- 一、填空题(每题3分,共15分)
- 1,设A,B是两个事件, $P(B) = 0.7, P(\overline{A}B) = 0.3$,则 $P(\overline{A} \cup \overline{B}) =$ ______;
- 2,三个人独立破译一密码,他们单独译出这一密码的概率分别是 $\frac{1}{5}$, $\frac{1}{3}$, $\frac{1}{4}$,则此密码被译的概率为______;
- 3,已知随机变量 X 只能取 -1,0,1,2 四个数值,其相应的概率依次是 $\frac{1}{2c}$, $\frac{3}{4c}$, $\frac{5}{8c}$, $\frac{2}{16c}$,则 c= ______;
- 4,设随机变量 X 服从(0,2)上的均匀分布,则随机变量 $Y = X^2$ 落入(0,4)的概率是_____;
- 5, 设 $X_1, X_2, ..., X_n, ...$ 是独立同分布的随机变量,且 $E(X_i) = \mu, D(X_i) = \sigma^2, i = 1, 2, ...$

- 二、选择题(每题3分,共15分)
- 1,设事件A,B为对立事件,则()不成立:

(A)
$$P(\overline{AB}) = 0$$
 (B) $P(B|A) = \phi$ (C) $P(\overline{A}|B) = 1$ (D) $P(A \cup B) = 1$

2,下列函数中,()可以作为连续随机变量的概率密度函数:

(A)
$$f(x) = \begin{cases} \sin x, & \pi \le x \le \frac{3}{2}\pi \\ 0, & otherwise \end{cases}$$
 (B) $f(x) = \begin{cases} -\sin x, & \pi \le x \le \frac{3}{2}\pi \\ 0, & otherwise \end{cases}$

(c)
$$f(x) = \begin{cases} \cos x, & \pi \le x \le \frac{3}{2}\pi \\ 0, & otherwise \end{cases}$$
 (d) $f(x) = \begin{cases} 1 - \cos x, & \pi \le x \le \frac{3}{2}\pi \\ 0, & otherwise \end{cases}$

3,设随机变量 $X \sim N \left(0, 1^2 \right)$,则 $Y = \left(\right) \sim N \left(\mu, \sigma^2 \right)$

(A)
$$\frac{X-\mu}{\sigma}$$
 (B) $\sigma X - \mu$ (C) $\sigma X + \mu$ (D) $\sigma (X + \mu)$

4, 若随机变量 X,Y 的方差 D(X),D(Y)都存在,且 $D(X) \neq 0,D(Y) \neq 0$,

$$E(XY) = E(X)E(Y)$$
, \mathbb{M}

- (A) X,Y一定相互独立 (B) X,Y一定不相关
- (c) D(XY) = D(X)D(Y) (p) D(X-Y) = D(X)-D(Y)
- 5,若相互独立的随机变量 X,Y 的方差分别是 4 和 2,则 3X-2Y 的方差为 ()

三、计算题(每小题 13 分, 共 65 分)

- 1,某商场出售的灯泡来自甲、乙、丙三个工厂,甲厂产品占 80%,合格率为 90%,乙厂产品占 10%,合格率为 95%,丙厂产品占 10%,合格率为 80%.
- (1) 某顾客购买了一灯泡, 求它是合格品的概率;
- (2) 若顾客购买了一灯泡,发现是不合格品,求它是甲厂生产的概率。
- 2, 设随机变量 X 的概率密度函数为 $f(x) = Ae^{-|x|}, -\infty < x < \infty$, 求
- (1) A = ? (2) $P\{0 < X < 1\} = ?$ (3) 分布函数 F(x).
- 3,设二维离散型随机向量(X,Y)的联合分布律为:

$X \setminus Y$	-2	-1	0
-1	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{3}{12}$
$\frac{1}{2}$	$\frac{2}{12}$	$\frac{1}{12}$	0
3	$\frac{2}{12}$	0	$\frac{2}{12}$

试求 (1) E(X), (2) D(X), (3) cov(X,Y), (4) X,Y 是否相互独立;

4,设二维连续型随机向量(X,Y)的联合概率密度函数为:

$$f(x,y) = \begin{cases} ce^{-(3x+4y)}, & x > 0, y > 0\\ 0, & otherwise \end{cases}$$

试求(1)c=? (2)边缘概率密度 $f_{X}(x), f_{Y}(y)$,(3)X, Y 是否相互独立;

(4)
$$P\{0 < X \le 1, 0 < Y \le 2\}$$
;

5, 某电站供应 10000 户用电, 假设用电高峰时, 每户用电的概率为 0.9, 问同时用电户在 9030 户以上的概率是多少?

四、证明题(5分)

设
$$P(A) > 0$$
,试证: $P(B|A) \ge 1 - \frac{P(\overline{B})}{P(A)}$