Solutions to Tutorial 10

MA1521 CALCULUS FOR COMPUTING

1. The volume is given by the double integral

$$V = \iint_D f(x, y) dA,$$

where *D* is the region bounded by the parabola $y = 4 - x^2$ and straight line y = 3x and f(x,y) is the function whose graph is the plane x - z + 4 = 0.

Writing the equation of the plane as z = x + 4, we get the function f(x, y) = x + 4.

A rough sketch of the region *D* is shown below:

D can be regarded as type I region

$$D = \{(x, y) \in \mathbb{R}^2 \mid 3x \le y \le 4 - x^2, -4 \le x \le 1\}.$$

(The two limits -4 and 1 of x are obtained by solving the two equations y = 3x and $y = 4 - x^2$.)

Hence

$$V = \int_{-4}^{1} \int_{3x}^{4-x^2} (x+4) dy dx = \int_{-4}^{1} (x+4) (4-x^2-3x) dx = \left[16x - 4x^2 - \frac{7}{3}x^3 - \frac{1}{4}x^4\right]_{-4}^{1} = \frac{625}{12}.$$

1

2. Let
$$z = \sqrt{2^2 - x^2 - y^2}$$
. Then $z_x = -x(4 - x^2 - y^2)^{-1/2}$ and $z_y = -y(4 - x^2 - y^2)^{-1/2}$.

Substitute z = 1 into $x^2 + y^2 + z^2 = 4$ gives

$$x^2 + y^2 + 1 = 4 \implies x^2 + y^2 = 3$$

which is the equation of a circle of radius $\sqrt{3}$.

This means the plane z = 1 intersects the sphere at a circle of radius $\sqrt{3}$.

Hence the projected region R onto the xy-plane of the part of the sphere is a disk of radius $\sqrt{3}$. In polar coordinates, this is given by

$$R = \{(r, \theta) \mid 0 \le r \le \sqrt{3}, \quad 0 \le \theta \le 2\pi\}.$$

Thus,

$$\begin{split} A(S) &= \iint\limits_{R} \sqrt{\frac{x^2 + y^2}{4 - x^2 - y^2} + 1} \, dA = \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \left(\frac{r^2}{4 - r^2} + 1\right)^{\frac{1}{2}} r \, dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} 2r(4 - r^2)^{-\frac{1}{2}} \, dr d\theta = \int_{0}^{2\pi} d\theta \left[-2(4 - r^2)^{\frac{1}{2}} \right]_{r=0}^{r=\sqrt{3}} \\ &= (2\pi)[-2(4-3)^{\frac{1}{2}} + 2(4)^{\frac{1}{2}}] = 4\pi. \end{split}$$

3.
$$\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$$
, $\frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$. Therefore

$$\sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} = \sqrt{\frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2} + 1} = \sqrt{2}.$$

Note that D is given as a Type I region. Thus the surface area is given by

$$\int \int_{D} \sqrt{2} dx dy = \int_{-1}^{2} \left(\int_{x^{2}}^{x+2} \sqrt{2} dy \right) dx = \frac{9}{2} \sqrt{2}.$$

4. Write the equation of the saddle surface as $z = \frac{1}{a}x^2 - \frac{1}{a}y^2$. We have

$$z_x = \frac{2x}{a}$$
 and $z_y = \frac{-2y}{a}$.

Let *D* denote the bounded circular region on the *xy*-plane bounded by the circle $x^2 + y^2 = a^2$.

Then the required surface area is given by

$$S = \iint_{D} \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dx dy$$

$$= \frac{1}{a} \iint_{D} \sqrt{a^{2} + 4x^{2} + 4y^{2}} dx dy$$

$$= \frac{1}{a} \int_{0}^{2\pi} \int_{0}^{a} \sqrt{a^{2} + 4r^{2}} r dr d\theta$$

$$= \frac{2\pi}{a} \int_{0}^{a} \sqrt{a^{2} + 4r^{2}} d\left(\frac{a^{2} + 4r^{2}}{8}\right)$$

$$= \frac{\pi}{6a} \left[\left(a^{2} + 4r^{2}\right)^{\frac{3}{2}} \right]_{0}^{a}$$

$$= \frac{\pi a^{2}}{6} \left(5^{\frac{3}{2}} - 1\right).$$

- 5. (a) Suppose such a function f(x,y) exists. Then $f_x = 4x^3y \frac{1}{1+x^2} + e^y$ and $f_y = x^4 + xe^y + x$. Since f has continuous second order partial derivatives, we have by Clairaut's theorem that $f_{xy} = f_{yx}$. That is $\frac{\partial}{\partial y}(4x^3y \frac{1}{1+x^2} + e^y) = \frac{\partial}{\partial x}(x^4 + xe^y + x)$. Thus $4x^3 + e^y = 4x^3 + e^y + 1 \Leftrightarrow 0 = 1$, which is a contradiction. Consequently, such a function f does not exist.
 - (b) Let f(x,y) be a function such that $\nabla f = (4x^3y + y + e^y)\mathbf{i} + (x^4 + xe^y + x + y)\mathbf{j}$. Then $f_x = 4x^3y + y + e^y (1)$ and $f_y = x^4 + xe^y + x + y (2)$. Integrating equation (1) with respect to x, we have $f(x,y) = x^4y + xy + xe^y + g(y)$, where g(y) is a function of y only. Thus $f_y = x^4 + x + xe^y + g'(y)$. Comparing with (2), we obtain g'(y) = y. Thus $g(y) = \frac{1}{2}y^2 + C$, where C is a constant. Consequently, $f(x,y) = x^4y + xy + xe^y + \frac{1}{2}y^2 + C$.
- 6. (a) $y' = \frac{1}{x(x+1)} = \frac{1}{x} \frac{1}{x+1}$. Integrating, we have $y = \ln \left| \frac{x}{x+1} \right| + C$.
 - (b) $\frac{dy}{dx} = e^x e^{-3y}$ so that $e^{3y} dy = e^x dx$. Integrating, we have $\frac{1}{3}e^{3y} = e^x + C$.
 - (c) Rewrite the equation $(1+y)y' + (1-2x)y^2 = 0$ as $\frac{1+y}{y^2}dy = (2x-1)dx$. Integrating, we have $\ln|y| \frac{1}{y} = x^2 x + C$. y = 0 is also a solution.

Solutions to Further Exercises

1.
$$\iint_{D} \frac{1}{(1+x^2+y^2)^{3/2}} dA = \int_{0}^{\pi/2} \int_{0}^{4} \frac{1}{(1+r^2)^{3/2}} r dr d\theta$$
$$= \left(\int_{0}^{\pi/2} d\theta \right) \left(\int_{0}^{4} (1+r^2)^{-3/2} r dr \right)$$
$$= \frac{\pi}{2} \left[-(1+r^2)^{-1/2} \right]_{0}^{4} = \frac{\pi}{2} (1 - \frac{1}{\sqrt{17}}).$$

2. By symmetry, the desired volume V is 8 times the volume V_1 in the first octant.

$$x^2 + y^2 = r^2$$
, $y^2 + z^2 = r^2$

$$V_{1} = \int_{0}^{r} \int_{0}^{\sqrt{r^{2}-y^{2}}} \sqrt{r^{2}-y^{2}} \, dx dy = \int_{0}^{r} \left[x \sqrt{r^{2}-y^{2}} \right]_{x=0}^{x=\sqrt{r^{2}-y^{2}}} dy$$
$$= \int_{0}^{r} (r^{2}-y^{2}) \, dy = \left[r^{2}y - \frac{1}{3}y^{3} \right]_{0}^{r} = \frac{2}{3}r^{3}.$$

Therefore, $V = \frac{16}{3}r^3$.

3. Let z = x + 2y. Then $y' = \frac{1}{2}(z'-1)$. [' denotes differentiation with respect to x.] Thus the differential equation becomes $(z-1) + \frac{3z}{2}(z'-1) = 0$. That is 3zz' = z+2, or equivalently, $\int 3 - 6(z+2)^{-1} dz = \int dx$, provided $z+2 \neq 0$. From this, we get $3z - 6\ln|z+2| = x+c$, or $x+3y+c=3\ln|x+2y+2|$. If z+2=0, then x+2y+2=0 is also a solution by direct verification.

4