

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2Module Tilt = 30°

Module Tilt = 30° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 0.73 $C_e =$ 0.90 $C_t =$ 1.20

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 (Proceure)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away from the duridoo.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
T _a =	0.06	$C_{d} = 1.25$	to calculate C _s .

SCHLETTER

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

Purlins M13 M14 M15 M16	Location Top Mid-Top Mid-Bottom Bottom	Diagonal Struts M3 M7 M11	Location Outer Inner Outer	Front Reactions N7 Outer N15 Inner N23 Outer
Girders M1 M5 M9	<u>Location</u> Outer Inner Outer	Rear Struts M2 M6 M10	Location Outer Inner Outer	Rear Reactions N8 Outer N16 Inner N24 Outer
Front Struts M4 M8 M12	<u>Location</u> Outer Inner Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>101.41</u>	<u>4780.64</u>	k
Compressive Load =	3462.02	<u>4128.10</u>	k
Lateral Load =	<u>409.83</u>	<u>3018.76</u>	k
Moment (Weak Axis) =	<u>0.80</u>	0.30	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi **Overturning Check** $M_O = 121649.2 \text{ in-lbs}$ Resisting Force Required = 1843.17 lbs A minimum 132in long x 25in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3071.95 lbs to resist overturning. Minimum Width = <u>25 in</u> in Weight Provided = 4984.38 lbs Sliding 725.26 lbs Force = Friction = Use a 132in long x 25in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1813.14 lbs Resisting Weight = 4984.38 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 725.26 lbs Cohesion = 130 psf

0 lbs

8 in

Use a 132in long x 25in wide x 18in tall 22.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2492.19 lbs

Additional Weight Required = Shear Key

Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft 2500 psi $f'_c =$

Length =

Shear key is not required.

Bearing Pressure

Ballast Width <u>25 in</u> <u> 26 in</u> <u>28 in</u> <u>27 in</u> $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.08 \text{ ft}) =$ 4984 lbs 5184 lbs 5383 lbs 5583 lbs

ASD LC		1.0D -	+ 1.0S			1.0D+	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D +	+ 1.0W	
Width	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in
F _A	1347 lbs	1347 lbs	1347 lbs	1347 lbs	1064 lbs	1064 lbs	1064 lbs	1064 lbs	1666 lbs	1666 lbs	1666 lbs	1666 lbs	-42 lbs	-42 lbs	-42 lbs	-42 lbs
F _B	1286 lbs	1286 lbs	1286 lbs	1286 lbs	1735 lbs	1735 lbs	1735 lbs	1735 lbs	2130 lbs	2130 lbs	2130 lbs	2130 lbs	-2292 lbs	-2292 lbs	-2292 lbs	-2292 lbs
F_V	208 lbs	208 lbs	208 lbs	208 lbs	1334 lbs	1334 lbs	1334 lbs	1334 lbs	1136 lbs	1136 lbs	1136 lbs	1136 lbs	-1451 lbs	-1451 lbs	-1451 lbs	-1451 lbs
P _{total}	7617 lbs	7816 lbs	8016 lbs	8215 lbs	7783 lbs	7982 lbs	8182 lbs	8381 lbs	8780 lbs	8980 lbs	9179 lbs	9378 lbs	656 lbs	776 lbs	896 lbs	1015 lbs
M	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3019 lbs-ft	3019 lbs-ft	3019 lbs-ft	3019 lbs-ft	4695 lbs-ft	4695 lbs-ft	4695 lbs-ft	4695 lbs-ft	3085 lbs-ft	3085 lbs-ft	3085 lbs-ft	3085 lbs-ft
е	0.49 ft	0.48 ft	0.47 ft	0.46 ft	0.39 ft	0.38 ft	0.37 ft	0.36 ft	0.53 ft	0.52 ft	0.51 ft	0.50 ft	4.70 ft	3.98 ft	3.44 ft	3.04 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	242.6 psf	241.7 psf	240.8 psf	239.9 psf	267.8 psf	265.8 psf	264.0 psf	262.4 psf	271.4 psf	269.3 psf	267.4 psf	265.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	422.1 psf	414.2 psf	407.0 psf	400.2 psf	411.5 psf	404.0 psf	397.1 psf	390.7 psf	494.9 psf	484.2 psf	474.3 psf	465.2 psf	262.6 psf	156.7 psf	129.1 psf	117.9 psf

Maximum Bearing Pressure = 495 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 1631.3 \text{ ft-lbs}$

Resisting Force Required = 1566.09 lbs

S.F. = 1.67

Weight Required = 2610.16 lbs

Minimum Width = 25 in in

Weight Provided = 4984.38 lbs

A minimum 132in long x 25in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		25 in		25 in			25 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	314 lbs	687 lbs	224 lbs	827 lbs	2213 lbs	757 lbs	123 lbs	201 lbs	34 lbs	
F _V	231 lbs	226 lbs	236 lbs	169 lbs	166 lbs	184 lbs	232 lbs	228 lbs	234 lbs	
P _{total}	6485 lbs	6858 lbs	6395 lbs	6701 lbs	8087 lbs	6631 lbs	1928 lbs	2005 lbs	1838 lbs	
М	902 lbs-ft	892 lbs-ft	918 lbs-ft	670 lbs-ft	674 lbs-ft	720 lbs-ft	902 lbs-ft	888 lbs-ft	906 lbs-ft	
е	0.14 ft	0.13 ft	0.14 ft	0.10 ft	0.08 ft	0.11 ft	0.47 ft	0.44 ft	0.49 ft	
L/6	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	
f _{min}	169.6 psf	187.2 psf	163.7 psf	208.2 psf	268.2 psf	198.8 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	396.4 psf	411.3 psf	394.4 psf	376.6 psf	437.5 psf	379.9 psf	203.6 psf	203.0 psf	203.1 psf	

Maximum Bearing Pressure = 438 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 25in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.663 k 12.808 k 7.421 k	Rear Strut Maximum Axial Load = 3.182 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 43%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	36% 1.956 k 12.808 k 7.421 k 26%	Utilization = 43% Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 48.27 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.965 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.756 \text{ in} \\ \end{array}$

 $0.756 \le 0.965$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 132 \text{ in}$$

$$J = 0.432$$

$$365.174$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

 $S2 = 1701.56$
 $\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}]}$

$$\varphi F_L = 27.1 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 132$$

$$J = 0.432$$

$$232.229$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.4$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

Not Used

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $1x = 897074 \text{ mm}^4$
 2.155 in^4
 $y = 41.015 \text{ mm}$
 1.335 in^3

2.788 k-ft

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

 $M_{max}St =$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

88.9 in

$$L_b = 88.9$$

 $J = 1.08$

$$J = 1.08$$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$

 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16

$$D/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =
$$18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

<u>Used</u>

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\begin{array}{rll} \phi F_L St = & 29.4 \text{ ksi} \\ lx = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

 $\phi F_L = 1.3 \phi y F c y$

43.2 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ y = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 31.4$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

$$V = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

Compression

3.4.7

$$λ = 0.57371$$
 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $φcc = 0.87952$
 $φF_L = φcc(Bc-Dc^*λ)$

 $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

 $Strut = \underline{55x55}$

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$))] $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\phi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_L St = 28.2 \text{ ksi}$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

1.460 k-ft

Compression

 $M_{max}St =$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L =$$

Weak Axis:

3.4.14

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1 Not Used N/A for Weak Direction $\phi F_L =$ 38.9 ksi 3.4.18

24.5

36.9

0.65

27.5 27.5

77.3

43.2 ksi

28.2 ksi

0.672 in⁴

0.621 in³

1.460 k-ft

27.5 mm

 $ly = 279836 \text{ mm}^4$

x =

mDbr

 k_1Bbr

mDbr

Compression

3.4.7 λ = 1.63853 0.81 in $\frac{Bc-Fcy}{1.6Dc^*}$ $S1^* = \frac{1}{2}$ S1^{*} = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 $\phi cc = 0.80939$ $\phi F_L = (\phi cc Fcy)/(\lambda^2)$ $\phi F_{L} = 10.5516 \text{ ksi}$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

Rev. 11.05.2015

3.4.10

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Y	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-36.38	-36.38	0	0
2	M14	V	-36.38	-36.38	0	0
3	M15	V	-58.525	-58.525	0	0
4	M16	V	-58.525	-58.525	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	82.251	82.251	0	0
2	M14	V	63.27	63.27	0	0
3	M15	V	34.799	34.799	0	0
4	M16	У	34.799	34.799	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Ζ	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	570.125	2	961.476	2	.789	1	.003	1	0	1	0	1
2		min	-731.96	3	-1117.731	3	-38.577	5	232	4	0	1	0	1
3	N7	max	.044	9	1050.873	1	758	12	001	12	0	1	0	1
4		min	114	2	-27.109	5	-315.254	4	614	4	0	1	0	1
5	N15	max	.035	9	2663.091	1	0	1	0	11	0	1	0	1
6		min	-1.345	2	-78.009	3	-299.934	4	593	4	0	1	0	1
7	N16	max	2201.978	2	3175.46	2	0	12	0	12	0	1	0	1
8		min	-2322.122	3	-3677.417	3	-38.309	5	234	4	0	1	0	1
9	N23	max	.047	14	1050.873	1	13.977	1	.028	1	0	1	0	1
10		min	114	2	7.104	3	-305.14	5	598	4	0	1	0	1
11	N24	max	570.125	2	961.476	2	049	12	0	12	0	1	0	1
12		min	-731.96	3	-1117.731	3	-39.29	5	234	4	0	1	0	1
13	Totals:	max	3340.656	2	9690.166	1	0	11						
14		min	-3786.094	3	-5976.679	3	-1029.826	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	136.65	1	386.751	1	-9.937	12	0	3	.327	1	0	4
2			min	7.466	12	-523.824	3	-200.395	1	011	2	.018	12	0	3
3		2	max	136.65	1	271.179	1	-7.754	12	0	3	.14	4	.545	3
4			min	7.466	12	-368.649	3	-154.206	1	011	2	.007	12	402	1
5		3	max	136.65	1	155.606	1	-5.571	12	0	3	.072	5	.901	3
6			min	7.466	12	-213.475	3	-108.018	1	011	2	05	1	663	1
7		4	max	136.65	1	40.034	1	-3.387	12	0	3	.036	5	1.067	3
8			min	7.466	12	-58.301	3	-61.829	1	011	2	154	1	782	1
9		5	max	136.65	1	96.874	3	-1.204	12	0	3	.004	5	1.044	3
10			min	7.466	12	-75.538	1	-28.578	4	011	2	201	1	761	1
11		6	max	136.65	1	252.048	3	30.547	1	0	3	009	12	.83	3
12			min	3.713	15	-191.11	1	-21.039	5	011	2	192	1	598	1
13		7	max	136.65	1	407.222	3	76.736	1	0	3	007	12	.428	3
14			min	-6.626	5	-306.682	1	-17.661	5	011	2	126	1	294	1
15		8	max	136.65	1	562.397	3	122.924	1	0	3	0	10	.152	1
16			min	-19.172	5	-422.254	1	-14.283	5	011	2	07	4	165	3
17		9	max	136.65	1	717.571	3	169.112	1	0	3	.174	1	.739	1
18			min	-31.719	5	-537.827	1	-10.905	5	011	2	083	5	947	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	136.65	1	872.745	3	215.301	1	.011	2	.409	1	1.467	1
20			min	7.466	12	-653.399	1	-130.288	14	0	3	.017	12	-1.919	3
21		11	max	136.65	1	537.827	1	-7.529	12	.011	2	.174	1	.739	1
22			min	7.466	12	-717.571	3	-169.112	1	0	3	.006	12	947	3
23		12	max	136.65	1	422.254	1	-5.345	12	.011	2	.066	5	.152	1
24			min	7.466	12	-562.397	3	-122.924	1	0	3	004	1	165	3
25		13	max	136.65	1	306.682	1	-3.162	12	.011	2	.029	5	.428	3
26		10	min	7.466	12	-407.222	3	-76.736	1	0	3	126	1	294	1
27		14	max	136.65	1	191.11	1	979	12	.011	2	002	15	.83	3
28		17	min	7.466	12	-252.048	3	-32.977	4	0	3	192	1	598	1
29		15	max	136.65	1	75.538	1	15.641	1	.011	2	009	12	1.044	3
30		13	min	.73		-96.874	3	-22.089	5	0	3	201	1	761	1
		16			15		3						12		_
31		16	max	136.65	1	58.301		61.829	1	.011	2	007		1.067	3
32		47	min	-11.136	5	-40.034	1	-18.711	5	0	3	154	1_	782	1
33		17	max	136.65	1	213.475	3	108.018	1	.011	2	001	12	.901	3
34			min	-23.682	5	-155.606	1	-15.333	5	0	3	092	4_	663	1
35		18	max	136.65	1_	368.649	3	154.206	1	.011	2	.11	_1_	.545	3
36			min	-36.228	5	-271.179	1	-11.955	5	0	3	096	5	402	1
37		19	max	136.65	1_	523.824	3	200.395	1	.011	2	.327	_1_	0	1
38			min	-48.775	5	-386.751	1	-8.577	5	0	3	108	5	0	3
39	M14	1	max	66.178	4	404.608	1	-10.198	12	.006	3	.369	1	0	4
40			min	3.104	12	-407.726	3	-206.136	1	008	1	.02	12	0	3
41		2	max	59.829	1	289.036	1	-8.015	12	.006	3	.196	4	.426	3
42			min	3.104	12	-289.67	3	-159.947	1	008	1	.009	12	424	1
43		3	max	59.829	1	173.463	1	-5.832	12	.006	3	.105	5	.708	3
44			min	3.104	12	-171.614	3	-113.759	1	008	1	022	1	707	1
45		4	max	59.829	1	57.891	1	-3.649	12	.006	3	.055	5	.846	3
46			min	3.104	12	-53.558	3	-67.57	1	008	1	133	1	848	1
47		5	max	59.829	1	64.498	3	-1.466	12	.006	3	.009	5	.839	3
48		1	min	1.292	15	-57.681	1	-41.596	4	008	1	187	1	848	1
49		6	max	59.829	1	182.554	3	24.806	1	.006	3	009	12	.688	3
50		-	min	-10.549	5	-173.253	1	-32.487	5	008	1	185	1	707	1
		7													_
51		-	max	59.829	1	300.61	3	70.995	1	.006	3	007	12	.393	3
52			min	-23.095	5	-288.825	1	-29.109	5	008	1	126	1_	425	1
53		8	max	59.829	1	418.666	3	117.183	1	.006	3	0	10	.004	9
54			min	-35.641	5	-404.397	1	-25.731	5	008	1	109	4_	047	3
55		9	max	59.829	1	536.722	3	163.371	1	.006	3	.16	_1_	.564	1
56			min	-48.188	5	-519.97	1	-22.353	5	008	1	134	5	631	3
57		10	max	83.067	4	654.778	3	209.56	1	.008	1	.388	_1_	1.27	1
58			min	3.104	12	-635.542	1	-132.932	14	006	3	.016	12	-1.359	3
59		11	max		4	519.97	1	-7.267	12	.008	1	.197	_4_	.564	1
60			min	3.104	12	-536.722	3	-163.371	1	006	3	.006	12	631	3
61		12	max	59.829	1_	404.397	1	-5.084	12	.008	1	.102	5	.004	9
62			min	3.104	12	-418.666	3	-117.183	1	006	3	012	1	047	3
63		13			1	288.825	1	-2.901	12	.008	1	.052	5	.393	3
64			min	3.104	12	-300.61	3	-70.995	1	006	3	126	1	425	1
65		14	max		1	173.253	1	718	12	.008	1	.006	5	.688	3
66			min	3.104	12	-182.554	3	-42.476	4	006	3	185	1	707	1
67		15	max		1	57.681	1	21.382	1	.008	1	009	12	.839	3
68			min	3.104	12	-64.498	3	-32.697	5	006	3	187	1	848	1
69		16	max		1	53.558	3	67.57	1	.008	1	005	12	.846	3
70		10	min	-6.282	5	-57.891	1	-29.319	5	006	3	133	1	848	1
71		17		59.829	1	171.614	3	113.759		.008	1	0	3	.708	3
		17	max			172.462			1						1
72		40	min	-18.829	5	-173.463		-25.942	5	006	3	115	4	707	_
73		18	max	59.829	1	289.67	3	159.947	1	.008	1	.145	1	.426	3
74		40	min	-31.375	5	-289.036		-22.564	5	006	3	137	5	424	1
75		<u> 19</u>	max	59.829	1	407.726	3	206.136	1	.008	1	.369	<u>1</u>	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
76			min	-43.922	5	-404.608	_1_	-19.186	5	006	3	163	5	0	3
77	M15	1	max	91.775	5	514.119	2	-10.162	12	.009	1	.369	1_	00	2
78			min	-63.16	_1_	-219.921	3	-206.099	1	005	3	.02	12	0	12
79		2	max	79.229	5	366.051	2	-7.979	12	.009	1	.234	4	.231	3
80			min	-63.16	1	-157.541	3	-159.911	1	005	3	.009	12	538	2
81		3	max	66.683	5	217.983	2	-5.795	12	.009	1	.132	5	.385	3
82			min	-63.16	1	-95.162	3	-113.722	1	005	3	022	1	895	2
83		4	max	54.136	5	69.915	2	-3.612	12	.009	1	.071	5	.463	3
84			min	-63.16	1	-32.783	3	-67.534	1	005	3	133	1	-1.071	2
85		5	max	41.59	5	29.597	3	-1.429	12	.009	1	.015	5	.465	3
86			min	-63.16	1	-78.153	2	-50.446	4	005	3	187	1	-1.066	2
87		6	max	29.044	5	91.976	3	24.843	1	.009	1	009	12	.391	3
88			min	-63.16	1	-226.222	2	-41.298	5	005	3	185	1	88	2
89		7	max	16.497	5	154.355	3	71.031	1	.009	1	007	12	.24	3
90			min	-63.16	1	-374.29	2	-37.92	5	005	3	127	1	513	2
91		8	max	3.951	5	216.735	3	117.22	1	.009	1	0	10	.035	2
92			min	-63.16	1	-522.358	2	-34.542	5	005	3	136	4	0	15
		9		-3.515	12	279.114	3	163.408	1	.009	1	.16	1	.764	
93		9	max		1		2		5		3	171	_		3
94		40	min	-63.16	•	-670.426		-31.165		005			5	289	
95		10	max	-3.515	12	341.493	3_	209.596	1	.005	3	.388	1	1.674	2
96			min	-63.16	1_	-818.494	2	-137.459	14	009	1	.016	12	669	3
97		11	max	564	<u>15</u>	670.426	2	-7.304	12	.005	3	.234	4	.764	2
98			min	-63.16	_1_	-279.114	3	-163.408	1	009	1	.006	12	289	3
99		12	max	-3.515	12	522.358	2	-5.121	12	.005	3	.129	5	.035	2
100			min	-63.16	1_	-216.735	3	-117.22	1	009	1	011	1	0	15
101		13	max	-3.515	12	374.29	2	-2.937	12	.005	3	.068	5	.24	3
102			min	-63.16	1	-154.355	3	-71.031	1	009	1	127	1	513	2
103		14	max	-3.515	12	226.222	2	754	12	.005	3	.011	5	.391	3
104			min	-63.16	1	-91.976	3	-51.356	4	009	1	185	1	88	2
105		15	max	-3.515	12	78.153	2	21.345	1	.005	3	009	12	.465	3
106			min	-66.882	4	-29.597	3	-41.513	5	009	1	187	1	-1.066	2
107		16	max	-3.515	12	32.783	3	67.534	1	.005	3	006	12	.463	3
108			min	-79.428	4	-69.915	2	-38.135	5	009	1	133	1	-1.071	2
109		17	max	-3.515	12	95.162	3	113.722	1	.005	3	0	3	.385	3
110			min	-91.975	4	-217.983	2	-34.758	5	009	1	142	4	895	2
111		18	max	-3.515	12	157.541	3	159.911	1	.005	3	.145	1	.231	3
112			min	-104.521	4	-366.051	2	-31.38	5	009	1	176	5	538	2
113		19	max	-3.515	12	219.921	3	206.099	1	.005	3	.369	1	0	2
114		13		-117.067	4	-514.119	2	-28.002	5	009	1	212	5	0	5
115	M16	1	max	89.656	5	496.881	2	-9.821	12	.009	1	.329	1	0	2
116	IVITO			-146.507	1	-207.945		-200.622		008	3	.017	12	0	3
117		2				348.813		-7.638		.009	1	.181	4	.216	3
118			max	-146.507	<u>5</u> 1	-145.566	3	-154.434	<u>12</u>	008	3	.007	12	517	2
		2						-5.454							3
119		3		64.563 -146.507	5	200.745	2	-5.454	12	.009	3	.101	5	.356	2
120		4			_1_	-83.187	3			008		049	_	853	
121		4	max		_5_	52.676	2	-3.271	12	.009	1	.054	5	.419	3
122		_		-146.507	_1_	-20.807	3	-62.057	1	008	3	153	1	-1.008	2
123		5	max		_5_	41.572	3	-1.088	12	.009	1	.011	5_	.407	3
124				-146.507	_1_	-95.392	2	-37.801	4	008	3	201	1_	981	2
125		6	max		_5_	103.951	3	30.32	1_	.009	1	009	12	.318	3
126				-146.507	<u>1</u>	-243.46	2	-30.12	5	008	3	192	1_	774	2
127		7	max		5	166.331	3	76.508	1	.009	1	007	12	.153	3
128			min	-146.507	1_	-391.528	2	-26.742	5	008	3	127	1	386	2
129		8	max		5	228.71	3	122.696	1	.009	1	0	10	.183	2
130			min	-146.507	1	-539.596	2	-23.364	5	008	3	096	4	089	3
131		9	max		15	291.089	3	168.885	1	.009	1	.173	1_	.933	2
132			min	-146.507	1_	-687.664	2	-19.987	5	008	3	12	5	406	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]		y-y Mome	LC		
133		10	max	-7.764	12	353.469	3	215.073	1	.008	3	.408	1	1.864	2
134			min	-146.507	1	-835.732	2	-134.873	14	009	1	.017	12	8	3
135		11	max	-6.929	15	687.664	2	-7.645	12	.008	3	.188	4	.933	2
136			min	-146.507	1	-291.089	3	-168.885	1	009	1	.007	12	406	3
137		12	max	-7.764	12	539.596	2	-5.462	12	.008	3	.093	4	.183	2
138			min	-146.507	1	-228.71	3	-122.696	1	009	1	005	1	089	3
139		13	max	-7.764	12	391.528	2	-3.278	12	.008	3	.044	5	.153	3
140			min	-146.507	1	-166.331	3	-76.508	1	009	1	127	1	386	2
141		14	max	-7.764	12	243.46	2	-1.095	12	.008	3	0	15	.318	3
142			min	-146.507	1	-103.951	3	-42.101	4	009	1	192	1	774	2
143		15	max	-7.764	12	95.392	2	15.869	1	.008	3	009	12	.407	3
144			min	-146.507	1	-41.572	3	-31.151	5	009	1	201	1	981	2
145		16	max	-7.764	12	20.807	3	62.057	1	.008	3	007	12	.419	3
146				-146.507	1	-52.676	2	-27.773	5	009	1	153	1	-1.008	2
147		17	max	-7.764	12	83.187	3	108.245	1	.008	3	001	12	.356	3
148		- ' '	min	-146.507	1	-200.745	2	-24.395	5	009	1	121	4	853	2
149		18	max	-7.764	12	145.566	3	154.434	1	.008	3	.112	1	.216	3
150		10	min	-146.507	1	-348.813	2	-21.018	5	009	1	136	5	517	2
151		19	max	-7.764	12	207.945	3	200.622	1	.008	3	.329	1	0	2
152		13	min	-146.522	4	-496.881	2	-17.64	5	009	1	16	5	0	5
153	M2	1	max	885.303	1	1.957	4	.629	1	0	12	0	3	0	1
154	IVIZ		min	-966.878	3	.473	15	-38.097	4	0	4	0	1	0	1
155		2	max	885.779	1	1.871	4	.629	1	0	12	0	1	0	15
156				-966.521	3	.453	15	-38.514	4	0	4	012	4	0	4
157		3	max	886.254	1	1.785	4	.629	1	0	12	0	1	0	15
158		3	min	-966.165	3	.432	15	-38.93	4	0	4	025	4	001	4
159		4	max	886.73	1	1.7	4	.629	1	0	12	0	1	0	15
160		4	min	-965.808	3	.412	15	-39.346	4	0	4	038	4	002	4
161		5	max		1	1.614	4	.629	1	0	12	0	1	0	15
162		5	min	-965.451	3	.392	15	-39.763	4	0	4	05	4	002	4
163		6	max	887.682	<u> </u>	1.529	4	.629	1	0	12	.001	1	0	15
164		0	min	-965.094	3	.372	15	-40.179	4	0	4	063	4	003	4
165		7	max	888.157	1	1.443	4	.629	1	0	12	.003	1	0	15
166			min	-964.737	3	.352	15	-40.595	4	0	4	076	4	003	4
167		8	max	888.633	<u></u>	1.357	4	.629	1	0	12	.001	1	003 0	15
168		0	min	-964.38	3	.332	15	-41.012	4	0	4	09	4	004	4
169		9	max	889.109	1	1.272	4	.629	1	0	12	.002	1	004	15
170		9	min	-964.024	3	.312	15	-41.428	4	0	4	103	4	004	4
171		10	max		1	1.186	4	.629	1	0	12	.002	1	004	15
172		10		-963.667	3	.292	15	-41.844	4	0	4	116	4	005	4
		11		890.06	· ·				1		_		1		
173		11			1	1.101	15	.629		0	12	.002		001	15
174		12	min	-963.31 890.536	3	.272	<u>15</u> 4	-42.261 .629	<u>4</u> 1	0	<u>4</u> 12	13 .002	1	005 001	15
175 176		12		-962.953	3	1.015 .247	12	-42.677	4	0	4	144	4	001	4
176		13			1	.93	4	.629	1	0	12	.002	1	005 001	15
177		13		891.012 -962.596	3	.213	12	-43.093	4	0	4	158	4	001	4
179		14		891.488	<u>ა</u>			.629	1		12	.003	1	006	15
180		14	min		3	.844 .18	12	-43.51	4	0	4	172	4	001	4
181		15		891.963	1	.758	4	.629	1	0	12	.003	1	002	15
		10													
182		16		-961.883	3	.147	12	-43.926	4	0	4 12	186	4	006	15
183		16		892.439	1	.673	4	.629	1_1	0		.003	1	002	15
184		17	min	-961.526	3	.113	12	-44.342	4	0	4	2	4	006	15
185		17		892.915	1	.596	2	.629	1_4	0	12	.003	1	002	15
186		10		-961.169	3	.08	12	-44.759	4	0	4	215	4	007	4
187		18		893.391	1	.529	2	.629	1_4	0	12	.003	1	002	15
188		10		-960.812	3	.047	12	<u>-45.175</u>	4	0	4	229	4	007	15
189		19	max	893.866	1	.463	2	.629	_1_	0	12	.004	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC y	y-y Mome	LC	z-z Mome	. LC
190			min	-960.455	3	.006	3	-45.592	4	0	4	244	4	007	4
191	M3	1	max	474.015	2	7.8	4	5.911	4	0	12	0	1	.007	4
192			min	-621.234	3	1.843	15	.015	12	0	4	035	4	.002	15
193		2	max	473.845	2	7.035	4	6.448	4	0	12	0	1	.004	4
194			min	-621.362	3	1.664	15	.015	12	0	4	033	4	0	12
195		3	max	473.674	2	6.271	4	6.985	4	0	12	0	1	.002	2
196			min	-621.49	3	1.484	15	.015	12	0	4	03	4	0	3
197		4	max	473.504	2	5.507	4	7.522	4	0	12	0	1	0	15
198			min	-621.618	3	1.304	15	.015	12	0	4	027	4	002	3
199		5	max	473.334	2	4.742	4	8.059	4	0	12	.001	1	0	15
200			min	-621.745	3	1.125	15	.015	12	0	4	024	4	004	6
201		6	max	473.163	2	3.978	4	8.596	4	0	12	.001	1	001	15
202			min	-621.873	3	.945	15	.015	12	0	4	02	4	005	6
203		7	max	472.993	2	3.213	4	9.133	4	0	12	.001	1	002	15
204			min	-622.001	3	.765	15	.015	12	0	4	016	5	007	6
205		8	max	472.822	2	2.449	4	9.67	4	0	12	.001	1	002	15
206			min	-622.129	3	.586	15	.015	12	0	4	013	5	008	6
207		9	max	472.652	2	1.684	4	10.207	4	0	12	.001	1	002	15
208			min	-622.256	3	.406	15	.015	12	0	4	009	5	009	6
209		10	max	472.482	2	.92	4	10.744	4	0	12	.002	1	002	15
210			min	-622.384	3	.226	15	.015	12	0	4	004	5	009	6
211		11	max	472.311	2	.229	2	11.28	4	0	12	.002	1	002	15
212			min	-622.512	3	093	3	.015	12	0	4	0	12	01	6
213		12	max		2	133	15	11.817	4	0	12	.006	4	002	15
214			min	-622.64	3	61	6	.015	12	0	4	0	12	01	6
215		13	max		2	313	15	12.354	4	0	12	.011	4	002	15
216			min	-622.767	3	-1.374	6	.015	12	0	4	0	12	009	6
217		14	max	471.8	2	493	15	12.891	4	0	12	.016	4	002	15
218			min	-622.895	3	-2.139	6	.015	12	0	4	0	12	008	6
219		15	max	471.63	2	672	15	13.428	4	0	12	.021	4	002	15
220			min	-623.023	3	-2.903	6	.015	12	0	4	0	12	007	6
221		16	max	471.46	2	852	15	13.965	4	0	12	.027	4	001	15
222			min	-623.151	3	-3.668	6	.015	12	0	4	0	12	006	6
223		17	max	471.289	2	-1.032	15	14.502	4	0	12	.033	4	001	15
224			min	-623.278	3	-4.432	6	.015	12	0	4	0	12	004	6
225		18	max		2	-1.211	15	15.039	4	0	12	.039	4	0	15
226		1	min	-623.406	3	-5.197	6	.015	12	0	4	0	12	002	6
227		19	max		2	-1.391	15	15.576	4	0	12	.046	4	0	1
228		1.0	min	-623.534	3	-5.961	6	.015	12	0	4	0	12	0	1
229	M4	1		1047.807	1	0	1	758	12	0	1	.038	4	0	1
230				-28.54		0		-314.267	4	0	1	0	12	0	1
231		2		1047.977	1	0	1	758	12	0	1	.002	4	0	1
232			min	-28.46	5	0	1	-314.415		0	1	0	12	0	1
233		3		1048.148	1	0	1	758	12	0	1	0	12	0	1
234			min	-28.381	5	0	1	-314.562	4	0	1	034	4	0	1
235		4		1048.318	1	0	1	758	12	0	1	0	12	0	1
236					5	0	1	-314.71	4	0	1	071	4	0	1
237		5		1048.488	1	0	1	758	12	0	1	0	12	0	1
238		Ť		-28.222	5	0	1	-314.858		0	1	107	4	0	1
239		6		1048.659	1	0	1	758	12	0	1	0	12	0	1
240			min	-28.142	5	0	1	-315.005		0	1	143	4	0	1
241		7		1048.829	1	0	1	758	12	0	1	0	12	0	1
242					5	0	1	-315.153		0	1	179	4	0	1
243		8		1048.999	<u>5</u> 1	0	1	758	12	0	1	<u>179</u> 0	12	0	1
244		0	min	-27.983	5	0	1	-315.3	4	0	1	215	4	0	1
244		9		1049.17	<u> </u>	0	1	-315.3 758	12	0	1	<u>213</u> 0	12	0	1
246		3	min		5	0	1	-315.448		0	1	251	4	0	1
240			1111111	-21.304	J	U		-313.440	4	U		201	4	U	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

0.47	Member	Sec		Axial[lb]		y Shear[lb]						1 -			
247		10	max			0	1	758	12	0	<u>1</u> 1	200	12	0	1
248		11	min	-27.824 1049.51	<u>5</u> 1	0	1	-315.596 758	<u>4</u> 12	0	1	288 0	12	0	1
250			max min	-27.745	5	0	1	-315.743	4	0	1	324	4	0	1
251		12		1049.681	<u> </u>	0	1	758	12	0	1	0	12	0	1
252		12			5	0	1	-315.891	4	0	1	36	4	0	1
		13	min	1049.851	<u> </u>	0	1	758	12	0	1	0	12	0	1
253		13			5	0	1		4	0	1	396	4	0	1
254		4.4	min	-27.586	_		1	-316.039			1		_		1
255		14		1050.021	1	0	1	758	12	0	1	001	12	0	
256		15	min	-27.507	5	0	1	-316.186	4	0	1	433	12	0	1
257		15		1050.192	_1_	0		758	12	0	1	001		0	_
258		40	min	-27.427	5_	0	1_	-316.334	4	0		469	4	0	1
259		16		1050.362	1	0	1	758	12	0	1	001	12	0	1
260		47	min		5	0	1	-316.481	4	0	1	505	4	0	1
261		17		1050.533	1	0	1	758	12	0	1	001	12	0	1
262		40	min		5	0	1_	-316.629	4	0	1_	542	4	0	1
263		18		1050.703	_1_	0	1	758	12	0	1	001	12	0	1
264		1.0	min	-27.189	5	0	1	-316.777	4	0	1	578	4	0	1
265		19		1050.873	_1_	0	1	758	12	0	1_	001	12	0	1
266			min	-27.109	5_	0	1_	-316.924	4_	0	1_	614	4	0	1
267	<u>M6</u>	1		2862.312	1	2.099	2	0	1	0	1	0	4	0	1
268			min	-3181.638	3	.306	12	-38.512	4	0	4	0	1	0	1
269		2		2862.788	_1_	2.033	2	0	_1_	0	_1_	0	1	0	12
270				-3181.281	3	.273	12	-38.929	4	0	4	013	4	0	2
271		3		2863.264	_1_	1.966	2	0	_1_	0	_1_	0	1_	0	12
272				-3180.924	3	.239	12	-39.345	4	0	4	025	4	001	2
273		4	max	2863.739	_1_	1.899	2	0	1_	0	1_	0	1	0	12
274				-3180.568	3	.206	12	-39.761	4	0	4	038	4	002	2
275		5	max	2864.215	1	1.833	2	0	1	0	1	0	1	0	12
276			min	-3180.211	3	.173	12	-40.178	4	0	4	051	4	003	2
277		6	max	2864.691	1_	1.766	2	0	1	0	1	0	1	0	12
278			min	-3179.854	3	.139	12	-40.594	4	0	4	064	4	003	2
279		7	max	2865.167	1	1.699	2	0	1	0	1	0	1	0	12
280			min	-3179.497	3	.106	12	-41.01	4	0	4	077	4	004	2
281		8	max	2865.642	1	1.633	2	0	1	0	1	0	1	0	12
282				-3179.14	3	.064	3	-41.427	4	0	4	091	4	004	2
283		9		2866.118	1	1.566	2	0	1	0	1	0	1	0	12
284				-3178.784	3	.014	3	-41.843	4	0	4	104	4	005	2
285		10	max	2866.594	1	1.499	2	0	1	0	1	0	1	0	12
286				-3178.427	3	036	3	-42.259	4	0	4	118	4	005	2
287		11		2867.07	1	1.432	2	0	1	0	1	0	1	0	12
288				-3178.07	3	086	3	-42.676	4	0	4	131	4	006	2
289		12		2867.545	1	1.366	2	0	1	0	1	0	1	0	12
290				-3177.713	3	136	3	-43.092	4	0	4	145	4	006	2
291		13		2868.021	1	1.299	2	0	1	0	1	0	1	0	12
292		1		-3177.356	3	186	3	-43.508	4	0	4	159	4	007	2
293		14		2868.497	1	1.232	2	0	1	0	1	0	1	0	3
294				-3176.999	3	236	3	-43.925	4	0	4	174	4	007	2
295		15		2868.973	1	1.166	2	0	1	0	1	0	1	0	3
296		10		-3176.643	3	286	3	-44.341	4	0	4	188	4	007	2
297		16		2869.448	<u> </u>	1.099	2	0	1	0	1	0	1	007 0	3
298		10	min	-3176.286	3	336	3	-44.757	4	0	4	202	4	008	2
299		17		2869.924	<u> </u>	1.032	2	0	1	0	_ 4 _	202	1	006 0	3
300		17		-3175.929	3	386	3	-45.174	4	0	4	217	4	008	2
301		18			<u>၂</u> ၂	.966	2	-45.174 0	_ 4 _ 1	_	_ 4 _	<u>217</u> 0	1	008 0	3
301		10	max min		3		3	-45.59	4	0	4	231	4	008	2
		10				436									
303		19	шах	2870.876	_1_	.899	2	0	_1_	0	_1_	0	1	0	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

				011 1 0100				<u> </u>							
004	Member	<u>Sec</u>		Axial[lb]		y Shear[lb]				_				z-z Mome	LC
304			min	-3175.215	3	486	3	-46.006	4	0	4_	246	4	009	2
305	<u>M7</u>	1	max	1906.419	2	7.814	6	5.581	4	0	_1_	0	1_	.009	2
306			min	-1953.606	3_	1.834	15	0	1	0	4	036	4	0	3
307		2	max	1906.249	2	7.049	6	6.118	4	0	1_	0	1	.006	2
308			min	-1953.734	3	1.655	15	0	1	0	4	033	4	002	3
309		3	max	1906.078	2	6.285	6	6.655	4	0	1	0	1	.004	2
310			min	-1953.862	3	1.475	15	0	1	0	4	03	4	003	3
311		4	max	1905.908	2	5.521	6	7.192	4	0	1	0	1	.002	2
312			min	-1953.99	3	1.295	15	0	1	0	4	028	4	004	3
313		5	max	1905.738	2	4.756	6	7.729	4	0	1	0	1	0	2
314			min	-1954.117	3	1.116	15	0	1	Ö	4	024	4	005	3
315		6		1905.567	2	3.992	6	8.266	4	0	1	0	1	001	15
316			min	-1954.245	3	.936	15	0.200	1	0	4	021	4	006	3
317		7		1905.397	2	3.227	6	8.803	4	0	1	0	1	002	15
318			min	-1954.373	3	.756	15	0.003	1	0	4	018	4	002	3
319		8		1905.226	2	2.463	6	9.34	4	0	1	0	1	007	15
		0							1						
320			min	-1954.501	3	.576	15	0	•	0	4	014	4	008	4
321		9		1905.056	2	1.758	2	9.877	4	0	1_	0	1	002	15
322			min	-1954.628	3	.302	12	0	1	0	4	01	4	009	4
323		10	max	1904.886	2	1.162	2	10.414	4	0	_1_	0	1	002	15
324			min	-1954.756	3	028	3	0	1	0	4	006	4	009	4
325		11	max	1904.715	2	.567	2	10.951	4	0	1	0	1	002	15
326			min	-1954.884	3	475	3	0	1	0	4	001	5	01	4
327		12	max	1904.545	2	029	2	11.488	4	0	1	.004	4	002	15
328			min	-1955.012	3	922	3	0	1	0	4	0	1	01	4
329		13		1904.375	2	322	15	12.025	4	0	1	.009	4	002	15
330			min	-1955.139	3	-1.368	3	0	1	0	4	0	1	009	4
331		14		1904.204	2	502	15	12.562	4	0	1	.014	4	002	15
332		17	min	-1955.267	3	-2.124	4	0	1	0	4	0	1	008	4
333		15		1904.034	2	681	15	13.099	4	0	1	.019	4	002	15
334		13	min	-1955.395	3	-2.888	4	0	1	0	4	0	1	002	4
		16					15	•			1				_
335		16		1903.864	2	861		13.635	4	0		.025	4	001	15
336		4 -	min	-1955.523	3	-3.653	4	0	1_	0	4_	0	1	006	4
337		17		1903.693	2	-1.041	15	14.172	4	0	1_	.03	4	001	15
338			min	-1955.65	3_	-4.417	4_	0	1_	0	4_	0	1	004	4
339		18		1903.523	2	-1.22	15	14.709	4	0	_1_	.036	4	0	15
340			min	-1955.778	3	-5.182	4	0	1	0	4	0	1	002	4
341		19	max	1903.353	2	-1.4	15	15.246	4	0	<u>1</u>	.043	4	0	1
342			min	-1955.906	3	-5.946	4	0	1	0	4	0	1	0	1
343	M8	1	max	2660.025	1	0	1	0	1	0	1	.035	4	0	1
344			min		3	0	1	-302.952	4	0	1	0	1	0	1
345		2	max	2660.196	1	0	1	0	1	0	1	0	5	0	1
346			min		3	0	1	-303.099	4	0	1	0	1	0	1
347		3		2660.366	1	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-303.247	4	0	1	034	4	0	1
349		4		2660.536	1	0	1	0	1	0	1	0	1	0	1
350		T		-79.926	3	0	1	-303.395		0	1	069	4	0	1
351		5		2660.707	<u> </u>	0	1	0	1	0	1	0	1	0	1
352		J		-79.798	3	0	1	-303.542	4	0	1	104	4	0	1
		6					•								
353		6		2660.877	1	0	1	0	1	0	1	120	1	0	1
354		_	min		3	0	1_	-303.69	4	0	1_	139	4	0	1
355		7		2661.047	1_	0	1	0	1	0	1	0	1	0	1
356				-79.542	3_	0	1_	-303.837	4	0	1_	174	4	0	1
357		8		2661.218	_1_	0	1	0	1	0	_1_	0	1_	0	1
358			min		3	0	1	-303.985	4	0	1	208	4	0	1
359		9		2661.388	_1_	0	1	0	1	0	_1_	0	1	0	1
360			min	-79.287	3	0	1	-304.133	4	0	1	243	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	2661.558	1	0	1	0	1	0	1	0	1	0	1
362			min	-79.159	3	0	1	-304.28	4	0	1	278	4	0	1
363		11	max	2661.729	1	0	1	0	1	0	1	0	1	0	1
364			min	-79.031	3	0	1	-304.428	4	0	1	313	4	0	1
365		12	max	2661.899	1	0	1	0	1	0	1	0	1	0	1
366			min	-78.904	3	0	1	-304.576	4	0	1	348	4	0	1
367		13	max	2662.069	1	0	1	0	1	0	1	0	1	0	1
368			min	-78.776	3	0	1	-304.723	4	0	1	383	4	0	1
369		14	max		1	0	1	0	1	0	1	0	1	0	1
370			min	-78.648	3	0	1	-304.871	4	0	1	418	4	0	1
371		15	max		1	0	1	0	1	0	1	0	1	0	1
372		1	min	-78.52	3	0	1	-305.019	4	0	1	453	4	0	1
373		16	max		1	0	1	0	1	0	1	0	1	0	1
374		'	min	-78.393	3	0	1	-305.166	4	0	1	488	4	0	1
375		17		2662.751	1	0	1	0	1	0	1	0	1	0	1
376			min	-78.265	3	0	1	-305.314	4	0	1	523	4	0	1
377		18		2662.921	1	0	1	0	1	0	1	0	1	0	1
378		10	min	-78.137	3	0	1	-305.461	4	0	1	558	4	0	1
		10	+				1		1		1			1	
379		19		2663.091	1	0		0		0		0	1	0	1
380	N440	4	min	-78.009	3	0	1	-305.609	4	0	1	593	4	0	1
381	M10	1	max		1_	1.9	6	031	12	0	1	0	4	0	1
382			min	-966.878	3	.435	15	-38.484	4	0	5	0	3	0	1
383		2	max		1_	1.815	6	031	12	0	1	0	10	0	15
384			min	-966.521	3	.415	15	-38.9	4	0	5	013	4	0	6
385		3	max	886.254	_1_	1.729	6	031	12	0	1	0	12	0	15
386			min	-966.165	3	.395	15	-39.317	4	0	5	025	4	001	6
387		4	max	886.73	_1_	1.644	6	031	12	0	1	0	12	0	15
388			min	-965.808	3	.375	15	-39.733	4	0	5	038	4	002	6
389		5	max	887.206	1	1.558	6	031	12	0	1	0	12	0	15
390			min	-965.451	3	.354	15	-40.15	4	0	5	051	4	002	6
391		6	max	887.682	1	1.472	6	031	12	0	1	0	12	0	15
392			min	-965.094	3	.334	15	-40.566	4	0	5	064	4	003	6
393		7	max	888.157	1	1.387	6	031	12	0	1	0	12	0	15
394			min	-964.737	3	.314	15	-40.982	4	0	5	077	4	003	6
395		8	max		1	1.301	6	031	12	0	1	0	12	0	15
396			min	-964.38	3	.294	15	-41.399	4	0	5	091	4	004	6
397		9	max		1	1.216	6	031	12	0	1	0	12	0	15
398			min	-964.024	3	.274	15	-41.815	4	0	5	104	4	004	6
399		10	max		1	1.13	6	031	12	0	1	0	12	001	15
400			min	-963.667	3	.254	15	-42.231	4	0	5	118	4	004	6
401		11		890.06	1	1.045	6	031	12	0	1	0	12	001	15
402			min	-963.31	3	.234	15	-42.648	4	0	5	131	4	005	6
403		12	max		_ <u></u>	.959	6	031	12	0	1	0	12	003	15
404		14	min		3	.214	15	-43.064	4	0	5	145	4	005	6
405		13			<u>ა</u> 1	.873	6	031	12		1	0	12	003	15
406		13	max		3		15	-43.48	4	0	5	159	4		
		4.4	min			.193			12	0				005	15
407		14	max	891.488 -962.24	<u>1</u>	.796	2	031		0	1	172	12	001	15
408		4.5	min		3_	.173	15	-43.897	4	0	5	173	4	006	6
409		15		891.963	1	.73	2	031	12	0	1	0	12	001	15
410		40	min		3	.147	12	-44.313	4	0	5	188	4	006	6
411		16		892.439	_1_	.663	2	031	12	0	1	0	12	001	15
412			min		3_	.113	12	-44.729	4	0	5	202	4	006	6
413		17		892.915	1_	.596	2	031	12	0	1	0	12	001	15
414			min		3	.08	12	-45.146	4	0	5	217	4	006	6
415		18	max		_1_	.529	2	031	12	0	1	0	12	001	15
416			min		3	.047	12	-45.562	4	0	5	231	4	006	6
417		19	max	893.866	_1_	.463	2	031	12	0	1	0	12	001	15

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-960.455	3	.006	3	-45.978	4	0	5	246	4	007	6
419	M11	1	max	474.015	2	7.756	6	5.734	4	0	1	0	12	.007	6
420			min	-621.234	3	1.814	15	289	1	0	4	036	4	.001	15
421		2	max	473.845	2	6.992	6	6.27	4	0	1	0	12	.004	2
422			min	-621.362	3	1.634	15	289	1	0	4	033	4	0	12
423		3	max	473.674	2	6.227	6	6.807	4	0	1	0	12	.002	2
424			min	-621.49	3	1.455	15	289	1	0	4	03	4	0	3
425		4	max	473.504	2	5.463	6	7.344	4	0	1	0	12	0	2
426			min	-621.618	3	1.275	15	289	1	0	4	027	4	002	3
427		5	max	473.334	2	4.699	6	7.881	4	0	1	0	12	0	15
428			min	-621.745	3	1.095	15	289	1	0	4	024	4	004	4
429		6	max	473.163	2	3.934	6	8.418	4	0	1	0	12	001	15
430			min	-621.873	3	.916	15	289	1	0	4	021	4	006	4
431		7	max	472.993	2	3.17	6	8.955	4	0	1	0	12	002	15
432			min	-622.001	3	.736	15	289	1	0	4	017	4	007	4
433		8	max	472.822	2	2.405	6	9.492	4	0	1	0	12	002	15
434			min	-622.129	3	.556	15	289	1	0	4	013	4	008	4
435		9	max	472.652	2	1.641	6	10.029	4	0	1	0	12	002	15
436			min	-622.256	3	.377	15	289	1	0	4	009	4	009	4
437		10	max	472.482	2	.876	6	10.566	4	0	1	0	12	002	15
438			min	-622.384	3	.197	15	289	1	0	4	005	4	01	4
439		11	max	472.311	2	.229	2	11.103	4	0	1	0	15	002	15
440			min	-622.512	3	093	3	289	1	0	4	002	1	01	4
441		12	max	472.141	2	163	15	11.64	4	0	1	.005	5	002	15
442			min	-622.64	3	653	4	289	1	0	4	002	1	01	4
443		13	max		2	342	15	12.177	4	0	1	.01	5	002	15
444			min	-622.767	3	-1.418	4	289	1	0	4	002	1	009	4
445		14	max	471.8	2	522	15	12.714	4	0	1	.015	5	002	15
446			min	-622.895	3	-2.182	4	289	1	0	4	002	1	009	4
447		15	max	471.63	2	702	15	13.251	4	0	1	.02	5	002	15
448			min	-623.023	3	-2.947	4	289	1	0	4	002	1	007	4
449		16	max	471.46	2	881	15	13.788	4	0	1	.026	5	001	15
450			min	-623.151	3	-3.711	4	289	1	0	4	002	1	006	4
451		17	max	471.289	2	-1.061	15	14.325	4	0	1	.032	5	001	15
452			min	-623.278	3	-4.476	4	289	1	0	4	002	1	004	4
453		18	max	471.119	2	-1.241	15	14.862	4	0	1	.038	5	0	15
454			min	-623.406	3	-5.24	4	289	1	0	4	003	1	002	4
455		19	max	470.949	2	-1.42	15	15.399	4	0	1	.044	5	0	1
456			min	-623.534	3	-6.005	4	289	1	0	4	003	1	0	1
457	M12	1	max	1047.807	1	0	1	14.4	1	0	1	.036	5	0	1
458			min	4.804	3	0	1	-305.39	4	0	1	002	1	0	1
459		2	max	1047.977	1	0	1	14.4	1	0	1	.002	5	0	1
460			min	4.932	3	0	1	-305.537	4	0	1	0	1	0	1
461		3	max	1048.148	1	0	1	14.4	1	0	1	.001	1	0	1
462			min	5.06	3	0	1	-305.685	4	0	1	034	4	0	1
463		4		1048.318	1	0	1	14.4	1	0	1	.003	1	0	1
464			min	5.188	3	0	1	-305.832	4	0	1	069	4	0	1
465		5	max	1048.488	1	0	1	14.4	1	0	1	.004	1	0	1
466			min	5.315	3	0	1	-305.98	4	0	1	104	4	0	1
467		6	max	1048.659	1	0	1	14.4	1	0	1	.006	1	0	1
468			min		3	0	1	-306.128	4	0	1	139	4	0	1
469		7	max	1048.829	1	0	1	14.4	1	0	1	.008	1	0	1
470			min	5.571	3	0	1	-306.275	4	0	1	174	4	0	1
471		8	max	1048.999	1	0	1	14.4	1	0	1	.009	1	0	1
472			min	5.699	3	0	1	-306.423	4	0	1	209	4	0	1
473		9	max		1	0	1	14.4	1	0	1	.011	1	0	1
474			min	5.826	3	0	1	-306.571	4	0	1	245	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1049.34	1	0	1	14.4	1	0	1	.013	1	0	1
476			min	5.954	3	0	1	-306.718	4	0	1	28	4	0	1
477		11	max	1049.51	1	0	1	14.4	1	0	1	.014	1	0	1
478			min	6.082	3	0	1	-306.866	4	0	1	315	4	0	1
479		12	max	1049.681	1	0	1	14.4	1	0	1_	.016	1	0	1
480			min	6.21	3	0	1	-307.014	4	0	1	35	4	0	1
481		13	max	1049.851	1	0	1	14.4	1	0	1	.018	1	0	1
482			min	6.337	3	0	1	-307.161	4	0	1	386	4	0	1
483		14	max	1050.021	1	0	1	14.4	1	0	1	.019	1	0	1
484			min	6.465	3	0	1	-307.309	4	0	1	421	4	0	1
485		15	max	1050.192	1	0	1	14.4	1	0	1	.021	1	0	1
486			min	6.593	3	0	1	-307.456	4	0	1	456	4	0	1
487		16	max	1050.362	1	0	1	14.4	1	0	1	.023	1	0	1
488			min	6.721	3	0	1	-307.604	4	0	1	491	4	0	1
489		17		1050.533	1	0	1	14.4	1	0	1	.024	1	0	1
490		1	min	6.848	3	0	1	-307.752	4	0	1	527	4	0	1
491		18		1050.703	1	0	1	14.4	1	0	1	.026	1	0	1
492		1.0	min	6.976	3	0	1	-307.899	4	0	1	562	4	0	1
493		19		1050.873	1	0	1	14.4	1	0	1	.028	1	0	1
494		'	min	7.104	3	0	1	-308.047	4	0	1	598	4	0	1
495	M1	1	max		1	523.8	3	48.742	5	0	1	.327	1	0	3
496	1011	<u> </u>	min	-8.577	5	-385.435	1	-136.458	1	0	3	108	5	011	2
497		2	max		1	522.87	3	49.984	5	0	1	.255	1	.193	1
498			min	-8.243	5	-386.676	1	-136.458	1	0	3	082	5	275	3
499		3	max	379.252	3	430.945	1	14.133	5	0	3	.183	1	.388	1
500		3	min	-222.532	2	-375.76	3	-136.114	1	0	1	056	5	54	3
501		4	max	379.789	3	429.704	1	15.375	5	0	3	.111	1	.161	1
502		4	min	-221.816	2	-376.69	3	-136.114	1	0	1	048	5	342	3
503		5		380.326	3	428.464	1	16.616	5	0	3	.039	1	003	15
504		5	max min	-221.1	2	-377.621	3	-136.114	1	0	1	04	5	143	3
505		6	max		3	427.223	1	17.857	5	0	3	002	12	.057	3
506		-		-220.384	2	-378.551	3	-136.114	1		1	038	4	297	2
		7	min						5	0	3	006	12	.257	3
507		-	max	381.401	3_	425.983	1	19.099	1	0	<u> </u>		1		
508			min	-219.668	2	-379.481	3	-136.114		0		104		516	1
509		8	max	381.938	3	424.742	1	20.34	5	0	3	007	15	.457	3
510			min	-218.951	2	-380.412	3	-136.114	1	0	1_	176	1	741	1
511		9	max		3	37.192	2	65.383	5	0	9	.102	1	.534	3
512		10	min	-132.046	2	.375	15		1	0	3	148	5	845	1
513		10	max	398.353	3_	35.951	2	66.625	5	0	9	0	12	.52	3
514		4.4	min	-131.33	2	0	15		1	0	3	115	4	855	1
515		11	max		3_	34.71	2	67.866	5	0	9	006	12	.506	3
516		40	min		2	-1.527	4	-195.978		0	3	105	1	868	2
517		12	max		3	247.122	3	170.407	5	0	2	.174	1	.44	3
518		4.0	min	-77.978	10	-480.418	2	-132.914		0	3	232	5	77	2
519		13		415.248	3_	246.191	3	171.649	5	0	2	.104	1	.31	3
520			min	-77.381	10	-481.658	2	-132.914		0	3	142	5	519	1
521		14		415.785	<u>3</u>	245.261	3	172.89	5	0	2	.034	1	.181	3
522			min		10	-482.899	2	-132.914		0	3	051	5	273	1
523		15	max		3_	244.33	3	174.132	5	0	2	.04	5	.051	3
524			min	-76.188	10	-484.139	2	-132.914	1	0	3	037	1	027	1
525		16	max		3_	243.4	3	175.373	5	0	2	.132	5	.25	2
526			min		10	-485.38	2	-132.914		0	3	107	1	077	3
527		17	max		3	242.47	3	176.615	5	0	2	.225	5	.506	2
528			min	-74.994	10	-486.62	2	-132.914	1	0	3	177	1	206	3
529		18	max		5	498.61	2	-7.764	12	0	5	.218	5	.255	2
530			min	-201.333	1	-207.073	3	-147.937	4	0	2	251	1	102	3
531		19	max	17.639	5	497.37	2	-7.764	12	0	5	.16	5	.008	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
532			min	-200.617	1	-208.004	3	-146.696	4	0	2	329	1	009	1
533	M5	1	max	430.589	1	1745.391	3	108.52	5	0	1	0	1	.021	2
534			min	19.425	12	-1298.745	1	0	1	0	4	252	4	001	3
535		2	max	431.306	1	1744.46	3	109.762	5	0	1	0	1	.706	1
536			min	19.783	12	-1299.985	1	0	1	0	4	194	4	922	3
537		3	max	1222.091	3	1330.796	1	77.679	4	0	4	0	1	1.361	1
538			min	-813.799	2	-1222.394	3	0	1	0	1	137	4	-1.807	3
539		4	max	1222.628	3	1329.556	1	78.92	4	0	4	0	1	.659	1
540			min	-813.083	2	-1223.325	3	0	1	0	1	095	4	-1.161	3
541		5	max	1223.165	3	1328.315	1	80.161	4	0	4	0	1	.002	9
542			min	-812.367	2	-1224.255	3	0	1	0	1	053	4	516	3
543		6	max	1223.702	3	1327.074	1	81.403	4	0	4	0	1	.131	3
544			min	-811.651	2	-1225.186	3	0	1	0	1	011	5	756	2
545		7	max	1224.239	3	1325.834	1	82.644	4	0	4	.032	4	.777	3
546			min	-810.934	2	-1226.116	3	0	1	0	1	0	1	-1.443	1
547		8	max	1224.777	3	1324.593	1	83.886	4	0	4	.076	4	1.425	3
548			min	-810.218	2	-1227.046	3	0	1	0	1	0	1	-2.142	1
549		9	max	1253.578	3	123.442	2	215.596	4	0	1	0	1	1.64	3
550			min	-632.499	2	.377	15	0	1	0	1	219	4	-2.425	1
551		10	max	1254.115	3	122.202	2	216.837	4	0	1	0	1	1.589	3
552			min	-631.783	2	.002	15	0	1	0	1	105	4	-2.46	1
553		11	max	1254.652	3	120.961	2	218.079	4	0	1	.009	4	1.538	3
554			min	-631.066	2	-1.32	6	0	1	0	1	0	1	-2.5	2
555		12	max	1283.569	3	795.948	3	251.5	4	0	1	0	1	1.351	3
556			min	-453.357	2	-1507.035	2	0	1	0	4	346	4	-2.238	2
557		13	max	1284.106	3	795.018	3	252.741	4	0	1	0	1	.931	3
558			min	-452.641	2	-1508.276	2	0	1	0	4	213	4	-1.455	1
559		14	max	1284.643	3	794.087	3	253.983	4	0	1	0	1	.512	3
560			min	-451.925	2	-1509.516	2	0	1	0	4	08	4	686	1
561		15	max		3	793.157	3	255.224	4	0	1	.055	4	.151	2
562			min	-451.208	2	-1510.757	2	0	1	0	4	0	1	004	13
563		16	max	1285.717	3	792.226	3	256.466	4	0	1	.19	4	.948	2
564			min	-450.492	2	-1511.998	2	0	1	0	4	0	1	325	3
565		17	max	1286.254	3	791.296	3	257.707	4	0	1	.325	4	1.746	2
566			min	-449.776	2	-1513.238	2	0	1	0	4	0	1	743	3
567		18	max		12	1675.614	2	0	1	0	4	.363	4	.9	2
568			min	-430.872	1	-706.392	3	-26.389	5	0	1	0	1	388	3
569		19	max		12	1674.374	2	0	1	0	4	.35	4	.018	1
570			min	-430.156	1	-707.322	3	-25.147	5	0	1	0	1	015	3
571	M9	1	max		1	523.8	3	136.458	1	0	3	018	12	0	3
572						-385.435		7.465	12		4	327	1	011	2
573		2		201.117	1	522.87	3	136.458	1	0	3	014	12	.193	1
574			min		12			7.465	12	0	4	255	1	275	3
575		3		379.252	3	430.945	1	136.114	1	0	1	01	12	.388	1
576			min	-222.532	2	-375.76	3	7.434	12	0	3	183	1	54	3
577		4		379.789	3	429.704	1	136.114	1	0	1	006	12	.161	1
578			min		2	-376.69	3	7.434	12	0	3	111	1	342	3
579		5		380.326	3	428.464	1	136.114		0	1	002	12	003	15
580			min		2	-377.621	3	7.434	12	0	3	055	4	143	3
581		6		380.864	3	427.223	1	136.114		0	1	.032	1	.057	3
582		Ĭ	min		2	-378.551	3	7.434	12	0	3	026	5	297	2
583		7		381.401	3	425.983	1	136.114	1	0	1	.104	1	.257	3
584				-219.668		-379.481	3	7.434	12	0	3	005	5	516	1
585		8		381.938	3	424.742	1	136.114		0	1	.176	1	.457	3
586			min	-218.951	2	-380.412	3	7.434	12	0	3	.01	12	741	1
587		9		397.816	3	37.192	2	195.978	1	0	3	005	12	.534	3
588				-132.046		.382	15		12	0	9	189	4	845	1
000				102.070		.002	-10	10.000					T	.0-10	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	398.353	3	35.951	2	195.978	1	0	3	.001	1	.52	3
590			min	-131.33	2	.008	15	10.533	12	0	9	114	4	855	1
591		11	max	398.89	3	34.71	2	195.978	1	0	3	.105	1	.506	3
592			min	-130.614	2	-1.476	6	10.533	12	0	9	063	5	868	2
593		12	max	414.711	3	247.122	3	223.811	4	0	3	009	12	.44	3
594			min	-77.978	10	-480.418	2	7.023	12	0	2	302	4	77	2
595		13	max	415.248	3	246.191	3	225.052	4	0	3	006	12	.31	3
596			min	-77.381	10	-481.658	2	7.023	12	0	2	184	4	519	1
597		14	max	415.785	3	245.261	3	226.293	4	0	3	002	12	.181	3
598			min	-76.784	10	-482.899	2	7.023	12	0	2	064	4	273	1
599		15	max	416.322	3	244.33	3	227.535	4	0	3	.055	4	.051	3
600			min	-76.188	10	-484.139	2	7.023	12	0	2	.002	12	027	1
601		16	max	416.86	3	243.4	3	228.776	4	0	3	.176	4	.25	2
602			min	-75.591	10	-485.38	2	7.023	12	0	2	.006	12	077	3
603		17	max	417.397	3	242.47	3	230.018	4	0	3	.297	4	.506	2
604			min	-74.994	10	-486.62	2	7.023	12	0	2	.009	12	206	3
605		18	max	-10.179	12	498.61	2	146.692	1	0	2	.318	4	.255	2
606			min	-201.333	1	-207.073	3	-91.154	5	0	3	.013	12	102	3
607		19	max	-9.821	12	497.37	2	146.692	1	0	2	.329	1	.008	3
608			min	-200.617	1	-208.004	3	-89.913	5	0	3	.017	12	009	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.085	2	.007	3	7.042e-3	2	NC	1	NC	1
2			min	786	4	009	3	003	2	-1.04e-3	3	NC	1	NC	1
3		2	max	.001	1	.32	3	.06	1	8.194e-3	2	NC	5	NC	2
4			min	786	4	142	1	03	5	-1.114e-3	3	800.403	3	4567.426	1
5		3	max	.001	1	.587	3	.145	1	9.346e-3	2	NC	5	NC	3
6			min	786	4	321	1	035	5	-1.188e-3	3	442.292	3	1846.294	1
7		4	max	0	1	.75	3	.219	1	1.05e-2	2	NC	5	NC	3
8			min	786	4	424	1	022	5	-1.262e-3	3	347.827	3	1214.373	1
9		5	max	0	1	.787	3	.258	1	1.165e-2	2	NC	15	NC	3
10			min	786	4	435	1	001	5	-1.337e-3	3	331.463	3	1030.049	1
11		6	max	0	1	.703	3	.251	1	1.28e-2	2	NC	5	NC	5
12			min	786	4	357	1	.013	15	-1.411e-3	3	370.736	3	1062.718	1
13		7	max	0	1	.522	3	.198	1	1.395e-2	2	NC	5	NC	3
14			min	786	4	21	1	.019	10	-1.485e-3	3	497.025	3	1347.425	1
15		8	max	0	1	.292	3	.117	1	1.51e-2	2	NC	5	NC	3
16			min	786	4	029	1	.007	10	-1.559e-3	3	875.862	3	2306.815	1
17		9	max	0	1	.142	2	.041	4	1.626e-2	2	NC	4	NC	2
18			min	786	4	.004	15	004	10	-1.633e-3	3	2835.369	3	6394.894	4
19		10	max	0	1	.208	2	.021	3	1.741e-2	2	NC	3	NC	1
20			min	786	4	01	3	014	2	-1.708e-3	3	2145.777	2	NC	1
21		11	max	0	12	.142	2	.035	1	1.626e-2	2	NC	4	NC	2
22			min	786	4	.004	15	024	5	-1.633e-3	3	2835.369	3	7993.933	1
23		12	max	0	12	.292	3	.117	1	1.51e-2	2	NC	5	NC	3
24			min	786	4	029	1	024	5	-1.559e-3	3	875.862	3	2306.815	1
25		13	max	0	12	.522	3	.198	1	1.395e-2	2	NC	5	NC	3
26			min	786	4	21	1	007	5	-1.485e-3	3	497.025	3	1347.425	1
27		14	max	0	12	.703	3	.251	1	1.28e-2	2	NC	5	NC	5
28			min	786	4	357	1	.011	15	-1.411e-3	3	370.736	3	1062.718	1
29		15	max	0	12	.787	3	.258	1	1.165e-2	2	NC	15	NC	3
30			min	787	4	435	1	.02	12	-1.337e-3	3	331.463	3	1030.049	1
31		16	max	0	12	.75	3	.219	1	1.05e-2	2	NC	5	NC	3
32			min	787	4	424	1	.017	12	-1.262e-3	3	347.827	3	1214.373	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.587	3	.145	1	9.346e-3	2	NC	5_	NC	3
34			min	787	4	321	1	.012	12	-1.188e-3	3	442.292	3	1846.294	
35		18	max	00	12	.32	3	.06	1	8.194e-3	2	NC	<u>5</u>	NC	2
36			min	787	4	142	1	.005		-1.114e-3	3_	800.403	3	4567.426	
37		19	max	0	12	.085	2	.007	3	7.042e-3	2	NC	_1_	NC	1
38			min	787	4	009	3	003	2	-1.04e-3	3	NC	1_	NC	1
39	M14	1	max	0	1	.16	3	.006	3	4.253e-3	1_	NC	1_	NC	1
40			min	578	4	278	1	003	2	-2.822e-3	3	NC	1_	NC	1
41		2	max	0	1	.465	3	.042	1	5.136e-3	1_	NC	5_	NC	2
42			min	<u>578</u>	4	608	1	043	5	-3.464e-3	3	799.362	1_	5876.056	
43		3	max	0	1	.72	3	.118	1	6.02e-3	1_	NC	<u>15</u>	NC	3
44		-	min	<u>578</u>	4	89	1	0 <u>51</u>	5	-4.106e-3	3	431.603	1_	2276.491	1
45		4	max	0	1	.893	3	.19	1	6.903e-3	1_	NC	<u>15</u>	NC 100	3
46		_	min	578	4	-1.089	1	033	5	-4.747e-3	3	325.634	_1_	1406.46	1
47		5	max	0	1	.968	3	.231	1	7.787e-3	1_	9108.546	<u>15</u>	NC	3
48			min	<u>578</u>	4	<u>-1.189</u>	1	002	5	-5.389e-3	3	289.9	1_	1153.157	1
49		6	max	0	1	.944	3	.229	1	8.67e-3	1	9151.845	<u>15</u>	NC	3
50		-	min	<u>578</u>	4	<u>-1.19</u>	1	.019	12	-6.031e-3	3	289.645	1_	1164.459	
51		7	max	0	1	.84	3	.184	1	9.554e-3	1	NC	<u>15</u>	NC	3
52			min	<u>578</u>	4	-1.108	1	.017	10	-6.673e-3	3	318.127	1_	1454.246	1
53		8	max	0	1	<u>.691</u>	3	11	1	1.044e-2	1	NC	<u>15</u>	NC	3
54		_	min	<u>578</u>	4	<u>978</u>	1	.007	10	-7.314e-3	3	377.508	1_	2459.255	
55		9	max	0	1	.549	3	.059	4	1.132e-2	1_	NC	<u>15</u>	NC	2
56			min	578	4	848	1	003		-7.956e-3	3	463.093	<u>1</u>	4484.265	
57		10	max	0	1	.483	3	.019	3	1.22e-2	1_	NC	_5_	NC	1
58		1.4	min	<u>578</u>	4	787	1	013	2	-8.598e-3	3	518.574	1_	NC	1
59		11	max	0	12	.549	3	.034	1	1.132e-2	1	NC	<u>15</u>	NC	2
60		1.0	min	<u>578</u>	4	848	1	042	5	-7.956e-3	3	463.093		6196.186	
61		12	max	0	12	.691	3	.11	1	1.044e-2	1_	NC	15	NC	3
62		10	min	<u>578</u>	4	<u>978</u>	1	048	5	-7.314e-3	3	377.508	1_	2459.255	1_
63		13	max	0	12	.84	3	.184	1	9.554e-3	1_	NC 040.407	<u>15</u>	NC 4454 040	3
64		111	min	<u>578</u>	4	<u>-1.108</u>	1	029	5	-6.673e-3	3	318.127	1_	1454.246	
65		14	max	0	12	.944	3	.229	1	8.67e-3	1_	9151.485	<u>15</u>	NC	3
66		4.5	min	<u>578</u>	4	-1.19	1	.002		-6.031e-3	3	289.645	1_	1164.459	
67		15	max	0	12	.968	3	.231	1	7.787e-3	1	9108.1	<u>15</u>	NC	3
68		40	min	578	4	-1.189	1	.018	12	-5.389e-3	3	289.9	1_	1153.157	1
69		16	max	0	12	.893	3	.19	1	6.903e-3	1	NC 205 CO4	<u>15</u>	NC	3
70		47	min	<u>578</u>	4	<u>-1.089</u>	1	.015	12		3	325.634	1_	1406.46	1
71		17	max	0	12	72	3	.118	1	6.02e-3	1_	NC 404,000	15	NC 0070 404	3
72		40	min	<u>578</u>	4	89	1	.01	12	-4.106e-3	3	431.603	1_	2276.491	1
73		18	max	<u> </u>	12	.465	3	.061		5.136e-3		NC 700,300	5	NC	2
74		10	min	<u>578</u>	4	608	1	.003	10	-3.464e-3	3	799.362	1_	4305.902	
75		19		0	12	.16	3	.006	3	4.253e-3	1	NC NC	1_	NC	1
76	NAC	4	min	578	4	278	1	003	2	-2.822e-3	3	NC NC	1_	NC NC	1
77 78	M15	1_	max	0	12	.163	3	.006 002	2	2.43e-3	3	NC NC	<u>1</u> 1	NC NC	1
-		2	min	466	12	278	1			-4.383e-3	1		5		2
79		2	max	0		.35	3	.042	1	2.989e-3	3	NC cca coa		NC	
80		-	min	466	4	<u>675</u>	2	056	5	-5.3e-3	1_	662.902	2	4592.388	
81		3	max	<u> </u>	12	.511	3	.118	1	3.547e-3	3	NC 359.416	<u>15</u>	NC 2270.622	3
82		1	min	<u>466</u>	4	<u>-1.011</u>	2	067	5	-6.218e-3	1_		<u>2</u>		2
83		4	max	<u> </u>	12	.627	3	.19	1 5	4.105e-3	3	NC	<u>15</u>	NC	3
84		_	min	466	12	<u>-1.243</u>	2	046	5	-7.135e-3	1	273.145	<u>2</u>	1403.704	
85		5	max	<u> </u>		<u>.688</u>	3	.231	1	4.663e-3	3	9122.413	<u>15</u>	NC	3
86		6	min	466	4	-1.35		008	5	-8.053e-3	1_	245.953		1151.157	
87 88		6	max	0 466	12	.695 -1.333	3	.229 .019	12	5.221e-3 -8.97e-3	<u>3</u>	9168.679 250.074	<u>15</u> 2	NC 1162.421	3
89		7	min		12	.657	3		1		3	NC	15	NC	
69		/	max	00	12	160.	_ S	.184		5.78e-3	<u>ა</u>	INC	10	INC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

92		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotat	e [r L				(n) L/z Ratio	
92	-					_						•				
94			8													3
95												_				1
95			9		-											2
96			40									•				4
98			10		-											1
98			44									_				
12 max					_											2
100			12									•				
101			12		_											3
102	-		12									•				3
103			13													
104			11									-				3
105			14		-											1
106			15									•				3
107			13													1
108			16													3
109			10		_											
110			17									•				3
111 18 max 0 1 .35 3 .074 4 2.989e-3 3 NC 5 NC 2 112 min 465 4 675 2 .003 10 -5.3e-3 1 662.902 2 3572.99 4 113 19 max 0 1 .163 3 .006 3 2.43e-3 3 NC 1 NC 114 min 465 4 278 1 002 2 -4.383e-3 1 NC 1 NC 115 M16 1 max 0 12 .082 1 .005 3 4.21fe-3 3 NC 1 NC 116 min 153 4 052 3 002 2 -6.286e-3 1 NC 1 NC 117 2 max 0 12 .065 3 .059 1 5.03fe-3			17			-										1
112			18									•				2
113 19 max 0 1 .163 3 .006 3 2.43e-3 3 NC 1 NC 114 min 465 4 278 1 002 2 -4.383e-3 1 NC 1 NC 115 M16 1 max 0 12 .082 1 .005 3 4.211e-3 3 NC 1 NC 116 min 153 4 052 3 002 2 -6.286e-3 1 NC 1 NC 117 2 max 0 12 .065 3 .059 1 5.031e-3 3 NC 5 NC 1 118 min 153 4 221 2 .044 5 -7.261e-3 1 887.525 2 4600.437 119 3 max 0 12 .158 3 .144 1 5			10													4
114 min 465 4 278 1 002 2 -4.383e-3 1 NC 1 NC 115 M16 1 max 0 12 .082 1 .005 3 4.211e-3 3 NC 1 NC 116 min 153 4 052 3 002 2 -6.286e-3 1 NC 1 NC 117 2 max 0 12 .065 3 .059 1 5.031e-3 3 NC 5 NC 1 118 min 153 4 221 2 044 5 -7.261e-3 1 887.525 2 4600.437 1 119 3 max 0 12 .158 3 .144 1 5.852e-3 3 NC 5 NC 1 120 min 153 4 459 2 053			10									_		_		1
115 M16 1 max 0 12 .082 1 .005 3 4.211e-3 3 NC 1 NC 116 min 153 4 052 3 002 2 -6.286e-3 1 NC 1 NC 117 2 max 0 12 .065 3 .059 1 5.031e-3 3 NC 5 NC 3 118 min 153 4 221 2 044 5 -7.261e-3 1 887.525 2 4600.437 119 3 max 0 12 .158 3 .144 1 5.852e-3 3 NC 5 NC 3 120 min 153 4 459 2 053 5 -8.237e-3 1 493.055 2 1853.196 121 4 max 0 12 .208 3 .219			13		-											1
116 min 153 4 052 3 002 2 -6.286e-3 1 NC 1 NC 117 2 max 0 12 .065 3 .059 1 5.031e-3 3 NC 5 NC 2 118 min 153 4 221 2 044 5 -7.261e-3 1 887.525 2 4600.437 119 3 max 0 12 .158 3 .144 1 5.852e-3 3 NC 5 NC 3 120 min 153 4 459 2 053 5 -8.237e-3 1 493.055 2 1853.196 121 4 max 0 12 .208 3 .219 1 6.672e-3 3 NC 5 NC 3 122 min 153 4 598 2 038 5 <td></td> <td>M16</td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>1</td>		M16	1			-						•				1
117 2 max 0 12 .065 3 .059 1 5.031e-3 3 NC 5 NC 2 118 min 153 4 221 2 044 5 -7.261e-3 1 887.525 2 4600.437 119 3 max 0 12 .158 3 .144 1 5.852e-3 3 NC 5 NC 3 120 min 153 4 459 2 053 5 -8.237e-3 1 493.055 2 1853.196 121 4 max 0 12 .208 3 .219 1 6.672e-3 3 NC 5 NC 3 122 min 153 4 598 2 038 5 -9.212e-3 1 391.614 2 1216.721 123 5 max 0 12 .21 3 .2		IVITO														1
118 min 153 4 221 2 044 5 -7.261e-3 1 887.525 2 4600.437 119 3 max 0 12 .158 3 .144 1 5.852e-3 3 NC 5 NC 3 120 min 153 4 459 2 053 5 -8.237e-3 1 493.055 2 1853.196 121 4 max 0 12 .208 3 .219 1 6.672e-3 3 NC 5 NC 3 122 min 153 4 598 2 038 5 -9.212e-3 1 391.614 2 1216.721 123 5 max 0 12 .21 3 .258 1 7.492e-3 3 NC 5 NC 3 124 min 153 4 619 2 01			2									_				2
119 3 max 0 12 .158 3 .144 1 5.852e-3 3 NC 5 NC 3 120 min 153 4 459 2 053 5 -8.237e-3 1 493.055 2 1853.196 121 4 max 0 12 .208 3 .219 1 6.672e-3 3 NC 5 NC 3 122 min 153 4 598 2 038 5 -9.212e-3 1 391.614 2 1216.721 123 5 max 0 12 .21 3 .258 1 7.492e-3 3 NC 5 NC 3 124 min 153 4 619 2 01 5 -1.019e-2 1 379.756 2 1030.62 125 6 max 0 12 .165 3 .25 1 8.312e-3 3 NC 5 NC 3 126 min 15					_											1
120 min 153 4 459 2 053 5 -8.237e-3 1 493.055 2 1853.196 121 4 max 0 12 .208 3 .219 1 6.672e-3 3 NC 5 NC 3 122 min 153 4 598 2 038 5 -9.212e-3 1 391.614 2 1216.721 123 5 max 0 12 .21 3 .258 1 7.492e-3 3 NC 5 NC 3 124 min 153 4 619 2 01 5 -1.019e-2 1 379.756 2 1030.62 125 6 max 0 12 .165 3 .25 1 8.312e-3 3 NC 5 NC 3 126 min 153 4 526 2 .014 <t< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>3</td></t<>			3									•				3
121 4 max 0 12 .208 3 .219 1 6.672e-3 3 NC 5 NC 3 122 min 153 4 598 2 038 5 -9.212e-3 1 391.614 2 1216.721 123 5 max 0 12 .21 3 .258 1 7.492e-3 3 NC 5 NC 3 124 min 153 4 619 2 01 5 -1.019e-2 1 379.756 2 1030.62 125 6 max 0 12 .165 3 .25 1 8.312e-3 3 NC 5 NC 3 126 min 153 4 526 2 .014 15 -1.116e-2 1 438.77 2 1061.72 127 7 max 0 12 .083 3 .198 1 9.133e-3 3 NC 5 NC 3 128																
122 min 153 4 598 2 038 5 -9.212e-3 1 391.614 2 1216.721 123 5 max 0 12 .21 3 .258 1 7.492e-3 3 NC 5 NC 3 124 min 153 4 619 2 01 5 -1.019e-2 1 379.756 2 1030.62 125 6 max 0 12 .165 3 .25 1 8.312e-3 3 NC 5 NC 3 126 min 153 4 526 2 .014 15 -1.116e-2 1 438.77 2 1061.72 127 7 max 0 12 .083 3 .198 1 9.133e-3 3 NC 5 NC 3 128 min 153 4 342 2 .017			4									•				3
123 5 max 0 12 .21 3 .258 1 7.492e-3 3 NC 5 NC 3 124 min 153 4 619 2 01 5 -1.019e-2 1 379.756 2 1030.62 125 6 max 0 12 .165 3 .25 1 8.312e-3 3 NC 5 NC 3 126 min 153 4 526 2 .014 15 -1.116e-2 1 438.77 2 1061.72 127 7 max 0 12 .083 3 .198 1 9.133e-3 3 NC 5 NC 3 128 min 153 4 342 2 .017 12 -1.214e-2 1 631.309 2 1343.029 129 8 max 0 12 0 15 .117 1 9.953e-3 3 NC 4 NC																1
124 min 153 4 619 2 01 5 -1.019e-2 1 379.756 2 1030.62 1 125 6 max 0 12 .165 3 .25 1 8.312e-3 3 NC 5 NC 3 126 min 153 4 526 2 .014 15 -1.116e-2 1 438.77 2 1061.72 1 127 7 max 0 12 .083 3 .198 1 9.133e-3 3 NC 5 NC 3 128 min 153 4 342 2 .017 12 -1.214e-2 1 631.309 2 1343.029 129 8 max 0 12 0 15 .117 1 9.953e-3 3 NC 4 NC 3			5									_				3
125 6 max 0 12 .165 3 .25 1 8.312e-3 3 NC 5 NC 3 126 min 153 4 526 2 .014 15 -1.116e-2 1 438.77 2 1061.72 127 7 max 0 12 .083 3 .198 1 9.133e-3 3 NC 5 NC 3 128 min 153 4 342 2 .017 12 -1.214e-2 1 631.309 2 1343.029 129 8 max 0 12 0 15 .117 1 9.953e-3 3 NC 4 NC					-											1
126 min 153 4 526 2 .014 15 -1.116e-2 1 438.77 2 1061.72 127 7 max 0 12 .083 3 .198 1 9.133e-3 3 NC 5 NC 3 128 min 153 4 342 2 .017 12 -1.214e-2 1 631.309 2 1343.029 129 8 max 0 12 0 15 .117 1 9.953e-3 3 NC 4 NC 3			6			-						•				3
127 7 max 0 12 .083 3 .198 1 9.133e-3 3 NC 5 NC 3 128 min 153 4 342 2 .017 12 -1.214e-2 1 631.309 2 1343.029 129 8 max 0 12 0 15 .117 1 9.953e-3 3 NC 4 NC 3																1
128 min153 4342 2 .017 12 -1.214e-2 1 631.309 2 1343.029 1 129 8 max 0 12 0 15 .117 1 9.953e-3 3 NC 4 NC 3			7									_				3
129 8 max 0 12 0 15 .117 1 9.953e-3 3 NC 4 NC 3					-											
			8			12						3		4		3
130 min153 4115 2 .009 10 -1.311e-2 1 1384.576 2 2286.538	130					4	115	2	.009	10 -1.31	e-2			2		
			9													2
				min				3						3		4
	133		10		_	1		1	.015					4	NC	1
				min	153	4		3						1		1
135 11 max 0 1 .113 1 .036 1 1.077e-2 3 NC 2 NC 2			11			1		1						2		2
136 min153 4106 3035 5 -1.409e-2 1 4929.481 3 7427.815 5	136			min	153	4	106	3	035	5 -1.409	e-2	1	4929.481	3	7427.815	5
137 12 max 0 1 0 15 .117 1 9.953e-3 3 NC 4 NC 3	137		12	max	0	1	0	15	.117	1 9.953	e-3	3	NC	4	NC	3
138 min152 4115 2036 5 -1.311e-2 1 1384.576 2 2286.538	138			min	152	4	115	2	036			1	1384.576	2	2286.538	1
			13	max	0	1	.083	3		1 9.133	e-3	3	NC	5	NC	3
140 min152 4342 2015 5 -1.214e-2 1 631.309 2 1343.029	140				152	4		2		5 -1.214	le-2	1	631.309	2	1343.029	1
141	141		14	max	0	1	.165	3	.25	1 8.312	e-3	3	NC	5	NC	3
				min		4								2		1
	143		15		_	1			.258			3		5		3
144 min152 4619 2 .018 12 -1.019e-2 1 379.756 2 1030.62					152	4								2		1
			16			1		3				3		5		3
146 min152 4598 2 .015 12 -9.212e-3 1 391.614 2 1216.721	146			min	152	4	598	2	.015	12 -9.212	2e-3	1	391.614	2	1216.721	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC					(n) L/z Ratio	
147		17	max	.001	1	.158	3	.144	1	5.852e-3	3	NC	5_	NC	3
148		4.0	min	<u>152</u>	4	4 <u>59</u>	2	.011	12	-8.237e-3	1_	493.055	2	1853.196	1
149		18	max	.001	1	.065	3	.068	4	5.031e-3	3	NC	5_	NC	2
150		40	min	152	4	221	2	.005	10	-7.261e-3		887.525	2	3879.075	4
151		19	max	.002	1	.082	1	.005	3	4.211e-3	3	NC NC	1	NC NC	1
152	MO	4	min	152	4	052	3	002	2	-6.286e-3	1	NC NC	1_	NC NC	
153	M2	1	max	.006	1	.005	2	.011	1	1.638e-3	5_4	NC NC	1_	NC OF 200	2
154			min	006	3	01	3	734	4	-3.042e-4	_1_	NC NC	1_	95.286	4
155		2	max	.006	1	.005	2	.01	1	1.75e-3	5_4	NC NC	1_	NC 402 CO2	2
156		3	min	006	3	<u>01</u>	2	<u>675</u>	4	-2.866e-4	1_	NC NC	<u>1</u> 1	103.682 NC	2
157		3	max	.005		.004		.009	1	1.862e-3	5_4				
158		1	min	006	3	009	3	616	4	-2.69e-4	1_	NC NC	1	113.639	4
159		4	max	.005	1	.003	2	.008	1	1.974e-3	5_4	NC NC	1	NC 405.50	2
160		_	min	005	3	009	3	<u>557</u>	4	-2.515e-4	_1_	NC NC		125.56	4
161		5	max	.005	1	.002	2		1	2.086e-3	5_4	NC NC	1	NC	2
162		_	min	005	3	009	3	5	4	-2.339e-4	_1_		_	139.994	4
163		6	max	.004	1	.001	2	.006	1	2.198e-3	5_4	NC NC	1_	NC 457 CO4	1
164		7	min	005	3	009	3	444	4	-2.164e-4	_1_	NC NC	1_	157.694	4
165		7	max	.004	1	0	2	.005	1	2.31e-3	5	NC	1_	NC	1
166		0	min	004	3	008	3	389	4	-1.988e-4	1_	NC NC	1_1	179.732	4
167		8	max	.004	1	0	2	.005	1	2.422e-3 -1.813e-4	5_4		1_	NC 207.CC	1
168			min	004	3	008	3	337	4		_1_	NC NC	1_	207.66	4
169		9	max	.003	1	0	15	.004	1	2.534e-3	5_4	NC NC	1	NC	11
170		40	min	004	3	007	3	287	4	-1.637e-4	1	NC NC		243.807	4
171		10	max	.003	1	0	15	.003	1	2.646e-3	4_	NC NC	1	NC	1
172		4.4	min	003	3	007	3	24	4	-1.462e-4	1_		_	291.792	4
173		11	max	.003	3	0	15	.003	1	2.765e-3	4	NC NC	1_	NC 257 500	1
174		40	min	003		006	3	196	4	-1.286e-4	1_	NC NC	1_	357.502	4
175		12	max	.002	1	0	15	.002	1	2.883e-3	4_	NC NC	1	NC	1
176 177		13	min	003 .002	3	<u>006</u> 0	3 15	155 .002	1	-1.11e-4 3.002e-3	<u>1</u> 4	NC NC	1	451.041 NC	4
178		13	max	002	3	005	3	118	4	-9.349e-5		NC NC	1	590.99	4
		1.1	min			005				3.12e-3	1	NC NC	1	NC	
179		14	max	.002	3	005	15	.001	1	-7.593e-5	4_		1		4
180		15	min	002	1	005 0		086 0	1		<u> </u>	NC NC	1	814.693 NC	1
181 182		15	max	.001 001	3	004	15	058	4	3.238e-3 -5.838e-5	<u>4</u> 1	NC NC	1	1206.854	4
183		16	min	<u>001</u> 0	1	004 0	15	056 0	1	3.357e-3	4	NC NC	1	NC	1
184		10	max	001	3	003	6	035	4	-4.082e-5	1	NC NC	1	1996.289	4
		17	min		1				1				1		1
185 186		17	max	0	3	0 002	15	0 017	4	3.475e-3 -2.327e-5	<u>4</u> 1	NC NC	1	NC 4004 364	4
187		10	min max	0	1	002 0	15	<u>017</u> 0	1	3.594e-3		NC NC	1	4001.361 NC	1
188		10	min	0	3	001	6	006	4	-5.713e-6		NC	1	NC NC	1
189		19		0	1	<u>001</u> 0	1	_ 000 _	1	3.712e-3	4	NC	1	NC	1
190		19	max min	0	1	0	1	0	1	5.25e-7	12	NC	1	NC	1
191	M3	1		0	1	0	1	0	1	-2.221e-7	12	NC	1	NC	1
192	IVIO		max min	0	1	0	1	0	1	-9.348e-4		NC NC	1	NC NC	1
193		2	max	0	3	0	15	.017	4	2.415e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-1.943e-4		NC NC	1	NC NC	1
195		3		0	3	<u>002</u> 0	15	.034	4	5.528e-4	4	NC	1	NC	1
196		3	max min	0	2	004	6	<u>.034</u>	12	2.774e-6	12	NC	1	NC NC	1
197		4		0	3	004 001	15	.048	4	1.297e-3	4	NC	1	NC	1
198		4	max	0	2	006	6	<u>.046</u>	12	4.273e-6		NC NC	1	8271.217	5
199		5	max	.001	3	008 002	15	.062	4	2.04e-3	4	NC NC	1	NC	1
200		5	min	0	2	002	6	<u>.062</u>	12	5.771e-6		NC NC	1	7516.001	5
201		6		.002	3	008 002	15	.074	4	2.784e-3	4	NC NC	1	NC	1
202		0	max min	002 001	2	002	6	0	12	7.269e-6		9762.999	6	7483.345	5
203		7		.002	3	009 002	15	.086	4	3.528e-3	4	NC	1	NC	1
203			max	.002	J	002	l IO	.000	4	J.JZ08-3	4	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

2056		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
206	204			min	001	2	011	6		12	8.768e-6	12	8400.372	_	8044.139	5
207			8		.002				.097					2		_
208				min						12		12				5
10 max .003 3003 15 .117 4 5.76e-3 4 NC 3 NC 1			9				003		.107			4		3		1
210	208			min	002					12		12	7065.844	6	NC	1
11	209		10	max	.003		003	15	.117	4		4		3		1
1212	210			min	002					12	1.326e-5	12				1
1213			11						.127							_
214				min	002		013			12		12		6		1
215	213		12	max	.003		003	15	.136					3	NC	1_
1916				min						12		12		6		1
217			13					15	.147					2		1_
18				min						12		12		6		1
219			14	max			002	15	.157	4		4		1_		1
220	218			min	003		011		0	12	1.926e-5	12		6	NC	1
221	219		15	max	.004		002	15	.168	4		4		1_		1
222				min						12		12		6		1
222			16					15	.18					1		_
224	222			min	003	2	008	1	0	12		12	NC	1	NC	1
225	223		17	max	.005	3	0	15	.194	4		4	NC	1	NC	1
Page Page	224			min	004	2	006	1	0	12	2.375e-5	12	NC	1	NC	1
19	225		18	max	.005		0	15	.209	4	1.171e-2	4		1	NC	1
228	226			min	004	2	004	1	0	12	2.525e-5	12	NC	1	NC	1
229	227		19	max	.005	3	0	5	.225	4	1.245e-2	4	NC	1	NC	2
230	228			min	004	2	003	1	0	12		12	NC	1	9013.33	1
230	229	M4	1	max	.003	1	.004	2	0	12	1.172e-4	1	NC	1	NC	3
232	230			min	0	5	006	3	225	4		5	NC	1	110.154	4
233 3 max .002 1 .003 2 0 12 1.172e-4 1 NC 1 NC 3	231		2	max	.002	1	.004	2	0	12	1.172e-4	1	NC	1	NC	3
234	232				0	5	005	3	207	4	-8.021e-5	5	NC	1	119.715	4
234	233		3	max	.002	1	.003	2	0	12	1.172e-4	1	NC	1	NC	3
236	234			min	0	5	005	3	189	4		5	NC	1	131.097	4
237 5 max .002 1 .003 2 0 12 1.172e-4 1 NC 1 NC 3	235		4	max	.002	1	.003	2	0	12	1.172e-4	1	NC	1	NC	3
238	236			min	0	5	005	3	171	4		5	NC	1	144.772	4
239	237		5	max	.002	1	.003	2	0	12	1.172e-4	1	NC	1	NC	3
240 min 0 5 004 3 136 4 -8.021e-5 5 NC 1 181.821 4 241 7 max .002 1 .003 2 0 12 1.172e-4 1 NC 1 NC 2 242 min 0 5 004 3 12 4 -8.021e-5 5 NC 1 207.348 4 243 8 max .002 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 244 min 0 5 003 3 103 4 -8.021e-5 5 NC 1 239.808 4 245 9 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 281.975 4 247 10 max .001 1 .002 <td>238</td> <td></td> <td></td> <td>min</td> <td>0</td> <td>5</td> <td>004</td> <td>3</td> <td>154</td> <td>4</td> <td>-8.021e-5</td> <td>5</td> <td>NC</td> <td>1</td> <td>161.383</td> <td>4</td>	238			min	0	5	004	3	154	4	-8.021e-5	5	NC	1	161.383	4
241 7 max .002 1 .003 2 0 12 1.172e-4 1 NC 1 NC 2 242 min 0 5 004 3 12 4 -8.021e-5 5 NC 1 207.348 4 243 8 max .002 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 244 min 0 5 003 3 103 4 -8.021e-5 5 NC 1 239.808 4 245 9 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 1 NC 2 246 min 0 5 003 3 088 4 -8.021e-5 5 NC 1 281.975 4 247 10 max .001	239		6	max	.002	1	.003	2	0	12	1.172e-4	1	NC	1	NC	3
242 min 0 5 004 3 12 4 -8.021e-5 5 NC 1 207.348 4 243 8 max .002 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 244 min 0 5 003 3 103 4 -8.021e-5 5 NC 1 239.808 4 245 9 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 246 min 0 5 003 3 088 4 -8.021e-5 5 NC 1 281.975 4 247 10 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC <	240			min	0	5	004	3	136	4	-8.021e-5	5	NC	1	181.821	4
242 min 0 5 004 3 12 4 -8.021e-5 5 NC 1 207.348 4 243 8 max .002 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 244 min 0 5 003 3 103 4 -8.021e-5 5 NC 1 239.808 4 245 9 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 246 min 0 5 003 3 088 4 -8.021e-5 5 NC 1 281.975 4 247 10 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC <	241		7	max	.002	1	.003	2	0	12	1.172e-4	1	NC	1	NC	2
244 min 0 5 003 3 103 4 -8.021e-5 5 NC 1 239.808 4 245 9 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 246 min 0 5 003 3 088 4 -8.021e-5 5 NC 1 281.975 4 247 10 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 248 min 0 5 003 3 073 4 -8.021e-5 5 NC 1 338.187 4 249 11 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC	242			min	0	5	004	3	12	4	-8.021e-5	5	NC	1	207.348	4
244 min 0 5 003 3 103 4 -8.021e-5 5 NC 1 239.808 4 245 9 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 246 min 0 5 003 3 088 4 -8.021e-5 5 NC 1 281.975 4 247 10 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 248 min 0 5 003 3 073 4 -8.021e-5 5 NC 1 338.187 4 249 11 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC	243		8	max	.002	1	.002	2	0	12	1.172e-4	1	NC	1	NC	2
246 min 0 5 003 3 088 4 -8.021e-5 5 NC 1 281.975 4 247 10 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 248 min 0 5 003 3 073 4 -8.021e-5 5 NC 1 338.187 4 249 11 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 250 min 0 5 002 3 06 4 -8.021e-5 5 NC 1 415.535 4 251 12 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC <t< td=""><td>244</td><td></td><td></td><td></td><td>0</td><td>5</td><td>003</td><td>3</td><td>103</td><td>4</td><td>-8.021e-5</td><td>5</td><td>NC</td><td>1</td><td>239.808</td><td>4</td></t<>	244				0	5	003	3	103	4	-8.021e-5	5	NC	1	239.808	4
246 min 0 5 003 3 088 4 -8.021e-5 5 NC 1 281.975 4 247 10 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 248 min 0 5 003 3 073 4 -8.021e-5 5 NC 1 338.187 4 249 11 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 250 min 0 5 002 3 06 4 -8.021e-5 5 NC 1 415.535 4 251 12 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC <t< td=""><td>245</td><td></td><td>9</td><td>max</td><td>.001</td><td></td><td>.002</td><td>2</td><td></td><td>12</td><td></td><td></td><td></td><td>1</td><td></td><td>2</td></t<>	245		9	max	.001		.002	2		12				1		2
247 10 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 248 min 0 5 003 3 073 4 -8.021e-5 5 NC 1 338.187 4 249 11 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 250 min 0 5 002 3 06 4 -8.021e-5 5 NC 1 415.535 4 251 12 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 252 min 0 5 002 3 047 4 -8.021e-5 5 NC 1 526.29 4 253 13 max 0 1 .001	246				0	5	003		088	4	-8.021e-5	5	NC	1	281.975	4
248 min 0 5 003 3 073 4 -8.021e-5 5 NC 1 338.187 4 249 11 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 250 min 0 5 002 3 06 4 -8.021e-5 5 NC 1 415.535 4 251 12 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 252 min 0 5 002 3 047 4 -8.021e-5 5 NC 1 526.29 4 253 13 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 254 min 0 5 002 3 <t< td=""><td>247</td><td></td><td>10</td><td></td><td>.001</td><td>1</td><td>.002</td><td>2</td><td>0</td><td>12</td><td>1.172e-4</td><td>1</td><td>NC</td><td>1</td><td>NC</td><td>2</td></t<>	247		10		.001	1	.002	2	0	12	1.172e-4	1	NC	1	NC	2
249 11 max .001 1 .002 2 0 12 1.172e-4 1 NC 1 NC 2 250 min 0 5 002 3 06 4 -8.021e-5 5 NC 1 415.535 4 251 12 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 252 min 0 5 002 3 047 4 -8.021e-5 5 NC 1 526.29 4 253 13 max 0 1 .001 2 0 12 1.172e-4 1 NC 1<	248					5			073	4		5	NC	1		
250 min 0 5 002 3 06 4 -8.021e-5 5 NC 1 415.535 4 251 12 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 252 min 0 5 002 3 047 4 -8.021e-5 5 NC 1 526.29 4 253 13 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 254 min 0 5 002 3 036 4 -8.021e-5 5 NC 1 693.22 4 255 14 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 256 min 0 5 002 3			11		.001					12		1		1		2
251 12 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 252 min 0 5 002 3 047 4 -8.021e-5 5 NC 1 526.29 4 253 13 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 254 min 0 5 002 3 036 4 -8.021e-5 5 NC 1 693.22 4 255 14 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 256 min 0 5 002 3 026 4 -8.021e-5 5 NC 1 962.637 4 257 15 max 0 1 0 2 0 12 1.172e-4 1 NC 1 <t< td=""><td></td><td></td><td></td><td>min</td><td>_</td><td>5</td><td></td><td></td><td>06</td><td>4</td><td></td><td>5</td><td></td><td>1</td><td>415.535</td><td>4</td></t<>				min	_	5			06	4		5		1	415.535	4
252 min 0 5 002 3 047 4 -8.021e-5 5 NC 1 526.29 4 253 13 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 254 min 0 5 002 3 036 4 -8.021e-5 5 NC 1 693.22 4 255 14 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 256 min 0 5 002 3 026 4 -8.021e-5 5 NC 1 962.637 4 257 15 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1 258 min 0 5 001 3 01			12		0	1				12		-		1		1
253 13 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 254 min 0 5002 3036 4 -8.021e-5 5 NC 1 693.22 4 255 14 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 256 min 0 5002 3026 4 -8.021e-5 5 NC 1 962.637 4 257 15 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1 258 min 0 5001 3017 4 -8.021e-5 5 NC 1 1441.274 4 259 16 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1									047		-8.021e-5	5		1		4
254 min 0 5 002 3 036 4 -8.021e-5 5 NC 1 693.22 4 255 14 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 256 min 0 5 002 3 026 4 -8.021e-5 5 NC 1 962.637 4 257 15 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.021e-5 5 NC 1 1441.274 4 259 16 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1			13							12	1.172e-4			1		
255 14 max 0 1 .001 2 0 12 1.172e-4 1 NC 1 NC 1 256 min 0 5 002 3 026 4 -8.021e-5 5 NC 1 962.637 4 257 15 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.021e-5 5 NC 1 1441.274 4 259 16 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1									036			5		1		4
256 min 0 5 002 3 026 4 -8.021e-5 5 NC 1 962.637 4 257 15 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.021e-5 5 NC 1 1441.274 4 259 16 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1			14									1		1		1
257 15 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1 258 min 0 5 001 3 017 4 -8.021e-5 5 NC 1 1441.274 4 259 16 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1						_						5				
258 min 0 5 001 3 017 4 -8.021e-5 5 NC 1 1441.274 4 259 16 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1			15													
259 16 max 0 1 0 2 0 12 1.172e-4 1 NC 1 NC 1						_										
			16	1						_		-		1		
	260			min	0			3	01				NC			4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	1.172e-4	1	NC	1	NC	1
262			min	0	5	0	3	005	4	-8.021e-5	5	NC	1	5004.324	4
263		18	max	0	1	0	2	0	12	1.172e-4	1	NC	1	NC	1
264			min	0	5	0	3	002	4	-8.021e-5	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.172e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-8.021e-5	5	NC	1	NC	1
267	M6	1	max	.019	1	.022	2	0	1	1.75e-3	4	NC	3	NC	1
268			min	021	3	031	3	741	4	0	1	3117.947	2	94.366	4
269		2	max	.018	1	.02	2	0	1	1.859e-3	4	NC	3	NC	1
270			min	02	3	03	3	681	4	0	1	3437.569	2	102.682	4
271		3	max	.017	1	.018	2	0	1	1.969e-3	4	NC	3	NC	1
272			min	019	3	028	3	622	4	0	1	3826.463	2	112.545	4
273		4	max	.016	1	.016	2	0	1	2.078e-3	4	NC	3	NC	1
274			min	018	3	026	3	562	4	0	1	4305.222	2	124.354	4
275		5	max	.015	1	.014	2	0	1	2.188e-3	4	NC	1	NC	1
276			min	017	3	025	3	504	4	0	1	4902.993	2	138.652	4
277		6	max	.014	1	.012	2	0	1	2.298e-3	4	NC	1_	NC	1
278			min	015	3	023	3	448	4	0	1	5662.118	2	156.188	4
279		7	max	.013	1	.011	2	0	1	2.407e-3	4	NC	1_	NC	1
280			min	014	3	021	3	393	4	0	1	6646.065	2	178.021	4
281		8	max	.012	1	.009	2	0	1	2.517e-3	4	NC	_1_	NC	1
282			min	013	3	02	3	34	4	0	1	7953.567	2	205.691	4
283		9	max	.011	1	.007	2	0	1	2.626e-3	4	NC	1_	NC	1
284			min	012	3	018	3	29	4	0	1	9745.335	2	241.505	4
285		10	max	.01	1	.006	2	0	1	2.736e-3	4	NC	1_	NC	1
286			min	011	3	016	3	242	4	0	1_	NC	1_	289.052	4
287		11	max	.009	1	.004	2	0	1_	2.846e-3	4	NC	<u>1</u>	NC	1
288			min	01	3	014	3	198	4	0	1_	NC	1_	354.166	4
289		12	max	.008	1	.003	2	0	1	2.955e-3	4	NC	1	NC	1
290			min	008	3	013	3	157	4	0	1	NC	1_	446.865	4
291		13	max	.006	1	.002	2	0	1	3.065e-3	4	NC	_1_	NC	1
292			min	007	3	<u>011</u>	3	119	4	0	1_	NC	1_	585.573	4
293		14	max	.005	1	.001	2	0	1	3.174e-3	_4_	NC	_1_	NC	1_
294			min	006	3	009	3	087	4	0	1	NC	1_	807.324	4
295		15	max	.004	1	00	2	0	1_	3.284e-3	_4_	NC	_1_	NC	1_
296			min	005	3	007	3	058	4	0	1_	NC	1_	1196.139	4
297		16	max	.003	1	0	2	0	1	3.394e-3	_4_	NC	1_	NC	1
298			min	004	3	005	3	035	4	0	1_	NC	1_	1979.062	4
299		17	max	.002	1	0	2	0	1	3.503e-3	_4_	NC	1_	NC	1
300			min	002	3	004	3	018	4	0	<u>1</u>	NC	1_	3968.522	4
301		18	max	.001	1	0	2	0	1	3.613e-3	4_	NC	1_	NC	1
302		4.0	min	<u>001</u>	3	002	3	006	4	0	1_	NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	3.723e-3	4	NC	1	NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
306			min	0	1	0	1	0	1	-9.367e-4	4	NC	1_	NC	1
307		2	max	0	3	0	15	.018	4	0	1	NC	1	NC NC	1
308			min	0	2	002	3	0	1	-2.133e-4	4	NC	1_	NC	1
309		3	max	.002	3	0	15	.034	4	5.102e-4	4	NC	1_	NC officers	1
310		4	min	002	2	005	3	0	1	0	1_1	NC NC	1_	9572.933	
311		4	max	.003	3	001	15	.048	4	1.234e-3	4	NC	1_	NC	1
312		_	min	003	2	007	3	0	1	0	1_	NC NC	1_	7491.059	4
313		5_	max	.004	3	002	15	.062	4	1.957e-3	4	NC	1_	NC 074.4.000	1
314			min	004	2	009	3	0	1	0	1_	NC	1_	6714.828	
315		6	max	.005	3	002	15	.074	4	2.681e-3	4	NC ooco ooc	1_	NC CECC COA	1
316		-	min	005	2	01	3	0	1	0	1_1	9862.226	4	6566.221	4
317		_ 7	max	.006	3	003	15	.086	4	3.404e-3	4	NC	<u>1</u>	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	006	2	012	3	0	1	0	<u>1</u>	8479.059	4	6884.544	
319		8	max	.007	3	003	15	.096	4	4.128e-3	4	NC	_1_	NC	1
320			min	006	2	013	3	0	1	0	<u>1</u>	7626.16	4_	7718.498	
321		9	max	.008	3	003	15	.106	4	4.851e-3	4	NC	1_	NC	1
322			min	007	2	013	3	0	1	0	<u>1</u>	7123.508	4	9338.549	4
323		10	max	.008	3	003	15	.116	4	5.575e-3	4	NC	<u>1</u>	NC	1
324			min	008	2	014	4	0	1	0	_1_	6883.892	4	NC	1
325		11	max	.009	3	003	15	.125	4	6.298e-3	4	NC	1_	NC	1
326			min	009	2	014	4	0	1	0	1	6872.127	4	NC	1
327		12	max	.01	3	003	15	.135	4	7.022e-3	4_	NC	_1_	NC	1
328			min	01	2	014	3	0	1	0	1_	7091.564	4	NC	1
329		13	max	.011	3	003	15	.144	4	7.745e-3	4	NC	_1_	NC	1
330			min	011	2	013	3	0	1	0	1	7587.119	4	NC	1
331		14	max	.012	3	003	15	.154	4	8.469e-3	4	NC	1_	NC	1
332			min	012	2	012	3	0	1	0	<u>1</u>	8468.405	4	NC	1
333		15	max	.013	3	002	15	.165	4	9.192e-3	4	NC	_1_	NC	1
334		4.0	min	013	2	011	3	0	1	0	_1_	9977.777	4	NC	1
335		16	max	.014	3	002	15	.176	4	9.916e-3	4	NC	_1_	NC	1
336			min	014	2	01	3	0	1	0	1_	NC	1_	NC	1
337		17	max	.015	3	001	15	.188	4	1.064e-2	4	NC	1_	NC	1
338		10	min	015	2	008	3	0	1	0	1_	NC	1_	NC	1
339		18	max	.016	3	0	15	.202	4	1.136e-2	4	NC	_1_	NC	1
340			min	016	2	006	3	0	1	0	<u>1</u>	NC	1_	NC	1
341		19	max	.017	3	0	10	.218	4	1.209e-2	4	NC	1_	NC	1
342			min	017	2	005	3	0	1	0	1_	NC	1_	NC	1
343	<u>M8</u>	1	max	.006	1	.016	2	0	1	0	1_	NC	_1_	NC	1
344			min	0	3	018	3	218	4	-1.881e-4	4_	NC	1_	113.966	4
345		2	max	.006	1	.015	2	0	1	0	1_	NC	_1_	NC	1
346			min	0	3	017	3	2	4	-1.881e-4	4	NC	1_	123.867	4
347		3	max	.006	1	.014	2	0	1	0	_1_	NC	_1_	NC	1
348			min	0	3	016	3	183	4	-1.881e-4	4	NC	1_	135.653	4
349		4	max	.005	1	.013	2	0	1	0		NC	1	NC	1
350			min	0	3	<u>015</u>	3	<u>166</u>	4	-1.881e-4	4	NC	1_	149.813	4
351		5	max	.005	1	.012	2	0	1	0	1	NC	1_	NC	1
352			min	0	3	014	3	149	4	-1.881e-4	4	NC	1_	167.013	4
353		6	max	.005	1	.011	2	0	1	0	1	NC	1	NC_	1
354		_	min	0	3	013	3	132	4	-1.881e-4	4	NC	1_	188.175	4
355		7	max	.004	1	.011	2	0	1	0	1_	NC	_1_	NC	1
356		_	min	0	3	012	3	116	4	-1.881e-4	4	NC	1_	214.606	4
357		8	max	.004	1	.01	2	0	1	0	1	NC NC	1_	NC 040.045	1
358			min	0	3	011	3	<u>1</u>	4	-1.881e-4	4	NC NC	1_	248.215	4
359		9	max	.004	1	.009	2	0	1	0	1	NC NC	1_	NC 004.075	1
360		40	min	0	3	01	3	085	4	-1.881e-4	4_	NC NC	1_	291.875	4
361		10	max	.003	1	.008	2	0	1	0	1	NC	1_	NC 050.077	1
362		4.4	min	0	3	009	3	071	4	-1.881e-4	4	NC NC	1_	350.077	4
363		11	max	.003	1	.007	2	0	1	0	1	NC	1	NC 400.405	1
364		40	min	0	3	008	3	058	4	-1.881e-4	4	NC NC	1_	430.165	4
365		12	max	.002	1	.006	2	0	1	0	1	NC NC	1	NC 544.040	1
366		40	min	0	3	007	3	046	4	-1.881e-4	4	NC NC	1_	544.843	4
367		13	max	.002	1	.005	2	0	1	0	1	NC NC	1_	NC 747.000	1
368		4.4	min	0	3	006	3	035	4	-1.881e-4	4_	NC NC	1_	717.688	4
369		14	max	.002	1	.004	2	0	1	0	1	NC NC	1	NC 000.057	1
370		4-	min	0	3	005	3	025	4	-1.881e-4	4_	NC NC	1_	996.657	4
371		15	max	.001	1	.004	2	0	1	0	1	NC	1_	NC 4.400.070	1
372		10	min	0	3	004	3	<u>017</u>	4	-1.881e-4	4_	NC NC	1_	1492.273	
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC 0500,000	1
374			min	0	3	003	3	01	4	-1.881e-4	4	NC	1_	2509.989	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

376		Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
377	375		17	max	0	1	.002	2	0	1	0	1_	NC	1	NC	1
1978														•		4
379			18								_					1
381 M10			40													1
381			19					•		_						1
382		N440	4											_		1
383		IVITO	1													2
384	$\overline{}$		2											•		4
385						-										2
386			2											_		2
388			3													4
388			1											•		2
388			4													4
390			5													2
391						-					1 323e-5					4
392			6							_				•		1
393																4
394	$\overline{}$		7									-		•		1
395						-										4
396			8											1		1
397						+			34					1		4
10 max .003 1 .007 3 .289 4 9.297e-6 12 NC 1 241.741 399 10 max .003 1 .001 2 0 12 2.736e-3 4 NC 1 NC 400 min .003 3 .007 3 .242 4 8.315e-6 12 NC 1 289.341 401 11 max .003 1 .002 15 0 12 2.844e-3 4 NC 1 NC 402 min .003 3 .006 3 .197 4 7.332e-6 12 NC 1 354.529 403 12 max .002 1 .001 15 0 12 2.951e-3 4 NC 1 NC 404 min .003 3 .006 3 .156 4 6.35e-6 12 NC 1 447.339 405 13 max .002 1 .001 15 0 12 3.059e-3 4 NC 1 NC 406 min .002 3 .005 4 .119 4 5.368e-6 12 NC 1 586.219 407 14 max .002 1 .001 15 0 12 3.167e-3 4 NC 1 NC 408 min .002 3 .005 4 .087 4 4.386e-6 12 NC 1 586.219 407 14 max .002 1 .001 15 0 12 3.274e-3 4 NC 1 NC 408 min .002 3 .005 4 .087 4 4.386e-6 12 NC 1 580.264 409 15 max .001 1 .001 15 0 12 3.274e-3 4 NC 1 NC 410 min .001 3 .004 4 .058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min .001 3 .003 4 .035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 415 min 0 3 .002 4 .018 4 1.439e-6 12 NC 1 3974.977 415 18 max 0 1 0 1 0 1 3.705e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 .1184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 0 1 .1184e-5 1 NC 1 NC 420 min 0 1 0 1 0 1 .2059e-4 4 NC 1 NC 422 min 0 2 .002 4 0 1 .2059e-4 4 NC 1 NC 422 min 0 2 .002 4 0 1 .2059e-4 4 NC 1 NC 422 min 0 2 .002 4 0 1 .2059e-4 4 NC 1 NC 422 min 0 2 .002 4 0 1 .2059e-4 4 NC 1 NC 422 min 0 2 .002 4 0			9							12				1		1
399				min		3	007		289	4		12		1	241.741	4
Motor Moto			10	max	.003	1	001	2	0	12		4	NC	1	NC	1
402 min 003 3 006 3 197 4 7.332e-6 12 NC 1 354.529 403 12 max .002 1 001 15 0 12 2.951e-3 4 NC 1 NC 404 min 003 3 006 3 156 4 6.35e-6 12 NC 1 447.339 405 13 max .002 1 001 15 0 12 3.059e-3 4 NC 1 NC 447.339 406 min 002 3 005 4 119 4 5.368e-6 12 NC 1 586.219 407 14 max .002 1 001 15 0 12 3.167e-3 4 NC 1 NC 408 min 002 3 005 4 087 4 4.386e-6	400			min	003	3	007	3	242	4	8.315e-6	12	NC	1	289.341	4
12 max .002 1 001 15 0 12 2.951e-3 4 NC 1 NC 404 min 003 3 006 3 156 4 6.35e-6 12 NC 1 447.339 405 13 max .002 1 001 15 0 12 3.059e-3 4 NC 1 NC 406 min 002 3 005 4 119 4 5.368e-6 12 NC 1 586.219 407 14 max .002 1 001 15 0 12 3.167e-3 4 NC 1 NC 408 min 002 3 005 4 087 4 4.386e-6 12 NC 1 808.264 409 15 max .001 1 001 15 0 12 3.274e-3 4 NC 1 NC 410 min 001 3 004 4 058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min 001 3 003 4 035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.489e-3 4 NC 1 NC 414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 3974.977 415 18 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 416 min 0 3 001 4 006 4 4.572e-7 12 NC 1 NC 418 min 0 1 0 1 0 1 3.705e-3 4 NC 1 NC 419 M11 1 max 0 1 0 1 0 1 .1.184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 0 1 .9.319e-4 4 NC 1 NC 420 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min 0 2 002 4 0 1 .2.059e-4 4 NC 1 NC 422 min	401		11	max	.003	1	002	15		12		4	NC	1	NC	1
404 min 003 3 006 3 156 4 6.35e-6 12 NC 1 447.339 405 13 max .002 1 001 15 0 12 3.059e-3 4 NC 1 NC 406 min 002 3 005 4 119 4 5.368e-6 12 NC 1 586.219 407 14 max .002 1 001 15 0 12 3.167e-3 4 NC 1 NC 408 min 002 3 005 4 087 4 4.386e-6 12 NC 1 808.264 409 15 max .001 1 001 15 0 12 3.274e-3 4 NC 1 NC 410 min 001 3 004 4 058 4 3.404e-6 12	402			min	003	3	006		197	4	7.332e-6	12	NC	1	354.529	4
405 13 max .002 1 001 15 0 12 3.059e-3 4 NC 1 NC 406 min 002 3 005 4 119 4 5.368e-6 12 NC 1 586.219 407 14 max .002 1 001 15 0 12 3.167e-3 4 NC 1 NC 408 min 002 3 005 4 087 4 4.386e-6 12 NC 1 808.264 409 15 max .001 1 001 15 0 12 3.274e-3 4 NC 1 NC 410 min 001 3 004 4 058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 </td <td></td> <td></td> <td>12</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>_1_</td> <td></td> <td>1</td>			12			-						4		_1_		1
406 min 002 3 005 4 119 4 5.368e-6 12 NC 1 586.219 407 14 max .002 1 001 15 0 12 3.167e-3 4 NC 1 NC 408 min 002 3 005 4 087 4 4.386e-6 12 NC 1 808.264 409 15 max .001 1 001 15 0 12 3.274e-3 4 NC 1 NC 410 min 001 3 004 4 058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min 001 3 003 4 035 4 2.422e-6 12											6.35e-6			_		4
407 14 max .002 1 001 15 0 12 3.167e-3 4 NC 1 NC 408 min 002 3 005 4 087 4 4.386e-6 12 NC 1 808.264 409 15 max .001 1 001 15 0 12 3.274e-3 4 NC 1 NC 410 min 001 3 004 4 058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min 001 3 003 4 035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.489e-3 4			13													1
408 min 002 3 005 4 087 4 4.386e-6 12 NC 1 808.264 409 15 max .001 1 001 15 0 12 3.274e-3 4 NC 1 NC 410 min 001 3 004 4 058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min 001 3 0035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.489e-3 4 NC 1 NC 414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 NC														•		4
409 15 max .001 1 001 15 0 12 3.274e-3 4 NC 1 NC 410 min 001 3 004 4 058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min 001 3 003 4 035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.489e-3 4 NC 1 NC 414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 NC 4 415 min 0 1 0 15 0 12 3.597e-3 4 NC			14													1
410 min 001 3 004 4 058 4 3.404e-6 12 NC 1 1197.638 411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min 001 3 003 4 035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.489e-3 4 NC 1 NC 414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 3974.977 415 18 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 416 min 0 3 001 4 006 4 4.572e-7 12 NC																4
411 16 max 0 1 0 15 0 12 3.382e-3 4 NC 1 NC 412 min 001 3 003 4 035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.489e-3 4 NC 1 NC 414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 3974.977 415 18 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 416 min 0 3 001 4 006 4 4.572e-7 12 NC 1 NC 417 19 max 0 1 0 1 3.705e-3 4 NC 1 NC			15													1
412 min 001 3 003 4 035 4 2.422e-6 12 NC 1 1981.812 413 17 max 0 1 0 15 0 12 3.489e-3 4 NC 1 NC 414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 3974.977 415 18 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 416 min 0 3 001 4 006 4 4.572e-7 12 NC 1 NC 417 19 max 0 1 0 1 3.705e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 -1.184e-5 1 NC 1 NC			40							_				•		4
413 17 max 0 1 0 15 0 12 3.489e-3 4 NC 1 NC 414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 3974.977 415 18 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 416 min 0 3 001 4 006 4 4.572e-7 12 NC 1 NC 417 19 max 0 1 0 1 3.705e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 -1.184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 4.723e-6 1 NC 1 NC 420			16						-		3.382e-3					1
414 min 0 3 002 4 018 4 1.439e-6 12 NC 1 3974.977 415 18 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 416 min 0 3 001 4 006 4 4.572e-7 12 NC 1 NC 417 19 max 0 1 0 1 3.705e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 -1.184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 4.723e-6 1 NC 1 NC 420 min 0 1 0 1 0 1 -9.319e-4 4 NC 1 NC 421 2 <t< td=""><td></td><td></td><td>47</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>•</td><td></td><td>4</td></t<>			47									-		•		4
415 18 max 0 1 0 15 0 12 3.597e-3 4 NC 1 NC 416 min 0 3001 4006 4 4.572e-7 12 NC 1 NC 417 19 max 0 1 0 1 0 1 3.705e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 -1.184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 0 1 4.723e-6 1 NC 1 NC 420 min 0 1 0 1 0 1 -9.319e-4 4 NC 1 NC 421 2 max 0 3 0 15 .017 4 -1.276e-6 12 NC 1 NC 422 min 0 2002 4 0 1 -2.059e-4 4 NC 1 NC			17			-										1_1
416 min 0 3 001 4 006 4 4.572e-7 12 NC 1 NC 417 19 max 0 1 0 1 0 1 3.705e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 -1.184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 4.723e-6 1 NC 1 NC 420 min 0 1 0 1 0 1 -9.319e-4 4 NC 1 NC 421 2 max 0 3 0 15 .017 4 -1.276e-6 12 NC 1 NC 422 min 0 2 002 4 0 1 -2.059e-4 4 NC 1 NC			10	min												1
417 19 max 0 1 0 1 0 1 3.705e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 -1.184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 4.723e-6 1 NC 1 NC 420 min 0 1 0 1 -9.319e-4 4 NC 1 NC 421 2 max 0 3 0 15 .017 4 -1.276e-6 12 NC 1 NC 422 min 0 2 002 4 0 1 -2.059e-4 4 NC 1 NC			10													1
418 min 0 1 0 1 0 1 -1.184e-5 1 NC 1 NC 419 M11 1 max 0 1 0 1 4.723e-6 1 NC 1 NC 420 min 0 1 0 1 -9.319e-4 4 NC 1 NC 421 2 max 0 3 0 15 .017 4 -1.276e-6 12 NC 1 NC 422 min 0 2 002 4 0 1 -2.059e-4 4 NC 1 NC			10													1
419 M11 1 max 0 1 0 1 0 1 4.723e-6 1 NC 1 NC 420 min 0 1 0 1 0 1 -9.319e-4 4 NC 1 NC 421 2 max 0 3 0 15 .017 4 -1.276e-6 12 NC 1 NC 422 min 0 2 002 4 0 1 -2.059e-4 4 NC 1 NC			19		-											1
420 min 0 1 0 1 0 1 -9.319e-4 4 NC 1 NC 421 2 max 0 3 0 15 .017 4 -1.276e-6 12 NC 1 NC 422 min 0 2 002 4 0 1 -2.059e-4 4 NC 1 NC		M11	1											•		1
421 2 max 0 3 0 15 .017 4 -1.276e-6 12 NC 1 NC 422 min 0 2002 4 0 1 -2.059e-4 4 NC 1 NC		IVIII				-		-								1
422 min 0 2002 4 0 1 -2.059e-4 4 NC 1 NC			2							•				•		1
																1
			3													1
							-									4
			4							4				1		1
																4
			5		.001				.061	4				_1		1
																4
			6							4				1		1
										1		1		4		4
	431		7		.002	3	003	15	.085	4	3.424e-3	4	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	001	2	012	4	0	1	-1.685e-4	1_	8178.224	4	7364.625	
433		8	max	.002	3	003	15	.096	4	4.15e-3	4	NC	2	NC	1
434			min	002	2	013	4	001	1	-1.974e-4	1_	7373.95	4_	8401.255	
435		9	max	.002	3	003	15	.106	4	4.876e-3	4	NC coop coo	3	NC	1
436		40	min	002	2	014	4	002	1	-2.262e-4	1_	6902.298	4	NC NC	1
437		10	max	.003	3	003	15	.116	1	5.602e-3 -2.551e-4	4	NC 6681.848	3	NC NC	1
439		11	min	002 .003	3	014 004	15	002 .125	4		<u>1</u> 4	NC	3	NC NC	1
440			max	002	2	004 014	4	003	1	6.328e-3 -2.84e-4	1	6680.339	4	NC NC	1
441		12	max	.002	3	003	15	.134	4	7.054e-3	4	NC	3	NC NC	1
442		12	min	003	2	003 014	4	003	1	-3.129e-4	1	6902.314	4	NC NC	1
443		13	max	.003	3	003	15	.144	4	7.78e-3	4	NC	2	NC	1
444		13	min	003	2	013	4	004	1	-3.417e-4	1	7392.459	4	NC	1
445		14	max	.003	3	003	15	.154	4	8.506e-3	4	NC	1	NC	1
446		17	min	003	2	012	4	005	1	-3.706e-4	1	8258.411	4	NC	1
447		15	max	.004	3	003	15	.165	4	9.232e-3	4	NC	1	NC	1
448		10	min	003	2	01	4	006	1	-3.995e-4	1	9737.366	4	NC	1
449		16	max	.005	3	002	15	.176	4	9.958e-3	4	NC	1	NC	1
450			min	003	2	008	4	006	1	-4.283e-4	1	NC	1	NC	1
451		17	max	.005	3	002	15	.189	4	1.068e-2	4	NC	1	NC	1
452			min	004	2	006	4	008	1	-4.572e-4	1	NC	1	NC	1
453		18	max	.005	3	001	15	.203	4	1.141e-2	4	NC	1	NC	1
454			min	004	2	004	1	009	1	-4.861e-4	1	NC	1	NC	1
455		19	max	.005	3	0	10	.219	4	1.214e-2	4	NC	1	NC	2
456			min	004	2	003	1	01	1	-5.15e-4	1	NC	1	9013.33	1
457	M12	1	max	.003	1	.004	2	.01	1	-6.295e-6	12	NC	1_	NC	3
458			min	0	3	006	3	219	4	-1.268e-4	4	NC	1	113.258	4
459		2	max	.002	1	.004	2	.009	1	-6.295e-6	12	NC	1_	NC	3
460			min	0	3	005	3	202	4	-1.268e-4	4	NC	1_	123.09	4
461		3	max	.002	1	.003	2	.008	1	-6.295e-6	<u>12</u>	NC	_1_	NC	3
462			min	0	3	005	3	184	4	-1.268e-4	4	NC	1_	134.796	4
463		4	max	.002	1	.003	2	.008	1	-6.295e-6	12	NC	1_	NC	3
464			min	0	3	005	3	<u>167</u>	4	-1.268e-4	4	NC	1_	148.86	4
465		5	max	.002	1	.003	2	.007	1	-6.295e-6	12	NC	1_	NC 405.040	3
466			min	0	3	004	3	149	4	-1.268e-4	4	NC NC	1_	165.943	4
467		6	max	.002	1	.003	2	.006	1	-6.295e-6	12	NC NC	1_	NC 400,004	3
468		7	min	0	3	<u>004</u>	3	133	4	-1.268e-4	4	NC NC	1	186.961	2
469		/	max	.002	3	.003	3	.005	1	-6.295e-6 -1.268e-4	12		1	NC 212 214	
470 471		8	min max	.002	1	004 .002	2	116 .005	1	-6.295e-6	<u>4</u> 12	NC NC	1	213.214 NC	2
472		0	min		3	003	3	101		-1.268e-4		NC	1	246.596	4
473		9	max	.001	1	.002	2	.004	1	-6.295e-6		NC	1	NC	2
474			min	0	3	003	3	086	4	-1.268e-4	4	NC	1	289.961	4
475		10	max	.001	1	.002	2	.003	1	-6.295e-6	_	NC	1	NC	2
476		10	min	0	3	003	3	071	4	-1.268e-4	4	NC	1	347.769	4
477		11	max	.001	1	.002	2	.003	1	-6.295e-6	12	NC	<u> </u>	NC	2
478			min	0	3	002	3	058	4	-1.268e-4	4	NC	1	427.315	4
479		12	max	0	1	.001	2	.002	1	-6.295e-6		NC	1	NC	1
480			min	0	3	002	3	046	4	-1.268e-4	4	NC	1	541.216	4
481		13	max	0	1	.001	2	.002	1	-6.295e-6	12	NC	1	NC	1
482			min	0	3	002	3	035	4	-1.268e-4	4	NC	1	712.889	4
483		14	max	0	1	.001	2	.001	1	-6.295e-6	12	NC	1	NC	1
484			min	0	3	002	3	025	4	-1.268e-4	4	NC	1	989.961	4
485		15	max	0	1	0	2	0	1	-6.295e-6	12	NC	1	NC	1
486			min	0	3	001	3	017	4	-1.268e-4	4	NC	1	1482.202	4
487		16	max	0	1	0	2	0	1	-6.295e-6	12	NC	1_	NC	1
488			min	0	3	0	3	01	4	-1.268e-4	4	NC	1_	2492.968	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

400	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
489		17	max	0	1	0	2	0	1	-6.295e-6	12	NC	1	NC 54.40.574	1
490		10	min	0	3	0	3	005	4	-1.268e-4	4	NC NC	1_	5146.574	4
491		18	max	0	1	0	2	0	1	-6.295e-6	12	NC	1	NC NC	1
492		10	min	0	3	0	3	001	4	-1.268e-4	4_	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-6.295e-6	12	NC	1_	NC NC	1
494	B.4.4		min	0	1	0	1	0	1	-1.268e-4	4_	NC NC	1_	NC NC	1
495	M1	1_	max	.007	3	.085	2	.787	4	1.602e-2	1_	NC	1_	NC	1
496		+_	min	003	2	009	3	0	12	-2.332e-2	3	NC	1	NC	1
497		2	max	.007	3	.041	1	.76	4	9.168e-3	4	NC	3	NC	1
498		_	min	003	2	002	3	007	1	-1.154e-2	3	2572.241	2	NC	1
499		3	max	.007	3	.01	3	.733	4	1.473e-2	_4_	NC	5_	NC	2
500			min	003	2	008	2	011	1	-2.243e-4	_1_	1237.305	2	5752.441	5
501		4	max	.007	3	.033	3	.706	4	1.29e-2	4	NC	5	NC	1
502			min	003	2	063	2	01	1	-4.065e-3	3	778.93	2	4128.851	5
503		5	max	.006	3	.062	3	.679	4	1.106e-2	_4_	NC	<u>15</u>	NC	1
504			min	003	2	12	2	007	1	-8.012e-3	3	560.877	2	3316.72	5
505		6	max	.006	3	.095	3	.65	4	1.277e-2	_1_	NC	15	NC	1
506			min	003	2	176	2	003	1	-1.196e-2	3	440.644	1_	2830.021	5
507		7	max	.006	3	.126	3	.621	4	1.71e-2	_1_	NC	15	NC	1_
508			min	003	2	226	2	0	12	-1.591e-2	3	368.767	1_	2486.831	4
509		8	max	.006	3	.152	3	.591	4	2.143e-2	_1_	9062.14	<u>15</u>	NC	1
510			min	003	2	266	1	0	12	-1.985e-2	3	326.416	1_	2237.994	4
511		9	max	.006	3	.169	3	.559	4	2.377e-2	<u>1</u>	8465.017	<u>15</u>	NC	1
512			min	003	2	291	1	0	1	-1.987e-2	3	304.43	1	2086.475	4
513		10	max	.006	3	.175	3	.525	4	2.478e-2	1_	8283.288	<u>15</u>	NC	1
514			min	002	2	3	1	0	12	-1.727e-2	3	297.865	1	2044.529	4
515		11	max	.006	3	.17	3	.488	4	2.675e-2	2	8464.719	15	NC	1
516			min	002	2	291	1	0	12	-1.468e-2	3	304.903	1	2094.915	4
517		12	max	.006	3	.156	3	.449	4	2.593e-2	2	9061.467	15	NC	1
518			min	002	2	265	1	001	1	-1.215e-2	3	327.898	1	2252.052	4
519		13	max	.005	3	.133	3	.407	4	2.081e-2	2	NC	15	NC	1
520			min	002	2	223	1	0	1	-9.72e-3	3	372.447	1	2643.336	4
521		14	max	.005	3	.103	3	.361	4	1.57e-2	2	NC	15	NC	1
522			min	002	2	172	1	0	12	-7.293e-3	3	448.596	1	3447.83	4
523		15	max	.005	3	.07	3	.315	4	1.058e-2	2	NC	15	NC	1
524			min	002	2	114	1	0	12	-4.866e-3	3	579.544	1	5167.598	4
525		16	max	.005	3	.036	3	.269	4	9.976e-3	4	NC	5	NC	1
526			min	002	2	057	2	0	12	-2.439e-3	3	821.642	1	9695.445	4
527		17	max	.005	3	.004	3	.226	4	1.115e-2	4	NC	5	NC	1
528			min	002	2	005	2	0	12	-1.187e-5	3	1338.246	1	NC	1
529		18	max	.005	3	.042	1	.187	4	1.053e-2	2	NC	4	NC	1
530			min	002	2	025	3	0	12	-4.092e-3	3	2833.139	1	NC	1
531		19	max	.005	3	.082	1	.152	4	2.107e-2	2	NC	1	NC	1
532			min	002	2	052	3	002	1	-8.324e-3	3	NC	1	NC	1
533	M5	1	max	.021	3	.208	2	.786	4	0	1	NC	1	NC	1
534			min	014	2	01	3	0	1	-4.923e-6	4	NC	1	NC	1
535		2	max	.021	3	.096	1	.766	4	7.574e-3	4	NC	5	NC	1
536			min	014	2	.002	3	0	1	0	1	1036.231	2	7879.661	4
537		3	max	.021	3	.033	3	.741	4	1.492e-2	4	NC	15	NC	1
538			min	014	2	028	2	0	1	0	1	489.311	2	4603.7	4
539		4	max	.021	3	.097	3	.713	4	1.215e-2	4	9409.474	15	NC	1
540			min	014	2	175	2	0	1	0	1	300.935	2	3552.291	4
541		5	max	.02	3	.185	3	.683	4	9.391e-3	4	6590.455	15	NC	1
542			min	014	2	334	2	0	1	0	1	212.629	2	3050.387	_
543		6	max	.02	3	.283	3	.652	4	6.627e-3	4	5077.093	15	NC	1
544			min	013	2	492	1	0	1	0.02703	1	164.071	1	2746.497	_
545		7	max	.019	3	.379	3	.62	4	3.863e-3	4		15	NC	1
			max			1010		.52		0.0000					

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

5.40	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio L			
546			min	013	2	<u>637</u>	1	0	1	0	1_	100.000	1_	2510.376	4
547		8	max	.019	3	.459	3	.59	4	1.1e-3	4		15	NC 2070.040	1
548			min	013	2	<u>752</u>	1	0	1	0	1_		1_	2279.346	4
549		9	max	.019	3	.51	3	.559	4	0	1_		15	NC	1
550		40	min	012	2	825	1	<u>0</u>	1	-3.465e-6	5_	1111001	1_	2081.891	4
551		10	max	.018	3	.528	3	.525	4	0	1_		15	NC 2057 200	1
552		4.4	min	012	2	849	1	0	1	-3.359e-6	5		1	2057.286	4
553		11	max	.018	3	.515	3	.488	4	0	1_		15	NC 0440.07	1
554		40	min	012	2	824	1	0	1	-3.253e-6	5_		1	2118.67	4
555		12	max	.017	3	.471	3	<u>.451</u>	4	7.882e-4	4		15	NC 2240 222	1
556		40	min	012	2	749	1	0	1	0 774 0 0	1_1	120.002	1	2210.322	4
557		13	max	.017	3	.399	3	.408	4	2.771e-3	4		15	NC OCOE OF 4	1
558		4.4	min	012		<u>629</u>	1	0	1	4.7526.2	1_		1	2605.054	4
559		14	max	.016	3	.309	3	.36	4	4.753e-3	4		15	NC	1
560		4.5	min	012	2	48	1	0	1	0	1_	107.017	1	3634.505	4
561		15	max	.016	3	.209	3	.311	4	6.736e-3	4		15	NC CCO2 CO4	1
562		4.0	min	011	2	317	1	0	1	0 7400 0	1_		1	6603.924	4
563		16	max	.016	3	.107	3	.263	4	8.718e-3	4		15	NC	1
564		47	min	011	2	1 <u>56</u>	1	0	1	0	1	0-0:0:-	1	NC NC	1
565		17	max	.015	2	.011 015	3	.219	1	1.07e-2	<u>4</u> 1		5 1	NC NC	1
566		10	min	011				100			_	000.00.	•		-
567		18	max	.015	3	.102 071	1	.182	4	5.433e-3	4_		5	NC NC	1
568		40	min	011			3	0	1	0	1_		1	NC NC	1
569		19	max	.015	3	.199	1	.153	4	0	1_1	.,,	1	NC NC	1
570	MO	1	min	011	3	145	3	706	1	-2.925e-6	4		1	NC NC	1
571 572	<u>M9</u>		max	.007	2	.085	3	.786	1	2.332e-2	3_1		1		1
		2	min	003	3	009	1	001		-1.602e-2	<u>1</u> 3		3	NC NC	
573			max	.007	2	.041	3	.765	12	1.154e-2 -7.752e-3	<u> </u>		ა 2	8024.991	4
574 575		3	min	003 .007	3	002 .01		<u> </u>	4	1.489e-2	4		5	NC	2
576		3	max	007 003	2	008	2	<u>/4</u> 0	12	-7.789e-6	10		2	4650.868	4
577		4	max	.003	3	.033	3	.712	4	1.167e-2	5		5	NC	1
578		4	min	007	2	063	2	0	12	-4.107e-3	1		2	3557.678	4
579		5	max	.006	3	063 .062	3	.683	4	8.753e-3	5		<u> </u>	NC	1
580		5	min	003	2	12	2	<u>.003</u>	12	-8.439e-3	1		2	3031.635	4
581		6	max	.006	3	.095	3	.652	4	1.196e-2	3		<u>-</u> 15	NC	1
582		0	min	003	2	176	2	0	12	-1.277e-2	1		1	2715.74	4
583		7	max	.006	3	.126	3	.621	4	1.591e-2	3		15	NC	1
584		- '	min	003	2	226	2	0	1	-1.71e-2	1		1	2480.324	4
585		8	max	.006	3	.152	3	.59	4	1.985e-2	3		15	NC	1
586			min	003	2	266	1	001		-2.143e-2			1	2263.345	
587		9	max	.006	3	.169	3	.559	4	1.987e-2	3		15	NC	1
588			min	003	2	291	1	0	12	-2.377e-2	1		1	2079.626	4
589		10	max	.006	3	.175	3	.525	4	1.727e-2	3		15	NC	1
590		10	min	002	2	3	1	0	1	-2.478e-2	1		1	2045.926	4
591		11	max	.006	3	<u></u> .17	3	.488	4	1.468e-2	3		15	NC	1
592			min	002	2	291	1	0	1	-2.675e-2	2		1	2104.178	4
593		12	max	.006	3	.156	3	.45	4	1.215e-2	3		15	NC	1
594			min	002	2	265	1	0	12	-2.593e-2	2		1	2227.35	4
595		13	max	.005	3	.133	3	.407	4	9.72e-3	3		15	NC	1
596		· ·	min	002	2	223	1	0	12	-2.081e-2	2		1	2646.418	4
597		14		.005	3	.103	3	.36	4	7.293e-3	3		15	NC	1
598			min	002	2	172	1	003	1	-1.57e-2	2		1	3604.36	5
599		15	max	.005	3	.07	3	.311	4	6.337e-3	5		15	NC	1
600		'	min	002	2	114	1	006	1	-1.058e-2	2		1	5922.571	5
601		16	max	.005	3	.036	3	.264	4	8.54e-3	5		5	NC	1
602		· ·	min	002	2	057	2	009	1	-5.462e-3			1	NC	1
002			1111111	.002		.001		.000		J. 1020 0		32 1.0 TZ	•	110	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.005	3	.004	3	.22	4	1.077e-2	4	NC	5	NC	1
604			min	002	2	005	2	01	1	-6.602e-4	1	1338.246	1	NC	1
605		18	max	.005	3	.042	1	.183	4	5.056e-3	5	NC	4	NC	1
606			min	002	2	025	3	007	1	-1.053e-2	2	2833.139	1	NC	1
607		19	max	.005	3	.082	1	.153	4	8.324e-3	3	NC	1	NC	1
608			min	002	2	052	3	0	12	-2.107e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.