Algebra 1A, lista 5.

Konwersatorium 14.11.2016 i 21.11.2016.

- 0S. Materiał teoretyczny: Twierdzenie Cayleya o reprezentacji grupy. Dalsze przykłady grup: grupy dihedralne $D_n, n \geq 2$, grupa ósemkowa kwaternionów Q_8 , grupa zespolonych pierwiastków z jedności i jej podgrupy. Produkt grup: definicja, własności, przykłady. Definicja i twierdzenie o produkcie wewnętrznym podgrup grupy G: przypadek dwóch podgrup, przypadek k podgrup. Skończone grupy abelowe jako produkty grup cyklicznych: rozpoznawanie ich izomorficzności.
 - 1. (K) Załóżmy, że G, H są grupami, $a \in G, b \in H$ oraz grupa G jest cykliczna.
- (a) Załóżmy, że G jest skończona, generowana przez a oraz ord(b) dzieli ord(a). Udowodnić, że istnieje dokładnie jeden homomorfizm grup $f: G \to H$ taki, że f(a) = b.
- (b) Udowodnić, że istnieje dokładnie jeden homomorfizm $f:(\mathbb{Z},+)\to H$ taki, że f(1)=b.
- (c) Załóżmy, że G jest nieskończona, generowana przez a. Udowodnić, że istnieje dokładnie jeden homomorfizm grup $f: G \to H$ taki, że f(a) = b.
 - 2.S Wyznaczyć wszystkie homomorfizmy $f: G \to H$, gdzie:
 - (a) $G = (\mathbb{Z}, +), H = (\mathbb{Z}_4, +_4).$
 - (b) $G = (\mathbb{Z}_3, +_3), H = (\mathbb{Z}_4, +_4).$
 - (c) $G = (\mathbb{Z}_{10}, +_{10}), H = (\mathbb{Z}_6, +_6).$
 - 3. Załóżmy, że G i H są grupami, $g \in G, h \in H$.
- (a) S Załóżmy, że ord(g)=3, ord(h)=5. Udowodnić, że w produkcie $G\times H$ $ord(\langle g,h\rangle)=15$.
 - (b) K Ogólniej, gdy ord(g) = n, ord(h) = m, udowodnić, że $ord(\langle g, h \rangle) = NWW(n, m)$.
 - 4K. Czy następujące grupy są cykliczne?
 - (a) $(\mathbb{Z}, +) \times (\mathbb{Z}, +)$,
- (b) $(\mathbb{Z}_3, +_3) \times (\mathbb{Z}_3, +_3)$,
- (c) $(\mathbb{Z}_6, +_6) \times (\mathbb{Z}_6, +_6)$,
- (d) $(\mathbb{Z}_3, +_3) \times (\mathbb{Z}_4, +_4)$,
- (e) $(\mathbb{Z}, +) \times (\mathbb{Z}_2, +_2)$.

(wsk: zbadać rzędy elementów tych grup)

- 5K. Wypisać wszystkie grupy abelowe rzędu 12 (z dokładnością do izomorfizmu, bez powtórzeń).
- 6K. Wiemy, że grupy $\mathbb{Z}_3 \oplus \mathbb{Z}_5$ i \mathbb{Z}_{15} są cykliczne, rzędu 15, więc izomorficzne. Przedstawić grupę \mathbb{Z}_{15} jako produkt wewnętrzny podgrup cyklicznych rzędu 3 i 5.
 - 7S. Wyznaczyć wszystkie elementy postaci \boldsymbol{x}^2
 - (a) w grupie kwaternionów Q_8 ,
 - (b) w grupie S_3 ,
 - (c) w grupie S_4 .

Czy tworzą one podgrupę? Czy jest to podgrupa normalna?

- 8. K Czy $G \cong H$, gdzie:
- (a) $G = (\mathbb{Z}_{60}, +_{60}), H = (\mathbb{Z}_{10}, +_{10}) \times (\mathbb{Z}_6, +_6).$
- (b) $G = (\mathcal{P}(\{a, b, c\}), \Delta), H = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.$

- (c) $G = D_6$, $H = A_4$. (wsk: zbadać wszędzie rzędy elementów, abelowość).
- 9. K $f:(\mathbb{R}^2,+)\to(\mathbb{R},+)$ dana jest wzorem f(x,y)=2x+3y. f jest epimorfizmem grup (a nawet przestrzeni liniowych). Znaleźć Ker(f). Wskazać podgrupę $H<(\mathbb{R}^2,+)$ taką, że $(\mathbb{R}^2,+)$ jest produktem wewnętrznym podgrup Ker(f) i H. W szczególności, $(\mathbb{R}^2,+)\cong Ker(f)\times H$.
 - 10. K Niech $D = \{\langle k, k \rangle : k \in \mathbb{Z}\}$. Jest to podgrupa grupy $G = (\mathbb{Z}, +) \times (\mathbb{Z}, +)$.
 - (a) Wskazać epimorfizm $f: G \to (\mathbb{Z}, +)$ taki, że Ker(f) = D.
- (b) Wskazać podgrupę H < G taką, że G jest produktem wewnętrznym podgrup D i H.
 - (c) Udowodnić, że grupa ilorazowa G/D jest izomorficzna z grupa $(\mathbb{Z}, +)$.
- 11. K (a) Czy istnieje podgrupa $H<(\mathbb{Q},+)$ taka, że $(\mathbb{Q},+)$ jest produktem wewnętrznym podgrup \mathbb{Z} i H?
- (b) Czy istnieje podgrupa $H < (\mathbb{Z}, +)$ taka, że $(\mathbb{Z}, +)$ jest produktem wewnętrznym podgrup $3\mathbb{Z}$ i H?
- (c) Czy grupa kwaternionów Q_8 jest produktem wewnętrznym jakichś swoich podgrup właściwych K, H?
- (d)* Czy istnieje podgrupa $H<(\mathbb{R},+)$ taka, że $(\mathbb{R},+)$ jest produktem wewnętrznym podgrup $\mathbb Q$ i H?
 - 12. K W grupie ilorazowej G/H wyznaczyć rząd elementu a+H, gdzie:
 - (a) $G = (\mathbb{Q}, +), H = (\mathbb{Z}, +), a = \frac{2}{3},$
 - (b) $G = (\mathbb{Q}, +), H = (3\mathbb{Z}, +), a = \frac{2}{3},$
 - (c) $G = (\mathbb{Z}_{12}, +_{12}), H = \{0, 3, 9\}, a = 5,$
 - (d) $G = (\mathbb{R}, +), H = (\mathbb{Q}, +), a = \sqrt{2}.$
- 13. K Określić epimorfizm f z grupy $(\mathbb{R}, +)$ na grupę S liczb zespolonych modułu 1, taki że $Ker(f) = \mathbb{Z}$. Wywnioskować stąd, że $(\mathbb{R}, +)/\mathbb{Z} \cong S$. (wsk: przypomnieć sobie epimorfizm $f(x) = \cos(x) + i\sin(x)$ z \mathbb{R} na S z wykładu. Jakie jest jego jądro? Jak poprawić f, by jądrem stała się grupa \mathbb{Z} ?)