Stochastik für Informatiker:innen - Übungsblatt 4

Abgabe bis Freitag, 19.05.2023, 18:00 Uhr

Aufgabe 1

Sei $\Omega=\{1,2,3\}^2$. Die Einzelwahrscheinlichkeiten $P(\{\omega\})$ für $\omega=(\omega_1,\omega_2)\in\Omega$ sind durch

ω_1 ω_2	1	2	3
1	0.13	0.16	0.12
2	0.11	$0.16 \\ 0.16$	0.12
3	0.07	0.08	0.05

gegeben. Geben Sie den minimalen Wertebereich $X(\Omega)$ und die Verteilungen p_X für die folgenden Zufallsvariablen an.

- a) $X_1(\omega) := \omega_2$
- b) $X_2(\omega) := \omega_1$
- c) $X_3(\omega) := \omega_1 \omega_2$
- d) $X_4(\omega) := \max\{\omega_1, \omega_2\} \min\{\omega_1, \omega_2\}$
- c) $X_5(\omega) := |\{\omega_1, \omega_2\}|$

6 Punkte

Aufgabe 2

Die Verteilung einer diskreten Zufallsvariable X ist durch

gegeben.

- a) Berechnen und skizzieren Sie die Verteilungsfunktion $F_X(x)$ von X.
- b) Seien Y := 2X + 4 und Z := |X|. Stellen Sie die Verteilung von Y und Z in einer Tabelle dar.
- c) Berechnen und skizzieren Sie die Verteilungsfunktion $F_Y(x)$ von Y und $F_Z(x)$ von Z.

6 Punkte

Aufgabe 3

Vom S-Bahnhof Schönholz fährt jeden Tag um 9:28 Uhr ein Zug der S-Bahn-Linie S25 nach Hennigsdorf ab, der mit Wahrscheinlichkeit $p \in (0,1)$ ausfällt. Zugausfälle an unterschiedlichen Tagen sind unabhängig voneinander.

- a) Diese Züge werden in einer Woche täglich von Montag bis Freitag beobachtet.
 - i) Wie groß ist die Wahrscheinlichkeit, dass genau einer dieser fünf Züge ausfällt?
 - ii) Mit welcher Wahrscheinlichkeit ist der Zug am Donnerstag der erste, der ausfällt?
- b) Wenn an m=4 aufeinanderfolgenden Tagen kein Zug ausgefallen ist, wie groß ist die Wahrscheinlichkeit, dass an den nächsten drei Tagen kein Zug ausfällt? Hängt diese Wahrscheinlichkeit von m ab?

Hinweis: Zeigen Sie, dass für die Anzahl Y der Tage bis zum ersten Zugausfall

$$P(Y > k) = (1 - p)^k$$

für alle $k \in \mathbb{N}$ gilt. Wenn Sie dies nicht zeigen können, können Sie diese Gleichung (mit Punktverlust) verwenden.

c) Sei p = 0.11. Man beobachtet die Züge an $k \in \mathbb{N}$ unterschiedlichen Tagen. Wie groß muss k mindestens sein, sodass mit Wahrscheinlichkeit größer als 99% nicht alle k Züge ausfallen?

6 Punkte

Hinweise:

- Ihre Lösungen geben Sie bitte gut lesbar bis Freitag, 19.05.2023, 18:00 Uhr in Ihrem Tutorium ab. Zudem besteht die Möglichkeit, Ihre Lösungen als PDF per E-Mail an den Leiter oder die Leiterin Ihres Tutoriums zu schicken. Wir behalten uns vor, nicht lesbare Lösungen konsequent mit null Punkten zu bewerten.
- Ihre Lösungen werden in den Tutorien in KW 21 besprochen.