Linear Data Chapter 12

Written by: Emily J. King

1. Consider the zero-centered data cloud pictured below.

Let \mathbf{X} be the 2×1000 zero-centered data matrix representing the data cloud. Which of the following are most likely to be the singular values of \mathbf{X} ? You must justify your response with at least one complete sentence.

A.
$$\sigma_1 = 5, \, \sigma_2 = 4$$

B.
$$\sigma_1 = 9$$
, $\sigma_2 = 1.5$

C.
$$\sigma_1 = 8, \, \sigma_2 = -1$$

2. Let $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ be the singular value decomposition of a $d \times n$ matrix \mathbf{B} , where \mathbf{U} is a $d \times d$ orthogonal matrix with columns \vec{u}_i , $\mathbf{\Sigma}$ is diagonal $d \times n$ matrix with diagonal entries σ_i in non-increasing order, and \mathbf{V} is a $n \times n$ orthogonal matrix with columns

- $\vec{v_i}$. Assume the singular values are all distinct. What is a correct formula for the best rank 1 approximation of **B**? You must justify your response with at least one complete sentence.
 - A. $\vec{u}_d \sigma_1 \vec{v}_n^{\top}$
 - B. $\vec{u}_1 \sigma_1 \vec{v}_1^{\mathsf{T}}$
 - C. $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$
- 3. Name at least one application of PCA from the textbook or some other source. In the latter case, list the source.
- 4. Assume that **A** is a 3×10 matrix and that $\mathbf{A}\mathbf{A}^{\top}$ has the eigenvalues 1, 4, 25.
 - (a) Explicitly list with justification the eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ (including multiplicity).
 - (b) Explicitly list with justification the singular values of **A**.