

Práctica dirigida de Física

Análisis dimensional - Vectores - Cinemática I REPASO SAN MARCOS - 2023 I

	Responde
Áreas A, B y C	1 al 10
Áreas D y E	1 al 6

Una piedra soltada desde una cierta altura con 1. respecto a la superficie de la Tierra, experimenta una fuerza F descrita por la siguiente ecuación:

F = mg - kv

Donde m es masa v v es la rapidez con la que la piedra desciende. Determine la ecuación dimensional de k.

A)
$$MT^{-2}$$

B)
$$MT^{-1}$$

C)
$$M^{-1}T^{-2}$$

D)
$$M^{-2}T^{-2}$$

El gráfico muestra dos personas que jalan una caja, donde F_A es de 4,00 N y F_B de 2,00 N de magnitud. Si las cuerdas son inextensibles y forman un ángulo de 60°, determine el módulo de la fuerza resultante entre F_A y F_B .

A) $2\sqrt{7}$ N

B) 6 N

C) $2\sqrt{5}$ N

D) $\sqrt{7}$ N

E) $7\sqrt{2}$ N

3. Al explorar una cueva, una espeleóloga parte de la entrada y realiza la siguiente trayectoria: Recorre 45 m hacia el sur durante 30 s y finalmente 75 m en dirección N 53° E durante 2 minutos. Determine la rapidez media v el módulo de la velocidad media, ambos en m/s, durante todo el recorrido

A) 0.8 v 0.6

B) 0,2 v 0,4

C) 0.6 v 0.8

D) 0.4 v 0.6

E) 0.8 v 0.4

Un automóvil deportivo que se mueve con rapidez constante recorre 110 m en 5,0 s. Si luego frena deteniéndose al cabo de 5,0 s, determine el módulo de su aceleración durante el frenado.

A) 0.6 m/s^2

B) 1.5 m/s^2 C) 2 m/s^2 E) 4.4 m/s^2

D) 3.6 m/s^2

Un automóvil y una motocicleta inician su movimiento en forma simultanea sobre una pista recta; pero la motocicleta está 16,0 m atrás del automóvil. El automóvil acelera a razón de 1.40 m/s², v la motocicleta, a 1.90 m/s². Determine cuánto tardará la motocicleta en alcanzar al automóvil

A) 8 s

B) 9 s

C) 10 s

D) 11 s

E) 12 s

Un estudiante observa que globos con agua pasan frente a su ventana de forma vertical v nota que cada globo golpea la acera 2,0 s después de pasar por su ventana, ubicada a 21,2 m arriba de la acera. Determine la rapidez que presentan los globos cuando pasan por la ventana del estudiante. Desprecie la resistencia del aire. $(g=10 \text{ m/s}^2)$

A) 0.4 m/s

B) 0.5 m/s

C) 0.6 m/s

D) 0,7 m/s

E) 0.8 m/s

7. Una partícula se mueve con rapidez constante v en una travectoria circunferencial de radio r. Si la aceleración que experimenta, presenta la siguiente ecuación:

 $a=v^m r^n$

Determinar los valores de los exponentes m v n respectivamente.

- A) -2: 1 D) 2; -1
- B) 1:1
- C) 2: 1
- E) -1:2
- Del gráfico mostrado se tiene que $|\vec{A}| = |\vec{B}| = 10$ u, determine el módulo del vector resultante.

- A) 20
- B) 22
- C) 24

D) 32

- E) 34
- Un atleta realiza los siguientes desplazamientos $\vec{r}_1 = (0.5\hat{i} - 0.7\hat{j}) \text{ km}, \ \vec{r}_2 = -1.1\hat{j} \text{ km y}$ $\vec{r}_3 = (a\hat{i} + b\hat{j})$ km. Si el desplazamiento total está descrito por el siguiente vector $\vec{r} = (2.5\hat{i} + 1.7\hat{j})$ km, determine ab.
 - A) 7,0
- B) 4,4
- C) 8,6

D) 3.0

- E) 6.8
- 10. El techo de una aula está 2.70 m sobre el piso. Un estudiante lanza una manzana verticalmente hacia arriba, desde una altura de 0,90 m sobre el piso. Calcule la rapidez inicial máxima que puede darse a la manzana sin que toque el techo. $(g = 10 \text{ m/s}^2)$
 - A) 4,5 m/s
- B) 5 m/s
- C) 6 m/s

ACADEMD) 7 m/s

E) 8,4 m/s