Tích phân phụ thuộc tham số

TS. Bùi Xuân Diệu

Viện Toán Ứng dụng và Tin học, Đại học Bách Khoa Hà Nội

Chương 3: Tích phân phụ thuộc tham số

1 Tích phân xác định phụ thuộc tham số

Tích phân suy rộng phụ thuộc tham số

- Tích phân Euler
 - Hàm Gamma
 - Hàm Beta

Chương 3: Tích phân phụ thuộc tham số

1 Tích phân xác định phụ thuộc tham số

2 Tích phân suy rộng phụ thuộc tham số

- Tích phân Euler
 - Hàm Gamma
 - Hàm Beta

Giới thiệu

Định nghĩa

Cho hàm số f(x,y) liên tục trên $[a,b] \times [c,d]$. Khi đó,

$$I(y) = \int_{a}^{b} f(x, y) dx$$
 (1)

là một hàm số xác định trên [c, d], và được gọi là một TP PTTS.

Mục đích: Khảo sát tính liên tục, khả vi, khả tích của I(y).

Định lý (Tính liên tục)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số liên tục trên [c,d], i.e.,

Định lý (Tính liên tục)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số liên tục trên [c,d], i.e.,

$$\lim_{y \to y_0} I(y) = \left[\lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx \right] = \int_a^b f(x, y_0) dx = I(y_0).$$

Định lý (Tính liên tục)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số liên tục trên [c,d], i.e.,

$$\lim_{y \to y_0} I(y) = \left[\lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx \right] = \int_a^b f(x, y_0) dx = I(y_0).$$

Ví dụ

Tính $\lim_{y\to 0} \int_{0}^{2} x^{2} \cos xy dx$.

Tính liên tục

Định lý (Tính liên tục)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số liên tục trên [c,d], i.e., $\lim_{y \to y_0} \int\limits_a^b f(x,y) dx = \int\limits_a^b \lim\limits_{y \to y_0} f(x,y) dx$

Ví du

Khảo sát sự liên tục của tích phân $I(y) = \int\limits_0^1 \frac{yf(x)}{x^2+y^2} dx$, với f(x) là hàm số dương, liên tục trên [0,1].

Tính liên tục

Định lý (Tính liên tục)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số liên tục trên [c,d], i.e., $\lim_{y \to y_0} \int\limits_a^b f(x,y) dx = \int\limits_a^b \lim\limits_{y \to y_0} f(x,y) dx$

Ví du

Khảo sát sự liên tục của tích phân $I(y) = \int_0^1 \frac{yf(x)}{x^2+y^2} dx$, với f(x) là hàm số dương, liên tục trên [0,1].

- i) Xét tính liên tục của I(y) trên mỗi hình chữ nhật $[0,1] \times [c,d]$ và $[0,1] \times [-d,-c]$ với 0 < c < d bất kì.
- ii) Xét tính liên tục của I(y) tại 0.

Định lý (Tính khả vi)

Nếu

- i) f(x,y)là hàm số liên tục trên $[a,b] \times [c,d]$,
- ii) $f'_y(x,y)$ là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số khả vi trên (c,d) và

$$I'(y) = \left(\int_{a}^{b} f(x,y)dx\right)' =$$

Định lý (Tính khả vi)

Nêu

- i) f(x,y)là hàm số liên tục trên $[a,b] \times [c,d]$,
- ii) $f_y'(x,y)$ là hàm số liên tục trên $[a,b] \times [c,d]$

thì I(y) là hàm số khả vi trên (c,d) và

$$I'(y) = \left(\int_a^b f(x,y)dx\right)'_y = \int_a^b f'_y(x,y)dx.$$

Định lý (Tính khả vi)

Nếu

- i) f(x,y)là hàm số liên tục trên $[a,b] \times [c,d]$,
- ii) $f_y^{'}(x,y)$ là hàm số liên tục trên $[a,b] \times [c,d]$

thì I(y) là hàm số khả vi trên (c,d) và

$$I'(y) = \left(\int_a^b f(x,y)dx\right)'_V = \int_a^b f'_Y(x,y)dx.$$

Ví du

Tính tích phân $I_n(\alpha) = \int_{0}^{1} x^{\alpha} \ln^n x dx$, n là số nguyên dương.

Ví du

Tính
$$I_n(\alpha) = \int_0^1 x^\alpha \ln^n x dx$$
, n là số nguyên dương.

- B1. Kiểm tra các điều kiện của Định lý Leibniz'
- B2. Nhận xét rằng $I'_{n-1} = I_n$ nên $I_n(\alpha) = [I_0(\alpha)]^{(n)}$.

Ví dụ

Tính
$$I_n(\alpha) = \int_0^1 x^\alpha \ln^n x dx$$
, n là số nguyên dương.

- B1. Kiểm tra các điều kiện của Định lý Leibniz'
- B2. Nhận xét rằng $I'_{n-1} = I_n$ nên $I_n(\alpha) = [I_0(\alpha)]^{(n)}$.

Ví du

Tính
$$I(y) = \int_{0}^{1} \arctan \frac{x}{y} dx$$
.

- B1. Kiểm tra các điều kiện của Định lý Leibniz.
- B2. Tính $I'(y) = \frac{1}{2} \ln \frac{y^2}{1+y^2}$.
- B3. $I(y) = \arctan \frac{1}{y} + \frac{1}{2}y \ln \frac{y^2}{1+v^2}$.

Định lý (Tính khả tích)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số khả tích trên [c,d], và:

$$\int_{c}^{d} I(y) dy := \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy =$$

Định lý (Tính khả tích)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số khả tích trên [c,d], và:

$$\int_{c}^{d} I(y) dy := \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Định lý (Tính khả tích)

Nếu f(x,y) là hàm số liên tục trên $[a,b] \times [c,d]$ thì I(y) là hàm số khả tích trên [c,d], và:

$$\int_{c}^{d} I(y) dy := \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Ví du

Tính

$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx, \ (0 < a < b).$$

Tích phân phụ thuộc tham số với cận biến đổi

$$J(y) = \int_{a(y)}^{b(y)} f(x, y) dx$$
, với $y \in [c, d]$.

Định lý (Tính liên tục)

Nêu

- i) f(x,y) liên tục trên $[a,b] \times [c,d]$,
- ii) a(y), b(y) liên tục trên [c, d] và $a \le a(y), b(y) \le b \ \forall y \in [c, d]$ thì J(y) là một hàm số liên tục đối với y trên [c, d].

Ví du

$$\operatorname{Tim} \lim_{y \to 0} \int_{y}^{1+y} \frac{dx}{1+x^2+y^2}.$$

Tích phân phụ thuộc tham số với cận biến đổi

$$J(y) = \int_{a(y)}^{b(y)} f(x, y) dx$$
, với $y \in [c, d]$

Định lý (Tính khả vi)

Nêu

- i) f(x,y) liên tục trên $[a,b] \times [c,d]$,
- ii) $f_{v}^{'}(x,y)$ liên tục trên $[a,b] \times [c,d]$,
- iii) a(y), b(y) khả vi trên [c, d] và $a \le a(y), b(y) \le b \ \forall y \in [c, d]$ thì J(y) là một hàm số khả vi đối với y trên [c, d], và

$$J'(y) = \int_{a(y)}^{b(y)} f'_{y}(x, y) dx + f(b(y), y) b'_{y}(y) - f(a(y), y) a'_{y}(y)$$

Chương 3: Tích phân phụ thuộc tham số

Tích phân xác định phụ thuộc tham số

Tích phân suy rộng phụ thuộc tham số

- Tích phân Euler
 - Hàm Gamma
 - Hàm Beta

Xét TPSR phụ thuộc tham số $I(y) = \int_{a}^{+\infty} f(x,y)dx$, $y \in [c,d]$.

Định nghĩa

Ta nói TPSR phụ thuộc tham số là

i) hội tụ tại $y_0 \in [c,d]$ nếu $\int\limits_a^\infty f(x,y_0)dx$ hội tụ, i.e.,

Xét TPSR phụ thuộc tham số $I(y) = \int_{a}^{+\infty} f(x,y) dx$, $y \in [c,d]$.

Định nghĩa

Ta nói TPSR phụ thuộc tham số là

i) hội tụ tại $y_0 \in [c,d]$ nếu $\int\limits_a^\infty f(x,y_0)dx$ hội tụ, i.e., $\forall \epsilon > 0, \exists b = b(\epsilon,y_0)$

$$\left|I(y_0)-\int_a^A f(x,y_0)dx\right|=\left|\int_A^\infty f(x,y_0)dx\right|<\epsilon\quad\forall A>b.$$

ii) hội tụ trên [c,d] nếu I(y) hội tụ tại mọi $y \in [c,d]$,

Xét TPSR phụ thuộc tham số $I(y) = \int_{a}^{+\infty} f(x,y) dx$, $y \in [c,d]$.

Định nghĩa

Ta nói TPSR phụ thuộc tham số là

i) hội tụ tại
$$y_0 \in [c,d]$$
 nếu $\int\limits_a^\infty f(x,y_0)dx$ hội tụ, i.e., $\forall \epsilon > 0, \exists b = b(\epsilon,y_0)$

$$\left|I(y_0)-\int_a^A f(x,y_0)dx\right|=\left|\int_A^\infty f(x,y_0)dx\right|<\epsilon\quad\forall A>b.$$

- ii) hội tụ trên [c,d] nếu I(y) hội tụ tại mọi $y \in [c,d]$,
- iii) hội tụ đều trên [c,d] nếu $\forall \epsilon > 0, \exists b = b(\epsilon) > a$ sao cho

$$\left| \int_{A}^{\infty} f(x,y) dx \right| < \epsilon \quad \forall A > b, \forall y \in [c,d].$$

Ví du

Chứng minh rằng $I(y) = \int_{1}^{\infty} \sin(yx) dx$ hội tụ khi y = 0 và phân kỳ khi $y \neq 0$.

Ví dụ

Chứng minh rằng $I(y) = \int_{1}^{\infty} \sin(yx) dx$ hội tụ khi y = 0 và phân kỳ khi $y \neq 0$.

Ví dụ

- a) Tính $I(y) = \int_{0}^{+\infty} y e^{-yx} dx$ (y > 0).
- b) Chứng minh rằng I(y) hội tụ đến 1 đều trên $[y_0,+\infty)$ với mọi $y_0>0$.
- c) Giải thích tại sao I(y) không hội tụ đều trên $(0, +\infty)$.

Ví du

Chứng minh rằng
$$\lim_{y\to 0^+} \left(\int_0^{+\infty} y e^{-yx} dx \right) \neq \int_0^{+\infty} \left(\lim_{y\to 0^+} y e^{-yx} \right) dx$$

Ví du

Chứng minh rằng
$$\lim_{y \to 0^+} \left(\int_0^{+\infty} y e^{-yx} dx \right) \neq \int_0^{+\infty} \left(\lim_{y \to 0^+} y e^{-yx} \right) dx$$

Định lý (Tính liên tục)

Nếu

i)
$$f(x,y)$$
 liên tục trên $[a,+\infty) \times [c,d]$,

ii) TPSR I
$$(y) = \int_{a}^{+\infty} f(x,y) dx$$
 hội tụ đều trên $[c,d]$

thì I(y) liên tục trên [c,d], i.e.,

Ví du

Chứng minh rằng
$$\lim_{y \to 0^+} \left(\int_0^{+\infty} y e^{-yx} dx \right) \neq \int_0^{+\infty} \left(\lim_{y \to 0^+} y e^{-yx} \right) dx$$

Định lý (Tính liên tục)

Nêu

i)
$$f(x,y)$$
 liên tục trên $[a,+\infty) \times [c,d]$,

ii) TPSR I
$$(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$
 hội tụ đều trên $[c,d]$

thì I(y) liên tục trên [c,d], i.e.,

$$\lim_{y\to y_0}I(y)=\left|\lim_{y\to y_0}\int\limits_{a}^{+\infty}f(x,y)dx=\int\limits_{a}^{+\infty}\lim_{y\to y_0}f(x,y)dx\right|=\int\limits_{a}^{+\infty}f(x,y_0)dx.$$

Định lý (Dấu hiệu hội tụ Weierstrass)

Nếu

i)
$$|f(x,y)| \leq g(x) \forall (x,y) \in [a,+\infty) \times [c,d]$$
,

ii) TPSR
$$\int_{a}^{+\infty} g(x) dx$$
 hội tụ

thì TPSR I
$$(y) = \int_{a}^{+\infty} f(x,y) dx$$
 hội tụ đều trên $[c,d]$.

Ví du

Chứng minh rằng

a)
$$I(y) = \int\limits_0^\infty \frac{\cos xy}{x^2+1} dx$$
 là hội tụ đều trên \mathbb{R} .

Ví dụ

Tính
$$\int\limits_0^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$
, $(\alpha, \beta > 0)$.

Ví dụ

Tính
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$
, $(\alpha, \beta > 0)$.

Định lý (Tính khả vi)

Nếu

i)
$$f(x,y)$$
 và $f'_v(x,y)$ liên tục trên $[a,+\infty)\times [c,d]$,

ii)
$$I(y) = \int_{a}^{+\infty} f(x,y)dx$$
 hội tụ trên $[c,d]$,

iii)
$$\int_{0}^{+\infty} f_{y}'(x,y)dx$$
 hội tụ đều trên $[c,d]$

thì
$$I(y)$$
 là hàm số khả vi trên $[c,d]$ và $I'(y) = \int_a^{+\infty} f_y'(x,y) dx$.

Ví dụ

Tính
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$
, $(\alpha, \beta > 0)$.

Ví dụ

Tính
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx$$
, $(\alpha, \beta > 0)$.

Định lý (Tính khả tích)

Nếu

- i) f(x,y) liên tục trên $[a,+\infty) \times [c,d]$,
- ii) $I(y) = \int_{0}^{+\infty} f(x, y) dx$ hội tụ đều trên [c, d]

thì I(y) là khả tích trên [c,d] và

$$\int_{c}^{d} I(y) dy := \int_{c}^{d} \left(\int_{a}^{+\infty} f(x, y) dx \right) dy = \int_{a}^{+\infty} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Các phương pháp tính TPSR phụ thuộc tham số

Đạo hàm qua dấu tích phân

- **B1.** Tính I'(y) bằng cách $I'(y) = \int_a^{+\infty} f_y'(x,y) dx$.
- **B2.** $I(y) = \int I'(y) dy + C$.
- **B3.** Tính $I(y_0)$ với một giá trị đặc biệt nào đó của y_0 để suy ra C.

Chú ý: Phải kiểm tra điều kiện chuyển dấu đạo hàm qua tích phân.

Ví du

Tính các tích phân sau $(a, b, \alpha, \beta > 0)$:

a)
$$\int_{0}^{1} \frac{x^{b}-x^{a}}{\ln x} dx.$$

c)
$$\int_{0}^{+\infty} \frac{e^{-\alpha x^2} - e^{-\beta x^2}}{x^2} dx.$$

b)
$$\int_{2}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx.$$

d)
$$\int_{0}^{+\infty} \frac{dx}{(x^2+y)^{n+1}}.$$

Các phương pháp tính TPSR phụ thuộc tham số

Đổi thứ tự lấy tích phân

- **B1.** Biểu diễn $f(x,y) = \int_{c}^{d} F(x,y) dy$.
- B2. Sử dụng tính chất đổi thứ tự lấy tích phân:

$$\int_{a}^{+\infty} f(x,y)dx = \int_{a}^{+\infty} \left(\int_{c}^{d} F(x,y)dy \right) dx = \int_{c}^{d} \left(\int_{a}^{+\infty} F(x,y)dx \right) dy.$$

Chú ý: Phải kiểm tra điều kiện đổi thứ tự lấy tích phân.

Ví du

a)
$$\int_{0}^{1} \frac{x^{b}-x^{a}}{\ln x} dx.$$

c)
$$\int_{0}^{+\infty} \frac{e^{-\alpha x^2} - e^{-\beta x^2}}{x^2} dx.$$

b)
$$\int_{-\infty}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} dx.$$

d)
$$\int_{0}^{+\infty} e^{-ax} \frac{\sin bx - \sin cx}{x}$$
.

Chương 3: Tích phân phụ thuộc tham số

Tích phân xác định phụ thuộc tham số

Tích phân suy rộng phụ thuộc tham số

- Tích phân Euler
 - Hàm Gamma
 - Hàm Beta

Hàm Gamma

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx \text{ xác định trên } (0, +\infty).$$

Ví dụ

Tính $\Gamma(1)$, $\Gamma(\frac{1}{2})$.

Hàm Gamma

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx \text{ xác định trên } (0, +\infty).$$

Ví du

Tính $\Gamma(1)$, $\Gamma(\frac{1}{2})$.

Các tính chất

- 1) Ha bâc: $\Gamma(p+1) = p\Gamma(p)$.
 - Ý nghĩa: chỉ cần nghiên cứu $\Gamma(p)$ với 0 mà thôi.

Nếu
$$\alpha \in (n, n+1]$$
 thì $\Gamma(\alpha) = (\alpha-1)(\alpha-2)\dots(\alpha-n)\Gamma(\alpha-n)$.

Đặc biệt,
$$\begin{cases} \Gamma(1) = 1, \\ \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \end{cases}$$
 nên $\begin{cases} \Gamma(n) = (n-1)! \\ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}. \end{cases}$

Hàm Gamma

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx \text{ xác định trên } (0, +\infty).$$

Ví du

Tính $\Gamma(1)$, $\Gamma(\frac{1}{2})$.

Các tính chất

- 1) Ha bâc: $\Gamma(p+1) = p\Gamma(p)$.
 - **Ý** nghĩa: chỉ cần nghiên cứu $\Gamma(p)$ với 0 mà thôi.

Nếu $\alpha \in (n, n+1]$ thì $\Gamma(\alpha) = (\alpha-1)(\alpha-2) \dots (\alpha-n)\Gamma(\alpha-n)$.

2) $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi} \ \forall 0$

Hàm Beta

Dang 1: B
$$(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$$
.

Dang 1: B
$$(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$$
.

Dang 2: B
$$(p,q) = \int_0^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx$$
.

Mối liên hệ giữa hàm Gamma và Beta

i)
$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$
.

ii)
$$B(p, 1-p) = \Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$$
.

Dang 1:
$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$$
.

Dạng 2:
$$B(p,q) = \int_0^{+\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx$$
.

Mối liên hệ giữa hàm Gamma và Beta

- i) B $(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$.
- ii) B $(p, 1-p) = \Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$.

Các tính chất

- 1) Tính đối xứng: B(p,q) = B(q,p).
- 2) Hạ bậc: $\begin{cases} \mathsf{B}\,(p,q) = \frac{p-1}{p+q-1}\,\mathsf{B}\,(p-1,q)\,, & \text{nếu } p > 1 \\ \mathsf{B}\,(p,q) = \frac{q-1}{p+q-1}\,\mathsf{B}\,(p,q-1)\,, & \text{nếu } q > 1. \end{cases}$

Ý nghĩa: chỉ cần nghiên cứu hàm Beta trong khoảng $(0,1] \times (0,1].$

Đặc biệt, B (1,1) = 1 nên B $(m,n) = \frac{(m-1)!(n-1)!}{(m+n-1)!}, \ \forall m,n \in \mathbb{N}.$

Tích phân Euler

Ví dụ

Biểu thị $\int_0^{\frac{\pi}{2}} \sin^m t \cos^n t dt$ qua hàm Beta.

Gợi ý: Đặt $\sin x = \sqrt{t}$ để suy ra $\int_0^{\frac{\pi}{2}} \sin^m t \cos^n t dt = \frac{1}{2} \operatorname{B}\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$.

Tích phân Euler

Ví du

Biểu thi $\int_0^{\frac{\pi}{2}} \sin^m t \cos^n t dt$ qua hàm Beta.

Gợi ý: Đặt $\sin x = \sqrt{t}$ để suy ra $\int_0^{\frac{\pi}{2}} \sin^m t \cos^n t dt = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$.

Dạng lượng giác của hàm Gamma

$$B(p,q) = 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1} t \cos^{2q-1} t dt.$$

Ví du

- a) $\int_0^{\frac{\pi}{2}} \sin^6 x \cos^4 x dx$.
- b) $\int_0^a x^{2n} \sqrt{a^2 x^2} dx$ (a > 0).
- c) $\int_{0}^{+\infty} x^{10} e^{-x^2} dx$.

- d) $\int_0^{+\infty} \frac{\sqrt{x}}{(1+x^2)^2} dx$.
- e) $\int_0^{+\infty} \frac{1}{1+x^3} dx$.
- f) $\int_0^1 \frac{1}{\sqrt[n]{1-x^n}} dx$, $n \in \mathbb{N}^*$.