

Introduction to Embedded Systems - WS 2022/23

Exercise 3: Aperiodic Scheduling

Task 1: Earliest Deadline Due

Check whether the Earliest Deadline Due (EDD) algorithm produces a feasible schedule for the following task set, given that all tasks are synchronous and arrive at time t=0.

	J_1	J_2	J_3	J_4
C_i	3	6	2	4
D_i	8	15	3	11

Task 2: Latest Deadline First

Given the precedence graph in Figure 1 and the following table of task execution times and deadlines, determine a Latest Deadline First (LDF) schedule. Is this schedule feasible?

	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8
C_i	3	4	2	3	3	2	2	1
D_i	5	8	11	15	12	18	19	20

Figure 1: Precedence graph.

Task 3: Earliest Deadline First

In the following table, five tasks with arrival times, execution times and deadlines are given.

	J_1	J_2	J_3	J_4	J_5
a_i	0	2	0	8	13
C_i	3	1	6	2	3
d_i	16	7	8	11	18

- (1) Determine a Earliest Deadline First (EDF) schedule. Is this schedule feasible?
- (2) At time t=3, a new task J_x arrives with execution time $C_x=2$ and deadline $d_x=10$. Can you guarantee the schedulability of the task set with this new task?

Task 4: Earliest Deadline First - Star

Given are seven tasks A, B, C, D, E, F, G with following precedence constraints:

$$A \longrightarrow C$$
, $B \longrightarrow C$, $C \longrightarrow E$, $D \longrightarrow F$, $B \longrightarrow D$, $C \longrightarrow F$, $D \longrightarrow G$

All tasks arrive at time $t_0 = 0$, have a common deadline d = 20 and the following execution times:

		Α	В	С	D	Е	F	G
(\mathcal{I}_i	3	2	4	3	2	5	1

- (1) Construct the precedence graph for this task set. Then, modify the release times and deadlines so that EDF* can be used for its scheduling.
- (2) Determine a resulting EDF* schedule. For this schedule, compute the average of all response times of the tasks.
- (3) Assume the additional precedence constraint $E \longrightarrow A$. Is there still a feasible schedule for the above task set? Justify your answer.

Task 5: Earliest Deadline First - Star

Given are eight aperiodic tasks, J_1 to J_8 , with their arrival times, deadlines, and execution times as shown in the table below. Task precedence constraints are as follows:

$$J_1 \to J_2, \ J_2 \to J_3, \ J_3 \to J_4, \ J_5 \to J_6, \ J_6 \to J_7, \ J_6 \to J_8, \ J_2 \to J_7, \ J_7 \to J_4, \ J_8 \to J_7.$$

	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8
r_i	0	3	4	0	0	2	0	2
d_i	3	8	15	15	10	10	10	11
C_i	1	3	3	3	1	1	2	1

- (1) Construct the precedence graph.
- (2) Using the EDF* algorithm, modify the arrival times and deadlines of the tasks in order to make the tasks schedulable under EDF. Enter the modified arrival times and deadlines in Table 1.
- (3) Assume that the application is executed on a dual-core platform. At any time t, both cores execute the two ready tasks $(r_i^* \le t)$ with earliest deadlines (Note: A single task cannot be executed on two cores simultaneously). Using the arrival times and deadlines obtained in (2), construct an EDF schedule in Figure 2.

Table 1: Modified arrival times and deadlines								
	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8
r_i^*								
d_i^*								
C_i	1	3	3	3	1	1	2	1

Figure 2: EDF schedule for part (3)

(4) Now assume that the application is executed on a quad-core platform with the same scheduling rule (4 cores execute the four ready tasks with earliest deadlines). Will executing on the quad-core platform reduce the completion time of the application? Justify your answer with an explanation.