Газоанализаторы и сигнализаторы горючих газов и паров электрические

Часть 1

ОБЩИЕ ТРЕБОВАНИЯ И МЕТОДЫ ИСПЫТАНИЙ

Издание официальное

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Научно-производственный центр автоматизации и техники безопасности» (ООО «НПЦ АТБ»)

ВНЕСЕН Техническим комитетом по стандартизации ТК 403 «Взрывозащищенное и рудничное электрооборудование»

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 14 ноября 2003 г. № 317-ст
- 3 Разделы, подразделы и приложения настоящего стандарта, за исключением 1.1.6, 1.2, 2.1.6, 2.1.9, 2.1.12, 2.2.10, 2.6.1, 3.1.2, 3.1.3, 3.1.4, 3.2.2.2, 3.3, 3.4, 3.5, 4.1, 4.2.1.2, 4.2.4, 4.3.2, 4.3.3, 4.4.5, 4.4.3.2, 4.4.3.3, 4.4.6, 4.4.20.2, таблицы A.1, приложений B, C и D, представляют собой аутентичный текст $M \ni K$ 61779-1-98 «Газоанализаторы и сигнализаторы горючих газов и паров электрические. Часть 1. Общие требования и методы испытаний»
 - 4 ВВЕДЕН ВПЕРВЫЕ

ГОСТ Р 52136—2003

Содержание

1	Общие положения	1
	1.1 Область применения	1
	1.2 Нормативные ссылки	2
2	Определения	3
	2.1 Газовые среды	3
	2.2 Виды приборов	4
	2.3 Датчики	4
	2.4 Отбор газовой пробы	4
	2.5 Сигнализация	5
	2.6 Характеристики	5
	2.7 Прочие термины	6
3	Общие требования	6
	3.1 Введение	6
	3.2 Требования к конструкции	7
	3.3 Маркировка	8
	3.4 Руководство по эксплуатации	8
	3.5 Датчики с диффузионной подачей газа	9
4	Методы испытаний	10
	4.1 Введение	10
	4.2 Общие требования к испытаниям	10
	4.3 Нормальные условия испытаний	
	4.4 Методы испытаний	
5	Комплект средств метрологического обеспечения	
П	риложение А Концентрационные пределы распространения пламени (НКПР и ВКПР) неко-	
	торых горючих газов и паров	
П	риложение В Определение времени установления показаний	35
	риложение С Отличия настоящего стандарта от международного стандарта МЭК 61779-1—98	
	риложение D Библиография	

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Газоанализаторы и сигнализаторы горючих газов и паров электрические

Часть 1

ОБЩИЕ ТРЕБОВАНИЯ И МЕТОДЫ ИСПЫТАНИЙ

Electrical apparatus for the detection and measurement of flammable gases.

Part 1. General requirements and test methods

Дата введения 2004—07—01

Настоящий стандарт устанавливает общие требования и методы испытаний электрических* газоанализаторов и сигнализаторов, предназначенных для обнаружения и измерения горючих газов и паров. Для конкретных видов этих приборов требования настоящего стандарта дополнены установленными в частных стандартах специальными требованиями к характеристикам. Частный стандарт следует применять совместно с настоящим стандартом.

Номера разделов, подразделов, пунктов, подпунктов (за исключением 1.1.6, 2.1.12, 4.2.4), обозначения приложений (за исключением приложений С и D), таблицы A.1 и рисунков в настоящем стандарте соответствуют указанным в МЭК 61779-1—98.

Дополнительные требования, а также требования, отличающиеся от требований МЭК 61779-1—98, отражающие потребности экономики страны, выделены в тексте курсивом.

1 Общие положения

1.1 Область применения

1.1.1 Настоящий стандарт устанавливает общие требования к конструкции, проверке и описывает методы испытаний портативных, передвижных и стационарных электрических газоанализаторов и сигнализаторов для обнаружения и измерения содержания горючих газов или паров в воздухе (далее — приборы). Данные приборы или их части предназначены для применения в потенциально взрывоопасной газовой среде (см. 2.1.8) и в шахтах, опасных по выделению рудничного газа.

Настоящий стандарт дополняют следующие стандарты, устанавливающие требования к характеристикам различных видов приборов: Γ OCT P 52137 — Γ OCT P 52140.

Примечания

- 1 Настоящий стандарт в совокупности с указанными выше стандартами устанавливает уровень безопасности и характеристик приборов, соответствующий их общему применению. Для особых случаев потребитель может дополнительно потребовать проведения специальных испытаний приборов или получения специального разрешения на их применение. Например, приборы группы I (т. е. приборы, предназначенные для применения в шахтах, опасных по выделению рудничного газа) не могут быть допущены к применению без предварительного разрешения соответствующего контролирующего органа, осуществляющего технический надзор за шахтами. Такие испытания (разрешения) следует рассматривать как дополнительные и самостоятельные, не дублирующие положения настоящего стандарта и указанных выше стандартов, не отменяющие собой обязательность соответствия приборов требованиям данных стандартов и их сертификацию на соответствие этим требованиям.
- 2 Приборы группы I с верхним пределом измерений объемной доли метана до 100~% и приборы группы II с верхним пределом измерений объемной доли газа до 100~% пригодны для применения только с теми газами, для которых они отградуированы.
- 3 В настоящем стандарте термины «нижний предел воспламенения (НПВ)» и «нижний концентрационный предел распространения пламени (НКПР)» так же, как термины «верхний предел воспламенения (ВПВ)» и «верхний концентрационный предел распространения пламени (ВКПР)», считают синонимами. Сокращения «НКПР» и «ВКПР» далее в тексте используют для обозначения этих двух терминов.

^{*} Под электрическими газоанализаторами и сигнализаторами в настоящем стандарте понимают приборы, использующие при работе источники электрической энергии.

- 1.1.2 Настоящий стандарт в совокупности с указанными в 1.1.1 стандартами устанавливает для приборов минимальные требования. Заявленные изготовителем характеристики приборов и особенности их конструкции, превосходящие уровень, установленный данными требованиями, должны быть подтверждены дополнительными испытаниями. Применяемые с этой целью процедуры испытаний, изложенные в настоящем стандарте, при необходимости, должны быть соответствующим образом расширены или дополнены. Дополнительные испытания должны быть согласованы между изготовителем и испытательной лабораторией.
- 1.1.3 Настоящий стандарт в совокупности с указанными в 1.1.1 стандартами распространяется на приборы, предназначенные для выдачи показания, сигнализации или другой выходной функции, состоящей в подаче предупреждения о возникновении опасности взрыва и, в некоторых случаях, в инициировании автоматического или ручного защитного действия.
- 1.1.4 Настоящий стандарт в совокупности с указанными в 1.1.1 стандартами распространяется на приборы (в том числе на встроенные пробоотборные устройства приборов с принудительной подачей газа), предназначенные для применения в целях обеспечения производственной безопасности.
- 1.1.5 Настоящий стандарт в совокупности с указанными в 1.1.1 стандартами не распространяется на внешние пробоотборные системы, лабораторные или научные приборы, а также приборы, применяемые только для управления технологическими процессами.
- 1.1.6 Стандарт в совокупности с указанными в 1.1.1 стандартами не распространяется на приборы, разработанные и освоенные производством до введения в действие настоящего стандарта.

1.2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.1.044—89 (ИСО 4589—84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 14254—96 (МЭК 529—89) Степени защиты, обеспечиваемые оболочками (Код ІР)

ГОСТ 15150—69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 22782.3—77 Электрооборудование взрывозащищенное со специальным видом взрывозащиты. Технические требования и методы испытаний

ГОСТ Р 8.568—97 Государственная система обеспечения единства измерений. Аттестация испытательного оборудования. Основные положения

ГОСТ Р 50460—92 Знак соответствия при обязательной сертификации. Форма, размеры и технические требования

ГОСТ Р 51317.4.1—2000 (МЭК 61000-4-1—2000) Совместимость технических средств электромагнитная. Испытания на помехоустойчивость. Виды испытаний

ГОСТ Р 51317.4.3—99 (МЭК 61000-4-3—95) Совместимость технических средств электромагнитная. Устойчивость к радиочастотному электромагнитному полю. Требования и методы испытаний

ГОСТ Р 51317.4.4—99 (МЭК 61000-4-4—95) Совместимость технических средств электромагнитная. Устойчивость к наносекундным импульсным помехам. Требования и методы испытаний

ГОСТ Р 51330.0—99 (МЭК 60079-0—98) Электрооборудование взрывозащищенное. Часть 0. Общие требования

ГОСТ Р 51330.1—99 (МЭК 60079-1—98) Электрооборудование взрывозащищенное. Часть 1. Взрывозащита вида «взрывонепроницаемая оболочка»

ГОСТ Р 51330.3—99 Электрооборудование взрывозащищенное. Часть 2. Заполнение или продувка оболочки под избыточным давлением p

ГОСТ Р 51330.6—99 (МЭК 60079-5—97) Электрооборудование взрывозащищенное. Часть 5. Кварцевое заполнение оболочки q

ГОСТ Р 51330.7—99 (МЭК 60079-6—95) Электрооборудование взрывозащищенное. Часть 6. Масляное заполнение оболочки o

ГОСТ Р 51330.8—99 Электрооборудование взрывозащищенное. Часть 7. Защита вида е

ГОСТ Р 51330.10—99 (МЭК 60079-11—98) Электрооборудование взрывозащищенное. Часть 11. Искробезопасная электрическая цепь i

ГОСТ Р 51330.12—99 (МЭК 60079-13—82) Электрооборудование взрывозащищенное. Часть 13. Проектирование и эксплуатация помещений, защищенных избыточным давлением

ГОСТ Р 51330.14—99 Электрооборудование взрывозащищенное. Часть 15. Защита вида n

ГОСТ Р 51330.17—99 (МЭК 60079-18—92) Электрооборудование взрывозащищенное. Часть 18. Взрывозащита вида «герметизация компаундом m»

ГОСТ Р 51330.19—99 (МЭК 60079-20—96) Электрооборудование взрывозащищенное. Часть 20. Данные по горючим газам и парам, относящиеся к эксплуатации электрооборудования

ГОСТ Р 52137—2003 (МЭК 61799-2—98) Газоанализаторы и сигнализаторы горючих газов и паров электрические. Часть 2. Требования к приборам группы I с верхним пределом измерений объемной доли метана в воздухе не более 5 %

ГОСТ Р 52138—2003 (МЭК 61799-3—98) Газоанализаторы и сигнализаторы горючих газов и паров электрические. Часть 3. Требования к приборам группы I с верхним пределом измерений объемной доли метана в воздухе до 100~%

ГОСТ Р 52139—2003 (МЭК 61779-4—98) Газоанализаторы и сигнализаторы горючих газов и паров электрические. Часть 4. Требования к приборам группы II с верхним пределом измерений содержания горючих газов до 100 % нижнего концентрационного предела распространения пламени

ГОСТ Р 52140—2003 (МЭК 61779-5—98) Газоанализаторы и сигнализаторы горючих газов и паров электрические. Часть 5. Требования к приборам группы II с верхним пределом измерений объемной доли газа до 100~%

МЭК 61779-6—99* Газоанализаторы и сигнализаторы горючих газов и паров электрические. Часть 6. Руководство по выбору, монтажу, эксплуатации и техническому обслуживанию

ИСО 6142—81* Анализ газов. Приготовление газовых смесей для калибрования. Весовые метолы

ИСО 6145-1—86* Анализ газов. Приготовление газовых смесей для калибрования. Динамические волюметрические методы. Часть 1. Методы калибрования

ИСО 6145-3—86* Анализ газов. Приготовление газовых смесей для калибрования. Динамические волюметрические методы. Часть 3. Периодические инжекции в газовый поток

ИСО 6145-4—86* Анализ газов. Приготовление газовых смесей для калибрования. Динамические волюметрические методы. Часть 4. Метод непрерывной инжекции

ИСО 6145-6—86* Анализ газов. Приготовление газовых смесей для калибрования. Динамические волюметрические методы. Часть 6. Звуковые диафрагмы

ИСО 6147—79* Анализ газов. Приготовление газовых смесей для калибрования. Метод насыщения

2 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями.

- 2.1 Газовые среды
- 2.1.1 окружающая среда: Атмосфера, в которой находится прибор.
- 2.1.2 чистый воздух: Воздух, в котором отсутствуют примеси горючих газов и загрязняющих веществ.
- 2.1.3 взрывоопасная газовая среда (атмосфера): Смесь с воздухом, при нормальных атмосферных условиях, горючих веществ в виде газа или пара, горение в которой после начала воспламенения распространяется на весь объем смеси.

Примечания

- 1 Это определение исключает взвесь пыли и волокон в воздухе. Туманы настоящий стандарт не рассматривает.
- 2 При содержании в воздухе горючих газов и паров выше ВКПР (см. 2.1.9) допускается в определенных случаях, в целях классификации взрывоопасных зон, рассматривать такую газовую среду как взрывоопасную.
- 3 Под нормальными атмосферными условиями подразумевают такие отклонения давления от 101,3 кПа и температуры от 20 °C, которые не оказывают влияния на взрывоопасность газовой смеси.
- 2.1.4 рудничный газ: Горючий газ, состоящий в основном из метана, скапливающийся естественным образом в шахтах и рудниках.
- 2.1.5 **горючий газ:** Газ или пар, при смешивании которого с воздухом в определенных пропорциях образуется взрывоопасная газовая среда.

 Π р и м е ч а н и е — В настоящем стандарте под термином «горючий газ» подразумевают также и горючие пары.

2.1.6 нижний концентрационный предел распространения пламени (НКПР): По ГОСТ 12.1.044.

^{*}Международные стандарты МЭК и ИСО — во ВНИИКИ Госстандарта России.

- 2.1.7 отравляющие вещества: Вещества, воздействие которых на чувствительные элементы датчиков приводит к временной или постоянной потере их чувствительности.
- 2.1.8 потенциально взрывоопасная газовая среда (атмосфера): Газовая среда (атмосфера), способная стать взрывчатой (опасность существует в потенциальном виде).
 - 2.1.9 верхний концентрационный предел распространения пламени (ВКПР): По ГОСТ 12.1.044.
- 2.1.10 объемная доля: Отношение объема компонента газовой смеси к объему газовой смеси при заданных температуре и давлении.
- 2.1.11 нулевой газ: Газ, в котором отсутствуют примеси горючих газов и загрязняющих веществ, применяемый для определения или корректировки нуля прибора.
- 2.1.12 поверочная газовая смесь (ПГС): Стандартный образец состава газовой смеси, предназначенный для градуировки, калибровки и поверки приборов.

2.2 Виды приборов

- 2.2.1 сигнализатор: Прибор, имеющий устройство аварийной сигнализации, но не оснащенный показывающим устройством.
- 2.2.2 прибор с принудительной подачей газа: Прибор, на датчик которого анализируемый газ из окружающей среды поступает путем принудительной подачи, например при помощи ручного или электрического насоса.
- 2.2.3 прибор непрерывного действия: Прибор, включаемый на длительное время, датчики которого могут работать в непрерывном или прерывистом режиме.
- 2.2.4 прибор с диффузионной подачей газа: Прибор, в котором анализируемый газ поступает к датчику из окружающей среды за счет молекулярной диффузии, т.е. без формирования принудительного потока.
- 2.2.5 **стационарный прибор:** Прибор, все части которого устанавливают для длительной эксплуатации в определенном месте.
- 2.2.6 **приборы группы I:** Приборы, предназначенные для применения в шахтах, опасных по выделению рудничного газа.
- 2.2.7 **приборы группы II:** Приборы, предназначенные для применения в местах с потенциально взрывоопасной газовой средой, кроме шахт, опасных по выделению рудничного газа.
- 2.2.8 **портативные приборы:** Приборы эпизодического или непрерывного действия с автономным питанием, конструкция которых позволяет легко переносить их с места на место и использовать во время передвижения. Портативные приборы включают в себя:
- а) ручные переносные приборы, обычно массой менее 1 кг, приспособленные для управления одной рукой и не имеющие дополнительных принадлежностей (таких как пробоотборный зонд, пробоотборная линия);
- б) индивидуальные приборы, по размерам и массе подобные переносным, работающие непрерывно (но необязательно с непрерывным режимом работы датчика), пока они находятся у пользователя;
- в) другие приборы, которыми пользователь может управлять во время переноски в руках или на ремнях и которые могут иметь или не иметь пробоотборный зонд.
- 2.2.9 прибор эпизодического действия: Прибор, предназначенный для работы эпизодически, в течение нескольких минут, с нерегулярными интервалами между отдельными измерениями.
- 2.2.10 передвижной прибор: Прибор, не относящийся к портативным, но относительно легко перемещаемый с одного места на другое.

 Π р и м е ч а н и е — K этому виду относятся также приборы, встроенные в самоходные машины и механизмы, например анализаторы метана, встроенные в горные машины.

2.3 Датчики

- 2.3.1 выносной датчик: Датчик, расположенный вне основного корпуса прибора.
- 2.3.2 датчик: Функциональный блок прибора, в котором расположен чувствительный элемент.

2.4 Отбор газовой пробы

- 2.4.1 пробоотборная линия: Трубопровод, по которому поток анализируемого газа подается к датчику.
- 2.4.2 **пробоотборный зонд:** Отдельная пробоотборная линия, подсоединяемая к прибору при необходимости, поставляемая в комплекте с прибором или отдельно, обычно короткая (длиной порядка 1 м), имеющая жесткую конструкцию (хотя может быть и телескопической), соединяемая с прибором, как правило, при помощи гибкой трубки.

2.5 Сигнализация

- 2.5.1 порог срабатывания: Фиксированная или регулируемая настройка прибора, задающая содержание горючего газа, при котором у прибора будет автоматически включаться индикация, аварийный сигнал или другая выходная функция.
- 2.5.2 **сигнал неисправности:** Звуковой, световой или другого вида сигнал, отличающийся от аварийного сигнала, который предупреждает о возможном возникновении у прибора неисправности или указывает на нее.
- 2.5.3 блокирующаяся аварийная сигнализация: Аварийная сигнализация, которая после ее включения автоматически блокируется, и ее отключение возможно только при участии оператора.

2.6 Характеристики

2.6.1 дрейф показания: Изменение показания прибора во времени при неизменном составе анализируемого газа (в том числе чистого воздуха).

 Π р и м е ч а н и е — Здесь и далее под показанием (отсчетом) у сигнализатора следует понимать содержание определяемого компонента, полученное по значению выходного сигнала и номинальной функции преобразования.

- 2.6.2 установившееся показание: Показание, которое устанавливается на приборе после стабилизации.
- 2.6.3 минимальное время измерения (для приборов эпизодического действия): Интервал времени между началом процедуры измерения и моментом, когда показание прибора достигает заданного процента установившегося показания.
- 2.6.4 диапазон измерений: Алгебраическая разность между верхним и нижним пределами измерений [Международный электротехнический словарь (IEV) 351—05—39]*.
- 2.6.5 стабилизация: Состояние, когда три отсчета, взятые подряд с интервалом 2 мин при неизменном составе анализируемого газа, не отличаются между собой более чем на $\pm 1~\%$ диапазона измерений прибора.
- 2.6.6 время установления показаний t(x) (не относится к приборам эпизодического действия): Интервал времени, после прогрева прибора, между моментом скачкообразного изменения объемной доли на входе прибора и моментом, когда показание прибора достигает заданной доли (в процентах x) установившегося показания.
- 2.6.7 время прогрева (не относится к приборам эпизодического действия): Интервал времени, при заданных условиях окружающей среды, от момента включения прибора до момента, когда показание достигает заданных пределов допускаемых отклонений и сохраняется в этих пределах (см. рисунки 1 и 2).

I — питание выключено; II — питание включено; III — пределы допускаемых отклонений показания прибора в чистом воздухе; Π — показание; T — время; 0 — ноль прибора; T_1 — время прогрева (см. 2.6.7)

Рисунок 1 — Время прогрева в чистом воздухе

^{*} МЭК 60050(351)—75 Международный электротехнический словарь (IEV). Раздел 351. Автоматическое управление

I — питание выключено; II — питание включено; III — пределы допускаемых отклонений показания прибора в ПГС; Π — показание; T — время; 0 — ноль прибора; T_1 — время прогрева (см. 2.6.7); C — объемная доля горючего газа в ПГС

Рисунок 2 — Время прогрева в ПГС

2.7 Прочие термины

- 2.7.1 номинальное напряжение питания: Напряжение, указанное изготовителем как рабочее напряжение прибора.
- 2.7.2 **специальный инструмент:** Инструмент, необходимый для доступа к устройствам регулирования и настройки, конструкция которого препятствует несанкционированному вмешательству в работу прибора.
- 2.7.3 вид взрывозащиты: Специальные меры, предусмотренные в конструкции электрического прибора с целью предотвращения воспламенения окружающей взрывоопасной газовой среды (см. 3.1.2).

3 Общие требования

3.1 Введение

3.1.1 Прибор должен соответствовать требованиям настоящего стандарта, а также соответствующего(их) стандарта(ов), указанного(ых) в 1.1.1.

Особенности конструкции и характеристики прибора, о которых заявляет изготовитель, превосходящие уровень, установленный требованиями настоящего стандарта и стандартов, указанных в 1.1.1, должны быть подтверждены испытаниями. Применяемые с этой целью процедуры испытаний, при необходимости, должны быть соответствующим образом расширены или дополнены.

- 3.1.2 Электрические блоки и компоненты прибора должны соответствовать требованиям к конструкции и испытаниям, установленным в подразделах 3.2, 3.5 и разделе 4 настоящего стандарта. Кроме того, материалы, конструкция и взрывозащита частей прибора, предназначенных для работы во взрывоопасных зонах, должны удовлетворять требованиям соответствующих стандартов, указанных в 1.1.1, а также требованиям ГОСТ Р 51330.0, ГОСТ Р 51330.1, ГОСТ Р 51330.3, ГОСТ Р 51330.6 ГОСТ Р 51330.8, ГОСТ Р 51330.10, ГОСТ Р 51330.12, ГОСТ Р 51330.14, ГОСТ Р 51330.17, ГОСТ 22782.3.
- 3.1.3 Любые электрические цепи прибора группы I, размещаемые в той же взрывоопасной зоне, что и датчик, в том числе цепи внутри датчика, должны быть искробезопасными уровня *ia по ГОСТ Р 51330.10*; чувствительные элементы должны быть искробезопасными уровня *ia u(или) иметь специальный вид взрывозащиты по ГОСТ 22782.3*.
- 3.1.4 При разработке прибора с программным обеспечением следует учитывать опасности, которые могут возникать из-за неисправностей в программе.

 Π р и м е ч а н и е — Специальные требования к испытаниям таких приборов находятся в стадии рассмотрения.

Сбой или неисправность программы у приборов с программным обеспечением не должны приводить к нарушению безопасного режима работы. Специальные требования к испытаниям таких приборов должны быть установлены в стандартах или технических условиях на приборы конкретных типов.

3.2 Требования к конструкции

3.2.1 Общие положения

Прибор или его отдельные блоки (например, выносные датчики), предназначенные для применения в присутствии коррозионно-активных газов или паров или способные сами выделять коррозионно-активные побочные продукты в процессе газового анализа (например, при каталитическом окислении или другой химической реакции), должны быть выполнены из материалов, стойких к воздействию таких вешеств.

Конструкцией прибора должно быть обеспечено удобство выполнения регулярных проверок погрешности.

Все материалы и компоненты должны применяться в конструкции прибора согласно характеристикам и ограничениям, данным их изготовителями, если иные требования не установлены в соответствующих стандартах по безопасности.

- 3.2.2 Устройства индикации
- 3.2.2.1 Прибор должен иметь индикацию включения электропитания.

 Π р и м е ч а н и е — Индикация включения может отображаться на центральном табло.

3.2.2.2 Для сигнализатора или прибора, имеющего показывающее устройство с разрешающей способностью не достаточной для того, чтобы проверить соответствие прибора требованиям настоящего стандарта и стандартов, указанных в 1.1.1, должна быть предусмотрена возможность подключения дополнительного показывающего или регистрирующего устройства, обеспечивающего выполнение такой проверки, и обозначены точки его подключения. Эти же точки должны быть приспособлены для подключения внешнего источника электрического сигнала при проверке порога срабатывания.

Примечание — Возможность подключения внешнего источника электрического сигнала для проверки порога срабатывания рекомендуется предусматривать также для других приборов, имеющих функцию сигнализации.

- 3.2.2.3 Показывающее устройство с недостаточной разрешающей способностью должно быть выполнено таким образом, чтобы его показания не противоречили результатам, полученным с помощью дополнительных показывающих или регистрирующих устройств.
- 3.2.2.4 Если в приборе предусмотрено более одного диапазона измерений, выбранный диапазон должен быть ясно обозначен.
- 3.2.2.5 Если в приборе предусмотрены индивидуальные цветные светоиндикаторы, то их цветовые решения должны быть следующими:
- а) индикаторы аварийной сигнализации, указывающие на превышение содержания горючего газа порога срабатывания, должны быть красными;
 - б) индикаторы неисправностей прибора должны быть желтыми;
 - в) индикаторы включения электропитания должны быть зелеными.
 - 3.2.2.6 Цветные светоиндикаторы должны иметь надписи, указывающие их функции.
 - 3.2.3 Аварийная сигнализация или выходные функции
 - 3.2.3.1 Приборы непрерывного действия

Устройства аварийной сигнализации, контакты для подключения исполнительных устройств или выходы для аварийного сигнала стационарного или портативного прибора непрерывного действия, предназначенные для срабатывания при обнаружении потенциально опасного содержания горючего газа, должны быть выполнены блокирующимися, так чтобы отключить их можно было только вручную.

Если прибор подключают к внешней системе, средства включения и отключения блокирования могут быть встроены в эту систему.

Если предусмотрены два и более порога срабатывания, по желанию потребителя аварийная сигнализация на нижнем пороге может быть неблокирующейся.

Примечание — Функции блокирования могут быть заложены в программном обеспечении.

3.2.3.2 Портативные приборы группы II с верхним пределом измерений содержания горючих газов до 100~% НКПР

Порог срабатывания аварийной сигнализации не должен превышать 60 % НКПР.

Примечания

- 1 Для других приборов группы II рекомендуется, чтобы устройства аварийной сигнализации были настроены на срабатывание при содержании горючего газа не выше 60 % НКПР.
- 2 Приборы группы II также допускается оснащать устройством сигнализации, оповещающим о превышении верхнего предела диапазона измерений и, следовательно, имеющим порог срабатывания 100 % НКПР.

3.2.4 Сигналы неисправности

Стационарный и передвижной приборы должны подавать сигнал неисправности в случае снижения напряжения питания ниже допускаемого уровня, обрыва одного или более проводов в электроцепях датчика или обрыва чувствительного элемента. Должен быть предусмотрен сигнал неисправности, указывающий на короткое замыкание или обрыв кабеля, соединяющего прибор с датчиком.

В приборе с автоматизированной принудительной подачей газа необходимо обеспечить подачу сигнала неисправности:

- а) для стационарного и передвижного прибора— в случае снижения расхода анализируемого газа в пробоотборных линиях ниже допускаемого уровня;
 - б) для портативного прибора в случае отсутствия потока газа в пробоотборной линии.
 - 3.2.5 Регулирование и настройка

Конструкция устройств регулирования и настройки должна препятствовать несанкционированному или случайному вмешательству в работу прибора. Примером может служить приспособление в виде крышки, закрывающей доступ к этим устройствам и требующей применения специального инструмента.

Стационарный прибор, размещенный во взрывонепроницаемых оболочках, должен быть выполнен так, чтобы органы регулирования и настройки были доступны с наружных сторон оболочек. Способы регулирования и настройки не должны ухудшать взрывозащиту прибора.

Корректировка нуля прибора не должна влиять на усиление сигнала; регулирование усиления сигнала не должно влиять на нуль прибора.

3.2.6 Приборы с автономными источниками питания

В приборе, питаемом от автономных источников, должна быть предусмотрена индикация, указывающая на разряд источника питания, а в руководстве по эксплуатации должно быть дано ее описание и пояснено назначение (см. 3.4л). Прибор с автономным источником питания должен быть сконструирован таким образом, чтобы после испытаний по 4.4.19 он соответствовал требованиям соответствующих стандартов, указанных в 1.1.1.

3.3 Маркировка

Прибор должен удовлетворять требованиям к маркировке, установленным в соответствующих стандартах на взрывозащиту электрооборудования, указанных в 3.1.2, согласно используемым видам взрывозащиты.

Маркировка прибора с огнепреградителями должна включать в себя символ «s» в соответствии с 27.2 ГОСТ Р 51330.0.

Все оборудование и защитные системы прибора должны иметь разборчивую и несмываемую маркировку, включающую в себя по крайней мере:

- а) наименование изготовителя или его зарегистрированный товарный знак;
- б) знак соответствия по ΓOCT P 50460, знак утверждения типа средств измерений по ΠP 50.2.009 [1];
 - в) обозначение типа;
 - г) серийный номер и год выпуска;
 - д) обозначение вида взрывозащиты, степени защиты (код ІР) по ГОСТ 14254.

Для стационарного прибора группы II с выносными датчиками должен быть указан градуировочный газ на каждом датчике.

3.4 Руководство по эксплуатации

К каждому прибору должно прилагаться руководство по эксплуатации, включающее в себя:

- а) инструкции, рисунки и диаграммы по установке, обслуживанию и безопасной эксплуатации прибора;
 - б) рабочие инструкции и описания процедур регулирования и настройки;
- в) рекомендации по начальной проверке и методику поверки прибора, в том числе инструкции по применению комплекта средств метрологического обеспечения, если он поставляется с прибором (см. раздел 5);

Примечание — Указанную информацию потребители могут найти в МЭК 61779-6.

- г) технические данные, в том числе:
- 1) перечень газов, для которых прибор предназначен, данные об относительной чувствительности прибора к этим газам; диапазон (диапазоны) измерений, пределы допускаемой основной погрешности,
 - 2) данные о чувствительности к другим газам, на которые прибор реагирует,

- 3) диапазон рабочих значений температуры окружающей среды,
- 4) диапазон рабочих значений относительной влажности,
- 5) напряжение питания прибора,
- 6) параметры соединительных кабелей,
- 7) сведения об автономных источниках питания,
- 8) диапазон рабочих значений атмосферного давления,
- 9) максимальное допускаемое значение скорости газовоздушного потока в окружающей среде,
- 10) время прогрева прибора,
- 11) время стабилизации;
- д) условия хранения *и транспортирования* прибора, запасных частей и принадлежностей, в том числе:
 - 1) температуру,
 - 2) влажность,
 - 3) давление,
 - 4) срок хранения.

Примечание — Условия хранения и транспортирования в части воздействия климатических факторов внешней среды устанавливают в соответствии с ГОСТ 15150;

- е) данные для пересчета содержания газа, применяемого при испытаниях и градуировке прибора, из числа процентов НКПР в число процентов, указывающее объемную долю;
- ж) сведения об отрицательных влияниях отравляющих веществ, неизмеряемых компонентов и атмосферы, обогащенной или обедненной кислородом, на характеристики прибора, а в случае с атмосферой, обогащенной кислородом, на электробезопасность прибора;
- и) для прибора с принудительной подачей газа максимальное и минимальное значения расхода и давления потока в пробоотборной линии, а также сведения о типе трубок, их диаметре и максимальной длине;
- к) для прибора с принудительной подачей газа инструкции по предупреждению повреждений пробоотборных линий и обеспечению нормального потока анализируемого газа (см. 3.2.4);
- л) описания вида и значения всех аварийных сигналов и сигналов неисправностей, сведения об их продолжительности и операциях по отключению;
- м) инструкции по выявлению возможных источников неисправностей и сбоев в работе прибора и их устранению;
- н) сведения о наличии или отсутствии блокирования при срабатывании устройств аварийной сигнализации, контактов для подключения исполнительных устройств или выходов для аварийного сигнала (см. 3.2.3.1);
- о) для прибора с автономным источником питания инструкции по установке и обслуживанию источника питания;
 - п) перечень запасных частей;
- р) перечень дополнительных (необязательных) принадлежностей, поставляемых с прибором по желанию потребителя (например, приспособлений для защиты от атмосферных воздействий), с их идентификацией и указанием их влияния на характеристики прибора, включая чувствительность и время установления показаний;
- с) подробные сведения о сертификации прибора, данных маркировки и особых условиях эксплуатации;
- т) срок и рекомендуемые условия хранения запасных частей и принадлежностей, требующих специального хранения;
- у) другие инструкции или специальные сведения, обусловленные спецификой прибора (например, такого, как прибор с нелинейной шкалой), вместо или в дополнение к указанным в 3.3 и $3.4a-3.4\tau$;
- ф) адреса предприятия-изготовителя и предприятий, осуществляющих сервисное обслуживание прибора.

3.5 Датчики с диффузионной подачей газа

 Π р и м е ч а н и е — Требования к датчикам с диффузионной подачей газа находятся в стадии рассмотрения.

Требования к датчикам с диффузионной подачей газа должны быть установлены в стандартах или технических условиях на приборы конкретных типов.

4 Методы испытаний

4.1 Введение

Методы и процедуры испытаний, описанные в 4.2—4.4, предназначены для проверки соответствия прибора требованиям к характеристикам, установленным в стандартах, указанных в 1.1.1.

Методы испытаний для проверки соответствия прибора требованиям взрывозащиты — по ГОСТ P 51330.0, ГОСТ P 51330.1, ГОСТ P 51330.3, ГОСТ P 51330.6 — ГОСТ P 51330.8, ГОСТ P 51330.10, ГОСТ P 51330.12, ГОСТ P 51330.14, ГОСТ P 51330.17, ГОСТ 22782.3 согласно используемым видам взрывозащиты.

4.2 Общие требования к испытаниям

- 4.2.1 Образцы и последовательность испытаний
- 4.2.1.1 Испытания проводят на одном и том же образце. Другие образцы могут быть использованы для испытаний, как указано в 4.2.1.2.
- 4.2.1.2 Образец должен быть подвергнут всем испытаниям, описанным в 4.4, в соответствии с типом прибора. Испытания проводят в последовательности, указанной ниже. Однако испытания 4) и 5) допускается проводить в иной последовательности, согласованной между изготовителем и испытательной лабораторией. Все испытания 1) 7) должны дать положительные результаты на одном образце. Для испытаний 8), 9) могут быть использованы другие образцы.

Последовательность испытаний

- 1) Испытания прибора в условиях хранения и транспортирования (4.4.2).
- 2) Подготовка и проверка прибора, в том числе:
- проверка градуировки и регулирования (4.4.3);
- проверка порога срабатывания (4.4.6);
- проверка влияния расхода анализируемого газа (4.4.11);
- определение времени прогрева (4.4.15);
- определение времени установления показаний (4.4.16);
- определение минимального времени измерения (4.4.17);
- проверка влияния пробоотборного зонда (4.4.22);
- проверка влияния комплекта средств метрологического обеспечения (раздел 5).
- 3) Проверка стабильности:
- проверка кратковременной стабильности прибора непрерывного действия (4.4.4.1);
- проверка стабильности прибора эпизодического действия (4.4.5).
- 4) Механические испытания:
- на воздействие вибрации (4.4.13);
- на воздействие ударов при свободном падении (4.4.14).
- 5) Проверка времени работы прибора от аккумуляторной батареи (4.4.19).

Проверка влияния отклонений напряжения питания от номинального значения (4.4.20).

Проверка устойчивости:

- к прерываниям электропитания, наносекундным импульсным помехам и скачкообразным изменениям напряжения (4.4.21);
 - к электромагнитным помехам (4.4.25).
 - 6) Проверка влияния пространственного положения (4.4.12).
 - 7) Проверка устойчивости к воздействию климатических факторов:
 - температуры (4.4.7);
 - давления (4.4.8);
 - влажности (4.4.9);
 - скорости газовоздушного потока (4.4.10).
 - 8) Проверка долговременной стабильности прибора непрерывного действия (4.4.4.2—4.4.4.5).
 - 9) Проверка устойчивости к воздействию:
 - газовой перегрузки (4.4.18);
 - пыли (4.4.23);
 - отравляющих веществ и неизмеряемых компонентов (4.4.24).
- 4.2.1.3 Кроме того, проводят испытания с целью проверки соответствия прибора требованиям к конструкции (3.2).

Требования к этим испытаниям являются самоочевидными, за исключением относящихся к проверке срабатывания сигнала неисправности при коротком замыкании (3.2.4). Каждый провод, соединяющий измерительный блок с любым выносным датчиком, заменяют нагрузочными резис-

торами. Значения сопротивлений этих резисторов должны быть равны максимальным значениям сопротивлений соединительных проводов, исходя из данных, указанных в руководстве по эксплуатации (см. 3.4г).

Устройство, применяемое для создания короткого замыкания, должно иметь незначительное сопротивление. Его подключают к цепи на концах нагрузочных резисторов, соединенных с датчиком.

4.2.1.4 Прибор, имеющий более одного диапазона измерений для одного или разных газов или паров, следует испытывать в каждом диапазоне.

Объем испытаний для второго и следующих диапазонов измерений — по согласованию между изготовителем и испытательной лабораторией.

4.2.2 Подготовка прибора к испытаниям

Прибор должен быть подготовлен и установлен в соответствии с руководством по эксплуатации, включая все необходимые соединения, начальные регулировки и проверки. При необходимости регулировки можно проводить в начале каждого испытания.

При подготовке к испытаниям должны быть учтены также следующие требования.

а) Приборы с выносными датчиками

При испытаниях по 4.4 выносной датчик должен быть в полном оснащении (включая любые обычно прикрепляемые защитные механические части).

В случае, когда прибор может работать более чем с одним выносным датчиком, испытаниям подвергают только один датчик. При необходимости испытания проводят с заменой всех датчиков, кроме одного, имитирующими устройствами с полными сопротивлениями, создающими наихудшие условия по нагрузке. Эти условия определяет испытательная лаборатория в соответствии с ограничениями по применению прибора, указанными в руководстве по эксплуатации (см. 3.4г).

Для прибора с выносными датчиками все испытания проводят с применением сопротивлений (с таким же температурным коэффициентом, как у соединительного провода), включаемых в цепь датчика для имитации максимального сопротивления линии связи, за исключением случаев, когда минимальное сопротивление линии связи создает более жесткие условия испытаний.

б) Приборы со встроенными датчиками

Прибор со встроенным датчиком испытывают в полном оснащении, без удаления каких-либо обычно прикрепляемых частей (включая пробоотборный зонд при испытаниях по 4.4.11, 4.4.15—4.4.17).

в) Сигнализаторы

При испытаниях сигнализатора для считывания показаний применяют внешний измерительный прибор, подключаемый в специальных точках (см. 3.2.2.2).

Во всех случаях дополнительные (необязательные, поставляемые по желанию потребителя) части должны быть либо установлены на любом приборе, либо сняты в зависимости от того, какое условие даст наиболее неблагоприятный результат (на усмотрение испытательной лаборатории) для проводимого испытания.

4.2.3 Специальная накладка для градуировки и испытаний

Специальная накладка (насадка), применяемая испытательной лабораторией для градуировки или подачи газа к датчику, в частности давление и скорость газа внутри накладки (насадки), не должны оказывать влияние на полученные результаты.

 Π р и м е ч а н и е — Испытательной лаборатории следует учитывать мнение изготовителя при выборе конструкции градуировочной накладки (насадки). Изготовитель может поставлять с прибором подходящую накладку (насадку) вместе с рекомендациями по давлению или расходу градуировочных газов.

4.2.4 При испытаниях приборов должны применяться средства измерений, поверенные согласно [2]. Испытательное оборудование должно быть аттестовано в соответствии с ГОСТ Р 8.568.

4.3 Нормальные условия испытаний

4.3.1 Общие требования

Условия испытаний, указанные в 4.3.2—4.3.10, следует соблюдать для всех испытаний, если иные условия не установлены в настоящем стандарте или соответствующих стандартах, указанных в 1.1.1.

4.3.2 Газы для испытаний

Горючие газы для начальных проверок и всех последующих испытаний выбирают в соответствии с а) или б):

а) метан — для приборов, предназначенных для обнаружения и измерения содержания метана или рудничного газа, или смеси горючих газов, в которой присутствует метан;

ГОСТ Р 52136—2003

б) другой горючий газ — для приборов, предназначенных для обнаружения и измерения содержания данного газа, или газ, являющийся типичным представителем семейства химически подобных горючих газов (кроме метана), — для приборов, предназначенных для данного семейства газов

 Π р и м е ч а н и е — B качестве данного газа или пара обычно используют газ, рекомендуемый изготовителем для испытаний.

Горючие газы используют в смеси с чистым воздухом (нулевым газом). При содержании горючего газа выше 60 % НКПР в качестве нулевого газа следует использовать азот (не относится к приборам с термохимическими (термокаталитическими) датчиками).

Для всех остальных газов, для контроля которых прибор может быть пригоден, изготовитель должен предоставить градуировочные характеристики (номинальные функции преобразования для сигнализатора) и данные о времени установления показаний, а испытательная лаборатория должна их проверить на типичных образцах этих газов.

Примечания

- 1 В случаях, когда применение нулевого газа является более предпочтительным, чем применение чистого воздуха, указания в тексте стандарта на чистый воздух допускается рассматривать как указания на нулевой газ.
- 2 Газовая смесь может быть приготовлена любым приемлемым методом, например методами, изложенными в ИСО 6142, ИСО 6145 или ИСО 6147.
- 3 При использовании паров относительная погрешность, с которой определяют объемную долю пара в $\Pi\Gamma C$, должна быть в пределах ± 2 %.

4.3.3 Поверочные газовые смеси (ПГС)

Объемная доля горючего газа в ПГС должна быть следующей:

- а) для приборов группы I с верхним пределом измерений объемной доли метана не более 5 % $-(1,50\pm0,15)$ % или $(2,0\pm0,2)$ % (по согласованию между изготовителем и испытательной лабораторией);
- б) для остальных приборов группы I и всех приборов группы II— равной объемной доле в средней точке диапазона измерений прибора с допускаемыми отклонениями в пределах $\pm 5~\%$ диапазона измерений и, по возможности, должна находиться вне пределов взрывоопасного диапазона:
- в) относительная погрешность, с которой определяют объемную долю, должна быть в пределах $\pm 2~\%$.

ПГС должна быть аттестована в порядке, установленном для стандартных образцов состава.

4.3.4 Расход газа

Расход газа при испытаниях, включая чистый воздух, устанавливают в соответствии с указаниями изготовителя.

 Π р и м е ч а н и е — Для прибора с диффузионной подачей газа можно использовать градуировочную накладку (насадку) в соответствии с 4.2.3 или испытательную камеру (см. приложение B).

4.3.5 Напряжение питания

- а) Прибор, питаемый от сети, должен работать при отклонениях от номинальных значений напряжения и частоты в пределах ± 2 %.
- б) Для кратковременных испытаний прибор, питаемый от автономных источников, в начале каждой серии испытаний следует оснащать полностью заряженной аккумуляторной батареей или новыми элементами питания. При длительных испытаниях для прибора допускается использовать стабилизированный источник питания.
 - 4.3.6 Температура окружающей среды

Температуру окружающей среды и газовоздушных смесей поддерживают постоянной с отклонениями в пределах ±2 °C в диапазоне от 15 °C до 25 °C на протяжении каждого испытания.

4.3.7 Атмосферное давление

Испытания проводят при атмосферном давлении с отклонениями в пределах ± 1 кПа. Для прибора, чувствительного к колебаниям давления, следует учитывать влияние изменений давления, используя результаты испытаний по 4.4.8.

4.3.8 Влажность

Испытания проводят при постоянной относительной влажности окружающей среды с абсолютными отклонениями в пределах $\pm 10~\%$ в диапазоне от 30 % до 70 % на протяжении каждого испытания, за исключением испытаний по 4.4.2, 4.4.7 и 4.4.9.

4.3.9 Время стабилизации

В каждом случае, когда изменяются условия испытаний, прибор выдерживают при новых условиях в течение времени, необходимого для стабилизации прибора, прежде чем проводить измерения.

4.3.10 Пространственное положение

Прибор испытывают в рабочем положении.

4.4 Методы испытаний

4.4.1 Общие требования

Испытания проводят при соблюдении условий по 4.3, если иные условия не установлены в настоящем стандарте или соответствующих стандартах, указанных в 1.1.1.

Должны быть выполнены все испытания.

По окончании каждого испытания должны быть получены показания как в чистом воздухе, так и в $\Pi\Gamma C$, если иначе не установлено в настоящем стандарте или соответствующих стандартах, указанных в 1.1.1.

Для оценки соответствия прибора требованиям стандартов, указанных в 1.1.1, используют значения установившихся показаний (см. 2.6.2), полученных в чистом воздухе и ПГС, если иначе не установлено в настоящем стандарте или стандартах, указанных в 1.1.1.

4.4.2 Испытания прибора в условиях хранения и транспортирования

Все части прибора в выключенном состоянии должны быть последовательно выдержаны в чистом воздухе при следующих условиях:

- а) при температуре минус (25±3) °C в течение 24 ч;
- б) при температуре окружающей среды по меньшей мере в течение 24 ч;
- в) при температуре (60 ± 2) °C в течение 24 ч;
- г) при температуре окружающей среды по меньшей мере в течение 24 ч.

Указанные выше температуры могут быть изменены только по согласованию между изготовителем и испытательной лабораторией. Если испытание проводили при других температурах, они должны быть указаны в соответствующих документах.

4.4.3 Проверка градуировки и регулирования

4.4.3.1 Начальная подготовка

Прибор проверяют и, при необходимости, регулируют и настраивают в соответствии с руководством по эксплуатации для получения правильных показаний.

Для прибора, имеющего более одного диапазона измерений для одного или разных газов или паров, необходимый объем испытаний должен быть согласован между изготовителем и испытательной лабораторией.

4.4.3.2 Проверка градуировочной характеристики газоанализатора (номинальной функции преобразования у сигнализатора). Определение основной погрешности

Прибор подвергают воздействию газа, выбранного в соответствии с 4.3.2, четырех объемных долей в ПГС, равномерно распределенных во всем диапазоне измерений прибора, начиная с наименьшей и заканчивая наибольшей из выбранных объемных долей. Данное испытание проводят три раза подряд.

4.4.3.3 Проверка реакции на другие газы

Для прибора группы II проверяют градуировочные характеристики (номинальные функции преобразования у сигнализатора) или поправочные таблицы, приведенные изготовителем для других газов в руководстве по эксплуатации, определяя реакцию прибора на газы, являющиеся типичными представителями каждого семейства газов, по меньшей мере в трех разных точках диапазона измерений, равномерно распределенных в интервале между 20 % и 100 % диапазона измерений.

4.4.4 Проверка стабильности (для приборов непрерывного действия)

П р и м е ч а н и е — При этих испытаниях питание прибора можно осуществлять от внешнего источника.

4.4.4.1 Кратковременная стабильность

Прибор должен работать в чистом воздухе непрерывно в течение 1 ч. Через каждые 10 мин на вход прибора подают ПГС до наступления стабилизации. Каждый раз перед подачей ПГС и после наступления стабилизации снимают показания.

4.4.4.2 Долговременная стабильность (для стационарных и передвижных приборов группы I)

Прибор должен работать в чистом воздухе непрерывно в течение четырех недель. С интервалами в одну неделю на вход прибора подают $\Pi\Gamma C$ в течение 8 ч. Показания снимают перед подачей $\Pi\Gamma C$, после наступления стабилизации и перед отключением подачи $\Pi\Gamma C$.

4.4.4.3 Долговременная стабильность (для портативных приборов группы I)

Прибор должен работать в чистом воздухе непрерывно по 8 ч в день в течение четырех недель. Ежедневно во время работы на вход прибора подают ПГС в течение 1 ч. Показания снимают перед подачей ПГС, после наступления стабилизации и перед отключением подачи ПГС.

4.4.4.4 Долговременная стабильность (для стационарных и передвижных приборов группы II) Прибор должен работать в чистом воздухе непрерывно в течение 3 мес. В конце каждых двух недель на вход прибора подают ПГС до наступления стабилизации. Показания снимают перед подачей ПГС и перед ее отключением.

В конце первого цикла испытаний подачу ПГС осуществляют в течение 8 ч. Показания снимают перед подачей ПГС, после наступления стабилизации и перед отключением подачи ПГС.

4.4.4.5 Долговременная стабильность (для портативных приборов группы II)

Прибор должен работать в чистом воздухе непрерывно по 8 ч в день в течение четырех недель. В течение каждого периода работы однократно на вход прибора подают ПГС до наступления стабилизации. Показания снимают перед подачей ПГС и после наступления стабилизации.

- 4.4.5 Проверка стабильности (для приборов эпизодического действия)
- 4.4.5.1 Приборы эпизодического действия группы I с верхним пределом измерений объемной доли метана в воздухе не более 5 % и все приборы группы II

На вход прибора в течение 1 мин подают чистый воздух, затем в течение 1 мин — $\Pi\Gamma C$. Показание снимают в чистом воздухе и в $\Pi\Gamma C$ после наступления стабилизации. Данную операцию повторяют 200 раз.

 $4.4.5.2\;$ Приборы эпизодического действия группы I с верхним пределом измерений объемной доли метана в воздухе до 100 %

На вход прибора в течение 1 мин подают чистый воздух, затем в течение 1 мин — $\Pi\Gamma C$. Показание снимают в чистом воздухе и в $\Pi\Gamma C$ после наступления стабилизации. Данную операцию повторяют 200 раз.

Примечание При этих испытаниях питание прибора можно осуществлять от внешнего источника.

4.4.6 Проверка порога срабатывания

Если в приборе предусмотрены:

- а) один или несколько настраиваемых порогов срабатывания или
- б) фиксированный порог(и) срабатывания,

проверяют включение аварийной сигнализации следующим образом:

- 1) для прибора типа а) с одним порогом срабатывания порог настраивают равным 90 % объемной доли горючего газа в ПГС. Для прибора типа а) с более чем одним порогом срабатывания как можно больше порогов поочередно настраивают равными 90 % объемной доли горючего газа в ПГС. Аварийная сигнализация должна включаться после подачи ПГС;
- 2) для прибора типа б), у которого порог срабатывания находится в диапазоне от 70 % до 90 % объемной доли горючего газа в ПГС, аварийная сигнализация должна включаться после подачи ПГС;
- 3) для других приборов типов а) и б), для каждого аварийного сигнала, который имеет порог срабатывания ниже 70 % или выше 90 % объемной доли горючего газа в ПГС, порог настраивают как можно ближе к 90 % объемной доли горючего газа в ПГС и датчик подвергают воздействию газовоздушной смеси с объемной долей горючего газа, равной (120 ± 10) % значения порога срабатывания. Аварийная сигнализация должна включаться после подачи данной смеси.

Во всех случаях ПГС подают в течение времени, необходимого для срабатывания аварийной сигнализации, но не более удвоенного времени установления показаний t(90).

Для потребностей экономики страны более предпочтительно проводить проверку порога (порогов) срабатывания путем подачи в специальные точки прибора (см. 3.2.2.2) плавно изменяющегося электрического сигнала от внешнего источника, вызывающего срабатывание сигнализации. При срабатывании сигнализации фиксируют значение электрического сигнала, которое приводят ко входу прибора по градуировочной характеристике (для газоанализатора) или номинальной функции преобразования (для сигнализатора).

4.4.7 Проверка устойчивости к воздействию температуры

Испытание проводят в климатической камере, выдерживая датчик или прибор при заданной температуре с отклонениями в пределах ±2 °C.

Когда температура датчика или прибора достигнет значения, указанного в соответствующем стандарте (см. 1.1.1), на вход датчика последовательно подают чистый воздух и ПГС, температура которых должна быть равна температуре среды в климатической камере. Температура точки росы

чистого воздуха и ПГС должна быть ниже самой низкой температуры климатической камеры и поддерживаться постоянной во время испытания.

4.4.8 Проверка устойчивости к воздействию давления

Влияние изменения давления проверяют, помещая датчик или прибор (вместе с побудителем расхода, если он предусмотрен) в испытательную камеру, которая позволяет изменять давление чистого воздуха и ПГС. Давление в камере поддерживают на заданном уровне в течение 5 мин, затем снимают показание. Показания снимают как в чистом воздухе, так и в ПГС.

4.4.9 Проверка устойчивости к воздействию влажности

На датчик последовательно подают чистый воздух при трех заданных значениях влажности, используя климатическую камеру или накладку (насадку). Затем данную процедуру повторяют с применением ПГС. Абсолютная погрешность, с которой определяют значения относительной влажности, должна быть в пределах $\pm 3~\%$.

Содержание измеряемого газа в ПГС поддерживают постоянным либо вводят поправку на его изменение из-за растворения газа в воде.

4.4.10 Проверка устойчивости к воздействию скорости газовоздушного потока

4.4.10.1 Общие положения

Влияние скорости газовоздушного потока в диапазоне от 0 до 6 м/с на прибор, оснащенный датчиками с диффузионной подачей газа, проверяют в соответствии с условиями испытаний, указанными в 4.4.10.2.

4.4.10.2 Условия испытаний

Выносные датчики и, если возможно, приборы со встроенными датчиками в целом испытывают на аэродинамической установке при отсутствии принудительной вентиляции и при скорости газовоздушного потока 6 м/с.

 Π р и м е ч а н и е — Аэродинамическая установка должна формировать поток чистого воздуха и Π ГС таким образом, чтобы могли быть выполнены требования стандартов, указанных в 1.1.1.

Для приборов со встроенными датчиками, размеры которых не позволяют проводить испытания на аэродинамической установке, допускается применять другие средства испытаний, позволяющие создавать поток.

Ориентацию датчика относительно направления потока выбирают таким образом, чтобы проверить воздействие потока на неподвижный прибор в каждом из трех взаимно перпендикулярных направлений.

Примечания

- 1 Направления потока, которые маловероятны на практике в связи с конструкцией прибора или указаны изготовителем как недопустимые, проверять не следует.
- 2 Если имеется направление потока, при котором влияние скорости зависит от того, будет ли этот поток по отношению ко входу датчика набегающим или уходящим, следует проверить оба эти случая.

4.4.11 Проверка влияния расхода анализируемого газа

В приборе с автоматизированной принудительной подачей газа должен быть предусмотрен индикатор снижения расхода ниже допускаемого уровня.

Влияние расхода проверяют путем его изменения:

- от 130 % номинального значения расхода или, если это невозможно, от номинального значения расхода;
- до $50\,\%$ номинального значения расхода или до значения, при котором прибор подает сигнал неисправности, если это значение выше.
 - 4.4.12 Проверка влияния пространственного положения
 - 4.4.12.1 Портативные приборы

Датчик или весь прибор поворачивают на 360° вокруг каждой из трех взаимно перпендикулярных осей. Показания снимают через каждые 90° .

4.4.12.2 Стационарные и передвижные приборы

Датчик или прибор со встроенным датчиком поворачивают вокруг каждой из трех взаимно перпендикулярных осей в пределах границ пространственного положения, указанных изготовителем, но не менее чем на угол $\pm 15^{\circ}$ от рабочего положения.

- 4.4.13 Испытание на воздействие вибрации
- 4.4.13.1 Испытательный стенд

Стенд для испытания на вибрацию должен быть оборудован вибрационным столом, способным

создавать вибрацию изменяющейся частоты и переменно-постоянной амплитуды смещения (или ускорения) в соответствии с требованиями следующих процедур при закреплении испытуемого прибора в рабочем положении.

4.4.13.2 Процедуры испытаний

4.4.13.2.1 Прибор включают, закрепляют на испытательном стенде и подвергают воздействию вибрации последовательно в каждой из трех взаимно перпендикулярных плоскостей.

Значение порога срабатывания во время испытания не должно превышать 20 % значения порога срабатывания при эксплуатации.

Прибор закрепляют на вибрационном столе тем же способом, который предусмотрен для эксплуатации, используя для этого любые упругие средства крепления, несущие или зажимные приспособления, поставляемые вместе с прибором.

Прибор подвергают воздействию вибрации в заданном диапазоне частот, при заданном смещении или заданной постоянной амплитуде ускорения в течение 1 ч в каждой из трех взаимно перпендикулярных плоскостей. Скорость изменения частоты не должна превышать 10 Гц/мин.

4.4.13.2.2 Процедура 1

Для выносных датчиков параметры испытательного режима должны быть следующими:

- диапазон частот 10—30 Гц, полное смещение 1 мм;
- диапазон частот 31—150 Γ ц, амплитуда ускорения 19,6 м/с² (2 g).

Примечание — Данную методику применяют также для приборов со встроенными датчиками.

4.4.13.2.3 Процедура 2

Для блоков управления, устанавливаемых отдельно от датчиков, параметры испытательного режима должны быть следующими:

- диапазон частот 10—30 Гц, полное смещение 1 мм;
- диапазон частот 31—100 Γ ц, амплитуда ускорения 19,6 м/с² (2 g).
- 4.4.13.2.4 По завершении испытания датчик прибора последовательно подвергают воздействию чистого воздуха и ПГС.
 - 4.4.14 Испытание на воздействие ударов при свободном падении

Данному испытанию подвергают только портативные приборы и выносные датчики стационарных приборов. Если изготовитель рекомендует, чтобы прибор при эксплуатации находился в футляре, то прибор испытывают в футляре.

- 4.4.14.1 Прибор во включенном состоянии отпускают с высоты 1 м для свободного падения на бетонную поверхность.
- 4.4.14.2 Испытание по 4.4.14.1 повторяют три раза, перед каждым падением прибор поворачивают к бетонной поверхности другой стороной.
- 4.4.14.3 Прибор считают не выдержавшим данное испытание, если после испытания он окажется очевидно в неработоспособном состоянии.

 Π р и м е ч а н и е — Отказы, возникающие в результате данного испытания, могут не проявиться до проведения следующих необходимых испытаний.

- 4.4.14.4 Прибор сначала подвергают воздействию чистого воздуха, затем воздействию ПГС.
- 4.4.15 Определение времени прогрева (не применяется к приборам эпизодического действия)

Значение порога срабатывания во время испытания не должно превышать 20 % значения порога срабатывания при эксплуатации.

Прибор в выключенном состоянии выдерживают в чистом воздухе в течение 24 ч. Затем прибор включают в чистом воздухе и измеряют время прогрева.

Прибор группы I в выключенном состоянии выдерживают в чистом воздухе еще в течение 24 ч. После этого прибор выдерживают в $\Pi\Gamma C$ в течение 5 мин, затем его включают в $\Pi\Gamma C$ и измеряют время прогрева.

4.4.16 Определение времени установления показаний (не применяется к приборам эпизодического действия)

Прибор включают в чистом воздухе и по истечении времени, равного по крайней мере удвоенному времени прогрева прибора, определенному при испытаниях по 4.4.15, не выключая, прибор или датчик(и):

- а) подвергают воздействию скачкообразного перехода из чистого воздуха в ПГС, подачу которой осуществляют, используя соответствующее оборудование (см. приложение В);
- б) после наступления стабилизации в ПГС подвергают воздействию скачкообразного перехода снова в чистый воздух.

Определяют время установления показаний t(50) и t(90) (см. 2.6.6) для случаев а) и б).

Время установления показаний определяют у прибора в состоянии поставки и без дополнительных (необязательных) принадлежностей, например таких, как приспособления для защиты от атмосферных воздействий.

4.4.17 Определение минимального времени измерения (для приборов эпизодического действия)

ПГС подают на вход прибора одновременно с началом процедуры измерения.

4.4.18 Проверка устойчивости к воздействию газовой перегрузки (для приборов с верхним пределом измерений объемной доли метана не более 5 % или с верхним пределом измерений содержания горючих газов до 100 % НКПР)

Весь прибор или выносной датчик стационарного или передвижного прибора подвергают испытаниям в соответствии с 4.4.18.1 и 4.4.18.2, используя испытательное оборудование, воспроизводящее внезапное воздействие повышенного содержания газа, например такое, как описано в приложении В.

4.4.18.1 Проверка однозначности получаемой информации

Прибор или выносной датчик подвергают воздействию скачкообразного перехода из чистого воздуха в ПГС с объемной долей горючего газа 100~% и выдерживают в этой ПГС в течение 2~ мин или, в случае испытания прибора эпизодического действия, имеющего встроенный временной цикл, в течение минимального времени измерения.

4.4.18.2 Испытание на остаточный эффект

4.4.18.2.1 Приборы эпизодического действия

Прибор подвергают воздействию газовоздушной смеси с объемной долей горючего газа 50 %, затем — воздействию чистого воздуха. Продолжительность каждого воздействия должна быть равна минимальному времени измерения. Данную операцию выполняют 50 раз. После этого прибор пять раз включают в чистом воздухе, продолжительность работы при каждом включении должна быть равна минимальному времени измерения. Затем прибор подвергают воздействию $\Pi\Gamma$ С.

4.4.18.2.2 Приборы непрерывного действия

Прибор или выносной датчик подвергают воздействию скачкообразного перехода из чистого воздуха в газовоздушную смесь с объемной долей горючего газа 50 % и выдерживают в ней 3 мин. Затем датчик подвергают воздействию чистого воздуха в течение 20 мин, после чего — воздействию ПГС.

- 4.4.19 Проверка времени работы прибора от аккумуляторной батареи
- 4.4.19.1 Портативные приборы непрерывного действия
- 4.4.19.1.1 Прибор с полностью заряженной к началу испытания батареей должен непрерывно работать в чистом воздухе в течение:
 - а) 8 ч, если прибор имеет устройство включения и выключения, доступное для пользователя;
 - б) 10 ч, если прибор не имеет такого устройства, или
 - в) любое более продолжительное время, указанное изготовителем.

По окончании указанного времени работы прибор подвергают воздействию ПГС.

- 4.4.19.1.2 Далее прибор должен продолжить работу сначала до появления сигнала о разряде батареи и затем еще в течение 10 мин.
 - 4.4.19.2 Портативные приборы эпизодического действия
- 4.4.19.2.1 Прибор с полностью заряженной к началу испытания батареей включают в чистом воздухе 200 раз.

Продолжительность работы прибора при каждом включении должна быть равна минимальному времени измерения. Между включениями прибор выдерживают в выключенном состоянии в течение 1 мин. После выполнения 200 включений прибор подвергают воздействию ПГС.

- 4.4.19.2.2 Далее включения прибора должны быть продолжены до появления сигнала о разряде батареи, после чего выполняют еще 10 включений.
- 4.4.20 Проверка влияния отклонений напряжения питания от номинального значения
 - 4.4.20.1 Общие положения

Прибор должен быть установлен для испытаний при нормальных условиях (см. 4.3), номинальных напряжении и частоте тока питания. Затем прибор подвергают испытаниям, указанным в 4.4.20.2 и 4.4.20.3. Для приборов с выносными датчиками испытания проводят при максимальном и минимальном сопротивлениях соединительного кабеля.

4.4.20.2 Приборы с питанием от источников переменного тока и внешних источников постоянного тока

Градуировочная характеристика прибора (*номинальная функция преобразования у сигнализатора*) должна быть проверена при значениях напряжения питания, составляющих 115 % и 80 % номинального напряжения.

4.4.20.3 Приборы с другими источниками питания

Если изготовитель предусматривает другие источники питания, отличные от указанных в 4.4.20.2, то прибор испытывают при максимальном и минимальном значениях напряжения, указанных изготовителем.

4.4.21 Проверка устойчивости к прерываниям электропитания, наносекундным импульсным помехам и скачкообразным изменениям напряжения

4.4.21.1 Общие положения

Прибор устанавливают для испытаний при нормальных условиях в соответствии с 4.3 и затем подвергают испытаниям, указанным в 4.4.21.2—4.4.21.4, в чистом воздухе.

Значение порога срабатывания во время испытания не должно превышать 20 % значения порога срабатывания при эксплуатации.

4.4.21.2 Кратковременное прерывание электропитания

Электропитание прерывают на $10~{\rm mc}~10~{\rm pas}~{\rm c}$ интервалами между прерываниями средней продолжительностью $10~{\rm c}.$

4.4.21.3 Наносекундные импульсные помехи

Прибор испытывают в соответствии с ГОСТ Р 51317.4.4, степень жесткости испытаний -2. Продолжительность испытаний должна составлять 1 мин для каждой испытуемой линии.

4.4.21.4 Скачкообразные изменения напряжения

Для прибора с питанием от источника переменного тока или от внешнего источника постоянного тока напряжение питания увеличивают на 10%, поддерживают на этом уровне до наступления стабилизации, а затем снижают до уровня на 15% ниже номинального напряжения. Каждое изменение напряжения должно происходить в пределах 10% мс.

4.4.22 Проверка влияния пробоотборного зонда

Если для прибора предусмотрен пробоотборный зонд, сначала на вход прибора без зонда подают $\Pi\Gamma C$ и снимают показание. Затем к прибору присоединяют пробоотборный зонд и испытание повторяют.

4.4.23 Проверка устойчивости к воздействию пыли (только для приборов с диффузионной подачей газа)

Моделируют воздействие пыли, равномерно уменьшая на 50% площадь входного отверстия прибора, через которое поступает газ, и затем прибор подвергают воздействию чистого воздуха и $\Pi\Gamma C$.

- 4.4.24 Проверка устойчивости к воздействию отравляющих веществ и неизмеряемых компонентов
- 4.4.24.1 Отравляющие вещества (применяется для приборов группы I с термокаталитическими датчиками)

Прибор подвергают воздействию метановоздушной смеси с объемной долей метана $1\,\%$ и примесью гексаметилдисилоксана объемной долей 10 млн $^{-1}$. В этой среде прибор непрерывного действия должен отработать непрерывно в течение 40 мин, прибор эпизодического действия должен выполнить 100 измерений.

Примечание — Если изготовитель заявляет о повышенной устойчивости прибора к отравляющим веществам, методика испытаний, применяемая для подтверждения этих заявлений, может быть согласована между потребителем, изготовителем и испытательной лабораторией. Сведения о возможных отравляющих веществах и их воздействиях на характеристики датчиков приведены в МЭК 61779-6.

4.4.24.2 Неизмеряемые компоненты

Прибор последовательно подвергают воздействию следующих газовых смесей.

- а) Прибор группы I с верхним пределом измерений объемной доли метана в воздухе не более 5 %;
- 1) метан объемной долей 1,5 % + кислород объемной долей 13,0 % в азоте;
- 2) метан объемной долей 1,5 % + углекислый газ объемной долей 5,0 % в воздухе;
- 3) метан объемной долей 1,500 % + этан объемной долей 0,075 % в воздухе.
- б) Прибор группы I с верхним пределом измерений объемной доли метана до 100 %:
- 1) метан объемной долей 50,0 % + кислород объемной долей 6,5 % в азоте;
- 2) метан объемной долей 50 % + углекислый газ объемной долей 5 % в азоте;
- 3) метан объемной долей 50.0% + 9тан объемной долей 2.5% в азоте.

Газовые смеси могут быть приготовлены любым приемлемым методом. Допускаемые отклонения объемной доли каждого компонента смесей от номинального значения должны быть в пределах $\pm 10~\%$ номинального значения.

Относительная погрешность, с которой определяют действительное значение объемной доли метана, должна быть в пределах $\pm 2~\%$.

4.4.25 Проверка устойчивости к электромагнитным помехам

Прибор, включая датчик и линии связи, подвергают испытанию на помехоустойчивость в соответствии с ГОСТ Р 51317.4.1 и ГОСТ Р 51317.4.3. Степень жесткости испытания — 2, напряженность электромагнитного поля при испытании — 3 B/M.

Значение порога срабатывания во время испытания не должно превышать 20 % значения порога срабатывания при эксплуатации.

Испытание проводят в чистом воздухе.

В случае испытаний систем дистанционного контроля, в которых блок управления предназначен для монтажа в общей стойке, такой блок управления подвергают испытанию на помехоустойчивость в оболочке, поставляемой изготовителем. Руководство по эксплуатации должно информировать потребителя, что блок управления таких систем при эксплуатации должен находиться в оболочке, чтобы избежать неблагоприятных электромагнитных воздействий.

 Π р и м е ч а н и е — Требования к электромагнитному излучению приборов могут быть установлены в других стандартах.

5 Комплект средств метрологического обеспечения

Если вместе с прибором поставляют комплект средств метрологического обеспечения, проводят следующее испытание:

- а) прибор проверяют и регулируют в соответствии с 4.4.3.1, соблюдая условия 4.3 и используя оборудование, применяемое для испытаний по 4.4;
- б) применяют комплект средств метрологического обеспечения в соответствии с инструкциями изготовителя и проверяют ответную реакцию прибора.

ПРИЛОЖЕНИЕ А (обязательное)

Концентрационные пределы распространения пламени (НКПР и ВКПР) некоторых горючих газов и паров

Концентрационные пределы распространения пламени (НКПР и ВКПР) некоторых горючих газов и паров представлены в таблице A.1 только для выполнения испытаний в соответствии с настоящим стандартом. Данные таблицы A.1 соответствуют ГОСТ Р 51330.19.

В таблице используют следующее сокращение: БЭМЗ — безопасный экспериментальный максимальный зазор.

Значения относительной плотности, приведенные в таблице, определены при нормальных температуре и давлении, если не указано иначе.

ГОСТ Р 52136-2003

TOCT P 51330.11 IIA IIB IIA IIB IIB IIB IIA IIB IIA IIA IIA IIA IIA IIA IIA IIA IIC IIA IIA ности смесей по Категория взрывоопас-LOCT P 51330.5 смесей по **T**2 T2**T**2 T2**T** \mathbf{T} T2 T_2 T2 T3 **T**2 Π T3Ξ Ξ Γ Γ І руппа взрывоопасных 0.92 1,23 1,50 0,72 0,86 3,18 0,37 1,54 0,87 1,06 0,96 0,84 0,70 1,00 1,01 БЭМЗ, мм Э°, кинэнэмьпповомьо 305 219 464 523 217 406 463 348 378 220 410 184 334 535 434 480 390 630 279 390 Температура 1108 533 275 728 505 425 428 620 1092 505 620 3800 438 240 323 662 Концентрационный предел верх-ний распространения пламени 001 69 48 74 85 157 24 85 220 ниж-ний 9 51 42 65 64 61 92 107 47 62 19,9 14,8 0.09 10,0 13,0 16,0 19,0 19,9 31,8 28,0 18,0 33,6 11,0 7,30 100,0 9,30 верх-ний объемная доля, % 8, 2,85 15,0 1,10 3,00 5,00 2,30 2.90 2,80 2,68 2,50 1,40 4,00 4,00 2,00 2,50 5,60 2,90 1,20 1 Менее Менее —20 -2638 49 48 13 32 85 89 75 23 64 40 45 21 Гемпература вспышки, плотность по воздуху 1,52 2,10 0,59 3,66 2,07 3,52 2,70 1,93 2,48 1,83 2,64 4,67 3,22 2,00 2,00 3,94 0.90 3,41 Относительная $CH_2 = CH - CH_2 - O - CHCH_2CH_2O$ Химическая формула CH,=CHCH,00CCH, C₆H₅CH₂CH(NH₂)CH CH,=CHCH,OH NH2CH2CH2OH CH,=CHCOOH CH2=CHCH2CI $CH_2(CH_2)_5NH$ CH2=CHCHO CH₂CHCOCI CH,=CHCN $(CH_3CO)_2O$ CH_3COOH $(CH_3)_2CO$ C_6H_5CHO CH₃CHO CH₃COCI $CH \equiv CH$ $C_6H_5NH_2$ CH₃COF CH,CN 16 1-Пропенилокси-2,3-эпоксипропан 2-Пропен-1-ол (аллиловый спирт) Пропеновая (акриловая) кислота Пропеноилхлорид (акрилоилхло-(1-аллилокси-2,3-эпоксипропан) 11 Пропенонитрил (акрилонитрил) 3-Хлор-1-пропен (аллилхлорид) Пропенилацетат (аллилацетат) 3 Ангидрид уксусной кислоты 9 Пропеналь (акролеин) Газ или пар Уксусная кислота 2-Аминоэтанол 8 Ацетилфторид 6 Ацетилхлорид Ацетонитрил Бензальдегид Ацетальдегид Бензедрин 7 Ацетилен 4 Ацетон Аммиак 20 Анилин Азепан 10 14 18 13 15 19 22 12 17

Таблица А.1 — Данные о воспламеняемости

		ΛX/	пки,	Концен	Концентрационный предел	нный пр	эедел	J° ,R		СНРІХ	-эшч
			ПЫ	1				инә			0
Газ или пар	Химическая формула		гура вс	ниж- ний	верх-	ниж- ний	верх- ний		MI	0	п йэээ
		Относитс	.С Демперал	объемная доля, %	ная %	мг/л	п	Температ самовост	P3M3' w	ГОСТ Р смесей п Группа в	Категори ности см ГОСТ Р
23 Бензол	C ₆ H ₆	2,70	—11	1,20	8,60	39	280	999	0,99	Т1	IIA
24 1-Бромбутан	$CH_3(CH_2)_2CH_2Br$	4,72	13	$2,50^{1)} \epsilon$	$6,60^{1)}$	143	380	265	1	Т3	IIA
25 2-Бром-1,1-диэтоксиэтан	(CH ₃ CH ₂ O) ₂ CHCH ₂ Br	7,34	57	I	I	I	I	175	1,00	T4	IIA
26 Бромэтан	CH ₃ CH ₂ Br	3,75	Менее —20	6,70	11,3	306	517	511	ı	T1	IIA
27 1,3-Бутадиен	$CH_2 = CHCH = CH_2$	1,87	-85	1,40	16,3	31	365	430	0,79	T2	IIB
28 Бутан	C_4H_{10}	2,05	60	1,40	9,3	33	225	372	0,98	T2	IIA
29 Изобутан	(CH ₃) ₂ CHCH ₃	2,00	_	1,30	8,6	31	236	460	0,95	Т1	IIA
30 1-Бутанол	$CH_3(CH_2)_2CH_2OH$	2,55	29	1,70	12,0	52	372	340	0,94	Т2	IIA
31 Бутанон	CH ₃ CH ₂ COCH ₃	2,48	6-	1,80	10,0	50	302	404	0,84	Т2	IIB
32 1-Бутен	CH ₂ =CHCH ₂ CH ₃	1,95	-80	1,60	10,0	38	235	384	0,94	Т2	IIA
33 2-Бутен	CH ₃ CH=CHCH ₃	1,94		1,60	10,0	40	228	325	68,0	Т2	IIB
34 3-Бутен-3-олид	$CH_2 = CCHO(O)O$	2,90	33	I	I	I	I	262	0,84	Т3	IIB
35 2-(2-Бутоксиэтокси) этанол	CH ₃ (CH ₂) ₃ OCH ₂ CH ₂ OCH ₂ CH ₂ OH	5,59	78	1	I	1		225	1,11	Т3	IIA
36 Бутилацетат	CH ₃ COOCH ₂ (CH ₂) ₂ CH ₃	4,01	22	1,30	0,6	64	466	330	1,04	Т2	IIA
37 н-Бутилакрилат	$CH_2 = CHCOOC_4H_9$	4,41	38	1,20	8,0	63	425	268	0,88	Т3	IIB
38 Бутиламин	$CH_3(CH_2)_3NH_2$	2,52	-12	1,70	8,6	49	286	312	0,92	Т2	IIA
39 Изобутиламин	$(CH_3)_2CHCH_2NH_2$	2,52	-20	1,47	8,01	44	330	374	1,15	Т2	IIA
40 1-Бутокси-2,3-эпоксипропан	CH ₃ (CH ₂) ₃ OCH ₂ CHCH ₂ O	4,48	44					215	0,78	Т3	IIB
41 Бутилгидроксиацетат	HOCH ₂ COOC ₄ H ₉	4,45	61	I	I	1	1	1	0,88	1	IIB
42 Изобугилизобугират	$(CH_3)_2CHCOOCH_2CH(CH_3)_2$	4,93	34	0,80	I	47	I	424	1,00	Т2	IIA
43 Бугилметакрилат	$CH_2 = C(CH_3)COO(CH_2)_3CH_3$	4,90	53	1,00	8,9	58	395	289	0,95	Т3	IIA
44 трет-Бутоксиметан	CH ₃ OC(CH ₃) ₃	3,03	-27	1,50	8,4	54	310	385	1,00	T2	IIA
45 н-Бутилпропионат	$C_2H_5COOC_4H_9$	4,48	40	1,10	7,7	58	409	389	0,93	T2	IIA

ГОСТ Р 52136-2003

TOCT P 51330.11 IIA IIB IIA IIB IIA IIA IIB IIA ности смесей по Категория взрывоопас-LOCT P 51330.5 смесей по **T**4 **T**2 T3 **T**2 **T**2 T2 **T**2 T2**T**2 Π \mathbf{I} **T**2 T_1 Γ Γ Γ І руппа взрывоопасных 0,34 1.02 1,35 1,06 1,16 0,74 1,03 1,00 1,10 1,23 0,92 0,92 0,84 0,96 1,40 0,71 БЭМЗ, мм Э°, кинэнэмьпповомьо 396 415 416 176 605 388 385 510 625 355 476 590 191 460 209 637 250 440 520 440 95 541 Температура 417 386 413 610 378 320 1900 700 520 1325 540 410 365 350 870 340 верх-ний Концентрационный предел распространения пламени $M\Gamma/\Pi$ 19 091 158 92 29 54 47 69 70 98 95 94 091 75 86 78 ниж-ний 95 126 160 99 77 28,5 12,5 11.0 0,60 74,0 10,0 34,4 15,4 16,0 33,0 19,0 10,1 8,8 1 верх-ний объемная доля, % 10, 60,09 1.70 4,40 ,20 1,80 1,60 10,90 1,80 2,30 3,60 5,00 3,60 7,60 2,40 2.80 2,60 2,00 2,00 1.40 ниж-ний 6,5 -32 -16-22 -12**-78** 8 -32Менее —14 -24Менее —14 -2158 30 28 21 28 50 55 61 Гемпература вспышки, 2,48 2,48 3.03 3,10 3,88 3,20 3.19 3,30 2,22 2,15 4,16 2,70 2,70 плотность по воздуху 0,97 2,07 64 Относительная Химическая формула $CH_2 = C(CH_3)CH_2CI$ CH₃CH₃CH₂CHO CH₃(CH₂)₂CH₂CI (CH₁),CHCOOH (CH₃)₂CHCH₂Cl $CH_3CO(CH_2)_3CI$ OCH2CHCH2CI (CH₃)₂CHCHO CH3CHCIC2H5 CH3CH2CH2CI CH₃CH₃C≡CH CH₂CICH₂OH CH₃OCH,Cl (CH₃)₂CHCl CH₂=CHCl CH3CH3CI (CH₁),CCI C3H7COF C₆H₅Cl CH₃Cl COS CS_2 C_0 Углерод дисульфид (сероуглерод) Углерод оксид насыщенный при 57 1-Хлор-2,3-эпоксипропан Углерод сульфидоксид 2-Метил-1-хлорпропан 2-Метил-2-хлорпропан 2-Метил-3-хлорпропен 49 Изобутановая кислота Газ или пар 5-Хлор-2-пентанон 62 Метоксихлорметан Бутирилфторид 2-Хлорпропан 1-Хлорпропан 2-Хлорэтанол 55 1-Хлорбутан 2-Хлорбутан 48 Изобутаналь Хлорбензол 61 Хлорметан натедоку 09 58 Хлорэтан Бутаналь 46 1-Бутин 53 54 99 59 65 99 47 20 49 63 52 67 89 51

								C		X	_
		ЭЗДУХУ	ПЫШКИ	Концел распро	Концентрационный предел распространения пламени	иный пр ия плам	редел лени) ° , кине			O
Газ или пар	Химическая формула		гура вс	ниж- ний	верх- ний	ниж- ний	верх-		WJ	0	и иэээ
		относитО гэонтогл	.С Демперат	объемная доля, %	иная 1, %	мг/л	ц,	Температ Самовосп	еэмз' м	ТОСТ Р смесей п Труппа в	Категори ности см ГОСТ Р
69 Трифторхлорэтен	CF ₂ =CFCI	4,01	I	28,5	35,2	1481	1830	209	1,50	T1	IIA
70 1-Метокси-2,2,2-трифтор-1-хлор- этан	CF ₃ CHClOCH ₃	5,12	4	8,00	-	484	I	430	2,80	Т2	IIA
71 а-Хлортолуол	C ₆ H ₅ CH ₂ Cl	4,36	09	1,20	I	63	I	585	ı	T1	IIA
72 Каменноугольный деготь	ı	I	25	I	I	I	I	272	I	Т3	IIA
73 Коксовый газ	l	ı	I	4,00	30,0	I	I	555	I	TI	IIB
74 Крезол (смесь изомеров)	$CH_3C_6H_4OH$	3,73	81	1,10	I	50	I	555	I	Т1	IIA
75 2-Бутеналь	CH ₃ CH=CHCHO	2,41	13	2,10	16,0	62	470	280	0,81	Т3	IIB
76 Изопропилбензол	$C_6H_5CH(CH_3)_2$	4,13	31	0,80	6,5	40	328	424	1,05	Т2	IIA
77 Циклобутан	$CH_2(CH_2)_2CH_2$	1,93		1,80	l	42			I	1	IIA
78 Циклогептан	$CH_2(CH_2)_5CH_2$	3,39	9	1,10	6,7	44	275	1	I	1	IIA
79 Циклогексан	$CH_2(CH_2)_4CH_2$	2,90	-18	1,20	8,3	40	290	259	0,94	T3	IIA
80 Циклогексанол	$CH_2(CH_2)_4$ CHOH	3,45	61	1,20	11,1	50	460	300	I	Т3	IIA
81 Циклогексанон	$CH_2(CH_2)_4CO$	3,38	43	1,00	9,4	42	386	419	0,98	T2	IIA
82 Циклогексен	$CH_2(CH_2)_3CH = CH$	2,83	-17	1,20	1	41	1	244	I	Т3	IIA
83 Циклогексиламин	$CH_2(CH_2)_4CHNH_2$	3,42	32	1,10	9,4	48	372	293	ı	Т3	IIA
84 1,3-Циклопентадиен	СН2СНСНСН	2,30	-50	1,70	7,7	50	227	465	0,99	T1	IIA
85 Циклопентан	$CH_2(CH_2)_3CH_2$	2,40	-37	1,40	I	41	I	320	1,01	Т2	IIA
86 Циклопентен	CH=CHCH ₂ CH ₂ CH	2,30	-48	1,48	_	41	I	309	96,0	Т2	IIA

ГОСТ Р 52136-2003

TOCT P 51330.11 IIB IIA IIB IIA IIC IIA IIA IIA IIA IIA IIB IIB IIA IIA IIA IIA ности смесей по Категория взрывоопас-LOCT P 51330.5 смесей по **T**2 **T**4 T2T2**T**2 **T**2 **T**4 **T**2 **T**2 **T** Π **T**2 T3 Ξ Ξ Γ Γ І руппа взрывоопасных 1,05 0.88 0,84 1,38 0,45 1.801,82 0,830.87 0,90 1,46 0,97 1.31 3,91 0.91 0,81 0,91 БЭМЗ, мм О°, кинэнэмьпловомьо 295 413 530 455 410 452 436 250 160 170 648 469 469 440 440 312 450 160 498 170 201 390 Температура 5467 692 747 368 099 654 306 366 433 460 564 570 1621 183 284 верх-ний Концентрационный предел распространения пламени мг/л 255 65 63 242 136 104 ниж-ний 42 99 230 43 50 69 50 58 39 85 40 41 48 34 78,0 16,0 14,8 49.0 10,4 6,5 8.5 9,2 16,0 16,0 10.0 7,2 $4,9^{2}$ 1 верх-ний объемная доля, % 0.90 5.60 2,70 1,00 5,60 6,20 1.70 1,60 2,40 0,70 0,70 2,20 1,30 0.80 1,4 0.90 .70 1,70 1,60 ниж-ний 70^{2} 0 6 -23-45 -109 65 15 47 49 54 46 25 4 99 27 24 15 36 16 24 31 J. Гемпература вспышки, 4,62 5,00 5,07 3,42 3,42 3,55 3,90 4.55 2,53 плотность по воздуху 9,93 4,90 4,07 4,07 2,90 4,31 1 Относительная $CH_2=C(CH_3)COOCH_2(CF_2)_6H$ Химическая формула $CH_2(CH_2)_3CHCH(CH_2)_3CH_2$ CH2=CHCHCICH2CI C₂H₅O(CH₂)₂OC₂H₅ (CH₃)₃COOC(CH₃)₃ CH₃COCHCH₂CH₂ CH₃C₆H₄CH(CH₃)₂ CH,CCI=CHCH,CI CH3CHCICH3CI $(CH_3CH_2O)_2CO$ (COOCH₂CH₃)₂ $(CH_3(CH_2)_3)_2O$ $CH_2CH_2CH_2$ CH_2CICH_2CI CICH=CHCI (CH,CH,),O $(C_2H_5)_2SiCl_2$ $(C,H_{\xi}),NH$ CH, CHCl, C₆H₄Cl₂ $C_{10}H_{22}$ $C_{10}H_{12} \\$ Дихлорбензолы (изомер не указан) 2,2,3,3,4,4,5,5,6,6,7,7-Додекафтор-(технический) Декан (смесь изомеров) Ди-трет-бутилпероксид Газ или пар Ацетилциклопропан Дихлордиэтилсилан Дициклопентадиен 3,4-Дихлор-1-бутен 1,3-Дихлор-2-бутен Дибутиловый эфир Диэтиловый эфир гептилметакрилат 1,2-Диэтоксиэтан 1,2-Дихлорпропан Диэтилкарбонат 1,2-Дихлорэтан 1,1-Дихлорэтан 1,2-Дихлорэтен Диэтилоксалат Циклопропан Диэтиламин п-Цимол Декалин 105 100 101 102 103 88 93 95 96 86 104 106 107 87 88 90 92 4 97 66 91

LOCT P 51330.11 IIB IIA IIA IIA IIA IIA IIB IIA IIB IIA IIA IIB IIB IIB IIA IIA IIA IIA IIA IIA IIA ности смесей по Категория взрывоопас-LOCT P 51330.5 смесей по **T**2 **T**4 T3T3 7 T3**T**2 **T**2 **T** T3T3 **T**2 T3 **T**2 **T**2 T3**T T**2 T3**T**2 T3Группа взрывоопасных 1,15 1,18 1,10 0,93 0.92 1,02 0.94 0,72 0,861,08 0,85 0.95 0,84 1,00 1,00 0,70 БЭМЗ, мм Э°, кинэнэмьпловомьэ 237 185 285 405 236 317 207 187 256 290 400 197 440 305 240 449 360 380 220 240 199 245 379 і емпература 2545 999 370 260 006 272 535 610 310 348 190 390 500 813 935 верх-ний 1 Концентрационный предел распространения пламени $M\Gamma/\Pi$ ниж-ний 102 85 50 42 42 104 49 45 53 9 62 55 38 09 43 51 50 74 70 6,5 21,0 14,4 10,4 16,9 32,0 16.0 95 22,5 25,1 3,6 6,3 верх-ний 6,1 6,1 объемная доля, % 30, 0,00 2,50 2,70 0,75 0,70 1,27 1,20 1,00 2,80 1,60 1,80 0,80 2,40 0,80 ,57 2,30 ниж-ний 90 20 1 9 -18 -42 9 75 26 75 4 20 -28 -2139 50 58 26 26 39 -5 42 104 1 \mathcal{C} Гемпература вспышки, 6,43 4,97 5.45 3,48 3,52 1,55 3,10 2,60 3,03 3,38 1,59 3,87 4,34 4,66 плотность по воздуху 2,51 2,07 3,93 3,03 2,21 Относительная NH(CH₃)CH₂CH₂NH(CH₃)CH₂CH₂ CH3CH2CH(CH3)CH(CH3)CH2CH3 (CH₃)₂CH(CH₂)₂O(CH₂)₂CH(CH₃)₂ Химическая формула $((CH_3)_2CHCH_2)_2CHOH$ (CH₃),NHCH,CH,CN ((CH₃)₂CHCH₂),NH OCH₂CH₂OCH₂CH₂ $(CH_3)_2N(CH_2)_3NH_2$ CH₃O(CH₂)₂OCH₃ (CH₃),NC,H₄OH OCH₂CH₂OCH₂ $((CH_3)_2CH)_2NH$ $(CH_3(CH_2)_5)_2O$ ((CH₃)₂CH)₂O CH₂CH₃),SO₄ HCON(CH₃), $CH_2(OCH_1)$ (CH₃),NNH, (CH₃O)₂SO₂(CH₃)₂NH $CH_2=CF_2$ $(CH_3)_2O$ $C_{10}H_{16}$ N,N-Диметил-1,3-диаминопропан 3-(Диметиламино)пропионитрил Дипентен, необработанный 2-(Диметиламино) этанол Диизопропиловый эфир Диизопентиловый эфир N,N-Диметилформамид 113 2,6-Диметил-4-гептанол 1,4-Диметилпиперазин N,N-Диметилгидразин Дигексиловый эфир Газ или пар Диметиловый эфир 1,2-Диметоксиэтан 3,4-Диметилгексан Диизопропиламин Диметоксиметан Диизобутиламин Диметилсульфат 1,1-Дифторэтен Лиэтилсульфат 1,3-Диоксолан Диметиламин 1,4-Диоксан 110 112 114 115 116 118 121 123 124 125 128 109 117 119 120 122 126 127 129 130 131

ГОСТ Р 52136-2003

TOCT P 51330.11 IIB IIB IIA IIB IIA IIB IIA IIA IIA IIA IIA IIA IIA IIA IIA ности смесей по Категория взрывоопас-LOCT P 51330.5 смесей по **T**4 T3 T_4 **T**2 **T**4 T2T3**T**2 **T**2 T2**T**2 T3 **T**2 T2T3 T3 T3 І руппа взрывоопасных 0,95 0,84 0,94 0.99 96,0 98.0 0,65 0,70 0,00 0,97 1,20 0,92 0,91 0,91 БЭМЗ, мм О°, самовоспламенения, 515 446 298 435 425 280 189 295 363 235 380 212 171 380 190 350 262 430 431 Температура 376 593 519 588 477 468 359 642 406 300 340 272 423 194 280 верх-ний 901 Концентрационный предел распространения пламени мг/л 49 ниж-ний 73 59 89 65 54 59 4 99 42 42 26 49 31 8 49 42 14,9 9,2 9,5 36,0 37,0 15,5 18,0 15,7 12,7 14,0 7,8 9,9 6,8 9,1 верх-ний объемная доля, % 19, 1,10 3,10 2,30 2,50 1,80 1,20 2,20 1,40 2,68 1,40 2,80 1,00 90, 1,05 ниж-ний 96, ,20 0,90 Менее 5 Менее —20 Менее Менее —20 -37 54 Менее 57 4 12 40 47 94 20 21 21 O. Гемпература вспышки, 3,48 3,53 3,10 4,72 4,62 3,04 4,50 1,50 2.90 3,40 плотность по воздуху 4,00 Относительная CH₃CH₂OCH₂CH₂OCH₂OH Химическая формула CH3COOCH2CH2OCH2CH3 CH3COCH2COOCH2CH3 CH3CH2CH2CH2CH2 CH₃CH₂CH(CH₂)₄CH₂ CH₃CH₂CH(CH₂)₃CH₂ CH₂=CHCOOCH₂CH₃ CH3CH3CH3COOC3H5 CH,CH,OCH,CH,OH (CH,CH,CH,),NH CH3COOCH2CH3 $(CH_3(CH_2)_4)_2O$ CH2CH3C6H5 CH3CHCH2O CH₃CH₂OH CH₃CH₂SH $CH_2 = CH_2$ $C_2H_5NH_2$ $(C_3H_7)_2O$ CH₃CH₃ 2-(2-Этоксиэтокси)этанол Дипентиловый эфир Дипропиловый эфир Газ или пар 2-Этоксиэтилацетат 1,2-Эпоксипропен Этилциклопентан Этилциклогексан 143 Этилацетоацетат Этилциклобутан 2-Этоксиэтанол Дипропиламин Этен(этилен) Этилбутират Этилакрилат Этилбензол Этилацетат Этиламин Этантиол Этанол Этан 142 132 133 134 135 136 137 138 139 140 141 144 145 146 147 148 149 151 150

LOCT P 51330.11 IIB IIA IIB IIA IIB IIA IIA IIA IIA IIB IIB IIA IIB IIB IIB IIA IIA IIA IIA IIA ности смесей по II Категория взрывоопас-LOCT P 51330.5 смесей по **T**2 T3**T**2 T27 9L T3 T3T3T2T3T3 **T**4 \mathbf{I} T_2 T_2 Ξ Группа взрывоопасных 0,88 96,0 1,20 0,94 0,93 0,59 0,96 0,86 0,57 1,86 0,88 0,680,800,97 0,91 0,91 1,01 БЭМЗ, мм Э°, кинэнэмьпломово 230 400 215 320 263 233 403 435 440 438 234 298 275 190 424 184 520 390 370 470 95 1 емпература 255 1555 408 353 378 290 1848 497 439 1049 89/ 396 920 670 верх-ний 281 Концентрационный предел распространения пламени мг/л 35,0 ниж-ний 5,2 52.0 47 75 70 50 94 88 190 64 87 53 85 99 70 46 6,8 16,5 8,4 100,0 50,0 73,0 57,0 19,3 14,3 16,3 6.2 10.1 6,7 92) верх-ний 16, объемная доля, % 2,10 1.00 1,10 1,00 2,70 2,70 0,75 1,50 2.00 3,00 10,0 2,60 1,60 7,00 2,30 ниж-ний 1,80 0.80 Менее —20 Менее —18 -2134 20 7 10 20 35 75 40 42 9 39 7 9 61 51 \mathcal{C} Гемпература вспышки, 1,52 5,94 4,00 3,90 2.10 2,60 7,27 1,60 2,30 3,46 4,03 3,94 2,97 плотность по воздуху 3,30 3,40 4,34 Относительная CHCHCHC(CH₃)C(CH₃)C(CH₃) Химическая формула $CH_3COOCH_2CH(C_2H_5)C_4H_9$ CH₂=CCH₃COOCH₂CH₃ $CH_3(CH_2)_3CH = CHCH_3$ OCH=CHCH=CHCHO OC(CH₂OH)CHCHCH (CH₃)₂CHCOOC₂H₅ $CH_3(CH_2)_5CH_2OH$ CH₃CO(CH₂)₄CH₃ CH=CHCH=CHO NH,CH,CH,NH, HCOOCH,CH3 $CH_3(CH_2)_4CH_3$ CH,OCH,CH, CH₃CH₂ONO C2H5OPSCI2 CH₂CH₂O $C_8H_{14}O$ HCH0 C_7H_{16} не 1.2-Диаминоэтан(этилендиамин) Этилпропилпропеналь (изомер 160 0-Этилдихлортиофосфат Гептан (смесь изомеров) Гексан (смесь изомеров) Метилэтиловый эфир Фурфуриловый спирт 1,2,3-Триметилбензол 163 Муравьиная кислота Газ или пар 2-Этилгексилацетат Этилметакрилат Этилизобугират Формальдегид 2-Фуральдегтд Этилформиат Этиленоксид Этилнитрит 2-Гептанон 1-Гептанол 2-Гептен указан) Фуран 168 169 172 152 153 155 156 157 158 159 162 164 165 991 167 170 171 154 161

ГОСТ Р 52136-2003

LOCT P 51330.11 IIB IIB IIB IIA IIB IIA IIA IIA IIA IIC IIA IIA IIA IIA IIA ности смесей по Категория взрывоопас-LOCT P 51330.5 смесей по T3 **T**2 T3 T2T2**T**2 **T**2 T3 \mathbf{I} **T**2 \mathbf{T} **T**2 Ξ Γ Ξ Γ Γ Ξ І руппа взрывоопасных 0.98 0,28 0.89 0,85 0,99 0,85 0,85 0,98 96,0 1,20 0,80 0,98 0.94 0,92 1,06 БЭМЗ, мм Э°, кинэнэмьпловомьэ 510 246 210 285 470 415 475 293 510 386 340 280 392 339 533 089 537 537 430 420 290 499 Температура 336 420 475 685 270 290 374 385 189 650 484 650 903 1020 336 63 520 365 верх-ний Концентрационный предел распространения пламени мг/л 88,0 293 50,0 57.0 51.0 60,09 40,0 73 80 9/ 66 62 85 55 50 47 37 ниж-ний 901 29 29 38 45.5 9,0 46,0 6,9 17,0 17,0 36,0 21,0 20,6 16,0 14,2 25,0 20.7 10.2 10,5 9,9 26,0 8,0 верх-ний объемная доля, % 1,307,5 0,70 4,40 4,40 5,50 2,40 3,20 1,30 2,40 4,20 1,20 4,00 4.00 1,80 1,30 1.40 1,30 ,20 5,40 0,80 50 ниж-ний Менее —20 -10-18-53 -3 47 63 23 58 38 44 17 39 62 52 18 42 Э. Температура вспышки, 3,46 0,07 4,00 3,60 0,55 1,60 2,63 2,56 1.00 3.03 2,40 плотность по воздуху 0,90 4,00 3,00 2,50 1 1 Относительная CHC(CH₃)CHC(CH₃)CHC(CH₃) Химическая формула CH₃COCH₂C(CH₃)₂OH CH₃CH₃C(OH)(CH₃), CH3COOCH3COCH3 $(CH_3)_2CH(CH_2)_2OH$ (CH₃)₂CHCH₂CH₃ $CH_3CO(CH_2)_3CH_3$ CH₂=CHCOOCH₃ CH₃OCH₃CH₂OH $(CH_3)_2C=CHCH_3$ CH,CCH,COCI CH3COOCH3 CH₃OOCI $C_6H_{13}OH$ $(C_2H_4O)_2$ CH_3SH CH₃OH HCN CH_4 H,S CH_4 H_2 Диводород сульфид (сероводород) 4-Гидрокси-4-метил-2-пентанон Метилпропеноат (метилакрилат) 2-Метилпропеноилхлорид Аминометан (метиламин) 1,3,5-Триметилбензол Газ или пар Метан (рудничный Метилхлорформиат 3-Метил-1-бутанол 2-Метил-2-бутанол Метилацетоацетат 2-Метоксиэтанол 2-Метил-2-бутен Водород цианид 2-Метилбутан Метальдегид Метилацетат 2-Гексанон 173 1-Гексанол 186 Метантиол Водород Керосин Метанол Метан 174 175 185 184 189 193 194 195 176 178 179 180 181 182 183 187 188 190 192 196 177 191

LOCT P 51330.11 IIA IIA IIB IIB IIB IIA IIA IIA IIA IIB IIA IIA IIA IIA IIA IIA IIA оп йэээмэ итэон Категория взрывоопас-LOCT P 51330.5 смесей по **T**2 **T**2 T3**T**2 T3 T2**T**2 Ξ T3 T3T2 T3 **T**2 T3 T3**T**2 \mathbf{I} Ξ І руппа взрывоопасных 0,98 0,76 0.78 0,95 0.95 0,840,93 0,96 1,00 0,92 0,89 1,07 1,21 1,01 БЭМЗ, мм 1 О°, самовоспламенения, 465 337 460 206 306 408 295 255 272 450 318 347 517 430 211 334 432 258 258 Температура 338 315 377 235 605 520 336 275 239 580 325 249 296 верх-ний Концентрационный предел распространения пламени мг/л ниж-ний 52 92 43 123 58 50 58 19 37 47 35 35 9 38 125 47 71 47 11,4 7,4 8,4 23.0 26,0 12.5 8,0 7,2 10,0 7,6 8,6 9,7 6,7 верх-ний 1 объемная доля, % 1,60 1,46 1,40 1,70 1,40 5,30 1.70 1,20 1,20 1,25 5,00 ниж-ний ,30 9, .50 1,40 Менее —10 Менее —18 89 2 54 20 20 24 0 48 37 16 30 24 28 O. Гемпература вспышки, 3,38 2,07 1,96 3,45 4,06 3,50 3,45 3,78 2,55 1,93 плотность по воздуху 2,90 2,83 Относительная Химическая формула $OCH_2CH_2C(=CH_2)CH_2CH_2$ $CH_{2}=CHC=CC(OH)(CH_{2})_{2}$ (CH₃),CHCH,CHOHCH₃ CH₃CH(CH₃O)COOCH₃ CH₃CH₂CHC(CH₃)COH (CH₁),CHCH,COCH₁ $C(=CH_2)CH_2CH_2$ CH₁=CCH₁COOCH₁ ос(сн3)снснсн (CH₁),CCHCOCH₁ CH₃CH(CH₂)₄CH₂ CH₃CH(CH₂)₃CH₂ HC=CC(CH₃)CH₂ (CH₃)₂CHCH₂OH CH3CH2CH2CH2 $(CH_3)_2C = CH_2$ $CH_3C_6H_{10}OH$ HCOOCH₃ CH₃NCO C_6H_8 Метилциклопентадиен (изомеры 2-Метил-3,5-гексадиен-2-ол 210 Метил-2-метоксипропионат 4-Метилентетрагидропиран 214 4-Метил-3-пентен-2-он 204 2-Метил-1-бутен-3-ин 213 2-Метил-2-пентеналь Метилциклогексанол 215 2-Метил-1-пропанол 4-Метил-2-пентанон 4-Метил-2-пентанол Газ или пар Метилциклопентан Метилциклогексан 2-Метил-1-пропен 202 Метилциклобутан 197 Метилциклобутан 209 Метилметакрилат 208 Метилизоцианат 205 Метилформиат 2-Метилфуран не указаны) 199 206 216 861 200 201 203 207 211

ГОСТ Р 52136-2003

TOCT P 51330.11 IIB IIA IIA IIB IIA IIA IIA IIA IIA IIA IIA IIB IIA IIA IIA IIA IIA IIA IIA ности смесей по Категория взрывоопас-LOCT P 51330.5 смесей по **T**2 **T**2 T3 T4 T_3 T3 Π **T**2 T2 T_2 T3 T3 \mathbf{I} Γ Ξ Ξ Ξ І руппа взрывоопасных 1,08 1,14 1,12 0,94 0,84 1,50 0,94 1.05 0,88 1,30 0,92 0,87 1,01 БЭМЗ, мм О°, кинэнэмьпловомьо 445 410 415 465 345 205 197 206 270 537 433 520 230 528 480 420 534 290 Температура 1613 317 385 308 330 2067 296 550 311 301 верх-ний 261 Концентрационный предел распространения пламени мг/л ниж-ний 45 48 87 107 187 51 38 49 53 42 44 62 52 65 82 37 7,4 9,9 15,2 5,9 40.0 63,0 6,5 6,5 6,0 5,6 верх-ний 8,1 объемная доля, % 0,90 1,10 3,40 7,30 2,20 0,70 0,80 0.90 0,90 0,90 0,90 ,20 1,40 1,50 ,30 98, ниж-ний Менее —14 Менее —18 27 39 43 40 77 88 27 36 36 30 52 13 ī 31 81 61 61 \mathcal{C}_{\circ} Гемпература вспышки, 3,50 2,50 4,25 2,58 3,10 4,42 3,93 4.50 плотность по воздуху 4,08 3,40 3,00 2,11 8.97 3,21 3,21 3,21 Относительная NC(CH₃)CHCHC(CH₂=CH)CH Химическая формула NCHCHCH(CH₃)CHCH NCH(CH₃)CHCHCHCH NCHCH(CH₃)CHCHCH (CH₃)₂C(0CH₃)CH₂CH₃ $H(CF_2CF_2)_2C(CH_3)_2OH$ OCH2CH2NHCH2CH2 SC(СН3)СНСНСН $CH_3(CH_2)_6CH_2OH$ $C_6H_5C(CH_3)=CH_2$ CH₃CH₂CH₂NO₂ $CH_3(CH_2)_6CHO$ $CH_3(CH_2)_7CH_2$ CH₃(CH₂)₆CH₃ CH3CH2NO2 $C_2H_5NO_2$ CH_3NO_2 2-Метил-5-винилпиридин 2-Метил-2-метоксибутан 2,2,3,3,4,4,5,5-Октафтор-,1-диметил-1-пентанол Газ или пар 2-Метилпиридин 4-Метилпиридин 3-Метилпиридин 2-Метилтиофен 230 1-Нитропропан α-Метилстирол Нитробензол Нитрометан Нитроэтан Морфолин 235 1-Октанол 226 Нафталин Октаналь Нонан Нафта 234 Октан 218 223 224 225 228 229 232 233 219 220 222 227 231 221

TOCT P 51330.11 IIB IIA IIA IIA IIA IIA IIA IIA IIA IIB IIB IIA IIA IIA IIB IIA IIA IIA IIA IIA IIA оп йэээмэ итэон Категория взрывоопас-LOCT P 51330.5 смесей по **T**2 **T**2 T3 T2T3 T3 T2T3TZ**T**2 T2**T**2 **T**2 **T**2 **T**2 Ξ T2Ξ **T**4 T2 Γ Ξ І руппа взрывоопасных 1,13 0,57 0,97 0,93 96.0 1,02 1,05 1,10 1,04 1,05 1,24 0.90 0,86 0.92 0,891,00 98,0 0.91 БЭМЗ, мм О°, кинэмепломоко 223— 375 445 595 440 318 426 340 298 290 420 470 425 455 435 430 340 380 258 300 37I188 361 і емпература 427 236 385 353 460 506 258 274 270 388 370 200 320 194 387 верх-ний 261 Концентрационный предел распространения пламени мг/л ниж-ний 102 55 35 36 55 55 35 75 49 89 50 42 7 44 58 50 31 50 47 70 12,9 10,4 10,0 73.0 9,4 10,5 10.5 9,5 10.9 17,5 12,7 11.0 10,4 7,8 8,0 верх-ний 7,1 объемная доля, *%* 1,40 1,70 1,06 1,20 2,20 1,70 2,00 2,30 1,60 7.00 1,60 1,30 1.70 2,00 2,00 3,1 ниж-ний ,20 9 1,20 2,00 .80 -37 18 Менее —20 Менее —26 -37 14 70 53 40 34 38 34 12 25 75 30 104 22 52 10 4 42 \mathcal{C}_{\circ} Температура вспышки, 3,66 2,34 2,48 3,50 3,03 3.04 3,00 2,80 3,52 1,56 2,07 1.50 2,55 плотность по воздуху 2,07 2,00 3,50 2,03 4.71 3,51 I Относительная Химическая формула CH₂=CH-CH=CH-CH₃ CH₃COO-(CH₂)₄—CH₃ CH,COOCH,CH,CH, CICH₂COOCH(CH₃)₂ CH₃COCH₃COCH₃ CH₁COOCH(CH₁), $CH_3(CH_2)_3CH_2OH$ $CH_3CH_2CH_2OH$ $CH_3(CH_2)_2NH_2$ CH₃CH₂COOH (CH₃)₂CHNH₂ (CH,CH,),CO (CH₃)₂CHOHCH,=CHCH, CH₃CH₂CH₃ polv(CH,O) C₆H₅C=CH C2H5CHO $C_5H_{11}OH$ C₆H₅OH 247 Этинилбензол (фенилацетилен) 242 Пентанол (смесь изомеров) 239 Пентан (смесь изомеров) 236 Октен (смесь изомеров) кислота Изопропилхлорацетат Газ или пар Параформальдегид 255 Изопропилацегат Изопропиламин 1,3-Пентадиен 240 2,4-Пентадион Пропионовая 254 Пропилацетат 244 Пентилацетат 256 Пропиламин 250 2-Пропанол 3-Пентанон 249 1-Пропанол 241 1-Пентанол Пропаналь Пропен 248 Пропан 245 Нефть Фенол 243 253 257 237 238 246 251 252 258

ГОСТ Р 52136-2003

TOCT P 51330.11 IIA IIB IIB IIB IIA IIA IIB IIA IIA IIB IIB IIA IIA IIA IIA IIA IIA ности смесей по Категория взрывоопас-TOCT P 51330.5 смесей по **T T T**2 **T**2 T_4 **T**2 T T1**T**2 \mathbf{I} T2T3 T3 $\frac{1}{4}$ T2Ξ Группа взрывоопасных более 1,00 0.58 0,60 1,22 1,90 1,18 1,42 0,99 1,06 0,87 0,85 0,91 БЭМЗ, мм О°, самовоспламенения, 437 440 88 175 346 190 483 395 535 550 490 447 357 280 200 389 224 80 Температура 2245 3738 398 350 280 370 450 420 300 верх-ний распространения пламени $M\Gamma/\Pi$ ниж-ний 75 55 99 420 126 42 Концентрационный 192 28 48 182 155 46 64 42 67 50 59.0 100,0 16,8 12,0 12,5 8,0 7,8 9,7 верх-ний объемная доля, % 12, 2 1,10 3,05 $2,40^{3}$ 1,70 1,10 10,00 1,60 2,00 4 1,90 ,50 ,50 ,50 ниж-ний .,61 -1433 17 30 35 47 43 45 46 70 13 6 4 20 4 Гемпература вспышки, 1,89 3,60 3,40 6,70 4,55 плотность по воздуху ,38 6,90 3,50 2,90 3,20 5,31 5,51 6,41 1 Относительная (CH₃)₂CH-C(CHO)CHCH₂CH(CH₃)₂ $CH_2 = C(CH_3)COOCH_2CF_2CF_2H$ Химическая формула CH;=CHCOOCH, CF;CF;H $OCH_2CH_2CH_2CHCH_2OH$ (CH₃)₂NCH₂N(CH₃)₂ $HCF_2CF_2C(CH_3)_2OH$ CH=CHCH=CHS HCF,CF,CH,OH HCOOCH(CH₃), $CH_2(CH_2)_2CH_2O$ C₆H₅OCF₂CF₂H $CH_2(CH_2)_2CH_2S$ (CH₃)₂CHONO₂ C₆H₅CH=CH₂ HC≡CCH₂OH CH₃C=CH $CF_2 = CF_2$ $C_6H_5CH_3$ $C_{\zeta}H_{\zeta}N$ 2-Изопропил-5-метил-2-гексеналь 2,2,3,3-Тетрафторпропилметакри-2,2,3,3-Тетрафторпропилакрилат N,N,N',N'-Тетраметилдиамино-1,1,2,2-Тетрафторэтоксибензол 1,1-Диметил-2,2,3,3-тетрафтор-2,2,3,3-Тетрафтор-1-пропанол 2-Тетрагидрофурилметанол Газ или пар Изопропилформиат Тетрагидротиофен Изопропилнитрат Тетрагидрофуран 2-Пропин-1-ол Тетрафторэтен 264 Пиридин Пропин Толуол Тиофен Стирол 263 259 260 262 275 261 265 266 267 268 569 270 271 272 273 274 276 277

		-					=		-		
		ЭЗЦУХУ	пышки,	Концел	Концентрационный предел распространения пламени	иный пр	едел	Э°, кине			C
Газ или пар	Химическая формула		тура вс	ниж- ний	верх-	ниж- ний	верх- ний		W	Ol	песей п
		тизонтО гэонтогл	.С Демпера.	объемная доля, %	тная , %	мг/л	.5	темпера:	E3M3, n	ГОСТ Р смесей п Группа в	Категорь Ности см ГОСТ Р
278 1,1,3-Триэтоксибутан	(CH ₃ CH ₂ O) ₂ CHCH ₂ CH(CH ₃ CH ₂ O)CH ₃	6,56	52	0,78	5,8	09	451	165	0,95	T4	IIA
279 Триэтиламин	$(CH_3CH_2)_3N$	3,50	-12	1,20	8,0	51	339	310	1	T2	IIA
280 1,1,1-Трифторэтан	CF ₃ CH ₃	2,90	I	9,20	18,4	345	069	714	более 2,00	T1	IIA
281 2,2,2-Трифторэтанол	CF_3CH_2OH	3,45	30	$10,7^{4}$	28,8	350	1195	463	3,00	T1	IIA
282 Трифторэтен	CF ₂ =CFH	2,83	I	15,30	27,0	502	904	319	1,40	T2	IIA
283 3,3,3-Трифтор-1-пропен	CF ₃ CH=CH ₂	3,31	I	4,70	13,5	184	580	490	1,75	Π	IIA
284 Триметиламин	$(CH_3)_3N$	2,04		2,00	12,0	50	297	190	1,05	T4	IIA
285 4,4,5-Триметил-1,3-диоксан	OCH ₂ OCH(CH ₃)C(CH ₃) ₂ CH ₂	4,48	35	I	I		I	284	0,90	Т3	IIA
286 2,2,4-Триметилпентан	$(CH_3)_2CHCH_2C(CH_3)_3$	3,90	— 4	1,00	6,0	47	284	411	1,04	T2	IIA
287 2,4,6-Триметил-1,3,5-триоксан	OCH(CH ₃)OCH(CH ₃)OCH(CH ₃)	4,56	27	1,30	17,0	72	1003	235	1,01	Т3	IIA
288 1,3,5-Триоксан	OCH2OCH2OCH2	3,11	45	3,20	29,0	121	1096	410	0,75	T2	IIB
289 Скипидар	1	l	35	0,80	ı	Ι	I	254	ı	T3	IIA
290 3-Метилбутаналь	(CH ₃) ₂ CHCH ₂ CHO	2,97	-12	1,57	_	09	1	207	96,0	Т3	IIA
291 Винилацетат	CH ₃ COOCH=CH ₂	3,00	8—	2,60	13,4	93	478	385	0,94	T2	IIA
292 Винилциклогексен (изомер не указан)	CH ₂ CHC ₆ H ₉	3,72	15	0,80		35		257	96,0	Т3	IIA
293 1,1-Дихлорэтен	$CH_2=CCl_2$	3,40	-18	5,60	16,0	242	645	440	3,91	T2	IIA
294 2-Винилоксиэтанол	$CH_2=CH-OCH_2CH_2OH$	3,04	52		-	-	1	250	98,0	Т3	IIB
295 2-Винилпиридин	NC(CH ₂ =CH)CHCHCHCH	3,62	35	1,20	I	51	I	482	96,0	T1	IIA
296 4-Винилпиридин	NCHCHC(CH ₂ =CH)CHCH	3,62	43	1,10	I	47	1	473	0,95	TI	IIA
297 Водяной газ			1,2	6,90	5,69	1		1		T1	IIC

ГОСТ Р 52136—2003

		п					
0	песей п	Категорі ности с <i>и</i> ГОСТ Р	IIA				
	O	Группа н Смесей п	T1	T2			
	W	EЭM3'	1,09				
Э° , винэ	гламен гламен	Темпера самовосі	464	370			
редел	верх- ний	п/	335	355			
нный п	ниж- ний	MF/J	44	50			
Концентрационный предел распространения пламени	верх-	лная , %	9,7	7,0			
Концен	ниж- ний	объемная доля, <i>%</i>	1,00	1,00			
шеппки'	гура вс	.С Демиера	30	96			
ухулео		тноситО гоонтогл	3,66	4,17			
	Химическая формула		$C_6H_4(CH_3)_2$	$C_6H_3(CH_3)_2NH_2$			
	Газ или пар		298 Ксилол	299 Ксилидин	1) $\Pi pn \ t = 100 \ ^{\circ}C$. 2) $\Pi pn \ t = 121 \ ^{\circ}C$.	3) $\Pi_{\text{pn}} t = 50 ^{\circ}\text{C}$.	$\sim 11 \text{pu} \ l = 0.5 \sim 11 \text{pu} \ l$

Окончание таблицы А.1

ПРИЛОЖЕНИЕ В (рекомендуемое)

Определение времени установления показаний

 Π р и м е ч а н и е — Испытательное оборудование, указанное ниже, должно быть аттестовано в соответствии с Γ OCT P 8.568.

В.1 Приборы с принудительной подачей газа (см. рисунок В.1)

Прибор подключают к испытательной установке, схематично показанной на рисунке В.1. Если у прибора включение — не зависимое от управления побудителем расхода, прибор включают и стабилизируют. Двухходовой кран устанавливают в положение, при котором прибор оказывается соединенным с емкостью с чистым воздухом, и пропускают воздушный поток до наступления стабилизации. При необходимости корректируют нуль прибора и прекращают подачу чистого воздуха.

Затем двухходовой кран переводят в положение, при котором прибор оказывается соединенным с емкостью с ПГС, и начинают подачу смеси в прибор. За время установления показаний t(50) и t(90) принимают интервалы времени между началом подачи ПГС и моментом, когда показание прибора достигает, соответственно, 50 % и 90 % значения установившегося показания. В полученные результаты следует внести поправку на заполнение газом «мертвого объема» между точками A и B на рисунке B.1.

 $I - \Pi\Gamma C; 2$ — газовые емкости; 3— чистый воздух; 4— двухходовой кран; 5— газовый вход прибора или пробоотборный зонд; 6— соединение с прибором

Рисунок В.1 — Схема испытательной установки для приборов с принудительной подачей газа

Примечания

- 1 Объем каждой газовой емкости больше (по крайней мере в 10 раз), чем объем газа, вытекающего из емкости во время определения времени установления показаний.
- 2 Внутренний диаметр всех трубок и соединений больше, чем диаметр входных отверстий прибора или зонла
- 3 Объем между двухходовым краном и входом в прибор (между B и C) делают минимальным, обеспечивая при этом хорошее соединение с прибором.

В.2 Приборы с диффузионной подачей газа

В.2.1 Метод с применением накладки (насадки)

Чистый воздух подают на вход прибора через накладку (насадку) (см. 4.2.3 и 4.3.4) со скоростью, указанной изготовителем, но не более 1 м/с, до наступления стабилизации. При необходимости корректируют нуль прибора. Затем при помощи двухходового крана к прибору подают ПГС. За время установления показаний t(50) и t(90) принимают интервалы времени между началом подачи ПГС и моментом, когда показание прибора достигает, соответственно, 50 % и 90 % значения установившегося показания.

Если размеры накладки (насадки) таковы, что время, необходимое для заполнения ее объема (при наложении ее на прибор), превышает 25 % времени установления показаний прибора, то данный метод неприемлем и следует применить другой метод.

В полученные результаты следует внести поправку на заполнение газом «мертвого объема» между двухходовым краном и входом в накладку (насадку).

В.2.2 Метод с применением аппликатора (см. рисунки В.2—В.4)

Прибор включают и стабилизируют. Чистый воздух подают на вход прибора через аппликатор, как показано на рисунке В.2. Аппликатор удерживают на входе прибора до наступления стабилизации. При необходимости корректируют нуль прибора.

I — чистый воздух или ПГС; 2 — расходомер; 3 — гибкая трубка; 4 — трубчатый аппликатор; 5 — прибор или датчик; 6 — входное отверстие прибора (датчика)

Рисунок В.2 — Схема установки с применением аппликатора для подачи чистого воздуха или ПГС (см. В.2.2)

I — входное отверстие прибора (датчика); 2 — прибор или датчик; 3 — чистый воздух; 4 — расходомер; 5 — гибкая трубка; 6 — ПГС; 7 — идентичные трубчатые аппликаторы; 8 — отвод газа

Рисунок В.3 — Схема установки, показывающая переход из чистого воздуха в ПГС для начала отсчета времени установления показаний (двойные стрелки показывают перемещение аппликатора) (см. В.2.2)

Затем на ход прибора подают ПГС через второй, идентичный, аппликатор, который должен для этого сместить первый аппликатор, как показано на рисунке В.З. За время установления показаний t(50) и t(90) принимают интервалы времени между моментом наложения на вход прибора аппликатора с ПГС и моментом, когда показание прибора достигает, соответственно, 50% и 90% значения установившегося показания.

I — диффузионный барьер; 2 — трубчатый аппликатор; 3 — поток чистого воздуха или ПГС; 4 — выемка; 5 — прибор или датчик; 6 — входное отверстие прибора (датчика)

Рисунок В.4 — Схема, показывающая аппликатор и входное отверстие прибора (датчика) во время подачи ПГС или чистого воздуха (см. В.2.2)

Примечания

- 1 Основание аппликатора прилегает к прибору или датчику и полностью перекрывает входное отверстие. Площадь основания аппликатора по крайней мере вдвое больше площади входного отверстия.
 - 2 Скорость потоков чистого воздуха и ПГС в основании аппликатора составляет (50±5) мм/с.
- 3 Выемки в основании аппликатора достаточны, чтобы предотвратить избыточное давление внутри аппликатора более чем 50 Па (что соответствует водяному столбу высотой примерно 5 мм) при наложении его на прибор или датчик, как показано на рисунке В.3.
- 4 Длина цилиндрического участка аппликатора обычно составляет 10 диаметров аппликатора (см. рисунок В.4).
- 5 Очевидно, что для испытаний приборов или датчиков различных типов потребуется ряд аппликаторов, основанных на вышеуказанных параметрах.

В.2.3 Метод с применением испытательной камеры

В.2.3.1 Испытательная камера

Конструкция камеры может быть разнообразной, начиная от сложных стационарных установок и заканчивая простыми специально сконструированными устройствами, которые, по мнению испытательной лаборатории, приспособлены для быстрого и воспроизводимого ввода газов или датчиков.

Схема испытательной камеры показана на рисунке В.5.

Рисунок В.5 — Схема автоматизированной испытательной камеры (см. В.2.3.1)

В.2.3.2 Методика испытаний

Испытательные камеры могут быть использованы одним из двух способов:

- а) сначала камеру заполняют ПГС, затем внутрь камеры быстро вводят датчик;
- б) внутри камеры помещают прибор с закрытым входным отверстием, затем камеру заполняют $\Pi\Gamma C$ и быстро открывают входное отверстие прибора.

В.З Метод с применением установки, обеспечивающей скачкообразный переход из чистого воздуха в газовоздушную смесь (см. рисунок В.6)

Установка, применяемая для данного испытания, схематично показана на рисунке В.б. Испытание проводят в следующей последовательности:

- а) нижнюю емкость 2 заполняют водой 1;
- б) воздушный шарик 4 заполняют газовоздушной смесью с содержанием горючего газа, соответствующим 100 % НКПР, до тех пор, пока шарик со смесью не займет нижний конец трубки 5;

ГОСТ Р 52136—2003

1- вода; 2- нижняя емкость диаметром 380 мм, высотой 350 мм; 3- манометр с диапазоном измерений от 0 до 40 кПа; 4- воздушный шарик; 5- прозрачная пластиковая трубка диаметром 75 мм, длиной 450 мм; 6- датчик; 7- отверстие для иглы; 8- газ; 9- входной штуцер; 10- верхняя емкость вместимостью 20 дм 3 ; 11- шланг

Рисунок В.6 — Схема установки, обеспечивающей скачкообразный переход из чистого воздуха в газовоздушную смесь

- в) ту же газовоздушную смесь закачивают в нижнюю емкость 2 до тех пор, пока воздушный шарик не продвинется вверх по трубке 5 настолько далеко, насколько это возможно;
 - г) раздутый воздушный шарик герметично закрывает собой нижнюю часть трубки 5;
- д) газовоздушную смесь закачивают в нижнюю емкость 2, добиваясь перетекания воды в верхнюю емкость 10;
- е) датчик 6 прибора помещают в трубку 5 приблизительно на 5 см выше воздушного шарика, а измерительный блок прибора подключают к регистрирующему устройству;
- ж) воздушный шарик протыкают иглой через отверстие 7 в трубке 5. Это приводит к мгновенному выпуску газовоздушной смеси из шарика 4 и из нижней емкости 2, которая находится под давлением приблизительно 7 кПа. Газовоздушная смесь заполняет всю трубку и, так как вода возвращается в нижнюю емкость (что занимает около 20 с), в трубку непрерывным потоком поступает свежая смесь. Продолжительность течения смеси при необходимости может быть увеличена до 30 с (максимальное время испытания) при размещении сужающего устройства в шланге 11, соединяющем две емкости. Регистрирующее устройство, подключенное к выходу измерительного блока прибора, должно иметь разрешающую способность 1 с, что может быть использовано для определения времени, за которое показания прибора достигают значений, составляющих 50 % и 90 % НКПР. Как альтернатива, воздушный шарик в трубке диаметром 75 мм может быть заменен на шаровой клапан диаметром 75 мм. Это значительно упрощает процедуру, и те же результаты, которые дает лопнувший воздушный шарик, получают за счет быстрого открытия клапана.

В.4 Испытание с применением установки, обеспечивающей скачкообразный переход из чистого воздуха в ПГС (см. рисунок В.6)

Данное испытание выполняют тем же методом, что и в В.3, за исключением того, что для заполнения воздушного шарика и нижней емкости используют ПГС вместо указанной в В.3 газовоздушной смеси.

ПРИЛОЖЕНИЕ С (справочное)

Отличия настоящего стандарта от международного стандарта МЭК 61779-1—98

Отличия настоящего стандарта от МЭК 61779-1—98 приведены в таблице С.1.

Таблица С.1

подпункта),	дела (пункта, обозначение нисления, таблицы	Отличие настоящего стандарта от МЭК 61779-1—98	Аутентичный текст МЭК 61779-1—98, исключенный из настоящего стандарта		
настоящего стандарта	МЭК 61779-1—98		,		
1.1.6	_	Пункт введен дополнительно	_		
1.2	1.2	В перечень нормативных ссылок вве- дены дополнительно ГОСТ 12.1.044—89, ГОСТ 14254—96, ГОСТ 15150—69, ГОСТ 22782.3—77, ГОСТ Р 8.568—97, ГОСТ Р 50460—92, МЭК 61779-6—95	_		
2.1.6	2.1.6	Текст, выделенный курсивом,— изменена редакция	Объемная доля горючего газа или пара в воздухе, ниже которой не формируется взрывоопасная газовая среда		
2.1.9	2.1.9	Текст, выделенный курсивом, — изменена редакция	Объемная доля горючего газа или пара в воздухе, выше которой не формируется взрывоопасная газовая среда (см. также примечание 2 к 2.1.3)		
2.1.12 — 2.2.10 2.2.10 2.6.1 2.6.1		Термин введен дополнительно			
		Примечание введено дополнительно			
		Примечание введено дополнительно			
3.1.2	3.1.2	Ссылка выделенная курсивом, введена дополнительно	_		
	3.1.3	Ссылка на ГОСТ Р 51330.10 введена дополнительно	_		
3.1.3		Текст, выделенный курсивом,— изменена редакция	или их оболочки должны соответствовать требованиям безопасности, указанным в 1.1.1		
3.1.4	3.1.4	Текст, выделенный курсивом, введен дополнительно	1		
3.2.2.2	3.2.2.2	Текст, выделенный курсивом, введен дополнительно	_		
3.3	3.3	Исключен второй абзац	На приборе должен быть указан номер стандарта IEC 60079 (т. е. часть 1, часть 2, часть 3, часть 4 или часть 5), которому соответствуют его характеристики. Номер стандарта располагают рядом с маркировкой, приведенной в соответствии с требованиями стандартов, указанных в 3.1.2		
3.3, перечисле- ние а)	3.3, перечисле- ние а)	Изменена редакция перечисления	а) наименование и адрес изготовителя;		
3.3, перечисле- ние б)	3.3, перечисле- ние b)	Изменена редакция перечисления	b) маркировку сертификации;		
3.3, перечисле- ние г)	3.3, перечисле- ние d)	Текст, выделенный курсивом, введен дополнительно			

ГОСТ Р 52136—2003

Окончание таблицы С.1

Номер подраздело подпункта), обо приложения, перечисл настоящего стандарта	означение				
		Отличие настоящего стандарта от МЭК 61779-1—98	Аутентичный текст МЭК 61779-1—98, исключенный из настоящего стандарта		
3.3, перечисле- 3.3, перечисле-		MONOTH, 7	acieno termona do nacinolíqueo cinarioapina		
	3, перечисле- ие е)	Текст, выделенный курсивом, введен дополнительно	-		
	4, перечисле- ие d), 1)	Текст, выделенный курсивом, введен дополнительно	-		
3.4, перечисле- ние д) ни	4, перечисле- ие е)	Текст, выделенный курсивом, введен дополнительно	_		
	4, перечисле- ие е), 4)	Примечание введено дополнительно	_		
3.4, перечисле-	_	Перечисление введено дополнительно	_		
3.5 3.5 4.1 4.1		Текст, выделенный курсивом, введен дополнительно	_		
		Текст, выделенный курсивом, введен дополнительно	_		
	2.1.2, перечис- гние 1)	Текст, выделенный курсивом, введен дополнительно	_		
4.2.4	_	Пункт введен дополнительно	_		
4.3.2	4.3.2	Текст, выделенный курсивом, введен дополнительно	-		
4.3.3	4.3.3	Текст, выделенный курсивом, введен дополнительно	-		
4.4.2, заголовок 4.4	4.2, заголовок	Текст, выделенный курсивом, введен дополнительно	-		
4.4.3.2, заголо- вок во	*	Текст, выделенный курсивом, — изменена редакция	(не применяется к сигнализаторам)		
		Исключена часть заголовка	(не применяется к сигнализаторам)		
4.4.3.3	4.4.3.3	Текст, выделенный курсивом, введен дополнительно	_		
4.4.6	4.4.6	Текст, выделенный курсивом, введен дополнительно	_		
4.4.20.2	4.4.20.2	Текст, выделенный курсивом, введен дополнительно	_		
Таблица А.1 Та	аблица А.1	Данные таблицы, выделенные курси- вом, введены дополнительно	_		
Приложение В Пр	Гриложение В	Примечание, выделенное курсивом, введено дополнительно	_		
Приложение С		Приложение введено дополнительно	<u> </u>		
Приложение D	_	Приложение введено дополнительно	_		

 Π р и м е ч а н и е — Данные таблицы A.1 дополнены с учетом базы данных по пожаровзрывоопасности веществ и материалов [3].

ПРИЛОЖЕНИЕ D (справочное)

Библиография

- [1] ПР 50.2.009—94 Правила по метрологии. Государственная система обеспечения единства. Порядок проведения испытаний и утверждения типа средств измерений. Приняты Госстандартом России
- [2] ПР 50.2.006—94 Правила по метрологии. Государственная система обеспечения единства измерений. Порядок проведения поверки средств измерений. Приняты Госстандартом России
- [3] НІГЕХ База данных по пожаровзрывоопасности веществ и материалов: М., 1999

УДК 543.271.08:006.354	OKC 13.220 13.320	П63	ОКП 42 1510
	29.260.20		
	71.040.40		
	73.100		

Ключевые слова: электрические газоанализаторы и сигнализаторы, горючие газы и пары в воздухе, обнаружение и измерение содержания, потенциально взрывоопасная газовая среда, шахты, производственная безопасность, приборы группы I, приборы группы II, конструкция, взрывозащита, маркировка, руководство по эксплуатации, проверка, требования, методы испытаний

Редактор В.П. Огурцов Технический редактор В.Н. Прусакова Корректор В.И. Варенцова Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 16.12.2003 Уч.-изд. л. 4,90. Тираж 216 экз. Подписано в печать 15.01.2004. С 244. Зак. 89. Усл. печ. л. 5,12.