```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]: final_df = pd.read_csv('lung_cancer_country_wise.csv')

In [3]: final_df

Out[3]:		Country_Code	Region	IncomeGroup	Country_Name	Air_pollution_2017	Alcohol_consumption_2
	0	AFG	South Asia	Low income	Afghanistan	56.910808	0.2
	1	ALB	Europe & Central Asia	Upper middle income	Albania	18.200603	7.
	2	AND	Europe & Central Asia	High income	Andorra	10.307621	11.9
	3	ARG	Latin America & Caribbean	Upper middle income	Argentina	13.311834	9.0
	4	ARM	Europe & Central Asia	Upper middle income	Armenia	32.528118	5.3
	•••						
	132	VUT	East Asia & Pacific	Lower middle income	Vanuatu	11.652777	1.5
	133	WSM	East Asia & Pacific	Lower middle income	Samoa	11.548027	3.3
	134	ZAF	Sub- Saharan Africa	Upper middle income	South Africa	25.102205	9.8
	135	ZMB	Sub- Saharan Africa	Low income	Zambia	27.438035	5.0
	136	ZWE	Sub- Saharan Africa	Lower middle income	Zimbabwe	22.251671	3.5

137 rows × 8 columns


```
In [5]: # Correlation
   plt.figure(figsize=(16, 8))
   heatmap = sns.heatmap(final_df.corr().abs(),annot=True, cmap='BrBG')
   heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':30}, pad=24)
```

Smoking_2017

Out[5]: Text(0.5, 1.0, 'Correlation Heatmap')

Alcohol_consumption_2017

Correlation Heatmap

Lung_cancer

Lung_cancer

Categorical Scatterplots: Across Region

Out[6]: <seaborn.axisgrid.FacetGrid at 0x7fb03143f370>

Boxplot Across region

```
In [7]: chart1 = sns.catplot(data=final_df, x="Region", y="Air_pollution_2017", kind="box")
    chart1.set_xticklabels(rotation=90)

chart2 = sns.catplot(data=final_df, x="Region", y="Alcohol_consumption_2017", kind="bochart2.set_xticklabels(rotation=90)

chart3 = sns.catplot(data=final_df, x="Region", y="Smoking_2017", kind="box")
```

```
chart3.set_xticklabels(rotation=90)
chart4 = sns.catplot(data=final_df, x="Region", y="Lung_cancer", kind="box")
chart4.set_xticklabels(rotation=90)
```

Out[7]:

Region

Distribution across region

```
In [8]: plt.figure(figsize=(10,5))
# plt.bar(final_df['Region'],final_df['gdp_per_capita_2017'],color='green') ##bar grap
plt.scatter(final_df['Region'],final_df['Air_pollution_2017'])#,color='green', alpha=0
plt.xlabel("Region", fontsize=8)
plt.ylabel("Air_pollution", fontsize=8)
plt.title("Air_pollution_2017", fontsize=14)
plt.grid(True)
```

```
plt.xticks(final df['Region'], rotation='vertical', size=10)
plt.show();
plt.figure(figsize=(10,5))
# plt.bar(final df['Region'],final df['gdp per capita 2017'],color='green') ##bar grap
plt.scatter(final_df['Region'],final_df['Alcohol_consumption_2017'], color='green')#,
plt.xlabel("Region", fontsize=8)
plt.ylabel("Alcohol_consumption_2017", fontsize=8)
plt.title("Alcohol_consumption_2017", fontsize=14)
plt.grid(True)
plt.xticks(final df['Region'], rotation='vertical', size=10)
plt.show();
plt.figure(figsize=(10,5))
# plt.bar(final df['Region'],final df['gdp per capita 2017'],color='green') ##bar grap
plt.scatter(final_df['Region'],final_df['Smoking_2017'], color='red')#, alpha=0.5)
plt.xlabel("Region", fontsize=8)
plt.ylabel("Smoking_2017", fontsize=8)
plt.title("Smoking_2017", fontsize=14)
plt.grid(True)
plt.xticks(final df['Region'], rotation='vertical', size=10)
plt.show();
plt.figure(figsize=(10,5))
# plt.bar(final_df['Region'],final_df['gdp_per_capita_2017'],color='green') ##bar grap
plt.scatter(final_df['Region'],final_df['Lung_cancer'], color='brown')#, alpha=0.5)
plt.xlabel("Region", fontsize=8)
plt.ylabel("Lung_cancer", fontsize=8)
plt.title("Lung_cancer", fontsize=14)
plt.grid(True)
plt.xticks(final df['Region'], rotation='vertical', size=10)
plt.show();
```


In []: