Ana III Hausaufgabe, 4 Woche

Tutor: David Sering

SS 2021

Analysis III für Ingenieurwissenschaften

Juan Pardo Martin (397882) — Tuan Kiet Nguyen (404029) Leonardo Nerini (414193)

11. Mai 2021

1 Aufgabe

Ermitteln Sie das Bild der Kurve $\gamma:t\mapsto 1+it$ unter der Abbildung $f(z)=\frac{1}{z}$ auf zwei Weisen:

- a) mit dem auf den Folien W4V1S2 und W4V1S3 der Vorlesung der 4. Woche verwendeten Verfahren $(,\omega,\overline{\omega}^{"})$
- b) mit Hilfe der Kreistreue von Möbius-Transformationen. (Gefundene Kreisgleichungen sind zu beweisen, z.B. anhand einer Uberlegung oder durch Nachrechnen.)

1.1 Antwort

a) die Kurve γ lässt sich darstellen als einen "Kreis" (Im sinne von einen Riemannschekugel) als

$$\operatorname{Re}(z) = 1 \qquad |z \Leftrightarrow \frac{1}{\omega}$$

$$\operatorname{Re}(\frac{1}{\omega}) = 1 \qquad |\operatorname{Re}(z) \Leftrightarrow \frac{1}{2} (z + \overline{z})$$

$$\frac{1}{2} \left(\frac{1}{\omega} + \overline{\frac{1}{\omega}}\right) = 1 \qquad |\omega \cdot \overline{\omega}$$

$$\frac{1}{2} \left(\frac{1}{\omega} + \overline{\frac{1}{\omega}}\right) \cdot \omega \cdot \overline{\omega} = \omega \cdot \overline{\omega} \qquad |\overline{\frac{1}{\omega}} \Leftrightarrow \frac{1}{\overline{\omega}}$$

$$\frac{1}{2} \left(\frac{1}{\omega} + \frac{1}{\overline{\omega}}\right) \cdot \omega \cdot \overline{\omega} = \omega \cdot \overline{\omega}$$

$$\frac{1}{2} (\overline{\omega} + \omega) = \omega \cdot \overline{\omega} \qquad |-\frac{1}{2} (\overline{\omega} + \omega)$$

$$\omega \cdot \overline{\omega} - \frac{1}{2} (\overline{\omega} + \omega) = 0 \qquad |+\frac{1}{4}$$

$$\omega \cdot \overline{\omega} - \frac{1}{2} \overline{\omega} - \frac{1}{2} \omega + \frac{1}{4} = \frac{1}{4} \qquad |\omega \cdot \overline{\omega} - \frac{1}{2} \overline{\omega} - \frac{1}{2} \omega + \frac{1}{4} \Leftrightarrow \left(\omega - \frac{1}{2}\right) \left(\overline{\omega} - \frac{1}{2}\right)$$

$$\left(\omega - \frac{1}{2}\right) \left(\overline{\omega} - \frac{1}{2}\right) = \frac{1}{4}$$

$$\left|\omega - \frac{1}{2}\right|^2 = \frac{1}{4} \qquad |\sqrt{\cdots}$$

$$\left|\omega - \frac{1}{2}\right| = \frac{1}{2}$$

Der Kreis Re(z)=1 wird auf den Kreis $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ aufgebildet.

b) Da $\frac{1}{z}$ ist eine Inversion, und damit eine Mobiustransformation. Wir nehmen 3 beliebige t, wie (0,1,2), die in γ zu (1,1+i,1+2i) abgebildet sind. Diese punkten werden durch f in $\left(1,\frac{1-i}{2},\frac{1-2i}{5}\right)$ Wir wissen dass diese Punkten einen Kreis abbilden. Wir können versuche der Zentrum und Radius zu finden so:

$$|z-c|=r$$
,

wobei $c \in \mathbb{C}$ und $r \in \mathbb{R}^+$ ist für die Folgende Gleichungsystem

$$|1 - c| = r$$

$$\left| \frac{1 - i}{2} - c \right| = r$$

$$\left| \frac{1 - 2i}{5} - c \right| = r$$

oder

$$(1 - \text{Re}(c))^2 + \text{Im}(c)^2 = r^2 \tag{1}$$

$$\left(\frac{1}{2} - \text{Re}(c)\right)^2 + \left(-\frac{1}{2} - \text{Im}(c)\right)^2 = r^2$$
 (2)

$$\left(\frac{1}{5} - \text{Re}(c)\right)^2 + \left(-\frac{2}{5} - \text{Im}(c)\right)^2 = r^2$$
 (3)

Wir beobachten, dass (2) und (3) gleich (1) sind.

$$\left(\frac{1}{2} - \text{Re}(c)\right)^2 + \left(\frac{1}{2} + \text{Im}(c)\right)^2 = (1 - \text{Re}(c))^2 + \text{Im}(c)^2$$
$$\left(\frac{1}{5} - \text{Re}(c)\right)^2 + \left(\frac{2}{5} + \text{Im}(c)\right)^2 = (1 - \text{Re}(c))^2 + \text{Im}(c)^2$$

Wir multiplizieren aus.

$$\operatorname{Im}(c)^{2} + \operatorname{Im}(c) + \operatorname{Re}(c)^{2} - \operatorname{Re}(c) + \frac{1}{2} = \operatorname{Im}(c)^{2} + \operatorname{Re}(c)^{2} - 2\operatorname{Re}(c) + 1$$

$$\operatorname{Im}(c)^{2} + \frac{4\operatorname{Im}(c)}{5} + \operatorname{Re}(c)^{2} - \frac{2\operatorname{Re}(c)}{5} + \frac{1}{5} = \operatorname{Im}(c)^{2} + \operatorname{Re}(c)^{2} - 2\operatorname{Re}(c) + 1$$

$$\operatorname{Im}(x) + \operatorname{Re}(c) = \frac{1}{2}$$

$$\frac{4\operatorname{Im}(c)}{5} + \frac{8\operatorname{Re}(c)}{5} = \frac{4}{5}$$

oder

$$\begin{pmatrix} 1 & 1 \\ \frac{8}{5} & \frac{4}{5} \end{pmatrix} \cdot \begin{pmatrix} \operatorname{Re}(c) \\ \operatorname{Im}(c) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{4}{5} \end{pmatrix}$$
$$\begin{pmatrix} \operatorname{Re}(c) \\ \operatorname{Im}(c) \end{pmatrix} = -\frac{5}{4} \begin{pmatrix} \frac{4}{5} & -1 \\ -\frac{8}{5} & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} \\ \frac{4}{5} \end{pmatrix}$$
$$\begin{pmatrix} \operatorname{Re}(c) \\ \operatorname{Im}(c) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$$

Also $c=\frac{1}{2}$, jetzt um r zu finden. Wir ersetzen diese Ergebnis in (1) und somit ist $r=\frac{1}{2}$ Also wir haben den Kreis $|z-\frac{1}{2}|=\frac{1}{2}$ Wir wollen nun herausfinden welche die Durchlaufsinn, wo würde Re(z);1 im oder Außerkreis abgebildet. Die Richtung lässt sich bestimmen in den man $\partial_t f(\gamma(t))$ an einen Punkt berechnet

$$\partial_t \frac{1 - it}{1 + t^2} = -\frac{2(1 - it)t}{\left(t^2 + 1\right)^2} - \frac{i}{t^2 + 1}$$
$$= -\frac{2t}{\left(t^2 + 1\right)^2} + i\left(\frac{2t^2}{\left(t^2 + 1\right)^2} - \frac{1}{t^2 + 1}\right) \quad |t \to 0$$
$$= -i$$

An der Punkt (1,0) entspricht dass eine Durchrichtung im Uhrsinn, das bedeutet dass Re(z) < 2 wird Außerhalb dieses Kreis abgebildet.

Abbildung 1: Möbiustransform

2 Aufgabe

Bestimmen Sie eine Möbius-Transformation f, welche erstens die Eigenschaft f(1+i) = 1-i hat und zweitens die von links nach rechts durchlaufene reelle Achse \rightarrow mit der von unten nach oben durchlaufenen imaginären Achse \uparrow vertauscht und außerdem den im Ursprung zentrierten und im positiven Drehsinn durchlaufenen Einheitskreis \circlearrowleft in denselben Kreis \circlearrowright , aber mit negativem Durchlaufssinn, uberführt:

$$f(\rightarrow) = \uparrow$$
, $f(\uparrow) = \rightarrow$, $f(\circlearrowleft) = \circlearrowleft$

2.1 Antwort

Wir wissen dass die Inverse $\frac{1}{z}$ bildet die Einheitskreis in denselben Kreis aber mit anderen Durchlaufsinn. Außerdem Rotationen sind Multiplikation mit werte der Einheitskreis, wenn wir i multiplizieren Rotieren wir der Kreis um 90 grad, wir können diese Funktionen komponieren: $f(z) = z \cdot i \circ \frac{1}{z} = \frac{i}{z}$ Wir prüfen.

$$f(1) = i$$
, $f(i) = 1$, $f(1+i) = \frac{i}{1+i} = \frac{1}{1-i}$

ICH GLAUBE DASS DIE AUFGABE FALSCH IST. DA DER KREIS SCHON BESTIMMT IST, UND KANN SICH NICHT BEWEGEN VON URPSRUNG (KEINE TRANSLATION)

3 Aufgabe

Gegeben sei das Randwertproblem

$$\Delta u = 0, \quad \text{für } y > 0 \text{ und } x^2 + (y - 4)^2 > 1,$$

$$u(x, y) = 0, \quad \text{für } y = 0,$$

$$u(x, y) = 1, \quad \text{für } x^2 + (y - 4)^2 = 1$$

Lösen Sie es mit der Methode der harmonischen Verpflanzung, indem Sie als Verpflanzungsabbildung die Funktion

$$T(z) = \frac{z - i\sqrt{15}}{z + i\sqrt{15}}$$

und als Ansatzfunktion die harmonische Funktion $\ln(x^2 + y^2)$ benutzen.

3.1 Antwort

Sei ReIm: $\mathbb{C} \to \mathbb{R}^2$, $x + iy \longmapsto \begin{pmatrix} x \\ y \end{pmatrix}$ Wir trennen die imaginären und reellen Teilen von T.

$$T(x+iy) = \frac{(x+iy) - i\sqrt{15}}{(x+iy) + i\sqrt{15}} = \frac{x^2 + y^2 - 15 - i2\sqrt{15}}{x^2 + (\sqrt{15} + y)^2}$$

$$ReIm(T(x+iy)) = \frac{1}{x^2 + (\sqrt{15} + y)^2} \begin{pmatrix} x^2 + y^2 - 15 \\ -2\sqrt{15} \end{pmatrix}$$

Wir finden heraus wo sind die Rände abgebildet.

Wir nehmen 3 Punkten, für Kreis Im(z) = 0.

zum Beispiel, Punkte $(0,1,\infty)$, sind in $\left(-1,\frac{1-\sqrt{15}}{1+\sqrt{15}},1\right)$ abgebildet.

Wir simplifizieren:

$$\frac{1 - \sqrt{15}}{1 + \sqrt{15}} = \frac{1}{16} (1 - i\sqrt{15})^2 = \frac{1}{8} \left(7 - i\sqrt{15} \right).$$

Also die Einheitskreis, wo Im(z) zu |z| > 1 abgebildet wird.

Wir nehmen wieder 3 punkten für Kreis |z - i4| > 1.

Z.b
$$(i5, i3, 1 + i4)$$
.

Also

$$T(1+i4) = \frac{(1+4i) - i\sqrt{15}}{(1+4i) + i\sqrt{15}} = -1 + \frac{8-2i}{\sqrt{15} + (4-i)}$$

$$T(i5) = \frac{5i - i\sqrt{15}}{5i + i\sqrt{15}} = \frac{5 - \sqrt{15}}{5 + \sqrt{15}} = 4 - \sqrt{15}$$

$$T(i3) = \frac{3i - i\sqrt{15}}{3i + i\sqrt{15}} = \frac{3 - \sqrt{15}}{3 + \sqrt{15}} = -4 + \sqrt{15}$$

Wir finden die imaginären und reellen Teilen von T(1+i4) und finden wir ihre Betrag

$$T(1+i4) = -1 + \frac{8-2i}{\sqrt{15} + (4-i)} = -1 + \frac{2+8(4+\sqrt{15})}{1+\left(4+\sqrt{15}\right)^2} + i\left(\frac{8-2\left(4+\sqrt{15}\right)}{1+\left(4+\sqrt{15}\right)^2}\right) = \frac{1-i\sqrt{15}}{4(4+\sqrt{15})}$$

$$= 1 - \frac{\sqrt{15}}{4} + i\left(\frac{15}{4} - \sqrt{15}\right)$$

$$|T(1+i4)| = \sqrt{\left(1 - \frac{15}{4}\right)^2 + \left(\frac{15}{4} - \sqrt{15}\right)^2} = \sqrt{\frac{31}{16} - \sqrt{15}2 + \frac{465}{16} - \frac{15\sqrt{15}}{2}} = \sqrt{31 - 8\sqrt{15}} = 4 - \sqrt{15}$$

Abbildung 2: Möbiustransform Aufgabe 3

Wir können deutlich sehen, dass alle die Punkten haben betrag $4-\sqrt{15}$, das bedeutet, sie bilden einen Kreis im Ursprung mit einen Radius von $4-\sqrt{15}$ Wir schreiben unsere Randwertproblem um.

$$\begin{split} \Delta U(\xi,\chi) &= 0, \quad \text{für } 31 - 8\sqrt{15} < \xi^2 + \chi^2 < 1 \\ U(\xi,\chi) &= 0, \quad \text{für } \xi^2 + \chi^2 = 1 \\ U(\xi,\chi) &= 1, \quad \text{für } \xi^2 + \chi^2 = 31 - 8\sqrt{15} \end{split}$$

Wir verwenden den Ansatz $U=A\ln\left(\xi^2+\chi^2\right)+B$

$$0 = A \ln\left(\xi^2 + \chi^2\right) + B = A \ln(1) + B \implies B = 0$$

$$1 = A \ln\left(\xi^2 + \chi^2\right) = A \ln\left(31 - 8\sqrt{15}\right) \implies A = \frac{1}{\ln\left(31 - 8\sqrt{15}\right)}$$

$$\therefore U(\xi, \chi) = \frac{1}{\ln(31 - 8\sqrt{15})} \ln(\xi^2 + \chi^2)$$

Wir finden u(x, y) folgendes:

$$u(x,y) = U(\operatorname{ReIm}(T(x+iy)))$$

$$u(x,y) = U(\frac{1}{x^2 + (\sqrt{15} + y)^2} \left(x^2 + y^2 - 15\right), \frac{1}{x^2 + (\sqrt{15} + y)^2} \left(-2\sqrt{15}\right))$$

$$u(x,y) = \frac{1}{\ln\left(31 - 8\sqrt{15}\right)} \ln\left(\left(\frac{1}{x^2 + (\sqrt{15} + y)^2} \left(x^2 + y^2 - 15\right)\right)^2 + \left(\frac{1}{x^2 + (\sqrt{15} + y)^2} \left(-2\sqrt{15}\right)\right)^2\right)$$

$$u(x,y) = \frac{1}{\ln\left(31 - 8\sqrt{15}\right)} \left(\ln\left(\left(x^2 + y^2 - 15\right)^2 + 60\right) - 2\ln\left(x^2 + (\sqrt{15} + y)^2\right)\right)$$

$$u(x,y) = \frac{\ln\left(1 - \frac{4\sqrt{15}y}{x^2 + y^2 + 2\sqrt{15}y + 15}\right)}{\ln\left(31 - 8\sqrt{15}\right)}$$