ЛАБОРАТОРНАЯ РАБОТА 4.3.2

ДИФРАКЦИЯ СВЕТА НА УЛЬТРАЗВУКОВОЙ ВОЛНЕ В ЖИДКОСТИ

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

Оборудование: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостю, кварцевый излучатетль с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

ТЕОРИЯ

При небольших амплитудах УЗ волны показатель преломления меняется по закону

$$n = n_0(1 + m\cos(\Omega x))$$
$$\Omega = 2\pi/\Lambda$$

Акустическая решетка чисто фазовая если

$$m \ll \frac{\Lambda}{L} \sqrt{\frac{\lambda}{L}}$$

В общем случае, углы распространения света, при прохождении через кювету определяются условием

$$\Lambda \sin(\theta_m) = m\lambda$$

Рис. 1. Дифракция световых волн на акустической решётке

ХОД РАБОТЫ

Соберем схему согласно рисунку и настроим ее. Установим рабочую ширину щели на 20 мкм.

Рис. 2. Схема наблюдения дифракции на акустической решётке

ОЦЕНКА СКОРОСТИ ЗВУКА

Плавно меняя частоту в диапазоне 1-1.5 МГц получим дифракционную катину. Оценим длину УЗволны. Именно, удвоенное расторяние между наиболее четкими дифракционными картинами равно 1.0 мм, и скорость звука

$$v = \Lambda v = 1.480$$
 км/с.

Определим положения дифракционных полос. Уровень нуля – 100 делений. Цена деления – 4 мкм.

Частота, МГц	1.5852	1.9445	1.2659	1.0309
x_{-4} , делений				269
x ₋₃	307		278	240
x ₋₂	255	284	240	208
x ₋₁	206	223	198	174
x_0	155	160	159	148
x_1	110	103	115	113
x_2	60	42	74	78
x_3	-10	-15	30	46
x_4			-13	12

По полученным данным построим графики Y = Y(m) и определим коэффициенты наклона.

И расчитаем расстояние между соседними полосами.

Частота, МГц	1.5852	1.9445	1.2659	1.0309
Коэффициент наклона	-51.3	-60.1	-41.4	-32.2
Расстояние между полосами, мкм	205.2	240.4	165.6	128.8
Л, мкм	873	745	1082	1391
Скорость звука, км/с	1385	1450	1370	1435

Длина УЗ волны равна

$$\Lambda = \frac{f\lambda}{l}$$

Табличное значение скорости звука – 1484 км/с.

ОПРЕДЕЛЕНИЕ СКОРОСТИ УЛЬТРАЗВУКА МЕТОДОМ ТЕМНОГО ПОЛЯ

Рис. 3. Наблюдение акустической решётки методом тёмного поля

Перемещая излучатель найдем наиболее четкую картину решетки. Для нескольких частот определим координаты первой и последней видимых полос, и количество светлих полос между ними.

Частота, МГц	X0	Х1, делений	Количество полос	Длина волны Λ , мкм
1.0842	0	163	12	1268
1.2963	0	173	14	1154
1.4751	0	173	16	1009
1.6559	0	173	18	897
1.8032	0	164	20	765
0.9950	7	170	10	1522

Цена деления 46.7 мкм/дел.

Построим график по полученным данным и определим скорость ультразвука.

