Министр науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

Лабораторная работа № 4

По дисциплине «Прикладная математика» 4 семестр

Выполнили: Шуляк Геогрий Владимирович M32031

Климачёва Екатерина Николаевна М32041

Проверила: Гомозова Валерия Эдуардовна

Собственный вектор матрицы A - ненулевой вектор X, который при умножении на некоторую квадратную матрицу A превращается в самого же себя с числовым коэффициентом λ :

$$AX = \lambda X$$

Собственное значение (число) матрицы - число λ.

Метод вращений Якоби:

Пусть A — симметричная матрица, а G — матрица вращения.

$$A' = G^{\mathrm{T}} A G$$

Диагональные элементы матрицы *A*' будут искомыми собственными значениями матрицы A. Столбцы матрицы G — столбцами координат собственных векторов, соответствующих этим собственным значениям.

Для получения данного равенства необходимо последовательно применить несколько раз матрицу вращения Якоби к матрице А.

$$A_{k+1} = G_{ij}^{T} * A_{k} * G_{ij}, k = 0, 1, 2,...$$

А матрица вращения будет иметь вид:

$$\begin{pmatrix} 1, \dots, 0 \\ 0, c, \dots, -s, 0 \\ \dots \\ 0, s, \dots, c, 0 \\ 0, \dots, 1 \end{pmatrix}$$

 G_{ij} получается из единичной матрицы путем замены двух единиц и двух нулей на пересечениях і и ј строк и столбцов числами c и \pm s такими, что $c^2+s^2=1$. Это условие позволяет интерпретировать числа c и s как косинус и синус некоторого угла ϕ . Следовательно, умножение матрицы G_{ij} на любой n-мерный вектор будет соотвествовать преобразованию его вращения на угол ϕ .

Найдем $c=cos(\phi)$, $s=sin(\phi)$, $\phi=\frac{1}{2}arctg(2*\frac{a_{ij}}{a_{ii}-a_{jj}})$, при этом a_{ij} - наибольший по модулю элемент в строке.

Таким образом получаем новую матрицу вращения и умножаем исходную матрицу на нее и на транспонированную матрицу вращения.

Данный метод применяем до тех пор, пока матрица A не станет близка к диагональной матрице (норма наддиагональной части матрицы не будет меньше определенного заданного значения ξ).

Протестируем метод вращений Якоби на конкретных матрицах:

Матрица с диагональным преобладанием:

```
\xi = 0,001
```

```
Matrix: [[ 4. -1. -1.]
  [-1. 4. -1.]
  [-1. -1. 4.]]

Eigenvalues: [1.90734863e-06 3.00000000e+00 5.00000000e+00]

Eigenvectors: [[ 6.90533966e-04 0.00000000e+00 0.00000000e+00]
  [ 0.00000000e+00 7.07106781e-01 -7.07106781e-01]
  [ 0.00000000e+00 7.07106781e-01 7.07106781e-01]]
```

$\xi = 0,01$

+-		+		+-		+		+
1	Size	1	Epsilon	Ī	cond(A)	1	Iterations	1
+-		+		+		+		+
1	10	1	0.01	Ī	20.15564437074637	1	25	T
1	20	1	0.01	1	51.586403487676726	1	36	1
1	30	1	0.01	1	90.91816804825096	1	47	1
1	40	1	0.01	1	136.8250285414704	1	57	1
1	50	1	0.01	1	188.48361330685168	1	67	1
1	60	1	0.01	1	245.31828589483817	1	78	1
1	70	1	0.01	1	306.89746372483745	1	88	T
1	80	1	0.01	1	372.88208189162447	1	98	1
1	90	1	0.01	I	442.99666145523486	1	108	Ι
1	100	Ī	0.01	Ī	517.0116420955042	Ī	118	T
+-		-+		+-		+		+

```
\xi = 0,001
```

```
| Size | Epsilon | cond(A) | Iterations
 20 | 0.001 | 51.586403487676726 |
                                     43
  30 | 0.001 | 90.91816804825096 |
                                     53
  40 | 0.001
              136.8250285414704
                                     64
  50 | 0.001 | 188.48361330685168 |
                                     74
  60 | 0.001 | 245.31828589483817 |
                                     84
  70 | 0.001
              306.89746372483745
                                     95
  80 | 0.001 | 372.88208189162447 | 105
  90 | 0.001 | 442.99666145523486 |
                                    115
 100 | 0.001 | 517.0116420955042 |
                                    125
```

Матрица Гильберта:

 $\xi = 0,001$

```
Matrix: [[1. 0.5 0.33333333]

[0.5 0.33333333 0.25 ]

[0.33333333 0.25 0.2 ]]

Eigenvalues: [1.90734863e-06 5.25402912e-01 7.93042173e-03]

Eigenvectors: [[ 0.00138107 0. 0. ]

[ 0. 0.79298886 -0.60923614]

[ 0. 0.60923614 0.79298886]]
```

+		-+-		-+-		-+-		+
1	Size	1	Epsilon	1	cond(A)	1	Iterations	1
+		+-		+-		+		+
1	20	1	0.01	1	1.170913765268278e+18	1	74	Τ
1	30	1	0.01	1	1.316969952979166e+19	1	124	1
1	40	1	0.01	1	6.434367457546699e+18	1	175	Τ
1	50	1	0.01	1	1.0418435581978278e+19	1	226	Τ
1	60	1	0.01	1	7.785920985017282e+19	1	282	Τ
1	70	1	0.01	1	1.4964966314922342e+19	1	351	1
1	80	1	0.01	1	4.2403738460402115e+19	1	451	Τ
1	90	Ī	0.01	Ī	2.983371388654318e+19	Ī	595	Τ
1	100	Ī	0.01	Ī	9.950191314880295e+18	Ī	668	1
+		-+-		-+-		+		+

 $\xi = 0,001$

+		-+-		+		+		-+
1	Size	1	Epsilon	Ī	cond(A)	Ī	Iterations	1
+		-+		+		+		-+
1	20	1	0.001	1	1.170913765268278e+18	Ī	126	1
1	30	1	0.001	1	1.316969952979166e+19	1	198	1
1	40	1	0.001	1	6.434367457546699e+18	1	291	\mathbf{I}
1	50	1	0.001	1	1.0418435581978278e+19	1	367	\mathbf{I}
1	60	1	0.001	1	7.785920985017282e+19	1	465	\mathbf{I}
1	70	1	0.001	1	1.4964966314922342e+19	1	559	\mathbf{I}
1	80	1	0.001	1	4.2403738460402115e+19	1	660	\mathbf{I}
1	90	1	0.001	1	2.983371388654318e+19	1	762	1
1	100	1	0.001	1	9.950191314880295e+18	1	836	1
+		-+		+		+		-+

Выводы:

Таким образом, мы реализовали метод вращений Якоби, а также исследовали результаты его работы на различных матрицах, провели исследования для разных точностей. Данный метод при небольших размерах матриц дает неплохие результаты, и позволяет с большой точностью вычислять собственные пары. При больших размерах матриц вычисления производятся долго из-за необходимости поиска максимального элемента матрицы и перемножения матриц большой размерности.