Modifying Brightness

By Nicolas Agostini

https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html https://www.dspguide.com/ch23/1.htm

From Images to Matrices (2D arrays)

From Images to Matrices to 1D Arrays

From Images to Matrices to 1D Arrays

To access (x,y) element. We need its coordinates

https://www.dspguide.com/ch23/1.htm

To access (x,y) element. We need its coordinates

https://www.dspguide.com/ch23/1.htm

2D array Image[][

https://www.dspguide.com/ch23/1.htm

To access (x,y) element. We need its coordinates

https://www.dspguide.com/ch23/1.htm

Modifying Grayscale Brightness?

You must add/subtract a constant value of each pixel

In your code... First you must Load the image!

Make grayscale

Tile in both dimensions

Tile in both dimensions

Number of threads in the block for y dimension This is my grid:

gridDim.x=6: ((img_width-1)/TILE_SIZE)+1
gridDim.y=6: ((img_height-1)/TILE_SIZE)+1

This is my grid: gridDim.x=6 gridDim.y=6

For alignment purposes
Must allocate on the GPU the full area covered by blocks

Including the red area

This is my grid: gridDim.x=6 gridDim.y=6

Threads in the red area should not do any work

That allocated data will never be touched... ouch!

This is my grid: gridDim.x=6 gridDim.y=6

Threads in the red area should not do any work

That allocated data will never be touched

It is fine if your tile size is small

This is my grid:

gridDim.x=13: ((img_width-1)/TILE_SIZE)+1
gridDim.y=14: ((img_height-1)/TILE_SIZE)+1

Threads in the red area should not do any work

That allocated data will never be touched

It is fine if your tile size is small

block(2,4)
blockIdx.x :2
blockIdx.y :4

block(2,4)
blockIdx.x :2
blockIdx.y :4


```
int x = blockIdx.x*TILE_SIZE+threadIdx.x;
int y = blockIdx.y*TILE_SIZE+threadIdx.y;
```


block(2,4)
blockIdx.x :2
blockIdx.y :4


```
int x = blockIdx.x*TILE_SIZE+threadIdx.x;
int y = blockIdx.y*TILE_SIZE+threadIdx.y;
```

```
int location = y*(gridDim.x*TILE_SIZE)+x;
unsigned char value = input[location];
```


2D array
Image[x] [y]

```
1D array (Row Major)
input[ width'.y + x ]
```

block(2,4) blockIdx.x:2 blockIdx.y:4


```
int x = blockIdx.x*TILE_SIZE+threadIdx.x;
int y = blockIdx.y*TILE_SIZE+threadIdx.y;
```

```
int location = y*(q width' )+x;
unsigned char value = input[location];
```

```
global void kernel (unsigned char *input,
                     unsigned char *output,
                     int inc) {
  int x = blockIdx.x*TILE SIZE+threadIdx.x;
  int y = blockIdx.y*TILE SIZE+threadIdx.y;
  int location = y*(gridDim.x*TILE SIZE)+x;
  unsigned char value = input[location];
  if ((int) value + inc > 255) value = 255;
  else if ((int) value + inc < 0) value = 0;
  else value = value + inc;
  output[location] = value;
```

```
1D array (Row Major)
input[ width'.y + x ]
```

block(2,4) blockIdx.x :2 blockIdx.y :4

Thread executing this kernel with modify the pixel by adding:

value+inc

Final result

Comparison

