Calculating the expected automorphism group for RRTs

David Matthews

February 4, 2014

1 Notation

 $\{T_i\}_{i=1}^n$ A random recursive tree process on n vertices.

 \mathcal{T}_n The set of of random recursive tree processes on n vertices.

 $\tilde{\mathcal{T}}_n$ The set of labelled rooted tree on n vertices.

 S_n the symmetric group on n elements.

 $I(\sigma,T)$

$$\begin{cases} 1 & \text{if } \sigma \cdot T \in \mathcal{T}_n \\ 0 & \text{otherwise} \end{cases}$$

$$P_n(\sigma) \sum_{T \in T_n} I(\sigma, T)$$

2 Random recursive trees

A random recursive tree (RRT) is a labelled, rooted tree obtained by assigning a root vertex and adding n-1 vertices one by one such that each new vertex is joined by an edge to a randomly and uniformly chosen existing vertex. It is natural to consider RRTs as nested sequences of rooted, labelled trees

$$T_1 \subset T_2 \subset \cdots \subset T_n$$

Where each T_t has precisely t vertices (and (t-1) edges). At time t vertex v is chosen uniformly at random from $V(T_{t-1})$ and a new vertex v_t is attached

to T_{t-1} via the edge $\{(v, v_t)\}$. Furthermore, we use the notation $\{T_i\}_{i=1}^n$ to mean a RRT on n vertice and we denote the set of all RRTs on n vertices by \mathcal{T}

Let T = (V(T), E(T)) be a labelled tree (not necessarily a RRT) and d(v, w) be the length of the (unique) shortest path between any pair of vertices $v, w \in V(T)$. Every vertex $v \neq 1$ has a well defined father: the unique vertex v' adjacent to v such that d(v', 1) < d(v, 1). By the process of RRT construction any vertex $1 \neq v \in T$ is adjacent to exactly one vertex with a lesser label.

Lemma 2.1. Let \mathcal{F}_n be the set of functions $f: N \longrightarrow N$ such that f(1) = 1 and f(i) < i for i = 2, 3, ... n. There is a bijection between T_n and \mathcal{F} .

Proof. One can associate a function $f \in \mathcal{F}$ to any RRT $\{T_i\}_{i=-1}^{i=n} \in \mathcal{T}_n$ by assigning f(1) = 1 and f(i) the father of i. To see the converse, take any $f \in F_n$ and build $\{T_i\}_{i=1}^n$ by setting T_1 to be the graph with one vertex and no edges and subsequent T_i to be the graph built from $T_i - 1$ by attaching vertex i to f(v) for $i = 2, 3, \ldots, n$.

Corollary 1. $|\mathcal{T}_n| = n - 1!$

Proof. Since $|\mathcal{T}_n| = |\mathcal{F}_n|$ it is enough to enumerate \mathcal{F}_n . One can write any $f \in \mathcal{F}_n$ as:

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 1 & f(2) & f(3) & f(4) & \dots & f(n) \end{pmatrix}$$

Subject to f(1) = 1 and f(i) < i for i = 1, 2, ... n. Note that f has 1 choice for f(2) (i.e. f(2) = 1), two choices for f(3) and, more generally, i-1 choices for f(i-1). Therefore, $|\mathcal{F}_n| = n-1$!

Let $\tilde{\mathcal{T}}_n$ be the set of labelled rooted tree on n vertices. The symmetric group, S_n , can act on $\tilde{\mathcal{T}}_n$ by which permuting the non-root vertices of any $T \in \tilde{\mathcal{T}}_n$. Given a permutation $\sigma \in S_n$ and a tree $T \in \tilde{\mathcal{T}}_n$ we write the action of σ on T as $\sigma \cdot T$. Figure 1 shows that this action does not restrict to RRTs. This begs the question: Given $T \in T_n$ and $\sigma \in S_n$ under what conditions is $\sigma \cdot T \in T_n$?

Figure 1: The top tree, T, is a RRT on n vertices. The bottom tree, $\sigma \cdot T$, where $\sigma = (23)$ and it is clear that $\sigma \cdot T \notin \mathcal{T}_4$,

Remark 1. In fact no transposition σ of two non-root adjacent vertices i, j can be such that $\sigma \cdot T \in \mathcal{T}_n$. Without loss of generatility assume that i < j. Since i and j are adjacent f(j) = i, hence:

$$\sigma(j) = i < j = \sigma(i) = \sigma(f(j))$$

Lemma 2.2. Let $T \in T_n$ correspond to $f \in \mathcal{F}$ then $\sigma \cdot T$ corresponds to the following function:

$$f' = \begin{pmatrix} 1 & \sigma(2) & \sigma(3) & \sigma(4) & \dots & \sigma(n) \\ 1 & \sigma(f(2)) & \sigma(f(3)) & \sigma(f(4)) & \dots & \sigma(f(n)) \end{pmatrix}$$

Proof. Let $T' = \sigma \cdot T$, there exists some function g corresponding to T' such that:

$$g = \begin{pmatrix} 1 & \sigma(2) & \sigma(3) & \sigma(4) & \dots & \sigma(n) \\ 1 & g(\sigma(2)) & g(\sigma(3)) & g(\sigma(4)) & \dots & g(\sigma(n)) \end{pmatrix}$$

Where $g(\sigma(i))$ is the father of $\sigma(i)$ but it is clear that the father of $\sigma(i)$ is $\sigma(f(i))$ hence $g(i) = \sigma(f(i))$ for i = 2, 3, ..., n.

Corollary 2. Let $T \in \mathcal{T}_n$ and $\sigma \in S_n$. Then $\sigma \cdot T \in \mathcal{T}_n$ if and only if $\sigma(i) < \sigma(f(i))$.

We define an indicator function for any $\sigma \in S_n, T \in \mathcal{T}_n$ as follows:

$$I(\sigma, T) = \begin{cases} 1 & \text{if } \sigma \cdot T \in \mathcal{T}_n \\ 0 & \text{otherwise} \end{cases}$$

2.1 Transpositions

In order to understand the effect of permutations of vertices on RRTs we shall examine $\sigma \cdot T$ where $\sigma = (i, j)$ is a transposition such that (without loss of generality) i < j.

By Corollary 2 if $\sigma \cdot T \in T_n$ the the corresponding function, f satisfies that $\sigma(i) < \sigma(f(i))$ for $i = 2, 3, \ldots, n$.

Lemma 2.3. Given a RRT $\{T = T_i\}_{i=1}^n$ and a transposition $\sigma = (p,q)$ the labelled tree $\sigma \cdot T$ is a RRT if and only if f(q) < p and p is a leaf in T_q .

Remark 2. The idea behind the proof of this Lemma is that any $f \in \mathcal{F}_n$ can be split up into 5 parts as follows:

$$f = \begin{pmatrix} 1 & \dots & i-1 & i & i+1 & \dots & j-1 & j & j+1 & \dots & n \\ f(1) & \dots & f(i-1) & f(i) & f(i+1) & \dots & f(j-1) & f(j) & f(j+1) & \dots & f(n) \end{pmatrix}$$

We then notice that the first and fifth parts (with domain i < p and i > q respectively) are irrelevant to whether $\sigma \cdot T$ is a random recursive tree. It remains to find necessary and sufficient conditions for the second third and fourth parts such that $\sigma \cdot T \in \mathcal{T}_n$.

Proof. [of Lemma 2.3]

Case 1 (i < p). If T is a RRT then f(i) < p so $\sigma(i) = i$ and $\sigma(f(i)) = f(i)$. Hence, if T is a RRT, $\sigma(i) = i < f(i) = \sigma(f(i))$.

Case 2 (i = p). If T is a RRT then f(p) < p so $\sigma(f(p)) = f(p)$. Therefore, if T is a random recursive tree $\sigma(p) = q > p > f(p) = \sigma(f(p))$.

Case 3 (p < i < q). Since $i \neq p$ and $i \neq q$, $\sigma(i) = i$. Also note that if T is a RRT f(i) < i < q.

If f(i) = p then $\sigma(f(i)) = q > i = \sigma(i)$ hence T is not a RRT.

Case 4 (i = q). If f(q) = p then clearly $\sigma \cdot T$ is not an RRT since it (p, q) flips the edge (pq). If T is a RRT and f(q) > p then $\sigma(f(q)) = f(q)$, therefore $\sigma(q) = p < f(q) = \sigma(f(q))$ so $\sigma \cdot T \notin \mathcal{T}_n$.

Case 5 (i > q). Since $i \neq p$ and $i \neq q$ it is the case that $\sigma(i) = i$ hence

$$\sigma(f(i)) = \begin{cases} f(i) & \text{if } f(i) \neq p, q \\ p & \text{if } f(i) = q \\ q & \text{if } f(i) = p \end{cases}$$

Since f(i), p, q < i it is always the case that $\sigma(i) < \sigma(f(i))$.

For a fixed $\sigma \in S_n$, we write $P_n(\sigma) = \sum_{T \in T_n} I(\sigma, T)$.

Lemma 2.4.
$$P_n(p,q) = \frac{(i-1)^2}{(j-1)(j-2)}$$

Proof. Note that we can think of $P_n(p,q)$ as the number of trees $T \in \mathcal{T}_n$ such that $(p,q) \cdot T \in \mathcal{T}_n$. By Lemma 2.3, $\sigma = (p,q) \cdot T \in \mathcal{T}_n$ if and only if p is a leaf in T_q and f(q) < p so $P_n(p,q)$ is the number of trees $T \in \mathcal{T}_n$ such that p is a leaf in T_q and f(q) < p.

For every $T \in \mathcal{T}_n$ the associated function f can be split up into 5 parts as described in Remark 2, in particular the following matrix shows the number of possible values of f(i) such that $\sigma \cdot T \in \mathcal{T}_n$ given each i:

$$f = \begin{pmatrix} 1 & 2 & 3 & \dots & i & i+1 & \dots & j-1 & j & j+1 & \dots & n \\ 1 & 1 & 2 & \dots & i-1 & i-1 & \dots & j-2 & i-1 & j & \dots & n-1 \end{pmatrix}$$

Therefore,

$$P_n(p,q) = \frac{(p-1)^2}{(q-1)(q-2)}(n-1)!$$