

Introduction

estimation algorithm

Proposed approach

Experiments and Results

Conclusior

A Fixed-point Estimation Algorithm for Learning The Multivariate GGMM: Application to Human Action Recognition

31st IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2018)

Fatma Najar ¹ Sami Bourouis ¹ Nizar Bouguila ² Safiya Belghith ¹

¹ENIT University,Tunisia

²Concordia University, Canada

Table of contents

Introduction

estimation algorithm

Proposed approach

Experiments and Results

- Introduction
- ${\bf 2} \ \, {\sf Fixed Point estimation algorithm}$
- Proposed approach
- Experiments and results
- 6 Conclusion

Introduction

Fixed Point estimation algorithm

Proposed approach

Experiment and Results

Conclusion

• Human activity recognition

Video surveillance systems

Introduction Context and Motivation

Introduction

Fixed Point estimation algorithm

Proposed

Experiments and Results

Conclusion

• Human activity recognition

Health care activities

Introduction Context and Motivation

Human activity recognition

Smart Home

estimation algorithm

Introduction

Proposed approach

Experiment and Results

Canalusian

Introduction Context and Motivation

Introduction

Fixed Point estimation algorithm

Proposed

Experiment and Results

Conclusion

• Human activity recognition

Introduction Related work

Introduction

Fixed Point estimation

Proposed

Experiments and Results

Introduction Contribution

Introduction

Fixed Poin estimation algorithm

Proposed approach

Experiments and Results

Conclusion

Generalized Gaussian mixture model

$$p(\vec{X}_i|\vec{\mu}_j, \vec{\sigma}_j, \vec{\lambda}_j) = \prod_{k=1}^d B(\lambda_{jk}) \exp(-A(\lambda_{jk}) \left| \frac{X_{ik} - \mu_{jk}}{\sigma_{jk}} \right|^{\lambda_{jk}})$$

- GGMM has been widely used for many applications
- Only diagonal covariance matrices have been used
- Assuming that features are independent

Multivariate Generalized Gaussian distribution with Full Covariance matrix

$$p(X|\mathbf{\Sigma};\boldsymbol{\beta};\boldsymbol{\mu}) = C(\boldsymbol{\beta}) \frac{\boldsymbol{\beta}}{m^{\frac{K}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} exp\Big[- \tfrac{1}{2m^{\boldsymbol{\beta}}} ((X-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (X-\boldsymbol{\mu}))^{\boldsymbol{\beta}} \Big]$$

Fixed Point estimation algorithm

Introduction

Fixed Point estimation algorithm

Proposed approach

Experiments and Results

Conclusion

Maximum Likelihood estimator computed by an FP algorithm

• For any shape parameter $\beta \in [0,1]$, the MLE of MGGD' parameters are defined by :

$$\hat{\Sigma}_{k+1} = f(\Sigma_k) \tag{1}$$

where

$$f(\Sigma) = \sum_{i=1}^{T} \frac{K}{u_i + u_i^{1-\beta} \sum_{i \neq j} u_j^{\beta}} x_i x_i^{T},$$
 (2)

• A Newton-Raphson method for shape parameter :

$$\hat{\beta}_{k+1} = \hat{\beta}_k - \frac{\alpha(\hat{\beta}_k)}{\alpha'(\hat{\beta}_k)} \tag{3}$$

Proposed approach

Introduction

Fixed Point algorithm

Proposed approach

Experiments

Conclusion

Initialization step: Initializing model's parameters with the k-means algorithm followed by the method of moment applied to each cluster.

- 2 Repeat until convergence of the log-likelihood :
 - Expectation step : Computing responsibilities

$$p(j|X_i) = \frac{p_j p(X_i|\Sigma_j; \beta_j; \mu_j)}{\sum_{m=1}^M p_m p(X_i|\Sigma_m; \beta_m; \mu_m)}$$
(4)

- Maximization step
 - Mean estimation

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{T} p(j|X_{i})|X_{i} - \mu_{j}|^{\beta_{j}-1} X_{i}}{\sum_{i=1}^{T} p(j|X_{i})|X_{i} - \mu_{j}|^{\beta_{j}-1}}$$
(5)

- Covariance estimation of each cluster : Normalizing the dataset $(X_n = X - \mu_j)$, then evaluating the covariance matrix using equations 1 and 2.
- Shape estimation: The shape parameter is determined using equation 3.
- Assign each data point to the nearest cluster through the Bayes' rule.

Experiments and Results Methodology

Introduction

Fixed Point estimation algorithm

Proposed approach

Experiments and Results

- **1** Extract features using dense SIFT descriptors of 16×16 pixel patches computed over a grid with spacing of 8 pixels.
- Quantize the image features into visual words using the bag of words (BOW) technique on the basis of the K-means algorithm.
- Seach image is represented as a frequency histogram over the V visual words.
- Application of a probabilistic Latent Semantic Analysis (pLSA) to the obtained histograms in order to represent each image by a D-dimensional vector where D is the number of latent aspects.
- Classifying the overall images to their right activities using our FP-MGGMM algorithm.

Experiments and Results Datasets

Introducti

estimation algorithm

Proposed

Experiments and Results

Figure – Sample images from the UIUC sports event dataset

Figure - Sample images from the Stanford 40 Action dataset

Experiments and Results Results

Proposed

Experiments and Results

• Impact of different visual vocabulary sizes on the classification accuracy

Experiments and Results Results

Introduction

Fixed Point estimation algorithm

Proposed

Experiments and Results

Conclusion

• Impact of Number of aspects on the classification accuracy

Experiments and Results Results

Introduction

Fixed Point estimation algorithm

Proposed

Experiments and Results

Conclusion

 Comparative study between our proposed algorithm (FP-MGGMM) and GMM, GGMM (diagonal covariance matrix)

Algorithm	UIUC dataset	Stanford dataset
GMM	30.52	34.80
GGMM	31.69	35.20
FP-MGGMM	34.41	42.13

Table – The average classification accuracy rate for different mixture models

- FP-MGGMM offers the highest average accuracy rate (it is about 34% for UIUC and 42% for Stanford)
- It outperforms GGMM which assume that dimensions of the observed data are independent.

Experiments and Results Results

Introduction

Fixed Point estimation algorithm

Proposed approach

Experiments and Results

Conclusion

 The consideration of the full covariance matrix through the Fixed-point algorithm helps in improving the expected performances.

More features used in the covariance matrix to describe the actions, better classification performances can be obtained.

Conclusion

Introduction

Fixed Point estimation algorithm

Proposed approach

Experiments and Results

- A novel unsupervised Fixed-point estimation algorithm for learning the multivariate generalized Gaussian mixture model that uses the full covariance matrix.
- Applied the proposed algorithm to Human activity recognition
- Evaluated the performance of the proposed framework through two publicly available datasets: UIUC Sport Event dataset and Stanford 40 Action.
- Obtained results are encouraging and show that our model outperforms the GMM and GGMM which are based only on the diagonal covariance matrix.
- Future work: Improvement of obtained results by taking into account more relevant visual features and also by adopting a semi-supervised or a weak-supervised setting.

Thank you for your attention!

Point

Iteration

$$x^2 - x - 1 = 0$$

$$x_{n+1} = 1 + \frac{1}{x_n}$$

Pick
$$x_1 = 2$$

$$x_2 = 1 + \frac{1}{2} = 1.5$$

$$x_3 = 1 + \frac{1}{1.5} = 1.666$$

$$x_4 = 1 + \frac{1}{1.666} = 1.6$$