

Music Feature Analysis with

Dmitry Bogdanov 23.05.2019

Essentia http://essentia.upf.edu

Open-source library and tools for audio and music analysis, description and synthesis

- Extensive collection of reusable algorithms
- Written in C++ and optimized for computational speed
- Python bindings for fast prototyping
- Feature extractors for large-scale audio analysis
- Cross-platform (Linux, Mac OS X, Windows, iOS, Android, and JavaScript)
- Support for mobile platforms and real-time processing

```
from essentia.standard import *
audio = MonoLoader(filename='audio.mp3')()
beats, bconfidence = BeatTrackerMultiFeature()(audio)
audio = EqualLoudness()(audio)
melody, mconfidence = PitchMelodia(frameSize=2048, hopSize=128)(audio)
```

Bogdanov, D., Wack N., Gómez E., Gulati S., Herrera P., Mayor O., et al. (2013). ESSENTIA: an Audio Analysis Library for Music Information Retrieval. International Society for Music Information Retrieval Conference (ISMIR'13). 493-498.

Essentia

License: Affero GPLv3 + available as a commercial license

Documentation: http://essentia.upf.edu/documentation

Code, issues, feature requests: http://github.com/MTG/essentia

Blog: https://mtg.github.io/essentia-labs/

Email: dmitry.bogdanov@upf.edu

Essentia

Over 200 algorithms for audio signal processing and analysis, and sound and music description, developed at MTG

- Standard audio IO & DSP
- Sound and music descriptors
 - spectral features
 - o rhythm and tempo
 - tonality, pitch and melody
 - loudness/dynamics
 - sound envelope
 - audio segmentation
 - fingerprinting
- Machine-learning based descriptors
 - o genres, moods, instrumentation, ...
 - SVM classifiers
 - TensorFlow deep learning models

Extractors

Users can build their own extractors for the descriptors they want to compute in a "data-flow" manner

How it compares?

- Many algorithms
 (<u>http://essentia.upf.edu/documentation/algorithms_reference.html</u>)
- Semantically meaningful descriptors
- Successfully used in academia and industry
- Open-source
- Cross-platform (Linux, OSX, Win, iOS, Android, JavaScript)
- Optimized for computational time
- Real-time applications

Applications

http://essentia.upf.edu/documentation/applications.html

- Visualization, interaction and music creation
- Sound and music indexing
- Music classification and auto-tagging
 - Genre, mood, rhythm, instrumentation
- Music similarity, recommendation, playlist generation
- Music identification
- Real-time music audio analysis
- Digital audio instruments
- Audio analysis for games
- Audio quality analysis

Over 100 academic papers are using Essentia

http://essentia.upf.edu/documentation/research_papers.html

Industrial applications

Collaborative database of Creative Commons Licensed sounds Open platform for gathering music information from audio

Interactive iPhone tuner app for learning to play music instruments

Award winning independent rhythm game using Essentia's beat detection

An iOS/Android app that helps you learn quitar Cutting-edge interactive products for musical creation Worldwide music identification and monitoring service using fingerprinting technology

Technologies for music education and infotainment

50 years of library music for movies, adverts, TV and radio

Tech solutions for digital music distribution, catalogue management and royalties collection Audio plugins for mixing, mastering, and recording

Key & BPM database and music finder

Industrial R&D collaborations

Flits Music GmbH

Solutions for live concert audio stream identification.

- Robust cover song identification
- Music fingerprinting

La Cúpula

Solutions for the music distribution industry

Automatic audio quality control

Alonso-Jiménez,, P., Joglar-Ongay, L., Serra X., & Bogdanov D. Automatic Detection of Audio Problems for Quality Control in Digital Music Distribution. AES 146th International Convention, 2019.

Use-cases

- Research and rapid prototyping
 - Python extension, Vamp plugin for visualization
- Real-time analysis
 - EssentiaRT~: external for PureData and Max/MSP
 - Cortosia: interactive tuner iPhone app
- Offline (large-scale) analysis
 - Optimized C++ extractors
 - AcousticBrainz (over 11 million analyzed tracks)
 - Freesound
- Embedded systems
- Audio synthesis, digital audio instruments

Large-scale music analysis with

A community platform for gathering music information obtained from audio

https://acousticbrainz.org

- Open data computed by open algorithms (Essentia)
- Built on submissions from the community
- Over 11 million analyzed tracks
- ~3,000 statistical music features
- High-level annotations (genres, moods, instrumentation)
- Linked to metadata in MusicBrainz
- Working on adding frame data for deep learning models

Submission #1 out of 11 →

Low-level information Summary

Tonal & Rhythm	value
key	D# minor (70.0%)
chords key	A# minor
danceability	1.01385104656
bpm	126.402862549
beat count	763

High-level information

Volce, timbre, gender, etc.	value	probability	
Voice	instrumental	96.8%	
Gender	male	95.8%	
Danceability	danceable	86.2%	
Tonal	atonal	67.6%	
Timbre	dark	99.4%	
ISMIR04 Rhythm	VienneseWaltz	82.0%	

Porter, A., Bogdanov D., Kaye R., Tsukanov R., & Serra X. (2015). AcousticBrainz: a community platform for gathering music information obtained from audio. 16th International Society for Music Information Retrieval Conference (ISMIR 2015). 786-792.

http://acousticbrainz.org/882ce25d-51b9-4fe5-bbdf-16e661df0822?n=3

Recording "Gangnam Style" by PSY

Metadata	value		
MBID	882ce25d-51b9-4fe5-bbdf-16e661df0822		
title	Gangnam Style		
artist	PSY		
release	Absolute Music 71		
track number	2 / 22		
track length	03:39		

← Submission #4 out of 90 →

Low-level information Summary

Tonal & Rhythm	value	
key	B minor (48.0%)	
chords key	B minor	
danceability	1.13216376305	
bpm	132.009796143	
beat count	479	

High-level information

Volce, timbre, gender, etc.	value	probability	
Voice	voice	96.7%	
Gender	male	94.6%	
Danceability	danceable	100.0%	
Tonal	atonal	97.8%	
Timbre	dark	88.1%	
ISMIR04 Rhythm	ChaChaCha	65.8%	

Moods	value	probability	
Electronic	electronic	98.1%	
Party	party	91.8%	
Aggressive	unsure	58.6%	
Acoustic	not acoustic	99.2%	
Нарру	not happy	80.4%	
Sad	not sad	83.9%	
Relaxed	relaxed	64.0%	

Genres	value	probability	
Tzanetakis model	unsure	31.4%	
Electronic classification	unsure	58.8%	
Dortmund model	electronic	97.5%	
Rosamerica model	dan	61.6%	

Similarity search in Freesound https://freesound.org

EssentiaRT~ for Pd and Max/MSP

https://www.upf.edu/web/mtg/essentiart

A quick taste of Essentia

Compute melody and extract beat positions:

```
from essentia.standard import *

audio = MonoLoader(filename = 'audio.mp3')()
beats, bconfidence = BeatTrackerMultiFeature()(audio)
print(beats)

audio = EqualLoudness()(audio)
melody, mconfidence = PitchMelodia(frameSize=2048, hopSize=128)(audio)
print(melody)
```

Python tutorial

http://essentia.upf.edu/documentation/essentia_python_tutorial.html

A quick taste of Essentia

Algorithms

http://essentia.upf.edu/documentation/algorithms_reference.html

Code examples

- Python https://github.com/MTG/essentia/tree/master/src/examples/tutorial
- C++ https://github.com/MTG/essentia/tree/master/src/examples

Installing Essentia

Docker images (cross-platform)

- Essentia https://github.com/MTG/essentia-docker
 - Official Essentia docker image
 - Essentia Python extension, command-line extractors, Vamp plugins
- MIR toolbox https://github.com/MTG/MIR-toolbox-docker
 - Many useful Python tools for MIR including Essentia
 - Jupyter notebook running in a docker container
- DL4MIR https://minzwon.github.io/dl4mir
 - A docker image for the deep learning including Essentia

Installing Essentia for Python

- MacOS (needs some extra steps)
 - Install Command Line Tools for Xcode: xcode-select --install
 - Install Homebrew: http://brew.sh

brew tap MTG/essentia brew install essentia --HEAD

- Windows (needs some extra step)
 - Install Bash on Ubuntu
 - Run pip install essentia from bash

Building Essentia from source

http://essentia.upf.edu/documentation/installing.html

- 1) Install dependencies
- 2) Build Essentia (Linux):

```
./waf configure --with-python --with-examples
./waf
sudo ./waf install

python
>>> import essentia
```

Recommendations for Python scientific environment

- Use docker or pip install essentia
- Do not compile Essentia from source for a Conda environment (incompatible dependencies)
- Use Python 3 (because it's 2019!)
- Use jupyter notebooks: https://jupyter.org/
 - python3 -m pip install jupyter
- There are many useful Python packages out there!
 - Matplotlib or seaborn for plots and data visualization
 - Scikit-learn for basic machine learning
 - o Pandas data tables analysis

Essentia in Python

Basic tutorial:

http://essentia.upf.edu/documentation/essentia_python_tutorial.html

https://github.com/MTG/essentia/blob/master/src/examples/tutorial/essentia_pytho n_tutorial.ipynb

Examples of using Essentia

https://essentia.upf.edu/documentation/essentia_python_examples.html

Command-line feature extractors

- Executable feature extractors (no need to use Python)
- Available in our Docker images
- Build from source: (./waf configure --with-examples)
- Binaries online: http://essentia.upf.edu/documentation/extractors/

Documentation

- http://essentia.upf.edu/documentation/extractors_out_of_box.html
- http://essentia.upf.edu/documentation/streaming_extractor_music.html
- http://essentia.upf.edu/documentation/freesound_extractor.html

Essentia tutorial notebooks

git clone https://github.com/MTG/essentia-tutorial.git
docker pull mtgupf/mir-toolbox
cd essentia-tutorial
./run.sh

Go to http://localhost:8888/

Password: mir

Audio Chords Estimation

http://essentia.upf.edu/documentation/algorithms_reference.html#tonal

- ChordsDetection
- ChordsDetectionBeats

Audio Melody Extraction and Multiple Pitch Estimation & Tracking

http://essentia.upf.edu/documentation/algorithms_reference.html#pitch

- PredominantPitchMelodia
- MultiPitchKlapuri
- MultiPitchMelodia

https://github.com/MTG/essentia/blob/master/src/examples/python/musicbricks-tut orials/5-melody analysis.ipynb

Q&A

Dmitry Bogdanov odd bogdanov dmitry.bogdanov@upf.edu