พีชคณิตบูลีน และการลดรูปสมการ

รหัสวิชา 30127-2004 (2-3-3) ดิจิทัลและใมโครคอนโทรลเลอร์

Digital And Microcontroller

พืชคณิตบูลีน และการลดรูปสมการ

- 1. พีชคณิตบูลีน
- 1.1 กฎของพีชคณิตบูลีน
- 1.2 ข้อบังคับของพีชคณิตบูลีน
- 2. ทฤษฎีของดีมอร์แกน
- 3. การแก้ปัญหาสมการลอจิกด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกน
 - 3.1 ผลบวกของผลคูณ (Sum of Product)
 - 3.2 ผลคูณของผลบวก (Products of Sum)
- 4. แผนผังคาร์โนห์ (Karnaugh Maps)
- 5. การแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์
 - 5.1 ผลบวกของผลคูณ (Sum of Product)
 - 5.2 ผลคูณของผลบวก (Products of Sum)

Digital And Microcontroller

2

พืชคณิตบูลีน และการลดรูปสมการ

1. พีชคณิตบลีน

พีชคณิตแบบบูลีน เป็นคณิตศาสตร์แบบหนึ่งที่ใช้ในการลดรูปสมการลอจิกของวงจรดิจิทัล โดย ความสัมพันธ์ระหว่างด้วแปรแต่ละตัวจะใช้เครื่องหมายทางเลขคณิตแทนความสัมพันธ์ระหว่างตัวแปร ค่านั้น เครื่องหมายทางเลขคณิตดังกล่าวได้แก่

- เครื่องหมาย . (จุด) แทนความหมายการ AND ลอจิก
- เครื่องหมาย + (บวก) แทนความหมายการ OR ลอจิก
- เครื่องหมาย (บาร์) แทนความหมายการ NOT ลอจิก

จุคประสงค์ของพีซคณิตแบบบูลีน คือ ช่วยในเรื่องของการวิเคราะห์และออกแบบวงจรดิจิทัลโดย วิรีลังต่อไปนี้

- แสดงในรูปแบบของตัวแปรเชิงพีชคณิตและตารางค่าความจริง (Truth Table) ระหว่างตัว แปรแต่ละตัว
- แสดงในรูปแบบของตัวแปรเชิงพีชคณิต บ่งบอกความสัมพันธ์ระหว่างอินพุต-เอาต์พุต ของ วงอรดิจิทัด
 - 3. แสดงในรูปแบบของวงจรลดรูปสำหรับฟังก์ชันนั้น ๆ

Digital And Microcontroller

พืชคณิตบูลีน และการลดรูปสมการ

1.1 กฎของพีชคณิตบูลีน

กฎของพีชคณิตบูลีนที่สำคัญที่จะต้องนำไปใช้งานเพื่อช่วยในการลดรูปสมการลอจิกมี 3 ข้อได้แก่ 1. กฎการเปลี่ยน (Commutative Law) หรืออาจเรียกว่ากฎการสลับที่

$$A + B = B + A$$

2. กฎการจัดหมู่ (Associative Law) หรืออาจเรียกว่ากฎการจัดกลุ่ม

$$A + (B + C) = (A+B) + C$$

3. กฎการกระจาย (Distributive Law) หรืออาจเรียกว่ากฎการแตกตัว

$$A(B + C) = AB + AC$$

A. $(B + C) = (A.B) + (A.C)$

Digital And Microcontroller

4

พืชคณิตบูลีน และการลดรูปสมการ

1.2 ข้อบังคับของพีชคณิตบูลีน

ช้อบังคับของพีชคณิตบุลีน (Rules for Boolean Algebra) ประกอบไปด้วยช้อบังคับทั้งหมด 12 ข้อ ซึ่งแสดงในตาราง โดยข้อบังคับข้อที่ 1 ถึง 9 เป็นช้อบังคับสำหรับการยุบรวมสมการลอจิก ส่วนข้อยังคับ ที่ 10 ถึง 12 เป็นช้อบังคับที่เกิดจากการวิเคราะห์กฎของพีชคณิตบุลีน

ข้อบังคับที่	วูปแบบของข้อบังคับ			
1	A + 0 = A			
2	A + 1 = 1			
3	$A \cdot 0 = 0$			
4	$A \cdot 1 = A$			
5	A + A = A			
6	$A + \overline{A} = 1$			
7	$\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$			
8	$\mathbf{A} \cdot \overline{\mathbf{A}} = 0$			
9	$\overline{\mathbf{A}} = \mathbf{A}$			
10	A + AB = A			
11	$\mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B}$			
12	$(\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C}) = \mathbf{A} + \mathbf{B}\mathbf{C}$			
Digital And Microcontroller				

พืชคณิตบูลีน และการลดรูปสมการ

2. ทฤษฎีของดีมอร์แกน

ทฤษฎีของดีมอร์แกน เป็นทฤษฎีที่นำมาช่วยในการแก้สมการลอจิกให้ง่ายขึ้น ด้วยวิธีการเปลี่ยนรูปแบบการกระทำของลอจิกที่สมการถูกคอมพลีเมนต์อยู่ และพิสูจน์ ความถูกต้องของทฤษฎีด้วยตารางความจริง ซึ่งจะมีด้วยกัน 2 รูปแบบ ดังนี้

ข้อบังคับที่ 1
$$\overline{AB}=\overline{A}+\overline{B}$$

ข้อบังคับที่ 2 $\overline{A+B}=\overline{A}\cdot \overline{B}$

Digital And Microcontroller

พืชคณิตบูลีน และการลดรูปสมการ

3. การแก้ปัญหาสมการลอจิกด้วยพีชคณิตบูลีนและทฤษฎีของดีมอร์แกน

```
Y = \overline{AB + AC} + \overline{AB}C
= (\overline{AB})(\overline{AC}) + \overline{AB}C
= (\overline{A} + \overline{B})(\overline{A} + \overline{C}) + \overline{AB}C
= \overline{AA} + \overline{AC} + \overline{AB} + \overline{BC} + \overline{AB}C
= \overline{A} + \overline{AC} + \overline{AB} + \overline{BC} + \overline{AB}C
= \overline{A}(1 + \overline{C}) + \overline{AB}(1 + C) + \overline{BC}
= \overline{A}(1) + \overline{AB}(1) + \overline{BC}
= \overline{A}(1 + \overline{B}) + \overline{A}(1 + \overline{B}) + \overline{A}(1 + \overline{B})
= \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A})
= \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A})
= \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A})
= \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A})
= \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A})
= \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A})
= \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A}) + \overline{A}(1 + \overline{A})
= \overline{A}(1 + \overline{A}) +
```

Digital And Microcontroller

พีชคณิตบูลีน และการลดรูปสมการ

3.1 ผลบวกของผลคูณ (Sum of Product หรือ SOP หรือ Σ m) ผลบวกของผลคูณ (Sum of Product หรือ SOP หรือ Σ m) คือสมการลอจิกที่ เกิดจากความสัมพันธ์ของสัญญาณอินพุตกับสัญญาณเอาต์พุต โดยจะเลือก เฉพาะสัญญาณเอาต์พุตที่เป็นลอจิก '1' เท่านั้นมาพิจารณา

$$f(A,B,C) = \sum m(2,3,6,7)$$
$$= \overline{A}B\overline{C} + \overline{A}BC + AB\overline{C} + ABC$$

3.2 ผลคูณของผลบวก (Products of Sum หรือ POS หรือ π m)

ผลคูณของผลบวก (Products of Sum หรือ POS หรือ π m) คือสมการลอจิกที่ เกิดจากความสัมพันธ์ของสัญญาณอินพุตกับสัญญาณเอาต์พุต โดยจะเลือกเฉพาะ สัญญาณเอาต์พุตที่เป็นลอจิก '0' เท่านั้นมาพิจารณา

$$f(A,B,C,D) = \pi m(1,3)$$

$$= (A+B+C+\overline{D}) \cdot (A+B+\overline{C}+\overline{D})$$

Digital And Microcontroller

พืชคณิตบูลีน และการลดรูปสมการ

4. แผนผังคาร์โนห์ (Karnaugh Maps)

แผนผังคาร์โนห์ เป็นรูปแบบหนึ่งของตารางความจริง แต่เขียนเป็นแผนภาพ ประกอบด้วยสี่เหลี่ยมจัตุรัสหลายช่อง (แต่ละช่องเรียกว่า เชล (Cell)) โดยมี จำนวนช่องเท่ากับ 2ⁿ ช่อง โดย n คือจำนวนตัวแปรของอินพุตที่ใช้ในตาราง ความจริง

CD	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10
10	2	6	14	10

11

Digital And Microcontroller

พืชคณิตบูลีน และการลดรูปสมการ

5. การแก้ปัญหาสมการลอจิกด้วยแผนผังคาร์โนห์

การใช้แผนผังคาร์โนห์ในการลดรูปสมการบูลีนมีหลักสำคัญดังนี้

- 1. เขียนตารางของคาร์โนห์ตามจำนวนของตัวแปร
- 2. ตัดสินใจเลือกว่าจะใช้เทอมในลักษณะของ minterm (SOP) หรือ maxterm (POS)
- 3. ใส่ค่าของเอาต์พุตลงในช่องต่าง ๆ ของแผนผังคาร์โนห์
- 4. จับกลุ่มช่องที่อยู่ติดกันในลักษณะประชิด (Looping) เฉพาะช่องที่เราสนใจ โดยในแต่ละ กลุ่มจะต้องมีสมาชิกในกลุ่มที่ติดกันจำนวน 2ⁿ ช่อง คือ 1,2,4,8,16 ช่อง โดยพยายามให้ในแต่ ละกลุ่มมีสมาชิกมากที่สุด
- 5. ดำเนินการหาผลลัพธ์ของในแต่ละกลุ่ม โดยในแต่ละกลุ่มให้พิจารณาตัวแปรของแต่ละช่อง ของสมาชิกว่ามีค่าของตัวแปรที่ซ้ำกับทุกช่องหรือไม่ ถ้าตัวแปรใดที่มีค่าซ้ำกับทุกช่องก็จะเป็นคำตอบ ของกลุ่มนั้น ๆ โดยกลุ่มยิ่งใหญ่ก็จะเหลือตัวแปรน้อย ซึ่งพิจารณาจากจำนวน 2º ช่อง ตัวแปรจะถูก ตัดไป n ตัว

Digital And Microcontroller

10

พืชคณิตบูลีน และการลดรูปสมการ

5.1 ผลบวกของผลคูณ (Sum of Product)

$$f(A,B,C) = \sum m(2,3,6,7)$$

Digital And Microcontroller

พีชคณิตบูลีน และการลดรูปสมการ

5.2 ผลคูณของผลบวก (Products of Sum)

$$f(A,B,C,D) = \pi m(1,3)$$

Digital And Microcontroller

12