31.6-2)

```
\label{eq:modular-exponentiation_RL} \begin{split} \text{MODULAR-EXPONENTIATION\_RL}(a,b,n): \\ d &= 1 \\ \text{let } b_k..b_0 \text{ be the binary representation of B} \\ \text{for } i &= 0 \text{ to k} \\ &\quad \text{if}(b_i &= 1) \\ &\quad d &= d * a \text{ mod n} \\ &\quad a &= a * a \text{ mod n} \\ &\quad \text{return d} \end{split}
```

Proof of Correctness:

b is binary, which can be represented as $b=b_k2^k+b_{k-1}2^{k-1}+...+b_0$. By exponent rules, $a^b=a^{b_k2^k} \cdot a^{b_{k-1}2^k} \cdot ... \cdot a^{b_02^0}$. At each step, a represents $a^{2^i} \mod n$. d is an accumulator that represents the past i-1 exponentiations. Every '1' bit value for b_i necessitates another multiplication since b_i can only be the values 0 and 1 and $a^{0\cdot 2^i}=1$ so when b_i is 0, no multiplication needs to be done. Since it is true that for some x where $x\equiv a \mod n$ and y where $y\equiv b \mod n$, the product xy satisfies $xy\equiv ab \mod n$, modulus can be multiplied through products. Here, we have $a'\equiv a^2 \mod n$ and so for a'=a', $a'\equiv a' \mod n$. This applies from $a'=a' \mod n = a'$. Since the return value d for the algorithm takes the correct value $a'=a' \mod n = a'$. Since the return value d for the algorithm takes the correct value at each step, it is correct.

31.7-1)

The prime factorization of n=319 is 11,29. $\phi(n) = 319(1 - \frac{1}{11})(1 - \frac{1}{29}) = 280$.

The modular inverse is 187, found by the euclidean algorithm $3^{-1} \equiv x \mod 280$, 280 = 3(93) + 1, 1 = 280 - 93 (3), $3^{-1} \equiv -93 \equiv 187 \mod 280$.

The secret key should be S=(187,319). The public key is P=(3,319). $P(100) = 100^3 \mod 319 = 254$