DESIGN & ANALYSIS OF ALGORITHMS Classo Parminder Karu Wadhus) Pros Date-Using Backtracking Technique Sum of Subsets Suppose we are given n distinct positive numbers (usually (called weights), and we desire to find all combinations of these numbers whose sums are m. This is realled as the sum of subsets problem. For example; if n=4

Required sum = m=31 Given weight are! -= (11, 13, 24, 7)Then, the desired subsets whose lum is m=31 (11, 13, 7) and (24, 7) The number of nodes in solution space by using backtracking for sun of subsets is The wout-case time for the backtracking algorithm solving sum of subsets problem is $O(p(n) 2^n)$, (where p(n) is polynomial in n).

Considering a backtracking solution involving the fixed-tuple-size strategy. I this case the element x; of the solution vector is either one or Tero depending on whether the weight Wi is included or not. The solution for: - n=4 (1), 13, 24, 5 au; - (1 rized-tuple for a node sat level i the left child corresponds to x = I rand the right to a mode (X:=0) (means X; is not included Ki is included RIGHT SUBTREE SUBTREE

The bounding function for sum of subsets $B_k(x_1, \cdots, x_k) = true$

 $\frac{k}{\sum_{i=1}^{k} w_i x_i} + \sum_{i=k+1}^{n} w_i \geq m$ and $\sum_{i=1}^{k} w_i x_i^{i+1} + w_{k+1} \leq m$

The first condition is - that the sum computed till k i-e. & wixi when is added to the sum of remaining weights i.e. from (k+1) of onwards i.e. & with with the sum of the sum o

should be greater than a equal to m.

the required sum.

The second condition is - that when new next computed weights i'e. Ewix: should be less than or equal to i=1 m. It means it should not exceed m because m is

When both first & second conditions are TRUE then that [solution] is considered otherwise not.

