MAT216: Linear Algebra and Fourier Transformation

Emon Hossain¹

¹Lecturer MNS department Brac University

Lecture-04

(University of Dhaka) 1/11

Elementary row operation

Swapping any two rows. $\left(R_i' \leftrightarrow R_j'\right)$

Multiplying a row by a non-zero constant. ($R_i' = k \cdot R_i'$)

Adding some multiple of a row to another row. $\left(R_i' = R_i' \pm k \cdot R_j'\right)$

An elementary matrix is a square matrix that has been obtained by performing an elementary row or column operation on an identity matrix.

(University of Dhaka) 2/11

Example

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

(University of Dhaka) 3/11

Inverse matrix

a) Calculate the inverse of the matrix using Gauss-Jordan elimination method

$$A = \left(\begin{array}{ccc} 2 & 2 & 3 \\ 1 & -3 & 1 \\ 1 & 2 & 0 \end{array}\right)$$

b) Hence, solve the system

$$2x+2y+3z = 1$$
$$x-3y+z = 2$$
$$x+2y = 5$$

(University of Dhaka) 4/11

Binary operation

Suppose * is a binary operation. A set G is called closed under * if

$$a*b \in G \forall a,b \in G$$

Examples:

Addition on the set \mathbb{R} , operation $\mathbf{a} * \mathbf{b} = \mathbf{a} + \mathbf{b}$

Addition on the set \mathbb{N} , operation a * b = a + b

Addition on the set \mathbb{Z} , operation a*b=a+b

Subtraction on the set \mathbb{R} , operation a*b=a-b

Matrix addition on the set of all 3×3 matrices

Matrix multiplication on the set of all 2×2 matrices

Non-Example: Substraction on the set \mathbb{N} operator: a*b=a-b

(University of Dhaka) 5/11

Commutativity

Suppose * is a binary operation on the set G. The operation * is called commutative if

$$a * b = b * a \forall a, b \in G$$

Examples:

Addition: a * b = a + b

Multiplication: a * b = ab

Matrix Addition

Non-Example: Substraction, Division, Matrix Multiplication

(University of Dhaka) 6/11

Associativity

Suppose * is a binary operation on the set G. The operation * is called associative if

$$(a*b)*c = a*(b*c)\forall a,b,c \in G$$

Examples:

Multiplication: a * b = ab

Matrix Addition: (A+B)+C=A+(B+C)

Matrix Multiplication

Non-Example: Substraction, Division

Identity

Suppose \ast is a binary operation on the set G. The operation \ast has an identity if there is a fixed unique element e such that

$$e * a = a * e = a \forall a \in G$$

Here e is called the identity of the operation. Find the identity element of the operation * on $\mathbb R$ where

$$a * b = a + b - 1$$

Find the identity of the operation \oplus on \mathbb{R}^2 where

$$(a,b) \oplus (c,d) = (a+c+2,b+d-1)$$

(University of Dhaka) 8/11

Inverse

Suppose * is a binary operation on the set G with the identity element e. Existence of Inverse means for each element $a \in G$ there will have a unique element a' which can be dependent of a, such that

$$a'*a=a*a'=e$$
 for all $a\in G$

Here a' is called the Inverse of a.

Find the inverse

$$a*b=a+b-1$$

(University of Dhaka) 9 / 11

Vector Space

To have a vector space, the ten following axioms must be satisfied for every u, v and w in V, and a and b in \mathbb{F} .

(Basically, we need a set, V where we define an operator \oplus which operates on set elements and another operator \odot which operates on the field and set elements)

Operations on vector addition:

Closure law (A1): $\forall u, v \in V \implies u \oplus v \in V$.

Commutative law (A2): $u \oplus v = v \oplus u$

Associative law (A3): $u \oplus (v \oplus w) = (u \oplus v) \oplus w$.

Existence of Additive identity (A4): There exists an element

 $\mathbf{0}_V \in V$, called the zero vector, such that $\mathbf{v} \oplus \mathbf{0}_V = \mathbf{v}$ for all $\mathbf{v} \in V$.

Existence of Additive inverse (A5): For every $\mathbf{v} \in V$, there exists an element $-\mathbf{v} \in V$, called the additive inverse of \mathbf{v} , such that $\mathbf{v} \oplus (-\mathbf{v}) = \mathbf{0}$.

(University of Dhaka) 10/11

Axioms

Operations on scalar multiplication:

Closure law (M1): $\forall \alpha \in \mathbb{F}$ and $\mathbf{v} \in V \implies \alpha \odot \mathbf{v} \in V$.

Distributive law respect to vector addition (M2):

$$\alpha\odot(\mathsf{u}\oplus\mathsf{v})=\alpha\odot\mathsf{u}\oplus\alpha\odot\mathsf{v}$$

Distributive law respect to field addition (M3):

$$(lpha ilde{\oplus} eta) \odot \mathsf{v} = lpha \odot \mathsf{v} \oplus eta \odot \mathsf{v}$$

Compatibility of scalar multiplication with field multiplication (M4): $\alpha \odot (\beta \odot v) = (\alpha \star \beta) \odot v$.

Existence of multiplicative identity (M5): $1_{\mathbb{F}}v = v$, where $1_{\mathbb{F}}$ denotes the multiplicative identity in \mathbb{F} .

(University of Dhaka) 11/11