WHAT IS CLAIMED IS:

1.	compact fuel processor for converting a hydrocarbon fuel feed in	io a
purified hydro	en rich gas, comprising:	

a reforming stack for converting the hydrocarbon fuel feed into a hydrogen rich gas; and

a purification stack for producing the hydrogen rich gas suitable for direct feed to a fuel cell.

2. The compact fuel processor of claim 1, wherein the reforming stack includes a first plurality of cylindrical vessels, wherein the first plurality of cylindrical vessels are stackable without the need for connecting piping between each vessel; and wherein the purification stack includes a second plurality of cylindrical vessels, wherein the plurality of cylindrical vessels are stackable without the need for connecting piping between each vessel.

3. The compact fuel processor of claim 2, wherein the reforming stack is aligned vertically.

4. The compact fuel processor of claim 1, wherein the reforming stack comprises a shift vessel, an autothermal reforming vessel, and an anode tail gas oxidation vessel; and wherein the purification stack comprises a preferred oxidation vessel, a first desulfurization vessel, and a second desulfurization vessel.

2.7

5. The compact fuel processor of claim 4, wherein the hydrocarbon fuel feed is sequentially introduced to:

first, to the anode tail gas oxidation vessel to produce a preheated hydrocarbon fuel feed;

second, to the first desulfurization vessel to produce a desulfurized hydrocarbon fuel feed;

third, to the autothermal reforming vessel to produce a first intermediate hydrogen stream;

1	fourth, to the second desulfurization vessel to produce a desulfurized intermediate
2	hydrogen stream;
3	fifth, to the shift vessel to produce a second intermediate hydrogen stream; and
4	sixth, to the preferential oxidation vessel to produce the hydrogen rich gas.
5	
6	6. The compact fuel processor of claim 5, wherein the anode tail gas
7	oxidation vessel comprises:
8	an oxidation core containing a water gas shift catalyst for oxidizing fuel cell
9	anode tail gas to produce a hot exhaust gas; and
10	a first finned section having a plurality of external vertical fins surrounding the
11	oxidation core for dissipating the heat of reaction produced within the oxidation core;
12	wherein the hydrocarbon fuel feed is introduced to the first finned section to
13	produce the preheated hydrocarbon fuel feed.
14	
15	7. The compact fuel processor of claim 6, further comprising a heat
16	exchanger for heating water with the hot exhaust gas to produce a preheated water
17	stream.
18	
19	8. The compact fuel processor of claim 5, wherein the autothermal reforming
20	vessel comprises:
21	a reforming core containing an autothermal reforming catalyst for reacting the
22	desulfurized hydrocarbon fuel feed, the preheated water stream, and air to produce the
23	first intermediate hydrogen stream; and
24	a spiral exchanger section surrounding the reforming core;
25	wherein the spiral exchanger section contains two channels for preheating the
26	desulfurized hydrocarbon fuel feed with the first intermediate hydrogen stream.
27	
28	9. The compact fuel processor of claim 5, wherein the shift reactor vessel
29	comprises:

1	a shift core containing a water gas shift catalyst for reacting the desulfurized
2	intermediate hydrogen stream and water to produce the second intermediate hydrogen
3	stream; and
4	a second finned section having a plurality of external vertical fins surrounding the
5	shift core for dissipating the heat of reaction produced in the shift core;
6	wherein the desulfurized intermediate hydrogen stream is preheated in the second
7	finned section prior to being introduced to the shift core.
8	
9	10. The compact fuel processor of claim 5, wherein the first desulfurization
10	vessel comprises a desulfurization catalyst bed for substantially desulfurizing the
11	preheated hydrocarbon fuel feed to produce a desulfurized hydrocarbon fuel feed.
12	
13	11. The compact fuel processor of claim 5, wherein the second desulfurization
14	vessel comprises a desulfurization catalyst bed for substantially desulfurizing the first
15	intermediate hydrogen stream to produce a desulfurized intermediate hydrogen stream.
16	
17	12. The compact fuel processor of claim 5, wherein the preferred oxidation
18	vessel comprises:
19	a preferred oxidation catalyst bed for reacting air and the second intermediate
20	hydrogen stream to produce the hydrogen rich gas; and
21	a heat exchange chamber for cooling the hydrogen rich gas with water in a
22	cooling coil
23	
24	13. A compact fuel processor for converting a hydrocarbon fuel feed into
25	hydrogen rich gas, comprising:
26	a reforming module for converting the hydrocarbon fuel feed into the hydrogen
27	rich gas, wherein the hydrogen rich gas is suitable for direct feed to a fuel cell; and
28	an oxidizing module for oxidizing fuel cell anode tail gas to produce a hot exhaust
29	gas, wherein the hot exhaust preheats the hydrocarbon fuel feed to the reforming module.

30

1	14. The compact fuel processor of claim 13, wherein the oxidizing module
2	comprises:
3	a first heat exchanger core;
4	an oxidation core vessel containing an oxidation catalyst; and
5	a first desulfurizing vessel surrounding the oxidation core vessel and forming a
6	first annular space filled with desulfurization catalyst; and
7	wherein the oxidation core vessel oxidizes the fuel cell anode tail gas to produce a
8	hot exhaust gas; and
9	wherein the hydrocarbon fuel feed is preheated by the hot exhaust gas in the first
10	heat exchanger coil to produce a preheated hydrocarbon fuel feed; and
11	wherein the preheated hydrocarbon fuel feed is desulfurized in the first annular
12	space to create a desulfurized hydrocarbon fuel feed.
13	
14	15. The compact fuel processor of claim 14, wherein the oxidation core vessel
15	has a first set of external vertical fins for further preheating the preheated hydrocarbon
16	fuel feed to produce a second preheated hydrocarbon fuel feed, and wherein the second
17	preheated hydrocarbon fuel feed becomes the hydrocarbon fuel feed introduced to the
18	first annular space.
19	
20	16. The compact fuel processor of claim 13, wherein the reforming module
21	comprises:
22	a second heat exchanger coil;
23	a reforming core vessel containing an autothermal reforming catalyst bed;
24	a second desulfurizing vessel surrounding the reforming core vessel and forming
25	a second annular space filled with desulfurization catalyst;
26	a shift vessel surrounding the second desulfurizing vessel and forming a third
27	annular space filled with water gas shift catalyst; and
28	a preferred oxidation vessel surrounding the shift vessel and forming a fourth
29	annular space filled with preferred oxidation catalyst; and
30	wherein the hydrocarbon fuel feed is preheated by the hydrogen rich gas in the
31	second heat exchanger coil to produce a third preheated hydrocarbon fuel feed; and

1	wherein the third preheated hydrocarbon fuel feed is sequentially introduced to
2	the reforming core vessel, then to the second annular space, then to the third annular
3	space, and then to the fourth annular space to produce the hydrogen rich gas.
4	
5	17. The compact fuel processor of claim 16, wherein the hydrocarbon fuel
6	feed is a desulfurized hydrocarbon fuel feed.
7	
8	18. The compact fuel processor of claim 16, wherein the reforming core vessel
9	has a second set of external vertical fins for further preheating the third preheated
10	hydrocarbon fuel feed to produce a fourth preheated hydrocarbon fuel feed, and wherein
11	the fourth preheated hydrocarbon fuel feed becomes the hydrocarbon fuel feed introduced
12	to the reforming core vessel.
13	
14	19. The compact fuel processor of claim 16, wherein the third annular space
15	has a third heat exchanger coil for reaction temperature control.
16	
17	20. The compact fuel processor of claim 16, further comprising an electrical
18	heater for starting up the autothermal reforming catalyst bed.
19	
20	21. A compact fuel processor for converting a hydrocarbon fuel feed into
21	hydrogen rich gas, comprising:
22	a heat exchanger coil;
23	a reforming core vessel containing an autothermal reforming catalyst bed;
24	a desulfurizing vessel surrounding the reforming core vessel and forming a first
25	annular space filled with desulfurization catalyst;
26	a shift vessel surrounding the desulfurizing vessel and forming a second annular
27	space filled with water gas shift catalyst; and
28	a preferred oxidation vessel surrounding the shift vessel and forming a third
29	annular space filled with preferred oxidation catalyst; and
30	wherein the hydrocarbon fuel feed is preheated by the hydrogen rich gas in the
31	heat exchanger coil to produce a preheated hydrocarbon fuel feed; and

wherein the preheated hydrocarbon fuel feed is sequentially introduced to the reforming core vessel, then to the second annular space, then to the third annular space, and then to the fourth annular space to produce the hydrogen rich gas.

22. The compact fuel processor of claim 21, wherein the reforming core vessel has a set of external vertical fins for further preheating the preheated hydrocarbon fuel feed to produce a second preheated hydrocarbon fuel feed, and wherein the second preheated hydrocarbon fuel feed becomes the preheated hydrocarbon fuel feed introduced to the reforming core vessel.

23. The compact fuel processor of claim 21, wherein the second annular space has a second heat exchanger coil for reaction temperature control.

24. The compact fuel processor of claim 21, further comprising an electrical heater for starting up the autothermal reforming catalyst bed.