Aufgabe 6: DNN-Training I - Vorbereitung der Daten

Mit Hilfe der in Aufgabe 1–4 berechneten Features soll in dieser und der nächsten Aufgabe ein Modell für den Spracherkenner mit PyTorch trainiert werden.

Kontextinformation zu den Features hinzufügen

6.1 Implementieren Sie eine Funktion

```
def add_context(feats, left_context=6, right_context=6):
    ...
```

in der Datei feature_extraction.py, die an die Features für jedes Frame jeweils die gegebene Anzahl von left_context und right_context vielen Vorgängerbzw. Nachfolger-Frame-Features anhängt.

Die ersten beiden Dimensionen bleiben dabei gleich, nämlich die Sequenzlänge und die Merkmalsdimension. Die neue, dritte Dimension bekommt nach Anhängen des Kontexts den Wert: c_dim = left_context + right_context + 1.

Für den Kontext der Frames am Anfang und Ende der Sequenzen soll dabei mit Kopien des ersten bzw. letzten Frames aufgefüllt werden. Beachten Sie auch den Sonderfall, dass sowohl left_context als auch right_context Null sein können.

Hilfreiche Funktionen: numpy.roll(), numpy.expand_dims(), numpy.moveaxis(),
numpy.dstack()

6.2 Implementieren Sie eine Funktion

. . .

in der Datei feature_extraction.py, die die jeweilige Merkmalsextraktion durchführt, einen entsprechenden Kontext anhängt und die extrahierten Features mit Kontext zurückgibt. Die extrahierte Merkmale sollen die Dimension [f_len, f_dim, c_dim] haben, wobei f_len die Anzahl der Rahmen der Sequenz, f_dim die Merkmalsdimension und c_dim die Kontextlänge repräsentieren.

Vorbereitung der Trainingsdaten

6.3 Laden Sie die Trainings- und Test-Daten aus der TUB-Cloud herunter:

https://tubcloud.tu-berlin.de/s/y3RDt5x9JGmmrRB (Passwort: ASE2324TUB). Der Datensatz enthält einen TRAIN und einen TEST Ordner. Beide Ordner enthalten jeweils die drei Ordner wav, lab und TextGrid. Der wav-Ordner enthält alle Audiodateien, der lab-Ordner die korrekte Transkription zu der jeweiligen Audiodatei und der TextGrid-Ordner Praat-Dateien¹ mit Information über Anfangsund Endzeiten jedes Wortes/Phonems.

Bitte beachten Sie, dass der Korpus **NICHT** im ./my-repository-Ordner gespeichert werden sollte. Legen Sie bitte die Datenbank in einen lokalen Ordner.

6.4 Neuer Data-Loader: Nehmen Sie Ihre Datei utils.py aus Aufgabe 5 als Beispiel und erstellen Sie ein neues utils.py Skript im Verzeichnis recognizer. Implementieren Sie einen neuen Data-Loader in der Datei utils.py für den gegebenen Datensatz.

Der Data-Loader muss für die Daten

- Die Merkmale extrahieren und
- die Labels extrahieren,
- die Merkmale und Labels in die richtige Form bringen (Tensoren für PyTorch)
- und dafür zunächst alle Dateien finden,

Finden der Dateien

Im ISIS-Kurs finden Sie Aufgabe6.zip. Um die Data-Loader für die Trainings-, Development- und Testsets zu erstellen, benötigen Sie aus diesem File die Meta-informationen zum Datensatz. Bitte kopieren Sie daher den dataset-Ordner aus Aufgabe6.zip in Ihr lokales Repository: ./my_repository/.

Der dataset-Ordner enthält danach drei JSON-Dateien mit allen Metainformationen. Dazu zählen der Pfad der akustischen Aufnahme sowie die Ground-Truth-HMM-Zustände für die Trainings-, Development- und Testsets.

Aus diesen JSON-Dateien erhalten Sie die Pfade zu den Audiodateien (audiodir) und den Label-Dateien (targetdir). Passen Sie Ihre __getitem__-Funktion im Data-Loader an, sodass diese Pfadinformationen benutzt werden, um auf die Dictionaries für die Audiodaten und Labelinformationen zuzugreifen.

¹Siehe Aufgabe 6.4

Berechnung der Merkmale Berechnen Sie in Ihrem Data-Loader die Features jeweils mit der zuvor definierten Funktion

Mithilfe des Dictionaries parameters werden dabei alle für die Merkmalsextraktion benötigten Parameter übergeben. Mit Hilfe von **parameters können Sie die Parameter einfach 'entpackt' an eine Funktion übergeben, die auf die einzelnen Parameter zugreift. Setzen Sie feature_type=MFCC_D_DD, window_size=25e-3, hop_size=10e-3, n_filters=40, fbank_fmin=0, fbank_fmax=8000, num_ceps=13, left_context=10, und right_context=10.

Berechnung der Labels In Aufgabe6.zip finden Sie auch die Datei recognizer/tools.py beinhaltet vier Funktionen. Eine davon, die praat_file_to_target-Funktion, ermöglicht es Ihnen, schnell die Labels aus Praat-Dateien zu berechnen. Um diese Funktion verwenden zu können, kopieren Sie bitte diese vier Funktionen in Ihre eigene recognizer/tools.py-Datei.

Für die Berechnung der Ground-Truth-Labels benötigen Sie die Bibliothek praatio, die Sie via pip install praatio in Ihrer virtuellen Umgebung installieren können. Wenn Sie Probleme bei der Installation der praatio-Bibliothek haben, lesen Sie bitte die Installationsanleitung am Ende dieses Übungsblatts.

Außerdem enthält die Aufgabe6.zip-Datei eine Version der HMM-Klasse² namens recognizer/hmm.py, die nur die notwendigen Funktionen zur Berechnung der Labels enthält. In den nächsten Übungen wird diese Klasse durch Ihre eigenen Funktionen erweitert. Kopieren Sie recognizer/hmm.py in Ihr eigenes recognizer-Verzeichnis.

Um ein hmm unter Nutzung von hmm.py zu konstruieren, fügen Sie zunächst die Importanweisungen import recognizer.hmm as HMM ein. Erstellen Sie dann das hmm mit hmm=HMM.HMM().

Die Ground-Truth Labels können schließlich mit

²HMM: Hidden Markov Model. HMMs sind das Thema der ersten Vorlesung im neuen Jahr.

berechnet werden.

Merkmale und Labels in die richtige Form bringen Die extrahierten Merkmale und die Ground-Truth-Labels müssen abschließend mit Hilfe von torch.FloatTensor() in Tensoren umgewandelt werden.

Hinweis:

- Im Gegensatz zu Aufgabe 5 sollten akustische Merkmale auf keinen Fall gemäß der Variable max_len beschnitten werden.
- Eine Padding-Funktion ist nicht erforderlich, weil die Batchgröße auf 1 festgelegt wird.

Überprüfung und Darstellung der Ergebnisse: Erstellen Sie ein uebung6.py-Skript, in dem Sie einen Data-Loader für das Development-Set erstellen. Setzen Sie die Batchgröße bitte auf 1. Iterieren Sie durch Ihren Data-Loader, um sicherzustellen, dass dieser die extrahierten Merkmale und die entsprechenden Ground-Truth-Labels zurückgibt. Plotten Sie die Ground-Truth-Labels der ersten beiden Samples, die vom Data-Loader zurückgegeben wurden, und überprüfen Sie, ob sie unterschiedlich sind. Falls sie gleich aussehen, könnte Ihr Data-Loader einen Fehler aufweisen. Setzen Sie sampling_rate=16000. Das Ergebnis sollte prinzipiell so aussehen wie in Abbildung 1.

Abbildung 1: Ground-Truth-Labels für das Beispiel TEST-WOMAN-BF-7017049A. TextGrid.

Hinweis: Achten Sie bitte auf den Unterschied zwischen window_size und window_size_samples, sowie zwischen hop_size und hop_size_samples.

Repository-Struktur

Nach dem heutigen Praktikum sollte Ihr Repository die folgende Struktur haben. Spracherkenner:

```
./my-repository/data/TEST-MAN-AH-3033951A.wav
./my-repository/dataset/train.json
./my-repository/dataset/dev.json
./my-repository/dataset/test.json
./my-repository/recognizer/__init__.py
./my-repository/recognizer/hmm.py
./my-repository/recognizer /tools.py
./my-repository/recognizer/feature-extraction.py
./my-repository/recognizer/utils.py
```

PyTorch-Einführung:

```
./my-repository/torch_intro/dataset/train.json
./my-repository/torch_intro/dataset/dev.json
./my-repository/torch_intro/dataset/test.json
./my-repository/torch_intro/local/feature-extraction.py
./my-repository/torch_intro/local/model.py
./my-repository/torch_intro/local/utils.py
./my-repository/torch_intro/local/train.py
```

Hauptskripte:

```
./my-repository/uebung1.py
./my-repository/uebung2.py
./my-repository/uebung3.py
./my-repository/uebung4.py
./my-repository/uebung5.py
./my-repository/uebung6.py
```

Installation der praatio-Bibliothek

Wenn Sie versuchen, die praatio-Bibliothek in der Python-3.6-Anaconda-Umgebung zu installieren, kann es vorkommen, dass Python die Bibliothek nicht findet, wie in Abbildung 2 gezeigt. Um dieses Problem zu lösen, können Sie den "Conda Package Manager" verwenden. Dadurch können Sie die praatio-Bibliothek einbinden, wie in Abbildung 3 dargestellt. Für unsere Aufgabe brauchen wir die praatio<5.0-Version.

Abbildung 2: Es wurde keine praatio-Bibliothek gefunden.

Abbildung 3: praatio-Bibliothek installieren.