EXERCICES — CHAPITRE 4

Exercice 1 (\star) – On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies pour tout $n\in\mathbb{N}$ par

$$u_n = 5\sqrt{n} - 3$$
 et $v_n = -\frac{2}{n+1} + 1$.

- 1. Calculer les deux premiers termes de chaque suite.
- 2. Calculer le quinzième terme de chaque suite.

Exercice 2 (\star) – On considère les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 1}$ définies par

$$u_0 = 1$$
 et $u_{n+1} = -u_n^2 + u_n - 1$
 $v_1 = 5$ et $v_{n+1} = v_n + \frac{2}{n}$

Calculer les quatre premiers termes de ces deux suites.

Exercice 3 (*) – Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 - n + 1$.

- 1. Calculer u_0 et u_{10} .
- 2. Exprimer $u_n + 1$ et u_{n+1} en fonction de n.

Exercice 4 (*) – Soit $(u_n)_{n\in\mathbb{N}}$ la suite arithmétique de premier terme $u_0=4$ et de raison $r=\frac{1}{2}$.

- 1. Exprimer u_n en fonction de n.
- 2. Calculer u_{10} .

Exercice 5 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r.

- 1. On donne $u_0 = \frac{1}{2}$ et $r = -\frac{1}{4}$. Calculer u_{13} .
- 2. On donne $u_{36} = 86$ et r = 2. Calculer u_0 .
- 3. On donne $u_2 = 2$ et $u_{15} = 67$. Calculer r et u_1 .
- 4. On donne $u_8 = 34$ et r = 3. Calculer u_1 .

Exercice 6 (\star) – Soit $(u_n)_{n \in \mathbb{N}}$ la suite géométrique de premier terme $u_0 = 7$ et de raison q = 3.

- 1. Exprimer u_n en fonction de n.
- 2. Calculer u_5 .

Exercice 7 $(\star\star)$ – Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q.

- 1. On donne $u_0 = 8$ et $q = \frac{1}{2}$. Calculer u_7 .
- 2. On donne $u_1 = 2$ et $q = \frac{3}{2}$. Calculer u_5 .
- 3. On donne $u_4 = 7$ et $q = \frac{1}{3}$. Calculer u_1 .
- 4. On donne $u_2 = 4$ et $u_4 = \frac{16}{9}$. Calculer q. (On suppose q > 0.)

Exercice 8 ($\star\star$) – On suppose que chaque année, la production d'une usine subit une baisse de 4%. Au cours de l'année 2020, la production a été de 25000 unités.

- 1. On note $P_0 = 25000$ et P_n la production au cours de l'année 2020 + n. Montrer que $(P_n)_{n \in \mathbb{N}}$ est une suite géométrique dont on donnera la raison.
- 2. Calculer la production de l'usine en 2025. Indication numérique : $0.96^5 \approx 0.82$.

Exercice 9 ($\star\star$) – On place un capital $u_0 = 1500$ euros à 4.5% par an avec intérêts simples. On note u_n le capital obtenu au bout de n années.

- 1. Donner la nature de la suite $(u_n)_{n\in\mathbb{N}}$ et exprimer u_n en fonction de n.
- 2. Calculer la valeur du capital au bout de 10 ans.
- 3. Au bout de combien d'années, le capital initial aura-t-il doublé?

Exercice 10 ($\star\star$) – On place un capital $u_0 = 3500$ euros à 3% par an avec intérêts composés. On note u_n le capital obtenu au bout de n années.

- 1. Donner la nature de la suite $(u_n)_{n\in\mathbb{N}}$ et exprimer u_n en fonction de n.
- 2. Calculer la valeur du capital au bout de 10 ans. *Indication numérique*: $1.03^{10} \approx 1.34$.

Exercice 11 $(\star \star \star)$ – On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 1$ et $u_{n+1} = 1 + 2u_n$ pour tout entier naturel n.

- 1. Calculer u_1 , u_2 , u_3 et u_4 .
- 2. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle arithmétique? géométrique?
- 3. On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=u_n+1$.
 - (a) Calculer v_0 , v_1 , v_2 , v_3 et v_4 .
 - (b) Justifier que la suite $(\nu_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on donnera le premier terme et la raison.
 - (c) Donner l'expression de v_n en fonction de n.
- 4. En déduire l'expression de u_n en fonction de n.

Exercice 12 ($\star \star \star$) – La médiathèque d'une petite ville a ouvert ses portes le 2 janvier 2020 et a enregistré 2500 inscriptions en 2020. Elle estime que, chaque année, 80% des anciens inscrits renouvelleront leur inscription l'année suivante et qu'il y aura 400 nouveaux adhérents.

On modélise cette situation par une suite numérique $(a_n)_{n\in\mathbb{N}}$. On note $a_0=2500$ le nombre d'inscrits à la médiathèque en 2020 et a_n le nombre d'inscrits à la médiathèque pendant l'année 2020 + n.

- 1. (a) Calculer a_1 et a_2 .
 - (b) Justifier que, pour tout entier naturel n, on a la relation $a_{n+1} = 0.8 \times a_n + 400$.
- 2. On pose pour tout entier naturel n, $u_n = a_n 2000$.
 - (a) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=0.8 et de premier terme $u_0 = 500$.
 - (b) En déduire que le terme général de la suite $(a_n)_{n \in \mathbb{N}}$ est $a_n = 500 \times 0.8^n + 2000$.

Exercice 13 $(\star\star)$ – Exprimer à l'aide du symbole Σ les expressions suivantes.

$$S_1 = 2^3 + 2^4 + 2^5 + \dots + 2^{12}$$

1.
$$S_1 = 2^3 + 2^4 + 2^5 + \dots + 2^{12}$$

2. $S_2 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots + \frac{10}{1024}$
3. $S_3 = a + \frac{a^2}{2} + \frac{a^3}{3} + \dots + \frac{a^n}{n}$
4. $S_4 = 2 - 4 + 6 - 8 + \dots + 50$
5. $S_5 = 1^2 + 2^2 + 3^2 + \dots + 13^2 + 14^2$
6. $S_6 = 1 + 8 + 27 + 64 + 125$

3.
$$S_3 = a + \frac{a^2}{2} + \frac{a^3}{3} + \dots + \frac{a^n}{n}$$

$$1. \quad S_4 = 2 - 4 + 6 - 8 + \dots + 50$$

5.
$$S_5 = 1^2 + 2^2 + 3^2 + \dots + 13^2 + 14^2$$

6.
$$S_6 = 1 + 8 + 27 + 64 + 125$$

Exercice 14 $(\star\star)$ – Développer chacune des sommes écrites à l'aide du symbole Σ , en faisant disparaître ce symbole.

1.
$$T_1 = \sum_{k=3}^{10} \frac{1}{k^2}$$

$$2. \ T_2 = \sum_{k=1}^{10} \frac{1}{2k+1}$$

Exercice 15 $(\star \star \star)$ – Calculer les sommes S et T.

1.
$$S = 2 + 6 + 18 + \dots + 118098$$

2.
$$T = 2 + \frac{2}{3} + \frac{2}{9} + \dots + \frac{2}{59049}$$

Exercice 16 $(\star \star \star)$ – Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=0}^n \frac{1}{2^k}$. Calculer S_{10} .

Exercice 17 $(\star \star \star)$ – Une entreprise propose pour recruter un nouvel employé un salaire annuel de 21000 euros avec augmentation annuelle du salaire de 4% tous les ans. On note s_n le salaire annuel pour l'année n. On a donc $s_1 = 21000$.

- 1. Calculer s_2 et s_3 .
- 2. Donner la nature de la suite $(s_n)_{n\geq 1}$ et exprimer s_n en fonction de n.
- 3. Justifier que $\sum_{k=1}^{5} s_k \approx 115500$.

Indication numérique: $1.04^5 \approx 1.22$.

4. Si cet employé reste 20 ans dans l'entreprise, calculer la somme des salaires perçus durant ces 20 ans. En déduire son salaire annuel moyen sur ces 20 ans. *Indication numérique* : $1.04^{20} \approx 2.19$.