2009 VCAA Specialist Mathematics Exam 1 Solutions Free download and print from www.itute.com © Copyright 2009 itute.com

Q1
$$z^4 - z^2 - 6 = 0$$
, $(z^2)^2 - z^2 - 6 = 0$, $(z^2 - 3)(z^2 + 2) = 0$,
 $(z - \sqrt{3})(z + \sqrt{3})(z - i\sqrt{2})(z + i\sqrt{2}) = 0$.
 $\therefore z = \pm \sqrt{3}$, $\pm i\sqrt{2}$.

Q2 Take upward as the positive direction. Use $\sum \vec{F} = m\vec{a}$.

Q2a $\vec{R} + 50 \times^{-} 9.8 = 50 \times^{-} 2$, $\vec{R} = ^{+} 390$ newtons.

Q2b $\vec{R} + 50 \times^{-} 9.8 = 50 \times^{+} 2$, $\vec{R} = 50 \times^{+} 2$ newtons.

Q3 Unit vector parallel to $-2\tilde{i} - 2\tilde{j} + \tilde{k}$ is

$$\frac{-2\tilde{i} - 2\tilde{j} + \tilde{k}}{\sqrt{(-2)^2 + (-2)^2 + 1^2}} = \frac{1}{3} \left(-2\tilde{i} - 2\tilde{j} + \tilde{k} \right).$$

Scalar resolute of $5\tilde{i} + \tilde{j} + 3\tilde{k}$ parallel to $-2\tilde{i} - 2\tilde{j} + \tilde{k}$ is

$$\left(5\widetilde{i} + \widetilde{j} + 3\widetilde{k}\right) \cdot \frac{1}{3} \left(-2\widetilde{i} - 2\widetilde{j} + \widetilde{k}\right) = -3.$$

: vector resolute of $5\tilde{i} + \tilde{j} + 3\tilde{k}$ parallel to $-2\tilde{i} - 2\tilde{j} + \tilde{k}$ is

$$-3 \times \frac{1}{3} \left(-2\widetilde{i} - 2\widetilde{j} + \widetilde{k} \right) = 2\widetilde{i} + 2\widetilde{j} - \widetilde{k}$$
, and

vector resolute of $5\tilde{i} + \tilde{j} + 3\tilde{k}$ perpendicular to $-2\tilde{i} - 2\tilde{j} + \tilde{k}$ is $(5\tilde{i} + \tilde{j} + 3\tilde{k}) - (2\tilde{i} + 2\tilde{j} - \tilde{k}) = 3\tilde{i} - \tilde{j} + 4\tilde{k}$.

Q4
$$\cos(2\theta) = \frac{3}{4}$$
, $2\cos^2(\theta) - 1 = \frac{3}{4}$, $\cos^2(\theta) = \frac{7}{8}$,

$$\sin^2(\theta) = 1 - \cos^2(\theta) = \frac{1}{8}$$
.

Since
$$\theta \in \left(\frac{3\pi}{4}, \pi\right)$$
,

$$\therefore \cos(\theta) = -\frac{\sqrt{7}}{2\sqrt{2}} = -\frac{\sqrt{14}}{4} \text{ and } \sin(\theta) = \frac{\sqrt{2}}{4}.$$

$$\therefore cis(\theta) = \cos(\theta) + i\sin(\theta) = -\frac{\sqrt{14}}{4} + i\frac{\sqrt{2}}{4}.$$

Q5a
$$3(0)^3 - 4^2 + k(0) + 5(4) - 2(0)(4) = 4$$

 \therefore (0,4) satisfies the equation, hence every curve in the family passes through it.

Let x = 0 to find the y-intercepts, $y^2 - 5y + 4 = 0$,

$$(y-4)(y-1)=0$$
.

 \therefore (0,1) is the other y-intercept.

Q5b Implicit differentiation:

$$9x^2 - 2y\frac{dy}{dx} + k + 5\frac{dy}{dx} - 2y - 2x\frac{dy}{dx} = 0$$

$$\therefore (2x+2y-5)\frac{dy}{dx} = 9x^2 + k - 2y \; , \; \therefore \frac{dy}{dx} = \frac{9x^2 + k - 2y}{2x + 2y - 5}$$

Q5c If (1,1) is a point on the curve,

$$3(1)^3 - 1^2 + k(1) + 5(1) - 2(1)(1) = 4$$
, $k = -1$.

At
$$(1,1)$$
, $\frac{dy}{dx} = \frac{9(1)^2 - 1 - 2(1)}{2(1) + 2(1) - 5} = -6$.

Q6
$$y = e^{mx}$$
, $\frac{dy}{dx} = me^{mx}$, $\frac{d^2y}{dx^2} = m^2e^{mx}$.

$$\therefore \frac{d^2y}{dx^2} - 3\frac{dy}{dx} - 10y = m^2 e^{mx} - 3me^{mx} - 10e^{mx} = 0.$$

$$(m^2 - 3m - 10)e^{mx} = (m - 5)(m + 2)e^{mx} = 0.$$

Since $e^{mx} \neq 0$, $\therefore m = -2$ or 5.

Q7
$$a = v^2 - 3$$
, $\therefore \frac{1}{2} \frac{d(v^2)}{dx} = v^2 - 3$, $\frac{dx}{d(v^2)} = \frac{1}{2} \times \frac{1}{v^2 - 3}$,

$$x = \frac{1}{2} \int \frac{1}{v^2 - 3} d(v^2)$$

$$\therefore 2x = \log_e |v^2 - 3| + c.$$

At
$$x = 1$$
, $v = -2$, $c = 2$ and $2x = \log_e |v^2 - 3| + 2$.

$$|v^2 - 3| = e^{2(x-1)}, \ v^2 - 3 = e^{2(x-1)} \text{ or } v^2 - 3 = -e^{2(x-1)}$$

Hence
$$v^2 = 3 + e^{2(x-1)}$$
 or $v^2 = 3 - e^{2(x-1)}$.

Only $v^2 = 3 + e^{2(x-1)}$ satisfies the condition that at x = 1, v = -2. $v = -\sqrt{3 + e^{2(x-1)}}$

Q8a
$$f(x) = \frac{2+x^2}{4-x^2} = \frac{-(4-x^2)+6}{4-x^2} = -1 + \frac{6}{4-x^2}$$
.

Q8b

Area =
$$\int_{1}^{1} \left(-1 + \frac{6}{4 - x^2} \right) dx = 2 \times \int_{0}^{1} \left(-1 + \frac{6}{4 - x^2} \right) dx$$

$$= 2 \times \int_{0}^{1} \left(-1 + \frac{\frac{3}{2}}{2 - x} + \frac{\frac{3}{2}}{2 + x}\right) dx$$
 [Partial fractions]

$$= 2 \left[-x - \frac{3}{2} \log_e |2 - x| + \frac{3}{2} \log_e |2 + x| \right]_0^1 = \log_e 27 - 2.$$

Q9a
$$\frac{dy}{dx} = 4 + (y+2)^2$$
, $\frac{dx}{dy} = \frac{1}{4 + (y+2)^2}$,
 $x = \int \frac{1}{4 + (y+2)^2} dy = \frac{1}{2} \int \frac{2}{4 + (y+2)^2} dy = \frac{1}{2} \times \tan^{-1} \left(\frac{y+2}{2}\right) + c$.
Given $y(0) = 0$, $\therefore c = -\frac{\pi}{8}$.
 $x = \frac{1}{2} \times \tan^{-1} \left(\frac{y+2}{2}\right) - \frac{\pi}{8}$, $\tan^{-1} \left(\frac{y+2}{2}\right) = 2x + \frac{\pi}{4}$,
 $\frac{y+2}{2} = \tan \left(2x + \frac{\pi}{4}\right)$, $\therefore y = 2\tan \left(2x + \frac{\pi}{4}\right) - 2$.

Q9b
$$x_0 = 0$$
, $y_0 = 0$, $\frac{dy}{dx} = 8$.
 $x_1 = 0.1$, $y_1 \approx 0 + 0.1 \times 8 = 0.8$.

Q10a
$$f(x) = \frac{2}{\pi} \arcsin\left(\frac{1}{2}x+1\right) - 3 = \frac{2}{\pi} \arcsin\left(\frac{1}{2}(x+2)\right) - 3$$
. Comparing with $\arcsin(x)$, which has a domain of $[-1,1]$ and a range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the domain of $f(x)$ is dilated by a factor of 2 and translated to the left by 2, i.e. $[-4,0]$, the range of $f(x)$ is dilated by a factor of $\frac{2}{\pi}$ and translated downwards by 3, i.e. $[-4,-2]$.

Q10b
$$f(x) = \frac{2}{\pi} \arcsin\left(\frac{1}{2}x+1\right) - 3$$
,
 $f'(x) = \frac{2}{\pi} \times \frac{1}{\sqrt{1 - \left(\frac{1}{2}x+1\right)^2}} \times \frac{1}{2} = \frac{1}{\pi\sqrt{1 - \left(\frac{1}{2}x+1\right)^2}}$

$$= \frac{1}{\pi\sqrt{-\frac{1}{4}x(x+4)}} = \frac{2}{\pi\sqrt{-x(x+4)}}$$
.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors