Curso 2018/2019

- 1. Demuestra que si B es un conjunto numerable, cualquier subconjunto $S\subseteq B$, es también numerable.
- 2. ¿Existe algún conjunto X tal que $\mathcal{P}(X)$ sea infinito numerable?. Razona tu respuesta.
- 3. Demuestra que $(A \sim_c B \land A \cap B = \emptyset) \longrightarrow (A \cup B \sim_c A \times \{0,1\})$.
- 4. Demuestra que se verifican las dos propiedades siguientes:
 - a) $A <_{c} B \longrightarrow \mathcal{P}(A) <_{c} \mathcal{P}(B)$.
 - b) $A \sim_c B \longrightarrow \mathcal{P}(A) \sim_c \mathcal{P}(B)$.
- 5. Demuestra que si $A \subseteq B$, $B \subseteq C$ y $A \sim_c C$, entonces $A \sim_c B$ y $B \sim_c C$.
- 6. Demuestra que si A es infinito y B es finito. entonces $A \cup B \sim_c A$. (Idea: Demuestralo primero para $A = \mathbb{N}$, y despés aborda el caso general, utilizando el hecho de que $\mathbb{N} \leq_c A$, por ser A un conjunto infinito).
- 7. Demuestra que para cualquier alfabeto finito no vacío \mathbb{A} , el conjunto \mathbb{A}^* es infinito numerable.
- 8. Demuestra que los siguientes conjuntos son numerables. Indica si alguno de ellos es finito.

$$\mathcal{F}_n = \{X \in \mathcal{P}(\mathbb{N}) \mid |X| = n\}$$
 (siendo $n \in \mathbb{N}$, fijo)

$$\mathcal{F} = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ es finito}\}$$

$$\mathcal{F} = \{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ es finito} \}$$

$$\mathcal{CF} = \{X \in \mathcal{P}(\mathbb{N}) \mid \mathbb{N} \setminus X \text{ es finito} \}$$

9. En cada uno de los casos que siguen, razona si se tiene $A \leq_c B$, $B \leq_c A$, o ambas cosas.

$$a) A = \mathbb{N}, B = \mathbb{Z}$$

b)
$$A = \mathbb{N}$$
, B finito

c)
$$A = \mathbb{O}, B = \mathcal{P}(\mathbb{N})$$

$$d) A = \mathbb{N} \times \mathbb{N}, B = \mathbb{Q} \times \mathbb{Q}$$

$$\begin{array}{ll} b) \ A = \mathbb{N}, \ B \ \text{finito} & c) \ A = \mathbb{Q}, \ B = \mathcal{P}(\mathbb{N}) \\ e) \ A = [0,1], \ B = [0,2] & f) \ A = \mathbb{N} \times \mathbb{Q}, \ B = \mathbb{N} \end{array}$$

$$f) A = \mathbb{N} \times \mathbb{Q}, B = \mathbb{N} \times \mathbb{R}$$

- 10. Dados los siguientes conjuntos $\mathcal{P}(\mathbb{N})$, $\mathbb{N} \cap [0,4]$, $\mathbb{N} \times \mathbb{Q}$, determina cuál es el enunciado correcto de los siguientes y razona porqué ese es el caso:
 - a) Los tres conjuntos son numerables.
 - b) Ninguno de los tres conjuntos es numerable.
 - c) El tercero es el único conjunto numerable.
 - d) El segundo y el tercero son numerables.
- 11. Dados los siguientes conjuntos $A = \{n \in \mathbb{N} / n \ge 15\}, B = \{n \in \mathbb{N} / 2n^2 + 5n < 50\}$ y $\mathcal{P}(\mathbb{N})$, determina cuál es el enunciado correcto de los siguientes y razona porqué ese es el caso:
 - a) Los tres conjuntos son infinito numerables.
 - b) A y B son infinito numerables.
 - c) A y B son numerables.
 - d) By $\mathcal{P}(\mathbb{N})$ son numerables.
- 12. Sea $f: \{p \in \mathbb{N} \mid p \text{ primo}\} \times \{2n \mid n \in \mathbb{N}\} \longrightarrow \mathbb{N} \times \mathbb{Q}$, determina cuál es el enunciado correcto de los siguientes y razona porqué ese es el caso:
 - a) f puede ser suprayectiva pero no bivectiva.
 - b) f puede ser invectiva pero no bivectiva.
 - c) f puede ser biyectiva.
 - d) Ninguna de las anteriores.