Aufgabe 3

Beweisen Sie, dass folgende Sprache kontextfrei, aber nicht regulär ist.

$$C = \{ a^n b^m \mid n \ge m \ge 1 \}$$

Nachweis Kontextfrei über Grammatik

$$G = (\{S\}, \{a, b\}, P, S)$$

 $P = \{$

$$S \rightarrow aSb \mid aS \mid ab$$

- Regel 1: aSb
- Regel 2: aS
- Regel 3: ab

$$ab: S \xrightarrow{3} ab$$

$$a^n b$$
: $S \xrightarrow[n-1]{2} a^{n-1} S \xrightarrow[]{3} a^{n-1} ab$

$$a^n b^m$$
: $S \xrightarrow[m-1]{1} a^{m-1} S b^{m-1} \xrightarrow[n-(m-1)]{2} a^{n-1} S b^{m-1} \xrightarrow[3]{3} a^n b^m$
 $\Rightarrow L(G) = C$

Nachweis Kontextfrei über Kellerautomat

flaci.com/Aji151myg

Nachweis: C nicht regulär

C sei regulär

⇒ Pumping-Lemma für C erfüllt

j sei die Pumping-Zahl ($j \in \mathbb{N}$)

 $\omega \in C$: $\omega = a^{j}b^{j}$

 $\omega = uvw$

Dann gilt:

- $-|v| \ge 1$
- $-|uv| \leq j$

- $uv^iw \in C$ für alle $i \in \mathbb{N}_0$

In *uv* können nur *a'*s vorkommen

- ⇒ In v muss mindestens ein a vorkommen ⇒ $uv^0w = a^l(a^{j-l})^0b^j((a^{j-l})^0 = \varepsilon)$ ⇒ In ω' sind nur l viele a's, Da l < j, $\omega' \notin C$,
- \Rightarrow Widerspruch zur Annahme
- \Rightarrow C nicht regulär