Public Key Cryptology,

Part II:

Public key cryptosystems and signature schemes

Last updated: Monday, March 23, 2020

Prof. Amir Herzberg CSE Dept, Univ. of Connecticut

Public Key Cryptosystem

Using DH: for Encryption?

- Can we turn DH into... encryption?
- Bob **publishes** g^b as its public key
- Alice uses it (directly!) to encrypt messages for Bob
 - No interaction
- Let's see it gradually...

Turning [DH] to Public Key Cryptosystem

- Select random prime p and generator g
- Alice: secret key a, public key $P_A = g^a \mod p$
- Bob: secret key b, public key $P_B = g^b \mod p$

Turning [DH] to Public Key Cryptosystem

- Select random prime p and generator g
- Alice: secret key d_A public key $P_A = g^a + m e_A = g^{d_A} \mod p$
- Bob: secret key b, public key $P_B = g^b \mod p$ (Bob will encrypt – does not have keys)

Turning [DH] to Public Key Cryptosystem

- Select random prime p and generator g
- Alice: secret key d_A , public key $e_A = g^{d_A} \mod p$
- Bob: secret key b, public key $P_R = g^b \mod p$
- To encrypt message m to Alice:
 - Bob selects random b
 - □ Sends: $g^b \mod p$, $m \oplus h((e_A)^b) = m \oplus h(g^{b \cdot d_A} \mod p)$
 - □ Secure if $h(g^{b \cdot d_A} \mod p)$ is pseudo-random

Alice

 $e_A = g^{d_A} \mod p$

Bob

 $g^b \mod p$, $m \oplus h(g^{b \cdot d_A} \mod p)$

El-Gamal Public Key Cryptosystem

- Variant of [DH] PKC: Encrypt by multiplication, not XOR
- To encrypt message m to Alice, whose public key is $e_A = g^{d_A} \mod p$:
 - Bob selects random b
 - \square Sends: $g^b \mod p$, $m^*(e_A)^b = m^*g^{b \cdot d_A} \mod p$

Alice

$$e_A = g^{d_A} \mod p$$

 $(g^b \mod p, m^* e_A^b \mod p)$

- Problem: $g^{b \cdot d_A} \mod p$ may leak bit(s)...
- `Classical' DH solution: securely derive a key: $h(g^{a_ib_i}mod p)$
- El-Gamal's solution: use a group where DDH believed to hold
 - Note: message must be encoded as member of the group!
 - So why use it? Some special properties...

Homomorphic Encryption

- Given: two ciphertexts $E_{e_A}(m_1)$, $E_{e_A}(m_2)$
- Compute $E_{e_A}(m_1 \cdot m_2)$
- Applications, e.g.: re-encrypt for sender anonymity
 - $\qquad \text{Re-encrypt: } E_{e_A}(m_1;\$_1) = E_{e_A}(m_1 \cdot 1) = E_{e_A}(m_1;\$_2) \cdot E_{e_A}(1)$
 - Notation: $E_e(m;\$)$: encryption of message m with random string $\$ \in \{0,1\}^*$

How? We show with El-Gamal

Note: does NOT work using $h(g^{a_ib_i}mod p)$

El-Gamal PKC: homomorphism

- Given two ciphertexts:
 - $E_{e_A}(m_1) = (x_1, y_1) = (g^{b_1} \mod p, m_1 * g^{b_1 \cdot d_A} \mod p)$
 - $E_{e_A}(m_2) = (x_2, y_2) = (g^{b_2} \mod p, m_2 * g^{b_2 \cdot d_A} \mod p)$
- $(x_1x_2, y_1y_2) = (g^{b_1+b_2} \bmod p, m_1 \cdot m_2 * g^{(b_1+b_2) \cdot d_A} \bmod p) = E_{e_A}(m_1 \cdot m_2)$
- Decrypts to same message!
- Extension: <u>universal</u> re-encryption: same but without knowing public key g^a
 - Hint: send encryption of 1 with each ciphertext
 - Use: mix ciphertext for anonymous recipient, too

Fully-homomorphic encryption?

- We discussed multiplicative-homomorphism:
 - Given: two ciphertexts $E_{e_A}(m_1)$, $E_{e_A}(m_2)$
 - □ Compute $E_{e_A}(m_1 \cdot m_2)$
- Alternative forms of homomorphism....
 - □ Additive-homomorphism: Compute $E_{e_A}(m_1 + m_2)$
 - Fully-homomorphic: both!
- Fully-homomorphic encryption:
 - □ Allows computing arbitrary function $E_{e_A}(f(m_1, m_2))$
 - Given only encrypted values: $E_{e_A}(m_1)$, $E_{e_A}(m_2)$
 - Important... allows computing on encrypted data!!
 - Several designs, high overhead...

RSA Public Key Cryptosystem

- First proposed and still widely used
- Not really covered in this course take crypto!
- Some basic details...
- Select two large primes p,q; let n=pq
- Select prime e (public key: $\langle n, e \rangle$)
 - \Box Or co-prime with $\Phi(n) = (p-1)(q-1)$
- Let private key be $d=e^{-1} \mod \Phi(n)$ (i.e., $ed=1 \mod \Phi(n)$)
- Encryption: $RSA.E_{e,n}(m) = m^e \mod n$
- **Decryption:** $RSA.D_{d,n}(c)=c^d \mod n$
- Correctness: $D_{d,n}(E_{e,n}(m)) = (m^e)^d = m^{ed} = m \mod n$
 - □ Intuitively: $ed=1 \mod \Phi(n) \rightarrow m^{ed} = m \mod n$
 - But why ?
 - A bit of number-theory `magic'...

2002 Turing Award

Euler Theorem & Function $\phi_n = \Phi(n)$

- Euler's Theorem: if a, n are co-primes then $a^{\Phi(n)}=1 \mod n$
 - \square Co-primes: no common divisor, i.e. gcd(a, n)=1
- Where $\Phi(n)$, called <u>Euler function</u> of n, is the number of positive integers less than n and co-prime to n.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\Phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8

- $\Phi(p)=(p-1)$ for any prime p
- $\Phi(pq)=(p-1)(q-1)$ for any primes p,q
 - □ Why? pq has common divisor with p, 2p,... (q-1)p, q, 2q, ...(p-1)q
 - So number of smaller co-primes: (pq-1)-[(p-1)+(q-1)]=pq-p-q+1=(p-1)(q-1)

Euler Theorem & Function $\phi_n = \Phi(n)$

- Euler's Theorem: if a, n are co-primes then $a^{\Phi(n)}=1 \mod n$
 - \square Co-primes: no common divisor, i.e. gcd(a, n)=1
- Where $\Phi(n)$, called <u>Euler function</u> of n, is the number of positive integers less than n and co-prime to n.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\Phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8

- For primes p, q holds $\Phi(pq)=(p-1)(q-1)$
- Exercises: (1) Fermats' little Theorem: p prime, $a \mod p \neq 0 \Rightarrow a^{p-1} = 1 \mod p$
- **2)** (**b**) $a^b = a^{b \mod (p-1)} \mod p$, $a^b = a^{b \mod \Phi(n)} \mod n$

RSA Public Key Cryptosystem

- Select two large primes p,q and let n=pq
 - $\blacksquare \rightarrow \Phi(n) = \Phi(pq) = (p-1)(q-1)$
- Select prime e; public key: <n,e>
 - □ Private key: $d=e^{-l} \mod \Phi(n) \implies ed=1+l \Phi(n)$ for some l
- Encryption: $RSA.E_{e,n}(m)=m^e \mod n$
- Decryption: $RSA.D_{d,n}(c) = c^d \mod n$
- Correctness: $D_{d,n}(E_{e,n}(m)) = m^{ed} \mod n$
- $m^{ed} = m^{ed} = m^{l+l \Phi(n)} = m m^{l \Phi(n)} = m (m^{\Phi(n)})^{l}$
- $m^{ed} \mod n = m (m^{\Phi(n)} \mod n)^l \mod n$
- Eulers'Theorem: $m^{\Phi(n)} \mod n = 1 \mod n$
- $\rightarrow D_{d,n}(E_{e,n}(m)) = m^{ed} \mod n = m \ 1^l \mod n = m$

RSA Public Key Cryptosystem

- Correctness: $D_{d,n}(E_{e,n}(m)) = m^{ed} \mod n$
- $m^{ed} = m^{ed} = m^{l+l \Phi(n)} = m m^{l \Phi(n)} = m (m^{\Phi(n)})^{l}$
- $m^{ed} \mod n = m (m^{\Phi(n)} \mod n)^l \mod n$
- Eulers'Theorem: $m^{\Phi(n)} \mod n = 1 \mod n$
- $\rightarrow D_{d,n}(E_{e,n}(m)) = m^{ed} \mod n = m \ 1^l \mod n = m$
- Comments:
 - \square $m < n \rightarrow m = m \mod n$
 - Eulers'Theorem holds (only) if m, n are co-primes
 - If not co-primes? Use Chinese Reminder Theorem
 - A nice, not very complex argument
 - But: beyond our scope take Crypto!

The RSA Problem and Assumption

- RSA problem: Find m, given (n,e) and 'ciphertext' value $c=m^e \mod n$
- RSA assumption: if (n,e) are chosen
 `correctly', then the RSA problem is `hard'
 - \square I.e., no efficient alg can find m with high probability
 - □ For `large' n and $m \leftarrow \{1, ..., n\}$
- Does not prevent exposure of partial information
- May not be secure for a non-random message
- Does not ensure randomization (indistinguishablity)

Padding RSA

- Pad and Unpad functions: m = Unpac
 - Encryption with padding:
 - Decryption with unpad:

- m = Unpad(Pad(m;r))
- $c = [Pad(m, r)]^e \mod n$,
- $m = Unpad(c^d \mod n)$

- Required to...
 - Add randomization
 - Prevent detection of repeating plaintext
 - □ Prevent 'related message' attack (to allow use of tiny *e*)
 - Detect, prevent (some) chosen-ciphertext attacks
 - Early paddings schemes subject to CCA attacks
 - Even 'Feedback-only CCA' (aware of unpad failure)

Optimal Asymmetric Encryption Padding (OAEP)

- No chosen-ciphertext attacks: ciphertext 'proves' knowledge of plaintext
- Feistel-like; use two crypto-hash functions g, h (assume 'random')
 - □ Let *L* be length of input to RSA, ζ , $\rho \ll L$ be 'security parameters' (say 80 bits)
 - \Box g: 'random function' from ρ bits to L- ρ bits, h: 'random function' from L- ρ bits to ρ bits
 - If p_1 wasn't used as input to $h \to h(p_1)$ is 'random' $\to h(p_1)$ r is 'random' $\to g(h(p_1) \oplus r)$ is 'random' \to highly unlikely that ζ LSbits of $p_1 \oplus g(h(p_1) \oplus r)$ are zero
 - □ This kind of argument is called *random oracle methodology (ROM)*

Hybrid Encryption ('enveloping')

- Challenge: public key cryptosystems are slow
- Hybrid encryption:
 - Use VIL secret key cryptosystem (SKE,SKD)
 - Encrypt shared key k and use k to encrypt plaintext
 - Send ciphertext c_M (encrypted message) with encrypted key c_k

How does Bob know Alice's public key?

- Depends on threat model...
 - Passive (`eavesdropping`) adversary: just send it
 - Off-path (`blind`) adversary: use nonce
 - Man-in-the-Middle (MITM): authenticate
- Authenticate how?
 - MAC: requires shared secret key
 - Public key signature scheme:
 authenticate using public key
 - Certificate: public key of entity signed by certificate authority (CA)

Public Key Digital Signatures

- Sign using a private, secret signature key (A.s for Alice)
- Validate using a <u>public</u> key (A.v for Alice)
- Everybody can validate signatures at any time
 - Provides authentication, integrity <u>and</u> evidence / non-repudiation
 - MAC: 'just' authentication+integrity, no evidence, can repudiate

PK Signatures: Unforgeability Requirement

- Unforgeability: given v, attacker should be unable to find **any** 'valid' (m, σ) , i.e., $V_v(m, \sigma) = OK$
 - Even when attacker can select messages m', receive $\sigma' = S_s(m')$
 - For any message except chosen m

PK Signatures: Unforgeability Requirement

- (Existential) Unforgeability Experiment:
 - \Box Generate (s, v), give v to attacker
 - □ Attacker can select messages m', receive $\sigma' = S_s(m')$
 - □ Attacker outputs claimed-forgery: (m, σ)
 - \Box Attacker wins if v(m,)=Ok, and attacker never selected m

Public Key Certificate

 Certificate: signature by Certificate Authority (CA) over subject's public key and attributes (e.g., domain name)

More: in TLS/PKI lectures...

RSA Signatures

- Secret signing key s, public verification key v
- Short (<n) messages: RSA signing with message recovery</p>
- First attempt:
 - RSA. $S_s(m) = m^s \mod n$, RSA. $V_v(m,x) = \{ OK \ if \ m = x^v \ mod \ n; \ else, \ FAIL \}$
 - \square Hmm... for any x, let $m=x^{\nu} \mod n$; then RSA. $V_{\nu}(m,x)=OK$
 - Unforgeability requirement fails: attacker has a forgery!
- Preventing `random signatures' ?
 - □ RSA. $S_s(m) = pad(m)^s \mod n$, RSA. $V_v(m,x) = \{OK \text{ if } m = unpad(x^v \mod n); \text{ else, } FAIL\}$
 - Pad, unpaid: redundancy added (pad) and verified (unpad)
- Long messages: ??
 - Hint: use collision resistant hash function (CRHF)

The Hash-then-Sign Paradigm

- Challenge: messages are long, PKC is slow
- How to sign long messages efficiently?
 - Using Collision-Resistant Hash h:
 - \rightarrow infeasible to find pair (x, x') s.t. $x' \neq x$ yet

$$h(x)=h(x')$$

 \square And signature scheme (S, V)

Solution: $S_s^h(m) = S_s(h(m))$

Cf.: hybrid encryption

Message m

Hash h

h(m)

Sign S

 $S_s^h(m)$

27

RSA Signatures

- Secret signing key s, public verification key v
- Short (<n) messages: RSA signing with message recovery</p>
 - □ RSA. $S_s(m) = R(m)^s \mod n$, RSA. $V_v(x) = \{R^{-1}(x^v \mod n); error \text{ if undefined}\}$
 - \square R(.): redundancy function; make random string unlikely to be valid signature
- Long messages: hash-then-sign, RSA_h, $h:\{0,1\}^* \rightarrow \{0.1\}^L$
 - Aka signature with appendix
 - $Arr RSA_h.S_s(m)=m//[h(m)]^s mod n$
 - RSA_ $h.V_v(m/x)=m$ iff $h(m)=x^v \mod n$ (else: error)
 - \blacksquare m, m's.t. h(m)=h(m') \Rightarrow sign(h(m))=sign(h(m'))
- h is (keyless) collision resistant hash function (CRHF)
 - \rightarrow infeasible to find pair (x, x') s.t. $x' \neq x$ yet h(x) = h(x')

3/23/2020 **28**

Discrete-Log Digital Signature?

- RSA allowed encryption and signing...
 based on assuming factoring is hard
- Can we sign based on assuming discrete log is hard?
- Most well-known, popular scheme: DSA
 - Digital Signature Algorithm, by NSA/NIST
 - Details: crypto course
- We'll discuss simpler, less efficient El-Gamal Signatures

3/23/2020 **29**

El-Gamal signatures

- Parameters: $p \leftarrow primes[n \ bit], g \leftarrow Generator(p)$
- Key generation: $s \leftarrow \{2, ..., p-2\}, v \leftarrow g^s mod p$
- Sign: $k \leftarrow \{2, ..., p-2 | \gcd(k, p-1) = 1\}$
 - $r \leftarrow g^k \mod p, \quad t \leftarrow (h(m) sr) \cdot k^{-1} \mod (p-1)$
 - \Box If t = 0 then select new k
 - \Box Signature is (r, t)
- Verify: $g^{h(m)} = v^r r^t \mod p$; 0 < r < p; 0 < t < p 1
- Correctness:

$$g^{h(m)} = g^{sr+kt} = (g^s)^r (g^k)^t = v^r r^t \bmod p$$

- Using Fermat law: $g^b = g^{b \mod (p-1)} \mod p$
- Efficient off-line sign: precompute $r \leftarrow g^k mod p$

Summary

- Public key crypto allows:
 - Easier key management, distribution
 - Key agreement (DH): only need authenticated channel
 - Encryption: easier distribution, maintenance public key
 - Resiliency to key exposure (PFS and PRS)
 - Signatures
 - Certificate: public key and a signature authenticating it
 - Evidences
 - Handling VIL messages: hash-then-sign
- Next: Public Key Infrastructure (PKI) and TLS