

Stage EUROMETROPOLE

ECAM 2020

Application du Machine Learning à l'identification d'éléments de mobilier urbain et de végétation Instructions d'utilisation

Pierre LEISY

1 mai 2020

Service Géomatique et Connaissance du Territoire https://sig.strasbourg.eu

Données en Open Data https://data.strasbourg.eu

Géomatique et Connaissance du Territoire - Strasbourg Eurométropole

Strisbourg eu

Le service GCT Portail Carto Cartothèque PDF Données en ligne

1. Instruction d'utilisation :

Développements effectué sur un IMAC posix /Darwin /18.0.0 avec l'OS 10.14 (Mojave) Installation de PYTHON avec ANACONDA

2. Les librairies PYTHON utilisées :

2.1 Meilleures pratiques:

Figer la configuration dans un environnement spécifique pour maîtriser toutes les étapes et rester reproductible.

- pip freeze > requirements_EMS_RN.txt ou
- conda list -e > requirements_EMS_RN.txt

On peut aussi créer un fichier **requirements_EMS_RN.in** avec les librairies nécessaires et utiliser la commande **pip-compile** pour créer effectivement le fichier **requirements_EMS_RN.txt** avec toutes les dépendences

- 1) Créer un environnement : conda creat -n ENV python=3.7
- 2) Activation du nouvel environnement : conda activate ENV
- 3) Installer toutes les librairies: conda/pip install -r requirements.txt

2.2 Les librairies indispensables

- 1) PANDAS >= 1.0
- 2) NUMPY >= 1.18
- 3) KERAS >= 2.3
- 4) MATPLOTLIB >= 3.0 et SEABORN >= 0.10
- 5) SCIKIT LEARN \geq 0.22 et SCIKIT PLOT \geq 0.3
- 6) GEOPANDAS >= 0.7
- 7) PADAL et python-pdal
- 8) plus quelques autres

2.3 les fonctions :

Quelques fonctions "maison" créées afin de les réutiliser dans les différentes cellules ... pour le moment, surtout pour créer les dataframes et visualiser les résultats.

3. Les données

3.1 LASPY

Permet de lire un fichier .LAS ou .LAZ et de créer un tableau NUMPY en 3D (X,Y,Z) ou plus de dimentions.

3.2 Fichiers Mobiliers urbains

Pour récupérer les informations concernant les mobiliers urbains et corréler les informations avec les données LIDAR 3D.

3.2.1 Bancs Publics

Essais de caractérisation et st statistiques concernant les bancs public:

Nombre - ligne ou multi-ligne - nombre de points les définissant, etc ...

Pas encore concluant, ni fonctionnel.

3.2.2 Lampadaires

3.2.2.1 Fichiers .ASC ou table .XLSX .

Lecture et écriture dans une DataFrame PANDAS par la fonction **pandas.read_csv**. Fichier créé en même temps que les dalles (par FME) avec les 5 valeurs utiles dans le header.

3.2.2.2 Fichiers CSV

Lecture et écriture dans une DataFrame PANDAS par la fonction pandas.read_csv.

Problèmes de correspondances : 358 - 357 ou 355 objets ... à partir du .SHP il y en a bien 358 !

3.2.2.3 Fichiers SHP

Pour récupérer toutes les informations des mobiliers urbains y compris le positionnement. Lecture et écriture dans une DataFrame PANDAS par la fonction **geopandas.read_file**.

Permet de créer directement la DataFrame des lampadaire pour chaque sans étape intermédiaire de FME.

4. KERAS 1D: vectorisation

- 4.1 Réseaux Convolutionels:
 - 5. KERAS 2D : images bi-dimentionelles
- **5.1** Remerciements

Contents

1	Inst	action d'utilisation :	2
2	Les	brairies PYTHON utilisées :	2
	2.1	Meilleures pratiques:	2
	2.2	Les librairies indispensables	2
	2.3	es fonctions :	3
3	Les	onnées	3
	3.1	LASPY	3
	3.2	Fichiers Mobiliers urbains	3
		3.2.1 Bancs Publics	3
		3.2.2 Lampadaires	3
		3.2.2.1 Fichiers .ASC ou table .XLSX	3
		3.2.2.2 Fichiers CSV	3
		3.2.2.3 Fichiers SHP	3
4	KEI	AS 1D : vectorisation	3
	4.1	Réseaux Convolutionels:	4
5	KEI	AS 2D : images bi-dimentionelles	4
	5.1	Remerciements	4
A	ANN	EXES	6
	A 1	Evaluations	6
		A1.1 Tests)	6