Virtualna okruženja

Igor S. Pandžić, Mirko Sužnjević

Proširena stvarnost

Pregled predavanja

- Uvod
 - Definicija
 - Povijest
 - Tržišni trendovi
- Ključni aspekti
- Tehnički koncepti
 - Miješanje slike
 - Registracija (poravnanje)
 - Slijeđenje
 - Tehnologije za prikaz
- Razvoj aplikacija za AR

Definicije

- Terminologija u području proširene stvarnosti nije još "konvergirala"
- Prije Microsoft Hololensa

- Nakon izlaska Microsofstovog Hololens uređaja najčešće korištena terminologija je :
- Proširena stvarnost (engl. Augmented Reality AR) preklapanje postojeće stvarne slike s 2D i 3D virtualnim objektima (primjerice Pokemon GO)
- Miješana stvarnost (engl. Mixed Reality MR) proširena stvarnost sa mogućnostima postavljanja virtualnih 3D objekata u stvarnu scenu i interakcije s njima kroz pozicioniranje i preslikavanje (engl. Simultaneous Localization And Mapping – SLAM)
- Proširena stvarnost v2 (engl. Extended reality) ono što je prije predstavljala miješana stvarnost

Povijest

- 1862 Pepper's ghost
- 1901 The Master Key koncept AR naočala
- 1958 prve implementacije Heads Up Display (HUD) u avionima
- 1961 Philco Headsight gledanje kroz udaljenu kameru
- 1968 Shuterland prvi naočale za virtualnu stvarnost (prozirne)
- 70ih i 80ih Nastavljen razvoj kaciga za pilote
- 90ih Boing stvara termin "AR" te koristi naočale za proces sastavljanja
- 90ih se intenzivira daljnje istraživanje

Povijest

- 2005 AR na mobilnim telefonima
- 2008 AR u preglednicima u okviru Adobe Flash tehnologije
- 2011 Google Glass naočale velika medijska bura, ali na kraju mali komercijalni uspjeh i veliki problemi vezani za privatnost
- 2016 Microsoft HoloLens 1
- 2017 AR.js jednostavno uvođenje AR-a na temelju markera u web primjene (a mjesec dana kasnije i na temelju projekt Tangoa i AR bez markera)
- 2018 Magic Leap naočale
- 2019 Google Glass Enterprise edition 2
- 2020 Nreal naočale

Demo Magic Leap aplikacije

Tržište

Puno veći potencijal nego VR

VO · Proširena stvarnost · Pandžić, Sužnjević

Tržište

- Vrlo veliki prostor za primjene
 - Igre Pokemon GO
 - Edukacija dodavanje interaktivnosti u knjige
 - Proizvodnja
 - Marketing Pepsi AR reklama
 - Sustavi za sastavljanje u proizvodnji
 - Primjena za pakiranje i skladištenje
 - Medicina
 - Muzeji
 - Turističke svrhe
 - Holoportacija
 - Vojne primjene

Ključni aspekti

- Virtualne informacije se postavljaju u stvarni svijet.
- Virtualne informacije se registriraju na odgovarajućoj poziciji unutar stvarnog svijeta.
- Registracija se realizira s obzirom na perspektivu osoba u stvarnom svijetu koja se može mijenjati.
- Osobe koje su u AR iskustvu mogu komunicirati s virtualnim informacijama.

Osnovni tehnički koncepti

- Miješanje slike
 - Optičko
 - Video
 - Projekcijsko
- Registracija objekata
- Slijeđenje
 - Pozicije i orijentacije korisnika
 - Pozicije virtualnih 3D objekata u stvarnom svijetu
 - Rješenja s markerima
 - Rješenja bez markera
- Prikaz
 - Zaslon na glavi
 - Zaslon u ruci

Optičko miješanje

- Optička miješalica (engl. optical combiner) je polu-prozirno ogledalo, tako da korisnik vidi dvije slike
- Po jedan monitor za svako oko stereo slika
- Prednosti:
 - Bolja vidljivost stvarnog svijeta
 - Lakše
- Mane:
 - Svjetlina teže koristiti na otvorenom

Video miješanje

- Nema direktne stvarne slike; video signali stvarnog svijeta (iz kamere) i virtualnog (s računala) se miješaju
- Prednosti:
 - Video se može kontrolirati -> mogu se lako kombinirati grafički elementi i video
- Mane:
 - Percepcija stvarnog svijeta je degradirana
 - Kašnjenje snimanje i prikaz videa uvode određeno kašnjenje u percepciji stvarnog svijeta

Projekcijsko miješanje

Stvaran svijet

- Virtualna slika se projicira na predmete u stvarnoj okolini
- Složeno za neravne površine
- Problemi osvjetljenja i prekrivanja

Registracija ili poravnavanje

- Poravnavanje stvarnih i virtualnih predmeta u 3D
- Središnji problem proširene stvarnosti!
- Položaj promatrača i svih predmeta u sceni mora biti poznat što omogućava
 - Postavljanje virtualnih predmeta u isti koordinatni sustav sa stvarnim predmetima
 - Dinamičko iscrtavanje iz perspektive promatrača
- Potrebna je velika preciznost ljudsko oko detektira pomake manje od jedne kutne minute

Pogreške poravnavana

- Statičke pogreške
 - Greške slijeđenja
 - Pogrešni parametri virtualne kamere (vidni kut, razmak među očima, pozicija slijednog elementa, parametri perspektivne projekcije...)
 - Optičko izobličenje
 - Mehaničke nepreciznosti opreme
- Dinamička pogreška
 - Nastupa zbog kašnjenja
 - Slijeđenje, prijenos podataka, iscrtavanje
 - Ukupno kašnjenje ~100ms

Slijeđenje

- Postupak dobivanja pozicije/orijentacije predmeta u stvarnom vremenu
 - Sustavi slijeđenja prvo razvijeni za VR
 - Ovi sustavi obično nedovoljno precizni jer VR ima niže zahtjeve
- Tehnike slijeđenje obrađeno na prethodnom predavanju
 - Aktivne
 - Mehaničke
 - Magnetske
 - Elektromagnetske
 - Mrežne (WiFi, bazne stanice, GPS)
 - Pasivne
 - Inercijski senzori
 - Optički (markeri, statični elementi, SLAM algoritmi)
 - Hibridni

Optičko slijeđenje s markerima

http://www.hitl.washington.edu/artoolkit/documentation/userarwork.htm

Tipovi markera

- Pravokutni
- Kružni
- Točkasti
- Abecedni
- QR kodovi
- Infracrveni
- Ugniježđeni

http://www.cs.bham.ac.uk/~rjh/courses/ResearchTopicsInHCl/2014-15/Submissions/yan--yan.pdf

Bezmarkersko slijeđenje

- Ne treba prethodno poznavanje prostora
- Temelji se na korištenju dubinskih kamera
- Temeljeno na SLAM algoritmima
- Magic Leap koristi i kombinaciju dubokih neuronskih mreža kako bi poboljšao praćenje

Zaslon na glavi

- Naočale za proširenu stvarnost
 - Naočale za prikaz virtualnog sadržaja preko stvarnog svijeta
 - Naočale za pozicioniranje virtualnog sadržaja u stvarnom svijetu

<u>Izvor: https://www.aniwaa.com/best-of/vr-ar/best-augmented-reality-smartglasses/#What_are_the_best_AR_smartglasses</u>

Zaslon u ruci

- Pokretni uređaj mobitel ili tablet
- Velika podrška u smislu programske podrške
- Trenutno najraširenija uporaba proširene stvarnosti

Buduće tehnologije za prikaz

Video

Source

Drive

Electronics

- Prikaz u retini
 - Fotoni projicirani direktno u oko
 - Dobra svjetlina (dobro ponašanje po danu na otvorenom)
- Prikaz na kontaktnoj leći
 - Pitanja privatnosti i društvene prihvatljivosti
 - Veliki tehnički izazovi
 - Rezolucija
 - Napajanje

Programiranje proširene stvarnosti - alati

- Vuforia
 - Prepoznaje veliki broj objekata uključujući okvire, cilindre i igračke, kao i slika
 - Podržava prepoznavanje teksta uključujući oko 100.000 riječi
 - Omogućuje stvaranje prilagođenih VuMarks, koji izgledaju bolje od tipičnog QR-koda
 - Omogućuje stvaranje 3D geometrijske karte bilo kojeg okruženja pomoću značajke Smart terena
- ARToolkit
 - Podrška za Unity3D i OpenSceneGraph.
 - Podržava i jednu i dvije kamere.
 - Podrška za GPS i kompase za stvaranje AR aplikacija koje se temelje na lokaciji.
- Google ARCore
- Apple ARKit
- Maxst
- Specijalizirani SDK-ovi za HoloLens i Magic Leap