

Graphen 3: Maximum Flow, Bipartite Matching

Ford-Fulkerson, Edmond-Karp, Max Flow, Min Cut, MCBM, Bipartite Graphen, Vertex Cover, Knig Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre $??? \mid$ 4. Juni 2019

Gliederung

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Bipartite Graphen

- Matchings
- MCBM mit Max-Flow
- Augmenting Paths

Testing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Block 1

- Bullet This is some test
- Bullet WOs das???????????

Testing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Block 1

- Bullet This is some test
- Bullet WOs das????????????

Bipartite Graphen

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Bipartite Graphen

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Bipartite Graphen

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Matchings Peter Koepernik, Robert

Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Definition

Sei $G = (V, E), E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph.

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in \mathit{M} : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in \mathit{M} : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\} \text{ heißt inklusionsmaximal}$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in \mathit{M} : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\}\ \text{heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} := \{M \subseteq E \mid M \text{ ist Matching}\} \text{ heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $\mathit{M} \in \mathcal{M}$ heißt kardinalitätsmaximal

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\}\ \text{heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $M \in \mathcal{M}$ heißt **kardinalitätsmaximal**, falls

$$\forall M' \in \mathcal{M} : |M| \ge |M'|$$

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Matchings

Definition

Sei G = (V, E), $E \subseteq \{\{u, v\} \mid u, v \in V\}$ ein ungerichteter Graph. Eine Menge von Kanten $M \subseteq E$ heißt **Matching**, falls

$$\forall e_1, e_2 \in M : e_1 \neq e_2 \Rightarrow e_1 \cap e_2 = \varnothing.$$

 $M \in \mathcal{M} \coloneqq \{M \subseteq E \mid M \text{ ist Matching}\}\ \text{heißt inklusionsmaximal}, falls$

$$\forall M' \in \mathcal{M} : M \subseteq M' \Rightarrow M = M'.$$

 $M \in \mathcal{M}$ heißt **kardinalitätsmaximal**, falls

$$\forall M' \in \mathcal{M} : |M| \ge |M'|$$

Für G bipartit: "Maximum Cardinality Bipartite Matching", kurz MCBM.

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Kein Matching

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Kein Matching

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Matching, aber weder inklusions- noch kardinalitätsmaximal

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Inklusions-, aber nicht kardinalitäsmaximales Matching

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Matchings

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Kardinalitätsmaximales Matching

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Definition

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit Max-Flow

Augmenting Paths

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Grapher

Matchings

Max-Flow

Augmenting Paths

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Complete Prime Pairing

Jean-Fielle !!!

Bipartite Grapher

Matchings

MCBM mi

Augmenting Paths

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

Gegeben eine Liste N von natürlichen Zahlen und $a, b \in N$ ($a \neq b$), existiert ein Complete Prime Pairing von N, in dem a und b gepaart werden?

■ Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus.

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Grapher

Matchings

MCBM mi

Augmenting Paths

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f \colon A \to A$, sodass $\forall a \in A \colon a + f(a) \in \mathbb{P}$.

Problem

Gegeben eine Liste N von natürlichen Zahlen und $a, b \in N$ ($a \neq b$), existiert ein Complete Prime Pairing von N, in dem a und b gepaart werden?

■ Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Grapher

Matchings

MCBM mi Max-Flow

Augmenting Paths

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

- Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.
- Setze $V_1 := \{v \in N \mid v \text{ gerade}\}, V_2 := N \setminus V_1$.

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Grapher

Matchings

MCBM mi

Augmenting Paths

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

- Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.
- Setze $V_1 := \{v \in N \mid v \text{ gerade}\}, V_2 := N \setminus V_1$.
- Setze V := N und $E := \{\{a, b\} \mid a, b \in N \text{ und } a + b \in \mathbb{P}\}$. Dann ist G := (V, E) bipartit.

Complete Prime Pairing

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Grapher

Matchings

MCBM mi

Augmenting Paths

Definition

Ein **Complete Prime Pairing** einer Menge $\emptyset \neq A \subseteq \mathbb{N}$ ist eine selbstinverse, fixpunktfreie Abbildung $f: A \to A$, sodass $\forall a \in A: a + f(a) \in \mathbb{P}$.

Problem

- Falls $a + b \notin \mathbb{P}$, gebe "Nein" aus. Ansonsten entferne a, b aus N.
- Setze $V_1 := \{v \in N \mid v \text{ gerade}\}, V_2 := N \setminus V_1$.
- Setze V := N und $E := \{\{a, b\} \mid a, b \in N \text{ und } a + b \in \mathbb{P}\}$. Dann ist G := (V, E) bipartit.
- Berechne ein MCBM M von G und gebe "Ja" aus, falls $|M| = |V_1| = |V_2|$.

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

MCBM mit Max-Flow

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit Max-Flow

Augmenting Paths

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M)

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

• $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

• $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)

$$\forall i \in \{1,...,n-1\} : \{v_i,v_i+1\} \in \begin{cases} E \setminus M, & i \text{ ungerade,} \\ M, & i \text{ gerade.} \end{cases}$$

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Augmenting Paths

Sei G = (V, E), $V = V_1 \dot{\cup} V_2$ bipartit und $M \subseteq E$ ein Matching. Ein Pfad $(v_1, ..., v_n)$ in G heißt **Augmenting Path** (in G bzgl. M), falls

- $v_1 \in V_1 \setminus \bigcup M$ (freier Knoten links)
- $\forall i \in \{1,...,n-1\} : \{v_i,v_i+1\} \in \begin{cases} E \setminus M, & i \text{ ungerade,} \\ M, & i \text{ gerade.} \end{cases}$
- $v_n \in V_2 \setminus \bigcup M$ (freier Knoten rechts)

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Lemma von Claude Berge

Matchings

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching.

MCBM mit

Max-Flow

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit Max-Flow

Augmenting Paths

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit Max-Flow

Augmenting Paths

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

Beweisidee

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

Max-Flow

Augmenting Paths

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

Beweisidee

Ist M ein Matching und $(v_1, ..., v_n)$ ein Augmenting Path

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

Max-Flow

Augmenting Paths

Lemma von Claude Berge

Sei G = (V, E) bipartit und $M \subseteq E$ ein Matching. Dann ist M kardinalitätsmaximal, genau dann wenn kein Augmenting Path in G bzgl. M existiert.

Beweisidee

Ist M ein Matching und $(v_1, ..., v_n)$ ein Augmenting Path, so ist

$$M' := M \setminus P \cup P \setminus M$$
, wobei $P := \{\{v_i, v_{i+1}\} \mid i \in \{1, ..., n-1\}\}$

(flippe die Kanten entlang des Pfades) ein Matching mit |M'| = |M| + 1.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

(1) Initialisiere $M := \emptyset$.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

Augmenting Paths

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche (greedy) einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM m

Max-Flow

Augmenting Paths

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche (greedy) einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.
- (3) Flippe die Kanten entlang des gefundenen Pfades. Gehe zu (2).

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Grapher

Matchings

MCBM m

Max-Flow

Augmenting Paths

Augmenting Path Algorithmus

Gegeben: bipartiter Graph G = (V, E).

- (1) Initialisiere $M := \emptyset$.
- (2) Suche (greedy) einen Augmenting Path. Gebe *M* aus, falls keinen gefunden.
- (3) Flippe die Kanten entlang des gefundenen Pfades. Gehe zu (2).

Findet MCBM in Laufzeit $O(|V| \cdot |E|)$.

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

MCBM mit Augmenting Paths

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???

Bipartite Graphen

Matchings

MCBM mit

Max-Flow

References I

Peter Koepernik, Robert Brede, Serge Thilges, Jean-Pierre ???