Preuves Cours 4 RLD

1 Preuve causalité

On souhaite montrer que les décisions à t n'affectent en rien les récompenses obtenues à t', avec t'<t (ce qu'on appelle causalité). Cela revient à montrer que :

$$\nabla_{\theta} J(\theta) = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t'=t}^{|\tau|} r_{t'} \right]$$

avec r_t le reward obtenu selon $\mathcal{R}(s_t, a_t, s_{t+1})$ dans τ .

Cette relation simplifie grandement la formulation du gradient et réduit considérablement sa variance (du moins pour les décisions de fin de trajectoire).

On a:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) \right]$$

$$= \sum_{\tau} \pi_{\theta}(\tau) \left[\left(\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{|\tau|} r_{t} \right) \right]$$

$$= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{|\tau|} r_{t'} \right] + \nabla_{\theta} C(\theta)$$

Notre problème revient alors à montrer que :

$$\nabla_{\theta} C(\theta) = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t'=0}^{t-1} r_{t'} \right] = 0$$

Sans perte de généralité, on suppose que toutes les trajectoires font la même taile T. On a alors :

$$\nabla_{\theta} C(\theta) = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t'=0}^{t-1} r_{t'} \right] = \sum_{t=0}^{T-1} \sum_{\tau} \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \sum_{t'=0}^{t-1} r_{t'}$$

On peut décomposer la trajectoire :

$$\nabla_{\theta} C(\theta) = \sum_{t=0}^{T-1} \sum_{\tau_{0:t-1}} \pi_{\theta}(\tau_{0:t-1}) \sum_{\tau_{t}} \pi_{\theta}(\tau_{t}|\tau_{0:t-1}) \sum_{\tau_{t+1:T}} \pi_{\theta}(\tau_{t+1:T}|\tau_{0:t}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=0}^{t-1} r_{t'}$$

$$= \sum_{t=0}^{T-1} \sum_{\tau_{0:t-1}} \pi_{\theta}(\tau_{0:t-1}) \sum_{t'=0}^{t-1} r_{t'} \sum_{\tau_{t}} \pi_{\theta}(\tau_{t}|\tau_{0:t-1}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{\tau_{t+1:T}} \pi_{\theta}(\tau_{t+1:T}|\tau_{0:t})$$

$$= \sum_{t=0}^{T-1} \sum_{\tau_{0:t-1}} \pi_{\theta}(\tau_{0:t-1}) \sum_{t'=0}^{t-1} r_{t'} \sum_{\tau_{t}} \pi_{\theta}(\tau_{t}|\tau_{0:t-1}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})$$

avec $\tau_t = (s_t, a_t)$ et $\tau_{i:j} = ((s_i, a_i), ..., (s_j, a_j))$. Or on a: $\pi_{\theta}(\tau_t | \tau_{0:t-1}) = \pi_{\theta}(a_t | s_t) P(s_t | s_{t-1}, a_{t-1})$. Donc:

$$\pi_{\theta}(\tau_{t}|\tau_{0:t-1})\nabla_{\theta}\log \pi_{\theta}(a_{t}|s_{t}) = \pi_{\theta}(\tau_{t}|\tau_{0:t-1})\left(\nabla_{\theta}\log \pi_{\theta}(a_{t}|s_{t}) + \nabla_{\theta}\log P(s_{t}|s_{t-1}, a_{t-1})\right)$$

$$= \pi_{\theta}(\tau_{t}|\tau_{0:t-1})\nabla_{\theta}\log \pi_{\theta}(\tau_{t}|\tau_{0:t-1})$$

$$= \nabla_{\theta}\pi_{\theta}(\tau_{t}|\tau_{0:t-1})$$

On a alors:

$$\sum_{\tau_t} \pi_{\theta}(\tau_t | \tau_{0:t-1}) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) = \sum_{\tau_t} \nabla_{\theta} \pi_{\theta}(\tau_t | \tau_{0:t-1}) = \nabla_{\theta} \sum_{\tau_t} \pi_{\theta}(\tau_t | \tau_{0:t-1}) = \nabla_{\theta} 1 = 0$$

On en conclut donc que $\nabla_{\theta} C(\theta) = 0$

2 Gradient Actor-Critic

On souhaite montrer que le Policy Gradient $\nabla_{\theta} J(\theta)$ peut s'écrire :

$$\nabla_{\theta} J(\theta) = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \gamma^t Q^{\pi}(s_t, a_t) \right]$$

Commençons par remarquer que :

$$J(\theta) = \sum_{\tau} \pi(\tau) \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$
$$= \sum_{s_0} P(s_0) \sum_{a_0} \pi(a_0|s_0) Q^{\pi}(s_0, a_0)$$

On a alors:

$$\nabla_{\theta} J(\theta) = \sum_{s_0} P(s_0) \sum_{a_0} \pi(a_0|s_0) \Big(\nabla_{\theta} \log(\pi(a_0|s_0)) Q^{\pi}(s_0, a_0) + \nabla_{\theta} Q^{\pi}(s_0, a_0) \Big)$$

Or pour tout s_t , a_t :

$$\nabla_{\theta} Q^{\pi}(s_{t}, a_{t}) = \nabla_{\theta} \left(\sum_{s_{t+1}} P(s_{t+1}|s_{t}, a_{t}) \Big(r_{t} + \gamma \sum_{a_{t+1}} \pi(a_{t+1}|s_{t+1}) Q^{\pi}(s_{t+1}, a_{t+1}) \Big) \right)$$

$$= \sum_{s_{t+1}} P(s_{t+1}|s_{t}, a_{t}) \gamma \sum_{a_{t+1}} \pi(a_{t+1}|s_{t+1}) \Big(\nabla_{\theta} \log(\pi(a_{t+1}|s_{t+1})) Q^{\pi}(s_{t+1}, a_{t+1}) + \nabla_{\theta} Q^{\pi}(s_{t+1}, a_{t+1}) \Big)$$

En assemblant tous les $\nabla_{\theta}Q^{\pi}$, on a alors par chain-rule :

$$\nabla_{\theta} J(\theta) = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \gamma^t Q^{\pi}(s_t, a_t) \right]$$

3 Traces d'éligibilité pour GAE

On souhaite montrer que faire des mises à jour de la politique à chaque étape t de la trajectoire selon :

$$\theta \leftarrow \theta + \alpha \delta_t^V e_t$$

avec

$$\delta_t^V = r_t + \gamma V(s_{t+1}) - V(s_t)$$

et e_t la trace d'éligibilité définie comme :

$$e_0 \leftarrow \nabla_0$$

$$e_t \leftarrow \lambda \gamma e_{t-1} + \nabla_t$$

avec $\nabla_t := \nabla_\theta \log \pi_\theta(a_|s_t)$, est équivalent (si travail sur une copie des paramètres) à faire une mise à jour globale en fin de trajectoire correspondant à :

$$\theta \leftarrow \theta + \alpha \hat{q}$$

avec

$$\hat{g} = \sum_{t=0}^{\infty} \hat{A}_{t}^{GAE(\gamma,\lambda)} \nabla_{t}$$
$$= \sum_{t=0}^{\infty} \nabla_{t} \sum_{l=0}^{\infty} (\gamma \lambda)^{l} \delta_{t+l}^{V}$$

On a:

$$\hat{g} = \nabla_0 \left(\delta_0^V + (\gamma \lambda) \delta_1^V + (\gamma \lambda)^2 \delta_2^V + \dots \right)
+ \nabla_1 \left(\delta_1^V + (\gamma \lambda) \delta_2^V + (\gamma \lambda)^2 \delta_3^V + \dots \right)
+ \nabla_2 \left(\delta_2^V + (\gamma \lambda) \delta_3^V + (\gamma \lambda)^2 \delta_4^V + \dots \right)
+ \dots$$

En regroupant les δ^V on obtient :

$$\hat{g} = \delta_0^V \left(\nabla_0 \right)
+ \delta_1^V \left(\nabla_1 + (\gamma \lambda) \nabla_0 \right)
+ \delta_2^V \left(\nabla_2 + (\gamma \lambda) \nabla_1 + (\gamma \lambda)^2 \nabla_0 \right)
+ \dots
= \sum_{t=0}^{\infty} \delta_t^V e_t$$

On a donc l'expression de \hat{g} sous la forme d'une somme dont chaque composante ne dépend que d'éléments obtenus avant t.

On peut alors mettre à jour θ à chaque étape t selon :

$$\theta \leftarrow \theta + \alpha \delta_t^V e_t$$

ce qui revient à la même chose que de considérer une mise à jour globale selon

$$\theta \leftarrow \theta + \alpha \hat{g} = \theta + \alpha \sum_{t=0}^{\infty} \delta_t^V e_t$$

4 Fonctions compatibles

Soit le gradient : $\hat{g} = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) f_{\phi}(s_{t}, a_{t}) \right]$, avec f_{ϕ} une fonction $\mathcal{S} \times \mathcal{A} \to \mathbb{R}$

de paramètres ϕ . On souhaite montrer qu'une condition suffisante pour rendre ce gradient non biaisé (i.e., $\hat{g} = \nabla_{\theta} J(\theta)$) est d'utiliser une fonction f_{ϕ} compatible, c'est à dire respectant les deux contraintes suivantes :

• Pour tout s et a : $\nabla_{\phi} f_{\phi}(s, a) = \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$

$$\bullet \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \gamma^{t} (Q^{\pi}(s_{t}, a_{t}) - f_{\phi}(s_{t}, a_{t}) - v_{w}(s_{t})) \nabla_{\phi} f_{\phi}(s_{t}, a_{t}) \right] = 0$$

avec $v_w(s)$ une fonction quelconque $\mathcal{S} \to \mathbb{R}$ de paramètres w.

Selon la seconde contrainte on a :

$$\sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \gamma^{t} (Q^{\pi}(s_{t}, a_{t}) - f_{\phi}(s_{t}, a_{t}) - v_{w}(s_{t})) \nabla_{\phi} f_{\phi}(s_{t}, a_{t}) \right] = 0$$

or:

$$\begin{split} \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{|\tau|-1} \gamma^{t} (Q^{\pi}(s_{t}, a_{t}) - f_{\phi}(s_{t}, a_{t}) - v_{w}(s_{t})) \nabla_{\phi} f_{\phi}(s_{t}, a_{t}) \right] \\ &= \sum_{t=0}^{\infty} \gamma^{t} \sum_{\tau_{0:t-1}} \pi_{\theta}(\tau_{0:t-1}) \sum_{s_{t} \in \mathcal{S}} P(s_{t}|s_{t-1}, a_{t-1}) \sum_{a \in \mathcal{A}(s_{t})} \pi_{\theta}(a|s_{t}) (Q^{\pi}(s_{t}, a) - f_{\phi}(s_{t}, a) - v_{w}(s_{t})) \nabla_{\phi} f_{\phi}(s_{t}, a) \\ &= \sum_{t=0}^{\infty} \gamma^{t} \sum_{\tau} \pi_{\theta}(\tau) \sum_{a \in \mathcal{A}(s_{t})} \pi_{\theta}(a|s_{t}) (Q^{\pi}(s_{t}, a) - f_{\phi}(s_{t}, a) - v_{w}(s_{t})) \nabla_{\phi} f_{\phi}(s_{t}, a) \\ &= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \pi_{\theta}(a|s_{t}) (Q^{\pi}(s_{t}, a) - f_{\phi}(s_{t}, a) - v_{w}(s_{t})) \nabla_{\phi} f_{\phi}(s_{t}, a) \right] \end{split}$$

On a donc :

$$\sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \pi_{\theta}(a|s_{t}) (Q^{\pi}(s_{t}, a) - f_{\phi}(s_{t}, a) - v_{w}(s_{t})) \nabla_{\phi} f_{\phi}(s_{t}, a) \right] = 0$$

Si la première contrainte est respectée, on peut remplacer $\nabla_{\phi} f_{\phi}(s,a)$ par son expression $\frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$ dans cette équation :

$$\sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) (Q^{\pi}(s_{t}, a) - f_{\phi}(s_{t}, a) - v_{w}(s_{t})) \right] = 0$$

Ou encore :

$$\sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) (Q^{\pi}(s_{t}, a) - f_{\phi}(s_{t}, a)) \right] = 0$$

Car:

$$\sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) v_{w}(s_{t}) \right] = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} v_{w}(s_{t}) \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) \right]$$
$$= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} v_{w}(s_{t}) \nabla_{\theta} 1 \right] = 0$$

On a alors:

$$\sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) Q^{\pi}(s_{t}, a) \right] = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) f_{\phi}(s_{t}, a) \right]$$

Et donc : $\hat{g} = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) f_{\phi}(s_{t}, a_{t}) \right] = \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \pi_{\theta}(a|s_{t}) \nabla_{\theta} \log \pi_{\theta}(a|s_{t}) f_{\phi}(s_{t}, a) \right]$

$$= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) f_{\phi}(s_{t}, a) \right]$$

$$= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \nabla_{\theta} \pi_{\theta}(a|s_{t}) Q^{\pi}(s_{t}, a) \right]$$

$$= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \sum_{a \in \mathcal{A}(s_{t})} \pi_{\theta}(a|s_{t}) \nabla_{\theta} \log \pi_{\theta}(a|s_{t}) Q^{\pi}(s_{t}, a) \right]$$

$$= \sum_{\tau} \pi_{\theta}(\tau) \left[\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) Q^{\pi}(s_{t}, a_{t}) \right]$$

Soit π définie selon une fonction softmax : $\pi_{\theta}(a|s) = \frac{e^{h_{\theta}(s,a)}}{\sum_{a' \in A(s)} e^{h_{\theta}(s,a')}}$, avec $h_{\theta}: S \times A \to \mathbb{R}$

Montrons que pour respecter la 1ière condition, on peut prendre :

$$f_{\phi}(s, a) = \left[\nabla_{\theta} h_{\theta}(s, a) - \sum_{a' \in \mathcal{A}(s)} \pi_{\theta}(a'|s) \nabla_{\theta} h_{\theta}(s, a') \right]^{T} \phi$$

Soit
$$f_{\phi}(s, a) = \left[\nabla_{\theta}h_{\theta}(s, a) - \sum_{a' \in \mathcal{A}(s)} \pi_{\theta}(a'|s)\nabla_{\theta}h_{\theta}(s, a')\right]^{T} \phi$$

On a alors:
$$\nabla_{\phi}f_{\phi}(s, a) = \nabla_{\theta}h_{\theta}(s, a) - \sum_{a' \in \mathcal{A}(s)} \pi_{\theta}(a'|s)\nabla_{\theta}h_{\theta}(s, a')$$

$$= \nabla_{\theta}h_{\theta}(s, a) - \sum_{a' \in \mathcal{A}(s)} \frac{e^{h_{\theta}(s, a')}}{\sum_{b \in \mathcal{A}(s)} e^{h_{\theta}(s, b)}} \nabla_{\theta}h_{\theta}(s, a')$$

$$= \nabla_{\theta}h_{\theta}(s, a) - \sum_{a' \in \mathcal{A}(s)} \frac{\nabla_{\theta}e^{h_{\theta}(s, a')}}{\sum_{b \in \mathcal{A}(s)} e^{h_{\theta}(s, a')}}$$

$$= \nabla_{\theta}h_{\theta}(s, a) - \frac{\sum_{a' \in \mathcal{A}(s)} \nabla_{\theta}e^{h_{\theta}(s, a')}}{\sum_{a' \in \mathcal{A}(s)} e^{h_{\theta}(s, a')}}$$

$$= \nabla_{\theta}h_{\theta}(s, a) - \frac{\nabla_{\theta}\sum_{a' \in \mathcal{A}(s)} e^{h_{\theta}(s, a')}}{\sum_{a' \in \mathcal{A}(s)} e^{h_{\theta}(s, a')}}$$

$$= \nabla_{\theta}h_{\theta}(s, a) - \nabla_{\theta}\log\sum_{a' \in \mathcal{A}(s)} e^{h_{\theta}(s, a')}$$

$$= \nabla_{\theta}[\log e^{h_{\theta}(s, a)} - \log\sum_{a' \in \mathcal{A}(s)} e^{h_{\theta}(s, a')}]$$

$$= \nabla_{\theta}[\log \frac{e^{h_{\theta}(s, a)}}{\sum_{a' \in \mathcal{A}(s)} e^{h_{\theta}(s, a')}}]$$

$$= \nabla_{\theta}\log \pi_{\theta}(s, a)$$

$$= \nabla_{\theta}\log \pi_{\theta}(s, a)$$

$$= \frac{\nabla_{\theta}\pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}$$

Une façon d'atteindre la seconde condition est de considérer le problème de minimisation suivant :

$$\min_{\phi,w} \mathbb{E}_{(s,a)\sim\pi_{\theta}} \left[(Q^{\pi}(s,a) - f_{\phi}(s,a) - v_w(s))^2 \right]$$

On veut montrer que pour tout s, la fonction v_w qui minimise la variance de cette estimation de $Q^{\pi}(s,a)$ par $f_{\phi}(s,a) + v_w(s)$ pour les différentes actions a est égale à $V^{\pi}(s)$.

Soit pour tout s, la variance de l'estimateur $f_{\phi}(s,.) + v_w(s)$ donnée par :

$$\epsilon_s = \sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) [Q^{\pi}(s,a) - f_{\phi}(s,a) - v_w(s)]^2$$

On a:

$$\frac{\partial \epsilon_s}{\partial v_w(s)} = -2 \sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) [Q^{\pi}(s,a) - f_{\phi}(s,a) - v_w(s)]$$

Et:

$$\frac{\partial^2 \epsilon_s}{\partial^2 v_w(s)} = 2$$

Puisque cette dérivée seconde est toujours positive on peut affirmer que ϵ_s est convexe en $v_w(s)$ et donc l'annulation de la dérivée $\frac{\partial \epsilon_s}{\partial v_w(s)}$ permet de minimiser ϵ_s .

On considère donc :

$$-2\sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s)[Q^{\pi}(s,a) - f_{\phi}(s,a) - v_{w}(s)] = 0$$

$$\sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) Q^{\pi}(s,a) - \sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) f_{\phi}(s,a) = v_w(s)$$

Or:

$$\sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) f_{\phi}(s, a) = \sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) \left[\nabla_{\theta} h_{\theta}(s, a) - \sum_{a' \in \mathcal{A}(s)} \pi_{\theta}(a'|s) \nabla_{\theta} h_{\theta}(s, a') \right]^{T} \phi$$

$$= \left[\sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) \nabla_{\theta} h_{\theta}(s, a) - \sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) \sum_{a' \in \mathcal{A}(s)} \pi_{\theta}(a'|s) \nabla_{\theta} h_{\theta}(s, a') \right]^{T} \phi$$

$$= \left[\sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) \nabla_{\theta} h_{\theta}(s, a) - \sum_{a' \in \mathcal{A}(s)} \pi_{\theta}(a'|s) \nabla_{\theta} h_{\theta}(s, a') \right]^{T} \phi$$

$$= [0]^{T} \phi$$

$$= 0$$

On a donc:

$$\sum_{a \in \mathcal{A}(s)} \pi_{\theta}(a|s) Q^{\pi}(s, a) = v_w(s)$$

Soit: $v_w(s) = V^{\pi}(s)$

On peut alors voir f_w comme une fonction d'avantage : $A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$, pouvant être obtenue par temporal difference.