## 20104169 - SUMESH R

## **Importing Libraries**

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [2]:
```

```
from google.colab import drive
drive.mount('/content/drive')
df=pd.read_csv("/content/drive/MyDrive/mydatasets/csvs_per_year/madrid_2016.csv")
df
```

Mounted at /content/drive

Out[2]:

|        | date                | BEN | СО  | EBE | NMHC | NO    | NO_2  | 0_3  | PM10 | PM25 | SO_2 | тсн  | TOL  | station  |
|--------|---------------------|-----|-----|-----|------|-------|-------|------|------|------|------|------|------|----------|
| 0      | 2016-11-01 01:00:00 | NaN | 0.7 | NaN | NaN  | 153.0 | 77.0  | NaN  | NaN  | NaN  | 7.0  | NaN  | NaN  | 28079004 |
| 1      | 2016-11-01 01:00:00 | 3.1 | 1.1 | 2.0 | 0.53 | 260.0 | 144.0 | 4.0  | 46.0 | 24.0 | 18.0 | 2.44 | 14.4 | 28079008 |
| 2      | 2016-11-01 01:00:00 | 5.9 | NaN | 7.5 | NaN  | 297.0 | 139.0 | NaN  | NaN  | NaN  | NaN  | NaN  | 26.0 | 28079011 |
| 3      | 2016-11-01 01:00:00 | NaN | 1.0 | NaN | NaN  | 154.0 | 113.0 | 2.0  | NaN  | NaN  | NaN  | NaN  | NaN  | 28079016 |
| 4      | 2016-11-01 01:00:00 | NaN | NaN | NaN | NaN  | 275.0 | 127.0 | 2.0  | NaN  | NaN  | 18.0 | NaN  | NaN  | 28079017 |
|        |                     |     |     |     |      |       |       |      |      |      |      |      |      |          |
| 209491 | 2016-07-01 00:00:00 | NaN | 0.2 | NaN | NaN  | 2.0   | 29.0  | 73.0 | NaN  | NaN  | NaN  | NaN  | NaN  | 28079056 |
| 209492 | 2016-07-01 00:00:00 | NaN | 0.3 | NaN | NaN  | 1.0   | 29.0  | NaN  | 36.0 | NaN  | 5.0  | NaN  | NaN  | 28079057 |
| 209493 | 2016-07-01 00:00:00 | NaN | NaN | NaN | NaN  | 1.0   | 19.0  | 71.0 | NaN  | NaN  | NaN  | NaN  | NaN  | 28079058 |
| 209494 | 2016-07-01 00:00:00 | NaN | NaN | NaN | NaN  | 6.0   | 17.0  | 85.0 | NaN  | NaN  | NaN  | NaN  | NaN  | 28079059 |
| 209495 | 2016-07-01 00:00:00 | NaN | NaN | NaN | NaN  | 2.0   | 46.0  | 61.0 | 34.0 | NaN  | NaN  | NaN  | NaN  | 28079060 |

209496 rows × 14 columns

df.info()

## **Data Cleaning and Data Preprocessing**

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16932 entries, 1 to 209478
Data columns (total 14 columns):
     Column
              Non-Null Count Dtype
              _____
     _____
                               ____
 0
     date
              16932 non-null object
 1
              16932 non-null
                              float64
    CO
              16932 non-null
 3
    EBE
              16932 non-null
                              float64
              16932 non-null
                              float64
    NMHC
              16932 non-null
 5
                              float64
     NO
     NO 2
              16932 non-null
 6
                               float64
 7
     0 3
              16932 non-null
                               float64
 8
     PM10
              16932 non-null
                               float64
 9
     PM25
              16932 non-null
                               float64
 10 SO 2
              16932 non-null
                               float64
 11
     TCH
              16932 non-null
                               float64
 12
     TOL
              16932 non-null
                               float64
 13 station 16932 non-null
                              int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.9+ MB
In [6]:
data=df[['CO' ,'station']]
data
Out[6]:
       CO
            station
     1 1.1 28079008
    6 0.8 28079024
       1.0 28079008
       0.7 28079024
    30
       0.8 28079008
    ---
209430
       0.2 28079024
       0.4 28079008
209449
209454
       0.2 28079024
209473 0.4 28079008
209478 0.2 28079024
16932 rows × 2 columns
Line chart
In [7]:
data.plot.line(subplots=True)
Out[7]:
```

CO

array([<Axes: >, <Axes: >], dtype=object)

4

3

2



## Line chart

```
In [8]:
data.plot.line()
Out[8]:
<Axes: >
     1e7
 2.5
 2.0
 1.5
                                                            CO
                                                             station
 1.0
 0.5
 0.0
       0
                   50000
                                100000
                                              150000
                                                           200000
```

## **Bar chart**



# **Histogram**

```
In [11]:
```

data.plot.hist()

Out[11]:

<Axes: ylabel='Frequency'>



## **Area chart**

```
In [12]:
```

```
data.plot.area()
```

Out[12]:





## **Box chart**

```
In [13]:
```

```
data.plot.box()
Out[13]:
<Axes: >
le7
```



## Pie chart

In [14]:

```
b.plot.pie(y='station')
```

#### Out[14]:

<Axes: ylabel='station'>



### **Scatter chart**

**BEN** 

CO

**EBE** 

**NMHC** 

NO

NO 2

03

PM10

```
In [15]:
data.plot.scatter(x='CO' ,y='station')
Out[15]:
<Axes: xlabel='CO', ylabel='station'>
      +2.8079e7
   24
         ..........
   22
   20
   18
   16
   14
   12
   10
    8
       0
                   1
                               2
                                           3
                                  CO
In [16]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16932 entries, 1 to 209478
Data columns (total 14 columns):
 #
    Column
             Non-Null Count Dtype
 0
    date
             16932 non-null object
 1
    BEN
             16932 non-null float64
 2
    CO
              16932 non-null float64
 3
   EBE
             16932 non-null float64
 4
   NMHC
             16932 non-null float64
 5
   NO
             16932 non-null float64
   NO 2
             16932 non-null float64
 7
    0 3
             16932 non-null float64
 8
    PM10
             16932 non-null float64
 9
    PM25
             16932 non-null float64
 10 SO 2
             16932 non-null float64
 11
    TCH
              16932 non-null float64
              16932 non-null float64
 12
    TOL
 13 station 16932 non-null int64
dtypes: float64(12), int64(1), object(1)
memory usage: 1.9+ MB
In [17]:
df.describe()
Out[17]:
```

|       |              |              |              |              |              |                      | <del>-</del> |              |          |
|-------|--------------|--------------|--------------|--------------|--------------|----------------------|--------------|--------------|----------|
| count | 16932.000000 | 16932.000000 | 16932.000000 | 16932.000000 | 16932.000000 | NO_2<br>16932.000000 | 16932.000000 | 16932.000000 | 169      |
| mean  | 0.537970     | 0.349941     | 0.298955     | 0.099913     | 20.815734    | 39.373376            | 48.118474    | 19.248110    |          |
| std   | 0.599479     | 0.203807     | 0.450204     | 0.079850     | 40.986063    | 31.170307            | 32.560277    | 18.509093    |          |
| min   | 0.100000     | 0.100000     | 0.100000     | 0.000000     | 1.000000     | 1.000000             | 1.000000     | 1.000000     |          |
| 25%   | 0.200000     | 0.200000     | 0.100000     | 0.050000     | 1.000000     | 14.000000            | 21.000000    | 9.000000     |          |
| 50%   | 0.400000     | 0.300000     | 0.200000     | 0.090000     | 7.000000     | 34.000000            | 46.000000    | 15.000000    |          |
| 75%   | 0.700000     | 0.400000     | 0.300000     | 0.120000     | 23.000000    | 58.000000            | 69.000000    | 24.000000    |          |
| max   | 12.300000    | 4.500000     | 13.500000    | 2.210000     | 829.000000   | 319.000000           | 181.000000   | 367.000000   | 2        |
| 4     |              |              |              |              | 188          |                      |              |              | <b>₽</b> |

## **EDA AND VISUALIZATION**

In [18]:

sns.pairplot(df[0:50])

Out[18]:

<seaborn.axisgrid.PairGrid at 0x79330053a830>



#### In [19]:

#### sns.distplot(df['station'])

<ipython-input-19-6e2460d4583e>:1: UserWarning:

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['station'])

#### Out[19]:

<Axes: xlabel='station', ylabel='Density'>



#### In [20]:

#### sns.heatmap(df.corr())

<ipython-input-20-aa4f4450a243>:1: FutureWarning: The default value of numeric\_only in Da
taFrame.corr is deprecated. In a future version, it will default to False. Select only va
lid columns or specify the value of numeric\_only to silence this warning.
 sns.heatmap(df.corr())

#### Out[20]:

<Axes: >





## TO TRAIN THE MODEL AND MODEL BULDING

```
In [21]:
y=df['station']
In [22]:
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
Linear Regression
In [23]:
from sklearn.linear model import LinearRegression
lr=LinearRegression()
lr.fit(x train, y train)
Out[23]:
▼ LinearRegression
LinearRegression()
In [24]:
lr.intercept
Out[24]:
28079042.21686273
In [25]:
coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
Out[25]:
     Co-efficient
```

# BEN -1.993384 CO 4.487618 EBE 0.754127 NMHC 2.960473

0.069834

NO

```
NO_2 Commissions
O_3 -0.024092
PM10 -0.012027
PM25 0.096521
SO_2 -0.800109
TCH -14.218379
TOL 0.161117
```

#### In [26]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test, prediction)
```

#### Out[26]:

<matplotlib.collections.PathCollection at 0x79333a6511b0>



## **ACCURACY**

```
In [27]:
```

```
lr.score(x_test, y_test)
```

#### Out[27]:

0.8387972184876646

#### In [28]:

```
lr.score(x_train,y_train)
```

#### Out[28]:

0.8233122579938551

# **Ridge and Lasso**

T [00]

```
In [29]:
from sklearn.linear model import Ridge, Lasso
In [30]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[30]:
     Ridge
Ridge(alpha=10)
Accuracy(Ridge)
In [31]:
rr.score(x test,y test)
Out[31]:
0.8387200462261404
In [32]:
rr.score(x train,y train)
Out[32]:
0.8231913774530392
In [33]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[33]:
     Lasso
Lasso(alpha=10)
In [34]:
la.score(x train,y train)
Out[34]:
0.6421283430780567
Accuracy(Lasso)
In [35]:
la.score(x_test,y_test)
Out[35]:
0.6503999023554409
In [36]:
from sklearn.linear model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[36]:
```

```
▼ ElasticNet
ElasticNet()
In [37]:
en.coef
Out[37]:
                              , -0.
                                                        , 0.04912246,
                 , 0.
                                           , -0.
array([-0.
       -0.10855501, -0.02049893, 0.00325871, 0.04611462, -0.8562113,
       -0.02336465, 0.
                             1)
In [38]:
en.intercept
Out[38]:
28079026.177051354
In [39]:
prediction=en.predict(x test)
In [40]:
en.score(x test, y test)
Out[40]:
0.7158451670288988
Evaluation Metrics
In [41]:
from sklearn import metrics
print(metrics.mean absolute error(y test,prediction))
print(metrics.mean squared_error(y_test,prediction))
print(np.sqrt(metrics.mean squared error(y test,prediction)))
3.29210566510703
18.18320042261141
4.264176406131835
Logistic Regression
In [42]:
from sklearn.linear model import LogisticRegression
```

```
target_vector.shape
Out[45]:
(16932,)
In [46]:
from sklearn.preprocessing import StandardScaler
In [47]:
fs=StandardScaler().fit transform(feature matrix)
In [48]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[48]:
         LogisticRegression
LogisticRegression (max iter=10000)
In [49]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12]]
In [50]:
prediction=logr.predict(observation)
print(prediction)
[28079008]
In [51]:
logr.classes
Out[51]:
array([28079008, 28079024])
In [52]:
logr.score(fs,target vector)
Out[52]:
0.996161115048429
In [53]:
logr.predict proba(observation)[0][0]
Out[53]:
1.0
In [54]:
logr.predict_proba(observation)
Out[54]:
array([[1.0000000e+00, 1.38109307e-55]])
```

## **Random Forest**

In [55]:

```
from sklearn.ensemble import RandomForestClassifier
In [56]:
 rfc=RandomForestClassifier()
 rfc.fit(x_train,y_train)
Out[56]:
  ▼ RandomForestClassifier
 RandomForestClassifier()
In [57]:
parameters={ 'max depth': [1,2,3,4,5],
                                     'min samples leaf': [5,10,15,20,25],
                                     'n estimators': [10,20,30,40,50]
In [58]:
 from sklearn.model selection import GridSearchCV
grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy")
grid search.fit(x train, y train)
Out [58]:
                                       GridSearchCV
   ▶ estimator: RandomForestClassifier
                       RandomForestClassifier
In [59]:
grid search.best score
Out [59]:
0.9946000674991562
In [60]:
 rfc best=grid search.best estimator
In [61]:
 from sklearn.tree import plot tree
plt.figure(figsize=(80,40))
plot tree(rfc best.estimators [5], feature names=x.columns, class names=['a', 'b', 'c', 'd'], f
illed=True)
Out[61]:
 [Text(0.44010416666666667, 0.91666666666666666666, 'NO <= 2.5 \ngini = 0.5 \nsamples = 7568 \nval)
ue = [5992, 5860] \setminus nclass = a'),
   40671 \setminus nclass = b'),
   63\nvalue = [74, 3607]\nclass = b'),

    \text{nvalue} = [25, 3454] \\    \text{nclass} = b'),

  Text(0.041666666666666664, 0.25, 'NMHC <= 0.075 / ngini = 0.002 / nsamples = 1197 / nvalue = [
2, 1839]\nclass = b'),
  Text(0.02083333333333333, 0.083333333333333333, 'gini = 0.001 \ nsamples = 1150 \ nvalue = [
1, 1769]\nclass = b'),
   b'),
   Text (0.125, 0.25, CO \le 0.25 \setminus CO \le 0.25 \setminus CO \le 0.28 \setminus CO \le 0.28
```

```
b'),
  Text(0.104166666666666667, 0.0833333333333333333, 'gini = 0.052 \nsamples = 543 \nvalue = [22]
, 809] \nclass = b'),
 8061 \setminus nclass = b'),
  Text(0.1875, 0.4166666666666667, 'SO 2 <= 3.5 \neq 0.367 = 0.367 = 123 \neq 0.367 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 = 123 
1531 \times b'),
  Text(0.208333333333333334, 0.25, 'gini = 0.0 \nsamples = 31 \nvalue = [49, 0] \nclass = a'),
  alue = [197, 460] \setminus nclass = b'),
  Text(0.2708333333333333, 0.41666666666666667, 'NMHC <= 0.055 | mgini = 0.03 | msamples = 284 | msamples | ms
nvalue = [7, 460] \setminus nclass = b'),
  Text(0.25, 0.25, 'gini = 0.0 \setminus samples = 143 \setminus value = [0, 240] \setminus class = b'),
  Text(0.291666666666667, 0.25, 'TOL <= 0.65\ngini = 0.06\nsamples = 141\nvalue = [7, 220]
] \nclass = b'),
  3] \nclass = b'),
 '),
 '),
  21, 1793]\nclass = a'),
  Text(0.5, 0.5833333333333334, 'TOL <= 1.55 | ngini = 0.471 | nsamples = 1097 | nvalue = [647, 1.5]
1061] \setminus nclass = b'),
 Text(0.41666666666666667, 0.4166666666666667, 'O 3 <= 22.5 \ngini = 0.5 \nsamples = 616 \nva
lue = [486, 462] \setminus ass = a',
  Text(0.375, 0.25, 'NO 2 \le 45.5 = 0.339 = 118 = [39, 141] = [39, 141]
 Text(0.3541666666666667, 0.083333333333333333333, 'gini = 0.173 \nsamples = 76 \nvalue = [11, 1]
104] \nclass = b'),
  7] \nclass = b'),
 321] \nclass = a'),
  s = b'),
 , 51]\nclass = a'),
  value = [161, 599] \setminus nclass = b'),
  516] \nclass = b'),
 Text(0.52083333333334, 0.08333333333333333, 'gini = 0.0 \nsamples = 240 \nvalue = [0, 40]
0] \nclass = b'),
 = b'),
 Text(0.625, 0.25, '0 3 \leq 3.5\ngini = 0.469\nsamples = 155\nvalue = [138, 83]\nclass = a
'),
 4] \nclass = b'),
 Text(0.645833333333334, 0.08333333333333333, 'gini = 0.29 \nsamples = 115 \nvalue = [136, 136]
29]\nclass = a'),
 Text(0.833333333333334, 0.58333333333333334, 'PM10 <= 16.5 \ngini = 0.22 \nsamples = 3705 \nsamples = 3705
nvalue = [5074, 732] \nclass = a'),
  Text(0.75, 0.4166666666666667, 'CO <= 0.55\ngini = 0.121\nsamples = 1446\nvalue = [2163,
150] \setminus nclass = a'),
  Text(0.708333333333334, 0.25, 'NMHC <= 0.095 | mgini = 0.088 | nsamples = 1370 | nvalue = [20]
99, 102 \mid \ln a = a'),
 = a'),
 88, 42] \ln a = a',
 ] \nclass = a'),
  Text(0.770833333333334, 0.08333333333333333, 'gini = 0.274 \nsamples = 35 \nvalue = [9, 4]
6] \nclass = b'),
  Text (0.9166666666666666. 0.4166666666666667. !SO 2 \le 4.5  and !SO 2 \le 4.5
```



## **Conclusion**

## **Accuracy**

```
In [62]:
```

```
print("Linear Regression:",lr.score(x_test,y_test))
print("Ridge Regression:",rr.score(x_test,y_test))
print("Lasso Regression",la.score(x_test,y_test))
print("ElasticNet Regression:",en.score(x_test,y_test))
print("Logistic Regression:",logr.score(fs,target_vector))
print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.8387972184876646
Ridge Regression: 0.8387200462261404
Lasso Regression 0.6503999023554409
ElasticNet Regression: 0.7158451670288988
Logistic Regression: 0.996161115048429
Random Forest: 0.9946000674991562

## Logistic Regression is suitable for this dataset