Série 22

1. Dans le plan (Oxy), on considère le domaine fini D limité par la courbe d'équation $y = x^{3/2} + 1$, l'axe Ox et les droites d'équation x = 0 et x = 1.

Calculer le volume du corps engendré par la rotation du domaine D

- a) autour de l'axe (Ox),
- b) autour de l'axe (Oy).
- **2.** On considère le domaine D du plan limité par la courbe d'équation $y=4-x^2$ et par les droites d'équation y=4 et x=2.

Calculer le volume du corps engendré par la rotation du domaine $\,D\,$ autour de l'axe d'équation $\,x=2\,.$

- **3.** Déterminer le volume engendré par la rotation autour de l'axe (Ox) du domaine fini limité par les courbes d'équation $y=x^3$ et $y=\sqrt[3]{x}$ $(x\geq 0)$.
- **4.** Dans le plan (Oxy), on considère le domaine fini D limité par la courbe d'équation $y = \sqrt[3]{2x}$, l'axe (Ox) et la droite verticale d'équation x = 4.

Calculer le volume du corps obtenu par la rotation du domaine $\,D\,$ autour de la droite verticale d'équation $\,x=4\,.$

- **5.** Dans le plan (Oxy), on considère le domaine fini D limité par la courbe d'équation $y=4-x^2$, $(x\geq 0)$, l'axe (Ox) et l'axe (Oy).
 - a) Calculer le volume V_a du corps obtenu par la rotation du domaine D autour de l'axe (Oy).
 - b) Calculer le volume V_b du corps obtenu par la rotation du domaine D autour de la droite horizontale d'équation y=4.
- **6.** Soit D le domaine du plan limité par la courbe C, l'axe Oy et la droite horizontale h d'équation $y=2\sqrt{3}$.

$$C: \quad y = \frac{\sin(x)}{\cos^2(x)}, \qquad x \in [0, \frac{\pi}{3}].$$

Calculer le volume du corps de révolution engendré par la rotation du domaine $\,D\,$ autour de l'axe $\,h\,$.

7. Vérifier que le volume d'une sphère de rayon r est égale à $\frac{4}{3}\pi r^3$.

8. Soit D le domaine du plan limité par la courbe C, l'axe Ox et la droite verticale d'équation x = 1.

Calculer le volume du corps de révolution engendré par la rotation du domaine D autour de l'axe d'équation x = 1.

9. Dans l'espace muni d'un système d'axes cartésien (Oxyz), on considère un corps dont les sections par des plans perpendiculaires à (Oy) sont des triangles ABCdéfinis ainsi : A est sur l'axe (Oy), B est sur la droite d'équations x = y = zet C, dans le plan (Oxy), appartient à l'arc Γ défini par

$$\Gamma: \begin{cases} x(t) = 2t + t^2 \\ y(t) = 2t - t^2 \\ z(t) = 0 \end{cases} \quad 0 \le t \le 1.$$

Calculer le volume du corps ainsi défini.

10. Soit γ la courbe de l'espace définie par $x=t\,,\ y=t^2\,,\ z=t^3\,,\quad t\in\mathbb{R}\,.$

On considère le corps engendré par des disques horizontaux dont les centres sont sur γ et dont les cercles frontières coupent l'axe Oz.

Calculer, pour z > 0, le volume de ce corps sachant que le rayon des disques varie entre 0 et $\sqrt{2}$.

11. Dans l'espace, muni d'un système d'axes cartésien Oxyz, on considère un corps dont les sections par des plans perpendiculaires à l'axe Oy sont des triangles ABCtels que A est sur l'axe Oy, B, dans le plan Oxy, appartient à la droite d et C, dans le plan Oyz, appartient au quart de cercle Γ :

$$d: \quad \left\{ \begin{array}{l} y = x \\ z = 0 \,, \end{array} \right. \qquad \Gamma: \quad \left\{ \begin{array}{l} (y - 2)^2 + z^2 = 4 \\ x = 0 \,, \end{array} \right. \qquad y \in \left[\, 0 \,, \, 2 \, \right], \quad z \geq 0 \,.$$

Calculer le volume V de ce corps.

Réponses de la série 22

1.
$$V_a = \frac{41 \pi}{20}$$
 4. $V = \frac{144 \pi}{7}$ 8. $V = \frac{3 \pi}{7}$ $V_b = \frac{11 \pi}{7}$ 5. $V_a = 8 \pi$ 9. $V = \frac{3}{10}$ 2. $V = \frac{8 \pi}{3}$ 10. $V = \frac{36 \pi}{35}$

3.
$$V = \frac{16\pi}{35}$$
 6. $V = 4\pi^2 - 3\pi\sqrt{3}$ 11. $V = \pi - \frac{4}{3}$