Esercitazione di Fisica - 9

Riccardo Nicolaidis

22/05/2025

1 Problema 1

Un gas ideale biatomico è inizialmente nello stato A (parametri T_A , V_A , P_A). Il sistema subisce una compressione adiabatica quasistatica e reversibile fino al volume V_B ; quindi, mediante un'isocora quasistatica e reversibile, raggiunge lo stato C con temperatura riportata a $T_C = T_A$. Dallo stato C si torna infine allo stato A lungo un'isoterma quasistatica e reversibile.

Si determini il coefficiente di prestazione C della macchina frigorifera.

 $Dati\ numerici\colon T_A=300\,\mathrm{K},\ V_A=4\,\mathrm{L},\ P_A=1.0\times 10^5\,\mathrm{Pa},\ V_B=1\,\mathrm{L}.$

2 Problema 2

Una quantitá di elio (gas ideale biatomico) pari a n moli, subisce un ciclo termodinamico composto da:

- Trasformazione AB isocora quasistatica reversibile
- Trasformazione BC isoterma quasistatica reversibile
- Trasformazione CA isobara quasi statica reversibile

Il rendimento del ciclo termodinamico é η . Determinare η .

Dati: $n = 10^3 \text{ mol}$, $P_A = 10^5 Pa$, $V_A = 22.4 m^3$, $P_B = 2 \times 10^5 Pa$.

3 Problema 3

Due cicli di Carnot sono collegati in serie: il calore ceduto dal primo viene interamente utilizzato dal secondo. Il primo ciclo opera fra un serbatoio caldo alla temperatura T_A e uno freddo a T_B ; il secondo fra un serbatoio caldo a T_B e uno freddo a T_C .

Si determini il rendimento complessivo η della macchina.

Dati numerici: $T_A = 800 \,\text{K}, T_B = 600 \,\text{K}, T_C = 300 \,\text{K}.$

4 Problema 4

Un gas biatomico ideale (n moli) compie un ciclo quasistatico e reversibile tra quattro stati A, B, C, D così strutturato: $A \to B$ isocora, $B \to C$ isobara, $C \to D$ isocora e $D \to A$ isobara.

All'istante iniziale lo stato A è caratterizzato da pressione P_A e temperatura T_A . Il gas viene riscaldato fino a raggiungere la temperatura T_B ; quindi si espande a pressione costante assorbendo il calore Q. Successivamente viene raffreddato fino a riacquistare il volume di partenza e infine compresso, sempre a pressione costante, tornando in A.

Si determini il rendimento η della macchina termodinamica (ricordando che 1 cal = 4,18 J).

Dati numerici: $P_A = 2.0 \times 10^5 \, \text{Pa}$, $n = 1 \, \text{mol}$, $T_A = 200 \, \text{K}$, $T_B = 400 \, \text{K}$, $Q = 2 \, \text{kcal}$.

5 Problema 5

Si consideri una sequenza di n macchine termodinamiche di Carnot, aventi tutte lo stesso rendimento η e tali che il serbatoio freddo di una macchina costituisce il serbatoio caldo della macchina successiva. Il serbatoio caldo ha una temperatura T_0 . Il serbatoio dell'ultima macchina ha temperatura T_n . Calcolare T_n .

Dati:
$$n = 6$$
, $\eta = 0.09$, $T_0 = 420 K$.

Note

Calori specifici

Calori specifici a volume costante:

- Per un gas monoatomico $c_v = \frac{3}{2}R$
- Per un gas biatomico $c_v = \frac{5}{2}R$

Calore specifico a pressione costante

$$c_p = c_v + R = \begin{cases} \frac{5}{2}R & \text{monoatomico} \\ \frac{7}{2}R & \text{biatomico} \end{cases}$$

Per trasformazioni adiabatiche:

$$PV^{\gamma} = \text{cost.}$$

dove γ è data da:

$$\gamma = \frac{c_p}{c_v} = \begin{cases} 5/3 & \text{monoatomico} \\ 7/5 & \text{biatomico} \end{cases}$$

Convenzioni sui segni

Considerando il primo principio della termodinamica

$$\delta Q = dU + \delta W$$

- δQ : Calore scambiato con l'ambiente
 - $-\delta Q>0$ se il sistema **riceve calore**
- δW : Lavoro svolto dal gas
 - $-\delta W>0$ se il sistema **svolge lavoro**
- dU: Variazione di energia interna