OPAMP

características e aplicações lineares.

Fernando Pujaico Rivera¹

¹Universidade Federal de Lavras

Aula-1 2016

Amplificador Diferencial transistorizado

Amplificador Diferencial transistorizado

Amplificador Diferencial transistorizado

$$V_{out} = V_{o2} - V_{o1}$$

= $2A(V_{s1} - V_{s2})$

Opamp Ideal

Amplificador Operacional = OpAmp

Opamp Ideal considerando CMRR

Opamp prático

Opamp ideal

Opamp prático

Opamp prático

Quando este fator tende a zero?:
$$R_f \frac{\left(\frac{1}{R_1} + \frac{1}{R_f} + \frac{1}{R_f}\right)\left(\frac{1}{R_f} + \frac{1}{R_o}\right)}{\left(\frac{G}{R_o} - \frac{1}{R_f}\right)}$$

Simplificando assumindo
$$R_f >> R_o$$
: $R_f \frac{\left(\frac{1}{R_1} + \frac{1}{R_f} + \frac{1}{R_i}\right)\left(\frac{1}{R_o}\right)}{\left(\frac{G}{R_o}\right)}$

Consequência:
$$\frac{R_f}{G} \left(\frac{1}{R_1} + \frac{1}{R_f} + \frac{1}{R_i} \right)$$

Simplificando assumindo
$$R_i >> R_f$$
 e $R_i >> R_1$:

Simplificando assumindo $G >> \frac{R_f}{R_1}$: 0

Quando o Opamp prático tende a Opamp ideal

 $R_o \ll R_f$ A resistência de saída do Opamp é muito menor à resistência ligada a ela.

 $R_i >> R_f, R_1$ A resistência de entrada do Opamp é muito maior as resistências envolvidas.

 $G >> \frac{R_f}{R_i}$ O ganho do Opamp deve ser major ao valor absoluto do ganho do sistema.

Amplificador não inversor

$$\frac{V_i}{R_1} = \frac{V_o}{R_1 + R_f}$$

$$V_i \left(1 + \frac{R_f}{R_1} \right) = V_o$$

References I