Modern Physics Final Study Guide

PHYS-122

Fall 2024

CONTENTS 2

Contents

1	Special Relativity		3
	1.1	Key Concepts	3
	1.2	Essential Equations	
2	Ear	ly Quantum Theory and Quantum Mechanics	11
	2.1	Essential Equations	13
3	Statistical Mechanics		
	3.1	Key Concepts	14
	3.2	Essential Equations	15
	3.3	Units and Unit Conversions	15
4	Quick Reference		15
	4.1	Mathematical Tools	15
	4.2	Important Constants	17
	4.3	Unit Conversions	17

1 Special Relativity

1.1 Key Concepts

Postulates:

- \bullet Laws of physics are the same in all inertial frames.
- The speed of light is constant in a vacuum for all observers, regardless of their motion relative to the source.

Relativity of Simultaneity: Two events that appear simultaneous to one observer may not appear simultaneous to another observer moving relative to the first.

Lorentz Transformations: The Lorentz transformations relate the spacetime coordinates of an event as measured in two inertial reference frames moving at a constant velocity relative to each other. These transformations preserve the invariant interval (Δs^2) .

Transformations:

- For a frame S' moving with velocity v along the x-axis relative to S:
 - Time: $t' = \gamma \left(t \frac{vx}{c^2}\right)$
 - Space (x-direction): $x' = \gamma (x vt)$
 - Space (y- and z-directions): y' = y, z' = z
- $\gamma = \frac{1}{\sqrt{1-v^2/c^2}}$ is the Lorentz factor.

Lorentz Transformation Matrix: The Lorentz transformation can be expressed using matrix multiplication:

$$x' = \Lambda x$$
,

where Λ is the Lorentz transformation matrix. For a boost along the x-axis, Λ is:

$$\Lambda = egin{bmatrix} \gamma & -\gamma eta & 0 & 0 \ -\gamma eta & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix},$$

with $\beta = v/c$.

Key Properties:

- The determinant of Λ is +1, ensuring the transformations preserve spacetime orientation.
- The inverse transformation is obtained by negating v, which flips the sign of β :

$$\Lambda^{-1} = \begin{bmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

• The Lorentz transformations preserve the invariant interval:

$$\Delta s^2 = x \cdot x = x' \cdot x'.$$

Applications:

- Lorentz transformations explain time dilation, length contraction, and the relativity of simultaneity.
- They are fundamental in deriving the transformations for four-vectors such as fourmomentum and four-velocity.

Relativistic Velocity Addition: These problems typically involve three objects:

- S: Stationary reference frame.
- S': Reference frame of the second moving object.
- u: Velocity of the first object relative to the stationary frame.
- \bullet v: Velocity of the second object relative to the stationary frame.
- u': Velocity of the first object relative to the second moving object.

The Relativistic Invariant Interval: A spacetime quantity that remains unchanged under Lorentz transformations.

• Properties:

- Negative spatial components distinguish it from a Euclidean interval.
- It can be positive, negative, or zero:
 - * Time-like ($\Delta s^2 > 0$): Events can be connected by a physical particle moving slower than the speed of light.
 - * **Space-like** ($\Delta s^2 < 0$): Events are separated by more distance than time; no signal can connect them.
 - * **Light-like** ($\Delta s^2 = 0$): Events are connected by a light signal.

• Relationship to Proper Time and Proper Length:

- **Proper Time** ($\Delta \tau$): In the frame where the particle is stationary, the interval relates to proper time.
- **Proper Length** (ΔL): In the frame where events are simultaneous, the interval relates to proper length.

Four-Vectors: A four-vector in special relativity is a quantity defined in four-dimensional spacetime that transforms under Lorentz transformations. It has the general form:

$$a = (a^0, \vec{a}),$$

where a^0 is the time component $(c\Delta t)$, and $\vec{a} = (a^1, a^2, a^3)$ is the spatial 3-vector component. **Key Properties:**

• The **invariant dot product** of two four-vectors a and b is:

$$a \cdot b = a^0 b^0 - \vec{a} \cdot \vec{b}$$
.

This quantity is Lorentz invariant (unchanged under Lorentz transformations).

• The invariant magnitude of a four-vector is a special case of the dot product:

$$a \cdot a = (a^0)^2 - |\vec{a}|^2$$
.

- The magnitude classifies four-vectors as:
 - Time-like: $a \cdot a > 0$ then $\Delta s^2 = c^2 \tau^2$.
 - Space-like: $a \cdot a < 0$ then $-\Delta s^2 = L$.
 - **Light-like:** $a \cdot a = 0$ then $\Delta s^2 = 0$.

Common Examples:

- Four-Position: $x = (ct, \vec{x})$, where ct represents the time component and $\vec{x} = (x, y, z)$ is the spatial position.
- Four-Velocity: $u = \frac{dx}{d\tau} = \gamma(c, \vec{v})$, where $\gamma = \frac{1}{\sqrt{1 v^2/c^2}}$, c is the speed of light, and \vec{v} is the 3-velocity.
- Four-Momentum: $p = mu = \gamma m(c, \vec{v}) = \left(\frac{E}{c}, \vec{p}\right)$, where E is the total energy and \vec{p} is the 3-momentum.

Applications of the Invariant Dot Product:

• Four-Velocity: The invariant magnitude of u is always positive and equal to c^2 :

$$u \cdot u = c^2$$
.

• Four-Momentum: The invariant magnitude of p relates to the particle's rest mass m:

$$p \cdot p = m^2 c^2$$
.

For massless particles, like photons, $p \cdot p = 0$ and $E = |\vec{p}|c$.

Relativistic Conservation Laws: The principles of conservation of energy and momentum extend to special relativity with some key differences from classical mechanics.

• Relativistic Total Energy:

- Total energy includes kinetic energy and rest energy: $E = \gamma m_0 c^2$, where $\gamma = \frac{1}{\sqrt{1-v^2/c^2}}$.
- Rest energy (m_0c^2) accounts for the energy associated with the rest mass of a particle.
- Total energy is conserved in all relativistic processes, including collisions.

• Relativistic Momentum:

- Momentum in special relativity is defined as $\vec{p} = \gamma m_0 \vec{v}$.
- The magnitude and direction of the total momentum in an isolated system are conserved.

• Relativistic Collisions:

- Unlike classical mechanics, all forms of energy (including rest energy) contribute to the total energy of the system.
- The distinction between elastic and inelastic collisions in classical mechanics is less useful in relativity. Instead, we track the conservation of total energy and momentum.
- Mass is not generally conserved in relativistic collisions. For example, mass can be converted into energy (e.g., pair annihilation) or vice versa (e.g., particle creation).

• Implications:

- Energy and momentum form components of the four-momentum vector: $p^{\mu} = (\frac{E}{c}, \vec{p})$.
- Conservation laws apply to the four-momentum vector in all inertial frames:

$$\sum p_{\rm initial}^{\mu} = \sum p_{\rm final}^{\mu}$$

 These conservation laws ensure the invariance of physical processes across reference frames.

1.2 Essential Equations

Time Dilation: $\Delta t = \gamma \Delta t_0$, where $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$.

Length Contraction: $L = L_0 \gamma^{-1} = L_0 \sqrt{1 - v^2/c^2}$.

Relativistic Addition of Velocities: $u' = \frac{u+v}{1+uv/c^2}$.

Lorentz Transformations:

- Time: $t' = \gamma (t \frac{vx}{c^2})$.
- Space: $x' = \gamma(x vt)$.

Relativistic Dynamics:

- Kinetic Energy: $KE = (\gamma 1)m_0c^2$.
- Total Energy: $E = \gamma m_0 c^2$.
- Rest Mass: $E = m_0 c^2$

Energy-Momentum Relation: $E^2 = (pc)^2 + (m_0c^2)^2$.

Four-Position:

- Defined as $x = (c\Delta t, x, y, z)$, where x is the spacetime coordinate.
- Invariant interval: $\Delta s^2 = (c\Delta t)^2 \Delta x^2 \Delta y^2 \Delta z^2$.

Four-Velocity:

- Defined as $u^{\mu} = \frac{dx^{\mu}}{d\tau}$, where τ is proper time.
- Invariant dot product: $u^{\mu}u_{\mu}=c^2$.

Four-Momentum:

• Defined as $p = m_0 u$, where m_0 is the rest mass.

• Invariant: $p \cdot p = m_0^2 c^2$.

2 Early Quantum Theory and Quantum Mechanics

Quantum Theory of Light:

- Blackbody Problem and Ultraviolet Catastrophe: Classical physics predicted infinite energy at short wavelengths (ultraviolet catastrophe). Planck resolved this by introducing quantized energy levels E = nhf, leading to Planck's radiation law.
- Photoelectric Effect: Light behaves as particles (photons). The energy of emitted electrons depends on the frequency, not intensity, of the incident light:

$$E = hf - \phi$$
,

where ϕ is the work function.

• Compton Scattering: Photons scatter off electrons, resulting in a wavelength shift:

$$\Delta \lambda = \frac{h}{m_e c} (1 - \cos \theta),$$

confirming the particle nature of light.

• Wave-Particle Duality: Light and matter exhibit both wave and particle properties.

De Broglie hypothesized the wavelength of matter waves:

$$\lambda = \frac{h}{p}.$$

• Emission and Absorption Spectra: Atoms absorb/emits photons corresponding to energy level transitions:

$$\Delta E = hf$$
.

• Bohr Model: Electrons occupy quantized orbits, with energy levels:

$$E_n = -\frac{13.6}{n^2}$$
 eV for hydrogen.

- Franck-Hertz Experiment: Confirmed quantized energy levels by measuring discrete energy loss during electron collisions with atoms.
- Heisenberg Uncertainty Principle: Fundamental limits on measurement precision:

$$\Delta x \Delta p \ge \frac{\hbar}{2}, \quad \Delta E \Delta t \ge \frac{\hbar}{2}.$$

• Group and Phase Velocities:

$$v_g = \frac{d\omega}{dk}, \quad v_p = \frac{\omega}{k}.$$

Group velocity corresponds to the velocity of the particle, while phase velocity is associated with the wave motion.

Schrödinger Equation: Governs the quantum mechanical behavior of particles.

• 1D Time-Independent Schrödinger Equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x).$$

• 3D Schrödinger Equation (spherical coordinates):

$$-\frac{\hbar^2}{2m}\nabla^2\psi(r,\theta,\phi) + V(r)\psi(r,\theta,\phi) = E\psi(r,\theta,\phi).$$

The solution is separable:

$$\psi(r, \theta, \phi) = R(r)Y(\theta, \phi),$$

where $Y(\theta, \phi)$ are spherical harmonics.

• Free Particle: For V(x) = 0, solutions are plane waves:

$$\psi(x) = Ae^{i(kx - \omega t)}.$$

• Particle in a Box: For V(x) = 0 inside the box and $V(x) = \infty$ outside:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), \quad E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}.$$

- Step Potential:
 - E < U: Tunneling occurs. The wave function decays exponentially in the classically forbidden region.
 - -E > U: The wave function is continuous, with partial reflection and transmission.

Hydrogen Atom: Solutions to the Schrödinger equation in spherical coordinates yield quantized energy levels and quantum numbers.

• Energy Levels:

$$E_n = -\frac{13.6 \,\text{eV}}{n^2}.$$

- Quantum Numbers:
 - Principal quantum number n: Determines energy level (n = 1, 2, 3, ...).
 - Orbital angular momentum quantum number l: Determines the shape of the orbital (l = 0, 1, ..., n 1).
 - Magnetic quantum number m_l : Determines the orientation $(m_l = -l, -l+1, \dots, l)$.
 - Spin quantum number m_s : Intrinsic angular momentum $(m_s = \pm \frac{1}{2})$.
- Wave Functions:

$$\psi(r, \theta, \phi) = R_{nl}(r)Y_l^m(\theta, \phi),$$

where $R_{nl}(r)$ is the radial wave function, and $Y_l^m(\theta,\phi)$ are spherical harmonics.

• Radial Probability Distribution: The probability density P(r) is given by:

$$P(r) = r^2 |R_{nl}(r)|^2.$$

2.1 Essential Equations

Planck's Hypothesis: E = nhf.

Photoelectric Effect: $KE_{\text{max}} = hf - \phi$.

Compton Scattering: $\Delta \lambda = \frac{h}{m_e c} (1 - \cos \theta)$.

De Broglie Wavelength: $\lambda = \frac{h}{p}$.

Heisenberg Uncertainty Principles: $\Delta x \Delta p \geq \frac{\hbar}{2}$, $\Delta E \Delta t \geq \frac{\hbar}{2}$.

Statistical Mechanics 14

Particle in a Box:
$$E_n = \frac{n^2\pi^2\hbar^2}{2mL^2}$$
, $\psi_n(x) = \sqrt{\frac{2}{L}}\sin\left(\frac{n\pi x}{L}\right)$.

Radial Probability Distribution: $P(r) = r^2 |R_{nl}(r)|^2$.

3 Statistical Mechanics

3.1 Key Concepts

- Microstates and macrostates: Connection between microscopic and macroscopic descriptions.
- Boltzmann distribution: $P_i = \frac{e^{-E_i/k_BT}}{Z}$.
- Partition function: Summation of states to understand thermodynamic properties, $Z = \sum_i e^{-E_i/k_BT}$.
- Occupation numbers: Average number of particles in a state, $n_i = \frac{1}{e^{(E_i \mu)/k_B T} \pm 1}$ (for fermions and bosons).
- Degeneracy: The number of microstates corresponding to a single energy level.
- Distinguishable vs. indistinguishable particles: Boltzmann distribution for distinguishable particles; Fermi-Dirac and Bose-Einstein distributions for indistinguishable particles.

Quick Reference 15

3.2 Essential Equations

Boltzmann distribution:
$$P_i = \frac{e^{-E_i/k_BT}}{Z}$$

Partition function:
$$Z = \sum_{i} g_i e^{-E_i/k_B T}$$

Fermi-Dirac distribution:
$$n_i = \frac{1}{e^{(E_i - \mu)/k_B T} + 1}$$

Bose-Einstein distribution:
$$n_i = \frac{1}{e^{(E_i - \mu)/k_B T} - 1}$$

Average energy:
$$\langle E \rangle = \sum_{i} P_{i} E_{i} = -\frac{\partial \ln Z}{\partial \beta}$$

Probability of a state:
$$P(E) = \frac{g_i e^{-E/k_B T}}{Z}$$

3.3 Units and Unit Conversions

- Energy: $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}.$
- Temperature: Convert between Kelvin and energy using $k_B = 1.38 \times 10^{-23}$ J/K.
- Wavelength and frequency: $E=hf,\,\lambda=\frac{c}{f},\,$ with hc=1240 eV \cdot nm.

4 Quick Reference

4.1 Mathematical Tools

• Trigonometric Identities:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

 $\sin(2x) = 2\sin x \cos x$

Quick Reference 16

- Series:
 - Taylor Series Expansion: $\sum_{n=0}^{\infty} C_n (x-a)^n \text{ where } C_n = \frac{f^{(n)}(a)}{n!}$
 - Binomial Series Expansion: $(1 \pm x)^r = 1 \pm rx \pm ...$
- Integration Tips:
 - For even functions: $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$
 - For odd functions: $\int_{-a}^{a} f(x)dx = 0$
 - Gaussian integrals often appear in wave packets
- Complex Numbers Review
 - Complex conjugate: $z^* = a bi$ for z = a + bi
 - Modulus: $|z| = \sqrt{a^2 + b^2}$
 - Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$
 - Argument: $\arg(z) = \tan^{-1}\left(\frac{y}{x}\right)$
- Second Order Differential Equations
 - If ODE has this form: $\frac{d^2f}{dx^2} = k^2f$ where k is a constant

The solution is:

$$f(x) = Ae^{kx} + Be^{-kx}$$

Quick Reference 17

4.2 Important Constants

- Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \ \mathrm{W/m}^2 \cdot K^4$
- Planck's constant: $h=6.626\times 10^{-34}\,\mathrm{J\cdot s}=4.136\times 10^{-15}\;\mathrm{eV\cdot s}$
- Electron mass: $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$
- Speed of light: $c = 3.0 \times 10^8 \,\mathrm{m/s}$
- Bohr radius: $a_0 = 0.0529 \times 10^{-9} \,\mathrm{m}$
- Compton wavelength of the electron: $\frac{h}{m_e c} = 0.002426 \ \mathrm{nm}$

4.3 Unit Conversions

- $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
- $hc = 1240 \text{ eV} \cdot \text{nm}$
- $\hbar c = \frac{1240}{2\pi} \text{ eV} \cdot \text{nm}$