Tutorial Questions

- 1. In Z, we define a * b = a + b + 1, show that (Z, *) is an abelian group
- 2. Show that cube root of unity is an abelian group under multiplication
- 3. If G = $\{f_1, f_2, f_3, f_4\}$ of four functions defined by $f_1 = x$, $f_2 = -x$, $f_3 = 1/x$, $f_4 = -1/x$ for all $x \in \mathbb{R} \{0\}$ is an abelian group
- 4. Show that $H = \{0, 2, 4\}$ is a subgroup of the group $G = \{0, 1, 2, 3, 4, 5\}$ under addition modulo 6
- 5. Prove that $H = \{a+ib \mid a, b \in Q\}$ is a subgroup of the group (C, +)
- If a is an element of a group G, then prove that its normalizer
 N(a) = {x ∈ G | ax = xa} is a subgroup of G
- 7. Find all the cosets of 3Z in the group (Z, +)
- 8. Find all the cosets of H = $\{0, 4\}$ in the group G = $(Z_8, +_8)$
- 9. If H is a subgroup of a group G and g ε G, then prove that:
 - a. $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ is a subgroup of G
 - b. If H is finite, then $O(H) = O(gHg^{-1})$
- 10. Show that the additive group (R, +) of real numbers is isomorphic to the multiplicative group (R⁺, X) of positive real numbers
- 11. Prove that the set $G = \{x \mid x^n = 1\}$ of n^{th} roots of unity is a finite multiplicative tcyclic group of order n
- 12. Find all the generators of the cyclic group (G = $\{0, 1, 2, 3, 4, 5\}, +_6\}$
- 13. Find all the generators of the cyclic group (G = $\{1, 2, 3, 4\}, x_5$)
- 14. Let H be a set of all 2x2 matrices of the form [[a, b], [0, d]], with a, b, d ε R and ad \neq 0
 - a. Show that H is a subgroup of $GL_2(R)$
 - b. Is H a normal subgroup of GL₂(R)?
- 15. Let the mapping f be f: $(C_0, x) \rightarrow (R_0, x)$, f(z) = |z| for all $z \in C_0$.
 - a. Is mapping f a homomorphism?
 - b. If yes, what is the Ker (f)