Cálculo EE

 1° semestre do ano letivo 2021 — , Departamento de Matemática e Aplicações, Universidade do Minho

Teste 1 — janeiro 2021

regime:

nº de inscrição:

nome completo:

nº de aluno:

v1

A prova tem a duração de 90' e termina com a palavra "Fim".

Grupo I — Para cada questão deste grupo, assinale através de uma cruz na tabela ao lado qual das quatro proposições é verdadeira (existe apenas uma por questão). Cotações — resposta certa: 2.0; nenhuma 0; mais do que uma proposição selecio**nadas:** -0.5; **resposta errada:** -0.5, sendo 0 a cotação mínima neste grupo.

	1	2	3	4	5	6	7	8
Α								
В								
С								
D								

I.1 Uma primitiva de $x\sqrt{x} + \frac{1}{\sqrt{1-x}}$ é

$$\boxed{A} \quad \frac{2}{5}x^2\sqrt{x} - 2\sqrt{1-x}$$

$$\boxed{\mathsf{C}} \quad \frac{1}{2}x^2\sqrt{x} + 2\sqrt{1-x}$$

1.2 Uma primitiva de $\cos^2(x) - \sin^2(x) + \tan^2(x)$ é

$$\boxed{A} \frac{1}{3} \left(\cos^3(x) + \sin^3(x) - \tan^3(x) \right)$$

B
$$\frac{1}{3}(-\cos^3(x)-\sin^3(x))+\ln(\sin^2(x))$$

D
$$tan(x) - x$$

1.3 Calcule o valor do integral $\int_0^1 \frac{1}{\sqrt{16-x^2}} dx$.

$$B = \frac{\pi}{4}$$

$$C$$
 arcsin $\frac{1}{8}$

$$\square$$
 arcsin $\frac{1}{4}$

1.4 O valor do integral $\int_0^1 (x^2 + 1)\sqrt{x} \, dx$ é

$$\boxed{A} \frac{20}{21}$$

$$\boxed{\mathsf{B}} \frac{10}{15}$$

$$C$$
 $\frac{3}{7}$

I.5 O integral de $\int_0^1 \frac{e^{2x}}{1 + e^{4x}} dx \neq 0$

A
$$\frac{e^2}{1+e^4} - \frac{1}{2}$$

$$\boxed{\mathsf{B}} \frac{1}{2} \arctan(e^2)$$

$$\begin{array}{c|c}
\hline
 & 1 + e^{x} & 2 \\
\hline
 & 1 & 2 & 2 \\
\hline
 & 2 & 2 & 3 \\
\hline
 & 2 & 3 & 3 \\
\hline
 & 2 & 3 & 3 \\
\hline
 & 2 & 3 & 3 \\
\hline
 & 3 & 3 & 3 \\
\hline
 & 2 & 3 & 3 & 3 \\
\hline
 & 3 & 3 & 3 & 3 \\
\hline
 & 3 & 3 & 3 & 3 \\
\hline
 & 3 & 3 & 3 & 3 \\
\hline
 & 3 & 3 & 3 & 3 \\
\hline
 & 3 & 3 & 3 & 3 \\
\hline
 & 4 & 3 & 3 & 3 \\
\hline
 & 5 & 3 & 3 & 3 \\
\hline
 & 6 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline
 & 7 & 3 & 3 & 3 \\
\hline$$

$$\boxed{\mathsf{D}} \ \frac{1}{2} \arctan(e^2) + \frac{\pi}{8}$$

1.6 Calcule o valor do integral impróprio $\int_0^1 \frac{2}{5\sqrt[5]{x^3}} dx$, se possível.

1.7 O integral $\int_0^1 x^2 \cdot \sin(\pi x) dx$ tem o valor de:

A -3B $\frac{1}{\pi} - \frac{4}{\pi^3}$ C 1

$$\begin{bmatrix} A \end{bmatrix}$$
 -3

$$\overline{\mathbb{B}}$$
 $\frac{1}{\pi} - \frac{4}{\pi^3}$

1.8 A primitiva de
$$x \exp(5x)$$
 é
$$A = -\frac{x}{5} \exp(5x) + \frac{\exp(5x)}{5} + c$$

$$\boxed{\mathsf{B}} \ x. \exp(5x) - \exp(5x) + c$$

$$\boxed{C} \quad -\frac{x}{5}\exp(5x) - \frac{\exp(5x)}{5} + c$$

$$\boxed{\mathsf{D}} \ \frac{x}{5} \exp(5x) - \frac{\exp(5x)}{25} + c$$

Grupo II — Responda na folha que lhe foi fornecida, por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efetuar, bem como as respetivas justificações.

II.1 Considere a função racional $f(x) = \frac{3x^2+4x-1}{(x-1)(x^2+2)}$.

A Decomponha f(x) na soma de elementos simples.

$$\boxed{\mathsf{B}} \quad \mathsf{Calcule} \int_{-\sqrt{2}}^{0} f(x) dx.$$

Fim.

Cálculo EE

 1° semestre do ano letivo 2021 — , Departamento de Matemática e Aplicações, Universidade do Minho

Teste 1 — janeiro 2021

regime:

nº de inscrição:

nome completo:

nº de aluno:

v2

A prova tem a duração de 90' e termina com a palavra "Fim".

Grupo I — Para cada questão deste grupo, assinale através de uma cruz na tabela ao lado qual das quatro proposições é verdadeira (existe apenas uma por questão). Cotações — resposta certa: 2.0; nenhuma 0; mais do que uma proposição selecio**nadas:** -0.5; **resposta errada:** -0.5, sendo 0 a cotação mínima neste grupo.

	1	2	3	4	5	6	7	8
Α								
В								
С								
D								

I.1 A primitiva de $x \cos(4x)$ é

Α	-x	cos	(4x)) + sin((4x))+c

- $D \frac{x}{4}\sin(4x) \frac{\cos(4x)}{16} + c$
- **1.2** O valor do integral $\int_0^1 x \sqrt{x} \, dx$ é

C 0

- $\begin{array}{c} \textbf{I.3} \quad \text{O integral de} \ \int_{-1}^{-1/2} \frac{e^{2x}}{\sqrt{1-e^{4x}}} dx \ \text{\'e} \\ \hline \boxed{\textbf{A}} \ \operatorname{arcsin}(\frac{1}{e}) \operatorname{arcsin}(\frac{1}{e^2}) \end{array}$
- B $\frac{e^{-1}}{\sqrt{1-e^{-2}}} \frac{e^{-2}}{\sqrt{1-e^{-4}}}$
- $\boxed{\mathbb{C}}$ $\frac{1}{2} \arcsin(\frac{1}{e}) \frac{1}{2} \arcsin(\frac{1}{e^2})$
- **1.4** Uma primitiva de $\sin^2(x)\cos(x) + \frac{\sin(x)}{\cos^2(x)}$ é
- $\boxed{A} \frac{1}{6} \sin^3(x) \cos^2(x) + \frac{3}{2} \frac{\sin^2(x)}{\cos^3(x)}$
- $\boxed{\mathsf{B}} \ \frac{1}{3}\sin^3(x) + \frac{1}{\cos(x)}$
- $\boxed{\mathsf{C}} \ \tan^2(x) \frac{1}{\tan^2(x)}$
- **1.5** O integral $\int_0^1 x^2 . \sin(\pi x) dx$ tem o valor de:

1.6 Uma primitiva de $\sqrt[5]{(2x+3)^2} + \frac{(x-2)^2}{x}$ é $\boxed{A} \frac{7}{3} \sqrt[7]{(2x+3)^3} - \frac{2}{3} \frac{(x-2)^3}{x^2}$

$$\boxed{A} \ \frac{7}{3} \sqrt[7]{(2x+3)^3} - \frac{2}{3} \frac{(x-2)^3}{x^2}$$

B $\frac{5}{14} \sqrt[5]{(2x+3)^7} + \frac{(x-4)^2}{2} + \ln(x^4)$

C
$$\frac{7}{10}\sqrt[7]{(2x+3)^5} + \frac{3}{2}\ln(|x-2|)$$

 $\boxed{D} \frac{1}{3} \sqrt[3]{(2x+3)} + \frac{1}{3} \frac{(x-2)}{x^2} + 4 \ln(|x|)$

1.7 Calcule o valor do integral $\int_0^{1/3} \frac{1}{\sqrt{1+9x^2}} dx.$

- \boxed{A} arg sinh $\frac{1}{3}$
- C $\frac{1}{3}$ arg sinh 1
- \square arcsin $\frac{1}{3}$

1.8 Calcule o valor do integral impróprio $\int_0^1 \frac{3}{2x^2} dx$, se possível.

A 1

 $C + \infty$

D $\frac{2}{3}$

Grupo II — Responda na folha que lhe foi fornecida, por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efetuar, bem como as respetivas justificações.

II.1 Considere o integral $\int_5^8 \frac{9-x}{3-\sqrt{9-x}} dx.$

A Escreva o integral obtido depois de fazer a mudança de variável $t = \sqrt{9-x}$ no integral dado.

Calcule o integral anterior.

Fim

Cálculo EE

1º semestre do ano letivo 2021 — , Departamento de Matemática e Aplicações, Universidade do Minho

Teste 1 — janeiro 2021

regime: n^{Q} de inso

 $n^{\underline{o}}$ de inscrição: n

nome completo:

nº de aluno:

v3

A prova tem a duração de 90' e termina com a palavra "Fim".

Grupo I — Para cada questão deste grupo, assinale através de uma cruz na tabela ao lado qual das *quatro* proposições é verdadeira (existe apenas uma por questão). Cotações — resposta certa: 2.0; nenhuma 0; **mais do que uma proposição selecionadas:** -0.5; **resposta errada:** -0.5, sendo 0 a cotação mínima neste grupo.

	1	2	3	4	5	6	7	8
Α								
В								
С								
D								

I.1 O valor do integral $\int_0^1 (x-1)^2 \sqrt{x} \, dx$ é

 $\boxed{A} \frac{7}{15}$

 $\boxed{\mathsf{B}} \ \frac{16}{105}$

C 1

 $D \frac{39}{105}$

I.2 A primitiva de $x \exp(5x)$ é

$$\boxed{A} \quad \frac{x}{5} \exp(5x) - \frac{\exp(5x)}{25} + c$$

$$\boxed{\mathsf{B}} - \frac{x}{5} \exp(5x) - \frac{\exp(5x)}{5} + c$$

$$C$$
 $x^2 \exp(5x) - \exp(5x) + c$

$$\boxed{\mathsf{D}} -\frac{x}{5}\exp(5x) + \frac{\exp(5x)}{5} + c$$

1.3 O integral de $\int_0^1 \frac{e^{2x}}{1 + e^{4x}} dx \notin$

$$\boxed{A} \quad \frac{1}{2} \arctan(e^2) + \frac{\pi}{8}$$

$$\boxed{\mathsf{B}} \ \frac{1}{2} \arctan(e^2)$$

$$\boxed{C}$$
 $\frac{1}{2}$ arctan(e^2) $-\frac{\pi}{8}$

I.4 Uma primitiva de $x\sqrt{x} + \frac{1}{\sqrt{1-x}}$ é

$$A \frac{1}{2}x^2\sqrt{x} - \frac{1}{2}\sqrt{1-x}$$

B
$$\frac{2}{5}x^2\sqrt{x} - 2\sqrt{1-x}$$

C
$$\frac{3}{5}x^2\sqrt{x} - \frac{1}{2}\sqrt{1-x}$$

1.5 Calcule o valor do integral impróprio $\int_0^1 \frac{2}{5\sqrt[5]{x^3}} dx$, se possível.

A 0

 $B + \infty$

C $\frac{2}{5}$

D 1

1.6 O integral $\int_0^1 x^2 \cdot \sin(\pi x) dx$ tem o valor de:

$$\boxed{\mathsf{A}} \ \frac{1}{3\pi}$$

$$\boxed{\mathsf{B}} \ \frac{1}{\pi} + \frac{4}{\pi^3}$$

$$\boxed{\square} \quad \frac{1}{\pi} - \frac{4}{\pi^3}$$

1.7 O integral de $\int_0^1 x^4 (1-x^5)^{\frac{1}{3}} dx$ é

1.8 Uma primitiva de $\frac{\sin(2x)}{2\sin(x)} + \frac{2\cos(x)}{\cos(2x) - 1}$ é

[A] $\frac{\sin^2(2x)}{\sin^2(x)} - \frac{\cos^2(x)}{2\cos^2(2x) - 1}$

 $\boxed{\mathsf{B}} - \ln\left(2|\cos(x)|\right) + 2\ln\left(|\cos(2x) - 1|\right)$

Grupo II — Responda na folha que lhe foi fornecida, por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efetuar, bem como as respetivas justificações.

II.1 Considere o integral $\int_0^9 \frac{\sqrt{x^3}}{\sqrt{x}-4} dx$.

Escreva o integral obtido depois de fazer a mudança de variável $t=\sqrt{x}$ no integral dado.

В. Calcule o integral anterior.

Fim.