CS 3205 COMPUTER NETWORKS

JAN-MAY 2020

LECTURE 7: 3RD FEB 2020

Text book and section(s) covered in this lecture: Book Kurose and Ross – Sections 1.4.4, 1.6, 1.7, 5.3

Throughput in Computer Networks

Section 1.4.4

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput (more)

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

- per-connection endend throughput: min(R_c,R_s,R/10)
- ❖ in practice: R_c or R_s is often bottleneck

10 connections (fairly) share backbone bottleneck link R bits/sec

Networks Under Attack

Section 1.6

Network security

- field of network security:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network" ©
 - Internet protocol designers playing "catch-up"
 - security considerations in all layers!

Bad guys: put malware into hosts via Internet

- malware can get in host from:
 - *virus*: self-replicating infection by receiving/executing object (e.g., e-mail attachment)
 - worm: self-replicating infection by passively receiving object that gets itself executed
- spyware malware can record keystrokes, web sites visited, upload info to collection site
- infected host can be enrolled in botnet, used for spam. DDoS attacks

Bad guys: attack server, network infrastructure

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

- I. select target
- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts
- 4. DoS Categories
- Vulnerability attack
- Bandwidth flooding
- Connection flooding

Bad guys can sniff packets

packet "sniffing":

- broadcast media (shared ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

wireshark software is a (free) packet-sniffer

Bad guys can use fake addresses

IP spoofing: send packet with false source address

... lots more on security (throughout, Chapter 8)

History of Computer Networking and Internet

Section 1.7

1961-1972: Early packet-switching principles

- ❖ 1961: Kleinrock queueing ❖ 1972: theory shows effectiveness of packet-switching
- ❖ 1964: Baran packetswitching for voice over military nets
- ❖ 1967: ARPAnet conceived by Advanced Research Projects Agency
- ❖ 1969: first ARPAnet node operational
 - ARPAnet public demo
 - Stanford Research Institute, UC Santa Barbara, University of Utah, **UCLA**

- NCP (Network Control Protocol) first host-host protocol
- first e-mail program
- ARPAnet has 15 nodes

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet (Digital Equipment Corporation), System Network Architecture (IBM), XNA (Microsoft)
- late 70's: switching fixed length packets (ATM precursor)
- ❖ 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- I 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- * 1983: DNS defined for name-to-IP-address translation
- 4 1985: FTP protocol defined
- I988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- early 1990's: ARPAnet decommissioned
- ❖ 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2005-present

- ❖ ~750 million hosts
 - Smartphones and tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Facebook: soon one billion users
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, emai, etc.
- E-commerce, universities, enterprises running their services in "cloud" (eg, Amazon EC2)

Multiple Access Links and Protocols

Section 5.3

Multiple access links, protocols

two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet This used Coxial cables. (Thicknet, Thinnet)
 - upstream HFC (Hybrid Fiber Coxial)
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

given: broadcast channel of rate R bps

Desiderable characteristics:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes
- ❖ two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Prof. Norman manual Abramson

- ❖ Aloha in Polynesian language ...(Greet, Peace to every one)
- University of Hawaii in Island Oahu, To connect with other islands.
- ❖ ALOHA Protocol 1970 (also known as Pure Aloha), pioneered by Prof. Normal Abramson along with others.
- Slotted ALOHA Improvement over ALOHA.

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit I frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- * suppose: N nodes with many frames to send, each transmits in slot with probability p
- * prob that given node has success in a slot = $p(1-p)^{N-1}$
- * prob that any node has a success = $Np(1-p)^{N-1}$

- max efficiency: find p* that maximizes Np(I-p)^{N-I}
- for many nodes, take limit of Np*(I-p*)^{N-I} as N goes to infinity, gives:

max efficiency = 1/e = .37

at best: channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

Pure ALOHA efficiency

P(success by given node) = P(node transmits) ·

P(no other node transmits in $[t_0-I,t_0]$ · P(no other node transmits in $[t_0-I,t_0]$

=
$$p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

= $p \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting n $\longrightarrow \infty$

$$= I/(2e) = .18$$

even worse than slotted Aloha!