Projekt Poprawkowy

Antoni Baum, Bartłomiej Gąsior, Paweł Sumara

Outline

Wprowadzenie

Analiza wizualna oraz opisowa

Wprowadzenie

Celem projektu jest budowa modelu liniowego dla spalania w podanych danych. Aby otrzymać model, użyte zostaną zarówno klasyczne metody ekonometryczne, jak i metody bootstrapowe.

Zmienne

Zmienna objaśniana

I100km - spalanie w litrach na 100 kilometrów.

Zmienne objaśniające

- cylinders liczba cylindrów,
- displacement objętość silnika w litrach,
- horsepower moc w koniach mechanicznych,
- weight waga w kilogramach,
- acceleration czas przyspieszenia od 0 do 100 kilometrów na godzinę, podany w sekundach,
- year rok produkcji,
- origin miejsce produkcji (1 USA, 2 Europa, 3 Japonia),
- name nazwa samochodu.

Format danych

Table 1: Table continues below						
l100km	cylinders	displacement	horsepower	weight	acceleration	
0.001	1	1 175	75	056.2	16 00	

7.001	7	1.773	7.5	700.2	10.20	
		oriain	name			

origin	n name
2	fiat 128

Hipotezy

Na samym początku można załozyć, że nazwa samochodu nie będzie miała wpływu na spalanie. Najprawdopodobniej, rok produkcji (im nowszy samochód, tym mniejsze spalanie) oraz waga (im cięższy samochód, tym większe spalanie) będą miały największy wpływ. Z tego też powodu, odrzucono zmienną **name**.

Outline

Wprowadzenie

Analiza wizualna oraz opisowa

Statystyki opisowe

	Mean	Median	Min.	Max.	Std. dev.	CV
l100km	11.22	10.23	5.048	26.13	3.909	0.3484

cylinders 5.49 4 3 8 1.711 0.3117 displacement 3.183 2.474 1.114 7.456 1.721 0.5405 horsepower 104.6 95 46 230 38.15 0.3647

389.9

weight 1349 1271 731.6 2331 acceleration 16.26 16.27 8.4 24.89 2.871 0.1766

82

3.628

0.8207

0.04

0.510

75.98 76 70

1.608

year

origin

1100km

cylinders

displacement

horsepower

weight

acceleration

year origin

Table 4: Table continues below

Skewness

0.7547

0.4896

0.6699

1.023

0.4745

0.1792

-0.008462

0.8314

Kurtosis

0.07695

-1.418

-0.8503

0.5132

-0.9001

0.1994

-1.104

-1.004

Statystyki opisowe

		,	•	•	3
l100km	1	0.8391	0.8685	0.8542	0.8947
ovlindors	0 0201 1	. n 9508 n 8 <i>4</i> 4	SE 0 9001		

horsepower

-0.6336

weight

1100km cylinders displacement

0.4233

0.4748

-0.3186

-0.604

origin -0.5515 -0.5862

cylinders 0.8391	1 0.9508 0.84	155 0.8991		
displacement 0.	8685 0.9508 1	0.896 0.9367		
horsepower 0.85	42 0.8455 0.8	96 1 0.8697		
weight	0.8947	0.8991	0.9367	0.8697
	001 0 4776 (0 5040 0 6761	0.0067	

displacement 0	.8685 0.9508 1	1 0.896 0.9367		
horsepower 0.8	542 0.8455 0.8	396 1 0.8697		
weight	0.8947	0.8991	0.9367	0.86
acceleration -0	4201 -0 4776 -	0.5243 -0.6761	-0.3867	

aiopiaocificite o.	0000 0.7000	0.000 0.0007		
horsepower 0.8	542 0.8455 0.8	396 1 0.8697		
weight	0.8947	0.8991	0.9367	0.86
acceleration -0.4	4201 -0.4776 -	0.5243 -0.6761	-0.3867	

horsepower 0.8	542 0.8455 0.8	96 1 0.8697		
weight	0.8947	0.8991	0.9367	0.86
acceleration -0.4	4201 -0.4776 -0	0.5243 -0.6761	-0.3867	
	0 5507	0 2510	0 2747	

year -0.552/ -0.3518 -0.3/4/

Table 6: Table continues below acceleration year

0.2815

0.1836

0.2275 0.1836

	acceleration	year	origin
l100km	-0.4201	-0.5527	-0.5515
cylinders	-0.4776	-0.3518	-0.5862
displacement	-0.5243	-0.3747	-0.6336
horsepower	-0.6761	-0.4233	-0.4748
weight	-0.3867	-0.3186	-0.604

0.2815

0.2275

acceleration

year origin

Table of Contents

Wprowadzenie

Analiza wizualna oraz opisowa