AXI-Lite Quad-SPI v1.0

IP User Guide(Beta Release)

November 26, 2023

Contents

IP Specifications	2
Overview	3
AXI-Lite QuadSPI	3
Licensing	4
IP Specification	5
Overview	5
Standards	5
IP Support Details	6
Resource Utilization	6
Port List	
Parameters	8
Design Flow	9
IP Customization and Generation	9
Registers Address Space	11
CSRs Description	11
Example Design	12
Simulating the Example Design	12
Synthesis and PnR	13
Release	14
Revision History	1/

IP Summary

Introduction

The AXIL QUADSPI core is a configurable FPGA core that provides communication with external flash memory devices.

External flash memory is commonly used in FPGA designs to store the FPGA bitstream and CPU firmware. AXIL QUADSPI can be useful in any FPGA design that requires access to external flash memory for storing and accessing the FPGA bitstream and CPU firmware.

Features:

PHY

- Portable/Generic.
- Single/Dual/Quad/Octal SPI Bus support.
- Dynamic Clk frequency configuration and auto-calibration.

CORE

- Dynamic Crossbar.
- MMAP read accesses.
- CSR-based read/write accesses.

Overview

AXI-Lite QuadSPI

AXIL_QuadSPI is configured via its AXIIite slave interface. It configures the SPI core to communicate with the SPI Flash. The figure 1 shows the AXIL QuadSPI IP core connection with a SPI Flash on an FPGA.

Figure 1. AXIL QuadSPI BLock with an SPI Flash

Licensing

Copyright (c) 2022 RapidSilicon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

IP Specification

Overview

AXIL QUADSPI supports three types of SPI flash access: single, dual, and quad. Single access uses a single data line to transfer data between the host system and the flash memory, while dual access uses two data lines and quad access uses four data lines. Using more data lines allows for higher data transfer rates, but may not be supported by all flash memory devices.

AXIL QUADSPI allows the user to select the type of SPI flash that is connected to the core, and configure the type of access that will be used. This allows the user to optimize the performance of the core for the specific flash memory device that is being used. For example, if the flash memory device supports quad access, the user can configure AXIL QUADSPI to use quad access for maximum data transfer performance.

Figure 2. IP Core

- LiteSPIPHY: This component generates the clock signals and provides a physical interface for communicating with the external flash memory device.
- LiteSPICore: This component manages the data transfer between the external flash memory and the frontend modules. It includes a crossbar component, which routes data between the various frontend modules.
- LiteSPIMMAP: This component provides an interface for mapping the external flash memory into the host system's memory space.
- LiteSPIMaster: This component provides an interface for executing control commands on the external flash memory and do writes.

Standards

The AXI4-Lite Slave interface is compliant with the AMBA® AXI Protocol Specification.

IP Support Details

Comp	oliance	IP Resources					Tool F	Flow	
Device	Interface	Source Files	Source Files Constraint File Testbench Simulation Model Software Driver				Analyze and Elaboration	Simulation	Synthesis
GEMINI	AXI4-lite	Verilog	SDC	Verilog	-	-	Raptor	Raptor	Raptor

Resource Utilization

Tool	Raptor Design Suite				
FPGA Device	GEMINI				
	Configuration		Resource	ce Utilization	
	Options	Configuration	Resources	Utilized	
	CORE MODULE	S25FL128L	LUT	778	
Minimum Resource	CORE MODE	x1	Registers	492	
	CORE RATE	1:1	BRAM	0	
	CORE BUS ENDIANNESS	big	DSP	0	
	Options	Configuration	Resources	Utilized	
	CORE MODULE	S25FL128L	LUT	778	
Maximum	CORE MODE	x4	Registers	492	
	CORE RATE	1:2	BRAM	0	
Resource	CORE BUS ENDIANNESS	big	DSP	0	

Ports

Table 2 lists the top interface ports of the AXIL QuadSPI.

Signal Name	I/O	Description			
AXI Clock and Reset		-			
clk	I	AXI4-Lite Clock			
rst	I	AXI4-Lite RESET			
	SPI AXI SLAVE INTERFACE				
AXI WRITE ADDRESS CHANNEL					
s_axil_awvalid	I	AXI4-Lite Write address valid			
s_axil_awready	О	AXI4-Lite Write address ready			
s_axil_awaddr	I	AXI4-Lite Write address			
s_axil_awprot	I	AXI4-Lite Protection type			
AXI WRITE DATA CHAN	NEL	,			
s_axil_wvalid	I	AXI4-Lite Write valid			
s_axil_wready	О	AXI4-Lite Write ready.			
s_axil_wdata	I	AXI4-Lite Write data			
s_axil_wstrb	I	AXI4-Lite Write strobes			
AXI WRITE RESPONSE	CHANN	EL			
s_axil_bvalid	О	AXI4-Lite Write response valid			
s_axil_bready	I	AXI4-Lite Response ready			
s_axil_bresp	О	AXI4-Lite Write response			
AXI READ ADDRESS CH	ANNEL				
s_axil_arvalid	I	AXI4-Lite Read address valid			
s_axil_arready	О	AXI4-Lite Read address ready			
s_axil_araddr	I	AXI4-Lite Read address			
s_axil_arprot	I	AXI4-Lite Protection type			
AXI READ DATA CHANN	IEL				
s_axil_rvalid	I	AXI4-Lite Read valid			
s_axil_rready	О	AXI4-Lite Read ready			
s_axil_rresp	I	AXI4-Lite Read data			
s_axil_rdata	О	AXI4-Lite Read response			
		MASTER INTERFACE			
AXI WRITE ADDRESS C	HANNE				
m_axil_awvalid	I	AXI4-Lite Write address valid			
m_axil_awready	О	AXI4-Lite Write address ready			
m_axil_awaddr	I	AXI4-Lite Write address			
m_axil_awprot	I	AXI4-Lite Protection type			
AXI WRITE DATA CHAN	NEL				
m_axil_wvalid	I	AXI4-Lite Write valid			
m_axil_wready	О	AXI4-Lite Write ready.			
m_axil_wdata	I	AXI4-Lite Write data			
m_axil_wstrb	I	AXI4-Lite Write strobes			
AXI WRITE RESPONSE					
m_axil_bvalid	О	AXI4-Lite Write response valid			
m_axil_bready	I	AXI4-Lite Response ready			
m_axil_bresp	О	AXI4-Lite Write response			

AXI READ ADDRESS CHANNEL				
m_axil_arvalid	I	AXI4-Lite Read address valid		
m_axil_arready	О	AXI4-Lite Read address ready		
m_axil_araddr	I	AXI4-Lite Read address		
m_axil_arprot	I	AXI4-Lite Protection type		
AXI READ DATA CHANN	EL			
m_axil_rvalid	I	AXI4-Lite Read valid		
m_axil_rready	О	AXI4-Lite Read ready		
m_axil_rresp	I	AXI4-Lite Read data		
m_axil_rdata	О	AXI4-Lite Read response		
SPI PORTS				
spiflash_cs_n	О	SPI Flash chip select		
spiflash_clk	О	SPI Flash clock		
spiflash_mosi	О	SPI Flash Master output slave input		
spiflash_miso	I	SPI Flash Master input slave output		
spiflash_wp	I	SPI Flash write protect		

SPI Interface

Parameters

Table 2 lists the parameters of the AXIL QuadSPI.

Parameter	Values	Default Value	Description
CORE MODULE	S25FL128L	S25FL128L	SPI Flash Module.
CORE MODE	x1, x4	x4	SPI Modes, quad or simple.
CORE RATE	1:1, 1:2	1:1 SPI Flash Core rate SDR, DDR.	
CORE BUS ENDIANNESS	littel, big	big	Bus Endianness (big, little)
CORE PHY	real, model	real	Type or PHY (Real or Model (Simulation))
CORE DIVISOR	1-256	1	SPI Clock Dividor

Design Flow

IP Customization and Generation

AXIL QuadSPI IP core is a part of the Raptor Design Suite Software. A customized SPI can be generated from the Raptor's IP configurator window.

Raptor IP list

Parameters Customization: From the IP configuration window, the parameters of the AXIL QuadSPI can be configured and the modes can be enabled for generating a customized SPI IP core that suits the user application requirement as shown in Figure. After IP Customization, all the source files are made available to the user with a top wrapper that instantiates a parameterized instance of the AXIL QUADSPI.

IP Configuration

Registers Address Space

Configuration Registers

Name	Register ID	Bits	Type	Off sets	Default Value	Description
Control Stream	CS	1	RW	0x00	0x0	SPI flash core CS read/write
Register	L'S	1	KW	UXUU	UXU	SPI hash core CS fead/write
PHY Config	mby comfig	32	RW	0x04	0x00000000	CDI DIIV sattings
Register	phyconfig	32	KW	0X04	UXUUUUUUU	SPI PHY settings
RXTX FIFO	av.tv	2	RW	0x08	0x00000000	Reciever and Transmitter FIFO
Register	rxtx		KW	UXU8	0x0000000	full/empty status

Table 3 lists the configuration registers of the AXIL_QuadSPI.

CSRs Description

Control Stream Register: Control stream register is a single bit register at 0x0 address that sets control stream to write or read.

PHY Config Register: PHY configuration register is used to configure PHY for the type of transfers to make.

Bits	Description	Bitfield	Values	Configuration
Length	SPI transfer length (in bits) (1/2/4/8)	[7:0]	8	Send Command Configuration
Width	SPI transfer width (1/2/4/8)	[11:8]	1	Send Command Configuration
RESERVED	RESERVED	[15:12]	RESERVED	RESERVED
Mask	SPI DQ output enable mask (set bits to "1" to en- able output drivers on DQ lines)	[23:16]	11	Send Command Configuration
RESERVED	RESERVED	[31:24]	RESERVED	RESERVED

RXTX Fifo Register: RXTX Fifo Register updates status of TX/RX fifo empty or full.

Bits	Description		Values	Configuration
TX_ready	TX FIFO is not full	[0]	tx_data	Transmitting data
RX_Ready	RX FIFO is not empty	[1]	rx_data	Reading RX data

Example Design

Overview

Simulating the Example Design

The IP being Verilog HDL, can be simulated via a bunch of industry standard stimulus. The bundled example design is simulated via a LiteX based SoC design where the IP is simulated by driving it from within the generated LiteX SoC. We read and write from the SPI flash attached with the controller.

The figure shows the AXIL QuadSPI IP integrated in a SoC environment for verification.

Synthesis and PnR

Raptor Suite is armed with tools for Synthesis along with Post and Route capabilities and the generated post-synthesis and post-route and place netlists can be viewed and analyzed from within the Raptor. The generated bitstream can then be uploaded on an FPGA device to be utilized in hardware application

Revision History

Date	Version	Revisions
November	0.01	Initial version AXIL QUADSPI User Guide Document
26, 2023	0.01	ilitiai veision AAIL QUADSFI Osei Guide Document