MIDFIELD Institute Introduction

MIDFIELD INSTITUTE 2023

Share why you are here in the chat. ©

to the Third MIDFIELD Institute!

Thanks for coming!!

Everything you need...

Is available on the website!

Recommend bookmarking the program (agenda)!

We will build in breaks!

MIDFIELD Institute

Welcome Introduction

Before you arrive Program

Tutorial links R resources

R resource License

Welcome

2023 MIDFIELD Institute

Location: Virtual Date: July 11–14

Time: 1-5 pm Eastern Time (US)

Registration. Sinterested in a email Susan Lo line Register for

https://midfieldr.github.io/2023-midfield-institute/

Facilitators

Matthew Ohland, MIDFIELD Director/PI

Associate Head and Professor of Engineering Education, Purdue

Russell Long, MIDFIELD Managing Director

Richard Layton, MIDFIELD Data Display Specialist

Emeritus Professor of Mechanical Engineering, Rose-Hulman

Marisa Orr, MIDFIELD Associate Director

Associate Professor of Mechanical Engr/ Engr & Science Ed, Clemson

Susan Lord, MIDFIELD Institute Director

Professor and Chair of Integrated Engineering, University of San Diego

Facilitators

Haleh Barmaki Brotherton, PhD student, Engineering and Science Education, Clemson University

Hayaam Osman, PhD Student, Engineering Education, Purdue University

Workshop Objectives (qualitative)

By the end of the MIDFIELD Institute, participants should be able to

- Describe the data available in MIDFIELD
- Describe how the MIDFIELD data are organized
- Describe key principles of effective data visualization
- Draft a research question that can be addressed using MIDFIELD

Workshop Objectives (computational)

- Use midfieldr, an R package specifically designed for use with MIDFIELD, to:
- Subset MIDFIELD data to obtain a population to study
- Classify student records by desired groupings
- Summarize the data by groups and display results

Session 1: MIDFIELD Introduction

By the end of this session, you will be able to

- •Describe where MIDFIELD comes from and how that affects research
- Describe different types of studies that can be done with MIDFIELD
- Outline process to join and access MIDFIELD

Multiple

I nstitution

D atabase

F or

I nvestigating

E ngineering

L ongitudinal

Development

Whole-population data for institutions and time period

• No sampling, longitudinal, intersectional analyses

Current dataset (July 2023)

21 institutions

- NOT JUST ENGINEERING!!
- > 2.4 million unique students in all majors at institution
- > 240,000 unique engineering students, approximately 1/7 US engineering enrollment

Began with partners in the Southeastern University and College Coalition for Engineering Education (SUCCEED)

Is MIDFIELD representative?

- To the extent that we could measure, MIDFIELD is representative of national (USA) data in terms of race and sex for engineering overall and for "top 5 engineering fields" (Chemical, Electrical, Mechanical, Civil, and Industrial) at enrollment and graduation
- Hard to find datasets to compare to!

Cross-sectional data for enrollment and degrees awarded by year (2013 used in this study)

349 institutions including public and private

Engineering majors only

>500,000 engineering students in 2273 engineering programs

Longitudinal: Multiple data points per student (1987 – 2014)

Whole-population data

- 11 institutions, large public
- >1 million students, all majors
- > 200,000 engineering students: 10% of engineering enrollment

How the design of MIDFIELD affects research

- Southeastern bias population growth / diversification
- "Large institution" bias the experience of students at smaller institutions isn't well-represented
- Public institution bias the experience of students at private institutions isn't well-represented
- Two HBCUs can't discuss the "typical experience"
- No HSIs or institutions with high Asian student enrollment, institutions with larger populations being added

M. K. Orr, M. W. Ohland, S. M. Lord, and R. A. Layton, "Comparing the Multiple-Institution Database for Investigating Engineering Longitudin Development with a National Dataset from the United States," International Journal of Engineering Education, 36(4), 1321-1332, 2020.

identified, individual student unit records.

What have MIDFIELD researchers accomplished?

- Many publications in journals and conference proceedings, conference presentations, multiple book chapters, & a book.
- 5 journal best paper awards (JEE, IEEE ToE), 2 conference best paper awards, and other recognitions (e.g., WEPAN, ECEDHA).
- Panel discussions, invited workshops and talks, keynote addresses, publicity in various media outlets.

- Citations thousands
- Promoting the use of more sophisticated graphical displays
- Promoting an intersectional approach
- Promoting ecosystem thinking
- Promoting the use of new metrics

15

MIDFIELD Impact: Policy and Practice

- · Citations of our work in papers describing
- How our metrics and/or graphical displays are being used by others
- Cases of policy and practice reform based on MIDFIELD findings
- Example: change in policy changed criteria for continuing study
- Example: new program creation the University of Colorado's Gold Shirt program

SHORTEN THIS

17

Accessing the Data

- Contact Russell Long (<u>ralong@purdue.edu</u>)
- Consult local IRB
- •Sign a confidentiality agreement (graduate students need advisor to sign too ☺)

Joining MIDFIELD

- Identify someone at your institution with authority to share institutional data
- Facilitate a meeting of that person with Russell Long, Matt Ohland, and Joe Roy (of ASEE)

Some award-winning results from research using MIDFIELD

20

it just doesn't replace the students it loses.

21

Women graduate at the same rates as men...

All Engineering Matriculants

Six-Year Graduation Rates in Engineering (%)

...and have surprisingly similar outcomes.

Eightsemester
persistence is
a good
predictor of
six-year
graduation...
but not for
everyone.

The aggregate doesn't represent any racial/ethnic group.

Some disciplines show gender differences ...others show racial/ethnic differences.

Some disciplines are better than others at graduating students... but some of the students who leave will graduate in other engineering majors.

