Expected value:

$$t_{e} = \frac{\left| \frac{\overline{x} - \mu}{s / \sqrt{n - 1}} \right|}{\left| \frac{1}{s} \right|}$$
 follows t-distribution with (26-1) = 25d.f

Inference:

Since $t_0 > t_{\rm c}$, H_0 is rejected at 5% level of significance. Hence we conclude that advertisement is certainly effective in increasing the sales.

6.3 Test of significance for difference between two means:6.3.1 Independent samples:

Suppose we want to test if two independent samples have been drawn from two normal populations having the same means, the population variances being equal. Let $x_1, x_2, ... x_{n_1}$ and y_1, y_2, y_{n_2} be two independent random samples from the given normal populations.

Null hypothesis:

 H_0 : $\mu_1 = \mu_2$ i.e. the samples have been drawn from the normal populations with same means.

Alternative Hypothesis:

$$H_1: \mu_1 \neq \mu_2 \ (\mu_1 < \mu_2 \text{ or } \mu_1 > \mu_2)$$

Test statistic:

Under the H₀, the test statistic is

$$t_0 = \frac{\frac{\overline{x} - \overline{y}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
where $\overline{x} = \frac{\sum x}{n_1}$; $\overline{y} = \frac{\sum y}{n_2}$
and $S^2 = \frac{1}{n_1 + n_2 - 2} \left[\sum (x - \overline{x})^2 + \sum (y - \overline{y})^2\right] = \frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}$

Expected value:

$$t_{e} = \frac{\overline{x} - \overline{y}}{S\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

follows t-distribution with $n_1 + n_2 - 2 d.f$

Inference:

If the $t_0 < t_e$ we accept the null hypothesis. If $t_0 > t_e$ we reject the null hypothesis.

Example 3:

A group of 5 patients treated with medicine 'A' weigh 42, 39, 48, 60 and 41 kgs: Second group of 7 patients from the same hospital treated with medicine 'B' weigh 38, 42, 56, 64, 68, 69 and 62 kgs. Do you agree with the claim that medicine 'B' increases the weight significantly?

Solution:

Let the weights (in kgs) of the patients treated with medicines A and B be denoted by variables X and Y respectively.

Null hypothesis:

 $H_0: \mu_1 = \mu_2$

i.e. There is no significant difference between the medicines A and B as regards their effect on increase in weight.

Alternative Hypothesis:

 H_1 : $\mu_1 < \mu_2$ (left-tail) i.e. medicine B increases the weight significantly.

Level of significance : Let $\alpha = 0.05$

Computation of sample means and S.Ds

Medicine A

The second secon	Tribuicine A	
X	x - x = 46	$(x-\overline{x})^2$
42	-4	16
39	-7	49
48	2	49
60	14	106
41	_5	196
230	-5	25
	U	290

$$\frac{-}{x} = \frac{\sum x}{n_1} = \frac{230}{5} = 46$$

Medicine B

Y	$y - \overline{y} (\overline{y} = 57)$	$(y-\overline{y})^2$
38	-19	361
42	-15	225
56	-1	1
64	7	49
68	11	121
69	12	144
62	5	25
399	0	926

$$\overline{y} = \frac{\sum y}{n_2} = \frac{399}{7} = 57$$

$$S^{2} = \frac{1}{n_{1} + n_{2} - 2} \left[\sum (x - \overline{x})^{2} + \sum (y - \overline{y})^{2} \right]$$
$$= \frac{1}{10} \left[290 + 926 \right] = 121.6$$

Calculation of statistic:

Under H₀ the test statistic is

$$t_{0} = \frac{\overline{x} - \overline{y}}{\sqrt{S^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

$$= \frac{46 - 57}{\sqrt{121.6\left(\frac{1}{5} + \frac{1}{7}\right)}}$$

$$= \frac{11}{\sqrt{121.6 \times \frac{12}{35}}}$$
$$= \frac{11}{6.57} = 1.7$$

Expected value:

$$t_e = \frac{\overline{x} - \overline{y}}{\sqrt{S^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
 follows t-distribution with (5+7-2) =10 d.f

$$= 1.812$$

Inference:

Since $t_0 < t_e$ it is not significant. Hence H_0 is accepted and we conclude that the medicines A and B do not differ significantly as regards their effect on increase in weight.

Example 4:

Two types of batteries are tested for their length of life and the following data are obtained:

	No of samples	Mean life (in hrs)	Variance
Type A	9	600	121
Туре В	8	640	144

Is there a significant difference in the two means?

Solution:

We are given

$$n_1=9$$
; $x_1=600$ hrs; $s_1^2=121$; $n_2=8$; $x_2=640$ hrs; $s_2^2=144$
Null hypothesis:

 H_0 : $\mu_1 = \mu_2$ i.e. Two types of batteries A and B are identical i.e. there is no significant difference between two types of batteries.