PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE CIÊNCIAS EXATAS E DA COMPUTAÇÃO

VITOR DE ALMEIDA SILVA

AED 3- Decomposição de Cholesky

CLARIMAR JOSE COELHO

VITOR DE ALMEIDA SILVA

AED 3- Decomposição de Cholesky

Relatório apresentado como requisito parcial para obtenção de nota na disciplina Fundamentos 4 (quatro) no Curso de Engenharia da computação, na Pontifícia Universidade Católica de Goiás.

Clarimar Jose Coelho

Introdução

Existem diversas formas para se resolver sistemas lineares, algumas dessas trazem melhor vantagem computacional, seja por menor número de interações, maior rapidez ou menor espaço de armazenamento gasto.

A decomposição de cholesky é um desses métodos, tau decomposição consiste em dividir uma matriz simétrica em uma matriz triangular superior através de alguns cálculos com as linhas e colunas da matriz. Adiante será apresentado o método de cholesky e a resolução do sistema linear proposto na AED.

Apresentação da decomposição de cholesky

Antes de se aplicar o método é necessário saber se a matriz que iremos decompor atende a dois critérios:

- 1) A matriz é simétrica, ou seja, A(i,j)== A(j,i)?
- 2) A matriz é definida positiva (pode-se usar a condição de Sylvester, verifica-se se os menores principais tem todos determinantes positivo)

Verificado essas condições pode-se aplicar o método. A decomposição de Cholesky expressa a matriz A como um produto entre uma matriz triangular superior, obtida pelo método, pela sua transposta.

A obtenção da matriz L se dá através do uso de duas funções diferentes, uma trata dos elementos que se encontram na diagonal principal, e a outra, trata dos elementos abaixo da diagonal principal, são elas:

Para elementos abaixo da diagonal (I<K):

$$l_{ki} = \frac{a_{ki} - \sum_{j=1}^{i-1} l_{ij} l_{kj}}{l_{ii}}$$
 para $i = 1, 2, ..., k-1$

EQ:1

Para elementos da diagonal (I==K):

$$l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{kj}^2}$$

EQ: 2

Após obtida a matriz triangular, pode-se seguir com a resolução do sistema linear de forma semelhante a uma resolução pelo método LU. Esse desenvolvimento consiste em se substituir um sistema do tipo Ax=B, por um sistema do tipo LL`x=B, temos então:

- Ax=B:
- A=L*L`;
- I`*x=y => L*y=B => y=B/L;
- L`x=y => x=y/L`, obtendo assim o vetor dos elementos x.

•

Características gerais da decomposição de Cholesky

- A decomposição de cholesky exige, relativamente, menos esforço computacional que o método da decomposição LU.
- Por ser um método aplicado em uma matriz simétrica, é gasto menos espaço de armazenamento e para se realizar os cálculos, dado que, só os elementos abaixo da diagonal principal precisam ser armazenados, os outros podem ser obtidos através da transposição da triangular superior.
- Não é um método complicado de se implementar, consiste apenas de operações de soma, subtração e o desenvolvimento de somatórios.
- Talvez para a resolução de sistemas com matrizes de dimensões muito grandes o método se torne um pouco demorado, porém, continuando semelhante a divisão LU.

Aplicação do método para a resolução do problema proposto

Dado estas equações, já pode-se iniciar a resolução do sistema proposto pela AED, que é o seguinte:

$$\begin{bmatrix} 9 & 6 & -3 & 3 \\ 6 & 20 & 2 & 22 \\ -3 & 2 & 6 & 2 \\ 3 & 22 & 2 & 28 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 64 \\ 4 \\ 82 \end{bmatrix}$$

A matriz já atende as duas condições necessárias para se aplicar o método. O algoritmo foi implementado no Octave, e os resultados obtidos se deve a decomposição aplicada e a resolução final pelo modelo LU.

Primeiramente o algoritmo cria a matriz L a partir da decomposição, a mesma toma a seguinte forma:

Após isso o algoritmo realiza as operações necessárias para resolver o sistema pelo modelo LU e obtêm, por fim, o vetor coluna com a solução para o sistema:

Anexo

Algoritmo da decomposição de cholesky (octave):

```
%transpose(x) retorna a matriz transposta de x
A= [ 9 6 -3 3 ; 6 20 2 22 ; -3 2 6 2 ; 3 22 2 28 ]
L=0; %Matriz que recebera a decomposição
B=[ 12; 64; 4; 82] % vetor solução
for i=1: 4
  for k=1: 4
   if (i==k)
     resSoma=0;
     for j=1: k-1
        resSoma+=(L(k,j))^2;
     endfor
     L(k,k)=sqrt(A(k,k)-resSoma);
  elseif(i<k)
     resSoma=0;
     for j=1: i-1
       resSoma+=L(i,j)*L(k,j);
     endfor
     L(k,i)=(A(k,i)-resSoma)/L(i,i);
  endif
  endfor
endfor
% resolvendo similarmente ao metodo LU temos que
%Ax=b => L*L'*x=B
%1'x=y => Ly=B => y=B/L
%L'x=y => x=y/L'
%realizando as multiplicações
y=[0;0;0;0];
G=inv(L)
for i=1:4
 y(i,1)=0;
 for j=1:4
   y(i,1) +=G(i,j)*B(j,1);
 endfor
endfor
x=[0;0;0;0]
G=inv(transpose(L))
for i=1:4
 for j=1:4
   x(i,1) +=G(i,j)*y(j,1);
 endfor
endfor
L
x
```

Resultados retornados pelo algoritmo:

Referências Bibliograficas

- [1] CHAPRA, Steven C.; CANALE, Raymond P.. **Métodos Numéricos para Engenharia.** 5. ed. São Paulo: Amgh Editora Ltda, 2008. 825 p.
- [2] ANDRADE, Doherty. **Decomposição LU e Cholesky.** Disponível em: http://www.dma.uem.br/kit/arquivos/arquivos_pdf/cholesky.pdf>. Acesso em: 23 set. 2018.