Аналогично получаем:

$$\begin{split} &P\left(\gamma_{1}|H_{2}\right)=0.5\left[1-\Phi\left(\sqrt{\frac{E_{3}}{2N_{0}}}\right)\right],\\ &\text{T.e. }P\left(\gamma_{1}|H_{2}\right)=P\left(\gamma_{2}|H_{1}\right)\Rightarrow P_{out}=0.5\cdot2P\left(\gamma_{2}|H_{1}\right)=0.5\left[1-\Phi\left(\sqrt{\frac{E_{3}}{2N_{0}}}\right)\right],\\ &P_{out}=0.5\left[1-\Phi\left(\sqrt{\frac{E_{3}}{2N_{0}}}\right)\right]. \end{split}$$

Таким образом, вероятность ошибки $P_{O\!I\!I\!I}$ тем меньше, чем больше энергия $E_{_{\scriptscriptstyle 3}}$ разностного сигнала.

$$E_{9} = \int_{0}^{T} \left[S_{1}(t) - S_{2}(t) \right]^{2} dt = \int_{0}^{T} S_{1}^{2}(t) dt + \int_{0}^{T} S_{2}^{2}(t) dt - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt = E_{1} + E_{2} - 2 \int_{0}^{T} S_{1}(t) S_{2}(t) dt.$$

Энергия $E_{_9}$ тем больше, чем больше суммарная энергия двух сигналов $S_{_1}(t)$

и $S_2(t)$ E_I+E_2 и чем меньше корреляция между ними $\int\limits_0^T S_I(t)S_2(t)dt$.

Если $E_1 = E_2 = E$, $r_s = \frac{1}{E} \int_0^T S_1(t) S_2(t) dt$ - коэффициент взаимной корреляции между $S_1(t)$ и $S_2(t)$,

то
$$E_{9} = 2E - 2r_{s}E = 2E(1 - r_{s})$$
 и $P_{out} = 0.5 \left[1 - \Phi\left(\sqrt{\frac{E(1 - r_{s})}{N_{o}}}\right) \right]$

Если $r_s=-1$, тогда $S_1(t)=-S_2(t)$ - противоположные сигналы, $P_{O\!I\!I\!I}$ минимальна; если $r_s=1$, тогда $S_1(t)=S_2(t)$, $P_{O\!I\!I\!I}=0.5$ - сигналы не различимы; если $r_s=0$, тогда сигналы ортогональны.

Потенциальная помехоустойчивость ДАМ, ДФМ, ДЧМ и ДОФМ сигналов.

1. Двоичная амплитудная модуляция (ДАМ):

«1» передается сигналом $S_I(t) = A\cos(\omega t)$,

«0» передается сигналом $S_2(t) = 0$,

$$0 \le t \le T$$
.

 E_2 =0; E_1 =E, тогда по формуле:

$$P_{out} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E_{\circ}}{2N_{o}}} \right) \right]$$

Получим выражение для потенциальной помехоустойчивости:

$$P_{ou} = 0.5 \left[1 - \Phi \left(\sqrt{\frac{E}{2N_0}} \right) \right]$$

или через интеграл Лапласса $F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{V^2}{2}} dV$: $P_{out} = 1 - F\left(\sqrt{\frac{E}{2N_0}}\right)$