Homework 6: Word Embeddings

Paloma Cartwright

2022-05-15

Classwork Data Set-up

```
incidents_df <- read_csv("https://raw.githubusercontent.com/MaRo406/EDS_231-text-sentiment/825b159b6da4</pre>
## Rows: 2770 Columns: 4
## -- Column specification -------
## Delimiter: ","
## chr (3): ID, Accident Title, Text
## dbl (1): Publication Year
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Next, we need to know how often we find each word near each other word – the skipgram probabilities. This
is where we use the sliding window.
skipgrams <- incidents_df %>%
   unnest_tokens(ngram, Text, token = "ngrams", n = 5) %>%
   mutate(ngramID = row_number()) %>%
   tidyr::unite(skipgramID, ID, ngramID) %>%
   unnest_tokens(word, ngram) %>%
   anti_join(stop_words, by = 'word')
unigram_probs <- incidents_df %>%
   unnest_tokens(word, Text) %>%
   anti_join(stop_words, by = 'word') %>%
   count(word, sort = TRUE) %>%
   mutate(p = n / sum(n))
unigram_probs
## # A tibble: 25,205 x 3
##
     word
              n
##
     <chr>
            <int>
                    <dbl>
## 1 rope
           5129 0.00922
## 2 feet
             5101 0.00917
## 3 climbing 4755 0.00855
## 4 route 4357 0.00783
## 5 climbers 3611 0.00649
## 6 climb 3209 0.00577
## 7 fall 3168 0.00569
## 8 climber 2964 0.00533
## 9 rescue 2928 0.00526
## 10 source 2867 0.00515
```

```
## # ... with 25,195 more rows
#calculate probabilities
skipgram_probs <- skipgrams %>%
   pairwise_count(word, skipgramID, diag = TRUE, sort = TRUE) %>%
   mutate(p = n / sum(n))
## Warning: `distinct_()` was deprecated in dplyr 0.7.0.
## Please use `distinct()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
#normalize probabilities
normalized_prob <- skipgram_probs %>%
   filter(n > 20) %>%
   rename(word1 = item1, word2 = item2) %>%
   left_join(unigram_probs %>%
                  select(word1 = word, p1 = p),
              by = "word1") %>%
   left_join(unigram_probs %>%
                  select(word2 = word, p2 = p),
              by = "word2") %>%
   mutate(p_together = p / p1 / p2)
pmi matrix <- normalized prob %>%
   mutate(pmi = log10(p_together)) %>%
    cast_sparse(word1, word2, pmi)
#remove missing data
pmi_matrix@x[is.na(pmi_matrix@x)] <- 0</pre>
#run SVD using irlba() which is good for sparse matrices
pmi_svd <- irlba(pmi_matrix, 100, maxit = 500) #Reducing to 100 dimensions
#next we output the word vectors:
word_vectors <- pmi_svd$u</pre>
rownames(word_vectors) <- rownames(pmi_matrix)</pre>
```

Synonym Function

```
search_synonyms <- function(word_vectors, selected_vector) {
  dat <- word_vectors %*% selected_vector

similarities <- dat %>%
    tibble(token = rownames(dat), similarity = dat[,1])

similarities %>%
    arrange(-similarity) %>%
    select(c(2,3))
}
```

Find the synonyms in the climbing data

```
fall_climb <- search_synonyms(word_vectors,word_vectors["fall",])
slip_climb <- search_synonyms(word_vectors,word_vectors["slip",])</pre>
```

Plot the synonyms in the climbing data

```
climb_syn_plot <- slip_climb %>%
 mutate(selected = "slip") %>%
  bind_rows(fall_climb %>%
             mutate(selected = "fall")) %>%
  group_by(selected) %>%
 top_n(15, similarity) %>%
  ungroup %>%
  mutate(token = reorder(token,
                         similarity)) %>%
 ggplot(aes(token, similarity, fill = selected)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~selected, scales = "free") +
  coord_flip() +
 theme(strip.text = element_text(hjust=0, size=12)) +
  scale_y_continuous(expand = c(0,0)) +
 labs(x = NULL,
      title = "What word vectors are most similar to slip or fall in climbing data?")
climb_syn_plot
```

What word vectors are most similar to slip or fall in climbing data?

Word Math on the climbing data

```
snow_danger <- word_vectors["snow",] + word_vectors["danger",]</pre>
search_synonyms(word_vectors, snow_danger)
## # A tibble: 9,104 x 2
##
      token
                 similarity
      <chr>
                       <dbl>
##
   1 snow
                      0.396
##
##
    2 avalanche
                      0.131
##
   3 conditions
                      0.0918
##
   4 soft
                      0.0806
    5 wet
                      0.0783
##
##
    6 ice
                      0.0769
                      0.0735
##
   7 icy
##
   8 slope
                      0.0703
                      0.0604
##
   9 fresh
## 10 blindness
                      0.0596
## # ... with 9,094 more rows
no_snow_danger <- word_vectors["danger",] - word_vectors["snow",]</pre>
search_synonyms(word_vectors, no_snow_danger)
## # A tibble: 9,104 x 2
##
      token
                similarity
##
      <chr>
                      <dbl>
```

```
## 1 avalanche
                   0.0882
## 2 danger
                   0.0547
                   0.0540
## 3 rockfall
## 4 gulch
                   0.0534
## 5 class
                   0.0507
## 6 hazard
                   0.0403
## 7 hazards
                   0.0394
## 8 occurred
                   0.0376
## 9 potential
                   0.0373
## 10 mph
                   0.0361
## # ... with 9,094 more rows
```

Grab GloVe Data

```
# download.file('https://nlp.stanford.edu/data/glove.6B.zip', destfile = 'data/glove.6B.zip')
# unzip('data/glove.6B.zip')

glove_data <- fread(here("data", "glove.6B.300d.txt"), header = FALSE)

## Warning in fread(here("data", "glove.6B.300d.txt"), header = FALSE): Found and
## resolved improper quoting in first 100 rows. If the fields are not quoted (e.g.
## field separator does not appear within any field), try quote="" to avoid this
## warning.

glove_df <- glove_data %>%
    remove_rownames() %>%
    column_to_rownames(var = 'V1')
```

Recreate the Analyses on GloVe data

Find Synonyms in the glove data

How are they different from the embeddings created from the climbing accident data? Why do you think they are different?

What word vectors are most similar to slip or fall in climbing data?

What word vectors are most similar to slip or fall in glove data?

The similarity scores in the glove data are much higher than the similarities in the climbing data and the top words in each differ greatly. I think that's because the climbing data is very specific to climbing events but the glove data is much more broad so it covers a lot more varying topics.

Do Word Math on the Glove Data

```
snow_danger <- glove_vectors["snow",] + glove_vectors["danger",]
search_synonyms(glove_vectors, snow_danger)

## # A tibble: 400,000 x 2
## token similarity</pre>
```

```
<dbl>
##
      <chr>
##
   1 snow
                       57.6
                       40.6
## 2 rain
                       40.5
## 3 danger
   4 snowfall
                       34.8
##
  5 weather
                       34.4
   6 winds
                       34.0
## 7 rains
                       34.0
## 8 fog
                       33.6
## 9 landslides
                       33.3
## 10 threat
                       33.0
## # ... with 399,990 more rows
no_snow_danger <- glove_vectors["danger",] - glove_vectors["snow",]</pre>
search_synonyms(glove_vectors, no_snow_danger)
## # A tibble: 400,000 x 2
##
      token
                   similarity
##
      <chr>
                        <dbl>
##
  1 danger
                         23.3
## 2 risks
                         20.2
                         18.7
## 3 imminent
## 4 dangers
                         17.9
## 5 risk
                         17.8
## 6 32-team
                         17.6
## 7 mesdaq
                         17.5
## 8 inflationary
                         17.4
## 9 risking
                         17.2
## 10 2001-2011
                         17.0
## # ... with 399,990 more rows
```

2. Run the classic word math equation, "king" - "man" = ?

```
king_man <- glove_vectors["king",] - glove_vectors["man",]
search_synonyms(glove_vectors, king_man)</pre>
```

```
## # A tibble: 400,000 x 2
##
      token
                  similarity
##
      <chr>
                       <dbl>
##
  1 king
                        35.3
   2 kalākaua
                        26.8
## 3 adulyadej
                        26.3
## 4 bhumibol
                        25.9
                        25.5
## 5 ehrenkrantz
## 6 gyanendra
                        25.2
## 7 birendra
                        25.2
## 8 sigismund
                        25.1
                        24.7
## 9 letsie
## 10 mswati
                        24.0
## # ... with 399,990 more rows
```

3. Think of three new word math equations. They can involve any words you'd like, whatever catches your interest.

```
summer_winter <- glove_vectors["summer",] + glove_vectors["winter",]</pre>
search_synonyms(glove_vectors, summer_winter)
## # A tibble: 400,000 x 2
##
     token similarity
##
     <chr>
                     <dbl>
## 1 winter
                        80.5
## 2 summer
                        69.0
## 3 olympics
                        53.8
## 4 spring
                        51.1
## 5 season
                        49.1
## 6 autumn
                        47.9
## 7 temperatures
                        46.2
## 8 weather
                        46.1
## 9 universiade
                        45.0
## 10 paralympics
                        43.6
## # ... with 399,990 more rows
basketball_soccer <- glove_vectors["basketball",] - glove_vectors["soccer",]</pre>
search_synonyms(glove_vectors, basketball_soccer)
## # A tibble: 400,000 x 2
##
     token similarity
##
     <chr>
                     <dbl>
                      20.3
## 1 celtics
## 2 lakers
                      18.1
## 3 3-point
                      17.8
## 4 pistons
                      17.3
## 5 3-pointers
                      17.2
## 6 3-pointer
                      16.8
## 7 pacers
                      16.7
## 8 knicks
                      16.5
## 9 76ers
                      16.4
## 10 rebounds
                      16.2
## # ... with 399,990 more rows
water_desert <- glove_vectors["water",] + glove_vectors["desert",]</pre>
search_synonyms(glove_vectors, water_desert)
## # A tibble: 400,000 x 2
##
     token
                similarity
##
                    <dbl>
      <chr>
## 1 water
                      67.3
## 2 desert
                      64.2
  3 sea
                      46.3
## 4 river
                      43.0
## 5 arid
                      42.7
## 6 dry
                      42.7
## 7 sand
                      41.7
                      41.0
## 8 soil
## 9 irrigation
                      40.1
```

10 lake 40.1 ## # ... with 399,990 more rows