南昌大学物理实验报告

课程名称:	普	通物理实验	(1)	
实验名称:		法测金属杨	·氏模量	
学院:	理学院专业		物理学 151 班	
学生姓名:	黄泽豪	_学号:	5502115014	
实验地点:	B106	_座位号: .	14	
实验时间:	第三周星	期四卜午-	十点开始	

【实验目的】

- 1. 学会测量杨氏模量的一种方法,掌握"光杠杆镜"测量微小长度变化的原理.
 - 2. 学会用"对称测量"消除系统误差.
 - 3. 学习如何依实际情况对各个测量量进行误差估算.
 - 4. 练习用逐差法、作图法处理数据.

【实验原理】

物理在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力.

设有一截面为S,长度为 L_0 的均匀棒状(或线状)材料,受拉力F拉伸时,

伸长了 ΔL ,其单位面积截面收到的拉力 $\frac{F}{S}$ 称为应力,而单位长度的伸长量 $\frac{\Delta L}{L}$ 称为应变.根据胡克定律,在弹性形变范围内,棒状(或线状)固体应变与它所受的应力成正比,即

$$\frac{F}{S} = E \frac{\Delta L}{L_0} \tag{1}$$

其比例系数 E 取决于固体材料的性质, 反映了材料形变和内应力之间的关系

$$E = \frac{FL_0}{S\Delta L} \tag{2}$$

称为杨氏模量,它的单位为N·m⁻2.

实验证明,杨氏模量与外力F、物体的长度L和截面积S的大小无关,只取决于被测物的材料特性,它是表征固体性质的一个物理量.

设金属丝的直径为d,则

$$S = \frac{1}{4}\pi d^2 \tag{3}$$

杨氏模量可表示为

$$E = \frac{4FL}{\pi d^2 \Lambda L} \tag{4}$$

本实验是测量某一种型号钢丝的杨氏模量,其中F可以由所挂的砝码的重量求出,直径d可以通过螺旋测微器测量(或游标卡尺),L可以用米尺等常规的测量器具测量,但 ΔL 由于非常小,用常规的测量方法很难精确测量.本实验将用放大法——"光杠杆镜"来测定这一微小的长度该变量 ΔL .

图 3-2 是光杠杆镜测微小长度变化的原理图.左侧曲尺状物为光杠杆镜,M 是反射镜,b 即所谓为光杠杆镜短臂的的杆长,O端为b边的固定端,b边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了 M 镜法线的方向,使得钢丝原长为 L_0 时,从一个调节好的位于图右侧的望远镜看 M 镜中标尺像的读数 n_1 ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为 n_2 .这样,钢丝的微小伸长量 ΔL ,对应光杠杆镜的角度变化量 θ ,而对应的光杠杆镜中标尺读数变化则为 $\Delta n = |n_1 - n_2|$.由光路可逆可以得知, Δn 对光杠杆镜的张角应为 2θ .从图 3-2 中用几何方法可以得出

$$\tan \theta \approx \theta = \frac{\Delta L}{b} \tag{5}$$

$$\tan 2\theta \approx 2\theta = \frac{\left| n_2 - n_1 \right|}{D} = \frac{\Delta n}{D} \tag{6}$$

将式(5)和式(6)联立后得

$$\Delta L = \frac{b}{2D} \Delta n \tag{7}$$

式中 $\Delta n = |n_1 - n_2|$, 相当于光杠杆镜的长臂端D的位移.

考虑到金属丝受外力作用时存在着弹性滞后效应,也就是说钢丝受到拉伸力作用时,并不能立即伸长到应有的长度 $L_i(L_i=L_0+\Delta L_i)$,而只能伸长到 $L_i-\delta L_i$.

同样,当钢丝受到的拉伸力一旦减小时,也不能马上缩短到应有的长度 L_i ,仅缩短到 $L_i+\delta L_i$.因此实验时测出的并不是金属丝应有的伸长或收缩的实际长度.为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减少拉伸力这一对称测量过程,实验中可以采用先增加后减少砝码的办法实现.只要在增、减相应重量时,金属丝伸缩量取平均,就可以消除滞后量 δL_i 的影响.即

$$\overline{L_{i}} = \frac{1}{2} [L_{\frac{1}{2}} + L_{\frac{1}{2}}] = \frac{1}{2} [(L_{0} + \Delta L_{i} - \delta L_{i}) + (L_{0} + \Delta L_{i} + \delta L_{i})] = L_{0} + L$$
(8)

【实验仪器】

杨氏模量仪测量仪、螺旋测微器、游标卡尺、钢卷尺、望远镜(附标尺).

【实验内容及步骤】

- (1) 用 2kg 砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的 3 个底角螺丝,同时观察放在平台上的水准尺,直至中间平台处于水平状态为止.
- (2)调节光杠杆位置.将光杠杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本垂直或稍有俯角.
 - (3) 望远镜调节.
 - (4) 观测伸长变化.
- (5) 测量光杠杆镜前后脚距离 b.把光杠杆镜的三只脚在白纸上压出凹痕,用尺画出两前脚的连线,再用游标卡尺量出后脚到该连线的垂直距离.
- (6)测量钢丝直径.用螺旋测微器在钢丝的不同部位测 6 次,取其平均值.测量时每次都要注意记下数据和螺旋测微器的零位误差.
- (7) 测量光杠杆镜镜面到望远镜附标尺的距离 D.用钢卷尺量出光杠杆镜镜面到望远镜附标尺的距离,做单次测量,并估计误差.
 - (8) 用米尺测量钢丝原长 Lo, 测单次.

【数据处理】

1.长度的测量.

螺旋测微器的零位误差 0.00mm: 示值误差 0.004mm

测量次数	1	2	3	4	5	6	平均值

直径 d 0.576mm 0.578mm 0.580mm 0.534mm 0.546mm 0.555mm 0.562mm

不确定度:
$$\Delta_d = \sqrt{\Delta_{\mathcal{Q}}^2 + S_d^2}$$
, 其中 $S_d = \sqrt{\frac{\sum_{i=1}^n (d_i - \overline{d})^2}{n-1}}$

结果: $d \pm \Delta_d$ (mm) = 0.562 ± 0.020

光杠杆镜臂长:游标卡尺的零位误差 0.10mm,示值误差 0.02mm 结果: $b\pm\Delta_b$ (mm)=75.36 ±0.02

2.钢丝长度^L和标尺到镜面的距离的测量.

 $L \pm \Delta_L(mm) = 867.5 \pm 0.2$ $D \pm \Delta_D(mm) = 1381.2 \pm 0.2$

3.增减重量时钢丝伸长量的记录表

加减砝	标尺读数/cm						$\Delta n = \frac{n_i - n_j}{i - j}$		$\left \Delta_{\Delta n} ight $
码质量	拉亻	申力	 拉	申力	平均	均值		-	的绝对
/kg	増力	加时	减少	少时	$ \frac{-}{n} = \frac{n}{-} $	$\frac{n_i + n_i'}{2}$	(cm	1)	误差
0.000	n_0	4.45	n_0	5. 01	$\frac{-}{n_0}$	4. 73	$\frac{n_4 - n_0}{4}$	0.84	
1.000	n_1	5.32	n_1	6.08	$-n_1$	5. 70	$\frac{n_5 - n_1}{4}$	0.79	
2.000	n_2	6.22	n_2	6. 70	$\frac{-}{n_2}$	6. 46	$\frac{n_6-n_2}{4}$	0.77	
3.000	n_3	7.01	n_3	7. 34	$ n_3$	7. 18	$\frac{n_7-n_3}{4}$	0.77	
4.000	n_4	7.86	n_4	8. 29	$\frac{-}{n_4}$	8.08		$\sum_{i=1}^{4} \Delta n_{i}$	
5.000	n_5	8.63	n_5	9.05	$\frac{-}{n_5}$	8.84	$\overline{\Delta n} = \frac{\sum_{i=1}^{4} \Delta n_i}{4} = 0.80$		
6.000	n_6	9.44	n_6	9.60	$-n_6$	9. 52	$\overline{\Delta_{\scriptscriptstyle \Delta n}} = 0.04$		4
7.000	n_7	10.29	n_7	10. 20	$\frac{-}{n_7}$	10. 25			

4.实验结果的计算:

其中
$$E = \frac{FL_0}{S\Delta L}$$
 其中
$$\Delta L = \frac{b}{2D}\Delta n , \quad S = \frac{1}{4}\pi d^2$$

$$F = 1\text{kg}\times\text{g} , \quad \Delta F = 0.01\text{kg}\times\text{g}$$
 故
$$\overline{E} = \frac{8FL_0D}{\pi \overline{d}^2 b \overline{\Delta n}} = 1.571119 \times 10^{11} \,\text{N/m}^2$$

其中力的单位用 N, 长度单位用 m.

相对误差为

$$E_{\%} = \sqrt{\left(\frac{\Delta_F}{F}\right)^2 + \left(\frac{\Delta_L}{L}\right)^2 + \left(\frac{\Delta_D}{D}\right)^2 + \left(\frac{2\Delta_d}{\overline{d}}\right)^2 + \left(\frac{\Delta_b}{D}\right)^2 + \left(\frac{\Delta_{\Delta n}}{\overline{\Delta n}}\right)^2} = 0.0876$$

不确定度为

$$\Delta_E = E_{\%} \cdot \overline{E} = 0.1376 \times 10^{11} \,\mathrm{N/m^2}$$

最后将结果记为

$$E = \overline{E} \pm \Delta_E (\text{N/m}^2) = (1.5711 \pm 0.1376) \times 10^{11} \,\text{N/m}^2$$

【实验结果分析与小结】

1.这次试验培养了我的耐心,让我知道调整实验装置其实并不是一件容易的事。起初,在调整望远镜时,我总是不能通过光杠杆镜看到光杠杆镜。我想,虽然看不到光杠杆镜,但是我可以通过我现在看到的东西来推测光杠杆镜大致的位置,以此让我的操作更有目的些。于是我就先把视野调清晰,顺着望远镜的光路,找到了现在望远镜的朝向。很快,光杠杆镜就出现在了望远镜中。一个问题刚刚解决,另一个问题又来了——我虽然看到了光杠杆镜,但是标尺却始终找不到。通过光路可逆原则,我发现我的标尺放的有一点矮。在调整了标

尺的高度之后, 标尺终于出现在了视野中, 实验步入了正轨。

- 2.这次实验所使用的"对称测量"法让我不得不赞叹它的精妙。 由于钢丝的弹性滞后效应,每一次加砝码所得出的形变量都与真实的 形变量有偏差,而"对称测量"法很好的解决了这个问题。它通过将 钢丝从增加拉伸力和减少拉伸力两种情况获得同一拉伸力的形变量 取平均值,将实验的偏差降低到了可以允许的范围之内。
 - 3.逐差法充分利用了测量的数据,使测得的杨氏模量更加精准。

【原始数据】(见下页)

实验3.金属丝杨氏核	是的现代	DATE	NO.
村民读牧/cm		y ./1	33.0211.3.014
No= 9. 32 4.45			
n= 10.5+5.32	n'= 6.08		
n2=11-43 6.22	ng = 6.90		
	$n_3 = 7.34$	•	
n4= 2.887.86 nx= 8.63	14=0.21 nr=90T		
n6= 9. 44			
	ny= 10.20		
螺旋测微器的零位	好差 0.00	00 mm	
1 2	3 4	5	6
dfmm 05/6 0.578	0.580 0.53	f 0,546 o	222.
大杆锈管长:3对扩卡R	B2)8% =	0.10	
	全性为其外 -	13120 mm	
b/mm 75.26		7	
钢丝化第一 484	- 847 cmm	11 , 7	\wedge
村人的绿石雕画 138	el)mm	311	13
40 La) Mr 10 ACLO 130	1. 200		1