Problem Presentation 3

Problem statement: Define a relation R on \mathbb{Z} by xRy iff x-y=4k for some integer k. Verify that R is an equivalence relation and describe the equivalence class E_5 . How many distinct equivalence classes are there?

Proof. In order to prove R is an equivalence relation, we need to show R is reflexive, symmetric, and transitive.

In order to prove R is reflexive, we need to show xRx. Substituting x into the relation gives us x - x = 4k which means 0 = 4k. When k = 0, this statements hold and $0 \in \mathbb{Z}$.

In order to prove R is symmetric, we need to show $xRy \implies yRx$. Substuting x and y into xRy gives us $xRy: x-y=4k_1$. Multiplying both sides of the equation gives us $y-x=-4k_1$. Let us assume there exists a k_2 such that $k_2=-k_1$. Therefore $y-x=4k_2$ which means yRx holds. Hence we have proved $xRy \implies yRx$.

In order to prove R is transitive, we need to show if xRy and yRz, then xRz. Substituting x and y into xRy gives us $xRy: x-y=4k_1$. Substituting y and z into yRz gives us $yRz: y-z=4k_2$. Adding these two equations together gives us $x-y+y-z=4k_1+4k_2=4(k_1+k_2)=x-z$. Let $k_3=k_1+k_2$. Since k_3 is the sum of two integers, k_3 is also an integer. Therefore $x-z=4k_3$ which means xRy. Hence we have proved xRy and yRz, then xRz.

Therefore we have proved R is reflexive, symmetric, and transitive. Thus R is an equivalence relation.

 $E_5 = \{y \in \mathbb{Z} : y \in \mathbb{R} : y \in \mathbb{Z} : y \in \mathbb{Z} : y \in \mathbb{Z} = \{..., -3, 1, 5, 9, 13, ...\}$. For all y in real numbers such that y = 5 is a multiple of 4 with some integer k. The increment between each numbers in the set is 4. Therefore there should be other three sets that are equivalence class of \mathbf{R} , $E_3 = \{..., -5, -1, 3, 7, 11, ...\}$ and $E_4 = \{..., -4, 0, 4, 8, 12, ...\}$, and $E_6 = \{..., -2, 2, 6, 10, 14, ...\}$. All the other equivalence classes are identical to any of these four sets.