

Updates in Muon Alignment

Jim Pivarski, Karoly Banicz, Alexey Kamenev, Alexei Safonov

Texas A&M University

9 August, 2007

Since July...

- ▶ Alignment procedure ported to 1_5_X/1_6_X, fully documented
- Alignment projects split by task, not by detector
 - Karoly: investigating beam halo MC for beam halo alignment
 - ► Alexey: investigating cosmics MC for MTCC alignment (all stations, not only ME1/1)
 - Jim: systematics studies for disk-by-disk (and wheel-by-wheel) alignment, preparing for CSA07
- Using the same software; meeting weekly

One-beam generator-level study: 2000 Hz?

Karoly: beam halo alignment (CSC)

- ► Generated 10,000 events, found 1,600 standalone muons (CosmicMuonProducer), some events have 2 muons
- Tested full alignment path!

Jim Pivarski

▶ Just started, working through the documentation...

▶ Will need cosmic ray MC, re-reconstructed MTCC

Jim: disk-by-disk/wheel-by-wheel

- Pessimistic internal misalignments (chambers and layers)
 - ► CSC Layers $\Delta x = 191 \ \mu \text{m}$, $\Delta y = 335 \ \mu \text{m}$, $\Delta \phi_z = 40 \ \mu \text{rad}$
 - ▶ All Chambers $\Delta x = \Delta y = \Delta z = 3$ mm, $\Delta \phi_{\mathsf{x}} = \Delta \phi_{\mathsf{y}} = \Delta \phi_{\mathsf{z}} = 1 \; \mathsf{mrad}$
 - Disks/wheels $\Delta x = \Delta y = \Delta z = 1$ cm, $\Delta \phi_{x} = \Delta \phi_{y} = \Delta \phi_{z} = 1 \text{ mrad}$
 - ► Tracker 10 pb⁻¹ scenario
- ▶ Align muon system to tracker with globalMuons: x, y, ϕ_z
 - Check dependence on tracker alignment
- Nominally 2000 $Z \rightarrow \mu\mu$ (0.36 pb⁻¹)
 - Check dependence on statistics

Jim: disk-by-disk/wheel-by-wheel

- ▶ 0.3 mrad resolution in ϕ_z , 800 μ m in x, y
- ► Large numbers of tracks are unnecessary: reaches final precision with a few hundred muons
- Sensitive to tracker alignment: rotate tracker by 1 mrad (sanity check)

Jim: disk-by-disk/wheel-by-wheel

Sensitivity to tracker misalignment

black: with internal misalignments red: ideal chambers, layers

- ▶ 13 disks+wheels is not enough to measure precision: 10 trials
- ▶ Tracker can be 2–3 times worse than short-term scenario

Varying Alignment Parameter Errors versus iteration

- ► Iterations 1–3: APEs ≫ intrinsic errors
- ▶ Iterations 4–10: APEs ≪ intrinsic errors; alignments stable

- CAF alignment farm is ready and working
- Discovered that RPC hits bias alignments toward ideal geometry: making sure they are excluded from alignment fits
- ▶ Pre-CSA test with 1 million $Z \to \mu\mu$, 1 million $W \to \mu\nu$
 - ▶ Ideal, 10 pb⁻¹ miscal/misalign, 100 pb⁻¹ miscal/misalign
 - Can we align with miscalibrations?
- Pre-pre-CSA test with 75,000 single-muons
 - Chamber-by-chamber dependence on tracker misalignment
 - Study momentum dependence (10 GeV and 100 GeV)

- ▶ Beam-halo alignments: we have a simulation, a small dataset, and are beginning alignment studies
- Cosmic ray alignments: just beginning— we'll need MC, re-reconstructed MTCC
- Collision-data alignments: finished tracker-dependence studies for disk-by-disk, moving on to chamber-by-chamber studies