Binary tree

소프트웨어공학개론 **4**조

이승환 구성현 권혁준 김성은 나인호 오성현

목차

table of contents

1 Overview

2 Goals & Methods

3 Team

4 Plan & Effect

Overview

Overview Green Algorithms

Green Algorithms Project

- 친환경적인 computational science를 촉진하기 위한 project
- project(code)의 탄소 발자국을 측정하는데 사용되는 계산 도구
- 친환경적으로 코딩하는 방법에 대한 tip

Overview Carbon footprint

인공지능 알고리즘 탄소 배출량

각종 소비 행위와 인공지능 모델의 탄소 배출량 비교

종류	탄소 배출량(kg)
인천에서 미국 뉴욕 왕복 비행	979
1인당 연간 평균 탄소 배출량	5000
미국인 1인의 연간 평균 탄소 배출량	1만6400
자동차 1대의 생애주기 동안 탄소 배출량	5만7152
자연어 처리 모델 BERT 학습 과정	652
자연어 처리 모델 NAS 학습 과정	28만4019
(축처: Emma Strubell 등 매사츠세초대한교	에머스트 캐퍼스 여그지의

(출처: Emma Strubell 등 매사추세츠대학교 애머스트 캠퍼스 연구진의 2019년 6월 논문)

Overview The Need for a Green Algorithm

에너지 절약 환경 보호 비용 절감

Goals & Methods

Final Goals

Binary tree

지속 가능한 개발을 위한 탄소 절감 코드 분석 및 개선 플랫폼

소프트웨어 개발 과정에서 발생하는 탄소 배출을 측정하고, 개발자가 더 효율적이고 친환경적인 코드를 작성할 수 있도록 지원하는 웹 기반 플랫폼을 제공한다.

Goals & Methods

Detailed Goals

1 탄소 배출량 측정 도구 개발

사용자가 제출한 코드의 탄소 배출량을 정확히 측정할 수 있는 알고리즘과 도구를 개발한다.

2 코드 개선 사용자가 작성한 코드의 탄소 배출량을 줄일 수 있도록 개선된 코드를 제안한다.

사용자 참여 유도 나무 키우기, 순위 경쟁 등의 게임화 요소를 통해 사용자의 지속적인 참여를 유도하고, 환경 보호에 대한 긍정적인 행동 변화를 동기 부여한다.

Methods - Systems

Methods - Detailed System

Frontend

Code Submission Interface

Input Fields

Code Editor

Result Visualization

Chart, Graph, Comparison Table

Gamification Elements

Progress Tracker(나무 키우기)

Leaderboard

User

Sign up/in

Profile Page

Backend

Server & API

Node.js with Express for RESTful API

Data Management

Database

Code Analysis & Improvement

Al/Machine Learning

Account Service

User management

Git integration

Al

3

Team

Team

Team Formation

Plan

Week	~4/12	~4/19	~4/28	~5/3	~5/10	~5/17	~5/24	~5/31	~6/7	~6/14
Requirement Specification										
Design Specification										
Implement Component										
Integration										
Testing										
Prepare Demo & Code Review										

Overall Plan

Test Process

Benefits

나무 키우기 및 순위 경쟁을 통한 사용자의 참여 유도

더 나은 코드를 위한 끊임없는 노력으로 문제 해결력 향상

탄소 배출량 감소로 환경 보호에 기여

감사합니다