

Dropouts: DART

 Idea of dropouts comes from deep neural networks (CNN) DART: Dropouts meet Multiple Additive Regression Trees

Rashmi, K. and Gilad, R. (2015). DART: Dropouts meet Multiple Additive Regression Trees

Algorithm 1 The DART algorithm Let N be the total number of trees to be added to the ensemble

 $S_1 \leftarrow \{x, -L'_x(0)\}$ T_1 be a tree trained on the dataset S_1

 $M \leftarrow \{T_1\}$ for t = 2, ..., N do $D \leftarrow$ the subset of M such that $T \in M$ is in D

with probability p_{drop} if $D = \emptyset$ then $D \leftarrow$ a random element from Mend if $\hat{M} \leftarrow M \setminus D$

 $S_t \leftarrow \left\{x, -L'_x\left(\hat{M}(x)\right)\right\}$

 T_t be a tree trained on the dataset S_t $M \leftarrow M \cup \left\{ \frac{T_i}{|D|+1} \right\}$

for $T \in D$ do Multiply T in M by a factor of $\frac{|D|}{|D|+1}$ end for

end for

Output M

1) Use only a subset of previous trees for computing gradient for next tree 2) Normalization factors to account for the fact trees were removed

GPU XGBoost

Accelerating the XGBoost algorithm using **GPU** computing

Artificial Intelligence Data Mining and Machine Learning

Rory Mitchell [™], Eibe Frank [™]

April 4, 2017

Dropouts: DART

Idea of dropouts comes from deep neural networks (CNN)

1) Use only a subset of previous trees for computing gradient for next tree

2) Normalization factors to account for the fact trees were removed

(b) After applying dropout.

Algorithm 1 The DART algorithm

```
Let N be the total number of trees to be added to
the ensemble
S_1 \leftarrow \{x, -L'_x(0)\}
T_1 be a tree trained on the dataset S_1
M \leftarrow \{T_1\}
for t = 2, ..., N do
   D \leftarrow the subset of M such that T \in M is in D
with probability p_{drop}
   if D = \emptyset then D \leftarrow a random element from M
    end if
   \hat{M} \leftarrow M \setminus D
   T_t be a tree trained on the dataset S_t
    for T \in D do
       Multiply T in M by a factor of \frac{|D|}{|D|+1}
    end for
end for
```


Output M