Intro to Reinforcement Learning

Markovich Anna

Who is this agent who uses reinforcement to beat the environment?

Environment | State | Action | Reward

Game: tetris Neural network RecSys Predicted State $\arg\max_{u(t)} \sum_{t=0} r(s_t, a_t)$ $s_{t+1} = f_{\theta}(s_t, a_t)$ Dynamics Model Control and Planning YouTube

Problem: how to learn optimal behaviour?

- 1. Exploration
- 2. Optimization
- 3. Generalization
- handle delayed consequences

Let's compare:

	Reinforcement learning	Supervised learning
Exploration	trial and error	None (known ground truth)
Optimization	sparse reward function	differentiable loss function
Generalization	update decision policy	avoid overfitting
Delayed consequences	reward may come afterwards	<u>None</u>

Formalism: Markov Decision Process

Markov assumption:

$$P(s_{t+1}|s_t, s_{t-1}, s_{t-2} \dots s_1) = P(s_{t+1}|s_t)$$

(next state depends only on the current state)

Formalism: Markov Decision Process

Markov chain / Markov process — a stochastic model describing a sequence of possible events which satisfies Markov assumption.

```
(S, P):

S – state space s \in S

P – dynamics (conditional distribution) P(s', s) = P(s_{t+1} = s' | s_t = s)
```

Formalism: Markov Decision Process

MDP = Markov chain + action + reward + policy

$$P(s', s, a) = P(s_{t+1} = s' | s_t = s, a_t = a)$$
 $\pi(a|s) = P(a_t = a | s_t = s)$

$$R(s,a) = \mathbb{E}[r|s_t = s, a_t = a]$$

Total reward / Return

total rewards for session

$$G_t = \sum_{s=t}^T R_s$$

with discount

$$G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots \gamma^T R_{t+T}$$
$$\gamma \in (0, 1)$$

Goal

find policy:

$$\mathbb{E}_{\pi}[G_t] \to \max_{\pi}$$

o. initialize policy

- 1. sample N sessions
- 2. choose M < N elite sessions
- 3. update policy to favor pairs (a, s) from **elite**

PyTorch Tabular

Tabular : finite state & action spaces

policy matrix:

$$\pi(a|s) = \Pi_{a,s} \in \mathbb{R}^{|A| \times |S|}$$

update rule:

$$\pi(a_p|s_k) = \frac{\sum\limits_{(a,s)\in elite} [s_k = s][a_p = a]}{\sum\limits_{(a,s)\in elite} [s_k = s]}$$

Infinite/large state space

Maximum Likelihood Estimation

Methods of Economic Investigation
Lecture 17

- 1. sample N sessions
- choose M elite sessions

3.
$$\pi = \underset{\pi}{\operatorname{argmax}} \sum_{(a_i, s_i) \in elite} \log(\pi(a_i | s_i))$$

Infinite/large state space

Using NNs:

0. net = MLPClassifier(...)

- 1. sample N sessions
- 2. choose M elite sessions
- 3. net.fit(elite_states, elite_actions)*

$$*W_k = W_{k-1} + \eta_k \nabla (\sum_{(a_i, s_i) \in elite} \log(\pi_{W_{k-1}}(a_i | s_i))$$

Continuous state & action space

model: $\pi(a|s) \sim \mathcal{N}(\mu(s), \sigma^2)$

 μ – NN output

σ – parameter / other NN output

Using NNs:

0. net = MLPRegressor(...)

- 1. sample N sessions
- 2. choose M elite sessions
- net.fit(elite_states, elite_actions)*

$$*W_k = W_{k-1} + \eta_k \nabla (\sum_{(a_i, s_i) \in elite} \log(\pi_{W_{k-1}}(a_i | s_i))$$

Intrigue: better method for optimal policy search

Remember?

$$G_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots \gamma^T R_{t+T}$$

$$\mathbb{E}_{\pi}[G_t] \to \max$$

V-function and Q-function

State-value function

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$$

expected return conditional on state

Action-value function

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|s_t = s, a_t = a]$$

expected return conditional on state and action

Complex mathematical calculations

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(r,s'|s,a) [r + \gamma V_{\pi}(s')] = \sum_{a} \pi(a|s) Q_{\pi}(s,a)$$

$$Q_{\pi}(s,a) = \sum_{r,s'} p(r,s'|s,a) [r + \gamma V_{\pi}(s')]$$

Policy iteration, Value iteration

Policy evaluation

Policy improvement

1. deterministic policy:

$$\pi:S\to A$$

2. $\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} Q_{\pi}(s, a)$

Sources

https://github.com/yandexdataschool/Practical_RL

http://web.stanford.edu/class/cs234/