

PROBABILISTIC GRAPHICAL MODEL SESSION # 6: UNDIRECTED GRAPHICAL MODEL

SEETHA PARAMESWARAN seetha.p@pilani.bits-pilani.ac.in

The instructor is gratefully acknowledging the authors who made their course materials freely available online.

Table of Contents

Undirected Graphical Models

Scenario 1

$$P(A/C) = P(A) C B D = P(A/B, D)$$

- Four people; Alice, Bob, Charlie, Diana; go out for dinner in different groups of two.
- Alice goes out with Bob, Bob goes out with Charlie, Charlie with Diana, and Diana with Alice.
- Bob doesn't go with Diana, and Alice doesn't/go with Charlie.
- Let's think about the probability of them ordering food of the same cuisine.
- From our social experience, we know that people interacting with each other may influence each others choice of food.
- Alice can influence Bob's choice of cuisine. Bob can influence Charlie's choice of cuisine. But Alice and Charlie wont agree
 Missing College College
- How can we represent this in Bayesian Nework?

$$|A| = |A| = |A|$$

Scenario 1

_ Bob ⊥ Diana Alice, Charlie

Bob Alice Charlie Diana

Satisfies Eq(2) but not Eqn(1).

lead

What is the problem?

Scenarial:

Bob and Diana are both sevial nodes, so Specifying them makes the faths from Alice to Charlie inactive Thus A L C | B, D

What is the problem? Consider BID/A, C Here Cin a converging node, 5-specifying it creates a path of influence between B and D . B / D /A, C

What's wrong hom?

$$A \perp \subset \setminus B, D$$

 $B \neq D \mid A, \subset$

B, D marginally independent (i.e B L D/ +)

Scenario 1

- Directed models have a limitation that they cannot represent symmetric interactions.
- Undirected graphical model to encode influence flows in both directions.
- Example:

Alice \(\perp \) Charlie \(\begin{aligned} Bob, \ Diana \end{alice}, \ Charlie \end{alice}, \)

Markov Network

Definition

Markov network is an undirected graph, where

- the nodes represent the random variables and
- the dependencies or direct probabilistic interaction between these random variables are represented with undirected edges.
- No parent-child relationship.
- So we do not use CPD.
- Use factor to represent how likely it is for some states of a variable to agree with the states of other variables.

Parameterizing Markov Network

- Markov Networks are parameterized using factors.
- Factors help in symmetric parameterization of random variables.
- Factors capture the affinities between related variables.
- Factors do not represent the probability.
- Factors are not constrained to sum up to 1 or to be in the range [0,1].
- The parameterization of the Markov network defines the local interactions between directly related variables.
- The scope of a factor to be the set of random variables over which it is defined.

Factor

 \blacksquare A factor Φ is a function or a table that maps a set of random variables to a real value.

$$\Phi: Val(X_1, \ldots, X_n) \to R \tag{3}$$

The argument of the factor is called scope of the factor.

Scope:
$$D = \{X_1, \dots, X_n\}$$
 (4)

- Operations on a factor (Refer Session 3 for details)
 - Marginalize a factor φ whose scope is W with respect to a set of random variable \underline{X} , sum out all the entries of X, to reduce its scope to $\{W-X\}$.
 - Reduction of a factor φ whose scope is W to the context $X = x^i$ means removing all the entries from the factor where $x \neq x^i$. This reduces the scope to $\{W X\}$.
 - Factor product refers to the product of factors φ_1 with a scope X and φ_2 with scope Y to produce a factor φ_3 with a scope $X \cup Y$.

Factor

С	D	φ(C, D)	
C 0	d 0	1	,
C_0	d^1	100	
C ¹	d^0	100	
C ¹	d^1	1	

Α	В	$\varphi(A, B)$
a 0	b^0	90
a^0	b^1	5
a^1	b^0	1
a ¹	b^1	10

В	С	φ (B, C)
b ⁰	C 0	100
b^0	C ¹	1
b^1	c_0	1
b^1	C ¹	100

Queries using Factors

• Compute the probability corresponding to a^1 , b^1 , c^0 , d^1 .

$$P(\underbrace{a_1, b_1}, c_0, d_1) = \underbrace{\varphi_1(\underbrace{a_1, b_1}) \times \varphi_2(\underbrace{b_1, c_0}) \times \varphi_3(c_0, d_1) \times \varphi_4(d_1, a_1)}_{= 10 *1 *100} \times \underbrace{\varphi_2(\underbrace{b_1, c_0}) \times \varphi_3(c_0, d_1) \times \varphi_4(d_1, a_1)}_{= 100 *100}$$

Factor Product

		_			
D A	φ ₄ (D, <u>A</u>)		Α	ВФ	1(A, B)
d0 a0	(80)	-	a 0	b 0	90
d^0 a^1	60		a 0	<i>b</i> ¹	100
d^1 a^0	20	(A)	a ¹	b^0	1
d¹ a¹	10		a ¹	<i>b</i> ¹	10
			\sim		
		_(D)	(B)		
C D	(G, D)	_(D)	(B)	Cq	(B, C)
C D ((C)	\sim	C 4	
	(G, D)				(B, C)
c 0 d 0			$\frac{B}{b^0}$	c 0	10
c ⁰ d ⁰ c ⁰ d ¹	10		B b ₀ b ₀	c ⁰	10 80

Α	В	С	D	$P(A, B, C, D) = \Phi(A, B, C, D)$	A, B, C, D)
a 0	b 0	c 0	d 0	90 · 10 · 10 · 80	=720,000
a^0	b^0	c_0	d^1	90 · 10 · 1 · 20	=18,000
a^0	b^0	C ¹	d^0	90 • 80 • 100 • 80	=57600,000
a^0	b^0	C ¹	d^1	90 · 80 · 90 · 20	=12960,000
a^0	b^1	c_0	d^0	100 · 70 · 10 · 80	=5600,000
a^0	<i>b</i> ¹	c_0	d^1	100 - 70 - 1 - 20	=140,000
a^0	b^1	C1	d^0	100 · 30 · 100 · 80	=24000,000
a^0	b^1	C1	d^1	100 · 30 · 90 · 20	=5400,000
a ¹	b^0	c_0	d^0	1 · 10 · 10 · 60	
a ¹	b^0	c 0	d^1	1 · 10 · 1 · 10	=6,000 (
a ¹	b^0	C1	d^0	1 · 80 · 100 · 60	=100
a1	b^0	C1	d^1	1 · 80 · 90 · 10	=480,000
a1	<i>b</i> ¹	c 0	d^0	10 · 70 · 10 · 60	=72,000
a ¹	b^1	c 0	d^1	10 · 70 · 10 · 60	=420,000
a ¹	b^1	C1	d^0		=70,000
a1	<i>b</i> ¹	C1	d^1	10 - 30 - 100 - 60	=1800,000
				10 · 30 · 90 · 10	=270,000

Factor Product

$$\tilde{P}(A,B,C,D) = \varphi_1(A,B) \times \varphi_2(B,C) \times \varphi_3(C,D) \times \varphi_4(D,A)$$
 (5)

is un-normalized. It is not a probability distribution.

Normalize P(A, B, C, D) using partition function Z. Z is called the partition function and is a function of the parameters.

$$Z = \sum_{A,B,C,D} \tilde{P}(A,B,C,D)$$
Normalized factor product with all variable

$$P(A, B, C, D) = \frac{1}{Z}P^{\tilde{c}}(A, B, C, D)$$

		_			
D A	$\phi_4(D, A)$	_	Α	Вq	1(A, B
d0 a0	0 80	_	a 0	b 0	90
d⁰ a′	60		a^0	b^1	100
d^1 a^0	20	(A)	a^1	b^0	1
d¹ a'	1 10		a ¹	<i>b</i> ¹	10
C D	φ ₃ (C, D)		В	С	p ₂ (B, C
c^0 d^0	10	(c)	b^0	c^0	10
$c^0 d^1$	1	_	b^0	<i>c</i> ¹	80
c^1 d^0	100		b^1	c_0	70
c^1 d^1	90		b^1	C ¹	30

Α	В	С	D	$\tilde{P}(A,B,C,D)$	P(A, B, C, D)
a 0	b 0	c 0	d 0	720,000	0.0055
a^0	b^0	c_0	d1	18,000	0.000
a^0	b^0	C1	d^0	57600,000	0.4365
a^0	b^0	C ¹	d1	12960,000	0.0982
a^0	b^1	c_0	d^0	5600,000	0.0424
a^0	b^1	c_0	d1	140,000	0.0011
a^0	b^1	C ¹	d^0	24000,000	0.1819
a^0	b^1	C1	d1	5400,000	0.0409
a ¹	b^0	c 0	d^0	ŕ	0.0000
a ¹	b^0	c 0	d1	6,000	0.0000
a ¹	b^0	C ¹	d^0	100	0.0036
a ¹	b^0	C1	d1	480,000	0.0005
a ¹	<i>b</i> ¹	c 0	d 0	72,000	0.0318
a ¹	<i>b</i> ¹	c 0	d ¹	420,000	0.0005
a ¹	<i>b</i> ¹	C1	d 0	70,000	0.1364
a ¹	<i>b</i> ¹	C1	d1	1800,000	0.0205
				270,000	
				109493,100	$(\cdot \cdot \circ)$

Queries using Factor Product

Compute the probability of B.
 Marginalize wrt A,C,D

$$P(b^1) = 0.4555$$

 $P(b^0) = 0.5445$

• Compute the probability of B agreeing with C given c^0 .

$$P(b^1|c^0) = 0.0759$$

<u> Ma</u>	rgir	<u>nal</u>	<u>Pro</u>	bability of A and B
A	В	С	D	$P(A, B, C, D)$ $P_{\varphi}(A, B)$
(a ⁰	b^0	c 0	d 0	0.0055
a^0	b^0	c_0	d ¹	0.0001
a^0	b^0	C ¹	d^0	0.4365
a^0	b^0	C ¹	d¹	0.0982 0.5403
a 0	b1	c 0	d 0	1 0.0424
a^0	b^1	c_0	d 1	0.0011
a^0	b^1	C ¹	d^0	0.1819
a^0	b^1	C ¹	d1	0.0409 0.2663
a ¹	b^0	c 0	d 0	0.0000
a^1	b^0	c_0	d 1	0.0000
a^1	b^0	C ¹	d^0	0.0036
a ¹	b^0	C ¹	d 1	0.0005 0.0042
a ¹	<i>b</i> ¹	c 0	d 0	0.0318
a^1	b^1	c_0	d 1	0.0005
a^1	b^1	C1	d^0	0.1364
a ¹	b^1	C ¹	d 1	0.0205 0.1892
	a0 a0 a0 a0 a0 a0 a0 a0 a0 a1 a1 a1 a1 a1 a1	A B a0 b0 a0 b0 a0 b0 a0 b0 a0 b1 a1 b0 a1 b0 a1 b0 a1 b1 a1 b1 a1 b1	A B C a0 b0 c0 a0 b0 c1 a0 b0 c1 a0 b1 c0 a0 b1 c1 a0 b1 c1 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c0	A B C D a0 b0 c0 d0 a0 b0 c1 d0 a0 b1 c0 d0 a0 b1 c0 d1 a0 b1 c0 d1 a0 b1 c1 d0 a0 b1 c1 d0 a0 b1 c1 d0 a1 b0 c0 d1 a1 b0 c0 d1 a1 b0 c1 d0 a1 b1 c0 d0

There is no natural mapping between factors and probability distribution.

Marginal Probability of A and B

	Trial girler : researchity er / t arres =						
Α	В	С	D	P(A, B, C, D)	$P_{\varphi}(A,B)$		
a 0	b^0	c 0	d^0	0.0055			
a^0	b^0	c_0	d^1	0.0001			
a^0	b^0	C ¹	d^0	0.4365			
a^0	b^0	C ¹	d^1	0.0982	0.5403		
a 0	b1	c 0	d^0	0.0424			
a^0	b^1	c_0	d^1	0.0011			
a^0	b^1	C ¹	d^0	0.1819			
a^0	b^1	C ¹	d^1	0.0409	0.2663		
a ¹	b^0	c 0	d^0	0.0000			
a1	b^0	c_0	d^1	0.0000			
a ¹	b^0	C ¹	d^0	0.0036			
a ¹	b 0	C ¹	d1	0.0005	0.0042		
a ¹	<i>b</i> ¹	C 0	d^0	0.0318			
a1	b^1	c_0	d^1	0.0005			
a1	<i>b</i> ¹	C ¹	d^0	0.1364			
a ¹	<i>b</i> ¹	C ¹	d^1	0.0205	0.1892		

Factorization and Independencies

 $P \models (B \perp D(A), \textcircled{\dagger}) \text{ should have a decomposition}$

$$P = \frac{1}{Z} \left[\varphi_{1}(A, B) \times \varphi_{2}(B, C) \right] \times \varphi(C) D \times \varphi(D)$$

B and D are separated given A and C.

P |=(
$$A \perp C \mid B$$
, D) should have a decomposition
$$P = \frac{1}{2} [\varphi_4(\underline{D}, A) \times \varphi_1(A, B)] \times \varphi_2(\underline{B}, C) \times \varphi_3(C, \underline{D})$$

A and C are separated given B and D.

Factorization and Independencies

Independence properties of the distribution P correspond directly to separation properties in the graph over which P factorizes.

innovate achieve lead

Factors can be misleading

•	- 1			
u a	ارا	دع	d =	10.04
م	6°	رع	d'	0.06
\(\text{\(\ext{\) \}}}}}\end{\(\text{\(\text{\) \ext{\(\text{\(\text{\(\ext{\) \}}}}}\end{\(\text{\(\text{\) \ext{\(\text{\(\text{\(\ext{\) \}}}}}\end{\(\text{\(\text{\) \ext{\(\text{\(\text{\) \ext{\(\ext{\} \text{\(\ext{\) \ext{\(\ext{\) \ext{\(\ext{\) \ext{\(\ext{\) \ext{\(\ext{\) \ext{\(\ext{\) \ext{\(\ext{\) \ext{\} \ext{\(\ext{\) \ext{\} \ext{\) \ext{\(\ext{\) \ext{\} \ext{\} \ext{\} \ext{\) \ext{\} \ext{\ \ext{\} \ext{\ \ext{\} \ext{\ \ext{\} \ext{\ \exi} \ext{\ \exi}\ \ext{\ \ext{\ \ext{\ \ext{\ \exi}	jo o	c 1	J°	0.04
مَّ	63	c'	ے'ل	4.1 × 16-6
	b'.	c' c' c'	ď,	19x105
مّ	6	حی	a'	6.9×16-5
a-	6	c'	a' 3	0.69
16	6	٠ ٔ	a'	(.9x1==5
a'	6	c -	۵' ا	1.4 X1 = 5
a'	b°	<i>C C C C C C C C C C</i>	λ.	6.14
<i>a</i> '	b		ر کم	1.4 x /~-5
<u> </u>	bo	د'	ል'	1 / × (5
<i>a</i> '	b'	دے	م ع	1.4 × 10-6
a'	6	Č	d'	0.014
a'	ار ا	c'	d ³	0.014
α'	<u> - 6'</u>		ď'	0014

Joint Distribution

for the

Misconception

Example

BITS Pilani, Deemed to be University under Section 3 of UGC Act, 1956

4(0,A) di ai los pur factor & (A, B) sugges!

that A and B are mostly in agreement.

BITS Pilani, Dee ned to be University under Section 3 of UGC Act, 1956

ate achieve lead

(10)

Definition

A distribution P_{Φ} is called a Gibbs distribution parameterized by a set of factors $\Phi = \{\varphi_1(D_1), \dots, \varphi_k(D_k)\}$ if it can be expressed as product of the factors.

$$P_{\oplus}(X_{i_1},\ldots,X_{i_l}) = \frac{1}{Z_{\oplus}} \left[\varphi_1(D_i) \times \ldots \times \varphi_k(D_i) \right]$$

$$\tilde{P}(X_i, \dots, X_n) = (1 - \varphi_i(D_i))$$
(9)

$$\sum_{X_{i},...,X_{n}} \underbrace{\tilde{P}(X_{i},...,X_{n})}_{X_{i},...,X_{n}}$$

$$P_{\Phi}(X_{i},\ldots,X_{n}) = \frac{1}{Z_{\Phi}} \tilde{P}(X_{i},\ldots,X_{n})$$
 (11)

Gibbs Distribution

Definition

A distribution $\underline{P_{\Phi}}$ with $\Phi = \{\underline{\varphi_1}[\underline{D_1}\}, \dots, \underline{\varphi_k}(\underline{D_k})\}$ factorizes over a Markov Network H if each D_k is a complete subgraph of H.

- The factors that parameterize a Markov network are often called clique potentials.
- Reduce the number of factors in the parameterization by allowing factors only for maximal cliques.
- Let C_1, \ldots, C_k be the cliques in H.
- Parameterize P using a set of factors $\varphi_1(C_1), \ldots, \varphi_l(C_l)$.

Gibbs Distribution Example

Definition

Pairwise Markov Network is an undirected graph whose nodes X_i, \ldots, X_n and edges $X_i - X_j$ are associated with a facto $(\varphi_{ij}(X_i, X_j))$.

- A subclass of Markov networks.
- Eg:

$$P(A, B, C, D) = \frac{1}{Z} [\varphi_1(A, B) \times \varphi_2(B, C) \times \varphi_3(C, D) \times \varphi_4(D, A)]$$

How many parameters for n RV with d values each?

Number of parameters in Pairwise Markov Network
$$= O(n^2d^2)$$
 (13) (14) (14) (14) (15) $($

Induced Markov Network

Definition

For a set of factors φ_i , with a scope D_i , the Induced Markov Network H_{Φ} , has an edge between a pair of variables X_i and X_j whenever there exists a factor $\varphi_m \in \Phi$ such that X_i , $X_i \in D_m$.

- X and Y will have an undirected edge
 -) if they appear together in some factor $oldsymbol{arphi}$
 - if there exists a factor $\varphi(X, Y)$.

Consider 4 RVs A,B,C,and D. The factor and its induced Markov Network is given below.

$$\varphi_1(A, B, C)$$

$$\varphi_2(B, C, D)$$

$$\Phi = \varphi_1(A, B, C) \times \varphi_2(B, C, D)$$

Definition

Gibbs distribution P factorizes a Markov Network H if there exists

$$\Phi = \{ \varphi_1(D_1), \dots \varphi_k(D_k) \} \text{ such that }$$

- $P = P_0$, normalized product of factors φ_i
- (H is the induced graph for Φ.)

• From an induced Markov network H, we cannot read the factorization P_{Φ} from the graph, as there can be multiple possible factorizations.

Flow of Influence

- $\phi_1(A, B, D), \phi_2(B, C, D)$
- $\varphi_5(A, B)$, $\varphi_6(B, C)$, $\varphi_7(C, D)$, $\varphi_8(D, A)$, $\varphi_9(B, D)$
- When can B influence D?
- When can A influence C?

Flow of Influence

- $\phi_1(A, B, D), \phi_2(B, C, D)$
- $\phi_5(A, B), \phi_6(B, C), \phi_7(C, D), \phi_8(D, A), \phi_9(B, D)$
- When can B influence D?
 - Direct influence
 - $\varphi_1(A, B, D)$
 - $\varphi_9(B,D)$
- When can A influence C?
 - Indirect influence
 - Through Bor D
 - $\varphi_1(B,C,D)$
 - $\varphi_1(A, B, D)\varphi_2(B, C, D)$

Flow of Influence

- Parameterization of the distributions are different.
- The trails in the graph through which influence can flow are the same.
- Active trails depend only on the graph structure.

References

- Probabilistic Graphical Models: Principles and Techniques by Daphne Koller and Nir Friedman, MIT Press, 2009
- Artificial Intelligence: A Modern Approach (3rd Edition) by Stuart Russell, Peter Norvig
- Mastering Probabilistic Graphical Models using Python by Ankur Ankan, Abhinash Panda. Packt Publishing 2015.
- Learning in Graphical Models by Michael I. Jordan. MIT Press. 1999

