DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA TECNOLOGÍA DE DISPOSITIVOS Y COMPONENTES Junio-1P- 2018-19

Nombre:	SOLUCIÓN	
1 1011101		

Constantes: $KT/q = 0.025 \text{ V}, q = 1.6 \cdot 10^{-19} \text{ C}, h = 6.6 \cdot 10^{-34} \text{ J} \cdot \text{s} = 4.14 \cdot 10^{-15} \text{ eV} \cdot \text{s}, c = 3 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$

1. (1 pto) Un semiconductor con una Energía de Banda Prohibida $E_g = 1.1 \text{ eV}$, una concentración intrínseca a T ambiente de $n_i = 1.5 \cdot 10^{10} \text{ cm}^{-3}$, y masas efectivas iguales $m_h = m_e$, está dopado con una concentración de impurezas N_d . Si tiene el nivel de Fermi situado en $E_F = E_C - 0.38 \text{ eV}$, hallar:

a ¿Cuál es la concentración de huecos?	$p = 1.67 \times 10^7 \text{cm}^{-3}$
b ¿Cuál es la concentración de impurezas?	$N_d = 1.34 \cdot 10^{13} \text{ cm}^{-3}$

(1 pto) Otro semiconductor con la misma Energía de Banda Prohibida $E_g = 1.1 \text{ eV}$, misma concentración intrínseca a T ambiente de $n_i = 1.5 \cdot 10^{10}$ cm⁻³, y masas efectivas iguales $m_h = m_e$, está dopado con una concentración de impurezas $N_a = 10^{16}$ cm⁻³, y una concentración de electrones n = $2.25 \cdot 10^4$ cm⁻³. La movilidad de sus electrones es $\mu_n = 10^3$ cm²/V·s a 300 K, y sobre él se aplica un campo eléctrico $\xi = 2 \cdot 10^3$ V/m hallar:

c El flujo de arrastre de electrones a temperatura ambiente	$\phi_{\rm an} = -n\mu \xi = -4.5 \cdot 10^8 \ cm^{-2} s^{-1}$
d La densidad de corriente de arrastre de electrones a temperatura ambiente	$J_{an} = qn\mu \xi = 7.2 \cdot 10^{-10} \text{ A/cm}^2$

2. (0.5 ptos) En un determinado momento se unen ambos SC, situando el primero a la izquierda, y el segundo a la derecha. **Dibuje el diagrama de bandas de energía** de la unión, especificando de qué tipo de SC se trata en cada caso, y situando con valores concretos E_F, E_I, E_{Vn}, E_{Vp}, E_{Cn}, E_{Cp}. **Indique** también sobre el diagrama, el potencial de contacto.

- 3. (1 pto) Se tiene un semiconductor dopado con una cantidad de átomos donadores $N_d=10^{15}$ cm³. Partiendo desde una temperatura T=0 K, se aumenta lentamente ésta. Sabiendo que, el porcentaje de ionización de los átomos donadores a la temperatura de 30K es del 20%, la concentración intrínseca n_i (30 K) = 1,5 · 10⁹ cm³, y ésta varía a las temperatura de 300 K y 1,000 K a valores:
 - $n_i(300 \text{ K}) = 1.5 \cdot 10^{10} \text{ cm}^{-3}$
 - $n_i(1,000 \text{ K}) = 3.5 \cdot 10^{20} \text{ cm}^{-3}$

Dibuje, de manera aproximada, las **concentraciones de electrones**, y la concentración **intrínseca**, del SC, desde 0K a 1000K, indicando los valores concretos a 30K, 300K y 1000K.:

4. (1 pto) Se cuenta con una unión p*n, (concentración intrínseca n_i= 1,5·10¹⁰ cm⁻³, profundidad de la zona de carga espacial en la zona n xn= 2 μm, corriente de saturación inversa Io= 25nA, coeficiente de afinidad η= 2) en la que se aplica una tensión **positiva** de 0.6 V, y con un potencial de contacto de 0.67 V. Cuenta con una capacidad de difusión de C_D = 15 nF, cuando la unión está polarizada en directa.

 $\xi_o = \frac{2(V_0 - V_D)}{x_0}$ $\delta_o = \frac{2(V_0 - V_D)}{x_0}$ Como p+ se puede considerar $x_0 = x_n$ $\delta_o = x_0 = x_0$ Como p+ se puede considerar $x_0 = x_0$ $\delta_o = x_0 = x_0$ $\delta_o = x_0 = x_0$ Como p+ se puede considerar $x_0 = x_0$ $\delta_o = x_0 = x_0$ $\delta_o = x$

5. (1.5 ptos) Responda a las siguientes cuestiones

Explique brevemente los conceptos de masa efectiva y mecanismos de dispersión.	Parámetro que representa la facilidad con que se puede acelerar un electrón o un hueco a lo largo de una red periódica bajo la influencia de una fuerza exterior. Resume el efecto de todas las fuerzas periódicas del cristal. Mecanismos de dispersión: la velocidad de los portadores cambia bruscamente cada vez que éstos chocan con los átomos de la red. Este fenómeno se denomina "dispersión", y su efecto en los portadores se traduce en frecuentes disminuciones del módulo de la velocidad, así como en variaciones en su dirección. Fundamentalmente hay dos mecanismos de dispersión: vibración de la red y presencia de impurezas.
Represente gráficamente y explique brevemente los tres mecanismos de recombinación posibles.	Auger (un electrón le cede a otro energía que utiliza para aumentar su nivel energético), entre bandas (un electrón cede energía en forma de fotón al pasar de la banda de conducción a la de valencia) y centros de captura (debido a imperfecciones de la red aparecen niveles energéticos en la banda prohibida de manera que el salto entre la banda de conducción y la de valencia no es directo).

- 6. (1 pto) Se tiene el siguiente circuito con R1 = R2 = 1 K. Además se cuenta con los datos de la hoja característica del diodo, que se adjunta. Se pide...
 - a.- Calcule la corriente que atraviesa el diodo si V1=1V y V2=11V, e indique el estado en el que se encuentra el diodo.
 - b.- Cambiamos el estado de polarización del diodo variando los valores de las fuentes V1 y V2. Si fijamos el valor de V2 a 1V y observamos que por ella pasan 0,3 mA, del terminal negativo al positivo, ¿Qué valor debería tener V1?

- 7. (1.5 ptos) Para el siguiente circuito rectificador, y siendo R_1 =1 $K\Omega$, R_2 =10 $K\Omega$, V_{F1} $_{y}V_{F2}$ =0,7 V, V_{Z1} =10 V $_{y}V_{Z2}$ =12 V, $_{y}$ una onda senoidal de valor V1= 10+10 $sen(2.\pi.2000.t)$. Se pide...
 - a.- Representar un periodo de la señal de entrada V1.
 - b.- Representar un periodo de las tensiones del nodo 2 y de salida (nodo 3).

Indicar en ambas señales máximos, mínimos y periodo, y el estado de los diodos en cada zona.

8. (0.5 ptos)¿Qué portadores marcan el carácter de la unión metal-SC? ¿Por qué se define la unión metal semiconductor como unipolar?

Los mayoritarios.