Materials Science A214 – A1 Formula sheet Materiaalkunde A214 – A1 Formulablad

interatomic energy: interatomieseenergie:			attractive aantrekking	$E_A =$	$-\frac{A}{r}$ repart afs	oulsive totend	E_R	$=\frac{B}{r^n}$		omic force omiese krag	$F = \frac{dE}{dr}$
Table 3.2 Summary of Equations Used to Determine Crystallographic Point, Direction, and Planar Indices											
Coordina	te Type		Index Symbo	ls	Representative Equation			Equation Symbols			ols
Point			q r s	qa = lattice position referenced to x axis			_				
Direction Non-hexagonal		1	[uvw], [UVW	$u = n \left(\frac{x_2 - x_1}{a} \right)$		$x_1 = \text{tail coordinate} - x \text{ axis}$ $x_2 = \text{head coordinate} - x \text{ axis}$					
Hexagonal			[uvtw]		$u = 3n \left(\frac{a_1' - a_1''}{a} \right)$		a'_1 = head coordinate $-a_1$ axis a''_1 = tail coordinate $-a_1$ axis				
					$u=\frac{1}{3}(2U-V)$		_				
Plane Non-hexagonal		1	(hkl)		$h = \frac{na}{A}$		A = plane intercept - x axis				
Hexagonal			(hkil)		i = -	(h + k)	()	_			
^a In these of	equatio	ns a an	nd n denote, resp	ectively,	the x-axis la	ittice p	aramete	er, and a	reduction-	to-integer pa	rameter.
linear density: lineêre digtheid:		L	$LD = \frac{\text{\# atoms centered on direction vector}}{length \ of \ direction \ vector}$			atomic packing factor: atomiesepakfaktor:					
planar density: vlakdigtheid:		P	$PD = \frac{\text{\# atoms centered on plane}}{\text{area of plane}}$					$APF = \frac{volume \ of \ atoms \ in \ unit \ cell}{volume \ of \ unit \ cell}$			
		me	etals / metaal	C	ceramics / keramiek			Avogadro's number/nommer			
density: digtheid:		$\rho = \frac{nA}{V_C N_A}$			$\rho = \frac{n'(\sum A_c + \sum A_a)}{V_C N_A}$			$N_A = 6.022 \times 10^{23} \text{ atoms/mol}$			
polymers: $ \% \ crystallinity = \frac{\rho_c(\rho_s - \rho_a)}{\rho_s(\rho_c - \rho_a)} \times 100 $			DP	$=\frac{\overline{M_n}}{m}$							
compositio samestellii	- 1161 1 16m1		$n_{m1} = \frac{1}{2}$	$\frac{m_1}{A_1}$							
constants konstantes		Во	Boltzmann: $k = 1.38 \times 10^{-3}$			ıs·K		Universal gas: $R = 8.314 \frac{J}{\text{mol-K}}$			J nol·K
vacancies leemte		equilibrium / ewewig $N_v = N \exp\left(-\frac{Q_v}{kT}\right)$			Frenkel $N_{fr} = N \exp\left(-\frac{Q_{fr}}{2kT}\right)$			Schottky $N_s = N \exp\left(-\frac{Q_s}{2kT}\right)$			
	flux / $vloed$ $J =$			$\frac{M}{At}$ Fick's 1 st law $J = \frac{1}{2}$			$-D\frac{dC}{dx}$	Fick's 2 ⁿ	d law $\frac{\partial C}{\partial t}$	$= D \frac{\partial^2 C}{\partial x^2}$	
diffusion diffusie	diffusie koëffisiënt				ck's 2 nd law: solution for consta surface concentration se 2 ^{de} wet: oplossing vir konsta			onstante	$\frac{C_x}{C_s}$ -	$\frac{-C_0}{-C_0} = 1 - \epsilon$	$\operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$
	$D = D_0 \exp\left(-\frac{Q_d}{RT}\right)$			oppervlakte konsentras			sie				

Materials Science A214 – A1 Formula sheet Materiaalkunde A214 – A1 Formulablad

engineering stress and strain ingenieursspanning en -vervorming				true stress and strain warespanning en -vervorming				Poisson's ratio Poisson verhouding	
σ =	$= \frac{F}{A_0} \qquad \tau = \frac{F}{A_0}$	$\varepsilon = \frac{l_i - l_0}{l_0} = \frac{\Delta l}{l_0}$	σ	$\sigma_T = \frac{F}{A_i}$	$ \varepsilon_T = \ln \frac{l_i}{l_0} $		v = -	$-\frac{\varepsilon_x}{\varepsilon_z} = -\frac{\varepsilon_y}{\varepsilon_z}$	
convert from engineering to true stress and strain $\sigma_T = \sigma(1+\varepsilon)$ Hooke's law $\sigma = 0$ ingenieurs na ware spanning en vervorming omsit $\varepsilon_T = \ln(1+\varepsilon)$ Hooke se wet $\tau = 0$							$ \sigma = E\varepsilon \tau = G\gamma $		
	c constants sieteitskonstantes	E = 2G(1+v)	ductility / rekbaarheid $\%EL = \left(\frac{l_f - l_0}{l_0}\right) \times 100 \qquad \%RA = \left(\frac{A_0 - A_f}{A_0}\right) \times 100$					$\left(\frac{-A_f}{A_0}\right) \times 100$	
$\begin{array}{ c c c c c c } \textbf{slip} & \text{resolved shear stress} & & & & & & \\ \textbf{glip} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ $				critical resolved shear stress $kritiese \ opgeloste \ skuifspanning \qquad \sigma_y = \frac{\tau_{crss}}{(\cos\phi \cos\lambda)_{max}}$					
strengthening in metals versterking in metale		Hall-Petch equation $\sigma_y = \sigma_0 + k_y d^{-1/2}$		cold work / koudwerk $\%CW = \left(\frac{A_0 - A_d}{A_0}\right) \times 100$				wth / korrelgroei $-d_0^n=Kt$	

	, , , , , , , , , , , , , , , , , , ,	$\langle A_0 \rangle$	Ů
Table 4.3 Coordination	Coordination Number	Cation-Anion Radius Ratio	Coordination Geometry
Numbers and Geometries for Various Cation–Anion Radius Ratios (r_C/r_A)	2	<0.155	
	3	0.155-0.225	
	4	0.225-0.414	
	6	0.414-0.732	
	8	0.732-1.0	

Source: W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, *Introduction to Ceramics*, 2nd edition. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.