Motivation

- Visuellen Überblick über Daten zu gewinnen
- Informationen gehen womöglich verloren

Empirische Verteilungsfunktion

Sei X_1, \ldots, X_n eine Zufallsstichprobe mit Verteilung F. Die empirische Verteilungsfunktion ist

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{\{X_i \le x\}},$$

wobei $1_{\{X_i \leq x\}} = 1$, wenn $X_i \leq x$, und $1_{\{X_i \leq x\}} = 0$ sonst.

$$\sup_{x\in\mathbb{R}}|F_n(x)-F(x)|\longrightarrow 0,$$

- Fundamentalsatz der [[Statistik]]
 - Approximation unbekannter Verteilungen möglich
 - wenn [[Stichprobe]] groß genug
- Beispiel

Skizzieren Sie die empirische Verteilungsfunktion der Daten:

1.5 2.0 2.0 3.0 3.5 3.5 3.5 4.0.

Histogramm

Die Konstruktion geschieht folgendermaßen:

- 1. Wähle $a \le x_{(1)}$ und $b \ge x_{(n)}$.
- 2. Zerlege [a, b] in k äquidistante Intervalle

$$[a, a + \Delta]$$
 $(a + \Delta, a + 2\Delta]$... $(b - \Delta, b]$,

wobei $\Delta = \frac{b-a}{k}$.

- 3. Sei n_i die Anzahl der Beobachtungen im i-ten Intervall. Konstruiere über dem i-ten Intervall ein Rechteck der Höhe
 - n_i . . . für absolute Häufigkeiten oder
 - $n_i/(n\Delta)$... für relative Häufigkeiten.
- simpler Schätzer für Dichtefunktion
- einfach verständlich
- abhängig von Auswahl der Parameter a, b, k
 Breite Intervalle verursachen einen höheren Informationsverlust.
 Schmale Intervalle ergeben oftmals ein unregelmäßiges
 Erscheinungsbild.
- Beispiel

Boxplot

Die **Antennen** (Whisker) reichen bis zum kleinsten (größten) Wert, der nicht weiter als 1.5 · iqr unter (über) der Boxgrenze liegt.

- Ausreißer
 - Punkte außerhalb der Antennen
 - -viele Ausreißer \rightarrow womöglich nicht normalverteilt
- ideal für Vergleich unterschiedener Stichproben
- liefert schnellen Überblick

Q-Q-Plot

- ullet Quantil-Quantil-Plot
- vergleicht Daten mit Referenzverteilung
 - beurteilt Anpassung der Daten an theoretische Verteilung

Dabei plottet man die empirischen Quantile gegen die theoretischen Quantile der Referenzverteilung F.

Sei
$$0 \leq p_1 < p_2 < \cdots < p_n \leq 1$$
. Man plottet

$$(z_{p_1}, q_{p_1})$$
 (z_{p_2}, q_{p_2}) ... $(z_{p_n}, q_{p_n}),$

wobei z_p dem theoretischen p-Quantil von F entspricht.

- Annahme Normalverteilung
 - Q-Q-Plot weist auf Gegenteil hin

