

继电器应用及推广

继电器在电动车用的应用

继电器结构及原理简介

▶机理

当给"线圈"通电后,即会通过线圈周围的磁路系统产生电磁力;于是,"衔铁"就会受到向上的吸引力,"衔铁"在电磁力的作用下克服弹簧弹力与定铁芯接触同时并带动"动触点组件"向上运动,并与"固定触点"接触,这时电路接通。当给"线圈"断电后,电磁力消失,"衔铁"和"动触点组件"在"弹簧"的反作用力下与定铁芯及"定触点"断开,这时电路断开。

线圈设计技术

BYD继电器产品介绍及应用实例

型号	HV12200T	EVR40CI	EVR40CI EVR120CPI			
外观						
规格, mm (W×H×D)	63 × 50 × 23	67 × 35.2 × 46.5 76 × 46.1 × 77		106 × 32 × 81		
重量	140g	140g	400g	520g		
触点结构	常开					
额定工作电流	200A	40A 120A		200A		
额定工作电压	12V	12V	12V/24V	12V/24V		
功耗	12W	3W	0.97/1.42W	1.0/1.4W		
工作温度范围	-40~85℃, (无结冰,凝露)					
湿度范围	5 ~ 85%R.H.					
主触点端子	/	M4 螺丝	M4 螺丝	M6 螺丝		
线圈端端子	/	TYCO 护套 1379658-1 金属端子 1123343-1	TYCO 护套 174057-1 金属端子 173682-1	莫仕 护套 51198-0200 金属端子 50837-8000		

BYD继电器产品介绍及应用实例

型号	EVR200CE/ EVR200CPE	EVR300CPES	EVR300CPI-1	EVR400CPI		
外观						
规格, mm (W×H×D)	98.4 × 44× 88.5	104 × 38 × 94	110.9× 60 × 77.7	63 × 60×94		
重量	520g	520g	750g	600g		
触点结构	常开					
额定工作电流	200A	300A	300A 300A			
额定工作电压	12V/24V		12V/24V			
功耗	8.7/1.0W	1.1/1.5W	1.0/1.4W	1.2/1.6W		
工作温度范围	-40~85℃, (无结冰,凝露)					
湿度范围	5 ~ 85%R.H.					
主触点端子	M8螺丝	M8 螺丝	M8螺丝	M6 螺丝		
连接器型号	TYCO 护套 174057-1 金属端子 173682-1					

继电器热性能设计仿真

仿真条件: 负载通200A电流, 线圈电压12V

25 ℃环境温度热稳态分析图1

85 ℃环境温度热稳态分析图1

25 ℃环境温度热稳态分析图2

85 ℃环境温度热稳态分析图2

对200V继电器进行热稳态仿真,在25 ℃环境中,仿真分析结果出现最高温度约为58 ℃,温升33 ℃;在85 ℃环境中,仿真分析结果出现最高温度约为115 ℃,温升30 ℃

继电器热性能设计测试验证

EVR200CE常温过流200A

EVR200CE高温过流200A

EVR200CE常温 (25 ℃) 过流200A

接线柱温升为30.75℃,外壳陶瓷处温升为25.73℃,外壳线圈处温升为36.29℃

EVR200CE高温 (85 ℃) 过流200A

接线柱温升为20.20℃,外壳陶瓷处温升为14.54 ℃,外壳线圈处温升为24.46℃

继电器结构的优势

用陶瓷做灭弧室,不仅有非常好的耐热性能(**2000**度以上),而且散热系数是一般塑料的**60**倍以上,因此产品的耐温性能非常高。

2 连接方式全部采用钎焊和激光焊连 接,强度高,密封性好,更加安全 可靠。

密封腔内充氢气,触点工作环境 好,不仅可以防止铜的氧化,还可 以还原氧化铜,同时氢气具有冷却 电弧作用,起到灭弧效果。

BIVID 继电器剪切力和拉拔力测试

测试目的:测试剪切力以检测接线柱焊接

强度

测试方法: 用推拉力计下压顶接线柱侧面,

记录接线柱断裂时刻剪切力值; 测试标准:剪切力不低于100Mp

测试目的:测试拉拔力以检测接 线柱焊接强度

测试方法: 用推拉力计下压顶接 线柱正面, 记录接线柱断裂时刻

拉拔力;

测试标准: 拉拔力不低于150Mp

继电器气密性检测

▶ 继电器除了在设计时采用硬钎焊及激光 焊等技术密封,同时我们更是采用了德 国英福康氦检仪来检测产品的密封性, 为焊接能力提供保障。

▶设备检测原理:

通过向壳内充入相应的气体,用气体探测 头在密封部们进行探测,探测头采取吸气 方式,并分析吸入气体成分浓度,超过设 定浓度设备就分报警。

>氦气检测:

芯体完成焊接后进行氦气检测,通过充气管向芯体内持续充0.6Mpa氦气,测试各密封位,氦气值<1ppm为合格。

氦气检测仪

氦气检测方式

BYD与主要竞品耐久性测试对比

	2
	п
1000	400
Charle	

产品规格	测试条件	BYD (次)	A公司(次)	B公司(次)	C公司(次)	D公司(次)
400V/200A	400V-200A	19356	12314	8935	14760	15779
400V/400A	400V-400A	10938	\	\	\	2491
400V/200A	800V-200A	7229	\	\	\	\
400V/400A	800V-400A	3923	\	\	40	5
400V/200A	1000V-200A	1453	\	\	\	\

BYD400V/200A

寿命前、后产品完好

寿命测试失效模式为1次吸 合不断开

最终解释权归比亚迪股份有限公司所有

D公司400V/400A

寿命测试前产品

寿命测试失效为 产品破损、起火

C公司400V/200A

寿命测试前产品

寿命测试失效为产品破损、起火

BYD与某品牌可靠性与耐热性对比

> 某品牌继电器的主要失效模式

示波器显示,继电器输出出现接通与断开的跳动后,输出端持续接通,继电器不能断开,而后发生爆裂。

某品牌结构的不足:

- 1、输出端的材质为塑料,在300度以上的高温就会马上失效;
- 2、上盖、主体、底座依 靠胶水的粘接强度连接, 容易发生失效;

最终解释权归比亚迪股份有限公司所有

上有粘稠状物质

继电器测试中心

800V-400A直流电源

高低温冲击

恒温恒湿机

400V-400A直流电源

振动测试机

800V-400A负载

绝缘测试仪

过流测试机

机械寿命

CPF继电器测试中心以ISO/TS16949: 2009标准中7.6.3条款"实验室要求"和ISO/IEC17025:2005《检测和校准实验室能力认可准则》建立管理体系。

非常感谢!

