Modelo ER

Elmasri, R.A., Navathe S.B. Capitulo 7

Uso de modelos de datos conceptuales de alto nivel para el diseño de base de datos

Tipos de Entidad, Set de Entidad, Atributos y Llaves

Entidad

- Atributos
 - Tipos de atributos:
 - Simple /Compuesto
 - Univaluado/Multivaluado
 - Null values
 - Almacenado/Derivado

Tipos de Entidad, Set de Entidad, Atributos y Llaves cont.

- Entity Type
- Entity Set
- Value Set (dominio)

Tipos de Relación, Set de relación, Roles, Constraints estructurales

- Tipo de relación
- Set de relación

Figure 7.9
Some instances in the
WORKS_FOR relationship
set, which represents a
relationship type
WORKS_FOR between
EMPLOYEE and
DEPARTMENT.

Tipos de Relación, Set de relación, Roles, Constraints estructurales cont.

- Grado de Relación
- Relaciones como atributos
 - atributo en otra entidad
- Nombres de roles y relaciones recursivas

Tipos de Relación, Set de relación, Roles, Constraints estructurales cont.

- Restricciones en tipos de relaciones binarias
 - Cardinalidad para relaciones binarias
- Restricciones de Participación y Dependencias de Existencia
 - Total participation : cada entidad participa en al menos una relación en el set de relaciones.
 - Partial participation: algunas entidades pueden no participar Grado de Relación
- Atributos en tipos de relaciones
 - atributos en relación

Entidad Débil

Identifying owner

Identifying Relationship

Crow's Foot

Normalizacion

Elmasri, R.A., Navathe S.B. Capitulo 15

Normalizacion

Que es Normalizacion?

- Anomalias
 - Tipos de Anomalias

Conceptos

Dependencia Funcional Determinante

Formas Normales Reglas

ONF

 Tiene atributos compuestos o multivaluados

1NF

No atributos multivaluados

2NF

No dependencias parciales

3NF

No dependencias
 Transitivas

Otras Formas Normales

Boyce-Codd NF

 Si para cada dependencia funcional X → A no trivial, X es una superclave.

4NF

 Si para cada dependencia multivaluada no trivial X ->> Y en F +, X es una superclave de R

5NF

 Si para cada join dependency no trivial (R1, R2, ..., Rn) en F +, cada Ri es una superclave de R.

BCNF

TABLE Sample Data for a BCNF Conversion 6.5 STAFF_ID ENROLL_GRADE 125 25 21334 Α 125 32456 C 20 28458 135 В 20 C 144 25 27563 В 144 20 32456

4NF

BranchStaffOwner

branchNo	sName	oName
B003 B003 B003	Ann Beech David Ford Ann Beech David Ford	Carol Farrel Carol Farrel Tina Murphy Tina Murphy

5NF

propertyNo	itemDescription	supplierNo
PG4	Bed	S1
PG4	Chair	S2
PG16	Bed	S2

• Join Dependency: Cada valor legal r de la relacion R debe tener una decompsocion join noaditiva en R1, R2, ..., Rn. Por tanto para cada r se tiene * $(\pi R1 (r), \pi R2 (r), ..., \pi Rn (r)) = r$

Denormalizacion

Definicion

Cuando usar denormalizacion?