Determining the number of factors using personality data

S. Mason Garrison

VANDERBILT
PEABODY COLLEGE

Introduction

Introduction
Differential Psychology and Factor Analysis

Present Study

BFI Results

IPIP50 Results

ipip100 Results

Conclusions

DIFFERENTIAL PSYCHOLOGY AND FACTOR ANALYSIS

- ► The study of individual differences (*i.e.* intelligence, personality) is inexorably with factor analysis.
- ► Many generally accepted theories, such as the
 - ► General factor of Intelligence (Spearman, 1904) and the
 - ► Five Factor Model of Personality (?),
 - ▶ were developed, using factor analysis.
- ► Measures, based on those theories were developed,
 - using factor analysis.
- ▶ In turn, those measures were used to refine the theories,
 - ▶ which are used to create new measures...

► This cycle leaves Differential Psychology vulnerable

- ▶ because factor analysis is misused often in construct validation research (Distefano & Hess, 2005),
- ► conventional methods for determining the number of factors are subjective (Zwick & Velicer, 1986), and the
- ► standard cut points for determining good fit aren't designed for personality-like data (Kang, McNeish, & Hancock, 2016).

PRESENT STUDY

- ► The current study is designed to examine the effectiveness of factor enumeration rules on personality data;
- ► do the commonly used methods actually recover the correct number of factors?
- ► Specifically, how well do the following perform in recovering the correct number of factors?:
 - ► Minimum Average Partial procedure, and
 - ► various goodness-of-fit indices,
 - ▶ using classic (Hu & Bentler, 1998) thresholds.

DESIGN CONSTANTS

- ► Five factors
- ► Estimated using MLE with Oblimin Rotation
- ► Adapted the vss function from Revelle's Psych package, using R 3.2.4 revised.
- ► Extracted maximum of 9 factors
- ▶ 100 Data Sets per condition

DATA GENERATION

```
## Generate Data from factor loadings
# need a factor model and an effects matrix
GenData = function(fmodel,effect,n,names) {
   numberofvariables = dim(fmodel)[1]
   numberoflatent = dim(fmodel)[2]
   tmodel = t(fmodel)
   communality = diag(fmodel%*%tmodel) #weight true
        scores and errors given the measurement model
   uniqueness = 1-communality
   errorweight = diag(sqrt(uniqueness)) #weight the
        errors
```

DATA GENERATION

```
#create true scores for the latent variables
  latentscores = matrix(rnorm(n*(numberoflatent)),n)
  latentscores = latentscores% * % effect.
  truescores = latentscores%*%tmodel
#create normal error scores
 error = matrix(rnorm(n*(numberofvariables)),n)
 error = error% *% errorweight
#create observed scores
  observedscore = truescores+error
  observedscore = data.frame(observedscore)
 names (observedscore) = names
  return (observedscore) }
```

DESIGN CONDITIONS (3x3x3x4)

- ► Test Structure
 - ► Big Five Inventory (BFI; ?)
 - ▶ 44 items, 16 reverse coded
 - ► International Personality Item Pool-NEO (IPIP-NEO; Goldberg, 1999)
 - ▶ 50 items, 24 reverse coded
 - ► 100 items, 47 reverse coded
- ► Item Loadings
 - **▶** .3, .5, .7
- ► Correlation between Factors
 - **▶** 0, .1, .3
- ► Sample Size
 - ► 100, 250, 500, 1000

FIT STATISTICS FOR TRUE MODEL: RMSEA

TLI

SRMR

MAP

RMSEA POINT ESTIMATE BY CORRELATED FACTORS

RMSEA POINT BY LOADING

TLI BY CORRELATED FACTORS

990

TLI BY LOADING

SRMR BY CORRELATED FACTORS

SRMR BY LOADING

MAP BY CORRELATED FACTORS

MAP BY LOADING

CHI² BY CORRELATED FACTORS

₹ 2000

CHI² BY LOADING

₹ 990

FIT STATISTICS FOR TRUE MODEL: RMSEA

TLI

SRMR

MAP

RMSEA POINT ESTIMATE BY CORRELATED FACTORS

RMSEA POINT BY LOADING

TLI BY CORRELATED FACTORS

₹ 2000

TLI BY LOADING

SRMR BY CORRELATED FACTORS

SRMR BY LOADING

MAP BY CORRELATED FACTORS

MAP BY LOADING

CHI² BY CORRELATED FACTORS

CHI² BY LOADING

FIT STATISTICS FOR TRUE MODEL: RMSEA

TLI

SRMR

MAP

RMSEA POINT ESTIMATE BY CORRELATED FACTORS

RMSEA POINT BY LOADING

TLI BY CORRELATED FACTORS

TLI BY LOADING

₹ 2000

SRMR BY CORRELATED FACTORS

SRMR BY LOADING

MAP BY CORRELATED FACTORS

MAP BY LOADING

CHI² BY CORRELATED FACTORS

CHI² BY LOADING

₹ 2000

DISCUSSION

- ► Interpretation
 - ► Tendency to underfactor
 - ► High Correlations between factors
 - Low Factor Loadings
- ► Recommendations
 - ► Sample Size
 - ► Measurement Matters
- ► Future Directions

REFERENCES

- Distefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation : An empirical review. *Journal of Psychoeducational Assessment*, 225–241.
- Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. *Personality psychology in Europe*, 7, 7–28. Retrieved from http://projects.ori.org/lrg/PDFs_papers/Abroad-bandwidthinventory.pdf
- Hu, L.-t., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. *Psychological Methods*, 3(4), 424–453.
- Kang, Y., McNeish, D. M., & Hancock, G. R. (2016). The Role of Measurement Quality on Practical Guidelines for Assessing Measurement and Structural Invariance. Educational and Psychological Measurement.
- Spearman, C. (1904). "General Intelligence," objectively determined and measured. *The American Journal of Psychology*, 15(2), 201–292.
- Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. *Psychological Bulletin*, 99(3), 432.