Announcements

- · No class this Friday (10/27)
- · No H/w this week (HW8 will be due Wed. 11/8)
- · Exam 2 graded

Mean: 63.6

Median: 63.5

Std. dev.: 7.45

Menger's Theorem: If $x \neq y \in V(G)$ and $xy \notin E(G)$, then $K(x,y) = \lambda(x,y)$

Pf: \supseteq) An x,y-cut must contain an internal vertex from each path in a set of pairwise internally-disjoint x,y-paths, so taking such a set of size $\lambda(x,y)$ gives $k(x,y) \supseteq \lambda(x,y)$.

S) Induction on n:=n(G).

Base case: n=2. If $xy \notin G$, then there is no x,y-path $K(x,y) = \lambda(x,y) = 0$.

Similar results hold for directed graphs and for edge cuts

Def 4.2.11: Let D be a digraph

a) A vertex cut of D is a set SSD s.t.

D>S is not strongly connected

b) If $S, T \subseteq V(D)$, [S,T] denotes the set of edges ω /
tail in S and head in T. An edge Cut of Dis $[S,\overline{S}]$ for some nonempty $S \subseteq V(D)$.

c) (Edge) - connectivity, K(D), K'(D), K(x,y) defined the same w.r.t. vertex/edge cuts.

d) $\lambda(x,y)$ is still the largest # of internally-disjoint x,y-paths

Def: Let G be a graph or digraph.

a) K'(x,y) = min. size of $F \subseteq E(G)$ s.t. $G \setminus F$ has no x,y-path b) $\lambda'(x,y) = max$. Size of set of edge-disjoint x,y-paths

Thm: Let G be a graph or dignaph.

a) Let x = y \ V(G) with no edge from x to y.

i) If G is a graph, then $K(x,y) = \chi(x,y)$ (Menger)

ii) If G is a digraph, then $K(x,y) = \lambda(x,y)$

b) Let x = y \ V(G)

i) If G is a graph, then K'(x,y) = \('(x,y))

ii) If G is a digraph, then K'(x,y) = \(\chi(x,y)\)