Unidade II

Objetivos

Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução, métodos dedutivos e técnicas de redução da quantidade de conectivos.

Introdução

Nesta unidade, serão apresentados temas mais avançados sobre proposições, o que permitirá ao aluno, técnicas adicionais as já estudadas na unidade anterior, possibilitando assim lidar com operações lógicas mais complexas.

3 OPERAÇÕES ADICIONAIS SOBRE PROPOSIÇÕES

3.1 Implicação lógica

3.1.1 Definição

Uma proposição P (p, q, r,...) implica logicamente uma proposição Q (p, q, r,...) se Q (p, q, r,...) é verdadeira todas as vezes que P (p, q, r,...) for verdadeira.

Verifica-se facilmente a implicação observando-se a última coluna nas linhas da tabela-verdade da proposição P, quando elas apresentarem valor verdadeiro. Se, na linha correspondente da tabela-verdade de Q, obtém-se também o valor verdadeiro, conclui-se que "P implica Q".

A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:

$$P(p, q, r,...) \Rightarrow Q(p, q, r,...)$$

3.1.2 Propriedades da implicação lógica

A implicação lógica tem as propriedades reflexiva e transitiva:

Reflexiva: P (p, q, r,...) \Rightarrow P (p, q, r,...)

Transitiva: Se P (p, q, r,...) \Rightarrow Q (p, q, r,...) e

 $Q(p, q, r,...) \Rightarrow R(p, q, r,...)$, então

 $P(p, q, r,...) \Rightarrow R(p, q, r,...)$

Exemplos:

1. A tabela-verdade da proposição (p \vee q) $\wedge \sim$ p:

Tabela 30

р	q	$p \vee q$	~p	$(p \lor q) \land \sim p$
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Essa proposição é verdadeira somente na linha 3 e, nessa mesma linha, a proposição "q" também é verdadeira.

Logo, tem-se uma implicação lógica:

$$(p \lor q) \land \sim p \Rightarrow q$$

2. A tabela-verdade das proposições: $p \land q$, $p \lor q$ $p \leftrightarrow q$ é:

Tabela 31

р	q	p ∧ q	$p \vee q$	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

A proposição p \land q é verdadeira somente na linha 1 e, nessa linha, as proposições p \lor q e p \leftrightarrow q também são verdadeiras. Logo, a primeira proposição implica cada uma das outras duas proposições.

Em símbolos:

$$p \land q \Rightarrow p \lor q \ e \ p \land q \Rightarrow p \longleftrightarrow q$$

3. A tabela-verdade da proposição (p ightarrow q) \wedge p é:

Tabela 32

t	q	$p \to q$	$(p\toq)\landp$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

Essa proposição é verdadeira somente na linha 1 e, nesta linha, a proposição q também é verdadeira.

Em símbolos:

$$(p \rightarrow q) \land p \Rightarrow q$$

4. A tabela-verdade das proposições (p \rightarrow q) $\land \sim$ q e \sim p são:

Tabela 33

р	q	$p \rightarrow q$	~q	$(p \rightarrow q) \land \sim q)$	~p
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

A proposição (p \rightarrow q) $\land \sim$ q é verdadeira somente na linha 4, e nesta linha, a proposição \sim p também é verdadeira.

Em símbolos:

$$(p \rightarrow q) \land \sim q \Rightarrow \sim p$$

3.1.3 Tautologias e implicação lógica

A proposição P (p, q, r,...) implica a proposição Q (p, q, r,...), isto é: P (p, q, r,...) \Rightarrow Q (p, q, r,...)

Se e somente se a condicional:

$$P(p, q, r,...) \rightarrow Q(p, q, r,...)$$
 é tautológica

Portanto, a toda implicação lógica corresponde uma condicional tautológica e vice-versa (ALENCAR FILHO, 2002).

Daí, se P (p, q, r,...) \Rightarrow Q (p, q, r,...), então, também se tem:

$$P(P_{o'}, Q_{o'}, R_{o'}...) \Rightarrow Q(P_{o'}, Q_{o'}, R_{o'}...)$$

Quaisquer que sejam a proposições P_0 , Q_0 , R_0 ,...

Observação: os símbolos \rightarrow e \Rightarrow são distintos, pois o primeiro é de operação lógica (aplicado, por exemplo, às proposições p e q, dá a nova proposição p \rightarrow q), enquanto o segundo é de relação, estabelece que a condicional P (p, q, r,...) \rightarrow Q (p, q, r,...) é tautológica (ALENCAR FILHO, 2002).

Exemplos (ALENCAR FILHO, 2002):

1. A condicional p $\land \sim p \rightarrow q$ é tautológica, pois a última coluna da sua tabela-verdade apresenta somente valores verdadeiros.

Tabela 34

р	q	~p	p ∧ ~p	$p \land \sim p \rightarrow q$
V	V	F	F	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

2. A proposição (p \leftrightarrow q) \land p implica a proposição q, pois a condicional (p \leftrightarrow q) \land p \rightarrow q é tautológica, conforme se vê pela tabela-verdade:

Tabela 35

р	q	$p \leftrightarrow q$	(p ↔ q) ∧ p	$(p \leftrightarrow q) \land p \to q$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	V	F	V

Portanto, $(p \leftrightarrow q) \land p \Rightarrow q$.

3.2 Equivalência lógica

3.2.1 Definição

Diz-se que duas ou mais proposições são logicamente equivalentes quando suas proposições possuem a mesma tabela-verdade. De maneira mais formal, tem-se:

Uma proposição P (p, q, r,...) é logicamente equivalente ou apenas equivalente a uma proposição Q (p, q, r,...) se as tabelas-verdade dessas duas proposições são idênticas (ALENCAR FILHO, 2002).

A notação para uma proposição P (p, q, r,...) ser equivalente a uma proposição Q (p, q, r,...) é dada por:

$$P(p, q, r,...) \Leftrightarrow Q(p, q, r,...)$$

3.2.2 Propriedades da equivalência lógica

A equivalência lógica tem as seguintes propriedades: é reflexiva, simétrica e transitiva.

Em símbolos:

Reflexiva: P (p, q, r,...) \Leftrightarrow P (p, q, r,...)

Simétrica: Se P (p, q, r,...) \Leftrightarrow Q (p, q, r,...)

Q (p, q, r,...) P(p, q, r,...)

Transitiva: Se P (p, q, r,...) \Leftrightarrow Q (p, q, r,...)

 $Q(p, q, r) \Leftrightarrow R(p, q, r,...)$

 $P(p, q, r) \Leftrightarrow R(p, q, r,...)$

Exemplos (ALENCAR FILHO, 2002):

1. As proposições ~~p e p são equivalentes, isto é, ~~p ⇔ p (regra da dupla negação). É o que demonstra a tabela-verdade:

Tabela 36

р	~p	~~p
V	F	V
F	V	F

Notam-se as colunas destacadas, logo, a dupla negação equivale à afirmação.

2. As proposições $\sim p \to p$ e p são equivalentes, isto é, $\sim p \to p \Leftrightarrow p$ é o que demonstra a tabela:

Tabela 37

р	~ p	~p → p
٧	F	V
F	V	F

3. A condicional p \rightarrow q e a disjunção \sim p \vee q têm tabelas-verdade idênticas:

Tabela 38

р	q	$p \rightarrow q$	~p	~p ∨ q
V	V	V	F	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

Por consequência, as duas proposições são equivalentes: $p \rightarrow q \Leftrightarrow \sim p \vee q$.

4. As condicionais p \rightarrow p \land q e p \rightarrow q são equivalentes, isto é p \rightarrow p \land q \Leftrightarrow p \rightarrow q. É o que demonstra a tabela.

Tabela 39

р	q	p∧q	$p \rightarrow p \wedge q$	$p \rightarrow q$
V	V	V	V	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	V

5. A bicondicional p \leftrightarrow q e a conjunção (p \rightarrow q) \land (q \rightarrow p) têm tabelas-verdade idênticas:

Tabela 40

р	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

Por consequência, as duas proposições são equivalentes:

$$P \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

3.2.3 Tautologias e equivalência lógica

A proposição P (p, q, r,...) é equivalente à proposição Q (p, q, r,...), isto é:

$$P(p, q, r,...) \Leftrightarrow Q(p, q, r,...)$$

Se e somente se a bicondicional:

P (p, q, r,...) \leftrightarrow Q (p, q, r,...) é tautológica (ALENCAR FILHO, 2002).

Logo, toda a equivalência lógica corresponde a uma bicondicional tautológica e vice-versa.

Se P (p, q, r,...) \Leftrightarrow Q (p, q, r,...), então também se tem:

$$\mathsf{P}\left(\mathsf{P}_{_{0'}}\,\mathsf{Q}_{_{0'}}\,\mathsf{R}_{_{0'}}...\right) \Longleftrightarrow \mathsf{Q}\left(\mathsf{P}_{_{0'}}\,\mathsf{Q}_{_{0'}}\,\mathsf{R}_{_{0'}}...\right)$$

Quaisquer que sejam as proposições P_0 , Q_0 , R_0 ,...

Os símbolos \leftrightarrow e \Leftrightarrow são distintos, pois o primeiro é de operação lógica (aplicado, por exemplo, às proposições p e q, dá a nova proposição p \leftrightarrow q), enquanto o segundo é de relação (estabelece que a bicondicional P (p, q, r,...) \leftrightarrow Q (p, q, r,...) é tautológica (ALENCAR FILHO, 2002).

3.2.4 Proposições associadas a uma condicional

Dada a condicional p \rightarrow q, chamam-se proposições associadas a p \rightarrow q as três seguintes proposições condicionais que contêm p e q:

- a) Proposição recíproca de $p \rightarrow q$: $q \rightarrow p$
- b) Proposição contrária de p \rightarrow q: \sim p \rightarrow \sim q
- c) Proposição contrapositiva de p \rightarrow q: \sim q \rightarrow \sim p

As tabelas-verdade dessas quatro proposições são:

Tabela 41

p	q	$p \rightarrow q$	$q \rightarrow p$	~p → ~q	~ q → ~p
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

E demonstram duas importantes propriedades:

A condicional p \rightarrow q e a sua contrapositiva \sim q \rightarrow \sim p são equivalentes, ou seja:

$$p \rightarrow q \Leftrightarrow \sim p \rightarrow \sim q$$

A recíproca q \rightarrow p e a contrária \sim p \rightarrow \sim q da condicional p \rightarrow q são equivalentes, ou seja:

$$q \rightarrow p \Leftrightarrow \sim p \rightarrow \sim q$$

As mesmas tabelas-verdade também demonstram que a condicional p \rightarrow q e a sua recíproca q \rightarrow p ou a sua contrária \sim p \rightarrow \sim q não são equivalentes.

A contrária de p \rightarrow q também é denominada a inversa de p \rightarrow q, e a contrapositiva de p \rightarrow q é a contrária da recíproca de p \rightarrow q, por isso também é denominada contrarrecíproca de p \rightarrow q. Também se diz que p \rightarrow q é a direta em relação às associadas (ALENCAR FILHO, 2002).

Exemplos adaptados de Alencar Filho (2002):

1. Seja a condicional relativa a um quadrilátero Q:

 $p \rightarrow q$: se Q é quadrado, então Q é retângulo

A recíproca dessa proposição é:

 $q \rightarrow p$: se Q é retângulo, então é quadrado.

Aqui, a condicional p \rightarrow q é verdadeira, mas a sua recíproca q \rightarrow p é falsa.

2 A contrapositiva da condicional:

 $p \rightarrow q$: Se João é professor, então é miserável.

 \sim q \rightarrow \sim p: Se João não é miserável, então não é professor.

3. Encontre a positiva da condicional "Se x é maior que zero, então x não é negativo".

O primeiro passo é inferir as proposições básicas e a elas atribuir uma letra das variáveis proposicionais. Logo, representando por p a proposição "x é maior que zero" e por q a proposição "x é negativo", note que em q não foi usada a negação. A condicional na forma simbólica fica:

$$p \rightarrow \sim q$$

Daí que a sua contrapositiva é:

$${\sim}{\sim} q \to {\sim} p \Leftrightarrow q \to {\sim} p$$

Isso é, em linguagem corrente: "Se x é negativo, então x não é maior que zero".

4. Seja demonstrada a proposição condicional:

 $p \rightarrow q$: se x^2 é ímpar, então x é ímpar.

A contrapositiva dessa condicional é:

$$\sim q \rightarrow \sim p$$
: se x é par, então x^2 é par.

3.3 Negação conjunta de duas proposições

A conjunção de duas proposições p e q negadas é a proposição "não p e não q". Esse tipo de negação é denominado de negação conjunta (ALENCAR FILHO, 2002).

Em símbolos:

$$\sim p \land \sim q$$

A negação conjunta de duas proposições p e q também se indica pela notação p \downarrow q, em que é apresentada uma seta para baixo. Note que o sentido da seta é contrário ao vértice do símbolo de conjunção, ou seja, seta para baixo, o vértice para cima.

Em símbolos:

$$p \downarrow q \Leftrightarrow \sim p \land \sim q$$

Como a proposição " $\sim p \land \sim q$ " é verdadeira somente no caso em que p e q são ambas falsas, então a tabela-verdade de "p $\downarrow q$ " é a seguinte:

Tabela 42

Р	q	p ↓ q
V	V	F
V	F	F
F	V	F
F	F	V

3.4 Negação disjunta de duas proposições

A negação disjunta de duas proposições p e q é a proposição "não p ou não q", isto é, simbolicamente " \sim p $\vee \sim$ q" (ALENCAR FILHO, 2002).

A negação disjunta de duas proposições p e q também se indica pela notação "p ↑ q". Note que o sentido da seta é contrário ao vértice do símbolo de disjunção, ou seja, seta para cima, o vértice para baixo.

Em símbolos:

$$p \uparrow q \Leftrightarrow \sim p \lor \sim q$$

Como a proposição " \sim p $\vee \sim$ q" é falsa somente no caso em que p e q são ambas verdadeiras, então a tabela-verdade de "p \uparrow q" é a seguinte :

Tabela 43

р	q	p↑q
V	V	F
V	F	V
F	V	V
F	F	V

Os símbolos "↓" e "↑" são conhecidos como conectivos de Scheffer.

4 PROPRIEDADES DAS PROPOSIÇÕES E FUNDAMENTOS DA DEDUÇÃO

4.1 Propriedades das principais proposições

A seguir, serão apresentas as propriedades relacionadas às proposições. A demonstração destas será realizada por meio das tabelas-verdade.

4.1.1 Propriedades da conjunção

Sejam p, q e r proposições simples quaisquer e sejam t e c proposições também simples, cujos valores lógicos respectivos são verdadeiro e falso (ALENCAR FILHO, 2002).

1. Idempotente: $p \wedge p \Leftrightarrow p$.

Para demonstrar a equivalência dessas duas proposições, verifica-se que as tabelas-verdade das proposições $p \land p$ e p são idênticas, ou seja, a bicondicional $p \land p \leftrightarrow p$ é **tautológica**:

Tabela 44

р	р∧р	$p \wedge p \leftrightarrow p$
V	V	V
F	F	V

2. Identidade: $p \wedge t \Leftrightarrow p \in p \wedge c \Leftrightarrow c$.

As tabelas-verdade das proposições $p \land t e p$, $p \land c e c são idênticas respectivamente, ou seja, as bicondicionais <math>p \land t \leftrightarrow p e p \land c \leftrightarrow c são tautológicas$:

Tabela 45

р	t	С	p∧t	р∧с	p∧t↔p	$p \wedge c \leftrightarrow c$
V	V	F	V	F	V	V
F	V	F	F	F	V	V

3. Associativa: $(p \land q) \land r \quad p \land (q \land r)$.

Tabela 46

р	q	r	p∧q	(p ∧ q) ∧ r	q∧r	p ∧ (q ∧ r)
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	F
V	F	F	F	F	F	F
F	V	V	F	F	F	F
F	V	F	F	F	F	F
F	V	V	F	F	F	F
F	F	F	F	F	F	F

Observe-se que a bicondicional $(p \land q) \land r \leftrightarrow p \land (q \land r)$ é tautológica.

4. Comutativa: $p \land q \leftrightarrow q \land p$.

As tabelas-verdade das proposições p \land q e q \land q são idênticas, ou seja, a bicondicional p \land q \leftrightarrow q \land p é tautológica:

Tabela 47

р	q	p∧q	q∧p	$p \wedge q \leftrightarrow q \wedge p$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	F	F	V

4.1.2 Propriedades da disjunção

Sejam p, q e r proposições simples quaisquer e sejam t e c proposições também simples, cujos valores lógicos respectivos são V (verdadeiro) e F (falso) (ALENCAR FILHO, 2002).

1. Idempotente: $p \lor p \Leftrightarrow p$.

As tabelas-verdade das proposições $p \lor p$ e p são idênticas, ou seja, a bicondicional $p \lor p \leftrightarrow p$ é tautológica.

Tabela 48

р	p v p	$p \lor p \leftrightarrow p$
V	V	V
F	F	V

3. Identidade: $p \lor t \Leftrightarrow t e p \lor c \Leftrightarrow p$.

As tabelas-verdade das proposições $p \lor t$ e t, $p \lor c$ e c são idênticas respectivamente, ou seja, as bicondicionais $p \lor t \leftrightarrow t$ e $p \lor c \leftrightarrow p$ são tautológicas:

Tabela 49

р	t	С	$p \vee t$	p∨c	p∨t↔t	$p \lor c \leftrightarrow p$
V	V	F	V	V	V	V
F	V	F	V	F	V	V

3. Associativa: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$.

As tabelas-verdade das proposições (p \vee q) \vee r e p \vee (q \vee r) são idênticas. Logo, a bicondicional (p \vee q) $\vee \leftrightarrow$ p \vee (q \vee r) é tautológica.

Tabela 50

р	q	r	$p \vee q$	$(p \lor q) \lor r$	$q \vee r$	p ∨ (q ∨ r)
V	V	V	V	V	V	V
V	V	F	V	V	V	V
V	F	V	V	V	V	V
V	F	F	V	V	F	V
F	V	V	V	V	V	V
F	V	F	V	V	V	V
F	F	V	F	V	V	V
F	F	F	F	F	F	F

4. Comutativa: $p \lor q \Leftrightarrow q \lor p$.

As tabelas-verdade das proposições $p \lor q$ e $q \lor p$ são idênticas, ou seja, a bicondicional $p \lor q \longleftrightarrow q \lor p$ é tautológica:

Tabela 51

р	q	$p \vee q$	$q \vee q$	$p \lor q \leftrightarrow q \lor p$
V	V	V	V	V
V	F	V	V	V
F	V	V	V	V
F	F	F	F	V

4.1.3 Propriedades da conjunção e da disjunção

Sejam p, q e r proposições simples quaisquer.

1. Distributivas:

a.
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$
;

b.
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$
;

As tabelas-verdade das proposições $p \land (q \lor r)$ e $(p \land q) \lor (p \land r)$ são idênticas:

 p
 q
 r
 q∧r
 p∨(q∧r)
 p∨q
 p∨r
 (p∨q)∧(p∨r)

 V
 V
 V
 V
 V
 V

 V
 V
 F
 F
 V
 V
 V

 V
 F
 F
 V
 V
 V
 V
 V

 V
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F</td

Tabela 52

Logo, a bicondicional p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r) é tautológica.

Analogamente, são idênticas as tabelas-verdade das proposições p \vee (q \wedge r) e (p \vee q) \wedge (p \vee r):

 $p \vee q$ ٧ ٧ ٧ ٧ ٧ ٧ ٧ F ٧ ٧ F ٧ ٧ ٧ F ٧ ٧ F ٧ F ٧ ٧ ٧ ٧ ٧ ٧ F ٧ ٧ ٧ F F

Tabela 53

Logo, a bicondicional p \vee (q \wedge r) \leftrightarrow (p \vee q) \wedge (p \vee r) é tautológica.

2. Absorção:

$$p \land (p \lor q) \Leftrightarrow p e p \lor (p \land q) \Leftrightarrow p$$
.

As tabelas-verdade das proposições p \land (p \lor q) e p são respectivamente idênticas, ou seja, a bicondicional p \land (p \lor q) \leftrightarrow p é tautológica:

Tabela 54

р	q	p v q	p ∧ (p ∨ q)	$p \land (p \lor q) \leftrightarrow p$
V	V	V	V	V
V	F	V	V	V
F	V	V	F	V
F	F	F	F	V

Analogamente, são idênticas as tabelas-verdade das proposições p \vee (p \wedge q) e p, ou seja, a bicondicional p \vee (p \wedge q) \leftrightarrow p é tautológica:

Tabela 55

р	q	p∧q	$p \lor (p \land q)$	$p \lor (p \land q) \leftrightarrow p$
V	V	V	V	V
V	F	F	V	V
F	V	F	F	V
F	F	F	F	V

3. Regras de De Morgan:

Essas propriedades são muito utilizadas nos mais diversos ramos da computação, logo, são muito importantes.

a.
$$\sim$$
 (p \wedge q) \Leftrightarrow \sim p \vee \sim q;

b.
$$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$$
.

As tabelas-verdade das proposições \sim (p \wedge q) e \sim p \vee \sim q são idênticas:

Tabela 56

р	q	p∧q	~(p ∧ q)	~p	~ q	~ p ∨ ~q
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

Logo, a bicondicional $\sim (p \land q) \leftrightarrow \sim p \lor \sim q$ é tautológica.

Analogamente, são idênticas as tabelas-verdade das proposições \sim (p \vee q) e \sim p \wedge \sim q:

Tabela 57

р	q	p v q	~(p ∨ q)	~ p	~ q	~p ∧ ~ q
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	F	V	V

Logo, a bicondicional $\sim (p \land q) \leftrightarrow \sim p \land \sim q$ é tautológica.

As regras de De Morgan mostram como é possível definir a disjunção a partir da conjunção e da negação, ou a conjunção a partir da disjunção e da negação:

$$p \lor q \Leftrightarrow \sim (\sim p \land \sim q);$$

$$p \wedge q \Leftrightarrow \sim (\sim p \vee \sim q).$$

4.1.4 Negação da condicional

Como p \rightarrow q \Leftrightarrow ~ p \vee q, negando-se a condicional, tem-se:

$$\sim (p \rightarrow q) \Leftrightarrow \sim (\sim p \land q) \Leftrightarrow \sim \sim p \land \sim q \Leftrightarrow p \land \sim q$$

O pode ser verificado pela tabela-verdade das proposições \sim (p \rightarrow q) e p \wedge \sim q, que são idênticas:

Tabela 58

р	q	$p \rightarrow q$	$\sim (p \rightarrow q)$	~ q	p ∧ ~q
V	V	V	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F

4.1.5 Negação da bicondicional

Sabendo-se que $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ e $p \leftrightarrow q \Leftrightarrow (\sim p \lor q) \land (\sim q \lor p)$, que foram examinados nos tópicos anteriores, e aplicando-se a negação da condicional, obtém-se de forma análoga a negação da condicional:

$${\sim}(p \longleftrightarrow q) \Longleftrightarrow {\sim}({\sim}p \lor q) \lor {\sim} ({\sim} \ q \lor p)$$

$$\sim (p \leftrightarrow q) \Leftrightarrow (\sim \sim p \land \sim q) \lor (\sim \sim q \land \sim p)$$

Portanto:

$$\sim (p \leftrightarrow q) \Leftrightarrow (p \land \sim q) \lor (\sim p \land q)$$

A bicondicional p \leftrightarrow q não possui a propriedade idempotente, pois é imediato que não são idênticas as tabelas-verdade das proposições p \leftrightarrow p e p, mas possui as propriedades comutativa e associativa (ALENCAR FILHO, 2002).

4.2 Método dedutivo

As implicações e equivalências foram demonstradas usando-se as tabelas-verdade. Essa abordagem é perfeitamente válida, porém, quando as sentenças lógicas tornam-se mais complexas, seu uso torna-se inviável. Neste tópico, as demonstrações das implicações e equivalências serão realizadas por um método mais eficiente, denominado método dedutivo. Nele, usar-se-á com frequência as propriedades das proposições estudas anteriormente (ALENCAR FILHO, 2002).

Para auxílio nas demonstrações, serão realizadas as seguintes suposições: serão dadas as proposições simples p, q, r, a proposição t sempre é verdadeira e a proposição c é sempre falsa. Elas serão substituídas, respectivamente, por proposições compostas P, Q, R, T (tautologia) e C (contradição) quando for o caso.

Exemplos (ALENCAR FILHO, 2002):

- 1. Demonstrar as implicações:
- a. $c \Rightarrow p$

b. $p \Rightarrow t$

onde p é uma proposição qualquer, c e t são proposições cujos valores lógicos respectivos são F e V.

Demonstração:

Sabe-se, do exposto no tópico sobre implicações, que p \rightarrow q e \sim p \vee q são proposições equivalentes, e que uma implicação é verdadeira se a condicional é tautológica, logo, se provamos que a condicional referente à implicação é tautológica, provamos então que a proposição é válida.

Da equivalência p \rightarrow q \Leftrightarrow \sim p \vee q e do fato que V(c) = F e V(t)=V, seguem-se:

- a. $c \rightarrow p \Leftrightarrow \neg c \lor p \Leftrightarrow t \lor p \Leftrightarrow t$;
- b. $p \rightarrow t \Leftrightarrow \sim p \lor t \Leftrightarrow t$.

As tabelas-verdade de $c \rightarrow p e p \rightarrow t$ mostram que essas condicionais são tautológicas:

Tabela 59

р	С	t	$c \rightarrow p$	$p \rightarrow t$
V	F	V	V	V
F	F	V	V	V

Porém, a meta aqui é não usar o artifício da tabela-verdade para demonstrar a proposição.

2. Demonstrar a implicação: $p \land q \Rightarrow p$ (simplificação):

Demonstração:

Parte-se da equivalência p \rightarrow q \Leftrightarrow \sim p \vee q, depois, usa-se a propriedade de De Morgan que afirma que a negação de uma conjunção é a disjunção das negações e, por fim, pela comutação da disjunção, prova-se a tautologia T.

$$p \land q \rightarrow p \Leftrightarrow {\sim}(p \land q) \lor p \Leftrightarrow ({\sim}p \lor {\sim}q) \lor p \Leftrightarrow ({\sim}p \lor p) \lor {\sim}q \Leftrightarrow T \lor {\sim}q \Leftrightarrow T$$

3. Demonstrar a implicação: $p \Rightarrow p \lor q$ (adição).

Demonstração:

Se a condicional for tautológica, prova-se a implicação. Para isso, usa-se a equivalência $p \to q \Leftrightarrow \sim p \lor q$ aplicada à proposição que se deseja demonstrar, a partir da qual se chega a uma expressão com duas disjunções, sobre as quais se aplica a propriedade distributiva, de onde obtém-se a tautologia.

$$p \rightarrow p \lor q \Leftrightarrow \sim p \lor (p \lor q) \Leftrightarrow (\sim p \lor p) \lor p \Leftrightarrow T \lor q \Leftrightarrow T$$

4. Demonstrar a implicação (p \rightarrow q) \land p \Rightarrow q (modus ponens).

Demonstração:

$$(p \to q) \land p \Leftrightarrow p \land (\sim p \lor q) \Leftrightarrow (p \land \sim p) \lor (p \land q) \Leftrightarrow C \lor (p \land q) \Leftrightarrow p \land q \Rightarrow q$$

5. Demonstrar a implicação (p \rightarrow q) $\land \sim$ q $\Rightarrow \sim$ p (modus tollens).

Demonstração:

$$(p \rightarrow q) \land \sim q \Leftrightarrow (\sim p \lor q) \land \sim q \Leftrightarrow (\sim p \land \sim q) \lor (q \lor \sim q)$$
$$(\sim p \land \sim q) \lor C \Leftrightarrow \sim p \land \sim q \Rightarrow \sim p$$

6. Demonstrar a implicação (p \vee q) \wedge \sim p \Rightarrow q (silogismo disjuntivo).

Demonstração:

$$(p \vee q) \wedge \sim p \Leftrightarrow (p \wedge \sim p) \vee (q \wedge \sim p) \Leftrightarrow C \vee (q \wedge \sim p) \Leftrightarrow q \wedge \sim p \Rightarrow q$$

7. Demonstrar a implicação $p \land q \Rightarrow p \lor q$.

Demonstração:

$$p \land q \rightarrow p \lor q \Leftrightarrow \sim (p \land q) \lor (p \lor q) \Leftrightarrow (\sim p \lor \sim q) \lor (p \lor q) \Leftrightarrow (\sim p \lor p) \lor (\sim q \lor q) \Leftrightarrow T \lor T \Leftrightarrow T$$

8. Demonstrar a implicação p \Rightarrow q \rightarrow p.

Demonstração:

$$p \to (q \to p) \Leftrightarrow \sim p \lor (q \to p) \Leftrightarrow \sim p \lor (\sim q \lor p) \Leftrightarrow (\sim q \lor p) \Leftrightarrow (\sim p \lor p) \lor \sim q \Leftrightarrow T \lor \sim q \Leftrightarrow T$$

9. Demonstrar a implicação p $\Rightarrow \sim p \rightarrow q$.

Demonstração:

$$p \to (\sim p \to q) \Leftrightarrow \sim p \lor (\sim p \to q) \Leftrightarrow \sim p \lor (\sim \sim p \lor q) \Leftrightarrow \sim p \lor (p \lor q) \Leftrightarrow (\sim p \lor p) \lor q \Leftrightarrow T \lor q \Leftrightarrow T$$

10. Demonstrar a implicação: $p \rightarrow q \Rightarrow p \land r \rightarrow q$.

Demonstração:

$$(p \to q) \to (p \land r \to q) \Leftrightarrow (p \to q) \lor (p \land r \to q)$$

$$\Leftrightarrow \sim (\sim p \lor q) \lor (\sim)p \land r) \lor q)$$

$$\Leftrightarrow (\sim \sim p \land \sim q) \lor ((\sim p \lor \sim r) \lor q)$$

$$\Leftrightarrow (p \land \sim q) \lor \sim (p \land \sim q)) \lor \sim r$$

$$\Leftrightarrow T \lor \sim r \Leftrightarrow T$$

4.3 Redução do número de conectivos

São cinco conectivos fundamentais $(\sim, \land, \lor, \rightarrow)$. Ver-se-á que é possível que três deles podem ser expressos em termos de apenas dois dos seguintes pares:

- 1. ~ e ∨
- 2. \sim e \wedge
- $3. \sim e \rightarrow$

Demonstração:

1. \land , \rightarrow e \leftrightarrow pode ser escrito em função de \sim e \lor :

$$p \land q \Leftrightarrow \sim \sim p \land \sim \sim q \Leftrightarrow \sim (\sim p \lor \sim q)$$

$$p \rightarrow q \Leftrightarrow \sim p \vee q$$

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) \Leftrightarrow {\sim}({\sim}\; p \lor q) \lor {\sim}(\; {\sim}q \lor q))$$

2. \vee , \rightarrow e \leftrightarrow pode ser escrito em função de \sim e \wedge :

$$p \lor q \Leftrightarrow \sim \sim p \lor \sim \sim q \Leftrightarrow \sim (\sim p \land \sim q)$$

$$p \rightarrow q \Leftrightarrow \sim p \vee q \Leftrightarrow \sim (p \wedge \sim q)$$

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) \Leftrightarrow \sim (p \land \sim q) \land \sim (\sim p \land q)$$

3. \land , \lor e \leftrightarrow pode ser escrito em função de \sim e \rightarrow :

$$p \land q \Leftrightarrow \sim (\sim p \lor \sim q) \Leftrightarrow \sim (p \to \sim q)$$

$$p \lor q \Leftrightarrow \sim \sim p \lor q \Leftrightarrow \sim p \rightarrow q$$

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) \Leftrightarrow \sim ((p \rightarrow q) \rightarrow \sim (q \rightarrow p))$$

4.4 Forma normal das proposições

Uma proposição está na forma normal (FN) se e somente se a proposição contém apenas os conectivos \sim , \wedge e \vee .

Exemplos:

As proposições a seguir estão na FN:

b.
$$\sim (\sim p \vee \sim q)$$

c.
$$(p \land q) \lor (\sim q \lor r)$$

Observação: Toda proposição pode ser levada para uma FN equivalente pela eliminação dos conectivos \rightarrow e \leftrightarrow , se existirem, isto é, pela substituição de p \rightarrow q por \sim p \vee q e de p \leftrightarrow q por (\sim p \vee q) \wedge (p \vee \sim q).

4.5 Princípio de dualidade

Seja P uma proposição que só contém os conectivos \sim , \land e \lor . A proposição que resulta de P trocando cada símbolo \land por \lor e cada símbolo \lor por \land chama-se dual de P. Assim, por exemplo, a dual de \sim ((p \land q) \lor \sim r) é \sim ((p \lor q) \land \sim r).

Princípio de dualidade: se P e Q são proposições equivalentes que só contêm os conectivos \sim , \wedge e V, então as suas duais respectivas P_1 e Q_1 também são equivalentes.

Assim, por exemplo, da equivalência p \land (p \lor q) \Leftrightarrow p deduz-se, pelo princípio de dualidade, a equivalência p \lor (p \land q) \Leftrightarrow p.

Analogamente, a partir de $(p \land \sim p) \lor q \Leftrightarrow q$ deduz-se, pelo princípio de dualidade: $(p \lor \sim p) \land q \Leftrightarrow q$ (ALENCAR FILHO, 2002).

Tabela 60

Tipos de triângulos					
Triângulo	equilátero (3 lados iguais)	isósceles (2 lados iguais)	escaleno (todos os lados diferentes)		
Acutângulo ângulos internos < 90º					
Retângulo 1 ângulo = 90º					
Obtusângulo 1 ângulo > 90°					

Nesta unidade, foram apresentados aspectos mais avançados da lógica proposicional, entre eles, o que é uma equivalência. Além disso, verificou-se o

que é recíproca, contrária e contrapositiva, e a relação entre tautologia e implicação.

Finalmente, demonstrou-se o método dedutivo e verificou-se que o uso das propriedades das proposições é fundamental nesse método.

Exercícios

Questão 1. (ICMS, 1997, adaptado) Se Rodrigo mentiu, então ele é culpado. Logo:

- A) Rodrigo é culpado.
- B) Se Rodrigo não mentiu então ele não é culpado.
- C) Rodrigo mentiu.
- D Se Rodrigo não é culpado, então ele não mentiu.
- E) Se Rodrigo é culpado, então ele mentiu.

Resposta correta: alternativa D.

Análise das alternativas

Se Rodrigo mentiu, então ele é culpado:

- Se p então q ou p \rightarrow q.
- Onde o p é antecedente e condição suficiente para que ocorra q.
- Onde o q é consequente e condição necessária para que ocorra p.
- Dado que p \rightarrow q, posso afirmar que \sim p \rightarrow \sim q.

Analisando as alternativas, tome cuidado com a alternativa B, pois ao negar o antecedente (negando a condição suficiente) nada sei sobre o consequente (nada posso afirmar quanto à condição necessária). Já a alternativa D, é a verificação lógica, pois ao negar a condição necessária (o consequente) eu nego a condição suficiente (o antecedente).

Há a possibilidade de engano com a alternativa E, ou seja, se Rodrigo é culpado então ele mentiu. Veja que esta afirmação pode ser representada por $q \rightarrow p$. Na tabela-verdade é possível comprovar que (Se Rodrigo mentiu, então ele é culpado: $p \rightarrow q$) e (Se Rodrigo é culpado, então ele mentiu: $q \rightarrow p$) não são equivalentes lógicas. Observe:

р	q	$p\toq$	$q\top$
V	V	V	V
V	F	F	V
F	V	V	F
F	F	V	V

Observe que as proposições p \rightarrow q e q \rightarrow p não apresentam os mesmos valores lógicos, ou seja, afirmar uma não quer dizer afirmar a outra. Sendo assim:

A) Alternativa incorreta.

Justificativa: não condiz com a análise inicial e nem com a tabela-verdade construída.

B) Alternativa incorreta.

lustificativa: não condiz com a análise inicial e nem com a tabela-verdade construída.

C) Alternativa incorreta.

Justificativa: não condiz com a análise inicial e nem com a tabela-verdade construída.

D) Alternativa correta.

Justificativa: Condiz com a análise inicial

E) Alternativa incorreta.

Justificativa: não condiz com a análise inicial e nem com a tabela-verdade construída.

Questão 2. (SAE-PE/2008) Leonardo disse a Fernanda: - Eu jogo futebol ou você não joga golfe. Fernanda retrucou: - isso não é verdade.

Sabendo que Fernanda falou a verdade, é correto afirmar que:

- A) Leonardo joga futebol e Fernanda joga golfe.
- B) Leonardo joga futebol e Fernanda não joga golfe.
- C) Leonardo não joga futebol e Fernanda joga golfe.
- D) Leonardo não joga futebol e Fernanda não joga golfe.
- E) Leonardo não joga futebol ou Fernanda joga golfe.

Resolução desta questão na Plataforma.