

mobilenetV2 with noised data set

MACHINE LEARNING

plant disease classification using leaf images

- 1. Trained the model using original image data set without noise in it
- 2. Trained the model using original image data set with different levels of noise (including 0 level) in it

1. Accuracy of the model

2. Loss of the model

3. Confusion matrix of the model

C →	precision	recall	f1-score	support
0 1	0.92 0.83	0.98 0.97	0.95 0.90	160 160
2 3	0.99 0.98	0.70 1.00	0.82 0.99	160 160
4	0.96	0.99	0.98	160
accuracy			0.93	800
macro avg	0.94	0.93	0.93	800
weighted avg	0.94	0.93	0.93	800

4.. Final report of the model

without noise

⊋	precision	recall	f1-score	support	
Θ	0.99	0.96	0.97	160	
1	0.97	0.95	0.96	160	
2	0.95	0.99	0.97	160	
3	0.99	0.99	0.99	160	
4	0.99	1.00	1.00	160	
accuracy			0.98	800	
macro avg	0.98	0.98	0.98	800	
weighted avg	0.98	0.98	0.98	800	

with noise

Conclusion

So according to the test, when the modelis trained with different noise level data set the model will perform better

Saliency Maps

Vanila saliency map

Grad-Cam

Grad-Cam ++

Shap image explainer

Performance of model explainers

- 1. Image is taken and the affected area of the image is separated and thresholded.
- 2. the weighted average is calculated

Result

```
saliency map weighted_average : 46.22%
gradcam weighted_average : 54.69%
gradcam++ weighted_average : 54.33%
shap weighted_average : 58.20%
```


Conclusion

Shap image explainer is performing better than others.

