

Tasmota-Plus Smart Gauge - Temperature

SG-TEMP User Guide

V20210331

Latest Version of this document available at:

https://github.com/UBWH/ubwh.github.io/blob/master/assets/UserGuides

Table of Contents

Introduction	3
Hardware	4
Accessing the Relay and Switch Terminals	4
Requirements	5
Web Browser Interface	6
Power Options	7
Near a Power Point (GPO)	7
Far from a Power Point (GPO)	8
Getting Started	9
Enabling the SG-TEMP Sensor	10
Relay Control based on Temperature	11
http:// Command Interface	13
Centralised Monitoring & Control	14
WebGUI Interfaces	15
openHAB Channel Definition (Example)	17
openHAB Sample History Plot	18
Specifications	19

Introduction

The SG-TEMP is a Temperature sensor with a smart WiFi interface.

Features include:

Temperature monitoring	Real-time temperatures can be viewed locally,	
	or from anywhere in the world, accessible by	
	any web browser.	
Temperature logging	When combined with an openHAB/MQTT ¹	
	server, current and past temperatures are	
	accessible locally, or from anywhere in the	
	world, accessible by any web browser.	
Flexible DC power supply	This device is powered by un-regulated DC.	
	(Power supply not included)	
	Voltages between 24 and 60 VDC can be used.	
Relay	A SPST ² relay (16 A / 240 V) is included, which	
	can be temperature controlled (ON/OFF).	
	For example: a Fan or Heater could be turned	
	on/off as the temperature passes user-defined	
	set-points.	
External switch	A user-supplied, external switch can be	
monitoring	connected and monitored; i.e. Open or Closed.	

Table 1 – Available Features

¹ https://openhab.org & https://mqtt.org ² Single Pole, Single Throw

Hardware

The **SG-TEMP** comes pre-assembled and tested. It consists of:

- a waterproof temperature sensor,
- a waterproof cable,
- a wall-mount enclosure with built-in SS-1CHPro³ smart WiFi interface,
- a bonus wall mount sensor holder.

Accessing the Relay and Switch Terminals

Gently pry off the enclosure cover with a small, flat-bladed screwdriver inserted from the base.

Consult the SS-1CHPro User Guide for details:

https://github.com/UBWH/ubwh.github.io/blob/master/assets /UserGuides/UG-SS-1CHPro.pdf

³ https://ubwh.com.au/SS-1CHPro

Requirements

The SS-1CHPro requires:

Initial Setup

o A device with a Web Browser & WiFi interface, located close to the SG-TEMP. A smart-phone, or tablet will usually be sufficient.

- o A WiFi Access Point (AP) connected to the local LAN4, within the WiFi Range⁵ of the SG-TEMP.
- o A DHCP⁶ server on the LAN.

Ongoing Management

o Any device with a Web browser and connected to the same LAN as the SG-TEMP.

Local Area Network. See https://en.wikipedia.org/wiki/Local_area_network
 See Specifications, page 19
 Dynamic Host Configuration Protocol: See

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Web Browser Interface

Figure 1 - The Tasmota Web Interface is available from any Web browser

Simply use any web browser to open the web page http://<device.ip.address>/

See documentation here: https://tasmota.github.io/docs/WebUI/

Power Options

The DC-IN port is a common 2.1mm x 10 mm, centre-positive jack.

There are two common installation scenarios:

Near a Power Point (GPO)

In this case, simply use any DC power supply between 24 and 60V that has a suitable DC plug.

Example suitable power supply: https://ubwh.com.au/PSU-24VDC-24W

Figure 2 – Powering the SG-TEMP from a nearby power point

Far from a Power Point (GPO)

In this case, one recommendation is to use a common passive PoE⁷ power supply that provides either 24 or 48 VDC, with widely available LAN8 cable.

One end of the LAN cable can be terminated with either a:

- **DC Plug**, soldered onto the conductors carrying the PoE voltage, or
- **RJ45 LAN plug**, with a PoE Splitter⁹ to break out the DC to a 2.1mm plug.

Example suitable power supplies:

https://ubwh.com.au/POE-24-12W https://ubwh.com.au/POE-48-24W

https://ubwh.com.au/WI-PS306GF-UPS-V2

Figure 3 – Powering the SG-TEMP over distance with passive PoE

⁷ Power-Over-Ethernet

⁸ e.g. CAT5e

⁹ e.g. https://ubwh.com.au/POE-P-SPLIT

Getting Started

1. Power the SG-TEMP.

2. Follow the instructions in the *SS-1CHPro User Guide*¹⁰ until you see this

page.

¹⁰ https://tinyurl.com/28nybtzx

Enabling the SG-TEMP Sensor

1. From the SS-1CHPro main page, click

2. Change the GPIO0 setting as shown below.

3. Click

4. You should now see

Relay Control based on Temperature

Using the Tasmota Rules¹¹ feature, the relay can be controlled by temperature.

This is done by setting two values:

- Relay ON set-point temperature
- Relay OFF set-point temperature

Note: Do not set these two values the same, as the relay may switch ON/OFF rapidly.

In the steps below you will define 3 *Rules*. These rules remain active after a reboot or power cycle.

Hint: To avoid typing mistakes, it is recommended to Copy (from the PDF file of this document) and Paste (to the Console input line).

Step 1 – Common Configuration

From the Main page, open the Console.

Console

Enter these 2 commands, followed by the [Enter] key on your keyboard.

RULE2 ON system#boot DO BACKLOG VAR3 %VAR1%; VAR4 %VAR2% ENDON

BACKLOG RULE1 ON; RULE2 ON; RULE3 ON

Continue to next page.

11 https://tasmota.github.io/docs/Rules/

Two cases are given below. Follow Step 2a or Step 2b:

Step-2a – Relay ON when Temperature is too HIGH

Enter these 2 commands, followed by the [Enter] key on your keyboard.

RULE3 ON DS18B20#temperature>%VAR4% DO BACKLOG POWER1 ON; VAR4 1000; VAR3 %VAR1% ENDON RULE3 + ON DS18B20#temperature<%VAR3% DO BACKLOG POWER1 OFF; VAR3 -1000; VAR4 %VAR2% ENDON

Step-2b – Relay ON when Temperature is too LOW

Enter these 2 commands, followed by the [Enter] key on your keyboard.

RULE3 ON DS18B20#temperature>%VAR4% DO BACKLOG POWER1
OFF; VAR4 1000; VAR3 %VAR1% ENDON
RULE3 + ON DS18B20#temperature<%VAR3% DO BACKLOG POWER1
ON; VAR3 -1000; VAR4 %VAR2% ENDON

Step 3 – Changing the Set-point Temperatures

The set-point temperatures are set in RULE1.

Hint: VAR2 must be higher than VAR1 e.g. VAR1 21 VAR2 22 e.g. VAR1 -6 VAR2 -5

To change the set-point temperatures to (e.g.) 21 & 22, enter these 2 commands, followed by the [Enter] key on your keyboard.

RULE1 ON system#init DO BACKLOG VAR1 21; VAR2 22 ENDON RESTART 1

http:// Command Interface

Simple commands as below will (e.g.) turn the Relay ON.

Note: %20 in a URL = Space character

From Web Browser

http://<device.ip.address>/cm?cmnd=power1%20on

From Windows or Linux command/terminal window

curl http://<device.ip.address>/cm?cmnd=power1%20on

From a Windows Batch file (*.bat file)

curl http://<device.ip.address>/cm?cmnd=power1%%20on

Note: need double % characters if in a batch file

From a PHP script (*.php file)

```
file_get_contents(
    'http://<device.ip.address>/cm?cmnd=power1%20on');
```

You can retrieve the **Switch and Temperature Status** as below.

http://<device.ip.address>/cm?cmnd=status%208

A typical JSON response looks like:

```
"StatusSNS":{
    "Time":"2021-01-18T02:06:53",
        "Switch1":"OFF",
        "DS18B20":{
            "Id":"011937A99651",
            "Temperature":24.4
        },
        "TempUnit":"C"
    }
}
```

More information:

https://tasmota.github.io/docs/Commands/#management

Centralised Monitoring & Control

While this device can operate 100% stand-alone, it can also be monitored and controlled, along with multiple other devices, from a single management platform.

One popular management platform is **openHAB**¹².

In simple terms:

 MQTT compatible devices (e.g. Tasmota) connect to an MQTT Broker¹³.

Status information sent TO the MQTT broker.

Commands received FROM the MQTT broker.

¹² https://www.openhab.org/ (Freeware, Open source)

¹³ https://mqtt.org/ (Freeware, Open source)

- openHAB also connects to the MQTT broker.
 Status information received FROM the MQTT broker.
 Commands sent TO the MQTT broker.
- Users interact via web pages (WebGUI)

WebGUI Interfaces

openHAB supports a number of User Interfaces (UIs). Each UI is highly customisable.

The images below show example visualisations.

Figure 4 - Classic UI. Mobile friendly.

Figure 5 - Basic UI. Mobile friendly.

Figure 6 - Panel UI. Ideal for touch screens.

openHAB Channel Definition (Example)

Below is shown the channel definition for an SG-TEMP correctly integrated into openHAB.

Values that will be different for each installation have been replaced with XXXXXX.

```
UID: mqtt:topic:XXXXXX
label: SG-TEMP
thingTypeUID: mqtt:topic
configuration:
 payloadNotAvailable: Offline
 availabilityTopic: tele/tasmota_XXXXXX/LWT
 payloadAvailable: Online
bridgeUID: mqtt:broker:30e6c58453
channels:
 - id: Temp
   channelTypeUID: mqtt:number
   label: Temp
   description: null
    configuration:
     stateTopic: tele/tasmota_XXXXXX/SENSOR
     transformationPattern: JSONPATH: $.DS18B20.Temperature
     unit: C
  - id: Relay
   channelTypeUID: mqtt:switch
    label: Relay
   description: ""
    configuration:
      commandTopic: cmnd/tasmota_XXXXXX/POWER
     stateTopic: stat/tasmota_XXXXXX/POWER
     off: OFF
     on: ON
  - id: Switch
   channelTypeUID: mqtt:switch
   label: Switch
   description: ""
    configuration:
      stateTopic: tele/tasmota_XXXXXX/SENSOR
      transformationPattern: JSONPATH:$.Switch1
```

openHAB Sample History Plot

The plot below shows an example history from an SG-TEMP sensor immersed in a water tank.

Figure 7 - Tank water temperature over 1 week

Specifications

•		
Temperature sensor	Type:	
		-55 ℃ to +125 ℃
	±0.5 °C Accuracy	-10 ℃ to +85 ℃
	Waterproof	Yes (to length of cable)
	Length	50 mm
	Diameter	6 mm (6.5 mm over black jacket)
•		
Cable		900 mm
	Diameter	
	Waterproof	Yes
Enclosure	Material	PLA
	Dimensions	90 x 50 x 27 mm (W x L x H)
	Weight	60 g (including SS-1CHPro)
	Mounting holes	2 x 3 mm dia (71 mm spacing)
Power supply	DC Only	24 to 60 V DC (unregulated)
11.7	Connector	` ,
	Power	< 1W (= 40 mA @ 24 V)
	consumption	(= 10 111/1 (@ 21 1)
	Consumption	
WiFi	Range	20 m (Typical, no walls)
		10 m (Typical, walls)
	Oka na alici islici	000 445 /5/5 0 4 015
	Standards	802.11b/g/n 2.4 GHz
	1	