Assignment of Monte-Carlo Methods

Due on: Mar 14, 2022

- 1. Write a program to simulate radioactive decay, using the information that a nucleus undergoes radioactive decay in time Δt with probability $p = \alpha \Delta t$, with $\alpha \Delta t <<1$. You may want to proceed as follows: Consider a system initially having N_0 stable nuclei. How does the number of parent nuclei, N_0 , change in time? Graph the number of remaining nuclei as a function of time for the following cases: $N_0 = 100$, $\alpha = 0.01$ s⁻¹, $\Delta t = 1$ sec; and $N_0 = 5000$, $\alpha = 0.03$ s⁻¹, $\Delta t = 1$ sec. Show the results on both linear and logarithmic scales for times between 0 and 300 secs. In addition, plot the same graphs (the expected curves) given $dN = -N\alpha dt$ i.e., $N(t) = N_0 e^{-\alpha t}$.
- 2. Modify the above program to simulate an experiment that counts the number of decays observed in a time interval, T. Allow the experiment to be repeated and the histogram the distribution of number of decays for the following two cases:
 - a) $N_0 = 500$, $\alpha = 4x10^{-5} \text{ s}^{-1}$, $\Delta t = 10 \text{ sec}$, T=100 sec
 - b) N_0 = 500, α = 2x10⁻⁵ s⁻¹, Δt = 10 sec, T=100 sec In each case, show the distribution using 1000 experiments and overlay the expected Poisson distributions .
- 3. Write a program to generate the distribution $f(\theta)=1$./($\sin^2\theta+a.\cos^2\theta$), where $0\le\theta\le\pi$. Compare your results using the inversion technique and the acceptance-rejection technique: 10000 trials each for values of a=0.5 and 0.001. You should overlay the plots for four different $f(\theta)$ distributions, properly normalized.