

SEQUENCE LISTING

```
<110> SmithKline Beecham Biologicals S.A.
5
            <120> Novel Compounds
            <130> BC45226
10
            <160> 68
            <170> FastSEQ for Windows Version 3.0
            <210> 1
15
            <211> 3280
            <212> DNA
            <213> homo sapiens
            <400> 1
      atggctgagc ctgggcacag ccaccatctc tccgccagag tcaggggaag aactgagagg
20
                                                                              60
      cgcatacccc ggctgtggcg gctgctgctc tgggctggga ccgccttcca ggtgacccag
                                                                             120
      ggaacgggac cggagcttca tgcctgcaaa gagtctgagt accactatga gtacacggcg
                                                                             180
      tgtgacagca cgggttccag gtggagggtc gccgtgccgc ataccccggg cctgtgcacc
                                                                             240
      agectgeetg acceegicaa gggcacegag tgeteettet eetgcaacge eggggagttt
                                                                             300
25
                                                                             360
      ctggatatga aggaccagtc atgtaagcca tgcgctgagg gccgctactc cctcggcaca
                                                                             420
      ggcattcggt ttgatgagtg ggatgagctg ccccatggct ttgccagcct ctcagccaac
      atggagetgg atgacagtge tgetgagtee acegggaact gtaettegte caagtgggtt
                                                                             480
      ccccggggcg actacatcgc ctccaacacg gacgaatgca cagccacact gatgtacgcc
                                                                             540
      gtcaacctga agcaatctgg caccgttaac ttogaatact actatccaga ctccagcatc
                                                                             600
30
      atctttgagt ttttcgttca gaatgaccag tgccagccca atgcagatga ctccaggtgg
                                                                             660
      atgaagacca cagagaaagg atgggaattc cacagtgtgg agctaaatcg aggcaataat
                                                                             720
                                                                             780
      gtcctctatt ggagaaccac agccttctca gtatggacca aagtacccaa gcctgtgctg
      gtgagaaaca ttgccataac aggggtggcc tacacttcag aatgcttccc ctgcaaacct
                                                                             840
      ggcacgtatg cagacaagca gggctcctct ttctgcaaac tttgcccagc caactcttat
                                                                             900
35
      tcaaataaag gagaaacttc ttgccaccag tgtgaccctg acaaatactc agagaaagga
                                                                             960
      tettetteet gtaacgtgcg eccagettge acagacaaag attatteta cacacacacg
                                                                            1020
      gcctgcgatg ccaacggaga gacacaactc atgtacaaat gggccaagcc gaaaatctgt
                                                                            1080
      agegaggace ttgaggggge agtgaagetg cetgeetetg gtgtgaagae ceaetgeeea
                                                                            1140
                                                                            1200
      ccctqcaacc caggettett caaaaccaac aacagcacct gccagccctg cccatatggt
      tcctactcca atggctcaga ctgtacccgc tgccctgcag ggactgaacc tgctgtggga
                                                                            1260
40
      tttgaataca aatggtggaa cacgctgccc acaaacatgg aaacgaccgt tctcagtggg
                                                                            1320
                                                                            1380
      atcaacttcg agtacaaggg catgacaggc tgggaggtgg ctggtgatca catttacaca
                                                                            1440
      gctgctggag cctcagacaa tgacttcatg attctcactc tggttgtgcc aggatttaga
                                                                            1500
      cctccgcagt cggtgatggc agacacagag aataaagagg tggccagaat cacatttgtc
45
                                                                            1560
      tttgagaccc tctgttctgt gaactgtgag ctctacttca tggtgggtgt gaattctagg
      accaacactc ctgtggagac gtggaaaggt tccaaaggca aacagtccta tacctacatc
                                                                            1620
      attgaggaga acactaccac gagetteace tgggeettee agaggaccae ttttcatgag
                                                                            1680
      qcaagcaqqa agtacaccaa tgacgttgcc aagatctact ccatcaatgt caccaatgtt
                                                                            1740
      atgaatggeg tggeeteeta etgeegteee tgtgeeetag aageetetga tgtgggetee
                                                                            1800
50
                                                                            1860
      tectgeacet ettgteetge tggttactat attgacegag atteaggaac etgecactee
                                                                            1920
      tgcccccta acacaattct gaaagcccac cagccttatg gtgtccaggc ctgtgtgccc
                                                                            1980
      tgtggtccag ggaccaagaa caacaagatc cactctctgt gctacaatga ttgcaccttc
      teacgeaaca etecaaceag gaettteaac tacaacttet eegetttgge aaacacegte
                                                                            2040
      actettgetg gagggecaag etteaettee aaagggttga aataetteea teaetttaee
                                                                            2100
55
                                                                            2160
      ctcagtctct gtggaaacca gggtaggaaa atgtctgtgt gcaccgacaa tgtcactgac
      ctccggattc ctgagggtga gtcagggttc tccaaatcta tcacagccta cgtctgccag
                                                                            2220
      gcagtcatca tecececaga ggtgaeagge taeaaggeeg gggttteete aeageetgte
                                                                            2280
      agcettgetg ategaettat tggggtgaea acagatatga etetggatgg aateaeetee
                                                                            2340
      ccagctgaac ttttccacct ggagtccttg ggaataccgg acgtgatctt cttttatagg
                                                                            2400
60
                                                                            2460
      tocaatgatg tgacccagtc ctgcagttct gggagatcaa ccaccatccg cgtcaggtgc
```

```
2520
      aqtecacaqa aaactqtccc tggaagtttg ctgctgccag gaacgtgctc agatgggacc
                                                                           2580
      tgtgatgget geaactteea etteetgtgg gagagegegg etgettgeee getetgetea
      qtqqctqact accatqctat cqtcaqcagc tgtgtggctg ggatccagaa gactacttac
                                                                           2640
      gtgtggcgag aacccaagct atgctctggt ggcatttctc tgcctgagca gagagtcacc
                                                                           2700
 5
      atctgcaaaa ccatagattt ctggctgaaa gtgggcatct ctgcaggcac ctgtactgcc
                                                                           2760
      atcctgctca ccgtcttgac ctgctacttt tggaaaaaga atcaaaaact agagtacaag
                                                                           2820
                                                                           2880
      tactccaage tggtgatgaa tgctactctc aaggactgtg acctgccage agctgacage
                                                                           2940
      tgegecatea tggaaggega ggatgtagag gacgacetea tetttaceag caagaagtea
      ctctttggga agatcaaatc atttacctcc aagaggactc ctgatggatt tgactcagtg
                                                                           3000
10
      ccgctgaaga catcctcagg aggcccagac atggacctgt gagaggcact gcctgcctca
                                                                           3060
      cetgeeteet cacettgeat ageacetttg caageetgeg gegatttggg tgecageate
                                                                           3120
      ctgcaacacc cactgctgga aatctcttca ttgtggcctt atcagatgtt tgaatttcag
                                                                           3180
      atctttttt atagagtacc caaaccctcc tttctgcttg cctcaaacct gccaaatata
                                                                           3240
      3280
15
            <210> 2
            <211> 1013
            <212> PRT
            <213> homo sapiens
20
            <400> 2
      Met Ala Glu Pro Gly His Ser His His Leu Ser Ala Arg Val Arg Gly
                                          10
      Arg Thr Glu Arg Arg Ile Pro Arg Leu Trp Arg Leu Leu Leu Trp Ala
25
                                      25
      Gly Thr Ala Phe Gln Val Thr Gln Gly Thr Gly Pro Glu Leu His Ala
                                  40
      Cys Lys Glu Ser Glu Tyr His Tyr Glu Tyr Thr Ala Cys Asp Ser Thr
                              55
30
      Gly Ser Arg Trp Arg Val Ala Val Pro His Thr Pro Gly Leu Cys Thr
                          70
                                              75
      Ser Leu Pro Asp Pro Val Lys Gly Thr Glu Cys Ser Phe Ser Cys Asn
                      85
                                          90
      Ala Gly Glu Phe Leu Asp Met Lys Asp Gln Ser Cys Lys Pro Cys Ala
35
                                      105
      Glu Gly Arg Tyr Ser Leu Gly Thr Gly Ile Arg Phe Asp Glu Trp Asp
                                  120
                                                      125
      Glu Leu Pro His Gly Phe Ala Ser Leu Ser Ala Asn Met Glu Leu Asp
                              135
                                                  140
40
      Asp Ser Ala Ala Glu Ser Thr Gly Asn Cys Thr Ser Ser Lys Trp Val
                          150
                                             155
      Pro Arg Gly Asp Tyr Ile Ala Ser Asn Thr Asp Glu Cys Thr Ala Thr
                                          170
      Leu Met Tyr Ala Val Asn Leu Lys Gln Ser Gly Thr Val Asn Phe Glu
45
                  180
                                      185
      Tyr Tyr Tyr Pro Asp Ser Ser Ile Ile Phe Glu Phe Phe Val Gln Asn
                                  200
              195
      Asp Gln Cys Gln Pro Asn Ala Asp Asp Ser Arg Trp Met Lys Thr Thr
                              215
                                                  220
50
      Glu Lys Gly Trp Glu Phe His Ser Val Glu Leu Asn Arg Gly Asn Asn
                          230
                                              235
      Val Leu Tyr Trp Arg Thr Thr Ala Phe Ser Val Trp Thr Lys Val Pro
                                          250
                   245
      Lys Pro Val Leu Val Arg Asn Ile Ala Ile Thr Gly Val Ala Tyr Thr
55
                                      265
                  260
      Ser Glu Cys Phe Pro Cys Lys Pro Gly Thr Tyr Ala Asp Lys Gln Gly
                                  280
                                                      285
      Ser Ser Phe Cys Lys Leu Cys Pro Ala Asn Ser Tyr Ser Asn Lys Gly
                              295
                                                  300
60
      Glu Thr Ser Cys His Gln Cys Asp Pro Asp Lys Tyr Ser Glu Lys Gly
                          310
                                              315
```

Ser Ser Ser Cys Asn Val Arg Pro Ala Cys Thr Asp Lys Asp Tyr Phe

					225					330					335	
	Tyr	Thr	His	Thr	325 Ala	Cys	Asp	Ala	Asn 345		Glu	Thr	Gln	Leu 350	Met	Tyr
5	Lys	Trp	Ala 355	Lys	Pro	Lys	Ile	Cys 360	Ser	Glu	Asp	Leu	Glu 365	Gly	Ala	Val
	Lys	Leu 370	Pro	Ala	Ser	Gly	Val 375	Lys	Thr	His	Cys	Pro 380	Pro	Cys	Asn	Pro
10	385					390					395				Tyr	400
		_			405					410					Thr 415	
				420					425					430	Thr	
			435					440					445		Gly	
		450					455					460			Gly Phe	
20	465	_		_		470					475				Ala	480
20					485					490					495 Leu	
25				500					505					510	Thr	
	Lys	Gly	515 Ser	Lys	Gly	Lys	Gln	520 Ser	Tyr	Thr	Tyr	Ile	525 Ile	Glu	Glu	Asn
		530 Thr	Thr	Ser	Phe		535 Trp	Ala	Phe	Gln		540 Thr	Thr	Phe	His	
30	545 Ala	Ser	Arg	Lys	Tyr 565	550 Thr	Asn	Asp	Val	Ala 570	555 Lys	Ile	Tyr	Ser	Ile 575	560 Asn
	Val	Thr	Asn	Val 580		Asn	Gly	Val	Ala 585		Tyr	Cys	Arg	Pro 590	Cys	Ala
35	Leu	Glu	Ala 595		Asp	Val	Gly	Ser 600		Cys	Thr	Ser	Cys 605	Pro	Ala	Gly
	Tyr	Tyr 610	Ile	Asp	Arg	Asp	Ser 615	Gly	Thr	Cys	His	Ser 620	Cys	Pro	Pro	Asn
40	625			-		630			_		635				Val	640
	-	_			645					650					Tyr 655	
45				660					665					670	Tyr	
			675					680					685		Ser Leu	
		690					695					700			Thr	
50	705			_	_	710					715				Thr	720
	Tyr	Val	Cys	Gln	725 Ala	Val	Ile	Ile	Pro	730 Pro	Glu	Val	Thr	Gly	735 Tyr	Lys
55	Ala	Gly		740 Ser	Ser	Gln	Pro		745 Ser	Leu	Ala	Asp	_	750 Leu	Ile	Gly
	Val		755 Thr	Asp	Met	Thr		760 Asp	Gly	Ile	Thr		765 Pro	Ala	Glu	Leu
	Phe 785	770 His	Leu	Glu	Ser	Leu 790	775 Gly	Ile	Pro	Asp	Val 795	780 Ile	Phe	Phe	Tyr	Arg 800
		Asn	Asp	Val	Thr		Ser	Cys	Ser	Ser 810		Arg	Ser	Thr	Thr 815	
	Arg	Val	Arg	Cys		Pro	Gln	Lys	Thr		Pro	Gly	Ser	Leu	Leu	Leu

				200					005					020				
	Pro	Gly	Thr 835	820 Cys	Ser	Asp	Gly	Thr 840	825 Cys	Asp	Gly	Сув	Asn 845	830 Phe	His	Phe		
5	Leu	Trp		Ser	Ala	Ala	Ala 855		Pro	Leu	Cys	Ser 860		Ala	Asp	Tyr		
J			Ile	Val	Ser			Val	Ala	Gly			Lys	Thr	Thr	_		
	865 Val	Trp	Arg	Glu	Pro	870 Lys	Leu	Cys	Ser	Gly	875 Gly	Ile	Ser	Leu	Pro	880 Glu		
10	Gln	Arg	Val		885 Ile	Cys	Lys	Thr	Ile 905	890 Asp	Phe	Trp	Leu		895 Val	Gly		
	Ile	Ser		900 Gly	Thr	Cys	Thr			Leu	Leu	Thr		910 Leu	Thr	Cys		
15	Tyr		915 Trp	Lys	Lys	Asn	Gln 935	920 Lys	Leu	Glu	Tyr	Lys 940	925 Tyr	Ser	Lys	Leu		
13		930 Met	Asn	Ala	Thr			Asp	Cys	Asp			Ala	Ala	Asp			
	945 Cys	Ala	Ile	Met		950 Gly	Glu	Asp	Val		955 Asp	Asp	Leu	Ile	Phe	960 Thr		
20	Ser	Lys	Lys	Ser	965 Leu	Phe	Gly	Lys	Ile	970 Lys	Ser	Phe	Thr	Ser	975 Lys	Arg		
	Thr	Pro		980 Gly	Phe	Asp	Ser			Leu	Lys	Thr			Gly	Gly		
	Pro	Asp	995 Met	Asp	Leu			1000)				1005	5				
25		1010)															
			210> 211>															
30		<2	212>	DNA	o sap	niens	2											
30					Jul		-											
		ttaa		cacaa		_		_								aagga		0
35																caatga :gcaaa	12 18	
		_	_													tgtct tggag	24 30	
	gtaa	aatga	att t	gato	cttco	cc aa	agag	gtgad	tto	cttgo	ctgg	taaa	agato	gag g	gtcgt	cctct gagag	36 42	
40	tage	catto	at o	cacca	agctt	g ga	gtad	ttgt	act	ctag	gttt	ttga	attct	tt 1	ttcca	aaagt	48	0
	_															etttca caccag	54 60	
	_	atago cgata	_		_	ge ea	acaco	gtaag	g tag	gtctt	cctg	gate	cccas	gcc a	acaca	igctgc	66 67	
45			210>		J													
		<2	211>	105														
			212> 213>		sar	piens	3											
50				_														
	Tyr 1		100> Ala		Val 5	Ser	Ser	Cys	Val	Ala 10	Gly	Ile	Gln	Lys	Thr 15	Thr		
55		'Val	Trp	_	_	Pro	Lys	Leu	-		Gly	Gly	Ile		Leu	Pro		
55	Glu	Gln	_	20 Val	Thr	Ile	Cys	-	25 Thr	Ile	Asp	Phe		30 Leu	Lys	Val		
	Gly		35 Ser	Ala	Gly	Thr	_	40 Thr	Ala	Ile	Leu		45 Thr	Val	Leu	Thr		
60	_	50 Tyr	Phe	Trp	Lys	-	55 Asn	Gln	Lys	Leu		60 Tyr	Lys	Tyr	Ser			
	65 Leu	Val	Met	Asn	Ala	70 Thr	Leu	Lys	Asp	Сув	75 Asp	Leu	Pro	Ala	Ala	80 Asp		

85 Thr Ala Pro Ser Trp Lys Ala Arg Met 100 5 <210> 5 <211> 9 <212> PRT <213> Artificial Sequence 10 <400> 5 Arg Leu Trp Arg Leu Leu Leu Trp Ala <210> 6 15 <211> 9 <212> PRT <213> Artificial Sequence <400> 6 Ser Leu Ala Asp Arg Leu Ile Gly Val 20 <210> 7 <211> 9 25 <212> PRT <213> Artificial Sequence <400> 7 Ser Leu Pro Glu Gln Arg Val Thr Ile 30 1 5 <210> 8 <211> 9 <212> PRT 35 <213> Artificial Sequence <400> 8 Lys Leu Cys Ser Gly Gly Ile Ser Leu 40 <210> 9 <211> 9 <212> PRT <213> Artificial Sequence 45 <400> 9 Ala Ala Cys Pro Leu Cys Ser Val 50 <210> 10 <211> 9 <212> PRT <213> Artificial Sequence 55 <400> 10 Ser Ala Leu Ala Asn Thr Val Thr Leu 5

<210> 11

<211> 9 <212> PRT

<213> Artificial Sequence

60

95

```
<400> 11
      Phe Val Phe Glu Thr Leu Cys Ser Val
                       5
5
            <210> 12
            <211> 9
            <212> PRT
            <213> Artificial Sequence
10
            <400> 12
      Glu Leu Pro His Gly Phe Ala Ser Leu
15
            <210> 13
            <211> 9
            <212> PRT
            <213> Artificial Sequence
           <400> 13
20
      Leu Ile Phe Thr Ser Lys Lys Ser Leu
            <210> 14
25
            <211> 9
            <212> PRT
            <213> Artificial Sequence
            <400> 14
30
      Lys Leu Glu Tyr Lys Tyr Ser Lys Leu
       1
            <210> 15
            <211> 9
35
            <212> PRT
            <213> Artificial Sequence
            <400> 15
      Lys Thr Ile Asp Phe Trp Leu Lys Val
40
      1
            <210> 16
            <211> 9
            <212> PRT
45
            <213> Artificial Sequence
           <400> 16
      Ser Val Ala Asp Tyr His Ala Ile Val
50
            <210> 17
            <211> 9
            <212> PRT
            <213> Artificial Sequence
55
            <400> 17
      Leu Leu Pro Gly Thr Cys Ser Asp
60
            <210> 18
            <211> 9
            <212> PRT
```

1 2

```
<213> Artificial Sequence
            <400> 18
     Ala Leu Ala Asn Thr Val Thr Leu Ala
5
           <210> 19
           <211> 9
            <212> PRT
10
            <213> Artificial Sequence
           <400> 19
     Thr Leu Cys Ser Val Asn Cys Glu Leu
15
           <210> 20
            <211> 9
            <212> PRT
            <213> Artificial Sequence
20
           <400> 20
     Asn Thr Asp Glu Cys Thr Ala Thr Leu
25
           <210> 21
            <211> 9
            <212> PRT
            <213> Artificial Sequence
30
          <400> 21
     Ser Leu Pro Asp Pro Val Lys Gly Thr
      1
            <210> 22
            <211> 9
            <212> PRT
            <213> Artificial Sequence
           <400> 22
40
      Ser Leu Phe Gly Lys Ile Lys Ser Phe
           <210> 23
           <211> 9
            <212> PRT
45
            <213> Artificial Sequence
           <400> 23
      Cys Thr Ala Ile Leu Leu Thr Val Leu
50
            <210> 24
            <211> 9
            <212> PRT
55
            <213> Artificial Sequence
           <400> 24
      Ile Val Ser Ser Cys Val Ala Gly Ile
60
```

<210> 25 <211> 9

<212> PRT <213> Artificial Sequence <400> 25 Lys Met Ser Val Cys Thr Asp Asn Val 5 <210> 26 <211> 9 10 <212> PRT <213> Artificial Sequence <400> 26 Val Leu Val Arg Asn Ile Ala Ile Thr 15 <210> 27 <211> 9 <212> PRT 20 <213> Artificial Sequence <400> 27 Glu Leu Asn Arg Gly Asn Asn Val Leu 25 <210> 28 <211> 9 <212> PRT <213> Artificial Sequence 30 <400> 28 Ala Thr Leu Met Tyr Ala Val Asn Leu 1 35 <210> 29 <211> 9 <212> PRT <213> Artificial Sequence 40 <400> 29 Val Ala Val Pro His Thr Pro Gly Leu <210> 30 45 <211> 9 <212> PRT <213> Artificial Sequence <400> 30 50 Arg Leu Trp Arg Leu Leu Trp Ala 5 <210> 31 <211> 9 55 <212> PRT <213> Artificial Sequence <400> 31 Ser Ala Gly Thr Cys Thr Ala Ile Leu 60

<210> 32

```
<211> 9
            <212> PRT
            <213> Artificial Sequence
            <400> 32
5
     Gly Ile Ser Leu Pro Glu Gln Arg Val
           <210> 33
10
            <211> 9
            <212> PRT
            <213> Artificial Sequence
           <400> 33
     Lys Thr Val Pro Gly Ser Leu Leu Leu
15
            <210> 34 ,
            <211> 9
20
            <212> PRT
            <213> Artificial Sequence
            <400> 34
      Arg Leu Ile Gly Val Thr Thr Asp Met
25
                      5
            <210> 35
            <211> 9
            <212> PRT
30
            <213> Artificial Sequence
            <400> 35
      Thr Leu Ala Gly Gly Pro Ser Phe Thr
                      5
35
            <210> 36
            <211> 9
            <212> PRT
            <213> Artificial Sequence
40
           <400> 36
      Tyr Ile Ile Glu Glu Asn Thr Thr
           <210> 37
45
            <211> 9
            <212> PRT
            <213> Artificial Sequence
50
           <400> 37
      Ile Ala Ile Thr Gly Val Ala Tyr Thr
            <210> 38
55
            <211> 9
            <212> PRT
            <213> Artificial Sequence
           <400> 38
60
      Val Thr Gln Gly Thr Gly Pro Glu Leu
```

```
<210> 39
            <211> 10
            <212> PRT
            <213> Artificial Sequence
5
            <400> 39
      Ser Leu Phe Gly Lys Ile Lys Ser Phe Thr
10
            <210> 40
            <211> 10
            <212> PRT
            <213> Artificial Sequence
15
            <400> 40
      Ala Ile Val Ser Ser Cys Val Ala Gly Ile
            <210> 41
20
            <211> 10
            <212> PRT
            <213> Artificial Sequence
            <400> 41
25
      Ser Ala Ala Cys Pro Leu Cys Ser Val
            <210> 42
            <211> 10
30
            <212> PRT
            <213> Artificial Sequence
            <400> 42
      His Leu Glu Ser Leu Gly Ile Pro Asp Val
35
            <210> 43
            <211> 10
            <212> PRT
40
            <213> Artificial Sequence
            <400> 43
      Lys Ile Tyr Ser Ile Asn Val Thr Asn Val
45
            <210> 44
            <211> 10
            <212> PRT
            <213> Artificial Sequence
50
            <400> 44
      Ser Leu Ala Asp Arg Leu Ile Gly Val Thr
55
            <210> 45
            <211> 10
            <212> PRT
            <213> Artificial Sequence
60
            <400> 45
      Ile Leu Lys Ala His Gln Pro Tyr Gly Val
       1
```

, t

```
<210> 46
            <211> ·10
            <212> PRT
5
            <213> Artificial Sequence
            <400> 46
      Val Met Ala Asp Thr Glu Asn Lys Glu Val
10
            <210> 47
            <211> 10
            <212> PRT
            <213> Artificial Sequence
15
            <400> 47
      Leu Leu Trp Ala Gly Thr Ala Phe Gln Val
20
            <210> 48
            <211> 10
            <212> PRT
            <213> Artificial Sequence
25
            <400> 48
      Gly Thr Cys Thr Ala Ile Leu Leu Thr Val
                       5
            <210> 49
            <211> 10
30
            <212> PRT
            <213> Artificial Sequence
            <400> 49
35
      Ile Thr Ser Pro Ala Glu Leu Phe His Leu
            <210> 50
            <211> 10
40
            <212> PRT
            <213> Artificial Sequence
            <400> 50
      Leu Ile Gly Val Thr Thr Asp Met Thr Leu
45
            <210> 51
            <211> 10
            <212> PRT
50
            <213> Artificial Sequence
            <400> 51
      Thr Leu Pro Thr Asn Met Glu Thr Thr Val
55
            <210> 52
            <211> 10
            <212> PRT
            <213> Artificial Sequence
60
            <400> 52
      Leu Met Tyr Lys Trp Ala Lys Pro Lys Ile
```

, 1

1 5 10 <210> 53 <211> 10 5 <212> PRT <213> Artificial Sequence <400> 53 Asp Leu Ile Phe Thr Ser Lys Lys Ser Leu 10 <210> 54 <211> 10 <212> PRT 15 <213> Artificial Sequence <400> 54 Gly Leu Lys Tyr Phe His His Phe Thr Leu 20 <210> 55 <211> 10 <212> PRT <213> Artificial Sequence 25 <400> 55 Gly Thr Lys Asn Asn Lys Ile His Ser Leu 1 30 <210> 56 <211> 10 <212> PRT <213> Artificial Sequence 35 <400> 56 Ser Asp Asn Asp Phe Met Ile Leu Thr Leu 5 <210> 57 40 <211> 10 <212> PRT <213> Artificial Sequence <400> 57 45 Leu Val Arg Asn Ile Ala Ile Thr Gly Val <210> 58 <211> 10 50 <212> PRT <213> Artificial Sequence <400> 58 Gly Leu Cys Thr Ser Leu Pro Asp Pro Val 55 <210> 59 <211> 10 <212> PRT 60 <213> Artificial Sequence <400> 59

. .

```
Thr Leu Lys Asp Cys Asp Leu Pro Ala Ala
                       5
            <210> 60
5
            <211> 10
            <212> PRT
            <213> Artificial Sequence
            <400> 60
10
      Val Ile Phe Phe Tyr Arg Ser Asn Asp Val
            <210> 61
            <211> 10
15
            <212> PRT
            <213> Artificial Sequence
           <400> 61
      Ser Ile Thr Ala Tyr Val Cys Gln Ala Val
20
            <210> 62
            <211> 10
            <212> PRT
25
            <213> Artificial Sequence
           <400> 62
      Ser Val Cys Thr Asp Asn Val Thr Asp Leu
30
            <210> 63
            <211> 10
            <212> PRT
            <213> Artificial Sequence
35
            <400> 63
      Ser Leu Cys Gly Asn Gln Gly Arg Lys Met
40
            <210> 64
            <211> 10
            <212> PRT
            <213> Artificial Sequence
45
           <400> 64
      Asn Met Glu Thr Thr Val Leu Ser Gly Ile
            <210> 65
50
            <211> 10
            <212> PRT
            <213> Artificial Sequence
            <400> 65
55
      Asn Ile Ala Ile Thr Gly Val Ala Tyr Thr
            <210> 66
            <211> 10
60
            <212> PRT
            <213> Artificial Sequence
```

<400> 66 Gly Ile Arg Phe Asp Glu Trp Asp Glu Leu 5 5 <210> 67 <211> 10 <212> PRT <213> Artificial Sequence 10 <400> 67 Phe His Phe Leu Trp Glu Ser Ala Ala Ala <210> 68 15 <211> 9 <212> PRT <213> Artificial Sequence <400> 68 20 Phe Leu Trp Glu Ser Ala Ala Cys 1