Rank-264 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_0 X_1^2 = 0$$

(0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)The point rank of the equation over GF(8) is 599190

General information

Number of lines	5
Number of points	89
Number of singular points	0
Number of Eckardt points	2
Number of double points	0
Number of single points	39
Number of points off lines	48
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{5}
Type of lines on points	$3^2, 1^{39}, 0^{48}$

Singular Points

The surface has 0 singular points:

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \mathbf{Pl}(0, 0, 1, 0, 1, 0)_{96}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{769}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{138} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{1322}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{82} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{82} = \mathbf{Pl}(1, 1, 1, 0, 1, 1)_{1224}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{593} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{593} = \mathbf{Pl}(1, 1, 1, 1, 1, 0)_{306}$$

Rank of lines: (65, 4673, 138, 82, 593)

Rank of points on Klein quadric: (96, 769, 1322, 1224, 306)

Eckardt Points

The surface has 2 Eckardt points: $0: P_{138} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1),$ $1: P_{146} = \mathbf{P}(0,1,1,1) = \mathbf{P}(0,1,1,1).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 39 single points: The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0 20: $P_{173} = (4, 4, 1, 1)$ lies on line ℓ_2 1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1 21: $P_{177} = (0, 5, 1, 1)$ lies on line ℓ_1 2: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_2 22: $P_{182} = (5, 5, 1, 1)$ lies on line ℓ_2 $3: P_5 = (1, 1, 0, 0)$ lies on line ℓ_2 23: $P_{185} = (0, 6, 1, 1)$ lies on line ℓ_1 4: $P_{12} = (1, 0, 1, 0)$ lies on line ℓ_3 24: $P_{191} = (6, 6, 1, 1)$ lies on line ℓ_2 5: $P_{20} = (1, 1, 1, 0)$ lies on line ℓ_4 25: $P_{193} = (0, 7, 1, 1)$ lies on line ℓ_1 6: $P_{75} = (1,0,0,1)$ lies on line ℓ_4 26: $P_{200} = (7,7,1,1)$ lies on line ℓ_2 7: $P_{83} = (1, 1, 0, 1)$ lies on line ℓ_3 27: $P_{212} = (3, 1, 2, 1)$ lies on line ℓ_3 8: $P_{139} = (1,0,1,1)$ lies on line ℓ_0 28: $P_{220} = (3, 2, 2, 1)$ lies on line ℓ_4 29: $P_{275} = (2, 1, 3, 1)$ lies on line ℓ_3 9: $P_{140} = (2,0,1,1)$ lies on line ℓ_0 10: $P_{141} = (3, 0, 1, 1)$ lies on line ℓ_0 $30: P_{291} = (2,3,3,1)$ lies on line ℓ_4 11: $P_{142} = (4, 0, 1, 1)$ lies on line ℓ_0 $31: P_{342} = (5, 1, 4, 1)$ lies on line ℓ_3 12: $P_{143} = (5, 0, 1, 1)$ lies on line ℓ_0 $32: P_{366} = (5, 4, 4, 1)$ lies on line ℓ_4 13: $P_{144} = (6, 0, 1, 1)$ lies on line ℓ_0 33: $P_{405} = (4, 1, 5, 1)$ lies on line ℓ_3 14: $P_{145} = (7, 0, 1, 1)$ lies on line ℓ_0 $34: P_{437} = (4, 5, 5, 1)$ lies on line ℓ_4 15: $P_{153} = (0, 2, 1, 1)$ lies on line ℓ_1 $35: P_{472} = (7, 1, 6, 1)$ lies on line ℓ_3 16: $P_{155} = (2, 2, 1, 1)$ lies on line ℓ_2 $36: P_{512} = (7, 6, 6, 1)$ lies on line ℓ_4 17: $P_{161} = (0, 3, 1, 1)$ lies on line ℓ_1 $37: P_{535} = (6, 1, 7, 1)$ lies on line ℓ_3 18: $P_{164} = (3, 3, 1, 1)$ lies on line ℓ_2 $38: P_{583} = (6,7,7,1)$ lies on line ℓ_4 19: $P_{169} = (0, 4, 1, 1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 48 points not on any line: The points on the surface but not on lines are:

$0: P_{205} = (4, 0, 2, 1)$	$25: P_{404} = (3, 1, 5, 1)$
$1: P_{214} = (5, 1, 2, 1)$	$26: P_{412} = (3, 2, 5, 1)$
$2: P_{224} = (7, 2, 2, 1)$	$27: P_{415} = (6, 2, 5, 1)$
$3: P_{231} = (6, 3, 2, 1)$	$28: P_{431} = (6, 4, 5, 1)$
$4: P_{237} = (4, 4, 2, 1)$	$29: P_{435} = (2, 5, 5, 1)$
$5: P_{238} = (5, 4, 2, 1)$	$30: P_{451} = (2,7,5,1)$
$6: P_{247} = (6, 5, 2, 1)$	$31: P_{456} = (7,7,5,1)$
$7: P_{248} = (7, 5, 2, 1)$	$32: P_{459} = (2,0,6,1)$
$8: P_{269} = (4, 0, 3, 1)$	$33: P_{470} = (5, 1, 6, 1)$
$9: P_{279} = (6, 1, 3, 1)$	$34: P_{475} = (2, 2, 6, 1)$
$10: P_{286} = (5, 2, 3, 1)$	$35: P_{477} = (4, 2, 6, 1)$
$11: P_{296} = (7, 3, 3, 1)$	$36: P_{492} = (3, 4, 6, 1)$
$12: P_{301} = (4, 4, 3, 1)$	$37: P_{494} = (5, 4, 6, 1)$
13: $P_{304} = (7, 4, 3, 1)$	$38: P_{509} = (4, 6, 6, 1)$
14: $P_{326} = (5, 7, 3, 1)$	$39: P_{516} = (3,7,6,1)$
15: $P_{327} = (6, 7, 3, 1)$	$40: P_{523} = (2, 0, 7, 1)$
16: $P_{336} = (7, 0, 4, 1)$	$41: P_{532} = (3, 1, 7, 1)$
17: $P_{343} = (6, 1, 4, 1)$	$42: P_{539} = (2, 2, 7, 1)$
18: $P_{363} = (2, 4, 4, 1)$	$43: P_{540} = (3, 2, 7, 1)$
19: $P_{372} = (3, 5, 4, 1)$	$44: P_{549} = (4, 3, 7, 1)$
$20: P_{379} = (2, 6, 4, 1)$	$45: P_{550} = (5, 3, 7, 1)$
$21: P_{380} = (3, 6, 4, 1)$	$46: P_{574} = (5, 6, 7, 1)$
$22: P_{391} = (6, 7, 4, 1)$	$47: P_{581} = (4, 7, 7, 1)$
$23: P_{392} = (7, 7, 4, 1)$	001 (/ · / · / - /
$24: P_{400} = (7, 0, 5, 1)$	
+00 (*, *, *, */	

Line Intersection Graph

0	01100
1	10111
2	11000
3	01001
4	01010

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{138}	P_{138}

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_{138}	P_{138}	P_{146}	P_{146}

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1
in point	P_{138}	P_{138}

Line 3 intersects

Line	ℓ_1	ℓ_4
in point	P_{146}	P_{146}

Line 4 intersects

Line	ℓ_1	ℓ_3
in point	P_{146}	P_{146}

The surface has 89 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$30: P_{212} = (3, 1, 2, 1)$	$60: P_{404} = (3, 1, 5, 1)$
$1: P_1 = (0, 1, 0, 0)$	$31: P_{214} = (5, 1, 2, 1)$	$61: P_{405} = (4, 1, 5, 1)$
$2: P_4 = (1, 1, 1, 1)$	$32: P_{220} = (3, 2, 2, 1)$	$62: P_{412} = (3, 2, 5, 1)$
$3: P_5 = (1, 1, 0, 0)$	$33: P_{224} = (7, 2, 2, 1)$	63: $P_{415} = (6, 2, 5, 1)$
$4: P_{12} = (1,0,1,0)$	$34: P_{231} = (6,3,2,1)$	$64: P_{431} = (6, 4, 5, 1)$
$5: P_{20} = (1, 1, 1, 0)$	$35: P_{237} = (4, 4, 2, 1)$	$65: P_{435} = (2, 5, 5, 1)$
$6: P_{75} = (1, 0, 0, 1)$	$36: P_{238} = (5,4,2,1)$	$66: P_{437} = (4, 5, 5, 1)$
$7: P_{83} = (1, 1, 0, 1)$	$37: P_{247} = (6, 5, 2, 1)$	$67: P_{451} = (2,7,5,1)$
$8: P_{138} = (0,0,1,1)$	$38: P_{248} = (7, 5, 2, 1)$	$68: P_{456} = (7,7,5,1)$
$9: P_{139} = (1,0,1,1)$	$39: P_{269} = (4,0,3,1)$	$69: P_{459} = (2,0,6,1)$
$10: P_{140} = (2, 0, 1, 1)$	$40: P_{275} = (2, 1, 3, 1)$	$70: P_{470} = (5, 1, 6, 1)$
$11: P_{141} = (3,0,1,1)$	$41: P_{279} = (6, 1, 3, 1)$	$71: P_{472} = (7, 1, 6, 1)$
$12: P_{142} = (4,0,1,1)$	$42: P_{286} = (5, 2, 3, 1)$	$72: P_{475} = (2, 2, 6, 1)$
$13: P_{143} = (5,0,1,1)$	43: $P_{291} = (2,3,3,1)$	73: $P_{477} = (4, 2, 6, 1)$
$14: P_{144} = (6,0,1,1)$	$44: P_{296} = (7, 3, 3, 1)$	$74: P_{492} = (3, 4, 6, 1)$
15: $P_{145} = (7,0,1,1)$	$45: P_{301} = (4, 4, 3, 1)$	75: $P_{494} = (5, 4, 6, 1)$
16: $P_{146} = (0, 1, 1, 1)$	46: $P_{304} = (7, 4, 3, 1)$	76: $P_{509} = (4, 6, 6, 1)$
$17: P_{153} = (0, 2, 1, 1)$	$47: P_{326} = (5,7,3,1)$	77: $P_{512} = (7, 6, 6, 1)$
18: $P_{155} = (2, 2, 1, 1)$	$48: P_{327} = (6,7,3,1)$	$78: P_{516} = (3,7,6,1)$
$19: P_{161} = (0, 3, 1, 1)$	$49: P_{336} = (7, 0, 4, 1)$	79: $P_{523} = (2,0,7,1)$
$20: P_{164} = (3, 3, 1, 1)$	$50: P_{342} = (5, 1, 4, 1)$	$80: P_{532} = (3, 1, 7, 1)$
$21: P_{169} = (0, 4, 1, 1)$	$51: P_{343} = (6, 1, 4, 1)$	$81: P_{535} = (6, 1, 7, 1)$
$22: P_{173} = (4, 4, 1, 1)$	$52: P_{363} = (2, 4, 4, 1)$	$82: P_{539} = (2, 2, 7, 1)$
$23: P_{177} = (0, 5, 1, 1)$	$53: P_{366} = (5, 4, 4, 1)$	83: $P_{540} = (3, 2, 7, 1)$
$24: P_{182} = (5, 5, 1, 1)$	$54: P_{372} = (3, 5, 4, 1)$	$84: P_{549} = (4,3,7,1)$
$25: P_{185} = (0, 6, 1, 1)$	$55: P_{379} = (2, 6, 4, 1)$	$85: P_{550} = (5, 3, 7, 1)$
$26: P_{191} = (6, 6, 1, 1)$	$56: P_{380} = (3, 6, 4, 1)$	$86: P_{574} = (5, 6, 7, 1)$
$27: P_{193} = (0,7,1,1)$	$57: P_{391} = (6, 7, 4, 1)$	$87: P_{581} = (4,7,7,1)$
$28: P_{200} = (7,7,1,1)$	$58: P_{392} = (7, 7, 4, 1)$	$88: P_{583} = (6,7,7,1)$
$29: P_{205} = (4, 0, 2, 1)$	$59: P_{400} = (7, 0, 5, 1)$	