RESISTÊNCIA E RESISTIVIDADE ELÉTRICAS. CIRCUITOS ELÉTRICOS DC.

1 - Um condutor é atravessado por uma corrente elétrica cuja intensidade varia no tempo como se mostra no gráfico da figura. Calcule a carga elétrica
5 que atravessa o condutor no intervalo de tempo de 0 a 10s. (R: 25 C)

2 – Um fio condutor cilíndrico tem diâmetro de 1.0 mm, comprimento de 2.0 m e resistência de 50 m Ω . Calcule a resistividade e a condutividade do material do fio. (R: ρ = 1.96 × 10⁻⁸ Ω m; σ = 5.09 × 10⁷ Ω ⁻¹m⁻¹)

3 - Um fusível é um dispositivo utilizado para limitar a intensidade da corrente elétrica em circuitos. O fusível é constituído por um fio projetado para fundir (e desse modo abrir o circuito) se a corrente exceder um determinado valor. Suponha que o material que compõe o fusível funde quando a densidade de corrente atinge $440A/cm^2$. Qual deve ser o diâmetro do fio de um fusível deste material para ser usado como limitador de correntes superiores a 0.5 A? (Sol: 0.38 mm)

4 - Um termómetro de resistência de platina, tem a resistência de 50.0 Ω a 20.0 °C. Quando imerso num vaso com índio fundido, a sua resistência aumenta para 76.8 Ω . Usando esta informação, qual a temperatura a que está o índio fundido? Para a platina, $\alpha = 3.92 \times 10^{-3}$ °C⁻¹.

5 - Um fio de cobre com 15 m de comprimento e 2 mm de diâmetro é percorrido por uma corrente de 20 mA.

Dados: σ (Cu) = 5.8 × 10⁷ Ω⁻¹m⁻¹: densidade (Cu) = 8.93 g/cm³; M (Cu) = 63.5 g/mol

- a) Calcule a velocidade de arrastamento dos eletrões, admitindo que há um eletrão livre por átomo;
- b) A resistência do fio.
- c) A ddp aos terminais do fio.

Driverwidade do Minho

Departamento de Física

Eletromagnetismo EE (MIEBiom, MIEBiol, MIEMat, MIEPol, MIETI)

Ficha de Problemas 5

6 - Um fio cilíndrico de cobre tem um comprimento de 1000 m e uma área de secção reta de 5 mm², quando está a T=293 K. A figura mostra a variação da resistividade do cobre com a temperatura. O ponto (T_0, ρ_0) corresponde à resistividade do Cobre $(\rho_0=1.69\times 10^{-8}\,\Omega\,\mathrm{m})$ à temperatura $T_0=293$ K.

- **a)** Calcule a resistência elétrica do fio cilíndrico de cobre, à temperatura de 293 K.
- **b)** Se a T = 293 K, o fio estiver sujeito a uma **ddp** de 1.5 V durante 1h, calcule a carga elétrica que atravessa a secção do condutor nesse intervalo de tempo. <u>Nota</u>: despreze qualquer aumento de temperatura do fio durante 7esse intervalo de tempo.
- c) Elevou-se a temperatura do fio para 1200 K. Calcule a resistência elétrica de um fio cilíndrico de cobre, a esta temperatura. Nota: Por cada grau de aumento de temperatura, um fio de cobre, com 1 m de comprimento, aumenta em 17×10^{-6} m o seu comprimento. A área de secção permanece praticamente constante.
- 7 Pretende-se obter uma resistência total de 3.0 Ω ligando uma resistência de valor desconhecido a uma resistência de 12.0 Ω . As duas resistências devem ser ligadas em série ou em paralelo? Porquê? Qual deve ser o valor da resistência desconhecida? (R: R=4 Ω)
- 8 Um estudante esqueceu-se de desligar uma lâmpada de 10 W (220 V) que ficou ligada durante 12 h. Calcule a carga elétrica que percorreu o filamento da lâmpada. (R: ~1944 C)
- 9 As quatro resistências R_1 = 8 Ω , R_2 = 4 Ω , R_3 = 6 Ω e R_4 = 3 Ω estão ligadas como se mostra na figura.
- a) Determine a resistência equivalente entre a e b. (R: R_{eq} = 14 Ω)
- b) Calcule a intensidade de corrente que percorre cada resistência se a ddp entre a e b for 42 V. (R: $I_1 = I_2 = 3$ A; $I_3 = 1$ A; $I_4 = 2$ A)

Departamento de Física

Eletromagnetismo EE (MIEBiom, MIEBiol, MIEMat, MIEPol, MIETI)

Ficha de Problemas 5

10. Calcule a resistência equivalente entre os pontos 1 e 2 do circuito da figura.

11 - Considere o circuito esquematizado na figura seguinte. Calcule os valores do potencial nos pontos A, B, C e D relativamente à terra. (R : V_A = +60 V; V_B = +50 V; V_C = +30 V; V_D = 0 V)

- 12 Três resistências (R_1 = 3 Ω , R_2 = 6 Ω , R_3 = 9 Ω) estão ligadas em paralelo e a uma fonte de alimentação de 18 V, como se mostra abaixo.
- a) Calcule a resistência equivalente das três resistências. (Sol: R_{eq} = 1.6 Ω)
- b) Calcule a intensidade de corrente eléctrica em cada resistência e a potência dissipada em cada uma das 3 resistências. (Sol: I_1 = 6 A; I_2 = 3 A; I_3 = 2 A; P_1 = 108 W; P_2 = 54 W; P_1 = 36 W)

Departamento de Física

Eletromagnetismo EE (MIEBiom, MIEBiol, MIEMat, MIEPol, MIETI)

Ficha de Problemas 5

- 13 Um circuito, de uma malha, tem duas resistências e duas fontes de tensão, conforme mostra a figura 4.3. As resistências internas das baterias foram desprezadas.
- a) Calcular a corrente elétrica no circuito.
- b) Qual é a potência dissipada em cada resistência?

14 – Uma parte de um circuito elétrico está representado na figura abaixo. Também se assinalam os sentidos e magnitudes das intensidades de corrente em alguns ramos do circuito. Calcule o sentido e magnitude da corrente *i*.

- **15.** Acerca do circuito representado na figura:
- a) Calcule as intensidades de corrente nos ramos do circuito.(Sol: 3 A; 2 A; 1 A)
- **b)** Indique qual a diferença de potencial entre os nodos. (Sol: 2 V)

16 - Calcular a diferença de potencial entre os pontos *a* e *b* do circuito da figura.

Departamento de Física

Eletromagnetismo EE (MIEBiom, MIEBiol, MIEMat, MIEPol, MIETI)

Ficha de Problemas 5

- **17.** Considere que o circuito elétrico esquematizado na figura se encontra no estado estacionário. Determine a corrente que percorre cada ramo do circuito.
- **a)** Determine as intensidades de corrente que percorrem os diferentes ramos do circuito;
- **b)** Calcule a diferença de potencial entre os pontos a e b do l_3 circuito.

18 - O amperímetro no circuito da figura indica 2 A. Calcular as correntes I_1 e I_2 e o valor de ε .

- 19 Para o circuito esquematizado:
- a) Calcular a corrente em cada resistência da figura 7.
- b) Calcular a diferença de potencial entre os pontos c e f. Qual dos dois está ao potencial mais elevado?

Departamento de Física

Eletromagnetismo EE (MIEBiom, MIEBiol, MIEMat, MIEPol, MIETI)

Ficha de Problemas 5

20 - Para o circuito da figura determine R_1 sabendo que a corrente que a atravessa é de 0,3 A. (R_1 = 7,6 Ω)

- **21** Considere o circuito representado na figura (ϵ_1 = 4 V; ϵ_2 = 8 V; ϵ_3 = 3 V; R_1 = 5 Ω , R_2 = 3 Ω , R_3 = 5 Ω e C = 6 μ F).
- a) Determine a intensidade de corrente nos diversos ramos do circuito, no regime estacionário. (Sol: $I_1 = 1.38 \text{ A}$; $I_2 = 0.36 \text{ A}$; $I_3 = 1.02 \text{ A}$; $I_1 = I_2 + I_3$)
- b) Qual é a carga do condensador? (Sol: $Q = 66.0 \mu C$)

- **22** Um condensador descarregado e uma resistência são ligados em série a uma bateria. Se ϵ = 12V, C = 5 μF e R = 8×10⁵ Ω, determinar:
 - a) a constante de tempo do circuito;
 - b) a carga máxima no condensador;
 - c) a corrente máxima no circuito;
 - d) a carga do condensador em função do tempo;
 - e) a corrente no circuito em função do tempo.

Departamento de Física

Eletromagnetismo EE (MIEBiom, MIEBiol, MIEMat, MIEPol, MIETI)

Ficha de Problemas 5

- 23 Considere um circuito RC em série (figura 10) no qual R = $1 \text{ M}\Omega$, C = $5 \mu\text{F}$ e ε = 30 V. Calcular:
 - a) a constante de tempo do circuito.
 - b) a carga máxima no condensador, depois do interruptor ter sido fechado.

- **24** Considere que o circuito esquematizado na figura se encontra no estado estacionário.
- a) Determine a corrente que percorre a resistência de 2 Ω .
- b) Calcule a diferença de potencial entre os pontos A e B do circuito.
- c) Calcule a carga acumulada no condensador.

- **25** A figura representa um circuito RC, com uma fonte (ε = 12 V) uma resistência (R = 12 Ω) e dois condensadores (C₁ = 12 μ F e C₂ = 24 μ F).
- b) Após fechar o interruptor S, esboce em dois gráficos a variação da carga dos condensadores e da intensidade da corrente eléctrica no circuito com o tempo.

