LABORATÓRIO DE CIRCUITOS DIGITAIS

5° Experimento: **Projeto de Máquinas de Estados** UFERSA – Campus Pau dos Ferros – DETEC

Prof.: Pedro Thiago Valério de Souza

2024.3

OBJETIVO

Projetar e montar máquinas de estados finitos utilizando circuitos integrados de lógica padrão.

COMPONENTES

Os componentes utilizados nessa prática dependem do projeto realizado pelo estudante.

PROCEDIMENTO PRÁTICO

Projete uma máquina de estados para realizar o controle de um motor de passo unipolar. O circuito possui uma entrada, denominada de H, que indicam se o motor de passo deve girar no sentido horário ou deve ficar parado. Se H=1 o motor deve girar no sentido horário. Se H=0 o motor deve ficar parado. O circuito gera quatro saídas, denominadas de p, m, l e y, correspondentes aos fios de um motor de passo. A tabela abaixo apresenta a sequência que deve ser gerada pela máquina de estados de forma ao motor girar no sentido horário. O motor fica parado toda vez que fica parado em um estágio da sequência.

passo	p	m	I	y
1	1	0	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	0	1
	1 2 3 4	passo p 1 1 2 1 3 0 4 0	passo p m 1 1 0 2 1 0 3 0 1 4 0 1	passo p m I 1 1 0 0 2 1 0 1 3 0 1 1 4 0 1 0

- 1. Determine o diagrama de transição de estados.
- 2. Determine a tabela de transição de estados.
- 3. Obtenha um circuito sequencial que implemente o comportamento desejado. Implemente o circuito utilizando *Flip-Flops* D
- 4. Simule o circuito utilizando o Logisim.
- 5. Implemente, na *protoboard*, o circuito projetado. Utilize, como sinal de *clock*, um sinal quadrado com frequência de aproximadamente 1 Hz gerado através de um circuito com o 555. As saídas devem ser visualizadas através de *leds*. As entradas devem ser impostas através de *dip-switch* ligados em esquema de *pull-up*.
- 6. Utilizando um *driver* para motor de passo, utilize sua máquina de estados para o controle de um motor de passo unipolar. Utilize um sinal de *clock* de aproximadamente 100 Hz, que pode ser gerado por um 555 ou pelo gerador de sinais.

	passo	p	m	I	У
0	1	1	0	0	1
rár	2	1	0	1	0
2	3	0	1	1	0
1	4	0	1	0	1

hararia: H = 1 Parada: H = 0

Rarra 3 - Codificação + à variaveis de estados (E, E0) E, E0 Estado

0 0 0 X 1 0 X 1 1 0 X

D 0+

Parso 4 - Elip-Elap D 1 1 Parso 5 - Tabela de transição de Estados

lant A abouters	Hy aminary abatrus		Saidos		
	H = 0		pmly		
×	×	β	3003		
В	B	8	2010		
X	X	Δ	0 6 6 0		
^		α	0 1 0 1		
		,			

Parso 5- Tabela de transição de Estados					
	Hy aminary abatres			Saidos	
		. = H	1	pmly	
×	×	β		7007	
β	В	8		2010	
χ,	8	Δ		0 6 6 0	
Δ	Δ	X		0 1 0 1	
3 lauth abatres	introde	Pastado ?	Smixer	Saidas	
E, E,	Н	E,(01)	E (D)	pmly	
~ 500		0	0	7007	
00	3	0		1001	
B 20 7	0	0		7 0 7 0	
T 0 7		3	0	1000	
8 { 7 0	0	1	0	0 7 7 0	
[7 0		7	7	0 2 2 0	
E L \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	1	7	0 7 0 7	
ل د ا	7	0	0	t 0 t 0	

$$\mathcal{D}_0 = \overline{E}_0 H + E_0 \overline{H} = E_0 \oplus H /$$