Проверочная работа №1

Имя и фамилия студента:

Задание 1. Дана следующая спецификация модели и соответствующая ковариационная матрица для оценок коэффициентов:

$$\hat{y}_i = -13.788 - 8.122x_i + 3.595z_i + 1.149x_i z_i$$

	Intercept	: X	Z	X:Z
Intercept	25.6279	3.1163	-2.9567	-0.0114
X	3.1163	18.0029	-0.1440	-2.1206
Z	-2.9567	-0.1440	0.3505	-0.0256
X:Z	-0.0114	-2.1206	-0.0256	0.2629

Рассчитайте предельный эффект x_i на отклик при условии, что $z_i=0.5$, и проверьте значимость этого предельного эффекта (2 балла)

Задание 2. Выберите ВСЕ верные утверждения из списка ниже. Если верные утверждения отсутствуют, обязательно в ответе напишите "HET" (1 балл)

- 1. Согласно допущениям Гаусса-Маркова, вариация остатков постоянна
- 2. Косинус угла между векторами $\hat{\varepsilon}$ и \hat{y} равен 0
- 3. Оценена следующая регрессионная модель: $\hat{y}_i = 10-4.7x_i+0.05D_i+0.3x_iD_i$, где x_i непрерывная переменная в шкале от 0 до 10, D_i дамми-переменная, то есть, принимающая значение 1 или 0. Справедливо следующее: Средний эффект x_i на зависимую переменную при прочих равных составляет -4.7
- 4. Параллельность трендов в рамках DiD предполагает отсутствие статистически значимых различий между средними значениями рассматриваемой зависимой переменной в группе воздействия и контрольной группе в период, предшествующий воздействию.

Задание 3. Ответьте на нижеприведенные вопросы по следующей спецификации регрессионной модели: $y_i = 6 + 1.4x_i - 0.05x_i^2 + \epsilon_i$

- Отметьте верное утверждение: (1 балл)
 - 1. взаимосвязь отклика и x_i задается графически прямой с положительным угловым коэффициентом
 - 2. взаимосвязь отклика и x_i задается графически прямой с отрицательным угловым коэффициентом
 - 3. взаимосвязь отклика и x_i задается графиком U-формы
 - 4. взаимосвязь отклика и x_i задается графиком перевернутой U-формы
- Проинтерпретируйте оценку коэффициента при x_i^2 (1 балл)
- Рассчитайте «переломную» точку (значение x_i), после которой эффект x_i на y_i меняет знак. (1 балл)

Задание 4. Ниже приведены аргументы, использующиеся некоторыми авторами для обоснования оценивания «усеченной» модели с переменными взаимодействия, то есть, такой модели, которая включает не все составные части переменной взаимодействия в качестве предикторов.

«First, some claim that they do not believe that Z has any effect on Y on average and that, as a result, they do not need to include it as a separate term in the model. Second, others claim that they do not believe that Z has an effect on Y when X is zero and this means they can exclude it as a separate variable from their model.»

Объясните, почему данные аргументы являются некорректными или слабыми. (2 балла)

Задание 5. Ниже представлены результаты анализа разложения вариации по результатам оценивания линейной регрессионной модели. Спецификация данной модели включает 8 параметров с учетом константы.

		A.	NOVA			
	sum_sq	df	mean_sq	f	PR(>F)	
x Residual	1.7535 15.2350	480				

Используя информацию из данной таблицы,

1. рассчитайте коэффициент детерминации и проинтерпретируйте его (1.5 балла)

- 2. Проверьте гипотезу, что регрессия на константу не хуже модели с предикторами, на фиксированном уровне значимости 0.05. Запишите нулевую и альтернативную гипотезы на статистическом языке, рассчитайте значение статистики, а также выберите необходимую критическую точку квантиль из списка ниже. Сделайте вывод (1.5 балла)
 - (a) квантиль хи-квадрат распределения уровня 0.95, df= 480: **532.075**
 - (b) квантиль распределения Фишера уровня 0.95, df1 = 8, df2 = 480: **1.958**
 - (c) квантиль распределения Фишера уровня 0.95, df1 = 7, df2 = 480: **2.029**
 - (d) квантиль распределения Фишера уровня 0.975, df1 = 8, df2 = 480: **2.218**
 - (e) квантиль распределения Фишера уровня 0.975, df1 = 7, df2 = 480: **2.314**

Задание 6. Ниже представлены данные об индексе протестной готовности и проценте безработного населения в 5 регионах. Большее значение отклика соответствует более высокой протестной активности.

у — индекс протестной готовности	3	2	4	6	10
х — процент безработного населения	2	4	4	8	12

1. Выполнив необходимые предварительные расчеты при помощи общей векторно-матричной формулы получения оценок коэффициентов, запишите спецификацию модели, подставив полученные оценки коэффициентов. (2 балла)

- 2. Спрогнозируйте значение отклика при условии процента безработного населения, равного 5%.(1 балл)
- 3. Если переоценить модель с использованием вместо исходного предиктора переменную результат деления х на 100, каким образом изменится оценка коэффициента при предикторе в модели? Свой ответ поясните. (1 балл)

Задание 8. Изучается эффект введения новых социальных выплат на доверие политическим институтам. Рассматривается пять лет до и после реализации специальной социальной программы. Те регионы, в которых социальная программа не была введена, рассматривается как контрольная группа. Ниже представлены результаты оценивания средних значений доверия политическим институтам (шкала уровня доверия — 5-балльная, более высокое значение соответствует более высокому уровню доверия).

Группа/Период	До введения соц. выплат	После введения соц. выплат
Регионы: Группа воздействия	3.2	3.1
Регионы: Контрольная группа	2.9	2.6

1. Вычислите все оценки модели difference-in-differences без включения контрольных переменных и запишите соответствующую спецификацию модели (2 балла)

2. Проинтерпретируйте оценку коэффициента при дамми-переменной для группы воздействия (1 $\mathit{балл}$)