

Hierarchical clustering

Prof. Miquel Salicrú Prof. Sergi Civit

What is clustering?

A grouping of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Outliers

 Outliers are objects that do not belong to any cluster or form clusters of very small cardinality

 In some applications we are interested in discovering outliers, not clusters (outlier analysis)

Why do we cluster?

- Clustering : given a collection of data objects group them so that
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Clustering results are used
 - As a stand-alone tool to get insight into data distribution
 - Visualization of clusters may unveil important information
 - As a preprocessing step for other algorithms
 - Efficient indexing or compression often relies on clustering
 - Group representation in 2D or 3D graphic

Applications of clustering?

Marketing

- Identify patterns of behavior

Image Processing

- Cluster images based on their visual content

Web

- Cluster groups of users based on their access patterns on webpages
- Cluster webpages based on their content

Bioinformatics

 Cluster similar proteins together (similarity with respect to chemical structure and/or functionality etc)

Basic questions

- How many groups?
- What is a good partition of the objects?
- How many methods we have to perform Cluster analysis?
 - What clustering procedure? (hierarchical clustering methods)
 (agglomerative vs divisive) nonhierarchical clustering methods)
 - Aims and scope
 - What is the best method?
- Clustering results: "real groups" or artifact?
 - How to evaluate the performance of clustering algorithms?
 - Artificial groups?

Hierarchical Clustering

Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

• Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Agglomerative method: basic algorithm

- Compute the distance matrix between the input data points
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the distance matrix
- **6. Until** only a single cluster remains

Remark. Key operation is the computation of the distance between two clusters: different definitions of the distance between clusters lead to different algorithms

Algorithm-recursive process 1/2

Starting point:

- {P₁, P₂,..., P_s} be the set (objects, populations) to classify
- d_{ij}=d(P_i, P_i) distance between objects

Step1

- Identify the objects P_{io} , P_{jo} at minimum distance

$$I_1 = d(P_{io}, P_{jo}) = min_{i,j} \{d(P_i, P_j)\}$$

- Create the "clustering" at $\psi(l_1) = \{P_1,\, P_2, ...,\, P_{io} \cup \, P_{jo},,\, P_s\,\}$ level
- Define the distance $d^{(1)}$ at the classification level $\psi(\textbf{I}_1)$

$$d^{(1)}(P_i, P_i) = d^{(o)}(P_i, P_i)$$
 si $\{i, j\} \cap \{i0, j0\} = 0$

$$d^{(1)}(P_{io} \cup P_{jo}, P_k) = f(d(P_{io}, P_{jo}), d(P_{io}, P_k), d(P_{jo}, P_k))$$

Algorithm-recursive process 2/2

Step n

- Starting point: $\psi(I_{n-1})=\{A_1, A_2,..., A_{s-n+1}\}, d^{(n-1)}(A_i, A_i)$
- Identify the objects A_{io}, A_{io} nearest

$$I_n = d^{(n-1)}(A_{io}, A_{io}) = min_{i,j} \{d^{(n-1)}(A_i, A_j)\}$$

- Create the "clustering" at $\psi(I_n)$ ={A₁,...., A_{io} \cup A_{io},...., A_{s-n+1}} level
- Define the distance $d^{(n)}$ in the partition level $\psi(I_n)$

$$\begin{split} &d^{(n)}(A_{i},A_{j})=d^{(n-1)}(A_{i},A_{j}) \quad \text{si} \quad \{i,j\} \cap \{i0,j0\}=0 \\ &d^{(n)}(A_{io} \cup A_{io},A_{k})=f(d^{(n-1)}(A_{io},A_{io}),d^{(n-1)}(A_{io},A_{k}),d^{(n-1)}(A_{io},A_{k})) \end{split}$$

Ultrametric Distance

$$d_u(P_i, P_i) = \min\{I_\alpha/P_i, P_i \in A_h \subset \psi(I_\alpha)\}$$

Distance between Clusters 1/2

• Single link: smallest distance between an element in one cluster and an element in the other, i.e.,

$$dis(K_i, K_j) = min(t_{ip}, t_{jq})$$

• Complete link: largest distance between an element in one cluster and an element in the other, i.e.,

$$dis(K_i, K_j) = max(t_{ip}, t_{jq})$$

• Average: avg distance between an element in one cluster and an element in the other, i.e.,

$$dis(K_i, K_j) = avg(t_{ip}, t_{jq})$$

Distance between Clusters 2/2

• Centroid: distance between the centroids of two clusters, i.e.,

$$dis(K_i, K_i) = dis(C_i, C_i)$$

Medoid: distance between the medoids of two clusters, i.e.,

$$dis(K_i, K_i) = dis(M_i, M_i)$$

Medoid: one chosen, centrally located object in the cluster

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- No assumptions on the number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- Hierarchical clusterings may correspond to meaningful taxonomies
 - In biological sciences (e.g., phylogeny reconstruction, etc)
 - web (e.g., product catalogs)
 - etc

Input/Initial setting

 Start with clusters of individual points and a distance/proximity matrix __| p1 | p2 | p3 | p4 | p5 |...

- Each cluster is a set of points
- How do we define distance between two sets of points
 - Lots of alternatives
 - Not an easy task

- Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_i
- The distance is defined by the two most similar objects

$$D_{sl}(C_i, C_j) = \min_{x,y} \{ d(x, y) | x \in C_i, y \in C_j \}$$

Single-link clustering: example

• Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1	12	I 3	14	15
11	1.00 0.90 0.10 0.65 0.20	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Limitations of single-link clustering

Original Points

Two Clusters

- Sensitive to noise and outliers
- It produces long, elongated clusters

Distance between two clusters

- Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_i
- The distance is defined by the two most dissimilar objects

$$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Complete-link clustering: example

 Distance between clusters is determined by the two most distant points in the different clusters

	I 1	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Strengths of complete-link clustering

Original Points

Two Clusters

- More balanced clusters (with equal diameter)
- · Less susceptible to noise

Limitations of complete-link clustering

Original Points

Two Clusters

- Tends to break large clusters
- All clusters tend to have the same diameter small clusters are merged with larger ones

Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_i

$$D_{avg}(C_i, C_j) = \frac{1}{|C_i| \times |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$

Average-link clustering: example

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

	I 1	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Average-link clustering: discussion

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

 Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$

Distance between two clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ii}

$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{ij}} (x - r_{ij})^{2} - (\sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2})$$

- r_i: centroid of C_i
- r_i: centroid of C_i
- r_{ij}: centroid of C_{ij}

Ward's distance for clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of k-means
 - Can be used to initialize k-means

Divisive hierarchical clustering

- Start with a single cluster composed of all data points
- Split this into components
- · Continue recursively
- Monothetic divisive methods split clusters using one variable/dimension at a time
- Polythetic divisive methods make splits on the basis of all variables together
- Any intercluster distance measure can be used
- Computationally intensive, less widely used than agglomerative methods

Model-based clustering

- Assume data generated from k probability distributions
- Goal: find the distribution parameters
- Algorithm: Expectation Maximization (EM)
- Output: Distribution parameters and a soft assignment of points to clusters