COMS4995W32 Applied Machine Learning

Dr. Spencer W. Luo

Columbia University | Fall 2025

Announcement

Mid-term 😮

Week 6

Duration: 1.5 hours

Format:

- Multiple Choice
- Short Answer \(\)
- Calculation / Problem Solving

Cheat Sheet:

- 1-page A4 (double-sided allowed)
- Handwritten or printed

What You Need to Know 🧠

Course 1 - 5:

- Data prep & feature engineering
- Generative vs. Discriminative models
- Model evaluation & bias variance
- Ensemble

Focus on:

- Understanding concepts
- Applying formulas
- Explaining scenarios

Assignment 1

https://www.gradescope.com/courses/1138767/assignments/6799370

Due: Oct 6, 2025 12:00 AM EST

Late Due: Oct 8, 2025 12:00 AM EST

Recitation 1

Next week

More details will be released on Ed soon

Model Evaluation Bias-Variance

Agenda

- Motivation
- Train / Validation / Test Split
- Common Evaluation Metrics
- Bias Variance Tradeoff
- Model Selection Strategies

Motivation

Supervised vs. Unsupervised Learning

Supervised Learning

- Learn mapping f: X → Y
- Given data (x_i, y_i)
- Example: Spam Email (label = spam / ham)

Unsupervised Learning

- Discover hidden structures in data
- Only x_i, no labels
- Example: Customer Segmentation

What is Machine Learning (ML)?

Learn patterns from data **

Make predictions on new data

Generalize beyond training (§)

Why Do We Need Model Evaluation? 🤔

Training accuracy ≠ Real-world performance

Without proper evaluation:

- Models may memorize training data (overfitting)
- Models may be too simple to capture patterns (underfitting)

Wrong evaluation → Wrong decisions → Costly mistakes 💸

Overfitting vs Underfitting

Overfitting definition:

- Model fits the training data too closely including random noise
- Symptom:
 - Training Accuracy ≈ 100%
 - Test Accuracy ≪ Training Accuracy

Like a student who:

- Memorizes every word from lecture slides (training set)
- X Cannot answer slightly different questions in mid-term (test set)

Overfitting vs Underfitting

Underfitting definition:

- Model is too simple to capture the underlying patterns in data.
- Symptom:
 - Low Training Accuracy
 - Low Test Accuracy

Like a student who:

- Barely skimmed the textbook
- X Cannot even handle problems in the textbook (training set)
- X Naturally also fails in mid-term (test set)

Why Wrong Metrics Can Be Dangerous 🚨

Accuracy is misleading when data is imbalanced

Example: disease detection dataset

- 99% healthy, 1% sick
- A model that always predicts "healthy" → 99% accuracy but useless X

Need metrics that capture what matters: precision, recall, etc.

Key Takeaway 💡

Evaluation is not optional, it is essential

Good evaluation = Fair model comparison

Good evaluation = Reliable deployment in real world

Train / Validation / Test Split

Why Split Data?

Goal: measure generalization ability

If we only check training accuracy:

Might think model is "perfect" → but actually memorizing

Solution: keep separate sets

- Train → learn patterns
- Validation → tune hyperparameters
- Test → simulate unseen real-world data

Multiple Models Percentage Split

Original Dataset

Train 60%

Validate 20%

Test 20%

Typical Splits 📊

Common ratios:

• Train: 60 - 80%

• Validation: 10 - 20%

• Test: 10 - 20%

Important rule: Test set is locked 🔒

Hold-Out Method **

One-time split (Train / Val / Test)

- Pros: simple, fast
- Cons:
 - depends heavily on the random split
 - o unstable on small data

k-Fold Cross-Validation

Idea: Rotate the validation set

Steps:

- Split into k equal folds
- Train on (k-1) folds, validate on the remaining one
- Repeat k times, average results

Pros: robust, uses all data

Cons: more compute 🕚

Multiple Models K-Fold Cross Validation K = 4

Original Dataset

Train + Validate 80%

Test 20%

Train + Validate Fold 1 Train + Validate Fold 2 Train + Validate Fold 3 Train + Validate Fold 4

Test 20%

Common Evaluation Metrics

Why Metrics Matter @

Different problems need different metrics

Example:

- Credit card fraud detection → catch rare cases
- Recommender system → focus on ranking quality

Regression Metrics

Mean Squared Error (MSE)

Penalizes large errors more

Regression Metrics

Mean Absolute Error (MAE)

Less sensitive to outliers

Classification Metrics **W/X**

Accuracy

- Proportion of correct predictions
- Simple but misleading on imbalanced data

Confusion Matrix 12

		Predicted Class		
		Positive	Negative]
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	$\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

Precision, Recall M

Precision (Purity)

Out of predicted positives, how many are correct?

Recall (Coverage)

Out of actual positives, how many did we find?

Example: Disease detection 🧪

- High recall = fewer missed cases
- High precision = fewer false alarms

F1 11

F1 combines Precision and Recall into one metric

F1 Score =
$$2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Different Precision & Recall

A model outputs scores / probabilities, not just hard labels

To decide class = 1, we must set a threshold

• Example: predict positive if score ≥ 0.5

If we change the threshold:

- Lower threshold → more positives predicted → higher Recall, lower Precision
- Higher threshold → fewer positives predicted → higher Precision, lower Recall

This trade-off creates multiple (Precision, Recall) pairs

AUC = Area Under Curve

- Regression → MSE, MAE, RMSE
- Balanced classification → Accuracy, F1
- Imbalanced classification → Precision, Recall, PR Curve
- Unsupervised tasks → Normalized Mutual Information (later lectures)

Bias - Variance Tradeoff

Bias-Variance Decomposition @

Bias

 Error caused by simplifying assumptions in the model, leading to a systematic difference between prediction and ground truth

Symptom

- Model is too simple to capture the true relationship
- Leads to underfitting
- Example: Using a straight line to fit a curved pattern

Bias-Variance Decomposition @

Variance

 Error caused by a model's sensitivity to small fluctuations in the training data, leading to inconsistent predictions across different datasets.

Symptom

- Model is too complex, changes a lot with small noises in data
- Leads to overfitting

Bias-Variance Tradeoff

Generalization Error = Bias² + Variance + Noise

Generalization Error == Expected Test Error

Goal = balance between Bias (too simple → underfit) and Variance (too complex → overfit)

Bias vs Variance — Key Takeaways 🎯

Opposite failure modes

- High Bias → Underfitting, model too rigid
- High Variance → Overfitting, model too sensitive

Tradeoff is unavoidable

- Reducing bias usually increases variance
- Reducing variance usually increases bias

What we really want

- Minimize expected test error (generalization error)
- Balance both terms + accept some irreducible noise

Model Selection Strategies

We have mastered:

- How to split data
- How to measure performance
- Why bias & variance matter

Next challenge:

Choosing the best model among candidates

Cross-Validation for Model Choice

Not just for evaluation → also for model selection

Use k-fold CV to estimate performance

Pick model with best average validation score

Hyper-parameter Tuning extstyle e

Models often have parameters not learned directly

- Regularization strength (α)
- Decision tree depth
- Neural network depth

Strategies

- Grid search
- Random search **;

Regularization

Problem: overly complex models → high variance

Solution: add penalty terms

- Ridge (L2): penalize large weights smoothly
- Lasso (L1): shrink some weights to zero → feature selection

Ridge vs Lasso (Geometry)

Lasso	Ridge
diamond constraint → corners	circular constraint → smooth shrinkage

Early Stopping

Common in neural networks

Idea:

- Stop training when validation error starts increasing
- Prevents overfitting from too many epochs

Ensemble Methods

Combine multiple models to reduce variance

Examples:

- Bagging / Random Forests 🌲
- Boosting (AdaBoost, XGBoost) **

Analogy: "wisdom of the crowd"

Practical Workflow

- Split data into Train / Val / Test
- Define candidate models + hyperparameters
- Use Cross-validation for fair comparison
- Regularize or stop early if variance too high