

♥紫晶-微分要义

本书为紫晶-铀石计划的内容汇编,目的是通俗、高效、系统化地记录 微分学的重点与解题技巧。

Sion Tine 2022 年 10 月 10 日

前言1

学学半。

—「兑命」

2022/10/10 更新:版本 0.1 「天体制压用最終兵器擊」发布。

① 添加章节: 中值定理

¹本书采用❷�❸②署名-非商业性使用-禁止演绎 3.0 知识共享协议授权。

目录

第1章	中值定理	4
1.1	定义	4
	1.1.1 小定理	4
	1.1.2 罗尔定理	4
	1.1.3 拉格朗日中值定理	5
	1.1.4 柯西中值定理	5
1.2	策略	5
	1.2.1 辅助函数 F(x)	5
1.3	应用	5
	1.3.1 极限的计算	5
	1.3.2 证明题	5

第一章

中值定理

1.1 定义

微分中值定理是罗尔定理、拉格郎日中值定理和柯西中值定理的统称。其中拉格朗日中值定理是微分中值定理的核心,它给出了导数值与函数值之间的某种定理关系,可以应用它来证明一些等式或不等式。罗尔定理可看成特殊情况下的拉格朗日中值定理,它可以证明等式,还有重要应用是可以解决某些方程根的存在性问题。柯西中值定理是拉格朗日中值定理的推广,它可以用来证明等式或不等式。微分中值定理是导数应用的理论基础,是应用导数的局部性质研究函数全局性质的重要工具。它使得导数理论用于函数形态的研究成为可能,显示了导数理论、微分学的强大功能和广泛的应用性。

— 陈阳、王涛「浅谈微分中值定理证明及应用题目」

图 1.1: 罗尔定理的几何解释

图 1.2: 拉格朗日定理的几何解释

图 1.3: 柯西定理的几何解释

1.1.1 小定理

- **最值定理** 若函数 f(x) 满足:在闭区间 [a,b] 连续,则有: $m \le f(x) \le M$ (m,M) 分别为区间内的最小值、最大值)
- 介值定理 若函数 f(x) 满足: 在闭区间 [a,b] 连续,m,M 分别为区间内的最小值、最大值,当 $m \le C \le M$,则有: $\exists \xi \in [a,b], f(\xi) = C$
- 平均值原理 当 $a < x_1 < x_2 < \dots < x_n < b$ 时, 在 $[x_1, x_n]$ 上至少存在一点 ξ , 使 $f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{f(x_n)}$
- **零点定理** 若函数 f(x) 满足: 在闭区间 [a,b] 连续,当 $f(a)\cdot f(b)<0$ 时, 存在 $\xi\in(a,b)$, 使得 $f(\xi)=0$
- **费马定理** 若函数 f(X) 在点 x_0 处可导,取极值,则 $f'(x_0) = 0$

1.1.2 罗尔定理

若函数 f(x) 满足: 在闭区间 [a,b] 连续,在开区间 (a,b) 可导,端点值相等 f(a)=f(b),则: $\exists \xi \in (a,b)$,使得 $f^{'}(\xi)=0$

推广: 把端点取值范围进行推广,可以得到更为宽泛的罗尔定理。

- 1. $\lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) = A$, A 可以为常数、 $\pm \infty \Longrightarrow \exists \xi \in (a,b), f'(\xi) = 0$
- 2. $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = A \Longrightarrow \exists \xi \in (-\infty, +\infty), f'(\xi) = 0$

1.1.3 拉格朗日中值定理

若函数 f(x) 满足: 在闭区间 [a,b] 连续, 在开区间 (a,b) 可导, 则: $\exists \xi \in (a,b)$, 使得 $f(a)-f(b)=f^{'}(\xi)(b-a)$

1.1.4 柯西中值定理

若函数 f(x) 满足: 在闭区间 [a,b] 连续,在开区间 (a,b) 可导, $g'(x) \neq 0$ 则: $\exists \xi \in (a,b)$,使得 $\frac{f(a) - f(b)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$

隐含

拿到题目以后,我们首先要会去分辨信息,下面列出了常见的信息以及其背后隐藏的含义。

1. 可导必连续,连续不一定可导。

1.2 策略

1.2.1 辅助函数 F(x)

辅助函数是极其重要的,毫不夸张地说,这一步就是所有策略的关键。一般的没有特征的情形我们可以直接把题设上移项直接转化成 F(x),其他类型的解决策略如下:

- 见到 f(x)f'(x), 令 $F(x) = f^2(x)$
- 见到 $[f'(x)]^2 + f(x)f''(x)$, $\Leftrightarrow F(x) = f(x)f'(x)$
- 见到 $f'(x) + f(x)\varphi'(x)$, 令 $F(x) = f(x)e^{\varphi(x)}$
- 见到 $f'(x)x f(x), x \neq 0, \Leftrightarrow F(x) = \frac{f(x)}{x}$
- 见到 $f''(x)f(x) [f'(x)]^2$, $f(x) \neq 0$, $\Leftrightarrow F(x) = \frac{f'(x)}{f(x)}$

1.3 应用

1.3.1 极限的计算

练习 1.1 用拉格朗日中值定理与柯西中值定理来计算下面的极限: $\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$ 解 柯西中值定理: $x = \sin(\arcsin x)$, 构造来两个辅助函数 $\sin x$, $e^{\sin x}$

1.3.2 证明题

这是中值定理主要发力的地方,一般来讲,证明题三步走

- 1. 构造辅助函数
- 2. 确定区间
- 3. 验证定理的条件

类型一 欲证: 至少存在一点 ξ , 满足关于 $f^{(n)}$ 与 $f^{(n-1)}$ 的关系式, 且不含区间端点 a,b. 利用复合函数的导数 $[\ln f^{'}(x)] = \frac{f^{'}(x)}{f(x)}$,

1. 代换: 用 x 代换掉 ξ

- 2. 变形: 化成 f(x) = 0 的形式
- 3. 还原:对各个式子求积分
- 4. 合并: 把所有项组合到一个式子里
- 5. 构造: 写出来辅助函数
- **练习 1.2** $f(x) \in 0, 1$, 且在 (0,1) 内二阶可导, f(0) = f(1), 证明: $\exists \xi \in (0,1), s, t f''(\xi) = 2 \frac{f'(\xi)}{1-\xi}$

 - 解 (1) 代換: 将 ξ 用 x 代換得 $f''(x) = 2\frac{f'(x)}{1-x}$ (2) 变形: $\frac{f''(x)}{f'(x)} + \frac{2}{x-1} = 0$
 - (3) 还原: $\left[\ln f'(x)\right]' + \left[\ln(x-1)^2\right]' = 0$ (4) 合并: $\left[\ln f'(x)(x-1)^2\right]' = 0$

 - (5) 构造辅助函数: $F(x) = f'(x)(x-1)^2$