STA2001 Tutorial 9

- 1. 4.3-10. Let $f_X(x) = 1/10, x = 0, 1, 2, \cdots, 9$, and $h(y|x) = 1/(10-x), y = x, x + 1, \cdots, 9$. Find

 Converge of the geometry of the geometr
 - (a) f(x,y).
 - (b) $f_Y(y)$.
 - (c) E(Y|x).
- (a). $f(x,y) = f_{x}(x) \cdot h(y|x) = \frac{1}{10} \cdot \frac{1}{10-x} = \frac{1}{10(10-x)}$ for $x \in \{0, 1, 2, ..., 9\}$ and $y \in \{x, x + 1, ..., 9\}$
- (b), $0 \le x \le y \le 9$: $f_{Y}(y) = \sum_{x} f(x,y) = \sum_{x=0}^{y} \frac{1}{10(10-x)}$ for $y \in \{0, 1, 2, ..., 9\}$.
- (C), $E[Y|X=x] = \sum_{y} y \cdot h(y|x)$ $= \sum_{y=x}^{9} y \cdot \frac{1}{10-x} = \frac{1}{10-x} \sum_{y=x}^{9} y$ $= \frac{1}{10-x} \frac{(x+9)(9-x+1)}{2} = \frac{x+9}{2}$ for x = 0.11.2, ... 9.

- 2. 4.4-11. Let X and Y have the joint pdf $f(x,y)=cx(1-y),\ 0< y< 1,$ and 0< x< 1-y.
 - (a) Determine the value of c.
 - (b) Compute $P(Y < X | X \le 1/4)$.

(a),
$$\int_{S_{x}} \int_{S_{y}} f(x,y) dx dy = 1$$
. $\Rightarrow \int_{0}^{1} \int_{0}^{1-y} c_{x} (1-y) dx dy = 1$.
 $c = 8$.

(b).
$$P(\Upsilon \leq X \mid X \leq \frac{1}{\Phi}) = \frac{P(\Upsilon \leq X, X \leq \frac{1}{\Phi})}{P(X \leq \frac{1}{\Phi})}$$
 $P(\Upsilon \leq X, X \leq \frac{1}{\Phi}) = \int_{0}^{\frac{1}{\Phi}} \int_{0}^{\pi} f(x, y) dx dy = \int_{0}^{\frac{1}{\Phi}} \int_{0}^{X} g_{X}(ry) dx dy$

Given that $0 \leq y \leq 1$, $0 \leq x \leq 1-y$. $\Rightarrow 0 \leq y \leq 1-X$.

 $P(X \leq \frac{1}{\Phi}) = \int_{0}^{\frac{1}{\Phi}} \int_{0}^{1-X} g_{X}(1-y) dx dy$.

 $P(\Upsilon \leq X \mid X \leq \frac{1}{\Phi}) = \frac{29}{97}$

- 3. 4.4-20. Let X have a uniform distribution on the interval (0,1). Given that X=x, let Y have a uniform distribution on the interval (0,x+1).
 - (a) Find the joint pdf of X and Y. Sketch the region where f(x,y) > 0.
 - (b) Find E(Y|x), the conditional mean of Y, given that X = x. Draw this line on the region sketched in part (a).
 - (c) Find $f_Y(y)$, the marginal pdf of Y. Be sure to include the domain.

(a),
$$f_{X}(x) = 1$$
 0< x< 1.
 $h(y|x) = \frac{1}{1+x}$ 0< y< x+| when 0< x< 1.
 $f(x,y) = f_{X}(x) \cdot h(y|x) = \frac{1}{x+1}$ for 0< y< x+|, $x \in (0,1)$.

(b).
$$E[Y|X=x] = \int_0^{x+1} y \cdot h(y|x) dy = \int_0^{x+1} y \cdot \frac{1}{x+1} dy$$

 $= \frac{1}{x+1} \frac{y^2}{2} \Big|_0^{x+1} = \frac{x+1}{2} \quad \text{for } x \in (0,1).$
 $y = \frac{x+1}{2} \quad x \in (0,1).$

(c).
$$f_{x}(y) = \int_{x \in S_x} f(x,y) dx$$
.
 $f(x,y) = \frac{1}{x+1}$ $0 < x < 1$. $0 < y < x + 1$.

For $y \in (0,1]$, there is no constraint for X meaning there: $x \in (0,1)$. However, for 1 < y < x + 1, 0 < y + 1 < x.

For
$$y \in (0,1)$$
,
 $f_{Y}(y) = \int_{0}^{1} f(x,y) dx = \int_{0}^{1} \frac{1}{1+x} dx = |n(x+1)|_{0}^{1} = |n|_{2}$.

For
$$y \in (1,2)$$
. Page 3
$$f_{Y}(y) = \int_{y-1}^{1} f(x,y) dx = \ln(x+1) \Big|_{y-1}^{1} = \ln 2 - \ln y.$$