

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA AUTOMATIKU I UPRAVLJANJE SISTEMIMA

Distribuiran sistem

Distribuirani sistemi Distribuirano programiranje

Distribuiran sistem (DS) - definicija

- "DS je mnoštvo povezanih računara koje korisnik doživljava kao jedan skladan sistem"
 - sastavljen je od hardvera mnoštva računara povezanih komunikacionom mrežom
 - radi kao jedan sistem zahvaljujući softveru
- DS integriše razne aplikacije koje se izvršavaju na različitim računarima u jedan sistem
- DS je u suprotnosti sa centralizovanim sistemom

Primeri aplikacija u DS

- Sistem (mobilne) telefonije
- GPS sistem sa brojnim primenama
- World Wide Web model distribuiranih dokumenata
- Sistem elektronskog plaćanja
- Računarsko poslovanje velike kompanije
- Nadzorno-upravljački sistem u fabrici (SCADA)
- ...

Razlozi pojave DS

- Dramatično brz razvoj računara tokom poslednjih 50 godina
 - od: 100 M\$ mašina za 1 IPS (instrukcija/sec)
 - do: 1 k\$ mašina za 10 MIPS
 - poboljšanje 10¹² puta
- Brze računarske mreže
 - Local Area Networks (LAN) od 100 Mbps do 10 Gbps
 - Wide Area Networks (WAN) od 64 Kbps do 1 Gbps
- Neophodnost distribuirane obrade informacija
- Složene aplikacije
 - nastale na osnovu ospežnih zahteva korisnika

Osobine "dobrog" DS

- Razlike među računarima i način komunicije sakriven od korisnika
- Korisnici i aplikacije interaguju sa DS na konzistentan i jednobrazan način
 - bez obzira na mesto i vreme interakcije
- Lako se proširuje
- Podržava heterogene računare i mreže
 - ima softver slojevito organizovan

Loše osobine DS

- U odnosu na centralizovan sistem
 - Softver je veoma složen
 - Umanjene su performanse zadataka koji se mogu obaviti u jednom računaru (zbog trajanja komunikacije)
 - Smanjena je sigurnost (bezbednost) sistema
- Teorijski zahtevi koji se postavljaju pred DS se ne mogu u potpunosti realizovati

Ciljevi DS

- 1. Povezivanje korisnika i udaljenih resursa
- 2. Transparentnost (distribuiranosti)
- 3. Otvorenost
- 4. Skalabilnost

Cilj 1 - Povezivanje

- Povezivanje korisnika i udaljenih resursa
 - Deljenje uređaja: štampača, skenera, diska, ...
 - Razmena datoteka: dokumenti, email, audio/video zapis, ...
 - Rad na daljinu: telekonferencije, elektronska trgovina, ...
- Bezbednost sistema je veoma važna

Cilj 2 - Transparentnost

- DS je transparentan kada ga korisnici i aplikacije doživljavaju kao JEDAN računarski sistem
- Tipovi transparentnosti prema:
 - Pristupu sakriva razlike u reprezentaciji podataka
 - Npr. Little-big endian format brojeva
 - Lokaciji korisnik ne zna gde se resurs fizički nalazi
 - Npr. http://ccd.ns.ac.yu/aus
 - Migraciji resursi se mogu premeštati bez uticaja na korisnike
 - Relokaciji –odnosi se na premeštanje resursa tokom upotrebe
 - Replikaciji sakriva postojanje kopija resursa
 - Radi povećanja raspoloživosti ili performansi
 - Konkurentnosti prividno jednovremena upotreba deljenih resursa
 - Resurs se mora ostaviti u konzistentnom stanju
 - Otkazima DS se neprimetno oporavi od nepravilnog rada resursa
 - Tipično u sistemu ne sme postojati single point of failure
 - Perzistenciji sakriva se gde je resurs pohranjen (u RAM-u ili na disku)

Stepeni transparentnosti

- Mada je svaki tip transparentnosti poželjan ima situacija gde nije dobro sakrivati aspekte distribuiranosti od klijenata
- Upotreba DS mora uzeti u obzir realnost
 - Zahtev da elektronske novine stignu u email sanduče u 7 ujutru (da bi ih čitali tokom doručka) nema smisla kada smo u vremenskoj zoni daleko od mesta "štampanja"
 - Telefonski razgovor preko satelitskog linka ima primetno kašnjenje
 - Upravljanje preko Interneta? (promenljivo kašnjenje + nepouzdano)
 - **–** ...
- Postoji balans između visoke transparentnosti i brzine rada
 - Propagacija kopija podataka može da potraje tako da produžava poziv koji je inicirao promenu podatka.
 - Mnoge Internet aplikacije predugo pokušavaju da uspostave vezu sa udaljenim serverom pre nego se obrate drugom serveru.

– ...

Cilj 3 - Otvorenost

- Otvoren DS pruža servise (usluge) po standardnim pravilima
 - sintaksnim i
 - semantičkim
- Servisi se obično specificaju preko interfejsa
 - Sintaksa interfejsa se opisuje Interface Definition Language-om (IDL)
 - Spisak metoda sa opisom parametara
 - Semantika servisa se neformalno opisuje
- Implementacija interfejsa omogućava
 - da proces kome treba usluga servisa može komunicirati sa procesom koji implementira servis
 - da postoje različite implementacije servisa o čemu korisnik ne brine

Otvorenost (2)

- Dobro definisan interfejs
 - Kompletan specificirano je sve što treba implementaciji
 - Neutralan implementacioni detalji nisu spolja vidljivi
 - Interoperabilnost delovi sistema raznih proizvođača mogu da rade zajedno i komuniciraju preko interfejsa
 - Portabilnost aplikacija razvijana za sistem A se može izvršavati (bez modifikacija) u sistemu B (koji ima iste interfejse kao i A)
- Fleksibilnost otvorenog sistema
 - organizovan preko mnoštva malih komponenti koje se mogu lako zameniti ili izmeniti (prilagoditi)
 - komponente implementiraju poznate interfejse
 - Interfejse prema korisnicima i drugim aplikacijama
 - Interfejse između "malih komponenti"

Cilj 4 - Skalabilnost

- Skalabilnost se odnosi na rast:
 - 1. dodavanje novih korisnika i resursa opterećenje raste
 - geografsko proširenje sistema (pristup sa udaljenih mesta) kašnjenja i manja pouzdanost veza
 - očuvanje jednostavne administracije sistema iako se sistem proširuje
 konfliktna pravila upotrebe resursa

Primeri: bankomati, DNS, rutiranje poruka na Internetu, ...

- Skalabilan je u suprotnosti sa centralizovan
 - Centralizovan servis izvršava se na samo jednom serveru
 - Primer: jedan server za sve korisnike
 - Centralizovani podaci nalaze se samo na jednom mestu
 - Primer: jedan (centralni) telefonski imenik
 - Centralizovan algoritam odluka se donosi samo na osnovu kompletne informacije
 - Primer (loš): rutiranje paketa u mreži zasnovano na informacijama o svim čvorovima

Tehnike skaliranja

- Problem skalabilnosti se ispoljava kao problem performansi (zbog ograničene sposobnosti mreže i servera)
- Rešava se
 - Skrivanjem zastoja u komunikaciji izbegavanje čekanja na odgovor asinhrona komunikacija (čekanje odgovora u drugoj niti)
 - Distribucijom podela posla na više malih i distribuiranih komponenti
 - Replikacijom kopiranje komponenti povećava se raspoloživost DS (load balancing)
 - Keširanje podataka odluku donosi klijent na osnovu ranije kopiranih podataka
 - Postoji problem konzistentnosti podataka u kešu

Osobine decentralizovanih algoritama

- Ni jedna mašina nema kompletnu sliku o celom sistemu (stanju sistema)
- Mašina donosi odluku samo na osnovu lokalnih informacija
- Kvar jedne mašine ne prekida rad algoritma
- Ne postoji globalan sat

Tehnika skaliranja (1)

Primer: Provera ispravnosti unetih podataka

- a) na server strani
- b) na klijent strani

Tehnika skaliranja (2)

Primer: Traženje računara na osnovu Web adrese (podela DNS adresnog prostora u zone)

"Zamke" kod razvoja DS

Pogrešne pretpostavke tipa:

- Mreža je pouzdana
- Podaci u mreži su sigurni
- Mreža je homogena
- Topologija mreže se ne menja
- Nema kašnjenja u prenosu
- Propustni opseg je neograničen
- Nema transportnih troškova
- Postoji samo jedan administrator

dovode do teških posledica.

Tipovi DS

• Distribuirani sistemi za intenzivno računanje

Obično izvršavaju jednu aplikaciju.

- Klasteri
- Grid computing
- Distribuirani informacioni sistemi

Brojne postojeće mrežne aplikacije se integrišu u okviru organizacije.

- Na niskom nivou procesiranja transakcija
- Globalno integrisane aplikacije (u Enterprise-u)
- Distribuirani rasplinuti (pervasive) sistemi

Povezivanje malih, baterijski napajanih, mobilnih, bežičnih uređaja.

- Kućne automatike
- Elektronske brige o zdravlju
- Mreže senzora

Klaster

- Tipična upotreba u sistema gde postoji potreba za intenzivnim računanjem – više računara radi u paraleli
 - Jedan računar nema dovoljnu snagu
 - Klaster čini nekoliko sličnih (često identičnih) računara smeštenih na jednoj lokaciji
 - Izvršavaju isti operativni sistem (OS)
 - Povezanih u istu mrežu
 - Ceo klaster se ponaša (logički) kao jedan računar

Grid computing

- Veći broj dislociranih računara učestvuje u računanju
 - Razlikuju se u hardveru, OS, mreži, administraciji, bezbednosti, ...
 - Organizovani su u "vitrualnu organizaciju" mada fizički pripadaju raznim organizacijama
- Arhitektura Grid computing sistema je slojevita

Procesiranje transakcija

- Tipično prisutno u aplikacijama koje rade sa bazama podataka
- Tipičan scenario integracije
 - Mrežna aplikacija se sastoji od servera (1 ili više)
 - Udaljeni programi (klijenti) upućuju zahteve serveru(ima)
 - Nekoliko zahteva klijenta se objedinjava u jedan veći zahtev koji se izvršava kao distribuirana transakcija
- Zasniva se na nekoliko osnovnih operacija (primitiva):
 - BEGIN_TRANSACTION označava početak transakcije
 - END_TRANSACTION označava kraj transakcije i pokušava da promene učini trajnim (commit)
 - ABORT_TRANSACTION prekida transakciju i restaurira stare vrednosti
 - READ čita podatke iz datoteke, tabele, ...
 - WRITE zapisuje podatke u datoteku, tabelu, ...

Procesiranje transakcija (2)

- Osobine transakcija:
 - Atomičnost prema spoljašnjem svetu transakcija je nedeljiva.
 - Konzistentnost transakcija ne narušava ispravnost podataka.
 - Izolovanost jednovremene transakcije ne utiču jedna na drugu.
 - Postojanost kada se transakcija uspešno završi promene koje je izazvala postaju trajne.

Procesiranje transakcija (3)

- Omogućene su ugnježdene transakcije
 - Osnovna transakcija sadrži više pod-transakcija
 - Prirodan način podele posla u DS
 - Pod-transakcije mogu postojati u više nivoa
 - Prekidanje pod-transakcije restaurira stare vrednosti u svim drugim pod-transakcijama (iako su se izvršile bez grešaka)

Procesiranje transakcija (4)

- Monitor procesiranja transakcije
 - Je komponenta koja izvršava distribuiranu transakciju

Globalna integracija aplikacija

- Middleware posreduje u povezivanju aplikacija
 - Softverska magistrala Enterprise Service Bus (ESB)
- Service Oriented Architecture (SOA) je savremen koncept gde:
 - Serverske aplikacije pružaju usluge servise
 - Klijent aplikacije su korisnici usluga
 - Servisi i korisnici usluga su "slabo povezani"
 - Koristi se komunikacija zasnovana na porukama (Message Oriented Middleware)

