Data Warehousing and Data Mining

Unit 5-6

Suresh Pokharel

Content

- Data Mining Definition and Task,
- KDD versus Data Mining Techniques,
- Tools and application
- Data mining query language
- Data specification, specifying knowledge
- Hierarchy specification,
- Pattern presentation & visualization specification,
- Data mining language and
- Standardization of data mining

Data Mining Tasks

- 1. Classification: learning a function that maps an item into one of a set of predefined classes
- Regression: learning a function that maps an item to a real value
- 3. Clustering: identify a set of groups of similar items
- 4. Dependencies and associations: identify significant dependencies between data attributes
- 5. Summarization: find a compact description of the dataset or a subset of the dataset

Data Mining Tools

Data Mining Tools

Characteristic	RapidMiner	R	Weka	Orange	KNIME	scikit-learn
Developer:	RapidMiner,	worldwide	Univ. of Waikato,	Univ. of Ljubljana,	KNIME.com	multiple; support:
	Germany	development	New Zealand	Slovenia	AG,Switzerland	INRIA, Google
Programming language:	Java	C, Fortran, R	Java	C++, Python, Qt framew.	Java	Python+NumPy+ SciPy+matplotlib
License:	open s. (v.5 or lower); closed s., free Starter ed. (v.6)	free software, GNU GPL 2+	open source, GNU GPL 3	open source, GNU GPL 3	open source, GNU GPL 3	FreeBSD
Current version:	6	3.02	3.6.10	2.7	2.9.1	0.14.1
GUI / command line:	GUI	both; (GUI for DM = Rattle)	both	both	GUI	command line
Main purpose:	general data mining	sci. computation and statistics	general data mining	general data mining	general data mining	machine learning package add-on
Community	large	very large	large	moderate	moderate	moderate
support (est.):	(~200 000 users)	(~ 2 M users)			(~ 15 000 users)	

Data Mining Application

Telecom Industry

- Fraudulent pattern analysis and the identification of unusual patterns
- Multidimensional association and sequential pattern analysis
- Mobile telecommunication services
- Use of visualization tools in telecommunication data analysis

Biomedical Data Analysis

Social Network

And many more.....

Data Mining Application

Telecom Industry

- Fraudulent pattern analysis and the identification of unusual patterns
- Multidimensional association and sequential pattern analysis
- Mobile telecommunication services
- Use of visualization tools in telecommunication data analysis

Biomedical Data Analysis

Social Network

And many more.....

Unit 6

Why Data Mining Primitives and Languages?

- Finding all the patterns autonomously in a database?
 - unrealistic because the patterns could be too many but uninteresting
- Data mining should be an interactive process
 - User directs what to be mined
- Users must be provided with a set of primitives to be used to communicate with the data mining system
- Incorporating these primitives in a data mining query language
 - More flexible user interaction
 - Foundation for design of graphical user interface
 - Standardization of data mining industry and practice

What Defines a Data Mining Task?

- Task-relevant data
 - Typically interested in only a subset of the entire database
 - Specify
 - the name of database/data warehouse (AllElectronics_db)
 - names of tables/data cubes containing relevant data (item, customer, purchases, items_sold)
 - conditions for selecting the relevant data (purchases made in Nepal for relevant year)
 - relevant attributes or dimensions (name and price from item, income and age from customer)

What Defines a Data Mining Task? (continued)

- Type of knowledge to be mined
 - Concept description, association, classification, prediction, clustering
 - Studying buying habits of customers, mine associations between customer profile and the items they like to buy
 - Use this info to recommend items to put on sale to increase revenue
 - Studying real estate transactions, mine clusters to determine house characteristics that make for fast sales
 - Use this info to make recommendations to house sellers who want/need to sell their house quickly
 - Study relationship between individual's sport statistics and salary
 - Use this info to help sports agents and sports team owners negotiate an individual's salary

What Defines a Data Mining Task? (continued)

- Type of knowledge to be mined
 - Search for association rules is confined to those matching some set of rules, such as:
 - Age(X, "30..39") & income (X, "40K..49K") => buys (X, "VCR")
 [2.2%, 60%]
 - Customers in their thirties, with an annual income of 40-49K, are likely (with 60% confidence) to purchase a VCR, and such cases represent about 2.2% of the total number of transactions

What Defines a Data Mining Task?

- Task-relevant data
- Type of knowledge to be mined
- Background knowledge
- Pattern interestingness measurements
- Visualization of discovered patterns

Task-Relevant Data (Minable View)

- Database or data warehouse name
- Database tables or data warehouse cubes
- Condition for data selection
- Relevant attributes or dimensions
- Data grouping criteria

- Allow discovery of knowledge at multiple levels of abstraction
- Represented as a set of nodes organized in a tree
 - Each node represents a concept
- Concept hierarchies allow raw data to be handled at a higher, more generalized level of abstraction
- Four major types of concept hierarchies, schema, setgrouping, operation derived, rule based

A Concept Hierarchy: Dimension (location)

Define a sequence of mappings from a set of low level concepts to higher-level, more general concepts

Data Wandhan

By: Suroch Pokharol

- Schema hierarchy total or partial order among attributes in the database schema, formally expresses existing semantic relationships between attributes
 - Table address
 - create table address (street char (50), city char (30), province_or_state char (30), country char (40));
 - Concept hierarchy location
 - street < city < province_or_state < country
- Set-grouping hierarchy organizes values for a given attribute or dimension into groups or constant range values
 - {young, middle_aged, senior} subset of all(age)
 - {20-39} = young
 - {40-59} = middle_aged
 - {60-89} = senior

- Operation-derived hierarchy based on operations specified by users, experts, or the data mining system
 - email address or a URL contains hierarchy info relating departments, universities (or companies) and countries
 - E-mail address
 - dmbook@cs.sfu.ca
 - Partial concept hierarchy
 - login-name < department < university < country

- Rule-based hierarchy either a whole concept hierarchy or a portion of it is defined by a set of rules and is evaluated dynamically based on the current data and rule definition
 - Following rules used to categorize items as low profit margin, medium profit margin and high profit margin
 - Low profit margin < \$50
 - Medium profit margin between \$50 & \$250
 - High profit margin > \$250
 - Rule based concept hierarchy
 - low_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 P2) < \$50
 - medium_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 P2)
 >= \$50 and (P1 P2) <= \$250
 - high_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 P2) > \$250

- After specification of task relevant data and kind of knowledge to be mined, data mining process may still generate a large number of patterns
- Typically, only a small portion of these patterns will actually be of interest to a user
- The user needs to further confine the number of uninteresting patterns returned by the data mining process
 - Utilize interesting measures
- Four types: simplicity, certainty, utility, novelty

Measurements of Pattern Interestingness (continued)

- Simplicity A factor contributing to interestingness of pattern is overall simplicity for comprehension
 - Objective measures viewed as functions of the pattern structure or number of attributes or operators
 - More complex a rule, more difficult it is to interpret, thus less interesting
 - Example measures: rule length or number of leaves in a decision tree
- Certainty Measure of certainty associated with pattern that assesses validity or trustworthiness
 - Confidence (A=>B) = # tuples containing both A & B/ #tuples containing A
 - Confidence of 85% for association rule buys (X, computer) => buys (X, software) means 85% of all customers who bought a computer bought software also

Measurements of Pattern Interestingness (continued)

- Utility potential usefulness of a pattern is a factor determining its interestingness
 - Estimated by a utility function such as support –
 percentage of task relevant data tuples for which pattern is true
 - Support (A=>B) = # tuples containing both A & B/ total # of tuples
- Novelty those patterns that contribute new information or increased performance to the pattern set
 - not previously known, surprising

Visualization of Discovered Patterns

- Different backgrounds/usages may require different forms of representation
 - E.g., rules, tables, crosstabs, pie/bar chart etc.
- Concept hierarchy is also important
 - Discovered knowledge might be more understandable when represented at high level of abstraction
 - Interactive drill up/down, pivoting, slicing and dicing provide different perspective to data
- Different kinds of knowledge require different representation: association, classification, clustering, etc.

Summary: Five Primitives for Specifying a Data Mining Task

- task-relevant data
 - database/date warehouse, relation/cube, selection criteria, relevant dimension, data grouping
- kind of knowledge to be mined
 - characterization, discrimination, association...
- background knowledge
 - concept hierarchies,...
- interestingness measures
 - simplicity, certainty, utility, novelty
- knowledge presentation and visualization techniques to be used for displaying the discovered patterns
 - rules, table, reports, chart, graph, decision trees, cubes ...
 - drill-down, roll-up,....

Source:JH

A Data Mining Query Language (DMQL)

Motivation

- A DMQL can provide the ability to support ad-hoc and interactive data mining
- By providing a standardized language like SQL
 - Hope to achieve a similar effect like that SQL has on relational database
 - Foundation for system development and evolution
 - Facilitate information exchange, technology transfer, commercialization and wide acceptance

Design

DMQL is designed with the primitives described earlier

Syntax for DMQL

- Syntax for specification of
 - task-relevant data
 - the kind of knowledge to be mined
 - concept hierarchy specification
 - interestingness measure
 - pattern presentation and visualization
- Putting it all together a DMQL query

Syntax for task-relevant data specification

- use database database_name, or use data warehouse data_warehouse_name
 - directs the data mining task to the database or data warehouse specified
- from relation(s)/cube(s) [where condition]
 - specify the database tables or data cubes involved and the conditions defining the data to be retrieved
- in relevance to att or dim list
 - Lists attributes or dimensions for exploration

Syntax for task-relevant data specification

- order by order_list
 - Specifies the sorting order of the task relevant data
- group by grouping_list
 - Specifies criteria for grouping the data
- having condition
 - Specifies the condition by which groups of data are considered relevant

Top Level Syntax of DMQL


```
• (DMQL) ::= (DMQL_Statement);{(DMQL_Statement)
```

```
    (DMQL_Statement) ::= (Data_Mining_Statement)
    (Concept_Hierarchy_Definition_Statement) |
    (Visualization_and_Presentation)
```


Top Level Syntax of DMQL (continued)


```
(Data_Mining_Statement) ::= use database (database name)
use data warehouse (data_warehouse_name)
                                                                  {use
hierarchy (hierarchy name) for (attribute or dimension)}
(Mine_Knowledge_Specification)
                                                                  in
relevance to (attribute_or_dimension_list)
                                                               from
(relation(s)/cube(s))
                                                         [where
(condition)]
                                                      [order by
(order_list)]
                                                    [group by
                                                   [having (condition)]
(grouping_list)]
{with [(interest_measure_name)] threshold = (threshold_value)
[for (attribute(s))]}
```


Specification of task-relevant data

Example 4.11 This example shows how to use DMQL to specify the task-relevant data described in Example 4.1 for the mining of associations between items frequently purchased at *AllElectronics* by Canadian customers, with respect to customer *income* and *age*. In addition, the user specifies that she would like the data to be grouped by date. The data are retrieved from a relational database.

use database AllElectronics_db
in relevance to I.name, I.price, C.income, C.age
from customer C, item I, purchases P, items_sold S
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID and P.cust_ID = C.cust_ID
and C.address = "Canada"
group by P.date

Putting It All Together: the Full Specification of a DMQL Quer

```
use database OurVideoStore_db
use hierarchy location hierarchy for B.address
mine characteristics as customerRenting
analyze count%
in relevance to C.age, I.type, I.place_made
from customer C, item I, rentals R, items_rent S, works_at W, branch
where I.item_ID = S.item_ID and S.trans_ID = R.trans_ID
      and R.cust ID = C.cust ID and R.method paid = "Visa"
      and R.empl ID = W.empl ID and W.branch ID = B.branch ID and B.address
       = "Alberta" and I.price >= 100
with noise threshold = 0.05
display as table
```


