Last fime Lave condition Z'-K=G "physical pictore" Bragg Scattering 2 & sin = n2 "practical picture" Selection Rules You can pick any set of (h, k, l) but there's no guarantee that it will be a family of lattice planes. (0,0,1) eg

(0,01) is a family.

This means (1,0,0) would show up as a pock in the diffraction pattern pongr 1 diffraction for simple whic. Not for the BCC. patron (50) (h, k, l) 20

missing praces would a coor due to two sets of (1,0,0) planes desirainly interfering.

Selection Rules:	
Lattice	(h,k,l)
6C	any (h, k, l) allowed
BCC	h+k+l must be em
FCC	hik, I all odd or all even.

We need to find Some # such

Ly easiest method

.541nm

	$\frac{\lambda}{\lambda}$	_	.9	1	, da
20	dhkl 261118	2 max	32 max	(h,k,1)	a= d V h2+ k2+ d2
227°	Q.3(3 _{NM}	1	3	(1,1,1)	.542 nm
26.3°	0.27 nm	1.33	3,99	(2,0,0)	. 540nm
37.7°	0.19 Nm	2.69	8.07	(2,2,0)	.537nm
44.3°	0-1 1 3 nm	3.67	11.01	(3,1,1)	. Sylnm
<u>५७.५</u>	0.157 nm	3.97	11,91	(2,2,2)	. 544 nm
૭૫,૧ °	0135 hm	5.35	16.95	(4,0,0)	. 540nm S
		novice all ≈ dividud b	by 3	3: h?	a?.

= dividud by 3

We know the (h,k, l)'s corresponding to the peaks. Compare to selection rules to diremme the latice smeave. FCC Latrice. Microscopic Properties of Bonling (Friday's lecture = Condent bonding) Generally, a bond consists of two things - Something that detrours the two atoms to gether - attractive force - Something that keeps the atomi apart - repulsive force 1 -> aromic distance \$ so botenual We write this as $M \leq N$ Repulsion has to dominance at small distances. whymoh conespondo to intempleater aunal potation