الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية اختبار في مادة: الرياضيات المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي كيس على 11 كرية متماثلة لا نفرق بينها باللمس موزعة كما يلي: كريتان بيضاوان مرقمتان بـ: 1 ، 3

(X>1) احسب احتمال الحادثة

التعرين الأول: (40 نقاط)

وأربع كريّات حمراء مرقمة بـ: • ، 1 ، 1 ، 3 وخمس كريّات خضراء مرقمة بـ: • ، 1 ، 1 ، 3 ، 4 I) نسحب عشوائيا وفي أن واحد 3 كريّات من الكيس ونعتبر الحوادث الآتية:

- A: " الحصول على 3 كريات من نفس اللون " ، B: " الحصول على 3 كريات جُداء أرقامها عدد فردي " " : الحصول على 3 كريّات جُداء أرقامها عدد زوجي "
- P(C) احسب P(A) احتمال الحادثة A و بين أنّ: $\frac{56}{165}$ ثمّ استنج P(A) احسب (1)
 - $P_{\Lambda}(B)$ احسب الاحتمال الشرطي
 - 2) X المتغير العشوائي الذي يرفق بكل عملية سحب لثلاث كريّات، عدد الكريّات التي تحمل رقما زوجيا. E(X) عين قانون الاحتمال للمتغير العشوائي X ثمّ احسب أمله الرياضياتي E(X)
 - الآن من الكيس عشوائيا 3 كريّات على التوالى وبدون إرجاع. - احسب احتمال الحادثة D: " الحصول على 3 كربّات جُداء أرقامها معدوم"
 - التمرين الثاني: (04 نقاط) K X
 - المعادلة ذات المجهول Z الأعداد المركبة C المعادلة ذات المجهول Z الأتية:
 - $(z-1+2\sqrt{3})[z^2-2(1-\sqrt{3})z+5-2\sqrt{3}]=0$
 - C و B ، A المستوي المركب المنسوب إلى المعلم المتعامد والمتجانس $(0; \overline{u}, \overline{v})$ ، نعتبر النقط B ، A $z_C=\overline{Z_A}$ و $z_B=1-2\sqrt{3}$ ، $z_A=1-\sqrt{3}+i$ د عيث: $z_B = z_B + z_A$ و $z_B=1-2\sqrt{3}$ التي لاحقاتها على الترتيب $z_B = z_B + z_A$ حيث:
 - اكتب كلّا من $z_{L}-1$ ، $z_{C}-1$ و z_{R} على الشكل المثلثي. $\{(A;1),(B;-1),(C;1)\}$ مرجح الجملة المثقلة D مرجح الجملة (2)
 - 3) بين أن الرياعي ABCD معين. مفحة 1 من 4

Λ

 $v_n = \frac{u_n - 1}{u_n + 4}$: \mathbb{N} ... \mathbb{N} ...

التمرين الثالث: (05 نقاط)

اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

$u_{n+1} = \frac{4-u_n}{2+u_n}$, n was as a definition $u_0 = 0$: $u_0 = 0$ and $u_{n+1} = \frac{4-u_n}{2+u_n}$ is a limit of u_n $0 \le u_n \le 2$ ، n و u_2 ، u_3 و u_3 التراجع الله: من أجل كل عدد طبيعي u_2 ، u_1) احسب الحدود u_1 ، u_2 ، u_3 و u_4 ، u_5 الحسب الحدود u_1 ، u_2 ، u_3)

DAC2024//SSA24//CH01R02

n اثبت أنّ المتتالية (v_n) هندسية أساسها $\frac{2}{3}$ ثمّ اكتب عبارة v_n بدلالة v_n

التمرين الرابع: (07 نقاط)

- $\lim_{n\to+\infty} u_n$ بین آنه: من اجل کل عدد طبیعی n ، n $+\infty$ $u_n = \frac{5}{1-v_n} 4$ ، n عدد طبیعی $u_n = \frac{5}{1-v_n} 4$ 3) من أجل كل عدد طبيعي n ، نضع:
- $T_n = \frac{1}{4 + u_n} + \frac{1}{4 + u_{n+1}} + \dots + \frac{1}{4 + u_{n+2024}}$ $S_n = v_n + v_{n+1} + \dots + v_{n+2024}$ n بدلالة T_n بدلالة n ثم استنتج T_n بدلالة -

(C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(0; \overline{i}, \overline{j})$ ، (وحدة الطول (c_f)

- احسب (1) ثمّ استنج إشارة (g(x) $f(x) = -2x + 3 - x e^{-x+1}$ بد \mathbb{R} بد الدّالة المعرّفة على $f(\Pi)$

 $g(x)=x e^{-x+1}-2$ بيمثل الجدول المقابل تغيرات الذالة g المعزفة على \mathbb{R} بيد $e^{-x+1}-2$

 $+\infty$ عند (C_f) مقارب ماثل للمنحني (Δ) ذا المعادلة y=-2x+3 عند (Δ) عند (Δ) (Δ) والمستقيم ((C_r) والمستقيم ((Δ)

 $\lim_{x\to +\infty} f(x)$, $\lim_{x\to +\infty} f(x)$ (1)

 (C_f) (T) (Δ) (L_f)

x=1 , x=0 : and an analysis x=1

التمرين الأول: (04 نقاط)

التمرين الثاني: (04 نقاط)

 $f'(x) = g(x) - e^{-x+1}$, x are also are $f'(x) = g(x) - e^{-x+1}$ (2) ب) استنتج اتجاه تغير الدّالة f ثمّ شكّل جدول تغيراتها. .4) بين أنّ (C_f) يقبل مماسا (T) موازيا له (Δ) ، يُطلب تعيين معادلة له.

g'(x)

انتهى العوضوع

- $\int_{0}^{1} xe^{-x+1} dx = e-2$: (1) باستعمال المكاملة بالتجزئة، بين أن: $xe^{-x+1} dx = e-2$ (C_f) استنتج بالسنتيمتر المربع -1 مساحة الحيّز المستوي المحدّد بـ (C_f) و (Δ) والمستقيمين اللذين
- Δ BAC2024//SSA24//CH01R02 اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

مفعة 2 من 4

الموضوع الثاني

f(x) = -2x + m عين بيانيا قيم الوسيط الحقيقي m التي من أجلها تقبل المعادلة

يحتوي كيس على 5 قطع كهريانية غير متمايزة ولا نغرق بينها باللمس، منها 3 قطع سليمة وقطعتان غير سليمتين. نرمز إلى القطعة السليمة بالزمز ك وإلى القطعة غير السليمة بالزمز 5

A: " القطعة الأولى المسحوبة سليمة " ، B: " سحب قطعة واحدة فقط سليمة "

نسحب عشوائيا من الكيس 3 قطع على التوالي مع الإرجاع ، ونعتبر الحوادث:

· " القطعة الثالثة المسحوبة سليمة " : C

1) شكّل شجرة الاحتمالات التي تُتعذج هذه التجرية.

1 (ا يساوي: $\left(\frac{1+i}{1-i}\right)^{2024}$ يساوي: 1

 $z=2(1+i\sqrt{3})$ عدد مرکب حیث z (3

 $P(C)=rac{3}{5}$:احسب A و B ثمّ بيّن ان P(B) ، P(A) احتمالي الحادثتين A و B ثمّ بيّن ان ? احسب الاحتمال الشرطي $P_{C}(A)$ ، هل الحادثتان A و C مستقلتان $P_{C}(A)$

4) نُرفِق بكل قطعة سليمة العدد 10 وبكل قطعة غير سليمة العدد 10– ، ونعتبر ٪ المتغير العشواني الذي

ب)

 $\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}$ (

−1 (→

 أ) بزر أن قيم المتغير العشوائي X هي: 30 - ، 10 - ، 10 ، 30 ب) عين قانون الاحتمال للمتغير العشوائي X ثم احسب أمله الرياضياتي (E(X)

يرفق بكل عملية سحب من الكيس لثلاث قطع مجموع الأعداد المرفقة بها.

z+i عدد مركب مرافقه \overline{z} ، مرافق العدد المركب z+i هو: $\overline{z}-i$ ($\overline{z}+i$ (ψ z−i (÷

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة مع التبرير في كل حالة مما يلى:

من أجل كل عدد طبيعي غير معدوم n ، نضع: $|z|^2 + ... + \ln |z|^2 + ... + \ln |z|^2$ ، لدينا: $S_n = 2\left(\frac{1-(2\ln 2)^n}{1-2\ln 2}\right)\ln 2$ (**) $S_n = n(n+1) \ln 2 \quad (-1)^2 \ln 2 \quad (1)^2 \ln 2$

 $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ الشكل المثلثي للعدد المركب $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ عدد مركب حيث: $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$

التمرين الثالث: (05 نقاط) $f(x) = \frac{x+1}{2}$ كما يلي: $f(x) = \frac{x+1}{2}$ كما يلي: $f(x) = \frac{x+1}{2}$

 $\cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \quad (-\cos\frac{\pi}{8} + i\sin\frac{\pi}{8})$

BAC2024//SSA24//CH01R01 Μ اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

 $u_n = \frac{n}{2^n}$: ب $n \ge 2$ ، n عدد طبیعي n ، $n \ge 2$ ب بالمنتالية العددية المعرّفة من أجل كل عدد طبيعي (u_n) (2

 $\frac{1}{2} < f(x) \le \frac{3}{4}$ فإن $[2;+\infty[$ من أجل كان x من f فإن f الذالة f ثم استنتج أنه من أجل كان x من f

مفحة 3 من 4

 $\lim_{n\to+\infty}u_n$ ثم الجل كان n من $n\geq 2$ ، \mathbb{N} فإن $n\geq 2$ فإن $u_n\leq \frac{1}{2}$ $S_n = \frac{u_2}{2} + \frac{u_3}{2} + \dots + \frac{u_n}{n}$: $n \ge 2$, \mathbb{N} من n من $n \ge 2$

 $S_n = \frac{511}{1024}$ مين أن: $S_n = \frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^{n-1} \right]$ حتى يكون $S_n = \frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^{n-1} \right]$ حتى يكون العدد الطبيعي $S_n = \frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^{n-1} \right]$

– بقراءة بيانية ، عين إشارة (g(x) $f(x)=-x-rac{\ln x}{x^2}:$ الذَالة المعرَفة على $f(x)=-x-rac{\ln x}{x^2}$ بالذَالة المعرَفة على $f(x)=-x-rac{\ln x}{x^2}$

 $\lim_{x\to 0} f(x) = \lim_{x\to +\infty} f(x)$ (1)

 $\frac{u_{n+1}}{u_n} \le \frac{3}{4}$ فإن $n \ge 2$ ، \mathbb{N} من n من $n \ge 1$ فإن أنه: من أجل كل n من n

(Cg (Cf) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(0; \overline{i}, \overline{j})$ ، (وحدة الطول 2cm).

. الذالة المعرّفة على (c_g) ، $g(x) = \frac{1}{2}x^3 + \frac{1}{2} - \ln x$ كما في الشكل $g(x) = \frac{1}{2}x^3 + \frac{1}{2} - \ln x$ كما في الشكل $g(x) = \frac{1}{2}x^3 + \frac{1}{2} - \ln x$

 $f'(x) = \frac{-2g(x)}{\sqrt{3}}$ ا) بین انه من اجل کل x من x من]0;+∞[فإن x (1) ب) استنتج اتجاه تغير الدّالة f ثمّ شكّل جدول تغيراتها. $0.7 < \alpha < 0.71$ حيث $\alpha = 0$ تقبل حلا رحيدا α حيث $\alpha = 0$ حيث $\alpha = 0.7$

(3) بين أنّ المنحني (C_f) يقبل مستقيما مقاريا مائلا (Δ) ، يطلب تعيين معادلة له.

- (Δ) ادرس الوضع النسبي للمنحني (C_f) والمستقيم 4) بين أنّ المنحني (C_r) يقبل مماسا (T) معامل توجيهه -1 ، يطلب تعيين معادلة له.
- (C_f) ر(T)، (Δ) ر(T) ر(5)ب) m وسيط حقيقي، عين بيانيا قيم m التي من أجلها تقبل المعادلة: $m = \frac{lnx}{2}$ حلين مختلفين.
- $]0;+\infty[$ على $h:x\mapsto \frac{\ln x}{x^2}$ انبت أن الذالة $h:x\mapsto \frac{\ln x}{x}$ على $H:x\mapsto \frac{-1-\ln x}{x}$ على على (1,6)ب $A(\alpha)$ المساحة بالسنتيمتر المربع للحيّز المستوي المحدّد بالمنحني والمستقيمات $A(\alpha)$

صفعة 4 من 4

- x=1 $x=\alpha$ y=-x
 - $A(\alpha) = 4(\alpha^2 \frac{1}{\alpha} + 1)$: نن ان:

التمرين الرابع: (07 نقاط)

الديوان الوطني للامتحانات والمسابقات

دورة: 2024