MRSD Project Course I: Printed Circuit Board Design and Fabrication

September 19, 2017

Acknowledgement

 Large portion of the material presented here was produced by Tom Lauwers

Questions to Answer

- What is a Printed Circuit Board (PCB) and why are they instrumental to electronic devices?
- How do I design a PCB?
 - What's an electrical schematic good for?
 - What's a "Layout"?
 - Where do parts come from?
- How do I convert a system diagram into an electrical schematic?
- What are some important design considerations?

The Printed Circuit Board (PCB)

- Mechanical Mounting
- Electrical Connectivity
 - Traces can form components
- Many flavors

Who is this man?

- Paul Eisler (1907-1995)
- Invented the PCB in 1936
- · Used it in his radio
- Also invented rearwindow defroster

Which is Better?

This???

Which is Better?

This???!!!?!!

This is Better.

This is Even Better*.

* - see next slide

Through-Hole Vs. Surface Mount

Through-Hole:

- Easy to solder
- Easier to fix circuits
- You don't lose components on the floor

Surface Mount:

- Miniaturization
- From small to ridiculous
- Easier Automated Assembly
- PCB Fabrication is easier fewer holes to drill
- Most cool parts are only Surface mount

Historical Digression

- First surface mount boards were developed for Saturn V flight computers
 - · In 1964!
 - · By IBM

- This module can hold 14,336 bytes
 - The Saturn V had 8 of them

Multi-layer Construction

PCBs have many layers:

Other Common Features

- Soldermask: [usually green] overlay that insulates copper
- · Silkscreen: [usually white] with text, logos, etc.
- Multi-layer: Many sandwiched copper/dielectric layers "planes" are often implemented this way. Complex PCBs like motherboards might have 16 copper layers—or even more

PCB Materials

PCBs are available in several grades

GRADE DESIGNATION	MATERIAL/COMMENTS
FR-1	Paper/phenolic: room temperature punchable, poor moisture resistance.
FR-2	Paper/phenolic: suitable for single-sided PCB consumer equipment, good moisture resistance.
FR-3	Paper/epoxy: designed for balance of good mechanical and electrical characteristics.
FR-4	Glass cloth/epoxy: excellent mechanical and electrical properties.
FR-5	Glass cloth/epoxy: high strength at elevated temperatures, self-extinguishing.
G10	Glass cloth/epoxy: high insulation resistance, highest bond strength of glass laminates, high humidity resistance.
G11	Glass cloth/epoxy: high flexural strength retention at high temperature, extreme resistance to solvents.

Modern PCB Fabrication Steps

Automated Fabrication:

- Clad dielectric with copper foil (~0.0015" thick)
- Create copper traces using photolithography and chemical etching (remove excess foil)
- 3. Combine all layers if making >2 layer PCB
- Drill holes in PCB.
- 5. Plating to electrically connect all layers to vias
- 6. Soldermask applied to top/bottom
- 7. All copper surfaces plated (typically lead/lead-free solder, nickel, or gold)
- 8. Apply silkscreen
- 9. Post-process milling/board de-panelization

Modern PCB Fabrication

Implementing Systems with PCBs

- PCBs are a good way to implement Interconnect
 - Mechanical Mounting
 - Electrical Connectivity
- Many parts are designed to operate solely on PCBs
 - ICs (microcontrollers, regulators, motion controllers, modern sensors, etc.)
 - Discrete components shaped to fit
- Standalone devices interact with PCBs via electrical connectors

Custom PCBs in System Design: Benefits

Interconnect organization

- Put all your electronic subsystems in one place
- Combine many "breakout boards" into single PCB
- Eliminate unnecessary electrical connectors
- Can increase reliability

Form Factor

- Extreme miniaturization is possible
- PCB shape and part placement is definable
- Can fit very small or unusual shapes

Greater choice in component selection

- Most modern parts not designed for standalone use
- Not limited to breakout boards, dev kits, or hobby parts
- Some electrical designs (high speed or analog) not possible or reliable using breadboards and dev kits

Custom PCBs in System Design: Drawbacks

Learning Curve

- Takes a little more time to implement than COTS
- Requires knowledge of electronics to implement
- May require more testing/validation

Failure may be harder to mitigate if entire system is on a single PCB!

- Can add additional, optional connectors to salvage
- Test complex subsystems beforehand if possible
- Iterating PCB 2-3 times not uncommon

Balancing cost/effort against a COTS system

- For small design houses, turnaround on a design is generally 1-2 weeks
- More effort in design, less effort in assembly / wiring
- A single custom PCB may end up cheaper than 5 breakout boards

Designing PCBs with EagleCAD

Schematic Capture and Layout Design

PCB Design Software

- PCB CAD provides two separate (but linked) tools:
 - Schematic capture / verification
 - Layout artwork / verification
- · Also provides ability to create parts libraries
 - Basic building block links logical (schematic) diagrams to physical (layout) parts
- Some common software packages:
 - Eagle (Easily Accessible Graphical Layout Editor)
 - · ORCAD
 - Altium Designer
 - PADs

Eagle CAD

- · In this class we'll be using EagleCAD
 - Available at http://www.cadsoftusa.com/
 - Used by many--including Arduino designers
 - Commercial software
 - "free" version for non-commercial use
 - · "free" restricted: 2-layer, 100mmx80mm size
- An interesting alternative is DIPTRACE
 - Available at http://www.diptrace.com/
 - Free, restricted version is also available
- Also worth considering:
 - KiCad EDA http://kicad-pcb.org
 - Altium CircuitMaker http://circuitmaker.com/
 - MRSD Wiki: http://cmumrsdproject.wikispaces.com/Altium+Circuitmaker

Schematics: A Picture is Worth a Thousand Words

- Schematics represent circuits graphically
- · Consider one very basic system:

- · A little vague, but still a schematic
- · A good schematic shows what and how

Adding Detail with Symbols

Using specific symbols tells more information

A photocell is read by an ATTiny microcontroller which lights an LED

- Shows you've thought about what you're using
- But —> is not really a valid electrical device

Adding Detail with Basic Circuits

· Explaining how requires circuit diagrams

A photocell in a voltage divider is read by an ATTINY which outputs to an LED with a current-limiting resistor

But is this enough?

A complete schematic

- · Lots going on! A complete schematic.
- However, layout is not apparent

A Complete Schematic in Eagle

So I've Got my Schematic...

- Time to make a "Layout"
 - Scale representation of your PCB
- · Layers
 - · Copper in red and blue
 - · Around holes it's in green
 - Designators in white
 - Holes marked with x's

Real World Layout Considerations

- Design Rules
- Surface Mount and Through-hole
- Heat sinks
- Shape, mounting, and 2D representations of 3D parts
- Routing

Design Rules

- Design Rules "Thou shalt nots" for your circuit board
- Adjustable, but...they come from reality:
 - Advanced Circuits Capabilities
- Tell you things like:
 - How small traces can be
 - How small holes can be
 - Minimum distance between part, pad, trace, and the board's edge
 - Minimum distance between traces
 - And much more!
- You must address any violations flagged by the CAD software

Through-hole Vs. Surface Mount

Through-Hole:

- Easy to solder
- Easier to fix circuits
- You don't lose components on the floor
- Better for large connectors

Surface Mount:

- Miniaturization
 - From small to ridiculous
- Easier Automated Assembly
- PCB Fab is easier fewer holes to drill
- Most cool parts are only Surface mount

Shape, Mounting

- PCB does not need to be a rectangle
- Make sure you allow for a way to mount the board
- Keep in mind 2D representation of a 3D part!

Heatsinking

- Some high current parts may require a heat sink
- Often much bigger than part
- Specified in datasheet
- Make sure to factor size of heat sink into your layout
- Location is also important
- Insulate electrically !!!

Routing

 Definition: The process of making electrical connections between the different components by editing the physical (copper) representation of the nets created in your schematic

- Your "frenemy," the autorouter
 - Computers do the darnedest things
 - · Fixing things may take as long as routing by hand

- Routing by hand creates a much cleaner looking design
 - However, it's invaluable for large projects!

Trace Widths and Power

- All traces/wires have resistance
- · Car jumper cables vs. Christmas lights
- Some traces need to be bigger than others
 - Wider traces carry more current (necessary for driving highcurrent devices like motors).
 - Thin trace carrying lots of current = FIRE
 - Wider traces have less noise (good for analog signals)
- Handy tool:
 - http://www.4pcb.com/trace-width-calculator.html
 - Understand issues with temperature

Planes

- Cover a large part of your board with copper connected to a net (typically ground)
- · Used for:
 - · Heat-sinking
 - Noise reduction
 - Simplify routing (one less net)

RIGHT

WRONG

Avoid coupling high-frequency digital noise into analog circuitry

Board Layout

Careful placement prevents a lot of problems

Slight Detour: Decoupling Capacitor Placement

- Short traces (less than 0.5")
- · At least one per IC
 - Usually one per pair of VCC/GND terminals on IC
- · Can be on underside if you want to save space
- Following slides a number of examples of good capacitor placement

Good IC Decoupling

- · VCC = PURPLE
- · GND = RED

Good Input Capacitors for a Voltage Regulator

GND = Red, VDD = Yellow, VCC = Purple

Design for Testing

- Test points
- Tooling pins
 - Precise registration with test fixture
 - Push fingers
- Clearances for inspection

CAD Circuit Board Layout Process

- Set DRC
- Place components
- Route electrical connections between them
- Place designators
- Verify results

So where do parts come from?

- Answer: Libraries!
- Every part is divided into three representations
- Package
 - The physical representation of the part
 - What you see in Layout view
- Symbol
 - The logical representation of the part
 - What you see in Schematic View
- Device
 - A place to tie the package to the symbol
 - Lets you re-use common packages on different parts
 - Lets you re-use common symbols on package variants

Sample Package View

Sample Symbol View

Sample Device View

Where do libraries come from?

- EAGLE standard libraries
 - · Some are great, some date from the time of disco
- Online open-source libraries
 - · Contributed libraries on Eagle's site
 - · Sparkfun, Adafruit, etc.
- · You!
 - Complex or unusual parts are probably not in any library

Converting a System Diagram into an Electrical Schematic

Implementation Guidelines for 4 System Types

- · Control
- · Sensing/Actuation
- Power
- · Interconnect

Implementing Control

- Choosing a microcontroller
 - AVR, PIC are popular choices
 - TI OMAP, Freescale, ARM7, ARM9...
 - Older architectures like 8051 or 16HC11
- Also OK to plan on using a microcontroller board and interfacing to its connectors
 - "Arduino shield"
 - Sensor/actuator boards (a la L293 driver board)
- Others (higher degree of integration/capability)
 - Raspberry PI, Beaglebone...

Implementing Control

- Don't forget the baggage
 - Usually specific programming infrastructure required ("toolchain")
 - A bunch of extra circuitry, specifically:
 - Required voltage regulation / decoupling
 - Programming connector (even if using a bootloader!)
- We usually use AVR due to availability of OSS avr-gcc compiler and avr-dude compiler. AVR Studio (windows only) also available free.
- Arduino
 - · Uses AVR for the same reason
 - · Also has bootloader / Processing interface for programming
 - · If you like/need Arduino interface, consider making your own
 - 1. Download open source eagle files for your favorite Arduino version
 - 2. Modify design to add additional sensor/actuator interfaces to PCB
 - 3. Make PCB and re-release design files

Important Things to Remember on Control

- Voltage Compatibility
 - Modern ICs run at 3.3V or 1.8V, not 5V
 - If you need to hook up to a junky old sensor, may need level-shifting to prevent damage
- Make sure to add debugging output
 - Even a blinking LED helps iron out software kinks
 - · A serial (or USB<->serial) port makes it even easier
- Basic system testing aim for a few simple milestones
 - "Blink test" is a good first program
 - Each subsystem should be able to be independently tested and verified, even if only in debugging mode

Sensing and Actuation

- Sensing/Actuation lumps together subsystems that either:
 - Measure the physical world and produce digital or analog values for a controller, or
 - Take digital or analog values from a controller and effect change on the physical world

• Some sensors:

- · Light sensors (photocells, cameras, photodiodes, etc.)
- Temperature sensors (thermistors, thermocouples, etc.)
- Contact sensors (buttons, limit switches, pressure pads, etc.)
- · Rangefinders (IR pairs, IR rangefinders, sonar, laser rangefinders, etc.

• Some actuators:

- Light sources (LEDs, lamps, neon, etc.)
- Motion (Motors, servos, steppers, solenoids, piezo elements, etc.)
- Sound (speakers, buzzers, piezo elements, etc.)

Support Circuitry

- Most sensors/actuators require additional circuit elements to operate, such as:
 - Discrete components (capacitors, resistors)
 - Additional, non-logic level voltage sources (especially for motors)
 - Level translation
 - Communications protocols (e.g. RS232/485 to TTL)
 - Also commonly for old 5V components interfacing to modern ICs
 - Electrical connectors to connect off-board components
- Most devices explicitly tell you what support circuitry is needed in their datasheets (more on future lecture)

Actuators Brief: Motion Control

- Always use the least amount of control needed!
 - Only need to drive one direction? MOSFET/relay
 - Bi-directionality requires H-bridge & support circuits
- Aim for reasonable voltage/current
 - 5V/500mA is easier than 50V/50A
 - · 24V@2A is easier than 2V@24A [why?]
- Many monolithic options available
 - Driving 1-4 motors can be as simple as one IC, a few capacitors, and your connectors
 - · L293 == L298 with integrated flyback diodes
 - Many MOSFET designs / ICs do not require flyback
- For high power (>10W), it may be easier to look into hobby servos, off-board modules or motion control amps.

Implementing Power

- Power is mechanical work and also [voltage X current]
- All electromechanical devices require power to operate
- All modern electronics perform logical operations while generating heat
- When implementing a power system, understanding the bounds is essential:
 - Voltage ranges (min / max)
 - Current draw (quiescent / peak)
 - Storage capacity (mass / volume)
 - Runtime

Classifying Different Power Systems

Consider:

Voltage Current Capacity Runtime

- Digital watch
- Wireless sensor node
- · R/C Car
- R/C Quadrotor
- Computer performing video analysis
- Electric car

How Power Affects PCBs

- May need multiple voltage sources
 - Motors may need higher voltage than logic
 - Different logic may require different voltages
- Current draw affects trace width and component size
 - Big currents require big traces
 - Regulators for 100mA much smaller than for 2A

Voltage Regulation

- Most systems designed to operate from a single source
 - Wall (A/C) via AC/DC converter
 - Battery pack
 - Source voltage is usually optimized for largest power consuming subsystem (e.g. motors)
- DC/DC converters used to create other subsystem voltages
 - Logic voltage levels (frequently 1.8V, 3.3V, 5V)
 - Analog supplies (+-5V, +-15V)
 - Other (500V photoflash bank, 5kV neon ballast)
- DC/DC converters also used to regulate voltages
 - Stable voltages are essential for logic ICs
 - Helps isolate subsystems from each other

Voltage Regulation

Linear Regulators

- Can only step down voltages
- Dissipates excess as heat [voltage X subsystem current]
- Usually very clean signals
- Low cost and complexity
- Excellent for small voltage drops

Switching Regulators

- · Allows output voltage to be above and/or below input voltage
- Efficiencies typically 80-96%
- Higher cost
- Variable complexity but Point of Load replacements available!
- Excellent for large voltage differences

Minimizing current can minimize power losses / regulator size

Linear vs. Switching Efficiency

Desired Output Voltage: 5V

Input Voltage	Linear Efficiency	Switching Efficiency
5.5V	91%	80-90%
6V	83%	80-90%
12V	42%	80-90%
24V	21%	80-90%
3.3V	Not possible	80-90%

• Efficiency is not everything. 21% efficiency might be just fine if you're drawing 500uA.

Assembling a Power System

- Determine source voltage and current requirements
 - Optimize for primary power using subsystems
 - Add current to account for other subsystems and conversion efficiencies
- Determine voltages and current limits of regulated voltages
 - Primary power systems frequently run unregulated
 - ·May need several logic voltages or other supplies
- Other useful power system features
 - ·Switches (e.g. ON/OFF) are helpful
 - Fuses / breakers may be needed
 - Voltage and current monitoring
 - Battery charge management

Overvoltage and Reverse-voltage Protection

- It's 3 AM, and you just plugged your robot in backwards. Would you like to:
 - ·A: Change a fuse?
 - B: Put out a small fire, go through the stages of grief, and then solder together new PCBs, order new parts, and explain to your professor why your project is going to be a week late because nobody from your group remembered this slide

Reverse-Voltage Protection

- Voltage drop
 - Batteries
 - Efficiency
- Use Schottky diode
 - Cost

NMOS FET in the ground return path

PMOS FET in the power path

Don't Forget the Capacitors!

GND = Red, VDD = Yellow, VCC = Purple

Using Interconnect Appropriately

- Wire (and PCB traces) should be sized appropriately for current loads
 - 'PCB Trace Width Calculator' is invaluable
 - Many wiring tables for various gauges show current capacity
 - Use stranded wire for connections!
- Avoid analog effects on your digital designs
 - Use short, thick traces for analog signals
 - Keep analog away from fast switching digital signals
 - Use ground planes or guard bands when appropriate
- Use appropriate connectors
 - Every connector is a potential point of failure
 - Observe current and connection cycle ratings
 - Use board-to-board when possible instead of board-wire-board

System Integration

Assignment Overview: Individual Assignment (Task3)

- Due: Tue Sep. 26th (One week from today)
- Capture a hand-drawn schematic into Eagle, and make two layouts for it:
 - One all through hole
 - · One all surface mount
- · Create Eagle library versions of two parts from their datasheets
- Make sure to check out the two tutorials posted on Blackboard, and send questions to us
- · Please, make sure that you
 - Follow the file naming guidelines
 - Address any issues reported by ERC, DRC

Assignment Overview: Group Assignment (Task 6)

- · Due: Fri Oct. 6th
- Create a schematic and layout for a power distribution PCB
 - Will need to choose appropriate regulators for each subsystem
 - Will need to design (from datasheet) Eagle library parts for those regulators
 - Will need to include OVP and RVP protection, and keep in mind the design considerations (like trace widths) mentioned in this presentation
 - Should be good preparation for the PCB you create for your own robots later in the semester

Teamwork and PCBs – Divvying efficiently

Schematic accumulation

- Everyone can contribute subcircuits
- One person in charge of overall schematic / collating contributions

Part hunter

- At least one person should be searching for parts
- · Parts should be available and captured into Eagle

Verifier

- Dedicated to finding logical errors in schematics or layout
- Goes through internet/team created libraries and checks parts

Layout and physical space planner

- Determine board size and shape
- Board mounting hole placement
- Determine where all connectors should be located
- Ensures parts sticking off board won't interfere with chassis