Structural Induction

Jason Filippou

CMSC250 @ UMCP

07-05-2016

Outline

• Recursively defined structures

- Proofs
 - Binary Trees
 - Sets

Recursively defined structures

Recursively defined structures

- Many structures in Computer Science are recursively defined, i.e parts of them exhibit the same characteristics and have the same properties as the whole!
- They are also "well-ordered", in the sense that they exhibit a "well-founded partial order", like the order \leq of \mathbb{Z} or \subseteq for sets.

Structural induction as a proof methodology

- Structural induction is a proof methodology similar to mathematical induction, only instead of working in the domain of positive integers (N) it works in the domain of such recursively defined structures!
- It is terrifically useful for proving *properties* of such structures.
- Its structure is sometimes "looser" than that of mathematical induction.

Proofs

Pictorially

Pictorially

Pictorially

A recursive definition and statement on binary trees

Definition (Non-empty binary tree)

A **non-empty** binary tree T is either:

- Base case: A root node r with no pointers, or
- Recursive (or inductive) step: A root node r pointing to 2 non-empty binary trees T_L and T_R

A recursive definition and statement on binary trees

Definition (Non-empty binary tree)

A **non-empty** binary tree T is either:

- Base case: A root node r with no pointers, or
- Recursive (or inductive) step: A root node r pointing to 2 non-empty binary trees T_L and T_R

Claim: |V| = |E| + 1

The number of vertices (|V|) of a non-empty binary tree T is the number of its edges (|E|) plus one.

Binary Trees

First structurally inductive proof

Proof (via structural induction on non-empty binary trees).

Let T be a non-empty binary tree and P the proposition we want to hold..

- **Inductive Base**: If T consists of a single root node r (base case for a non-empty binary tree), then |V| = 1 and |E| = 0, so P(r) holds.
- **Inductive Hypothesis**: In the recursive part of the definition for a non-empty binary tree, T may consist of a root node r pointing to 1 or 2 non-empty binary trees T_L and T_R . Without loss of generality, we can assume that both T_L and T_R are defined, and we assume $P(T_L)$ and $P(T_R)$.
- **Inductive Step:** We prove now that P(T) must hold. Denote by V_L , E_L , V_R , E_R the vertex and edge sets of the left and right subtrees respectively. We obtain:

$$|V| = |V_L| + |V_R| + 1$$
 (By definition of non-empty binary trees)
 $= (|E_L| + 1) + (|E_R| + 1) + 1$ (By the Inductive Hypothesis)
 $= (|E_L| + |E_R| + 2) + 1$ (By grouping terms)
 $= |E| + 1$ (By definition of non-empty binary trees)

So P(T) holds.

Here's one for you!

Definition (Height of a non-empty binary tree)

The height h(T) of a non-empty binary tree T is defined as follows:

- (Base case:) If T is a single root node r, h(r) = 0.
- (Recursive step:) If T is a root node connected to two "sub-trees" T_L and T_R , $h(T) = max\{h(T_R), h(T_L)\} + 1$

Theorem (m(T) as a function of h(T))

A non-empty binary tree T of height h(T) has **at most** $2^{h(T)+1}-1$ nodes.

① Prove $P(\cdot)$ for the base-case of the tree.

Binary Trees

- **1 Prove** $P(\cdot)$ for the base-case of the tree.
 - This can either be an empty tree, or a trivial "root" node, say r. That is, you will **prove** something like P(null) or P(r).

- **1 Prove** $P(\cdot)$ for the base-case of the tree.
 - This can either be an empty tree, or a trivial "root" node, say r. That is, you will **prove** something like P(null) or P(r).
 - As always, prove explicitly!

- **1 Prove** $P(\cdot)$ for the base-case of the tree.
 - This can either be an empty tree, or a trivial "root" node, say r. That is, you will **prove** something like P(null) or P(r).
 - As always, prove explicitly!
- **2 Assume** the inductive hypothesis for an arbitrary tree T, i.e assume P(T).
 - Valid to do so, since at least for the trivial case we have explicit proof!

- **1 Prove** $P(\cdot)$ for the base-case of the tree.
 - This can either be an empty tree, or a trivial "root" node, say r. That is, you will **prove** something like P(null) or P(r).
 - As always, prove explicitly!
- **2 Assume** the inductive hypothesis for an arbitrary tree T, i.e assume P(T).
 - Valid to do so, since at least for the trivial case we have explicit proof!
- 3 Use the inductive / recursive part of the tree's definition to build a new tree, say T', from existing (sub-)trees T_i , and **prove** P(T')!

- **1 Prove** $P(\cdot)$ for the base-case of the tree.
 - This can either be an empty tree, or a trivial "root" node, say r. That is, you will **prove** something like P(null) or P(r).
 - As always, prove explicitly!
- **2 Assume** the inductive hypothesis for an arbitrary tree T, i.e assume P(T).
 - Valid to do so, since at least for the trivial case we have explicit proof!
- ① Use the inductive / recursive part of the tree's definition to build a new tree, say T', from existing (sub-)trees T_i , and **prove** P(T')!
 - Use the Inductive Hypothesis on the T_i !

Sets

- Sets can be defined **recursively**!
- Our goal is to find a "flat" definition of them (a "closed-form" description), much in the same way we did with recursive sequences and strong induction.
- Consider the following:

- Sets can be defined **recursively**!
- Our goal is to find a "flat" definition of them (a "closed-form" description), much in the same way we did with recursive sequences and strong induction.
- Consider the following:
 - **1** S_1 is such that $3 \in S_1$ (base case) and if $x, y \in S_1$, then $x + y \in S_1$ (recursive step).

- Sets can be defined **recursively**!
- Our goal is to find a "flat" definition of them (a "closed-form" description), much in the same way we did with recursive sequences and strong induction.
- Consider the following:
 - S_1 is such that $3 \in S_1$ (base case) and if $x, y \in S_1$, then $x + y \in S_1$ (recursive step).
 - ② S_2 is such that $2 \in S_2$ and if $x \in S_2$, then $x^2 \in S_2$.

- Sets can be defined **recursively**!
- Our goal is to find a "flat" definition of them (a "closed-form" description), much in the same way we did with recursive sequences and strong induction.
- Consider the following:
 - **1** S_1 is such that $3 \in S_1$ (base case) and if $x, y \in S_1$, then $x + y \in S_1$ (recursive step).
 - ② S_2 is such that $2 \in S_2$ and if $x \in S_2$, then $x^2 \in S_2$.
 - 3 S_3 is such that $0 \in S_3$ and if $y \in S_3$, then $y + 1 \in S_3$.

- Sets can be defined **recursively!**
- Our goal is to find a "flat" definition of them (a "closed-form" description), much in the same way we did with recursive sequences and strong induction.
- Consider the following:
 - S_1 is such that $3 \in S_1$ (base case) and if $x, y \in S_1$, then $x + y \in S_1$ (recursive step).
 - S_2 is such that $2 \in S_2$ and if $x \in S_2$, then $x^2 \in S_2$.
 - S_3 is such that $0 \in S_3$ and if $y \in S_3$, then $y + 1 \in S_3$.
 - Vote (> 1 possible)! $2 \in S_1$

Recursive definitions of sets

- Sets can be defined **recursively!**
- Our goal is to find a "flat" definition of them (a "closed-form" description), much in the same way we did with recursive sequences and strong induction.
- Consider the following:
 - **1** S_1 is such that $3 \in S_1$ (base case) and if $x, y \in S_1$, then $x + y \in S_1$ (recursive step).
 - ② S_2 is such that $2 \in S_2$ and if $x \in S_2$, then $x^2 \in S_2$.
 - 3 S_3 is such that $0 \in S_3$ and if $y \in S_3$, then $y + 1 \in S_3$.
 - Vote (> 1 possible)! $2 \in S_1$

16 ∈

- S_1
- $\overline{S_2}$
- S_3

Recursive definitions of sets

- Sets can be defined **recursively**!
- Our goal is to find a "flat" definition of them (a "closed-form" description), much in the same way we did with recursive sequences and strong induction.
- Consider the following:
 - **1** S_1 is such that $3 \in S_1$ (base case) and if $x, y \in S_1$, then $x + y \in S_1$ (recursive step).
 - S_2 is such that $2 \in S_2$ and if $x \in S_2$, then $x^2 \in S_2$.
 - 3 S_3 is such that $0 \in S_3$ and if $y \in S_3$, then $y + 1 \in S_3$.
 - Vote (> 1 possible)! $2 \in S$
- S_2
- S_{i}

16 ∈

- S
- S_2
- S_3

21 ∈

- S_1
- S_2
- S_3

Practice!

- \bullet S_4 is such that $1 \in S_4$ and if $x, y \in S_4$, then $x(-y) \in S_4$.
- **5** S_5 is such that $\emptyset \in S_5$ and $a \in S_5 \Rightarrow \{a\} \in S_5$.
- **6** S_6 is such that $\emptyset \in S_6$ and $a, b \in S_6 \Rightarrow a \cup b \in S_6$.
- § S_8 is such that $i \in \mathbb{N}^* \Rightarrow \{i\} \cap \{i+1\} \in S_8$.

Practice!

- \bullet S_4 is such that $1 \in S_4$ and if $x, y \in S_4$, then $x(-y) \in S_4$.
- **5** S_5 is such that $\emptyset \in S_5$ and $a \in S_5 \Rightarrow \{a\} \in S_5$.
- **6** S_6 is such that $\emptyset \in S_6$ and $a, b \in S_6 \Rightarrow a \cup b \in S_6$.
- § S_8 is such that $i \in \mathbb{N}^* \Rightarrow \{i\} \cap \{i+1\} \in S_8$.
- $|S_4| =$

Practice!

- **5** S₅ is such that $\emptyset \in S_5$ and $a \in S_5 \Rightarrow \{a\} \in S_5$.
- **6** S_6 is such that $\emptyset \in S_6$ and $a, b \in S_6 \Rightarrow a \cup b \in S_6$.
- **8** S_8 is such that $i \in \mathbb{N}^* \Rightarrow \{i\} \cap \{i+1\} \in S_8$.
- $|S_4| =$
- $|S_5| =$

- 0
- 1
- 2

Practice!

- **6** S_5 is such that $\emptyset \in S_5$ and $a \in S_5 \Rightarrow \{a\} \in S_5$.
- **6** S_6 is such that $\emptyset \in S_6$ and $a, b \in S_6 \Rightarrow a \cup b \in S_6$.
- **8** S_8 is such that $i \in \mathbb{N}^* \Rightarrow \{i\} \cap \{i+1\} \in S_8$.
- $|S_4| =$
- $|S_5| =$
- $|S_6| =$

- 0
- 1

 $+\infty$

Practice!

- \bullet S_4 is such that $1 \in S_4$ and if $x, y \in S_4$, then $x(-y) \in S_4$.
- **5** S_5 is such that $\emptyset \in S_5$ and $a \in S_5 \Rightarrow \{a\} \in S_5$.
- **6** S_6 is such that $\emptyset \in S_6$ and $a, b \in S_6 \Rightarrow a \cup b \in S_6$.
- **8** S_8 is such that $i \in \mathbb{N}^* \Rightarrow \{i\} \cap \{i+1\} \in S_8$.
- $|S_4| =$
- $|S_5| =$
- $|S_6| =$
- $|S_7| =$

- 0
- 1
- 2
- - 4
 - 2

- Ω
- 1
- 2
 - $+\infty$

 $+\infty$

 $+\infty$

Practice!

- **5** S_5 is such that $\emptyset \in S_5$ and $a \in S_5 \Rightarrow \{a\} \in S_5$.
- **6** S_6 is such that $\emptyset \in S_6$ and $a, b \in S_6 \Rightarrow a \cup b \in S_6$.
- 8 S_8 is such that $i \in \mathbb{N}^* \Rightarrow \{i\} \cap \{i+1\} \in S_8$.

•
$$|S_4| =$$

•
$$|S_5| =$$

•
$$|S_6| =$$

•
$$|S_7| =$$

•
$$|S_8| =$$

 $+\infty$

Our first structurally inductive proof on sets

A proposition on a recursively defined set

Let S be a set defined as follows:

- Base case: $4 \in S$
- Recursive / Inductive step: If $x \in S$, then $x^2 \in S$.

Then, prove that $\forall x \in S, x \text{ is even.}$

Our first structurally inductive proof on sets

A proposition on a recursively defined set

Let S be a set defined as follows:

- Base case: $4 \in S$
- Recursive / Inductive step: If $x \in S$, then $x^2 \in S$.

Then, prove that $\forall x \in S, x \text{ is even.}$

Proof

Proof (via structural induction on S).

Let P be the proposition we want to prove. We proceed inductively:

- Inductive base: In the base case of the definition of S, we have that $4 \in S$. Since 4 is an even number, $P(\{4\})$ holds.
- Inductive hypothesis: The inductive definition of S successively builds sets S' from previous "versions" of S. We assume that $\exists S' : |S'| \geq 1$ and P(S').
- Inductive step: We will prove that $P(S' \cup \{x^2 | x \in S'\})$ holds. Let x_0 be an arbitrarily selected element of S'. From the inductive hypothesis, we know that x_0 is even. From a known theorem, we know that x_0^2 is even. But this means that $P(\{x_0\})$, and since x_0 was arbitrarily selected within S', $P(S' \cup \{x^2 | x \in S'\})$ holds.

A proof on the Cartesian Plane

An inequality proof

Let S be the subset of $\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$ defined as follows:

- Base case: $(0,0) \in S$
- Recursive step:

$$(a,b) \in S \Rightarrow (((a,b+1) \in S) \land ((a+1,b+1) \in S) \land (a+2,b+1) \in S).$$
 Prove that $\forall (a,b) \in S, a \leq 2b.$

• Suggestion: To make sure you understand the exercise, first list 5 elements in S.

Cartesian plane exercise, proof

In class!

The set of positive multiples of 3

Let the set S be such that:

- (Base case:) $3 \in S$
- (Recursive step:) $(x \in S) \land (y \in S) \Rightarrow (x + y) \in S$

Then, $S = \{3n, \forall n \in \mathbb{N}^*\}.$

The set of positive multiples of 3

Let the set S be such that:

- (Base case:) $3 \in S$
- (Recursive step:) $(x \in S) \land (y \in S) \Rightarrow (x + y) \in S$

Then, $S = \{3n, \forall n \in \mathbb{N}^*\}.$

• What do I need to do in order to prove this statement?

The set of positive multiples of 3

Let the set S be such that:

- (Base case:) $3 \in S$
- (Recursive step:) $(x \in S) \land (y \in S) \Rightarrow (x + y) \in S$

Then, $S = \{3n, \forall n \in \mathbb{N}^*\}.$

- What do I need to do in order to prove this statement?
- \bullet $A \subseteq S$

Mathematical induction

Structural Induction

The set of positive multiples of 3

Let the set S be such that:

- (Base case:) $3 \in S$
- (Recursive step:) $(x \in S) \land (y \in S) \Rightarrow (x + y) \in S$

Then, $S = \{3n, \forall n \in \mathbb{N}^*\}.$

- What do I need to do in order to prove this statement?
- \bullet $A \subseteq S$

Contradiction

Cases

Mathematical induction

Structural Induction

 \circ $S \subset A$

Contradiction

Cases

Mathematical induction

Structural Induction

Proof

Proof (via weak induction on n and structural induction on S!)

Let $A = \{3n, \ \forall n \in \mathbb{N}^*\}$. To prove S = A, we need to prove that $S \subseteq A$ and $A \subseteq S$.

- First, we prove that $A \subseteq S$. The proof is via weak induction on n. Let r be a generic particular for \mathbb{N}^* and P(n) be the statement we want to prove. a We proceed inductively:
 - **1** Inductive base: For r = 1, $3r = 3 \cdot 1 \in S$. Therefore, P(1) holds.
 - ② Inductive hypothesis: We assume that for some value of $r \geq 1$, P(r) holds, i.e $3r \in S$
 - **3** Inductive step: We want to prove P(r+1), that is, $3(r+1) \in S$. We know that $3r \in S$ and $3 \in S$ by the inductive base and hypothesis. By the definition of S, this means that $3r+3 \in S \overset{(Algebra)}{\Longrightarrow} 3(r+1) \in S$. So, P(r+1) holds.

Since $r \in \mathbb{N}^*$ was arbitrarily chosen, the result holds for all $n \in \mathbb{N}^*$.

^aWe can do this, since A is parameterized by n.

Proof (continued)

Proof: $S \subseteq A$ part.

- We now prove that $S \subseteq A$.
 - **1 Inductive base**: By the base case of the definition of S, we have that $3 \in S$. Since $3 = 3 \cdot 1$ and $1 \in \mathbb{N}^*$, we have that $3 \in A$. So P(3).
 - **2** Inductive hypothesis: Assume that $x, y \in S$ are also contained by A, i.e $x, y \in A$. So P(x), P(y).
 - **3 Inductive step**: We must show that P(x+y), i.e $x+y \in A$, because if we do show this, we will have covered the recursive step of A's definition. From the inductive hypothesis, we have that $x,y \in A \Rightarrow \exists i,j \in \mathbb{N}^* : x=3i,\ y=3j$. Therefore, $x+y=3\underbrace{(i+j)} \Rightarrow x+y \in A$. Therefore, P(x+y).

Recursively defined languages!

Definition

A recursively defined language Let $\Sigma = \{a, b\}$ be an alphabet. We define the language \mathcal{L} as follows:

- (Base case:) $\epsilon \in \mathcal{L}$
- (Recursive step:) If $x \in \mathcal{L}$, $axa \in \mathcal{L}$ and $bxb \in \mathcal{L}$.

 $^{{}^{}a}\sigma_{1}\sigma_{2}$ is the **concatenation** of σ_{1} and σ_{2} . Concatenation can be applied to n strings, $n = 1, 2, 3, \ldots, \sigma^{n}$ is the concatenation of σ n- many times.

Recursively defined languages!

Definition

A recursively defined language Let $\Sigma = \{a, b\}$ be an alphabet. We define the language \mathcal{L} as follows:

- (Base case:) $\epsilon \in \mathcal{L}$
- (Recursive step:) If $x \in \mathcal{L}$, $axa \in \mathcal{L}$ and $bxb \in \mathcal{L}$.

Claim

 $\forall \sigma \in \mathcal{L}, |\sigma| \text{ is even.}^a$

 $|\sigma|$ is the number of characters in σ .

 $^{{}^{}a}\sigma_{1}\sigma_{2}$ is the **concatenation** of σ_{1} and σ_{2} . Concatenation can be applied to n strings, $n = 1, 2, 3, \ldots$ σ^{n} is the concatenation of σ n- many times.

General structure on inductive proofs on sets

1 In the inductive base, **prove** $P(\cdot)$ for all the base elements of the recursively defined set S.

- **1** In the inductive base, **prove** $P(\cdot)$ for all the base elements of the recursively defined set S.
 - This gives us that $P(\cdot)$ holds for sets up to some cardinality n_0 .

- **1** In the inductive base, **prove** $P(\cdot)$ for all the base elements of the recursively defined set S.
 - This gives us that $P(\cdot)$ holds for sets up to some cardinality n_0 .
- ② In the inductive hypothesis, assume $\exists S : |S| \geq n_0$ and P(S).

- **1** In the inductive base, **prove** $P(\cdot)$ for all the base elements of the recursively defined set S.
 - This gives us that $P(\cdot)$ holds for sets up to some cardinality n_0 .
- ② In the inductive hypothesis, assume $\exists S : |S| \geq n_0$ and P(S).
 - Reminds us of weak mathematical induction?

- **1** In the inductive base, **prove** $P(\cdot)$ for all the base elements of the recursively defined set S.
 - This gives us that $P(\cdot)$ holds for sets up to some cardinality n_0 .
- ② In the inductive hypothesis, assume $\exists S : |S| \geq n_0$ and P(S).
 - Reminds us of weak mathematical induction?
- 3 In the inductive step, use the recursive part of the definition of S to prove that the new set constructed (call it S') satisfies the proposition (so P(S')).
 - The inductive hypothesis will undoubtedly be used.