Flip-flop

- inputs are considered on the rising (or falling) edge of the clock signal
- ways of making a flip-flop
 - electronics derive the clock signal
 - results in an impulse-like signal
 - use latches \rightarrow master-slave circuits

Master-slave D Flip-flop

Latch vs. Flip-flop

- each category has its utility
- flip-flops used for controlling digital systems
 - the edge of the clock signal is very short compared with the clock period
 - i.e., it can be considered as a moment
 - during each clock period, the system makes exactly one step of its evolution
- latches asynchronous systems

III.2. Complex Sequential Circuits

Registers

- a bistable circuit implements a single bit
 - not very useful in practice
- we can use several bistable circuits together
 - all receive the same command at the same time
 - such a circuit is called register
- types of registers
 - parallel registers
 - shift (serial) registers

Parallel Register

- implementation with
 D bistable circuits
 - can be latches or flipflops, as needed
- the same command (clock)
 - all bits change at the same moments
- natural extension of the bistable circuit

Classic Shift Register

- memorizes the last *n* values applied on the input
- can be implemented only with flip-flops
 - homework: why?

Other Shift Registers

Universal Shift Register

- serial or parallel inputs and outputs
- right or left shift operations
- one can use any of the features above, as needed

s_0	s_1	function		
0	0	unchanged		
0	1	shift right		
1	0	shift left		
1	1	parallel load		

Designing a Sequential Circuit (1)

- finite state machine (automaton)
- 1. determine the states of the circuit
- 2. determine the state transitions
 - how the next state and the outputs depend on the inputs and the current state
- 3. state encoding
 - using the necessary number of bits
- 4. write the truth table for the state transitions

Designing a Sequential Circuit (2)

- 5. minimization
- 6. implementation
 - the state memorized by flip-flops
 - combinational part from the minimization
 - the inputs of the combinational part (current state) are collected from the outputs of the flip-flops and the input variables
 - the outputs of the combinational part (next state) are applied at the inputs of the flip-flops

Binary Counter

- at each moment keeps an *n*-bit number
- at each clock "tick" incrementation
 - could also be decrementation
 - after the maximum value, 0 comes next
 - no inputs, only state variables
 - which keep the current value of the number
 - outputs are identical to the state variables

Example: *n*=4

current state			next state			current state			next state						
q_3	q_2	q_1	q_0	d_3	d_2	d_1	d_0	q_3	q_2	q_1	q_0	d_3	d_2	d_1	d_0
0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	1
0	0	0	1	0	0	1	0	1	0	0	1	1	0	1	0
0	0	1	0	0	0	1	1	1	0	1	0	1	0	1	1
0	0	1	1	0	1	0	0	1	0	1	1	1	1	0	0
0	1	0	0	0	1	0	1	1	1	0	0	1	1	0	1
0	1	0	1	0	1	1	0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	1	1	0	0	0	1	1	1	1	0	0	0	0

Example: *n*=4

by minimization we get the equations below

$$\begin{aligned} &d_0 = \overline{q_0} = q_0 \oplus 1 \\ &d_1 = \overline{q_1} \cdot q_0 + q_1 \cdot \overline{q_0} = q_1 \oplus q_0 \\ &d_2 = \overline{q_2} \cdot q_1 \cdot q_0 + q_2 \cdot \overline{q_1} + q_2 \cdot \overline{q_0} = q_2 \oplus (q_1 \cdot q_0) \\ &d_3 = \overline{q_3} \cdot q_2 \cdot q_1 \cdot q_0 + q_3 \cdot \overline{q_2} + q_3 \cdot \overline{q_1} + q_3 \cdot \overline{q_0} = \\ &= q_3 \oplus (q_2 \cdot q_1 \cdot q_0) \end{aligned}$$

state implementation - D flip-flops

Implementation

Microprogramming (1)

- alternative implementation technique
 - the state is still memorized by flip-flops
 - combinational part implemented by a ROM circuit
 - the inputs of the Boole functions are applied to the address inputs of the ROM
 - the outputs of the Boole functions are collected from the data outputs of the ROM

Microprogramming (2)

- implementation of the combinational part
 - start from the truth table
 - to each location write the desired output values
- advantage flexibility
 - any change of the automaton requires only the rewriting of the contents of the ROM
- drawback low speed
 - ROM circuits are slower than logic gates

The Same Example

- there are $16 (= 2^4)$ states
 - encoded with 4 state bits
- so the ROM circuit will have
 - -2^4 addresses $\rightarrow 4$ address bits
 - 16 locations
 - -4 data bits \rightarrow locations are 4 bits wide
 - in this example there are no inputs and outputs
 of the system only state bits

The Contents of the ROM

address	value
0	0001
1	0010
2	0011
3	0100
4	0101
5	0110
6	0111
7	1000

address	value
8	1001
9	1010
10	1011
11	1100
12	1 1 0 1
13	1110
14	1111
15	0000

Implementation

IV. Internal Representations

- elementary internal representations
 - they are part of the computer's architecture
 - so they are implemented in hardware
 - directly accessible to the programmers
- more complex data structures
 - based on elementary representations
 - defined and accessible to the programmers by software

Elementary Representations

- numerical data
 - integer/rational numbers
 - only certain subsets of these sets
- alpha-numerical data
 - characters etc.
- instructions
 - the only system-specific representations
 - thus non-standardized and non-portable

Studying the Representations

numerical representations

$$repr(n_1) op repr(n_2) = repr(n_1 op n_2) ???$$

- example if we add two integer variables, will the result fit into its destination?
- representation errors
 - approximations
 - overflows

Sending the Information

- between various physical media
 - between computers/systems
 - between the components of a computer/system
- transmission errors may occur
 - due to perturbations/incorrect working
 - digital signal some bits are inverted
 - we wish to detect to occurrence of such errors
 - and even fix them, where possible (correction)

Ways of Detection/Correction

- use additional *redundant* bits
- parity 1 additional bit
 - allows detecting the occurrence of a (1 bit)
 error
 - odd/even parity: odd/even number of bits 1
- Hamming code
 - 4 information bits, 3 additional bits
 - detection/correction of multiple errors simultaneously

Example: Odd Parity

transmitter

- has to send value $(110)_2$
- -2 bits of value 1 (even) \rightarrow the additional bit is 1
- sends $(1101)_2$

receiver

- receives the bit string
- if the number of bits of value 1 is even error
- else eliminate the parity bit and get $(110)_2$

IV.1. Alpha-numerical Codes

Alpha-numerical Codes

- the computer cannot represent characters directly
 - or any non-numerical information: images etc.
- each character is associated a unique number
 - the character is encoded
 - encoding can be at hardware level (elementary representation) or at software level

Standards

- ASCII
 - each character 7 bits plus one parity bit
- EBCDIC
 - former competitor of ASCII
- ISO 8859-1
 - extends the ASCII code
- Unicode, UCS
 - non-latin characters

ASCII Code

- small letters are assigned consecutive codes
 - in the order given by the English alphabet
 - 'a' 97; 'b' 98; ...; 'z' 122
- similarly capitals (65, 66, ..., 90)
- similarly characters that display decimal digits
 - attention: character '0' has code 48 (not 0)
- lexicographic comparison binary comparison circuit

IV.2. Internal Number Representation

Positional Representation

- also a representation
 - 397 is not a number, but a number representation
- invented by Indians/Arabs
- implicit factor attached to each position in the representation
- essential in computer architecture
 - allows efficient computing algorithms

Base (Radix)

- any natural number d>1
- the set of digits for base d: $\{0,1,\ldots,d-1\}$
- computers work with base d=2
 - technically: 2 digits easiest to implement
 - theoretically: base 2 "matches" Boole logic
 - symbols and operations
 - operations can be implemented by Boole functions

Limits

- in practice, the number of digits is finite
- example unsigned integers
 - -1 byte wide: $0 \div 2^{8}$ -1 (= 255)
 - -2 bytes wide: $0 \div 2^{16}$ -1 (= 65535)
 - -4 bytes wide: $0 \div 2^{32}$ -1 (= 4294967295)
- any number that falls outside the limits cannot be represented correctly

Positional Writing

- consider base $d \in N^*-\{1\}$
- and the representation given by the string

$$a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_{-m}$$

• the corresponding number is

$$\sum_{i=-m}^{n-1} \left(a_i \times d^i \right) \tag{10}$$

- d^i is the implicit factor for position i
 - including negative powers

Converting from Base d to Base 10

- according to the previous formula
- the decimal point stays in the same position
- example

$$5E4.D_{(16)} = 5 \times 16^{2} + 14 \times 16^{1} + 4 \times 16^{0} + 13$$

 $\times 16^{-1} = 20480 + 3584 + 64 + 0.8125 =$
 $24128.8125_{(10)}$

Converting from Base 10 to Base d

Example: $87.35_{(10)} = 1010111.01(0110)_{(2)}$

integer part

$$87 / 2 = 43$$
 remainder 1

$$43 / 2 = 21$$
 remainder 1

$$21 / 2 = 10$$
 remainder 1

$$10/2 = 5$$
 remainder 0

$$5/2 = 2$$
 remainder 1

$$2/2 = 1$$
 remainder 0

$$1/2 = 0$$
 remainder 1

$$87_{(10)} = 1010111_{(2)}$$

(digits are considered bottom-up)

fractional part

$$0.35 \times 2 = 0.7 + 0$$

$$0.7 \times 2 = 0.4 + 1$$

$$0.4 \times 2 = 0.8 + 0$$

$$0.8 \times 2 = 0.6 + 1$$

$$0.6 \times 2 = 0.2 + 1$$

$$0.2 \times 2 = 0.4 + 0$$

$$0.4 \times 2 = 0.8 + 0$$

(period)

$$0.35_{(10)} = 0.01(0110)_{(2)}$$

Conversions between Bases

- one base is a power of the other base
 - $-d_1 = d_2^k \Rightarrow$ to each digit in base d_1 correspond exactly k digits in base d_2
- both bases are powers of the same number *n*
 - conversion can be made through base n

$$703.102_{(8)} = 111\ 000\ 011.001\ 000\ 010_{(2)} =$$

$$= 0001 \ 1100 \ 0011.0010 \ 0001 \ 0000_{(2)} =$$

$$=1C3.21_{(16)}$$

Approximation and Overflow

- a representation has *n* digits for the integer part and *m* digits for the fractional part
 - -n and m are finite
- if the number requires more than *n* digits for the integer part, overflow occurs
- if the number requires more than *m* digits for the fractional part, approximation occurs
 - at most 2^{-m}

IV.3. BCD and Excess Representations

BCD Representation

- numbers are represented as strings of digits in base 10
 - each digit is represented on 4 bits
- utility
 - business applications (financial etc.)
 - base 10 displays (temperature etc.)
- arithmetical operations hard to perform
 - addition cannot simply use a binary adder

BCD Addition (1)

problems occur when the sum of the BCD digits exceeds 9

BCD Addition (2)

- solution
 - add 6 (0110) when the sum exceeds 9
- homework: why?

BCD Adder

Excess Representation

- based on positional writing
 - non-negative numbers
 - on *n* bits, the interval of numbers that can be represented is $0 \div 2^n$ -1
- the Excess-*k* representation
 - for each bit string, subtract k from its value given by positional writing
 - the interval that can be represented: $-k \div 2^n k 1$

Example: Excess-5

Binary	Decimal	Excess-5	Binary	Decimal	Excess-5
0000	0	-5	1000	8	3
0001	1	-4	1001	9	4
0010	2	-3	1010	10	5
0011	3	-2	1011	11	6
0100	4	-1	1100	12	7
0101	5	0	1101	13	8
0110	6	1	1110	14	9
0111	7	2	1111	15	10