(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-313006 (P2001-313006A)

(43)公開日 平成13年11月9日(2001.11.9)

(51) Int.Cl.7		識別記号	F I	テーマコード(参考)
H01K	7/00		H01K 7/00	Z 2H038
F 2 1 V	8/00		F 2 1 V 8/00	В
G 0 2 B	6/00	3 2 6	G 0 2 B 6/00	3 2 6

審査請求 未請求 請求項の数2 書面 (全 3 頁)

(21)出願番号	特願2000-169790(P2000-169790)

(22)出願日 平成12年4月29日(2000.4.29) (71)出願人 500264836

西坂 清孝

大阪府枚方市楠葉朝日3丁目4番12号

(72)発明者 許斐 正明

大阪府枚方市楠葉朝日3丁目4番12号

Fターム(参考) 2H038 BA45

(54) 【発明の名称】 赤外光による盗撮防止装置

(57)【要約】

【課題】盗撮により肖像権やプライバシーを侵害された り、本人が知らないうちに盗撮写真や撮ビデオが販売さ れたりして迷惑をしている人達がおり、これを防止する 装置が望まれている。

【解決手段】ビデオカメラ、フィルムカメラの受光特性 を利用し、人の目には見えないがカメラには見える(受 光感度のある)波長の赤外光を照射し、撮影を不可能と する。

赤外光

6 カメラ

1

【特許請求の範囲】

【請求項1】赤外線発光素子を光源としその光を被写体 の外側に照射する盗撮防止装置

【請求項2】赤外線を光ファイバーにて導きその光を被 写体の外側に照射する請求項1記載の盗撮防止装置

【発明の詳細な説明】

[0001]

【発明の属する技術分野】光学分野

[0002]

【従来の技術】盗撮防止を目的とした物はまだ製造、販 10 売されていない。逆に盗撮用の赤外線照射装置は、製 造、販売されている。

[0003]

【発明が解決しようとする課題】最近盗聴装置、盗撮装 置が一般に出回り、夜間の公園や、ファッションホテ ル、トイレの盗撮ビデオが販売され、盗聴、盗撮がブー ムになっている感がある。更に盗聴、盗撮された被害者 側はその事実すら知らぬ間に、それらが商品化され市場 に出てしまうといった由々しき事態に陥っていたりする ものである。現在盗聴防止装置は何種類か製品化されて 20 おり、ある程度の防止はできるようになってきている が、盗撮防止装置はまだ作られていない。芸能人、アナ ウンサー、プロスポーツ選手など所謂著名人とされる人 達はもとより、善良な市民を被写体とした盗撮写真、盗 撮ビデオなどが出回ることにより肖像権やプライバシー を侵害され、被害を蒙る人が増加している現状に鑑み、 盗撮防止装置の必要性が重要となっている。このため、 日常生活に支障なく盗撮が防止できる装置が必要となっ ている。

[0004]

【課題を解決するための手段】人が見ることのできる光 の波長(可視光)は長いほうで780ナノメートルくら いまでである。ところがテレビカメラや写真のフィルム は900~1000ナノメートルの範囲まであり、可視 光よりもっと長い赤外波長まで受光感度がある。そこで 780ナノメートルより長い波長の光を発光させれば、 人には見えないがカメラでは受光反応していることにな る。この赤外光をある程度の強さ以上にし被写体から外 部に照射することにより、盗撮カメラによる撮影に対し て被写体を守ることができる。光源に赤外線を発する発 40 7 赤外線照射方向

光物を用い、その光を直接、もしくは光ファイバーにて 被写体前方まで光を導くことにより、(例えば頭部や胸 部) 照射方向前方からの撮影に対し照射点を中心として ある半径の範囲を撮影不可能にすることができる。構造 は簡単で光源に赤外線発光体(赤外線ランプ、赤外線し EDもしくは赤外レーザー)を使用しその光を直接照 射、もしくはファイバーで赤外光を導き、ファイバーの 先端から照射するだけである。ファイバーの開口角に問 題があればレンズをつけて調整すればよい。

【0005】

【発明実施の形態】光源として赤外線LED(記号1) か、赤外レーザー、もしくは赤外線ランプを用いる。光 ファイバー(記号4)を使用する場合にはLED、赤外 線ランプの光を鏡やレンズ (記号3)にて集光し光ファ イバーの入り口に導く。レーザーの場合はそのまま出力 光を光ファイバーの入り口に合わせればよい。光ファイ バーの出口を被写体の前方に持っていき赤外線(記号 7)を照射するようにする。光ファイバーの開口角を4 0~60度(記号5)にしておく。

[0006]

【発明の効果】今まで盗撮されて肖像権やプライバシー を侵害されたり、盗撮の心配をしていた人々が肖像権を 守る事ができるようになり、安心して生活ができるよう になる。本装置は光を照射するだけなので、人体や器物 を損傷する事もないので安心して使用できる。また、違 法な盗撮写真や盗撮ビデオの普及を制限する事ができ

【図面の簡単な説明】

【図1】 発光部の斜視図

【図2】 集光側面図 30

> 【図3】 照射部側面図

> 【図4】 使用例側面図

【符号の説明】

- 1 LED
- 2 基板
- 3 鏡及びレンズ
- 4 光ファイバー
- 5 光ファイバー開口角
- 6 カメラ

【図4】

PAT-NO: JP02001313006A

DOCUMENT- JP 2001313006 A

IDENTIFIER:

TITLE: ANTI-PHOTOGRAPH-

STEALING DEVICE BY

INFRA-RED LIGHT

PUBN-DATE: November 9, 2001

INVENTOR-INFORMATION:

NAME COUNTRY

MOTOI, MASAAKI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

NISHISAKA KIYOTAKA N/A

APPL-NO: JP2000169790

APPL-DATE: April 29, 2000

INT-CL (IPC): H01K007/00, F21V008/00,

G02B006/00

ABSTRACT:

PROBLEM TO BE SOLVED: To prevent

intrusion of rights to one's portrait or privacy by the act of stolen photography or prevent photos and videos taken without permission from being sold without one's knowledge.

SOLUTION: A photographing is made impossible by irradiating infra-red rays of the wavelengths invisible to a man but visible to a camera (with photo-sensitivity) by taking advantage of light-receiving characteristics of a video or a film camera.

COPYRIGHT: (C)2001,JPO