

LOGICAL CIRCUIT DESIGN

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN

REMIND

Boolean algebra

Read chapter 11 Computer Organization and Architecture 10th edition, William Stallings

PREREQUITES

☐ Install Logisims tool already

What will you learn?

- Combinational circuit
- How to design a combinational circuit?
- Application of combinational circuit

- Basic ALU design
- Sequential circuit
- Application of sequential circuit

Combinational circuit

- A combinational circuit is an interconnected set of gates whose output at any time is a function only of the input at that time
- Consists of n binary input, m binary output
- Can be defined in three ways:
 - True table
 - Graphic symbol
 - Boolean equation

Implement of Boolean functions

Sum of Product:

The SOP form expresses that the output is 1 if any of the input combinations that produce 1 is true

$$f = u_1 + u_2 + ... + u_n$$
 With $u_j = x_1 ... x_2 ... x_i$

Sum of Product (SOP)

х	У	z	f	$f = \bar{x}\bar{y}z + \bar{x}y\bar{z} + x\bar{y}z$
0	0	0	0	
0	0	1	1	$\bar{x}\bar{y}z$
0	1	0	1	$\bar{x}y\bar{z}$
0	1	1	0	
1	0	0	0	
1	0	1	1	$x\bar{y}z$
1	1	0	0	
1	1	1	0	

Implement of Boolean functions

Product of Sum:

The POS form expresses that the output is 1 if all the input combinations that produce 1 is true

$$f = u_1. u_2. u_n$$
 With $u_j = x_1 + x_2 + + x_i$

Product of Sum (POS)

X	У	Z	$f = \overline{g}$	g
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$g = \bar{x}. y. \bar{z} + x \bar{y} \bar{z}$$

$$f = \bar{g} = (x + \bar{y} + z)(\bar{x} + y + z)$$

- Using simplification methods:
 - Algebraic Simplification
 - Karnaugh map

Refer to Basic Identities of Boolean Algebra

Basic Postulates						
$A \cdot B = B \cdot A$	A + B = B + A	Commutative Laws				
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive Laws				
$1 \cdot A = A$	0 + A = A	Identity Elements				
$\mathbf{A} \cdot \overline{\mathbf{A}} = 0$	$A + \overline{A} = 1$	Inverse Elements				
	Other Identities					
$0 \cdot A = 0$	1 + A = 1					
$A \cdot A = A$	A + A = A					
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Associative Laws				
$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{A + B} = \overline{A} \cdot \overline{B}$	DeMorgan's Theorem				

Basic types of Karnaugh map

- Any two squares that are adjacent differ in only one of the variables
- The top square of a column is adjacent to the bottom square, and the leftmost square of a row is adjacent to the rightmost square
- 4 cells located in 4 corners of the map are also considered adjacent cells

- 3 steps:
- Step 1: Construct the true table
- Step 2: Identify the Boolean function
- ☐ Step 3: Draw the logical circuit and test

Example:

Design a 3-input, 1-output combination circuit, so that the logic value of the output is the majority of the inputs.

x	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Step 1: The true table

$$f(x,y,z) = \sum (3,5,6,7)$$

$$f(x, y, z) = \sum (3, 5, 6, 7)$$

Step 2: Boolean Algebra function

$$f = xz + xy + yz = x \cdot (y + z) + yz$$

Step 3: Drawing the logic circuit and testing

Application of combinational circuit

- Adder/ Subtractor
- Encode/ Decode
- Multiplexer/ Demultiplexer
- ALU

1-bit Adder

$$S = F(A, B) = \Sigma(1, 2)$$

 $C_{carr} = F(A, B) = \Sigma(0, 3)$

S = F(A, B, C_{in}) =
$$\Sigma$$
(1, 2, 4, 7)
C_{carr} = F(A, B, C_{in}) = Σ (3, 5, 6, 7

n-bit Full Adder

- The carry-out of one full adder is connected to the carry-in of the adder for the next most-significant bit
- The carries ripple from the least-significant bit (on the right) to the mostsignificant bit (on the left)

The ripple-carry adder, consists of n-bit full adders

Encoder

- ☐ Consists of 2ⁿ input, n output
- ☐ Only one of input has the 1's value at the time
- If the kth input has 1's value, the output will perform a value equal to k

x0	x1	x2	х3	y1	y0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Decoder

- ☐ Consists of n input, 2ⁿ output
- Only one of which is asserted at any time
- ☐ If the inputs form a binary pattern with the value k, then the output = 1 is the kth output

х1	x0	y0	у1	y2	у3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$y0 = \overline{x1}.\overline{x0}$$

$$y1 = \overline{x1}.x0$$

$$y2 = x1.\overline{x0}$$

$$y3 = x1.x0$$

Decoder

Ex: Construct a 1K-byte memory using four 256 * 8-bit RAM chips. A single unified address space, which can be broken down as follows:

Address	Chip
0000-00FF	0
0100-01FF	1
0200-02FF	2
0300-03FF	3

Multiplexer

- Selects one of the 2ⁿ inputs to be only one output based on the n control input
- □ Ex: MUX 4-1 has 4 inputs, 1 output, and 2 control input

s 1	s0	f
0	0	i _o
0	1	i ₁
1	0	i ₂
1	1	i ₃

Multiplexer

The logic circuit of MUX 4-1

Demultiplexer

- Selects one of the 2ⁿ output from only one input based on the n control input
- □ Ex: DEMUX 1-4 has 1 input, 4 output and 2 control input

s1	s0	y0	y1	y2	уз
0	0	in	0	0	0
0	1	0	in	0	0
1	0	0	0	in	0
1	1	0	0	0	in

Demultiplexer

The logic circuit of DEMUX 1-4

ALU

☐ The 1-bit ALU with 2 functions: and, add

ALU

☐ The 32-bits ALU with 2 functions: and, add

Sequential circuit

- A sequential circuit is an interconnected set of gates and the clock pulse
- ☐ The current output of a sequential circuit depends not only on the current input, but also on the history of inputs
- Sequential circuit is capable of "remembering past states"

Sequential circuit

Sequential circuit

- Basic sequential circuit is flip-flops
- Some types of flip-fops circuit is shown in the next table

Name	Graphical Symbol	Truth Table		
	s	<u>s</u>	R	Q _{n+1}
S-R	>ck	0 0	0 1	Q _n 0
		1	0	1
		1	1	-
	J Q	J	K	Q_{n+1}
1.0	>Ck	0	0	Q _n
J-K		0 1	1 0	0
	к	1	1	Q_n 0 $\frac{1}{Q_n}$
	D Q		D	Q_{n+1}
			0	0
D	>Ck		1	1
	<u>Q</u>			

Application of sequential circuit

- Register
- Counter

Register

4-bit shift register

Counter

□ A synchronous counter

