Захарен диабет

Ендокринен панкреас при кучета и котки

- намира се в краниалната част на коремната кухина
- има 2 лоба: левият е по-дебел и е между напр. колон и curv. major на стомаха, а десният – прилепнал плътно до дуоденума -> при инфекция тези структури може да бъдат засегнати
- Дават лоба се обединяват в общо **тяло**, което сочи към пилора
- с по-голямата си част стои <mark>отляво</mark> на медианната равнина
- от десния дял излиза изводния канал на жлезата

Панкреасът се състои от малки лобчета (ацини), които са <u>90</u>% от панкреаса и имат изходящи каналчета. Тези каналчета се сливат в по-големи, които от своя страна образуват големия изводен канал.

При КЧ има 2 изводни канала, а при КТ – 1 канал в papilla duodeni.

Ductus pancreaticus major KY. KT

Ductus pancreaticus accessories KY

Ацините се състоят от клетки, които произвеждат панкреатичен сок, който съдържа храносмилателни ензими. Главният канал на панкреаса се отваря в дванадесетопръстното черво (papilla duodeni major + papilla duodeni minor).

papilla duodeni major – тук завършва и канала на жл. Мехур papilla duodeni minor – тук завършва Ductus pancreaticus accessorius

Между ацините на панкреаса са разположени групи клетки, които нямат изходящи каналчета – т.нар.

Лангерхансови острови (insulae pancreaticae), които произвеждат **хормоните** инсулин, глюкагон и соматостатин.

Кръвоснабдяване:

rr. Pancreatici на **a. pancreaticoduodenalis cranialis** и клонове на a. lienalis.

Русенов каза: a. ciliaca, a. mesenterica cranialis – кръвоснабдяване

Венозната кръв се оттича към v. portae.

Lnn. Pancreaticoduodenalis – лимфни възли

pl. pancreaticus - инвервация

Панкреасът има:

- 1) екзокринна функция:
 - <u>храносмилателни ензими</u>: амилаза и липаза, трипсиноген. Стеатореята е главен признак при EPI.
 - <u>Intrinsic Factor</u> (IF) фактор важен за абсорбцията на вит. В12. При КТ се секретира само от панкреаса
 - <u>Бикарбонати</u> отделят ги епителните клетки на каналчетата на ацините
- 2) ендокринна функция:
- амилин ?
- алфа клетки?
- соматостатин (бета клетки)
- (пи-пи клетки) панкреасен полипептид

<mark>рН е алкално</mark> - 7,1-8,8. Алкалната реакция на панкреатичния сок се <u>дължи на високото съдържание на NaHCO3</u>. Той съдържа много ензими, органични и неорганични соли.

Панкреатичният сок съдържа редица ензими:

- <u>протеолитични</u> <u>трипсиноген</u>, химотрипсиноген, еластаза, карбоксипептидаза A и B, рибонуклеаза, дезоксирибонуклеаза и фосфолипаза A. Всички тези ензими осигуряват степенното разграждане на белтъците до крайните им съставки аминокиселини,
- <u>липолитични</u> <u>липаза</u> и естераза разграждат мастите до глицерол и мастни киселини,
- <u>амилолитични</u> <u>амилаза</u>, малтаза, захараза, лактаза <u>разграждат полизахаридите и дизахаридите</u> до монозахариди.

<u>До отделянето си от панкреаса в дванадесетопръстника ензимите са неактивни (в противен случай би настъпило самосмилане на жлезата).</u>

В тънкото черво се отделя ентерокиназа. Под нейното въздействие трипсиногенът се превръща в трипсин

Липазата, която разгражда мастите до мастни киселини и глицерол. Панкреатичната естераза превръща холестероловите естери в холестерол. Амилоличитните ензими разграждат полизахаридите до дизахариди (амилаза) и дизахаридите до монозахариди (захараза, малтаза, лактаза).

Лангерхансовите острови са иградени от:

- А-клетки секретират глюкагон, който разгражда гликогена и повишава нивото на кръвната захар,
- В-клетки секретират инсулин, който понижава нивото на кръвната захар,
- **D**-клетки секретират **соматостатин**, който играе важна роля в регулацията на инсулиновата и глюкагонова секреция, а с това и в регулацията на въглехидратния метаболизъм
- **РР**-клетки продуцират **панкреатичен полипептид**, който стимулира секретирането на стомашен и чревен сок

Захарен диабет (Diabetes mellitus)

Определение - Диабетът е **хронично** заболяване, при което <u>панкреасът не произвежда достатъчно инсулин</u> и/или е нарушено действието на инсулина (налице е **инсулинова резистентност**). Тези нарушения <u>водят до</u> повишаване на кръвната захар, състояние, известно като **хипергликемия**.

След нахранване повишената кръвна захар (<u>глюкоза</u>) <u>стимулира панкреаса</u> да отделя <u>инсулин</u>. Инсулинът е хормон, който <u>намалява кръвната захар</u>, като води до <u>навлизането й в клетките</u> на органите и по този начин се осигурява необходимата <u>енергия</u> за оптималното им функциониране.

Когато панкреасът не произвежда достатъчно инсулин, за да задоволи нуждите на организма, <u>кръвната захар се повишава</u>. Високите нива на глюкоза в кръвта заедно с <u>неадекватното снабдяване на клетките с</u> енергия пораждат симптомите и усложненията на захарния диабет.

Класификация

- Тип 1 (инсулинозависим диабет) Insulindependent diabetes mellitus (IDDM)
 - Среща се при кучета
 - о Хипоинсулинемия, при която при въвеждане на глюкоза нивата на инсулин не се повишават.
 - о Има абсолютна нужда от екзогенен инсулин за поддържане на глюкоза
 - о Представлява автоимунно заболяване
 - о Т-клетъчно медиирано автоимунно унищожаване на бета-клетките
- Тип 2 (неинсулинозависим диабет) non-insulin-dependent diabetes mellitus (NIDDM)
 - о инсулинова резистентност и В-клетъчна дисфункция
 - о се дължи на нарушения в действието на инсулина
 - о се развива обикновено с напредване на възрастта
 - о среща се при котки
- <u>Вторичен</u> диабет след остър или хроничен панкреатит, синдром на Къшинг, рак на панкреаса, медикаментозен.
- <u>Гестационен</u> диабет при диеструс при не раждали кучки; се развива по време на <u>бременността</u> (найчесто в последния триместър) в резултат нарушения във функцията на <u>инсулиновите рецептори от въздействието на хормоналните и метаболитни промени</u> в комбинация с <u>генетична предиспозиция</u> и фактори от околната среда.

1. Захарен диабет при кучета

(Diabetes mellitus in dogs)

Захарният диабет е **хронично ендокринно** заболяване с абсолютен или относителен **инсулинов дефицит** и трайна **хипергликемия**, при което има нарушения във всички обменни процеси, водещи до <u>увреждане на</u> органите и системите с приоритет на кръвоносните съдове.

Клетките усвояват различно глюкозата заради различните глюкозни преносители (GLUT1-5)

Класификация

⊔ Іип 1
□ Вторичен
□ Гестационен

Етиология и патогенеза

- 1. Тип 1 (инсулинозависим диабет) Insulindependent diabetes mellitus (IDDM)
- Хипоинсулинемия, при която при въвеждане на глюкоза нивата на инсулин не се повишават.
- Има абсолютна нужда от екзогенен инсулин за поддържане на глюкоза абсолютен инсулинов дефицит
- Представлява автоимунно заболяване Т-клетъчно медиирано автоимунно унищожаване на бетаклетките

То е мултифакторно заболяване – генетична предразположеност, инфекции, затлъстяване, панкреатит и др. Причиняват загуба на бета клетки, хипоинсулинемия, неосъществен транспорт на глюкоза в повечето клетки и повишена гликогенолиза и глюконеогенеза в ЧД.

Загубата на бета клетки е необратим процес, рядко обратим.

<u>Най-честият сценарий за преходен захарен диабет при кучета е корекция на инсулиновия антагонизъм след</u> овариохистеректомия при кучка в диеструс.

Прогестеронът стимулира секрецията на растежен хормон в кучката. Оварихистеректомията премахва източника на прогестерон, плазмената концентрация на растежен хормон (STH) намалява и инсулиновият антагонизъм отшумява. Ако в панкреаса все още има адекватна популация от функционални β клетки, хипергликемията може да отшуми без необходимост от инсулиново лечение или по-често в рамките на един месец след започване на инсулинова терапия след овариохистеректомия.

STH:

- Активира инсулиназата и понижава инсулина
- Намалява усвояването на глюкозата от периферните тъкани (инсулинова резистентност)

↓Прогестерон -> ↓STH -> ↑инсулин

Такава ситуация с преходен диабет може да се появи след спиране на използването на **глюкокортикоиди** (те понижават инсулина) или след излекуване на **хиперадренокортицизъм**.

Възраст – средна, старша, <u>**5 и над 5 г.**</u> Пол – **женски –70%,** (кастрация 55%) Порода

- висок риск <u>Самоед</u>, Тибетски териер, <u>мини-шнауцер</u>, гончета, минипудели
- малък риск Боксер, Немска овчарка, Голдън Ретривър

2. Вторичен диабет

Може да възникне след:

- Деструктивни заболявания на панкреаса панкреатит, EPI
- Ендокринопатии хиперадренокортицизъм (Кушинг синдром), хипотироидизъм, Адисон (хипоадренокотицизъм)
- Лекарствено обусловен глюкокортикоиди
 - панкреатит 13%, (26 28%)
 - EPI
 - Глюкокортикоиди
 - Хиперадренокортицизъм (стероиден диабет при Кушинг-синдром) 10%– високи нива на СТХ, кортизол, глюкагон

- Кортикостероидни препарати
- Други ендокринни заболявания
- Хипотироидизъм
- Адисон

3. Гестационен диабет

- □ Прогестерон високи нива
- □ диеструс GH високи нива
- □ прогестеронови препарати (контрацептиви)

↑Прогестерон -> ↑STH -> ↓инсулин

КЛИНИЧНИ ПРИЗНАЦИ

Абсолютният инсулинов дефицит води до **неосъществен транспорт на глюкоза** в повечето клетки и съответно **хипергликемия**.

Това води до повишена гликогенолиза и <mark>глюконеогенеза в ЧД</mark>. Хипергликемията се задълбочава.

Хипергликемия → **глюкозурия** → **полиурия** → дехидратация и **хиповолемия** → **полидипсия**

Хипергликемия -> увреждане на зрението -> катаракта

Глюконеогенезата в ЧД – това е <u>повишената липолиза и протеинолиза</u> -> кетонемия -> кетонурия Води до **отрицателен азотен баланс** -> <mark>Полифагия</mark>.

Това води до загуба на тегло.

ПОЛИУРИЯ
ПОЛИДИПСИЯ
ПОЛИФАГИЯ

ЗАГУБА НА ТЕГЛО

ДИАГНОЗА

Основава се на клиничните признаци – полидипсия, полиурия, полифагия, загуба на тегло, и параклиничните изследвания.

Параклинични показатели

- □ кръвна картина обикновено нормална може да има неспецифични промени левкоцитоза
- □ химично изследване на :

- кръв:
 - хипергликемия
 - хиперхолестеремия, хиперлипидемия
 - ALAT и AP
- Урина:
 - Urine specific gravity > **1.020** Специфично тегло на урината (USG) се изследва чрез клиничен рефрактометър.
 - Glycosuria
 - Variable ketonuria
 - Proteinuria
 - Bacteriuria

□ВАЖНО е да се диагностицират типичните промени- перзистираща хипергликемия и глюкозурия – повишена глюкоза в кръвта и глюкоза в урината. Важно е те да се диагностицират, защото хипергликемията разграничава диабета от първичната бъбречна глюкозурия, а глюкозурията разграничава диабета от други причини за хипергликемия, най-често хипергликемията вследствие на стрес (стрес-индуцирана хипергликемия).

□ бъбречен праг – 10 mmol/l, следва полидипсия/полиурия

	Диабет	Първична ББ глюкозурия	Стрес-индуцирана хипергликемия
Хипергликемия	ДА	не	ДА
глюкозурия	ДА	ДА	не

Трайната хипергликемия води до неензимно свързване на глюкозата със серумни белтъци (албумин, хемоглобина на еритроцитите, фибриноген, колаген, фактори на съсирването, някои ензими и др.) Неензимното гликиране на аминогрупите на циркулиращите белтъци протича подобно на хемоглобина: образуване на алдимин (лабилна Шифова база), превръщане по Amadori до образуване на ста-билен кетоамин (фруктозамин).

Всички гликирани серумни протеини се означават с общото название ФРУКТОЗАМИН. Мониторирането на фруктозамина показва средното ниво на глюкозата за предходен период от 2 до 3 седмици, тъй като продължителността на живота на серумните протеини е 14-21 дни.

фруктозамин –Референтна стойност (200-350 µmol/L)

При диабет - 400-1000 µmol/L

Хемоглобинът е белтък, съдържащ се в червените кръвни клетки (еритроцити), чрез който става пренасянето на кислород до всички тъкани на тялото. Част от него се свързва необратимо с кръвната глюкоза, вследствие на което се образува ГЛИКИРАН ХЕМОГЛОБИН (HbA1c). Той остава в еритроцитите за период от 120 дни, колкото е средната им продължителност на живот -> той се използва за дългосрочен метаболитен контрол.

Допълн	нителни изследвания:	
	□ PLI	
	□ кортизонов тест за Кушинг	
	·	
Дифер	ренциална диагноза	
□ Първ	вична ренална глюкозурия - (глюкозурия, без хиперглик	емия)
□ Хипе	ергликемия или глюкозурия - прием на лекарства	
□ Воде	ен диабет (Diabetes incipidus)	
□ ХБН	(CKF)	
□ Куши	инг синдром	
□ Забо	олявания на черния дроб	
Терапи	<u>ИЯ</u>	
□ Цел		
□ Прин	нципи	
·	- инсулин заместващо лечение	
	- диета	
	VOLUTION US TORROUGTS TORRO	

- контрол на телесното тегло

- физическа активност, кастрация
- прекратяване на диабетогенните лекарства
- контрол съпътстващи заболявания

Вид на инсулина

□ Кратко действащ

- начало 15 мин.
- максимално **2-4 часа**
- продължителност 2-4 часа
- □ Средно действащ
 - начало 30 мин.
 - максимално **8-12 часа**
 - продължителност 12-20 часа
- □ Удължено действащ 1-4/5-20/8-30 ч.
- първо се използва краткодействащ
- кр. захар се мери на всеки 2 часа
- след стабилизиране на кр. захар се

използва дългодействащ инсулин

Инсулинови препарати, лицензирани за ветеринарна употреба

- □ Caninsulin средно действащ
- □ Vetsulin средно действащ
- □ Insuvet средно действащ
- *Инсулатард
- *Актрапид

Те са комбинация от 30%-кратко действаща съставка и 70%- инсулин с удължено действие.

Начална <mark>0,25-0,5 UI/кг</mark>, два пъти дневно

Висока доза, еднократно дневно – не се препоръчва – риск от хипогликемия!

Инсулинът е БЕ, затова се инжектира SC или IV в зависимост от инсулина.

Измерва се в единици (UI) -> ако е U-40, значи има 40 единици в 1 мл.

Съхранява се на вратата на хладилника!

Разклаща се преди да се инжектира.

<u>Диета</u>

- Следят се количеството килокалории
- Увеличаване количеството на фибри -> забавя усвояването на глюкоза от гастроинтестиналния тракт.

12

24

Храненето да е съобразено с приема на инсулин – храна се дава при инжекцията на инсулин

Гликемичен контрол по време на инсулин-заместваща терапия

- □ Оценка на наблюденията от собственика □ Измерване на телесното тегло □ Проследяване на кръвната захар – 4 пъти в денонощието (3 дни)
- \square < 5 mmol/l понижаване на инсулина
- □ > 15 mmol/l без корекция
- Дългосрочен контрол през месец (1 година) през 4 месеца (след 1 година)

Инсулинов контрол

- □ идеален кр. захар 5-8 mmol/I
- □ Задоволителен липса на клинични признаци кр. захар 10 15 mmol/l
- □ **Незадоволителен** серийни измервания, устойчива полиурия/полидипсия кр. захар > 15 mmol/l

концентрация на фруктозамин

200-**250** µmol/L - предозиране

350-450 µmol/L – добър контрол

450-550 µmol/L – умерен контрол

> 550 µmol/L - слаб контрол

Корекция в дозата на инсулина

Живо тегло в килограми	Изменение на дозата на инсулина в МЕ
< 5	+ 1
10- 20	+ 2

20 -30	+3
30- 40	+ 5
> 40	+7

2. Захарен диабет при котки

(Diabetes mellitus in cats)

Класификация

- **Тип 2** 80%
- **Тип 1** много рядко
- Вторичен 15%
- Гестационен

Етиология и патогенеза

Тип 2 (неинсулинозависим диабет) - non-insulin-dependent diabetes mellitus (NIDDM)

- о инсулинова резистентност и В-клетъчна дисфункция
- о се дължи на нарушения в действието на инсулина
- о се развива обикновено с напредване на възрастта

*Инсулинова резистентност - Състояние, при което е <u>намалена способността на инсулина</u> при физиологични концентрации <u>да реализира биологичното си действие</u>

• Вторичен диабет

Може да възникне след:

- Деструктивни заболявания на панкреаса панкреатит, EPI
- <u>Ендокринопатии</u> **хиперадренокортицизъм (Кушинг синдром**), хипотироидизъм, Адисон (хипоадренокотицизъм)
- Лекарствено обусловен глюкокортикоиди

• Гестационен диабет

- □ Прогестерон високи нива
- □ диеструс GH високи нива
- □ прогестеронови препарати (контрацептиви)
 - ↑Прогестерон -> ↑STH -> ↓инсулин

КЛИНИЧНИ ПРИЗНАЦИ

Абсолютният инсулинов дефицит води до **неосъществен транспорт на глюкоза** в повечето клетки и съответно **хипергликемия**.

Това води до повишена гликогенолиза и глюконеогенеза в ЧД. Хипергликемията се задълбочава.

Хипергликемия → **глюкозурия** → **полиурия** → дехидратация и **хиповолемия** → **полидипсия**

Хипергликемия -> увреждане на зрението -> катаракта

Глюконеогенезата в ЧД – това е повишената липолиза и протеинолиза -> кетонемия -> кетонурия

Води до отрицателен азотен баланс -> Полифагия.

Това води до загуба на тегло.

ПОЛИУРИЯ ПОЛИДИПСИЯ ПОЛИФАГИЯ

ЗАГУБА НА ТЕГЛО

По-редки признаци - **ДИАБЕТНА НЕВРОПАТИЯ** – 10% - **стъпаловидна поза** - летаргия, повръщане, анорексия и др.

ДИАГНОЗА

Основава се на клиничните признаци – полидипсия, полиурия, полифагия, загуба на тегло, и параклиничните изследвания.

Диагностиката е аналогична, както при кучето

- □ Две основни разлики:
 - <u>по-висок бъбречен праг</u> 15 mmol/l, следва глюкозурия
 - стрес хипергликемия > 15 mmol/l, следва глюкозурия

Параклинични показатели

- □ кръвна картина обикновено нормална може да има неспецифични промени левкоцитоза □ химично изследване на :
 - кръв:
 - хипергликемия
 - хиперхолестеремия, хиперлипидемия
 - ALAT и AP
 - Урина:
 - Urine specific gravity typically > **1.020** Специфично тегло на урината (USG) се изследва чрез клиничен рефрактометър.
 - Glycosuria
 - Variable ketonuria
 - Proteinuria
 - Bacteriuria

□ВАЖНО е да се диагностицират типичните промени- перзистираща хипергликемия и глюкозурия – повишена глюкоза в кръвта и глюкоза в урината. Важно е те да се диагностицират, защото хипергликемията разграничава диабета от първичната бъбречна глюкозурия, а глюкозурията разграничава диабета от други причини за хипергликемия, най-често хипергликемията вследствие на стрес (стрес-индуцирана хипергликемия).

	Диабет	Първична ББ глюкозурия	Стрес-индуцирана хипергликемия
Хипергликемия	ДА	не	ДА
глюкозурия	ДА	ДА	не

Терапия

- □ Цел
- □ Принципи
 - орални хипогликемични средства
 - инсулин заместващо лечение
 - диета
 - контрол на телесното тегло
 - физическа активност
 - прекратяване на диабетогенните лекарства
 - контрол съпътстващи заболявания

орални хипогликемични средства – пет класа:

- Сулфанилуреин производни <u>Глипизид</u> (Glipizide) стимулира секрецията на инсулин 30% ефект, при неусложнени случаи с умерени по сила клинични признаци
 - начална доза 2.5 мг., 2 пъти дневно

Инсулин заместваща терапия

- Caninsulin -
- Vetsulin
- Insuvet
- Lantus NB! удължено действие

Началната доза — - $\frac{1}{1}$ U, два пъти дневно < 4 кг., при кр. захар под 20 mmol/l - 1.5- $\frac{2}{1}$ U, два пъти дневно > 4 кг.

<u>Диета</u> и контрол на телесното тегло (понижаване с 1% на седмица) □ въглехидрати < 10%

□ Diabetic DS 46 - Royal Canin
□ Hills M/D Weight Loss Diabetic Cat