Esercizio 1

Dijkstra: Algoritmo link state!

Si consideri la seguente rete con i relativi costi di attraversamento dei link mostrati in figura.

Utilizzando l'algoritmo di Dijkstra, trovare il cammino di costo minimo dal nodo sorgente u verso tutte le altre destinazioni.

Specificare la tabella di next hop per il nodo.

I passi dell'algoritmo sono mostrati nella Tabella, le cui righe forniscono i valori delle variabili dell'algoritmo al termine dell'iterazione.

Passo	N'	D(v), p(v)	D(w),p(w)	D(x),p(x)	D(y), p(y)	D(z), p(z)
0	u	1, u	4, u	5, u	∞	∞
1	uv		4, u	3, v	∞	∞
2	uvx		4, u		5, x	∞
3	uvxw				5, x	5, w
4	uvxwy					5, w
5	uvxwyz				·	

Percorso a costo minimo e tabella di inoltro per il nodo u.

Destinazione	Link			
V	(u, v)			
W	(u, w)			
Х	(u,v)			
У	(u,v)			
Z	(u, w)			
NextH	Hop 🤳			

Esercizio 2

Dinstance Vector!

Si consideri la seguente rete con i relativi costi di attraversamento dei link mostrati in figura.

Quando l'algoritmo converge, quali sono i vettori di distanza dal router V a tutti i router? Quali sono i vettori di distanza iniziale per il router U?

Scrivere la risposta come (u,v,w,x,y)

$$(U, V, W, X, Y)$$

 $(0, 4, \infty, \infty, \infty)$

É sufficiente guardare lo schema é copiare i pesi. N.B. Sono <u>sconosciuti</u> se non diretti (poiché ogni router inizialmente conosce solo le informazioni sulla propria rete diretta e non sa cosa accade oltre i router adiacenti)

$$(U,V,W,X,Y) \ (4,0,6,7,11)$$

É sufficiente guardare lo schema ed andare ad intuito!

Tenendo però a mente che nella realtà il funzionamento dell'algoritmo é il seguente:

- tutti i nodi ricevono simultaneamente i vettori delle distanze dai propri vicini,
- · calcolano i rispettivi nuovi vettori e
- $\circ~$ informano i vicini degli eventuali cambiamenti.
- Questo processo iterativo di aggiornamento delle tabelle di Routing continua finché tutte le tabelle di Routing convergono e i router raggiungono un accordo sul quale sia il percorso migliore