

Lista 3

Introdução à Álgebra Linear - Turma DD (2/2019)Professor: Matheus Bernardini

- 1. Mostre que os seguintes subconjuntos de \mathbb{R}^4 são subespaços de \mathbb{R}^4 :
 - a) $\mathcal{U} = \{(x, y, z, t) : x + y = 0 \text{ e } z t = 0\}$
 - b) $W = \{(x, y, z, t) : 2x + y t = 0 \text{ e } z = 0\}$
- 2. Determine $\mathcal{U} \cap \mathcal{W}$ e $\mathcal{U} + \mathcal{W}$, em que \mathcal{U} e \mathcal{W} são os subespaços da questão anterior.
- 3. Seja $\mathcal{V} = \mathbb{R}^2$ e considere a seguinte adição de elementos de \mathcal{V} e multiplicação por escalar: dados $u = (u_1, u_2)$ e $v = (v_1, v_2)$, tem-se $u \oplus v = (u_1 + v_1 + 2019; u_2 + v_2)$ e $k \odot u = (ku_1, ku_2)$. Mostre que \mathcal{V} munido dessas operações não é um espaço vetorial sobre \mathbb{R} .
- 4. Considere o espaço vetorial $M_{2\times 2}(\mathbb{R})$ formado por todas a matrizes 2×2 com entradas reais. Verifique se $S = \{A \in M_{2\times 2}(\mathbb{R}) : \det A \neq 0\}$ é subespaço de $M_{2\times 2}$.
- 5. O espaço nulo, ou kernel, de uma matriz $A \in M_{n \times n}(\mathbb{R})$ é o conjunto $\ker(A)$ de todos os vetores $X \in M_{n \times 1}(\mathbb{R})$ tal que AX = 0. Mostre que o espaço nulo é um subespaço de \mathbb{R}^n .
- 6. Sejam $A \in M_{m \times n}(\mathbb{R})$ e $B \in M_{m \times n}(\mathbb{R})$ um vetor não nulo. Explique o motivo pelo qual o conjunto de todos os vetores $X \in M_{n \times 1}(\mathbb{R})$ tais que AX = B não é um subespaço de \mathbb{R}^n .
- 7. Sejam \mathcal{U} e \mathcal{W} subsepaços de \mathcal{V} . Mostre que $\mathcal{U} + \mathcal{W} := \{u + v : u \in \mathcal{U} \text{ e } w \in \mathcal{W}\}$ é um subespaço de \mathcal{V} .
- 8. Verifique se $\mathcal{V} = \mathcal{U} \oplus \mathcal{W}$ em cada caso abaixo:
 - a) $\mathcal{V} = \mathbb{R}^3, \mathcal{U} = \text{plano } xy, \mathcal{W} = \text{eixo } z.$
 - b) $\mathcal{V} = M_n(\mathbb{R}), \mathcal{U} = \text{matrizes triangulares superiores}, \mathcal{W} = \text{matrizes triangulares inferiores}.$
- 9. Sejam $\vec{u} = (a, b)$ e $\vec{v} = (c, d)$. Sob quais condições todo $(x, y) \in \mathbb{R}^2$ pode ser escrito como combinação linear de \vec{u} e \vec{v} ?
- 10. Mostre que os quatro primeiros polinômios de Laguerre, dados por $1, 1-t, 2-4t+t^2$ e $6-18t+9t^2-t^3$, formam uma base de $\mathcal{P}_3(\mathbb{R})$.

Gabarito (com possíveis erros)

- 1. Verificação dos três itens sobre subespaços vetoriais.
- 2. $\mathcal{U} \cap \mathcal{W} = \{(0,0,0,0)\}; \mathcal{U} + \mathcal{V} = \{(x_1 + x_2, y_2 x_1, z_1, z_1 + 2x_2 + y_2) : x_1, x_2, y_2, z_1 \in \mathbb{R}\}$
- 3. A adição de vetores é um elemento do conjunto?
- 4. A matriz nula está no conjunto?
- 5. Verificação dos três itens sobre subespaços vetoriais.
- 6. O elemento neutro é solução do sistema?
- 7. Verificação dos três itens sobre subespaços vetoriais.
- 8. a) É soma direta.
 - b) É soma direta.
- 9. $ad bc \neq 0$
- 10. Mostrar que o conjunto formado pelos polinômios em questão gera $\mathcal{P}_3(\mathbb{R})$ e é um conjunto LI.