Q1. We need to show that, if there is a derivation of $\Gamma\{A, [\Delta]\}$ in NK howing height m, then there is a derivation of $\Gamma\{A, [A, \Delta]\}$ whose height is at most m.

We can use height - preserving admissibility of weakening in NK to construct our desired derivation:

 $\Gamma \left\{ \Diamond A, \Gamma \Delta \right\} \right\}$ $\Gamma \left\{ \Diamond A, \Gamma A, \Delta \right\} \right\}$

The preservation of the Reight is guaranteed by the fact that weakening is hh-adminible.

Q2. We prove the contrapositive statement: if $\Gamma SA, \Gamma \Delta I$ 3 is not valid in transitive models, then $\Gamma SA, [AA, \Delta I]$ 3 is not valid in transitive models.

Assume $\Gamma\{A, [\Delta]\}$ is not valid. Then there is a transitive model Γ and a \mathcal{H} -map f s.t.: $\mathcal{H}, f(S) \not\models B$, for all $S \in \mathcal{H}(\Gamma\{A, [\Delta]\})$, for all $B \in S$.

Let χ be s.t. $\Diamond A \in \chi$ and $\mathcal{E} = \Delta$. Both χ and ε are modes of $tr(\Gamma \cap A, [\Delta])$. We have that H, $f(\mathcal{E}) \not\models \Delta$, and H, $f(\mathcal{E}) \not\models \Delta$, for all $D \in \Delta$. Moreover, since M is transitive, it holds that M, $f(\mathcal{E}) \not\models \Delta A$. To see this, consider

all the worlds $w \in W \text{ s.t. } f(E) R w. By transignessing of R, we have that <math>f(S) R w$, and so $w \not\models A$. Since this holds for any world accenible from f(E), conclude that H, $f(E) \not\models \Diamond A$.

We thus conclude that K and J refute [] A, [] A

Q3. We distinguish corses according to the form of A.

on A:= p. Then Tfp, \$\overline{f}\rights is an instance of init, and we are done.

DA:=BAC. We construct the following derivation:

$$\frac{\Gamma\{B,\overline{B}\}}{\Gamma\{C,\overline{C}\}}$$

$$\frac{\Gamma\{B,\overline{C},\overline{C}\}}{\Gamma\{B,C,\overline{B},\overline{C}\}}$$

Since ch(B) < ch(BAC) and ch(c) < ch(BAC), both $\Gamma\{B, \overline{B}\}$ and $\Gamma\{C, \overline{C}\}$ are derivable by inductive hypothesis.

DA:= BVC. Similar to the previous cone.

DA:= DB. We construct the derivation:

$$\frac{\Gamma\{[B,B],\Diamond B\}}{\Gamma\{[B],\Diamond B\}}$$

$$\frac{\Gamma\{[B],\Diamond B\}}{\Gamma\{[BB],\Diamond B\}}$$

The sequent $\Gamma\{LB,BJ,AB\}$ can be written

as follows (changing the context): $\Gamma'\{B,\bar{B}\},$ where $\Gamma'\{3=\Gamma\{[\{3], \langle \bar{B}\}\}.$

Since the statement says "for any context", we can still apply the inductive hypothesis, and conclude that $\Gamma'\{B,\bar{B}\}$ is derivable.

Q4.

By IH applied to $\Gamma\{\Diamond A, [\Delta], [\Diamond A, \Xi]\}$, we have that $\Gamma\{\Diamond A, [\Delta], [\Diamond A, \Xi]\}$ is derivable.

We construct the following derivation:

$$\Gamma\{\Diamond A, [\Delta, [\Diamond A, \Xi]]\} \\
\Gamma\{\Diamond A, [\Delta, \Diamond A, [\Diamond A, \Xi]]\} \\
\Gamma\{\Diamond A, [\Delta, \Diamond A, [\Xi]]\} \\
\Gamma\{\Diamond A, [\Delta, \Diamond A, [\Xi]]\}$$