Проверка гипотезы о биномиальном распределении

Пусть проведено n опытов. Каждый опыт состоит из N независимых испытаний, в каждом из которых вероятность появления некоторого события A одна и та же. Регистрируется количество появлений события A в каждом опыте. В итоге получено статистическое распределение дискретной случайной величины X, которая характеризует количество появлений события A (в первой строке приведено количество появлений события A в одном опыте, а во второй - частота n, т. е. количество опытов, в которых зарегистрировано x появлений события A):

Необходимо с помощью критерия Пирсона проверить гипотезу о биномиальном законе распределения дискретной случайной величины *X*.

 n_0

 n_1

Для того чтобы при уровне значимости α проверить гипотезу о биномиальном распределении дискретной случайной величины X, необходимо:

1) найти по формуле Бернулли

$$\mathbf{P}_N(i) = C_N^i p^i (1 - p)^{N - i}$$

вероятности $P_N(i)$ появления события A ровно i раз в N испытаниях ($i = 0, 1, \ldots, s$, где s - максимальное количество наблюдаемых появлений события A в одном опыте, т. е. s <= N);

2) определить теоретические частоты:

$$n_i' = n \cdot \mathbf{P}_N(i)$$

где *n* - количество опытов

3) сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, положив число степеней свободы k = s - 1 (считается, что вероятность p появления события A задана, т. е. она не оценивалась по выборке и не объединялись малочисленные частоты).

Если вероятность p была оценена по выборке, то k = s - 2. Если, кроме того, были объединены малочисленные частоты, то s - количество вариант выборки, которые остапись после объединения частот.

Пример 1. Над событием A, вероятность появления которого равняется 0,3, проведено n=100 независимых испытаний, каждое из которых состояло из N=7 опытов. Используя критерий Пирсона, при уровне значимости 0,05 проверить, выполняется ли гипотеза о биномиальном распределении случайной величины X (количество появлений события A), если получена такая выборка:

Решение. Учитывая, что p=0,3; q=1-p=1-0,3=0,7.

по формуле Бернулли $\mathbf{P}_{N}(i) = C_{N}^{i} p^{i} q^{N-i}$ вычислим вероятности $\mathbf{P}_{N}(i)$:

$$\mathbf{P}_{7}(0) = C_{7}^{0}0,3^{0}0,7^{7} \approx 0,0824;$$
 $\mathbf{P}_{7}(1) = C_{7}^{1}0,3^{1}0,7^{6} \approx 0,2471;$ $\mathbf{P}_{7}(2) = C_{7}^{2}0,3^{2}0,7^{5} \approx 0,3177;$ $\mathbf{P}_{7}(3) = C_{7}^{3}0,3^{3}0,7^{4} \approx 0,2269;$ $\mathbf{P}_{7}(4) = C_{7}^{4}0,3^{4}0,7^{3} \approx 0,0972;$ $\mathbf{P}_{7}(5) = C_{7}^{5}0,3^{5}0,7^{2} \approx 0,0250;$ $\mathbf{P}_{7}(6) = C_{7}^{6}0,3^{6}0,7^{1} \approx 0,0036;$ $\mathbf{P}_{7}(7) = C_{7}^{7}0,3^{7}0,7^{0} \approx 0,0002.$

Найдём теоретические частоты по формуле $n_0 = n \cdot P_N(i)$:

$$n'_0 = 100 \cdot \mathbf{P_7}(0) = 8,24$$
 $n'_1 = 100 \cdot \mathbf{P_7}(1) = 24,71$ $n'_2 = 100 \cdot \mathbf{P_7}(2) = 31,77$ $n'_3 = 100 \cdot \mathbf{P_7}(3) = 22,69$ $n'_4 = 100 \cdot \mathbf{P_7}(4) = 9,72$ $n'_5 = 100 \cdot \mathbf{P_7}(5) = 2,5$ $n'_6 = 100 \cdot \mathbf{P_7}(6) = 0,36$ $n'_7 = 100 \cdot \mathbf{P_7}(7) = 0,02.$

Поскольку частоты n_0 = 4, n_6 = 2 и n_7 = 1 малочисленные (меньше пяти), объединим их с другими частотами, а именно:

$$n_1 = 23 + 4 = 27$$
; $n_5 = 5 + 2 + 1 = 8$.

В качестве теоретических частот, которые отвечают объединённым частотам, возьмём сумму соответствующих теоретических частот:

$$n_1' = 24,71 + 8,24 = 32,95$$
 $n_5' = 2,5 + 0,36 + 0,02 = 2,88.$

Сравним эмпирические и теоретические частоты с помощью критерия Пирсона. Для этого составим расчётную таблицу.

i	n_i	n_i'	n_i-n_i'	$(n_i-n_i^\prime)^2$	$\frac{(n_i - n_i')^2}{n_i'}$
1	27	32,95	5,95	35,4025	1,0744
2	31	31,77	0,77	0,5929	0,0187
3	23	22,69	-0,31	0,0961	0,0042
4	11	9,72	-1,28	1,6384	0,1686
5	8	2,88	$-5,\!12$	26,2144	9,1022
Σ	100				$\chi^2_{ m {\tiny Haбл}} = 10{,}3681$

Из расчётной таблицы получаем $\chi^2_{
m Ha6л} = 10{,}3681.$

По таблице критических точек распределения χ_2 при уровне значимости $\alpha=0,05$ и числе степеней свободы k=s-1=5-1=4 находим критическую точку правосторонней критической области:

$$\chi^2_{\rm \tiny KP}(0,05;4) = 9,49.$$

Поскольку $\chi^2_{\text{набл}} > \chi^2_{\text{кр}}$ гипотезу о биномиальном распределении отклоняем.

Задача 1. Над событием A, вероятность появления которого равняется 0,4, проведено n=200 независимых испытаний, каждое из которых состояло из N=10 опытов. Используя критерий Пирсона, при уровне значимости 0,05 проверить, выполняется ли гипотеза о биномиальном распределении случайной величины X (количество появлений события A), если получена такая выборка:

x_i	0	1	2	3	4	5	6	7	8	9
n_i	2	12	31	42	39	35	27	5	4	2

Указание. Следует объединить малочисленные частоты: n_0 - с n_1 , а n_8 , n_9 и n_{10} - с n_7 .

Задача 2. Проверка гипотезы о биноминальном распределении с использованием Python

- 1. Импортируйте необходимые библиотеки (например, numpy и scipy).
- 2. Задайте значения параметров биноминального распределения: n количество испытаний, p вероятность успеха)
- 3. Стенерируйте случайную выборку X размером N из биноминального распределения с заданными параметрами n и p.
- ✓. Посчитайте эмпирические частоты для каждого значения успеха в выборке X.
- 5. Используя формулу Бернулли, вычислите теоретические частоты для каждого значения удачи.
- 6. Сравните теоретические и эмпирические частоты для каждого значения удачи.
- 7. Проведите статистический тест для проверки гипотезы о том, что выборка Х имеет биноминальное распределение с заданными параметрами n и p.
- 8. Выведите результаты теста, включая статистическую статистику и р-значение.
- 9. Проанализируйте результаты теста и сделайте выводы о гипотезе о биноминальном распределении на основе значений.

Проверка гипотезы о распределении Пуассона

Пусть задано точечное статистическое распределение выборки. Необходимо с помощью критерия Пирсона проверить гипотезу о распределении генеральной совокупности по закону Пуассона.

Для того чтобы при уровне значимости α проверить гипотезу о том, что исследуемая случайная величина ураспределена по закону Пуассона, необходимо:

- найти по заданному статистическому распределению выборочное среднее х_в
- 2) взять в качестве оценки параметра λ распределения Пуассона выборочное среднее $\lambda_2 = x_{\text{в}}$

- 3) найти по формуле Пуассона (или в готовой таблице) вероятности P_i появления ровно i событий в n испытаниях ($i = 1, 2, \ldots, r$, где r максимальное количество наблюдаемых событий; n объём выборки);
- 4) определить теоретические частоты

$$n_i' = n \cdot \mathbf{P}_i$$

5) сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, взяв число степеней свободы k = s - 2, где s - количество вариант выборки (если проводилось объединение мало- численных частот в одну группу, то s - количество вариант, которые остались после объединения частот).

Пример 1. В n = 1000 проверках партий товара регистрировалось количество x_i некачественной продукции, вследствие чего было получено такое статистическое распределение количества x_i брака в n_i партиях товара:

Необходимо при уровне значимости 0,05 проверить гипотезу о том, что количество бракованной продукции *X* распределено по закону Пуассона.

Решение. Сначала найдём выборочное среднее:

$$\overline{x}_{\text{B}} = \frac{0 \cdot 242 + 1 \cdot 349 + 2 \cdot 234 + 3 \cdot 107 + 4 \cdot 43 + 5 \cdot 21 + 6 \cdot 3 + 7 \cdot 1}{1000} = 1,44.$$

Возьмем в качестве оценки параметра λ распределения Пуассона выборочное среднее:

$$\lambda^{\star} = \overline{x}_{\scriptscriptstyle \mathrm{B}} = 1,44.$$

Предполагаемый закон Пуассона имеет вид

$$\mathbf{P}_{1000}(i) = 1{,}44^i \cdot \frac{e^{-1{,}44}}{i!}.$$

Положив i = 0, 1, ..., 7, вычислим вероятности $P_i = P_{1000}(i)$:

$$\begin{aligned} \mathbf{P}_0 &= 1{,}44^0 \cdot \frac{e^{-1{,}44}}{0!} \approx 0{,}2369; & \mathbf{P}_1 &= 1{,}44^1 \cdot \frac{e^{-1{,}44}}{1!} \approx 0{,}3412; \\ \mathbf{P}_2 &= 1{,}44^2 \cdot \frac{e^{-1{,}44}}{2!} \approx 0{,}2456; & \mathbf{P}_3 &= 1{,}44^3 \cdot \frac{e^{-1{,}44}}{3!} \approx 0{,}1179; \\ \mathbf{P}_4 &= 1{,}44^4 \cdot \frac{e^{-1{,}44}}{4!} \approx 0{,}0424; & \mathbf{P}_5 &= 1{,}44^5 \cdot \frac{e^{-1{,}44}}{5!} \approx 0{,}0122; \\ \mathbf{P}_6 &= 1{,}44^6 \cdot \frac{e^{-1{,}44}}{6!} \approx 0{,}0029; & \mathbf{P}_7 &= 1{,}44^7 \cdot \frac{e^{-1{,}44}}{7!} \approx 0{,}0006. \end{aligned}$$

Найдём теоретические частоты $n_0 = n \cdot P_i$:

$$n'_0 = 1000 \cdot \mathbf{P}_0 = 236,9;$$
 $n'_1 = 1000 \cdot \mathbf{P}_1 = 341,2;$ $n'_2 = 1000 \cdot \mathbf{P}_2 = 245,6;$ $n'_3 = 1000 \cdot \mathbf{P}_3 = 117,9;$ $n'_4 = 1000 \cdot \mathbf{P}_4 = 42,4;$ $n'_5 = 1000 \cdot \mathbf{P}_5 = 12,2;$ $n'_6 = 1000 \cdot \mathbf{P}_6 = 2,9;$ $n'_7 = 1000 \cdot \mathbf{P}_7 = 0,6.$

Поскольку частоты n_6 = 3 и n_7 = 1 малочисленные (меньше пяти), объединим их с частотой n_5 , а именно $n_5 = 21 + 3 + 1 = 25$.

В качестве теоретической частоты, которая отвечает объединённой частоте, возьмём сумму соответствующих теоретических частот:

$$n_5' = 12,2 + 2,9 + 0,6 = 15,7.$$

Сравним эмпирические и теоретические частоты с помощью критерия Пирсона. Для этого составим расчётную таблицу

i	n_i	n_i'	n_i-n_i'	$(n_i-n_i^\prime)^2$	$\frac{(n_i-n_i')^2}{n_i'}$
0	242	236,9	-5,1	26,01	0,1098
1	349	341,2	-7,8	60,84	0,1783
2	234	245,6	11,6	134,56	0,5479
3	107	117,9	10,9	118,81	1,0077
4	43	42,4	-0,6	0,36	0,0085
5	25	15,7	-9,3	86,49	5,5089
Σ	1000				$\chi^2_{ ext{набл}}=7,3611$

Из расчётной таблицы получаем

$$\chi^2_{\rm набл} = 7,3611$$

По таблице критических точек распределения χ_2 при уровне значимости $\alpha=0,05$ и числе степеней свободы k=s-1=6-2=4

находим критическую точку правосторонней критической области: $\chi^2_{\mathrm{\kappa p}}(0,05;4)=9,49.$

Поскольку $\chi^2_{\rm набл} < \chi^2_{\rm кр}$, нет оснований отклонять гипотезу о распределении случайной величины X (количество бракованного товара в партии) по закону Пуассона.

Задача 2. В n = 1000 проверках партий товара регистрировалось количество x_i некачественной продукции, вследствие чего было получено такое статистическое распределение количества x_i брака в n_i партиях товара:

			2					
n_i	427	363	154	41	9	3	2	1

Необходимо при уровне значимости 0,05 проверить гипотезу о том, что количество бракованной продукции *X* распределено по закону Пуассона.

Указание. Следует объединить малочисленные частоты *п*₆ и *n*₇ с *n*₅.