COL352 Problem Sheet 2

Himanshi Ghai (2019CS50433) Mallika Prabhakar (2019CS50440) Sayam Sethi (2019CS10399)

February 2022

Contents

1	Question 1	2
2	Question 2	3
3	Question 3	4
4	Question 4	6
5	Question 5	7
6	Question 6	8
7	Question 7	9

Question 1	
Question. Prove that $L_1 = \{bin(p) : p \text{ is a prime number}\}\ $ is not a regular language.	
Solution.	

Question 2

Question. The n-th Fibonacci number is defined as $F_1 = 1$, $F_2 = 1$, and for all $n \ge 3$, $F_n = F_{n-1} + F_{n-2}$.

Consider the language over $\Sigma = \{a\}$

$$L_2 = \{ a^m | m = F_n \} \tag{1}$$

Is L_2 regular? Justify your answer.

 \Box

Question 3

Question. If A is any language, let $A_{\frac{1}{2}}$ denote the set of all first halves of strings in A so that

$$A_{\frac{1}{2}-} = \{x | \text{ for some } y, |x| = |y| \text{ and } xy \in A\}$$
 (2)

Show that if A is regular, then so is $A_{\frac{1}{2}-}$.

Solution. Let the DFA of A be $D=(Q,\Sigma,\delta,q_0,F)$. We propose the following DFA $D_{\frac{1}{2}-}=(Q_{\frac{1}{2}-},\Sigma,\delta_{\frac{1}{2}-},q_{0\frac{1}{2}-},F_{\frac{1}{2}-})$ as the DFA which accepts $A_{\frac{1}{2}-}$:

$$Q_{\frac{1}{2}-} = Q \times 2^{Q}$$

$$q_{0\frac{1}{2}-} = (q_{0}, F)$$

$$\delta_{\frac{1}{2}-}((q, R), a) = (\delta(q, a), \{s \in Q | \exists \alpha \in Q : \delta(s, \alpha) \in R\})$$

$$F = \{(q, R) | q \in R, R \in 2^{Q}\}$$
(3)

Intuitively, $A_{\frac{1}{2}-}$ is the DFA which begins with the start symbol and the set of final states. Each time it processes a symbol, it advances the state and moves backwards on the transition for the set of states. Finally, if we arrive at a state which is a subset of the reverse traversal states, we know that we have arrived at a state which has a path using |w| transitions which arrives at a final state in D.

We now formally prove the correctness using induction.

Claim 3.1. After processing i symbols, let the state be (q_i, R_i) . Then from all states $s \in R_i$ there exists a walk to F in i transitions. Additionally, each such state is present in R_i .

Proof. The base case is true (i = 0) trivially. Now assume that the claim is true for i, consider the claim for i + 1.

Let the sequence of states be $(q_0, R_0), (q_1, R_1), \ldots, (q_i, R_i), (q_{i+1}, R_{i+1})$. We know that there is a path of i transitions from all states in R_i . From the construction of R_{i+1} we know that there is a transition from each state of R_{i+1} to a state of R_i . Therefore, adding this transition to the walk of i transitions in R_i , we get that there exists a walk to a F in i+1 transitions. Also, each state that has a walk of i+1 transitions is present in R_{i+1} since otherwise, there would be a state corresponding to that walk which won't be present in R_i . This would lead to a contradiction to our inductive hypothesis. Therefore, each such state having a walk of i+1 transitions to F is present in R_{i+1} .

We now use the above claim to prove the following:

- 1. For every word $w \in A$, $w_{\frac{1}{2}}$ is recognised by $D_{\frac{1}{2}}$
- 2. For every word w which is recognised by $D_{\frac{1}{2}-}$, there exists a word $w_0 \in A$.

To prove the first statement, we use the result of the previous claim. Let |w| = 2n. Now, after $D_{\frac{1}{2}-}$ processes n symbols, let the state be (q_n, R_n) . Now, since w is accepted by D, there exists a walk of length n from q_n to a state in F. Therefore, $q_n \in R_n$. Thus, (q_n, R_n)

is an accepting state and it accepts $w_{\frac{1}{2}}$. For the second statement, we know that there exists a path of n transitions from any accepting state (q_n, R_n) . We can construct a word w_0 by appending the transition symbols which will be arrive at a state in F. Therefore, for each word which is accepted by $D_{\frac{1}{2}-}$, we have a corresponding word that is accepted by D.

Question 4

Question. If A is any language, let $A_{\frac{1}{3}-\frac{1}{3}}$ denote the set of strings in A with the middle third removed so that

$$A_{\frac{1}{3} - \frac{1}{3}} = \{xz | \text{ for some } y, |x| = |y| = |z| \text{ and } xyz \in A\}$$
 (4)

Show that if A is regular, then $A_{\frac{1}{2}-\frac{1}{3}}$ is not necessarily regular.

Solution. We will show this by contradiction. Consider the language $A=0^+1^+2^+$. A is regular. Now assume that $A_{\frac{1}{2}-\frac{1}{2}}$ is regular.

We also know that $B = 0^+2^+$ is regular. Consider the intersection of $A_{\frac{1}{3}-\frac{1}{3}}$ and B. We know that this language, say C, will only have 0 and 2. We will now show that the number of 0 and number of 2 in each word of C will be equal.

Consider any word w in C. Consider the corresponding word in A from which we got w in $A_{\frac{1}{3}-\frac{1}{3}}$, call it $w_0 = 0^a 1^b 2^c$. For the case a = b = c, it is trivial that the number of 0 and 2 in w will be equal. Otherwise, we know that at least one of a, b, c will be less than $\frac{a+b+c}{3}$. We will now show that if $w \in C$, then $b < \frac{a+b+c}{3}$. Assume that it is not the case. Then, wlog assume that a is the smallest number. Then, in w, we will also have 1 at some positions. However since $w \in C$, such a situation is not possible. Therefore, #0 = #2 in w.

Thus, we have proved that $C \subseteq \{0^n 2^n, n > 0\}$. We now show that any word w in $\{0^n 2^n, n > 0\}$ will be in C. This is easy to see since $0^n 1^n 2^n$ is in A and thus $0^n 2^n$ will be in C. Therefore, $C = \{0^n 2^n, n > 0\}$

However, we know that C is non regular. However, from our assumption that $A_{\frac{1}{3}-\frac{1}{3}}$ is regular and B is regular, C must be regular since it is the intersection of $A_{\frac{1}{3}-\frac{1}{3}}$ and B. This is a contradiction. Therefore, $A_{\frac{1}{2}-\frac{1}{3}}$ is irregular. Hence, proved.

