Name: _____ Student No.: _____

?. If D is the set of divisors of 36 with partial order 'is a divisor of', which one of the following is an immediate predecessor of 36?

Answer: $\boxed{\mathrm{B}}$: Using the notation $x \mid y$ for x is a divisor of y, we have $9 \mid 18 \mid 36$, $6 \mid 18 \mid 36$ and $4 \mid 12 \mid 36$, while $18 \mid 36$ with no divisor between 18 and 36.

?. Suppose $A = \{a, b, c, d\}$, $B = \{x, y, z\}$ and R is the relation between A and B given by $R = \{(a, x), (b, x), (b, y), (c, y), (d, z)\}$. R is not a function. Removing which of the following pairs from R results in a function?

(A)
$$(a, x)$$
, (B) (b, y) , (C) (c, y) , (D) (d, z) .

- ?. Suppose $S = \{0, 1, 2, 3, 4, 5\}$, $T = \{0, 2, 4\}$ and $f: S \to T$ is given by f(k) = r where r is the remainder when 4k is divided by 6. Then f is
- (A) Injective but not surjective (B) Surjective but not injective (C) Bijective (D) Neither injective nor surjective.

Answer: $\boxed{\mathrm{B}}$: $f(0) = 4(0) \mod 6 = 0$, $f(1) = 4(1) \mod 6 = 4$, $f(2) = 4(2) \mod 6 = 2$, $f(3) = 4(3) \mod 6 = 0$, $f(4) = 4(4) \mod 6 = 4$, $f(5) = 4(5) \mod 6 = 2$. Since f(0) = f(3), f is not injective. f is surjective since f(0) = 0, f(2) = 2 and f(1) = 4..

?. The inverse of f(x) = (3x + 2)/(5x - 3) is

(A)
$$g(y) = (3y+2)/(6y-3)$$
, (B) $g(y) = (3y+2)/(5y-3)$,

(C)
$$g(y) = (3y+2)/(5y-2)$$
, (D) $g(y) = (3y+2)/(6y-2)$,

Answer: $\boxed{\text{B}}$: y = (3x+2)/(5x-3) implies y(5x-3) = 3x+2, which in turn implies 5xy-3y = 3x+2 and hence 5xy-3x = 3y+2 or x(5y-3) = 3y+2.