L	Hits	Search Text	DB	Time stamp
Number				
1	548	cement adj plant	USPAT;	2004/02/09
			US-PGPUB;	13:13
			EPO; JPO;	
			DERWENT;	v
1		·	USOCR	
2	72	(cement adj plant) and (sludge or (coal adj	USPAT;	2004/02/09
İ		ash) or (spent adj catalyst))	US-PGPUB;	13:20
			EPO; JPO;	
			DERWENT;	
ļ			USOCR	
3	3	(cement adj plant) and ((drain adj sludge) or	USPAT;	2004/02/09
		(spent adj catalyst))	US PGPUB;	13:21
			EPO; JPO;	
			DERWENT;	
*			USOCR	

L Number	Hits	Search Text	DB	Time stamp
1	1	(catalyst adj waste) and (drain adj sludge) and slag and dust and (steelmaking or (steel adj making))	USPAT; US-PGPUB; EPO; JPO; DERWENT; USOCR	2004/02/09 10:28
2	92572	((catalyst adj waste) or (drain adj sludge) or slag or dust) and (steelmaking or (steel adj making) or steel)	USPAT; US-PGPUB; EPO; JPO; DERWENT; USOCR	2004/02/09 10:29
3	2306	(((catalyst adj waste) or (drain adj sludge) or slag or dust) and (steelmaking or (steel adj making) or steel)) and cement and oil	USPAT; US-PGPUB; EPO; JPO; DERWENT; USOCR	2004/02/09 10:29
4	136	((((catalyst adj waste) or (drain adj sludge) or slag or dust) and (steelmaking or (steel adj making) or steel)) and cement and oil) and refining and power	USPAT; US-PGPUB; EPO; JPO; DERWENT; USOCR	2004/02/09 10:29

L Number	Hits	Search Text	DB	Time stamp
Number 1	1	eco adj industrial adj park	USPAT;	2004/02/09
•	-		US-PGPUB;	12:44
			EPO; JPO;	
			DERWENT;	
			USOCR	
2	1	eco adj industrial	USPAT;	2004/02/09
_	_		US-PGPUB;	12:44
			EPO; JPO;	
			DERWENT;	
•			USOCR	
3	0	ecoindustrial	USPAT;	2004/02/09
			US-PGPUB;	12:44
			EPO; JPO;	
			DERWENT;	
			USOCR	
4	982	industrial adj park	USPAT;	2004/02/09
			US-PGPUB;	12:45
	~		EPO; JPO;	· ·
			DERWENT;	,
			USOCR	
5	2	(industrial adj park) and steel and cement	USPAT;	2004/02/09
		and power and oil	US PGPUB;	12:46
		·	EPO; JPO;	
		· ·	DERWENT;	
			USOCR	
6	4	(industrial adj park) and steel and cement	USPAT;	2004/02/09
		and power	US-PGPUB;	12:46
			EPO; JPO;	
			DERWENT;	
			USOCR	
7	13	(industrial adj park) and steel and cement	USPAT;	2004/02/09
			US-PGPUB;	12:46
			EPO; JPO;	
			DERWENT;	
			USOCR	
8	33	(industrial adj (park or complex)).ti.	USPAT;	2004/02/09
			US-PGPUB;	12:47
		· .	EPO; JPO;	
. 1			DERWENT;	
·			USOCR	

Access DB# 119882

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Phone Nur Mail Box and Bldg/Room Location:	Krastler mber 30 RENGOS_Resul	Examiner #: 10485 Date: 2/9/64/ Serial Number: 6/978001 ts Format Preferred (circle): PAPER DISK E-MAIL
If more than one search is submitt	ed, please prioritize	e searches in order of need. ***********************************
Please provide a detailed statement of the sea	arch topic, and describe as words, synonyms, acrony at may have a special mea	s specifically as possible the subject matter to be searched. ms, and registry numbers, and combine with the concept or aning. Give examples or relevant citations, authors, etc, if
Title of Invention:		
Inventors (please provide full names):		
Earliest Priority Filing Date:		
For Sequence Searches Only Please include	all pertinent information (p	parent, child, divisional, or issued patent numbers) along with the
appropriate serial number.		
		,
·		
4		
•		
		·
`		
,		***********
************	Type of Search	Vendors and cost where applicable
SEARTH USE ONLY Searcher: Mike Newell	NA Sequence (#)	
Searcher Phone #:	AA Sequence (#)	2511 115
Searcher Phone #:	Structure (#)	•
Date Searcher Picked Up: 2/11/04	Bibliographic	
Date Searcher Picked Op	Litigation	
Searcher Prep & Review Time: 70	Fulltext	
Clerical Prep Time:	Patent Family	WWW/Internet
Online Time: 80	Other	Other (specify)
Omme Time.	_	

PTO-1590 (8-01)

STIC Search Report

STIC Database Tracking Number 113882

TO: Scott R Kastler Location: REM 6C03

Art Unit : 1742 February 12, 2004

Case Serial Number: 09/978021

From: Michael Newell Location: EIC 1700 REMSEN 4A30

Phone: 571/272-2538 MNewell@uspto.gov

Search Notes

EIC17000

Questions about the scope or the results of the search? Contact the EIC searcher or contact:

Kathleen Fuller, EIC 1700 Team Leader 571/272-2505 REMSEN 4B28

Voluntary Results Feedback Form
 I am an examiner in Workgroup: Example: 1713 Relevant prior art found, search results used as follows:
102 rejection
103 rejection
Cited as being of interest.
Helped examiner better understand the invention.
Helped examiner better understand the state of the art in their technology.
Types of relevant prior art found:
☐ Foreign Patent(s)
 Non-Patent Literature (journal articles, conference proceedings, new product announcements etc.)
> Relevant prior art not found:
Results verified the lack of relevant prior art (helped determine patentability).
Results were not useful in determining patentability or understanding the invention.
Comments:

Drop off or send completed forms to EIC1700 REMSEN 4B28

Mellerson, Kendra
From: Unknown@Unknown.com Sent: Monday, February 09, 2004 11:18 AM To: STIC-EIC1700 Subject: Generic form response
ResponseHeader=Commercial Database Search Request
AccessDB#=
LogNumber=
Searcher=
SearcherPhone=
SearcherBranch=
MyDate=Mon Feb 09 11:17:23 GMT-0500 (Eastern Standard Time) 2004
submitto=STIC-EIC1700@uspto.gov
Name=Scott Kastler
Empno=60485
Phone=(571) 272-1243
Artunit=1742
Office=Rem 6c03
Serialnum=09/978,021
PatClass=
Earliest=01/06/2000
Format1=paper
Format3=email
Searchtopic=a basic industrial complex including each of an oil refining plant, an oil fired power plant a cement plant and a steel making plant where at least three of catalyst waste, drain sludge, slag ar dust are transferred from the steelmaking plant, power plant or oil refining plant to the cement plant.
Comments=from 9:30 am to 3 pm mon, tues, thurs or fri.

send=SEND

```
? show files
File 350:Derwent WPIX 1963-2004/UD,UM &UP=200410
         (c) 2004 Thomson Derwent
File 347: JAPIO Oct 1976-2003/Oct (Updated 040202)
         (c) 2004 JPO & JAPIO
File 353:Ei EnCompassPat(TM) 1964-200405
         (c) 2004 Elsevier Eng. Info. Inc.
File 354:Ei EnCompassLit(TM) 1965-2004/Feb W1
         (c) 2004 Elsevier Eng. Info. Inc.
       2:INSPEC 1969-2004/Feb W1
File
         (c) 2004 Institution of Electrical Engineers
       6:NTIS 1964-2004/Feb W2
File
         (c) 2004 NTIS, Intl Cpyrght All Rights Res
       8:Ei Compendex(R) 1970-2004/Feb W1
File
         (c) 2004 Elsevier Eng. Info. Inc.
      94:JICST-EPlus 1985-2004/Feb W1
File
          (c) 2004 Japan Science and Tech Corp(JST)
      95:TEME-Technology & Management 1989-2004/Jan W4
File
          (c) 2004 FIZ TECHNIK
      99:Wilson Appl. Sci & Tech Abs 1983-2004/Jan
File
          (c) 2004 The HW Wilson Co.
File 103: Energy SciTec 1974-2004/Feb B1
          (c) 2004 Contains copyrighted material
File 118:ICONDA-Intl Construction 1976-2004/Feb
          (c) 2004 Fraunhofer-IRB
File 144: Pascal 1973-2004/Feb W1
          (c) 2004 INIST/CNRS
File 241:Elec. Power DB 1972-1999Jan
          (c) 1999 Electric Power Research Inst.Inc
File 315: ChemEng & Biotec Abs 1970-2004/Jan
          (c) 2004 DECHEMA
File 110:WasteInfo 1974-2002/Jul
          (c) 2002 AEA Techn Env.
? ds
                 Description
Set
         Items
                 INDUSTRY OR INDUSTRIAL OR MULTI(W) INDUSTR?
       3067905
S1
                 PLANT OR PLANTS OR FACTORY OR FACTORIES OR FACILITY OR FAC-
S2
     13742301
              ILITIES OR MANUFACTUR? OR MFR# OR PRODUC? OR PROD#
                 INTEGRAT? OR UNIFY OR UNIFIED OR INTERDEPENDENT OR MULTIPL-
     23030605
S3
              E? OR COMBIN? OR SYSTEM? OR COMPLEX? OR CONNECT?
         41578
                 S1 (4N) S2 (4N) S3
S4
                 S4/TI
          4066
S5
                 (PETROL? OR OIL?) AND (POWER?) AND (CONCRETE? OR CEMENT? OR
S6
           787
               GYPSUM? OR PORTLAND) AND (IRON OR STEEL OR STEELMAKING)
             6
                 S6 AND S5
s7
                 S6 AND S4
S8
            19
                 S7 OR S8
            19
S9
```

```
POWER? (3A) (ELECTRIC? OR OIL? OR COAL? OR OIL(W) FIRED OR CO-
      2542273
S10
             AL(W) FIRED)
                POWER? (3N) (ELECTRIC? OR OIL? OR COAL? OR OIL(W) FIRED OR CO-
S11
             AL(W) FIRED)
                (OIL? OR PETROL?) (3N) (REFINE OR REFINING OR REFINER?)
       708179
S12
                CEMENT? OR CONCRETE? OR GYPSUM? OR DUST OR SLAG
S13
      1323936
                IRON? OR STEEL?
      2549487
S14
                S11 (S) S12 (S) S13 (S) S14
S15
           34
                S15 NOT S9
S16
           31
                S11 AND S12 AND S13 AND S14
S17
          168
                S17 AND S3
S18
           66
                S18 NOT (S15 OR S9)
           45
S19
              S13 AND S5
          138
S20
                S20 AND (WASTE? OR RECYCL? OR RECLAIM? OR REGENERAT?)
S21
           36
                S21 NOT (S16 OR S9 OR S19)
           34
S22
                S9 OR S15 OR S18 OR S21
          129
S23
                REMOVE DUPLICATES S23 (unique items)
          118
S24
? t s24/6/1-118
          (Item 1 from file: 350)
 24/6/1
            **Image available**
015294327
WPI Acc No: 2003-355261/200334
Title Terms: OIL; SAND; SPIRAL; SURFACE; MINE; APPARATUS; EXCHANGE; RENEW;
  ELECTRIC; HYDROGEN; FUEL; PRODUCE; OIL; COMPRISE; RIVER; CURRENT;
  INTENSIFY; ELECTROMAGNET; PROPELLER; ARRAY; MODULE
 24/6/2
            (Item 2 from file: 350)
015029492
WPI Acc No: 2003-090009/200308
Title Terms: SULPHITE; TREAT; METHOD; INDUSTRIAL; WASTE; COMBINATION;
  INDUSTRIAL; WASTE; CALCIUM; SULPHITE; PRODUCE; INSOLUBLE; METAL; SULPHUR;
  OXIDE; COMPLEX; CONVERT; SULPHITE; SULPHATE
```

015002193 **Image available**
WPI Acc No: 2003-062708/200306
Title Terms: PRICE; INDEX; INFORMATION; MANAGEMENT; SYSTEM; INDUSTRIAL;
PRODUCT; PETROL; PERFORMANCE; STATISTICAL; PROCESS; RECEIVE; PRICE;
INFORMATION; DISPLAY; PROCESS; PRICE; DATA; NETWORK

(Item 3 from file: 350)

24/6/3

24/6/4 (Item 4 from file: 350)
014969628 **Image available**
WPI Acc No: 2003-030142/200302
Title Terms: GASIFICATION; SLUG; COMBUST; SYSTEM; TREAT; INDUSTRIAL; WASTE;
COMBUST; PRODUCE; COMBUST; GAS; MELT; ASH; CONTENT; COMBUST; GAS;

GASIFICATION; FURNACE; WASTE; HEAT; BOILER

24/6/5 (Item 5 from file: 350) 014918945 **Image available** WPI Acc No: 2002-739652/200280

Title Terms: REDUCE; EMIT; INDUSTRIAL; COMBUST; FACILITY; REACT; EMIT; FORM; CARBONATE; CONTAIN; FERTILISER; APPLY; FERTILISER; SOIL; PLANT

24/6/6 (Item 6 from file: 350)

014785650

WPI Acc No: 2002-606356/200265

Title Terms: VULCANISATION; INDUSTRIAL; RUBBER; PRODUCT; MIX; CONSIST;

MULTIPLE; RUBBER; TYPE; PLASTICISED; SULPHUR; ADMIXED

24/6/7 (Item 7 from file: 350) 014235211 **Image available**

WPI Acc No: 2002-055909/200208

Title Terms: INTEGRAL; UTILISE; INDUSTRIAL; REFUSE; CONSIST; COMBINATION; MINI; FACTORY; RESIDUE; VOLUME; FACTORY; PROCESS

24/6/8 (Item 8 from file: 350) 013674621 **Image available** WPI Acc No: 2001-158833/200116

Title Terms: HEAT; SENSITIVE; WARNING; DEVICE; DETECT; TEMPERATURE; INCREASE; ELECTRIC; INSULATE; OPERATE; MECHANISM; COMPRISE; HOUSING; SPOOL; INDICATE; THERMOSENSITIVE; END; PLUG; EJECT

24/6/9 (Item 9 from file: 350) 012314458 **Image available** WPI Acc No: 1999-120564/199910

Title Terms: INDUSTRIAL; COMPLEX; POWER; STATION; CEMENT; PLANT; STEEL; PLANT; LINK; ALLOW; ENERGY; REDUCE; WASTE

24/6/10 (Item 10 from file: 350)

010238261

WPI Acc No: 1995-139518/199518

Title Terms: AQUEOUS; POLYSILOXANE; POLY; SILICATE; BIND; PREPARATION; COMBINATION; AMINE; OXY; SILANE; WATER; METAL; SILICATE; USEFUL; PROTECT; COATING; CONCRETE; STEEL

24/6/11 (Item 1 from file: 347)

05886313 **Image available**
COMPOSITE POWER GENERATING PLANT

24/6/12 (Item 2 from file: 347)

05580050 **Image available**

INDUSTRIAL WASTE TREATMENT SYSTEM UTILIZING COMBUSTIBLE GAS PRODUCED BY THERMAL DECOMPOSITION

24/6/13 (Item 1 from file: 353)

0372646

In situ treatment of hydrocarbon containing formation e.g. kerogen, involves controlled transfer of heat from heat sources to formation

24/6/14 (Item 2 from file: 353)

0369557

Melt reduction iron-smelting dimethyl ether production and power generation combined production method and installation

24/6/15 (Item 3 from file: 353)

0366644

Oil sand spiral surface mining apparatus for exchange of renewable electricity and hydrogen fuel for production of oil comprises river current intensifier having electromagnetic propeller array modules

24/6/16 (Item 4 from file: 353)

0357532

Gasification and slugging combustion system for treating e.g. industrial waste, has combustor to produce combustion gas and melt ash content using combustible gas from gasification furnace, and waste heat boiler

24/6/17 (Item 5 from file: 353)

0356533

Reduction of emissions, from industrial combustion facilities, involves reacting emissions to form carbonate-containing fertilizer, and applying at least some fertilizer to soil and plants

24/6/18 (Item 6 from file: 353)

0352092

Production of aliphatic hydrocarbons and urea comprises forming syngas and carbon dioxide from carbonaceous material and producing aliphatic hydrocarbons from syngas and urea from carbon dioxide

24/6/19 (Item 7 from file: 353)

0349035

In situ treatment of hydrocarbon containing formation, e.g. coal formation, involves controlled heating of selected section of formation at specified temperature

24/6/20 (Item 8 from file: 353)

0347126

Treating hydrocarbon containing formation in situ for e.g. hydrocarbon production, involves controllably heating selected formation section at specified average temperature

24/6/21 (Item 9 from file: 353)

0341269

Continuous synthesis of ferrate used as oxidant, flocculent, coagulant involves mixing iron salt and oxidizing agent in mixing chamber, delivering portions of mixed solution to reaction chamber

24/6/22 (Item 10 from file: 353)

0340783

Directly reduced iron pellets production involves firing a pelletized mixture of iron oxide-containing material, internal reducing agent and a novel binder including a non-combustible fibrous material

24/6/23 (Item 11 from file: 353)

0336125

In situ treatment of hydrocarbon formation, for production of hydrocarbons, hydrogen and/or other products, involves heating selected part of formation with controlled heat to produce mixture from formation

24/6/24 (Item 12 from file: 353)

0325467

Complex production of rotary film electromagnetic separator for tunnel double body native-style blast furnace and tunnel spiral flow magnetic blast furnace

24/6/25 (Item 13 from file: 353)

0315825

Non-metallic electrically conductive exothermic coating for heating floors, walls comprises binder, volatile solvent and electrically conductive

flake carbon black and graphite of predefined particle size

24/6/26 (Item 14 from file: 353)

0291919

Industrial complex with power station, cement plant and steel-making where the plants are linked to allow better use of energy and reduction
 of waste

24/6/27 (Item 15 from file: 353)

0277184

Cracking converter changing high calorific value waste e.g. plastics, fat and vegetable oil to heating fuel and diesel oil - employs virtually worthless wastes, e.g. blast furnace slag and spent air purification material, as catalysts for liquid- and vapour-phase conversion at comparatively low temperatures

24/6/28 (Item 16 from file: 353)

0264664

Fire retardant foam material for coatings, joints etc. - contg. stone-forming component and hardener component and-or gas-releasing component and-or pH-adjusting component

24/6/29 (Item 17 from file: 353)

0262176

Integrated oxygen-based iron-making process - involves partially oxidising carbonaceous feed and heating iron oxide with reducing gas, yielding reduced solid metallic iron and providing compressing and heating air stream

24/6/30 (Item 18 from file: 353)

0246449

Aq. polysiloxane-polysilicate binders prepn. - by combining an amine oxysilane with water and a metal silicate and are esp. useful in protective coatings for, e.g., concrete and steel.

24/6/31 (Item 19 from file: 353) 0218530

Using municipal wastes to provide energy and resource conservation - by high-temp. thermochemical conversion with particulate carbon fuel using oxygen and steam producing marketable prods

(Item 20 from file: 353) 24/6/32 0198494 Desulphurising of gas by adsorption material at 300 to 650 deg. C - and 15 to 85 bar pressure after washing to remove dust gives good energy output (Item 21 from file: 353) 24/6/33 0182795 PREVENTING HARMFUL EMISSION ESP. OF NITROGEN AND SULPHUR OXIDE CPDS. - FROM COAL FIRED POWER STATION OR HEATING PLANT USING COAL MIXT. CONTG. ADDITIVES 24/6/34 (Item 1 from file: 354) 728619 "MIX" concept links refining operations with power and construction industries 24/6/35 (Item 2 from file: 354) 682087 Boiler works resistant to corrosion Original Title: De la chaudronnerie resistante a la corrosion 24/6/36 (Item 3 from file: 354) 648995 Rational energy use Original Title: Rationelle energieverwendung 24/6/37 (Item 4 from file: 354) 645103 Energy analysis of a CO(sub)2 recycling system 24/6/38 (Item 5 from file: 354) 0581647 Nelson-Farrar quarterly costimating/Indexes for selected equipment show moderate increase 24/6/39 (Item 6 from file: 354) 0562512

Nelson-Farrar ((N-F)) quarterly costimating/How indexes have risen

24/6/40 (Item 7 from file: 354)

0487260

(As part of) the development of durable sorbents for the GE moving-bed hot-gas (coal gas) desulfurization process

24/6/41 (Item 8 from file: 354)

0436608

Nelson-Farrar quarterly costimating/How indexes have risen

24/6/42 (Item 9 from file: 354)

0369991

CORROSION CONTROL IN FLUE GAS DISCHARGE SYSTEMS

Original Title: PREVENZIONE DELLA CORROSIONE NEI SISTEMI DI SCARICO DEI FUMI.

24/6/43 (Item 10 from file: 354)

0333244

A NUCLEAR HEAT SOURCE DESIGN (CONCEPT) FOR AN ADVANCED HTGR ((HIGH-TEMPERATURE GAS-COOLED REACTOR)) PROCESS HEAT PLANT

24/6/44 (Item 11 from file: 354)

0290885

A REVIEW OF CORROSION-RELATED FAILURES IN FLUE GAS DESULFURIZATION SYSTEMS

24/6/45 (Item 12 from file: 354)

0287945

(LIQUID NATURAL) GAS-FIRED COASTAL BULK CARRIERS

24/6/46 (Item 13 from file: 354)

0267345

THE USE OF QUANTITY AND MAN-HOUR RATIOS FOR IMPROVED COST ESTIMATING Original Title: VERBESSERTE KOSTENSCHATZUNGEN DURCH ANWENDUNG VON MENGEN-UND MANNSTUNDEN-VERHALTNISZAHLEN.

24/6/47 (Item 14 from file: 354)

0259906

TECHNOLOGICAL SYSTEM FOR WASTE-FREE PROCESSING OF THE THERMAL ELECTRIC POWER PLANT ASH

24/6/48 (Item 15 from file: 354)

0171863 OFFSHORE METHANOL

24/6/49 (Item 1 from file: 2)

02722126 INSPEC Abstract Number: B86056574

Title: From concept to implementation of a district heating system using waste heat from an industrial plant

Publication Date: 24 May 1986

24/6/50 (Item 2 from file: 2)

01372975 INSPEC Abstract Number: B79033355

Title: Industrial cogeneration: problems and promise

Publication Date: Feb. 1979

24/6/51 (Item 3 from file: 2)

01360226 INSPEC Abstract Number: B79029518

Title: A technical analysis for cogeneration systems with potential

applications in twelve California industrial plants

Publication Date: 1978

24/6/52 (Item 1 from file: 6)

2014442 NTIS Accession Number: PB97-181556

Impact of High Energy Price Scenarios on Energy-Intensive Sectors:

Perspectives from Industry Workshops

Jul 97

24/6/53 (Item 2 from file: 6)

1974454 NTIS Accession Number: MIC-96-05527

Technology policy and practice in Africa

c1995

24/6/54 (Item 3 from file: 6)

1955948 NTIS Accession Number: DE96739489

1994 nendo energy jukyu jisseki to tanki tenbo. Energy jukyu doko chosa iinkai hokoku. (Fiscal 1994 results of energy supply and demand and its short-time prospect. Report of the energy supply and demand outlook

investigation committee)

Aug 95

24/6/55 (Item 4 from file: 6)

1798001 NTIS Accession Number: PB94-150273

Fuji Electric Journal, Vol. 66, No. 9, 1993 c1993

(Item 5 from file: 6)

1736752 NTIS Accession Number: DE93781440

Chikyu kankyo wo koryoshita nisanka tanso no yuko riyo gijutsu ni kansuru chosa. 2. (Study on technology for effective utilization of carbon dioxide in view of global environment)

Mar 92

24/6/57 (Item 6 from file: 6)

1647233 NTIS Accession Number: DE92769375

Chikyu kankyo sangyo gijutsu suishin jigyo. CO(sub 2) mondai no taisaku gijutsu ni kansuru hyoka shuho no chosa. (Promotion of industrial technologies on the global environment. Study on an evaluation method of CO(sub 2) emission control technologies)

Mar 91

(Item 7 from file: 6)

1466990 NTIS Accession Number: TIB/B89-81848

Anfall und Entsorgung von Reststoffen aus der Rauchgasreinigung in Baden-Wuerttemberg. T. 1. Grossanlagen. (Removal of by-products from flue gas desulfurization systems. Pt. 1. Industrial furnaces)

May 88

24/6/59 (Item 8 from file: 6)

1093797 NTIS Accession Number: DOE/TIC-10593

Energy Impact Studies of Air and Water Pollution Control Requirements on Industry Groups. Phase I: Summary of Major Current and Completed Studies. Appendix B

Sep 76

24/6/60 (Item 9 from file: 6)

1093688 NTIS Accession Number: DOE/TIC-10403

Identification of Alternative Fuels for Industrial Major Fuel Burning Installation

Nov 76

24/6/61 (Item 10 from file: 6)

0992871 NTIS Accession Number: DE82014242

Direct Industrial Utilization of Coal

Sep 81

24/6/62 (Item 11 from file: 6)
0905501 NTIS Accession Number: EPRI-EA-1821-SY/XAB
Potential for Load Management in Selected Industries. Summary Report
Apr 81

24/6/63 (Item 12 from file: 6)
0874123 NTIS Accession Number: EPRI-EA-1573/XAB
Industrial Response to Time-of-Day Pricing: A Technical and Economic Assessment of Specific Load-Management Strategies. Final Report
Oct 80

24/6/64 (Item 13 from file: 6)
0846667 NTIS Accession Number: DOE/CS/40255-1/XAB
Potential Industrial Applications for Fluidized-Bed Waste Heat Recovery
Systems
Dec 79

24/6/65 (Item 14 from file: 6)
0831095 NTIS Accession Number: DOE/ET/12434-T1/XAB
Multi-Megawatt Organic Rankine Engine Power Plant (MORE). Phase IA Final
Report: System Design of MORE Power Plant for Industrial Energy
Conservation Emphasizing the Cement Industry
31 Jan 80

24/6/66 (Item 15 from file: 6)
0738391 NTIS Accession Number: MTR-7485(APP.)(V.1)/XAB
Systems Descriptions and Engineering Costs for Solar-Related
Technologies. Appendix to Volume I. Experience Curves and Cost Trends: A
Preliminary Consideration of Some Factors Likely to Influence Capital Costs
in Selected Solar Energy Systems
Jun 77

24/6/67 (Item 16 from file: 6)
0725990 NTIS Accession Number: PB-285 589/8/XAB
Proposed Issuance of a New Source National Pollutant Discharge Elimination System Permit to Ideal Basic Industries, Inc. Cement Plant, Theodore Industrial Park, Alabama, and Limestone Quarry, Monroe County, Alabama
(Final environmental impact statement)
Sep 78

24/6/68 (Item 17 from file: 6) 0700640 NTIS Accession Number: PB-279 960/9/XAB Outlook for Computer Process Control--Manpower Implications in Process Industries (Final rept) 1970 24/6/69 (Item 18 from file: 6) 0537842 NTIS Accession Number: PB-248 496/2/XAB Independence Blueprint. Task Force Report. Availabilities, Requirements, and Constraints on Materials, Equipment, and Construction (Final rept) Nov 74 24/6/70 (Item 19 from file: 6) 0293494 NTIS Accession Number: PB-203 522/XAB Particulate Pollutant System Study. Volume III. Handbook of Emission Properties 1 May 71 (Item 20 from file: 6) 0293493 NTIS Accession Number: PB-203 521/XAB Particulate Pollutant System Study. Volume II. Fine Particle Emissions 1 Aug 71 24/6/72 (Item 21 from file: 6) 0291570 NTIS Accession Number: PB-203 128/XAB Particulate Pollutant System Study. Volume I - Mass Emissions 1 May 71 24/6/73 (Item 1 from file: 8) 04914716 Title: Evaluation of detoxification process for treating biosolids from an integrated industrial wastewater treatment plant Conference Title: Proceedings of the 1997 13th International Conference on Solid Waste Technology and Management. Part 1 (of 2) Publication Year: 1997

24/6/74 (Item 2 from file: 8)

01907614

Title: ENERGY AND THE STEEL INDUSTRY. INTRODUCTION TO THE REPORT ON

INTEGRATED STEEL PLANTS.

Conference Title: Steel and Energy: Proceedings of Seminar.

Publication Year: 1983

24/6/75 (Item 3 from file: 8)

00674136

Title: ENERGY USE AND AIR POLLUTION CONTROL IN NEW PROCESS TECHNOLOGY.

Publication Year: 1977

24/6/76 (Item 4 from file: 8)

00629455

Title: Exploratory Processing of Integrated Steel Plant Wastes Using the Rotary Kiln Method in an Industrial Plant.

Title: VERSUCHE ZUER VERARBEITUNG VON HUETTENWERKSABFAELLEN NACH DEM WAELZVERFAHREN IN EINER BETRIEBSANLAGE.

Publication Year: 1976

24/6/77 (Item 1 from file: 94)

05343971 JICST ACCESSION NUMBER: 03A0057505 FILE SEGMENT: JICST-E
Rapid prototyping technology 4. Application examples 4.1. Application to
medical field 4.1.2. Development of prosthetic limb socket
manufacturing system. (Optoelectronic Industry and Technology
Development Association S)., 2002

24/6/78 (Item 2 from file: 94)

05126639 JICST ACCESSION NUMBER: 02A0251191 FILE SEGMENT: JICST-E Project for assisting technology development and popularization promotion of robots. Research report on robot system development in small-to-medium scale production systems. Fiscal year 2000. (Japan robot industry association S)., 2001

24/6/79 (Item 3 from file: 94)

04904502 JICST ACCESSION NUMBER: 01A0661799 FILE SEGMENT: JICST-E
Report of integrated resources utilization project. Efficient land
reclamation system using waste and industry by-product. The fiscal year
of 2000. (Clean Japan Center. S)., 2001

24/6/80 (Item 4 from file: 94)

03889051 JICST ACCESSION NUMBER: 98A0917630 FILE SEGMENT: JICST-E

Post DCS: What comes next to DCS. Study the real image of post DCS., 1998

24/6/81 (Item 5 from file: 94)
02776425 JICST ACCESSION NUMBER: 96A0361965 FILE SEGMENT: JICST-E
On integrated industrial waste disposing facility. , 1996

24/6/82 (Item 6 from file: 94)
02565873 JICST ACCESSION NUMBER: 95A0650613 FILE SEGMENT: JICST-E
High Efficiency Utilization of Thermal Energy and Hot Gas Cleaning., 1995

24/6/83 (Item 7 from file: 94)
02027876 JICST ACCESSION NUMBER: 94A0274563 FILE SEGMENT: JICST-E
Study on global warming problem for the purpose of global environmental
conservation.(Sponsor: Japan Industrial Policy Res. Inst.)., 1993

24/6/84 (Item 8 from file: 94)
01942379 JICST ACCESSION NUMBER: 93A0846938 FILE SEGMENT: JICST-E
Deodorization countermeasures of a chemical plant such as rubber industry.
Recent advance in the system of 3 companies., 1993

24/6/85 (Item 9 from file: 94) 01920510 JICST ACCESSION NUMBER: 93A0994153 FILE SEGMENT: JICST-E An Outlook on Recent Industrial Systems Technology., 1993

24/6/86 (Item 10 from file: 94)
01695968 JICST ACCESSION NUMBER: 93A0018751 FILE SEGMENT: JICST-E
Trends in capital investment of main industries in 1992.(Sponsor:
Ministry of International Trade and Industry, Industrial Policy Bureau)., 1992

24/6/87 (Item 1 from file: 95) 01317353 M99060491614

Wirkungsgradsteigernde Massnahmen durch integrierte Abwaermenutzung bei feststoffbefeuerten Industrie-Dampferzeugern und bei Abhitzekesseln. Teil 2: Kombi-Prozess

(Enhancing efficiency through integrated waste heat utilisation in solid-fuel industrial steam generators and heat recovery boilers. Part 2: Combined-cycle process)1999

24/6/88 (Item 2 from file: 95) 00780858 T94040146153

Untersuchungen zur Verwertung von Textilabfaellen zur Herstellung von Faser-Bindemittel-Kombinationswerkstoffen

(Investigations into recycling of textile waste for the manufacture of fibre/binder combination industrial materials) 1994

24/6/89 (Item 1 from file: 103)

04897627 NEDO

Title: FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 6 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 6

Publication Date: 20010301 Availability Date: 20030217

24/6/90 (Item 2 from file: 103)

04897626 NEDO

Title: FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 5 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 5

Publication Date: 20010301 Availability Date: 20030217

24/6/91 (Item 3 from file: 103)

04897625 NEDO

Title: FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 4 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 4

Publication Date: 20010301 Availability Date: 20030217

24/6/92 (Item 4 from file: 103)

04807546 NEDO

Title: Fiscal 1999 technical survey report. Basic survey of prioritized fields in South Asia (Bangladesh); 1999 nendo Minami Asia chiiki (Bangradesh) energy tashohi sangyo kiso chosa jigyo hokokusho

Publication Date: 20000301 Availability Date: 20020603

24/6/93 (Item 5 from file: 103) 04782866 RN02019555; TVI 0001; TRN JN9940356; NEDO Title: Basic survey for promoting energy efficiency in developing countries. Database development project directory of energy

conservation technology in Japan

Publication Date: 19990201 Availability Date: 20020411

24/6/94 (Item 6 from file: 103)

04737297 EDB-01-088051; TVI 0109; TRN 000900638; CLG-00090638; CLA

Title: Reuse of CO(sub 2) in the cement industry. A production-integrated environmental protection

Conference title: 5. international conference on greenhouse gas control

technologies: GHGT-5
Publication Date: 20010701
Availability Date: 20011227

24/6/95 (Item 7 from file: 103)

04615040 EDB-00-085447 Title: About natural gas Publication Date: Jun 2000

24/6/96 (Item 8 from file: 103)

04292510 FRC-98-003594; EDB-98-052925

Title: Industrial kilns

Original Title: Fours industriels

Title: Energies. Cycles. Heating plants

Original Title: Energies. Cycles. Chaudieres Series/Collection Title: Engineers Techniques Original Series Title: Techniques de l'Ingenieur

Publication Date: Jan 1998

24/6/97 (Item 9 from file: 103)

04204591 ECN-97-0E1122; EDB-97-113295

Title: International comparisons of CO[sub 2] emission reduction potentials

Publication Date: 1996

24/6/98 (Item 10 from file: 103)

04126035 NEDO-96-920550; EDB-97-034739

Title: Recycling system and ecological manufacturing for waste industrial products

Original Title: Haikogyo seihin recycle to eko manufacturing

Publication Date: 1 Jul 1996

24/6/99 (Item 11 from file: 103)

04070159 NEDO-96-913343; EDB-96-153919

Title: Coal gasification technology

Original Title: Sekitan gas ka gijutsu

Publication Date: 5 May 1996

24/6/100 (Item 12 from file: 103)

03980509 NEDO-95-914731; EDB-96-064269

Title: Industry-owned combined cycle power plants. Part 2. Feature and operation experience of 149MW low caloric gas fired combined cycle plant

Original Title: Jikahatsuyo konbaindo saikuru hatsuden. 2. Kawasaki Chiba

Konbaindo Hatsudensho no gaiyo to unten jisseki

Publication Date: 15 Oct 1995

24/6/101 (Item 13 from file: 103)

03961449 NEDO-95-950354; EDB-96-045209

Title: Electric power deregulation and the wholesale power generation market

Original Title: Denryoku no kisei kanwa to oroshihatsuden shijo

Publication Date: 1 Oct 1995

24/6/102 (Item 14 from file: 103)

03477664 NEDO-92-820149; EDB-93-056540

Title: Study on technology for effective utilization of carbon dioxide in view of global environment

Original Title: Chikyu kankyo wo koryoshita nisanka tanso no yuko riyo

gijutsu ni kansuru chosa. 2 Publication Date: Mar 1992

24/6/103 (Item 15 from file: 103)

03467506 NEDO-92-820145; EDB-93-046382

Title: Evaluation method of the CO2 measures technology in the field of industries

Original Title: Sangyo bun'ya ni okeru CO2 taisaku gijutsu ni kansuru hyoka shuho

Title: Proceedings of the second meeting of trend survey on the innovation technology for the earth.

Original Title: Dai 2 kai chikyu kankyo sangyo gijutsu doko chosa hokokukai. Chikyu kankyo sangyo gijutsu no seeds hakkutsu no tame ni shiryoshu

Publication Date: Oct 1992

(Item 16 from file: 103) 24/6/104

03444716 AIX-24-006321; EDB-93-023592

Title: Assessment of risks from hazards associated with industries and energy systems

Title: Methods for comparative risk assessment of different energy sources Publication Date: Oct 1992

(Item 17 from file: 103) 24/6/105

NEDO-91-820215; EDB-92-035396 03272639

Title: Promotion of industrial technologies on the global environment. Original Title: Chikyu kankyo sangyo gijutsu suishin jigyo. CO sub 2 mondai no taisaku gijutsu ni kansuru hyoka shuho no chosa Publication Date: Mar 1991

(Item 18 from file: 103) 24/6/106 03231912 DE-91-010229; EDB-91-159348

Title: Flue gas purification and residue removal in power plants, industrial power generating systems and heating power plants. Proceedings

Original Title: Rauchgasreinigung und Reststoffentsorgung in Kraftwerken, Industrie- und Heizkraftwerken. Vortraege

Conference title: VGB seminar on flue gas purification and residue removal in power plants, industrial power generating systems and heating power plants

Original Conference Title: VGV-Seminar 'Rauchgasreinigung und Reststoffentsorgung in Kraftwerken, Industrie- und Heizkraftwerken Publication Date: 1990

(Item 19 from file: 103) 24/6/107 DE-90-002207; EDB-90-047607 02830381

Title: Results of measurements in a semi-industrial plant for combined low-temperature carbonisation and combustion

Original Title: Messtechnische Ergebnisse von der Technikumsanlage des Schwel-Brenn-Verfahrens

Publication Date: Aug 1989

(Item 20 from file: 103) 24/6/108 02767662 DE-89-012677; EDB-89-158704

Title: Process for flue gas conditioning in power plants, industrial. furnaces, and all other types of combustion systems

Original Title: Verfahren zur Rauchgaskonditionierung bei Kraftwerken, Industriefeuerungen, Verbrennungs- und Brennanlagen aller Art Publication Date: 12 Dec 1985

(Item 21 from file: 103) 24/6/109 02377973 DE-89-009509; EDB-89-123947

Title: Removal of by-products from flue gas desulfurization systems. Pt. 1.

Industrial furnaces

Original Title: Anfall und Entsorgung von Reststoffen aus der Rauchgasreinigung in Baden-Wuerttemberg. T. 1. Grossanlagen

Series/Collection Title: Luft, Boden, Abfall

Publication Date: May 1988

(Item 22 from file: 103) 24/6/110 DE-89-000606; EDB-89-020473 02274739

Title: Space VAC systems in pharmaceutical plants

Title: Space HVAC systems in industrial plants - Munich meeting

Original Title: Heiz- und Raumlufttechnik in industriellen

Fertigungsstaetten - Tagung Muenchen

Conference title: Meeting on space HVAC systems in industrial plants

Publication Date: 1987

(Item 23 from file: 103) 24/6/111

EDB-83-140637

Title: Development of plants for industrial electric heat in connection with the perspectives of the energy situation

Publication Date: Apr 1982

(Item 24 from file: 103)

24/6/112 EDB-83-085082 01185047

Title: Industrialization of the Arab countries

Publication Date: Feb 1983

(Item 25 from file: 103) 24/6/113

EDB-79-084854 00510754

Title: Energy impact studies of air and water pollution control

requirements on industry groups. Phase I: summary of major current

Appendix B and completed studies.

Publication Date: Sep 1976

(Item 26 from file: 103) 24/6/114

ERA-04-019389; EPA-05-001735; EDB-79-036733

Title: Case example: cogeneration experience at Southern California Edison

Company Title: Workshop proceedings: dual energy use systems Conference title: Workshop on dual energy use systems Publication Date: May 1978

(Item 27 from file: 103) 24/6/115 ERA-03-046386; EDB-78-094058 00394878 Title: Some results of air pollution work in Jharia coalfield Publication Date: Jan 1976

(Item 1 from file: 144) 24/6/116 PASCAL No.: 99-0488560

Cover sealing system with stabilized by-products from the steel industry Waste stabilisation and environment : towards the definition of objectives for stabilization of industriel wastes by taking into account the potential impact on health and the environment

Stabilisation des dechets et environnement : vers la definition d'objectifs de stabilisation des dechets industriels par la prise en compte de l'impact potentiel sur la sante et l'environnement : Lyon-Villeurbanne, 13-16 avril 1999 1999

Copyright (c) 1999 INIST-CNRS. All rights reserved.

(Item 1 from file: 315) 24/6/117

Waste gas treatment with combined sewage sludge incineration in an industrial power plant.

Orig. Title: Abgasreinigung bei der Klaerschlamm-Mitverbrennung in einem Industriekraftwerk.

(19990000) PUBLICATION DATE: 1999

(Item 2 from file: 315) 24/6/118

020014

Small-size oil separaor

PUBLICATION DATE: 1973 (730000)

s24/7,de/2,4,5,7,9,11,12,14,16,26,27,34,47,48,50,60,61,74,76,81,85,89,90,91 , 98

(Item 2 from file: 350) 24/7,DE/2

DIALOG(R) File 350: Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

015029492

WPI Acc No: 2003-090009/200308

Sulfite treatment method for industrial waste involves

combining industrial waste with calcium sulfite to produce insoluble metal sulfur oxide complexes without converting sulfite to sulfate

Patent Assignee: HALE E C (HALE-I); WILDEY J E (WILD-I)

Inventor: HALE E C; WILDEY J E

Number of Countries: 001 Number of Patents: 001

Patent Family:

Week Date Kind Applicat No Date Patent No Kind 200308 B 19980810 US 9895936 Ρ US 6476287 B1 20021105 US 99274849 19990323 Α

Priority Applications (No Type Date): US 9895936 P 19980810; US 99274849 A 19990323

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

Provisional application US 9895936 4 A62D-003/00 US 6476287 В1

Abstract (Basic): US 6476287 B1

Abstract (Basic):

NOVELTY - The method involves combining the industrial waste containing metallic contaminants, with the sufficient amount of calcium sulfite to produce the insoluble metal sulfur oxide complexes, such that the calcium sulfite is stabilized to prevent the conversion of the sulfite to a sulfate.

USE - For treatment of industrial waste containing metallic contaminants e.g. foundry sand, slag.

ADVANTAGE - Enables reducing clumping of treated waste to enable appropriate use of waste in another industrial process. Enables efficient recycling of treated waste, thus enabling use of treated waste as a raw material with improved safety.

pp; 4 DwgNo 0/0

Title Terms: SULPHITE; TREAT; METHOD; INDUSTRIAL; WASTE; COMBINATION; INDUSTRIAL; WASTE; CALCIUM; SULPHITE; PRODUCE; INSOLUBLE; METAL; SULPHUR; OXIDE; COMPLEX; CONVERT; SULPHITE; SULPHATE

Derwent Class: P35

International Patent Class (Main): A62D-003/00

International Patent Class (Additional): C09C-001/00

(Item 4 from file: 350) 24/7, DE/4DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

014969628

WPI Acc No: 2003-030142/200302

Gasification and slugging combustion system for treating e.g. industrial waste, has combustor to produce combustion gas and melt ash content using combustible gas from gasification furnace, and waste heat boiler

Patent Assignee: EBARA CORP (EBAR)

Inventor: ENDO H; ISHIKAWA R

Number of Countries: 102 Number of Patents: 004

Patent Family:

Priority Applications (No Type Date): JP 2001121386 A 20010419 Patent Details:

Filing Notes Patent No Kind Lan Pg Main IPC

WO 200286027 A2 E 25 C10J-003/00

Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA

Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZM ZW

8 F23G-005/50 JP 2002317915 A

F23C-011/02 Α TW 524953

Based on patent WO 200286027 C10J-003/00 Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT A2 E EP 1379613 LI LT LU LV MC MK NL PT RO SE SI TR

Abstract (Basic): WO 200286027 A2

Abstract (Basic):

NOVELTY - A gasification furnace (2) produces combustible gas by gasifying the waste. The combustible gas is introduced into a high temperature combustor (3) for producing combustion gas and melting ash content to produce molten slag. A waste heat boiler (7) recovers heat of combustion gas. A cooling device cools the combustion gas before sending combustion gas to waste heat boiler.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for gasification and slugging combustion method.

USE - For treating municipal wastes, industrial waste, biomass wastes, medical wastes, automobile wastes such as waste tire or shredder dust.

ADVANTAGE - High temperature combustor produces combustible gas and melts the ash content so the amount of ash discharged is reduced. Harmful substances such as dioxins contained in the exhaust gas are decomposed. The heat recovered from the combustible gas is utilized to produce steam. Cooling device prevents the dust from being adhered or attached to parsing regions by which corroding by molten

salt is avoided.

DESCRIPTION OF DRAWING(S) - The figure shows a schematic view of gasification and slugging combustion system.

Gasification furnace (2)

High temperature combustor (3)

Waste heat boiler (7)

pp; 25 DwgNo 2/5

Title Terms: GASIFICATION; SLUG; COMBUST; SYSTEM; TREAT; INDUSTRIAL; WASTE; COMBUST; PRODUCE; COMBUST; GAS; MELT; ASH; CONTENT; COMBUST; GAS; GASIFICATION; FURNACE; WASTE; HEAT; BOILER

Derwent Class: A35; H09; Q73

International Patent Class (Main): C10J-003/00; F23C-011/02; F23G-005/50 International Patent Class (Additional): B09B-003/00; F23G-005/00;

F23G-005/02; F23G-005/027; F23G-005/14; F23G-005/46; F27D-017/00

(Item 5 from file: 350) 24/7,DE/5

DIALOG(R) File 350: Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

014918945

WPI Acc No: 2002-739652/200280

Reduction of emissions, from industrial combustion facilities, involves reacting emissions to form carbonate-containing fertilizer, and applying at least some fertilizer to soil and plants

Patent Assignee: UT BATTELLE LLC (UTBA-N)

Inventor: LEE J W; LI R

Number of Countries: 001 Number of Patents: 001

Patent Family:

Week Applicat No Date Kind Date Patent No Kind 200280 US 2000540382 US 6447437 20020910 В1

Priority Applications (No Type Date): US 2000540382 A 20000331

Patent Details:

Filing Notes Main IPC Patent No Kind Lan Pg

13 C05D-011/00 В1 US 6447437

Abstract (Basic): US 6447437 B1

Abstract (Basic):

NOVELTY - Reduction of emissions from industrial combustion facilities involves reacting emissions to form at least carbonate-containing fertilizer and applying some of the fertilizer to soil and plants. The emissions, comprising carbon dioxide (2 moles) and nitrogen (1 mole), are reacted with hydrogen (3 moles) and water (2 moles), to produce ammonium bicarbonate (2 moles).

ACTIVITY - Fertilizer.

MECHANISM OF ACTION - None given.

USE - For reducing emission of industrial combustion facilities,

such as fossil fuel power plants, biomass power plants, fossil fuel-power manufacturing plants, steam plants, petroleum gas refinery plants, gas flaring facilities, incinerators, cement manufacturing plants, aluminum-making plants, coke-making plants, iron-making plants and steel making plants. The earth mineral carbonates produced by reacting the emissions is used as fertilizer.

ADVANTAGE - Integration of combustion facilities with green house gas solidifies fertilizer production reaction, by converting carbon dioxide, carbon monoxide, sulfur oxide and nitrogen oxide emissions into carbonate containing fertilizers, such as ammonium carbonate and urea. The emission reduction method enhances photosynthetic fixation of carbon dioxide from the atmosphere by the technology-driven production of carbonate-containing fertilizers, and sequesters carbon dioxide by enhanced carbonation of soil and subsoil terrain through the application of the carbonate-containing fertilizers. The emissions are reacted using waste heat from combustion facilities. The method solidifies 90% of carbon dioxide from flue gas and places the carbonate containing fertilizer in soil and subsoil. The method simultaneously reduces contamination of surface water and ground water by nitrate. The method has improved energy efficiency, enhanced economic competitiveness and reduced environmental impacts of both the fossil energy system and fertilizer industry. The method does not produce toxic substance, and produces valuable commercial products which can be sold to world wide market. The method enables to inexpensively remove green house gas, and produce valuable products which can be sold to farmers. The method prevents proliferation of dangerous ammonium nitrate fertilizer which are used by terrorists to make bombs. The method enhances photosynthetic production of biomass which is used as renewable biomass energy source to substitute fossil fuels. The method enables to transform several industrial green house gas emitters into the productive system that can be operated in harmony with the environment, producing economic wealth and at the same time contributing positively towards global sequestration of carbon dioxide and protection of clean air and water resources.

DESCRIPTION OF DRAWING(S) - The figure shows the sequestration of carbon dioxide into soil, ground water, earth subsurface and plant biomass by the application of carbonate containing fertilizer.

pp; 13 DwgNo 3/5
Title Terms: REDUCE; EMIT; INDUSTRIAL; COMBUST; FACILITY; REACT; EMIT; FORM
; CARBONATE; CONTAIN; FERTILISER; APPLY; FERTILISER; SOIL; PLANT
Derwent Class: C04; E36; J01
International Patent Class (Main): C05D-011/00

24/7,DE/7 (Item 7 from file: 350)
DIALOG(R)File 350:Derwent WPIX
(c) 2004 Thomson Derwent. All rts. reserv.

014235211 WPI Acc No: 2002-055909/200208 Integral utilisation of industrial refuse consists of combination of mini factory residues volumes for use in the factory processes Patent Assignee: AGUIRRE MORALES M L (MORA-I) Inventor: AGUIRRE MORALES M L Number of Countries: 001 Number of Patents: 001 Patent Family: Week Date Kind Applicat No Kind Date Patent No 19991206 200208 A 20010918 BR 996183 Α BR 9906183 Priority Applications (No Type Date): BR 996183 A 19991206 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes A 1 B09B-003/00 BR 9906183 Abstract (Basic): BR 9906183 A Abstract (Basic): NOVELTY - The integral utilisation of industrial refuse comprises biogas, humus, electricity and e.g. paper production without waste formation. The production processes of independent mini-factories, including producers also of plastics, concrete castings, aluminium and special steels are integrated, with application of materials separated from the processes. USE - In industry in general. pp; 1 DwgNo 1/1 Title Terms: INTEGRAL; UTILISE; INDUSTRIAL; REFUSE; CONSIST; COMBINATION; MINI; FACTORY; RESIDUE; VOLUME; FACTORY; PROCESS Derwent Class: C04; D16; F09; P35; P43 International Patent Class (Main): B09B-003/00 International Patent Class (Additional): A62D-003/00; B09B-005/00; C02F-011/04; C05F-009/04 (Item 9 from file: 350) 24/7,DE/9 DIALOG(R)File 350:Derwent WPIX (c) 2004 Thomson Derwent. All rts. reserv. 012314458 WPI Acc No: 1999-120564/199910 Industrial complex with power station, cement plant and steel-making - where the plants are linked to allow better use of energy and reduction of waste Patent Assignee: JGC CORP (JAGA); SUMITOMO OSAKA CEMENT CO LTD (SUMD);

KYOEI SEIKO KK (KYOE); SUMITOMO CEMENT CO LTD (SUMD)

Inventor: HATANO Y; KURUMADA N; MUKAI K; NOGUCHI K; OKADA T; SAKURAI A;

TAKASHIMA H; TAMURA K; TODO F; YAGI T Number of Countries: 007 Number of Patents: 004

Patent Family: Week Applicat No Kind Date Date Kind Patent No. 199910 В 19980706 Α WO 98JP3025 19990121 Α1 WO 9902253 19970707 199914 Α 19990126 JP 97195246 JP 11019504 Α 200050 19980706 Α 20000822 BR 9810682 Α BR 9810682 19980706 WO 98JP3025 Α

US 20020047230 A1 20020425 US 2000462291 A 20000106 200233 US 2001978021 A 20011017

Priority Applications (No Type Date): JP 97195246 A 19970707

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

WO 9902253 A1 E 36 B01J-019/00

Designated States (National): BR ID MX RU US VN

JP 11019504 A 14 B01J-019/00

BR 9810682 A B01J-019/00 Based on patent WO 9902253

US 20020047230 A1 C21B-015/00 Div ex application US 2000462291

Abstract (Basic): (WO 9902253 A)

Basic industrial plant complex comprising an oil refinery, an oil-fired power plant, a cement plant and a steel-making plant constructed in close proximity to or adjacent to each other, and combined through a transporter for partially or completely supplying product, byproduct or waste material from a plant in the complex as a fuel, power source and/or raw material for products to another plant in the complex. Also claimed is a similar complex without the oil refinery.

ADVANTAGE - The combination of plants allows improved energy efficiency and reduced waste production compared to separate plants. Linkage also results in more efficient use of land reducing investment and running costs. The plant is more environmentally friendly than prior art. Waste gas from one part of the plant can be used as a raw material in another.

Dwg.1/9

Title Terms: INDUSTRIAL; COMPLEX; POWER; STATION; CEMENT; PLANT; STEEL; PLANT; LINK; ALLOW; ENERGY; REDUCE; WASTE Derwent Class: E36; H05; J01; L02; M24

International Patent Class (Main): B01J-019/00; C21B-015/00

International Patent Class (Additional): C04B-007/36

^{24/7,}DE/11 (Item 1 from file: 347) DIALOG(R)File 347:JAPIO

⁽c) 2004 JPO & JAPIO. All rts. reserv.

05886313

COMPOSITE POWER GENERATING PLANT

10-169413 [JP 10169413 PUB. NO.:

June 23, 1998 (19980623) PUBLISHED:

SHINADA OSAMU INVENTOR(s):

YOSHIDA HIROHISA DEGUCHI YOSHIHIRO

APPLICANT(s): MITSUBISHI HEAVY IND LTD [000620] (A Japanese Company or

Corporation), JP (Japan)

08-331791 [JP 96331791] APPL. NO.:

December 12, 1996 (19961212) FILED:

21.1 (ENGINES & TURBINES, PRIME MOVERS -- Steam); 21.2 JAPIO CLASS:

(ENGINES & TURBINES, PRIME MOVERS -- Internal Combustion);

46.2 (INSTRUMENTATION -- Testing)

JAPIO KEYWORD: R002 (LASERS); R004 (PLASMA); R018 (FLUIDIZED BEDS); R038

(CHEMISTRY -- Exhaust Gas Desulfurization); R098 (ELECTRONIC

MATERIALS -- Charge Transfer Elements, CCD & BBD); R117

(CHEMISTRY -- Liquefied Gases)

ABSTRACT

To measure a small quantity of corrosive gas SOLVED: PROBLEM TO BE component on online with laser in the gas turbine device of a composite power generating plant and monitor high temperature parts such as the cascade of the gas turbine.

SOLUTION: This composite power generating plant has a gas turbine device for generating power by expanding oil fuel such as gas oil, gas such as LNG, coal gas fuel obtained by dust-removing and gas fuel generated from an gasified coal, desulfurizing manufacturing device such as a blast furnace, gas fuel generated from an refining plant or high temperature and high pressure combustion gas generated from a pressurized fluid bed boiler, an exhaust heat recovery boiler 9 for generating steam by using the exhaust gas of the turbine device as a heat source ad a steam turbine power generating device 18 for generating power by the steam generated from the exhaust heat recovery boiler 9. Measurement devices 20 and 21 for measuring gas component with laser through measuring windows are disposed at the inlet duct part 2 of the air compressor of the gas turbine device and a fuel pipeline part 4 at the inlet of the gas turbine device, so that a small quantity of corrosive gas component in air and the fuel is measured on online with laser and high temperature parts such as the cascade of a gas turbine are monitored.

(Item 2 from file: 347) 24/7, DE/12DIALOG(R) File 347: JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

05580050

TREATMENT SYSTEM UTILIZING COMBUSTIBLE INDUSTRIAL WASTE GAS PRODUCED BY THERMAL DECOMPOSITION

09-194850 [JP 9194850 A] PUB. NO.: July 29, 1997 (19970729) PUBLISHED:

INOKO JUNICHI INVENTOR(s):

APPLICANT(s): INOKO JUNICHI [000000] (An Individual), JP (Japan)

08-044001 [JP 9644001] APPL. NO.: January 24, 1996 (19960124)

JAPIO CLASS: 14.6 (ORGANIC CHEMISTRY -- Liquid Fuel, Oils & Fats); 13.1

(INORGANIC CHEMISTRY -- Processing Operations); 13.9

(INORGANIC CHEMISTRY -- Other); 14.2 (ORGANIC CHEMISTRY --High Polymer Molecular Compounds); 32.4 (POLLUTION CONTROL --

Refuse Disposal)

ABSTRACT

PROBLEM TO BE SOLVED: To provide a system wherein industrial wastes are thermally decomposed to produce a high-temperature combustible gas, the gas is burnt while it is forming a flame, and the thermal energy of the waste gas is used in industrial waste treatments chiefly including the incineration of industrial wastes in an incinerator, the melting of aluminum scraps as industrial wastes in an aluminum and the neutralization and drying of waste concrete in a sludge dying oven.

SOLUTION: Waste plastics as industrial wastes are thermally decomposed in a double-kettle type carbonizer 1 to make a formed gas and activated coal. The activated coal can be used in many purposes such as an adsorbent for sewage treatment, a dry activated carbon adsorbent, a deodorizing agent and an earthquake-proofing material, and the formed gas used as a fuel for an incinerator 3. Industrial wastes are burnt in the incinerator. The thermal energy of the waste gas is used to dissolve aluminum scraps as industrial wastes in an aluminum melter 5, and the melt is made into recycled aluminum. The heat of the waste gas is used to dry sludge in a sludge drier 8 to recycle the sludge. Water-soluble substances and soot are removed from the waste gas by means of a submerging apparatus 10, its heat is used in a heat exchanger 12, and the gas is converted into nonpolluting waste gas by utilizing the adsorptive action of the dry activated carbon 14.

(Item 2 from file: 353) 24/7, DE/14DIALOG(R)File 353:Ei EnCompassPat(TM) (c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

0369557 EnCompassPat Document No.: 200315866 Derwent WPI Accession No.:

Melt reduction iron-smelting dimethyl ether production and power generation combined production method and installation

Patent Assignee: IRON & STEEL GEN RES INST

Patent (CC, No, Date): CN 1394965 030205

Int Pat Class: C07C-041/01; C21B-011/02

Ei EnCompassPat Bulletin Headings: CHEMICAL PRODUCTS; OXYGEN COMPOUNDS; PETROLEUM REFINING AND PETROCHEM

Abstract:

NOVELTY - The present invention relates to a method which adopts the gas produced in the melt reducing iron-smelting process, through the processes of heat exchange, dust-removing, desulfuration, pressurizing, adding catalyst and inert solvent and utilizing slurry bed reactor to produce dimethyl ether and utilizes waste heat to make power generation. DETAILED DESCRIPTION - The system method includes melt reducing iron-smelting equipment, synthesis gas cleaning equipment, dimethyl ether synthesis equipment, product separation equipment and power generator equipment. (Dwg.No.0/0

Index Terms: ACTIVITY; BED; *C2-*P; CATALYST; CONSERVATION; DEDUSTING; DESULFURIZATION; ECONOMIC FACTOR; ELECTRIC POWER; ENERGY CONSERVATION; ENERGY SOURCE; *ETHER-*P; *ETHERIFICATION; GAS TREATING; GENERATING; HEAT; HEAT TRANSFER; INERT; IRON ORE; LIQUID; MANUFACTURED GAS-A; METALLURGICAL FURNACE; METALLURGY; *METHYL ETHER-*P ; MOLTEN; OPERATING CONDITION; ORE; PHYSICAL PROPERTY; PHYSICAL SEPARATION; PRESSURE; REACTOR; REDUCTION REACTION; *SATURATED CHAIN-*P; *SINGLE STRUCTURE TYPE-*P; SLURRY; SMELTER; SOLVENT; SUSPENSION; SYNTHESIS GAS-A; TREATING; WASTE HEAT

(Item 4 from file: 353) 24/7, DE/16 DIALOG(R)File 353:Ei EnCompassPat(TM) (c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

0357532 EnCompassPat Document No.: 200303408 Derwent WPI Accession No.: 03-030142

Gasification and slugging combustion system for treating e.g. industrial waste, has combustor to produce combustion gas and melt ash content using combustible gas from gasification furnace, and waste heat boiler

Patent Assignee: EBARA CORP

Patent (CC, No, Date): WO 200286027 021031 Designated States: AE; AG; AL; AM; AT; AU; AZ; BA; BB; BG; BR; BY; BZ; CA; CH; CN; CO; CR; CU; CZ; DE; DK; DM; DZ; EC; EE; ES; FI; GB; GD; GE; GH; GM; HR; HU; ID; IL; IN; IS; KE; KG; KP; KR; KZ; LC; LK; LR; LS; LT; LU; LV; MA; MD; MG; MK; MN; MW; MX; MZ; NO; NZ; OM; PH; PL; PT; RO; RU; SD; SE; SG; SI; SK; SL; TJ; TM; TN; TR; TT; TZ; UA; UG; US; UZ; VN; YU; ZA; ZM; ZW; AT; BE; CH; CY; DE; DK; EA; ES; FI; FR; GB; GH; GM; GR; IE; IT;

KE; LS; LU; MC; MW; MZ; NL; OA; PT; SD; SE; SL; SZ; TR; TZ; UG; ZM; ZW Int Pat Class: C10J-003/00 Ei EnCompassPat Bulletin Headings: NON-FOSSIL FUEL SOURCES; PETROLEUM SUBSTITUTES

Abstract:

NOVELTY - A gasification furnace (2) produces combustible gas by gasifying the waste. The combustible gas is introduced into a high temperature combustor (3) for producing combustion gas and melting ash content to produce molten slag. A waste heat boiler (7) recovers heat of combustion gas. A cooling device cools the combustion gas before sending combustion gas to waste heat DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for gasification and slugging combustion method. USE - For treating municipal wastes, industrial waste, biomass wastes, medical wastes, automobile wastes such as waste tire or shredder dust. ADVANTAGE - High temperature combustor produces combustible gas and melts the ash content so the amount of ash discharged is reduced. Harmful substances such as dioxins contained in the exhaust gas are decomposed. The heat recovered from the combustible gas is utilized to produce steam. Cooling device prevents the dust from being adhered or attached to parsing regions by which corroding by molten salt is avoided. DESCRIPTION OF DRAWING(S) -The figure shows a schematic view of gasification and slugging combustion system. Gasification furnace 2High temperature combustor 3Waste heat boiler 7 Dwg.2/5 (25pp Dwg.No.2/5

Index Terms: AIR POLLUTANT; ASH CONTENT; BIOMASS-A; BOILER; COMBUSTOR; COMPOSITION; FULL SCALE; FURNACE; *GASIFICATION; HEALTH/DISEASE; HEAT; HEATING EQUIPMENT; HIGH TEMPERATURE; LIQUID; *MANUFACTURED GAS-*P; OPERATING CONDITION; POLLUTANT; SOLID WASTE-A; STACK GAS; TEMPERATURE; TOXIC EFFECT; WASTE DERIVED; *WASTE DISPOSAL; WASTE GAS; WASTE HEAT; WASTE MATERIAL-NA

(Item 14 from file: 353) 24/7,DE/26 DIALOG(R) File 353:Ei EnCompassPat(TM) (c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

0291919 EnCompassPat Document No.: 9910689 Derwent WPI Accession No.: 99-120564

Industrial complex with power station, cement plant and steel-making - where the plants are linked to allow better use of energy and reduction of waste Patent Assignee: JGC CORP SUMITOMO OSAKA CEMENT CO LTD Patent (CC, No, Date): WO 9902253 990121 Designated States: BR; ID; MX; RU; US; VN Int Pat Class: B01J-019/00

Ei EnCompassPat Bulletin Headings: AIR POLLUTION CONTROL; ENVIRONMENT, TRANSPORT & STORAGE; EQUIPMENT-MATERIALS-UTILITIES; HEALTH &

ENVIRONMENT; **PETROLEUM** PROCESSES; **PETROLEUM REFINING** AND PETROCHEM

Abstract:

Basic industrial plant complex comprising an oil refinery, an oil-fired power plant, a cement plant and a steel-making plant constructed in close proximity to or adjacent to each other, and combined through a transporter for partially or completely supplying product, byproduct or waste material from a plant in the complex as a fuel, power source and/or raw material for products to another plant in the complex. Also claimed is a similar complex without the oil refinery. ADVANTAGE - The combination of plants allows improved energy efficiency and reduced waste production compared to separate plants. Linkage also results in more efficient use of land reducing investment and running costs. The plant is more environmentally friendly than prior art. Waste gas from one part of the plant can be used as a raw material in another. (36pp Dwg.No.1/9

Index Terms: AIR POLLUTANT; BYPRODUCT; CATALYST; CEMENT; COMPOUNDS;

COST; COST REDUCTION; CRUDE OIL; CRUDE OIL (WELL);

*DESULFURIZATION; DUST; ECONOMIC FACTOR; EFFICIENCY; ELECTRIC ARC

; ELECTRIC DISCHARGE; ELECTRICITY; ENERGY; ENVIRONMENTAL PROTECTION;

*FLUE GAS DESULFURIZATION; FUEL OIL; GAS OIL; *GAS TREATING

; GASOLINE STOCK; GROUP VIA; GYPSUM; HEALTH/DISEASE; HEATING FUEL

; HEAVY OIL; HIGH TEMPERATURE; *INDUSTRIAL PLANT; INVESTMENT;

KEROSINE; LIGHT GAS OIL; LIMESTONE; LIQUID; MINERAL; *OIL

REFINERY; OPERATING CONDITION; PETROLEUM DISTILLATE;

PETROLEUM FRACTION; POLLUTANT; *POLLUTION CONTROL; PORTLAND

CEMENT; POWER PLANT; ROCK; SEA; SLAG; SLUDGE; SOIL

(EARTH); SOLID; SPENT; STACK GAS; STEAM; STEEL PLANT; STORAGE

FACILITY; SULFUR; SULFUR ORGANIC; TANK; TEMPERATURE; TOXIC EFFECT;

TRANSPORTATION; *TREATING; TREATING UNIT; WASTE GAS; WASTE

MATERIAL; WASTE MINIMIZATION; WATER; WATER VAPOR

24/7,DE/27 (Item 15 from file: 353)
DIALOG(R)File 353:Ei EnCompassPat(TM)
(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

0277184 EnCompassPat Document No.: 9815166 Derwent WPI Accession No.: 98-043331

Cracking converter changing high calorific value waste e.g. plastics, fat and vegetable oil to heating fuel and diesel oil - employs virtually worthless wastes, e.g. blast furnace slag and spent air purification material, as catalysts for liquid- and vapour-phase conversion at comparatively low temperatures

Patent Assignee: GUT GES UMWELTTECHNIK MBH Patent (CC, No, Date): DE 19623732 971218

Int Pat Class: C08J-011/10; C10L-001/00
Ei EnCompassPat Bulletin Headings: CATALYSTS/ZEOLITES; ENVIRONMENT,
 TRANSPORT & STORAGE; HEALTH & ENVIRONMENT; NON-FOSSIL FUEL SOURCES;
 PETROLEUM PROCESSES; PETROLEUM REFINING AND PETROCHEM;
 PETROLEUM SUBSTITUTES; PETROLEUM-PROCESSING CATALYSTS; SOLID WASTES
Abstract:
 A novel catalytic unit transforms high calorific value waste

materials to heating- or diesel oil. In the new plant, the reaction vessel (1) is oil- (18) or electrically- heated. The catalyst inside this reactor comprises slag (5) and residues which contain an active catalyst substance. Connected after the reactor, there are a vapour treatment unit (7), a condenser (9) and a product preparation unit (10). Preferably, the reactor (1) is part-filled with catalyst and has an electrically-driven stirrer. The catalyst active material is a melt slag, e.g. blast furnace slag from the manufacture of chrome steel. In a further vessel, spent poisoned catalyst is melted with the aid of an oxidant gas, and granulated for use as a material of construction. USE - To convert e.g. thermoplastic waste and other high calorific value wastes to heating- or diesel oil. ADVANTAGE - The wastes are cracked catalytically as fluids at 300 deg. C-500 deg. C. Further stages of evaporation, catalytic vapour reaction, condensation and final reaction, form a useful fuel product. A surprising and delightful finding is the catalytic effectiveness of cheap, virtually free, wastes at low temperatures, in reducing the molecular chain length of the plastics. These catalytic waste materials (e.g. the ferrochrome slag) contrast starkly with expensive, elaborately-prepared conventional catalysts. Practical conversion plants are detailed. One example converts e.g. waste plastic, fats and tars. A second example treats organic products, e.g. rape oil, to produce a useful fuel. Commercially-available ancillary plants are nominated. Further quantified details are supplied. processes are thermally self-supporting. (6pp Dwg.No.2/2 Index Terms: ACTIVITY; ALLOY STEEL; BLAST FURNACE; BURNER; *CATALYST; CATALYST ACTIVITY; CATALYST POISONING; CERIUM; CHROMIUM; COMPRESSION IGNITION ENGINE; CONDENSATION; CONDENSER; CONSERVATION; CONSTRUCTION MATERIAL; COST; DECOMPOSITION; DIESEL ENGINE; DRIVE; ECONOMIC FACTOR; ELECTRIC GENERATOR; ELECTRIC MOTOR; ELECTRIC POWER; ELECTRIC POWER SOURCE; ENERGY CONSERVATION; ENERGY SOURCE; ENGINE; FERROUS ALLOY; FORMING; FUEL OIL-P; GAS; GAS OIL-P; GAS TREATING; GRANULATION; GROUP IIIB; GROUP VIB; GROUP VIII; HEAT OF COMBUSTION; HEAT OF REACTION; HEATING EQUIPMENT; HEATING FUEL-P; HIGH BTU; INDUSTRIAL PLANT; INTEGRATED; INTERNAL COMBUSTION ENGINE; LANTHANUM; LIQUEFACTION; *LIQUEFACTION PROCESS; LIQUID; LOW TEMPERATURE ; MECHANICAL PROPERTY; METALLURGICAL FURNACE; MINERAL; MOLTEN; NOBLE METAL; OPERATING CONDITION; OXIDATION REACTION; PHASE CHANGE; PHYSICAL PROPERTY; PLASTIC-A; PLASTICITY; PLATINUM; PLATINUM METALS; POLLUTION CONTROL; PRECIOUS METAL; PRIOR TREATMENT; RAPE SEED OIL-A; RARE EARTH; *REACTOR; RESISTANCE HEATING; ROTOR; SLAG; SOLID WASTE; SPENT;

STEEL; *SYNTHETIC OIL-*P; TAR-A; TEMPERATURE; TEMPERATURE 300 TO 600 C; THERMODYNAMIC PROPERTY; THERMOPLASTIC; TRANSITION METAL; TREATING; VAPOR; VAPORIZATION; VEGETABLE OIL-A; WASTE DERIVED; WASTE DISPOSAL; WASTE MATERIAL-NA

24/7,DE/34 (Item 1 from file: 354) DIALOG(R) File 354:Ei EnCompassLit(TM) (c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

728619 EnCompassLit Document No.: 200401189

MIX" concept links refining operations with power and construction industries

Author: Natsuo T.; Yagi T. Corporate Source: JGC Corp.

Source: Hydrocarbon Processing 82/12 71-72, 74-75 (ISSN 0018--8190) (December 2003)

Language: English ISSN: 0018--8190

CODEN: HYPRA

Journal Name: Hydrocarbon Processing

Document Type: JOURNAL ARTICLE

Publication Date: 031200

Ei EnCompassLit Bulletin Headings: CHEMICAL PRODUCTS AND PROCESSES;

ECONOMICS AND STATISTICS; MISCELLANEOUS; OXYGEN COMPOUNDS;

PETROLEUM REFINING AND PETROCHEMICALS

Abstract:

New integration concepts can reduce capital investment by integrating process and waste streams within a multi-industries complex (MIX). For example, growing economies need electrical power, automotive fuels, and building materials, e.g., steel and cement. These emerging sites require small or medium-size facilities. Integrating these industries within a complex enables opportunities to import and export products and wastes that enable down-sizing of the stand-alone unit. A discussion covers the MIX model, which integrates different categories of industry, of small to medium size to meet market requirements for developing region; candidate industries that may benefit from integrating products and services, e.g., fuel production (petroleum refinery, gas-based fuel supply, e.g., dimethyl ether), power generation, material production (cement plant and steel mill); and economic improvements. 2 flow diagrams, diagram, 3 tables

Index Terms: BUSINESS OPERATION; C2; CEMENT; COST; COST REDUCTION; ECONOMIC FACTOR; ELECTRIC POWER; ENERGY SOURCE; ETHER; FERROUS ALLOY; *INDUSTRIAL PLANT; INTEGRATED; INVESTMENT; MARKETING; METHYL ETHER; *MOTOR FUEL; *OIL REFINERY; POWER PLANT; SATURATED CHAIN; SINGLE STRUCTURE

TYPE; STEEL; STEEL PLANT; WASTE MATERIAL

(Item 14 from file: 354) 24/7, DE/47 DIALOG(R)File 354:Ei EnCompassLit(TM)

(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

Chemical Abstr CA

0259906 EnCompassLit Document No.: 2781225 91213577

TECHNOLOGICAL SYSTEM FOR WASTE-FREE PROCESSING OF THE THERMAL

ELECTRIC POWER PLANT ASH

Author: TYURNIKOVA V I; KRASNIKOVA N A; PANIN A S; KONOVALENKO P F

Corporate Source: INST OBOGASHCH TVERD GOR ISKOP USSR

Source: KHIM. TVERD. TOPL. (MOSCOW) (4) 54-6 (1979) CHEM. ABSTR. ABSTR.NO.

213577 V91 N.25-26

Language: Russian ISSN: 0009-2258

Journal Name: Chemical Abstracts

Document Type: ABSTRACT Publication Date: 790000

Ei EnCompassLit Bulletin Headings: AIR AND WATER CONSERVATION; FUEL OILS; OTHER SPECIALTIES; PETROLEUM REFINING AND PETROCHEM; SOLID

WASTES

Index Terms: ABSTRACT; AGGREGATE; ALUMINUM; ALUMINUM OXIDE; *ASH; CALCIUM; CEMENT; *COAL; CONCRETE; CONSTRUCTION MATERIAL; DENSITY; DISTILLATE FUEL OIL; EASTERN EUROPE; *FLOTATION; FUEL OIL; GAS OIL; GROUP IIA; GROUP IIIA; GROUP IVA; GROUP VIA; GROUP VIII; HEAT OF COMBUSTION; HEAT OF REACTION; HEATING FUEL; IDE; *INDUSTRIAL PLANT; IRON; IRON OXIDE; IRON OXIDE, FE203; KEROSINE; LIGHT GAS OIL; LIME; MAGNESIUM; MAGNESIUM OXIDE; OXYGEN; PHYSICAL PROPERTY; *PHYSICAL SEPARATION; POROSITY; *POWER PLANT; *RECLAIMING; RECYCLING; RUSSIA; SILICA; SILICON; SULFUR; SULFUR OXIDE; SULFUR TRIOXIDE; SURFACE ACTIVE AGENT; THERMODYNAMIC PROPERTY; *WASTE DISPOSAL; *WASTE MATERIAL

(Item 15 from file: 354) 24/7,DE/48

DIALOG(R)File 354:Ei EnCompassLit(TM)

(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

0171863 EnCompassLit Document No.: 2206235

OFFSHORE METHANOL

Author: BALAENA STRUCTURES LTD

Source: EUR CHEM NEWS V27 N.700 32 (8/22-29/75)

Language: English

Publication Date: 750822

Ei EnCompassLit Bulletin Headings: MISC. TRANSPORTATION & STORAGE; NATURAL GAS, NAT. GASOL., LPG; OXYGEN COMPOUNDS; PETROLEUM REFINING

AND PETROCHEM; TRANSPORTATION AND STORAGE

Abstract:

OFFSHORE METHANOL According to Balaena Structures Ltd., a U.K. firm of design engineers whose expertise lies in the design of large ships, methanol plants of 2000 metric ton/day capacity could be built on steel platforms resembling the concrete structures now appearing in the North Sea, at a cost of pnd 100-140 million. scheme would provide an acceptable alternative to pipelines in fields where production is low. U.K. government policy is to allow well head flaring only as a last resort, and a study has already been commissioned on the feasibility of a gas-gathering and trunkline system in the North Sea. Balaena, working closely with Imperial Chemical Industries Ltd., has also considered the feasibility of well head production of LNG, ammonia, and electric power.

Index Terms: AMMONIA; CAPACITY; CARGO; *CHEMICAL PLANT; CONSTRUCTION MATERIAL; *C1; DAILY; DESIGN; ECONOMIC FACTOR; ELECTRIC POWER; ENERGY SOURCE; ENGINEERING; FERROUS ALLOY; GATHERING LINE; GOVERNMENT; GROUP VA; HYDROGEN; IDE; IMPERIAL CHEMICAL; *INDUSTRIAL PLANT; INVESTMENT; LIQUEFIED NATURAL GAS; *METHANOL; *MONOHYDROXY; NATIONAL; *NATURAL GAS; NITROGEN; NORTH SEA; *OFFSHORE; OIL AND GAS FIELDS; PIPELINE; POWER PLANT; *SATURATED CHAIN; SEA; *SINGLE STRUCTURE TYPE; STEEL; SUPPLY; TRANSPORTATION; TRUNK PIPELINE; UNITED KINGDOM; WESTERN EUROPE

(Item 2 from file: 2) 24/7, DE/50

DIALOG(R) File 2: INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

INSPEC Abstract Number: B79033355 01372975

Title: Industrial cogeneration: problems and promise

Author(s): Icerman, L.; Staples, D.M.

Author Affiliation: Dept. of Technol. & Human Affairs, Washington Univ., St. Louis, MO, USA

p.101-17 vol.4, no.1 Journal: Energy

Publication Date: Feb. 1979 Country of Publication: UK

CODEN: ENEYDS ISSN: 0360-5442

Document Type: Journal Paper (JP) Language: English

Treatment: General, Review (G)

industrial cogeneration of potential for Considerable Abstract: electricity and process heat is currently available in the US. A number of prime mover technologies suitable for application cogeneration facilities are already technically proven in other conventional systems . Industries with particularly attractive opportunities include paper and pulp, chemical, petroleum refining, iron and steel, and cement manufacturers. The apparent technical potential is limited significantly by economic, environmental, and regulatory factors, as well for new dimensions in industry and utility cooperation. as by the need Although substantial societal benefits in the form of energy conservation are available from a strong commitment to industrial cogeneration systems, many obstacles to systems deployment remain, which will not be readily overcome without the adoption of policy incentives. (46 Refs)

Subfile: B

Descriptors: electric power generation; industrial plants

24/7, DE/60 (Item 9 from file: 6)

DIALOG(R) File 6:NTIS

(c) 2004 NTIS, Intl Cpyrght All Rights Res. All rts. reserv.

1093688 NTIS Accession Number: DOE/TIC-10403

Identification of Alternative Fuels for Industrial Major Fuel Burning Installation

Energy Resources Co., Inc., Cambridge, MA.

Corp. Source Codes: 056164000; 9502198

Sponsor: Department of Energy, Washington, DC.

Nov 76 130p

Languages: English

Journal Announcement: GRAI8409; NSA0000

Microfiche copies only. Order this product from NTIS by: phone at 1-800-553-NTIS (U.S. customers); (703)605-6000 (other countries); fax at (703)321-8547; and email at orders@ntis.fedworld.gov. NTIS is located at 5285 Port Royal Road, Springfield, VA, 22161, USA.

NTIS Prices: MF A01

Country of Publication: United States

The objective of this task was to identify the current uses of alternate fuels by the industrial sector. Alternate fuels are defined as all fuels other than coal, oil and gas and include electric power and combustible gaseous, liquid, and solid wastes. Applications of alternate following industries: petroleum examined in the was refining, paper, food, chemicals, stone-clay-glass and primary metals, including iron and steel, aluminum and copper. In all of the industries only major fuel-burning installations combusting more than 99 million Btu's per hour were studied. In many cases alternate fuels are supplemented with conventional fuels or an auxiliary conventional firing method is available on standby. The technical and economic feasibility of alternate fuel use in each industry was examined and evaluated. It was concluded that: although the off-gases in iron and steel plants have fuel value, it is costly to collect and distribute these gases to the major fuel burners in a plant; no significant source of alternative fuels for petroleum refining exists at present; the food industry must establish, on a plant-to-plant basis, which wastes are worth using as fuel; no untapped alternative fuels for the chemical industry were identified; on a heating value basis, the cost of handling paper industry forest trash for fuel usage is equal to the cost of burning low sulfur oil; there is little experience in the nonferrous primary metal,

glass, or **cement** industries in using any alternate fuel except **electric power**, which appears to be economically attractive for industrial direct heating; and no applications of municipal wastes in industrial major fuel burning installations were identified.

Descriptors: *Ceramics industry; *Chemical industry; *Food industry; *Glass industry; *Metal industry; *Paper industry; *Petroleum refineries; Combustion; Economic analysis; Electric power; Feasibility studies; Fuel substitution; Gaseous wastes; Liquid wastes; Municipal wastes; Solid wastes; Technology assessment

24/7, DE/61 (Item 10 from file: 6)

DIALOG(R) File 6:NTIS

(c) 2004 NTIS, Intl Cpyrght All Rights Res. All rts. reserv.

0992871 NTIS Accession Number: DE82014242

Direct Industrial Utilization of Coal

Brookhaven National Lab., Upton, NY.

Corp. Source Codes: 004545000; 0936000

Sponsor: Department of Energy, Washington, DC.

Report No.: BNL-51489

Sep 81 192p

Languages: English

Journal Announcement: GRAI8303; NSA0700

Portions of document are illegible.

Microfiche only after original copies are exhausted. Order this product from NTIS by: phone at 1-800-553-NTIS (U.S. customers); (703)605-6000 (other countries); fax at (703)321-8547; and email at orders@ntis.fedworld.gov. NTIS is located at 5285 Port Royal Road, Springfield, VA, 22161, USA.

NTIS Prices: PC A09/MF A01

Country of Publication: United States

Contract No.: AC02-76CH00016

The industrial sector consumes about 34% of the total national energy usage. Almost all of this energy has been supplied by oil or gas. This study identifies the major industrial groups that account for the major portion of this consumption of premium fuels, and then analyzes the potential for conversion of this usage to the direct combustion of coal. Functional requirements for the eight most significant potential industrial combustors are identified in terms of the process requirement. The report highlights basic and vital distinctions between the use of coal in new plants and the backfitting of coal into plants designed for and currently operating on either oil or gas. While new plants can be designed to use any specified fuel, backfits are subject to a hierarchical order: a plant design for coal can be backfitted for oil or gas; a plant designed for oil can be backfitted for gas. Eight industrial groups chosen out of a possible thirteen industrial groups accounted for more than 60% of the total manufacturing sector consumption of energy in 1974. The selected industries

ammonia, olefins, petroleum steel, and are: iron paper and allied products, cement, and refining, aluminum, glass. Five combustion technologies were considered: pulverized coal stoker firing, coal-oil mixtures (COM), coal-water mixtures combustion, and two-stage combustion. The conclusions reached vary for each industry considered. However, the generic result of these studies is that further development of (a) Two-Stage Combustion with integrated dry ash or slag removal and (b) Coal-Water Mixtures, appear to have the potential of increasing direct coal combustion by the manufacturing sector of American industry. (ERA citation 07:042216)

Descriptors: Industrial plants; *Fossil-fuel power plants; *Fuel substitution; *Fuel slurries; Boilers; Fuels; Coal; Fuel oils; Natural gas; Fuel consumption; Feasibility studies; Combustion; Mixtures; Usa; Metal industry; Petroleum industry; Paper industry; Cement industry; Glass industry; Ammonia; Alkenes; Aluminium; Production; Numerical data; Steam generators

24/7,DE/74 (Item 2 from file: 8)
DIALOG(R)File 8:Ei Compendex(R)
(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

01907614

E.I. Monthly No: EIM8511-071160

Title: ENERGY AND THE STEEL INDUSTRY. INTRODUCTION TO THE REPORT ON INTEGRATED STEEL PLANTS.

Author: Brooks, S. H.

Corporate Source: British Steel Corp, Engl

Conference Title: Steel and Energy: Proceedings of Seminar.

Conference Location: Brussels, Belg Conference Date: 19830214

Sponsor: Int Iron & Steel Inst, Committee on Technology, Brussels, Belg

E.I. Conference No.: 05174

Source: Publ by Int Iron & Steel Inst, Brussels, Belg p 35-57

Publication Year: 1983

Language: English

Document Type: PA; (Conference Paper)

Journal Announcement: 8511

Abstract: The paper first defines and evaluates a reference plant. That is a plant of 8 X 10**6 t/a which would be 'balanced' as far as coke and sinter supplies were concerned; would buy pellets and oxygen and would make a wide range of products - including a high level of finishing operations. The effects of raw materials and operating practices on the basic reference plant are then dealt with. New and improved steelmaking technologies are reviewed, and one way the reference plant structure can be used to compute the effect of changes in plant practice is illustrated. It is shown that the use of the Reference Plants to analyze the results from Real Plants is an especially valuable technique.

Descriptors: IRON AND STEEL PLANTS--*Energy Conservation; STEEL--

Continuous Casting; STEAM TURBINES; WASTE HEAT UTILIZATION

(Item 4 from file: 8) 24/7, DE/768:Ei Compendex(R) DIALOG(R) File

(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

00629455

E.I. Monthly No: EI7706040875 E.I. Yearly No: EI77044756

Title: Exploratory Processing of Integrated Steel Plant Using the Rotary Kiln Method in an Industrial Wastes Plant.

VON HUETTENWERKSABFAELLEN NACH DEM VERSUCHE ZUER VERARBEITUNG Title: WAELZVERFAHREN IN EINER BETRIEBSANLAGE.

Author: Maczek, Helmut; Rellermeyer, Heinrich; Kossek, Guenter; Serbent,

Source: Stahl und Eisen v 96 n 24 Dec 2 1976 p 1233-1238

Publication Year: 1976

ISSN: 0340-479X CODEN: STEIA3

Language: GERMAN

Journal Announcement: 7706

Abstract: A large scale investigation, late in 1975, is described in which a mixture of blast furnace top gas sludge, LD sludge, and LD dust was successfully processed in a rotary kiln for recovery of the iron in a form suitable for use in the blast furnace. After removal of zinc and lead, a product containing about 62% total Fe, 0.8% S, 14% CaO, 0.6% MgO, and 7% SiO//2 was obtained. Flow charts of the process are given. Costs are estimated. In German.

Descriptors: IRON AND STEEL PLANTS -- * Waste Utilization

(Item 5 from file: 94) 24/7, DE/81 DIALOG(R) File 94: JICST-EPlus (c) 2004 Japan Science and Tech Corp(JST). All rts. reserv.

JICST ACCESSION NUMBER: 96A0361965 FILE SEGMENT: JICST-E On integrated industrial waste disposing facility.

KIRIYAMA TATSUHIKO (1)

(1) Takuma Co., Ltd.

Nippon Bana Kenkyukai Kaiho, 1996, NO.81, PAGE.63-71, FIG.4, TBL.2, REF.3

ISSN NO: 0913-3828 JOURNAL NUMBER: L2433AAH

628.544/.545 UNIVERSAL DECIMAL CLASSIFICATION: 662.9.041 COUNTRY OF PUBLICATION: Japan LANGUAGE: Japanese

DOCUMENT TYPE: Journal ARTICLE TYPE: Commentary

MEDIA TYPE: Printed Publication

ABSTRACT: The most important equipment among the constituents of the titled facility is the incineration furnace. The incineration furnace is required to be capable of incinerating as many kinds and varieties of refuse as possible when the co-burning practice is employed. There exists no all-round incineration furnace capable of coping with all kinds of refuse. An incineration system consisting of a rotary kiln and a stoker to attain a reasonable co-burning is developed, and its outline is presented.

DESCRIPTORS: industrial waste; thermochemical treatment of waste; incinerator; stoker; waste heat boiler; electric

precipitation; exhaust gas treatment; rotary furnace
BROADER DESCRIPTORS: waste; waste treatment; treatment; furnace
; element of combustion equipment; special boiler; boiler; dust
collection; separation

24/7,DE/85 (Item 9 from file: 94)
DIALOG(R)File 94:JICST-EPlus
(C)2004 Japan Science and Tech Corp(JST). All rts. reserv.

01920510 JICST ACCESSION NUMBER: 93A0994153 FILE SEGMENT: JICST-E An Outlook on Recent Industrial **Systems** Technology. TAKAHASHI HIROSHI (1)

(1) Fuji Electric Co., Ltd.

Fuji Jiho (Fuji Electric Journal), 1993, VOL.66,NO.10, PAGE.587-588 JOURNAL NUMBER: F0080AAJ ISSN NO: 0367-3332 CODEN: FUJIA

UNIVERSAL DECIMAL CLASSIFICATION: 621.3:62/69

LANGUAGE: Japanese COUNTRY OF PUBLICATION: Japan

DOCUMENT TYPE: Journal ARTICLE TYPE: Commentary

MEDIA TYPE: Printed Publication

ABSTRACT: This paper discusses electrical plant and systems

technology in basic material industry and heavily equipped
industry that are major in industrial structure such as iron and
steel, nonferrous metals, pulp and paper, synthetic fiber and
film, oil refinery, chemicals, cement, and glass
industry. It also gives an outlook on environmental change around these
fields and the technical trends of basic technologies in these fields
such as control technology, plant engineering, information

systems, power electronics and power conversion
systems, and substation systems. (author abst.)

DESCRIPTORS: electric power application; motor drive; power incoming installation; information system; power electronics; power converter; control equipment;

technological review

BROADER DESCRIPTORS: utilization; drive; operation and driving; motor application; electric installation; facility; computer application system; system; electronics; technology; electric converter

; converter; equipment; review

24/7,DE/89 (Item 1 from file: 103)
DIALOG(R)File 103:Energy SciTec
(c) 2004 Contains copyrighted material. All rts. reserv.

04897627 NEDO

2 : d

Title: FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 6 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 6

Author(s): NONE

Corporate Source: New Energy and Industrial Technology Development

Organization, Tokyo (Japan)

Source: PBD: Mar 2001

Publication Date: 20010301 Availability Date: 20030217

Report Number(s): JP-NEDO--010019033

OSTI Number(s): DE20281009

Contract Number (Non-DOE): TRN JN0240263

Language: Japanese

Medium/Dimensions: 600 pages

Availability: Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20281009

Abstract: For the purpose of reducing the consumption of fossil fuel by recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 6 included drawings of assembling of the equipment such as crane, crusher and valve. (NEDO)

Descriptors: INDUSTRIAL WASTES; WASTE PRODUCT UTILIZATION; FOSSIL FUELS; FUEL SUBSTITUTION; PETROLEUM; FLUIDIZED-BED COMBUSTORS;

WASTE HEAT BOILERS; WASTE HEAT UTILIZATION; DESIGN; MANUFACTURING; CRANES; VALVES

24/7,DE/90 (Item 2 from file: 103)
DIALOG(R) File 103:Energy SciTec
(c) 2004 Contains copyrighted material. All rts. reserv.

04897626 NEDO

Title: FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 5 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 5

Author(s): NONE

Corporate Source: New Energy and Industrial Technology Development Organization, Tokyo (Japan)

Source: PBD: Mar 2001

Publication Date: 20010301 Availability Date: 20030217

Report Number(s): JP-NEDO--010019032

OSTI Number(s): DE20281008

Contract Number (Non-DOE): TRN JN0240262

Language: Japanese

Medium/Dimensions: 360 pages

Availability: Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20281008 Abstract: For the purpose of reducing the consumption of fossil fuel by recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for

effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 5 included the drawing of the basic design, drawing of building/design, drawing of manufacturing equipment, etc. (NEDO)

Descriptors: THAILAND; INDUSTRIAL WASTES; WASTE PRODUCT UTILIZATION; FUEL SUBSTITUTION; PETROLEUM; FOSSIL FUELS; FLUIDIZED-BED COMBUSTORS; INCINERATORS; WASTE HEAT UTILIZATION; WASTE HEAT BOILERS; ENGINEERING DRAWINGS; DESIGN

(Item 3 from file: 103) 24/7, DE/91 DIALOG(R) File 103: Energy SciTec (c) 2004 Contains copyrighted material. All rts. reserv.

04897625 NEDO

Title: FY 1999 report on the results of the contract project 'The model project for facilities for effective utilization of industrial waste at the industrial complex in Thailand.' Separate Volume 4 - FY 1999 project; 1999 nendo seika hokokusho. Tai ni okeru kogyo danchi sangyo haikibutsu yuko riyo setsubi moderu jigyo - 4

Author(s): NONE

Corporate Source: New Energy and Industrial Technology Development

Organization, Tokyo (Japan)

Source: PBD: Mar 2001

Publication Date: 20010301 Availability Date: 20030217

Report Number(s): JP-NEDO--010019031

OSTI Number(s): DE20281007

Contract Number (Non-DOE): TRN JN0240261

Language: Japanese

Medium/Dimensions: 593 pages

Availability: Available to ETDE participating countries only(see www.etde.org); commercial reproduction prohibited; OSTI as DE20281007 Abstract: For the purpose of reducing the consumption of fossil fuel by

recycling industrial waste for effective use as petroleum substituting energy in Thailand where the amount of industrial waste is expected to increase, a model project on facilities for effective use of industrial waste at the industrial complex was carried out, and the FY 1999 results were reported. Concretely, the industrial waste generated from each plant at the industrial complex owned by IEAT is to be incinerated in fluidized bed incinerator, and the process steam is to be generated by recovering waste heat by waste heat recovery boiler and to be supplied to plants within the complex. In this fiscal year, the first year of the project, the attachment to the agreement was prepared in terms of the allotment of the project work between Japan and Thailand, various kinds of gist, schedules, etc. and signed. After that, the following were conducted at the Japan side according to the attachment to the agreement: determination of the basic specifications for facilities, basic design, detailed design, manufacture of a part of the equipment, etc. Separate Volume 4 included the results of the inspection of the

tank, pump, blower, etc. (NEDO) Descriptors: THAILAND; INDUSTRIAL WASTES; WASTE PRODUCT UTILIZATION; FUEL SUBSTITUTION; FOSSIL FUELS; ENERGY CONSERVATION; FLUIDIZED-BED COMBUSTORS; INCINERATORS; WASTE HEAT UTILIZATION; STEAM; INTERNATIONAL COOPERATION; TANKS; PUMPS; BLOWERS

(Item 10 from file: 103) 24/7,DE/98 DIALOG(R) File 103: Energy SciTec (c) 2004 Contains copyrighted material. All rts. reserv.

NEDO-96-920550; EDB-97-034739 04126035

Title: Recycling system and ecological manufacturing for waste industrial products

Original Title: Haikogyo seihin recycle to eko manufacturing Author(s): Hasegawa, T.; Takamura, Y.; Hayashi, M.; Koseki, Y. (Hitachi, Ltd., Tokyo (Japan))

Source: Hitachi Hyoron v 78:7. Coden: HIHYA4 ISSN: 0367-5874 Publication Date: 1 Jul 1996

p 13-18

Language: Japanese

Abstract: Described in this article are the recent trend in the recycling of industrial products for example electric home appliances and the efforts of Hitachi, Ltd. for its pilot plant for recycling wast electric home appliances and ecology-oriented manufacturing. As matters now stand, 34% of large electric home appliances is treated at large-scale refuse disposal facilities operated by autonomous bodies and the remaining 66% by private-sector refuse disposal businesses. Some part of iron is recovered for reuse but this is a low-profit process, and the remaining part of the iron is ultimately subjected to incineration or burial. In the waste electric home appliances recycling pilot plant that came into operation in fiscal 1995, technologies are applied relating to very low-temperature crushing, chlorofluorocarbon recovery and decomposition, low-temperature crushing and weight-based screening of plastics, for the recovery of reusable materials. At this pilot plant, the rate of waste to be ultimately disposed of as filling dust occupies only 10% or lower. To properly meet an increase in the quantity of waste of office-use appliances in the future, development is under way of such element technologies as those involving product recognition, separation, and decomposition, and printed board decomposition and safening. 4 refs., 8 figs., 1 tab.

Major Descriptors: INDUSTRIAL WASTES -- ELECTRIC APPLIANCES; *INDUSTRIAL WASTES -- PILOT PLANTS; *INDUSTRIAL WASTES --RECYCLING; *MATERIALS RECOVERY -- CHLOROFLUOROCARBONS; *MATERIALS RECOVERY -- CRUSHING

Descriptors: INCINERATORS; SANITARY LANDFILLS Broader Terms: APPLIANCES; COMMINUTION; EQUIPMENT; FUNCTIONAL MODELS;

Kastler 09/978,021

MANAGEMENT; ORGANIC CHLORINE COMPOUNDS; ORGANIC COMPOUNDS; ORGANIC FLUORINE COMPOUNDS; ORGANIC HALOGEN COMPOUNDS; PROCESSING; WASTE DISPOSAL; WASTE MANAGEMENT; WASTE PROCESSING; WASTES

?