Teoria dei circuiti

Oudeys

November 3, 2024

CONTENTS

Contents									
1	Circuiti a parametri concentrati								
	1.1	Leggi di Kirchhoff	6						
		1.1.1 Legge delle correnti di Kirchhoff	6						
		1.1.2 Legge delle tensioni di Kirchhoff	6						
2	Ele	ementi circuitali	6						
	2.1	Resistori	6						
		2.1.1 Resistori lineari	6						
		2.1.2 Resistori non lineari	7						
	2.2	Generatori indipendenti	7						
		2.2.1 Generatore di tensione	7						
		2.2.2 Generatore di corrente	7						
		2.2.3 Circuiti equivalenti di Thèvenin e Norton	7						
		2.2.4 Forme d'onda	7						
	2.3	Condensatori	7						
		2.3.1 Condensatori lineari	7						
		2.3.2 Condensatori non lineari	8						
	2.4	Induttori	8						
		2.4.1 Induttori lineari	8						
		2.4.2 Induttori non lineari	9						
3	Cir	cuiti semplici	9						
	3.1	Resistori	9						
	3.2		10						
	3.3		10						
4			11						
	4.1		11						
			11						
			11						
	4.2	•	11						
		4.2.1 Ingresso corrente costante	11						
		4.2.2 Ingresso sinusoidale	11						
	4.3	Risposta completa	11						
		•	11						
		4.3.2 Transitorio e regime	11						
		4.3.3 Circuiti con due costanti di tempo	11						
	4.4	Linearità della risposta con stato zero	11						

	4.5	Linearità ed invarianza temporale	11					
		4.5.1 Risposta al gradino	11					
		4.5.2 Invarianza temporale	11					
		4.5.3 Traslazione	11					
	4.6	Risposta all'impulso	11					
	4.7	Risposta al gradino e all'impulso per circuiti semplici	11					
5	Circ	cuiti del II ordine	11					
	5.1	Risposta con ingresso zero	11					
	5.2 Risposta con stato zero							
		5.2.1 Risposta al gradino	11					
	5.3	Spazio degli stati	11					
		5.3.1 Equazioni di stato e traiettoria	11					
		5.3.2 Rappresentazione matriciale	11					
		5.3.3 Metodo approssimato per il calcolo della traiettoria	11					
		5.3.4 Equazioni di stato e risposta completa	11					
6	Circ	cuiti lineari tempo invarianti	11					
	6.1		11					
		<u> </u>	11					
			11					
	6.2		11					
			11					
		-	11					
			11					
	6.3		11					
		6.3.1 Integrale di convoluzione	11					
7	Ana	alisi in regime sinusoidale	11					
	7.1		11					
			11					
			11					
			11					
	7.2		11					
	7.3	•	11					
			11					
			11					
	7.4		11					
	7.5	Potenza in regime sinusoidale						
	7.6	Normalizzazione della frequenza e della impedenza						

8	Elementi di accoppiamento e circuiti accoppiati				
	8.1 Induttori accoppiati	11			
	8.2 Trasformatori ideali	11			
	8.3 Generatori pilotati	11			
9	Grafi delle reti	11			
10	Teorema di Tellegen	11			
11	Analisi dei nodi e degli anelli	11			
	11.1 Trasformazioni di generatori	11			
	11.2 Analisi dei nodi delle reti lineari tempo-invarianti $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$				
	11.2.1 Analisi di reti sesistive	11			
	11.2.2 Formulazione rapida delle equazioni dei nodi	11			
	11.2.3 Analisi in regime sinusoidale	11			
	11.2.4 Equazioni integrodifferenziali	11			
	11.3 Dualità	11			
12	Analisi delle maglie e degli insiemi di taglio	11			
	12.1 Teorema fondamentale della teoria dei grafi 	11			
	12.2 Analisi delle maglie	11			
	12.3 Analisi degli insiemi di taglio	11			
13	Equazioni di stato	11			
	13.1 Reti lineari tempo-invarianti	11			
	13.2 Concetto di stato	11			
	13.3 Reti non lineari e tempo-invarianti	11			
	13.3.1 Caso lineare tempo-variante	11			
	13.3.2 Caso non lineare	11			
	13.3.3 Equazioni di stato per reti lineari tempo-invarianti	11			
14	Trasformate di Laplace	12			
	14.1 Trasformata di Laplace	12			
	14.2 Proprietà fondamentali della trasformata di Laplace	12			
	14.3 Trasformate di Laplace di funzioni elementari $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	12			
	14.4 Soluzione di circuiti semplici	13			
	14.4.1 Calcolo di una risposta all'impulso	13			
	14.4.2 Espansione in frazioni parziali	15			
	14.5 Soluzione di reti generali	15			
	14.5.1 Formulazione di equazioni lineari algebriche	15			
	14.5.2 Metodo del cofattore	15			
	14.5.3 Funzioni di rete e regime sinusoidale	15			
	14.5.4 Proprietà fondamentali delle reti lineari tempo-invarianti	15			

	.6 Reti degeneri	
	requenze naturali	15
		15
		15
		15 15
	.4 Frequenze naturali ed equazioni di stato	
16 Fu	ınzioni di rete	15
16	.1 Definizione e proprietà generali	15
		15
16	.3 Poli, zeri e risposta all'impulso	15
		15
17 Te	eoremi delle reti	15
17	.1 Teorema di sostituzione	15
17	.2 Teorema di sovrapposizione	15
17	.3 Teorema delle reti equivalenti di Thévenin e Norton	15
17	.4 Teorema di reciprocità	15
18 D	oppi bipoli	15
18	.1 Doppi bipoli resistivi	15
18	.2 Transistore	15
18	.3 Induttori accoppiati	15
18	.4 Matrici di impedenza ed ammettenza dei doppi bipoli	15
18	.5 Matrici ibride	15
18	.6 Matrici di trasmissione	15
19 R	eti resistive	15
19	.1 Reti fisiche e modelli di reti	15
19	.2 Analisi delle reti resistive dal punto di vista della potenza	15
19	.3 Guadagno di tensione e guadagno di corrente di rete resistiva	15
	nergia e passività	15
	•	15
		15
	1 1	15
20	.4 Ingresso esponenziale e risposta esponenziale	15
20	.5 Bipoli costituiti di elementi passivi lineari tempo-invarianti	15
20	.6 Stabilità delle reti passive	15
20	.7 Amplificatore parametrico	15

1 CIRCUITI A PARAMETRI CONCENTRATI

1.1 Leggi di Kirchhoff

1.1.1 Legge delle correnti di Kirchhoff

Definizione 1.1 (Legge delle correnti)

$$\sum_{k=0}^{N} i_k(t) = 0$$

1.1.2 Legge delle tensioni di Kirchhoff

Definizione 1.2 (Legge delle tensioni)

$$\sum_{k=0}^{N} V_i = 0$$

2 Elementi circuitali

2.1 Resistori

2.1.1 Resistori lineari

Definizione 2.1 (Resistori lineari tempo invarianti)

i.

v(t) = Ri(t)

ii.

i(t) = Gv(t)

iii.

R = 1/G

Definizione 2.2 (Resistori lineari tempo varianti)

i.

v(t) = R(t)i(t)

ii.

i(t) = G(t)v(t)

iii.

$$R(t) = 1/G(t)$$

2.1.2 Resistori non lineari

Definizione 2.3 (Resistori non lineari tempo invarianti)

i. Controllato in corrennte

$$v(t) = f(i(t))$$

ii. Controllato in tensione

$$i(t) = g(v(t))$$

Definizione 2.4 (Resistori non lineari tempo varianti)

i. Controllato in corrente

$$v(t) = f(i(t), t)$$

ii. Controllato in tensione

$$i(t) = g(v(t), t)$$

2.2 Generatori indipendenti

- 2.2.1 Generatore di tensione
- 2.2.2 Generatore di corrente
- 2.2.3 Circuiti equivalenti di Thèvenin e Norton
- 2.2.4 Forme d'onda

2.3 Condensatori

2.3.1 Condensatori lineari

Definizione 2.5 (Condensatori lineari tempo invarianti)

i.

$$q(t) = Cv(t)$$

ii.

$$i(t) = C\frac{dv}{dx}$$

iii.

$$v(t) = v(0) + \frac{1}{C} \int_0^t i(t')dt'$$

Definizione 2.6 (Condensatori lineari tempo varianti)

i.

$$q(t) = C(t)v(t)$$

ii.

$$i(t) = \frac{dC}{dt}v(t) + C(t)\frac{dv}{dx}$$

2.3.2 Condensatori non lineari

Definizione 2.7 (Condensatori non lineari tempo invarianti)

i.

$$q(t) = f(v(t))$$

ii.

$$i(t) = \frac{df}{dv} \bigg|_{v(t)} \frac{dv}{dt}$$

Definizione 2.8 (Condensatori non lineari tempo varianti)

i.

$$q(t) = f(v(t), t)$$

ii.

$$i(t) = \frac{\partial f}{\partial t} \bigg|_{v(t)} \frac{dv}{dt}$$

2.4 Induttori

2.4.1 Induttori lineari

Definizione 2.9 (Induttori lineari tempo invarianti)

i.

$$\phi = Li(T)$$

ii.

$$v(t) = L\frac{di}{dt}$$

iii.

$$i(t) = i(0) + \frac{1}{L} \int_0^t v(t')dt'$$

Definizione 2.10 (Induttori lineari tempo varianti)

i.

$$\phi = L(t)i(t)$$

ii.

$$v(t) = \frac{dL}{dt}i(t) + L(t)\frac{di}{dt}$$

2.4.2 Induttori non lineari

Definizione 2.11 (Induttori non lineari tempo invarianti)

i.

$$\phi(t) = f(i(t))$$

ii.

$$v(t) = \frac{df}{di} \bigg|_{i(t)} \frac{di}{dt}$$

Definizione 2.12 (Induttori non lineari tempo varianti)

i.

$$\phi(t) = f(i(t), t)$$

ii.

$$v(t) = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial i} \Big|_{i(t)} \frac{di}{dt}$$

3 CIRCUITI SEMPLICI

3.1 Resistori

i. Serie

$$R = \sum_{k=1}^{m} R_k$$

ii. Parallelo

$$G = \sum_{k=1}^{m} G_k$$

3.2 Condensatori

i. Serie

$$S = \sum_{k=1}^{m} S_k$$

ii. Parallelo

$$C = \sum_{k=1}^{m} C_k$$

3.3 Induttori

1. Serie

$$L = \sum_{k=1}^{m} L_k$$

2. Parallelo

$$\Gamma = \sum_{k=1}^{m} \Gamma_k$$

4 CIRCUITI DEL I ORDINE

4.1 Risposta con ingresso zero

- 4.1.1 Circuito RC (Resistore-Condensatore)
- 4.1.2 Circuito RL (Resistore-Induttore)

4.2 Risposta con stato zero

- 4.2.1 Ingresso corrente costante
- 4.2.2 Ingresso sinusoidale

4.3 Risposta completa

- 4.3.1 Risposta completa
- 4.3.2 Transitorio e regime
- 4.3.3 Circuiti con due costanti di tempo

4.4 Linearità della risposta con stato zero

4.5 Linearità ed invarianza temporale

- 4.5.1 Risposta al gradino
- 4.5.2 Invarianza temporale
- 4.5.3 Traslazione

4.6 Risposta all'impulso

4.7 Risposta al gradino e all'impulso per circuiti semplici

5 CIRCUITI DEL II ORDINE

5.1 Risposta con ingresso zero

5.2 Risposta con stato zero

5.2.1 Risposta al gradino

5.3 Spazio degli stati

- 5.3.1 Equazioni di stato e traiettoria
- 5.3.2 Rappresentazione matriciale
- 5.3.3 Metodo approssimato per il calcolo della traiettoria
- 5.3.4 Equazioni di stato e risposta completa

6 Circuiti Lineari tempo invarianti

6.1 Analisi dei nodi e delle maglie

14 Trasformate di Laplace

14.1 Trasformata di Laplace

Definizione 14.1 (Trasformata di Laplace)

$$\mathcal{L}[f(t)] = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

14.2 Proprietà fondamentali della trasformata di Laplace

Proposizione 14.2 (Proprietà fondamentali della Trasformata di Laplace)

i. Unicità

$$F(s) = \mathcal{L}[f(t)] \Leftrightarrow f(t) = \mathcal{L}^{-1}[F(s)]$$

ii. Linearità

$$\mathcal{L}[c_1 f_1(t) + c_2 f_2(t)] = c_1 \mathcal{L}[f_1(t)] + c_2 \mathcal{L}[f_2(t)]$$

iii. Differenziazione

$$\mathcal{L}\left[\frac{df}{dt}\right] = s\mathcal{L}[f(t)] - f(0^{-})$$

iv. Integrazione

$$\mathcal{L}\left[\int_{0^{-}}^{t} f(t')dt'\right] = \frac{1}{s}\mathcal{L}[f(t)]$$

14.3 Trasformate di Laplace di funzioni elementari

Proposizione 14.3

i.

$$f(t) \leftrightarrow F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

ii.

$$\delta(t) \leftrightarrow 1$$

iii. $\forall n \in \mathbb{N}$

$$\delta^n(t) \leftrightarrow s^n$$

iv.

$$u(t) \leftrightarrow \frac{1}{s}$$

 $v. \ \forall n \in \mathbb{N}$ $\frac{t^n}{n!} \leftrightarrow \frac{1}{s^{n+1}}$

vi. $e^{-at} \leftrightarrow \frac{1}{s+a}$

 $vii. \ \forall n \in \mathbb{N}$ $\frac{t^n}{n!}e^{-at} \leftrightarrow \frac{1}{(s+a)^{n+1}}$

viii. $\cos(\beta t) \leftrightarrow \frac{s}{s^2 + \beta^2}$

 $\sin(\beta t) \Leftrightarrow \frac{\beta}{s^2 + \beta^2}$

 $e^{-\alpha t}\cos(\beta t) \leftrightarrow \frac{s+\alpha}{(s+\alpha)^2+\beta^2}$

xi. $e^{-\alpha t}\sin(\beta t) \leftrightarrow \frac{\beta}{(s+\alpha)^2 + \beta^2}$

xii. $ae^{-\alpha t}\cos(\beta t) + \frac{(b - a\alpha)}{\beta}e^{-\alpha t}\sin(\beta t) \leftrightarrow \frac{as + b}{(s + \alpha)^2 + \beta}$

xiii. $2|k|e^{-\alpha t}\cos(\beta t + \angle k) \leftrightarrow \frac{k}{s+\alpha-j\beta} + \frac{\overline{k}}{s+\alpha+j\beta}$

14.4 Soluzione di circuiti semplici

14.4.1 Calcolo di una risposta all'impulso

Proposizione 14.4 (Risposta all'impulso per circuiti RLC)

$$\frac{L}{R}\frac{dv}{dt} + v + \frac{1}{RC}\int_{0^{-}}^{t} v(t')dt' + v_{c}(0^{-}) = e(t)$$

$$\frac{L}{R}\frac{dh}{dt} + h + \frac{1}{RC}\int_{0^{-}}^{t} h(t')dt' = \delta(t)$$

$$\frac{L}{R}\mathcal{L}\left[\frac{dh}{dt}\right] + H(s) + \frac{1}{RC}\mathcal{L}\left[\int_{0^{-}}^{t} h(t')dt'\right] = 1$$

$$\left[\frac{L}{R}s + 1 + \frac{1}{RCs}\right]H(s) = 1 \Leftrightarrow H(s) = \frac{R}{L}\frac{s}{s^{2} + (R/L)s + 1/LC}$$

$$H(s) = \frac{R}{L}\frac{s}{(s+\alpha)^{2} + \omega_{d}^{2}}$$

$$h(t) = \frac{\omega_0 R}{\omega_d L} u(t) e^{-\alpha t} \cos(\omega_d t + \phi)$$

$$\frac{V}{E} = \frac{R}{L} \frac{j\omega}{(j\omega)^2 + (R/L)j\omega + 1/LC}$$

$$\frac{V}{E} = H(j\omega)$$

1110	$\overline{}$			c			. 1	
14.4.2	Hieman	nenono	n	tra	$\gamma \eta \cap \gamma$	00	marzial	1
1/1./1.6	175000	LO LOTTE	1,11,	11 (1,2		,,,,	$DU(1 \angle bUb)$	•

14.5 Soluzione di reti generali

- 14.5.1 Formulazione di equazioni lineari algebriche
- 14.5.2 Metodo del cofattore
- 14.5.3 Funzioni di rete e regime sinusoidale
- 14.5.4 Proprietà fondamentali delle reti lineari tempo-invarianti
- 14.6 Reti degeneri
- 14.7 Condizioni sufficienti per l'unicità
- 15 Frequenze naturali
- 15.1 Frequenza naturale di una variabile di rete
- 15.2 Metodo di eliminazione
- 15.3 Frequenze naturali di una rete
- 15.4 Frequenze naturali ed equazioni di stato
- 16 Funzioni di rete
- 16.1 Definizione e proprietà generali
- 16.2 Poli, zeri e risposta in frequenza
- 16.3 Poli, zeri e risposta all'impulso
- 16.4 Proprietà di simmetria
- 17 Teoremi delle reti
- 17.1 Teorema di sostituzione
- 17.2 Teorema di sovrapposizione
- 17.3 Teorema delle reti equivalenti di Thévenin e Norton
- 17.4 Teorema di reciprocità
- 18 Doppi bipoli
- 18.1 Doppi bipoli resistivi
- 18.2 Transistore
- 18.3 Induttori accoppiati
- 18.4 Matrici di impedenza ed ammettenza dei doppi bipoli
- 10 5 Matrici ibrida