A Collection of Limits

 $March\ 28,\ 2011$

Contents

1	Short theoretical introduction	1
2	Problems	12
3	Solutions	23

Chapter 1

Short theoretical introduction

Consider a sequence of real numbers $(a_n)_{n\geq 1}$, and $l\in \mathbb{R}$. We'll say that l represents the limit of $(a_n)_{n\geq 1}$ if any neighborhood of l contains all the terms of the sequence, starting from a certain index. We write this fact as $\lim_{n\to\infty} a_n = l$, or $a_n\to l$.

We can rewrite the above definition into the following equivalence:

$$\lim_{n\to\infty}a_n=l\Leftrightarrow (\forall)V\in \mathcal{V}(l),\ (\exists)n_V\in\mathbb{N}^*\ \text{such that}\ (\forall)n\geq n_V\Rightarrow a_n\in V.$$

One can easily observe from this definition that if a sequence is constant then it's limit is equal with the constant term.

We'll say that a sequence of real numbers $(a_n)_{n\geq 1}$ is convergent if it has limit and $\lim_{n\to\infty} a_n \in \mathbb{R}$, or divergent if it doesn't have a limit or if it has the limit equal to $\pm \infty$.

Theorem: If a sequence has limit, then this limit is unique.

Proof: Consider a sequence $(a_n)_{n\geq 1}\subseteq \mathbb{R}$ which has two different limits $l',l''\in \overline{\mathbb{R}}$. It follows that there exist two neighborhoods $V'\in \mathcal{V}(l')$ and $V''\in \mathcal{V}(l'')$ such that $V'\cap V''=\varnothing$. As $a_n\to l'\Rightarrow (\exists)n'\in \mathbb{N}^*$ such that $(\forall)n\geq n'\Rightarrow a_n\in V'$. Also, since $a_n\to l''\Rightarrow (\exists)n''\in \mathbb{N}^*$ such that $(\forall)n\geq n''\Rightarrow a_n\in V''$. Hence $(\forall)n\geq \max\{n',n''\}$ we have $a_n\in V'\cap V''=\varnothing$.

Theorem: Consider a sequence of real numbers $(a_n)_{n\geq 1}$. Then we have:

(i)
$$\lim_{n\to\infty} a_n = l \in \mathbb{R} \Leftrightarrow (\forall)\varepsilon > 0$$
, $(\exists)n_\varepsilon \in \mathbb{N}^*$ such that $(\forall)n \geq n_\varepsilon \Rightarrow |a_n - l| < \varepsilon$.

- (ii) $\lim_{n\to\infty} a_n = \infty \Leftrightarrow (\forall)\varepsilon > 0$, $(\exists)n_\varepsilon \in \mathbb{N}^*$ such that $(\forall)n \geq n_\varepsilon \Rightarrow a_n > \varepsilon$.
- (iii) $\lim_{n\to\infty} a_n = -\infty \Leftrightarrow (\forall)\varepsilon > 0$, $(\exists)n_\varepsilon \in \mathbb{N}^*$ such that $(\forall)n \geq n_\varepsilon \Rightarrow a_n < -\varepsilon$

Theorem: Let $(a_n)_{n>1}$ a sequence of real numbers.

- 1. If $\lim_{n\to\infty} a_n = l$, then any subsequence of $(a_n)_{n\geq 1}$ has the limit equal to l.
- 2. If there exist two subsequences of $(a_n)_{n\geq 1}$ with different limits, then the sequence $(a_n)_{n\geq 1}$ is divergent.
- 3. If there exist two subsequences of $(a_n)_{n\geq 1}$ which cover it and have a common limit, then $\lim_{n\to\infty}a_n=l$.

Definition: A sequence $(x_n)_{n\geq 1}$ is a Cauchy sequence if $(\forall)\varepsilon > 0$, $(\exists)n_{\varepsilon} \in \mathbb{N}$ such that $|x_{n+p} - x_n| < \varepsilon$, $(\forall)n \geq n_{\varepsilon}$, $(\forall)p \in \mathbb{N}$.

Theorem: A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Theorem: Any increasing and unbounded sequence has the limit ∞ .

Theorem: Any increasing and bounded sequence converge to the upper bound of the sequence.

Theorem: Any convergent sequence is bounded.

Theorem(Cesaro lemma): Any bounded sequence of real numbers contains at least one convergent subsequence.

Theorem(Weierstrass theorem): Any monotonic and bounded sequence is convergent.

Theorem: Any monotonic sequence of real numbers has limit.

Theorem: Consider two convergent sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ such that $a_n \leq b_n$, $(\forall) n \in \mathbb{N}^*$. Then we have $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

Theorem: Consider a convergent sequence $(a_n)_{n\geq 1}$ and a real number a such that $a_n\leq a,\ (\forall)n\in\mathbb{N}^*$. Then $\lim_{n\to\infty}a_n\leq a$.

Theorem: Consider a convergent sequence $(a_n)_{n\geq 1}$ such that $\lim_{n\to\infty} a_n = a$. Them $\lim_{n\to\infty} |a_n| = |a|$.

Theorem: Consider two sequences of real numbers $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ such that $a_n \leq b_n$, $(\forall) n \in \mathbb{N}^*$. Then:

- 1. If $\lim_{n\to\infty} a_n = \infty$ it follows that $\lim_{n\to\infty} b_n = \infty$.
- 2. If $\lim_{n\to\infty} b_n = -\infty$ it follows that $\lim_{n\to\infty} a_n = -\infty$.

Limit operations:

Consider two sequences a_n and b_n which have limit. Then we have:

- 1. $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$ (except the case $(\infty, -\infty)$).
- $2. \ \lim_{n\to\infty} (a_n\cdot b_n) = \lim_{n\to\infty} a_n\cdot \lim_{n\to\infty} b_n \ (\text{except the cases} \ (0,\pm\infty)).$
- 3. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} (\text{except the cases } (0,0), (\pm \infty, \pm \infty)).$
- $4. \lim_{n\to\infty}a_n^{b_n}=(\lim_{n\to\infty}a_n)^{\lim_{n\to\infty}b_n} \text{ (except the cases } (1,\pm\infty), \ (\infty,0), \ (0,0)).$
- 5. $\lim_{n \to \infty} (\log_{a_n} b_n) = \log \lim_{n \to \infty} a_n (\lim_{n \to \infty} b_n).$

Trivial consequences:

- 1. $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n;$
- 2. $\lim_{n\to\infty} (\lambda a_n) = \lambda \lim_{n\to\infty} a_n \ (\lambda \in \mathbb{R});$
- 3. $\lim_{n\to\infty} \sqrt[k]{a_n} = \sqrt[k]{\lim_{n\to\infty} a_n} \ (k\in\mathbb{N});$

Theorem (Squeeze theorem): Let $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ be three sequences of real numbers such that $a_n\leq b_n\leq c_n$, $(\forall)n\in\mathbb{N}^*$ and $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=l\in\overline{\mathbb{R}}$. Then $\lim_{n\to\infty}b_n=l$.

Theorem: Let $(x_n)_{n\geq 1}$ a sequence of real numbers such that $\lim_{n\to\infty}(x_{n+1}-x_n)=\alpha\in\overline{\mathbb{R}}$.

- 1. If $\alpha > 0$, then $\lim_{n \to \infty} x_n = \infty$.
- 2. If $\alpha < 0$, then $\lim_{n \to \infty} x_n = -\infty$.

Theorem (Ratio test): Consider a sequence of real positive numbers $(a_n)_{n\geq 1}$, for which $l=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\in\overline{\mathbb{R}}$.

- 1. If l < 1 then $\lim_{n \to \infty} a_n = 0$.
- 2. If l > 1 then $\lim_{n \to \infty} a_n = \infty$.

Proof: 1. Let $V=(\alpha,\beta)\in\mathcal{V}(l)$ with $l<\beta<1$. Because $l=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$, there is some $n_0\in\mathbb{N}^*$ such that $(\forall)n\geq n_0\Rightarrow\frac{a_{n+1}}{a_n}\in V$, hence $(\forall)n\geq n_0\Rightarrow\frac{a_{n+1}}{a_n}<1$. That means starting from the index n_0 the sequence $(a_n)_{n\geq 1}$ is strictly decreasing. Since the sequence is strictly decreasing and it contains only positive terms, the sequence is bounded. Using Weierstrass Theorem, it follows that the sequence is convergent. We have:

$$a_{n+1} = \frac{a_{n+1}}{a_n} \cdot a_n \Rightarrow \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \cdot \lim_{n \to \infty} a_n$$

which is equivalent with:

$$\lim_{n \to \infty} a_n (1 - l) = 0$$

which implies that $\lim_{n\to\infty} a_n = 0$.

2. Denoting $b_n = \frac{1}{a_n}$ we have $\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = \frac{1}{l} < 1$, hence $\lim_{n \to \infty} b_n = 0$ which implies that $\lim_{n \to \infty} a_n = \infty$.

Theorem: Consider a convergent sequence of real non-zero numbers $(x_n)_{n\geq 1}$ such that $\lim_{n\to\infty} n\left(\frac{x_n}{x_{n-1}}-1\right)\in\mathbb{R}^*$. Then $\lim_{n\to\infty} x_n=0$.

Theorem(Cesaro-Stolz lemma): 1. Consider two sequences $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ such that:

- (i) the sequence $(b_n)_{n\geq 1}$ is strictly increasing and unbounded;
- (ii) the limit $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}=l$ exists.

Then the sequence $\left(\frac{a_n}{b_n}\right)_{n\geq 1}$ is convergent and $\lim_{n\to\infty}\frac{a_n}{b_n}=l.$

Proof: Let's consider the case $l \in \mathbb{R}$ and assume $(b_n)_{n\geq 1}$ is a strictly increasing sequence, hence $\lim_{n\to\infty} b_n = \infty$. Now let $V \in \mathcal{V}(l)$, then there exists $\alpha > 0$ such

that $(l-\alpha,l+\alpha)\subseteq V$. Let $\beta\in\mathbb{R}$ such that $0<\beta<\alpha$. As $\lim_{n\to\infty}\frac{a_n}{b_n}=l$, there exists $k\in\mathbb{N}^*$ such that $(\forall)n\geq k\Rightarrow \frac{a_{n+1}-a_n}{b_{n+1}-b_n}\in(l-\beta,l+\beta)$, which implies that:

$$(l-\beta)(b_{n+1}-b_n) < a_{n+1}-a_n < (l+\beta)(b_{n+1}-b_n), \ (\forall)n \ge k$$

Now writing this inequality from k to n-1 we have:

$$(l-\beta)(b_{k+1}-b_k) < a_{k+1}-a_k < (l+\beta)(b_{k+1}-b_k)$$

$$(l-\beta)(b_{k+2}-b_{k+1}) < a_{k+2}-a_{k+1} < (l+\beta)(b_{k+2}-b_{k+1})$$

. . .

$$(l-\beta)(b_n-b_{n-1}) < a_n-a_{n-1} < (l+\beta)(b_n-b_{n-1})$$

Summing all these inequalities we find that:

$$(l-\beta)(b_n - b_k) < a_n - a_k < (l+\beta)(b_n - b_k)$$

As $\lim_{n\to\infty} b_n = \infty$, starting from an index we have $b_n > 0$. The last inequality rewrites as:

$$(l-\beta)\left(1-\frac{b_k}{b_n}\right) < \frac{a_n}{b_n} - \frac{a_k}{b_n} < (l+\beta)\left(1-\frac{b_k}{b_n}\right) \Leftrightarrow$$

$$\Leftrightarrow (l-\beta) + \frac{a_k + (\beta-l)b_k}{b_n} < \frac{a_n}{b_n} < l+\beta + \frac{a_k - (\beta+l)b_k}{b_n}$$

As

$$\lim_{n \to \infty} \frac{a_k + (\beta - l)b_k}{b_n} = \lim_{n \to \infty} \frac{a_k - (\beta + l)b_k}{b_n} = 0$$

there exists an index $p \in \mathbb{N}^*$ such that $(\forall) n \geq p$ we have:

$$\frac{a_k + (\beta - l)b_k}{b_n}, \ \frac{a_k - (\beta + l)b_k}{b_n} \in (\beta - \alpha, \alpha - \beta)$$

We shall look for the inequalities:

$$\frac{a_k + (\beta - l)b_k}{b_n} > \beta - \alpha$$

and

$$\frac{a_k - (\beta + l)b_k}{b_n} < \alpha - \beta$$

Choosing $m = \max\{k, p\}$, then $(\forall) n \geq m$ we have:

$$l - \alpha < \frac{a_n}{b_n} < l + \alpha$$

which means that $\frac{a_n}{b_n} \in V \Rightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = l$. It remains to prove the theorem when $l = \pm \infty$, but these cases can be proven analogous choosing $V = (\alpha, \infty)$ and $V = (-\infty, \alpha)$, respectively.

- 2. Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ such that:
- (i) $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0, \ y_n \neq 0, \ (\forall) n \in \mathbb{N}^*;$
- (ii) the sequence $(y_n)_{n>1}$ is strictly decreasing;
- (iii) the limit $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n} = l \in \overline{\mathbb{R}}.$

Then the sequence $\left(\frac{x_n}{y_n}\right)_{n\geq 1}$ has a limit and $\lim_{n\to\infty}\frac{x_n}{y_n}=l$.

Remark: In problem's solutions we'll write directly $\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}$, and if the limit we arrive to belongs to $\overline{\mathbb{R}}$, then the application of Cesaro-Stolz lemma is valid.

Trivial consequences:

1. Consider a sequence $(a_n)_{n\geq 1}$ of strictly positive real numbers for which exists $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l$. Then we have:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

Proof: Using Cesaro-Stolz theorem we have:

$$\lim_{n\to\infty} \left(\ln \sqrt[n]{a_n}\right) = \lim_{n\to\infty} \frac{\ln a_n}{n} = \lim_{n\to\infty} \frac{\ln a_{n+1} - \ln a_n}{(n+1) - n} = \lim_{n\to\infty} \ln \left(\frac{a_{n+1}}{a_n}\right) = \ln l$$

Then:

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} e^{\ln \sqrt[n]{a_n}} = e^{\lim_{n\to\infty} (\ln \sqrt[n]{a_n})} = e^{\ln l} = l$$

2. Let $(x_n)_{n\geq 1}$ a sequence of real numbers which has limit. Then:

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \ldots + x_n}{n} = \lim_{n \to \infty} x_n$$

3. Let $(x_n)_{n\geq 1}$ a sequence of real positive numbers which has limit. Then:

$$\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \dots x_n} = \lim_{n \to \infty} x_n$$

Theorem (Reciprocal Cesaro-Stolz): Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ two sequences of real numbers such that:

- (i) $(y_n)_{n\geq 1}$ is strictly increasing and unbounded;
- (ii) the limit $\lim_{n\to\infty} \frac{x_n}{y_n} = l \in \overline{\mathbb{R}};$
- (iii) the limit $\lim_{n\to\infty} \frac{y_n}{y_{n+1}} \in \mathbb{R}_+ \backslash \{1\}.$

Then the limit $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n}$ exists and it is equal to l.

Theorem (exponential sequence): Let $a \in \mathbb{R}$. Consider the sequence $x_n = a^n, n \in \mathbb{N}^*$.

- 1. If $a \leq -1$, the sequence is divergent.
- 2. If $a \in (-1, 1)$, then $\lim_{n \to \infty} x_n = 0$.
- 3. If a = 1, then $\lim_{n \to \infty} x_n = 1$.
- 4. If a > 1, then $\lim_{n \to \infty} x_n = \infty$.

Theorem (power sequence): Let $a \in \mathbb{R}$. Consider the sequence $x_n = n^a$, $n \in \mathbb{N}^*$.

- 1. If a < 0, then $\lim_{n \to \infty} x_n = 0$.
- 2. If a = 0, then $\lim_{n \to \infty} x_n = 1$.
- 3. If a > 0, then $\lim_{n \to \infty} x_n = \infty$.

Theorem (polynomial sequence): Let $a_n = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0$, $(a_k \neq 0)$.

- 1. If $a_k > 0$, then $\lim_{n \to \infty} a_n = \infty$.
- 2. If $a_k < 0$, then $\lim_{n \to \infty} a_n = -\infty$.

Theorem: Let $b_n = \frac{a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0}{b_p n^p + b_{p-1} n^{p-1} + \ldots + b_1 n + b_0}, \ (a_k \neq 0 \neq b_p).$

- 1. If k < p, then $\lim_{n \to \infty} b_n = 0$.
- 2. If k = p, then $\lim_{n \to \infty} b_n = \frac{a_k}{b_p}$.
- 3. If k > p, then $\lim_{n \to \infty} b_n = \frac{a_k}{b_p} \cdot \infty$.

Theorem: The sequence $a_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}^*$ is a strictly increasing and bounded sequence and $\lim_{n \to \infty} a_n = e$.

Theorem: Consider a sequence $(a_n)_{n\geq 1}$ of real non-zero numbers such that $\lim_{n\to\infty} a_n = 0$. Then $\lim_{n\to\infty} (1+a_n)^{\frac{1}{a_n}} = e$.

Proof: If $(b_n)_{n\geq 1}$ is a sequence of non-zero positive integers such that $\lim_{n\to\infty}b_n=$

$$\infty$$
, we have $\lim_{n\to\infty}\left(1+\frac{1}{b_n}\right)^{b_n}=e$. Let $\varepsilon>0$. From $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$, it follows that there exists $n'_{\varepsilon}\in\mathbb{N}^*$ such that $(\forall)n\geq n'_{\varepsilon}\Rightarrow\left|\left(1+\frac{1}{n}\right)^n-e\right|<\varepsilon$. Also, since $\lim_{n\to\infty}b_n=\infty$, there exists $n''_{\varepsilon}\in\mathbb{N}^*$ such that $(\forall)n\geq n''_{\varepsilon}\Rightarrow b_n>n'_{\varepsilon}$. Therefore there exists $n_{\varepsilon}=\max\{n'_{\varepsilon},n'''_{\varepsilon}\}\in\mathbb{N}^*$ such that $(\forall)n\geq n''_{\varepsilon}\Rightarrow b_n>n'_{\varepsilon}$. This means that: $\lim_{n\to\infty}\left(1+\frac{1}{b_n}\right)^{b_n}=e$. The same property is fulfilled if $\lim_{n\to\infty}b_n=-\infty$.

If $(c_n)_{n\geq 1}$ is a sequence of real numbers such that $\lim_{n\to\infty} c_n = \infty$, then $\lim_{n\to\infty} \left(1+\frac{1}{c_n}\right)^{c_n} = e$. We can assume that $c_n > 1$, $(\forall) n \in \mathbb{N}^*$. Let's denote $d_n = \lfloor c_n \rfloor \in \mathbb{N}^*$. In this way $(d_n)_{n\geq 1}$ is sequence of positive integers with $\lim_{n\to\infty} d_n = \infty$. We have:

$$d_n \le c_n < d_n + 1 \Rightarrow \frac{1}{d_n + 1} < \frac{1}{c_n} \le \frac{1}{d_n}$$

Hence it follows that:

$$\left(1 + \frac{1}{d_n + 1}\right)_n^d < \left(1 + \frac{1}{c_n}\right)^{d_n} \le \left(1 + \frac{1}{c_n}\right)^{c_n} < \left(1 + \frac{1}{c_n}\right)^{d_n + 1} \le \left(1 + \frac{1}{d_n}\right)^{d_n + 1}$$

Observe that:

$$\lim_{n\to\infty}\left(1+\frac{1}{d_n+1}\right)^{d_n}=\lim_{n\to\infty}\left(1+\frac{1}{d_n+1}\right)^{d_n+1}\cdot\left(1+\frac{1}{d_n+1}\right)^{-1}=e$$

and

$$\lim_{n\to\infty}\left(1+\frac{1}{d_n}\right)^{d_n+1}=\lim_{n\to\infty}\left(1+\frac{1}{d_n}\right)^{d_n}\cdot\left(1+\frac{1}{d_n}\right)=e$$

Using the Squeeze Theorem it follows that $\lim_{n\to\infty} \left(1+\frac{1}{c_n}\right)^{c_n} = e$. The same property is fulfilled when $\lim_{n\to\infty} c_n = -\infty$.

Now if the sequence $(a_n)_{n\geq 1}$ contains a finite number of positive or negative terms we can remove them and assume that the sequence contains only positive terms. Denoting $x_n=\frac{1}{a_n}$ we have $\lim_{n\to\infty}x_n=\infty$. Then we have

$$\lim_{n \to \infty} (1 + a_n)^{\frac{1}{a_n}} = \lim_{n \to \infty} \left(1 + \frac{1}{x_n} \right)^{x_n} = e$$

If the sequence contains an infinite number of positive or negative terms, the same fact happens for the sequence $(x_n)_{n\geq 1}$ with $x_n=\frac{1}{a_n},\ (\forall)n\in\mathbb{N}^*.$ Let's denote by $(a'_n)_{n\geq 1}$ the subsequence of positive terms , and by $(a''_n)_{n\geq 1}$ the subsequence of negative terms. Also let $c'_n=\frac{1}{a'_n},\ (\forall)n\in\mathbb{N}^*$ and $c''_n=\frac{1}{a''_n},\ (\forall)n\in\mathbb{N}^*.$ Then it follows that $\lim_{n\to\infty}c'_n=\infty$ and $\lim_{n\to\infty}c''_n=-\infty$. Hence:

$$\lim_{n \to \infty} (1 + a'_n)^{\frac{1}{a'_n}} = \lim_{n \to \infty} \left(1 + \frac{1}{c'_n} \right)^{c'_n} = e$$

and

$$\lim_{n \to \infty} (1 + a_n'')^{\frac{1}{a_n''}} = \lim_{n \to \infty} \left(1 + \frac{1}{c_n''} \right)^{c_n''} = e$$

Then it follows that: $\lim_{n\to\infty} (1+a_n)^{\frac{1}{a_n}} = e$.

Consequence: Let $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ two sequences of real numbers such that $a_n\neq 1$, $(\forall)n\in\mathbb{N}^*$, $\lim_{n\to\infty}a_n=1$ and $\lim_{n\to\infty}b_n=\infty$ or $\lim_{n\to\infty}b_n=-\infty$. If there exists $\lim_{n\to\infty}(a_n-1)b_n\in\overline{\mathbb{R}}$, then we have $\lim_{n\to\infty}a_n^{b_n}=e^{\lim_{n\to\infty}(a_n-1)b_n}$.

Theorem: Consider the sequence $(a_n)_{n\geq 0}$ defined by $a_n = \sum_{k=0}^n \frac{1}{k!}$. We have $\lim_{n\to\infty} a_n = e$.

Theorem: Let $(c_n)_{n\geq 1}$, a sequence defined by

$$c_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} - \ln n, \ n \ge 1$$

Then $(c_n)_{n\geq 1}$ is strictly decreasing and bounded, and $\lim_{n\to\infty} c_n = \gamma$, where γ is the Euler constant.

Recurrent sequences

A sequence $(x_n)_{n\geq 1}$ is a k-order recurrent sequence, if it is defined by a formula of the form

$$x_{n+k} = f(x_n, x_{n+1}, \dots, n_{n+k-1}), \ n \ge 1$$

with given x_1, x_2, \ldots, x_k . The recurrence is linear if f is a linear function. Second order recurrence formulas which are homogeneous, with constant coefficients, have the form $x_{n+2} = \alpha x_{n+1} + \beta x_n$, $(\forall) n \geq 1$ with given x_1, x_2, α, β . To this recurrence formula we attach the equation $r^2 = \alpha r + \beta$, with r_1, r_2 as solutions.

If $r_1, r_2 \in \mathbb{R}$ and $r_1 \neq r_2$, then $x_n = Ar_1^n + Br_2^n$, where A, B are two real numbers, usually found from the terms x_1, x_2 . If $r_1 = r_2 = r \in \mathbb{R}$, then $x_n = r^n(A + nB)$ and if $r_1, r_2 \in \mathbb{R}$, we have $r_1, r_2 = \rho(\cos \theta + i \sin \theta)$ so $x_n = \rho^n(\cos n\theta + i \sin n\theta)$.

Limit functions

Definition: Let $f: D \to \mathbb{R}$ $(D \subseteq \mathbb{R})$ and $x_0 \in \overline{\mathbb{R}}$ and accumulation point of D. We'll say that $l \in \overline{\mathbb{R}}$ is the limit of the function f in x_0 , and we write $\lim_{x \to x_0} f(x) = l$, if for any neighborhood \mathcal{V} of l, there is a neighborhood U of x_0 , such that for any $x \in D \cap U \setminus \{x_0\}$, we have $f(x) \in \mathcal{V}$.

Theorem: Let $f: D \to \mathbb{R}$ $(D \subset \mathbb{R})$ and x_0 an accumulation point of D. Then $\lim_{x \to x_0} f(x) = l$ $(l, x_0 \in \mathbb{R})$ if and only if $(\forall) \varepsilon > 0$, $(\exists) \delta_{\varepsilon} > 0$, $(\forall) x \in D \setminus \{x_0\}$ such that $|x - x_0| < \delta_{\varepsilon} \Rightarrow |f(x) - l| < \varepsilon$.

If $l = \pm \infty$, we have:

 $\lim_{x\to x_0} f(x) = \pm \infty \Leftrightarrow (\forall)\varepsilon > 0, \ (\exists)\delta_{\varepsilon} > 0, \ (\forall)x \in D \setminus \{x_0\} \text{ such that } |x-x_0| < \delta_{\varepsilon},$ we have $f(x) > \varepsilon$ $(f(x) < \varepsilon)$.

Theorem: Let $f: D \subset \mathbb{R} \Rightarrow \mathbb{R}$ and x_0 an accumulation point of D. Then $\lim_{x \to x_0} f(x) = l$ $(l \in \overline{\mathbb{R}}, x_0 \in \mathbb{R})$, if and only if $(\forall)(x_n)_{n \ge 1}, x_n \in D \setminus \{x_0\}, x_n \to x_0$, we have $\lim_{n \to \infty} f(x_n) = l$.

One-side limits

Definition: Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$ and $x_0 \in \overline{\mathbb{R}}$ an accumulation point of D. We'll say that $l_s \in \overline{\mathbb{R}}$ (or $l_d \in \overline{\mathbb{R}}$) is the left-side limit (or right-side limit) of f in x_0 if for any neigborhood \mathcal{V} of l_s (or l_d), there is a neighborhood U of x_0 , such that for any $x < x_0$, $x \in U \cap D \setminus \{x_0\}$ ($x > x_0$ respectively), $f(x) \in \mathcal{V}$.

We write
$$l_s = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = f(x_0 - 0)$$
 and $l_d = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = f(x_0 + 0)$.

Theorem: Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ an accumulation point of the sets $(-\infty, x_0) \cap D$ and $(x_0, \infty) \cap D$. Then f has the limit $l \in \overline{\mathbb{R}}$ if and only if f has equal one-side limits in x_0 .

Remarkable limits

If
$$\lim_{x \to x_0} f(x) = 0$$
, then:

1.
$$\lim_{x \to x_0} \frac{\sin f(x)}{f(x)} = 1;$$

2.
$$\lim_{x \to x_0} \frac{\tan f(x)}{f(x)} = 1;$$

$$3. \lim_{x \to x_0} \frac{\arcsin f(x)}{f(x)} = 1;$$

$$4.\lim_{x \to x_0} \frac{\arctan f(x)}{f(x)} = 1;$$

5.
$$\lim_{x \to x_0} (1 + f(x))^{\frac{1}{f(x)}} = e$$

6.
$$\lim_{x \to x_0} \frac{\ln(1 + f(x))}{f(x)} = 1;$$

7.
$$\lim_{x \to x_0} \frac{a^{f(x)} - 1}{f(x)} = \ln a \ (a > 0);$$

8.
$$\lim_{x \to x_0} \frac{(1 + f(x))^r - 1}{f(x)} = r \ (r \in \mathbb{R});$$

If
$$\lim_{x\to x_0} f(x) = \infty$$
, then:

9.
$$\lim_{x \to x_0} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = e;$$

$$10.\lim_{x \to x_0} \frac{\ln f(x)}{f(x)} = 0;$$

Chapter 2

Problems

1. Evaluate:

$$\lim_{n \to \infty} \left(\sqrt[3]{n^3 + 2n^2 + 1} - \sqrt[3]{n^3 - 1} \right)$$

2. Evaluate:

$$\lim_{x \to -2} \frac{\sqrt[3]{5x+2}+2}{\sqrt{3x+10}-2}$$

3. Consider the sequence $(a_n)_{n\geq 1}$, such that $\sum_{k=1}^n a_k = \frac{3n^2 + 9n}{2}$, $(\forall) n \geq 1$.

Prove that this sequence is an arithmetical progression and evaluate:

$$\lim_{n \to \infty} \frac{1}{na_n} \sum_{k=1}^{n} a_k$$

4. Consider the sequence $(a_n)_{n\geq 1}$ such that $a_1=a_2=0$ and $a_{n+1}=\frac{1}{3}(a_n+a_{n-1}^2+b)$, where $0\leq b\leq 1$. Prove that the sequence is convergent and evaluate $\lim_{n\to\infty}a_n$.

5. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that $x_1=1$ and $x_n=2x_{n-1}+\frac{1}{n},\ (\forall)n\geq 2.$ Evaluate $\lim_{n\to\infty}x_n.$

6. Evaluate:

$$\lim_{n \to \infty} \left(n \left(\frac{4}{5} \right)^n + n^2 \sin^n \frac{\pi}{6} + \cos \left(2n\pi + \frac{\pi}{n} \right) \right)$$

Problems

13

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k! \cdot k}{(n+1)!}$$

8. Evaluate:

$$\lim_{n\to\infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{n^2}\right)$$

9. Evaluate:

$$\lim_{n\to\infty} \sqrt[n]{\frac{3^{3n}(n!)^3}{(3n)!}}$$

- 10. Consider a sequence of real positive numbers $(x_n)_{n\geq 1}$ such that $(n+1)x_{n+1}-nx_n<0$, $(\forall)n\geq 1$. Prove that this sequence is convergent and evaluate it's limit
- 11. Find the real numbers a and b such that:

$$\lim_{n \to \infty} \left(\sqrt[3]{1 - n^3} - an - b \right) = 0$$

12. Let $p\in\mathbb{N}$ and $\alpha_1,\alpha_2,...,\alpha_p$ positive distinct real numbers. Evaluate:

$$\lim_{n\to\infty} \sqrt[n]{\alpha_1^n + \alpha_2^n + \ldots + \alpha_p^n}$$

13. If $a \in \mathbb{R}^*$, evaluate:

$$\lim_{x \to -a} \frac{\cos x - \cos a}{x^2 - a^2}$$

14. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{x \to 0} \frac{\ln(1 + x + x^2 + \dots + x^n)}{nx}$$

15. Evaluate:

$$\lim_{n \to \infty} \left(n^2 + n - \sum_{k=1}^{n} \frac{2k^3 + 8k^2 + 6k - 1}{k^2 + 4k + 3} \right)$$

16. Find $a \in \mathbb{R}^*$ such that:

$$\lim_{x \to 0} \frac{1 - \cos ax}{x^2} = \lim_{x \to \pi} \frac{\sin x}{\pi - x}$$

17. Evaluate:

$$\lim_{x \to 1} \frac{\sqrt[3]{x^2 + 7} - \sqrt{x + 3}}{x^2 - 3x + 2}$$

$$\lim_{n \to \infty} \left(\sqrt{2n^2 + n} - \lambda \sqrt{2n^2 - n} \right)$$

where λ is a real number.

19. If $a, b, c \in \mathbb{R}$, evaluate:

$$\lim_{x \to \infty} \left(a\sqrt{x+1} + b\sqrt{x+2} + c\sqrt{x+3} \right)$$

20. Find the set $A \subset \mathbb{R}$ such that $ax^2 + x + 3 \ge 0$, $(\forall)a \in A, (\forall)x \in \mathbb{R}$. Then for any $a \in A$, evaluate:

$$\lim_{x \to \infty} \left(x + 1 - \sqrt{ax^2 + x + 3} \right)$$

21. If $k \in \mathbb{R}$, evaluate:

$$\lim_{n \to \infty} n^k \left(\sqrt{\frac{n}{n+1}} - \sqrt{\frac{n+2}{n+3}} \right)$$

22. If $k \in \mathbb{N}$ and $a \in \mathbb{R}_+ \setminus \{1\}$, evaluate:

$$\lim_{n\to\infty} n^k (a^{\frac{1}{n}} - 1) \left(\sqrt{\frac{n-1}{n}} - \sqrt{\frac{n+1}{n+2}} \right)$$

23. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}$$

24. If a > 0, $p \ge 2$, evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt[p]{n^p + ka}}$$

25. Evaluate:

$$\lim_{n \to \infty} \frac{n!}{(1+1^2)(1+2^2) \cdot \ldots \cdot (1+n^2)}$$

26. Evaluate:

$$\lim_{n \to \infty} \left(\frac{2n^2 - 3}{2n^2 - n + 1} \right)^{\frac{n^2 - 1}{n}}$$

$$\lim_{x \to 0} \frac{\sqrt{1+\sin^2 x} - \cos x}{1-\sqrt{1+\tan^2 x}}$$

Problems 15

28. Evaluate:

$$\lim_{x \to \infty} \left(\frac{x + \sqrt{x}}{x - \sqrt{x}} \right)^x$$

29. Evaluate:

$$\lim_{\substack{x \to 0 \\ x > 0}} (\cos x)^{\frac{1}{\sin x}}$$

30. Evaluate:

$$\lim_{x \to 0} \left(e^x + \sin x \right)^{\frac{1}{x}}$$

31. If $a, b \in \mathbb{R}_+^*$, evaluate:

$$\lim_{n \to \infty} \left(\frac{a - 1 + \sqrt[n]{b}}{a} \right)^n$$

32. Consider a sequence of real numbers $(a_n)_{n\geq 1}$ defined by:

$$a_n = \begin{cases} 1 & \text{if } n \le k, \ k \in \mathbb{N}^* \\ \frac{(n+1)^k - n^k}{\binom{n}{k-1}} & \text{if } n > k \end{cases}$$

i)Evaluate $\lim_{n\to\infty} a_n$.

ii)If $b_n = 1 + \sum_{k=1}^{n} k \cdot \lim_{n \to \infty} a_n$, evaluate:

$$\lim_{n\to\infty}\left(\frac{b_n^2}{b_{n-1}b_{n+1}}\right)^n$$

33. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that $x_{n+2}=\frac{x_{n+1}+x_n}{2},\ (\forall)n\in\mathbb{N}^*$. If $x_1\leq x_2$,

i) Prove that the sequence $(x_{2n+1})_{n\geq 0}$ is increasing, while the sequence $(x_{2n})_{n\geq 0}$ is decreasing;

ii)Prove that:

$$|x_{n+2} - x_{n+1}| = \frac{|x_2 - x_1|}{2^n}, \ (\forall) n \in \mathbb{N}^*$$

iii)Prove that:

$$2x_{n+2} + x_{n+1} = 2x_2 + x_1, \ (\forall) n \in \mathbb{N}^*$$

iv)Prove that $(x_n)_{n\geq 1}$ is convergent and that it's limit is $\frac{x_1+2x_2}{3}$.

34. Let $a_n, b_n \in \mathbb{Q}$ such that $(1 + \sqrt{2})^n = a_n + b_n \sqrt{2}$, $(\forall) n \in \mathbb{N}^*$. Evaluate $\lim_{n \to \infty} \frac{a_n}{b_n}$.

35. If a > 0, evaluate:

$$\lim_{x \to 0} \frac{(a+x)^x - 1}{x}$$

36. Consider a sequence of real numbers $(a_n)_{n\geq 1}$ such that $a_1=\frac{3}{2}$ and $a_{n+1}=\frac{a_n^2-a_n+1}{a_n}$. Prove that $(a_n)_{n\geq 1}$ is convergent and find it's limit.

37. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that $x_0\in (0,1)$ and $x_{n+1}=x_n-x_n^2+x_n^3-x_n^4, \ (\forall)n\geq 0$. Prove that this sequence is convergent and evaluate $\lim_{n\to\infty}x_n$.

38. Let a > 0 and $b \in (a, 2a)$ and a sequence $x_0 = b$, $x_{n+1} = a + \sqrt{x_n(2a - x_n)}$, $(\forall) n \ge 0$. Study the convergence of the sequence $(x_n)_{n \ge 0}$.

39. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n+1} \arctan \frac{1}{2k^2}$$

40. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{4k^4 + 1}$$

41. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1 + 3 + 3^2 + \ldots + 3^k}{5^{k+2}}$$

42. Evaluate:

$$\lim_{n \to \infty} \left(n + 1 - \sum_{i=2}^{n} \sum_{k=2}^{i} \frac{k-1}{k!} \right)$$

43. Evaluate:

$$\lim_{n \to \infty} \frac{1^1 + 2^2 + 3^3 + \ldots + n^n}{n^n}$$

44. Consider the sequence $(a_n)_{n\geq 1}$ such that $a_0=2$ and $a_{n-1}-a_n=\frac{n}{(n+1)!}$. Evaluate $\lim_{n\to\infty} ((n+1)! \ln a_n)$.

Problems 17

45. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ with $x_1=a>0$ and $x_{n+1}=\frac{x_1+2x_2+3x_3+\ldots+nx_n}{n},\ n\in\mathbb{N}^*$. Evaluate it's limit.

46. Using
$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}=\frac{\pi^2}{6}$$
, evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(2k-1)^2}$$

47. Consider the sequence $(x_n)_{n\geq 1}$ defined by $x_1=a, x_2=b, a< b$ and $x_n=\frac{x_{n-1}+\lambda x_{n-2}}{1+\lambda}, n\geq 3, \lambda>0$. Prove that this sequence is convergent and find it's limit.

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}$$

- 49. Consider the sequence $(x_n)_{n\geq 1}$ defined by $x_1=1$ and $x_n=\frac{1}{1+x_{n-1}},\ n\geq 2$. Prove that this sequence is convergent and evaluate $\lim_{n\to\infty} x_n$.
- 50. If $a, b \in \mathbb{R}^*$, evaluate:

$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}$$

- 51. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \{x\} & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Find all $\alpha \in \mathbb{R}$ for which $\lim_{x \to \alpha} f(x)$ exists.
- 52. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \lfloor x \rfloor & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Find all $\alpha \in \mathbb{R}$ for which $\lim_{x \to \alpha} f(x)$ exists.
- 53. Let $(x_n)_{n\geq 1}$ be a sequence of positive real numbers such that $x_1>0$ and $3x_n=2x_{n-1}+\frac{a}{x_{n-1}^2}$, where a is a real positive number. Prove that x_n is convergent and evaluate $\lim_{n\to\infty}x_n$.
- 54. Consider a sequence of real numbers $(a_n)_{n\geq 1}$ such that $a_1=12$ and $a_{n+1}=a_n\left(1+\frac{3}{n+1}\right)$. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{a_k}$$

55. Evaluate:

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + 1}} \right)^n$$

56. If $a \in \mathbb{R}$, evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\lfloor k^2 a \rfloor}{n^3}$$

57. Evaluate:

$$\lim_{n \to \infty} 2^n \left(\sum_{k=1}^n \frac{1}{k(k+2)} - \frac{1}{4} \right)^n$$

58. Consider the sequence $(a_n)_{n\geq 1}$, such that $a_n>0$, $(\forall)n\in\mathbb{N}$ and $\lim_{n\to\infty}n(a_{n+1}-a_n)=1$. Evaluate $\lim_{n\to\infty}a_n$ and $\lim_{n\to\infty}\sqrt[n]{a_n}$.

59. Evaluate:

$$\lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt{3} + \ldots + n\sqrt{n}}{n^2 \sqrt{n}}$$

60. Evaluate:

$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{2x - \pi}}$$

61. Evaluate:

$$\lim_{n \to \infty} n^2 \ln \left(\cos \frac{1}{n} \right)$$

62. Given $a, b \in \mathbb{R}_+^*$, evaluate:

$$\lim_{n \to \infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n$$

63. Let $\alpha > \beta > 0$ and the matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

i)Prove that $(\exists)(x_n)_{n\geq 1}, (y_n)_{n\geq 1} \in \mathbb{R}$ such that:

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}^n = x_n A + y_n B, \ (\forall) n \ge 1$$

ii) Evaluate $\lim_{n\to\infty} \frac{x_n}{y_n}$

64. If $a \in \mathbb{R}$ such that |a| < 1 and $p \in \mathbb{N}^*$ is given, evaluate:

Problems

19

$$\lim_{n\to\infty} n^p \cdot a^n$$

65. If $p \in \mathbb{N}^*$, evaluate:

$$\lim_{n\to\infty}\frac{1^p+2^p+3^p+\ldots+n^p}{n^{p+1}}$$

66. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{\sin(n\arccos x)}{\sqrt{1 - x^2}}$$

67. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{1 - \cos(n \arccos x)}{1 - x^2}$$

68. Study the convergence of the sequence:

$$x_{n+1} = \frac{x_n + a}{x_n + 1}, \ n \ge 1, \ x_1 \ge 0, \ a > 0$$

69. Consider two sequences of real numbers $(x_n)_{n\geq 0}$ and $(y_n)_{n\geq 0}$ such that $x_0=y_0=3,\ x_n=2x_{n-1}+y_{n-1}$ and $y_n=2x_{n-1}+3y_{n-1},\ (\forall)n\geq 1.$ Evaluate $\lim_{n\to\infty}\frac{x_n}{y_n}$.

70. Evaluate:

$$\lim_{x \to 0} \frac{\tan x - x}{x^2}$$

71. Evaluate:

$$\lim_{x \to 0} \frac{\tan x - \arctan x}{x^2}$$

72. Let a > 0 and a sequence of real numbers $(x_n)_{n \ge 0}$ such that $x_n \in (0, a)$ and $x_{n+1}(a-x_n) > \frac{a^2}{4}$, $(\forall) n \in \mathbb{N}$. Prove that $(x_n)_{n \ge 1}$ is convergent and evaluate $\lim_{n \to \infty} x_n$.

73. Evaluate:

$$\lim_{n\to\infty}\cos\left(n\pi\sqrt[2n]{e}\right)$$

$$\lim_{n\to\infty}\left(\frac{n+1}{n}\right)^{\tan\frac{(n-1)\pi}{2n}}$$

75. Evaluate:

$$\lim_{n \to \infty} \sqrt[n]{\prod_{k=1}^{n} \binom{n}{k}}$$

76. If a > 0, evaluate:

$$\lim_{n \to \infty} \frac{a + \sqrt{a} + \sqrt[3]{a} + \ldots + \sqrt[n]{a} - n}{\ln n}$$

77. Evaluate:

$$\lim_{n\to\infty} n \ln \tan \left(\frac{\pi}{4} + \frac{\pi}{n}\right)$$

78. Let $k \in \mathbb{N}$ and $a_0, a_1, a_2, \ldots, a_k \in \mathbb{R}$ such that $a_0 + a_1 + a_2 + \ldots + a_k = 0$. Evaluate:

$$\lim_{n \to \infty} \left(a_0 \sqrt[3]{n} + a_1 \sqrt[3]{n+1} + \ldots + a_k \sqrt[3]{n+k} \right)$$

79. Evaluate:

$$\lim_{n\to\infty} \sin\left(n\pi\sqrt[3]{n^3+3n^2+4n-5}\right)$$

80. Evaluate:

$$\lim_{\substack{x \to 1 \\ x \le 1}} \frac{2 \arcsin x - \pi}{\sin \pi x}$$

81. Evaluate:

$$\lim_{n \to \infty} \sum_{k=2}^{n} \frac{1}{k \ln k}$$

82. Evaluate:

$$\lim_{n \to \infty} \left[\lim_{x \to 0} \left(1 + \sum_{k=1}^{n} \sin^2(kx) \right)^{\frac{1}{n^3 x^2}} \right]$$

83. If $p \in \mathbb{N}^*$, evaluate:

$$\lim_{n\to\infty}\sum_{k=0}^{n}\frac{(k+1)(k+2)\cdot\ldots\cdot(k+p)}{n^{p+1}}$$

84. If $\alpha_n \in \left(0, \frac{\pi}{4}\right)$ is a root of the equation $\tan \alpha + \cot \alpha = n, \ n \geq 2$, evaluate:

$$\lim_{n\to\infty} (\sin\alpha_n + \cos\alpha_n)^n$$

Problems 21

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{\binom{n+k}{2}}}{n^2}$$

86. Evaluate:

$$\lim_{n\to\infty} \sqrt[n]{\prod_{k=1}^n \left(1+\frac{k}{n}\right)}$$

87. Evaluate:

$$\lim_{x\to 0}\frac{\arctan x-\arcsin x}{x^3}$$

88. If $\alpha > 0$, evaluate:

$$\lim_{n \to \infty} \frac{(n+1)^{\alpha} - n^{\alpha}}{n^{\alpha - 1}}$$

89. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2}{2^k}$$

90. Evaluate:

$$\lim_{n\to\infty}\sum_{k=0}^n\frac{(k+1)(k+2)}{2^k}$$

91. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that $x_1\in (0,1)$ and $x_{n+1}=x_n^2-x_n+1, \ (\forall)n\in \mathbb{N}.$ Evaluate:

$$\lim_{n\to\infty} \left(x_1 x_2 \cdot \ldots \cdot x_n \right)$$

92. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{x \to 0} \frac{1 - \cos x \cdot \cos 2x \cdot \ldots \cdot \cos nx}{x^2}$$

- 93. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that x_n is the real root of the equation $x^3 + nx n = 0$, $n \in \mathbb{N}^*$. Prove that this sequence is convergent and find it's limit.
- 94. Evaluate:

$$\lim_{x \to 2} \frac{\arctan x - \arctan 2}{\tan x - \tan 2}$$

$$\lim_{n \to \infty} \frac{1 + \sqrt[2^2]{2!} + \sqrt[3^2]{3!} + \ldots + \sqrt[n^2]{n!}}{n}$$

96. Let $(x_n)_{n\geq 1}$ such that $x_1 > 0$, $x_1 + x_1^2 < 1$ and $x_{n+1} = x_n + \frac{x_n^2}{n^2}$, $(\forall) n \geq 1$. Prove that the sequences $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 2}$, $y_n = \frac{1}{x_n} - \frac{1}{n-1}$ are convergent.

97. Evaluate:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sin \frac{2i}{n^2}$$

98. If a > 0, $a \neq 1$, evaluate:

$$\lim_{x \to a} \frac{x^x - a^x}{a^x - a^a}$$

99. Consider a sequence of positive real numbers $(a_n)_{n\geq 1}$ such that $a_{n+1}-\frac{1}{a_{n+1}}=a_n+\frac{1}{a_n}, \ (\forall) n\geq 1.$ Evaluate:

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right)$$

$$\lim_{x \to 0} \frac{2^{\arctan x} - 2^{\arcsin x}}{2^{\tan x} - 2^{\sin x}}$$

Chapter 3

Solutions

1. Evaluate:

$$\lim_{n \to \infty} \left(\sqrt[3]{n^3 + 2n^2 + 1} - \sqrt[3]{n^3 - 1} \right)$$

Solution:

$$\lim_{n \to \infty} \left(\sqrt[3]{n^3 + 2n^2 + 1} - \sqrt[3]{n^3 - 1} \right) = \lim_{n \to \infty} \frac{n^3 + 2n^2 + 1 - n^3 + 1}{\sqrt[3]{(n^3 + 2n^2 + 1)^2} + \sqrt[3]{(n^3 - 1)(n^3 + 2n^2 + 1)} + \sqrt[3]{(n^3 - 1)^2}}$$

$$= \lim_{n \to \infty} \frac{n^2 \left(2 + \frac{2}{n} \right)}{n^2 \left[\sqrt[3]{\left(1 + \frac{2}{n} + \frac{1}{n^3} \right)^2} + \sqrt[3]{\left(1 - \frac{1}{n^3} \right) \left(1 + \frac{2}{n} + \frac{1}{n^3} \right)} + \sqrt[3]{\left(1 - \frac{1}{n^3} \right)^2} \right]}$$

$$= \frac{2}{3}$$

2. Evaluate:

$$\lim_{x \to -2} \frac{\sqrt[3]{5x+2} + 2}{\sqrt{3x+10} - 2}$$

Solution:

$$\lim_{x \to -2} \frac{\sqrt[3]{5x+2}+2}{\sqrt{3x+10}-2} = \lim_{x \to -2} \frac{\frac{5x+10}{\sqrt[3]{(5x+2)^2}-2\sqrt[3]{5x+2}+4}}{\frac{3x+6}{\sqrt{3x+10}+2}}$$
$$= \frac{5}{3} \lim_{x \to -2} \frac{\sqrt{3x+10}+2}{\sqrt[3]{(5x+2)^2}-2\sqrt[3]{5x+2}+4}$$
$$= \frac{5}{0}$$

3. Consider the sequence $(a_n)_{n\geq 1}$, such that $\sum_{k=1}^n a_k = \frac{3n^2 + 9n}{2}$, $(\forall) n \geq 1$.

Prove that this sequence is an arithmetical progression and evaluate:

$$\lim_{n \to \infty} \frac{1}{na_n} \sum_{k=1}^{n} a_k$$

Solution: For n = 1 we get $a_1 = 6$. Then $a_1 + a_2 = 15$, so $a_2 = 9$ and the ratio is r = 3. Therefore the general term is $a_n = 6 + 3(n - 1) = 3(n + 1)$. So:

$$\lim_{n \to \infty} \frac{1}{n a_n} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} \frac{n+3}{2n+2} = \frac{1}{2}$$

4. Consider the sequence $(a_n)_{n\geq 1}$ such that $a_1=a_2=0$ and $a_{n+1}=\frac{1}{3}(a_n+a_{n-1}+b)$, where $0\leq b<1$. Prove that the sequence is convergent and evaluate $\lim_{n\to\infty}a_n$.

Solution: We have $a_2 - a_1 = 0$ and $a_3 - a_2 = \frac{b}{3} \ge 0$, so assuming $a_{n-1} \ge a_{n-2}$ and $a_n \ge a_{n-1}$, we need to show that $a_{n+1} \ge a_n$. The recurrence equation gives us:

$$a_{n+1} - a_n = \frac{1}{3}(a_n - a_{n-1} + a_{n-1}^2 - a_{n-2}^2)$$

Therefore it follows that the sequence is monotonically increasing. Also, because $b \le 1$, we have $a_3 = \frac{b}{3} < 1$, $a_4 = \frac{4b}{9} < 1$. Assuming that a_{n-1} , $a_n < 1$, it follows that:

$$a_{n+1} = \frac{1}{3}(b + a_n + a_{n-1}^2) < \frac{1}{3}(1 + 1 + 1) = 1$$

Hence $a_n \in [0,1)$, $(\forall) n \in \mathbb{N}^*$, which means the sequence is bounded. From Weierstrass theorem it follows that the sequence is convergent. Let then $\lim_{n\to\infty} a_n = l$. By passing to limit in the recurrence relation, we have:

$$l^{2} - 2l + b = 0 \Leftrightarrow (l - 1)^{2} = 1 - b \Rightarrow l = 1 \pm \sqrt{1 - b}$$

Because $1 + \sqrt{1 - b} > 1$ and $a_n \in [0, 1)$, it follows that $\lim_{n \to \infty} a_n = 1 - \sqrt{1 - b}$.

5. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that $x_1=1$ and $x_n=2x_{n-1}+\frac{1}{2},\ (\forall)n\geq 2.$ Evaluate $\lim_{n\to\infty}x_n.$

Solution: Let's evaluate a few terms:

$$x_2 = 2 + \frac{1}{2}$$

$$x_3 = 2^2 + 2 \cdot \frac{1}{2} + \frac{1}{2} = 2^2 + \frac{1}{2}(2^2 - 1)$$

Solutions 25

$$x_4 = 2^3 + 2^2 - 1 + \frac{1}{2} = 2^3 + \frac{1}{2}(2^3 - 1)$$

$$x_5 = 2^4 + 2^3 - 1 + \frac{1}{2} = 2^4 + \frac{1}{2}(2^4 - 1)$$

and by induction we can show immediately that $x_n = 2^{n-1} + \frac{1}{2}(2^{n-1} - 1)$. Thus $\lim_{n \to \infty} x_n = \infty$.

6. Evaluate:

$$\lim_{n \to \infty} \left(n \left(\frac{4}{5} \right)^n + n^2 \sin^n \frac{\pi}{6} + \cos \left(2n\pi + \frac{\pi}{n} \right) \right)$$

Solution: We have:

$$\lim_{n \to \infty} \frac{\frac{4^{n+1} \cdot (n+1)}{5^{n+1}}}{\frac{4^n \cdot n}{5^n}} = \lim_{n \to \infty} \frac{4(n+1)}{5n} = \frac{4}{5} < 1$$

Thus using the ratio test it follows that $\lim_{n\to\infty} n\left(\frac{4}{5}\right)^n = 0$. Also

$$\lim_{n \to \infty} \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{2n^2} = \frac{1}{2} < 1$$

From the ratio test it follows that $\lim_{n\to\infty}\frac{n^2}{2^n}=\lim_{n\to\infty}n^2\sin^n\frac{\pi}{6}=0$. Therefore the limit is equal to

$$\lim_{n \to \infty} \cos\left(2n\pi + \frac{\pi}{n}\right) = \lim_{n \to \infty} \cos\frac{\pi}{n} = \cos 0 = 1$$

7. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k! \cdot k}{(n+1)!}$$

Solution:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k! \cdot k}{(n+1)!} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{(k+1)! - k!}{(n+1)!} = \lim_{n \to \infty} \left(1 - \frac{1}{(n+1)!} \right) = 1$$

8. Evaluate:

$$\lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \cdot \ldots \cdot \left(1 - \frac{1}{n^2} \right)$$

Solution:

$$\lim_{n \to \infty} \left(1 - \frac{1}{2^2} \right) \left(1 - \frac{1}{3^2} \right) \cdots \left(1 - \frac{1}{n^2} \right) = \lim_{n \to \infty} \prod_{r=2}^n \left(1 - \frac{1}{r^2} \right)$$

$$= \lim_{n \to \infty} \prod_{r=2}^n \left(\frac{r^2 - 1}{r^2} \right)$$

$$= \lim_{n \to \infty} \prod_{r=2}^n \left(\frac{(r-1)(r+1)}{r^2} \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$$

$$= \frac{1}{2}$$

9. Evaluate:

$$\lim_{n \to \infty} \sqrt[n]{\frac{3^{3n}(n!)^3}{(3n)!}}$$

Solution: Define $a_n = \frac{3^{3n}(n!)^3}{(3n)!}$. Then:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

$$= \lim_{n \to \infty} \frac{3^{3n+3}[(n+1)!]^3}{(3n+3)!} \cdot \frac{(3n)!}{3^{3n}(n!)^3}$$

$$= \lim_{n \to \infty} \frac{27(n+1)^3}{(3n+1)(3n+2)(3n+3)}$$

10. Consider a sequence of real positive numbers $(x_n)_{n\geq 1}$ such that $(n+1)x_{n+1}-nx_n<0$, $(\forall)n\geq 1$. Prove that this sequence is convergent and evaluate it's limit.

Solution: Because $nx_n > (n+1)x_{n+1}$, we deduce that $x_1 > 2x_2 > 3x_3 > \dots > nx_n$, whence $0 < x_n < \frac{x_1}{n}$. Using the Squeeze Theorem it follows that $\lim_{n \to \infty} x_n = 0$.

11. Find the real numbers a and b such that:

$$\lim_{n \to \infty} \left(\sqrt[3]{1 - n^3} - an - b \right) = 0$$

Solution: We have:

Solutions 27

$$\begin{split} b &= \lim_{n \to \infty} \left(\sqrt[3]{1 - n^3} - an \right) \\ &= \lim_{n \to \infty} \frac{1 - n^3 - a^3 n^3}{\sqrt[3]{(1 - n^3)^2} + \sqrt[3]{an(1 - n^3)} + \sqrt[3]{a^2 n^2}} \\ &= \lim_{n \to \infty} \frac{n \left(-1 - a^3 + \frac{1}{n^3} \right)}{\sqrt[3]{\left(\frac{1}{n^3} - 1\right)^2} + \sqrt[3]{a \left(\frac{1}{n^5} - \frac{1}{n^2}\right)} + \sqrt[3]{\frac{a^2}{n^4}} \end{split}$$

If $-1-a^3 \neq 0$, it follows that $b=\pm \infty$, which is false. Hence $a^3=-1 \Rightarrow a=-1$ and so b=0.

12. Let $p \in \mathbb{N}$ and $\alpha_1, \alpha_2, ..., \alpha_p$ positive distinct real numbers. Evaluate:

$$\lim_{n\to\infty} \sqrt[n]{\alpha_1^n + \alpha_2^n + \ldots + \alpha_p^n}$$

Solution: WLOG let $\alpha_j = \max\{\alpha_1, \alpha_2, \dots, \alpha_p\}, 1 \leq j \leq p$. Then:

$$\lim_{n \to \infty} \sqrt[n]{\alpha_1^n + \alpha_2^n + \ldots + \alpha_p^n} = \lim_{n \to \infty} \alpha_j \sqrt[n]{\left(\frac{\alpha_1}{\alpha_j}\right)^n + \left(\frac{\alpha_2}{\alpha_j}\right)^n + \ldots + \left(\frac{\alpha_{j-1}}{\alpha_j}\right)^n + 1 + \left(\frac{\alpha_{j+1}}{\alpha_j}\right)^n + \ldots + \left(\frac{\alpha_p}{\alpha_j}\right)^n}$$

$$= \alpha_j$$

$$= \max\{\alpha_1, \alpha_2, \ldots, \alpha_p\}$$

13. If $a \in \mathbb{R}^*$, evaluate:

$$\lim_{x \to -a} \frac{\cos x - \cos a}{x^2 - a^2}$$

Solution:

$$\lim_{x \to -a} \frac{\cos x - \cos a}{x^2 - a^2} = \lim_{x \to -a} \frac{-2 \sin \frac{x+a}{2} \cdot \sin \frac{x-a}{2}}{(x-a)(x+a)}$$

$$= \lim_{x \to -a} \frac{\sin \frac{x+a}{2}}{\frac{x+a}{2}} \cdot \lim_{x \to -a} \frac{\sin \frac{x-a}{2}}{a-x}$$

$$= \lim_{x \to -a} \frac{\sin \frac{x-a}{2}}{a-x}$$

$$= -\frac{\sin a}{2a}$$

14. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{x \to 0} \frac{\ln(1 + x + x^2 + \dots + x^n)}{nx}$$

Solution: Using $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$, we have:

$$\lim_{x \to 0} \frac{\ln(1 + x + x^2 + \dots + x^n)}{nx} = \lim_{x \to 0} \frac{\ln(1 + x + x^2 + \dots + x^n)}{x + x^2 + \dots + x^n} \cdot \lim_{x \to 0} \frac{x + x^2 + \dots + x^n}{nx}$$

$$= \lim_{x \to 0} \frac{x + x^2 + \dots + x^n}{nx}$$

$$= \lim_{x \to 0} \frac{1 + x + \dots + x^{n-1}}{n}$$

$$= \frac{1}{n}$$

15. Evaluate:

$$\lim_{n \to \infty} \left(n^2 + n - \sum_{k=1}^{n} \frac{2k^3 + 8k^2 + 6k - 1}{k^2 + 4k + 3} \right)$$

Solution: Telescoping, we have:

$$\lim_{n \to \infty} \left(n^2 + n - \sum_{k=1}^n \frac{2k^3 + 8k^2 + 6k - 1}{k^2 + 4k + 3} \right) = \lim_{n \to \infty} \left(n^2 + n - 2\sum_{k=1}^n k + \frac{1}{2} \sum_{k=1}^n \frac{1}{k+1} - \frac{1}{2} \sum_{k=1}^n \frac{1}{k+3} \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k+1} - \sum_{k=1}^n \frac{1}{k+3} \right)$$

$$= \frac{5}{12} - \frac{1}{2} \lim_{n \to \infty} \left(\frac{1}{n+2} + \frac{1}{n+3} \right)$$

$$= \frac{5}{12}$$

16. Find $a \in \mathbb{R}^*$ such that:

$$\lim_{x \to 0} \frac{1 - \cos ax}{x^2} = \lim_{x \to \pi} \frac{\sin x}{\pi - x}$$

Solution: Observe that:

$$\lim_{x \to 0} \frac{1 - \cos ax}{x^2} = \frac{a^2}{4} \lim_{x \to 0} \frac{2\sin^2 \frac{ax}{2}}{\frac{a^2x^2}{4}} = \frac{a^2}{2}$$

and

$$\lim_{x \to \pi} \frac{\sin x}{\pi - x} = \lim_{x \to \pi} \frac{\sin (\pi - x)}{\pi - x} = 1$$

Therefore $\frac{a^2}{2} = 1$, which implies $a = \pm \sqrt{2}$.

Solutions 29

$$\lim_{x \to 1} \frac{\sqrt[3]{x^2 + 7} - \sqrt{x + 3}}{x^2 - 3x + 2}$$

Solution:

$$\lim_{x \to 1} \frac{\sqrt[3]{x^2 + 7} - \sqrt{x + 3}}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{\sqrt[3]{x^2 + 7} - 3}{x^2 - 3x + 2} + \lim_{x \to 1} \frac{2 - \sqrt{x + 3}}{x^2 - 3x + 2}$$

$$= \lim_{x \to 1} \frac{x + 1}{(x - 2) \left(\sqrt[3]{(x^2 + 7)^2} + 2\sqrt[3]{x^2 + 7} + 4\right)} + \lim_{x \to 1} \frac{1}{(2 - x)(2 + \sqrt{x + 3})}$$

$$= -\frac{2}{12} + \frac{1}{4}$$

$$= \frac{1}{12}$$

18. Evaluate:

$$\lim_{n \to \infty} \left(\sqrt{2n^2 + n} - \lambda \sqrt{2n^2 - n} \right)$$

where λ is a real number.

Solution:

$$\begin{split} \lim_{n \to \infty} \left(\sqrt{2n^2 + n} - \lambda \sqrt{2n^2 - n} \right) &= \lim_{n \to \infty} \frac{2n^2 + n - \lambda^2 \left(2n^2 - n \right)}{\sqrt{2n^2 + n} + \lambda \sqrt{2n^2 - n}} \\ &= \lim_{n \to \infty} \frac{2n^2 \left(1 - \lambda^2 \right) + n \left(1 + \lambda^2 \right)}{n \left(\sqrt{2 + \frac{1}{n}} + \lambda \sqrt{2 - \frac{1}{n}} \right)} \\ &= \lim_{n \to \infty} \frac{2n \left(1 - \lambda^2 \right) + \left(1 + \lambda^2 \right)}{\sqrt{2 + \frac{1}{n}} + \lambda \sqrt{2 - \frac{1}{n}}} \\ &= \begin{cases} +\infty & \text{if } \lambda \in (-\infty, 1) \\ \frac{\sqrt{2}}{2} & \text{if } \lambda = 1 \\ -\infty & \text{if } \lambda \in (1, +\infty) \end{cases} \end{split}$$

19. If $a, b, c \in \mathbb{R}$, evaluate:

$$\lim_{x \to \infty} \left(a\sqrt{x+1} + b\sqrt{x+2} + c\sqrt{x+3} \right)$$

Solution: If $a + b + c \neq 0$, we have:

$$\begin{split} \lim_{x \to \infty} \left(a \sqrt{x+1} + b \sqrt{x+2} + c \sqrt{x+3} \right) &= \lim_{x \to \infty} \sqrt{x} \left(a \sqrt{1 + \frac{1}{x}} + b \sqrt{1 + \frac{2}{x}} + c \sqrt{1 + \frac{3}{x}} \right) \\ &= \lim_{x \to \infty} \sqrt{x} \left(a + b + c \right) \\ &= \begin{cases} -\infty & \text{if } a + b + c < 0 \\ \infty & \text{if } a + b + c > 0 \end{cases} \end{split}$$

If a + b + c = 0, then:

$$\begin{split} \lim_{x \to \infty} \left(a \sqrt{x+1} + b \sqrt{x+2} + c \sqrt{x+3} \right) &= \lim_{x \to \infty} \left(a \sqrt{x+1} - a + b \sqrt{x+2} - b + c \sqrt{x+3} - c \right) \\ &= \lim_{x \to \infty} \left(\frac{a}{\sqrt{\frac{1}{x} + \frac{1}{x^2}} + \frac{1}{x}} + \frac{b + \frac{b}{x}}{\sqrt{\frac{1}{x} + \frac{2}{x^2}} + \frac{1}{x}} + \frac{c + \frac{2c}{x}}{\sqrt{\frac{1}{x} + \frac{3}{x^2}} + \frac{1}{x}} \right) \\ &= 0 \end{split}$$

20. Find the set $A \subset \mathbb{R}$ such that $ax^2 + x + 3 \ge 0$, $(\forall)a \in A, (\forall)x \in \mathbb{R}$. Then for any $a \in A$, evaluate:

$$\lim_{x \to \infty} \left(x + 1 - \sqrt{ax^2 + x + 3} \right)$$

Solution: We have $ax^2 + x + 3 \ge 0$, $(\forall)x \in \mathbb{R}$ if a > 0 and $\Delta_x \le 0$, whence $a \in \left[\frac{1}{12}, \infty\right)$. Then:

$$\lim_{x \to \infty} \left(x + 1 - \sqrt{ax^2 + x + 3} \right) = \lim_{x \to \infty} \frac{(1 - a)x^2 + x - 2}{x + 1 + \sqrt{ax^2 + x + 3}}$$

$$= \lim_{x \to \infty} \frac{(1 - a)x + 1 - \frac{2}{x}}{1 + \frac{1}{x} + \sqrt{a + \frac{1}{x} + \frac{3}{x^2}}}$$

$$= \begin{cases} \infty & \text{if } a \in \left[\frac{1}{12}, 1 \right) \\ \frac{1}{2} & \text{if } a = 1 \\ -\infty & \text{if } a \in (1, \infty) \end{cases}$$

21. If $k \in \mathbb{R}$, evaluate:

$$\lim_{n \to \infty} n^k \left(\sqrt{\frac{n}{n+1}} - \sqrt{\frac{n+2}{n+3}} \right)$$

Solution:

Solutions 31

$$\lim_{n \to \infty} n^k \left(\sqrt{\frac{n}{n+1}} - \sqrt{\frac{n+2}{n+3}} \right) = \lim_{n \to \infty} \frac{n^k}{(n+1)(n+2)} \cdot \lim_{n \to \infty} \frac{-2}{\sqrt{\frac{n}{n+1}} + \sqrt{\frac{n+2}{n+3}}}$$

$$= \lim_{n \to \infty} \frac{-n^k}{(n+1)(n+2)}$$

$$= \begin{cases} 0 & \text{if } k < 2 \\ -1 & \text{if } k = 2 \\ -\infty & \text{if } k > 2 \end{cases}$$

22. If $k \in \mathbb{N}$ and $a \in \mathbb{R}_+ \setminus \{1\}$, evaluate:

$$\lim_{n\to\infty} n^k (a^{\frac{1}{n}} - 1) \left(\sqrt{\frac{n-1}{n}} - \sqrt{\frac{n+1}{n+2}} \right)$$

Solution:

$$\lim_{n \to \infty} n^k (a^{\frac{1}{n}} - 1) \left(\sqrt{\frac{n-1}{n}} - \sqrt{\frac{n+1}{n+2}} \right) = \lim_{n \to \infty} \frac{-n^k (a^{\frac{1}{n}} - 1)}{n(n+2)} \cdot \lim_{n \to \infty} \frac{2}{\sqrt{\frac{n-1}{n}} + \sqrt{\frac{n+1}{n+2}}}$$

$$= \lim_{n \to \infty} \frac{-n^{k-1}}{n(n+2)} \cdot \lim_{n \to \infty} \frac{a^{\frac{1}{n}} - 1}{\frac{1}{n}}$$

$$= \ln a \cdot \lim_{n \to \infty} \frac{-n^{k-2}}{n+2}$$

$$= \begin{cases} 0 & \text{if } k \in \{0, 1, 2\} \\ -\ln a & \text{if } k = 3 \\ \infty & \text{if } k \ge 4 \text{ and } a \in (0, 1) \\ -\infty & \text{if } k \ge 4 \text{ and } a > 1 \end{cases}$$

23. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}}$$

Solution: Clearly

$$\frac{1}{\sqrt{n^2+n}} \le \frac{1}{\sqrt{n^2+k}} \le \frac{1}{\sqrt{n^2+1}}, \ (\forall) 1 \le k \le n$$

Thus summing for $k = \overline{1, n}$, we get:

$$\frac{n}{\sqrt{n^2 + n}} \le \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} \le \frac{n}{\sqrt{n^2 + 1}}$$

Because
$$\lim_{n\to\infty} \frac{n}{\sqrt{n^2+n}} = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{1}{n}}} = 1$$
 and $\lim_{n\to\infty} \frac{n}{\sqrt{n^2+1}} = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{1}{n^2}}} = \lim_{n\to\infty} \frac{1}{\sqrt{1+\frac{1}{n^2}}$

1, using the squeeze theorem it follows that:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + k}} = 1$$

24. If a > 0, $p \ge 2$, evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt[p]{n^p + ka}}$$

Solution: Obviously

$$\frac{1}{\sqrt[p]{n^p+na}} \leq \frac{1}{\sqrt[p]{n^p+ka}} \leq \frac{1}{\sqrt[p]{n^p+a}}, \ (\forall) 1 \leq k \leq n$$

Thus summing for $k = \overline{1, n}$, we get:

$$\frac{n}{\sqrt[p]{n^p + na}} \le \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}} \le \frac{n}{\sqrt[p]{n^p + a}}$$

Because
$$\lim_{n \to \infty} \frac{n}{\sqrt[p]{n^p + a}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{a}{n^p}}} = 1$$
 and $\lim_{n \to \infty} \frac{n}{\sqrt[p]{n^p + na}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{a}{n^{p-1}}}} = 1$

1, using the squeeze theorem it follows that:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt[p]{n^p + ka}} = 1$$

25. Evaluate:

$$\lim_{n \to \infty} \frac{n!}{(1+1^2)(1+2^2) \cdot \ldots \cdot (1+n^2)}$$

Solution: We have

$$0 \le \frac{n!}{(1+1^2)(1+2^2) \cdot \dots \cdot (1+n^2)}$$

$$< \frac{n!}{1^2 \cdot 2^2 \cdot \dots \cdot n^2}$$

$$= \frac{n!}{(1 \cdot 2 \cdot \dots \cdot n) \cdot (1 \cdot 2 \cdot \dots \cdot n)}$$

$$= \frac{n!}{(n!)^2}$$

$$= \frac{1}{n!}$$

Thus using squeeze theorem it follows that:

Solutions 33

$$\lim_{n \to \infty} \frac{n!}{(1+1^2)(1+2^2) \cdot \dots \cdot (1+n^2)} = 0$$

26. Evaluate:

$$\lim_{n \to \infty} \left(\frac{2n^2 - 3}{2n^2 - n + 1} \right)^{\frac{n^2 - 1}{n}}$$

Solution:

$$\begin{split} \lim_{n \to \infty} \left(\frac{2n^2 - 3}{2n^2 - n + 1} \right)^{\frac{n^2 - 1}{n}} &= \lim_{n \to \infty} \left(1 + \frac{n - 4}{2n^2 - n + 1} \right)^{\frac{n^2 - 1}{n}} \\ &= \lim_{n \to \infty} \left[\left(1 + \frac{n - 4}{2n^2 - n + 1} \right)^{\frac{2n^2 - n + 1}{n - 4}} \right]^{\frac{(n - 4)(n^2 - 1)}{2n^3 - 2n^2 + n}} \\ &= \lim_{n \to \infty} \frac{n^3 - 4n^2 - n + 4}{2n^3 - 2n^2 + n} \\ &= e^{\frac{1}{2}} \\ &= \sqrt{e} \end{split}$$

27. Evaluate:

$$\lim_{x\to 0}\frac{\sqrt{1+\sin^2x}-\cos x}{1-\sqrt{1+\tan^2x}}$$

Solution:

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin^2 x} - \cos x}{1 - \sqrt{1 + \tan^2 x}} = \lim_{x \to 0} \frac{(1 + \sin^2 x - \cos^2 x)(1 + \sqrt{1 + \tan^2 x})}{(1 - 1 - \tan^2 x)(\sqrt{1 + \sin^2 x} + \cos x)}$$

$$= \lim_{x \to 0} \frac{2\sin^2 x(1 + \sqrt{1 + \tan^2 x})}{-\tan^2 x(\sqrt{1 + \sin^2 x} + \cos x)}$$

$$= \lim_{x \to 0} \frac{-2\cos^2 x(1 + \sqrt{1 + \tan^2 x})}{\sqrt{1 + \sin^2 x} + \cos x}$$

$$= -2$$

$$\lim_{x \to \infty} \left(\frac{x + \sqrt{x}}{x - \sqrt{x}} \right)^x$$

Solution:

$$\lim_{x \to \infty} \left(\frac{x + \sqrt{x}}{x - \sqrt{x}} \right)^x = \lim_{x \to \infty} \left(1 + \frac{2\sqrt{x}}{x - \sqrt{x}} \right)^x$$

$$= \lim_{x \to \infty} \left[\left(1 + \frac{2\sqrt{x}}{x - \sqrt{x}} \right)^{\frac{x - \sqrt{x}}{2\sqrt{x}}} \right]^{\frac{2x\sqrt{x}}{x - \sqrt{x}}}$$

$$= e^{\lim_{x \to \infty} \frac{2x\sqrt{x}}{x - \sqrt{x}}}$$

$$= e^{\lim_{x \to \infty} \frac{2\sqrt{x}}{1 - \frac{1}{\sqrt{x}}}}$$

$$= e^{\infty}$$

$$= \infty$$

29. Evaluate:

$$\lim_{\substack{x \to 0 \\ x > 0}} (\cos x) \frac{1}{\sin x}$$

Solution:

$$\lim_{\substack{x \to 0 \\ x > 0}} (\cos x)^{\frac{1}{\sin x}} = \lim_{\substack{x \to 0 \\ x > 0}} \left[(1 + (\cos x - 1))^{\frac{1}{\cos x - 1}} \right]^{\frac{\cos x - 1}{\sin x}}$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{-2\sin^2 \frac{x}{2}}{2\sin \frac{x}{2} \cdot \cos \frac{x}{2}}$$

$$= e^{x \to 0}$$

$$\lim_{\substack{x \to 0 \\ x > 0}} -\tan \frac{x}{2}$$

$$= e^0$$

$$= 1$$

30. Evaluate:

$$\lim_{x \to 0} \left(e^x + \sin x \right)^{\frac{1}{x}}$$

Solution:

$$\lim_{x \to 0} (e^x + \sin x)^{\frac{1}{x}} = \lim_{x \to 0} \left[e^x \left(1 + \frac{\sin x}{e^x} \right) \right]^{\frac{1}{x}}$$

$$= \lim_{x \to 0} (e^x)^{\frac{1}{x}} \cdot \lim_{x \to 0} \left[\left(1 + \frac{\sin x}{e^x} \right)^{\frac{e^x}{\sin x}} \right]^{\frac{\sin x}{xe^x}}$$

$$= e \cdot e^{x \to 0} \frac{x}{\sin x} \cdot \frac{1}{e^x}$$

$$= e^2$$

31. If $a, b \in \mathbb{R}_+^*$, evaluate:

$$\lim_{n \to \infty} \left(\frac{a - 1 + \sqrt[n]{b}}{a} \right)^n$$

Solution:

$$\lim_{n \to \infty} \left(\frac{a - 1 + \sqrt[n]{b}}{a} \right)^n = \lim_{n \to \infty} \left[\left(1 + \frac{\sqrt[n]{b} - 1}{a} \right)^{\frac{a}{\sqrt[n]{b} - 1}} \right]^{\frac{n(\sqrt[n]{b} - 1)}{a}}$$

$$= e^{\frac{1}{a} \lim_{n \to \infty} \frac{b^{\frac{1}{n}} - 1}{\frac{1}{n}}}$$

$$= e^{\frac{\ln b}{a}}$$

$$= b^{\frac{1}{a}}$$

32. Consider a sequence of real numbers $(a_n)_{n\geq 1}$ defined by:

$$a_n = \begin{cases} 1 & \text{if } n \le k, \ k \in \mathbb{N}^* \\ \frac{(n+1)^k - n^k}{\binom{n}{k-1}} & \text{if } n > k \end{cases}$$

i)Evaluate $\lim_{n\to\infty} a_n$.

ii)If
$$b_n = 1 + \sum_{k=1}^{n} k \cdot \lim_{n \to \infty} a_n$$
, evaluate:

$$\lim_{n\to\infty} \left(\frac{b_n^2}{b_{n-1}b_{n+1}}\right)^n$$

Solution: i) We have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(n+1)^k - n^k}{\binom{n}{k-1}}$$

$$= \lim_{n \to \infty} \frac{(k-1)! \cdot k \cdot n^{k-1} + \dots + (k-1)!}{(n-k+2)(n-k+3) \cdot \dots \cdot n}$$

$$= \frac{k! \cdot n^{k-1} + \dots}{n^{k-1} + \dots}$$

$$= k!$$

ii) Then:

$$b_n = 1 + \sum_{k=1}^{n} k \cdot k! = 1 + \sum_{k=1}^{n} (k+1)! - \sum_{k=1}^{n} k! = (n+1)!$$

SO

$$\lim_{n \to \infty} \left(\frac{b_n^2}{b_{n-1} b_{n+1}} \right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1}$$

33. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that $x_{n+2}=\frac{x_{n+1}+x_n}{2}, \ (\forall)n\in\mathbb{N}^*$. If $x_1\leq x_2$,

i)Prove that the sequence $(x_{2n+1})_{n\geq 0}$ is increasing, while the sequence $(x_{2n})_{n\geq 0}$ is decreasing;

ii)Prove that:

$$|x_{n+2} - x_{n+1}| = \frac{|x_2 - x_1|}{2^n}, \ (\forall) n \in \mathbb{N}^*$$

iii)Prove that:

$$2x_{n+2} + x_{n+1} = 2x_2 + x_1, \ (\forall) n \in \mathbb{N}^*$$

iv)Prove that $(x_n)_{n\geq 1}$ is convergent and that it's limit is $\frac{x_1+2x_2}{3}$.

Solution: i)Using induction we can show that $x_{2n-1} \leq x_{2n}$. Then the sequence $(x_{2n+1})_{n\geq 0}$ will be increasing, because

$$x_{2n+1} = \frac{x_{2n} + x_{2n-1}}{2} \ge \frac{x_{2n-1} + x_{2n-1}}{2} = x_{2n-1}$$

Similarly, we can show that $(x_{2n})_{n\geq 1}$ is decreasing.

ii) For n = 1, we get $|x_3 - x_2| = \frac{|x_2 - x_1|}{2}$, so assuming it's true for some k, we have:

$$|x_{k+3} - x_{k+2}| = \left| \frac{x_{k+2} + x_{k+1}}{2} - x_{k+2} \right| = \frac{|x_{k+2} - x_{k+1}|}{2} = \frac{|x_2 - x_1|}{2^{n+1}}$$

Thus, by induction the equality is proven.

iii) Observe that:

$$2x_{n+2} + x_{n+1} = 2 \cdot \frac{x_{n+1} + x_n}{2} + x_{n+1} = 2x_{n+1} + x_n$$

and repeating the process, the demanded identity is showed.

iv) From i) it follows that the sequences $(x_{2n})_{n\geq 1}$ and $(x_{2n-1})_{n\geq 1}$ are convergent and have the same limit. Let $l=\lim_{n\to\infty}x_n=l$. Then from iii), we get

$$3l = x_1 + 2x_2 \Rightarrow l = \frac{x_1 + 2x_2}{3}$$

34. Let $a_n, b_n \in \mathbb{Q}$ such that $(1+\sqrt{2})^n = a_n + b_n\sqrt{2}$, $(\forall)n \in \mathbb{N}^*$. Evaluate $\lim_{n\to\infty} \frac{a_n}{b_n}$.

Solution: Because $(1+\sqrt{2})^n = a_n + b_n \sqrt{2}$, it follows that $(1-\sqrt{2})^n = a_n - b_n \sqrt{2}$. Solving this system we find:

$$a_n = \frac{1}{2} \left[(1 + \sqrt{2})^n + (1 - \sqrt{2})^n \right]$$

and

$$b_n = \frac{1}{2\sqrt{2}} \left[(1 + \sqrt{2})^n - (1 - \sqrt{2})^n \right]$$

and therefore $\lim_{n\to\infty} \frac{a_n}{b_n} = \sqrt{2}$.

35. If a > 0, evaluate:

$$\lim_{x \to 0} \frac{(a+x)^x - 1}{x}$$

Solution:

$$\lim_{x \to 0} \frac{(a+x)^x - 1}{x} = \lim_{x \to 0} \frac{e^{x \ln(a+x)} - 1}{x}$$

$$= \lim_{x \to 0} \frac{e^{x \ln(a+x)} - 1}{x \ln(a+x)} \cdot \lim_{x \to 0} \ln(a+x)$$

$$= \ln a$$

36. Consider a sequence of real numbers $(a_n)_{n\geq 1}$ such that $a_1=\frac{3}{2}$ and $a_{n+1}=\frac{a_n^2-a_n+1}{a_n}$. Prove that $(a_n)_{n\geq 1}$ is convergent and find it's limit.

Solution: By AM - GM we have $a_{n+1} = a_n + \frac{1}{a_n} - 1 \ge 1$, $(\forall) n \ge 2$, so the sequence is lower bounded. Also $a_{n+1} - a_n = \frac{1}{a_n} - 1 \le 0$, hence the sequence is decreasing. Therefore $(a_n)_{n\ge 1}$ is bounded by 1 and $a_1 = \frac{3}{2}$. Then, because $(a_n)_{n\ge 1}$ is convergent, denote $\lim_{n\to\infty} a_n = l$, to obtain $l = \frac{l^2 - l + 1}{l} \Rightarrow l = 1$

37. Consider sequence $(x_n)_{n\geq 1}$ of real numbers such that $x_0\in (0,1)$ and $x_{n+1}=x_n-x_n^2+x_n^3-x_n^4$, $(\forall)n\geq 0$. Prove that this sequence is convergent and evaluate $\lim_{n\to\infty}x_n$.

Solution: It's easy to see that the recurrence formula can be written as: $x_{n+1} = x_n(1-x_n)(1+x_n^2)$, $n \in \mathbb{N}$, then because $1-x_0 > 0$, it's easy to show by induction that $x_n \in (0,1)$. Now rewrite the recurrence formula as $x_{n+1} - x_n = -x_n^2(x_n^2 - x_n + 1) < 0$. It follows that the sequence is strictly decreasing, thus convergent. Let $\lim_{n \to \infty} x_n = l$. Then

$$l = l - l^2 + l^3 - l^4 \Rightarrow l^2(l^2 - l + 1) = 0 \Rightarrow l = 0$$

38. Let a > 0 and $b \in (a, 2a)$ and a sequence $x_0 = b$, $x_{n+1} = a + \sqrt{x_n(2a - x_n)}$, $(\forall) n \ge 0$. Study the convergence of the sequence $(x_n)_{n \ge 0}$.

Solution: Let's see a few terms: $x_1 = a + \sqrt{2ab - b^2}$ and also

$$x_2 = a + \sqrt{(a + \sqrt{2ab - b^2})(a - \sqrt{2ab - b^2})} = a + \sqrt{a^2 - 2ab + b^2} = a + |a - b| = b$$

Thus the sequence is periodic, with $x_{2k}=b$ and $x_{2k+1}=a+\sqrt{2ab-b^2}$, $(\forall)k\in\mathbb{N}$. Then $\lim_{k\to\infty}x_{2k}=b$ and $\lim_{n\to\infty}x_{2k+1}=a+\sqrt{2ab-b^2}$. The sequence is convergent if and only if $b=a+\sqrt{2ab-b^2}$, which implies that $b=\left(1+\frac{1}{\sqrt{2}}\right)a$, which is also the limit in this case.

39. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n+1} \arctan \frac{1}{2k^2}$$

Solution: We can check easily that $\arctan \frac{1}{2k^2} = \arctan \frac{k}{k+1} - \arctan \frac{k-1}{k}$. Then:

$$\lim_{n \to \infty} \sum_{k=1}^{n+1} \arctan \frac{1}{2k^2} = \lim_{n \to \infty} \arctan \frac{n}{n+1} = \frac{\pi}{4}$$

40. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{4k^4 + 1}$$

Solution:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{4k^4 + 1} = \lim_{n \to \infty} \left(\frac{1}{2} \sum_{k=1}^{n} \frac{1}{2k^2 - 2k + 1} - \frac{1}{2} \sum_{k=1}^{n} \frac{1}{2k^2 + 2k + 1} \right)$$

$$= \frac{1}{4} \lim_{n \to \infty} \left(1 - \frac{1}{2n^2 + 2n + 1} \right)$$

$$= \frac{1}{4}$$

41. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1 + 3 + 3^2 + \dots + 3^k}{5^{k+2}}$$

Solution: In the numerator we have a geometrical progression, so:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1+3+3^2+\dots+3^k}{5^{k+2}} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{3^{k+1}-1}{2 \cdot 5^{k+2}}$$

$$= \frac{1}{10} \lim_{n \to \infty} \sum_{k=2}^{n} \left(\frac{3^k}{5^k} - \frac{1}{5^k}\right)$$

$$= \frac{1}{10} \left(\frac{9}{10} - \frac{1}{20}\right)$$

$$= \frac{17}{200}$$

42. Evaluate:

$$\lim_{n \to \infty} \left(n + 1 - \sum_{i=2}^{n} \sum_{k=2}^{i} \frac{k-1}{k!} \right)$$

$$\lim_{n \to \infty} \left(n + 1 - \sum_{i=2}^{n} \sum_{k=2}^{i} \frac{k-1}{k!} \right) = \lim_{n \to \infty} \left(n + 1 - \sum_{i=2}^{n} \sum_{k=2}^{i} \left(\frac{1}{(k-1)!} - \frac{1}{k!} \right) \right)$$

$$= \lim_{n \to \infty} \left(n + 1 - \sum_{i=2}^{n} \left(1 - \frac{1}{i!} \right) \right)$$

$$= \lim_{n \to \infty} \left(1 + \sum_{i=1}^{n} \frac{1}{i!} \right)^{n}$$

$$= e$$

43. Evaluate:

$$\lim_{n\to\infty}\frac{1^1+2^2+3^3+\ldots+n^n}{n^n}$$

Solution: Using Cesaro-Stolz theorem we have

$$\lim_{n \to \infty} \frac{1^1 + 2^2 + 3^3 + \dots + n^n}{n^n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)^{n+1} - n^n}$$

$$= \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^{n+1} - \frac{1}{n}}$$

$$= \frac{e}{e - 0}$$

$$= 1$$

44. Consider the sequence $(a_n)_{n\geq 1}$ such that $a_0=2$ and $a_{n-1}-a_n=\frac{n}{(n+1)!}$. Evaluate $\lim_{n\to\infty} ((n+1)! \ln a_n)$.

Solution: Observe that

$$a_k - a_{k-1} = \frac{-k}{(k+1)!} = \frac{1}{(k+1)!} - \frac{1}{k!}, \ (\forall) 1 \le k \le n$$

Letting $k = 1, 2, 3 \cdots n$ and summing, we get $a_n - a_0 = \frac{1}{(n+1)!} - 1$. Since $a_0 = 2$ we get $a_n = 1 + \frac{1}{(n+1)!}$. Using the result $\lim_{f(x)\to 0} \frac{\ln(1+f(x))}{f(x)} = 1$, we conclude that

$$\lim_{n \to \infty} (n+1)! \ln a_n = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{(n+1)!}\right)}{\frac{1}{(n+1)!}} = 1$$

45. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ with $x_1=a>0$ and $x_{n+1}=\frac{x_1+2x_2+3x_3+\ldots+nx_n}{n},\ n\in\mathbb{N}^*$. Evaluate it's limit.

Solution: The sequence is strictly increasing because:

$$x_{n+1} - x_n = \frac{x_1 + 2x_2 + 3x_3 + \ldots + nx_n}{n} - x_n = \frac{x_1 + 2x_2 + 3x_3 + \ldots + (n-1)x_{n-1}}{n} > 0$$

Then

$$x_{n+1} > \frac{a+2a+\ldots+na}{n} = \frac{(n+1)a}{2}$$

It follows that $\lim_{n\to\infty} x_n = \infty$.

46. Using $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}=\frac{\pi^2}{6}$, evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(2k-1)^2}$$

Solution:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(2k-1)^2} = \lim_{n \to \infty} \sum_{k=1}^{2n} \frac{1}{k^2} - \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(2k)^2}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{2n} \frac{1}{k^2} - \frac{1}{4} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2}$$

$$= \frac{\pi}{6} - \frac{\pi}{24}$$

$$= \frac{\pi}{8}$$

47. Consider the sequence $(x_n)_{n\geq 1}$ defined by $x_1=a, x_2=b, a < b$ and $x_n=\frac{x_{n-1}+\lambda x_{n-2}}{1+\lambda}, n\geq 3, \lambda>0$. Prove that this sequence is convergent and find it's limit

Solution: The sequence isn't monotonic because $x_3 = \frac{b + \lambda a}{1 + \lambda} \in [a, b]$. We can prove by induction that $x_n \in [a, b]$. The sequences $(x_{2n})_{n \ge 1}$ and $(x_{2n-1})_{n \ge 1}$ are monotonically increasing. Also, we can show by induction, that:

$$x_{2k} - x_{2k-1} = \left(\frac{\lambda}{1+\lambda}\right)^{2k} (b-a)$$

It follows that the sequences $(x_{2n})_{n\geq 1}$ and $(x_{2n-1})_{n\geq 1}$ have the same limit, so $(x_n)_{n\geq 1}$ is convergent. The recurrence formulas can be written as

$$x_k - x_{k-1} = \lambda(x_{k-2} - x_k), \ (\forall)k \ge 3$$

Summing for $k = 3, 4, 5, \ldots, n$, we have:

$$x_n - b = \lambda(a + b - x_{n-1} - x_n) \Leftrightarrow (1 + \lambda)x_n + \lambda x_{n-1} = (1 + \lambda)b + \lambda a$$

By passing to limit, it follows that:

$$\lim_{n \to \infty} x_n = \frac{b + \lambda(a+b)}{1 + 2\lambda}$$

48. Evaluate:

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}$$

Solution: Using the consequence of Cesaro-Stolz lemma, we have:

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{n!}}$$

$$= \lim_{n \to \infty} \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}}$$

$$= \lim_{n \to \infty} \frac{(n+1)^{n+1}}{n^n \cdot (n+1)}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

49. Consider the sequence $(x_n)_{n\geq 1}$ defined by $x_1=1$ and $x_n=\frac{1}{1+x_{n-1}}, n\geq 2$. Prove that this sequence is convergent and evaluate $\lim_{n\to\infty} x_n$.

Solution: We can show easily by induction that $x_n \in (0,1)$ and that the sequence $(x_{2n})_{n\geq 1}$ is increasing, while the sequence $(x_{2n-1})_{n\geq 1}$ is decreasing. Observe that:

$$x_{2n+2} = \frac{1}{1+x_{2n+1}} = \frac{1}{1+\frac{1}{1+x_{2n}}} = \frac{1+x_{2n}}{2+x_{2n}}$$

The sequence $(x_{2n})_{n\geq 1}$ is convergent, so it has the limit $\frac{\sqrt{5}-1}{2}$. Similarly $\lim_{n\to\infty} x_{2n-1} = \frac{\sqrt{5}-1}{2}$. Therefore $(x_n)_{n\geq 1}$ is convergent and has the limit equal to $\frac{\sqrt{5}-1}{2}$.

50. If $a, b \in \mathbb{R}^*$, evaluate:

$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}$$

$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)} = \lim_{x \to 0} \frac{(\cos ax - 1) \cdot \ln(1 + \cos ax - 1) \cdot \cos ax - 1}{1}$$

$$(\cos bx - 1) \cdot \ln(1 + \cos bx - 1) \cdot \cos bx - 1$$

$$= \lim_{x \to 0} \frac{-2\sin^2 \frac{ax}{2}}{-2\sin^2 \frac{bx}{2}}$$

$$= \frac{a^2}{b^2}$$

51. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \{x\} & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Find all $\alpha \in \mathbb{R}$ for which $\lim_{x \to \alpha} f(x)$ exists.

Solution: Let f = g - h, where $g : \mathbb{R} \to \mathbb{R}$, g(x) = x, $(\forall)x \in \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$, $h(x) = \begin{cases} \lfloor x \rfloor & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. If $\alpha \in \mathbb{R} \setminus [0,1)$, we can find two sequences $x_n \in \mathbb{Q}$ and $y_n \in \mathbb{R} \setminus \mathbb{Q}$ going to α , such that the sequences $(f(x_n))$ and $(f(y_n))$ have different limits. If $\alpha \in [0,1)$, h(x) = 0 and f(x) = x, thus $(\forall)\alpha \in [0,1)$, we have $\lim_{x \to \alpha} f(x) = \alpha$.

52. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} \lfloor x \rfloor & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Find all $\alpha \in \mathbb{R}$ for which $\lim_{x \to \alpha} f(x)$ exists.

Solution: Divide the problem in two cases:

Case I: $\alpha = k \in \mathbb{Z}$. Consider a sequence $(x_n), x_n \in (k-1,k) \cap \mathbb{Q}$ and $(y_n), y_n \in (k-1,k) \cap (\mathbb{R} \setminus \mathbb{Q})$, both tending to k. Then:

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \lfloor x_n \rfloor = \lim_{n \to \infty} (k-1) = k-1$$

and $\lim_{n\to\infty} f(y_n) = \lim_{n\to\infty} y_n = k$. Therefore $\lim_{x\to\alpha} f(x)$ doesn't exist.

Case II: $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. Let $\lfloor \alpha \rfloor = k$. Consider a sequence (x_n) , $x_n \in (k, k+1) \cap \mathbb{Q}$ and (y_n) , $y_n \in (k, k+1) \cap (\mathbb{R} \setminus \mathbb{Q})$, which tend both to α . Then:

$$\lim_{n \to \alpha} f(x_n) = \lim_{n \to \alpha} \lfloor x_n \rfloor = \lim_{n \to \alpha} k = k$$

and $\lim_{n\to\alpha} f(y_n) = \lim_{n\to\alpha} y_n = \alpha$. Again, in this case, $\lim_{x\to\alpha} f(x)$ doesn't exist.

53. Let $(x_n)_{n\geq 1}$ be a sequence of positive real numbers such that $x_1>0$ and $3x_n=2x_{n-1}+\frac{a}{x_{n-1}^2}$, where a is a real positive number. Prove that x_n is convergent and evaluate $\lim_{n\to\infty}x_n$.

Solution: By AM-GM

$$x_{n+1} = \frac{x_n + x_n + \frac{a}{x_n^2}}{3} \ge \sqrt[3]{x_n \cdot x_n \cdot \frac{a}{x_n^2}} = \sqrt[3]{a} \Rightarrow x_n \ge \sqrt[3]{a}$$

Also

$$3(x_{n+1} - x_n) = \frac{a}{x_n^2} - x_n = \frac{a - x_n^3}{x_n^3} \le 0 \Rightarrow x_{n+1} - x_n \le 0, \forall n \in \mathbb{N}, n \ge 2$$

Therefore, the sequence $(x_n)_{n\geq 1}$ is decreasing and lower bounded, so it's convergent. By passing to limit in the recurrence formula we obtain $\lim_{n\to\infty} x_n = \sqrt[3]{a}$.

54. Consider a sequence of real numbers $(a_n)_{n\geq 1}$ such that $a_1=12$ and $a_{n+1}=a_n\left(1+\frac{3}{n+1}\right)$. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{a_k}$$

Solution: Rewrite the recurrence formula as

$$a_{n+1} = a_n \cdot \frac{n+4}{n+1}$$

Writing it for $n=1,2,\ldots,n-1$ and multiplying the obtained equalities, we find that:

$$a_n = \frac{(n+1)(n+2)(n+3)}{2}, \ (\forall) n \in \mathbb{N}^*$$

Then:

$$\begin{split} \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{a_k} &= \lim_{n \to \infty} \sum_{k=1}^{n} \frac{2}{(k+1)(k+2)(k+3)} \\ &= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{2}{k+2} + \frac{1}{k+3} \right) \\ &= \lim_{n \to \infty} \left(\frac{1}{6} - \frac{1}{n+2} + \frac{1}{n+3} \right) \\ &= \frac{1}{6} \end{split}$$

55. Evaluate:

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + 1}} \right)^n$$

$$\lim_{n \to \infty} \left(\frac{n}{\sqrt{n^2 + 1}} \right)^n = \lim_{n \to \infty} \left[\left(1 + \frac{n - \sqrt{n^2 + 1}}{\sqrt{n^2 + 1}} \right) \frac{\sqrt{n^2 + 1}}{n - \sqrt{n^2 + 1}} \right]^{\frac{n(n - \sqrt{n^2 + 1})}{\sqrt{n^2 + 1}}}$$

$$= e^{\lim_{n \to \infty} \frac{n(n - \sqrt{n^2 + 1})}{\sqrt{n^2 + 1}}$$

$$= e^{\lim_{n \to \infty} \frac{-n}{\sqrt{n^2 + 1} \cdot (\sqrt{n^2 + 1} + n)}}$$

$$= e^{\lim_{n \to \infty} \frac{-n}{n^2 + 1 + n\sqrt{n^2 + 1}}$$

$$= e^{\lim_{n \to \infty} \frac{-1}{n + \frac{1}{n} + \sqrt{n^2 + 1}}$$

$$= e^0$$

$$= e^0$$

$$= 1$$

56. If $a \in \mathbb{R}$, evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\lfloor k^2 a \rfloor}{n^3}$$

Solution: We have $x-1 < \lfloor x \rfloor \le x$, $(\forall) x \in \mathbb{R}$. Choosing $x = k^2 a$, letting k to take values from 1 to n and summing we have:

$$\sum_{k=1}^{n} (k^2 a - 1) < \sum_{k=1}^{n} \left \lfloor k^2 a \right \rfloor \leq \sum_{k=1}^{n} k^2 a \Leftrightarrow \frac{\sum_{k=1}^{n} (k^2 a - 1)}{n^3} < \frac{\sum_{k=1}^{n} \left \lfloor k^2 a \right \rfloor}{n^3} \leq \frac{\sum_{k=1}^{n} k^2 a}{n^3}$$

Now observe that:

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} (k^2 a - 1)}{n^3} = \lim_{n \to \infty} \frac{a \cdot \frac{n(n+1)(2n+1)}{6} - n}{n^3} = \frac{a}{3}$$

and

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^2 a}{n^3} = \lim_{n \to \infty} \frac{an(n+1)(2n+1)}{6n^3} = \frac{a}{3}$$

So using the Squeeze Theorem it follows that:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\lfloor k^2 a \rfloor}{n^3} = \frac{a}{3}$$

57. Evaluate:

$$\lim_{n \to \infty} 2^n \left(\sum_{k=1}^n \frac{1}{k(k+2)} - \frac{1}{4} \right)^n$$

Solution:

$$\lim_{n \to \infty} 2^n \left(\sum_{k=1}^n \frac{1}{k(k+2)} - \frac{1}{4} \right)^n = \lim_{n \to \infty} 2^n \left(\frac{1}{2} \sum_{k=1}^n \frac{1}{k} - \frac{1}{2} \sum_{k=1}^n \frac{1}{k+2} - \frac{1}{4} \right)^n$$

$$= \lim_{n \to \infty} 2^n \left(\frac{3}{4} - \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n+2} \right) - \frac{1}{4} \right)^n$$

$$= \lim_{n \to \infty} \left(1 - \frac{2n+3}{(n+1)(n+2)} \right)^n$$

$$= \lim_{n \to \infty} \left[\left(1 - \frac{2n+3}{(n+1)(n+2)} \right) \frac{-(n+1)(n+2)}{2n+3} \right] \frac{-n(2n+3)}{(n+1)(n+2)}$$

$$= \lim_{n \to \infty} \frac{-2n^2 - 3n}{n^2 + 3n + 2}$$

$$= e^{-2}$$

58. Consider the sequence $(a_n)_{n\geq 1}$, such that $a_n>0$, $(\forall)n\in\mathbb{N}$ and $\lim_{n\to\infty}n(a_{n+1}-a_n)=1$. Evaluate $\lim_{n\to\infty}a_n$ and $\lim_{n\to\infty}\sqrt[n]{a_n}$.

Solution: Start with the ε criterion

$$\lim_{n\to\infty} n(a_{n+1}-a_n) = 1 \Leftrightarrow (\forall)\varepsilon > 0, \ (\exists)n_{\varepsilon} \in \mathbb{N}, \ (\forall)n \ge n_{\varepsilon} \Rightarrow |n(a_{n+1}-a_n)-1| < \varepsilon$$

Let $\varepsilon \in (0,1)$. Then for $n \geq n_{\varepsilon}$, we have:

$$-\varepsilon < n(a_{n+1} - a_n) - 1 < \varepsilon \Rightarrow \frac{1 - \varepsilon}{n} < a_{n+1} - a_n < \frac{1 + \varepsilon}{n}$$

Summing for $n = n_{\varepsilon}, n_{\varepsilon} + 1, \dots, n$, we get:

$$(1-\varepsilon)\left(\frac{1}{n_{\varepsilon}} + \frac{1}{n_{\varepsilon}+1} + \ldots + \frac{1}{n}\right) < a_{n+1} - a_{n_{\varepsilon}} < (1-\varepsilon)\left(\frac{1}{n_{\varepsilon}} + \frac{1}{n_{\varepsilon}+1} + \ldots + \frac{1}{n}\right)$$

By passing to limit, it follows that $\lim_{n\to\infty} a_n = \infty$. To evaluate $\lim_{n\to\infty} \sqrt[n]{a_n}$, recall that in the above conditions we have:

$$\frac{1-\varepsilon}{n} < a_{n+1} - a_n < \frac{1+\varepsilon}{n} \Rightarrow \frac{1-\varepsilon}{na_n} < \frac{a_{n+1}}{a_n} - 1 < \frac{1+\varepsilon}{na_n}$$

Thus $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$, and the root test implies that $\lim_{n\to\infty}\sqrt[n]{a_n}=1$

59. Evaluate:

$$\lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt{3} + \ldots + n\sqrt{n}}{n^2\sqrt{n}}$$

Solution: Using Cesaro-Stolz lemma, we have:

$$\begin{split} \lim_{n \to \infty} \frac{1 + 2\sqrt{2} + 3\sqrt{3} + \ldots + n\sqrt{n}}{n^2 \sqrt{n}} &= \lim_{n \to \infty} \frac{(n+1)\sqrt{n+1}}{(n+1)^2 \sqrt{n+1} - n^2 \sqrt{n}} \\ &= \lim_{n \to \infty} \frac{\sqrt{(n+1)^3}}{\sqrt{(n+1)^5} - \sqrt{n^5}} \\ &= \lim_{n \to \infty} \frac{\sqrt{(n+1)^3} \left(\sqrt{(n+1)^5} + \sqrt{n^5}\right)}{(n+1)^5 - n^5} \\ &= \lim_{n \to \infty} \frac{n^4 + 4n^3 + 6n^2 + 4n + 1 + \sqrt{n^8 + 3n^7 + 3n^6 + n^5}}{5n^4 + 10n^3 + 10n^2 + 5n + 1} \\ &= \lim_{n \to \infty} \frac{1 + \frac{4}{n} + \frac{6}{n^2} + \frac{4}{n^3} + \frac{1}{n^4} + \sqrt{1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}}}{5 + \frac{10}{n} + \frac{10}{n^2} + \frac{5}{n^3} + \frac{1}{n^4}} \\ &= \frac{2}{5} \end{split}$$

60. Evaluate:

$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{2x - \pi}}$$

$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{2x - \pi}} = \lim_{x \to \frac{\pi}{2}} \left[(1 + \sin x - 1)^{\frac{1}{\sin x} - 1} \right]^{\frac{\sin x - 1}{2x - \pi}}$$

$$= e^{\lim_{x \to \frac{\pi}{2}} \frac{\sin x - 1}{2x - \pi}}$$

$$= e^{\lim_{x \to \frac{\pi}{2}} \frac{\cos y - 1}{2y}}$$

$$= e^{\lim_{y \to 0} \frac{-\sin^2 \frac{y}{2}}{y}}$$

$$= e^{y \to 0} \left(\frac{\sin \frac{y}{2}}{\frac{y}{2}} \right)^2 \cdot \left(-\frac{y}{4} \right)$$

$$= e^0$$

$$= 1$$

61. Evaluate:

$$\lim_{n \to \infty} n^2 \ln \left(\cos \frac{1}{n} \right)$$

Solution: We'll use the well-known limit $\lim_{x_n\to 0} \frac{\ln(1+x_n)}{x_n} = 1$. We have:

$$\lim_{n \to \infty} n^2 \ln \left(\cos \frac{1}{n} \right) = \lim_{n \to \infty} \left[n^2 \left(\cos \frac{1}{n} - 1 \right) \right] \cdot \lim_{n \to \infty} \frac{\ln \left(1 + \frac{1}{n} - 1 \right)}{\cos \frac{1}{n} - 1}$$

$$= \lim_{n \to \infty} -2n^2 \cdot \sin^2 \frac{1}{2n}$$

$$= \lim_{n \to \infty} -\frac{1}{2} \cdot \left(\frac{\sin \frac{1}{2n}}{\frac{1}{2n}} \right)^2$$

$$= -\frac{1}{2}$$

62. Given $a, b \in \mathbb{R}_+^*$, evaluate:

$$\lim_{n \to \infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n$$

Solution: Using the limits $\lim_{x_n \to \infty} (1 + x_n)^{\frac{1}{x_n}} = e$ and $\lim_{n \to \infty} n(\sqrt[n]{a} - 1) = \ln a$, we have:

$$\lim_{n \to \infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n = \lim_{n \to \infty} \left(1 + \frac{\sqrt[n]{a} - 1 + \sqrt[n]{b} - 1}{2} \right)^n$$

$$= \lim_{n \to \infty} \left[\left(1 + \frac{\sqrt[n]{a} - 1 + \sqrt[n]{b} - 1}{2} \right) \frac{2}{\sqrt[n]{a} - 1 + \sqrt[n]{b} - 1} \right]^{\frac{n(\sqrt[n]{a} - 1) + n(\sqrt[n]{b} - 1)}{2}}$$

$$= \lim_{n \to \infty} \frac{n(\sqrt[n]{a} - 1) + n(\sqrt[n]{b} - 1)}{2}$$

$$= e^{\ln a + \ln b}$$

$$= e^{\ln \sqrt{ab}}$$

$$= \sqrt{ab}$$

63. Let $\alpha > \beta > 0$ and the matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

i)Prove that $(\exists)(x_n)_{n\geq 1}, (y_n)_{n\geq 1}\in \mathbb{R}$ such that:

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}^n = x_n A + y_n B, \ (\forall) n \ge 1$$

ii) Evaluate $\lim_{n\to\infty} \frac{x_n}{y_n}$

Solution: i) We proceed by induction. For n = 1, we have

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix} = \alpha A + \beta B$$

Hence $x_1 = \alpha$ and $y_1 = \beta$. Let

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}^k = x_k A + y_k B$$

Then

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}^{k+1} = (\alpha A + \beta B)(x_k A + y_k B)$$

Using $B^2 = A$, we have:

$$\begin{pmatrix} \alpha & \beta \\ \beta & \alpha \end{pmatrix}^{k+1} = (\alpha x_k + \beta y_k)A + (\beta x_k + \alpha y_k)B$$

Thus $x_{k+1} = \alpha x_k + \beta y_k$ and $y_{k+1} = \beta x_k + \alpha y_k$.

ii) An easy induction shows that $x_n, y_n > 0$, $(\forall) n \in \mathbb{N}^*$. Let $X \in \mathcal{M}_2(\mathbb{R})$ such that $X^n = \begin{pmatrix} x_n & y_n \\ y_n & x_n \end{pmatrix}$. Because $\det(X^n) = (\det X)^n$, it follows that $(\alpha^2 - \beta^2)^n = x_n^2 - y_n^2$, and because $\alpha > \beta$, we have $x_n > y_n$, $(\forall) n \in \mathbb{N}^*$. Let $z_n = \frac{x_n}{y_n}$. Then:

$$z_{n+1} = \frac{x_{n+1}}{y_{n+1}} = \frac{\alpha x_n + \beta y_n}{\beta x_n + \alpha y_n} = \frac{\alpha z_n + \beta}{\beta z_n + \alpha}$$

It's easy to see that the sequence is bounded by 1 and $\frac{\alpha}{\beta}$. Also the sequence is strictly decreasing, because

$$z_{n+1} - z_n = \frac{\alpha z_n + \beta}{\beta z_n + \alpha} - z_n = \frac{\beta(1 - z_n^2)}{\beta z_n + \alpha} < 0$$

Therefore the sequence is convergent. Let $\lim_{n\to\infty} z_n = l$, then

$$l = \frac{\alpha l + \beta}{\beta l + \alpha} \Rightarrow l^2 = 1$$

l can't be -1, because $z_n \in \left(1, \frac{\alpha}{\beta}\right)$, hence $\lim_{n \to \infty} \frac{x_n}{y_n} = 1$.

64. If $a \in \mathbb{R}$ such that |a| < 1 and $p \in \mathbb{N}^*$ is given, evaluate:

$$\lim_{n \to \infty} n^p \cdot a^n$$

Solution: If a=0, we get $n^p \cdot a^n=0$, $(\forall) n \in \mathbb{N}$. If $a \neq 0$, since |a|<1, there is a $\alpha>0$ such that $|a|=\frac{1}{1+\alpha}$. Let now n>p, then from binomial expansion we get:

$$(1+\alpha)^n > C_n^{p+1} \cdot \alpha^{p+1} \Leftrightarrow \frac{1}{(1+\alpha)^n} < \frac{(p+1)!}{n(n-1)(n-2) \cdot \dots \cdot (n-p) \cdot \alpha^{p+1}}$$

Then:

$$0 < |n^{p} \cdot a^{n}|$$

$$= n^{p} \cdot |a|^{n}$$

$$< \frac{n^{p} \cdot (p+1)!}{n(n-1)(n-2) \cdot \dots \cdot (n-p) \cdot \alpha^{p+1}}$$

$$= \frac{n^{p-1} \cdot (p+1)!}{(n-1)(n-2) \cdot \dots \cdot (n-p) \cdot \alpha^{p+1}}$$

Keeping in mind that

$$\lim_{n \to \infty} \frac{n^{p-1} \cdot (p+1)!}{(n-1)(n-2) \cdot \dots \cdot (n-p) \cdot \alpha^{p+1}} = 0$$

and using the Squeeze Theorem, it follows that

$$\lim_{n \to \infty} n^p \cdot a^n = 0$$

65. If $p \in \mathbb{N}^*$, evaluate:

$$\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$$

Solution: Using Cesaro-Stolz lemma we have:

$$\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}} = \lim_{n \to \infty} \frac{(n+1)^p}{(n+1)^{p+1} - n^{p+1}}$$

$$= \lim_{n \to \infty} \frac{n^p + \binom{p}{1} n^{p-1} + \dots}{\binom{p+1}{1} n^p + \binom{p+1}{2} n^{p-1} + \dots}$$

$$= \frac{1}{\binom{p+1}{1}}$$

$$= \frac{1}{n+1}$$

66. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{\sin(n\arccos x)}{\sqrt{1 - x^2}}$$

First solution: Recall the identity:

$$\cos nt + i\sin nt = \binom{n}{0}\cos^n t + i\binom{n}{1}\cos^{n-1}t \cdot \sin t + \dots + i^n\binom{n}{n}\sin^n t$$

For $t = \arccos x$, we have:

$$\sin(n\arccos x) = \binom{n}{1}x^{n-1} \cdot \sqrt{1-x^2} - \binom{n}{3}x^{n-3}(\sqrt{1-x^2})^3 + \binom{n}{5}x^{n-5}(\sqrt{1-x^2})^5 - \dots$$

Then:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{\sin(n\arccos x)}{\sqrt{1 - x^2}} = \lim_{\substack{x \to 1 \\ x < 1}} \left(\binom{n}{1} x^{n-1} - \binom{n}{3} x^{n-3} (1 - x^2) + \binom{n}{5} x^{n-5} (1 - x^2)^2 - \dots \right) = n$$

Second solution:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{\sin(n \arccos x)}{\sqrt{1 - x^2}} = \lim_{\substack{x \to 1 \\ x < 1}} \frac{\sin(n \arccos x)}{n \arccos x} \cdot \lim_{\substack{x \to 1 \\ x < 1}} \frac{n \arccos x}{\sqrt{1 - x^2}}$$

$$= \lim_{\substack{x \to 1 \\ x < 1}} \frac{n \arccos x}{\sqrt{1 - x^2}}$$

$$= \lim_{\substack{y \to 0 \\ y > 0}} \frac{ny}{\sqrt{1 - \cos^y}}$$

$$= \lim_{\substack{y \to 0 \\ y > 0}} \frac{ny}{\sin y}$$

$$= n$$

67. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{1 - \cos(n \arccos x)}{1 - x^2}$$

Solution:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{1 - \cos(n \arccos x)}{1 - x^2} = \lim_{\substack{x \to 1 \\ x < 1}} \frac{2 \sin^2 \left(\frac{n \arccos x}{2}\right)}{1 - x^2}$$

$$= \lim_{\substack{x \to 1 \\ x < 1}} \frac{2 \sin^2 \left(\frac{n \arccos x}{2}\right)}{\left(\frac{n \arccos x}{2}\right)} \cdot \lim_{\substack{x \to 1 \\ x < 1}} \frac{n^2 \arccos^2 x}{4(1 - x^2)}$$

$$= \lim_{\substack{x \to 1 \\ x < 1}} \frac{n^2 \arccos^2 x}{4(1 - x^2)}$$

$$= \lim_{\substack{y \to 0 \\ y > 0}} \frac{n^2 y^2}{2 \sin^2 y}$$

$$= \frac{n^2}{2}$$

68. Study the convergence of the sequence:

$$x_{n+1} = \frac{x_n + a}{x_n + 1}, \ n \ge 1, \ x_1 \ge 0, \ a > 0$$

Solution: Consider a sequence $(y_n)_{n\geq 1}$ such that $x_n = \frac{y_{n+1}}{y_n} - 1$. Thus, our recurrence formula reduces to : $y_{n+2} - 2y_{n+1} + (1-a)y_n = 0$, whence $y_n = \alpha \cdot (1+\sqrt{a})^n + \beta \cdot (1-\sqrt{a})^n$. Finally:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{\alpha \cdot (1 + \sqrt{a})^{n+1} + \beta \cdot (1 - \sqrt{a})^{n+1}}{\alpha \cdot (1 + \sqrt{a})^n + \beta \cdot (1 - \sqrt{a})^n} - 1$$

$$= \lim_{n \to \infty} \frac{\alpha \cdot (1 + \sqrt{a}) + \beta \cdot \left(\frac{1 - \sqrt{a}}{1 + \sqrt{a}}\right)^n \cdot (1 - \sqrt{a})}{\alpha + \beta \cdot \left(\frac{1 - \sqrt{a}}{1 + \sqrt{a}}\right)^n} - 1$$

$$= \frac{\alpha \cdot (1 + \sqrt{a})}{\alpha} - 1$$

$$= \sqrt{a}$$

69. Consider two sequences of real numbers $(x_n)_{n\geq 0}$ and $(y_n)_{n\geq 0}$ such that $x_0=y_0=3,\ x_n=2x_{n-1}+y_{n-1}$ and $y_n=2x_{n-1}+3y_{n-1},\ (\forall)n\geq 1.$ Evaluate $\lim_{n\to\infty}\frac{x_n}{y_n}.$

First solution: Summing the hypothesis equalities, we have

$$x_n + y_n = 4(x_{n-1} + y_{n-1}), \ n \ge 1$$

Then $x_n + y_n = 4(x_0 + y_0) = 6 \cdot 4^n$. Substracting the hypothesis equalities, we get

$$y_n - x_n = 2y_{n-1}, \ n \ge 1$$

Summing with the previous equality we have $2y_n = 2y_{n-1} + 6 \cdot 4^n \Rightarrow y_n - y_{n-1} = 3 \cdot 4^n$. Then

$$y_1 - y_0 = 3 \cdot 4$$

$$y_2 - y_1 = 3 \cdot 4^2$$

$$y_3 - y_2 = 3 \cdot 4^3$$

. . .

$$y_n - y_{n-1} = 3 \cdot 4^n$$

Summing, it follows that:

$$y_n = y_0 + 3(4 + 4^2 + \dots + 4^n) = 3(1 + 4 + 4^2 + \dots + 4^n) = 3 \cdot \frac{4^{n+1} - 1}{4 - 1} = 4^{n+1} - 1$$

Then $x_n = 2 \cdot 4^n + 1$, and therefore:

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{2\cdot 4^n+1}{4\cdot 4^n-1}=\frac{1}{2}$$

Second solution: Define $a_n = \frac{x_n}{y_n}$ so that $a_n = \frac{2a_{n-1}+1}{2a_{n-1}+3}$. Now let $a_n = \frac{b_{n+1}}{b_n} - \frac{3}{2}$ to obtain $2b_{n+1} - 5b_n + b_{n-1} = 0$. Then $b_n = \alpha \cdot 2^n + \beta \cdot 2^{-n}$ for some $\alpha, \beta \in \mathbb{R}$. We finally come to:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{\alpha \cdot 2^{n+1} + \beta \cdot 2^{-n-1}}{\alpha \cdot 2^n + \beta \cdot 2^{-n}} - \frac{3}{2} \right) = 2 - \frac{3}{2} = \frac{1}{2}$$

70. Evaluate:

$$\lim_{x \to 0} \frac{\tan x - x}{x^2}$$

Solution: If $x \in \left(0, \frac{\pi}{2}\right)$, we have:

$$0 < \frac{\tan x - x}{x^2} < \frac{\tan x - \sin x}{x^2} = \frac{\tan x (1 - \cos x)}{x^2} = \frac{2 \tan x \cdot \sin^2 \frac{x}{2}}{x^2}$$

and because $\lim_{x\to 0} \frac{2\tan x \cdot \sin^2 \frac{x}{2}}{x^2} = \lim_{x\to 0} \frac{\tan x}{2} \cdot \lim_{x\to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2 = 0$, using the Squeeze Theorem it follows that:

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{\tan x - x}{x^2} = 0$$

Also

$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{\tan x - x}{x^2} = \lim_{\substack{y \to 0 \\ y > 0}} \frac{-\tan y + y}{y^2} = -\lim_{\substack{y \to 0 \\ y > 0}} \frac{\tan y - y}{y^2} = 0$$

71. Evaluate:

$$\lim_{x \to 0} \frac{\tan x - \arctan x}{x^2}$$

Solution: Using the result from the previous problem, we have:

$$\begin{split} \lim_{x\to 0} \frac{\tan x - \arctan x}{x^2} &= \lim_{x\to 0} \frac{\tan x - x}{x^2} + \lim_{x\to 0} \frac{x - \arctan x}{x^2} \\ &= \lim_{x\to 0} \frac{x - \arctan x}{x^2} \\ &= \lim_{y\to 0} \frac{\tan y - y}{\tan^2 y} \\ &= \lim_{y\to 0} \frac{\tan y - y}{y^2} \cdot \lim_{y\to 0} \frac{y^2}{\tan^2 y} \\ &= 0 \end{split}$$

72. Let a > 0 and a sequence of real numbers $(x_n)_{n \geq 0}$ such that $x_n \in (0, a)$ and $x_{n+1}(a-x_n) > \frac{a^2}{4}$, $(\forall) n \in \mathbb{N}$. Prove that $(x_n)_{n \geq 1}$ is convergent and evaluate $\lim_{n \to \infty} x_n$.

Solution: Rewrite the condition as $\frac{x_{n+1}}{a}\left(1-\frac{x_n}{a}\right) > \frac{1}{4}$. With the substitution $y_n = \frac{x_n}{a}$, we have $y_{n+1}(1-y_n) > \frac{1}{4}$, with $y_n \in (0,1)$. Then:

$$4y_{n+1} - 4y_n y_{n+1} - 1 > 0 \Leftrightarrow 4y_n y_{n+1} - 4y_{n+1}^2 + 4y_{n+1}^2 - 4y_{n+1} + 1 < 0 \Leftrightarrow 4y_n (y_{n+1} - y_n) > (2y_{n+1} - 1)^2$$

So $y_{n+1} - y_n > 0$, whence the sequence is strictly increasing. Let $\lim_{n \to \infty} y_n = l$.

Then
$$l(1-l) \ge \frac{1}{4} \Leftrightarrow \left(l - \frac{1}{2}\right)^2 \le 0$$
. Hence $l = \frac{1}{2} \Rightarrow \lim_{n \to \infty} x_n = \frac{a}{2}$.

73. Evaluate:

$$\lim_{n\to\infty}\cos\left(n\pi\sqrt[2n]{e}\right)$$

Solution: Using $\lim_{f(x)\to 0} \frac{a^{f(x)}-1}{f(x)} = \ln a$, with $a\in \mathbb{R}$, we have:

$$\left| \lim_{n \to \infty} \cos \left(n \pi^{\frac{2n}{\sqrt{e}}} \right) \right| = \lim_{n \to \infty} |(-1)^n \cdot \cos \left(n \pi^{\frac{2n}{\sqrt{e}}} - n \pi \right)|$$

$$= \lim_{n \to \infty} \left| \cos \left(\frac{\pi}{2} \cdot \frac{e^{\frac{1}{2n}} - 1}{\frac{1}{2n}} \right) \right|$$

$$= \left| \cos \left(\frac{\pi}{2} \cdot \lim_{n \to \infty} \frac{e^{\frac{1}{2n}} - 1}{\frac{1}{2n}} \right) \right|$$

$$= \left| \cos \left(\frac{\pi}{2} \right) \right|$$

$$= 0$$

It follows that $\lim_{n\to\infty} \cos\left(n\pi \sqrt[2n]{e}\right) = 0.$

74. Evaluate:

$$\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^{\tan \frac{(n-1)\pi}{2n}}$$

$$\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^{\tan \frac{(n-1)\pi}{2n}} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n} \right)^n \right]^{\frac{1}{n}} \tan \frac{(n-1)\pi}{2n}$$

$$= \lim_{n \to \infty} \frac{\tan \frac{(n-1)\pi}{2n}}{n}$$

$$= \lim_{n \to \infty} \frac{\tan \left(\frac{\pi}{2} - \frac{\pi}{2n} \right)}{n}$$

$$= \lim_{n \to \infty} \frac{\cot \frac{\pi}{2n}}{n}$$

$$= e^{n \to \infty} \frac{1}{n \tan \frac{\pi}{2n}}$$

$$= e^{n \to \infty} \frac{1}{n \tan \frac{\pi}{2n}}$$

$$= e^{n \to \infty} \frac{2}{\pi} \cdot \frac{\pi}{\tan \frac{\pi}{2n}}$$

$$= e^{n \to \infty}$$

75. Evaluate:

$$\lim_{n \to \infty} \sqrt[n]{\prod_{k=1}^{n} \binom{n}{k}}$$

Solution: Using AM-GM, we have:

$$\sqrt[n]{n!} = \sqrt[n]{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} < \frac{1 + 2 + \dots + n}{n} = \frac{n+1}{2}$$

Therefore $\frac{(n+1)^n}{n!} > 2^n \Rightarrow \lim_{n \to \infty} \frac{(n+1)^n}{n!} = \infty$. So:

$$\lim_{n \to \infty} \sqrt[n]{\prod_{k=1}^{n} \binom{n}{k}} = \lim_{n \to \infty} \frac{\prod_{k=1}^{n+1} \binom{n+1}{k}}{\prod_{k=1}^{n} \binom{n}{k}} = \lim_{n \to \infty} \frac{(n+1)^n}{n!} = \infty$$

76. If a > 0, evaluate:

$$\lim_{n \to \infty} \frac{a + \sqrt{a} + \sqrt[3]{a} + \ldots + \sqrt[n]{a} - n}{\ln n}$$

$$\lim_{n \to \infty} \frac{a + \sqrt{a} + \sqrt[3]{a} + \ldots + \sqrt[n]{a} - n}{\ln n} = \lim_{n \to \infty} \frac{\frac{n+\sqrt[n]{a} - 1}{\ln(n+1) - \ln n}}{\frac{n \cdot (n+\sqrt[n]{a} - 1)}{\ln(1 + \frac{1}{n})^n}}$$

$$= \lim_{n \to \infty} \left[\frac{a^{\frac{1}{n+1}} - 1}{\frac{1}{n+1}} \cdot \frac{n}{n+1} \right]$$

$$= \ln a$$

77. Evaluate:

$$\lim_{n\to\infty} n \ln \tan \left(\frac{\pi}{4} + \frac{\pi}{n}\right)$$

Solution:

$$\lim_{n \to \infty} n \ln \tan \left(\frac{\pi}{4} + \frac{\pi}{n} \right) = \lim_{n \to \infty} \ln \tan \left(\frac{\pi}{4} + \frac{\pi}{n} \right)^n$$

$$= \ln \lim_{n \to \infty} \left[\left(1 + \tan \left(\frac{\pi}{4} + \frac{\pi}{n} \right) - 1 \right) \frac{1}{\tan \left(\frac{\pi}{4} + \frac{\pi}{n} \right) - 1} \right]^n \left(\tan \left(\frac{\pi}{4} + \frac{\pi}{n} \right) - 1 \right)$$

$$= \lim_{n \to \infty} \left(\tan \left(\frac{\pi}{4} + \frac{\pi}{n} \right) - 1 \right)$$

$$= \lim_{n \to \infty} n \left(\tan \left(\frac{\pi}{4} + \frac{\pi}{n} \right) - 1 \right)$$

$$= \lim_{n \to \infty} n \left(\frac{1 + \tan \frac{\pi}{n}}{1 - \tan \frac{\pi}{n}} - 1 \right)$$

$$= \lim_{n \to \infty} \frac{2n \tan \frac{\pi}{n}}{1 - \tan \frac{\pi}{n}}$$

$$= 2 \lim_{n \to \infty} n \tan \frac{\pi}{n}$$

$$= 2\pi \lim_{n \to \infty} \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}$$

78. Let $k \in \mathbb{N}$ and $a_0, a_1, a_2, \ldots, a_k \in \mathbb{R}$ such that $a_0 + a_1 + a_2 + \ldots + a_k = 0$. Evaluate:

$$\lim_{n \to \infty} \left(a_0 \sqrt[3]{n} + a_1 \sqrt[3]{n+1} + \ldots + a_k \sqrt[3]{n+k} \right)$$

Solution:

$$\lim_{n \to \infty} \left(a_0 \sqrt[3]{n} + a_1 \sqrt[3]{n+1} + \dots + a_k \sqrt[3]{n+k} \right) = \lim_{n \to \infty} \left(a_0 \sqrt[3]{n} + \sum_{i=1}^k a_i \sqrt[3]{n+i} \right)$$

$$= \lim_{n \to \infty} \left(-\sqrt[3]{n} \cdot \sum_{i=1}^k a_i + \sum_{i=1}^k a_i \sqrt[3]{n+i} \right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^k a_i \left(\sqrt[3]{n+i} - \sqrt[3]{n} \right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^k \frac{ia_i}{\sqrt[3]{(n+i)^2} + \sqrt[3]{n(n+i)} + \sqrt[3]{n^2}}$$

$$= 0$$

79. Evaluate:

$$\lim_{n \to \infty} \sin\left(n\pi\sqrt[3]{n^3 + 3n^2 + 4n - 5}\right)$$

Solution:

$$\lim_{n \to \infty} \sin\left(n\pi\sqrt[3]{n^3 + 3n^2 + 4n - 5}\right) = \lim_{n \to \infty} \sin\left(n\pi\sqrt[3]{n^3 + 3n^2 + 4n - 5} - n(n+1)\pi\right)$$

$$= \lim_{n \to \infty} \sin\left(n\pi\left(\sqrt[3]{n^3 + 3n^2 + 4n - 5} - n - 1\right)\right)$$

$$= \lim_{n \to \infty} \sin\left(\frac{n(n-6)\pi}{\sqrt[3]{(n^3 - 5)^2 + (n+1)\sqrt[3]{n^3 - 5} + (n+1)^2}}\right)$$

$$= \sin\left(\pi\lim_{n \to \infty} \frac{1 - \frac{6}{n}}{\sqrt[3]{\left(1 - \frac{5}{n^3}\right)^2 + \left(1 + \frac{1}{n}\right)\sqrt[3]{1 - \frac{5}{n^3}} + \left(1 + \frac{1}{n}\right)^2}}\right)$$

$$= \sin\frac{\pi}{3}$$

$$= \frac{\sqrt{3}}{2}$$

80. Evaluate:

$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{2 \arcsin x - \pi}{\sin \pi x}$$

$$\begin{split} \lim_{\substack{x \to 1 \\ x < 1}} \frac{2 \arcsin x - \pi}{\sin \pi x} &= 2 \lim_{\substack{x \to 1 \\ x < 1}} \frac{\arcsin x - \frac{\pi}{2}}{\sin \left(\arcsin x - \frac{\pi}{2}\right)} \cdot \lim_{\substack{x \to 1 \\ x < 1}} \frac{\sin \left(\arcsin x - \frac{\pi}{2}\right)}{\sin \pi x} \\ &= 2 \lim_{\substack{x \to 1 \\ x < 1}} \frac{-\sqrt{1 - y^2}}{\sin \pi x} \\ &= -2 \lim_{\substack{y \to 0 \\ y > 0}} \frac{\sqrt{y(2 - y)}}{\sin \pi (1 - y)} \\ &= -2 \lim_{\substack{y \to 0 \\ y > 0}} \frac{\sqrt{2(1 - y)}}{\sin \pi y} \\ &= -2 \lim_{\substack{y \to 0 \\ y > 0}} \frac{\pi y}{\sin \pi y} \cdot \lim_{\substack{y \to 0 \\ y > 0}} \frac{\sqrt{2 - y}}{\pi \sqrt{y}} \\ &= -\infty \end{split}$$

81. Evaluate:

$$\lim_{n \to \infty} \sum_{k=2}^{n} \frac{1}{k \ln k}$$

Solution: Using Lagrange formula we can deduce that

$$\frac{1}{k \ln k} > \ln(\ln(k+1)) - \ln(\ln k)$$

Summing from k = 2 to n it follows that

$$\sum_{k=2}^{n} \frac{1}{k \ln k} > \ln(\ln(n+1)) - \ln(\ln 2))$$

Then it is obvious that:

$$\lim_{n \to \infty} \sum_{k=2}^{n} \frac{1}{k \ln k} = \infty$$

82. Evaluate:

$$\lim_{n \to \infty} \left[\lim_{x \to 0} \left(1 + \sum_{k=1}^{n} \sin^2(kx) \right)^{\frac{1}{n^3 x^2}} \right]$$

$$\lim_{n \to \infty} \left[\lim_{x \to 0} \left(1 + \sum_{k=1}^{n} \sin^2(kx) \right)^{\frac{1}{n^3 x^2}} \right] = \lim_{n \to \infty} \left[\lim_{x \to 0} \left(1 + \sum_{k=1}^{n} \sin^2(kx) \right)^{\frac{1}{n^3 x^2}} \right]$$

$$= \lim_{n \to \infty} \left[e^{\frac{1}{n^3} \lim_{x \to 0} \frac{\sum_{k=1}^{n} \sin^2(kx)}{x^2}} \right]$$

$$= \lim_{n \to \infty} \left[e^{\frac{1}{n^3} \lim_{x \to 0} \frac{\sum_{k=1}^{n} \sin^2(kx)}{x^2}} \right]$$

$$= e^{\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3}}$$

$$= e^{\lim_{n \to \infty} \frac{(n+1)(2n+1)}{6n^2}}$$

$$= \sqrt[3]{e}$$

83. If $p \in \mathbb{N}^*$, evaluate:

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{(k+1)(k+2) \cdot \ldots \cdot (k+p)}{n^{p+1}}$$

Solution: Using Cesaro-Stolz, we have:

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{(k+1)(k+2) \cdot \dots \cdot (k+p)}{n^{p+1}} = \sum_{k=0}^{n} \frac{\frac{(k+p)!}{k!}}{n^{p+1}}$$

$$= \lim_{n \to \infty} \frac{\frac{(n+p+1)!}{(n+1)!}}{(n+1)^{p+1} - n^{p+1}}$$

$$= \lim_{n \to \infty} \frac{(n+2)(n+3) \cdot \dots \cdot (n+p+1)}{n^{p+1} + \binom{p+1}{1} n^p + \dots + 1 - n^{p+1}}$$

$$= \lim_{n \to \infty} \frac{n^p + \dots}{(p+1)n^p + \dots}$$

$$= \frac{1}{p+1}$$

84. If $\alpha_n \in \left(0, \frac{\pi}{4}\right)$ is a root of the equation $\tan \alpha + \cot \alpha = n, \ n \geq 2$, evaluate:

$$\lim_{n\to\infty} (\sin\alpha_n + \cos\alpha_n)^n$$

Solution:

$$\lim_{n \to \infty} (\sin \alpha_n + \cos \alpha_n)^n = \lim_{n \to \infty} \left[(\sin \alpha_n + \cos \alpha_n)^2 \right]^{\frac{n}{2}}$$

$$= \lim_{n \to \infty} \left(1 + 2 \cos \alpha_n \cdot \sin \alpha_n \right)^{\frac{n}{2}}$$

$$= \lim_{n \to \infty} \left(1 + \frac{2}{\frac{\sin^2 \alpha_n + \cos^2 \alpha_n}{\cos \alpha_n \cdot \sin \alpha_n}} \right)^{\frac{n}{2}}$$

$$= \lim_{n \to \infty} \left(1 + \frac{2}{\tan \alpha_n + \cot \alpha_n} \right)^{\frac{n}{2}}$$

$$= \lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{\frac{n}{2}}$$

$$= \lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{\frac{n}{2}}$$

$$= e$$

85. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{\binom{n+k}{2}}}{n^2}$$

First solution: Cesaro-Stolz gives:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{\binom{n+k}{2}}}{n^2} = \lim_{n \to \infty} \frac{\sqrt{\binom{2n+1}{2}} + \sqrt{\binom{2n+2}{2}} - \sqrt{\binom{n+1}{2}}}{2n+1}$$

$$= \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{2n(2n+1)} + \sqrt{(2n+1)(2n+2)} - \sqrt{n(n+1)}}{2n+1}$$

$$= \frac{1}{\sqrt{2}} \lim_{n \to \infty} \frac{\sqrt{4 + \frac{2}{n}} + \sqrt{4 + \frac{6}{n} + \frac{2}{n^2}} - \sqrt{1 + \frac{1}{n}}}{2 + \frac{1}{n}}$$

$$= \frac{3}{2\sqrt{2}}$$

Second solution: Observe that:

$$\binom{n+k}{2} = \frac{(n+k-1)(n+k)}{2} = \frac{n^2}{2} \left(1 + \frac{k}{n} \right) \left(1 + \frac{k-1}{n} \right)$$

for which we have

$$\frac{n^2}{2} \left(1 + \frac{k-1}{n} \right)^2 \le \frac{n^2}{2} \left(1 + \frac{k}{n} \right) \left(1 + \frac{k-1}{n} \right) \le \frac{n^2}{2} \left(1 + \frac{k}{n} \right)^2$$

therefore

$$\frac{n}{\sqrt{2}}\left(1+\frac{k-1}{n}\right) \leq \sqrt{\binom{n+k}{2}} \leq \frac{n}{\sqrt{2}}\left(1+\frac{k}{n}\right)$$

Summing from k = 1 to n, we get:

$$\frac{1}{n\sqrt{2}}\sum_{k=1}\left(1+\frac{k-1}{n}\right) \leq \lim_{n\to\infty}\sum_{k=1}^{n}\frac{\sqrt{\binom{n+k}{2}}}{n^2} \leq \frac{1}{n\sqrt{2}}\sum_{k=1}^{n}\left(1+\frac{k}{n}\right)$$

We can apply the Squeeze theorem because

$$\lim_{n \to \infty} \frac{1}{n\sqrt{2}} \sum_{k=1} \left(1 + \frac{k-1}{n} \right) = \lim_{n \to \infty} \frac{1}{n\sqrt{2}} \left(n + \frac{n-1}{2} \right) = \lim_{n \to \infty} \frac{3n-1}{2n\sqrt{2}} = \frac{3}{2\sqrt{2}}$$

and

$$\lim_{n\to\infty}\frac{1}{n\sqrt{2}}\sum_{k=1}^n\left(1+\frac{k}{n}\right)=\lim_{n\to\infty}\frac{1}{n\sqrt{2}}\left(n+\frac{n+1}{2}\right)=\lim_{n\to\infty}\frac{3n+1}{2n\sqrt{2}}=\frac{3}{2\sqrt{2}}$$

Thus

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{\binom{n+k}{2}}}{n^2} = \frac{3}{2\sqrt{2}}$$

86. Evaluate:

$$\lim_{n \to \infty} \sqrt[n]{\prod_{k=1}^{n} \left(1 + \frac{k}{n}\right)}$$

Solution: Using Cesaro-Stolz we'll evaluate:

$$\lim_{n \to \infty} \ln \sqrt[n]{\prod_{k=1}^{n} \left(1 + \frac{k}{n}\right)} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln \left(1 + \frac{k}{n}\right)}{n}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n+1} \ln \left(1 + \frac{k}{n+1}\right) - \sum_{k=1}^{n} \ln \left(1 + \frac{k}{n}\right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \ln \frac{1 + \frac{k}{n+1}}{1 + \frac{k}{n}} + \ln 2$$

$$= \lim_{n \to \infty} \ln \left(\frac{4n+2}{n+1} \cdot \left(\frac{n}{n+1}\right)^n\right)$$

$$= \ln 4 - 1$$

It follows that:

$$\lim_{n \to \infty} \sqrt[n]{\prod_{k=1}^{n} \left(1 + \frac{k}{n}\right)} = 4e^{-1}$$

87. Evaluate:

$$\lim_{x \to 0} \frac{\arctan x - \arcsin x}{x^3}$$

Solution:

$$\lim_{x \to 0} \frac{\arctan x - \arcsin x}{x^3} = \lim_{x \to 0} \frac{\arctan x - \arcsin x}{\tan(\arctan x - \arcsin x)} \cdot \lim_{x \to 0} \frac{\tan(\arctan x - \arcsin x)}{x^3}$$

$$= \lim_{x \to 0} \frac{\tan(\arctan x - \arcsin x)}{x^3}$$

$$= \lim_{x \to 0} \frac{1}{x^3} \cdot \frac{x - \frac{x}{\sqrt{1 - x^2}}}{1 + \frac{x}{\sqrt{1 - x^2}}}$$

$$= \lim_{x \to 0} \frac{1}{x^2} \cdot \frac{\sqrt{1 - x^2} - 1}{\sqrt{1 - x^2} + x^2}$$

$$= \lim_{x \to 0} \frac{1}{x^2} \cdot \frac{\sqrt{1 - x^2} - 1}{\sqrt{1 - x^2} + x^2}$$

$$= \lim_{x \to 0} \frac{-1}{(\sqrt{1 - x^2} + x^2)(\sqrt{1 - x^2} + 1)}$$

$$= -\frac{1}{2}$$

88. If $\alpha > 0$, evaluate:

$$\lim_{n\to\infty}\frac{(n+1)^\alpha-n^\alpha}{n^{\alpha-1}}$$

Solution: Let

$$x_n = \frac{(n+1)^{\alpha} - n^{\alpha}}{n^{\alpha - 1}} = \frac{n^{\alpha} \left[\left(1 + \frac{1}{n} \right)^{\alpha} - 1 \right]}{n^{\alpha - 1}} = n \left[\left(1 + \frac{1}{n} \right)^{\alpha} - 1 \right]$$

Then $\lim_{n\to\infty} \frac{x_n}{n} = 0$. Observe that:

$$1 + \frac{x_n}{n} = \left(1 + \frac{1}{n}\right)^{\alpha} \Leftrightarrow \left[\left(1 + \frac{x_n}{n}\right)^{\frac{n}{x_n}}\right]^{x_n} = \left[\left(1 + \frac{1}{n}\right)^n\right]^{\alpha}$$

By passing to limit, we have $e^{\lim_{n\to\infty} x_n} = e^{\alpha}$. Hence $\lim_{n\to\infty} x_n = \alpha$.

89. Evaluate:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^2}{2^k}$$

Solution:

$$\begin{split} &\lim_{n\to\infty}\sum_{k=1}^n\frac{k^2}{2^k}=\lim_{n\to\infty}\sum_{k=1}^n\left(\frac{k(k+1)}{2^k}-\frac{k}{2^k}\right)\\ &=\lim_{n\to\infty}\left[\sum_{k=1}^n\left(\frac{k^2}{2^{k-1}}-\frac{(k+1)^2}{2^k}+\frac{3k+1}{2^k}\right)-\sum_{k=1}^n\frac{k}{2^k}\right]\\ &=\lim_{n\to\infty}\left[\left(1-\frac{(n+1)^2}{2^n}\right)+\sum_{k=1}^n\frac{2k+1}{2^k}\right]\\ &=\lim_{n\to\infty}\left[\left(1-\frac{(n+1)^2}{2^n}\right)+2\sum_{k=1}^n\frac{k}{2^k}+\sum_{k=1}^n\frac{1}{2^k}\right]\\ &=\lim_{n\to\infty}\left[\left(1-\frac{(n+1)^2}{2^n}\right)+2\sum_{k=1}^n\left(\frac{k}{2^{k-1}}-\frac{k+1}{2^k}+\frac{1}{2^k}\right)+\sum_{k=1}^n\frac{1}{2^k}\right]\\ &=\lim_{n\to\infty}\left[\left(1-\frac{(n+1)^2}{2^n}\right)+2\left(1-\frac{n+1}{2^n}\right)+3\sum_{k=1}^n\frac{1}{2^k}\right]\\ &=\lim_{n\to\infty}\left[3-\frac{n^2+4n+3}{2^n}+3\left(1-\frac{1}{2^n}\right)\right]\\ &=\lim_{n\to\infty}\left(6-\frac{n^2+4n+6}{2^n}\right)\\ &=6-\lim_{n\to\infty}\frac{n^2+4n+6}{2^n}\end{split}$$

Because:

$$\lim_{n \to \infty} \frac{\frac{(n+1)^2 + 4(n+1) + 6}{2^{n+1}}}{\frac{n^2 + 4n + 6}{2^n}} = \lim_{n \to \infty} \frac{n^2 + 6n + 11}{2^{n^2 + 8n + 12}} = \frac{1}{2}$$

it follows that $\lim_{n\to\infty} \frac{n^2+4n+6}{2^n} = 0$, therefore our limit is 6.

90. Evaluate:

$$\lim_{n\to\infty} \sum_{k=0}^{n} \frac{(k+1)(k+2)}{2^k}$$

Solution: Using the previous limit, we have:

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{(k+1)(k+2)}{2^k} = \lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{k^2}{2^k} + 3 \cdot \sum_{k=0}^{n} \frac{k}{2^k} + \sum_{k=0}^{n} \frac{1}{2^{k-1}} \right)$$
$$= 6 + 3 \lim_{n \to \infty} \left(2 - \frac{n+2}{2^n} \right) + \lim_{n \to \infty} \left(2 + \frac{1 - \frac{1}{2^n}}{\frac{1}{2}} \right)$$
$$= 16$$

91. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that $x_1\in (0,1)$ and $x_{n+1}=x_n^2-x_n+1, \ (\forall)n\in \mathbb{N}.$ Evaluate:

$$\lim_{n\to\infty} \left(x_1 x_2 \cdot \ldots \cdot x_n \right)$$

Solution: Substracting x_n from both sides of the recurrence formula gives $x_{n+1} - x_n = x_n^2 - 2x_n + 1 = (x_n - 1)^2 \ge 0$ so $(x_n)_{n \ge 1}$ is an increasing sequence.

 $x_1 \in (0,1)$ is given as hypothesis. Now if there exists $k \in \mathbb{N}$ such that $x_k \in (0,1)$, then $(x_k - 1) \in (-1,0)$, so $x_k(x_k - 1) \in (-1,0)$. Then $x_{k+1} = 1 + x_k(x_k - 1) \in (0,1)$ as well, so by induction we see that the sequence in contained in (0,1).

 $(x_n)_{n\geq 1}$ is increasing and bounded from above, so it converges. If $\lim_{n\to\infty} x_n = 1$ then from the recurrence, $l = l^2 - l + 1$ which gives l = 1. Thus, $\lim_{n\to\infty} x_n = 1$.

Now rewrite the recurrence formula as $1-x_{n+1}=x_n(1-x_n)$. For $n=1,2,\ldots,n$, we have:

$$1 - x_2 = x_1(1 - x_1)$$

$$1 - x_3 = x_2(1 - x_2)$$

. . .

$$1 - x_n = x_{n-1}(1 - x_{n-1})$$

$$1 - x_{n+1} = x_n(1 - x_n)$$

Multiplying them we have:

$$1 - x_{n+1} = x_1 x_2 \cdot \ldots \cdot x_n (1 - x_1)$$

Thus:

$$\lim_{n \to \infty} (x_1 x_2 \cdot \ldots \cdot x_n) = \lim_{n \to \infty} \frac{1 - x_{n+1}}{1 - x_1} = 0$$

92. If $n \in \mathbb{N}^*$, evaluate:

$$\lim_{x \to 0} \frac{1 - \cos x \cdot \cos 2x \cdot \ldots \cdot \cos nx}{x^2}$$

Solution: Let

$$a_n = \lim_{x \to 0} \frac{1 - \cos x \cdot \cos 2x \cdot \dots \cdot \cos nx}{x^2}$$

Then

$$a_{n+1} = \lim_{x \to 0} \frac{1 - \cos x \cdot \cos 2x \cdot \dots \cdot \cos nx \cdot \cos(n+1)x}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \cos x \cdot \cos 2x \cdot \dots \cdot \cos nx}{x^2} + \lim_{x \to 0} \frac{\cos x \cdot \cos 2x \cdot \dots \cdot nx(1 - \cos(n+1)x)}{x^2}$$

$$= a_n + \lim_{x \to 0} \frac{1 - \cos(n+1)x}{x^2}$$

$$= a_n + \lim_{x \to 0} \frac{2\sin^2 \frac{(n+1)x}{2}}{x^2}$$

$$= a_n + \frac{(n+1)^2}{2} \lim_{x \to 0} \left(\frac{\sin \frac{(n+1)x}{2}}{\frac{n+1}{2}}\right)^2$$

$$= a_n + \frac{(n+1)^2}{2}$$

Now let n = 1, 2, 3, ..., n - 1:

$$a_0 = 0$$

$$a_1 = a_0 + \frac{1}{2}$$

$$a_2 = a_1 + \frac{2^2}{2}$$

$$a_3 = a_2 + \frac{3^2}{2}$$

. . .

$$a_n = a_{n-1} + \frac{n^2}{2}$$

Summing gives:

$$a_n = \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{n^2}{2} = \frac{1}{2}(1^2 + 2^2 + \dots + n^2) = \frac{1}{2} \cdot \frac{n(n+1)(2n+1)}{6}$$

Finally, the answer is

$$\lim_{x \to 0} \frac{1 - \cos x \cdot \cos 2x \cdot \dots \cdot \cos nx}{x^2} = \frac{n(n+1)(2n+1)}{12}$$

93. Consider a sequence of real numbers $(x_n)_{n\geq 1}$ such that x_n is the real root of the equation $x^3+nx-n=0,\ n\in\mathbb{N}^*$. Prove that this sequence is convergent and find it's limit.

Solution: Let $f(x) = x^3 + nx - n$. Then $f'(x) = 3x^2 + n > 0$, so f has only one real root which is contained in the interval (0,1)(because f(0) = -n and f(1) = 1, so $x_n \in (0,1)$).

The sequence $(x_n)_{n\geq 1}$ is strictly increasing, because

$$x_{n+1} - x_n = \frac{1 - x_n}{x_{n+1}^2 + x_{n+1}x_n + x_n^2 + n} > 0$$

Therefore the sequence is convergent. From the equation, we have $x_n = 1 - \frac{x_n^3}{n}$. By passing to limit, we find that $\lim_{n \to \infty} x_n = 1$.

94. Evaluate:

$$\lim_{x \to 2} \frac{\arctan x - \arctan 2}{\tan x - \tan 2}$$

Solution: Using $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$, we have:

$$\lim_{x \to 2} \frac{\arctan x - \arctan 2}{\tan x - \tan 2} = \lim_{x \to 2} \frac{\arctan x - \arctan 2}{\tan(\arctan x - \arctan 2)} \cdot \lim_{x \to 2} \frac{\tan(\arctan x - \arctan 2)}{\tan x - \tan 2}$$

$$= \lim_{x \to 2} \frac{\frac{x - 2}{1 + 2x}}{\frac{\sin(x - 2)}{\cos x \cdot \cos 2}}$$

$$= \lim_{x \to 2} \frac{x - 2}{\sin(x - 2)} \cdot \lim_{x \to 2} \frac{\cos x \cdot \cos 2}{1 + 2x}$$

$$= \lim_{x \to 2} \frac{\cos x \cdot \cos 2}{1 + 2x}$$

$$= \frac{\cos^2 2}{5}$$

95. Evaluate:

$$\lim_{n \to \infty} \frac{1 + \sqrt[2^2]{2!} + \sqrt[3^2]{3!} + \ldots + \sqrt[n^2]{n!}}{n}$$

Solution: Using Cesaro-Stolz:

$$\lim_{n \to \infty} \frac{1 + \sqrt[2^2]{2!} + \sqrt[3^2]{3!} + \ldots + \sqrt[n^2]{n!}}{n} = \lim_{n \to \infty} \sqrt[(n+1)^2]{(n+1)!}$$

Also, an application of AM-GM gives:

$$1 \le {(n+1)^2 \sqrt{(n+1)!}}$$

$$= {n+1 \over \sqrt{n+1 \sqrt{1 \cdot 2 \cdot 3 \cdot \dots \cdot n \cdot (n+1)}}}$$

$$< {n+1 \over \sqrt{1+2+3+\dots+n+n+1}}$$

$$= {n+1 \over \sqrt{n+2}}$$

Thus

$$1 \le \lim_{n \to \infty} \sqrt[(n+1)^2]{(n+1)!} \le \lim_{n \to \infty} \sqrt[n+1]{\frac{n+2}{2}} = 1$$

From the Squeeze Theorem it follows that:

$$\lim_{n \to \infty} \frac{1 + \sqrt[2^2]{2!} + \sqrt[3^2]{3!} + \ldots + \sqrt[n^2]{n!}}{n} = 1$$

96. Let $(x_n)_{n\geq 1}$ such that $x_1 > 0$, $x_1 + x_1^2 < 1$ and $x_{n+1} = x_n + \frac{x_n^2}{n^2}$, $(\forall) n \geq 1$. Prove that the sequences $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 2}$, $y_n = \frac{1}{x_n} - \frac{1}{n-1}$ are convergent.

Solution: $x_{n+1} - x_n = \frac{x_n^2}{n^2}$, so the $(x_n)_{n \ge 1}$ is strictly increasing.

$$x_2 = x_1 + x_1^2 < 1 \Rightarrow \frac{1}{x_2} > 1 \Rightarrow y_2 = \frac{1}{x_2} - 1 > 0$$

Also

$$y_{n+1} - y_n = \frac{1}{x_{n+1}} - \frac{1}{n} - \frac{1}{x_n} + \frac{1}{n-1}$$

$$= \frac{1}{n(n-1)} - \frac{x_{n+1} - x_n}{x_n x_{n+1}}$$

$$= \frac{1}{n(n-1)} - \frac{x_n}{n^2 x_{n+1}}$$

$$> \frac{1}{n(n-1)} - \frac{1}{n^2}$$

$$= \frac{1}{n^2(n-1)}$$

$$> 0$$

Hence $(y_n)_{n\geq 2}$ is strictly increasing. Observe that $x_n=\frac{1}{y_n+\frac{1}{n-1}}$. So

 $\lim_{n\to\infty} x_n = \frac{1}{\lim_{n\to\infty} y_n}$. Assuming that $\lim_{n\to\infty} y_n = \infty$, we have $\lim_{n\to\infty} x_n = 0$, which is

a contradiction, because $x_1 > 0$ and the sequence $(x_n)_{n \ge 1}$ is strictly increasing. Hence $(y_n)_{n \ge 2}$ is convergent. It follows that $(x_n)_{n \ge 2}$ is also convergent.

97. Evaluate:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sin \frac{2i}{n^2}$$

First solution: Let's start from

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \Leftrightarrow (\forall)\varepsilon > 0, \ (\exists)\delta > 0, \ (\forall)x \in (-\delta,\delta) \setminus \{0\} \Rightarrow \left| \frac{\sin x}{x} - 1 \right| < \varepsilon$$

Let some arbitrary $\varepsilon > 0$. For such ε , $(\exists)\delta > 0$ such that $(\forall)x \in (-\delta, \delta) \setminus \{0\}$, we have $1 - \varepsilon < \frac{\sin x}{x} < 1 + \varepsilon$. For $\delta > 0$, $(\exists)n_{\varepsilon} \in \mathbb{N}^*$ such that $\frac{2}{n} < \delta$, $(\forall)n \geq n_{\varepsilon}$. Because $0 < \frac{2i}{n^2} \leq \frac{2}{n}$, $(\forall)1 \leq i \leq n$, $n \geq n_{\varepsilon}$, we have:

$$1 - \varepsilon < \frac{\sin\frac{2i}{n^2}}{\frac{2i}{n^2}} < 1 + \varepsilon$$

Summing, we get:

$$(1-\varepsilon)\sum_{i=1}^{n}\frac{2i}{n^2} < \sum_{i=1}^{n}\sin\frac{2i}{n^2} < (1+\varepsilon)\sum_{i=1}^{n}\frac{2i}{n^2}$$

Or equivalently:

$$\frac{(1-\varepsilon)(n+1)}{n} < \sum_{i=1}^n \sin \frac{2i}{n^2} < \frac{(1+\varepsilon)(n+1)}{n}$$

By passing to limit:

$$1 - \varepsilon \le \lim_{n \to \infty} \sum_{i=1}^{n} \sin \frac{2i}{n^2} \le 1 + \varepsilon$$

Or

$$\left| \lim_{n \to \infty} \sum_{i=1}^{n} \sin \frac{2i}{n^2} - 1 \right| \le \varepsilon, \ (\forall)\varepsilon > 0$$

which implies that:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sin \frac{2i}{n^2} = 1$$

Second solution: Start with the formula

$$\sum_{i=1}^{n} \sin(x+yi) = \frac{\sin\frac{(n+1)y}{2} \cdot \sin\left(x+\frac{ny}{2}\right)}{\sin\frac{y}{2}}$$

Setting x = 0, $y = \frac{2}{n^2}$, it rewrites as

$$\sum_{i=1}^{n} \sin \frac{2i}{n^2} = \frac{\sin \frac{n+1}{n^2} \sin \frac{1}{n}}{\sin \frac{1}{n^2}}$$

whence

$$\lim_{n\to\infty}\sum_{i=1}^n\sin\frac{2i}{n^2}=\lim_{n\to\infty}\frac{\frac{\sin\frac{n+1}{n^2}}{\frac{n+1}{n^2}}\cdot\frac{\sin\frac{1}{n}}{\frac{1}{n}}}{\frac{\sin\frac{1}{n^2}}{\frac{1}{n^2}}}\cdot\lim_{n\to\infty}\frac{n+1}{n}=1$$

98. If a > 0, $a \neq 1$, evaluate:

$$\lim_{x \to a} \frac{x^x - a^x}{a^x - a^a}$$

Solution: As $\lim_{x\to a} x \ln \frac{x}{a} = 0$, we have:

$$\lim_{x \to a} \frac{x^x - a^x}{a^x - a^a} = \lim_{x \to a} \frac{e^{x \ln x} - e^{x \ln a}}{a^x - a^a}$$

$$= \lim_{x \to a} \frac{e^{x \ln a} \left(e^{x \ln \frac{x}{a}} - 1\right)}{a^a (a^{x - a} - 1)}$$

$$= \left(\lim_{x \to a} \frac{e^{x \ln a}}{a^a}\right) \cdot \left(\lim_{x \to a} \frac{e^{x \ln \frac{x}{a}} - 1}{x \ln \frac{x}{a}}\right) \cdot \left(\lim_{x \to a} \frac{x - a}{a^{x - a} - 1}\right) \cdot \left(\lim_{x \to a} \frac{x \ln \frac{x}{a}}{x - a}\right)$$

$$= \frac{1}{\ln a} \cdot \lim_{x \to a} \left[x \ln \left(\frac{x}{a}\right)^{\frac{1}{x - a}}\right]$$

$$= \frac{a}{\ln a} \cdot \lim_{x \to a} \left[\left(1 + \frac{x - a}{a}\right)^{\frac{a}{x - a}}\right]^{\frac{1}{a}}$$

$$= \frac{a}{\ln a} \cdot \ln e^{\frac{1}{a}}$$

$$= \frac{1}{\ln a}$$

99. Consider a sequence of positive real numbers $(a_n)_{n\geq 1}$ such that $a_{n+1}-\frac{1}{a_{n+1}}=a_n+\frac{1}{a_n}, \ (\forall)n\geq 1.$ Evaluate:

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} \right)$$

Solution: $(a_n)_{n\geq 1}$ is clearly an increasing sequence. If it has a finite limit, say l, then

$$l - \frac{1}{l} = l + \frac{1}{l} \Rightarrow \frac{2}{l} = 0$$

contradiction. Therefore a_n approaches infinity. Let $y_n=\frac{1}{a_n^2}+a_n^2$. Then $y_{n+1}=y_n+4$. So

$$y_2 = y_1 + 4$$

$$y_3 = y_2 + 4$$

. . .

$$y_{n+1} = y_n + 4$$

Summing, it results that $y_{n+1} = y_1 + 4n$, which rewrites as

$$a_{n+1}^2 + \frac{1}{a_{n+1}^2} = y_1 + 4n \Leftrightarrow \left(a_{n+1} + \frac{1}{a_{n+1}}\right)^2 = y_1 + 2 + 4n \Leftrightarrow$$

$$a_{n+1} + \frac{1}{a_{n+1}} = \sqrt{4n + y_1 + 2} \Rightarrow a_{n+1}^2 - \sqrt{4n + y_1 + 2} \cdot a_{n+1} + 1 = 0$$

from which $a_{n+1} = \frac{\sqrt{4n + y_1 + 2} \pm \sqrt{4n + y_1 - 2}}{2}$. If we accept that $a_{n+1} = \frac{\sqrt{4n + y_1 + 2} - \sqrt{4n + y_1 - 2}}{2}$, then:

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{\sqrt{4n + y_1 + 2} - \sqrt{4n + y_1 - 2}}{2} = \lim_{n \to \infty} \frac{2}{\sqrt{4n + y_1 + 2} + \sqrt{4n + y_1 - 2}} = 0$$

which is false, therefore $a_{n+1} = \frac{\sqrt{4n + y_1 + 2} + \sqrt{4n + y_1 - 2}}{2}$.

By Cesaro-Stolz, we obtain:

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right) = \lim_{n \to \infty} \frac{\frac{1}{a_n}}{\sqrt{n+1} - \sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n} + \sqrt{n+1}}{a_{n+1}}$$

$$= \lim_{n \to \infty} \frac{2(\sqrt{n} + \sqrt{n+1})}{\sqrt{4n + y_1 + 2} + \sqrt{4n + y_1 - 2}}$$

$$= \lim_{n \to \infty} \frac{2(1 + \sqrt{1 + \frac{1}{n}})}{\sqrt{4 + \frac{y_1}{n} + \frac{2}{n}} + \sqrt{4 + \frac{y_1}{n} - \frac{2}{n}}}$$

$$= 1$$

100. Evaluate:

$$\lim_{x\to 0}\frac{2^{\arctan x}-2^{\arcsin x}}{2^{\tan x}-2^{\sin x}}$$

$$\begin{split} \lim_{x \to 0} \frac{2^{\arctan x} - 2^{\arcsin x}}{2^{\tan x} - 2^{\sin x}} &= \lim_{x \to 0} \frac{2^{\arcsin x} (2^{\arctan x - \arcsin x} - 1)}{2^{\sin x} (2^{\tan x - \sin x} - 1)} \\ &= \lim_{x \to 0} \frac{2^{\arctan x - \arcsin x} - 1}{2^{\tan x - \sin x} - 1} \\ &= \lim_{x \to 0} \frac{2^{\arctan x - \arcsin x} - 1}{\arctan x - \arcsin x} \cdot \lim_{x \to 0} \frac{\tan x - \sin x}{2^{\tan x - \sin x} - 1} \cdot \lim_{x \to 0} \frac{\arctan x - \arcsin x}{\tan x - \sin x} \\ &= \ln 2 \cdot \frac{1}{\ln 2} \cdot \lim_{x \to 0} \frac{\arctan x - \arcsin x}{\tan x - \sin x} \\ &= \lim_{x \to 0} \frac{\arctan x - \arcsin x}{x^3} \cdot \lim_{x \to 0} \frac{x^3}{\tan x - \sin x} \\ &= \lim_{x \to 0} \frac{\arctan x - \arcsin x}{x^3} \cdot \lim_{x \to 0} \frac{x^3}{\tan x - \arcsin x} \\ &= \lim_{x \to 0} \frac{\arctan x - \arcsin x}{\tan(\arctan x - \arcsin x)} \cdot \lim_{x \to 0} \frac{\tan(\arctan x - \arcsin x)}{x^3} \cdot \lim_{x \to 0} \frac{x^3}{\tan x (-\cos x)} \\ &= \lim_{x \to 0} \frac{x}{x^{1 - \frac{x^2}{2}}} \cdot \lim_{x \to 0} \frac{x^3}{2 \tan x} \cdot 2 \lim_{x \to 0} \left(\frac{\frac{x}{2}}{\sin \frac{x}{2}}\right)^2 \\ &= 2 \lim_{x \to 0} \frac{-x^2}{x^2(\sqrt{1 - x^2} + x^2)(\sqrt{1 - x^2} + 1)} \\ &= -1 \end{split}$$