Raport z realizacji projektu

Wersja 1.3

Temat projektu: Symulator biosygnałów na potrzeby systemów IoT Healthcare

Autorzy projektu: Jowita Lalewicz, Marta Mąka, Michał Szwalec

PM: Michał Szwalec

Abstrakt

Celem projektu było zaprojektowanie i stworzenie modelu, który w sposób realistyczny symuluje sygnały EKG o wybranej charakterystyce. Metody realizacji projektu opierają się na języku programowania Python, wraz z bibliotekami NumPy, Random, Pandas i Matplotlib. Sygnał EKG o określonej charakterystyce jest generowany z wykorzystaniem równania matematycznego, które poddano pseudolosowej parametryzacji, umożliwiającej generowanie sygnałów z zachowaniem ogólnej charakterystyki, lecz o zróżnicowanej wartości. Zakładane funkcjonalności obejmują wizualizację przebiegu czasowego sygnału oraz eksport wygenerowanego biosygnału w postaci pliku csv. Mierzalnym wynikiem projektu jest korelacja pomiędzy generowanymi sygnałami a sygnałem wzorcowym. Wygenerowane sygnały oraz ich charakterystyczne wartości zostaną porównane z sygnałami EKG pobranymi z bazy danych PhysioNet w celu oceny generowanego sygnału, sprawdzone zostanie czy wygenerowany sygnał jest realistyczny i odzwierciedla wybrane schorzenie. Projekt może znaleźć zastosowanie w dziedzinie IoT Healthcare jako narzędzie wspomagające procesy diagnostyczne i terapeutyczne. Dzięki realistycznemu symulowaniu wybranych schorzeń serca za pomocą generowania sygnałów EKG, projekt może pomóc w szkoleniach personelu medycznego, a także służyć jako narzędzie diagnostyczne do wykrywania nieprawidłowości w sygnałach EKG pacjentów.

Wstęp i badania literaturowe

a) Cele i założenia projektu.

Symulatory biosygnałów są niezwykle ważnym narzędziem w projektowaniu i testowaniu systemów loT Healthcare, które obejmują monitoring stanu zdrowia pacjentów, diagnozowanie chorób i przeprowadzanie terapii. Symulator biosygnałów może działać w czasie rzeczywistym i umożliwiać generowanie sygnałów z różnych źródeł, takich jak fizyczne symulatory, bazy danych sygnałów lub modele matematyczne. Może także umożliwić użytkownikowi symulowanie różnych scenariuszy klinicznych i warunków, takich jak choroby

serca. Celem projektu jest zaprojektowanie i stworzenie modelu, który będzie w stanie w sposób realistyczny symulować sygnały EKG o wybranej charakterystyce, a następnie ich ocena.

b) Zarys ogólny proponowanego rozwiązania.

Sygnał EKG o określonej charakterystyce zostanie wygenerowany z wykorzystaniem równania matematycznego, które będzie poddane pseudolosowej parametryzacji, umożliwiającej generowanie sygnałów z zachowaniem ogólnej charakterystyki, lecz o zróżnicowanej wartości. Mierzalny wynikiem projektu będzie korelacja pomiędzy generowanymi sygnałami, a sygnałem wzorcowym. Wygenerowane sygnały oraz ich charakterystyczne wartości zostaną porównane z sygnałami EKG pobranymi z bazy danych PhysioNet w celu oceny generowanego sygnału, sprawdzone zostanie czy wygenerowany sygnał jest realistyczny i odzwierciedla wybrane schorzenie.

Alternatywne rozwiązanie na podstawie przeglądu literatury zostało przedstawiono w poniższej tabeli:

Tytuł artykułu	Simulation Of Pathological ECG Signal Using Transform Method
Link	https://doi.org/10.1016/j.procs.2020.04.229
Cytowanie	Manju B.R., Akshaya B., Simulation Of Pathological ECG Signal Using Transform Method, Procedia Computer Science, Volume 171, 2020, Pages 2121-2127, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2020.04.229.
Cel artykułu, hipoteza badawcza	Opracowanie modelu generującego realistyczny sygnał EKG patologii serca
Wykorzystane technologie	MATLAB

Zastosowane metody przetwarzania, analizy i klasyfikacji sygnałów, klasyfikatory	Aproksymacja szeregu Fouriera: • funkcja paraboliczna - załamek P i T • funkcja o trójkątnym kształcie - zespół QRS
Skrócony protokół przeprowadzonego eksperymentu (w jaki sposób przeprowadzono eksperymenty) Rodzaje/ patologie sygnału EKG	 Zebranie danych (parametrów) z biologicznych sygnałów EKG Matematyczne modele poszczególnych fragmentów charakterystycznych sygnału EKG Aproksymacja szeregu Fouriera każdego zamodelowanego fragmentu sygnału Otrzymanie pełnego sygnału EKG i ocena specjalistów Normalny
rtouzujo, patologio dygriaia zitto	 Hipokaliemia Hiperkaliemia Dekstrokardia Dusznica bolesna
Uzyskane wyniki (skuteczność, dokładność pomiaru, wielkość błędu)	Pozytywna ocena lekarzy specjalistów

Koncepcja proponowanego rozwiązania Wykorzystane technologie

Projekt został napisany w języku Python, który oferuje bilbioteki takie jak NumPy, Random, Pandas i Matplotlib, które również zostały wykorzystane. Dane zostały zaimportowane z bazy danych PhysioNet w postacji pliku csv.

Funkcjonalność

Wizualizacja przebiegu czasowego sygnału EKG o określonej charaketrystyce na podstawie wybranych sygnałów z bazy danych PhysioNet. Wybór stopnia wygładzenia jak również wartości korelacji. Możliwość oceny sygnału przez porównanie go z sygnałem wzorcowym. Eksport wygenerowanego biosygnału w postaci pliku csv.

Opis algorytmu

W ramach projektu zdefiniowane zostało pięć różnych rodzajów sygnałów EKG, a dla każdego z nich zostały wyodrębnione odpowiednie próbki ze zbioru danych. Następnie przeprowadzono generowanie sygnałów na podstawie pseudolosowej parametryzacji, które były modyfikowane w oparciu o wybraną wartość korelacji. W celu oczyszczenia danych usunięto wartości skrajne maksimum i minimum (metoda eliminacji szumów). Zastosowano również wygładzanie sygnału. Otrzymane sygnały zostały przedstawione na wykresach wraz z sygnałem wzorcowym.

Kod źródłowy

Główna pętla programu:

```
# usuwanie z zbioru granicznych wartosci max i min w celu "oczyszczenia" danych
Normal = pd.DataFrame(Normal, columns=column names)
Normal = Normal.iloc[:, :-1]
print(f' shape before max/min drop: {Normal.shape}')
for i in range(Normal.shape[1]):
if Normal.shape[0] > 40:
if 184 > i > 5:
max_value = (Normal[column_names[i]]).max()
min_value = (Normal[column_names[i]]).min()
max value indexes = Normal.index[Normal[column names[i]] == max value].tolist()
Normal.drop(max_value_indexes, inplace=True)
min_value_indexes = Normal.index[Normal[column_names[i]] == min_value].tolist()
Normal.drop(min_value_indexes, inplace=True)
print(f'shape after max/min drop: {Normal.shape}')
# utworzenie zbioru max i min
minimal = Normal.min()
maximal = Normal.max()
#Generowanie sygnału
```

```
for n in range(1, 5):
mean = Normal.mean()
Generated_signal = mean
index = Generated_signal.index
for i in range(186):
if i < 2:
Generated_signal = Generated_signal.replace(float(Generated_signal[i]), -0.7)
elif 184 > i >= 2:
minimal num = float(minimal[i])
maximal_num = float(maximal[i])
mean_num = float(mean[i])
minimal_num = minimal_num + ((mean_num - minimal_num) * input_num)
maximal_num = maximal_num - ((maximal_num - mean_num) * input_num)
Generated_signal_number = ((mean_num + random.uniform(minimal_num, maximal_num)) / 2)
Generated_signal = Generated_signal.replace(Generated_signal[index[i]],
Generated_signal_number)
else:
Generated_signal = Generated_signal.replace(Generated_signal[index[i]], 2.2)
Generated signal = Generated signal.set axis(list(range(start, end)))
mean = mean.set_axis(list(range(start, end)))
start = start + 186
end = start + 186
Generated signals = Generated signals. append(Generated signal)
mean_signal = mean_signal._append(mean)
for x in range(smooth):
for i in range(3, (186 * n)):
Generated signals[i] = (Generated signals[i] + Generated signals[i + 1]) / 2
# ocena
dif = 0
for i in range(1, Generated signals.shape[0]):
dif = dif + (abs(Generated_signals[i] - mean_signal[i])) / mean_signal[i]
ocena = (dif / Generated signals.shape[0]) * 100
f'-----\n procentowa różnica pomiędzy wygenerowanym sygnałem \n a sygnałem
referencyjnym wynosi: {ocena}\n -----')
#wykres wygenerowany sygnał / sygnał wzorcowy
plt.figure()
Generated_signals[4:730].plot(color='blue')
mean_signal[4:730].plot(color='red', linestyle='dashed')
plt.show()
#Zapis do pliku csv
Generated signals.to csv('generated signal.csv')
```

Rezultaty i wnioski

Projekt spełnia założone funkcjonalności, ponieważ służy do generowania sygnałów EKG z możliwością ich modyfikacji i porównania z oryginalnymi sygnałami.

Zdefiniowane zostały opcje zmiany generowanego sygnału w celu dopasowania go do oryginalnego, takie jak korelacja i wygładzanie. Generowany sygnał jest tworzony na podstawie średnich wartości zebranej w każdej klasie, a następnie modyfikowany zgodnie z wybranymi opcjami. Możliwy jest również eksport wygenerowanego biosygnału w postaci pliku csv.

Rezultaty można zaobserwować na rysunku 1, gdzie przedstawiono przebieg wygenerowanego sygnału EKG (oznaczony kolorem niebieskim) wraz z sygnałem wzorcowym pochodzącym z bazy PhysioNet (oznaczony kolorem czerwonym).

Rys. 1. Zestawienie przebiegu wygenerowanego sygnału EKG wraz z sygnałem wzorcowym pochodzącym z bazy PhysioNet.

Podział zadań

Zadania podział	Osoba odpowiedzialna	Planowana data wykonania	Potwierdzenie wykonania przez PM (data wykonania)	Ocena realizacji przez PM (0 - niewykonane, 100% - wykonane w pełni)
-----------------	-------------------------	-----------------------------	--	---

Wybór i opisanie 1 artykułu z bazy IEEE Explore wg. wytycznych/ wybór rzeczywistego sygnału EKG	Lalewicz	28.03.2023	11.04.2023	100%
Przegląd oraz wybór bazy danych sygnałów, przygotowanie danych do algorytmu	Mąka	04.04.2023	11.04.2023	100%
Implementacja algorytmu symulacji sygnału EKG	Szwalec, Mąka, Lalewicz	18.04.2023	18.04.2023	100%
Testowanie algorytmu symulacji sygnału EKG oraz ocena wygenerowanego sygnału	Szwalec	25.04.2023	08.05.2023	100%