Experiment No. 3

Title: Design of digital system using Multiplexer.

Batch: B1 Roll No.: 16010420133 Experiment No.: 3

Aim: Design of digital system using Multiplexer..

Resources needed: Simulation Platform

Theory:

Multiplexer also called Data selector. A digital circuit which selects one of the 2^n data inputs and route it to the single output. Select lines are(n) and Input lines are (2^n)

.

fig 1. A 2:1 multiplexer

In this case there are two input terminals D_0 and D_1 , one select input S_0 and one output Q. When the select input is set to logic 0, D_0 is connected to the output. When the select input is set to logic 1, D_1 is connected to the output Q.

fig 2. A 4:1 multiplexer.

In this case there are four data input terminals $D_0 - D_3$, two select inputs S_0 and S_1 and just one output Q. The following truth table shows when each of the data inputs is connected to the output.

Table 1. Truth table for 4:1 multiplexer

Select Inputs		Output
S ₁	So	Q
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

fig 3. An 8:1 multiplexer.

Table 2. Truth Table for 8:1 Multiplexer

Select Inputs			Output
S_2	S_1	S_0	Q
0	0	0	D_0
0	0	1	D_1
0	1	0	D_2
0	1	1	D_3
1	0	0	D_4
1	0	1	D_5
1	1	0	D_6
1	1	1	$\overline{\mathrm{D}_{7}}$

The above truth table shows when the data inputs are connected to the output.

The following truth table shows when the data inputs are connected to the output.

Select Inputs			Output	
S ₃	S ₂	S_1	S ₀	Q
0	0	0	0	D_0
0	0	0	1	D_1
0	0	1	0	D_2
0	0	1	1	D_3
0	1	0	0	D_4
0	1	0	1	D_5
0	1	1	0	D_6
0	1	1	1	D_7
1	0	0	0	D_8
1	0	0	1	D ₉
1	0	1	0	D_{10}
1	0	1	1	D_{11}
1	1	0	0	D_{12}
1	1		1	D ₁₃
1	1		0	D ₁₄
1	1 K. J. St	DMAIYA COLLEGE OF	ENGG. 1	D ₁₅

Multiplexers are commonly used in communication systems; however they can be used in Logic System design and simplification as well.

Example 1: Show how a 4 : 1 multiplexer can be used to perform the logic function.

$$f(A,B) = \sum m (0,2,3)$$

Inputs		Output	
A	В	Q	
0	0	1	
0	1	0	
1	0	1	
1	1	1	

Solution:

CircuitVerse Simulation:

Example 2: Show how 8 : 1 multiplexer can be used to perform the logic function.(Simulate on circuitverse)

 $F(A,B,C,D) = \sum_{m} (2,3,5,7,10,11,15)$

Inputs			Output	
A	В	C	D	Q
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1		0	0
1	1	- No.	1 1	1

CircuitVerse Simulation:

Post lab Question:

a) The circuit in following Figure uses three two-input multiplexers . Determine the function performed by this circuit.

Ans: $S_1'S_0'I_0 + S_1'S_0I_2 + S_1'S_0'I_1 + S_1S_0I_3$

- The function that the above figure demonstrates is that we can use a three 2-to-1 multiplexers to construct a 4-input multiplexer. It serves as a substitute to the 4-input multiplexer.
- A 4x1multiplexer has four data inputs I₃, I₂, I₁ & I₀, two selection lines s₁ & s₀ and one output.

Procedure:

- a) Design logic circuits for given examples.
- b) Simulate the circuit for example 2 and verify the outputs.
- c) Upload the write-up with the solved design problems given in write-up.

Observations and Results: Solve the examples as given in write-up/given during Lab session and simulate as per instructions in Lab session

Outcomes: Design the combinational and sequential circuits using basic building blocks

Conclusion:

From the above experiment we can conclude that we successfully designed and verified the implementation of the circuit by using a multiplexer.

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of faculty in-charge with date

References:

Books/ Journals/ Websites:

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. http://www.scribd.com/doc/78927750/16-1-Mux-Using-8-1-Mux-4-1mux-And-2-1-Mux#scribd
- 3. http://he-coep.virtual-labs.ac.in

