trigamma function. and variances are shown in their standardized version, where $\Psi(r)$ denotes the diagamma function and $\Psi'(r)$ denotes the distribution. The estimated parameters in the normal mixture distribution ensure that the Kullback-Leibler (KL) divergence between the two distributions is below 5x10⁻⁴. The parameters in the normal mixture distribution include the log(Ga(r, 1)) for r in [6, 170]. A separate normal mixture distribution is used to approximate each negative log gamma number of normal components (k), their weights (w), means (m) and variances (σ^2), all of which are functions of r. Means Table S2. Normal Mixture Approximations to -log(Ga(r, 1)) for r in [6, 170]. Normal mixture approximations to