Legge di snell e legge di Gauss del diottro sferico

Francesco Tarantelli, Francesco Sacco, Giovanni Sucameli

18 marzo 2017

1 Scopo dell' esperienza

Verificare la legge di Snell e quella di Gauss attraverso, rispettivamente, la misurazione dell'indice di rifrazione del plexiglass con un semicilindro e dell'indice di rifrazione dell'acqua con un diottro sferico.

2 Cenni teorici

In questo esperimento ci si propone, prima di tutto, di verificare la validità della legge di Snell:

$$n_1 \sin \theta_i = n_2 \sin \theta_r \tag{1}$$

in quanto risulta di fondamentale importanza per la deduzione della legge di Gauss del diottro sferico:

$$\frac{n_2}{p} + \frac{n_1}{q} = \frac{n_2 - n_1}{r} \tag{2}$$

in quest'ultima equazione bisogna tener presente che è valida solamente per raggi parassiali quindi con molta probabilità potrebbero esserci alcuni problemi con il valore esatto dell'indice di rifrazione dell'acqua e/o con incongruenze tra dati e modello teorico.

3 Apparato sperimentale e strumenti

- banco ottico con sorgente luminosa;
- carta graduata (risoluzione 2 mm);
- un semicilindro di plexiglass;
- un diottro sferico riempito di acqua;
- un metro a nastro (risoluzione 1 mm).

4 Descrizione delle misure

4.1 Plexiglass

In questa prima parte dell'esperimento si sono presi i valori dei coseni degli angoli incidenti θ_i e di quelli rifratti θ_r con le loro rispettive incertezze date dalla risoluzione (2 mm) della carta graduata.

Tabella 1: Dati grezzi relativi alla rifrazione, Raggio=(82±2)mm

$R\cos\theta_i[mm]$	$R\cos\theta_r[mm]$	$\Delta_i[mm]$	$\Delta_r[mm]$
81.0	81.6	2.0	2.0
77.0	80.0	2.0	2.0
73.0	78.0	2.0	2.0
65.0	74.0	2.0	2.0
55.0	71.0	2.0	2.0
40.0	66.0	2.0	2.0

I valori dei $\cos\theta$, mostati in Tabella 1, devono essere però convertiti in $\sin\theta$ con un'opportuna propagazione degli errori Δ delle misure attraverso il seguente algoritmo:

$$x = \cos \theta_i$$
 , $y = \sin \theta_i \Rightarrow y = \sqrt{1 - x^2}$ \wedge $dy = \left| \frac{x}{\sqrt{1 - x^2}} \right| dx$ (3)

dove i dy sono gli errori dei $\sin \theta$. L'utilizzo dei $\cos \theta$ anziché dei $\sin \theta$ permette di avere un errore dy con un più piccolo ordine di grandezza dei valori dei $\sin \theta$, cosa che non sarebbe successa se si fossero prese direttamente le misure dei $\sin \theta$.

Tabella 2: Valori dei $\sin \theta$ e relativi errori

$\sin \theta_i$	$\sin \theta_r$	δ_i	δ_r
0.16	0.10	0.01	0.02
0.344	0.22	0.006	0.01
0.455	0.309	0.004	0.007
0.742	0.500	0.002	0.004
0.8730	0.593	0.0007	0.003

4.2 Diottro sferico riempito di acqua

In questa seconda parte si sono presi i valori di p corrispondenti alla distanza diottro-sorgente luminosa immersa in acqua. In seguito con uno schermo si è messa a fuoco l'immagine (un piccolo rombo incollato alla sorgente) e si è misurato la distanza q diottro-schermo.

Tabella 3: Valori p e q con relativi errori

q[cm]	p[cm]	Δ_q	Δ_p
41.3	50.4	0.8	0.3
52.2	42.6	0.8	0.3
61.4	39.1	0.8	0.3
34.4	60.5	0.8	0.3

Affinché si possa utilizzare un fit lineare per stimare l'indice di rifrazione dell'acqua, si è supposto $n_1 = 1$ e si sono utilizzate come variabili $\frac{1}{q}$ e $\frac{1}{p}$.

5 Analisi dati

5.1 Plexiglass

Dai dati riportati in tabella 2 si è cercato di stimare l'indice di rifrazione n_2 del plexiglass con un fit lineare basato sull' equazione (1) in cui il coefficiente angolare è n_2 , la variabile dipendente y è $\sin \theta_i$ e la variabile indipendente x è $\sin \theta_r$. Siccome la variabile y non ha distribuzione gaussiana, ma uniforme e gli errori sulla x non sono trascurabili, non si può utilizzare il metodo dei fit basato sui minimi quadrati. La soluzione al primo caso è semplice infatti basta utilizzare come varianza di un "chisquare" a ν gradi di libertà il valore $\frac{4}{5}\nu$. Il secondo problema è più complicato, ma la funzione odrpack del modulo scipy.odr di Python permette di effettuare un fit lineare che prende in considerazione sia gli errori sulla y sia sulla x, restituendo il parametro di best fit del coefficiente angolare e il valore del chisquare. Siccome le misure fatte sono 5 e si è stimato 1 solo parametro, il problema ha 4 gradi di libertà.

Tabella 4: Risultato del fit lineare con ODRPACK

 $n = 1.476 \pm 0.006$ Chisquare = 2.3

Chisquare atteso: 4.0 ± 1.8

Con questi valori si è realizzato un grafico della retta di best fit confrontata con i valori ottenuti per via sperimentale.

Figura 1: Retta di best fit (in verde) e valori sperimentali (in blu)

5.2 Diottro sferico riempito di acqua

Anche in questo caso gli errori sulla variabile y $(y=\frac{1}{q})$ hanno distribuzione uniforme continua e gli errori sulla variabile x $(x=\frac{1}{p})$ non sono trascurabili. Quindi, ancora una volta, con la funzione odrpack di scipy.odr di Python si è realizzato un fit lineare, ma con 2 parametri anziché 1. In particolare l'inverso del coefficiente angolare della retta di best fit $y=-n_2x+q$ restituisce una stima dell'indice di rifrazione n_2 dell'acqua. In quanto il numero delle misure effettuate è 4, il problema ha 2 gradi di libertà.

Tabella 5: Risultato del fit lineare con ODRPACK

 $\begin{aligned} n_2 &= 1.403 \pm 0.074 \\ q &= 0.052 \pm 0.002 \\ \text{Chisquare} &= 0.1 \\ \text{Chisquare atteso} : 2.0 \pm 1.3 \end{aligned}$

Di seguito sono riportati i grafici relativi ai dati.

Figura 2: Retta di best fit (in verde) e valori sperimentali (in blu)

Figura 3: Grafico dei residui

6 Conclusioni

6.1 Plexiglass

Confrontando il valore dell'indice di rifrazione del plexiglass sperimentalmente accettato, uguale a circa 1.48, con quello stimato in questa esperienza si nota subito che sono molto compatibili in quanto distano meno di 1 deviazione standard. Inoltre il chisquare ottenuto, uguale a 2.3, dista meno di 1 σ dal valore atteso, di conseguenza il p-value, uguale a circa 32%, risulta molto buono. Tutto

ciò ci permette di concludere che il fit effettuato è un buon fit e non c'è nessun motivo per rigettare il modello teorico, ovvero la legge di Snell.

6.2 Diottro sferico riempito di acqua

Discorso del tutto diverso per quest'ultima esperienza. Il valore atteso dell'indice di rifrazione dell'acqua (uguale a 1.33) rientra di pochissimo di una deviazione standard nell'intervallo stimato di n_2 . Inoltre il chisquare, uguale a 0.1, dista più di una σ dal valore atteso e il p-value (=4.1%) non è molto accettabile. Le cause di questa incongruenza tra dati e modello sono forse da ricercarsi:

- 1. nella difficoltà di prendere con precisione la distanza del punto in cui era a fuoco l'immagine;
- 2. nel fatto che non si sono analizzati raggi parassiali.