

Semantically Weighted Similarity Analysis for XML-based Content Components

Jan Oevermann

jan.oevermann@dfki.de

Christoph Lüth christoph.lueth@dfki.de

DocEng 2018, Halifax, 29.08.2018

Technical Documentation

- XML-based content components
 - Self-contained building blocks e.g. chapter-sized
 - Reuse, translation, aggregation, delivery
- Semantic XML information models
- Large databases of content components
- Product variants -> content variants

```
<descriptive nodeid="PI-70006536">
<heading>Fuel Gas Requirements</heading>
<descriptive body>
  <paragraph>This Section defines [...]
    <row>
      <entry>
        <paragraph>Permissible range</paragraph>
      </entry>
      <entry>
         <paragraph>
           <inlinedata>
             <si-value>
               <number>5</number>
               <unit>°C</unit>
             </si-value>
           </inlinedata>to
           <inlinedata>
             <si-value>
               <number>120</number>
               <unit>°C</unit>
             </si-value>
           </inlinedata>
         </paragraph>
```


Motivation

- Similar or duplicate content components
 - Document-based migration
 - Uncontrolled reuse / copying
 - Not checking / finding existing content
- Why is this bad?
 - Information retrieval / content delivery
 - high recall, low precision
 - Higher translation cost for variants
 - Time spent (re)writing existing content

Requirements & Implications

- Large amounts of content components
 - Computational efficient algorithm
- Simple similarity measure
 - Reliable against semantically similar differences
- (Non-)Detection of intentional variants
 - Weighting of semantically relevant text properties
- Quality assurance
 - UI for checking flagged relations

Architecture

Similarity analysis

- Similarity relations are symmetrical
- Total number of all relations (C) can grow rapidly
- Cosine similarity (s) for comparing vectors with extracted features
- Threshold for similarity measure to reduce total number of relations to check (r)

$$s = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|}$$

Semantic similarity

<paragraph nodeid="a">This device is designed to work with a voltage of <inlinedata><si-value><number>110</number> <unit>V</unit></si-value></inlinedata> only./paragraph>

expected similarity

<paragraph nodeid="b">This device is designed to work with a voltage of <inlinedata><si-value><number>220</number> <unit>V</unit></si-value></inlinedata> only./paragraph>

low high

<paragraph nodeid="c">This device works with a voltage of <inlinedata><si-value><number>110</number><unit>V</unit> </si-value></inlinedata> only.

Semantic weighting

- Extracted text from weighted elements treated separately
- Weighting artificially increases feature count by quantifier (q)
- Influences similarity in predictable ways
- Does not add to the complexity of the similarity analysis

Implementation

- Implemented in JavaScript
- All processing is done client-side (browser), heavy calculations in own threads (web worker)
- Tested efficiency on standard hardware

Set	units (n)	comb. (C)	words unit	total t [s]	$\frac{t}{ C }$ [ms]
A	166	13,695	455.8	0.7	0.052
В	1,600	1,279,200	178.0	243.7	0.191
C	2,501	3,126,250	353.4	650.7	0.208
D	4,101	8,407,050	278.9	2,878.0	0.342

Workbench-like user interface

Similarity Analysis

Similarity Analysis

Duplicates

Similar combinations

219

in 13,695 total combinations

Save results 🕶

New analysis

Time

Elapsed time

0.7s

for 166 total objects

Outlook & Conclusion

- RegEx or NER to in preprocessing to add XML tags
- Alternative similarity measures
- Integration with CCMS, give recommendations
- Research dependency to information model semanticity
- Simple method which can improve similarity results
- Real-world relevance through customer project with Siemens Energy (TecDoc Department)

Contact

Jan Oevermann jan.oevermann@dfki.de www.janoevermann.de Code & Demo github.com/j-oe/semsim semsim.fastclass.de