Nombres réels et suites

#suites

Suites réelles ou complexes

Suites arithmétique géométriques

Méthode du point fixe :

- On pose l = al + b (2)
- On fait $(1) (2) \Leftrightarrow u_{n+1} l = a(u_n l)$
- On pose une suite auxiliaire $v_n = u_n l$

Suites récurrentes linéaires d'ordre 2

- $\bullet \ \ (u_n)_{\mathbb{N}}: u_{n+2}=au_{n+1}+bu_n$
- Equation caractéristique :

$$r^2 - ar - b = 0 \tag{K}$$

$$ullet$$
 Si $\Delta>0$: $u_n=\lambda r_1^n+\mu r_2^n \ igg\{ \lambda+\mu=u_0 \ \lambda r_1+\mu r_2=u_1 \$

• Si
$$\Delta=0$$
 : $u_n=(\lambda n+\mu)r_1^n \ \begin{cases} \mu=u_0 \ (\lambda+\mu)r_1=u_1 \end{cases}$

• Si
$$\Delta < 0$$
, $r_1 = \overline{r_2} = \rho e^{i\theta}$: $u_n = \rho^n (\lambda \cos(n\theta) + \mu \sin(n\theta))$ $\begin{cases} \lambda = u_0 \\ \rho(\lambda \cos(\theta) + \mu \sin(\theta)) = u_1 \end{cases}$

Convergence d'une suite

 $(u_n)_{\mathbb{N}}$ converge vers l si:

$$orall arepsilon > 0, \exists n_0 \in \mathbb{N}; orall n \geq n_0, |u_n - l| \leq arepsilon$$

Suites extraites

Tout suite de la forme $(u_{\varphi(n)})_{\mathbb{N}}$ (φ une application croissante).

- Tout suite extraite d'une suite convergente est convergente de même limite.
- Si une suite possède deux suites extraites qui ne convergent pas vers un même limite, la suite est divergente.
- Si les suites u_{2n} et u_{2n+1} convergent vers l, alors u_n convergent vers l.

Limites infinies des suites réelles

 u_n tend vers $\pm \infty$ si $orall A>0, \exists n_0\in \mathbb{N}; orall n\geq n_0, u_n\leq A$

Méthode pour lever F.I

- $\infty \infty$: factoriser par le terme qui croit le plus vite.
- $\frac{\infty}{\infty}$: factoriser dans le numérateur et dans le dénominateur le terme qui croit le plus vite.
- Différences de √ : quantité conjugué.
- 1^{∞} : on utilise $x=e^{\ln(x)}$

Suites réelles et relation d'ordre

Passage à la limite dans les inégalités :

Soit u_n et v_n avec $\lim u_n = l$ et $\lim v_n = l'$, si après un rang n_0 $u_n \le v_n$ alors $l \le l'$.

Théorème de encadrement

Soit $\lim u_n = \lim w_n = l$ et après un rang n_0 on a $u_n \leq v_n \leq w_n$ alors $\lim v_n = l$

Divergence par minoration ou majoration

Si $\lim u_n = +\infty$ et après un rang $n_0 \ u_n \leq v_n$ alors $\lim v_n = +\infty$

Théorèmes de convergences

Théorème de limite monotone

- Tout suite croissante majorée converge et $\lim u_n = \sup(u_n)$
- Si u_n est croissante et non majorée, $\lim u_n = +\infty$

Suites adjacentes

$$u_n \le l \le v_n$$

- u_n croissante.
- v_n décroissante.
- $\bullet \ \lim (v_n-u_n)=0$
- Si u_n et v_n adjacentes alors ils ont un même limite.

Etude du suite de la forme $u_{n+1} = f(u_n)$

- On dit que un intervalle I est stable par f si $\forall x \in I, f(x) \in I$.
- Signe de $u_{n+1}-u_n=f(u_n)-u_n$ on pose $g:x\longmapsto f(x)-x.$ Alors on a $u_{n+1}-u_n=g(u_n)$: on étude le signe
- Si f est croissante sur I, et si $\forall n \in \mathbb{N}, u_n \in I$. Alors $(u_n)_{\mathbb{N}}$ est monotone.
- Soit u_n du type $u_{n+1} = f(u_n)$ où f est continue, si (u_n) converge, alors sa limite est solution de l'équation f(x) = x.