Fingerspelling Recognition with Two-Steps Cascade Process of **Spotting and Classification**

Masanori Muroi¹, Naoya Sogi¹, Nobuko Kato², Kazuhiro Fukui¹

¹ Graduate School of Systems and Information Engineering, University of Tsukuba, Japan ² Faculty of Industrial Technology, Tsukuba University of Technology, Japan

(1) Introduction

- Fingerspelling is a tool to express proper nouns and new technical terms that have not been yet defined in sign languages.
- Main goal: Detect and recognize fingerspellings in an input video which is composed of fingerspellings and not fingerspelling signs.
- Basic idea: Divide a whole process into two-steps cascade process:
 - 1. Spotting: Extract a fingerspelling sequence in an input video by utilizing temporal dynamic information.
 - 2. Classification: Classify the spotted sequence by utilizing 3D hand shape information.
- To efficiently incorporate two different information, we propose a fingerspelling classification framework based on three methods:
- 1) temporal regularized CCA (TRCCA)[1] for spotting,

Step1: Spotting process

1.1 Comparison

Reference fingerspelling $\{X_c^i\}$

Input video

2) orthogonal mutual subspace method (OMSM)[2] and 3) CNN features[3] for classification.

 y_{T-4} y_{T-5} y_{T-6} y_{T-7} y_{T-8} y_{T-9} y_{T-10} y_{T-11} y_{T-11}

Dynamic Japanese fingerspelling examples

CNN

feature

 $\$ Class Subspace S_2

(2) Proposed framework

Step2: Classification process Reference Spotted fingerspelling Spotted fingerspelling Hand shape image sets $\{X_1^i\}$ 1.2 Extraction $\{y_{t=T-i+1}|\beta_i>\eta\}$ 2.1 Extract CNN features CNN Sets of CNN features $\{f_1^{i,j}\}$ $\{f_2^{i,j}\}$ $\{f_{in}^i\}$ 2.2 Apply PCA Input Subspace \hat{S}_{in} Class Subspace S_1 2.3 Apply orthogonalize transformation

 Fingerspelling images in an input video are detected by considering the temporal information using TRCCA.

Frame Number i

TRCCA: Calculate similarity between two sequences considering temporal information.

- The detailed procedure
- 1.1 The input image sequence $\{y_t\}_{t=T-i+1}^T$ is compared with the reference fingerspelling $\{X_c^i\}$ by TRCCA. If the input sequence has high similarity with the reference fingerspelling, the input sequence is classified as a fingerspelling.
- 1.2 Fingerspelling images $\{y_{t=T-i+1}|\beta_i>\eta\}$ are extracted from the input sequence.

 Spotted fingerspelling is classified by OMSM with CNN features using hand shape image sets.

OMSM: Represent 3D shape of a hand by subspace, then classify it by subspace similarity.

- The detailed procedure
- 2.1 CNN features $\{f_{in}^i\}$ and $\{f_c^{i,j}\}$ are extracted from $\{y_{t=T-i+1}|\beta_i>\eta\}$ and $\{X_c^i\}$.
- 2.2 Each class subspace $\{S_c\}$ and an input subspace S_{in} are generated by applying PCA to the sets of CNN features.
- 2.3 Orthogonal subspaces $\{\hat{S}_c\}$ and \hat{S}_{in} are generated by applying orthogonalize transformation to $\{S_c\}$ and S_{in} .
- 2.4 The spotted fingerspelling is classified based on similarities between the input subspace S_{in} and reference subspaces $\{\hat{S}_c\}$.

(3) Experiments

- Dataset:
- > We recorded 15 fingerspelling classes by a depth camera.
- We synthesized an input video, which continuously inputs fingerspelling and not fingerspelling sequences alternately.
- Evaluation index:
- Spotting performance, Classification accuracy, Recognition time.

Sample images of our fingerspelling dataset.

Predicted Class Confusion Matrix: Results of the spotting process.

Accuracies and recognition times of different methods.

Framework	Accuracy	Recognition Time
TRCCA[1]	64.1%	39.7 ms
CNN feat - OMSM	68.9%	52.7 ms
KOTRCCA[1]	79.0%	169.0 ms
TRCCA - CNN(softmax)	80.7%	56.9 ms
TRCCA - KOMSM	86.9%	187.3 ms
TRCCA - CNN feat - OMSM(Proposed)	88.2%	91.2 ms

Predicted Class Confusion Matrix: Results of the classification process

(4) Conclusion

- We proposed fingerspelling recognition framework based on a complementary combination of TRCCA and OMSM with CNN features.
- We confirmed that our two-steps process significantly outperforms conventional one-step methods in terms of classification accuracy and recognition time.

(5) References

- [1]S. Tanaka, A. Okazaki, N. Kato, H. Hino and K. Fukui, Spotting fingerspelled words from sign language video by temporally regularized canonical component analysis, 2016 IEEE International Conference on Identity, Security and Behavior Analysis, 2016, pp. 1-7.
- [2]K. Fukui and O. Yamaguchi, The kernel orthogonal mutual Subspace method and its application to 3D object recognition, in Asian Conference on Computer Vision, 2007, pp. 467-476.
- [3] N. Sogi, T. Nakayama, and K. Fukui, A method based on convex cone model for image-set classification with cnn features, in 2018 International Joint Conference on Neural Networks, 2018, pp. 1-8.