Signal Processing - 1 by One

Sibi Raj B. Pillai Dept of Electrical Engineering IIT Bombay

Outline

- Digital-Analog-Digital
- Fourier Analysis, Series and Transform
- Previous Weeks: DTFT, DFT, FFT, Circular Convolutions
- Previous Class: Practical Example of 4G
- Today: Filter Design, Z-Transform

Outline

- Digital-Analog-Digital
- Fourier Analysis, Series and Transform
- Previous Weeks: DTFT, DFT, FFT, Circular Convolutions
- Previous Class: Practical Example of 4G
- Today: Filter Design, Z-Transform

Outline

- Digital-Analog-Digital
- Fourier Analysis, Series and Transform
- Previous Weeks: DTFT, DFT, FFT, Circular Convolutions
- Previous Class: Practical Example of 4G
- Today: Filter Design, Z-Transform

Filter Design

Question: A audio waveform x(t) is sampled at 16kHz to obtain the discrete values $x[n], n \in \mathbb{Z}^+$. You have a *woofer* system operating at the audio rate of 16kHz, admitting samples intended for low frequences below f_l kHz.

- (a) What will be the *ideal* filter if $f_1 = 4kHz$.
- **(b)** If our computations only permit a filter length of L, design a filter $h_0, h_1, \dots h_{l-1}$ when L = 13 **(FIR filter design)**.
- **(c)** If the audio rate of the woofer is 32kHz (standard spec), and other parameters in question remain the same, how can your design accommodate the system demands?

Desired Filter Response $h_d[n]$:

Audio Rate 16kHz, Lowpass Cut-off $f_l = 4kHz$, Ideal Filter

$$\min \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df.$$

$$\min \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df.$$

$$\int |\hat{H}_d(f) - \hat{H}(f)|^2 df = \sum_{n \in \mathbb{Z}} |h_d[n] - h[n]|^2 \text{ (Parseval's Identity)}$$

$$\min \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df.$$

$$\int |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df = \sum_{n \in \mathbb{Z}} |h_{d}[n] - h[n]|^{2} \text{ (Parseval's Identity)}$$

$$= \sum_{n=0}^{L-1} |h_{d}[n] - h[n]|^{2} + \sum_{n < 0} |h_{d}[n] - h[n]|^{2}$$

$$+ \sum_{n > L} |h_{d}[n] - h[n]|^{2}$$

$$\min \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df.$$

$$\int |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df = \sum_{n \in \mathbb{Z}} |h_{d}[n] - h[n]|^{2} \text{ (Parseval's Identity)}$$

$$= \sum_{n=0}^{L-1} |h_{d}[n] - h[n]|^{2} + \sum_{n < 0} |h_{d}[n] - h[n]|^{2}$$

$$+ \sum_{n > L} |h_{d}[n] - h[n]|^{2}$$

$$= \sum_{n=0}^{L-1} |h_{d}[n] - h[n]|^{2} + \sum_{n < 0} |h_{d}[n]|^{2} + \sum_{n < 0} |h_{d}[n]|^{2}$$

$$\min \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df.$$

$$\begin{split} \int |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df &= \sum_{n \in \mathbb{Z}} |h_{d}[n] - h[n]|^{2} \; (\text{Parseval's Identity}) \\ &= \sum_{n=0}^{L-1} |h_{d}[n] - h[n]|^{2} + \sum_{n < 0} |h_{d}[n] - h[n]|^{2} \\ &\quad + \sum_{n > L} |h_{d}[n] - h[n]|^{2} \\ &= \sum_{n = 0}^{L-1} |h_{d}[n] - h[n]|^{2} + \sum_{n < 0} |h_{d}[n]|^{2} + \sum_{n > L} |h_{d}[n]|^{2} \\ &\geq \sum_{n \notin \{0, \cdots, L-1\}} |h_{d}[n]|^{2}. \end{split}$$

Among all h_0, \dots, h_{L-1} , find

$$\min \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{H}_d(f) - \hat{H}(f)|^2 df.$$

$$\begin{split} \int |\hat{H}_{d}(f) - \hat{H}(f)|^{2} df &= \sum_{n \in \mathbb{Z}} |h_{d}[n] - h[n]|^{2} \; (\textbf{Parseval's Identity}) \\ &= \sum_{n=0}^{L-1} |h_{d}[n] - h[n]|^{2} + \sum_{n < 0} |h_{d}[n] - h[n]|^{2} \\ &\quad + \sum_{n > L} |h_{d}[n] - h[n]|^{2} \\ &= \sum_{n=0}^{L-1} |h_{d}[n] - h[n]|^{2} + \sum_{n < 0} |h_{d}[n]|^{2} + \sum_{n > L} |h_{d}[n]|^{2} \\ &\geq \sum_{n \notin \{0, \cdots, L-1\}} |h_{d}[n]|^{2}. \end{split}$$

Take $h[n] = h_d[n]$ for $0 \le n \le L - 1$ to get RHS! (Window)

Z-Transform

$$H(z) = \sum_{n \in \mathbb{Z}} h[n] z^{-n}.$$
 (1)

Polynomial in z, which takes complex values.

Example: $(h_0, h_1, h_2) = (2, 7, 1 - j1)$:

$$H(z) = 2 + 7z^{-1} + (1 - j1)z^{-2}$$
.

 z^{-1}

 z^{-1}

 h_0

 \sum

