Coding Interview Questions

By Narasimha Karumanchi

☆ Concepts
☆ Problems
☆ Interview Questions

Copyright ©2017 by CareerMonk.com

All rights reserved.

Designed by Narasimha Karumanchi

Copyright ©2017 CareerMonk Publications. All rights reserved.

Acknowledgements

Mother and Father, it is impossible to thank you adequately for everything you have done, from loving me unconditionally to raising me in a stable household, where your persistent efforts and traditional values taught your children to celebrate and embrace life. I could not have asked for better parents or role-models. You showed me that anything is possible with faith, hard work and determination.

This book would not have been possible without the help of many people. I would like to thank them for their efforts in improving the end result. Before we do so, however, I should mention that I have done my best to correct the mistakes that the reviewers have pointed out and to accurately describe the protocols and mechanisms. I alone am responsible for any remaining errors.

First and foremost, I would like to express my gratitude to many people who saw me through this book, to all those who provided support, talked things over, read, wrote, offered comments, allowed me to quote their remarks and assisted in the editing, proofreading and design. In particular, I would like to thank the following individuals:

- Mohan Mullapudi, IIT Bombay, Architect, dataRPM Pvt. Ltd.
- Navin Kumar Jaiswal, Senior Consultant, Juniper Networks Inc.
- A. Vamshi Krishna, IIT Kanpur, Mentor Graphics Inc.
- Ramanaiah, Lecturer, Nagarjuna Institute of Technology and Sciences, MLG

-Narasimha Karumanchi M-Tech, IIT Bombay Founder, CareerMonk.com

Preface

Dear Reader.

Please Hold on! I know many people do not read the preface. But I would strongly recommend that you go through the preface of this book at least. The reason for this is that this preface has something different to offer.

This book assumes you have some basic knowledge about computer science. The main objective of the book is not to give you the theorems and proofs about *Data Structures* and *Algorithms*. I have followed a pattern of improving the problem solutions with different complexities (for each problem, you will find multiple solutions with different, and reduced complexities). Basically, it's an enumeration of possible solutions. With this approach, even if you get a new question it will show you a way to think about all possible solutions. This book is very useful for interview preparation, competitive exams preparation, and campus interview preparations.

As a job seeker if you read the complete book with good understanding, I am sure you will challenge the interviewers and that is the objective of this book.

This book is very useful for the *students* of *Engineering Degree* and *Masters* during their academic preparations. In all the chapters you will see that more importance has been given to problems and their analysis instead of theory. For each chapter, first you will read about the basic required theory and this will be followed by a section on problem sets. There are approximately 700 algorithmic problems and all of them are with solutions.

In most the chapters you will see more importance given to *problems* and analyzing them instead of concentrating more on theory. For each chapter, first you will see the basic required theory and then followed by problems.

For many problems, *multiple* solutions are provided with different levels of complexities. We start with the *brute force* solution and slowly move towards the *best solution* possible for that problem. For each problem we will try to understand how much time algorithm takes and how much memory the algorithm uses.

It is *recommended* that the reader does at least one complete reading of this book to get full understanding of all the topics that are covered. In subsequent readings you can skip directly to any chapter to refer to a specific topic. Even though, enough readings have been done for the purpose of correcting errors, there could be some minor typos in the book. If any such typos are found, they will be updated at *www.CareerMonk.com*. I request that you frequently monitor this site for any corrections, new problems and solutions. Also, please provide your valuable suggestions at: *Info@CareerMonk.com*.

Wish you all the best. I am sure that you will find this book useful.

-Narasimha Karumanchi M-Tech, IIT Bombay Founder, CareerMonk.com

Table of Contents

1. Programming Basics	
1.1 Variables	13
1.2 Data types	13
1.3 Data Structure	13
1.4 Abstract Data Types (ADTs)	
1.5 Memory and Variables	
1.6 Pointers	
1.7 Techniques of Parameter Passing	
1.8 Binding 1.9 Scope	
1.10 Storage Classes	
1.10 Storage Classes 1.11 Storage Organization	
1.12 Programming Techniques	
1.13 Basic Concepts of OOPS	28
2. Scripting Languages	
2.1 Interpreter versus Compiler	71
2.2 What Are Scripting Languages?	
2.3 Shell Scripting	72 72
2.4 PERL [Practical Extraction and Report Language]	72
2.5 Python	95
3. Design Interview Questions	
3.1 Glossary	
3.1 Glossary 3.2 Tips	101
3.3 Sample Design Questions For Practice	
4. Operating System Concepts	143
4.1 Glossary	143
4.2 Questions on Operating System Concepts	
5. Computer Networking Basics	148
5.1 Introduction	
5.2 LAN vs. WAN	
5.2 Segmentation and Multiplexing	
5.3 End Devices	
5.4 Intermediary Devices	149
5.5 Hub, Switch, and Router Defined5.6 Medium	149
5.7 Peer-to-peer and Client/server networks	
5.8 How does Internet works?	151
5.9 Difference between OSI and TCP/IP models	
5.10 Client/Server Computing and the Internet	155
5.11 ARP and RARP	154
5.12 Subnetting	
5.13 How Routing Works?	
5.14 Unicast, Broadcast and Multicast	156
5.15 How traceroute (or tracert) and ping works?	156
5.16 What is QoS?	157
6. Database Concepts	
6.1 Glossary	
6.2 Questions on Database Concepts	
7. Brain Teasers	
7.1 Questions on Brain Teasers	
•	
8. Algorithms Introduction	
8.1 What is an Algorithm?	
8.2 Why the Analysis of Algorithms?	165
8.3 Goal of the Analysis of Algorithms	165
8.4 What is Running Time Analysis?	165
8.5 How to Compare Algorithms 8.6 What is Rate of Growth?	165
8.6 What is Rate of Growth? 8.7 Commonly Used Rates of Growth	
o. Commonly used rates of Growth	100

8.8 Types of Analysis	166
8.9 Asymptotic Notation	167
8.10 Big-O Notation	167
8.15 Omega-Ω Notation	
8.16 Theta-⊖ Notation	
8.17 Why is it called Asymptotic Analysis?	170
8.18 Guidelines for Asymptotic Analysis	170
8.19 Simplyfying properties of asymptotic notations	171
8.20 Commonly used Logarithms and Summations	171
8.21 Master Theorem for Divide and Conquer Recurrences	172
8.22 Problems on Divide and Conquer Master Theorem	172
8.23 Master Theorem for Subtract and Conquer Recurrences	173
8.24 Variant of Subtraction and Conquer Master Theorem	173
8.25 Method of Guessing and Confirm	173
8.26 Amortized Analysis	
8.27 Problems with Solutions on Algorithms Analysis	175
9. Recursion and Backtracking	
9.1 Introduction	
9.2 What is Recursion?	184
9.3 Why Recursion?	184
9.4 Format of a Recursive Function	
9.5 Recursion and Memory (Visualization)	
9.6 Recursion versus Iteration	
9.7 Notes on Recursion	185
9.8 Example Algorithms of Recursion	
9.9 Problems with Solutions on Recursion	186
9.10 What is Backtracking?	187
9.11 Example Algorithms of Backtracking	187
9.12 Problems with Solutions on Backtracking	
10. Linked Lists	190
10.1 What is a Linked List?	
10.1 what is a Linked List?	
10.3 Why Linked Lists?	190
10.4 Arrays Overview	
10.5 Comparison of Linked Lists with Arrays & Dynamic Arrays	191
10.6 Singly Linked Lists	191
10.7 Doubly Linked Lists	
10.8 Circular Linked Lists	
10.9 Memory-efficient Doubly Linked List	205
10.10 Unrolled Linked Lists	206
10.11 Skip Lists	
10.12 Problems with Solutions on Linked Lists	214
11. Stacks	231
11.1 What is a Stack?	
11.2 How Stacks are used?	
11.3 Stack ADT	
11.4 Applications	
11.5 Implementation	
11.6 Comparison of Implementations	
11.7 Problems with Solutions on Stacks	
12. Queues	
12.1 What is a Queue?	252
12.2 How are Queues Used?	252
12.3 Queue ADT	
12.4 Exceptions	
12.5 Applications	253
12.6 Implementation	
12.7 Problems with Solutions on Queues	257
13. Trees	
13.1 What is a Tree?	
13.2 Glossary	
13.3 Binary Trees	
13.4 Types of Binary Trees	264
13.5 Properties of Binary Trees	265

13.6 Binary Tree Traversals	266
13.7 Generic Trees (N-ary Trees)	
13.8 Threaded Binary Tree [Stack/Queue less] Traversals	288
13.9 Expression Trees	293
13.10 XOR Trees	
13.11 Binary Search Trees (BSTs)	208
13.13 AVL (Adelson-Velskii and Landis) Trees	
13.14 Other Variations in Trees	309
14. Priority Queue and Heaps	
14.2 What is a Priority Queue?	326
14.2 Priority Queue ADT	326
14.4 Priority Queue Implementations	
14.5 Heaps and Binary Heaps	
14.6 Binary Heaps	
14.7 Heapsort	333
14.8 Priority Queues [Heaps]: Problems & Solutions	334
15. Graph Algorithms	
15.1 Introduction	
15.2 Glossary	
15.3 Applications of Graphs	
15.4 Graph Representation	346
15.5 Graph Traversals	
15.6 Topological Sort	354
15.7 Shortest Path Algorithms	355
15.8 Minimal Spanning Tree	360
15.9 Problems with Solutions on Graph Algorithms	363
16. Sorting	368
16.1 What is Sorting?	368
16.2 Why is Sorting Necessary?	368
16.3 Classification of Sorting Algorithms	368
16.4 Other Classifications	
16.5 Bubble Sort	
16.6 Selection Sort	
16.7 Insertion Sort	
16.8 Shell Sort	
16.10 Heap Sort	
16.11 Quick Sort	374
16.12 Tree Sort	
16.13 Comparison of Sorting Algorithms	
16.14 Linear Sorting Algorithms	
16.15 Counting Sort	
16.16 Bucket Sort (or Bin Sort)	377
16.17 Radix Sort	
16.18 Topological Sort	
16.19 External Sorting	
16.20 Sorting: Problems & Solutions	379
17. Searching	387
17.1 What is Searching?	
17.2 Why do we need Searching?	387
17.3 Types of Searching	
17.4 Unordered Linear Search	
17.5 Sorted/Ordered Linear Search	
17.6 Binary Search	388
17.7 Interpolation Search	
17.8 Comparing Basic Searching Algorithms	300
17.9 Symbol Tables and Hashing	300
17.10 String Searching Algorithms	390
-	
18. Selection Algorithms [Medians]	
18.1 What are Selection Algorithms?	409
18.2 Selection by Sorting	409

18.3 Partition-based Selection Algorithm	409
18.4 Linear Selection algorithm - Median of Medians algorithm	409
18.5 Finding the K Smallest Elements in Sorted Order	409
18.6 Problems with Solutions on Selection Algorithms	
19. Symbol Tables	417
19.1 Introduction	
19.2 What are Symbol Tables?	417
19.3 Symbol Table Implementations	
19.4 Comparison Table of Symbols for Implementations	418
20. Hashing	419
20.1 What is Hashing?	419
20.2 Why Hashing?	
20.3 HashTable ADT	
20.4 Understanding Hashing	419
20.5 Components of Hashing	
20.6 Hash Table	
20.7 Hash Function	
20.8 Load Factor	
20.9 Collisions	
20.10 Collision Resolution Techniques	
20.11 Separate Chaining	422
20.12 Open Addressing	
14.13 Comparison of Collision Resolution Techniques	423
20.14 How Hashing Gets O(1) Complexity?	424
20.15 Hashing Techniques	
20.16 Problems for which Hash Tables are not suitable	
20.17 Bloom Filters	
20.18 Hashing: Problems & Solutions	
21. String Algorithms	
21.1 Introduction	
21.2 String Matching Algorithms	434
21.3 Brute Force Method	
21.4 Rabin-Karp String Matching Algorithm	435
21.5 String Matching with Finite Automata	
21.6 KMP Algorithm	436
21.7 Boyer-Moore Algorithm	439
21.8 Data Structures for Storing Strings21.9 Hash Tables for Strings	439
21.10 Binary Search Trees for Strings	
21.11 Tries	
21.11 Tiles	
21.13 Comparing BSTs, Tries and TSTs	445
21.14 Suffix Trees	445 445
21.15 String Algorithms: Problems & Solutions	
22. Algorithms Design Techniques	
22.1 Introduction	
22.2 Classification	
22.4 Classification by Design Method	
22.5 Other Classifications	455
23. Greedy Algorithms	
23.1 Introduction	
23.2 Greedy Strategy	457
23.3 Elements of Greedy Algorithms	457
23.4 Does Greedy Always Work?	457
23.5 Advantages and Disadvantages of Greedy Method	457
23.6 Greedy Applications	457
23.7 Understanding Greedy Technique	458
23.8 Greedy Algorithms: Problems & Solutions	
24. Divide and Conquer Algorithms	
24.1 Introduction	
24.2 What is the Divide and Conquer Strategy?	465
24.3 Does Divide and Conquer Always Work?	465
24.4 Divide and Conquer Visualization	465

24.5 Understanding Divide and Conquer	466
24.6 Advantages of Divide and Conquer	466
24.7 Disadvantages of Divide and Conquer	
24.8 Master Theorem	466
24.9 Divide and Conquer Applications	467
24.10 Divide and Conquer: Problems & Solutions	467
25. Dynamic Programming	476
25.1 Introduction	476
25.2 What is Dynamic Programming Strategy?	476
25.3 Properties of Dynamic Programming Strategy	476
25.4 Can Dynamic Programming Solve All Problems?	476
25.5 Dynamic Programming Approaches	
25.6 Examples of Dynamic Programming Algorithms	477
25.7 Understanding Dynamic Programming	477
25.8 Longest Common Subsequence	479
25.9 Dynamic Programming: Problems & Solutions	481
26. Miscellaneous Concepts	506
26.1 Introduction	
26.2 Hacks on Bitwise Programming	506
26.3 Other Programming Questions	509
27. Non-Technical Help	515
27.1 Tips	
27.2 Non-Technical Questions	

Coding Interview Questions

Other titles by Narasimha Karumanchi

- ▲ IT Interview Questions
- Elements of Computer Networking
- ▲ Data Structures and Algorithms Made Easy (C/C++)
- ▲ Data Structures and Algorithms Made Easy in Java
- ▲ Data Structures and Algorithmic Thinking with Python
- ▲ Data Structures and Algorithms for GATE
- Peeling Design Patterns