EAD THIS

THE UNIVERSITY OF BRITISH COLUMBIA

Department of Electrical and Computer Engineering

ELEC 401 – Analog CMOS Integrated Circuit Design Take-Home Midterm Exam

Due: Monday, November 8th, 2021 at 11:59 pm

This is an <u>open book take-home</u> exam and calculators are allowed. Please attempt to answer all problems. A blank sheet will not receive any marks! Please do not consult and/or discuss the questions and/or your solutions with anyone. Your solutions/answers should be based on your individual effort! Please also note that each question has its own transistor parameters.

Good luck!

This exam consists of 6 - 6/6 (= 5) questions and including the cover page has 6+6(=12) pages. Please check that you have a complete copy.

Shanks	Cole
Surname	First name
54950860	
Student Number	_

#	MAX	GRADE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

► IMPORTANT NOTE:

Candidates guilty of any of the following, or similar, dishonest practices shall be liable to disciplinary action:

Speaking or communicating with other candidates or non-candidates regarding the exam questions. Purposely exposing their solution to the view of other candidates.

The plea of accident or forgetfulness shall not be received.

1. In the following amplifier, assume the decouple capacitor C is large enough so that it can be considered a short circuit for the small-signal analysis. Furthermore, assume that:

 $\lambda_{(NMOS)} = 0 \quad V^{-1}, \quad \lambda_{(PMOS)} = 0 \\ V^{-1}, \quad V_{DD} = 3.0 \quad V, \quad V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.5 \\ V, \quad \mu_n C_{ox} = 1 \\ mA/V^2, \quad \mu_p C_{ox} = 0.25 \quad mA/V^2, \quad (W/L)_3 = 8, \text{ and } \quad (W/L)_2 = 32, \\ R = 8 \quad k\Omega \quad \text{and} \quad R_L = 10 \quad k\Omega. \quad \text{The DC component of the input is } V_{in}.$

- a) Assuming that the magnitude of the small-signal gain (magnitude of V_{out}/V_{in}) is 40 V/V find V_{bias} and (W/L)₁ [14 marks]
- b) For this circuit, for transistors M_1 and M_2 to operate in saturation, find the minimum and maximum voltage level at the drain of M_1 . [6 marks].

 $V_{bias} = ___V, \quad (W/L)_{l} = __, V_{DS1,min} = __V, V_{DS1,max} = __V$

2. In the following circuit assume that:

 $\lambda_{(NMOS)} = 0V^{\text{-}1}, \, \gamma = 0, \, V_{DD} = 1.8V, \, I_{bias} = 32mA, \, V_{TH(NMOS)} = 0.4V, \, and \, \mu_n C_{ox} = 1 \, \, mA/V^2.$ Furthermore, assume that both transistors are supposed to operate in saturation region and their sizes are: $(\frac{W}{I})_1 = 100$ and $(\frac{W}{I})_2 = 400$.

- a) Find the minimum and maximum dc voltage levels at node V_{out}. [8 marks]
- b) Find the allowable minimum and maximum dc voltage level of the input node. [8 marks]
- c) If γ was not zero, would the allowable input signal swing range change, and if so, why? [4 marks]

Vb=Vin

Saturation:

$$M_2: V_b - V_{GS} \leq V_{+bn} \rightarrow V_b \leq V_{GS} + V_{+bn}$$

channel is pinched off.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2$$

Currents:

$$\underline{\mathsf{M_1:}}$$
 32 mA = $\frac{1}{2}$. 1×10^{-3} . $100\cdot(\mathsf{VGS_1}-0.4)^2 \longrightarrow \mathsf{VGS_1} = 1.2 V \longrightarrow \mathsf{Veff_1} = 0.8 V$

(c)

Requirements for Saturattan:

$$V_o(M_{ax}) = 0.8V$$

 $V_o(M_{in}) = 0.8V$

Mi: $1.2V - V_0 \leq 0.4V$ $V_0 = 0.8V$ $V_0 = V_0 = 0.8V$

$$Vh - Vo = 0.8V$$

$$V_b \ge 1.6V$$
 (2)
$$V_{in}(M_{ax}) = 1.6V$$

$$V_{in}(M_{ox}) = 1.6 V$$

- Bringer on both sides Vin (Min) = 1.6V

$$V_{in}(M_{in}) = 1.6V$$

by 1.6V -> No Voltage Swing Vb = 1.6V

V _{out,min} =	V, V _{out,max} =	, V _{in,min} =	V, V _{in,max} =	V
For $\gamma \neq 0$ would	allowable input signal	swing range chang	e and why?	

3. Consider the following differential amplifier.

Assume all transistors are operating in saturation region and $\lambda=\gamma=0$, $V_{DD}=3$ V, $V_{TH(NMOS)}=0.5$ V, $\mu_n C_{ox}=1$ mA/V², R=100 Ω , (W/L)₁=(W/L)₂=16 and (W/L)₀=32. Also, assume that the V_{bias}=0.75 V and the circuit is symmetric.

- a) What should the value of R_L be if the magnitude of the differential voltage gain of the circuit is 4 V/V [10 marks]
- b) For the circuit to operate properly (i.e., all transistors operate in their saturation region), what are the minimum and maximum values of the input common-mode voltage (i.e., input DC voltage) [10 marks]

Rı:	. Vin cm (min):	, Vin,cm (max):
T.L.	, • m,cm (mm)•	, · m,cm (max).

4. In the following circuit, assuming that all transistors are in saturation,
$$\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4$$
, and $\lambda = \gamma = 0$:

- i) Find an expression for I_{out} in terms of R, transistor parameters (e.g., μ and C_{ox}), and transistor sizes [10 marks].
- ii) What would be the percentage change in Iout if VDD is increased by 10%. [5 marks]
- iii) How would the expression for I_{out} derived in part (i) change if $\gamma \neq 0$ and why? [5 marks]

(i)
$$I_o = \frac{1}{2} N_n Cox \left(\frac{W}{L}\right)_2 \left(V_{GS} - V_{Hhn}\right)^2$$

 $V_{GS_2} = V_{Hhn} + \sqrt{\frac{2I_o}{N_n Cox \left(\frac{W}{L}\right)_2}} \rightarrow V_{GS_1} = V_{Hhn} + \sqrt{\frac{2I_o}{N_n Cox \left(\frac{W}{L}\right)_1}}$

$$\left(\sqrt{\frac{2T_{o}}{NnCox\left(\frac{W}{L}\right)_{1}}}\right) - \left(\sqrt{\frac{2T_{o}}{NnCox\left(\frac{W}{L}\right)_{2}}}\right) = R \cdot T_{o}$$

$$\int \frac{2T_0}{NnC_{0X}} \cdot \left(\int \frac{1}{\left(\frac{W}{L}\right)_1} - \int \frac{1}{\left(\frac{W}{L}\right)_2} \right) = RI_0$$

$$\frac{2T_{o}}{NnCox} \cdot \left(\frac{1}{(\frac{1}{k})_{1}} - \frac{1}{(\frac{1}{k})_{2}} \right)^{2} = R^{2} \cdot I_{o}^{2}$$

$$\Box_{o} = \frac{2}{R^{2} N_{n} C_{ox}} \cdot \left(\int \frac{1}{\left(\frac{W}{L}\right)_{1}} - \int \frac{1}{\left(\frac{W}{L}\right)_{2}} \right)^{2}$$

- (ii) NONE To is independent of Voo
- (iii) No Change, no body effect $VSB_1 = 0$ $VSB_2 = 0$

5. The 5-transistor operational transconductance amplifier (that is, the differential to single-ended structure with active current mirror load that we discussed in class) is a popular choice in designing operational amplifiers. Consider the following two-stage amplifier based on the topology shown below (first stage is a differential to signle-ended amplifier followed by the second stage which is a common-source amplifier) with the following design specifications:

- V_{DD}=3 V
- Total power consumption of 3 mW
- Output swing of 2.6 V
- Magnitude of the overall gain: 1000 V/V
- $L = 0.4 \mu m$ for all the device

Use the following assumptions for the design:

- Allocate equal effective voltages for M_5 and $M_6 \lor_{OS} = \lor_{OO}$
- Assume the bias current of M_0 and M_6 are equal.
- For the purpose of DC analysis, assume V_{SG3}=V_{SG5}

The technology parameters are:

$$\lambda_{(NMOS)} = \ \lambda_{(PMOS)} = 0.1 \ V^{\text{-1}}, \ \gamma = 0, \ V_{DD} = 3 \ V, \ V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.5 \ V, \ \mu_n C_{ox} = 1 \ mA/V^2, \ \mu_p C_{ox} = 0.5 \ mA/V^2.$$

Note: Use the parameter λ only for calculating the r_0 of the transistors and for the small-signal gain. **Do not** use λ in any other calculation including for calculating bias currents.

Find V_{bias1}, and all the transistor widths (i.e., W₀, W₁, W₂, W₃, W₄, W₅, W₆). [20 marks]

Output Swing:

$$Voo - |V_{oos}| - V_{oo6} \longrightarrow 2.6V = 3 - 2 \cdot |V_{oos}| \longrightarrow |V_{oos}| = V_{oo6} = 0.2V, \quad V_{SG3} = V_{SGS} \longrightarrow |V_{oos}| = 0.2V$$

$$T_{out} = T_S = \frac{1}{2} \cdot \frac{3mW}{3V} = 0.5mA \longrightarrow 0.5mA = \frac{1}{2} \cdot 0.5x10^{-3}, \quad \left(\frac{W}{0.4\mu m}\right)_S \cdot 0.2^2 \longrightarrow W_S = 20\mu m$$

$$\underline{T_G}: 0.5mA = \frac{1}{2} \cdot 1x10^{-3} \cdot \left(\frac{W}{0.4\mu m}\right)_6 \cdot 0.2^2 \longrightarrow W_6 = 10\mu m$$

$$\underline{T_3}: \frac{1}{2} \cdot 0.5mA = \frac{1}{2} \cdot 0.5x10^{-3} \cdot \left(\frac{W}{0.4\mu m}\right)_3 \cdot 0.2^2 \longrightarrow W_3 = 10\mu m$$

$$\underline{T_0}: 0.5mA = \frac{1}{2} \cdot 1x10^{-3} \cdot \left(\frac{W}{0.4\mu m}\right)_6 \cdot 0.2^2 \longrightarrow W_6 = 10\mu m$$

For your convenience the circuit diagram and transistor parameters are replicated here: $\lambda_{(NMOS)} = \ \lambda_{(PMOS)} = 0.1 \ V^{\text{-1}}, \ \gamma = 0, \ V_{DD} = 3 \ V, \ V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.5 \ V, \ \mu_n C_{ox} = 1 \ mA/V^2, \\ \mu_p C_{ox} = 0.5 \ mA/V^2.$

$$f_{02} = \frac{1}{0.1 \cdot 0.25 mA} = 40 \text{ k}\Omega$$
, $f_{04} = \frac{1}{0.1 \cdot 0.25 mA} = 40 \text{ k}\Omega$

$$r_{06} = \frac{1}{0.1 \cdot 0.5 mA} = 20 k\Omega$$
, $r_{05} = \frac{1}{0.1 \cdot 0.5 mA} = 20 k\Omega$

Overall Gain:

$$|A_{\nu}| = gm_{\iota}(r_{02}||r_{04}) \cdot gm_{s}(r_{05}||r_{06}) \rightarrow 1000 = gm_{\iota} \cdot (40k\Omega||40k\Omega) \cdot \frac{2 \cdot 0.5 \times 10^{-3}}{0.2}$$

$$\longrightarrow gm_{\iota} = 1 \times 10^{3} \rightarrow 1 = \sqrt{2 \cdot 1 \cdot (\frac{W}{0.4 \mu m})_{\iota} \cdot F_{01}} \longrightarrow W_{l} = 0.8 \mu m$$

$$(20k\Omega||20k\Omega)$$

$$|A_{2}|_{is + h_{c}}$$

$$\frac{M_0: Veff_0 = (V_{bioS_1} - V_{thn})}{0.2 = V_{bioS_1} - 0.5}$$

$$\therefore V_{bioS_1} = 0.7V$$

For your convenience the circuit diagram and transistor parameters are replicated here: $\lambda_{(NMOS)} = \ \lambda_{(PMOS)} = 0.1 \ V^{\text{-1}}, \ \gamma = 0, \ V_{DD} = 3 \ V, \ V_{TH(NMOS)} = |V_{TH(PMOS)}| = 0.5 \ V, \ \mu_n C_{ox} = 1 \ mA/V^2, \\ \mu_p C_{ox} = 0.5 \ mA/V^2.$

