Mathew D. Witman, Ph.D.

□(+1) 484-318-6213 | ■ mwitman1@gmail.com | ★ mwitman1.github.io | US citizen

Summary ____

I am interested in applying my data science skills to solve problems and make new discoveries at the intersection of statistics, computer science, and machine learning. These are skills that I have developed and applied to computational materials science research throughout my PhD and previous work experiences. I thrive working in a team environment and have proactively collaborated with researchers at many different institutions around the world to complete challenging projects.

Education

University of California, Berkeley

Ph.D. Candidate in the Department of Chemical & Biomolecular Engineering (GPA: 3.92)

École Polytechnique Fédérale de Lausanne

Visiting Ph.D. Researcher

Schreyer Honors College at the Pennsylvania State University

B.Sc. in Chemical Engineering (Summa Cum Laude, GPA: 3.95)

Chemical engineering semester study abroad (University of Bath, UK)

Berkeley, CA

Sep. 2014 - May 2019

Switzerland

Jun. 2015 - May 2019

State College, PA

Sep. 2009 - Dec. 2013

Spring 2011

Technical Skills & Software ___

Programming EXPERT: Python, NumPy, SciPy, Bash

PROFICIENT: Tensorflow/Keras, C/C++, HTML/CSS, Matlab/Mathematica, SQL, VBA, Blender, LaTex, Aspen HYSYS

nearmincut Author: Implementing a recursive solution to the all-near-min-cut problem

ColorBooked Author: Image processing and unsupervised learning for automated coloring book image generation

LammpsInterface Co-author: Interpreting crystalline materials as graphs for high-throughput interfacing to molecular dynamics codes

> **AMP** Contributor: Deep neural network modeling of ab initio potential energy surfaces

Experience _____

Laboratory of Molecular Simulation (UC Berkeley, Berend Smit Group)

Berkeley, CA

Graduate Student Researcher, Instructor, and Mentor

Jan. 2015 - May 2019

- Applied reinforcement learning techniques to transition state sampling in chemical systems.
- Trained deep neural network models of atomic interactions in zeolites to significantly reduce the computational expense of molecular dynamics simulations while retaining quantum chemical accuracy.
- Coded a recursive, minimal cut graph theory algorithm to perform high-throughput data analysis and identify materials with previously unrecognized potential for 2-dimensional synthesis and application in water desalination.
- Derived and programmed enhanced Monte Carlo sampling schemes to efficiently generate more and better statistical information when performing high-throughput materials screening for adsorption applications involving flexible chain molecules.
- Utilized cheminformatics and computer vision techniques to perform hypothetical crystal structure prediction in the search for novel, high-performing adsorbents.
- · Developed statistical physics models and high-throughput screening techniques to identify systematic biases that arise when simulating adsorption in flexible materials.

General Electric, Inc.

Twinsburg, OH

Process Engineering Intern Jun. 2013 - Aug. 2013

• Coded VBA applications to automate the Returned Materials Authorization process and capitalize on an underutilized \$20 MM Enterprise Resource Planning investment.

Janssen (A Pharmaceutical Company of Johnson & Johnson)

Raritan, NJ

Customer Management Co-op

Jun. 2012 - Dec. 2012

- Wrote VBA programs to optimize data acquisition and demand planning analysis for the US Sales & Operations supply chain team to improve reporting accuracy and reduce monthly man hour requirements by 80% in a constrained work stream.
- Managed the monthly Executive Sales & Operations Planning Dashboard: automated the identification of poor alignments between financial and operating forecasts of Janssen's multi-billion dollar Tier 1 product portfolio to create actionable intelligence for the North America leadership team.
- Implemented an automated statistical forecasting tool to monitor over 200 established pharmaceutical products which yielded improved forecast/demand alignment and inventory levels.

PSU Department of Chemical Engineering (Enrique Gomez Group)

State College, PA

Undergraduate Researcher

Jun. 2011 - Dec. 2013

- Constructed a block co-polymer organic photovoltaic device with record 3% efficiency due to a microphase separated active layer.
- Built, tested, and optimized organic electronic devices such as photovoltaic cells and transistors for 2+ years.

Publications & Awards _____

PUBLICATIONS:

- 2018 M. WITMAN, N. A. MAHYNSKI, AND B. SMIT, Flat-histogram Monte Carlo simulations as an efficient tool to evaluate adsorption processes involving rigid and deformable molecules, submitted, (2018)
- M. WITMAN, S. LING, P. BOYD, S. BARTHEL, M. HARANCZYK, B. SLATER, AND B. SMIT, *Cutting Materials in Half: A Graph Theory Approach* for Generating Crystal Surfaces and Its Prediction of 2D Zeolites, ACS Cent. Sci., 4 (2018), pp. 235–245
- 2017 M. WITMAN, S. LING, S. JAWAHERY, P. G. BOYD, M. HARANCZYK, B. SLATER, AND B. SMIT, *The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials*, J. Am. Chem. Soc., 139 (2017), pp. 5547–5557
- 2017 M. WITMAN, S. LING, A. GLADYSIAK, K. C. STYLIANOU, B. SMIT, B. SLATER, AND M. HARANCZYK, *Rational Design of a Low-Cost, High-Performance Metal-Organic Framework for Hydrogen Storage and Carbon Capture*, J. Phys. Chem. C, 121 (2017), pp. 1171–1181
- D. ONGARI, P. G. BOYD, S. BARTHEL, M. WITMAN, M. HARANCZYK, AND B. SMIT, *Accurate Characterization of the Pore Volume in Microporous Crystalline Materials*, Langmuir, 33 (2017), pp. 14529–14538
- S. Jawahery, C. M. Simon, E. Braun, M. Witman, D. Tiana, B. Vlaisavljevich, and B. Smit, *Adsorbate-induced lattice deformation in IRMOF-74 series*, Nat. Commun., 8 (2017), p. 13945
- P. G. Boyd, S. M. Moosavi, M. Witman, and B. Smit, *Force-Field Prediction of Materials Properties in Metal-Organic Frameworks*, J. Phys. Chem. Lett., 8 (2017), pp. 357–363
- 2016 M. WITMAN, S. LING, S. ANDERSON, L. TONG, K. C. STYLIANOU, B. SLATER, B. SMIT, AND M. HARANCZYK, *In silico design and screening of hypothetical MOF-74 analogs and their experimental synthesis*, Chem. Sci., 7 (2016), pp. 6263–6272
- C. Guo, Y.-H. Lin, M. D. Witman, K. A. Smith, C. Wang, A. Hexemer, J. Strzalka, E. D. Gomez, and R. Verduzco, *Conjugated Block Copolymer Photovoltaics with near 3% Efficiency through Microphase Separation*, Nano Lett., 13 (2013), pp. 2957–2963

AWARDS:

2017	Thomas Young Centre Junior Research Fellowship , Outstanding research project with a UK institution	London, UK
2016	Peder Sather Fellowship , Outstanding research project between UC Berkeley and a Norwegian institution	Berkeley, CA
2013	Eagleton Design Award, Best chemical plant design project among 2013 class of PSU chemical engineers	State College, PA
2012	Platinum and Bronze Encore Awards, Outstanding performance at Johnson & Johnson	Raritan, NJ
2011	NSF-REU Fellowship, Award to study organic photovoltaics at PSU	State College, PA

Interests

Coursera Classes	Machine Learning, Design of Algorithms I & II, Interactive Programming in Python I & II, Data Science at Scale (<i>in progress</i>), Deeplearning.ai Specialization (<i>in progress</i>)
Berkeley Classes	Reinforcement Learning, Statistical Mechanics I & II, Transport Phenomena, Reaction Engineering, Thermodynamics
Languages	French (Niveau B1/B2)
Outreach	Bay Area Scientists in Schools (BASIS)
Hobbies	Mountaineering, Snowboarding, Backpacking, Soccer, Art, Travel, Saxophone, Piano
More About Me	My personal web page and adventure blog: https://mwitman1.github.io