MO Index

<u>Course</u>

<u>Dates</u>

Discussion

<u>Help</u>

sandipan_dey >

★ Course / 4 Problem Sets / 4.2 Problem Set 2

Progress

Now we will consider the use of an implicit method, specifically Backward Euler, to solve an initial value problem in which \underline{f} depends nonlinearly on \underline{u} . The following IVP is a model of an autocatalytic chemical reaction:

$$\frac{\mathrm{d}Y_0}{\mathrm{d}t} = -k_0 Y_0 + k_2 Y_1 Y_2 \tag{4.37}$$

$$\frac{\mathrm{d}Y_1}{\mathrm{d}t} = k_0 Y_0 - k_1 Y_1^2 - k_2 Y_1 Y_2 \tag{4.38}$$

$$\frac{\mathrm{d}Y_2}{\mathrm{d}t} = k_1 Y_1^2 \tag{4.39}$$

where Y_i is the mass fraction of species i and k_i are constants. This IVP was first presented by Robertson in 1966 as an example of a stiff system and hence is known now as Robertson's problem. We will use the following values,

$$k_0 = 4.0\text{E-}2\,\text{s}^{-1}, \quad k_1 = 3.0\text{E}7\,\text{s}^{-1}, \quad k_2 = 1.0\text{E}4\,\text{s}^{-1}$$
 (4.40)

Following our standard IVP notation, the state vector we choose as,

$$\underline{u} = [Y_0, Y_1, Y_2]^T \tag{4.41}$$

For the initial condition at t=0, we will use,

$$\underline{u}(0) = [1.0, 0.0, 0.0]^T$$
 (4.42)

Thus, only Y_0 is present initially.

Complete the following steps:

1. Implement the calc_all method in solve_robertson.py to calculate \underline{f} and $\partial \underline{f}/\partial \underline{u}$ given \underline{u} . See the docstring for details.

Further, complete the implementation of test_calc_all which will test that your implementation of calc_all is correct. Specifically, within test_calc_all, call calc_all to determine \underline{f} and $\partial \underline{f}/\partial \underline{u}$ for $\underline{u}=\begin{bmatrix}0.5,0.05,0.45\end{bmatrix}^T$ (and use the same values of k_0 , k_1 , and k_2 given above). The correct values of f and f_u are already included in test_calc_all and are named f_correct and f_u_correct.

Discussions

All posts sorted by recent activity

The main block of solve_robertson.py calls test_calc_all. When, test_calc_all is working, uncomment the next line in the main block beginning time_FE = ..., in preparation for the next part.

2. Implement the plot_Y method in solve_robertson.py to produce plots of the

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

myNewton in mynonlinsolver.py. A tester is provided which can be checked by running