$$n_2 = 3.944 \times 10^{-3} \ mol$$

 $n_1 = 0.56 \times 0.2 = 0.112 \ mol$

$$Amount \ of \ HCl \ used = n_1 - n_2 \\ = 0.112 - 3.944 \times 10^{-3} \\ = 0.1081 \ mol$$

Ratio MgO : HCl is 2:1 so
$$n(MgO) = \frac{1}{2} \times 0.1081 = 0.05403 \text{ mol}$$

$$m(MgO) = 0.05403 \times (24.31 + 16)$$

= 2.18 g
% of $MgO = \frac{2.18}{4.47} = \times 100\%$

30. (i)

$$n(HCl) = 0.344 \times 0.01765$$

= 6.072×10^{-3} mol
Ratio NaOH to HCl is 1:1 so
 $n(NaOH) = 6.072 \times 10^{-3}$ mol in 20 mL
 \therefore in 150 mL $n(NaOH) =$
 $6.072 \times 10^{-3} \times \frac{150}{20} = 0.0455$ mol
 $n_2 = 0.0445$ mol
 $n_1 = 0.45 \times 0.15 = 0.0675$ mol

Amount of HCl used =
$$n_1 - n_2$$

= 0.0675 - 0.0455
= 0.0220 mol

Ratio Aspirin to NaOH is 1:2
So
$$n(Aspirin) = \frac{1}{2} n(NaOH)$$

= 0.0110 mol
 $m(Aspirin) = 0.0110 \times 168.144 = 1.85 g$
% of Aspirin = $\frac{1.85}{2.00} \times 100\%$

(ii) This value exceeds the 90% set value and so conforms to the law.

Chapter 3. **Redox Reactions**

Set 1 Oxidation and Reduction				
1.	Species Oxidised	Na		
	Species reduced	O_2		
	Oxidant	O_2		
	Reductant	Na		
2.	Species Oxidised	Zn		
	Species reduced	Cr^{3+}		
	Oxidant	Cr^{3+}		
	Reductant	Zn		
3.	Species Oxidised	H_{2}		
	Species reduced	O_2		
	Oxidant	O_2		
	Reductant	H_{2}		
4.	Species Oxidised	$H_{2}S$		
	Species reduced	$Cr_{2}O_{7}^{2}$		
	Oxidant	$Cr_{2}O_{7}^{2}$		
	Reductant	$H_{2}S$		
5.	Species Oxidised	$C\bar{l}^{-}$		
	Species reduced	H_2O_2		
	(ON of Cl is +1 in HC	210)		
	Oxidant	H_2O_2		
	Reductant	$C\bar{l}$		
6.	4+ 7.5+ 8.4+ 9.	2+ 10.7+		
7.	Species Oxidised	HBr		
	Species reduced	H_2SO_4		
8.	Species Oxidised	$SnCl_{2}^{\frac{1}{2}}$		
	Species reduced	O_{2}		

 Fe^{2+} Species Oxidised Species reduced $Cr_{2}O_{7}^{2}$

10. Species Oxidised None None Species reduced

11. Species Oxidised T-Species reduced Cl_{2}

Set 2 Oxidation

Multiple Choice Answers

1. d, 2. b, 3. d, 4. b, 5. c, 6. c, 7.a, 8. b, 9. a, 10. a, 11. e, 12. b

Written Answers

1. (a) S (b) Mn = +7(c) N = +5(d) C = +4,(e) N (f) S = +6(g) S = +6(h) S 2. (b) P = +5, O = -2

(a)
$$H = +1, S = -2$$

(c)
$$Na = +1, P = -3$$

(*d*) Cr = +3, O = -2, H = +1

= +6, O = -2(e) S

(f) Ba = +2, Mn = +7, O = -2

(g) S = +4, O = -2

(h) H = +1, O = -2

(i) Al = +3, Cl = -1

(*j*) K = +1, N = +5, O = -2

3.

a) (i) $Ni + I_2$ YES

> (ii) $Ag + Au^{3+}$ NO

(iii) $Al + Cd^{2+}$ YES

(iv) $Cl^{-} + Br_{2}$ NO

b) Order is C^{2+} , B^{3+} A. Redox table would be:

A^{+}	A
B^{3+}	B^{2+}
C ²⁺	С

4.

- (a) S in SO, is reduced from +4 to 0.
- (b) Cl in HCl is oxidised from −1 to 0.
- (c) Cl in Cl₂ is reduced from 0 to -1.
- (d) Cu in CuO is reduced from +2 to 0.

Oxidising agent	Reducing agent	Redox reaction?
a) MnO ₄	H ₂ O ₂	Redox
b)		Not a redox
c) I ₂	S ₂ O ₃ ²⁻	Redox
d) N ₂	H ₂	Redox
e) H ₂ O	C	Redox
f) NO ₃ -	Fe ²⁺	Redox
g)		Not a redox
h)	,	Not a redox
i)		Not a redox
j) NaClO	Na ₂ SO ₃	Redox
k) CH ₃ OH	Na	Redox
I)		Not a redox
m) H ₂ SO ₄	Zn	Redox
n)		Not a redox
o) MnO ₂	NaCl	Redox
p) H ₂ SO ₄	HBr	Redox
q) HNO ₃	HCI	Redox
r) HNO ₃	CuS	Redox

6. (a) $I_2 + 6H_2O \rightarrow 2IO_3^- + 12H^+ + 10e^-$

(b) $HClO + H^+ + 2e^- \rightarrow Cl^- + H_2O$

(c) $NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$

(d) $NO_3^- + 2H^+ + e^- \rightarrow NO_2 + H_2O_3$

(e) $H_3PO_3 + H_2O \rightarrow H_3PO_4 + 2H^+ + 2e^-$

(f) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

(g) $SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2e^-$

(h) $C_2O_4^{2-} + 2H_2O \rightarrow 2CO_3^{2-} + 4H^+ + 2e^-$

(i) $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-$

(j) $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$ 7.

(a) Oxygen

(b) Nitrogen

(c) Gold

(d) Chlorine

(e) Bromine

8.

(a) $4HCl + O_2 \rightarrow 2H_2O + 2Cl_2$

(b) $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$

9. ZnO; ZnH_2 ; ZnI_2

10.

(a) PCl₃ or PCl₅

(b) PCl₅

(c) CuCl,

(d) $I_2 + Cl^2$

11.

(a) $Cu_2SO_4 \rightarrow CuSO_4 + Cu$

(b) $Hg_{2}Cl_{2} \rightarrow HgCl_{2} + Hg$

(c) $2 NO_2 + H_2O \rightarrow HNO_3 + HNO_2$

(d) $Cl_2 + H_2O \rightarrow HCl + HOCl$

Set 3 Redox Reactions

Multiple Choice Answers

1. d, 2. c, 3. a, 4. c, 5. e, 6. c, 7. e, 8. c, 9. e, 10. d.

Calculations

1.

(i)
$$(Fe^{2+} \rightarrow Fe^{3+} + e^{-}) \times 5$$

 $MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O$
 $5Fe^{2+} + MnO_{4}^{-} + 8H^{+} \rightarrow$
 $5Fe^{3+} + Mn^{2+} + 4H_{2}O (Redox)$

(ii) : $n (MnO_4^-) = c \times V = 0.10 \times 0.0250$ $= 0.00250 \ mol$ ∴ $n(Fe^{2+}) = 5$ ∴ $n(MnO_4^{-}) = 5 \times 0.00250$ $= 0.0125 \ mol$ \therefore [Fe²⁺] = n/V = (0.0125/0.020)

 $= 0.625 \text{ mol } L^{-1}$

Initial volume (commercial H_2O_2) = 10.0 mL The 10.0 mL is made up to 100.0 mL *Volume of the diluted* H_2O_2 *used for titration* $= 10.0 \ mL$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

 $(H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-) \times 3$
 $Cr_2O_7^{2-} + 8H^+ + 3H_2O_2 \rightarrow 2Cr^{3+} + 7H_2O + 2Cr^{3+$

 $3O_2$ — Redox $n(Cr_2O_7^{2-}) = c \times V = 0.0030 \text{ mol}$ $\therefore n(H_2O_2) = 3 \times 0.0030 = 0.0090 \text{ mol}$ 20.0 mL of diluted solution is equal to0.0090 mol

The original volume of commercial H_2O_2 = 10.0 mL

Volume of water added = 100.0 mL and so the final volume is 110.0 mL = 0.110 L Volume of diluted H_2O_2 used for titration = 20.0 mL = 0.020 L

Based on the reacting mol ratio, the mols of diluted H_2O_2 used in titration is equal to Number mols of $K_2Cr_2O_7$ used in each titration \times 3 = 0.0090 mol.

- \therefore concentration of H_2O_2 in the original solution = [(0.0090 × 0.110)/0.02] = 4.95 mol L^{-1}
- 3. $(MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) \times 2$ $(H_2C_2O_4 \rightarrow 2CO_2 + 2H^+ + 2e^-) \times 5$ $2MnO_4^- + 6H^+ + 5H_2C_2O_4 \rightarrow$ $2Mn^{2+} + 8H_2O + 10CO_2 - Redox$ $n(MnO_4^-) = c \times V = 0.11 \times 0.010$ $= 0.0011 \ mol$ $\therefore n(H_2C_2O_4^-) = [(0.0011 \times 5)/2]$ $= 2.75 \times 10^{-3} \ mol$ $\therefore c(H_2C_2O_4^-) = (n/V)$ $= (2.75 \times 10^{-3}/0.020) = 1.375 \times 10^{-1} \ mol \ L^{-1}$
- 4. $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ $(Fe^{2+} \rightarrow Fe^{3+} + e^-) \times 6$ $Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+} - Redox$ $n(Fe^{2+}) = cV = 0.01 \ mol$ $\therefore n(Cr_2O_7^{2-}) = 1.67 \times 10^{-3} \ mol$ $\therefore n(Cr) = 2 \times 1.67 \times 10^{-3} \ mol$ $\therefore m(Cr) = 2 \times 1.67 \times 10^{-3} \times 52.0 = 0.173 \ g$ % $Cr = [(0.173/1.70) \times 100] = 10.2\%$
- 5. $c(H_2C_2O_4) = (n/V) = [(12.6/42.036)/1.0]$ $= 0.14 \text{ mol } L^{-1}$ $(MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) \times 2$ $(H_2C_2O_4 \rightarrow 2CO_2 + 2H^+ + 2e^-) \times 5$ $2MnO_4^- + 6H^+ + 5H_2C_2O_4 \rightarrow$ $2Mn^{2+} + 8H_2O + 10CO_2 - Redox$ $n(H_2C_2O_4 \text{ in each titration}) = c \times V$ $= 0.14 \times 0.020 = 2.8 \times 10^{-3} \text{ mol}$ $\therefore n(MnO_4^-) = [(2.8 \times 10^{-3} \times 2)/5]$ $= 1.12 \times 10^{-3} \text{ mol}$ $\therefore c[MnO_4^-] = (n/V) = (1.12 \times 10^{-3}/0.025)$ $= 4.48 \times 10^{-2} \text{ mol } L^{-1}$
- 6. $(MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) \times 2$ $(H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-) \times 5$ $2MnO_4^- + 6H^+ + 5H_2O_2 \rightarrow$ $2Mn^{2+} + 8H_2O + 5O_2 - Redox$ $n(MnO_4^-) = c \times V = 0.02 \times 0.04$ $= 8.00 \times 10^{-4} \ mol$ $\therefore [H_2O_2] = [(8.00 \times 10^{-4} \times 5)/2]$

 $= 2.0 \times 10^{-3} \ mol$ $\therefore c \ [H_2O_2] = (2.0 \times 10^{-3}/0.002) = 1.0 \ mol \ L^{-1}$ $Pressure \ of \ 755 \ mm \ Hg = 100 \times 755/760 = 99.34 \ kPa$ $V = (nRT/P) = (0.002 \times 8.314 \times 308)/99.34$ $Volume \ of \ oxygen = (5.122/100.633)$ $= 0.0516 \ L = 51.6 \ mL$

- 7. $(MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) \times 2$ $(H_2C_2O_4^- \rightarrow 2H^+ + 2CO_2^- + 2e^-) \times 5$ $2MnO_4^- + 6H^+ + 5H_2C_2O_4^- \rightarrow$ $2Mn^{2+} + 8H_2O + 10CO_2^- - Redox$ $n(H_2C_2O_4^-) = cV = 0.0022 \ mol$ $\therefore n(KMnO_4^-) = [(0.0022 \times 2)/5]$ $= 0.00088 \ mol$ $\therefore c(KMnO_4^-) = (n/V) = (0.00088/0.009)$ $= 0.098 \ mol \ L^{-1}$
- 8. The redox equation is $Cr_2O_7^{2-}+14H^++6Fe^{2+} \rightarrow 2Cr^{3+}+7H_2O+6Fe^{3+}$ $n (Fe^{2+}) = cV = 0.05 \times 0.02 = 0.001 \ mol$ $\therefore n (Cr_2O_7^{2-}) = [(0.001 \times 1)/6] = 1.67 \times 10^{-4}$ mol $\therefore c (Cr_2O_7^{2-}) = (1.67 \times 10^{-4}/7.5 \times 10^{-3})$
- = 0.021 mol L^{-1} 9. The redox equation is $MnO_4^- + 5Fe^{2+} + 8H^+$ $\rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ $\therefore n (MnO_4^-) = 0.0010 \times 0.0015$ = 0.0000015 mol = 1.5 × 10⁻⁶ mol $\therefore n (FeSO_4) = (1.5 \times 10^{-6} \text{ mol}) \times 5$ = 7.5 × 10⁻⁶ mol $\therefore c (FeSO_4) = (n/V) = (7.5 \times 10^{-6}/0.05)$ = 0.00015 $M = 1.5 \times 10^{-4}$ mol L^{-1}
- 10. $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ $(H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-) \times 3$ $Cr_2O_7^{2-} + 8H^+ + 3H_2O_2 \rightarrow$ $2Cr^{3+} + 7H_2O + 3O_2 - Redox$
- (a) $n(H_2O_2) = (1.0/34.016) = 0.0294 \text{ mol}$ $\therefore n(Cr_2O_7^{2-}) = (0.0294/3) = 0.0098 \text{ mol}$ $m(K_2Cr_2O_7) = 0.0098 \times 294.2 = 2.88 \text{ g}$
- (b) $n(O_2) = n(H_2O_2) = 0.0294 \text{ mol}$ $V(O_2 \otimes STP) = 0.0294 \times 22.71 = 0.659 \text{ L}$
- 11. $(C_2O_4^{2-} \rightarrow 2CO_2 + 2e^-) \times 5$ $(MnO_4^{-} + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) \times 2$ $5C_2O_4^{2-}(aq) + 2MnO_4^{-}(aq) + 16H^+(aq) \rightarrow$ $10CO_2(g) + 2Mn^{2+}(aq) + 8H_2O(l)$
- (a) Titre values of $KMnO_4 = 24.48 \text{ mL}$, 24.54 mL, 24.48 mL = Average = 24.50 mL
- (b) $n (KMnO_4) = cV = 0.020 \times 0.02450$ = $4.90 \times 10^{-4} mol$ $\therefore n (C_2O_4^{-2-}) = [(4.9 \times 10^{-4} \times 5) / 2]$ = $1.225 \times 10^{-3} mol$ $\therefore [C_2O_4^{-2-}] = (n / V) = (1.225 \times 10^{-3} / 0.0250)$ = $0.049 mol L^{-1}$
- (c) $n (CO_2) = n (KMnO_4 \times 5) = 4.9 \times 10^{-4} \times 5$ = $2.45 \times 10^{-3} mol$ $V(CO_2 @ STP) = 2.45 \times 10^{-3} \times 22.71$ = 0.056 L = 55.6 mL

12. The redox equation is $5Fe^{2+} + MnO_4^{-} + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ $n (KMnO_4) = cV = 0.020 \times 0.020$ $= 4.0 \times 10^{-4} \ mol$ $n (Fe^{2+}) = 5 \times n (MnO^{4-}) = 5 \times 0.0004$ $= 0.002 \ mol$ $[Fe^{2+}] = (n/V) = (0.002/0.025)$ $= 0.080 \ mol \ L^{-1}$ $n (Fe^{2+} \ in \ 0.50 \ L) = 0.08 \times 0.500$ $= 0.040 \ mol$ $m (Fe^{2+}) = m(Fe) = 0.040 \times 55.85 = 2.234 \ g$ $\therefore \% \ of \ Fe \ in \ the \ ore = [(2.234/4) \times 100]$ = 55.9%

13. The redox equation is $2MnO_4^{-1}+6H^++5H_2O_2 \rightarrow 2Mn^{2+}+8H_2O+5O_2$

(a) $n (MnO_4^- used in the titration) = cV$ $= 0.016 \times 0.02020 = 3.232 \times 10^{-4} mol$ $\therefore n (H_2O_2) = [(3.232 \times 10^{-4} \times 5)/2]$ $= 8.08 \times 10^{-4} mol$ $n (H_2O_2) in 0.020 L = 8.08 \times 10^{-4} mol$ $\therefore n (H_2O_2) in the stock solution of 1.0 L)$ $= [(8.08 \times 10^{-4} \times 1000)/20] = 0.0404 mol$ $\therefore n (H_2O_2) in the 40.0 mL of commercial$ solution = 0.0404 mol $\therefore c [H_2O_2] in the commercial solution$ $= (n/V) = (0.0404/0.040) = 1.01 mol L^{-1}$

- (b) % H_2O_2 by mass in 40.0 mL of the commercial solution (40.0 g of the solution) = (mass of H_2O_2 present in 40.0 mL/mass of 40.0 mL of the solution) × 100 = [(1.01 × 34.016)/40] × 100 = (34.36/40) × 100 = 85.9%
- (c) Since 1 mol of H₂O₂ releases 1 mol of oxygen gas according to this equation,
 1.01 mol in 1.0 L will release 1.01mol of oxygen gas which is 1.01 × 22.71 = 22.94 L
 ∴ Volume strength of the solution = 22.9.

Redox Back-Titrations

14.

- (a) $3C_2O_4^{2-} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6CO_2 + 2Cr^{3+} + 7H_2O$
- (b) Average titre = 23.09 mL
- (c) Flow-chart:

 $n(Cr_2O_7^{2-})$ added = 0.120×0.243 $= 0.02916 \ mol$ $n_1 = 0.02916 \text{ mol}$ $n(H_2C_2O_4)$ in titre = 0.0504×0.02309 $= 1.165 \times 10^{-3} \text{ mol}$ From above: $n(Cr_2O_7^{2-}) = 1/3 \times n(H_2C_2O_4)$ $= 3.879 \times 10^{-4} \text{ mol in } 25 \text{ mL}$ Hence in 250 mL $n(Cr_2O_7^{2-})$ $= 3.879 \times 10^{-4} \times \frac{250}{5}$ $= 3.879 \times 10^{-3} \, mol$ $n_2 = 3.879 \times 10^{-3} \, \text{mol}$ $n(Cr_{2}O_{7}^{2})$ reacted = $n_{1} - n_{2}$ $= 0.02916 - 3.879 \times 10^{-3} = 0.0253 \text{ mol.}$ *Reaction with alcohol: n(CH₃CH₂OH)* $= 3/2 \times n(Cr_2O_7^{2-}) = 3/2 \times 0.0253$ i.e. 0.0379 mol alcohol is in 7 mL of solution. $c(CH_2CH_2OH) = n/V = 0.0379/0.007$ $= 5.41 \text{ mol } L^{-1}$.

- (a) $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$
- (b) $C_6H_8O_6(aq) + I_2(aq) \rightarrow C_6H_6O_6(aq) + 2I(aq) + 2H^+(aq)$
- (c) Titres: 15.05; 13.96; 13.78; 13.92. Average 13.89 mL. $n(S_2O_3^{2-})$ added = 0.0493 × 0.01389 $= 6.848 \times 10^{-4} \text{ mol}$ *Ratio* $S_2O_3^2$: I_2 is 2 : 1 so: $n(I_2)$ in aliquot = $\frac{1}{2} \times 6.848 \times 10^{-4}$ $= 3.423 \times 10^{-4} \text{ mol. In } 20 \text{ mL}$ \therefore in 250 mL $n(I_2) =$ $= 4.280 \times 10^{-3} \text{ mol}$ $n_2 = 4.280 \times 10^{-3} \text{ mol}$ $n_1 = 0.0521 \times 0.1 = 0.00521 \text{ mol}$ $n(I_2)$ reacted = $n_1 - n_2 = 0.00521 - 0.004280$ $= 9.301 \times 10^{-4} \text{ mol}$ $n(C_6H_8O_6) = n(I_2) = 9.301 \times 10^{-4} \text{ mol in tablet}$ $Mr(C_6H_8O_6) = 176.124 \text{ g mol}^{-1}$ $m(C_6H_8O_6) = 9.301 \times 10^{-4} \times 176.124$ = 0.164 g