ECE355 Signals and Systems

Homework #4 Due day: 04/26/2024

1. Using the definition, find the Fourier transforms of the signals f(t) shown in figure 5-1. (FT definition: $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$)

Figure 5-1

2. Using the definition, find the Inverse Fourier transforms of the spectra $F(\omega) \text{shown in figure 5-2.} \quad \text{(Inverse FT definition: } f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega \text{)}$

Figure 5-2

3. Find FT of following signals (Recommend using the FT table):

(1).
$$f(t) = \sin(3\pi t)\cos(10\pi t)$$

(2).
$$f(t) = e^{-2(t-2)}u(t-2)$$

(3).
$$f(t) = 10e^{-5t}u(t) + 8(t-1)e^{-3(t-1)}u(t-1)$$

4. The Fourier transform of the triangular signal f(t) shown in the figure 5-3(a) is:

$$F(\omega) = \frac{1}{\omega^2} (e^{j\omega} - j\omega e^{j\omega} - 1)$$

Using the time-shifting and time-scaling properties, find the Fourier transforms of the signals $f_1(t)$ and $f_2(t)$, which are shown in the figure 5-3 (b) and (c), respectively.

Figure 5-3

5. Please find FT $F(\omega)$ of following functions.

(1)
$$f(t) = e^{-5t}u(t) * e^{-3t}u(t)$$

(2)
$$f(t) = e^{5t}u(-t) * e^{-3t}u(t)$$

(3)
$$f(t) = \sin(3\pi t) * \delta(t-2)$$

6. For an LTIC system with transfer function:

$$H(\omega) = \frac{5}{(j\omega+1)(j\omega+3)}$$

Find the (zero-state) response y(t), if the input f(t) is:

(a).
$$2e^{-2t}u(t)$$

(b).
$$e^{t}u(-t)$$