Ex8.1 Strengthen Some Results in the Text.

Ex8.2
$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{E}' \to 0$$
.

X:: variety of dimension n over k, \mathcal{E} :: locally free sheaf of rank > n, $V^\# \subset \Gamma(X,\mathcal{E})$:: k-vector space of global sections which generate \mathcal{E} とする. X:: variety より X:: connected なので \mathcal{E} の rank は X 全体で一定である. rank $\mathcal{E} = r(> n)$ としておこう.

主張 Ex8.2.1

ある $s \in V$ について次が成立する.

$$\forall x \in X, \quad s_x \notin \mathfrak{m}_x \mathcal{E}_x.$$

- ■Convensions and Notations. X の closed point 全体を X^+ と書く. Ex3.14 より, これは dense in X. また, $d=\dim_k V^\#, V=\mathbb{P}^{d-1}_k$ とし, $V^+=(V^\#-\{0\})/k^*$ を V の closed points と同一視する. この同一視の仕方は Prop7.7 や dual projective space と同じである. $\dim_k V^\#-1=\dim V$ に注意. $V^\#$ の subspace も同様に V の subspace とみなす.
- **Definition of** B, B^+ . $B \subset X \times_k V$ を次のように置く.

$$B = \bigcap_{s \in V^{\#}} \operatorname{pr}_{1}^{-1}(\{x \in X \mid s_{x} \in \mathfrak{m}_{x} \mathcal{E}_{x}\}).$$

B は $X \times V$ の closed subscheme である. ({} 部分が closed であることは Ex2.16 を参照.) B には reduced structure を与えておく. $\operatorname{pr}_1|_B: B \to X$ を p_1 と略す. B の closed points $:: B^+$ は次のよう な集合である.

$$B^+ = \{(x, s) \in X^+ \oplus V^+ \mid s_x \in \mathfrak{m}_x \mathcal{E}_x\}.$$

- ■Plot. 主張は、 $\operatorname{pr}_2(B) \not\supseteq V^+$ と言い換えられる.(詳細は後ほど.)これには B の次元が V の次元 より小さいことを言えば良い.B の次元は $\operatorname{Ex} 3.22$ の結果を用いればその fiber :: B_x から計算できる.全ての $x \in X$ について $\dim B_x$ を計算することは難しい.しかし少し妥協して, $x \in X^+$ についての $\dim B_x$ を計算することは出来る.この場合でも $\operatorname{Ex} 3.22$ c の結果を用いて $\dim B_x$ が計算できる.
- **Definition of** ϕ_x . $x \in X$ について次の写像を考える.

$$\phi_x: V^\# \to \mathcal{E}_x \otimes_k k(x)$$

$$s \mapsto s_x \otimes 1$$

これが k-linear map であることは明らか. $k(x) := \mathcal{O}_x/\mathfrak{m}_x$ より $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x/\mathfrak{m}_x \mathcal{E}_x$. このことと ϕ_x の定義の仕方から, $\ker \phi_x = \{s \in V^\# \mid s_x \in \mathfrak{m}_x \mathcal{E}_x\}$.

 $\blacksquare \phi_x$ for $x \in X^+$. この段落では $x \in X^+$ とする、すると $k(x) = k^{\dagger 1}$ なので $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x$. また $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x / \mathfrak{m}_x \mathcal{E}_x$. さらに $V^\#$:: global generators of \mathcal{E} であるから, ϕ_x は surjective. なので

$$k(x) = \frac{S^{-1}(A/\mathfrak{a})}{S^{-1}(\mathfrak{m}/\mathfrak{a})} \cong S^{-1}\left(\frac{A/\mathfrak{a}}{\mathfrak{m}/\mathfrak{a}}\right) \cong S^{-1}(A/\mathfrak{m}).$$

 $A/\mathfrak{m}\cong k$ は体だから、これは $k(x)\cong k$.

 $^{^{\}dagger 1}$ X:: variety より,k:: algebraically closed field かつ X:: finite type / k. $A=k[x_1,\ldots,x_n]$, $\mathfrak{a}\subseteq A$ とし, $\mathfrak{m}/\mathfrak{a}\in\operatorname{Spec} A/\mathfrak{a}\subseteq X$ が x に対応する極大イデアルだとする.ここで \mathfrak{m} は A の極大イデアル. $S=A-\mathfrak{m}$ とすると

 $x \in X^+$ について dim ker ϕ_x が分かる.

$$\dim_k \ker \phi_x = \dim_k V^\# \otimes_k k(x) - \dim_k \mathcal{E}_x = \dim_k V^\# - r.$$

■ Dimension of fiber :: $\dim B_x$. p_1 についての $x \in X^+$ の fiber :: B_x の base space は,Ex3.10 より, $\operatorname{sp} B_x \approx p_1^{-1}(x)$. したがって次が分かる.

$$\operatorname{sp} B_x \cap \operatorname{sp} B^+ \approx p_1^{-1}(x) \cap \operatorname{sp} B^+ = \{x\} \times \ker \phi_x.$$

ここで \times は集合としての直積を表す. よって B_x の次元が分かる $^{\dagger 2}$.

$$\dim B_x = \dim_k \ker \phi_x - 1 = \dim_k V^\# - r - 1 = \dim V - r.$$

 $\blacksquare p_1$:: closed map. $V \to \operatorname{Spec} k$ は projective であり、 $V,\operatorname{Spec} k$ 共に noetherian であるからこの射は proper. よって universally closed である.

$$\begin{array}{c|c} X \times_k V & \longrightarrow V \\ & & & \downarrow^{\text{universally closed}} \\ X & \longrightarrow \operatorname{Spec} k \end{array}$$

B:: closed なので B の closed subset は X でも closed. したがって $p_1 = \operatorname{pr}_1|_B$:: closed map.

- ■ $p_1(B)=X$ or $B=\emptyset$. $p_1(B)\supseteq X^+$ とする. すると $p_1(B)$:: closed より $p_1(B)\supseteq\operatorname{cl}_X(X^+)=X$. 次に $p_1(B)\not\supseteq X^+$ とする. すると上で述べたこと(全ての $x\in X^+$ について $\dim p_1^{-1}(x)$ が等しいこと)から,結局 $p_1(B)\cap X^+=\emptyset$ が分かる. $p_1(B)$ が空でないと仮定しよう. すると p_1 :: closed map より, $x\in p_1(B)$ なら $\operatorname{cl}_X(\{x\})\subseteq p_1(B)$. $\operatorname{cl}_X(\{x\})$ は closed point を含むので矛盾が生じる. よって $p_1(B)\not\supseteq X^+$ ならば $p_1(B)=\emptyset$. これは $B=\emptyset$ を意味し,さらにこれは 0 を除く全ての $V^\#$ の元が claim の条件を満たすことを意味する. 以下, $B\neq\emptyset$ と仮定する.
- **■** $p_1^{-1}(x)$:: irreducible. 任意の closed point :: $x \in X^+$ について $p_1^{-1} = (\ker \phi_x \{0\})/k^*$. これは projective linear space だから irreducible.
- **■**B :: irreducible. 以上から B :: irreducible が分かる. B が二つの閉集合 C_1, C_2 の和であったとすると, $x \in X^+$ について $p_1^{-1}(x)$ は次のように書ける.

$$p_1^{-1}(x) = (C_1 \cap \operatorname{pr}_1^{-1}(x)) \cup (C_2 \cap \operatorname{pr}_1^{-1}(x)).$$

これは irreducible だから、 $C_1 \cap \operatorname{pr}_1^{-1}(x)$ か $C_2 \cap \operatorname{pr}_1^{-1}(x)$ に一致する。 $x_1, x_2 \in X^+$ について次のようになっていたと仮定しよう。

$$p_1^{-1}(x_1) = C_1 \cap \operatorname{pr}_1^{-1}(x), \quad p_1^{-1}(x_2) = C_2 \cap \operatorname{pr}_1^{-1}(x).$$

すると, $x_1 \in x_2 \notin p_1(C_1)$ となる. $p_1(C_2)$ も同様.すなわち $p_1(C_1), p_1(C_2)$ は $p_1(B) (= X)$ 空でない の真の閉集合である.しかし $X = p_1(B) = p_1(C_1) \cup p_1(C_2)$ であり X :: irreducible であるから,これ

 $^{^{\}dagger 2}$ closed subscheme of B :: C について $\dim C = \dim C \cap B^+$ を示す。 $C \cap B^+ \subset C$ より $\dim C \geq \dim C \cap B^+$ は明らか。 $d = \dim C$ とし,C の irreducible closed subset が成す真の極大上昇鎖をとる。 $Z_0 \subsetneq \cdots \subsetneq Z_d$. closed immersion \Longrightarrow finite type に注意すると, Z_i :: finite type/k. なので Ex3.14 より $Z_i \cap B^+$:: dense in Z_i . したがって $Z_i \cap B^+ = Z_j \cap B^+ \Longrightarrow Z_i = Z_j$ となり, $Z_0 \cap B^+ \subsetneq \cdots \subsetneq Z_d \cap B^+$ は B^+ の irreducible closed subset が成す真の上昇鎖.以上から $\dim C \leq \dim C \cap B^+$ も成り立つ.

はありえない.よって任意の $x\in X^+$ について $p_1^{-1}(x)=C_1\cap \operatorname{pr}_1^{-1}(x)$ (あるいは $=C_2\cap\ldots$)となる.両辺で $\bigcup_{x\in X^+}$ として

$$p_1^{-1}(X^+) = C_1 \cap p_1^{-1}(X^+).$$

 $p_1^{-1}(X^+)=(X^+\times V)\cap B\supset B^+$ であり, B^+ :: dense in B. $B^+\cap C_1$:: dense in C_1 も Ex3.14 から得られるので,両辺の B での閉包を取って $B=C_1$. したがって B :: irreducible.

■Dimension of B. B:: integral & finite type/k (\Longrightarrow variety/k) なので,Ex3.22c から次が成り 立つ: $x \in U$ ならば $\dim B_x = \dim B - \dim X$,となる U:: open dense subset in X が存在する。U:: non-empty open subset と X^+ :: dense から, $U \cap X^+ \neq \emptyset$. $x \in X^+$ であるときの及び開集合 $\dim B_x$ が既に分かっているから, $\dim B$ も分かる.

$$\dim B = \dim B_x + \dim X = \dim V - r + n.$$

r > n なので、 $\dim B < \dim V$.

- ■ $\operatorname{pr}_2(B)\supseteq V^+\Longrightarrow \dim B\ge \dim V.$ $\operatorname{pr}_2(B)\supseteq V^+$ としよう. B^+ の場合と同様に $\dim V^+=\dim V.$ ch I, Ex1.10 より, $\dim U=\dim V$ を満たす affine open subset of V::U がとれる. 適当に $\operatorname{pr}_1(B)$ からも affine open subset ::U' をとると, X,V 共に finite type /k だから, ch I, Ex3.15 (Products of Affine Varieties) が使える. よって $\dim U\times U'=\dim U+\dim U'\ge \dim U=\dim V.$ $U\times_k U'\subset B$ だから $\dim B\ge \dim V$
- ■Complete proof of the claim. 今はこれの対偶が成立する. すなわち, $s \in V^+ \mathrm{pr}_2(B)$ が存在する. この s と任意の $x \in X$ について $s_x \not\in \mathfrak{m}_x \mathcal{E}_x$ が成り立つ.
- \blacksquare An exact sequence. Φ を以下で定める.

$$\Phi: \quad \mathcal{O}_X \quad \to \quad \mathcal{E}$$
$$\langle U, \sigma \rangle \quad \mapsto \quad \langle U, (s|_U) \cdot \sigma \rangle$$

これの $x \in X$ における stalk を見ると, $\Phi_x : \sigma_x \mapsto s_x \cdot \sigma_x$ と成っている. $\mathcal{E}_x \cong \mathcal{O}_x^{\oplus r}$ かつ \mathcal{O}_x :: domain より, $\mathrm{Ann}(\mathcal{E}_x) = 0$.そして $s_x \notin \mathfrak{m}_x \mathcal{E}_x$ から, $s_x \neq 0$.なので Φ_x は,したがって Φ は injective.よって $\mathcal{E}' = \mathrm{coker}\,\Phi$ とおくと以下は exact sequence.

$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{E}' \to 0.$$

■ \mathcal{E}' :: locally free. \mathcal{E}' が locally free であることを示そう. Ex5.7b から,任意の点における stalk が free であることを示せば十分. 以下, $\mathcal{E}_x = \mathcal{O}_x^{\oplus r}$ (\cong でなく =) とする. 点 $x \in X$ について

$$s_x = (s_x^{(i)})_i \in \mathcal{O}_x^{\oplus r} = \mathcal{E}_x$$

とする. $s_x \not\in \mathfrak{m}_x \mathcal{E}_x = \mathfrak{m}_x^{\oplus r}$ から,ある i について $s_x^{(i)} \not\in \mathfrak{m}_x$. すなわち $s_x^{(i)}$:: unit.ここでは i=0 とし,

$$u = (s_x^{(0)})^{-1} s_x = \left(1, s_x^{(2)}(s_x^{(0)})^{-1}, \dots, s_x^{(r)}(s_x^{(0)})^{-1}\right) \in s_x \mathcal{O}_x$$

と置く、すると $\mathcal{E}_x'\cong\mathcal{E}_x/\operatorname{im}\Phi_x=\mathcal{O}_x^{\oplus r}/s_x\mathcal{O}_x$ は次の写像で $\mathcal{O}_x^{\oplus r-1}$ と同型.

$$\mathcal{O}_x^{\oplus r}/s_x \mathcal{O}_x \to 0 \oplus \mathcal{O}_x^{\oplus r-1}
(t^{(j)})_j \bmod s_x \mathcal{O}_x \mapsto (t^{(j)})_j - t^{(0)} u$$

well-defined であることは明らか、逆写像は次のもの.

$$\begin{array}{ccc}
\mathcal{O}_x^{\oplus r-1} & \to & \mathcal{O}_x^{\oplus r}/s_x \mathcal{O}_x \\
t & \mapsto & (0 \oplus t) \bmod s_x \mathcal{O}_x
\end{array}$$

(i) B の別構成.

 $d+1=\dim_k V^\#$ とし、 $\mathcal{V}=(V^\#)^\sim$ とする。 $V^\#\cong k^{\oplus d+1}$ から \mathcal{V} は rank $\mathcal{V}=d+1$ の locally free sheaf となる。そして全射 $\mathcal{V}\otimes_k\mathcal{O}_X\to\mathcal{E}$ が $\langle U,s\rangle\otimes\langle U,a\rangle\mapsto\langle U,sa\rangle$ の様に構成できる $^{\dagger 3}$. これの ker を \mathcal{B} とおく.

$$0 \longrightarrow \mathcal{B} \longrightarrow \mathcal{V} \otimes \mathcal{O}_X \longrightarrow \mathcal{E} \longrightarrow 0$$

構成から \mathcal{B} :: locally free と rank $\mathcal{B}=d+1-r$ が分かる (?). 双対をとる. (すなわち $\mathcal{H}om(-,\mathcal{O}_X)$ で写す.)

$$0 \longrightarrow \check{\mathcal{E}} \longrightarrow \check{\mathcal{V}} \otimes \mathcal{O}_X \longrightarrow \check{\mathcal{B}} \longrightarrow 0$$

全射 $\check{V}\otimes \mathcal{O}_X\to \check{\mathcal{B}}$ から、injective X-morphism :: $\mathbb{P}(\check{\mathcal{B}})\to \mathbb{P}^d_k\times X$ が誘導される(?). ここでの $\mathbb{P}(\check{\mathcal{B}})$ が B である(?). 構成の仕方から、 $\dim B=\mathrm{rank}\,\check{\mathcal{B}}-1$.

(ii) \mathcal{E}' :: locally free の別証明.

任意の点 $x \in X$ における stalk を考える.

$$0 \longrightarrow \mathcal{O}_x \xrightarrow{\times s_x} \mathcal{E}_x \longrightarrow \mathcal{E}'_x \longrightarrow 0$$

これを $\otimes_{\mathcal{O}_x} k(x)$ で写し,k(x)-module \mathcal{O} exact sequence にする.

$$\mathcal{O}_x \otimes k(x) \xrightarrow{\times (s_x \otimes 1)} \mathcal{E}_x \otimes k(x) \longrightarrow \mathcal{E}_x' \otimes k(x) \longrightarrow 0$$

同型で書き換える.

$$k(x) \xrightarrow{\times (s_x)^-} \mathcal{E}_x/\mathfrak{m}_x \mathcal{E}_x \longrightarrow \mathcal{E}_x' \otimes k(x) \longrightarrow 0$$

ただし $(s_x)^- = s_x \mod \mathfrak{m}_x \mathcal{E}_x$. これは $s_x \notin \mathfrak{m}_x \mathcal{E}_x$ から,0 でない.したがって左の写像は $1 \in k(x)$ を非ゼロ元に写す.この exact sequence は k(x)-module のものだったから,左の写像は injective.よって次が分かる.

$$\dim_{k(x)} \mathcal{E}'_x \otimes k(x) = \dim_{k(x)} \mathcal{E}_x \otimes k(x) - \dim_{k(x)} k(x) = r - 1.$$

すなわち $\dim_{k(x)} \mathcal{E}'_x \otimes k(x)$ は $x \in X$ について定数関数. Ex5.8 より, \mathcal{E}' :: locally free と分かる.

 $^{^{\}dagger 3}$ \mathcal{O}_X が k-module であることは次のように分かる。今, $f:X \to \operatorname{Spec} k$ が存在するので $\mathcal{O}_{\operatorname{Spec} k} \to f^*\mathcal{O}_X$ が存在する。 これの adjoint $:: f^{-1}\mathcal{O}_{\operatorname{Spec} k} \to \mathcal{O}_X$ を考えれば,開集合 $U \subseteq X$ について $\mathcal{O}_X(U)$ が k-module であることが分かる。 また,ここで書いた $\mathcal{V} \otimes_k \mathcal{O}_X \to \mathcal{E}$ の定義は presheaf $:: U \mapsto \mathcal{V}(U) \otimes_k \mathcal{O}_X(U)$ からの morphism なので sheafification が必要である。

- Ex8.3 Product Schemes.
- Ex8.4 Complete Intersections in \mathbb{P}^n .
- Ex8.5 Blowing Up a Nonsingular Subvariety.
- Ex8.6 The Infinitesimal Lifting Property.
- Ex8.7 Classifying Infinitesimal Extension: One Case.
- Ex8.8 Plurigenera and Hodge Numbers are Birational Invariants.