Ensembles. Stacked generalization. AdaBoost

Evgeny Burnaev

Skoltech, Moscow, Russia

Outline

- Ensembles of classifiers
- Stacked generalization
- Boosting

Ensembles of classifiers

2 Stacked generalization

- Boosting
 - Motivation
 - Learning of ensembles of classifiers

Classification Problem

- ullet A predictor, feature $\mathbf{x} \in \mathbb{R}^d$ has distribution D
- ullet $f(\mathbf{x})$ is a deterministic function from some concept class
- Goal:
 - Based on m training pairs $\{(\mathbf{x}_i, y_i = f(\mathbf{x}_i))\}_{i=1}^m$ drawn i.i.d. from D produce a classifier $\widehat{f}(\mathbf{x}) \in \{0,1\}$
 - Choose \hat{f} to have low generalization error $R(\hat{f}) = \mathbb{E}_D \left[1_{\hat{f}(\mathbf{x}) \neq f(\mathbf{x})} \right]$

Figure – "Sphere" in \mathbb{R}^{10}

${\sf Sample\ of\ size}\ 200$

Sample of size 200

In case of "Sphere" in \mathbb{R}^{10} CART produces a rather noisy and inaccurate rule $\widehat{f}(\mathbf{x})$, with error rates around 30%

- For simplicity we consider a binary classification problem. Let us denote by $h_1(\mathbf{x}), \dots, h_T(\mathbf{x})$ some binary classifiers
- Typical ensembling procedure has the form
 - Simple voting:

$$H(h_1(\mathbf{x}),\ldots,h_T(\mathbf{x})) = \frac{1}{T} \sum_{t=1}^{T} h_t(\mathbf{x}),$$

— Weighted voting:

$$H(h_1(\mathbf{x}),\ldots,h_T(\mathbf{x})) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x}),$$

Mixture of experts

$$H(h_1(\mathbf{x}), \dots, h_T(\mathbf{x})) = \sum_{t=1}^{T} g_t(\mathbf{x}) h_t(\mathbf{x})$$

Final decision

$$f_T(\mathbf{x}) = \text{sign}\{H(h_1(\mathbf{x}), \dots, h_T(\mathbf{x}))\}\$$

- Bagging or "bootstrap averaging" averages a given procedure over many samples to reduce its variance
- Let us denote by
 - $-S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$ a sample of size m
 - $\widehat{h}_S(\mathbf{x})$ a classifier, such as a tree, trained using the sample S
- To bag \widehat{f} we draw bootstrap samples $S^{*,1},\ldots,S^{*,B}$ each of size m with replacement from the training data
- In each bootstrap sample $S^{*,1},\dots,S^{*,B}$ we use only subset of randomly selected features
- ullet We train classifiers $\widehat{h}_{S^{*,b}}(\mathbf{x})$ on each of $S^{*,b}$, $b=1,\ldots,B$
- Then

$$\widehat{f}_{\text{bag}}(\mathbf{x}) = \text{MajorityVote}\left\{ \left(\widehat{h}_{S^{*,b}}(\mathbf{x}) \right)_{b=1}^{B} \right\}$$

- Bagging can dramatically reduce the variance of unstable procedures (like trees), leading to improved prediction
- However any simple structure in h (e.g. a tree) is lost

Example: Bagging

"Sphere" in \mathbb{R}^{10} : Bagging averages many trees, and produces smoother decision boundaries

Ensembles of classifier

Stacked generalization

- Boosting
 - Motivation
 - Learning of ensembles of classifiers

Picture credit: http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice

Base model training

- Select k nearest neighbours as base model 1
- Fit base model 1 in the most fancy way possible (grid search for optimal k using K-fold cross-validation, etc.)
- k-NN accuracy on Test Darts: 70%

- Select Support Vector Machine as base model 2
- Fit base model 2 in the most fancy way possible (different penalizations, grid search for optimal kernel width using K-fold cross-validation, etc.)
- SVM accuracy on Test Darts: 78%

Ficture credit. http://biog.kaggie.com/2010/12/21/a-kaggiers-guide-to-moder-stacking-in-practice

Stacked generalization aka stacking: blend output of weak learners (weak signals) with raw features

Stacking base models

- Partition train into 5 folds
- © Create train_meta/test_meta: same row/fold Ids as in train/test, empty M1/M2
- \bullet For each $\operatorname{Fold}_i \in {\operatorname{\mathsf{Fold}}_1, \ldots, \operatorname{\mathsf{Fold}}_5}$
 - Combine the other 4 folds for training $\rightarrow \operatorname{Fold}_{-i}$
 - Fit each base model to Fold_i, predict on Fold_i, save predictions to M1/M2 in train_meta
- Fit each base model to train, predict on test, save predictions to M1/M2 in test_meta
- Fit stacking model F to train_meta, using M1/M2 as features
- Use the stacked model F to make final predictions on test_meta

Stacked Logistic Regression Class Regions

Picture credit: http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice

An intermediate conclusion

- Bootstrapping: a general statistical technique for computing sample functionals (and their variance)
- Bagging: meta-learner over arbitrary weak algorithms via bootstrap aggregation
- The Random Forest algorithm: bagging over decision trees
- Stacked generalization aka stacking: blend output of weak learners (weak signals) with raw features

Ensembles of classifiers

Stacked generalization

- Boosting
 - Motivation
 - Learning of ensembles of classifiers

Ensembles of classifiers

Stacked generalization

- Boosting
 - Motivation
 - Learning of ensembles of classifiers

Example: Spam Filtering

- problem: filter out spam (junk email)
- gather large collection of examples of spam and non-spam

- goal: get computer learn from examples to distinguish spam from non-spam
- main observation:
 - easy to find "rules of thumb" that are "often" correct if 'v1agr@' occurs in message, then predict "spam"
 - hard to find single rule that is very highly accurate

The Boosting Approach I

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of emails
- obtain rule of thumb
- apply to 2nd subset of emails
- obtain 2nd rule of thumb
- ullet repeat T times
- aggregate

The Boosting Approach II

- 1. How to choose examples on each round?
 - concentrate on "hardest" examples (those most often misclassified by previous rules of thumb)
- 2. How to combine rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb

Final Classifier

$$f_T(\mathbf{x}) = \operatorname{sign}\left[\sum_{t=1}^T \alpha_t h_t(\mathbf{x})\right]$$

- $\bullet~2000$ points, "Sphere" in $\mathbb{R}^{10};$ Bayes error rate is 0%
- Trees are grown Best First without pruning
- Leftmost iteration is a single tree

Ensembles of classifiers

Stacked generalization

- Boosting
 - Motivation
 - Learning of ensembles of classifiers

Boosting for Binary classification

- We consider a binary classification with $Y = \{-1, +1\}$
- As a strong classifier we consider weighted voting scheme, i.e.

$$\widehat{f}_T(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(\mathbf{x})\right)$$

As a risk we consider accuracy, i.e.

$$\widehat{R}(f_T) = \frac{1}{m} \sum_{i=1}^{m} 1 \left\{ y_i \cdot \left[\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}_i) \right] \le 0 \right\}$$

- Two main heuristics, underlying boosting
 - We fix $\alpha_1 h_1(\mathbf{x}), \dots, \alpha_{t-1} h_{t-1}(\mathbf{x})$ when adding $\alpha_t h_t(\mathbf{x})$
 - We use continuous upper bound for accuracy

Continuous upper bounds on Loss Functions

Examples of several convex upper bounds on the zero-one loss

Exponential upper bound for binary objective function

• Objective Function: convex and differentiable

• Since $1_{z<0} \le e^{-z}$, we get that

$$1_{\left\{y_i \cdot \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}_i) \le 0\right\}} \le \exp\left(-y_i \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}_i)\right)$$

 \bullet Let us consider an upper bound for $\widehat{R}(f)$

$$\widehat{R}(f_T) = \frac{1}{m} \sum_{i=1}^{m} 1_{\left\{y_i \cdot \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}_i) \le 0\right\}} \le$$

$$\le \widetilde{R}(f_T) = \frac{1}{m} \sum_{i=1}^{m} \exp\left(-y_i \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}_i)\right)$$

• We will optimize $\widehat{R}(f_T)$ w.r.t. a new weak classifier $h_T(\mathbf{x})$ and its weight α_T given that $\{\alpha_t, h_t(\mathbf{x})\}_{t=1}^{T-1}$ are fixed

Let us denote

$$w_{i,T-1} = \exp\left(-y_i \sum_{t=1}^{T-1} \alpha_t h_t(\mathbf{x}_i)\right)$$
$$\widetilde{w}_{i,T} = \frac{w_{i,T-1}}{\sum_j w_{j,T-1}}$$

Then

$$\widetilde{R}(f_{T-1}) = \frac{1}{m} \sum_{i=1}^{m} \exp\left(-y_i \sum_{t=1}^{T-1} \alpha_t h_t(\mathbf{x}_i)\right) =$$

$$= \frac{1}{m} \sum_{i=1}^{m} w_{i,T-1}$$

Let us re-write an upper bound $\widetilde{R}(f)$

$$\widetilde{R}(f_T) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{\exp\left(-y_i \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}_i)\right)}_{w_{i,T}} =$$

$$= \frac{1}{m} \sum_{i=1}^{m} \underbrace{\exp\left(-y_i \sum_{t=1}^{T-1} \alpha_t h_t(\mathbf{x}_i)\right)}_{w_{i,T-1}} \underbrace{\exp(-y_i \alpha_T h_T(\mathbf{x}_i))}$$

$$= \frac{1}{m} \sum_{i=1}^{m} w_{i,T-1} \exp(-y_i \alpha_T h_T(\mathbf{x}_i))$$

Let us re-write an upper bound $\widetilde{R}(f)$

$$\widetilde{R}(f_T) = \frac{1}{m} \sum_{i=1}^{m} w_{i,T-1} \exp(-y_i \alpha_T h_T(\mathbf{x}_i)) =$$

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{\left[\sum_{k=1}^{m} w_{k,T-1}\right]}{\left[\sum_{k=1}^{m} w_{k,T-1}\right]} w_{i,T-1} \exp(-y_i \alpha_T h_T(\mathbf{x}_i)) =$$

$$= \frac{1}{m} \left[\sum_{k=1}^{m} w_{k,T-1}\right] \sum_{i=1}^{m} \frac{w_{i,T-1}}{\left[\sum_{k=1}^{m} w_{k,T-1}\right]} \exp(-y_i \alpha_T h_T(\mathbf{x}_i)) =$$

$$= \underbrace{\frac{1}{m}}_{K(f_{T-1})} \sum_{i=1}^{m} \widetilde{w}_{i,T} \exp(-y_i \alpha_T h_T(\mathbf{x}_i)) =$$

$$= \widetilde{R}(f_{T-1}) \cdot \sum_{i=1}^{m} \widetilde{w}_{i,T} e^{-y_i \alpha_T h_T(\mathbf{x}_i)}$$

AdaBoost: Intuition

- ullet Upper bound $\widetilde{R}(f_{T-1})$ is fixed from the previous boosting step
- ullet Let us optimize an upper bound for $\widehat{R}(f)$

$$\widehat{R}(f_T) \le \widetilde{R}(f_{T-1}) \cdot \sum_{i=1}^m \widetilde{w}_{i,T} \exp(-y_i \alpha_T h_T(\mathbf{x}_i)) \to \min_{\alpha_T, h_T(\cdot)},$$

i.e. we tune only the weak classifier $h_T(\cdot)$ and its weight α_T

ullet An upper bound for $\widehat{R}(f)$

$$\widehat{R}(f_T) \le \widetilde{R}(f_{T-1}) \cdot \sum_{i=1}^{m} \widetilde{w}_{i,T} \exp(-y_i \alpha_T h_T(\mathbf{x}_i)) \to \min_{\alpha_T, h_T(\cdot)}$$

 \bullet For $\widetilde{\mathbf{w}}_T=(\widetilde{w}_{1,T},\ldots,\widetilde{w}_{m,T})$ we define a weighted classification error

$$N_T = N(h_T, \widetilde{\mathbf{w}}_T) = \sum_{i=1}^{m} \widetilde{w}_{i,T} \cdot 1_{\{y_i \cdot h_T(\mathbf{x}_i) \le 0\}}, \ P_T = 1 - N_T,$$

 \bullet Since for the weak learner $y_i \cdot h_T(\mathbf{x}_i) \in \{-1, +1\}$, then

$$\sum_{i=1} \widetilde{w}_{i,T} \exp(-y_i \alpha_T h_T(\mathbf{x}_i)) =$$

$$= \sum_{i:y_i \cdot h_T(\mathbf{x}_i) = -1} \widetilde{w}_{i,T} \exp(\alpha_T) + \sum_{i:y_i \cdot h_T(\mathbf{x}_i) = +1} \widetilde{w}_{i,T} \exp(-\alpha_T) =$$

$$= N_T \exp(\alpha_T) + (1 - N_T) \exp(-\alpha_T)$$

We get that

$$\widehat{R}(f_T) \le \widetilde{R}(f_{T-1}) \cdot \left(e^{-\alpha_T} (1 - N_T) + e^{\alpha_T} N_T \right) \to \min_{\alpha_T, h_T(\cdot)}$$

We proved that

$$\widehat{R}(f_T) \le \widetilde{R}(f_{T-1}) \cdot \left(e^{-\alpha_T} (1 - N_T) + e^{\alpha_T} N_T \right) \to \min_{\alpha_T, h_T(\cdot)}$$

• Let us fix $h_T(\cdot)$. Then optimal α_T is equal to

$$\alpha_T^* = \arg\min_{\alpha_T} \left(e^{-\alpha_T} (1 - N_T) + e^{\alpha_T} N_T \right) =$$

$$= \frac{1}{2} \log \frac{P_T}{N_T} = \frac{1}{2} \log \frac{1 - N_T (h_T, \widetilde{\mathbf{w}}_T)}{N_T (h_T, \widetilde{\mathbf{w}}_T)}$$

AdaBoost: Intuition

ullet For optimal $lpha_T^*$ we get that

$$\begin{split} \widehat{R}(f_T) &\leq \widetilde{R}(f_{T-1}) \cdot \left(e^{-\alpha_T^*} (1 - N_T) + e^{\alpha_T^*} N_T \right) \\ &\leq \widetilde{R}(f_{T-1}) \cdot \left(1 - \left(\sqrt{P_T} - \sqrt{N_T} \right)^2 \right) \to \min_{h_T(\cdot)} \end{split}$$

ullet Then optimal $h_T(\cdot)$ is given by

$$h_T^*(\cdot) = \arg\max_{h_T(\cdot)} \left(\sqrt{P_T(h_T, \widetilde{\mathbf{w}}_T)} - \sqrt{N_T(h_T, \widetilde{\mathbf{w}}_T)} \right)^2$$

• Let us assume that $h_T(\cdot)$ is weak learnable, i.e. we can find $h_T(\cdot)$ such that $N_T < P_T = 1 - N_T$

• For $N_T < P_T = 1 - N_T$ the problem

$$h_T^*(\cdot) = \arg\max_{h_T(\cdot)} \left(\sqrt{P_T(h_T, \widetilde{\mathbf{w}}_T)} - \sqrt{N_T(h_T, \widetilde{\mathbf{w}}_T)} \right)^2$$

reduces to

The problem

$$h_T^*(\cdot) = \arg\max_{h(\cdot)} \left\{ \sqrt{P_T} - \sqrt{N_T} \right\} = \arg\min_{h(\cdot)} N_T(h, \widetilde{\mathbf{w}}_T),$$

where

weighted classification error

$$N_T = N(h_T, \widetilde{\mathbf{w}}_T) = \sum_{i=1}^{m} \widetilde{w}_{i,T} 1_{\{y_i \cdot h_T(\mathbf{x}_i) \le 0\}}$$

weights

$$w_{i,T-1} = \exp(-y_i f_{T-1}(\mathbf{x}_i)), \ \widetilde{w}_{i,T} = \frac{w_{i,T-1}}{\sum_i w_{i,T-1}}$$

 $AdaBoost(S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\})$

- 1. for $i \leftarrow 1$ to m do
- 2. $w_{i,1} \leftarrow \frac{1}{m}$
- 3. for $t \leftarrow 1$ to T do
- 4. Learn a based classifier: $h_t \leftarrow \text{base classif. with small } N(h_t, \widetilde{\mathbf{w}}_t) = \sum_{i=1}^m \widetilde{w}_{i,t} 1_{\{y_i : h_t(\mathbf{x}_i) \le 0\}}$

5.
$$\alpha_t \leftarrow \frac{1}{2} \log \frac{1 - N(h_t, \widetilde{\mathbf{w}}_t)}{N(h_t, \widetilde{\mathbf{w}}_t)}$$

- 7. for $i \leftarrow 1$ to m do
- 8. $w_{i,t+1} \leftarrow w_{i,t} \exp(-\alpha_t y_t h_t(\mathbf{x}_i))$
- 9. $\widetilde{w}_{i,t+1} \leftarrow \frac{w_{i,t+1}}{\sum_{j=1}^{m} w_{j,t+1}}$
- 10. $f_t \leftarrow \sum_{s=1}^t \alpha_s h_s$
- 10. return $\widehat{f}_T = \operatorname{sign}(f_T)$

Burnaev, ML

Weak classifiers = vertical or horizontal half-planes

Toy Example: Round 1

Toy Example: Round 2

Toy Example: Round 3

Toy Example: Final Classifier

"Sphere" in \mathbb{R}^{10} : A stump is a two-node tree, after a single split. Boosting stumps works remarkably well on this problem

"Sphere" in \mathbb{R}^{10} : Boosting drives the training error to zero. Further iterations continue to improve test error in many examples

Figure – "Gaussians" in \mathbb{R}^{10} . Bayes error is 25%

"Gaussians" in $\mathbb{R}^{10}.$ Bayes error is 25%. Here the test error does increase, but quite slowly

Adaptive boosting for classification

[Video: AdaBoost in Action] https://www.youtube.com/watch?v=k4G2VCuOMMg

Standard Use in Practice

- Base Learners: decision trees, quite often just decision stumps (trees of depth one)
- Boosting stumps
 - data in \mathbb{R}^d , e.g. d=2 (height(\mathbf{x}), weight(\mathbf{x}))
 - associate a stump to each component
 - pre-sort each component: $O(dm \log m)$
 - at each round, find best component and threshold
 - total complexity: $O((m \log m)N + mdT)$
 - stumps are not weak learners (XOR problem)
- For SVM boosting usually is not effective
- Additional stopping criterion: error increase on a separate validation set

Outliers

- AdaBoost assigns larger weights to harder examples
- Applications:
 - Detecting mislabeled examples
 - Dealing with noisy data: regularization based on the average weight assigned to a point (soft margin idea for boosting)

How will Test Error Behave? (A First Guess)

Expect:

- training error to continue to drop (or reach zero)
- ullet test error to increase when h_{final} becomes "too complex"
 - "Occam's razor"
 - overfitting: hard to know when to stop training

Expect:

- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

	# rounds		
	5	100	1000
train error	0.0	0.0	0.0
test error	8.4	3.3	3.1

Occam's razor wrongly predicts "simpler" rule is better

An application: statistical analysis of Bagging

• Bias: not made any worse by bagging multiple hypotheses

$$\mathbb{E}_{\mathbf{x},y} \left[\left(\mathbb{E}_{S_m} \left[\frac{1}{T} \sum_{t=1}^{T} h_t(\mathbf{x}|S_m) \right] - \mathbb{E}[y|\mathbf{x}] \right)^2 \right] =$$

$$= \mathbb{E}_{\mathbf{x},y} \left[\left(\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{S_m} [h_t(\mathbf{x}|S_m)] - \mathbb{E}[y|\mathbf{x}] \right)^2 \right] =$$

$$= \mathbb{E}_{\mathbf{x},y} \left[\left(\mathbb{E}_{S_m} \left[h(\mathbf{x}|S_m) \right] - \mathbb{E}[y|\mathbf{x}] \right)^2 \right]$$

An application: statistical analysis of Bagging

 Variance: T times lower for uncorrelated hypotheses, yet not as much an improvement for highly correlated

$$\mathbb{E}_{\mathbf{x},y} \Big[\mathbb{E}_{S_m} \Big[\Big(\frac{1}{T} \sum_{t=1}^{T} h_t(\mathbf{x}|S_m) - \mathbb{E}_{S_m} \Big[\frac{1}{T} \sum_{t=1}^{T} h_t(\mathbf{x}|S_m) \Big] \Big)^2 \Big] \Big] =$$

$$= \frac{1}{T} \mathbb{E}_{\mathbf{x},y} \Big[\mathbb{E}_{S_m} \Big[\Big(h(\mathbf{x}|S_m) - \mathbb{E}_{S_m} \big[h(\mathbf{x}|S_m) \big] \Big)^2 \Big] \Big] +$$

$$+ \frac{T(T-1)}{T^2} \mathbb{E}_{\mathbf{x},y} \Big[\mathbb{E}_{S_m} \Big[\Big(h(\mathbf{x}|S_m) - \mathbb{E}_{S_m} \big[h(\mathbf{x}|S_m) \big] \Big) \times$$

$$\times \Big(\widetilde{h}(\mathbf{x}|S_m) - \mathbb{E}_{S_m} \big[\widetilde{h}(\mathbf{x}|S_m) \big] \Big) \Big] \Big]$$

Burnaev, ML