【氯及化合物】【一化辞典】1 氯气(重要)

氯元素的原子结构及存在

氯气的性质

颜色	状态	气味	毒性	密度	
黄绿色	气体	刺激性气味	有毒性	比空气大	

溶解性	沸点
可溶于水	在气体中沸点偏高,易液化
1 体积的水溶解约 2 体积的氯气	经压缩可液化成黄绿色液氯

氯气与氢气的反应

- 1. 实验操作:在空气中点燃氢气(点燃前要验纯),然后把导管伸入盛有氯气的集气瓶中。
- 2. 实验现象: 氢气在氯气中安静地燃烧,发出苍白色火焰,集气瓶口上方出现白雾。
- 3. 化学方程式:

H_2

拓展:

- (1)燃烧是发光发热的剧烈的化学反应,不一定要有氧气参与。如 $2P+3Cl_2$ 点燃 $2PCl_3$ 等。
- (2)若将 H₂与 Cl₂混合点燃或强光照射会发生爆炸。

氯气与金属的反应

	化学方程式	反应现象		
与钠反应	$2Na+Cl_2$ \triangle $2NaCl$	产生大量白色烟		
与铁反应	$2\text{Fe} + 3\text{Cl}_2 = \triangle 2\text{FeCl}_3$	产生大量棕褐色烟		
与铜反应	Cu+Cl ₂ ——CuCl ₂	产生大量棕黄色烟		

氯气在加热条件下能与大多数金属化合,生成高价金属氯化物,体现氯气的强氧化性

氯气与水的反应:新制氯水

1.	在常温下,	, 溶于水中的部分氯气与水发生反应:			
2.	2. 新制氯水的成分				
	三分:				
	四离:				

新制氯水的性质

新制氯水的多种成分决定了它具有多重性质

- 1. Cl₂:
 - (1) 新制氯水呈现浅黄绿色
 - (2) 氧化性: 与还原性物质反应
- 2. H+: 强酸性,与NaHCO₃、CaCO₃、Mg 反应
- 3. Cl-: 加入AgNO3溶液可以检验出氯水中的Cl-, 现象是有白色沉淀生成
- 4. HClO:
 - (1) 强氧化性:漂白性、杀菌、消毒 向新制氯水中滴加紫色石蕊溶液,先变红(H+作用的结果),后褪色(HClO作用的结果)
 - (2) 弱酸性: 酸性比H2CO3还弱
 - (3) 不稳定性:

新制氯水漂白原理的探究实验

实验操作	实验现象	实验结论			
干燥 的有布 条 干燥 氯气	有色布条不褪色	干燥的Cl₂无漂白作用			
湿润的有色布条	有色布条褪色	在有水的条件下褪色,			
有色 一 一 一 一 一 一 一 一 一 一 一 一 一	有色鲜花褪色	说明具有漂白性的是HClO,而非Cl ₂			

5. 近年来有科学家提出,使用氯气对自来水消毒时,氯气会与水中的有机物发生反应,生成的有机氯化物可能对人体有害。所以,国家规定了饮用水中余氯含量的标准,而且已开始使用二氧化氯(ClCO₂)、臭氧等新的自来水消毒剂。

久置氯水

- 1. 反应方程式:
- 2. 成分:
- 3. 性质:有酸性(比新制氯水强),无氧化性、无漂白性
- 4. 实验室中氯水需现用现配,且避光、密封保存在棕色试剂瓶中

Cl2与碱的反应

最初,人们直接用氯水作漂白剂,但因氯气的溶解度不大,而且生成的 HCIO 不稳定,难以保存,使用起来很不方便,效果也不理想。在 Cl₂与水反应原理的基础上,人们制得了次氯酸钠(NaClO)、次氯酸钙[Ca(ClO)₂]等具有漂白作用的次氯酸盐。

(1) Cl₂与常温下的 NaOH 溶液

此反应的应用

- ①实验室吸收多余的 Cl₂
- ②工业制漂白液,有效成分为 NaClO (比 HClO 稳定得多)

		. \		,,	1				
ĺ	γ) Cl ₂ 通	入冷	的石	灰乳	Cal	OH	lء۱	中
١		1012	/ 🕶	HJTH	クくすい	Cui	OII.	<i>1</i>	

漂白粉起效原理:

漂白粉久置于空气中失效:

漂白液、漂白粉、漂粉精既可作漂白棉、麻、纸张的漂白剂,又可用作游泳池等场所的消毒剂