

High-Dimensional Data Analysis Lecture 9 - Relaxing the Sparse Recovery Problem

Fall semester - 2024

Dr. Eng. Valentin Leplat Innopolis University October 31, 2024

Outline

- 1 Convex Functions and Convexification
- **2** ℓ^1 Norm as Convex Surrogate for ℓ^0 Norm
- 3 Simple Algorithm for ℓ^1 Minimization
- 4 Sparse Error Correction via ℓ^1 Minimization
- 5 Summary

Convex Functions and Convexification

Why Convexification?

Intuitive reasons why ℓ^0 minimization:

$$\min_{x} \|x\|_0 \text{ subject to } Ax = y \tag{1}$$

is challenging:

Not amenable to local search methods such as gradient descent.

Convex versus Nonconvex Functions

For minimizing a generic function:

$$\min_{x} f(x), \qquad x \in \mathcal{C} \text{ (a convex set)},$$

 $x_{k+1} \leftarrow x_k - \alpha_k \nabla f(x_k)$

conduct local gradient descent search:

$$x_0$$
 x_1
 x_2
 x_2
 x_3
 x_4
 x_4
 x_5
 x_6
 x_8
 x_8

Intuitively, convexity leads to global optimality.

(2)

(3)

Convex Functions

Definition: Convex Function

A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for every pair of points $x, x' \in \mathbb{R}^n$ and $\alpha \in [0, 1]$ it satisfies the Jensen's inequality:

$$f(\alpha x + (1 - \alpha)x') \leqslant \alpha f(x) + (1 - \alpha)f(x') \tag{4}$$

Global Optimality

Proposition 1

Any local minimum of a convex function is also a global minimum.

Proof. Let \bar{x} be a local minimum: $\forall x : \|x - \bar{x}\|_2 \leq \epsilon$, we have $f(\bar{x}) \leq f(x)$. Assume x^* is the global minimum and $f(\bar{x}) > f(x^*)$. Choose λ such that $x_{\lambda} = \lambda \bar{x} + (1 - \lambda)x^*$ satisfies $\|x_{\lambda} - \bar{x}\|_2 \leq \epsilon$. Then

$$f(\bar{x}) \leq f(x_{\lambda})$$

$$= f(\lambda \bar{x} + (1 - \lambda)x^{\star})$$

$$\leq \lambda f(\bar{x}) + (1 - \lambda)f(x^{\star})$$

$$< f(\bar{x})$$
(5)

We have a contradiction, we must have $\bar{x} = x^*$, and the result follows.

 ℓ^1 Norm as Convex Surrogate for ℓ^0 Norm

Convex Envelope

Definition: Lower Convex Envelope

A function $f_c(x)$ is said to be a (lower) **convex envelope** of f(x) if for all convex functions $g \leq f$ we have $g \leq f_c$.

Lower convex envelope f_c is well and uniquely defined and is equivalent to the *convex biconjugate* function f^{**} of f.

The ℓ^1 Norm as Envelope of ℓ^0 Norm

$$\forall x \in \mathbb{R}^n: \qquad \|x\|_0 = \sum_{i=1}^n \mathbb{1}_{x_i \neq 0}, \qquad \|x\|_1 = \sum_{i=1}^n |x_i|$$

$$\text{Largest convex lower bound}$$

$$\text{Convex functions lower-bounding } \|x\|_0$$

Figure: Convex surrogates for the ℓ^0 norm. |x| is the convex envelope of $||x||_0$ on [-1,1].

The ℓ^1 Norm as Envelope of ℓ^0 Norm

Theorem

The function $\|.\|_1$ is the convex envelope of $\|.\|_0$, over the set $B_{\infty} = \{x | \|x\|_{\infty} \leq 1\}$ of vectors whose elements all have magnitude at most one.

Proof. Consider the cube $C = [0,1]^n$ with vertex vectors $\sigma \in \{0,1\}^n$ (each *i*-th component of σ is whether 0 or 1). For any convex function $g \leq \|.\|_0$ and since $\forall x \in C : x = \sum_i \lambda_i \sigma_i$ with $\lambda_i \geq 0 \ \forall i$ and $\sum_i \lambda_i = 1$,

$$g(x) = g(\sum_{i} \lambda_{i} \sigma_{i}) \leqslant \sum_{i} \lambda_{i} g(\sigma_{i}) \qquad \text{[Jensen's inequality]}$$

$$\leqslant \sum_{i} \lambda_{i} \|\sigma_{i}\|_{0} = \sum_{i} \lambda_{i} \|\sigma_{i}\|_{1} \qquad [\sigma_{i} \text{ are binary}]$$

$$= \|x\|_{1} \leqslant \|x\|_{0}$$
(7)

Repeat the argument for each orthant.

Sparsity Promoting Property of Norms

A Toy Problem: given a vector

$$\vec{v}(t) = [t, t-1, t-1] \in \mathbb{R}^3,$$
 (8)

find t such that \vec{v} is sparse.

Strategy: given a certain norm $\|.\|$,

$$\min_{t} f(t) = \|\vec{v}(t)\|.$$

Simple Algorithm for ℓ^1 Minimization

Minimizing the ℓ^1 Norm

Replace ℓ^0 minimization:

$$\min_{x} \|x\|_0 \text{ subject to } Ax = y \tag{9}$$

with the relaxed ℓ^1 minimization:

$$\min_{x} \|x\|_1 \text{ subject to } Ax = y \tag{10}$$

Two technical difficulties:

- 1. Nontrivial constraints: In the problem (10), the solution must satisfy Ax = y.
- 2. Nondifferentiable objective: ℓ^1 norm in problem (10) is not differentiable. So around points of interest the gradient $\nabla f(x)$ does not exist.

 ℓ^1 Minimization via Linear Programming

Recall problem (10):

$$\min_{x} \|x\|_1$$
 subject to $Ax = y$

Let $x^+ = \max\{x, 0\}$ and $x^- = \max\{-x, 0\}$, and let $z = \begin{pmatrix} x^+ \\ x^- \end{pmatrix} \in \mathbb{R}^{2n}$ and we have:

$$||x||_1 = e^T(x^+ + x^-) = e^T z$$
 and $Ax = [A - A]z$

with e a all-ones column vector of size 2n. The the ℓ^1 minimization is equivalent to an LP problem:

$$\min e^T z$$
 subject to $[A - A]z = y, z \ge 0$

This LP problem can be solved in polynomial time (with IPM).

Minimizing the ℓ^1 Norm via Local Descent

For minimizing a function with **constraints**:

$$\min_{x} f(x), \qquad x \in \mathcal{C} \text{ (a convex set)}, \tag{11}$$

Basic Strategy: projected gradient descent (PGD):

$$x_{k+1} \leftarrow \mathcal{P}_{\mathcal{C}}[x_k - \eta \nabla f(x_k)] \tag{12}$$

where $\mathcal{P}_{\mathcal{C}}[.]$ projects a point, say z, to the nearest point in \mathcal{C} :

$$\mathcal{P}_{\mathcal{C}}[z] = \operatorname{argmin}_{x \in \mathcal{C}} \|z - x\|_{2}^{2} = h(x). \tag{13}$$

For general C, the projection may not exist, or may not be unique (how?). However: for closed convex sets, the projection is well defined and satisfies a wealth of useful properties.

Dr. Eng. Valentin Leplat

Project onto an affine subspace: $C = \{x | Ax = y\}$

How to find the nearest point $\hat{x} = \mathcal{P}_{\mathcal{C}}[.]$ to a point z.

In this special case, and if A has full row rank, \hat{x} satisfies two conditions:

- 1. Feasibility: $\hat{x} \in \mathcal{C}$, i.e., $A\hat{x} = y$.
- 2. Optimality: $z \hat{x} \perp null(A)$

From these conditions, we have:

$$\hat{x} = \mathcal{P}_{x|Ax=y}[z] = z - A^H (AA^H)^{-1} [Az - y]$$

Directly check? Or derive alternatively? (use KKT conditions)

Minimizing ℓ^1 Norm: Nondifferentiability

Try to solve:

$$\min_{x} \|x\|_1 \qquad \text{subject to } Ax = y$$

using projected gradient descent: $\min_{x} f(x): \qquad x_{k+1} \leftarrow \mathcal{P}_{\mathcal{C}}[x_k - \eta \nabla f(x_k)]$

But
$$||x||_1$$
 is non differentiable.

(b) nondifferentiable

 \boldsymbol{x}_0

 $f(\mathbf{x}_0) + (\mathbf{g}, \mathbf{x} - \mathbf{x}_0), \quad \mathbf{g} \in \partial f(\mathbf{x}_0)$

(a) differentiable

(14)

(15)

Design Strategies for All Local Descent Methods

Minimization via local descent:

At current iterate x_k , find a local surrogate $\hat{f}(x; x_k) \approx f(x)$ such that

$$x_{k+1} := \operatorname{argmin}_{x \in \mathcal{C}} \hat{f}(x; x_k) \text{ easy to find } !$$
 (17)

where $\hat{f}(x; x_k)$ could be linear, quadratic, higher-order; or upper-bound (conservative) or lower-bound (accelerating).

Subgradient and Subdifferential

Generalizing the gradient $\nabla f(x)$ at x_0 with the property¹:

$$f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle, \quad \forall x \in \mathbb{R}^n$$

Definition: Subgradient and Subdifferential

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a **convex** function. A subgradient of f at x_0 is any vector $u \in \mathbb{R}^n$

satisfying
$$f(x) \ge f(x_0) + \langle u, x - x_0 \rangle, \quad \forall x$$

The *subdifferential* of
$$f$$
 at x_0 is the set of all subgradients of f at x_0 :

$$\partial f(x_0) = \{ u | \forall x \in \mathbb{R}^n, f(x) \geqslant f(x_0) + \langle u, x - x_0 \rangle \}.$$

Simple Algorithm for
$$\ell^1$$
 Minimization

(18)

(19)

(20)

¹ for convex functions! Dr. Eng. Valentin Leplat

Sugradient method

With these definitions in mind:

- we might imagine that in the non-smooth case, a suitable replacement for the gradient descent algorithm might be the *subgradient method*.
- which choose (somehow) $g_k \in \partial f(x_k)$,
- and then proceeds in the direction of $-q_k$

$$x_{k+1} \leftarrow x_k - \alpha_k q_k$$

- \triangleright Recall that we will need to incorporate the projection onto the feasible set \mathcal{C} .
- ▶ In any case, we need an expression for the subdifferential of the ℓ^1 Norm.

Subgradient and Subdifferential of ℓ^1 Norm

Figure: In blue, purple, and red, three linear lower bounds $g(x) := f(x_0) + \langle u, x - x_0 \rangle$, taken at $x_0 = 0$, with slope $u = -\frac{1}{2}, \frac{1}{3}$, and $\frac{2}{3}$, respectively. Any slope $u \in [-1, 1]$ defines a linear lower bound on f(x) around $x_0 = 0$. So, $\partial |.|(0) = [-1, 1]$. For $x_0 > 0$, the only linear lower bound has slope u = 1; for $x_0 < 0$, the only linear lower bound has slope u = 1. So, $\partial |.|(x) = \{-1\}$ for x < 0 and $\partial |.|(x) = \{1\}$ for x > 0.

Subgradient and Subdifferential of ℓ^1 Norm

The following lemma extends this observation to higher-dimensional $x \in \mathbb{R}^n$

Lemma: Subdifferential of $\|.\|_1$

Let $x \in \mathbb{R}^n$, with I = supp(x),

 $\partial \|.\|_1(x) = \{ v \in \mathbb{R}^n | P_I v = \text{sign}(x), \|v\|_{\infty} \le 1 \}.$

Here, $P_I \in \mathbb{R}^{n \times n}$ is the orthogonal projector onto coordinates I:

$$[P_I v]_j = \begin{cases} v_j & j \in I \\ 0 & j \notin I \end{cases}$$
 (22)

Proof: on request.

(21)

Minimizing the ℓ^1 Norm: Projected Subgradient

To solve:

$$\min_{x} \|x\|_1 \qquad \text{subject to } Ax = y$$

 $x_{k+1} \leftarrow \mathcal{P}_{\mathcal{C}}[x_k - \alpha_k q_k], \quad q_k \in \partial f(x_k).$

using projected subgradient descent:

Algorithm (
$$\ell^1$$
 Minimization via Projected Subgradient Descent):

- 1: **Input:** a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $y \in \mathbb{R}^m$.
- 2: Compute $\Gamma\leftarrow I-A^*(AA^*)^{-1}A$, and $ilde x\leftarrow A^\dagger u=A^*(AA^*)^{-1}u$.
 - 3: $\boldsymbol{x}_0 \leftarrow \mathbf{0}$.
- 4: $t \leftarrow 0$.
- 5: **repeat many times** 6: $t \leftarrow t + 1$:
- 7: $x_t \leftarrow \tilde{x} + \Gamma\left(x_{t-1} \frac{1}{t}\operatorname{sign}(x_{t-1})\right);$
- 7: $x_t \leftarrow x + 1 \ (x_{t-1} \frac{1}{t} \operatorname{sign}(x_t x_t))$ 8: end while

(23)

(24)

Minimizing the ℓ^1 Norm: Projected Subgradient

Remarks

- ▶ In may aspects, this is a bad method for solving the ℓ^1 problem.
- ▶ It is correct but it converges very slowly compared to methods which exploit a certain piece of problem-specific structure, which we will describe later in the course.
- ▶ The main virtue of the Algorithm is that it is simple and intuitive,
- ▶ and also serves our exposition by introducing or reminding us of subgradients and projection operators :).

Minimizing the ℓ^1 Norm: Simulations

Solve:

$$\min_{x} \|x\|_1 \qquad \text{s.t. } Ax = y.$$

A is of size 200×400 . Fraction of success across 50 trials.

Remark: although the method does not always succeed, it does succeed whenever the target solution x_0 is sufficiently sparse.

Minimizing the ℓ^1 Norm: More Simulations

Solve:

$$\min_{x} \|x\|_1 \qquad \text{s.t. } Ax = y.$$

For the following settings:

- 1. Recover a sparse signal in the temporal domain using a random A matrix with independent and identically distributed (iid) Gaussian entries, with size $m \times n$ where $m \leq n$.
- 2. Recover a sparse signal in the frequency domain using $A = \Phi \Psi^{-1}$, and where Ψ is the Discrete Fourier Transform (DFT) matrix, and Φ is a matrix which select a subset of m rows of Ψ^{-1} .
- 3. Recover a sparse image using linear measurements with $A = \Phi \Psi^T$, and where Φ is a random matrix with iid Gaussian entries and Ψ is the Discrete Cosine Transform (DCT) matrix (see here and here for info).

▶ Demo

- ▶ In the work of Benjamin Logan: shown that ℓ^1 minimization can be used to remove sparse errors in band limited signals
- ▶ We consider here a discretized analog of this result, in which we consider a finite-dimensional signal $y \in \mathbb{C}^n$.

Let $F \in \mathbb{C}^{n \times n}$ be the **Discrete Fourier Transform** (DFT) basis for \mathbb{C}^n , that is we have:

$$F_{kl} = \frac{1}{\sqrt{n}} \exp\left\{2\pi i \frac{kl}{n}\right\}, k = 0, ..., n - 1, l = 0, ..., n - 1$$
(25)

Let $f_0, ..., f_{n-1}$ denote the columns of the DFT matrix²:

$$F = \begin{bmatrix} f_0 | & \cdots & |f_{n-1} \end{bmatrix} \in \mathbb{C}^{n \times n}$$
 (26)

²expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a discrete signal through matrix multiplication. Sparse Error Correction via ℓ^1 Minimization Dr. Eng. Valentin Leplat

Example of F: n = 8 (Eight-point)

$$\mathsf{F}^{\cdot} = \frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \frac{1-i}{\sqrt{2}} & -i & \frac{-1-i}{\sqrt{2}} & -1 & \frac{-1+i}{\sqrt{2}} & i & \frac{1+i}{\sqrt{2}} \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & \frac{-1-i}{\sqrt{2}} & i & \frac{1-i}{\sqrt{2}} & -1 & \frac{1+i}{\sqrt{2}} & -i & \frac{-1+i}{\sqrt{2}} \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & \frac{-1+i}{\sqrt{2}} & -i & \frac{1+i}{\sqrt{2}} & -1 & \frac{1-i}{\sqrt{2}} & i & \frac{-1-i}{\sqrt{2}} \\ 1 & i & -1 & -i & 1 & i & -1 & -i \\ 1 & \frac{1+i}{\sqrt{2}} & i & \frac{-1+i}{\sqrt{2}} & -1 & \frac{-1-i}{\sqrt{2}} & -i & \frac{1-i}{\sqrt{2}} \end{bmatrix}$$

Let $B \in \mathbb{C}^{n \times (d+1)}$ be a submatrix of the d lowest-frequency elements of this basis and their conjugates:

$$B = \left[f_{-\frac{d-1}{2}} \middle| \quad \cdots \quad \middle| f_{\frac{d-1}{2}} \right] \quad \in \mathbb{C}^{n \times (d+1)},$$

where we use f_{-i} to indicate the conjugate of f_i . Let us imagine that $x_0 = Bw_0 \in col(B)$, and

$$y=x_0+e_0, \qquad ext{where } \|e_0\|_0\leqslant k$$

Our goal: recover
$$x_0^{-3}$$
.

Dr. Eng. Valentin Leplat

³which is equivalent to removing
$$e_o$$

 $\min_{x} \|y - x\|_1 \quad \text{s.t. } x \in \text{col}(B).$

$$(29)$$

(27)

(28)

- ▶ This problem is very much equivalent to the sparse signal recovery problem discussed so far.
- ▶ To see this: Let A be a matrix whose rows span the left null-space of B, i.e. rank(A) = n d, and AB = 0,

Then $Ax_o = ABw_o = 0$, and

$$\bar{y} = Ay = A(x_o + e_0) = Ae_0$$
 (30)

To solve for e_o :

$$\min \|e\|_1 \qquad \text{s.t. } Ae = \bar{y} \tag{31}$$

According to Logan's Theorem, this succeeds if $d \times k \leqslant c^{\frac{\pi}{2}}$.

Figure: Logan's phenomenon. (a) The superposition $y = x_o + e_0$ of a band-limited signal x_o and a sparse error e_o . (b) Estimate \hat{x} by ℓ^1 minimization. (c) Estimate \hat{e} by ℓ^1 minimization. Both estimates are accurate to within relative error 10^{-6} .

Next: Towards a Rigorous Justification

Given $y = Ax_o$ with x_o sparse:

NP: $\min_{x} ||x||_0$ subject to Ax = y

 $\mathbf{P}: \quad \min_{x} \|x\|_1 \qquad \text{subject to } Ax = y$

When and Why does ℓ^1 minimization work?

(32)

Summary

Summary

We have seen:

- ▶ Definition of *convex functions* and the crucial notion of *convex* envelope.
- ▶ The ℓ^1 norm as the convex envelope of ℓ^0 norm.
- A simple algorithm for ℓ^1 minimization, the projected subgradient algorithm.
- ▶ The example of sparse error correction via ℓ^1 minimization.

Goodbye, So Soon

THANKS FOR THE ATTENTION

- ▶ v.leplat@innopolis.ru
- ► sites.google.com/view/valentinleplat/