Assignment due April 5th at 11:59 p.m.

Complete the following problems. These problems are related to Chapters 12 in the Book of Proof. Found at:

https://www.people.vcu.edu/rhammack/BookOfProof/Main.pdf

Problem 1: For each of the following functions, determine whether the function is injective, surjective, bijective or none. Also, order the functions in a manner such that if a function f(x) is to the left of g(x) in the ordering, then f(x) is O(g(x)). You do not need to prove any of your conclusions. Assume the domain and co-domain of each function is \mathbb{R} .

We say f(x) is $\mathcal{O}(g(x))$ when f(x) is less than or equal to g(x) to within some constant multiple c

- a(x) = 2x a(x) is $\mathcal{O}(2x)$ Injective, Surjective and Bijective
- $b(x) = 2^x$ b(x) is $\mathcal{O}(2^x)$ Injective, not Surjective and Bijective
- $c(x) = \log(x)$ c(x) is $\mathcal{O}(\log(x))$ Injective, not Surjective and not Bijective
- $d(x) = x^x$ not Injective, not Surjective and not Bijective
- $e(x) = \frac{1}{x}$ Injective, Surjective and Bijective
- $f(x) = \frac{x^2}{5}$ not Injective, not Surjective and not Bijective
- $g(x) = \frac{x^4 1}{7x + 7}$ Injective, Surjective and Bijective
- h(x) = 918532not Injective, Surjective and not Bijective

zero is not in \mathbb{N}

For problems 2 through 7, prove each of the statements.

Problem 2: The function $f: \mathbb{Z} \to \mathbb{N}$, $f(n) = n^2$ is not surjective and not injective.

Proof. Assume a = b, so $(f(a) = a^2) = (f(b) = b^2)$ we can say that a^2 is equal to b^2 now lets set a = -1 and b = 1 they both equal 1 yet are different values therefore the function is not injective. Now lets assume that n = 0 it follows that $f(0) = 0^2$ which is 0.

therefore, the function is not subjective.

Problem 3: The function $f: \mathbb{N} \to \mathbb{Z}$, f(n) = 3n - 17 is injective.

Proof. Assume f(a) = f(b) for some $a, b \in \mathbb{Z}$ It follows that 3a - 17 = 3b - 17 we can simplify to 3a = 3b and then to a = b Therefore the function is injective.

Problem 4: The function $f : \mathbb{R} \to \mathbb{Z}$, $f(x) = \lfloor x \rfloor$ is surjective. Note that the floor function, denoted |x|, just rounds down.

Proof. Let C and k be arbitrary constants.

Problem 5: The function $f: \mathbb{Z} \to \mathbb{Z}$, f(n) = -n + 4, is a bijection. *Hint: first find its inverse.*

Proof. Lets start by finding the inverse of this f so y = -x + 4, then switch x and y to get x = -y + 4 now rewrite with y on it's own side. y = 4 - x. so $f^{-1}(x) = 4 - x$ and f(x) = -n + 4 now look at f(f-1(x)) which is -(4-x) + 4. This is equal to x. They are inverses because this is equal to x. Therefore f is bijective.

Problem 6: $\frac{x^3+17}{4x+5}$ is $O(3x^2)$.

__ i+e

Proof. We say that f(x) is O(g(x)) if there exists constants C and k such that $|f(x)| \le C(g(x))$ for all x > k let c = 1 and k = 2, assume x > k. Then $\left|\frac{x^3+17}{4x+5}\right| = \frac{x^3+17}{4x+5}$ because the function will be positive for any x > 2 likewise, $\left|\frac{x^3+17}{4x+5}\right| > x^3 + 17$ because removing the 4x + 5 makes it a bigger function. also, removing the +17 makes it a bigger function. If we multiple the x^3 by 3, it is a larger function. Then we have $3x^3$ This can be written as $3|x^3|$. Therefore f(x) is O(g(x)) □

Problem 7: $n\log(n)$ is not O(100n). Assume log base 10.