







| dimostrazione:                                                                                      |
|-----------------------------------------------------------------------------------------------------|
| DA-16 à roluzione del sistema AX=b                                                                  |
| Sostituiamo X = A b nel sistema: AX = A(A-16)                                                       |
| per associatività: (AA-1)b=b                                                                        |
|                                                                                                     |
| 3 A-1 b l'unica voluzione                                                                           |
| Sia s EK una qualunque voluzione di AX=b, cioè As=b. Moltiplichiamo ambo                            |
| i membri per A-1                                                                                    |
| $A^{-1}(A_s) = A^{-1}l \implies (A^{-1}A)s = A^{-1}l \implies 1_m s = A^{-1}l \implies s = A^{-1}l$ |
| Å <sub>m</sub>                                                                                      |
|                                                                                                     |
| TEOREMA DI ROUCHÉ - CAPECLI (PAG. 94)                                                               |
| Sia A & Mm, (K) e sia b & K. Allora il sistema lineare: AX = b è campatibile                        |
| (cioè almeno una solucione) se e solo se:                                                           |
| rig (A) = rig (A16)                                                                                 |
| In tal caso, la soluzione generale del sintema dipende da: m-rig (A) parametri like                 |
| π.                                                                                                  |
| dimostrariane;                                                                                      |
| Sia AX=b un sistema lineare con A ∈ Mm, n (K), b ∈ KM Vogliamo dimostrare che                       |
| il sintemo à compatibile se a solo se:                                                              |
| rg (A) = rg (Alb)                                                                                   |











costruire un piano che contiene una retta per un punto P = (0, 1, -2) v direttore della retta (guarda +): √ (2,-1,1) v da un punto sulla retta a P: prendiamo ad esempio t=0 Po=(-1,0,1) V= P-Po=(1,1-3) formula generale del piano: x = P+s v, +tv2  $\int x = 2s + t$  y = 1 - s + t(2=-2+5-3+ verificare se un punto appartiene a ma retta teR P=(3,-2,2) 1-1+2+=3 =>+=2 man esiste valore t che soddisti tutte le equazioni quindi il 1 -+ = -2 => += 2 (1++=2 =>+=1 trovare una retta contenuta in un piano e passante per un punto P= (1,0,0) TI: x+2y-z=3 1+(2-0)-0 =3 non appartime al piano P = (1, 1, 0) => un punto che sta sil piano 1+2.1-0=3 troviamo du poluriani al sistema X+2y-Z=0 v,=(-2, 1,0) e (1,01)  $\begin{cases} x = x_0 + a \uparrow \\ y = y_0 + b \uparrow \\ z = z_0 + c \uparrow \end{cases}$ can la, b, c) di V, e (xo, yo, zo) di P



