

Intégrales généralisées

1 Suites d'intégrales

Les AAV abordés d'un cette section :

- décider de la bonne définition d'une intégrale généralisée
- décider de la convergence d'une suite d'intégrales et d'en exhibe (si possible) la limite
- simplifier des expressions impliquant des limites de suites d'intégrales ou des intégrales à paramètres
- valider un raisonnement impliquant des questions de convergences de suites d'intégrales ou des intégrales à paramètres.
- reconnaître les hypothèses et arguments utilisés dans les preuves de convergences en probabilités

Question 1-1 Calculer les limites suivantes :

a)

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{1}{(1+x^2)^n} \, \mathrm{d}x$$

b)

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{n \ln(1 + \frac{x}{n})}{(1 + x^2)^2} \, \mathrm{d}x$$

Solution 1-1

a) Les fonctions $f_n(x) = \frac{1}{(1+x^2)^n}$ sont continues par morceaux sur $[0,+\infty[$. Alors

$$\lim_{n \to +\infty} f_n(x) = f(x) = \begin{cases} 1 & \text{si} \quad x = 0 \\ 0 & \text{si} \quad x > 0 \end{cases}$$

La fonction f est continue par morceaux sur $[0,+\infty[$. Soit $\varphi(x)=\frac{1}{1+x^2}$ définie sur $[0,+\infty[$. Alors $\forall x\in[0,+\infty[,\forall n\in\mathbb{N}^*$ on a

$$\left| \frac{1}{(1+x^2)^n} \right| \le \frac{1}{1+x^2} = \varphi(x)$$

La fonction φ est intégrable sur $[0,+\infty[$ (TD1, ou $\varphi(x) \underset{+\infty}{\sim} \frac{1}{x^2}$, continues, positives et $\int_1^{+\infty} \frac{1}{x^2} \, dx$ converge, de type Riemann, et $\int_0^1 \varphi(x) \, dx$ est Riemann classique). Les hypothèses du théorème de convergence dominée sont vérifiées donc

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) \, \mathrm{d}x = \int_0^{+\infty} f(x) \, \mathrm{d}x = 0$$

b) Soit $f_n(x) = \frac{n \ln(1 + \frac{x}{n})}{(1 + x^2)^2}$ définie sur \mathbb{R}^+ . Déterminons la limite de la suite f_n . Pour tout $x \in R^*$ on a

$$\ln(1+\frac{x}{n}) \sim \frac{x}{n}$$

ce qui implique

$$\frac{n\ln(1+\frac{x}{n})}{(1+x^2)^2} \underset{+\infty}{\sim} \frac{x}{(1+x^2)^2}.$$

Donc $\lim_{n\to+\infty} f_n(x) = f(x) = \frac{x}{(1+x^2)^2}$ et la fonction f est continue par morceaux sur \mathbb{R}^+ . Sur l'intéravalle $[0,+\infty[$ on a également $|ln(1+x) \le x|$ ce qui implique

$$\left| \frac{n \ln(1 + \frac{x}{n})}{(1 + x^2)^2} \right| \le \frac{x}{(1 + x^2)^2} = \varphi(x)$$

Montrons que la fonction φ ainsi définie sur \mathbb{R}^+ est intégrable. En effet, $\varphi(x) \underset{+\infty}{\sim} \frac{x}{x^4} \underset{+\infty}{\sim} \frac{1}{x^3}$ et utilise les arguments déjà rencontrés. D'après le théorème de convergence dominée on a donc :

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) \, \mathrm{d}x = \int_0^{+\infty} f(x) \, \mathrm{d}x$$

Pour finir

$$\lim_{y \to +\infty} \int_0^y f(x) \, \mathrm{d}x = \lim_{y \to +\infty} \int_0^y \frac{x}{(1+x^2)^2} \, \mathrm{d}x = \lim_{y \to +\infty} \left[-\frac{1}{2(1+x^2)} \right]_0^y = \frac{1}{2}$$

Question 1-2 Soit $f_n: [0,1] \to \mathbb{R}$ la suite de fonction définie par $f_n(x) = (n+1)x^n$ sur [0,1[et $f_1(1) = 0.$

- a) Calculer $\int_0^1 f_n(x) dx$ pour tout n.
- b) Montrer que f_n converge simplement vers f(x) = 0.
- c) A-t-on

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \int_0^1 \lim_{n \to +\infty} f_n(x) \, \mathrm{d}x?$$

Expliquer.

1 Suites d'intégrales

Solution 1-2

a) Les fonctions f_n sont continues sur [0,1] donc on a l'intégrale classique de Riemann : $\int_0^1 f_n(x) dx = \left[x^{n+1}\right]_0^1 = 1$

b)

$$\lim_{n \to +\infty} f_n(x) = f(x) = 0$$

La fonction f est continue par morceaux et $\int_0^1 f(x) dx = 0$.

c) Les fonctions f_n ne sont pas uniformement bornées (sup $f_n = n$ sur [0,1], donc on ne peut pas majorer par une fonction qui ne dépend pas de n) donc on ne peut pas appliquer le théorème de convergence dominée.

Question 1-3 Soit

$$I_n = \int_0^{+\infty} \frac{\sin(\frac{t}{n})}{t(1+t^2)} dt$$

Justifier l'existance de I_n et déterminer la limite.

Solution 1-3 On pose $f_n(x) = \frac{\sin(\frac{t}{n})}{t(1+t^2)}$ sur $]0,+\infty[$. Les fonctions ainsi définies sont continues par morceaux sur $]0,+\infty[$. L'intégrale $\int_0^{+\infty} f_n(x) \, \mathrm{d}x$ a deux bornes impropres. On a

$$\frac{\sin(\frac{t}{n})}{t(1+t^2)} \sim \frac{t}{nt(1+t^2)} \sim \frac{1}{n(1+t^2)} \sim \frac{1}{n}$$

Donc $\int_0^1 f_n(x) dx$ est finie. On a également sur $[1, +\infty[$

$$|f_n(x)| \le \frac{1}{t(1+t^2)}$$

La deuxième fonction étant intégrable (les arguments classiques) on conclut que $\int_1^{+\infty} f_n(x) dx$ converge absolument, donc converge. Alors la relation de Chasles implique que I_n est bien définie.

Vérifions les hypothèses du théorème de convergence dominée. Sur $[1, +\infty]$

$$|f_n(x)| \le \frac{1}{t(1+t^2)} \le \frac{1}{1+t^2}$$

Attention sur [0,1[on n'a pas $\frac{1}{t} < 1$. Mais sur cet intervalle $\sin(x) \le x$ donc

$$|f_n(x)| \le \frac{1}{n(1+t^2)} \le \frac{1}{1+t^2}$$

Soit $\varphi(t) = \frac{1}{1+t^2}$ définie sur $[0, +\infty[$. Alors Donc sur $|f_n(t)| \le \varphi(t)$. L'intégrabilité de φ est établie dans les exercices précédents. On peut donc utiliser le théorème de convergence dominée. La suite f_n converge simplement vers la fonction nulle. Donc $\lim_{n\to+\infty} I_n = 0$.

