Semantic Theory Week 7 – Discourse Representation Theory

Noortje Venhuizen Harm Brouwer

Universität des Saarlandes

Summer 2020

DRS Syntax

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$, where:

- U_K ⊆ U_D and U_D is a set of discourse referents, and
- C_K is a set of well-formed DRS conditions

Well-formed DRS conditions:

•	$R(u_1,, u_n)$	where:	R is an	n-place	relation,	$U_i\in$	U_{D}
---	----------------	--------	---------	---------	-----------	----------	---------

- u = V $u, v \in U_D$
- u = a $u \in U_D$, a is a constant
- $\neg K_1$ K_1 is a DRS
- $K_1 \Rightarrow K_2$ K_1 and K_2 are DRSs
- $K_1 \vee K_2$ K_1 and K_2 are DRSs

Anaphora and accessibility

Mary knows a professor. If she owns a book, he reads it. ?It fascinates him.

Non-accessible discourse referents

Cases of non-accessibility:

- (1) If a professor owns a book, he reads it. It has 300 pages.
- (2) It is not the case that a professor owns a book. He reads it.
- (3) Every professor owns a book. He reads it.
- (4) If every professor owns a book, he reads it.
- (5) Peter owns a book, or Mary reads it.
- (6) Peter reads a book, or Mary reads a newspaper article. It is interesting.

Accessible discourse referents

The following discourse referents are accessible for a condition:

- DRs in the same local DRS
- DRs in a superordinate DRS
- DRs in the universe of an antecedent DRS, if the condition occurs in the consequent DRS.

We need a formal notion of DRS subordination

Subordination

A DRS K_1 is an immediate sub-DRS of a DRS $K = \langle U_K, C_K \rangle$ iff C_K contains a condition of the form

• $\neg K_1, K_1 \Rightarrow K_2, K_2 \Rightarrow K_1, K_1 \lor K_2 \text{ or } K_2 \lor K_1.$

 K_1 is a sub-DRS of K (notation: $K_1 \le K$) iff

- $K_1 = K$, or
- · K₁ is an immediate sub-DRS of K, or
- there is a DRS K_2 such that $K_1 \le K_2$ and K_2 is an immediate sub-DRS of K_2 (i.e. reflexive, transitive closure)

 K_1 is a proper sub-DRS of K iff $K_1 \le K$ and $K_1 \ne K$.

Accessibility

Let K, K₁, K₂ be DRSs such that K₁, K₂ \leq K, x \in U_{K1}, $\gamma \in$ C_{K2}

- x is accessible from γ in K iff
 - $K_2 \leq K_1$ or
 - there are K_3 , $K_4 \le K$ such that $K_1 \Rightarrow K_3 \in C_{K4}$ and $K_2 \le K_3$

Free and bound variables in DRT

A DRS variable x, introduced in the conditions of DRS K_i , is bound in global DRS K iff there exists a DRS $K_j \leq K$, such that:

- (i) $x \in U(K_j)$, and
- (ii) K_j is accessible for K_i in K

Properness: A DRS is *proper* iff it does not contain any free variables

Purity: A DRS is *pure* iff it does not contain any *otiose declarations* of variables

 $x \in U(K_1)$ and $x \in U(K_2)$ and $K_1 \le K_2$

From text to DRS

DRS Construction Algorithm

Let the following be a well-formed, reducible DRS condition:

• Conditions of form a or a(x1, ..., xn), where a is a context-free parse tree.

DRS construction algorithm:

- Given a text $\Sigma = \langle S_1, ..., S_n \rangle$, and a DRS K_0 (= $\langle \emptyset, \emptyset \rangle$, by default)
- Repeat for i = 1, ..., n:
 - Add parse tree P(S_i) to the conditions of K_{i-1}.
 - Apply DRS construction rules to reducible conditions of K_{i-1}, until no reduction steps are possible any more.
 - The resulting DRS K_i is the discourse representation of text $(S_1, ..., S_i)$.


```
xyzu
farmer(x)
donkey(y)
owns(x, y)
z = x
u = y
beat(z, u)
```

Construction Rules: Examples

Indefinite NPs

- Trigger: a reducible condition α in DRS K that has a substructure [NP β], such that β is $\epsilon\delta$, where ϵ is an indefinite article
- Action: Add new DR x to U_K; Replace β in α by x; Add δ (x) to C_K

Personal Pronouns

- Trigger: a global DRS K*, and some K ≤ K*, with a reducible condition α in K that has substructure [NP β], such that β is a personal pronoun
- Action: Add a new DR x to U_K ; Replace β in α by x; Select an appropriate DR y that is accessible from α in K^* ; Add x = y to C_K

A constraint on DRS construction

Problem: The basic DRS construction algorithm can derive DRSs for both of the following sentences, with the indicated anaphoric binding:

- (1) [A professor]; recommends a book that she; likes
- (2) Shei recommends a book that [a professor]i likes

Solution: If two different triggering configurations occur in a reducible condition, then first apply the construction rule to the highest triggering configuration.

• The highest triggering configuration is the one whose top node dominates the top nodes of all other triggering configurations.

From text to DRS to models

Interpretation by model embedding: Truth-conditions of Σ

DRS Interpretation

Given a DRS $K = \langle U_K, C_K \rangle$, with $U_K \subseteq U_D$

Let $M = \langle U_M, V_M \rangle$ be a FOL model structure appropriate for K, i.e. a model structure that provides interpretations for all predicates and relations occurring in K

DRS K is true in model M iff

there is an embedding function for K in M which verifies all conditions in K

... where: an embedding of K into M is a (partial) function \mathbf{f} from U_D to U_M such that $U_K \subseteq Dom(\mathbf{f})$.

Verifying embedding

An embedding \mathbf{f} of K in M verifies K in M ($\mathbf{f} \models_M K$) iff \mathbf{f} verifies every condition $\alpha \in C_K$

•
$$\mathbf{f} \models_M R(x_1, \dots, x_n)$$
 iff $\langle \mathbf{f}(x_1), \dots, \mathbf{f}(x_n) \rangle \in V_M(R)$

•
$$\mathbf{f} \models_{M} x = y$$
 iff $\mathbf{f}(x) = \mathbf{f}(y)$

•
$$\mathbf{f} \models_{M} x = a$$
 iff $\mathbf{f}(x) = V_{M}(a)$

- $\mathbf{f} \models_{M} \neg K_1$ iff there is no $\mathbf{g} \supseteq_{U_{K_1}} \mathbf{f}$ such that $g \models_{M} K_1$
- $\mathbf{f} \models_M K_1 \Rightarrow K_2$ iff for all $\mathbf{g} \supseteq_{U_{K1}} \mathbf{f}$ such that $\mathbf{g} \models_M K_1$ there is a $\mathbf{h} \supseteq_{U_{K2}} \mathbf{g}$ such that $\mathbf{h} \models_M K_2$
- $\mathbf{f} \models_M K_1 \vee K_2$ iff there is a $\mathbf{g_1} \supseteq_{U_{K_1}} \mathbf{f}$ such that $\mathbf{g_1} \models_M K_1$ or there is a $\mathbf{g_2} \supseteq_{U_{K_2}} \mathbf{f}$ such that $\mathbf{g_2} \models_M K_2$

Verifying embedding: example

Mary knows a professor. If he owns a book, he gives it to a student.

...is **true** in $M = \langle U_M, V_M \rangle$ iff there is an $\mathbf{f} :: U_D \to U_M$, (with $\{s,u\} \subseteq Dom(\mathbf{f})$) such that: $\mathbf{f}(s) = V_M(Mary) \& \mathbf{f}(u) \in V_M(prof') \& \langle \mathbf{f}(s), \mathbf{f}(u) \rangle \in V_M(know)$, and for all $\mathbf{g} \supseteq_{\{x,y\}} \mathbf{f}$ s.t. $\mathbf{g}(x) = \mathbf{g}(u)$ (= $\mathbf{f}(u)$) & $\mathbf{g}(y) \in V_M(book) \& \langle \mathbf{g}(x), \mathbf{g}(y) \rangle \in V_M(own)$, there is a $\mathbf{h} \supseteq_{\{z, y, w\}} \mathbf{g}$ s.t. $\langle \mathbf{h}(z), \mathbf{h}(v), \mathbf{h}(w) \rangle \in V_M(give) \& \mathbf{h}(z) = \mathbf{h}(x) (=\mathbf{g}(x)) \& \dots$ etc.

Translation of DRSs to FOL

Consider DRS $K = \langle \{x_1, ..., x_n\}, \{c_1, ..., c_k\} \rangle$

K is truth-conditionally equivalent to the following FOL formula:

$$\exists X_1 \dots \exists X_n [C_1 \land \dots \land C_k]$$

DRT and compositionality

- DRT is non-compositional on truth conditions: The difference in discourse-semantic status of the text pairs is not predictable through the (identical) truth conditions of its component sentences.
- Since structural information which cannot be reduced to truth conditions is required to compute the semantic value of texts, DRT is called a representational theory of meaning.

However...

Wait a minute ...

- Why can't we just combine type theoretic semantics and DRT?
- Use λ-abstraction and reduction as we did before, but:
- Assume that the target representations which we want to arrive at are not First-Order Logic formulas, but DRSs.
- The result is called λ -DRT.

λ-DRSs

An expression in λ -DRT consists of a lambda prefix and a partially instantiated DRS.

• every student :: $\langle\langle e, t \rangle, t \rangle \mapsto$

λG. _____

 $\Rightarrow G(z)$ student(z)

Alternative notation: $\lambda G [\varnothing | [z | student(z)] \Rightarrow G(z)]$

• works :: $\langle e, t \rangle \mapsto \lambda x [\varnothing | work(x)]$

λ-DRT: β-reduction

Every student works

 $\rightarrow \lambda G[\varnothing \mid [z \mid student(z)] \Rightarrow G(z)]](\lambda x [\varnothing \mid work(x)])$

 $\Rightarrow^{\beta} [\varnothing \mid [z \mid student(z)] \Rightarrow (\lambda x [\varnothing \mid work(x)])(z)]$

 $\Rightarrow^{\beta} [\varnothing \mid [z \mid student(z)] \Rightarrow [\varnothing \mid work(z)]]$

How do we define conjunction on DRSs?

(Naïve) Merge

The "merge" operation on DRSs combines two DRSs (conditions and universes).

• Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$.

Merge: $K_1 + K_2 = [U_1 \cup U_2 \mid C_1 \cup C_2]$

Merge: An example

```
a student \rightarrow \lambda G ([z \mid student(z)] + G(z))
    works \rightarrow \lambda x [ \varnothing | work(x) ]
A student works \mapsto \lambda G([z \mid student(z)] + G(z))(\lambda x[\varnothing \mid work(x)])
                                   \Rightarrow^{\beta} [z \mid student(z)] + \lambda x [\emptyset \mid work(x)](z)
                                   \Rightarrow^{\beta} [z \mid student(z)] + [\emptyset \mid work(z)]
                                   \Rightarrow^{\beta} [z | student(z), work(z)]
```

Compositional analysis

- Mary $\rightarrow \lambda G([z | z = Mary] + G(z))$
- she $\rightarrow \lambda G.G(z)$

Mary works. She is successful.

$$\rightarrow \lambda K \lambda K'(K + K')([z | z = Mary, work(z)])([|successful(z)])$$

$$\Rightarrow^{\beta} \lambda K'([z \mid z = Mary, work(z)] + K')([successful(z)])$$

$$\Rightarrow^{\beta} [z \mid z = Mary, work(z)] + ([|successful(z)])$$

$$\Rightarrow^{\beta} [z \mid z = Mary, work(z), successful(z)]$$

Merge again

The "merge" operation on DRSs combines two DRSs (conditions and universes).

• Let $K_1 = [U_1 \mid C_1]$ and $K_2 = [U_2 \mid C_2]$.

Merge: $K_1 + K_2 \Rightarrow [U_1 \cup U_2 \mid C_1 \cup C_2]$ under the assumption that no discourse referent $u \in U_2$ occurs free in a condition $\gamma \in C_1$.

Note that under this definition Merge is directional: $K_1 + K_2 + K_2 + K_1$

Variable capturing

In λ -DRT, discourse referents are captured via the interaction of β -reduction and DRS-binding:

```
\lambda K'([z \mid student(z), work(z)] + K')([\mid successful(z)])
\Rightarrow^{\beta} [z \mid student(z), work(z)] + [\mid successful(z)]
\Rightarrow^{\beta} [z \mid student(z), work(z), successful(z)]
```

- But the β-reduced DRS must be equivalent to the original DRS!
- This means that the potential for capturing discourse referents must be captured in the interpretation of λ -DRSs.
- → Possible, but tricky.

Playing in the sandbox

PDRT-SANDBOX is a Haskell library that implements Discourse Representation Theory (and the extension Projective DRT)

http://hbrouwer.github.io/pdrt-sandbox/also available via: login.coli.uni-saarland.de:/proj/courses/semantics19

- Define your own DRSs, using the internal syntax or the settheoretic notation
- Show the DRSs in different output formats (boxes, linear boxes,
 - set-theoretic, internal syntax)
- Composition of DRSs (using lambda's)
- Translate DRSs to FOL formulas

DRS Syntax in PDRT-SANDBOX

```
DRS [...] [...] referents conditions
DRS:
Referents:
            DRSRef "x", DRSRef "Mary"
Conditions:
   Relation: Rel (DRSRel "man") [DRSRef "x"]
   Negation: Neg (DRS [...] [...])
   Implication: Imp (DRS [...] [...]) (DRS [...] [...])
   Disjunction: or (DRS [...] [...]) (DRS [...] [...])
```

Properties: isPure(DRS [...] [...]), isProper(DRS [...] [...])

Using PDRT-SANDBOX on coli

Literature

References:

- Hans Kamp and Uwe Reyle. From Discourse to Logic, Kluwer: Dordrecht 1993.
- Reinhard Muskens. "Combining Montague semantics and discourse representation." Linguistics and philosophy (1996): 143-186.

Background reading:

 https://plato.stanford.edu/entries/discourse-representationtheory/