v 01.02 rootfinding: fixed point iteration

1 fixed point of a function

✓ definition 04

real number r is a **fixed point** of function g if g(r) = r.

✓ form

1. restate problem f(x)=0 into form g(x)=x

$$egin{aligned} f(x) = \cos x - x = 0 & \Rightarrow & g(x) = \cos x & \Longrightarrow & r pprox 0.7390851332; \ f(x) = x^3 - x = 0 & \Rightarrow & g(x) = x^3 & \Longrightarrow & r = -1, 0, 1. \end{aligned}$$

- 2. then iterate from initial guess x_0 .
- ✓ algorithm

```
x[0] = initial guess
x[i+1] = g(x[i]) \text{ for } i = 0,1,2,...
x[1] = g(x[0])
x[2] = g(x[1])
x[3] = g(x[2])
...
```

```
# algorithm, basic
     def fpi(g,x,tol=1e-8,max_iter=100):
      count = 0
       gx = g(x)
       while (abs(gx-x) > tol) and (count < max_iter):</pre>
8
        gx = g(x)
        count += 1
10
       return x
11
1
     # algorithm, expanded for lecture
2
3
     def fpi_expanded(g,x,tol=le-8,max_iter=100,worksheet=False): --
23
```

2 geometry

fpi may not converge! but if g is continuous and x_i converge to r, then r is a fixed point.

$$g(r)=g\left(\lim_{i o\infty}x_i
ight)=\lim_{i o\infty}g(x_i)=\lim_{i o\infty}x_{i+1}=r.$$

✓ example 01, revisited

$$x^3 + x - 1 = 0$$
.

1.
$$x=\overbrace{1-x^3}^{g_1(x)} \quad \Rightarrow \quad g_1(x)=x.$$
 \checkmark

```
1  # example 01-1, g(x) = 1 - x^3
2
3  if __name__ == "__main__": --
```

example 01-1

i	x[i]
000	0.50000000
001	0.87500000
002	0.33007812
003	0.96403747
004	0.10405419
005	0.99887338
008	0.00000012
009	1.00000000
010	0.00000000
011	1.00000000
012	0.00000000

0.4

0.6

0.8

1.0

✓ code, example 01-2

-0.2

2.
$$x=(x^3)^{rac{1}{3}}=\overbrace{(1-x)^{rac{1}{3}}}^{g_2(x)} \Rightarrow g_2(x)=x.$$
 \checkmark

0.2

 $g_1(x) = 1 - x^3$

0.0

```
1 # example 01-2, g(x) = cbrt(1 - x)
2
3 if __name__ == "__main__":
4
```

example $01-2. \times 0 = \text{mean.}$ (endpoints diverge.)

i	x[i]
000	0.50000000
001	0.79370053
002	0.59088011
003	0.74236393
004	0.63631020
005	0.71380081
048	0.68232779
049	0.68232782
050	0.68232779
051	0.68232781
052	0.68232780

✓ code, example 01-3

3.
$$g_3(x)=rac{1+2x^3}{1+3x^2}$$
 bc

$$f(x) = x^3 + x - 1 = 0$$

$$x^3 + x - 1 + 2x^3 = 0 + 2x^3$$

$$(3x^2 + 1) \cdot x = +1 + 2x^3 \quad \Rightarrow \quad x = \underbrace{\frac{1 + 2x^3}{1 + 3x^2}}_{g_3(x)}. \quad \checkmark$$

ie, add $2x^3$ to each side of f(x) to reduce its order. for why "2" in " $2x^3$ ", consider what g(x) is wrt x.

```
1  # example 01-3, g(x) = [1+2x^3] / [1+3x^2]]
2
3  if __name__ == "__main__": ---
```

 \Rightarrow example 01-3, \times 0 = mean.

i	x[i]
000	0.50000000
001	0.71428571
002	0.68317972
003	0.68232842
004	0.68232780

3 linear convergence

consider linear functions, $g_1(x)=-\frac32x+\frac52$ and $g_2(x)=-\frac12x+\frac32$. while both have fixed point of r=1, $|g_1'(1)|=|-\frac32|>1$, $|g_2'(1)|=|-\frac12|<1$.

✓ code, visual: convergence

linear convergence $g_2(x) = -\frac{1}{2}x + \frac{3}{2}$ 1.5 1.0 0.5

1.0

1.5

2.0

$$g_1(x) = -\frac{3}{2}(x-1) + 1$$
 $\Rightarrow g_1(x) - 1 = -\frac{3}{2}(x-1)$
 $\Rightarrow x_{i+1} - 1 = -\frac{3}{2}(x_i - 1)$
 $e_i = |x_i - r| \Rightarrow e_{i+1} = \frac{3}{2}e_i;$
 $g_2(x) = -\frac{1}{2}(x-1) + 1$
 $\Rightarrow g_2(x) - 1 = -\frac{1}{2}(x-1)$
 $\Rightarrow x_{i+1} - 1 = -\frac{1}{2}(x_i - 1)$
 $e_i = |x_i - r| \Rightarrow e_{i+1} = \frac{1}{2}e_i.$

0.0

0.5

✓ definition 05

let e_i denote error at step i of an iterative method. if

$$\lim_{i\to\infty}\frac{e_{i+1}}{e_i}=S<1,$$

the method obeys $\operatorname{\bf linear}$ convergence with rate S.

✓ theorem 06

assume g is continuously differentiable, g(r)=r and S=|g'(r)|<1. then FPI converges linearly with rate S to r for guesses x_0 sufficiently close to r.

✓ proof

let x_i denote iterate at step i. by mean value theorem (MVT), there exists number c_i between x_i and r such that

$$x_{i+1} - r = g'(c_i)(x_i - r)$$
 $\qquad \qquad \downarrow \qquad x_{i+1} = g(x_i), r = g(r), e_i = |x_i - r|$ $e_{i+1} = |g'(c_i)|e_i.$

if S=|g'(r)|<1, then by continuity of g' there is small neighborhood around r for which S<|g'(x)|<(S+1)/2<1. If x_i in this neighborhood, then c_i is as well. so

$$e_{i+1} \leq rac{S+1}{2}e_i.$$

ie, error decreases by at least (S+1)/2 on current and each future step. ie, as $\lim_{i o\infty}x_i=r$,

$$\lim_{i o\infty}rac{e_{i+1}}{e_i}=\lim_{i o\infty}|g'(c_i)|=|g'(r)|=S.$$

✓ usw

ie, the approximate error relationship

$$e_{i+1} \approx Se_i$$

holds in the limit as convergence is approached where $S=|g^{\prime}(x^{st})|.$

✓ definition 07

an iterative method is **locally convergent** to r if method converges to r for initial guesses sufficiently close to r.

ie, the g(x) is locally convergent to root r if there exists some neighborhood $(r-\epsilon,r+\epsilon)$ where $\epsilon>0$ such that all initial guesses in that neighborhood converge. specifically, theorem 06 states that fpi converges locally if |g'(r)|<1.

✓ example 03

explain why $g(x) = \cos x$ converges.

bc
$$g'(r) = -\sin r \approx -\sin 0.74 \approx -0.96 \Rightarrow |g'(r)| < 0$$
. \checkmark

✓ example 04

find root of $\cos x = \sin x$ using FPI.

$$\Rightarrow g(x) = x + \cos x - \sin x = x.$$

✓ code, example 04

```
1 # example 04, g(x) = x + cosx - sinx
2
3 if __name__ == "__main__":
4
```

example 04. $\times 0 = 0$.

i	x[i]	e[i]	"/e[i-1]
000 001 002 003 004	0.00000000 1.00000000 0.69883132 0.82110248 0.77061968	0.78539816 0.21460184 0.08656684 0.03570431 0.01477848	 0.27323954 0.40338351 0.41244791 0.41391311
005	0.79151885	0.00612069	0.41416208
017 018 019 020 021	0.78539832 0.78539810 0.78539819 0.78539815 0.78539817	0.00000016 0.00000006 0.00000003 0.00000001	0.41421356 0.41421356 0.41421356 0.41421356 0.41421358

example 04, $g_4(x) = x + \cos x - \sin x$

that last table column explains the previous column. ie, the last column displays the ratio by which error e_i decreases:

$$e_i pprox 0.414 \, e_{i-1}$$
.

theorem 06 implies

$$S = |g'(r)| = |1 - sin \, r - cos \, r| = |1 - rac{\sqrt{2}}{2} - rac{\sqrt{2}}{2}| = |1 - \sqrt{2}| pprox 0.414.$$
 \checkmark

find fixed points of $g(x)=2.8\,x-x^2$.

by various non-computational shortcuts, roots r=0,1.8.

✓ code, example 05

```
1 # example 05, g(x) = 2.8x - x^2
2
3 if __name__ == "__main__":
4
```

→ evample

example 05. x0 = 0.1.

i	x[i]	e[i]	"/e[i-1]
000 001 002 003 004 005	0.10000000 0.27000000 0.68310000 1.44605439 1.95787899 1.64877103	1.70000000 1.53000000 1.11690000 0.35394561 0.15787899 0.15122897	0.90000000 0.73000000 0.31690000 0.44605439 0.95787899
077 078 079 080 081	1.79999999 1.80000001 1.7999999 1.80000001 1.79999999	0.00000001 0.000000001 0.000000001 0.000000001 0.000000001	0.80000002 0.79999995 0.80000003 0.79999998

example 05, $g_5(x) = 2.8 x - x^2$

obviously the intersection of $g_5(x)$ and y=x are the roots; however, note that root r=1.8 is found from $x_0=0.1$ despite its closer proximity to root r=0. thats bc g'(1.8)=-0.8 vs g'(0)=2.8, :D.

example 06: the babylonians

calculate $\sqrt{2}$ using FPI.

$$x_{i+1}=rac{x_i+rac{2}{x+i}}{2}.$$

✓ code, example 06

```
1 # example 06, g(x) = [x + 2/x]/2
2
3 if __name__ == "__main__":
4
```

example 06. $\times 0 = 1$.

i	x[i]		"/e[i-1]
000	1.00000000	0.41421356	0.20710678
001	1.50000000	0.08578644	0.02859548
002	1.41666667	0.00245310	0.00086580
003	1.41421569	0.00000212	0.00000075

4 stopping criteria

bisection is predictable and guaranteed to converge; FPI might converge locally, linearly and quickly. or it might not, lol. instead of estimating steps required for a given error, specify a stopping criteria for FPI. eg, for tolerance TOL,

$$egin{aligned} \Delta x &= |x_{i+1} - x_i| < TOL \sim \epsilon \ & rac{|x_{i+1} - x_i|}{|x_{i+1}|} < TOL, \quad r ext{ not near } 0 \ & rac{|x_{i+1} - x_i|}{\max(|x_{i+1}|, heta)} < TOL, \quad heta > 0 ext{ and } r ext{ near } 0. \end{aligned}$$