Espaces de Hilbert

Quizz 5

1)	(Dimension finie)		
Vra	i 🗆 l	Faux □	\mathbb{R}^n est un espace de Hilbert.
Vra	i 🗆 l	Faux 🗆	Pour tout $\varepsilon > 0$, la quantité
			$\sum_{k=1}^{n} \varepsilon^k x_k^2$
défi	nit u	ine norme	e sur \mathbb{R}^n , issue d'un produit scalaire, qui en fait donc un espace de Hilbert.
Vra	i 🗆 l	Faux 🗆	L'expression
			$(x,y) \in \mathbb{R}^d \times \mathbb{R}^d \longmapsto \langle x y \rangle = \left(\sum_{k=1}^n x_k\right) \left(\sum_{k=1}^n y_k\right)$
défi	nit u	ın produi	t scalaire \mathbb{R}^n .
Vra	i 🗆 1	Faux 🗆	Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ inversible, l'application
			$(x,y) \mapsto \langle Ax y \rangle$
(où	$\langle \cdot $	\cdot \rangle est le j	produit scalaire euclidien) définit un produit scalaire sur \mathbb{R}^n .
Vra	i 🗆 l	Faux 🗆	Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ inversible, l'application
			$x \mapsto Ax $
•		est la nori scalaire	me euclidienne) définit une norme euclidienne sur \mathbb{R}^n , c'est à dire issue d'un
			$\langle x y \rangle_A = \langle Ax Ay \rangle = \langle A^T Ax y \rangle,$
où l	a ma	atrice A^T	A est symétrique définie positive.
2)	Dan	ns la suite	e H désigne un espace de Hilbert séparable.
Vra	i 🗆 l	Faux 🗆	Soit K un sous-ensemble de H tel que l'implication suivante soit vérifiée :
			$\langle h w \rangle = 0 \forall w \in K \Longrightarrow h = 0.$
Alo	rs K	est dens	e dans H .
			Soit (e_n) une base hilbertienne de H , espace de Hilbert de dimension infinie. space vectoriel F_N engendré par les N premiers e_n est fermé.
Vra	i 🗆 l	Faux 🗆	Une suite u_n qui converge fortement vers u converge faiblement vers u .
		Faux \square Alors u es	Soit u_n une suite d'éléments d'un fermé F de H , qui converge faiblement et dans H .