Bases de données - Examen 2016 - Corrigé

I:: Normalisation Relationnelle

Liste des attributs

- Clients
 - p_pseudo, p_password, p_name, p_surname, p_nation, p_adress, p_score,p_VIPpaiddate, p_VIPexpdate
- Badges
 - b_name, b_value, b_desc, b_game, b_getdate
- Comments
 - c_author, c_content, c_postdate, c_game, c_note
- Game
 - o g name, g registerdate, g note

Liste des Dépendances Fonctionnelles et DMVs (?)

J'ai fait une table pour truc o deps sinon c'est très vite illisible

On rappelle que les dépendances, c'est des associations (genre association de truc à ces choses) (genre il existe une fonction qui prend truc en argument et qui renvoie ces choses ou rien)

ID	Truc	Dépendances
(1) [^(1)]	p_pseudo	<pre>p_password, p_name, p_surname, p_address, p_VIPpaiddate, p_VIPexpdate, p_score</pre>
(2)	<pre>p_pseudo , g_name , g_registerdate</pre>	g_note
(3)	b_name	<pre>b_value, b_desc, g_name, g_registername</pre>
(4)	b_name, p_pseudo	b_getdate
(5)	<pre>c_postdate , p_pseudo</pre>	<pre>c_content, c_note, g_name, g_registerdate</pre>
(6)	p_pseudo	<pre>b_name , c_postdate</pre>

Décomposition en FNBC

- (1) + Théorème de Décomposition \implies la base se décompose sans perte d'information (SPI) en Joueur (<u>p_pseudo</u> , <u>p_password</u> , <u>p_name</u> , <u>p_surname</u> , <u>p_address</u> , <u>p_VIPpaiddate</u> , <u>p_VIPpaiddate</u> , <u>p_VIPpaiddate</u> , <u>p_score</u>) + un *reste*
- $(2) \implies \text{Note} \left(\frac{\text{Joueur}}{\text{Joueur}}, \frac{\text{g name}}{\text{g name}}, \frac{\text{g registername}}{\text{g note}} \right) + \text{un reste}$
- $(3) \implies \mathsf{Badge} \, (\, {\tt b \, name} \, , \, {\tt b \, value} \, , \, {\tt b \, desc} \, , \, {\tt g \, name} \, , \, {\tt g \, registerdate} \,) + \mathsf{un} \, \mathit{reste}$
- (4) \Longrightarrow Obtention (<code>Badge</code> , <code>Joueur</code> , <code>b_getdate</code>) + un reste
- (5) \Longrightarrow Comm (<u>Joueur</u>, <u>c_postdate</u>, c_content, c_note, g_name, g_registerdate) + un *reste*
- (6) \Longrightarrow Le reste se décompose SPI en (<u>p_pseudo</u> , <u>b_name</u>) et (<u>p_pseudo</u> , <u>c_postdate</u>) + un reste, mais ces deux-là sont redondantes

Tout ce qu'il y a au dessus DOIT figurer dans une copie pour avoir une bonne note, genre, 16 ou quoi.