Lecture 14: AVL Trees

Hyungon Moon

Dynamic Balanced Binary Search Trees

- Average and maximum search time in binary search trees depend on the height of the tree
- Minimum height of a binary tree with n nodes is log n
- Dynamic balanced binary search tree is to keep the height of a binary search tree O(log n) for search, insert, delete

Balanced and Unbalanced BST

• Balanced?

SCIENCE AND TECHNOLOGY

Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL Trees: and early example

- Adelson-Velskii and Landis
- Height-balanced binary tree
 - But not perfectly balanced

Balance factor

For every node x, define its balance factor

balance factor of
$$x = h_{left}(x) - h_{right}(x)$$

 $h_{left/right}(x) = height of left/right subtree of x$

Balanced → close-to-0 balance factor.

- AVL tree: keeps the balance factor of every node x to be — I, 0, or I
 - Height of sibling trees is differ no more than I

Example of AVL tree

AVL Trees?

Example of AVL tree

This is not perfectly balanced but height-balanced AVL tree!

- Operation on a binary tree that
 - Move one node up and one node down
 - Preserve binary search tree property
- It will also preserve
 - Leaf node order in depth-first search traversal
 - Inorder traversal sequence
 - Does not change binary search tree order
- It is used to
 - Change the shape of the trees, e.g., adjusting height of the trees

Right rotation on (rooted at) P

Left rotation on (rooted at) Q

Pseudo code for right rotation

```
temp = root->leftChild
root->leftChild = temp->rightChild
temp->rightChild = root
root = temp
```


Right rotate on Q?

Right rotate on Q?

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or –2 for some node
 - Every node has -1,0 or 1 before then.
- Only nodes on the path from insertion point to root node have possibly changed in height
 - New ← ... ←root
- So after the Insert, go back up to the root node by node, updating heights/balance factor
- If a new balance factor (the difference h_{left}h_{right}) is 2 or -2, adjust tree by rotation around the node

Single Rotation Example

Right rotation on 9

A-Node

- Let A be the nearest ancestor of the newly inserted node whose balance factor becomes
 +2 or -2 following the insert
- Balance factor of nodes between new node and A is 0 before insertion
- Rotation must be done on A-node

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Imbalance Types

- RR ... newly inserted node is in the right subtree of the right subtree of A
- LL ... left subtree of left subtree of A
- RL... left subtree of right subtree of A
- LR... right subtree of left subtree of A

LL Rotation

Right rotation on A

Before insertion

After insertion

After rotation

LR Rotation (case I)

- Left Right rotations
 - Left on B, right on A

Before insertion

After insertion

After rotation

LR Rotation (case 2)

- Left Right rotations
 - Left on B, right on A

LR Rotation (case 3)

- Left Right rotations
 - Left on B, right on A

Single & Double Rotations

- Single rotation
 - LL and RR
- Double rotation
 - LR and RL
 - LR is RR followed by LL
 - RL is LL followed by RR

Alphabetical order

(f) Insert JANUARY

(k) Insert OCTOBER

(1) Insert SEPTEMBER

Height of an AVL Tree

- Fact: The height of an AVL tree storing n keys is O(log n).
- Proof: Let us bound n(h): the minimum number of internal nodes of an AVL tree of height h.
- We easily see that n(1) = 1 and n(2) = 2
- For n > 2, an AVL tree of height h contains the root node, one AVL subtree of height n-1 and another of height n-2.
- That is, n(h) = 1 + n(h-1) + n(h-2)
- Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction), $n(h) > 2^{i}n(h-2i)$
- Let i=h/2-1, then we get: $n(h) > 2^{h/2-1}$
- Taking logarithms: h < 2log n(h) +2
- Thus the height of an AVL tree is O(log n)

Number Of Rebalancing Rotations

- Insert: at most 2 rotations
 - 2 rotations reduce the height of the A node.
 - Ancestors of the A node has -1,0 or 1 after the rotations.
- Delete : at most O(log n) rotations
 - May need to rotate every node between the deleted root node.

Discussion

- AVL trees manage strict height-balanced structure
 - Height is bounded by O(log n)
 - Search, insertion, deletion are O(log n)
 - Fast for lookup intensive problems
 - Insert, delete can be slower than lookup

Questions?

