Modeling Unknown Stochastic Dynamical Systems via Autoencoder

Numerical results

Zhongshu Xu, Yuan Chen, Qifan Chen, and Dongbin Xiu

Department of Mathematics The Ohio State University

December, 2024

- 1 Introduction
- 2 Method
- 3 Numerical results
- 4 Explanation

Numerical results

Numerical results

- 1 Introduction

- 4 Explanation

Consider an Itô type stochastic differential equations (SDEs)

$$dx_t = a(x_t) dt + b(x_t) dW_t$$
 (1)

Numerical results

- W_t: m-dimensional Brownian motion. Unobservable
- a $: \mathbb{R}^d \to \mathbb{R}^d$: the drift function. **Unknown**
- $b : \mathbb{R}^d \to \mathbb{R}^{d \times m}$: the diffusion function. **Unknown**

Known fact: x is time-homogeneous, for any $\Delta > 0$, s > 0,

$$\mathbb{P}(\mathsf{x}_{s+\Delta}|\mathsf{x}_s) = \mathbb{P}(\mathsf{x}_{\Delta}|\mathsf{x}_0). \tag{2}$$

Data

We have the solution trajectory data of (1):

$$X^{(i)} = \left(x_0^{(i)}, x_1^{(i)}, ..., x_L^{(i)}\right), \qquad i = 1, ..., N_T,$$
(3)

Numerical results

where $x_{k}^{(i)} = x(t_{k}^{(i)})$, with $t_{k}^{(i)} - t_{k-1}^{(i)} \equiv \Delta, \forall k, i$.

Based on time-homogeneity, we know there is an exact "stochastic flow map" G_{Λ} from x_t to $x_{t+\Lambda}$.

$$\mathsf{x}_{t+\Delta} = \mathsf{G}_{\Delta}(\mathsf{x}_t; w) \tag{4}$$

Numerical results

where $w \in \mathbb{R}^m$ is a sample from $W \sim N(0, I_m)$.

Goal: based on the trajectory data (3), construct a numerical model G_{Λ} , such that for all x.

$$\widetilde{\mathsf{G}}_{\Delta}(\mathsf{x};\mathsf{Z}) \stackrel{d}{\approx} \mathsf{G}_{\Delta}(\mathsf{x};\mathsf{W}).$$
 (5)

where $Z \sim N(0, I_{n_z})$ with $n_z > 1$.

- 1 Introduction
- 2 Method
- 4 Explanation

Example

Let's consider a simple example:

$$x_{t+\Delta} = G_{\Delta}(x_t; w) = x_t + w \tag{6}$$

Once w is sampled, $x_{t+\Delta}$ can be uniquely determined by x_t and w.

Example

Let's consider a simple example:

$$x_{t+\Delta} = G_{\Delta}(x_t; w) = x_t + w \tag{6}$$

Once w is sampled, $x_{t+\Delta}$ can be uniquely determined by x_t and w.

$$w = x_{t+\Delta} - x_t \tag{7}$$

Adjacent data pair $(x_t, x_{t+\Delta})$ can also uniquely determine w.

Auto-encoder

Introduction

Train a Neural Network Encoder E to identify the unobserved stochastic component:

$$\left(x_{0},x_{1}\right)\xrightarrow{\widetilde{E}}z$$

and a Neural Network Decoder \widetilde{D} to reconstruct the trajectory

$$\left(x_{0},z\right)\overset{\widetilde{D}}{\longrightarrow}\widetilde{x}_{1}$$

such that $\widetilde{x}_1 \approx x_1$.

For $x_1 = G_{\Lambda}(x_0; w) = x_0 + w$.

We have a counter-example:

$$\widetilde{E}(x_0, x_1) = x_1 - 0.1x_0 := z, \quad \widetilde{D}(x_0, z) = 0.1x_0 + z$$

Numerical results

- $\widetilde{D}\left(x_0, \widetilde{E}\left(x_0, x_1\right)\right) = x_1$
- $\widetilde{D}(x_0, z) = 0.1x_0 + z \neq G_{\Lambda}(x_0; z)$

For $x_1 = G_{\Lambda}(x_0; w) = x_0 + w$.

We have a counter-example:

$$\widetilde{E}\left(x_{0},x_{1}\right)=x_{1}-0.1x_{0}:=z,\quad \widetilde{D}\left(x_{0},z\right)=0.1x_{0}+z$$

Numerical results

- $\widetilde{D}\left(x_0,\widetilde{E}\left(x_0,x_1\right)\right)=x_1$
- $\widetilde{D}(x_0, z) = 0.1x_0 + z \neq G_{\Lambda}(x_0; z)$

Therefore, we need to further enforce

$$z\sim\mathcal{N}\left(0,I\right)$$

Enforce Density

To enforce the distribution of z, we need a batch of samples,

- **1** Input: $B_x = \left\{ \left(x_0^{(i)}, x_1^{(i)} \right), i = 1, \dots, N \right\}$
- **2** Encoder: $z^{(i)} = E_{\Delta} \left(x_0^{(i)}, x_1^{(i)} \right), \quad i = 1, \dots, N.$
- **3** Output: $B_z = \{z^{(i)}, i = 1, ..., N\}$
- Distributional loss function:

$$\mathcal{L}_{D}(B_{z}) = \mathcal{L}_{distance}\left(B_{z}, \mathcal{N}\left(0, I\right)\right) + \tau \cdot \mathcal{L}_{moment}\left(B_{z}, \mathcal{N}\left(0, I\right)\right)$$

Network Structure

Figure 1: An illustration of the network structure and training loss for the proposed autoencoder sFML method.

For $x_1 = G_{\Lambda}(x_0; w) = x_0 + w$.

We have another counter-example:

$$\widetilde{E}(x_0, x_1) = \frac{1}{3}x_1 + \frac{1}{3}x_0 := z, \quad \widetilde{D}(x_0, z) = 3z - x_0$$

Numerical results

- $\widetilde{E}(x_0, x_1) \sim \mathcal{N}(0, I)$ when $x_0 \sim \mathcal{N}(0, I)$
- $\widetilde{D}\left(x_0,\widetilde{E}\left(x_0,x_1\right)\right)=x_1$
- $\widetilde{D}(x_0, z) = -x_0 + 3z \neq x_0 + z$

For $x_1 = G_{\Lambda}(x_0; w) = x_0 + w$.

We have another counter-example:

$$\widetilde{E}(x_0, x_1) = \frac{1}{3}x_1 + \frac{1}{3}x_0 := z, \quad \widetilde{D}(x_0, z) = 3z - x_0$$

- $\widetilde{E}(x_0, x_1) \sim \mathcal{N}(0, I)$ when $x_0 \sim \mathcal{N}(0, I)$
- $\widetilde{D}\left(x_0,\widetilde{E}\left(x_0,x_1\right)\right)=x_1$
- $\widetilde{D}(x_0, z) = -x_0 + 3z \neq x_0 + z$

Therefore, we need to enforce further z is independent of x_0 .

Assume random variable $X_0 \in \mathbb{R}^d$ and $Z \sim N(0, I_m)$. We define $X_1 = G_{\Delta}(X_0, Z)$. x_0 , x_1 and z are sampled from X_0 , X_1 , Z. If continuous functions D_{Δ} , E_{Δ} satisfied the following conditions:

- **1** For any $x_0, x_1 \in \mathbb{R}^d$, $D_{\Delta}(x_0, E_{\Delta}(x_0, x_1)) = x_1$;
- **2** $E_{\Delta}(X_0, X_1) \sim N(0, I_m)$ holds for $X_0 \sim \delta(x), \forall x \in \mathbb{R}^d$. Here $\delta(x)$ is Dirac delta distribution at x.

Then for any $x_0 \in \mathbb{R}^d$ we have:

$$D_{\Delta}(x_0, Z) \stackrel{d}{=} G_{\Delta}(x_0, Z).$$

Separate initial trajectory into data pair:

$$\left(x_0^{(i)}, x_1^{(i)}\right), \left(x_1^{(i)}, x_2^{(i)}\right), \dots, \left(x_{L-1}^{(i)}, x_L^{(i)}\right), \ i = 1, \dots, N_T \ \ (8)$$

Removal of time:

$$(x_0^{(i)}, x_1^{(i)}), \quad i = 1, \dots, M, \quad M = N_T L$$
 (9)

Numerical results

- Resample:
 - **1** Randomly choose n_B samples of x_0 from (9) using uniform distribution;
 - 2 For each of the chosen x_0 samples, find its (N-1) nearest neighbor points to form a batch with N samples.

Sampling Result

Figure 2: An illustration of the proposed batch sampling: Left: histograms of 6 batches of sampled x_0 's; Right: histograms of the corresponding x_1 's.

Numerical results 0000000000000

- 3 Numerical results
- 4 Explanation

Configuration

- Data Generation: Uniformly sample $N_T = 10^4$ initial conditions within a region and solve the SDE with a time step $\Delta = 0.01$ up to T = 1.0.
- **Sampling**: Cut these trajectories into $M = 10^6$ data pairs. then sub-sample into $n_B = 1,000$ batches, each of which contains N = 10,000 data pairs.
- Network Architecture: Both encoder and decoder are 4 layer 20 nodes per layer DNNs with eLU activation function for the first three layers.
- **Training**: With learning rate 1e 4, we train our model for 1000 epochs.

We consider the 1D OU process, in the following form

$$dx_t = \theta(\mu - x_t)dt + \sigma dW_t, \tag{10}$$

for $\theta = 1.0$, $\mu = 1.2$, and $\sigma = 0.3$:

For discrete Itô SDEs, we have:

$$x_{n+1} = \mathsf{G}_{\Delta}(x_n) \approx x_n + \mathsf{a}(x_n)\Delta + \sqrt{\Delta}b(x_n)Z.$$
 (11)

To examine the accuracy of sFM learning, we propose the following effective drift and diffusion estimator:

$$\widetilde{a}(x) = \frac{\mathbb{E}_{\omega}(\widetilde{\mathsf{D}}_{\Delta}(x) - x)}{\Delta}, \quad \widetilde{b}(x) = \frac{\mathsf{Std}_{\omega}(\widetilde{\mathsf{D}}_{\Delta}(x))}{\sqrt{\Delta}}$$
(12)

Ornstein-Uhlenbeck process

We can also compare the distribution of:

- The latent variable from the trained encoder $E_{\Lambda}(x_0,x_1), x_0=1.5$, against standard normal $\mathcal{N}(0,1)$
- One-step conditional distribution of the trained decoder $D_{\Lambda}(x_0, Z), Z \sim \mathcal{N}(0, 1)$ with the true one-step conditional distribution $P(x_1|x_0)$ at $x_0 = 1.5$.

We consider the classical double well potential system, in the following form

$$dx_t = (x_t - x_t^3)dt + 0.5dW_t, (13)$$

The trajectory may contain random switching between the two stable states $x = \pm 1$:

However, there is no transition in the training data (T = 1).

Double Well Potential

The evolution of solution PDF at time T = 0.5, 10.0, 30.0 and 100.0 given $x_0 = 1.5$:

Estimation of drift, diffusion functions:

We consider an SDE with exponentially distributed noise:

$$dx_t = \mu x_t dt + \sigma \sqrt{dt} \eta_t, \quad \eta_t \sim \mathsf{Exp}(1)$$
 (14)

where η_t has an exponential pdf $f_n(x) = e^{-x}, x \ge 0$, and the constants are set as $\mu = -2.0$ and $\sigma = 0.1$.

Even with non-Gaussian noise, we still force the latent variable z to be standard normal and approximate an equivalent SDE:

$$dx_t = \mu x_t dt + \sigma \sqrt{dt} f(W), \quad W \sim \mathcal{N}(0, 1)$$
 (15)

where f transforms standard normal distribution to exponential distribution.

Introduction

0.0925

0.0900

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Numerical results

0000000000000

0.7 0.8

-0.8

0.3 0.4 0.5 0.6 We now consider a 5-dimensional OU process:

Method

$$dx_t = Bx_t dt + \sum dW_t, \tag{16}$$

we choose the following 5 different cases for Σ , whose ranks vary from 1 to 5: $rank(\Sigma_k) = k, k = 1, ..., 5$.

For each case, we progressively increase the values of n_z . During this process, we monitor the models' MSE losses

nz	Σ_1	Σ_2	Σ3	Σ_4	Σ_5
	3.5×10^{-7}	$1.1 imes 10^{-3}$	1.8×10^{-3}		3.3×10^{-3}
	5.1×10^{-7}	6.4×10^{-7}	7.2×10^{-4}	$1.4 imes 10^{-3}$	1.9×10^{-3}
	3.3×10^{-7}	5.0×10^{-7}	7.1×10^{-7}	5.3×10^{-4}	8.8×10^{-4}
4	3.8×10^{-7}	5.4×10^{-7}	4.1×10^{-7}	7.2×10^{-7}	4.5×10^{-4}
5	7.2×10^{-7}	9.4×10^{-7}	6.3×10^{-7}	6.1×10^{-7}	6.2×10^{-7}

nz	Σ_1	Σ_2	Σ_3	Σ_4	Σ_5
1	1.04E-02	1.83E-02	6.27E-02	8.32E-02	7.60E-02
2	1.60E-02	1.40E-02	4.98E-02	2.61E-02	1.78E-01
3	1.74E-02	1.26E-02	3.65E-02	3.80E-02	2.43E-01
4	1.74E-02	3.57E-02	3.40E-02	3.45E-02	4.55E-02
5	6.67E-02	4.23E-02	4.99E-02	4.46E-02	4.86E-02

Table 1: The maximum relative l_2 error between the mean of model predictions and that of the reference solution.

nz	Σ_1	Σ_2	Σ_3	Σ_4	Σ_5
1	9.47E-03	5.85E-01	6.39E-01	5.04E-01	4.95E-01
2	8.69E-03	1.83E-02	3.52E-01	2.60E-01	4.10E-01
3	1.81E-02	1.88E-02	1.12E-02	9.48E-02	1.42E-01
4	2.00E-02	2.70E-02	8.41E-03	9.30E-03	1.31E-01
5	1.99E-01	3.21E-02	3.05E-02	2.89E-02	9.48E-03

Table 2: The maximum relative l_2 error between the STD of model predictions and that of the reference solution.

Introduction

- 1 Introduction

- 4 Explanation

Paper and Code

Details and more examples can be found:

- Z. Xu, Y. Chen, Q. Chen, D. Xiu. Modeling Unknown Stochastic Dynamical System via Autoencoder, Journal of Machine Learning for Modeling and Computing.
- https://github.com/AtticusXu/Modeling-Unknown-Stochastic-Dynamical-System-via-Autoencoder.

Related Papers

- Yuan Chen, Dongbin Xiu. Learning Stochastic Dynamical System via Flow Map Operator, Journal of Computational Physics, 508 (2024), 112984.
- Yuan Chen, Dongbin Xiu. Data-driven Effective Modeling of Multiscale Stochastic Dynamical Systems, submitted.
- Yanfang Liu, Yuan Chen, Dongbin Xiu, Guannan Zhang. A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems, submitted.