(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-279070

(43)公開日 平成5年(1993)10月26日

(51)Int.Cl.⁵ C 0 3 B 37/029 識別記号 庁内整理番号

FΙ

技術表示箇所

G 0 2 B 6/00

356 A 7036-2K

審査請求 未請求 請求項の数4(全 4 頁)

(21)出願番号	特願平4-109044	(71)出順人 000005186
		株式会社フジクラ
(22)出願日	平成4年(1992)4月3日	東京都江東区木場 1 丁目 5 番 1 号
		(72)発明者 藤巻 宗久
		千葉県佐倉市六崎1440番地 藤倉電線株式
		会社佐倉工場内
		(72)発明者 萩野 直樹
		千葉県佐倉市六崎1440番地 藤倉電線株式
		会社佐倉工場内
		(72) 発明者 辻 敏之
		千葉県佐倉市六崎1440番地 藤倉電線株式
		会社佐倉工場内
		(74)代理人 弁理士 藤本 博光
		最終頁に続く

(54)【発明の名称】 光ファイバ線引き炉

(57)【要約】

【目的】 線引き炉の構造が簡単で、かつ不活性ガスの Heの使用量を少なくしながら、光ファイバの外径変動 を抑制しうる光ファイバ線引き炉を提供すること。 【構成】 ヒータ2を有する線引き炉本体1に賞装され た単一の外側炉心管3と同心状に、内側上部炉心管6と 内側下部炉心管8とを光ファイバ母材4の先端溶融部近 辺相当の間隔を介して設置し、内側下部炉心管8をHe ガスの流路とし、外側炉心管3と内側の各炉心管6・8 との間隙をN2 ガスまたはArガスの流路としたこと。

【特許請求の範囲】

【請求項1】 ヒータを有する線引き炉本体に貫装され た単一の外側炉心管と同心状に、内側上部炉心管と内側 下部炉心管とを光ファイバ母材の先端溶融部近辺相当の 間隔を介して設置し、内側下部炉心管をHeガスの流路 とし、外側炉心管と内側の各炉心管との間隙をN2 ガス またはArガスの流路としたことを特徴とする光ファイ バ線引き炉。

【請求項2】 外側炉心管における光ファイバ母材の先 端溶融部近辺相当の長さ範囲の内径を縮小した請求項1 10 記載の光ファイバ線引き炉。

【請求項3】 内側の上部、下部の各炉心管の内径を異 にした請求項1または2に記載の光ファイバ線引き炉。 【請求項4】 Heガスの流れ方向とN2 ガスまたはA rガスの流れ方向とを逆方向あるいは同方向にした請求 項1、2または3記載の光ファイバ線引き炉。

【発明の詳細を説明】

[0001]

【産業上の利用分野】本発明は、外径変動を小さく抑制 しうる光ファイバの線引き炉に関する。

[0002]

【従来の技術】光ファイバ線引き炉の一般例を図5に示 す。1は線引き炉本体にして、該線引き炉本体1にはヒ ータ2および単一の炉心管(通常、カーボン製)3が取 付けられている。そして、線引きに当っては、光ファイ バ母材4をヒータ2で加熱されている炉心管3内に一定 速度で挿入し、光ファイバ母材4の先端溶融部を炉心管 3より所定速度で引出し(図示しない引取り装置等に て)、所定の外径(線径)を有する光ファイバ5を作る ものである。

【0003】ところで、前記の線引き工程中において、 光ファイバ母材4の先端部が溶融を始める頃から光ファ イバ5が冷却されて所定の外径になる頃までの期間 (斜 線部分a)においては、当該斜線部分aの周辺の温度状 態の変化によって光ファイバ5の外径に変動を来たすこ とが多い。

【0004】かかる光ファイバ5の外径変動を抑制する 手段として、従来、図6に示すように、炉心管3の上端 部にガス導入口3 aを、下端部にガス排出口3 bを夫々 設けて、線引き過程中に、ガス導入口3aより炉心管3 40 内に不活性ガス (N₂, Ar, He等)を導入して、矢 印のように光ファイバ母材4の先端溶融部および光ファ イバ5を囲むように下方へ軸方向に流し、不活性ガスに よる冷却と該ガスの加熱により光ファイバラの外径を規 正しながらガス排出口3 b より排気するものがある。

【0005】また、前記の不活性ガス導入の応用例とし て、線引き炉に不活性ガス (安価なN2 等) の予熱流路 を形成し、その子熱ガスを炉心管内に導入して下方に軸 方向へ流し、光ファイバの外径変動をより効果的に抑制

報参照)。

【0006】さらに、前記の予熱用不活性ガスとして、 比熱が小さく、動粘性係数の大きいHeガスを用いて、 光ファイバの外径変動を抑制した線引き炉がある(例え ば、特開昭54-134135号公報参照)。

2

[0007]

【発明が解決しようとする課題】前記の不活性ガスを予 熱するものにあっては、複雑な予熱流路の形成が必要と なり、しかも予熱するための加熱分だけヒータの電力消 費量が増大し、経済的に好ましくない。さらに、光ファ イバの機械的強度を確保するために、カーボン製の炉心 管内に発生するパーティクル (高熱分解微粒子)を含ん だ炉内ガスをある程度排出する必要があることから、不 活性ガスに高価なHeを使用するものにあっては、これ また経済上不向きなものである。

【0008】本発明は、前記の事情に鑑みなされたもの で、線引き炉の構造を複雑にせず、そして不活性ガスの Heの使用量を少なくしながら、光ファイバの外径変動 を抑制しうる光ファイバ線引き炉を提供することを目的 とする。

[0009]

【課題を解決するための手段】本発明は、前記の目的を 達成するために、ヒータを有する線引き炉本体に貫装さ れた単一の外側炉心管と同心状に、内側上部炉心管と内 側下部炉心管とを光ファイバ母材の先端溶融部近辺相当 の間隔を介して設置し、内側下部炉心管をHeガスの流 路とし、外側炉心管と内側の各炉心管との間隙をN2ガ スまたはArガスの流路としたことにある。そして、外 側炉心管における光ファイバ母材の先端溶融部近辺相当 の長さ範囲の内径を縮小することもできる。また、内側 の上部、下部の各炉心管の内径を異にすることもでき る。さらに、Heガスの流れ方向とN2 ガスの流れ方向 とを逆方向あるいは同方向にすることがある。

[0010]

30

【作用】内側の炉心管内に導入されたHeガスは光ファ イバを冷却すると共に光ファイバによって加熱されて光 ファイバ母材の先端溶融部を囲み、この溶融部と光ファ イバの形成部の温度変動を抑制し、光ファイバの外径変 動が抑制される。また、外側と内側との各炉心管の間に 導入されたN2 またはArガスは、パーティクルを伴っ て炉外に排出する。

[0011]

【実施例】本発明の実施例を図面を参照して説明する。 なお、従来例と同一部品には同一符号を付す。図1は第 1実施例を示すもので、線引き炉本体1にはヒータ2お よび単一の外側炉心管3が取付けられている。外側炉心 管3の上方には内側上部炉心管6が所定間隙を介して外 側炉心管3と同心状に設けられると共に両炉心管3.6 の上端部間にN2 またはAr等の安価な不活性ガス導入 した線引き炉がある(例えば、特公平3-8738号公 50 日7が形成されている。また、外側炉心管3の下方には

内側下部炉心管8が所定間隙を介して外側炉心管3と同 心状に設けられると共に、両炉心管3,8の下端部間に Heの不活性ガス導入口9および不活性ガス排出口10 が形成されている。

【0012】そして、前記内側の上部、下部の各炉心管 6,8の内端は、光ファイバ母材4の先端溶融部近辺相 当の間隔を介して対向している。

【0013】よって、不活性ガス導入口9より導入され たHeガスは、矢印イのように内側下部炉心管8内を上 より加熱され、光ファイバ5の引出しにつれて矢印ロの ように排出する分を除いて上昇し、矢印ハのように光フ ァイバ母材4の先端溶融部近辺を囲む。よって、前記図 5に示した斜線部分aはHeガスの雰囲気に囲まれ、温 度変化が抑制されて光ファイバ5の外径変動が抑制され る。

*【0014】一方、光ファイバ5の機械的強度確保のた めに、パーティクルを伴って排出されるガスは、不活性 ガス導入口7より導入され、外側炉心管3と内側の上 部、下部の各炉心管6、8との間隙を矢印二のように下 方に流れ、不活性ガス排出口10より排気されるN2 ま たはArガスが主となるので、Heガスの供給量は十分 低く抑えられる。

【0015】そして、パーティクルは、主に温度の高い ヒータ2の近傍から発生するので、外側炉心管3からの 昇して光ファイバ5を冷却するとともに光ファイバ5に 10 パーティクルを№ またはArガスによって排出させる ように、内側の上部、下部の各炉心管6,8の内端は前 記のように所定間隔を介して対向しているものである。 【0016】本発明の線引き炉の使用と従来の線引き炉 との比較を表1に示す。

【表1】

		導	入	Ħ	ス		光ファイバ外径変動量
従来の	半典	N,			1 5	l/min	±1. 7μm
	**	Не			17	l/min	±0. 4μm
本発明	推合	N ₂	(薄入)	コアより) 12	l/min	±0. 5μm
	供用	Не	(導入)	コタより) 4	i/min	

なお、導入ガスの流速は、約5m/分とした。上記の表 1より、Heガスの使用量は格段に減少しているのに、 光ファイバ外径変動量はHeガス単独使用の場合とほぼ 30 等しいことが分る。

【0017】図2は第2実施例を示し、外側炉心管3に おける光ファイバ母材4の先端溶融部近辺相当の長さし の内径を縮小し、ヒータ2の加熱電力の消費量を節減す るものである。

【0018】図3は第3実施例を示し、内側下部炉心管 8の内径を内側上部炉心管6の内径より小さくして、H eガスの使用効果の向上を計ったものである。

【0019】図4は第4実施例を示し、N2 ガスの流れ 方向とHeガスの流れ方向を一致させたものである。な 40 お、上記の各実施例の適宜組み合わせも可能である。

[0020]

【発明の効果】本発明は、炉心管を同心状の二重構造と し、光ファイバの外径変動抑制用のHeガスの流路と、 パーティクル排出用のN2、Arガス等の流路を別個に しているので、

- (a) 線引き炉の構造が簡単で、かつ少量のHeガス で光ファイバの外径変動を抑制することができる。
- (b) 外側炉心管に小径部を設けることにより、ヒー 夕加熱用の消費電力が節減できる。

- ※ (c) Heガスの流路となる炉心管の内径を小さくす ることにより、光ファイバの外径変動抑制のためのHe の使用効果が向上する。
 - (d) 安価な光ファイバ線引き炉を提供することがで

【図面の簡単な説明】

【図1】本発明の第1実施例を示す構成説明図である。

【図2】本発明の第2実施例を示す構成説明図である。

【図3】本発明の第3実施例を示す構成説明図である。

【図4】本発明の第4実施例を示す構成説明図である。

【図5】従来例の構成説明図である。

【図6】他の従来例の構成説明図である。

- 【符号の説明】
- 1 総引き炉本体
- 2 ヒータ
- 3 外侧炉心管
- 4 光ファイバ母材
- 5 光ファイバ
- 6 内側上部炉心管
- 7 不活性ガス導入口(N2, Arガス等)
- 8 内侧下部炉心管
- 9 不活性ガス導入口(Heガス)
- ※50 10 排出口

フロントページの続き

(72)発明者 原 直樹 千葉県佐倉市六崎1440番地 藤倉電線株式 会社佐倉工場内