CHAPTER 10

Other Models Of Turing Machines

By R. Ameri

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
- ·Multiple Track Tape
- Semi-Infinite Tape
- · Off-Line
- Multitape
- Multidimensional
- Nondeterministic

The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power with the Standard Model

Same Power of two classes means:

Both classes of Turing machines accept the same languages

Same Power of two classes means:

For any machine $\,M_1\,$ of first class there is a machine $\,M_2\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

And vice-versa

Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay L,R,S: moves

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$$

Example:

Time 1

Time 2

$$q_1 \xrightarrow{a \to b, S} q_2$$

Theorem:

Stay-Option Machines have the same power with Standard Turing machines

Proof:

Part 1: Stay-Option Machines are at least as powerful as Standard machines

Proof: a Standard machine is also a Stay-Option machine (that never uses the S move)

Proof:

Part 2: Standard Machines

are at least as powerful as

Stay-Option machines

Proof: a standard machine can simulate a Stay-Option machine

Stay-Option Machine

Simulation in Standard Machine

$$\begin{array}{c}
a \rightarrow b, L \\
\hline
q_1 \\
\end{array}$$

Similar for Right moves

Stay-Option Machine

Simulation in Standard Machine

For every symbol X

Example

Stay-Option Machine:

Simulation in Standard Machine:

Standard Machine--Multiple Track Tape

			,					
track 1	\Diamond	b	a	b	a	\Diamond	\Diamond	
track 2	\Diamond	d	C	a	b	\Diamond	\Diamond	
_								

one symbol

$$\delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R\}$$

track 1 track 2

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

Semi-infinite tape machines simulate Standard Turing machines:

Semi-infinite tape machine with two tracks

Standard machine

Semi-infinite tape machine

Standard machine

$$\underbrace{q_1} \xrightarrow{a \to g, R} \underbrace{q_2}$$

Semi-infinite tape machine

Right part

$$\underbrace{q_1^R} \xrightarrow{(a,x) \to (g,x),R} \underbrace{q_2^R}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

For all symbols x

Time 1

Semi-infinite tape machine

Time 2

Semi-infinite tape machine

Theorem:

Semi-infinite tape machines have the same power with Standard Turing machines

The Off-Line Machine

Off-line machines simulate Standard Turing Machines:

Off-line machine:

1. Copy input file to tape

2. Continue computation as in Standard Turing machine

Standard machine

Off-line machine

1. Copy input file to tape

Standard machine

Off-line machine

2. Do computations as in Turing machine

Standard Turing machines simulate Off-line machines:

Use a Standard machine with four track tape to keep track of the Off-line input file and tape contents

Off-line Machine

Four track tape -- Standard Machine

#	а	b	C	d	Input File
#	0	0	1	0	head position
	e	f	g		Tape
	0	1	0		head position
•			•	•	•

Reference point

Input File head position Tape head position

Repeat for each state transition:

- Return to reference point
- · Find current input file symbol
- Find current tape symbol
- Make transition

Theorem: Off-line machines have the same power with Stansard machines

Multitape Turing Machines

$$\delta: Q \times \Gamma^n \to Q \times \Gamma^n \times \{L, R\}^n$$

Time 2

$$\underbrace{q_1}^{(b,f) \to (g,d), L, R} q_2$$

Multitape machines simulate Standard Machines:

Use just one tape

Standard machines simulate Multitape machines:

Standard machine:

Use a multi-track tape

 A tape of the Multiple tape machine corresponds to a pair of tracks

Multitape Machine

Standard machine with four track tape

a	b	C		Tape 1
0	1	0		head position
e	f	g	h	Tape 2
0	0	1	0	head position
 1				•

Reference point

Repeat for each state transition:

- ·Return to reference point
- ·Find current symbol in Tape 1
- ·Find current symbol in Tape 2
- Make transition

Theorem:

Multi-tape machines have the same power with Standard Turing Machines

Same power doesn't imply same speed:

Language
$$L = \{a^n b^n\}$$

Acceptance Time

Standard machine

 n^2

Two-tape machine

n

$$L = \{a^n b^n\}$$

Standard machine:

Go back and forth n^2 times

Two-tape machine:

Copy b^n to tape 2 (n steps)

Leave a^n on tape 1 (n steps)

Compare tape 1 and tape 2 (n steps)

MultiDimensional Turing Machines

MOVES: L,R,U,D

U: up D: down

HEAD

Position: +2, -1

$$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\},\$$

Multidimensional machines simulate Standard machines:

Use one dimension

Standard machines simulate Multidimensional machines:

Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

Two-dimensional machine

a				b					C	
1	#	1	#	2	#		1	#		1

symbols coordinates

Standard machine:

Repeat for each transition

- Update current symbol
- Compute coordinates of next position
- · Go to new position

Theorem:

MultiDimensional Machines have the same power with Standard Turing Machines

NonDeterministic Turing Machines

Non Deterministic Choice

Time 0

Choice 1

Time 1

Choice 2

Input string w is accepted if this a possible computation

 $\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L, R\}}.$

NonDeterministic Machines simulate Standard (deterministic) Machines:

Every deterministic machine is also a nondeterministic machine

Theorem: NonDeterministic Machines have the same power with Deterministic machines

Remark:

The simulation in the Deterministic machine takes time exponential time compared to the NonDeterministic machine

Linear Bounded Automata (LBA)

A non-deterministic Turing machine that uses only the tape space occupied by the input.

Linear Bounded Automata

- Its input alphabet includes two special symbols, serving as left and right endmarkers.
- Linear bounded automata are acceptors for the class of context-sensitive languages.
- linear bounded automata are more powerful than pushdown automata, since neither of the languages is context free.

Linear Bounded Automata

The language
$$L = \{a^n b^n c^n : n \ge 1\}$$

is accepted by some linear bounded automaton. The computation outlined there does not require space outside the original input.

appearblapbaab

abbaubabbaub

abbaababbaab

55

Recursively Enumerable and Recursive Languages

Definition:

A language is recursively enumerable or Turing-recognizable if some Turing machine accepts it

Let L be a recursively enumerable language and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state or loops forever

Definition:

A language is recursive or decidable if some Turing machine accepts it and halts on any input string

In other words:

A language is recursive if there is a membership algorithm for it

Let L be a recursive language

and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state

A Turing Machine decides a language if it accepts all strings in the language and rejects all strings not in the language

There is a specific language which is not recursively enumerable (not accepted by any Turing Machine)

There is a specific language which is recursively enumerable but not recursive

Non Recursively Enumerable

Elements of the Chomsky Hierarchy

the traditional Chomsky hierarchy