L22 p. 2

LECTURE 22

• Readings: Sect. 8.3–8.4; reread Sect. 4.2 and pp. 225–226

Lecture outline

- End of semester
- Review
- Performance criteria for estimators
- (Bayesian) Least mean squares estimation
- (Bayesian) Linear least mean squares estimation

- Chapter 8 all covered
- Chapter 9
- Sect. 9.1: covered through middle of p. 470

Semester end game

- Sect. 9.2: covered through middle of p. 482
- Sect. 9.3: all covered
- Sect. 9.4: not covered
- Problem set 11 is for practice, not to be turned in
- Final exam: Wednesday, May 19, 9am-noon
- Many office hours between last lecture and final exam
- Course VI Underground Guide Evaluations https://sixweb.mit.edu/student/evaluate/6.041-s2010 until 11:59pm on May 16

L22 p. 3

Review: Bayesian inference

• Posterior computation is use of Bayes' rule, for example

$$p_{\Theta|X}(\theta \mid x) = \frac{p_{\Theta}(\theta) p_{X|\Theta}(x \mid \theta)}{\sum_{k} p_{\Theta}(k) p_{X|\Theta}(x \mid k)}$$

- \bullet Estimate $\widehat{\theta}$ is number computed from posterior
- Maximum a posteriori probability (MAP) rule

$$\hat{\theta}_{\mathsf{MAP}} \, = \, \arg\max_{\boldsymbol{\theta}} p_{\Theta|X}(\boldsymbol{\theta} \, | \, \boldsymbol{x}) \quad \text{or} \quad \hat{\theta}_{\mathsf{MAP}} \, = \, \arg\max_{\boldsymbol{\theta}} f_{\Theta|X}(\boldsymbol{\theta} \, | \, \boldsymbol{x})$$

L22 p. 4

Example: Coin with unknown parameter

Prior: $f_{\Theta} \sim \text{beta}(1,1)$ (= uniform on [0,1])

 $\text{Likelihood: Hs in } n \text{ tosses} \\ p_{X|\Theta} \sim \text{binomial}(n,\Theta)$

Posterior: After k Hs, $f_{\Theta|X} \sim \text{beta}(k+1,n-k+1)$

 $\hat{ heta}_{\mathsf{MAP}}$ is the peak of the posterior, at k/n

L22 p. 5

Hypothesis testing

- \bullet Estimation with discrete Θ called $hypothesis\ testing$
- Common formulation:
- θ and $\hat{\theta}$ in $\{1, 2, \ldots, m\}$
- nonnegative cost c_{ij} for choosing $\hat{\theta}=j$ when $\theta=i$
- $-c_{ii} \le c_{ij}$ for each $j \ne i$; may as well have $c_{ii} = 0$ for each i
- minimize expected cost:

$$\sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij} \mathbf{P}(\Theta = i, \widehat{\Theta} = j) = \sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij} \mathbf{P}(\widehat{\Theta} = j \mid \Theta = i) \mathbf{P}(\Theta = i)$$

- good to make $P(\widehat{\Theta} \neq \Theta)$ small, but errors not equally important (costly)
- equal costs makes MAP rule optimal

L22 p. 6

Binary hypothesis testing example

• Prior given: $P(\Theta = 1) = p$, $P(\Theta = 2) = 1 - p$

• Likelihoods given: $f_{X|\Theta}(x\,|\,1), \qquad f_{X|\Theta}(x\,|\,2)$

• Costs given: c_{12} (mistake 1 for 2), c_{21} (mistake 2 for 1)

Minimize expected cost

L22 p. 8

Bayesian least mean squares (LMS) estimation

- Any estimator is function of observations: $\widehat{\Theta} = g(X)$
- LMS estimator $\widehat{\Theta}_{LMS}$ minimizes $E[(\Theta \widehat{\Theta})^2]$
- LMS estimator is $g_{LMS}(X) = \mathbb{E}[\Theta | X]$
- \bullet Recall from L12: For random variable Y and number c

$$E[(Y-c)^2] = var(Y-c) + (E[Y-c])^2 = var(Y) + (E[Y-c])^2$$

LMS estimation example

L22 p. 9

Conditional mean squared error

• $E[(\Theta - E[\Theta \mid X])^2 \mid X = x]$ same as $var(\Theta \mid X = x)$: variance of the conditional distribution of Θ

L22 p. 10

Example: Coin with unknown parameter

Prior: $f_{\Theta} \sim \text{beta}(1,1)$

Likelihood: Hs in n tosses $p_{X|\Theta} \sim \text{binomial}(n,\Theta)$

Posterior: After k Hs,

 $f_{\Theta|X} \sim \mathrm{beta}(k+1,n-k+1)$

$$\mathbf{E}[\mathsf{beta}(\alpha,\beta)] = \frac{\alpha}{\alpha+\beta} \quad \mathsf{var}(\mathsf{beta}(\alpha,\beta)) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

$$\hat{\theta}_{\mathsf{LMS}} =$$

$$\mathbf{E}[(\widehat{\Theta}_{\mathsf{LMS}} - \Theta)^2 | X = k] =$$

L22 p. 11

Some properties of LMS estimation

- Estimator: $\widehat{\Theta} = E[\Theta \mid X]$
- Estimation error: $\widetilde{\Theta} = \widehat{\Theta} \Theta$

•
$$\mathbf{E}[\widetilde{\Theta}] = 0$$

$$\mathbf{E}[\widetilde{\Theta} \mid X = x] = 0$$

- $\bullet \ \ {\rm E}[\widetilde{\Theta}\, h(X)] = {\rm O, \ for \ any \ function} \ h$
- $cov(\widetilde{\Theta}, \widehat{\Theta}) = 0$
- Since $\Theta = \widehat{\Theta} + \widetilde{\Theta}$: $var(\Theta) = var(\widehat{\Theta}) + var(\widetilde{\Theta})$

L22 p. 12

Linear LMS

- \bullet Consider estimators of the form $\widehat{\Theta}_{\rm LLMS} = aX + b$
- Minimize $\mathbf{E}\left[(\Theta aX b)^2\right]$
- Best choice of *a,b*; best linear estimator:

$$\widehat{\Theta}_{\mathsf{LLMS}} = \mathrm{E}[\Theta] + \frac{\mathsf{cov}(X, \Theta)}{\mathsf{var}(X)} (X - \mathrm{E}[X])$$

$$E[(\widehat{\Theta}_{LLMS} - \Theta)^2] = (1 - \rho^2)\sigma_{\Theta}^2$$

Linear LMS: Example

Linear LMS with more data

• Consider estimators of the form:

$$\widehat{\Theta} = a_1 X_1 + \dots + a_n X_n + b$$

- Find best choices of a_1, \ldots, a_n, b
- Minimize:

$$\mathbf{E}[(a_1X_1+\cdots+a_nX_n+b-\Theta)^2]$$

- $\bullet \ \ \mbox{Set derivatives to zero} \\ \mbox{linear system in } b \mbox{ and the } a_i$
- Only means, variances, covariances matter