Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Лабораторная работа №2

По вычислительной математике Вариант 3

> Выполнил: Студент группы Р3216 Векшин Арсений Иванович Преподаватель: Малышева Татьяна Алексеевна

Оглавление

Цель работы	2
Порядок выполнения работы	
Рабочие формулы используемых методов	
Метод половинного деления (Решение НУ)	4
Идея метода: начальный интервал изоляции корня делим пополам, получас начальное приближение к корню:	
x0 = a0 + b02	4
Вычисляем $f(x_0)$. В качестве нового интервала выбираем ту половину отрез на концах которого функция имеет разные знаки: [a_0 , x_0] либо [b_0 , x_0]. Другую половину отрезка [a_0 , b_0], на которой функция $f(x)$ знак не меняет, отбрасываем. Новый интервал вновь делим пополам, получаем очередное приближение к корних $x_1=(a_1+b_1)/2$. и т.д	ю:
Рабочая формула метода: $m{x0} = m{a}m{i} + m{b}m{i2}$	4
Приближенное значение корня: $m{x} *= m{a}m{i} + m{b}m{i}m{2}$ или $m{x}^* = m{a}_{\mathrm{n}}$ или $m{x}^* = m{b}_{\mathrm{n}}$	4
Метод простой итерации (Решение НУ)	4
Метод Ньютона (Решения НУ)	4
Метод простой итерации (Решение СНУ)	4
Вычислительная реализация	5
Интервалы изоляции корней:	5
Таблицы приближения корней:	6
Исходный код программы	8
Вывод	11

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Порядок выполнения работы

- 1. Вычислительная реализация задачи
 - 1.1. Решение нелинейного уравнения
 - 1.1.1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
 - 1.1.2. Определить интервалы изоляции корней.
 - 1.1.3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью $s=10^{-2}$
 - 1.1.4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
 - 1.1.5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода. Для всех значений в таблице удержать 3 знака после запятой.
 - 1.1.5.1. Для метода половинного деления заполнить таблицу 1.
 - 1.1.5.2. Для метода хорд заполнить таблицу 2.

- 1.1.5.3. Для метода Ньютона заполнить таблицу 3.
- 1.1.5.4. Для метода секущих заполнить таблицу 4.
- 1.1.5.5. Для метода простой итерации заполнить таблицу 5. Проверить условие сходимости метода на выбранном интервале.

1.2. Решение системы нелинейных уравнений

- 1.2.1. Отделить корни заданной системы нелинейных уравнений графически (вид системы представлен в табл. 8). 2.
- 1.2.2. Используя указанный метод, решить систему нелинейных уравнений с точностью до 0,01.
- 1.2.3. Для метода простой итерации проверить условие сходимости метода.
- 1.2.4. Подробные вычисления привести в отчете.

2. Программная реализация задачи

2.1. Для нелинейных уравнений

- 2.1.1. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 2.1.2. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 2.1.3. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения x0 (а или b) вычислять в программе.
- 2.1.4. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 2.1.5. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 2.1.6. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом). Пользователь должен видеть интервалы изоляции корней.

2.2. Для систем нелинейных уравнений

- 2.2.1. Организовать вывод графика функций.
- 2.2.2. Начальные приближения ввести с клавиатуры.
- 2.2.3. Для метода простой итерации проверить достаточное условие сходимости.
- 2.2.4. Организовать вывод вектора неизвестных: x_1, x_2 .
- 2.2.5. Организовать вывод количества итераций, за которое было найдено решение.
- 2.2.6. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$
- 2.2.7. Проверить правильность решения системы нелинейных уравнений.

Рабочие формулы используемых методов

Метод половинного деления (Решение НУ)

Идея метода: начальный интервал изоляции корня делим пополам, получаем начальное приближение к корню:

$$x_0 = \frac{a_0 + b_0}{2}$$

Вычисляем $f(x_0)$. В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$. Другую половину отрезка $[a_0, b_0]$, на которой функция f(x) знак не меняет, отбрасываем. Новый интервал вновь делим пополам, получаем очередное приближение к корню: $x_1=(a_1+b_1)/2$. и т.д.

Рабочая формула метода: $x_0 = \frac{a_i + b_i}{2}$

Приближенное значение корня: $\boldsymbol{x}^* = \frac{a_i + b_i}{2}$ или $\boldsymbol{x}^* = a_\mathrm{n}$ или $\boldsymbol{x}^* = b_\mathrm{n}$

Метод простой итерации (Решение НУ)

Уравнение f x = 0 приведем к эквивалентному виду: x = $\varphi(x)$, выразив x из исходного уравнения. Зная начальное приближение: x0 \in a, b, найдем очередные приближения: x1 = $\varphi(x$ 0) $\rightarrow x$ 2 = $\varphi(x$ 1 ...

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$

Условия сходимости метода простой итерации определяются следующей теоремой. Теорема. Если на отрезке локализации a, b функция $\phi(x)$ определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\phi'(x)| < q$, где $0 \le q < 1$, то независимо от выбора начального приближения $x_0 \in a$, b итерационная последовательность $\{x_n\}$ метода будет сходиться к корню уравнения. Достаточное условие сходимости метода:

 $|\varphi'(x)| \le q < 1$, где q – некоторая константа (коэффициент Липшица или коэффициент сжатия)

 $q = \max[a,b] |\varphi'| x$

При $q \approx 0$ - скорость сходимости высокая,

При $q \approx 1$ - скорость сходимости низкая,

При q > 1 - нет сходимости.

Чем меньше q, тем выше скорость сходимости.

Метод Ньютона (Решения НУ)

Функция y = f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня принимается точка пересечения касательной с осью абсцисс.

Пусть $x_0 \in [a, b]$ - начальное приближение. Запишем уравнение касательной к графику функции y = f(x)в этой точке: $y = f(x_0) + f'(x_0)(x - x_0)$ Найдем пересечение касательной с осью х: $x_1 = x_0 - f(x_0)/f'(x_0)$ Рабочая формула метода: $x_i = x_{i-1} - f(x_{i-1})/f'(x_{i-1})$

Метод простой итерации (Решение СНУ)

Приведем систему уравнений к эквивалентному виду:

$$\begin{cases} F_1(x_1, x_2, ..., x_n) = 0 \\ F_2(x_1, x_2, ..., x_n) = 0 \\ ... \\ F_n(x_1, x_2, ..., x_n) = 0 \end{cases} \begin{cases} x_1 = \varphi_1(x_1, x_2, ..., x_n) \\ x_2 = \varphi_2(x_1, x_2, ..., x_n) \\ ... \\ x_n = \varphi_n(x_1, x_2, ..., x_n) \end{cases}$$

Если выбрано начальное приближение:

 $^{(0)} = x_1{}^{(0)}, x_2{}^{(0)}, ..., x_n{}^{(0)},$ получим первые приближения к корням:

$$\begin{cases} x_1^{(1)} = \varphi_1(x_1^0, x_2^0, \dots, x_n^0) \\ x_2^{(1)} = \varphi_2(x_1^0, x_2^0, \dots, x_n^0) \\ \dots \\ x_n^{(1)} = \varphi_n(x_1^0, x_2^0, \dots, x_n^0) \end{cases}$$

Последующие приближения находятся по формулам:

$$\begin{cases} x_1^{(k+1)} = \varphi_1(x_1^k, x_2^k, \dots, x_n^k) \\ x_2^{(k+1)} = \varphi_2(x_1^k, x_2^k, \dots, x_n^k) \\ \dots \\ x_n^{(k+1)} = \varphi_n(x_1^k, x_2^k, \dots, x_n^k) \end{cases} \quad k = 0, 1, 2, \dots$$

Вычислительная реализация

Уравнение: x³+2,84x²-5,606x-14,766

Интервалы изоляции корней:

Рисунок 1 - Графический способ определения интервалов изоляции корней НУ

Крайний левый корень: [-3.7; -2.7] Крайний правый корень: [2; 4] Центральный корень: [-3; -1]

Проверка сходимости метода простой итерации

$$f(x) = x^3 + 2,84x^2 - 5,606x - 14,766$$

$$f'(x) = 3x^2 + 5.68x - 5.606$$

$$\varphi(x) = x + \lambda(x^3 + 2.84x^2 - 5.606x - 14.766)$$

$$f'(-3.7) = 14.488$$
 $f'(x) = 0.928$ $\lambda = -\frac{1}{14.448} \approx -0.069$

а = -3.7 b = -2.7
$$|\varphi'(-3.7)| \approx 0.069 < 1$$
 и $|\varphi'(-2.7)| \approx 0.936 < 1$

Условие сходимости выполняется

Таблицы приближения корней:

Таблица 1. Уточнение корня уравнения методом простой итерации

№ итерации	Xk	Xk+1	f(xk)	Xk+1-Xk
0	-3.1645	-3.2	-0.2752	0.0355
1	-3.1454	-3.1645	-0.1546	0.0191
2	-3.1347	-3.1454	-0.0889	0.0107
3	-3.1286	-3.1347	-0.0518	0.0062
4	-3.125	-3.1286	-0.0304	0.0036

Таблица 2. Уточнение корня уравнения методом половинного деления

№ шага	a	b	X	f(a)	f(b)	f(x)	a-b
1	2.0	3.0	3.0	-6.618	20.976	20.976	1.0
2	2.0	2.5	2.5	-6.618	4.594	4.594	0.5
3	2.25	2.5	2.25	-1.6114	4.594	-1.6114	0.25
4	2.25	2.375	2.375	-1.6114	1.3356	1.3356	0.125
5	2.3125	2.375	2.3125	-0.1761	1.3356	-0.1761	0.0625
6	2.3125	2.3438	2.3438	-0.1761	0.5701	0.5701	0.0312
7	2.3125	2.3281	2.3281	-0.1761	0.1946	0.1946	0.0156
8	2.3125	2.3203	2.3203	-0.1761	0.0087	0.0087	0.0078
9	2.3164	2.3203	2.3164	-0.0838	0.0087	-0.0838	0.0039
10	2.3184	2.3203	2.3184	-0.0376	0.0087	-0.0376	0.002
11	2.3193	2.3203	2.3193	-0.0145	0.0087	-0.0145	0.001

Таблица 3. Уточнение корня уравнения методом Ньютона

№ итерации	Xk	f(xk)	f'(xk)	Xk+1	Xk+1-Xk
1	-2.0	-0.0049	-4.7145	-2.0391	0.0391
2	-2.0391	-0.0	-4.7077	-2.0401	0.001

Система НУ:
$$\begin{cases} \cos(x-1) + y = 0.5 \\ x - \cos(y) = 3 \end{cases}$$

Область корня:
$$3 < x < 4$$
; $1 < y < 2$

Частные производные:

$$\partial \varphi_1/\partial x = \sin(1-x) < 1$$
 на промежутке $3 < x < 4$

$$\partial \varphi_1/\partial y = 0$$

$$\partial \varphi_2/\partial x = 0$$

$$\partial \varphi_2/\partial y = \sin(y) \le 1$$
 на промежутке ; $1 < y < 2$

Очевидно, что процесс сходящийся, так как синус и косинус не дают значений выше 1 и суммируются с нулем. Сходимость близка к 1 -> может быть очень медленной

Начальное приближение: x = 3; y = 1

Таблица 4. Уточнение корней системы методом простой итерации

таолица 4. Уточнение корнеи системы методом простои итераци								терации
Nº	X	у	Xi+1	y i+1	$F_1(x_{i+1}; y_{i+1})$	$F_2(x_{i+1}; y_{i+1})$	Xi+1-	y _{i+1} -
итерации							Xi	y _i
1	3	1	3.54	0.916	-0.408	-0.069	0.54	0.083
2	3.54	0.916	3.609	1.324	-0.037	0.365	0.068	0.408
3	3.609	1.324	3.244	1.361	0.238	0.036	0.364	0.037
4	3.244	1.361	3.208	1.123	0.028	-0.225	0.036	0.238
5	3.208	1.123	3.433	1.095	-0.164	-0.025	0.224	0.028
6	3.433	1.095	3.455	1.259	-0.016	0.151	0.025	0.164
7	3.455	1.259	3.307	1.275	0.104	0.015	0.151	0.016
8	3.307	1.275	3.292	1.171	0.011	-0.097	0.015	0.103
9	3.292	1.171	3.389	1.16	-0.07	-0.01	0.97	0.011
10	3.389	1.16	3.399	1.23	-0.007	0.065	0.01	0.07
11	3.399	1.23	3.334	1.237	0.046	0.006	0.064	0.007
12	3.334	1.237	3.328	1.191	0.004	-0.043	0.006	0.046
13	3.328	1.191	3.371	1.187	-0.03	-0.003	0.043	0.004
14	3.371	1.187	3.374	1.217	-0.003	0.028	0.003	0.03
15	3.374	1.217	3.346	1.22	0.02	0.002	0.028	0.003
16	3.346	1.22	3.344	1.2	0.002	-0.018	0.002	0.02
17	3.344	1.2	3.362	1.198	-0.013	-0.002	0.018	0.003
18	3.362	1.198	3.364	1.211	-0.002	0.012	0.002	0.02
19	3.364	1.211	3.352	1.213	0.009	0.002	0.012	0.002
20	3.352	1.213	3,35	1.204	0.001	-0.009	0.002	0.009

Исходный код программы

Метод половинного деления

```
def solve(f, a, b, accuracy):
    iter = 0
    x = 0.0
    print_table_header(["#", "a", "b", "x_i", "f(a)", "f(b)", "f(x_i)", "|a-b|"])

while(abs(a-b) > accuracy and abs(f(x)) >= accuracy):
    iter += 1
        x = mid(a, b)
    if f(a)*f(x) > 0: a = x
    else: b = x

print_table_row([iter, a, b, x, f(a), f(b), f(x), abs(a-b)])
    x = mid(a, b)

return x
```

Метод секущих

```
idef solve(f, start, base_move, accuracy):
    iter = 0
    x, prev_x = base_move, start

def find_x():
        return x - (x-prev_x) / (f(x)-f(prev_x)) * f(x)

print_table_header(["#", "x_{i-1}", "x_i", "x_{i+1}", "f(x_i+1)", "delta_x"])
while (abs(x - prev_x) > accuracy and abs(f(x)) >= accuracy):
    iter += 1
        _out = [iter, prev_x, x]
        x = find_x()
        prev_x = _out[-1]
        print_table_row(_out + [x, f(x), abs(x - prev_x)])

return x
```

Метод простой итерации

```
def get_lambda(f, a, b, accuracy):
   x_max = x
   sign = 1
    while (x \le b):
        if l < abs(f(x)):
           l = max(l, abs(f(x)))
            sign = abs(f(x)) / f(x)
            x_max = x
        x += accuracy
    return 1 / l * sign, x_max
def solve(f, deriv, a, b, accuracy):
    x = a
   prev_x = x - 2 * accuracy
    iter = 1
    lambd, x0 = get_lambda(deriv, a, b, accuracy)
    q = abs(1 + lambd * deriv(x0))
    print(1 + lambd * deriv(a), 1 + lambd * deriv(b), lambd)
        print('Достаточное условие сходимости не выполняется!')
        accuracy = (1 - q) / q * accuracy
    print_table_header(["#", "x_i", "x_{i+1}", "f(x_i)", "delta_x"])
    while abs(f(x)) > accuracy and iter < 10000:</pre>
       # break
        prev_x = x
        x = x + f(x) * lambd
        print_table_row([iter, x, prev_x, f(x), abs(x - prev_x)])
       iter += 1
    return x
```

Метод Ньютона

```
def solve(f, deriv, a, b, start, accuracy):
    def find_x():
        return x - f(x) / deriv(x)

    iter = 0
        x, prev_x = start, 0
        print_table_header(["#", "x_i", "f(x)", "f'(x)", "x_{i+1}", "delta_x"])
    while (abs(f(x)/deriv(f(x))) > accuracy
        and abs(x - prev_x) > accuracy and abs(f(x)) >= accuracy):
        iter += 1
        prev_x = x
        x = find_x()
        print_table_row([iter, prev_x, f(x), deriv(x), x, abs(x - prev_x)])

return x
```

Метод Хорд

```
def solve(f, a, b, accuracy):
    def find_x():
        return a - (b-a)*f(a)/(f(b)-f(a))

iter = 0
    x = find_x()
    prev_x = 0.0
    print_table_header(["#", "a", "b", "x", "f(a)", "f(b)", "f(x)", "delta_x"])

while(abs(a-b) > accuracy and abs(x-prev_x) > accuracy and abs(f(x)) >= accuracy):
    iter += 1
    if iter > 1: prev_x = x
        x = find_x()
    if is_dif_sign(f(a), f(x)):
        b = x
    elif is_dif_sign(f(b), f(x)):
        a = x
    else:
        print("ERROR: функция не пересекает 0 на заданном промежутке", a, b)
        return -1
    print_table_row([iter, a, b, x, f(a), f(b), f(x), abs(x - prev_x)])

return x
```

Метод итераций для системы

```
| def solve(functions, x0, y0, accuracy):
| x, y = x0, y0 |
| prev_x, prev_y = 0, 0 |
| iter = 0 |
| print_table_header(["#", "x", "y", "delta_x", "delta_y"])
| while max(abs(x-prev_x), abs(y-prev_y)) > accuracy:
| iter += 1 |
| prev_x, prev_y = x, y |
| x = functions[0](x,y) |
| y = functions[1](x,y) |
| print_table_row([iter, x, y, abs(x-prev_x), abs(y-prev_y)]) |
| return x, y |
| def is_possible(deriv_functions, x0, y0):
| for df in deriv_functions:
| print(df(x0, y0)) |
| if (df(x0, y0)>1):
| print("ERROR: условие сходимости не выполняется в окресности заданной точки") |
| sys.exit(1) |
| print("Условие сходимости выполняется")
```

Полный код программы:

https://github.com/ArsenyVekshin/ITMO/tree/master/CompMath/lab2

Вывод

Таким образом, в результате выполнения лабораторной работы я изучил принцип работы метода Гаусса на практике.