Implementation Logic and Mathematical Formulation of a Neural Network Visualization

Implementation Logic and Mathematical Formulation

1. Data Loading and Preprocessing

Data Loading and Preprocessing

- Data Loading: Data is read from the file datasets.txt, assuming each row contains two input features and one label.
- Data Conversion: The loaded data is converted into PyTorch tensors.
- Input feature matrix: $\mathbf{X} \in \mathbb{R}^{N \times 2}$, where N is the number of samples.
- Label vector: $\mathbf{y} \in \mathbb{R}^{N \times 1}$.

2. Model Definition

Model Definition

- Neural Network Structure: A two-layer fully connected neural network.
- Hidden Layer: Input dimension is 2, with H hidden neurons (adjustable parameter, e.g., HIDDEN_SIZE).
- Output Layer: Maps hidden layer output to 1 dimension.
- Activation Function: Sigmoid function used for both layers, defined as:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- Weight Initialization:
- Hidden layer weights \mathbf{W}_h use Xavier normal initialization.
- Output layer weights \mathbf{W}_o use standard normal initialization.
- Mathematical Representation:
- Hidden layer output:

$$\mathbf{h} = \sigma(\mathbf{W}_h \mathbf{x} + \mathbf{b}_h)$$

where $\mathbf{W}_h \in \mathbb{R}^{H \times 2}$, $\mathbf{b}_h \in \mathbb{R}^H$.

- Output layer output:

$$\hat{y} = \sigma(\mathbf{W}_o \mathbf{h} + \mathbf{b}_o)$$

where $\mathbf{W}_o \in \mathbb{R}^{1 \times H}$, $\mathbf{b}_o \in \mathbb{R}$.

3. Loss Function and Optimizer

Loss Function and Optimizer

- Loss Function: Binary Cross-Entropy Loss (BCELoss), defined as:

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

- Optimizer: Stochastic Gradient Descent (SGD) with learning rate 3. Parameter update rule:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}$$

where $\theta = \{\mathbf{W}_h, \mathbf{b}_h, \mathbf{W}_o, \mathbf{b}_o\}, \ \eta = 3.$

4. Training Process

Training Process

- Training Epochs: 200 epochs.
- $Per\ Epoch\ Operations$:
- 1. Forward Pass: Compute hidden layer output \mathbf{h} and model output \hat{y} .
- 2. Loss Computation: Calculate \mathcal{L} based on \hat{y} and \mathbf{v} .
- 3. Backward Pass: Compute gradients of \mathcal{L} with respect to model parameters.
- 4. Parameter Update: Update θ using the optimizer.

5. Grid Generation

Grid Generation

- Coarse Grid: Generate a $G \times G$ grid in the input space [-1, 1] \times [-1, 1] ($G = \texttt{GRID_SIZE}$).
- Grid point coordinates:

$$\mathbf{G} = \{(x_i, y_j) \mid x_i = -1 + \frac{2i}{G-1}, y_j = -1 + \frac{2j}{G-1}, i, j = 0, \dots, G-1\}$$

- Fine Grid: Generate a $F \times F$ grid in the same input space ($F = FINE_GRID_SIZE$).
- Grid point coordinates:

$$\mathbf{F} = \{(x_k, y_l) \mid x_k = -1 + \frac{2k}{F-1}, y_l = -1 + \frac{2l}{F-1}, k, l = 0, \dots, F-1\}$$

6. Hidden Layer Mapping

Hidden Layer Mapping

- Coarse Grid Mapping: Map coarse grid points $\mathbf{g} \in \mathbf{G}$ to the hidden space:

$$\mathbf{h}_a = \sigma(\mathbf{W}_h \mathbf{g} + \mathbf{b}_h)$$

- Fine Grid Mapping: Map fine grid points $\mathbf{f} \in \mathbf{F}$ to the hidden space:

$$\mathbf{h}_f = \sigma(\mathbf{W}_h \mathbf{f} + \mathbf{b}_h)$$

- Model Output: Compute model predictions for fine grid points:

$$\hat{y}_f = \sigma(\mathbf{W}_o \mathbf{h}_f + \mathbf{b}_o)$$

7. Visualization

Visualization

- Static Plot:
- Use fine grid hidden mappings \mathbf{h}_f (first two dimensions) and model output \hat{y}_f to plot the decision boundary ($\hat{y}_f = 0.5$).
- Plot training data points in the hidden space (based on ${\bf h}$).
- Use cubic spline interpolation to smoothly connect coarse grid mappings \mathbf{h}_q as grid lines.
- Animation:
- Dynamically display changes in the hidden space across epochs, including:
- Movement of the decision boundary.

- Updates to scatter points h.
- Smooth transitions of grid lines \mathbf{h}_g .

8. Mathematical Formula Summary

Mathematical Formula Summary

- Model:

$$\mathbf{h} = \sigma(\mathbf{W}_h \mathbf{x} + \mathbf{b}_h)$$
$$\hat{y} = \sigma(\mathbf{W}_o \mathbf{h} + \mathbf{b}_o)$$

- Loss Function:

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

- Optimization:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}, \quad \eta = 3$$

- Grid Mapping:

$$\mathbf{h}_q = \sigma(\mathbf{W}_h \mathbf{g} + \mathbf{b}_h), \quad \mathbf{g} \in \mathbf{G}$$

$$\mathbf{h}_f = \sigma(\mathbf{W}_h \mathbf{f} + \mathbf{b}_h), \quad \mathbf{f} \in \mathbf{F}$$

- Decision Boundary: In the hidden space, determined by $\hat{y}_f = 0.5$, i.e.:

$$\mathbf{W}_o \mathbf{h}_f + \mathbf{b}_o = 0$$

9. Spline Interpolation

Spline Interpolation

- Cubic Spline Interpolation: Used to smoothly connect coarse grid points in the hidden space \mathbf{h}_q .
- For each horizontal or vertical grid line, the interpolation function s(t) satisfies $s(t_i) = \mathbf{h}_i$, with continuous second derivatives.

10. Animation Update

Animation Update

- Per Frame Update:
- Update decision boundary: Based on current \mathbf{h}_f and \hat{y}_f .
- Update scatter points: Based on current h.
- Update grid lines: Based on current \mathbf{h}_g , generating smooth curves via spline interpolation.