# Optimization of Big Mountain Resort's Ticket Price and Facilities Management

By Andrew Chung

# Context / Background

- Big Mountain Resort recently installed an additional chair lift that increases their operating costs by \$1,540,000 this season.
- So far, the pricing strategy has been to charge a premium above the average price in the same market share and in Montana.
- However, there no concrete data to support current costs and/or ticket price.

**Primary goal:** To ensure Big Mountain Resort is capitalizing on their facilities and maximizing profit.

#### **Problem Statement**

How should Big Mountain Resort (1) cut costs across its facilities, (2) improve or add new facilities, and/or (3) select a new ticket price in order to increase this season's profit by at least 5% in comparison to the expected profit at the current price point?

**Note:** The data used for this project was taken from a provided spreadsheet containing relevant features for 330 ski resorts across the U.S. which are considered to be in the same market share.

## Key Findings and Strategy Recommendation

#### Key Findings and Figures:

- Expected ticket price for Big Mountain Resort is \$95.87, which is \$14.87 greater than the current price of \$81
- To cover the **costs of the additional chair lift** that was just installed + the original expected revenue, Big Mountain needs at least **298,927 visitors** this season at the increased ticket price
- To experience an additional **5% revenue increase** in comparison to the expected revenue for the season at the original price, Big Mountain needs at least **310,500 visitors** at the increased ticket price

#### Choosing at least one of the following strategies:

- 1. Permanently closing down up to 10 of the least used runs
- 2. Increase the vertical drop by adding a run to a point 150 feet lower down but requiring the installation of an additional chair lift to bring skiers back up, without additional snow making coverage
- 3. Same as number 2, but adding 2 acres of snow making cover
- 4. Increase the longest run by 0.2 mile, requiring an additional snow making coverage of 4 acres

The model suggests that **strategies 1 and 2** are worth looking into, while 3 and 4 will most likely yield results that are no better than the first two.

## Implementation Specifics

- Focused on predicting weekend ticket prices only
  - Ski resorts in Montana exhibit no difference between weekday and weekend prices
  - There are less missing values for weekday prices
- State-level differences not taken into consideration
  - No commonly observable differences between resorts from different states, even after considering the area and population of each state.
- Choice of model was made between (1) a linear regression model and (2) a random forest regression model, w/ random forest regressor coming out on top
  - Specifics of model choice are not as important however, should note that the best possible model was chosen
  - On average, the final random forest regressor was around \$9.54 off from the actual ticket prices of resorts, over a 50% decrease from the expected error of \$19.14 when simply using the mean of ticket prices as a predictor

# Important Price-Increasing Features





- Model considered these factors to be the most important, in the following order:
  - The number of fast quad lifts
  - The number of runs
  - Acres of snow making
  - Vertical drop height
- Big Mountain places near the top of the dataset in terms of both the number of fast quads and the number of runs, the two most important features by a mile.
  - Justifies the price increase from \$81 to \$95.14, although Big Mountain already charges a premium in comparison to other resorts

# Analysis of Strategies

Scenario 1: Closing down *n* least used runs **(graph shown right)** 

- Closing 5 or 8 runs will likely be the most optimal — no loss in revenue compared to closing down 3 or 6 runs, respectively.
- Need more information on operational cost of each run to assess viability

Scenario 2: Increasing vertical drop by 150 feet and adding additional run and chair lift

- Increases support for ticket price by \$1.99
  - Amounts to \$3,474,638 over the course of an entire season.
- Need further information on construction and operational costs of these facilities





#### **Non-Viable Options**

Scenario 3: Scenario 2 + two acres of snow making

 Predicted to increase the ticket price by no more than scenario 2, making scenario 2 more attractive

Scenario 4: Four acres of snow making and lengthening the longest run

Causes 0 difference in support for the ticket price

## Summary and Conclusion

#### Key action points

- Adjust ticket price upwards (taking into consideration the expected price of \$95.14), given that it is validated by further market analysis from an economic standpoint
- Compare and contrast the expected profit from scenarios 1 and 2 after taking into consideration the costs of closing down runs and/or adding 150ft of vertical drop + a new run and chair lift

If this model is deemed useful by the business side, further work can be done in coordination w/ engineering to deploy to an application environment (perhaps on the web) in which the UI can allow for various parameters to be tuned and varied.

Thank you for attending!