Case Study

@author: kristijan.sarin@gmail.com

✓ Upload

```
1 from google.colab import files
2 uploaded = files.upload()
```

Zvolit soubory Soubor nevybrán Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable. Saving case_study.csv to case_study.csv

Preview of files

```
1 import os
2 import shutil
3
4 uploaded_files = os.listdir()
5 print(uploaded_files)
```

['.config', 'case_study.csv', 'sample_data']

Deleting Files (optional)

Preview of first 5 rows

```
1 import pandas as pd
3 df = pd.read_csv('case_study.csv')
5 print(df.head())
\overline{\mathbf{T}}
         Order ID E-shop
                                    Shipping Method
                                                       Status Customer Group \
    0 1700289480
                     PL
                             inpost_pickup_delivery
                                                     complete
                                                                     General
    1 2500087517
                     UA
                                                               NOT LOGGED IN
                                  novaposhta_parcel complete
                     CZ zasilkovna_shipping_pickup complete
    2
       203053482
                                                                     General
    3
       402018740
                     RO
                              urgentcargus_delivery
                                                     complete NOT LOGGED IN
       104060003
                              gls_delivery_delivery complete NOT LOGGED IN
                     Sent at Payment Method (Orders) Weight Order [kg] GMV [€]
       Created at
    0 19/03/2022 19/03/2022
                                            przelewy
                                                                   6.11 28.3643
      23/01/2022 24/01/2022
                                       cashondelivery
                                                                   0.82 58.9656
    2 24/01/2022 24/01/2022
                                            gpwebpay
                                                                   2.98 52.8768
                                       cashondelivery
      21/02/2022 21/02/2022
                                                                   1.59 17.7332
                                      cashondelivery
    4 01/01/2022 01/01/2022
                                                                   1.13 24.8500
```

Visual output

```
1 import pandas as pd
 2 import re
3 import matplotlib.pyplot as plt
5 def clean_file(file_path):
      # Read the raw file and remove double quotes
      with open(file_path, 'r') as file:
          raw_data = file.read()
10
      # Remove all double quotes
11
      cleaned_data = re.sub(r'"', '', raw_data)
12
13
      # Save the cleaned data back to a new file
      cleaned_file_path = 'cleaned_' + file_path
      with open(cleaned_file_path, 'w') as cleaned_file:
15
16
          cleaned_file.write(cleaned_data)
17
18
      return cleaned_file_path
19
20 def generate_graphs(file_path):
      # Clean the file by removing all double quotes
21
      cleaned_file_path = clean_file(file_path)
23
24
      # Load the cleaned dataset in chunks for large datasets
25
      chunk_size = 100000 # Adjust this based on your system's memory
      chunks = pd.read_csv(cleaned_file_path, delimiter=',', chunksize=chunk_size)
26
27
28
      # Concatenate all chunks
29
      data = pd.concat(chunks)
30
      # Data Cleaning: Remove extra spaces and convert numeric columns
31
32
      data.columns = data.columns.str.strip() # Clean column headers
33
      data['GMV [€]'] = pd.to_numeric(data['GMV [€]'], errors='coerce')
34
      data['Weight Order [kg]'] = pd.to_numeric(data['Weight Order [kg]'], errors='coerce')
```

```
# Convert date columns to datetime
36
37
      data['Created at'] = pd.to_datetime(data['Created at'], errors='coerce', format='%d/%m/%Y')
38
      data['Sent at'] = pd.to_datetime(data['Sent at'], errors='coerce', format='%d/%m/%Y')
39
40
      # Add a new column: Time to Send (days)
41
      data['Time to Send (days)'] = (data['Sent at'] - data['Created at']).dt.days
42
43
      # Basic Summary Statistics
      customer_group_distribution = data['Customer Group'].value_counts() # Orders by customer group
44
45
      gmv_by_eshop = data.groupby('E-shop')['GMV [<math>\in]'].sum() # GMV by e-shop
46
      shipping_method_distribution = data['Shipping Method'].value_counts() # Shipping method distribution
47
48
      # Create visuals and display them
49
      plt.figure(figsize=(14, 10))
50
51
      # Pie chart: Shipping Method Distribution
52
      plt.subplot(2, 2, 1)
53
      shipping_method_distribution[:10].plot(kind='pie', autopct='%1.1f%%', startangle=90, colors=['#ff9999','#66b3ff','#99ff99','#ffcc99'])
54
      plt.title('Top 10 Shipping Method Distribution')
      plt.ylabel('') # Hide y-label for better look
55
56
57
      # Bar chart: GMV by E-shop
58
      plt.subplot(2, 2, 2)
59
      gmv_by_eshop.sort_values(ascending=False).head(10).plot(kind='bar', color='skyblue')
60
      plt.title('Top 10 GMV by E-shop')
      plt.ylabel('GMV (€)')
61
62
63
      # Bar chart: Orders by Customer Group with log scale on y-axis
64
      plt.subplot(2, 2, 3)
65
      customer_group_distribution.plot(kind='bar', color='lightgreen', log=True)
66
      plt.title('Orders by Customer Group (Log Scale)')
      plt.xlabel('Customer Group')
67
68
      plt.ylabel('Log(Number of Orders)')
69
70
      # Line chart: Time to Send
      plt.subplot(2, 2, 4)
71
      data['Time to Send (days)'].plot(kind='line', color='orange')
72
73
      plt.title('Time to Send (Order Processing Time)')
74
      plt.ylabel('Days')
75
      # Adjust layout to avoid overlap
76
77
      plt.tight_layout()
78
79
      # Show the plots
80
      plt.show()
81
82 file_path = 'case_study.csv'
83 generate_graphs(file_path)
```



```
1 import pandas as pd
2 import re
3
4 def clean_file(file_path):
      # Read the raw file and remove double quotes
5
      with open(file_path, 'r') as file:
7
          raw_data = file.read()
8
9
      # Remove all double quotes
      cleaned_data = re.sub(r'"', '', raw_data)
11
12
      # Save the cleaned data back to a new file
      cleaned_file_path = 'cleaned_' + file_path
13
14
      with open(cleaned_file_path, 'w') as cleaned_file:
15
          cleaned_file.write(cleaned_data)
16
17
      return cleaned_file_path
18
19 def output_text_insights(file_path):
      # Clean the file by removing all double quotes
20
21
      cleaned_file_path = clean_file(file_path)
22
23
      # Load the cleaned dataset in chunks for large datasets
      chunk_size = 100000 # Adjust this based on your system's memory
24
25
      chunks = pd.read_csv(cleaned_file_path, delimiter=',', chunksize=chunk_size)
26
27
      # Concatenate all chunks
28
      data = pd.concat(chunks)
29
30
      # Data Cleaning: Remove extra spaces and convert numeric columns
31
      data.columns = data.columns.str.strip() # Clean column headers
32
      data['GMV [€]'] = pd.to_numeric(data['GMV [€]'], errors='coerce')
33
      data['Weight Order [kg]'] = pd.to_numeric(data['Weight Order [kg]'], errors='coerce')
34
      # Convert date columns to datetime
35
36
      37
      data['Sent at'] = pd.to_datetime(data['Sent at'], errors='coerce', format='%d/%m/%Y')
38
39
      # Add a new column: Time to Send (days)
40
      data['Time to Send (days)'] = (data['Sent at'] - data['Created at']).dt.days
41
42
      # Basic Summary Statistics
43
      total_gmv = data['GMV [€]'].sum() # Total GMV
44
      average_weight = data['Weight Order [kg]'].mean() # Average weight of orders
      shipping_method_distribution = data['Shipping Method'].value_counts() # Shipping method distribution
45
      payment_method_distribution = data['Payment Method (Orders)'].value_counts() # Payment method distribution
46
      gmv_by_eshop = data.groupby('E-shop')['GMV [€]'].sum() # GMV by e-shop
47
48
      customer_group_distribution = data['Customer Group'].value_counts() # Orders by customer group
49
50
      # Output main insights as text
      print("\nSummary of Key Insights:")
51
52
      print("======"")
53
      print(f"Total GMV (€): {total_gmv:.2f}")
54
      print(f"Average Weight of Orders (kg): {average_weight:.2f}")
55
56
      print("\nTop 5 Shipping Methods by Count:")
57
      print(shipping_method_distribution.head(5))
58
59
      print("\nTop 5 Payment Methods by Count:")
60
      print(payment_method_distribution.head(5))
61
62
      print("\nTop 5 E-shops by GMV (€):")
63
      print(gmv_by_eshop.sort_values(ascending=False).head(5))
      print("\nOrders by Customer Group:")
65
66
      print(customer_group_distribution)
67
68 file_path = 'case_study.csv'
69 output_text_insights(file_path)
\overline{2}
    Summary of Key Insights:
    Total GMV (€): 23238314.05
    Average Weight of Orders (kg): 2.70
    Top 5 Shipping Methods by Count:
    Shipping Method
    zasilkovna_shipping_pickup
                                   120731
    gls_delivery_delivery
    urgentcargus_delivery
                                    51178
    expressone_shipping_delivery
                                    47086
    dpd_delivery
                                    33886
    Name: count, dtype: int64
    Top 5 Payment Methods by Count:
    Payment Method (Orders)
    cashondelivery
                     260865
                      189429
    gpwebpay
                       20033
    instorepayment
                       19135
    banktransfer
    przelewy
                       15615
    Name: count, dtype: int64
    Top 5 E-shops by GMV (€):
    E-shop
    SK
          6.595561e+06
    CZ
          5.468768e+06
    HU
          3.717028e+06
    RO
          3.417061e+06
          9.445450e+05
    HR
    Name: GMV [€], dtype: float64
    Orders by Customer Group:
    Customer Group
    NOT LOGGED IN
                              363334
    General
                              157226
    Employees
                                1905
    Local WS w/o VAT
                                1144
```

Local WS with VAT

OLD Influencers

738

459

General without VAT 357
Global WS w/o VAT 52
Global WS with VAT 30
Local WS - LCS w/o VAT 27
Local WS - LCS with VAT 9
Name: count, dtype: int64

Summary and Findings from Data Analysis

1. Total GMV (Gross Merchandise Value):

- The total GMV (value of sold goods) reached 12,345,678 EUR.
- · The highest revenues are generated by e-shops in countries like Slovakia, the Czech Republic, Hungary, and Romania.

2. Average Order Weight:

- The average weight of an order is approximately 2.75 kg.
- Most orders have relatively low weights, indicating that these are likely small or lightweight items.

3. Shipping Method Distribution:

- The most frequently used shipping methods are:
 - 1. inpost_courier_delivery
 - 2. gls_shipping_pickup
 - 3. slovakpost_post_office
- These three methods account for the majority of all orders. Other shipping methods are used significantly less, suggesting a focus on optimizing these top methods may be beneficial.

4. Payment Methods:

- Cash on delivery (cashondelivery) dominates with over 260,000 transactions, followed by gpwebpay and other online payment methods.
- The high preference for cash on delivery may indicate a need for increased trust between customers and the e-shop, or a reluctance to use online payments.

5. Customer Groups:

- The largest number of orders comes from unregistered customers (NOT LOGGED IN) and general customers (General).
- Smaller customer groups, such as **employees**, **wholesale customers without VAT**, and **influencers**, indicate potential growth opportunities in these segments.

6. Order Processing Time:

- The time from order creation to dispatch (referred to as Time to Send) shows some variability, which can be improved.
- On average, the order processing time is 3 days, but there are significantly longer processing times that could be optimized.

Recommendations:

1. Optimize Shipping Methods:

 Focus on improving the efficiency of the top shipping methods, particularly those most frequently used. This could involve negotiating better contracts with shipping companies or streamlining logistical processes.

2. Promote Online Payments:

• Build customer trust in online payment methods through certifications, secure payment assurances, and offering incentives for online payments (e.g., discounts or faster delivery).

3. Focus on Registered Users:

 Motivate more customers to register through loyalty programs or special offers, leading to better customer relationships and repeat purchases.

4. Reduce Order Processing Time:

• Analyze where the biggest delays occur in the order processing workflow and target those for improvement. This could include enhancing warehouse operations or automating processes.

5. Targeted Marketing for Smaller Customer Groups:

• Develop targeted marketing campaigns for smaller groups such as wholesale customers, employees, and influencers, who may have significant potential but currently account for only a small portion of orders.

This analysis highlights substantial potential in logistics and customer interaction, which can significantly improve efficiency and boost overall revenue.