The group G is isomorphic to the group labelled by [28, 1] in the Small Groups library. Ordinary character table of $G \cong \mathbb{C}7$: $\mathbb{C}4$:

	1a	4a	4b	2a	14a	7a	7b	7c	14b	14c
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	1	1	1	1
χ_3	1	-E(4)	E(4)	-1	-1	1	1	1	-1	-1
χ_4	1	E(4)	-E(4)	-1	-1	1	1	1	-1	-1
χ_5	2	0	0	-2	$-E(7)^2 - E(7)^5$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$-E(7) - E(7)^6$	$-E(7)^3 - E(7)^4$
χ_6	2	0	0	-2	$-E(7)^3 - E(7)^4$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^6$
χ_7	2	0	0	-2	$-E(7) - E(7)^6$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$
χ_8	2	0	0	2	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$
χ_9	2	0	0	2	$E(7)^3 + E(7)^4$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$
χ_{10}	2	0	0	2	$E(7) + E(7)^6$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$

Trivial source character table of $G \cong C7$: C4 at p = 2:

invial source character table of $G = Ct$. Of at $p = 2$.												
Normalisers N_i	N_1				N_2				N_3			
p-subgroups of G up to conjugacy in G	P_1				P_2				P_3			
Representatives $n_j \in N_i$	1 <i>a</i>	7a	7b	7c	1a	7c	7a	7 <i>b</i>	1a			
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	4	4	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	$2*E(7)^2 + 2*E(7)^5$	$2*E(7)^3 + 2*E(7)^4$	$2*E(7) + 2*E(7)^6$	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	$2*E(7)^3 + 2*E(7)^4$	$2*E(7) + 2*E(7)^6$	$2*E(7)^2 + 2*E(7)^5$	0	0	0	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	4	$2*E(7) + 2*E(7)^6$	$2*E(7)^2 + 2*E(7)^5$	$2*E(7)^3 + 2*E(7)^4$	0	0	0	0	0			
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	2	2	2	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10}$	2	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	2	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	2	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	2	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	0			
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1			

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28)]) \cong C2$

 $P_3 = Group([(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28), (1,2,3,5)(4,26,7,28)(6,27,9,24)(8,22,11,25)(10,23,13,20)(12,18,15,21)(14,19,17,16)]) \cong \mathbf{C4}$

 $N_1 = Group([(1,2,3,5)(4,26,7,28)(6,27,9,24)(8,22,11,25)(10,23,13,20)(12,18,15,21)(14,19,17,16),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28),(1,4,8,12,16,20,24)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(5,9,13,17,21,25,28)]) \cong C7:C4$ $N_2 = Group([(1,2,3,5)(4,26,7,28)(6,27,9,24)(8,22,11,25)(10,23,13,20)(12,18,15,21)(14,19,17,16),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28),(1,4,8,12,16,20,24)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(5,9,13,17,21,25,28)]) \cong C7:C4$ $N_3 = Group([(1,2,3,5)(4,26,7,28)(6,27,9,24)(8,22,11,25)(10,23,13,20)(12,18,15,21)(14,19,17,16),(1,3)(2,5)(4,7)(6,9)(8,11)(10,13)(12,15)(14,17)(16,19)(18,21)(20,23)(22,25)(24,27)(26,28),(1,4,8,12,16,20,24)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(5,9,13,17,21,25,28)]) \cong C7:C4$