TEST REPORT

Reference No. : WTS18S05112789-3W

FCC ID : 2AG78B85

Applicant.....: Golden Unions Limited

Address UNIT 1010, MIRAMAR TOWER, 132 NATHAN ROAD,

TSIMSHATSUI, KL, HONGKONG

Manufacturer: The same as above

Address : The same as above

Product.....: Mobile Phone

Model(s). : Mammoth B85

Brand Name : Jelly

Standards..... FCC CFR47 Part 22 Subpart H: 2017

FCC CFR47 Part 24 Subpart E: 2017

Date of Receipt sample : 2018-05-25

Date of Test : 2018-05-26 to 2018-06-06

Date of Issue..... : 2018-06-07

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Ford Wang / Project Engineer

Philo Zhong / Manager

proved by:

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Test Facility:

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe	A2LA	EMCD \ RED	-
Taiwan	(Certificate No.: 4243.01)	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	_
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

3 Contents

		Page
1	COVER PAGE	1
2	LABORATORIES INTRODUCTION	
3	CONTENTS	4
4	REVISION HISTORY	
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF E.U.T. 5.2 DETAILS OF E.U.T. 5.3 TEST MODE	
6	TEST SUMMARY	
7	EQUIPMENT USED DURING TEST	11
	7.1 EQUIPMENTS LIST	
8	RF OUTPUT POWER	13
	8.1 EUT OPERATION	13
9	PEAK-TO-AVERAGE RATIO	
	9.1 EUT OPERATION	
10	BANDWIDTH	
	10.1 EUT OPERATION	20
11	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	24
	11.1 EUT OPERATION	24
12	SPURIOUS RADIATED EMISSIONS	
	12.1 EUT OPERATION	
13	BAND EDGE MEASUREMENT	
	13.1 EUT OPERATION	
14	FREQUENCY STABILITY	
	14.1 EUT OPERATION	38

Reference No.: WTS18S05112789-3W Page 5 of 42

15	RF EXPOSURE	41
16	PHOTOGRAPHS OF TEST SETUP AND EUT.	42

Reference No.: WTS18S05112789-3W Page 6 of 42

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS18S05112 789-3W	2018-05-25	2018-05-26 to 2018-06- 06	2018-06-07	original	ı	Valid

Reference No.: WTS18S05112789-3W Page 7 of 42

5 **General Information**

5.1 General Description of E.U.T.

Mobile Phone Product: Mammoth B85 Model(s):

Model Description: N/A

GSM 850/900/1800/1900MHz GSM Band(s):

12 **GPRS Class:**

WCDMA Band(s): N/A LTE Band(s): N/A

Wi-Fi Specification: N/A

Bluetooth v3.0+EDR Bluetooth Version:

N/A GPS: NFC: N/A

LM130_61_MB_V1.0 Hardware Version:

Software Version: LM130_61D_COMMON_20171228_V1_001

Highest frequency

(Exclude Radio):

312MHz

Storage Location: Internal Storage

This EUT has two SIM card slots, and use same one RF module. We Note:

found that RF parameters are the same, when we insert the card 1 and

card 2. So we usually performed the test under main card slot 1.

Details of E.U.T. 5.2

> GSM/GPRS 850: 824~849MHz Operation Frequency:

> > PCS/GPRS 1900: 1850~1910MHz

Bluetooth: 2402~2480MHz

GSM 850: 31.69dBm Max. RF output power:

> PCS1900: 28.83dBm Bluetooth: 1.91dBm

GSM,GPRS: GMSK Type of Modulation:

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Antenna installation: GSM: internal permanent antenna

Bluetooth: internal permanent antenna

Antenna Gain: GSM 850: 1.2dBi

> PCS1900: 1.1dBi Bluetooth: 1.0dBi

Reference No.: WTS18S05112789-3W Page 8 of 42

Ratings: Battery DC 3.7V, 3000mAh

DC 5V, 500mA, charging from adapter

(Adapter Input: 100-240V 50/60HZ 0.2A MAX)

Adapter: Manufacture: Golden Unions Limited

Model No.: Mammoth B85

Type of Emission: GSM850: 251KGXW, GPRS850: 247KGXW

PCS1900: 250KGXW, GPRS1900: 244KGXW

Reference No.: WTS18S05112789-3W Page 9 of 42

5.3 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Support Band	Test Mode	Channel Frequency	Channel Number				
		824.2 MHz	128				
GSM 850	GSM/GPRS	836.6 MHz	190				
		848.8 MHz	251				
		1850.2 MHz	512				
PCS 1900	GSM/GPRS	1880.0 MHz	661				
		1909.8 MHz	810				
Remark: All mode(s) were tested and the worst data was recorded.							

6 Test Summary

Test Items	Test Requirement	Result		
	2.1046			
RF Output Power	22.913 (a)	PASS		
	24.232 (c)			
Peak-to-Average Ratio	24.232 (d)	PASS		
	2.1049			
Bandwidth	22.905	PASS		
Baridwidtii	22.917	PASS		
	24.238			
	2.1051			
Spurious Emissions at Antenna Terminal	22.917 (a)	PASS		
	24.238 (a)			
	2.1053			
Field Strength of Spurious Radiation	22.917 (a)	PASS		
	24.238 (a)			
Out of hand amission Rand Edge	22.917 (a)	PASS		
Out of band emission, Band Edge	24.238 (a)	PASS		
	2.1055			
Frequency Stability	22.355	PASS		
	24.235			
Maximum Permissible Exposure	1.1307	DACC		
(SAR)	2.1093	PASS		

7 Equipment Used during Test

7.1 Equipments List

Conducted Emissions Test Site 1#										
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMI Test Receiver	R&S	ESCI	100947	2017-09-12	2018-09-11				
2.	LISN	R&S	ENV216	101215	2017-09-12	2018-09-11				
3.	Cable	Тор	TYPE16(3.5M)	-	2017-09-12	2018-09-11				
Condu	cted Emissions Test S	Site 2#								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11				
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11				
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11				
4.	Cable	LARGE	RF300	-	2017-09-12	2018-09-11				
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1	Spectrum Analyzer	R&S	FSP	100091	2018-04-29	2019-04-28				
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2018-04-09	2019-04-08				
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2018-04-09	2019-04-08				
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-12	2018-09-11				
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2018-04-09	2019-04-08				
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2018-04-09	2019-04-08				
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-13	2019-04-12				
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2018-04-13	2019-04-12				
9	Universal Radio Communication Tester	R&S	CMU 200	112461	2018-04-13	2019-04-12				
10	Signal Generator	R&S	SMR20	100046	2017-09-12	2018-09-11				
11	Smart Antenna	SCHWARZBECK	HA08	-	2018-04-09	2019-04-08				
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#						
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date				

1	Test Receiver	R&S	ESCI	101296	2018-04-13	2019-04-12
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-04-09	2019-04-08
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2018-04-13	2019-04-12
4	Cable	HUBER+SUHNER	CBL2	525178	2018-04-13	2019-04-12
RF Co	nducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-12	2018-09-11
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11
3.	Universal Radio Communication Tester	R&S	CMU 200	112461	2017-09-12	2018-09-11
4	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11

7.2 Measurement Uncertainty

Parameter	Uncertainty			
Conducted Emission	± 3.64 dB(AC mains 150KHz~30MHz)			
Radiated Spurious Emissions	± 5.08 dB (Bilog antenna 30M~1000MHz)			
Radiated Spurious Effissions	± 5.47 dB (Horn antenna 1000M~25000MHz)			
Radio Frequency	± 1 x 10 ⁻⁷ Hz			
RF Power	± 0.42 dB			
RF Power Density	± 0.7dB			
Conducted Spurious Emissions	± 2.76 dB (9kHz~26500MHz)			
Confidence interval: 95%. Confidence factor:k=2				

7.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS18S05112789-3W Page 13 of 42

8 RF OUTPUT POWER

Test Requirement: FCC Part 2.1046, 22.913 (a), 24.232 (c)

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v03

Test Mode: TX transmitting

8.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

8.2 Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method:

- 1. The setup of EUT is according with per TIA/EIA Standard 603D.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Reference No.: WTS18S05112789-3W Page 14 of 42

8.3 Test Result

Conducted Power

GSM - Burst Average Power (dBm)								
Band		GSM850		PCS1900				
Channel	Channel 128 190 251				661	810		
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880	1909.8		
GSM	31.66	31.67	31.69	28.23	28.36	28.83		
GPRS (1 slot)	31.66	31.58	31.64	27.72	27.90	28.39		
GPRS (2 slots)	30.69	30.65	30.77	26.78	26.98	27.45		
GPRS (3 slots)	29.71	29.72	29.65	25.72	25.89	26.41		
GPRS (4 slots)	28.88	28.66	28.71	24.86	24.95	25.38		

Radiated Power

ERP and EIRP

Cellular Band 850 (Part 22H)

Cellular Band 850 (Part 22H)										
Fraguana	Receiver	Turn	RX An	tenna		Substitut	ed	Absolute	Part 22H	
Frequency	Reading	table Angle	Height	Polar	SG Level	Cable	Antenna Gain	Level	Limit	Margin
(MHz)	(dBµV)	Degree	(m)	(H/V)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
				GSM 85	0 Chann	el 128				
824.20	99.85	351	1.6	Н	32.82	0.20	0.00	32.62	38.45	-5.83
824.20	99.97	288	2.4	V	32.87	0.20	0.00	32.67	38.45	-5.78
				GSM 85	0 Chann	el 190				
836.60	100.02	218	2.3	Н	32.99	0.20	0.00	32.79	38.45	-5.66
836.60	99.98	89	1.1	V	32.88	0.20	0.00	32.68	38.45	-5.77
				GSM 85	0 Chann	el 251				
848.80	100.06	152	2.0	Н	33.03	0.20	0.00	32.83	38.45	-5.62
848.80	99.99	139	1.5	V	32.89	0.20	0.00	32.69	38.45	-5.76
			(GPRS 8	50 Chanr	nel 128				
824.20	100.04	243	2.3	Н	33.01	0.20	0.00	32.81	38.45	-5.64
824.20	99.92	302	1.6	V	32.82	0.20	0.00	32.62	38.45	-5.83
			(GPRS 8	50 Chanr	nel 190				
836.60	100.07	324	2.4	Н	33.04	0.20	0.00	32.84	38.45	-5.61
836.60	99.95	260	1.6	V	32.85	0.20	0.00	32.65	38.45	-5.80
	GPRS 850 Channel 251									
848.80	100.03	235	1.6	Н	33.00	0.20	0.00	32.80	38.45	-5.65
848.80	99.93	271	2.0	V	32.83	0.20	0.00	32.63	38.45	-5.82

Cellular Band 1900 (Part 24E)

Cellular Band 1900 (Part 24E)										
Fraguency F	Receiver	Turn	RX An	tenna	Substituted			Absolute	Par	t 24E
Frequency	Frequency Reading	table Angle	Height	Polar	SG Level	Cable	Antenna Gain	Level	Limit	Margin
(MHz)	(dBµV)	Degree	(m)	(H/V)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
				PCS 190	00 Chann	el 512				
1850.20	93.86	40	2.3	Н	19.89	0.31	10.40	29.98	33	-3.02
1850.20	93.04	103	1.1	V	19.76	0.31	10.40	29.85	33	-3.15
				PCS 190	00 Chann	el 661		,		
1880.00	93.46	140	2.0	Н	19.61	0.31	10.40	29.70	33	-3.30
1880.00	93.02	244	2.4	V	19.90	0.31	10.40	29.99	33	-3.01
				PCS 190	00 Chann	el 810				
1909.80	93.56	174	2.5	Н	19.83	0.32	10.40	29.91	33	-3.09
1909.80	92.86	218	1.2	V	19.90	0.32	10.40	29.98	33	-3.02
			G	SPRS 19	000 Chan	nel 512		1		
1850.20	93.53	68	1.3	Н	19.56	0.31	10.40	29.65	33	-3.35
1850.20	92.98	227	1.1	V	19.70	0.31	10.40	29.79	33	-3.21
			G	SPRS 19	000 Chan	nel 661		1		
1880.00	93.50	306	1.8	Н	19.65	0.31	10.40	29.74	33	-3.26
1880.00	92.90	333	1.3	V	19.78	0.31	10.40	29.87	33	-3.13
	GPRS 1900 Channel 810									
1909.80	93.45	195	2.1	Н	19.72	0.32	10.40	29.80	33	-3.20
1909.80	92.65	305	1.4	V	19.69	0.32	10.40	29.77	33	-3.23

Reference No.: WTS18S05112789-3W Page 17 of 42

9 Peak-to-Average Ratio

Test Requirement: 24.232 (d)

Test Method: N/A

Test Mode: TX transmitting

9.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.3% RH
Atmospheric Pressure: 101.2kPa

9.2 Test Procedure

1. The EUT was connected to spectrum analyzer and system simulator via a power divider.

- 2. Set EUT to transmit at maximum output power.
- 3. When the duty cycle is less than 98%, then signal gating will be implemented on the spectrum analyzer by triggering from the system simulator.
- 4. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer. Record the maximum PAPR level associated with a probability of 0.1%.

9.3 Test Result

Cellular Band (Part 24E)

Remark: All test data were reported and only the worst case (middle channel mode) test graphs were showed in test report.

Mode		PCS 1900		G			
Channel	512	661	810	512	661	810	Limit
Frequency (MHz)	1850.2	1880.0	1909.8	1850.2	1880.0	1909.8	(dB)
Peak-to-Average Ratio (dB)	9.46	9.63	9.30	9.45	9.85	9.59	13

Test Plots (Part 24E)

PCS1900 Middle Channel

Reference No.: WTS18S05112789-3W Page 20 of 42

10 BANDWIDTH

Test Requirement: FCC Part 2.1049, 22.917, 22.905, 24.238

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v03

Test Mode: TX transmitting

10.1 EUT Operation

Operating Environment:

Temperature: 22.5 °C
Humidity: 52.3% RH
Atmospheric Pressure: 101.2kPa

10.2 Test Procedure

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set in the range of 1 to 5 % of the anticipated OBW (Cellular /PCS) and the 26 dB & 99%bandwidth was recorded.

10.3 Test Result

Remark: All test data were reported and only the worst case (middle channel mode) test graphs were showed in test report.

Cellular Band (Part 22H)

Test Mode	Channel	Frequency (MHz)	99% Occupied Bandwidth(kHz)	26 dB Emission Bandwidth(kHz)
GSM 850	128	824.2	250.61	317.09
	190	836.6	250.62	317.10
	251	848.8	250.61	317.09
	128	824.2	247.45	314.60
GPRS 850	190	836.6	247.46	314.60
	251	848.8	247.46	314.60

Cellular Band (Part 24E)

Celidiai Band (1 art 242)							
Test Mode	Channel	Frequency	99% Occupied	26 dB Emission			
Test Mode	Chamilei	(MHz)	Bandwidth(kHz)	Bandwidth(kHz)			
PCS 1900	512	1850.2	249.91	317.99			
	661	1880.0	249.92	318.00			
	810	1909.8	249.92	317.99			
	512	1850.2	243.55	314.98			
GPRS 1900	661	1880.0	243.56	315.00			
	810	1909.8	243.55	314.98			

Test Plots (worst case) Cellular Band (Part 22H)

GSM 850

GPRS 850

Cellular Band (Part 24E)

PCS 1900

GPRS 1900

Reference No.: WTS18S05112789-3W Page 24 of 42

11 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Test Requirement: FCC Part 2.1051, 22.917(a), 24.238(a)

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v03

Test Mode: TX transmitting

11.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.3kPa

11.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

11.3 Test Result

Remark: All test data were reported and only the worst case (middle channel mode) test graphs were showed in test report.

Cellular Band (Part 22H) GSM 850 - channel 190

Fundamental

Cellular Band (Part 22H) GPRS 850 - channel 190

Fundamental

Above 1GHz

Cellular Band (Part 24E) PCS 1900 - channel 661

30MHz-1GHz

Above 1GHz | Staglent Spectrum Analyzer, Swept 5A | Stag

Cellular Band (Part 24E) GPRS 1900 - channel 661

30MHz-1GHz

Reference No.: WTS18S05112789-3W Page 29 of 42

12 SPURIOUS RADIATED EMISSIONS

Test Requirement: FCC Part 2.1053, 22.917, 24.238

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v03

Test Mode: TX transmitting

12.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

12.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The test setup for emission measurement from 30 MHz to 1 GHz.

Semi-anechoic 3m Chamber Antenna Elevation Varies From 1 to 4 m Turn Table From 0° to 360° 3m **EUT** 0.8m Turn Table CMU200/ PC Combining Spectrum **AMP** CMW500 Network System Analyzer

The test setup for emission measurement above 1 GHz.

12.3 Spectrum Analyzer Setup

30MHz ~ 1GHz

 Sweep Speed
 Auto

 Detector
 PK

 Resolution Bandwidth
 100kHz

 Video Bandwidth
 300kHz

 Above 1GHz
 Sweep Speed
 Auto

 Detector
 PK

 Resolution Bandwidth
 1MHz

Reference No.: WTS18S05112789-3W Page 31 of 42

12.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from 30MHz up to the tenth harmonic of the highest fundamental frequency.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.
- 7. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.
 - Spurious emissions in dB = $10 \lg (TXpwr in Watts/0.001) the absolute level Spurious attenuation limit in dB = <math>43 + 10 \log 10$ (power out in Watts)
- 8. Repeat above procedures until the measurements for all frequencies are completed.

12.5 Summary of Test Results

For 26MHz~30MHz,

The measurements were more than 20 dB below the limit and not reported.

Remark: Test performed from 30MHz to 10th harmonics with low/middle/high channels, only the worst data were recorded.

Cellular Band (Part 22H)

_ Re	Frequency Receiver Reading Turn table Angle	RX Antenna		Substituted			Absolute	Res	sult		
Frequency			Height	Polar	SG Level	Cable	Antenna Gain	Level	Limit	Margin	
(MHz)	(dBµV)	Degree	(m)	(H/V)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
	GSM 850 Channel 128										
223.16	40.94	220	1.6	Η	-69.57	0.15	0.00	-69.72	-13.00	-56.72	
223.16	45.86	186	1.2	V	-61.73	0.15	0.00	-61.88	-13.00	-48.88	
1648.40	65.23	334	1.0	Н	-48.74	0.30	9.40	-39.64	-13.00	-26.64	
1648.40	57.84	234	1.7	V	-55.69	0.30	9.40	-46.59	-13.00	-33.59	
2472.60	61.77	314	1.4	Н	-52.23	0.43	10.60	-42.06	-13.00	-29.06	
2472.60	48.51	97	2.1	V	-61.77	0.43	10.60	-51.60	-13.00	-38.60	

Cellular Band (Part 24E)

Frequency	Receiver	Turn	RX Antenna		Substituted			Absolute	Result	
	Reading	table Angle	Height	Polar	SG Level	Cable	Antenna Gain	Level	Limit	Margin
(MHz)	(dBµV)	Degree	(m)	(H/V)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
	PCS 1900 Channel 512									
223.16	53.98	323	2.0	Н	-56.53	0.15	0.00	-56.68	-13.00	-43.68
223.16	39.87	298	2.0	V	-67.72	0.15	0.00	-67.87	-13.00	-54.87
3700.40	65.95	188	2.1	Н	-45.59	2.37	12.50	-35.46	-13.00	-22.46
3700.40	59.98	302	1.2	V	-49.83	2.37	12.50	-39.70	-13.00	-26.70
5550.60	53.58	13	1.3	Н	-56.03	2.86	12.90	-45.99	-13.00	-32.99
5550.60	44.73	258	1.2	V	-64.15	2.86	12.90	-54.11	-13.00	-41.11

Note: 1) Absolute Level = SG Level - Cable loss + Antenna Gain

2) Margin = Limit- Absolute Level

Reference No.: WTS18S05112789-3W Page 33 of 42

13 Band Edge Measurement

Test Requirement: FCC Part 2.1051, 22.917(a), 24.238(a)

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v03

Test Mode: TX transmitting

13.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.3 % RH
Atmospheric Pressure: 101.3kPa

13.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

According to FCC Part 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the TX transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to FCC Part 24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the TX transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The center of the spectrum analyzer was set to block edge frequency

13.3 Test Result

Test plots Cellular Band (Part 22H)

Cellular Band (Part 24E)

Reference No.: WTS18S05112789-3W Page 38 of 42

14 FREQUENCY STABILITY

Test Requirement: FCC Part 2.1055, 22.355, 24.235

Test Method: TIA/EIA-603-D:2010

KDB971168 D01 v03

Test Mode: TX transmitting

14.1 EUT Operation

Operating Environment:

Temperature: 22.9 °C
Humidity: 52.0 % RH
Atmospheric Pressure: 101.3kPa

14.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: For hand carried, battery powered equipment; reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

14.3 Test Result

Cellular Band (Part 22H)

	GSM 850 Test Frequency:836.6MHz									
Temperature (°C)	Power Supply Frequency Error Fr (VDC) (Hz)		Frequency Error (ppm)	Limit (ppm)						
50		10	0.0120	2.5						
40		8	0.0096	2.5						
30		0	0.0000	2.5						
20		1	0.0017	2.5						
10	3.7	2	0.0024	2.5						
0		2	0.0024	2.5						
-10		4	0.0048	2.5						
-20		-6	-0.0072	2.5						
-30		6	0.0072	2.5						
20	3.3	-2	-0.0024	2.5						
20	4.2	7	0.0084	2.5						

	GPRS 850 Test Frequency:836.6MHz								
Temperature (°C)	Power Supply (VDC)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)					
50		1	0.0012	2.5					
40		-4	-0.0048	2.5					
30		10	0.0120	2.5					
20		1	0.0017	2.5					
10	3.7	8	0.0096	2.5					
0		2	0.0024	2.5					
-10		1	0.0012	2.5					
-20		9	0.0108	2.5					
-30		3	0.0036	2.5					
20	3.3	-6	-0.0072	2.5					
20	4.2	10	0.0120	2.5					

PCS Band (Part 24E)

1 60 Band (Fart24E)										
	PCS 1900 Test Frequency:1880.0MHz									
Temperature (°C)	Power Supply Frequency Error (VDC) (Hz) Frequency Error (ppm)		Limit (ppm)							
50		-1	-0.0005	2.5						
40		0	0.0000	2.5						
30		7	0.0037	2.5						
20		1	0.0006	2.5						
10	3.7	-7	-0.0037	2.5						
0		9	0.0048	2.5						
-10		1	0.0005	2.5						
-20		3	0.0016	2.5						
-30		10	0.0053	2.5						
20	3.3	-2	-0.0011	2.5						
20	4.2	-6	-0.0032	2.5						

	GPRS 1900 Test Frequency:1880.0MHz									
Temperature (°C)	Power Supply Frequency Error (VDC) (Hz) Frequency Error (ppm)		Limit (ppm)							
50		-7	-0.0037	2.5						
40		5	0.0027	2.5						
30		-5	-0.0027	2.5						
20		1	0.0006	2.5						
10	3.7	9	0.0048	2.5						
0		1	0.0005	2.5						
-10		-7	-0.0037	2.5						
-20		6	0.0032	2.5						
-30		1	0.0005	2.5						
20	3.3	-2	-0.0011	2.5						
20	4.2	-5	-0.0027	2.5						

Reference No.: WTS18S05112789-3W Page 41 of 42

15 RF Exposure

Remark: refer to SAR test report: WTS18S05112789-1W.

Reference No.: WTS18S05112789-3W Page 42 of 42

16 Photographs of test setup and EUT.

Note: Please refer to appendix: WTS18S05112789W_Photo.

===== End of Report =====