Write your name here Surname	Other nam	es
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Physics Advanced Unit 6: Experimenta	nl Physics	
Thursday 15 May 2014 – More: 1 hour 20 minutes	orning	Paper Reference WPH06/01
You must have: Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 3 1 2 6 A 0 1 1 6

Turn over ▶

BLANK PAGE

				Answer ALL questi	ions in the spaces provided.		
(8	a) A	stı	ident measures	s the diameter d of a th	nin resistance wire.		
	(i)			crometer screw gauge ameter of the wire.	is the most appropriate instrument to use to		
						(1)	
	(ii			ique the student shoul ich is as accurate as p	ld use to determine a value for the diameter ossible.	(1)	
(1			student also m	_	and the resistance R of the wire. She records		
				<i>l</i> /cm	89.4		
				d/mm	0.204 ± 0.003		
				R/Ω	15.68 ± 0.07		
			Jse these value	es to calculate the resis	stivity of the material of the wire in Ω m.	(2)	
••••					Resistivity =		Ω Ω n
	(ii				in your value for the resistivity. ne value for l is negligible.	(2)	
						(3)	
					Percentage uncertainty =		
					(Total for Question $1 = 7$ ma	rks)	

A student has been asked to determine the height H of a ceiling, using a simple pendulum as shown below.

The student measures the distance h from the floor to the centre of the pendulum bob. He determines values of the time period T of the pendulum for different values of h.

(a) Describe how he should use a metre rule to measure h.

You may add to the diagram if you wish.

			,)									

(3)

(b) Describe what the student should do to make his values for <i>T</i> as accurate as possible.							
(c) The relationship between T and h is given by							
$T^2 = \frac{4\pi^2 H}{g} - \frac{4\pi^2 h}{g}$							
Plotting T^2 against h gives a straight line graph.							
(i) State an expression for the gradient of the graph of T^2 against h .	(1)						
	(1)						
(ii) Show that a value for H can be obtained from the expression							
$H = \frac{\text{intercept}}{\text{gradient}}$							
	(2)						

An experiment is set up to show the diffraction of electrons. A beam of electrons is accelerated by a potential difference V in a vacuum tube and passes through a thin foil target. The diffracted electrons produce a ring pattern as shown below.

By measuring the diameter of the rings it is possible to calculate a value for the wavelength λ of the electrons from

$$V = k \lambda^{-2}$$

where k is a constant.

The following data were recorded for two different values of V.

(a) (i) Calculate a value for k. You may add to the table if you wish.

V/kV	$\lambda/10^{-12} \text{ m}$	
200	2.51	
300	1.95	

(3)

(ii) Estimate the percentage uncertainty in your value for k.

Percentage uncertainty =

where h is the Planck constant, e is the electron charge and m_e is the electron (i) Use your value for k to calculate a value for h .	
i) Use your value for k to calculate a value for h	on mass.
1) Ose your value for k to calculate a value for h.	
	(2)
$h = \dots$	
(ii) Estimate the percentage uncertainty in your value for h .	(1)
Percentage uncertainty =	
iii) Comment on the validity of your answer for h .	(2)
(Total for Question	

BLANK PAGE

(a) Explain why the resistance of a thermistor decreases as its temperature increases	ses. (2)
(b) Plan an experiment to determine how the resistance of a thermistor changes at temperature is increased from 0 °C to 100 °C.	s its
Your plan should include:	
(i) the apparatus required,	(2)
(ii) how you would obtain the temperature range,	(1)
(iii) the precautions you would take to ensure accurate measurements.	(2)
You may draw a diagram if you wish.	

((c)	The resistance	R	of the	thermistor	is	related	to	its tem	nerature	θ	b	v
٦	(\mathbf{v})	THE TESISTATION	1.	OI tile	uicillibuoi	10	reracea	·	Its toll	peracare	0	0	J

$$R = R_0 e^{-\alpha \theta}$$

where R_0 and α are constants.

(i) Show that a graph of $\ln R$ against θ should be a straight line.

(1)

(ii) In an experiment to measure R and θ the following data were recorded.

θ / °C	R / k Ω	
19	6.17	
30	4.35	
42	2.66	
50	1.96	
62	1.25	
70	0.906	

Use the grid opposite to draw a graph of $\ln R$ against θ . Use the column in the table for your processed data.

(4)

(:::)	T Taa	***	~ 40 40 10	+-	determine	0 770	1	for	
(1111)	USE	VOHI	orann	10	aeiermine	a va	HHE.	I OT	11

(3)

 $\alpha = \dots$

(Total for Question 4 = 15 marks)

TOTAL FOR PAPER = 40 MARKS

BLANK PAGE

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Coulomb's law constant $k = 1/4\pi\varepsilon_0$

 $= 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$

Electron charge $e = -1.60 \times 10^{-19} \text{ C}$

Electron mass $m_e = 9.11 \times 10^{-31} \text{kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \ F \ m^{-1}$

Planck constant $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

Proton mass $m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$

Speed of light in a vacuum $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$

Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \ W \ m^{-2} \ K^{-4}$

Unified atomic mass unit $u = 1.66 \times 10^{-27} \text{ kg}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/mW = mg

Work and energy $\Delta W = F \Delta s$

 $E_{k} = \frac{1}{2}mv^{2}$ $\Delta E_{\text{grav}} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$ Strain $\varepsilon = \Delta x/x$

Elastic strain energy $E_{\rm el} = \frac{1}{2}F\Delta x$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $_{1}\mu_{2} = \sin i / \sin r = v_{1}/v_{2}$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VI efficiency $P = I^2R$

 $P = V^2/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

Unit 4

Mechanics

Momentum p = mv

Kinetic energy of a

non-relativistic particle $E_k = p^2/2m$

Motion in a circle $v = \omega r$

 $T = 2\pi/\omega$

 $F = ma = mv^2/r$

 $a = v^2/r$

 $a = r\omega^2$

Fields

Coulomb's law $F = kQ_1Q_2/r^2$ where $k = 1/4\pi\epsilon_0$

Electric field E = F/Q

 $E = kQ/r^2$

E = V/d

Capacitance C = Q/V

Energy stored in capacitor $W = \frac{1}{2}QV$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

In a magnetic field $F = BIl \sin \theta$

 $F = Bqv \sin \theta$

r = p/BQ

Faraday's and Lenz's Laws $\varepsilon = -d(N\phi)/dt$

Particle physics

Mass-energy $\Delta E = c^2 \Delta m$

de Broglie wavelength $\lambda = h/p$

Unit 5

Energy and matter

Heating $\Delta E = mc\Delta\theta$

Molecular kinetic theory $\frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$

Ideal gas equation pV = NkT

Nuclear Physics

Radioactive decay $dN/dt = -\lambda N$

 $\lambda = \ln 2/t_{\frac{1}{2}}$ $N = N_0 e^{-\lambda t}$

Mechanics

Simple harmonic motion $a = -\omega^2 x$

 $a = -A\omega^2 \cos \omega t$ $v = -A\omega \sin \omega t$ $x = A\cos \omega t$ $T = 1/f = 2\pi/\omega$

Gravitational force $F = Gm_1m_2/r^2$

Observing the universe

Radiant energy flux $F = L/4\pi d^2$

Stefan-Boltzmann law $L = \sigma T^4 A$

 $L = 4\pi r^2 \sigma T^4$

Wien's Law $\lambda_{\max} T = 2.898 \times 10^{-3} \text{ m K}$

Redshift of electromagnetic

radiation $z = \Delta \lambda / \lambda \approx \Delta f / f \approx v / c$

Cosmological expansion $v = H_0 d$