Problem

Alice has a **positive** integer N. She is wondering how many ordered pairs of **positive** integers (i,j) exist such that i+j=N.

Help Alice figure out the answer.

Note that since the pairs are ordered, (1,2) and (2,1) are considered different.

Input Format

The first and only line of input contains a single integer N.

Output Format

Print a single integer, the number of ordered pairs of positive integers (i,j) such that i+j=N.

Constraints

• $1 \le N \le 100$

Sample 1:

Input	Output
1	0

Explanation:

As both integers must be positive, the minimum sum must be 1+1=2. Therefore there are no pairs of positive integers adding up to 1.

Sample 2:

Input	Output
2	1

Problem

Alice has a **positive** integer N. She is wondering how many ordered pairs of **positive** integers (i,j) exist such that i+j=N.

Help Alice figure out the answer.

Note that since the pairs are ordered, (1,2) and (2,1) are considered different.

Input Format

The first and only line of input contains a single integer N.

Output Format

Print a single integer, the number of ordered pairs of positive integers (i,j) such that i+j=N.

Constraints

• $1 \le N \le 100$

Sample 1:

Input	Output
1	0

Explanation:

As both integers must be positive, the minimum sum must be 1+1=2. Therefore there are no pairs of positive integers adding up to 1.

Sample 2:

Input	Output
2	1