Engineering Mathematics I (Comp 400.001)

Midterm Exam II: May 15, 2003

1. (10 points) Consider the iteration defined by

$$x_{n+1} = x_n - f(x_n) \left[\frac{f(x_n)}{f(x_n + f(x_n)) - f(x_n)} \right].$$

This is known as Steffenson's method; and it has local quadratic convergence. Starting from $x_0 = 2$, apply two steps of Steffenson's method to

$$f(x) = x^2 - 2,$$

for the approximation of $\sqrt{2}$.

(Extra Credit: 30 points) Show the local quadratic convergence of the above iteration method.

$$x_{0} = 2$$

$$x_{1} = 2 - f(2) \cdot \left[\frac{f(2)}{f(2+f(2)) - f(2)} \right]$$

$$= 2 - 2 \cdot \frac{2}{f(4) - 2} = 2 - \frac{4}{12} = \frac{5}{3} \approx 1.67$$

$$x_{2} = \frac{5}{3} - f(\frac{5}{3}) \cdot \left[\frac{f(\frac{5}{3})}{f(\frac{5}{3} + f(\frac{5}{3})) - f(\frac{5}{3})} \right]$$

$$= \frac{5}{3} - \frac{7}{9} \cdot \frac{7/9}{f(\frac{5}{3} + \frac{7}{9}) - \frac{7}{9}}$$

$$= \frac{5}{3} - \frac{7}{37} = \frac{164}{111} \approx 1.48$$

$$71/4 \approx 1.48$$

Extra Credit

$$g(x) = x - f(x) \cdot \left[\frac{f(x)}{f(x+f(x)) - f(x)} \right]$$

$$g'(x) = 1 - f'(x) \cdot \left[\frac{f(x)}{f(x+f(x)) - f(x)} \right]$$

$$-f(x) \cdot \frac{f'(x)[f(x+f(x)) - f(x)]}{f(x+f(x)) - f(x)} - f(x)$$

$$= 1 - 2 f'(x) \cdot \frac{f(x)}{f(x+f(x)) - f(x)}$$

$$+ f(x)^{2} \cdot \frac{f'(x+f(x)) \cdot (1+f'(x)) - f'(x)}{[f(x+f(x)) - f(x)]^{2}}$$

$$g'(x) = 1 - x'(x)$$

$$g'(s) = \lim_{x \to s} g'(x)$$

$$= 1 - 2f'(s) \cdot \lim_{x \to s} \frac{1}{f(x+f(x)) - f(x)}$$

$$+ \left[f'(s) \left(1 + f'(s)\right) - f'(s)\right] \cdot \lim_{x \to s} \frac{1}{\left[f(x+f(x)) - f(x)\right]^{2}}$$

$$= 1 - 2f'(s) \cdot \frac{1}{f'(s)} + f'(s)^{2} \cdot \frac{1}{f'(s)^{2}} = 0$$

$$+ f'(s)^{2} \cdot \frac{1}{f'(s)^{2}} = 0$$

Hence, Steffenson's method has local quadratic convergence.

2. (20 points) Show that, when the matrix A is accurate, an inaccuracy $\delta \mathbf{b}$ of the right side \mathbf{b} causes an inaccuracy $\delta \mathbf{x}$ satisfying

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa(A) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}$$

$$A(x+\delta x) = b+\delta b$$

$$Ax + A\delta x = b+\delta b$$

$$A d = b + d b$$

$$A d = d b$$

$$\frac{||\partial x||}{||x||} = \frac{||A| \sigma |b||}{||x||}$$

3. (15 points) Table 1 shows the result of applying the Runge-Kutta method to the following initial value problem with h = 0.2:

$$y' = -(y+1)(y+3)$$
, for $0 \le x \le 1$, $y(0) = -2$.

Fill in the blank; and show your work for partial credit.

x_i	y_i				
0.2	-1.80263				
0.4					
0.6	-1.46296				
0.8	-1.33598				
1.0	-1.23843				

Table 1: Runge-Kutta Method

$$x_1 = 0.2$$
, $y_1 = -1.80263$
 $f_1 = 0.2$, $f(x,y) = -(y+1)1y+3$)

 $f_2 = 0.2 \times f(x_1, y_1) = 0.19221$
 $f_3 = 0.2 \times f(x_1 + 0.1, y_1 + 0.5 f_2) = 0.18277$
 $f_4 = 0.2 \times f(x_1 + 0.1, y_1 + 0.5 f_2) = 0.18332$
 $f_4 = 0.2 \times f(x_2, y_1 + f_3) = 0.17101$
 $f_4 = 0.2 \times f(x_2, y_1 + f_3) = 0.17101$
 $f_4 = 0.2 \times f(x_2, y_1 + f_3) = 0.17101$
 $f_4 = 0.2 \times f(x_2, y_1 + f_3) = 0.17101$
 $f_4 = 0.2 \times f(x_2, y_1 + f_3) = 0.17101$
 $f_4 = 0.2 \times f(x_2, y_1 + f_3) = 0.17101$
 $f_4 = 0.2 \times f(x_2, y_1 + f_3) = 0.17101$

4. (25 points) Using h = 1/3 and k = 1/2, approximate the solution to the following elliptic equation

$$u_{xx} + 9u_{yy} = 4$$
, $0 < x < 1$, $0 < y < 2$

with boundary conditions:

$$u(x,0) = x^2$$
, $u(x,2) = (x-2)^2$, $0 \le x \le 1$;
 $u(0,y) = y^2$, $u(1,y) = (y-1)^2$, $0 \le y \le 2$.

Set up a system of linear equations.

i	j	x_i	y_j	$u(x_i, y_j)$	i	j	x_i	y_j	$u(x_i, y_j)$
1	1	1/3	1/2		2	1	2/3	1/2	
1	2	1/3	1	ii ii	2	2	2/3	1	
1	3	1/3	3/2		2	3	2/3	3/2	

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} + 9 \cdot \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j+1}}{h^2} = 4 + \frac{4}{5}$$

$$u_{i+1,j} - 2u_{i,j} + u_{i+1,j} + 4 \cdot (u_{i,j+1} - 2u_{i,j} + u_{i,j+1}) = 4/9$$

$$u_{i+1,j} - 10 \cdot u_{i,j} + u_{i+1,j} + 4 \cdot u_{i,j+1} + 4 \cdot u_{i,j+1} = 4/9$$

$$u_{i+1,j} - 10 \cdot u_{i,j} + u_{i+1,j} + 4 \cdot u_{i,j+1} + 4 \cdot u_{i,j+1} = 4/9$$

$$P_{11}: -10 \, u_{11} + u_{21} + 4 \, u_{12} = -1/4$$

$$P_{21}: \quad u_{11} - 10 \, u_{21} + 4 \, u_{22} = -57/36$$

$$P_{12}: \quad 4 \, u_{11} - 10 \, u_{12} + u_{22} + 4 \, u_{13} = -5/9$$

$$P_{22}: \quad 4 \, u_{21} + u_{12} - 10 \, u_{22} + 4 \, u_{23} = 4/9$$

$$P_{13}: \quad 4 \, u_{12} - 10 \, u_{13} + u_{23} = -155/12$$

$$P_{23}: \quad 4 \, u_{12} - 10 \, u_{13} + u_{23} = -83/12$$

5. (30 points) Consider the following parabolic equation (warning: this is different from $u_t = u_{xx}!$):

$$u_t = 4u_{xx} + 100, \quad 0 \le x \le 1, \ 0 \le t \le 0.01,$$

with boundary conditions

$$\begin{cases} u(0,t) = 0, & \text{for } 0 \le t \le 0.01 \\ u(1,t) = 0, & \text{for } 0 \le t \le 0.01 \\ u(x,0) = \begin{cases} x, & \text{if } 0 \le x \le 0.2 \\ 0.25(1-x), & \text{if } 0.2 \le x \le 1 \end{cases}$$

Approximate the solution to above equation using Crank-Nicolson method with h = 0.2 and k = 0.01 for $0 \le t \le 0.01$. Set up the Gauss-Seidel Iteration that solves this problem.

$$\frac{u_{\overline{i},j+1} - u_{\overline{i},j}}{f_{a}} = 2 \frac{u_{\overline{i},j} - 2u_{\overline{i},j} + u_{\overline{i},j}}{f_{a}} + 100$$

$$+ 2 \frac{u_{\overline{i},j+1} - 2u_{\overline{i},j+1} + u_{\overline{i},j+1}}{f_{a}} + 100$$

$$2 u_{\overline{i},j+1} - 2u_{\overline{i},j} = u_{\overline{i}+1,j} - 2u_{\overline{i},j+1} + u_{\overline{i}+1,j+1} + 2$$

$$+ u_{\overline{i}+1,j+1} - 2u_{\overline{i},j+1} + u_{\overline{i}+1,j+1} + 2$$

$$+ u_{\overline{i}+1,j+1} - u_{\overline{i}+1,j+1} - u_{\overline{i}+1,j+1} + u_{\overline{i}+1,j+1} + 2$$

$$+ u_{\overline{i}+1,j+1} - u_{\overline{i}+1,j+1} - u_{\overline{i}+1,j+1} + u_{\overline{i}+1,j+1} + 2$$

$$+ u_{\overline{i}+1,j+1} - u_{\overline{i}+1,j+1} + u_{\overline{i}+1,j+1} + 2$$

$$+ u_{\overline{i}+1,j+1} - u_{\overline{i}+1,j+1} + 2$$

$$+ u_{\overline{i}+1$$