12. \star Se define la distancia entre dos secuencias de naturales $X = x_1, \ldots, x_k$ e $Y = y_1, \ldots, y_k$ como $d(X,Y) = \sum_{i=1}^k |x_i - y_i|$. Dado un conjunto de secuencias X_1, \ldots, X_n , cada una de tamaño k, su grafo asociado G tiene un vértice v_i por cada $1 \leq i \leq n$ y una arista $v_i v_j$ de peso $d(X_i, X_j)$ para cada $1 \leq i < j \leq n$. Proponer un algoritmo de complejidad $O(kn^2)$ que dado un conjunto de secuencias encuentre el árbol generador mínimo de su grafo asociado.

Precondición: $|X_i| = k$, X será mi lista donde X[i] es X_i

$$d(X,Y)) = \sum_{i=1}^k |x_i - y_i| \ {\rm con} \ X = \{x_1...x_k\}, Y = \{y_1...y_k\}$$

Y sea $c: E(G) \to \mathbb{R}$ una función de costo de cada arista (la que usa prim/kruskal)

Algoritmo

```
Algoritmo(X,n,k):
    //Grafo vacio
    G <- lista de adyacencias de tamaño n (n nodos sin aristas)

//Armado del grafo
Para cada i en 1...n:
    Para cada j en (i+1)...n:
        G[i].agregar(j)
        G[j].agregar(i)
        c(i,j) <- d(X[i],X[j])

//Generación del AGM
return Prim(G)</pre>
```

Justificación de complejidad

El armado del grafo vacio es generar una lista de n listas vacias, es O(n)

Luego tenemos que agregar una arista a una lista de adyacencia es O(1)

Calcular d(X,Y) es sumar cada x_i,y_i,k veces, esto es O(k), y está dentro de 2 loops anidados, más abajo probarmos que la complejidad total de este loop es $O(kn^2)$.

Finalmente, sabemos que Prim devuelve un AGM asociado a un grafo G, y Prim es $O(m+n\log n)$ (nótese que acá $m\approx n^2$ por lo que Prim es la mejor opción, aunque no va al caso)

Entonces nos queda $O(n + kn^2 + m + n \log n) \in O(kn^2)$

Complejidad de la construcción del grafo:

$$\begin{split} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} O(k) + O(1) + O(1) &= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} O(k) = O(k) \times \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 = \\ O(k) \times \sum_{i=1}^{n-1} n - i = O(k) \times \left(\sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i \right) = O(k) \times \left(n \sum_{i=1}^{n-1} 1 - \sum_{i=1}^{n-1} i \right) = \\ O(k) \times \left(n(n-1) - \sum_{i=1}^{n-1} i \right) = O(k) \times \left(n(n-1) - \frac{n(n-1)}{2} \right) = \\ O(k) \times \left(\frac{n(n-1)}{2} \right) = O(k) \times \frac{n^2 - n}{2} \in O(k.n^2) \end{split}$$