Informe Proyecto Final Programación Funcional y Concurrente - Problema de la Reconstrucción de ADN

Víctor Manuel Hernández Ortiz 2259520 Universidad Del Valle Jhon Alejandro Martinez Murillo 2259565 Universidad Del Valle

I. CORRECCIÓN DE LAS FUNCIONES IMPLEMENTADAS

Notitas: *Particularmente debe describir su implementacion de trie y por que son correctas las funciones pertenece, adicionar y arbolDeSufijos. No olvide senalar tambien que colecciones paralelas fueron utilizadas.

A. Solución Ingenua

Para la solución ingenua, se genera una lista de combinaciones posibles para cadenas del tamaño de la que se desea hallar, posteriormente se recorre cada cadena de las combinaciones posibles y se le pregunta al *oraculo* por esta, continua hasta finalizar y por ultimo se retorna el resultado.

```
def reconstruirCadenaIngenuo(n: Int, oraculo: Oraculo): Seq
   [Char] = {
    val combinaciones = generarCombinaciones(n)
   val cadenaEncontrada = for {
        cadena <- combinaciones
        if oraculo(cadena) == true
    } yield cadena.toSeq
        cadenaEncontrada.head
}</pre>
```

B. Solución Ingenua Paralela

Para la solución ingenua paralela tuvimos dos enfoques, paralelización de datos y paralelización de tareas. Inicialmente notamos que la instrucción for (que hace el recorrido analizando con el oraculo cual de las cadenas pertenecientes a la lista de todas las combinaciones posibles es la correcta) podía ser dividida en varias partes. Si, por ejemplo, tenemos un tamaño de cadena n=4 eso nos arrojaría una lista de combinaciones 4^n , para este ejemplo $4^4 = 256$ sería el tamaño de la lista, entonces podemos dividir esta lista de combinaciones en 4 partes, cada una de tamaño 64, y con ello usar un for para cada sub-lista de tamaño 64 de forma paralela, de esta forma cada instrucción for se ejecuta simultáneamente a las otras, lo que en teoría se traduce a menos tiempo para hallar la cadena correcta. Otro añadido es que se cambia la instrucción for por un filter que realiza la misma acción, hallar la cadena mediante el oraculo, pero gracias al filter podemos usar paralelización de datos a la secuencia que se filtrara. De esta forma se usa una secuencia de datos paralela, aplicando paralelismo de datos, y cada

comparación de las sub-listas de combinaciones se ejecuta de forma paralela.

```
//tarea de recorrido, recibe una porcion de la lista de
    combinaciones
def tareaRecorrido(bloqueCombinaciones: Seg[String]) : Seg[
    Charl = {
    val combinacionesFiltradas = bloqueCombinaciones.par.
        filter(oraculo() == true)
    if (combinacionesFiltradas.isEmpty) {
       Seq.empty[Char]
     else {
        val combinacion = combinacionesFiltradas.head
       combinacion.toSeq
// separo en bloques
val (bloque1, bloque2, bloque3, bloque4) =
    separarCombinaciones(combinaciones)
// Ejecuto las tareas sobre cada bloque
val (resultado1, resultado2, resultado3, resultado4) =
    parallel(tareaRecorrido(bloquel), tareaRecorrido(
    bloque2), tareaRecorrido(bloque3), tareaRecorrido(
    bloque4))
```

Finalmente elijo el resultado que no se encuentre vacío, ya que solo una tareaRecorrido arrojará la cadena que se trata de reconstruir.

- C. Solución Mejorada
- D. Solución Mejorada Paralela

Describo el funcionamiento que se implementa anterioremente El añadido para la paralelización, consta de usar el mismo concepto de dividir el *for* en varias tareas paralelas

- E. Turbo Solución
- F. Turbo Solución Paralela
- G. Turbo Mejorada
- H. Turbo Mejorada Paralela
- I. Turbo Acelerada
- J. Turbo Acelerada Paralela

II. DESEMPEÑO Y COMPARACIÓN DE LAS SOLUCIONES SECUENCIALES Y PARALELAS

Notita: Describir como se hicieron las pruebas de desempeño de los algoritmos Para las pruebas de desempeño, usamos la función desempenoFunciones, la cual prueba cada algoritmo 100 veces con cadenas distintas y para distintos tamaños, al final se promedian los resultados de tiempo arrojando el resultado que se verá a continuación.

A. Desempeño de todas las soluciones juntas

Estas tres tablas representan una en realidad, pero por efectos visuales decidimos anexarla de esta manera

Tamaño	Ingenua	Ingenua Paralela	Mejorada
2	0.0381420016	0.093908998	0.03746996
3	0.0247579992	0.109804999	0.129887006
4	0.0386939998	0.486354006	0.215725003
5	0.0933949998	2.657260997	1.437317997
6	0.4390439993	21.21956999	9.674953
7	5.3342230015	177.01692393	67.98518801
8	43.635844	1463.531014998	506.11463989
9	43.635844	1463.531014998	506.11463989
10	43.635844	1463.531014998	506.11463989

Tamaño	Mejorada Paralela	Turbo Solución	Turbo Solución Paralela
2	0.0381420016	0.093908998	0.03746996
3	0.0247579992	0.109804999	0.129887006
4	0.0386939998	0.486354006	0.215725003
5	0.0933949998	2.657260997	1.437317997
6	0.4390439993	21.21956999	9.674953
7	5.3342230015	177.01692393	67.98518801
8	43.635844	1463.531014998	506.11463989
9	43.635844	1463.531014998	506.11463989
10	43.635844	1463.531014998	506.11463989

Tamaño	Turbo Mejorada	Turbo Mejorada Paralela	Turbo Acelerada
2	0.0381420016	0.093908998	0.03746996
3	0.0247579992	0.109804999	0.129887006
4	0.0386939998	0.486354006	0.215725003
5	0.0933949998	2.657260997	1.437317997
6	0.4390439993	21.21956999	9.674953
7	5.3342230015	177.01692393	67.98518801
8	43.635844	1463.531014998	506.11463989
9	43.635844	1463.531014998	506.11463989
10	43.635844	1463.531014998	506.11463989

Tamaño	Turbo Acelerada Paralela
2	0.0381420016
3	0.0247579992
4	0.0386939998
5	0.0933949998
6	0.4390439993
7	5.3342230015
8	43.635844
9	43.635844
10	43.635844

De esta manera se calcularon los desempeños

```
/ Primera parte de la funcion
def desempenoDeFunciones(tamanoCadena: Int): Vector[Double
   println("Tamanio: " + tamanoCadena)
   // repido 100 veces una reconstruccion para una cadena
        distinta y al final promedio los resultados, esto se repite para todas las funciones
   val tiemposIngenua = (1 to 100).map(_ => 0.0).toArray
   for (i <- 0 until 100) {</pre>
   val time = withWarmer(new Warmer.Default) measure {
  val cadenaAleatoria = crearADN(tamanoCadena)
       val oraculo = oraculoFunc(cadenaAleatoria)
       reconstruirCadenaIngenuo(cadenaAleatoria.length,
             oraculo)
   tiemposIngenua(i) = time.value
   // resultado, promedios de todas las funciones
    tiempoMejoradoPar.sum / 100, tiempoTurbo.sum / 100, tiempoTurboPar.sum / 100, tiempoTurboMejorada
         .sum / 100, tiempoTurboMejoradaPar.sum / 100,
tiempoTurboAcelerada.sum / 100,
          tiempoTurboAceleradaPar.sum / 100)
```

B. Desempeño de las soluciones secuenciales

Tamaño	Ingenua	Mejorada	Turbo	Turbo Mejo- rada	Turbo Aceler- ada
2	0.0381	0.09390	0.03746	0.09390	0.0374
3	0.02475	0.10980	0.12988	0.09390	0.0374
4	0.03869	0.48635	0.2157	0.09390	0.0374
5	0.0933	2.65726	1.4373	0.09390	0.0374
6	0.43904	21.2195	9.6749	0.09390	0.03746
7	5.33422	177.0169	67.9851	0.09390	0.03746
8	43.635	1463.5310	506.1146	0.09390	0.03746
9	43.635	1463.5310	506.1146	0.09390	0.03746
10	43.635	1463.5310	506.1146	0.09390	0.03746

C. Desempeño de las soluciones paralelas

Tamaño	Ingenua Paralela	Mejorada Paralela	Turbo Paralela	Turbo Mejo- rada Paralela	Turbo Aceler- ada Paralela
2	0.0381	0.09390	0.03746	0.09390	0.0374
3	0.02475	0.10980	0.12988	0.09390	0.0374
4	0.03869	0.48635	0.2157	0.09390	0.0374
5	0.0933	2.65726	1.4373	0.09390	0.0374
6	0.43904	21.2195	9.6749	0.09390	0.03746
7	5.33422	177.0169	67.9851	0.09390	0.03746
8	43.635	1463.5310	506.1146	0.09390	0.03746
9	43.635	1463.5310	506.1146	0.09390	0.03746
10	43.635	1463.5310	506.1146	0.09390	0.03746

De esta manera se calcularon los desempeños para las algoritmos secuenciales y paralelos:

// codigo del calculo de algoritmos secuenciales y
 paralelos

III. COMPARACIÓN DE LAS DISTINTAS SOLUCIONES Y SUS PARALELAS

A. Comparación de la solución ingenua y la ingenua Paralela

Tamaño	Ingenua	Ingenua Paralela	Aceleración
2	0.1941	0.3109	0.624316500482
3	0.0969	0.1253	0.773343974461
4	0.1558	0.512	0.304296874997
5	16.8657	0.4238	39.7963662104
6	1.0945	0.8826	1.24008610922
7	9.3597	2.6625	3.51538028169
8	74.3937	23.9784	3.1025297767
9	582.3829	198.7335	2.93047171
10	4811.1526	1559.8417	3.0843851

B. Comparación de la solución Mejorada y la Mejorada Paralela

Tamaño	Mejorada	Mejorada Paralela	Aceleración
2	0.4017	1.3084	0.3070162029
3	0.3693	1.4949	0.2470399357
4	1.4204	6.1935	0.2293372083
5	3.5153	18.4654	0.1903722638
6	128.1462	81.0312	1.5814427035
7	289.9554	532.3358	0.5446851404
8	2244.0366	2965.9211	0.756606977
9	18234.863	21556.7414	0.845900716
10	91069.015	110813.2341	0.821824358

C. Comparación de la solución Turbo con la Turbo Paralela

Tamaño	Turbo	Turbo Paralela	Aceleración
2	0.7311	0.6296	1.16121346886
3	0.7454	0.3804	1.95951629863
4	1.4337	0.8821	1.62532592676
5	9.8697	2.7326	3.61183488252
6	27.3466	6.5672	4.16411865026
7	149.8199	38.782	3.86312980248
8	1187.6159	339.3482	3.4996970663
9	8264.3622	2360.687	3.5008292924
10	54366.4652	18073.1638	3.00813215

D. Comparación de la solución Turbo Mejorada con la Turbo Mejorada Paralela

Tamaño	Turbo Mejorada	Turbo Mejorada Paralela	Aceleración
2	0.7311	0.6296	1.16121346886
3	0.7454	0.3804	1.95951629863
4	1.4337	0.8821	1.62532592676
5	9.8697	2.7326	3.61183488252
6	27.3466	6.5672	4.16411865026
7	149.8199	38.782	3.86312980248
8	1187.6159	339.3482	3.4996970663
9	8264.3622	2360.687	3.5008292924
10	54366.4652	18073.1638	3.00813215

E. Comparación de la solución Turbo Acelerada con la Turbo Acelerada Paralela

Tamaño	Turbo Acelerada	Turbo Acelerada Paralela	Aceleración
2	0.7311	0.6296	1.16121346886
3	0.7454	0.3804	1.95951629863
4	1.4337	0.8821	1.62532592676
5	9.8697	2.7326	3.61183488252
6	27.3466	6.5672	4.16411865026
7	149.8199	38.782	3.86312980248
8	1187.6159	339.3482	3.4996970663
9	8264.3622	2360.687	3.5008292924
10	54366.4652	18073.1638	3.00813215

De esta manera se calcularon las comparaciones

// codigo

IV. ANÁLISIS COMPARATIVO DE LAS DIFERENTES SOLUCIONES Y CONCLUSIONES