Chapitre 11 : Calcul matriciel

I - Définitions

- 1) Notion de matrice
- 2) Matrices carrées particulières

II - Opérations sur les matrices

- 1) Somme et multiplication par un scalaire
- 2) Multiplication des matrices
- 3) Propriétés des opérations $+, ., \times$
- 4) Quelques sous-ensembles de matrices stables par les opérations.
- 5) Puissances de matrices
- 6) Polynômes de matrices
- 7) Matrice transposée

Définition, matrices symétriques et matrices antisymétriques.

III - Matrices carrées inversibles

- 1) Généralités
- 2) Matrices inverses de matrices particulières
- 3) Puissances entières négatives d'une matrice inversible
- 4) Matrice carrée inversibles de taille 2

Polynôme annulateur, formule de la matrice inverse, résolution des systèmes linéaires de Cramer à 2 équations, 2 inconnues.

IV - Rang d'une matrice

- 1) Matrice échelonnée
- 2) Rang d'une matrice
- 3) Résultats liés au rang
- 4) Systèmes linéaires et matrices inversibles

Exemples de compétences attendues

- **1** Savoir effectuer un produit matriciel.
- 2 Savoir calculer les puissances d'une matrice carrée.
- 3 Savoir si une matrice carrée de taille 2 est inversible et calculer sa matrice inverse le cas échéant.
- 4 Savoir déterminer si une matrice carrée est inversible à l'aide d'un polynôme annulateur et calculer la matrice inverse le cas échéant.
- Savoir calculer le rang d'une matrice, et, pour une matrice carrée, en déduire si la matrice est inversible.
- **6** Savoir calculer la matrice inverse d'une matrice carrée inversible (par résolution d'un système de Cramer).
- Oconnaître et savoir utiliser les propriétés des opérations matricielles (distributivité de × sur +, associativité de ×, inverse d'un produit de matrices carrées inversibles, de la transposée d'une matrice carrée inversible, transposée d'un produit de matrice, etc.).
- 3 Savoir utiliser les propriétés des matrices carrées particulières (triangulaires, diagonales).

Exemples de questions de cours ou d'application du cours :

- Calculer $\begin{pmatrix} \lambda & a & b \\ 0 & \lambda & c \\ 0 & 0 & \lambda \end{pmatrix}^n$ pour tout entier naturel n (en justifiant) où $(\lambda, a, b, c) \in \mathbb{C}^4$.
- Condition nécessaire et suffisante pour qu'une matrice carrée de taille 2 soit inversible et formule de la matrice inverse (démonstration attendue).

Chapitre 12:

I - Equations différentielles linéaires du premier ordre

- 1) Vocabulaire
- 2) Solutions des EDL1 homogènes et résolues : y' + a(x)y = 0
- 3) Solutions des EDL1 résolues et quelconques : y' + a(x)y = b(x)
- 4) Condition de Cauchy

II - Equations différentielles linéaires du second ordre à coefficients constants

- 1) Vocabulaire
- 2) Solutions des EDL2 à coefficients constants, homogènes et résolues : y'' + ay' + by = 0
- 3) Solutions des EDL2 à coefficients constants, résolues et quelconques : y'' + ay' + by = c(x)
- 4) Condition de Cauchy

Savoir-faire:

Résoudre (formellement) une équation différentielle linéaire d'ordre 1 ou 2 (avec ou non condition(s) de Cauchy).

(pour l'ordre 2, si le second membre n'est pas constant, une indication doit être donnée dans la recherche d'une solution particulière.)

Exemples de questions de cours possibles :

- Dans les trois cas, formules des ensembles de solutions d'une équation différentielle linéaire d'ordre 2, homogène et à coefficients constants.
 - Exemple d'application sur une EDL2 homogène à coefficients constants.
- Résolution (sur un exemple) d'une équation différentielle linéaire d'ordre 1 ou 2 à coefficients constants et à second membre constant (avec ou non condition(s) initiale(s)).

Pas de modèle d'évolution de population (Malthus, Verhulst, ou Gompertz). Nous verrons cela plus tard.