Part 2: notMNIST

Partial Model

The partial model is a convolution neural network with 8 filter 3*3 convolution layer, 2x2 pooling layer, another 8 filter 3*3 convolution layer, another 2x2 pooling layer, and then two fully conencted layers before an output layer. It had training/testing accuraccy of 94.8% / 95.2%.

Testing Programs

I modified predict_test.py.

First line to load model: model = tf.keras.models.load_model(sys.argv[2])
Second line to make prediction: prediction = model.predict(img)[0]
Third line to determine predicted label: predicted_label = np.argmax(prediction)

Incorrect Images

The three incorrect images I picked were index 34, 47, and 93 in the testing set.

Figure 1: Image 34

Figure 2: Image 47

Figure 3: Image 93

Image 34 had the incorrect label of A (E is correct), although we can see that the model was not very confident in any particular answer.

Image 47 had the incorrect label of A (B is correct). I suspect it was due to the circle around it distracting the model.

Image 93 had the incorrect label of A (D is correct). The model was very confident in its incorrect answer. As a human, I can see how it sort of shares the features of a lowercase 'a'.

Improvements

Because the model had lower accuracy on the training set than the testing set, I decided that overfitting was not an issue. Therefore I modified the decay rate on the scheduled learning rate from 0.6 to 0.75. This allows the model to fit more closely to the training data.

I also changed the size of the first convolution layer from 3x3 to 5x5 (filter number unchanged). This should allow the model to detect slightly larger features on the original image.

Results

The three misidentified images are now identified correctly.

Figure 4: Image 34

Figure 5: Image 47

Figure 6: Image 93

The final model has training/testing accuraccy of 96.7% / 95.2%. Note that the testing accuracy didn't actually improve compared to the partial model, which means that other images are now being misidentified.