Tabla de dispersión Cerrada:

Resolución de colisiones: Dispersión del Cuco

Claves= [5, 20, 3, 1000, 45, 27, 25, 67, 105, 3, 36, 39]

En principio, tenemos 12 claves. Pero, al tener 2 claves iguales, la función de hash nos re direccionaría al mismo espacio de memoria o índice, entonces tomaremos a esa clave doble como 1 sola, es decir, la unicidad de las claves es fundamental. En fin, vamos a tener 11 claves.

Función de Hash: Key→ Clave.

 $H1(key) = key\%23 \rightarrow Si la clave es menor al módulo, índice=clave.$

 $H2(key) = (key/11)\%23 \rightarrow Toma solo la parte entera de la división.$

Hacemos que las Funciones de Hash asignen los índices a las claves.

	5	20	3	1000	45	27	25	67	105	36	39
H1(Key)	5	20	3	11	22	4	2	21	13	13	16
H2(Key)	0	1	0	21	4	2	2	6	9	3	3

Insertamos los elementos de manera secuencial.

Se comienza insertando el 5 en la primera tabla en la posible posición indicada por h1(5):

H1						5																	
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 20:

H1						5															20		
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 3:

H1				3		5															20		
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 1000:

H1				3		5						1000									20		
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 45:

H1				3		5						1000									20		45
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 27:

H1				3	27	5						1000									20		45
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 25:

H1			25	3	27	5						1000									20		45
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 67:

H1			25	3	27	5						1000									20	67	45
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 105:

H1			25	3	27	5						1000		105							20	67	45
H2																							
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 36:

H1			25	3	27	5						1000		36							20	67	45
H2										105													
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

Sigue 39, ultima clave:

H1			25	3	27	5						1000		36			39				20	67	45
H2										105													
In	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

En este caso de tabla hash, elegimos la dispersión del cuco para resolver las colisiones, en este enfoque la "nueva" clave desplaza a la otra clave a su otra posición. Si en su 2da posición vuelve a tener una colisión, vuelva a su posición 1, es decir, va cambiando entre sus 2 posiciones para resolver las colisiones. Este enfoque se repite hasta que cada clave tenga asignado una posición.