# Risoluzione del compito n. 7 (Luglio 2023)

## PROBLEMA 1

Trovate le soluzioni (z,w), con  $z,w\in\mathbb{C}$ , del sistema

$$\begin{cases} z^2 - 2w = 4i - 7 \\ \frac{z}{w} = \frac{1}{2-i} \end{cases}.$$

Ricordiamoci che dovremo scartare eventuali soluzioni con w=0 e dalla seconda equazione ricaviamo subito  $w=(2-\mathrm{i})z$ , che sostituito nella prima dà

$$z^{2} - 2(2 - i)z + 7 - 4i = 0 \iff z = (2 - i) \pm \sqrt{4 - 1 - 4i - 7 + 4i} = (2 - i) \pm \sqrt{-4}$$
$$= (2 - i) \pm 2i = \begin{cases} 2 + i \\ 2 - 3i \end{cases}$$

 $\cos$ ì i corrispondenti valori di  $\,w\,$ sono

$$w = (2 - i)z = \begin{cases} (2 - i)(2 + i) = 5\\ (2 - i)(2 - 3i) = 1 - 8i \end{cases}$$

e le due soluzioni del sistema sono

$$z = 2 + i$$
,  $w = 5$   $z = 2 - 3i$ ,  $w = 1 - 8i$ .

#### PROBLEMA 2

Considerate la funzione  $f(x) = \log_e(x^3 - 2x^2 + x) + 2x + \log_e 8$ .

- a) Calcolatene il dominio, i limiti agli estremi del dominio e gli asintoti.
- b) Determinate gli intervalli di monotonia di f e i punti di massimo e/o minimo locale.
- c) Determinate il numero di zeri di f.
- d) Calcolate la derivata seconda e gli intervalli di convessità o concavità di f.
- e) Disegnate il grafico di f.

La funzione è definita quando l'argomento del logaritmo è positivo:

$$P(x) = x^3 - 2x^2 + x = x(x^2 - 2x + 1) = x(x - 1)^2 > 0 \iff x \in ]0, 1[\cup]1, +\infty[$$

Dato che  $P(x) \to 0^+$  per  $x \to 0^+$  e per  $x \to 1$ , mentre  $P(x) \to +\infty$  per  $x \to +\infty$ , dall'andamento del logaritmo segue immediatamente che  $f(x) \to -\infty$  per  $x \to 0^+$  e per  $x \to 1$ , mentre  $f(x) \to +\infty$  per  $x \to +\infty$ . Quindi x = 0 è asintoto verticale (destro) e x = 1 asintoto verticale. Dato che  $f(x)/x \to 2$  ma  $\left[f(x) - 2x\right] \to +\infty$  per  $x \to +\infty$ , la funzione non ha asintoto obliquo.



La funzione è continua e derivabile (infinite volte) in tutto il dominio, e risulta

$$f'(x) = \frac{3x^2 - 4x + 1}{x^3 - 2x^2 + x} + 2 = \frac{2x^3 - x^2 - 2x + 1}{x(x - 1)^2}$$

e quindi (ricordando che nel dominio di f è x>0) il segno della derivata dipende dal segno della funzione  $g(x)=2x^3-x^2-2x+1$ . A questo punto o si vede il raccoglimento

$$g(x) = x^{2}(2x - 1) - (2x - 1) = (x^{2} - 1)(2x - 1) = (x + 1)(x - 1)(2x - 1),$$

o in alternativa si cerca uno zero di g, si trova che g(1) = 0 e allora dividendo per x - 1 risulta  $g(x) = (x - 1)(2x^2 + x - 1)$  e dato che il polinomio  $2x^2 + x - 1$  si annulla in

x=-1 e in x=1/2, possiamo fattorizzare  $2x^2+x-1=(x+1)(2x-1)$  pervenendo alla formula trovata in precedenza.

Dato che g(x) è positiva per 0 < x < 1/2, negativa per 1/2 < x < 1, positiva per x > 1, e si annulla per x = 1/2, otteniamo che f è crescente in ]0,1/2], decrescente in [1/2,1[, crescente in  $]1,+\infty[$ . Inoltre f ha un solo punto di massimo locale in x = 1/2, dove vale

$$f(1/2) = \log(1/8) + 1 + \log 8 = 1$$
.

Dalla continuità della funzione e dall'andamento agli estremi di ognuno degli intervalli, grazie al Teorema dei valori intermedi risulta

$$f([0, 1/2]) = f([1/2, 1]) = ]-\infty, 1], \quad f([1, +\infty[)) = \mathbb{R}.$$

Quindi per la stretta monotonia di f in ognuno degli intervalli considerati, concludiamo che la funzione si annulla una volta in ]0,1/2], una volta in [1/2,1[ e una volta in  $]1,+\infty[$  e dunque ha esattamente tre zeri.

Per l'ultimo punto, ricordando che dobbiamo calcolare la derivata seconda nei punti del dominio, semplifichiamo prima

$$f'(x) = \frac{(x+1)(x-1)(2x-1)}{x(x-1)^2} = \frac{(x+1)(2x-1)}{x(x-1)} = \frac{2x^2 + x - 1}{x^2 - x}$$

e dunque

$$f''(x) = \frac{d}{dx} \frac{2x^2 + x - 1}{x^2 - x} = \frac{(4x + 1)(x^2 - x) - (2x^2 + x - 1)(2x - 1)}{(x^2 - x)^2} = -\frac{3x^2 - 2x + 1}{(x^2 - x)^2}$$

dove il polinomio  $3x^2-2x+1$  è sempre positivo, avendo discriminante negativo. Quindi f''(x) < 0 in ogni punto del dominio di f, per cui concludiamo che f è strettamente concava sia in ]0,1[ che in  $]1,+\infty[$ .

La soluzione sarebbe stata più veloce osservando che scrivendo (serve il valore assoluto!)

$$\log(x^3 - 2x^2 + x) = \log(x(x-1)^2) = \log x + \log((x-1)^2) = \log x + 2\log|x-1|$$

si calcola subito per x > 0 e  $x \neq 1$ 

$$f'(x) = \frac{1}{x} + \frac{2}{x-1} + 2$$
,  $f''(x) = -\frac{1}{x^2} - \frac{2}{(x-1)^2}$ 

da cui si ottengono rapidamente le informazioni richieste.

#### PROBLEMA 3

Considerate le funzioni

$$f(x) = rac{ ext{sen } x}{x+1}\,,\quad g(x) = \log_{\,\mathrm{e}}\!\left(1+x-rac{x^2}{2}
ight)\,.$$

- a) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in  $x_0 = 0$  di f(x).
- b) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in  $x_0 = 0$  di g(x).
- c) Trovate l'ordine e la parte principale di infinitesimo, per  $x \to 0$ , della funzione f(x) g(x).
- d) Calcolate al variare del parametro  $\alpha \in \mathbb{R}$  il limite

$$\ell_{\alpha} = \lim_{x \to 0^+} \frac{f(x) - g(x) + \alpha(x^3 + x^4)}{x^4} \ .$$

Sappiamo che

$$sen x = x - \frac{x^3}{6} + o(x^4), \quad \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + o(x^4)$$

e dunque

$$f(x) = \left(x - \frac{x^3}{6} + o(x^4)\right) \left(1 - x + x^2 - x^3 + x^4 + o(x^4)\right)$$
$$= x - \frac{x^3}{6} + o(x^4) - x^2 + \frac{x^4}{6} + x^3 - x^4$$
$$= x - x^2 + \frac{5x^3}{6} - \frac{5x^4}{6} + o(x^4).$$

Inoltre, da

$$\log(1+y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4} + o(y^4)$$

con  $y = x - x^2/2$ , e dunque  $o(y)^k = o(x)^k$ , otteniamo

$$\log\left(1+x-\frac{x^2}{2}\right) = \left(x-\frac{x^2}{2}\right) - \frac{1}{2}\left(x-\frac{x^2}{2}\right)^2 + \frac{1}{3}\left(x-\frac{x^2}{2}\right)^3 - \frac{1}{4}\left(x-\frac{x^2}{2}\right)^4 + o(x^4)$$

$$= x - \frac{x^2}{2} - \frac{1}{2}\left(x^2 - x^3 + \frac{x^4}{4}\right) + \frac{1}{3}\left(x^3 - \frac{3x^4}{2}\right) - \frac{1}{4}x^4 + o(x^4)$$

$$= x - x^2 + \frac{5x^3}{6} - \frac{7x^4}{8} + o(x^4).$$

Quindi risulta che

$$f(x) - g(x) = x - x^{2} + \frac{5x^{3}}{6} - \frac{5x^{4}}{6} + o(x^{4}) - \left(x - x^{2} + \frac{5x^{3}}{6} - \frac{7x^{4}}{8}\right) = \frac{x^{4}}{24} + o(x^{4})$$

è un infinitesimo di ordine 4 con parte principale  $x^4/24$  e il limite richiesto vale

$$\ell_{\alpha} = \lim_{x \to 0^{+}} \frac{\alpha x^{3} + (\alpha + 1/24)x^{4} + o(x^{4})}{x^{4}} = \begin{cases} +\infty & \text{se } \alpha > 0\\ 1/24 & \text{se } \alpha = 0\\ -\infty & \text{se } \alpha < 0. \end{cases}$$

### PROBLEMA 4

Sia  $F(x) = \int_0^x (\arctan t^4)^3 dt$ .

a) Determinate per quale valore di  $\alpha \in \mathbb{R}$  risulta finito e diverso da zero

$$\lim_{x\to 0^+}\frac{F(x)}{x^\alpha}\;.$$

b) Studiate al variare di  $\beta \in \mathbb{R}$  la convergenza della serie

$$\sum_{n=1}^{\infty} \int_0^{1/n^{\beta}} (\arctan x^4)^3 dx.$$

Osserviamo che (arctan  $t^4$ )<sup>3</sup> è una funzione continua e non negativa in  $[0, +\infty[$  e tende a zero per  $x \to 0$ , quindi  $\lim_{x \to 0^+} F(x) = F(0) = 0$ . Allora per  $\alpha \le 0$  il limite di  $F(x)/x^\alpha$  vale certamente zero, e possiamo limitarci a studiare il caso  $\alpha > 0$ . Allora (solo adesso!) possiamo applicare il Teorema di de l'Hôpital ottenendo grazie al Teorema fondamentale del calcolo

$$\lim_{x \to 0^+} \frac{F(x)}{x^{\alpha}} = \lim_{\substack{\uparrow \\ H}} \frac{(\arctan x^4)^3}{\alpha x^{\alpha - 1}} ,$$

ma per  $t \to 0$  è arctan t = t + o(t) quindi  $(\arctan x^4)^3 = (x^4 + o(x^4))^3 = x^{12} + o(x^{12})$  pertanto ricordando che siamo nel caso  $\alpha > 0$  proseguiamo con

$$\cdots = \lim_{x \to 0^+} \frac{x^{12} + o(x^{12})}{\alpha x^{\alpha - 1}} = \begin{cases} 0 & \text{se } \alpha - 1 < 12 \iff 0 < \alpha < 13 \\ 1/13 & \text{se } \alpha = 13 \\ +\infty & \text{se } \alpha > 13. \end{cases}$$

Il valore cercato è dunque  $\alpha = 13$ , e possiamo riscrivere quanto ora dimostrato come

$$\lim_{x \to 0^+} \frac{F(x)}{x^{13}} = \frac{1}{13} \iff \lim_{x \to 0^+} \frac{F(x) - x^{13}/13}{x^{13}} = 0 \iff F(x) = \frac{x^{13}}{13} + o(x^{13}) .$$

Osserviamo ora che

$$a_n := \int_0^{1/n^{\beta}} (\arctan x^4)^3 dx = F(1/n^{\beta})$$

è sempre positivo, quindi potremo applicare tutti i criteri per serie a termini positivi e tanto per cominciare la serie o converge o diverge positivamente. Per  $\beta=0$  il termine generale  $a_n$  è costantemente  $\int_0^1 (\arctan t^4)^3 \, dt$ , un numero positivo, e dato che il termine generale non tende a zero la serie diverge positivamente. Per  $\beta<0$  abbiamo  $a_n\to \int_0^{+\infty} (\arctan t^4)^3 \, dt$ , di nuovo un numero positivo, e di nuovo la serie diverge positivamente. Invece per  $\beta>0$  abbiamo  $1/n^\beta\to 0^+$  e (soltanto adesso!) possiamo usare quanto ricavato sopra, ottenendo

$$a_n = F(1/n^{\beta}) = \frac{1}{13n^{13\beta}} + o\left(\frac{1}{n^{13\beta}}\right)$$

e per il criterio del confronto asintotico la serie proposta ha lo stesso carattere della serie armonica generalizzata  $\sum_n 1/n^{13\beta}$ , che converge per  $\beta>1/13$  e diverge per  $0<\beta\leq 1/13$ . In conclusione la serie converge per  $\beta>1/13$  e diverge positivamente per gli altri valori di  $\beta$ .

La prima parte sarebbe stata più rapida utilizzando il fatto che se  $f(t) = o(t^k)$  è una funzione integrabile allora  $\int_0^x f(t) dt = o(x^{k+1})$ : infatti avremmo potuto subito scrivere

$$F(x) = \int_0^x (\arctan t^4)^3 dt = \int_0^x (t^{12} + o(t^{12})) dt = \frac{x^{13}}{13} + o(x^{13}) .$$

**Esercizio 1.** Se w - z = 3 + 4i e |z| = 10 allora

(A) 
$$5 \le |w| \le 15$$
.

(C) 
$$w = 3 + (4 \pm 10)i$$
.  
(D)  $|w| + |z| = 7$ .

(B) 
$$w = (3 \pm 10) + 4i$$
.

(D) 
$$|w| + |z| = 7$$

Osserviamo che l'equazione si può rileggere  $w = (3+4\mathrm{i}) + z$ , e di z sappiamo solo che è un numero di modulo 10. Allora w è un qualunque punto della circonferenza di centro 3+4i e raggio 10, e possiamo scartare le due risposte precise (" $w=\cdots$ "). Poi, se già |z|=10 è impossibile che |z|+|w|=7 e resta solo una risposta. In effetti, dato che il centro 3+4i ha modulo 5, i punti della circonferenza detta sopra (disegnatela) devono avere moduli compresi fra 5 e 15. In alternativa, avremmo potuto usare la seconda disuguaglianza triangolare ottenendo

$$||w| - |z|| \le |w - z| = |3 + 4i| = 5 \iff ||w| - 10| \le 5$$

e di nuovo  $5 \le |w| \le 15$ . Esercizio 2. Se f è continua su  $\mathbb{R}$ 

- (A) ha come immagine un intervallo.
- (C) è anche derivabile.
- (B) non può essere uniformemente conti-
- (D) non può avere massimo e minimo.

Che abbia come immagine un intervallo segue dal Teorema dei valori intermedi. Invece ad esempio la funzione  $|x|e^{-|x|}$  — che a destra di zero è  $xe^{-x}$  e a sinistra è simmetrica — è uniformemente continua (ha derivata non superiore a 1 in valore assoluto, quindi è Lipschitziana), non è derivabile in zero e ha massimo in  $x = \pm 1$  e minimo in x = 0.

**Esercizio 3.** Nell'intervallo  $[-\pi/4, \pi]$  la funzione sen x ha immagine

(A) 
$$[-\sqrt{2}/2, 1]$$
.

(C) 
$$[-1,1]$$
.

(B) 
$$[-\sqrt{2}/2, 0]$$
.

(C) 
$$[-1,1]$$
.  
(D)  $[-1,\sqrt{2}/2]$ .

La funzione seno è continua, ed è strettamente crescente in  $[-\pi/4, \pi/2]$  e strettamente decrescente in  $[\pi/2,\pi]$ . Per il Teorema dei valori intermedi la sua immagine su  $[-\pi/4, \pi/2]$  è  $[sen(-\pi/4), sen(\pi/2)] = [-\sqrt{2}/2, 1]$  e la sua immagine su  $[\pi/2, \pi]$  è  $[\operatorname{sen} \pi, \operatorname{sen}(\pi/2)] = [0, 1]$ . In conclusione l'immagine cercata, che è l'unione delle precedenti, è  $[-\sqrt{2}/2, 1]$ .

Esercizio 4. Le combinazioni di 20 oggetti presi a 7 per volta sono

- (A) fra 40000 e 160000.
- (C) fra 2500 e 10000.

(B) fra 10000 e 40000.

(D) fra 600 e 2500.

Si tratta di stimare

$$\binom{20}{7} = \frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} = 19 \cdot 17 \cdot 24 \cdot 10 > 16 \cdot 16 \cdot 20 \cdot 10 > 200 \cdot 200 \; .$$

**Esercizio 5.** Sia  $S = \{x \in \mathbb{R} : \log_{e}(2x^{2} + 5ex + 3e^{2}) < 2\}$ . Allora:

(A) 
$$]-2e,-3e/2[\subset S.$$

(B) 
$$-\mathbf{e} \in S$$
.

Perché il logaritmo sia definito occorre che il suo argomento sia positivo, dopo di che (visto che  $2=\log_{\rm e}{\rm e}^2$ ) per la monotonia del logaritmo la disequazione equivarrà a  $2x^2+5\,{\rm e}x+3\,{\rm e}^2<{\rm e}^2$ . L'insieme S è dunque definito da

$$\begin{cases} 2x^{2} + 5 ex + 3 e^{2} > 0 \\ 2x^{2} + 5 ex + 3 e^{2} < e^{2} \end{cases} \iff \begin{cases} 2x^{2} + 5 ex + 3 e^{2} > 0 \\ 2x^{2} + 5 ex + 2 e^{2} < 0 \end{cases}$$

$$\iff \begin{cases} x < -3 e/2 \text{ oppure } x > -e \\ -2 e < x < -e/2 \end{cases}$$

e pertanto S=]-2 e, -3 e/2[ $\cup$ ] – e, - e/2[, mentre ]-1, -1/2[ $\not\subset S$  dato che - e/2 < -1 . Exercisio 6 Dato il parametro  $\alpha\in\mathbb{R}$ , la serie  $\sum n^{\alpha}\cdot\left(\operatorname{e}^{1/n^2}-1\right)$ Esercizio 6. Dato il parametro  $\alpha \in \mathbb{R}$ , la serie  $\sum_{n} n^{\alpha} \cdot (e^{1/n^2} - 1)$ 

- (A) converge se e solo se  $\alpha < 1$ .
- (C) converge se e solo se  $\alpha < -1$ .
- (B) converge per ogni  $\alpha < 3$ .
- (D) diverge positivamente se  $\alpha > 0$ .

Si tratta di una serie a termini positivi, e dato che

$$n^{\alpha} \cdot \left(e^{1/n^2} - 1\right) = n^{\alpha} \cdot \frac{e^{1/n^2} - 1}{1/n^2} \cdot \frac{1}{n^2} = \frac{e^{1/n^2} - 1}{1/n^2} \cdot \frac{1}{n^{2-\alpha}}$$

e che la prima frazione tende a 1, per il criterio del confronto asintotico la serie ha lo stesso carattere di  $\sum 1/n^{2-\alpha}$ , che è una serie armonica generalizzata e converge per  $2-\alpha>1\iff \alpha<1\ \ {\rm e\ diverge\ positiva mente\ per\ }\ \alpha\geq1\ .$ 

Esercizio 7. La successione  $\frac{n(e^{2/n}-1)}{\cos(\pi n)}$ 

(A) non ha limite.

- (C) tende a 2.
- (B) diverge positivamente.
- (D) è infinitesima.

Osserviamo che  $\cos(\pi n) = (-1)^n$  e che posto

$$a_n = \frac{n\left(e^{2/n} - 1\right)}{\cos(\pi n)}$$

abbiamo

$$a_n = (-1)^n \cdot 2 \frac{e^{2/n} - 1}{2/n}$$
:

dato che la seconda parte della successione tende a 2, abbiamo

$$a_{2n} \to +2$$
,  $a_{2n+1} \to -2$ 

e dunque  $a_n$  non ha limite.