ДЗ по дискретной математике на 21.01.2022

Кожевников Илья 2112-1

20 января 2022 г.

$N_{2}1$

Посчитаем количество неподходящих вариантов: 00, 11,..., 99 - таких вариантов 10. Всего возможных вариантов будет $10^2=100$. Значит, вероятность события $x_1\neq x_2=\frac{100-10}{100}=\frac{9}{10}$ Ответ: $\frac{9}{10}$

№2

Посчитаем количество подходящих слов длины 6. Таких слов всего $6 \cdot 5 \cdot 4$. Посчитаем количество всех слов длины 6. Таких слов всего 6^3 . Значит, вероятность события $x_1 \neq x_2 \neq x_3 = \frac{6 \cdot 5 \cdot 4}{6^3} = \frac{5}{9}$ Ответ: $\frac{5}{9}$

$N_{\overline{2}}3$

Используем задачу про монеты и перегородки. Поставим три перегородки между восемью единицами так, что сумма единиц до первой перегородки будет равна цифре на первой позиции числа, сумма единиц между первой и второй перегородками равна цифре на 2 позиции и т.д. Так мы сможем представить любое четырехзначное число в виде единиц и перегородок. Тогда буде легко посчитать количество подходящих комбинаций единиц и перегородок: оно будет равно $\frac{11!}{8!\cdot 3!}=165$. Но мы учли числа, начинающиеся с 0, что невозможно. Поэтому вычтем из 165 количество комбинаций 8 единиц и 2 перегородок. Это число будет равно $\frac{10!}{8!\cdot 2!}=45$. Значит, всего подходящих чисел 165-45=120. Т.к. всего у нас чисел 9000, то вероятность события "сумма цифр равна 8"равняется $\frac{120}{9000}=\frac{1}{75}$. Ответ: $\frac{1}{75}$, больше $\frac{1}{100}$

№4

Посчитаем количество чисел, в которых точно встречаются 0, 1, и 2. Таких чисел всего $\frac{12\cdot6}{2}=36$ (делим на 2, т.к. каждое число мы будем считать два раза). Всего слов длины 4 из трех цифр $3^4=81$. Итого, вероятность события "в последовательности встречаются и 0, и 1, и 2"равняется $\frac{36}{81}=\frac{4}{9}$ Ответ: $\frac{4}{9}$

№6

Заметим, что если рассмотреть первые 10 и последние 10 чисел, то среди них можно будет выделить одно максимальное, которое будет больше всех остальных. Тогда вероятность того,

что оно будет именно из первой десятки, равняется $\frac{1}{2}.$ Ответ: $\frac{1}{2}$

№7

Мысленно разделим наше 21 число на 10 чисел сначала, потом еще одно число, а потом еще 10. Тогда если единиц в первых 10 числах меньше, чем в последних 10, то требуемое условие выполнено. Если же там больше единиц, чем в последних 10, то строго меньше единиц, чем на последних 11 позициях, там быть не может. При этом вероятности того, что на первых 10 позициях больше единиц, чем на последних 10, и того, что на первых 10 позициях меньше единиц, чем на последних 10, равны. Тогда если количество единиц в двух частях равно, то все зависит от значения на позиции между этими двумя группами. Вероятность того, что там будет стоять 1, равно $\frac{1}{2}$.

Otbet: $\frac{1}{2}$