вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по Бързи алгоритми върху структури от данни спец. $07.12.2017~{\rm r}.$

Задача 1. За естествено число $n \in \mathbb{N}$ с $V_n = \{0, 1, 2, \dots, n-1\}$ означаваме множеството от първите n естествени числа. За естествени числа i, j < n, интервал $I_{i,j}$ на V_n е множеството $I_{i,j} = [i;j] \cap V_n$, съставено от естествените числа между i и j.

Нека $G=(V_n,E)$ е ориентиран граф без примки. За интервали I' и I'' на V_n дефинираме out(I',I'') като броя ребра, които имат начало в I' и край във $V_n\setminus I''$ или имат начало във $V_n\setminus I'$ и край в I''.

Разглеждаме следния проблем, при който е даден ориентиран граф без примки и трябва да се обработват редица от заявки:

Дадено: $n \in \mathbb{N}$, $G = (V_n, E)$. Вход: $0 \le i, j < n$, $d \in \mathbb{N}$.

Изход: $Q(i, j, d) = \{ \langle k, l \rangle \mid out(I_{i,j}, I_{k,l}) \leq d \}$.

- (0.3 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$, в който всеки връх е край на поне едно ребро, за време O(|E| + n) и обработва всяка заявка Q(i, j, 0) за време O(1).
- (0.4 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$ за време O(|E|+n) и обработва всяка заявка Q(i, j, 0) за време O(|Q(i, j, 0)|).
- (0.3 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$ за време O(|E|+n) и обработва всяка заявка Q(i, j, d) за време $O(|Q(i, j, d)| + d^2)$.
- (0.5 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$ за време O(|E|+n) и обработва всяка заявка Q(i, j, d), за която от $I_{i,j}$ излизат поне 2d ребра, за време $O(|Q(i, j, d)| + d \log d)$.

Обосновете коректността и времевата сложност на предложените от Вас алгоритми.

Забележка: Алгоритмите, разглеждани по време на курса могат да използват без допълнителна верификация.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по Бързи алгоритми върху структури от данни спец. $07.12.2017~{\rm r}.$

Задача 2. За естествено число $n \in \mathbb{N}$ с $V_n = \{0, 1, 2, \dots, n-1\}$ означаваме множеството от първите n естествени числа. За естествени числа i, j < n, интервал $I_{i,j}$ на V_n е множеството $I_{i,j} = [i;j] \cap V_n$, съставено от естествените числа между i и j.

Нека $G=(V_n,E)$ е ориентиран граф без примки. За интервали I' и I'' на V_n дефинираме out(I',I'') като броя ребра, които имат начало в I' и край във $V_n\setminus I''$ или имат начало във $V_n\setminus I'$ и край в I''.

Разглеждаме следния проблем, при който е даден ориентиран граф без примки и трябва да се обработват редица от заявки:

Дадено: $n \in \mathbb{N}$, $G = (V_n, E)$. Вход: $0 \le i, j < n$, $d \in \mathbb{N}$.

Изход: $Q(i, j, d) = \{ \langle k, l \rangle \mid out(I_{i,j}, I_{k,l}) \leq d \}$.

- (0.3 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$, в който всеки връх е край на поне едно ребро, за време O(|E| + n) и обработва всяка заявка Q(i, j, 0) за време O(1).
- (0.4 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$ за време O(|E|+n) и обработва всяка заявка Q(i, j, 0) за време O(|Q(i, j, 0)|).
- (0.3 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$ за време O(|E|+n) и обработва всяка заявка Q(i, j, d) за време $O(|Q(i, j, d)| + d^2)$.
- (0.5 т) Да се предложи алгоритъм, който индексира граф $G = (V_n, E)$ за време O(|E|+n) и обработва всяка заявка Q(i, j, d), за която от $I_{i,j}$ излизат поне 2d ребра, за време $O(|Q(i, j, d)| + d \log d)$.

Обосновете коректността и времевата сложност на предложените от Вас алгоритми.

Забележка: Алгоритмите, разглеждани по време на курса могат да използват без допълнителна верификация.