

Relational Algebra

ERIN KEITH

Goals

- 1. Introduce Relational Algebra
- 2. Practice!

Relational Algebra

Join

Selection σ Projection π Renaming Union Intersection Difference Cartesian product ×

Relational Algebra

Union – set of all elements in each relation (duplicates are removed)

Intersection – set of elements that are only in both relations

Difference – set of elements in one relation but not the other (order matters)

- The relations must have schemas with identical sets of attributes.
- The types (domains) and order for each attribute must be the same
 - This may require renaming of attributes in one or both relations

Relational Algebra

Projection – eliminates some columns

Selection – eliminates some rows (tuples)

Cartesian Product – pairs tuples of two relations in all possible ways

Join – selectively pairs tuples from two relations

title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
Wayne's World	1992	95	comedy	Paramount	99999

Figure 2.13: The relation Movies

Projection

- Performed on one relation
- Produces a subset of columns

$$\pi_{title,year,length}(\texttt{Movies})$$

$_title$	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
Wayne's World	1992	95	comedy	Paramount	99999

title	year	length
Star Wars	1977	124
Galaxy Quest	1977 1999	104
Wayne's World	1992	95

Selection

- Performed on one relation
- Produces a subset of tuples

$$\sigma_{length \geq 100}({ t Movies})$$

title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
Wayne's World	1992	95	comedy	Paramount	99999

title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890

Cartesian Product

- Performed on two relations
- Produces all possible combinations of tuples

A	B
1	2
3	4

(a) Relation R

B	C	D
2	5	6
4	7	8
9	10	11

(b) Relation S

A	R.B	S.B	C	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

(c) Result $R \times S$

(natural) Joins

- Performed on two relations
- Produces combinations of tuples where values in a column match

(a) Relation R

B	C	D
2	5	6
4	7	8
9	10	11

(b) Relation S

(c) Result $R \bowtie S$

(natural) Joins

- Performed on two relations
- Produces combinations of tuples where values in a column match

A	B	C
1	2	3
6	7	8
9	7	8

(a) Relation U

B	C	D
2	3	4
2	3	5
7	8	10

(b) Relation V

A	B	C	D
1	2	3	4
1	2	3	5
6	7	8	10
9	7	8	10

(c) Result $U \bowtie V$

Figure 2.16: Natural join of relations

Provide the results for the following query on the relation below.

$$\pi_{title,\,year}\left(\sigma_{length}{\geq}100\,\, ext{AND}\,\,studio\,Name= ext{'Fox'}\,\,(ext{Movies})
ight)$$
 Intersection Difference Cartesian product Join Logical AND Logical OR

title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
Wayne's World	1992	95	comedy	Paramount	99999

Selection Projection

Renaming Union

Logical NOT

M

Figure 2.13: The relation Movies

$$\pi_{title, year} \left(\sigma_{length \geq 100 \text{ AND } studioName = 'Fox'} (\texttt{Movies}) \right)$$

$$\sigma_{length >= 100} \quad \sigma_{studioName = 'Fox'} \left(\text{Movies} \right)$$
Movies Movies

Figure 2.18: Expression tree for a relational algebra expression

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
	•	•	•	•	•
title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345

$$\pi_{title,\,year}\left(\sigma_{length\geq 100} \text{ AND } studio\,Name=\text{`Fox'}\left(\text{Movies}\right)\right)$$

Figure 2.18: Expression tree for a relational algebra expression

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345
Galaxy Quest	1999	104	comedy	DreamWorks	67890
			•	•	•
title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345

$$\pi_{title,\,year}\left(\sigma_{length\geq 100} \text{ AND } studioName=\text{`Fox'}\left(\text{Movies}\right)\right)$$

Figure 2.18: Expression tree for a relational algebra expression

title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345

$$\pi_{title,\,year}\left(\sigma_{length \geq 100} \text{ AND } studio\,Name = \text{`Fox'}\left(\text{Movies}\right)\right)$$

Figure 2.18: Expression tree for a relational algebra expression

title	year	length	genre	studioName	producerC#
Star Wars	1977	124	sciFi	Fox	12345

$$\pi_{title,\,year}\left(\sigma_{length\geq 100} \text{ AND } studio\,Name=\text{'Fox'}\left(\text{Movies}\right)\right)$$

Figure 2.18: Expression tree for a relational algebra expression

title	year	
Star Wars	1977	

College Rankings

 How much was in-state tuition at UNR?

Tuition				
PK, FK	inst	int		
PK	year	int		
	instate	float		
	outstate	float		
	room_board	float		

Institution			
PK	UNITID	int	
	name	varchar(255)	
	address	varchar(255)	
	city	varchar(128)	
	state	char(2)	

 $\pi_{\text{instate}}(\sigma_{\text{name='UNR'}}(\text{Tuition} \bowtie \text{Institution}))$

College Rankings

 How much was in-state tuition at UNR in 2023?

Tuition				
PK, FK	inst	int		
PK	year	int		
	instate	float		
	outstate	float		
	room_board	float		

Institution				
PK	UNITID	int		
	name	varchar(255)		
	address	varchar(255)		
	city	varchar(128)		
	state	char(2)		

 $\pi_{\text{instate}}(\sigma_{\text{year=2023 AND name='UNR'}}(\text{Tuition} \bowtie \text{Institution}))$

Activity

In pairs, come up with 3 more questions you would have about this data.

Write out the corresponding relational algebra expressions.

Next Class

Module:

Week 6: Ch 5.1

Topic:

Relational Operations on Bags