Problem 2: ε - δ Proofs

In each of the following cases, find a δ such that $|f(x) - l| < \varepsilon$ for all x satisfying $0 < |x - a| < \delta$.

(i)
$$f(x) = x^4$$
, $a = a$, $l = a^4$

We want:

$$|x^4 - a^4| < \varepsilon$$
 whenever $0 < |x - a| < \delta$

Factor:

$$|x^4 - a^4| = |x - a||x^3 + x^2a + xa^2 + a^3|$$

Assume |x - a| < 1 so that |x| < |a| + 1.

$$|x^3 + x^2a + xa^2 + a^3| \le (|a| + 1)^3 + (|a| + 1)^2|a| + (|a| + 1)|a|^2 + |a|^3 = M$$

Thus,

$$|f(x) - l| < M|x - a| < \varepsilon \Rightarrow \delta = \min(1, \frac{\varepsilon}{M})$$

(ii)
$$f(x) = \frac{1}{x}$$
, $a = 1$, $l = 1$

$$\left| \frac{1}{x} - 1 \right| = \left| \frac{1 - x}{x} \right| = \frac{|x - 1|}{|x|}$$

Let $|x - 1| < \frac{1}{2} \Rightarrow x \in (0.5, 1.5) \Rightarrow |x| > 0.5$

$$\left|\frac{1}{x}-1\right|<\frac{|x-1|}{0.5}=2|x-1|<\varepsilon\Rightarrow\delta=\min\left(\frac{1}{2},\frac{\varepsilon}{2}\right)$$

(iii)
$$f(x) = x^4 + \frac{1}{x}$$
, $a = 1$, $l = 2$

We want:

$$\left| x^4 + \frac{1}{x} - 2 \right| = \left| x^4 - 1 + \frac{1}{x} - 1 \right| \le \left| x^4 - 1 \right| + \left| \frac{1}{x} - 1 \right|$$

From (i): $|x^4 - 1| < \frac{\varepsilon}{2}$ for small enough δ . From (ii): $\left|\frac{1}{x} - 1\right| < \frac{\varepsilon}{2}$ for small enough δ .

$$|f(x) - 2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Choose:

 $\delta = \min(\delta_1, \delta_2)$ where each corresponds to (i) and (ii).

(iv)
$$f(x) = \frac{x}{1+\sin^2 x}$$
, $a = 0$, $l = 0$

We want:

$$\left| \frac{x}{1 + \sin^2 x} \right| < \varepsilon$$

Note: $1 \le 1 + \sin^2 x \le 2$ so

$$\left| \frac{x}{1 + \sin^2 x} \right| \le |x|$$

Thus, if $|x| < \varepsilon$, then the inequality holds.

So:

$$\delta = \varepsilon$$

(v)
$$f(x) = \sqrt{|x|}, a = 0, l = 0$$

$$|\sqrt{|x|} - 0| = \sqrt{|x|} < \varepsilon \Rightarrow |x| < \varepsilon^2$$

Thus:

$$\delta = \varepsilon^2$$

(vi)
$$f(x) = \sqrt{x}, a = 1, l = 1$$

We want:

$$|\sqrt{x} - 1| < \varepsilon$$

Use identity:

$$|\sqrt{x} - 1| = \frac{|x - 1|}{\sqrt{x} + 1}$$

If
$$|x-1|<1\Rightarrow x\in(0,2)\Rightarrow\sqrt{x}+1\leq\sqrt{2}+1=M$$
 Then:

$$|\sqrt{x} - 1| < \frac{|x - 1|}{M} < \varepsilon \Rightarrow \delta = \min(1, M\varepsilon)$$