CHL8010: Statistical Programming and Computation in Health Data

Belina

2024-09-30

Exploratory data analysis

Analysis of final data

glimpse(final_data)

```
Rows: 3,720
Columns: 21
                                        <chr> "Afghanistan", "Afghanistan", "Afghanistan", "Afghanist~
$ country_name
$ ISO
                                        <chr> "AFG", "AF
                                        <chr> "Southern Asia", "Southern Asia", "Southern Asia", "Sou~
$ region
                                        <int> 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2~
$ Year
$ gdp1000
                                        <dbl> NA, NA, 0.1835328, 0.2004626, 0.2216576, 0.2550551, 0.2~
$ OECD
                                        $ OECD2023
$ popdens
                                        <dbl> 14.13654, 14.23156, 14.32270, 14.40691, 15.21947, 15.33~
$ urban
                                        <dbl> 16.25324, 16.25661, 16.42654, 16.60701, 16.71367, 16.85~
$ agedep
                                        <dbl> 108.34663, 108.98989, 109.34716, 109.44753, 109.28682, ~
$ male edu
                                        <dbl> 2.762086, 2.856936, 2.954241, 3.054121, 3.156706, 3.262~
                                        <dbl> 12.69959, 12.85570, 12.71081, 12.16592, 13.04643, 12.23~
$ temp
$ rainfall1000
                                        <dbl> 0.2763704, 0.2793079, 0.3805710, 0.4288939, 0.3754336, ~
$ totaldeath
                                        <int> 5065, 5394, 5553, 1157, 944, 817, 1711, 4982, 7020, 566~
$ Earthquake
                                        <int> 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0~
                                        <int> 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1~
$ Drought
$ matMor
                                        <int> 1450, 1390, 1300, 1240, 1180, 1140, 1120, 1090, 1030, 9~
```

summary(final_data)

country_name Length:3720 Class :character Mode :character	ISO Length:3720 Class:characte Mode:characte		•
rdn1000	OECD	OECD2023	nondona
gdp1000			popdens Min. : 0.00
Min. : 0.1105	Min. :0.000	Min. :0.0000	
1st Qu.: 1.2383 Median: 4.0719	1st Qu.:0.000 Median :0.000	1st Qu.:0.0000 Median :0.0000	1st Qu.:14.79 Median :27.52
Median: 4.0719 Mean: 11.4917	Median :0.000 Mean :0.171	Median :0.0000 Mean :0.1882	Median :27.52 Mean :30.57
3rd Qu.: 13.1531	3rd Qu.:0.000	3rd Qu.:0.0000	3rd Qu.:40.72
Max. :123.6787	Max. :1.000	Max. :1.0000	Max. :99.86
NA's :62	Max1.000	Max1.0000	NA's :20
urban	agedep	male_edu	temp
Min. : 0.1025	Min. : 16.17	Min. : 1.067	Min. :-2.405
1st Qu.:17.2872	1st Qu.: 47.94	1st Qu.: 5.904	1st Qu.:12.928
Median :30.2535	Median : 55.51	Median : 8.368	Median :21.958
Mean :30.6948	Mean : 61.94	Mean : 8.258	Mean :19.625
3rd Qu.:41.6558	3rd Qu.: 77.11	3rd Qu.:10.849	3rd Qu.:25.869
Max. :93.4135	Max. :111.48	Max. :14.441	Max. :29.676
NA's :20		NA's :20	NA's :20
rainfall1000	totaldeath	armed_conflict	Earthquake
Min. :0.01993	Min. : 0.0	Min. :0.0000	Min. :0.00000
1st Qu.:0.59146	1st Qu.: 0.0	1st Qu.:0.0000	1st Qu.:0.00000
Median :1.01288	Median: 0.0	Median :0.0000	Median :0.00000
Mean :1.20216	Mean : 361.1	Mean :0.1892	Mean :0.08333
3rd Qu.:1.68706	3rd Qu.: 2.0	3rd Qu.:0.0000	3rd Qu.:0.00000
Max. :4.71081	Max. :78644.0	Max. :1.0000	Max. :1.00000
NA's :20			
Drought	${ t matMor}$	infMor	neoMor
Min. :0.00000	Min. : 2.0	Min. : 1.60	Min. : 0.80
1st Qu.:0.00000	1st Qu.: 17.0	1st Qu.: 7.60	1st Qu.: 4.90
Median :0.00000	Median: 66.0	Median : 18.90	Median :12.10

```
Mean
       :0.08737
                  Mean
                        : 210.6
                                   Mean
                                         : 28.90 Mean
                                                           :16.18
 3rd Qu.:0.00000
                  3rd Qu.: 299.8 3rd Qu.: 44.52 3rd Qu.:25.32
                                   Max. :138.10 Max.
       :1.00000
                  Max. :2480.0
 Max.
                                                          :60.90
                  NA's :426
                                   NA's :20
                                                   NA's
                                                           :20
  under5Mor
 Min. : 2.00
 1st Qu.: 9.00
 Median : 22.20
 Mean : 40.50
 3rd Qu.: 61.33
 Max.
      :224.90
 NA's :20
Mor_names <- c("matMor","infMor","neoMor","under5Mor")</pre>
for (i in seq_along(Mor_names)){
  Mor <- Mor_names[i]</pre>
 plot <- final_data %>% ggplot(aes(Year,.data[[Mor]],
                                   color=factor(armed_conflict))) +
    geom_point(alpha=0.15, size=2) + geom_smooth(aes(group = armed_conflict),
                                                method = "loess") +
   labs(
     title = paste("Table",i,"Trends in Mortality Rates by Year"),
     x = "Year",
     y = Mor_names,
     color = "Armed Conflict"
   ) +
   theme_minimal() +
  theme(
   text = element_text(size=8)
 print(plot)
```

Table 1 Trends in Mortality Rates by Year

Table 2 Trends in Mortality Rates by Year

Table 3 Trends in Mortality Rates by Year

Table 4 Trends in Mortality Rates by Year


```
title = "Table 5 Logarithmic Trends in Total Deaths by Year",
    x = "Year",
    y = "log(Total Death)",
    color = "Armed Conflict"
    ) + theme_minimal() +
theme(
    text = element_text(size=8)
)
```

Table 5 Logarithmic Trends in Total Deaths by Year

Investigate Final Data without countries with 3 highest total death counts for each year.

```
highest_totaldeath <- final_data %>%
  group_by(Year) %>%
  slice_max(totaldeath, n = 3)
highest_totaldeath %>% select(country_name, Year, totaldeath)
```

A tibble: 60 x 3
Groups: Year [20]

country_name	Year	${\tt totaldeath}$
<chr></chr>	<int></int>	<int></int>
1 Ethiopia	2000	30786
2 Eritrea	2000	17203
3 Democratic Republic of the Congo	2000	7541
4 Ethiopia	2001	48666
5 Afghanistan	2001	5394
6 Russian Federation	2001	4333
7 Afghanistan	2002	5553
8 Colombia	2002	4592
9 Sudan	2002	3719
10 Democratic Republic of the Congo	2003	7931
# i 50 more rows		

country_name ISO	region	Year gdp1000	OECD OECD202	23 popdens			
1 Afghanistan AFG	Southern Asia	. 2000 NA	0	0 14.13654			
2 Afghanistan AFG	Southern Asia	2003 0.2004626	0	0 14.40691			
3 Afghanistan AFG	Southern Asia	2004 0.2216576	0	0 15.21947			
4 Afghanistan AFG	Southern Asia	2005 0.2550551	0	0 15.33619			
5 Afghanistan AFG	Southern Asia	2006 0.2740005	0	0 15.43982			
6 Albania ALB	Southern Europe	2000 1.1266833	0	0 33.08368			
urban agede	p male_edu t	emp rainfall100) totaldeath	$armed_conflict$			
1 16.25324 108.346	5 2.762086 12.69	959 0.276370	4 5065	1			
2 16.60701 109.447	5 3.054121 12.16	592 0.428893	9 1157	1			
3 16.71367 109.2868	3.156706 13.04	643 0.375433	944	1			
4 16.85096 107.964	3.262133 12.23	0.441568	817	1			
5 16.98105 106.326	2 3.370551 12.96	153 0.443709	7 1711	1			
6 27.38836 59.6573	8.961755 13.73	920 0.797174	9 6	0			
Earthquake Drought matMor infMor neoMor under5Mor							
1 0	1 1450 90.5	60.9 129	. 2				
2 1	0 1240 82.7	57.2 116	. 9				
3 1	0 1180 80.0	55.9 112	. 6				
4 1	0 1140 77.3	54.6 108	. 4				
5 1	1 1120 74.6	53.2 104	. 1				
6 0	0 23 24.1	12.1 27	. 2				

```
Mor_names <- c("matMor","infMor","neoMor","under5Mor")</pre>
for (i in seq_along(Mor_names)){
  Mor <- Mor_names[i]</pre>
  plot <- finaldata_without3highest %>% ggplot(aes(Year,.data[[Mor]],
                                                     color=factor(armed_conflict))) +
    geom_point(alpha=0.15, size=2) + geom_smooth(aes(group = armed_conflict),
                                                   method = "loess") +
    labs(
      title = str_wrap(paste("Table", i+5, "Trends in Mortality Rates Excluding Countries wi
      x = "Year",
      y = Mor_names,
      color = "Armed Conflict"
    ) +
    theme_minimal() +
  theme(
    text = element_text(size=8)
  print(plot)
}
```

Table 6 Trends in Mortality Rates Excluding Countries with the Three Highest Total Death Counts by Year

Table 7 Trends in Mortality Rates Excluding Countries with the Three Highest Total Death Counts by Year

Table 8 Trends in Mortality Rates Excluding Countries with the Three Highest Total Death Counts by Year

Table 9 Trends in Mortality Rates Excluding Countries with the Three Highest Total Death Counts by Year

Table 10 Logarithmic Trends in Total Deaths Excluding Countries with the Three Highest Death Counts by Year

Investigate OCED countries only

```
text = element_text(size=8)
)
print(plot)
}
```

Table 11 Trends in Mortality Rates in OECD Countries by Year

Table 12 Trends in Mortality Rates in OECD Countries by Year

Table 13 Trends in Mortality Rates in OECD Countries by Year

7500
Armed Conflict

0
1
2500
2000
2005
2010
Year

Table 15 Trends in Total Deaths in OECD Countries by Year

Investigate non OCED countries only

```
text = element_text(size=8)
)
print(plot)
}
```

Table 16 Trends in Mortality Rates in non OECD Countries by Year

Table 17 Trends in Mortality Rates in non OECD Countries by Year

Table 18 Trends in Mortality Rates in non OECD Countries by Year

Summary

Final data: From Table 1-4, we can see that all 4 mortality rates seemed to decrease over the years, and that countries with armed conflict seemed to have higher rates compared to countries without armed conflict. From table 5, we can see that countries with armed conflicts have higher total death counts compared to the countries without armed conflicts. Table 5 shows a clearer distinction between two groups.

Filtered data: I excluded countries with 3 highest total death counts for each year, then repeated the same process for the Table 1-5. Table 6-10 doesn't seem very different from Table 1-5.

OECD vs non OECD countries: While all 4 mortality rates seem to decrease over the years in both groups, OECD countries seem to have much lower mortality rates regardless of the presence of armed conflicts.