Effet de la dispersion infection-dépendante sur l'évolution de la virulence parasitaire dans des modèles épidémiologiques en métapopulation

Grégoire Azé 20/06/2023

Centre d'infection et d'immunité de Lille (CIIL), équipe CGIM Encadrants : François Massol et Julien Lombard

Introduction

Relation hôtes-parasites

- Virulence = Mortalité des hôtes induite par le parasite
- Théorie classique : Virulence et transmission optimise le R₀ (Anderson et May, 1982)
- Évolution affectée par différents facteurs démographiques et épidémiologiques (Kamo et Boots, 2006)

Dispersion des hôtes

- Capacité des individus à se déplacer dans l'espace
- Événement répandu avec conséquences importantes (génétique, populations, adaptations) (Sasaki et al., 2002)
- Infection parasitaire modifie la dispersion de l'hôte

Parus major

Marmota flaviventris

Introduction

Métapopulations (Levins, 1969)

- Mouvement entre localisations distinctes
- Ensemble de populations régi par des évènements de colonisation et d'extinction

- Sites tous voisins
- Extension du modèle pour intégrer les dynamiques démographiques et épidémiologiques locales (Jansen et Vitalis, 2007)

Introduction

Objectifs de l'étude

- Modèle hôtes-parasites + modèle de dynamique adaptative
- Extension du modèle avec les dispersions différentes pour les hôtes
- Parasite, rôle de "ralentisseur" ou "d'accélérateur"
- Étude des changements démographique et évolutif
 - Évolution de la virulence
 - Coévolution entre virulence et dispersion des hôtes infectés

Dynamique locale d'un site

Une espèce d'hôte

- Naissance de nouveaux individus (b)
- Mortalité naturelle (μ)
- Çapacité du milieu (k)
- Émigration des individus (m)

Dynamique locale d'un site

Une espèce d'hôte

- Naissance de nouveaux individus (b)
- Mortalité naturelle (μ)
- Çapacité du milieu (k)
- Émigration des individus (*m*)

Une espèce de parasites

- Taux de transmission (β)
- Taux de rémission (y)
- Virulence du parasite (α)

= Hôtes infectés (I)

= Hôtes susceptibles (S)

Dynamique locale d'un site

$$\frac{dS}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S$$

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I$$

Dynamique locale d'un site

$$\frac{dS}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S$$

- Pas de reproduction pour les infectés
- Effet densité-dépendant de k

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I$$

Dynamique locale d'un site

$$\frac{dS}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S$$

- Pas de reproduction pour les infectés
- Effet densité-dépendant de k

Transmission

 Pas de structure spatiale dans un site

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I$$

Dynamique locale d'un site

$$\frac{dS}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S$$

- Pas de reproduction pour les infectés
- Effet densité-dépendant de k

Transmission

 Pas de structure spatiale dans un site

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I$$

Rémission

Pas d'immunité

Dynamique locale d'un site

$$\frac{dS}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S$$

- Pas de reproduction pour les infectés
- Effet densité-dépendant de k

Transmission

 Pas de structure spatiale dans un site

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I$$

Rémission

Pas d'immunité

Virulence

Compromis entre transmission et virulence, $\beta(\alpha)$

Dynamique locale d'un site

$$\frac{dS}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S$$

- Pas de reproduction pour les infectés
- Effet densité-dépendant de k

Transmission

• Pas de structure spatiale dans un site

$$\frac{dI}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I$$

Rémission

• Pas d'immunité

Émigration des hôtes:

- m_s pour les susceptibles
- m pour les infectés

Virulence

 Compromis entre transmission et virulence, β(α)

Métapopulation

Dynamique de colonisation - extinction

- Sites touchés par une extinction
- Colonisation par de nouveaux hôtes
- Nouvelle population et émigration d'hôtes
- Extinction du site

Dynamique locale au sein d'une métapopulation

$$\frac{dS_i}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S + \sum_{j=1}^{N-1} m_S (1-\rho)S_j/(N-1)$$

$$\frac{dI_i}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_I I + \sum_{j=1}^{N-1} m_I (1 - \rho) I_j / (N - 1)$$

Dynamique locale au sein d'une métapopulation

$$\frac{dS_i}{dt} = [b(1 - (S+I)/k) - \mu]S - \beta SI + \gamma I - m_S S + \sum_{j=1}^{N-1} m_S (1-\rho)S_j / (N-1)$$

$$\frac{dI_{i}}{dt} = \beta SI - \gamma I - \alpha I - \mu I - m_{I}I + \sum_{j=1}^{N-1} m_{I}(1-\rho)I_{j}/(N-1)$$

- ρ : Coût de la dispersion
- N : Nombre de sites

Evolution de la virulence du parasite

- Population de départ monomorphe
- Simulation avec m_set m_l fixés

Mutation:

- Mutation durant les événements d'infection
- Rare
- Faible effet

Evolution de la virulence du parasite

- Population de départ monomorphe
- Simulation avec m_s et m_l fixés

Mutation:

- Mutation durant les événements d'infection
- Rare
- Faible effet

Evolution de la virulence du parasite

- Population de départ monomorphe
- Simulation avec m_s et m_l fixés

Mutation:

- Mutation durant les événements d'infection
- Rare
- Faible effet

Mutant > Résident

Phénotype dominant :

Mutant

Evolution de la virulence du parasite

- Population de départ monomorphe
- Simulation avec m_s et m_l fixés

Mutation:

- Mutation durant les événements d'infection
- Rare
- Faible effet

Résident > Mutant

Phénotype dominant :

Résident

Virulence du parasite

Sites occupés par des hôtes infectés

Virulence du parasite

Sites occupés par des hôtes infectés

- m, : Virulence plus forte et infectés très présents
 Plus de compétition entre les parasites

Virulence du parasite

Sites occupés par des hôtes infectés

- m, 🗾 : Décélération de l'évolution et présence des infectés en baisse
- Moins de ressources exploitables et baisse de la compétition

Nombre de reproduction de base R₀

 Nombre d'infections secondaires par un individu infecté dans une population de susceptible

$$R_0 = \frac{\beta(\alpha)S^*}{m_I + \alpha + \gamma + \mu}$$

Baisse du R₀ avec l'augmentation de m₁

Nombre de reproduction de base R₀

 Nombre d'infections secondaires par un individu infecté dans une population de susceptible

$$R_0 = \frac{\beta(\alpha)S^*}{m_I + \alpha + \gamma + \mu}$$

Baisse du R₀ avec l'augmentation de m₁

• m, 🗾 : Baisse du R₀

Nombre de reproduction de base R₀

 Nombre d'infections secondaires par un individu infecté dans une population de susceptible

$$R_0 = \frac{\beta(\alpha)S^*}{m_I + \alpha + \gamma + \mu}$$

Baisse du R₀ avec l'augmentation de m₁

- m₁ ≠: Augmentation du R₀
- Plus de virulence et de transmission, plus de compétition

Optimisation de la compétition (R₀)

- Pas d'optimisation de la compétition
 Structure spatiale oblige l'investissement dans la colonisation

Optimisation de la colonisation

Optimisation de la compétition (R₀)

- Pas d'optimisation de la compétition
- Structure spatiale oblige l'investissement dans la colonisation

Optimisation de la colonisation

$$\hat{I}(1-\frac{1}{R_0})$$

- Optimisation de la colonisation pour des dispersions m_I extrêmes
- Mélange colonisation compétition pour dispersions m, intermédiaire

Coévolution de la virulence et de l'influence parasitaire sur la dispersion

• Evolution de l'influence parasitaire sur la dispersion des hôtes infectés

$$m_1 = \lambda m_s$$

- Hôte infecté avec couple de valeurs {α;λ}
- Evolution, mutations comme pour la virulence

Distribution des hôtes infectés en fonction de la virulence et de l'influence parasitaire

m_s : Moins virulent et dispersion "accélérateur"

- Plus de ressources disponibles
- Colonisation plus forte via plus de dispersion

Distribution des hôtes infectés en fonction de la virulence et de l'influence parasitaire

m_s : Moins virulent et dispersion "accélérateur"

- Plus de ressources disponibles
- Colonisation plus forte via plus de dispersion

m_s **>** : Plus virulent et dispersion "ralentisseur"

- Moins de ressources
- Colonisation plus forte via meilleure probabilité d'établissement

Conclusion

Résultats principaux

- m = : Augmentation de la virulence du parasite
- m aux limites de viabilité : Parasite optimise sa colonisation
- m intermédiaires : Mélange de compétition colonisation
- Coévolution, 2 syndromes différents
 - Parasite virulent et "ralentisseur"
 - Parasite peu virulent et "accélérateur"

Conclusion

Perspectives

- Étudier l'évolution de l'influence parasitaire sur la dispersion seule
- Coévolution, variation de certains paramètres (capacité du milieu, taux d'extinction, ...)
- Structures spatiales plus complexes

Conclusion

Perspectives

- Étudier l'évolution de l'influence parasitaire sur la dispersion seule
- Coévolution, variation de certains paramètres (capacité du milieu, taux d'extinction, ...)
- Structures spatiales plus complexes

Merci de votre attention

Equilibres

Site vide

$$\left\{S = S^* = k - k \frac{\mu + m_S}{b}, I = 0\right\}$$

"Disease-free equilibrium" (DFE)

- Fraction constante d'hôtes susceptibles et infectés
- "équilibre endémique"

$$\left\{S = \frac{(1+\alpha)(m_I + \alpha + \gamma + \mu)}{\alpha\beta_0}, I = -\frac{(1+\alpha)(m_I + \alpha + \gamma + \mu)(m_I r(1+\alpha) + k\alpha\beta_0(m_S + \mu) + r(\gamma + \mu + \alpha(1+\alpha - k\beta_0 + \gamma + \mu)))}{\alpha\beta_0(m_I(r + r\alpha + k\alpha\beta_0) + k\alpha\beta_0(\alpha + \mu) + r(1+\alpha)(\alpha + \gamma + \mu))}\right\}$$

Fonction de lien entre transmission (β) et virulence du parasite (α)

$$\beta(\alpha) = \beta_0 \alpha / (1 + \alpha)$$

- Compromis entre période infectieuse et virulence
- Plus le parasite exploitera son hôte en étant virulent et moins il aura de temps pour se transmettre

Colonisation

Colonisation_I =
$$m_I(1-\rho)\hat{I}(1-\frac{1}{R_0})\frac{1}{\epsilon}$$

$$Colonisation_S = [m_S(1-\rho)\hat{S} + m_I(1-\rho)\hat{I}\frac{\gamma}{\gamma + \mu + m_I + \alpha}]u(m_S)\frac{1}{\epsilon}$$

$$avec \quad u(m_S) = (1 - \frac{\mu + m_S}{b})$$

FIGURE 4 – Valeurs de virulence stationnaires du parasite (α) pour plusieurs valeurs de m_S et m_I , fixées et simulées avec le modèle de métapopulation, représentés selon $m_S - m_I$ et $\frac{m_S + m_I}{2}$. (a) Simulations où $m_S - m_I > 2(\frac{m_S + m_I}{2})$, donc m_S et/ou $m_I \le 0$, (b) Simulations où $m_S \ge b - \mu$, (c) Simulations sans résultat pour la virulence stationnaire du parasite car I = 0 dans la métapopulation avant $t_{max} = 1500$, avec $\beta_0 = 1$, b = 2, $\mu = 0.5$, k = 500, $\gamma = 2.5$, $\rho = 0.9$, $\epsilon = 0.1$, $\alpha_0 = 0.2$, $t_{max} = 1500$. Ligne rouge correspondant aux résultats de virulence stationnaire présentés dans la figure 2

FIGURE 6 – (a) Prévalence moyenne locale (au niveau d'un site) du parasite, en fonction des taux de dispersion m_S et m_I et (b) Quantité de sites de la métapopulation contenant des individus infectés, en fonction des taux de dispersion m_S et m_I , avec $\beta_0 = 1$, b = 2, $\mu = 0.5$, k = 500, $\gamma = 2.5$, $\rho = 0.9$, $\epsilon = 0.1$, $\alpha_0 = 0.2$, $t_{max} = 1500$.

Coévolution

Virulence du parasite

Influence parasitaire sur la dispersion

