Scaling Laws for Neural Language Model

Jared Kaplan *

Johns Hopkins University, OpenAI jaredk@jhu.edu

Sam McCandlish*

OpenAI sam@openai.com

Tom Henighan

OpenAI

 ${\tt henighan@openai.com}$

Scott Gray

OpenAI

Tom B. Brown

OpenAI tom@openai.com

Benjamin Chess

OpenAI bchess@openai.com

Rewon Child

OpenAI rewon@openai.com

Alec Radford

OpenAI

Jeffrey Wu OpenAI Dario Amodei

OpenAI

scott@openai.com alec@ope

alec@openai.com

jeffwu@openai.com

damodei@openai.com

HUMANE Lab

김건수

2025.01.17

Abstract

• **Objective:** Study empirical scaling laws for language model performance on cross-entropy loss

Key Findings:

- **Power-law Scaling:** Loss decreases as a power-law with model size, dataset size, and training compute.
- **Minimal Architectural Impact:** Variations in network width or depth have negligible effects within a broad range.
- Overfitting Dependence: Overfitting scales predictably with model and dataset size.
- Training Speed Dependence: Training speed scales predictably with model size.

Compute Budget Optimization:

• Larger models are more sample-efficient.

HUMAN E behaviore efficient training uses large models with modest data sizes, halting before converg²

Introduction: Key Points

- Language Modeling and AI: Language is a natural domain for AI due to its ability to express reasoning tasks and leverage vast text datasets for unsupervised generative modeling.
- Advances in Deep Learning: Recent progress in deep learning has led to n ear-human performance in tasks like coherent multi-paragraph text generation.
- **Scaling Factors:** Language modeling performance is influenced by model si ze, compute power, data availability, and architecture, with a focus on the Tr ansformer architecture
- Power-law Scalings: Performance trends span over seven orders of magnitu

Introduction: Summary of Findings

1. Performance and Scale:

- Strong Dependence on Scale: Model performance primarily depends on parameters (N), dataset size (D), and compute (C), with minimal sensitivity to architectural details.
- **Smooth Power-law Trends:** Performance scales predictably with N, D, C, showing no signs of deviation over six orders of magnitude.

2. Overfitting and Training Efficiency:

- Universality of Overfitting: Overfitting scales predictably; optimal balance between N a nd D requires $D \propto N^{0.74}$.
- **Universality of Training:** Training curves follow power-laws, enabling loss predictions b ased on early training progress.

Introuduction: Summary of Findings

3. Sample Efficiency and Convergence:

- Sample Efficiency: Larger models are significantly more efficient, requiring fewer steps and data to reach equivalent performance.
- Inefficient Convergence: Optimal compute-efficient training involves large models and early stopping, with data requirements growing slowly $(D \propto C^{0.27})$.

4. Optimal Batch Size:

• The ideal batch size is determined by the gradient noise scale, approximately 1-2 million n tokens at convergence for large models.

Introduction: Scaling Laws

1. Loss Relationships:

- Loss vs. Model Size: $L(N) = (N_c/N)^{\alpha_N}$, where $\alpha_N \sim 0.076$.
- Loss vs. Dataset Size: $L(D) = (D_c/D)^{\alpha_D}$, where $\alpha_D \sim 0.095$.
- Loss vs. Compute: $L(C_{min}) = (C_{min,c}/C_{min})^{C_{min,c}}$, where $\alpha_{min,C} \sim 0.050$.

2. Combined Loss Equation:

• $L(N,D) = (\frac{N_C}{N})^{\alpha_N} + (\frac{D_C}{D})^{\alpha_D}$.

3. Optimal Training under Fixed Compute Budget:

- Scaling relationships: $N \propto C^{\alpha_{min,c}/\alpha_N}$, $B \propto C^{\alpha_{min,c}/\alpha_B}$, $S \propto C^{\alpha_{min,c}/\alpha_S}$, $D \propto B \cdot S$
- With $\alpha_C^{min} = 1/(\frac{1}{\alpha_S} + \frac{1}{\alpha_S} + \frac{1}{\alpha_S})$.

Introduction: Practical Implications

- Larger models should be prioritized for improved performance and sample efficiency.
- Training should allocate most compute to increasing model size while keeping dataset size and training steps relatively modest.
- Power-law relationships provide predictive tools for loss optimization, compute allocation, and scaling strategies.

Methods: Model Training Setup

Dataset:

- Trained on WebText2, an extended version of WebText, which includes Reddit outbound links from Jan–Oct 2018 (minimum 3 karma).
- Dataset stats:
 - **Size:** 96 GB of text (~20.3M documents).
 - **Tokens:** 2.29 × 10¹⁰ tokens (6.6 × 10⁸ reserved for testing).
 - Vocabulary: 50,257 tokens (byte-pair encoding).
- Also tested on datasets like Books Corpus, Common Crawl, English Wikipedia, and public Internet books.

Methods: Model Training Setup

• Architecture:

- Focused on **decoder-only Transformers**; comparisons made with LSTMs and Universal Transformers.
- Performance metric: Autoregressive log-likelihood (cross-entropy loss) over a 1024-toke n context.

Methods: Transformer Parameterization

Hyperparameters:

- Layers (n_{layers}) , residual stream dimension (d_{model}) , feed-forward layer (d_{ff}) , attention o utput (d_{attn}) , and attention heads (n_{heads}) .
- Context size $(n_{ctx}) = 1024$.

Model Size (N) Approximation:

- $N \approx 12 \cdot n_{layers} \cdot d_{model}^2$.
- Embedding and positional parameters excluded for cleaner scaling laws.

Compute Estimate:

- Forward pass: $C_{forward} \approx 2N + 2n_{layers} \cdot n_{ctx} \cdot d_{attn}$
- Training compute: $C \approx 6N$ FLOPs per token (accounts for forward and backward passes).

Methods: Training Procedures

Optimizer:

- Used Adam for models \leq 1 billion parameters; Adafactor for larger models.
- Training Steps: Fixed at 250,000 steps.
- Batch Size: 512 sequences of 1024 tokens.
- Learning Rate:
 - Schedule: Linear warmup (3,000 steps) followed by cosine decay to zero.
 - Convergence results largely independent of learning rate schedules.

Methods: Key Compute and Parameter Observations

Efficiency Considerations:

• For $d_{model} \gg n_{ctx}/12$, context-dependent terms contribute negligibly to compute.

Parameter Counts:

• Table summarizes contributions from embedding, attention, and feed-forward layers to total parameters and FLOPs.

Operation	Parameters	FLOPs per Token
Embed	$(n_{ m vocab} + n_{ m ctx}) d_{ m model}$	$4d_{ m model}$
Attention: QKV	$n_{ m layer} d_{ m model} 3 d_{ m attn}$	$2n_{ m layer}d_{ m model}3d_{ m attn}$
Attention: Mask	_	$2n_{ m layer}n_{ m ctx}d_{ m attn}$
Attention: Project	$n_{ m layer} d_{ m attn} d_{ m model}$	$2n_{ m layer}d_{ m attn}d_{ m embd}$
Feedforward	$n_{ m layer} 2 d_{ m model} d_{ m ff}$	$2n_{ m layer}2d_{ m model}d_{ m ff}$
De-embed	_	$2d_{ m model}n_{ m vocab}$
Total (Non-Embedding)	$N = 2d_{ m model}n_{ m layer} \left(2d_{ m attn} + d_{ m ff} ight)$	$C_{\text{forward}} = 2N + 2n_{\text{layer}}n_{\text{ctx}}d_{\text{attn}}$

Empirical Results and Basic Power Laws

Factors Studied

- Model size: Ranged from 768 to 1.5 billion non-embedding parameters.
- Dataset size: Spanned from 22 million to 23 billion tokens.
- **Model shape:** Included variations in depth, width, attention heads, and feed -forward dimensions.
- Context length: Typically 1024 tokens but also shorter contexts were tested.
- Batch size: Varied from 2¹⁹ to measure critical batch size effects.

Key Findings

1. Transformer Shape Independence:

- Performance is weakly dependent on shape parameters $(n_{layer}, n_{heads}, d_{ff})$ when total n on-embedding parameters (N) are fixed.
- Small differences in shape (e.g., depth-to-width ratios) have minimal impact on loss.

2. Performance Scaling with Model Size (N):

- Test loss follows a predictable power-law: $L(N) \approx (\frac{N_c}{N})^{\alpha N}$.
- Including embedding parameters obscures trends; excluding them reveals clear scaling.
- Transformers outperform LSTMs for longer contexts, leveraging improved use of long-r ange dependencies.

Key Findings

3. Generalization Across Data Distributions:

- Loss on out-of-distribution datasets (e.g., Wikipedia) scales smoothly with model size.
- Generalization is strongly tied to in-distribution validation loss and independent of training duration or proximity to convergence.

4. Performance Scaling with Dataset Size (D):

- Test loss decreases predictably with dataset size: $L(D) \approx (\frac{D_c}{D})^{\alpha D}$.
- Training on larger datasets improves performance but shows diminishing returns withou t scaling model size.

Key Findings

5. Performance Scaling with Compute (C):

- Test loss follows a power-law relationship: $L(C) \approx (\frac{C_c}{C})^{\alpha C}$.
- Larger models are more sample-efficient, achieving better performance with fewer toke ns processed.

Comparison

LSTMs vs. Transformers:

- LSTMs match Transformer performance for early tokens in context but plateau with longer sequences.
- Transformers maintain improvement throughout the entire context window.

Generalization:

- Model size consistently improves test loss on other datasets, with minimal offsets from training distribution loss.
- Generalization trends remain stable across different training phases.

Charting the Infinite Data Limit and Overfitting

Objective

- Investigate how test loss scales with model size (N) and dataset size (D) simultaneously.
- Empirically validate the proposed scaling law for L(N, D).

Proposed Equation for L(N, D)

- Equation: $L(N,D) = \frac{N_C}{N^{\alpha_N}} + \frac{D_C}{D^{\alpha_D}}$.
- Principles Behind the Equation:
 - 1. Allows rescaling with changes in vocabulary size or tokenization.
 - 2. Models loss limits: $D \to \infty \Longrightarrow L(N)$; $N \to \infty \Longrightarrow L(D)$.
 - 3. Analytic at $D \to \infty$, allowing series expansion in 1/D.

Results

Fit Parameters:

• $\alpha_N = 0.076$, $\alpha_D = 0.103$, $N_c = 6.4$, $D_c = 1.8 \times 10^{13}$.

Key Findings:

Overfitting:

- For large D, loss follows a power law in N.
- For small D, performance plateaus as N increases, showing overfitting.

Critical Dataset Size:

- To avoid overfitting within a 0.02 loss, dataset size grows sub-linearly with model size: $D \propto N^{0.74}$.
- Models $< 10^9$ parameters show minimal overfitting on a 22B token dataset.

Critical Batch Size

Observation:

- Critical batch size (B_{crit}) follows a power law with loss.
- B_{crit} doubles for every 13% decrease in loss.
- Independent of model size; aligns with predictions from gradient noise scale.

Implications

- Dataset size can grow sub-linearly with model size to avoid overfitting.
- Larger datasets mitigate overfitting but are not always compute-efficient.
- Regularization (e.g., dropout) was not optimized, leaving room for further im provements.

1. Critical Batch Size (B_{crit})

Definition:

- Critical batch size allows optimal time/compute tradeoff for training.
- Increasing batch size (B):
 - $B \leq B_{crit}$: Minimal degradation in compute efficiency.
 - $B > B_{crit}$: Diminishing returns with increased batch size.

Relation with Loss:

- $B_{crit}(L) \approx \frac{B_*}{L^{1/\alpha B}}$ (where $B^* \approx 2 \times 10^8$, $\alpha_B \approx 0.21$).
- Critical batch size is independent of model size and only depends on the loss (L).

2. Universal Training Step (S_{min})

- Relation Between Training Steps and Data: $\left(\frac{S}{S_{min}} 1\right) \left(\frac{E}{E_{min}} 1\right) = 1$
- S_{min} : Minimum steps to reach a target loss.
- E_{min} : Minimum data examples required.
- Training at B_{crit} ensures optimal time/compute tradeoff ($2S_{min}$, $2E_{min}$).

3. Loss Scaling with Model Size and Steps

Equation:

•
$$L(N, S_{min}) = (\frac{N_C}{N})^{\alpha N} + (\frac{S_C}{S_{min}})^{\alpha S}$$

Fit Parameters:

• $\alpha_N = 0.077$, $\alpha_S = 0.76$, $N_c = 6.5 \times 10^{13}$, $S_c = 2.1 \times 10^3$.

Key Observations:

- Loss scales predictably with both model size (N) and training steps (S_{min}).
- Larger models trained for fewer steps can outperform smaller models trained longer.

4. Early Stopping and Data Efficiency

Early Stopping Criterion:

•
$$S_{stop}(N,D) \ge \frac{S_c}{[L(N,D)-L(N,\infty)]^{1/\alpha S}}$$

- Ensures efficient training by minimizing overfitting.
- Larger datasets and models reduce required steps for optimal loss.

5. Implications

Efficiency Insights:

- Train at B_{crit} for optimal compute usage.
- Scaling laws provide a framework for balancing model size, batch size, and training step
 s.

Practical Applications:

- Predictive power of scaling laws aids in optimizing training compute allocation.
- Early stopping reduces unnecessary computation and data usage.

1. Key Observations

Optimal Compute Allocation:

- Training efficiency improves when compute is allocated optimally between model size (N) and data processed $(2B_{crit}, S_{min})$.
- Loss scaling improves when adjusted for critical batch size (B_{crit}) .

2. Optimal Model Size $(N(C_{min}))$

Scaling Relation:

- $N(C_{min}) \propto (C_{min})^{0.73}$
- A 10x increase in compute results in a 5x increase in model size, while data usage grow s modestly (~2x).

Training Steps:

• $S_{min} \propto (C_{min})^{0.03}$, indicating very slow growth in steps.

- 3. Predictions from $L(N, S_{min})$
- Loss Scaling with Compute:

•
$$L(C_{min}) = \left(\frac{C_c^{min}}{C_{min}}\right)^{\alpha_C^{min}}$$
.

Scaling laws:

•
$$N(C_{min}) \propto C_{min}^{\alpha_C^{min}/\alpha N} \approx (C_{min})^{0.71}$$

- Empirical Agreement:
 - Predictions align closely with observed data, validating the scaling laws.

4. Contradictions and Limitations

Scaling Breakdown:

- At extreme scales, predictions from $L(C_{min})$ and L(D) intersect, indicating a breakdown.
- Intersection estimates:
 - Compute: $C^* \sim 10^4$ PF-Days | Model size: $N^* \sim 10^{12}$ parameters.
 - Dataset size: $D^* \sim 10^{12}$ tokens, Loss: $L^* \sim 1.7$ nats/token.

Interpretation of Intersection Point:

- May represent the maximum achievable performance under current scaling laws.
- Suggests the limit of reliable information extractable from natural language data.

5. Implications for Compute-Efficient Training

Model Size Priority:

Scaling compute should focus on increasing model size (N) rather than training steps.

Future Challenges:

- Dataset growth must match model scaling to avoid overfitting.
- Current scaling laws may need adjustments to address data bottlenecks at extreme scales.

1. Key Observations

Consistent Scaling Laws:

- Loss scales predictably with non-embedding parameters (N), dataset size (D), and optimized compute (C_{min})
- Weak dependence on architectural and optimization hyperparameters.
- Diminishing returns observed with increasing scale.

Predictive Framework:

- Scaling laws predict compute scaling, overfitting magnitude, early stopping steps, and d ata requirements.
- Analogous to the "ideal gas law" in physics, providing universal macroscopic insights in dependent of system specifics.

2. Broader Implications

Generative Modeling:

- Scaling laws may apply to other domains (e.g., images, audio, video) and tasks (e.g., ran dom network distillation).
- Requires exploration to distinguish language-specific results from universal patterns.

Theoretical Insights:

 Developing a theoretical framework akin to "statistical mechanics" for scaling laws could offer precise predictions and deeper understanding.

3. Qualitative vs. Quantitative Improvements

- "More is Different":
 - Smooth improvements in loss may mask qualitative leaps in language model capabiliti es.
 - Continued loss reduction may lead to significant breakthroughs in task performance.

4. Larger Models and Efficiency

- Big Models > Big Data:
 - Larger models are more sample-efficient than previously realized.
 - Focus on scaling models rather than solely increasing data size.

Model Parallelism:

- Promising approaches to train large models efficiently:
 - Pipelining: Depth-wise parameter splitting across devices.
- Wide Networks: Better suited for parallelization.
- Sparsity/Branching: Enable faster training via model parallelism .
- Dynamic Networks: Growing networks during training to maintain compute efficiency.

5. Future Directions

- Investigate scaling laws in diverse domains and tasks.
- Develop theoretical underpinnings for observed scaling laws.
- Explore the qualitative impact of quantitative improvements in loss.
- Innovate parallelism techniques for efficient training of very large models.