CSSS - NOM

4 Unit Mathematics

Trial DSC Examination 1989

- 1. (i) The function f is defined for x > 0 by $f(x) = x \ln x$. Show that the graph of
- y=f(x) has a stationary point at $x=-\frac{1}{e}$ and determine the nature of this point. (ii) The function g is defined for $x\geq \frac{1}{e}$ by $g(x)=x\ln x$. Sketch the graph of y=g(x) showing clearly the coordinates of its end point and the coordinates of its points of intersection with the x axis and the line y = x.
- (iii) On the same axes as the graph of y = g(x) sketch the graph of the inverse function $y = g^{-1}(x)$ showing clearly the coordinates of its end point and the coordinates of its points of intersection with the y axis and the line y = x. (Do not try to find an expression for the inverse function g^{-1} .)
- (iv) Evaluate $\int_{\frac{1}{2}}^{e} x(1-\ln x)dx$. Shade a region on the graphs with area given by this definite integral.
- (v) Hence find the area of the region bounded by the line y = -x and the curves y = g(x) and $y = g^{-1}(x)$.
- **2.** (a) If $y = \tan^{-1} e^x$ show that $\frac{d^2y}{dx^2} = 2(\frac{dy}{dx})^2 \cot 2y$.
- **(b)** Find $\int \frac{e^{2x}}{e^2+1} dx$.
- (c) (i) By using partial fraction show that $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{x(\pi-2x)} dx = \frac{2}{\pi} \ln 2$.
- (ii) By using the substitution u = a + b x show that $\int_a^b f(x) dx = \int_a^b f(a + b x) dx$.
- (iii) Hence evaluate $\int_{\frac{\pi}{\kappa}}^{\frac{\pi}{3}} \frac{\cos^2 x}{x(\pi 2x)} dx$.
- **3.** (a) (i) If $z_1 = 1 i$ and $z_2 = -1 + i\sqrt{3}$ find $|z_1|$ and $|z_2|$ and write down $|z_1z_2|$ in surd form. Find also $\arg z_1$ and $\arg z_2$ and write down $\arg z_1 z_2$ in terms of π .
- (ii) Use the given forms of z_1 and z_2 to find z_1z_2 in the form a+ib. Deduce that $\cos \frac{5\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}.$
- (b) If z is any complex number such that |z|=1 show using an Argand diagram or otherwise that:
- (i) $1 \le |z+2| \le 2$;
- (ii) $-\frac{\pi}{6} \le \arg(z+2) \le \frac{\pi}{6}$. (c) (i) Let z = x + iy be any non-zero complex number. Express $z + \frac{1}{z}$ in the form a+ib.
- (ii) Given that $z + \frac{1}{z} = k$ where k is real, show that either y = 0 or $x^2 + y^2 = 1$. Show that if y = 0 then $|k| \ge 2$ and that if $x^2 + y^2 = 1$ then $|k| \le 2$.
- 4. (a) (i) Show that the ellipse $4x^2 + 9y^2 = 36$ and the hyperbola $4x^2 y^2 = 4$ intersect at right angles.

(ii) Find the equation of the circle through the points of intersection of the two conics.

(b) (i) Show that the tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (where a > b > 0) at the point $P(a \sec \theta, b \tan \theta)$ has equation $bx \sec \theta - ay \tan \theta = ab$.

(ii) If this tangent passes through a focus of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (where a > b > 0) show that it is parallel to one of the lines y = x, y = -x and that its point of contact with the hyperbola lies on a directrix of the ellipse.

5. (a) (i) Show that the complex number $z = 1 + \cos \theta + i \sin \theta$ has modulus $2 \cos \frac{\theta}{2}$ and argument $\frac{\theta}{2}$. Hence find the modulus and the argument of the complex number $(1 + \cos \theta + i \sin \theta)^n$ where n is a positive integer.

(ii) Hence show that $1 + {}^4C_1 \cos \theta + {}^4C_2 \cos 2\theta + {}^4C_3 \cos 3\theta + \cos 4\theta = 16 \cos^4 \frac{\theta}{2} \cos 2\theta$, and obtain a similar expression for ${}^4C_1 \sin \theta + {}^4C_2 \sin 2\theta + {}^4C_3 \sin 3\theta + \sin 4\theta$.

(b) (i) On the same axes sketch the graphs of the functions $y = \frac{e^x + e^{-x}}{2}$ and $y = \frac{e^x - e^{-x}}{2}$, showing clearly the coordinates of any points of intersection with the x axis and the y axis.

(ii) The region between the two curves bounded by the y axis and the line x=1 is rotated through one complete revolution about the y axis. Use cylindrical shells to show that the volume V of the solid of revolution so formed is given by $V=2\pi\int_0^1 xe^{-x}dx$ and hence find this volume.

A smooth conical shell with semi-vertical angle $\alpha, \frac{\pi}{3} < \alpha < \frac{\pi}{2}$, is fixed with its vertex down, and axis vertical. A particle P of mass m is attached to a fixed point A, vertically above the vertex of the cone, by a light inextensible string of length L which makes an angle α with the vertical (as shown in the diagram above). The particle P is observed to move in a horizontal circle on the inner surface of the conical shell, with constant angular velocity ω , and with the string taut.

(i) Draw a diagram showing all the forces on the particle P.

(ii) Show that if T is the tension in the string, and R the magnitude of the force the surface exerts on the particle, then

 $T + R \tan \alpha = mg \sec \alpha$

 $T + R \cot \alpha = mL\omega^2$

(iii) Find expressions for R and T.

(iv) Show that if ω exceeds a certain critical value, the particle loses contact with the surface. State this critical value of ω , and describe qualitatively what would be observed if ω were to exceed this value.

- (v) Show that the string goes slack when the linear speed of the particle is $\sqrt{qr\cot\alpha}$, where r is the radius of the circle of motion.
- (vi) Suppose that initially ω is such that the particle is moving in a circle in contact with the surface and with the string taut, but that the surface is now rough, producing a friction force which slows the linear speed v of the particle.
- Describe qualitatively what motion you would now observe as v decreases.
- What difference would it have made if α had been less than $\frac{\pi}{4}$?
- 7. (a) P(x) is a polynomial of degree 4 with real coefficients.
- (i) Show that if the complex number α is one zero of P(x), then its complex conjugate $\overline{\alpha}$ is also a zero of P(x).
- (ii) The complex number α satisfies $\Im(\alpha) \neq 0, \Re(\alpha) = a$, and $|\alpha| = r$. Show that if α is a zero of P(x), then P(x) has a factor $x^2 - 2ax + r^2$ over \mathbb{R} , the field of real numbers.
- (iii) α is a non-real double zero of $P(x) = x^4 8x^3 + 30x^2 56x + 49$. Factor P(x) into
- irreducible factors over \mathbb{R} , and find the four roots of $x^4 8x^3 + 30x^2 56x + 49 = 0$.

 (b) a curve has parametric equations $\begin{cases} x = \theta \sin \theta \\ y = 1 \cos \theta \end{cases}$ (i) Show that $\frac{dy}{dx} = \cot \frac{\theta}{2}$ and hence show $\frac{d^2y}{dx^2} = -\frac{1}{y^2}, y \neq 0$.
- (ii) Write down the coordinates of any stationary points on the curve and state the nature of each such point.
- (iii) Sketch the curve, showing the stationary points, the intercepts on the coordinate axes, and the direction of the tangents at the points where the curve meets the x axis.
- 8. (a) The vertices of a quadrilateral ABCD lie on a circle of radius r. The angles subtended at the centre of the circle by the sides of ABCD taken in order are in arithmetic progression with first term α and common difference β .
- (i) Show that $2\alpha + 3\beta = \pi$ and interpret this result geometrically.
- (ii) Show that the area of the quadrilateral is $2r^2\cos\beta\cos\frac{\beta}{2}$. If required you may use without proof the results:

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}
\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}
\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}
\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}.$$

- (b) n co-planar lines are such that the number of intersection points is a minimum.
- (i) How many intersection points are there?
- (ii) If n such lines divide the plane into u_n regions, show that $u_n = u_{n-1} + n$. Hence deduce that $u_n = 1 + \frac{1}{2}n(n+1)$. How many of these regions have finite area?