More Proofs

CSC165 Week 4 - Part 1

Example: $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x = y+1$

We want to show that $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x \neq y+1$

Example: $\forall d \in \mathbb{Z}, \forall x \in \mathbb{Z}, x \mid (x+d) \Rightarrow x \mid d$.

Rough Work:

Proof: We want to show that

$$\forall d \in \mathbb{Z}, \forall x \in \mathbb{Z}, x \mid (x+d) \Rightarrow x \mid d$$

Let $x \in \mathbb{Z}$. The value of $d \in \mathbb{Z}$ is fixed. Assume $x \mid (x+d)$.

Since it has now been prove, we will let Fact 1 be:

$$\forall d \in \mathbb{Z}, \forall x \in \mathbb{Z}, x \mid (x+d) \Rightarrow x \mid d.$$

Example:

$$\forall x, \in \mathbb{Z}, \forall p \in \mathbb{Z}, \text{ Prime(p)} \land x \mid (x+p) \Rightarrow x=1 \lor x=p$$

Prime(p) = "p>1
$$\land \forall d \in \mathbb{N}, d \mid p \Longrightarrow d=1 \lor d=p$$

$$\forall x, \in \mathbb{Z}, \forall p \in \mathbb{Z}, \text{ Prime(p)} \land x \mid (x+p) \Rightarrow x=1 \lor x=p$$

Assume, Prime(p) is true. Also assume x | x+p.

$$\forall x, \in \mathbb{Z}, \forall p \in \mathbb{Z}, \text{ Prime(p)} \land x \mid (x+p) \Rightarrow x=1 \lor x=p$$

Assume, Prime(p) is true. Also assume x | x+p.

Prime(p) = "p>1
$$\land \forall d \in \mathbb{N}, d \mid p \Longrightarrow d=1 \lor d=p$$
"

$$\forall x, \in \mathbb{Z}, \forall p \in \mathbb{Z}, \text{ Prime(p)} \land x \mid (x+p) \Rightarrow x=1 \lor x=p$$

Assume, Prime(p) is true. Also assume x | x+p.

Prime(p) = "p>1
$$\land \forall d \in \mathbb{N}, d \mid p \Longrightarrow d=1 \lor d=p$$
"

Fact $1 \Longrightarrow x|p$

$$\forall x, \in \mathbb{Z}, \forall p \in \mathbb{Z}, Prime(p) \land x \mid (x+p) \Rightarrow x=1 \lor x=p$$

Assume, Prime(p) is true. Also assume x | x+p.

Prime(p) = "p>1
$$\land \forall d \in \mathbb{N}, d \mid p \Longrightarrow d=1 \lor d=p$$
"

Fact
$$1 \Longrightarrow x|p$$

$$\exists k \in \mathbb{Z}, p = kx$$

$$\forall x, \in \mathbb{Z}, \forall p \in \mathbb{Z}, \text{ Prime(p)} \land x \mid (x+p) \Rightarrow x=1 \lor x=p$$

Assume, Prime(p) is true. Also assume x | x+p.

Prime(p) = "p>1
$$\land \forall d \in \mathbb{N}, d \mid p \Longrightarrow d=1 \lor d=p$$
"

Fact $1 \Longrightarrow x|p$

 $\exists k \in \mathbb{Z}, p = kx$, but p is prime, if x p then x = 1 or x = p

Example: \forall a,b $\in \mathbb{Z}$, $2 \nmid a \land 2 \nmid b \Longrightarrow 2 \nmid ab$

Generalization? \forall d $\in \mathbb{Z}$, \forall a,b $\in \mathbb{Z}$, d \nmid a \land d \nmid b \Longrightarrow d \nmid ab

Example: $\forall d \in \mathbb{Z} \ (\forall a,b \in \mathbb{Z}, d \nmid a \land d \nmid b \Longrightarrow d \nmid ab)$ $\Rightarrow \text{Prime}(d) \lor d \leq 1$