

SZAKDOLGOZAT

S-gráf alapú várható profit maximalizálás sztochasztikus környezetben

Dunár Olivér

Mérnök Informatikus BSc szak

Nyilatkozat

Alulírott, Dunár Olivér (BOUE9E), Mérnök Informatikus BSc szakos hallgató kijelentem, hogy az S-gráf alapú várható profit maximalizálás sztochasztikus környezetben című szakdolgozat feladat kidolgozása a saját munkám, abban csak a megjelölt forrásokat, és a megjelölt mértékben használtam fel, az idézés szabályainak megfelelően, a hivatkozások pontos megjelölésével.

Eredményeim saját munkán, számításokon, kutatáson, valós méréseken alapulnak, és a legjobb tudásom szerint hitelesek.

Győr, [beadás dátuma]	
	hallgató

Kivonat

S-gráf alapú várható profit maximalizálás sztochasztikus környezetben

[1 oldalas, magyar nyelvű tartalmi kivonat]

Abstract

S-graph based expected profit maximization in stochastic environment [1 oldalas, angol nyelvű kivonat]

Tartalomjegyzék

1.	Bevezetés	1
2.	Irodalmi áttekintés	2
3.	Az S-gráf modell	3
4.	Problémadefiníció	4
	4.1. A problémák csoportosítása	4
	4.2. A problémák matematikai modelljei	6
	4.2.1. Preventív ütemezés fix batch mérettel	8
5.	Az S-gráf keretrendszer	9
6.	A probléma megvalósítása	10
	6.1. Szükséges változtatások az általános throughput maximalizálón	10
	6.2. Multiproduct receptek esete	10
7.	Teszteredmények	11
R	Összefoglalás	12

Bevezetés

Irodalmi áttekintés

Az S-gráf modell

Problémadefiníció

A probléma lényege abban keresendő, hogy a korábban kidolgozott általános throughput maximalizáló algoritmus [?] valódi ipari környezetben nem minden esetben állja meg a helyét, ugyanis sok esetben a a probléma megoldásához használt paraméterek nem determinisztikusak. Változó piaci környezetben ilyen sztochasztikus paraméternek számítanak például a termék iránti kereslet, illetve a piaci ár, amin a terméket értékesíteni lehet. Belátható az is, hogy ezek a paraméterek sokban befolyásolják a maximalizálandó profitot. Vegyünk például egy olyan esetet, amelyben a keresletnél többet termeltünk, ez esetben a keletkező többletet nem tudjuk értékesíteni, ez akár további kiadásokkal is járhat a többlet termék esetleges tárolási költsége miatt. Szakdolgozatom célja a 4.2 pontban bemutatott, Hegyháti által kidolgozott [?] matematikai modellek S-gráf keretrendszerbe történő implementálása, oly módon, hogy az általános throughput maximalizáló algoritmus sértetlen maradjon, a probléma típusától függően kompatibilis használat lehetséges legyen.

4.1. A problémák csoportosítása

A megoldandó problémák a sztochasztikus esetben is az általános throughput maximalizálásnál használthoz hasonló paraméterekkel adottak, pl.: minden terméket a receptje azonosít be, ezen kívül adott a termékek előállítására használható berendezések halmaza, illetve a termelésre rendelkezésre álló időhorizont. Az általános paramétereken kívül azonban sztochasztikus esetben különböző bizonytalan paraméterek is adottak minden termékre, amelyek valószínűségeit

különböző scenariokba, forgatókönyvekbe csoportosítjuk. Ezáltal minden forgatókönyvre adott:

- A forgatókönyv valószínűsége
- A termék ára (1 batch ára)
- A termék iránti kereslet
- A túltermelés költsége
- Az alul termelés költsége

A feladat az, hogy döntést hozzunk a termelt batch-ek darabszámát illetően, miközben egy olyan kivitelezhető ütemtervet biztosítunk, amelyet követve maximális várható profitot érhetünk el. A batch méretekkel kapcsolatos döntések alapján 3 eset különböztethető meg:

- Preventív ütemezés fix batch mérettel Ebben az esetben minden termékhez adott egy batch méret, az egyetlen preventív döntés amit hoznunk kell, hogy hány darab batch-t gyártunk az adott termékből.
- Preventív ütemezés változó batch mérettel Ebben az esetben nem csak a batch darabszám ,de annak a mérete is kiválasztható, de csak preventív módon a bizonytalan események bekövetkezése előtt.
- Two stage (kép lépcsős ütemezés) Ebben az esetben a batch darabszámot előre ki kell választanunk, azonban annak a méretéről a bizonytalan események bekövetkezése után is döntést hozhatunk.

Kezdetben feltételezzük, hogy a receptek és a termékek között 1:1 reláció van, azaz egy recept sem eredményez több terméket, illetve egyetlen termék sem állítható elő több fajta recepttel. A 6.2 pontban azonban kitérek azokra az esetekre, amelyekben ez a feltételezés nem állja meg a helyét.

4.2. A problémák matematikai modelljei

A 4.1 pontban bevezetett sztochasztikus esetek kezeléséhez az általános throughput maximalizáló algoritmus jelentős része felhasználható változtatások nélkül (vagy csak minimális változtatások árán, lsd. 6.1 pont). Az egyetlen meghatározó különbség az un. "revenue" függvényben figyelhető meg, amely célja, hogy az adott konfigurációra nézve kiszámítsa a várható profitot. A revenue függvény működésének leírásához szükséges néhány jelölés bevezetése:

P a termékek halmaza

 b_p a legyártott batch-ek darabszáma az adott konfigurációban

 s_p a termék batch mérete (fix batch méret esetén)

 s_p^{min}, s_p^{max} adott termékhez tartozó lehetséges legkisebb, legnagyobb batch méret (válzotó batch méret esetén)

S a forgatókönyvek halmaza

 $prob_s$ s forgatókönyv valószínűsége $s \in S$

 $dem_{s,p}$ p termék iránti kereslet az s forgatókönyvben $s \in S, p \in P$

 $price_{s,p}$ p termék ára az s forgatókönyvben $s \in S, p \in P$

 $oc_{s,p}, uc_{s,p}$ p termék túl-, és alul termelési költsége s forgatókönyvben $s \in S, p \in P$

Ezenkívül bevezetjük, még a $Profit_{s,p}(x)$ jelölést, amely megadja x mennyiségű p termék bevételét az adott s forgatókönyvben:

$$\{price_{s,p} \cdot x - (demand_{s,p} - x) \cdot uc_{s,p}\}$$

$$Profit_{s,p}(x) = \begin{cases} price_{s,p} \cdot x - (dem_{s,p} - x) \cdot uc_{s,p} & \text{ha } x < demand_{s,p} \\ price_{s,p} \cdot dem_{s,p} - (x - dem_{s,p}) \cdot oc_{s,p} & \text{egy\'ebk\'ent} \end{cases}$$

A 4.1 ábra a profit függvény szemléltetését szolgálja, a következő paraméterekkel:

$$s_p = 1$$
, $dem_{s,p} = 3$, $oc_{s,p} = 1$, $uc_{s,p} = 1$

4.1. ábra. A profit függvény szemléltetése

Nyilvánvalóan a bevételünk akkor lesz maximális, ha a kereslettel egyező darabszámot gyártunk az adott termékből (zöld pont az ábrán), ha ennél kevesebbet gyártunk a termékből, akkor a kereslet kielégítéséből eredő profit is elmarad, illetve további többlet költség kerül levonásra a profit összegéből az esetleges alul termelési plusz költségek miatt (pl. sárga pont az ábrán), abban az esetben pedig, ha a keresletet meghaladó mennyiséget gyártunk adott termékből, a kereslet kielégítődik ugyan, és bevételünk maximális lenne az adott piaci keresletet figyelembe véve, azonban a túltermelés következtében létrejött többlet tárolási költségét le kell vonjuk a profit értékéből (pl. piros pont az ábrán). Arra kell törekednünk tehát, hogy a lehetőségeket mérlegelve minden termékből annyit gyártsunk, hogy az az adott forgatókönyvben szereplő keresletet kielégítse, vagy azt a legkedvezőbb módon megközelítse valamelyik irányból, ügyelve az alul-, és túltermelési költségekre. Extrém esetekben előállhat olyan helyzet is, hogy a rendelkezésre determinisztikus paraméterek (pl. gépek száma), az aktuális időhorizont, illetve a sztochasztikus paraméterek aktuális értéke miatt a a profit függvény x-ben felvett értéke negatív szám lesz, ez esetben inkább a veszteségek minimalizálásáról beszélhetünk, mintsem profit maximalizálásról, azonban könnyen belátható, hogy a matematikai modellekben ame-

lyeket használunk a profit kiszámítására, ez semmiféle változást nem eredményez, csupán arra kell figyelni, hogy az implementáció során felkészüljünk a negatív számok a programnyelvben történő kezelésére.

- 4.2.1. Preventív ütemezés fix batch mérettel
- 4.2.2. Preventív ütemezés változó batch mérettel
- 4.2.3. Two stage (két lépcsős ütemezés)

Az S-gráf keretrendszer

A probléma megvalósítása

- 6.1. Szükséges változtatások az általános throughput maximalizálón
- 6.2. Multiproduct receptek esete

Teszteredmények

Összefoglalás