Lecture4: Basic physics of semiconductor (4)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Answers of review questions

- Two mechanisms
 - Drift & diffusion
- The electric field is 1 kV/cm.
 - The drift velocity is 10⁶ cm/sec.
- The electron current density

$$\mathbf{J}_n = q n \mu_n \mathbf{E} + q D_n \nabla n$$

PN junction

- What is it?
 - Junction of two different extrinsic regions
- Why do we study it?
 - It is a basic building block of electron devices.
- Today, only the equilibrium case will be discussed.
 - Nonequilibrium? Next lecture!

Fabrication (1/4)

- How to fabricate a pn junction
 - p-well and gate patterning

Fabrication (2/4)

Ion implantation for LDD formation

– Arsenic, dose = 4e12<cm-2>, energy=10<keV>

Fabrication (3/4)

- Spacer patterning
 - Silicon nitride spacer for the source/drain doping

Fabrication (4/4)

- Ion implantation for source/drain formation
 - Arsenic, dose=5e15<cm-2>, energy=<40keV>

Vertical doping profile

- Ion implantation for source/drain formation
 - Arsenic, dose=5e15<cm-2>, energy=<40keV>

Simplified 1D structure

- For simplicity
 - An abrupt 1D junction is usually considered.

Away from the junction...

- No effect of junction!
 - In the n-type region, $n \approx N_D$ and $p \approx \frac{n_i^2}{N_D}$
 - In the p-type region, $p \approx N_A$ and $n \approx \frac{n_i^2}{N_A}$

Example

• $N_D = 10^{16} \text{ cm}^{-3} \text{ and } N_A = 5 \times 10^{15} \text{cm}^{-3}$

Across the junction...

- Large diffusion currents:
 - Electrons flow from the n side to the p side
 - Holes flow from the p side to the n side
- However, the net flux of electrons and holes is not allowed.
 - Equilibrium! Compensated by the drift current!

How can we have E?

Poisson's equation

$$\nabla \cdot \mathbf{D} = \rho$$

 When the net charge density does not vanish, the electric field can vary.

Depletion region

Depletion region causes E.

- (Google image)
- A symmetric pn junction with 10¹⁶ cm⁻³ doping density.

Built-in potential

- The potential difference across the junction
 - A simple expression is available.

[V]

Electric potential 0.4 [V]
$$\begin{array}{c} V_0 = \frac{S}{q} \ln \frac{N}{n_i^2} \\ 0.4 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 2.5 \\ 3 \\ 3.5 \\ 4 \end{array}$$

15

Position [µm]