計算認知神經科學腦神經網路特性

Network: brain

Human brain has between 10-100 billion neurons

[Sporns, 2011]

A network is a collection of objects where some pairs of objects are connected by links

What is the structure of the network?

Small world: Graph theory

Vertices (Nodes)

Edge

Arc

Undirected

Links: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

Links: directed (arcs)

- Examples:
 - Phone calls
 - Following on Twitter

 $A_{ij} = 1$ if there is a link from node *i* to node *j*

 $A_{ii} = 0$ otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \qquad A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Note that for a directed graph (right) the matrix is not symmetric.

Adjacency list:

- Easier to work with if network is
 - Large
 - Sparse
- Allows us to quickly retrieve all neighbors of a given node
 - **1**:
 - **2**: 3, 4
 - **3**: 2, 4
 - **4**: 5
 - **5**: 1, 2

Degree

A: 2

<u>B: 4</u>

C: 2

D:1

E: 1

Degree distribution P(k): Probability that a randomly chosen node has degree k

 N_k = # nodes with degree k

Normalized histogram:

$$P(k) = N_k / N \rightarrow \text{plot}$$

Diameter

Diameter Geodesic Path (Shortest Path)

 $A \rightarrow I$: Diameter = 4

Which Node is Most Important?

Connectivity

Number of shortest paths going through the actor

$$B \rightarrow C: 0/1 = 0$$

$$B \to D: 0/1 = 0$$

$$B \rightarrow E: 0/1 = 0$$

$$C \rightarrow D: 0/1 = 0$$

$$C \rightarrow E: 0/1 = 0$$

$$D \rightarrow E: 0/1 = 0$$

Total: 0

A: Betweenness Centrality = 0

B:

$$A \rightarrow C: 0/1 = 0$$

 $A \rightarrow D: 1/1 = 1$
 $A \rightarrow E: 1/1 = 1$
 $C \rightarrow D: 1/1 = 1$
 $C \rightarrow E: 1/1 = 1$
 $D \rightarrow E: 1/1 = 1$

Total: 5

B: Betweenness Centrality = 5

C:

 $A \rightarrow B: 0/1 = 0$

 $A \rightarrow D: 0/1 = 0$

 $A \rightarrow E: 0/1 = 0$

 $B \to D: 0/1 = 0$

 $B \rightarrow E: 0/1 = 0$

 $D \rightarrow E: 0/1 = 0$

Total: 0

C: Betweenness Centrality = 0

A: 0

<u>B: 5</u>

C: 0

D: 0

E: 0

C: Closeness Centrality = 15/9 = 1.67

G: Closeness Centrality = 14/9 = 1.56

H: Closeness Centrality = 17/9 = 1.89

- G: Closeness Centrality = 14/9 = 1.56
- C: Closeness Centrality = 15/9 = 1.67 2
- H: Closeness Centrality = 17/9 = 1.89

Social Network Analysis (SNA) importance of neighbors

Eigenvector centrality

Eigenvector Centrality: 基本概念為 degree centrality,跟越重要的 node 連,算分越高。

認識世界知名人物

認識默默無名小生物

Degree

Closeness

Betwenness

Eigenvector centrality

Real world network properties

Real world network properties

3. Power-law degree distributions

Scale-free networks

(Barabási and Albert, 1999)

- The mechanism of "preferential attachment" is easily explained by the fact that new nodes (e.g. individuals) entering the network tend to connect to well-connected nodes, which are often associated to central and prestigious positions (e.g. individuals with more status, popularity, knowledge, money etc.) in the network.
- These highly-connected nodes are known as hubs

