Chapitre 5 : déterminant d'une matrice carrée

Dans tout le chapitre le symbole \mathbb{K} désigne indifféremment l'ensemble \mathbb{R} des nombres réels ou l'ensemble \mathbb{C} des nombres complexes. Dans ce chapitre, on introduit le déterminant. On demande à ce que toutes les propriétés qui suivent (dans les sections suivantes) soient connus. Il s'agit d'un chapitre qui demande beaucoup de pratique.

1 Définition du déterminant par développement (réccurence)

Le déterminant d'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est un scalaire $\det A \in \mathbb{K}$ défini par récurrence sur n. Commençons par le cas trivial n = 1.

Définition 1 Pour $A = (a) \in \mathcal{M}_1(\mathbb{K})$ on pose $\det A = a$.

Supposons maintenant que le déterminant soit bien défini pour toute matrice de type (n-1, n-1).

Définition 2 Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $i, j \in \{1, ..., n\}$. On appelle

- mineur (i, j) de A le scalaire

$$\Delta_{ij}(A) = \det \tilde{A}$$

où la matrice \tilde{A} est obtenue à partir de A en enlevant la ligne i et la colonne j;

— cofacteur(i, j) de A le scalaire

$$Cof_{ij}(A) = (-1)^{i+j} \Delta_{ij}(A).$$

Définition 3 Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$.

Pour $i_0 \in \{1, ..., n\}$ fixé, on appelle développement du déterminant de A suivant la ligne i_0 le scalaire

$$L_{i_0}(A) = \sum_{j=1}^{n} a_{i_0,j} \operatorname{Cof}_{i_0,j}(A).$$

De même, pour $j_0 \in \{1, ..., n\}$ fixé, on appelle développement du déterminant de A suivant la colonne j_0 le scalaire

$$C_{j_0}(A) = \sum_{i=1}^n a_{i,j_0} Cof_{i,j_0}(A).$$

Définition 4 Soit $A \in \mathcal{M}_n(\mathbb{K})$. On pose

$$\det A = L_1(A).$$

Les définitions 1 à 4 définissent sans ambiguité $\det A$ pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$. Le théorème suivant permet parfois d'en simplifier le calcul.

Théorème 1 Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. Pour tous $i_0, j_0 \in \{1, ..., n\}$ on a

$$\det A = L_{i_0}(A) = C_{j_0}(A).$$

Notation. Si $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$, on note habituellement

$$\det A = \left| \begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array} \right|.$$

2 Propriétés

Proposition 2 Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $A_1, ..., A_n$ les colonnes de A et on écrit $A = (A_1, ..., A_n)$.

- 1. L'échange de deux colonnes de A multiplie le déterminant par -1.
- 2. Si C est une colonne quelconque,

$$\det(A_1, ..., A_i + C, ..., A_n) = \det(A_1, ..., A_i, ..., A_n) + \det(A_1, ..., C, ..., A_n).$$

3. $Si \lambda \in \mathbb{K}$,

$$\det(A_1, ..., \lambda A_i, ..., A_n) = \lambda \det(A_1, ..., A_i, ..., A_n).$$

Remarque 1 1. Attention, si A et B sont deux matrices, en général $\det(A+B) \neq \det A + \det B$.

2. On $a \det(\lambda A) = \lambda^n \det A$.

Corollaire 3 Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. Si une colonne de A est nulle, alors $\det A = 0$.
- 2. Si deux colonnes de A sont égales, alors $\det A = 0$.
- 3. Si on ajoute à une colonne de A une combinaison linéaire des autres colonnes alors le déterminant de A reste inchangé.
- 4. Si les colonnes de A forment une famille liée alors $\det A = 0$.

Proposition 4 Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a

$$\det A = \det A^T$$
.

En conséquence, les assertions de la proposition 2 et du corollaire 3 s'appliquent aussi aux lignes.

Proposition 5 Le déterminant d'une matrice triangulaire (inférieure ou supérieure, en particulier diagonale) est égal au produit de ses coefficients diagonaux.

3 Déterminant d'un produit, caractérisation des matrices inversibles

Théorème 6 Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On a

$$\det(AB) = \det A \det B.$$

Corollaire 7 Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est inversible si et seulement si $\det A \neq 0$. Dans ce cas on a

$$\det(A^{-1}) = \frac{1}{\det A}.$$

Remarque 2 Si $A, P \in \mathcal{M}_n(\mathbb{K})$ et P est inversible, on a

$$\det(P^{-1}AP) = \det A.$$

Donc, pour tout endomorphisme $f \in \mathcal{L}(\mathbb{K}^n)$, detmat $_{\mathcal{B}}(f)$ est indépendant de la base \mathcal{B} choisie. Cela permet de parler de déterminant d'un endomorphisme.

4 Définition du déterminant d'une matrice par les formes multi-linéaires alternées

Cette section est hors programme (cependant, c'est la manière naturelle de définir le déterminant pour récupérer toutes les propriétés voulues sur le déterminant des matrices).

On appelle σ_n l'ensemble des bijections de $\{1,...,n\}$ dans $\{1,...,n\}$. Cet ensemble est de cardinal $n! = 1 \times 2 \times \cdots \times n$. Intuitivement, cet ensemble représente le nombre de façons de ranger un ensemble à n éléments. On notera σ un élément de cet ensemble (c.a.d. une bijection de $\{1,...,n\}$ dans $\{1,...,n\}$). Par ailleurs, étant donné $\sigma \in \sigma_n$, on note $\varepsilon_{\sigma} = (-1)^{n_{\sigma}}$ où n_{σ} est le nombre d'inversions de σ , c.a.d. le nombre de couples (i,j) de $\{1,...n\}$ tels que i < j et $\sigma(i) > \sigma(j)$.

Par exemple, pour n = 3, il y a 6 éléments

de signature respectivement 1, -1, -1, -1, 1, 1.

Définition 5 Soit $x_1, ..., x_n$ n vecteurs de \mathbb{K}^n dans la base canonique $\mathcal{E} = \{e_1, ..., e_n\}$. Le déterminant de ces n vecteurs est par définition

$$\det_{\mathcal{E}}(x_1, ..., x_n) = \sum_{\sigma \in \sigma_n} \varepsilon_{\sigma} x_{\sigma(1)}^1 \cdots x_{\sigma(n)}^n$$

où chaque vecteur x_i est écrit $x_i = \sum_{k=1}^n x_i^k e_k$.

On admet le résultat suivant (qui découle de cette définition).

Proposition 8 La famille $x_1, ..., x_n$ est une base de E si et seulement son si son déterminant est non nul.

Définition 6 Le déterminant d'un endomorphisme $u \in \mathcal{L}(\mathbb{K}^n)$ est par définition

$$det(u) := det_{\mathcal{E}}(u(e_1), ..., u(e_n)).$$

Proposition 9 Soit Id l'application identité de \mathbb{K}^n dans lui-même et $u, v \in \mathcal{L}(\mathbb{K}^n)$. Alors :

$$\det(Id) = 1 \det(\lambda u) = \lambda^n \det(u) \det(v \circ u) = \det(v) \det(u)$$

et u est un isomorphisme si et seulement si $det(u) \neq 0$.

De même on admettra ces propriétés (dont certaines découlent de la propriété précédente pour les vecteurs).

Définition 7 Soit $A = (a_{i,j})_{1 \leq i,j \leq n}$ une matrice carré de taille n. Alors, le déterminant de A est défini par :

$$\det A = \sum_{\sigma \in \sigma_n} \varepsilon_{\sigma} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}.$$