Введение в компьютерный и интеллектуальный анализ данных

Воротницкая Т.И.

5. Data Mining

- **Data Mining** «Добыча данных», интеллектуальный анализ данных, совокупность методов для обнаружения в массивах данных новых знаний: нетривиальных, полезных и доступных для интерпретации.
- Специфика современных требований к обработке данных:
 - Данные имеют неограниченный объем
 - Данные являются разнородными (количественными, качественными, текстовыми)
 - Результаты должны быть конкретны и понятны
 - Инструменты для обработки сырых данных должны быть просты в использовании
- Почему не работает статистика: не работает концепция усреднения по выборке, статистика работает с фиктивными величинами (средняя температура по больнице) и подходит для проверки ранее сформулированных гипотез.

5. Data Mining

	X ₁	X_2	•••	X_k	Y
n ₁	X ₁₁	X ₁₂		X _{1k}	y ₁
n ₂	X ₂₁	X ₂₂		X _{2k}	y ₂
n _N	X _{N1}	X _{N2}		X _{Nk}	y _N

5. Data Mining **Задачи**

- Классификация это отнесение объектов к одному из заранее известных классов.
- **Кластеризация** это группировка объектов на основе данных, описывающих сущность этих объектов.
- **Регрессия** (задачи прогнозирования) установление зависимости непрерывных выходных от входных переменных.
- Ассоциация выявление закономерностей между связанными событиями. Примером такой закономерности служит правило, указывающее, что из события X следует событие Y.
- Визуализация создание графического образа анализируемых данных.
- Последовательные шаблоны установление закономерностей между связанными во времени событиями, т.е. обнаружение зависимости, что если произойдет событие X, то спустя заданное время произойдет событие Y.
- Анализ отклонений выявление наиболее нехарактерных шаблонов.

5. Кластерный анализ.

Кластерный анализ — процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы

Основные цели кластеризации:

- упрощение дальнейшей обработки данных, т.е. разбиение исходного множества объектов на кластеры для работы с каждой группой в отдельности;
- сжатие данных сокращение объёма хранимых данных (оставить по одному представителю от каждого кластера);
- выделение нетипичных объектов (элементы, которые не подходят ни к одному из кластеров);
- построение иерархии множества объектов.

5. Кластерный анализ.

Кластерный анализ включает в себя два вспомогательных этапа:

- предварительная обработка (pre-processing),
- постобработка данных (post-processing).

pre-processing: нормализация данных (путем вычитания среднего и деления на стандартное отклонение), удаление объектов-выбросов.

post-processing: удаление малых кластеров и кластеров-выбросов, дробление больших кластеров, объединение близких кластеров.

Для нахождения решения задач кластерного анализа необходимо:

- задать способ сравнения объектов между собой (меру сходства);
- способ кластеризации;
- установить число кластеров;
- $F = \sum_{j=1}^{n} (x_j \bar{x})^2 \rightarrow min$

5. Кластерный анализ. **Характеристики кластера**

- Центр среднее геометрическое место точек в пространстве переменных
- Радиус максимальное расстояние точек от центра кластера
- Размер радиус кластера или среднеквадратичное отклонение объектов кластера

5. Кластерный анализ. Классификация алгоритмов

- По способу обработки данных
 - Иерархические
 - нисходящие
 - восходящие
 - Неиерархические
- По способу анализа данных
 - четкие (непересекающиеся) каждому объекту выборки ставят в соответствие номер кластера
 - нечеткие (пересекающиеся) объекту ставят в соответствие набор вещественных значений, показывающих степень отношения объекта к кластерам.
- По возможности расширения объема обрабатываемых данных
 - Масштабируемые
 - Немасштабируемые

5. Кластерный анализ. **Иерархические методы**

5. Кластерный анализ. **Метод поиска ближайшего соседа**

Метод одиночной связи

Расстояние между двумя кластерами определяется как расстояние между ближайшими их представителями

- 1. рассчитываем матрицу расстояний между объектами;
- находим минимальное значение, соответствующее расстоянию между двумя наиболее близкими кластерами;
- 3. объединяем найденные кластеры в новый;
- 4. повторяем шаги 2-3 до тех пор, пока число объектов (кластеров) не станет меньше заданного

5. Кластерный анализ. **Метод поиска ближайшего соседа**

	1	2	3	4
1	0	2,06	4,03	6,32
2	2,06	0	2,5	4,12
3	4,03	2,5	0	2,24
4	6,32	4,12	2,24	0

	1,2	3,4
1,2	0	2,5
3,4	2,5	0

5. Кластерный анализ. **Метод k-средних**

1. Первоначальное распределение объектов по кластерам.

- Выбирается число k, и на первом шаге выбираем k точек, которые считаются начальными центроидами - "центрами" кластеров. Каждому кластеру соответствует один центр.
- Выбор начальных центроидов может осуществляться следующим образом:
 - выбор k-наблюдений для максимизации начального расстояния;
 - случайный выбор k-наблюдений;
 - выбор первых k-наблюдений.
- Для каждого объекта определить ближайший к нему центроид
- В результате каждый объект назначен одному из k начальных кластеров.

2. Итеративный процесс.

- Вычисляются *центры кластеров*, которыми считаются покоординатные средние кластеров.
- Объекты перераспределяются к этим центрам.
- Процесс вычисления центров и перераспределения объектов продолжается до тех пор, пока не выполнено одно из условий:
 - кластерные центры стабилизировались, т.е. все наблюдения принадлежат кластеру, которому принадлежали до текущей итерации;
 - число итераций равно максимальному числу итераций.

5. Кластерный анализ. **Метод k-средних**

5. Кластерный анализ. **Графовые методы**

Алгоритм кратчайшего незамкнутого пути (КНП)

(требует предположения о количестве кластеров k)

Алгоритм:

- 1. Установить количество кластеров k. Найти две близлежащие точки и соединить их ребром.
- 2. Найти изолированную точку, ближайшую к некой неизолированной, и соединить эти две точки ребром.
- 3. Если в выборке остаются изолированные точки, то перейти к п.2, иначе к п.4.
- 4. Удалить (k-1)самых длинных ребер.
- 5. Скрепленные ребрами группы точек объединить в кластеры.

5. Кластерный анализ. Графовые методы

5. Кластерный анализ. **Функции в R**

kmeans (x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"))

clara (x, k, metric = "euclidean", stand = FALSE, samples = 5,
sampsize = min(n, 40 + 2 * k), trace = 0, medoids.x = TRUE, keep.data =
medoids.x, rngR = FALSE)

agnes(x, diss = inherits(x, "dist"), metric = "euclidean", stand = FALSE,
method = "average", par.method, keep.diss = n < 100, keep.data = !diss)</pre>

6. Дискриминантный анализ.

- Дискриминантный анализ отнесение объекта к одной из заранее заданных групп на основании некоторых признаков (значений независимых переменных)
- Дискриминантная функция:

$$d = \sum_{i=1}^{n} w_i x_i$$

 Необходимо определить такие значения весовых коэффициентов, чтобы по значению дискриминантной функции с максимальной четкостью провести разделение по группам.

6. Дискриминантый анализ. **Нейронная сеть**

• Общий вид искусственного нейрона:

6. Дискриминантный анализ **Однослойный персептрон**

6. Дискриминантный анализ **Однослойный персептрон**

6. Дискриминантный анализ Обучение персептрона (обучение с учителем)

- Создаем обучающую выборку (известно, к какому классу относится каждый элемент)
- Присваиваем весам w_{ii} некоторые значения.
- Повторять, пока для всех элементов обучающей выборки не будет достигнуто правильное распознавание
 - 1. Для всех элементов обучающей выборки выполнить:
 - 2. Подать на вход вектор $\vec{x} = (x_1, x_2, ..., x_i, ..., x_n)^T$
 - $_{3.}$ Если на выходе D_{j} неправильное значение, тогда:
 - $\delta = T_j D_j$ (здесь T_j ожидаемое правильное значение выхода D_j)
 - 5. Изменяем веса: $w_{ji} = w_{ji} + \eta \delta x_i$ (веса, для которых на входе $x_i = 0$, не меняются)

Свойства персептрона:

- доказана сходимость алгоритма обучения;
- применение ограничено (например, нельзя воспроизвести функцию XOR)

6. Дискриминантный анализ **Двухслойный персептрон**

6. Дискриминантый анализ. Слой Кохонена

• Слой Кохонена

$$S_{j} = W_{j0} + \sum_{i=1}^{n} W_{ji} X_{i}$$

$$D_{j} = F(S_{j})$$

$$J_{\max} = \arg \max_{j} \{D_{j}\}$$

6. Дискриминантый анализ. Обучение слоя Кохонена (обучение без учителя)

- По сути, решается задача классификации, где априори задано число классов: близкие вектора должны давать один и тот же результат
 - Присваиваем весам w_{ii} некоторые значения.
 - Повторять, пока веса не перестанут изменяться:
 - 1. Для всех элементов обучающей выборки выполнить:
 - 2. Подать на вход вектор $ec{x}_{_k}$ из обучающей выборки X
 - $_{
 m 3.}$ Рассчитать выход слоя Кохонена, определить выигравший нейрон j
 - 4. Корректировать веса j-го нейрона: $\vec{w}_j = \vec{w}_j + \eta(\vec{x}_k \vec{w}_j)$ (в скалярной форме: $w_{ii} = w_{ii} + \eta(x_{ki} w_{ii})$

. Дискриминантый анализ. Обучение слоя Кохонена (обучение без учителя)

6. Дискриминантый анализ. Метод опорных векторов (Support Vector Machine)

- Задача бинарная классификация
- Классы определяются с помощью границ областей
- Плоскость решения плоскость (гиперплоскость), разделяющая объекты, принадлежащие к разным классам
- Оптимальная разделяющая плоскость плоскость решения, максимально далеко отстоящая от ближайших объектов обоих классов
- Опорные вектора вектора признаков объектов, лежащих на границе между классами

6. Дискриминантый анализ. Метод опорных векторов (Support Vector Machine)

6. Дискриминантый анализ. **Линейный SVM**

• Необходимо построить линейный пороговый классификатор:

$$D(\vec{x}) = sign\left(\sum_{j=1}^{n} w_j x_j - w_0\right) = sign(\vec{w}\vec{x} - w_0)$$

- Уравнение $\vec{w}\vec{x} w_o = 0$ описывает гиперплоскость, разделяющую классы в пространстве $\mathbf{R}^{\mathbf{n}}$
- Предположим, что выборка линейно разделима: $\exists \ \vec{w} \ \text{и} \ \text{w}_0$, для которых функционал числа ошибок на тестовой выборке

$$Q(\vec{w}, w_0) = \sum_{k=1}^{t} [Z_k(\vec{w}\vec{x}_k - w_0) < 0] = 0$$

• Здесь t — число объектов в тестовой выборке, Z_k принимает значение 1 при правильной классификации и -1 — при неправильной.

6. Дискриминантый анализ. **Линейный SVM**

• Нормировка:

$$D(\vec{x}) = sign\left(\sum_{j=1}^{n} w_j x_j - w_0\right) = sign(\vec{w}\vec{x} - w_0) = \begin{cases} 1\\ -1 \end{cases}$$

• В уравнении $\vec{w}\vec{x} - w_o = 0$ выберем \vec{w} и w_0 так, чтобы для всех пограничных объектов \vec{x}_i^+ и \vec{x}_i^- тестовой выборки $\vec{x}_k \in X^t$ выполнялось условие нормировки:

$$\vec{w}\vec{x}_i^+ - w_o = D(\vec{x}_i^+) = y_i = 1;$$
 $\vec{w}\vec{x}_i^- - w_o = D(\vec{x}_i^-) = y_i = -1;$ (оптимальная плоскость находится на равных расстояниях от объектов на границе с обоих сторон)

• Тогда для всех объектов тестовой выборки получаем

$$\vec{w}\vec{x}_k - w_o \begin{cases} \leq -1, \text{если } D(\vec{x}_k) = -1 \\ \geq 1, \text{если } D(\vec{x}_k) = +1 \end{cases}$$

6. Дискриминантный анализ. **Линейный SVM**

• Ширина разделяющей полосы:

$$\left((\vec{x}^+ - \vec{x}^-) \frac{\vec{w}}{\|\vec{w}\|} \right) = \frac{\vec{w}\vec{x}^+ - \vec{w}\vec{x}^-}{\|\vec{w}\|} = \frac{(w_0 + 1) - (w_0 - 1)}{\|\vec{w}\|} = \frac{2}{\|\vec{w}\|}$$

(учли, что для пограничных точек $\vec{x}_{_{+}}$ и $\vec{x}_{_{-}}$

$$\vec{w}\vec{x}_{i}^{+} - w_{o} = y_{i} = 1; \quad \vec{w}\vec{x}_{i}^{-} - w_{o} = y_{i} = -1;$$

$$\Rightarrow \begin{cases} \vec{w}\vec{x}^{+} = w_{0} + 1 \\ \vec{w}\vec{x}^{-} = w_{0} - 1 \end{cases}$$

6. Дискриминантный анализ. **Линейный SVM**

6. Дискриминантный анализ. **Проблемы SVM**

Проблемы:

- Решение задачи линейного программирования (метод, основанный на применении теоремы Куна-Таккера, неконструктивен
- Линейная неразделимость

6. Дискриминантный анализ. **Проблемы SVM**

• Линейная неразделимость

6. Дискриминантный анализ. **Проблемы SVM**

