Project Report			
Submitted by:			
102117155 Dev Ahuja			
102117166 Amisha			
102117154 Tanishq Dublish			
102117170 Satyajeet Bedi			
BE Fourth Year, COPC			
ti			
THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University)			
Computer Science and Engineering Department			
Thapar Institute of Engineering and Technology, Patiala			
November 2024			
ABSTRACT			
! "# \$	%&' ' ()	* +	&, %!
. " *	,ou ()	·	α, 70.
!			1
	. (!!
/ "			
!	! +	. ! "	/
ACKNOWLEDGEMENT			
0 ! " / " Dr. 1			"!1
0 " Dr. Shalini Batra 1	2		
2 !	!	!!	0
3 !! " "			
1 1 1			
(4 5657			
Roll No. Name Signature			
(65((8(44			
(65((8()) (65((8(47 9			
(65((8(86 :			
TABLE OF CONTENTS			
ABSTRACT			
ADSTRACI	i		

Tomato Disease Detection System

```
CHAPTER......Page No.
   ( Introduction 11
   5 Related Work 11
   , Methodology Adopted 15
   7 Experiments and Results 20
  4 Conclusions and Future Scope 25
  ) References 30
INTRODUCTION
            !
                                                           1!
                                                                                                                  !
                                                                                             &' '();
Develop a Baseline CNN Model
Utilize Transfer Learning
Performance Comparison 2
                                                             . (
Practical Implications <
               !
LITERATURE SURVEY
2.1 CNNs in Plant Disease Detection
Ferentinos (2018)
                                                                                    9
                          Lakshmanan et al. (2017)
                                                                 !
2.2 Transfer Learning for Enhanced Performance
                                                                                                Mohanty et al. (2016)
Dutta et al. (2020) /
       He et al. (2019)
                                                                                &,
                                                                                                           !
```

ACKNOWLEDGEMENT....ii

2.3 Comparative A	analysis of Tran	sfer Learning	Models									
	&''();	46 +	&, * !		Koirala et al. (2020) !		;	46	Sharma (et al. (202		
2.4 Improving Mod	del Robustness	with Data Au	gmentation									
		/	-	9	!		!	!	- "!	Giuffrid	la et al.	(2020)
; +	&,											
2.5 Challenges and	l Limitations in	Existing Stud	ies									
0												
Dataset Dive	ersity *				-							
?Real-Time Appli	cations . !				!		ıı					
?Computational R	Requirements					9				!!!		
												0
												U
	•	-									!	
ļ "										:		
METHODOLOGY	YADOPTED											
					#&' ' () !	*		+	- &	, \$		
Flow Diagram	of System A	rchitecture										

: ! !

Use Case Diagram of System Architecture


```
@
Data Collection and Preprocessing: +
Model Selection: :
                 &' '()
                                                        &,
Training the Models:
                                                                   #AB
                                                                              CB
                              #AB
                                         CB
                                                $
Evaluation: *
                                          . (
Comparison and Analysis:
Deployment:
3.1 Data Preprocessing
                                 !
   • Image Resizing
                                           557/557 /
?Normalization: </
                                            D6 (E
                                                                  544
?Data Augmentation:
3.2 Model Development and Training
Baseline CNN
              !
     Architecture
```

,5)7

!

(5F

7 (

(5F

!

/

&

!

```
76
                                                                                            6 66(
                                                   , 5
Transfer Learning Models
     VGG16
                              46
                                                         -!
                                                                             6 666(
     DenseNet
     MobileNet
          !
     InceptionV3
3.3 Training Setup and Hyperparameters
   • Batch Size: , 5
   • Epochs 76
                       G46
   • Optimizer
   • Learning Rate
3.4 Validation and Performance Evaluation
   • Validation Data:
   • Evaluation Metrics:
   • Accuracy: H
   • Precision, ;
   • Loss Curves:
3.5 Comparison and Analysis
                                                                             #&' '()
                                                                                                                   &,$
3.6 Deployment Considerations
                           !
                                                         !
                                                                     9
EXPERIMENTS AND RESULTS
4.1 Dataset Details
   • Dataset Composition:
    Data Split:
               70%
                15%
            15%
4.2 System Configuration
    Hardware Used:
                        7#()': &; *$
     ' <@ &+ +
                   #5, '1-$
       <@+ A
     ; * ,5':
     Software Environment:
          ! "
                    . ! 5/
                    , F
     Н
                     @
                           56 67
4.3 Training Details
```

Training

```
Hyperparameters:
      3
                             0.001!
                                                                                        6(
             - 32
            - Adam
            +
                      He Normal
     Loss Function:
     Categorical Cross-Entropy!
     Activation Functions:
   • ReLU
   • Softmax
   • Epochs and Iterations:
            !
                          50 epochs!
   • Training Timing:
                        3 minutes per epoch
        0
                                 DenseNet (6 min), InceptionV3 (5 min), MobileNet (4 min), VGG16 (4.5 min)
                   3
   • Test Timing:
                              "10-15 seconds
   • Inference Timing:
                             3 ms
                         10 ms
                         &, 8 ms
                          5 ms
              ■ &' '() 7 ms
4.4 Key Observations from Results
   • Training Dynamics:
     Validation Results:
             &,
                                                 !
   • Test Accuracy:
   • InceptionV3: =5 F>
   • MobileNet: =( 7>
   • DenseNet: =6 8>
```

VGG16: F8, >Efficiency Trade-offs:

InceptionV3

MobileNet DenseNet

Dataset Expansion:

Model Optimization

Explainable AI

9 **Integration with IoT and Sensors**

5.1 Conclusions

	9 I	#&''()	*	+	&,\$
High Classification Accuracy					-
• Model Efficiency *		!			п
• Impact of Data Augmentation:		9			
• Scalability .	!	9 "	п		
5.2 Future Scope					
Real-World Deployment:		!			

!

J

• Advanced Techniques:

Economic Impact Studies: 2

REFERENCES

ΦE	' K *	#5656\$Deep Learning for Pl	lant Disease Detection using Ti	ransfer Learning +	L				
D⁵E.	I < #56(F\$Deep lean	rning models for plant disease	detection and diagnosis	2	(74 ,((,(F				
ŊΕ	' . K 5(#\$ 8F= F64	#5656\$Enhancing plant di	sease classification through da	ata augmentation and transfe	er learning <				
D E1 I;	M A ; K # &<; \$	L #56(=\$Deep Residual Lear	ning for Image Recognition +	£22	& <				
DIEI 0 L C 3 K I #5656\$Comparative analysis of deep learning models for tomato disease classification L : 58#8\$ =64 =(F									
DE3 " convolution	< * 1 onal neural networks +	* * K <	#56(8\$A novel approach fo : (=#(\$ (8) (F5	or classification of tomato led	af diseases using				
D SE0	3 1 1 54#(5\$ (464	0 566, (4(F		-2 22					
DFE " +222	< <l &<="" 3="" m="" td=""><td>+; ' < : ! 58#5\$</td><td>I 0 5664 ()5(88</td><td></td><td></td></l>	+; ' < : ! 58#5\$	I 0 5664 ()5(88						
D=E * (7(=	< 1 < K	N* #56()\$Using Dee	p Learning for Image-Based P	lant Disease Detection .	< 8				
□(6E +	& KI 4#5\$ 74 4F	< #565(\$Comparative study	of transfer learning models for	r tomato leaf disease classific	cation				