In the Claims:

Please amend the claims as follows:

CLAIMS

1. (Currently Amended) A charged particle beam device (1) for inspecting or structuring a specimen (3) having comprising:

a charged particle beam source (5) to generate a charged particle beam (7),

a focussing lens (9) to focus the charged particle beam (7) onto the specimen (3), \vdots and

an aperture system (13) for defining an aperture (6) for the charged particle beam (7), the aperture system (13) comprising:

a first member (20) to block a first portion (7a) of the charged particle beam (7) between the charged particle beam source (5) and the focussing lens (9);

a second member (30) to block a second portion (7b) of the charged particle beam (7) between the charged particle beam source (5) and the focussing lens (9);

first means (24) for moving the first member (20) to adjust the <u>a</u> size of the <u>a</u> blocked first portion (7a) of the charged particle beam (7); and

second means (34) for moving the second member (30) independently of the first member (20).

- 2. (Currently Amended) The charged particle beam device according to claim 1, wherein whereby the first member (20) and the second member (30) have a respective first edge (22) and a second edge (32) capable of defining a respective first boundary (28) and a second boundary (38) of the aperture (6).
- 3. (Currently Amended) The charged particle beam device according to claim 2, wherein whereby the first edge (22) and/or or the second edge (32) are is shaped to provide a first boundary (28) and/or or a second boundary (38) which extend essentially linearly.

- 4. (Currently Amended) The charged particle beam device according to claim 2, wherein whereby the first edge (22) and the second edge (32) are shaped to provide a first boundary (28) and a second boundary (38) which extend essentially in parallel.
- 5. (Currently Amended) The charged particle beam device according to <u>claim 2 any</u> one of the claims 2 to 4, <u>wherein</u> whereby the first edge (22) and/or or the second edge (32) are is shaped to provide an angled or rounded first and/or or second boundary (28; 38).
- 6. (Currently Amended) The charged particle beam device according to <u>claim 2</u> any one of the claims 2 to 5, <u>wherein</u> whereby the first means (24) and/or <u>or</u> the second means (34) for moving the respective first and/or <u>or</u> the second member (20; 30) are <u>is</u> capable of moving the respective first edge (22) and/or <u>or</u> second edge (32) without changing the shape of the aperture (6).
- 7. (Currently Amended) The charged particle beam device according to <u>claim 1</u> anyone of the preceding claims, <u>wherein whereby</u> the first means (24) and/or <u>or the</u> second means (34) for moving the respective first and/or <u>or</u> second member (20; 30) each include a respective first motor and/or <u>or</u> a second motor or, preferably, a respective first piezo-drive and/or a second piezodrive.
- 8. (Currently Amended) The charged particle beam device according to <u>claim 1</u> any one of the preceding claims <u>further comprising a</u> third, <u>a</u> fourth, <u>a</u> fifth, <u>a</u> sixth, <u>a</u> seventh <u>and/or or an</u> eighth members (40; 50; 60; 70; 80; 90) to selectively block respective third, fourth, fifth, sixth, seventh <u>and/or or</u> eighth portions (7d; 7e; 7f; 7g; 7h; 7i) of the charged particle beam (7) between the charged particle beam source (5) and the focussing lens (9).
- 9. (Currently Amended) The charged particle beam device according to claim 8 comprising <u>a</u> third, <u>a</u> fourth, <u>a</u> fifth, <u>a</u> sixth, <u>a</u> seventh and/or <u>or an</u> eighth means (44; 54;

64; 74; 84; 94) for moving the respective third, fourth, fifth, sixth, seventh and/or or eighth members (40; 50; 60; 70; 80; 90) to adjust the sizes of the blocked respective third, fourth, fifth, sixth, seventh and/or or eighth portions (7d; 7e; 7f; 7g; 7h; 7i) of the charged particle beam (7) independently of the respective other portions.

- 10. (Currently Amended) The charged particle beam device according to <u>claim 8</u> any one of the claims 8 or 9, <u>wherein whereby</u> the third, fourth, fifth, sixth, seventh and/or or eighth member (40; 50; 60; 70; 80; 90) have respective third, fourth, fifth, sixth, seventh and/or or eighth edges (42; 52; 62; 72; 82; 92) capable of defining respective third, fourth, fifth, sixth, seventh and/or or eighth boundaries (48; 58; 68; 78; 88; 98) of the aperture (6).
- 11. (Currently Amended) The charged particle beam device according to claim 10, wherein whereby the third, fourth, fifth, sixth, seventh and/or or eighth edge (40; 50; 60; 70; 80; 90) is shaped to provide a respective third, fourth, fifth, sixth, seventh and/or or eighth boundary (48; 58; 68; 78; 88; 98) which extends essentially linearly.
- 12. (Currently Amended) The charged particle beam device according to any claim 10 one of the claims 10 to 11, wherein whereby the a third, a fourth, a fifth, a sixth, a seventh and/or or an eighth means (44; 54; 64; 74; 84; 94) for moving the respective third, fourth, fifth, sixth, seventh and/or or eighth member (40; 50; 60; 70; 80; 90) are each capable of moving the respective third, fourth, fifth, sixth, seventh and/or or eighth edges (42; 52; 62; 72; 82; 92) without changing the shape of the aperture (6).
- 13. (Currently Amended) The charged particle beam device according to <u>claim 10</u> any one of the claims 10 to 12, <u>wherein</u> whereby the third edge (42) and the fourth edge (52), the fifth edge (62) and the sixth edge (72), and/or or the seventh edge (82) and the eighth edge (92) pair-wise extend essentially in parallel with a tolerance of less than 10 degrees and, preferably, less than 5 degrees.

- 14. (Currently Amended) The charged particle beam device according to <u>claim 9</u> any one of the preceding claims, <u>wherein</u> whereby <u>the</u> first, second, fourth, fifth, sixth, seventh and/or <u>or</u> eighth means (24, 34, 44, 54, 64, 74, 84, 94) for moving the respective first, second, fourth, fifth, sixth, seventh and/or <u>or</u> eighth members are capable of moving the respective member with steps having a step size smaller than 10 μm, preferably smaller than 1 μm and even more preferred smaller than 0,1 μm.
- 15. (Currently Amended) The charged particle beam device according to <u>claim 9</u> any one of the preceding claims, <u>wherein</u> whereby the first, second, third, fourth, fifth, sixth, seventh <u>and/or or</u> eighth means (24, 34, 44; 54; 64; 74; 84; 94) for moving the respective first, second, third, fourth, fifth, sixth, seventh <u>and/or or</u> eighth member (20, 30, 40; 50; 60; 70; 80; 90) include a respective first, second, third, fourth, fifth, sixth, seventh <u>and/or or</u> eighth motor or, preferably, a respective first, second third, fourth, fifth, sixth, seventh and/or <u>or</u> eighth piezo-drive to move the respective first, second, third, fourth, fifth, sixth, seventh and/or <u>or</u> eighth edge (22, 32, 42; 52; 62; 72; 82; 92).
- 16. (Currently Amended) The charged particle beam device according to <u>claim 1</u> any one of the preceding claims, <u>wherein</u> whereby the charged particle beam device (1) includes a scanning unit (17) to scan the charged particle beam (7) across the specimen (3).
- 17. (Currently Amended) The charged particle beam device according to <u>claim 1</u> any one of the preceding claims, <u>wherein</u> whereby the charged particle beam device (1) is an electron beam device, <u>preferably a scanning electron microscope</u>, or a focussing ion beam device.
- 18. (Currently Amended) The charged particle beam device according any one of the preceding claims claim 1, wherein the charged particle beam device further comprising including a magnetic octupole component (101) and/or or an electrostatic octupole component (101).

- 19. (Currently Amended) The charged particle beam device according claim 1, wherein the charged particle beam device further comprising any one of the preceding claims including a magnetic hexapole component (101) and/or or an electrostatic hexapole component (101) to shape the charged particle beam (7).
- 20. (Currently Amended) The charged particle beam device according <u>claim 8</u> any one of the preceding claims <u>further</u> having the first, second and third members (20; 30; 40) oriented to define a triangular aperture (6) for the charged particle beam (7).
- 21. (Currently Amended) Method for focussing a charged particle beam (7) onto a specimen (3), comprising with the steps:

providing a charged particle beam device (1) according to any one of the preceding claims, wherein the charged particle beam comprises;:

a charged particle beam source to generate a charged particle beam;

a focussing lens to focus the charged particle beam (7) onto a specimen; and

an aperture system (13) for defining an aperture (6) for the charged particle beam;

the aperture system comprising:

a first member to block a first portion of the charged particle beam between the charged particle beam source and the focussing lens;

a second member to block a second portion of the charged particle beam between the charged particle beam source and the focussing lens;

first means for moving the first member to adjust a size of the blocked first portion of the charged particle beam; and second means for moving the second member independently of the first member;

generating the charged particle beam (7);

passing the charged particle beam (7) through a rectangular shaped aperture (6);

passing the charged particle beam (7) through a magnetic and/or or electric octupole field; and

directing the charged particle beam (7) onto the specimen (3).

22. (Currently Amended) Method for focussing a charged particle beam (7) onto a specimen (3) comprising with the steps:

providing a charged particle beam device (1) according to any one of the preceding claims; wherein the charged particle beam comprises;:

<u>a charged particle beam source to generate a charged particle beam;</u>

<u>a focussing lens to focus the charged particle beam (7) onto a specimen; and</u>

an aperture system (13) for defining an aperture (6) for the charged particle beam;

the aperture system comprising:

a first member to block a first portion of the charged particle beam between the charged particle beam source and the focussing lens;

a second member to block a second portion of the charged particle beam between the charged particle beam source and the focussing lens;

first means for moving the first member to adjust a size of the blocked first portion of the charged particle beam; and second means for moving the second member independently of the first member;

generating the charged particle beam (7);

passing the charged particle beam (7) through a triangular shaped aperture (6); passing the charged particle beam (7) through a magnetic or electric hexapole field; and

directing the charged particle beam (7) onto the specimen (3).