Number of Items	Selection Sort	Merge Sort
10	Total: 0.000520 seconds	Total: 0.001162 seconds
	Input: 0.000241 seconds	Input: 0.000354 seconds
	Output: 0.000231 seconds	Output: 0.000727 seconds
	Sort: 0.000048 seconds	Sort: 0.000081 seconds
	% Input: 46.3%	% Input: 30.5%
	% Output: 44.4%	% Output: 62.6%
	% Not on Sorting: 92.7%	% Not on Sorting: 93.1%
100	Total: 0.001603	Total: 0.001212
	Input: 0.000236	Input: 0.000183
	Output: 0.000306	Output: 0.000262
	Sort: 0.001061	Sort: 0.000767
	% Input: 14.7%	% Input: 15.1%
	% Output: 19.1%	% Output: 21.6%
	% Not on Sorting: 33.8%	% Not on Sorting: 36.7%
1,000	Total: 0.207973	Total: 0.059411
	Input: 0.002139	Input: 0.001344
	Output: 0.00108	Output: 0.001216
	Sort: 0.204754	Sort: 0.056851
	% Input: 1%	% Input: 2.3%
	% Output: .05%	% Output: 2.05%
	% Not on Sorting: 1.05%	% Not on Sorting:4.35%
10,000	Total: 18.566693	Total: 0.231348
	Input: 0.005334	Input: 0.005358
	Output: 0.059151	Output: 0.006607
	Sort: 18.502208	Sort: 0.219383
	% Input:	% Input: 2.3%
	% Output:	% Output: 2.86%
	% Not on Sorting: <1%	% Not on Sorting: 5.16%
100,000	Total: 570.6	Total: 3.309544
	Input: .106432	Input: 0.110545
	Output: 0.150678	Output: 0.185676
	Sort: 570.34	Sort: 3.013323
	% Input:	% Input: 3.3%
	% Output:	% Output: 5.6%
	% Not on Sorting: <1%	% Not on Sorting: 8.9%
1,000,000	Total: 29514.830333	Total: 40.134241
	Input: *Used given number*	Input: 0.994661
	Output: *Used given number*	Output: 1.726154
	Sort: 29514.830333	Sort: 37.413426
	% Input: *Used given number*	% Input: 2.5%
	% Output: *Used given	% Output: 4.3%
	number*	% Not on Sorting: 6.7%
	% Not on Sorting: *Used given	
	number*	

ii. For smaller amounts of data, input and output account for most of the time, but as the amount of numbers gets larger, the overall time is much more dependent on how long the sorting takes.

iii. Excel Graphs

iv. Conclusions from Graph

Selection Sort sorting time appears to have a quadratic relationship between number of values and time which makes sense since it has a $0(n^2)$ relationship. As the number of values passes 100,000, selection sort takes a very long time.

Merge Sort has a lower power quadratic but is not linear as it has a distinct curve up as the numbers grow larger. However, the time is much more reasonable even at 1,000,000 values. This makes sense as merge sort has a O(n * logn) relationship.

Overall, time essentially becomes running time, which makes since, in both tables, time spent for input and output became less than 10% at 1,000 values.