

PRODUCT-OF-SUMS FORM

LOGIC MINIMIZATION

@gyro-madrona

TOPIC OUTLINE

Product-of-Sums (POS) Form

PRODUCT-OF-SUMS FORM

PRODUCT-OF-SUMS FORM

When two or more <u>sum terms</u> are multiplied, the resulting expression is a <u>product-of-sums</u> (POS).

<u>example</u>

$$f = (\bar{A} + B)(A + \bar{B} + C)$$

$$f = (\bar{A} + \bar{B} + \bar{C})(C + \bar{D} + E)(\bar{B} + C + D)$$

$$f = (A + B)(A + \bar{B} + C)(\bar{A} + C)$$

note

POS expression can have the term $\bar{A} + \bar{B} + \bar{C}$ but not $\overline{A + B + C}$.

Minimal SOP realization

Minimal POS realization

 $f = \overline{(\overline{A+B}) + C}$

Convert the given Boolean expressions to POS form.

$$f = (A + B) \cdot C$$

$$f = (A + B) C$$
ans

STANDARD POS FORM

A <u>standard POS form</u> ensures that each product term is a <u>maxterm</u>.

<u>Maxterm</u> is a <u>sum term</u> that evaluates to <u>0</u> for exactly one unique combination of input values.

Maxterms for the three-variable table

Decimal	A	В	С	Maxterm
0	0	0	0	$M_0 = A + B + C$
1	0	0	1	$M_1 = A + B + \bar{C}$
2	0	1	0	$M_2 = A + \bar{B} + C$
3	0	1	1	$M_3 = A + \bar{B} + \bar{C}$
4	1	0	0	$M_4 = \bar{A} + B + C$
5	1	0	1	$M_5 = \bar{A} + B + \bar{C}$
6	1	1	0	$M_6 = \bar{A} + \bar{B} + C$
7	1	1	1	$M_7 = \bar{A} + \bar{B} + \bar{C}$

Convert the given Boolean expressions to standard POS form.

$$f = \overline{(\overline{A+B}) + C}$$

and then represent the result using a truth table format.

<u>note</u>

A nonstandard POS expression is converted into standard form using Boolean algebra rule:

$$A \cdot \bar{A} = 0$$

Solution

$$f = (\overline{A+B}) \cdot \overline{C}$$

$$f = (A+B)C$$

$$(A+B) + C\overline{C} \rightarrow (A+B+C)(\underline{A+B+C}) *$$

$$\times + bz = (x+b)(x+z); \text{ tale } | z$$

$$\overline{C} + A\overline{A} \rightarrow (\overline{C} + A)(\overline{C} + \overline{A})$$

$$(A+C) + B\overline{B} \rightarrow (A+B+C)(A+B+C) *$$

$$(\overline{C} + \overline{A}) + B\overline{B} \rightarrow (\overline{A} + B + \overline{C})(\overline{A+B+C}) *$$

145

Convert the given Boolean expressions to standard POS form.

$$f = \overline{(\overline{A+B}) + C}$$

and then represent the result using a truth table format.

$$f = \frac{(A+B+C)(A+B+C)(A+B+C)}{(A+B+C)(A+B+C)}$$

$$f = \frac{(A+B+C)(A+B+C)}{(A+B+C)}$$

$$f = \frac{(A+B+C)(A+B+C)}{(A+B+C)}$$

$$f = \frac{(A+B+C)(A+B+C)}{(A+B+C)}$$

$$f = TM(0,1,3,5,7)$$

	1				
	¥	B	C	t	
0	D	0	0	0	
1	0	0	1	D	
2	0	1	0	1	
3	0	1	١	0	
4	١	0	0	1	
5	١	0	1	0	
6	ı	1	0	ļ	
7	١	l	1	0	

Convert the given Boolean expressions to standard POS form.

$$f = ABC + AB(C + D)$$

and then represent the result using a truth table format.

$$f = AB \left(C+D \right)$$

$$A + BB \rightarrow (A+B)(A+B)$$

$$(A+B)+CO \rightarrow (A+B+C)(A+B+C)$$

$$(A+B+C)+DD \rightarrow (A+B+C+D)(A+B+C+D) *$$

$$(A+B+C)+DD \rightarrow (A+B+C+D)(A+B+C+D) *$$

$$(A+B+C)+DD \rightarrow (A+B+C+D)(A+B+C+D) *$$

$$(A+B)+CC \rightarrow (A+B+C)(A+B+C)$$

$$(A+B+C)+DD \rightarrow (A+B+C+D)(A+B+C+D) *$$

$$(A+B+C)+DD \rightarrow (A+B+C+D)(A+B+C+D) *$$

$$(A+B+C)+DD \rightarrow (A+B+C+D)(A+B+C+D) *$$

Convert the given Boolean expressions to standard POS form.

$$f = ABC + AB(C + D)$$

and then represent the result using a truth table format.

$$f = TM(0,1,2,3,4,5,6,)$$

 $7,8,9,10,11,12)$
ans

$$f = AB \underbrace{(C+D)}$$

$$B + A\overline{A} \rightarrow (A+B)(\overline{A}+B)$$

$$(\overline{A}+B)+C\overline{C} \rightarrow (\overline{A}+B+C)(\overline{A}+B+C)$$

$$(\overline{A}+B+C)+D\overline{D} \rightarrow (\overline{A}+B+C+D)(\overline{A}+B+C+D) *$$

$$(\overline{A}+B+C)+D\overline{D} \rightarrow (\overline{A}+B+C+D)(\overline{A}+B+C+D) *$$

$$(C+D)+B\overline{B} \rightarrow (B+C+D)(\overline{B}+C+D)$$

$$(B+C+D)+A\overline{A} \rightarrow (A+B+C+D)(\overline{A}+B+C+D) *$$

$$(\overline{B}+C+D)+A\overline{A} \rightarrow (A+B+C+D)(\overline{A}+B+C+D) *$$

$$(\overline{B}+C+D)+A\overline{A} \rightarrow (A+B+C+D)(\overline{A}+B+C+D) *$$

Convert the given Boolean expressions to standard POS form.

$$f = ABC + AB(C + D)$$

and then represent the result using a truth table format.

$$f=TM(0,1,2,3,4,5,6,)$$

 $7,8,9,10,11,12)$

	ABCD	f
0	0000	0
1	0001	0
2	0010	0
3	0011	0
4	0100	0
5	0101	0
6	0110	0
7	0111	0
8	1000	0
9	1001	0
10	1010	0

	A	串	C	Þ	f
\parallel	1	D		-	0
2	1	1	0	0	0
13	١	1	0	١	
14))	1	0	١
15	١	1	1	١	١

Convert the given Boolean expressions to standard POS form.

$$f = A B + B (C + D)$$

and then represent the result using a truth table format.

$$f = TM(0,1,2,3,4,8,9,10,11)$$

ans

$$f = B \left[A + (C+D) \right]$$

$$B + A\overline{A} \rightarrow (A+B)(\overline{A}+B)$$

$$(A+B)+C\overline{C} \rightarrow (A+B+C)(A+B+C)$$

$$(A+B+C)+D\overline{D} \rightarrow (A+B+C+D)(A+B+C+\overline{D})*$$

$$(A+B+C)+D\overline{D} \rightarrow (A+B+C+D)(A+B+C+\overline{D})*$$

$$(\overline{A}+B)+C\overline{O} \rightarrow (\overline{A}+B+C)(\overline{A}+B+\overline{C})$$

$$(\overline{A}+B+C)+D\overline{D} \rightarrow (\overline{A}+B+C+D)(\overline{A}+B+C+\overline{D})*$$

$$(\overline{A}+B+C)+D\overline{D} \rightarrow (\overline{A}+B+C+D)(\overline{A}+B+C+\overline{D})*$$

$$(\overline{A}+B+C)+D\overline{D} \rightarrow (\overline{A}+B+C+D)(\overline{A}+B+C+\overline{D})*$$

$$(\overline{A}+C+D)+B\overline{D} \rightarrow (A+B+C+D)(A+\overline{D}+C+D)*$$

Convert the given Boolean expressions to standard POS form.

$$f = AB + B(C + D)$$

and then represent the result using a truth table format.

$$f = TM(0,1,2,3,4,8,9,10,11)$$

ans

_	Å	B	C	†	f
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	١	
14	1	1	l	0	1
15	1	1	l	1	(

LABORATORY

