Отчёт по лабораторной работе №6

Дисциплина: Научное программирование

Полиенко Анастасия Николаевна, НПМмд-02-23

Содержание

1	Цель работы	4							
2	Задание								
3	Выполнение лабораторной работы 3.1 Пределы, последовательности и ряды								
4	Выводы	18							

Список иллюстраций

3.1	Анонимная функция		 •	•			•		6
3.2	Индексная переменная								7
3.3	Значения п								8
3.4	Значения функции								9
3.5	Члены ряда								10
3.6	Цикл								11
3.7	Последовательность частичных сумм								12
3.8	График								13
3.9	Сумма ряда								13
3.10	Вычисленние интеграла								14
3.11	Koд midpoint								15
3.12	Результат работы midpoint								15
3.13	Koд midpoint_v								16
3.14	Результат работы midpoint_v								16
	Сравнение								17

1 Цель работы

Изучить работу с пределами, последовательностями и рядами и численным интегрированием в GNU Octave.

2 Задание

- 1. Изучить работу с пределами, последовательностями и рядами
- 2. Изучить численное интегрирование

3 Выполнение лабораторной работы

3.1 Пределы, последовательности и ряды

1. Рассмотрим предел

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$$

Определим анонимную функцию (рис. 3.1).

Рис. 3.1: Анонимная функция

Создаём индексную переменную (рис. 3.2).

```
>> k = [0:1:9]'
```

Рис. 3.2: Индексная переменная

С помощью индексной переменной определим значения n как степени 10 (рис. 3.3).

```
>> format long
>> n = 10 .^
            10
           100
          1000
         10000
        100000
       1000000
     10000000
    1000000000
   10000000000
```

Рис. 3.3: Значения п

И посчитаем значения функции f(n) (рис. 3.4). Можем наблюдать, как они сходятся к числу e.

Рис. 3.4: Значения функции

2. Посчитаем частичные суммы для ряда

$$\sum_{n=2}^{\infty}a_{n}$$
, где $a_{n}=rac{1}{n(n+2)}$

Создаём индексную переменную и считаем члены ряда (рис. 3.5).

```
>> n = [2:1:11]'
n =
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
>> a = 1 ./ (n .* (n+2))
a =
   1.2500e-01
   6.6667e-02
   4.1667e-02
   2.8571e-02
   2.0833e-02
   1.5873e-02
   1.2500e-02
   1.0101e-02
   8.3333e-03
   6.9930e-03
```

Рис. 3.5: Члены ряда

В цикле считаем последовательность частичных сумм (рис. 3.6) и выведем их (рис. 3.7).

```
>> for i = 1:10
s(1) = sum(a(1:i))
end
s = 0.1250
s =
0.1250  0.1917  0.2333  0.2619

s =
0.1250  0.1917  0.2333  0.2619  0.2827

s =
0.1250  0.1917  0.2333  0.2619  0.2827

s =
0.1250  0.1917  0.2333  0.2619  0.2827  0.2986

s =
0.1250  0.1917  0.2333  0.2619  0.2827  0.2986

s =
0.1250  0.1917  0.2333  0.2619  0.2827  0.2986  0.3111

s =
0.1250  0.1917  0.2333  0.2619  0.2827  0.2986  0.3111  0.3212  0.3295

s =
0.1250  0.1917  0.2333  0.2619  0.2827  0.2986  0.3111  0.3212  0.3295

s =
0.1250  0.1917  0.2333  0.2619  0.2827  0.2986  0.3111  0.3212  0.3295
```

Рис. 3.6: Цикл

Рис. 3.7: Последовательность частичных сумм

0.3295

0.3365

Выведем члены последовательности и частичные суммы на график (рис. 3.8).

Рис. 3.8: График

3. Посчитаем сумму ряда

$$\sum_{n=1}^{1000} \frac{1}{n}$$

Создаём индексную переменную, генерируем на основе неё вектор значений и считаем их сумму (рис. 3.9).

Рис. 3.9: Сумма ряда

3.2 Численное интегрирование

1. Создадим функцию и вычислим определённый интеграл с помощью всроенной команды quad (рис. 3.10).

```
>> function y = f(x)
y = exp(x .^2) .* cos(x)
end
>> quad('f',0,pi/2)
y = 1.3103
y = 1.0002
y = 0.2267
y = 1.0056
y = 0.9042
y = 1.0319
y = 1.4191
y = 1.1003
y = 1.5288
y = 1.2269
y = 1.3991
y = 1.0000
y = 0.039792
v = 1.0015
y = 0.5458
y = 1.0149
y = 1.2115
y = 1.0595
y = 1.5188
y = 1.1560
y = 1.4792
ans = 1.8757
```

Рис. 3.10: Вычисленние интеграла

2. Напишем код для аппроксимированния суммами с циклами (рис. 3.11) и выведем результат (рис. 3.12); и векторами (рис. 3.13) и выведем результат

(рис. 3.14).

```
a = 0;
b = pi/2;
n = 100;
dx = (b-a)/n;

function y = f(x)
    y = exp(x .^ 2) .* cos(x);
end

msum = 0;
ml = a + dx/2

for i = 1:n
    m = ml + (i-1) * dx;
    msum = msum + f(m);
end

approx = msum * dx
```

Рис. 3.11: Код midpoint

```
>> midpoint
ml = 7.8540e-03
approx = 1.8758
```

Рис. 3.12: Результат работы midpoint

```
a = 0;
b = pi/2;
n = 100;
dx = (b-a)/n;

function y = f(x)
    y = exp(x .^ 2) .* cos(x);
end

m = [a + dx/2:dx:b - dx/2];
M = f(m)
approx = dx * sum (M)
```

Рис. 3.13: Код midpoint_v

```
>> midpoint_v
M =
Columns 1 through 9:
  1.000031 1.000278 1.000771 1.001512 1.002499 1.003734 1.005217 1.006947 1.008926
 Columns 10 through 18:
  1.011154 1.013632 1.016359 1.019336 1.022564 1.026045 1.029777 1.033762 1.038001
 Columns 19 through 27:
  1.042493 1.047241 1.052244 1.057502 1.063017 1.068788 1.074816 1.081101 1.087643
 Columns 28 through 36:
  1.094441 1.101496 1.108807 1.116374 1.124194 1.132267 1.140591 1.149165 1.157985
 Columns 37 through 45:
  1.167048 1.176352 1.185891 1.195662 1.205659 1.215876 1.226306 1.236941 1.247771
 1.258788 1.269979 1.281332 1.292833 1.304466 1.316214 1.328057 1.339973 1.351940
 Columns 55 through 63:
  1.363930 1.375916 1.387864 1.399740 1.411505 1.423117 1.434529 1.445691 1.456547
 1.467034 1.477087 1.486632 1.495589 1.503870 1.511380 1.518015 1.523660 1.528192
 Columns 73 through 81:
 1.531474 1.533360 1.533688 1.532283 1.528953 1.523491 1.515670 1.505243 1.491941
  1.475473 1.455519 1.431733 1.403739 1.371125 1.333447 1.290218 1.240910 1.184949
Columns 91 through 99:
  1.121709 1.050510 0.970612 0.881210 0.781428 0.670312 0.546827 0.409843 0.258133
  0.090360
approx = 1.8758
```

Рис. 3.14: Результат работы midpoint v

Сравним два алгоритма по времени (рис. 3.15).

```
>> tic; midpoint; toc
mi = 7.8540e-03
approx = 1.8758
Elapsed time is 0.00720716 seconds.
>> tic; midpoint_v; toc
M =
 Columns 1 through 9:
  1.000031 1.000278 1.000771 1.001512 1.002499 1.003734 1.005217 1.006947 1.008926
 Columns 10 through 18:
   1.011154 1.013632 1.016359 1.019336 1.022564 1.026045 1.029777 1.033762 1.038001
 Columns 19 through 27:
  1.042493 1.047241 1.052244 1.057502 1.063017 1.068788 1.074816 1.081101 1.087643
 Columns 28 through 36:
  1.094441 1.101496 1.108807 1.116374 1.124194 1.132267 1.140591 1.149165 1.157985
 Columns 37 through 45:
  1.167048 1.176352 1.185891 1.195662 1.205659 1.215876 1.226306 1.236941 1.247771
 Columns 46 through 54:
   1.258788 1.269979 1.281332 1.292833 1.304466 1.316214 1.328057 1.339973 1.351940
  1.363930 1.375916 1.387864 1.399740 1.411505 1.423117 1.434529 1.445691 1.456547
 Columns 64 through 72:
   1.467034 1.477087 1.486632 1.495589 1.503870 1.511380 1.518015 1.523660 1.528192
 Columns 73 through 81:
   1.531474 1.533360 1.533688 1.532283 1.528953 1.523491 1.515670 1.505243 1.491941
 Columns 82 through 90:
  1.475473 1.455519 1.431733 1.403739 1.371125 1.333447 1.290218 1.240910 1.184949
 Columns 91 through 99:
  1.121709 1.050510 0.970612 0.881210 0.781428 0.670312 0.546827 0.409843 0.258133
  0.090360
approx = 1.8758
Elapsed time is 0.019454 seconds.
```

Рис. 3.15: Сравнение

4 Выводы

Научилась работе с системами линейных алгебраических уравнений в Octave.