Thibault Hiron–Bédiée

Variance et équilibre

Variance Variance réduite Rupture d'équilibre Paramètres

Optimisatio thermodyna mique

Modification de *h*Modification de *G*

à T constante à p et V constants

à T et V constants

Enjeux industriels

LC — Optimisation d'un procédé chimique (CPGE, MP)

Thibault Hiron-Bédiée

6 mai 2022

Élément imposé : Mettre en œuvre un protocole pour étudier l'influence de la

température ou de la pression sur un déplacement d'équilibre

chimique.

Niveau : CPGE deuxième année — MP

Prérequis : Programme de première année (MPSI)

Dosages acide-base

Thermodynamique de deuxième année jusqu'à ce cha-

pitre (premier et second principe)

Thibault Hiron–Bédié

Variance e équilibre Variance

Variance réduite Rupture d'équilib Paramètres d'influence

thermodyna mique

Le Chatelier
Modification de K°
Modification de Q,
à T constante
à p et V constants
à T et V constants
à T constante

Enjeux industriels

Extrait du bulletin officiel

Notions et contenus	Capacités exigibles
8. Thermodynamique de la transformation chimique 8.2 Application du second principe à la transformation chimique	
Relation entre $\Delta_r \mathcal{G}, \mathcal{K}^o$ et $\mathcal{Q}_r.$	Prévoir le sens d'évolution à p et T fixées d'un système physicochimique dans un état donné à l'aide de Q_r et K^o . Énoncer et exploiter la relation de Van't Hoff.
	Déterminer la valeur de la constante d'équilibre thermodynamique à une température quelconque.
	Déterminer la valeur d'une constante d'équilibre thermodyna- mique d'une réaction par combinaison de constantes d'équilibres thermodynamiques d'autres réactions.
État final d'un système : équilibre chimique ou transformation totale.	Déterminer la composition chimique d'un système dans l'état fi- nal, en distinguant les cas d'équilibre chimique et de transforma- tion totale, pour une transformation modélisée par une réaction chimique unique.
	Mettre une œuvre une démarche expérimentale pour détermi- ner la valeur d'une constante d'équilibre en solution aqueuse.
Caractérisation de l'état intensif d'un sys- tème en équilibre : nombre de degrés de li- berté (variance) d'un système à l'équilibre.	Reconnaître si une variable intensive est ou non un paramètre d'influence d'un équilibre chimique.
	Recenser les variables intensives pertinentes de description du système à l'équilibre pour en déduire le nombre de degrés de liberté de celui–ci.
Optimisation d'un procédé chimique :	Identifier les paramètres d'influence et leur sens d'évolution pour

secondaire indésirable

pects environnementaux inclus.

par modification de la valeur de K^o :

tient réactionnel

par modification de la valeur du quo-

optimiser une synthèse ou minimiser la formation d'un produit

Approche documentaire : à partir de documents décrivant une unité de synthèse industrielle, analyser les choix industriels, as-

Thibault Hiron–Bédiée

Variance et équilibre

Variance réduite
Rupture d'équilibre
Paramètres
d'influence

Optimisation thermodynamique

Le Chatelier

Modification de K^o Modification de Q_s

à p et V constants à T et V constants

Enjeux industriels

Optimisation d'un procédé chimique

I. Facteurs d'équilibre et variance d'un système

- 1. Variance d'un système chimique
- 2. Influence des conditions expérimentales : variance réduite
- 3. Déplacement et rupture d'équilibre
- 4. Paramètres d'influence

II. Optimisation d'hermodynamique d'un processus

- 1. Principe de modération de Le Chatelier
- 2. Modification de la valeur de la constante d'équilibre K^o
- 3. Modification de la valeur du quotient réactionnel Q_r
 - Modification de la pression à température constante
 - Ajout d'un gaz à presison et volume constant
 - Ajout d'un gaz à température et volume constant
 - Modification de la pression à température constante
- III. Enjeux industriels : exemple de la synthèse de l'ammoniac, procédé Haber–Bosch

Thibault

Variance et équilibre Variance

Variance réduite Rupture d'équilibr Paramètres d'influence

Optimisation thermodyna-mique

Le Chatelier Modification de K°

à p et V constants à T et V constant

Enjeux industriels

Application du premier principe à la transformation chimique

- I. Facteurs d'équilibre et variance d'un système
 - 1. Variance d'un système chimique
 - 2. Influence des conditions expérimentales : variance réduite
 - 3. Déplacement et rupture d'équilibre
 - 4. Paramètres d'influence
- II. Optimisation d'hermodynamique d'un processus
 - 1. Principe de modération de Le Chatelier
 - 2. Modification de la valeur de la constante d'équilibre K^o
 - 3. Modification de la valeur du quotient réactionnel Q_r
 - Modification de la pression à température constante
 - Ajout d'un gaz à presison et volume constant
 - Ajout d'un gaz à température et volume constant
 - Modification de la pression à température constante
- III. Enjeux industriels : exemple de la synthèse de l'ammoniac, procédé Haber–Bosch

chimique

Thibault Hiron–Bédiée

Variance e équilibre

Variance réduite

Optimisation

mique

Modification de K°

Modification de A

Modification de Q,

à not V constan

à T et V constan

à T et V constant
à T constante

Enjeux industriels

Modification de la valeur de la constante d'équilibre K^o

Application du premier principe à la transformation chimique

Thibault Hiron–Bédié

Variance et équilibre _{Variance}

Variance réduite Rupture d'équilibre Paramètres d'influence

Optimisatio thermodyna mique

Modification de K°

Modification de Q.

à T constante

à p et V constants

Enjeux industriels

I. Facteurs d'équilibre et variance d'un système

- 1. Variance d'un système chimique
- 2. Influence des conditions expérimentales : variance réduite
- 3. Déplacement et rupture d'équilibre
- 4. Paramètres d'influence

II. Optimisation d'hermodynamique d'un processus

- 1. Principe de modération de Le Chatelier
- 2. Modification de la valeur de la constante d'équilibre K^o
- 3. Modification de la valeur du quotient réactionnel Q_r
 - Modification de la pression à température constante
 - Ajout d'un gaz à presison et volume constant
 - Ajout d'un gaz à température et volume constant
 - Modification de la pression à température constante
- III. Enjeux industriels : exemple de la synthèse de l'ammoniac, procédé Haber–Bosch

Variance réduite Rupture d'équilible Paramètres d'influence

Optimisatio thermodyna mique

Le Chatelier

Modification de *h*

Modification de Q_r

à p et V constants à T et V constants

Enjeux industriels

- Modification de la pression à température constante
- Ajout d'un gaz à presison et volume constant
- Ajout d'un gaz à température et volume constant
- Modification de la pression à température constante

Rappel:

$$Q_r = \prod_{i \text{ gaz}} \left(\frac{p_i}{p^o}\right)_i^{\nu} \prod_{j \text{ solut\'e}} (a_j)_j^{\nu}$$

$$Q_r = \left[\prod_{i \text{ gaz}} (x_i)_i^{\nu} \prod_{j \text{ solut\'e}} (a_j)_j^{\nu}\right] \left(\frac{p}{p^o}\right)^{\Delta_r \nu_{\text{gaz}}}$$

où
$$\Delta_r \nu_{\rm gaz} = \sum_{i \, {\rm gaz}} \nu_i$$

Thibault Hiron–Bédiée

Variance e équilibre

Variance réduite Rupture d'équilibre Paramètres

Optimisatio thermodyna mique

Le Chatelier

Modification de K^o Modification de Q_r

à p et V constant à T et V constan

Enjeux industriels

Application du premier principe à la transformation chimique

I. Facteurs d'équilibre et variance d'un système

- 1. Variance d'un système chimique
- 2. Influence des conditions expérimentales : variance réduite
- 3. Déplacement et rupture d'équilibre
- 4. Paramètres d'influence

II. Optimisation d'hermodynamique d'un processus

- 1. Principe de modération de Le Chatelier
- 2. Modification de la valeur de la constante d'équilibre K^o
- 3. Modification de la valeur du quotient réactionnel Q_r
 - Modification de la pression à température constante
 - Ajout d'un gaz à presison et volume constant
 - Ajout d'un gaz à température et volume constant
 - Modification de la pression à température constante
- III. Enjeux industriels : exemple de la synthèse de l'ammoniac, procédé Haber–Bosch

Synthèse de l'ammoniac, procédé Haber–Bosch

chimique

Thibault

Hiron–Bédiée

Optimisation

d'un procédé

Variance et équilibre Variance

Variance réduite Rupture d'équilibre Paramètres

Optimisation thermodyna mique

Le Chatelier

Modification de 6

à p et V constant à T et V constant

Enjeux industriels

