### EXERCISES – BIOLOGICAL SIGNALS

### What will we do today?

- 1. The physiology behind EEG
- Structure of the EEG Signal
- 3. EEG measurement with BIOPAC
- 4. Summary

### The physiology behind EEG

- The nervous system is composed of neurons and glial cells
- Neurons are excitable cells that generate and carry electrical signals that are called action potentials
- The electrical activity spreading through the head and reaches the scalp
- The resulting voltage differences can be recorded as the electroencephalogram (EEG)
- EEG reflects the summation of synchronous activity of many neurons with similar spatial orientations
- EEG offers a good millisecond temporal resolution, however with limited spatial resolution





# Structure of the EEG Signal

- Characteristics of the EEG signal
  - Frequency components up to 300 Hz.
  - Amplitude in order to µvolts.



## Structure of the EEG Signal

#### Characteristics of the EEG signal

- Frequency components up to 300 Hz.
- Amplitude in order to µvolts.

#### Waves in the EEG signal

- Delta wave: high amplitude neural oscillations in the frequency range of 0.5 4 Hz. They are primarily associated with deep sleep.
- Theta wave: neural oscillations in the frequency range of 4 8 Hz. They have been associated with access to unconsciousness, creative inspiration and deep meditation.
- □ Alpha wave: neural oscillations in the frequency range of 8 13 Hz. They are associated to a relaxed awareness without any attention or concentration. They should be reduced or eliminated by opening the eyes, by hearing unfamiliar sounds, by anxiety, mental concentration or attention.
- **Beta wave:** neural oscillations in the frequency range of 13 30 Hz. They are associated with active thinking, active attention, focus on the outside world, or solving concrete problems.
- □ **Gamma wave:** neural oscillations in the frequency range of 30 90 Hz. They are suggested to be related to consciousness.

## Structure of the EEG Signal



### Parameters in the EEG signal

- Standard deviation (STD): measure of activity in the brain wave
- □ Average Value (AVG): measure of mean amplitude
- □ Cycle Count (CC): measure of central frequency

### **EEG** Measurement







#### Operational configuration

- Multichannel recording with an electrodes cap using 10 to 20 Ag-AgCl disks.
  - For example, C3 and C4 can be used to record the right and left finger movement related signals
- 1-Channel recording.
- Differential or referential electrodes setup.

#### Noise sources

- Muscle movement artifact (0 to 1000 Hz)
- Motion artifact from electrode movements (0 to 20 Hz)
- Power line interference (60 or 50 Hz)

### **Exercice 1: EEG measurement with BIOPAC**

#### Biopac MP35 measurement system

- EEG is recorded using Biopac SS2L wires plugged in the third channel.
- Electrodes are attached as depicted, avoiding hair between scalp and electrodes.

#### Biopac Student Lab PRO software

- The acquisition is set up at a sampling rate of 500 Hz.
- Analog Channel CH1 should have the preset Electroencephalogram EEG (.5-100Hz)
- □ Calculation Channel C1 should have the preset *EEG alpha* (8-13Hz)
- □ Calculation Channel C2 should have the preset EEG beta (13-30Hz)
- □ Calculation Channel C3 should have the preset *EEG delta* (0.5-4Hz)
- Calculation Channel C4 should have the preset EEG theta (4-8Hz)
- □ Calculation Channel C5 should have the preset EEG gamma (30-90Hz)

#### EEG parameters calculation

Estimate the STD, AVG and CC of each of the five brain waves



### Exercice 2: Relaxed with eyes open without blinking

- Procedure
  - □ Subject is instrumented for EEG measurement with Biopac.
  - The subject should be seated with legs fully relaxed and keep eyes open, staring at the computer screen without blinking during min 10 seconds.

#### Evaluation

Estimate the STD of the all brain waves

## Exercice 3: Relaxed with eyes closed

- Procedure
  - Subject is instrumented for EEG measurement with Biopac.
  - The subject should be seated with legs fully relaxed and eyes closed during 120 seconds.

#### Evaluation

- Estimate the STD, AVG and CC of the alpha wave
- Verify the following assertions:
  - Females tend to have higher mean frequency of alpha waves
  - Alpha amplitude tend to be higher in outgoing subjects

## Exercice 4: Mental math with eyes closed

#### Procedure

- □ Subject is instrumented for EEG measurement with Biopac.
- □ The subject should be seated with legs fully relaxed and eyes closed.
- After 60 seconds of baseline measurement at rest, the subject should mentally find the reminder of 12345 divided by 12 during another 60 seconds.

#### Evaluation

- Estimate the STD, AVG and CC of the alpha and beta waves
  - By how much did the amplitude of alpha waves changed?
  - Are there changes in the beta waves?

## Exercice 5: Hyperventilation with eyes closed

### Procedure

- Subject is instrumented for EEG and PPG measurement with Biopac.
- □ The subject should be seated with legs fully relaxed and eyes closed.
- □ The subject should increase breathing rate to 60 cycles per minute while breathing deeply during 120 seconds.

#### Evaluation

- Estimate the STD, AVG and CC of the alpha wave
  - It is expected that carbon dioxide levels fall, pH increases, blood pressure decreases, overall brain activity increases, alpha rhythms increase. Can you verify?

### **Team Projects**

- Project 1: Cardiovascular Signal Analyzer
  - Digital filtering of a raw PPG signal
  - Extraction of PH (pulse height) and PP (peak-to-peak) values from a filtered PPG signal
  - MAP estimation using PH
  - Fourier transform of PP intervals and estimation of HF and LF
  - Implementation in Matlab, if possible with an interactive GUI
    - User should be able to import the raw signal import from a Biopac text export
    - User should be able to enter the sampling frequency, signal type (ECG or PPG or both) and channel numbers
    - User should be able to filter the raw signal
    - User should be able to execute PP, PH, MAP, LF, HF computation
    - User should be able to display plots of the raw signal for a given start and end timestamp
    - User should be able to display plots of PP, PH, MAP over the time for a given start and end timestamp and display the value of LF and HF

### **Team Projects**

- Project 2: Nervous Activity Analyzer
  - Digital filtering of a raw EEG signal
  - Extraction of alpha, beta, theta, delta waves from a filtered EEG signal
  - Computation of STD, AVG and CC
  - Implementation in Matlab, if possible with an interactive GUI
    - □ User should be able to import the raw signal import from a Biopac text export
    - User should be able to enter the sampling frequency
    - User should be able to filter the raw signal
    - User should be able to execute alpha, beta wave, theta, delta wave computation using Fourier or Wavelet transform or digital filtering
    - ☐ User should be able to execute STD, AVG, CC computation
    - User should be able to display plots of the raw signal for a given start and end timestamp
    - User should be able to display plots of alpha, beta wave, theta, delta waves over the time for a given start and end timestamp and display the values for STD, AVG and CC

### **Team Projects**

- Project 3: Muscle Activity Analyzer
  - Digital filtering of a raw EMG signal
  - Computation of rectified EMG from a filtered EMG signal
  - Computation of the spectrum of the filtered EMG signal using Fourier transform
  - Computation of RMS, ARV
  - Implementation in Matlab, if possible with an interactive GUI
    - ☐ User should be able to import the raw signal import from a Biopac text export
    - User should be able to enter the sampling frequency
    - User should be able to filter the raw signal
    - □ User should be able to execute rectified EMG computation
    - User should be able to execute Fourier transform of the rectified EMG for a given start and end timestamp
    - ☐ User should be able to execute RMS, ARV computation for a given start and end timestamp
    - User should be able to display plots of the raw EMG, rectified EMG, EMG Fourier transform for a given start and end timestamp
    - □ User should be able to display the values for RMS, ARV for a given start and end timestamp