Exponential Family

A family of distribution $\{P_{\theta}: \theta \in \Theta\}$, $\Theta \subset \mathbb{R}^k$ is said to be a k-parameter exponential family on \mathbb{R}^q , if there exist real valued functions:

- lacksquare $\eta_1,\eta_2,\cdots,\eta_k$ and B of heta,
- ▶ T_1, T_2, \dots, T_k , and h of $x \in \mathbb{R}^q$ such that the density function (pmf or pdf) of P_θ can be written as

$$p_{\theta}(x) = \exp\left[\sum_{i=1}^{k} \eta_i(\theta) T_i(x) - B(\theta)\right] h(x)$$

$$|P_{O}(x) = b(O(x))$$

$$X = beginneter.$$

there is reany way's O, and x can interact. ud roof each Ulimot loiting not see alt body *

ilenith seath you alt etaichean to book in

x,0 in teract with each other.

4 in Exponential family, O, x interact E C

Shen $O \in IR$ $C \times X$ $C \times R$ $C \times R$ $C \times R$ $C \times R$ $C \times R$

tou OFIRK, XEIR, me converge Just do ORX, We can do in

$$= e^{\chi \rho} \left(\sum_{i=1}^{\chi} n_i(o) \tau_i(\chi) \right) \cdot e^{\chi \rho} \left(-\log \left(\frac{1}{C(o)} \right) \right) h(\chi)$$

$$= exe \left(\sum_{j=1}^{K} N_{j}(0) T_{j}(x) - \log \left(\frac{1}{c(0)} \right) \right) h(x)$$

$$\log\left(\frac{1}{\cos^2(1-c)}\right) = \mathcal{C}(0)$$

$$= exp\left(\sum_{i=1}^{k} n_i(o) T_i(\kappa) - B(o)\right) h(\kappa)$$

Normal distribution example

▶ Consider $X \sim \mathcal{N}(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2)$. The density is

$$p_{\theta}(x) = \exp\left(\frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}x^2 - \frac{\mu^2}{2\sigma^2}\right)\frac{1}{\sigma\sqrt{2\pi}},$$

which forms a two-parameter exponential family with

$$\eta_1 = \frac{\mu}{\sigma^2}, \ \eta_2 = -\frac{1}{2\sigma^2}, \ T_1(x) = x, \ T_2(x) = x^2,$$

$$B(\theta) = \frac{\mu^2}{2\sigma^2} + \log(\sigma\sqrt{2\pi}), \ h(x) = 1.$$

▶ When σ^2 is known, it becomes a one-parameter exponential family on ${\rm I\!R}$:

$$\eta = \frac{\mu}{\sigma^2}, \ T(x) = x, \ B(\theta) = \frac{\mu^2}{2\sigma^2}, \ h(x) = \frac{e^{-\frac{x^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}}.$$

$$|P_{0}(x)| = \frac{1}{2\sigma^{2}} = \frac{1}{2$$

$$= 6 \times b \left(x \cdot \frac{5 \cdot c_3}{x} - \frac{5 \cdot c_3}{m_5} \right) = 25 \cdot u \cdot \left(\frac{5 \cdot c_3}{x} \right)$$

$$\mathbb{G}(0) = \frac{505}{\text{m}} \quad \text{?} \quad \mu(x) = \frac{252}{16} 6 kb \left(\frac{505}{-35}\right)$$

Examples of discrete distributions

The following distributions form discrete exponential families of distributions with pmf

- ▶ Bernoulli(p): $p^x(1-p)^{1-x}$, $x \in \{0,1\}$
- Poisson(λ): $\frac{\lambda^x}{x!}e^{-\lambda}$, $x=0,1,\ldots$

Xer Bornogli(b)

=
$$exp \left(x \cdot 109 \frac{P}{1-P} - 109 \left(\frac{1}{1-P} \right) \right)$$

$$T(x) = x \quad (0) = \frac{P}{1-P}$$

X as Poisson (X)

$$\mathbb{A}^{\chi}(x) = \frac{\chi_{i}}{6-\chi_{i}} \qquad x = 0^{1/5}, \dots$$

$$P_{\lambda}(x) = exp(-\lambda - x \log \lambda) \frac{1}{x!}$$

$$R_{x}(x) = exp(x, -logx - x) - \frac{1}{x!}$$

$$T(x) = x \qquad N(e) = -logx$$

$$N(x) = \frac{1}{x!}$$

$$R(0) = x$$

Examples of Continuous distributions

The following distributions form continuous exponential families of distributions with pdf:

- ► Gamma(a,b): $\frac{1}{\Gamma(a)b^a}x^{a-1}e^{-\frac{x}{b}}$;
 - ▶ above: *a*: shape parameter, *b*: scale parameter
 - ightharpoonup reparametrize: $\mu=ab$: mean parameter

$$\frac{1}{\Gamma(a)} \left(\frac{a}{\mu}\right)^a x^{a-1} e^{-\frac{ax}{\mu}}.$$

- ► Inverse Gamma (α, β) : $\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}e^{-\beta/x}$.
- Inverse Gaussian (μ, σ^2) : $\sqrt{\frac{\sigma^2}{2\pi x^3}}e^{\frac{-\sigma^2(x-\mu)^2}{2\mu^2x}}$.

Others: Chi-square, Beta, Binomial, Negative binomial distributions.

Components of GLM

1. Random component:

 $Y \sim$ some exponential family distribution

2. Link: between the random and covariates:

$$g(\mu(X)) = X^{\top}\beta$$

where g called link function and $\mu(X) = \mathbb{E}(Y|X)$.

One-parameter canonical exponential family

ightharpoonup Canonical exponential family for k=1, $y\in {\rm I\!R}$

$$f_{\theta}(y) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right)$$

for some *known* functions $b(\cdot)$ and $c(\cdot, \cdot)$.

- If ϕ is known, this is a one-parameter exponential family with θ being the canonical parameter .
- ▶ If ϕ is unknown, this may/may not be a two-parameter exponential family. ϕ is called dispersion parameter.
- ▶ In this class, we always assume that ϕ is *known*.

un the comornical exponential family, what I have, in that I have X = 0, and we have come mornalization factor ϕ

$$P_{\theta}(a) = 6 \times 6 \left(\frac{2 \cdot 6 - \rho(a)}{\phi} + c(a \cdot \phi) \right)$$

nwomi is b fi

then h(y)= exp (c(y,4))

Normal distribution example

► Consider the following Normal density function with known variance σ^2 ,

$$f_{\theta}(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

$$= \exp\left\{\frac{y\mu - \frac{1}{2}\mu^2}{\sigma^2} - \frac{1}{2}\left(\frac{y^2}{\sigma^2} + \log(2\pi\sigma^2)\right)\right\},$$

▶ Therefore $\theta = \mu, \phi = \sigma^2, \ , b(\theta) = \frac{\theta^2}{2}, \ \text{and}$

$$c(y,\phi) = -\frac{1}{2}(\frac{y^2}{\phi} + \log(2\pi\phi)).$$

$$= 6 \times b \left(-\frac{5 \alpha_5}{3 \beta} - \frac{3 \alpha_5}{10 \beta} + \frac{\alpha_5}{3 \gamma} - \frac{2 \alpha_5}{10 \beta} - \frac{2 \alpha_5}{10 \beta} \right)$$

$$Q = 5a_5 \quad |cmonu\rangle$$

$$= 6xb\left(\frac{3a_5}{3a_5} - \left(\frac{5a_5}{x_5} + 100(a_25u)\right)\right)$$

$$C(0) = \frac{u^2}{2} \left(\frac{x^2}{\phi} + \log(2\pi\phi) \right)$$

b(0) what's gomma mare the difference
blw Craussicmis, Resmoullis, Cramma, beda
etc.. b(0) contain's everythine that
idio syncratic to the Porticular distoishim.

Other distributions

Table 1: Exponential Family

	Normal	Poisson	Bernoulli
Notation	$\mathcal{N}(\mu, \sigma^2)$	$\mathcal{P}(\mu)$	$\mathcal{B}(p)$
Range of y	$(-\infty,\infty)$	$[0,-\infty)$	$\{0, 1\}$
ϕ	σ^2	1	1
$b(\theta)$	$\frac{\theta^2}{2}$	$e^{ heta}$	$\log(1+e^{\theta})$
$c(y,\phi)$	$-\frac{1}{2}(\frac{y^2}{\phi} + \log(2\pi\phi))$	$-\log y!$	1

Likelihood

Let $\ell(\theta) = \log f_{\theta}(Y)$ denote the log-likelihood function. The mean $\mathrm{I\!E}(Y)$ and the variance $\mathrm{var}(Y)$ can be derived from the following identities

First identity

$$\mathbb{E}(\frac{\partial \ell}{\partial \theta}) = 0,$$

Second identity

$$\mathbb{E}(\frac{\partial^2 \ell}{\partial \theta^2}) + \mathbb{E}(\frac{\partial \ell}{\partial \theta})^2 = 0.$$

Obtained from
$$\int f_{\theta}(y)dy \equiv 1$$
.

1St Identity:

$$=) \quad ||E\left[\frac{90}{98}\right] = 0$$

$$= \frac{90}{5} \cdot \frac{90}{5} \cdot \frac{90}{5} \cdot \frac{1}{5} \cdot$$

$$= \int_{\mathbb{R}} \left[\frac{90s}{35} \right] + \int_{\mathbb{R}} \left[\frac{90}{35} \right] = 0$$

$$= \int_{\mathbb{R}} \left[\frac{90s}{35} \right] = \int_{\mathbb{R}} \frac{10(x)}{5} \frac{90}{5} \frac{1}{5} = 0$$

$$= \int_{\mathbb{R}} \left[\frac{90s}{35} \right] = \int_{\mathbb{R}} \frac{10(x)}{5} \frac{90}{5} \frac{10(x)}{5} \frac{1}{5} \frac{1}{5} = 0$$

$$= \int_{\mathbb{R}} \left[\frac{90s}{35} \right] = \int_{\mathbb{R}} \frac{10(x)}{5} \frac{90}{5} \frac{10(x)}{5} \frac{1}{5} \frac{1}{5} = 0$$

$$= \int_{\mathbb{R}} \left[\frac{90s}{35} \right] = \int_{\mathbb{R}} \frac{10(x)}{5} \frac{$$

Expected value

Note that

$$\ell(\theta) = \frac{Y\theta - b(\theta)}{\phi} + c(Y; \phi),$$

Therefore

$$\frac{\partial \ell}{\partial \theta} = \frac{Y - b'(\theta)}{\phi}$$

It yields

$$0 = \mathbb{E}(\frac{\partial \ell}{\partial \theta}) = \frac{\mathbb{E}(Y) - b'(\theta)}{\phi},$$

which leads to

$$\mathbb{E}(Y) = \mu = b'(\theta).$$

Camonical Exponential Distociantion

$$fo(\lambda) = 6 \times 6 \left(\frac{20 - p(0)}{4} + c(2,4) \right)$$

$$l(0) = log fo(y) = \frac{y_0 - b(0)}{\phi} + c(y_0)$$

1st Identito:

$$IE\left[\frac{90}{90}\right]=0 \Rightarrow \frac{30}{30}=\frac{3-50}{9}$$

ф

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$$

Variance

On the other hand we have we have

$$\frac{\partial^2 \ell}{\partial \theta^2} + \left(\frac{\partial \ell}{\partial \theta}\right)^2 = -\frac{b''(\theta)}{\phi} + \left(\frac{Y - b'(\theta)}{\phi}\right)^2$$

and from the previous result,

$$\frac{Y - b'(\theta)}{\phi} = \frac{Y - \mathbb{E}(Y)}{\phi}$$

Together, with the second identity, this yields

$$0 = -\frac{b''(\theta)}{\phi} + \frac{\operatorname{var}(Y)}{\phi^2},$$

which leads to

$$\operatorname{var}(Y) = V(Y) = b''(\theta)\phi.$$

Identity 2

$$\mathbb{E}\left(\frac{9\theta_J}{9J_J} + \left(\frac{90}{90J_J}\right) = 0$$

$$\frac{905}{557} = -\frac{\phi}{P_1(0)} \left(\frac{90}{57} \right) = \left(\frac{\phi}{\lambda - P_1(0)} \right)$$

$$IE\left[-\frac{\phi}{P_{1}(0)} + \left(\lambda - P_{1}(0)\right)\right] = 0$$

$$=) \qquad IE \left[\left(\lambda - P_{1}(0) \right)_{5} \right] = P_{1}(0)$$

$$=)$$
 $V02/(\lambda) = P_{1}(0) \cdot \phi$

Example: Poisson distribution

Example: Consider a Poisson likelihood,

$$f(y) = \frac{\mu^y}{y!} e^{-\mu} = e^{y \log \mu - \mu - \log(y!)},$$

Thus,

$$\theta = \log \mu, \quad b(\theta) = \mu, \quad c(y, \phi) = -\log(y!),$$

$$\phi = 1,$$

$$\mu = e^{\theta},$$

$$b(\theta) = e^{\theta},$$

$$b''(\theta) = e^{\theta} = \mu,$$

$$b(0) = e^{0}$$

$$b(0) = e^{0}$$

$$b'(0) = e^{0}$$

$$b''(0) = e^{0}$$

$$b''(0) = e^{0}$$

$$b''(0) = e^{0}$$

MID an

WP core tolding

$$g(u(x)) = x^T p$$

Link function

- \triangleright β is the parameter of interest, and needs to appear somehow in the likelihood function to use maximum likelihood.
- ▶ A link function g relates the linear predictor $X^{\top}\beta$ to the mean parameter μ ,

$$X^{\top}\beta = g(\mu).$$

ightharpoonup g is required to be monotone increasing and differentiable

$$\mu = g^{-1}(X^{\top}\beta).$$

$$\mathbb{E}[X|X] = \mathcal{U}(X)$$

 $S(u(x)) = x^{T}p$

=) we want the Link function g() to be

Countinuously differentiable

=) and g() to be stouctly increasing

3(u(x)) Span's 1R

Examples of link functions

- ▶ For LM, $g(\cdot) = identity$.
- ▶ Poisson data. Suppose $Y|X \sim \text{Poisson}(\mu(X))$.
 - $\mu(X) > 0$;
 - $\log(\mu(X)) = X^{\top}\beta;$
 - ▶ In general, a link function for the count data should map $(0, +\infty)$ to ${\rm I\!R}.$
 - ► The log link is a natural one.
- Bernoulli/Binomial data.
 - $0 < \mu < 1$;
 - g should map (0,1) to ${\rm I\!R}$:
 - ▶ 3 choices:
 - 1. logit: $\log\left(\frac{\mu(X)}{1-\mu(X)}\right) = X^{\top}\beta;$
 - 2. probit: $\Phi^{-1}(\mu(X)) = X^{\top}\beta$ where $\Phi(\cdot)$ is the normal cdf;
 - 3. complementary log-log: $\log(-\log(1-\mu(X))) = X^{\top}\beta$
 - The logit link is the natural choice.

Examples of link functions for Bernoulli response (1)

- $in blue: f_1(x) = \frac{e^x}{1 + e^x}$
- in red: $f_2(x) = \Phi(x)$ (Gaussian CDF)

Examples of link functions for Bernoulli response (2)

▶ in blue:

$$g_1(x) = f_1^{-1}(x) = \log \frac{x}{1 - x}$$
 (logit link)

▶ in red:

$$g_2(x) = f_2^{-1}(x) = \Phi^{-1}(x)$$
 (probit link)

Canonical Link

▶ The function g that links the mean μ to the canonical parameter θ is called Canonical Link:

$$g(\mu) = \theta$$

▶ Since $\mu = b'(\theta)$, the canonical link is given by

$$g(\mu) = (b')^{-1}(\mu)$$
.

▶ If $\phi > 0$, the canonical link function is strictly increasing. Why?

Example: the Bernoulli distribution

We can check that

$$b(\theta) = \log(1 + e^{\theta})$$

► Hence we solve

$$b'(\theta) = \frac{\exp(\theta)}{1 + \exp(\theta)} = \mu \qquad \Leftrightarrow \qquad \theta = \log\left(\frac{\mu}{1 - \mu}\right)$$

► The canonical link for the Bernoulli distribution is the logit link.

Other examples

	$b(\theta)$	$g(\mu)$
Normal	$\theta^2/2$	μ
Poisson	$\exp(heta)$	$\log \mu$
Bernoulli	$\log(1 + e^{\theta})$	$\log \frac{\mu}{1-\mu}$
Gamma	$-\log(-\theta)$	$-rac{1}{\mu}$,

Model and notation

Let $(X_i, Y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n be independent random pairs such that the conditional distribution of Y_i given $X_i = x_i$ has density in the canonical exponential family:

$$f_{\theta_i}(y_i) = \exp\left\{\frac{y_i\theta_i - b(\theta_i)}{\phi} + c(y_i, \phi)\right\}.$$

- $ightharpoonup {f Y} = (Y_1, \dots, Y_n)^{ op}, \ {\mathbb X} = (X_1^{ op}, \dots, X_n^{ op})^{ op}$
- lacktriangle Here the mean μ_i is related to the canonical parameter θ_i via

$$\mu_i = b'(\theta_i)$$

▶ and μ_i depends linearly on the covariates through a link function g:

$$g(\mu_i) = X_i^{\top} \beta$$
.

Back to β

▶ Given a link function g, note the following relationship between β and θ :

$$\theta_i = (b')^{-1}(\mu_i) = (b')^{-1}(g^{-1}(X_i^{\top}\beta)) \equiv h(X_i^{\top}\beta),$$

where h is defined as

$$h = (b')^{-1} \circ g^{-1} = (g \circ b')^{-1}.$$

ightharpoonup Remark: if g is the canonical link function, h is identity.

Log-likelihood

The log-likelihood is given by

$$\ell_n(\beta; \mathbf{Y}, \mathbb{X}) = \sum_{i} \frac{Y_i \theta_i - b(\theta_i)}{\phi}$$

$$= \sum_{i} \frac{Y_i h(X_i^{\top} \beta) - b(h(X_i^{\top} \beta))}{\phi}$$

up to a constant term.

Note that when we use the canonical link function, we obtain the simpler expression

$$\ell_n(\beta, \phi; \mathbf{Y}, \mathbb{X}) = \sum_i \frac{Y_i X_i^{\top} \beta - b(X_i^{\top} \beta)}{\phi}$$

Strict concavity

- The log-likelihood $\ell(\theta)$ is strictly concave using the canonical function when $\phi > 0$. Why?
- As a consequence the maximum likelihood estimator is unique.
- On the other hand, if another parameterization is used, the likelihood function may not be strictly concave leading to several local maxima.