TEORÍA DE NÚMEROS – MAT2225 SEGUNDO SEMESTRE DEL 2024 PROFESOR: HÉCTOR PASTÉN AYUDANTE: ROCÍO SEPÚLVEDA MANZO

AYUDANTÍA 5

1. Introducción a los números p-ádicos

Comencemos estudiando congruencias módulo una potencia de un primo.

Ejercicio 1: Considere la siguiente congruencia

$$(1.1) x^2 \equiv 2 \mod 7^n,$$

encuentre las soluciones para n = 1, 2, 3.

Solución. Para n=1 la congruencia posee dos soluciones $x_0\equiv \pm 3\mod 7$. Ahora considere n=2

$$(1.2) x^2 \equiv 2 \mod 7^2,$$

esto implica que $x^2 \equiv 2 \mod 7$. Por tanto, cada solución de (1.2) es de la formma $x_0 + 7t_1$, donde x_0 es la solución de (1.1). Así que, las soluciones que buscamos son de la forma $x_1 = 3 + 7t_1$. (Las soluciones de la forma $-3 + 7t_1$ se encuentran de la misma forma.) Substituyendo la expresión para x_1 en (1.2), obtenemos

$$(3+7t_1)^2 \equiv 2 \mod 7^2,$$

 $9+6\cdot 7t_1+7^2t_1^2 \equiv 2 \mod 7^2,$
 $1+6t_1 \equiv 0 \mod 7,$
 $t_1 \equiv 1 \mod 7.$

Así que, $x_1 \equiv 3+7\cdot 1 \mod 7^2$. Similarmente, cuando n=3 tenemos $x_2=x_1+7^2t_2$ y desde la congruencia

$$(3+7+7^2t_2)^2 \equiv 2 \mod 7^3$$

deducimos que $t_2 \equiv 2 \mod 7$; esto es,

$$x_2 \equiv 3 + 7 \cdot 1 + 7^2 \cdot 2 \mod 7^3$$
.

Podemos continuar de manera infinita y obtenemos la secuencia

$$(1.3)$$
 $x_0, x_1, \ldots, x_n, \ldots$

las cuales satisfacen

$$x_0 \equiv 3 \mod 7,$$

 $x_n \equiv x_{n-1} \mod 7^n,$
 $x_n^2 \equiv 2 \mod 7^{n+1}.$

La construcción de la secuencia (1.3) recuerda al proceso para encontrar la raíz cuadrada de 2. En efecto, para calcular $\sqrt{2}$, se debe encontrar una secuencia de racionales r_0, r_1, \ldots cuyos cuadrados convergen a 2,

$$|r_n^2 - 2| < \frac{1}{10^n}.$$

En nuestro caso, construimos una secuencia de enteros x_0, x_1, \ldots para los cuales $x_n^2 - 2$ es divisible por 7^{n+1} . Este análogo se vuelve más preciso si decimos que dos enteros son *cercanos* (o bien, *p-cercanos*), cuando su diferencia es divisible por una potencia de p suficientemente larga. Con este concepto de cercanía podemos decir que los cuadrados de los números en la secuencia (1.3) se vuelven arbitrarianmente 7-cercanos a 2 cuando n crece.

Definición 1.1: Sea p algún primo. Una secuencia de enteros $\{x_n\} = \{x_0, x_1, \ldots\}$ que satisface $x_n \equiv x_{n-1} \mod p^n$ para cada $n \geq 1$, determina un objeto llamado **entero** p-ádico

$$x = x_0 + x_1 \cdot p + x_2 \cdot p^2 + \dots = \sum_{i=0}^{\infty} x_i p^i.$$

El conjunto de todos los enteros p-ádicos se denota \mathbb{Z}_p .

Ejemplo 1.2: La 7-ádica solución de $x^2=2$ es $3+1\cdot 7+2\cdot 7^2+6\cdot 7^3+1\cdot 7^4+\dots$

Podemos definir la divisibilidad de los enteros p-ádicos como se hace en cualquier anillo conmutativo; α divide a β si $\beta = \alpha \gamma$. Para saber cuales enteros p-ádicos se tiene inversa, es decir, si son inversibles o unidad, se tiene el siguiente resultado

Teorema 1.3: Un entero p-ádico, el cual está determinado por $\{x_0, x_1, x_2, \ldots\}$, éste es una unidad syss $x_0 \not\equiv 0 \mod p$.

Definición 1.4: Una fracción de la forma α/p^k , $\alpha \in \mathbb{Z}_p$, $k \geq 0$, determina un p-ádico fraccionario, o más simple, un **número** p-ádico. Dos fracciones, α/p^k y β/p^m determinan el mismo número p-ádico syss $\alpha p^m = \beta p^k$ en \mathbb{Z}_p .

El conjunto de todos los números p-ádicos se denota como \mathbb{Q}_p .

 $\pmb{Definici\'on}$ 1.5: Sea $\varphi\colon\mathbb{Q}\to\mathbb{Q}$ una función. Si satisface las siguientes condiciones

- 1. $\varphi(a) \geq 0$ con igualdad syss a = 0,
- 2. $\varphi(ab) = \varphi(a)\varphi(b)$,
- 3. $\varphi(a+b) \le \max(\varphi(a), \varphi(b)),$

diremos que φ es una valuación no arquimediana.

 $Ejemplo\ 1.6:$ Si consideramos algún p primo, podemos escribir de manera única cualquier racional como

$$a = \frac{r}{s}p^n, \qquad s > 0,$$

donde r, y s son enteros coprimos, $p \nmid rs$ y n es un entero el cual puede ser positivo, negativo o cero. Ahora definamos para $a \neq 0$

$$\varphi(a) = p^{-n}$$

y $\varphi(0) = \infty$. Podemos verificar que φ es una valuación no arquimediana, le diremos valuación p-ádica y le escribiremos como $|\cdot|_p$.

A través de este ejemplo podemos definir $v_p(a) = -\log |a|_p$, éste también es una valuación no arquimediana.

2. Congruencias y enteros p-ádicos

Teorema 2.1: Sea $F(x_1,...,x_n)$ un polinomio con coeficientes enteros racionales. La congruencia

$$F(x_1,\ldots,x_n) \equiv 0 \mod p^k$$

posee solución para cada $k \ge 1$ syss la ecuación

$$F(x_1,\ldots,x_n)=0$$

posee solución en \mathbb{Z}_p .

Teorema 2.2 (Lema de Hensel): Si $f(x) \in \mathbb{Z}_p[x]$ y $a \in \mathbb{Z}_p$ satisfacen $f(a) \equiv 0 \mod p$ y $f'(a) \not\equiv 0 \mod p$ entonces existe un único $\alpha \in \mathbb{Z}_p$ tal que $f(\alpha) = 0$ en \mathbb{Z}_p y $\alpha \equiv a \mod p$.

Ejercicio 2: Sea $f(x) = x^2 - 2$ busque las soluciones enteras 7-ádicas.

3. Principio local-global

El principio local-global enuncia, de manera escencial, que un teorema o propiedad se cumple sobre \mathbb{Q} syss se cumple en \mathbb{R} y en \mathbb{Q}_p para cada p. Diremos que \mathbb{Q} es un *campo global* y \mathbb{R} , \mathbb{Q}_p *campos locales*.

En clases vieron casos de existencia de soluciones no triviales para polinomios homogéneos de grado 2. Un clásico teorema relacionado es

Teorema 3.1 (Euler): Un entero positivo m puede ser escrito como una suma de dos cuadrados syss cada p que divide a m con $p \equiv 3 \mod 4$ tiene una multiplicidad par como un factor de m.

Para trabajar éste teorema en términos p-ádicos, primero describiremos de manera equivalente un entero p-ádico.

Ejercicio 3: 1. Para un primo $p \equiv 1 \mod 4$, todo entero p-ádico es una suma de dos enteros cuadrados p-ádicos.

- 2. Para un primo $p \equiv 3 \mod 4$, un entero no nulo p-ádico t es una suma de dos cuadrados en \mathbb{Z}_p syss $v_p(t)$ es par.
- 3. Concluya que un entero no nulo es la suma de dos cuadrados en \mathbb{Z} syss es una suma de dos cuadrados en \mathbb{R} y en cada \mathbb{Z}_p .

REFERENCIAS

- 1. Borevich, Z. I. y Shafarevich, I. R. *Number Theory* (Academic Press, 1966).
- 2. Conrad, K. The local-global principle https://kconrad.math.uconn.edu/blurbs/.
- 3. Hua, L. K. y Shiu, P. *Introduction to Number Theory* (Springer-Verlag Berlin Heidelberg, 1982).

Correo electrónico: rseplveda@uc.cl