

2001-2023

2009 2019 2009 2019 2009 2019

:

"

 $2024 \quad 11 \quad 3$

- NiYanhhhhh
- 2023

LATEX https://gitee.com/ylxdxx/AM601-kaoyan

:

2.

(1)
$$f\left(\ln\left(\sqrt{x^2+1}+x\right)\right) = \sqrt{x^2+1}-x, \quad f^{-1}(x)$$
 ()
A. $\ln\frac{1}{x}$ B. $\ln\frac{1}{\sqrt{x}}$ C. $e^{\frac{1}{x}}$ D. $e^{\frac{1}{\sqrt{x}}}$

(2)
$$\lim_{x \to 0} \left(\frac{2^x + 3^x}{2}\right)^{2/x}$$
 ()

(2)
$$\lim_{x \to 0} \left(\frac{1}{2} \right)$$
A. e
B. 6
C. $\sqrt{6}$
(3)
$$\rho = e^{\theta} \quad \theta = \frac{\pi}{2} \left(\rho, \theta \right) = \left(e^{\frac{\pi}{2}}, \frac{\pi}{2} \right)$$
()

A. x - y = 0 B. x - y = 1 C. $x + y = e^{\frac{\pi}{2}}$ D. $x + y = e^{2\pi}$

$$(4) xe^x = 1 ()$$

A. 0

B. 1

C. 2

D. 4

(5)
$$a = (0,1,2)$$
 b $a \cdot b = 2$ b ()

A.
$$(0, \frac{1}{3}, \frac{2}{3})$$
 B. $(0, \frac{2}{5}, \frac{4}{5})$ C. $(0, \frac{2}{7}, \frac{4}{7})$ D. $(0, \frac{2}{9}, \frac{4}{9})$

(6)
$$f(x,y) = \sqrt{|xy|} f(x,y)$$
 (0,0) ()

C.

D.

(7)
$$y = e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x+1)(x+2)}$$
 ()

C. 3

D. 4

(8)
$$z = z(x,y)$$
 $F\left(x + \frac{z}{y}, y + \frac{z}{x}\right) = 0$ F z $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$ ()

A. z + xy B. z - xy C. 0

D. 1

(9)
$$\sum_{n=0}^{\infty} \frac{n^n x^n}{(n!)^2}$$
 r ()

C.e

 $D. \infty$

(10)
$$y = c_1 e^x + c_2 e^{-2x} + x e^x$$
 ()

A. $y'' - y' - 2y = 3xe^x$

B. $y'' - y' - 2y = 3e^x$

C. $y'' + y' - 2y = 3e^x$

D. $y'' + y' - 2y = 3xe^x$

$$f(x) = \begin{cases} \frac{\ln(1+x^2)}{x} + a, & x < 0\\ 1/2, & x = 0 \\ b \cdot \frac{\sin^3 x}{\ln(1+x^3)}, & x > 0 \end{cases}$$

$$y'' + xy' - 2y = 0$$

$$(1) \qquad \sum_{n=0}^{\infty} a_n x^n$$

$$\sqrt[x]{y} = \sqrt[y]{x} \ x > 0 \ y > 0 \ y = f(x) \quad \frac{d^2y}{dx^2}$$

$$u$$
 f u $y\frac{\partial u}{\partial x} + x\frac{\partial u}{\partial y} = 0$ $u(x,y) = f(x^2 - y^2)$

$$D: x^2 + y^2 \leqslant 2 \ x \geqslant 0 \ y \geqslant 0$$

$$\iint_{D} x^{\left[1+x^{2}+y^{2}\right]} \cdot y \left[1+x^{2}+y^{2}\right] dx dy$$

$$[x]$$
 x

$$(1) \quad y = \ln x \qquad \quad y = \ln x \quad x$$

(2)
$$(1)$$
 x

$$I=\iint_S x^2ydydz+xy^2dzdx+\left(x^2+2y^2\right)dxdy$$

$$S\quad x^2+y^2+z^2=4$$

$$f(x)$$
 [0,1] $f(0) = f(1) = 0$ $f(x)$ -1 $\exists \xi \in (0,1)$ $f''(\xi) \geqslant 8$

$$l: \left\{ \begin{array}{ll} x^2 + y + 2z = 1 \\ 2x + y + 3z = 4 \end{array} \right. \qquad P(x, y, z) \quad P \qquad \qquad P$$

$$f(x)$$
 [2,4] (2,4) $0 \lim_{x\to 2} \frac{f(2x-2)}{x-2}$

- (1) f(x) (2,4) 0
- (2) $\exists \xi \in (2,4)$ $\frac{6}{\int_2^4 f(x)dx} = \frac{\xi}{f(\xi)}$
- (3) $\xi \in (2,4) \; \exists \eta \neq \xi \; \eta \in (2,4)$

$$6f'(\eta) = \frac{\xi}{\xi - 2} \int_2^4 f(x) dx$$

150 , 180 1.

2.

(1)
$$f(x) = \arcsin\left(\frac{4}{\pi}x - 1\right)$$
, $f[f(x)]$ ()

A. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ B. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

C. $\left[\frac{\pi}{8}, \frac{\pi}{4}\right]$ D. $\left[0, \frac{\pi}{2}\right]$

(2)
$$\lim_{x \to 0} \tan^2 x \left(\frac{1}{\sin x} + \frac{1}{x^2} \right) = ()$$

(3)
$$g(x)$$
 , $g(0) = g'(0) = 0, f(x) = \begin{cases} \frac{g(x)}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$, $f(x)$ $f'(x)$ $x = 0$ ()

A. f(x), f'(x)

B. f(x) , f'(x) , f'(0)

C. f(x) , f'(0)

D. f(x)

(4)
$$f(x) = \lim_{n \to +\infty} \frac{e^x + x^{2n}}{2 - x^{2n}}, \quad f(x)$$
 ()

 $C.\pm 1$

D.

(5) :
$$\frac{x-1}{2} = \frac{y-2}{-2} = \frac{z-3}{-1}$$
 $\begin{cases} x+2y-3=0\\ 3y+z+2=0 \end{cases}$ $\cos \theta$ ()

C. $\frac{1}{\sqrt{12}}$

(6)
$$\sum_{n=1}^{+\infty} a_n , \qquad \sum_{n=1}^{+\infty} (-1)^n a_n \sum_{n=1}^{+\infty} (a_n)^2 \sum_{n=1}^{+\infty} \sin(a_n) \sum_{n=1}^{+\infty} \ln(1+a_n)$$
 ()

D. 4

$$(7) \quad : y = x \sin \frac{1}{x} \quad ()$$

D.

(8)
$$f(x,y) = \frac{x^2y^2}{x^2y^2 + (x-y)^2}, \quad f(x,y) \quad (0,0) \quad ($$

D.

(9)
$$z(x,y) = \frac{z}{z} = \ln \frac{z}{y}, \quad dz = ($$
)
A. $\frac{z(zdx+ydy)}{z(x+y)}$ B. $\frac{z(ydx+zdy)}{y(x+z)}$ C. $\frac{z(zdx+xdy)}{y(x+z)}$ D. $\frac{z(xdx+ydy)}{z(x+y)}$

$$(10)$$
 $()$

$$u(x) = \begin{cases} 1, & x > 0 \\ 0, & x \le 0 \end{cases}, \quad \lim_{x \to 0} \left[\frac{1 + e^{\frac{1}{x}}}{1 - e^{\frac{2}{x}}} + u(x) \right]$$

$$y(x) \qquad y'' = e^{2y} + e^y, \quad y(0) = 0, y'(0) = 2, \quad y(x)$$

$$y(x) \qquad \begin{cases} x = 1 + t^2 \\ y = \cos t \end{cases}$$

$$(1) \ \frac{dy}{dx} \quad \frac{d^2y}{dx^2}$$

$$(2) \lim_{x \to 1^+} \frac{dy}{dx} \quad \lim_{x \to 1^+} \frac{d^2y}{dx^2}$$

:
$$u(x,y) = f(x)g(y)$$
 $u\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}$

$$(x-1)^2 + y^2 = 1 \ y > 0, \quad y$$

$$C: \frac{x^2}{4} + \frac{y^2}{9} = 1,$$

$$I = \oint_C e^{xy} \{ [y \sin(xy) + \cos(x+y)] dx + [x \sin(xy) + \cos(x+y)] dy \}$$

$$(1) \quad [-\pi, \pi] \qquad f(x) = x$$

(2) :
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

$$f(x)$$
 $g(x)$ $[a,b]$, $g''(x) \neq 0$ $f(a) = f(b) = g(a) = g(b) = 0$

$$(1) \ \forall x \in (a,b) \ g(x) \neq 0$$

(2)
$$\exists \xi \in (a, b) \frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$$

$$I_n = \int_0^1 \frac{x^n}{1+x} dx$$

(1)
$$I_{n+1} = -I_n + \frac{1}{n+1}$$

$$(2) \lim_{n \to +\infty} I_n = 0$$

(3) (1) (2)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln 2$$

$$f(x, y, z) = x^2 + y^2 + z^2,$$
 $ax + by + cz = 1$

:

2.

(50 5)

(1)
$$a = e^x$$
, $b = 1 + x$, $c = 1 + x + x^2$, $x = 0$ ϵ , ()

$$A. b \le a \le c$$
 $B. a \le b \le c$ $C. b \le c \le a$ $D.$

C.
$$b \le c \le a$$

(2)
$$, \sin hx = \frac{e^x - e^{-x}}{2} \quad \cosh x = \frac{e^x + e^{-x}}{2} =$$
 ()

A. , C. ,

 $D.\cosh^2 x - \sinh^2 x = 1, \quad x$

(3)
$$n$$
, $\lim_{n \to \infty} \cos 2\pi \sqrt{n^2 + n} = ($

A. 1

 $C_{\cdot}-1$

D.

(4)
$$f(x)$$
 $(-1,1)$, $\lim_{x\to 0^+} \frac{f(x)}{x} = a \neq 0$, $f(x)$ $x = 0$ ()

A.a

B.-a

(5)
$$\vec{a} \quad \vec{b} \quad (\vec{a} + \vec{b}) \perp (\vec{a} - 2\vec{b}), \quad (3\vec{a} - \vec{b}) \perp (\vec{a} + 2\vec{a}), \quad |\vec{a}| \quad |\vec{b}| \quad ($$

 $A. \ |\vec{a}| = \sqrt{\frac{1}{2}} |\vec{b}| \qquad B. \ |\vec{a}| = \sqrt{2} |\vec{b}| \qquad C. \ |\vec{a}| = \sqrt{\frac{2}{3}} |\vec{b}| \qquad D. \ |\vec{a}| = \sqrt{\frac{3}{2}} |\vec{b}|$

(6)
$$I = \lim_{x \to 0} \frac{\int_{\sin^3 x \cos x}^{e^{x^2} - 1} \arctan \frac{3t}{2+t} dt}{\arcsin x^3},$$
 ()

B. I = 3/2 C. I = 1/2

D. I = 0

(7)
$$a_n > 0, \{a_n\}$$
 0, $\sum_{n=1}^{\infty} (-1)^{n-1} \sqrt{a_n \cdot a_{n-1}}$ ()

D.

(8)
$$Z = xy + xF\left(\frac{y}{x}\right)$$
, F , $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$ ()

A. Z - xy B. 0

D. xy

(9)
$$y'' - 6y' + 8y = e^x + e^{2x}$$
 ()

A. $ae^{x} + be^{2x}$ B. $ae^{x} + bxe^{2x}$ C. $axe^{x} + be^{2x}$ D. $axe^{x} + bxe^{2x}$

$$(10)$$
 $()$

A.
$$\lim_{s \to 0} \iint_{s < x^2 + y^2 < \frac{1}{2}} \frac{dxdy}{(x^2 + y^2) \left(\ln \sqrt{x^2 + y^2}\right)^2}$$
B. $\lim_{s \to 1} \iint_{-\frac{1}{2} < x^2 + y^2 < s} \frac{dxdy}{(x^2 + y^2) \left(\ln \sqrt{x^2 + y^2}\right)^2}$
C. $\lim_{s \to 0} \iint_{s < x^2 + y^2 < \frac{1}{2}} \frac{\left(1 + x^2\right) dxdy}{(x^2 + y^2) \left(\ln \sqrt{x^2 + y^2}\right)^2}$
D.

(10)
$$xy'' - y' \ln y' + y' \ln x = 0$$
, $y(1) = 2$ $y'(1) = e^2$

(10)
$$l_1: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{3}$$
 $l_2: \begin{cases} 2x+y-z+1=0\\ x-2y+z-2=0 \end{cases}$

$$(10) f(x) = \lim_{n \to +\infty} \frac{x^{2n-1} + nx \sin \frac{x}{n}}{x^{2n} + 1}, f(x)$$

$$(10) g(x) = \begin{cases} \frac{e^x - 1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}, f(x) = g'(x) f^{(n)}(0)$$

(10)
$$\Sigma=\{(x,y,z)\in R^3\mid x^2+y^2+z^2=1\}\quad,$$

$$\iint_{\Sigma}y^2zdxdy+x^2ydzdx$$

$$(10) \lim_{x \to 0} \frac{ax + \sin x}{\int_b^x \frac{\ln(1+t^3)}{t} dt} = c, (c \neq 0), \quad a, b, c$$

$$(10) f(x,y) = \begin{cases} \frac{\sqrt{|xy|}}{x^2 + y^2} \sin(x^2 + y^2) & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases} f(x,y) (0,0)$$

(10)
$$f(x) = \begin{cases} x & -\pi \le x \le 0 \\ 0 & 0 \le x \le \pi \end{cases}$$

$$(10)$$
 $f(x)$ $[a,b]$, ab $f(x)$ $\exists \xi_1, \xi_2 \in (a,b)$ $f'(\xi_1) = \frac{f(b)-f(a)}{b-a}$ $f'(\xi_2) < \frac{f(b)-f(a)}{b-a}$

:

150 , 1. 180

2.

(50 5)

(1)
$$\lim_{n \to +\infty} \left(\frac{2}{n^2} + \frac{4}{n^2 + 1} + \dots + \frac{2n}{n^2 + n - 1} \right) \quad ()$$

B. 1

C. 2

 $D. +\infty$

(2)
$$f(x)$$
 $x = a$, $F(x) = f(x)|x - a|$, $f(a) = 0$ $F(x)$ $x = a$ ()

C.

D.

(3)
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{1-\sin x}}$$
 ()

A. e^{-1}

B. 1

 $D. +\infty$

(4)
$$f(x)$$
 $(-\infty, +\infty)$, 4, $\lim_{x \to 0} \frac{f(1) - f(1-x)}{2x} = -1$, $y = f(x)$ $(5, f(5))$ $($

B. 2

C. -1

(5)
$$\vec{a} = (1, 2, 2), \vec{b} = (0, 1, 2), \quad \vec{b} \quad \vec{a}$$
 ()

A. $\left(0, \frac{6}{5}, \frac{12}{5}\right)$ B. $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$ C. $\left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ D. $\left(\frac{2}{3}, \frac{4}{3}, \frac{4}{3}\right)$

(6)
$$f(x,y)$$
 (0,0) ()

A. $\lim_{(x,y)\to(0,0)} [f(x,y) - f(0,0)] = 0.$

B. $\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = 0$, $\lim_{y\to 0} \frac{f(0,y)-f(0,0)}{y} = 0$. C. $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$

D. $\lim_{x \to 0} [f'_x(x,0) - f'_x(0,0)] = 0$, $\lim_{y \to 0} [f'_y(0,y) - f'_y(0,0)] = 0$.

(7)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = ()$$

B. 1

 $C.\frac{1}{3}$

D. 1

(8)
$$x + y + z = e^{xy}, \quad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$$
 ()

A. $(x^2 + y^2) e^{xy}$ B. $(x + y)e^{xy}$ C. $2xye^{xy}$

 $D. (1 + xy)e^{xy}$

(9)
$$a_0 = 3, a_1 = 5,$$
 $n > 1$ $na_n = \frac{2}{3}a_{n-1} - (n-1)a_{n-1},$ $\sum_{n=0}^{\infty} a_n x^n$ ()

$$(10)$$
 $()$

A. $\frac{2}{3}$

A. $\int_0^{+\infty} \frac{x^6}{1+e^x} dx$ B. $\int_0^{+\infty} \frac{1}{\sqrt{x}(1+x)} dx$ C. $\int_1^{+\infty} \frac{1}{x^4 \ln x} dx$ D. $\int_1^{+\infty} \frac{2\sin^2 x}{1+x^2} dx$

$$10 \quad \lim_{x \to 0} f(x) \quad , \quad \lim_{x \to 0} f'(x)$$

$$10 \qquad \lim_{x \to 0} f(x) \quad , \quad \lim_{x \to 0} f'(x) \quad , \quad \lim_{x \to 0} \frac{\sqrt[3]{1 + x f(x)} - 1}{\sin x} = 3 \quad \lim_{x \to 0} f(x)$$

10
$$A(-2,1,-1),$$
 $x,$ $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{-1}$

10
$$y = f(x)$$

$$\begin{cases} x^x + tx - t^2 = 0, \\ \arctan(ty) = \ln(1 + t^2y^2) \end{cases}$$

10
$$u = f(r), r = \ln \sqrt{x^2 + y^2 + z^2}$$
 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = (x^2 + y^2 + z^2)^{-3/2}, f(x)$

10
$$C: y = x^3 + 2x$$
 1,3 x $D, :$

- (1) D
- (2) D x

$$I = \iint_{S} x dy dz + 2y^{4} dx dz + 3z^{6} dx dy$$

$$S \qquad x^2 + 4y^2 + 9z^2 = 1$$

10
$$f(x)$$
 3 , 2 $[a, a+2]$ θ , $f(\theta) = f(\theta+1)$

$$(10 \quad f(x), g(x) \quad [a,b] \quad \ \, , \quad f(a) = f(b) = g(a) = 0. \quad : \quad \xi \in (a,b), \quad f''(\xi)g(\xi) + 2f'(\xi)g'(\xi) + f(\xi)g''(\xi) = 0$$

10
$$f$$
 [0,1] $\int_0^x f(t)dt \ge 0$ $x \in [0,1]$ $\int_0^1 f(t)dt = 0$: $\int_0^1 x f(x)dx \le 0$

10
$$x, y, z$$
 $x^2 + y^2 + z^2 = a$, $a > 0$, $x^3 + y^3 + z^3 \ge \frac{a\sqrt{3}a}{3}$

:

2. ,

A. 1

(1)
$$\lim_{n \to \infty} \left[\left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right) + \left(\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{(2n-1)(2n+1)} \right) \right]$$
(1)
$$A = \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \frac{1}{n!} + \dots + \frac{$$

(2)
$$f(x)$$
 $x = 0$ $\lim_{h \to 0} \frac{f(h^2)}{h^2} = 1$ ()
A. $f(0) = 0$ $f'_{-}(0)$ B. $f(0) = 1$ $f'_{-}(0)$
C. $f(0) = 0$ $f'_{+}(0)$ D. $f(0) = 1$ $f'_{+}(0)$

(4)
$$f(x) = \begin{cases} \frac{x \cdot \sin(x^2 - 1)}{x^2 - 1} & x \neq \pm 1 \\ 1 & x = \pm 1 \end{cases}$$

$$A. f(x) \quad x = -1 \quad x = 1$$

$$C. f(x) \quad x = -1 \quad x = 1$$

$$D. f(x) \quad x = -1 \quad x = 1$$

$$D. f(x) \quad x = -1 \quad x = 1$$

(5)
$$\vec{a}, \vec{b}$$
 $(\vec{a} + \vec{b}) \perp (\vec{a} - \vec{b}) (5\vec{a} + \vec{b}) \perp (3\vec{a} - 4\vec{b})$ \vec{a} \vec{b} α ()
A. $\cos \alpha = \frac{14}{17}$ B. $\cos \alpha = \frac{13}{17}$ C. $\cos \alpha = \frac{12}{17}$ D. $\cos \alpha = \frac{11}{17}$

(6)
$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{|x| + y^2}, & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$

$$I = \lim_{x \to 0} \lim_{y \to 0} f(x,y) \quad J = \lim_{y \to 0} \lim_{x \to 0} f(x,y)$$

A.
$$I$$
 J B. J I C. I J $I \neq J$ D. I J $I = J$

(7)
$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} (-1)^n a_n, \quad \sum_{n=0}^{\infty} (a_n)^2, \quad \sum_{n=0}^{\infty} \sin(a_n), \quad \sum_{n=0}^{\infty} \ln(1+a_n)$$

B. 2

()

C. 3

(8)
$$f(t) \qquad u = f(xy) \quad \phi(t) = \frac{\partial^2 u}{\partial x \partial y} \qquad ()$$

$$A. t f''(t) - f'(t) \qquad B. f''(t) - t f'(t) \qquad C. t f''(t) + f'(t) \qquad D. f''(t) + t f'(t)$$

D. 4

(9)
$$y' + P(x)y = Q(x)$$
 $y_1(x), y_2(x) C$ ()
A. $C[y_1(x) - y_2(x)]$ B. $y_1(x) + C[y_1(x) - y_2(x)]$
C. $C[y_1(x) + y_2(x)]$ D. $y_1(x) + C[y_1(x) + y_2(x)]$

$$(10) \qquad I = \iint_D (x^2 - y^2) \, dx dy \quad D \quad \{(x, y) \in R^2 | \frac{x^2}{a^2} + \frac{y^2}{b^2} < 1\}$$

$$()$$

$$A. \ a > b \quad I > 0 \qquad B. \ a > b \quad I < 0 \qquad C. \ a > b \quad I = 0 \qquad D. \ a < b \quad I = 0$$

$$(10)$$
 $yy'' + (y')^2 = 0$ $y(0) = 1, y'(0) = \frac{1}{2}$

(10)
$$L \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{1}$$
 z

(10)
$$a_0 = 3, a_1 = 5$$
 $n > 1$ $na_n = \frac{2}{3}a_{n-1} - (n-1)a_{n-1}$ $|x| < 1$ $\sum_{n=0}^{\infty} a_n x^n$ $S(x)$

$$(10)$$
 $y = y(x)$ $e^y + 6xy + x^2 - 1 = 0$ $y''(0)$

$$I_R = \iiint\limits_{1/R \le x^2 + y^2 + z^2 \le R} \frac{e^{-(x^2 + y^2 + z^2)}}{x^2 + y^2 + z^2} dx dy dz$$

$$I = \lim_{R \to +\infty} I_R$$

(10)
$$I=\oint\limits_{L}\frac{(x^2-y^2-x)\,dy+(1-2x)ydx}{(x^2+y^2)\left[(x-1)^2+y^2\right]}$$

$$L=\left\{(x,y)\in R^2\big|x^2+y^2=4\right\}$$

$$(10) \quad f(x) = \sin\frac{1}{x} \qquad x_n \to 0 \ (n \to \infty) \quad \lim_{n \to \infty} f(x_n) \qquad \lim_{x \to 0} \left[\lim_{n \to \infty} f(x_n) + x \right]^{\left[2/f(\frac{1}{x}) \right]} = e^2$$

$$(\quad \ \, 10\ \,)\quad \ \, f(x)\quad [a,b]\quad 2\qquad \ \, a < b\quad f'\left(\frac{a+b}{2}\right) = 0 \qquad \xi \in (a,b) \quad \, |f''(\xi)| \geq \frac{4}{(b-a)^2}|f(b)-f(a)|$$

(10)

- (1) [0,1]
- (2) [0,1]

(10)
$$f(x,y,z) = \ln x + 2 \ln y + 3 \ln z$$
 $x^2 + y^2 + z^2 = 6r^2$ a,b,c $ab^2c^3 \le 108\left(\frac{a+b+c}{6}\right)^6$

150 , 180 1.

2.

50 (5)

(1) h(x) :

$$h(x) = \begin{cases} 1 & x \ge 1 \\ x & -1 < x < 1 \\ -1 & x \le -1 \end{cases}$$

 $g(x) = h\left(\sin x^2\right) \quad (\quad)$

A.

C.

D.

(2) $f(x) = (x + \frac{1}{x})^{1000}, \quad f'(x) = ($

A. $1000 \left(x + \frac{1}{x}\right)^{1000} \left(1 - \frac{1}{x}\right)$ C. $\left(x + \frac{1}{x}\right)^{999} \left(1 - \frac{1}{x^2}\right)$

B. $1000 \left(x + \frac{1}{x}\right)^{999} \left(1 - \frac{1}{x^2}\right)$ D. $1000 \left(x + \frac{1}{x}\right)^{1000} \left(1 - \frac{1}{x^2}\right)$

(3) $\lim_{x \to 0} \left(\frac{\cos x + \sin x}{\cos x - \sin x} \right)^{\frac{1}{x}} = ()$ A. π^2 B π

D.e

(4) $L_1: \begin{cases} x+2y=1 \\ y+\frac{1}{2}z=2 \end{cases}$ $L_2: \frac{x-2}{-1} = \frac{y+1}{-2} = \frac{z-3}{2}$ $\alpha \cos \alpha = ($)

D. $\frac{4}{9}$

(5) $\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = ($) A. e^{-1} B. e^{-2}

C.e

 $D.e^2$

(6) $\int_{0}^{+\infty} \int_{0}^{+\infty} x^{2} e^{-2(x^{2}+y^{2})^{2}} dx dy = ()$

C. $\frac{\pi}{16}$

D. $\frac{\pi}{8}$

(7) $\lim_{(x,y)\to(0,0)} \frac{|xy|}{\sqrt[4]{x^6+y^{18}}} = ($)

A. 0

B. 1

 $C. \infty$

(8) $y' + y = xy^2, y(0) = \alpha \quad y^*(x) \quad \lim_{x \to 1} y^*(x) = \frac{1}{e+2}, \quad \alpha = ($

B. $\frac{1}{3}$

C. $\frac{1}{4}$

(9) $\sum_{n=0}^{+\infty} \frac{2^n (n+1)}{n!} = ()$

 $A. e^2$

B. $2e^{2}$

C. $3e^{2}$

D. $4e^{2}$

(10) $f'(x^2) = \frac{1}{x}(x > 0), \quad f(x) = ($

A. $2\sqrt{x} + C$ B. $\sqrt{x} + C$ C. $4\sqrt{x} + C$ D. $\frac{2}{\sqrt{x}} + C$

$$(10)$$
 $y_n = y_n(x)$ $x > 1, n \ge 1$, $x > 1$

$$y_1(x) = 2x, y_{n+1}(x) = 2x - \frac{1}{y_n(x)}$$

 $: \lim_{n \to \infty} y_n \quad ,$

(10)
$$x+y+z=\pm 1, 2x-y+2z=\pm 2, x-y-z=\pm 3,$$
 Ω V

$$(\quad 10 \) \quad f(x) = x \cos x \quad \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$(10)$$
 $y^2 = x, y^2 = 3x$ $y = x, y = 2x$ D

$$(\quad \ \, 10 \ \,) \qquad \quad : \, e^x - 1 = x e^{x\theta(x)}, \theta(x) \in (0,1) \quad : \, \lim_{x \to 0} \theta(x) = \tfrac{1}{2}$$

(10)
$$y'' - y' - 2y = e^{2t}(3-t)$$

$$(\quad 10 \) \qquad I = \oint_L \frac{xdy - ydx}{x^2 + 2y^2}, \quad L \quad (1,1), (-1,0), (0,-1)$$

$$(\quad 10 \) \qquad \iint_S z dS, \quad S \quad \sqrt{x^2 + y^2} \leqslant z \leqslant 1$$

(10)
$$f(x)$$
 $g(x)$ $[a,b]$, :
$$\left(\int_a^b f(x)g(x)dx\right)^2 \leq \int_a^b f^2(x)dx \int_a^b g^2(x)dx$$

(10)
$$f(x)$$
 $[0,2]$, $f(0)=f(2)=0$:
$$\int_0^2 |f(x)f'(x)| dx \le \frac{1}{2} \int_0^2 |f'(x)|^2 dx$$

:

150 , 1. 180

2.

(50 5)

(1)
$$f(x) = |x| \sin x^2$$
, ()

A.
$$(-\infty, +\infty)$$

B.
$$x \to \infty$$
, $f(x)$

C.
$$(-\infty, +\infty)$$

D.
$$x \to \infty$$
, $f(x)$

(2)
$$\lim_{n \to \infty} \left(\frac{1}{n^4 + n^3 + n^2 + 1} + \frac{2}{n^4 + n^3 + n^2 + 2} + \dots + \frac{n^2}{n^4 + n^3 + n^2 + n^2} \right) = ()$$

B.
$$\frac{1}{2}$$

$$D. \infty$$

(3)
$$f(x) = (x-1)(x-2)^2(x-3)^3$$
, $f'(1) + f''(2) + f'''(3) = ($

B.
$$-2$$

$$C. -8$$

D.
$$-10$$

(4)
$$f(x) = x \sin x + \cos x - \frac{\pi}{2}$$
, ()

A.
$$f(0)$$
, $f\left(\frac{\pi}{2}\right)$

B.
$$f(0)$$
, $f\left(\frac{\pi}{2}\right)$

C.
$$f(0)$$
, $f\left(\frac{\pi}{2}\right)$

D.
$$f(0)$$
, $f\left(\frac{\pi}{2}\right)$

(5)
$$\lim_{x \to 0} (1 - 3x)^{\frac{\cos x^2}{\sin x}} = ()$$
A. e^{-1} B. e^{-2}

$$A.e^{-1}$$

B.
$$e^{-2}$$

C.
$$e^{-3}$$

(6)
$$\int_0^{\pi} (x \sin x)^2 dx = ()$$

A.
$$\frac{\pi^2}{3} - \frac{\pi}{4}$$

B.
$$\frac{\pi^3}{6} - \frac{\pi}{4}$$

A.
$$\frac{\pi^2}{3} - \frac{\pi}{4}$$
 B. $\frac{\pi^3}{6} - \frac{\pi}{4}$ C. $\frac{\pi^3}{6} - \frac{\pi^2}{4}$ D. $\frac{\pi^3}{6} + \frac{\pi}{4}$

D.
$$\frac{\pi^3}{6} + \frac{\pi}{4}$$

(7)
$$D_K D = \{(x,y) \mid x^2 + y^2 \le 1\} k , k = 1,2,3,4 I_k = \iint_{D_k} (y-x) dx dy,$$

A.
$$I_1 < 0$$

B.
$$I_2 < 0$$

A.
$$I_1 < 0$$
 B. $I_2 < 0$ C. $I_3 < 0$ D. $I_4 < 0$

D.
$$I_4 < 0$$

(8)
$$y_1(x)$$
 $y_2(x)$ $y' + p(x)y = 0$

$$g_1(x)$$
 $g_2(x)$ $g + p(x)g -$

$$A. y = Cy_1(x)$$

$$B. y = Cy_2(x)$$

C.
$$y = C(y_1(x) + y_2(x))$$

D.
$$y = C(y_1(x) - y_2(x))$$

$$(9) \qquad \sum_{n=1}^{+\infty} u_n \qquad \qquad (\quad)$$

$$A. \sum_{n=1}^{+\infty} (-1)^n \frac{u_n}{n}$$

B.
$$\sum_{n=1}^{+\infty} u_n^2$$

A.
$$\sum_{n=1}^{+\infty} (-1)^n \frac{u_n}{n}$$
C.
$$\sum_{n=1}^{+\infty} (u_{2n-1} - u_{2n})$$

B.
$$\sum_{n=1}^{+\infty} u_n^2$$
D.
$$\sum_{n=1}^{+\infty} (u_n + u_{n+1})$$

(10)
$$f'(\sin^2 x) = \cos 2x$$
, $f(0) = 1$, $\int_0^1 f(x)dx = ($

$$C.\frac{7}{6}$$

D.
$$\frac{1}{2}$$

$$(10) \lim_{x \to 0} \frac{\left[\sin x - \sin(\sin x)\right] \sin x}{x^4 \cos x^2}$$

$$(10) : \lim_{n \to \infty} \int_0^{\pi} \sin^n t dt = 0$$

(10)
$$f(x) = (x-1)^2$$
 (0,1) $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

(10)
$$I=\iint_{\Sigma}2x^3dydz+2y^3dzdx+3\left(z^2-2\right)dxdy$$

$$\Sigma \quad z=1-x^2-y^2(z\geqslant 0)$$

(10)
$$\iint_{\Omega} \frac{(x+y)\ln(1+\frac{y}{x})}{\sqrt{1-x-y}} dx dy$$
, Ω $x+y=1, x=0, y=0$

$$(10)$$
 $y''(x+(y')^2)=y'$ $y(1)=y'(1)=1$

$$(\quad 10 \) \qquad I = \oint_L \frac{x dy - y dx}{4x^2 + y^2}, \quad L \quad (1,0) \quad , 2 \qquad ,$$

(10)
$$x \ge 0, a > 0, \quad \sqrt{x+a} - \sqrt{x} = \frac{a}{2\sqrt{x+\phi_a(x)}}$$
 : $\frac{a}{4} \le \phi_a(x) \le \frac{a}{2}$ $\lim_{x \to 0} \phi_a(x) = \frac{a}{4}$ $\lim_{x \to \infty} \phi_a(x) = \frac{a}{2}$

(10)
$$f(x)$$
 [0,2] , :
$$\int_0^2 f(x) dx \le \int_0^2 x f(x) dx$$

(10)
$$f(x)$$
 $[a,b]$ $f'(x)$, $f(a)=0$, $a < b$:
$$\int_a^b \left[f(x)\right]^2 dx \le \frac{(b-a)^2}{2} \int_a^b \left[f'(x)\right]^2 dx$$

:

150 , 180 1.

2.

(50 5)

(1)
$$f(x)$$
, x , $f(x) = \sin \pi x$ x , $f(x) = 0$, ()

A. f(x) $(-\infty, +\infty)$

B. f(x)

C. f(x) $(-\infty, +\infty)$

D. f(x)

$$(2) \quad f'\left(\sin^2 x\right) = \cos^2 x, \quad f(x) \quad (\quad)$$

A. $x - \frac{1}{2}x^2$ B. $x + \frac{1}{2}x^2$ C. $x - \frac{1}{2}x^2 - C$ D. $\frac{1}{2}x^2 - x + C$

(3)
$$y_1 y_2 y'' + 2y' + y = 2xe^{-x}$$
 ()

A.
$$\frac{1}{2}y_1 + \frac{1}{2}y_2$$
 $(c_1x^3 + c_2x^2)e^{-x}$, c_1, c_2

B.
$$\frac{1}{2}y_1 - \frac{1}{2}y_2$$
 $(c_3x + c_4)e^{-x}$, c_3, c_4

C.
$$2y_1 + y_2$$
 $(c_5x^3 + c_6x^2)e^{-x}$, c_5, c_6

D.
$$2y_1 - y_2$$
 $(c_7x + c_4)e^{-x}$, c_7, c_8

$$(4) \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx = ()$$

B. $\frac{\pi}{4}$

C. $\frac{\pi^2}{4}$

D. $\frac{\pi^2}{6}$

(5)
$$a, b \quad (a+b) \perp (a-b), |a+b| = 1, |a| = 1, \quad |a \times b| = ($$

A. $\frac{\sqrt{3}}{2}$

B. 1

 $C.\frac{\sqrt{2}}{2}$

D. $\frac{1}{6}$

(6)
$$f(x)$$
 , $F(t) = \int_1^t dy \int_y^t f(x) dx$, $F'(2) = ($)

A. 2f(0)

B. f(2)

C. -f(2)

D. 0

$$(7) \qquad \sum_{n=1}^{+\infty} a_n \qquad \sum_{n=1}^{+\infty} a_n^2 \qquad (\quad)$$

C.

D.

A. B.
$$\lim_{x \to 0, y \to 0} \frac{x^2 y}{\sqrt[3]{x^8 + y^{12}}} = ()$$

B. $\frac{1}{\sqrt[3]{3}}$

D.

$$(9) \quad \lim_{x \to 0} \left(\frac{\sin}{x}\right)^{\frac{1}{x^2}} = (\quad)$$

A. $e^{\frac{1}{6}}$

B. $e^{-\frac{1}{6}}$ C. $e^{\frac{1}{2}}$

D. $e^{-\frac{1}{2}}$

(10)
$$\begin{cases} x - y + z - 1 = 0 \\ 2x + y = 0 \end{cases} x + ky - z - 5 = 0 \quad k \quad ()$$

C.2

D. 1

$$(10) \lim_{n\to\infty} x_n = a, \lim_{n\to\infty} y_n = b,$$

$$\lim_{n \to \infty} \frac{x_1 y_n + x_2 y_{n-1} + \dots + x_n y_1}{n}$$

(10)
$$y = y(x)$$

$$\begin{cases} y'' = y'(2y+2) \\ y(0) = -1 \\ y'(0) = 1 \end{cases}$$

(10)
$$(x-1)^2 + y^2 + z^2 = 1$$
 $x = \sqrt{y^2 + z^2}$ x , (x,y,z) $\rho(x,y,z) = 1 - (y^2 + z^2)$,

(10)
$$f(x) = (\pi - |x|)^2 (-\pi \leqslant x \leqslant \pi)$$
 $\sum_{n=1}^{+\infty} \frac{1}{n^2}$

(10)
$$f(x) = \int_0^x g(t)dt$$
, $\int_0^1 e^{-x^2} f(x)dx$, $g(t) = 5t^4 + 3t^2 + 1$

(10)
$$D = \{(x,y) \mid y>0\}$$
 , $f(x,y)$, $t>0$ $f(tx,ty) = t^{-2}f(x,y)$ D L ,
$$\oint_L y f(x,y) dx - x f(x,y) dy = 0$$

(10)
$$I=\iint_{\Sigma}xzdydz+2yzdzdx+3xydxdy$$
 , Σ $z=1-x^2-\frac{1}{4}y^2$ (0 $\leqslant z\leqslant 1)$

(10)
$$f(x)$$
 $(0,\infty)$, $\lim_{x\to\infty} f'(x) = 0$, :
$$\lim_{x\to\infty} \frac{f(x)}{x} = 0$$

(10)
$$f(x)$$
 $(-\infty, +\infty)$, $F(x) = \frac{1}{2\delta} \int_{-\delta}^{\delta} f(x+t)dt$, $\delta > 0$: $F'(x)$, $x \in (-\infty, +\infty)$

(10)
$$f(x)$$
 $[a,b]$, $f'(a)=f'(b)=0$ $\xi\in(a,b),$
$$|f''(\xi)|\geq \frac{4}{(b-a)^2}|f(b)-f(a)|$$

:

```
150 ,
1.
              180
```

2.

(50 5)

(1)
$$f(x) = \frac{\sin x^2}{x}$$
, ()

A. $(0,\infty)$

B. $(0,\infty)$ f(x)

C. $(0,\infty)$

D. $x \to \infty, x \to 0^+$, f(x)

(2)
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} = ($$

A. 1

B. 0

 $C. \infty$

D. $e^{-\frac{1}{6}}$

$$(3) y' = \frac{1}{y-x} ()$$

A. $x = y + Ce^{-y} - 1$

B. $y = x + Ce^{-x} - 1$

C. $x = \ln(x - y - 1) + C$

D.
$$y = \ln|y - x - 1| + C$$

(4)
$$m, n$$
 , $m > n$: $S = \int_0^{\frac{\pi}{4}} \sin^m x \cos^n x dx$, $T = \int_0^{\frac{\pi}{4}} \sin^n x \cos^m x dx$ ()

A. S > T B. S = T

C.S < T

D. S. T

$$(5) \quad x \in \mathbb{R}, \quad m \leqslant f(x) < g(x) < h(x) \leqslant M \quad g(x) \quad , \quad \lim_{x \to \infty} [M - f(x)][h(x) - m] = 0$$

$$\lim_{x \to \infty} g(x) \quad (\quad)$$

$$A. \quad , \quad \frac{M+m}{2} \qquad \qquad B. \quad , \qquad M \quad m$$

B., M m

D., [m, M]

(6)
$$f(x) = x^2 \sin x + \cos x + \frac{\pi}{2}x,$$
 ()

C. 4

D. 4

(7)
$$\vec{a}$$
, \vec{b} , $2\vec{a}$ + \vec{b} \vec{a} - \vec{b} \vec{a} + $2\vec{b}$ \vec{a} + \vec{b} ()

A. $|\vec{b}|^2 = 7|\vec{a}|^2$ B. $|\vec{a}|^2 = 7|\vec{b}|^2$ C. $|\vec{b}|^2 = 5|\vec{a}|^2$ D. $|\vec{a}|^2 = 5|\vec{b}|^2$

(8)
$$D \quad x + y = \frac{1}{2}, x + y = 1$$
 $I_1 = \iint_D \ln(x+y)^3 dx dy, I_2 = \iint_D (x+y)^3 dx dy, I_3 = \iint_D \sin(x+y)^3 dx dy$ ()

A. $I_1 < I_2 < I_3$ B. $I_3 < I_1 < I_2$ C. $I_1 < I_3 < I_2$ D. $I_3 < I_2 < I_1$

(9)
$$\sum_{n=1}^{\infty} a_n x^n \sum_{n=1}^{\infty} b_n x^n \qquad \frac{\sqrt{2}}{3} \frac{1}{3}, \qquad \sum_{n=1}^{\infty} \frac{a_n^2}{b_n^2} x^n \qquad ()$$

D. $\frac{1}{2}$

(10)
$$x^2 + y^2 + 2z^2 = 5$$
, (x_0, y_0, z_0) $x + 2y + z = 0$, ()

A. $x_0: y_0: z_0 = 4:2:1$

B. $x_0: y_0: z_0=2:4:1$

C. $x_0: y_0: z_0 = 1:4:2$

D. $x_0: y_0: z_0 = 1:2:4$

$$(10) \quad \lim_{n \to \infty} \frac{1}{n} \left(\sqrt{1 + \sin \frac{\pi}{n}} + \sqrt{1 + \sin \frac{2\pi}{n}} + \dots + \sqrt{1 + \sin \frac{n\pi}{n}} \right)$$

$$(10) \quad u = e^{x^2} \sin \frac{x}{y}, \quad \frac{\partial^2 u}{\partial x \partial y} \quad (\pi, 2)$$

$$\begin{cases}
y = x \\
y = 2x \\
xy = 1 \\
xy = 2
\end{cases}, f, f' = g L D :$$

$$\oint_{L} xf\left(\frac{y}{x}\right) dx = -\int_{1}^{2} \frac{g(u)}{2u} du$$

(10)
$$y_1 = x, y_2 = x^2, y_3 = e^x$$
 : $y'' + p(x)y' + q(x)y = f(x)$
 $y(0) = 1, y'(0) = 0$

(10)
$$f(x) = 4x + \cos \pi x + \frac{1}{1+x^2} - x^2 e^x + x e^x \int_x^1 f(t) dt$$
 $\int_0^1 (1-x) e^x f(x) dx$

(10)
$$I = \iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}, \quad \Sigma \quad 2x^2 + 2y^2 + z^2 = 4$$

$$(10)$$
 $f(x) = x - 1 \ (0 \le x \le 2)$ 4

$$(10) \quad g(x) \qquad , \quad x \geqslant a \quad , |f'(x)| \leqslant g'(x) \qquad x \geqslant a \quad , |f(x) - f(a)| \leqslant g(x) - g(a)$$

$$(\quad 10 \) \quad f(x) \quad [0,2] \quad \ , \quad f'(0)=f'(2)=0 \qquad \quad (0,2) \qquad \quad \xi, \quad |f''(\xi)|\geqslant |f(2)-f(0)|$$

- (1) $x^a y^{1-a} \leqslant ax + (1-a)y$
- (2) $x_1, x_2, x_3, \dots, x_n, y_1, y_2, \dots, y_n$, (1) : $x_1 y_1 + x_2 y_2 + \dots + x_n y_n \leqslant \left(x_1^2 + x_2^2 + \dots + x_n^2\right)^{\frac{1}{2}} \left(y_1^2 + y_2^2 + \dots + y_n^2\right)^{\frac{1}{2}}$

:

2. , (50 5) $(1) \{a_n\} a \ge 2, \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = ()$ $A. \infty B. 0 C. 1$

1.

150 ,

180

(2) $\lim_{x \to 0} \left(\frac{1}{x \sin x} - \frac{1}{x^2} \right) = ($) A. 0 B. ∞ C. $\frac{1}{6}$ D. $\frac{1}{3}$

(3) $M = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{1+x^k} dx, N = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{1+x^k} dx, k$ ()

D.a

(4) a_n , $\lim_{n \to \infty} a_n = 0$, $S_n = \sum_{k=1}^n a_k \{S_n\}$, $\sum_{n=1}^\infty a_n (x-1)^n$ ()

A. [-1,1] B. [-1,1) C. [0,2) D. (0,2]

(5) $u(x,y) = \varphi(x) - \varphi(x-y) + \int_{x-y}^{x} \phi(t)dt, \quad \varphi \quad , \phi \quad , \quad ()$ $A. \frac{\partial^{2} u}{\partial x \partial y} = \frac{\partial^{2} u}{\partial x^{2}} \qquad B. \frac{\partial^{2} u}{\partial x \partial y} = -\frac{\partial^{2} u}{\partial x^{2}} \qquad C. \frac{\partial^{2} u}{\partial x \partial y} = \frac{\partial^{2} u}{\partial y^{2}} \qquad D. \frac{\partial^{2} u}{\partial x \partial y} = -\frac{\partial^{2} u}{\partial y^{2}}$

(6) y = f(x) y'' - 2y' + 4y = 0 , $f(x_0) > 0, f'(x_0) = 0,$ f(x) x_0 ()

A. B. C. D.

(7) $\Sigma zoy \qquad z = y^2 (0 \leqslant y \leqslant 2) \quad z \qquad z = 4 \quad , \cos \alpha, \cos \beta, \cos \gamma \quad ,$ $\iint_{\Sigma} \left[\left(\frac{x^2 y}{2} + 2x - z \right) \cos \alpha + (3y + z) \cos \beta - xyz \cos \gamma \right] dS \quad ()$

A. 40 B. 40π C. 20 D. 20π

(8) $xe^{-2x}, e^x, 3x$ n $y^{(n)} + a_1y^{(n-1)} + \dots + a_{n-1}y' + a_ny = 0$, e^{-x} , (9)

A. $n = 6, a_1 = 4, a_2 = 3, a_3 = a_4 = -4, a_5 = a_6 = 0$

B. $n = 5, a_1 = 3, a_2 = 0, a_3 = -4, a_5 = a_4 = 0$

C. $n = 4, a_1 = 1, a_2 = -3, a_3 = a_4 = 0$

D. $n = 3, a_1 = -1, a_3 = a_2 = 0$

(9) $L_1: \begin{cases} 2x+y-z+1=0 \\ x-2y+2z-3=0 \end{cases}$ $L_2: \begin{cases} y+z+5=0 \\ 2x-z+1=0 \end{cases}$ $L_1 L_2$ ()

(10) $\int_{0}^{\pi} \sqrt{1 - \sin x} dx = ()$ A. π B. $\frac{\pi}{2}$ C. $\sqrt{2} + 1$ D. $4(\sqrt{2} - 1)$

 $(\ \ 10 \) \ \ a\geqslant -12 \qquad \ \, , \quad x_1=a, \quad x_{n+1}=\sqrt{12+x_n}, \quad \{x_n\} \qquad ; \quad , \quad \{x_n\}$

(10)
$$L x^2 + y^2 = 2$$
 , , $f(x) R$:
$$\int_L y \left(f(x) - \frac{1}{f(x)} \right) dx + \left(x^2 y + 2x f(y) \right) dy \ge 1 + \pi$$

(10)
$$[2x + e^x \sin(xy) + ye^x \cos(xy)] dx + [xe^x \cos(xy) + 3y^2] dy = 0$$

(10)
$$f(x) = 1 - x^2 \ (0 \leqslant x \leqslant \pi)$$
 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$

$$(10) \quad 2\mu + e^{\mu} = xy, \quad \frac{\partial^2 u}{\partial x \partial y}$$

$$(10) f(x) (0,+\infty)$$
,

- (1) $\lim_{x \to +\infty} f'(x)$ (2) $\lim_{x \to +\infty} f'(x) , \lim_{x \to +\infty} f'(x) = 0$

$$\int_0^2 x f(x) dx \le \int_0^2 f(x) dx$$

$$(10) 0 \le a, b \le 1, a+b=1, x, y e^{ax+by} \le ae^x + be^y$$

(10)
$$f(x)$$
 $[0,\pi]$, $\int_0^{\pi} f(x)dx = 0$, $\int_0^{\pi} f(x)\cos x dx = 0$: $(0,\pi)$ $\xi_1, \xi_2,$ $f(\xi_1) = f(\xi_2) = 0$

(10)
$$f(x)$$
 [0,1]
$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\lim_{t \to +\infty} \int_0^1 t e^{-t^2 x^2} f(x) dx = \frac{\sqrt{\pi}}{2} f(0)$$

:

1. 150 , 180

2.

(10 5)

(1)
$$f(x)$$
 $f'(x)$ $(-\infty, +\infty)$, $a > 0$, $F(x)$

$$F(x) = \begin{cases} a & f(x) \ge a \\ f(x) & -a < f(x) < a \\ -a & f(x) \le -a \end{cases}$$

()

(2)
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + 2n + 1} + \frac{2}{n^2 + 2n + 2} + \dots + \frac{n}{n^2 + 2n + n} \right) = ($$

A. 1 B.
$$\infty$$
 C. $\frac{1}{2}$ D. 0

(3)
$$f(x) = (x + 2\cos x)^2$$
 $[0, \pi/2]$ ()
A. $\frac{\pi^2}{36} + \frac{\sqrt{3}\pi}{3} + 1$ B. $\frac{\pi^2}{36} + \frac{\sqrt{3}\pi}{3} + 2$ C. $\frac{\pi^2}{36} + \frac{\sqrt{3}\pi}{3} + 3$ D. $\frac{\pi^2}{4}$

(4)
$$f(x) = x(x+1)\cdots(x+20),$$
 ()
 $A. f'(-1) > 0, f'(-2) > 0$ $B. f'(-1) > 0, f'(-2) < 0$
 $C. f'(-1) < 0, f'(-2) < 0$ $D. f'(-1) < 0, f'(-2) > 0$

(5)
$$g(x) \cdot \int_0^2 f(x) dx = 10$$
, $\int_0^2 f(x) dx \cdot \int_0^2 g(x) dx = ($)
A. 20 B. 10 C. 5 D.

(6)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{\sqrt[3]{x^4 + y^{12}}} = ()$$

A. 0 B.
$$\frac{1}{\sqrt{2}}$$
 C. $\frac{1}{\sqrt[3]{2}}$

A. 0 B.
$$\frac{1}{\sqrt{2}}$$
 C. $\frac{1}{\sqrt[3]{2}}$ D. (7) $f(u)$ $f'(u) > 0, f(0) = 0, L$ $x^2 + y^2 = 1$ $y = x$ y , $c_1 = \int_L f(2xy) ds$ $c_2 = \int_L f(2x^2 - 1) ds$ ()

A.
$$c_1 > 0, c_2 > 0$$
 B. $c_1 > 0, c_2 < 0$ C. $c_1 < 0, c_2 > 0$ D. $c_1 < 0, c_2 < 0$

(8)
$$y'' + ay' + by = 0$$
 $y(x)$ $x \to +\infty, y \to 0$, a, b ()
A. $a > 0, b > 0$ B. $a > 0, b < 0$ C. $a < 0, b > 0$ D. $a < 0, b < 0$

$$(9) \qquad \sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n}} \qquad ()$$

A.
$$[-2,0)$$
 B. $(-2,0)$ C. $(-2,0]$ D. $[-2,0]$

(10)
$$(0,0,1)$$

$$\begin{cases} x = t+1 \\ y = -t-4 & \frac{x-1}{-1} = \frac{y}{2} = \frac{z}{-1} \\ z = 2t \end{cases}$$
 ()

A.
$$5x + 2y - z + 1 = 0$$

B.
$$5x - y - 3z + 3 = 0$$

C.
$$3x + y - z + 1 = 0$$

D.
$$-3x - y + z + 1 = 0$$

$$(10) \lim_{x\to 0^+} x^{(x^x-1)}$$

$$(\quad 10 \) \qquad y'' = y'(y-3) \qquad \ y(0) = 1, y'(0) = -\frac{5}{2}$$

$$(10) f(x) = \pi^2 - x^2 [-\pi, \pi)$$

$$(\quad 10 \) \qquad \iint_S xy dy dz + z^2 dx dy, \quad S \quad z = \sqrt{x^2 + y^2} \; (0 \leqslant z \leqslant 1) \quad (\quad z \qquad \quad) \quad z = 1$$

$$(10)$$
 $f(x)$ $f(1) = 1$ $x \ge 1$,

$$f'(x) = \frac{1}{x^2 + f^2(x)}$$

$$\lim_{x \to +\infty} f(x) \qquad 1 + \frac{\pi}{4}$$

(10)
$$f,g: x\in [0,1] , f(x)+g(x)\neq 0 \qquad a \ (0\leqslant a\leqslant 1)$$

$$\int_a^1 |f(x)|dx=\int_0^a g^2(x)dx$$

(10)
$$\lim_{x \to +\infty} \frac{1}{x} \int_{x}^{2x} |\cos t| dt = \frac{2}{\pi}$$

$$(10)$$
 $f(x) = \frac{1}{1+x^2} - xe^x \int_0^1 f(x)dx$, $f(x)$ $f'(x)$

(10)
$$f(x)$$
 $[a,b]$, (a,b) $\xi, \eta \in (a,b)$,
$$f'(\eta) = \left(b^2 + ab + a^2 + 2\right) \frac{f'(\zeta)}{3\zeta^2 + 2}$$

$$(\quad \ \ 10\ \)\quad f(x)\quad [0,2] \quad \ \ , \quad \ \ x\in [0,2], \ \ |f(x)|\leqslant 1, |f''(x)|\leqslant 1 \quad : \quad \ \ x\in [0,2], |f'(x)|\leqslant 2$$

:

150 , 180 1.

2.

(50 5)

$$(1) f(x) = x \cos x^2, ()$$

A.
$$(-\infty,0)$$

B.
$$x \to \infty$$
, $f(x)$

C.
$$(-\infty,0)$$

D.
$$x \to \infty$$
, $f(x)$

(2)
$$f(x)$$
 , $0 < m < f(x) < M < \infty$, $\frac{1}{m} \int_{-m}^{m} (f(t) - M) dt$ (

$$A. (-M - m, m - M)$$

B.
$$(2m - 2M, 0)$$

C.
$$(m - M, 0)$$

D.
$$(0, M + m)$$

(3)
$$yy'' - (y')^2 = 0$$
 ()

A.
$$y = xe^{x}$$

$$B. y = x \ln x$$

$$C. y = \ln x$$

$$D. y = e^x$$

A.
$$y = xe^x$$
 B. $y = x \ln x$ C. $y = \ln x$ D. $y = e^x$ (4) n, m , $n < m$, $A = \int_0^1 x^m (1-x)^n dx$, $B = \int_0^1 x^n (1-x)^{m+1} dx$, ()

$$A. A > B \qquad B. A = B \qquad C. A < B$$

(5)
$$f(x) = e^x - x^2 - 4x - 3$$
 ()

(5)
$$f(x) = e^x - x^2 - 4x - 3$$
 (7) A. 1 B. 2 C. 3 D. 3
$$f(x) = \begin{cases} e^x (\sin x + \cos x) & x \ge 0 \\ abx^2 + ax + 2a + b & x < 0 \end{cases}$$
 (-\infty, +\infty) , ()
$$A. a = 2, b = -1 \quad B. a = 2, b = -3 \quad C. a = 1, b = -3 \quad D. a = 0$$

A.
$$a = 2, b = -1$$

$$B_{a} = 2 h = -3$$

C.
$$a = 1, b = -3$$
 D. $a = 1, b = -1$

D.
$$a = 1, b = -1$$

(7)
$$\sum_{n=1}^{\infty} a_n (x-1)^n \quad x = 4 \quad , \quad \sum_{n=1}^{\infty} (-1)^n (1+2^n) a_n \quad ()$$

$$\mathbf{C}$$

A.
$$a = 2, b = -1$$
 B. $a = 2, b = -3$ C. $a = 1, b = -3$ D. $a = 1, b$

A.
$$17\pi$$

$$B.19\pi$$

$$C. 21\pi$$

D.
$$23\pi$$

$$(9) \lim_{x \to 0} \left(\frac{x}{\sin x}\right)^{\frac{1}{1 - \cos x}} \qquad ()$$

A.
$$e^{\frac{1}{3}}$$
 B. $e^{\frac{-1}{3}}$

$$C. e^{\frac{1}{2}}$$

C.
$$e^{\frac{1}{2}}$$
 D. $e^{-\frac{1}{2}}$

$$(10) M(1,1,-1)$$

$$L: \frac{x}{2} = \frac{y+1}{1} = \frac{z-3}{-1}$$
 ,

(10)
$$M(1,1,-1)$$
 $L: \frac{x}{2} = \frac{y+1}{1} = \frac{z-3}{-1}$, $x-2y-z+1=0$ ()
A. $(-5,1,3)$ B. $(1,-3,5)$ C. $(1,-5,3)$ D. $(3,-1,5)$

A.
$$(-5, 1, 3)$$

B.
$$(1, -3, 5)$$

C.
$$(1, -5, 3)$$

D.
$$(3, -1, 5)$$

$$(10)$$
 $\lim_{n\to\infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{3n}\right)$,

(10)
$$y'' - 3y' + 2y = e^x(2x+1)$$

(10)
$$\iint_D (x|y| + xy) dxdy$$
, $D = 5y = x^2 - 6$ $y^2 = x$

$$(10)$$
 $f(x) = |x - 1|(0 \le x \le \pi)$

(10)
$$f(x) = \int_x^1 e^{-t^2} dt$$
, $\int_0^1 x^2 f(x) dx$

$$(10) I = \oint_L \frac{xdy - ydx}{x^2 + 2y^2}, \quad L \quad x + y = 1, y = x - 1 \quad x^2 + y^2 = 1, x \leqslant 0 \quad ,$$

$$(10) f(x) , f^2(x) \leqslant |x|^3, F(x) = \int_0^1 f(xt)dt, F'(x), F'(x)$$

$$(\quad \ \ \, 10 \ \,) \quad f(x) \quad [a,b] \quad , \quad (a,b) \quad , \quad \ \, 0 < a < b \quad : \quad \xi \in (a,b), \quad \, \frac{a+b}{2\xi}f'(\xi) = \frac{f(b)-f(a)}{b-a}$$

(10)
$$f(x)$$
 $(-\infty, +\infty)$ $f''(x) > 0$:
$$f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) \le \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$$

(10)
$$a < b$$
, $f(x) [a,b]$,
$$\int_a^b f(x)dx = \int_a^b x f(x)dx = \int_a^b x^2 f(x)dx = 0$$
 (a,b)
$$x_1, x_2, x_3, \quad f(x_1) = f(x_2) = f(x_3) = 0$$

:

2.

(1)
$$\lim_{x \to +\infty} x \left[\left(1 + \frac{1}{x} \right)^x - e \right] = ()$$

A. 0

 $B. \infty$ $C. \frac{e}{2}$

 $D.-\frac{e}{2}$

(2)
$$\begin{cases} x^2 + 2x & (x \ge 0) \\ \ln(1 + ax) & (x < 0) \end{cases} \quad x = 0 \quad , \quad a \quad ()$$
A. -2 B. 2 C. -1

D. 1

(3)
$$\lim_{x \to a} \frac{f(x) - f(a)}{(x - a)^4} = -2, \quad f(x) \quad x = a \quad ()$$

A. 0 B. $0 \ x = a$ C.

D.

$$(4) f(x) , f(x) , f'(x) ($$

В.

C.

(5) $x^2 \ln x$ f(x) , $\int x f'(x) dx = ($

A.
$$\frac{2}{3}x^3 \ln x + \frac{1}{9}x^3 + C$$

 $B. 2x - x^2 \ln x + C$

C.
$$x^2 \ln x + x^2 + C$$

D. $3x^2 \ln x + x^2 + C$

$$(6) y_1, y_2$$

$$y'' + p(x)y' + q(x)y = 0$$
 , C_1, C_2 , ()

$$C_1, C_2$$
 . (

A.
$$C_1y_1 + C_2y_2$$
 B. $C_1y_1 + C_2y_2$,
C. $C_1y_1 + C_2y_2$ D. $C_1y_1 + C_2y_2$

$$y_2$$
 D. $C_1y_1 + C_2y_2$

$$(7) \qquad \sum_{n=1}^{\infty} u_n \quad \sum_{n=1}^{\infty} v_n \tag{2}$$

(7)
$$\sum_{n=1}^{\infty} u_n \sum_{n=1}^{\infty} v_n$$
 ()
A. $\sum_{n=1}^{\infty} (u_n + v_n)$ B. $\sum_{n=1}^{\infty} u_n v_n$ C. $\sum_{n=1}^{\infty} (|u_n| + |v_n|)$ D. $\sum_{n=1}^{\infty} (u_n^2 + v_n^2)$

(8)
$$y = nx^2 + \frac{1}{n}$$
 $y = (n+1)x^2 + \frac{1}{n+1}$ A_n , $\lim_{n \to \infty} A_n = ($)
A. 0 B. 1 C. 2 D

(10)
$$f(x)$$
 $[0, 2\pi]$, $f'(x) \ge 0$, n ,
$$\left| \int_0^{2\pi} f(x) \sin(nx) dx \right| \le \frac{2}{n} \left[f(2\pi) - f(0) \right]$$

$$(10) f(x)$$
, $f(x) = x + \int_0^x t f'(x-t) dt$, $\lim_{x \to -\infty} f(x)$

$$(10) z = f(x,y) \frac{\partial^2 z}{\partial x \partial y} = x+y, f(x,0) = x, f(0,y) = y^2, f(x,y)$$

$$(10) f(x,y) = (x-6)^2 + (y+8)^2 D = \{(x,y) \mid x^2 + y^2 \leqslant 25\}$$

(10)
$$\iint_D (|x| + |y|) dx dy$$
, $D \quad x = 0, x + y = 3, y = x - 1 \quad y = x + 1$

$$(\quad \ \ \, 10 \ \) \qquad \ \, I = \oint_L \frac{xdy - ydx}{4x^2 + y^2}, \quad \, L \quad \, (1,0) \quad \, , \quad \, R \quad \, \, (R > 0, R \neq 1),$$

$$(10) f(x) (-\infty, +\infty) x = 0 , \lim_{x \to 0} \frac{f(x)}{x} = a > 0, : \sum_{n=1}^{\infty} (-1)^n f\left(\frac{1}{n}\right)$$

$$\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$$

(10)
$$f(x) = x^2(-\pi \le x \le \pi)$$
 2π

$$(10) f(x) , f(0) = 0, f'(0) = \frac{1}{3},$$

$$\Sigma \oint_{\Sigma} e^x \left(f'(x) dy dz - 2y f(x) dz dx - z dx dy \right) = 0,$$

$$f(x)$$

$$(10)$$
 $(1,2,3)$ x y

$$(\quad \ \, 10\ \,)\quad \ \, f(x)\quad [0,c]\quad \, ,f'\qquad \, f(0)=0,\ \, :\quad \, 0\leqslant a\leqslant b\leqslant a+b\leqslant c\quad \, f(a+b)\leqslant f(a)+f(b)$$

:

1. 150,180

2.

(40 5)

(1)
$$\lim_{x \to 0} \frac{a \tan x + b(1 - \cos x)}{c \ln(1 - 2x) + d(1 - e^{-x^2})} = 2, \quad a^2 + c^2 \neq 0, \quad ()$$

A.b = 4d

B. b = -4d C. a = 4c

D. a = -4c

(2)
$$y = y(x)$$
 $\Delta y = \frac{1-x}{\sqrt{2x-x^2}} \Delta x + o(\Delta x), y(1) = 1, \int_0^1 y(x) = ($

A. 2π

 $B. \pi$

D. $\frac{\pi}{4}$

(3)
$$f(x) = \int_0^x t^2(t-1)dt$$
, $f(x)$ ()

A. 0

C. 2

D. 3

$$(4) \qquad \qquad ()$$

$$\sum_{n=1}^{\infty} a_n b_n$$

B.
$$\sum_{\substack{n=1\\ \infty}} a_n , \sum_{\substack{n=1\\ \infty}} b_n$$

$$\sum_{n=1}^{\infty} a_n o_n$$

\$

(5)
$$a_0, a_1, a_2, a_3 \dots$$
 , $d > 0$, $\sum_{n=0}^{\infty} a_n x^n$ ()

A.(-d,d)

B. [-d, d) C. (-1, 1)

D. [-1, 1)

(6)
$$y_1(x), y_2(x), y_3(x)$$
 $y'' + p(x)y' + q(x)y = f(x)$ C_1, C_2 , ()

A. $C_1y_1(x) + C_2y_2(x) + C_3y_3(x)$

B. $C_1y_1(x) + C_2y_2(x) + (1 - C_1 - C_2)y_3(x)$

C. $C_1y_1(x) + C_2y_2(x) - (C_1 + C_2)y_3(x)$

D. $C_1y_1(x) + C_2y_2(x) - (1 - C_1 - C_2)y_3(x)$

(7)
$$2x + y - 4 = 0$$
 $y + 2z = 0$ $M_0(2, -1, -1)$ ()

A. 3x + y - z = 6 B. x + 3y - z = 0 C. 3x - y + z = 6 D. x - 3y - z = 6

(8)
$$y = e^x$$
 y ()
A. $\frac{e}{2} - 1$ B. $\frac{e}{2} + 1$

C. $\frac{e}{2}$

D. e + 1

(12)
$$g(x)$$
 T , $g(0) = 1, f(x) = \int_0^{2x} |x - t|g(t)dt$, $f'(T)$

(12) (1,2,3) x y

$$yy'' - \left(y'\right)^2 = y^2 \ln y$$

:
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2}) + C$$

$$(12)$$
 $f(x) = \frac{x-1}{(x+1)^2}$ $x = 0$,

$$(\quad 12 \) \quad 2x^2 + 2y^2 + z^2 = 1 \quad , \quad f(x,y,z) = x^2 + y^2 + z^2 \quad , \quad \vec{l} = \vec{i} - \vec{j}$$

(14)
$$f(x)$$
 $[0,+\infty)$,
$$f(t)=\iiint\limits_{x^2+y^2+z^2\leqslant t^2}f\left(\sqrt{x^2+y^2+z^2}\right)dv+t^3$$
 $f(x)$

(12)
$$u=u\left(\sqrt{x^2+y^2}\right)$$
 ,
$$\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}-\frac{1}{x}\frac{\partial u}{\partial x}+u=x^2+y^2$$

(12)
$$f(x)$$
 G
$$\int_{M}^{N} \frac{1}{2x^{2} + f(y)} (ydx - xdy)$$
 G , M N G , $f(1) = 1$

(1) f(x);

u

(2) $\oint_{\Gamma} \frac{1}{2x^2 + f(y)} (ydx - xdy) \quad \Gamma \quad x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}},$

(10)
$$f(x)$$
 [0,1] , $f(0)=f(1)=0, f(x)$, :
$$\int_0^1 |f''(x)| \, dx \geqslant 4 \max_{0\leqslant x\leqslant 1} |f(x)|$$

$$(10) am aqm(0 < q < 1)$$

:

2.

(2)
$$z = \frac{1}{x}f(xy) + yg(x+y)$$
, f, g , $\frac{\partial^2 z}{\partial x^2} =$ _____

(3)
$$f(x) = \frac{1}{x^2 - 2x - 3}$$
 x , :

(4)
$$P(-1,0,4)$$
 $3x - 4y + z + 10 = 0$ $L: \frac{x+1}{1} = \frac{y-3}{1} = \frac{z}{2}$:

(5)
$$yy'' + (y')^2 = 0$$
 $y|_{x=0} = 1, y'|_{x=0} = \frac{1}{2}$:

(30 6)

(1)
$$\lim_{x \to 2} \frac{\int_2^x \left(\int_t^2 e^{-u^2} du \right) dt}{(x-2)^2} = (\quad)$$

A.
$$\frac{1}{3}$$

B.
$$-\frac{1}{e^2}$$

C.
$$\frac{1}{2e^4}$$

D.
$$-\frac{1}{2e^4}$$

$$(2) \qquad \int_0^1 e^{\sqrt{1-x}} dx = (\quad)$$

D. 3

(3)
$$[0, +\infty)$$
 $f''(x) > 0$, $x \in (0, +\infty)$,

A.
$$f'(0)x < f(0) - f(x) < f'(x)x$$

B.
$$f'(0)x < f(x) - f(0) < f'(x)x$$

D. $f(0) - f(x) < f'(0)x < f'(x)x$

C.
$$f(0) - f(x) > f'(0)x > f'(x)x$$

D.
$$f(0) - f(x) < f'(0)x < f'(x)x$$

$$(4) \quad L: x^2 + (y+1)^2 = 2 \qquad , \quad \oint_L \frac{xdy - ydx}{x^2 + (y+1)^2} = (\quad)$$

$$A. 4\pi$$

$$B 2\pi$$

$$C_{\pi}^{2}$$

D.
$$2\pi^{2}$$

(5)
$$\Sigma \quad z = x^2 + y^2 (0 \leqslant z \leqslant 1)$$
 , $I = \iint_{\Sigma} y^3 dz dx + (y+z) dx dy = ($)

$$A.-\frac{\pi}{2}$$

B.
$$\frac{\pi}{2}$$

$$C.-\frac{\pi}{4}$$

D.
$$\frac{\pi}{4}$$

(10)
$$\lim_{x \to \infty} \left(\frac{x-a}{x+a}\right)^x = \int_a^{+\infty} xe^{-2x} dx, \quad a$$

$$(10)$$
 $f(x)$ $[0,1]$ $f(x) > 0,$ $a \in (0,1),$ $\int_0^a f(t)dt = \int_a^1 \frac{1}{f(t)}dt$

(10)
$$x = 0, y = 8$$
 $y = x^2$, $y = x^2$ $M(X,Y)$, $x = 0, y = 8$

$$y = x^2$$
 $M(X, Y)$

$$x = 0, y = 8$$

$$(10)$$
 $x = \int_0^x f(t)dt + \int_0^x tf(t-x)dt$ $f(x)$

$$(10) F\left(x+\frac{z}{y},y+\frac{z}{x}\right) = 0 z = z(x,y) x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z - xy_0$$

(10)
$$y_1 = xe^x + e^{2x}, y_2 = xe^x + e^{-x}, y_3 = xe^x + e^{2x} - e^{-x}$$

$$(10) f(x) 2 f(x) = \begin{cases} x & 0 \le x \le 1 \\ 0 & 1 < x < 2 \end{cases}, f(x) , \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$$

$$(\quad \ \ 10 \) \quad f(x) \quad , \quad F(t) = \iint\limits_{x^2 + y^2 \leqslant t^2} f\left(x^2 + y^2\right) dx dy \ (t \geqslant 0) \quad \ F''(0)$$

(10)
$$f(x)$$
 [0,1] $(0,1)$ $f(0)=0$ $f(1)=1$ a,b $(0,1)$ ξ η ,
$$\frac{a}{f'(\xi)}+\frac{b}{f'(\eta)}=a+b$$

2.

(30 6)

$$(1) \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2 + k}$$

$$(2) \quad y = y(x) \qquad y'' + 2y' + y = e^{3x} \qquad y(0) = 0 \qquad y = y(x) \qquad \lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = 0$$

(3)
$$f'(x) \cdot \int_0^2 f(x) dx = 8$$
, $f(0) = 0$, $\int_0^2 f(x) dx =$

(4)
$$\int_0^{\pi} [f(x) + f''(x)] \sin x dx = 3, f(\pi) = 2, \quad f(0) =$$

(5)
$$(0,1)$$
 $y = f(x)$
$$\int_0^2 [x^2 - (f(x))^2] dx$$

(30 6)

(1)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 (0,0) ()
A. B. C.

A.
$$\frac{3}{4}$$
 B. $-\frac{3}{4}$ C. $-\frac{1}{12}$ D. $\frac{1}{12}$ (3) $xe^{-x} = \frac{1}{2e}$ ()

(3)
$$xe^{-x} = \frac{1}{2e}$$
 ()
A. 0 B. 1 C. 2 D. 3

(4)
$$L_1 \begin{cases} x = 1 \\ y = -2 + t \quad L_2 : \frac{x+1}{1} = \frac{y+1}{2} = \frac{z-1}{1} \\ z = 1 + t \end{cases}$$
 π ()

A.
$$x + y + z = 0$$
 B. $x - y + z = 0$ C. $x + y - z = 0$ D. $z - y - z = 0$

(5)
$$x^2 = \sum_{n=0}^{\infty} a_n \cos nx \quad (-\pi \leqslant x \leqslant \pi), \qquad a_2 = ($$

A.
$$\frac{-2}{\pi}$$
 B. $\frac{2}{\pi}$ C. 1 D. -1

$$(10)$$
 $\int_{-1}^{2} (|x| + 2x^2) dx$

D.

$$(\quad \ \, 10 \ \,) \quad \ \, y = x^2 \quad \ \, y = t(0 < t < 1) \quad \ \, x = 0, \\ x = 1 \quad \qquad \, S(t), \quad \, S(t) \quad \quad \, , \quad \, , \quad \, \,$$

(10)
$$f(x)$$
 [0,1] , $f(1) = 2 \int_0^{\frac{1}{2}} x f(x) dx$, : $\xi \in (0,1)$, $\xi f(\xi) + f(\xi) = 0$

(10)
$$u = f \left(\ln \sqrt{x^2 + y^2} \right), \quad \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = (x^2 + y^2)^{\frac{3}{2}}, \quad f$$

(10)
$$I = \iint_D \sqrt{1 - y^2} dx dy$$
, $D x^2 + y^2 = 1(y > 0) y = |x|$

(10)
$$y' + y = y^2(\cos x - \sin x)$$

$$(10)$$
 $\sum_{n=1}^{\infty} (-1)^{n-1} n(n+1) x^n$ $(-1,1)$ $S(x)$, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n(n+1)}{3^n}$

(10)
$$f(x)$$
 $[0,+\infty)$, $f(0)=1,$ $f'(x)+f(x)-\frac{1}{1+x}\int_0^x f(t)dt=0$, $f'(x)$, :
$$e^{-x}\leqslant f(x)\leqslant 1 \quad (x\geqslant 0)$$

(10)
$$f(x), g(x)$$

$$\oint_C \left[y^2 f(x) + 2y e^x + 2y g(x) \right] dx + 2[y g(x) + f(x)] dy = 0$$

$$C \qquad f(x) \quad g(x) \quad f(0) = g(0) = 0$$

:

2. ,

$$(1) \lim_{x \to 0} \frac{\tan x - \sin x}{\ln(1+x^3)} \quad \underline{\hspace{1cm}}$$

$$(2) \hspace{0.5cm} f(x,y) \hspace{0.5cm} , \hspace{0.1cm} f(0,0) \hspace{0.1cm} = \hspace{0.1cm} 0, f'_x(0,0) \hspace{0.1cm} = \hspace{0.1cm} m, f'_y(0,0) \hspace{0.1cm} = \hspace{0.1cm} n, \phi(t) \hspace{0.1cm} = \hspace{0.1cm} f(t,f(t,t)), \hspace{0.5cm} \phi'(0) \hspace{0.1cm} = \hspace{0.1cm} (2) \hspace{0.1cm} (2$$

(3)
$$\int \frac{dx}{1+\sqrt[3]{x+2}} =$$

(4)
$$x^2y' + xy = y^2$$
 $y(1) = 2$

(5)
$$\Sigma \qquad x^2 + y^2 + z^2 = a^2 \quad , \cos \alpha, \cos \beta, \cos \gamma \qquad \qquad \iint_{\Sigma} \frac{x \cos \alpha + y \cos \beta + z \cos \gamma}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} dS =$$

(1)
$$f(x) = \begin{cases} \frac{\sin(x-1)}{e^{x-1}-a} \left(\frac{1}{x}-b\right) & x \neq 1 \\ 2 & x = 1 \end{cases}$$
 $f(x)$ $x = 1$, ()

A.
$$a = 0, b = 1$$
 B. $a = 1, b = -1$ C. $a = -1, b = 1$ D. $a = 1, b = 0$

(2)
$$f(x), g(x)$$
 x_0 , $f(x_0) = g(x_0) = 0, f'(x_0) \cdot g'(x_0) > 0,$ ()

A.
$$x_0 = f(x) \cdot g(x)$$
 B. $x_0 = f(x) \cdot g(x)$, $f(x) \cdot g(x)$

$$C. x_0 \quad f(x) \cdot g(x) \quad ,$$

$$D. x_0 f(x) \cdot g(x) ,$$

(3)
$$f(x) = f(2a - x)(a \neq 0), c$$
 , $\int_{-c}^{c} f(a - x) dx = ($

A.
$$2 \int_0^c f(2a - x) dx$$
 B. $2 \int_{-c}^c f(2a - x) dx$ C. 0 D. $2 \int_0^c f(a - x) dx$

(4)
$$P_1(-2,3,1)$$
 $L: x = y = z$ P_2 ()

A.
$$\left(-\frac{2}{3}, 1, \frac{1}{3}\right)$$
 B. $\left(\frac{2}{3}, -1, -\frac{1}{3}\right)$ C. $\left(-\frac{10}{3}, \frac{5}{3}, -\frac{1}{3}\right)$ D. $\left(\frac{10}{3}, -\frac{5}{3}, \frac{1}{3}\right)$

(5)
$$f(x) = [-\pi, \pi]$$
 , $f(x+\pi) = -f(x)$, $f(x) = a_{2n}(n=1, 2\cdots)$ ()
A. 0 B. π C. $\frac{1}{\pi}$ D. $\frac{4}{\pi}$

$$(10) f(x) (-\infty, +\infty) , f(0) = 0,$$

$$\varphi(x) = \begin{cases} f'(0) & x = 0\\ \frac{e^x}{x} f(x) & x \neq 0 \end{cases}$$

$$\varphi(x)'$$

$$(10)$$
 $x = \int_0^x f(t)dt + \int_0^x tf(t-x)dt$ $f(x)$

$$(\quad \ \, 10\ \,)\quad u=f(zyx), f(0)=0, f'(1)=1,\quad \tfrac{\partial^3 u}{\partial x\partial y\partial z}=x^2y^2z^2f'''(xyz),\quad \ \, u$$

$$(10) L , (2,0), (-2,0) L , I = \oint_L \left[\frac{y}{(2-x)^2 + y^2} + \frac{y}{(2+x)^2 + y^2} \right] dx + \left[\frac{2-x}{(2-x)^2 + y^2} + \frac{2+x}{(2+x)^2 + y^2} \right] dy, \quad L$$

$$(10)$$
 $4x^4y''' - 4x^3y'' + 4x^2y' = 1$ $y = ax^{-1}$

$$(10)$$
 $\frac{x^2}{4} + y^2 = 1$, $x y$,

$$(\quad 10 \) \quad f(x) \quad [0,1] \quad , \quad f(0) = 0, \\ f(1) = 1, \qquad [0,1] \quad x_1, x_2, \quad \frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} = 2$$

(10)
$$\sum_{n=1}^{\infty} u_n$$
 $u_n > 0, n = 1, 2, \dots, \{v_n\}$, $a_n = \frac{u_n v_n}{u_{n+1}} - v_{n+1}$, $\lim_{n \to \infty} a_n = a$, a , $\sum_{n=1}^{\infty} u_n$

:

2. ,

$$(10) \quad \lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x$$

(10)
$$a, b$$
 , $f(x) = \begin{cases} \sin a(x-1) & x \leq 1 \\ \ln x + b & x > 1 \end{cases}$ $x = 1$

(10)
$$y = (x-1) \left(\frac{(1-2x) \ln x}{1+x^2} \right)^{\frac{1}{3}}$$

$$F(x) = \begin{cases} \frac{\int_0^x t f(t)dt}{x^2} & x \neq 0\\ A & x = 0 \end{cases}$$

$$, \quad f(0) = 0$$

$$(1) \quad A \quad , \quad F(x) \quad x = 0$$

$$(2) F'(x) x = 0$$

(10)
$$f(x)$$
 $\int \sqrt{x} f(x) dx = \frac{1}{\sqrt{x}} + \int x^{\frac{3}{2}} \sin x dx + C$, $\int f(x) dx$

$$(10)$$
 $x > 0$ $f(\ln x) = \frac{1}{\sqrt{x}}$ $\int_{-2}^{2} x f'(x) dx$

(10)
$$\pi_1: x + 2y + 3z - 2 = 0$$
 $\pi_2: 6x - y - 5z + 23 = 0$

$$(10) \quad f(x) = \ln\left(\frac{x}{1-x}\right) \quad x - 1$$

$$(10)$$
 $\sum_{n=1}^{\infty} \frac{1}{n2^n} x^{n-1}$

(10)
$$I = \int_L \frac{(x-y)dx + (x+y)dy}{x^2 + y^2}$$
, $L \quad y = 2x^2 - 1$ $A(-1,1)$ $B(1,1)$

$$(10)$$
 $\int_L \left(f'(x) + 2f(x) + e^x\right)ydx + f'(x)dy$ $f(0) = 0, f'(0) = 1, I = \int_{(0,0)}^{(1,1)} \left(f'(x) + 2f(x) + e^x\right)ydx + f'(x)dy$

$$(10) f(x) [a,b] (a,b) , \xi \in (a,b) 2\xi [f(b)-f(a)] = (b^2-a^2) f'(\xi)$$

(10)
$$f(x)$$
 2 $f(1+x) + 2f(1-x) = 2x + \sin^2 x$, $y = f(x)$ $x = 3$

(10) , a , b h h < b, ?

:

(5 5 5 25)

(1)
$$f'(x_0) = 3$$
, $\lim_{x \to 0} \frac{f(x_0) - f(x_0 - 2x)}{x} =$ ______

(2)
$$f(x)$$
 e^{x^2} , $\int x f'(x) dx =$

(3)
$$u = x^2 + 2y^2 + 3z^2$$
 (1, 1, -1)

$$(4) \qquad \sum_{n=1}^{\infty} \frac{x^{2n}}{2^n + 3^n} \qquad \qquad \underline{\qquad}$$

(5)
$$y' + \frac{1}{x} = 1$$

(1)
$$f(0) = 0$$
, $f(x)$ $x = 0$ ()

$$A. \lim_{t \to 0} \frac{1}{t^2} f(t^2)$$

$$B. \lim_{t \to 0} \frac{1}{t^2} f(t - \sin t)$$

$$C. \lim_{t \to 0} \frac{1}{t} f(\ln(1+t))$$

$$D. \lim_{t \to 0} \frac{1}{t^2} [f(2t) - f(t)]$$

C.
$$\lim_{t \to 0} \frac{1}{t} f(\ln(1+t))$$
 D. $\lim_{t \to 0} \frac{1}{t^2} [f(2t) - f(t)]$

(2)
$$x^2 + y^2 - \frac{z^2}{4} = 1$$
 (1,1,2) $L_1 : \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{0}; \quad \pi : x + y + 4z = 1,$

$$A. L \ L_1 \ , \ L \ \pi$$
 $B. L \ L_1 \ , \ L \ \pi$ $C. L \ L_1 \ , \ L \ \pi$ $D. L \ L_1 \ , \ L \ \pi$

$$C.L L_1$$
 , $L \pi$ $D.L L_1$, $L \pi$

(3)
$$S x^2 + y^2 = R^2 (0 \le z \le R)$$
 , $\iint_S (x^2 + y^2) dx dy$ ()

A.
$$2\pi R^3$$
 B. $2\pi R^4$ C. πR^4 D. 0

$$(4) \qquad \sum_{n=1}^{\infty} a_n \quad , \tag{ }$$

A.
$$\sum_{n=1}^{\infty} a_n$$
 B. $\sum_{n=1}^{\infty} \sqrt[n]{n} a_n$ C. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} a_n$ D. $\sum_{n=1}^{\infty} \frac{a_n}{n}$

(5)
$$f(x) = x - L(0 \le x \le 2L), \quad 2L \quad x = -\frac{L}{2}$$
 ()

A.
$$\sum_{n=1}^{\infty} a_n$$
 B. $\sum_{n=1}^{\infty} \sqrt[n]{n} a_n$ C. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} a_n$ D. $\sum_{n=1}^{\infty} \frac{a_n}{n}$ (5) $f(x) = x - L(0 \le x \le 2L)$, $2L$ $x = -\frac{L}{2}$ ()
A. $-\frac{L}{2}$ B. $-\frac{3L}{2}$ C. $\frac{L}{2}$ D. $\frac{3L}{2}$

$$(1) \qquad \lim_{x \to 0} \frac{\sin x - \sin(\sin x)}{x^3}$$

(2)
$$\int_0^{+\infty} \frac{x}{(2+x^2)\sqrt{1+x^2}} dx$$

(3)
$$\int_0^1 \frac{x^6}{\sqrt[6]{1-x^6}} dx$$

(4)
$$f(u,v)$$
 , $z = f\left(xy^2, \frac{y}{x}\right)$, $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$
(5) $\int_0^1 dx \int_{\sqrt[3]{x}}^1 \cos y^2 dy$

$$\int_0^1 dx \int_{\sqrt[3]{x}}^1 \cos y^2 dy$$

$$(1) \quad f(x) \qquad , f(x) = 1, \\ f'(0) = 1, \qquad \int_{L} \left(e^{x} \sin y + 2y f'(x) + 2xy \right) dx + \left(f'(x) + f(x) + 2x + e^{x} \cos y \right) dy \\ (1) \quad f(x) = 1, \\ f'(0) = 1, \\ f'($$

i.
$$f(x)$$

ii.
$$L$$
 (0,0) $y = x^4$ (1,1) ,

11.
$$L = (0,0)$$
 $y = x^{3} = (1,1)$,
(2) $y = \arctan x - \frac{1}{2} \ln (1+x^{2})$ $x = 0$, $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)(2n+2)}$

(3)
$$f(x) = \begin{cases} \pi & -\pi \leqslant x \leqslant 0 \\ \pi - x & 0 \leqslant x \leqslant \pi \end{cases}$$
 () $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$

- (2 12 24)
- (1) f(x) [0,1] (0,1) , f(0) = 0, f(1) = 2, :
 - i. $\xi \in (0,1)$ $f(\xi) = 1$
 - ii. $0 < x_1 < x_2 < 1$, $\frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} = 1$
- (2) i. $F(x) = \int_0^a |t-x| dt$ (a>0) [0,a]
 - ii. f(x) [0,a](a>0) $\int_0^a f(x)dx=0, \int_0^u x f(x)dx=1,$: $x_0\in [0,a]$ $|f(x_0)|\geqslant \frac{4}{a^2}$

:

(1)
$$\lim_{n \to \infty} \sqrt[n]{\sin 1 + \sin \frac{1}{2} + \dots + \sin \frac{1}{n}} = \underline{\hspace{1cm}}$$

(2)
$$y - \epsilon \sin y = x \ (\epsilon \in (0,1)), \quad \frac{d^2y}{dx^2} = \underline{\hspace{1cm}}$$

$$(3) \qquad \int_0^{+\infty} \frac{\ln(1+x^2)}{x^{\alpha}} dx \qquad \underline{\qquad}$$

$$(4) z = \arctan \frac{y}{x} \left(1, 1, \frac{\pi}{4}\right) \underline{\qquad}$$

(5)
$$y'' - 3y' + 2y = \cos x$$

$$C. 2\pi R^4$$

D.
$$4\pi R^4$$

(2)
$$y = \sqrt{x^2 + 1} - x - 1$$
 ()

 $B. \pi R^4$

(3)
$$\{A_n\}, \quad A_1 = a, \lim_{n \to \infty} A_n = +\infty, \quad f(x) \quad [a, +\infty)$$

$$\sum_{n=1}^{\infty} \int_{A_n}^{A_{n+1}} dx \quad ()$$

(4)
$$\sum_{n=2}^{\infty} \ln \left[1 + \frac{(-1)^n}{n^p} \right] (p > 0)$$
 ()

$$A \cap << 1$$

C.
$$\frac{1}{3}$$

$$\text{A.} \ 0 < \leqslant 1 \qquad \qquad \text{B.} \ p > 1 \qquad \qquad \text{C.} \ \tfrac{1}{3}$$

(5)
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

A.
$$f(x,y)$$
 $(0,0)$ $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ $(0,0)$ B. $f(x,y)$ $(0,0)$ $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ $(0,0)$ C. $f(x,y)$ $(0,0)$ $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ $(0,0)$ D. $f(x,y)$ $(0,0)$ $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ $(0,0)$

B.
$$f(x,y)$$
 (0,0)

$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \quad (0,0)$$

C.
$$f(x,y)$$
 $(0,0)$ $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ $(0,0)$

D.
$$f(x, y)$$
 (0, 0)

$$(0,0)$$
 $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ $(0,0)$

(1)
$$\lim_{x \to 0} \frac{\int_0^{\tan x} t(\tan t - t) dt}{\int_0^{\sin^2 x} \sin^{\frac{3}{2}} t dt}$$

$$(2) \qquad \int_0^{\ln 2} \sqrt{e^x - 1} dx$$

(3)
$$\int_0^{\frac{\pi}{2}} (\tan x)^{\frac{2}{3}} dx$$

(4) Stokes

$$\oint_L (y-z)dx + (z-x)dy + (x-y)dz$$

$$L: \begin{cases} x^2 + y^2 + z^2 = a^2 \\ x + y + z = 0 \end{cases} (a > 0) \quad x \qquad L$$

(5)
$$a, b > 0$$
 $y > x > 0$ $(a^x + b^x)^{\frac{1}{x}} > (a^y + b^y)^{\frac{1}{y}}$

(1)
$$x^2 + y^2 = az$$
 $z = 2a - \sqrt{x^2 + y^2}(a > 0)$

(2)
$$\sum_{n=1}^{\infty} \left[n(n+1) - \frac{1}{n(n+1)} \right] x^n ,$$

(3)
$$k$$
 , $\frac{k}{r} + x^2 = 1$

 $(2 \quad 12 \quad 24)$

(1)
$$f(x) = \begin{cases} x & -\pi \leqslant x \leqslant 0 \\ \pi x & 0 < x \leqslant \pi \end{cases}$$
 (),
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 (2)
$$\lambda, \quad \frac{x}{y} (x^2 + y^2)^{\lambda} dx - \frac{x^2}{y^2} (x^2 + y^2)^{\lambda} dy = 0 \quad D = \{(x, y) \mid y > 0\}$$
 ,

(2)
$$\lambda$$
, $\frac{x}{y}(x^2+y^2)^{\lambda} dx - \frac{x^2}{y^2}(x^2+y^2)^{\lambda} dy = 0$ $D = \{(x,y) \mid y > 0\}$,

 $(1) \ f(x)$

$$f(x) = \frac{\pi}{4}(\pi - 1) + \sum_{n=1}^{\infty} \left\{ -\frac{\pi - 1}{n^2 \pi} \left[(1 - (-1)^n) \cos nx + \frac{\pi + 1}{n} (-1)^{n+1} \sin nx \right] \right\}$$

$$= \begin{cases} x, & -\pi < x \le 0 \\ \pi x, & 0 \le x < \pi \\ \frac{\pi(\pi - 1)}{2}, & x = \pm \pi \end{cases}$$

$$x = 0 \qquad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{8}$$

$$(2) \ \lambda = \frac{1}{2} \quad \frac{\sqrt{x^2 + y^2}}{y} = C$$

:

2.

$$(5 \quad 5 \quad 25)$$

(1)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt[3]{\tan x} - 1}{2 \sin^2 x - 1}$$

(2)
$$\begin{cases} x = \int_{1}^{t^{2}} u \ln u du \\ y = \int_{t^{2}}^{1} u^{2} \ln u du \end{cases} (t > 0), \quad \frac{d^{2}y}{dx^{2}} = \underline{\qquad}$$

(3)
$$\sum_{n=0}^{\infty} \frac{1}{2n+1} \left(\frac{1-2x}{1+x} \right)^n$$
(4)
$$x^2 + 2y^2 + z^2 = 1$$

$$x - y + 2z = 0$$

(4)
$$x^2 + 2y^2 + z^2 = 1$$
 $x - y + 2z = 0$

(5)
$$y'' + 2y' - 2y = 4xe^x$$

(1)
$$f(x) = \begin{cases} |x|^a \arctan \frac{1}{x} & x \neq 0 \\ x & x = 0 \end{cases}$$
 , a ()

A.
$$a > 0$$

A.
$$a > 0$$
 B. $0 < a \le 1$ C. $0 < a < 1$ D. $a > 1$

C.
$$0 < a < 1$$

D.
$$a > 1$$

(2)

(3) "
$$\epsilon > 0$$
, N , $n > N$ $|a_{N+1} + a_{N+2} + \dots + a_N| < \epsilon$ " $\sum_{n=1}^{\infty} a_n$ ()

A. B. C. D.

A.

(4)
$$s x^2 + y^2 = R^2$$
 $z = 0$ $z = R$ $\iint_S (x^2 + z^2) dS = ()$
A. $\frac{8}{3}\pi R^4$ B. $\frac{5}{3}\pi R^4$ C. $\frac{4}{3}\pi R^4$

A.
$$\frac{8}{3}\pi R^4$$

B.
$$\frac{5}{3}\pi R^4$$

C.
$$\frac{4}{3}\pi R^4$$

$$D. \pi R^4$$

(5)
$$L = A(-1,0), \quad B(1,0) = , \quad A,B = x , \quad \int_{L} \frac{-ydx + xdy}{x^{2} + y^{2}} \quad ()$$

 $A. = -\pi \qquad B. \quad 0 \qquad C. \quad \pi \qquad D. \quad D.$

A.
$$-\pi$$

$$\mathbf{B} = 0$$

C.
$$\pi$$

D.
$$L$$

A.
$$-\pi$$
 B. 0
(6)
$$\int_0^{+\infty} \frac{\sin x^2}{x^p} dx$$
 ()

A.
$$p > -1$$

B.
$$0 < n < 3$$

C.
$$-1$$

A.
$$p > -1$$
 B. $0 C. $-1 D. $-1$$$

(1)
$$\int \max(x,1)dx$$

(2)
$$\int_{1}^{+\infty} \frac{1}{x(x^{m}+1)} dx, \quad m$$

(3)
$$G = \sqrt[n]{(n+1)(n+2)\cdots(n+n)}, \lim_{n \to \infty} \frac{G_n}{n}$$

(4)
$$x > 0$$
 $\left(1 + \frac{1}{x}\right)^x < e < \left(1 + \frac{1}{x}\right)^{x+1}$

$$(5) \quad f(x) \quad [0,+\infty) \qquad \quad , \quad \ x \geqslant 0, \quad f(x) \leqslant e^{-x}, \quad f(0) = 1 \qquad \quad \xi > 0, \quad f'(\xi) = -e^{-\xi}$$

(1)
$$z = x^2 y (3 - x - y)$$
 $D: x \ge 0, y \ge 0, x + y \le 4$

(2)
$$f(x) = \cos x + \frac{1}{4} \int_0^{2\pi} (2x - t) f\left(\frac{t}{2}\right) dt, \quad f(x)$$
 $f(x)$

(3)
$$a, b, c > 0$$
, $x^2 + y^2 + \frac{a^2 - b^2}{c^2} z^2 = a^2$ $|z| \leqslant c$

(2 12 24)

(1)
$$f(x) = \begin{cases} \frac{\pi - 1}{2}x & 0 \leqslant x \leqslant 1\\ \frac{\pi - x}{2} & 1 < x \leqslant \pi \end{cases}$$
 $f(x)$ 2π , $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$ $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^4}$

- i. $\operatorname{div} \vec{v}$
- $\iint_{S} \frac{adydz + ydzdx + zdxdy}{(2x^2 + y^2 + z^2)^{\frac{3}{2}}}$

:

 $(5 \ 3 \ 15)$

$$(1) \lim_{n \to \infty} \cos \frac{1}{2} \cos \frac{1}{4} \cdots \cos \frac{1}{2^n} = \underline{\hspace{1cm}}$$

$$(2) \int \frac{\cos x dx}{1 + e^{\sin x}}$$

(3)
$$z = z(x, y), \quad yz + zx + xy = 1, \quad dz =$$

(4)
$$\int_0^{+\infty} \frac{\sin \frac{1}{x}}{x^p} dx$$
 (5)
$$y'' + 4y' + 4y = e^x$$

$$(5) y'' + 4y' + 4y = e^x$$

(1)
$$\begin{cases} ax+b & x \leq 9 \\ x^2 \cos \frac{1}{x} & x > 0 \end{cases} \quad x = 0 \quad , \quad ()$$

A.
$$a = 1, b = 0$$
 B. $a = 0, b = 0$ C. $a = 1, b = 1$ D. $a = 0, b = 1$

$$f(x) [-L, L] f''(x) > 0, \lim_{x \to 0} \frac{f(x)}{x} = 1, ()$$

C.
$$(-L,0)$$
, $f(x) > x$; $0, L$, $f(x) < x$ D. $(-L,0)$, $f(x) < x$; $0, L$, $f(x) > x$

(3)
$$L = \begin{cases} x^2 + y^2 + z^2 = a^2 \\ A. \frac{\pi a^5}{3} \end{cases}$$
, $\int_L (x^4 + 2y^2 z^2) dL = x + y + y = 0$ ()
 $\int_L (x^4 + 2y^2 z^2) dL = x + y + y = 0$ ()

A.
$$\frac{\pi a^5}{3}$$

B.
$$\frac{2\pi a 5}{3}$$

$$C. \pi a^5$$

D.
$$2\pi a^5$$

$$(4) \qquad , \qquad (\quad)$$

(4) , ()

$$A. \sum_{n=1}^{\infty} \left(e^{\frac{1}{n}} - 1 \right)$$
 $B. \sum_{n=1}^{\infty} \frac{\sin n}{n}$ $C. \sum_{n=1}^{\infty} \frac{(-1)^n}{e^{\sqrt{n}} + 1}$ $D. \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{e} + 1}$

B.
$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$

C.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{e^{\sqrt{n}} + 1}$$

D.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{e}+1}$$

(5)
$$a + |x| = \pi - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}, \quad -\pi \leqslant x \leqslant \pi, a \qquad a = ($$

A.
$$\frac{\pi}{2}$$

$$B.-\frac{\pi}{2}$$

$$C. \pi$$

B.
$$-\frac{\pi}{2}$$
 C. π

- $(3 \qquad 6 \quad 18)$
- $(1) \qquad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+e^x} dx$
- $\int_0^1 (1 \sqrt{x})^n dx$ (2)
- (3) f(x) $f''(x) + [f'(x)]^2 = \sin x$, f'(0) = 0 : x = 0 f(x)

- (4 7 28)
- (1)
- $\lim_{n \to \infty} \sqrt[n]{1 + e^{nx} + e^{-nx}}$ $I = \oint_L z^2 dx + (x^2 + xy x) dy + 2xz dz, \quad L \qquad z = x^2 + y^2 \qquad x^2 + 4y^2 = 1 \qquad z$ (2)
- (3) $y = \arctan \frac{3+x}{3-x} \quad x$,
- (4) $(x x^3y^2 \ln y) y' = 2y$

- $(3 \ 8 \ 24)$
- (1) $S: \sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}(a > 0), S$,
- $(2) \quad f(x) \quad 2\pi \qquad , \quad (\pi, \pi]$

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 1 & 0 \le x \le 1 \\ 0 & 1 < x \le \pi \end{cases}$$

$$f(x)$$
 (), $\sum_{n=1}^{\infty} \frac{\sin n}{n} \sum_{n=1}^{\infty} \frac{1-\cos n}{n^2}$

- (3) $\Omega \quad x = 0, y = 0, x + y = 1, z(x + y) = 1 \quad z = 1$
 - i. Ω V
 - ii. $\iiint_{\Omega} \frac{dxdydz}{x^2 + y^2 + z^2} \leqslant \frac{V}{2}$

2.

(3 15)

(1)
$$F(x) = \frac{x^2}{x-a} \int_a^x f(t)dt$$
, $f(x)$, $\lim_{x \to a} F(x)$

(2)
$$(3,1,-1)$$
 $\frac{x-4}{5} = \frac{y+3}{2} = \frac{z}{1}$:

(3)
$$\lim_{x \to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{x^2} = \underline{\hspace{1cm}}$$

$$(4) \quad y'' + y' + y = 0 \qquad \underline{\hspace{1cm}}$$

(5)
$$f\left(\frac{z}{x}, \frac{y}{z}\right) = 0$$
 $z = z(x, y), \frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$

$$(10) y = y(x), z = z(x) z = xf(x+y) F(x,y,z) = 0$$
, $f F$, $\frac{dz}{dx}$

(1) (5)
$$\int_0^{\pi} \frac{\sin \theta}{\sqrt{1 - 2a \cos \theta + a^2}}, (a > 1)$$

(2) (7)
$$I = \iint_S \left(x^2 + y^2\right) dS$$

$$S: \quad z = \sqrt{x^2 + y^2} \quad z = 1$$

$$(8) f(x) = \arctan \frac{1+x}{1-x} x$$

(20)

$$\begin{cases} \frac{dx}{dt} = 3x + 2y - z \\ \frac{dy}{dt} = -2x - 2y + 2z \\ \frac{dz}{dt} = 3x + 6z - z \end{cases}$$

- $(1) \qquad \ \, \frac{{}^{d}}{{}^{d}t}X(t) = AX(t) \qquad X(t) = (x(t),y(t),z(t))' \quad \ \, ,\, A \quad 3 \quad \, , \quad \text{``''} \quad \ \, (2 \ \,)$
- (2) A (10)
- (3) $T D T^{-1}AT = D (3)$
- (4) (5)

$$(\quad 5 \) \quad A \quad m \times n \quad , \, A \quad r > 0 \qquad \quad r \quad m \times r \quad B \quad \quad r \quad r \times n \quad \quad C, \quad A = BC$$

$$(\quad 5 \quad) \ f(z) = u(x,y) + iv(x,y) \qquad D \qquad \quad , \quad \overline{f(z)} = u - iv \quad g(z) = v + iv \quad D$$

(5)
$$\int |z| = 3 \left[\bar{z} + (z-1)^5 \cos \frac{1}{(z-1)^3} \right] dz$$
 \bar{z} z

$$|x| = \begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 & (x,y) \in D, D: -\infty < x < 0, 0 < y < \pi \\ u|_{x=0} = \frac{y}{\pi}, u|_{x=-\infty} & (0 < y < \pi) \\ u|_{y=0} = 0, u|_{y=pi} = 0 & (-\infty < x < 0) \end{cases}$$

(8)

- (1) D (6)
- (2) Laplace Green Laplace D Green \bar{z} z (2) $G(z;z_0)=\frac{1}{2\pi}\left(\ln\frac{1}{|z-z_0|}-\ln\frac{1}{|z-\bar{z}|}\right)$