Aerospace Structures Pre-Laboratory Lab 8 Thin-Walled Section and Shear Center

Section 4 Group 2 Matthew Mehrtens March 23, 2023

AER E 322

Spring 2023

Question 1

(30 points) For specimens I and II (Table 1 below), derive an expression for the area moment of inertia, I, about its neutral axis in terms of h, b and t.

Table 1. Difficultions for the two types of cross sections of specimens.						
Specimen	Cross section	Height,	Width,	Thickness,	Outer	Opening
ID	type	h (inch)	b (inch)	$t ext{ (inch)}$	diameter,	angle,
					OD (inch)	$2\theta_0 \text{ (deg)}$
I	Plastic C-channel	2.43	1.456	0.08	N/A	N/A
II	Metal C-channel	0.84	0.56	0.055	N/A	N/A
III	PVC circular open	N/A	N/A	0.071	1.66	3.1
IV	PVC circular open	N/A	N/A	0.071	1.66	36.3
V	PVC circular open	N/A	N/A	0.071	1.66	103.7

Table 1: Dimensions for the two types of cross sections of specimens.

Question 2

(25 points) Calculate the theoretical shear center of each of the five specimens using the following expressions as derived on pages 9 and 11 in lecture notes:

C-channel:
$$e = \frac{h^2 b^2 t}{4I}$$
 (1)

Circular open-channel:
$$e = \frac{2r[\cos\theta_0(2\pi - 2\theta_0) + 2\sin\theta_0]}{2\pi - 2\theta_0 + \sin(2\theta_0)}$$
(2)

See Figure 1 for all the corresponding parameters h, b, t, r, and θ_0 . Note that the total opening angle is $2\theta_0$.

Hint: To derive the expression for I for specimens I and II, you can do one of two ways: (1) calculate I for the horizontal flanges and vertical web individually and then sum up or (2) use "subtraction" method by calculating I for a larger "outer" rectangular area and then subtracting it from I of the smaller "inner" area. You will also need parallel axis theorem. Also, as indicated in Figure 1, the shear center offset e for the C-channel beams is measured from the center of the vertical web, while e for the circular open-channel pipes is measured from the center of circular cross section. Likewise, height h is measured between mid-planes of top and bottom flanges, and r is mean radius, i.e., $r = \frac{OD-t}{2}$.

Aerospace Structures Pre-Laboratory Lab 8 Thin-Walled Section and Shear Center

Section 4 Group 2 Matthew Mehrtens March 23, 2023

AER E 322 March 23, 2023 **Spring 2023**

Figure 1: Schematic diagrams of the thin-walled cross section of specimen: (left) C-channel and (right) circular open channel.

Height \mathbf{h} is measured between mid-planes of top and bottom flanges as in lecture notes

Aerospace Structures Pre-Laboratory Lab 8 Thin-Walled Section and Shear Center

Section 4 Group 2 Matthew Mehrtens March 23, 2023

AER E 322

Spring 2023

Question 3

 $(5\ points)\ Tabulate\ the\ results.$