INSTITUTO SUPERIOR TÉCNICO

Introdução aos Algoritmos e Estruturas de Dados 2009/2010

Enunciado do 3º Projecto

Data de entrega: 31 de Maio de 2010 às 23h00

1 Introdução

Na versão do jogo Tetris correspondente ao 3º projecto assuma as regras usadas para o 2º projecto. A Figura 1 mostra um exemplo de final de jogo com 37 jogadas indicadas na Tabela 1 e pontuação 10 (consulte os detalhes no enunciado do 2º projecto).

Para além do output pedido no 2º projecto, nesta versão do programa, pretende-se mostrar uma análise do jogo tendo em conta duas componentes:

- 1. Peças completas no tabuleiro no final do jogo.
- 2. Linhas eliminadas durante o jogo.

A Tabela 2 mostra as peças completas no exemplo de final de jogo da Figura 1 ordenadas por tipo de peça e cor.

A Tabela 3 mostra as linhas eliminadas na sequência de jogadas na Tabela 1 que conduziram à situação final de jogo mostrada na Figura 1. São também mostradas o número das jogadas que originaram as eliminações juntamente com o formato e a cor do tetraminó que levou a que a(s) linha(s) ficassem completas. Para cada linha eliminada é mostrada a string de cores que lhe corresponde e uma string calculada a partir desta eliminando os espaços em branco.

Figura 1: Exemplo de final de jogo.

Tabela 1: Sequência de jogadas efectuadas no jogo da Figura 1.

Jogada	Tetraminó	Coluna	Cor
1	1	2	Violeta (V)
2	3	6	Vermelho (R)
3	1	1	Amarelo (Y)
4	4	1	Vermelho (R)
5	2	9	Laranja (O)
6	1	7	Amarelo (Y)
7	2	6	Violeta (V)
8	2	4	Verde (G)
9	1	2	Azul (B)
10	1	2	Laranja (O)
11	4	8	Azul (B)
12	4	8	Amarelo (Y)
13	1	4	Verde (G)
14	5	2	Azul (B)
15	2	4	Amarelo (Y)
16	1	7	Laranja (O)
17	4	7	Violeta (V)
18	3	5	Verde (G)
19	4	3	Violeta (V)
20	5	5	Laranja (O)
21	1	2	Amarelo (Y)
22	2	1	Azul (B)
23	5	6	Azul (B)
24	4	3	Verde (G)
25	2	6	Vermelho (R)
26	2	6	Violeta (V)
27	4	8	Amarelo (Y)
28	4	1	Violeta (V)
39	2	4	Violeta (V)
30	4	8	Violeta (V)
31	2	1	Laranja (O)
32	1	3	Laranja (O)
33	2	7	Laranja (O)
34	2	3	Laranja (O)
35	2	5	Laranja (O)
36	2 2 2 2 2	1	Violeta (V)
37	2	9	Laranja (O)

Tabela 2: Peças completas no exemplo de final de jogo da Figura 1.

Tetraminó	Cor	Nº Peças
1	В	1
	G	1
	O	
	R	2 0
	V	1
	Y	3
2	В	0
	G	1
	O	1
	R	0
	V	1
	Y	1
3	В	0
	G	1
	O	0
	R	1
	V	0
	Y	0
4	В	1
	G	0
	Ο	0
	R	1
	V	2
	Y	1
5	В	1
	G	0
	O	1
	R	0
	V	0
	Y	0

Tabela 3: Linhas eliminadas nas jogadas da Tabela 2.

Jogada	Peça	Cor	Linhas eliminadas	Linhas sem espaços
27	4	Y	BBGGGRRYYY	BBGGGRRYYY
30	4	V	VVVVVVVVV	VVVVVVVVV
			', 'V', 'VVRR', 'V', '	VVVRRV
			, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	VV
37	2	О	000000000	000000000
			000000000	000000000
			BB' 'G' 'BBBY' '	BBGBBBY
			VVOOOO' """'	VVOOOO

Tabela 4: Linhas eliminadas ordenadas por ordem alfabética.

	Linhas Ordenadas
1	BBGBBBY
2	BBGGGRRYYY
3	000000000
4	000000000
5	VV
6	VVOOOO
7	VVVRRV
8	VVVVVVVVV

A Tabela 4 mostra as linhas sem espaços em branco da Tabela 3 ordenadas por ordem alfabética. Supondo que no final do jogo temos N linhas eliminadas, definimos como sendo a *mediana* das strings eliminadas aquela que se situa na posição $\lceil N/2 \rceil$ numa lista ordenada das linhas eliminadas onde os espaços em branco foram retirados. Neste caso, como N=8, então a mediana seria a string da posição 4 da ordenação. Note-se que os simbolos $\lceil \rceil$ denotam um arredondamento para cima da expressão N/2. Por exemplo, se N fosse 9, então a mediana seria a string da posição 5 da lista ordenada das linhas eliminadas sem espaços em branco.

2 Especificação do Programa

Tal como no 2º projecto o programa recebe como *input* uma sequência de tetraminós, aos quais está associada uma coluna que permite determinar a localização final da peça, isto é todas as quadrículas (posições) ocupadas pela peça após a sua queda no espaço do jogo. O valor da coluna indica a coluna onde cai a quadrícula do canto superior esquerdo da peça e não muda durante a queda da peça no espaço do jogo.

O valor da coluna apenas garante que a peça pode ser colocada sem ultrapassar os limites laterais do espaço do jogo. É da responsabilidade do programador garantir que:

- 1. O limite inferior do espaço de jogo não é ultrapassado.
- 2. O limite superior do jogo aumenta de forma a garantir a colocação da peça.
- 3. Todas as peças são colocadas dentro do espaço do jogo e não se sobrepõem.

3 Dados de Entrada

O programa deverá ler os dados de entrada a partir do *standard input*. O formato dos dados de entrada será o seguinte:

- uma linha contendo um inteiro N ($N \ge 1$) que denota o número total de peças do jogo;
- \bullet uma sequência de N linhas onde cada linha denota uma peça definida da seguinte forma:
 - um inteiro F com valor entre 1 e 5 que define o formato da peça;
 - um espaço em branco;
 - um inteiro C com valor entre 1 e 10 que denota a coluna onde a quadrícula no canto superior esquerdo cai no espaço de jogo;
 - um espaço em branco;
 - uma letra maiúscula M que indica a cor da peça: R, Y, B, G, O ou V.

Assuma que os dados de entrada para o programa não contêm erros sintácticos, isto é, obedecem sempre ao formato descrito nesta secção.

4 Dados de Saída

Após processar as peças como indicado no input, o programa deverá escrever no *standard output* um conjunto de dados sobre a situação final de jogo. A informação a escrever será a seguinte e por esta ordem:

• uma linha com um inteiro LMax onde LMax denota a linha de maior índice com peças. (LMax será zero no caso em que todas as linhas são eliminadas durante o jogo);

- uma linha com um inteiro P onde P denota a pontuação obtida pelo jogador ao longo do jogo: 1 e 3 pontos, respectivamente, por cada linha multicor e monocor eliminadas;
- uma linha em branco.
- uma sequência de *LMax* linhas que denota a situação final do jogo. Começando na linha de maior índice com peças e de forma decrescente até à linha de índice 1, temos o seguinte:
 - cada linha é composta por um caracter 'l', 10 caracteres que correspondem ao estado de ocupação de cada coluna dessa linha, um caracter 'l', um espaço em branco, e o número da linha:
 - 1. quando uma posição (linha,coluna) do jogo estiver ocupada, o caracter a mostrar denota a cor da peça que ocupa esse espaço (R, Y, B, G, O, V);
 - 2. quando uma posição (linha,coluna) do jogo estiver livre, o caracter a mostrar deverá ser o espaço em branco.
- uma linha correspondente ao limite inferior do jogo: um espaço em branco e 10 caracteres '-' (esta linha deverá ser sempre mostrada, incluindo no caso em que todas as linhas são eliminadas durante o jogo).
- uma linha em branco.
- uma linha com um inteiro F onde F denota o número de peças completas na situação final do jogo. (F será zero no caso em que todas as linhas são eliminadas durante o jogo ou não há peças completas no final do jogo);
- ullet uma sequência de F linhas que mostram as peças completas na situação final do jogo ordenadas por formato e cor:
 - cada linha é composta por dois caracteres: formato (1, 2, 3, 4, 5) e cor do tetraminó
 (B, G, O, R, V, Y), separados por um espaço em branco.
- uma linha em branco.
- a mediana das linhas eliminadas durante o jogo como definida na secção 1 (considerando as linhas sem espaços em branco ordenadas alfabeticamente como na Tabela 4). Se durante o jogo não houve linhas eliminadas, o output deverá ser a frase "No eliminations".

5 Exemplo

5.1 Dados de Entrada

Vamos admitir que o ficheiro de entrada, que designaremos por in.ttr, contém as jogadas da Tabela 1 que resultam na situação final de jogo ilustrada na Figura 1.

37

1 2 V

3 6 R

1 1 Y

4 1 R

2 9 0

1 7 Y

2 6 V

2 4 G 1 2 B

1 2 0

4 8 B

4 8 Y

1 4 G

5 2 B

2 4 Y

1 7 0

4 7 V

3 5 G

4 3 V

5 5 0 1 2 Y

2 1 B

5 6 B 4 3 G

2 6 R

2 6 V

4 8 Y 4 1 V

2 4 V

4 8 V 2 1 0

1 3 0

2 7 0

2 3 0

2 5 0

2 1 V

2 9 0

5.2 Resultados

Para o ficheiro de entrada in.ttr descrito na secção anterior, o programa deverá escrever na saída a seguinte informação:

17 10

VV	17
YYYYB	16
000	15
0	14
VVV	13
VGG	12
GG	11
YY VVV	10
YY V	9
BBB 0000	8
B GGGGYYY	7
0000 Y	6
BBBBVVBBB	5
RRRGGVV B	4
R GG YYYY	3
YYYY RR OO	2
VVVV RROO	1

21

1 B

1 G

1 0

. .

1 O 1 V

1 Y

1 Y

1 1 1 1 1 1 Y

2 G

2 0

2 V

2 Y

3 G

3 R

4 B

```
4 R
4 V
4 V
4 Y
5 B
5 O
```

000000000

6 Compilação do Programa

Deve concretizar o ficheiro Makefile onde deverá definir o processo de geração do executável correspondente ao programa realizado. O compilador a utilizar é o gcc com as seguintes opções de compilação: —ansi —Wall —pedantic. Este processo deve ser definido na regra all do ficheiro Makefile. O executável gerado deve ter o nome proj3. Para compilar o programa deve executar o seguinte comando:

```
$ make -s all
```

o qual deve ter como resultado a geração do ficheiro executável proj3, caso não haja erros de compilação. A execução deste comando não deverá escrever qualquer resultado no terminal (daí a utilização da opção –s do comando make). Caso a execução deste comando escreva algum resultado no terminal, considera-se que o programa não compilou com sucesso. Por exemplo, durante a compilação do programa, o compilador não deve escrever mensagens de *warning*.

7 Execução do Programa

O programa deve ser executado da forma seguinte:

```
$ ./proj3 < in.ttr > out.txt
```

8 Entrega do Projecto

A entrega do projecto deverá respeitar o procedimento seguinte:

- Na página da disciplina aceda ao sistema para entrega de projectos. O sistema será activado uma semana antes da data limite de entrega. Instruções de como aceder ao sistema serão oportunamente fornecidas.
- Efectue o upload de um ficheiro arquivo com extensão .tgz que inclua o seguinte:
 - Ficheiros fonte (.c) e cabeçalho (.h) que constituem o programa.

- Ficheiro Makefile que permita criar o executável proj3.

Para criar um ficheiro arquivo com a extensão .tgz deve executar o seguinte comando na directoria onde se encontram o ficheiro Makefile e os ficheiros com extensão .c e .h, criados durante o desenvolvimento do projecto:

```
$ tar cfz proj3.tgz Makefile *.c *.h
```

- Como resultado do processo de upload será informado se a resolução entregue apresenta a resposta esperada num conjunto de casos de teste. O sistema não permite submissões com menos de 30 minutos de intervalo para o mesmo grupo. Exemplos de casos de teste serão oportunamente fornecidos.
- Data limite de entrega do projecto: 23h00 do dia 31 de Maio de 2010. Até à data limite poderá efectuar o número de entregas que desejar, sendo utilizada para efeitos de avaliação a última entrega efectuada. Deverá portanto verificar cuidadosamente que a última entrega realizada corresponde à versão do projecto que pretende que seja avaliada. Não serão abertas excepções.

9 Avaliação do Projecto

9.1 Componentes da Avaliação

Na avaliação do projecto serão consideradas as seguintes componentes:

- 1. A primeira componente avalia o desempenho da funcionalidade do programa realizado. Esta componente é avaliada entre 0 e 16 valores.
- 2. A segunda componente avalia a qualidade do código entregue, nomeadamente os seguintes aspectos: comentários, identação, estruturação, modularidade, abstracção, entre outros. Esta componente poderá variar entre -4 valores e +4 valores relativamente à classificação calculada no item anterior e será atribuída na discussão final do projecto.

Nesta componente será também utilizado o sistema valgrind for forma a detectar fugas de memória ("memory leaks") ou outras incorrecções no código, que serão penalizadas. Aconselha-se por isso que os alunos utilizem este sistema para fazer debugging do código e corrigir eventuais incorrecções antes da submissão do projecto.

Grupos que não utilizem as flags correctas de compilação têm penalização de 100%.

Durante a discussão final do projecto será averiguada a participação de cada elemento do grupo na realização do projecto, bem como a sua compreensão do trabalho realizado, sendo a respectiva classificação ponderada em conformidade, isto é, elementos do mesmo grupo podem ter classificações diferentes. Elementos do grupo que se verifique não terem participado na realização do respectivo projecto terão a classificação de 0 (zero) valores.

9.2 Atribuição Automática da Classificação

A classificação da primeira componente da avaliação do projecto é obtida automaticamente através da execução de um conjunto de testes executados num computador com o sistema operativo **GNU/Linux**. Torna-se portanto essencial que o código compile correctamente e que respeite o formato de entrada e saída dos dados descrito anteriormente. Projectos que não obedeçam ao formato indicado no enunciado serão penalizados na avaliação automática, podendo, no limite, ter 0 (zero) valores se falharem todos os testes. Os testes considerados para efeitos de avaliação podem incluir (ou não) os disponibilizados na página da disciplina, além de um conjunto de testes adicionais. A execução de cada programa em cada teste é limitada na quantidade de memória que pode utilizar, até um máximo de 32 MBytes, e no tempo total disponível para execução, sendo o tempo limite distinto para cada teste.

Note-se que o facto de um projecto passar com sucesso o conjunto de testes disponibilizado na página da disciplina não implica que esse projecto esteja totalmente correcto. Apenas indica que passou alguns testes com sucesso, mas este conjunto de testes não é exaustivo. É da responsabilidade dos alunos garantir que o código produzido está correcto.

Em caso algum será disponibilizada qualquer tipo de informação sobre os casos de teste utilizados pelo sistema de avaliação automática. A totalidade de ficheiros de teste usados na avaliação do projecto serão disponibilizados na página da disciplina após a data de entrega.

9.3 Detecção de Cópias

A avaliação dos projectos inclui a utilização de um sistema para detecção de situações de cópia entre projectos. A submissão de um projecto pressupõe o compromisso de honra que o trabalho incluso foi realizado única e exclusivamente pelos alunos referenciados nos ficheiros submetidos para avaliação. A quebra deste compromisso, ou seja a tentativa de um grupo se apropriar de trabalho de outrém (sejam colegas ou outra pessoa), tem como consequência a reprovação de todos os alunos envolvidos (incluindo quem possibilitar a ocorrência de cópias) à disciplina de IAED.

Toda e qualquer situação de fraude ou facilitação de fraude terá então como consequência a reprovação imediata à disciplina de IAED neste semestre, assim como a comunicação da ocorrência ao respectivo Coordenador de curso e ao Conselho Pedagógico do IST para sanções adicionais de acordo com as regras aprovadas pela UTL e publicadas em Diário da República.

9.4 Considerações adicionais

Todos os programas são avaliados do modo seguinte:

```
$ ./proj3 < in.ttr > out.txt; diff out.txt exp.txt
```

em que o ficheiro exp.txt representa o resultado esperado da execução do programa para os dados de entrada definidos pelo ficheiro in.ttr. A impossibilidade de verificar automaticamente o resultado da execução de um dado programa implica uma penalização de 100%.

Considera-se que um programa passou um teste com sucesso se o resultado produzido por esse programa for exactamente igual ao resultado esperado, o que significa que o comando diff não deverá encontrar diferenças entre o resultado produzido pelo programa submetido e o esperado. Para poder ser avaliado, um projecto deverá compilar correctamente num computador com o sistema operativo **GNU/Linux**, sendo o utilizado o compilador **gcc** da **GNU**. A entrega de código não compilável, ou a não inclusão de qualquer dos ficheiros requeridos, ou a utilização de nomes diferentes para o ficheiro executável conduz a uma classificação de 0 (zero) valores. Não serão aceites quaisquer justificações.