Chapter 7 Polynomial Regression

Motivation

- Linear regression can't fit all kind of data
- Sometimes the pattern between variables can only be described with polynomial equations

Motivation

Polynomial Regression - Single Variable

p is the degree of the polynomial

X	у		X	x ²	 X ^p	у
x_{1}	y_1		x_{1}	x_{1}^{2}	 x_1^p	y_1
x_2	y_2		x_2	x_{2}^{2}	 x_2^p	y_2
					 	
x_{i}	\mathcal{Y}_{i}		X_{i}	x_i^2	 x_i^p	y_{i}
\mathcal{X}_{n}	\mathcal{Y}_n		\mathcal{X}_{n}	x_n^2	 X_n^{p}	y_n

$$\hat{y} = w^{(0)} + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p =$$

$$= w^{(0)}x^0 + w^{(1)}x + w^{(2)}x^2 + \dots + w^{(p)}x^p$$

$$= \sum_{j=0}^p w^{(j)}x^p$$

 We introduce new predictor features for each polynomial component and use linear regression on the extended data

Polynomial Regression - Single Variable

Slightly different training samples can cause very different learned parameters

Regularization methods

Regularization methods help reduce variance (sensitivity to training samples) by introducing cost function on the learned weights. This is very useful when we have many variables and we are not sure if we need all of them.

Ridge regression

$$argmin_{\hat{eta}_0,\dots,\hat{eta}_p} \left\{ \sum_{i=1}^n \left[y_i - \left(\underbrace{\hat{eta}_0 + \sum_{j=1}^p \hat{eta}_j imes x_{ij}}_{\hat{y}_i}
ight)
ight]^2 + \lambda imes \sum_{j=1}^p \hat{eta}_j^2
ight\}$$

- Deals better with correlated attributes than ordinary least squares regression
- L2 regularization

Lasso regression

$$argmin_{\hat{eta}_0,\ldots,\hat{eta}_p} \left\{ \sum_{i=1}^n \left[y_i - \left(\underbrace{\hat{eta}_0 + \sum_{j=1}^p \hat{eta}_j imes x_{ij}}_{\hat{y}_i}
ight)
ight]^2 + \lambda imes \sum_{j=1}^p \hat{eta}_j^2
ight\} \qquad \qquad argmin_{\hat{eta}_0,\ldots,\hat{eta}_p} \left\{ \sum_{i=1}^n \left[y_i - \left(\underbrace{\hat{eta}_0 + \sum_{j=1}^p \hat{eta}_j imes x_{ij}}_{\hat{y}_i}
ight)
ight]^2 + \lambda imes \sum_{j=1}^p |\hat{eta}_j|
ight\}$$

- Deals better with correlated attributes than ridge regression
- produces simpler models than ordinary least squares or ridge regression
- Automatically discounts irrelevant attributes
- L1 regularization

Polynomial Regression - Multiple Variables

$$\hat{y} = w^{(0)} + w^{(1,1)}x^{(1)} + w^{(1,2)}x^{(2)} + \dots + + w^{(2,1)}(x^{(1)})^2 + w^{(2,2)}(x^{(2)})^2 + w^{(2,3)}(x^{(1)}x^{(2)})$$

x ⁽¹⁾	X ⁽²⁾	 X ^(m)	у	
$x_1^{(1)}$	$x_1^{(2)}$	 <i>x</i> ₁ ^(m)	y_1	
$x_2^{(1)}$	$x_{2}^{(2)}$	 $x_{2}^{(m)}$	y_2	
$x_i^{(1)}$	$x_i^{(2)}$	 $x_i^{(m)}$	y_{i}	
$x_n^{(1)}$	$x_n^{(2)}$	 $\chi_n^{(m)}$	\mathcal{Y}_n	

X ⁽⁰⁾	X ⁽¹⁾	X ⁽²⁾	 X ^(m)	$(X^{(1)})^2$	$(x^{(2)})^2$	x ⁽¹⁾ x ⁽²⁾	 у
1	$x_I^{(1)}$	$x_I^{(2)}$	 $\chi_I^{(m)}$	$(x_I^{(1)})^2$	$(x_I^{(2)})^2$	$x_{I}^{(1)}x_{I}^{(2)}$	
1	$x_{2}^{(1)}$	$x_{2}^{(2)}$	 $x_2^{(m)}$	$(x_2^{(1)})^2$	$(x_2^{(2)})^2$	$x_2^{(1)}x_2^{(2)}$	
1	$x_i^{(1)}$	$x_i^{(2)}$	 $\chi_i^{\mathrm{(m)}}$	$(x_i^{(1)})^2$	$(x_i^{(2)})^2$	$x_i^{(1)} x_i^{(2)}$	 y_{i}
1	$x_n^{(1)}$	$x_n^{(2)}$	 $\chi_n^{(m)}$	$(x_n^{(1)})^2$	$(x_n^{(2)})^2$	$x_n^{(1)}x_n^{(2)}$	\mathcal{Y}_n

Literature

- https://towardsdatascience.com/polynomial-regression-bbe8b9d97491
- Polynomial features explained https://datascience.stackexchange.com/a/71942/53849
- http://biointelligence.hu/pdf/02-from-linear-regression-to-deep-learning.pdf (Special thanks to Krisztian Buza for allowing me to use materials from this presentation)

Questions?

