Álgebra y Algoritmos

Ángel Ríos San Nicolás

14 de marzo de 2021

Ejercicio 1. Realice una implementación efectiva de un algoritmo de factorización en \mathbb{F}_p con p primo basada en el teorema de Berlekamp. Tenga especial cuidado con el coste de escribir la matriz de la función $\alpha^p - \alpha$.

Solución. Implementamos el algoritmo de Berlekamp para encontrar un factor irreducible de un polinomio mónico y libre de cuadrados con coeficientes en un cuerpo finito \mathbb{F}_q con $q=p^m$, $p,m\in\mathbb{N}$ y p primo. En particular funciona para cuerpos finitos con m=1.

from random import sample

```
def factorBerlekamp(f): # Calcula un factor de f mónico libre de cuadrados
    # sobre un cuerpo finito mediante el algoritmo de Berlekamp.
    if gcd(f,f.derivative()) != 1 or f[f.degree()] != 1:
        print ("El_polinomio_no_es_libre_de_cuadrados_o_no_es_mónico.")
        return
   BR = f.base_ring() # Cuerpo finito de los coeficientes de f.
   p = BR. characteristic()
   m = BR. degree()
    q = p ** m
    n = f.degree()
    Rx. < x > = PolynomialRing(BR)
    Phi = [] # Guardará la matriz de a |--> a q-a.
    for _ in range(n):
        pol = power\_mod(x, \_ * q, f) \# C\'alculo eficiente de x^(iq) mod f
        coef = [] # Guardará los coeficientes.
        if type(pol) = int:
            coef = [pol] + [0] * (n - 1) # Añadimos ceros hasta n.
        else:
            coef = list(pol)
            lenc = len(coef)
            coef = coef + [0] * (n - lenc) # Añadimos ceros hasta n.
        Phi.append(coef)
    Phi = matrix(BR, Phi) - matrix.identity(BR, n)
    Ker = Phi.transpose().right_kernel() # Ker(Phi): Álgebra de Berlekamp.
    BaseKer = Ker. basis\_matrix() \# Base de Ker(Phi).
    r = BaseKer.dimensions()[0] # Número de factores de f.
    BKer = [Rx(list(\_)) for \_ in BaseKer]
    if r == 1: # Si r = 1, es irreducible.
        return f, 1, 1
    while True: # Repetimos hasta obtener un factor de f.
        a = sample(list(Ker), 1)[0] # Tomamos a del núcleo pseudoaleatorio.
        a = Rx(list(a)) \# Interpretamos \ a \ como \ polinomio.
        b = power_mod(a, (q - 1) // 2, f) \# a ((q - 1) / 2)
        d = \mathbf{gcd}(f, b)
        if d != 1 and d != f :
            return d, f // d, r # Obtenemos un factor de f.
        d = \gcd(f, b - 1)
        if d != 1 and d != f :
            return d, f // d, r # Obtenemos un factor de f.
```

Implementamos ahora un método que encuentra todos los factores de un polinomio libre de cuadrados sobre \mathbb{F}_q y, en particular, también sobre \mathbb{F}_p . La idea es calcular f = gh con el algoritmo anterior y comprobar con el mismo algoritmo si g es irreducible o h es irreducible. Se aplica el mismo proceso al factor reducible hasta que llegar a un producto de dos irreducibles.

```
def Berlekamp(f): # Factorización de f libre de cuadrados sobre
    \# un cuerpo finito con el algoritmo de Berlekamp.
    fact = [] # Guardará los factores de f.
    c = f[f.degree()]
      \textbf{if} \ c \ != \ 1  : \ \# \ \textit{Si} \ \textit{f} \ \textit{no} \ \textit{es} \ \textit{m\'onico} \, , \ \textit{el} \ \textit{coeficiente} \ \textit{principal} \ \textit{es} \ \textit{un} \ \textit{factor} \, . 
         fact = [c]
    g = f // c
    while g.degree() != 0: # Mientras g no sea constante.
         [d, g, r] = factorBerlekamp(g) # Aplicamos el algoritmo anterior.
         if r == 1:
              return f
          [d1, g1, r1] = factorBerlekamp(d) # Buscamos un factor de d.
          [d2, g2, r2] = factorBerlekamp(g) \# Buscamos un factor de g.
          if r1 == 1 and r2 != 1: \# d es irreducible.
              fact.append(d)
          elif r1 != 1 and r2 == 1: \# g es irreducible.
              fact.append(g)
              g = d
         else: \# d y g son irreducibles.
              fact.append(g)
              fact.append(d)
              return fact
```

Para el caso general de $f \in \mathbb{F}_q$. Calculamos $h = \gcd(f, f')$ y consideramos tres casos.

- 1. Si h=1, entonces f es libre de cuadrados y aplicamos el método anterior.
- 2. Si h = f, entonces f' = 0 y $f = g^{p^r}$ para $g \in \mathbb{F}_q[x]$ que podemos hallar calculando raíces en $\mathbb{F}_q[x]$. El problema se reduce a factorizar g.
- 3. En otro caso, h es un factor irreducible y el problema se reduce a factorizar f/h con el mismo procedimiento.

Ejercicio 2. Usando solamente el algoritmo de factorización de sage para polinomios racionales, calcule la factorización de $f(x) = x^6 - 2x^3 + 5 \in \mathbb{Q}(\alpha)[x]$ donde α es raíz de f. A partir de esta factorización, justifique que el grupo de Galois del cuerpo de escisión de f sobre \mathbb{Q} no es el grupo de permutaciones S_6 .

Solución. Como $\gcd(f,f')=1$, el polinomio f es libre de cuadrados. Vamos a factorizar f en $\mathbb{Q}(\alpha)$ con α una raíz de f. Consideramos el polinomio mínimo de α sobre $\mathbb{Q}[y]$ que es $g(y)=y^6-2y^3+5$. Calculamos la norma N(f) con la resultante

$$N(f) = \text{Res}_y(f,g) = \text{Res}_y\left(x^6 - 2x^3 + 5, y^6 - 2y^3 + 5\right) = x^{36} - 12x^{33} + 90x^{30} - 460x^{27} + 1815x^{24} - 5592x^{21} + 13964x^{18} - 27960x^{15} + 45375x^{12} - 57500x^9 + 56250x^6 - 37500x^3 + 15625.$$

No es libre de cuadrados porque

$$\gcd(N(f), N(f)') = x^{30} - 10x^{27} + 65x^{24} - 280x^{21} + 930x^{18} - 2332x^{15} + 4650x^{12} - 7000x^{9} + 8125x^{6} - 6250x^{3} + 3125 \neq 1.$$

Probamos con $N(f(x-2\alpha))$ que calculamos de nuevo con la resultante

$$N(f(x-2\alpha)) = \text{Res}_y(f(x-2\alpha), y^6 - 2y^3 + 5) = x^{36} - 108x^{33} + 6042x^{30} - 137484x^{27} - 1095945x^{24} - 38781720x^{21} + 9696177676x^{18} - 44969134392x^{15} - 1474118148609x^{12} + 7323966993924x^9 + 161779763521530x^6 - 950902005872700x^3 + 1411901425931625.$$

En este caso sí es libre de cuadrados porque $gcd(N(f(x-2\alpha)), N(f(x-2\alpha))') = 1$. Factorizamos la norma $N(f(x-2\alpha))$ en irreducibles de $\mathbb{Q}[x]$ y obtenemos $N(f(x-2\alpha)) = g_1g_2g_3$ donde

$$g_1 = x^6 - 54x^3 + 3645$$

$$g_2 = x^{12} - 162x^6 + 18225$$

$$g_3 = x^{18} - 54x^{15} - 357x^{12} + 22572x^9 + 2411031x^6 - 13999446x^3 + 21253933$$

Los factores irreducibles de $f(x-2\alpha)$ en $\mathbb{Q}(\alpha)[x]$ son

$$h_1 = \gcd(h_1, f(x - 2\alpha)) = x - 3\alpha$$

$$h_2 = \gcd(h_2, f(x - 2\alpha)) = x^2 - 3\alpha x + 3\alpha^2$$

$$h_3 = \gcd(h_3, f(x - 2\alpha)) = x^3 - 6\alpha x^2 + 12\alpha^2 x - 7\alpha^3 - 2$$

Obtenemos los factores irreducibles de f en $\mathbb{Q}(\alpha)[x]$ deshaciendo el cambio

$$h_1(x + 2\alpha) = x - \alpha$$
$$h_2(x + 2\alpha) = x^2 + \alpha x + \alpha^2$$
$$h_3(x + 2\alpha) = x^3 + \alpha^3 - 2$$

con lo que la factorización de f en irreducibles de $\mathbb{Q}(\alpha)[x]$ es

$$f = (x - \alpha) (x^2 + \alpha x + \alpha^2) (x^3 + \alpha^3 - 2).$$

Observamos que f factoriza en $Q(\alpha)[x]$ en el producto de un polinomio lineal y dos irreducibles de grados 2 y 3 respectivamente. Consideramos $\mathbb{Q}(\alpha,\beta) = \mathbb{Q}(\alpha)[x]/(x^2 + \alpha x + \alpha^2)$ que es una extensión de grado $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = 6 \cdot 2 = 12$ donde $x^2 + \alpha x + \alpha^2$ se escinde. Distinguimos tres casos para el factor $(x^3 + \alpha^3 - 2)$.

- Si se escinde en $\mathbb{Q}(\alpha,\beta)[x]$, entonces f se escinde y $\mathbb{Q}(\alpha,\beta)$ es el cuerpo de escisión de f.
- Si factoriza en $\mathbb{Q}(\alpha,\beta)[x]$ en el producto de un polinomio de grado 1 y un polinomio p de grado 2 irreducible, consideramos la extensión $\mathbb{Q}(\alpha,\beta,\gamma) = \mathbb{Q}(\alpha,\beta)[x]/(p)$ que es una extensión de grado $[\mathbb{Q}(\alpha,\beta,\gamma):\mathbb{Q}] = 6 \cdot 2 \cdot 2 = 24$ donde f se escinde y, por lo tanto, es el cuerpo de escisión.
- Si es irreducible en $\mathbb{Q}(\alpha,\beta)[x]$, consideramos $\mathbb{Q}(\alpha,\beta,\gamma) = \mathbb{Q}(\alpha,\beta)[x]/(x^3 + \alpha^3 2)$ que es una extensión de grado $[\mathbb{Q}(\alpha,\beta,\gamma):\mathbb{Q}] = 6 \cdot 2 \cdot 3 = 36$ donde tenemos que

$$x^3 + \alpha^2 - 2 = (x - \gamma)q$$

con q de grado 2. Distinguimos dos casos para q.

- Si q se escinde en $\mathbb{Q}(\alpha, \beta, \gamma)[x]$, entonces f se escinde y $\mathbb{Q}(\alpha, \beta, \gamma)$ es el cuerpo de escisión de f.
- Si q es irreducible en $\mathbb{Q}(\alpha, \beta, \gamma)[x]$, entonces consideramos

$$\mathbb{Q}(\alpha, \beta, \gamma, \delta) = \mathbb{Q}(\alpha, \beta, \gamma)[x]/(q)$$

que es una extensión de grado $[\mathbb{Q}(\alpha, \beta, \gamma, \delta) : \mathbb{Q}] = 6 \cdot 2 \cdot 3 \cdot 2 = 72$ donde q se escinde y f también con lo que $\mathbb{Q}(\alpha, \beta, \gamma, \delta)$ es el cuerpo de escisión de f.

Por el teorema fundamental de la teoría de Galois, existe una biyección entre el conjunto de subgrupos del grupo de Galois de K/\mathbb{Q} y el conjunto de cuerpos intermedios tal que si $S \subseteq \operatorname{Gal}(K/\mathbb{Q})$ es un subgrupo, su orden es $|S| = [K:K^S]$ donde K^S es el subcuerpo de K de los elementos fijados por todo S. En particular, el orden del grupo de Galois es $|\operatorname{Gal}(K/\mathbb{Q})| = [K:\mathbb{Q}]$. Por la discusión de casos anterior, sabemos que el grado de la extensión es $[K:\mathbb{Q}] \in \{12,24,36,72\}$. Por lo tanto, como el orden del grupo de Galois no es 6!, no es el grupo de permutaciones S_6 .

Ejercicio 3. Describa brevemente un algoritmo que tome como entrada una polinomio $f \in \mathbb{Q}[x]$ y devuelva como output un polinomio g tal que el cuerpo de escisión de f sea $\mathbb{Q}[x]/(g)$. ¿Es capaz de calcular dicho polinomio para $f(x) = x^6 - 2x^3 + 5$?

Solución. Sea $f \in \mathbb{Q}[x]$. Podemos factorizar f en irreducibles y obtenemos

$$f = f_1^{m_1} \cdots f_n^{m_s}.$$

Consideramos la extensión $\mathbb{Q}(\alpha_1) = \mathbb{Q}[x]/(f_1)$. Factorizamos f en $\mathbb{Q}(\alpha_1)[x]$ donde al menos f_1 se escinde y tenemos

$$f = g_1^{r_1} \cdots g_{s'}^{r_{s'}}.$$

Si f se escinde, es decir, si $r_1 = \cdots = r_{s'} = 1$, entonces $g = f_1$ y hemos terminado. Si no, tomamos un factor irreducible g_1 y construimos $\mathbb{Q}(\alpha_1, \alpha_2) = \mathbb{Q}(\alpha_1)[x]/(g_1)$. Podemos factorizar el polinomio f en $\mathbb{Q}(\alpha_1, \alpha_2)[x]$. Como el número de factores irreducibles es finito, repetimos el proceso hasta obtener $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$, el cuerpo de escisión de f sobre \mathbb{Q} que es una extensión separable y finita. Por el teorema del elemento primitvo es simple y existe un $\gamma \in \mathbb{Q}(\alpha_1, \ldots, \alpha_s)$ que la genera como \mathbb{Q} -espacio vectorial de dimensión finita.

En el proceso anterior de construcción del cuerpo de escisión obtenemos en cada paso el polinomio mínimo $f_i \in \mathbb{Q}[x_1,\ldots,x_i]$ de α_i sobre $\mathbb{Q}(\alpha_1,\ldots,\alpha_{i-1})$ que denotamos f_i . Como el cuerpo de escisión $\mathbb{Q}(\alpha_1,\ldots,\alpha_n)$ es numerable, podemos enumerar sus elementos como combinaciones lineales de la forma $f(\alpha_1,\ldots,\alpha_n)$ con $f \in \mathbb{Q}[x_1,\ldots,x_n]$ hasta que encontramos un polinomio g con $\gamma = g(\alpha_1,\ldots,\alpha_n)$ primitivo. Consideramos el siguiente ideal de $\mathbb{Q}[x_1,\ldots,x_n,y]$.

$$\mathfrak{a} = (f_1, \dots, f_n, y - f(x_1, \dots, x_n))$$

El polinomio mínimo de γ sobre $\mathbb Q$ se puede calcular como el único generador mónico en la base de Gröbner reducida del ideal de eliminación $\mathfrak a \cap \mathbb Q[x_1,\dots,x_n]$. Si tomamos un elemento del cuerpo de escisión de manera aleatoria será primitivo, pero su polinomio mínimo tendrá coeficientes enormes. En la práctica probamos con combinaciones sencillas hasta que obtenemos γ primitivo y su polinomio mínimo g con los que concluimos que $\mathbb Q(\alpha_1,\dots,\alpha_n)=\mathbb Q(\gamma)=\mathbb Q[x]/(g)$ como queríamos.

Vamos a aplicar el algoritmo descrito a $f = x^6 - 2x^3 + 5$. Del apartado anterior, tenemos la factorización de f en su cuerpo raíz $\mathbb{Q}(\alpha)$.

$$f = (x - \alpha)(x^2 + \alpha x + \alpha^2)(x^3 + \alpha^3 - 2)$$

Consideramos $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha)/(x^2 + \alpha x + \alpha^2)$ y podemos factorizar f en $\mathbb{Q}(\alpha, \beta)[x]$ donde vemos que $x^3 + \alpha^3 - 2$ es irreducible. Tomamos $\mathbb{Q}(\alpha, \beta, \gamma) = \mathbb{Q}(\alpha, \beta)[x]/(x^3 + \alpha^3 - 2)$, factorizamos el polinomio $x^3 + \alpha^3 - 2$ en $\mathbb{Q}(\alpha, \beta, \gamma)[x]$ y se escinde

$$x^3 + \alpha^2 - 2 = (x - \gamma) \left(x + \left(\left(\frac{-1}{5} \alpha^5 + \frac{2}{5} \alpha^2 \right) \beta + 1 \right) \gamma \right) \left(x + \left(\left(\frac{1}{5} \alpha^5 - \frac{2}{5} \alpha^2 \right) \beta \right) \gamma \right).$$

Por lo tanto, $\mathbb{Q}(\alpha, \beta, \gamma)$ es el cuerpo de escisión de f que es una extensión de grado 36. Los polinomios mínimos de α , β y γ respectivamente sobre \mathbb{Q} , $\mathbb{Q}(\alpha)$ y $\mathbb{Q}(\alpha, \beta)$ son

$$x^{6} - 2x^{3} + 5 \in \mathbb{Q}[x]$$

$$y^{2} + \alpha y + \alpha^{2} \in \mathbb{Q}(\alpha)[y]$$

$$z^{3} + \alpha^{3} - 2 \in \mathbb{Q}(\alpha, \beta)[z]$$

Ahora probamos con diferentes elementos de $\mathbb{Q}(\alpha, \beta, \gamma)$ hasta encontrar un elemento primitivo. Probamos, por ejemplo, con $\alpha + \beta + \gamma$. Consideramos el siguiente ideal en $\mathbb{Q}[x, y, z, t]$.

$$\mathfrak{a} = (x^6 - 2x^3 + 5, y^2 + \alpha y + \alpha^2, z^3 + \alpha^3 - 2, t - (x + y + z))$$

Calculando la base de Gröbner reducida del ideal de eliminación $\mathfrak{a} \cap \mathbb{Q}[x, y, z]$, tenemos que el único generador, que es el polinomio mínimo de $\alpha + \beta + \gamma$ sobre \mathbb{Q} , es

$$t^{18} + 318t^{12} + 6033t^6 + 4096$$

con lo que $\alpha + \beta + \gamma$ no es primitivo.

Probamos con $\alpha - \beta + \gamma$. Definimos el ideal

$$\mathfrak{b} = (x^6 - 2x^3 + 5, y^2 + \alpha y + \alpha^2, z^3 + \alpha^3 - 2, t - (x - y + z)).$$

Calculando la base de Gröbner reducida del ideal de eliminación $\mathfrak{b} \cap \mathbb{Q}[x,y,z]$, hallamos el polinomio mínimo de $\alpha - \beta + \gamma$ que es

 $g = t^{36} - 12t^{33} - 396t^{30} + 50732t^{27} + 1418262t^{24} + 10093164t^{21} + 1852742516t^{18} + 5520435348t^{15} + \\ + 196631283201t^{12} + 1504151875936t^{9} + 7378647677568t^{6} + 11198537803776t^{3} + 5708466638848.$

Por lo tanto, $\alpha - \beta + \gamma$ es primitivo y $\mathbb{Q}(\alpha, \beta, \gamma) = \mathbb{Q}(\alpha - \beta + \gamma) = \mathbb{Q}[x]/(g(x))$.

Ejercicio 4. Sea $L = [R_0, ..., R_k]$ una lista de polinomios en $\mathbb{R}[x]$. Sea $S \in \mathbb{R}[x]$ un polinomio $y \ c \in \mathbb{R}$ con $S(c) \neq 0$. Sea $L' = [SR_0, ..., SR_k]$. Denotemos por $v_T(c)$ el número de cambios de signo de la lista T en c. Demuestre que:

$$v_L(c) = v_{L'}(c)$$

Solución. Es claro que los ceros se conservan. Si $i \in \{0, 1, ..., k\}$ tal que $R_i(c) = 0$, entonces $S(c)R_i(c) = 0$. Podemos suponer sin pérdida de generalidad que las listas evaluadas en c no tienen ceros. Ahora, como $S(c) \neq 0$, es S(c) < 0 o S(c) > 0 y para todo $i \in \{0, 1, ..., k\}$,

$$sig(S(c)R_i(c)) = -sig(R_i(c)) \quad si \ S(c) < 0$$

$$sig(S(c)R_i(c)) = sig(R_i(c)) \quad si \ S(c) > 0$$

Para cada $i \in \{0, 1, ..., k\}$ tal que se conserva el signo $sig(R_i(c)) = sig(R_{i+1}(c))$, se cumplen:

• Si S(c) < 0,

$$sig(S(c)R_i(c)) = -sig(R_i(c)) = -sig(R_{i+1}(c)) = sig(S(c)R_{i+1}(c))$$

• Si S(c) > 0,

$$sig(S(c)R_i(c)) = sig(R_i(c)) = sig(R_{i+1}(c)) = sig(S(c)R_{i+1}(c))$$

y cambia el signo también en L'.

Para cada $i \in \{0, 1, ..., k\}$ tal que tenemos un cambio de signo $sig(R_i(c)) = -sig(R_{i+1}(c))$, se cumplen:

• Si S(c) < 0,

$$sig(S(c)R_i(c)) = -sig(R_i(c)) = sig(R_{i+1}(c)) = -sig(S(c)R_{i+1}(c)).$$

• Si S(c) > 0,

$$sig(S(c)R_i(c)) = sig(R_i(c)) = -sig(R_{i+1}(c)) = -sig(S(c)R_{i+1}(c)).$$

y se conserva el signo también en L'.

Por lo tanto, $v_L(c) = v_{L'}(c)$.

Ejercicio 5. Sea $P, Q \in \mathbb{R}[x]$. Sean $a < b \text{ con } P(a) \neq 0 \neq P(b)$

$$\begin{array}{l} n_+ = |\{c \in (a,b) | P(c) = 0, Q(c) > 0\}| \\ n_- = |\{c \in (a,b) | P(c) = 0, Q(c) < 0\}| \end{array}$$

Tomemos la sucesión:

$$L = [R_0, R_1, \dots, R_k]$$

donde

$$R_0 = P, R_1 = P'Q, R_{i+1} = -(R_{i-1}\%R_i), R_k = \gcd(P, P'Q)$$

Denotemos por $v_L(c)$ el número de cambios de signo de la sucesión anterior en c. Demuestre que:

$$v_L(a) - v_L(b) = n_+ - n_-$$

Pista: En el Teorema 2.3 se demuestra la igualdad para la lista $L' = [R_0/R_k, \dots, R_k/R_k]$. Use el ejercicio anterior.

Solución. Probamos primero que $R_k(a) \neq 0 \neq R_k(b)$. Sabemos que $R_k = \gcd(P, P'Q)$, en particular divide a P, existe $H \in \mathbb{R}[x]$ tal que $P = R_k H$. Como $P(a) \neq 0$, se cumple

$$P(a) = R_k(a)H(a) \neq 0.$$

Por ser $\mathbb{R}[x]$ un dominio de integridad, $R_k(a) \neq 0$ y análogamente deducimos que $R_k(b) \neq 0$. Por el Teorema 2.3, si $L = [R_0/R_k, R_1/R_k, \dots, R_k/R_k]$, entonces

$$v_{L'}(a) - v_{L'}(b) = n_+ - n_-.$$

Aplicando el resultado del problema anterior, como $R_k(a) \neq 0 \neq R_k(b)$,

$$\begin{cases} v_{L'}(a) = v_L(b) \\ v_{L'}(b) = v_L(b) \end{cases} \Longrightarrow v_L(a) - v_L(b) = v_{L'}(a) - v_{L'}(b) = n_+ - n_-.$$

Ejercicio 6. Sea P,Q polinomios $y \in \mathbb{R}$ una constante no nula. Demuestre que:

- (cQ)%P = c(Q%P)
- Q%(cP) = Q%P
- $Si \deg(P) = \deg(Q)$, existe una constante no nula $d \operatorname{con}(Q\%P) = d(P\%Q)$.

Solución.

• (cQ)%P = c(Q%P)

Aplicamos la división con resto en $\mathbb{R}[x]$ por la que existen unos únicos cocientes $F, F' \in \mathbb{R}[x]$ y restos $(cQ)\%P, Q\%P \in \mathbb{R}[x]$ tales que

$$cQ = PF + (cQ)\%P$$
$$Q = PF' + Q\%P$$

con $\deg((cQ)\%P),\deg(Q\%P)<\deg(P).$ Como ces no nulo por hipótesis, también se cumple

$$Q = P\left(\frac{1}{c}F\right) + \frac{1}{c}\left((cQ)\%P\right).$$

Por unicidad, debe ser $F' = \left(\frac{1}{c}F\right)$ y, como queríamos, (cQ)%P = c(Q%P) porque multiplicar por una constante no nula no cambia el grado.

• Q%(cP) = Q%P

Aplicamos la división con resto en $\mathbb{R}[x]$ por la que existen unos únicos cocientes $F, F' \in \mathbb{R}[x]$ y restos $Q\%(cP), Q\%P \in \mathbb{R}[x]$ tales que

$$\begin{aligned} Q &= (cP)F + (Q\%(cP)) \\ Q &= PF' + (Q\%P) \end{aligned}$$

con $\deg(Q\%(cP)), \deg(Q\%P) < \deg(cP) = \deg(P)$. Como

$$(cP)F + (Q\%(cP)) = P(cF) + (Q\%(cP)),$$

recuperamos la división por P. Por unicidad, F' = cF y, como queríamos,

$$Q\%(cP) = Q\%P$$
.

• Si $\deg(P) = \deg(Q)$, existe una constante no nula d con (Q%P) = d(P%Q). Denotamos $n = \deg(P)$. Si $P = a_n x^n + \dots + a_1 x + a_0$ y $Q = b_n x^n + \dots + b_1 x + b_0$. Las divisiones con resto de P y Q entre sí son

$$P = \frac{a}{b}Q + (P\%Q)$$
$$Q = \frac{b}{a}P + (Q\%P)$$

que se obtienen en un paso del algoritmo de la escuela. Despejando tenemos

$$\begin{array}{l} P\%Q = P - \frac{a}{b}Q \\ Q\%P = Q - \frac{b}{a}P = \frac{b}{a}\left(\frac{a}{b}Q - P\right) = -\frac{b}{a}\left(P - \frac{a}{b}Q\right) = -\frac{b}{a}(P\%Q) \end{array}$$

con lo que existe un único $d=-\frac{b}{a}\in\mathbb{R}$ no nulo que lo cumple. Es no nulo porque por hipótesis $\deg(P)=n$.

Ejercicio 7. Sea $P, Q \in \mathbb{R}[x]$. Tomemos las sucesiones:

$$L: R_0 = P, R_1 = Q, R_{i+1} = -(R_{i-1}\%R_i), R_k = \gcd(P, Q)$$

y

$$L': S_0 = -P, S_1 = -Q, S_{i+1} = -(S_{i-1}\%S_i), S_{k'} = \gcd(-P, -Q)$$

Demuestre que:

- k = k' y $S_i = -R_i, 0 \le i \le k$.
- $Si \ c \in \mathbb{R}, v_L(c) = v_{L'}(c).$

Solución.

• k = k' y $S_i = -R_i, 0 \le i \le k$. Por definción, $S_0 = P = -(-P) = -R_0$. Suponemos que $S_j = -R_j$ para $0 \le j \le i \le k$. Aplicando los resultados del ejercicio anterior,

$$S_{i+1} = -(S_{i-1}\%S_i) = (-S_{i-1}\%(-S_i)) = (R_{i-1}\%R_i) = -R_{i+1}.$$

En particular, $S_{k+1} = -(S_{k-1}\%S_k) = R_{k+1} = 0$ con lo que el anterior es el máximo común divisor $S_k = \gcd(-P, -Q)$ y esto prueba que k = k'.

• Si $c \in \mathbb{R}$, $v_L(c) = v_{L'}(c)$. Como $-1 \in \mathbb{R}[x]$ tal que $(-1)(c) = -1 \neq 0$, aplicando el resultado del Ejercicio 4,

$$v_L(c) = v_{L'}(c)$$
.

Los siguientes dos ejercicios no es la forma usual de resolver estos apartados. Se introducen para practicar con los conceptos vistos.

Ejercicio 8. Sea P,Q como en el Teorma 2.3. Supongamos que $\deg(P'Q) > \deg(P)$. Sea T = (P'Q)%P el resto sin cambiar de signo. Definimos la lista de polinomios:

$$L: R_0 = P, R_1 = P'Q, R_{i+1} = -(R_{i-1}\%R_i), R_k = \gcd(P, P'Q)$$

$$L': S_0 = P, S_1 = T, S_{i+1} = -(S_{i-1}\%S_i), S_{k'} = \gcd(P, T) = \gcd(P, P'Q)$$

Demuestre que:

- $R_2 = -P$, $R_3 = -T$, $R_{i+2} = -S_i$
- Si $P(c) \neq 0$, $v_L(c) = v_{L'}(c) + 1$. En particular,

$$v_L(a) - v_L(b) = v_{L'}(a) - v_{L'}(b) = n_+ - n_-$$

Solución.

• $R_2 = -P$, $R_3 = -T$, $R_{i+2} = -S_i$

Por definición, $R_2 = -(R_0\%R_1) = -(P\%(P'Q))$. Pero $P = P'Q \cdot 0 + P$ donde $\deg(P) < \deg(P'Q)$ por hipótesis, con lo que el resto es (P%(P'Q)) = P y entonces $R_2 = -P$.

Por definición,
$$R_3 = -(R_1\%R_2) = -((P'Q)\%(-P)) = -((P'Q)\%P) = -T$$
.

Suponemos que se cumple $R_{j+2} = -S_j$ para $0 \le j \le i \le k$. Desarrollando, tenemos

$$R_{(i+1)+2} = R_{i+3} = -(R_{i+1}\%R_{i+2}) = -(-S_{i-1}\%(-S_i)) = (S_{i-1}\%S_i) = -S_{i+1}$$

• Si $P(c) \neq 0$, $v_L(c) = v_{L'}(c) + 1$. En particular,

$$v_L(a) - v_L(b) = v_{L'}(a) - v_{L'}(b) = n_+ - n_-.$$

La lista L se puede escribir de la siguiente manera.

$$L = [R_0, R_1, R_2, R_3, \dots, R_k] = [P, P'Q, -S_0, -S_1, \dots, -S_{k-2}]$$

donde, por el Ejercicio 4, $[-S_0, -S_1, \ldots, -S_{k-2}]$ tiene el mismo número de cambios de signos que L' porque el polinomio $-1 \in \mathbb{R}[x]$ no se anula en c. Además, $-S_0 = -P$ con lo que independientemente del signo de PQ en c, la lista L siempre tiene un cambio de signo más que L', es decir, $v_L(c) = v_{L'}(c) + 1$.

Para las igualdades que quedan suponemos, como en el Teorema 2.3, que $a, b \in \mathbb{R}$ con a < b no son raíces de P. Sabemos que $v_L(a) = v_{L'}(a) + 1$ y $v_L(b) = v_{L'}(b) + 1$. Restando y aplicando el Ejercicio 5 a L',

$$v_L(a) - v_L(b) = v_{L'}(a) - v_{L'}(b) = n_+ - n_-.$$

Ejercicio 9. Sean P,Q como en el Teorema 2.3. Supongamos que $\deg(P'Q) = \deg(P)$. Sea T = (P'Q)%P el resto sin cambiar de signo. Definimos la lista de polinomios:

$$R: R_0 = P, R_1 = P'Q, R_{i+1} = -(R_{i-1}\%R_i), R_k = \gcd(P, P'Q)$$

$$S: S_0 = P, S_1 = T, S_{i+1} = -(S_{i-1}\%S_i), S_{k'} = \gcd(P, T) = \gcd(P, P'Q)$$

 $sea\ P=ax^n+\cdots,Q=bx+\cdots,\ P'Q=anbx^n+\cdots\ y\ sea\ d=nb.\ Denotemos\ por$

$$R' = [R_2, \ldots, R_k]$$

$$S' = [S_1, \dots, S_{k'}]$$

Demuestre que:

- $S_1 = dR_2$
- $S_2 = d^{-1}R_3$
- $S_{2i+1} = dR_{2i+2}, i < 0$
- $S_{2i} = d^{-1}R_{2i+1}, i \leq 1$
- $v_{B'}(c) = v_{S'}(c)$

Rellene la siguiente tabla con los signos que faltan.

Concluya que:

- Si d > 0, entonces para todo c con $P(c) \neq 0$, $v_R(c) = v_S(c)$
- Si d < 0, entonces para todo c con $P(c) \neq 0$, $v_R(c) = v_S(c) + 1$
- En cualquier caso si $a < b \ y \ P(a)P(b) \neq 0$,

$$v_S(a) - v_S(b) = v_R(a) - v_R(b) = n_+ - n_-.$$

Solución. Como $P = ax^n + \cdots y$ $P'Q = anbx^n + \cdots$, la división con resto es

$$P'Q = dP + ((P'Q)\%P).$$

Por lo tanto, aplicando lo visto en el Ejercicio 6, ((P'Q)%P) = -d(P%(P'Q)).

- $S_1 = dR_2$ Por definición, $dR_2 = -d(R_0\%R_1) = -d(P\%(P'Q)) = ((P'Q)\%P) = T = S_1$.
- $S_2 = d^{-1}R_3$

$$d^{-1}R_3 = d^{-1}(R_1\%R_2) = d^{-1}((P'Q)\%(d^{-1}S_1)) = d^{-1}((P'Q)\%S_1)$$

= $d^{-1}((P'Q)\%((P'Q)\%P)) = d^{-1}((P'Q)\%P) = -(P\%(P'Q)) =$
= $-(P\%((P'Q)\%P)) = -(S_0\%S_1) = S_2.$

• $S_{2i+1} = dR_{2i+2}, i \le 0$

Suponemos que se cumple $S_{2j+1} = dR_{2j+2}$ para $0 \le j \le i$.

$$S_{2i+2} = -(S_{2i}\%S_{2i+1}) = -(d^{-1}R_{2i+1}\%S_{2i+1}) = -(d^{-1}R_{2i+1}\%dR_{2i+2}) =$$
$$= -d^{-1}(R_{2i+1}\%R_{2i+2}) = -d^{-1}R_{2i+3}.$$

• $S_{2i} = d^{-1}R_{2i+1}, i \leq 1$

Suponemos que se cumple $S_{2j} = d^{-1}R_{2j+1}$ para $0 \le j \le i$.

$$S_{2i+3} = -(S_{2i+1}\%S_{2i+2}) = -(dS_{2i+2}\%d^{-1}S_{2i+3}) = -d(R_{2i+2}\%R_{2i+3}) = -dR_{2i+4}.$$

• $v_{R'}(c) = v_{S'}(c)$

La lista R' se puede escribir de la siguiente manera.

$$R' = [R_2, R_3, \dots, R_k] = [d^{-1}S_1, dS_2, \dots, d^{(-1)^{k'}}S_{k'}].$$

Tiene el mismo número de cambios de signo en c que $S' = [S_1, S_2, \ldots, S'_k]$ porque d y d^{-1} son constantes no nulas con el mismo signo y no varían el número de cambios de signo. Por lo tanto, $v_{R'}(c) = v_{L'}(c)$.

Rellenamos la tabla con los signos que faltan. Los signos de la cuarta columa no son más que el producto de los de la primera y la tercera. Para completar la cuarta columna usamos la igualdad P'Q = dP + (P'Q - dP). Hay ciertos signos que no podemos deducir, pero podemos rellenar las columnas $v([R_0, R_1, R_2]) = v([P, P'Q, d^{-1}(P'Q - dP)])$ y $v([S_0, S_1]) = v([P, P'Q - dP])$ porque en esos casos sabemos que hay un cambio de signo determinado por P y $d^{-1}(P'Q - dP)$ con lo que independientemente del signo del P'Q, hay un único cambio de signo.

d	P	P'Q - dP	P'Q	$d^{-1}(P'Q - dP)$	$v([R_0, R_1, R_2])$	$v([S_0, S_1])$
+	+	+	+	+	0	0
+	+	_	?	_	1	1
+	+	0	+	0	0	0
+	_	+	?	+	1	1
+	_	_	_	_	0	0
+	_	0	_	0	0	0
_	+	+	?	_	1	0
_	+	_	_	+	2	1
_	+	0	_	0	1	0
_	_	+	+	_	2	1
_	_	_	?	+	1	0
-	-	0	+	0	1	0

• Si d > 0, entonces para todo c con $P(c) \neq 0$, $v_R(c) = v_S(c)$.

Sabemos que $v_{R'}(c) = v_{L'}(c)$ con lo que nos fijamos en si hay cambios de signo en $[R_0, R_1, R_2]$ y $[S_0, S_1]$ que son los primeros términos de R' y S'. Mirando en la tabla, tenemos que si d > 0, entonces $v([R_0, R_1, R_2]) = v([S_0, S_1])$ y $v_R(c) = v_L(c)$.

- Si d < 0, entonces para todo c con $P(c) \neq 0$, $v_R(c) = v_S(c) + 1$ Como antes, $v_{R'}(c) = v_{L'}(c)$ y solo nos tenemos que fijar en $[R_0, R_1, R_2]$ y $[S_0, S_1]$. De la tabla tenemos que si d < 0, entonces $v([R_0, R_1, R_2]) = v([S_0, S_1]) + 1$ y $v_R(c) = v_L(c) + 1$.
- En cualquier caso si a < b y $P(a)P(b) \neq 0$,

$$v_S(a) - v_S(b) = v_R(a) - v_R(b) = n_+ - n_-.$$

Independientemente de si d es positivo o negativo, restando y aplicando lo anterior y el Ejercicio 4 a R,

$$v_S(a) - v_S(b) = v_B(a) - v_B(b) = n_+ - n_-.$$

Codificación à la Thom de un número real.

Ejercicio 10. Sea $F \in \mathbb{R}[x]$ un polinomio real en una variable no nulo de grado $n \geq 0$. Consideremos la lista de derivadas:

$$DF = [F, F', \dots, F^{(n)}]$$

Para cada distribución de signos $\sigma \in \{-1, 0, 1\}^{n+1}$ sea:

$$R(\sigma) = \{c \in \mathbb{R} | \operatorname{sig}(F^{(i)}(c)) = \sigma_i, 0 \le i \le n\}$$

Demuestre las siguientes afirmaciones (Pista: use inducción en n y el hecho de que si F' es de signo constante en un intervalo (a,b) entonces F es monótona en ese intervalo.):

- Para cada σ , $R(\sigma)$ es, o bien vacío, o bien un punto o bien un intervalo real abierto (a,b) (tal vez no acotado).
- Una condición necesaria para que $R(\sigma)$ sea un punto es que σ tenga algún signo cero.
- Demuestre que si c es una raíz de F, c queda completamente determinado por los signos de las derivadas de F en c,

$$\operatorname{sig}(F'(c)), \ldots, \operatorname{sig}(F^{(n)}(c))$$

Solución.

• Para cada σ , $R(\sigma)$ es, o bien vacío, o bien un punto o bien un intervalo real abierto (a, b) (tal vez no acotado).

Si n = 0, entonces $F \in \mathbb{R}$. Tenemos que $R(\sigma) = \emptyset$ si $\sigma \neq \operatorname{sig}(F)$ y $R(\sigma) = \mathbb{R}$ si $\sigma = \operatorname{sig}(F)$. Suponemos que se cumple para grado n - 1. Sea $F \in \mathbb{R}[x]$ con $\operatorname{deg}(F) = n$ y una tupla de signos $\sigma \in \{-1, 0, 1\}^{n+1}$. Tenemos que

$$R(\sigma) = R_{F'}(\tilde{\sigma}) \cap \{c \in \mathbb{R} : \operatorname{sig}(F(c)) = \sigma_{n+1}\}\$$

donde $R_{F'}(\tilde{\sigma}) = \{c \in \mathbb{R} : \text{sig}(F^{(i+1)}(c)) = \sigma_i : 0 \le i \le n-1\} \text{ y } \tilde{\sigma} = (\sigma_1, \dots, \sigma_n).$ Como deg(F') = n-1, aplicando la hipótesis de inducción, se da una de las siguientes igualdades.

$$R_{F'}(\tilde{\sigma}) = \emptyset$$
 $R_{F'}(\tilde{\sigma}) = \{x_0\}$ $R_{F'}(\tilde{\sigma}) = (a, b)$

Si $R_{F'}(\tilde{\sigma}) = \emptyset$, entonces claramente $R(\sigma) = \emptyset$. Si $R_{F'}(\tilde{\sigma}) = \{x_0\}$, entonces

$$R(\sigma) = \left\{ \begin{array}{ll} \{x_0\} & \text{si } x_0 \in \{c \in \mathbb{R} : \text{sig}(F(c)) = \sigma_{n+1}\} \\ \emptyset & \text{en otro caso} \end{array} \right.$$

Si por el contrario $R_{F'}(\tilde{\sigma}) = (a, b)$, el polinomio F define una función polinomial monótona en el intervalo (a, b). Distinguimos si es monótona creciente o decreciente, si se anula en un único $x_0 \in (a, b)$ o no se anula y el signo σ_{n+1} . Por continuidad, tenemos las siguientes situaciones.

$R(\sigma)$	F es r	nonótona	creciente	F es monótona decreciente		
$\sigma_{n+1} = 1$	Ø	(x_0,b)	(a,b)	(a,b)	(a, x_0)	Ø
$\sigma_{n+1} = 0$	Ø	$\{x_0\}$	Ø	Ø	$\{x_0\}$	Ø
$\sigma_{n+1} = -1$	(a,b)	(a,x_0)	Ø	Ø	(x_0,b)	(a,b)

Por lo tanto, $R(\sigma)$ es vacío, unipuntual o un intervalo abierto no necesariamente acotado.

• Una condición necesaria para que $R(\sigma)$ sea un punto es que σ tenga algún signo cero. Si n=0, entonces $F\in\mathbb{R}$. Si $\sigma\in\{-1,1\}$, entonces $R(\sigma)=\emptyset$ o $R(\sigma)=\mathbb{R}$ porque es constante con lo que $\mathrm{sig}(F(c))=\mathrm{sig}(F)=\sigma$ o $\mathrm{sig}(F(c))=\mathrm{sig}(F)=-\sigma$. Suponemos que se cumple para grado n-1, es decir, que si $F\in\mathbb{R}[x]$ con $\mathrm{deg}(F)=n-1$ y $\sigma\in\{-1,1\}^n$, entonces $R(\sigma)$ no es conjunto unipuntual. Sea $F\in\mathbb{R}[x]$ con $\mathrm{deg}(F)=n$ y $\sigma\in\{-1,1\}^{n+1}$. Como antes, tenemos que

$$R(\sigma) = R_{F'}(\tilde{\sigma}) \cap \{c \in \mathbb{R} : \operatorname{sig}(F(c)) = \sigma_{n+1}\}\$$

donde $R_{F'}(\tilde{\sigma}) = \{c \in \mathbb{R} : \text{sig}(F^{(i+1)}(c)) = \sigma_i : 0 \le i \le n-1\}$ y $\tilde{\sigma} = (\sigma_1, \dots, \sigma_n)$. Como $\deg(F') = n-1$, aplicando la hipótesis de inducción $R_{F'}(\tilde{\sigma})$ no es unipuntual. Se cumple una de las siguientes igualdades.

$$R_{F'}(\tilde{\sigma}) = \emptyset$$
 $R_{F'}(\tilde{\sigma}) = (a, b)$

Pero, si $\sigma_{n+1} \in \{-1,1\}$, entonces, por el apartado anterior $R(\sigma)$ no es unipuntual como queríamos probar. Si $R_{F'}(\tilde{\sigma} = \emptyset)$, entonces $R(\sigma) = \emptyset$ y si $R(\tilde{\sigma}) = (a,b)$, entonces se da una de las siguientes igualdades con $x_0 \in \mathbb{R}$.

$$R(\sigma) = (a, x_0)$$
 $R(\sigma) = (a, b)$ $R(\sigma) = (x_0, b).$

 Demuestre que si c es una raíz de F, c queda completamente determinado por los signos de las derivadas de F en c,

$$\operatorname{sig}(F'(c)), \ldots, \operatorname{sig}(F^{(n)}(c)).$$

Si n=0, entonces $F\in\mathbb{R}$ y $F^{(0)}=F$. Si F=0, entonces F(0)=0=F(1), pero $0\neq 1$. Lo probamos para n=1. Es trivial porque un polinomio de grado 1 tiene una única raíz. Suponemos que se cumple para grado n-1, es decir, que si existen $c_1,c_2\in\mathbb{R}$ raíces de F con $\deg(F)=n-1$ y $\operatorname{sig}(F^{(i)}(c_1))=\operatorname{sig}(F^{(i)}(c_2))$ para todo $1\leq i\leq n-1$, entonces $c_1=c_2$. Lo probamos para grado n. Sea $F\in\mathbb{R}[x]$ con $\deg(F)=n$ y $c_1,c_2\in\mathbb{R}$ raíces de F tales que $\operatorname{sig}(F^{(i)}(c_1))=\operatorname{sig}(F^{(i)}(c_2))$ para todo $1\leq i\leq n$. Tomamos $\sigma_i=\operatorname{sig}(F^i(c_1))$. Como antes, tenemos que

$$R(\sigma) = R_{F'}(\tilde{\sigma}) \cap \{c \in \mathbb{R} : \operatorname{sig}(F(c)) = 0\}$$

donde $R_{F'}(\tilde{\sigma}) = \{c \in \mathbb{R} : \operatorname{sig}(F^{(i+1)}(c)) = \sigma_i : 0 \leq i \leq n-1\}$ y $\tilde{\sigma} = (\sigma_1, \ldots, \sigma_n)$. Claramente por hipótesis, $c_1, c_2 \in R(\sigma)$ porque las derivadas en c_1 y en c_2 tienen los mismos signos y además son raíces de F. En particular $R(\sigma) \neq \emptyset$. Pero como $F \in \mathbb{R}[x]$ es de grado n, no puede tener más de n raíces y, en particular, $R(\sigma)$ no es un intervalo. Por lo tanto, $R(\sigma)$ es un conjunto unipuntual y necesariamente $c_1 = c_2$ como queríamos probar.

Ejercicio 11. Con la misma notación que el ejercicio anterior. Sean $x, y \in \mathbb{R}$. Sea σ la sucesión de signos que toman F y sus derivadas en x y τ la correspondiente sucesión de signos en y. Supongamos que $\sigma \neq \tau$. Sea k el mayor índice $0 \leq k < n$ tal que $F^{(k)}(x) \neq F^{(k)}(y)$. Entonces

- $\operatorname{sig}(F^{(k+1)}(x)) = \operatorname{sig}(F^{(k+1)}(y)) \neq 0$
- $Si \operatorname{sig}(F^{(k+1)}(x)) = \operatorname{sig}(F^{(k+1)}(y)) = 1$,

$$x > y \leftrightarrow F^{(k)}(x) > F^{(k)}(y)$$

• $Si \operatorname{sig}(F^{(k+1)}(x)) = \operatorname{sig}(F^{(k+1)}(y)) = -1,$

$$x > y \leftrightarrow F^{(k)}(x) < F^{(k)}(y)$$

Solución.

• $\operatorname{sig}(F^{(k+1)}(x)) = \operatorname{sig}(F^{(k+1)}(y)) \neq 0$

Como k es el mayor tal que $F^{(k)}(x) \neq F^{(k)}(y)$, tenemos que $F^{(i)}(x) = F^{(i)}(y)$, y en particular que $\operatorname{sig}(F^{(i)}(x)) = \operatorname{sig}(F^{(i)}(y))$, para todo $k+1 \leq i \leq n$. Razonamos por reducción al absurdo, si $\operatorname{sig}(F^{(k+1)}(x)) = \operatorname{sig}(F^{(k+1)}(y)) = 0$, entonces aplicando el ejercicio anterior, como x e y son raíces de $F^{(k+1)}$ y coinciden los signos de las derivadas en x e y, deben ser iguales x=y, lo que contradice el hecho de que $F^{(k)}(x) \neq F^{(k)}(y)$.

• Si $\operatorname{sig}(F^{(k+1)}(x)) = \operatorname{sig}(F^{(k+1)}(y)) = 1$,

$$x>y \leftrightarrow F^{(k)}(x)>F^{(k)}(y)$$

Tomamos $\sigma_i = \text{sig}(F^{(i)}(x))$ para cada $k+1 \leq i \leq n$. Tenemos que $x,y \in R_{F^{(k+1)}}(\sigma)$. Como $x \neq y$, el conjunto $R_{F^{(k+1)}}(\sigma)$ es no vacío con dos elementos distintos y, por lo tanto, es un intervalo abierto no necesariamente acotado que contiene al intervalo abierto I determinado por x e y. Como $\text{sig}(F^{(k+1)}(x)) = \text{sig}(F^{(k+1)}(y)) = 1$, la función polinomial dada por $F^{(k)}$ es monótona creciente en I y, por definición, usando que $F^{(k)}(x) \neq F^{(k)}(y)$,

$$x > y \leftrightarrow F^{(k)}(x) > F^{(k)}(y)$$

• Si $sig(F^{(k+1)}(x)) = sig(F^{(k+1)}(y)) = -1,$

$$x > y \leftrightarrow F^{(k)}(x) < F^{(k)}(y)$$

Tomamos $\sigma_i = \text{sig}(F^{(i)}(x))$ para cada $k+1 \le i \le n$. Tenemos que $x, y \in R_{F^{(k+1)}}(\sigma)$. Como $x \ne y$, el conjunto $R_{F^{(k+1)}}(\sigma)$ es no vacío con dos elementos distintos y, por lo tanto, es un

intervalo abierto no necesariamente acotado que contiene al intervalo abierto I determinado por x e y. Como $\operatorname{sig}(F^{(k+1)}(x)) = \operatorname{sig}(F^{(k+1)}(y)) = -1$, la función polinomial dada por $F^{(k)}$ es monótona decreciente en I y, por definición, usando que $F^{(k)}(x) \neq F^{(k)}(y)$,

$$x > y \leftrightarrow F^{(k)}(x) > F^{(k)}(y)$$
.

El siguiente algoritmo calcula $V(L, -\infty, \infty)$, para L la sucesión de restos con signo cambiado a partir de P y Q.

```
def sturmcount (P, Q):
    if P = 0 or Q = 0:
        raise (ValueError)
   L = [P, Q]
    while L[-1] != 0:
        L.append(-L[-2] \% L[-1])
   L = L[:-1]
    count = 0
    for i in range(len(L) -1):
        n = L[i].degree()
       m = L[i+1].degree()
        if (n-m) % 2 == 1:
            an = L[i][n]
            bm = L[i+1][m]
            count = count + sign(an * bm)
    return count
```

Ejercicio 12. Sean $F = x^3 - 3x^2 + 3$, $G = 10x^2 - 15x + 1$. Calcule la codificación à la Thom de la única raíz α de F que cumple $Q(\alpha) < 0$. Solo puede usar el algoritmo sturmount anterior en dos polinomios para extraer información.

Solución. Con la notación del Corolario 2.5, podemos calcular el número V(P,Q) variaciones de signo la sucesión L de restos con signo cambiado a partir de P y P'Q aplicando el algoritmo anterior como sturmcount(P,P'Q)=V(P,Q). Por lo tanto, podemos calcular,

$$n_{+} = |\{c \in \mathbb{R} : P(c) = 0, Q(c) > 0\}| = \frac{V(P, Q^{2}) + V(P, Q)}{2}$$

$$n_{-} = |\{c \in \mathbb{R} : P(c) = 0, Q(c) < 0\}| = \frac{V(P, Q^{2}) - V(P, Q)}{2}$$

$$n_{0} = |\{c \in \mathbb{R} : P(c) = 0, Q(c) = 0\}| = V(P, 1) - V(P, Q^{2})$$

y el número de raíces disintas de P que es $n_0 + n_+ + n_- = |\{c \in \mathbb{R} : P(c) = 0\}| = V(P, 1)$.

Queremos calcular los signos $\operatorname{sig}(F'(\alpha)), \operatorname{sig}(F''(\alpha)), \operatorname{sig}(F'''(\alpha))$ donde α es la única raíz de F tal que $G(\alpha) < 0$. El número de raíces distintas de F es $|\{c \in \mathbb{R} : F(c) = 0\}| = V(F, 1) = 3$. Como $|\{c \in \mathbb{R} : F(c) = 0, G(c) < 0\}| = 1$, efectivamente F tiene una única raíz α tal que $G(\alpha) < 1$.

Tenemos que $|\{c \in \mathbb{R} : F(c) = 0, F'(c)G(c) < 0\}| = 0$. Lo podemos expresar como

$$|\{c \in \mathbb{R} : F(c) = 0, F'(c) < 0, G(c) > 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F'(c) > 0, G(c) < 0\}|.$$

Ambos sumandos deben ser 0 para que la suma lo sea.

Además, $|\{c \in \mathbb{R} : F(c) = 0, F'(c)G(c) > 0\}| = 2$, que coincide con la suma

$$|\{c \in \mathbb{R} : F(c) = 0, F'(c) > 0, G(c) > 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F(c) < 0, G(c) < 0\}|.$$

La suma podría ser $1+1,\ 2+0$ o 0+2, pero los dos últimos casos no se pueden dar porque teniendo en cuenta que F tiene una única raíz α tal que $G(\alpha)<0,$

$$|c \in \mathbb{R} : F(c) = 0, G(c) < 0| = |\{c \in \mathbb{R} : F(c) = 0, F'(c) < 0, G(c) < 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F'(c) > 0, G(c) < 0\}| = 1$$

donde tenemos de antes que el primer sumando es nulo, con lo que el segundo debe ser 1. Por lo tanto, el primer signo de la codificación es sig(F'(c)) = -1.

Tenemos que $|\{c \in \mathbb{R} : F(c) = 0, F''(c)G(c) < 0\}| = 2$. Lo podemos expresar como

$$|\{c \in \mathbb{R} : F(c) = 0, F''(c) < 0, G(c) > 0\}| + |\{c \in \mathbb{R} : F''(c) > 0, G(c) < 0\}|.$$

Además, $|\{c \in \mathbb{R} : F(c) = 0, F''(c)G(c) > 0\}| = 1$, que coincide con la suma

$$|\{c \in \mathbb{R} : F(c) = 0, F''(c) > 0, G(c) < 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F''(c) < 0, G(c) < 0\}|.$$

La primera suma podría ser 1+1, 2+0 o 0+2 y la segunda podría ser 1+0 o 0+1. Teniendo en cuenta la únicidad de α , tenemos en conjunto dos casos posibles 1+1 y 1+0 o 2+0 y 0+1. No es suficiente con estas descomposiciones para averiguar el valor de los sumandos. Calculamos también $|\{c \in \mathbb{R} : F(c) = 0, F''(c) < 0\}| = 1$ que es

$$|\{c \in \mathbb{R} : F(c) = 0, F''(c) < 0, G(c) > 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F''(c) < 0, G(c) < 0\}|,$$

con lo que la suma del primer sumando de la primera descomposición y el segundo de las segunda es 1 y la única posibilidad es que sean 1+1 y 1+0. En particular, el segundo signo de la codificación es $sig(F''(\alpha)) = 1$.

Tenemos que $|\{c \in \mathbb{R} : F(c) = 0, F'''(c)G(c) < 0\}| = 1$. Lo podemos expresar como

$$|\{c \in \mathbb{R} : F(c) = 0, F'''(c) < 0, G(c) > 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F'''(c) > 0, G(c) < 0\}|.$$

Además, $|\{c \in \mathbb{R} : F(c) = 0, F'''(c)G(c) > 0\}| = 2$, que coincide con la suma

$$|\{c \in \mathbb{R} : F(c) = 0, F'''(c) > 0, G(c) > 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F'''(c) < 0, G(c) < 0\}|.$$

La primera suma podría ser 1+0 o 0+1 y la segunda podría ser 1+1, 2+0 y 0+2. Teniendo en cuenta la únicidad de α , tenemos en conjunto dos casos posibles 0+1 y 2+0 o 1+0 y 1+1. No es suficiente con estas descomposiciones para averiguar el valor de los sumandos. Calculamos también $|\{c \in \mathbb{R} : F(c) = 0, F'''(c) < 0\}| = 0$ que es

$$|\{c \in \mathbb{R} : F(c) = 0, F'''(c) < 0, G(c) > 0\}| + |\{c \in \mathbb{R} : F(c) = 0, F'''(c) < 0, G(c) < 0\}|,$$

con lo que la suma del primer sumando de la primera descomposición y el segundo de las segunda es 0 y la única posibilidad es que sean 2+0 y 0+1. En particular, el segundo signo de la codificación es $sig(F''(\alpha)) = 1$.

La codificación à la Thom de α es (-,+,+).

Ejercicio 13. Sea $f = x^5 - 2x^4 - 3x^3 + 6x^2 - 4x + 8$. Sin calcular explícitamente las raíces y sin calcular factorizaciones:

- ullet Calcule cuántas raíces reales distintas tiene f.
- Calcule la multiplicidad de cada raíz.
- Dadas x, y raíces de f determinadas por su multiplicidad, determine cuál es mayor.

Solución.

Calcule cuántas raíces reales distintas tiene f.
 Directamente aplicando el algoritmo anterior

$$n_0 + n_+ + n_- = |\{c \in \mathbb{R} : f(c) = 0\}| = V(f, 1) = \text{sturmcount}(f, f') = 2,$$

con lo que f tiene dos raíces reales distintas.

Calcule la multiplicidad de cada raíz.
 Para calcular la multiplicidad, aplicamos el Corolario 2.3 a f con sus derivadas. Como

$$|\{c \in \mathbb{R} : f(c) = 0, f'(c) = 0\}| = V(f, 1) - V(f, f'^2) =$$

= sturmcount (f, f') - sturmcount $(f, f'f'^2) = 1$,

tiene una raíz simple y la otra al menos con multiplicdad 2. Probamos con la segunda derivada y tenemos

$$|\{c \in \mathbb{R} : f(c) = 0, f''(c) = 0\}| = V(f, 1) - V(f, f''^2) =$$

= sturmcount (f, f') - sturmcount $(f, f'f''^2) = 0$,

con lo que tiene una raíz simple y la otra doble.

• Dadas x, y raíces de f determinadas por su multiplicidad, determine cuál es mayor. Denotamos por x a la raíz simple y por y a la raíz doble. Buscamos la derivada de orden $0 \le k < 5$ mayor tal que $f^{(k)}(x) \ne f^{(k)}(y)$. Empezamos con k = 4. Se cumple que,

$$|\{c \in \mathbb{R} : f(c) = 0, f^{(4)}(c) < 0\}| = 1$$
$$|\{c \in \mathbb{R} : f(c) = 0, f^{(4)}(c) > 0\}| = 1$$

y debe ser $f^{(4)}(x) \neq f^{(4)}(y)$. Podemos calcular el signo en la derivada $f^{(5)}$ en x e y como

$$|\{c \in \mathbb{R} : f(c) = 0, f^{(5)}(c) > 0\}| = 2,$$

con lo que $\operatorname{sig}(f^{(5)}(x)) = \operatorname{sig}(f^{(5)}(y)) = 1$ y aplicando el Ejercicio 11, se cumple

$$x < y \leftrightarrow f^{(4)}(x) < f^{(4)}(y).$$

Tenemos que $|\{c \in \mathbb{R}: f(c)=0, f'(c)f^{(4)}<0\}|=1$. Lo podemos escribir como

$$|\{c \in \mathbb{R}: f(c) = 0, f'(c) < 0, f^{(4)} > 0\}| + |\{c \in \mathbb{R}: f(c) = 0, f'(c) > 0, f^{(4)}(c) < 0\}|.$$

Ademas, $|\{c \in \mathbb{R}: f(c) = 0, f'(c)f^{(4)}(c) > 0\}| = 0$, que coincide con la suma

$$|\{c \in \mathbb{R} : f(c) = 0, f'(c) > 0, f^{(4)} > 0\}| + |\{c \in \mathbb{R} : f(c) = 0, f'(c) < 0, f^{(4)}(c) < 0\}|.$$

Los dos últimos sumandos deben ser 0, pero como f tiene una raíz simple y otra doble, tenemos $|\{c\in\mathbb{R}:f(c)=0,f'(c)>0,f^{(4)}(c)<0\}|=1$, lo que implica que $f^{(4)}(x)<0$.

Tenemos que $|\{c \in \mathbb{R} : f(c) = 0, f^{(4)}(c) > 0\}| = 1$ y se cumple

$$\begin{aligned} |\{c \in \mathbb{R} : f(c) = 0, f'(c) = 0, f^{(4)}(c) > 0\}| &= |\{c \in \mathbb{R} : f(c) = 0, f^{(4)}(c) > 0\}| - \\ -|\{c \in \mathbb{R} : f(c) = 0, f'(c) < 0, f^{(4)}(c) > 0\}| &- |\{c \in \mathbb{R} : f(c) = 0, f'(c) > 0, f^{(4)}(c) > 0\}| = 1. \end{aligned}$$

Por lo tanto, $f^{(4)}(x) < 0 < f^{(4)}(y)$ y la raíz simple es menor que la doble.