Two frameworks for analyzing learning algorithms

1. Probably Approximately Correct (PAC) framework

- Identify classes of hypotheses that can/cannot be learned from a polynomial number of training samples
 - Finite hypothesis space
 - Infinite hypotheses (VC dimension)
- Define natural measure of complexity for hypothesis spaces (VC dimension) that allows bounding the number of training examples required for inductive learning

2. Mistake bound (MB) framework

 Number of training errors made by a learner before it determines correct hypothesis

Different learning settings considered in COLT

- 1. How training samples are generated?
 - Passive observation of random examples
 - Active querying by the learner
- 2. Noise in the data
 - Noisy
 - Error Free
- 3. Definition of success
 - Target concept must be learned exactly
 - Only probably and approximately
- 4. Assumptions made by the learner
 - For distribution of instances
 - Whether C ≤ H
- 5. Measure according to which learner is evaluated
 - No training examples, no of mistakes, total time

Mistake Bound (MB) Model Of Learning

- Problem setting:
 - Learner receives a sequence of training examples
 - Upon receiving each sample x, learner must predict target value c(x) before it is shown correct target value by trainer
- How many mistakes will learner make in its predictions before it learns the target concept?

In the MB model, learning is in stages

In each stage:

- 1. Learner gets unlabeled example
- 2. Learner predicts classification
- 3. Learner is told correct label

Goal: Bound the total number of mistakes

Practical use of MB learning model

 Significant in practical settings where learning must be done while the system is in actual use, rather than in an off-line training stage

- Example: system to learn to approve credit card purchases based on data collected during use
 - How many mistakes in approving credit card purchases before system learns?
 - Total number of mistakes is more important than number of training examples

Study of MB Model: Problem Setting

 Number of mistakes made before learning the target concept exactly (rather than PAC)

• DEFINITION:

Algorithm A has mistake-bound M for learning class C if A makes at most M mistakes on any sequence that is consistent with a function in C

Mistake Bound for Find-S algorithm

- Find-S
- Initialize h to the most specific hypothesis

$$\mathbf{l}_1 \wedge \neg \mathbf{l}_1 \wedge \mathbf{l}_2 \wedge \neg \mathbf{l}_2 \cdots \wedge \mathbf{l}_n \wedge \neg \mathbf{l}_n$$

- For each positive training instance x
 - Remove from h any literal that is not satisfied by x
- Output hypothesis h
- Total no. of mistakes can be at most n+1

Mistake Bound for *HALVING* Algorithm

- HALVING ALGORITHM:
 - predict using majority vote over all concepts in *C* consistent with past data
- Candidate Elimination and List-then-eliminate are halving algorithms
- Candidate Elimination
 - maintains a description of the version space, incrementally refining the version space as each new sample is encountered
 - Assume majority vote is used among all hypotheses in the current version space

Mistake Bound for HALVING Algorithm

• Total no. of mistakes can be at most $log_2/H/$

Optimal Mistake Bound

- For any target concept c, let M_A(c) denote the maximum number of mistakes, over all possible sequences, made by learning algorithm A to exactly learn c
- Definition: The optimal mistake bound for C, denoted Opt(C) is the minimum over all possible learning algorithms A of $M_A(C)$
- Then $VC(C) \leq Opt(C) \leq log_2(/C/)$

Weighted Majority Algorithm

- A classifier combination method
- Takes a weighted vote among a pool of prediction algorithms, e.g., alternative hypotheses in H, or alternative learning algorithms
- It begins by weighting each algorithm by 1
- Whenever an algorithm misclassifies its weight is decreased by β , where $0 \le \beta \le 1$

Weighted Majority Algorithm

- If A is any set of n prediction algorithms
- If k is the minimum number of mistakes made by any algorithm in A
- The number of mistakes made over any training sequence is at most

$$\frac{k\log_2\frac{1}{\beta} + \log_2 n}{\log_2\frac{2}{1+\beta}}$$