WikipediA

Convex conjugate

In <u>mathematics</u> and <u>mathematical optimization</u>, the **convex conjugate** of a function is a generalization of the <u>Legendre transformation</u> which applies to non-convex functions. It is also known as **Legendre–Fenchel transformation**, **Fenchel transformation**, or **Fenchel conjugate** (after <u>Adrien-Marie Legendre</u> and Werner Fenchel). It allows in particular for a far reaching generalization of Lagrangian duality.

Contents

Definition

Examples

Connection with expected shortfall (average value at risk)

Ordering

Properties

Order reversing

Biconjugate

Fenchel's inequality

Convexity

Infimal convolution

Maximizing argument

Scaling properties

Behavior under linear transformations

Table of selected convex conjugates

See also

References

Further reading

Definition

Let X be a <u>real topological vector space</u> and let X^* be the <u>dual space</u> to X. Denote by

$$\langle \cdot, \cdot
angle : X^* imes X o \mathbb{R}$$

the canonical dual pairing, which is defined by $(x^*, x) \mapsto x^*(x)$.

For a function $f: X \to \mathbb{R} \cup \{-\infty, +\infty\}$ taking values on the <u>extended real number line</u>, its **convex conjugate** is the function

$$f^*:X^* o \mathbb{R}\cup\{-\infty,+\infty\}$$

whose value at $x^* \in X^*$ is defined to be the <u>supremum</u>:

$$f^{st}\left(x^{st}
ight):=\sup\left\{ \left\langle x^{st},x
ight
angle -f(x):\,x\in X
ight\} ,$$

or, equivalently, in terms of the infimum:

$$f^*\left(x^*
ight) := -\inf\left\{f(x) - \langle x^*, x
angle \,:\, x \in X
ight\}.$$

This definition can be interpreted as an encoding of the <u>convex hull</u> of the function's <u>epigraph</u> in terms of its supporting hyperplanes. [1]

Examples

For more examples, see § Table of selected convex conjugates.

ullet The convex conjugate of an affine function $f(x) = \langle a, x
angle - b$ is

$$f^*\left(x^*
ight) = \left\{egin{array}{ll} b, & x^* = a \ +\infty, & x^*
eq a. \end{array}
ight.$$

lacksquare The convex conjugate of a power function $f(x) = rac{1}{p} |x|^p, 1 is$

$$f^*\left(x^*
ight) = rac{1}{q} |x^*|^q, 1 < q < \infty, ext{where} rac{1}{p} + rac{1}{q} = 1.$$

- The convex conjugate of the absolute value function f(x) = |x| is

$$f^*\left(x^*
ight) = \left\{egin{array}{ll} 0, & |x^*| \leq 1 \ \infty, & |x^*| > 1. \end{array}
ight.$$

• The convex conjugate of the exponential function $f(x) = e^x$ is

$$f^{st}\left(x^{st}
ight) = \left\{egin{array}{ll} x^{st} \ln x^{st} - x^{st}, & x^{st} > 0 \ 0, & x^{st} = 0 \ \infty, & x^{st} < 0. \end{array}
ight.$$

The convex conjugate and Legendre transform of the exponential function agree except that the <u>domain</u> of the convex conjugate is strictly larger as the Legendre transform is only defined for positive real numbers.

Connection with expected shortfall (average value at risk)

See this article for example. (https://faculty.nps.edu/joroyset/docs/relations.pdf)

Let F denote a cumulative distribution function of a random variable X. Then (integrating by parts),

$$f(x) := \int_{-\infty}^x F(u) \, du = \mathrm{E}[\max(0,x-X)] = x - \mathrm{E}[\min(x,X)]$$

has the convex conjugate

$$f^*(p) = \int_0^p F^{-1}(q) \, dq = (p-1)F^{-1}(p) + \mathrm{E}ig[\min(F^{-1}(p),X)ig] = pF^{-1}(p) - \mathrm{E}ig[\max(0,F^{-1}(p)-X)ig].$$

Ordering

A particular interpretation has the transform

$$f^{ ext{inc}}(x) := rg \sup_t t \cdot x - \int_0^1 \max\{t - f(u), 0\} \, du,$$

as this is a nondecreasing rearrangement of the initial function f; in particular, $f^{inc} = f$ for f nondecreasing.

Properties

The convex conjugate of a closed convex function is again a closed convex function. The convex conjugate of a polyhedral convex function (a convex function with polyhedral epigraph) is again a polyhedral convex function.

Order reversing

Declare that $f \leq g$ if and only if $f(x) \leq g(x)$ for all x. Then convex-conjugation is <u>order-reversing</u>, which by definition means that if $f \leq g$ then $f^* \geq g^*$.

For a family of functions $(f_{\alpha})_{\alpha}$ it follows from the fact that supremums may be interchanged that

$$\left(\inf_{lpha}f_{lpha}
ight)^{*}(x^{*})=\sup_{lpha}f_{lpha}^{*}(x^{*}),$$

and from the max-min inequality that

$$\left(\sup_{lpha}f_{lpha}
ight)^{*}(x^{*})\leq\inf_{lpha}f_{lpha}^{*}(x^{*}).$$

Biconjugate

The convex conjugate of a function is always <u>lower semi-continuous</u>. The **biconjugate** f^{**} (the convex conjugate of the convex conjugate) is also the <u>closed convex hull</u>, i.e. the largest <u>lower semi-continuous</u> convex function with $f^{**} \leq f$. For proper functions f,

 $f = f^{**}$ if and only if f is convex and lower semi-continuous, by the Fenchel–Moreau theorem.

Fenchel's inequality

For any function f and its convex conjugate f^* , **Fenchel's inequality** (also known as the **Fenchel-Young inequality**) holds for every $x \in X$ and $p \in X^*$:

$$\langle p,x
angle \leq f(x)+f^*(p).$$

The proof follows from the definition of convex conjugate: $f^*(p) = \sup_{\tilde{x}} \left\{ \langle p, \tilde{x} \rangle - f(\tilde{x}) \right\} \geq \langle p, x \rangle - f(x)$.

Convexity

For two functions f_0 and f_1 and a number $0 \leq \lambda \leq 1$ the convexity relation

$$((1-\lambda)f_0 + \lambda f_1)^* \leq (1-\lambda)f_0^* + \lambda f_1^*$$

holds. The * operation is a convex mapping itself.

Infimal convolution

The **infimal convolution** (or epi-sum) of two functions f and g is defined as

$$\left(f\,\square\, g
ight) (x) = \inf \left\{ f(x-y) + g(y) \mid y \in \mathbb{R}^n
ight\}.$$

Let f_1, \ldots, f_m be proper, convex and <u>lower semicontinuous</u> functions on \mathbb{R}^n . Then the infimal convolution is convex and lower semicontinuous (but not necessarily proper), [2] and satisfies

$$(f_1 \square \cdots \square f_m)^* = f_1^* + \cdots + f_m^*.$$

The infimal convolution of two functions has a geometric interpretation: The (strict) epigraph of the infimal convolution of two functions is the Minkowski sum of the (strict) epigraphs of those functions. [3]

Maximizing argument

If the function f is differentiable, then its derivative is the maximizing argument in the computation of the convex conjugate:

$$f'(x)=x^*(x):=rg\sup_{x^*}\left\langle x,x^*
ight
angle -f^*\left(x^*
ight)$$
 and $f^{*'}\left(x^*
ight)=x\left(x^*
ight):=rg\sup_{x}\left\langle x,x^*
ight
angle -f(x);$

whence

$$egin{aligned} x &=
abla f^*\left(
abla f(x)
ight), \ x^* &=
abla f\left(
abla f^*\left(x^*
ight)
ight), \end{aligned}$$

and moreover

$$f''(x)\cdot f^{st\prime\prime}\left(x^st(x)
ight)=1, \ f^{st\prime\prime}\left(x^st
ight)\cdot f''\left(x(x^st)
ight)=1.$$

Scaling properties

If for some $\gamma > 0$, $g(x) = \alpha + \beta x + \gamma \cdot f(\lambda x + \delta)$, then

$$g^*\left(x^*
ight) = -lpha - \deltarac{x^*-eta}{\lambda} + \gamma\cdot f^*\left(rac{x^*-eta}{\lambda\gamma}
ight).$$

Behavior under linear transformations

Let $A: X \to Y$ be a bounded linear operator. For any convex function f on X,

$$(Af)^* = f^*A^*$$

where

$$(Af)(y)=\inf\{f(x):x\in X,Ax=y\}$$

is the preimage of f with respect to A and A^* is the adjoint operator of A. [4]

A closed convex function f is symmetric with respect to a given set G of orthogonal linear transformations,

$$f(Ax)=f(x)$$
 for all x and all $A\in G$

if and only if its convex conjugate f^* is symmetric with respect to G.

Table of selected convex conjugates

The following table provides Legendre transforms for many common functions as well as a few useful properties. [5]

g(x)	$\mathrm{dom}(g)$	$g^*(x^*)$		$\mathrm{dom}(g^*)$
f(ax) (where $a eq 0$)	X	$f^*\left(rac{x^*}{a} ight)$		X *
f(x+b)	X	$f^*(x^*) - \langle b, x^* angle$		<i>X</i> *
af(x) (where $a>0$)	X	$af^*\left(rac{x^*}{a} ight)$		X*
$lpha + eta x + \gamma \cdot f(\lambda x + \delta)$	X	$-lpha - \delta rac{x^* - eta}{\lambda} + \gamma \cdot f^* \left(rac{x^* - eta}{\gamma \lambda} ight)$	$(\gamma>0)$	X *
$rac{{{{\left x ight }^p}}}{p}$ (where $p > 1$)	R	$rac{\left oldsymbol{x}^{*} ight ^{q}}{q}$ (where $rac{1}{p}+rac{1}{q}=1$)		R
$\displaystyle rac{-x^p}{p}$ (where $0)$	\mathbb{R}_+	$\dfrac{-(-x^*)^q}{q}$ (where $\dfrac{1}{p}+\dfrac{1}{q}=1$)		R
$\sqrt{1+x^2}$	$ ight \mathbb{R}$	$-\sqrt{1-(x^*)^2}$		[-1, 1]
$-\log(x)$	\mathbb{R}_{++}	$-(1+\log(-x^*))$		R
e^x	$ ight $ $ m I\!R$	$\left\{egin{array}{ll} x^*\log(x^*)-x^* & ext{if } x^*>0 \ 0 & ext{if } x^*=0 \end{array} ight.$		\mathbb{R}_+
$\log(1+e^x)$	\mathbb{R}	$\left\{egin{aligned} x^* \log(x^*) + (1-x^*) \log(1-x^*) \ 0 \end{aligned} ight.$	$egin{aligned} ext{if } 0 < x^* < 1 \ ext{if } x^* = 0, 1 \end{aligned}$	[0,1]
$-\log(1-e^x)$	ℝ	$\left\{egin{aligned} x^* \log(x^*) - (1+x^*) \log(1+x^*) \ 0 \end{aligned} ight.$	$\begin{array}{l} \text{if } x^* > 0 \\ \text{if } x^* = 0 \end{array}$	\mathbb{R}_{+}

See also

- Dual problem
- Fenchel's duality theorem
- Legendre transformation
- Young's inequality for products

References

- 1. "Legendre Transform" (https://physics.stackexchange.com/a/9360/821). Retrieved April 14, 2019.
- 2. Phelps, Robert (1991). Convex Functions, Monotone Operators and Differentiability (https://archive.org/details/convexfunctionsm00phel) (2 ed.). Springer. p. 42 (https://archive.org/details/convexfunctionsm00phel/page/n50). ISBN 0-387-56715-1.
- 3. Bauschke, Heinz H.; Goebel, Rafal; Lucet, Yves; Wang, Xianfu (2008). "The Proximal Average: Basic Theory". *SIAM Journal on Optimization*. **19** (2): 766. CiteSeerX 10.1.1.546.4270 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.546.4270). doi:10.1137/070687542 (https://doi.org/10.1137%2F070687542).
- 4. loffe, A.D. and Tichomirov, V.M. (1979), *Theorie der Extremalaufgaben*. Deutscher Verlag der Wissenschaften. Satz 3.4.3
- 5. Borwein, Jonathan; Lewis, Adrian (2006). *Convex Analysis and Nonlinear Optimization: Theory and Examples* (https://archive.org/details/convexanalysisno00borw_812) (2 ed.). Springer. pp. 50 (https://archive.

org/details/convexanalysisno00borw_812/page/n62)-51. ISBN 978-0-387-29570-1.

- Arnol'd, Vladimir Igorevich (1989). Mathematical Methods of Classical Mechanics (https://archive.org/details/mathematicalmeth0000arno) (Second ed.). Springer. ISBN 0-387-96890-3. MR 0997295 (https://www.ams.org/mathscinet-getitem?mr=0997295).
- Rockafellar, R. Tyrrell; Wets, Roger J.-B. (26 June 2009). Variational Analysis. Grundlehren der mathematischen Wissenschaften. Vol. 317. Berlin New York: Springer Science & Business Media. ISBN 9783642024313. OCLC 883392544 (https://www.worldcat.org/oclc/883392544).
- Rockafellar, R. Tyrell (1970). *Convex Analysis*. Princeton: Princeton University Press. <u>ISBN</u> 0-691-01586-4. MR 0274683 (https://www.ams.org/mathscinet-getitem?mr=0274683).

Further reading

- Touchette, Hugo (2014-10-16). "Legendre-Fenchel transforms in a nutshell" (https://web.archive.org/web/201 70407134235/http://www.physics.sun.ac.za/~htouchette/archive/notes/lfth2.pdf) (PDF). Archived from the original (http://www.physics.sun.ac.za/~htouchette/archive/notes/lfth2.pdf) (PDF) on 2017-04-07. Retrieved 2017-01-09.
- Touchette, Hugo (2006-11-21). "Elements of convex analysis" (https://web.archive.org/web/20150526090548/http://www.physics.sun.ac.za/~htouchette/archive/convex1.pdf) (PDF). Archived from the original (http://www.physics.sun.ac.za/~htouchette/archive/convex1.pdf) (PDF) on 2015-05-26. Retrieved 2008-03-26.
- "Legendre and Legendre-Fenchel transforms in a step-by-step explanation" (http://www.onmyphd.com/?p=leg endre.fenchel.transform). Retrieved 2013-05-18.
- Ellerman, David Patterson (1995-03-21). "Chapter 12: Parallel Addition, Series-Parallel Duality, and Financial Mathematics" (https://books.google.com/books?id=NgJqXXk7zAAC&pg=PA237). Intellectual Trespassing as a Way of Life: Essays in Philosophy, Economics, and Mathematics (http://www.ellerman.org/wp-content/uploads/2012/12/IntellectualTrespassingBook.pdf) (PDF). The worldly philosophy: studies in intersection of philosophy and economics. G Reference, Information and Interdisciplinary Subjects Series (illustrated ed.). Rowman & Littlefield Publishers, Inc. pp. 237–268. ISBN 0-8476-7932-2. Archived (https://web.archive.org/web/20160305012729/http://www.ellerman.org/wp-content/uploads/2012/12/IntellectualTrespassingBook.pdf) (PDF) from the original on 2016-03-05. Retrieved 2019-08-09. [1] (https://web.archive.org/web/20150917191 423/http://www.ellerman.org/Davids-Stuff/Maths/sp_math.doc) (271 pages)
- Ellerman, David Patterson (May 2004) [1995-03-21]. "Introduction to Series-Parallel Duality" (http://www.ellerman.org/wp-content/uploads/2012/12/Series-Parallel-Duality.CV_.pdf) (PDF). University of California at Riverside. CiteSeerX 10.1.1.90.3666 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.3666). Archived (https://web.archive.org/web/20190810011716/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.3666&rep=rep1&type=pdf) from the original on 2019-08-10. Retrieved 2019-08-09. [2] (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.3666&rep=rep1&type=pdf) (24 pages)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Convex_conjugate&oldid=1072291165#Fenchel's_inequality"

This page was last edited on 16 February 2022, at 23:19 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.