Opportunisme et ordonnancement en optimisation sans dérivées

Loïc Anthony Sarrazin-Mc Cann

École Polytechnique de Montréal

1er mai 2018

- Introduction
- Recherche Directe
- Opportunisme et ordonnancement
- Tests numériques
- Conclusion

- Introduction
- 2 Recherche Directe
- Opportunisme et ordonnancement
- 4 Tests numériques
- Conclusion

Problème d'optimisation :

Introduction

$$\begin{cases} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.à.} & c_j(x) \le 0 \ \forall j \in \{1, \dots, \} \\ & l_i \le x_i \le u_i \end{cases}$$

00000

Problème d'optimisation :

$$\begin{cases} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.à.} & c_j(x) \le 0 \quad \forall j \in \{1, \dots, \} \\ & l_i \le x_i \le u_i \end{cases}$$

• f(x) et $c_i(x)$ sont des boîtes noires.

Boîte noire

available

optima

Software might fail

Non-smooth, noisy

Copyright © 2009 Boeing, All rights reserved

00000

Types d'algorithmes de DFO

Méthodes de région de confiance

00000

Méthodes de recherche directe

Types d'algorithmes de DFO

Méthodes de région de confiance

Méthodes de recherche directe

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS)

Types d'algorithmes de DFO

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS)
Simpliciales (Nelder-Mead)

Types d'algorithmes de DFO

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS)
Simpliciales (Nelder-Mead)

00000

Méthodes de recherche directe

Directionnelles (MADS) Simpliciales (Nelder-Mead)

Types d'algorithmes de DFO

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS) Simpliciales (Nelder-Mead)

Autres méthodes

Heuristiques (Essaim de particules, Recuit Simulé)

Types d'algorithmes de DFO

Méthodes de région de confiance

Méthodes de recherche directe

Directionnelles (MADS)

Simpliciales (Nelder-Mead)

Autres méthodes

Heuristiques (Essaim de particules, Recuit Simulé)

Hybrides (Filtrage implicite)

Introduction 00000

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes?

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes ?

Si non, on étudiera alors l'impact de la stratégie opportuniste.

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes?

Si non, on étudiera alors l'impact de la stratégie opportuniste.

Stratégie opportuniste

La stratégie opportuniste désigne l'arrêt prématuré d'une étape d'un l'algorithme si les conditions pour passer à l'étape suivante sont déjà remplies.

Notre but : réduire le nombre d'évaluations d'une boîte noire.

Est-il toujours nécessaire d'évaluer tous les points déterminés lors des différentes étapes des méthodes ?

Si non, on étudiera alors l'impact de la stratégie opportuniste.

Stratégie opportuniste

La stratégie opportuniste désigne l'arrêt prématuré d'une étape d'un l'algorithme si les conditions pour passer à l'étape suivante sont déjà remplies.

Maintes fois mentionnée et utilisée mais jamais étudiée en soi.

00000

Sonde non-opportuniste

$P^k :=$

$$t_1 = (1, 2, 2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1 = (1, 2, 2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

00000

Sonde non-opportuniste

$P^k :=$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1 = (1, 2, 2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

Introduction

00000

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1)$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2, 3, 2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste $P^k :=$

Introduction

00000

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), \ f(t_2) = 1$$

$$t_3 = (2,2,1), \ f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2,3,2)$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4 = (2, 2, 3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2,2,3), f(t_3) = 5$$

$$t_5 = (2, 3, 2)$$

$$t_6 = (3, 2, 2)$$

Sonde opportuniste

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

7/33

00000

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3), f(t_3) = 5$$

$$t_5 = (2,3,2), f(t_3) = -1.5\checkmark$$

$$t_6 = (3, 2, 2)$$

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2,2,1), \ f(t_3) = -1$$

$$t_4 = (2, 2, 3), f(t_3) = 5$$

$$t_5 = (2,3,2), f(t_3) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_3) = 6$$

$$P^k :=$$

$$t_1=(1,2,2)$$

$$t_2=(2,1,2)$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

Introduction

00000

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2,2,1), f(t_3) = -1$$

$$t_4 = (2, 2, 3), f(t_3) = 5$$

$$t_5 = (2,3,2), f(t_3) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_3) = 6$$

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2=(2,1,2)$$

$$t_3 = (2, 2, 1)$$

 $t_4 = (2, 2, 3)$

$$t_5 = (2, 3, 2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

Introduction

00000

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), \ f(t_2) = 1$$

$$t_3 = (2,2,1), f(t_3) = -1$$

$$t_4 = (2, 2, 3), f(t_3) = 5$$

$$t_5 = (2,3,2), f(t_3) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_3) = 6$$

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), \ f(t_2) = 1$$

$$t_3=(2,2,1)$$

$$t_4=(2,2,3)$$

$$t_5=(2,3,2)$$

$$t_6=(3,2,2)$$

Sonde non-opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2,2,3), f(t_3) = 5$$

$$t_5 = (2,3,2), f(t_3) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_3) = 6$$

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2,1,2), \ f(t_2) = 1$$

$$t_3 = (2,2,1), \ f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2, 3, 2)$$

$$t_6 = (3, 2, 1)$$

Sonde non-opportuniste

$$P^k :=$$

Introduction

00000

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2, 2, 1), f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3), f(t_3) = 5$$

$$t_5 = (2,3,2), f(t_3) = -1.5\checkmark$$

$$t_6 = (3, 2, 1), f(t_3) = 6X$$

Sonde opportuniste

$$P^k :=$$

$$t_1 = (1, 2, 2), f(t_1) = 2X$$

$$t_2 = (2, 1, 2), f(t_2) = 1$$

$$t_3 = (2,2,1), \ f(t_3) = -1 \checkmark$$

$$t_4 = (2, 2, 3)$$

$$t_5 = (2, 3, 2)$$

$$t_6 = (3, 2, 1)$$

Alors:

- Pour quelles méthodes est-elle valable?
- 2 Quand doit-on arrêter la sonde?
- 3 Comment doit-on ordonner les points de P^k ?

- Recherche Directe
- Opportunisme et ordonnancemen:
- 4 Tests numériques
- Conclusion

Identification des méthodes

Question 1.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Question 1.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance

Identification des méthodes

Question 1.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme

Question $\overline{1}$.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Identification des méthodes

Question 1.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé Recherche directe directionnelles

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré. Recherche directe directionnelles hybrides

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Recherche directe directionnelles hybrides

- Convergent mais on peut altérer le bon fonctionnement.

Identification des méthodes

Question 1.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Recherche directe directionnelles hybrides

Convergent mais on peut altérer le bon fonctionnement.
 Heuristiques

Identification des méthodes

Question 1.

Pour quelles méthode est-ce valable?

Critère : les méthodes doivent posséder une liste de points.

Région de confiance X

- Une seule évaluation de f(x) pour une itération de l'algorithme Recherche directe simpliciales X
- Déja un arrêt prématuré et un ordre pré-déterminé

Recherche directe directionnelles

- Convergent vers un optimum indépendamment de l'arrêt prématuré.

Recherche directe directionnelles hybrides <

- Convergent mais on peut altérer le bon fonctionnement.

Heuristiques?

- Dépends de la forme de l'heuristique.

Méthodes de recherche directe directionelles :

Méthodes de recherche directe directionelles :

• Échantillonne f(x) et c(x) sur un ensemble fini de points.

Méthodes de recherche directe directionelles :

- Échantillonne f(x) et c(x) sur un ensemble fini de points.
- Prends une action basée seulement sur ces valeurs.

Méthodes de recherche directe directionelles :

- Échantillonne f(x) et c(x) sur un ensemble fini de points.
- Prends une action basée seulement sur ces valeurs.

Algorithme 1 Cadre de travail en recherche directe directionnelles

```
for k = 1, 2, ... do
```

Étape de recherche : Calcule f(x) à un ensemble de points S^k issu de mécanismes heuristiques.

Si succès, mise à jour de x^k

Étape de sonde : Calcule f(x) à un ensemble de points $P^k:=\{x^k+\delta^k d:d\in D\}$, où D est un ensemble générateur positif. Si succès, mise à jour de x^k

end for

Méthodes de recherche directe directionelles :

- Échantillonne f(x) et c(x) sur un ensemble fini de points.
- Prends une action basée seulement sur ces valeurs.

Algorithme 1 Cadre de travail en recherche directe directionnelles

```
for k = 1, 2, ... do
```

Étape de recherche : Calcule f(x) à un ensemble de points S^k issu de mécanismes heuristiques.

Si succès, mise à jour de x^k

Étape de sonde : Calcule f(x) à un ensemble de points $P^k := \{x^k + \delta^k d : d \in D\}$, où D est un ensemble générateur positif. Si succès, mise à jour de x^k

end for

Remarque : on ne s'intéresse qu'aux étapes de sonde pour l'opportunisme.

Algorithme 2 Recherche par coordonnées

for k = 1, 2, ... do

Etape de sonde : Calcule f(x) à un ensemble de points P^k := $\{x^k + \delta^k d : d \in D_{\oplus}\}, \text{ où } D_{\oplus} := \{\pm e_1, \pm e_2, \dots, \pm e_n\}.$

Si $\exists t$ tel que $f(t) < f(x^k)$, $t \in P^k$: Succès mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \frac{\delta^k}{2}$.

end for

Introduction

Si les évaluations sont séquentielles \rightarrow On peut arrêter l'algorithme après un succès.

10 / 33

Recherche par coordonnées (CS)

FIGURE - CS

Ensemble des directions

$$D = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Mise à jour, succès itération k = 0

$$x^1 \leftarrow x^0 + \delta^0 d_4$$
$$\delta^1 \leftarrow \delta^0$$

Recherche par coordonnées (CS)

Figure - CS

Ensemble des directions

$$D = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Mise à jour, échec itération k = 1

$$x^2 \leftarrow x^1$$
$$\delta^2 \leftarrow \frac{\delta^1}{2}$$

Recherche par coordonnées (CS)

FIGURE - CS

Recherche par motifs généralisée (GPS)

Algorithme 3 Recherche par motifs généralisée

for k = 1, 2, ... do

Étape de sonde : Calcule f(x) à un ensemble de points $P^k :=$ $\{x^k + \delta^k d : d \in D\}$, où D est un ensemble générateur.

Si $\exists t$ tel que $f(t) < f(x^k)$, $t \in P^k$: Succès mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \tau^{-1} \delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \tau \delta^k$.

end for

Introduction

Recherche par motifs généralisée (GPS)

FIGURE - GPS

Paramètres |

$$\tau = \frac{2}{3},$$

$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, succès itération

$$k = 0$$

$$x^{1} \leftarrow x^{0} + \delta^{0} d_{3}$$

$$\delta^{1} \leftarrow \frac{3}{2} \delta^{0}$$

Recherche par motifs généralisée (GPS)

FIGURE - GPS

Paramètres

$$\tau = \frac{2}{3}, D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, échec itération k = 1 $x^2 \leftarrow x^1$ $\delta^2 \leftarrow \frac{2}{3}\delta^1$

FIGURE - GPS

Recherche par ensemble générateurs (GSS)

Algorithme 4 Recherche par ensemble générateurs

for k = 1, 2, ... do

Introduction

Étape de sonde : Calcule f(x) à un ensemble de points $P^k := \{x^k + \delta^k d : d \in D\}$, où D est un ensemble générateur respectant certaines conditions.

Si $\exists t$ tel que $f(t) < f(x^k) - \rho(\delta^k)$, $t \in P^k$: Succès mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \phi \delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k) - \rho(\delta^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \tau \delta^k$.

end for

L'analyse de converge est basée sur la condition de décroissance minimale.

Recherche par ensembles générateurs (GSS)

Paramètres $\phi = \frac{3}{2}, \ \tau = \frac{1}{2},$ $D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Mise à jour, succès itération k = 0

$$f(t_1) < f(x^1) - \rho(\delta^1)$$

$$x^1 \leftarrow x^0 + \delta^0 d_3$$

$$\delta^1 \leftarrow \frac{3}{2}\delta^0$$

Figure - GSS

Recherche par ensembles générateurs (GSS)

Paramètres
$$\tau = \frac{2}{3}$$
,
$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, échec itération k = 1

$$f(t_6) > f(x^1) - \rho(\delta^1)$$

$$x^2 \leftarrow x^1$$

$$\delta^2 \leftarrow \frac{1}{2}\delta^1$$

Figure - GSS

FIGURE - GSS

Algorithme 5 Recherche par treillis adaptatifs

for k = 1, 2, ... do

Introduction

Mise à jour : $\delta^k \leftarrow \min(\Delta^k, (\Delta^k)^2)$

Étape de sonde : Calcule f(x) à un ensemble de points

 $P^k := \{x^k + \delta^k d : d \in D\}, \text{ où } D \subset F^k,$

avec F^k le cadre de demi côté Δ^k .

Si \exists t tel que $f(t) < f(x^k)$, $t \in P^k$: Succès mise à jour de $x^{k+1} \leftarrow t$ et $\Delta^{k+1} \leftarrow \tau^{-1}\Delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\Delta^{k+1} \leftarrow \tau \Delta^k$.

end for

16/33

Recherche par motifs généralisée (MADS)

FIGURE - MADS

Paramètres |

$$\tau = \frac{2}{3},$$

$$D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, succès itération k = 0

$$x^{1} \leftarrow x^{0} + \delta^{0} d_{3}$$
$$\delta^{1} \leftarrow \frac{3}{2} \delta^{0}$$

Recherche par motifs généralisée (MADS)

FIGURE - MADS

Paramètres

$$\tau = \frac{2}{3}, D = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Mise à jour, échec itération k=1 $x^2\leftarrow x^1$ $\delta^2\leftarrow \frac{2}{3}\delta^1$

Recherche par motifs généralisée (MADS)

FIGURE - MADS

Introduction

Algorithme 6 Filtrage implicite

```
for k = 1, 2, ... do
```

Étape de sonde : Calcule f(x) à un ensemble de points

$$P^k := \{x^k + \delta^k d : d \in D_{\oplus}\}, \text{ où } D_{\oplus} := \{\pm e_1, \pm e_2, \dots, \pm e_n\}.$$

Si $\exists t$ tel que $f(t) < f(x^k)$, $t \in P^k$: Succès

Effectuer une recherche linéaire avec $\nabla_s f(x^k)$.

mise à jour de $x^{k+1} \leftarrow t$ et $\delta^{k+1} \leftarrow \delta^k$.

Sinon \nexists t tel que $f(t) < f(x^k)$, $t \in P^k$: Échec mise à jour de $x^{k+1} \leftarrow x^k$ et $\delta^{k+1} \leftarrow \frac{\delta^k}{2}$.

end for

- Introduction
- 2 Recherche Directe
- 3 Opportunisme et ordonnancement
- 4 Tests numériques
- Conclusion

Question 2.

Quand doit-on arrêter la sonde?

Question 2.

Quand doit-on arrêter la sonde?

Question 2.

Quand doit-on arrêter la sonde?

Sonde complète

Désigne l'évaluation de la fonction objectif à tous les points de l'étape de sonde.

Question 2.

Quand doit-on arrêter la sonde?

Sonde complète

Désigne l'évaluation de la fonction objectif à tous les points de l'étape de sonde.

Stratégie opportuniste simple

Désigne l'arrêt prématuré de la sonde à **l'obtention d'un point** satisfaisant le critère de succès.

Différentes stratégies opportunistes

Stratégie opportuniste au p^{ème} succès

Arrêt de la sonde après **l'obtention de** *p* **points** satisfaisant le critère de succès.

Différentes stratégies opportunistes

Stratégie opportuniste au p^{ème} succès

Arrêt de la sonde après **l'obtention de** *p* **points** satisfaisant le critère de succès.

Stratégie opportuniste avec au minimum q évaluations

Arrêt de la sonde **après** q **évaluations** si un point satisfaisant le critère de succès est évalué.

Définitions

Question 3.

Comment doit-on ordonner les points de P^k ?

Définitions

Question 3.

Comment doit-on ordonner les points de P^k ?

Stratégie d'ordonnancement

Stratégie guidant la permutation des points de l'ensemble P^k .

Lexicographique

Lexicographique

Ordonnés comme dans un dictionnaire.

- Lexicographique
 - Ordonnés comme dans un dictionnaire.
- 2 Aléatoire

- 1 Lexicographique
 - Ordonnés comme dans un dictionnaire.
- 2 Aléatoire
- Oirection du dernier succès

- Lexicographique
 - Ordonnés comme dans un dictionnaire.
- Aléatoire
- Oirection du dernier succès
 - Ordonnés selon l'angle avec la direction du dernier succès.

- Lexicographique
 - Ordonnés comme dans un dictionnaire.
- 2 Aléatoire
- 3 Direction du dernier succès
 - Ordonnés selon l'angle avec la direction du dernier succès.
- 4 Guidé par modèle quadratique

Lexicographique

Ordonnés comme dans un dictionnaire.

- Aléatoire
- 3 Direction du dernier succès

Ordonnés selon l'angle avec la direction du dernier succès.

4 Guidé par modèle quadratique

$$A \prec B \text{ si } \tilde{f}(A) < \tilde{f}(B)$$

Lexicographique

Ordonnés comme dans un dictionnaire.

- Aléatoire
- 3 Direction du dernier succès

Ordonnés selon l'angle avec la direction du dernier succès.

4 Guidé par modèle quadratique

$$A \prec B$$
 si $\tilde{f}(A) < \tilde{f}(B)$

 \tilde{f} une fonction substitut quadratique de f.

Déterminer la meilleure amélioration possible avec l'ordonnancement :

Déterminer la meilleure amélioration possible avec l'ordonnancement :

6 Omnisciente

Déterminer la meilleure amélioration possible avec l'ordonnancement :

5 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer la meilleure amélioration possible avec l'ordonnancement :

6 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

Déterminer la meilleure amélioration possible avec l'ordonnancement :

6 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

6 Inverse-Omnisciente

Déterminer la meilleure amélioration possible avec l'ordonnancement :

5 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

6 Inverse-Omnisciente

$$A \prec B \text{ si } f(A) > f(B)$$

Déterminer la meilleure amélioration possible avec l'ordonnancement :

6 Omnisciente

$$A \prec B \text{ si } f(A) < f(B)$$

Déterminer le pire ordonnancement possible :

6 Inverse-Omnisciente

$$A \prec B \text{ si } f(A) > f(B)$$

Impossible à appliquer en pratique

- Introduction
- 2 Recherche Directe
- Opportunisme et ordonnancemen
- Tests numériques
- Conclusion

1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017]

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017] x^0 irréalisable, avec PB

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017] x^0 irréalisable, avec PB
- 3 1 Boîte noire, STYRENE, issue de [Audet, Béchard, Le Digabel 2008]

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- 2 18 problèmes contraints issus de [Audet, Tribes, 2017] x^0 irréalisable, avec PB
- 3 1 Boîte noire, STYRENE, issue de [Audet, Béchard, Le Digabel 2008] $f: R^8 \mapsto R, c: R^8 \mapsto R^{11}, 4 \text{ contraintes EB}, 7 \text{ contraintes PB}$

• 010 instance do could not be a feet to May (and C M M/H 2000)

- 1 212 instances de problèmes issus de [J.J. Moré and S.M. Wild 2009]
- **2** 18 problèmes contraints issus de [Audet, Tribes, 2017] x^0 irréalisable, avec PB
- **3** 1 Boîte noire, STYRENE, issue de [Audet, Béchard, Le Digabel 2008] $f: R^8 \mapsto R, c: R^8 \mapsto R^{11}$, 4 contraintes EB, 7 contraintes PB

 ${
m FIGURE}$ – Organigramme de la production de Styrène, issu de [Audet, Béchard, Le Digabel 2008]

Comparaison des stratégies opportunistes

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

Comparaison des stratégies opportunistes

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

Ordonnancement simple plus efficace.

Comparaison des stratégies opportunistes

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

Opportunisme et ordonnancement

- Ordonnancement simple plus efficace.
- 2 Autres stratégies → Sonde

25 / 33

Tests numériques 000000

Comparaison des stratégies opportunistes

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

- Ordonnancement simple plus efficace.
- Impact moins important sur MADS.

2 Autres stratégies \rightarrow Sonde

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

 Grand impact de l'ordonnancement sur CS.

Tests numériques 0000000

Comparaison des stratégies d'ordonnancement

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

- Grand impact de l'ordonnancement sur CS.
- 2 Hiérarchie des stratégies

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

- Grand impact de l'ordonnancement sur CS.
- 2 Hiérarchie des stratégies

Impact moins important sur MADS.

FIGURE - À gauche : CS sur Moré-Wild, à droite MADS sur Moré-Wild

- Grand impact de l'ordonnancement sur CS.
- 2 Hiérarchie des stratégies

- Impact moins important sur MADS.
- Classement différent sur CS et

FIGURE - À gauche : GSS sur Moré-Wild, à droite IMFIL sur Moré-Wild

FIGURE - À gauche : GSS sur Moré-Wild, à droite IMFIL sur Moré-Wild

 Sur GSS, stratégie aléatoire domine la stratégie lexicographique.

FIGURE - À gauche : GSS sur Moré-Wild, à droite IMFIL sur Moré-Wild

- Sur GSS, stratégie aléatoire domine la stratégie lexicographique.
- Sur IMFIL, opportunisme nuisible.

Comparaison des stratégies d'ordonnancement

FIGURE - Problèmes contraints avec MADS

Sans opport.

FIGURE - Problèmes contraints avec MADS

1 Courbe de la stratégie omnisciente élevée.

Sans opport.

Comparaison des stratégies d'ordonnancement

FIGURE - Problèmes contraints avec MADS

- 1 Courbe de la stratégie omnisciente élevée.
- 2 Stratégie réelles peu performantes.

Tests numériques 0000000

 Figure – Comparaison omnisciente, inverse-omnisciente et sonde complète

FIGURE - Comparaison omnisciente, inverse-omnisciente et sonde complète

1 Stratégie omnisciente montre un impact de l'opportunisme sur STYRENE.

FIGURE - Comparaison omnisciente, inverse-omnisciente et sonde complète

- Stratégie omnisciente montre un impact de l'opportunisme sur STYRENE.
- 2 Sonde complète ressemble d'avantage à inverse-omnisciente.

FIGURE - Comparaison omnisciente, sonde complète et avec modèles

FIGURE - Comparaison omnisciente, sonde complète et avec modèles

La stratégie avec modèles accélère la convergence si comparée à la sonde complète.

Tests numériques 000000

FIGURE - Comparaison omnisciente, sonde complète et avec modèles

- La stratégie avec modèles accélère la convergence si comparée à la sonde complète.
- 2 La stratégie avec modèles converge vers un moins bon optimum que la stratégie omnisciente.
- 2 Sonde complète ressemble d'avantage à inverse-omnisciente.

- Introduction
- 2 Recherche Directe
- Opportunisme et ordonnancement
- Tests numériques
- Conclusion

 L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important
- Stratégies autres que opportunisme simple \rightarrow Sonde complète

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important
- ullet Stratégies autres que opportunisme simple o Sonde complète
- Classements des stratégies : Modèles, Aléatoires, Direction du dernier succès, sonde complète et lexicographique

- L'opportunisme est bénéfique aux méthodes de recherche directe directionnelles.
- L'opportunisme peut aussi être nuisible avec le mauvais ordonnancement.
- Plus la sonde est raffinée, moins son impact est important
- Stratégies autres que opportunisme simple o Sonde complète
- Classements des stratégies : Modèles, Aléatoires, Direction du dernier succès, sonde complète et lexicographique
- Pour IMFIL, l'opportunisme est inutile ou nuisible

Il y a place à l'amélioration dans l'ordonnancement.

Ordonnancer avec d'autre types de modèles que quadratiques

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).
- Identifier des stratégies avec la barrière progressive.

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).
- Identifier des stratégies avec la barrière progressive.
- Critère d'opportunisme : décroissance minimale

- Ordonnancer avec d'autre types de modèles que quadratiques
- Identifier d'autres stratégies d'ordonnancement (Distance à la solution d'un modèle, Distance à la cache).
- Identifier des stratégies avec la barrière progressive.
- Critère d'opportunisme : décroissance minimale
- Opportunisme et parallélisme?

Réferences

J.J. Moré and S.M. Wild (2009)

Benchmarking Derivative-Free Optimization Algorithms SIAM Journal on Optimization 20(1). 172–191

C. Audet and C. Tribes (2017)

Mesh-based Nelder-Mead algorithm for inequality constrained optimization Les Cahiers du Gerad G-2017-90.

C. Audet and V. Béchard and S. Le Digabel (2008)

Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search

Journal of Global Optimization 41-2.

S. Le Digabel (2009)

Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm ACM Transactions on Mathematical Software 37-4.

