Aula 08 - L4.3/60
Doniel amorim Villa de Salis - 123 145
·
· Calculando as derinadas e comparando-as:
* x sapoler me *
$\mu_{x} = e^{xy} \cdot \lambda_{y}(y) = y \cdot e^{xy} \cdot \lambda_{y}(y)$
· ·
* em relaçõe a y:
lly = x · exy · >2m(y) + exy · cos(y)
· Para obtez as derivadas miestas sara necessário derivar ux em reloção a y. Assim temos:
Mxx = T.Cxx + vau(2) + x.Cxx (2) + vau(3) + x.Cxx (2)
Wx R = 1.6 . 124 (10) 4 x . C . (13) 221 (13) 4 2 . C . (23)
· Destirando uy com xelação a x:
Myx = exx. senly) + x · exx. y· sen (y) + y· exx. cos(y)
· Como podo sor absorrado uxy = uyx a portento a resperta e sim.
Vale a tourna