Supplementary document for "Protein Complexes Identification with FWER Control"

Zengyou He*(Corresponding Author)
School of Software,
Dalian University of Technology, Dalian, China.
Key Laboratory for Ubiquitous Network and Service Software of
Liaoning Province, Dalian, China.
*Email: zyhe@dlut.edu.cn

Can Zhao
School of Software,
Dalian University of Technology, Dalian, China.
Email: can.zhao1114@hotmail.com

Hao Liang School of Software, Dalian University of Technology, Dalian, China. Email: 18642883268@163.com

Quan Zou*(Corresponding Author)
School of Computer Science and Technology,
Tianjin University, Tianjin, China.
*Email: zouquan@nclab.net

1 The calculation of p-value when the vertex belongs to the subgraph

Let G = (V, E) be an undirected graph with a set of vertices V and a set of edges E. For a given subgraph S, if one vertex $i \in S$ has k_i^{in} neighbors in subgraph $S \setminus \{i\}$ and has k_i^{out} neighbors in $G \setminus \{S\}$, then $k_i = k_i^{in} + k_i^{out}$ is the degree of vertex i. In addition, D_S is used to denote the degree of subgraph S, $D_{\hat{S}}$ is used to represent the total degree of the rest of vertices in $G \setminus \{S\}$, and D is the total degree of all the vertices in G.

When the vertex i is included in subgraph S, we consider the subgraph that excludes $i, S \setminus \{i\}$, as the current subgraph. Hence the vertices in G can be divided into two groups: $S \setminus \{i\}$ and $G \setminus \{S\}$, and we introduce two binary variables C(u, S) and B(i, u) whose definitions are the same as that in the main manuscript. That is, C(u, S) = 1 if vertex u is included in the subgraph $S \setminus \{i\}$ and C(u, S) = 0 if $u \in G \setminus \{S\}$, and B(i, u) = 1 if vertex i has an edge with vertex u and B(i, u) = 0 otherwise. Therefore, when the vertex i belongs to the given subgraph S, we can construct the following contingency table as shown in Table 1.

Table 1: The contingency table for a vertex (protein) i when it is included in the given subgraph S.

	B(i,u)=1	B(i, u) = 0	Row totals
C(u, S) = 1 C(u, S) = 0 Col totals	$k_i^{in} \ k_i^{out} \ k_i$	$D_S - k_i - k_i^{in}$ $D_{\hat{S}} + k_i - k_i^{out}$ $D - 2k_i$	$D_S - k_i D_{\hat{S}} + k_i D - k_i$

2 Family-Wise Error Rate (FWER) and False Discovery Rate (F-DR)

FWER and FDR are widely used for measuring the rate of type I errors in multiple hypothesis testing. FWER is the probability of making one or more type I error when performing multiple hypotheses tests. FDR is defined as the expected proportion of false "discoveries". Suppose that there are m null hypotheses, denoted by H_1, H_2, \dots, H_m , and p_1, p_2, \dots, p_m represent their corresponding p-values. We sort these p-values in ascending order, which are denoted by $p_{(1)}, p_{(2)}, \dots, p_{(m)}$. In each hypothesis test, we will either accept the alternative hypothesis or retain the null hypothesis. Summing up the outcomes from m hypothesis tests will yield the following information in Table 2. In this table, m_0 is the number of true null hypotheses, R is the number of rejected hypotheses, V is the number of Type I errors (false positives) and T is the number of Type II errors (false negatives).

Table 2: The contingency table for m hypothesis tests.

	<u> </u>		
	# true null hypotheses	# false null hypotheses	Total
# Significant	V	R-V	R
# Non-significant	$m_0 - V$	T	m-R
Total	m_0	$m-m_0$	m

The definition of FWER is given in the following formula:

$$FWER = Pr(V \ge 1). \tag{1}$$

Thus, by making FWER $\leq \alpha$, the probability of making at least one type I error in m hypothesis tests is controlled at the significance level α . The Bonferroni procedure is a popular strategy to control the FWER, in which we will reject a null hypothesis H_i if $p_i \leq \alpha/m$.

FDR is defined as follows:

$$FDR = E\left[\frac{V}{R}|R>0\right] \cdot \Pr(R>0). \tag{2}$$

The Benjamini-Hochberg procedure (BH step-up procedure) is widely used for controlling the FDR at the significance level α . It works as follows: (1) find the largest k such that $p_{(k)} \leq \frac{k}{m}\alpha$; (2) reject each $H_{(i)}$, where $i = 1, \dots, k$.

3 Supplementary experimental results

In the main manuscript, we adopt the overlap score to judge whether a set A is matched to a set B. The overlap score between two complexes A and B is defined as follows [2]:

$$w(A,B) = \frac{|A \cap B|^2}{|A||B|}.$$
 (3)

3.1 The performance comparison of the complex size distribution

We compare the protein complexes predicted by each method based on the following summary statistics: the size of protein complexes (minimal size, maximal size, average size), the overlap among identified complexes (the average degree of vertices in a protein complex and the average number of complexes that non-background vertices belong to), the number of background vertices found. More precisely, the detailed results are presented in Table 3, where $|C|_{min}$, $|C|_{max}$ and $|\bar{C}|$ denote the minimal size, maximal size and average size of predicted complexes, respectively. In addition, $|\bar{D}|_{com}$ denotes the average degree of the vertices in a protein complex, and $|\bar{D}|_{bkg}$ is the average degree of the background vertices. $n_{\bar{C}}$ is the average number of complexes to which non-background vertices belong, and P_{bkg} is the proportion of background vertices.

We could observe that the average degree of the vertices in a protein complex $|\bar{D}|_{com}$ is higher than the average degree of the background vertices $|\bar{D}|_{bkg}$, which means that the true protein complex is more dense than the background vertices. The P_{bkg} value of SSF is larger than that of other methods, which indicates that SSF could filter more background vertices than other three methods.

Table 3: The comparison of complex size distribution of different methods.

	Algorithm	Predicted	$ C _{min}$	$ C _{max}$	$ \bar{C} $	$ \bar{D} _{com}$	$ \bar{D} _{bkg}$	$\bar{n_C}$	P_{bkg}
Collins	$_{ m MCL}^{ m SSF}$	127 158	3 3	113 158	$9.9448 \\ 8.5063$	$7.3046 \\ 5.2027$	$\begin{array}{c} 1.7600 \\ 1.1727 \end{array}$	1.1684 1	$0.3335 \\ 0.1714$
	ClusterOne MDS	203 333	3 3	103 102	$7.4400 \\ 24.3934$	5.7200 17.0378	4.2900 1	1.1686 5.8355	0.2028 0.1418
~ ·	$\begin{array}{c} \mathrm{SSF} \\ \mathrm{MCL} \end{array}$	$\frac{167}{220}$	3	63 75	8.3053 7.5682	7.2888 5.4688	2.9300 3.6053	1.1195 1	$0.3321 \\ 0.1024$
Gavin	ClusterOne MDS	294 586	3	40 50	6.9300 11.3703	5.5300 10.0080	5.9300 1	1.2555 3.6833	$0.1245 \\ 0.0248$
KroganC	SSF MCL ClusterOne MDS	91 374 242 1671	3 3 3 3	38 46 23 27	7.1868 5.8930 5.2400 6.0934	7.0966 4.3231 4.9000 17.1273	3.7800 3.5020 4.5800 1	1.0365 1 1.1806 3.8833	0.7670 0.1861 0.6034 0.0318
KroganE	SSF MCL ClusterOne MDS	77 515 239 2776	3 3 3 3	40 48 29 31	8.7700 6.0816 5.5700 7.3246	11.5918 6.7434 6.8990 37.6049	6.2300 8.7074 7.0400 1	1.0696 1 1.1948 5.5646	0.8279 0.1471 0.6966 0.0049
BioGRID	SSF MCL ClusterOne MDS	128 91 473 3759	3 3 3 3	219 4404 87 101	21.3280 59.8352 7.5700 29.7574	31.2200 13.5251 16.8600 317.5739	11.2000 15.6256 17.9700 NA	1.3324 1 1.3872 19.8330	0.6367 0.0346 0.5426 0.0000

3.2 The analysis of predicted complexes which are not detected by SSF

We analyze those complexes that are not detected by SSF but found by other methods. ClusterONE\SSF denotes the set of complexes that are reported by ClusterONE but are not detected by SSF and not included in gold standard reference set(CYC2008,MIPS and SGD). Similarly, MDS\SSF (MCL\SSF) denotes the difference set between MDS (MCL) and SSF. The result is shown in Table 4 in which Num denotes the size of difference set of complexes and P_o is the fraction of complexes in the difference set which are detected by other three methods. We could observe that the value of P_o has a negative correlation with the value of Num. In other words, the larger the size of difference set is, the smaller P_o is. This means that other methods may report more additional valid complexes that are not contained in the reference sets at the cost of generating more false positives.

Table 4: The analysis of complexes that are not detected by SSF but found by other methods.

	Collins		Gavin		KroganC		KroganE		BioGRID	
	Num	P_o	Num	P_o	Num	P_o	Num	P_o	Num	P_o
ClusterONE\SSF	48	41.7%	115	40.9%	102	73.5%	121	57.0%	272	9.9%
MDS\SSF	46	50.0%	171	36.3%	1151	10.3%	2093	5.1%	2461	1.2%
MCL\SSF	31	58.1%	72	54.2%	250	28.4%	419	16.2%	179	14.0%

3.3 The performance comparison of SSF, MCL, ClusterONE and MDS when MIPS and SGD are used as the reference set

Table 5: The performance comparison of SSF, MCL, ClusterONE and MDS when MIPS is used as the reference

set.											
	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF MCL ClusterONE MDS SSF MCL	82 88 89 82 69	127 158 203 333 167 220	0.3168 0.3161 0.2854 0.1350 0.2510 0.1836	0.5362 0.5490 0.5421 0.5609 0.5005 0.5089	0.6891 0.7395 0.7479 0.6891 0.6000 0.6000	0.3440 0.3596 0.3963 0.3654 0.3020 0.2720	1.5693 1.6481 1.6863 1.6154 1.4025 1.3809	0.4803 0.3987 0.3596 0.4384 0.3114 0.2273	0.6891 0.7395 0.7479 0.6891 0.6000 0.6000	0.5661 0.5181 0.4857 0.5359 0.4100 0.3297
Gavin	ClusterONE MDS	74 74	294 586	0.1830 0.1542 0.0865	0.3089 0.4944 0.4800	0.6435 0.6435	0.2720 0.3115 0.3003	1.4494 1.4238	0.2243 0.2041 0.2321	0.6435 0.6435	0.3297 0.3099 0.3411
KroganC	SSF MCL ClusterONE MDS	56 74 67 92	91 374 242 1671	0.1707 0.1048 0.1919 0.0997	0.3986 0.4337 0.3919 0.4505	$\begin{array}{c} 0.4118 \\ 0.5441 \\ 0.4926 \\ 0.6765 \end{array}$	0.1769 0.2291 0.2406 0.3571	0.9873 1.2069 1.1251 1.4841	0.3956 0.1471 0.2438 0.1855	0.4118 0.5441 0.4926 0.6765	0.4035 0.2315 0.3262 0.2912
KroganE	SSF MCL ClusterONE MDS	55 61 60 89	77 515 239 2776	0.1517 0.0405 0.1728 0.0711	0.3763 0.3778 0.3777 0.4082	0.3503 0.3885 0.3822 0.5669	0.1373 0.1512 0.1873 0.2823	0.8639 0.9175 0.9472 1.2574	0.4675 0.0893 0.2427 0.1549	0.3503 0.3885 0.3822 0.5669	0.4005 0.1452 0.2969 0.2433
BioGRID	SSF MCL ClusterONE MDS	59 7 88 89	128 91 473 3759	0.1124 0.0171 0.0954 0.0159	0.4456 0.2442 0.4401 0.5002	0.3122 0.0370 0.4656 0.4709	0.1083 0.0138 0.1864 0.1952	0.8660 0.2950 1.0921 1.1663	0.3516 0.0659 0.1734 0.2370	0.3122 0.0370 0.4656 0.4709	0.3307 0.0474 0.2527 0.3153

 $\label{thm:comparison} \mbox{Table 6: The performance comparison of SSF, MCL, ClusterONE and MDS when SGD is used as the reference$

set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF MCL ClusterONE MDS	99 106 108 102	127 158 203 333	0.4017 0.3670 0.3598 0.1042	0.6849 0.7066 0.7228 0.6488	0.7388 0.7910 0.8060 0.7612	0.4303 0.4580 0.5254 0.4739	1.8540 1.9556 2.0542 1.8839	$\begin{array}{c} 0.5827 \\ 0.5127 \\ 0.4532 \\ 0.3423 \end{array}$	0.7388 0.7910 0.8060 0.7612	0.6515 0.6221 0.5802 0.4723
Gavin	SSF	83	167	0.3028	0.7006	0.6484	0.3837	1.7327	0.4012	0.6484	0.4957
	MCL	85	220	0.2364	0.7117	0.6641	0.3383	1.7141	0.2955	0.6641	0.4090
	ClusterONE	93	294	0.1975	0.6930	0.7266	0.3953	1.8149	0.2653	0.7266	0.3887
	MDS	93	586	0.1108	0.6464	0.7266	0.3704	1.7434	0.3038	0.7266	0.4284
KroganC	SSF MCL ClusterONE MDS	75 99 93 129	91 374 242 1671	0.3144 0.1615 0.3210 0.1179	0.5382 0.6181 0.5776 0.5840	0.4545 0.6000 0.5636 0.7818	0.2527 0.3102 0.3486 0.4567	1.2455 1.5283 1.4898 1.8225	$\begin{array}{c} 0.6374 \\ 0.2299 \\ 0.3884 \\ 0.2053 \end{array}$	0.4545 0.6000 0.5636 0.7818	0.5306 0.3325 0.4599 0.3252
KroganE	SSF	70	77	0.2882	0.5152	0.3743	0.2133	1.1029	0.7273	0.3743	0.4943
	MCL	74	515	0.0742	0.5441	0.3957	0.1884	1.1282	0.1243	0.3957	0.1891
	ClusterONE	80	239	0.2770	0.5319	0.4278	0.2472	1.2069	0.3682	0.4278	0.3958
	MDS	119	2776	0.0824	0.5484	0.6364	0.3530	1.5378	0.1726	0.6364	0.2715
BioGRID	SSF	76	128	0.1498	0.5239	0.3262	0.1421	0.9922	0.4766	0.3262	0.3873
	MCL	7	91	0.0171	0.2442	0.0370	0.0138	0.2950	0.0659	0.0370	0.0474
	ClusterONE	131	473	0.1633	0.6279	0.5622	0.2713	1.4614	0.2770	0.5622	0.3711
	MDS	129	3759	0.0125	0.4835	0.5536	0.2345	1.2716	0.0944	0.5536	0.1614

3.4 The performance comparison of SSF, ESSC and OSLOM

To further verify the performance of SSF, we carry out some additional experiments where ESSC and OSLOM are selected as the baseline algorithms. The details of comparison results are shown in Supplementary Table 6 - Table 8. In general, there are no algorithms that can always achieve the best performance over all assessment measures. Furthermore, we can observe that SSF could achieve better performance in most cases in terms of NMI. As to composite value and F1 score, we could not get an unified conclusion to claim which algorithm is better than others. Overall, SSF is competitive with the-state-of-art methods in the detection of statistically significant subgraphs.

Table 7: The performance comparison of SSF, ESSC and OSLOM when CYC2008 is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF ESSC OSLOM	111 111 111	127 165 402	0.5122 0.3805 0.3805	0.7448 0.6938 0.7729	0.7708 0.7708 0.7708	0.4729 0.5125 0.4976	1.9885 1.9771 2.0413	0.6929 0.6667 0.2363	0.7708 0.7708 0.7708	0.7298 0.7150 0.3617
Gavin	SSF ESSC OSLOM	97 100 81	167 234 192	0.3731 0.2476 0.2504	0.7069 0.6754 0.7351	0.7029 0.7246 0.5870	$0.4155 \\ 0.4508 \\ 0.3073$	1.8253 1.8508 1.6294	0.4731 0.5171 0.3385	0.7029 0.7246 0.5870	0.5655 0.6035 0.4294
KroganC	SSF ESSC OSLOM	84 77 58	91 99 231	0.3822 0.4572 0.1107	0.6364 0.6169 0.6738	0.5122 0.4695 0.3537	0.3057 0.3135 0.1667	1.4543 1.3999 1.1942	0.7582 0.7778 0.2294	0.5122 0.4695 0.3537	0.6114 0.5856 0.2783
KroganE	SSF ESSC OSLOM	75 60 32	77 66 109	0.3519 0.3165 0.0400	0.6150 0.5214 0.5847	0.4144 0.3315 0.1768	0.2434 0.1899 0.0625	1.2727 1.0428 0.8240	0.8182 0.8636 0.2844	0.4144 0.3315 0.1768	0.5501 0.4791 0.2180
BioGRID	SSF ESSC OSLOM	80 50 55	128 80 151	0.1730 0.0928 0.0625	0.5887 0.5031 0.6505	0.3390 0.2119 0.2331	0.1584 0.1060 0.0980	1.0860 0.8210 0.9816	0.4844 0.5000 0.3245	0.3390 0.2119 0.2331	0.3988 0.2976 0.2713

Table 8: The performance comparison of SSF, ESSC and OSLOM when MIPS is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF ESSC OSLOM	82 82 77	127 165 402	0.3168 0.2378 0.2311	0.5362 0.5089 0.5426	0.6891 0.6891 0.6471	0.3440 0.3736 0.3268	1.5693 1.5716 1.5165	0.4803 0.4909 0.1493	$0.6891 \\ 0.6891 \\ 0.6471$	0.5661 0.5734 0.2426
Gavin	SSF ESSC OSLOM	69 76 61	167 234 192	0.2510 0.1645 0.1531	$0.5005 \\ 0.4745 \\ 0.5003$	0.6000 0.6609 0.5304	0.3020 0.3365 0.2289	1.4025 1.4719 1.2596	0.3114 0.3462 0.2344	0.6000 0.6609 0.5304	0.4100 0.4543 0.3251
KroganC	SSF ESSC OSLOM	56 57 27	91 99 231	0.1707 0.2116 0.0472	0.3986 0.4051 0.4054	0.4118 0.4191 0.1985	0.1769 0.1949 0.0848	0.9873 1.0191 0.6887	0.3956 0.4444 0.1169	0.4118 0.4191 0.1985	0.4035 0.4314 0.1471
KroganE	SSF ESSC OSLOM	55 46 17	77 66 109	0.1517 0.1391 0.0160	0.3763 0.3578 0.3463	0.3503 0.2930 0.1083	0.1373 0.1154 0.0322	0.8639 0.7662 0.4868	0.4675 0.5455 0.1193	0.3503 0.2930 0.1083	0.4005 0.3812 0.1135
BioGRID	SSF ESSC OSLOM	59 35 39	128 80 151	0.1124 0.0504 0.0352	0.4456 0.4213 0.4429	0.3122 0.1852 0.2063	0.1083 0.0600 0.0657	0.8660 0.6665 0.7149	0.3516 0.3625 0.1987	0.3122 0.1852 0.2063	0.3307 0.2451 0.2024

Table 9: The performance comparison of SSF, ESSC and OSLOM when SGD is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF ESSC OSLOM	99 97 100	127 165 402	0.4017 0.3156 0.2879	0.6849 0.6305 0.7164	0.7388 0.7239 0.7463	0.4303 0.4894 0.4518	1.8540 1.8438 1.9145	0.5827 0.5939 0.2164	0.7388 0.7239 0.7463	0.6515 0.6525 0.3355
Gavin	SSF ESSC OSLOM	83 89 72	167 234 192	0.3028 0.2127 0.1744	0.7006 0.6392 0.6853	0.6484 0.6953 0.5625	0.3837 0.4351 0.2685	1.7327 1.7696 1.5163	0.4012 0.4444 0.2917	0.6484 0.6953 0.5625	0.4957 0.5423 0.3841
KroganC	SSF ESSC OSLOM	75 73 51	91 99 231	0.3144 0.3802 0.0815	0.5382 0.5386 0.5568	0.4545 0.4424 0.3091	0.2527 0.2780 0.1462	1.2455 1.2590 1.0121	0.6374 0.7071 0.1991	0.4545 0.4424 0.3091	0.5306 0.5443 0.2422
KroganE	SSF ESSC OSLOM	70 59 28	77 66 108	0.2882 0.2582 0.0212	0.5152 0.4384 0.4640	0.3743 0.3155 0.1497	0.2133 0.1658 0.0503	1.1029 0.9197 0.6640	0.7273 0.7727 0.2477	0.3743 0.3155 0.1497	0.4943 0.4481 0.1866
BioGRID	SSF ESSC OSLOM	76 47 42	128 80 151	0.1498 0.0953 0.0429	0.5239 0.4673 0.5647	0.3262 0.2017 0.1803	0.1421 0.0936 0.0724	0.9922 0.7626 0.8174	0.4766 0.4625 0.2517	0.3262 0.2017 0.1803	0.3873 0.2809 0.2101

3.5 The performance comparison on BioPlex 2.0

To test the performance of different algorithms on large-scale PPI network, we choose BioPlex $2.0^{[3]}$ in our experiment. Firstly, we compare different methods with respect to the size distribution of predicted complexes in Table 10, where $|C|_{min}$, $|C|_{max}$ and $|\bar{C}|$ denote the minimal size, maximal size and average size of predicted complexes, respectively. In addition, $|\bar{D}|_{com}$ denotes the average degree of the vertices in a protein complex, and $|\bar{D}|_{bkg}$ is the average degree of the background vertices. \bar{n}_C is the average number of complexes to which non-background vertices belong, and P_{bkg} is the proportion of background vertices. We could observe that SSF reports the least number of protein complexes, which indicates that our method is conservative. Meanwhile, the average size of protein complexes of SSF is much larger than that of other methods.

Since BioPlex 2.0 is the largest human PPI network so far, we may find many novel valid protein complexes that are still not contained in the current reference sets. Anyway, to compare the performance of different methods with some widely used performance indicators such as NMI, we use the Corum database as the reference set. Obviously, such a comparison may not fully reflect the merits of different methods due to the incompleteness of reference set, it at least can reveal some underlying features of different algorithms to some extend. As shown in Table 11, SSF can achieve the highest precision and F1-score on BioPlex 2.0. Meanwhile, it is the second best performer with respect to NMI.

Table 10: The comparison on the complex size distribution of different methods on BioPlex 2.0

	Predicted	$ C _{min}$	$ C _{max}$	$ \bar{C} $	$ \bar{D} _{com}$	$ \bar{D} _{bkg}$	P_{bkg}	n_C^-
SSF	391	3	279	16.8747	16.5339	6.5987	0.6641	1.8047
MCL	1332	3	300	6.4752	8.4786	12.7586	0.2075	1
ClusterONE	785	3	47	5.4803	9.3446	9.9765	0.6808	1.2383
MDS	8147	3	38	6.2270	47.8120	1.0	0.0040	4.6804

Table 11: The performance comparison of different algorithms on BioPlex 2.0 when using Corum as the reference

set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
•	SSF	23	391	0.0137	0.4476	0.1494	0.0687	0.6657	0.0639	0.1494	0.0895
	MCL	33	1332	0.0136	0.5209	0.2143	0.1010	0.8362	0.0248	0.2143	0.0444
	ClusterONE	33	785	0.0212	0.4695	0.2143	0.1018	0.7856	0.0484	0.2143	0.0790
	MDS	50	8147	0.0032	0.4780	0.3247	0.1360	0.9387	0.0228	0.3247	0.0427

3.6 FWER vs. FDR

Figure 1: The performance comparison of two variants of SSF that are equipped with FWER and FDR. Here MIPS is used as the reference set.

Figure 2: The performance comparison of two variants of SSF that are equipped with FWER and FDR. Here SGD is used as the reference set.

Figure 3: The performance comparison of two variants of SSF that are equipped with FWER and FDR, where a binomial distribution is used to calculate the p-values and CYC2008 is used as the reference set.

Figure 4: The performance comparison of two variants of SSF that are equipped with FWER and FDR, where a binomial distribution is used to calculate the p-values and MIPS is used as the reference set.

Figure 5: The performance comparison of two variants of SSF that are equipped with FWER and FDR, where a binomial distribution is used to calculate the p-values and SGD is used as the reference set.

3.7 Hypergeometric distribution vs. Binomial distribution

In order to test the effect of using different p-value calculation methods, we compare the identification performance between our method based on Fisher's exact test and the method based on binomial distribution in ESSC. The detailed results are presented in Supplementary Fig. 6 – Supplementary Fig. 8, where CYC2008, MIPS and SGD are used as the reference set, respectively. In these figures, we adopt hypergeometric distribution (Fisher) and binomial distribution (Binomial) as the probability density function to calculate the p-value. We can observe that SSF equipped with hypergeometric distribution could achieve better performance in most cases. This indicates that the proposed p-value calculation method in this paper is more plausible in the context of protein complexes identification.

Figure 6: The performance comparison between two p-value calculation methods that are based on hypergeometric distribution and binomial distribution when CYC2008 is used as the reference set.

Figure 7: The performance comparison between two p-value calculation methods that are based on hypergeometric distribution and binomial distribution when MIPS is used as the reference set.

Figure 8: The performance comparison between two p-value calculation methods that are based on hypergeometric distribution and binomial distribution when SGD is used as the reference set.

3.8 Parameter sensitivity

Figure 9: The effect of significance level α on the identification performance of SSF when MIPS is used as the reference set.

Figure 10: The effect of significance level α on the identification performance of SSF when SGD is used as the reference set.

In order to show that identification result is stable with respect to α in most data sets in a quantitative manner, we compute some statistics in Table 12, Table 13, and Table 14. In these tables, μ , D, σ , R respectively stands for the mean, the variance, the standard deviation, and the range of the measures when α ranges from 0.01 to 0.1. We can find that the variance, the standard deviation and the range is relatively small (compared to the mean) in most cases, which indicates that α has no significant effect on the identification result within [0.01,0.1].

Table 12: The stability of the identication performance of SSF with respect to α when CYC2008 is used as the reference set.

	Measures	μ	D	σ	R
Collins	NMI Composite F1 score	0.4966 1.9722 0.7186	$0.0004 \\ 0.0001 \\ 0.0000$	0.0199 0.0115 0.0065	0.0659 0.0344 0.0192
Gavin	NMI Composite F1 score	0.3446 1.7954 0.5428	0.0009 0.0004 0.0008	0.0307 0.0194 0.0289	0.1056 0.0588 0.1005
KroganC	NMI Composite F1 score	$\begin{array}{c} 0.4190 \\ 1.5425 \\ 0.6272 \end{array}$	0.0017 0.0177 0.0006	0.0408 0.1329 0.0245	0.1267 0.4434 0.0905
KrogenE	NMI Composite F1 score	0.3361 1.2638 0.5306	0.0003 0.0075 0.0009	0.0163 0.0865 0.0304	0.0587 0.3076 0.1064
BioGRID	NMI Composite F1 score	0.1406 1.0480 0.0368	0.0015 0.0008 0.0014	0.0393 0.0281 0.0368	0.1216 0.0811 0.0982

Table 13: The stability of the identication performance of SSF with respect to α when MIPS is used as the reference set.

	Measures	μ	D	σ	R
Collins	NMI Composite F1 score	$\begin{array}{c} 0.3100 \\ 1.5601 \\ 0.5617 \end{array}$	$0.0000 \\ 0.0001 \\ 0.0000$	0.0063 0.0081 0.0069	0.0226 0.0297 0.0236
Gavin	NMI Composite F1 score	0.2395 1.4076 0.4063	0.0002 0.0007 0.0002	0.0152 0.0261 0.0156	0.0525 0.0965 0.0577
KroganC	NMI Composite F1 score	0.1842 1.0561 0.4158	0.0002 0.0062 0.0001	0.0148 0.0785 0.0100	0.0489 0.2528 0.0347
KrogenE	NMI Composite F1 score	0.1526 0.8891 0.2947	0.0002 0.0042 0.0011	0.0131 0.0651 0.0330	0.0486 0.2254 0.0985
BioGRID	NMI Composite F1 score	0.0913 0.8520 0.2947	$0.0008 \\ 0.0003 \\ 0.0011$	0.0277 0.0164 0.0330	0.0914 0.0541 0.0985

Table 14: The stability of the identication performance of SSF with respect to α when SGD is used as the reference set.

	Measures	μ	D	σ	R
Collins	NMI Composite F1 score	0.3877 1.8289 0.6416	$0.0004 \\ 0.0004 \\ 0.0002$	0.0203 0.0207 0.0122	0.0698 0.0641 0.0414
Gavin	NMI Composite F1 score	0.2851 1.7116 0.4780	0.0005 0.0008 0.0006	0.0214 0.0277 0.0247	0.0741 0.0870 0.0862
KroganC	NMI Composite F1 score	$0.3406 \\ 1.3418 \\ 0.5474$	0.0007 0.0126 0.0002	0.0267 0.1122 0.0132	0.0835 0.3738 0.0471
KrogenE	NMI Composite F1 score	$\begin{array}{c} 0.2664 \\ 1.0945 \\ 0.4702 \end{array}$	$0.0001 \\ 0.0057 \\ 0.0007$	0.0122 0.0758 0.0261	0.0495 0.2862 0.1000
BioGRID	NMI Composite F1 score	0.1301 0.9610 0.3366	0.0013 0.0011 0.0020	0.0364 0.0331 0.0442	0.1199 0.0967 0.1321

References

- [1] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), pages 289–300, 1995.
- [2] Gary D Bader and Christopher WV Hogue. An automated method for finding molecular complexes in large protein interaction networks. $BMC\ bioinformatics,\ 4(1):2,\ 2003.$
- [3] Edward L Huttlin, Raphael J Bruckner, Joao A Paulo, Joe R Cannon, Lily Ting, Kurt Baltier, Greg Colby, Fana Gebreab, Melanie P Gygi, Hannah Parzen, et al. Architecture of the human interactome defines protein communities and disease networks. Nature, 545(7655):505-509, 2017.
- [4] Pierre C Havugimana, G Traver Hart, Tamás Nepusz, Haixuan Yang, Andrei L Turinsky, Zhihua Li, Peggy I Wang, Daniel R Boutz, Vincent Fong, Sadhna Phanse, et al. A census of human soluble protein complexes. Cell, 150(5):1068–1081, 2012.