Группа	<u>P3131</u>	К работе допущен
Студент	<u>Зубахин Д. С.</u>	_ Работа выполнена
Преподаватель	Нурыев Р. К.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.03

Изучение центрального соударения двух тел.

Проверка второго закона Ньютона

1. Цель работы.

- **1.1.** Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- **1.2.** Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

2. Задачи, решаемые при выполнении работы.

- 2.1. Исследование потерь импульса.
- 2.2. Исследование зависимости ускорения тележки от силы и массы тележки.

3. Объект исследования.

Тележки.

4. Метод экспериментального исследования.

- 4.1. Измерение величин.
- 4.2. Многократные повторения.

5. Измерительные приборы.

Наименование средства измерения	Предел измерений	Цена деления	Класс точности	Погрешность
Линейка на рельсе	1,30 м	1 см/дел	_	0,5 см
ПКЦ-3 в режиме измерения скорости	9,99 м/с	0,01 м/с.	_	0,01 м/с
Лабораторные весы	250 г	0,01 г	_	0,01 г

6. Рабочие формулы и исходные данные.

$$p_{10x} = m_{1}v_{10x}, \ p_{1x} = m_{1}v_{1x}, \ p_{2x} = m_{2}v_{2x}.$$

$$\delta_{W} = \Delta W_{K}/W_{K0} = \frac{m_{1}v_{1x}^{2} + m_{2}v_{2x}^{2}}{m_{1}v_{10x}^{2}} - 1$$

$$\delta_{p} = \Delta p_{x}/p_{10x} = \frac{(p_{1x} + p_{2x})}{p_{10x}} - 1$$

$$\bar{\delta}_{p} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N}; \ \bar{\delta}_{W} = \frac{\sum_{i=1}^{N} \delta_{Wi}}{N}$$

$$\Delta \bar{\delta}_{p} = t_{\alpha_{AOB},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \bar{\delta}_{p})^{2}}{N(N-1)}}$$

$$\Delta \bar{\delta}_{W} = t_{\alpha_{AOB},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \bar{\delta}_{W})^{2}}{N(N-1)}},$$

$$\delta_{W}^{(3)} = \Delta W_{K}/W_{K0} = \frac{(m_{1} + m_{2})v_{2}^{2}}{m_{1}v_{10}^{2}} - 1$$

$$\delta_{W}^{(T)} = -\frac{W_{\Pi O T}}{m_{1}v_{10}^{2}} = -\frac{m_{2}}{m_{1} + m_{2}}$$

$$a = \frac{(v_{2})^{2} - (v_{1})^{2}}{2(x_{2} - x_{1})},$$

$$T = m(g - a)$$

7. Схема установки

 $T = Ma + F_{m}$

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

8. Результаты прямых измерений и их обработки(таблицы, примеры расчетов).

Таблица 1.1

таолица 1.1						
Nº	m ₁ , г	m ₂ , г	V _{10x} ,	V _{1x} ,	V_{2x} ,	
Опыта			м/с	м/c	м/с	
1			0,82	-0,09	0,66	
2			0,82	-0,13	0,65	
3	53,3	50,5	0,81	-0,17	0,64	
4	33,3	30,3	0,81	-0,10	0,65	
5			0,81	-0,07	0,66	

Таблица 2.1

Nº	m ₁ , г	m ₂ , г	V ₁₀ , м/с	V, м/c
Опыта				
1			0,91	0,33
2			0,95	0,26
3	56,5	53,9	0,91	0,25
4			0,91	0,26
5			0,91	0,24

Таблица 1.2

Nº	m ₁ , г	m ₂ , г	V _{10x} ,	V _{1x} , м/с	V _{2x} , м/с
Опыта			m/c		
1			0,63	-0,27	0,67
2			0,61	-0,11	0,61
3	1045	FO F	0,61	-0,16	0,59
4	104,5	50,5	0,62	-0,21	0,59
5			0,61	-0,17	0,62

Таблица 2.2

№ Опыта	m ₁ , г	m ₂ , г	V ₁₀ , м/с	V, м/c
1			0,61	0,15
2			0,61	0,23
3	107,9	53,9	0,60	0,28
4			0,61	0,24
5			0,60	0,18

Таблица 3.1. Разгоняемое тело – тележка 1. М1 = 49,7

№ Опыта	Состав гирьки	т, г	V ₁ , м/с	V ₂ , м/с
1	Подвеска	2,1	0,21	0,50
2	Подвеска+1ш	3,0	0,28	0,65
3	Подвеска+2ш	3,8	0,32	0,75
4	Подвеска+3ш	4,7	0,36	0,84
5	Подвеска+4ш	5,6	0,39	0,91
6	Подвеска+5ш	6,4	0,43	1,00
7	Подвеска+6ш	7,2	0,46	1,06

Таблица 3.2. Разгоняемое тело – тележка 1. М1 = 100,8

			,	
№ Опыта	Состав гирьки	т, г	V ₁ , м/с	V ₂ , м/с
1	Подвеска	2,1	0,15	0,35
2	Подвеска+1ш	3,0	0,18	0,42
3	Подвеска+2ш	3,8	0,23	0,53
4	Подвеска+3ш	4,7	0,24	0,55
5	Подвеска+4ш	5,6	0,27	0,62
6	Подвеска+5ш	6,4	0,30	0,70
7	Подвеска+6ш	7,2	0,31	0,72

- 9. Результаты косвенных измерений (таблицы, примеры расчетов).
 - 9.1. По данным таблицы 1.1 рассчитать и занести в таблицу 4.1 импульсы тел:

$$p_{10x} = m_1 v_{10x}, \ p_{1x} = m_1 v_{1x}, \ p_{2x} = m_2 v_{2x}.$$

Таблица 4.1

Nº	p _{10x} ,	p _{1x} ,	p _{2x} ,	δ_p	δ_{W}
опыта	мН*с	мН*с	мН*с		
1	43,71	-4,8	33,33	-0,35	-0,37
2	43,71	-6,93	32,82	-0,41	-0,38
3	43,17	-9,06	32,32	-0,47	-0,36
4	43,17	-5,33	32,82	-0,36	-0,37
5	43,17	-3,73	33,33	-0,32	-0,36

$$p_{10x} = 53.3$$
г * 0.82 м/с = $43.706 \approx 43.71$ мН * с $p_{1x} = 53.3$ г * (-0.09) м/с = $-4.797 \approx -4.8$ мН * с $p_{2x} = 50.5$ г * 0.66 м/с = 33.33 мН * с

9.2. Вычислить для каждой строки 4.1 относительные изменения импульса и кинетической энергии системы при соударении по формулам:

$$\delta_{W} = \Delta W_{K} / W_{K0} = \frac{m_{1} v_{1x}^{2} + m_{2} v_{2x}^{2}}{m_{1} v_{10x}^{2}} - 1 \qquad \delta_{p} = \Delta p_{x} / p_{10x} = \frac{\left(p_{1x} + p_{2x}\right)}{p_{10x}} - 1$$

$$\delta_{W} = \frac{53.3 * (-0.09)^{2} + 50.5 * (0.66)^{2}}{53.3 * (0.82)^{2}} - 1 = -0.37$$

$$\delta_{p} = \frac{\left(-4.8 + 33.33\right)}{43.71} = -0.35$$

Рассчитать средние значения , относительных изменений импульса и энергии по двум последним колонкам таблицы 4.1:

$$\overline{\delta}_{p} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N}; \ \overline{\delta}_{W} = \frac{\sum_{i=1}^{N} \delta_{Wi}}{N}$$

$$\overline{\delta p} = \frac{(-0.35) + (-0.41) + (-0.47) + (-0.36) + (-0.32)}{5} = -0.38$$

$$\overline{\delta}_{W} = \frac{(-0.37) + (-0.38) + (-0.36) + (-0.37) + (-0.36)}{5} = -0.37$$

По разбросу отдельных значений, найти погрешности их средних значений:

$$\Delta \overline{\delta}_p = t_{\alpha_{\text{\tiny AOB}},N} \sqrt{\frac{\displaystyle\sum_{i=1}^N \left(\delta_{pi} - \overline{\delta}_p\right)^2}{N(N-1)}} \qquad \Delta \overline{\delta}_W = t_{\alpha_{\text{\tiny AOB}},N} \sqrt{\frac{\displaystyle\sum_{i=1}^N \left(\delta_{Wi} - \overline{\delta}_W\right)^2}{N(N-1)}} \,,$$

9.3. По данным таблицы 1.2 рассчитать и занести в таблицу 4.2 импульсы тел:

$$p_{10x} = m_1 v_{10x}, \ p_{1x} = m_1 v_{1x}, \ p_{2x} = m_2 v_{2x}.$$

Таблица 4.2

Nº	p _{10x} ,	p _{1x} ,	p _{2x} ,	δ_{p}	δ_{W}
опыта	мН*с	мН*с	мН*с		
1	65,84	-28,22	33,84	-0,91	-0,0006
2	63,74	-11,5	30,81	-0,70	-0,18
3	63,74	-16,72	29,80	-0,80	-0,16
4	64,79	-21,94	29,80	-0,88	-0,14
5	63,74	-17,76	31,31	-0,79	-0,12

$$p_{10x} = 104,5 \text{ r} * 0,63 \text{ m/c} = 65,84 \text{ mH} * \text{ c}$$

 $p_{1x} = 104,5 \text{ r} * (-0,27) \text{ m/c} = -28,22 \text{ mH} * \text{ c}$
 $p_{2x} = 50,5 \text{ r} * 0,67 \text{ m/c} = 33,84 \text{ mH} * \text{ c}$

9.4. Вычислить для каждой строки 4.2 относительные изменения импульса и кинетической энергии системы при соударении по формулам:

$$\delta_W = \Delta W_{\text{K}}/W_{\text{K}0} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1 \qquad \delta_p = \Delta p_x/p_{10x} = \frac{\left(p_{1x} + p_{2x}\right)}{p_{10x}} - 1$$

$$\delta_W = \frac{104.5 * (-0.27)^2 + 50.5 * (0.67)^2}{104.5 * (0.63)^2} - 1 = -0.0006$$

$$\delta_p = \frac{(-28.22 + 33.84)}{65.84} - 1 = -0.91$$

Рассчитать средние значения , относительных изменений импульса и энергии по двум последним колонкам таблицы 4.2:

$$\overline{\delta}_{p} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N}; \ \overline{\delta}_{W} = \frac{\sum_{i=1}^{N} \delta_{Wi}}{N}$$

$$\overline{\delta p} = \frac{(-0.91) + (-0.70) + (-0.80) + (-0.88) + (-0.79)}{5} = -0.82$$

$$\overline{\delta_{W}} = \frac{(-0.0006) + (-0.18) + (-0.16) + (-0.14) + (-0.12)}{5} = -0.12$$

По разбросу отдельных значений, найти погрешности их средних значений:

$$\Delta \overline{\delta}_{p} = t_{\alpha_{\text{AOB}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \overline{\delta}_{p})^{2}}{N(N-1)}} \qquad \Delta \overline{\delta}_{W} = t_{\alpha_{\text{AOB}}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \overline{\delta}_{W})^{2}}{N(N-1)}},$$

$$\Delta \overline{\delta}_{W} = 2,78 * \sqrt{\frac{(0,12 - 0,0006)^{2} + 0,06^{2} + 0,04^{2} + 0,02^{2}}{20}} \approx 0,088$$

$$\Delta \overline{\delta}_{p} = 2,78 * \sqrt{\frac{0,09^{2} + 0,12^{2} + 0,02^{2} + 0,06^{2} + 0,03^{2}}{20}} \approx 0,10$$

9.5. По данным из таблицы 2.1 заполнить следующую таблицу.

Таблица 5.1

№ опыта	р ₁₀ , мН*с	р, мН*с	δ_p	$\delta_{\mathrm{W}}^{(\mathrm{9})}$	$\delta_{\mathrm{W}}^{(T)}$
1	51,42	36,42	-0,30	-0,74	
2	50,85	28,7	-0,44	-0,84	
3	51,42	27,6	-0,46	-0,85	-0,49
4	51,42	28,7	-0,44	-0,84	
5	51,42	26,5	-0,48	-0,86	

$$\begin{split} p_{10} &= 56,5 \text{г} * 0,91 \text{м/c} = 51,42 \text{мH} * \text{с} \\ p &= (56,5 \text{г} + 53,9 \text{г}) * 0,33 \text{м/c} = 36,42 \text{мH} * \text{с} \\ \delta_{\text{p}} &= \frac{36,42}{51,42} - 1 = -0,3 \\ \delta_{W}^{(3)} &= \frac{(56,5+53,9)*0,33^{2}}{56,5*0,91^{2}} - 1 = -0,74 \\ \delta_{W}^{(T)} &= -\frac{53,9}{56,5+53,9} - 1 = -0,49 \end{split}$$

Вычислить средние значения $\overline{\delta_p}$, $\overline{\delta_W^{(3)}}$, их погрешности и записать доверительные интервалы для δ_p и $\delta_W^{(3)}$.

$$\frac{\overline{\delta_p}}{\delta_W^{(3)}} = -0.42$$

$$\overline{\delta_W^{(3)}} = -0.83$$

$$\Delta \overline{\delta_p} = 2.78 * \sqrt{\frac{0.12^2 + 0.02^2 + 0.02^2 + 0.04^2 + 0.02^2}{20}} \approx 0.082$$

$$\Delta \overline{\delta_W^{(3)}} = 2.78 * \sqrt{\frac{0.09^2 + 0.01^2 + 0.02^2 + 0.01^2 + 0.03^2}{20}} \approx 0.061$$

9.6. Выполнить вычисления пункта **9.5** для данных из таблицы 2.2, заполнив таблицу 5.2, подобную таблице 5.1.

Таблица 5.2

№ опыта	р ₁₀ , мН*с	р, мН*с	δ_p	$\delta_{\mathrm{W}}^{(\mathfrak{I})}$	$\delta_{\mathrm{W}}^{(T)}$
1	65,82	24,27	-0,63	-0,91	
2	65,82	37,21	-0,43	-0,79	
3	64,74	45,3	-0,30	-0,67	-0,33
4	65,82	38,8	-0,41	-0,77	
5	64,74	29,12	-0,55	-0,86	

$$p_{10} = 107,9$$
г * $0,61$ м/с = $65,82$ мН * с

$$p = (107.9r + 53.9r) * 0.15 \text{ m/c} = 24.27 \text{ mH} * c$$

$$\delta_{\rm p} = \frac{24,27}{65,82} - 1 = -0.63$$

$$\delta_W^{(9)} = \frac{161,8 * 0,15^2}{107.9 * 0.61^2} - 1 = -0.91$$

$$\delta_W^{(T)} = -\frac{53.9}{107.9 + 53.9} - 1 = -0.33$$

Вычислить средние значения $\overline{\delta_p}$, $\overline{\delta_W^{(3)}}$, их погрешности и записать доверительные интервалы для δ_p и $\delta_W^{(3)}$.

$$\frac{\overline{\delta_p}}{\delta_W^{(9)}} = -0.46$$

$$\frac{\delta_W^{(9)}}{\delta_p} = -0.80$$

$$\Delta \overline{\delta_p} = 0.16$$

$$\Delta \overline{\delta_W^{(9)}} = 0.11$$

9.7. Используя значения координат оптических ворот ($1 \times 20,150 \text{ м}$, $2 \times 20,800 \text{ м}$) и данные из таблицы 3.1, вычислить и записать в таблицу 6.1 ускорение а тележки и силу T натяжения нити:

$$a = \frac{(v_2)^2 - (v_1)^2}{2(x_2 - x_1)}, \qquad T = m(g - a)$$

$\mathcal{N}\!$	т, г	$a, M/c^2$	Т, мН
опыта			
1	2,1	0,16	20,29
2	3	0,26	28,68
3	3,8	0,35	36
4	4,7	0,44	44
5	5,6	0,52	52
6	6,4	0,63	58,82
7	7,2	0,7	65,66

$$a = \frac{0.5^2 - 0.21^2}{2(0.8 - 0.15)} \approx 0.16$$

$$T = 2.1 * (0.82 - 0.16) \approx 20.29$$

$$\overline{a} = 0.44$$

$$\overline{T} = 43.64$$

$$b = 83,83$$

 $a = 6,75$

$$d1 = 20,29 - (6,75 + 83,83 * 0,44)$$

$$d2 = 0.13$$

$$d3 = -0.09$$

$$d4 = 0.36$$

$$d5 = 1,66$$

$$d6 = -0.74$$

$$d7 = 0.23$$

$$D = 0.23$$

$$S_D^2 = 3.05$$

$$S_D^2 = 3.05$$

 $S_a^2 = 0.73$

$$\Delta M = \sqrt{4 * 0.73 + 4 * 0.7^2 * 3.05} \approx 3$$

$$Fmp = 6,75 H$$

9.8. Используя значения координат оптических ворот ($1 \times 20,150 \text{ м}$, $2 \times 20,800 \text{ м}$) и данные из таблицы 3.2, вычислить и записать в таблицу 6.2 ускорение а тележки и силу Т натяжения нити:

$$a = \frac{(v_2)^2 - (v_1)^2}{2(x_2 - x_1)}, \qquad T = m(g - a)$$

$\mathcal{N}\!$	т, г	$a, M/c^2$	Т, мН
опыта			
1	2,1	0,077	20,46
2	3	0,11	29,13
3	3,8	0,18	36,63
4	4,7	0,19	45,26
5	5,6	0,24	53,65
6	6,4	0,31	60,86
7	7,2	0,32	68,4

$$a = \frac{0.5^2 - 0.21^2}{2(0.8 - 0.15)} \approx 0.16$$

$$T = 2.1 * (0.82 - 0.16) \approx 20.29$$

$$\overline{a} = 0.44$$

$$\overline{T} = 43,64$$

$$b = 83,83$$

$$a = 6,75$$

$$d1 = 20,29 - (6,75 + 83,83 * 0,44)$$

$$d2 = 0.13$$

$$d3 = -0.09$$

$$d4 = 0.36$$

$$d5 = 1,66$$

$$d6 = -0.74$$

$$d7 = 0.23$$

$$D = 0.23$$

$$S_D^2 = 3.05$$

$$S_a^2 = 0.73$$

$$\Delta M \; = \; \sqrt{4*0.73+4*0.7^2*3.05} \; \approx \; 3$$

Fmp = 8,4 H

$$Tga = \frac{20}{0,225} = 88\Gamma$$

 $Tga = \frac{25}{0,135} = 185\Gamma$

Вывод: В результате выполнения лабораторной работы был подтвержден закон сохранения импульса. Помимо этого, было расчитано изменение энергии тележек как исходя из первоначальныых данных,так и из эксперимента. Теоретические рассчёты попали в подтвержденные доверительные интервалы экспериментального значения.

Помимо этого, был проверен второй закон Ньютона. Также был построен график T=T(a).