Réduction Recherche-Décision LWE

On rappelle la définition de la distribution LWE : $D_{n,q,\alpha}^{LWE}(\mathbf{s})$ est la distribution discrète sur \mathbb{Z}_q^{n+1} obtenue par :

- 1. $\mathbf{a} \leftarrow U(\mathbb{Z}_q^n)$
- 2. $e \leftarrow D_{\mathbb{Z}^{\ell},\alpha}$, ie e est un vecteur court dans \mathbb{Z}^{ℓ} .
- 3. Renvoyer $(\mathbf{a}, (\mathbf{a} \cdot \mathbf{s}) + e \mod q)$

On rappelle que le problème de **recherche** est de trouver s à partir de tirages LWE, et que le problème de **décision** est de distinguer entre des tirages LWE et $U(\mathbb{Z}_q^n \times \mathbb{Z}_q)$ avec probabilité 1/2+constante (disons 3/4).

Nous allons montrer:

Lemma 1. Lorsque q est polynomial en n, Recherche-LWE et Décision-LWE sont équivalents en termes de complexité computationnelle.

Question 1. Montrer la réduction de Décision à Recherche : étant donné un algorithme A qui résout le problème de Recherche, en déduire un algorithme pour résoudre le problème de Décision.

Question 2. Montrer que si l'on a un algorithme pour Décision-LWE qui fonctionne sur une entrée s uniformément aléatoire (ce qui est l'hypothèse de départ), on peut contruire un algorithme fonctionnant sur une entrée s quelconque fixée.

Question 3. Montrer que si l'on a un algorithme pour Décision-LWE, on peut construire un algorithme qui teste si $s_0 = k$ pour un $k \in \mathbb{Z}_q$ donné, où s_0 est la première coordonnée de s. En déduire que Recherche-LWE peut être réduit à Décision-LWE.

Chiffrement de Regev

On rappelle la définition du chiffrement de Regev.

LWE PKE

KeyGen:

- $\bullet\,$ Clé privée : $\mathbf{s} \in \mathbb{Z}_q^n$ aléatoire
- Clé publique : $(\mathbf{A}, \mathbf{b} := \mathbf{A}\mathbf{s} + e)$ où \mathbf{A} est une matrice aléatoire $\mathbf{A} \in \mathbb{Z}_q^{\ell \times n}$, et $\mathbf{e} \in \mathbb{Z}_q^{\ell}$ est échantillonné en utilisant la distribution d'erreurs "petites" (i.e., Gaussienne discrète)

Enc $m \in \{0, 1\}$:

- Choisir un vecteur aléatoire $\mathbf{r} \in \{0, 1\}^{\ell}$
- Retourner $\mathbf{c_1}, c_2 := \mathbf{rA}, (\mathsf{Decompress}(m) + \mathbf{r} \cdot \mathbf{b})$

Dec $c = (\mathbf{c_1}, c_2) \in \mathbb{Z}_q^{n+1}$:

• $m = \mathsf{Compress}(c_2 - \mathbf{c_1} \cdot \mathbf{s})$

Question 4. Montrer que le chiffrement de Regev est additivement homomorph.

Question 5. En déduire qu'il n'est pas IND-CCA.