2025.01.10

### Deep Learning for Vegetation Image Segmentation in LAI Measurement

지능형 소프트웨어 융합 연구소 - 논문세미나

Published in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/IGARSS39084.2020.9324487



### 01. Introduction

- LAI(Leaf Area Index)
- LAI Measurement

### 02. Measurement and Segmentation Theory

- Pix2pix Model theory
- cGAN Loss Function
- Improved Generate Network structure
- Discrimination Network structure

### 03. Experiment

- Vegetation Image Dataset
- Otsu, HSV Segment Method

### 04. Result and Analysis

- Rice segmentation result
- Background color in diffrent environments
- Bush segmentation result
- Tea Tree segmentation result
- Zucchini segmentation result
- SSIM Metrics
- Performance of the pix2pix model

### 05. Conclusions

Limitation

### O1. Introduction 지능형 소프트웨어 융합 연구소 - 논문세미나

Published in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/IGARSS39084.2020.9324487



## 66



### What is the LAI?

### Leaf Area Index란?

1. LAI란 잎 면적 지수로서, 각 식생 단위 당 총 잎 면적의 절반을 지수화 한 것을 의미함

- 2가지 LAI 측정 방법이 있음
  - 센서를 통한 방사선 투과율 LAI2200
  - 광학 카메라 CI-100을 통해서 식생 이미지를 분석
- 식물 캐노피 구조를 설명할 때 가장 흔하게 사용되는 측정 항목
- 작물의 생산성, 숲의 성장을 살펴볼 때 흔히 사용됨
- 사막같이 건조한 곳은 LAI가 1보다 작고, 열대우림은 9보다 높을 수 있음.
- · 최근 트렌드는 저렴하고, 업그레이드 하기 편하고, 네트워킹이 편한 방식이 주로 사용됨

### 66

### What is the LAI?



### LAI Segmentation의 중요한 점

- Background를 분리하는 것이 제일 중요하다.
- Image Segmentation의 요소는 LAI의 정확도에 영향을 미침
  - 좋은 기상조건
  - 이미지가 햇빛에 과도하게 노출된 경우
  - 배경이 구름에 덮여진 경우

### LAI 활용 방안

- 작물의 상위엽이 자라면, 아랫잎은 그늘이 지고, 광합성 효율이 떨어짐.
- 광합성을 통해 생산하는 에너지보다 호흡 / 증산 등에 의해 소모하는 에너지가 더 커짐
- 적정선을 유지하는게 생산성의 관점에서 중요함

# a) RGB

## b) HSV Saturation Value

### What is the HSV?



### 인간의 색상 인식과 비슷한 방법

• Hue: 색상

• Sataration: 색의 진하고 연한 정도

• Value: 색의 밝고 어두운 정도

### RGB와 차이점

- RGB는 Red, Green, Blue의 조합으로 색을 표현
- HSV는 색의 직관적 속성을 기반으로 사람이 색을 이해하기 쉬운 방식으로 표현
- RGB에서 색을 밝게 만드려면 세 채널 모두를 조작하지만 HSV에서는 명도만 조정하면 됨

### 02. Measurement and Segmentation Theory

지능형 소프트웨어 융합 연구소 - 논문세미나

Published in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/IGARSS39084.2020.9324487





### DHP Measurement theory

### Digital Hemispherical Photography 알고리즘

- 디지털 반구형 사진 촬영
- Fisheye 카메라를 사용해 캐노피를 통한 빛 투과



- 1. Vegetation
- 2. Background

특정 시야각에서 잎들의 픽셀 넘버를 전체 전체 픽셀 넘버에서 비율로 나눔 LAI 공식으로 계산에 사용됨.

• Beer-Lambert 방식이 segmentation에서 널리 사용됨



### Pix2pix Model theory



Fig.1. Training procedure of pix2pix

### **Image Mapping Problems**

- 딥러닝 모델 중, pix2pix는 이미지 mapping problems를 일반적으로 해결하는 방법에 사용됨
  - 특정한 문제에서 특정한 loss값 없이 좋은 예측 성능을 보임
- cGAN에서 영감을 얻은 방법
- 생성자(Generator)는 U-Net아키텍쳐가 사용되고 x는 encoding되어 decode 이미지 G(x)가 된다.
- 판별자(Discriminator)는 PatchGAN이 분류를 수행한다.
- input x의 조건 아래에 G(x)는 생성 이미지면 false, 실제 이미지면 true로 판별한다. 그리고 모델은 작은 크기로 패널화 함.

## 66



### Loss function

### cGAN Loss function

- G는 값을 최소화 시키고, D는 값을 최대화 시킨다.
- G: 입력 x와 조건 z를 기반으로 새로운 데이터를 생성하는 생성기
- D: 실제 데이터와 생성된 데이터를 구별하는 판별기
- Input, output은 많은 정보를 공유하기 때문에 input/output이 유사함

### cGAN의 특징

- 조건부 입력 x:
  - 일반 GAN과 달리, cGAN은 데이터 생성을 특정 조건 z에 따라 제어
  - 예: x가 이미지 스케치라면, y는 완전한 이미지일 수 있음
- 목표:
  - 생성기 G는 x와 z로부터 조건에 맞는 데이터를 생성하여 판별기를 속임
  - 판별기 D는 실제 데이터와 생성된 데이터를 구별하려고 시도함

### Improved generate network structure



Fig.2. Improved generate network structure

### Improve Pix2pix model

- Pix2pix 모델은 픽셀 매핑 모델로, 예측된 결과는 이진 분류가 아님
- 픽셀은 0-255bytes로 이루어져 있기 때문에 경계에서는 이미지가 거칠고 흐리게 되어있음
- 이 문제를 해결하기 위해 근사치 알고리즘이 적용됨
  - Dense CRF: 간단한 계산으로 분해되고, 각 단계에서는 conv연산이 진행됨
  - Conv layer를 U-Net 구조 안에 추가하면 end-to-end 구조가 완성
- 이 모델은 noise를 줄여주고 output 결과에서 명확한 윤곽을 나타내고, segmentation quality가 올라가게 만드는 모델.

### 66

### Discriminaiton network structure



Fig.2. Improved generate network structure

### PatchGAN Model

- L1과 L2는 single mapping problem 문제에서 loss function으로 사용되었음
- 재구성된 이미지는 매우 흐리고, 이미지의 고주파 부분을 복원할 수 없음.
- 이를 해결하기 위해 PatchGAN 구조를 사용해 판별함
  - 이미지를 여러 고정된 크기의 패치로 분할하고 각 패치를 개별적으로 true, false로 판별함
  - 마지막으로 평균값을 output value로 사용

### O3. Experiment 지능형 소프트웨어 융합 연구소 - 논문세미나

Published in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/IGARSS39084.2020.9324487



### Image acquisition and Point Cloud Generation

### Place

- Fisheye 식생 사진들은 Guangzhou, Nanjing, Chengdu, Chanchun 등의 장소에서 촬영되었음
- 이 사진들은 쌀, 옥수수, 콩, 잡초, 잔디, 차나무, 주키니 등 다른 식물이 포함되어 있음
- 1024x1024로 사진의 중앙을 잡고, 512x512로 사진을 압축함
- 라벨링 데이터는 세그멘테이션 결과로 활용하고, 훈련에 사용함.
  - 검증 샘플의 데이터가 제한되어 있기 때문에 각 픽셀과 라벨은 256x256 크기로 분할
  - Random rotate angle, Adjust brightness를 통해 이미지 증강을 시도
  - 2,000장 정도의 이미지 중 80:10:10의 비율로 traib/valid/test를 진행함
- Test sample에서 Otsu, HSV segment method가 사용됨
  - 이미지 값이 0 or 255로 이루어져 있기 때문에 복잡한 평가가 필요 없음
  - · Average segmentation accuracy인 SSIM이 각 segmentation을 계산함
  - Precision, Recall로 모델의 성능을 평가함

### 04. Result and Analysis 지능형소프트웨어 융합 연구소 - 논문세미나

Published in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/IGARSS39084.2020.9324487



### **Analysis**



Fig.3. Rice segmentation results: (a)the original image; (b)the label; (c)the pix2pix model prediction result (d)the Otsu segmentation result; (e)the HSV threshold segmentation result; (f)the improved pix2pix model segmentation result(Figure 5-7 has the same structure, and is not annotated)



Fig.4. Background color in different environments

### Fig 3 & Fig 4

- 어떤 쌀 잎은 하늘보다 밝고 3개의 카테고리로 나눌 수 있음
  - Dark leaves
  - Sky
  - Bright leaves
- 밝은 잎과 하늘은 하나의 카테고리로 묶이고, 어두운 잎도 하나의 카테고리로 묶인다.
- 픽셀 값은 날씨의 영향을 많이 받음. Fig 4에서는 하늘의 색은 불변하지만 HSVSegmentation의 정확도는 경험적으로 날씨에 따라 다르다.
- Fig 3(e)에서는 HSV의 결과로 하늘과 잎을 분리하면 Dark sky로 오인한다.
- Fig 3(f)에서 Pix2pix model의 결과를 보여주기에 이거는 Otsu, HSV보다 낫다는 것을 보여줌

## (a) (b) (c) (c) (f)

Fig.6. Tea tree segmentation results



Fig.5. Bush segmentation results

### **Analysis**

### Fig 5 & Fig 6

- Fig 5(a)에서는 낮은 bush의 원본을 볼 수 있는데, 여기서 Otsu segmentation이 구름낀 날씨에서 제일 적합하다고 볼 수 있다.
- Fig 5(d)에서는 다른 것들과 구별되어 보인다.
- HSV Segmentation은 보풀같이 보인다.
- Pix2pix, Otsu를 비교하자면, 전자가 후자보다 세부사항을 더 잘 처리함
- Fig 6은 차나무 사진. 잎들은 Otsu method로 분배되어 있고, 결과가 바람직 하지 않다.
- Pix2pix model은 러프하게 사진의 특징을 드러내지만 정확한 segmentation을 반영하지 못하는데, 이것은 pix2pix model의 생성구조의 원인 때문이다.

### 가치있는 문제

- Otsu segmentation의 훈련 라벨 결과에서 Fig 5(b)에서 원본이미지보다 더 나은 결과를 보여줌. 그리고 모델을 재학습 하기 위해이 초기 예측을 라벨로 사용함
  - 일반적으로 모델을 이런 방식으로 얻는게 처음 학습시키는

### **Analysis**



Fig.7. Zucchini segmentation results

### Fig 7

- Fig 7은 zucchini leaves. 강한 햇빛의 영향을 받아서 Otsu, HSV Segmentation method는 작동하지 않고, pix2pix model만 사용할수 있다.
- Pix2pix model은 구름낀 날씨, 복잡한 배경에서도 효과적임.
- Fig 7(c), Fig 7(f)는 4개의 예측된 사진에서 메워져 있다.
- 모델은 코너 성능에서 불변한 성능을 보이기 때문에 사진에서 빨간 box 부분은 저조한 성능을 보이는 부분.
- Blue box는 pix2pix model의 예측 결과로 많은 노이즈를 볼 수 있음.
   3채널의 픽셀 값은 255에 가까움.
- Improve Pix2pix model은 end-to-end 구조로 noise, segmentation mapping process를 줄일 수 있음.



### Result

**Tab.1**. Average accuracy and SSIM of three segmentation methods

| Segmentation method           | OTSU   | HSV<br>threshold | Improved pix2pix |
|-------------------------------|--------|------------------|------------------|
| Average accuracy Average SSIM | 0.8927 | 0.8142           | 0.9834           |
|                               | 0.7724 | 0.6342           | 0.9030           |

**Tab.2**. Performance of the pix2pix model on the test set

|            | Precision | Recall |
|------------|-----------|--------|
| Leaves     | 0.9874    | 0.9846 |
| Background | 0.9174    | 0.9283 |

### Average accuracy and SSIM

- Improved Pix2pix model이 SSIM의 추론 방법이 2개의 기존 segmentation method보다 우수함을 입증
  - 대부분의 잎에서 모든 사진이 하늘보다 높음. 그래서 배경의 Precision, Recall 잎보다 작음
  - 하나의 기존 방법은 모든 식생 사진의 종류를 segment 할 수 없고, 여러 기존 방법도 같이 효율적으로 쓸 수 없다.

### Performance of the Pix2pix model

- Pix2pix model은 leaves의 Precision이 0.9874가 나옴
- Recall 이 0.9846이 나오기에 F1-score은 0.9860이 나와서 상당히 높은 수치를 보여준다.
- Background도 F1-score는 0.9228로 높은 수치를 보여준다.

### 05 Conclusion 지능형 소프트웨어 융합 연구소 - 논문세미나

Published in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/IGARSS39084.2020.9324487





### Conclusion

- 1. 3D 관측과 생태계 동역학 연구의 새로운 가능성
- LAI measurement solution에서 DHP Learning method를 처음으로 적용시킴. Improved Pix2pix model을 image segmentation 에서 적용시킴.
- 그 결과로 segmentation과 LAI accuracy를 향상시킴.
- 하지만 모델의 segmentation accuracy는 샘플에 의존하고, 다양한 식생 타입의 샘플이 수집되면 높은 응용치름 가짐

지능형 소프트웨어 융합 연구소 - 논문세미나

Published in: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium

DOI: 10.1109/IGARSS39084.2020.9324487



### 스타일 가이드

폰트

- 1. MBC 1961 Medium (65/35pt)
- 2. ONE 모바일 고딕 Title (26/20/22/18/17/15/15.5/14/12.5/11pt)
- 3. 국립박물관문화재단클래식 Bold (48/42pt)



### 컬러팔레트(다크)



### 컬러팔레트(화이트)

