# Второе задание курса 'Суперкомпьютерное моделирование и технологии программирования'

Чаплыгин Андрей Викторович ВМК МГУ, группа 603.

2018 Ноябрь

# 1 Описание задачи

#### Вариант 10.

В прямоугольнике  $\Omega = [0,2] \times [0,1]$  с границами:

$$\gamma_R = \{(2, y), 0 \le y \le 1\}$$

$$\gamma_L = \{(0, y), 0 \le y \le 1\}$$

$$\gamma_T = \{(x, 1), 0 \le x \le 2\}$$

$$\gamma_B = \{(x,0), 0 \le x \le 2\}$$

рассматривается уравнение Пуассона:

$$-\Delta u = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = F(x, y)$$

с граничными условиями:

$$\gamma_R : u(2, y) = \phi(2, y) = 1 + \cos(2\pi y)$$

$$\gamma_L : \frac{\partial u}{\partial x_{x=0}} = \psi(0, y) = 0$$

$$\gamma_T : u(x, 1) = \phi(x, 1) = 1 + \cos(\pi x)$$

$$\gamma_B : \frac{\partial u}{\partial y_{y=0}} = \psi(x, 0) = 0$$

Аналитическое решение этой задачи известно:

$$u(x,y) = 1 + \cos(\pi xy)$$

### 2 Численное решение

Определим равномерную прямоугольную сетку с шагами по пространству  $h_x, h_y$ . Количество узлов сетки M, N. Тогда разностная схема решения выглядит следующим образом:

$$\begin{split} -\frac{1}{h_x^2}(u_{i+1,j}-2u_{i,j}+u_{i-1,j}) - \frac{1}{h_y^2}(u_{i,j+1}-2u_{i,j}+u_{i,j-1}) &= F_{i,j}, i = \overline{1,M-1}, j = \overline{1,N-1} \\ -\frac{1}{h_x^2}(u_{i+1,0}-2u_{i,0}+u_{i-1,0}) - \frac{2}{h_y^2}(u_{i,1}-u_{i,0}) &= F_{i,0} - \frac{2}{h_y}\psi_{i,0}, i = \overline{1,M-1}, j = 0 \\ -\frac{2}{h_x^2}(u_{1,j}-u_{0,j}) - \frac{1}{h_y^2}(u_{0,j+1}-2u_{0,j}+u_{0,j-1}) &= F_{0,j} - \frac{2}{h_x}\psi_{0,j}, i = 0, j = \overline{1,N-1} \\ -\frac{2}{h_x^2}(u_{1,0}-u_{0,0}) - \frac{1}{h_y^2}(u_{0,1}-u_{0,0}) &= F_{0,0} - (\frac{2}{h_x}+\frac{2}{h_y})\psi_{0,0} \\ u_{M,j} &= \phi_{M,j}, j = \overline{0,N} \end{split}$$

Полученную систему линейных уравнений предлагается решать методом наименьших невязок.

## 3 Программная реализация

#### 3.1 Описание последовательной версии

Представим нашу разностную схему в матричном виде:

$$Lu = G$$

Заметим, что размерность  $L \in R^{MN \times MN}$ , т.к. на границах  $\gamma_R, \gamma_T$  задаются условия Дирихле и узлы на этой границе можно исключить из системы.

Т.к. в методе наименьших невязок только требуется вычислять Lv для вообще говоря произвольного v - то в программе реализован безматричный вариант метода (matrix-free). Вместо построения матрицы оператора L задается функция, вычисляющая Lv по заданному вектору v.

В качестве критерия остановки итерационного процесса использовался критерий:

$$||r_k|| = ||Lu_k - G|| < \epsilon$$

Последовательная версия лежит в git репозитории: https://github.com/Andrcraft9/laplace2D-solver, ветка master

#### 3.2 Описание параллельной версии (MPI и OpenMP)

При параллельной реализации использовался метод декомпозиции области. Область делилась в двух направлениях: по х и по у. Для каждой подобласти добавлялась внерасчетная граница (halo points), с помощью которой происходила синхронизация между процессорами. В качестве функций перессылок использовались MPI блокирующие вызовы MPI Sendrecv, MPI Send, MPI Recv.

С помощью директив OpenMP были распараллелены главные циклы программы.

MPI версия программы лежит в git репозитории: https://github.com/Andrcraft9/laplace2D-solver, ветка pure mpi

Гибридная MPI/OpenMP версия программы лежит git репозитории: https://github.com/Andrcraft9/laplace2D-solver, ветка parallel\_mpi

# 4 Тестирование последовательной программы и параллельной программы

#### 4.1 Тестирование на персональном компьютере

Тестирование проводилось на персональном компьютере,  $\epsilon = 10^{-6}$ . Приведем сначала результаты последовательной программы.

| Mesh             | Time (sec) | Iterations | Error (L2) | Error (C) |
|------------------|------------|------------|------------|-----------|
| 20 x 20          | 0.004484   | 570        | 0.040182   | 0.005018  |
| $40 \times 40$   | 0.086179   | 4949       | 0.019857   | 0.001262  |
| $80 \times 80$   | 1.864532   | 33370      | 0.009860   | 0.000316  |
| $160 \times 160$ | 32.697744  | 153615     | 0.004905   | 0.000079  |

Из таблицы четко видно, что при увеличении сетки в два раза ошибка в норме L2 падает в 2 раза, а в норме С в 4 раза. Приведем рисунки как ведет себя численное решение на итерациях для двух сеток.



Рис. 1: Решение для сетки 20 на 20: слева на 10 итерации; справа на 100 итерации



Рис. 2: Решение для сетки 20 на 20: слева на 300 итерации; справа финальное (570 итерация)

Параллельная программа была протестирована на таких же сетках и было проведено сравнение с последовательной версией. В таблице представлены результаты для параллельной версии.



Рис. 3: Решение для сетки 160 на 160: слева на 1000 итерации; справа на 10000 итерации



Рис. 4: Решение для сетки 160 на 160: слева на 50000 итерации; справа финальное (153615 итерация)

| Cores | Threads | Mesh             | Time (sec) | Iterations | Error $(L2)$ | Error (C) |
|-------|---------|------------------|------------|------------|--------------|-----------|
| 4     | 1       | 20 x 20          | 0.009494   | 518        | 0.040182     | 0.005018  |
| 4     | 1       | $40 \times 40$   | 0.133663   | 5007       | 0.019857     | 0.001262  |
| 4     | 1       | $80 \times 80$   | 1.650855   | 33397      | 0.009860     | 0.000316  |
| 4     | 1       | $160 \times 160$ | 22.312919  | 153611     | 0.004905     | 0.000079  |

Видно что ошибки получаются такие же, как для последовательной версии.

#### 4.2 Тестирование на Blue Gene

Приведем результаты тестирования на суперкомпьютере Blue Gene.

В первой таблице показаны результаты тестирования MPI версии программы в режиме VN (режим виртуальных вычислительных узлов). Программа компилировалась компилятором IBM XL: mpixlcxx -O3 -qarch=450 -qtune=450.

| Cores | Threads | Mesh               | Time (sec)  | Iterations | Error $(L2)$ | Error (C) | SpeedUp |
|-------|---------|--------------------|-------------|------------|--------------|-----------|---------|
| 128   | 1       | 512 x 512          | 736.060111  | 1676500    | 0.001499     | 0.000008  | 1.00    |
| 256   | 1       | $512 \pm 512$      | 464.799801  | 1676433    | 0.001499     | 0.000008  | 1.58    |
| 512   | 1       | $512 \pm 512$      | 340.541092  | 1675964    | 0.001499     | 0.000008  | 2.16    |
| 128   | 1       | $1024 \times 1024$ | 1419.707980 | 1000001    | 192.841024   | 0.375063  | 1.00    |
| 256   | 1       | $1024 \times 1024$ | 770.141615  | 1000001    | 192.841055   | 0.375063  | 1.84    |
| 512   | 1       | $1024 \times 1024$ | 437.776311  | 1000001    | 192.841038   | 0.375063  | 3.24    |

Во второй таблице показаны результаты тестирования гибридной MPI/OpenMP версии программы в режима SMP (режим симметричного мультипроцессора). Программа компилировалась компилятором IBM XL: mpixlcx\_r -O3 -qsmp=omp -qarch=450 -qtune=450.

| Cores | Threads | Mesh               | Time (sec) | Iterations | Error (L2) | Error (C) | SpeedUp |
|-------|---------|--------------------|------------|------------|------------|-----------|---------|
| 128   | 4       | 512 x 512          | 685.643375 | 1675906    | 0.001499   | 0.000008  | 1.00    |
| 256   | 4       | $512 \pm 512$      | 613.482150 | 1675906    | 0.001499   | 0.000008  | 1.11    |
| 512   | 4       | $512 \pm 512$      | 593.274514 | 1675906    | 0.001499   | 0.000008  | 1.15    |
| 128   | 4       | 1024 x 1024        | 669.6818   | 1000001    | 192.841024 | 0.375063  | 1.00    |
| 256   | 4       | $1024 \times 1024$ | 498.4438   | 1000001    | 192.841024 | 0.375063  | 1.34    |
| 512   | 4       | $1024 \times 1024$ | 410.2103   | 1000001    | 192.841024 | 0.375063  | 1.63    |

Для задачи 1024 на 1024 пришлось поставить ограничение на 10000000 итераций, иначе задача не успевала посчитаться за лимит по времени (15 минут), за 10000000 итераций норма невязки успела упасть до 0.82. Для задачи 512 на 512 невязка упала до  $\epsilon=10^{-6}$ . Ускорение считалось относительно времени на 128 ядрах.

4.3 Тестирование на Polus