Quesiti ed Esercizi

1) Si supponga che la cwd sia /home/utente1. Descrivere l'albero delle directory risultante dopo che sono stati lanciati i seguenti comandi:

mkdir myDir
touch myFile myDir/myFile
cd myDir ; mkdir dir1 dir2
touch myFile1.txt myFile2.txt
mv ../myFile?* dir1/

- Indicare il comando per montare e smontare il floppy.
 N.B. Si assuma che il dispositivo sia /dev/fd1 e che il mount point sia /mnt/floppy.
- 3) Si supponga di trovarsi nella propria home directory. Scrivere il comando per listare **soltanto** le directory nascoste in /tmp.
- 4) Dato il seguente comando, indicare se l'espressione regolare è ridondante e perché. In caso affermativo scrivere il comando corretto.

\$ grep 'a\|[ae]\$' text.txt

- Indicare a cosa serve la variabile di ambiente PATH.
 Indicare inoltre come creare una nuova variabile NEWVAR che abbia lo stesso contenuto di PATH.
- 6) Indicare come lanciare in background il comando per listare la directory /tmp. L'invio del comando in background garantisce che l'output non venga visualizzato sullo schermo? Motivare la risposta.
- 7) Il file lista.txt contiene il cognome degli iscritti al corso di Sistemi Operativi. Tali cognomi sono scritti su un'unica colonna. Si vogliono creare due liste: la prima listaAL contenente gli studenti con cognomi da A-L e la seconda listaMZ con studenti che abbiano cognomi M-Z. Scrivere i comandi per creare le due liste precedenti.
- 8) Si vuole eseguire uno script **control.sh** che si trova nella propria home directory. Indicare dove inserire il comando affinché esso venga eseguito automaticamente al login dell'utente **user1** redirezionando standard output e standard error su un unico file /tmp/log.
- Creare l'alias per evitare la rimozione accidentale dei file ogni qualvolta si lanci il comando rm. Scrivere inoltre come eliminare tale alias.
- 10) Supponendo di aver effettuato il login come utente user1 e che l'output del comando id sia

uid=501 (user1) gid=501 (user1) groups=501 (user1) dire, motivando le risposte, in quale delle seguenti directory user1 può leggere un file drw-rwxrwx 2 user1 root 4096 Dec 10 12:43 dir1 d-wxr-xr--2 root user1 4096 Dec 10 12:43 dir2 4096 2 user1 d-w--w-rwx root Dec 10 12:43 dir3

- 11) Sia data una memoria RAM di X Gbyte e si supponga un sistema di paginazione reale che preveda l'utilizzo di pagine da 16 Kbyte. Stabilire il numero di bit minimo da dedicare al numero di pagina nell'indirizzamento.
- 12) Si supponga che l'i-block di un i-node sia costituito da 16 indirizzi, di cui 3 dedicati alle 3 indirezioni. Quanti accessi al disco saranno richiesti se si vuole leggere:
 - a) il blocco X?
 - b) il blocco 2YZ?
- 13) Sia σ = 2 3 4 3 2 4 3 2 4 Z 6 X Y 6 una sequenza di riferimenti a pagine di uno spazio d'indirizzamento logico. Supposto di disporre di una memoria fisica costituita da 3 blocchi, indicare il progressivo contenuto dei blocchi ed il numero di page faults nel caso di algoritmo di rimozione LRU.
- 14) Scrivere l'espressione del tempo medio di accesso ad un blocco di disco, se la velocità rotazionale è di X000 rpm e il tempo medio di seek di un disco magnetico è di 3W msec.
- 15) Si consideri l'algoritmo del banchiere per la gestione del deadlock. Le seguenti matrici descrivano lo stato corrente di un sistema in cui sono in esecuzione 5 processi e sono disponibili 4 tipi di risorse. Si determinino gli elementi della matrice *Need*.

	Allocation	<u>Max</u>	<u>Need</u>	<u>Available</u>
	ABCD	ABCD	ABCD	ABCD
P_0	$0 \ 0 \ W \ 0$	0 0 1 2		1 5 2 1
P_1	1 Z 0 0	1 7 5 0		
P_2	1 3 5 4	2 3 5 6		
P_3	Z 3 3 1	1 6 5 2		
P_4	$0\ 0\ Z\ 4$	0656		

- a) Il sistema è in uno stato sicuro? Spiegare perché.
- b) la richiesta (0, 2, Z, 0) del processo P3 porta il sistema in uno stato sicuro? Spiegare perché.
- 16) Si consideri un sistema di paginazione virtuale le cui tabelle siano quelle indicate nel retro.
 - a) quanti e quali task sono in esecuzione?
 - b) quanti blocchi di memoria sono stati modificati?
 - c) e quanti sono già stati rimossi?
 - d) dove si trova la pagina (Z+1) del task (49+2*W+Z)?

Task ID	# page	↑ PMT	S bit
63	4	7	0
25	6	9	0
44	12	8	0
50	7	2	1
52	8	6	1
54	6	5	1
51	3	3	1
49	4	1	1
53	5	4	1

(Task) Table Job

В	Task ID	P	C bit	R bit	S bit
0	51	0	0	0	1
1	50	0	W	0	1
2	54	4	0	0	1
3	53	0	Z	1	1
4	49	1	0	1	1
5	52	6	0	0	1
6	52	4	1	Z	1
7	49	3	W	Z	1
8	50	4	Z	0	1
9	54	3	Z	W	1
10	52	0	1	1	1
11	50	6	1	W	1
12	54	1	Z	Z	1
13	53	4	W	W	1

Block Table Memory

P	I bit	↑ EPMT	В
0	0	3	23
1	1	19	4
2	0	5	31
3	1	21	7

PMT 1

↑ EPMT

23

I bit

0 0

0

P

3

В

3

19

17

20

13

P	I bit	↑ EPMT	В
0	1	20	1
1	0	9	25
2	0	13	24
3	0	17	32
4	1	22	8
5	0	18	27
6	1	32	11

PMT 2

P	I bit	↑ EPM I	В				
0	1	20	1				
1	0	9	25				
2	0	13	24				
3	0	17	25 24 32				
4	1	22	8				
5	0	18	27				
6	1	32	11				

P	I bit	↑ EPMT	В
0	0	16	18
1	1	30	12
2	0	10	15
3	1	29	9
4	1	28	2
5	0	14	16

25 PMT 4

6

P	I bit	↑ EPMT	В		P	I bit	↑ EPMT
0	0	16	18		0	1	27
1	1	30	12		1	0	15
2	0	10	15		2	0	7
3	1	29	9		3	0	11
4	1	28	2		4	1	26
5	0	14	16		5	0	8
PMT 5				6	1	31	

PMT 6

I bit

0

↑ EPMT

24

PMT 3

В

0

15 14

В

10

23

21

22

6

26 5 28

#	Task ID	P	C bit	CTS	S bit
0	51	1	0	13 4 10	1
1	51	2	0	99 20 5	1
2	53	1	0	22 12 10	1
3	49	0	1	4 6 18	1
4	53	2	0	14 18 25	1
5	49	2	1	105 21 5	1
6	53	3	1	63 3 17	1
7	52	2	0	21 13 7	1
8	52	5	0	55 6 7	1
9	50	1	1	45 11 9	1
10	54	2	1	17 17 17	1
11	52	3	1	88 25 10	1
12	52	7	0	199 6 13	1
13	50	2	1	33 20 15	1
14	54	5	1	166 11 2	1
15	52	1	0	167 12 1	1
16	54	0	0	68 11 12	1
17	50	3	1	77 13 15	1
18	50	5	0	63 24 12	1

EPMT

POLITECNICO DI BARI

Corso di Laurea in Ing. Informatica n.o.

Cognome:	; Nome:	; matricola:	_; Ing

Problema

Tempo a disposizione: 45 minuti

Max Flow-chart 6 punti; Max Codice 4 punti

Si progetti, mediante **flow-chart o linguaggio strutturato**, un **programma** che calcoli, in presenza di sistema operativo LINUX, il numero dei blocchi totali di un file. Si assuma che l'index block sia costituito da 16 indirizzi, di cui i primi 13 a blocchi di dati e gli ultimi 3 a blocchi di 1^a, 2^a e 3^a indirezione.

In particolare si richiede che il programma legga da tastiera il numero N dei blocchi di dati scritti nel file e scriva sul video il numero NEF dei blocchi di dati effettivamente allocati, il numero di blocchi di 1^a (N1), 2^a (N2) e 3^a (N3) indirezione resisi necessari e, infine, il numero totale NTOT dei blocchi allocati per il file.

Si chiede di:

- a) descrivere, tramite flow-chart o linguaggio strutturato, il **progetto** del programma suddetto, utilizzando i nomi indicati delle variabili e ricorrendo al **minor numero di istruzioni**;
- b) scrivere, utilizzando il linguaggio C, il programma rigorosamente corrispondente al flow-chart descritto.

<u>I risultati della prova saranno affissi nella bacheca del Dipartimento di Elettrotecnica ed Elettronica (DEE) e</u> pubblicati sul sito, con l'indicazione delle informazioni relative alla prova orale.