Домашнее задание № 2

1. Рассмотрим задачу бинарной классификации $(Y = \{+1, -1\})$. Вектор правильных ответов:

 $(y_1,\ldots,y_{10})=(-1,+1,-1,-1,+1,-1,+1,-1,+1).$

Вектор решений некого классификатора:

 $(a_1, \ldots, a_{10}) = (+1, +1, +1, +1, +1, -1, -1, -1, +1, +1).$

Не используя пакет scikit-learn, **подсчитайте**: true positive rate, false positive rate, true negative rate, false negative rate, accuracy, precision, recall, F_1 -score.

- 2. **Объяснить**, почему добавление l_1 -регуляризации в задачах классификации либо регрессии приводит к отбору (выбросу несущественных) признаков.
- 3. **Опишите** процедуру **наискорейшего** градиентного спуска для задачи восстановлении регрессии с квадратичной функцией потерь. **Зачем** она применяется?
- 4. Предположим, что выборка для решения задачи бинарной классификации $(X^m = (x_i, y_i)_{i=1}^m, Y = \{+1, -1\})$ линейно разделима: $\exists w, w_0$ т.ч. $(\langle w, x_i \rangle w_0)y_i > 0$ для всех $i = 1, \dots m$. Доказать, что существует вектор параметров w и свободный член w_0 т.ч.: а) $(\langle w, x_i \rangle w_0)y_i \geq 1$; б) существует по крайней мере одна точка на каждой из границ: $\exists x_{\pm} \in X^m : \langle w, x_{\pm} \rangle w_0 = \pm 1$
- 5. Доказать, что любые m+1 точек размерности n из $X=\mathbb{R}^n$ могут быть линейно разделены на любые два класса после перехода в новое пространство с помощью мономиального отображения $\varphi: X \to Y, Y = \mathbb{R}^k, z \in Y, z_{(i)} = x_{(1)}^{i_1} x_{(2)}^{i_2} \dots x_{(n)}^{i_n}|_{i_1+i_2+\dots+i_n\leq m}, 1\leq i\leq k,$ степени не больше m
- 6. Методом опорных векторов **найти аналитическое решение** для разделения классов $A = \{x_1, x_2\}$ и $B = \{x_3\}$, если $x_1 = (1, 1), x_2 = (1, 5), x_3 = (1, 3)$. Указание: можно использовать полиномиальное ядро.
- 7. **Свести** изначальную постановку задачи бинарной классификации для LASSO SVM к двойственной задаче.

- 8. Предположим, что в задаче бинарной классификации точек на плоскости все точки одного класса лежат внутри эллипса $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1, a, b > 0$, а все точки другого класса снаружи этого эллипса. Постройте отображение в спрямляющее пространство, которое позволит линейному классификатору в новом пространстве разделить эти два класса без ошибки. Предоставьте для этого отображения разделяющую поверхность. Какая будет размерность спрямляющего пространства H?
- 9. **Найти** размерность спрямляющего пространства H для ядра $K(x_1,x_2)=(\langle x_1,x_2\rangle+1)^2,$ если $x_1,x_2\in\mathbb{R}^n.$
- 10. Доказать, что радиальная функция $K(x_1,x_2)=e^{-\gamma\|x_1-x_2\|^2}$ является ядром.