Conceptual Design for a Regional Jet Aircraft

Group 1: Avish (Ave) Madhow, Stephen Cao, Aryaa Desai, YiChen You, Amelia Samuel, Chris Ziyi Yao

DESIGN SPECIFICATION

S1 Weight

Fractions

0.970

0.985

0.986

0.980

0.995

S2 Weight

Fractions

0.970

0.985

0.975

0.980

0.995

DESIGN CONSTRAINTS

- 90 passengers and baggage.
- 2 pilots and 3 cabin crew.
- 30 minute turnaround at each location with powerplant idling: no refuelling.
- Diversion and 45 minute loiter at 5000 ft
- Absolute ceiling: 40,000 ft
- Maximum speed of Mach 0.75
 - Compliant with FAR-25 regulations.

BASELINE CONFIGURATION

LOW WING

- Easy cabin access.
- Shortened take-off distance due to enhanced ground effect and softer touchdown.
- Reduced impact of downwash from wings on horizontal stabiliser.

UNDERWING ENGINES

- High bypass turbofan engines.
- Minimise interference drag.
- Easy to service: minimal extra equipment required and faster turnaround.

TRICYCLE UNDERCARRIAGE

Front wheel enables steering and prevents tipping in the event of harsh braking.

Description

Taxi +

Take-off

Climb +

Accelerate

Cruise

Descent

Landing +

Taxi

• Stored underwing for better aerodynamics.

CONVENTIONAL TAIL

- Lightweight: no additional reinforcement needed.
- Good indication when stall is near: violently vibrates when approaching stall.

HIGH LIFT DEVICES

Fowler flaps:

- Increase $C_{L_{max}}$
- Easily maintained
- Reliable activation mechanism

Slats:

• Increase $C_{L_{max}}$

INITIAL SIZING

S3 Weight

Fractions

0.970

0.985

0.985

0.980

0.995

Journey Segments	Weight Fractions				
S1: Wellington – Christchurch	0.918				
S2: Christchurch – Hamilton	0.834				
S3: Hamilton – Wellington	0.767				
D: Hamilton – Wellington (including diversion)	0.734				

Fuel: 27% Crew and Passengers: 15% Payload: 7% **Empty: 51%**

Figure 1: Weight Fractions

•									
Description (Diversion)	Weight Fractions								
Missed Approach	0.985								
Cruise	0.987								
Loiter	0.985								
Descent	0.980								
Landing + Taxi	0.995								

 \blacktriangleright Initial guesses of AR=8, $S_{wet}/S_{ref}=5.5$ and e=0.8 were made.

$$\left(\frac{L}{D}\right)_{max} \text{ and } C_{D_o} \text{ calculated using } \left(\frac{L}{D}\right)_{max} = \frac{1}{2} \sqrt{\frac{\pi ARe}{C_{D_o}}} = K_{LD} \sqrt{\frac{AR}{\frac{S_{wet}}{S_{ref}}}} . [4]$$

- > Weight fractions for specific flight segments make use of [4]:
 - Specific Fuel Consumption: $c_{cruise} = 1.38 * 10^{-4} s^{-1}$, $c_{loiter} = 1.11 * 10^{-4} s^{-1}$.
 - Range constraints: $\frac{W_i}{W_{i-1}} = e^{\frac{1}{V(\frac{L}{D})}_{cruise}}$
 - Endurance constraints: $\frac{W_i}{W_{i-1}} = e^{\frac{-EC}{\left(\frac{L}{D}\right)}_{max}}$.
- Fuel weight fraction: $\frac{W_f}{W_0} = 1.01 \left(1 \frac{W_n}{W_0}\right)$, where $\frac{W_n}{W_0} = \frac{W_i}{W_{i-1}} * ... \frac{W_1}{W_0}$.

 Fuel weight fraction: $\frac{W_e}{W_0} = AW_0^C$, where A = 0.97 and C = -0.06. [1]
- lterative equation based on initial W_0 guess : $W_0 = \frac{W_{crew} + W_{payload}}{1 (\frac{W_f}{W_0}) (\frac{W_e}{W_0})}$.

SIZING TO CONSTRAINT

FIELD PERFORMANCE: Empirical formulae shown below are used to calculate T/O & landing distances.

Figure 2: Final Constraint Diagram

Table 2:Design Process for Field Performance

Segment	Formula used [3]	Constraints	$oldsymbol{\mathcal{C}_{L_{max}}}$ and $oldsymbol{\mathcal{V}}\left[2 ight]$		
Take-off	$TOP = \frac{W/S}{(T/W)\sigma C_{L_{max_{TO}}}}$	$TOP_1 = 9576 \ N/m^2$ $TOP_2 = 13885 \ N/m^2$ $TOP_3 = 9097 \ N/m^2$	$C_{L_{max_{TO}}} = 2.1$ $V_{TO} = 1.1V_S$		
Landing / Approach	$ALD = \frac{0.51W/S}{\sigma C_{L_{max_L}}} K_R + S_a$	$ALD = \frac{3}{5} * LDA$	$C_{L_{max_L}} = 3.3$ $\Delta C_{L_{max_{HLD}}} = 1.7$ $V_A = 1.3V_S$		

Table 4: Final results at chosen design point

POINT PERFORMANCE: Using the Specific Excess Power [3] equation at ISA conditions, all point performances were determined except for absolute ceiling.

$$\left(\frac{T}{W}\right)_0 = \frac{\alpha}{\beta} \left(\frac{1}{V_{\infty}} \frac{dh}{dt} + \frac{1}{g} \frac{dV_{\infty}}{dt} + \frac{\frac{1}{2}\rho V_{\infty}^2 C_{D_0}}{\alpha \frac{W_0}{S_{c}}} + \frac{\alpha n^2 \frac{W_0}{S_{ref}}}{\frac{1}{2}\rho V_{\infty}^2 \pi A R e}\right) [3]$$

Table 3:Design Process for Point Performance

	Mission Segment	Reasoning and Parameters	Assumptions				
ıb	Take-off and Landing Climb	Take-off climb for twin-engines consists of 3 stages, subjected to minimum climb gradients, dh/dt, of 0%, 2.4% and 1.2% respectively.[5] Similarly, landing climb (AEO) and approach climb (OEI) require dh/dt of 3.2% and 2.1% respectively.[5]	 Instantaneous climb assumed such that the aircraft only operates at minimum climb gradient. Negligible ground effects. 				
s.	Cruise	Cruise 1 performed at 25,000 ft as per requirements. Cruise 2 and 3 performed at 36,000 ft from typical values of similar aircraft. $C_{L_{max}}$ (clean configuration) = 1.9	 Steady level flight. Cruise 1 performed at Mach 0.69. Cruise 2 & 3 performed at maximum speed of Mach 0.75 (to present the most constraining situation). 				
	Absolute Ceiling	Absolute ceiling is at 40,000 ft. Since $T = D_{min}$ at steady level flight, using: $\frac{T_0}{W} = \frac{T}{D_{min}} \frac{1}{1.439\sigma \left(\frac{L}{D}\right)_{max}},$ $\left(\frac{T}{W}\right)_0$ for maximum ceiling is calculated.	 Max ceiling is reached during Cruise 2 and 3. \$\left(\frac{L}{D}\right)_{max_{cruise}} = 0.866 \left(\frac{L}{D}\right)_{max}\$ Clean configuration for aircraft assumed. 				

FINAL RESULTS AT CHOSEN DESIGN POINT

IT	W_0/S_{ref}	S_{ref}	T_0/W_0	W_0	AR	e	S_{wet}/S_{ref}	C_{D_o}	W_e/W_0	W_f/W_0	$(\frac{L}{D})_{max}$	K _{LD}	MAX Range	MAX Endurance
	$4160 \ N/m^2$	$113.87 \ m^2$	0.246	48288 <i>kg</i>	8	0.8	5.007	0.0262	0.508	0.269	19.6	15.5	7570 <i>km</i>	9.06 <i>hrs</i>

- [1] Daniel P. Raymer. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics. 1992.
- [2] Dr. Jan Roskam. Airplane Design Part I: Preliminary sizing of airplanes. Roskam Aviation and Engineering Corporation. 1985. [3] Dr. Errikos Levis. Sizing to Constraints Lecture Notes. Department of Aeronautics, Imperial College London. 2022.
- [4] Dr. Robert Hewson. Initial Sizing Lecture Notes. Department of Aeronautics, Imperial College London. 2022.
- [5] Part 25 Airworthiness Standards: Transport Category Airplanes, Code of Federal Regulations. 2022