Сравнительный анализ методов оценивания бикликового покрытия

Попов Максим 6 Курс ФИВТ Кафедра: Анализ данных

23 июня 2016

Основные результаты

- 1) Сравнил методы оценивания на графах, построенных при помощи геометрических конфигураций;
- 2) Доказал, что метод трудного множества для произвольного графа дает оценки не хуже метода Куликова-Юкны;
- 3) С помощью метода случайных графов показал, что техника трудного множества может давать оценки значительно сильнее, чем метод Куликова-Юкны;
- 4) Получил обобщение метода информационных неравенств для задачи коммуникационной сложности с m>2 участниками.

Определения и понятия

Определение

Бикликой неориенторованного графа называется подмножество его вершин, образующих полный двудольный подграф.

Определение

Бикликовым покрытием bcc(G) графа G будем называть наименьшее число, возможно, пересекающихся биклик, которыми можно покрыть все ребра графа G.

Мотивировка

- 1) Сам по себе вопрос бикликового покрытия вполне естественен в теории графов и играет центральную роль во многих вычислительных задачах.
- 2) Бикликовое покрытие играет важную роль в коммуникационной сложности. Для детерминированной коммуникационной сложности CC(f) верно

$$CC(f) \ge \log_2 \left(\sum_{z \in Z} bcc(G_z) \right)$$

Для недетерминированной коммуникационной сложности NCC(f)верно

$$\left\lceil \log_2 \left(\sum_{z \in \mathcal{Z}} bcc(G_z) \right) \right\rceil + 1 \ge NCC(f) \ge \log_2 \left(\sum_{z \in \mathcal{Z}} bcc(G_z) \right)$$

Метод трудного множества

Определение

Пусть G = (V, E) произвольный неориентированный граф. Будем называть подмножество ребер $S \subseteq E$ трудным, если для любых двух различных ребер $(x,y) \in S$ и $(x',y') \in S$ имеем $(x',y) \notin E$ или $(x,y') \notin E$. Размер максимального трудного множества будем обозначать через fool(G).

Теорема

Если $S\subseteq E$ трудное множество графа G, то $bcc(G)\geq |S|$. B частности, наилучшая оценка по методу трудного множества:

$$bcc(G) \geq fool(G)$$
.

→□▶→□▶→□▶→□▶
□◆□▶

Метод Куликова-Юкны

Данный метод был описан в статье "Jukna S., Kulikov A. S. On covering graphs by complete bipartite subgraphs. 2009".

Теорема

Для произвольного неориентированного графа G = (V, E) верно:

$$bcc(G) \geq \frac{v(G)^2}{|E|},$$

где v(G) – размер максимального паросочетания графа G.

Метод информационных неравенств

Данный метод был описан в статье "Kaced T., Romashchenko A.E., Vereshchagin N.K. Conditional Information Inequalities and Combinatorial Applications. 2015".

Теорема

Пусть ребра двудольного графа G = (L, R, E) раскрашены по следующему правилу:

(*) для произвольной биклики $C \subseteq G$ и для произвольной пары ребер (x,y') и (x',y) из C одного цвета a, цвет ребра (x,y) тоже a.

Пусть на ребрах задано произвольное вероятностное распределение. Определим случайные величины (X,Y,A) следующим образом:

- X = [левый конец ребра]; Y = [правый конец ребра];
- A = [цвет ребра].

Тогда $bcc(G) \ge 2^{\frac{1}{2}(H(A|X)+H(A|Y)-H(A))}$.

Основные теоремы

Теорема

Пусть имеется произвольный неориентированный граф G=(V,E), тогда среди ребер максимального паросочетания можно найти трудное множество размера по крайней мере $\frac{v(G)^2}{|E|}$.

Теорема

Для произвольных $\alpha \in [0, \frac{1}{3})$ и $\beta \in (\alpha, \frac{1+\alpha}{2})$ при достаточно больших п существует двудольный граф G = (L, R, E) такой, что |L| = |R| = n, на котором метод трудного множества дает оценку хотя бы n^{β} , а оценка Куликова-Юкны не превосходит $n^{\alpha} + o(1)$.

Обобщение информационного метода

Теорема

Пусть ребра гиперграфа $G = (X_1, X_2, \dots, X_m, E)$ раскрашены по следующему правилу:

(*) для произвольного полного m-дольного гиперграфа $C \subseteq G$ и для произвольного набора ребер $(x_{1,1},\ldots,x_{1,m}),\ldots,(x_{m,1},\ldots,x_{m,m})$ одного цвета a, цвет ребра $(x_{1,1},x_{2,2},\ldots,x_{m,m})$ тоже a.

Пусть на ребрах задано произвольное вероятностное распределение. Определим случайные величины (X_1,\ldots,X_m,A) следующим образом:

- X_i = [i-ая вершина ребра];
- *A* = [цвет ребра].

Тогда выполняется неравенство:

$$bcc(G) \ge 2^{\frac{1}{m}(H(A|X_1) + ... + H(A|X_m) - (m-1)H(A))}$$

Используемые теоремы и техники

- 1) При доказательстве первой теоремы была придумана конструкция графа четырехсторонников \widetilde{G} . Доказано, что $fool(G) = w(\widetilde{G})$, $\max_{K_{r,s} \subseteq G} \{r \cdot s\} = \alpha(\widetilde{G})$ и $bcc(G) = \chi(\widetilde{G})$. Окончательное утверждение теоремы получается применением теоремы Турана к графу \widetilde{G} .
- 2) Во второй теореме использовались случайные графы Эрдеша-Реньи. При оценивании максимального паросочетания использовалась лемма Холла, а при оценивании количества ребер использовалось неравенство Хефдинга.
- 3) В последней теореме использовалось не Шенноновское информационное неравенство:

$$H(A|X_1,B) + H(A|X_2,B) + \ldots + H(A|X_m,B) \leq (m-1)H(A|B)$$

□ P 4 □ P 4 = P 4 = P 4 = P 4 (*

Открытые вопросы

1) Не удалось доказать, что метод трудных множеств работает почти наверное намного лучше, чем оценка Куликова-Юкны. А именно не получилось доказать

$$\sum_{T: T \sim S_0} P\{I_k(T) = 1 \mid I_k(S_0) = 1\} = o(\mathbb{E}[f_k(G)])$$

2) Не получилось сравнить в общем случае метод трудных множеств с методом информационных неравенств.

Спасибо за внимание!