Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms

Group Members

Sijal Fatima

Kainat Ijaz

Instructor Name

Mam Maida Sajid

(Data Mining)

Research Paper Overview

Title

Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms Authors & Venue

Theyazn H.H. Aldhyani, Ali Saleh Alshebami, Mohammed Y. Alzahrani; _Journal of Healthcare Engineering, 2020_

Problem Statement and Objectives

Challenge

Ambiguous data in chronic disease diagnosis hinders traditional classifiers.

Objectives

Implement Rough K-Means for ambiguous data.

Compare performance to K-Means, GMM, and DNN.

Literature Review

Rough K-Means (RKM)

Separates data into lower and upper approximations.

K-Means

Traditional clustering, struggles with ambiguous data.

Gaussian Mixture Models (GMM)

Models complex distributions but lacks precision with overlapping clusters.

Deep Neural Networks (DNN)

Handles complex patterns effectively.

Algorithm:Rough K-Means (RKM)

Lower Approximation

Upper Approximation

Steps

Exclusive cluster data points.

Ambiguous data spanning multiple clusters. Data Preprocessing, RKM clustering, Centroid recalculation, Classifier training.

Datasets and Experimental Setup

Diabetes

Breast Cancer

Chronic Kidney Disease

768 instances, 8 features (_UCI

569 instances, 30 features (_Kaggle_).

400 instances, 24 features (_Kaggle_).

Repository_).

Listerger **GMM** Rendall K-neans Axange 28.4 10.798

Results and Analysis

Method	Accuracy	F1-Score (Class 0)	F1-Score (Class 1)
Rough K- Means	68%	72%	62%
Traditional K- Means	32%	38%	24%
Gaussian Mixture	34%	100%	0%
DNN	89%	89%	89%

Weaknesses and Improvements

Weaknesses

Improvements

Sensitive to initial centroids and thresholds.

Adaptive threshold selection, scalability enhancements.

Conclusion

Summary

Implemented RKM for ambiguous data handling.
RKM outperformed K-Means and GMM. DNN integration achieved highest accuracy.

Significance

Improved diagnostic accuracy for chronic disease classification.

A3Q

Thank you! Any questions?