Lecture 2 ON brainstorm, -> Complitette

Square" (*) Example 3.3: How would you find a formula for the following indefinite integral? -> make it look $\int \frac{dx}{x^2 - x + 1} \quad (\underline{\mathsf{Sketch}} \, \mathsf{ofthe})$ Inkeatuniax) antidernative -> the complete the square method: (x-6) = x2-26+6, here -26=-1 =76=1/7-7 we get that: x2-x+1=(x-1/2)+3/4 -7 factor out 3/4 from the denowing tor -> apply formula: 5 dx = Ltan (ax) + C

Section 5.1-5.3: Area under the curve and the definite integral

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, *School of Mathematics*, Summer 2021)

[Continuation of Lecture 2 on 2021-05-19] Average Value

The average value of f on [a,b] is the y-value that would generate a rectangle with the same area as f on [a,b].

$$AV = \frac{Area}{b-a}$$

$$AV = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$
widthoffle

Example 3:

Using the same example, find the average value of the function on the interval [-1,2] using the midpoint estimate.

Precall: With
$$f(x) = \frac{1}{1+x^2}$$
 (and $N=6$), we obtained Numerically that
$$\int_{-1}^{2} f(x) dx \approx M_f = \frac{430256}{226525} \approx 1.89938 (!)$$

Means
of the definite integral of f on $(-1,2)$

Trecall that the avg. value (AV) is givenby $AV = \frac{Area}{1-a}$ There, $AV = \frac{1}{3} = \frac{1}{3} \cdot \frac{430256}{226525}$

Next Learning Goals

Be able to find the equation for a general

- Riemann Sum

 (as \lambda \square 70)

 Take the limit of your answer to find the actual area beneath the curve
- Understand the definition of the definite integral
- Understand key properties of the definite integral

General Riemann Sum

Partition the interval [a,b] into n equal pieces:

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

Let x_i^* be an arbitrary point in the interval $[x_{i-1}, x_i]$. re a pointin The subint. [Xo, X,]

Then we can estimate the area under the curve

between
$$x = a$$
 and $x = b$ with the formula:
$$A \approx \sum_{i=1}^{n} f(x_i^*) \Delta x$$
with the formula:

Note that : $L_f \leq A \leq U_f$

What is x_i^* in the formula? $A \approx \sum_{k=1}^{\infty} f(x_k^*) \Delta x$

- A. The left-hand endpoint of the subinterval.
- B. The right-hand endpoint of the subinterval.
- C. The midpoint of the subinterval.
- D. Any value on the subinterval.

Lf, Uf, Mf are all going to converge to the Sane value, the exact area nodes The Conve

The Definite Integral

We define the definite integral to be the limit of the Riemann Sum:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$
 (important formula to know)

The Definite Integral and Area

If the function is always non-negative on [a,b], we have found *TOTAL AREA* under the curve.

Compacto.
$$\int_{a}^{b} |f(x)| dx$$

If the function takes on negative values, then we have found the *NET AREA* under the curve.

$$\int_{a}^{b} f(x)dx$$

$$\frac{x^{port}}{x^{port}} = \frac{x^{3}}{x^{3}} = 0$$

$$\frac{x^{3}}{x^{3}} = 0$$

Helpful Summation Formulas (memorize)

know these

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$

(Linearity – use to simplify sums)

(Linearity – use to simplify sums)

Example 4:

Use the method of Riemann Sums to evaluate the following definite integral. Choose x_i * to be the left-hand endpoint of each

$$\int_{-1}^{2} (x+1)^{2} dx \int_{-1}^{2} f(x) = (x+1)^{2},$$

$$\int_{-1}^{2} f(x) = (x+1)^{2}$$

 $\frac{1}{NOTE} \int_{N-1}^{2} (x+1)^{2} dx = \lim_{N\to\infty} R_{f}(N)$ $\frac{1}{NOTE} \lim_{N\to\infty} \frac{C_{1}N_{1}N^{2}}{N^{3}} = 0, \lim_{N\to\infty} \frac{\alpha N^{3}}{N^{3}} = 0$ -> So by expanding out the terms from (x), we get that: $\int_{1}^{2} (x+1)^{2} dx = \lim_{N \to \infty} R_{2}(x) = \frac{27\cdot 2}{6} = 9$

Example 5:

In a memory experiment, the rate of memorization is measured by the function:

$$f(t) = -c t^2 + d t, c > 0, d > 0,$$

 $f(t) = -c t^2 + d t$, c > o, d > o, where t is the time in minutes, and f(t) is the number of words per minute.

- (a) How many words are memorized in the first 2 minutes (from t=o to t=2)? USE RIEMANN SUMS.
- (b) What is the average number of words memorized each minute?

(a)
$$f(x) = -cx^2 + dx$$
, $[a,b] = [0,2]$

$$\Rightarrow \Delta x = \frac{b-a}{N} = \frac{2}{N}$$

$$x_{k}^{*} = 0 + K\Delta x = 2k$$

$$\Rightarrow C_{k}(N) = \sum_{k=1}^{N} f(x_{k}^{*}) \Delta x$$

$$= \frac{2}{N} \left[-c \cdot \sum_{k=1}^{N} \frac{4k^2}{N^2} + d \cdot \sum_{k=1}^{N} \frac{2k}{N} \right]$$

$$=\frac{2}{N}\left[\frac{4c}{N^2}\cdot\frac{N(N+1)(2N+1)}{(N+1)(2N+1)}+\frac{2d}{N}\frac{R(N+1)}{N}\right]$$

$$=-\frac{8c}{6N^2}(N+1)(2N+1)+\frac{4d}{N}\frac{(N+1)}{2}$$

$$=-\frac{4c}{3N^2}(N+1)(2N+1)+\frac{2d}{N}(N+1)(2N+1)$$

$$\rightarrow \int_0^2 f(t)dt = \lim_{N\to\infty} R_2(N)$$

(b) aug. # words memo. each minute $=AV=\begin{bmatrix}1\\b-a\\a\end{bmatrix}$ $=\frac{1}{2}\cdot\frac{1$

Properties of the Definite Integral

Let f(x) be continuous on [a,b].

(1)
$$\int_{a}^{b} cdx = c(b-a)$$
 FTC interpret.:

(2) $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$

(2) $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$

(3) $\int_{a}^{c} f(x)dx = 0$

(4) $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{c} f(x)dx$, where $c \in [a,b]$ $A_{z} = \int_{c}^{b} f(x)dx$
 $C \in (a,b)$

Properties of the Definite Integral (cont.)

I wear
$$(5) \int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$

$$(6) \int_{a}^{b} [f(x) \pm g(x)]dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$
how to apply

Some More Integral Properties

(1) If
$$f(x) \ge 0$$
, then $\int_{a}^{b} f(x)dx \ge 0$.

(2) If $f(x) \ge g(x)$ on $[a,b]$, then
$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx.$$
(3)
$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} |f(x)|dx$$

More Integral Properties (cont.)

(4) If f is an odd function, then

$$\int_{-a}^{a} f(x)dx = 0.$$

then f(X) = -f(-x), for all x > 0 $ex: f(x) = x^3, sin(x)$

(5) If f is an even function, then

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx. \xrightarrow{\text{Porall}} \text{Even func:}$$

$$f(x) = 2\int_{0}^{a} f(x)dx. \xrightarrow{\text{Porall}} \text{Existance}$$

$$f(x) = 2\int_{0}^{a} f(x)dx. \xrightarrow{\text{Porall}} \text{Existance}$$

$$f(x) = 2\int_{0}^{a} f(x)dx. \xrightarrow{\text{Porall}} \text{Existance}$$

Given that
$$\int_{1}^{3} 2f(x)dx = 4$$
 and $\int_{1}^{0} f(x)dx = -1$,

$$find \int_{0}^{3} f(x) dx = \mathbf{I}$$

$$I = \int_{1}^{3} f(x) dx + \int_{0}^{1} f(x) dx$$

$$= \frac{1}{2} \int_{1}^{3} 2f(x) dx - \int_{1}^{0} f(x) dx$$

$$= \frac{1}{2} \cdot 4 - (-1) = 3$$

Challenge Problem:

Hints:

- (1) What are some ways we have seen to simplify this integral?
- (2) Recall your special triangle values of trig functions.

$$I = \int_{-\sqrt{3}}^{\sqrt{3}} \frac{(x^5 + 10x^3 + x^2 + 3x + 1)}{(x^2 + 1)^2} dx = ?$$
(H1) Notice that $g(x) = \frac{x^5 + 10x^3 + 3x}{(x^2 + 1)^2}$
is odd $(x^5 + 10x^3 + 3x) = \frac{x^5 + 10x^3 + 3x}{(x^2 + 1)^2}$

why? for a 70, g(a) = a5+10a3+3a $= -9(-\alpha) = -[(-\alpha)^{5} + 10(-\alpha)^{3} - 3\alpha]$ $= \int_{-\sqrt{3}}^{\sqrt{3}} \frac{(x^5 + 10x^3 + 3x)}{(x^2 + 1)^2} \frac{(c - a^2 + 1)^2}{dx} = 0$ $- > \leq \delta, I = \left(\frac{\sqrt{3}}{\sqrt{2} + 1} \right) \frac{\sqrt{3}}{\sqrt{2} + 1} \frac{dx}{\sqrt{3}}$

Trecall:
$$\int \frac{dx}{x^2+1} = tan^{-1}(x) + C$$

The radius of FTC (on Friday):
$$[(HZ): tan(\pm \pi/3) = \pm \sqrt{3}] (x)$$

$$I = tan^{-1}(\sqrt{3}) - tan^{-1}(-\sqrt{3})$$

$$= \frac{\pi}{3} - (-\frac{\pi}{3}), by(x)$$

$$= \frac{2\pi}{3}$$

See you all on Friday!

(reminder to come to office hours:

MW@ 3-4PM and Friel-ZPMON Blue Jeans)