Tema 6. Gramáticas de atributos

- 1. Gramáticas de atributos.
- 2. Orden de evaluación.
- 3. Definiciones S-atribuidas.
- 4. Definiciones L-atribuidas.

1. Introducción

Atributos y reglas semánticas

Especificación léxica --> Expresiones regulares

Especificación sintáctica --> Gramáticas independientes del contexto

Especificación semántica --> Gramáticas de atributos

- Asociamos atributos a los símbolos de la gramática.
- Los valores de los atributos se calculan mediante reglas semánticas asociadas a la reglas de producción.

Definición y Ejemplo 1

```
Sea G=(N,T,P,S) una GIC. Se define:
Conjunto de atributos de X \in (N \cup \Sigma): A(X) = \{a_1, a_2, ... a_n\}
y se representan por X.a1, X.a2,... X.an
Conjunto de acciones semánticas de la regla r : Xo \rightarrow X1 X2 ... Xn \in P:
         R(r) = \{ (Xi.a := f(Xr.b,...Xs.c) \}
                     | a \in A(Xi), b \in A(Xr), ..., c \in A(Xs) \text{ con } o \leq i, r, ..., s \leq n 
       E' \rightarrow E  { printf("%d", E.valor) }
       E \rightarrow E_1 + T { E.valor := E_1.valor + T.valor }
           T \rightarrow T_1^* F  { T.valor := T_1.valor * F.valor }
           F \rightarrow (E) { F.valor := E.valor }
            num { F.valor := num.lexval }
```

Definiciones

Árbol sintáctico anotado: Árbol sintáctico de una frase en el que en cada nodo aparecen los valores de los atributos de ese nodo.

Tipos de Atributos

Xi.a será un atributo sintetizado sii todas las acciones semánticas que lo definen son de la forma: los atributos dependen de los hijos $r: Xo \rightarrow X_1 X_2 ... Xn$ { (Xo.a := f (Xi1.bj1, Xi2.bj2,..., Xip.bjp) }

Xi.a será un atributo heredado sii todas las acciones semánticas que lo definen son de la forma:

```
r: Xo \rightarrow X1 X2 ... Xn { (Xi1.a := f (Xo.bjo, Xi1.bj1,..., Xip.bjp) } con i1 <> 0
```

los atributos dependen de los hermanos o del padre

Atributos sintetizados y heredados

```
\begin{array}{ll} \mathsf{D} \to \mathsf{T} \, \mathsf{L} & \{ \, \mathsf{L.tipo} := \mathsf{T.tipo} \, \} \\ \mathsf{T} \to \mathsf{int} & \{ \, \mathsf{T.tipo} := \mathsf{tentero} \, \} \\ \mathsf{T} \to \mathsf{float} & \{ \, \mathsf{T.tipo} := \mathsf{treal} \, \} \\ \mathsf{L} \to \mathsf{L_1}, \, \mathsf{id} & \{ \, \mathsf{L_1.tipo} := \mathsf{L.tipo} \, ; \, \mathsf{InsertaTDS} \, (\mathsf{id.nom}, \, \mathsf{L.tipo}) \, \} \\ \mathsf{L} \to \mathsf{id} & \{ \, \mathsf{InsertaTDS} (\mathsf{id.nom}, \, \mathsf{L.tipo}) \, \} \end{array}
```

Cadena ω = int id,id

Ejemplo 2: Contar a's y b's

```
S \rightarrow (A) { printf ("Num.a: %d Num.b: %d", A.as ,A.bs) }

A \rightarrow A_1, D { A.as = A_1.as + D.as; A.bs = A_1.bs + D.bs }

A \rightarrow D { A.as = D.as; A.bs = D.bs }

D \rightarrow a { D.as = 1; D.bs = 0 }

D \rightarrow b { D.as = 0; D.bs = 1 }

D \rightarrow (A) { D.as = A.as; D.bs = A.bs }
```

Ejemplo 3: Convertir de binario a decimal

```
S \rightarrow L \qquad \{ printf (L.v) \}
L \rightarrow L_1 B \qquad \{ L.v := L_1.v * 2 + B.v ; \}
L \rightarrow B \qquad \{ L.v := B.v \}
B \rightarrow 0 \qquad \{ B.v := 0 \}
B \rightarrow 1 \qquad \{ B.v := 1 \}
```

Ejemplo 4: Convertir a base 10

```
S \rightarrow h L
S \rightarrow b L
S \rightarrow o L
L \rightarrow L_1 B
L \rightarrow B
B \rightarrow 0
B \rightarrow 1
B \rightarrow 2
B \rightarrow f
```

Ejemplo 4: Convertir a base 10

```
S \rightarrow h L
S \rightarrow b L
S \rightarrow o L
L \rightarrow L_1 B
L \rightarrow B
B \rightarrow 0
B \rightarrow 1
B \rightarrow 2
B \rightarrow f
```

Ejemplo 4: Convertir a base 10

Ejemplo con comprobación de números erróneos

 $S \rightarrow h L$

 $S \rightarrow b L$

 $S \rightarrow o L$

 $L \rightarrow L_1 B$

 $L \rightarrow B$

 $B \rightarrow o$

 $B \rightarrow 1$

 $B \rightarrow 2$

.

 $B \rightarrow f$

2. Orden de evaluación

Orden de evaluación

Si un atributo c de un nodo del árbol anotado depende de un atributo b, la regla semántica que define al nodo c debe ser evaluada después de la regla semántica que define a b.

Métodos para la evaluación semántica:

- Mediante grafo de dependencias
- Dirigidos por la sintaxis

Orden de evaluación

Grafo de dependencias: Grafo dirigido acíclico con:

- Un nodo para cada atributo
- Un arco $b \rightarrow c$ si el atributo c depende del atributo b

 Cualquier orden topológico del grafo de dependencias proporciona un orden de evaluación de las reglas semánticas válido.

Métodos dirigidos por la sintaxis:

Se restringe la clase de gramáticas atribuidas que puede ser utilizada. Gramáticas S y L atribuidas

Definiciones

Notaciones para asociar reglas semánticas con producciones:

• Gramática de atributos:

Gramática más un conjunto de atributos y de reglas semánticas asociadas a cada regla.

• Esquema de traducción dirigida por la sintaxis (ETDS):

Gramática más un conjunto de atributos y de reglas semánticas asociadas a cada regla. Estas reglas pueden aparecer entre los símbolos de la parte derecha de las producciones.

3. Definiciones S-atribuidas

Gramática S-atribuida

Definición atribuida que solo usa atributos sintetizados.

Orden de evaluación:

Se puede anotar el árbol sintáctico de forma ascendente: desde las hojas hasta la raíz.

 Las definiciones S-atribuidas pueden transformarse en esquemas de traducción sin más que poner todas las acciones semánticas al final de las reglas de producción.

Ejemplo: S-atribuida y análisis LR

Gramática de atributos que pase a base 10 un número binario

(1)
$$S \rightarrow L$$
 { printf (L.v) }

(2)
$$L \rightarrow L1 B$$
 { $L.v := L1.v * 2 + B.v$ }

(3)
$$L \rightarrow B$$
 { $L.v := B.v$ }

(4)
$$B \to 0$$
 {B.v := 0}

(5)
$$B \to 1$$
 {B.v := 1}

	0	1	\$	S	L	В
0	d-4	d-5		1	2	3
1			Acep			
2	d-4	d-5	r-1			6
3	r-3	r-3	r-3			
4	r-4	r-4	r-4			
5	r-5	r-5	r-5			
6	r-2	r-2	r-2			

Ejemplo 5: Calculadora

```
S \rightarrow \text{ (print E)}
E \rightarrow \text{ (Op E)} | \text{ (Op E E)} | \text{ num}
Op \rightarrow \text{ + } | \text{ - } | \text{ * } | \text{ / }
```

ETDS que calcule el valor numérico de una expresiones y la imprima.

Ejemplo: (print (/ 20 (* 2 (- 5)))) → Imprimirá –2

4. Definiciones L-atribuidas

Definición L-atribuida

Definición atribuida en la que cada atributo heredado de X_j ($1 \le j \le n$), en la producción $A \to X_1 X_2 \dots X_n$ depende solo de:

- a) Los atributos de los símbolos $X_1, X_2, ... X_{j-1}$ a la izquierda de X_j
- b) Los atributos heredados de A

```
\begin{array}{ll} \mathsf{D} \to \mathsf{T} \, \mathsf{L} & \{ \, \mathsf{L.tipo} := \mathsf{T.tipo} \, \} \\ \mathsf{T} \to \mathsf{int} & \{ \, \mathsf{T.tipo} := \mathsf{tentero} \, \} \\ \mathsf{T} \to \mathsf{float} & \{ \, \mathsf{T.tipo} := \mathsf{treal} \, \} \\ \mathsf{L} \to \mathsf{L_1}, \, \mathsf{id} & \{ \, \mathsf{L_1.tipo} := \mathsf{L.tipo} \, ; \, \mathsf{InsertaTDS} \, (\mathsf{id.nom}, \, \mathsf{L.tipo}) \, \} \\ \mathsf{L} \to \mathsf{id} & \{ \, \mathsf{InsertaTDS} (\mathsf{id.nom}, \, \mathsf{L.tipo}) \, \} \end{array}
```

Orden de evaluación ETDS

```
Procedure Primero_en_Profundidad (N: nodo):
  begin \{N \rightarrow X_1, X_2, \dots, X_n\}
       For i := 1 to p do
         begin
               evaluar atributos heredados de X;;
               Primero_en_Profundidad (X<sub>i</sub>);
         end;
       evaluar atributos sintetizados de N;
  end
```

Esquema de Traducción Dirigido por Sintaxis (ETDS)

- ⇒ En un ETDS las acciones semánticas no pueden usar atributos de símbolos que aparezcan a su derecha:
 - Se debe usar el algoritmo Primero_en_Profundidad para determinar el orden en el que deben aparecer las reglas entre los símbolos de la producción.

Ejemplo:

```
\begin{array}{lll} \mathsf{D} \to \mathsf{T} & \{\textit{L.tipo} := \textit{T.tipo}\} & \mathsf{L} \\ \mathsf{T} \to \mathsf{int} & \{\textit{T.tipo} := \textit{tentero}\} \\ \mathsf{T} \to \mathsf{float} & \{\textit{T.tipo} := \textit{treal}\} \\ \mathsf{L} \to & \{\textit{L1.tipo} := \textit{L.tipo}\} & \mathsf{L1}, \, \mathsf{id} \, \, \{\textit{InsertaTDS} \, (\textit{id.nom, L.tipo})\} \\ \mathsf{L} \to \mathsf{id} & \{\textit{InsertaTDS} \, (\textit{id.nom, L.tipo})\} \end{array}
```

Propiedades de los ETDS

(derivadas del algoritmo Primero_en_Profundidad)

- Un atributo heredado para un símbolo del lado derecho de una producción debe calcularse en una acción antes de dicho símbolo.
- Una acción no puede usar un atributo sintetizado de un símbolo a la derecha de dicha acción.
- Una acción para calcular un atributo sintetizado del no-terminal del lado izquierdo solo puede ejecutarse después de las reglas que calculan todos los atributos que usa.

Ejemplo 6: Calculadora detecta errores

```
S \rightarrow (print E)
E \rightarrow (Op E) | (Op E E) | num
Op \rightarrow + | - | * | /
```

Detectar divisiones por cero e informar del **número del operador** en el que se ha producido.

Ej.: (print (+ (* 2 10) (/ 5 (- 3 3)))) -> Error: Div por cero en op 3

Ejemplo 7

```
S \rightarrow A
A \rightarrow (num A A) | (num)
```

- ETDS que obtenga el mínimo nivel de profundidad del número de mayor valor.
- Nivel de profundidad de un nodo es el número mínimo de ramas de la raíz al nodo.

Ej. (2(5)(8)) Nivel de prof. del mayor número = 2

Ejemplo 8

La siguiente gramática reconoce líneas formadas por palabras. Las palabras pueden ser correctas o incorrectas. Escribe un ETDS que cada vez que se reconozca una palabra **incorrecta** muestre el **número de línea** en la que se encuentra.

```
D-> L newline RD
RD-> L newline RD
| ε
L-> P RL
RL-> P RL
| ε
P-> correcta
| incorrecta
```

Ejemplo 9

```
S-> find2 ( LE )
LE -> LE , E | E
E -> cte | ctr | op
```

Construye un ETDS que detecte la primera aparición de dos "cte" seguidas en la lista y devuelva en un atributo de S la posición que ocupa. Si no hay dos apariciones seguidas de "cte" devolverá o.

```
Ej.
find2 (cte op cte cte op cte cte)
Devolverá 3
```