

Precision Instrumentation Amplifier

Enhanced Product AD8221-EP

FEATURES

Specified from -55°C to +125°C

0.9 μV/°C maximum input offset average TC

10 ppm/°C maximum gain vs. temperature (G = 1)

Excellent ac specifications

80 dB minimum CMRR at 10 kHz (G = 1)

-3 dB bandwidth: 825 kHz typical (G = 1)

2 V/µs typical slew rate

Low noise

8 nV/√Hz, at 1 kHz, maximum input voltage noise

 $0.25 \mu V p-p RTI (G = 100 to 1000)$

High accuracy dc performance

80 dB minimum CMRR DC to 60 Hz (G = 1)

70 µV maximum input offset voltage

2 nA maximum input bias current

Wide power supply range: ±2.3 V to ±18 V

Available in space-saving MSOP

Gain set with 1 external resistor (gain range 1 to 1000)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)

Military temperature range (-55°C to +125°C)

Controlled manufacturing baseline

One assembly/test site

One fabrication site

Enhanced product change notification

Qualification data available on request

APPLICATIONS

Bridge amplifiers Precision data acquisition systems Strain gages

Transducer interfaces

TYPICAL CONNECTION DIAGRAM

GENERAL DESCRIPTION

The AD8221-EP is a gain programmable, high performance instrumentation amplifier that delivers the industry's highest CMRR over frequency in its class. The CMRR of instrumentation amplifiers on the market today falls off at 200 Hz. In contrast, the AD8221-EP maintains a minimum CMRR of 80 dB to 10 kHz at G=1. High CMRR over frequency allows the AD8221-EP to reject wideband interference and line harmonics, greatly simplifying filter requirements.

Possible applications include precision data acquisition, biomedical analysis, and aerospace instrumentation.

Low voltage offset, low offset drift, low gain drift, high gain accuracy, and high CMRR make this device an excellent choice in applications that demand the best dc performance possible, such as bridge signal conditioning.

Programmable gain affords the user design flexibility. A single resistor sets the gain from 1 to 1000. The AD8221-EP operates on both single and dual supplies and is well suited for applications where $\pm 10~\rm V$ input voltages are encountered.

The AD8221-EP is specified over the -55°C to +125°C military temperature range. It is available in an 8-lead MSOP package.

Additional application and technical information can be found in the AD8221 data sheet.

Figure 2. Typical CMRR vs. Frequency for G = 1

v. 0 Document Feedback

TABLE OF CONTENTS

Features	I
Enhanced Product Features	1
Applications	1
Typical Connection Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	5

Thermal Characteristics	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Outline Dimensions	14
Ordering Guide	14

REVISION HISTORY

4/16—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\text{S}}=\pm15$ V, $V_{\text{REF}}=0$ V, $T_{\text{A}}=25^{\circ}\text{C}$, G=1 , $R_{\text{L}}=2$ kO, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
COMMON-MODE REJECTION RATIO (CMRR)					
CMRR DC to 60 Hz with 1 $k\Omega$ Source Imbalance	$V_{CM} = -10 \text{ V to } +10 \text{ V}$				
G = 1		80			dB
G = 10		100			dB
G = 100		120			dB
G = 1000		130			dB
CMRR at 10 kHz	$V_{CM} = -10 \text{ V to } +10 \text{ V}$				
G = 1		80			dB
G = 10		90			dB
G = 100		100			dB
G = 1000		100			dB
NOISE	RTI noise = $\sqrt{e_{Nl}^2 + (e_{NO}/G)^2}$				
Voltage Noise, 1 kHz	Tena : (enc. e)				
Input Voltage Noise, e _{Ni}	$V_{\text{IN+}}, V_{\text{IN-}}, V_{\text{REF}} = 0$			8	nV/√Hz
Output Voltage Noise, e _{NO}	VIN+, VIN-, VREF — O			75	nV/√Hz
Referred to Input (RTI)	f = 0.1 Hz to 10 Hz			73	1107 (112
G = 1	1 = 0.1 112 to 10112		2		μV р-р
G = 10			0.5		
					μV p-p
G = 100 to 1000	£ 11.11-		0.25		μV p-p
Current Noise	f = 1 kHz		40		fA/√Hz
VOLT 07 077071	f = 0.1 Hz to 10 Hz		6		рА р-р
VOLTAGE OFFSET ¹					
Input Offset, Vosi	$V_s = \pm 5 \text{ V to } \pm 15 \text{ V}$			70	μV
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			150	μV
Average Temperature Coefficient (TC)				0.9	μV/°C
Output Offset, V _{OSO}	$V_s = \pm 5 \text{ V to } \pm 15 \text{ V}$			600	μV
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			1.2	mV
Average TC				9	μV/°C
Offset RTI vs. Supply (PSR)	$V_S = \pm 2.3 \text{ V to } \pm 18 \text{ V}$				
G = 1		90	100		dB
G = 10		100	120		dB
G = 100		120	140		dB
G = 1000		120	140		dB
INPUT CURRENT					
Input Bias Current			0.5	2	nA
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			3.75	nA
Average TC			11		pA/°C
Input Offset Current			0.3	1	nA
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			2.25	nA
Average TC			7		pA/°C
REFERENCE INPUT					
R _{IN}			20		kΩ
I _{IN}	$V_{IN+r}V_{IN-r}V_{REF}=0$		50	60	μΑ
Voltage Range		-Vs		+V _s	V
Gain to Output			1 ± 0.000		V/V

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
POWER SUPPLY					
Operating Range	$V_S = \pm 2.3 \text{ V to } \pm 18 \text{ V}$	±2.3		±18	V
Quiescent Current			0.9	1	mA
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$		1	1.2	mA
DYNAMIC RESPONSE					
Small Signal –3 dB Bandwidth					
G = 1			825		kHz
G = 10			562		kHz
G = 100			100		kHz
G = 1000			14.7		kHz
Settling Time 0.01%	10 V step				
G = 1 to 100	·		10		μs
G = 1000			80		μs
Settling Time 0.001%	10 V step				
G = 1 to 100	· ·		13		μs
G = 1000			110		μs
Slew Rate	G = 1	1.5	2		V/µs
Siew nate	G = 5 to 100	2	2.5		V/µs
GAIN	$G = 1 + (49.4 \text{ k}\Omega/\text{R}_G)$	1	2.0		ν, μο
Gain Range	G = 1 1 (43.4 K22/11g)	1		1000	V/V
Gain Error	V _{оит} ± 10 V	'		1000	V / V
G = 1	V001 ± 10 V			0.1	%
G = 10				0.1	%
G = 100				0.3	%
G = 1000 G = 1000				0.3	% %
	$V_{OUT} = -10 \text{ V to } +10 \text{ V}$			0.5	90
Gain Nonlinearity G = 1 to 10			_	1.5	
	$R_L = 10 \text{ k}\Omega$		5 7	15	ppm
G = 100	$R_L = 10 \text{ k}\Omega$			20	ppm
G = 1000	$R_L = 10 \text{ k}\Omega$		10	50	ppm
G = 1 to 100	$R_L = 2 k\Omega$		15	100	ppm
Gain vs. Temperature				10	10.5
G = 1			3	10	ppm/°C
G > 1 ²				-50	ppm/°C
INPUT					
Input Impedance					
Differential			100 2		GΩ pF
Common Mode			100 2		GΩ pF
Input Operating Voltage Range ³	$V_S = \pm 2.3 \text{ V to } \pm 5 \text{ V}$	$-V_s + 1.9$		$+V_{s}-1.1$	V
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	$-V_s + 2.0$		$+V_{S}-1.2$	V
Input Operating Voltage Range	$V_S = \pm 5 \text{ V to } \pm 18 \text{ V}$	$-V_S + 1.9$		$+V_{s}-1.2$	V
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	$-V_s + 2.0$		+V _S - 1.3	V
OUTPUT	$R_L = 10 \text{ k}\Omega$	1			
Output Swing	$V_S = \pm 2.3 \text{ V to } \pm 5 \text{ V}$	$-V_s + 1.1$		$+V_{S}-1.2$	V
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	$-V_{S} + 1.4$		$+V_{S}-1.3$	V
Output Swing	$V_S = \pm 5 \text{ V to } \pm 18 \text{ V}$	$-V_{s} + 1.2$		$+V_{S}-1.4$	V
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	$-V_S + 1.6$		$+V_{S}-1.5$	V
Short-Circuit Current		1	18		mA
TEMPERATURE RANGE					
Specified Performance		-55		+125	°C

 $^{^1}$ Total RTI $V_{OS}=(V_{OSI})+(V_{OSO}/G).$ 2 Does not include the effects of external resistor $R_G.$ 3 One input grounded. G=1.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	±18 V
Internal Power Dissipation	200 mW
Output Short-Circuit Current	Indefinite
Input Voltage (Common-Mode)	±V _S
Differential Input Voltage	±V _S
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−55°C to +125°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS

Specification for a device in free air.

Table 3.

Package		Unit
8-Lead MSOP, 4-Layer JEDEC Board	135	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	-IN	Negative Input Terminal.
2, 3	R_{G}	Gain Setting Terminal. Place resistor across the R_G pins to set the gain. $G = 1 + (49.4 \text{ k}\Omega/R_G)$.
4	+IN	Positive Input Terminal.
5	$-V_S$	Negative Power Supply Terminal.
6	REF	Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level-shift the output.
7	V _{OUT}	Output Terminal.
8	+V _S	Positive Power Supply Terminal.

TYPICAL PERFORMANCE CHARACTERISTICS

T = 25°C, V_S = ±15 V, R_L = 10 kΩ, unless otherwise noted.

Figure 4. Typical Distribution for CMR (G = 1)

Figure 5. Typical Distribution of Input Offset Voltage

Figure 6. Typical Distribution of Input Bias Current

Figure 7. Typical Distribution of Input Offset Current

Figure 8. Input Common-Mode Voltage vs. Output Voltage, G = 1

Figure 9. Input Common-Mode Voltage vs. Output Voltage, G = 100

Figure 10. Input Bias Current (IBIAS) vs. Common-Mode Voltage (CMV)

Figure 11. Change in Input Offset Voltage vs. Warm-Up Time

Figure 12. Input Offset Current and Input Bias Current vs. Temperature

Figure 13. Positive PSRR vs. Frequency, RTI (G = 1 to 1000)

Figure 14. Negative PSRR vs. Frequency, RTI (G = 1 to 1000)

Figure 15. Gain vs. Frequency

Figure 16. CMRR vs. Frequency, RTI

Figure 17. CMRR vs. Frequency, RTI, 1 k Ω Source Imbalance

Figure 18. CMR vs. Temperature

Figure 19. Input Voltage Limit vs. Supply Voltage, G = 1

Figure 20. Output Voltage Swing vs. Supply Voltage, G = 1

Figure 21. Output Voltage Swing vs. Load Resistance

13702-019

Figure 22. Output Voltage Swing vs. Output Current, G = 1

Figure 23. Gain Nonlinearity, G = 1, $R_L = 10 \text{ k}\Omega$

Figure 24. Gain Nonlinearity, G = 100, $R_L = 10 \text{ k}\Omega$

Figure 25. Gain Nonlinearity, G = 1000, $R_L = 10 \text{ k}\Omega$

Figure 26. Voltage Noise Spectral Density vs. Frequency (G = 1 to 1000)

Figure 27. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)

Figure 28. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)

Figure 29. Current Noise Spectral Density vs. Frequency

Figure 30. 0.1 Hz to 10 Hz Current Noise

Figure 31. Large Signal Frequency Response

Figure 32. Large Signal Pulse Response and Settling Time (G = 1), 0.002%/DIV

Figure 33. Large Signal Pulse Response and Settling Time (G = 10), 0.002%/DIV

Figure 34. Large Signal Pulse Response and Settling Time (G = 100), 0.002%/DIV

Figure 35. Large Signal Pulse Response and Settling Time (G = 1000), 0.002%/DIV

Figure 36. Small Signal Response, G = 1, $R_L = 2 k\Omega$, $C_L = 100 pF$

Figure 37. Small Signal Response, G = 10, $R_L = 2 k\Omega$, $C_L = 100 pF$

Figure 38. Small Signal Response, G = 100, $R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$

Figure 39. Small Signal Response, G = 1000, $R_L = 2 k\Omega$, $C_L = 100 pF$

Figure 40. Settling Time vs. Output Voltage Step Size (G = 1)

Figure 41. Settling Time vs. Gain for a 10 V Step

OUTLINE DIMENSIONS

Figure 42. 8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8221TRMZ-EP	−55°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y67
AD8221TRMZ-EP-R7	−55°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y67

¹ Z = RoHS Compliant Part.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

<u>AD8221ARMZ AD8221ARZ AD8221BRZ AD8221ARMZ-R7 AD8221ARMZ-R1 AD8221ARZ-R1 AD8221ARZ-R1 AD8221BRZ-R1 AD8221TRMZ-EP AD8221TRMZ-EP-R7</u>