FULLY CONNECTED NEURAL NETWORKS

DEEPLEA17EM

MOTIVATION - A NEURON

- Biology:
 - input from other neurons (dentrites)
 - summing them (soma)
 - based on the inputs firing
 - output to the axon
- Model:
 - inputs (x)
 - weighted sum of inputs + bias (b)
 - activation function (g)
 - output/activation: a = g(w*x + b)

Credit: David Baillot/ UC San Diego

ONE WON'T BE ENOUGH... NEURAL NETWORK

- fully connected neural network with one hidden layer
- input: the data itself
- output: the prediction
- hidden: everything between

- activation functions
 - ReLU max(0, x) -- all inner layer
 - softmax -- converting the last layer into probabilities

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

we need non-linear activation function! why?

ONE WON'T BE ENOUGH... NEURAL NETWORK

notation: x - input, a - activations, g - activation function (usually ReLU for the hidden layers)

$$z_{0}^{[1]} = w_{0,0}^{[1]} x_{0} + w_{0,1}^{[1]} x_{1} + w_{0,2}^{[1]} x_{2} + b_{0}^{[1]}$$

$$a_{0}^{[1]} = g \left(z_{0}^{[1]} \right)$$

$$z_{1}^{[1]} = w_{1,0}^{[1]} x_{0} + w_{1,1}^{[1]} x_{1} + w_{1,2}^{[1]} x_{2} + b_{0}^{[1]}$$

$$a_{1}^{[1]} = g \left(z_{1}^{[1]} \right)$$

$$z_{0}^{[2]} = w_{0,0}^{[2]} a_{0} + w_{0,1}^{[2]} a_{1} + b_{0}^{[2]}$$

$$a_{0}^{[2]} = g \left(z_{0}^{[2]} \right)$$

but how will we get the w and b parameters?

LOSS FUNCTION

- it measures how accurate we are, we want to minimize it!
- depends on the predictions and the true labels
 - actually depends on the w, b parameters and the true labels
- differentiable
- need to set based on the problem itself
- popular ones:
 - mean absolute error (MAE) double the error, double the loss
 - mean squared error (MSE) double the error, multiply the loss by 4
 - cross-entropy loss $-\frac{1}{M} \sum_{i} y_{i} \cdot \log(y_{pred_{i}})$
 - penalty on being confidently wrong
 - each represents a different task
- The w and b parameters are obtained by minimizing the loss function on the training set!

Problem:

$$\underset{W,b}{\operatorname{argmin}} L(W,b)$$

One solution:

$$\frac{\partial L}{\partial W} = 0, \qquad \frac{\partial L}{\partial b} = 0$$

- Problem: too complicated for neural networks
- Solution: gradient descent

repeat
$$W = W - \alpha \frac{\partial L}{\partial W}$$

$$b = b - \alpha \frac{\partial L}{\partial b}$$
 learning rate

Step size in x is proportional to the derivate.

BACKPROPAGATION

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Verified email at cs.toronto.edu - Homepage

machine learning neural networks artificial intelligence cognitive science computer science

Cited by		VIEW ALL
	All	Since 2014
Citations	267086	160292
h-index	144	105
i10-index	354	255
		57000
		42750

✓ FOLLOW

YEAR

1986

1986

CITED BY

TITLE

Learning internal representations by error-propagation

DE Rumelhart, GE Hinton, RJ Williams Parallel Distributed Processing: Explorations in the Microstructure of ...

Learning representations by back-propagating errors

DE Rumelhart, GE Hinton, RJ Williams Nature 323, 533-536

$$W = W - \alpha \frac{\partial L}{\partial W}$$

- we will have a few million W parameters
 - it is slow to calculate it million times from ground. but they are not independent!
- NN is actually a function composition --> chain rule

BACKPROPAGATION

- activations are known
- derivate of the activation functions is easy (eq for ReLU it is simply 0 or 1)

$$a_i = g(z_i) = g(w_{ij}a_j + b_i)$$

$$\frac{\partial L}{\partial w_{ij}} = \frac{\partial L}{\partial a_i} \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial w_{ij}} = \frac{\partial L}{\partial a_i} g'(z_i) a_j$$

$$\frac{\partial L}{\partial a_i} = \sum_{l \in L} \frac{\partial L}{\partial a_l} \frac{\partial a_l}{\partial z_l} \frac{\partial z_l}{\partial a_i} = \sum_{l \in L} \frac{\partial L}{\partial a_l} g'(z_l) w_{li}$$

- for the final layer the derivate is easy
 - for the previous layers we can propagate the derivation back from the later layers
- So training a neural network is actually:
 - Forward pass: calculating the activations (the final layer's activation is the prediction)
 - Backward pass: calculating the gradients + updating the weights accordingly.

- universal approximation theorem
- http://neuralnetworksanddeeplearning.com/chap4.html
- a fully connected neural network can approximate any function, it it has enough neurons

let's try it out! https://playground.tensorflow.org/

WHY IT WON'T WORK ON REAL-WORLD PHOTOS (ONE REASON OUT OF MANY...)

- Exploding parameter number:
 - 200x200 pixel input → 40000 input
 - 40000² + 400000 ≈ 1.6·10⁹ parameters per layer
 - float32: 4 byte/number → 6.4 GB/layer
 - color images have 3 color channels (RGB) → 57.6 GB/layer

OTHER TECHNICAL DETAILS - NOTATIONS

- weight initialization
- epoch looping over all the training data once
- batch update the weights according to the average gradients coming from the same batch
 - usually 16 32 64 128 256 (depends on how much memory you have on the GPU)
- online training
- deep learning library
 - Keras / Tensorflow
 - Pytorch
- **GPU vs CPU**

Andrej Karpathy, twitter

- the task is easily parallelizable -> usually GPU is at least 10 times faster
- Let's build our first neural network!
 - https://github.com/patbaa/physdl/blob/master/notebooks/03/fully_connected.ipynb

Követés

- Multiply things together
- 2. Add them up
- 3. Replaces negatives with zeros
- 4. Return to step 1, a hundred times

Morgan Housel @ @morganhousel

"When you first study a field, it seems like you have to memorize a zillion things. You don't. What you need is to identify the 3-5 core principles that govern the field. The million things you thought you had to memorize are various combinations of the core principles." -J. Reed

Hozzászóláslánc megjelenítése

22:11 - 2019, febr. 28.

91 retweet 571 kedvelés

