4주차(2/3)

퍼셉트론 알고리즘

파이썬으로배우는기계학습

한동대학교 김영섭교수

퍼셉트론 알고리즘

- 학습 목표
 - 퍼셉트론 알고리즘을 이해한다.
- 학습 내용
 - 퍼셉트론 알고리즘
 - 퍼셉트론 가중치 계산
 - 퍼섭트론 학습 전체 과정
 - 퍼셉트론 알고리즘의 한계
 - 퍼셉트론 예제

1. 퍼셉트론 알고리즘: 목적

- 목적:
 - 입력 x를 분류하는 가중치 w구하기

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, w_j := $w_j + \Delta w_j$

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, w_j := $w_j + \Delta w_j$

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, w_j := $w_j + \Delta w_j$

- 표기법:
 - $\chi^{(i)}$ (i)번째 입력된 학습자료

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, w_j := $w_j + \Delta w_j$

- 표기법:
 - $\chi^{(i)}$ (i)번째 입력된 학습자료
 - $x_j^{(i)}$ (i)번째 입력된 학습자료의 j번째 특성

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, w_j := $w_j + \Delta w_j$

- 표기법:
 - $x^{(i)}$ (i)번째 입력된 학습자료
 - $x_j^{(i)}$ (i)번째 입력된 학습자료의 j번째 특성
 - \hat{y} 퍼셉트론의 출력(읽기:y hat), 예측값
 - y 클래스 레이블, 실제값

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, w_j := $w_j + \Delta w_j$

- $x^{(i)}$ (i)번째 입력된 학습자료
- $x_j^{(i)}$ (i)번째 입력된 학습자료의 j번째 특성
- \hat{y} 퍼셉트론의 출력(읽기:y hat), 예측값
- y 클래스 레이블, 실제값

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, $w_j := w_j + \Delta w_j$

- $x^{(i)}$ (i)번째 입력된 학습자료
- $x_j^{(i)}$ (i)번째 입력된 학습자료의 j번째 특성
- \hat{y} 퍼셉트론의 출력(읽기:y hat), 예측값
- y 클래스 레이블, 실제값
- W_j
 j번째 특성에 대한 가중치

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, $w_j := w_j + \Delta w_j$

- $x^{(i)}$ (i)번째 입력된 학습자료
- $x_j^{(i)}$ (i)번째 입력된 학습자료의 j번째 특성
- \hat{y} 퍼셉트론의 출력(읽기:y hat), 예측값
- y 클래스 레이블, 실제값
- ^w_j
 j번째 특성에 대한 가중치
- Δw_j 델타(미세한) 가중치 조정값

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, $w_j := w_j + \Delta w_j$

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, w_j := $w_j + \Delta w_j$

$$\Delta w_j = \eta(y^{(i)} - \hat{y}^{(i)}) x_j^{(i)}$$
 (1)

- η (eta, 에타)학습률은 0 ~ 1 값
- j 특성의 수 + 1 (편향)

$$\Delta w_0 = \eta(y^{(i)} - \hat{y}^{(i)})$$

$$\Delta w_1 = \eta(y^{(i)} - \hat{y}^{(i)})x_1^{(i)}$$

$$\Delta w_2 = \eta(y^{(i)} - \hat{y}^{(i)})x_2^{(i)}$$

- 목적:
 - 입력 x를 분류하는 가중치 w구하기
- 알고리즘:
 - 가중치를 작은 난수(0 ~ 1)로 초기화
 - 각 학습자료 $x^{(i)}$ 에 대해
 - 출력 \hat{y} 계산, $\hat{y} = h(w^T x)$
 - 가중치 w_j 조정, $w_j := w_j + \Delta w_j$

- (1) 식의 테스트:
 - 양극성 계단함수(활성화함수)는-1 혹은 1 반환
- Case 1: $\hat{y} = y$
 - $\Delta w_j =$
- Case 2: $\hat{y} \neq y$
 - $\Delta w_j =$

- (1) 식의 테스트:
 - 양극성 계단함수(활성화함수)는-1 혹은 1 반환
- Case 1: $\hat{y} = y$
 - $\Delta w_j = 0$
 - 가중치 변화없음
- Case 2: $\hat{y} \neq y$
 - $\Delta w_j =$

- (1) 식의 테스트:
 - 양극성 계단함수(활성화함수)는-1 혹은 1 반환
- Case 1: $\hat{y} = y$
 - $\Delta w_j = 0$
 - 가중치 변화없음
- Case 2: $\hat{y} \neq y$
 - $\Delta w_j = \eta \left(1^i (-1^i) \right) x_j^i = \eta(2) x_j^i$
 - $\Delta w_j = \eta (-1^i 1^i) x_j^i = \eta (-2) x_j^i$

2. 퍼셉트론 학습 전체 과정

2. 퍼셉트론 학습 전체 과정: 입력단계

2. 퍼셉트론 학습 전체 과정: 순입력 계산 단계

2. 퍼셉트론 학습 전체 과정: 출력단계

2. 퍼셉트론 학습 전체 과정: 비교단계

2. 퍼셉트론 학습 전체 과정: 가중치 조정 단계

- 1957: 로젠블랏트 퍼셉트론 발표
- 1958: 뉴욕 타임즈
- 1969: MIT 마빈 민스키
 - 퍼셉트론 한계: XOR 풀이 불가
 - 다층 퍼셉트론은 XOR 풀이 가능, 그러나 학습방법은 찾지 못함.
- 1974: 하버드 대학원생, 펄 워브스
 - 다층 퍼셉트론을 학습시킬 수 있는 역전파 알고리즘 발표

XOR 진리표		
x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	0
	<i>x</i> ₁	x1 x2 0 0 0 1

3. 퍼셉트론 알고리즘의 한계: 최적 분류의 한계

■ 직선으로 분류는 하지만, 최적의 직 선은 아님

4. 퍼셉트론 예제

4. 퍼셉트론 예제: 학습자료

- 6개의 학습자료
- 클래스 레이블 y = [1, -1, -1, -1, 1, 1]

4. 퍼셉트론 예제: 학습자료

- 6개의 학습자료
- 클래스 레이블 y = [1, -1, -1, -1, 1, 1]

4. 퍼셉트론 예제: 가중치 계산

- Step 1: 가중치 w 계산하기
 - w의 초기 가중치:
 - $w^T = [0 \ 1 \ 0.5]$
 - 학습률 $\eta = 0.1$

4. 퍼셉트론 예제: 가중치 계산

- Step 1: 가중치 w 계산하기
 - w의 초기 가중치:
 - $w^T = [0 \ 1 \ 0.5]$
 - 학습률 $\eta = 0.1$
 - 학습자료:

$$x^{(1)} = [1, 1]$$

$$x^{(2)} = [2, -2]$$

$$x^{(3)} = [-1, -1.5]$$

$$x^{(4)} = [-2, -1.0]$$

$$x^{(5)} = [1, -2.0, 1.0]$$

$$x^{(6)} = [1, 1.5, -0.5]$$

- Step 1: 가중치 w 계산하기
 - w의 초기 가중치:
 - $w^T = [0 \ 1 \ 0.5]$
 - 학습률 $\eta = 0.1$
 - 학습자료:

$$x^{(1)} = [1, 1]$$

$$x^{(2)} = [2, -2]$$

$$x^{(3)} = [-1, -1.5]$$

$$x^{(4)} = [-2, -1.0]$$

$$x^{(5)} = [1, -2.0, 1.0]$$

$$x^{(6)} = [1, 1.5, -0.5]$$

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)					
2	(1.0, 2.0, -2.0)						
3	(1.0, -1.0, -1.5)						
4	(1.0, -2.0, -1.0)						
5	(1.0, -2.0, 1.0)						
6	(1.0, 1.5, -0.5)						
final							

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)			1	0.1	
2	(1.0, 2.0, -2.0)				-1	0.1	
3	(1.0, -1.0, -1.5)				-1	0.1	
4	(1.0, -2.0, -1.0)				-1	0.1	
5	(1.0, -2.0, 1.0)				1	0.1	
6	(1.0, 1.5, -0.5)				1_	0.1	
final							,

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{\mathbf{y}}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	<mark>1.5</mark>	<mark>1.0</mark>	1	0.1	<mark>0</mark>
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)			-1	0.1	
3	(1.0, -1.0, -1.5)				-1	0.1	
4	(1.0, -2.0, -1.0)				-1	0.1	
5	(1.0, -2.0, 1.0)				1	0.1	
6	(1.0, 1.5, -0.5)				1	0.1	
final							

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	<mark>1.0</mark>	1.0	-1	0.1	
3	(1.0, -1.0, -1.5)				-1	0.1	
4	(1.0, -2.0, -1.0)				-1	0.1	
5	(1.0, -2.0, 1.0)				1	0.1	
6	(1.0, 1.5, -0.5)				1	0.1	
final							

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{\mathbf{T}}\mathbf{x}$	$\widehat{\mathbf{y}}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	
3	(1.0, -1.0, -1.5)			Δω. –	$n(v^{(i)})$	$-\hat{y}^{(i)})x_i^{(i)}$)
4	(1.0, -2.0, -1.0)					$y \rightarrow x_j$ $(1-1)x_i^2$	
5	(1.0, -2.0, 1.0)					(2)	
6	(1.0, 1.5, -0.5)				J		
final							

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw	
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0	
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1		
3	(1.0, -1.0, -1.5)			Λω. –	$n(v^{(i)})$	$-\hat{y}^{(i)})x_i^{(i)}$		
4	(1.0, -2.0, -1.0)					$(y^{-})x_{j}^{-}$ $(1-1)x_{i}^{(2)}$		
5	(1.0, -2.0, 1.0)				-0.2x	J		
6	(1.0, 1.5, -0.5)				1			
final								

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0,w_1,w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw	
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0	
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	<mark>1.0</mark>	<mark>1.0</mark>	-1	0.1	(2,4,	.4)
3	(1.0, -1.0, -1.5)			$\Delta w_j =$	$n(v^{(i)}$	$-\hat{\mathbf{v}}^{(i)}$	$c^{(i)}$	
4	(1.0, -2.0, -1.0)				0.1(-1)		J	
5	(1.0, -2.0, 1.0)				-0.2x		J	
6	(1.0, 1.5, -0.5)			$\Delta w =$	-0.2(1	1.0, 2.0	(0, -2.0)	
final				; <u>=</u> _	(-0.2,	-0.4,	0.4)	

		in' la facilitation of the state of the stat	A Section	125000				
i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0,w_1,w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{\mathbf{y}}^{(i)}$	$y^{(i)}$	η	Δw	
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0	
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	<mark>1.0</mark>	<mark>1.0</mark>	-1	0.1	(2,4,	.4)
3	(1.0, -1.0, -1.5)	(-2.0, 0.6, 0.9)	Γ	Δ	(i)	(i)	_(i)	
4	(1.0, -2.0, -1.0)	$W + \Delta W$		$\Delta w_j =$	$\eta(y) = 0.1(-1)$		<i>J</i>	
5	(1.0, -2.0, 1.0)	77 277			-0.2x		^j	
6	(1.0, 1.5, -0.5)				J	•	(0, -2.0)	
final				=	(-0.2,	, -0.4,	0.4)	

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	(2,4, .4)
3	(1.0, -1.0, -1.5)	(-0.2, 0.6, 0.9)	-2.15	-1	-1	0.1	0
4	(1.0, -2.0, -1.0)	(-0.2, 0.6, 0.9)	-2.3	-1	-1	0.1	0
5	(1.0, -2.0, 1.0)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2,4, .2)
6	(1.0, 1.5, -0.5)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2, .3,1)
final	-	(0.2, 0.5, 1.0)		-	•	•	

i	$(x_0^{(i)}, x_1^{(i)}, x_0^{(i)})$	(w_0, w_1, w_2)	$\mathbf{w}^{T}\mathbf{x}$	$\widehat{y}^{(i)}$	$y^{(i)}$	η	Δw
1	(1.0, 1,0, 1.0)	(0.0, 1.0, 0.5)	1.5	1.0	1	0.1	0
2	(1.0, 2.0, -2.0)	(0.0, 1.0, 0.5)	1.0	1.0	-1	0.1	(2,4, .4)
3	(1.0, -1.0, -1.5)	(-2.0, 0.6, 0.9)	-2.15	-1	-1	0.1	0
4	(1.0, -2.0, -1.0)	(-0.2, 0.6, 0.9)	-2.3	-1	-1	0.1	0
5	(1.0, -2.0, 1.0)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2,4, .2)
6	(1.0, 1.5, -0.5)	(0.0, 0.2, 1.1)	-0.25	-1	1	0.1	(.2, .3,1)
final	-	(0.2, 0.5, 1.0)		-	-	-	

- Step 1: 가중치 구하기
 - w = [0.2, 0.5, 1.0]
- Step 2: 판별식 구하기

- Step 1: 가중치 구하기
 - w = [0.2, 0.5, 1.0]
- Step 2: 판별식 구하기
 - $h(z) = 0 \stackrel{>}{=}, h(w^Tx) = 0$

- Step 1: 가중치 구하기
 - w = [0.2, 0.5, 1.0]
- Step 2: 판별식 구하기
 - $h(z) = 0 \stackrel{\triangle}{=}, h(w^Tx) = 0$

$$\begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} w_0 + w_1 x_1 + w_2 x_2 = 0 \\ 0.2 + 0.5x_1 + 1.0x_2 = 0 \end{bmatrix}$$

- Step 1: 가중치 구하기
 - w = [0.2, 0.5, 1.0]
- Step 2: 판별식 구하기
 - h(z) = 0 = 0, h(wTx) = 0

$$\mathbf{w}^{\mathbf{T}}\mathbf{x} = 0$$

$$\begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} = 0$$

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$0.2 + 0.5x_1 + 1.0x_2 = 0$$

$$x_2 = -0.5x_1 - 0.2$$

4. 퍼셉트론 예제: 시각화

- Step 1: 가중치 구하기
 - w = [0.2, 0.5, 1.0]
- Step 2: 판별식 구하기
 - $x_2 = -.5x_1 0.2$
- Step 3: 판별식 시각화
 - plot_xyw()

plot_xyw()

4. 퍼셉트론 예제: 시각화 코드

```
import matplotlib.pyplot as plt
 2 | import numpy as np
  %matplotlib inline
 4 %run code/plot xyw.py
 5
   x = np.array([[1.0, 1.0], [2.0, -2.0], [-1.0, -1.5],
                  [-2.0, -1.0], [-2.0, 1.0], [1.5, -0.5]]
   X = np.c_[np.ones(len(x)), x]
   y = np.array([1, -1, -1, -1, 1, 1])
10 \mid w = np.array([0.2, 0.5, 1.0])
   plot_xyw(X, y, w, X0=True, annotate=True)
```


w[0.0 1.0 0.5]

w[0.0 1.0 0.5]

w[0.2 0.6 0.9]

w[0.0 1.0 0.5]

w[0.2 0.6 0.9]

w[0.0 0.2 1.1]

w[0.0 1.0 0.5]

w[0.2 0.6 0.9]

w[0.0 0.2 1.1]

w[0.2 0.5 1.0]

퍼셉트론 알고리즘

- 학습 정리
 - 퍼셉트론 알고리즘
 - 퍼셉트론 가중치 계산
 - 퍼섭트론 학습 전체 과정
 - 퍼셉트론 알고리즘의 한계
 - 퍼셉트론 예제
- 차시 예고
 - 4-3 퍼셉트론 알고리즘 구현

4주차(2/3)

퍼셉트론 알고리즘

파이썬으로배우는기계학습

한동대학교 김영섭교수

여러분 곁에 항상 열려 있는 K-MOOC 강의실에서 만나 뵙기를 바랍니다.