Analysis III

Wintersemester 2014/2015

Prof. Dr. D. Lenz

Blatt 9

Abgabe Dienstag 13.01.2015

(1) Berechnen Sie den Oberflächeninhalt der Polkappe einer Kugel mit Radius R > 0 im dreidimensionalen euklidischen Raum, definiert durch

$$\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = R^2, x^2 + y^2 < r, z > 0\}.$$

- (2) Seien a, b > 0 und $M := \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2/a^2 y^2/b^2\}.$
 - (a) Zeichnen Sie M.
 - (b) Bestimmen Sie die Tangentialebene in einem Punkt $p \in M$.
- (3) Seien M und N Untermannigfaltigkeiten des \mathbb{R}^m bzw. des \mathbb{R}^n . Zeigen Sie: $M \times N$ ist eine Untermannigfaltigkeit des \mathbb{R}^{m+n} der Dimension dimM + dimN.
- (4) Die Determinante einer $n \times n$ -Matrix ist eine Abbildung det : $\mathbb{R}^{n \times n} \to \mathbb{R}$.
 - (a) Berechnen Sie D det, (wobei D det $B = (\partial_{i,j} \det B)_{i,j=1}^n$ für $B \in \mathbb{R}^{n \times n}$ und $\partial_{i,j}$ die partielle Ableitung nach der (i,j) -ten Komponente ist, $i,j=1,\ldots,n$).
 - (b) Zeigen Sie, dass die allgemeine lineare Gruppe $GL(n) = \{A \in \mathbb{R}^{n \times n} \mid \det A \neq 0\}$ eine n^2 -dimensionale Untermannigfaltigkeit des $\mathbb{R}^{n \times n}$ ist.
 - (c) Berechnen Sie $T_AGL(n)$, $A \in GL(n)$.

Zusatz

- (Z1) (a) Zeigen Sie det $e^A = e^{\text{spur}A}$, wobei die Spur einer Matrix $A = (a_{i,j})_{i,j=1}^n$ definiert ist als spur $A = a_{1,1} + \ldots + a_{n,n}$ und $e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k$.
 - (b) Bearbeiten Sie auf Aufgabe (4) (b), (c) für $SL(n) = \{A \in \mathbb{R}^{n \times n} \mid \det A = 1\}.$

<u>Hinweis:</u> Sei $T_IGL(n)$ der Vektorraum der $n \times n$ -Matrizen mit Spur 0 und I die Einheitsmatrix. (Die Spur einer Matrix $A = (a_{i,j})_{i,j=1}^n$ ist definiert als spur $A = a_{1,1} + \ldots + a_{n,n}$.) Zeigen Sie: Ist $A \in T_IGL(n)$, so definiert $\gamma : \mathbb{R} \to \mathbb{R}^{n \times n}, t \mapsto e^{tA}$ eine Kurve in GL(n) mit $\gamma(0) = I$ und $\dot{\gamma}(0) = A$. (Zeigen Sie zunächst det $e^A = e^{\text{spur}A}$ mit Hilfe der Definition $e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k$.)

1

- (Z2) (a) Sei $\varphi:U\subseteq\mathbb{R}^k\to M:=\varphi(U)\subseteq\mathbb{R}^N,\ k< N,$ ein stetig differenzierbarer, regulärer Homö
omorphismus. Dann ist M eine Untermannigfaltigkeit.
 - (b) Sei h > 0 und

$$\phi: U := (0, \infty) \times \mathbb{R} \to \mathbb{R}^3, \quad (r, \theta) \mapsto (r \cos \theta, r \sin \theta, h\theta).$$

Zeigen Sie, dass die Wendelfläche $\phi(U)$ eine Untermannigfaltigkeit des \mathbb{R}^3 ist.