Aufgabe 1. (2 Punkte) Es sei $z \in \mathbb{C}$. Man zeige : $\{1, z\}$ ist genau dann eine Basis des \mathbb{R} -Vektorraumes \mathbb{C} , wenn $z \notin \mathbb{R}$.

Aufgabe 2. (2 Punkte) Es sei $V = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$. Man zeige, dass V ein \mathbb{R} -Untervektorraum von \mathbb{R}^3 ist, und finde eine Basis von V.

Aufgabe 3. (3 Punkte) Es sei k ein Körper, V ein k-Vektorraum und $v_1, \ldots, v_n \in V$. Man zeige: das System $\{v_1, \ldots, v_n\}$ ist genau dann linear unabhängig, wenn $v_i \notin \langle v_1, \ldots, v_{i-1} \rangle$ für alle $i \in \{1, \ldots, n\}$.

Aufgabe 4. (3 Punkte) Es sei k ein Körper und $a, b, c, d \in k$. Man zeige: das System $\{(a, b), (c, d)\} \subset k^2$ ist genau dann eine Basis von k^2 , wenn $ad - bc \neq 0$ gilt.

* Aufgabe 5. (5 Punkte) Es sei ln: $]0, +\infty[\to \mathbb{R}$ der natürliche Logarithmus (die Umkehrfunktion von exp). Man zeige, dass das System

$$\{\ln(p) \mid p \text{ ist eine Primzahl}\}$$

linear unabhängig in dem \mathbb{Q} -Vektorraum \mathbb{R} ist.