Table of Contents

Pre	eface	İX
1.	Introduction to Deep Learning	. 1
	Machine Learning Eats Computer Science	1
	Deep Learning Primitives	3
	Fully Connected Layer	3
	Convolutional Layer	4
	Recurrent Neural Network Layers	4
	Long Short-Term Memory Cells	5
	Deep Learning Architectures	6
	LeNet	6
	AlexNet	6
	ResNet	7
	Neural Captioning Model	8
	Google Neural Machine Translation	9
	One-Shot Models	10
	AlphaGo	12
	Generative Adversarial Networks	13
	Neural Turing Machines	14
	Deep Learning Frameworks	15
	Limitations of TensorFlow	16
	Review	17
2.	Introduction to TensorFlow Primitives	19
	Introducing Tensors	19
	Scalars, Vectors, and Matrices	20
	Matrix Mathematics	24
	Tensors	25

	Tensors in Physics	27
	Mathematical Asides	28
	Basic Computations in TensorFlow	29
	Installing TensorFlow and Getting Started	29
	Initializing Constant Tensors	30
	Sampling Random Tensors	31
	Tensor Addition and Scaling	32
	Matrix Operations	33
	Tensor Types	35
	Tensor Shape Manipulations	35
	Introduction to Broadcasting	37
	Imperative and Declarative Programming	37
	TensorFlow Graphs	39
	TensorFlow Sessions	39
	TensorFlow Variables	40
	Review	42
3.	Linear and Logistic Regression with TensorFlow	43
	Mathematical Review	43
	Functions and Differentiability	44
	Loss Functions	45
	Gradient Descent	50
	Automatic Differentiation Systems	53
	Learning with TensorFlow	55
	Creating Toy Datasets	55
	New TensorFlow Concepts	60
	Training Linear and Logistic Models in TensorFlow	64
	Linear Regression in TensorFlow	64
	Logistic Regression in TensorFlow	73
	Review	79
4.	Fully Connected Deep Networks	81
	What Is a Fully Connected Deep Network?	81
	"Neurons" in Fully Connected Networks	83
	Learning Fully Connected Networks with Backpropagation	85
	Universal Convergence Theorem	87
	Why Deep Networks?	88
	Training Fully Connected Neural Networks	89
	Learnable Representations	89
	Activations	89
	Fully Connected Networks Memorize	90
	Regularization	90

	Training Fully Connected Networks	94
	Implementation in TensorFlow	94
	Installing DeepChem	94
	Tox21 Dataset	95
	Accepting Minibatches of Placeholders	96
	Implementing a Hidden Layer	96
	Adding Dropout to a Hidden Layer	97
	Implementing Minibatching	98
	Evaluating Model Accuracy	98
	Using TensorBoard to Track Model Convergence	99
	Review	101
5.	Hyperparameter Optimization	103
	Model Evaluation and Hyperparameter Optimization	104
	Metrics, Metrics	105
	Binary Classification Metrics	106
	Multiclass Classification Metrics	108
	Regression Metrics	110
	Hyperparameter Optimization Algorithms	110
	Setting Up a Baseline	111
	Graduate Student Descent	113
	Grid Search	114
	Random Hyperparameter Search	115
	Challenge for the Reader	116
	Review	117
6.	Convolutional Neural Networks	119
	Introduction to Convolutional Architectures	120
	Local Receptive Fields	120
	Convolutional Kernels	122
	Pooling Layers	125
	Constructing Convolutional Networks	125
	Dilated Convolutions	126
	Applications of Convolutional Networks	127
	Object Detection and Localization	127
	Image Segmentation	128
	Graph Convolutions	129
	Generating Images with Variational Autoencoders	131
	Training a Convolutional Network in TensorFlow	134
	The MNIST Dataset	134
	Loading MNIST	135
	TensorFlow Convolutional Primitives	138

	The Convolutional Architecture	140
	Evaluating Trained Models	144
	Challenge for the Reader	146
	Review	146
7.	Recurrent Neural Networks	149
	Overview of Recurrent Architectures	150
	Recurrent Cells	152
	Long Short-Term Memory (LSTM)	152
	Gated Recurrent Units (GRU)	154
	Applications of Recurrent Models	154
	Sampling from Recurrent Networks	154
	Seq2seq Models	155
	Neural Turing Machines	157
	Working with Recurrent Neural Networks in Practice	159
	Processing the Penn Treebank Corpus	159
	Code for Preprocessing	160
	Loading Data into TensorFlow	162
	The Basic Recurrent Architecture	164
	Challenge for the Reader	166
	Review	166
8.	Reinforcement Learning	169
	Markov Decision Processes	173
	Reinforcement Learning Algorithms	175
	Q-Learning	176
	Policy Learning	177
	Asynchronous Training	179
	Limits of Reinforcement Learning	179
	Playing Tic-Tac-Toe	181
	Object Orientation	181
	Abstract Environment	182
	Tic-Tac-Toe Environment	182
	The Layer Abstraction	185
	Defining a Graph of Layers	188
	The A3C Algorithm	192
	The A3C Loss Function	196
	Defining Workers	198
	Training the Policy	201
	Challenge for the Reader	203
	Review	203

9.	Training Large Deep Networks	205
	Custom Hardware for Deep Networks	205
	CPU Training	206
	GPU Training	207
	Tensor Processing Units	209
	Field Programmable Gate Arrays	211
	Neuromorphic Chips	211
	Distributed Deep Network Training	212
	Data Parallelism	213
	Model Parallelism	214
	Data Parallel Training with Multiple GPUs on Cifar10	215
	Downloading and Loading the DATA	216
	Deep Dive on the Architecture	218
	Training on Multiple GPUs	220
	Challenge for the Reader	223
	Review	223
10.	The Future of Deep Learning	225
	Deep Learning Outside the Tech Industry	226
	Deep Learning in the Pharmaceutical Industry	226
	Deep Learning in Law	227
	Deep Learning for Robotics	227
	Deep Learning in Agriculture	228
	Using Deep Learning Ethically	228
	Is Artificial General Intelligence Imminent?	230
	Where to Go from Here?	231
Ind	dex	233