In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
from sklearn import metrics
```

In [2]:

```
df=pd.read_csv('after_week1.csv')
df.head()
```

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeF
0	6	148.0	72.0	35.000000	79.799479	33.6	
1	1	85.0	66.0	29.000000	79.799479	26.6	
2	8	183.0	64.0	20.536458	79.799479	23.3	
3	1	89.0	66.0	23.000000	94.000000	28.1	
4	0	137.0	40.0	35.000000	168.000000	43.1	
4							>

Data Preprocessing

```
In [3]:
```

```
x=df.iloc[:,:-1].values
y=df.iloc[:,-1].values
```

In [4]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=0)
```

In [5]:

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
```

```
(614, 8)
(154, 8)
(614,)
(154,)
```

```
In [6]:
```

```
from sklearn.preprocessing import StandardScaler
```

```
In [7]:
```

```
Scale=StandardScaler()
x_train_std=Scale.fit_transform(x_train)
x_test_std=Scale.transform(x_test)
```

In [8]:

```
norm=lambda a:(a-min(a))/(max(a)-min(a))
```

In [9]:

```
df_norm=df.iloc[:,:-1]
```

In [10]:

```
df_normalized=df_norm.apply(norm)
```

In [11]:

```
 x\_train\_norm, x\_test\_norm, y\_train\_norm, y\_test\_norm=train\_test\_split(df\_normalized.values, y, test\_size=0.20, random\_state=0)
```

In [12]:

```
print(x_train_norm.shape)
print(x_test_norm.shape)
print(y_train_norm.shape)
print(y_test_norm.shape)
```

(614, 8) (154, 8)

(614,)

(154,)

Data is mostly numerical and in such scenario, Logistic Regression works fine. We have also seen in week 2 that variables are depending on target somewhat linearly, So this is also good for Logistic Regression. I will be also using Support Vector Classifier, Perceptron Learning, Random Forest (Ensemble Learning) to see if i can improve accuracy. Note these learning algorithm also works on linear data very well. To validate model i will be using train test split, for accuracy i will be using accuracy using confusion matrix because classes are balanced and i will be also considering ROC Curve and ROC AUC Score to make sure Type 2 Error will not occur for Positive class, that is 1

KNN

KNN With Standard Scaling

In [83]:

```
from sklearn.neighbors import KNeighborsClassifier
knn_model = KNeighborsClassifier(n_neighbors=25)
#Using 25 Neighbors just as thumb rule sqrt of observation
knn_model.fit(x_train_std,y_train)
knn_pred=knn_model.predict(x_test_std)
```

In [84]:

```
print("Model Validation ==>\n")
print("Accuracy Score of KNN Model::")
print(metrics.accuracy_score(y_test,knn_pred))
print("\n","Classification Report::")
print(metrics.classification_report(y_test,knn_pred),'\n')
print("\n","ROC Curve")
knn_prob=knn_model.predict_proba(x_test_std)
knn_prob1=knn_prob[:,1]
fpr,tpr,thresh=metrics.roc_curve(y_test,knn_prob1)
roc_auc_knn=metrics.auc(fpr,tpr)
plt.figure(dpi=80)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_knn)
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of KNN Model:: 0.81818181818182

			on Report::	Classification
support	f1-score	recall	precision	I
107	0.87	0.90	0.85	0
47	0.68	0.64	0.73	1
154	0.82			accuracy
154	0.78	0.77	0.79	macro avg
154	0.81	0.82	0.81	weighted avg

ROC Curve

Out[84]:

<matplotlib.legend.Legend at 0x1ee28e03198>

KNN With Normalization

In [85]:

```
from sklearn.neighbors import KNeighborsClassifier
knn_model_norm = KNeighborsClassifier(n_neighbors=25)
#Using 25 Neighbors just as thumb rule sqrt of observation
knn_model_norm.fit(x_train_norm,y_train_norm)
knn_pred_norm=knn_model_norm.predict(x_test_norm)
```

In [87]:

```
print("Model Validation ==>\n")
print("Accuracy Score of KNN Model with Normalization::")
print(metrics.accuracy_score(y_test_norm,knn_pred_norm))
print("\n","Classification Report::")
print(metrics.classification_report(y_test_norm,knn_pred_norm),'\n')
print("\n","ROC Curve")
knn_prob_norm=knn_model.predict_proba(x_test_norm)
knn_prob_norm1=knn_prob_norm[:,1]
fpr,tpr,thresh=metrics.roc_curve(y_test_norm,knn_prob_norm1)
roc_auc_knn=metrics.auc(fpr,tpr)
plt.figure(dpi=80)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_knn)
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of KNN Model with Normalization:: 0.8311688311688312

Classification	Report::
	nocicion

CIGSSITICACI	•			
	precision	recall	f1-score	support
0	0.86	0.90	0.88	107
1	0.74	0.68	0.71	47
1	0.74	0.08	0.71	47
			0.00	454
accuracy			0.83	154
macro avg	0.80	0.79	0.80	154
weighted avg	0.83	0.83	0.83	154

ROC Curve

Out[87]:

<matplotlib.legend.Legend at 0x1ee27b29e80>

We can clearly see that KNN with Standardization is better than Normalization, So later i will build models using Z Score Standardization and will compare with KNN

Support Vectore Classifier

In [88]:

```
from sklearn.svm import SVC
svc_model_linear = SVC(kernel='linear',random_state=0,probability=True,C=0.01)
svc_model_linear.fit(x_train_std,y_train)
svc_pred=svc_model_linear.predict(x_test_std)
```

In [89]:

```
print("Model Validation ==>\n")
print("Accuracy Score of SVC Model with Linear Kernel::")
print(metrics.accuracy_score(y_test,svc_pred))
print("\n","Classification Report::")
print(metrics.classification_report(y_test,svc_pred),'\n')
print("\n","ROC Curve")
svc_prob_linear=svc_model_linear.predict_proba(x_test_std)
svc_prob_linear1=svc_prob_linear[:,1]
fpr,tpr,thresh=metrics.roc_curve(y_test,svc_prob_linear1)
roc_auc_svc=metrics.auc(fpr,tpr)
plt.figure(dpi=80)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_svc)
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of SVC Model with Linear Kernel:: 0.8116883116883117

Classification Report::

CIdSSITIC	precision			f1-score	support
	0	0.83	0.92	0.87	107
	1	0.75	0.57	0.65	47
accurac	у			0.81	154
macro av	/g	0.79	0.75	0.76	154
weighted av	/g	0.81	0.81	0.80	154

ROC Curve

Out[89]:

<matplotlib.legend.Legend at 0x1ee27b90d30>

In [90]:

```
from sklearn.svm import SVC
svc_model_rbf = SVC(kernel='rbf',random_state=0,probability=True,C=1)
svc_model_rbf.fit(x_train_std,y_train)
svc_pred_rbf=svc_model_rbf.predict(x_test_std)
```

In [91]:

```
print("Model Validation ==>\n")
print("Accuracy Score of SVC Model with RBF Kernel::")
print(metrics.accuracy_score(y_test,svc_pred_rbf))
print("\n","Classification Report::")
print(metrics.classification_report(y_test,svc_pred_rbf),'\n')
print("\n","ROC Curve")
svc_prob_rbf=svc_model_linear.predict_proba(x_test_std)
svc_prob_rbf1=svc_prob_rbf[:,1]
fpr,tpr,thresh=metrics.roc_curve(y_test,svc_prob_rbf1)
roc_auc_svc=metrics.auc(fpr,tpr)
plt.figure(dpi=80)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_svc)
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of SVC Model with RBF Kernel:: 0.7727272727272727

Classification Report::

	precision	recall	f1-score	support
0	0.81	0.88	0.84	107
1	0.66	0.53	0.59	47
accuracy			0.77	154
macro avg	0.73	0.71	0.72	154
weighted avg	0.76	0.77	0.77	1 54

ROC Curve

Out[91]:

<matplotlib.legend.Legend at 0x1ee27bf6c18>

SVC with Linear Kernel is better than RBF Kernel, This was actually expected beause variables are somewhat depending linearly with outcome

Comparing with KNN

Both Models are working fine, but SVC Linear with C=0.01 is better in terms of AUC Score.

Logistic Regression

In [92]:

```
from sklearn.linear_model import LogisticRegression
lr_model = LogisticRegression(C=0.01)
lr_model.fit(x_train_std,y_train)
lr_pred=lr_model.predict(x_test_std)
```

In [93]:

```
print("Model Validation ==>\n")
print("Accuracy Score of Logistic Regression Model::")
print(metrics.accuracy_score(y_test,lr_pred))
print("\n","Classification Report::")
print(metrics.classification_report(y_test,lr_pred),'\n')
print("\n","ROC Curve")
lr_prob=lr_model.predict_proba(x_test_std)
lr_prob1=lr_prob[:,1]
fpr,tpr,thresh=metrics.roc_curve(y_test,lr_prob1)
roc_auc_lr=metrics.auc(fpr,tpr)
plt.figure(dpi=80)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_lr)
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of Logistic Regression Model:: 0.7922077922077922

Classification Report::

	precision	recall	f1-score	support
0	0.84	0.87	0.85	107
1	0.67	0.62	0.64	47
accuracy			0.79	154
macro avg	0.76	0.74	0.75	154
weighted avg	0.79	0.79	0.79	154

ROC Curve

Out[93]:

<matplotlib.legend.Legend at 0x1ee27c5cb70>

Accuracy of KNN is better than Logistic Regression, but auc score of Logistic regression is better

Ensemble Learning(RF)

In [76]:

```
from sklearn.ensemble import RandomForestClassifier
rf_model = RandomForestClassifier(n_estimators=1000,random_state=0)
rf_model.fit(x_train_std,y_train)
rf_pred=rf_model.predict(x_test_std)
```

In [79]:

```
print("Model Validation ==>\n")
print("Accuracy Score of Logistic Regression Model::")
print(metrics.accuracy_score(y_test,rf_pred))
print("\n","Classification Report::")
print(metrics.classification_report(y_test,rf_pred),'\n')
print("\n","ROC Curve")
rf_prob=rf_model.predict_proba(x_test_std)
rf_prob1=rf_prob[:,1]
fpr,tpr,thresh=metrics.roc_curve(y_test,rf_prob1)
roc_auc_rf=metrics.auc(fpr,tpr)
plt.figure(dpi=80)
plt.plot(fpr,tpr,'b',label='AUC Score = %0.2f'%roc_auc_rf)
plt.title("ROC Curve")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.plot(fpr,fpr,'r--',color='red')
plt.legend()
```

Model Validation ==>

Accuracy Score of Logistic Regression Model:: 0.8246753246753247

			on Report::	Classificati
support	f1-score	recall	precision	
107	0.87	0.87	0.88	0
47	0.72	0.72	0.71	1
154	0.82			accuracy
154	0.79	0.80	0.79	macro avg
154	0.83	0.82	0.83	weighted avg

ROC Curve

Out[79]:

<matplotlib.legend.Legend at 0x1ee27d84d68>

So we can see Random Forest Classifier is best among all, you might be wondering auc score is lesser by 1 than others also i am considering it to be best because balance of classes between Precision and Recall is far better than other Models. So we can consider a loss in AUC by 1