CLAIMS

I claim:

1	1. A method of operation for a half-duplex bus comprising:
2	asserting a preempt signal by a first agent to indicate that the first agent
3	has a read request pending for transmission over the half-duplex bus;
4	sampling the preempt/signal by a second agent; and
5	relinquishing ownership of the half-duplex bus by the second agent
6	responsive to the preempt signal.
	I .

- The method of claim 1 further-comprising:
 sending the read request over the half-duplex bus from the first agent to
 the second agent.
- The method of claim 1 further comprising:
 returning ownership of the half-duplex bus back to the second agent;
 sending read data over a the half-duplex bus from the second agent to the
 first agent.
- 1 4. The method of claim 3 wherein the read data is associated with the read 2 request.
- 5. The method of claim 1 wherein the second agent comprises a memory controller.
- 1 6. The method of daim 1 wherein the first agent comprises an input/output 2 device.

042390.P8456

1	7. A method of operation for a half-duplex bus comprising:
2	sending a read return over the half-duplex bus from a first agent to a
3	second agent;
4	signaling the first agent by the second agent that the second agent has a
5	read request pending;
6	electing by the first agent a suitable point at which to preempt the read
7	return;
8	granting ownership of the half-duplex bus to the second agent;
9	sending the read request from the second agent to the first agent over the
10	half-duplex bus; and
11	returning ownership of the half-duplex bus to the first agent.
1	8. The method of claim 7 wherein the signaling step comprises:
2	asserting a request signal and a preempt signal by the second agent;
3	sampling the request signal and the preempt signal by the first agent.
1	9. The method of claim 7 further comprising:
2	determining by the first agent that a threshold indicative of imminent read
3	starvation has been exceeded.
1	10. The method of claim 7 wherein the suitable point comprises a cacheline
2	boundary.
1	11. The method of claim 7 wherein the granting ownership and returning
2	ownership steps comprise a one clock period turnaround

1	12. The method of claim 7 wherein the first agent comprises a memory
2	controller.
1	13. The method of claim 12 wherein the second agent comprises an
2	input/output bridge device.
1	14. The method of claim 7 wherein the second agent includes an arbiter tha
2	executes an arbitration protocol.
1	15. The method of claim 14 wherein the arbiter of the first agent also
2	executes a preemption algorithm to elect the suitable point.
1	16. A computer system comprising:
2	a half-duplex bus;
3	first and second agents coupled to the half-duplex bus, each having an
4	arbiter that follows an algorithm to determine ownership of the half-duplex bus;
5	first and second request lines coupled between the first and second
6	agents, the first request ine being asserted by the first agent to request
7	ownership of the half-duplex bus from the second agent, and the second request
8	line being asserted by the second agent to request ownership of the half-duplex
9	bus from the first agent in accordance with the algorithm; and
10	a preempt signal that is asserted by the second agent to indicate to the
11	first agent that the second agent has a certain type of request pending.
1	17. The computer system of claim 16 wherein the certain type of request is a
2	read request.

- 1 18. The computer system of claim 17 wherein the second agent asserts the
- 2 preempt signal during a current read return from the first agent to the second
- 3 agent.
- 1 19. The computer system of claim 1/8 wherein the arbiter of the first agent
- 2 responds to the preempt signal in accordance with a preemption algorithm that
- 3 determines a suitable point to relinquish ownership of the half-duplex bus to the
- 4 second agent.
- 20. The computer system of claim 19 wherein the suitable point comprises a
- 2 cacheline boundary.
- 1 21. The computer system of claim 16 wherein the first agent comprises a
- 2 memory controller.
- 1 22. The computer system of claim 21 wherein the second agent comprises
- 2 an input/output device.
- 1 23. The computer system of claim 19 wherein execution of the preemption
- 2 algorithm by the arbiter of the first agent causes the first agent to determine
- whether a queue of read requests awaiting service by the first agent is below a
- 4 predetermined threshold.

