

Why Mining Closed Graph Patterns?

- □ Challenge: An **n**-edge frequent graph may have 2ⁿ subgraphs
- Motivation: Explore closed frequent subgraphs to handle graph pattern explosion problem
- ☐ A frequent graph G is *closed* if there exists no supergraph of G that carries the same support as G

If this subgraph is *closed* in the graph dataset, it implies that none of its frequent super-graphs carries the same support

- Lossless compression: Does not contain non-closed graphs, but still ensures that the mining result is complete
- Algorithm CloseGraph: Mines closed graph patterns directly

CLOSEGRAPH: Directly Mining Closed Graph Patterns

CloseGraph: Mining closed graph patterns by extending gSpan (Yan & Han, KDD'03)

At what condition can we stop searching their children, i.e., early termination?

- Suppose G and G₁ are frequent, and G is a subgraph of G₁
 - If in any part of the graph in the dataset where G occurs, G_1 also occurs, then we need not grow G (except some special, subtle cases), since none of G's children will be closed except those of G_1

Experiment and Performance Comparison

- ☐ The AIDS antiviral screen compound dataset from NCI/NIH
- ☐ The dataset contains 43,905 chemical compounds
- Discovered Patterns: The smaller minimum support, the bigger and more interesting subgraph patterns discovered

of Patterns: Frequent vs. Closed

Runtime: Frequent vs. Closed

