The Weight of Nonstrongly Complete Profinite Groups

Tamar Bar-On*

February 16, 2021

Abstract

We compute the local weight of the completion of a nonstrongly complete profinite group, and conclude that if a profinite group is abstractly isomorphic to its own profinite completion, then they are equal. The local weight of all the groups in the tower of completions is computed as well.

1 Introduction

We write $H \leq_f G$ to say that H is a normal subgroup of finite index in G. The profinite completion of an abstract group G is the projective limit of finite quotients

$$\hat{G} = \lim_{\leftarrow H \unlhd_f G} G/H,$$

endowed with the limit topology. There is a canoical homomorphism $i:G\to \hat{G}$. In fact, the profinite completion is a universal object in the following sense: For every homomorphism $\varphi:G\to H$, where H is a profinite group, there is a unique continuous homomorphism $\hat{\varphi}:\hat{G}\to H$ such that $\varphi=\hat{\varphi}\circ i$. The completion \hat{G} itself is obviously profinite, namely, it is an inverse limit of directed system of finite groups.

We say that a group G is residually finite if $\bigcap_{H \leq_f G} H = \{e\}$. The canonical homomorphism $i: G \to \hat{G}$ is injective if and only if G is residually finite.

Let G be a profinite group. Regarding G as an abstract group, it also has a profinite completion. Moreover, every profinite group is residually finite, so $i:G\to \hat{G}$ is injective. We say that a profinite group G is $strongly\ complete$ (or rigid in some papers, such as [3]) if G is equal to its own profinite completion, i.e, if the natural embedding $i:G\to \hat{G}$ is an isomorphism. One easily sees that the following conditions are equivalent for a profinite group G:

- G is strongly complete.
- Every subgroup of finite index in G is open.

 $^{^*}$ This research was supported by the Israel Science Foundation (grant No. 630/17).

- Every normal subgroup of finite index in G is open.
- Every homomorphism $\varphi: G \to H$ onto a finite group is continuous.

Strongly complete profinite groups, or more generally, the connection between a profinite group to its profinite completion, have been the focus of many papers, such as [4], [3], [10] and [5]. In [7] the authors proved the following useful result:

Proposition 1. The following conditions are equivalent for a profinite group G:

- G is strongly complete.
- For every n, there are finitely many subgroups of index n.
- There are at most countably many subgroups of finite index.

Theorem 2. considered as an abstract group, a nonstrongly complete profinite group is never isomorphic to its profinite completion.

The paper is organized as follows: In the introduction we give some background on profinite groups and profinite completion, In Chapter 2 We prove Theorem 2. In chapter 3 we present the infinite tower of profinite completions and compute the number of open subgroups in each level. The computation is based on computation of the cardinality of a certain set of ultrafilters satisfying some conditions. In chapter 4 we give a simpler proof for the abelian case.

In order to prove theorem 2, we should be familiar with an invariant of profinite groups called the *local weight*.

Definition 3. Let G be an infinite profinite group. The *local weight* of G (sometimes referred to as the rank), which is denoted by $\omega_0(G)$, is the cardinality of the set of all open subgroups of G.

let us recall some properties of the local weight.

Proposition 4 ([2, chapter 17]). Let G be an infinite profinite group.

- 1. $\omega_0(G)$ is equal to the cardinality of the set of all open normal subgroups of G.
- 2. If A is a profinite group, and $\varphi: G \to A$ a continuous epimorphism, then $\omega_0(A) \leq \omega_0(G)$.
- 3. If $H \leq_c G$ is a closed subgroup then $\omega_0(H) \leq \omega_0(G)$. In addition, if H is open, then $\omega_0(H) = \omega_0(G)$.

There is a strong connection between the number of finite index subgroups of G and the local weight of \hat{G} , which arises from the following proposition:

Proposition 5 ([6, Proposition 3.2.2]). Let G be a residually finite group. One may identify G with its image in \hat{G} and assume $G \subseteq \hat{G}$. Then there is a one-to-one correspondence

$$\{O \mid O \leq_o \hat{G}\} \stackrel{\Phi}{\underset{\Psi}{\rightleftharpoons}} \{N \mid N \leq_f G\}$$

defined by

$$\Phi(O) = O \cap G,$$

and

$$\Psi(N) = \bar{N},$$

where \bar{N} is the topological clousre of N. Moreover, for every $N \leq_f G$, $G/N \cong \hat{G}/\bar{N}$.

Corollary 6. Let G be a profinite group. Then $\omega_0(\hat{G})$ is the cardinality of the set of all finite index subgroups in G.

2 The weight of a profinite group

A fundemental example of nonstrongly complete profinite group is given in [6], chapter 4.

Example 7. Let T be a finite group, and I an index set. We define $G = \Pi_I T$. Obviously, G is a profinite group with the product topology. Every continuous projection to a finite quotient splits through some $\Pi_J T$ where J is a finite subset of I, therefore $\omega_0(G) = |I|$. To every nonprincipal ultrafilter \mathcal{F} on I one can associate the subgroup $H_{\mathcal{F}} = \{(t_i) : \{i \in I : t_i = 1\} \in \mathcal{F}\}$. It if easily checked that for every \mathcal{F} , $H_{\mathcal{F}}$ is a dense subgroup which satisfies $G/H_{\mathcal{F}} \cong T$, where each $t \in T$ corresponds to its diagonal image $(t)_{i \in I}$. Moreover, by [8], section 111, there are $2^{2^{|I|}}$ ultrafilters on I. So, G has at least $2^{2^{\omega_0(G)}}$ subgroups of finite index. this is actually the accurate amount of finite index subgroups, since $|G| = |\prod_I T| = 2^{|I|} = 2^{\omega_0(G)}$, and the number of finite index subgroups can not exceed the number of maps from G to a finite set, which is equal to $2^{|G|}$.

We are now ready for the main theorem.

Theorem 8. Let G be a nonstrongly complete profinite group. Then $\omega_0(\hat{G}) = 2^{2^{\omega_0(G)}}$

Proof. We first prove that $\omega_0(\hat{G}) \geq 2^{2^{\omega_0(G)}}$. By Proposition 1, if a profinite group has only countably many subgroups of finite index, then it is strongly complete. So, G must have uncountably many subgroups of finite index.

We can now assume that $\omega_0(G) = \mathbf{m} > \aleph_0$.

Since there are only countably many finite groups, there is some finite group K such that there are \mathbf{m} distinct open subgroups $H \leq_o G$ for which $G/H \cong K$. We choose K so that no proper quotient of K has this property. Let

$$\mathcal{M} = \{ H \leq_o G \mid G/H \cong K \}$$

and

$$M = \bigcap_{H \in \mathcal{M}} H.$$

Denote by $\ell(K)$ the length of a composition series of K. We prove the claim by induction on $\ell(K)$.

When $\ell(K) = 1$, K is a simple group. According to lemma 8.2.2 in [6],

$$G/M \cong \prod_{i \in I} K$$
,

the product of |I| copies of K for some index set I. Note that

$$\omega_0(G/M) \geq \mathbf{m},$$

since the H_i/M for all $H_i \in \mathcal{M}$ are distinct open subgroups of G/M. On the other hand, by Proposition 4,

$$\omega_0(G/M) \leq \omega_0(G) = \mathbf{m},$$

so

$$\omega_0(G/M) = \mathbf{m}.$$

Now, by the fundemental Example 7,

$$\omega_0(\Pi_{i\in I}K) = |I|,$$

so $|I| = \mathbf{m}$. Thus, applying the fundemental example again, G/M has $2^{2^{\mathbf{m}}}$ subgroups of finite index. Taking their preimages, we get that G has $2^{2^{\mathbf{m}}}$ subgroups of finite index, so

$$\omega_0(\hat{G}) \ge 2^{2^{\mathbf{m}}}.$$

Assume that $\ell(K) = n > 1$ and that the chain holds for all finite groups shorter than K. Choose a simple quotient S of K. Thus, S is a simple quotient of G as well. By minimality of K there are less than \mathbf{m} open normal subgroups $U \leq_o G$ such that $G/U \cong S$. Hence, we can choose such a subgroup U that contains \mathbf{m} different subgroups from $\mathcal{M} = \{H \leq_o G | G/H \cong K\}$. This U is a profinite group, with $\omega_0(U) = \mathbf{m}$, by Proposition 4. In addition, there is some proper subgroup $K' \triangleleft K$ such that

$$\forall H \in \mathcal{M}, \quad U/H \cong K'.$$

Notice that $\ell(K') < \ell(K)$ since K' is a proper normal subgroup of K. Choose a quotient K'' of K' which is minimal with respect to the property that it can be realized as a quotient of U in \mathbf{m} different ways. We get that

$$\ell(K'') \leq \ell(K') < \ell(K)$$

so we can apply the induction hypothesis to the profinite group U. Thus, U has 2^{2^m} finite index subgroups, and since U has finite index in G, each one of them is of finite index in G. In conclusion,

$$\omega_0(\hat{G}) \ge 2^{2^{\mathbf{m}}}.$$

We now prove that $\omega_0(\hat{G}) \leq 2^{2^{\omega_0(G)}}$:

Denote $\omega_0(G) = \mathbf{m}$. By the explicit construction of the inverse limit, we have $G \subseteq \Pi_{U \preceq_O G} G/U$. Since G has \mathbf{m} open normal subgroups, and for each subgroup the quotient is finite, we get that $|G| \leq 2^{\mathbf{m}}$. So, the number of finite index normal subgroups is equal to the number of epimorphisms from G to finite groups. Since there are countably many finite groups, we get that the number of such epimorphisms is at most $2^{|G|} \leq 2^{2^{\mathbf{m}}}$.

Corollary 9. Let G be a nonstrongly complete profinite group. Then $G \ncong \hat{G}$.

We also got a result about the connection between the cardinality of G and its local weight.

Proposition 10. Let G be an infinite profinite group. Then, $|G| = 2^{\omega_0(G)}$.

Proof. Denote $\omega_0(G) = \mathbf{m}$. We already saw in the proof of Theorem 8 that $|G| \leq 2^{\mathbf{m}}$.

For the other direction, assume first that G is not strongly complete. As we showed in the proof of Theorem 8, G admits a subgroup U that projects on $\Pi_{i\in I}H$ where H is some finite group, and I is a set of indices of cardinality \mathbf{m} . Thus, $|G| \geq |U| \geq |\Pi_{i\in I}H| = 2^{\mathbf{m}}$.

Now assume that G is strongly complete. By proposition 1, $\omega_0(G) = \aleph_0$. Hence, by [6], corollary 2.6.6, $G = \lim_{n \in \omega} G_n$ is the inverse limit of an inverse system of finite groups indexed by ω , such that all the maps in the system are proper projections. Thus, for every n and every $g \in G_n$, g admits at least 2 sources in G_{n+1} . So, $|G| \geq 2^{\aleph_0}$.

3 The tower of profinite completions

Now we would like to generalize this result for the whole tower of completions. Let G be a nonstrongly complete profinite group. In [1] we studied the following construction. We define an ascending chain over the ordinals by setting:

$$G_0 = G$$

• For a successor ordinal $\alpha = \beta + 1$.

$$G_{\alpha} = \widehat{G_{\beta}},$$

with the natural map $\varphi_{\beta\alpha}: G_{\beta} \to G_{\alpha}$, and such that for every $\gamma < \beta, \varphi_{\gamma\alpha} = \varphi_{\beta\alpha} \circ \varphi_{\gamma\beta}$;

• For a limit ordinal α , the system of maps $\{\varphi_{\gamma\beta}\}_{\gamma<\beta<\alpha}$ is compatible, so we can define $H_{\alpha} = \lim_{\longrightarrow} \{G_{\beta}, \varphi_{\gamma\beta}\}$ with the natural maps $\varphi'_{\beta\alpha} : G_{\beta} \to H_{\alpha}$, and then $G_{\alpha} = \widehat{H}_{\alpha}$ with the natural map $\psi_{\alpha} : H_{\alpha} \to G_{\alpha}$; we also define, for every $\beta < \alpha$, $\varphi_{\beta\alpha} = \psi_{\alpha} \circ \varphi'_{\beta\alpha}$.

We proved that the chain never terminates, and moreover, that all the maps are injective. So, we may assume that for every $\beta < \alpha$, $G_{\beta} < G_{\alpha}$. Now we would like to calculate $\omega_0(G_{\alpha})$ for all α . Theorem 8 gives the computation for the successor case.

Remark 11. For every ordinal α , $\omega_0(G_{\alpha+1}) = 2^{2^{\omega_0(G_{\alpha})}}$.

We are left with finding $\omega_0(G_\alpha)$ where α is a limit ordinal. Recall that by proposition 5, $\omega_0(G_\alpha)$ is the number of subgroups of finite index in H_α .

Lemma 12. Let α be a limit ordinal. Then

$$\omega_0(G_\alpha) \leq \Pi_{\beta < \alpha} \omega_0(G_\beta).$$

Proof. For any group A we denote by FI(A) the set of finite index normal subgroups in A. As we pointed out, if α is a limit ordinal, then $\omega_0(G_\alpha) = |FI(H_\alpha)|$. Now consider the map $\theta : FI(H_\alpha) \to \Pi_{\beta < \alpha}FI(G_\beta)$ defined by $\theta(U) = \Pi_{\beta < \alpha}(U \cap G_\beta)$. This map is obviously one-to-one, so

$$\omega_0(G_\alpha) \le \Pi_{\beta < \alpha} |FI(G_\beta)| = \Pi_{\beta < \alpha} 2^{2^{\omega_0(G_\beta)}} = \Pi_{\beta < \alpha} \omega_0(G_{\beta+1}) = \Pi_{\beta < \alpha} \omega_0(G_\beta).$$

The second equality is due to Corollary 6 and Theorem 8.

Now we are going to prove that for every nonstrongly complete profinite group,

$$\omega_0(G_\alpha) = \prod_{\beta < \alpha} \omega_0(G_\beta).$$

We will do so in several steps.

Lemma 13. Let G be a nonstrongly complete profinite group, and $U \leq_o G$. Then, U is nonstrongly complete too, and $\omega_0(G_\alpha) = \omega_0(U_\alpha)$ for every ordinal α .

Proof. First We show that U is nonstrongly complete. Let $H \leq_f G$ be a finite-index subgroup which is not open. Then, $H \cap U \leq_f U$. In addition, $U \cap H$ is not open in G since otherwise $int(H) \neq \emptyset$, implies that H is open. Consequently, since U is open in G, $H \cap U$ is not open in U. In order to prove the lemma, by Proposition 4, it is enough to prove that for all α , $U_{\alpha} \leq_o G_{\alpha}$. We prove it by transfinite induction. Successor ordinal: Assume that $U_{\alpha} \leq_o G_{\alpha}$. $U_{\alpha+1} = \widehat{U_{\alpha}}$, $G_{\alpha+1} = \widehat{G_{\alpha}}$. By [6], Proposition 3.2.2, $\overline{U_{\alpha}} \leq_o G_{\alpha+1}$, and $[G_{\alpha} : U\alpha] = [G_{\alpha+1} : \overline{U_{\alpha}}]$. By [6] Lemma 3.2.4, $\overline{U_{\alpha}} = \widehat{i}[U_{\alpha}]$ where \widehat{i} is the lifting of the inclusion map $i: U_{\alpha} \to G_{\alpha}$. Finally, notice that since by the induction hypothesis $U_{\alpha} \leq_o G_{\alpha}$, then every finite-index subgroup if U_{α} is also a finite-index subgroup of G_{α} , so the profinite topology of G_{α} induces on U_{α} its full profinite topology, and thus by [6] Lemma 3.6.2, $\widehat{i}[U_{\alpha}] = \widehat{U_{\alpha}}$. In conclusion, $U_{\alpha+1} \leq G_{\alpha+1}$ and $[G_{\alpha} : U_{\alpha}] = [G_{\alpha+1} : U_{\alpha+1}]$.

Limit ordinal: Now assume that β is a limit ordinal such that for every $\gamma < \alpha < \beta \ U_{\alpha} \leq_o G_{\alpha}$ and in addition $[G_{\alpha} : U_{\alpha}] = [G_{\gamma} : U_{\gamma}]$. Then $\lim_{\alpha < \beta} U_{\alpha}$ is a subgroup of $\lim_{\alpha < \beta} G_{\alpha}$ of the same index, and thus by [6], Proposition 3.2.2, $U_{\beta} = \lim_{\alpha < \beta} U_{\alpha} \leq_o \lim_{\alpha < \beta} G_{\alpha} = G_{\beta}$ of the same index.

Remark 14. Let G be a nonstrongly complete profinite group. In order to compute $\omega_0(G_\alpha)$ for a limit ordinal α , we may assume G has a quotient of the form $\prod_{\omega_0(G)} S$, for some finite simple group S.

Proof. By the proof of Theorem 8, every nonstrongly complete profinite group of $\omega_0(G) = \mathbf{m} > \aleph_0$ has an open subgroup U with a quotient of the form $\prod_{\mathbf{m}} S$ where S is some finite simple group. By Lemma 13, we can replace G by U. Notice that in order to compute $\omega_0(G_\alpha)$ where α is a limit ordinal, we may assume that the tower begins with \hat{G} . Thus, in the case $\omega_0(G) = \aleph_0$ we can replace G by \hat{G} and get that $\omega_0(G) = \mathbf{m} > \aleph_0$.

Proposition 15. Let $G \to H$ be an epimorphism of nonstrongly complete profinite groups. Then, for every ordinal α , there are epimorphisms $\phi_{\alpha}: G_{\alpha} \to H_{\alpha}$ which are compatible $\varphi_{\alpha\beta}$.

Proof. We will prove it by transfinite induction. Let α be an ordinal such that for each $\beta < \alpha$ the claim holds. First case: $\alpha = \gamma + 1$. then there is an epimorphism $\phi_{\gamma}: G\gamma \to H_{\gamma}$. By [6] Proposition 3.2.5, there is an epimorpism $\hat{\phi}: G_{\gamma+1} = \widehat{G}_{\gamma} \to \widehat{H}_{\gamma} = H_{\gamma+1}$ which is compatible with the natural homomorphisms from every group to its profinite completion. Second case: α is a limit ordinal. We can define ϕ_{α} to be the direct limit $\lim_{\beta < \alpha} \phi_{\beta}$.

Corollary 16. Let $G \to H$ be an epimorphism of nonstrongly complete profinite groups. Then, for every ordinal α , $\omega_0(G_\alpha) \ge \omega_0(H_\alpha)$.

Proof. By proposition 4 it is enough to prove that H_{α} is a quotient of G_{α} . So, by Proposition 15, we are done.

Corollary 17. It is enough to prove the computation for nonstrongly complete profinite groups of the form $\prod_{\mathbf{m}} S$ for a finite simple group S.

Proof. By Remark 14 we may assume G has a quotient of the form $H = \prod_{\mathbf{m}} S$, where $\mathbf{m} = \omega_0(G)$. Recall that by Example 7, $\omega_0(H) = \mathbf{m}$. Assume that we prove that for every limit ordinal α , $\omega_0(H_\alpha) = \prod_{\beta < \alpha} \omega_0 H_\beta$. We will prove by transfinite induction that in that case, for every ordinal α , $\omega_0(G_\alpha) = \omega_0(H_\alpha)$.

$$\begin{array}{l} \alpha = 0 \colon \, \omega_0(H) = \mathbf{m} = \omega_0(G). \\ \alpha = \beta + 1 \colon \, \omega_0(H_{\beta+1}) = 2^{2^{\omega_0(H_{\beta})}} = 2^{2^{\omega_0(G_{\beta})}} = \omega_0(G_{\beta+1}). \end{array}$$

 α is a limit ordinal: By Proposition 15, $\omega_o(G\alpha) \geq \omega_0(H_\alpha)$. But by the assumption, $\omega_0(H_\alpha) = \prod \beta < \alpha \omega_0(H_\beta)$. By induction hypothesis, $\omega_0(H_\beta) = \omega_0(G_\beta)$ for all $\beta < \alpha$. So,

$$\omega_0(G_\alpha) \ge \omega_0(H_\alpha) = \prod_{\beta < \alpha} \omega_0(H_\beta) = \prod_{\beta < \alpha} \omega_0(G_\beta) \ge \omega_0(G_\alpha).$$

In order to prove our claim we need some propositions about ultrafilters and the subgroups they define.

Proposition 18 ([9], Theorem 7.6). Let X be a set of cardinality \mathbf{m} . Denote by \mathcal{A} the set of all subsets of X for which $|X^c| < \mathbf{m}$. It has the finite intersection property and thus contained in a filter. The number of ultrafilters containing \mathcal{A} equals to $2^{2^{\mathbf{m}}}$.

Let I be a set. We denote the set of all ultrafilters on I by βI .

Lemma 19. Let I be an infinite set of cardinality \mathbf{m} , and let \mathcal{C} be the set of all subgroups of $\prod_{\mathbf{m}} S$, where S is a finite simple group, of the form $H_{\mathcal{F}}$ for $\mathcal{F} \in \beta I$ as defined in Example 7. Then \mathcal{C} forms a subbase for a topology on G, contained in the profinite topology. Denote the completion of G with respect to this topology by $G_{\mathcal{C}}$. Then $G_{\mathcal{C}} \cong \prod_{\beta I} S$ is the product of $2^{2^{\mathbf{m}}}$ copies of S.

Proof. By [8] section 111, there are 2^{2^m} nonprincipal ultrafilters on a set of cardinality \mathbf{m} . The only thing we need to show is that for finitely many ultrafilters $\mathcal{F}_1, ..., \mathcal{F}_n, G/(H_{\mathcal{F}_1} \cap ... \cap H_{\mathcal{F}_n}) \cong \prod_n S$. We prove this by induction on n. Assume that the claim holds for n, and consider $G/(H_{\mathcal{F}_1} \cap ... \cap H_{\mathcal{F}_{n+1}})$. Clearly, the natural morphism

$$G/(H_{\mathcal{F}_1}\cap\ldots\cap H_{\mathcal{F}_n})\to G/(H_{\mathcal{F}_1}\cap\ldots\cap H_{\mathcal{F}_n})\times G/H_{\mathcal{F}_{n+1}}\cong\prod_n S\times S$$

is injective. So the only thing left to show is that it is onto. Since $G/H_{\mathcal{F}_1}$ is simple, it is enough to show that $H_{\mathcal{F}_1} \cap ... \cap H_{\mathcal{F}_{n+1}}$ is a proper subset of $H_{\mathcal{F}_1} \cap ... \cap H_{\mathcal{F}_n}$. Indeed, since \mathcal{F}_{n+1} is different than $\mathcal{F}_1, ..., \mathcal{F}_n$, for every $i \in \{1, ..., n\}$ there is some $B_i \subseteq I$ such that $B_i \in \mathcal{F}_i$ and $B_i^c \in \mathcal{F}_{n+1}$. So $B = B_1 \cup \cdots \cup B_n \in \mathcal{F}_1 \cap \cdots \cap \mathcal{F}_n$, while $B^c \in \mathcal{F}_{n+1}$. Hence, taking an element $g \in G$ which satisfies $g_i = e, (\forall i \in B)$ and $g_j \neq e(\forall j \in B^c)$, we get that $g \in H_{\mathcal{F}_1} \cap ... \cap H_{\mathcal{F}_n}$ while $g \notin \mathcal{F}_{n+1}$. In conclusion, since that epimorphism between the quotient groups are precisely the natural epimorphisms $\prod_{I'} S \to \prod_{J'} S$ where $J' \subset I'$, we get by [6] Exercise 1.1.4 that $G_{\widehat{\mathcal{C}}} \cong \prod_{2^{2^m}} S$.

Proposition 20. Let X be a set of cardinality $2^{\mathbf{n}}$, and let $Y \subseteq P(X)$ be a set of cardinality \mathbf{n} , closed under finite intersections, such that for each $A \in Y$, $|A| = 2^{\mathbf{n}}$. Then, there are $2^{2^{\mathbf{m}}}$ ultrafilters \mathcal{F} on X consists of sets of cardinality $2^{\mathbf{n}}$ which contains Y.

Proof. We construct a set of subsets of X, $\{C_i, D_i\}_{i < 2^n}$ such that for every $i < 2^n$, $C_i \cap D_i = \emptyset$ and for every disjoint finite subsets $I, J \subseteq 2^n$, not both empty, $(\bigcap_{i \in I} C_i) \cap (\bigcap_{j \in J} D_j) \cap B$ is of cardinality 2^n for every $B \in Y$. Let us look at the following set of triples (B, I, J, α) such that $B \in Y$, I and J are disjoint finite subsets of 2^n not both empty, and $\alpha < 2^n$ is an ordinal. Since this set is of cardinality 2^n , we can index it by $\beta < 2^n$. We construct the required subsets by recursion. Suppose $C_{i,\gamma}$ and $D_{i,\gamma}$ were defined for every $\gamma < \beta$, and their cardinality is less or equal then γ , and only less than 2^n of them are not empty. Now look at the triple (B, I, J, α) corresponding to the ordinal β . If $i \in I$, define $C_{i,\beta}$ to be $\bigcup_{\gamma < \beta} C_{i,\gamma} \cup x$ where $x \in B \setminus ((\bigcup_{i < 2^n, \gamma < \beta} C_{i,\gamma}) \cup (\bigcup_{i < 2^n, \gamma < \beta} D_{i,\gamma}))$, otherwise $\bigcup_{\gamma < \beta} C_{i,\gamma}$. Likewise, If $i \in J$, define $D_{i,\beta}$ to be $\bigcup_{\gamma < \beta} D_{i,\gamma} \cup y$ where $x \neq y \in B \setminus ((\bigcup_{i < 2^n, \gamma < \beta} C_{i,\gamma}) \cup (\bigcup_{i < 2^n, \gamma < \beta} D_{i,\gamma}))$, otherwise $\bigcup_{\gamma < \beta} D_{i,\gamma}$. Notice that since the number of subset $C_{i,\gamma}, D_{i,\gamma}$ for $\gamma < \beta$ which are not empty is less than 2^n , and that the cardinaly of each one of them is less or equal then γ and $\beta < 2^n$, then $(\bigcup_{i < 2^n, \gamma} < \beta C_{i,\gamma}) \cup s(\bigcup_{i < 2^n, \gamma < \beta} D_{i,\gamma})$ is of cardinality less then β which in turn is less than 2^n . Thus, Using the fact that $|B| = 2^n$,

it is possible to find such elements $x,y \in B$. In addition, it is easy to see that $C_{i,\beta}$ and $D_{i,\beta}$ satisfy the properties in the recursion hypothesis. Define $C_i = \bigcup_{\beta < 2^{\mathbf{n}}} C_{i,\alpha}$ and $D_i = \bigcup_{\beta < 2^{\mathbf{n}}} D_{i,\alpha}$. By the construction they satisfy the required propertis. Now, denote \mathcal{A} the set of all subsets $B \subseteq X$ for which $|B^c| < 2^{\mathbf{n}}$. For each $I \subseteq 2^{\mathbf{n}}$ (not necessarily finite) define the following sets: $A_I = Y \cup \{C_i\}_{i \in I} \cup \{D_j\}_{j \notin I} \cup \mathcal{A}$. Since all the finite intersections os subsets from A, $\{C_i\}_{i \in I}$ and $\{D_j\}_{j \notin I}$ are of cardinality $2^{\mathbf{n}}$, then so are the finite intersection with elements from \mathcal{A} . Thus, for all $I \subseteq 2^{\mathbf{n}}$, A_I is contained in some ultrafilter. In addition, if $I \neq J$ then without loss of generality there is some $i \in I \setminus J$. Thus $C_i \in A_I$ and $D_i \in A_J$ are disjoint, so A_I and A_J can not be contained in the same ultrafilter. In conclusion, there are $2^{2^{\mathbf{n}}}$ different ultrafilters containing Y, each of then consists of subsets of maximal cardinality.

Theorem 21. Let S be a finite simple group, and let $G = \prod_{\mathbf{m}} S$. Denote by $\{G_{\alpha}\}_{\alpha}$ the infinite tower of profinite completions of G. Then there exists an infinite chain of profinite groups $\{K_{\alpha}\}_{\alpha}$, with morphisms $\epsilon_{\beta\alpha}: K_{\beta} \to K_{\alpha}$ which satisfy:

- 1. $K_0 = G$.
- 2. For every ordinal β , $K_{\beta+1} = \prod_{2^{2^{\omega_0(K_{\beta})}}} S$
- 3. For every limit ordinal α , $K_{\alpha} = \prod_{\mathbf{n}} S$, when $\mathbf{n} = \prod_{\beta < \alpha} \omega_0(K_{\beta})$
- 4. For every $\beta < \alpha$ the maps $\epsilon_{\beta\alpha} : K_{\beta} \to K_{\alpha}$ are compatible.
- 5. For every ordinal α there are epimorphisms $\eta_{\alpha}: G_{\alpha} \to K_{\alpha}$ which are compatible with the homomorphisms $\varphi_{\beta\alpha}: G_{\beta} \to G_{\alpha}$ and $\epsilon_{\beta\alpha}: K_{\beta} \to K_{\alpha}$.
- 6. Every K_{α} admits a set of normal subgroups \mathbb{A}_{α} such that:
 - $|\mathbb{A}_0| = 2^{2^m}$.
 - For every $N \in \mathbb{A}_{\alpha}$, N is a subgroup of the form $H_{\mathcal{F}}$ where \mathcal{F} is an ultrafilter on $\omega_0(K_{\alpha})$ all of whose elements have maximal cardinality.
 - For every $N \in \mathbb{A}_{\alpha}$, $K_{\alpha}/N \cong S$.
 - For every $\beta < \alpha$ and $N \in \mathbb{A}_{\alpha}$, $N \cap K_{\beta} \in \mathbb{A}_{\beta}$.
 - For every ordinal α and $N \in \mathbb{A}_{\alpha}$ there are $2^{\omega_0(K_{\alpha+1})}$ subgroups N' in $\mathbb{A}_{\alpha+1}$ which satisfy $N' \cap G_{\alpha} \in \mathbb{A}_{\alpha}$.
 - For every limit ordinal α and a series $(N_{\beta})_{\beta<\alpha}$ of normal subgroups, $N_{\beta} \in \mathbb{A}_{\beta}$, such that if $\gamma < \beta$ then $N_{\beta} \cap K_{\gamma} = N_{\gamma}$, there are $\prod_{\beta<\alpha}\omega_0(K_{\beta})$ subgroups $N_{\alpha} \in \mathbb{A}_{\alpha}$ whose intersection with each $K_{\beta}, \beta < \alpha$ is equal to N_{β} .

Proof. Let α be an ordinal and assume that for all $\beta < \alpha$ such groups exist. First case: $\alpha = 0$. Define \mathbb{A}_0 to be set of all subgroups of the form $H_{\mathcal{F}}$ for \mathcal{F} an ultrafilter on \mathbf{m} all of whose elements have cardinally \mathbf{m} . By Proposition 18 $|\mathbb{A}|_0 = 2^{2^{\mathbf{m}}}$.

Second case: $\alpha = \beta + 1$ for some ordinal β . By the induction hypothesis, $K_{\beta} \cong \prod_{\mathbf{n}} S$ for some cardinal \mathbf{n} . Let \mathcal{C} be the set of all subgroups of the form $H_{\mathcal{F}}$ where \mathcal{F} is an ultrafilter on $\omega_0(K_{\beta})$. Define $K_{\beta+1} = K_{\beta,\hat{\mathcal{C}}}$. Then, by Lemma 19, $K_{\beta+1} \cong \prod_{2^{2^{\mathbf{n}}}} S$. By definition of the completion with respect to some directed system of of subgroups, there is a natural homomorphism $\epsilon_{\beta,\alpha}: K_{\beta} \to K_{\beta,\hat{\mathcal{C}}} = K_{\alpha}$. Define $\epsilon_{\gamma,\alpha}$ for all $\gamma < \beta$ to be $\epsilon_{\beta,\alpha} \circ \epsilon_{\gamma,\beta}$.

Since \mathcal{C} is a subtopology of the profinite topology, then there is a natural epimorphism $\xi_{\beta}:\widehat{K_{\beta}}\to K_{\beta,\hat{\mathcal{C}}}$ which commutes with the natural homomorphism from K_{β} to its completions. By induction hypothesis there is a natural epimorphism $\eta: G_{\beta} \to K_{\beta}$. By [6] Proposition 3.2.5, it can by lifted to a compatible epimorphism $\hat{\eta_{\beta}}$; $G_{\alpha} = \widehat{G_{\beta}} \to \widehat{K_{\beta}}$. So, define $\eta_{\beta+1}$ to be $\xi_{\beta} \circ \widehat{\eta_{\beta}}$. Let $N \in \mathcal{A}_{\beta}$. By the induction hypothesis, N has the form $H_{\mathcal{F}}$ for some ultrafilter on **n**, such that all of whose elements have cardinality \mathbf{n} . Recall that for each ultrafilter \mathcal{F} , there is a given isomorphism $\prod_{\mathbf{n}} S/H_{\mathcal{F}} \cong S$. We use it to identify the quotient with S. Use this isomorphisms to identify all the quotient groups with the same group. for all $g \in K_{\beta}$ define A_q to be the set of all ultrafilters \mathcal{F}' for which the image of g in the natural epimorphism $\prod_{\mathbf{n}} S \to \prod_{\mathbf{n}} S/H_{\mathcal{F}'}$ is equal to the image of g in the natural epimorphism $\prod_{\mathbf{n}} S \to \prod_{\mathbf{n}} S/H_{\mathcal{F}}$. There is a set of indexes $A \in FF$ determining the image of g in $\prod_{\mathbf{n}} S/H_{\mathcal{F}}$, so in fact $A_g = \{\mathcal{F}' : A \in \mathcal{F}'\}$. Notice that since \mathcal{F} contains only sets of maximal cardinality, $|A| = \mathbf{n}$, so the number of ultrafilters containing A is equal to the number of ultrafilters on A, which is 2^{2^n} . In addition, for each $g_1 \neq g_2 \in K_\beta$ there is some $g_3 \in K_\beta$ for which $A_{g_1} \cap A_{g_2} = A_{g_3}$: Indeed, Let A and B be the subsets determining the images of g_1 and g_2 correspondingly. Then $A_{g_1} \cap A_{g_2}$ equals to the set of all ultrafilters containing $A \cap B$. So define g_3 to be e on $A \cap B$ and x on $(A \cap B)^c$ for some $e \neq x \in S$.

Let $\beta \mathbf{n}$ denote the set of all ultrafilters on \mathbf{n} . Then the set of the subsets of the form A_g for $g \in K_\beta$ is a set of $2^{\mathbf{n}}$ subsets of the maximal cardinality, closed under finite intersections. Thus by Proposition 20, there are $2^{\omega_0(K_\alpha)}$ ultrafilters containing all these sets, which contain only subsets of maximal cardinality. Denote this collection by $\mathbb{A}_{\mathcal{F},\alpha}$. For each $\mathcal{G} \in \mathbb{A}_{\mathcal{F},\alpha}$, the subgroup $H_{\mathcal{G}}$ of K_α satisfies that its intersection with K_β is equal to $H_{\mathcal{F}}$ and $K_\alpha/H_{\mathcal{G}} \cong S$. Define $\mathbb{A}_\alpha = \bigcup_{\mathcal{F} \in \mathbb{A}_\beta} \mathbb{A}_{\mathcal{F},\alpha}$.

Third case: Let α be a limit ordinal. Define K'_{α} to be the direct limit of $\{K_{\beta}, \epsilon_{\gamma,\beta}\}$. Denote by \mathcal{C}_{β} the set of all subgroups N of the form $\lim_{\longrightarrow} N_{\beta}$ where $\{N_{\beta}\}$ is a compatible set of normal subgroups as described in condition 6. Then, $K'_{\alpha}/N \cong S$, and for $N_1, ..., N_l$ different subgroups of this form $K'_{\alpha}/N_1 \cap ... \cap N_l \cong \prod_l S$, since the is a natural monomorphism $K'_{\alpha}/N_1 \cap ... \cap N_l \to \prod_l S$, and if we take β to be an ordinal for which the chains differ from each other then any element on $\prod_l S$ has an origin in K_{β} . Define K_{α} to be the completion of K'_{α} with regard to this set of subgroups. Then, $K_{\alpha} = \prod_n S$, when $\mathbf{n} = \prod_{\beta < \alpha} \omega_0(K_{\beta})$. Define $\epsilon_{\beta,\alpha}$ to be the compositions of the natural maps to the direct limit, and from the direct limit to its completion, and η_{α} to be the lifting of $\lim_{\beta < \alpha} \eta_{\beta}$ to the corresponding completions. For each subgroup N and $g \in K'_{\alpha}$ of this form, let A_g be the set of all such subgroups N' such that

the image of g in K'_{α}/N' is equal to its image in K'_{α}/N . Since g is an element in the direct limit, it comes from some K_{β} . In addition, N is the direct limit of a compatible chain $\{N_{\beta}\}_{\beta<\alpha}$ Thus, $N'=\lim_{\beta<\alpha}N'\beta$ satisfies the condition iff $N'_{\beta+1}$ is a lifting of N_{β} in $K_{\beta+1}$. So the number of such subgroups equals to $\omega_{K_{\alpha}}$. In addition, by the same argument we can show the the set of all A_g is closed under finite intersections. Thus by a similar way of the successor case we can show there are $2^{\omega_0(K_{\alpha})}$ subgroups extending any such $N \subseteq K'_{\alpha}$ and satisfy all the conditions. Define $\mathbb A$ to be the set of all such extensions.

Theorem 22. Let G be a nonstrongly complete profinite group. Then for every limit ordinal $\alpha \neq 0$:

$$\omega_0(G_\alpha) = \Pi_{\beta < \alpha} \omega_0(G_\beta).$$

Proof. By Corollary 17, it is enough to prove the claim for $G = \prod_{\mathbf{m}} S$. By Theorem 21, there is a series of subgroups K_{α} as described in the theorem. We will prove by transfinite induction that $\omega_0(G_{\alpha}) = \omega_0(K_{\alpha})$. So, assume this equality holds for every $\beta < \alpha$. For $\alpha = 0$ the claim is clear. For $\alpha = \beta + 1$, $\omega_0(G_{\alpha}) = 2^{2^{\omega_0(G_{\beta})}}$. Since \mathcal{C} has $2^{2^{\omega_0(K_{\beta})}}$ subgroups, we have that

$$\omega_0(K_\alpha) = 2^{2^{\omega_0(K_\beta)}} = 2^{2^{\omega_0(G_\beta)}} = \omega_0(G_\alpha).$$

For α a limit ordinal, we already know that $\omega_0(G_\alpha) \leq \prod_{\beta < \alpha} \omega_0(G_\beta)$. By proposition 15 we get that $\omega_0(G_\alpha) \geq \omega_0(K_\alpha)$. K_α is defined as the completion oa K'_α with respect to the set $\mathcal C$ of subgroups, thus $\omega_0(K_\alpha) = |\mathcal C$. By the building of $\mathcal C$,

$$|\mathcal{C}| = 2^{2^{\mathbf{m}}} \prod_{0 \neq \beta < \alpha} 2^{\omega_0(K_0)} = 2^{2^{\mathbf{m}}} \prod_{0 \neq \beta < \alpha} 2^{\omega_0(G_0)} = \prod_{\beta < \alpha} 2^{2^{\omega_0(G_\alpha)}} = \prod_{\beta < \alpha} \omega_0(G_\beta).$$

Actually, we can calculate $\Pi_{\beta < \alpha} \omega_0(G_{\beta})$ explicitly.

Lemma 23 ([9, Lemma 5.9]). If λ is an infinite cardinal and $\langle \kappa_{\beta} : \beta < \lambda \rangle$ is a nondecreasing sequence of nonzero cardinals, then

$$\Pi_{\beta < \lambda} \kappa_{\beta} = \sup_{\beta} \{ \kappa_{\beta} \}^{\lambda}.$$

Definition 24. Let κ be a cardinal. We say that κ is a strong limit cardinal if for all $\lambda < \kappa$, $2^{\lambda} < \kappa$.

In our case, the limit ordinal α is not necessarily a cardinal, but we may replace it by its cofinality. So, one may take $\lambda = cof(\alpha)$, and $\kappa_{\beta} = \omega_0(G_{\psi(\beta)})$, where $\psi : \lambda \to \alpha$ is an order preserving cofinal map. Notice that $\sup_{\beta} \kappa_{\beta}$ is a strong limit cardinal with cofinality $cof(\alpha) = \lambda$. Thus we can use the following proposition:

Proposition 25 ([9, pg. 58, Equation 5.23]). Let κ be a strong limit cardinal. Then $\kappa^{cof(\kappa)} = 2^{\kappa}$.

Corollary 26. We have that

$$\omega_0(G_\alpha) = \prod_{\beta < \alpha} \omega_0(G_\beta) = 2^{\sup_{\beta < \alpha} \{\omega_0(G_\beta)\}}$$

Remark 27. Let G and G' be two nonstrongly complete profinite groups. Then there exists some ordinal α such that for all $\beta \geq \alpha$, $\omega_0(G_\beta) = \omega_0(G'_\beta)$.

Proof. Denote $\mathbf{m_0} = \omega_0(G)$ and $\mathbf{n_0} = \omega_0(G')$. It is enough to prove that there exists α such that $\omega_0(G_\alpha) = \omega_0(G'_\alpha)$, since each successor level depends only on the previous level, and any limit level does not depend on initial segments. Assume $\mathbf{n_0} > \mathbf{m_0}$. Since the series of local weights is a strongly ascending series over the ordinals, it is not bounded. So, denote by α_0 the minimal ordinal for which $\omega_0(G_{\alpha_0}) \geq \mathbf{n_0}$. Now continue by recursion: Assume α_n is defined. Define α_{n+1} to be the minimal ordinal for which $\omega_0(G_{\alpha_{n+1}}) \geq \omega_0(G'_{\alpha_n})$. Eventually, $\alpha = \sup\{\alpha_n\}_{n \in \omega}$ is the desired ordinal.

4 The Abelian Case

If G is a nonstrongly complete profinite **abelian** group, then we can offer a simpler proof for the local weight of G_{α} where α is a limit ordinal.

By remark 14, we may assume G has a quotient of the form $\prod_{\omega_0(G)} S$ for some finite simple group. Since G is abelian, then so is S.

In conclusion, there is a finite simple abelian group S on which G projects continuously in $\omega_0(G)$ different way.

Lemma 28. Let G be a nonstrongly complete profinite group, and S a finite simple group which appear as a quotient of G in \mathbf{n} different ways for some infinite cardinality \mathbf{n} , then G has $2^{2^{\mathbf{n}}}$ dense normal subgroups H_i such that $G/H_i \cong S$.

Proof. By the proof of Theorem 8, Since G has \mathbf{n} projections on S, then G projects on $\prod_{\mathbf{n}} S$. By Example 7, $\prod_{\mathbf{n}} S$ has $2^{2^{\mathbf{n}}}$ non continuous epimorphisms on S. Compose them with the epimorphism from G to $\prod_{\mathbf{n}} S$, we get $2^{2^{\mathbf{n}}}$ noncontinuous epimorphisms from G to S. For any such epimorphism, the kernel is a subgroup H of finite index which is not open, and thus not closed, and for which $G/H \cong S$. Thus, there are no normal subgroups between H and G. But since H is normal, so is \overline{H} . So $\overline{H} = G$. I.e, H is dense.

Lemma 29. Let G be a nonstrongly complete profinite group. Then G is a continuous semi-directed component of \hat{G} .

Proof. Look at the identity map $G \to G$. By the universal property of profinite completion we get the following diagram:

Thus $\hat{G} \cong G \ltimes K$ for $K = \ker \widehat{id}$.

Remark 30. If G is abelian then so are all its finite quotients, and thus \hat{G} is abelian as inverse limit of abelian groups.

Corollary 31. If G is abelian then $\hat{G} \cong G \times K$ for $K = \ker \hat{id}$.

Remark 32. Let G be a nonstrongly complete profinite group, and denote by $K = \ker \widehat{id}$. Then, being the kernel of the natural epimorphism $\lim_{\leftarrow U \preceq_f G} G/U \to \lim_{\leftarrow U \preceq_o G} G/U$, and since for every $U \preceq_f G$ the clousre $\overline{U} \preceq_o G$ we get that $K = \lim_{\leftarrow U \preceq_o \overline{U}} U$.

From now on we denote K for $\ker(\widehat{id}:\widehat{G}\to G)$, and K_{α} for $\ker(\widehat{id}:\widehat{G}_{\alpha}\to G_{\alpha})$

Corollary 33. If H is a normal dense subgroup of G, then K projects naturally on G/H. Moreover, if $H_1 \neq H_2$, then the natural projections $K \to G/H_1$, $K \to G/H_2$ are different.

Proof. Being the inverse limit of the directed system of finite groups $\{\overline{U}/U\}_{U \leq G}$, every group in the system corresponding to a continuous quotient of K. So each dense normal subgroup H of G corresponding to a continuous epimorphism $K \to \overline{H}/H = G/H$.

Proposition 34. Let \mathbf{n} be an infinite cardinality, and G be a nonstrongly complete profinite abelian group, which projects on some finite simple group S in \mathbf{n} different ways for which the kernel is a dense subgroup. Then each projection $G \to S$ has 2^{2^n} different liftings to \hat{G} .

Proof. By Corollary 33, K has \mathbf{n} different projections on S. So, by Lemma 28 K has $2^{2^{\mathbf{n}}}$ abstract epimorphisms $\psi_i: K \to S$.

Let $f: G \to S$ be some projection. Recall that since G is abelian then so is S. By Corollary 31, $\hat{G} = G \times K$. Since S is abelian we can define epimorphisms $(f, \psi_i): G \times K \to S$, which clearly extend f.

Proposition 35. Let G be nonstrongly complete profinite abelian group which has $\omega_0(G)$ projections on some finite simple group S. Consider $\{G_\alpha\}$ to be the chain of profinite completions as described in the beginning of the previous section. Then:

• $\omega_0(G_\alpha) = \prod_{\beta < \gamma < \alpha} 2^{2^{\omega_0(G_\gamma)}}$ for all limit ordinal α .

for each α there is a set \mathbb{A}_{α} of not necessarily open subgroups H_i which satisfy:

- 1. For each $H_i \in \mathbb{A}_{\alpha}$, $G_{\alpha}/H_i \cong S$
- 2. For each $\beta < \alpha$ and $H_i \in \mathbb{A}_{\alpha}$, $H_i \cap G_{\beta} \in \mathbb{A}_{\beta}$.
- 3. For each limit ordinal α , all the subgroups in \mathbb{A}_{α} are open.

4. For each $\beta < \alpha$ and $H \in \mathbb{A}_{\beta}$ there are \mathbf{n}_{α} subgroups $H' \in \mathbb{A}_{\alpha}$ for which $H' \cap G_{\beta} = H$ where

$$\mathbf{n}_{lpha} = egin{cases} 2^{2^{\omega_0(G_{lpha})}} & lpha \ is \ a \ successor \ ordinal \ \omega_0(G_{lpha}) & lpha \ is \ a \ limit \ ordinal \end{cases}$$

5. For each $\alpha \mid \mathbb{A}_{\alpha} \mid = \mathbf{n}_{\alpha}$

Proof. We prove the claim by transfinite induction.

For $\alpha=0$ take $\mathbb{A}_0=\{\ker f_i\mid f_i:G\to S\text{ is an epimorphism}\}$. By assumption G has $\omega_0(G)$ different continuous projections on S. so by Lemma 28 $|\mathbb{A}_0|=2^{2^{\omega_0(A)}}$.

Let $\alpha = \beta + 1$ and assume \mathbb{A}_{β} is defined. By induction hypothesis $|\mathbb{A}_{\beta}| = 2^{2^{\omega_0(G_{\beta})}}$ or $\omega_0(G_{\beta})$. In the first case, since the number of open subgroups of G_{β} is equal to $\omega_0(G_{\beta})$ by definition, then $2^{2^{\omega_0(G_{\beta})}}$ are not open, and thus since S is simple they are dense. In the second case we can use Lemma 28 to conclude that G_{β} has $2^{2^{\omega_0(G_{\beta})}}$ dense subgroups H for which $G/H \cong S$. Thus by Proposition 34 each subgroup $H \in \mathbb{A}_{\beta}$ has a set $\mathbb{A}_{\beta+1,H}$ of cardinality $2^{2^{2^{2^{\omega_0(G_{\beta})}}}} = 2^{2^{\omega_0(G_{\alpha})}}$ consisting of normal subgroups $H' \subseteq G_{\alpha}$ for which $G/H' \cong S$ and $H' \cap G_{\beta} = H$. Define $\mathbb{A}_{\alpha} = \bigcup_{H \in \mathbb{A}_{\beta}} \mathbb{A}_{\beta+1,H}$.

Let α be a limit ordinal. For each series $(H_{\beta})_{\beta<\alpha}$ of normal subgroups from \mathbb{A}_{β} such that for every $\gamma<\beta$ $H_{\beta}\cap G_{\gamma}=H_{\gamma}$, the union is a normal subgroup $H \subseteq \lim_{\beta<\alpha}G_{\beta}$ for which the quotient is isomorphic to S and the intersection with G_{β} is equal to H_{β} . By induction hypothesis there are $\prod_{\beta<\gamma<\alpha}2^{2^{\omega_0(G_{\gamma})}}$ such serieses. Define \mathbb{A}_{α} to be the closures of all this subgroups in $\lim_{\beta<\alpha}G_{\beta}=G_{\alpha}$.

We get that G_{α} has at least $\lim_{\beta < \alpha} G_{\beta}$ open subgroups. On the other hand by Lemma 12 $\omega_0(G_{\beta}) \leq \prod_{\gamma < \beta} \omega_0(G_{\beta})$, so $\omega_0(G_{\beta}) = \prod_{\gamma < \beta} \omega_0(G_{\gamma})$.

References

- [1] Tamar Bar-On. The tower of profinite completions. Journal of group theory, $21(6):1065-1072,\ 2018.$
- [2] Michael D Fried and Moshe Jarden. Field arithmetic, volume 11. Springer Science & Business Media, 2006.
- [3] Nikolay Nikolov. Algebraic properties of profinite groups. arXiv preprint arXiv:1108.5130, 2011.
- [4] Nikolay Nikolov and Dan Segal. On finitely generated profinite groups, is strong completeness and uniform bounds. *Annals of mathematics*, pages 171–238, 2007.

- [5] Andrew Pletch. Strong completeness in profinite groups. *Pacific Journal of Mathematics*, 97(1):203–208, 1981.
- [6] Luis Ribes and Pavel Zalesskii. Profinite groups. Springer, 2000.
- [7] MG Smith and JS Wilson. On subgroups of finite index in compact hausdorff groups. *Archiv der Mathematik*, 80(2):123–129, 2003.
- [8] Lynn Arthur Steen, J Arthur Seebach, and Lynn A Steen. Counterexamples in topology, volume 18. Springer, 1978.
- [9] Jech Thomas. Set theory: Third millennium edition. Springer Monographs in Mathematics, page 642, 2003.
- [10] John S Wilson et al. A note on the finite images of profinite groups. *Illinois Journal of Mathematics*, 47(1-2):567–570, 2003.