Solarzellen

TU Dortmund, Fakultät Physik Anfänger-Praktikum

Jan Adam

Dimitrios Skodras

jan.adam@tu-dortmund.de

dimitrios.skodras@tu-dortmund.de

29.November 2012

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie 2.1 Photoeffekt	3
3	Durchführung	5
4	Auswertung	5
	4.1 Leerlaufspannung und Kurzschlussstrom	
	4.2 U-I-Kennlinien	6
	4.3 Leistung	9
	4.4 Wirkungsgrad	10
5	Diskussion	10

1 Einleitung

Die Erklärung des physikalischen Prozesses, der hinter einer Solarzelle steckt, wurde im 19. Jahrhundert von Physikern wie Bequerel und Hallwachs vorangebracht und 1905 von Albert Einstein durch den Photoeffekt vervollständigt (Nobelpreis 1921). Im Zuge der Energiekrise und der Einführung des Erneuerbare-Energien-Gesetzes wird neben der Wasserkraft oder Windenergie auch Solarenergie durch Photovoltaikanlagen (Solarzellen) vom Staat gefördert. Sie haben den Vorteil, dass sie nach menschlichen Maßstäben unerschöpfliche Energiequellen darstellen.

2 Theorie

2.1 Photoeffekt

Der lichtelektrische Effekt beschreibt einen Stoßprozess zwischen einem Lichtquanten und einem im Atom gebundenen Elektron. Ein Photon, mit einer gewissen Energie E_{ph} trifft ein Elektron mit einer Bindungsenergie E_b und emittiert es, sofern sie größer als die Bindungsenergie ist und übergibt dem Elektron den Rest in Form von kinetischer Energie E_{kin} .

$$E_{ph} = h \cdot \nu = E_b + E_{kin} \tag{1}$$

2.2 Funktionsweise einer Solarzelle

Die Grundlage für Solarzellen sind einkristalline Siliziumkristalle. Sie werden zum Beispiel mit einem fünfwertigen Element (Phosphor) dotiert. Das Silizium, mit nur vier Valenzelektronen, benötigt somit ein fremd eingebrachtes Elektron nicht zum Ausbau des Oktetts und der Kristall erhält dadurch ein freies Elektron. Der Kristall ist n-leitend. Ähnliches gilt für die Dotierung mit einem dreiwertigen Element, wie Bor. Zur Oktettausbildung fehlt ein Elektron. Diese so hervorgerufene Lücke ist ebenfalls frei im Kristall verschiebbar. In diesem Fall ist der Kristall p-leitend. In Halbleitern können thermische Anregung, oder durch Lichtabsorbtion Elektronen vom Valenzband ins Leitungsband überführt werden. Wenn die atomaren Orbitale von hinreichend nahen Atomen superponieren, verschmieren die Energiezustände zu Energiebändern. Elektronen im Valenzband sind relativ schwach an den Kern gebunden und haben es daher leichter, ins Leitungsband zu gelangen. Wenn nun eine dünne Schicht n-dotiertes Silizium in ein Substrat p-dotiertes Silizium hineindiffundiert wird, spricht man von einer Solarzelle. Durch

die Diffusion der freien Ladungsträger werden Gebiete in der Nähe des p-n-Übergangs elektrisch geladen. Das daraus entstehende E-Feld führt zu einem Driftstrom. Ohne Lichteinstrahlung verhält sich eine Solarzelle wie eine Diode, sodass sich die Spannungs-Strom-Kennlinie gleich beschreiben lässt zu

$$I_{\rm D} = I_0 \left(\exp\left(\frac{e \cdot U}{k_b T}\right) - 1 \right) \tag{2}$$

 $(I_{\rm D}={\rm Driftstrom},\,I_0={\rm S\"{a}ttigungsstrom},\,{\rm U}={\rm Diffusionsspannung})$

und mit Lichteinstrahlung, wodurch aufgrund des Photoeffekts Elektronen-Loch-Paare entstehen und durch das Feld in der Raumladungszone (RLZ) getrennt werden zu

$$I_{\rm SZ} = I_0 \left(\exp\left(\frac{e \cdot U}{k_b T}\right) - 1 \right) - I_{\rm Ph}.$$
 (3)

 $(I_{SZ} = Solarzellenstrom, I_{Ph} = Photostrom)$

2.3 Wirkungsgrad

Die Strom-Spannungs-Kennlinie wird durch die Leerlaufspannung $U_{\rm oc}$ (open circuit) und den Kurzschlussstrom $I_{\rm sc}$ (short circuit) bestimmt. Die Leerlaufspannung liegt an, wenn kein Strom fließt. Der Kurzschlussstrom ist der in der Solarzelle maximal fließende Strom. Die maximale Leistung ist beim Punkt $P_{\rm max}$ erreicht.

Abbildung 1: Kennlinie einer Silizium-Solarzelle

In Abbildung 1 schließt die Kennlinie an diesem Punkt ein Rechteck A_1 ein, welches mit dem Rechteck A_2 einen Füllfaktor (FF = A_1 / A_2) ergibt. Der Wirkungsgrad η setzt

sich aus dem Verhältnis des maximalen Leistung und der eingestrahlten Leistung P_{ein} zusammen.

$$\eta = \frac{P_{\text{max}}}{P_{\text{ein}}} = \frac{U_{\text{oc}} \cdot I_{\text{sc}} \cdot \text{FF}}{P_{\text{ein}}}$$
(4)

3 Durchführung

Ziel des Versuchs ist die Ermittlung der Strom-Spannungskennlinien einer Solarzelle für verschiedene Beleuchtungsstärken und daraus soll die abgegebene Leistung der Solarzelle und deren Wirkungsgrad berechnet werden. Darüber hinaus sollen die Leerlaufspannung und der Kurzschlussstrom ebenfalls als Funktion der Beleuchtungsstärke bestimmt werden.

Hierzu wird die Solarzelle mit einer Lampe verstellbarer Höhe beleuchtet. Die Beleuchtungsstärke nimmt mit zunehmendem Abstand ab. Mit einem Volt- und einem Amperemeter werden die anliegende Spannung und der Strom für manuell einstellbare ohmsche Widerstände von 5 bis 300 Ω notiert.

4 Auswertung

4.1 Leerlaufspannung und Kurzschlussstrom

Zunächst sollen die Leerlaufspannung und der Kurzschlussstrom der Solarzelle bestimmt werden. Hierfür wird die Widerstandsbrückenschaltung entfernt und die Solarzelle kurzgeschlossen. Dann werden für verschiedene Abstände Messwerte aufgenommen.

Abbildung 2: Leerspannung gegen Abstand zur Lichtquelle

Aus der Ausgleichsgeraden lässt sich der Proportionalitätsfaktor a zwischen I_K und J errechnen zu

$$a = 0,291421 \pm 0,07142$$

Abbildung 3: Kurzschlussstrom gegen Abstand zur Lichtquelle mit Ausgleichsgerade

4.2 U-I-Kennlinien

Anschließend sollen die U-I-Kennlinien für vier verschiedene Abstände von der Lampe aufgenommen werden. Man misst dazu den Strom und die anliegende Spannung für verschiedene Widerstände und trägt beide gegeneinander auf. Zusätzlich stehen in den Tabellen die Leistung $P=U\cdot I$ in [mW] für spätere Auswertungen.

Widerstand $[\Omega]$	Strom [mA]	Spannung [V]	Leistung [mW]
5	27,8	0,15	4,2812
10	27,9	$0,\!30$	8,2305
15	27,7	0,44	12,1049
20	27,8	0,58	16,1796
25	27,7	0,72	19,8609
30	27,4	0,86	23,4544
35	27,4	0,99	27,0986
40	27,3	1,11	30,3030
45	27,0	1,24	33,4800
50	26,7	1,49	39,7830
55	26,3	1,60	42,0800
60	$25,\!5$	1,68	42,8400
65	24,8	1,74	43,1520
70	23,9	1,79	42,7810
75	22,9	1,82	41,6780
80	22,0	1,85	40,7000
85	21,0	1,87	39,2700
90	20,1	1,88	37,7880
95	19,2	1,90	36,4800
100	18,5	1,91	35,3350

Tabelle 1: Werte aufgenommen im Abstand von 70cm

Widerstand $[\Omega]$	Strom [mA]	Spannung [V]	Leistung [mW]
5	48,7	0,30	14,6100
10	48,5	$0,\!53$	25,7050
15	48,7	0,77	37,4990
20	48,7	1,03	50,1610
25	48,5	$1,\!25$	60,6250
30	48,2	1,49	71,8180
35	46,3	1,66	76,8580
40	43,2	1,76	76,0320
45	39,8	1,83	72,8340
50	36,8	1,87	68,8160
55	33,9	1,89	64,0710
60	31,4	1,91	59,9740
65	29,2	1,93	56,3560
70	27,4	1,94	53,1560
75	25,7	1,95	50,1150
80	24,2	1,96	47,4320
85	22,9	1,97	45,1130
90	21,7	1,97	42,7490
95	20,6	1,98	40,7880
100	19,7	1,98	39,0060
150	13,4	2,02	27,0680
200	10,1	2,03	20,5030
250	8,1	2,03	16,4633
300	6,7	$2,\!03$	13,6010

Tabelle 2: Werte aufgenommen im Abstand von $60\mathrm{cm}$

Strom [mA]	Spannung [V]	Leistung [mW]
68,8		26,1440
68,6	0.73	50,0780
68,2	1,00	68,2000
66,8		92,1840
63,3		103,1790
57,2		100,6720
51,3		93,8790
46,2		86,3940
41,6	1,90	79,0400
37,8	1,92	72,5760
34,7	1,93	66,9710
32,1	1,95	62,5950
29,8		58,4080
27,9		54,9630
26,2		51,8760
24,5	1,98	48,5100
23,2	1,99	46,1680
22,0	1,99	43,7800
20,8	1,99	41,3920
19,9	1,99	39,6010
13,4		27,0680
10,1	2,03	20,5030
6,8	2,05	13,9400
	68,8 68,6 68,2 66,8 63,3 57,2 51,3 46,2 41,6 37,8 34,7 32,1 29,8 27,9 26,2 24,5 23,2 22,0 20,8 19,9 13,4 10,1	68,8 68,6 0,73 68,2 1,00 66,8 1,38 63,3 1,63 57,2 1,76 51,3 1,83 46,2 1,87 41,6 1,90 37,8 1,92 34,7 1,93 32,1 1,95 29,8 1,96 27,9 1,97 26,2 1,98 24,5 1,98 23,2 1,99 22,0 1,99 20,8 1,99 19,9 13,4 2,02 10,1 2,03

Tabelle 3: Werte aufgenommen im Abstand von $50\mathrm{cm}$

Widerstand $[\Omega]$	Strom [mA]	Spannung [V]	Leistung [mW]
5	78,3	0,46	36,0180
10	78,5	0,84	65,9400
15	78,9	$1,\!23$	97,0470
20	77,9	1,61	125,4190
25	71,4	1,83	130,6620
30	61,8	1,90	117,4200
35	53,9	1,92	103,4880
40	47,9	1,95	93,4050
45	42,9	1,96	84,0840
50	39,1	1,98	77,4180
55	35,7	1,99	71,0430
60	32,9	2,00	65,8000
65	30,5	2,01	61,3050
70	28,5	2,01	57,2850
75	26,7	2,02	53,9340
80	25,1	2,02	50,7020
85	23,6	2,03	47,9080
90	22,4	2,03	45,4720
95	21,2	2,03	43,0360
100	20,2	2,03	41,0060
150	13,6	2,05	27,8800
200	10,3	2,06	21,2180
250	8,2	2,07	16,9740
300	8,9	2,07	18,4230

Tabelle 4: Werte aufgenommen im Abstand von 40cm

Gegeneinander aufgetragen ergeben diese Daten folgenden Graphen:

Abbildung 4: U-I-Kennlinien für vier verschiedene Abstände

4.3 Leistung

Trägt man alle Leistungen gegen den Entsprechenden Schaltungswiderstand $\frac{U}{I}$ auf, so ergibt sich folgernder Graph:

Abbildung 5: Abgegebene Leistung in verschiedenen Abständen zur Strahlungsquelle

Die Leistung wird nicht gegen den Widerstand der Brückenschaltung aufgetragen, da sowohl das Amperemeter, als auch das Voltmeter noch einen nicht vernachlässigbaren Innenwiderstand haben. Die Division von U und I liefert jedoch den korrekten Widerstand.

4.4 Wirkungsgrad

Die abgegebene Leistung ist abhängig vom Verhältnis zwischen der Spannung und dem Strom und weißt daher ein Maximum auf. Dieses kann man bestimmen, indem man entweder das größtmöglichste Rechteck in den U-I-Graphen zeichnet, dessen Fläche entspricht der maximalen Ausgangsleistung der Solarzelle. Alternativ multipliziert man alle Spannungen mit den entsprechenden Strömen, trägt die Werte in einen Graphen ein und bestimmt den größten Wert. Da dies genauer ist, wurde die Leistung über diese Methode bestimmt.

Der Wirkungsgrad einer Solarzelle ist das Verhältnis zwischen der aufgenommenen Leistung (Licht) und der ausgegebenen Leistung (Elektrizität). Die aufgenommene Leistung errechnet sich über eine kalibrierungskurve. In ihr wird die abgestrahlte Leistung der Lampe pro Fläche $[mW/cm^2]$ gegen den Abstand d dargestellt.

Abstand	P pro cm^2	$P_Eingang$	P_Gesamt	Wirkungsgrad η
70cm	$9 \mathrm{mW}$	$445,48 \mathrm{mW}$	$43,15 \mathrm{mW}$	0,0969
60cm	$12 \mathrm{mW}$	$593,76 \mathrm{mW}$	$76,86 \mathrm{mW}$	0,1242
50cm	$16 \mathrm{mW}$	$791,68 \mathrm{mW}$	$103,18 \mathrm{mW}$	0,1303
40cm	$21 \mathrm{mW}$	$1093,08\mathrm{mW}$	$130,66 \mathrm{mW}$	0,1258

Das Ausmessen der Solarzelle ergab eine Fläche von $49,48cm^2$. Durch Multiplikation dieses Wertes mit der abgestrahlten Leistung pro Fläche erhält man den Gesamtwert der aufgenommenen Leistung und aus Tabellen 1 bis 4 entnimmt man die maximale Gesamtausgangsleistung. Durch Division dieser beider Werte erhält man den Wirkungsgrad η der Solarzelle. Gemittelt erhält man so

$$\eta = 0,1205 \pm 0,000253$$

Dieser Wert passt sehr gut mit den tatsächlichen Wirkungsgraden von polykristalinen Solarzellen überein, welche typischerweise Wirkungsgrade zwischen 14 und 20% haben.

5 Diskussion

Die Ermittelung des Wirkungsgrades gelang mit den vorliegenden Daten hinreichend genau. Aus den Graphen kann man eine nicht-lineare Abhängigkeit zwischen Ausgangsleistung und Abstand zur Lichtquelle ablesen, welcher auf Grund des Raumwinkels proportional zu $\frac{1}{R^2}$ sein müsste.

Die Leerlaufspannung bleibt unabhängig von der Lichtintensität relativ konstant zwischen 2,08 und 2,15V. Da sie nur beim zweiten Messpunkt nach unten abweicht, kann

davon ausgegangen werden, dass es sich dabei um einen Messfehler handelt. In Anbetracht der Größe der Abweichung kann desweiteren davon ausgegangen werden, dass auch die anderen Werte ähnlichen Schwankungen unterliegen und die Leerspannung eigentlich immer konstant sein müsste. Aus Diagramm 4 lässt sich dies noch besser ablesen, da alle Kurven zwar bei unterschiedlichen Y-Achsen-Werten starten, jedoch alle die X-Achse beim etwa gleichen Wert durchstoßen. Genauere Klärung würden hier mehr Messreihern geben, die leider nicht vorliegen.

Abschließend stellt sich die Frage, in wie weit ein Wirkungsgrad dieser Größenordnung gegen die Wirtschaftlichkeit der Verwendung von Solarzellen zur Stromerzeugung spricht. Insbesonden in Deutschland ist die Sonneneinstrahlung nicht sehr hoch und die Zeiten, in denen der Himmel nicht wolkenverhangen ist, sind so kurz, dass es sich nicht rentiert, wenn jeder Bürger Solarzellen auf seinem Dach montiert. Betrachtet man zudem die hohen Herstellungskosten, die verhältnismäßig geringe Lebensdauer trotz ständiger Wartung und der Energieverbrauch bei der Herstellung, so scheinen Solarzellen nicht die Lösung für das Weltenergieproblem zu sein. Man muss Standortbezogen entscheiden, welche regenerativen Energien die meiste Energie liefern und dann den Strom durch einen Zusammenschluss aller Energien erzeugen, um nachhaltig Elektrizität in benötigter Menge zu erzeugen.