BEST AVAILABLE COPY

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE (1) N° de publication : (A n'utiliser que pour les commandes de reproduction). 2 502 935

PARIS

A1

DEMANDE DE BREVET D'INVENTION

N° 81 06454

- Procédé et dispositif de contrôle de la coagulation de tissus à l'aide d'un courant à haute fréquence.
- (61) Classification Internationale (Int. CL.*). A 81 B 17/39.
- 33 32 31) Priorité revendiquée :
 - Date de la mise à la disposition du public de la demande........... B.O.P.I. « Listes » n° 40 du 8-10-1982.
 - 71 Déposant : DOLLEY Roger Armand Constant.
 - Invention de : Roger Armand Constant Dolley.
 - (73) Titulaire : Idem (71)
 - Mandataire : Bureau D. A. Casalonga, office Josse et Petit, 8, av. Percier, 75008 Paris.

Procédé et dispositif de contrôle de la coagulation de tissus à l'aide d'un courant à haute fréquence.

La présente invention se rapporte à un procédé de contrôle de la coagulation de tissus à l'aide d'un courant à haute fréquence.

Le fonctionnement des bistouris électriques est basé sur le principe que si on applique un courant à haute fréquence au corps d'un patient, il se produit une élévation de température au niveau de chacune des électrodes d'application du courant; l'élévation de température est d'autant plus importante que la surface de contact de l'électrode est petite. On utilise un courant à haute fréquence pour éviter toute excitation faradique qui se produirait si la fréquence était suffisamment basse pour être ressentie par le patient.

Si l'une des électrodes utilisées est très fine alors que l'autre est de grande surface, l'élévation de température sera considérable au niveau de l'électrode fine et pratiquement inexistante au niveau de l'électrode de grande surface. On obtient ainsi, au niveau de l'électrode fine, un effet de coupe ou un effet de coagulation des tissus, selon la puissance appliquée.

Il est également possible d'obtenir un effet d'électrocoagulation en reliant les deux pôles d'un générateur de

25 courant à haute fréquence à deux électrodes fines appliquées
contre le tissu à coaguler dans la zone opératoire. En général, ces deux électrodes sont constituées par les deux
branches isolées d'une pince, la coagulation étant limitée à
la partie des tissus qui se trouvent entre les deux becs de la
30 pince.

La puissance nécessaire pour ce procédé de coagulation dite "bipolaire" est nettement plus faible que celle nécessaire pour la coagulation dite "monopolaire", utilisant une électrode de grande surface dite électrode indifférente et une électrode fine dite électrode active.

Deux facteurs déterminent la qualité de la coagulation, à savoir l'intensité du courant, d'une part, et le temps de

passage du courant, d'autre part. Jusqu'à présent, l'opérateur effectue le dosage de la puissance et du temps de coagulation. Or, en particulier des variations du temps de coagulation conduisent à des coagulations irrégulières, certaines étant trop fortes et d'autres trop faibles.

La présente invention a pour objet un procédé de contrôle de la coagulation aussi bien "monopolaire" que "bipolaire" à l'aide de courants à haute fréquence de manière qu'indépendamment de l'action de l'opérateur, toutes les coagulations soient de qualité égale et optimale.

L'invention a également pour objet un dispositif pour la mise en oeuvre de ce procédé.

10

Suivant l'invention, on superpose au courant de coagulation à haute fréquence un très faible courant de contrôle calibré nettement identifiable par rapport au courant de coagulation. Ce courant de contrôle circule donc, comme le courant de coagulation à haute fréquence, soit entre une électrode fine dite électrode active, appliquée contre le tissu à coaguler dans la zone opératoire d'un patient et une électrode de grande surface dite électrode indifférente en contact avec le patient en dehors de la zone opératoire, soit entre deux électrodes fines dites actives appliquées contre le tissu à coaguler dans la zone opératoire d'un patient. On mesure la variation de l'intensité de ce courant de contrôle pour déclencher l'arrêt automatique de la coagulation dès que l'intensité du courant de contrôle, qui est fonction de la résistance des tissus en cours de coagulation, atteint une valeur limite inférieure prédéterminée.

En effet, la résistance des tissus à coaguler est faible au moment où la coagulation commence et cette résistance augmente progressivement au fur et à mesure que les tissus se dessèchent sous l'effet de l'échauffement dû au passage du courant de coagulation. Par conséquent, l'intensité du courant de contrôle superposée au courant de coagulation à haute fréquence est fonction de la résistance des tissus en cours de coagulation, ce qui permet de déclencher l'arrêt automatique de la coagulation lorsque la résistance des tissus atteint une valeur prédéterminée. Le rôle de l'opérateur se borne ainsi à

5

déclencher le début de la coagulation, après avoir placé l'électrode active ou les électrodes actives à l'endroit désiré, la coagulation s'arrêtant automatiquement dès qu'elle atteint une valeur optimale prédéterminée.

Le dispositif pour la mise en oeuvre du procédé de contrôle conforme à l'invention comprend un générateur de courant de contrôle monté en parallèle avec le générateur de courant de coagulation à haute fréquence, un dispositif de mesure de l'intensité du courant de contrôle, monté en série avec ledit 10 générateur de courant de contrôle, un dispositif de filtrage entre le circuit à haute fréquence et le circuit à courant continu ou à basse fréquence, et un dispositif d'arrêt du générateur de courant à haute fréquence commandé par ledit dispositif de mesure lorsque l'intensité du courant de con-15 trôle atteint une valeur limite inférieure prédéterminée.

En se référant au dessin annexé, on va décrire ci-après un mode de réalisation illustratif et non limitatif d'un dispositif de contrôle conforme à l'invention dans son application au contrôle de la coagulation monopolaire, à l'aide d'une 20 électrode active et d'une électrode indifférente.

Sur le schéma de la figure unique du dessin, un générateur de courant à haute fréquence 1 est relié, par l'intermédiaire d'un transformateur 2, à une électrode 3 dont le conducteur d'alimentation 4 comporte une fiche 5 branchée de 25 façon amovible sur une douille 6 reliée à une borne du secondaire du transformateur 2, dont l'autre borne est mise à la masse. Une électrode 7 de grande surface placée sur une table d'opération 8 est reliée par un conducteur 9 se terminant par une fiche 10, de façon amovible à une autre douille 11 qui est 30 mise à la masse. Un patient 12 sur lequel doit être pratiqué une intervention impliquant de la chirurgie électrique (coupe de tissus par bistouri électrique) et/on de l'électrocoagulation repose sur la table 8de manière à se trouver en bon contact avec l'électrode 7. .

35 La commande du générateur à haute fréquence 1 s'effectue, selon qu'il s'agit de couper ou de coaguler, à l'aide d'une

pédale de commande de bistouri 13 ou d'une pédale de commande de coagulation 14 reliées par deux conducteurs respectivement 15 et 16 au générateur 1.

Le dispositif conforme à l'invention de contrôle de l'électrocoagulation comprend un générateur de courant de contrôle 17 monté en parallèle avec le secondaire du transformateur 2, de manière que courant i_C de très faible intensité, calibré et facilement identifiable, du générateur 17 soit superposé au courant I_{HF} du générateur 1. Un dispositif de mesure 18 de l'intensité du courant i_C du générateur 17 est monté en série avec ce dernier. Un dispositif de filtrage 19 représenté comme comprenant une impédance 20 et un condensateur 21 assure la séparation des deux courants I_{HF} et i_C pour permettre une mesure précise du courant i_C et éviter la destruction du dispositif de mesure 18 par le courant à haute fréquence.

Le dispositif de mesure 18 est relié à un relais 22 actionnant un contact 23 qui commande l'ouverture et la fermeture du conducteur 16 reliant la pédale de commande de coagulation 14 au générateur de courant à haute fréquence 1. Un interrupteur manuel 24 est monté en parallèle avec le contact 23 pour pouvoir shunter ce dernier.

Lorsque le générateur de courant à haute fréquence 1 est réglé sur la position bistouri (bist.) et est commandé par la pédale de commande de bistouri 13, le dispositif de contrôle conforme à l'invention comprenant le générateur de courant de contrôle 17, le dispositif de mesure 18, le relais 22 et le contact 23 n'est pas en action. Par contre, le dispositif de contrôle est mis en action automatiquement lors du réglage du générateur 1 sur la position coagulation (coag.) et lors de l'ouverture de l'interrupteur 24.

Pour effectuer une coagulation, l'opérateur applique l'électrode 3 à l'endroit auquel il veut réaliser la coagulation et enfonce la pédale 14. Le courant I_{HF} auquel est superposé le courant i_C du générateur 17 produit ainsi un échauffement des tissus au niveau de l'extrémité de l'électrode 3, échauffement qui entraîne une coagulation des tissus.

La résistance initialement faible des tissus en contact avec l'électrode 3 augmente progressivement au fur et à mesure que les tissus coagulent, c'est-à-dire se dessèchent. Avec l'augmentation de la résistance des tissus, l'intensité du courant i_C diminue. Le dispositif de mesure 18 est réglé sur un seuil d'intensité correspondant à un degré de coagulation optimal défini par une résistance déterminée des tissus. Dès que ce seuil est atteint, le dispositif de mesure 18 excite le relais 22 qui ouvre le contact 23, interrompant ainsi la commande du générateur 1, ce qui arrête la coagulation.

En fermant l'interrupteur 24, on peut mettre hors service le dispositif de contrôle, ce qui permet à l'opérateur de doser lui-même les coagulations s'il le désire.

Le dispositif de mesure 18 est établi de manière à auto15 riser le fonctionnement et provoquer l'arrêt du générateur de
courant à haute fréquence 1, lors de la coagulation, en fonction de trois seuils correspondant à trois résistances
R₁ < R₂ < R₃ et de la valeur de résistance R présentée par
les tissus du patient.

Si R > R₃ (électrode 3 non appliquée sur les tissus du patient), le dispositif de mesure 18 interdit le fonctionnement du générateur 1, même si la pédale de commande de coagulation 14 est enfoncée.

Si R \(R_1 \) (électrode 3 en contact avec les tissus), le générateur 1 fonctionne lorsque la pédale 14 est actionnée. La coagulation commence et R augmente progressivement.

Dès que R = R₂ (R₂ étant le seuil de déclenchement de l'arrêt de la coagulation), le dispositif de mesure 18 arrête le générateur 1 sans que l'opérateur n'ait à relâcher la 30 pédale 14.

Pour réarmer le dispositif de contrôle, l'opérateur relève l'électrode 3 mais peut maintenir enfoncer la pédale 14; cela présente d'ailleurs l'avantage pour l'opérateur de pouvoir effectuer plusieurs coagulation en série sans relâcher 35 la pédale, simplement en déplaçant l'électrode 3.

Par contre, l'opérateur reste à tout moment maître de la coagulation qu'il peut arrêter immédiatement, s'il juge nécessaire, en relâchant la pédale 14.

Pour appliquer le dispositif de contrôle tel que représenté et décrit à la coagulation bipolaire qui consiste à utiliser une pince à deux branches isolées dont chacune est reliée à un pôle d'un générateur de courant à haute fréquence, il suffit de relier les deux branches de la pince par deux conducteurs, directement ou indirectement, aux deux douilles 6 et 11.

Seules les caractéristiques générales du dispositif de contrôle conforme à l'invention ont été décrites ci-dessus et représentées sur le dessin schématique annexé. De multiples variantes à la portée de l'homme de l'art sont concevables en ce qui concerne, par exemple, la réalisation du filtre 19, du dispositif de mesure 18 et du dispositif d'arrêt 22, 23, notamment en fonction de la nature du courant de contrôle utilisé. Ce courant peut être, par exemple un courant continu comme dans l'exemple représenté, ou encore un courant alternatif à basse fréquence, un courant alternatif ayant une fréquence nettement plus élevée que celle du courant de coaquilation, ou également un courant complexe, par exemple des impulsions codées. Il suffit que ce courant soit de très faible intensité, soit calibré et soit facilement identifiable par rapport au courant de coagulation.

REVENDICATIONS

1. Procédé de contrôle de la coagulation de tissus d'un patient à l'aide d'un courant à haute fréquence fourni par un générateur dont soit un pôle est relié à une électrode fine dite électrode active appliquée contre les tissus à coaguler dans la zone opératoire du patient et l'autre à une électrode de grande surface dite électrode indifférente, en contact avec le patient en dehors de la zone opératoire, soit les deux pôles sont reliés à deux électrodes fines appliquées contre 10 les tissus à coaguler dans la zone opératoire du patient, caractérisé par le fait qu'on superpose au courant de coagulation à haute fréquence un courant de contrôle de très faible intensité, calibré, nettement identifiable par rapport au courant de coagulation, et qu'on mesure la variation de 15 l'intensité de ce courant de contrôle pour déclencher l'arrêt de la coagulation des que l'intensité du courant de contrôle, qui est fonction de la résistance des tissus en cours de coagulation, atteint une valeur limite inférieure prédéterminée.

2. Dispositif pour la mise en oeuvre du procédé suivant la revendication 1, caractérisé par le fait qu'il comprend un générateur de courant de contrôle monté en parallèle avec le générateur de courant de coagulation à haute fréquence, un dispositif de mesure de l'intensité du courant de contrôle,
 25 monté en série avec ledit générateur de courant de contrôle, un dispositif de filtrage séparant le courant de coagulation du courant de contrôle, et un dispositif d'arrêt automatique du générateur de courant de coagulation, commandé par le dispositif de mesure du courant de contrôle lorsque l'intensité de ce courant atteint une valeur limite inférieure prédéterminée.

AIS PAGE BLANK (USPTO)

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE (1) N° de publication : (A n'utiliser que pour les commandes de reproduction). 2 517 953

PARIS

A1

DEMANDE DE BREVET D'INVENTION

₂₀ N° 81 23142

- - (72) Invention de : Claude Annonier et Gabriel Fazincani.
 - 73 Titulaire : Idem (7)
 - Mandataire : Cabinet R. Chenard, 57, rue de Clichy, 75009 Paris.

L'invention a pour objet un appareil diaphanométrique à usage d'investigations de nature médicale et/ou chirurgicale destiné à être utilisé plus spécialement en matière d'investigation d'affections de nature sénologique.

Toutefois, cet appareil peut comporter également des possibilités d'applications qui seront esquissées dans la suite de la description.

Plus spécialement, l'appareil selon l'invention est 10 dérivé de la technique médicale d'observations diaphanoscopiques utilisées notamment pour le dépistage des lésions du sein.

Plus spécialement encore, il est destiné à déterminer la structure tissulaire du sein.

15 Il doit être rappelé que la diaphanoscopie et les appareillages qui permettent de la réaliser ne permettent d'effectuer qu'une appréciation visuelle et subjective par le praticien et notamment ne permettent la constitution d'aucun document permanent, témoin de l'examen, comme le sont les radiagraphies, les échographies ou les thermographies.

Or il est évident que la détention de tels documents permanents est déterminante pour les comparaisons ultérieures qui peuvent avoir a être effectuées 25 sur le même patient à raison de la même affection.

La pratique quotidienne des examens diaphanoscopiques met en relief le fait frappant de la grande variabilité d'un sujet à l'autre, de la transparence du tissu mammaire à la lumière visible. Par ailleurs, et de façon intrigante, il a été constaté une absence de corrélation entre cette transparence et d'autres éléments d'appréciation de la densité mammaire telle que la fermeté à la palpation et l'opacité aux rayons X.

35 Ceci conduit à concevoir l'hypothèse d'un lien direct et significatif entre la transparence du sein à à la lumière visible et le type de structure qui la constitue. Or, si le tissu adipeux se laisse traverser avec autant de facilité par la lumière visible et les rayons X, il n'en est pas de même des autres constituants du sein: l'eau joue un rôle prédominant dans l'obsorption aux rayons X alors qu'elle est transparente à la lumière. En revanche, les structures cellulaires sont opaques à la lumière visible tandis qu'elles apparaissent difficilement sur les mammographies.

5

Quant à la fermeté globale du sein à la palpation, elle subit de grandes variations liées à des facteurs qui échappent en partie à l'analyse, parmi lesquels la charge hydrique joue un rôle plus ou moins important,

De plus, il doit être constaté que l'estimation à 15 l'oeil de la transparence du sein à la lumière est d'autant plus subjective que l'épaisseur de tissus traversée par cette lumière est très variable.

Il en résulte que, pour réaliser des investigations précises permettant l'utilisation de documents perma20 nents et significatifs d'un état donné des tissus à une époque déterminée, il convenait de mettre au point un appareillage permettant l'établissement de tels documents permanents traduisant ou fournissant des paramètres de la transparence du sein à la lumière, comme 11 vient d'être exposé.

C'est la raison pour laquelle, avec cet objet en vue , l'invention concerne un appareillage aménagé de manière à mesurer simultanément l'intensité lumineuse efférente et l'épaisseur traversée des tissus.

Pour atteindre ce résultat, l'appareillage de mesure selon l'invention comporte deux plateaux parallèles destinés à être disposés de part et d'autre de la
partie du sein que l'on se propose d'explorer, ces
deux plateaux étant aménagés de manière à pouvoir être
appliqués l'un et l'autre, toujours en position respectivement parallèle, contre ladite paroi du sein de

manière que les éléments d'investigation qui vont être définis ci-après soient au contact de cette paroi.

Ces éléments d'investigation sont constitués, sur l'un des plateaux, qui sera désigné ci-après par l' expression "plateau émetteur", par une source de lumière intense; cette source de lumière est, de préférence, constituée par l'extrémité d'un faisceau de fibres de verre, dites fibres optiques, qui la véhicule et l'intensité lumineuse est réglée de manière à n'occasionner aucune incommodité au patient pendant la durée de l'examen.

L'autre plateau, dit "plateau récepteur" porte, de préférence dans l'axe du faisceau de fibres optiques, une cellule photosensible reliée à un élément 15 d'affichage et/ou de calcul de l'intensité lumineuse reçue par ladite cellule.

Les deux plateaux sont l'un et l'autre relies par un dispositif aménagé de manière à calculer et afficher la distance entre ceux-c1.

La notation des deux éléments (intensité lumineuse efférente et distance séparant les deux plateaux), ainsi affichés sur l'appareil peut, après lecture de façon classique, être effectuée manuellement par le praticien.

20

Cependant, selon une autre caractéristique de l'invention, les éléments d'affichage sont reliés à un dispositif d'appréciation. Par ailleurs, l'appareillage peut être complété par un élément de calcul aménagé de manière à effectuer le rapport de mesure à une épaisseur type de tissus choisi et prédéterminé.

Selon une autre caractéristique de l'appareillage selon l'invention, les deux plateaux sont reliés par des éléments d'étanchéIté à la lumière, tels, par exemple, que des soufflets ou volets opaques aménagés de manière à permettre l'insertion du sein entre les dits plateaux.

Encore selon une autre caractéristique de l'invention, des moyens peuvent être aménagés au niveau de la source lumineuse de manière à réduire l'étendue du spectre de lumière émis ou encore d'effectuer le mixage de plusieurs bandes étroites de fréquences.

Il est connu qu'il a été démontré, notamment par les travaux du Dr LAMARQUE (MONTPELLIER) que les éponges végétales présentaient une texture qui peut être comparée à celle du sein, au moins dans le cadre de l'expérimentation en cause.

1.0

15

20

30

35

Il a été ainsi procédé à plusieurs expériences fondamentales à l'aide de telles éponges végétales.

Dans une autre première expérience, une éponge à faces parallèles a été radiographiée deux fois dans des conditions techniques strictement identiques, une première fois à l'état sec puis une seconde fois après l'avoir imbibée d'eau; l'appareillage selon l'invention permet de démontrer, comme il l'avait été fait par le Dr. LAMARQUE, mais cette fois-ci de façon chiffrée avec précision que l'éponge imbibée d'eau est beaucoup plus transparente à la lumière visible, que l'éponge sèche et dans un rapport de 465 à 50 (les unités n'ayant ici qu'une valeur relative).

La seconde expérience a été faite avec deux éponges végétales à faces parallèles strictement identiques d'une épaisseur de 18 mm. placées dans une boite de matière plastique contenant une hauteur d'eau constante de 40 mm.

Dans une première phase de l'expérience, une seule des deux éponges a été disposée dans la boite de matière plastique et les deux éponges ont été simultanément placées face à face, dans ladite boite, au cours de la seconde partie de l'expérience. L'on a pu alors constater que, pour une même épaisseur d'eau, la densité radiologique était pratiquement identique

alors que, par contre, la diaphanométrie effectuée avec l'appareillage selon l'invention donnait un rapport de transparence de 138 avec une éponge, à 16 avec deux éponges. Cette expérience met particulièrement en évidence le fait que la diaphanoscopie, notamment lorsqu'elle est effectuée avec l'appareillage selon l'invention, permet une meilleure appréciation quantitative des structures que l'analyse par les rayons X.

5

30

L'expérimentation clinique effectuée sur un grand nombre de seins a montré qu'il convenait d'exprimer le résultat fourni par l'appareil, c'est-à-dire essentiellement la mesure de l'intensité lumineuse de sortie, en watt/m², ce qui permet de définir le coefficient d'absorption, ce coefficient d'absorption étant calculable à partir de l'épaisseur de tissus mesurée.

Ces expérimentations cliniques ont également établi que la gamme des valeurs de transparence ou de transmissibilité lumineuse pouvait s'établir entre des valeurs extrêmes très éloignées. Il est ainsi apparu que l'appareillage selon l'invention permettait de déceler des différences très significatives d'un type de structure à l'autre. Par exemple, pour une épaisseur mesurée de 50 mm. la valeur du faisceau de sortie mesurée en watt/m² va de 0,17 milliwatt/m² pour une mastose sévère, précédemment identifiée par d'autres moyens, à 1,13 pour un syndrome fonctionnel d'une jeune femme.

Les mêmes expérimentations cliniques ont établi que la diaphanométrie (c'est-à-dire la diaphanoscopie effectuée à l'aide d'un appareillage permettant d'en mesurer les paramètres) présentait une valeur indicatrice certaine de richesse cellulaire :

- 35 un sein radiotransparent est toujours transparent à la lumière,
 - un sein présentant radiologiquement un aspect de mastose, vraie

fibro-nodulaire, est toujours fortement opaque à la lumière - un sein opaque à la mammographie est tantôt transparent à la lumière (cas fréquent chez les jeunes femmes) tantôt opaque, évoquant une surcharge cellulaire.

5

Or, l'appareillage de diaphanométrie selon l'invention présente l'intérêt d'être constitué par un matériel peu couteux et grâce auquel une mesure ne demande que quelques secondes et n'exige pas l'obscurité, 10 ce qui permet d'effectuer à très peu de frais la sélection de structures mammaires à risque de cancer dans le cadre d'une opération de dépistage.

L'invention sera bien comprise à la lecture de la description qui va suivre faite en référence au dessin annexé dans lequel la figure unique est une vue schématique d'un appareil de diaphanométrie conforme aux définitions qui précèdent.

Sur la figure unique, l'appareil de diaphanométrie comporte deux plateaux 1, 2, qui peuvent coulisser de 20 façon parallèle sur des tiges de guidage 8. En principe et comme il est représenté sur la figure, les tiges 8 sont solidaires du plateau 1 et seul le plateau 2 y est monté coulissant par les bagues de guidage 14.

Le plateau 1, ou plateau émetteur, porte à sa partie inférieure une arrivée 15 des fibres optiques contenues dans une gaine 3 reliée à une source de lumière qui n'a pas été représentée.

Le faisceau de fibres optiques débouche sur la face 30 interne du plateau émetteur, de façon normale à ce dernier, selon un axe 13 qui a été représenté en traits mixtes à la figure.

A l'endroit ou l'axe 14 intersecte le plateau récepteur 2, celui-ci est muni d'une cellule photosensible 35 12, dont l'élément capteur est orienté en direction

de l'arrivée 15 du faisceau de fibres optiques. La cellule photosensible est reliée à un élément d'affichage et de calcul de l'intensité lumineuse 6, dépendant d'un boitter de mesure désigné par la référence générale 5 et dans lequel est disposé un élément de calcul 7 aménagé de manière à afficher la .. distance séparant les deux plateaux. Cet affichage est obtenu à partir d'un potentiomètre linéaire 9 qui traverse le plateau 3 par un ajour 9b convenable et 10 est solidaire par son extrémité 9a du plateau émetteur 1, le curseur dudit potentiomètre, ici non représenté, est solidaire du plateau récepteur 2 et les informations qu'il fournit sont transmises par le faisceau de fils conducteurs 4 qui véhicule également 15 les informations électriques reçues de la cellule photosensible 13 pour diriger ces dernières sur l' élément d'affichage 6.

L'appareillage est amené au dessus du sein de la . patiente, de manière à le surmonter et à l'y introdui-20 re en S.

L'appareil comporte en outre, de part et d'autre des plateaux 1,2, des soufflets 10 étanches à la lumière et il est muni d'un volet également opaque 11 aménagé à sa partie supérieure et articulé dans l'exemple, sur le plateau 1. Bien entendu, lors de la mise en place sur le sein de la patiente, les deux plateaux 1,2, sont préalablement disposés au voisinage de leur position d'écartement relatif extrême et ils sont ensuite rapprochés l'un de l'autre de manière que, comme il a été dit dans 30 l'introduction, l'orifice d'arrivée 15 et l'élément capteur de la cellule photosensible 12 sont appliqués l'un et l'autre contre le sein de la patiente.

25

REVENDICATION

Appareîl à usage d'investigations de nature médicale et/ou chirurgicale destiné à être utilisé plus spécialement en matière d'investigation d'affections de nature sénologique et dérivé de la technique connue de l'observation diaphanoscopique utilisée notamment pour le dépistage des lésions du sein, caractérisé en ce qu'il comporte deux plateaux parallèles destinés à être disposés de part et d'autre de la partie du sein que l'on se propose d'explorer, ces 10 deux plateaux étant aménagés de manière à pouvoir être appliqués l'un et l'autre, toujours en position respectivement parallèle, contre ladite paroi du sein de manière que les éléments d'investigation constitués sur l'un des plateaux, désigné ci-après par l'expression "plateau émetteur", par une source de lumière intense de préférence constituée par l'extrémité d'un faisceau de fibres de verre, dites fibres optiques, convenablement relié à un émetteur lumineux, tandis que l'autre plateau, dit "plateau récepteur" porte 20 de préférence dans l'axe du faisceau de fibres optiques, une cellule photosensible reliée à un élément d'affichage et/ou de calcul de l'intensité lumineuse reçue par ladite cellule, les deux plateaux étant l'un et l'autre reliés par un dispositif aménagé de 25 manière à calculer et afficher la distance entre ceuxci et que les deux plateaux sont reliés par des éléments d'étanchéîté à la lumière tels, par exemple, que des soufflets et/ou des volets opaques aménagés de manière à permettre l'insertion du sein entre les 30 dits plateaux.

Publication No.: 2 502 935

- (21) No. 81 06454
- (54) Method and device for controlling tissue coagulation using a high-frequency current.
- (51) International classification (Int. Cl.³). A 61 B 17/39.
- (22) Filing date: March 31, 1981.
- (41) Date the application was made available to the public: B.O.P.I. "Listes" No. 40 of 10/08/1982.
- (71) Applicant: DOLLEY, Roger Armand Constant.
- (72) Inventor: Roger Armand Constant Dolley.
- (73) Holder: Same as (71)
- (74) Agent: Bureau S.A. Casalonga, office Josse et Petit, 8, av. Percier, 75008 Paris.

CLAIM 1:

Method for controlling the tissue coagulation of a patient using a high-frequency current supplied by a generator where either one of its poles is connected to a fine electrode, called an active electrode, applied to the tissue to be coagulated in the patient's operating area and the other to a large surface area electrode, called indifferent electrode, in contact with the patient outside the operating area or where the two poles are connected to two fine electrodes applied to the tissue to be coagulated in the patient's operating area, characterized by the fact that a very low intensity, calibrated control current, clearly identifiable with respect to the coagulation current, is superimposed over the high-frequency current, and the variation in the intensity of this control current is measured in order to trigger stopping coagulation as soon as the intensity of the control current, which is a function of the resistance of the tissue being coagulated, reaches a preset lower threshold value.

