

SC92F7547/7546/7543

超高速 1T 8051 内核 Flash MCU , 2 Kbytes SRAM , 32 Kbytes Flash, 128 bytes 独立 12 位 ADC, 1 个模拟比较器, LCD/LED Driver, 12 位 PWM, 3 个定时器, 乘除 EEPROM, 法器,UART,SSI ,Check Sum 校验模块

1 总体描述

SC92F7547/7546/7543(以下简称 SC92F754X)系列是 一颗增强型的超高速 1T 8051 内核工业级 Flash 微控制器, 指令系统完全兼容传统 8051 产品系列。SC92F754X 集成 有 32 Kbytes Flash ROM、2 Kbytes SRAM 、128 bytes EEPROM、最多 46 个 GP I/O、16 个 IO 可外部中断、3 个 16 位定时器、17 路 12 位高精度 ADC、1 个模拟比较器、 8 路 12 位 PWM、IO 驱动分级控制(LED segment 口)、 1 个 16 ×16 位硬件乘除法器、内部±1%高精度高频 16/8/4/1.33MHz 振荡器和±4%精度低频 128K 振荡器、可 外接晶体振荡器、UART 等通讯接口等资源。为提高可靠 性及简化客户电路, SC92F754X 内部也集成有 4 级可选电 压 LVR、2.4V 基准 ADC 参考电压、低耗电 WDT 等高可靠 电路。SC92F754X具有非常优异的抗干扰性能,非常适合 应用于各种物联网控制、大小智能家电和智能家居、充电 器、电源、航模、对讲机、无线通讯、游戏机等工业控制 和消费应用领域。

2 主要功能

工作电压: 2.4V~5.5V 工作温度: -40~85℃

封装:

SC92F7547 (LQFP48) SC92F7546 (LQFP44)

SC92F7543 (SOP28/TSSOP28)

内核: 超高速的 1T 8051

Flash ROM: 32 Kbytes Flash ROM (MOVC 禁止寻址 0000H~00FFH的 256 bytes)

IAP: 可 code option 成 0K、0.5K、1K 或 32K

EEPROM: 128 bytes, 无需擦除, 10 万次写入, 10 年以

SRAM: 内部 256 bytes+外部 1792 bytes+PWM&LCD RAM 80 bytes

系统时钟(fsys):

- 内建高频 16MHz 振荡器 (fhrc)
- IC工作的系统时钟,可通过编程器选择设定为:
 - 16MHz @2.9~5.5V
 - 8/4/1.33MHz@2.4~5.5V
- 频率误差: 跨越 (3.0V~5.5V) 及 (-20~85°C) 应用环 境, 不超过 ±1%

内置低频晶体振荡器电路:

可外接 32K 振荡器,作为 Base Timer 时钟源,可唤 醒 STOP

内建低频 128kHz LRC 振荡器:

可作为 Base Timer 及 WDT 的时钟源,并唤醒 STOP

频率误差: 跨越 (4.0V~5.5V) 及 (-20~85°C) 应用环 境,经过寄存器修正后频率误差不超过 ±4%

低电压复位(LVR):

- 复位电压有 4 级可选: 分别是: 4.3V、3.7V、2.9V、
- 缺省值为用户烧写 Code Option 所选值

Flash 烧写和仿真:

2线 JTAG 烧写和仿真接口

中断 (INT):

- Timer0, Timer1, Timer2, INT0~2, ADC, PWM, UART, SSI, Base Timer, CMP 共 12 个中断源
- 外部中断有 3 个中断向量, 共 16 个中断口, 全部可 设上升沿、下降沿、双沿中断
- 两级中断优先级可设

数字外围:

- 最大 46 个双向可独立控制的 I/O 口,可独立设定上拉
- P0~P3L(P3.0/1/2/3)口源驱动能力分四级控制
- 全部 IO 具有大灌电流驱动能力(50mA)
- 11 位 WDT, 可选时钟分频比
- 3 个标准 80C51 定时器 Timer0、Timer1 和 Timer2
- 最多8路共用周期、单独可调占空比的12位 PWM
- 1个独立 UART 通信口
- 1个 UART/SPI/IIC 三选一 SSI 通信口
- 集成 16×16 位硬件乘除法器

LCD/LED 驱动器:

- LCD/LED 二选一,共用寄存器和 IO 口
- 8 X 24、6 X 26、5 X 27、或 4X 28 段 LED 驱动
- LED segment 口源驱动能力分四级控制
- 8 X 24、6 X 26、5 X 27、或 4X 28 段 LCD 驱动

模拟外围:

- 17 路 12 位±2LSB ADC
 - 内建基准的 2.4V 参考电压
 - ADC 的参考电压有 2 种选择,分别是 VDD 以及
 - 内部一路 ADC 可直接测量 VDD 电压
 - 可设 ADC 转换完成中断
- 1个模拟比较器
 - 四路输入一路参考电压输入
 - 比较电压 16 级可选(V_{DD}分压)

省电模式:

- IDLE Mode,可由任何中断唤醒
- STOP Mode, 可由 INTO~2 和 Base Timer 唤醒

Page 1 of 101 V0.6

92 系列产品命名规则

名称	SC	92	F	7	5	4	7	X	Р	48	R
序号	1	2	3	4	(5)	6	7	8	9	10	11)

序号	含义
1	Sinone Chip 缩写
2	产品系列名称
3	产品类型(F: Flash MCU)
4	系列号: 7: GP 系列, 8: TK 系列
(5)	ROM Size: 1为2K, 2为4K, 3为8K, 4为16K, 5为32K
6	子系列编号: 0~9, A~Z
7	引脚数: 0: 8pin,1: 16pin,2: 20pin,3: 28pin,5: 32pin,6: 44pin,7: 48pin,8: 64pin,9: 100pin
8	版本号: (缺省、B、C、D)
9	封装形式: (D: DIP; M: SOP; X: TSSOP; F: QFP; P: LQFP; Q: QFN; K: SKDIP)
10	引脚数
(11)	包装方式: (U: 管装; R: 盘装; T: 卷带)

ANILITINA X

目录

1 总体描述	1
2 主要功能	1
92 系列产品命名规则	2
目录	3
3 管脚定义	7
3.1 LQFP48/LQFP44 管脚配置	7
3.1.1 LQFP48/LQFP44 管脚定义	
3.2 SOP28/TSSOP28 管脚配置	12
3.2.1 SOP28/TSSOP28 管脚定义	
4 内部框图	15
5 FLASH ROM 和 SRAM 结构	16
5.1 flash rom	
5.1 flash rom	16
5.2 Customer Option 区域(用户烧写设置) 5.2.1 Option 相关 SFR 操作说明	17
5.2.1 Option 相关 SFR 操作说明	18
E 2 aram	40
5.3 sram	19 19
5.3.2 外部 1792 Bytes SRAM	
5.3.3 PWM&LCD 80 bytes SRAM	
6 特殊功能寄存器(SFR)	21
6.1 SFR 映像	21
6.2 SFR 说明	22
6.2.1 8051 CPU 内核常用特殊功能寄存器介绍	23
7 中海 有份和财金	24
7 电源、复位和时钟	24
7.1 电源电路	24
7.2 上电复位过程	24
7.2.1 复位阶段	
7.2.2 调入信息阶段	
7.2.3 正常操作阶段	25
7.3 复位方式	
· · · · · · · · · · · · · · · · · · ·	

7.3.1 外部 RST 复位	25
7.3.2 低电压复位 LVR	25
7.3.3 上电复位 POR	26
7.3.4 看门狗复位 WDT	26
7.3.5 复位初始状态	26
7.4 高频系统时钟电路	28
7.5 低频振荡器及低频时钟定时器	29
7.6 STOP 模式和 IDLE 模式	30
8 中央处理单元 CPU 及指令系统	32
8.1 CPU	32
8.2 寻址方式	32
8.2.1 立即寻址	32
8.2.2 直接寻址	
8.2.3 间接寻址	
8.2.4 寄存器寻址	
8.2.5 相对寻址	
8.2.6 变址寻址	32
8.2.7 位寻址	32
9 INTERRUPT 中断	
9.1 中断源、向量	33
9.2 中断结构图	35
9.3 中断优先级	36
9.4 中断处理流程	36
9.5 中断相关 SFR 寄存器	36
10 定时器 TIMER0 、TIMER1	40
10.1 T0 和 T1 相关特殊功能寄存器	
10.2 T0 工作模式	42
10.3 T1 工作模式	44
11 定时器 TIMER2	46
11.1 T2 相关特殊功能寄存器	46
11.2 T2 工作模式	48
12 乘除法器	52

13 PWM	53
13.1 PWM 结构框图	53
13.2 PWM 相关 SFR 寄存器	54
13.3 PWM 波形及用法	
14 GP I/O	57
14.1 GPIO 结构图	57
14.2 I/O 端口相关寄存器	58
15 LCD/LED 显示驱动	62
15.1 LCD/LED 显示驱动相关寄存器	62
15.2 LCD/LED 显示 RAM 配置	64
15.3 LCD 波形	65
15.3.1 1/3Bias LCD 波形	65
15.3.2 1/4Bias LCD 波形	66
15.4 LED 波形	67
15.5 LCD/LED 例程	68
15.5.1 LCD 配置例程	
15.5.2 LED 配置例程	
16 UART0	69
16.1 串口通信的波特率	70
17 SPI/TWI/UART 三选一串行接口 SSI	71
17.1 SPI	71
17.1.1 SPI 操作相关寄存器	
17.1.2 信号描述 17.1.3 工作模式	
17.1.4 传送形式	
17.1.5 出错检测	
17.2 TWI	
17.2.1 信号描述	
17.2.2 工作模式 17.2.3 操作步骤	
17.3 UART1	
18 模数转换 ADC	81
18.1 ADC 相关寄存器	81

18.2 ADC 转换步骤	83
19 模拟比较器	84
19.1 模拟比较器结构框图	84
20 EEPROM 及 IAP 操作	86
20.1 EEPROM / IAP 操作相关寄存器	86
20.2 EEPROM / IAP 操作流程	
20.2.1 128 bytes 独立 EEPROM 操作例程 20.2.2 32 Kbytes CODE 区域 IAP 操作例程	
21 CHECK SUM 模块	90
21.1 check sum 校验操作相关寄存器	90
22 电气特性	
22.1 极限参数	91
22.2 推荐工作条件	
22.3 直流电气特性	91
22.4 交流电气特性	92
22.5 ADC 电气特性	93
22.6 模拟比较器电气特性	93
23 订购信息	94
24 封装信息	95
25 规格更改记录	101

3 管脚定义

3.1 LQFP48/LQFP44 管脚配置

SC92F7547 管脚配置图

SC92F7546 管脚配置图

3.1.1 LQFP48/LQFP44 管脚定义

脚位数		hote tilm de 4°L	Alt. 1841	-1 Ab W 4B
48pin	44pin	管脚名称	类型	功能说明
1	1	P0.2/T0/S22	I/O	P0.2: GPIO P0.2
				T0: 计数器 0 外部输入
				S22: LCD/LED SEG22
2	2	P0.3/T1/S23	I/O	P0.3: GPIO P0.3
				T1: 计数器 1 外部输入
				S23: LCD/LED SEG23
3	3	P0.4/INT04/T2EX/S24	I/O	P0.4: GPIO P0.4
				INT04: 外部中断 0 的输入 4
				T2EX: 定时器 2 外部捕获信号输入
				S24: LCD/LED SEG24
4	4	P0.5/INT05/T2/S25	I/O	P0.5: GPIO P0.5
				INT05: 外部中断 0 的输入 5
				T2: 计数器 2 外部输入
_	_			S25: LCD/LED SEG25
5	5	P0.6/INT06/S26	I/O	P0.6: GPIO P0.6
				INT06: 外部中断 0 的输入 6 S26: LCD/LED SEG26
	•	D0 7/INT07/007	- 1/0	P0.7: GPIO P0.7
6	6	P0.7/INT07/S27	I/O	NT07: 外部中断 0 的输入 7
				S27: LCD/LED SEG27
7	7	VSS	Power	接地
	-		-	P5.0: GPIO P5.0
8	8	P5.0/PWM50/OSCI	I/O	PWM50: PWM50 输出口
		30)-		OSCI: 32k 振荡器的输入脚
9	9	P5.1/PWM51/OSCO	I/O	P5.1: GPIO P5.1
3	3	1 3.1/1 ***********************************	1/0	PWM51: PWM51 输出口
				OSCO: 32k 振荡器的输出脚
10	10	P5.2/PWM52/RST	I/O	P5.2: GPIO P5.2
				PWM52: PWM52 输出口
				RST52: 复位管脚
11	11	P5.3/PWM53	I/O	P5.3: GPIO P5.3
				PWM53: PWM53 输出口
12		P5.4	I/O	P5.4: GPIO P5.4
13		P5.5	I/O	P5.5: GPIO P5.5
14		P4.7	I/O	P4.7: GPIO P4.7
15		P4.6	I/O	P4.6: GPIO P4.6
16	12	VDD	Power	电源
17	13	P4.5	I/O	P4.5: GPIO P4.5
		1	., 0	
18	14	P4.4/CMPR	I/O	P4.4: GPIO P4.4
	-			CMPR: 比较器参考电压输入
19	15	P4.3/INT13/PWM43/CMP3/AIN15	I/O	P4.3: GPIO P4.3
				INT13: 外部中断 1 的输入 3
				PWM43: PWM43 输出口
				CMP3: 模拟比较器输入通道 3

Page 9 of 101 V0.6

				AIN15: ADC 输入通道 15
20	16	P4.2/INT12/PWM42/CMP2/AIN14	I/O	P4.2: GPIO P4.2
20	'0	1 4.2/1141 12/1 WW142/CW11 2/A11414	1/0	NT12: 外部中断 1 的输入 2
				PWM42: PWM42 输出口
				CMP2: 模拟比较器输入通道 2
				AIN14: ADC 输入通道 14
21	17	D4 4 (INIT44 /DWM 44 /CM D4 /A INI42	I/O	P4.1: GPIO P4.1
2 I	17	P4.1/INT11/PWM41/CMP1/AIN13	1/0	T 4.1.
				PWM41: PWM41 输出口
				CMP1: 模拟比较器输入通道 1
				AIN13: ADC 输入通道 13
	40	DA O/INITAO/DWIM AO/ONEDO/AINIAO	1/0	P4.0: GPIO P4.0
22	18	P4.0/INT10/PWM40/CMP0/AIN12	I/O	
				INT10: 外部中断 1 的输入 0
				PWM40: PWM40 输出口
				CMP0: 模拟比较器输入通道 0
				AIN12: ADC 输入通道 12
23	19	P3.7/AIN11/C7	I/O	P3.7: GPIO P3.7
				AIN11: ADC 输入通道 11
				C7: LCD/LED common 输出 7
24	20	P3.6/AIN10/C6	I/O	P3.6: GPIO P3.6
				AIN10: ADC 输入通道 10
			/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	C6: LCD/LED common 输出 6
25	21	P3.5/AIN9/C5	I/O	P3.5: GPIO P3.5
		/_		AIN9: ADC 输入通道 9
		1/2		C5: LCD/LED common 输出 5
26	22	P3.4/AIN8/C4	I/O	P3.4: GPIO P3.4
				AIN8: ADC 输入通道 8
		7(1)		C4: LCD/LED common 输出 4
27	23	P3.3/S0/C3	I/O	P3.3: GPIO P3.3
				S0: LCD/LED SEG0
				C3: LCD/LED common 输出 3
28	24	P3.2/S1/C2	I/O	P3.2: GPIO P3.2
				S1: LCD/LED SEG1
				C2: LCD/LED common 输出 2
29	25	P3.1/S2/C1	I/O	P3.1: GPIO P3.1
				S2: LCD/LED SEG2
				C1: LCD/LED common 输出 1
30	26	P3.0/S3/C0	I/O	P3.0: GPIO P3.0
				S3: LCD/LED SEG3
				C0: LCD/LED common 输出 0
31	27	P1.0/S4	I/O	P1.0: GPIO P1.0
				S4: LCD/LED SEG4
32	28	P1.1/MISO/RX1/S5/tCK	I/O	P1.1: GPIO P1.1
				MISO: SPI 总线主输入/从输出口
				RX1: UART1 接收口
				S5: LCD/LED SEG5
				tCK: 烧录和仿真口时钟线
33	29	P1.2/SCK/S6	I/O	P1.2: GPIO P1.2
00	23		","	SCK: SPI 及 TWI 的 SCK
				S6: LCD/LED SEG6

Page 10 of 101 V0.6

34	30	P1.3/MOSI/SDA/TX1/S7/tDIO	I/O	P1.3: GPIO P1.3
				MOSI: SPI 总线主输出/从输入口
				SDA: TWI 的 SDA
				TX1: UART1 发送口
				S7: LCD/LED SEG7
				tDIO: 烧录和仿真口数据线
35	31	P1.4/INT14/AIN0/S8	I/O	P1.4: GPIO P1.4
				INT14: 外部中断 1 的输入 4
				AIN0: ADC 输入通道 0
				S8: LCD/LED SEG8
36	32	P1.5/INT15/AIN1/S9	I/O	P1.5: GPIO P1.5
	"-		., "	INT15: 外部中断 1 的输入 5
				AIN1: ADC 输入通道 1
				S9: LCD/LED SEG9
37	33	P1.6/INT16/AIN2/S10	I/O	P1.6: GPIO P1.6
0,		11.0/114110/2010	1,0	INT16: 外部中断 1 的输入 6
				AIN2: ADC 输入通道 2
				S10: LCD/LED SEG10
38	34	P1.7/INT17/AIN3/S11	I/O	P1.7: GPIO P1.7
30	34	11.7/114117/A1143/011	1/0	INT17: 外部中断 1 的输入 7
				AIN3: ADC 输入通道 3
				S11: LCD/LED SEG11
39	35	P2.0/INT20/RX0/AIN4/S12	1/0	P2.0: GPIO P2.0
33		1 2:0/114120/1X0/A1147012	,,,,	INT20: 外部中断 2 的输入 0
		Y		RX0: UARTO 接收口
				AIN4: ADC 输入通道 4
				S12: LCD/LED SEG12
40	36	P2.1/INT21/TX0/AIN5/S13	I/O	2.1: GPIO P2.1
		1 = 17,111 = 17,1716,7 11.106, 51.0	., 0	INT21: 外部中断 2 的输入 1
				TX0: UART0 发送口
				AIN5: ADC 输入通道 5
				S13: LCD/LED SEG13
41	37	P2.2/INT22/AIN6/S14	I/O	P2.2: GPIO P2.2
				INT22: 外部中断 2 的输入 2
				AIN6: ADC 输入通道 6
				S14: LCD/LED SEG14
42	38	P2.3/INT23/AIN7/S15	I/O	P2.3: GPIO P2.3
				INT23: 外部中断 2 的输入 3
				AIN7: ADC 输入通道 7
				S15: LCD/LED SEG15
43	39	P2.4/S16	I/O	P2.4: GPIO P2.4
				S16: LCD/LED SEG16
44	40	P2.5/S17	I/O	P2.5: GPIO P2.5
				S17: LCD/LED SEG17
45	41	P2.6/S18	I/O	P2.6: GPIO P2.6
-10			,,,	S18: LCD/LED SEG18
46	42	P2.7/S19	I/O	P2.7: GPIO P2.7
-10			,,,	S19: LCD/LED SEG19
47	43	P0.0/S20	I/O	P0.0: GPIO P0.0
	.		., 5	S20: LCD/LED SEG20
	1	ė.		•

Page 11 of 101 V0.6

48	44	P0.1/S21	I/O	P0.1: GPIO P0.1
				S21: LCD/LED SEG21

3.2 SOP28/TSSOP28 管脚配置

SC92F7543 管脚配置图

3.2.1 SOP28/TSSOP28 管脚定义

28pin	管脚名称	类型	功能说明
1	P0.6/INT06/S26	I/O	P0.6: GPIO P0.6
			INT06: 外部中断 0 的输入 6
			S26: LCD/LED SEG26
2	P0.7/INT07/S27	I/O	P0.7: GPIO P0.7
			INT07: 外部中断 0 的输入 7
			S27: LCD/LED SEG27
3	vss	Power	接地
4	VDD	Power	电源
5	P4.3/INT13/PWM43/CMP3/AIN15	I/O	P4.3: GPIO P4.3
			INT13: 外部中断 1 的输入 3
			PWM43: PWM43 输出口
			CMP3: 模拟比较器输入通道 3
			AIN15: ADC 输入通道 15
6	P4.2/INT12/PWM42/CMP2/AIN14	I/O	P4.2: GPIO P4.2

Page 12 of 101 V0.6

			INT12: 外部中断 1 的输入 2
			PWM42: PWM42 输出口
			CMP2: 模拟比较器输入通道 2
			AIN14: ADC 输入通道 14
7	P4.1/INT11/PWM41/CMP1/AIN13	I/O	P4.1: GPIO P4.1
•	1 4.1/1111 11/11 11/1111 11/21111 11/211110	.,,	INT11: 外部中断 1 的输入 1
			PWM41: PWM41 输出口
			CMP1: 模拟比较器输入通道 1
			AIN13: ADC 输入通道 13
8	P3.7/AIN11/C7	I/O	P3.7: GPIO P3.7
0	F3.7/AINTI/C7	1/0	AIN11: ADC 输入通道 11
			C7: LCD/LED common 输出 7
9	D2 C/AINI40/CC	I/O	P3.6: GPIO P3.6
9	P3.6/AIN10/C6	1/0	AIN10: ADC 输入通道 10
			C6: LCD/LED common 输出 6
40	D0 5/4 IN 10/05	1/0	P3.5: GPIO P3.5
10	P3.5/AIN9/C5	I/O	
			AIN9: ADC 输入通道 9
			C5: LCD/LED common 输出 5
11	P3.4/AIN8/C4	I/O	P3.4: GPIO P3.4
			AIN8: ADC 输入通道 8
			C4: LCD/LED common 输出 4
12	P3.3/S0/C3	I/O	P3.3: GPIO P3.3
			S0: LCD/LED SEG0
	4		C3: LCD/LED common 输出 3
13	P3.2/S1/C2	I/O	P3.2: GPIO P3.2
			S1: LCD/LED SEG1
			C2: LCD/LED common 输出 2
14	P3.1/S2/C1	I/O	P3.1: GPIO P3.1
			S2: LCD/LED SEG2
			C1: LCD/LED common 输出 1
15	P3.0/S3/C0	I/O	P3.0: GPIO P3.0
			S3: LCD/LED SEG3
			C0: LCD/LED common 输出 0
16	P1.1/MISO/RX1/S5/tCK	I/O	P1.1: GPIO P1.1
			MISO: SPI 总线主输入/从输出口
			RX1: UART1 接收口
			S5: LCD/LED SEG5
			tCK: 烧录和仿真口时钟线
17	P1.2/SCK/S6	I/O	P1.2: GPIO P1.2
			SCK: SPI 及 TWI 的 SCK
			S6: LCD/LED SEG6
18	P1.3/MOSI/SDA/TX1/S7/tDIO	I/O	P1.3: GPIO P1.3
			MOSI: SPI 总线主输出/从输入口
			SDA: TWI 的 SDA
			TX1: UART1 发送口
			S7: LCD/LED SEG7
			tDIO: 烧录和仿真口数据线
19	P2.0/INT20/AIN4/S12	I/O	P2.0: GPIO P2.0
			INT20: 外部中断 2 的输入 0
			AIN4: ADC 输入通道 4

Page 13 of 101 V0.6

			S12: LCD/LED SEG12
20	P2.1/INT21/AIN5/S13	I/O	P2.1: GPIO P2.1
			INT21: 外部中断 2 的输入 1
			AIN5: ADC 输入通道 5
			S13: LCD/LED SEG13
21	P2.2/INT22/AIN6/S14	I/O	P2.2: GPIO P2.2
			INT22: 外部中断 2 的输入 2
			AIN6: ADC 输入通道 6
			S14: LCD/LED SEG14
22	P2.3/INT23/AIN7/S15	I/O	P2.3: GPIO P2.3
			INT23: 外部中断 2 的输入 3
			AIN7: ADC 输入通道 7
			S15: LCD/LED SEG15
23	P2.4/S16	I/O	P2.4: GPIO P2.4
			S16: LCD/LED SEG16
24	P2.5/S17	I/O	P2.5: GPIO P2.5
			S17: LCD/LED SEG17
25	P0.2/T0/TX0/S22	I/O	P0.2: GPIO P0.2
			T0: 计数器 0 外部输入
			TX0: UART0 发送口
		X	S22: LCD/LED SEG22
26	P0.3/T1/RX0/S23	I/O	P0.3: GPIO P0.3
		M.	T1: 计数器 1 外部输入
	4		RX0: UART0 接收口
			S23: LCD/LED SEG23
27	P0.4/INT04/T2EX/S24	I/O	P0.4: GPIO P0.4
			INT04: 外部中断 0 的输入 4
	7(1)		T2EX: 定时器 2 外部捕获信号输入
	>		S24: LCD/LED SEG24
28	P0.5/INT05/T2/S25	I/O	P0.5: GPIO P0.5
			INT05: 外部中断 0 的输入 5
			T2: 计数器 2 外部输入
			S25: LCD/LED SEG25

Page 14 of 101

4 内部框图

SC92F754X BLOCK DIAGRAM

5 FLASH ROM 和 SRAM 结构

SC92F754X 的 Flash ROM 和 SRAM 结构如下:

Flash ROM和 SRAM 结构图

5.1 FLASH ROM

SC92F754X 有 32 Kbytes 的 Flash ROM,ROM 地址为 0000H~7FFFH。此 32 Kbytes Flash ROM 可反复写入 1 万次,可通过 SinOne 提供的专用 ICP 烧写器(SOC PRO52/DPT52/SC LINK)来进行编程及擦除。地址为 0000H~00FFH 地址的 256 bytes 区间 MOVC 指令不可寻址。

EEPROM 为独立于 32 Kbytes ROM 之外的一块区间,其地址为 00H~7FH,可在程序中对其进行单 byte 读写操作,具体操作方法参考 20 EEPROM 及 IAP 操作。

用户ID区域: 出厂时写入用户ID,用户只可对其进行读操作,具体操作方式参考 20 EEPROM 及IAP操作。

SC92F754X 的 32 Kbytes Flash ROM 能提供查空 BLANK、编程 PROGRAM、校验 VERIFY 和擦除 ERASE 功能,但不提供读取 READ 的功能。此 Flash ROM 和 EEPROM 通常写入前无需进行擦除操作,直接写入数据即可实现新数据的覆盖。

SC92F754X 的 Flash ROM 通过 tDIO、tCK、VDD、VSS 来进行编程,具体连接关系如下:

ICP 模式 Flash Writer 编程连接示意图

5.2 CUSTOMER OPTION 区域(用户烧写设置)

SC92F754X 内部有单独的一块 Flash 区域用于保存客户的上电初始值设置,此区域称为 Code Option 区域。 用户在烧写 IC 时将此部分代码写入 IC 内部, IC 在复位初始化时,就会将此设置调入 SFR 作为初始设置。

Option 相关 SFR 操作说明:

Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Option SFR 的具体位置由 OPINX 确定,如下表所示:

符号	地址	说明	7	6	5	4	3	2	1	0
OP_HRCR	83H@FFH	系统时钟改变寄存器				OP_HR	CR[7:0]			
OP_CTM0	C1H@FFH	Customer Option 寄存器 0	ENWDT	ENXTL	SCLK	S[1:0]	DISRST	DISLVR	LVRS	S[1:0]
OP_CTM1	C2H@FFH	Customer Option 寄存器 1	VREFS	-	-	-	IAPS	6[1:0]	-	-

OP_HRCR (83H@FFH) 系统时钟改变寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		OP_HRCR[7:0]						
读/写		读/写						
上电初始值	n	n	n	n	n	n	n	n

位编号	位符号	说明		
7~0	OP_HRCR[7:0]	内部高频 RC 频率调校 中心值 10000000b 对应 HRC 中心频率, 频率变慢。	数值变大频率加快,	数值变小

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/写		读/写	读/写	读/	写
上电初始值	n	n	r	า	n	n	n	1

位编号	位符号	说明
7	ENWDT	WDT开关

Page 17 of 101 V0.6

		0: WDT 无效
		1: WDT 有效(但 IC 在执行 IAP 过程中 WDT 停止计数)
6	ENXTL	外部 32k 晶振选择开关
		0:外部 32k 晶振关闭,P5.0、P5.1 有效;
		1: 外部 32k 晶振打开,P5.0、P5.1 无效。
5~4	SCLKS[1:0]	系统时钟频率选择:
		00: 系统时钟频率为高频振荡器频率除以 1;
		01: 系统时钟频率为高频振荡器频率除以 2;
		10: 系统时钟频率为高频振荡器频率除以 4;
		11: 系统时钟频率为高频振荡器频率除以 12。
3	DISRST	IO/RST 复位切换控制
		0: P5.2 当复位脚使用
		1: P5.2 当正常的 I/O 管脚使用
2	DISLVR	LVR 使能设置
		0: LVR 正常使用
		1: LVR 无效
1~0	LVRS [1:0]	LVR 电压选择控制
		11: 4.3 V 复位
		10: 3.7V 复位
		01: 2.9V 复位
		00: 2.3V 复位

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	-	-		IAPS	[1:0]	-	-
读/写	读/写	-	-		读/写	读/写	-	-
上电初始值	n	Х	Х	X	n	n	Х	Х

位编号	位符号	说明
7	VREFS	参考电压选择(初始值从 Code Option 调入,用户可修改设置)
		0:设定 ADC 的 VREF 为 VDD
		1: 设定 ADC 的 VREF 为 内部准确的 2.4V
3~2	IAPS[1:0]	00: Code 区域禁止 IAP 操作,仅 EEPROM 区域可作为数据存储使用
		01:最后 0.5K Code 区域允许 IAP 操作(7E00H~7FFFH)
		10: 最后 1K Code 区域允许 IAP 操作(7C00H~7FFFH)
		11:全部 Code 区域允许 IAP 操作(0000H~7FFFH)

5.2.1 OPTION 相关 SFR 操作说明

Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Option SFR 的具体位置由 OPINX 确定,各 Option SFR 的写入值由 OPREG 确定:

符号	地址	说明		上电初始值
OPINX	FEH	Option 指针	OPINX[7:0]	0000000b
OPREG	FFH	Option 寄存器	OPREG[7:0]	nnnnnnnb

操作 Option 相关 SFR 时 OPINX 寄存器存放相关 OPTION 寄存器的地址,OPREG 寄存器存放对应的值。 例如:要将 OP_HRCR 配置为 0x01,具体操作方法如下:

C语言例程:

//将 OP_HRCR 的地址写入 OPINX 寄存器 OPINX = 0x83;

OPREG = 0x01; //对 OPREG 寄存器写入 0x01 (待写入 OP_HRCR 寄存器的值)

Page 18 of 101 V0.6 http://www.socmcu.com

汇编例程:

MOV OPINX,#83H ; 将 OP_HRCR 的地址写入 OPINX 寄存器

MOV OPREG,#01H ; 对 OPREG 寄存器写入 0x01 (待写入 OP_HRCR 寄存器的值)

注意:禁止向 OPINX 寄存器写入 Customer Option 区域 SFR 地址之外的数值!否则会造成系统运行异常!

5.3 SRAM

SC92F754X 单片机的 SRAM,分为内部 256 bytes RAM、外部 1792 bytes RAM 和 80 bytes 的 PWM&LCD RAM。内部 RAM 的地址范围为 00H~FFH,其中高 128 bytes(地址 80H~FFH)只能间接寻址,低 128 bytes(地址 00H~7FH)可直接寻址也可间接寻址。

特殊功能寄存器 SFR 的地址也是 80H~FFH。但 SFR 同内部高 128 bytes SRAM 的区别是: SFR 寄存器是直接寻址,而内部高 128 bytes SRAM 只能是间接寻址。

外部 RAM 的地址为 0000H~06FFH, 但需通过 MOVX 指令来寻址。

5.3.1 内部 256 BYTES SRAM

内部低 128 bytes SRAM 区可分为三部分: ①工作寄存器组 0~3,地址 00H~1FH,程序状态字寄存器 PSW 中的 RS0、RS1 组合决定了当前使用的工作寄存器,使用工作寄存器组 0~3 可加快运算的速度;②位寻址区 20H~2FH,此区域用户可以用作普通 RAM 也可用作按位寻址 RAM;按位寻址时,位的地址为 00H~7FH,(此地址按位编地址,不同于通用 SRAM 按字节编地址),程序中可由指令区分;③用户 RAM 和堆栈区,SC92F754X 复位过后,8 位的堆栈指针指向堆栈区,用户一般会在初始化程序时设置初值,建议设置在 E0H~FFH 的单元区间。

内部 256 bytes RAM 结构图

内部低 128 bytes RAM 结构如下:

SRAM 结构图

5.3.2 外部 1792 BYTES SRAM

可通过 MOVX @DPTR, A 来访问外部 1792 bytes RAM; 也可以使用 MOVX A, @Ri 或 MOVX @Ri, A 配合 EXADH 寄存器来访问外部 1792 bytes RAM: EXADH 寄存器存放外部 SRAM 的高位地址, Ri 寄存器存放外部 SRAM 的低 8 位地址。

EXADH (F7H) 外部 SRAM 操作地址高位(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-		EXADH [2:0]	
上电初始值	Х	Х	Х	Х	Х	0	0	0

位编号	位符号	说明
2~0	EXADH [2:0]	外部 SRAM 操作地址的高位
7~3	-	保留

5.3.3 PWM&LCD 80 BYTES SRAM

RAM 地址的 0700H~074FH 作为 80 bytes 的 PWM&LCD SRAM , 其中:

- 1. PWM 占空比调节寄存器占用 0740H~074FH, 只可写,不可读。具体操作方法参考 13.2 PWM 相关 SFR 寄存器;
- 2. LCD/LED 显示 RAM 占用 0700H~071BH, 具体操作方法参考 15.2 LCD/LED 显示 RAM 配置。

6 特殊功能寄存器(SFR)

6.1 SFR 映像

SC92F754X 系列有一些特殊功能寄存器,我们称为 SFR。这些 SFR 寄存器的地址位于 80H~FFH,有些可 以位寻址,有些不能位寻址。能够进行位寻址操作的寄存器的地址末位数都是"0"或"8",这些寄存器在需要改变单 个位的数值时非常方便。所有的 SFR 特殊功能寄存器都必须使用直接寻址方式寻址。

SC92F754X 的特殊功能寄存器名称及地址如下表,

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8h	-	-	-	-	CHKSUML	CHKSUMH	OPINX	OPREG
F0h	В	IAPKEY	IAPADL	IAPADH	IAPADE	IAPDAT	IAPCTL	EXADH
E8h	-	EXA0	EXA1	EXA2	EXA3	EXBL	EXBH	OPERCON
E0h	ACC	-	-	-	-	-	-	-
D8h	P5	P5CON	P5PH	-	<u>-</u>	-	-	-
D0h	PSW	-	-	PWMCON	PWMCFG			
C8h	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2	BTMCON	WDTCON
C0h	P4	P4CON	P4PH	-	-	-	INT2F	INT2R
B8h	IP	IP1	INT0F	INT0R	INT1F	INT1R	-	-
B0h	P3	P3CON	P3PH	P3VO	-	-	CMPCFG	CMPCON
A8h	IE	IE1	ADCCFG2	ADCCFG0	ADCCFG1	ADCCON	ADCVL	ADCVH
A0h	P2	P2CON	P2PH	P2VO	-	-	-	-
98h	SCON	SBUF	P0CON	P0PH	P0VO	SSCON0	SSCON1	SSDAT
90h	P1	P1CON	P1PH	DDRCON	P1VO	SSCON2	IOHCON0	IOHCON1
88h	TCON	TMOD	TL0	TL1	TH0	TH1	TMCON	OTCON
80h	P0	SP	DPL	DPH	-	-	-	PCON
	可位寻址				不可位寻址			1

说明:

- SFR 寄存器中空的部分代表没有此寄存器 RAM,不建议用户使用。
- 2. SFR 中的 F1H~FFH 为系统配置使用的特殊功能寄存器,用户使用可能会导致系统异常,用户在初始化 系统时,不能对这些寄存器进行清零或其它操作。

Page 21 of 101 http://www.socmcu.com

6.2 SFR 说明

特殊功能寄存器 SFR 的具体解释说明如下:

符号	地址	字器 SFR 的具体解释 I 说明	7	6	5	4	3	2	1	0	上电初始值
,,,,		75,7	P07	P06	P05	P04	P03	P02	P01	P00	00000000b
P0 SP	80H	P0 口数据寄存器 堆栈指针	P07	P06	P05		l .	P02	PUI	P00	
DPL	81H 82H	DPTR 数据指针低位					7:0] [7:0]				00000111b 0000000b
DPH	83H	DPTR 数据指针高位					[7:0] [7:0]				0000000b
PCON	87H	电源管理控制寄存器	SMOD	_	_		[7.0] _	_	STOP	IDL	0xxxxx00b
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1		IE0	- IDL	00000x0xb
TMOD	89H	定时器工作模式寄存器		C/T1	M11	M01		C/T0	M10	M00	x000x000b
TL0	8AH	定时器 0 低 8 位		0/11	IVIII	TL0	[7·0]	0/10	WITO	IVIOO	0000000b
TL1	8BH	定时器 1 低 8 位					[7:0]				00000000b
TH0	8CH	定时器 0 高 8 位					[7:0]				00000000b
TH1	8DH	定时器 1 高 8 位					[7:0]				00000000b
TMCON	8EH	定时器频率控制寄存器	-	_	_	_	-	T2FD	T1FD	T0FD	xxxxx000b
OTCON	8FH	输出控制寄存器	SSMC	DD[1:0]	_	-	VOIR	S[1:0]	SCS	BIAS	00xx0000b
P1	90H	P1 口数据寄存器	P17	P16	P15	P14	P13	P12	P11	P10	00000000b
P1CON	91H	P1 口输入/输出控制寄存器	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0	00000000b
P1PH	92H	P1 口上拉电阻控制寄存器	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0	00000000b
DDRCON	93H	显示驱动控制寄存器	DDRON	DMOD		Y[1:0]		VLCI	D[3:0]		00000000b
P1VO	94H	P1 口显示驱动输出寄存器	P17VO	P16VO	P15VO	P14VO	P13VO	P12VO	P11VO	P10VO	00000000b
SSCON2	95H	SSI 控制寄存器 2				SSCO	l				00000000b
IOHCON0	96H	IOH 设置寄存器 0	P1H	[1:0]	P1L	[1:0]		I[1:0]	P0L	[1:0]	00000000b
IOHCON1	97H	IOH 设置寄存器 1	-	-		[1:0]		[1:0]		[1:0]	xx000000b
SCON	98H	串口控制寄存器	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00000000b
SBUF	99H	串口数据缓存寄存器		ı		SBUI	F[7:0]	I	I	I	00000000b
P0CON	9AH	P0 口输入/输出控制寄存器	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0	00000000b
P0PH	9BH	P0 口上拉电阻控制寄存器	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0	00000000b
P0VO	9CH	P0 口显示驱动输出寄存器	P07VO	P06VO	P05VO	P04VO	P03VO	P02VO	P01VO	P00VO	00000000b
SSCON0	9DH	SSI 控制寄存器 0				SSCO	N0[7:0]				00000000b
SSCON1	9EH	SSI 控制寄存器 1			7	SSCON1[7:0]				00000000b	
SSDAT	9FH	SSI 数据寄存器		7077		SSD	[7:0]				00000000b
P2	A0H	P2 口数据寄存器	P27	P26	P25	P24	P23	P22	P21	P20	00000000b
P2CON	A1H	P2 口输入/输出控制寄存器	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0	00000000b
P2PH	A2H	P2 口上拉电阻控制寄存器	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0	00000000b
P2VO	АЗН	P2 口显示驱动输出寄存器	P27VO	P26VO	P25VO	P24VO	P23VO	P22VO	P21VO	P20VO	00000000b
IE	A8H	中断使能寄存器	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0	0000000b
IE1	A9H	中断使能寄存器 1	-	-	ECMP	-	EINT2	EBTM	EPWM	ESSI	xx0x0000b
ADCCFG2	AAH	ADC 设置寄存器 2	-	-	-	-	-	LOWSP	ADCC	K[1:0]	xxxxx000b
ADCCFG0	ABH	ADC 设置寄存器 0	EAIN7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0	00000000b
ADCCFG1	ACH	ADC 设置寄存器 1	EAIN15	EAIN14	EAIN13	EAIN12	EAIN11	EAIN10	EAIN9	EAIN8	00000000b
ADCCON	ADH	ADC 控制寄存器	ADCEN	ADCS	EOC/ ADCIF			ADCIS[4:0]			0000000b
ADCVL	AEH	ADC 结果寄存器		ADC	V[3:0]		-	-	-	-	0000xxxxb
ADCVH	AFH	ADC 结果寄存器				ADCV	/[11:4]	•	•	•	00000000b
P3	ВОН	P3 口数据寄存器	P37	P36	P35	P34	P33	P32	P31	P30	00000000b
P3CON	B1H	P3 口输入/输出控制寄存器	P3C7	P3C6	P3C5	P3C4	P3C3	P3C2	P3C1	P3C0	00000000b
P3PH	B2H	P3 口上拉电阻控制寄存器	P3H7	P3H6	P3H5	P3H4	P3H3	P3H2	P3H1	P3H0	00000000b
P3VO	взн	P3 口显示驱动输出寄存器	P37VO	P36VO	P35VO	P34VO	P33VO	P32VO	P31VO	P30VO	00000000b
CMPCFG	В6Н	模拟比较器设置寄存器	-	-	-	-	CMPI	M[1:0]	CMPI	S[1:0]	xxxx0000b
CMPCON	В7Н	模拟比较器控制寄存器	CMPEN	CMPIF	CMPSTA	-		CMPF	RF[3:0]		000x0000b
IP	B8H	中断优先级控制寄存器	ī	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0	x0000000b
IP1	В9Н	中断优先级控制寄存器 1	•	-	IPCMP	-	IPINT2	IPBTM	IPPWM	IPSSI	xx0x0000b
INT0F	BAH	INTO 下降沿中断控制寄存器	INT0F7	INT0F6	INT0F5	INT0F4	-	-	-	-	0000xxxxb
INT0R	BBH	INTO 上升沿中断控制寄存器	INT0R7	INT0R6	INT0R5	INT0R4	-	-	-	-	0000xxxxb
INT1F	BCH	INT1 下降沿中断控制寄存器	INT1F7	INT1F6	INT1F5	INT1F4	INT1F3	INT1F2	INT1F1	INT1F0	00000000b
INT1R	BDH	INT1 上升沿中断控制寄存器	INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	00000000b
IIVI IIX											

P4CON	C1H	P4 口输入/输出控制寄存器	P4C7	P4C6	P4C5	P4C4	P4C3	P4C2	P4C1	P4C0	0000000b
P4PH	C2H	P4 口上拉电阻控制寄存器	P4H7	P4H6	P4H5	P4H4	P4H3	P4H2	P4H1	P4H0	0000000b
INT2F	C6H	INT2 下降沿中断控制寄存器	-	-	-	-	INT2F3	INT2F2	INT2F1	INT2F0	xxxx0000b
INT2R	C7H	INT2 上升沿中断控制寄存器	-	-	-	-	INT2R3	INT2R2	INT2R1	INT2R0	xxxx0000b
T2CON	C8H	定时器 2 控制寄存器	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	0000000b
T2MOD	С9Н	定时器 2 工作模式寄存器	-	-	-	-	-	-	T2OE	DCEN	xxxxxx00b
RCAP2L	CAH	定时器 2 重载低 8 位		RCAP2L[7:0]				0000000b			
RCAP2H	СВН	定时器2重载高8位		RCAP2H[7:0]				0000000b			
TL2	ССН	定时器2低8位		TL2[7:0]				0000000b			
TH2	CDH	定时器 2 高 8 位		TH2[7:0]				0000000b			
BTMCON	CEH	低频定时器控制寄存器	ENBTM	BTMIF	-	-		BTMF	S[3:0]		00xx000b
WDTCON	CFH	WDT 控制寄存器	-	-	-	CLRWDT	-	,	WDTCKS[2:0]	xxx0x000b
PSW	D0H	程序状态字寄存器	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000b
PWMCON	D3H	PWM 控制寄存器				PWMF	PD[7:0]				0000000b
PWMCFG	D4H	PWM 设置寄存器	ENPWM	PWMIF	PWM	CK[1:0]		PWMF	PD[11:8]		00000000b
P5	D8H	P5 口数据寄存器	-	-	P55	P54	P53	P52	P51	P50	xx000000b
P5CON	D9H	P5 口输入/输出控制寄存器	-	-	P5C5	P5C4	P5C3	P5C2	P5C1	P5C0	xx000000b
P5PH	DAH	P5 口上拉电阻控制寄存器	-	-	P5H5	P5H4	P5H3	P5H2	P5H1	P5H0	xx000000b
ACC	E0H	累加器		ACC[7:0]		0000000b					
EXA0	E9H	扩展累加器 0				EXA	[7:0]				00000000b
EXA1	EAH	扩展累加器 1				EXA	[15:8]				0000000b
EXA2	EBH	扩展累加器 2				EXA[23:16]				0000000b
EXA3	ECH	扩展累加器 3				EXA[31:24]				0000000b
EXBL	EDH	扩展 B 寄存器 L				EXB	[7:0]				00000000b
EXBH	EEH	扩展 B 寄存器 H				EXB	[15:8]				00000000b
OPERCON	EFH	运算控制寄存器	OPERS	MD	- /		-	-	-	CHKSUMS	00xxxxx0b
В	F0H	B寄存器				B[7	7:0]	•			00000000b
IAPKEY	F1H	IAP 保护寄存器				IAPKE	Y[7:0]				00000000b
IAPADL	F2H	IAP 写入地址低位寄存器			/_ \\	IAPAD	PR[7:0]				0000000b
IAPADH	F3H	IAP 写入地址高位寄存器	-			1	APADR[14:8]			x0000000b
IAPADE	F4H	IAP 写入扩展地址寄存器				IAPAD	ER[7:0]				00000000b
IAPDAT	F5H	IAP 数据寄存器			7	IAPDA	AT[7:0]				00000000b
IAPCTL	F6H	IAP 控制寄存器		7/7/	-	-	PAYTIN	/IES[1:0]	CME	D[1:0]	xxxx0000b
EXADH	F7H	外部 SRAM 操作地址高位	-	-	-	-	-		EXADH [2:0]		xxxxx000b
CHKSUML	FCH	Check Sum 结果寄存器低位		-		CHKSL	IML[7:0]	•			0000000b
CHKSUMH	FDH	Check Sum 结果寄存器高位					MH[7:0]				00000000b
OPINX	FEH	Option 指针		OPINX[7:0]				0000000b			
1				OPINX[7:0] OPREG[7:0]							

6.2.1 8051 CPU 内核常用特殊功能寄存器介绍

程序计数器 PC

程序计数器 PC 不属于 SFR 寄存器。PC 有 16 位,是用来控制指令执行顺序的寄存器。单片机上电或者复位 后,PC 值为 0000H,也即是说单片机程序从 0000H 地址开始执行程序。

累加器 ACC (E0H)

累加器 ACC 是 8051 内核单片机的最常用的寄存器之一,指令系统中采用 A 作为助记符。常用来存放参加计 算或者逻辑运算的操作数及结果。

B 寄存器 (F0H)

B寄存器在乘除法运算中必须与累加器 A 配合使用。乘法指令 MUL A, B 把累加器 A 和寄存器 B 中的 8 位无 符号数相乘,所得的16位乘积的低位字节放在A中,高位字节放在B中。除法指令DIVA,B是用A除以B,整 数商放在 A 中, 余数放在 B 中。寄存器 B 还可以作为通用的暂存寄存器使用。

堆栈指针 SP (81H)

堆栈指针是一个8位的专用寄存器,它指示出堆栈顶部在通用RAM中的位置。单片机复位后,SP初始值为 07H, 即堆栈会从 08H 开始向上增加。08H~1FH 为工作寄存器组 1~3。

Page 23 of 101 V0.6

PSW (D0H) 程序状态字寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	CY	AC	F0	RS1	RS0	OV	F1	Р
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位符号	说明					
CY	标志位					
	1: 加法计	5算最高位	有进位,或者减法运算最高位有借位时			
	0: 加法运算最高位无进位,或者减法运算最高位无借位时					
AC	进位辅助	进位辅助标志位(可在 BCD 码加减法运算时方便调整)				
	1: 加法法	运算时在 bi	t3 位有进位,或减法运算在 bit3 位有借位时			
	0: 无借值	立、进位				
F0	用户标志	位				
RS1、RS0	工作寄存	器组选择位	Ì:			
	RS1	RS0	当前使用的工作寄存器组 0~3			
	0	0	组 0 (00H~07H)			
	0	1	组 1 (08H~0FH)			
	1	0	组 2 (10H~17H)			
	1	1	组3(18H~1FH)			
OV	溢出标志	位	<u> </u>			
F1	F1 标支					
• •		ツ标志	A ^			
P			E位为累加器 ACC 中 1 的个数的奇偶值。			
•						
	F0 RS1、RS0	CY 标志位 1: 加法站 0: 加法站 0: 加法站 进位辅助 1: 加法站 0: 无借信 F0 用户标志 RS1、RS0 工作寄存 RS1 0 0 1 1 1 P 奇偶标志 1: ACC	CY 标志位 1: 加法运算最高位 0: 加法运算最高位 进位辅助标志位(中 1: 加法运算时在 bi 0: 无借位、进位 用户标志位 RS1、RS0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 E1 F1 标志 用户自定义标志			

数据指针 DPTR (82H、83H)

SC92F754X 的数据指针 DPTR 是 16 位的专用寄存器,由低 8 位 DPL 和高 8 位 DPH 组成。DPTR 是可以直接进行 16 位操作的寄存器,也可以分别对 DPL 和 DPH 按字节进行操作。

7 电源、复位和时钟

7.1 电源电路

SC92F754X 电源核心包括了 BG、LDO、POR、LVR 等电路,可实现在 2.4~5.5V 范围内可靠工作。此外,IC 内建了一个经调校过的精准 2.4V 电压,可用作 ADC 内部参考电压。用户可在 18 模数转换 ADC 查找具体设置内容。

7.2 上电复位过程

SC92F754X 上电后, 在客户端软件执行前, 会经过以下的过程:

- 复位阶段
- 调入信息阶段
- 正常操作阶段

7.2.1 复位阶段

是指 SC92F754X 会一直处于复位的情况,直到供应给 SC92F754X 的电压高过某一电压,内部才开始有效的 Clock。复位阶段的时间长短和外部电源的上升速度有关,外部电源达到内建 POR 电压后,复位阶段才会完成。

7.2.2 调入信息阶段

在 SC92F754X 内部有一个预热计数器。在复位阶段期间,此预热计数器一直被清为 0,直到电压过了 POR 电压后,内部 RC 振荡器开始起振,该预热计数器开始计数。当内部的预热计数器计数到一定数目后,每隔一定数 Page 24 of 101 V0.6

http://www.socmcu.com

量个 HRC clock 就会从 Flash ROM 中的 IFB(包含 Code Option)读出一个 byte 数据存放到内部系统寄存器中。直到预热完成后,该复位信号才会结束。

7.2.3 正常操作阶段

结束调入信息阶段后,SC92F754X 开始从 Flash 中读取指令代码即进入正常操作阶段。这时的 LVR 电压值是用户写入 Code Option 的设置值。

7.3 复位方式

SC92F754X 有 4 种复位方式: ①外部 RST 复位②低电压复位 LVR③上电复位 POR④看门狗 WDT 复位。

7.3.1 外部 RST 复位

外部 RST 复位就是从外部 RST 给 SC92F754X 一定宽度的复位脉冲信号,来实现 SC92F754X 的复位。 用户在烧录程序前可通过烧录上位机软件配置 Customer Option 项将 P5.2/RST 管脚配置为 RST(复位脚)使用。

7.3.2 低电压复位 LVR

SC92F754X 内建了一个低电压复位电路。而复位的门限电压有 4 种选择: 4.3V、3.7V、2.9V、2.3V,缺省值 Default 是用户写入的 Option 值。

OP_CTM0(C1H@FFH) Customer Option 寄存器 0(读/写)

				, , , , , , , , , , , , , , , , , , , 					
位编号	7	6	5	4	3	2	1	0	
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]		
读/写	读/写	读/写	读/写		读/写	读/写	读/写		
上电初始值	n	n	n		n	n	n		

位编号	位符号	说明
2	DISLVR	LVR 使能设置
		0: LVR 正常使用
		1: LVR 无效
1~0	LVRS [1:0]	LVR 电压选择控制
		11: 4.3 V 复位
		10: 3.7V 复位
		01: 2.9V 复位
		00: 2.3V 复位

SC92F754X 的复位部分电路结构图如下:

SC92F754X 复位电路图

7.3.3 上电复位 POR

SC92F754X 内部有上电复位电路,当电源电压 VDD 达到 POR 复位电压时,系统自动复位。

7.3.4 看门狗复位 WDT

SC92F754X 有一个 WDT, 其时钟源为内部的 128kHz 振荡器。用户可以通过编程器的 Code Option 选择是 否开启看门狗复位功能。

OP CTM0(C1H@FFH) Customer Option 寄存器 0(读/写)

	=								
位编号	7	6	5	4	3	2	1	0	
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]		
读/写	读/写	读/写	读/写		读/写	读/写	读/写		
上电初始值	n	n	1	1	n	n	ľ	1	

位编号	位符号	说明					
7	ENWDT	WDT 开关(此位由系统将用户 Code Option 所设的值调入)					
		1: WDT 开始工作					
		0: WDT 关闭					

WDTCON (CFH) WDT 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	CLRWDT		WDTCKS[2:0]		
读/写	-	-	-	读/写	\X-	读/写		
上电初始值	Х	х	х	0	Х	0	0	0

位编号	位符号		说明					
4	CLRWDT	WDT 清"0"位(写 1	有效)					
		1: WDT 计数器从 0 开始计数						
		此位由系统硬件自动						
2~0	WDTCKS [2:0]	看门狗时钟选择						
		WDTCKS[2:0]	WDT溢出时间					
		000	500ms					
		001	250ms					
		010	125ms					
		011	62.5ms					
		100	31.5ms					
		101	15.75ms					
		110	7.88ms					
		111						
7~5,3	-	保留						

7.3.5 复位初始状态

当 SC92F754X 处于复位状态时,多数寄存器会回到其初始状态。看门狗 WDT 处于关闭的状态。程序计数器 PC 初始值为 0000h,堆栈指针 SP 初始值为 07h。"热启动"的 Reset(如 WDT、LVR 等)不会影响到 SRAM,SRAM 值始终是复位前的值。SRAM 内容的丢失会发生在电源电压低到 RAM 无法保存为止。

SFR 寄存器的上电复位初始值如下表:

0.11 时 11 明 11 工 10 交 区	1/1 /H IEL /H 1/1/1		
SFR 名称	初始值	SFR 名称	初始值
ACC	0000000b	P1VO	0000000b
В	0000000b	P2	0000000b
PSW	0000000b	P2CON	0000000b
SP	00000111b	P2PH	0000000b
DPL	0000000b	P2VO	0000000b

Page 26 of 101 V0.6

DPH	0000000b	P3	0000000b
PCON	0xxxxx00b	P3CON	0000000b
ADCCFG0	0000000b	P3PH	0000000b
ADCCFG1	0000000b	P3VO	0000000b
ADCCFG2	xxxxx000b	P4	0000000b
ADCCON	0000000b	P4CON	0000000b
ADCVH	0000000b	P4PH	0000000b
ADCVL	0000xxxxb	P5	xx000000b
BTMCON	00xx000b	P5CON	xx000000b
IAPADE	0000000b	P5PH	xx000000b
IAPADH	x0000000b	PWMCFG	0000000b
IAPADL	0000000b	PWMCON	0000000b
IAPCTL	xxxx0000b	RCAP2H	0000000b
IAPDAT	0000000b	RCAP2L	0000000b
IAPKEY	0000000b	SBUF	0000000b
IE	0000000b	SCON	0000000b
IE1	xx0x0000b	SSCON0	0000000b
INT0R	0000xxxxb	SSCON1	0000000b
INT1R	0000000b	SSCON2	0000000b
INT2R	xxxx0000b	SSDAT	0000000b
INT0F	0000xxxxb	TCON	00000x0xb
INT1F	0000000b	TMCON	xxxxx000b
INT2F	xxxx0000b	TMOD	x000x000b
IP	x0000000b	TH0	0000000b
IP1	xxx0x000b	TLO	0000000b
OPINX	0000000b	TH1	0000000b
OPREG	nnnnnnnb	TL1	0000000b
EXADH	xxxxx000b	T2CON	0000000b
OTCON	00xx000b	TH2	0000000b
IOHCON0	0000000b	TL2	0000000b
IOHCON1	xx000000b	T2MOD	xxxxxx00b
P0	0000000b	WDTCON	xxx0x000b
P0CON	0000000b	CMPCFG	xxxx0000b
P0PH	0000000b	CMPCON	000x0000b
P0VO	0000000b	DDRCON	0000000b
P1	0000000b	CHKSUMH	0000000b
P1CON	0000000b	CHKSUML	0000000b
P1PH	0000000b	-	-

Page 27 of 101 V0.6 http://www.socmcu.com

7.4 高频系统时钟电路

SC92F754X 内建了一个振荡频率可调的高精度 HRC, HRC 出厂时被精确地调校至 16MHz@5V/25℃,用户 可以通过编程器的 Code Option 将系统时钟设置为 16/8/4/1.33MHz 使用。调校过程是过滤掉制程上的偏差对精度 所造成的影响。此 HRC 受工作的环境温度和工作电压影响会有一定的漂移,对于压漂(3.0V~5.5V)以及(-20℃ ~85°C)的温漂一般状况会在 ±1% 以内。

注意: ADC 和 PWM 的时钟源固定为 f_{HRC} = 16MHz,不会随着系统时钟的切换而改变。

SC92F754X 内部时钟关系

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5 4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]	DISRST	DISLVR	LVRS	3[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读	/写
上电初始值	n	n	n	n	n	ľ	٦

位编号	位符号	说明
5~4	SCLKS[1:0]	系统时钟频率选择: 00: 系统时钟频率为高频振荡器频率除以 1; 01: 系统时钟频率为高频振荡器频率除以 2; 10: 系统时钟频率为高频振荡器频率除以 4; 11: 系统时钟频率为高频振荡器频率除以 12。

SC92F754X 有一个特殊的功能:用户可修改 SFR 的值实现 HRC 频率在一定范围的调整。用户可以通过配置 OP_HRCR 寄存器实现,该寄存器的配置方法可参考章节: 5.2.1 Option 相关 SFR 操作说明。

OP_HRCR (83h@FFH) 系统时钟改变寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		OP_HRCR[7:0]						
读/写		读/写						
上电初始值	n	n	n	n	n	n	n	n

位编号	位符号	说明
7~0	OP_HRCR[7:0]	HRC 频率改变寄存器
		用户可通过修改此寄存器的值实现高频振荡器频率 fhrc 的改变,进而改变 IC 的系统时钟频率 fsvs: 1. OP_HRCR[7:0]上电后的初始值 OP_HRCR[s]是一个固定值,以

Page 28 of 101 V0.6 http://www.socmcu.com

2. 初始值为 OP_HRCF	
OP_HRCR [7:0]值	fsys 实际输出频率(16M 为例)
OP_HRCR [s]-n	16000*(1-0.23%*n)kHz
OP_HRCR [s]-2	16000*(1-0.23%*2) = 15926.4kHz
OP_HRCR [s]-1	16000*(1-0.23%*1) = 15963.2kHz
OP_HRCR [s]	16000kHz
OP_HRCR [s]+1	16000*(1+0.23%*1) = 16036.8kHz
OP_HRCR [s]+2	16000*(1+0.23%*2) = 16073.6kHz
OP_HRCR [s]+n	16000*(1+0.23%*n)kHz
16MHz 的值;用户可以让 IC 的系统时钟频 2. 为保证 IC 工作可靠,即 17.6MHz;	RCR[7:0]的值都是高频振荡器频率 fhac 最接近借助 EEPROM 在每次上电后修正 HRC 的值率 fsys 工作在用户需要的频率; IC 最高工作频率尽量勿超过 16MHz 的 10% 的改变不会影响其它功能。

7.5 低频振荡器及低频时钟定时器

SC92F754X 内建一个频率为 128kHz 的 RC 及 32.768kHz 晶体振荡电路,都可作为低频时钟定时器 Base Timer 的时钟源。该振荡器直接连接一个 Base Timer,可以把 CPU 从 STOP mode 唤醒,并且产生中断。

BTMCON (CEH) 低频定时器控制寄存器(读/写)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
位编号	7	6	5	4	3	2	1	0
符号	ENBTM	BTMIF	-	-		BTMF	S[3:0]	
读/写	读/写	读/写	-	-		读	/写	
上电初始值	0	0	Х	Х	0	0	0	0

位编号	位符号	说明
7	ENBTM	低频 Base Timer 启动控制
		0: Base Timer 及其时钟源不启动
		1: Base Timer 及其时钟源启动
6	BTMIF	Base Timer 中断申请标志
		当 CPU 接受 Base Timer 的中断后, 此标志位会被硬件自动清除。
3~0	BTMFS [3:0]	低频时钟中断频率选择
		0000:每 15.625ms 产生一个中断
		0001:每 31.25ms 产生一个中断
		0010: 每 62.5ms 产生一个中断
		0011:每 125ms 产生一个中断
		0100: 每 0.25 秒产生一个 中断
		0101: 每 0.5 秒产生一个 中断
		0110: 每 1.0 秒产生一个 中断
		0111: 每 2.0 秒产生一个 中断
		1xxx: 每 4.0 秒产生一个 中断
5~4	-	保留

Page 29 of 101 V0.6

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/写		读/写	读/写	读/写	
上电初始值	n	n	n		n	n	ľ	ì

位编号	位符号	说明
6	ENXTL	外部 32k 晶振选择开关 0: 外部 32k 晶振关闭,P5.0、P5.1 有效,内部 LRC 有效; 1: 外部 32k 晶振打开,P5.0、P5.1 无效,内部 LRC 无效。

P5.0/P5.1 外接 32K 振荡器作为 BaseTimer 使用的接法电路如下:

32k 外部晶振连接图

Base Timer 内外部振荡选择关系图如下:

Base Timer 结构图

7.6 STOP 模式和 IDLE 模式

SC92F754X 提供了一个特殊功能寄存器 PCON, 配置该寄存器的 bit0 和 bit1 可控制 MCU 进入不同的工作模 式。

对 PCON.1 写入 1,内部的高频系统时钟就会停止,进到 STOP 模式,达到省电功能。在 STOP 模式下,用 户可以通过外部中断 INTO~INT2、低频时钟中断及 WDT 把 SC92F754X 唤醒,也可以通过外部复位将 STOP 唤

对 PCON.0 写入 1,程序停止运行,进入 IDLE 模式,但外部设备及时钟继续运行,进入 IDLE 模式前所有 CPU 状态都被保存。IDLE 模式可由任何中断唤醒。

PCON (87H) 电源管理控制寄存器(只写、*不可读 *)

位编号	7	6	5	4	3	2	1	0
符号	SMOD	•	-	-	-	-	STOP	IDL
读/写	只写	-	-	-	-	-	只写	只写
上电初始值	0	Х	Х	Х	Х	Х	0	0

Page 30 of 101 V0.6

位编号	位符号	说明
1	STOP	STOP 模式控制
		0: 正常操作模式
		1: 节能模式, 高频振荡器停止工作, 低频振荡器及 WDT 可根据设定
		选择工作与否。
0	IDL	IDLE 模式控制
		0: 正常操作模式
		1: 节能模式, 程序停止运行, 但外部设备及时钟继续运行, 进入
		IDLE 模式前所有 CPU 状态都被保存。

注意:

配置 MCU 进入 STOP 或 IDLE 模式时,对 PCON 寄存器进行配置操作的语句后面要加上 8 个 NOP 指令, 不能直接跟其它指令,否则在唤醒后无法正常执行后续的指令!

例如:设置 MCU 进入 STOP 模式:

C语言例程:

#include"intrins.h"

//PCON的 bit1 STOP位写 1,配置 MCU 进入 STOP模式 PCON = 0x02;

//至少需要 8 个_nop_() _nop_();

nop();

nop();

nop();

nop();

nop();

nop();

nop();

.

汇编例程:

; PCON 的 bit1 STOP 位写 1, 配置 MCU 进入 STOP 模式 ORL PCON,#02H

NOP ; 至少需要 8 个 NOP

NOP

NOP

NOP

NOP

NOP

NOP NOP

Page 31 of 101 http://www.socmcu.com

8 中央处理单元 CPU 及指令系统

8.1 CPU

SC92F754X 所用的 CPU 是一个超高速的 1T 标准 8051 内核, 其指令完全兼容传统 8051 内核单片机。

8.2 寻址方式

SC92F754X 的 1T 8051 CPU 指令的寻址方式有: ①立即寻址②直接寻址③间接寻址④寄存器寻址⑤相对寻址⑥变址寻址⑦位寻址

8.2.1 立即寻址

立即寻址也称为立即数,它是在指令操作数中直接给出参加运算的操作数,指令举例如下: MOV A,#50H (这条指令是将立即数 50H 送到累加器 A 中)

8.2.2 直接寻址

在直接寻址方式中,指令操作数域给出的是参加运算操作数的地址。直接寻址方式只能用来表示特殊功能寄存器、内部数据寄存器和位地址空间。其中特殊功能寄存器和位地址空间只能用直接寻址方式访问。举例如下:

ANL 50H, #91H (表示 50H 单元中的数与立即数 91H 相"与",结果存放在 50H 单元中。其中 50H 为直接地址,表示内部数据寄存器 RAM 中的一个单元。)

8.2.3 间接寻址

间接寻址采用 R0 或 R1 前添加"@"符号来表示。假设 R1 中的数据是 40H,内部数据存储器 40H 单元的数据 为 55H,则指令为

MOV A, @R1 (把数据 55H 传送至累加器 A)

8.2.4 寄存器寻址

寄存器寻址时对选定的工作寄存器 R7~R0、累加器 A、通用寄存器 B、地址寄存器和进位 C 中的数进行操作。其中寄存器 R7~R0 由指令码的低 3 位表示,ACC、B、DPTR 及进位位 C 隐含在指令码中。因此,寄存器寻址也包含一种隐含寻址方式。寄存器工作区的选择由程序状态字寄存器 PSW 中的 RS1、RS0 来决定。指令操作数指定的寄存器均指当前工作区的寄存器。

INC R0 是指(R0)+1→R0

8.2.5 相对寻址

相对寻址是将程序计数器 PC 中的当前值与指令第二字节给出的数相加,其结果作为转移指令的转移地址。转移地址也成为转移目的地址,PC 中的当前值成为基地址,指令第二字节给出的数成为偏移量。由于目的地址是相对于 PC 中的基地址而言,所以这种寻址方式成为相对寻址。偏移量为带符号的数,所能表示的范围为+127~-128.这种寻址方式主要用于转移指令。

JC \$+50H

表示若进位位 C 为 0,则程序计数器 PC 中的内容不改变,即不转移。若进位位 C 为 1,则以 PC 中的当前值及基地址,加上偏移量 50H 后所得到的结果作为该转移指令的目的地址。

8.2.6 变址寻址

在变址寻址方式中,指令操作数制定一个存放变址基址的变址寄存器。变址寻址时,偏移量与变址基值相加, 其结果作为操作数的地址。变址寄存器有程序计数器 PC 和地址寄存器 DPTR。

MOVC A, @A+DPTR

表示累加器 A 为偏移量寄存器,其内容与地址寄存器 DPTR 中的内容相加,其结果作为操作数的地址,取出该单元中的数送入累加器 A 中。

8.2.7 位寻址

位寻址是指对一些可进行位操作的内部数据存储器 RAM 和特殊功能寄存器进行位操作时的寻址方式。在进行位操作时,借助于进位位 C 作为位操作累加器,指令操作数直接给出该位的地址,然后根据操作码的性质对该位进行位操作。位地址与字节直接寻址中的字节地址编码方式完全一样,主要由操作指令的性质加以区分,使用时应特别注意。

Page 32 of 101 V0.6

MOV C, 20H (将地址为 20H 的位操作寄存器值送入进位位 C 中。)

9 INTERRUPT 中断

SC92F754X 单片机提供 12 个中断源: Timer0, Timer1, Timer2, INT0~2, ADC, PWM, UART, SSI, Base Timer, CMP。这 12 个中断源分为 2 个中断优先级,并可以单独分别设置为高优先级或者低优先级。三个外部中断可以分别设定其中每个中断源的触发条件为上升、下降或上下沿,每个中断分别有独立的优先级设置位、中断标志、中断向量和使能位,总的使能位 EA 可以实现所有中断的打开或者关闭。

9.1 中断源、向量

SC92F754X的中断源、中断向量、及相关控制位列表如下:

中断源	中断发生 时间	中断标志	中断使能 控制	中断优先权 控制	中断向量	查询优先级	中断号 (C51)	标志清除 方式	能否唤醒 STOP
INT0	外部中断 0 条件符合	IE0	EINT0	IPINT0	0003H	1 (高)	0	H/W Auto	能
Timer0	Timer0 溢 出	TF0	ET0	IPT0	000BH	2	1	H/W Auto	不能
INT1	外部中断 1 条件符合	IE1	EINT1	IPINT1	0013H	3	2	H/W Auto	能
Timer1	Timer1 溢 出	TF1	ET1	IPT1	001BH	4	3	H/W Auto	不能
UART	接收或发送 完成	RI/TI	EUART	IPUART	0023H	5	4	必须用户 清除	不能
Timer2	Timer2 溢 出	TF2	ET2	IPT2	002BH	6	5	必须用户 清除	不能
ADC	ADC 转换 完成	ADCIF	EADC	IPADC	0033H	7	6	必须用户 清除	不能
SSI	接收或发送 完成	SPIF/TWIF	ESSI	IPSPI	003BH	8	7	必须用户 清除	不能
PWM	PWM 溢出	PWMIF	EPWM	IPPWM	0043H	9	8	必须用户 清除	不能
BTM	Base timer 溢出	BTMIF	EBTM	IPBTM	004BH	10	9	H/W Auto	能
INT2	外部中断 2 条件符合	-	EINT2	IPINT2	0053H	11	10	-	能
CMP	比较器中断 条件符合	CMPIF	ECMP	IPCMP	0063H	13	12	必须用户 清除	能

在 EA=1 及各中断使能控制为 1 的情况下,各中断发生情况如下:

定时器中断: Timer0 和 Timer1 溢出时会产生中断并将中断标志 TF0 和 TF1 置为"1",当单片机执行该定时器中断时,中断标志 TF0 和 TF1 会被硬件自动清"0"。Timer2 溢出时会产生中断并将中断标志 TF2 置为"1",在Timer2 中断发生后,硬件并不会自动清除 TF2 位,此 bit 必须由使用者的软件负责清除。

UART 中断: 当 UARTO 接收或发送一帧数据完成时 RI 或 TI 位会被硬件自动置"1", UART 中断产生。在 UART 中断发生后,硬件并不会自动清除 RI/TI 位,此 bit 必须由使用者的软件负责清除。

ADC 中断: ADC 中断的发生时间为 ADC 转换完成时,其中断标志就是 ADC 转换结束标志 EOC/ADCIF (ADCCON.5)。当使用者设定 ADCS 开始转换后,EOC 会被硬件自动清除为 "0";当转换完成后,EOC 会被硬件自动置为 "1"。使用者在 ADC 中断发生之后,进入中断服务程序时,必须用软件去清除它。

SSI 中断: 当 SSI 接收或发送一帧数据完成时 SPIF/TWIF 位会被硬件自动置"1", SSI 中断产生。当单片机执行该 SSI 中断时,中断标志 SPIF/TWIF 必须由使用者的软件负责清除。

PWM 中断: 当 PWM 计数器溢出时(也就是说:数到超过 PWMPD 时),此位会被硬件自动设定成 1。如果此时 IE1[1] (EPWM) 也是被设定成 1,PWM 的中断产生。在 PWM 中断发生后,硬件并不会自动清除此位,此位必须由使用者的软件负责清除。

外部中断 INT0~2: 当外部中断口有中断条件发生时,外部中断就发生了。其中 INT0 和 INT1 会产生中断标志 Page 33 of 101 V0.6

为 IEO/IE1,用户不需要处理,硬件会自动清除。INT0 有四个外部中断源,INT1 有八个外部中断源,INT2 有四个外部中断源,用户可以根据需要设成上沿、下沿或者双沿中断,可通过设置 SFR (INTxF 和 INTxR)来实现。用户可通过 IP 寄存器来设置每个中断的优先级级别。外部中断 INT0~2 还可以唤醒单片机的 STOP。

9.2 中断结构图

SC92F754X的中断结构如下图所示:

SC92F754X 中断结构和向量

9.3 中断优先级

SC92F754X 单片机的中断具有两个中断优先级,这些中断源的请求可编程为高优先级中断或者低优先级中 断,即可实现两级中断服务程序的嵌套。一个正在执行的低优先级中断能被高优先级中断请求所中断,但不能被 另一个同一优先级的中断请求所中断,一直执行到结束,遇到返回指令 RETI, 返回主程序后再执行一条指令才能 响应新的中断请求。

也就是说:

- ① 低优先级中断可被高优先级中断请求所中断,反之不能;
- ② 任何一种中断,在响应过程中,不能被同一优先级的中断请求所中断。

中断查询顺序: SC92F754X单片机的同一优先级中断,如果同时来几个中断,则中断响应的优先顺序同 C51 中的中断查询号相同,即查询号小的会优先响应,查询号大的会慢响应。

9.4 中断处理流程

当一个中断产生并且被 CPU 响应,则主程序运行被中断,将执行下述操作

- ① 当前正在执行的指令执行完;
- ② PC 值被压入堆栈,保护现场;
- ③ 中断向量地址载入程序计数器 PC;
- 4 执行相应的中断服务程序;
- ⑤ 中断服务程序结束并 RETI;
- (6) 将 PC 值退栈, 并返回执行中断前的程序。

在此过程中,系统不会立即执行其它同一优先级的中断,但会保留所发生的中断请求,在当前中断处理结束 后,转去执行新的中断请求。

9.5 中断相关 SFR 寄存器

IF (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明	
7	EA	中断使能的总控制	
		0: 关闭所有的中断	
		1: 打开所有的中断	
6	EADC	ADC 中断使能控制	
		0: 关闭 ADC 中断	
		1: 允许 ADC 转换完成时产生中断	
5	ET2	Timer2 中断使能控制	
		0: 关闭 TIMER2 中断	
		1: 允许 TIMER2 中断	
4	EUART	UART 中断使能控制	
		0: 关闭 UART 中断	
		1: 允许 UART 中断	
3	ET1	Timer1 中断使能控制	
		0: 关闭 TIMER1 中断	
		1: 允许 TIMER1 中断	
2	EINT1	外部中断 1 使能控制	
		0: 关闭 INT1 中断	
		1: 打开 INT1 中断	
1	ET0	Timer0 中断使能控制	

Page 36 of 101 V0.6

		0: 关闭 TIMER0 中断
		1: 允许 TIMER0 中断
0	EINT0	外部中断 0 使能控制
		0: 关闭 INT0 中断
		1: 打开 INTO 中断

IP (B8H) 中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	х	0	0	0	0	0	0	0

位编号	位符号	说明
6	IPADC	ADC 中断优先权选择
		0: ADC 中断优先权为低
		1: ADC 中断优先权为高
5	IPT2	Timer2 中断优先权选择
		0: Timer2 中断优先权为低
		1: Timer2 中断优先权为高
4	IPUART	UART中断优先权选择
		0: UART 中断优先权为低
		1: UART 中断优先权为高
3	IPT1	Timer1 中断优先权选择
		0: Timer1 中断优先权为低
		1: Timer1 中断优先权为高
2	IPINT1	INT1 计数器中断优先权选择
		0: INT1 中断优先权为低
		1: INT1 中断优先权为高
1	IPT0	Timer0 中断优先权选择
		0: Timer0 中断优先权为低
		1: Timer0 中断优先权为高
0	IPINT0	INTO 计数器中断优先权选择
		0: INT0 中断优先权为低
		1: INTO 中断优先权为高
7	-	保留

IE1 (A9H) 中断使能寄存器 1(读/写)

	D4140 - 4 14 HH	131- 17						
位编号	7	6	5	4	3	2	1	0
符号	-	-	ECMP	-	EINT2	EBTM	EPWM	ESSI
读/写	-	-	读写	-	读/写	读/写	读/写	读/写
上电初始值	х	х	0	х	0	0	0	0

位编号	位符号	说明
5	ECMP	模拟比较器中断使能控制
		0: 关闭模拟比较器中断
		1: 打开模拟比较器中断
3	EINT2	外部中断 2 使能控制
		0: 关闭 INT2 中断
		1: 打开 INT2 中断
2	EBTM	Base Timer 中断使能控制

Page 37 of 101 V0.6

		0: 关闭 Base Timer 中断
		1: 允许 Base Timer 中断
1	EPWM	PWM 中断使能控制
		0: 关闭 PWM 中断
		1: 允许 PWM 计数溢出(数到 PWMPD) 时产生中断
0	ESSI	三合一串口中断使能控制
		0: 关闭串口中断
		1: 允许串口中断
7~6,4	-	保留

IP1 (B9H) 中断优先级控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	IPCMP	-	IPINT2	IPBTM	IPPWM	IPSSI
读/写	-	-	读/写	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	Х	0	0	0	0

位编号	位符号	说明
5	IPCMP	模拟比较器中断优先权选择
		0: 模拟比较器中断优先权为低
		1:模拟比较器中断优先权为高
3	IPINT2	INT2 计数器中断优先权选择
		0: INT2 中断优先权为低
		1: INT2 中断优先权为高
2	IPBTM	Base Timer 中断优先权选择
		0: Base Timer 中断优先权为低
		1: Base Timer 中断优先权为高
1	IPPWM	PWM 中断使能选择
		0: PWM 中断优先权为低
		1: PWM 中断优先权为高
0	IPSSI	三合一串口中断优先权选择
		0: SSI 中断优先权为低
		1: SSI 中断优先权为高
7~5,4	-	保留

TCON (88H) 定时器控制寄存器(读写)

位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	Х	0	Х

位编号	位符号	说明
3	IE1	INT1 溢出中断请求标志。INT1 产生溢出,发生中断时,硬件将 IE1 置
		为"1",申请中断,CPU 响应时,硬件清"0"。
1	IE0	INTO 溢出中断请求标志。INTO 产生溢出,发生中断时,硬件将 IEO 置
		为"1",申请中断,CPU 响应时,硬件清"0"。
2,0	-	保留

INTOF (BAH) INTO 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT0F7	INT0F6	INT0F5	INT0F4	-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	Х	Х	Х

Page 38 of 101 V0.6

位编号	位符号	说明
7~4	INT0Fn (n=7~4)	INTO 下降沿中断控制 0:INTOn 下降沿中断关闭 1:INTOn 下降沿中断使能
3~0	-	保留

INTOR (BBH) INTO 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT0R7	INT0R6	INT0R5	INT0R4	-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	х	х	х	Х

位编号	位符号	说明
7~4	INT0Rn (n=7~4)	INTO 上升沿中断控制 0:INTOn 上升沿中断关闭 1:INTOn 上升沿中断使能
3~0	-	保留

INT1F (BCH) INT1 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT1F7	INT1F6	INT1F5	INT1F4	INT1F3	INT1F2	INT1F1	INT1F0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	INT1Fn	INT1 下降沿中断控制
	(n=7~0)	0: INT1n 下降沿中断关闭
		1: INT1n 下降沿中断使能

INT1R (BDH) INT1 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	INT1Rn (n=7~0)	INT1 上升沿中断控制 0:INT1n 上升沿中断关闭 1:INT1n 上升沿中断使能

INT2F (C6H) INT2 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT2F3	INT2F2	INT2F1	INT2F0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~0	INT2Fn (n=3~0)	INT2 下降沿中断控制 0:INT2n 下降沿中断关闭 1: INT2n 下降沿中断使能
7~4	-	保留

Page 39 of 101 V0.6 http://www.socmcu.com

INT2R (C7H) INT1 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT2R3	INT2R2	INT2R1	INT2R0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~0	INT2Rn (n=3~0)	INT2 上升沿中断控制 0:INT2n 上升沿中断关闭 1:INT2n 上升沿中断使能
7~4	-	保留

10 定时器 TIMER0、TIMER1

SC92F754X 单片机内部的两个 16 位定时器/计数器,它们具有计数方式和定时方式两种工作模式。特殊功能寄存器 TMOD 中有一个控制位 C/Tx 来选择 T0 和 T1 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。只有在TRx=1 的时候,T0 和 T1 才会被打开计数。

计数器模式下, P0.2/T0 和 P0.3/T1 管脚上的每一个脉冲, T0 和 T1 的计数值分别增加 1。

定时器模式下,可通过特殊功能寄存器 TMCON 来选择 T0 和 T1 的计数来源是 fsys/12 或 fsys (fsys 为分频后的系统时钟)。

定时器/计数器 T0 有 4 种工作模式,定时器/计数器 T1 有 3 种工作模式(模式三不存在):

- ① 模式 0: 13 位定时器/计数器模式
- ② 模式 1: 16 位定时器/计数器模式
- ③ 模式 2: 8位自动重载模式
- 4 模式 3: 两个 8 位定时器/计数器模式

在上述模式中,T0和T1的模式0、1、2都相同,模式3不同。

10.1 T0 和 T1 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1	-	IE0	-	00000x0xb
TMOD	89H	定时器工作模式寄存器	-	C/T1	M11	M01	-	C/T0	M10	M00	x000x000b
TL0	8AH	定时器 0 低 8 位				TLC	[7:0]				0000000b
TL1	8BH	定时器 1 低 8 位				TL1	[7:0]				0000000b
TH0	8CH	定时器 0 高 8 位				THO	0[7:0]				0000000b
TH1	8DH	定时器 1 高 8 位		TH1[7:0]						0000000b	
TMCON	8EH	定时器频率控制寄存器	-	-	-	-	-	T2FD	T1FD	T0FD	xxxxx000b

各寄存器的解释说明如下:

TCON (88H) 定时器控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0 IE1		-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	Х	0	Х

位编号	位符号	说明
7	TF1	T1 溢出中断请求标志。T1 产生溢出,发生中断时,硬件将 TF1 置为
		"1",申请中断,CPU 响应时,硬件清"0"。
6	TR1	定时器 T1 的运行控制位。此位由软件置 1 和清 0。当 TR1=1 时,允许
		T1 开始计数。TR1=0 时禁止 T1 计数。

Page 40 of 101 V0.6

5	TF0	T0 溢出中断请求标志。T0 产生溢出,发生中断时,硬件将 TF0 置为 "1",申请中断, CPU 响应时,硬件清"0"。
4	TR0	定时器 T0 的运行控制位。此位由软件置位和清 0。当 TR0=1 时,允许 T0 开始计数。TR0=0 时禁止 T0 计数。
2,0	-	保留

TMOD (89H) 定时器工作模式寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	C/T1	M11	M01	-	C/T0	M10	M00
读/写	-	读/写	读/写	读/写	-	读/写	读/写	读/写
上电初始值	Х	0	0	0	Х	0	0	0
		Т	1			Т	0	

位编号	位符号	说明
6	C/T1	TMOD[6]控制定时器 1
		0: 定时器, T1 计数来源于 fsys 分频
		1: 计数器, T1 计数来源于外部管脚 T1/P0.3
5~4	M11,M01	定时器/计数器 1 模式选择
		00: 13 位定时器/计数器, TL1 高 3 位无效
		01: 16 位定时器/计数器,TL1 和 TH1 全
		10: 8位自动重载定时器,溢出时将 TH1 存放的值自动重装入 TL1
		11: 定时器/计数器 1 无效(停止计数)
2	C/T0	TMOD[2]控制定时器 0
		0: 定时器, T0 计数来源于 fsys 分频
		1: 计数器, T0 计数来源于外部管脚 T0/P0.2
1~0	M10,M00	定时器/计数器 0 模式选择
		00: 13 位定时器/计数器, TL0 高 3 位无效
		01: 16 位定时器/计数器,TLO 和 THO 全
		10: 8位自动重载定时器,溢出时将 THO 存放的值自动重装入 TLO
		11: 定时器 0 此时作为双 8 位定时器/计数器。TLO 作为一个 8 位定时器
		/计数器,通过标准定时器 0 的控制位控制; TH0 仅作为一个 8 位定时
		器,由定时器1的控制位控制。
7,3	-	保留

TMOD 寄存器中 TMOD[0]~TMOD[2]是设置 T0 的工作模式; TMOD[4]~TMOD[6]是设置 T1 的工作模式。 定时器和计数器 Tx 功能由特殊功能寄存器 TMOD 的控制位 C/Tx 来选择, M0x 和 M1x 都是用来选择 Tx 的工作模式。TRx 作为 T0 和 T1 的开关控制,只有 TRx=1 时 T0 和 T1 才打开。

TMCON (8EH) 定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	T2FD	T1FD	T0FD
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	0	0	0

位编号	位符号	说明					
1	T1FD	T1 输入频率选择控制					
		0: T1 频率源自于 fsys/12					
		1: T1 频率源自于 f _{SYS}					
0	T0FD	T0 输入频率选择控制					
		0: T0 频率源自于 fsys/12					
		1: T0 频率源自于 fsys					

Page 41 of 101 V0.6

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明					
3	ET1	Fimer1 中断使能控制					
		0: 关闭 TIMER1 中断					
		1: 允许 TIMER1 中断					
1	ET0	Timer0 中断使能控制					
		0: 关闭 TIMER0 中断					
		1: 允许 TIMER0 中断					

IP (B8H) 中断优先级控制寄存器(读/写)

()	1 20200000	4 14 HH (10/4) 4 /						
位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	х	0	0	0	0	0	0	0

位编号	位符号	说明
3	IPT1	Timer1 中断优先权
		0:设定 Timer 1 的中断优先权是 "低"
		1: 设定 Timer 1 的中断优先权是 "高"
1	IPT0	Timer0 中断优先权
		0:设定 Timer 0 的中断优先权是 "低"
		1: 设定 Timer 0 的中断优先权是 "高"

10.2 T0 工作模式

通过对寄存器 TMOD 中的 M10、M00(TMOD[1]、TMOD[0])的设置,定时器/计数器 0 可实现 4 种不同的工作 模式。

工作模式 0:13 位计数器/定时器

THO 寄存器存放 13 位计数器/定时器的高 8 位(TH0.7~TH0.0), TLO 存放低 5 位(TL0.4~TL0.0)。TLO 的高三 位(TL0.7~TL0.5)是不确定值,读取时应被忽略掉。当 13 位定时器/计数器递增溢出时,系统会将定时器溢出标志 TF0 置 1。如果定时器 0 中断被允许,将会产生一个中断。

C/T0 位选择计数器/定时器的时钟输入源。如果 C/T0=1, 定时器 0 输入脚 T0(P0.2)的电平从高到低的变化, 会使定时器 0 数据寄存器加 1。如果 C/T0=0,选择系统时钟的分频为定时器 0 的时钟源。

当 TR0 置 1 打开定时器 TO。TR0 置 1 并不强行复位定时器, 意味着如果 TR0 置 1, 定时器寄存器将从上次 TRO清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

当作为定时器应用时,可配置 TOFD 来选择时钟源的分频比例。

Page 42 of 101 V0.6

定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1:16 位计数器/定时器

除了使用 16 位(TL0 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。

定时器/计数器工作模式 0: 16 位定时器/计数器

工作模式 2:8 位自动重载计数器/定时器

在工作模式 2 中, 定时器 0 是 8 位自动重载计数器/定时器。TL0 存放计数值,TH0 存放重载值。当在 TL0 中的计数器溢出至 0x00 时, 定时器溢出标志 TF0 被置 1, 寄存器 TH0 的值被重载入寄存器 TL0 中。如果定时器中断使能,当 TF0 置 1 时将产生一个中断,但在 TH0 中的重载值不会改变。在允许定时器正确计数开始之前,TL0 必须初始化为所需要的值。

除了自动重载功能外,工作模式 2 中的计数器/定时器的使能和配置方式同模式 0 和 1 是相同的。 当作为定时器应用时,可配置寄存器 TMCON.0(T0FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

工作模式 3: 两个 8 位计数器/定时器(仅限于定时器 0)

在工作模式 3 中,定时器 0 用作两个独立的 8 位计数器/定时器,分别由 TL0 和 TH0 控制。TL0 通过定时器 0 的控制位(在 TCON 中)和状态位(在 TMOD 中): TR0、C/T0、TF0 控制。定时器 0 可通过 T0 的 TMOD.2(C/T0) 来选择是定时器模式还是计数器模式。

THO 通过定时器 1 的控制 TCON 来设置相关的控制,但 THO 仅被限定为定时器模式,无法通过 Page 43 of 101 V0.6

TMOD.2(C/T0)来设定为计数器模式。TH0 由定时器控制位 TR1 的控制使能,需设定 TR1=1。当发生溢出及产生中断时,TF1 会置 1,并按 T1 发生中断来进行相应的处理。

在 T0 被设为工作模式 3 时,TH0 定时器占用了 T1 的中断资源及 TCON 中寄存器,T1 的 16 位计数器会停止计数,相当于"TR1=0"。当采用 TH0 定时器工作时,需设置 TR1=1。

10.3 T1 工作模式

通过对寄存器 TMOD 中的 M11、M01(TMOD[5]、TMOD[4])的设置,定时器/计数器 1 可实现 3 种不同的工作模式。

工作模式 0:13 位计数器/定时器。

TH1 寄存器存放 13 位计数器/定时器的高 8 位(TH1.7~TH1.0); TL1 存放低 5 位(TL1.4~TL1.0)。TL1 的高三位(TL1.7~TL1.5)是不确定值,读取时应被忽略掉。当 13 位定时器计数器递增溢出时,系统会将定时器溢出标志TF1 置 1。如果定时器 1 中断被允许,将会产生一个中断。C/T1 位选择计数器/定时器的时钟源。

如果 C/T1=1,定时器 1 输入脚 T1(P0.3)的电平从高到低的变化,会使定时器 1 数据寄存器加 1。如果 C/T1=0,选择系统时钟的分频为定时器 1 的时钟源。

TR1 置 1 打开定时器。TR1 置 1 并不强行复位定时器,意味着如果 TR1 置 1,定时器寄存器将从上次 TR1 清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

当作为定时器应用时,可配置 T1FD 来选择时钟源的分频比例。

定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1:16 位计数器/定时器

除了使用 16 位(TL1 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。

定时器/计数器工作模式 0: 16 位定时器/计数器

工作模式 2: 8 位自动重载计数器/计数器

在工作模式 2 中, 定时器 1 是 8 位自动重载计数器/定时器。TL1 存放计数值,TH1 存放重载值。当在 TL1 中的计数器溢出至 0x00 时, 定时器溢出标志 TF1 被置 1, 寄存器 TH1 的值被重载入寄存器 TL1 中。如果定时器中断使能,当 TF1 置 1 时将产生一个中断,但在 TH1 中的重载值不会改变。在允许定时器正确计数开始之前,TL1 必须初始化为所需要的值。

除了自动重载功能外,工作模式2中的计数器/定时器的使能和配置方式同方式0和1是相同的。

当作为定时器应用时,可配置寄存器 TMCON.4(T1FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

Page 44 of 101 V0.6 http://www.socmcu.com

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

11 定时器 TIMER2

SC92F754X 单片机内部的 Timer2 具有计数方式和定时方式两种工作模式。特殊功能寄存器 T2CON 中有一 个控制位 C/T2 来选择 T2 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器 的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。TR2 是 T2 在定时器/计数器模式计 数的开关控制,只有在 TR2=1 的时候,T2 才会被打开计数。

计数器模式下,T2 管脚上的每一个脉冲,T2 的计数值分别增加1。

定时器模式下,可通过特殊功能寄存器 TMCON 来选择 T2 的计数来源是 fsys/12 或 fsys。

定时器/计数器 T2 有 4 种工作模式:

- ① 模式 0: 16 位捕获模式
- ② 模式 1: 16 位自动重载定时器模式
- ③ 模式 2: 波特率发生器模式
- ④ 模式 3: 可编程时钟输出模式

11.1 T2 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
T2CON	C8H	定时器 2 控制寄存器	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	0000000b
T2MOD	C9H	定时器 2 工作模式寄存器	-	-	-	-	-	-	T2OE	DCEN	xxxxxx00b
RCAP2L	CAH	定时器 2 重载低 8 位				RCAF	P2L[7:0]				0000000b
RCAP2H	СВН	定时器 2 重载高 8 位				RCAF	P2H[7:0]				0000000b
TL2	ССН	定时器 2 低 8 位				TL	2[7:0]				0000000b
TH2	CDH	定时器 2 高 8 位		TH2[7:0]							0000000b
TMCON	8EH	定时器频率控制寄存器	-	-		-	-	T2FD	T1FD	T0FD	xxxxx000b

各寄存器的解释说明如下:

T2CON (C8H) 定时器 2 控制寄存器(读/写)

位编号	7	6	5 4		3	2	1	0
符号	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TF2	定时器 2 溢出标志位
		0: 无溢出(必须由软件清 0)
		1: 溢出(如果 RCLK = 0 和 TCLK = 0,由硬件设 1)
6	EXF2	T2 引脚外部事件输入(下降沿)被检测到的标志位
		0: 无外部事件输入(必须由软件清 0)
		1: 检测到外部输入(如果 EXEN2 = 1,由硬件设 1)
5	RCLK	UARTO 接收时钟控制位
		0: 定时器 1 产生接收波特率
		1: 定时器 2 产生接收波特率
4	TCLK	UARTO 发送时钟控制位
		0: 定时器 1 产生发送波特率
		1: 定时器 2 产生发送波特率
3	EXEN2	T2 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制:
		0: 忽略 T2 引脚上的事件
		1: 当定时器 2 不做为 UART0 时钟(T2EX 始终包括上拉电阻)时,检测
		到 T2 引脚上一个下降沿,产生一个捕获或重载
	TD 0	
2	TR2	定时器 2 开始/停止控制位
		0: 停止定时器 2

Page 46 of 101 V0.6

		1: 开始定时器 2
1	C/T2	定时器 2 定时器/计数器方式选定位 2
		0: 定时器方式, T2 引脚用作 I/O 端口
		1: 计数器方式
0	CP/RL2	捕获/重载方式选定位
		0: 16 位带重载功能的定时器/计数器
		1: 16 位带捕获功能的定时器/计数器, T2EX 为定时器 2 外部捕获信号
		输入口

T2MOD (C9H) 定时器 2 工作模式寄存器(读/写)

			, , , ,					
位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	T2OE	DCEN
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

位编号	位符号	说明
1	T2OE	定时器 2 输出允许位
		0:设置 T2 作为时钟输入或 I/O 端口
		1: 设置 T2 作为时钟输出
0	DCEN	递减计数允许位
		0: 禁止定时器 2 作为递增/递减计数器,定时器 2 仅作为递增计数器
		1: 允许定时器 2 作为递增/递减计数器
7~2	-	保留

TMCON (8EH) 定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	T2FD	T1FD	TOFD
读/写	-	-		-	-	读/写	读/写	读/写
上电初始值	Х	Х	X	Х	Х	0	0	0

位编号	位符号	说明
2	T2FD	T2 输入频率选择控制 0: T2 频率源自于 fsys/12 1: T2 频率源自于 fsys

IE (A8H) 中断使能寄存器(读/写)

	2010 T 10 101 ()	,						
位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
5	ET2	Timer2 中断使能控制
		0: 关闭 TIMER2 中断
		1: 允许 TIMER2 中断

IP (B8H) 中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

Page 47 of 101 V0.6

位编号	位符号	说明
5	IPT2	Timer2 中断优先权
		0:设定 Timer 2 的中断优先权是 "低"
		1: 设定 Timer 2 的中断优先权是 "高"

11.2 T2 工作模式

定时器 2 工作模式与配置方式如下表:

C/T2	T2OE	DCEN	TR2	CP/RL2	RCLK	TCLK		方式
Х	0	Χ	1	1	0	0	0	16 位捕获
Х	0	0	1	0	0	0	1	16 位自动重载定时器
X	0	1	1	0	0	0		
V	0	V	4	V	1	Х	2	波特率发生器
X	0	Х	1	X	Х	1		
					0	0	3	只用于可编程时钟
0	1	Х	1	X	1	Х	3	带波特率发生器的可编程时
					Χ	1		钟输出
X	Х	Х	0	Х	Х	Х	Х	定时器 2 停止,T2EX 通路仍
								旧允许
1	1	Х	1	Х	Χ	X		不推荐使用

工作模式 0: 16 位捕获

在捕获方式中,T2CON的 EXEN2 位有两个选项。

如果 EXEN2 = 0,定时器 2 作为 16 位定时器或计数器,如果 ET2 被允许的话,定时器 2 能设置 TF2 溢出产生一个中断。

如果 EXEN2 = 1,定时器 2 执行相同操作,但是在外部输入 T2EX 上的下降沿也能引起在 TH2 和 TL2 中的当前值分别被捕获到 RCAP2H 和 RCAP2L 中,此外,在 T2EX 上的下降沿也能引起在 T2CON 中的 EXF2 被设置。如果 ET2 被允许,EXF2 位也像 TF2 一样也产生一个中断。

模式 0:16 位捕获

工作模式 1:16 位自动重载定时器

在 16 位自动重载方式下,定時器 2 可以被选为递增计数或递减计数。这个功能通过 T2MOD 中的 DCEN 位 (递减计数允许)选择。系统复位后,DCEN 位复位值为 0,定时器 2 默认递增计数。当 DCEN 置 1 时,定时器 2 递增计数或递减计数取决于 T2EX 引脚上的电平。

当 DCEN = 0,通过在 T2CON 中的 EXEN2 位选择两个选项。

如果 EXEN2 = 0,定时器 2 递增到 0xFFFFH,在溢出后置起 TF2 位,同时定时器自动将用户软件写好的寄存器 RCAP2H 和 RCAP2L 的 16 位值装入 TH2 和 TL2 寄存器。

Page 48 of 101 V0.6 http://www.socmcu.com

如果 EXEN2 = 1, 溢出或在外部输入 T2EX 上的下降沿都能触发一个 16 位重载, 置起 EXF2 位。如果 ET2 被使能,TF2和EXF2位都能产生一个中断。

模式 1: 16 位自动重载 DCEN = 0

设置 DCEN 位允许定时器 2 递增计数或递减计数。当 DCEN = 1 时,T2EX 引脚控制计数的方向,而 EXEN2 控制无效。

T2EX 置 1 可使定时器 2 递增计数。定时器向 0xFFFFH 溢出,然后设置 TF2 位。溢出也能分别引起 RCAP2H 和 RCAP2L 上的 16 位值重载入定时器寄存器。

T2EX 置 0 可使定时器 2 递减计数。当 TH2 和 TL2 的值等于 RCAP2H 和 RCAP2L 的值时,定时器溢出。置 起 TF2 位,同时 0xFFFFH 重载入定时器寄存器。

无论定时器 2 溢出与否, EXF2 位都被用作结果的第 17 位。在此工作方式下, EXF2 不作为中断标志。

模式 1: 16 位自动重载 DCEN = 1

工作模式 2: 波特率发生器

通设置 T2CON 寄存器中的 TCLK 和/或 RCLK 选择定时器 2 作为波特率发生器。接收器和发送器的波特率可 以不同。如果定时器 2 作为接收器或发送器,则定时器 1 相应的作为另一种的波特率发生器

设置 T2CON 寄存器中的 TCLK 和/或 RCLK 使定时器 2 进入波特率发生器方式,该方式与自动重载方式相似 定时器 2 的溢出会使 RCAP2H 和 RCAP2L 寄存器中的值重载入定时器 2 计数,但不会产生中断

如果 EXEN2 被置 1,在 T2EX 脚上的下降沿会置起 EXF2,但不会引起重载。因此当定时器 2 作为波特率发 送器时,T2EX可作为一个额外的外部中断

在 UARTO 方式 1 和 3 中的波特率由定时器 2 的溢出率根据下列方程式决定:

fsys BaudRate = $\frac{\text{tsys}}{\text{[RCAP2H,RCAP2L]}}$; (注意: [RCAP2H,RCAP2L] 必须大于 0x0010)

Page 49 of 101 V0.6

定时器 2 作为波特率发生器的原理图如下:

模式 2: 波特率发生器

工作模式 3: 可编程时钟输出

在这种方式中,T2(P0.5)可以编程为输出 50%的占空比时钟周期: 当 $C/\overline{T2}=0$; T2OE=1,使能定时器 2 作为时钟发生器

在这种方式中,T2输出占空比为50%的时钟

Colck Out Frequency =
$$\frac{\text{fn2}}{(65536-[\text{RCAP2H,RCAP2L}])\times 4}$$
;

其中, fn2 为定时器 2 时钟频率:

$$fn2 = \frac{fsys}{12}$$
; T2FD = 0

$$fn2 = fsys; T2FD = 1$$

定时器 2 溢出不产生中断, T2 端口作时钟输出。

模式 3: 可编程时钟输出

注意:

- 1. TF2 和 EXF2 都能引起定时器 2 的中断请求,两者有相同的向量地址;
- 2. 当事件发生时或其它任何时间都能由软件设置 TF2 和 EXF2 为 1,只有软件以及硬件复位才能使之清 0;
- 3. 当 EA = 1 且 ET2 = 1 时,设置 TF2 或 EXF2 为 1 能引起定时器 2 中断;
- 4. 当定时器 2 作为波特率发生器时,写入 TH2/TL2 或 RCAP2H/RCAP2L 会影响波特率的准确性,引起通信出错。

Page 51 of 101

12 乘除法器

SC92F754X 提供了 1 个 16 位的乘除法器,由扩展累加器 EXA0~EXA3、扩展 B 寄存器 EXB 和运算控制寄存器 OPERCON 组成。可取代软件进行 16 位×16 位乘法运算和 32 位/16 位除法运算。

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值	
EXA0	E9H	扩展累加器 0		EXA [7:0]								
EXA1	EAH	扩展累加器 1				EXA	[15:8]				0000000b	
EXA2	EBH	扩展累加器 2				EXA [23:16]				0000000b	
EXA3	ECH	扩展累加器 3				EXA [31:24]				0000000b	
EXBL	EDH	扩展B寄存器L		EXB [7:0]								
EXBH	EEH	扩展 B 寄存器 H				EXB	[15:8]				0000000b	

OPERCON (EFH) 运算控制寄存器(读/写)

			• ,					
位编号	7	6	5	4	3	2	1	0
符号	OPERS	MD	-	-	-	-	-	CHKSUMS
读/写	读/写	读/写	-	-	-	-	-	读/写
上电初始值	0	0	х	Х	х	Х	Х	0

位编号	位符号			说明			
7	OPERS	乘除法器运算开始触发控制(Operater Start)					
		对此 bit 写 "1", 开	始做一次乘除	法计算,即设	该位只是乘除港	法器开始计算	
		的触发信号,当该位	立为零这说明	计算已完成。	此位只可写》	人1 有效。	
6	MD	乘除法选择					
		0:乘法运算,被乘	数和乘数的写	写入、乘积的i	卖取如下:		
		字节运算数	字节 3	字节 2	字节1	字节 0	
		被乘数 16bit	-	-	EXA1	EXA0	
		乘数 16bit	ı	-	EXBH	EXBL	
		乘积 32bit	EXA3	EXA2	EXA1	EXA0	
		1 : 除法运算,被除	数和除数的写	三入、商和余	数的读取如下	:	
		字节 运算数	字节3	字节 2	字节1	字节 0	
		被除数 32bit	EXA3	EXA2	EXA1	EXA0	
		除数 16bit	-	-	EXBH	EXBL	
		商 32bit	EXA3	EXA2	EXA1	EXA0	
		余数 16bit	-	-	EXBH	EXBL	

注:

- 1. 在执行运算操作过程中,禁止对 EXA 和 EXB 数据寄存器执行读或写动作。
- 2. 乘除法器运算转换所需时间为 16/fsys。

13 PWM

SC92F754X 提供了最多 8 路共用周期、单独可调占空比的 12 位 PWM。 SC92F754X 的 PWM 具有的功能为:

- ① 12位 PWM 精度;
- ② 8路 PWM 的周期相同,但占空比可单独设置;
- ③ 输出可设置正反向。

SC92F754X的PWM可支持周期及占空比的调整,寄存器PWMCFG、PWMCON控制PWM的状态及周期,各路PWM的打开及输出波形占空比可单独调整。用户在配置时要注意:PWM占空比调节寄存器只可写,不可读。

- 注意: 1. PWM 占空比调节寄存器只可写,不可读;
 - 2. PWM 的时钟源固定为 $f_{HRC} = 16MHz$,不会随着系统时钟的切换而改变。

13.1 PWM 结构框图

SC92F754X PWM 结构框图

13.2 PWM 相关 SFR 寄存器

PWMCFG (D4H) PWM 设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENPWM	PWMIF	PWMC	CK[1:0]		PWMP	D[11:8]	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ENPWM	PWM 模块开关控制(Enable PWM)
		1: 允许 Clock 进到 PWM 单元, PWM 处于工作状态, PWM 输出口的状
		态由寄存器 ENPxy 控制(x=4~5, y=0,3)
		0: PWM 单元停止工作, PWM 计数器清零,全部 PWM 输出口设置为
		GPIO 状态
6	PWMIF	PWM 中断请求标志位(PWM Interrupt Flag)
		当 PWM 计数器溢出时(也就是说: 数到超过 PWMPD 时), 此位会被硬
		件自动设定成 1。如果此时 IE1[1] (EPWM) 也是被设定成 1, PWM 的
		中断产生。
		注:在 PWM 中断发生后,硬件并不会自动清除此位,此位必须由使用者
		的软件负责清除。
5~4	PWMCK[1:0]	PWM 时钟源选择(PWM Clock Source Selector)
		00: fhrc
		01: fhrc/2
		10: fhrc/4
		11: fhrc/8
3~0	PWMPD[11:8]	PWM 的周期设置高四位;
		此数值代表 PWM 输出波形的 (周期 – 1); 也就是说 PWM 输出的周期值
		为 (PWMPD[11:0] + 1) * PWM 时钟;

PWMCON (D3H) PWM 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				PWMF	PD[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	PWMPD[7:0]	PWM 共用的周期设置低八位; 此数值代表 PWM 输出波形的 (周期 – 1); 也就是说 PWM 输出的周期值 为 (PWMPD[11:0] + 1) * PWM 时钟;

IE1 (A9H) 中断使能寄存器(读/写)

	() / // 24/2 1/4 // (2/4 //)							
位编号	7	6	5	4	3	2	1	0
符号	-	-	ECMP	-	EINT2	EBTM	EPWM	ESSI
读/写	-	-	读/写	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	Х	0	0	0	0

位编号	位符号	说明
1	EPWM	PWM 中断使能控制 0: 关闭 PWM 中断 1: 允许 PWM 计数器溢出时产生中断

Page 54 of 101 V0.6

IP1 (B9H) 中断优先级控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	IPCMP	-	IPINT2	IPBTM	IPPWM	IPSSI
读/写	-	-	读/写	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	Х	0	0	0	0

位编号	位符号	说明			
1	IPPWM	PWM 中断优先权选择			
		0:设定 PWM 的中断优先级是 "低"			
		1:设定 PWM 的中断优先级是 "高"			

PWM 占空比调节客吞哭(写)

PWM 占空比调	节奇仔器(与)					
740H	ENP40	INV40	-	-	PDT40[11:8]		
741H				PDT4	10[7:0]		
742H	ENP41	INV41	-	-	PDT41[11:8]		
743H				PDT4	11[7:0]		
744H	ENP42	INV42	-	-	PDT42[11:8]		
745H				PDT4	12[7:0]		
746H	ENP43	INV43	-	-	PDT43[11:8]		
747H				PDT4	3[7:0]		
748H	ENP50	INV50	-	-	PDT50[11:8]		
749H				PDT5	50[7:0]		
74AH	ENP51	INV51	-		PDT51[11:8]		
74BH				PDT5	51[7:0]		
74CH	ENP52	INV52	-	5.	PDT52[11:8]		
74DH		PDT52[7:0]					
74EH	ENP53	INV53		-	PDT53[11:8]		
74FH		PDT53[7:0]					
×							

注意: PWM 占空比调节寄存器只可写,不可读!

位编号	位符号	说明			
7	ENPxy	Pxy 口 PWM 波形输出选择			
	(x=4,5, y=0~3)	0: Pxy 口 PWM 输出被关闭并作为 GPIO 口 ¹			
		1: 当 ENPWM=1 时,Pxy 作为 PWM 波形输出口			
6	INVxy	Pxy 口 PWM 波形输出反向控制			
	(x=4,5, y=0~3)	1: Pxy 口的 PWM 波形输出反向			
		0: Pxy 口的 PWM 波形输出不反向			
3~0	PDTxy [11:8]	Pxy 口 PWM 波形占空比长度设置;			
	(x=4,5, y=0~3)	Pxy 管脚上的 PWM 波形的高电平宽度 是 (PDTxy [11:0])个 PWM 时钟			

位编号	位符号	说明
7~0	PDTxy [7:0]	Pxy 口 PWM 波形占空比长度设置;
	(x=4,5, y=0~3)	Pxy 管脚上的 PWM 波形的高电平宽度 是 (PDTxy [11:0])个 PWM 时钟

注: 如果 ENPWM 置 1, PWM 模块被打开,但 ENPxy=0, PWM 输出被关闭并作为 GPIO 口。此时 PWM 模块可 以作为一个 12 位 Timer 使用,此时 EPWM(IE1.1)被置 1,PWM 仍然会产生中断。

Page 55 of 101 V0.6

13.3 PWM 波形及用法

各 SFR 参数改变对 PWM 波形影响如下所述:

① 占空比变化特性

当 PWMn 输出波形时,若需改变占空比,可通过改变高电平设置寄存器(PDTxy)的值实现。但需要注意:更改 PDTxy 的值,占空比会即时生效。

② 周期变化特性

周期变化特性图

当 PWM 输出波形时,若需改变周期,可通过改变周期设置寄存器 PWMPD 的值实现。更改 PWMPD 的值, 周期不会立即改变,而是等待本周期结束,在下个周期改变,参考上图所示。

(3) 周期和占空比的关系

周期与占空比关系图

周期和占空比的关系如上图所示。该结果的前提是 PWM 输出反向控制(INVxy)初始为 0,若需得到相反结果,可置 INVxy 为 1。

14 GP I/O

SC92F754X 提供了最多 46 个可控制的双向 GPIO 端口,输入输出控制寄存器用来控制各端口的输入输出状态,当端口作为输入时,每个 I/O 端口带有由 PxPHy 控制的内部上拉电阻。此 46 个 IO 同其他功能复用, 其中 P3 可以通过设置输出 1/4 Vpp 或 1/3 Vpp 的电压,可用来作为 LCD 显示的 COM 驱动。I/O 端口在输出状态下,读到的是端口数据寄存器里的值。

注意:未使用及封装未引出的 IO 口均要设置为强推挽输出模式。

14.1 GPIO 结构图

强推挽输出模式

强推挽输出模式下,能够提供持续的大电流驱动:大于 17mA 的输出高,大于 50mA 的输出低。强推挽输出模式的端口结构示意图如下:

强推挽输出模式

带上拉的输入模式

带上拉的输入模式下,输入口上恒定接一个上拉电阻,仅当输入口上电平被拉低时,才会检测到低电平信号。带上拉的输入模式的端口结构示意图如下:

带上拉的输入模式

高阻输入模式(Input only)

高阻输入模式的端口结构示意图如下所示:

高阻输入模式

14.2 I/O 端口相关寄存器

P0CON (9AH) P0 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P0PH (9BH) P0 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1CON (91H) P1 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1PH (92H) P1 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2CON (A1H) P2 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2PH (A2H) P2 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P3CON (B1H) P3 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P3C7	P3C6	P3C5	P3C4	P3C3	P3C2	P3C1	P3C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P3PH (B2H) P3 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P3H7	P3H6	P3H5	P3H4	P3H3	P3H2	P3H1	P3H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 58 of 101 V0.6

P4CON (C1H) P4 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P4C7	P4C6	P4C5	P4C4	P4C3	P4C2	P4C1	P4C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P4PH (C2H) P4 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P4H7	P4H6	P4H5	P4H4	P4H3	P4H2	P4H1	P4H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P5CON (D9H) P5 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	P5C5	P5C4	P5C3	P5C2	P5C1	P5C0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	0	0	0	0	0

P5PH (DAH) P5 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	P5H5	P5H4	P5H3	P5H2	P5H1	P5H0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	0	0	0	0	0

位编号	位符号	说明
7~0	PxCy	Px 口输入输出控制:
	(x=0~5, y=0~7)	0: Pxy 为输入模式(上电初始值)
		1: Pxy 为强推挽输出模式
7~0	РхНу	Px 口上拉电阻设置,仅在 PxCy=0 时有效:
	(x=0~5, y=0~7)	0: Pxy 为高阻输入模式(上电初始值),上拉电阻关闭;
		1: Pxy 上拉电阻打开

P0 (80H) P0 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1 (90H) P1 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2 (A0H) P2 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 59 of 101 V0.6

P3 (B0H) P3 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P4 (C0H) P4 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P5 (D8H) P5 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	0	0	0	0	0

位编号	位符号	说明
7~0	P0.x	P0 口锁存寄存器数据
	(x=0~7)	
7~0	P1.x	P1 口锁存寄存器数据
	(x=0~7)	
7~0	P2.x	P2 口锁存寄存器数据
	(x=0~7)	
7~0	P3.x	P3 口锁存寄存器数据
	(x=0~7)	
7~0	P4.x	P4 口锁存寄存器数据
	(x=0~7)	
5~0	P5.x	P5 口锁存寄存器数据
	$(x=0\sim5)$	

IOHCON0 (96H) IOH 设置寄存器 0(读/写)

	·, · · · · · · · · · · · · · · · · · ·	~ 11 HH ~ (∞.	4 /					
位编号	7	6	5	4	3	2	1	0
符号	P1H	[1:0]	P1L	[1:0]	P0H	[1:0]	P0L	[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~6	P1H[1:0]	P1 高四位 IOH 设置
		00:设置 P1 高四位 IOH 等级 0(最大);
		01:设置 P1 高四位 IOH 等级 1;
		10: 设置 P1 高四位 IOH 等级 2;
		11: 设置 P1 高四位 IOH 等级 3 (最小);
5~4	P1L[1:0]	P1 低四位 IOH 设置
		00:设置 P1 低四位 IOH 等级 0(最大);
		01:设置 P1 低四位 IOH 等级 1;
		10: 设置 P1 低四位 IOH 等级 2;
		11: 设置 P1 低四位 IOH 等级 3 (最小);
3~2	P0H[1:0]	PO 高四位 IOH 设置
		00: 设置 P0 高四位 IOH 等级 0 (最大);
		01:设置 P0 高四位 IOH 等级 1;
		10: 设置 P0 高四位 IOH 等级 2;

Page 60 of 101 V0.6

		11: 设置 P0 高四位 IOH 等级 3 (最小);
1~0	P0L[1:0]	P0 低四位 IOH 设置
		00: 设置 P0 低四位 IOH 等级 0 (最大);
		01: 设置 P0 低四位 IOH 等级 1;
		10: 设置 P0 低四位 IOH 等级 2;
		11: 设置 P0 低四位 IOH 等级 3 (最小);

IOHCON1 (97H) IOH 设置寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	P3L	[1:0]	P2H	[1:0]	P2L	[1:0]
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	0	0	0	0	0

位编号	位符号	说明
5~4	P3L[1:0]	P3 低四位 IOH 设置
		00:设置 P3 低四位 IOH 等级 0(最大);
		01:设置 P3 低四位 IOH 等级 1;
		10: 设置 P3 低四位 IOH 等级 2;
		11: 设置 P3 低四位 IOH 等级 3 (最小);
3~2	P2H[1:0]	P2 高四位 IOH 设置
		00:设置 P2 高四位 IOH 等级 0(最大);
		01: 设置 P2 高四位 IOH 等级 1;
		10: 设置 P2 高四位 IOH 等级 2;
		11: 设置 P2 高四位 IOH 等级 3 (最小);
1~0	P2L[1:0]	P2 低四位 IOH 设置
		00:设置 P2 低四位 IOH 等级 0(最大);
		01: 设置 P2 低四位 IOH 等级 1;
		10: 设置 P2 低四位 IOH 等级 2;
		11: 设置 P2 低四位 IOH 等级 3 (最小);
7~6	-	保留

Page 61 of 101 V0.6

15 LCD/LED 显示驱动

SC92F754X 内部集成了硬件的 LCD/LED 显示驱动电路,可方便用户实现 LCD 和 LED 的显示驱动。其主要特点如下:

- 1. LCD 和 LED 显示驱动二选一;
- 2. LCD 和 LED 显示驱动共用相关 IO 口和寄存器。

LCD 显示驱动功能如下:

- 1. 4种显示驱动模式可选: 8 X 24、6 X 26、5 X 27、或 4X 28 段;
- 2. 2种偏置方式可选: 1/4 Bias 和 1/3 Bias:
- 3. com 口驱动能力 4 级可选;
- 4. 显示驱动电路可选择内建 128K LRC 或外部 32K 振荡器作为时钟源, 帧频约为 64Hz。

LED 显示驱动功能如下:

- 1. 4 种显示驱动模式可选: 8 X 24、6 X 26、5 X 27、或 4X 28 段;
- 2. seg 口驱动能力 4 级可选;
- 3. 显示驱动电路可选择内建 128K LRC 或外部 32K 振荡器作为时钟源, 帧频约为 64Hz。

15.1 LCD/LED 显示驱动相关寄存器

DDRCON (93H) 显示驱动控制寄存器(读/写)

		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
位编号	7	6	5	4	3	2	1	0	
符号	DDRON	DMOD	DUT	Y[1:0]		VLC	D[3:0]		
读/写	读/写	读/写	读	读/写		读	/写		
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
7	DDRON	LCD/LED 显示驱动使能控制
		0: 显示驱动扫描关闭
		1:显示驱动扫描打开
6	DMOD	LCD/LED 显示驱动模式
		0: LCD 模式;
		1: LED 模式
5~4	DUTY[1:0]	LCD/LED 显示占空比控制
		00: 1/8 占空比,S4~S27 为 segment,C0~C7 为 common;
		01: 1/6 占空比,S2~S27 为 segment,C2~C7 为 common;
		10: 1/5 占空比,S1~S27 为 segment,C3~C7 为 common;
		11: 1/4占空比,S0~S27为segment,C4~C7为common,或S4~S27
		为 segment, C0~C3 为 common
3~0	VLCD[3:0]	LCD 电压调节
		VLCD=V _{DD} *(17+VLCD[3:0])/32

P0VO (9CH) P0 口显示驱动输出寄存器(读/写)

	位编号	7	6	5	4	3	2	1	0
Ī	符号	P07VO	P06VO	P05VO	P04VO	P03VO	P02VO	P01VO	P00VO
Ī	读/写								
	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	P0nVO	打开 P0n 口显示驱动输出
		0: 关闭 P0n 口的显示驱动输出功能
		1: 打开 P0n 口的显示驱动输出功能

Page 62 of 101 V0.6

P1VO (94H) P1 口显示驱动输出寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P17VO	P16VO	P15VO	P14VO	P13VO	P12VO	P11VO	P10VO
读/写								
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	P1nVO	打开 P1n 口显示驱动输出
		0: 关闭 P1n 口的显示驱动输出功能
		1: 打开 P1n 口的显示驱动输出功能

P2VO (A3H) P2 口显示驱动输出寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P27VO	P26VO	P25VO	P24VO	P23VO	P22VO	P21VO	P20VO
读/写								
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	P2nVO	打开 P2n 口显示驱动输出
		0: 关闭 P2n 口的显示驱动输出功能
		1: 打开 P2n 口的显示驱动输出功能

P3VO (B3H) P3 口显示驱动输出寄存器(读/写)

		* 184	121 1					
位编号	7	6	5	4	3	2	1	0
符号	P37VO	P36VO	P35VO	P34VO	P33VO	P32VO	P31VO	P30VO
读/写								
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	P3nVO	打开 P3n 口显示驱动输出
		0: 关闭 P3n 口的显示驱动输出功能
		1: 打开 P3n 口的显示驱动输出功能

OTCON (8FH) 输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SSMC	D[1:0]	-	-	VOIF	RS[1:0]	SCS	BIAS
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	х	х	0	0	0	0

位编号	位符号	说明
3~2	VOIRS[1:0]	LCD 电压输出口分压电阻选择(根据 LCD 屏大小选择适合的驱动)
		00:设定内部分压电阻总电阻值为 100kΩ
		01:设定内部分压电阻总电阻值为 200kΩ
		10:设定内部分压电阻总电阻值为 400kΩ
		11:设定内部分压电阻总电阻值为 800kΩ
		每次 Common 切换时,前 1/16 时间固定选择 100k 电阻,后 15/16 时间
		切换到 VORIS 选择的电阻值
1	SCS	LCD/LED Segment/Common 复用管脚选择
		0: 当设定为 1/4 占空比时,S0~S27 为 segment,C4~C7 为 common
		1:当设定为 1/4 占空比时,S4~S27 为 segment,C0~C3 为 common
0	BIAS	LCD 显示驱动偏置电压设置:

Page 63 of 101 V0.6 http://www.socmcu.com

	0: 1/4 偏置电压;
	1: 1/3 偏置电压

15.2 LCD/LED 显示 RAM 配置

地址	7	6	5	4	3	2	1	0
	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
700H	SEG0							
701H	SEG1							
702H	SEG2							
703H	SEG3							
704H	SEG4							
705H	SEG5							
706H	SEG6							
707H	SEG7							
708H	SEG8							
709H	SEG9							
70AH	SEG10							
70BH	SEG11							
70CH	SEG12							
70DH	SEG13							
70EH	SEG14							
70FH	SEG15							
710H	SEG16							
711H	SEG17							
712H	SEG18							
713H	SEG19							
714H	SEG20							
715H	SEG21							
716H	SEG22							
717H	SEG23							
718H	SEG24							
719H	SEG25							
71AH	SEG26							
71BH	SEG27							

-vss

15.3 LCD 波形

15.3.1 1/3BIAS LCD 波形

1/3 Bias LCD 选通和非选通电压

1/3 Bias LCD 应用中 COM 和 SEG 的波形图

15.3.2 1/4BIAS LCD 波形

1/4 Bias LCD 选通和非选通电压

1/4 Bias LCD 应用中 COM 和 SEG 的波形图

15.4 LED 波形

LED 应用中 COM 和 SEG 的波形图

15.5 LCD/LED 例程

15.5.1 LCD 配置例程

unsigned char xdata LCDRAM[30] _at_ 0x700; unsigned char lcd_addr; unsigned char lcd_data;

DDRCON |= 0x00; //0: LCD 模式 1: LED 模式

//1/4 偏置电压; S4~S27 为 segment, C0~C3 为 common

LCDRAM[lcd_addr] = lcd_data; //向 LCD RAM 写入待显示的值

15.5.2 LED 配置例程

unsigned char xdata LEDRAM[30] _at_ 0x700; unsigned char led_addr; unsigned char led_data;

DDRCON |= 0x4F; //0: LCD 模式 1: LED 模式

//LED 模式; 1/8 占空比

//S4~S27 为 segment, C0~C7 为 common;

DDRCON |= 0x80; //显示驱动扫描打开

IOHCON0 = 0xC0; //设置 P1 高四位 IOH 等级 3 (最小), 其它管脚 IOH 等级 0 (最大)

IOHCON1 = 0x00;

 P0VO = 0xFF;
 // 打开 P0 口的显示驱动输出功能

 P1VO = 0xFF;
 // 打开 P1 口的显示驱动输出功能

 P2VO = 0xFF;
 // 打开 P2 口的显示驱动输出功能

 P3VO = 0xFF;
 // 打开 P3 口的显示驱动输出功能

OTCON = 0x00;

LCDRAM[led_addr] = led_data; //向 LED RAM 写入待显示的值

16 UARTO

SC92F745X支持一个全双工的串行口,可方便用于同其它器件或者设备的连接,例如Wifi模块电路或其它 UART通信接口的驱动芯片等。UARTO的功能及特性如下:

- 1. 三种通讯模式可选:模式 0、模式 1 和模式 3;
- 2. 可选择定时器 1 或定时器 2 作为波特率发生器;
- 3. 发送和接收完成可产生中断 RI/TI,该中断标志需要软件清除。

SCON (98H) 串口控制寄存器(读/写)

(, ,		PP (124 - 4)						
位编号	7	6	5	4	3	2	1	0
符号	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~6	SM0~1	串行通信模式控制位
		00: 模式 0,8 位半双工同步通信模式,在 RX 引脚上收发串行数据。
		TX 引脚用作发送移位时钟。每帧收发 8 位,低位先接收或发送;
		01:模式 1,10 位全双工异步通信,由 1 个起始位,8 个数据位和 1 个
		停止位组成,通信波特率可变;
		10: 保留;
		11:模式 3,11 位全双工异步通信,由 1 个起始位,8 个数据位,一个
		可编程的第9位和1个停止位组成,通信波特率可变。
5	SM2	串行通信模式控制位 2, 此控制位只对模式 2, 3 有效
		0: 每收到一个完整的数据帧就置位 RI 产生中断请求;
		1: 收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI 产生中断请
		求。
4	REN	接收允许控制位
		0: 不允许接收数据;
		1: 允许接收数据。
3	TB8	只对模式 2、3 有效, 为发送数据的第 9 位
2	RB8	只对模式 2、3 有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位

SBUF (99H) 串口数据缓存寄存器(读/写)

<u></u>	>>+ + ->+ 14	* * * * * * * * * * * * * * * * * * * *	<i>,</i>					
位编号	7	6	5	4	3	2	1	0
符号				SBUF	[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	SBUF[7:0]	串口数据缓存寄存器
		SBUF 包含两个寄存器:一个发送移位寄存器和一个接收锁存器,写入 SBUF 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF 将返
		回接收锁存器中的内容。

PCON (87H) 电源管理控制寄存器(只写、*不可读*)

位编号	7	6	5	4	3	2	1	0
符号	SMOD	•	-	-	-	-	STOP	IDL
读/写	只写	-	-	-	-	-	只写	只写
上电初始值	0	Х	Х	Х	Х	Х	0	0

Page 69 of 101 V0.6

位编号	位符号	说明
7	SMOD	波特率倍率设置位,仅在模式 0 (SM0~1 = 00) 有效:
		0: 串行端口在系统时钟的 1/12 下运行
		1: 串行端口在系统时钟的 1/4 下运行

16.1 串口通信的波特率

方式 0 中,波特率可编程为系统时钟的 1/12 或 1/4,由 SMOD(PCON.7)位决定。当 SMOD 为 0 时,串行端口在系统时钟的 1/12 下运行。当 SMOD 为 1 时,串行端口在系统时钟的 1/4 下运行。

在方式1和方式3中,波特率可选择来至定时器1或定时器2的溢出率。

分别置 TCLK(T2CON.4)和 RCLK(T2CON.5)位为 1 来选择定时器 2 作为 TX 和 RX 的波特时钟源(详见定时器章节)。无论 TCLK 还是 RCLK 为逻辑 1,定时器 2 都为波特率发生器方式。如果 TCLK 和 RCLK 为逻辑 0,定时器 1 作为 Tx 和 Rx 的波特时钟源。

方式 1 和方式 3 波特率公式如下所示,其中[TH1、TL1]是定时器 1 的 16 位计数器寄存器, [RCAP2H、RCAP2L]是定时器 2 的 16 位重载寄存器。

1. 用定时器 1 作为波特率发生器,定时器 1 必须停止计数,即 TR1=0:

BaudRate =
$$\frac{\text{fsys}}{\text{[TH1,TL1]}}$$
; (注意: [TH1,TL1] 必须大于 0x0010)

2. 用定时器 2 作为波特率发生器:

BaudRate =
$$\frac{f_{\text{Sys}}}{[\text{RCAP2H,RCAP2L}]}$$
; (注意: [RCAP2H,RCAP2L] 必须大于 0x0010)

17 SPI/TWI/UART 三选一串行接口 SSI

SC92F754X 内部集成了三选一串行接口电路(简称 SSI),可方便 MCU 与不同接口的器件或者设备的连接。 用户可通过配置寄存器 OTCON 的 SSMOD[1:0] 位将 SSI 接口配置为 SPI、TWI 和 UART 中任意一种通信模式。 其特点如下:

- 1. SPI 模式可配置为主模式或从属模式中的一种
- TWI模式通信时只能做从机
- UART模式可工作在模式 1 (10 位全双工异步通信)和模式 3 (11 位全双工异步通信) 具体配置方式如下:

OTCON (8FH) 输出控制寄存器(读/写)

		1 - '-	_	_	_	_	_	_
位编号	7	6	5	4	3	2	1	0
符号	SSMC	D[1:0]	-	-	VOIR	RS[1:0]	SCS	BIAS
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	Х	0	0	0	0

位编号	位符号	说明
7~6	SSMOD[1:0]	SSI 通信模式控制位
		00: SSI 关闭
		01: SSI 设置为 SPI 通信模式;
		10: SSI 设置为 TWI 通信模式;
		11: SSI 设置为 UART 通信模式;

17.1 SPI

SSMOD[1:0] = 01, 三选一串行接口 SSI 配置为 SPI 接口。串行外部设备接口(简称 SPI)是一种高速串行通信 接口,允许 MCU 与外围设备(包括其它 MCU)进行全双工,同步串行通信。

17.1.1 SPI 操作相关寄存器

SSCON0 (9DH) SPI 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPEN	-	MSTR	CPOL	CPHA	SPR2	SPR1	SPR0
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明			
7	SPEN	SPI 使能控制			
		0: 关闭 SPI			
		1: 打开 SPI			
5	MSTR	SPI 主从选择			
		0: SPI 为从设备			
		1: SPI 为主设备			
4	CPOL	时钟极性控制位			
		0: SCK 在空闲状态下为低电平			
		1: SCK 在空闲状态下为高电平			
3	СРНА	时钟相位控制位			
		0: SCK 周期的第一沿采集数据			
		1: SCK 周期的第二沿采集数据			
2~0	SPR[2:0]	SPI 时钟速率选择位			
		000: f _{SYS} /4			
		001: fsys /8			
		010: fsys /16			

Page 71 of 101 V0.6 http://www.socmcu.com

		011: fsys /32 100: fsys /64
		101: f _{SYS} /128
		110: fsys /256
		111: fsys /512
6	-	保留

SSCON1 (9EH) SPI 状态寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPIF	WCOL	-	-	TXE	DORD	-	TBIE
读/写	读/写	读/写	-	-	读/写	读/写	-	读/写
上电初始值	0	0	Х	Х	0	0	Х	0

位编号	位符号	说明			
7	SPIF	SPI 数据传送标志位			
		0: 由软件清 0			
		1:表明己完成数据传输,由硬件置 1			
6	WCOL	写入冲突标志位			
		0: 由软件清 0,表明已处理写入冲突			
		1: 由硬件置 1, 表明检测到一个冲突			
3	TXE	发送缓存器空标志			
		0: 发送缓存器不空			
		1: 发送缓存器空,必须由软件清零			
2	DORD	传送方向选择位			
		0: MSB 优先发送			
		1: LSB 优先发送			
0	TBIE	发送缓存器中断允许控制位			
		0: 不允许发送中断			
		1:允许发送中断,当 SPIF=1 时,TBIE=1 将产生 SPI 中断			
5~4,1	-	保留			

SSDAT (9FH) SPI 数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				SPD	[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明		
7~0	SPD[7:0]	SPI 数据缓存寄存器		
		写入 SSDAT 的数据被放置到发送移位寄存器中。		
		读取 SSDAT 时将获得接收移位寄存器的数据。		

17.1.2 信号描述

主输出从输入(MOSI):

该路信号连接主设备和一个从设备。数据通过 MOSI 从主设备串行传送到从设备,主设备输出,从设备输入。

主输入从输出(MISO):

该路信号连接从设备和主设备。数据通过 MISO 从从设备串行传送到主设备,从设备输出,主设备输入。当 SPI 配置为从设备并未被选中,从设备的 MISO 引脚处于高阻状态。

Page 72 of 101 V0.6

SPI 串行时钟(SCK):

SCK 信号用作控制 MOSI 和 MISO 线上输入输出数据的同步移动。每8时钟周期线上传送一个字节。如果从 设备未被选中, SCK 信号被此从设备忽略。

17.1.3 工作模式

SPI 可配置为主模式或从属模式中的一种。SPI 模块的配置和初始化通过设置 SSCON0 寄存器(SPI 控制寄存 器)和 SSCON1(SPI 状态寄存器)来完成。配置完成后,通过设置 SSCON0, SSCON1, SSDAT(SPI 数据寄存器) 来完成数据传送。

在 SPI 通讯期间,数据同步地被串行的移进移出。串行时钟线(SCK)使两条串行数据线(MOSI 和 MISO)上数 据的移动和采样保持同步。如果从设备没有被选中,则不能参与 SPI 总线上的活动。

当 SPI 主设备通过 MOSI 线传送数据到从设备时,从设备通过 MISO 线发送数据到主设备作为响应,这就实 现了在同一时钟下数据发送和接收的同步全双工传输。发送移位寄存器和接收移位寄存器使用相同的特殊功能器 地址,对 SPI 数据寄存器 SSDAT 进行写操作将写入发送移位寄存器,对 SSDAT 寄存器进行读操作将获得接收 移位寄存器的数据。

有些设备的SPI接口会引出SS脚(从设备选择引脚,低有效),与SC92F754X的SPI通信时, SPI总线上其 它设备的SS脚的连接方式需根据不同的通信模式进行连接。下表列出了SC92F754X的SPI不同通信模式下,SPI 总线上其它设备SS脚的连接方式:

SC92F754X SPI	SPI 总线上其它设备	模式	从机的 SS (从设备选择引脚)
主模式	从模式	一主一从	拉低
		一主多从	SC92F754X 引出多根 I/O,分别接至从 机的 SS 脚。在数据传送之前,从设备
			的 SS 引脚必须被置低
从模式	主模式	一主一从	拉高

主模式

模式启动:

SPI 主设备控制 SPI 总线上所有数据传送的启动。当 SSCON0 寄存器中的 MSTR 位置 1 时, SPI 在主模式 下运行, 只有一个主设备可以启动传送。

发送:

在 SPI 主模式下,写一个字节数据到 SPI 数据寄存器 SSDAT,数据将会写入发送移位缓冲器。如果发送移 位寄存器已经存在一个数据,那么主 SPI 产生一个 WCOL 信号以表明写入太快。但是在发送移位寄存器中 的数据不会受到影响,发送也不会中断。另外如果发送移位寄存器为空,那么主设备立即按照 SCK 上的 SPI 时钟频率串行地移出发送移位寄存器中的数据到 MOSI 线上。当传送完毕,SSCON1 寄存器中的 SPIF 位被 置 1。如果 SPI 中断被允许,当 SPIF 位置 1 时,也会产生一个中断。

接收:

当主设备通过 MOSI 线传送数据给从设备时,相对应的从设备同时也通过 MISO 线将其发送移位寄存器的内 容传送给主设备的接收移位寄存器,实现全双工操作。因此,SPIF标志位置1即表示传送完成也表示接收数 据完毕。从设备接收的数据按照 MSB 或 LSB 优先的传送方向存入主设备的接收移位寄存器。当一个字节的 数据完全被移入接收寄存器时, 处理器可以通过读 SSDAT 寄存器获得该数据。

从模式

模式启动:

当 SSCONO 寄存器中的 MSTR 位清 0, SPI 在从模式下运行。

发送与接收:

从属模式下,按照主设备控制的 SCK 信号,数据通过 MOSI 引脚移入,MISO 引脚移出。一个位计数器记录 SCK的边沿数, 当接收移位寄存器移入 8 位数据(一个字节)同时发送移位寄存器移出 8 位数据(一个字节), SPIF 标志位被置 1。数据可以通过读取 SSDAT 寄存器获得。如果 SPI 中断被允许,当 SPIF 置 1 时,也会 产生一个中断。此时接收移位寄存器保持原有数据并且 SPIF 位置 1,这样 SPI 从设备将不会接收任何数据 直到 SPIF 清 0。SPI 从设备必须在主设备开始一次新的数据传送之前将要传送的数据写入发送移位寄存器。 如果在开始发送之前未写入数据,从设备将传送"0x00"字节给主设备。如果写 SSDAT 操作发生在传送过程 中,那么 SPI 从设备的 WCOL 标志位置 1,即如果传送移位寄存器已经含有数据,SPI 从设备的 WCOL 位 置 1,表示写 SSDAT 冲突。但是移位寄存器的数据不受影响,传送也不会被中断。

Page 73 of 101 V0.6

17.1.4 传送形式

通过软件设置 SSCON0 寄存器的 CPOL 位和 CPHA 位,用户可以选择 SPI 时钟极性和相位的四种组合方式。 CPOL 位定义时钟的极性,即空闲时的电平状态,它对 SPI 传输格式影响不大。 CPHA 位定义时钟的相位,即定义允许数据采样移位的时钟边沿。在主从通讯的两个设备中,时钟极性相位的设置应一致。

当 CPHA = 0, SCK 的第一个沿捕获数据,从设备必须在 SCK 的第一个沿之前将数据准备好。

CPHA = 0 数据传输图

当 CPHA = 1, 主设备在 SCK 的第一个沿将数据输出到 MOSI 线上,从设备把 SCK 的第一个沿作为开始发送信号,SCK 的第二沿开始捕获数据,因此用户必须在第一个 SCK 的两个沿内完成写 SSDAT 的操作。这种数据传输形式是一个主设备一个从设备之间通信的首选形式。

CPHA = 1 数据传输图

17.1.5 出错检测

在发送数据序列期间写入 SSDAT 寄存器会引起写冲突,SSCON1 寄存器中的 WCOL 位置 1。WCOL 位置 1不会引起中断,发送也不会中止。WCOL 位需由软件清 0。

Page 74 of 101

V0.6

17.2 TWI

SSMOD[1:0] = 10, 三选一串行接口 SSI 配置为 TWI 接口。SC92F754X 在 TWI 通信时只能做从机。

SSCON0 (9DH) TWI 控制寄存器(读/写)

	<u>, , , , , , , , , , , , , , , , , , , </u>	14 101 (121: 4)						
位编号	7	6	5	4	3	2	1	0
符号	TWEN	TWIF	-	GCA	AA	;	STATE[2:0]	
读/写	读/写	读/写	-	读	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	0	0	0	0	0

位编号	位符号	说明
7	TWEN	TWI 使能控制
		0: 关闭 TWI
		1: 打开 TWI
6	TWIF	TWI中断标志位
		0: 由软件清零
		1: 在下列条件下,中断标志位由硬件置 1
		①第一帧地址匹配成功
		②成功接收或发送8位数据
		③重新启动
		④ 从机收到停止信号
4	GCA	通用地址响应标志位
		0: 非响应通用地址
		1: 当 GC 置 1, 同时通用地址匹配时该位由硬件置 1, 并自动清零
3	AA	接收使能位
		0: 不允许接收主机发送的信息
2~0	CTATE(2.01	1: 允许接收主机发送的信息
2~0	STATE[2:0]	状态机状态标志位 000: 从机处于空闲状态,等待 TWEN 置 1, 检测 TWI 启动信号。当从
		机接收到停止条件后跳会转到此状态
		001: 从机正在接收第一帧地址和读写位(第8位为读写位,1为读,0
		为写)。从机接收到起始条件后会跳转到此状态
		010: 从机接收数据状态
		011: 从机发送数据状态
		100: 在从机发送数据状态中,当主机回 UACK (应答位为高电平) 时
		跳转到此状态,等待重新启动信号或停止信号。
		101: 从机处于发送状态时,将 AA 写 0 会进入此状态,等待重新启动信
		号或停止信号。
5	-	保留

SSCON1 (9EH) TWI 地址寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				TWA[6:0]				GC
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~1	TWA[6:0]	TWI 地址寄存器
0	GC	TWI 通用地址使能

Page 75 of 101 V0.6

SSDAT (9FH) TWI 数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				TWDA	T[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	TWDAT[7:0]	TWI 数据缓存寄存器

17.2.1 信号描述

TWI 时钟信号线 (SCL)

该时钟信号由主机发出,连接到所有的从机。每9个时钟周期传送一个字节数据。前8个周期作数据的传送, 最后一个时钟作为接收方应答时钟。

TWI 数据信号线 (SDA)

SDA 是双向信号线,空闲时应为高电平,由 SDA 线上的上拉电阻拉高。

17.2.2 工作模式

SC92F754X的TWI通信只有从机模式:

模式启动:

当 TWI 使能标志位打开(TWEN = 1),同时接收到主机发送的启动信号时,模式启动。

从机从空闲模式(STATE[2:0] = 000)进入接收第一帧地址(STATE[2:0] = 001)状态,等待主机的第一 帧数据。第一帧数据由主机发送,包括了7位地址位和1位读写位,TWI总线上所有从机都会收到主机的第 一帧数据。主机发送完第一帧数据后释放 SDA 信号线。若主机所发地址与某一从机自身地址寄存器中的值相 同,说明该从机被选中,被选中的从机会判断接总线上的第 8 位,即数据读写位(=1,读命令; =0,写命 令),然后占用 SDA 信号线,在 SCL 的第 9 个时钟周期给主机一个低电平的应答信号,之后会释放总线。 从机被选中后,会根据读写位的不同而进入不同的状态:

非通用地址响应,从机接收模式:

如果第一帧接收到的读写位是写(0),则从机进入到从机接收状态(STATE[2:0] = 010)等待接收主机 发送的数据。主机每发送8位,都要释放总线,等待第9个周期从机的应答信号。

- 如果从机的应答信号是低电平, 主机的通信可以有以下三种方式:
 - 1) 继续发送数据;
 - 重新发送启动信号(start),此时从机重新进入接收第一帧地址(STATE[2:0] = 001)状态; 2)
 - 发送停止信号,表示本次传输结束,从机回到空闲状态,等待主机下一次的启动信号。

如果从机应答的是高电平(在接收过程中,从机寄存器中的 AA 值改写为 0),表示当前字节传输 完以后,从机会主动结束本次传输,回到空闲状态(STATE[2:0] = 000),不再接收主机发送的数 据。

Page 76 of 101 V0 6 http://www.socmcu.com

● 非通用地址响应,从机发送模式:

如果第一帧接收到的读写位是读(1),则从机会占用总线,向主机发送数据。每发送8位数据,从机释放总线,等待主机的应答:

1. 如果主机应答的是低电平,则从机继续发送数据。在发送过程中,如果从机寄存器中的 AA 值被改写为 0,则传输完当前字节从机会主动结束传输并释放总线,等待主机的停止信号或重新启动信号(STATE[2:0] = 101)。

2. 如果主机应答的是高电平,则从机 STATE[2:0] = 100,等待主机的停止信号或重新启动信号。

● 通用地址的响应:

GC=1 时,此时通用地址允许使用。从机进入到接收第一帧地址(STATE[2:0] = 001)状态,接收的第一帧数据中的地址位数据为 0x00,此时所有从机响应主机。主机发送的读写位是必须是写(0),所有从机接收后进入接收数据(STATE[2:0] = 010)状态。主机每发送 8 个数据释放一次 SDA 线,并读取 SDA 线上的状态:

1. 如果有从机应答,则主机的通信可以有以下三种方式:

1) 继续发送数据;

- 2) 重新启动;
- 3) 发送停止信号,结束本次通讯。

2. 如果无从机应答,则 SDA 为空闲状态。

注意:在一主多从模式下使用通用地址时,主机发送的读写位不能为读(1)状态,否则除发送数据的设备, 总线上其它设备均会响应。

17.2.3 操作步骤

三合一串口中 TWI 工的操作步骤如下:

- ① 配置 SSMOD[1:0], 选择 TWI 模式;
- ② 配置 SSCON0 TWI 控制寄存器;
- ③ 配置 SSCON1 TWI 地址寄存器;
- ④ 如果从机接收数据,则等待 SSCON0 中的中断标志位 TWIF 置 1。从机每接收到 8 位数据,中断标志位会被置 1。中断标志位需手动清零;
- ⑤ 如果从机发送数据,则要将待发送的数据写进 TWDAT 中,TWI 会自动将数据发送出去。每发送 8 位,中断标志位 TWIF 就会被置 1。

Page 78 of 101

17.3 UART1

SSMOD[1:0] = 11, 三选一串行接口 SSI 配置为 UART 接口。

SSCON0 (9DH) 串口 1 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SM0	-	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	х	0	0	0	0	0	0

位编号	位符号	说明
7	SM0	串行通信模式控制位
		0:模式1,10位全双工异步通信,由1个起始位,8个数据位和1个停
		止位组成,通信波特率可变;
		1:模式3,11位全双工异步通信,由1个起始位,8个数据位,一个可
		编程的第9位和1个停止位组成,通信波特率可变;
5	SM2	串行通信模式控制位 2, 此控制位只对模式 3 有效
		0: 每收到一个完整的数据帧就置位 RI 产生中断请求;
		1: 收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI 产生中断请
		求。
4	REN	接收允许控制位
		0: 不允许接收数据;
		1: 允许接收数据。
3	TB8	只对模式3有效,为发送数据的第9位
2	RB8	只对模式3有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位
6	-	保留

SSCON1 (9EH) 串口 1 波特率控制寄存器低位(读/写)

位编号	7	6	5	4	3	2	1	0
符号				BAUD1	L [7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

SSCON2(95H) 串口 1 波特率控制寄存器高位(读/写)

	1 62.19	1 122414 14 14		<i>-</i>				
位编号	7	6	5	4	3	2	1	0
符号				BAUD1	H [7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	BAUD1 [15:0]	串口 1 波特率控制
		$BaudRate = \frac{fsys}{[BAUD1H, BAUD1L]}$
		注意: [BAUD1H,BAUD1L] 必须大于 0x0010

SSDAT (9FH) 串口数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		SBUF1[7:0]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 79 of 101 V0.6

	位编号	位符号	说明
-	7~0	SBUF1[7:0]	申口数据缓存寄存器 SBUF1 包含两个寄存器:一个发送移位寄存器和一个接收锁存器,写入 SBUF1 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF1 将返回接收锁存器中的内容。

18 模数转换 ADC

SC92F754X 内建一个 12-bit 1 17 通道的高精度逐次逼近型 ADC , 外部的 16 路 ADC 和 IO 口的其它功能复 用。内部的一路可接至 1/4 VDD,配合内部 2.4V 参考电压用于测量 VDD 电压。

ADC 的参考电压可以有 2 种选择:

- ① VDD 管脚(即直接是内部的 VDD);
- ② 内部 Regulator 输出的参考电压精准的 2.4V(此时 MCU 供电电压 VDD 不可低于 2.9V)。

注意: fadc 直接由内部 fhcc 分频所得,用户在配置时要注意 ADC 的时钟频率 fadc 不可大于系统时钟的频率 fsys, 否则会引起 ADC 转换结果异常!

18.1 ADC 相关寄存器

ADCCON (ADH) ADC 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ADCEN	ADCS	EOC/ADCIF	ADCIS[4:0]				
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	n

位编号	位符号	说明
7	ADCEN	启动 ADC 的电源
		0: 关闭 ADC 模块电源
		1: 开启 ADC 模块电源
6	ADCS	ADC 开始触发控制(ADC Start)
		对此 bit 写 "1", 开始做一次 ADC 的转换,即该位只是 ADC 转换的触发
		信号。此位只可写入1有效。
5	EOC /ADCIF	转换完成/ADC 中断请求标志(End Of Conversion / ADC Interrupt Flag)
		0: 转换尚未完成
		1: ADC 转换完成。需用户软件清除
		ADC 转换完成标志 EOC: 当使用者设定 ADCS 开始转换后, 此位会被硬
		件自动清除为 0; 当转换完成后,此位会被硬件自动置为 1;
		ADC 中断请求标志 ADCIF:
		此位同时也当作是 ADC 中断的中断请求标志,如果用户使能 ADC 中
		断, 那么在 ADC 的 中断 发生后, 用户必须用软件清除此位。
4~0	ADCIS[4:0]	ADC 输入通道选择(ADC Input Selector)
		00000: 选用 AINO 为 ADC 的输入
		00001: 选用 AIN1 为 ADC 的输入
		00010: 选用 AIN2 为 ADC 的输入
		00011: 选用 AIN3 为 ADC 的输入
		00100: 选用 AIN4 为 ADC 的输入
		00101: 选用 AIN5 为 ADC 的输入
		00110: 选用 AIN6 为 ADC 的输入
		00111: 选用 AIN7 为 ADC 的输入
		01000: 选用 AIN8 为 ADC 的输入
		01001: 选用 AIN9 为 ADC 的输入 01010: 选用 AIN10 为 ADC 的输入
		01010: 远用 AIN10 为 ADC 的输入
		01100: 选用 AIN12 为 ADC 的输入
		01100: 远用 AIN12 为 ADC 的输入
		01101: 远用 AIN13 为 ADC 的输入
		01110: 远用 AIN14 为 ADC 的输入
		10000~11110: 保留
		10000~11110: 床宙 11111: ADC 输入为 1/4V _{DD} , 可用于测量电源电压
		11111: 万00 抽八八 1/4 100, 引用 1 微里电源电压

Page 81 of 101 V0.6

ADCCFG2 (AAH) ADC 设置寄存器 2(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	LOWSP	ADCC	K[1:0]
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	0	0	0

位编号	位符号	说明
2	LOWSP	ADC 采样时钟频率选择(ADC Sampling Clocks Selector)
		0: 设定 ADC 采样时间为 6 个 ADC 采样时钟周期
		1: 设定 ADC 采样时间为 36 个 ADC 采样时钟周期
		LOWSP 控制的是 ADC 的采样时钟频率,ADC 的转换时钟频率由
		ADCCK[1:0]控制,不受 LOWSP 位的影响
		ADC 需经历 6 或 36 个 ADC 采样时钟加上 14 个 ADC 转换时钟的时间才
		能完成从采样到转换的整个过程,因此在实际使用中,ADC 从采样到完
		成转换的总时间计算如下:
		LOWSP=0: T _{ADC1} =(6+14)/f _{ADC} ;
		LOWSP=1: T _{ADC2} =(36+14)/f _{ADC}
1~0	ADCCK[1:0]	ADC 采样时钟频率选择(ADC Sampling Clocks Selector)
		01:设定 ADC 的时钟 频率 fadc 为 fhrc/12;
		10: 设定 ADC 的时钟 频率 f _{ADC} 为 f _{HRC} /6;
		其它:保留
7~3	-	保留

ADCCFG0 (ABH) ADC 设置寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EAIN7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0
读/写								
上电初始值	0	0	0	0	0	0	0	0

ADCCFG1 (ACH) ADC 设置寄存器 1(读/写)

		_ + /+ //// (//						
位编号	7	6	5	4	3	2	1	0
符号	EAIN15	EAIN14	EAIN13	EAIN12	EAIN11	EAIN10	EAIN9	EAIN8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
0	EAINx	ADC 端口设置寄存器
	(x=0~15)	0: 设定 AINx 为 IO 口
		1:设定 AINx 为 ADC 输入,并自动将上拉电阻移除。

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	-	-	-	IAPS	8[1:0]	-	-
读/写	读/写	-	-	-	读/写	读/写	-	-
上电初始值	n	Х	Х	Х	n	n	Х	Х

位编号	位符号	说明
7	VREFS	参考电压选择(初始值从 Code Option 调入,用户可修改设置) 0: 设定 ADC 的 VREF 为 VDD
		1: 设定 ADC 的 VREF 为 内部准确的 2.4V

Page 82 of 101 V0.6 http://www.socmcu.com

ADCVL (AEH) ADC 转换数值寄存器(低位)(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ADCV[3:0]				-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	х	х	х

ADCVH (AFH) ADC 转换数值寄存器(高位)(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		ADCV[11:4]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
11~4	ADCV[11:4]	ADC 转换值的高 8 位数值
3~0	ADCV[3:0]	ADC 转换值的低 4 位数值

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
6	EADC	ADC 中断使能控制
		0: 不允许 EOC/ADCIF 产生中断
		1: 允许 EOC/ADCIF 产生 中断

IP (B8H) 中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6	IPADC	ADC 中断优先权选择
		0:设定 ADC 的中断优先级是"低"
		1: 设定 ADC 的中断优先级是 "高"

18.2 ADC 转换步骤

用户实际进行 ADC 转换所需要的操作步骤如下:

- ① 设定 ADC 输入管脚; (设定 AINx 对应的位为 ADC 输入,通常 ADC 管脚会预先固定);
- ② 设定 ADC 参考电压 Vref,设定 ADC 转换所用的频率;
- ③ 开启 ADC 模块电源;
- ④ 选择 ADC 输入通道; (设置 ADCIS 位,选择 ADC 输入通道);
- ⑤ 启动 ADCS, 转换开始;
- (6) 等待 EOC/ADCIF=1,如果 ADC 中断使能,则 ADC 中断会产生,用户需要软件清 0 EOC/ADCIF 标志;
- ⑦ 从 ADCVH、ADCVL 获得 12 位数据,先高位后低位,一次转换完成;
- ⑧ 如不换输入通道,则重复 5~7 的步骤,进行下一次转换。

注意:在设定 IE[6](EADC)前,使用者最好用软件先清除 EOC/ADCIF,并且在 ADC 中断服务程序执行完时,也清除该 EOC/ADCIF,以避免不断的产生 ADC 中断。

Page 83 of 101 V0.6 http://www.socmcu.com

19 模拟比较器

SC92F754X 内建一个模拟比较器,可用于报警器电路、电源电压监测电路、过零检测电路等。

此比较器具有四个模拟信号正输入端: CMP0~3, 可通过 CMPIS [1:0]切换选择。负输入端电压可通过 CMPRF[3:0]切换为 CMPR 脚上的外部电压或内部的 16 档比较电压中的一种。

通过 CMPIM[1:0]可以方便的设定比较器的中断模式,当 CMPIM[1:0]所设定的中断条件发生时比较器中断标 志 CMPIF 会被置 1,该中断标志需要软件清除。

19.1 模拟比较器结构框图

模拟比较器结构框图

CMPCON (B7H) 模拟比较器控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	CMPEN	CMPIF	CMPSTA) -				
读/写	读/写	读/写	读/写	-	读/写	读/写	读/写	读/写
上电初始值	0	0	0	Х	0	0	0	0

位编号	位符号	说明
7	CMPEN	模拟比较器使能控制位
		0: 关闭模拟比较器;
		1: 使能模拟比较器
6	CMPIF	模拟比较器中断标志位
		0: 比较器中断未被触发;
		1: 当比较器满足中断触发条件时,此位会被硬件自动设定成 1。如果此
		时 IE1[5] (ECMP) 也是被设定成 1,比较器中断产生。在比较器中断发
		生后,硬件并不会自动清除此位,此位必须由使用者的软件负责清除。
5	CMPSTA	模拟比较器输出状态
		0: 比较器正端电压小于负端电压
		1: 比较器正端电压大于负端电压
3~0	CMPRF[3:0]	模拟比较器负端比较电压选择:
		0000:选用 CMPR 为模拟比较器的比较电压;
		0001:选用 1/16V _{DD} 为模拟比较器的比较电压;
		0010: 选用 2/16V _{DD} 为模拟比较器的比较电压;
		0011: 选用 3/16V _{DD} 为模拟比较器的比较电压;
		0100: 选用 4/16V _{DD} 为模拟比较器的比较电压;
		0101:选用 5/16V _{DD} 为模拟比较器的比较电压;
		0110: 选用 6/16V _{DD} 为模拟比较器的比较电压;
		0111:选用 7/16V _{DD} 为模拟比较器的比较电压;

Page 84 of 101 V0.6

		1000: 选用 8/16V _{DD} 为模拟比较器的比较电压;
		1001:选用 9/16Vpp 为模拟比较器的比较电压;
		1010:选用 10/16VDD 为模拟比较器的比较电压;
		1011:选用 11/16Vpp 为模拟比较器的比较电压;
		1100 :选用 12/16V DD 为模拟比较器的比较电压;
		1101:选用 13/16Vpp 为模拟比较器的比较电压;
		1110:选用 14/16Vpp 为模拟比较器的比较电压;
		1111 :选用 15/16V DD 为模拟比较器的比较电压;
4	-	保留

CMPCFG (B6H) 模拟比较器设置寄存器 (读/写)

	() 5 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
位编号	7	6	5	4	3	2	1	0	
符号	-	-	-	-	CMPI	CMPIM[1:0]		CMPIS[1:0]	
读/写	-	-	-	-	读/写	读/写	读/写	读/写	
上电初始值	Х	Х	Х	Х	0	0	0	0	

位编号	位符号	说明
3~2	CMPIM[1:0]	模拟比较器中断模式选择:
		00: 不产生中断
		01: 上升沿中断: IN+从小于 IN- 到大于 IN- 后会产生中断;
		10:下降沿中断: IN+从大于 IN- 到小于 IN- 后会产生中断;
		11: 双沿中断: IN+从小于 IN- 到大于 IN- , 或 IN+从大于 IN- 到小于 IN-
		后均会产生中断;
1~0	CMPIS[1:0]	模拟比较器正端输入通道选择:
		00: 选用 CMP0 为模拟比较器正端的输入;
		01: 选用 CMP1 为模拟比较器正端的输入;
		10: 选用 CMP2 为模拟比较器正端的输入;
		11: 选用 CMP3 为模拟比较器正端的输入;
7~4	-	保留

Page 85 of 101 V0.6

20 EEPROM 及 IAP 操作

SC92F754X的IAP操作空间范围有两种模式可选:

EEPROM 及 IAP 操作模式如下:

- 1. 内部最高位地址的 128 bytes EEPROM 可以作为数据存储使用;
- 2. IC 整个 ROM 空间的 32 Kbytes 范围及 128 bytes EEPROM 内都可进行 IAP 操作,主要用作远程程序更

IAP 操作空间选择作为 Code Option 在编程器写入 IC 时选择:

OP_CTM1(C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	-	-	-	IAPS[1:0]		-	-
读/写	读/写	-	-	-	读/写	读/写	-	-
上电初始值	n	х	х	х	n	n	х	Х

位编号	位符号	说明
3~2	IAPS[1:0]	IAP 空间范围选择
		00: Code 区域禁止 IAP 操作,仅 EEPROM 区域可作为数据存储使用
		01:最后 0.5K Code 区域允许 IAP 操作(7E00H~7FFFH)
		10: 最后 1K Code 区域允许 IAP 操作(7C00H~7FFFH)
		11:全部 Code 区域允许 IAP 操作(0000H~7FFFH)

20.1 EEPROM / IAP 操作相关寄存器

EEPROM / IAP 操作相关寄存器说明:

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
IAPKEY	F1H	IAP 保护寄存器		IAPKEY[7:0]				0000000b			
IAPADL	F2H	IAP写入地址低位寄存器		ベン		IAPA	DR[7:0]				0000000b
IAPADH	F3H	IAP写入地址高位寄存器	-			I <i>P</i>	APADR[14:	:8]			x0000000b
IAPADE	F4H	IAP写入扩展地址寄存器				IAPAI	DER[7:0]				0000000b
IAPDAT	F5H	IAP 数据寄存器				IAPD	OAT[7:0]				00000000b
IAPCTL	F6H	IAP 控制寄存器	_3	-	-	-	PAYTI [1:	_	CME	D[1:0]	xxxx0000b

IAPKEY (F1H) IAP 保护寄存器(读/写)

	P1.W . 4	14 101 (121: 4)						
位编号	7	6	5	4	3	2	1	0
符号				IAPKE	Y[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPKEY[7:0]	打开 EEPROM / IAP 功能及操作时限设置 写入一个非零值 n,代表: ① 打开 IAP 功能; ② n 个系统时钟后如果接收不到 IAP 写入命令,则 IAP 功能被重新关
		闭。

IAPADL (F2H) IAP 写入地址低位寄存器(读/写)

·· ·· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	TE 144 TE 14 13 14	4 (** * * *)					
位编号	7	6	5	4	3	2	1	0
符号				IAPAD	R[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 86 of 101 V0.6

位编号	位符号	说明
7~0	IAPADR[7:0]	EEPROM / IAP 写入地址的低 8 位

IAPADH (F3H) IAP 写入地址高位寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-			L	APADR[14	:8]		
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6~0	IAPADR[14:8]	EEPROM / IAP 写入地址的高 7 位
7	-	保留

IAPADE (F4H) IAP 写入扩展地址寄存器(读/写)

1) th H	_					_		_
位编号	7	6	5	4	3	2	1	0
符号				IAPAD	ER[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPADER[7:0]	IAP 扩展地址:
		0x00: MOVC 和 IAP 烧写都针对 Code 进行
		0x01:针对用户 ID 区域进行读操作,不可进行写操作
		0x02: MOVC 和 IAP 烧写都针对 EEPROM 进行
		其它:保留

IAPDAT (F5H) IAP 数据寄存器(读/写)

, ,		,, ,,, ,,,						
位编号	7	6	5	4	3	2	1	0
符号			4/1)-	IAPDA	AT[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPDAT	EEPROM / IAP 写入的数据

IAPCTL (F6H) IAP 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号	-	-	-	-	PAYTIMES[1:0]		CM	CMD[1:0]	
读/写	-	-	-	-	读/写	读/写	读/写	读/写	
上电初始值	Х	Х	Х	Х	0	0	0	0	

位编号	位符号	说明
3~2	PAYTIMES[1:0]	EEPROM / IAP 写入操作时,CPU Hold Time 时间长度设定
		00:设定 CPU HOLD TIME 6mS@16/8/4/1.33MHz MHz
		01:设定 CPU HOLD TIME 3mS@16/8/4/1.33MHz MHz
		10:设定 CPU HOLD TIME 1.5mS@16/8/4/1.33MHz MHz
		11: 保留
		说明: CPU Hold 的是 PC 指针,其他功能模块继续工作;中断标志会被
		保存,并在 Hold 结束后进入中断,但多次的中断只能保留最后一次。
		选择建议: V _{DD} 在 2.7V~5.5V,可选择 10
		V _{DD} 在 2.4V~5.5V,可选择 01 或者 00
1~0	CMD[1:0]	EEPROM / IAP 写入操作命令

Page 87 of 101 V0.6 http://www.socmcu.com

10:写入 其它:保留
注意: EEPROM / IAP 写操作的语句后面务必要加上至少 8 个 NOP 指令,以保证 IAP 操作完成后可正常执行后续的指令!

20.2 EEPROM / IAP 操作流程

SC92F754X 的 EEPROM / IAP 的 写入流程如下:

- ① 写入 IAPADE[7:0], 0x00:选择 Code 区,进行 IAP 操作; 0x02:选择 EEPROM 区,进行 EEPROM 读 写操作;
- ② 写入 IAPDAT[7:0] (准备好 EEPROM / IAP 写入的数据);
- ③ 写入 {IAPADR[14:8], IAPADR[7:0]}(准备好 EEPROM / IAP 操作的目标地址);
- ④ 写入 IAPKEY[7:0] 写入一个非 0 的值 n (打开 EEPROM / IAP 保护,且在 n 个系统时钟内没收到写入命 令 EEPROM / IAP 会被关闭);
- ⑤ 写入 IAPCTL[3:0](设定 CPU Hold 时间,写入 CMD[1:0]为 1、0,CPU Hold 并启动 EEPROM / IAP 写
- ⑥ EEPROM / IAP 写入结束, CPU 继续后续操作。

注意:

- 编程 IC 时,若通过 Code Option 选择了"Code 区域禁止 IAP 操作",则 IAPADE[7:0]=0x00 时(选择 Code 区), IAP 不可操作, 即数据无法写入, 仅可通过 MOVC 指令读取数据。
- 当 IAPADE=0x01 或 0x02 时,MOVC 和写入是针对 EEPROM 或 IFB 区域进行,此时如果有中断产生, 且中断内有 MOVC 操作,会造成 MOVC 的结果错误,导致程序运行异常。为避免这种情况的发生,请 用户在 IAPADE=0X01 或 0X02 操作前务必要关闭总中断(EA=0),操作完成后设置 IAPADE =0X00 再 打开总中断(EA=1)。

20.2.1 128 BYTES 独立 EEPROM 操作例程

#include "intrins.h" unsigned char EE Add; unsigned char EE Data: unsigned char code * POINT =0x0000;

EEPROM 写操作 C 的 Demo 程序:

EA = 0: //关总中断

IAPADE = 0x02;//选择 EEPROM 区域

IAPDAT = EE_Data; //送数据到 EEPROM 数据寄存器

IAPADH = 0x00: //高地址默认写 0x00

IAPADL = EE Add;//写入 EEPROM 目标地址低位值

IAPKEY = 0xF0;//此值可根据实际调整;需保证本条指令执行后到对 IAPCTL 赋值前,

//时间间隔需小于 240 (0xf0) 个系统时钟, 否则 IAP 功能关闭;

// 开启中断时要特别注意

IAPCTL = 0x0A;//执行 EEPROM 写入操作, 1.5ms@16/8/4/1.33MHz;

//等待(至少需要 8 个_nop_()) _nop_();

nop();

nop();

nop();

nop(); _nop_();

nop(); _nop_();

IAPADE = 0x00;//返回 ROM 区域

//开总中断 EA = 1;

Page 88 of 101 V0 6

EEPROM 读操作 C 的 Demo 程序:

EA = 0; //关总中断

IAPADE = 0x02;//选择 EEPROM 区域

EE Data = *(POINT +EE Add); //读取 IAP Add 的值到 IAP Data IAPADE = 0x00; //返回 ROM 区域, 防止 MOVC 操作到 EEPROM

//开总中断 EA = 1;

20.2.2 32 KBYTES CODE 区域 IAP 操作例程

#include "intrins.h" unsigned int IAP_Add; unsigned char IAP Data; unsigned char code * POINT =0x0000;

IAP 写操作 C 的 Demo 程序:

IAPADE = 0x00: //选择 Code 区域

IAPDAT = IAP_Data; //送数据到 IAP 数据寄存器

IAPADH = (unsigned char)((IAP Add >> 8)); //写入 IAP 目标地址高位值 //写入 IAP 目标地址低位值 IAPADL = (unsigned char)IAP_Add;

IAPKEY = 0xF0;//此值可根据实际调整;需保证本条指令执行后到对 IAPCTL 赋值前,

//时间间隔需小于 240 (0xf0) 个系统时钟, 否则 IAP 功能关闭;

// 开启中断时要特别注意

IAPCTL = 0x0A;//执行 IAP 写入操作, 1.5ms@16/8/4/1.33MHz;

//等待(至少需要 8 个_nop_()) _nop_();

nop(); _nop_();

nop();

nop(); _nop_();

nop(); _nop_();

IAP 读操作 C 的 Demo 程序:

IAPADE = 0x00: //选择 Code 区域

IAP_Data = *(POINT+IAP_Add); //读取 IAP_Add 的值到 IAP_Data

注意: 32 Kbytes Code 区域内的 IAP 操作有一定的风险,需要用户在软件中做相应的安全处理措施,如果操 作不当可能会造成用户程序被改写!除非用户必需此功能(比如用于远程程序更新等),不建议用户使用。

21 CHECK SUM 模块

SC92F754X 内建了 1 个 check sum 模块,可用来实时生成程序代码的 16 位 check sum 值,用户可利用此 check sum 和理论值比较,监测程序区的内容是否正确。

注意: check sum 值是整个程序区的数据累加和,即 0000H~7FFDH 地址单元所有的数据。若地址单元中有 用户上次操作后的残留值,会导致 check sum 值与理论值不符。因此,建议用户对整片 code 区域进行擦除或写 0操作后再烧录代码以保证 check sum 值与理论值一致。

21.1 CHECK SUM 校验操作相关寄存器

CHKSUML (FCH) Check Sum 结果寄存器低位(读写)

	<u> </u>	311) G1100K C		1 HI M TY (NY -	7)				
位编号 7 6 5 4 3 2							1	0	
	符号	CHKSUML[7:0]							
读/写 读/写 读/写 读/写 读/写 读/写 读/写						读/写	读/写		
	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	CHKSUML [7:0]	Check Sum 结果寄存器低位

CHKSUMH (FDH) Check Sum 结果寄存器高位(读写)

			14 100 11 4 100 (10)	• /				
位编号	7	6	5	4	3	2	1	0
符号	CHKSUMH[7:0]							
读/写 读/写 读/写 读/写 读/写 读/写 读/写					读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	CHKSUMH [7:0]	Check Sum 结果寄存器高位

OPERCON (EFH) 运算控制客存器(遗写)

OI EIROON (EI										
位编号	7	6	5	4	3	2	1	0		
符号	OPERS	MD	-	-	-	-	-	CHKSUMS		
读/写	读/写	读/写	-	-	-	ı	-	读/写		
上电初始值	0	0	Х	Х	Х	Х	Х	0		

位编号	位符号	说明
0	CHKSUMS	Check sum 运算开始触发控制(Start)
		对此 bit 写 "1", 开始做一次 Check sum 计算。此位只可写入 1 有效。

Page 90 of 101 V0.6

22 电气特性

22.1 极限参数

符号	参数	最小值	最大值	UNIT
VDD/VSS	直流供电电压	-0.3	5.5	V
Voltage ON any Pin	任一管脚输入/输出电压	-0.3	V _{DD} +0.3	V
TA	工作环境温度	-40	85	°C
T _{STG}	储存温度	-55	125	℃

22.2 推荐工作条件

符号	参数	最小值	最大值	UNIT	系统时钟频率
V_{DD}	工作电压	2.9	5.5	V	16MHz
V_{DD}	工作电压	2.4	5.5	V	8/4/1.33MHz
TA	工作环境温度	-40	85	°C	

22.3 直流电气特性

(V_{DD} = 5V, T_A = +25℃,除非另有说明)

符号	参数	最小值。	典型值	最大值	单位	测试条件
电流	•					-
I _{op1}	工作电流		9.5	-	mA	fsys=16MHz
I _{op2}	工作电流		6.5	-	mA	fsys=8MHz
I _{op3}	工作电流		5.2	-	mA	f _{SYS} =4MHz
I _{op4}	工作电流)-	4.3	-	mA	f _{SYS} =1.33MHz
I _{pd1}	待机电流 (Power Down 模式)	-	0.7	1.0	μA	
I _{IDL1}	待机电流 (IDLE 模式)	-	7	-	mA	
Івтм	Base Timer 工作电流	-	6	10	μA	BTMFS[3:0]= 1000 每 4.0 秒产生一个 中断
I _{WDT}	WDT 电流	-	5	7	μA	WDTCKS[2:0]= 000 WDT 溢出时间 500ms
IO 口特性						
V _{IH1}	输入高电压	$0.7V_{DD}$	-	V _{DD} +0.3	V	
V _{IL1}	输入低电压	-0.3	-	0.3V _{DD}	V	
V_{IH2}	输入高电压	0.8V _{DD}	-	V_{DD}	V	施密特触发输入:
V_{IL2}	输入低电压	-0.2	-	0.2V _{DD}	V	RST/tCK/SCK
I _{OL1}	输出低电流	-	27	-	mΑ	V _{Pin} =0.4V
I _{OL2}	输出低电流	-	50	-	mΑ	V _{Pin} =0.8V
Іон1	输出高电流 P3H-P5	-	17	-	mΑ	V _{Pin} =4.3V
І ОН2	输出高电流 P3H-P5	-	8	-	mΑ	V _{Pin} =4.7V
Іонз	输出高电流 P0-P3L	-	17	-	mA	V _{Pin} =4.3V Pxyz=0,I _{OH} 等级 0
	输出高电流 P0-P3L	-	13	-	mA	V _{Pin} =4.3V Pxyz=1,I _{OH} 等级 1

	输出高电流 P0-P3L	_	10	_	mA	V _{Pin} =4.3V
	一 棚 田 向 电 抓 PU-P3L	_	10	-	IIIA	
						Pxyz=2,I _{OH} 等级 2
	输出高电流 P0-P3L	-	5	-	mA	V _{Pin} =4.3V
						Pxyz=3,Ion等级3
I _{OH4}	输出高电流 P0-P3L	-	8	-	mA	V _{Pin} =4.7V
						Pxyz=0,Ioн等级 0
	输出高电流 P0-P3L	-	6	-	mA	V _{Pin} =4.7V
						Pxyz=1,Ion等级 1
	输出高电流 P0-P3L	-	4	-	mA	V _{Pin} =4.7V
						Pxyz=2,I _{OH} 等级 2
	输出高电流 P0-P3L	-	2	-	mA	V _{Pin} =4.7V
						Pxyz=3,I _{OH} 等级 3
R _{PH1}	上拉电阻	-	30	-	kΩ	
做为 ADC 参考电压的内部基准 2.4V						
V _{DD24}	内部基准 2.4V 电压输出	2.37	2.40	2.45	V	T _A =-40~85°C

(V_{DD} = 3.3V, T_A = +25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件	
电流	•						
I _{op5}	工作电流	-	6.5	-	mA	f _{SYS} =16MHz	
I _{op6}	工作电流	-	5	-	mA	f _{SYS} =8MHz	
I _{op7}	工作电流	-	4	-	mA	fsys=4MHz	
I _{op8}	工作电流	-	3.3	-	mA	fsys=1.33MHz	
I _{pd2}	待机电流	- //	0.6	1	uA		
	(Power Down 模式)		-				
I _{IDL2}	待机电流		5	-	mA		
	(IDLE 模式)						
IO 口特性	/ ^						
V _{IH3}	输入高电压	0.7 V _{DD}	-	V _{DD} +0.3	V		
V _{IL3}	输入低电压	-0.3	-	0.3 V _{DD}	V		
V _{IH4}	输入高电压	0.8 V _{DD}	-	V_{DD}	V	施密特触发输入:	
V _{IL4}	输入低电压	-0.2	-	0.2 V _{DD}	V	RST/tCK/SCK	
I _{OL3}	输出低电流	-	25	-	mA	V _{Pin} =0.4V	
I _{OL4}	输出低电流	-	40	-	mA	V _{Pin} =0.8V	
I _{OH5}	输出高电流	-	5	-	mA	V _{Pin} =3.0V	
R _{PH2}	上拉电阻	-	55	-	kΩ		
做为 ADC 参考电质	做为 ADC 参考电压的内部基准 2.4V						
V _{DD24}	内部基准 2.4V 电压输出	2.37	2.40	2.45	V	T _A =-40~85°C	

22.4 交流电气特性

(V_{DD} = 2.4V ~ 5.5V, T_A = 25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
Tosc	外接 32k 振荡器起振时间	ı	1	1	s	外接 32k 晶振
T _{POR}	Power On Reset 时间	-	5	10	ms	
T_PDW	Power Down 模式唤醒时间		1	1.5	ms	
T _{Reset}	复位脉冲宽度	18	-	-	μs	低电平有效
fhrc	RC 振荡稳定性	15.84	16	16.16	MHz	V _{DD} =3.0~5.5V
						T _A =-20~85 °C

Page 92 of 101

22.5 ADC 电气特性

(TA = 25℃,除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
V_{AD}	供电电压	2.4	5.0	5.5	V	
N _R	精度	-	12	-	bit	GND≤V _{AIN} ≤V _{DD}
Vain	ADC 输入电压	GND	-	V_{DD}	V	
RAIN	ADC 输入电阻	1	-		MΩ	V _{IN} =5V
I _{ADC1}	ADC 转换电流 1	-	-	2	mA	ADC 模块打开
						V _{DD} =5V
I _{ADC2}	ADC 转换电流 2	-	-	1.8	mA	ADC 模块打开
						V _{DD} =3.3V
DNL	微分非线性误差	1	±2	1	LSB	
INL	积分非线性误差	-	±2	-	LSB	., -,,
Ez	偏移量误差	-	1	-	LSB	V _{DD} =5V
E _F	满刻度误差	-	35	-	LSB	V _{REF} =5V
E _{AD}	总绝对误差	-	35	-	LSB	
T _{ADC1}	ADC 转换时间 1	-	7.5	-	μs	ADC Clock =
						2.67MHz
						ADC 采样周期 = 6
T _{ADC2}	ADC 转换时间 2	-	15	-	μs	ADC Clock =
						1.33MHz
						ADC 采样周期 = 6

22.6 模拟比较器电气特性

(V_{DD} =5V, T_A = 25℃, 除非另有说明)

			/			
符号	参数	最小值	典型值	最大值	单位	测试条件
V _{СМ}	输入电压范围	0	-	V_{DD}	V	
Vos	偏移电压	7 -	10	30	mV	
V _{HYS}	比较电压回差	-	25	-	mV	
Ісмр	比较器转换电流	-	-	100	μA	V _{DD} =5V
ТсмР	响应时间	-	-	2	μs	

23 订购信息

产品编号	封装	包装
SC92F7547P48R	LQFP48	盘装
SC92F7546P44R	LQFP44	盘装
SC92F7543M28U	SOP28L	管装
SC92F7543X28U	TSSOP28L	管装

24 封装信息

SC92F7547P48R

LQFP48 外形尺寸 单位: 毫米

		mm(毫米)	
符号	上 小		基 十
	最小	标准	最大
Α	1.45	1.55	1.65
A1	0.01		0.21
A2	1.3	1.4	1.5
A3		0.254	
b	0.15	0.20	0.25
b1	0.16	0.22	0.28
С		0.127	
D1	6.85	6.95	7.05
D2	6.9	7.00	7.10
Е	8.8	9.00	9.20
E1	6.85	6.95	7.05
E2	6.9	7.00	7.10
е		0.5	
L	0.43		0.71
L1	0.90	1.0	1.10
R	0.1		0.25

R1	0.1		-
θ	0°		10°
θ1	0°		
У			0.1
Z		0.75	

SC92F7546P44R

LQFP44 外形尺寸 单位: 毫米

符号		mm(毫米)			
71) 5	最小	标准	最大		
Α	1.45	1.55	1.65		
A1	0.015		0.21		
A2	1.3	1.4	1.5		
A3		0.254			
b	0.25	0.30	0.35		
b1	0.26	0.32	0.38		
С		0.127			
D1	9.85	9.95	10.05		
D2	9.9	10.00	10.10		
Е	11.8	12.00	12.20		
E1	9.85	9.95	10.05		
E2	9.9	10.00	10.10		
е		8.0			
L	0.42		0.72		
L1	0.95	1.0	1.15		
R	0.1		0.25		
R1	0.1				
θ	0°		10°		

θ1	0°		-
У			0.1
Z		1.0	

SC92F7543M28U

SOP28L(300mil)外形尺寸 单位: 毫米

/h/r 🖂	mm(毫米)			
符号	最小	标准	最大	
Α	2.465	2.515	2.565	
A 1	0.100	0.150	0.200	
A 2	2.100	2.300	2.500	
b	0.356	0.406	0.456	
С		0.254(BSC)		
D	17.750	17.950	18.150	
E	7.374	7.450	7.574	
HE	10.100	10.300	10.500	
е		1.270(BSC)		
L	0.764	0.864	0.964	
LE	1.303	1.403	1.503	
θ	0°	-	10°	
S	0.745(BSC)			

SC92F7543X28U

TSSOP28L 外形尺寸

单位:毫米

符号		mm(毫米)				
41.2	最小	正常	最大			
Α	-		1.200			
A 1	0.050		0.150			
A 2	0.800	-	1.000			
b	0.190	-	0.300			
С	0.090	-	0.200			
D	9.600	-	9.800			
Е	6.250	-	6.550			
e1	4.300	-	4.500			
е		0.65(BSC)				
L	0.500	-	0.700			
θ	1°	-	7°			
Н		0.25(TYP)				

25 规格更改记录

版本	记录	日期
V0.6	1. C语言例程中 83H 改为 0x83	2018年12月
	2. 更新 TBIE 的 BIT 位描述	
	3. 更新 SPR 的 BIT 位描述	
	4. 更新 BTMFS 的 BIT 位描述	
	5. 更新 Іwbт 的典型值与最大值	
	6. 更新 TWI 章节的图文描述	
	7. 更新 ADC 电气特性参数	
	8. 更新 OP_HRCR 的描述	
	9. 更新首页相关描述	
	10. PWM 章节增加注意事项	
V0.5	1. 修正管脚描述	2018年2月
	2. 电压变化范围改为 3.0~5.5V	
	3. 增加用户 ID 区域说明	
	4. 烧录器增加 SC LINK	
	5. 完善 TWI 时序图	
	6. 电气特性: 删除 IC 工作电流最大值	
	7. 增加外部中断标志位 IE0/IE1 相关描述	
V0.4	寄存器 SPDAT 更正为 SSDAT	2017年12月
	更新 ADC 电气参数	
V0.3	修正 ADC 转换时间	2017年12月
	修正个别书写错误	
V0.2	增加命名规则、封装尺寸信息	2017年11月
V0.1	初版	2017年8月

Page 101 of 101 V0.6