Properties!

And their relation to Types and Tests

Two ways of looking at properties

The things that define an object.

```
-- | Product numbers are: [[:alnum:]]
-- unicode enc
-- Max length 140
-- Min length 1 (can't be empty)
newtype ProductNumber = ProductNumber { _unProductNumber :: Text}
deriving (Show,Eq,Ord)
```

The things that define what an object can do.

```
-- Product numbers uniquely determine a particular product
-- They can be sorted and compared
newtype ProductNumber = ProductNumber { _unProductNumber :: Text}
deriving (Show,Eq,Ord)
```

We will mostly be talking about the first.

The Haskell Toolbox

The skills to pay the bills.

- Type Encoding
- Smart Constructors
- QuickCheck
- Typed Transformation
- LiquidTypes

The Pattern.

The gist of what is going on...

- At the boundaries, use smart constructors and quick check to make sure types are built correctly.
- Use Type Encoding, Type Transformation, QuickCheck, and immutability to add or change data without having to recondition it.

Type Level Encoding

Put it where you can find it...

Create types to exactly match some set of properties. e.g. ...

Correct By Construction!

```
-- Guarantees FixedText will have constrained length
     and valid characters.
fixedTextFromString :: forall max min regex .
  ( KnownNat
                max
  , KnownNat
                min
  , KnownSymbol regex) =>
    String ->
    Either FixedTextErrors (FixedText max min regex)
fixedTextFromString str = final
                 = fromIntegral $ natVal (Proxy :: Proxy max)
    max'
    min'
                 = fromIntegral $ natVal (Proxy :: Proxy min)
    isTooLittle = length str < min'</pre>
                 = symbolVal (Proxy :: Proxy regex)
    regexStr
    trimmedString = take max' str
                 = notValidRegex regexStr trimmedString
    notRegex
    final
       isTooLittle = Left FixedTextErrorMin
       notRegex
                  = Left (FixedTextErrorRegex regexStr trimmedString)
       otherwise = Right . FixedText . pack $ trimmedString
```

Examples!

```
Just works, example
exampleFixedText :: Either FixedTextErrors (FixedText 30 1 "[[:alnum:]]")
exampleFixedText = fixedTextFromString "exampleText1234"
$> exampleFixedText
Right (FixedText {_unFixedText = "exampleText1234"})
exampleOverFlowProtection :: Either FixedTextErrors (FixedText 10 1 "[[:alnum:]]")
exampleOverFlowProtection = fixedTextFromString "exampleText1234"
$> exampleOverFlowProtection
Right (FixedText { _unFixedText = "exampleTex"})
exampleInvalidChar :: Either FixedTextErrors (FixedText 30 1 "[[:digit:]]")
exampleInvalidChar = fixedTextFromString "exampleNotAllDigits"
$> exampleInvalidChar
Left (FixedTextErrorRegex "[[:digit:]]" "exampleNotAllDigits")
```

Make Mine a Monoid

```
-- Monoid instance with 0 minimum.
-- No FixedText besides one that has a minimum size of zero
-- should be a Monoid.
instance (KnownNat max, KnownSymbol regex) =>
Monoid (FixedText (max::Nat) (0::Nat) (regex::Symbol)) where
mempty = FixedText ""
mappend s1@(FixedText str1) (FixedText str2) =
    either (const s1)
        id
        (fixedTextFromText (str1 <> str2))
```

Arbitrary, but really specific

```
-- Arbitrary instance
-- This arbitrary instance takes advantage of
-- the Monoid defined above
, KnownSymbol regex) =>
 Arbitrary (FixedText max 0 regex) where
   arbitrary = let regexStr = symbolVal (Proxy :: Proxy regex)
                  generatedString = Genex.genexPure [regexStr]
               in either (const mempty) id <$>
                         OuickCheck.elements
                           (fixedTextFromString <$>
                                     generatedString)
```

Finally, a Property Test!

```
qcProps :: TestTree
qcProps = testGroup "FixedText properties"
  [ QC.testProperty "((mempty <> str) == str)"
                                                                        leftIdMonoid
  , QC.testProperty "((str <> mempty) == str)"
                                                                        rightIdMonoid
  , QC.testProperty "(strA <> strB) <> strC == strA <> (strB <> strC)" associativityMonoid
type ExampleFixedText = FixedText 10 0 "[[01233456789]{0,3}"
leftIdMonoid :: ExampleFixedText -> Bool
leftIdMonoid str = ((mempty <> str) == str)
rightIdMonoid :: ExampleFixedText -> Bool
rightIdMonoid str = ((str <> mempty) == str)
associativityMonoid :: ExampleFixedText ->
                      ExampleFixedText ->
                      ExampleFixedText -> Bool
associativityMonoid strA strB strC = leftAsc == rightAsc
    leftAsc = (strA <> strB) <> strC
    rightAsc = strA <> (strB <> strC)
```

And the Results...

Victory!

Our Product Record

```
data Product = Product {
productNumber
                     :: ProductNumber,
productName
                    :: ProductName.
version
                    :: ProductVersion ,
 productCustomer
                    :: Customer,
productDescription :: TText }
    deriving (Eq.Ord, Show, Generic)
data Customer = Customer {
   customerName
                  :: CustomerName
   customerNumber :: CustomerNumber
  customerAddress :: CustomerAddress }
   deriving (Eq,Ord,Show,Generic)
data CustomerAddress = CustomerAddress {
 street :: TText,
 city :: TText,
 state :: State}
    deriving (Eq,Ord,Show,Generic)
data State = Oklahoma | Texas | Kansas
    deriving (Eq,Ord,Show,Generic)
```

```
newtype ProductNumber = ProductNumber
 { unProductNumber :: TText}
    deriving (Eq,Ord,Show,Generic)
newtype ProductName
                      = ProductName
 { unProductName
                    :: TText}
    deriving (Eq,Ord,Show,Generic)
newtype ProductVersion = ProductVersion
 {unProductVersion :: TText}
   deriving (Eq,Ord,Show,Generic)
newtype CustomerName = CustomerName
 { unCustomerName :: TText}
    deriving (Eq,Ord,Show,Generic)
newtype CustomerNumber = CustomerNumber
 { unCustomerNumber :: TText}
    deriving (Eq,Ord,Show,Generic)
-- 140 characters alphanumeric unicode
type TText = FixedText 140 0 "[[:alnum:]]"
```