Signed and Unsigned Numbers

Chapter 3.10

"Binary" means many things

- Binary values are used to store information in a computer
- That value can "encode" many different information types
- The same binary value as different meanings in hex, octal, and ASCII
 - 0100 0001 => 0x41 => 101 (octal) => A (ASCII)
 - 0100 0010 => 0x42 => 102 (octal) => B (ASCII)
- Binary does not always represent [0-2^n] numbers; it can store any format
 - 0(sign) 011111100(exp) 0100000000000(fraction) => 0.15625
 - 010001 => 17
 - 101111 => -17 (2's complement)

So far "Binary" and "Hex" meant unsigned

• Unsigned 8-bit number => $[0 - (2^8 - 1)]$ => [0 - 127]

 All values are stored in a register and they "roll over" when the value exceeds 2ⁿ - 1

- Register itself doesn't roll over but calculations involving unsigned numbers "roll over"
 - Example: using a 3-bit register. 111 + 1 = 000
 - 5-bit register: 11111 + 1 => 00000

Addition Rules

A + B + Cin = (Sum, Carry Out)

- $0 + 0 = Sum \ 0 \ Carry \ 0$
- $1 + 0 = 0 + 1 = Sum \ 1 \ Carry \ 0$
- $1 + 1 = Sum \ 0 \ Carry \ 0$
- 1 + 1 + 1 = Sum 1 Carry 1

Examples

1 + 1 = 2

Carry	1	
А	0	1
В	0	1
Sum	1	0

Carry	0	
А	1	0
В	0	1
Sum	1	1

Carry	0	1	0
А	0	0	1
В	1	0	1
Sum	1	1	0

Carry	0	0	0	0
Α	0	1	0	0
В	1	0	0	1
Sum	1	1	0	1

Bit-Width Matters => Overflow

(4bits) 9 + 9 = 18

Carry	0	0	1	0
Α	1	0	0	1
В	1	0	0	1
Sum	0	0	1	0

Should be: 1 0010

Cannot represent the value 18 in 4-bits, result of addition overflows the registers

(5bits) 20 + 20 = 40

Carry	0	1	0	0	0
А	1	0	1	0	0
В	1	0	1	0	0
Sum	0	1	0	0	0

Should be: 10 1000

Cannot represent the value 40 in 5-bits, result of addition overflows the registers

How to add numbers...

• Two values: Augend (A), Addend (B)

Create Sum and Carry

Carry	1	
Augend (A)	1	5
Addend (B)	0	8
Sum	2	3

Adding 1-bit Binary Numbers

• Easy for {00, 01, 10}

Addition of {11} causes overflow

X	Y	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Overflow is not problem on paper

- However, can't create "extra space" in hardware
- Take in to account all sums carry in/out situations

Examples

Carry	1	
А	0	1
В	0	1
Sum	1	0

Carry	0	
А	1	0
В	0	1
Sum	1	1

Carry	0	1	0
Α	0	0	1
В	1	0	1
Sum	1	1	0

$$4 + 9 = 13$$

Carry	0	0	0	0
Α	0	1	0	0
В	1	0	0	1
Sum	1	1	0	1

How to handle negative numbers?

How to represent -35? -110?

- Naïve solution is [sign bit] [unsigned valued]
 - -16 => [1] [0001 0000]
 - Leads to excessive bits and complicated hardware
- Use 2's complement: (2)' + 1

2's Complement

- Use n-bits to represent values between $[-2^{n-1}:(2^{n-1}-1)]$
 - E.g. 5-bits: -15 to 14
 - E.g. 7 bits: -64 to 63
- Create two's complement via the following:
 - Select the appropriate number of bits for the value you wish to store
 - Ex: -23 requires 6 bits
 - Represent the original unsigned value in binary
 - Ex: 23 => 01 0111
 - Invert the value and add 1
 - Ex: 01 0111 => 10 1000
 - 10 1000 + 1 => 10 1001 (-23)

2's Complement

- [Sign Bit][value]
- Do not read 1111 as -7. Only first bit give sign, need to calc others

Can read 0111 as 7.

Convert 3 to -3

Value (3)	0	0	1	1
Invert	1	1	0	0
+1	0	0	0	1
2's	1	1	0	1

Convert 5 to -5

Value (5)	0	1	0	1
Invert	1	0	1	0
+1	0	0	0	1
2's	1	0	1	1

Range for two's complement: $-2^{n-1}: +2^{n-1}-1$

Need this extra bit to store -15. 4-bits gives -8 to 15

Convert 15 to -15

Value (3)	0	1	1	1	1
Invert	1	0	0	0	0
+1	0	0	0	0	1
2 's	1	0	0	0	0

Two's complement	Decimal
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

2's Complement

 Using two's complement representation you can freely add signed and unsigned numbers

However, ensure there are sufficient bits to store the result

Expand unsigned numbers by adding 0 beyond MSB

Expand signed numbers by adding 1 beyond MSB

Subtracting by Adding Signed and Unsigned

_	_	7	_	2
)	T	-2	_	J

Carry	1	0	0	0
Α	0	1	0	1
В	1	1	1	0
Sum	0	0	1	1

<i>J</i> · <i>L</i> /	-5	+	-2	=	-	7
-----------------------	----	---	----	---	---	---

Carry	1	1		
А	1	0	1	1
В	1	1	1	0
Sum	1	0	0	1

Discard carry 0

Assuming there is no underflow or overflow, you can discard the carry out from the addition

Signed Overflow / Underflow

- Overflow: exceed upper bounds of number system
- Underflow: exceed lower bounds of number system

• Can't simply look at carry-out bit; may be valid as extended sign

Signed Examples to Detect Under/over flow

4-bit Addition: 2 + 2 = 4

Carry	0	1	0	0
А	0	0	1	0
В	0	0	1	0

1

0

0

4-bit Addition: -3 + -3 = -6

Carry	1	0	1	
А	1	1	0	1
В	1	1	0	1
Sum	1	0	1	0

Carry out = 0

Sum

0

Carry out = 1

4-bit Overflow: 4 + 5 = 9

Carry	1	0	0	0
А	0	1	0	0
В	0	1	0	1
Sum	1	0	0	1

4-bit Underflow:-5 + -5 = -10

Sum	0	1	1	0
В	1	0	1	1
А	1	0	1	1
Carry	0	1	1	0

Carry out = 0

Carry out = 1

Signed Examples to Detect Under/over flow

4-bit Addition: 2 + 2 = 4

Carry	0	1	0	0
Α	0	0	1	0
В	0	0	1	0
Sum	0	1	0	0

4-bit Addition: -3 + -3 = -6

Carry	1	0	1	
А	1	1	0	1
В	1	1	0	1
Sum	1	0	1	0

Carry out € 0

4-bit Overflow: 4 + 5 = 9

Carry	1	0	0	0
Α	0	1	0	0
В	0	1	0	1
Sum	1	0	0	1

Carry out = 1

4-bit Underflow:-5 + -5 = -10

Carry	0	1	1	0
А	1	0	1	1
В	1	0	1	1
Sum	0	1	1	0

Carry out € 0

Carry out = 1

Overflow

• In unsigned addition, overflow occurs if final C is 1

• In signed addition, overflow occurs if the final carry out differs from the final carry in.