

Calcolo Parallelo e Distribuito

Calcolo di speedup, overhead ed efficienza (def Classica)

Ware-Amdahl - isoefficienza

somma di vettori e somma di N numeri

Docente: Prof. L. Marcellino

Tutor: Prof. P. De Luca

Abbiamo definito una serie di metriche per l'analisi della fattibilità di un algoritmo parallelo

Speed-up

Si definisce il rapporto T₁ su T_p

$$S_p = \frac{T_1}{T_p}$$

 $S_p = \frac{T_1}{T_p} \label{eq:Speedupmisura}$ Lo speed up misura la riduzione della complessità computazionale rispetto all'algoritmo su 1 processore

$$S_p < p$$

$$\begin{cases} \text{SPEEDUP IDEALE} \\ S_p^{ideale} = p \end{cases}$$

Osservazione

$$S_p^{ideale} = \frac{T_1}{T_p} = p$$

$$O_h = (pT_p - T_1) t_{calc}$$
 \longrightarrow $T_p = (O_h + T_1) t_{calc} / p$

OVERHEAD totale

$$S_p = \frac{T_1}{T_p} = \frac{T_1}{(O_h + T_1)/p} = \frac{pT_1}{O_h + T_1} = \frac{p}{\frac{O_h}{T_1} + 1}$$

L'OVERHEAD totale misura quanto lo speed up differisce da quello ideale

Efficienza

Si definisce il rapporto E_p su p

$$E_p = \frac{S_p}{p}$$

misura quanto l'algoritmo parallelo sfrutta il parallelismo del calcolatore

EFFICIENZA IDEALE

$$E_p^{ideale} = \frac{S_p^{ideale}}{p} = 1$$

4

Legge di Ware-Amdhal

$$S_p = \frac{T_1}{T_p} = \frac{1}{\alpha + (1 - \alpha)/p}$$

Per l'analisi asintotica dello speedup serve analizzare la frazione delle operazioni eseguite in sequenziale e la frazione delle operazioni eseguite in parallelo

Scalabilità e Isoefficienza

Un algoritmo si dice scalabile se
l'efficienza rimane costante
al crescere del numero dei processori e
della dimensione del problema,
in un rapporto costante pari a:

$$I = \frac{O_h(n_1, p_1)}{O_h(n_0, p_0)}$$

Abbiamo incominciato a valutare le aspettative di prestazioni per

la strategia (full-parallel) per la somma di due vettori

e

le due strategie per la somma parallela di N numeri

usando le metriche definite

Lezioni scorse...

Calcolo di speedup, overhead ed efficienza (def classica)

Caratterizziamo ora lo speedup usando la legge di Ware-Amdahl

generalizzata

Legge di Ware-Amdhal (W-A)

BASE

$$S_p = \frac{1}{\alpha + (1 - \alpha)/p}$$

α frazione sequenziale

(1-α) frazione parallelizzabile

• $(1-\alpha)/p$ frazione parallela

Ma è sempre possibile distinguere nettamente la frazione sequenziale da quella parallela?

Legge di Ware-Amdhal (W-A)

$$S_{p} = \frac{1}{\alpha_{1} + \sum_{k=2}^{p-1} \frac{\alpha_{k}}{k} + \frac{\alpha_{p}}{p}}$$

 α_1 frazione di operazioni eseguite da un solo processore (sequenziale) α_k frazione di operazioni eseguite con parallelismo medio k\alpha_n frazione di operazioni eseguite con parallelismo totale p

Caratterizziamo lo speedup usando la Ware-Amdahl base-generalizzata

algoritmo parallelo per <u>la somma di due vettori di</u> <u>dimensione N</u>

p=8, dim[a]=dim[b]=32

In sequenziale 32 somme

1 fase (tutta parallela)

Calcolo somme parziali
nloc = 4 somme

4 somme contemporaneamente fatte da 8 processori/core

4x8=32 delle 32 somme

$$(1-\alpha) = 32/32$$

p=8, dim[a]=dim[b]=32

In sequenziale 32 somme

$$(1-\alpha) = 32/32$$

$$\frac{1-\alpha}{p} = \frac{1}{p} = \frac{1}{8}$$

Ho finito!!! Ho parallelizzato tutto quindi a=0

Caratterizziamo lo speedup usando la Ware-Amdahl base-generalizzata

algoritmo parallelo per <u>la somma di N numeri</u>

p=8, N=32, nloc=4

In sequenziale

31 somme

1 fase (tutta parallela)

Calcolo somme parziali nloc-1 = 4-1 = = 3 somme

3 somme contemporaneamente fatte da 8 processori/core

3x8=24 delle 31 somme

$$(1-\alpha) = 24/31$$

$$\frac{1 - \alpha}{p} = \frac{24}{31} \cdot \frac{1}{8} = 3 \cdot \frac{1}{31}$$

In sequenziale

31 somme

2 fase (tutta sequenziale)

Aggiornamento della somma totale

$$p-1 = 8-1 = 7$$
 somme

7 somme in sequenziale

7 delle 31 somme

$$\alpha = 7/31$$

$$\alpha = \frac{7}{31}$$

 C_2

In sequenziale

31 somme

$$\alpha = \frac{7}{31}$$

$$\frac{1-\alpha}{p} = \frac{24}{31} \cdot \frac{1}{8} = 3 \cdot \frac{1}{31}$$

$$S_p = \frac{1}{\frac{7}{31} + \frac{3}{31}} = \frac{31}{10} = 3,1$$

p=8, N=32, nloc=4

Non è possibile separare esattamente la parte sequenziale dalla parte parallela.

p=8, N=32, nloc=4

In sequenziale

31 somme

1 fase (tutta parallela)

Calcolo somme parziali nloc -1 = 4-1 == 3 somme

3 somme fatte contemporaneamente da 8 processori/core

3x8=24 delle 31 somme

$$\frac{\alpha_8}{8} = \frac{24}{31} \cdot \frac{1}{8} = \frac{3}{31}$$

Non c'è nessuna fase in cui lavorano contemporaneamente 7, 6, 5 processori/core. Quindi:

$$\frac{\alpha_{7}}{7} = \frac{\alpha_{6}}{6} = \frac{\alpha_{5}}{5} = 0$$

p=8, N=32, nloc=4

In sequenziale

31 somme

2 fase (parallelo parziale)

Calcolo somme parziali

1 somma

1 somma fatta contemporaneamente da 4 processori/core

1x4=4 delle 31 somme

$$\alpha_4 = 4/31$$

$$\frac{\alpha_4}{4} = \frac{4}{31} \cdot \frac{1}{4} = \frac{1}{31}$$

Non c'è nessuna fase in cui lavorano contemporaneamente 3 processori/core. Quindi: α

$$\frac{\alpha_3}{3} = 0$$

p=8, N=32, nloc=4

In sequenziale

31 somme

3 fase (parallelo parziale)

Calcolo somme parziali

1 somma

1 somma fatta contemporaneamente da 2 processori/core

1x2=2 delle 31 somme

$$\alpha_2 = 2/31$$

$$\frac{\alpha_2}{2} = \frac{2}{31} \cdot \frac{1}{2} = \frac{1}{31}$$

p=8, N=32, nloc=4

...ultima fase!!!

p=8, N=32, nloc=4

C₀

 C_1

 C_2

 C_3

S₄

S₅

S₆

S₇

In sequenziale 31 somme

4 fase (sequenziale)

Calcolo somma finale

1 somma

1 somma fatta da 1 processore/core

1 delle 31 somme

$$\alpha_1 = 1/31$$

$$\alpha_1 = \frac{\alpha_1}{1} = \frac{1}{31}$$

p=8, N=32, nloc=4

In sequenziale

31 somme

$$\frac{\alpha_{8}}{8} = \frac{3}{31} \begin{vmatrix} \alpha_{7} \\ 7 \end{vmatrix} = \frac{\alpha_{6}}{6} = \frac{\alpha_{5}}{5} = 0$$

$$\frac{\alpha_{4}}{4} = \frac{1}{31}$$

$$\frac{\alpha_{3}}{3} = 0$$

$$\frac{\alpha_{2}}{2} = \frac{1}{31}$$

$$\alpha_{1} = \frac{1}{31}$$

$$S_p = \frac{1}{\frac{1}{31} + \frac{1}{31} + \frac{1}{31} + \frac{3}{31}} = \frac{31}{6} = 5,1$$

Cosa succede se N non è esattamente divisibile per p???

somma vettori

somma N numeri

Cosa succede se N non è esattamente divisibile per p???

somma vettori

somma vettori

$$p=8, N=67$$

Cosa succede se N non è esattamente divisibile per p???

Alcuni core faranno 1 somma in più:

Es: N=67, p=8

Come se tutti i core avessero 8+1 = 9 elementi!

$$p=8, N=67$$

Cosa succede se N non è esattamente divisibile per p???

Es: N=67, p=8

Bisogna stare attenti solo alla parte puramente parallela:

Cosa succede se N non è esattamente divisibile per p???

somma N numeri

$$p=8, N=67$$

Cosa succede se N non è esattamente divisibile per p???

Alcuni core faranno 1 somma in più nella fase puramente parallela:

Es: N=67, p=8

Come se tutti i processori avessero 9 elementi da sommare tra loro!

Cosa succede se N non è esattamente divisibile per p???

Bisogna stare attenti solo alla parte puramente parallela, come negli altri casi:

Cosa succede se N non è esattamente divisibile per p???

$$\alpha_8 = \frac{3 \cdot 8 + 5 \cdot 7}{66}$$

Provate a farvi i conti da soli per tutto il resto

Calcolo dell' isoefficienza

Definizione

L'ISOEFFICIENZA

è una funzione di tre variabili p_0 , p_1 , n_0

e definisce la costante che lega la nuova dimensione del problema da scegliere n_1 per valutare la **scalabilità** di un algortimo

$$I(p_0, p_1, n_0) = O_h(p_1, n_1)/O_h(p_0, n_0)$$

Calcolo isoefficienza

somma di 2 vettori di dimensione N

$$O_h(p, N) = T_1(N) - p T_p(N) = N - p(N/p) = 0$$

 $T_1(N) = N$

Forma indeterminata.

Per convenzione: I può assumere qualunque valore

Gli algoritmi full parallel sono naturalmente scalabili

Calcolo isoefficienza

somma di N numeri (II str)

$$O_h(p, N) = p log_2 p$$

$$T_1(N) = N-1$$

$$I = (p_1 log_2 p_1)/(p_0 log_2 p_0)$$

Calcolo isoefficienza

somma di N numeri

I strategia?

$$T_1(N) = N-1$$

 $T_p(N) = N/p - 1 + p-1$

$$O_h = p T_p(N) - T_1(N) = p (N/p - 1 + p-1) - (N-1) =$$

$$= (M - p + p^2 - p - M + 1)$$

I=
$$(p_1^2 - 2 p_1 + 1)/(p_0^2 - 2 p_0 + 1)$$

Esercitazione aggiuntiva: w-a generalizzata, nei casi della non divisibilità

$$p=8$$
, $N=44$, 5, $r=4$

In sequenziale

N = 44 somme

Per calcolare lo speedup con la legge di W-A, la prima domanda che mi devo fare è se per questa strategia di parallelizzazione posso esattamente distinguere la parte parallela

(nella fase di calcolo locale lavorano tutti e 8 i processori) e la parte sequenziale

(la collezione dei risultati avviene in maniera sequenziale)

$$SI S_p = \frac{1}{\alpha + \frac{1-\alpha}{p}}$$

p=8, N=44, 5, r=4

In sequenziale

N = 44 somme

unica fase (calcolo locale)

Calcolo somme parziali

4 processori - 6 somme

4 processori - 5 somme

6 somme fatte contemporaneamente da 4 processori/core

5 somme fatte contemporaneamente da 4 processori/core

 $1-\alpha = (6\times4+5\times4)/44 = (24+20)/44$

Calcolo dello speedup

$$S_p = 1/[\alpha + (1-\alpha)/p] =$$
 $= 1/[0+(44/44)/8] =$
 $= 1/[1/8] =$
 $= 8$

In sequenziale

N-1=44-1=43 somme

Per calcolare lo speedup con la legge di W-A, la prima domanda che mi devo fare è se per questa strategia di parallelizzazione posso esattamente distinguere la parte parallela

(nella fase di calcolo locale lavorano tutti e 8 i processori) e la parte sequenziale

(la collezione dei risultati avviene in maniera sequenziale)

$$SI S_p = \frac{1}{\alpha + \frac{1-\alpha}{p}}$$

In sequenziale

N-1=44-1=43 somme

1 fase (calcolo locale)

Calcolo somme parziali

- 4 processori 5 somme
- 4 processori 4 somme

5 somme fatte contemporaneamente da 4 processori/core

4 somme fatte contemporaneamente da 4 processori/core

 $1-\alpha = (5\times4+4\times4)/43=36/43$

In sequenziale

N-1=44-1=43 somme

2 fase (tutta sequenziale)

Aggiornamento della somma totale

$$p - 1 = 8 - 1 = 7$$
 somme

7 somme in sequenziale

7 delle 43 somme

$$\alpha = 7/43$$

In sequenziale

N-1=44-1=43 somme

$$1-\alpha = (5\times4+4\times4)/43=36/43$$

 $\alpha = 7/43$

Attenzione:

La somma dei due numeratori deve essere uguale al denominatore. Questo serve solo per fare il controllo dopo il calcolo

p=8, N=44, 5, r=4

Calcolo dello speedup

$$S_p = 1/[\alpha + (1-\alpha)/p] =$$
 $= 1/[7/43 + (36/43)/8] =$
 $= 1/[0.16 + (0.84)/8] =$
 $= 1/[0.16 + 0.10]$
Approssimazione alla seconda cifra decimale = 1/0.25=4

In sequenziale

N-1=44-1=43 somme

per questa strategia di parallelizzazione NON posso esattamente distinguere la parte parallela

(nella fase di calolo locale lavorano tutti e 8 i processori) e la parte sequenziale

(la collezione dei risultati avviene in maniera sequenziale)

Per calcolare lo speedup con W-A DEVO usare la forma generalizzata

$$S_p = \frac{1}{(\alpha_p/p) + \sum_{k=2}^{p-1} \frac{\alpha_k}{k} + \alpha_1}$$

In sequenziale

N-1=44-1=43 somme

1 fase (calcolo locale)

Calcolo somme parziali

- 4 processori 5 somme
- 4 processori 4 somme

5 somme fatte contemporaneamente da 4 processori/core

4 somme fatte contemporaneamente da 4 processori/core

$$\alpha_8 = (5 \times 4 + 4 \times 4)/43 = 36/43$$

Non c'è nessuna fase in cui lavorano contemporaneamente 7, 6, 5 processori/core. Quindi:

$$\frac{\alpha_{7}}{7} = \frac{\alpha_{6}}{6} = \frac{\alpha_{5}}{5} = 0$$

$$p=8$$
, $N=44$, 5, $r=4$

In sequenziale

N-1=44-1=43 somme

2 fase (parallelo parziale: 1 passo)

1 somma

1 somma fatta contemporaneamente da 4 processori/core

1x4=4 delle 43 somme

 $\alpha_4 = 4/43$

p=8, N=32, nloc=4

Non c'è nessuna fase in cui lavorano contemporaneamente 3 processori/core. Quindi: α

$$\frac{\alpha_3}{3} = 0$$

In sequenziale

N-1=44-1=43 somme

2 fase (parallelo parziale: 2 passo)

1 somma

1 somma fatta contemporaneamente da 2 processori/core

1x2=2 delle 43 somme

 $\alpha_2 = 2/43$

p=8, N=32, nloc=4

...ultima fase!!!

In sequenziale

N-1=44-1=43 somme

2 fase (parallelo parziale: 3 passo)

1 somma

1 somma fatta in sequenziale da 1 processore/core

1 delle 43 somme

 $\alpha_1 = 1/43$

In sequenziale

N-1=44-1=43 somme

$$\alpha_8 = (5 \times 4 + 4 \times 4)/43 = 36/43$$

 $\alpha_4 = 4/43$ $\alpha_2 = 2/43$ $\alpha_1 = 1/43$

Attenzione:

La somma dei due numeratori deve essere uguale al denominatore. Questo serve solo per fare il controllo dopo il calcolo

$$p=8$$
, $N=44$, 5, $r=4$

Calcolo dello speedup

$$S_p = 1/[\alpha_8/8 + \alpha_4/4 + \alpha_2/2 + \alpha_1/1] =$$

