Section 2.2

Inverse of a matrix

Learning Objectives:

- 1. Given a non-singular square matrix, calculate its inverse.
- 2. Solve matrix equations using the inverse matrix.
- 3. Recognize and apply properties of invertible matrices.

1 Inverse of a matrix

Definition: An $n \times n$ matrix A is **invertible** or **nonsingular** if there exists an $n \times n$ matrix C satisfying

$$CA = AC = I_n$$
.

The matrix C is called the **inverse** of A and it is denoted $C = A^{-1}$.

A matrix that has no inverse is called **singular**.

Theorem: If A is an invertible $n \times n$ matrix, then for every $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Example 1. What can be said about the pivots of A if it is invertible?

For 2×2 matrices there is a very nice formula to determine the inverse:

Theorem: Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If $ad - bc \neq 0$ then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

If ad - bc = 0 then A is singular.

Remark: The quantity ad - bc is actually very important and will be generalized to larger square matrices in the next chapter. It is called the **determinant** of A, and is often written

$$\det A = ad - bc.$$

Example 2. Solve the system

$$3x_1 + 4x_2 = 3$$

$$5x_1 + 6x_2 = 7.$$

Example 3. If A and B are invertible matrices of size $n \times n$, then what is the inverse of AB?

Theorem: Let A and B be $n \times n$ invertible matrices. Then

- 1. A^{-1} is invertible and $(A^{-1})^{-1} =$.
- 2. A^T is invertible and $(A^T)^{-1} =$.
- 3. $(AB)^{-1} = .$

2 Elementary Matrices

Recall the elementary operations for row reducing: replacement, scaling, swapping. It turns out that each of these operations correspond to matrix multiplication:

Example 4. Let
$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, and $E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Given an arbitrary matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}, compute the matrices E_1A and E_2A .$$

Theorem: An $n \times n$ matrix A is invertible if and only if

3 Algorithm to find A^{-1}

Algorithm to find A^{-1} : Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \ I] \sim [I \ A^{-1}]$. Otherwise, A does not have an inverse.

Example 8. Find the inverse of the matrix

$$A = \left(\begin{array}{rrr} 1 & -2 & -1 \\ -1 & 5 & 6 \\ 5 & -4 & 5 \end{array}\right).$$

Example 9. Find the inverse of the matrix

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{array}\right).$$