

SEYDC-14-02-결과보고서

IVA (Intelligent Voice Application)

2014. 2. 16

이 름: 안종현 학 교: 강남대학교

연락처: 010-9995-5600

이메일: markajh@naver.com

목차

1. 개요	1
1.1 작품 제목	
1.2 부제	1
1.3 개요	1
2. 작품 설명	2
2.1 개발결과물 주요 동작 및 특징(영상 구동 Scenario 포함)	2
2.2 전체 시스템 구성(구조 설명 Flow Chart 포함)	4
2.3 S/W 구조(개발결과물 Algorithm)	6
2.4 개발환경(활용언어, 사용시스템, 사용된 공개 SW 등)	6
2.5 해당 개발과제 진행 시 애로 사항(불량 및 해결방법)	6
2.6 향후 과제개선 목표 및 보완사항	7
2.7 참조 소스 및 출처	7
3. 개발결과물 사진	8
3.1 전화 받기 & 거절	
3.2 상태바 기능 조절	8
3.3 시스템 어플리케이션 컨트롤	9
3.4 사용자 어플리케이션 컨트롤	9
3.5 하드웨어 기능 조절	9
3.6 잠금 화면 기능	10
3.7 특정 단어 터치 이벤트	10
4 개발경과문 도영산	11

1. 개요

1.1 작품 제목

IVA 로 Intelligent Voice Application 의 약자이다.

1.2 부제

양손이 사용불가능 일 때, 목소리만으로 스마트 폰을 작동시키거나 제어할 수 있는 어플리케이션이다.

1.3 개요

- 1. 개발배경 및 목적: 인간의 말을 인식해 텍스트로 바꿔주거나 해당 명령을 수행하는 '음성인식(speech recognition)' 기술이 IT 업계의 Next Big Thing 으로 급 부상 중이다.
- 2. 시장 현황 분석: 음성인식 기술 관련 세계 시장 규모는 2005 년 11 억 달러에서 2010 년 30 억 달러로 성장한 데 이어 2014 년에는 60 억 달러까지 성장할 것으로 전망된다.
- 3. 문제점: 음성인식은 사람이 일상생활 속에서 마우스나 키보드 등을 사용하지 않고 목소리를 통해 원하는 기기 및 정보 서비스의 이용을 제어할 수 있는 기술로, 1950 년대 등장해 지속적인 연구가 진행되어 왔지만 2000 년대 중반까지 낮은 음성 인식률로 대중화되지 못했다.
- 4. 미래방향: 네트워크와 컴퓨팅 기술의 발달로 음성 인식률이 개선되었을 뿐만 아니라 정보기기가 소형화되고 이동성이 중요시되면서 음성으로 간편하게 제어할 수 있는 음성인식에 대한 수요는 더욱 증가할 것으로 전망된다.

2. 작품 설명

2.1 개발결과물 주요 동작 및 특징(영상 구동 Scenario 포함)

1. 어플리케이션 실행 화면

- 4 개의 탭으로 구성

2. 음성인식 탭

- 음성인식 서비스를 끄고 실행할 수 있다.

3. 어플목록 탭

- 두 번째 탭은 어플리케이션 목록을 보여준다. 이름이 길거나 발음이 어려운 경우 실행할 어플리케이션 이름 변경이 가능하다.
- 실행방법: "실행" + 어플이름, 또는 어플이름 + "실행"

Figure 1. App Tab-1,2

4. 동작목록 탭

- 음성으로 동작 가능한 목록을 보여준다.
- 실행방법: "버튼"+목록에 있는 버튼 이름, 목록에 있는 버튼 이름 + "버튼"

5. 비밀번호 탭

- 음성 및 숫자로 비밀번호 설정이 가능하다.

Figure 2. App Tab-3,4

6. 문자인식

- Tesseract OCR 로 화면을 인식하고 사용자가 말한 글자에 대한 좌표 값을 리턴하여 터치하는 방식으로 구현했다.

- 실행방법: "인식"(Tesseract OCR 로 문자 인식) -> "터치" + 화면에 보이는 글씨

Figure 3. Character Recognition

7. 전화 걸기

- 실행방법: "통화" + 사람이름

8. 웹 검색

- 실행방법: "검색" + 검색할 내용

9. 문자 보내기

- 실행방법: "문자" + 사람이름 + 내용

10. 음악 실행

- 실행방법: "음악" + 음악파일이름

11. 전화 받기 및 거절

- 실행방법: 전화가 왔을 때 "받기" & "거절"

12. 밸소리/무음/진동/Wifi

- 실행방법: "벨소리", "무음", "진동", "Wifi"

13. 락 화면 해제 방법

- 미리 입력해 놓은 글자에 매칭되는 음성이 들어오면 잠금 기능이 풀리는 방식

2.2 전체 시스템 구성(구조 설명 Flow Chart 포함)

Figure 4. System Configuration

1. Input Voice

- 음성 입력

2. Execute Command

- 구글 서버로부터 받은 문자열 결과 값을 필터링 처리하여 명령 수행

3. Voice Recognition

- Android 에서 제공되는 SpeechRecognition Lib 를 이용하지 않고 음성을 녹음하여 서버로 전송하고 그 결과값을 받음
- HTTP POST 방식으로 구글 서버에 음성 데이터를 전송함
- 반환된 결과값 포맷은 Json 방식임, 이를 파싱하여 문자열 확인

4. MonkeyRunner

- 캡처, 문자인식, 버튼, 터치

Figure 5. System Flow

- 1. App 은 백그라운드로 실행하며 사용자 음성을 판별한다. 음성일 경우 음성인식 시스템으로 음성파일을 보내고 비 음성일 경우 음성이 들어올 때까지 판별작업을 계속한다.
- 2. 음성인식 시스템에서는 음성파일을 구글 음성인식 서버로 보낸다. 그리고 반환되는 JSON 형식의 데이터 타입을 파싱하여 명령어들을 조합해 하나의 명령어로 생성한다.
- 3. 하나의 문자열 명령어로 된 데이터를 음성처리 시스템으로 보내서 문자열 파싱을 하며 정해진 방식으로 어플리케이션들을 실행한다.
- 4. 만약 시스템 권한이 필요한 명령어이면 Monkey Runner 를 통해 우회하여 스마트 폰에 실행 명령어를 내린다.

2.3 S/W 구조(개발결과물 Algorithm)

Figure 6. S/W 동작 구조

2.4 개발환경(활용언어, 사용시스템, 사용된 공개 SW 등)

- 1. 활용언어: C, C++, Java, Android SDK, Android NDK
- 2. 사용시스템: Ubuntu 12.04LTS, Windows7, Eclipse, vim, ctags, source explorer, Android adb, Monkey Runner, Google Voice Recognition
- 3. 사용된 공개 SW: FLAC Encoder, Tesseract OCR, Android Open Source Project

2.5 해당 개발과제 진행 시 애로 사항(불량 및 해결방법)

- 1. 음성만으로는 정확한 정보 전달이 어려울 수 있으므로 터치, 동장인식 등 다른 입력 방식과 음성인식을 결합해서 활용하는 방안도 모색해야 할 필요가 있다.
- 2. 발음에 개인차가 있다. 같은 말을 해도 사람에 따라서 발음이 다르기 때문에, 그음향 특성(주파수 스펙트럼 등)에 차이가 생긴다.
- 3. 주위 환경에 영향을 많이 받는다. 예를 들어 주변에 소음이나 잡음이 많은 경우화자의 음성과 주변 잡음이 섞여 인식되기 때문에 인식률이 낮아진다.
- 4. 개발보드인 ODROID-U2의 음성 Input 에 잡음이 심해 플랫폼 키를 활용하지 못하고 MonkeyRunner를 통해 우회하는 방법을 사용하였다. 때문에 일반사용자에게 배포할 때는 문자인식 등의 기능을 사용하지 못한다.
- 5. 문자인식의 시간이 오래 걸린다.

2.6 향후 과제개선 목표 및 보완사항

- 1. 주변 소음과 화자의 음성을 구별하여, 주변 소음은 필터를 하고 화자의 음성에 반응하도록 개선하면 더욱 좋은 서비스를 제공할 수 있다.
- 2. 화자가 휴대폰을 사용하지 않을 때 Service 를 작동 중지시키고 사용할 때 자동 Service 를 실행이 되도록 하여 베터리 절약을 할 수 있다.
- 3. 현재는 MonkeyRunner를 사용하여 문자인식과 Button 이벤트를 처리하기 때문에 서버와 연동이 필요하지만, 플랫폼 키를 획득하면 서버를 통한 간접실행이 아닌 App 자체로 컨트롤 할 수 있다. 이 점을 개선해야 할 것이다.

2.7 참조 소스 및 출처

- 1. 문화기술(CT) 심층리포트: 음성인식 기술의 동향과 전망, 2011.11
- 2. 신성장동력산업용 대어휘 음성인식 기술 동향 및 응용, ETRI, 전자통신동향분석 제 23 권 제 1 호 2008 권 2 월
- 3. 제 2 장 음성정보처리기술
- 4. GMM 모델링에 기초한 음색의 특징 연구, 이은, 충남대학교 인공지능연구실
- 5. HMM 음성 인식 알고리즘의 분석, 장순석, 조선대학교 제어계측로봇공학과
- 6. C#언어를 이용한 음성분석시스템의 구현, 오지형, 한밭대학교 컴퓨터공학과
- 7. Google Search by Voice: A case study, Johan Schalkwyk, Google Inc.
- 8. Speaker Recognition, JOSEPH P. CAMPBELL, JR., SENIOR MEMBER, IEEE
- 9. AudioFlinger, 音频系统
- 10. 안드로이드 구조와 원리, 이백, 수원 안드로이드 스터디
- 11. http://dtmilano.blogspot.kr/
- 12. http://research.google.com/pubs/SpeechProcessing.html

3. 개발결과물 사진

3.1 전화 받기 & 거절

3.2 상태바 기능 조절

3.3 시스템 어플리케이션 컨트롤

3.4 사용자 어플리케이션 컨트롤

3.5 하드웨어 기능 조절

3.6 잠금 화면 기능

3.7 특정 단어 터치 이벤트

4. 개발결과물 동영상

동영상 파일이 커서 성함과 연락처를 기재하여 <u>samsungexynos@all-f.com</u>로 첨부 등록하여 보냈습니다.