovat téměř celý průběh. Na mřížce další elektronky E_3 se objeví řada trojúhelníkových impulsů

Obr. 1. Metz.

Obr. 2. Nordmende. Indikátor má správné označení PM 84.

Obr. 3. Indikace vyladění na stínítku obrazovky.

stoupající velikosti podle obr. 5g. Jejich počet i velikost největšího závisí na hodnotě řídicího napětí $-U_r$. I na tomto obrázku značí hodnota $-U_{go}$ napětí, při kterém se elektronka E_2 zavírá a tím nebude ta část průběhu, která je pod touto čarou, zesílena. V anodovém obvodu se pak v bodě h objeví napětí o průběhu podle obr. 5h. Hodnota U_{ao} na tomto obrázku značí velikost zbytkového napětí na elektronce, když je plně otevřena, hodnota U_a velikost anodového napětí. Odřezáním se většina trojúhelníkových impulsů změnila v lichoběžníkové nebo prakticky skoro v obdélníkové. Tyto impulsy kladné pola-

rity přivádíme na mřížku obrazovky. Protože tyto impulsy byly odvozeny z rádkového kmitočtu zdvojnásobením po dvoucestném usměrnění (viz obr. 5c), rozsvětlí nám dvakrát během jednoho rádku na okamžíku T obrazovku. Situace nyní vypadá takto: v okamžiku t_1 začíná půlobraz, paprsek obrazovky kreslí odleva doprava a odhora dolů obraz. Až do doby t_1 neexistují v průběhu na obr. 5h žádné impulsy. Za tu dobu je na obrazovce televizoru vytvořena horní část normálního obrazu. Od doby t_1 začne dodatečné osvětlování obrazovky modulací impulsy dvakrát během každého rádku. Doba

Obr. 4.
Lorenz-Schaub.

trvání horní hrany impulsů T se zvětšuje, takže s každým řádkem dolů je osvětlená část rádku větší, až u posledního rádku dole je největší. Tak se na obrazovce vytvoří dva světlé klíny. Jejich poloha na obrazovce je závislá na fázi sinusového napětí na obvodu L_2, C_2 a můžeme ji měnit malým rozladěním tohoto obvodu. Snadno dosáhneme toho, aby jeden impuls padl do zatemňovacího impulsu mezi řádky a pak se nám objeví uprostřed obrazovky pouze

jeden klín, jehož výška je nejmenší tehdy, když je televizor správně naladěn. Situaci znázorňuje obr. 6. Je-li televizor nesprávně naladěn, je napětí $-U_r$ malé a na výstupu elektronky E_3 se objeví velký počet impulsů, takže klín se začne tvorit dříve v horní části obrazu. Přepínače S_1 a S_2 můžeme po provedeném naladění vyřadit indikátor z činnosti tím, že se řídící mřížka E_2 uzemní a anodové napětí elektronky klesne spádem na odporu R_s . Tím se zamezí tvo-

ření rozsvětlovacích impulsů a klín zmizí. Je vhodné, aby při vypnutí indikace tekly elektronky alespoň malý anodový proud, jinak se při nažhavených elektronkách vytváří na katodě mezi vrstva, která snižuje životnost elektronek. Proto se v tomto zapojení anodové napětí úplně nevypíná, ale snižuje odporem R_s na malou hodnotu.

Citlivost indikátoru (tj. rychlosť, s níž se mění výška klínu s rozladěním) závisí na činiteli jakosti obvodu L_2, C_2 a do jisté míry i L_1, C_4 . Nemůžeme udělat oba obvody kvalitní, jinak by nám obvod L_1, C_4 odsával energii z obvodu obrazového detektoru a tím deformaoval kmitočtovou křivku mf zesilovače obrazu. Nadto by se zesilovač s E_1 mohl rozkmitat. Z obou důvodů je obvod L_1, C_4 zatlumen odporem R_4 . Obvody L_1, C_4 a L_2, C_2 nastavíme tak, že při vypnuté indikaci naladíme televizor na maximální rozlišovací schopnost, zapneme indikaci a obvody doladíme na nejmenší výšku klínu. Potenciometrem P_1 nastavíme zesílení a tím i velikost $-U_r$, tak aby při správném naladění byl klín malý, ale přesto na spodním okraji viditelný.

Schéma zařízení používaného firmou Blaupunkt je na obr. 7. Na obvod L_2, C_2 , který je naladěn na pětinásobek rádkového kmitočtu, se přivádí jednak rádkové impulsy z horizontálního výstupního transformátoru, jednak parabolické impulsy z tlumící diody. Směs impulsů je elektronkou E_2 usměrněna a výsledně usměrněné napětí se přivádí na řídící mřížku elektronky E_3 , která je jím téměř uzavřena, takže jen špičky směsi impulsů ji na krátký okamžik otvívají. Zesílené impulsy se přenášejí na mřížku obrazovky a vytvářejí uprostřed obrazov-

Obr. 5. Průběhy napětí.

Obr. 6. Indikace způsobem Lorenz-Schaub.

ky temný svislý pruh. Dodatečné předpěti získané usměrněním mf nosné obrazu na obvodu L_1 , C_1 mění úroveň předpěti E_3 a tím i šíři zatemňovacího impulu. Při optimálním naladění je předpětí E_3 největší a šíře zatemňovacího impulu nejménší. Indikace se po naladění vyřazuje z provozu.

Indikátor firmy Loewe-Opta je na obr. 8. Tento způsob indikace je velmi jednoduchý. Pilovité napětí z obrazové časové základny je přivedeno na první mřížku hexody ECH81. Vlivem tohoto napětí vznikají na částečně blokované ($0,33 \mu\text{F}$) stínici mřížce hexody deformované a fázově posunuté pilovité kmity. Na třetí mřížku hexody je přivedeno s naladěním proměnné stejnosměrné záporné řídící napětí, odvozené jako v předchozích případech. Vlivem všech těchto tří napětí vznikají na anodě impulsy o kmitočtu obrazové časové základny, jejichž šířka je úměrná úrovni stejnosměrného předpěti na třetí mřížce. Tyto impulsy jsou zesíleny triodovou částí ECH81 a přivedeny na druhou mřížku obrazovky, na jejímž stínítku se tak vytvoří vodorovný pruhý proměnné výšky. Indikaci lze oběma přepínači po vyládění přijímače vyřadit z cinnosti.

Zapojení indikátoru naladění, užívaného firmou Philips, je na obr. 9. První trioda slouží jako stejnosměrný zesilovač řídícího napětí a její anoda je galvanicky spojena s mřížkou druhé triody. Na tuto mřížku se současně přivádí sinusové napětí od rádkového oscilátoru. Toto napětí má velikost asi 17 V_ef . Kladné půlvlny tohoto napětí jsou odřezávány mřížkovým proudem, záporné druhou triodu uzavírají, čímž na její anodě vznikají kladné impulsy, jejichž šířka závisí na úrovni stejnosměrného napětí na anodě první triody a tím i na úrovni řídícího napětí. Řídící napětí je odvozeno stejně jako v předchozích případech s tím rozdílem, že obvod $38,9 \text{ MHz}$ je vázán přes kondenzátor $2,7 \text{ pF}$ až za detekční diodou. Tím se využívá zbytku nosné po detekci a tak tento resonanční obvod neovlivňuje kmitočtovou charakteristiku mf zesilovače. Přepínače, kterými lze indikaci vypnout, současně upravují jas obrazovky tak, aby uprostřed vznikl bílý svislý pruh a zbytek plochy by černý. Jiný přepínač, který není ve schématu zakreslen, upravuje zesílení přijímače tak, aby při zapnutí indikace bylo maximální.

Zapojení indikátoru firmy Siemens je na obr. 10. Na řídící mřížku triodové části PCF82 jsou přiváděny současně tři napětí: parabolické impulsy z obrazové základny, parabolické impulsy z rádkové základny a pevné předpětí $-U_g$, které má v sérii odpor $2,2 \text{ M}\Omega$, na kterém vzniká řídící napětí, úměrné naladění. Předpětí $-U_g$ je tak velké, že

Obr. 7. Blaupunkt.

Obr. 8. Loewe-Opta.

Obr. 9. Philips.

Obr. 10. Siemens.

Obr. 15-9: Předzesilovač přijímače TESLA 3103 B (Rekreat).

tronkou $1A/34$ (pentoda $-F$ s držením jednoho diodou - A). Napětí stínící mřížky je zmenšeno odporem R_{12} a filtrováno kondenzátorem C_{3e} . Napětí stínící mřížky je možné změňovat předráždným odporem, protože je kladná protéká jí proud (v něm není nad 0,06 mA).

V předchozích kapituloích jsme seznámili čtenáře s malou částí teorie slaboproudé elektroniky, avšak postačující k tomu, aby se iž pokusili sami o praktické uplatnění základních znalostí. Aby však dle tato zásad nevýrazná nazmar a případný neúspěch někoho nedovrátil, povedeme čtenáře po stupně od jednoduché konstrukce ke složitější. Znamená to tedy, že teoretickou část obsahem zpestří „suchou“ teorii.

Náplň této praktické části byla již naznačena v uvedu. Než však příkročíme k popisu konstrukce a vlastní stavbě, je nutné spomenout, že všechny slova o spojích a

16. Spojí a spájení

V každé konstrukci radiového přístroje musíme vybudovat vodivé cesty, tj. spoje, které umožňují elektrickým proudům přechod mezi jednotlivými součástkami. Tyto spoje prováděme měďovými, případně ocelovými drátky, který spojujeme s ocelovým pálením. Drát pak povlékame do izolační

Obr. 15-8: Předzesílovač přijímače TESLA 2101 BY.

Obr. 17-1: Výkres kostry z duralového plechu s rozměry všech klávových otvorů

Obr. 161: Ukázka chybného a správného připojení trubičkového kondenzátoru k nosnému místku

buzíkou (spáročenou), a to gelitovou nebo textilní. Její samozřejmě, kde i ostatní součástky, jako jsou odporové, kondensátory apod. také připojujeme pájením.

Spálíme na „měkko“, tj. používáme jako pájecího kovu pásky složené z cínu a olova, tedy pásky, která pro dokonale propájení vyžaduje teploty pohybující se kolem 200°C.

Nutno zdůraznit, že ne všechny součástky destičky.

Obr. 16-2. Nosné destičky opatřené pájecími očky. Našeře vídme destičku prázdnou, teprve připravenou k pájení, dole pak destičku již s připájenou soustavou odpadu a kondenzátorů.

Obraz 3: Ukázka spálení. Vlevo vidíme chybějící provedený spoj, který byl předepsaný, což je prozrazuje šířkou povrchu spoje. Vpravo je zachycen správně provedený spoj – připojený spoj je celý rovnoměrně zálit címem

Výhoda tohoto spojení tkví v tom, že připojený předmět se dá po eventuální porušení

se dájí na tyto destičky umístit. Tak na příklad svodový odpor v řídící mřížce musí být umístěn v těsné blízkosti objektu elektronky, jinak mohou vzniknout všechnké nežádoucí vazby a oscilace.

ky elektronky, jinak mohou vzniknout všelijaké nežádoucí vazby a oscilace. Provedení jednotlivých spojů musíme věnovat náležitou pozornost hlavně proto, že nedokonalý spoj představuje zdroj poruch.

se všemi dalšími nepříznivými důsledky. Proto záadně pásky spíše méně než více, ale ne tak málo, aby připoměný spoj hrozil úplněm. V dobré provedení spoj má rázovitou výtváře souměrnou vrsavu a být náležitě rozeklá, nikoliv strupovitá — viz obr. 16—3.

nevodivnosti způsobit i vážné ohrožení na něj významných obvodů. Z toho vyplývá, že nesmí vzniknout tak znany „studený“ spoj, tj. takový, který při letém podílu budí dojem vodivého spojení, ve skutečnosti jím však není. Takový spoj vzniká tehdy, jestliže jsme pátené předměty dosuděně neoholí a nebo tedy, když jsme se neposta- rali o jejich řádné odstílení.

Cílený spoj pro rádiem je jednou mechanicko-

Pak je nutné pamatovat na řádné prohřátí celého spoje – hlavně při připojování další součástky do téhož bodu – aby nestenomér. nou teplotou nevzniklo prnutí v pájce, které by mohlo způsobit „studený“ spoj. Taktéž se vyvarujeme foukaní a dotýkání na silné- ným prstem spájeného místa při spěšné práci, protože tím způsobujeme opět prnutí v páci a vznik „studeného“ spoje.

Dnes už nikdo nebuduje novou rádiu snaží-

„Chemické“ nečistoty vystří-
ňují se vodou s výrobkem
škrabátkem apod. Chemické pak pro-
vádějme roztočkem kalafuny v lihu, který
narážíme štětecem na spájené místo, při-
padně kalatunou samotnou, kterou pře-
násíme pádelem na pájené místo. Chrámě-
jeme oblast pájení vodou s výrobkem
škrabátkem až do skořejiho vystřívání.
za časů našich otců Pro naší práci se bylo
elektrická palečka, nejlépe „pistoleváho“
typu, která je velmi praktická a
usporádná. Třebáže se to všechnu nás nevyrábí,
byla jejich konstrukce mnohemokrát popsána
na stránkách tohoto časopisu, takže
vážujeme za nutné se zmínit o jejich vý-
znamu.

o čem jsme zatím hovořili jen teoreticky.

do dírky chytá páka. Z téhož důvodu prováděme počinování mosazných pájecích oček, dříve než k nim připojíme drobné součásti. Ale pozor! Mosazná očka ochloumje jen z té strany, z které bude připojen spoj či vývod kondenzátoru apod. Kdybychom totiž měli počinované obě strany očka, pak by narážený cín protékal vlastní valou na prodní stranu očka, kde by tvoril nebezpečné krapátky, případně (při větším množství naráženého pájky) by skapal dolů a zneprávněl případnou součástku. Při tomto neprávném případu páněni se mohou odstranit každýcky čnu zachytit na kostře nebo někde mezi již připevněnými součástmi, takže nikoho naší pozornosti. Hrozi kdykoliv vložením a mohou se otřesy či polohy brem při otačení kostry po montáži dostat do aková místa, jakými jsou třeba objimky miniaturních elektronek, kde způsobí zkrat

Tolik tedy o spojích a spálení a nyní přistoupíme k popisu konstrukcí, na kterých chceme čtenářům již v praxi ukázat to, o čem jsme zatím hovořili jen teoreticky.

17. Kostra – mechanické úpravy

Základním kamenem naší další práce bude pětirová kostra, na které si prakticky ověříme ziskané vědomosti a která v poslední fázi bude tvorit část námi vlastnoručně zhycovaného výrobku.

Tuto kostru si můžeme běžně koupit v každém odborném obchodě s radiosoučástkami nebo si ji udělám sami. Menší zkoušení a možná, že i méně zruční amatéré dají přednost prvnímu řešení – pak nechte si zakoupit kostru pro amatérský příjemka „Mír“. Náročnejší amatér si ji možná budou chtít zhycovat sami; pro ně uvádime její rozměry se všechny hlavními otvory.

Obr. 11. Telefunken.

trioda je uzavřena a pentodou PCL82 teče maximální proud. Parabolickými impulzy z rádkové základny se trioda otevře a protože obě elektronky jsou zapojeny jako monostabilní multivibrátor, druhá elektronka (pentoda) se ihned uzavře. Tento stav trvá tak dlouho, dokud je trioda parabolickým impulsem z rádkové základny otevřena. Pak se vše vrátí do původního stavu. Tak vzniknou na anodě pentody kladné impulsy. Délka otevření triody a tím i délka impulsu na anodě pentody závisí na okamžité hodnotě napětí parabolického impulsu, odvozeného z obrazové základny, a dále na velikosti řídícího napětí, vzniklého na odporu $2,2 \text{ M}\Omega$. Jako výsledek se objeví na stínitku obrazovky světlý kruh, jehož průměr závisí na řídicím napětí. Při jeho maximální velikosti a tedy optimálním naladění je kruh největší. Indikace je vypínatelná a pozoruhodné na tomto zapojení je to, že pro tento účel jsou využity elektronky v nf zesilovači, které po vypojení indikace slouží svému původnímu účelu, takže toto zapojení nevyžaduje žádných dodatečných elektronek. Přepínače, kterými se obě elektronky do svých dvou funkcí přepínají, nejsou ve schématu pro jednoduchost zakresleny.

Indikátor ladění používaný firmou Telefunken, jehož schéma je na obr. 11, má poněkud odlišný princip činnosti. Vf napětí z obrazového detektoru se přivádí přes kondenzátor 1 pF na obvod, který je naladěn na mf nosnou obrazu. Triodová část PCF82 má napětím $+9,5 \text{ V}$ na katodě nastaven pracovní bod těsně před zánikem anodového proudu, takže pracuje jako anodový detektor. Vlivem proměnného vf napětí na mřížce vzniká pak na anodě proměnné stejnosměrné napětí, z něhož je napojen doutnavkový generátor pilových kmitů, tvořený odporem $1 \text{ M}\Omega$ a $0,56 \text{ M}\Omega$, kondenzátorem 15 nF a doutnavkou. Kmitočet pilových kmitů je odvísly na velikosti ss napětí na anodě PCF82, při maximálním napětí bude největší. Vzniklé pilovité kmity přivedeme přes derivační člen, tvořený kondenzátorem 220 pF a odporem $470 \text{ k}\Omega$, na mřížku triody ECC82 a po zesílení na mřížku obrazovky, kde kladné impulzy vytvoří světlé vodorovné pruhy, jejichž počet a rozestup závisí od velikosti vf napětí na mřížce triody PCF82. Aby nejhořejší pruh začínal na stále stejném místě obrazovky, je doutnavkový generátor synchronizován pi-

lovým napětím, získaným z výstupního transformátoru obrazové základny. Zařízení se po vyladění televizoru vypíná, avšak trioda ECC82 funguje dálé jako proměnný odpor, jímž se nastavuje kontrast.

Automatické dolaďování televizoru

Firmy Saba a Grundig používají místo indikátorů automatické dolaďování oscilátoru, takže obsluha televizoru je tím dálé usnadněna. Blokové schéma takového způsobu dolaďování je na obr. 12.

Cást vf napětí z mf zesilovače se přivede na vf zesilovač, který je naladěn na mf nosnou obrazu. Zesílené napětí se přivede na diskriminátor, který dodává napětí příslušné polarity na reaktanční člen, připojený paralelně k obvodu oscilátoru. Tak je kmitočet oscilátoru opraven žádoucím směrem. Rozdíl v zapojení obou firem je v tom, že Saba používá jako reaktančního člena elektronky EC92, zatím co Grundig používá germaniové diody. Zapojení i nastavení automatického dolaďování je podstatně obtížnější než oba dříve popsané způsoby a proto neuvádime podrobnější schéma i popis.

Zhodnocení používaných indikátorů ladění

Uvedená zapojení jsou zajímavou novinkou, kterou ocení hlavně laici, neboť naladění televizoru podle monoskopu je pro amatéra nebo o techniku se zajímajícího televizního posluchače celkem snadnou záležitostí. Plné oprávnění mají indikátory, které jsou jednoduché, spolehlivé a nezdražují příliš televizor. Těmto požadavkům vyhovují indikátory s magickým okem, zatím co indikátory používalcí obrazovky jsou sice efektnější, avšak také dražší a co hlavního, daleko komplikovanější.

Obr. 12. Automatické dolaďování Saba-Grundig.

a k poruchám náchylné televizory. Tato novinka se objevila ve výrobě televizoru západními výrobci pro rok 1958/59. Je pochopitelné, že v těžkém konkurenčním boji se musí západní výrobci snažit dodávat na trh výrobky mající co nejvíce nápadných předností. Praxe ukáže, že toto kouzelnictví s mícháním impulů bude televizním posluchačům skutečnou pomůckou nebo přítěží a bude známen zvýšenou poruchovostí televizorů.

Z technického hlediska mají všechna tato zapojení jeden principiální nedostatek: jakákoliv změna kmitočtové charakteristiky mf zesilovače nebo rozladění resonančního obvodu, na kterém se získává řídící napětí, má za následek nesouhlas mezi napaděním podle indikátoru a naladěním na nejlepší obraz. Takové změny mohou být snadno způsobeny stárnutím součástek nebo výměnou elektronek. I zde praxe a důvtip konstruktérů ukáže, že uvedená zapojení budou jen dočasným výstřelem nebo trvalou součástí moderních televizních přijímačů.

Úkolem tohoto článku bylo ukázat našim amatérům příklady řešení problému správného naladění televizního přijímače a pobídnotu je tak k vlastní tvorivé práci.

LITERATURA

- [1] Der Bildpilot. Prinzip und Schaltungstechnik. Funk-Technik Nr. 20/1957.
- [2] Optische Abstimmanzeige oder automatische Scharfabstimmung in Fernsehempfängern? Radioschau Heft 5/1958.
- [3] Aus neuen Fernsehern. Radio Mentor 5/1958.
- [4] Über einige Entwicklunstendenzen der neuen Fernsehempfängern. Automatische Feinabstimmung macht die Abstimmanzeige überflüssig. PM84 – ein Abstimmanzeiger für Fernsehgeräte. Abstimmanzeige im Fernsehgerät mit magischem Band. Der Bild – Dirigent, eine neuartige Abstimmanzeige. Abstimmanzeige „Visiotest“. Radioschau Heft 9/1958.
- [5] Fernsehempfänger 1958/59. Funk-Technik Nr. 9/1958. (JN)

Nový druh subminiaturního stabilisátoru napětí s volnými vývody k pájení vyrábí fa Elesta v NSR pod označením ES 11. Stabilisátor má nízký vnitřní odpor a vyznačuje se vysokou stálostí stabilisovaného napětí při odebíraném proudu 1 až 10 mA a při velmi dlouhé životnosti. Konstrukce stabilisátoru využívá nově vyvinuté duté molybdenové katody a vhodné plynové náplně, čímž se dosahuje lineárně stoupající charakteristiky v širokém rozsahu. Vnitřní odpor při normálním pracovním proudu $0,5$ až 5 mA je 700Ω . Stabilisátor je zvláště vhodný pro průmyslovou elektroniku, jako např. stabilizaci napájecího napětí pro RC obvody časových relé a pod.

Radio u. Fernsehen, 11/1958

Sž

Magnetofon M-9

Kamil Donát

Když byl ve 4. čísle letošního ročníku Amatérského radia uveřejněn popis elektromagnetické spojky, vysvěleny výhody a přednosti jejího použití v magnetofonu, byl též příslušen popis nahrávače, v němž budou tyto spojky použity. Šplňujeme dnes svůj slib a přinášíme popis magnetofonu, jehož vlastnosti odpovídají běžným dnešním požadavkům, které na tyto přístroje klademe.

Popisovaný magnetofon je jedno-rychlostní, a to pro rychlosť 9,5 cm/s. To je rychlosť, která při použití pásků Agfa CH a C dává zcela dobré výsledky. Proti rychlosći 19 cm/s má výhodu dvojnásobné doby, kterou lze na pásek zaznamenat a při použití cívky o průměru 180 mm tak máme možnost záznamu 2 × 60 minut. Při použití pásků tenkých, jako např. BASF Lanspielband apod., se prodlouží doba na 2 × 90 minut pro cívku o Ø 180 mm a 2 × 45 minut pro menší cívku o Ø 130 mm. Také kmitočtový rozsah se rozšíří směrem k vyšším kmitočtám. To jsou ovšem tak podstatné výhody, že nakonec rozdohly pro volbu rychlosći 9,5 cm/s. Ostatně i vývoj ve světě jde v současné době stále k nižším rychlosťem a domnívám se, že rychlosť 9,5 cm/s bude standardní pro kvalitní přednes asi tak, jako byla před lety rychlosť 77 cm/s.

Pro rychlosť 9,5 cm/s musíme ovšem přece jen dbát poněkud více na dokonalé mechanické provedení všech součástí, neboť při této menší rychlosći je přístroj víc náchylný na různé nepřesnosti v opracování, na tremolo apod. Vzhledem k tomu, že při užití spojek je vlastních mechanických dílů podstatně méně než při užití různých konceptů s přítlačnými koly apod., je možno kvalitu opracování dodržet. Celý popis magnetofonu je rozdělen na dvě části. V dnešním prvém článku popíšeme elektrické díly magnetofonu, vysvětlíme jeho funkci a pro příští článek si ponecháme popis dílů mechanických.

Elektrické zapojení (viz 4. str. obálky)

Pohledem na schéma magnetofonu vidíme, že bylo zvoleno řešení se dvěma samostatnými zesilovači. Jaké jsou přednosti a naopak nevýhody tohoto způsobu? Nevyhodou je jedině větší počet elektronek a součástek, i když nahrávací zesilovač má jen 2 elektronky. Tedy v zásadě větší náklady o cca 100 Kčs. Naproti tomu výhody jsou na první pohled zřejmé. Obzvláště u citlivého reprodukčního zesilovače bývá mnohdy přičinou vzniku nejrůznějších vazeb, oscilačí a jiných nedobrých průvodních zjevů. Podstatnou výhodou je samozřejmě i to, že eventuální úpravy v korekčních obvodech a nastavování průběhu v nahrávacím zesilovači nikterak neovlivňuje korekční obvody zesilovače přehrávacího a naopak. Veškeré funkční přepínání obstarává přepínač P_2 běžného radiového provedení pro 2 × 6 po-

loh a jedno relátko P_1 se třemi páry přepínacích kontaktů. Relátko bylo užito s ohledem na možnost použití „start-stop“ tlačítka a dálkového ovládání.

Zesilovač nahrávací

Na vstupu nahrávacího zesilovače je mikrofonní předzesilovač, umožňující přímé nahrávání z mikrofonu. Předzesilovač je osazen elektronkou 6CC41, zapojenou jako kaskádní zesilovač. Elektronka v tomto zapojení má velmi malý šum, je málo citlivá na bručení, přenášené ze žhavení do katody, což je daleko zlepšeno tím, že je žhavena sníženým napětím asi 5,2 V přes srážecí odpor a minimum bručení nastaveno odbručovačem. Předpětí je získáváno na velkém mřížkovém odpornu 10 MΩ. Z anody druhé triody je napětí přiváděno na potenciometr M5, kterým nastavujeme úroveň mikrofonního signálu. Z potenciometru je nf napětí vedené na jednoduchý směšovací obvod, tvořený dalšími potenciometry a předvádnými odpory M3, aby se jednotlivé signály navzájem neovlivňovaly. Jestliže potenciometry P_1 a P_2 nastavujeme úroveň jednotlivých signálů, pak výslednou modulační amplitudu řídíme potenciometrem P_3 , spojeným se síťovým vypínačem V_{1s} , kterým připojujeme přístroj k síťovému napětí.

Druhý nf stupeň je osazen opět elektronkou 6CC41, běžně zapojenou. Z anody jejího druhého systému je nízkofrekvenční napětí rozdělováno do několika směrů. Především je přes korekční obvod z odporu 64 kΩ a kondensátorem 1k6 přiváděno k nahrávací hlavě. Přes odpor 80 kΩ je napětí vedené též do kontrolního obvodu, tvořeného usměrňovačem U_1 a magickým okem EM4. Časová konstanta RC v mřížkovém obvodu elektronky EM4 je volena tak, aby oko kývalo pomalu, ne příliš „divoce“ při běžných modulačních signálech. Citlivost oka nastavíme při seřizování pomocí stavitelného potenciometru 1 MΩ. Dále je nf signál z anody druhého systému triody 6CC41 veden přes odpor 100 kΩ na zdírky pro kontrolní sluchátka. Konečně část signálu je přiváděna přes stavitelný potenciometrický trimr M2 do katody prvního systému a tím je zaváděna kmitočtové závislá zpětná vazba. Za zmínu stojí též malá hodnota kondensátoru v katodě druhého triodového systému (10 000 pF), který tak v hodiném způsobem spolu-vytváří požadovaný kmitočtový průběh celého nahrávacího zesilovače.

Mazací a předmagnetisační generátor

Vysokofrekvenční generátor je osazen elektronkou 6L31 a hodnoty oscilačního obvodu jsou voleny tak, aby kmitočet byl asi 50 kHz. Oscilační obvod tvoří cívka L_1 – mřížková, která má 300 závitů drátu o Ø 0,15 mm smalt + hedvábí s odbočkou u 160. závitu. Anodová cívka L_2 má 2 × 250 závitů stej-

ného drátu, rozdělených do dvou cívek o šíři 8 mm. Mezi obě anodové cívky umístíme cívku mřížkovou, aby vazba byla dostatečně těsná. Cívky jsou vinuté křížově na trubičku o Ø 10 mm, jádro není nutné. Kondensátor pro resonanci na 50 kHz je cca 5000 pF. Mazací proud je do mazací hlavy přiváděn přes kondensátor C_m , kterým nastavíme jeho vhodnou velikost. Pamatujme, že pro mazání volíme jen takovou velikost proudu, aby předcházející záznam byl spolehlivě smazán. Další zvětšování mazacího proudu není výhodné, protože mazací hlava se příliš zahřívá, což může nakonec vést i k jejímu zničení nebo k porušení pásku, jestliže se pásek po hlavě nepohybuje, ale zůstává stát při tisku k mazací hlavě.

Stejně, nebo ještě důležitější je správně nastavení předmagnetisačního proudu volbou kondensátoru C_p . Nastavení provádíme nejlépe pomocí osciloskopu, kterým měříme vf napětí na malém odporu 10 Ω, zařazeném do studeného přívodu nahrávací hlavy. Předmagnetisační proud má být asi 3 × větší než proud nízkofrekvenční a pro pásek Agfa CH a C je asi kolem 1 mA.

Mazací generátor je připojen kladným napětím na stejný bod jako nahrávací zesilovač. Blíže si však toho všimneme při popisu funkčního přepínače.

Zesilovač přehrávací

Přehrávací zesilovač má na vstupu opět elektronku 6CC41 v kaskádovém zapojení, žhavenou sníženým napětím. Podobně jako u elektronky mikrofonního předzesilovače, také zde je odbručovač 1000Ω, kterým nastavíme brum na minimum. Z anody prvního stupně je napětí přiváděno na regulátor hlasitosti přes základní korekční filtr, složený z odporu M64 a kondensátoru 100 pF, který upravuje přenos vyšších kmitočtů. Pro úpravu nízkých kmitočtů je v mřížkovém obvodu druhé dvojitě triody 6CC41 sériový obvod, složený z odporu M1 a kondensátoru 10k. V prvním systému druhé 6CC41 se nízkofrekvenční signál dále zesílí a je přiváděn do řiditelného korektoru, který upravuje počet vysokých a nízkých kmitočtů podle potřeby. Obsahuje jeden řiditelný prvek, potenciometr 1 MΩ a nemá velkých ztrát v zesílení. Kmitočtové vlastnosti tohoto korektoru jsou uvedeny na diagramu a v užitém zapojení se velmi osvědčil. Druhá trioda elektronky 6CC41 dále zesílí nf napětí; je přiváděno na řidicí mřížku koncové elektronky EL41. Byla zvolena proto, že její katoda je větší než u 6L31, povrch elektronky je též větší a je pro stísněné poměry a lepší odvod tepla výhodnější. V anodě koncové elektronky je zapojen běžný výstupní transformátor s výstupem 6 Ω. V přístroji je použito elliptického reproduktoru 150 × 200 mm, který je možno vypnout vestavěným vypínačem. Výstup 6 Ω je též vyveden na výstupní

Technická data magnetofonu

Napájecí síťové napětí:	120 V, 220 V/50 Hz
Příkon:	cca 70 W
Rychlosť pásku:	9,5 cm/s
Záznam:	dvojitý na půl stopy
Záznamová doba:	2 × 45 min. pro čítku o \varnothing 130 mm 2 × 90 min. pro čítku o \varnothing 180 mm
Kmitočtový rozsah:	50–7000 Hz
Kontrola modulace:	magickým okem a sluchátky, 90 vteřin pro čítku o \varnothing 130 mm, 180 vteřin pro čítku o \varnothing 180 mm,
Doba převíjení:	Samočinné vypnutí folií na konci pásku
Automatika:	Při nastavení funkce dálkové ovládání start-stop tlačítkem
Dálkové ovládání:	Vestavěný korektor pro úpravu kmitočtového průběhu přehrávacího zesilovače
Tónová clona:	Pro mikrofon s vestavěným předzesilovačem a pro gramofon či radio, s možností nezávislého směšování obou signálů
Vstupy:	6 Ω pro vestavěný vypínatelný oválný reproduktor 160 × 200 mm s možností připojení dalšího vnějšího reproduktoru,
Výstup:	M25 pro připojení kontrolních sluchátek a pro připojení koncové stupně Hi-Fi zesilovače
Rozměry:	400 × 290 × 210 mm
Váha:	cca 16 kg

konektor, na který je možno připojit vnější reproduktor. Na stejný konektor, ale jinou „nožičku“, je připojen též vysokoohmový výstup pro eventuální připojení kvalitního „Hi-Fi“ zesilovače. Tento vysokoohmový výstup je přiveden také na zdířky, aby byla možná současně kontrola sluchátky. Z anody koncového stupně je zaváděna negativní zpětná vazba, nastavitelná potenciometrickým trimrem M25, kterou též vhodně upravíme přednesové vlastnosti reprodukčního zesilovače. Za zmínu stojí snad poněkud nezvyklý přívod kladného napětí k tomuto zesilovači přes dva vypínače a to V_8 a V_{11} . Při popisu funkčního přepínače poznáme účel. Je to proto, že při vypínání pouze V_8 zůstávalo na filtracním kondenzátoru 50 μF napětí, které se jen zvolna vybíjelo přes odporník 16 k Ω , což se projevovalo nejrůznějšími průvodními zvuky při přepínání zesilovače do jiné polohy nebo při jeho vypínání.

Napájecí část

Ve zdrojové části je použito běžného síťového transformátoru pro 60 mA anodového proudu. K usměrnění používáme elektronky 6Z31, napětí je vyhlazeno elektrolyty 16 + 32 μF a odporem 640 Ω . Motorek pro pohon je běžný asynchronní, užívaný ve šlehačích. Je připojen mezi 100 V vinutí síťového transformátoru. Napětí 4 V na transformátoru je usměrněno selenovými usměrňovači (Graetzovo zapojení), uklidněno kondenzátorem 250 μF a užito k ovládání relátku P_1 , převinutého na toto napětí. Elektromagnetické spojky byly popsány ve zmíněném článku a odebírají cca 35 mA při anodovém napětí 280 V.

Funkční přepínač a relé

Pro volbu jednotlivých funkcí bylo použito běžného radiového přepínače TB dvoukotoučového s 2×6 polohami a jednoho relé se třemi páry přepínačních kontaktů. Jednotlivé funkce přístroje jsou tyto:

1. Rychlý chod vzad (převíjení zpětné).

2. Rychlý chod vpřed (převíjení dopředu).

3. Reprodukce.

hlavně při přípravě k nahrávání. V této poloze je totiž kladné napětí přiváděno do nahrávacího zesilovače i magického oka, avšak mechanicky je vzdálena přitlačovací kladka od hnací osy. To má za následek, že si můžeme předem podle oka nastavit vhodnou amplitudu modulačního napětí a pak již stačí přepnout do další polohy, aby šlo vlastní nahrávání. Funkce start a stop tlačítka v této poloze jsou opět jasné.

Nahrávání: Tlačítko v poloze start, napětí 280 V je přiváděno přes V_2 a V_6 do nahrávacího zesilovače, generátoru a kontroly s EM4. Motor je sepnut přepínačem V_1 . Přepínač V_7 je sepnut, takže modulační nf napětí včetně předmagнетizačního je přiváděno do bodu mezi kombinovanou hlavou a kompenzační cívkou. Obvod V_8 je rozpojen, přepínač V_9 naopak spojen, hlava tedy přepojena na nahrávání.

Přepnutím tlačítka do polohy stop se vypne motor a obě spojky brzdí, takže se pásek okamžitě zastaví.

K vysvětlení funkce je třeba uvést ještě to, že na ose funkčního přepínače P_2 je nasazena vačka, ovládající mechanicky oddalování přitlačné gumové kladky k hnací ose. Kladka je přitahována k hnací ose pružinou jen v polohách reprodukce a nahrávání, v ostatních polohách je páka s kladkou odtažena. Na páce jsou upevněny též kolíky, kterými je pásek při převíjení oddalován od hlaviček, aby nenastávalo jejich obrusování. To je užitečné zařízení, které ocení hlavně ten, kdo magnetofon používá často, nikoliv jen příležitostně.

Zbývá se zmínit ještě o kompenzační cívce L_k . Ta je tvořena asi 100 závity drátu o \varnothing 0,2 mm smalt + hedvábí. Umístění této cívky je někde v blízkosti okolí hlaviček, upevnění však provedeme tak, aby bylo možno cívkou otáčet na všechny strany. Potom je nutno vhodným natočením této cívky vykompensovávat rozptylové pole síťového transformátoru a motorku. Nejsnáze se to provede opět pomocí osciloskopu, připojeného na výstup zesilovače 5 Ω . Nezapomeňme však, že zakrytováním hlav, příložením vrchního panelu apod., se rozložení rozptylového pole často velmi podstatně mění a je tedy třeba nastavení kompenzační cívky poopravit.

(Pokračování.)

4. Mezipoloha (příprava k nahrávání)

5. Nahrávání

Jednotlivé polohy nastavujeme zmíněným funkčním přepínačem P_2 a všechny jsou kombinovány s relátkem P_1 , které má dvě polohy: start a stop. Ze zapojení a schématu přepínače a relátka si jednotlivé funkce vysvětlíme.

Rychlý chod vzad: Relé je v poloze start, kdy je anodové napětí 280 V přiváděno přes V_2 na přepínač V_9 , takže levá spojka LS dostává plné napětí. Protože relé v této poloze též spíná napětí do motorku (V_1), je spojka unášena rychlostí řemínku a pásek se rychle přetáčí zpět.

Smáckneme-li nyní tlačítko, přejde relé z polohy start do polohy stop, což značí, že se rozpojí obvod motorku (V_1 rozepnut), kladné napětí přepne do polohy V_8 , je tak přiváděno přes sepnutý V_4 přes srážecí odpory do obou spojek, kde způsobuje okamžité brzdění (tendence otáčení proti sobě).

Rychlý chod vpřed: Funkce je obdobná předešlé s tím rozdílem, že je sepnut výpínač V_{10} , takže napětí 280 V je přiváděno do pravé spojky. Ostatní funkce shodné s předešlým případem.

Reprodukce: Relé je v poloze start, spíná motor (V_1) a napětí 280 V do výpínače V_2 . Z tohoto bodu je napětí přiváděno přes výpínač V_6 a V_{11} do anodového obvodu reprodukčního zesilovače. Současně je spojen přepínač V_8 , takže je uzemněn spodní konec kombinované hlavy, spojené studeným koncem s kompenzační cívkou. Přepínač V_9 je rozpojen, napětí tedy přichází na řídící mřížku vstupní elektronky.

Stisknutím tlačítka se opět vypne motor a anodové napětí se přivede do obou spojek (nastane brzdění). Stejný účinek nastane, jestliže přivedeme do relátka proud prostřednictvím spínací kladky a folie na konci pásku (automatické zastavení) nebo v vnějšku dálkovém sepnutím. K vysvětlení ještě poznámenávám, že relé je v poloze start v klidové poloze, tedy bez proudu, v poloze stop je sepnuto.

Mezipoloha, příprava k nahrávání: Tato funkční poloha byla vytvořena dodatečně, když se ukázala její vhodnost a to

KRYSTALOVÉ MIKROFONY A PŘENOSKY V NSR

Před časem došel redakci prospekt západoněmecké firmy F&H Schumann G. m. b. H spolu se vzorky dvou piezoelektrických membránových mikrofonů a torzní přenosky. Byly jsme zároveň požádáni o uveřejnění inserátu v našem časopisu.

Přesto, že jsme dosud podobným způsobem zahraniční výrobky nepropagovali, stojí tyto vzorky elektroakustických měničů za povšimnutí, zejména vezmemeli v úvahu vlastnosti podobných výrobků u nás.

Mikrofoni vložka KKM 44/5 má obvyklý tvar a rozměry $\phi 44 \times 12$ mm. Výrobce udává citlivost $4 \text{ mV}/\mu\text{b}$, kapacitu 2300 pF , rozsah pásma není v prospektu uveden. Měřením v tiché akustické komoře byla zaznamenána kmitočtová charakteristika, která je vyznačena na obr. 1. Rozsah přenášeného pásma od 50 Hz do 4 kHz má odchylky od střední citlivosti $\pm 2,5 \text{ dB}$; v rozsahu $40 \text{ Hz} - 7 \text{ kHz}$ jsou maximální odchylky $\pm 6 \text{ dB}$.

Mikrofoni vložka KKM 29/F má menší rozměry ($\phi 29 \times 17$ mm) a je určena pro speciálnější použití. Má účinnou korekci v oblasti $1 \text{ kHz} - 7 \text{ kHz}$ v rozmezí $0 \text{ až } + 12 \text{ dB}$, která se dá nastavit šroubkem v předním krytu vložky. Tím se mění v širokém pásmu útlum horní resonance systému. Při vhodném nastavení kmitočtového průběhu se dá dosáhnout rovnoměrnosti charakteristiky v rozsahu $60 \text{ Hz} - 7 \text{ kHz}$ v rozmezí $\pm 3 \text{ dB}$. Korekci v oblasti vysokých tónů se dají kompenzovat nepříznivé vlastnosti nevhodného studia nebo přenosové cesty a tím značně zvýšit srozumitelnost řeči. Naměřená citlivost je $1,9 \text{ mV}/\mu\text{b}$, kmitočtová charakteristika je na obr. 2.

Krytalová přenoska SK 453 připomíná

vzhledem i konstrukcí známou vložku fy Ronette. Torzní krystalové dvojče má symetricky umístěné a poddajně uložené výmenné chvějky se safirovými hrotami. Přepínání záznamu mikro-standard provádí se otáčením celého systému o 180° . Byly naměřeny tyto hodnoty:

Citlivost $190 \text{ mV}/\text{cm/s}$, skreslení v přenášeném pásmu $< 3 \%$.

Stranová tuhost systému $3,5 \text{ g}/0,1 \text{ mm}$, tlak na hrot $6,5 \text{ g}$. Kmitočtová charakteristika v poloze mikro, měřená elektronkovým voltmetrem se vstupním odporem $1 \text{ M}\Omega$ a kmitočtovou deskou Decca LXT 2695 je vynesena na obr. 3. Průběh je rovnoměrný v rozsahu $40 \text{ Hz} - 12 \text{ kHz}$ v rozmezí $\pm 3,5 \text{ dB}$.

Porovnání obou krystalových mikrofoniček s běžným membránovým mikrofonem TESLA 516 02 nedopadne pro nás příznivě, neboť u několika vzorků těchto mikrofonů nebyla naměřena v rozsahu $50 \text{ Hz} - 7 \text{ kHz}$ odchylka menší než $\pm 10 \text{ dB}$. Velmi dobrý bezmembránový piezoelektrický mikrofon TESLA 516 11 má větší kmitočtový rozsah a vyrovnaný průběh, ale o rád menší citlivost. Z tohoto důvodu není příliš vhodný pro komerční použití a nelze jej pro s popisovanými výrobky srovnávat.

Značně lépe ve srovnání s popsanou vložkou SK 453 však obstojí obě naše krystalové přenosky, jak nejnovější výrobek Gramofonových závodů, tak výrobek TESLY Valašské Meziříčí, a to jak ve srovnání citlivosti a stranové tuhosti, tak i kmitočtového průběhu, zejména u záznamu mikro. Přenoska TVM má navíc ještě originální řešení přepínání mikro-standard vertikálním naklápkentm chvějkou, které je spojeno s přepínáním korekci vestavěných do raménka.

Obr. 1. Kmitočtová charakteristika mikrofoničky vložky KKM 44/5 - citlivost při kmitočtu 1 kHz $4,3 \text{ mV}/\mu\text{b}$ (0 dB)

Obr. 2. Kmitočtová charakteristika mikrofoničky vložky KKM 29/F - —— bez korekce, - - - korekce na max. Sířední citlivost $1,9 \text{ mV}/\mu\text{b}$

Obr. 3. Kmitočtová charakteristika krystalové přenosky SK 453, záznam mikro. Citlivost při kmitočtu 1 kHz $190 \text{ mV}/\text{cm/s}$ (0 dB)

Věříme, že po reorganisaci výroby elektroakustických měničů budou u nás využity a dány v dohledné době do prodeje také jakostnější typy komerčních krystalových i dynamických mikrofonů pro širokou spotřebu.

-Šá-

TRANSISTORY V PRAXI VI.

Ing. Jindřich Čermák

VI. 1 Základní vlastnosti měřicích přístrojů s transistory

Transistory nacházejí použití i v technice měřicích přístrojů. Jejich vlastnosti se uplatní zásadně ve dvou směrech:

a) *miniaturisaci*, kterou dovolují nepatrné rozměry transistorů, jejich vazebných prvků a malý vývoj tepla;

b) *malé spotřebě*, která bud' dovoluje zmenšit napájecí obvody nebo měřicí zařízení přímo napájet z vestavěné baterie.

Co znamená odstranění desítek přívodních šnúr na složitějším pracovišti, ocení snad každý slaboproudý technik. Mimo to jsou přístroje nezávislé na síti a lze s nimi měřit nejen v laboratoři, nýbrž i kdekoliv v terénu.

Dále nám vlastnosti transistorů dovolují konstruovat taková měřidla, jejichž sestrojení s ohledem na princip by bylo u elektronek buď obtížné nebo zcela nemožné.

Naproti tomu přinášejí transistory i celou řadu nevýhod, způsobenou zvláště závislostí přenosových vlastností

na teplotě. Stejně jako u ostatních zapojení je zde nutno používat různých stabilizačních a kompenzačních obvodů, zde o to složitějších, že přípustné změny zesílení či impedance měřicího přístroje musí být minimální.

Do pojmu měřicích přístrojů patří v obecném smyslu nejrůznější tónové generátory, můstky, elektronkové voltmetry apod. V dnešním článku si však všimneme pouze posledních.

Zopakujeme jen, že výstupním prvkem takových měřicích přístrojů je ručkový přístroj. Ponecháme-li stranou samozřejmý požadavek přesnosti měření, je nejdůležitější vlastností takového přístroje nejmenší příkon, spotřeba, potřebná k vychýlení ručky do určité polohy. Cílem je tento příkon menší, tím menší změnu způsobíme v měřeném obvodu, tím více se blížíme měření ve skutečném stavu. Jako příklad stačí uvést měření ručkovým přístrojem v obvodu automatické regulace úrovně rozhlasového přístroje. Usměrněné napětí na řídících mřížkách selektord, které mění s pracovním bodem strmost, dosahuje až několik desítek voltů. Připojení obyčejného ručkového měřidla však pro tento obvod zna-

mená úplný zkrat a výsledkem je, že bud nemocíme vůbec nic, nebo měříme s hrubou chybou.

K označení jakosti měřidla zpravidla používáme zlomku Q/V , tj. velikosti jeho vnitřního odporu při rozsahu 1 V . Cílem větší je tento odpor R_p , tím menší je spotřeba N_p .

$$N_p = \frac{U^2}{R_p} = \frac{1 \text{ (V)}}{R_p} \quad (1)$$

U voltmetrů požadujeme tedy nejvyšší vstupní odpor (obr. 1), aby proud měřicím přístrojem I_p byl co nejmenší. Napak je tomu u ampérmetrů zapojených do vodiče protékaného proudem. Žádáme, aby napěťový úbytek U_p na přístroji byl co nejmenší (obr. 2).

Voltmetry s vysokým vstupním odporem lze dnes velmi snadno sestrojit pomocí elektronkového zesilovače. Vstupní odpor první elektronky včetně mřížkového odporu leží v řádu 1 až $100 \text{ M}\Omega$.

Podobné voltmetry lze sestrojit pomocí transistorových zesilovačů. Je však základní vlastností transistorů, že mají vstupní odpor velmi malý, od desítek do tisíců ohmů. K požadovanému účelu jich tedy nelze užít přímo. Ke zvýšení vstupního odporu nutno zavést pomocné předřadné odpory nebo vhodnou zpětnou vazbu. Pomoci transistorů je však možné sestrojit mikroampérmetry s nepatrným vstupním odporem. Sestrojení takového přístroje s elektronkou je ne-

Popis

Elektronka TESLA ECC85 je dvojité trioda s elektricky shodným systémem s vysokou stranou, sředním zesilovacím článkem a s oddělenými katodami. Provedení miniaturní s devítikolikovou paticí, na nž jsou vyvedeny všechny elektrody. Oba systémy jsou na sobě zcela nezávislé a jsou navzájem odstíňeny vnitřním stínčením, které je využíváno na samostatný kolik na patici.

Elektronka je určena pro vstupní VKV části moderních přijímačů pro příjem kmitočtové modulovaných signálů. Systém I se používá jako předzesílovače v libovolném zapojení, systému II jako kmitajícího zesilováče, se symetrickým můstkovým vstupem. Mimořadně lze elektronky používat jako kaskádového VKV zesilováče s paralelním napájením. Směsovací stupně tvoří pak jiná vhodná elektronika (EF80, EF82). Pro kaskádové zesilováče se sériovým napájením nedoporučuje se ECC85 používat. Zde je vhodnější starší 6CC42, po příp. výkonější PCC84.

Zvláštní předností elektronky je využití vnitřní stínění, které snižuje kapacitu mezi anodami obou systémů na minimum (0,04 pF), což je asi desetina téže kapacity starší elektronky ECC81. Minimální kapacita jc žádoucí proto, aby se zamezilo rušení nežádoucím vyzářováním oscilátoru (systému II) při provozu jako směsovacího kmitočtu.

Kapacita anod lze ještě snížit až na 0,008 pF použitím stíněné objímky s valicovým krytem o vnitřním průměru 22,5 mm.

Zesílovací stupně s ní mají tu přednost, že pracují téměř bez šumu - ekvivalentní šumový odpor je asi 500 Ω. Vstupní odpor v zapojení s uzemněnou katodou a při provozním kmitočtu 100 MHz je asi 6 kΩ. Tato hodnota je dostatečná i pro kaskádové zesilováče. V zapojení s uzemněnou mřížkou je vstupní odpor závislý na strništích, a to přibližně 1/S ~ 160. Mřížkový obvod je vstupním odporem utlumen

Obr. 1. Vnitřní rozmeny a zapojení patice ECC85

Kaskádový zesílovač
Je-li žádoucí velké předzesílení, lze použít před směšovačem kaskádovou zesílovač s paralelním napájením, osazeného ECC85 podle obr. 3. Systém I pracuje jako vf zesilováč s neutralizací. Veľkosť neutralizačného kondenzátora C_N závisí na poměru kapacit C_1 a mezielktrodových kapacit. Kapacitu C_1 zvolíme takovou, aby se dosáhlo neutralizace v celém přenásém pásmu, a to podle vzorce $0,2 = C_1/C_1 + C_{g/k}$. Vlastní neutralizační kondenzátor vy-

počtem podle $C_N = C_1 \cdot C_{g/k}/C_{g/k}$. Systém II pracuje jako VKV zesílovač s uzemněnou mřížkou a je vásaná s předchozím stupněm kaskádového vazbového obvodu. Doprůčený kaskádový obvod má přednost v tom, že je poměrně značně širokopasmový, takže není zapotřebí speciálních kondenzátorů. Nejdou je poměrně nížší zisk. Kaskádový výhodou je využití elektronky ECC85 lze používat v pásmech 65, 5-73,5, 144 MHz a v III. televizním pásmu.

Obr. 3. VKV kaskádový zesílovač pro fm pásmo s elektronkou ECC85

Elektrické vlastnosti

Žhavící údaje
Žhavící napětí
Žhavící proud
Anoda vlně mřížek^{a)}
Mřížka vůči katodě, spojené se žhavícím výkamenem^{a)}
Anoda vůči katodě^{a)}
Anoda vůči katodě, spojené se žhavícím vláknem a stíněním^{a)}
Anoda I vůči anodě II
Anoda I vůči katodě II
Mřížka I vůči mřížce II
Anoda I vůči mřížce II

Kapacity¹⁾
 $C_{a/g}$ 1,85 pF
 $C_{a/k}$ 6,3 pF
 $C_{a/k+1}$ 0,435 pF
 $C_{g/k+1}$ 3,3 pF
 $C_{a/k}$ 0,23 pF
 $C_{a/k+1}$ 1,6 pF
 $C_{a/g}$ 0,04 pF
 $C_{a/k}$ < 0,008 pF
 $C_{g/g}$ 0,003 pF
 $C_{a/g}$ < 0,008 pF

Anoda II včetně mřížky I
Anoda II včetně katodě I
Mřížka I včetně katodě II
Mřížka II včetně katodě II

<i>C_{anod}</i>	< 0,008 pF
<i>C_{anod}/k_T</i>	< 0,008 pF
<i>C_{g1/k_T}</i>	< 0,003 pF
<i>C_{g2/k_T}</i>	< 0,003 pF
<i>U_a</i>	250 V
<i>U_{g1}</i>	-2,3 V
<i>R_a</i>	230 Ω
<i>I_a</i>	10 mA
<i>S</i>	5,9 mA/V
<i>D</i>	57 %
<i>R_t</i>	1,75 kΩ
<i>R_t</i>	9,7 %

Anodové napětí
Předpět rídící mřížky
Katodový odpor
Anodový proud
Strmost
Zesilovací činitel
Průtok
Vnitřní odpor

Provádzané hodnoty	
<i>U_b</i>	250 V
<i>R_a</i>	1,8 kΩ
<i>U_{g1}</i>	230 V
<i>U_{g2}</i>	-2 V
<i>I_a</i>	10 mA
<i>S</i>	6 mA/V
<i>R_t</i>	9,7 kΩ
<i>R_k</i>	200 Ω
<i>X_{g1}</i>	6 kΩ
<i>R_{ext}</i>	500 Ω
<i>R_t</i>	9,7 kΩ

Napájecí napětí
Vnější anodový odpor
Anodové napětí
Předpět rídící mřížky
Anodový proud
Strmost
Vnitřní odpor
Katodový odpor
Vstupní odpor ($f = 100 \text{ MHz}$)
Ekvivalentní sumový odpor
Odpor R_a v anodovém obvodu musí být pro vysoké kmitočty přemostěn kondensátorem 1000 pF.

Směšovač s vlastním buzením

Napájecí napětí
Vnější anodový odpor
Anodové napětí
Svodový odpor rídící mřížky
Anodový proud
Vnitřní odpor
Oscilační napětí
Směšovací strmost
Mf strmost (pro mlf napětí 0,1 V cf na g₁)
Vstupní odpor ($f = 100 \text{ MHz}$)
K zamezení mikrotonic v oscilačním zapojení nesmí být mezi žhavicím vláklem a katodou žádne nf napětí.
Anodové napětí za studena
Anodové napětí provozní
Anodová ztráta
Součet anodových ztrát obou systémů
Katodový proud
Záporné předpět rídící mřížky
Svodový odpor rídící mřížky
Napětí mezi katodou a žhavícím vlákнем (stejnosměrné nebo špičková hodnota střídavého)
Vnější odpor mezi katodou a žhavícím vlákнем
Předpět pro nasazení mřížkového proudu ($I_{th} = +0,3 \mu\text{A}$)

¹⁾ Měřeno bez vnějšího sítinového krytu.

Poznámky

U_{g1}

max 90 V

max 20 kΩ

U_{g2}

max -1,3 V

pacita anod zaručuje zcela nepatrné vyzařování oscilátoru připojenou anténu. Zisk směšovače mezi mřížkou směšovače a prvním mf stupněm je asi 46. Teoreticky vypočtený celkový zisk zesilovače a směšovače je asi 450, v praxi lze však dosáhnout bezvýznamnějšího zisku pouze několik nižšího (kolem 350).

Praktické údaje použitých cívek v zapojení podle obr. 2, určené k příjmu FM rozhlasu.

Vstupní obvod

L_1 - 6 závitů mředěného drátu o \varnothing 0,25 mm $2\times$ opředeného bavlnou.
 L_2 - 6 závitů mředěného drátu o \varnothing 1 mm stříbřeného, vzdálenost mezi závitými 3 mm.

Cívky L_1 a L_2 navinuty na společné kostičce o \varnothing 7 mm.

L_3 - 3 závitů mředěného drátu o \varnothing 0,3 mm, $2\times$ opředeného hedvábím nebo holčím, vzdálenost mezi závitými 1 mm. Cívky L_4 a L_5 navinuty na společné kostičce o \varnothing 7 mm, vzdálenost mezi nimi asi 7 mm.

Přesné údaje budou záviset na montáži součástí a spojů.

Anodový obvod

L_6 - 3,5 závitů mředěného drátu o \varnothing 1 mm stříbřeného na kostičce o \varnothing 7 mm, vzdálenost mezi závitými 3 mm, odbočka asi uprostřed cívky.

(Nevýhodnější nastavení odbočky se dosáhne odzkoušením. Nejdříve umístěme odbočku uprostřed. Postupným přemisťováním odbočky vzhledáme nejlepší kompromis mezi ziskem napětí VKV zesilovací triody a zážehem oscilátoru.)

Oscilátor

L_7 - 4 závitů mředěného drátu o \varnothing 1 mm stříbřeného, vzdálenost mezi závitými 4 mm.

L_8 - 3 závitů mředěného drátu o \varnothing 0,3 mm, $2\times$ opředeného hedvábím nebo holčím, vzdálenost mezi závitými 1 mm. Cívky L_9 a L_{10} navinuty na společné kostičce o \varnothing 7 mm, vzdálenost mezi nimi asi 7 mm.

Přesné údaje budou záviset na montáži součástí a spojů.

Obr. 2. VKV zesilovač spojující se směšovačem - oscilátorem s elektronkou ECC85

Obr. 1. Připojení voltmetu k měřenému obvodu

Obr. 2. Připojení ampérmetru do měřeného obvodu

Obr. 3. Základní zapojení transistoru s ručkovým přístrojem

Obr. 4. Znázornění funkce transistoru pomocí výstupních stejnosměrných charakteristik na prázdrojno

Obr. 5. Závislost proudového zesílení na krátko α_e na proudu báze I_b

snadné a v některých případech zcela nemožné.

Základní uspořádání transistoru s měřicím přístrojem μA v zapojení se společným emitem vidíme na obr. 3. Podle dříve uvedených vztauh (AR č. 3, 1958) je celkový proud kolektoru I_k

$$I_k = I_{ko} + \alpha_e I_b \quad (2)$$

málo závislý na změnách napětí U_{ke} , jestliže toto napětí je dostatečně velké. Zde opět značí I_{ko} zbytkový proud kolektoru a α_e proudové zesílení nakrátko v zapojení se společným emitorem. I když nebude bází protékat žádný stejnosměrný proud, bude mikroampérmetr ukazovat výchylku, odpovídající I_{ko} . Tuto výchylku lze bud potlačit mechanicky (natočením vlásků ručkového měřidla o stejný úhel proti směru výchylky) nebo elektricky zavedením protiproudů, který účinek I_{ko} zruší. S ohledem na závislost I_{ko} na teplotě je však takové vyrovnaní možné jen při určité

Obr. 6. Transistorový měřicí přístroj s obvodem pro nastavení nuly. Veškeré odpory (i v dalších zapojeních) vystačí na nejmenší výkony s tolerancemi do 10 %. Výjimky jsou uvedeny v textu

teplotě. Proto se zpravidla používá dalšího polovodičového prvku (transistoru, diody), jehož odpor také závisí na teplotě a zvětšuje nebo zmenšuje protiproud tak, jak se mění I_{ko} .

K pochopení přispěje obr. 4, na kterém jsou vyznačeny stejnosměrné výstupní charakteristiky transistoru v zapojení se společným emitorem. Přímka představuje odpor R_p použitého mikroampérmetru. Kdyby v klidovém stavu, tj. $I_b = 0$, neprotékal kolektorem žádny proud, bylo by kolektorové napětí přímo rovné napětí baterie $U_{ke} = U_{bat}$. Zbytkový proud I_{ko} však posune pracovní bod P tak, že skutečné napětí $U_{ke} = U_{bat} - R_p I_{ko}$. Účinek tohoto zbytkového proudu je pak třeba potlačit. Přivedeme-li na bázi proud $I_b = 20 \mu A$, stoupne proud kolektoru na pracovní hodnotu I_k , kterou ukáže zapojený mikroampérmetr. Z grafu je ihned zřejmý zesilovací účinek transistoru: proud báze $20 \mu A$ (proud měřený) je zesílen transistorem v našem případě asi 30-krát, takže způsobí změnu kolektorového proudu zhruba o $0,6 \text{ mA}$. Je to pak již opravdu značné zvýšení citlivosti přístroje, které by normálními úpravami systému bylo buď obtížné a nákladné nebo neprovédatelné.

Zcitlivění ručkového přístroje transistory však má i některé nevýhody. O teplotní závislosti I_{ko} , jež působí „cestování“ nuly, jsme již mluvili. V obr. 4 je zvýšený zbytkový proud I_{ko} při $30^\circ C$ vyznačen čárkovanou křivkou. Podobně se pak posunou i ostatní charakteristiky a pracovní bod z P do P' . Další vada je zřejmá z téhož obrázku: hustota výstupních charakteristik se mění s I_b . Pro určité, zpravidla malé I_b je proudové zesílení transistoru největší (změnu I_b odpovídá největší změna I_k), zatím co pro vysoká I_b (nad $50 \mu A$) poněkud klesá. Tento jev je vlastní všem transistorům a vyskytuje se více či méně podle jakosti zvoleného typu. Budeme-li tedy mít možnost výběru, zvolime takový typ transistoru, jehož výstupní charakteristiky jsou rozloženy rovnoměrně. Někteří výrobci udávají na důkaz jakosti křivku závislosti nebo spíše nezávislosti proudového zesílení nakrátko α_e na proudu báze I_b (obr. 5). Přímka 1 přísluší ideálnímu transistoru, křivka 2 vyhovujícímu a křivka 3 nevyhovujícímu.

Konečně nutno připomenout, že u transistoru nelze dobře mluvit o vstupním odporu R_{vest} , který by odpovidal původnímu odporu přístroje R_p a který bychom použili k výpočtu předřadních odporů nebo bočníků. Vstupní odpor R_{vest} se totiž mění s přiváděným proudem a proto bývá třeba ho linearisovat pomocí dalšího seriového ohmického odporu.

Obr. 7. Transistorový měřicí přístroj s obvodem pro nastavení nuly předpřetím v bázi

VI. 2 Praktické návody

Nejjednodušší zapojení transistorovaného mikroampérmetru vidíme na obr. 6. Báze transistoru je v klidu bez předpřetí; měřené napětí přivedeme na bázi tak, aby byla proti zemi (emitoru) záporná (u transistoru pnp ; u npn je tomu zcela opačně). V tomto případě se pak proud kolektoru zvětší a mikroampérmetr naznamená výchylku. K vytvoření pomocného protiproudů, který potlačí účinek I_{ko} , je použito dvou stejných odporů R_1 a R_2 . Velikost tohoto protiproudů nastavujeme proměnným odporem (potenciometrem) P_1 . Nastavení provádime před započetím každého měření a vůbec vždy, kdy je třeba neutralisovat případnou teplinovou změnu I_{ko} . Nastavení nuly nutno samozřejmě provést i při eventuální výměně transistoru. K napájení celého přístroje vystačíme s baterií B o napětí od $1,5 \text{ V}$ výše. Zapojení zdrojů se provádí vypínačem V , zapojeným v řadě s baterií B . Aby bylo možno nastavit plnou výchylku mikroampérmetru na určitou zakrouhlenou hodnotu, je v řadě s ním zapojen proměnný odpor P_2 .

Zvýšení citlivosti ručkového přístroje závisí v první řadě na proudovém zesílení transistoru. Zhruba je dáno proudovým zesílením nakrátko α_e . Použijeme-li např. čs. transistoru 3NU70 s $\alpha_e = 50$ a mikroampérmetr s plnou výchylkou pro $100 \mu A$, bude mít výsledné zapojení podle obr. 6 plnou výchylku při $I_b = 100 \mu A / 50 \approx 2 \mu A$. To je tedy citlivost opravdu úctyhodná.

V tomto zapojení a ani v žádném z dalších nejsou kladené velké nároky na jakost transistorů. Samozřejmým požadavkem je ovšem nízký zbytkový proud ($I_{ko} < 10 \mu A$) v zapojení i se společnou bází při teplotě okolo $20^\circ C$ a napětí $U_{kb} \approx 10 \text{ V}$) a dostatečné $\alpha_e (> 10)$. Mezní kmitočet ani šum zde prakticky nerohodují. Kolektorová ztráta nepřestoupí za provozu několik mW.

Pro amatérské použití můžeme změnu α_e s I_b zanedbat. Avšak tam, kde je I_b větší než 20 až $30 \mu A$, je výhodné přecejchovat stupnice přístroje μA podle skutečné závislosti výchylky ručky na I_b .

Podobné zapojení měřicího přístroje vidíme na obr. 7. K nastavení nuly slouží proměnný odpor P_1 . Aby bylo nastavení snazší (jmenovitěji), je v řadě s ním pomocný odpor R_2 . Namísto napěťového odporového děliče jsou použity dvě baterie B_1 a B_2 . Při vypínání je nutno použít dvojpólového vypínače, jehož kontakty jsou veptuty do míst označených x .

Předřadný proměnný odpor je tentokrát vynechán. Zapojení na obr. 7 se tedy hodí spíše jako citlivý indikátor než měřicí přístroj. Lze jej však samozřejmě zdokonalit připojením předřadného odporu P_2 do řady s mikroampérmetrem, jako tomu bylo v minulém případě. Klidový pracovní bod je posunut

Obr. 8. Transistorové relé

Obr. 9. Měřič intensity pole

Obr. 10. Transistorový dvojčinný měřicí přístroj

Obr. 11. Duojsstupňový transistorový měřicí přístroj (principiální uspořádání)

Obr. 12. Skutečné zapojení dvojstupňového transistorového měřicího přístroje

též předpětím báze (odpor R_1 — M5 až 2M) do oblasti maximálního α_e (viz obr. 5). Velikost tohoto odporu volíme zkusmo podle použitého transistoru. Výhodou zapojení je nepatrný odběr proudu z baterií B_1 a B_2 v klidovém stavu.

Je samozřejmě, že namísto měřicího přístroje může být v obvodu kolektoru i jiné zařízení k vyhodnocení změny proudu báze. Často se používá relé, které ve spojení s transistorem nabývá překvapivé citlivosti. Příklad takového zapojení vidíme na obr. 8. V sérii s baterií B a vypínačem V je v kolektorovém obvodu připojeno polarizované relé. Nejlépe se hodí takové typy relé, jež přitahují při proudu několika mA a mají odporník vinutí do $1\text{ k}\Omega$ (viz článek *Výprodejní relé*, AR č. 3, roč. 1955). Čím větší je tento odporník relé, tím větší napětí musí mít baterie B . Volíme je tak, aby v pracovním stavu, když napětí kolektoru je zmenšeno proti napětí baterie o spád na vinutí, zbyvalo mezi kolektorem a emitorem ještě alespoň 1 až 2 V. Přitom je však třeba dbát a kontrolovat, aby v klidu při malém proudu I_k nepřestoupilo napětí kolektoru (blížící se napětí baterie) připustnou hodnotu. Kompenzace kladového (zbytkového) proudu není nutná, pokud tento proud nepřekročí 14 až 25 % pracovního proudu I_k . Přitah relé R , vybuzený vstupním proudem mezi svorkami I , I' , se vyhodnotí kontaktem r na vývodech 2, 2'. Popisované zapojení nalézáme v mnoha ohněných v časopisech těchž zaměření.

obnovení v časopisech technickém, kde se v televizi vyskytují reklamní (obchodní, komerční) pořady. Pod názvem „zabíječ komerčních pořadů“ nacházíme pak různé přípravky, v principu shodné s naším obr. 8, které mají mezi svorkami 1, 1' připojeny 1 až 2 selenové fotočlánky FČ v serii. Kontakt relé r je zapojen tak, aby zkratoval anebo odpojil kmitačku reproduktoru, tedy přerušil zvuk. Přístroj s fotočlánky je umístěn poblíž televizoru a přijímá světlo z místnosti. Je-li normální pořad přerušen nezajímavou reklamou, stačí rozsvítit světlo v místnosti, kde pořad sledujeme a zvuk zmlkne. Na obrazovce pak máme možnost pořad dále sledovat a po ukončení reklamy zhasnutím světla zvuk opět zapnout. Jeden z autorů, popisujících toto zařízení, uvádí, že sleduje televizi od pracovního stolu, kde se při reklámách věnuje své práci. Zapínáním a vypínáním stolní lampy zapíná podle zájmu zvukový doprovod. Kdyby snad někdo chtěl zapojení vyzkoušet, použije selenových fotočlánků, popisovaných v minulém čísle AR - *Transistory v praxi V.*

Jiné použití transistorového ručkového přístroje vidíme na obr. 9. Jde v zásadě o detektorový přijímač s transistorovým zesilovačem, který místo sluchátek či reproduktoru napájí ručkový mikroampérmetr μ A. Takového přístroje použijeme s výhodou jako měřiče intenzity pole při zjišťování vyzařovací charakteristiky antény anebo vlivu jejích úprav na směrovost. Prutová přijímací anténa délky 0,5 až 1 m napájí paralelní resonanční obvod $L - C_1$. Jeho součástky volíme tak, aby změnou kondenzátoru C_1 bylo možno spolehlivě ladit v potřebném pásmu kmitočtů. Přijímaný signál usměrňuje germaniová

jedná, signál uskutečňuje germaniovou diodou U typu 1 až 6NN40, resp. 41. Usměrněný signál, vyfiltrovaný kondenzátorem C_2 , přivádíme na bázi transistoru T_1 a řídíme jím proud v kolektortvorném obvodu. K nastavení nuly je opět použito známého odporového děliče

$R_1 = R_2$ a proměnného odporu P_1 . Měříč intenzity pole je napájen baterií B o napětí alespoň 1,5 V. Čitlivost a vnitřní odpor použitého mikroampérmetru není nijak kritická. Pro dostatečnou citlivost celého měřiče je vhodné, aby mikroampérmetr měl plnou výchylku při proudu 0,4 až 1 mA a vnitřní odpor pod 1 k Ω .

Při práci v terénu, kde přecházíme ze slunce do stínu, a tím kolísá teplota okolí i měřiče, je třeba vždy kontrolovat nastavení nuly. Kontrolu provedeme při odpojené přijímací anténě, aby vnější přicházející signál nerušil.

Dvojčinné zapojení na obr. 10 má několik výhod. Oddělené vstupní svorky dovolují používat měřicího přístroje i k měření na obvodech symetrických k zemi (dosavadní běžné elektronkové voltmetry mají vstup k zemi nesymetrický). Dále je postaráno o dobrou kompenzaci tepelného kolísání zbytkového proudu. Změna teploty totiž účinkuje rovnoměrně na oba transistory a vzniklý proud u obou kolektorů se ve svém vlivu na ručkový přístroj navzájem ruší. Potenciometr P_1 slouží k nastavení nuly před uvedením měřicího přístroje do chodu. Zbytkové proudy I_{k0} obou transistorů se totiž vzájemně liší, a proto je třeba vyrovnat je změnou kolektorského napětí. Po takovém vyrovnaní již probíhají další změny vlivem teploty zhruba stejně a vynutí se. Oba transistory pracují s předpětím báze, daným odporovým děličem R_1, R_2, R_3 .

Všimněme si nyní zajímavého zapojení na obr. 11a. První transistor T_1 je v zapojení se společným emitorem. Můžeme si představit, že jeho kolektor je napájen proudem z baterie B_2 přes transistor T_2 . Za společný bod transistoru T_2 považujeme kolektor transistoru T_1 . Vztahujeme-li k tomuto bodu napětí baterie B_1 , vidíme, že v kolektoru T_2 je namísto zároveň zapojen mikroampérmetr μA . Proudové zesílení obou transistorů se násobí, takže i při použití méně jakostních transistorů je citlivění ručkového přístroje značné. Při podrobnejší rozvaze lze dokázat, že proudy vybuzené oběma bateriemi se sčítají v místě označeném x . Je možné dosáhnout stejného účinku jedinou baterií připojenou v tomto místě (obr. 11b). Uplné zapojení transistorového voltmetu vidíme na obr. 12. Proti minulým popisům zde přibyly předřadné odpory R_1 až R_4 (dimenované alespoň na 1 W a vybrané tak, aby se co nejméně odchylovaly od předepsaných hodnot) a známé obvody k nastavení nuly a citlivosti. Nastavení nuly neboli kompenzace zbytkového proudu provádíme potenciometrem P_1 . Citlivost a její nastavení na potřebnou zaokrouhlenou hodnotu řídíme proměnným odporem P_2 . I při použití transistorů s $\alpha_B = 0,9$, tedy transistorů nepříliš jakostních, je vstupní odpor kolem $100 \text{ k}\Omega/1 \text{ V}$. Na rozdíl od elektronkových voltmetrů s konstantním vstupním odporem pro všechny napěťové rozsahy (na př. $1 \text{ M}\Omega$), mění se u tohoto transistorového voltmetu vstupní odpor s napěťovým rozsahem a poměr Ω/V zůstává zachován. Celý přístroj může být napájen z jediného monočlánu B_1 . K vypnutí baterie slouží přepínač rozsahů.

Lze říci, že v technice měřicích přístrojů mají transistory velký význam, neboť svými vlastnostmi dovolují uplatnit - jak po elektrické, tak i po konstrukční stránce - zcela nové myšlenky, nevyzkoušené u přístrojů elektronkových.

ZTROJOVAČ KMITOČTU 145 - 435 MHz

Jar. Procházka, OK1AKA

Pro úspěšnější práci na pásmu 70cm nevystačíme s všeobecně dosud používaným zařízením a budeme nuten sáhnout k řešení dokonalejší koncepce tak jako na pásmech nižších. Předpokládáme, že technická úroveň VKV zařízení na 2m pásmu dosahuje u nás dobré úrovně a je proto z ekonomického hlediska účelné použít stávajícího vysílačního zařízení pro pásmo 2 m jako budíce pro 70cm pásmo. S jednoduchým koaxiálním konvertorem a s přijímačem Fug 16 se dá dosáhnout uspokojivých výsledků. Konvertor může mít koaxiální vstupní obvody a oscilátor řízený krystalem s ladičkou mf nebo ladičelný oscilátor s pevným mf kmitočtem.

Problém výkonového zesílení kmitočtu v pásmu 70 cm spočívá v možnosti opatření vhodné elektronky. Upustíme-li od klasického zesílení, kde bývá vstupní a výstupní obvod naladěn na stejný kmitočet (v našem případě 435 MHz) a požadujeme-li pouze ztrojovač kmitočtu 145 MHz na 435 MHz, jsou podmínky podstatně příznivější s ohledem na vstupní mřížkový obvod. Elektronky, které byly při konstrukci ztrojovače vyzkoušeny, jsou GU32 a REE30B. Mezni kmitočet mřížkového okruhu těchto elektronek je pod 400 MHz. Při použití jako zesílovač bude tedy potřeba provést vhodné úpravy mřížkového obvodu. Budíme-li této elektronky používat jako ztrojovače kmitočtu, odpadne potíž se vstupním obvodem, protože ten bude v našem případě laděn na 145 MHz, kde lze obvod realizovat normální indukčností. Anodový obvod je už laděn na 435 MHz a je proveden jako vedení $\lambda/2$, které tvoří dva rovnoběžně jdoucí pásky. Elektronka REE30B má mimo jiné také tu výhodu, že rozteč anodových kolíků je menší než u GU32. Vedení nám vyjde s menším vlnovým odporem a s větší délkou. Účinnost elektronek GU32 a REE30B je v pásmu 70 cm malá a při zapojení jako ztrojovač kmitočtu ještě podstatně klesne. S elektronkou GU32 získáme výstupní výkon kolem 3 W a s REE30B 6 až 8 W. Účinnost u poslední elektronky se pohybuje kolem 20 %. Je to jistě málo, ale 6 W na 435 MHz, řízených krystalem, je úspěchem už hlavně z toho důvodu, že si na

přijímací straně můžeme dovolit použít dokonalý úzkopásmový přijímač - superhet. Uvažíme-li, že s průměrnou směrovou anténou lze na 70 cm docílit zisk 8 dB, znamená to, že vyzářená energie bude taková, jako kdyby vysílač měl výkon 36

až 48 W. Jistě bude účelné v další etapě doplnit ztrojovač dalším zesílujícím stupněm a zvýšit tak výkon. V první etapě výstavby a zkvalitňování 70cm zařízení vystačíme i s tímto ztrojovačem, protože bude nutné vnovat i dostatek času na konstrukci kválitního přijímače.

Zapojení ztrojovače

Na obr. 1 je celkové zapojení ztrojovače. Výstupní napětí z vysílače 145 MHz se přivádí na koaxiální konektor K_1 . Vysílač, který byl použit k buzení ztrojovače, měl na koncovém

stupni elektronku GU32. Budíci napětí jde na vazební cívku L_1 , která má jeden závit a je navinuta na střed přes cívku L_2 . Cívka L_2 s mřížkovými kapacitami elektronky REE30B je laděna na výstupní kmitočet budíce. Na střed této cívky je přes tlumivku Tl_1 připojen mřížkový odpór R_1 . V serii s mřížkovým svodem je zapojen měřicí přístroj M_1 pro kontrolu optimálního vybuzení. Jelikož předpětí ztrojovače vzniká průtokem proudu na odporu R_1 jen když přivádíme buzení, je nutné, aby bylo v konstrukci pamatováno na to, aby elektronka byla bez buzení vyřazena

Vlevo: Pohled na anodový obvod a vazební smyčku. Vpravo: Základní kostra ztrojovače.

z činnosti. Ve vysílači 145 MHz, který byl použit pro buzení ztrojovače, je k přepínání funkce vysílání-příjem použito malé výprodejní relé, které je napájeno ss napětím 2,4 V. Shodné relé je též použito ve ztrojovači a je napájeno ss napětím 2,4 V z vysílače 145 MHz. Přepínač, kterým ovládáme funkci vysílání-příjem, je označen S_1 a je umístěn ve vysílači 145 MHz. Relé ve ztrojovači ovládá kontakt S_2 , který v poloze příjem rozpojí přívod ss napětí ke stíni mřížce a vyřadí elektronku z činnosti. Přepínač S_1 je umístěn na čelní stěně panelu ztrojovače. V sepnuté poloze pracuje ztrojovač s trvalým provozem nosné vlny a v rozepnuté poloze je zkratován telegrafním klíčem při provozu CW. Anodový obvod je proveden jako vedení ze dvou měděných pásků o síle 1 mm a výšce 10 mm. Rozteč pásků je 11 mm. Vlnový odpor vedení je 170Ω . Pásy jsou na straně u elektronky připájeny do anodových dotecků, které mají za účel zlepšit odvod tepla z anodových kolísků. Vlastní dotyk s anodovým kolískem tvorí zdířka z objímek pro elektronku LS50, která je zašroubována do anodového doteku. Pro zvětšení povrchu (s ohledem na chlazení) má anodový dotyk na svém povrchu mírné zápichy. Rozměry anodového doteku a vedení jsou uvedeny na výkresu 2,3. Na druhém konci vedení je umístěn ladící kondensátor C_4 v provedení split-stator o kapacitě 3 až 8 pF z inkurantního přístroje Feldfu, ke kterému jsou pásky vedení připájeny. Jak již bylo uvedeno, je anodový obvod proveden jako vedení $\lambda/2$, zkratované na konci kapacitou C_6 . Kdybychom chtěli použít vedení $\lambda/4$, vyšla by nám délka vedení s ohledem na rozměry systému elektronky a parazitní kapacity pouze 35 mm a většina vln energie by byla soustředěna uvnitř elektronky. Pro leší odvedení vln energie je účelnější, aby vedení mělo délku větší než $\lambda/4$. V bodě 35 mm od anodového doteku je kmita proudu a minimum vln napětí a můžeme proto do tohoto místa přes tlumivky Tl_1 a Tl_2 přivést ss anodové napětí. Vln energie je odváděna vazební smyčkou L_4 , která je umístěna mezi pásky vedení, jak je vidět na fotografii. V serii s vazební smyčkou L_4 je zapojen vzdušný trimr C_4 , kterým vyladíme vazební smyčku pro lepší přizpůsobení záťaze. V přívodu ss napětí pro anody elektronky REE30B je připojen předřadný odpor R_3 pro napájení stíni mřížky a měřicí přístroj M_2 k měření anodového proudu. Výstupní energii ze ztrojovače odebíráme z koaxiálního konektoru o vlnovém od-

1 - úhelník pro objímku elektronky (1 kus, Ms plech 1,5 mm); 2 - úhelník pro konektor (2 kusy Ms plech 1,5 mm); 3 - anodový dotyk (2 kusy Ms $\varnothing 8 \times 30$ mm), anodové vedení (2 kusy Cu plech 1 \times 70 mm).

poru 60Ω . Žhavící vlákna jsou propojena pro paralelní napájení žhavicím napětím 6,3 V a v přívodech žhavení jsou zařazeny tlumivky Tl_1 a Tl_2 .

Konstrukce

Vlastní ztrojovač je montován na základní kostře ze železného pozinkovaného plechu o síle 1 mm a rozmerech $300 \times 100 \times 20$ mm. Celkové uspořádání základní kostry je vidět na obrázcích. Vlevo je přišroubován úhelník s výstupním konektorem K_2 . Uvnitř úhelníku je pomocí dvou plechových úhelníčků přišroubována keramická lišta s otvory o $\varnothing 3$ mm a rozmerech $70 \times 10 \times 4$ mm. Na liště je upevněn trimr C_4 a vazební smyčka L_4 . Rozměry nosného úhelníku, který je pro výstupní a vstupní konektor stejný, jsou na vý-

kresu. Vedle úhelníku je k základní kostře připojen ladící kondensátor C_4 , který má na svých statorech připájeny pásky vedení. Vedle elektronky je přišroubován předřadný odpor R_3 pro stíni mřížku. Elektronka je montována ve vodorovné poloze, při čemž dbáme na to, aby anody byly ve svislé poloze. Objímka elektronky je přišroubována pomocí čtyř rozpěrných sloupků o $\varnothing 8$ mm a délce 20 mm k nosnému úhelníku elektronky. Vedle nosného úhelníku objímky elektronky je k základní kostře přišroubován úhelník pro vstupní konektor K_1 . Z konektoru jde vazební cívka L_1 , která je převlečena přes mřížkovou cívku L_2 . Cívka L_2 je přímo připájena na mřížkové dotecky objímky elektronky. Vývod katody je proveden z mosazného postříbřeného

páska a připájen k základní kostře. Uspořádání mřížkového obvodu je vidět z fotografie.

Tlumivky Tl_1 a Tl_8 , použité v mřížkovém, anodovém a žhavicím obvodu, mají pro 70 cm délku $\lambda/4$, jsou samonosné z drátu o $\varnothing 0,8$ mm CuL, vinuté na průměru 8 mm. Délka vinutí je 8 mm. Celkové uspořádání ztrojovače je vidět na fotografii. Základní kostra je přišroubována do hliníkové skříně o rozměrech $360 \times 225 \times 200$ mm. Skříň je zhodena ze tří dílů polotvrdého hliníkového plechu o síle 2 mm. K čelnímu panelu, který se spodním dnem je vyroben z jednoho kusu, jsou přišroubovány dvě bočnice. Shora a zezadu je skříň zakryta děrovaným plechem. Při pohledu na skříň zpredu jsou v levém rohu nad sebou dva konektory pro anténu a přijímač. Konektory jsou připojeny k antennímu relé, které současně přepíná funkci vysílání-příjem a je ovládáno přepínačem ve vysílači 145 MHz. Vedle konektoru je mřížkový přístroj M_2 , k měření anodového proudu. Pod mřížkou přístrojem je knoflík ladícího kondensátoru C_6 . Dále následuje mřížkový proud ztrojovače. Dočela v pravém rohu je konektor K_1 , kterým přivádíme budici napětí pro ztrojovač z vysílače 145 MHz. Pod konektorem je přepínač S_1 a konektor pro připojení telegrafovního klíče při provozu CW. Potřebná napětí pro ztrojovač jsou přiváděna na nožovou lištu, která je upevněna na zadní stěně skříně.

Uvedení do chodu

Po mechanické a elektrické kontrole připojíme žhavicí napětí 6,3 V. Po vyzávění ztrojovače zapneme budici napětí z vysílače 145 MHz. Vyladíme anodový obvod budice a kontrolujeme na mřížkém přístroji M_1 velikost mřížkového proudu ztrojovače. Cívku L_2 ladíme

stlačováním a roztahováním závitů na maximální hodnotu mřížkového proudu. Při správném vyladění má mřížci přístroj ukazovat 3 mA. Na mřížkovém odporu R_1 vznikne předpětí 120 V. Na větší hodnotu mřížkového proudu ztrojovač neladíme. Po vyladění mřížkového obvodu necháme připojené buzení a připojíme na ztrojovač anodové napětí. Vlivem Millerova efektu nám trochu poleze mřížkový proud. Pokud hodnotu mřížkového proudu neklesne pod 3 mA, necháme mřížkový obvod tak jak byl naladěn, v opačném případě musíme obvod znova naladit na požadovanou hodnotu mřížkového proudu. Na výstupní konektor K_3 připojíme malou žárovíčku 6,3 V/0,5 A a ladíme kondensátorem C_5 na maximální jas žárovky. Byly-li dodrženy rozměry anodového obvodu podle výkresu, nebude potřeba dělat žádné dodatečné úpravy. Výstupní smyčka L_4 je zasunuta mezi oba pásky vedení. Konečně nastavení anodového obvodu ztrojovače provedeme s připojenou anténnou. Kontrolu vyladění provádime jednoduchým mřížcem sily pole.

Závěr

Jak již bylo v úvodu uvedeno, lze v počáteční etapě výstavby dokonalého zařízení pro 70 cm pásmo vycházet ze stávajícího zařízení pro 145 MHz a použít jednoduchého ztrojovače kmitočtu. Kdo nemá možnost použít pro ztrojovač elektronky REE30B, může použít GU32, která je mezi našimi amatéry dosti rozšířena.

Je účelnější v první etapě požadovat dokonalou stabilitu kmitočtu než velký výkon nestabilního signálu. Při VKV spojených jsme si mohli povšimnout, že třeba DL stanice vysílájí v podstatně menší míře na 70 cm než na 2 m. Je to tím, že u nich toto pásmo bylo uvolněno

později než dvoumetrové pásmo. Ovšem hlavní důvod je v tom, že nikdo u nich nezačíná pokusy na pásmu 70 cm se stavbou sólooskolátoru a věnuje raději dosti času na výstavbu dokonalého zařízení tak jako na pásmu 145 MHz. Doufajme proto, že i u nás dojdě postupně k používání vícestupňových vysílačů i na 70 cm. Potom bude na místě, abychom použili také dokonalé přijímací techniky. Není to za dnešního stavu nic nedostupného a uveřejníme proto v nejkratší době návod na jednoduchý konvertor pro 70 cm, který s přijímačem Fug 16 bude protějkem k popsanému ztrojovači.

Hodnoty napětí a proudu ztrojovače.

U_a (V)	U_{gs} (V)	I_a (mA)	I_{g2} (mA)	I_{g1} (mA)
300	200	110	4	3

Seznam součástí:

$R_1 = 40 \text{ k}\Omega/1 \text{ W}$, $R_2 = 320 \Omega/0,5 \text{ W}$, $R_3 = 25 \text{ k}\Omega/6 \text{ W}$, $C_{1,2,3,6,7,9} = 1000 \text{ pF}/500 \text{ V}$, $C_4 = \text{hrnčkový trimr } 30 \text{ pF}$, $C_5 = \text{ladící kondensátor split - stator } 3 \text{ až } 8 \text{ pF}$,

$L_1 = 1$ závit izolovaného drátu o $\varnothing 1$ mm, $L_2 = 4$ závity postř. drátu o $\varnothing 1,5$ mm, \varnothing vinutí $1\frac{1}{2}$ mm, délka vinutí 26 mm, $L_3 =$ dva měděné pásky 70×1 mm, rozteč mezi pásky 11 mm.

$L_4 =$ vazební smyčka tvaru vlásenky, délka 55 mm, rozteč 6 mm, izolovaný drát o $\varnothing 1,5$ mm.

Tl_1 až $Tl_8 = 6$ závitů drátu o $\varnothing 0,8$ mm CuL, \varnothing cívky 8 mm, délka vinutí 8 mm.

K_1 a $K_3 =$ koaxiální konektor 60Ω . $M_1 =$ miliampérmetr $5 \text{ mA} =$, $M_2 =$ miliampérmetr $200 \text{ mA} =$.

Zlepšete si „Minora“

Bateriový superheterodyn Tesla-Minor, kterým je náš trh dnes zásoben, je jak známo vybaven ferritovou anténou. Tato anténa má dvě velké přednosti a to jednak tu, že přijímač pracuje bez jakékoliv vnější antény dosti hlasitě, jednak je významný směrový účinek této antény, který oceníme, leží-li v blízkosti přijímané vlnové délky jiný silný vysílač. Výběr vysílače je však přes den poměrně malý a omezený terénními podmínkami. Tak v okolí Prahy lze vedle Prahy I a Prahy II přijímat slabě ještě asi tři jiné vysílače. Ve večerních hodinách se příjem silně zlepší, avšak to již pravidelně máme možnost použít svého normálního sítového přijímače. Citlivost a dosah Minora se však dá snadno zvětšit připojením normální antény; stačí drát 3–5 metrů dlouhý, volně položený alespoň 2 m nad zemí přes keř nebo plot či natažený mezi dvěma stromy. Úpravu provedeme tak, že nejprve uvolníme oba horní šrouby a sejmeme opatrně horní

kryt přijímače. Na kratší konec ferritové tyče za pertinaxovou přepážkou navineme proužek polotvrdého papíru, nejlépe z lesklé lepenky v šíři asi 15 mm ve dvou vrstvách a slepíme bezvodým lakem. Získáme tak hranatou trubku, kterou lze s ferritové tyče sejmout. Navineme na ni 12–20 závitů smaltovaného drátu 0,2 mm nebo vysokofrekvenčního kabličku, jeden konec připojíme na zemnicí vývod ladícího kondensátoru, druhý konec pak na isolační zdířku, umístěnou poněkud ke straně uprostřed horního krytu přijímače pod držadlem. Po namontování horního krytu je úprava skončena. Po připojení antény lze přijímat ye dne asi 6 vysílačů velmi hlasitě, v noci pak je stupnice až nepřijemně preplněna. Původní funkce ferritové antény se tím neporuší, celá úprava pak trvá 15–20 minut. Ing. V. Patrovský

Přehledná montáž.

Pod stejným názvem bylo v AR 1956 č. 8 na str. 247 doporučováno používat k usnadnění přehlednosti montáže ještě jedné objímky pro miniaturní elektronku. Toto řešení se mi zdálo dosti drahé, ač i mně se osvědčilo. Ve svých konstrukcích používám však nyní v obvodech, kde jsou miniaturní objímky, malých kotoučků z pertinaxu tloušťky 1 až 1,5 mm, které mají na obvodu nýtotvárným upevněno buď 7 či 9 pájecích oček. Kotoučků s devíti kontakty lze použít u novovalových elektronek. Kotoučky mají průměr cca 25 mm.

Touto jednoduchou úpravou je možno získat 7 či 9 opěrných bodů a tak je

možno provádět montáž velmi přehledně i mechanicky pevně. Touto úpravou je možné v přístrojích úplně odstranit spoje prováděné ve vzduchu, neboť v našem případě máme opěrných bodů více než dostatek. Takové řešení ocení amatéři zvláště při konstrukci mřížcích přístrojů, kdy je třeba stále mřížit, vyměňovat odpory a kondensátory. Ale i při ostatních konstrukcích se jistě osvědčí. Zkoušel jsem původně toto řešení u elektronek s paticí řady P. V tomto případě jsem použil isolační mezikruží, jakých používáme běžně k odisolování elektrolytických kondensátorů od kostry. I při takto zjednodušené konstrukci získá i přístroj, který je osazen staršími elektronkami.

Celková úprava je nejlépe zřejmá z jednoduchého náčrtku. Ing. Ulrych

QRP?

Ján Horský, OK3MM

V našom časopise sa čoraz viac zdôrazňuje, že netreba používať väčšie príkony vysielača, ak to nie je nutné na nadviazanie spojenia. Musíme sa nazaj zamyslieť nad tým, že dva amateri spolupracujú pri maximálne dovolenom výkone vysielača, pričom vzájomná počuteľnosť presahuje rámec tabuľky sily prijímaného signálu i s patričnými plusmi k reportu, a na druhej strane ich vzájomná vzdialenosť je niekoľko sto metrov. Ved každý nevlásní kvalitný prijímač s kryštálovými filtromi a všetkými vymoženosťami modernej techniky.

Zbytočnému rušeniu na pásmach možno odpomôcť používaním nízkych príkonov pre miestne spojenie. Hlavnou požiadavkou je, okamžite znížiť príkon na požadovanú hodnotu bez zbytočnej straty času.

Príkon vysielača sa dá zhruba znižovať viacerými spôsobmi. Za bežný spôsob sa pokladá rozloženie mriežkového obvodu, t. j. znížením budenia. Iným spôsobom je prepínanie na patrónu polohu prepínateľným zdrojom vysokého napäcia, alebo odklápanie väzobnej cievky v anódovom obvode koncového stupňa. Je nesporné, že ani jeden z týchto spôsobov nevyhovuje a nehodí sa na plynulé znižovanie výkonu.

Popisujem zariadenie, podstatou ktorého je usmerňovač vysokého napäcia s elektronickou reguláciou napäcia a primárny ferrorezonančným stabilizátorom napäcia. Zdroj vysokého napäcia môže tvoriť spolu s koncovým stupňom jeden celok; vysoké napäcie ako aj príkon z koncového stupňa možno regulať na diaľku regulačnou skrinkou, umiestnenou pri prijímači, resp. pri telegrafnom kľúči.

Napätie v sieti sa stabilizuje ferrorezonančným stabilizátorom napäcia, v ktorom sa využíva rezonancia obvodu so železným jadrom. Primárne napätie však treba stabilizovať iba vtedy, ak sú jeho výkyvy väčšie než 3–5 %.

Vysokonapäťovú časť eliminátora spína relé, ovládané z regulačnej skrinky

potenciometrom s vypínačom. Relé musí mať spínacie kontakty dimenzované na 2–3 A.

Pre regulačnú časť nejakých osobitých elektróniek netreba; musíme však voliť také, aby sme zachovali prúdové zaľaženie obvodov koncového stupňa vysielača s ohľadom na elektronický regulátor napäcia, v ktorom sa tiež musí napätie vhodne upraviť podľa druhu použitých elektróniek.

Z vyobrazeného zapojenia vyplýva, že úbytok napäcia na anódovom odpore R_a sa rovná mriežkovému predpätiu U_g regulačnej elektrónky. Anódový prúd potom bude:

$$I_a = \frac{|U_g|}{R_a}$$

kde R_{a2} znamená zaľažovací odpor a jeho hodnota je daná:

$$R_{a2} = 3 R_i$$

kde R_i je vnútorný odpor elektrónky.

Odpor deliča stanovíme zo vzorca

$$R_s = \frac{U_{por}}{U_{stab}} (R_1 + R_2)$$

Celkový prúd deliča $R_1 + R_2$ sa volí tak, aby pretekajúci prúd v danom prípade nepresahoval 2–3 mA.

Po zvolení prúdu deliča $R_1 + R_2$ vypočítame jeho odpor:

$$R_1 + R_2 = \frac{U_{stab}}{I_{del}}$$

Zo zapojenia vyplýva, že porovnávacie

napätie pri uvedených podmienkach nemá byť väčšie ako:

$$U_{por} = U_{stab} - (U_{a2} + |U_g|)$$

Z toho

$$R_s = \frac{U_{stab} - U_{por}}{I_{por}}$$

Cineteľa stabilizácie elektronického stabilizátora vypočítame:

$$K = \frac{U_{por}}{U_{stab}} \mu_1 \mu_2 \frac{R}{R_p R_i}$$

kde μ_1 — zosilňovací činiteľ regulačnej elektrónky,

μ_2 — zosilňovací činiteľ jednosmerného zosilňovača,

R_i — vnútorný odpor reg. elektrónky, resp. výsledný odpor regulačných elektróniek.

Zmenou napäcia možno plynule regulať výkon vysielača v hodnote 15–20 W k hornej 150 W hranici.

Transformátor T_{r_1} navrheme na $2 \times 1500 \text{ V} - 0,2\text{A}$.

Pretože rozdielové napätie žeraviceho transformátora T_{r_2} v maximálnych hodnotách dosahuje $1,5 \text{ kV}$, musíme dbať na dobrú izoláciu medzi jednotlivými sekciami vinutia.

Literatúra:

Industrial electronic circuits (By Walter Richtner) Radio Engineer's Handbook (Tereman) - section 8/589.

* * *

Transistorový elbug

Mnoho amatérů bylo dosud nuceno ve svých prenosných přístrojích používat pouze obyčajné telegrafní klíče, poněvadž automatický klíč potřebuje dosti značné anodové napětí a klíč popisovaný svým časem v Amatérském rádiu bez elektronek není zcela spolehlivý. Nyní se podařilo německým amatérům DL3WE a DJ1VC zkonztruovat automatický klíč, používající místo elektronky jediného transistoru a který je svou jednoduchostí přímo předurčen pro malé prenosné vysílače, napájené z baterií.

Napájení je z baterie 3 V a transistor vyhoví jakýkoliv nf. V originále je použit OC76. Pracuje spolehlivě v rozmezí $40-180 \text{ zn/min}$. Rychlosť se řídí potenciometrem R_1 . Poměr tečka - čárka se řídí odporem R_3 , který je výhodné provést jako proměnný nebo použít také potenciometr. Jako relé vyhoví každé polarizované relé s odporem vinutí cca 400Ω , spínající při cca 2mA .

Vestavěná 3V baterie vydrží určité jeden „sezónní“ provoz, takže je možno přivedy k ní pevně připájet. Jinak je zapojení velmi jednoduché a nemí třeba podrobnějšího popisu. Celý klíč je možno smontovat do velmi malého prostoru, což je další výhoda tohoto přístroje.

Pode DL-QTC Nr 5

Jiří Peček

Hodnoty součástí:

- $C_1 \dots 100 \mu\text{F}$ ellyt
- $R_1 \dots 2 \text{k}\Omega$ potenc. lin.
- $R_2 \dots 1 \text{k}\Omega$
- $R_3 \dots 1 \text{k}\Omega$ proměnný
- $R \dots$ polarizované relé cca 400Ω
- $TR \dots$ nf transistor (OC72, OC76 ap.)

Elektrolyty na obrázku upravo mají být správné 10M a 20M .

Jednoduchý automatický klíč „Little Monster“

W1GOJ popisoval v listopadovém čísle časopisu QST 1956 automatický klíč bez použití elektronek, který však potřeboval pro svou funkci dvojí vinutí na relé. Toto původní zapojení se nám do rukou nedostalo, zato však zlepšené zapojení podle W6IPW z QST 12/57, které vidíte na obrázku. Zapojení je velmi jednoduché – dvě krystalové diody, dva elektrolytické kondensátory a vysokoohmové relé. Mimo zapojení nebylo udáno nic blíže a tak jsme v prkennové montáži tento klíč vyzkoušeli. Automat běhá již při 16 Vss se známým inkurantním relé Trls 54a. Toto původní zapojení má však tu nevýhodu, že rychlosť klíčování nelze ničím měnit.

Provedl jsem tedy několik úprav na zapojení podle W6IPW. Kmitočet pulsů by šel měnit výměnou kondenzátorů, avšak jako celek by klíč vyšel rozměrný. Podobného účinku se dá dosáhnout zapojením odporů paralelně ke kondenzátorům. V tomto případě mírně stoupne proud, protékající nyní také odpory, a kmitočet pulsů se zvýší tím více, čím odpory budou menší. Velmi lehce se nyní dá měnit rychlosť za pomocí dvojitého přepínače a sady odporů.

Rychlosť klíčování se dá regulovat v rozumných mezích např. mezi 60 a 140 znaků za minutu. Dalo by se také použít dvojitého potenciometru $2 \times 50 \text{ k}\Omega$; avšak to je hodnota, která není na trhu k dostání.

Nastavení poměru mezera-značka se provádí najistováním kontaktů relé a volbou správného napětí. Příliš vysoké napětí zkracuje dobu nabíjení kondenzátorů a tím dobu trvání mezery a napopak. Průměrné napětí je asi 25 Vss . Dále bylo zjištěno, že místo drahých germaniových diod lze použít se stejným úspěchem selenových usměrňovačů. Stačí 3 až 5 destiček na jednu cestu nebo i kuproxové usměrňovače Sirutory 5b. Proud protékající seleny je podle rychlosti značek 2 až 8 mA . Poněvadž je proud pulsující, snesou jej i tyto malé siritory. Kondenzátory byly zvětšeny, aby klesla dolní hranice pulsů.

Vl. Kott, OKIFF

Zjišťování zdrojů rušení prenosným přijímačem

Nerušený příjem rozhlasu je chráněn zákonnými předpisy, podle nichž jsou provozovatelé elektrických zařízení povinni učinit taková opatření, aby příjem rozhlasu v blízkosti těchto zařízení nebyl rušen. Na dodržování těchto předpisů dbá rozhlasová odrušovací služba, která má za úkol vyšetřovat stížnosti poslučáků rozhlasu a televizních diváků.

Vyskytuje se však případy, kdy se rušení objevuje tak nepravidelně, že zjištění jeho zdroje by si vyžadovalo příliš dlouhé přítomnosti pracovníků odrušovací služby. V takových případech je možno si pomocí zaměřením zdroje rušení prenosným přijímačem s ferritovou anténou. Nelze ovšem očekávat, že bude dosaženo stejně přesných výsledků jako se speciálními přístroji, avšak mnohdy postačí ke zjištění zdroje rušení i přibližné určení jeho polohy.

Použitý přijímač je třeba poněkud doplnit a upravit. Předeším je třeba zapojit místo reproduktoru sluchátka, aby bylo možno lépe rozlišit změny hlasitosti rušení při otáčení antenou, a kromě toho je nutno vyřadit automatickou regulaci hlasitosti, která vyrovnává rozdíly při různé poloze antény vzhledem ke zdroji rušení.

Chceme-li zaměřovat co nejpřesněji, je vhodné použít místo sluchátek měřicího přístroje, protože ze zkušenosti je známo, že sluchem rozlišíme malé rozdíly mnohem hůře, než nám je ukazuje ručka měřicího přístroje. Nejjednodušší je zapojit miliampérmetr vhodného rozsahu do anodového obvodu elektronky, jež zášení je řízeno obvodem AVC (v tomto případě je ovšem třeba tento obvod znova zapojit). Osvědčuje se zaměřovat nejprve jen přibližný směr zdroje rušení při zapojených sluchátkách a vyřazeném AVC, a teprve poté přesněji měřicím přístrojem se zapojeným AVC.

Při zaměřování je třeba pamatovat na to, že signál je nejsilnější, je-li ferritová anténa natočena svou širší stranou proti zdroji. Lépe rozeznáme minimum signálu, a proto je vhodnější zaměřovat na nejslabší, nikoli nejsilnější signál. Měřením z různých míst a zakreslením zjištěných směrů na náčrtke měřené oblasti najdeme přibližnou polohu zdroje rušení.

Tento způsob zaměřování však selhává v bezprostřední blízkosti zdroje rušení; tam již nezbývá než použít speciální přístroj odrušovací služby, nebo nalézt zdroj jinak než pouhým zaměřováním. V mnoha případech však jistě postačí i toto přibližné stanovení polohy zdroje rušení spolu s přezkoušením všech elektrických zařízení, která se v podezřelé oblasti nacházejí. Ha

Rubriku vede Jindra Macoun, OK1VR

Na 2 m „od krbu“

OK1VR	530 km	A1	240 m
OK1EH	450 km	A3	352 m
OK1AA	430 km	A1	265 m
OK1KKD	388 km	A3	410 m
OK2BJH	365 km	A1	300 m
OK2VCG	356 km	A1	300 m
OK1LAAP	280 km	A3	291 m
OK1KVR	270 km	A1	550 m
OK1KRE	270 km	A2	450 m
OK1SO	255 km	A3	305 m
OK1KRC	252 km	A3	280 m

Všechny pravidelné rubriky, tedy jistě i naše VKV rubrika, mohou být více či méně zajímavé nebo i nezájimavé. Záleží to především na obsahu, na tom, jak je zajímavý a nápaditý. Zajímavost tu dle ale ruku v ruce s aktuálností. Jistá část příspěvků, a to právě těch, které přispívají k téma pěkným vztahům mezi našimi amatéry, musí být aktuální, aby splnila své poslání — srdečný a živý styk se čtenářem. Aktuálnost je úměrná času, který od údosti uplyne do doby jejího uveřejnění. Zde jsme ovšem omezenci délkom výrobního procesu časopisu. Má-li však autor, nebo lépe komentátor toho všechno dělání na VKV u nás i v zahraničí, shrnout zajímavý obsah do každého čísla, je zčásti odkázán i na spolupráci svých čtenářů. Tato spolupráce je dobrá, ale proč by nemohla být ještě lepší? Vždyť vzájemná výměna myšlenek a zkušeností je tou nejlepší „pojehounou látkou“ k dalším úspěchům. Přinášíla-li nám VKV rubrika k tomu, aby se u nás v poměrně krátké době dostalo amatérské pokusnictví na VKV na také pěknou úroveň, bude nám v tom pomáhat s naším přičítáním jistě i nadále.

Netrpělivě očekávané zlepšení podmínek, které se konečně dostavilo koncem června, vyrcholilo v posledním červencovém týdnu, resp. ve dnech 28. až 31. 7. OK2VCG si v pondělí 28. 7. po 22. hod. zlepšil svůj DX pěkným spojením CW s SP3PD z Poznaně, QRB 356 km. Srdečně blahopřejeme. SP3PD byl v té době poslouchán velmi pěkně i v Praze, přestože měl svou 96 prvkovanou anténu naměřovanou na Moravu. V následujících dnech byl slyšen ještě několikrát, ale ke spojení nedošlo. SP3PD je na pásmu pravidelně každý pondělí po 22 hodině, kdy má naměřováno podobně jako ostatní SP stanice na Československo. Kromě toho bývá na pásmu v případě příznivých podmínek denně po 22. hodině. Má velmi stabilní signál na kmitočtu 144,092 MHz. Zajímavé je, že toto spojení bylo pro obě stanice spojením s novou zemí na 2 m, když OK2VCG se před tím marně snášel o QSO s SP6CT/p na Sněžce.

V onech dnech se podařilo prvné spojení s Prahou i další brněnské stanicí, OK2EC, který má horší QTH než OK2VCG, a tak se dostane k DXUM jen za podstatně lepších podmínek. Ke slovu se dostali konečně i turnovští, resp. OK1QG, který konečně udělal Moravu.

Vlastní vyvrcholení podmínek nastalo v pátek 31. 7., kdy bylo možné po 22. hodině pracovat DL stanicemi, přijímanými v Praze až S7/8 fone. SP3PD byl v té době slyšen 569. Škoda, že se na pásmu nevyšikovaly téměř žádné OK stanice. Byla to pěkná a vzácná příležitost. Lze říci, že podmínky v tento den byly skutečně lotos nejlepší, zdaleka ovšem nedosáhly těch, které se vyskytovaly v minulých letech.

Při této příležitosti je nutné konstatovat, že většina našich stanic se dosud nenaučila „hlídat“ podmínky. Není tím miněno nekonečné vysedávání u příjímače jako při lovu vzácných zemí na KV DX pásmech, na to má ostatně málko dostatek času (a navíc to na VKV nemí ani „ekonomické“), ale hlídání nebo lepě sledování meteorologické situace — počasí, které je hlavním činitelem ovlivňujícím podmínky šíření. Abychom v tom našim VKV amatérům trochu pomohli, zavedeme v nejbližší době pravidelné vysílání předpovědi pravděpodobného výskytu inversních vrstev vysílačem OK1CRA. Tohoto úkolu se s nevšední ochotou ujal OK1NB,

který se pozorováním počasí zabývá velmi důkladně již celou řadu let.

A aby byl využit všechny méně obvyklých spojení, ke kterým došlo v době mezi dvěma čísly AR, nebo lépe 3 měsíce před tím úplný, nesmíme zapomenout na QSO OK1EH — OK2VCG, QRB 283 km. Jenda 1EH se totiž přestěhoval z Plzně daleko na západ (Bor u Tachova), odkud mu to na OK nechodi tak dobré. Zato podmínky na západ si velmi pochvaluje a tak nám možná v nejbližší době připraví nějaké překvapení.

Z našich krajů

BRNO patřilo donedávna ke krajům, které jsou dosud pro naše VKV amatéry právě tak vzácnou „zemí“ na 145 MHz jako třeba HV1 na 3,5 MHz. Rákame patřilo, neboť dnes totu tak již není. Poštar se o to OK2VCG, který se beze sporu dnes řadí mezi naše nejlepší stanice na 2 m. Mluví o tom celkem jasné jeho úspěchy, který dosáhl ze svého stálého QTH v Brně. A jemu právě vděčí mnohé naše, zejména české stanice, za pěkná a mnohdy i svá nejdéle spojení od krbu. Nebude jistě nezajímavé, když se seznámíme podrobněji se zařízením, které si Ivo pro 145 MHz pásmo vybudoval a které je v prvé řadě příčinou jeho úspěchů. Popis zařízení odpovídá stavu, v jakém se nacházelo počátkem srpna. Je pravděpodobné, že v těchto dnech uvedený popis již neodpovídá skutečnosti, neboť 2VCG nepokládá své zařízení za natolik dokonalé, aby na něm nebylo možno provést další úpravy a zlepšení. A to je nakonec správné. Nespopojí se s jednou postavenou zařízením, ale snažit se dosáhnout ještě většího stupně dokonalosti, ještě větších úspěchů v rámci dosažitelných možností. Nejprve několik slov o příjimači. Je to konvertor s dvěma PCC84 na vstupu (dvě kaskody za sebou) a PCF82 na směšovací. Protože Ivo nemá vhodný XTAL na stabilizaci kmitočtu oscilátoru tohoto konvertoru, vyfísil stabilitu bez XTAL tím, že tento oscilátor postavil jako několikastupňový (!), s výkonem na základním kmitočtu kolem 12 MHz. Vlastní oscilátor je osazen 6F36, v anodě je laděn na 2. harmonickou, následuje další zdvojovací s 6F32 a konečně v anode triody PCF82, jež pentodovou částí pracuje jako směšovač, získává výsledný kmitočet, který po smíšení s přijímaným signálem dává mf kmitočet ležící v pásmu EK10. Je možné ladit buď oscilátorem konvertoru, nebo mf přijímačem. I když selektivita EK10 je podstatně lepší než selektivita většinou užívaných FUG16, přece je pro náročnejší práci na VKV ještě nedostatečná. Protože je k ní přidán ještě tzv. násobič Q, kterým se selektivita resp. šíře propustěného mf pásmá natolik zlepšila, že všechny slabší stanice se jeví o 1 S silněji.

Vysílač je fízen xtalem 7,215 MHz. Na anodě oscilátoru (6F36) je již 5. harmonická, následuje zdvojovací opět s 6F36, další zdvojovací s 6L41 a na konec zesilovač s GU32. Příkon 20 W. Vysílač je vybaven ještě druhým oscilátorem — vfo na

18MHz (6F36), který lze připojit místo xtalu vysílače k prvnímu zdvojovací.

Modulace je anodová, na konci modulátoru jsou dvě 4654. V modulátoru je vestavěn malý oscilátor pro ICW. Anténa je jedenáctiprvková Yagi, směrovka s dvojitym reflektorem. Jistě stojí za to zdůraznit, že 2VCG je jeden z mála VKV koncesionářů, který bezvadně ovládá telegrafii a stovku mu nečiní žádné potíže. A aby si usnadnil dálvání, používá elektronkové klíče!!!

Zmíjujeme se o zařízení stanice 2VCG zájemně poněkud podrobněji než je snad nutné, ale činíme tak proto, abychom ukázali mnohým ostatním, že hlavně začínajícím VKV koncesionářům, že lze z dostupného materiálu a součástek postavit výkonné zařízení pro práci na 2m pásmu. Dobrým spolupracovníkem stanice 2VCG je OK2BC, který bohužel nemá tak pěkné QTH jako 2VCG, a tak spojení s Prahou dělá jen za dobrých podmínek. Pracuje na kmitočtu 144,5 MHz a je jedním z mála šťastlivců, kteří mají na vstupu konvertoru elektronku 88SC.

HODONÍN. Když už jsme na Moravě, nebylo by správné, kdybychom opomněli stanici OK2VAJ z Hodonína, která pracuje na kmitočtu 145,165 MHz, což je už v té části pásmá, které bývá věnována menší pozornost. Nezapomeňte proto při hledání moravských stanic na tento kmitočet. 2VAJ bývá slyšet v Praze dosti často, jak volá pohromadě CQ. Na rozdíl od 2VCG se telegrafní abecedu teprve učí, tak se doporučuje QRS. Jinak je jeho zařízení poměrně jednoduché, ale „chodi“. TX má na PA dvě 6L50, RX je zatím jen cihla a anténa pětiprvková. 2VAJ mívá každý čtvrtok pravidelné skedy s 2VCG vždy od 16 do 18 hod.

LIKIŘ — kraj B. Bystrica. Dne 11. srpna zahájila pravidelné vysílání od krbu stanice OK3KJH. Hlavní zásluhu o to má s. Svoboda OK1-15342, bývalý operátor stanice OK1KKP, který svými zkusebnostmi pomohl soudruhům ze Slovenska ve stavbě VKV zařízení, které vypadá asi takto: RX — konvertor s 6F32 na vstupu a Lambda V. TX — vfo s 6CC42, 6L50 dvě 6L50 na PA. Anténa zatím jen pětiprvková Yagi. Zanedlouho se na pásmu objeví další stanice, a to OK3VP a OK3SL. Zdá se, že se nám tedy konečně i na Slovensku rozjíždí nadějný provoz od krbu na 145 MHz, a tak už snad zanedlouho dojde k první spojení OK1—OK3 od krbu. Přejeme operátorům stanice OK3KJH mnoho zdarů na 2 m a těšíme se na spolupráci.

Pro informaci ostatním: Likier, okres Rimavská Sobota, leží na JV Slovensku jižně od Muránského Krasu. Jsou tam železárny zpracovávající magnesiiovou rudy, sváženou lanovkou s hory Zelezničku.

JABLONEC — RYCHNOV n. N. OK1BN měl podle plánu dokončit svůj nový velký TX k lední 11. 1. subregionální soutěži. Z intensivní práce však byl vytřen mimodržnou událostí — poukazem na Spartaku. Následkem toho vyměnil na několik měsíců přajecku za volant. Nakonec se k ní ale vrátil a vysílal dokončil. První zkoušky s 1VMK dopadly dobře a tak v pondělí večer dne 18. srpna došlo k slavnostnímu a oficiálnímu „křtí“ nového vysílače na pásmu s QTH stanice 1VMK. Slavnostnímu zahájení byly přítomni kladenští IAMS a 1AWJ, kteří se v dobré shodě a náladě střídal u mikrofonu s 1VMK, 1AP a 1BN za asistence svých XYL. A ze toho „křtění“ neobčelo „na suchu“, bylo slyšet při vysílání.

Věříme, že se IBN ozve se svým „parastrojem“ brzo také ze svého stálého QTH v Rychnově. Dokončuje ještě nový RX a anténu, protože ty staré nepokládá za důstojné doplňky nového vysílače.

IGY

Z denního tisku je všem již známo, že se v době od 27. července do 9. srpna konalo v Moskvě páté Valné shromáždění mezinárodní organizace pro MGR, které kladně rozhodlo otočku pokračování další mezinárodní spolupráce, započaté v rámci MGR, na dobu prvně jednoho dne. Tento požadavek navrhla delegace vedená strážním Sovětského svazu a podařilo se jej prosadit přes to, že v některých kapitalistických státech budou mít vědci jistě finanční potíže v souvislosti s prodložením často nákladných výzkumů. A tak dojde pravděpodobně v mnoha zemích i k prodložení účasti radioamatérů. Do Spojovacího a poplachového střediska MGR v Průhonických dochází mnoho dokladů dobré radioamatérské spolupráce na akcích MGR; tak naši radioamatéři se dobrě zapojili do sledování umělých družic Země; zahraniční si kromě toho našli ještě jeden obor. Je totiž dobré známo, že při výskytu polární záře dochází k možnostem spojení na VKV využitím odrazu rádiových vln o oblasti polární záře (zejména naměřujeme-li vysílači i přijímací anténu přímo na polární záři nebo alespoň v našich krajích na sever). A vskutku nemine snad ani jeden jediný speciální světový interval, tj. období, v němž se očekává polární záře, aby k nám nedošla cenná hlášení zahraničních — zejména německých — radioamatérů o četných DXových spojeních, navázaných po dobu výskytu polární záře tímto způsobem na pásmu 145 MHz. Tyto zprávy jsou pokládány západoevropským regionálním centrem MGR za natolik důležité, že vydává a rozesílá dalším střediskům MGR — a tedy i nám do Průhonického — pravidelné cirkuláře obsahující bližší údaje o těchto spojeních. Figuruji tam

Výsledky 3. subregionální VKV soutěže

1. kategorie		
1. OK1VR	38 bodů	29 QSO
2. OK1VAW	28	23
3. OK1VAI	25	24
4. OK1AMS	25	20
4. OK1VMK	24	22
5. OK1KRE	23	15
5. OK1CE	23	19
6. OK1EH	21	12
7. OK2VCG	20	12
8. OK1RX	15	15
9. OK2BJH	15	9
10. OK3KFY	14	11
11. OK1JK	14	13
11. OK1AKA	12	11
12. OK3YY	12	9
12. OK3KAB	10	7
13. OK1VAS	8	7
13. OK1KFG	8	6
13. OK3VAT	8	7
14. OK1KEP	7	7
14. OK1TD	7	7
15. OK2VAJ	5	4
15. OK2GY	5	4
15. OK1VAA	5	4
16. OK3KLM	4	3
17. OK1VAN	3	3
18. OK3HO	2	2
2. kategorie		
1. OK1SO	63	31
2. OK1VAE	57	30
3. OK1KTV	31	13
3. kategorie		
1. OK1KDO/p	86	46
2. OK1KPL/p	74	38
3. OK1VKB/p	49	30
4. OK3RD/p	32	17
5. OK1KNT/p	31	27
6. OK1KPR/p	22	20
7. OK2OS/p	22	19
7. OK2KOS/p	16	13
8. OK1KIR/p	12	11
Deníky pro kontrolu: IKRY, IKAX, IKCG, 1TO, 1WZ, IKAM, 2AE a 2EC.		
Deníky nezaslali: IAZ, IKRI, IKIT a 1VAP.		
Celkem se 3. subregionální VKV soutěže zúčastnilo 52 OK-stanic.		

značky našich přátel z mnoha evropských zemí (a to nejen těch severních, kde mají více naděje na výskyt polární záře než je tomu u nás), bohužel však ani jediná československá. A tak se zde naskytá otázka: neznají snad naši dvoumetroví amatéři existenci popsaných podmínek nebo neprojevili ještě z jiného důvodu svůj zájem o podobný pokusy? Vždyť máme mnoho velmi dobré vybavených VKV-amatérů, jimiž jednou z mál zemí na světě, kde rozhlas oznamuje vyhlášení speciálního světového intervalu a výskyt polární záře, máme dobrou radioamatérskou organizaci i jedno z nejlépe fungujících mezinárodních spojovacích středisek, a tak tu vzniknou dotazy na všechny, kteří k tomu mají co říci: ještě bude několik málo polárních září, než ubývají sluneční aktivity zakončí řadu sice občasných, ale velmi zajímavých podmínek na 145 MHz (a samozřejmě i na sousedních VKV-kmitočtech). Kdo bude první OK amatér, jehož značka bude v mezinárodně vyměňovaných seznamech demonstrovat před světem, že i na tomto poli máme vyspělé amatéry, pomáhající pozorováním MGR? A hlavně, bude takových vic? Vždyť polární záře, jak se ukázalo, nemusí jetiž ještě zřetelně viditelná a přesto se již projeví možnosti spojení na vzdálenost několika, ba i mnoha set kilometrů.

Jak známo, pracuje v současné době v Evropě několik stanic na pásmu 145 MHz v rámci IGY (MGR). Mají antény nasměrované na sever, aby v případě výskytu polární záře mohlo být zjištěno, zda dojde k odrazům od ionosionových plynů ve vysoké atmosféře. Většina těchto stanic leží ve větších zeměpisných šířkách, tj. více na sever, neboť tam je pravděpodobnost odrazů větší. Tyto stanice u nás zatím zaslechnuty nebyly a až na jednu výjimku - OZ7IGY, která byla v minulém roce slyšena operátory stanice OKIKFG. Tenkrát ovšem nešlo o odraz od polární záře, ale o velmi příznivé podmínky v troposféře, které způsobily, že OZ7IGY byla asi ½ hodiny poslouchána vlivem zpětného záření (zadní lalok) své směrovky.

1. června t. r. byla uvedena v činnost další, již 3. stanice v NSR, která pracuje z Mnichova pod značkou DL0SA nepřetržitě na kmitočtu 145,435 MHz. Vysílá stále text: TEST DE DL0SA. I když je tedy činnost této stanice zaměřena na studium aurora-efektu, lze ji s výhodou použít k sledování podmínek ve směru na jihozápad. DL0SA je totiž téměř denně slyšitelná v Praze (300 km), přestože má anténu otočenou na sever. V době příznivých podmínek, např. 31. 7., bývá slyšet až S 6/7. Praha je přitom od hlavního směru záření odlehla o 30°. S rostoucí velikostí tohoto úhlu, tj. dalek východu, se rychle zmenšuje pravděpodobnost zaslechnutí této stanice (minimum využívání diagramu antény), nicméně mnohé OK1 stanice, zejména z Libereckého a Hradeckeho kraje, mohou využít činnosti této stanice k stanovení vhodných podmínek pro dálkové spojení směrem na DL, HB a F. Vzhledem k tomu, že vyzářený výkon DL0SA je srovnatelný s výkony amatérských vysílačů, je téměř jisté a zkušeností potvrzené, že při jejím zaslechnutí v síle S 5/6 je možné zaslehnout resp. navázat spojení s některými DL stanicemi z této oblasti. Odpadá nám tak zdlouhavé prohlížení pásm a volání CQ. Stačí podívat se na kmitočet 145,435 MHz a zjistit, zda je naděje na dálková spojení směrem na jz nebo ne.

Síla signálu na obrazovém kmitočtu drážďanské televize (DR TV) - 145,25 MHz, je sice také dobrým ukazatelem podmínek, ale ne nejdůležitějším, zejména ne pro OK1 stanice. Výkon tohoto vysílače je totiž značný, vzdálenost také poměrně malá a navíc vysílá konci po 22 hodin, kdežto DL0SA vysílá nepřetržitě. Přesto i zde přináší poslech DR TV užitek, zejména OK2 stanicím, pro které je slyšitelnost DR TV ukazatelem podmínek ve směru na OK1. Bylo by jistě velmi zajímavé sledovat kmitočet 145,25 MHz ještě dále - na Slovensku, OK2BH a V2CG mají s touto činností již značnou zkušenosť a s výhodou jich využívají. Poznamenáváme ještě, že při posuzování podmínek je v tomto případě výhodné počítat postranní pásmá (se zapnutým BFO) která se vyskytují po obou stranách nosné obrazové signálu. Čím jich je více slyšet, tím jsou lepší podmínky. Kdo by se chtěl více poúčit o podmírkách řízení na VKV, ať sleduje signály DR TV pravidelně současně s meteorologickou situací. Je to velmi zajímavé a poučné. DL0IGY, první z německých IGY vysílačů, byla po jistých rekonstrukcích uvedena znovu do chodu 8. června t. r. na Köterbergu. Pracuje nepřetržitě na kmitočtu 146,78 MHz. „CQ DE DL0IGY“ je text, který vysílá velmi pomalým tempem A1. Značky jsou prokládaný trvalým 4minutovým zaklínováním. Příkon vysílače je 70 W. Vyzářený výkon 50 W. Anténa 2x5 prvků Yagi. DL0SG je nejmenší ze všech stanic tohoto druhu. I když je nám nejbližší, nebývá slyšet často. Příkon je jen 12 W. Využíváli jsme ji členové místní organizace DAROC ve Straubingu (QTH DL6MH). Vysílá na kmitočtu 145,8 MHz A2. Je opatřena čtyřmi pětiprvkovými směrovkami, namířenými na sever.

Rubriku vede Béda Micka, OK1MB

„DX - ŽEBŘÍČEK“

Stav k 15. srpnu 1958

Vysílač:

OK1FF	240(254)	OK1VA	105(126)
OK1MB	239(257)	OK1AA	99(130)
OK1HI	215(224)	OK1KDR	99(120)
OK1CX	202(216)	OK2KBE	96(118)
OK1KTI	201(221)	OK1MP	94(111)
OK3MM	181(203)	OK1BY	91(110)
OK1VW	178(208)	OK1ZW	85(93)
OK3HM	172(191)	OK2KLI	83(115)
OK1SV	170(190)	OK1KLV	83(115)
OK3DG	165(172)	OK3HF	81(100)
OK2AG	164(175)	OK2GY	81(97)
OK1CG	156(183)	OK1KKJ	80(119)
OK1AW	155(186)	OK2KTB	79(120)
OK1XQ	155(181)	OK1KPI	78(108)
OK1FO	147(151)	OK3KBT	77(102)
OK1NS	145(158)	OK1EB	76(106)
OK1NC	143(175)	OK2KJ	75(90)
OK3EA	143(163)	OK1KPZ	74(85)
OK1JX	142(171)	OK2KAU	72(123)
OK3KAB	139(166)	OK1KCI	71(108)
OK1KKR	136(147)	OK1KRC	68(88)
OK1VB	133(164)	OK1KDC	63(83)
OK1KTW	121(140)	OK2NN	62(129)
OK3EE	116(154)	OK2ZY	59(81)
OK1AKA	115(120)	OK1EV	55(88)
OK1CC	112(134)	OK3KAS	53(81)
OK1GB	112(129)	OK1KFB	52(75)
OK1FA	111(152)	OK1KMM	52(73)

Posluchači:

OK3-6058	197(243)	OK1-1704	70(175)
OK2-5214	123(209)	OK1-1840	70(154)
OK1-11942	115(213)	OK3-9951	69(160)
OK1-7820	111(195)	OK1-9783	67(191)
OK3-7347	105(197)	OK1-1150	67(140)
OK1-5693	101(165)	OK1-553	67(105)
OK1-5873	93(180)	OK1-5978	66(150)
OK2-7976	92(162)	OK2-3986	66(143)
OK2-5663	91(195)	OK1-8936	66(103)
OK1-5726	86(206)	OK1-5885	63(128)
OK2-7890	86(191)	OK3-1369	62(167)
OK3-6281	84(163)	OK2-1487	62(164)
OK2-7773	82(183)	OK1-2455	62(129)
OK1-5977	80(163)	OK1-1132	61(132)
OK2-3947	79(180)	OK2-9667	59(129)
OK2-1231	79(176)	OK1-5879	56(106)
OK3-9280	77(176)	OK1-25042	55(127)
OK1-9567	75(143)	OK1-939	52(123)
OK1-1630	72(161)		
OK1-25058	70(176)		

OK1CX

Diplom „Sea of Peace“ - SOP

Z rozhodnutí vlády Německé demokratické republiky bude v severní části NDR v pobřežním okrese Rostock, v kraji přístavů, loděnic, rybných kombinátů a rekreačních středisek pracujících slavn v r. 1958 a v dalších letech „Týden Baltského moře“. Mirumilovné obyvatelstvo baltských států žádá, aby se toto moře stalo mořem míru. Vycházejí ze zásady, že pokojné obchodní a zejména kulturní styky jsou základem dobré sousedství, zřízuje „Gesellschaft für Sport und Technik“ diplom SOP - Sea of Peace. Hlavní účelem bude podporit přátelskou spolupráci baltských zemí stejně jako všech amatérů na celém světě.

Diplom je udělován za těchto podmínek:

- O diplom mohou žádat všichni amatéři celého světa. Udělení diplomu je prosté všech poplatků.
- Hodnocena budou pouze spojení uskutečněná v měsíci, na který připadá „Týden Baltského moře“; v roce 1958 jsou to spojení uskutečněná v době od 1. do 31. července 1958. Žadatel musí dosáhnout spojení nejméně s deseti z celkového počtu 12 zemí ležících při Baltském moři: OZ, LA, SM, OH, UA1, UP2, UR2, UQ2, UA2, SP, DL, DM.

- Jako potvrzení spojení se uznává výpis z deníku, který musí obsahovat: datum, čas, volací značku, pásmo a RST. Tento seznam musí být organizační žadatele ověřen podle deníku a podepsán zástupcem organizace na znamení správnosti údajů.
- Uznaní se spojení na všech pásmech telegraficky, fonicky i smíšeně. Nejhorší uznávaný report je RST 338, případně RS 34.

- Žádost o diplom SOP nutno zasílat vždy do 31. října každého roku, po prvé do 31. října 1958 na adresu:

DM-Contestbúro DM2ABB, Postbox 185, Schweiz/Mekleib., DDR.

6. Měsíc „Týden Baltského moře“ bude každý rok všem amatérským organizacím oznamen.

7. Amatér, kteří v příštích letech spiní podmínky diplomu znova, obdrží doplňovací značku s leto-

počtem.

8. O udělení diplomu rozhoduje soutěžní komise. Její rozhodnutí je konečné.

OK 2-1487

Pro OK3MM a další stanice došly v poslední době QSL od VS1BB/VS9 a KM6EVK a KM6BK. Ten se dál dosud na pásmech dosáhnout. - OK1-8936 dostal japonský HAC č. 118 - OK1VB spojením s XEIPJ dokončil WAZ. Má potvrzeno již 38 zón. - OK2KJ při velkém QRL vychází ze zásady, že potřebí i „male rybičky“, které mu umožní získat ZMT, S6S, WAC, WAE III, WASM, OH, WGSA a zažádat o WAYUR, RDS I (toho se asi z Baltská nedoká, ni) a o R6K. Jinak má hodně podkladů pro další: WAS, WPX, PACC atd.

Na konec prosba pořadatele soutěží: nevím, jakým způsobem se po světě roznese, že ÚRK vydá diplom „S6S“ také pro posluchače. Ponevadž této žádosti dochází v poslední době velmi mnoho, upozorněte při spojeních případně tataze, že posluchačský diplom „S6S“ nevydáváme a vydávate nebudeme. Tnx! OK1CX

Stanice na DX-pásmech:

14 MHz

Evropa: CW - PI1BV na 14 060, HE9LAC na 14 075, LA5Q/T na 14 055, GC3HFE na 14 085, OY1RA na 14 025, OK4QK/MM na 14 062. Na fone: HV1CN na 14 110, GW4CC na 14 125 a na SSB: HB1TL/FL, GW3EHN, GC3HFE, DL1UX, YU1AD, GW3DUR, OH0NC - všechno nad 14 300 kHz.

Asie: CW - ZC3AC na 14 052, UJ8AF na 14 045, VU2KM na 14 017, HS1C na 14 023, JT1YL na 14 060, JA9AB na 14 030, MP4BBW na 14 030, UL7FA na 14 037, HL7KEF na 14 070, UA0KAR na 14 080. VS1HU na 14 010, VS9MA - ostrov Maldivské na 14 050, UF6CO na 14 080, VS5AA, na 14 012 a fone: KA2RB na 14 170, KW8AL na 14 105, JZOPB na 14 180. Na SSB nad 14 300 kHz: MP4BBW, VU2RM a 4X4DK.

Afrika: CW - EA9BM na 14 105, ZD6NJ na 14 055, ST2AR na 14 040, ZE7JO na 14 060, VQ3GW na 14 080, VQ3CF na 14 045, VQ8AJ/C - ostrov Chagos na 14 034, ZS2MI - ostrov Marion na 14 030. VQ8AL na 14 065 a fone SSB: ZS3AJ, ET2US, ZS6AFF, VQ4ERR a 5A1TE.

Amerika: CW - W7KLY/KL7 na 14 020, HC4IM na 14 025, HC8GJ - ostrov Galapagos na 14 045 v 0200 SEC. TI2PZ na 14 020, FP8AV na 14 050, PJ3AB na 14 070, HC8JG na 14 010, VY0AB na 14 060, VP8CR na 14 010, ZP5LS na 14 033, FORAT na 14 050, FP8AZ na 14 035, VP2L0 na 14 057, FP8BA na 14 042, VP8DG na 14 021 a fone: HK4DP na 14 120, YS1MS na 14 175, VP2AB na 14 190 a HK0AI na 14 185. Nad 14 300 kHz na SSB: KG1FR, KG1FD, FO8AT, FP8AZ, TG9AD, TI2RC, TI2HP a PY2AK.

Oceánie a Antarktida: CW - ZK1BS na 14 080 VK9XK na 14 075, VK2FR - ostrov Lord Howe na 14 066, VK9AIR - ostrov Lord Howe na 14 120, KF6CZW na 14 020, KC4AUF na 14 035, KS6AD na 14 060, VK9RR na 14 050, VR2DA na 14 040, KH6AZM/KW6 na 14 055, KS6AG na 14 057, VK0TC na 14 060, KM6AX na 14 060, OR4VN na 14 025, ZM7BC na 14 065, KW6CQ na 14 095 a fone: VR1C na 14 180, OR4VN na 14 130, KB6BJ na 14 205, KM6BL na 14 210, VK9AA na 14 185, KX6AF na 14 215, VK0TC na 14 120. Na SSB: VK9AD, VK2AC, VK3AEE ZL3DX, ZL3IA, ZL3PJ a KC6AN.

21 MHz:

Evropa: EA6AM na 21 050, UO5AA na 21 070, OK4QK/MM na 21 065, GI6YM na 21 050 a fone: GW3ACH na 21 150 a OK4QK/MM na 21 175 kHz.

Asie: CW - 9K2AN na 21 070, HL6KEF na 21 095, fone: KR6HP na 21 250, VK9CP na 21 220, HS1E na 21 230, VU2SS na 21 130 a na SSB MP4BBW na 21 410 kHz.

Afrika: CW - 3V3AB na 21 062, FA9RW na 21 050, CR7DQ na 21 090, fone: VQ9GU na 21 250 a CR7CO na 21 300 kHz.

Amerika: CW - OX3LD na 21 080, FP8BA na 21 050, WV6AFI/6 na 21 105, YN1AA na 21 080 FO8AT na 21 050 a fone: OA4DA na 21 150, OA4IH na 21 155, VP9DC na 21 220 a FO8AT na 21 225 kHz.

Oceánie a Antarktida: CW - KP6AL na 21 048, FB8XX na 21 060, KC4USA na 21 055, OR4VN na 21 050 a fone OR4VN na 21 110 kHz

Zprávy z pásem

Don, W4KVX, nový DX-manager CQ magazínu, mi sděluje ve spojení, že vydal během poslední několika měsíců 400 WAZ-CW diplomů. Byl prý zaplacen žádostmi o tyto diplomy a kontrola a reklamace příslušných QSL listků mu znemožnila až do této dny využívat žádostí o tyto diplomy. Všechny zásluhy QSL listků pro diplomy dostávají právě tyto listy. Diplomy jsou pořízeny a posílány všechny, kteří mají zájem o diplom. Američtí amatéři, kteří v příštích letech spiní podmínky diplomu znova, obdrží doplňovací značku s leto-

pótem. Pro OK1MB a číslo 14 pro CX2CO. Je to tedy první WAZ-Fone v CSR, druhý v Evropě a třináctý na světě, což mi působí nemalou radost přes to, že někdo pokládá toto pěkné číslo za

Výbor SSSR pro Mezinárodní geofyzikální rok zaslal amatérům, kteří sledovali signály prvních sovětských sputníků, vkusný dekorativní lístek za zaslání hlášení o poslechu.

neštastné. Neštastné by na mém WAZ-Fone jedině bylo, že kdybych nebyl dostal za své první fone spojení s JT1AA QSL z Ulan Bátora direct, čekal bych naří asi jako mnozí jiní dodnes a toto zajímavé pořadí v této fone-soutěži nikdy nezískal. Diplom WAZ-Fone dosud získaly tyto stanice: W6AM, W6ITH, W8POQ, W8KML, W8BF, ZL1H, ZL2GX, PY2CK, G8IG, LU6AJ, VQ4ERR, 4X4DK, OK1MB a CX2CO.

VS9O ze sultánatu Oman skončil vysílání a je malá naděje na další jeho činnost. QSL za spojení dosly všechny přes RSGB.

VP2LO je činný z ostrova St. Lucia 14 059 kHz. Opět vysílá AC5PN z Bhutanu, ale velmi nepravidelně. KX6BT z atolu Eniwetok pracuje denně na 14 040 kHz. VK2AYY/LH na ostrově Lord Howe skončil všechny QSL vyrůzuje W2CTN. Dosly mi QSL také pro OK1FF, OKIPN a OK1VA. Na tentý ostrov připravuje výpravu VK3CH a bude pracovat jen fone.

Radioklub v kalifornském San Diegu uspořádal velmi úspěšnou expedici na ostrov Clipperton, od kud se ozývala stanice FOSAT po dobu tří týdnů. Nyní ukončili mezi amatéry sbírku na další výpravu na ostrov Wallis, kam vysílají letadlem operátora stanice FK8AS z Nové Kaledonie. Používaná značka na ostrově Wallis bude pravděpodobně FW8AS.

Ostrov Chatham platí nyní za novou zemi pro DXCC. Je tam jediná stanice a sice ZL3VB. Je to ale začátečník, pracující jen na 80 m pásmu. V současné době žádá o přefazení do třídy pracující na 20 m. Na ostrově bude 4 roky. Všechna spojení stanice ZL1ABZ z ostrova Kermadec, uskutečněná jako crossband mezi 80 a 20 m, byla usnesením ARRL prohlášena pro DXCC za neplatnou.

Dalšími členy anglického klubu FOC – First Class Operators Club se stávají sovětí operátoři UO5WF a UB5WF.

24. 8. jsem slyšel pracovat na 14 MHz stanici VQ4GU. Znarmeno by to tedy, že expedice VQ9GU je kame a že její operátor se vrátí zpět z ostrova Seychelles do Nairobi. QSL listky začnou tedy asi brzo docházet.

Z výpravy VP2VB na ostrov Anguilla sešlo, jeli kož je tam karanténa na dobu 2 měsíců v důsledku epidemie neštovic. Darny plul tedy přímo na další ostrov své expedice, na ostrov St. Kitts.

Na ostrovech Faroe jsou v provozu tyto nové stanice: OY1J, OY1L, OY1P a OY1X.

Belgická stanice v Antarktidě OR4VN, obsluhovaná operátorem stanice ON4VN, je denně na fone na 21 110 kHz od 1300 SEC. QSL listky dojdou až v roce 1959.

SMIAS pracuje pravidelně na SSB kolem 14 030 kHz. Vzácnosti pro diplom WPX je SL1ZZ, který pracuje na 14 MHz CW.

OK2HZ

Dnes ráno v SSB spojení s nairobskou stanici VQ4ERR na 14 310 kHz mne Robbie prosí o QSP mnoha pozdravů jeho přátelům Jirkovi a Mirkovi (nyní OK2HZ a OK7ZH), kteří ho navštívili před léty před výstupem na Kilimandžaro a se kterými

se velmi spřátelil. Uvítal zprávu, že OK2HZ je již také činný radioamatér a že pracuje na SSB v okolí 14 300 kHz.

Jestě k radiovému zařízení československé expedice OK7HZ + OK7ZH: Obě soupravy přijímač a vysílač KWM-1 pro pásmo 10, 15 a 20 m příkonu 175 wattů na CW a SSB dosly po mnoha potížích v pořádku a nepoškozeny. Shodou okolnosti letadlo, které je přivezlo na ruzynské letiště, byl Tupolev TU 104. Jejich vylodení vidíte na fotografii na str. II. obálky. Obě soupravy jsou zkoušeny v provozu mezi OK2HZ a OK1MB. Po této první zkoušce budou namontovány do vozů výpravy a uslyšíte je jako OK7HZ a OK7ZH z různých míst republiky, kdy budou zkoušeny jak ze stálých stanovišť, tak také za jízdy. Nato se začkem průsinec t. r. vydají na velkou cestu Asii.

Na tomto zařízení je velmi snadné změnit pásmo. Rozsah je rozdělen na deset pásem po 100 kHz. Po zvolení příslušného krystalu se budí nadali na příslušný kmitočet. Na koncovém stupni je použit Pí – článek, který se ladi průběžně v rozsahu 14–30 MHz. V stupně jsou v tomto transceivru použity pro příjem i vysílání. Taktéž první směšovač je při vysílání součástí vysílačních obvodů. Souprava je jen pro CW a SSB. Při CW je output z oscilátoru 1 kHz přiveden na vstup prvního audiozesilovače. Při prepnutí na SSB dostáváme output horního postranního pásmu s výjimečně malým skreslením. Souprava má 24 elektronických plus 2 v AC zdroji. AC zdroj dodává 800 V při 200 mA pro koncový stupeň, 265 V při 210 mA pro g_s a zbytek vysílační části, 290 V při 170 mA pro část přijímací a 65 V při 3 mA pro předpříjemní. Harmonické: potlačení nosné vlny -50 dB, nežadoucí postranní pásmo -50 dB, osc. a směs -50 dB, druhá harmonická -50 dB, třetí harmonická -30 dB. Citlivost přijímače je 1 µV pro 6 dB S/S při šířce pásm 3 kHz. DC zdroj: ideální při vysílání z 12V baterie 30A. Použitím šesti výkonných transistorů v měniči, pracujících při 600 Hz, je dosaženo 90–95 % účinnosti. Výkon je 100 W při CW i SSB.

Zprávy poslední minutky

ZL3DX pracuje pod značkou ZL3DA z ostrova Chatham. Používá vysílač, který postavil ZL1AXX. Je to zařízení jen pro SSB s výkonom 60 W. Jeho přijímač je Collins 75A-4. Pracuje na kmitočtech 14 305 a 14 315 kHz a ladi 10 kHz nahoru a dolů. Zdrží se na ostrově několik týdnů.

Jistá EA9 – stanice z Tetuanu bude jednu neděli v měsíci vysílat z IPNI. Podrobnosti příště.

V El Salvadoru jsou na SSB činné tyto stanice: YS1MS, YSIGA, YS1MM a YS3PL. Stanice YS1MS pracuje denně na 14 305 kHz.

W3ZA/3W je každý den na SSB a CW na kmitočtu 14 307 kHz. Je to jediná stanice ve Vietnamu, která platí pro DXCC.

HCSLUX, HCSAGO a HCSNGF budou vysílat z ostrova Galapagos v první polovině října. Výprava má zdržení v důsledku obtížné dopravy. Všechny učastníci jsou amatéři z W0.

Pravost stanice AC4A je zatím sporná. Zato pravý je AC4AX, který pracuje také fone na 14 098 kHz kolem 1400 SEC.

Na kmitočtu 14 090 kHz, tj. také v telegrafním pásmu, pracuje denně VK2FR z ostrova Lord Howe kolem 0600 SEC fone.

UA1GR/0 z Tannu Tuwa, zona 23, pracuje nyní na CW také v pásmu 14 MHz.

ZS6AQZ/9 byl činný z Bečuánska jen jednu sobotu, neděli v září a to ještě jen na SSB. Naváží několik set spojení. Zato výprava do Swazijska ZS6IF/7 bude na pásmu poslední týden v září a první v říjnu a to jen na CW na kmitočtech 14 010 a 14 014 kHz.

K článku „Zkušenosti s kubickou antérou“, který byl otištěn v AR 9/58 na str. 268, došlo mnoho dotazů k upveřejnění prvků. S nosnou konstrukcí je možno vodivě spojit reflektor, direktor nahore i dol, avšak záříci pouze nahore, tj. uprostřed celkového obvodu čtverce, v kmitně proudí, kde je zanedbatelné napětí. Konce zářic se svorkami nesmí být s nosnou konstrukcí vodivě spojeny a mohou se upveřejnit jen prostřednictvím isolační destičky. Je také možno odisolovat všechny prvky ve všech bodech, v nichž se stykají s nosným stožarem. Kdo se zajímá o podrobnosti, najde teorii této antény v knize John Kraus: Antennas, konstrukci v časopise Radio SSSR č. 8/57, str. 34.

V článku „Otázky televizního příjmu v třetím pásmu“ v minulém čísle si laskavě opravte na str. 248 na 17. řádku text namísto „25 cm“ správně „25–60 mm“.

Rubriku vede RNDr. Jiří Mrázek,
OK1GM, mistr radioamatérského
sportu

Předpověď podmínek na říjen.

Napsali-li jsme do této rubriky v minulém měsíci, že charakteristickým rysem podzemních podmínek jsou zvýšené hodnoty kritických kmitočtů vrstvy F2 a s tím spojené zvýšené hodnoty nejvyšších použitelných kmitočtů, potom to platí v míře nejvyšší pravé pro měsíc říjen. V tomto měsíci dosahuje kritické kmitočty vrstvy F2 v dnech, zejména poledních hodinách za celý rok svého maxima; krátkovlnní amatéři a z nich zejména ti, kteří se zabývají prací na DX pásmech, potom tvrdí, že podmínky pro zámořskou spojení bývají v říjnu za celý rok nejlepší. Toto pravidlo se osvědčí i letos, kdy v tomto měsíci, třebaže sluneční činnost již překročila svůj vrchol a začíná se v průměru již zvolna snižovat, budou denní hodnoty kritických kmitočtů vrstvy F2 za celý rok nejpravidelnější pro práci na nejvyšších krátkovlnních pásmech. A tak ožije velmi pekně opět desetimetrové pásmo a přinese v nerušených dnech v dopoledních hodinách středně dobré podmínky ve směrech na Severní, Střední a slabě někdy i na Jižní Afriku, jakož i na Blízkou a Střední Východ a slabě někdy i na Austrálii. Krátce po poledni zůstanou sice podmínky ve směru na Afriku, ostatní podmínky však budou vystřídány velmi dobrými podmínkami na cestě Evropa – východní pobřeží Severní Ameriky a později i východní část Ameriky Jižní a někdy i střední podmínkami ve směru na střed USA, Ameriku Střední a vzácně též na západní pobřeží Severní Ameriky. Naproti tomu podmínky pro západní pobřeží Jižní Ameriky budou většinou jen velmi vzácné, a někdy nastanou i v časnějších dopoledních hodinách vzdálenější cestou. Mimořádná vrstva E, která v letních měsících způsobovala dobrou slyšitelnost stanic z okrajových evropských států, se nyní prakticky již teměř neprojeví. Pásma se bude užívat v pozdějších večerních hodinách při dobré slyšitelnosti stanic z Jižní Ameriky.

Podobné podmínky budou nastávat i na pásmu 21 MHz, a to pouze s tím rozdílem, že podmínky zde budou trvanlivější a déle trvající, i když intenzita signálů v některých směrech bude alespoň teoreticky nižší než na pásmu desetimetrovém. Pásma vydrží značně dlouho do noci, obvykle přes půlnoc, při velmi dobrých podmínkách do několika směrů současně. V podvečer na něm půjde mimorádně silně Střední Afrika, později i kontinent americký. Jihoafrické stanice dosáhnou snadněji později odpoledne, kdy budou ještě jejich signály velmi slabé, než později večer a v noci, třebaže potom uslyšíme jejich signály velmi silně. Příčinou toho je v tom, že později jsou v Jižní Americe na tomto pásmu velmi dobré podmínky ve směru na USA, takže dochází k značnému rušení slabších signálů evropských stanic.

Ostatní DXová pásmata — dvacetimetrové a čtyřicetimetrové — budou vhodná pro zámořský provoz v době obvyklé pro totéž roční období. Dvacetimetrové pásmo bude otevřeno k provozu po celou noc a pouze v rušených dnech se po půlnoci do rána uzavře. Podmínky se na něm během dvacetiset hodin vystřídají postupně do všech světadílů a často dojde k podmínkám do několika světadílů současně. Kromě toho nastanou zhuštěná období, kdy bude otevřen na tomto pásmu týž směr jako na 21 nebo dokonce i 28 MHz, takže bude možno provádět úspěšné cross-bandové pokusy. Nejmarkantnější podmínky tohoto druhu se budou projevovat ve večerních a prvních nočních hodinách ve směru na USA, a to nejprve na 28 – 21 – 14 MHz a později v noci na 21 – 14 – 7 MHz. Čtyřicetimetrové pásmo totiž bude pro zámořská spojení otevřeno zhruba vnočními hodinami a to později odpoledne až v noci ve směru na daleký jihovýchod, východ a slabější i jih a ve druhé polovině noci především na východní břeh Severní Ameriky a na Ameriku Střední, velmi slabě pak a nevždy i na Ameriku Jižní. Podmínky se zakončí obvyklými krátké trvajícími ranními podmínkami ve směru na Nový Zéland (vzácně též na Austrálii) v době krátce okolo nebo po východu Slunce. Jak jsme již psali v této rubrice, nastávají tyto zajímavé podmínky v době, kdy se po východu Slunce nevytváří v našich krajinách vrstvy E a D, působící útlum na těchto kmitočtech, a kdy po západu Slunce na straně australské obě tyto vrstvy právě zmizely. Populárnější řečeno dřívější nejdé, protože na australské straně působí nízká

ionosféra na čtyřiceti metrech značný útlum, a později také ne, protože na evropské straně se tyto vrstvy po východu Slunce rychle vytváří, třebaž současně na australské straně po západu Slunce již zanikly. Pouze v krátkém intervalu mezi oběma eventualitami to na několik minut vyjde a podmínky jsou tady.

Nakonec mi zbyvá podívat se na nejnizší krátkovlnná pásmá, která budou s ubývajícím dnem oživit stále na delší a delší dobu. Nebudou na nich celkem mnoho podstatně zajímavého než snad to, že i v noci kritické kmitočty vrstvy F 2 budou natolik vysoké, že se na žádném z obou pásem pásma ticha nevyskytne. Pouze ve velmi rušených nocích — a takových mnoho nebývá — by se mohlo zejména v jejich druhu polovině objevit na osmdesáti metrech kratší pásmo ticha, které ihned při východu Slunce zmizí. V denních hodinách bude ovšem vždy útlum působený nízkou ionosférou způsobovat malý dosah našich vysílačů, a to zejména na stošedesáti metrech, kde je tento útlum asi čtyřikrát větší než na osmdesáti metrech. V noci bude však dosah podstatně větší a na osmdesáti metrech nejsou ani DX vyloučeny, zejména za severní poloviny Afriky a Blízkého Východu. V některých dnech nejsou vyloučeny ani krátké podmínky ve směru na Australii a Nový Zéland v době okolo východu i západu Slunce, jejichž vznik je obdobný jako na 7 MHz.

	1,8 MHz	2	4	6	8	10	12	14	16	18	20	22	24
OK	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
EVROPA	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	3,5 MHz	OK	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
EVROPA	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
DX	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	7 MHz	OK	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
UA3	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
UAΦ	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
W2	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
KH6	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
ZS	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
LU	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
VK-ZL	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	14 MHz	UA3	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
UAΦ	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
W2	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
KH6	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
ZS	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
LU	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
VK-ZL	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	21 MHz	UA3	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
UAΦ	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
W2	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
KH6	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
ZS	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
LU	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
VK-ZL	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	28 MHz	UA3	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
UAΦ	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
W2	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
KH6	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
ZS	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
LU	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
VK-ZL	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

PODMÍNKY: ~~~~~ velmi dobré nebo pravidelné.
----- dobré nebo méně pravidelné.
----- špatné nebo nepřevidelné.

* * *

U vysílače se nepracuje jen telegrafní klíčem nebo mikrofonem, ale i v prvé řadě hlavou. Heslo MYSLET by mělo viset nad každým vysílačem zařízením. V tomto duchu si pak také jednoduše zodpovíme otázku, jak se zachovala jistá stanice HE, o které se mluví v 6. čísle AR. Nezachovala se dobrě, operátor nepřemýšlel. Když viděl, že dálkové spojení pro špatné podmínky nedělá, mohl místo vysvětlování, že nechce s evropskými stanicemi pracovat, s nimi klidně udělat pář spojení a byl pokoj. Myslím, že je možno zavolat např. od nás evropskou stanici, dávající CQ DX, když nám na spojení s ní záleží. V tom případě nejdříve čekáme a přesvědčíme se, že naší vyhlédnutou oběť žádná vzdálená stanice nevolá, pak zavoláme sami, omluvíme se, že např. potřebujeme body pro WAE a jistě ve většině případu spojení hladce uděláme. Amatérům jsou všude lidé a mohou se domluvit.

„OK KROUŽEK 1958“

Stav k 15. srpna 1958

Stanice:	poč QSL:/poč. okresů:			Součet bodů
	1,75 MHz	3,5 MHz	7 MHz	
1. OKIKPB	—/—	362/149	—/—	53 938
2. OKIKKH	71/46	304/23	14/13	47 736
3. OK3KAS	41/32	276/119	42/26	40 056
4. OK2KGE	—/—	257/115	20/18	30 635
5. OK2KFP	62/46	211/99	4/4	29 693
6. OK2KDZ	46/43	184/116	10/8	37 518
7. OK1KDR	33/27	200/90	20/20	26 823
8. OK2KZC	44/34	212/102	1/1	26 115
9. OK3KIC	—/—	224/112	—/—	25 088
10. OK1KLV	—/—	225/103	—/—	23 175
11. OK2KGZ	1/1	199/106	—/—	21 097
12. OK2KEA	—/—	199/103	—/—	20 497
13. OK1KCG	61/39	157/80	—/—	19 697
14. OK3KGW	8/8	175/95	33/25	19 192
15. OK2KEH	11/6	192/93	4/3	18 090
16. OK1KFQ	8/6	170/87	36/25	17 634
17. OK3KAP	8/6	157/91	26/18	16 006
18. OK1KCR	19/14	161/92	4/3	15 646
19. OK1KIV	—/—	162/88	—/—	14 256
20. OK2KHP	48/36	115/72	—/—	13 464
21. OK1KFZ	12/6	162/77	15/7	13 005
22. OK2KFT	—/—	148/87	—/—	12 876
23. OK1KIQ	—/—	166/76	—/—	12 616
24. OK1KHA	—/—	155/80	—/—	12 400
25. OK3KHE	—/—	155/78	9/9	12 333
26. OK3KEW	—/—	132/76	—/—	10 032
27. OK1KDQ	11/6	137/71	2/2	9 511
28. OK1KFW	—/—	134/67	—/—	8 978
29. OK3KKF	—/—	91/59	27/17	6 746
30. OK1KBY	24/14	106/51	—/—	6 386
1. OK2LN	85/45	310/135	60/32	59 085
2. OK1MG	90/55	245/107	25/17	42 340
3. OK1JN	63/44	267/115	3/2	39 039
4. OK2NR/1	65/44	255/108	20/14	36 200
5. OK1AJT	60/45	175/90	—/—	31 950
6. OK2DO	—/—	232/106	—/—	24 592
7. OK3SK	25/16	209/105	—/—	24 345
8. OK1JJ	38/27	192/90	—/—	23 496
9. OK2UX	42/30	158/84	—/—	17 052
10. OK1TC	—/—	156/94	—/—	14 664
11. OK1BP	4/2	158/83	15/12	13 678
12. OK1QH	—/—	129/81	—/—	10 449
13. OK1VO	—/—	130/79	—/—	10 270
14. OK1JH	35/25	72/46	51/26	9 900
15. OK2QR	—/—	121/69	—/—	8 349
16. OK2LR	—/—	116/71	—/—	8 236
17. OK1NW	1/1	111/51	—/—	5 667

Děle než 60 dnů nezaslaly hlášení tyto stanice: OK3KFY, OK2KBH, OK1KLP, OK2KAJ, OK1KPH a OK1KUR. Byly proto dočasně z soutěže podle pravidel vyřazeny.

Tnx.

„RP OK-DX KROUŽEK“:

I. třída:

V tomto období nebyl udělen žádný diplom.

II. třída:

Diplom č. 34 získal OK2-7890, Josef Opálka z Jízdu u Kunštátu, č. 35 OK1-1840, Jan Kodr z Prahy.

III. třída:

Další diplom byl vystaven pro OK1-2696, R. Fürbachera z Prahy, č. 134.

„S6S“:

V tomto období došlo dalších 15 žádostí o diplom CW a 4 žádosti o diplom fone. (V závorce jsou uvedeny doplňovací známky jednotlivých pásem): CW: č. 653 DM2AHB ze Schwerinu (21), č. 654

Rubriku vede

Karel Kaminek, OK1CX

DM2AMM z Lipska, č. 655 HA5BG z Budapešti (14), č. 656 K6JAJ z Riverside, Calif., č. 657 SM5BRS z Enköpingu, č. 658 K8DEY z Toledo, Ohio (14), č. 659 PY3XE z Brasili (14), č. 660 W3HWU z Washingtonu, Pa. (14), č. 661 K2MIO, Pennsauken, N. J. (14), č. 662 SP3PJ z Poznaně (14, 21), č. 663 UA3XN z Kalugy, č. 664 DL3RR z Dulkenu (14), č. 665 OK3KES, Nové Zámky (14), č. 666 YU1SE z Subotice a č. 667 LZ2KSK z Kolárovgradu (14).

Fone: č. 121 W7DNY z Beavertonu, Oreg., č. 122 PY3XE z Brasili (14), č. 123 LU9DM z Argentiny (21), č. 124 OZ5DK z Aalborgu (14).

„100 OK“ :

Byly odesány další dva diplomy: č. 131 DM3KGL a č. 132 DL6IL.

P-100 OK“:

V tomto období nebyl vydán žádný diplom.

„ZMT“:

Byl vydán diplom č. 176 pro UA9CQ.

V uchazečích o diplom ZMT má stanice F9IL37 QSL, OK2NR/1 již 32 a OK1BP a OK1JH po 31 QSL.

„P - ZMT“:

Nové diplomy byly uděleny těmto stanicím: č. 227 DM-0229/H, č. 228 YO3-1526, č. 229 YO5-178 a č. 230 OK1-631 z Kutné Hory.

V uchazečích si polepily umístění stanice OK1-2589, která má již 24 QSL, OK1-2696 s 23, OK2-9667 s 22 a OK1-6643 s 21 QSL.

OK1-5726 poslouchá na normální rozhrasov

PŘEČTEME SI

Ing. Dr. František Kašpar: DVOJKOVY V ELEKTROTECHNICE. 316 stran formátu B5. Celkem 351 vyobrazení a 14 tabulek. Vydalo Státní nakladatelství technické literatury, Praha 1958. Cena výtisku vázaného v plátěném kávce 29,50.

Dvojkov (dřívější pod názvem bimetal) vznikne pevným spojením (svářením) dvou složek, např. pásku kovu o rozdílném činiteli délkové teploty v jednotlivých složkách nestejného prutu, které má za následek mechanickou deformaci, např. prohnutí pásku. Toho se dá využít k měření teploty (bimetický teplomer), k tepelné ochraně přístrojů a motorů, k opožděnímu zapínání nebo vypínání dvojkovovým členem vyhříváným spod. Vlastnostem použití s náhradním dvojkovovým článkem je věnována uvedená kniha.

Po stručném úvodu A se autor zabývá v oddílu B nejprve mechanikou dvojkovu, tj. průběhem deformací a jejich závislosti na teplotě a geometrickém tvaru člena, odvozením početních vzorců a materiálových konstant. Zvláštní kapitola je věnována dvojkovovým vypínačům a rele.

Stav C pojednává o dvojkovech s přímým ohřevem, čast D o dvojkovech ohřívaných nepřímou. Další stav E je věnována způsobu jistění motorů, transformátorů a vedení dvojkovovými teplémery. Pak následuje podrobný rozbor druhé a provedení dvojkovových relé (hlava F) a další důležitá použití: Jako termostatu v elektrických spotřebičů (boiler, lednička), startér k zářivkám; tepelně kompenzační členy a měřicí přístroje, využívající vlastnosti dvojkova (kapitola G). Část H jedná o normalizaci a zkoušení dvojkovových materiálů, jakž i zafixení s nimi. Oddíl CH se zabývá výrobou a zpracováním dvojkovů; na ni navazují cenné údaje části J o čs. a zahraničních dvojkovech. Stav K pojednává o oteplování a ochlazování jistících dvojkovových zářivek. Knihu končí početním dovozem deformace nerovnoměrně oteplováných a ochlazováných dvojkovových pásků (kapitola L).

Dvojkovy sice zatím nejsou právě běžnou součástí pro elektrotechniku, tím méně pro radioamatéry. Nabývají však stále větší důležitosti pro svou jednoduchost a spolehlivosť v provozu.

Autoru knihy Dvojkovy v elektrotechnice náleží zásluha, že do ní sebral a soustavně uspořádal tolík materiálu z tohoto oboru a podložil vlastnosti závislosti parametrů dvojkovu teorii i matematickými vztahy, i když – vzhledem k četným variabilitám použitých složek a mechanickým vlivům – se tak může stát jen za určitých zjednodušených předpokladů.

Použití dvojkovů v praxi je doprovázeno četnými názornými, po technické stránce dobré provedenými jasními snímkami. Také ostatní kresby a diagramy jsou velmi čistě provedeny podle norm. Grafickou úpravu knihy možno označit za vzornou, k tomu přispívá i použití jakostního papíru.

Závěr: Knihu „Dvojkovy v elektrotechnice“ pojednává podrobně z teoretické i praktické stránky o problematici spinacích, ochranných a měřicích článků z dvojkova. Svého hlubokého pojetí, systematickým uspořádáním a dobrou tiskovou úpravou se stává cennou monografií, kterou možno označit za přínos nejen československé, ale i evropské odborné literatury.

Sláva Nečásek

A. P. Karus: ANTENNYYE PŘEKLJUČATELI (Antennní přepínače) – Vojenizdat, Moskva 1957, knižnice Radiolokacionnaja těhnika, str. 48, schémata, brož., 0,80 Kčs.

Antennní přepínače jsou důležitým prvkem antennního systému moderních radiolokačních stanic.

Mají dvojí úkol: jednak slouží jako regulátory energie v antenním systému při příjmu nebo vysílání, jednak chrání vstupní obvody přijímače před proskakováním energie z vlastního vysílače.

V uvedené literatuře jsou strozuměnitelně vysvětleny složení a funkce antenních přepínačů v impulsových radiolokátozech metrového a centimetrového pásma, pracujících na jedné anténě – typ: příjem – vysílání.

Nejsou zde uvedeny přepínače, jež slouží k vylepšení směrových charakteristik antén (jsou pošápy podobně v jiné brožuře).

Obsah brožury je rozdělen do tří kapitol.

Prvá se zabývá antennimi přepínači pro radiolokátory, pracujícími v metrovém pásmu. Užívá se zde otevřeného dvoudrátkového vedení nebo ohebného koaxiálního vedení s výbojkami. Proto jednotlivé statě jsou věnovány podmínkám, kladeným na antenní přepínače, vlastnostem a konstrukci výbojek (jiskrových nebo plynových), vlastnostem resonančního vedení (dvoudrátkových, koaxiálních i vlnovodů).

Druhá kapitola je věnována antenním přepínačům pro radiolokátory pracujícími v dm a cm pásmech. Výše uvedené typy přepínačů mohly jako velejší funkci maximální snížení energetických ztrát při vysílání a příjmu. Antennní přepínače pro dm a cm pásmo vedle toho mají ještě ochrannou funkci: Chrání vstupní obvody přijímače (hlavně krystalový směšovač) před přetížením. Antennní přepínače jsou složeny z tuhých koaxiálních vedení a výbojek (plněných plyny s pomocnou elektrodou) – vlnový rozsah 1 m – 10 cm.

V pásmu do 10 cm se užívají vlnovodů s dutinovým rezonátory a dvěma výbojovými komorami. (Jedna blokuje magnetron, druhá přijíma.)

V této kapitole je uveden ještě jeden druh antenních přepínačů, který není založen na resonančních vlastnostech vedení, ale na jiném základě. Je to městskový antenní přepínač. Lze jej užít jak na koaxiálních vedeních, tak i na vlnovodech. Je konstruován tak, že energie může vystupovat pouze určitými směry. Jako příklad je uváděn kruhový antenní přepínač (využívající fázového posuvu) a T-přepínač (založený na vlastnostech polarisace vln).

Závěrečná třetí kapitola obsahuje několik nejčastěji se vyskytujících poruch antenních přepínačů, týkají se hlavně výbojek.

Malá brožura dává dobrý přehled o užívaných druzích antenních přepínačů a jejich funkcí všem zájemcům o moderní radiolokační techniku.

Zdeněk Weber

Novinky Našeho vojska

KE VZNIKU ČSR

Kniha, uspořádaná historickým ústavem ČSAV, je souborem monografických studií a článků, řešících otázky let 1917–1920, zejména pak otázky sil a charakteru bojů dělnické třídy o mož. v ČSR. Tak tu naši historikové zachycují význam a průběh 14. a 28. října 1918, boje naší dělnické třídy v prvních měsících vzniku státu, zakládání dělnických rad, prosincovou slávku 1920. Následují stránky sborníku se zabývají postojem zahraničních menšin k odboji našeho lidu proti habsburské monarchii, činností českých legionářů a krasnoarmějců atd. Váz. cca 20 Kčs.

J. Kosek – Z. Javůrek:
FILOSOFIE A MODERNÍ VĚDA

Autoři v první části vysvětlují, jak vznikla vědecká filosofie a jaké byly gnoeologické a tradiční kořeny jejího vzniku. Druhá část ukazuje rozdíl materialistické a idealistické filosofie a na historickém vývoji dokumentuje vzájemný poměr filosofie a vědy. Kart. cca 8 Kčs.

DUCHEM I MEČEM

Ctení o slávě, velikosti a utrpení našeho lidu. Staré letošky čerpající ze vzácných památek našeho písničství od davných věků, jak je zachytily Kosmas a další kronikáři — přes počátky křesťanství, panování Přemyslovců a Lucemburků, dobu husitskou, od Lipan k Bílé hoře — až k vybraným dílům J. A. Komenského. Váz. 55 Kčs.

B. Kellermann: DEVÁTÝ LISTOPAD

Proslulý román, jehož dějištěm je Berlín na konci první světové války, v období rozkladu, který vyvolala potážka Německa. Líčí osudy neschopného pruského generála, jenž otrcenem starého společenského rádu ztrácí půdu pod nohami, cití, jak se boří autority společenské a jak se rozpadává jeho vlastní rodina. Váz. cca 19 Kčs.

Malý oznamovatel

Tisková fádka je za Kčs 3,60. Částku za inserát po- ukažte na účet č. 01-006/44.465 Vydatelství časopisu MNO, Praha II, Vladislavova 26. Uzávěrka výdaje 20., tj. 6. týdnu před uveřejněním. Neopomítejte uvést prodejní cenu.

PRODEJ:

Krátkovl. 3 elektr. přij. s elimin. pro 80, 40, 20 m s vý zesilovačem (280), síťový zdroj se stabil. napětím 70, 140, 210, 220, nestabil. 450 V, žhavení 4 a 6,3 V (250). — K. Frola, Praha 5, Vorinskova 14.

Torn Eb v bezvadném stavu (600), přísluš. podle dohody. Fr. Brožek, Nasavrky.

Přijímač Echophone EC 1A na 220 V nové 6 V v elektronky (600), xtal 250 kHz a jiný materiál. Wiesner, Šobrova 846, Písek.

6CC10(40), 6F31, 6B32 (13), 622A skříň, ozv. (100), 25E skříň, ozv. chassis (22), Minor (250), trafa aj. Zhotovit trafa. P. Sukdol, Jeremiášova 14, Č. Budějovice.

Avomet úplne nový s páždrom, napájovým boč. 1200 V a průd. bočníkem 120 A (700). J. Švejdá, Trenčín, Sobáňovská 1046.

Krátké vlny roč. 46 až 51. **Radioamatér** 41, 42, 45–51. **Amat. radio** 52–57. **Filmový technik** 55–57 (a 20), osciloskop bez LB8 (300), něm. tank. sluch. (40), klíče, krč. mikrof. (a 30). I. dobirková, K. Motekzik, Praha VIII, Veletržní 53.

National HRO (5000), MWEC Ia, res. osaz. (1200), EL10 (230), růz. elektr. a mater. Ing. Dvořák, Skorkov 57, p. Stará Boleslav.

HRO 1.7–30 MHz se šuplaty a 2 náhr. elektronky (3000). J. Mráz, Prostějov, Komenského 3.

Elektr. RV12P2001 (a 20), RV2P800 (a 10), náhľad. sluchárka (a 50). A. Solarová, Leninova 31 Přerov.

SK3 osazený (400). Ing. Štanc, Příbram II/154.

Avomet (550), rozestav. el. voltmetr AR 2/56 a měr. 350 μA (350), síť. trafo 250 mA (60), síť. thum. 150 mA a 60 mA (20, 10), růz. trafa na převí. J. Etzer, Žižkova 748, Uh. Hradiště.

Elektr. rychl. vln. s přísl. popis zašlu (400) nebo vym. za Torn Eb, Avomet, doplatim. O. Bydžovský, Kolín V, Raisova 1129.

Elektronky orig. bal. ECH3, ECH11, EBF2, EBF11, EBC5, EBL1, ECL11 a jiné rády A, D a U (podle katalogu). Břoušek, Továrenská 8, Bratislava.

KOUPĚ:

Torn Eb i mimo provoz. Jar. Spěvák u p. Vyhánka, Rudé armády 32, Č. Budějovice.

Přijímač Halicr. S40, drát. pot. 25 kΩ, dalekohled 6SJ7, 6SK7, 6SA7, 6SR7, LK199, sig. generátor SG50. Wiesner, Šobrova 846, Písek.

3 ročníky Sdělovací techniky, a to r. 1955, 56, 57. Solárik D., Sídlo 16/6, Ziar n. Hr., o. Kremnica.

Výkonné radio neb vym. za fotoaparát nejl. značky. V. Štěch, Liberec I, Frýdlantská 11.

Kúpím skrinku Opera, poníkam radio Romance (655) – M. Jandura, Martin, celulózka.

Pro Körting KST zásuvku č. 2 (11–22 MHz) a č. 5 (1,1–3 MHz). Ing. Štanc, Příbram II/154

VÝMĚNA:

1 hl akvarium, zarybněné, s veškerým zařízením v ceně asi 450 Kčs dám za materiál, přijímač nebo měřidlo příp. doplatim nebo prod. (400). F. Sigmond, Ružomberok II, M. T. 7.

RX Seibt ER1 100 kHz–22 MHz za sign. gener. n. prod. V. Ecer, Roudnice n. L. 1280.

Exposimetr a log. pravítko 30 cm za Rx na VKV. Foto Flexaret 4a za kom. super i jiné, nabídněte. Skopal Josef, ČSAD 1208, Otrokovice.

Nezapomeně, že

V ŘÍJNU

... do patnáctého října máte ještě čas se přihlásit do

„OKK 1958“. Přihlášky, došlé po tomto datu, nebudou

již přijaty. Tedy odeslat aspoň třináctého!

