Printed Pages: 2 University Ro	oll No:
Mid Term Examination, Odd B.Tech. (I Year)- I S	
Subject:- Engineering Mathematics-I	Subject Code:- AHM-1201
Time: 1 Hour	Max. Marks: 15

Section-A

Note: Attempt ALL questions.

 $(3 \times 2 = 6)$

1. By changing to echelon form, find the rank of the matrix:

$$\begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{bmatrix}$$

- 2. (a) Two eigen values of a 3 × 3 non-singular matrix are 2 and 3. If the sum of 'product of two eigen values taken at a time' is 11, then find the characteristic equation of the matrix.
 - (b) If A is any square matrix, prove that $A + A^{\theta}$ is Hermitian, where A^{θ} denotes the transpose-conjugate of A.
- 3. Write the condition for a differential equation $\frac{dy}{dx} = \frac{M(x,y)}{N(x,y)}$ to be exact. Find the solution of $(e^y + 1)\cos x \, dx + e^y \sin x \, dy = 0$.

Section-B

Note: Attempt ALL questions.

 $(3 \times 3 = 9)$

1. For what values of λ and μ , the system of equations,

$$2x + 3y + 5z = 9$$
, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$ will have: (i) infinitely many solutions (ii) unique solution (iii) no

solution. Also solve the system for $\lambda=5$ and $\mu=10$.

P. T. O.

2. Use Cayley Hamilton theorem to find the inverse of the matrix

$$A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$$

3. Solve the differential equation
$$\frac{dy}{dx} = \frac{-(xy^3 + y)}{2(x^2y^2 + x + y^4)}$$