設置者の稼働時間を考慮した 止水板最適設置順序の算出

都 14-86 竹内 美紗 システム最適化研究室 2018/2/16

1/10

本研究の背景 (1/2)

豪雨の事例:福岡豪雨 (1999)

- 6月29日発生
- 1 時間最大雨量 79.5mm
- ビル 182 棟のうち 71 棟の地下が浸水, 死者 37 名

先行研究

- 森兼ら (2011) によって地下空間に流入する出入口の場所, 流入順序,流入時間,流入量を推定できることが分かった
- 武田の研究 (2015) ではホワイティうめだを対象として内水 氾濫シュミレーションにより止水板の設置順序やタイミン グを検討
- 馬谷の研究 (2016) では梅田地下街全域を対象とし、最適化 問題としてソルバで最適設置順序を算出

本研究の目的

課題

- 止水板設置に要する負荷は大きいものであるため 稼働時間には限界がある
- 梅田地下街には複数の管理主体が存在する

目的

- 設置チームの稼働時間を制限して設置可能である かを検討
- 梅田地下街の管理主体を考慮した止水板設置順序 の算出

最適化問題の定式化

目的関数

「流入開始時刻に間に合わなかった出入り口の止水 板設置完了時刻」と「流入開始時刻」の差の合計を 最小化

修正した制約条件

各出入り口の止水板設置完了時刻の計算

追加した制約条件

各設置チームの稼働時間の制限

実験条件

計算対象域	ホワイティうめだ
1 時間当たりの降雨量	120mm
排水用ポンプ	稼働状態
雨水が流入する出入口	21 箇所
止水板設置チームの歩行速度	66m/分
止水板 1 箇所の設置に要する時間	5 分
計算時間	3600 秒 (= 1 時間)

設置開始時刻

● 43 分:水位計より判断

57分:地上監視カメラより判断

64 分:地下への流入が始まった

実験 1

止水板設置チームの稼働時間に上限がある状況下で, 止水板設置に必要なチーム数の算出

● 止水板設置開始時刻:64分

止水板の設置可能性

稼働時間 チーム数	30	40	50	60
6	可能	可能	可能	可能
5	暫定解なし	可能	可能	可能
4	不可能	可能	可能	可能
3	不可能	不可能	暫定解なし	可能
2	不可能	不可能	不可能	不可能

「暫定解なし」は,設置が可能であるかどうかが判断できないことを表す.

実験 2 (1/2)

設置開始時刻による流入時間の合計の差を算出

設置チーム数:6 チーム

稼働時間の上限:30分

設置開始時刻と流入時間の合計の関係

設置開始時刻(分)	流入時間の合計 (分)
43	0.00
57	6.03
64	13.91

実験 2 (2/2)

8/10

実験 2 (2/2)

8/10

実験 2 (2/2)

都 14-86

実験 3

稼働時間の上限がない場合の流入時間の合計を算出

● 稼働時間の上限: なし

チーム数・設置開始時刻と流入時間の合計の関係

(A) (B)	43	57	64
6	0.00	6.03	13.91
5	0.00	6.03	13.91
4	0.00	6.03	24.21
3	0.00	34.73	138.82
2	66.76	203.70	288.33

(A):設置チーム数

(B): 止水板設置開始時刻(分)

おわりに

まとめ

- 設置チームの稼働時間と管理主体を考慮して 実験を行うことができた
- 多くのケースの実験を行うことができその結果を 比較することができた

今後の課題

- 梅田地下街全域を対象として検討する必要がある
- 降雨量の変化、排水用ポンプの停止時など 異なった条件での実験を行う必要がある

最適化問題の定式化

- 目的関数 「流入開始時刻に間に合わなかった出入り口の止水板設置完了時刻」と「流入開始時刻」の差の合計を最小化
- 制約条件 1 設置チームは定められたスタート地点に位置する
- 制約条件2 全出入り口に止水板を設置する
- 制約条件3 設置チームはそれぞれの移動の際に 高々1つの出入り口に位置することができる
- 制約条件4 1 つの出入り口に移動するのは1チームのみである
- 制約条件 5~7 時空間ネットワークにおける枝と接点の関係性
 - 制約条件8 各出入り口の止水板設置完了時刻の計算
 - 制約条件 9 流入開始するまでの時間の設定
 - 制約条件 10 止水板設置完了時刻と流入開始時刻の差の計算
 - 制約条件 11 各設置チームの稼働時間の制限

都 14-86

制約条件8:修正前

$$t_{l,p} = \sum_{l \in L, (v_1, v_2) \in E, \bar{l} < l} y_{v_1, v_2, l, p} w_{v_1, v_2} / 66.0 + lu \quad (l \in L, p \in P, l \ge 1)$$
 (1)

制約条件8:修正後

$$t_{l,p} = \sum_{l \in L, (v_1, v_2) \in E, \bar{l} < l} y_{v_1, v_2, l, p} w_{v_1, v_2} / 66.0 + u \sum_{v \in V, l \in L, l \ge L, l \le 1} x_{v, l, p} \quad (l \in L, p \in P, q)$$
(2)

制約条件 11

$$t_{l_{m,p}} \le T \quad (p \in P) \tag{3}$$

設置開始時刻(分)	設置チーム数	稼働時間上限 (分)	流入時間合計(分)	計算時間(秒)	GAP(%)
43	2	設定なし	66.76	3600.06	100.00
43	3	設定なし	0.00	3186.69	
43	4	設定なし	0.00	4.64	_
43	5	設定なし	0.00	402.29	
43	6	30	0.00	31.45	
43	6	設定なし	0.00	230.62	

設置開始時刻(分)	設置チーム数	稼働時間上限(分)	流入時間合計(分)	計算時間(秒)	GAP(%)
57	2	設定なし	203.70	3600.28	100.00
57	3	設定なし	34.73	3600.08	100.00
57	4	40	6.03	539.69	_
57	4	設定なし	6.03	427.98	_
57	5	40	6.03	171.66	_
57	5	設定なし	6.03	89.58	_
57	6	30	6.03	409.37	
57	6	設定なし	6.03	59.94	_

設置開始時刻(分)	設置チーム数	稼働時間上限(分)	流入時間合計(分)	計算時間(秒)	GAP(%)
64	2	設定なし	288.33	3600.09	_
64	3	40	183.30	3600.08	96.84
64	3	50	160.09	3600.35	96.88
64	3	設定なし	138.82	3600.14	96.40
64	4	40	32.45	3600.08	59.85
64	4	設定なし	24.21	3600.03	46.18
64	5	40	13.91	1300.32	
64	5	設定なし	13.91	939.54	
64	6	30	13.91	1540.24	_