Stochastic Gradient Descent & Optimization Recap

INFO-4604, Applied Machine Learning University of Colorado Boulder

September 30, 2020

Prof. Abe Handler

Where are we?

Reminder about what is going on over past two weeks

Cast of characters ...

Features

V

Data

Cast of characters ...

Features

One data point

 x_i

X

Data

A linear combination of weights and features returns predictions

Focus in on one single instance

Are the predictions any good?

Are the predictions any good?

Accuracy

Loss

Loss: how far are the predictions from the labels?

"Optimization"

"Optimize" (aka adjust) weights so predictions are more like the labels

Adjust weights to minimize loss

So far, we have seen one method for minimizing loss

Gradient descent

https://mathinsight.org/applet/gradient_directional_derivative_mountain

Reminder: this picture should be upside down

https://mathinsight.org/applet/gradient_directional_derivative_mountain

Gradient Descent

- 1. Initialize the parameters **w** to some guess (usually all zeros, or random values)
- 2. Update the parameters: $\mathbf{w} = \mathbf{w} \eta \nabla L(\mathbf{w})$
- 3. Repeat steps 2-3 until $\nabla L(\mathbf{w})$ is close to zero.

Computing the gradient

- 1. Initialize the parameters **w** to some guess (usually all zeros, or random values)
- 2. Update the parameters:

$$\mathbf{w} = \mathbf{w} - \eta \nabla \mathbf{L}(\mathbf{w})$$

3. Repeat steps 2-3 until $\nabla L(\mathbf{w})$ is close to zero.

Computing the gradient

- 1. Initialize the parameters **w** to some guess (usually all zeros, or random values)
- 2. Update the parameters:

$$\mathbf{w} = \mathbf{w} - \eta \nabla \mathbf{L}(\mathbf{w})$$

Computing the gradient is expensive!

$$\nabla L(w) = dL_0/Dw + dL_1/Dw ... dL_N/Dw$$

Stochastic Gradient Descent

A variant of gradient descent makes updates using an approximate of the gradient that is only based on one instance at a time.

$$\nabla L(w) = dL_0/Dw + dL_1/Dw ... dL_N/Dw$$

$$\nabla L(w) \approx dL_i/Dw$$

Recall one instance

Stochastic Gradient Descent

General algorithm for SGD:

- 1. Iterate through the instances in a random order
 - a) For each instance x_i , update the weights based on the gradient of the loss for that instance only:

$$\mathbf{w} = \mathbf{w} - \eta \nabla L_i(\mathbf{w}; \mathbf{x}_i)$$

The gradient for one instance's loss is an approximation to the true gradient

stochastic = random
The *expected* gradient is the true gradient

Like going from NY to LA asking for directions one person at a time...

- Dave Blei

One point can be noisy

Minibatch SGD

General algorithm for SGD:

- 1. Iterate through the instances in a random order
 - a) For each instance x_i, update the weights based on the gradient of the loss for the batch
 - b) $\mathbf{w} = \mathbf{w} \eta \nabla L_{B}(\mathbf{w}; \mathbf{x_{B}})$

The gradient for one batch's loss is an approximation to the true gradient