Computer Organization & Assembly Language Programming

CSE 2312

Lecture 3 Computer Components

Junzhou Huang, Ph.D.

Department of Computer Science and Engineering

Administration Reviewing

Course CSE2312

What: Computer Organization & Assembly Language Programming

- When: Mon. & Wed. $3:00 \sim 4:20$ pm

- Where: SH 332

- Who: Junzhou Huang (Office ERB 650) <u>jzhuang@uta.edu</u>

- Office Hour: Mon. & Wed. $1:00 \sim 3:00$ pm and/or appointments

Homepage: http://ranger.uta.edu/~huang/teaching/CSE2312/

(You're required to check this page regularly)

Lecturer

- PhD in CS from Rutgers, the State University of New Jersey
- Research areas: medical imaging (hardware and software design), machine learning, computer vision, image and signal processing

• **GTA**

- Yeqing Li (Office ERB 101), yeqing.li@mavs.uta.edu
- Office hours: Mon. & Wed. 10:00am ~ 12:00pm and/or appointments

Reviewing (1)

How to make computer convenient for people and hardward built-in simutaneously

 Designing the L1 language including a new set of instructions that is more convenient for people to use than those in built-in machine instructions (L0 language)

Solution: Translation

- Executing a program written in L1 is first replace each instruction in it by an equivalent sequence of instructions in L0
- The computer execute the new L0 program instead of the old L1 program

• Solution: Interpretation

- Write a program in L0 to take programs in L1 as input data
- Examine each instruction in turn and execute the equivalent sequence of L0 instruction directly

Reviewing (2)

• Similarity

- In both of them, the computer carried out instructions in L1 by executing equivalent sequences of instructions in L0

Dissimilarity

- In translation, the entire L1 program is converted to a L0 program. Then the new L0 program is loaded into the memory and executed. During Execution, the new L0 program is running and in control of computer
- In interpretation, after each L1 instruction is examined and decoded, it is carried out immediately. The interpreter is in control of computer. In this case, L1 program is just data.

Reviewing (3)

A six-level computer. The support method for each level is indicated below it.

Reviewing (4)

- Model of a computer that used stores programs
 - Both Data and Program stored in memory
 - Allows the computer to be "Re-programmed"

Different Computers

Greeting Card (electronic music) \$1

Electronic control in cars \$5~\$10

Personal Computer \$500~\$1,000

Computer Servers \$5,000

Game Computer \$50~\$100

Mainframe Computer \$5,000,000

Different Computers

Туре	Price (\$)	Example application
Disposable computer	0.5	Greeting cards
Microcontroller	5	Watches, cars, appliances
Game computer	50	Home video games
Personal computer	500	Desktop or notebook computer
Server	5K	Network server
Collection of Workstations	50-500K	Departmental minisupercomputer
Mainframe	5M	Batch data processing in a bank

Personal Computer

Printed circuit board

- The heart of every personal computer. (Figure: Intel D875PBZ board)

- 1. Pentium 4 socket
- 2. 875P Support chip
- 3. Memory sockets
- 4. AGP connector
- 5. Disk interface
- 6. Gigabit Ethernet
- 7. Five PCI slots
- 8. USB 2.0 ports
- 9. Cooling technology
- 10. BIOS

Some Computer Families

Pentium 4 by Intel

Popular personal computer

UltraSPARC III by Sun Microsystems

- Open architecture with many suppliers of parts and systems
- Aimed at high-end applications, such as large multiprocessor web servers with dozens of CPUs and physical memories of up to 8 TB (10¹² bytes)
- Small versions also can be used in notebook as well

The 8051 chip by Intel, used for embedded systems

- Use read-only memories for the program plus a small amount of read-write memory, called RAM (Random Access Memory) for data storage
- Cheaper price
- Lot of information about the 8051
- www.8051.com

Intel Computer Family (1)

Chip	Date	MHz	Transistors	Memory	Notes
4004	4/1971	0.108	2300	640	First microprocessor on a chip
8008	4/1972	0.108	3500	16 KB	First 8-bit microprocessor
8080	4/1974	2	6000	64 KB	First general-purpose CPU on a chip
8086	6/1978	5-10	29,000	1 MB	First 16-bit CPU on a chip
8088	6/1979	5–8	29,000	1 MB	Used in IBM PC
80286	2/1982	8–12	134,000	16 MB	Memory protection present
80386	10/1985	16–33	275,000	4 GB	First 32-bit CPU
80486	4/1989	25–100	1.2M	4 GB	Built-in 8-KB cache memory
Pentium	3/1993	60–233	3.1M	4 GB	Two pipelines; later models had MMX
Pentium Pro	3/1995	150–200	5.5M	4 GB	Two levels of cache built in
Pentium II	5/1997	233–450	7.5M	4 GB	Pentium Pro plus MMX instructions
Pentium III	2/1999	650–1400	9.5M	4 GB	SSE Instructions for 3D graphics
Pentium 4	11/2000	1300–3800	42M	4 GB	Hyperthreading; more SSE instructions

The Intel CPU family. Clock speeds are measured in MHz (megahertz) where 1 MHZ is 1 million cycles/sec.

Intel Computer Family (2)

The Pentium 4 chip

Intel Computer Family (3)

MCS-51 Family

Chip	Program memory	Mem. type	RAM	Timers	Interrupts
8031	0 KB		128	2	5
8051	4 KB	ROM	128	2	5
8751	8 KB	EPROM	128	2	5
8032	0 KB		256	3	6
8052	8 KB	ROM	256	3	6
8752	8 KB	EPROM	256	3	6

Class of CPU

	Server	Desktop	Embedded
Cost of	5K to 1 M	700\$ to 5K	100 to 700\$
System			
Cost of CPU	50\$ to 1K	70 \$ to 200\$	\$ 1 to \$100
Performance	Throughput	Response time,	Power,
Metrics	Availability	Price	Battery life
		Graphics	Graphics

Future

Advanced Architectures

- Multi-core (more than 1 CPU on a chip)

• Performance Accelerators

- Graphic chips (Xbox, Wii, nintendo)
- Probability Processing

Embedded Computing

 Processors in vending machines, washer dryers, cars

Cloud Computing

- Computing as a utility
- Low Energy Design
 - Green is IN

Dual Core CPU

• Ex 1: TRUE OR FALSE, Why?

- An interpreter converts programs in one language to another, while a translator carries out a program instruction by instruction.
- Answer: F
- Reason: An translator converts programs in one language to another,
 while a interpreter carries out a program instruction by instruction.

• Ex 2: TRUE OR FALSE, Why?

- L1 language is less convenient for people to use than those in built-in machine instructions.
- Answer: F
- Reason: L1 language is more convenient for people

• Ex 3: TRUE OR FALSE, Why?

- Computer Architecture is to study how to design parts of a computer system that are visible to the programmers.

- Answer: T

• Ex 4: TRUE OR FALSE, Why?

- Hardware and software are functionally equivalent. Any function done by one can, in principle, be done by the other.
- Answer: T

• Ex 5: Which of following is true for Translation and Interpretation?

- (a) In both of them, the computer carried out instructions in L1 by executing equivalent sequences of instructions in L0
- (b) In translation, the entire L1 program is converted to a L0 program.
- (c) In interpretation, after each L1 instruction is examined and decoded, it is carried out immediately.
- (d) Interpretation is more efficient than Translation
- Answer: [a, b, c]

- Ex 6: Which of following can be stored in the memory?
 - (a) Data only
 - (b) Program only
 - (c) Both data and program
 - (d) None of them
 - Answer: [c]

- Ex 7: Which of following is true based on Moore Law:
 - (a) 2X processor speed increment every 8 months.
 - (b) 2X processor speed increment every 18 months.
 - (c) 4X processor speed increment every 8 months.
 - (d) 4X processor speed increment every 18 months.

- Answer: [b]

- Ex 8: Which of following is true in Multilevel Machine?
 - (a) Instruction Set Architecture Level lay between Digital Logic Level and Microarchitecture Level.
 - (b) Assembly Language Level lay between Instruction Set Architecture Level and Operating System Level
 - (c) Operating System Level lay between Assembly Language Level and Instruction Set Architecture Level
 - (d) Microarchitecture Level lay between Digital Logic Level and Instruction Set Architecture Level
 - Hint: Please draw down the diagram of multilevel machine first
 - Answer: [c, d]

Six-level Coputer

A six-level computer. The support method for each level is indicated below it.

- Ex 9: Please draw a diagram for the Von Neumann Machine
 - Answer:

• Ex 10: What is the key gap in computer design? How to bridge this gap?

- Answer:

- Human prefers natural language while it's easy to use machine (binary) language for computers.
- Designing a high level language (L1) including a new set of instructions that is more convenient for people to use than those in built-in machine instructions (L0 language).