컴퓨터 애니메이션 실습 보고서

Self-Scoring Table

	P1	P2	E1
Score	1	1	1

정보융합학부 2018204058 김민교

P1 - Computing/drawing a natural cubic spline

$$\mathbf{p}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \sum_{i=0}^{3} \mathbf{c}_{i} t^{i} = \mathbf{c}_{0} + \mathbf{c}_{1} t + \mathbf{c}_{2} t^{2} + \mathbf{c}_{3} t^{3}$$

i번째 포인트와 i+1번째 포인트를 잇는 곡선의 공식이다.

b는 point를 의미한다. 미지수 c값을 구하기 위해서 다음과 같은 방정식을 풀면된다.

P2 - Increase/decrease of the number of samples

원래 10개였던 sample을 줄이고 늘린 결과이다.

E1 -Sampling depending on the length of the curve segment

먼저 각 곡선의 길이를 구해야한다. 이는 적분을 이용해야한다.

$$L = \int_0^1 \sqrt[2]{p'(t)^t p'(t)} dt$$

적분을 하기 위해서 midpoint rule을 채택했다.

Midpoint Rule

Derivation

If
$$f \in C^2[a, b]$$
, then a number ξ in (a, b) exists with
$$\int_a^b f(x) dx = (b - a) f\left(\frac{a + b}{2}\right) + \frac{f''(\xi)}{24} (b - a)^3.$$

$$\int_{a}^{b} f(x) \, dx \approx \int_{a}^{b} f[x_0] \, dx = f[x_0](b - a) = f\left(\frac{a + b}{2}\right)(b - a)$$

a = 0, b = 1 이다 f(0.5)*(1)의 결과를 구하면 된다. 여기서 f는 $\sqrt[2]{p'(t)'^t p'(t)}$ 이다. f(0.5) = $\sqrt[2]{p'(0.5)^t p'(0.5)}$ $p'(t) = c_1 + 2c_2t + 3c_3t^2$ 이다. 이 식에 0.5를 넣자.

```
196

197

198

199

200

float x = c(4 * i + 1, 0) + (2*c(4 * i + 2, 0) + 3*c(4 * i + 3, 0) * 0.5) * 0.5;

198

float y = c(4 * i + 1, 1) + (2*c(4 * i + 2, 1) + 3*c(4 * i + 3, 1) * 0.5) * 0.5;

199

Vector3f vec(x,y,z);
```

0.5를 넣고, x, y, z를 통해 벡터를 만들었다.

202		float L =sqrt(vec.dot(vec)); // L은 커브의 길이.
202		

이제 p 벡터 자신을 내적 함으로써, 길이의 제곱을 구하고 다시 제곱근을 구하여 L을 얻었다.

204	N_SUB_SEGMENTS = int(L *5);

L의 5배를 해서 N_SUB_SEGEMENTS를 설정했다.

