Results are obtained with h_0^P estimated

CALIBRATED PARAMETERS ON WEDNESDAYS, $h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}$, WITH $\omega_0, \alpha_0, \beta_0, \gamma_0^{*2}$ FROM MLE UNDER P AND UPDATED UNDER Q									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{ci} \ ext{median}$	8.5029e - 08 (4.4877e - 07) $(\pm 1.2370e - 07)$ 4.8556e - 10	$9.2714e - 06$ $(2.7968e - 05)$ $(\pm 7.7090e - 06)$ $1.1932e - 09$	$1.9246e - 07$ $(1.0856e - 06)$ $(\pm 3.0224e - 07)$ $9.6775e - 10$	$2.2129e - 06$ $(6.4184e - 06)$ $(\pm 1.8052e - 06)$ $1.6296e - 09$	$1.9389e - 06$ $(6.6239e - 06)$ $(\pm 1.8258e - 06)$ $1.4218e - 09$	$4.1610e - 07$ $(2.4952e - 06)$ $(\pm 6.8777e - 07)$ $1.6699e - 09$	$5.9987e - 07$ $(2.9189e - 06)$ $(\pm 8.0455e - 07)$ $8.8906e - 10$	$3.5299e - 07$ $(2.0142e - 06)$ $(\pm 5.6074e - 07)$ $3.4979e - 10$	$5.5812e - 07$ $(2.7146e - 06)$ $(\pm 7.5576e - 07)$ $6.2288e - 10$
$egin{array}{c} lpha \ ext{std} \ ext{ci} \ ext{median} \end{array}$	$2.5394e - 05$ $(2.2029e - 05)$ $(\pm 6.0720e - 06)$ $1.7658e - 05$	$ 2.1003e - 05 $ $ (2.0947e - 05) $ $ (\pm 5.7736e - 06) $ $ 1.9181e - 05 $	$1.8778e - 05$ $(1.6410e - 05)$ $(\pm 4.5685e - 06)$ $1.2068e - 05$	$1.3908e - 05$ $(1.1489e - 05)$ $(\pm 3.2313e - 06)$ $1.2723e - 05$	$1.3646e - 05$ $(8.5375e - 06)$ $(\pm 2.3532e - 06)$ $1.3239e - 05$	$1.3883e - 05$ $(5.9109e - 06)$ $(\pm 1.6292e - 06)$ $1.3217e - 05$	$1.3858e - 05$ $(8.0356e - 06)$ $(\pm 2.2149e - 06)$ $1.3228e - 05$	$8.2692e - 06$ $(4.8704e - 06)$ $(\pm 1.3559e - 06)$ $8.3302e - 06$	$1.5954e - 05$ $(9.4418e - 06)$ $(\pm 2.6286e - 06)$ $1.4242e - 05$
$egin{array}{c} eta \ ext{ci} \ ext{median} \end{array}$	$0.5032 \\ (0.3188) \\ (\pm 0.0879) \\ 0.5759$	$0.3363 \\ (0.3212) \\ (\pm 0.0885) \\ 0.3823$	$0.4882 \\ (0.3411) \\ (\pm 0.0950) \\ 0.5857$	$0.3724 \\ (0.3801) \\ (\pm 0.1069) \\ 0.3025$	$0.1836 \\ (0.2898) \\ (\pm 0.0799) \\ 0.0003$	$0.1643 \\ (0.2274) \\ (\pm 0.0627) \\ 0.0007$	$0.2466 \\ (0.3159) \\ (\pm 0.0871) \\ 0.0018$	$0.1768 \\ (0.3270) \\ (\pm 0.0910) \\ 0.0001$	$0.2450 \\ (0.3193) \\ (\pm 0.0889) \\ 0.0023$
$\gamma^* \ ext{std} \ ext{ci} \ ext{median}$	$152.7405 (136.5742) (\pm 37.6445)112.0207$	$213.9027 (168.6915) (\pm 46.4971) 155.9251$	$178.3425 (140.6359) (\pm 39.1533)147.8898$	$268.5595 (295.7190) (\pm 83.1723) 169.4020$	$254.9716 (239.7515) (\pm 66.0837) 202.0041$	$\begin{array}{c} 221.9130 \\ (41.5011) \\ (\pm 11.4391) \\ 228.8470 \end{array}$	$209.9787 (73.9368) (\pm 20.3795) 208.6253$	301.8938 (189.9283) (± 52.8764) 261.8796	$202.9867 (132.2615) (\pm 36.8218) 167.7543$
$egin{aligned} h_0^Q &= h_t^P \ & \mathbf{std} \ & \mathbf{ci} \ & \mathbf{median} \end{aligned}$	$1.2504e - 04$ $(8.4350e - 05)$ $(\pm 2.3250e - 05)$ $1.0398e - 04$	$1.6094e - 04$ $(1.0127e - 04)$ $(\pm 2.7914e - 05)$ $1.3887e - 04$	$8.8020e - 05$ $(3.9993e - 05)$ $(\pm 1.1134e - 05)$ $7.9893e - 05$	$6.3516e - 05$ $(3.0169e - 05)$ $(\pm 8.4851e - 06)$ $5.2671e - 05$	$6.4968e - 05$ $(3.7802e - 05)$ $(\pm 1.0419e - 05)$ $5.4472e - 05$	$1.0677e - 04$ $(5.3934e - 05)$ $(\pm 1.4866e - 05)$ $8.9209e - 05$	$9.4593e - 05$ $(6.6163e - 05)$ $(\pm 1.8237e - 05)$ $6.9330e - 05$	$4.2065e - 05$ $(2.5624e - 05)$ $(\pm 7.1338e - 06)$ $3.6036e - 05$	$1.2042e - 04$ $(9.2499e - 05)$ $(\pm 2.5752e - 05)$ $1.0226e - 04$
MSE	1.1660	4.6442	2.4437	4.3159	7.5939	6.1701	10.7231	20.7106	13.3130
IVRMSE	0.0633	0.0921	0.0863	0.0894	0.0927	0.0927	0.1089	0.1237	0.0887
MAPE	0.0734	0.0906	0.1179	0.1315	0.1531	0.1484	0.1669	0.2416	0.1395
OptLL	216.3430	211.5388	252.2146	334.4711	356.0208	438.7128	515.4908	559.3221	688.0683