Chapitre 24

Comparaison locale des suites

$\bf 24$	Comparaison locale des suites	1
	24.18 Caractérisation de l'équivalence par la négligabilité	2
	24.20Equivalent d'un polynôme	2
	24.31 Exemple	3

Caractérisation de l'équivalence par la négligabilité 24.18

On a:

$$u_n \sim v_n \Leftrightarrow u_n = v_n + o(v_n)$$

 \Longrightarrow Si $u_n \sim v_n$ à partir d'un certain rang :

$$u_n = a_n v_n \text{ avec } a_n \underset{n \to +\infty}{\longrightarrow} 1$$

Ainsi:

$$u_n = \underbrace{(a_n - 1)}_{=o(1)} v_n + v_n$$
$$= \underbrace{(a_n - 1)}_{=o(1)} v_n + o(v_n)$$

Si $u_n = v_n + o(v_n)$, alors à partir d'un certain rang :

$$u_n = v_n + \epsilon_n v_n \text{ avec } \epsilon_n = o(1)$$

= $\underbrace{(1 + \epsilon_n)}_{n \to +\infty} v_n$

Donc:

$$u_n \sim v_n$$

Equivalent d'un polynôme 24.20

Soit P un polynôme de monôme dominant a_dX^d . Alors $P(n) \sim a_dn^d$.

On note $P = \sum_{k=0}^{d} a_k X^k$. Pour $k \in [\![0,d-1]\!]$:

$$n^k =_{n \to +\infty} o(n^d)$$
 et $a_k n^k =_{n \to +\infty} o(a_d n^d)$

Donc:

$$\sum_{k=0}^{d-1} a_k n^k =_{n \to +\infty} o(a_d n^d)$$

Donc:

$$P(n) = a_d n^d + o(a_d n^d)$$
$$\sim a_d n^d$$

24.31 Exemple

Exemple 24.31

Déterminons :

$$\lim_{n \to +\infty} \frac{\left(e^{\frac{1}{n}}-1\right)^3 \left(\sqrt{1+\frac{1}{n}}-1\right)}{\sin\left(\frac{1}{\sqrt{n}}\right) \ln^2\left(\frac{n^2+3}{n^2}\right) \sqrt{3n+1}}$$

On note u_n l'expression de l'exemple.

But : trouver un équivalent (simple) de u_n .

 $e^{\frac{1}{n}} - 1 \sim \frac{1}{n}$

Donc:

 $(e^{\frac{1}{n}} - 1)^3 \sim \frac{1}{n^3}$

 $\sqrt{1 + \frac{1}{n}} - 1 = (1 + \frac{1}{n})^{\frac{1}{2}} - 1$ $\sim \frac{1}{2n}$

 $\sin\left(\frac{1}{\sqrt{n}}\right) \sim \frac{1}{\sqrt{n}}$

 $\ln\left(\frac{n^2+3}{n^2}\right) = \ln\left(1+\frac{3}{n^2}\right)$ $\sim \frac{3}{n^2}$

Donc:

 $\ln^2\left(\frac{n^2+3}{n^2}\right) \sim \frac{9}{n^4}$

 $\sqrt{3n+1} \sim \sqrt{3n}$

 ${\rm Donc}:$

$$u_n \sim \frac{\frac{1}{n^3} \times \frac{1}{2n}}{\frac{1}{\sqrt{n}} \times \frac{9}{n^4} \times \sqrt{3n}}$$
$$= \frac{1}{18\sqrt{3}}$$

Donc:

$$u_n \underset{n \to +\infty}{\longrightarrow} \frac{1}{18\sqrt{3}}$$