

Introduction to Security

Instructor: Khaled Diab

On Wednesday...

☐ Read the "how to read a paper" ☐ Read the "project startup document" ☐ Read and understand the syllabus ☐ Sign the Ethics form ☐Get to know your classmates, and form project groups ☐ Start thinking about project ideas ☐ Prepare an answer for "What do you think security is?"

What is Security?

What is Security?

"Managing a malicious adversary [and] guaranteeing **properties** even if a malicious adversary tries to attack" – Adrian Perrig

Security is Hard

- 1. Lack of security-driven designs
 - For many software systems and network protocols
 - Focusing on functionality not security!
- 2. Finding vulnerability has become a business
- 3. Side-channel attacks
- 4. Too many threats
- 5. ...

Lack of security-driven designs

Lack of security-driven designs

Top 50 Products By Total Number Of "Distinct" Vulnerabilities in 2019

Go to year: 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 All Time Leaders

	Product Name	Vendor Name	Product Type	Number of Vulnerabilities
1	<u>Android</u>	Google	os	414
2	<u>Debian Linux</u>	<u>Debian</u>	OS	<u>360</u>
3	Windows Server 2016	Microsoft	os	<u>357</u>
4	Windows 10	Microsoft	os	<u>357</u>
5	Windows Server 2019	Microsoft	os	<u>351</u>
6	Acrobat Reader Dc	<u>Adobe</u>	Application	<u>342</u>
7	Acrobat Dc	<u>Adobe</u>	Application	<u>342</u>
8	<u>Cpanel</u>	<u>Cpanel</u>	Application	<u>321</u>
9	Windows 7	Microsoft	OS	<u>250</u>
10	Windows Server 2008	Microsoft	OS	<u>248</u>

Finding vulnerability has become a business

- Bug bounty programs
 - Google Vulnerability Reward Program: up to \$31,337
 - Microsoft Bounty Program: up to \$100K
 - Apple Bug Bounty program: up to \$200K (secure boot firmware)

- Acquiring vulnerabilities
 - Zerodium: up to \$2M for iOS, \$500K for Android

...or even worse: A Marketplace for owned machines

Pay-per-install (PPI) services

- PPI operation:
- 1. Own victim machine
- 2. Download and install client program
- 3. Charge client

Side-channel attacks

- Attacks that are based on implementation of a system
 - Timing attacks
 - Power analysis attacks
 - Electromagnetic attacks
 - Caching attacks

Too many threats...

- Consider the Internet
 - Every host, router, middlebox is a potential threat
 - Esp. when they become Zombies

Threat Modelling

- There is no such thing as perfect security!
 - Risk management is a critical activity in security.
- Defining security per context; identify:
 - assets,
 - adversaries and motivations,
 - threats,
 - vulnerabilities,
 - risk, and
 - possible defenses.

Threat Modelling

Assets:

What are we trying to protect? How valuable are those assets?

Adversaries:

Who might try to attack, and why?

Vulnerabilities:

How might the system be weak?

Threats:

What actions might an adversary take to exploit vulnerabilities?

• Risk:

How important are assets? How likely is exploit?

Possible Defenses

Security Goals

- Common general security goals: "CIA"
 - Confidentiality
 - Integrity
 - Authenticity
 - Availability

Confidentiality (Privacy)

Confidentiality is concealment of information.

Integrity

Integrity is prevention of unauthorized changes.

Authenticity

Authenticity is knowing who you are talking to.

Authenticity

"On the Internet, nobody knows you're a dog."

Availability

Availability is ability to use information or resources.

Threat Modeling Example: Electronic Voting

Pre-Election

Pre-election: Poll workers load "ballot definition files" on voting machine.

Active Voting

Active voting:

Voters obtain **single-use** tokens from poll workers. Voters use tokens to activate machines and vote.

Active Voting

Post-Election

eVoting Security

- Security goals:
 - Adversary should not be able to tamper with the election outcome
 - By changing votes (integrity)
 - By voting on behalf of someone (authenticity)
 - By denying voters the right to vote (availability)
 - Adversary should not be able to figure out how voters vote (confidentiality)

What are the potential concerns?

Potential Adversaries

- Voters
- Election officials
- Employees of voting machine manufacturer
 - Software/hardware engineers
 - Maintenance people
- Other engineers
 - Makers of hardware
 - Makers of underlying software or add-on components
 - Makers of compiler

• ...

Problem: Ballot definition files are not authenticated.

Example attack:

Problem: Smartcards can perform cryptographic operations. But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own voter token and vote multiple times.

Problem: Votes stored in the order cast.

Example attack: A poll worker could determine how voters vote.

Problem: When votes transmitted to server, they are decrypted first; the cleartext results are sent the server.

Example attack: A sophisticated outsider could determine how voters vote.

Security Approaches

- Prevention
 - Stop an attack
- Detection
 - Detect an ongoing or past attack
- Incident Response
 - Respond to attacks

Prevention

- Preventing an incident requires careful analysis and planning:
- Design and implementation of:
 - Security policies
 - Security awareness
 - Access controls

Detection

- Perfect security is impossible
- →no matter what level of protection a system may have it will get compromised

- Timely detection and notification of a compromise is critical
- → Intrusion Detection Systems (IDS)

Intrusion Detection Systems

- Alarm with brains
- Imagine a fire alarm that had the capability of:
 - detecting a fire,
 - distinguish the type of fire,
 - pinpoint its source and path,
 - alert the building occupants and fire department,
 - and forward intelligence to the firehouse prior to their response.
- All of this while distinguishing normal activity such as bad cooking!

Intrusion Detection Systems

• IDS should be strategically placed at the network and application levels

Intrusion Detection Systems

- Monitoring and notification
- Detecting attack signatures and also changes in files, configurations and activity
- IDS must have the ability to distinguish normal system activity from malicious activity.
 - FPs → too many alarms
 - FNs → too many undetected attacks

Technical Enablers

Crypto

- Roots of trust
 - Trusted hardware
 - Trusted hypervisor

- Program Analysis/Verification
- (Anomaly) Detection Algorithms

Crypto Primitives

1. Encryption/Decryption

- 2. Digital Signatures
- 3. One-way hash fun
- Applications?

Crypto != Security

Key technology enabler, but ...

Many other things could go wrong

- Crypto Implementation vulnerabilities
- Architectural flaws
- Insider threats
- ...

Heartbleed

HOW THE HEARTBLEED BUG WORKS:

Attacker Asymmetric Advantage

Attacker Asymmetric Advantage

- Attacker only needs to win in one place
- Defender's response: Defense at every layer

Whole System is Critical

- Securing a system involves a whole-system view
 - Cryptography
 - Implementation
 - People
 - Physical security
 - Everything in between
- No reason to attack the strongest part of a system if you can walk right around it.

Linux Backdoor

```
if ((options == (__WCLONE|__WALL)) && (current->uid = 0))
retval = -EINVAL;
```

- Was never pushed to Linux master copy in BitKeeper
- Was noticed by a developer in CVS

PHP Hash Collision DoS

- PHP stores arrays using hash tables
- If an attacker controls the input in a specific way, all the inputs will collide

- number of elements to traverse is quadratic (for every insertion)
- → more CPU cycles (3000X delay compared to normal operation)
- → Resulting in a DoS attack

PHP Hash Collision DoS

- How did PHP solve this problem?
 - Set max. number of inputs
- Is this a good solution?
- What is the root cause of the attack?
- How do other languages address this vulnerability?

TCP Sequence Number Prediction

- All TCP packets are numbered with a seq. number
 - Starting from an initial seq. number (ISN)

IP Source Routing Attack

• Eve constructs a source-routed packet.

• Includes her IP address in the route, any response from Bob will pass

Next Lecture

Read "x86 Assembly Guide"

Acknowledgment

• Some of today's slides are based on or adapted from Franziska (Franzi) Roesner slides.