Entrega 01: Modelagem da Taxa de Pico de Sistemas Modernos de Comunicação

Ana Paula Medeiros Amarante

Universidade Federal do Rio Grande do Norte Curso de Engenharia de Telecomunicações 26 de julho de 2020

1. Introdução

Os sistemas de comunicações definidos pelo 3rd Generation Partnership Project (3GPP), possuem diferentes forma de calcular a Taxa de Pico de acordo com os respectivos Releases de cada geração. O objetivo deste trabalho foi proporcionar a prototipagem das camadas MAC/PHY com o Release 10 do Long Term Evolution (LTE), o 4G, por meio de uma interface gráfica com o MATLAB. Carrier Aggregation (CA) é a novidade deste Release.

Para calcular a taxa de transmissão, é necessário saber o valor da MCS (Modulation and Coding Scheme), responsável pela modulação e taxa de codificação.

A MCS, por sua vez, é mapeada por meio do CQI (Channel Quality Indicator) index, que tem um valor diferente para cada Signal to Interference-Plus-Noise Ratio (SINR). O mapeamento do SINR em CQI index está mostrado na Tabela 1, esse mapeamento não é definido pelo 3GPP.

Table 7.1 Lookup table for mapping SINR estimate to modulation scheme and coding rate

CQI index	Modulation	Coding rate	Spectral efficiency (bps/Hz)	SINR estimate (dB)
1	QPSK	0.0762	0.1523	-6.7
2	QPSK	0.1172	0.2344	-4.7
3	QPSK	0.1885	0.3770	-2.3
4	QPSK	0.3008	0.6016	0.2
5	QPSK	0.4385	0.8770	2.4
6	QPSK	0.5879	1.1758	4.3
7	16QAM	0.3691	1.4766	5.9
8	16QAM	0.4785	1.9141	8.1
9	16QAM	0.6016	2.4063	10.3
10	64QAM	0.4551	2.7305	11.7
11	64QAM	0.5537	3.3223	14.1
12	64QAM	0.6504	3.9023	16.3
13	64QAM	0.7539	4.5234	18.7
14	64QAM	0.8525	5.1152	21.0
15	64QAM	0.9258	5.5547	22.7

Tabela 1: Mapeamento do SNR para o CQI index [4]

A partir do mapeamento feito na Tabela 1, é possível vincular o CQI index com o MCS index. Isto é feito por meio da Tabela 2, neste caso está sendo usado uma patente.

MCS INDEX	MODULATION ORDER	TBS INDEX	SPECTRAL EFFICIENCY	COMMENTS	CODE RATE	
0	2	0	0.2344	from CQI table (CQI index=2)	0.1171875	
1	2	1	0.3057	Average Efficiency	0.15332031	
2	2	2	0.377	from CQI table (CQI index=3)	0.18847656	
3	2	3	0.4893	Average Efficiency	0.24511719	
4	2	4	0.6016	from CQI table (CQI index=4)	0.30078125	
5	2	5	0.7393	Average Efficiency	0.37011719	
6	2	6	0.877	from CQI table (CQI index=5)	0.43847656	
7	2	7	1.0264	Average Efficiency	0.51367188	
8	2	8	1,1758	from CQI table (CQI index=6)	0.58789063	
9	2	9	1.3262	Average Efficiency	0.66308594	
10	4	9	1.3262	overlap	0.33203125	
11	4	10	1.4766	from CQI table (CQI index=7)	0.36914063	
12	4	11	1.69535	Average Efficiency	0.42382813	
13	4	12	1.9141	from CQI table (CQI index=8)	0.47851563	
14	4	13	2.1602	Average Efficiency	0.54003906	
15	4	14	2.4063	from CQI table (CQI index=9)	0.6015625	
16	4	15	2.5684	Average Efficiency	0.64257813	
17	6	15	2.5684	overlap	0.42773438	
18	6	16	2.7305	from CQI table (CQI index=10)	0.45507813	
19	6	17	3.0264	Average Efficiency	0.50488281	
20	6	18	3.3223	from CQI table (CQI index=11)	0.55371094	
21	6	19	3.6123	Average Efficiency	0.6015625	
22	6	20	3.9023	from CQI table (CQI index=12)	0.65039063	
23	6	21	4.21285	Average Efficiency	0.70214844	
24	6	22	4.5234	from CQI table (CQI index=13)	0.75390625	
25	6	23	4.8193	Average Efficiency	0.80273438	
26	6	24	5.1152	from CQI table (CQI index=14)	0.85253906	
27	6	25	5.33495	Average Efficiency	0.88867188	
28	6	26	5.5547	from CQI table (CQI index=15)	0.92578125	
29	2					
30	4	reserved				
31	6					
32	8	27	5.7930	Average Efficiency	0.7241	•
33	8	28	6.0313	from CQI table (CQI index=16)	0.75390625	1
34	8	29	6.4141	Average Efficiency	0.8018	■ EXTENDED
35	8	30	6.7969	from CQI table (CQI index=17)	0.85253906	■ ACCORDIN
36	8	31	7.0976	Average Efficiency	0.8872	■ TO THE NE
37	8	32	7.3984	from CQI table (CQI index=18)	0.92578125	CQI TABLE
38	8	33	7.5077	Average Efficiency	0.9385	1
39	8	34	7.6171	from CQI table (CQI index=19)	0.9521484375	

Tabela 2: Mapeamento do CQI index para o MCS index [5]

Com estes dois pontos, foi possível montar a tabela definida como "MCS_Mod_CodRate.csv", onde a modulação e a taxa de pico foram mapeadas de acordo com o MCS index.

2. Experimento

A próxima etapa é trabalhar com as tabelas definidas pelo 3GPP. A primeira é responsável por mapear o TBS index, a tabela 7.1.7.1-1 em [1]. Esta tabela foi definida como "MCS_TBS.csv".

Table 7.1.7.1-1: Modulation and TBS index table for PDSCH

MCS Index	Modulation Order	TBS Index		
$I_{ m MCS}$	Q_m	I_{TBS}		
0	2	0		
1	2	1		
2	2	2		
3	2 2	3		
4	2	4		
5	2	5		
6	2 2	6		
7	2	7		
8	2	8		
9	2	9		
10	4	9		
11	4	10		
12	4	11		
13	4	12		
14	4	13		
15	4	14		
16	4	15		
17	6	15		
18	6	16		
19	6	17		
20	6	18		
21	6	19		
22	6	20		
23	6	21		
24	6	22		
25	6	23		
26	6	24		
27	6	25		
28	6	26		
29	2			
30	4	reserved		
31	6			

Tabela 3: Mapeamento do MCS index para o TBS index [1]

É possível verificar que a Tabela 3 está contida na Tabela 2, confirmando que a patente [5] foi criada de acordo com as definições do 3GPP.

O número de PRBs é calculado a partir do valor da banda, retirando 10% desse valor para guarda de banda e o valor de banda efetiva é divido por 180KHz. Logo, temos para 1.4MHz são 6 PRBs, 3MHz são 15 PRBs, 5Mhz são 25 PRBs, 10MHz são 50 PRBs e para 20MHz são 100 PRBs [3].

Neste ponto, com o valor TBS e o número de PRBs, é hora de trabalhar com a próxima tabela, a 7.1.7.2.1-1 de [1]. Esta tabela é a "TBS_PRB.csv". Devido as suas dimensões, está mostrado apenas a parte inicial da tabela neste relatório, no código está completa.

I_{TBS}	$N_{ m PRB}$									
	1	2	3	4	5	6	7	8	9	10
0	16	32	56	88	120	152	176	208	224	256
1	24	56	88	144	176	208	224	256	328	344
2	32	72	144	176	208	256	296	328	376	424
3	40	104	176	208	256	328	392	440	504	568
4	56	120	208	256	328	408	488	552	632	696
5	72	144	224	328	424	504	600	680	776	872
6	328	176	256	392	504	600	712	808	936	1032
7	104	224	328	472	584	712	840	968	1096	1224
8	120	256	392	536	680	808	968	1096	1256	1384
9	136	296	456	616	776	936	1096	1256	1416	1544
10	144	328	504	680	872	1032	1224	1384	1544	1736
11	176	376	584	776	1000	1192	1384	1608	1800	2024
12	208	440	680	904	1128	1352	1608	1800	2024	2280
13	224	488	744	1000	1256	1544	1800	2024	2280	2536
14	256	552	840	1128	1416	1736	1992	2280	2600	2856
15	280	600	904	1224	1544	1800	2152	2472	2728	3112
16	328	632	968	1288	1608	1928	2280	2600	2984	3240
17	336	696	1064	1416	1800	2152	2536	2856	3240	3624
18	376	776	1160	1544	1992	2344	2792	3112	3624	4008
19	408	840	1288	1736	2152	2600	2984	3496	3880	4264
20	440	904	1384	1864	2344	2792	3240	3752	4136	4584
21	488	1000	1480	1992	2472	2984	3496	4008	4584	4968
22	520	1064	1608	2152	2664	3240	3752	4264	4776	5352
23	552	1128	1736	2280	2856	3496	4008	4584	5160	5736
24	584	1192	1800	2408	2984	3624	4264	4968	5544	5992
25	616	1256	1864	2536	3112	3752	4392	5160	5736	6200
26	712	1480	2216	2984	3752	4392	5160	5992	6712	7480
120	$N_{ m PRB}$									
I_{TBS}	11	12	13	14	15	16	17	18	19	20
0	288	328	344	376	392	424	456	488	504	536
1	376	424	456	488	520	568	600	632	680	712
2	472	520	568	616	648	696	744	776	840	872
3	616	680	744	808	872	904	968	1032	1096	1160
4	776	840	904	1000	1064	1128	1192	1288	1352	1416
5	968	1032	1128	1224	1320	1384	1480	1544	1672	1736
6	1128	1224	1352	1480	1544	1672	1736	1864	1992	2088
7	1320	1480	1608	1672	1800	1928	2088	2216	2344	2472

Table 7.1.7.2.1-1: Transport block size table (dimension 27×110)

Tabela 4: Mapeamento do número de bits, de acordo com TBS index e o número de PRBs [1]

Agora, é possível fazer o cálculo da taxa de pico pelas tabelas. Isto é feito a partir da Tabela 3, que faz o mapeamento entre as MCS index e o Transport Block Size (TBS) index. De posse dos números de PRBs e o TBS, se consegue o número de bits que pode ser transmitido em 1 TTI (=1ms). Logo, o cálculo pela tabela pode ser feito da seguinte forma:

$$Tput = Nbits * CP/7 * MIMO * CA * 0.001$$
 (1)

Onde Nbits, é calculado a partir da Tabela 4; o Cyclic Prefix é representado por CP (normal ou estendido); MIMO e CA também são entradas, que representam, respectivamente, o número de antenas MIMO e o número de Carrier Aggregation.

Para calcular a taxa de transmissão pela fórmula, temos as mesmas entradas para a equação (1). Sabendo que o overhead ocupa 25% da transmissão; 12 é o número de subportadoras em frequência dentro de um RB; a modulação é representada por Modulation = log2(M), com M sendo os valores para distintas amplitudes e a taxa de codificação é calculada por meio da variável CodRate. Temos que:

$$Tput = CP * PRBs * MIMO * CA * 0.75 * 12 * Modulation * CodRate/0.5 * 0.001$$
 (2)

3. Conclusão

Com estas etapas realizadas, foi hora de implementar o código preparado anteriormente, na interface guide do MATLAB. Como pode ser visto na Figura 1, o cálculo entre a equação e tabela não deram valores iguais, mas ainda assim, apresentam resultados próximos, o que permite validar o experimento de prototipagem da calculadora de taxa de pico para o LTE Release 10.

Figura 1: Calculadora do LTE Release 10

Link do vídeo: http://youtu.be/Pp7XiNQKCC4?hd=1

4. Referências

- [1] ETSI. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213 version 10.1.0 Release 10). Disponível em: https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/10.01.00_60/ts_136213v100100p.pdf. Acesso em: 22 jul. 2020.
- [2] SIMPLE TECH POST. **Transport Block Size, Throughput and Code rate**. Disponível em: http://www.simpletechpost.com/2012/12/transport-block-size-code-rate-protocol.html. Acesso em: 21 jul. 2020.
- [3] REKHI, P. K. *et al.* Throughput Calculation for LTE TDD and FDD Systems. **White Paper**, p. 3-10, dez./2012. Disponível em: https://pt.slideshare.net/veermalik121/throughput-calculation-for-lte-tdd-and-fdd-system. Acesso em: 22 jul. 2020.
- [4] WANG, Kun. Ricean K-factor Estimation based on Channel Quality Indicator in OFDM Systems using Neural Network. v. 1808.06537, p. 3-3, ago./2018. Disponível em: https://arxiv.org/pdf/1808.06537.pdf. Acesso em: 23 jul. 2020.
- [5] PATSNAP. **Patent Analysis of User terminal, radio base station and adaptive modulation and coding method**. Disponível em: https://patents.patsnap.com/v/US10136451-user-terminal-radio-base-station-and-adaptive-modulatio n-and-coding-method.html. Acesso em: 23 jul. 2020.
- [6] MATHWORKS. **Csvread**. Disponível em: https://www.mathworks.com/help/matlab/ref/csvread.html. Acesso em: 25 jul. 2020.
- [7] **MELISSA WEBER MENDONÇA, UFSC. MATLAB Avançado**. Disponível em: http://mtm.ufsc.br/~melissa/arquivos/matlabpet/aula_01.pdf. Acesso em: 25 jul. 2020.