

Rev.A02

66-channel GPS Engine Board SmartAntenna

with MTK Chipset

FGPMMOPA6

Rev.A02

History				
Date	Date Rev. Description			
2008/06/26	A00	First Release		
2008/10/27	A01	Add more description on I/O pin2 ,pin4		
2008/12/15	A02	Page 12		
		Modify Operating Temperature Range		

Rev.A02

Description

The FGPMMOPA6 is a POT (Patch On Top) GPS Module. This POT GPS receiver providing a solution that high position and speed accuracy performances as well as high sensitivity and tracking capabilities in urban conditions. The GPS chipsets inside the module are powered by MediaTek Inc., which is the world's leading digital media solution provider and largest fab-less IC company in Taiwan. The module can support up to 66 channels. The GPS solution is the small-form-factor ever device.

Features

- MediaTek Single Chip
- Dimension: 16mm x 16mm x 6mm
- Patch Antenna Size: 15mm x 15mm x 4mm
- L1 Frequency, C/A code, 66 channels
- Embedded LNA and SAW filter
- With Active patch antenna
- High Sensitivity: Up to -163 dBm tracking, superior urban performances
- Position Accuracy: < 3m CEP (50%) without SA (horizontal)
- Cold Start is Under 35 seconds (Typical)
- Warm Start is Under 34 seconds (Typical)
- Hot Start is Under 1 second (Typical)
- Low Power Consumption: 48mA @ acquisition, 37mA @ tracking
- Low shut-down current consumption: 15uA, typical
- DGPS(WAAS, EGNOS, MSAS) support (optional by firmware)
- Max. Update Rate: up to 5Hz
- USB/UART Interface
- SMD TYPE
- Support AGPS function (Offline mode: EPO valid up to 14 days)
- RoHS Compliant

Rev.A02

System Block

Rev.A02

Mechanical

Unit: mm

Rev.A02

Recommend PCB Layout Pad

Unit: mm

Rev.A02

Pin Configuration

Top View

Pin Definition

Pin	Name	I/O	Description			
1	VCC	PI	Main DC power input			
2	ENABLE	I	High active, or keep floating for normal working			
3	GND	Р	Ground			
4	VBACKUP	PI	Backup power input			
5	3D-FIX	0	3D-fix indicator			
6	DPLUS	I/O	USB port D+			
7	DMINUS	I/O	USB port D-			
8	GND	Р	Ground			
9	TXD	0	Serial data output of NMEA			
10	RXD	I	Serial data input for firmware update			

Rev.A02

Description of I/O Pin

VCC (Pin1)

The main DC power supply of the module. The voltage should be kept between from 3.2V to 5.0V. (Typical: 3.3V)

ENABLE (Pin2)

Keep open or pull high to Power ON. Pull low to shutdown the module.

Enable (High): 1.8V<= V_{enable}<=VCC Disable (Low): 0V<= V_{enable}<=0.25V

GND (Pin3)

Ground.

VBACKUP (Pin4)

This is the power for GPS chipset to keep RTC running when main power is removed. The voltage should be kept between 2.0V~4.3V . **(Typical: 3.0V)**

3D-FIX (Pin5)

The 3D-FIX was assigned as fix flag output. If not used, keep floating.

■ Before 2D Fix

The should continuously output one-second high-level with one-second low-level signal.

After 2D or 3D Fix

The should continuously output low-level signal.

Low

Rev.A02

DPLUS (Pin6)USB Port DPLUS Signal

DMINUS (Pin7)

USB Port DMINUS Signal

GND (Pin8)

Ground.

TXD (Pin9)

This is the UART transmitter of the module. It outputs the GPS information for application.

RXD (Pin10)

This is the UART receiver of the module. It is used to receive software commands and firmware update.

Rev.A02

Reference Design

USB Interface

Rev.A02

UART Interface

Rev.A02

Specifications

General	NATICA ATOROGO		
Chipset	MTK MT3329		
Frequency	L1, 1575.42MHz		
C/A Code	1.023 MHz		
Channels	66 channels		
SBAS	WAAS, EGNOS,MSAS Supported		
Datum	WGS84(Default), Tokyo-M, Tokyo-A, User Define		
CPU	ARM7EJ-S		
Dimensions			
Length/Width/Height	16*16*6 mm		
Weight	6g		
Performance Characteris	stics		
	Without aid: 3.0m 2D-RMS		
Position Accuracy	< 3m CEP (50%) without SA (horizontal)		
	DGPS (RTCM, SBAS (WAAS, EGNOS, MSAS)): 2.5m		
\/a a=:t+\ a=a=	Without aid:0.1 m/s		
Velocity Accuracy	DGPS (RTCM, SBAS (WAAS, EGNOS, MSAS)): 0.05m/s		
A application A acture of	Without aid: 0.1 m/s ²		
Acceleration Accuracy	DGPS (RTCM, SBAS (WAAS, EGNOS, MSAS)): 0.05m/s ²		
Timing Accuracy	100 ns RMS		
	Acquisition: -148dBm (Cold Start)		
Sensitivity	Reacquisition: -157dBm		
	Tracking: -163dBm		
Maximum Update Rate	Up to 5Hz(Default: 1Hz)		
Acquisition (Open sky, s	tationary)		
Reacquisition Time	Less than 1 second		
Hot start	1.0s (Typical)		
Warm start	34s (Typical)		

Rev.A02

Cold start	35s (Typical)		
Dynamic			
Altitude	Maximum 18,000m		
Velocity	Maximum 515m/s		
Acceleration	Maximum 4G		
Power			
Input Voltage	DC 3.3V Typical		
Power Consumption @ 3.3V	Acquisition:48mA Typical		
rower Consumption @ 3.3v	Tracking: 37mA Typical		
I/O			
Signal Output 8 data bits, no parity, 1 stop bit			
Available Baud Rates 4800/9600/38400/57600/115200 bps(Default : 9600)			
	NMEA 0183 v3.01 (Default:GGA,GSA,GSV,RMC,VTG)		
Protocols	RTCM		
FIOLOCOIS	MTK NMEA Command		
	Network Assistance Messages		
Data output Interface			
USB Interface	Logo certified USB 2.0 full-speed compatible		
Environment			
Operating Temperature	-40 ℃ to 85 ℃		
Storage Temperature	-50 ℃ to 90 ℃		
Operating Humidity	5% to 95% (no condensing)		

DC Characteristics

Parameter	Condition	Min.	Тур.	Max.	Unit
Operation supply Voltage	VCC	3.2	3.3	5.0	V
Operation supply Ripple Voltage	_	_	_	50	mVpp
Backup Battery Voltage	_	2.0	3.0	4.3	V
RXA TTL H Level	VCC=3.3V	2.1	_	VCC	V
RXA TTL L Level	VCC=3.3V	0	_	0.9	V
TXA TTL H Level	VCC=3.3V	2.1	_	2.8	V
TXA TTL L Level	VCC=3.3V	0	_	0.8	V

Rev.A02

NMEA Output Sentence

Table-1 lists each of the NMEA output sentences specifically developed and defined by MTK for use within MTK products

NMEA Output Sentence Tab	
Option	Description
GGA	Time, position and fix type data.
GSA	GPS receiver operating mode, active satellites
	used in the position solution, and DOP values.
GSV	The number of GPS satellites in view satellite ID
	numbers, elevation, azimuth, and SNR values.
RMC	Time, date, position, course and speed data.
	Recommended Minimum Navigation Information.
VTG	Course and speed information relative to the
	ground.

Rev.A02

GGA—Global Positioning System Fixed Data. Time, Position and fix related data for a GPS receiver

Table-2 contains the values for the following example:

\$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.95,39.9,M,17.8,M,,*65

GGA Data Format			Table-2
Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	064951.000		hhmmss.sss
Latitude	2307.1256		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12016.4438		dddmm.mmmm
E/W Indicator	Е		E=east or W=west
Position Fix	1		See Table-3
Indicator			
Satellites Used	8		Range 0 to 14
HDOP	0.95		Horizontal Dilution of
			Precision
MSL Altitude	39.9	meters	Antenna Altitude above/below
			mean-sae-level
Units	M	meters	Units of antenna altitude
Geoidal	17.8	meters	
Separation			
Units	M	meters	Units of geoidal separation
Age of Diff. Corr.		second	Null fields when DGPS is not
			used
Checksum	*65		
<cr> <lf></lf></cr>			End of message termination

Position Fix Indicator		Table-3
Value	Description	
0	Fix not available	
1	GPS fix	
2	Differential GPS fix	

Rev.A02

GSA—GNSS DOP and Active Satellites

Table-4 contains the values for the following example:

GPGSA, A, 3, 29, 21, 26, 15, 18, 09, 06, 10, ..., 2.32, 0.95, 2.11*00

GSA Data Format			Table-4
Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	А		See Table-5
Mode 2	3		See Table-6
Satellite Used	29		SV on Channel 1
Satellite Used	21		SV on Channel 2
Satellite Used			SV on Channel 12
PDOP	2.32		Position Dilution of Precision
HDOP	0.95		Horizontal Dilution of Precision
VDOP	2.11		Vertical Dilution of Precision
Checksum	*00		
<cr> <lf></lf></cr>			End of message termination

Mode 1	Table-5
Value	Description
М	Manual—forced to operate in 2D or 3D mode
Α	2D Automatic—allowed to automatically switch 2D/3D

Mode 2	Table-6
Value	Description
1	Fix not available
2	2D (<4 SVs used)
3	3D (≧4 SVs used)

Rev.A02

GSV—GNSS Satellites in View

Table-7 contains the values for the following example :

\$GPGSV,3,1,09,29,36,029,42,21,46,314,43,26,44,020,43,15,21,321,39*7D \$GPGSV,3,2,09,18,26,314,40,09,57,170,44,06,20,229,37,10,26,084,37*77 \$GPGSV,3,3,09,07,,,26*73

GSV Data Format Table-7				
Name	Example	Units	Description	
Message ID	\$GPGSV		GSV protocol header	
Number of	3		Range 1 to 3	
Messages			(Depending on the number of	
			satellites tracked, multiple	
			messages of GSV data may be	
			required.)	
Message Number1	1		Range 1 to 3	
Satellites in View	09			
Satellite ID	29		Channel 1 (Range 1 to 32)	
Elevation	36	degrees	Channel 1 (Maximum 90)	
Azimuth	029	degrees	Channel 1 (True, Range 0 to	
			359)	
SNR (C/No)	42	dBHz	Range 0 to 99,	
			(null when not tracking)	
Satellite ID	15		Channel 4 (Range 1 to 32)	
Elevation	21	degrees	Channel 4 (Maximum 90)	
Azimuth	321	degrees	Channel 4 (True, Range 0 to	
			359)	
SNR (C/No)	39	dBHz	Range 0 to 99,	
			(null when not tracking)	
Checksum	*7D			
<cr> <lf></lf></cr>			End of message termination	

Rev.A02

RMC—Recommended Minimum Navigation Information

Table-8 contains the values for the following example:

\$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03,165.48,260406,,,A*55

RMC Data Format Table-8					
Name	Example	Units	Description		
Message ID	\$GPRMC		RMC protocol header		
UTC Time	064951.000		hhmmss.sss		
Status	А		A=data valid or V=data not valid		
Latitude	2307.1256		ddmm.mmmm		
N/S Indicator	N		N=north or S=south		
Longitude	12016.4438		dddmm.mmmm		
E/W Indicator	E		E=east or W=west		
Speed Over	0.03	knots			
Ground					
Course Over	165.48	degrees	True		
Ground					
Date	260406		ddmmyy		
Magnetic Variation		degrees	E=east or W=west		
			(MTK does support magnetic		
			declination)		
Mode	Α		A= Autonomous mode		
			D= Differential mode		
			E= Estimated mode		
Checksum	*65				
<cr> <lf></lf></cr>			End of message termination		

Rev.A02

VTG—Course and speed information relative to the ground.

Table-9 contains the values for the following example:

\$GPVTG,165.48,T,,M,0.03,N,0.06,K,A*37

VTG Data Format			Table-9
Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	165.48	degrees	Measured heading
Reference	T		True
Course		degrees	Measured heading
Reference	M		Magnetic
			(MTK does not support
			magnetic declination.)
Speed	0.03	knots	Measured horizontal speed
Units	N		Knots
Speed	0.06	km/hr	Measured horizontal speed
Units	K		Kilometers per hour
Mode	Α		A= Autonomous mode
			D= Differential mode
			E= Estimated mode
Checksum	*06		
<cr> <lf></lf></cr>			End of message termination

MTK NMEA Command Protocol

Packet Type:

103 PMTK_CMD_COLD_START

Packet Meaning:

Cold Start: Don't use Time, Position, Almanacs and Ephemeris data at re-start.

Example:

\$PMTK103*30<CR><LF>

Rev.A02

Solder-Reflow Condition

Reflow Condition (Follow JEDEC-020C)

Average ramp-up rate (217° \mathbb{C} to peak) : 3° \mathbb{C} /sec. max.

Preheat: 150 ~ 200°C \ 60~180 seconds

Temperature maintained above 217°C : 60 ~ 150 seconds

Time within 5° C of actual peak temperature : 20 ~ 40 seconds

Peak temperature : 250+0/-5°C Ramp-down rate : 6°C/sec. max.

Time 25° C to peak temperature : 8 minutes max.

Cycle interval: 5 minus

Time (sec)