Subtyping Intersection Types Union Types

Advanced Compiler Construction and Program Analysis

Lecture 7

The topics of this lecture are covered in detail in...

Benjamin C. Pierce.

Types and Programming Languages

MIT Press 2002

15	Subty	ping 181
	15.1	Subsumption 181
	15.2	The Subtype Relation 182
	15.3	Properties of Subtyping and Typing 188
	15.4	The Top and Bottom Types 191
	15.5	Subtyping and Other Features 193
	15.6	Coercion Semantics for Subtyping 200
	15.7	Intersection and Union Types 206
	15.8	Notes 207

Consider the following term

$$(\lambda r: \{x: Nat\}. r.x) \{x=0, y=1\}$$

Consider the following term

$$(\lambda r: \{x: Nat\}. r.x) \{x=0, y=1\}$$

If we forget the types, it is well-behaved, but it is ill-typed since the actual argument has type {x:Nat, y:Nat}.

Consider the following term

$$(\lambda r: \{x: Nat\}. r.x) \{x=0, y=1\}$$

If we forget the types, it is well-behaved, but it is ill-typed since the actual argument has type {x:Nat, y:Nat}.

Note that it is **always safe** to apply the function above to an argument of type {x:Nat, y:Nat}!

Consider the following term

$$(\lambda r: \{x: Nat\}. r.x) \{x=0, y=1\}$$

If we forget the types, it is well-behaved, but it is ill-typed since the actual argument has type {x:Nat, y:Nat}.

Note that it is **always safe** to apply the function above to an argument of type {x:Nat, y:Nat}!

Subtyping offers one way to fix this kind of problems by refining the typing rules.

Principle of safe substitution.

S is a subtype of **T** if any term **s:S** is safe to be used in any context where a term **t:T** is expected.

Principle of safe substitution.

S is a subtype of **T** if any term **s:S** is safe to be used in any context where a term **t:T** is expected.

Intuition via subset semantics.

S is a subtype of **T** if for any term $s \in S$, we also have $s \in T$.

Principle of safe substitution.

S is a subtype of **T** if any term **s:S** is safe to be used in any context where a term **t:T** is expected.

Intuition via subset semantics.

S is a subtype of **T** if for any term $s \in S$, we also have $s \in T$.

Subsumption typing rule.

Principle of safe substitution.

S is a subtype of **T** if any term **s:S** is safe to be used in any context where a term **t:T** is expected.

Intuition via subset semantics.

S is a subtype of **T** if for any term $s \in S$, we also have $s \in T$.

Subsumption typing rule (example).

```
Γ ⊢ t : {x:Nat,y:Nat} {x:Nat,y:Nat} <: {x:Nat}</pre>
Γ ⊢ t : {x:Nat}
```

Subtyping relation

S <: T

Subtyping relation

S <: T

S <: S

Subtyping relation

S <: T

S <: S

S <: U U <: T

S <: T

S <: T

```
\{x:T_1,y:T_2\} <: \{x:T_3\}
```

```
S <: T
```

```
\{x:T_1,y:T_2\} <: \{x:T_3\}
```

```
{x:Nat,y:Nat} {x:Nat}
```

```
S <: T
```

```
\{x:T_1,y:T_2\} <: \{x:T_3\}
```

```
{x:Nat,y:Nat} {x:Nat}
```

```
...
{x=1,y=2}
{x=1,y=2,z=false}
```

```
S <: T
```

```
\{x:T_1,y:T_2\} \leftarrow \{x:T_3\}
{x:Nat,y:Nat}
                                     {x:Nat}
                                       \{x=1\}
    \{x=1,y=2\}
                                     \{x=1,y=2\}
{x=1,y=2,z=false}
                                {x=1,y=2,z=false}
                                  {x=1,a=false}
```

```
S <: T
```

```
\{x:T_1,y:T_2\} \leftarrow \{x:T_3\}
{x:Nat,y:Nat}
                                     {x:Nat}
                                       \{x=1\}
    \{x=1,y=2\}
                                     \{x=1,y=2\}
                         \in
{x=1,y=2,z=false}
                                 {x=1,y=2,z=false}
                                   {x=1,a=false}
```

smaller type

larger type

```
S <: T
```

```
\{x:T_1,y:T_2\} <: \{x:T_3\}
```

 \in

{x:Nat,y:Nat}

... {x=1,y=2} {x=1,y=2,z=false} ...

smaller type more fields

{x:Nat}

...
{x=1}
{x=1,y=2}
{x=1,y=2,z=false}
{x=1,a=false}
...

larger type less fields

```
S <: T
```

```
\{l_1:T_1,...,l_{n+k}:T_{n+k}\} <: \{l_1:T_1,...,l_n:T_n\}
                                       {x:Nat}
 {x:Nat,y:Nat}
                                         \{x=1\}
     \{x=1,y=2\}
                                       \{x=1,y=2\}
 \{x=1,y=2,z=false\}
                                   \{x=1,y=2,z=false\}
                                     {x=1,a=false}
```

smaller type more fields

larger type less fields

```
S <: T
```

```
\{l_1:T_1,...,l_{n+k}:T_{n+k}\} <: \{l_1:T_1,...,l_n:T_n\}
```

```
S <: T
```

Exercise 7.1. Show that

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat}}</pre>

```
S <: T
```

```
\{l_1:T_1,...,l_{n+k}:T_{n+k}\} <: \{l_1:T_1,...,l_n:T_n\}
```

```
S <: T
```

```
 \begin{cases} \{l_1:T_1,...,l_{n+k}:T_{n+k}\} <: \{l_1:T_1,...,l_n:T_n\} \\ & \qquad \qquad \forall (i{\in}1...n) \ S_i{<}:T_i \\ & \qquad \qquad \{l_1:S_1,...,l_n:S_n\} <: \{l_1:T_1,...,l_n:T_n\} \end{cases}   \begin{cases} \{l_1:S_1,...,l_n:S_n\} \ is \ permutation \ of \ \{l_1:T_1,...,l_k:T_k\} \\ & \qquad \qquad \{l_1:S_1,...,l_n:S_n\} <: \{l_1:T_1,...,l_k:T_k\} \end{cases}
```

Exercise 7.2. Show that

```
{x:Nat,y:Nat,z:Nat} <: {y:Nat}
```

Subtyping relation: functions

S <: T

$$\begin{array}{ccc} T_1 <: S_1 & S_2 <: T_2 \\ \hline S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 \end{array}$$

Subtyping relation: functions

S <: T

Covariant

Subtyping relation: functions

S <: T

Contravariant

Subtyping relation: Top

S <: T

$$\begin{array}{ccc} T_1 <: S_1 & S_2 <: T_2 \\ S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 \end{array}$$

S <: Top

Subtyping relation: exercises

Exercise 7.3. How many supertypes exist for this type? {a:Top,b:Top}

Exercise 7.4. Is there a type that is a subtype of every type? Is there a function type that is supertype of all function types?

Subtyping: type safety (1 of 6)

Lemma 7.5 [Inversion of subtyping relation].

```
1. If S<:T_1\rightarrow T_2, then S=S_1\rightarrow S_2 where T_1<:S_1 and S_2<:T_2
```

```
2. If S<:\{l_1:T_1,...,l_k:T_k\}, then S=\{f_1:S_1,...,f_n:S_n\} \text{ where } \{f_1,...,f_n\} \text{ is a subset of } \{l_1,...,l_k\} \text{ and } S_i<:T_j \text{ for all matching labels } f_i<:l_j
```

Subtyping: type safety (2 of 6)

Lemma 7.6 [Inversion of typing relation].

```
1. If \Gamma \vdash \lambda x : S_1 . s : T_1 \rightarrow T_2, then

1. T_1 <: S_1

2. \Gamma_1 \times T_2 : T_1 \rightarrow T_2
```

```
2. If \Gamma \vdash \{l_1 = s_1, ..., l_k = s_k\} : \{k_1 : T_1, ..., k_n : T_n\}, then 1 \cdot \{l_1, ..., l_k\} \subseteq \{k_1, ..., k_n\} 2 \cdot \Gamma \vdash s_i : T_i for each l_i = k_i
```

Subtyping: type safety (3 of 6)

Lemma 7.7 [Substitution].

```
If \Gamma, x:S \vdash t : Tand \Gamma \vdash s : S, then
\Gamma \vdash [x \mapsto s]t : T
```

Subtyping: type safety (4 of 6)

Theorem 7.8 [Preservation].

If
$$\Gamma \vdash t : T$$
 and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Subtyping: type safety (5 of 6)

Lemma 7.9 [Canonical forms].

- If v is a closed value of type T₁→T₂, then
 v has the form λx:S₁.t
- 2. If **v** is a closed value of type $\{k_1:T_1,...,k_n:T_n\}$, then **v** has the form $\{1_1=s_1,...,1_k=s_k\}$ with $\{1_1,...,1_k\}\subseteq \{k_1,...,k_n\}$

Subtyping: type safety (6 of 6)

Theorem 7.10. Suppose $\Gamma \vdash t : T$ then either

- 1. t is a value, or
- 2. there exists t', such that t \to t'

Subtyping: Top and Bot types

S <: Top

Bot <: T

Subtyping: Top and Bot types

Exercise 7.11. Show that no value can have type Bot.

Exercise 7.12. Assuming error: Bot, show that ...


```
Γ⊢t: S
Γ⊢t cast-as T: T
```


Exercise 7.13. Show that runtime check for casting is required for the type preservation property.

Casting: dynamic type test

```
\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : T \vdash t_2 : U \qquad \Gamma \vdash t_3 : U}{\Gamma \vdash if (t_1 in T) then \ x \Rightarrow t_2 else \ t_3 : T}
```

Casting: dynamic type test

```
\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : T \vdash t_2 : U \qquad \Gamma \vdash t_3 : U}{\Gamma \vdash if (t_1 in T) then \ x \Rightarrow t_2 else \ t_3 : T}
```

```
\frac{\vdash V_1 : T}{\text{if } (V_1 \text{ in } T) \text{ then } x \Rightarrow t_2 \text{ else } t_3 \longrightarrow [x \mapsto V_1]t_2}
```

Casting: dynamic type test

$$\frac{\vdash V_1 : T}{\text{if } (V_1 \text{ in } T) \text{ then } x \Rightarrow t_2 \text{ else } t_3 \longrightarrow [x \mapsto V_1]t_2}$$

$$\frac{\cancel{\forall} \ v_1 : T}{\text{if } (v_1 \text{ in } T) \text{ then } x \Rightarrow t_2 \text{ else } t_3 \longrightarrow t_3}$$

Subtyping: variants

```
 \begin{array}{c} \langle l_{1}:T_{1},...,l_{n+k}:T_{n+k}\rangle \; <: \; < l_{1}:T_{1},...,l_{n}:T_{n}\rangle \\ \\ \hline & \forall (i \in 1...n) \; S_{i} <: T_{i} \\ \hline & < l_{1}:S_{1},...,l_{n}:S_{n}\rangle \; <: \; < l_{1}:T_{1},...,l_{n}:T_{n}\rangle \\ \hline < l_{1}:S_{1},...,l_{n}:S_{n}\rangle \; is \; permutation \; of \; < l_{1}:T_{1},...,l_{k}:T_{k}\rangle \\ \hline & < l_{1}:S_{1},...,l_{n}:S_{n}\rangle \; <: \; < l_{1}:T_{1},...,l_{k}:T_{k}\rangle \\ \hline \end{array}
```

Subtyping: variants

```
\langle l_1:T_1,...,l_{n+k}:T_{n+k}\rangle \langle : \langle l_1:T_1,...,l_n:T_n\rangle
                                 \forall (i \in 1...n) S_i <: T_i
           \langle l_1:S_1,...,l_n:S_n \rangle \langle : \langle l_1:T_1,...,l_n:T_n \rangle
\langle l_1:S_1,...,l_n:S_n \rangle is permutation of \langle l_1:T_1,...,l_k:T_k \rangle
             \langle l_1:S_1,...,l_n:S_n \rangle \langle : \langle l_1:T_1,...,l_k:T_k \rangle
```

 $\Gamma \vdash \langle 1=t \rangle : \langle 1:T \rangle$

Subtyping: lists, references

```
S <: T
List[S] <: List[T]
```

Subtyping: lists, references

```
S <: T
List[S] <: List[T]
```

Remark 7.14. Untyped lambda terms that can be typed using simple and intersection types are **exactly** the normalizing terms.

Union Types

$$\left(\begin{array}{cccc}\mathsf{T_1} \mathrel{<:} \mathsf{T_1} \mathrel{\vee} \mathsf{T_2}\end{array}\right) \left(\begin{array}{ccccc}\mathsf{T_2} \mathrel{<:} \mathsf{T_1} \mathrel{\vee} \mathsf{T_2}\end{array}\right)$$

$$(T_1VT_2) \rightarrow S \iff T_1 \rightarrow S \lor T_2 \rightarrow S$$

Summary

- ☐ Subtyping relation
- ☐ Properties of subtyping
- Downcasting
- ☐ Intersection and Union Types

Summary

- ☐ Subtyping relation
- Properties of subtyping
- Downcasting
- ☐ Intersection and Union Types

See you next time!