Correlation

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Relationships between two variables

- x = explanatory/independent variable
- y = response/dependent variable

Correlation coefficient

- Quantifies the linear relationship between two variables
- Number between -1 and 1
- Magnitude corresponds to strength of relationship
- Sign (+ or -) corresponds to direction of relationship

Magnitude = strength of relationship

0.99 (very strong relationship)

0.75 (strong relationship)

Magnitude = strength of relationship

0.56 (moderate relationship)

0.21 (weak relationship)

Magnitude = strength of relationship

0.04 (no relationship)

 Knowing the value of x doesn't tell us anything about y

Sign = direction

0.75: as x increases, y

increases

-0.75: as x increases, y decreases

Visualizing relationships

```
import seaborn as sns
sns.scatterplot(x="sleep_total", y="sleep_rem", data=msleep)
plt.show()
```


Adding a trendline

```
import seaborn as sns
sns.lmplot(x="sleep_total", y="sleep_rem", data=msleep, ci=None)
plt.show()
```


Computing correlation

```
msleep['sleep_total'].corr(msleep['sleep_rem'])
```

0.751755

```
msleep['sleep_rem'].corr(msleep['sleep_total'])
```

0.751755

Many ways to calculate correlation

- Used in this course: Pearson product-moment correlation (r)
 - Most common
 - \circ $ar{x} = \operatorname{mean} \operatorname{of} x$
 - \circ $\sigma_x =$ standard deviation of x

$$r = \sum_{i=1}^n rac{(x_i - ar{x})(y_i - ar{y})}{\sigma_x imes \sigma_y}$$

- Variations on this formula:
 - Kendall's tau
 - Spearman's rho

Correlation caveats

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Non-linear relationships

Non-linear relationships

What we see:

What the correlation coefficient sees:

Correlation only accounts for linear relationships

Correlation shouldn't be used blindly

df['x'].corr(df['y'])

0.081094

Always visualize your data

Mammal sleep data

print(msleep)

	name	genus	vore	order		sleep_cycle	awake	brainwt	bodywt
1	Cheetah	Acinonyx	carni	Carnivora		NaN	11.9	NaN	50.000
2	Owl monkey	Aotus	omni	Primates		NaN	7.0	0.01550	0.480
3	Mountain beaver	Aplodontia	herbi	Rodentia		NaN	9.6	NaN	1.350
4 Greater short-ta		Blarina	omni	Soricomorpha		0.133333	9.1	0.00029	0.019
5	Cow	Bos	herbi	Artiodactyla		0.666667	20.0	0.42300	600.000
	•••	• • •	• • •	• • •		• • •	• • •		• • •
79	Tree shrew	Tupaia	omni	Scandentia		0.233333	15.1	0.00250	0.104
80 Bottle-nosed do		Tursiops	carni	Cetacea		NaN	18.8	NaN	173.330
81	Genet	Genetta	carni	Carnivora		NaN	17.7	0.01750	2.000
82	Arctic fox	Vulpes	carni	Carnivora		NaN	11.5	0.04450	3.380
83	Red fox	Vulpes	carni	Carnivora	• • •	0.350000	14.2	0.05040	4.230

Body weight vs. awake time


```
msleep['bodywt'].corr(msleep['awake'])
```

0.3119801

Distribution of body weight

Log transformation

```
msleep['log_bodywt'].corr(msleep['awake'])
```

0.5687943

Other transformations

- Log transformation (log(x))
- Square root transformation (sqrt(x))
- Reciprocal transformation (1 / x)
- Combinations of these, e.g.:
 - o log(x) and log(y)
 - o sqrt(x) and 1 / y

Why use a transformation?

- Certain statistical methods rely on variables having a linear relationship
 - Correlation coefficient
 - Linear regression

Introduction to Linear Modeling in Python

Correlation does not imply causation

x is correlated with y does not mean x causes y

Confounding

Design of experiments

INTRODUCTION TO STATISTICS IN PYTHON

Maggie Matsui
Content Developer, DataCamp

Vocabulary

Experiment aims to answer: What is the effect of the treatment on the response?

- Treatment: explanatory/independent variable
- Response: response/dependent variable

E.g.: What is the effect of an advertisement on the number of products purchased?

- Treatment: advertisement
- Response: number of products purchased