Revision Notes

Set:

- ✓ Set basics and defining sets
- ✓ Set operations and their formal definitions
- ✓ Set identities, set dual and set closure
- ✓ Power set
- ✓ Partition

Counting Principles

- ✓ Multiplication Principle
- ✓ Addition Principle

Relation:

- ✓ Cartesian product and binary relation
- ✓ Properties of binary relation
- ✓ Equivalence relation and equivalence classes
 - ✓ Equivalence classes form a partition

Functions:

- √ Formal definition and its implication
- ✓ Types of functions
- ✓ Cardinality
 - ✓ Finite and infinite sets
 - o Countable vs Uncountable sets
 - o Equinumerous

Proof Techniques

- ✓ Direct proof
- ✓ Proof by contrapositive
- ✓ Proof by contradiction
- ✓ Proof by construction
- ✓ Proof by induction:
 - ✓ Weak induction
 - ✓ Strong induction
- ✓ Pigeonhole Principle
- Diagonalization principle

Sets:

- o a collection of well-defined objects
- o no ordering
- o no duplicates

Define a set { }:

- 1. Enumerate all elements in the set $A = \{3,7,9,14\}$
 - Not applicable for infinite set
- Define the property or characteristics of the elements in the set with respect to the typical number sets N, Z, R, Q and C.

 $A = \{ x \mid P(x) \}$ where *P* is the unary predicate

Symbol	Symbol Name	Meaning / definition	Example
N	natural numbers / whole numbers set (with zero)	$N = \{0,1,2,3,4,\}$	$0 \in N$
Z	integer numbers set	Z = {3,-2,-1,0,1,2,3,}	-6 ∈ Z
Q	rational numbers set	$Q = \{x \mid x=a/b, a,b \in \mathbb{N}\}$	2/6 ∈ Q
R	real numbers set	$R = \{x \mid -\infty < x < \infty\}$	6.343434 ∈ R
С	complex numbers set	$C = \{z \mid z=a+bi, -\infty \le a \le \infty, \\ -\infty \le b \le \infty\}$	6+2 <i>i</i> ∈ C

- 3. Recursively define the elements in the set
 - i) 0 ∈ A
 - ii) if $x \in A$, $x+2 \in A$
 - · What is set A?
 - How to define Z?

Set Basics:

- A special set Ø = { }, called empty or null set, which does not have any element
 - o Note that \emptyset is different from $\{\emptyset\}$.
 - Ø is a set with NO element
 - {Ø} is a set with 1 element, which is the empty set.

Symbol	Symbol Name	Meaning / definition	Example		
Ø or {}	empty set	Ø = { }			
U	universal set	set of all possible values			
a∈A	element of	set membership	$A=\{3,9,14\}, 3 \in A$		
a∉A	not element of	no set membership	A={3,9,14}, 1 ∉ A		
$A \subseteq B$	subset	every element in set A is also an element in set B	$\{9,14,28\} \subseteq \{9,14,28\}$		
$A \subset B$	proper subset / strict subset				
A ⊄ B	not subset	left set not a subset of right set	{9,66} ⊄ {9,14,28}		
$A \supseteq B$	superset	set A contains all elements in set B	$\{9,14,28\} \supseteq \{9,14,28\}$		
$A\supset B$	proper superset / strict superset	set A contains at least one more element than set B	$\{9,14,28\}\supset\{9,14\}$		
A ⊅ B	not superset	set A is not a superset of set B	{9,14,28} ⊅ {9,66}		
$A \cap B$	intersection	set of elements that belong to set A and set B			
$A \cup B$	union	set of elements that belong to set A or set B	$A \cup B = \{3,7,9,14,28\}$		
A = B	equality		A={3,9,14}, B={3,9,14}, A=B		
A' or A ^c	complement	set of all elements that do not belong to set A			
A - B	relative complement	set of all elements that belong to A and not to B	A={3,9,14}, B={1,2,3}, A-B={9,14}		
$A \Delta B \text{ or } A \ominus B$	symmetric difference	set of all elements that belong to A or B but not to their intersection	A={3,9,14}, B={1,2,3}, A Δ B={1,2,9,14}		

Formal Definitions:

- A ⊆ B iff ...
 Ø ⊆ Ø ?
- $\emptyset \subseteq A$ for any set A?
- $A \subset B \text{ iff } \dots$
- A = B iff ...

Operations on Set:

- A ∪ B = ...
- A ∩ B = ...
- A−B = ...

Two set are **equal** iff $A \subseteq B$ and $B \subseteq A$ Two sets are **disjoint** if $A \cap B = \emptyset$

Set Identities & Set Dual properties:

$$A \cup B = B \cup A$$

$$\mathsf{A} \cup (\mathsf{B} \cup \mathsf{C}) = (\mathsf{A} \cup \mathsf{B}) \cup \mathsf{C}$$

$$\mathsf{A} \cup (\mathsf{B} \cap \mathsf{C}) = (\mathsf{A} \cup \mathsf{B}) \cap (\mathsf{A} \cup \mathsf{C})$$

$$A \cup A = A$$

$$A \cup \emptyset = A$$

$$A \cup U = U$$

$$A \cap B = B \cap A$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cap A = A$$

$$A \cap U = A$$

$$A \cap \emptyset = \emptyset$$

More Identities:

$$A - (B \cup C) = (A - B) \cap (A - C)$$

$$A - (B \cap C) = (A - B) \cup (A - C)$$

Set Closure

A set S is "closed under operation X" if the result of performing operation X on elements from set S is also in set S.

➤ Take the necessary number of arguments from set S, perform the operation X, check to see if the result is still in set S.

With respect to operations +, -, *, / (floating division), DIV (integer division):

- N is closed under:
 - o +, *
- Z is closed under:
 - o +, -, *
- R is closed under:
 - o +, -, *
- N⁺ is closed under:
 - o +, *

Practice:

- R {0} is closed under what operations?
- Let F = set of Fibonacci numbers
 Is F closed under addition?
- ➤ Question: Would a finite set of integers closed under +?

CSC311 Revision Notes: 5

More Set Operations and Symbols:

Symbol	Symbol Name	Meaning / definition	Example		
2^{A} or $\mathcal{P}(A)$	Power set	ower set Set of all subsets of A			
(a,b)	ordered pair	collection of 2 elements			
$\mathbf{A}{\times}\mathbf{B}$	Cartesian product	set of all ordered pairs from A and B			
A	Cardinality	the number of elements of set	A={3,9,14}, A =3		

Power Set, P(A): Set of sets $P(A) = 2^A = \text{set of all possible subsets}$

$$= \{ x \mid x \subset A \}$$

A power set of any set A must have at least two subsets:

$$\circ \ \varnothing \subseteq A$$

$$\circ A \subseteq A$$

Example:

$$A = \{\}$$

 $P(A) = \{\emptyset$

$$B = \{1\}$$

P(B) = { Ø,

$$C = \{1,2\}$$

$$P(C) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$

$$D = \{1,2,3\}$$

$$P(D) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \}$$

CSC311 Revision Notes: 6

```
{1,2}, {1,3}, {2,3}
          {1,2,3}
E = \{1,2,3,4\}
P(E) = \{ \emptyset, \}
          {1}, {2}, {3}, {4}
          {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}
          \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\},
          {1,2,3,4},
F = \{1,2,3,4,5\}
P(F) = ?
G = \{1,2,3,4,5,6\}
P(G) = ?
|A| = cardinality of a set
for a finite set A, |A| = number of elements in set A
|A| = 0, |P(A)| = 1
|A| = 1, |P(A)| = 1+1 = 2
|A| = 2, |P(A)| = 1+2+1 = 4
|A| = 3, |P(A)| = 1+3+3+1 = 8
|A| = 4, |P(A)| = 1+4+6+4+1 = 16
```

- Theorem: for any set A, $|P(A)| = 2^{|A|}$
- ➤ Hint: using mathematic induction and note how do you derive P(B) from P(A), P(C) from P(B), P(D) from P(C), and P(E) from P(D) as the size of the set increases.
- > Hint: An element is either in or not in a subset of A

Other related topics:

- Pascal Triangle
- Binomial Theorem
- Prove that for any n>r>0,

$$C(n,r) = C(n-1,r-1) + C(n-1,r)$$

• Prove that
$$\sum_{i=0}^{n} C(n,i) = 2^{n}$$

Partition

 A collection of nonempty disjoint subsets of S whose union equals S.

Partition π of a set A is a set of subsets of A such that

- 1. $\forall x \in \pi, x \neq \emptyset$
 - Each element in π is non-empty
- 2. $\forall x, y \in \pi, x \cap y = \emptyset$
 - Distinct elements in π are disjoint
- $3. \bigcup_{x \in \pi} x = A$
 - Union of all elements in π gets back the original set

Example:

 $\pi = \{\{1,2,3,4\}\}\ ?$

```
A = \{1,2,3,4\}
P(A) = \{\emptyset, \\ \{1\}, \{2\}, \{3\}, \{4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}, \}
\pi = \{\emptyset, \{1,2\}, \{3,4\}\}?
\pi = \{\{1\}, \{2,3\}, \{4\}\}?
\pi = \{\{1\}, \{2,3\}, \{4\}\}?
\pi = \{\{1\}, \{2,3\}, \{4\}\}?
```

Theorem: Equivalence Classes form a Partition.

Practice: Given B = { \emptyset , { \emptyset }, {{ \emptyset , {{ \emptyset , { \emptyset }}}}, (\emptyset), {(\emptyset , \emptyset)}} } Write out all partitions with exactly 1, 2, 3, 4 and 5 elements.

CSC311 Revision_Notes: 9

Cartesian Product

A X B =
$$\{ (a,b) : a \in A \text{ and } b \in B \}$$

|A X B| = |A|·|B| (Proof?)

Binary Relation R:

$$R \subseteq A X B \Rightarrow R_i \in P(A X B)$$

$$|R_i| = |P(A \times B)| = 2^{|A \times B|} = 2^{|A| \cdot |B|}$$

Properties of Relation:

$$\begin{split} R \subseteq AXA \\ xRy \ \text{iff} \ (x,y) \in R \\ R(x,y) \ \text{iff} \ (x,y) \in R \end{split}$$

1. Reflexive:

$$\forall x \in A, (x,x) \in R$$

2. Symmetric:

$$\forall x,y \in A$$
, if $(x,y) \in R$, then $(y,x) \in R$

3. Transitive:

$$\forall x,y,z \in A$$
, if $(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \in R$

4. Anti-symmetric:

$$\forall x,y \in A$$
, if $(x,y) \in R$ and $(y,x) \in R$, then $x = y$

Question:

- Not Symmetric == Anti-Symmetric?
- Can a relation be Symmetric and Anti-Symmetric at the same time?

Give example of relations that exhibits 16 different combinations of properties:

• Some cases might not be possible, but which one(s)?

R	S	Т	Α	Example
Т	Т	Т	Т	"="
T	Т	T	F	
T	T	F	T	
T	Т	F	F	
Т	F	T	T	"≤"
T	F	T	F	
Т	F	F	T	
T	F	F	F	
F	T	T	T	
F	T	T	F	
F	T	F	T	
F	T	F	F	
F	F	T	T	"<"
F	F	Т	F	
F	F	F	T	
F	F	F	F	

A relation that is Reflexive, Symmetric and Transitive is known as **Equivalence Relation**.

Examples:

Which one of the following relations is equivalence relation?

R1: A = {all human}, xRy iff x is the father of y

R2: $A = \{all human\}, xRy iff x is the brother of y$

R3: A = {all males}, xRy iff x is the brother of y

R4: A = {all human}, xRy iff x and y have the same parents

R5: A = {Morehouse students}, xRy iff x and y take CSC311}

R6: A = N, xRy iff $x \mod 5 = y \mod 5$

R7: $A = N^+$, (a/b)R(c/d) iff ad = bc

Equivalence relation R on set A divides set A into a number of **Equivalence Classes** [a]_R:

$$[a]_R = \{ b \in A : (a, b) \in R \}$$

R4:

```
[Billingslea, Marcus]<sub>R4</sub> = ?
[Boadi, Noell<sub>R4</sub> = ?
[Bradford, Emmanuel]_{R4} = ?
[Brown, Mason]R4 = ?
[Egwuekwe, Aren]_{R4} = ?
[Fuller Reed, Jakylan]<sub>R4</sub> = ?
[Gray, Amari]<sub>R4</sub> = ?
[Gray, Christian]_{R4} = ?
[Hulett, Kobe Ryan]<sub>R4</sub> = ?
[Hutchins, Julian]<sub>R4</sub> = ?
[Mccoy, Keyshawn]<sub>R4</sub> = ?
[Nurse, Marlon]_{R4} = ?
[Okeke, Chimezie]<sub>R4</sub> = ?
[Oliga, John]R4 = ?
[Ross. Mark]<sub>R4</sub> = ?
[Smith, Jonah]_{R4} = ?
[Stokes, Kaleb]<sub>R4</sub> = ?
[Swain, Mark-Anthony]_{R4} = ?
[Von Lotten, Zachary]<sub>R4</sub> = ?
[Wilson, Paul]<sub>R4</sub> = ?
[Young, Masai]_{R4} = ?
```

R6:

```
R7:

[1/2]_{R7} = ?

[3/10]_{R7} = ?

[4/13]_{R7} = ?
```

Questions for discussion:

R5:

Is R5 an equivalence relation? How to make R5 into an equivalence relation, R5E? If so, what are the equivalence classes R5E?

R5E:

```
[Billingslea, Marcus]R5E = ?
[Boadi, Noel]<sub>R5E</sub> = ?
[Bradford, Emmanuel]_{R5E} = ?
[Brown, Mason]<sub>R5E</sub> = ?
[Egwuekwe, Aren]_{R5E} = ?
[Fuller Reed, Jakylan]<sub>R5E</sub> = ?
[Gray, Amari]<sub>R5E</sub> = ?
[Gray, Christian]<sub>R5E</sub> = ?
[Hulett, Kobe Ryan]<sub>R5E</sub> = ?
[Hutchins, Julian]<sub>R5E</sub> = ?
[Mccoy, Keyshawn]<sub>R5E</sub> = ?
[Nurse, Marlon]R5E = ?
[Okeke, Chimezie]<sub>R5E</sub> = ?
[Oliga, John]<sub>R5E</sub> = ?
[Ross, Mark]_{R5E} = ?
[Smith, Jonah]_{R5E} = ?
[Stokes, Kaleb]<sub>R5E</sub> = ?
[Swain, Mark-Anthony]<sub>R5E</sub> = ?
[Von Lotten, Zachary]<sub>R5E</sub> = ?
[Wilson, Paul]<sub>R5E</sub> = ?
[Young, Masai]R5E = ?
```

- > How many equivalence classes are there?
- Number of distinct equivalence classes finite or infinite?
 - o Give an equivalence relation for each case

Theorem: Equivalence Classes form a Partition

Proof:

- 1. Each equivalence class is non-empty.
 - ∀a∈S, [a]_R ≠Ø???
- 2. Distinct equivalence classes are disjoint

○
$$\forall a,b \in S$$
, $[a]_R \cap [b]_R = \emptyset$ unless $[a]_R = [b]_R$
???

3. Union of all equivalence classes = S

○
$$\bigcup_{a \in S} [a]_R = S$$

???

Closure on Relations:

A binary relation R^* on set S is the **closure** of a relation R on S with respect to property P if:

- 1. R* has the property P (though R doesn't have property P)
- 2. *R* ⊂ *R**
- 3. R^* is a subset of any other relation on S that includes R and has the property P (i.e. R^* is the smallest relation that has P)

Given a binary relation R, find the reflexive, symmetric and transitive closure.

- 1. Reflexive closure?
- 2. Symmetric closure?
- 3. Transitive closure?
- Note that finding the reflexive and symmetric closure is a one-pass operation.
 - Is finding the transitive closure also a one-pass operation?
 - No, the new added ordered pairs may introduce new transitive relationship with the old ordered pairs
 - o Do we need to find the anti-symmetric closure?

Practice: Find the reflexive, symmetric and transitive closure: $S = \{1, 2, 3\}$

 $R = \{(1,1), (1,2), (1,3), (3,1), (2,3)\}.$

Programming Practice:

Write a program to read in a set S of elements and a set R of ordered pairs, and then generate the reflexive, symmetric and transitive closure of R.

Function (Total Function):

 $f: A \rightarrow B \subseteq R$: AXB such that

- 1. $\forall a \in A$, $\exists b \in B$ such that f(a) = b
- 2. ∀a∈A, ∀b,c∈B, if f(a)=b and f(a)=c, then b=c

Function without property one is called *Partial Function*.

Types of functions:

1. One-to-One (Injective):

 $\forall a,b \in A, c \in B, if f(a)=c and f(b)=c, then a=b$

2. Onto (Surjective):

 $\forall b \in B, \exists a \in A \text{ such that } f(a) = b$

3. Bijection:

One-to-One and Onto
Inverse function f¹ exists

4. None of above

CSC311 Revision_Notes: 15

CSC311 Revision Notes: 16

Questions:

- Inverse of a One-to-one is also a function?
- Inverse of a Onto is also a function?

Questions:

Given |A| = p, |B| = q, how many

- 1. relations R:AXB can be defined?
- 2. functions f:A→B can be defined?
- 3. One-to-One function can be defined ($p \le q$)?
- 4. Onto function can be defined ($p \ge q$)?
- 5. Bijection function can be defined (p = q)?

Composition of functions and relations:

Given $R_1 \subseteq S X T$ and $R_2 \subseteq T X U$

 $R_1 \circ R_2 = \{(x,z) : \exists y \in T \text{ such that } (x,y) \in R_1 \text{ and } (y,z) \in R_2\}$

Given $f: S \to T$ and $g: T \to U$

The composition function, $g \circ f: S \to U$

$$g^{\circ}f(x) = g(f(x))$$

• The function $g \circ f$ is applied right to left; function f is applied first and then function g.

f	g	g°f	
One-to-One	One-to-One	One-to-One	
One-to-One	Onto	??	
One-to-One	Bijection	One-to-One	
Onto	One-to-One	??	
Onto	Onto	Onto	
Onto	Bijection	Onto	
Bijection	One-to-One	One-to-One	
Bijection	Onto	Onto	
Bijection	Bijection	Bijection	

CSC311 Revision Notes: 17 CSC311 Revision Notes: 18

Finite vs Infinite Sets

|A| denotes the cardinality (number of elements) of a set

- For a finite set A:
 - |A| = number of elements in set A, which is simply a single integer.
 - \circ e.g. A={1,2,3}, B={a,b,c}, then |A| = |B| = 3
- For infinite sets:
 - o How do we count the number of elements in the set?
 - O What is the number of the elements?
 - o For N, Z and R, which one has more elements?
 - |N| = |Z|?
 - |N| = |R|?
 - Cardinality is not a single number. There are two kinds of infinite set:
 - Countable infinite
 - Uncountable infinite

"Equinumerous":

2 sets A and B are "**equinumerous**" iff \exists a bijection f: A \rightarrow B. \Rightarrow these sets have the same number of elements

- A bijection f is a function such that every element in A is mapped to a distinct element in B, and vice versa.
 - In order for f to be a bijection, |A| = |B|

A BIJECTION IS A ONE-TO-ONE CORRESPONDENCE BET

- Is there any difference if f: B → A instead?
- As for A= {1,2,3}, B={a,b,c}, sets A and B are equinumerous because a bijection f: A → B exists: f(1)=a, f(2)=b, f(3)=c

or ...
(there could be 6 different definitions of the bijection f)

o Given C = {
$$x \in N : x = 2y$$
 for some $y \in N$ }
D = { $x \in N : x = 2y+1$ for some $y \in N$ }

- Are C and D equinumerous?
- If yes, give an explicit bijection f: $C \rightarrow D$.

Countably vs Uncountably Infinite

Countably infinite (Denumerable) Set:

- Able to select a first element, second element, and so on.
- There exists a counting scheme (bijection function) so that sooner or later I can reach/list out every element in the set.
- Axiom: N is countably infinite
 - o Why?
 - o N is the "smallest/basis" infinite set

Formal definition:

A set S is **countably infinite** iff S is **equinumerous** with N (i.e \exists a bijection f: S \rightarrow N or f: N \rightarrow S).

- Is set of even natural number set C countably infinite?
 - ightharpoonup Yes, because \exists a bijection f: N \rightarrow C such that f(x) = 2x
- Is set of odd natural number set D countably infinite?
 - \succ Yes, because \exists a bijection f: N \rightarrow D such that f(x) = 2x + 1
- Is Z countably infinite?

Integers	0	1	-1	2	-2	3	-3	4
Naturals	0	1	2	3	4	5	6	7

➤ Yes, because \exists a bijection f: $N \rightarrow Z$ such that f(x) = ???

• Is Q⁺ countably infinite?

 \triangleright Yes, because \exists a bijection f: $Q^+ \rightarrow N$ such that

$$f(1/1) = 0$$

$$f(1/2) = 1$$

$$f(2/1) = 2$$

$$f(1/3) = 3$$

$$f(2/2) = 4$$

$$f(3/1) = 5$$

$$f(1/4) = 6$$

$$f(2/3) = 7$$

$$f(3/2) = 8$$

$$f(4/1) = 9$$

$$f(1/5) = 10$$

➤ Hint: note the pattern and set up a recurrence relation and solve it.

Theorems:

- 1. Union of 2 countably infinite sets is countably infinite. ➤ Proof?
- 2. Union of countably infinite number of countably infinite sets is countably infinite.

Prove that N X N is countably infinite (Theorem 2):

Using dovetailing method:

 \exists a bijection f: N X N \rightarrow N such that

$$f(0,0) = 0$$

$$f(1,0) = 1$$

$$f(0,1) = 2$$

$$f(2,0) = 3$$

$$f(1,1) = 4$$

$$f(0,2) = 5$$

$$f(3,0) = 6$$

$$f(2,1) = 7$$

$$f(1,2) = 8$$

$$f(0,3) = 9$$

...

$$f(i,j) = ???$$

Implications of Theorems 1 and 2:

- Countably Infinity + Countably Infinity = Countably Infinity
- Countably Infinity X Countably Infinity = Countably Infinity
- o Is there a bigger infinity than N?
- o Could there be more infinite than an "infinite" set?

Uncountably Infinite

- NO counting scheme to list out all the element in the set one by one
- Bijection does not exist!
- Given any hypothetical enumerable scheme, you can always find an element that is not part of the enumeration.
 - In particular with respect to a number set S, if for any two elements a, b in S, there exists an element c from S such that a<c<b.
- Is R countably or uncountably infinite?
 - o How to prove bijection does not exist?
 - o Proof by Diagonalization Principle

➤ There are uncountably infinite number of decimal values between 0 and 1!!

CSC311 Revision Notes: 23

CSC311 Revision_Notes: 24

Proof Techniques:

- Direct proof
- Proof by contrapositive:

$$(P{\rightarrow}Q) \leftrightarrow (\neg Q \rightarrow \neg P)$$

Proof by contradiction

Assume false of Q, arrive contradiction

$$P \land \neg Q \rightarrow False$$

- Proof by construction:
 - ∃ "there exists"
- Proof by induction:

∀" for all " on a total order set (linear ordering)

- · Weak induction:
 - o prove base case
 - prove P(k) → next case: P(k+1)
- Strong induction:
 - o prove base caseS
 - prove $\forall 1 \le i \le k$, $P(i) \rightarrow next$ case: P(k+1)
- **Pigeonhole Principle**: if |A| > |B|, there is no one-to-one function from A to B
 - ➤ There exists at least one element in B such that it is the image of more than one element in A
 - > At least 2 elements in A share the same image in B.

• Diagonalization Principle

- To give you a way to construct another enumeration which is distinct from the existing enumeration.
- o In other words, the bijection cannot exist!

Diagonalization Principle

R is a binary relation on set A

For each $\alpha \in A$,

$$R_{\alpha} = \{ b \in A : (\alpha,b) \in R \}$$

Define D: the diagonal set for R

$$D = \{ \alpha \in A : (\alpha, \alpha) \notin R \}$$

Then **D** is distinct from each R_a

For example,

$$A = \{ a,b,c,d,e,f \}$$

$$R = \{(a,a),(a,b),(a,d),(b,e),(c,a),(c,c),(c,d),(c,f),(d,b),(d,f),\\ (e,c),(e,d),(f,a),(f,d),(f,e),(f,f)\}$$

The order pairs in R can be represented by a table:

	а	b	С	d	е	f
а	Х	Х		Х		
b					Х	
С	Х		Х	Х		Х
d		Х				Х
е			Х	Х		
f	Х			Х	Χ	Х

$$R_a = \{a,b,d\}$$

$$R_b = \{ e \}$$

$$R_c = \{a,c,d,f\}$$

$$R_d = \{b,f\}$$

$$R_e = \{ c, d \}$$

$$R_f = \{a,d,e,f\}$$

D = { b,d,e } is distinct from each R_a, R_b, R_c, R_d, R_e and R_f

Prove set P(N) is Uncountably Infinite

Proof by contradiction: Assume P(N) is countably infinite \exists a bijection f: N \rightarrow P(N).

$$P(N)$$
 is a set of sets and can be enumerated as $P(N) = \{ S_0, S_1, S_2, \dots \}$

Define f as $f(i) = S_i \forall i \in N$

Let the list be enumerated as:

For Example: f(0) is missing in the diagram though.

$$f(1) = \{ 1, \\ f(2) = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 \\ f(3) = \{ 2, 3, 4, 6, 8, 10, \\ f(4) = \{ 1, 3, 4, 5, 7, 9, 1 \\ f(5) = \{ 1, 2, 4, 3, 6, 7, 9, 1 \\ f(6) = \{ 3, 4, 6, 7, 9, 10, \\ f(7) = \{ 1, 5, 7, 9, \\ f(8) = \{ 3, 4, 7, 8, 1 \\ f(9) = \{ 1, 2, 5, 6, 9, 10, \\ f(10) = \{ 1, 2, 4, 5, 6, 9, 10, 1 \\ f(11) = \{ 1, 2, 4, 6, 9, 1 \\ \end{bmatrix}$$

Consider the set

$$T = \{ n \in N : n \notin S_n \}$$

Obviously, T is a set of natural numbers

$$\therefore T \in P(N)$$

$$\Rightarrow$$
 T = S_k for some k

Consider an element k and set S_k : $k \in S_k$ or $k \notin S_k$

Case (i): if
$$k \in S_k$$
, $T = \{ n \in N : n \notin S_n \}$
 $\Rightarrow k \notin T$

Case(ii): if
$$k \notin S_k$$
, $T = \{ n \in N : n \notin S_n \}$
 $\Rightarrow k \in T$

Both cases end with contradiction that $T = S_k$ for some k

- \Rightarrow T \neq S_k for all k
- \Rightarrow T is distinct from the enumeration S₀, S₁, S₂,
- ∴ P(N) is uncountable.
- ⇒ The power set of a countably infinite set is uncountable.

CSC311 Revision Notes: 27

CSC311 Revision_Notes: 28

Prove that set of real numbers, R_{01} , between 0 and 1 is uncountable.

Assume the set of real numbers between 0 and 1 is countable

- \Rightarrow R₀₁ is **equinumerous** with N
- $\Rightarrow \exists a \text{ bijection f: } N \rightarrow R_{01}$
- ⇒ these real numbers can list out one by one

Let the list be enumerated as:

Look at the diagonal digits, d_{ii} , and construct a new real number using these diagonal digits. For each row, pick a digit that is **different** than the diagonal digit

```
Construct p = 0.p_1p_2p_3p_4...
where p_i = (d_{ij} + 1) \%10
```

p is distinct from any real number in the original list.

For example:

- p = 0.439515.... is a real number, but is different from every other number in the list.
 - o It differs from any number in the list by at least one digit and therefore this number p is **not** in the list.
- However, this list was supposed to have all real numbers
 - $\circ\,$ Perhaps we have missed p in the first enumeration?
 - $\circ\;$ What about including p in our first enumeration?
- Therefore, we have a contradiction. Hence our initial assumption must be false
 - ➤ The set of real numbers is not countable(denumerable).