INF 285 - Computación Científica Ingeniería Civil Informática

14: Integración Numérica

Introducción

Definición 1 (Integración Numérica o Cuadratura)

Es la obtención de la constante $c \in \mathbb{R}$, o una aproximación de c, de una integral definida

$$c = \int_{a}^{b} f(x) \, dx$$

utilizando algún método numérico

Suma de Riemann

Una función es integrable cuando las sumas izquierdas y derechas de Riemann convergen al mismo valor c:

$$c = \int_{a}^{b} f(x) \, dx$$

Suma de Riemann

Por la izquierda:

$$c = \sum_{k=0}^{m-1} f(x_k)(x_{k+1} - x_k) + E_L$$

Suma de Riemann

Por la derecha:

$$c = \sum_{k=0}^{m-1} f(x_{k+1})(x_{k+1} - x_k) + E_R$$

$$m = 16$$
, $c \approx 2,50036$.

Punto Medio

$$\int_{x_0}^{x_1} f(x) \, dx \approx f\left(\frac{x_0 + x_1}{2}\right) \, (x_1 - x_0)$$

El error viene dado por:

$$E_{PM} = \frac{h^3}{24}f''(c)$$

donde $c \in [x_0, x_1]$.

Sea f(x) una función con segunda derivada continua definida en $[x_0, x_1]$. Sean los valores $y_0 = f(x_0)$ e $y_1 = f(x_1)$. Consideremos el polinomio interpolador de Lagrange de grado 1 $P_1(x)$ que pasa por los puntos (x_0, y_0) y (x_1, y_1) :

$$f(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0} + \frac{(x - x_0)(x - x_1)}{2!} f''(c)$$

= $P(x) + E(x)$

donde $x_0 < c < x_1$

Utilizando lo anterior, integramos a ambos lados obteniendo lo siguiente:

$$\int_{x_0}^{x_1} f(x) \, dx = \int_{x_0}^{x_1} P(x) \, dx + \int_{x_0}^{x_1} E(x) \, dx$$

Tomemos la primera parte:

$$\int_{x_0}^{x_1} P(x) dx = \int_{x_0}^{x_1} y_0 \frac{x - x_1}{x_0 - x_1} dx + \int_{x_0}^{x_1} y_1 \frac{x - x_0}{x_1 - x_0} dx$$
$$= y_0 \frac{h}{2} + y_1 \frac{h}{2} = h \frac{(y_0 + y_1)}{2}$$

$$donde h = (x_1 - x_0)$$

Tomemos ahora la segunda parte:

$$\int_{x_0}^{x_1} E(x) dx = \frac{1}{2!} \int_{x_0}^{x_1} (x - x_0)(x - x_1) f''(c) dx$$
$$= \frac{f''(c)}{2} \int_{x_0}^{x_1} (x - x_0)(x - x_1) dx$$
$$= \frac{f''(c)}{2} \int_0^h u(u - h) du = -\frac{h^3}{12} f''(c)$$

Luego, obtenemos la **regla del trapecio**:

$$\int_{x_0}^{x_1} f(x) dx = h \frac{(y_0 + y_1)}{2} - \frac{h^3}{12} f''(c)$$

donde $h = x_1 - x_0 \text{ y } x_0 < c < x_1.$

De igual forma tomando el polinomio interpolado de Lagrange de segundo grado, se puede obtener otra aproximación:

$$f(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} + \frac{(x - x_0)(x - x_1)(x - x_2)}{3!} f'''(c)$$

$$= P(x) + E(x)$$

donde $x_0 < c < x_2$.

Integrando se obtiene:

$$\int_{x_0}^{x_2} f(x) \, dx = \int_{x_0}^{x_2} P(x) \, dx + \int_{x_0}^{x_2} E(x) \, dx$$

Tomemos la primera parte:

$$\int_{x_0}^{x_2} P(x) dx = \int_{x_0}^{x_2} y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} dx$$

$$+ \int_{x_0}^{x_2} y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} dx$$

$$+ \int_{x_0}^{x_2} y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} dx$$

$$= y_0 \frac{h}{3} + y_1 \frac{4h}{3} + y_2 \frac{h}{3} = h \frac{(y_0 + 4y_1 + y_2)}{3}$$

La segunda parte del error viene dada por:

$$\int_{x_0}^{x_2} E(x) \, dx = \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)(x - x_2)}{3!} f'''(c) = -\frac{h^5}{90} f^{(iv)}(c)$$

Luego se obtiene la **regla de Simpson**:

$$\int_{x_0}^{x_2} f(x) dx = h \frac{y_0 + 4y_1 + y_2}{3} - \frac{h^5}{90} f^{(iv)}(c)$$
 (1)

Ejemplo 1

Aplicar la regla del Trapecio y la regla de Simpson para aproximar:

$$\int_{1}^{1.5} \ln x \, dx$$

y encuentre una cota superior para el error de la aproximación.

La regla del Trapecio estima que:

$$\int_{1}^{1.5} \ln x \, dx \approx \frac{h}{2} (y_0 + y_1) = \frac{0.5}{2} (\ln 1 + \ln 1.5) = \frac{\ln 1.5}{4} \approx 0.101366$$

El error para la regla del Trapecio viene dado por $-h^3 f''(c)/12$, donde 1 < c < 1.5. Dado que $f''(x) = -1/x^2$, la magnitud del error es a lo más:

$$-\frac{h^3 f''(c)}{12} = \frac{h^3}{12 c^2} = \frac{0.5^3}{12 c^2} \le \frac{0.125}{12} \approx 0.01042$$

En otras palabras, la regla del Trapecio indica que:

$$\int_{1}^{1.5} \ln x \, dx = 0.101366 \pm 0.01042$$

La regla de Simpson estima que:

$$\int_{1}^{1.5} \ln x \, dx \approx \frac{h}{3} (y_0 + 4y_1 + y_2) = \frac{0.25}{3} (\ln 1 + 4 \ln 1.25 + \ln 1.5)$$

$$\approx 0.108169$$

El error para la regla de Simpson viene dado por $-h^5 f^{(iv)}(c)/90$, donde 1 < c < 1.5. Dado que $f^{(iv)}(x) = -6/x^4$, la magnitud del error es a lo más:

$$-\frac{h^5 f^{(iv)}(c)}{90} = \frac{6 h^5}{90 c^4} = \frac{6 (0.25)^5}{90 c^4} \le \frac{6 (0.25)^5}{90} \approx 0.00007$$

En otras palabras, la regla de Simpson indica que:

$$\int_{1}^{1.5} \ln x \, dx = 0.108169 \pm 0.00007$$

Las reglas del Trapecio y Simpson están limitadas a ser aplicadas en un intervalo. Sin embargo, una integral se puede aplicar sobre varios subintervalos y sumarlos. Por lo tanto, se puede aplicar sobre cada intervalo alguna regla de integración numérica y luego sumar. Esta estrategia se denomina **integración numérica compuesta**.

Consideremos que un subintervalo [a, b] se subdivide en una grilla con puntos equiespaciados:

$$a = x_0 < x_1 < x_2 < \dots < x_{m-2} < x_{m-1} < x_m = b$$

donde $h = x_{i+1} - x_i$ para cada i = 0, ..., m - 1

Aplicamos la regla del Trapecio a cada subintervalo:

$$\int_{x_i}^{x_{i+1}} f(x) dx = \frac{h}{2} (f(x_i) + f(x_{i+1})) - \frac{h^3}{12} f''(c_i)$$
 (2)

Si sumamos todas las aproximaciones se tiene que:

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{m-1} f(x_i) \right] - \sum_{i=0}^{m-1} \frac{h^3}{12} f''(c_i)$$
 (3)

El término del error puede ser escrito como:

$$\sum_{i=0}^{m-1} \frac{h^3}{12} f''(c_i) = \frac{h^3}{12} \sum_{i=0}^{m-1} f''(c_i) = \frac{h^3}{12} m f''(c)$$

Dado que mh = (b-a), el término del error es $(b-a)h^2f''(c)/12$. Luego la **regla del Trapecio Compuesta** viene dada por:

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[y_0 + y_m + 2 \sum_{i=1}^{m-1} y_i \right] - \frac{(b-a)h^2}{12} f''(c)$$
 (4)

donde h = (b - a)/m y a < c < b.

Para la regla de Simpson se sigue la misma estrategia. Consideremos la grilla de puntos equiespaciados:

$$a = x_0 < x_1 < x_2 < \dots < x_{2m-2} < x_{2m-1} < x_{2m} = b$$

donde $h = x_{i+1} - x_i$. Luego, en cada subintervalo $[x_{2i}, x_{2i+2}]$, para i = 0, ..., m-1, de longitud 2h se aplica la aproximación:

$$\int_{x_{2i}}^{x_{2i+2}} f(x) dx = \frac{h}{3} \left[f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}) \right] - \frac{h^5}{90} f^{(iv)}(c_i)$$
(5)

Si sumamos todas las aproximaciones se tiene que:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1}^{m} f(x_{2i-1}) + 2 \sum_{i=1}^{m-1} f(x_{2i}) \right] - \sum_{i=0}^{m-1} \frac{h^{5}}{90} f^{(iv)}(c_{i})$$

El término del error puede ser escrito como:

$$\sum_{i=0}^{m-1} \frac{h^5}{90} f^{(iv)}(c_i) = \frac{h^5}{90} \sum_{i=0}^{m-1} f^{(iv)}(c_i) = \frac{h^5}{90} m f^{(iv)}(c)$$

Dado que m(2h) = (b-a), el término del error es $(b-a)h^4f''(c)/180$.

Luego la regla de Simpson Compuesta viene dada por:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[y_0 + y_{2m} + 4 \sum_{i=1}^{m} y_{2i-1} + 2 \sum_{i=1}^{m-1} y_{2i} \right] - \frac{(b-a)h^4}{180} f^{(iv)}(c)$$
(6)

donde a < c < b.

Ejemplo 2

Utilizando 4 subintervalos aproxime

$$\int_0^2 e^x \, dx$$

por medio de las reglas del Trapecio y de Simpson compuestas.

Para la regla del Trapecio compuesta sobre [0,2] se tiene que h=1/2. La aproximación entonces es:

$$\int_0^2 e^x dx \approx \frac{\frac{1}{2}}{2} \left[y_0 + y_4 + 2 \sum_{i=1}^3 y_i \right]$$

$$= \frac{1}{4} \left[e^0 + e^2 + 2(e^{0.5} + e^1 + e^{1.5}) \right]$$

$$\approx 6.52161011$$

Y el error es a lo más

$$\frac{(b-a)h^2}{12}|f''(c)| = \frac{\frac{1}{2}}{12}|e^c| \le \frac{e^2}{24} \approx 0.307877$$

Para la regla de Simpson compuesta sobre [0, 2] se tiene que h = 1/4. La aproximación entonces es:

$$\int_{0}^{2} e^{x} dx \approx \frac{\frac{1}{4}}{3} \left[y_{0} + y_{8} + 4 \sum_{i=1}^{4} y_{2i-1} + 2 \sum_{i=1}^{3} y_{2i} \right]$$

$$= \frac{1}{12} \left[e^{0} + e^{2} + 4(e^{0.25} + e^{0.75} + e^{1.25} + e^{1.75}) + 2(e^{0.5} + e^{1} + e^{1.5}) \right]$$

$$\approx 6.38919373$$

Y el error es a lo más

$$\frac{(b-a)h^4}{180}|f^{(iv)}(c)| = \frac{\frac{1}{2^7}}{180}|e^c| \le \frac{e^2}{23040} \approx 0.00032071$$

Si lo comparamos con el valor real de la integral:

$$\int_0^2 e^x \, dx = e^2 - e^0 = 6.38905609$$

Podemos notar que la aproximación con la regla de Simpson compuesta alcanza 3 dígitos de precisión.

Cuadratura Gaussiana

La Cuadratura Gaussiana es un método de integración numérica que logra mejor precisión que las aproximaciones anteriores.

Para explicar cómo funciona, comencemos con la siguiente definición:

Definición 2

El conjunto de funciones no nulas $\{p_0,...,p_n\}$ en el intervalo [a,b] es **ortogonal** sobre [a,b] si

$$\int_{a}^{b} p_{j}(x) p_{k}(x) dx = \begin{cases} 0 & j \neq k \\ \neq 0 & j = k \end{cases}$$
 (7)

Cuadratura Gaussiana

Revisemos los siguientes teoremas:

Teorema 1

Si $\{p_0,...,p_n\}$ es un conjunto ortogonal de polinomios sobre el intervalo [a,b], donde el grado de $p_i=i$, entonces $\{p_0,...,p_n\}$ es una base para el espacio vectorial de polinomios de grado a lo más n sobre [a,b].

Teorema 2

Si $\{p_0,...,p_n\}$ es un conjunto ortogonal de polinomios sobre el intervalo [a,b] y si el grado de $p_i=i$, entonces p_i tiene i raíces distintas en el intervalo (a,b).

Cuadratura Gaussiana

Ejemplo 3

Encontrar un conjunto de 3 polinomios ortogonales en el intervalo [-1,1]

Comencemos con $p_0(x) = 1$ y $p_1(x) = x$. Se puede observar que:

$$\int_{-1}^1 1 \cdot x \, dx = 0$$

por lo tanto, son ortogonales.

Sigamos con $p_2(x) = x^2$:

$$\int_{-1}^{1} p_0(x) \cdot x^2 \, dx = \int_{-1}^{1} x^2 \, dx = \frac{2}{3} \neq 0$$

Luego no son ortogonales.

Cuadratura Gaussiana

Ajustemos $p_2(x) = x^2 + c$:

$$\int_{-1}^{1} p_0(x) \cdot (x^2 + c) \, dx = \int_{-1}^{1} (x^2 + c) \, dx = \frac{2}{3} + 2c = 0$$

por lo tanto c = -1/3. Se invita al estudiante a comprobar que $p_2(x) = x^2 - 1/3$ es ortogonal con $p_1(x)$.

Luego, el conjunto de 3 polinomios $\{1, x, x^2 - 1/3\}$ es ortogonal sobre [-1, 1].

Los 3 polinomios del ejemplo anterior, pertenecen al conjunto descubierto por **Legendre**.

Cuadratura Gaussiana

El conjunto de los polinomios de Legendre

$$p_i(x) = \frac{1}{2^i i!} \frac{d^i}{dx^i} \left[(x^2 - 1)^i \right]$$
 (8)

para $0 \le i \le n$ es ortogonal sobre [-1, 1].

Por el Teorema 2 el polinomio n-ésimo de Legendre tiene n raíces $x_1,...,x_n$ sobre [-1,1].

La Cuadratura Gaussiana de una función es simplemente una combinación lineal de funciones evaluadas en las raíces de Legendre.

La Cuadratura Gaussiana viene dada por:

$$\int_{-1}^{1} f(x) \, dx \approx \sum_{i=1}^{n} c_i \, f(x_i) \tag{9}$$

donde

$$c_i = \int_{-1}^{1} L_i(x) dx, \qquad i = 1, ..., n$$
 (10)

y x_i son las raíces del polinomio de Legendre de grado n.

Cuadratura Gaussiana

A continuación se muestran las raíces de los polinomios de Legendre para n=2,3,4:

$\mid \mid n \mid$	roots x_i	coefficients c_i
2	$-\sqrt{1/3} = -0.57735026918963$	1 = 1.000000000000000
	$\sqrt{1/3} = 0.57735026918963$	1 = 1.000000000000000
3	$-\sqrt{3/5} = -0.77459666924148$	5/9 = 0.5555555555555
	0 = 0.00000000000000	8/9 = 0.88888888888888
	$\sqrt{3/5} = 0.77459666924148$	5/9 = 0.5555555555555
4	$-\sqrt{\frac{15+2\sqrt{30}}{35}} = -0.86113631159405$	$\frac{90 - 5\sqrt{30}}{180} = 0.34785484513745$
	$-\sqrt{\frac{15-2\sqrt{30}}{35}} = -0.33998104358486$	$\frac{90+5\sqrt{30}}{180} = 0.65214515486255$
	$\sqrt{\frac{15 - 2\sqrt{30}}{35}} = 0.33998104358486$	$\frac{90+5\sqrt{30}}{180} = 0.65214515486255$
	$\sqrt{\frac{15+2\sqrt{30}}{35}} = 0.86113631159405$	$\frac{90 - 5\sqrt{30}}{180} = 0.34785484513745$

Cuadratura Gaussiana

Ejemplo 4

A proximar

$$\int_{-1}^{1} e^{-x^2} \, dx$$

utilizando Cuadratura Gaussiana.

Para n=2, la aproximación sería:

$$\int_{-1}^{1} e^{-x^2} dx \approx c_1 f(x_1) + c_2 f(x_2)$$

$$= 1 \cdot f\left(-\sqrt{1/3}\right) + 1 \cdot f\left(\sqrt{1/3}\right) \approx 1.43306262$$

Cuadratura Gaussiana

Para n = 3, la aproximación sería:

$$\int_{-1}^{1} e^{-x^{2}} dx \approx c_{1} f(x_{1}) + c_{2} f(x_{2}) + c_{3} f(x_{3})$$

$$= \frac{5}{9} f\left(-\sqrt{3/5}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\sqrt{3/5}\right)$$

$$\approx 1.498679$$

Se invita al estudiante a que realice la aproximación con n = 4.

Cuadratura Gaussiana

Aproximación de integrales en el intervalo [a, b].

Se utiliza la substitución t = (2x - a - b)/(b - a).

$$\int_{a}^{b} f(x) dx = \frac{(b-a)}{2} \int_{-1}^{1} f\left(\frac{(b-a)t}{2} + \frac{(b+a)}{2}\right) dt$$

Cuadratura Gaussiana

Ejemplo 5

 $A proximar\ la\ integral$

$$\int_{1}^{2} \ln x dx$$

 $utilizando\ cuadratura\ Gaussiana\ con\ n=4.$