Optimization 101 Mathematical Preliminaries

Dr. Nagiza F. Samatova

Department of Computer Science
North Carolina State University
and
Computer Science and Mathematics Division
Oak Ridge National Laboratory

Model Construction

The Concept of Model Calibration

"Calibration: constraining the model to be consistent with observations"

Calibration Components

Objective Function
Search Algorithm
Sensitivity
Analysis

Problems with identifiability

The Ideal case: Convex Optimization

Difficulties in Global Optimization

Parameter Estimation (non-convex, multi-optima)

Difficulties in Optimization

1.- Regions of Attraction

More than one main convergence region

2.- Local
Optima

Many small "pits" in each region

Duan, Gupta, and Sorooshian, 1992, WRR

Difficulties in Optimization

1.- Regions of Attraction

More than one main convergence region

2.- Local **Optima** Many small "pits" in each region

3.- Roughness Rough surface with discontinuous derivatives

Duan, Gupta, and Sorooshian, 1992, WRR

Difficulties in Optimization

1.- Regions of Attraction

More than one main convergence region

2.- Local **Optima** Many small "pits" in each region

3.- Roughness Rough surface with

discontinuous

derivatives

4.- Flatness

Flat near optimum with significantly different

parameter sensitivities

5.- Shape

Long and curved

ridges

Duan, Gupta, and Sorooshian, 1992, WRR

Mathematical Optimization Subfields

- Linear programming
- Integer programming
- Quadratic programming
- Nonlinear programming
- Convex programming
- Semidefinite programming
- Stochastic programming
- Combinatorial optimization
- Dynamic programming

•

Optimization Problem: General Formulation

GIVEN:

Objective function:

cost function, energy function

$$f: \square \stackrel{d}{\longrightarrow} \square$$
$$f(x) = f(x_1, x_2, ..., x_d)$$

Subject to constraints:

Equality constraints: $g_i(x) = 0$, i = 1, 2, ..., p

and/or

Inequality constraints: $h_i(x) \le 0$, i = 1, 2, ..., q

SOLVE:

Minimization problem:
$$f(x_{\min}) = \min_{x \in \mathbb{D}^d} f(x_1, x_2, ..., x_d)$$

Maximization problem:
$$f(x_{\text{max}}) = \max_{x \in \mathbb{N}^d} f(x_1, x_2, ..., x_d)$$

Solving Strategies

Optimization

Lagrange Method

Inequality

Lagrange Method w/ bounded Lagrangian multipliers

Unconstrained

1. Stationary points, x^* :

$$\left. \frac{df}{dx} \right|_{x=x^*} = 0$$

2. Min. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} < 0$$

3. Max. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} > 0$$

4. Saddle stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} = 0$$

Solving Strategies

Optimization

Unconstrained

1. Stationary points, x^* :

$$\left. \frac{df}{dx} \right|_{x=x^*} = 0$$

2. Min. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} < 0$$

3. Max. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} > 0$$

4. Saddle stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} = 0$$

Unconstrained Optimization, d=1

$$f: \Box \to \Box$$

$$f(x) \to \min \text{ or } f(x) \to \max$$

1. **Stationary** points, x^* :

$$\left. \frac{df}{dx} \right|_{x=x^*} = 0$$

2. **Min**. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} < 0$$

3. **Max**. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} > 0$$

4. **Saddle** stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} = 0$$

Unconstrained Multivariate Optimization, d>1

$$f: \square \xrightarrow{d} \rightarrow \square, \ d > 1$$

$$f(x_1, x_2, ..., x_d) \rightarrow \min \text{ or }$$

$$f(x_1, x_2, ..., x_d) \rightarrow \max$$

$$H(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\ \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_d \partial x_d} \end{bmatrix}$$

Hessian matrix

1. **Stationary** points, x^* :

$$\left. \frac{\partial f}{\partial x_j} \right|_{x_j = x_j^*} = 0, \ \forall j = 1, 2, ..., d \longrightarrow \text{partial derivatives}$$

- 2. Hessian matrix, H(x)
- 3. **Min**. stationary points, x^* :

4. **Max**. stationary points, x^* :

$$\left| x^T H(x) x \right|_{x=x^*} < 0$$

5. **Saddle** stationary points, x^* :

 \leftarrow indefinite H

Ex: Unconstrained Multivariate Case, d=2

GIVEN:

Objective function: $f: \square^2 \to \square$

$$f(x, y) = 3x^2 + 2y^3 - 2xy$$

Subject to constraints:

Equality constraints: None

and/or

Inequality constraints: None

SOLVE:

Minimization problem: $f(x_{\min}, y_{\min}) = \min_{(x,y) \in \mathbb{Z}^2} f(x,y)$

Maximization problem: $f(x_{\text{max}}, y_{\text{max}}) = \max_{(x,y) \in \mathbb{Z}^2} f(x,y)$

Ex: Hessian Matrix

 $f(x, y) = 3x^2 + 2y^3 - 2xy$

 $H(x, y) = \begin{vmatrix} \frac{\partial^2 f}{\partial x \partial x} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y \partial y} \end{vmatrix}$

1. **Stationary** points, p^* :

$$\left. \frac{\partial f}{\partial p_j} \right|_{p_j = p_j^*} = 0, \ \forall j = 1, 2, ..., d \longrightarrow \text{partial derivatives}$$

$$\begin{cases} \frac{\partial f}{\partial x} = 6x - 2y = 0 & p_1^* = (x_1^*, y_1^*) = (0, 0) \\ \frac{\partial f}{\partial y} = 6y^2 - 2x = 0 & p_2^* = (x_2^*, y_2^*) = (\frac{1}{27}, \frac{1}{9}) \end{cases}$$

2. Hessian matrix,
$$H(x,y)$$

$$H(x,y) = \begin{bmatrix} 6 & -2 \\ -2 & 12y \end{bmatrix}$$

3. **Min**. stationary points, p^* :

$$p^T H(p) p \Big|_{p=p^*} > 0 \longrightarrow \text{positive definite } \boldsymbol{H}$$

$$(x,y)^{T} \begin{bmatrix} 6 & -2 \\ -2 & 12\frac{1}{9} \end{bmatrix} (x,y) \Big|_{(x,y)=(\frac{1}{2},\frac{1}{2})} = 4x^{2} - 2xy + 4y^{2}/3 = 4(x - \frac{y}{4})^{2} + 13\frac{y^{2}}{4} > 0 \implies p_{\min}^{*} = (\frac{1}{27}, \frac{1}{9})$$

Analytical vs. Numerical Solution

- Analytical solutions:
 - First and second derivatives exist
- Numerical methods
 - Derivatives can NOT be solved analytically
 - Such cases are abundant

Classes of Numerical Methods

Based on smoothness of the objective function:

- First order methods
- Second order methods
- Combinatorial methods
- Derivative-free methods

Actual methods:

- Newton's method
- Gradient descent method (aka steepest descent/ascent)
- Conjugate gradient method
- Quasi-Newton method
- Simplex method
- Ellipsoid method

- ...

Newton's Method – Univariate Case

Based on **quadratic** approximation to the function f(x).

- 1. **Taylor** series expansion of f(): $f(x) \approx f(x_0) + (x x_0)f'(x_0) + \frac{(x x_0)^2}{2}f''(x_0)$
- 2. Set the first-derivative of f() to 0: $f'(x) = f'(x_0) + (x x_0)f''(x_0) = 0$
- 3. Derive the update formula for x: $x = x_0 + \frac{f'(x_0)}{f''(x_0)}$

Newton's method – Algorithm

1: Let x_0 be the initial point

2: **while**
$$|f'(x_0)| > \varepsilon$$
 do
3: $x = x_0 + \frac{f'(x_0)}{f''(x_0)}$
4: $x_0 = x$
5: **end while**
6: return x

Newton's Method - Multivariate Case

Replace:
$$f'(x_1, x_2, ..., x_d) \rightarrow \nabla f(x_1, x_2, ..., x_d) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_d}) \longleftarrow$$
 gradient operator

Update:
$$x = x_0 - H^{-1} \nabla f(x) |_{x=x_0}$$

Solving Strategies

Optimization

Constrained

Unconstrained

Equality

Lagrange Method

Inequality

Lagrange Method w/ bounded Lagrangian multipliers 1. Stationary points, x^* :

$$\left. \frac{df}{dx} \right|_{x=x^*} = 0$$

2. Min. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} < 0$$

3. Max. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} > 0$$

4. Saddle stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} = 0$$

24

Constrained Optimization, Equality Constraints

The Lagrange Method

$$f: R^d \to R, \ d \ge 1$$

 $f(x_1, x_2, ..., x_d) \to \min$
subject to: $g_i(x_1, x_2, ..., x_d) = 0, \ i = 1, 2, ..., p$

- 1. Define the **Lagrangian**: $L(x, \lambda) = f(x) + \sum_{i=1}^{p} \lambda_{i} g_{i}$
- 2. Set the first-derivatives to 0:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{p} \lambda_{i} g_{i}(x)$$

$$\frac{\partial L}{\partial x_{i}} = 0, \ \forall j = 1, 2, ..., d$$
Lagrangian multipliers

- $\frac{\partial L}{\partial \lambda_i} = 0, \ \forall j = 1, 2, ..., p$
- 3. Solve the (d+p) equations in Step 2 to obtain stationary point x^* and the corresponding values for λ_i 's

Example

Objective function: $f(x, y) = x + 2y \rightarrow \min$

Subject to the constraint: $g(x, y) = x^2 + y^2 - 4 = 0$

$$L(x,\lambda) = f(x) + \sum_{i=1}^{p} \lambda_i g_i(x)$$

$$\frac{\partial L}{\partial x_j} = 0, \ \forall j = 1, 2, ..., d$$

$$\frac{\partial L}{\partial \lambda_i} = 0, \ \forall j = 1, 2, ..., p$$

Solving Strategies

Optimization

Constrained

Inequality

Lagrange Method w/ bounded Lagrangian multipliers

Unconstrained

1. Stationary points, x^* :

$$\left. \frac{df}{dx} \right|_{x=x^*} = 0$$

2. Min. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} < 0$$

3. Max. stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} > 0$$

4. Saddle stationary points, x^* :

$$\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} = 0$$

27

Constrained Optimization, Inequality Constraints

$$f: R^d \to R, \ d \ge 1$$

 $f(x_1, x_2, ..., x_d) \to \min$
subject to: $h_i(x_1, x_2, ..., x_d) \le 0, \ i = 1, 2, ..., q$

1. Define the **Lagrangian**:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{q} \lambda_i h_i(x)$$

2. Set **Karush-Kuhn-Tucker** (KKT) conditions:

$$\frac{\partial L}{\partial x_j} = 0, \ \forall j = 1, 2, ..., d$$

$$h_i(x) \le 0, \ \forall i = 1, 2, ..., q$$

$$\lambda_i \ge 0, \ \forall i = 1, 2, ..., q$$

$$\lambda_i h_i(x) = 0, \ \forall i = 1, 2, ..., q$$

The Lagrange multipliers are no longer unbounded in the presence of inequality constraints.

3. Solve the system in Step 2 to obtain stationary point x^* and the corresponding values for λ_i 's

Example

Objective function: $f(x, y) = (x-1)^2 + (y-3)^2 \rightarrow \min$ Subject to the constraints: $h_1(x, y) = x + y - 2 \le 0$ $h_2(x, y) = x - y \le 0$

 $f: R^{d} \to R, \ d \ge 1$ $f(x_{1}, x_{2}, ..., x_{d}) \to \min$ subject to: $h_{i}(x_{1}, x_{2}, ..., x_{d}) \le 0, \ i = 1, 2, ..., q$

$$L(x,\lambda) = f(x) + \sum_{i=1}^{q} \lambda_i h_i(x)$$

$$\frac{\partial L}{\partial x_j} = 0, \ \forall j = 1, 2, ..., d$$

$$\lambda_i h_i(x) = 0, \ \forall i = 1, 2, ..., q$$

$$h_i(x) \le 0, \ \forall i = 1, 2, ..., q$$

$$\lambda_i \ge 0, \ \forall i = 1, 2, ..., q$$