Part 1 Average Rate of Change

ARoC1.tex

Exercise 1 Melinda grows a unique type of mango known for its sweetness and smoothness. Because of this, the price of a mango increases with the distance from Melinda's farm. The function M gives the price of a mango in dollars given the distance x in miles from Melinda's farm:

$$M(x) = \frac{1}{100}x^2 + 4$$

(a) Compute $AV_{[1,10]}$.

 $AV_{[1,10]} = \$ \boxed{1.11}$ per mile from Melinda's farm.

(b) Compute $AV_{[200,300]}$.

 $AV_{[200,300]} = \$ 5$ per mile from Melinda's farm.

ARoC2.tex

Exercise 2 The temperature T in degrees Fahrenheit t hours after 6 AM is given by:

$$-\frac{1}{2}t^2 + 8t + 32,$$

for $0 \le t \le 12$.

(a) $T(4) = 56^{\circ} F$. This is the temperature at

Multiple Choice:

- (i) 4AM.
- (ii) 10AM. ✓
- (iii) 4PM.
- (iv) 10PM.
- (b) The average rate of change of T over the interval [4,8] is $\boxed{2}$.
- (c) The average rate of change of T from t = 8 to t = 12 is -2.
- (d) The average rate of temperature change between 10 AM and 6 PM is $\boxed{0}$.
- (e) The units for the rates above are

Multiple Choice:

- (i) degrees Fahrenheit.
- (ii) degrees Celsius.
- (iii) degrees Celsius per hour.
- (iv) degrees Celsius per minute.
- (v) degrees Fahrenheit per hour. \checkmark
- (vi) degrees Fahrenheit per minute.

ARoC3.tex

Exercise 3 Let $f(x) = \sin(x)$. The following information about the sine function may be helpful.

Important Values of $f(x) = \sin(x)$	
x	f(x)
$-\pi$	0
$\frac{-\pi}{2}$	-1
0	0
$\frac{0}{\pi}$	1
π	0
$\frac{3\pi}{2}$	-1
2π	0

(a) Compute $AV_{\left[-\pi, \frac{3\pi}{2}\right]}.$ Give an exact answer.

$$AV_{\left[-\pi,\frac{3\pi}{2}\right]} = \boxed{-\frac{2}{5\pi}}.$$

(b) Based on your answer above, the sine function is

Multiple Choice:

- (i) increasing on the interval $\left[-\pi, \frac{3\pi}{2}\right]$.
- (ii) decreasing on the interval $\left[-\pi, \frac{3\pi}{2}\right]$.
- (iii) constant on the interval $\left[-\pi, \frac{3\pi}{2}\right]$.
- (iv) increasing on average on the interval $\left[-\pi, \frac{3\pi}{2}\right]$.
- (v) decreasing on average on the interval $\left[-\pi, \frac{3\pi}{2}\right]$. \checkmark
- (vi) constant on average on the interval $\left[-\pi, \frac{3\pi}{2}\right]$.
- (c) Compute $AV_{[0,2\pi]}$.

$$AV_{[0,2\pi]} = \boxed{0}.$$

(d) Based on your answer above, the sine function is

Multiple Choice:

(i) increasing on the interval $[0, 2\pi]$.

- (ii) decreasing on the interval $[0, 2\pi]$.
- (iii) constant on the interval $[0, 2\pi]$.
- (iv) increasing on average on the interval $[0, 2\pi]$.
- (v) decreasing on average on the interval $[0, 2\pi]$.
- (vi) constant on average on the interval $[0, 2\pi]$.

ARoC4.tex

Exercise 4 The height of an object dropped from the roof of an eight story building is modeled by $h(t) = -16t^2 + 64$, where $0 \le t \le 2$. Here, h is the height of the object off the ground in feet, t seconds after the object is dropped.

The slope of the line through the points (0, h(0)) and (2, h(2)) is $\boxed{-32}$

ARoC5.tex

Exercise 5 Using data from Bureau of Transportation Statistics, the average fuel economy F in miles per gallon for passenger cars in the US can be modeled by $F(t) = -0.0076t^2 + 0.45t + 16$, for $0 \le t \le 28$, where t is the number of years since 1980.

(a) Compute $AV_{[0,28]}$.

$$AV_{[0,28]} = \boxed{0.2372}$$

(b) In this context, $AV_{[0,28]}$ represents

Multiple Choice:

- (i) the average fuel economy for passenger cars in the US from 1980 to 2008.
- (ii) the average price of fuel in the US from 1980 to 2008.
- (iii) the average rate of change of the average fuel economy for passenger cars in the US from 1980 to 2008. ✓
- (c) The units of $AV_{[0,28]}$ are

Multiple Choice:

- (i) miles.
- (ii) miles per gallon.

- (iii) miles per gallon per year. ✓
- (iv) miles per year.

ARoC6.tex

Exercise 6 Let $f(x) = \frac{1}{x}$.

(a) Compute $AV_{[1,2]}$.

$$AV_{[1,2]} = \boxed{-\frac{1}{2}}.$$

(b) Compute $AV_{[100,101]}$.

$$AV_{[100,101]} = \boxed{-\frac{1}{10100}}$$

ARoC7.tex

Exercise 7 Let $f(x) = x^3$.

(a) Compute $AV_{[3,5]}$.

$$AV_{[3,5]} = \boxed{49}.$$