2016년 1학기 맞이~ MATLAB Workshop

2016. 2.22(월) ~ 2.23(화)

Matlab/Simulink 기본 사용법 및 응용

- 목 차 -

- 1. 매트랩 개요
- 2. 숫자, 셀과 구조 배열
- 3. 시뮬링크
- 4. 응용 예; 자동제어

경 북 대 학 교 IT대학 전자공학부

김 지 훈

MATLAB이란?

- 'MATrix LABoratory'의 약어. 수치해석과 신호처리 그리고 편리한 그래픽 기능 등을 통합하여 고성능의 수치계산과 결과를 보여주는 프로그램.

- 특징

- 행렬(또는 배열) 기반의 수치 계산
- 인터프리터(interpreter) 방식의 공학전용 언어 (M-file도 사용가능)
- 그래픽 처리의 간편함 및 고급화
- 다양한 응용분야별 라이브러리 제공(Toolbox)
- C 프로그램과의 연계성
- 실시간 하드웨어 제어 가능
- Simulink
- 이전에는 주로 신호처리와 수치해석 분야에서 전문가들에 의해 사용
- 최근에는 과학, 수학 및 대부분의 공학 분야에 널리 보급되어 활발히 사용 => 많은 대학에서 저학년 교육과정으로 채택
- 이 강의의 목적은 "Matlab과 Simulink의 기본 사용법을 익힘으로써, 실험 및 이론 학습에 도움"을 주고자 함

1. 매트랩 개요

1.1 매트랩 : <u>상호대화식(interactive)</u> 계산기

=> 매트랩 시작, 기본 계산법, 매트랩 종료

▶ 매트랩 시작 : 매트랩 아이콘을 더블클릭하면 작업화면(desktop)이 나타남

- 작업화면의 구성
- ① 명령창(command window)
- ② 명령이력창(command history)
- ③ 현재 디렉토리창 (current directory)
- ④ 워크스페이스(workspace)

- 명령창: '명령어', '함수', '문장' 등을 입력하여 '매트랩 프로그램'작성 => 명령창의 프롬프트(>>)는 명령어를 받아들일 준비가 되었음을 나타냄 => 명령어를 입력하기 전에 커서(cursor)가 프롬프트 바로 뒤에 위치시킴
- Current directory window : 파일관리자와 유사
- => 확장자 '.m'으로 된 파일을 더블 클릭하면 '매트랩 Editor'에서 열수 있음
- Workspace : current directory 창 위쪽의 Workspace 탭을 클릭
- => 명령창에서 만든 변수들을 나타냄
- => 변수 명을 더블 클릭하면 배열 편집창(Array editor)으로 확인 가능
- Command history window : 명령창에서 이전에 입력된 사항을 보여줌 => 입력된 부분을 클릭하거나 편집기에 드래그하면 재사용 가능
- 작업화면 변경 : 각각의 창 윗부분에 있는 <u>▶ □ ₹ × 을</u> 이용
 - ※ 디폴트 환경을 복원하기 위해서는 'Desktop/Desktop Layout/Default' 선택

▶ 명령어와 식의 입력 : 사용방법 간단, 예를 통해 확인

- 명령창의 프롬프트 뒤에 명령어를 입력

=> (Interactive) session : 작업자와 매트랩 사이의 상호작용

작업내용	Command window	설명
	>> 8/10 Enter-	매트랩은 계산시 높은 정밀도를 가지지
8 나누기 10	ans =	만, 결과가 정수일 경우를 제외하고보통
	0.8000	소수점 이하 4자리 십진수로 표현
	>> 5*ans Enter→	매트랩에서 <u>변수(variable)는 값을 가질</u>
'ans'는 answer의 약어	ans =	수 있는 기호
	4	변수 ans는 이제 4가 됨
식에 사용하기 위해 변	>> r=8/10 Enter+	
수를 사용	r =	ans 대신 변수 r에 결과를 할당
TE NO	0.8000	
	>> r Enter ←	
변수의 값을 확인	r =	변수 r의 값이 0.8임을 확인
	0.8000	
이 변수는 다음 단계의	>> s = 20 * r Enter↓	만약 곱셈 기호 '*'를 생략하고, 수식을
기에 선두는 다음 전계의 기계산에 사용 가능	s =	s=20r'로 입력하면 오류 메시지가 나
계단에 사용기용	16	타남
메고그 하스 · aget	>> r=sqrt(9)	r의 이전의 값이 3으로 바뀜
제곱근 함수 : sqrt	r =	※ 라인 끝에 세미콜론(;)을 입력하면
(square root)	3	화면에 결과가 나타나지 않음

- 매트랩에서는 명령 파일에서 이전의 키 입력을 기억하고 있으므로 1, ↓키를 이용하여 사용되었던 명령들을 스크롤(scroll) 가능
 - => 원하는 명령줄을 찾아 ←, →, ₪, BackSpace 를 이용하여 다시 편집 가능
- 스칼라 산술 연산과 연산의 우선순위

기호	연산	매트랩 형식
^	지수 $: a^b$	a^b
+	덧셈 : a+b	a+b
_	뺄셈 : a-b	a-b
*	곱셈 : ab	a*b
/	나눗셈 : a/b	a/b

- => 연산 우선순위 : 지수 → 곱셈/나눗셈 → 덧셈/뺄셈, 괄호는 가장 안쪽부터
- => 우선순위가 확실하지 않은 곳에서는 오류를 피하기 위해 괄호를 삽입

[예제1] 매트랩을 사용하여 다음 식들을 계산하라.

①
$$6\left(\frac{10}{13}\right) + \frac{18}{5(7)} + 5(9^2)$$
 ② $6(35^{1/4}) + 14^{0.35}$

₽ 할당연산자(=) : 좌측의 변수에 우측의 값을 할당, 등호보다 더 많은 것을 의미

식	의미
x = 3	변수 x에 3을 할당하라
x = x + 3	현재 x값에 3을 더한 새로운 값으로 대체
6 = x	매트랩에서 사용 불가
x + 2 = 20	메드탑에서 사용 출기
x = y + 5	변수 y에 어떤 값이 할당되어 있다면 가능

[예제2] 원기둥의 부피 : $V = \pi r^2 h$

- ① 높이가 15m이고 반지름이 8m인 원기둥의 부피는?
- ② 부피가 ①보다 20% 더 크고 같은 높이를 갖는 또 다른 원기둥을 만들려 한다. 이 경우, 원기둥의 반지름은 얼마가 되어야 하는가?
- ▶ 변수이름 : 반드시 문자로 시작, 나머지는 문자, 숫자, '_'(underscore)의 조합 => 매트랩에서는 대/소문자를 구별, 변수이름은 63자 보다 길지 않아야 됨

▶ 작업 세션 관리

명령어	설명
clc	명령창을 깨끗이 함(변수는 남아 있음)
clear (all)	메모리로부터 모든 변수를 지움
clear var1	메모리로부터 변수 var1을 지움
exist('name')	'name'이라는 이름의 변수나 파일이 존재하는지 알림 cf)help
quit/exit	매트랩을 종료
who	현재 메모리의 변수를 나열
whos	현재의 변수들과 크기, 0이 아닌 허수부 등을 나열
:	콜론; 일정한 간격의 원소를 갖는 배열을 생성
,	콤마; 배열의 원소들을 분리
;	세미콜론; 화면에 출력이 나타나지 않게 함, 혹은 새로운 행
•••	생략부호(마침표 세 개); 라인이 계속이어짐

사용 예	설명
>> x=2; y=6+x, x=y+7	결과가 나타나지 않게 세미콜론 사용,
y =	같은 줄에 여러 개의 명령어들을 사용하기 위해 콤
8	마 사용
x =	[결과] x의 처음 값이 나타나지 않았으며, x의 값은
15	2에서 15로 변경됨

▶ 탭과 화살표 키 : 입력의 편의성 증대

- 스마트 불러오기 : 변수의 처음 몇 문자를 입력 후, ↑키 누름

- 탭 완성 : 이름의 처음 몇 문자를 입력 후, 🗐 키 누름

- 화살표 키 : 이전에 사용한 명령어를 scroll

※ 매트랩은 종료나 변수 값을 지우기 전에는 그 변수의 마지막 값을 기억함

※ 함수와 명령어 또는 문장(statement)의 차이

=> 함수는 괄호 속에 인수를 가지나 명령어나 문장은 인수를 갖지 않음

※ Ctm+C : 오래 걸리는 계산을 취소

▶ 미리 정의된 상수

명령어	설명
ans	가장 최근의 답을 나타내는 임시 변수
eps	부동 소수짐의 정밀도를 규정
i, j	허수 단위 $\sqrt{-1}$, 곱셈기호 없이 사용
Inf	무한대
NaN	정의되지 않은 수치 결과
pi	파이

사용 예	설명
c1=1-2i	복소수 $c_1=1-2i$ 를 표현
c1=complex(1,-2)	허수단위 i, j와 숫자 사이에는 곱셈기호가 불필요
y=7/2*i	y = (7/2)i = 3.5i
y=7/2i	y = 7/(2i) = -3.5i

[예제3] x=-5+9i, y=6-2i일 때, 매트랩을 이용하여 x+y, xy, x/y를 구하고 손으로 구한 결과와 비교하라. 1+7i, -12+64i, -1.2+1.1i

▶ 숫자 표시 형식 : format 명령어

- 매트랩에서 디폴트 포맷은 short 형식으로 소수점 이하 4자리를 사용

명령어	설명
format short	소수점 4자리(default)
format long	16자리
format short e	5자리(소수점 4자리)와 지수 : 6.3792e+03
format long e	16자리(소수점 15자리)와 지수, 여기서 e는 숫자 10을 의미
format bank	소수점 2자리(화폐 계산시)
format +	결과의 양수, 음수, 0을 표시
format rat	유리수의 근사화
format compact	blank line 억제
format loose	덜 간결한 형식으로 재설정

1.2 메뉴와 툴바

- 메뉴바는 창을 변경함에 따라 바뀜
- 메뉴들도 문맥에 따라 기능이 달라짐
- 툴바 아래의 버튼은 툴바에 단축키를 추가하기 위한 도움말 등임

1.3 배열, 파일 및 그래프 작성

₽ 배열 (혹은 행렬/벡터)

- 매트랩의 장점중의 하나는 <u>배열(array)이라고 하는 수들의 모임을 하나의 변수</u> 처럼 다룰 수 있는 점

작업내용	Command window		설명	
0, 4, 3, 6을 순서대로	>> x=[0, 4, 3,	6] Enter↓	대괄호([])를 사용하여 배열로 묶음	
배열을 만들자	x =		콤마를 생략하고 space로 각각을 구분	
	0 4	3 6	할 수 있으나 콤마 사용이 바람직	
	>> y=[6 3 4 0)] Enter ←	변수 y는 변수 x와 순서가 다르므로 서	
배열은 순서를 가짐	y =		로 다른 배열	
	6 3	4 0	그 너는 매근	
	>> z=x+y	Enter←	 x와 y에 있는 모든 대응하는 숫자들을	
두 배열의 합	z =		더하여 z를 만듦	
	6 7	7 6	다이어 2을 근임	
일정한 간격을 가지는	>> u=[0:0.1:10)] Enter ←	u는 101개의 값을 가지는 배열	
<u>배열</u> 만들기	u =		이런 경우 명령어의 맨 뒤에 ;을 쓰지	
예) 0, 0.1, 0.2,…, 10	0 0.1000 0.2000 0.3000		않는다면,	
			위에서 구한 u에 대하여,	
sine 함수	>> w=5*sin(u); Enter→		w=5sin(u)를 계산하기 위한 명령	
			실행결과 w는 101개의 값을 갖는 배열	
	>> u(7)	>> w(7)	u(7)을 입력하면, 배열 u의 7번째 값을	
배열의 참조	ans =	ans =	볼 수 있음, 숫자 7은 배열에서 특정한	
	0.6000	2.8232	원소를 가리키므로 배열 index라 함	
배열(벡터)의 길이	>> s=length(w)	Enter←	배열에 얼마나 많은 값들이 있는지 알	
	s = 101		수 있음	

₽ 방정식의 근 (root)

- 매트랩에서 다항식의 표현
 - => 다항식을 내림차순을 정리하여 계수들을 차례로 원소로 하는 배열로 표현 예) 다항식 $4x^3 8x^2 + 7x 2$ 는 $[4 8 \ 7 \ -2]$ 와 같이 나타냄
- 다항식의 근을 구하기 위한 함수 : roots()

[예제4] ① 방정식 $x^3 - 7x^2 + 40x - 34 = 0$ 의 근을 매트랩을 이용하여 구하라.

② 매트랩을 이용하여 배열[cos(0):0.02:log10(100)]을 만들고 25번째 원소를 구하라. 그리고 배열에 얼마나 많은 원소들이 있는지 구하라. 1.48, 51

cf.) 예제4의 ①에서 명령어를 하나만 사용(한 줄로)하여 근을 구할 수 있을까?

₽ 내장함수

함수	매트랩 표현	함수	매트랩 표현
e^x	exp(x)	$\sin x$	sin(x)
\sqrt{x}	sqrt(x)	tan x	tan(x)
$\ln x$	log(x)	$\cos^{-1}x$	acos(x)
$\log_{10} x$	log10(x)	$\sin^{-1}x$	asin(x)
cosx	cos(x)	$tan^{-1}x$	atan(x)

cf.) 위의 표에서 삼각함수는 라디안(radian)값을 사용. 단, sind(x)와 cosd(x)와 같은 경우에는 인수 x의 값이 각도(degree)임

▶ 파일작업 : M-파일/MAT-파일

- 매트랩에서 프로그램, 데이터와 세션 결과들을 저장시킬 수 있음
- => 특히, 매트랩 함수들과 프로그램 파일들은 확장자 .m으로 저장(M-파일)
- => 확장자 .mat로 매트랩 세션에서 생성되는 변수들의 이름과 값을 저장
- M-파일은 ASCII 파일이므로 어떤 문서 편집기로도 작성 가능
- => but, MAT-파일은 2진법 파일이며 일반적으로 생성했던 s/w에서만 읽힘
- 데이터 파일(DAT-파일)은 아스키 형식에 따라 생성
- => 워드 프로세서, 스프레드시트, 실험 데이터 획득 시스템 등에 사용 가능

▶ 작업공간 변수들의 저장과 복원 : save와 load 명령어

- 매트랩 사용을 중단하고 나중에 그 세션을 계속하려는 경우
- => 명령창에 save를 입력하면, matlab.mat에 저장
- => 불러오기 위해서 명령창에 load를 입력
- 선택적인 저장을 위해. "save filename var1 var2"와 같이 입력함
- => 불러오기 위해서는 "load filename"을 입력함
- cf.) 디렉터리와 경로(path): 매트랩에 사용되는 파일들의 위치를 알 필요 있음 명령어 pwd를 입력하면, 현재의 디렉터리를 알 수 있음
- => current directory window를 이용하면 편리

▶ 그래프 작성 plot()

- 직선, 대수, 표면, 등고선 그래프와 같은 여러 형태의 그래프 작성 가능

[Ex.1] $0 \le x \le 6$ 에서 $y = 5\sin x$ 의 그래프

>> x=[0:0.02:6];

>> y=5*sin(x);

>> plot(x,y),xlabel('x'),ylabel('y')

>> grid % 선을 나타냄

>> axis('equal')

>> title('y=5sin(x)')

xlabel : 작은따옴표 안에 있는

text를 수평축에 나타냄

ylabel : 수직축에 나타냄

title : 그래프 제목

gtext : 왼마우스 클릭 위치에 글

[Ex.2] $0 \le x \le 5$ 에서 $y = 2\sqrt{x}$ 와 $z = 4\sin 3x$ 의 그래프를 같이 그리자.

>> x=[0:0.01:5];

>> y=2*sqrt(x);

>> z=4*sin(3*x);

>> plot(x,y,x,z), xlabel('x')

>> gtext('y'), gtext('z')

이렇게 쓰면, 그래프는?

>> plot(x,y,x,z,'--')

- 그래프로부터 점의 좌표를 구해야 할 때, 함수 ginput()을 사용
- => 명령어 [x,y]=ginput(n) : n개의 점들을 구함; 길이가 n인 x와 y 벡터 구함
- 함수와는 별도로 데이터를 그래프에 나타낼 경우, 데이터 마커(+,*,o)로 표시 => plot(x,y,'+')
- => 필요한 경우, 데이터들을 선으로 연결 가능 : plot(x,y,'+',x,y)

[Ex.3] x=[15:2:23], y=[20 50 60 90 70]인 경우

[예제5]

- ① 매트랩을 이용하여 $0 \le t \le 5$ 에서 $s = 2\sin(3t+2) + \sqrt{5t+1}$ 의 그래프를 그려라. 그래프에 제목을 적고, 축에 라벨을 표시하라. 변수 s는 1초당 피트의 속도 (ft/s)이고, 변수 t는 초단위이다.
- ② 매트랩을 이용하여 $0 \le x \le 5$ 에서 $y = 4\sqrt{6x+1}$ 과 $z = 5e^{0.3x} 2x$ 의 그래프를 그려라.

1.4 스크립트 파일과 편집기/디버거

- 매트랩은 두 가지 방법으로 연산을 수행 가능
- ① 인터랙티브 모드 : 모든 명령을 명령창에 입력
- ② 스크립트 파일(M-파일)로 저장된 매트랩 프로그램의 실행
- => M-파일을 실행하는 것은 명령창에 명령어를 하나씩 입력하는 것과 동일
- => 명령창 프롬프트에서 파일 이름을 입력하여 파일을 실행시킴
- 많은 명령어들을 수행시키거나 명령어를 반복 수행시킬 경우, 혹은 많은 원소를 갖는 배열들이 포함된 문제에서 인터랙티브 모드는 불편
- => 이런 경우, 프로그램(M-파일)으로 작성할 수 있음
- M-파일의 두 가지 형태 : 스크립트 파일(script file)/함수 파일(function file)
- => 편집기와 디버거를 사용하여 M-파일을 만들 수 있음
- => 스크립트 파일은 명령파일(command file)로도 불림
- 함수 파일은 3장에서...

▶ 스크립트 파일 작성과 사용

>> % This is a comment	
>> x=3+2 % So is this	%는 주석을 나타내며,
x =	% 기호 오른쪽의 것은 모두 무시됨
5	

[Ex.4] 간단한 스크립트 파일 만들기

- ① M-파일을 만들기 위해, "File/New/M-file"메뉴를 선택 => 편집기/디버거 창
- ② 아래와 같이 문서를 작성하고 'example1.m'으로 현재 디렉터리에 저장함
- ③ 프로그램을 실행하기 위해, 명령창에 'example1'을 입력(혹은 Debug/Run)
 - % Program example1.m
 - % This program computers the sine of
 - % the square root and displays the result.

x = sqrt([5:2:13]);

y=sin(x)

- 스크립트 파일의 이름은 변수의 이름이나 매트랩 명령어나 함수 이름과 같지 않도록 함. 확인을 위해 다음을 입력해 봄
 - => exist('example1') : 변수 example1의 존재 여부 ; 없으면 0, 있으면 1
 - => exist('example1.m','file') : 파일 example1.m 확인; 없으면 0, 있으면 2
 - => exist('example1','builtin') : 내장함수 여부 확인 ; 없으면 0, 있으면 5
- ※ exist('mean.m','file')와 exist('mean','builtin')을 입력해 보면
 - => 파일 'mean.m'은 존재하지만, 내장함수는 아님
 - => 존재하는 M-파일의 주석문 보기 : >> help filename

▶ 스크립트 파일의 디버깅

- 프로그램을 디버깅하는 것은 bug 또는 에러를 찾아 제거하는 과정
- 일반적으로 에러는 구문(syntax) 에러나 런타임(runtime) 에러의 범주에 속함
- 매트랩은 상대적으로 프로그램이 간단하여 디버거를 사용할 필요가 없음

▶ 프로그램 형식

- 주석부/입력부/계산부/출력부로 구성
- ※ 주석문은 파일 어느 곳에나 놓을 수 있음. 그러나 첫 번째 주석문은 'lookfor' 라는 명령어가 찾는 라인으로 <u>그 파일을 설명하는 핵심어를 첫 번째 줄(H1)</u>에 둠
 - => 일반적으로 주석문은 다음의 사항을 포함하도록 함
 - ① 첫 번째 줄에 프로그램 이름과 keyword를 씀
 - ② 두 번째 줄에 작성 날짜와 작성한 사람의 이름을 씀
 - ③ 모든 입·출력들에 대한 변수 이름을 정의. 이때 반드시 측정 단위를 명기
 - ④ 프로그램이 호출하는 모든 사용자 정의 함수

₽ 입·출력 제어

명령어	설명
disp(A)	배열 A의 내용을 표시
disp('text')	작은따옴표 안의 text 문자열을 표시
x=input('text')	작은따옴표 안의 내용을 표시하고 사용자의 입력을 기다림
	입력된 내용은 x에 할당

명령어	설명		
	문자열 변수 'title'을 제목으로 갖는 메뉴를 표		
k=menu('title','op1','op2',)	시하며, 선택 옵션은 'op1', 'op2' 등이 있음		

[Ex.5] 메뉴를 사용하여 그래프 마커 고르기

k=menu('Choose a data marker','o','*','x')

[예제6] 구의 표면적 A는 $A=4\pi r^2$ 과 같이 r에 의해 결정된다. 사용자가 프롬프트 상에서 반지름을 입력하고 표면적을 계산한 후, 결과를 나타내는 스크립트 파일을 작성하라.

1.5 매트랩 도움말 시스템

- 여기서 다루지 않은 다른 기능들을 알기 위해서는 도움말을 사용할 필요 있음
- ① Help 브라우저: "Help/MATLAB help" 메뉴를 선택 혹은 툴바의 물음표. F1
- ② Help 함수 : 함수 help, lookfor, doc를 사용하여 특정 함수의 정보를 검색
- ③ 기타 자료들 : demo 프로그램 실행, Mathworks사에서 제공되는 문서 등
- 도움말 함수
- ① help 함수 : 특정 함수의 구문법과 동작을 알 수 있는 가장 기본적인 방법
- ② lookfor 함수 : 키워드를 기반으로 한 함수의 검색, H1 라인을 탐색
- ③ doc 함수 : 도움말 브라우저에서 문서의 시작 페이지를 나타냄

[Ex.6] 명령창에 'help sine', 'lookfor sine', 'doc example1'을 입력해보라.

2. 숫자, 셀과 구조 배열

- 매트랩의 장점 중 하나는 배열을 하나의 변수로 처리할 수 있는 것 => 프로그램을 간단하게 작성 가능

2.1 1차원 및 2차원 숫자 배열

- 1차원 배열 : 벡터; 오직 하나의 행이나 열로 구성

=> 행벡터 : 원소가 수평으로 정렬, 열벡터 : 원소가 수직으로 정렬

▶ 벡터의 생성 - 행벡터 : 대괄호 안에 원소를 입력하고 콤마로 원소를 분리

- 열벡터 : 세미콜론을 이용하여 만듦. (혹은 빈칸)

사용 예			설명		
>> g=[3;7;9]	>> g=[3 7 9]'	>> g=[3		열벡터의 생성(세 가지 방법)	
g =	g =	7		- 보통 세미콜론을 이용하여 만	
3	3	9]		들 수 있으나, 행벡터를 만든 후	
7	7			<u>전치</u> 를 이용하여 만들 수도 있음	
9	9			(transpose)	
>> r=[2 4 20]	; w=[9 -6 3];				
>> u=[r, w]			벡터	u는 크기가 1X6인 벡터	
u = 2 4	20 9 -6	3			
>> x=[0:2:8]			콜론	(:)연산자를 이용하면 일정한 간격	
x = 0 2	4 6	8	으로	원소를 갖는 큰 벡터를 생성	
>> x=[0:2:7]			x=[m:q:n]에서 첫 번째 값은 m, n-m		
x =			01 q	의 정수배이면 마지막 값은 n, 그	
0 2 4 6			렇지	않으면 n보다 작은 값이 됨	
>> y=[-3:2]		q 값	이 생략되면 q를 1로 간주함		
y =		증분	q는 음수가 될 수도 있고 이 경		
-3 -2 -	-3 -2 -1 0 1 2		우 m	n은 n보다 큰 값이어야 함	
>> linspace(5,8	3,31)		명령	어 linspace(x1,x2,n)도 선형으로	
ans =		증가되는 행벡터 생성, x1와 x2는 각각			
Columns 1 through 4		상한과 하한을 나타내고 n은 원소의			
5.0000 5.100	5.0000 5.1000 5.2000 5.3000		수, 왼쪽 예는 [5:0.1:8]과 동일,		
>> x= logspac	>> x= logspace(-1,1,4)		원소가 로그 간격으로 된 배열,		
x =	· =			pace(a,b,n) : n은 10^a 과 10^b 사이	
0.1000 0.46	42 2.1544 10.0	0000	의 원소의 수, n 생략 시 원소 50개		

₽ 2차원 배열 : 행렬

>> A=[2 4 10;16 3 7]	행렬의 생성
A =	2행 3열로 된 행렬(2X3행렬)
2 4 10	행렬 A를 $[a_{ij}]$ 로 나타내며, i 와 j 는
16 3 7	각각 행과 열의 위치를 나타냄

>> a=[1,3,5];b=[7,9,11];					>> D=[a;b]					
>> c=	[a,b]					D =	=			
c =							1	3	5	
1	3	5	7	9	11		7	9	11	

₽ 행렬과 전치(transpose) 연산

- 전치연산으로 행렬의 행과 열을 바꿀 수 있음

>> A=[1 2; 3 4]	>> A'
A =	ans =
1 2	1 3
3 4	2 4

₽ 주소 지정

- 배열 인덱스를 사용하여 배열 원소의 행과 열 번호로 원소의 위치를 지정
- => v(5): 벡터v에 있는 다섯 번째 원소, A(2.3): 행렬A의 2행, 3열의 원소
- => 이를 이용하여 배열의 원하는 원소만을 다룰 수 있음
- => D(1,3)=6 : 행렬 D의 1행 3열의 원소를 6으로 할당
- 콜론(:)연산자를 사용하여 배열을 다양하게 선택가능
- => v(:) : 벡터 v의 모든 행 또는 열의 원소를 나타냄
- => v(2:5) : 벡터 v의 두 번째 원소로부터 다섯 번째 원소까지를 나타냄
- => A(:,3) : 행렬 A의 세 번째 열에 있는 모든 원소를 나타냄 (열벡터)
- => A(3.:) : 행렬 A의 세 번째 행에 있는 모든 원소를 나타냄 (행벡터)
- => A(:,2:5) : A의 두 번째에서 다섯 번째 열에 있는 모든 원소를 나타냄(행렬)
- => A(2:3,1:3) : 2X3행렬을 나타냄
- => v=A(:) : 처음부터 끝 원소까지를 쌓아 올린 A의 모든 열로 구성된 벡터
- => A(end,:), A(:,end) : 각각 A의 마지막 행과 마지막 열을 나타냄

[Ex.1] 무작정 따라하며 관찰하기

>> a=[1:9]	>> c=A(2,:)
>> A=reshape(a,3,3)	>> D=A(2:3,1:3)
>> A'	>> v=A(:)
>> b=A(:,3)	>> A(end,:)

[참고]

>> A(1,4	.)=10			위의 행렬 A에 왼쪽과 같이 입력하면 아래의		
A =				결과가 나옴.		
1	4	7	10	=> A에 4열이 없으므로 4열에 새로운 원소를		
2	5	8	0	받아들이기 위해 자동으로 확장하고 나머지는		
3	6	9	0	0으로 채움		
>> B=A(:,4:-1:	1)				
B =				콜론연산자를 이용하여 인덱스를 감소시킬 수		
10	7	4	1	있음. 왼쪽의 예는 콜론연산자를 이용하여 행렬		
0	8	5	2	A의 열의 순서가 바꿈		
0	9	6	3			
>> C=A([2,1,2]	,:)				
C =						
2	5	8	0	행의 위치를 [2,1,2]과 같이 정해 줌으로써 행		
1	4	7	10	렬을 수정할 수 있음		
2	5	8	0			

▶ 유용한 배열 함수 - 매트랩에서는 배열을 다루기 위한 많은 함수가 있음

명령어	설명
find(x)	배열 x의 0이 아닌 원소의 인덱스를 갖는 배열을 생성
may(A)	A가 벡터이면, 대수적으로 가장 큰 원소의 값을 반환
max(A)	A가 행렬이면, 각 열에서 가장 큰 원소를 갖는 행벡터를 반환
min(A)	max(A)와 같은 기능이나 최소값을 돌려줌
morm(x)	벡터의 기하학적 길이를 계산 $\sqrt{x_1^2+x_2^2+\cdots+x_n^2}$
size(A)	행렬 A의 크기를 갖는 행벡터 [m,n]을 반환
sort(A)	배열 A의 각 열을 오름차순으로 정렬
sum(A)	배열 A의 각 열의 원소를 더하고 합으로 된 행벡터를 반환

2.2 다차원 숫자 배열

- 매트랩은 다차원 배열을 지원, 자세한 사항은 help datatypes를 이용.
- 함수 cat(n,A,B,C,...) : A, B, C 등을 연결시켜 n차원의 배열 생성

2.3 원소-원소 연산

>> A=[4 9; 5 -7]; 3*A	벡터의 스칼라 곱		
ans =	- 행렬 A의 각 성분에 3을 곱함		
12 27	매트랩에서의 곱셈의 정의 두 가지		
15 -21	- ① 배열 곱셈, ② 행렬 곱셈		
>> A=[6 -2;10 3];B=[9 8; -12 14];	두 행렬의 덧셈과 뺄셈(배열 덧셈)		
>> A+B	- 대응하는 원소들끼리의 덧셈 혹은		
ans =	뺄셈		
15 6	- 덧셈의 결합법칙과 교환법칙 성립		
-2 17	- 두 행렬의 사이즈가 같아야 연산 可		
>> [6, 3]+2 >> [8,3]-5			
ans = ans =	스칼라-행렬 덧셈과 뺄셈		
8 5 3 -2			
>> x=[2 4 -5]; y=[-7 3 8]; x.*y	배열 곱셈 - 각 대응하는 원소끼리의		
ans =	곱셈 : x와 y가 행벡터이면 행벡터로,		
-14 12 -40	x와 y가 열벡터이면 열벡터가 됨		
>> x=[8,12,15];y=[-2,6,5];z=x./y	배열 나눗셈(원소-원소 나눗셈)		
z =	두 배열은 반드시 크기가 같아야 함		
-4 2 3			
>> x=[1 2 3];y=[2,3,4]; x.^2			
ans =			
1 4 9			
>> y.^x	배열의 거듭제곱		
ans =			
2 9 64			
7= 0\m(\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	$z = (e^y \sin x) \cos^2 x$		
$z= \exp(y).*\sin(x).*(\cos(x)).^2$	x와 y의 크기가 같아야 함		

2.4 행렬 연산

- 행렬의 덧셈과 뺄셈은 원소-원소의 덧셈 및 뺄셈과 같은 방법임 => But, 행렬의 곱셈과 나눗셈은 다름
- **▶ 벡터의 곱셈** : 두 벡터의 원소의 개수가 같으면 연산 가능
- 벡터 \mathbf{u} 와 \mathbf{w} 의 내적(dot product)은 스칼라이며, $\mathbf{u} \cdot \mathbf{w}$

$$\boldsymbol{u} \bullet \boldsymbol{w} = |\boldsymbol{u}||\boldsymbol{w}|\cos\theta = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = u_1w_1 + u_2w_2 + u_3w_3$$

>> x =[1 2 3]; y =[2; 3; 4]; x * y ans =
$$1*2+2*3+3*4=20$$

▶ 벡터-행렬 곱셈

>> A=[4 9; 5 -7]; x=[1; -1]; A * x

ans =

-5

12

$$\begin{bmatrix}
4 & 9 \\
5 & -7
\end{bmatrix}
\begin{bmatrix}
1 \\
-1
\end{bmatrix} = \begin{bmatrix}
-5 \\
12
\end{bmatrix}$$

- ₽ 행렬-행렬 곱셈 : 행렬곱셈에서 결합과 분배법칙은 성립하나 교환법칙은 아님
- 두 행렬의 곱 AB는 A의 열의 수와 B의 행의 수가 같아야 정의됨
- \Rightarrow $A(p \times q)$ 과 $B(q \times r)$ 의 행렬곱은 $AB(p \times r)$ 가 됨

[참고] 특수 행렬 - 영행렬/단위행렬

eye(n)	nxn 단위행렬	ones(n)	원소 1, nxn	zeors(n)	nxn 영행렬
eye(size(A))	A와 같은 크기	ones(m,n)	원소 1, mxn	zeors(m,n)	mxn 영행렬
		ones(size(A))	A와 동일	zeros(size(A))	A와 동일

▶ 선형 대수방정식과 역행렬

[Ex.2] 다음 연립방정식을 매트랩을 이용하여 풀자

>> A=[6,12,4; 7,-2,3; 2,8,-9]; b=[70;5;64];	
>> x=A \ b % 혹은 y=inv(A)*b	6x + 12y + 4z = 70
x =	7x - 2y + 3z = 5
3	Ü
5	2x + 8y - 9z = 64
-2	

2.5 사용자 정의 함수

- M-파일의 다른 형식으로 함수파일(function file)이 있음
- 스크립트 파일과 달리 함수파일의 모든 변수는 지역변수로 함수 내에서만 可
- 함수파일은 여러 차례 반복되는 명령에서 유용
- 함수파일을 만들 때, 첫 라인은 입력과 출력 목록을 나타내는 함수 정의 라인
- => function [output variables] = function_name (input variables)
- => 출력변수는 대괄호로 둘러싸야 하고(출력이 하나만 있을 때는 선택사항) 입력변수는 소괄호로 둘러싸야 함
- => 함수파일의 이름은 파일 이름과 반드시 같아야 함 예를 들어, 함수이름이 drop 인 경우, 파일이름은 drop.m으로 저장
- => 함수 정의 라인의 function은 반드시 소문자로 표시

[Ex.3] 간단한 함수의 예

function
$$z = \text{fun } (x,y)$$
 % fun.m >> $x=3$; $y=7$; fun(x,y) $u = 3 * x$; $z = u + 6 * y.^2$; 303

3. Simulink

- 시뮬링크는 매트랩을 기반으로 만들어졌음, 최근 인기가 급상승하고 있음.
- 그래픽 사용자 인터페이스(GUI)를 제공하여 블록으로 시뮬레이션 가능

3.1 시뮬레이션 선도(블록선도)

- 시뮬레이션 선도 : 해결해야 할 문제의 요소를 나타내는 선도

[Ex.1] 식 $\dot{y} = 10f(t)$ 를 고려

- 위 식의 해는 $y(t)=\int 10f(t)dt$ 이고, 중간 변수 x를 이용하면

=>
$$x(t) = 10f(t)$$
, $y(t) = \int x(t)dt$ 로 생각 가능

=> 이 해는 시뮬레이션 선도에 의해 그래픽으로 표현 가능

$$\begin{array}{c|c}
f(t) & 10 & x(t) \\
\hline
\end{array}$$

- => 블록은 원인과 결과를 나타내고 화살표는 변수를 나타냄
- => 숫자 10을 포함한 블록(이득 블록)은 x(t) = 10f(t)를 나타냄
- => 적분 기호를 포함한 블록(적분기 블록)은 $y(t)=\int x(t)dt$ 를 나타냄
- * 시뮬레이션 선도에 사용되는 표기와 심볼은 약간씩 다를 수 있음=> 소자의 기호나 라플라스 변환에서 유래되기도 함

3.2 시뮬링크 소개

- 명령창에 'simulink'를 입력하면 시뮬링크 라이브러리 브라우저가 열림
- 새로운 모델을 만들기 위해, 브라우저의 종이 모양의 아이콘을 클릭(File/New)
- 시뮬레이션 선도를 만들기 위해, 라이브러리 안의 원하는 블록을 드래그 하여 새 모델 창으로 옮겨서 블록을 연결함. 적당한 블록 파라미터을 지정
- 시뮬링크 모델 파일의 확장자는 .mdl
- 모델 파일을 열고, 닫고, 저장하기 위해 모델 창의 File 메뉴를 사용
- 모델을 복사, 절단, 붙이기 위해 Edit 메뉴를 사용
- => 물론 이 기능들은 마우스를 통해서도 사용가능
- ※ 예제를 통해 시뮬링크의 사용법을 배워보자

- 라이브러리 브라우저

- 모델창(Simulink창)

[Ex.2] 시뮬레이션 실행

- ① Sources/Constant(상수)를 가져옴
- ② Sinks/Scope를 가져옴
- ③ 블록을 연결하고 시뮬레이션 시작 (파형보기 : Scope 창에서 쌍안경 이용)
- ※ 블록을 가져오기 위해, 검색창 이용

[확인문제]

- ① Constant 값 바꾸기
- ② 다양하게 시간 조절하기

[Ex.3] Step size

- ① 라이브러리에서 사인파(Sine Wave)를 찾아 가져옴. 10rad/sec.로 설정
- ② Scope와 연결하고 시뮬레이션
 - Simulation/Configuration Parameters를 선택
 - => Simulation time의 Max step size를 충분히 작은 값(0.01)으로 설정
 - => 또는 Fixed-step으로 설정하여 수치를 바꿔도 됨
 - => step size를 너무 작게 하면, 정확도는 높아지나 시뮬레이션 시간 길어짐

[확인문제]

- ① 다양한 주파수에 대해 실험 => 1, 100 등
- ② 다양한 Step size에 대해 실험 => 1, 0.1, 0.00001

[Ex.4] 4칙 연산

- ① Constant 블록 두 개를 가져와서 각각의 이름을 a와 b로 수정
- ② Math Operation 라이브러리에서 Add 블록을 두 개 가져옴 => 그 중 하나를 '++'에서 '+-'로 수정(빼기 연산)
- ③ 선을 연결, 선을 연결하고 중간에서 선을 추가하려면 'Ctrl'을 누르며 드래그
- ④ 곱셈과 나눗셈 블록은 'Divide'로 검색하여 두 개를 가져옴 => 그 중 하나를 '*/'에서 '**'로 수정(곱셈 연산)
- ⑤ Scope로 연결하여 확인
- ⑥ Display를 검색하여 연결
 - => Scope는 파형을 보여주고, Display는 결과값을 출력

[확인문제] 변수 3개(a,b,c)를 만들어 a+b+c. a*b*c. a-b+c. a/b*c 등의 다양한 계산식을 만들어 보자

[Ex.5] 여러 개의 파형을 한 번에 나타낼 때 버스(Bus)를 사용

- ① 위상차가 다른 Sine 파를 각각 만들고
- ② Bus Creator를 검색하여 가져옴
- ③ Scope를 가져와서 연결하고 시뮬레이션 => 여러 개의 파형이 보임

[Ex.6] 부시스템: 여러 개의 복잡한 연산을 하나의 박스로 해결 예제로 2개의 변수를 받아 덧셈과 뺄셈을 출력하는 부시스템 만들어 보자

① Subsystem을 검색하여 가져옴. 블록을 더블클릭하면 부시스템 창이 생성

② 주파수가 서로 다른 사인파를 연결하여 Scope로 확인

- ※ 부시스템 생성하는 다른 방법: 먼저 블록선도를 만든 후, 부시스템을 만들 부분을 지정하고 우클릭을 눌러 메뉴에서 'Create Subsystem' 클릭 => 만든 후에는 더블클릭하여 수정 가능
- [Ex.7] 전달함수 (transfer function)

다음 전달함수를 가지는 시스템의 스텝응답을 확인

$$H(s) = \frac{4s+5}{s^2+2s+3}$$

- ① Step 블록과 Transfer Fcn 블록을 검색하여 가져옴
- ② Step 블록과 Transfer Fcn 블록 수정

③ 시뮬레이션과 그 결과 파형

[확인문제] 어제 배운 매트랩의 결과와 비교

[Ex.8] 피드백 루프

- 임의의 시스템에 대한 스텝응답을 구하는 모델에서 피드백 루프 구현
- ① Step, Transfer Fcn, Gain, Add, Scope 블록을 불러와서 아래와 같이 연결

- => Gain의 방향 변경은 블록을 우클릭하여 'Format'을 변경
- ② 아래와 같이 Scope에 연결하면 입력과 출력 파형을 모두 관찰 가능

③ Multiplot graph 블록을 사용하면

[Ex.9] 시뮬링크를 사용하여 $0 \le t \le 13$ 에서 다음 문제의 해를 구하라.

$$\frac{dy}{dt} = 10\sin t$$
, $y(0) = 0$, 문제의 해는 $y(t) = 10(1 - \cos t)$.

- 해를 구하는 과정
- ① 시뮬링크 시작, 새로운 모델창 열기
- ② Source 라이브러리에서 Sine wave 블록을 선택하여 모델창으로 가져옴. 블록을 더블클릭하여 Parameters 창을 열고 Amplitude를 1로, Frequency를 1 로 Phase는 0으로, Sample time은 0으로 하고 OK를 클릭
- ③ Math Operation 라이브러리에서 Gain 블록을 가져온 후, Parameters 창에서 Gain을 10으로 설정
- ④ Continuous 라이브러리에서 Integrator 블록을 가져온 후, Parameters 창에서 Inintial condition을 0으로 설정. (초기조건이 0이므로)
- ⑤ Sink 라이브러리에서 Scope를 가져옴
- ⑥ 블록을 아래 그림과 같이 배치하고 연결. 연결을 위해 커서를 입력 포트나 출력 포트로 이동하면 커서가 +로 바뀌는데 이때 마우스 왼쪽 버튼을 누른 채 한 포트에서 다른 포트로 드래그

- ⑦ Simulation/Configuration Parameters를 선택한 후, Solver 탭을 클릭하고 Stop time을 13으로 설정. 이때 Start time은 0인지 확인
- ⑧ 시뮬레이션 시작을 위해, Simulation/Start를 선택. 또는 Start 아이콘 클릭
- ⑨ 새뮬레이션이 끝나면 Scope 블록을 더블 클릭하고 쌍안경 아이콘을 클릭하여 자동 척도가 되도록 함. 진폭이 10이고 주기가 2π 인 사인함수.

※ 그림에 문구 넣기나 인쇄를 위해, Scope 블록 대신 Workspace 블록을 사용.

[Ex.10] 시뮬레이션 결과를 매트랩 Workspace로 출력하기.

=> 결과를 매트랩 함수를 이용하여 그림을 그리거나 해석 가능

- ① Ex.2의 모델을 위 그림과 같이 변경
- Scope 블록과 연결하는 화살표를 클릭하여 Delete 키로 삭제
- Sinks 라이브러리의 To Workspace 블록과 Sources 라이브러리의 clock 블록, Signal Routing 라이브러리의 Mux 블록을 가져옴
- Mux 블록을 더블클릭하여 입력의 수를 2로 설정
- 블록을 연결하고 To Workspace 블록의 출력변수의 이름을 y로 변경함
- 출력 y의 '행'은 시뮬레이션 시간 구간 수이고, '열'은 블록의 입력 수임
- => Clock이 Mux의 두 번째 입력이므로 y의 두 번째 열은 시간임
- Clock의 Decimation=1로 함
- ② 시뮬레이션을 하면 workspace에 변수 y가 나타난 것을 확인할 수 있음
- ③ 명령창에 다음과 같이 입력

>> plot(y(:,2),y(:,1))

※ To Workspace 블록을 사용하면 시변수 tout를 매트랩 작업공간에서 자동적으로 설정함 (Simulation/Configuration Parameters 메뉴의 Data I/O에서 설정 可)