Representation Theory via Geometry

Andrew Maurer

Summer 2017

- 1. Algebra
 - ► *G*-modules

- ► *G*-modules
- ► Cohomology groups of a *G*-module

- ► *G*-modules
- ► Cohomology groups of a *G*-module
- ► Ring structure

- ► *G*-modules
- ► Cohomology groups of a *G*-module
- Ring structure
- G-modules $\rightsquigarrow H^{\bullet}(G; k)$ -modules

1. Algebra

- ► G-modules
- ► Cohomology groups of a *G*-module
- Ring structure
- G-modules $\rightsquigarrow H^{\bullet}(G; k)$ -modules

2. Geometry

▶ *G* defines a variety, and *G*-modules define subvarieties

1. Algebra

- ► G-modules
- ► Cohomology groups of a *G*-module
- Ring structure
- G-modules $\rightsquigarrow H^{\bullet}(G; k)$ -modules

2. Geometry

- G defines a variety, and G-modules define subvarieties
- Operations on G-modules vs. operations on varieties

1. Algebra

- ► G-modules
- ► Cohomology groups of a *G*-module
- Ring structure
- G-modules $\rightsquigarrow H^{\bullet}(G; k)$ -modules

2. Geometry

- G defines a variety, and G-modules define subvarieties
- Operations on G-modules vs. operations on varieties
- Realizability

▶ All groups will be finite, usually denoted *G*.

- ▶ All groups will be finite, usually denoted *G*.
- k will denote a field which is:

- ▶ All groups will be finite, usually denoted *G*.
- k will denote a field which is:
 - of characteristic $p \mid |G|$

- ▶ All groups will be finite, usually denoted *G*.
- k will denote a field which is:
 - of characteristic $p \mid |G|$
 - algebraically closed

- ▶ All groups will be finite, usually denoted *G*.
- k will denote a field which is:
 - of characteristic $p \mid |G|$
 - algebraically closed
- M will be a G-module.

- ▶ All groups will be finite, usually denoted *G*.
- k will denote a field which is:
 - of characteristic $p \mid |G|$
 - algebraically closed
- M will be a G-module.
- ▶ Spec(R) refers to the maximal ideal spectrum of the ring R.

- ▶ All groups will be finite, usually denoted *G*.
- k will denote a field which is:
 - of characteristic $p \mid |G|$
 - algebraically closed
- M will be a G-module.
- ▶ Spec(R) refers to the maximal ideal spectrum of the ring R.

Recall that a finite group is a finite set G with a multiplication rule satisfying some axioms that make it behave like symmetry.

▶ GL(V) = all linear isomorphisms of a vector space V/\mathbb{F}_q .

- ▶ GL(V) = all linear isomorphisms of a vector space V/\mathbb{F}_q .
- ▶ S_n = all bijections $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.

- ▶ GL(V) = all linear isomorphisms of a vector space V/\mathbb{F}_q .
- ▶ S_n = all bijections $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.
- $(\mathbb{Z}/p)^r$ = elementary Abelian group of rank r.

- ▶ GL(V) = all linear isomorphisms of a vector space V/\mathbb{F}_q .
- ▶ S_n = all bijections $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$.
- $(\mathbb{Z}/p)^r$ = elementary Abelian group of rank r.
- Others

Groups are modelled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Groups are modelled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to GL(V), g \mapsto \varphi_g$$

Groups are modelled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to \mathsf{GL}(V), g \mapsto \varphi_g$$

Examples:

Groups are modelled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to \mathsf{GL}(V), g \mapsto \varphi_g$$

Examples:

V is a GL(V) module.

Groups are modelled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to GL(V), g \mapsto \varphi_g$$

Examples:

- ▶ *V* is a GL(*V*) module.
- ▶ The vector space with basis $\{e_1, \ldots, e_n\}$ is a S_n -module by $\varphi_{\sigma}(e_i) = e_{\sigma(i)}$, and extend by linearity.

Groups are modelled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to GL(V), g \mapsto \varphi_g$$

Examples:

- ▶ V is a GL(V) module.
- ▶ The vector space with basis $\{e_1, \ldots, e_n\}$ is a S_n -module by $\varphi_{\sigma}(e_i) = e_{\sigma(i)}$, and extend by linearity.
- k is a G-module via the trivial action $\varphi_g(v) = v$.

Groups are modelled on symmetries. A G-module is just a vector space where G acts as symmetries, i.e., linear automorphisms.

Namely, there's a map

$$\varphi: G \to GL(V), g \mapsto \varphi_g$$

Examples:

- ▶ V is a GL(V) module.
- ▶ The vector space with basis $\{e_1, \ldots, e_n\}$ is a S_n -module by $\varphi_{\sigma}(e_i) = e_{\sigma(i)}$, and extend by linearity.
- k is a G-module via the trivial action $\varphi_g(v) = v$.

G-modules as defined above are really just modules for a certain ring denoted kG.

The cohomology group $H^n(G; k)$ can be defined in many ways.

The cohomology group $H^n(G; k)$ can be defined in many ways. At the end of the day, the most concrete way to realize $H^n(G; M)$ is as $\operatorname{Ext}_{kG}^n(k, M)$.

$$\operatorname{Ext}^n_{kG}(k,M) = \big\{0 \to M \to E_1 \to \ldots \to E_n \to k \to 0\big\}/\sim$$

e.g., as all n-fold extensions of k by M, modulo a certain equivalence relation.

The cohomology group $H^n(G; k)$ can be defined in many ways. At the end of the day, the most concrete way to realize $H^n(G; M)$ is as $\operatorname{Ext}_{kG}^n(k, M)$.

$$\operatorname{Ext}_{kG}^n(k,M) = \left\{0 \to M \to E_1 \to \ldots \to E_n \to k \to 0\right\}/\sim$$

e.g., as all n-fold extensions of k by M, modulo a certain equivalence relation.

Addition in the cohomology group corresponds to Baer sum of extensions.

Realizing cohomology groups $H^n(G; k)$ in this way means we can multiply two sequences together.

$$\operatorname{Ext}_{kG}^n(k,k) \times \operatorname{Ext}_{kG}^m(k,k) \to \operatorname{Ext}_{kG}^{m+n}(k,k)$$

Realizing cohomology groups $H^n(G; k)$ in this way means we can multiply two sequences together.

$$\operatorname{\mathsf{Ext}}^n_{kG}(k,k) \times \operatorname{\mathsf{Ext}}^m_{kG}(k,k) o \operatorname{\mathsf{Ext}}^{m+n}_{kG}(k,k)$$

Realizing cohomology groups $H^n(G; k)$ in this way means we can multiply two sequences together.

$$\mathsf{Ext}^n_{kG}(k,k) \times \mathsf{Ext}^m_{kG}(k,k) \to \mathsf{Ext}^{m+n}_{kG}(k,k)$$

And the new sequence has the form

$$0 \to k \to \underbrace{E_1 \to \ldots \to E_n \to F_1 \to \ldots \to F_m}_{m+n} \to k \to 0$$

 $H^{\bullet}(G; k) = \operatorname{Ext}_{kG}^{\bullet}(k, k)$ is a ring

$$H^{\bullet}(G; k) = \operatorname{Ext}_{kG}^{\bullet}(k, k)$$
 is a ring

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring.

$$H^{\bullet}(G; k) = \operatorname{Ext}_{kG}^{\bullet}(k, k)$$
 is a ring

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

$$H^{\bullet}(G; k) = \operatorname{Ext}_{kG}^{\bullet}(k, k)$$
 is a ring

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

▶ It is graded-commutative, i.e., $\alpha \cdot \beta = (-1)^{\bar{\alpha} \cdot \bar{\beta}} \beta \cdot \alpha$.

$$H^{\bullet}(G; k) = \operatorname{Ext}_{kG}^{\bullet}(k, k)$$
 is a ring

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

- ▶ It is graded-commutative, i.e., $\alpha \cdot \beta = (-1)^{\bar{\alpha} \cdot \bar{\beta}} \beta \cdot \alpha$.
- ▶ (Evens 1961) It is finitely-generated over k.

$$H^{\bullet}(G; k) = \operatorname{Ext}_{kG}^{\bullet}(k, k)$$
 is a ring

$$\operatorname{Ext}_{kG}^{\bullet}(k,k) = \bigoplus \operatorname{Ext}_{kG}^{n}(k,k)$$

becomes a graded ring. What can we say about it?

- ▶ It is graded-commutative, i.e., $\alpha \cdot \beta = (-1)^{\bar{\alpha} \cdot \bar{\beta}} \beta \cdot \alpha$.
- ▶ (Evens 1961) It is finitely-generated over k.

Define a commutative, finitely generated ring:

$$H^{c}(G; k) = \begin{cases} H^{\bullet}(G; k) & \text{if } p = 2\\ \bigoplus H^{2n}(G; k) & \text{if } p > 2 \end{cases}$$

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a ring in the exact same way.

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a ring in the exact same way.

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a graded module for $H^{\bullet}(G;k)$ (or $H^{c}(G;k)$) using the tensor product.

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a ring in the exact same way.

 $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ is a graded module for $H^{\bullet}(G;k)$ (or $H^{c}(G;k)$) using the tensor product.

So $\operatorname{Ext}_{kG}^{\bullet}(M,M)$ has an annihilator $I_M \subseteq H^{\bullet}(G;k)$ which is a homogeneous ideal.

We have a commutative, finitely generated k-algebra $H^c(G; k)$ which captures the representation theory of G in some way, and a way to associate ideals to G-modules.

We have a commutative, finitely generated k-algebra $H^c(G; k)$ which captures the representation theory of G in some way, and a way to associate ideals to G-modules.

What information is present in the affine variety $V_G(k) = H^{\bullet}(G; k)$ and its conical subvarieties $V_G(M) = Z(I_M) \subseteq V_G(k)$?

We have a commutative, finitely generated k-algebra $H^c(G; k)$ which captures the representation theory of G in some way, and a way to associate ideals to G-modules.

What information is present in the affine variety $V_G(k) = H^{\bullet}(G; k)$ and its conical subvarieties $V_G(M) = Z(I_M) \subseteq V_G(k)$?

Theorem

 $V_G(M) = \{0\}$ if and only if M is projective.

We have a commutative, finitely generated k-algebra $H^c(G; k)$ which captures the representation theory of G in some way, and a way to associate ideals to G-modules.

What information is present in the affine variety $V_G(k) = H^{\bullet}(G; k)$ and its conical subvarieties $V_G(M) = Z(I_M) \subseteq V_G(k)$?

Theorem

 $V_G(M) = \{0\}$ if and only if M is projective.

Theorem

1.
$$V_G(M_1 \oplus M_2) = V_G(M_1) \cup V_G(M_2)$$

Theorem

- 1. $V_G(M_1 \oplus M_2) = V_G(M_1) \cup V_G(M_2)$
- 2. $V_G(M_1 \otimes M_2) = V_G(M_1) \cap V_G(M_2)$

Theorem

- 1. $V_G(M_1 \oplus M_2) = V_G(M_1) \cup V_G(M_2)$
- 2. $V_G(M_1 \otimes M_2) = V_G(M_1) \cap V_G(M_2)$
- 3. $V_G(M^*) = V_G(M)$

Theorem

- 1. $V_G(M_1 \oplus M_2) = V_G(M_1) \cup V_G(M_2)$
- 2. $V_G(M_1 \otimes M_2) = V_G(M_1) \cap V_G(M_2)$
- 3. $V_G(M^*) = V_G(M)$

How are these proved?

Theorem

- 1. $V_G(M_1 \oplus M_2) = V_G(M_1) \cup V_G(M_2)$
- 2. $V_G(M_1 \otimes M_2) = V_G(M_1) \cap V_G(M_2)$
- 3. $V_G(M^*) = V_G(M)$

How are these proved? Main techinique is by writing

$$V_G(M) = \bigcup_{\substack{E \leq G \\ \text{elem}}} \varphi_E(V_E(M))$$

 φ_E is a natural map obtained by thinking of M as an E-module.

Theorem

- 1. $V_G(M_1 \oplus M_2) = V_G(M_1) \cup V_G(M_2)$
- 2. $V_G(M_1 \otimes M_2) = V_G(M_1) \cap V_G(M_2)$
- 3. $V_G(M^*) = V_G(M)$

How are these proved? Main techinique is by writing

$$V_G(M) = \bigcup_{\substack{E \leq G \\ \text{elem}}} \varphi_E(V_E(M))$$

 φ_E is a natural map obtained by thinking of M as an E-module. Modules L_{ζ} so that $V_G(L_{\zeta}) = Z(\zeta)$, where $\zeta \in H^{\bullet}(G; k)$.

Realizability

Realizability

Theorem

Every conical subvariety arises as $V_G(M)$ for some module M.

Realizability

Theorem

Every conical subvariety arises as $V_G(M)$ for some module M.

Theorem

If $V_G(M) = V_1 \cup V_2$ with $V_1 \cap V_2 = \{0\}$, then there exist modules M_1 and M_2 with $V_G(M_1) = V_1$ and $V_G(M_2) = V_2$.