Remark and Solutions

Sheet 4

Problem 22

In the following k denotes an algebraically closed field. We start by doing all the preparation to effectively solve the exercise:

Preparation

Definition 1. A flag in a vector space V is an increasing sequence of linear subspaces

$$0 = F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_n = V.$$

This flag is *complete* if it has maximal length, i.e. if V is finite dimensional and dim $F_i = i$ for every i = 0, ..., n.

Recall 2. If A is a k-algebra and $a \in A^{\times}$ is a unit then the conjugation map $x \mapsto axa^{-1}$ is an algebra automorphism of A and hence also a Lie algebra automorphism.

Recall 3. If V is a representation of a Lie algebra \mathfrak{h} and $F = (F_i)_{i=0}^n$ is a flag of V then \mathfrak{h} stabilizes F if $\mathfrak{h}.F_i \subseteq F_i$ for every $i = 0, \ldots, n$, i.e. if F consists of subrepresentations. If V is a finite dimensional vector space then the following conditions on a Lie subalgebra \mathfrak{h} of $\mathfrak{gl}(V)$ are equivalent:

- (1) h is solvable.
- (2) \mathfrak{h} stabilizes a complete flag of V.
- (3) There exists a basis of $\mathfrak h$ with respect to which $\mathfrak h$ is represented by upper triangular matrices.

For a Lie subalgebra \mathfrak{h} of $\mathfrak{gl}_n(k)$ the following conditions are equivalent:

- (1) h is solvable.
- (2) \mathfrak{h} stabilizes a complete flag of k^n .
- (3) There exists some $g \in GL_n(k)$ such that ghg^{-1} consists of upper triangular matrices.

^{*}Available online at https://github.com/cionx/representation-theory-1-tutorial-ss-19.

(That k is algebraically closed is used to go from the solvability of \mathfrak{h} to the other two conditions, which are equivalent over any field, and which conversely imply the solvability of \mathfrak{h} over any field.)

We denote by \mathcal{F} the set of all complete flags in k^n and by

$$S := (0, \langle e_1 \rangle, \langle e_1, e_2 \rangle, \dots, \langle e_1, \dots, e_n \rangle = k^n)$$

the standard flag of k^n .

Recall 4. Let G be a group acting on a set X, i.e. let X be a G-set. The orbit of an element $x \in X$ is the set $G.x = \{g.x \mid g \in G\}$. The action of G on X is transitive if the following equivalent conditions hold:

- (1) There exists for all $x, y \in X$ some $g \in G$ with g.x = y.
- (2) There exists some $x \in X$ such that there exists for every $y \in X$ some $g \in G$ with g.x = y.
- (3) The orbit of every $x \in X$ is all of X.
- (4) There exists some $x \in X$ whose orbit is all of X.

The stabilizer of a point $x \in X$ is the subgroup $G_x = \{g \in G \mid g.x = x\}$ of G. The map

$$G/G_x \to G.x$$
, $gG_x \mapsto g.x$

is a well-defined isomorphism of G-sets, where the action of G on the set of left cosets G/G_x is given by $g.g'G_x = gg'G_x$.

Lemma 5. The group $GL_n(k)$ acts on the set of complete flags \mathcal{F} via

$$g.(F_0,\ldots,F_n) = (g.F_0,\ldots,g.F_n).$$

This action is transitive and the stabilizer of the standard flag S is $B_n(k)$ (the group of upper triangular $(n \times n)$ -matrices).

Proof. This is indeed an action of $GL_n(k)$ on \mathcal{F} .

If $F \in \mathcal{F}$ with $F = (F_0, \dots, F_n)$ then let x_1, \dots, x_n be a basis of V so that x_1, \dots, x_i is a basis of F_i for every $i = 0, \dots, n$. Then the matrix $g \in M(n, k)$ with columns x_1, \dots, x_n is invertible and g.S = F because

$$g.\langle e_1, \dots, e_i \rangle = \langle g.e_1, \dots, g.e_i \rangle = \langle x_1, \dots, x_i \rangle = F_i$$

for every $i = 0, \dots, n$. This shows that the action is transitive.

If $g \in GL_n(k)$ with g.S = S then let x_1, \ldots, x_n be the columns of x. That g.S = S means that $g.F_i \subseteq F_i$ for all $i = 0, \ldots, n$, which means that

$$\langle x_1, \dots, x_i \rangle \subseteq \langle e_1, \dots, e_i \rangle$$

for all i = 0, ..., n. This happens to be the case precisely when for all i = 0, ..., n the *i*-th column of g admits no entries after the *i*-th row, i.e. if g is upper triangular. This shows that the stabilizer of the standard flag S is precisely $B_n(k)$.

We denote by \mathfrak{b} the Lie subalgebra of $\mathfrak{sl}_n(k)$ of traceless upper triangular matrices.

Lemma 6. The only \mathfrak{b} -subrepresentations of k^n are $\langle e_1, \ldots, e_i \rangle$ for $i = 0, \ldots, n$.

Proof. Let U be a \mathfrak{b} -subrepresentation and let $x \in U$ be a vector with entries x_1, \ldots, x_n . Suppose that $x_i \neq 0$ but $x_{i+1} = \cdots = x_n = 0$. Then $x/x_i \in U$ and so we may assume $x_i = 1$. Let $N \in \mathfrak{b}$ be the matrix

$$N := \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}$$

The vectors

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_{i-2} \\ x_{i-1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad Nx = \begin{pmatrix} x_2 \\ \vdots \\ x_{i-1} \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad N^{n-2}x = \begin{pmatrix} x_{i-1} \\ 1 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{pmatrix}, \quad N^{i-1}x = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

are again contained in U and they are linearly independent. We also see that

$$\langle x, Nx, N^2x, \dots, N^{i-1}x \rangle = \langle e_1, e_2, \dots, e_i \rangle$$

and hence $\langle e_1, e_2, \dots, e_i \rangle \subseteq U$. Let now i be maximal such that there exists some $x \in U$ with $x_i \neq 0$. Then $U \subseteq \langle e_1, \dots, e_i \rangle$ by choice of i but also $x_{i+1} = \dots = x_n = 0$ and hence $\langle e_1, \dots, e_i \rangle \subseteq U$ by the above observation. Thus $U = \langle e_1, \dots, e_i \rangle$.

Corollary 7. The standard flag S is the only complete flag in k^n stabilized by \mathfrak{b} .

Proof. The flag S is stabilized by \mathfrak{b} . On the other hand every stabilized flag consists of \mathfrak{b} -subrepresentations whence the uniqueness follows from Lemma 6.

Lemma 8. Let \mathfrak{h} be a Lie subalgebra of $\mathfrak{gl}_n(k)$ and let $g \in GL_n(k)$. Then \mathfrak{h} stabilizes a flag F of k^n if and only if $g\mathfrak{h}g^{-1}$ stabilizes the flag g.F.

¹The inclusion $g.F_i \subseteq F_i$ is by equality of dimensions equivalent to $g.F_i = F_i$. We choose to work with the condition $g.F_i \subseteq F_i$ so that we don't need to worry about equality.

Proof. Let $F = (F_0, \ldots, F_n)$. Then

$$\mathfrak{h}$$
 stabilizes F
 $\iff \mathfrak{h}.F_i \subseteq F_i \text{ for all } i = 0, \dots, n$
 $\iff \mathfrak{h}g^{-1}.gF_i \subseteq F_i \text{ for all } i = 0, \dots, n$
 $\iff g\mathfrak{h}g^{-1}.gF_i \subseteq gF_i \text{ for all } i = 0, \dots, n$
 $\iff g\mathfrak{h}g^{-1} \text{ stabilizes } g.F$

as claimed \Box

Corollary 9. If $g \in GL_n(k)$ then g.S is the only complete flag of k^n stabilized by $g\mathfrak{b}g^{-1}$.

Proof. If $g\mathfrak{b}g^{-1}$ stabilizes a flag F then we may write F = g'.S for some $g' \in GL_n(k)$ by Lemma 5. Then $\mathfrak{b} = g^{-1}(g\mathfrak{b}g^{-1})g$ stabilizes $g^{-1}g'.S$ by Lemma 8. It follows from Corollary 7 that $g^{-1}g'.S = S$. Therefore $g^{-1}g' \in B_n(k)$ by Lemma 5. We can therefore write the group element g' as g' = gh with $h \in B_n(k)$. Then

$$F = q'.S = qh.S = q.h.S = q.S$$

because h.S = S, which is the desired uniqueness.

The Exercise Itself

The Lie subalgebra \mathfrak{b} of $\mathfrak{sl}_n(k)$ is solvable. If \mathfrak{b}' is any other solvable Lie subalgebra of $\mathfrak{sl}_n(k)$ then by Recall 3 there exists some $g \in \mathrm{GL}_n(k)$ such that $g\mathfrak{b}'g^{-1}$ consists of upper triangular matrices. The conjugation action $g(-)g^{-1}$ gives a Lie algebra automorphism of $\mathfrak{sl}_n(k)$ by Recall 2 and because the condition $\mathrm{tr}(x) = 0$ is invariant under conjugation. Thus $g\mathfrak{b}'g^{-1}$ is a solvable Lie subalgebra of \mathfrak{b} .

This shows that \mathfrak{b} is of maximal dimension among all solvable Lie subalgebras of $\mathfrak{sl}_n(k)$ and thus a Borel subalgebra.

If \mathfrak{b}' is itself a Borel subalgebra then $g\mathfrak{b}'g^{-1}$ is again a Borel subalgebra of $\mathfrak{sl}_n(k)$. It then follows from the solvability of \mathfrak{b} and maximality of $g\mathfrak{b}'g^{-1}$ that $g\mathfrak{b}'g^{-1} = \mathfrak{b}$. This shows that all Borel subalgebras of $\mathfrak{sl}_n(k)$ are $\mathrm{GL}_n(k)$ -conjugated.

They are also $\mathrm{SL}_n(k)$ -conjugated: Suppose that $\mathfrak{b}' = g\mathfrak{b}g^{-1}$ for some $g \in \mathrm{GL}_n(k)$. We may write g = hd where d is the invertible diagonal matrix

$$d = \begin{pmatrix} \det(g) & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} .$$

Then $\det h = 1$ and

$$\mathfrak{b}' = q\mathfrak{b}q^{-1} = (hd)\mathfrak{b}(hd)^{-1} = hd\mathfrak{b}d^{-1}h^{-1} = h\mathfrak{b}h^{-1}$$

because $d\mathfrak{b}d^{-1} = \mathfrak{b}$ (since d and d^{-1} are invertible and diagonal). This shows that \mathfrak{b}' and \mathfrak{b} are $\mathrm{SL}_n(k)$ -conjugated.²

Let \mathcal{B} be the set of all Borel subalgebras of $\mathfrak{sl}_n(k)$. We now construct a bijection

$$\Phi \colon \mathcal{B} \xrightarrow{\sim} \mathcal{F}$$
.

The map Φ assigns to each Borel subalgebra \mathfrak{b}' of $\mathfrak{sl}_n(k)$ the unique complete flag of k^n that \mathfrak{b}' stabilizes.

This gives a well-defined map: Every Borel Lie subalgebra \mathfrak{b}' of $\mathfrak{sl}_n(k)$ is of the form $\mathfrak{b}' = g\mathfrak{b}g^{-1}$ for some $g \in \mathrm{SL}_n(k)$, hence stabilizes a unique complete flag by Corollary 9, namely g.S by Lemma 8. Hence $\Phi(g\mathfrak{b}g^{-1}) = g.S$ is well-defined.

The map Φ is surjective: If F is any complete flag in k^n then F = g.S for some $g \in GL_n(k)$ by Lemma 5 and then $g \circ g^{-1}$ is a Borel subalgebra of $\mathfrak{sl}_n(k)$ that is mapped to F.

The map Φ is also injective: Let \mathfrak{b}' be any Borel subalgebra of $\mathfrak{sl}_n(k)$ and let $F = \Phi(\mathfrak{b}')$ be the complete flag stabilized by \mathfrak{b}' . Then

$$\mathfrak{b}_F = \{ x \in \mathfrak{sl}_n(k) \mid x \text{ stabilizes } F \}$$

is a Lie subalgebra of $\mathfrak{sl}_n(k)$, and we find by Recall 3 that \mathfrak{b}_F is solvable. The Borel subalgebra \mathfrak{b}' is contained in \mathfrak{b}_F and thus $\mathfrak{b}' = \mathfrak{b}_F$ by the maximality of \mathfrak{b}' . This shows that \mathfrak{b}' is uniquely determined by F.

Remark 10.

(1) The transitive action of $GL_n(k)$ on \mathcal{F} from Lemma 5 restricts to an action of $SL_n(k)$ on \mathcal{F} , which is again transitive: We have seen above that any $g \in GL_n(k)$ can be written as g = hd for some $h \in SL_n(k)$ and $d \in B_n(k)$. Then

$$g.S = hd.S = h.d.S = h.S$$

since d.S = S (because d is upper triangular). The $\operatorname{SL}_n(k)$ -orbit of S thus coincides with the $\operatorname{GL}_n(k)$ -orbit of S, which is all of \mathcal{F} . The stabilizer of S in $\operatorname{SL}_n(k)$ is $\operatorname{SB}_n(k) := \operatorname{B}_n(k) \cap \operatorname{SL}_n(k)$. It follows from Recall 4 that we get an induced bijection

$$\mathrm{SL}_n(k)/\mathrm{SB}_n(k) \to \mathcal{F}, \quad g\,\mathrm{SB}_n(k) \mapsto g.S.$$

The group $SL_n(k)$ acts (transitively) on \mathcal{B} via conjugation and the subgroup $SB_n(k)$ stabilizes the standard flag \mathfrak{b} . We therefore get an induced (surjective) map

$$\operatorname{SL}_n(k)/\operatorname{SB}_n(k) \to \mathcal{B}, \quad g\operatorname{SB}_n(k) \mapsto g\mathfrak{b}g^{-1}.$$

²Geometrically speaking, suppose that $F = (F_0, \ldots, F_n)$ is a complete flag in k^n and x_1, \ldots, x_n is a basis of k^n such that x_1, \ldots, x_i is a basis of F_i for every $i = 0, \ldots, n$. If $g \in GL_n(k)$ is the matrix with columns x_1, \ldots, x_n then it may happen that $\det(g) \neq 1$. But we can normalize the first basis vector x_1 by replacing it with $x_1/\deg(g)$. The resulting basis y_1, \ldots, y_n of k^n with $y_1 = x_1/\det(g)$ and $y_i = x_i$ for $i = 2, \ldots, n$ then again satisfies $\langle y_1, \ldots, y_i \rangle = F_i$ for all $i = 1, \ldots, n$, but the resulting matrix h with columns y_1, \ldots, y_n now satisfies $\det(h) = \deg(g)/\det(g) = 1$. We can therefore adjust the determinant of the occurring matrix g without changing the underlying flag.

 $^{^3 \}mathrm{The}$ notation $\mathrm{SB}_n(k)$ is (probably) non-standard and the author's fault.

We get overall the following commutative diagram:

The bottom map and right map are bijections, so the same holds for the left map. We have thus constructed a commutative triangle of one-to-one correspondences.

(2) Instead of $\mathfrak{sl}_n(k)$ and $\mathrm{SL}_n(k)$ we could have used $\mathfrak{gl}_n(k)$ and $\mathrm{GL}_n(k)$. We then get another commutative triangle of one-to-one correspondences:

The set \mathcal{F} of complete flags can be regarded as a geometric object, a so called *flag* variety. The above diagrams then give us connections between linear algebra groups, Lie theory and (algebraic) geometry.