Lecture 1
(1 August 2024)

Probability and Random Processes

Module 1 - Basics of Probability

Module 2 - Discrete Random Variables

Module 3 - Continuous Random Variables

Module 4 - Tail Bounds and Limit Theorems

Module 5 - Random Processes

Textbooks

- Probability Random variables and Stochastic processes' Papoulis and Pillai.
- Introduction to Probability!
 Bertsekas and Tsitsiklis.

Grading Plan (Tentative)

Assignments - 15%.

Quiz 1 - 15%

Quiz 2 - 15%

In-class Quizzes - 5 %.

mid-sem - 20 1/.

End-sem - 30 %.

Module 1

- Different approaches to probability
- Probability space
- Conditional probability Independence
- Total Probability theorem, Bares' theorem
- Continuity of Probability
- Review of Counting

We may encounter several things in life that cannot be explained in the language of certainity.

A random experiment is an experiment whose outcomes we cannot predict with certainity.

We need to develop a language to sleak about such problems which could not be formulated in the language of certainity.

probability theory is a mathematical framework that allows us to describe and analyze random experiments

Probability (noughly) means possibility

It helps us to predict how likely or unlikely on event will occur,

Different Approaches to Probability

A. classical Approach

Probability of an event E, P(E)

= No. of outcomes favourable to event E

Total no. of Possible outromes

- Equitable distribution of ignovence

Example, we roll a pair of unbiased dice. What is the probability that the sum of numbers equals 10?

Ans. $P = \frac{3}{36} = \frac{1}{13}$.

- This approach suffers from at least two problems
- (1) It cannot deal with outcomes that are not equally likely?

In the example above total no. of Possible sum values is 11 (23---12).

only one sum 10 is favourable.

can the probability = 1/11 ?

- (2) It cannot handle scenarios when the total no, of possible outcomes is infinite.
 - B. Relative Frequency Approach

 Perform the experiment n times.

 Let n_E be the no. of times E occoss, $P(E) = \lim_{n \to \infty} \frac{1}{n}$.

The issues with this approach are

(1) we cannot perform the experiment

infinite number of times

(2) The ratio $\frac{n_E}{n}$ may not converge as $n \to \infty$.

Despite the problems with the relative frequency approach of probability the concept of relative frequency is essential in applying probability theory to the real world.]

We should develop an approach that is coherent.

C. Axiomatic Approach

This approach is based on

conceptual (thought exseriment.

Probability space - (-12, 7p)

The Sample space

Frent space

Probability law

We shall review set theory before we

Set Theory

A set is a well-defined collection of objects, which are called the elements of the set.

A set with no elements is called the empty set denoted by ϕ or ().

A set with a finite number of elements is a finite set.

If a sets contains infinitely many elements which can be enumerated in a list (i.e., a bijective mapping with natural numbers) we write $S = \{x_1, x_2, \dots \}$ and call S as a countably infinite set.

E.g. Set of even integers= {0,2-24-4-}

A set is uncountable if its elements connot be enumerated in a list.

Exercise. Prove that Qn[on is a countably infinite set.

Exercise Prove that {01} is an uncountably infinite set.

[Use Contor's diagonalization argument]
Subset notation: ACB=)(xEA=)xEB).
Set difference: A1B={xEA:xEB&xBB.

Universal set - Contains all objects that could be of interest in a Particular context.

Set operations;

- Complement of a set s s= {xen:x \ s}.
- Union of two sets A and B $AUB = \{x \in \mathcal{L} : x \in A \text{ or } x \in B\}$
- Intersection of two sets A end B

 ANB = { x ∈ 1 ; x ∈ A end x ∈ B}
- Infinite union

- Infinite intersection

 $\int_{n=1}^{\infty} S_n = \left\{ x \in \Omega : x \in S_n \text{ for all } n \in N \right\}$

Properties

- AU(Bnc) = (AUB) n(AUC)
- An (Buc) = (AnB) UCAnc)
- Demorgan's laws

$$(AUB)^{C} = A^{C} \cap B^{C}$$

$$(ANB)^{C} = A^{C} \cup B^{C}$$

[Use mathematical induction]

(ii) Given sets $s_1 s_2 - --- show$ that $(OS_i)^c = 0$ S_i^c .

Note that (i) \neq (ii). That is if we prove a statement Tn for all new then this may not imply that To is true.

To see this consider the following. Let $A_n = \{ n_n + 1 - - - \}$ new,

To = () A; is non-empty

But T is an empty set, we prove this ria contradiction,

Suppose T is non-empty,

Ime na; => me A; for all ien.

 \Rightarrow $m \in A_{m+1}$.

However Amt = { m+1 m+2 ---}

and m & Amt .

This is a contradiction.

so we need to prove part (ii) of this exercise independent of (i). Hint, Use the definitions of infinite union and infinite intersection of sets,