Урок 45 Атмосферний тиск. Вимірювання атмосферного тиску. Барометри Мета уроку:

Навчальна. Сформулювати поняття про атмосферний тиск і пояснити його існування на підставі молекулярно-кінетичних уявлень.

Розвивальна. Розвивати творчі здібності та логічне мислення учнів; показати учням практичну значущість набутих знань.

Виховна. Виховувати культуру оформлення задач.

Тип уроку: урок вивчення нового матеріалу.

Обладнання: навчальна презентація, комп'ютер.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП ІІ.ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ САМОСТІЙНА РОБОТА

- 1. Які спостереження вказують на те, що газ тисне на стінки посудини, у якій він міститься?
- 2. Чому гази створюють тиск?
- 3. Як залежить тиск газу від його об'єму й температури?

ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Завдяки чому ми можемо зробити ковток чаю?

Чому рідина у шприці піднімається, коли піднімається поршень шприца?

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Атмосфера

На уроках природознавства ви вивчали нашу Землю. І знайомі із поняттям «атмосфера».

Що таке атмосфера? (Це повітряна оболонка Землі.)

Із чого складається атмосфера? (Це суміш газів: 78% — азот, 21% — кисень, а також присутні аргон, вуглекислий газ, гелій, неон, двоокис сірки, аміак, озон і водяна пара.)

Чому існує повітряна оболонка Землі?

- Молекули й атоми атмосфери мають масу, тому вони притягуються до Землі завдяки гравітаційній взаємодії.
- Молекули газів, що складають атмосферу, перебувають у неперервному русі. Через це вони не падають на Землю, а «носяться» в просторі біля Землі.

2. Атмосферний тиск

Відомо, що повітря має вагу. Внаслідок дії сили тяжіння верхні шари повітря стискають нижні, і цей тиск відповідно до закону Паскаля передається в усіх напрямках.

Демонстрація. Учитель наповнює водою склянку, накриває зверху аркушем паперу, притискає його рукою і перевертає склянку. Руку прибирає — аркуш паперу тримається, вода не виливається.

Аркуш паперу втримується атмосферним тиском, що діє в усіх напрямках.

Атмосферний тиск – це тиск, який створює атмосфера на всі тіла, що в ній перебувають, а також на земну поверхню.

За підрахунками, атмосфера Землі важить близько $5 \cdot 10^{18} \, \mathrm{kr}$.

Чому люди не відчувають дії атмосферного тиску?

Кровоносні судини та інші порожнини організму, які заповнені рідинами чи газами, чинять на стінки судин і порожнин такий самий тиск. Тому тканини організму не деформуються, а атмосферний тиск не відчувається.

Чому рідина у шприці піднімається, коли піднімається поршень шприца?

Під час піднімання поршня між ним і рідиною утворюється безповітряний простір. У цей простір внаслідок атмосферного тиску і піднімається за поршнем рідина.

3. Вимірювання атмосферного тиску

Дослід Торрічеллі

Скляну трубку завдовжки близько 1 м, запаяну з одного кінця, наповнюють ртуттю. Потім, щільно закривши другий кінець трубки, її перевертають, опускають у чашку із ртуттю і під ртуттю відкривають кінець трубки. Частина ртуті при цьому виливається в чашку, а частина залишається в трубці. Висота стовпа ртуті, яка залишалась у трубці, дорівнює приблизно 760 мм. У трубці над ртуттю повітря немає, там безповітряний простір.

Згідно закону Паскаля: Атмосферний тиск дорівнює тиску стовпа ртуті в трубці.

 $p_{\text{атм}} = p_{\text{ртуті}}$

Тобто тиск стовпчика ртуті висотою 760 мм дорівнює атмосферному.

Тиск, який створюється стовпчиком ртуті висотою 760 мм, називають нормальним атмосферним тиском:

$$p_{\text{атм H}} = 760 \text{ мм рт. ст.}$$

За одиницю атмосферного тиску прийнято один міліметр ртутного стовпа (1 мм рт. ст.).

Визначимо тиск ртутного стовпа висотою 1 мм:

$$p = \rho g h$$
 $p = 13600 \frac{\text{K}\Gamma}{\text{M}^3} \cdot 9,8 \frac{\text{H}}{\text{K}\Gamma} \cdot 0,001 \,\text{M} \approx 133,3 \,\Pi a$

Зміна висоти на кожні 11 метрів призводить до зміни тиску 1 мм рт. ст. (або на 133,3 Па).

4. Прилади для вимірювання атмосферного тиску

Барометр — прилад для вимірювання атмосферного тиску.

Для вимірювання атмосферного тиску використовують *ртутний барометр*, *барометр-анероїд і барограф*.

Ртутний барометр

При зміні атмосферного тиску ртуть у чашечці піднімається або опускається. Величина атмосферного тиску визначається за висотою ртутного стовпчика в трубці.

Барометр-анероїд

Прилад для вимірювання атмосферного тиску за деформацією пружної металевої коробки, без повітря. Деформація коробки через систему важелів передається на стрілку, що переміщується по шкалі.

Барограф

Прилад для безперервного запису зміни атмосферного тиску. Складається з приймальної частини, передавального механізму, з'єднаного з пером, та барабана з стрічкою, який обертається за допомогою годинникового механізму.

На практиці користуються *барометрами-анероїдами* завдяки їхній зручності, невеликим розмірам і безпечності.

За допомогою барометрів можна прогнозувати зміну погоди та визначати висоту: атмосферний тиск зменшується перед негодою, а також із висотою.

V. ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

Розв'язування задач

1. Виразіть у кілопаскалях тиск 600 мм рт. ст., 740 мм рт. ст.

600 мм рт. ст. =
$$600 \cdot 133,3$$
 Па = 79980 Па = $79,98$ кПа

2. Виразіть у міліметрах ртутного стовпчика тиск 45 кПа, 80 кПа.

45 к
$$\Pi a = 45000 \ \Pi a = 45000/133,3 \approx 337,6 \ \text{мм рт. ст.}$$

80 кПа =
$$80000$$
 Па = $80000/133,3 \approx 600$ мм рт. ст.

3. Біля підніжжя гори барометр показує нормальний атмосферний тиск, а на вершині — 721 мм рт. ст. Яка приблизно висота гори?

$$\mathcal{D}_{a}$$
 дано: $p_1 = 760\,$ мм рт. ст. $p_2 = 721\,$ мм рт. ст. $p_2 = 721\,$ мм рт. ст. $p_3 = 760\,$ мм рт. ст. $p_3 = 760\,$ мм рт. ст. $p_3 = 760\,$ мм рт. ст.; $p_3 = 760\,$ мм рт. ст. $p_3 = 760\,$ мм рт.

 $Bi\partial noвi\partial b$: h = 429 м.

4. При вході в метро барометр показує 101,3 кПа. Якими будуть показання барометра на платформі, що перебуває на глибині 33 м?

Дано:Розв'язання
$$p_1 = 101, 3$$
 кПа
 $h = 33$ м $\Delta p = \frac{33}{11} = 3$ мм рт. ст. = 399, 9 Па; $p_2 = 7$ $p_2 = 101300 \,\Pi a + 399, 9 \,\Pi a = 101699, 9 \,\Pi a \approx 101, 7 \,\kappa \Pi a.$

 $Bi\partial noвi\partial b$: $p_2 = 101,7$ к Πa .

5. Визначте, з якою силою тисне атмосфера на людину (атмосферний тиск вважати нормальним, а площу поверхні тіла такою, що дорівнює $1,5 \text{ m}^2$).

Дано:
$$p = 760$$
 мм рт. ст. $p = 10^5$ Па $F = p \cdot S$; $F = 1,5$ м² $F = 1,5$ м²

 $Bi\partial noвi\partial b$: $F = 1,5 \cdot 10^5 \,\mathrm{H}$.

6. Визначте глибину шахти, якщо на дні її барометр показує 109 297 Па, а на поверхні Землі — 103 965 Па.

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Що таке атмосфера і чому вона існує?
- 2. Чому існує атмосферний тиск?
- 3. Які факти свідчать про існування атмосферного тиску?
- 4. Опишіть будову та принцип дії ртутного барометра.
- 5. У яких одиницях вимірюють атмосферний тиск?
- 6. Дайте визначення нормального атмосферного тиску.
- 7. Які прилади використовують для вимірювання атмосферного тиску?
- 8. Які переваги барометрів-анероїдів зумовили їх широке використання?
- 9. Чому за допомогою барометрів можна передбачати погоду та вимірювати висоту?

VII. ДОМАШНЄ ЗАВДАННЯ ПРОЙТИ ТЕСТУВАННЯ ЗА ПОСИЛАННЯМ (ДО 04.03)

https://naurok.com.ua/test/join?gamecode=1823056

Вивчити § 25, Вправа № 25 (4, 7)

Виконане д/з відправте на Нитап,

Або на елетрону адресу Kmitevich.alex@gmail.com