Differential Calculus MTH 62-140

- 1. Suppose c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then
 - (a) $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
 - (b) $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
 - (c) $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$
 - (d) $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
 - (e) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$
- 2. $\lim_{x\to a} [f(x)]^n = [\lim_{x\to a} f(x)]^n$ where n is a positive integer.
- 3. $\lim_{x\to a} c = c$ and $\lim_{x\to a} x = a$
- 4. $\lim_{n\to a} x^n = a^n$ where n is a positive integer
- 5. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$ where n is a positive integer. If n is even, we assume that a>0.
- 6. $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$ where n is a positive integer. If n is even, we assume that $\lim_{x\to a} f(x) > 0$.
- 7. Direct Sustitution Property: If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

8. If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, provided the limits exist.

9. The Squeeze Theorem: If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibley at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L$$

10. If r > 0 is a rational number, then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x\to -\infty}\frac{1}{x^r}=0$$

11.

$$\lim_{x \to \infty} \frac{1}{r^x} = \begin{cases} \infty, & \text{if } 0 < r < 1 \\ 1, & \text{if } r = 1 \\ 0, & \text{if } r > 1 \end{cases}$$

12. (a) $\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$

(b)
$$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = 1$$

- 13. (a) $\lim_{x \to 0} \frac{\sin x}{x} = 1$
 - (b) $\lim_{x \to 0} \frac{\tan x}{x} = 1$
 - (c) $\lim_{x \to 0} \sin x = 0$
 - (d) $\lim_{x \to 0} \cos x = 1$
 - (e) $\lim_{x \to 0} \tan x = 0$
 - (f) $\lim_{x \to (\frac{\pi}{2})^{-}} \tan x = \infty$

(g)
$$\lim_{x \to (\frac{\pi}{2})^+} \tan x = -\infty$$

(h)
$$\lim_{x \to 0^+} \ln x = -\infty$$

14. (a)
$$\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$$

(b)
$$\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$$

15. (a) If
$$\lim_{x\to a} f(x) = \infty$$
 and $\lim_{x\to a} g(x) = \infty$, then $\lim_{x\to a} f(x) \cdot g(x) = \infty$

(b) If
$$\lim_{x\to a} f(x) > 0$$
 and $\lim_{x\to a} g(x) = \infty$, then $\lim_{x\to a} f(x) \cdot g(x) = \infty$