fpgaConvNet: Mapping Convolutional Neural Networks on Embedded FPGAs

Stylianos I. Venieris and Christos-Savvas Bouganis

sv1310@ic.ac.uk

Electrical and Electronic Engineering Department
Imperial College London

Deep Learning-enabled AI Applications

End to End Learning for Self-Driving Cars

Mariusz Bojarski NVIDIA Corporation Holmdel, NJ 07735 Davide Del Testa NVIDIA Corporation Holmdel, NJ 07735 Daniel Dworakowski NVIDIA Corporation Holmdel, NJ 07735 Bernhard Firner NVIDIA Corporation Holmdel, NJ 07735

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

DeeperBind: Enhancing Prediction of Sequence Specificities of DNA Binding Proteins

Hamid Reza Hassanzadeh Department of Computational Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332 Email: hassanzadeh@gatech.edu May D. Wang
Department of Biomedical Engineering
Georgia Institute of Technology
and Emory University
Atlanta, Georgia 30332
Email: maywang@bme.gatech.edu

Learning visual similarity for product design with convolutional neural networks

Sean Bell Kavita Bala Cornell University*

HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition

Zhicheng Yan[†], Hao Zhang[‡], Robinson Piramuthu*, Vignesh Jagadeesh*,
Dennis DeCoste*, Wei Di*, Yizhou Yu*[†]

†University of Illinois at Urbana-Champaign, [‡]Carnegie Mellon University
*eBay Research Lab, *The University of Hong Kong

Deep Learning-enabled AI Applications

Application-level Performance Requirements for Neural Networks

Application-level Performance Requirements for Neural Networks

Power constraints

- Absolute power consumption
- Performance-per-Watt

Embedded Platforms for Neural Networks

Power constraints

- Absolute power consumption
- Performance-per-Watt

FPGAs

- Heterogeneous resources
 - Coarse compute units (DSPs)
 - Logic gates and storage elements
 - On-chip memory
- Programmable interconnections

- Customisation
 - Custom datapaths
 - Custom memory subsystems
- Reconfigurability

FPGAs for Neural Networks

Low-Latency Applications

High-Throughput Applications

Multiobjective Applications

Power constraints

- Absolute power consumption
- Performance-per-Watt

Little knowledge about FPGAs Ease of deployment "Good" designs

Challenges:

- High-dimensional design space
- Diverse application-level needs
- Utilise the FPGA resources
- Design automation

Automated CNN-to-FPGA Design Flow

Streaming Architecture for FPGA-based CNNs

- GPU-based CNNs are restricted to sequential layer-by-layer execution
- FPGA-based CNNs can overlap the execution of layers

fpgaConvNet - Key Characteristics

- Differentiating factors
 - Streaming architecture
 - Hardware design tailored to the target (CNN, FPGA) pair
 - No limit on #weights and model size
- A Synchronous Dataflow model for CNNs
 - CNN as a data-driven graph
 - Workload is represented as a matrix
 - Each layer is mapped to a tunable set of hardware building blocks
- Design space exploration based on transformations
 - Coarse-grained folding
 - Fine-grained folding
 - Graph partitioning with reconfiguration
 - Weights reloading

Analytical Power

Max Throughput or Min Latency

$$t_{total}(B, N_P, \mathbf{\Gamma}) = \sum_{i=1}^{N_P} t_i(B, \mathbf{\Gamma}_i) + (N_P - 1) \cdot t_{reconfig.}$$

fpgaConvNet – Streaming Architecture for CNNs

fpgaConvNet – Streaming Architecture for CNNs

CNN Hardware SDF Graph

Complex Model → Bottlenecks:

- Limited compute resources
- Limited on-chip memory capacity for model parameters
- Limited off-chip memory bandwidth

Transformation 1: Coarse-grained Folding

Exceeding the available compute resources

Not enough off-chip memory bandwidth

Transformation 1: Coarse-grained Folding

Transformation 2: Fine-grained Folding

Transformation 2: Fine-grained Folding

- Reconfigure FPGA
- Run network over batch
- Write-back to off-chip memory

- Reconfigure FPGA
- Run network over batch
- Write-back to off-chip memory

- Reconfigure FPGA
- Run network over batch
- Write-back to off-chip memory

- Batch processing amortises reconfiguration cost → high throughput
- Latency-sensitive applications?

Transformation 4: Weights Reloading

Transformation 4: Weights Reloading

fpgaConvNet — Design Space Exploration and Optimisation

- SDF-based Framework
 - Capture hardware mappings as matrices
 - Transformations as algebraic operations
 - Analytical performance model
 - Cast design space exploration
 as a multiobjective optimisation problem
 - Maximise throughput
 - Minimise latency
 - Multiobjective criteria

Comparison with Embedded GPUs: Same absolute power constraints

fpgaConvNet vs Embedded GPU (GOp/s) for the same absolute power constraints (5 W)

 Up to 6.65× speedup with an average of 3.95× (3.43 × geo. mean)

- Throughput-driven scenario → favourable batch size
- Up to 5.53× speedup with an average of 3.32× (3.07 × geo. mean)

Comparison with Embedded GPUs: Performance efficiency

fpgaConvNet vs Embedded GPU (GOp/s/W)

- Throughput-driven scenario → favourable batch size
- Average of 1.17× (1.12× geo. mean) in GOp/s/W

Conclusion

More info: http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html

Publications:

[&]quot;fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs," FCCM, IEEE, 2016.

[&]quot;Latency-Driven Design for FPGA-based Convolutional Neural Networks," FPL, IEEE, 2017.

[&]quot;fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks on Embedded FPGAs," NIPS 2017 Workshop on Machine Learning on the Phone and other Consumer Devices, 2017.