Lösung Übung DSL Ü4 Semester 1

Paul Wolf

November 29, 2019

Contents

1	ΑI		1
		1	
		2	
	1.3	3	
		1.3.1 i	
		1.3.2 ii	
	1.4	4	2
2	A 2		3
		Beweis	
	2.2	Anmerkung	4
3	А3		4
4	Α4		4

(sorry für das Deutsch, habe es nur abgeschrieben...) Im Folgenden werden teilweise Worte, wie "und", "oder" durch ihre logischen Operanten \land , \lor ersetzt.

1 A1

E seien $A,B,C,D\subseteq U$ Mengen. Zeigen Sie:

1.1 1

$$(A \cap B)x(C \cap D) = (AxC) \cap (BxD)$$

Recall: $AxB = \{(x, y) \mid x \in A, y \in B\}$

```
 \begin{split} &(AxB)x(C\cap D) = \{(x,y)\mid x\in A, y\in B \wedge y\in C\cap D\} \\ &= \{(x,y)\mid x\in A \wedge x\in B \wedge y\in C \wedge y\in D\} \\ &= \{(x,y)\mid (x,y)\in AxC \wedge (x,y)\in BxD\} \\ &= (AxC)\cap (BxD) \end{split}
```

1.2 2

$$(A \cup B)x(C \cup D) = \{(x,y) \mid x \in A \lor x \in B, y \in C \lor y \in D\}$$

$$= \{(x,y) \mid x \in A, y \in C \text{ oder}$$

$$x \in A, y \in D \text{ oder}$$

$$x \in B, y \in C \text{ oder}$$

$$x \in B, y \in D\}$$

$$= \{(x,y) \mid (x,y \in AxC) \in AxD$$

$$(x,y) \in BxC$$

$$(x,y) \in BxD\}$$

$$= (AxC) \cup (AxD) \cup (BxC) \cup (BxD)$$

1.3 3

$$(\overline{AxB}) = (\overline{A}xB) \cup (Ax\overline{B}) \cup (\overline{A}x\overline{B})$$
1: \overline{A}^u (u ist das Universum)
2: \overline{B}^u
Recall: $\overline{A} = \{x \mid x \notin A, x \in U\}$
 $\overline{A} = U \setminus A$

1.3.1 i

Sei
$$(x, y) \in \overline{AxB}$$

 $\Rightarrow x \in \overline{A}, y \in B$ oder
 $x \in \overline{A}, y \in \overline{B}$ oder
 $x \in A, y \in \overline{B}$
 $\Rightarrow (x, y) \in \overline{AxB}$ oder
 $(x, y) \in \overline{AxB}$ oder
 $(x, y) \in Ax\overline{B} \Rightarrow (x, y) \in (\overline{AxB}) \cup (Ax\overline{B}) \cup (\overline{AxB})$

1.3.2 ii

Sei
$$(x, y) \in (\overline{A}xB) \cup (Ax\overline{B}) \cup (\overline{A}x\overline{B})$$

 $\Rightarrow genauumgekehrt(i)$

1.4 4

$$(AxB) \setminus (CxD) = (Ax(B \setminus B)) \cup ((A \setminus C)xB)$$
$$(AxB) \setminus (CxD) = (AxB) \cap (CxD)$$
$$= (AxB) \cap ((\overline{C}xD) \cup (Cx\overline{D}) \cup (\overline{C}x\overline{D}))$$

```
= (AxB) \cap (\overline{C}xD) \cup (AxB) \cap (Cx\overline{D}) \cup (AxB) \cap (\overline{C}x\overline{D})
= (A \cap \overline{C})x(B \cap D) \cup (A \cap C)x(B \cap \overline{D}) \cup (A \cap \overline{C})x(B \cap \overline{D})
Ax(B \cap \overline{D}) \cup ((A \cap \overline{C})xB)
= (Ax(B \setminus D)) \cup ((A \setminus C)xB)
```

Anmerkung

$$(AxB) \cup (CxD) \neq (A \cup C)x(B \cup D)$$

 $(AxB) \cup (CxD) \subseteq (A \cup C)x(B \cup D)$
Wenn (A1a) die Vereinigung nicht stimmt...

2 A2

1. Familie, Freunde (2,3) sei $R \subseteq X = X$ eine Relation. Dann

i

R ist reflexiv $iff\overline{R} \subseteq XxX$ ist irreflexiv

ii

R ist irreflexiv $iff\overline{R} \subseteq XxX$ ist reflexiv

Beweis sei $R \subseteq XxX$ eine Reflexion dann $\forall x \in X : (x,x) \in R$ durch Definition von $\overline{R} : (x,y) \in R \Rightarrow (x,y) \notin \overline{R}$ das gilt auch für (x,y) und so $\forall x \in X : (x,x) \notin R$ Deshalb ist \overline{R} irreflexiv.

 III^{log} (genauso ähnlich): $\forall x \in X: (x,x) \notin R \Rightarrow \neg(x,y) \notin \overline{R}$ durch doppelte negation: $(x,y) \in \overline{R}$

Der umgekehrte Teil folgt von dem Fakt, dass $(\overline{R})=R$ durch relativ Komplement vom relativen Komplement.

(2,3)sei $R\subseteq X=X$ eine Relation. Dann ist R
 symmetrisch $\iff \overline{R}\subseteq XxX$ auch symmetrisch:

2.1 Beweis

Sei $R \subseteq XxX$ ist symmetrisch. Durch symmetrie von Relationen ist symmetrisch $(x,y) \in R \iff (x,y) \in R$ Annahme, dass $\overline{R} \subseteq XxX$ ist antisymmetrisch, dann $\exists (x,y) \in \overline{R} : (y,x) \in \overline{R}$ Aber durch Def. von $\overline{R}(y,x) \in R$ $Ristsymmetrisch(x,y) \in R \Rightarrow \Leftarrow zu (x,y) \in \overline{R}$ So ist \overline{R} symmetrisch. Ähnlich folgt die umgekehrte Richtung.

2.2 Anmerkung

$$(x,y) \in R \iff (y \in X) \in R$$

Beweis: Sei R symmetrisch
 $(x,y) \in R \Rightarrow (y,x) \in R$
 $(y,x) \in R \Rightarrow (x,y) \in R$
 $(x,y) \in R \iff (y,x) \in R$ (bidirektional)

3 A3

Die Kugel (a,c) und (b,c) müssen im Komplement der geschnittenen Menge liegen d.h. in $(R \cup R^-)$. Der Fall $(a,c) \in R$ und $(b,c) \in R^-$ würde wegen der Transitivität $(a,b) \in R$ ergeben, was der Vorraussetzung wiederspricht, analog kann $(a,c) \in \overline{R}$ und $(b,c) \in R^-$ nicht sein, da auch R^- transitiv ist und dies $(a,b) \in R^-$ ergeben würde. Die Behautung wird nur erfüllt, wenn beide Tupel entweder in R, oder \overline{R} liegen.

4 A4

```
\begin{split} M &= \{0,1,2,3,4,5\} \\ R,S &\subseteq MxM \\ R &= \{(1,1),(2,1),(3,1)\} \\ S &= \{(1,1),(1,3),(3,3),(4,5)\} \\ RoS &= \{(1,1),(1,3),(2,1),(2,3),(3,1),(3,3)\} \\ \text{Extra: } SoR &= \{(1,1),(3,1)\} \end{split}
```

Definition

$$RoS = \{(x, z) \mid \exists y \in Y, (x, y) \in R \land (y, z) \in S\}$$

$$R \cap S = \{(x, y) \mid (x, y) \in R \land (x, y) \in S\}$$

$$R \cup S = \{(x, y) \mid (x, y) \in R \lor (x, y) \in S\}$$