Data Analysis

basics

Kunal Khurana

2023-01-16

Table of contents

1. Introduction

In this exercies, we'll predict the probability of customer exiting the bank or not with classification techniques.

2. Dataset Overview

2.1 Loading Libraries

```
# import libraries

import warnings as wrn
wrn.filterwarnings('ignore', category = DeprecationWarning)
wrn.filterwarnings('ignore', category = FutureWarning)
wrn.filterwarnings('ignore', category = UserWarning)

#import optuna
#import xgboost as xgb
```

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import GroupKFold
from sklearn.metrics import accuracy_score, classification_report, mean_absolute_error
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import LinearSVC
from sklearn.preprocessing import RobustScaler
from sklearn.pipeline import make_pipeline
from sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score
from sklearn.metrics import make_scorer, accuracy_score, median_absolute_error
#from imblearn.over_sampling import RandomOverSampler
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error, r2_score
#import lightgbm as lgb
import numpy as np
from scipy import stats
# reading .csv files
train_data = pd.read_csv('train_bank.csv')
test_data = pd.read_csv('test.csv')
orignal_data = pd.read_csv('Churn_Modelling.csv')
```

2.2 Initial Observations and Trends

```
train_data.head()
```

	id	CustomerId	Surname	CreditS	core	Geography	Gender	Age	Tenure	Balance	NumO	fProduct
0	0	15674932	Okwudili	ichukwu	668	Fra	ince	Male	33.0	3	0.00	2
1	1	15749177	Okwudili	iolisa	627	Fra	ince	Male	33.0	1	0.00	2
2	2	15694510	Hsueh		678	Fra	nce	Male	40.0	10	0.00	2

	id	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfPr	oduc
3	3	15741417	Kao	581	Fra	nce	Male	34.0	2	148882.54	1
4	4	15766172	Chiemena	m 716	Spa	ain	Male	33.0	5	0.00	2

test_data.head()

	id	Custo	omerId	Surname	Credit	Score	Geography	Gender	Age	Tenure	Balance	NumOfF	roduc
0	16	5034	1577389	98 Luc	chese	586	Fran	ce I	Female	23.0	2 (0.00	2
1	16!	5035	1578241	18 Not	t	683	Fran	ce I	Female	46.0	2 (0.00	1
2	16!	5036	1580712	20 K?		656	Fran	ce I	Female	34.0	7	0.00	2
3	16!	5037	1580890	05 O'D	onnell	681	Fran	ce I	Male	36.0	8 (0.00	1
4	16!	5038	156073	14 Higg	gins	752	Gern	nany I	Male	38.0	10	21263.62	1

orignal_data.head()

	RowNumber	CustomerId	Surname	${\bf Credit Score}$	Geography	Gender	Age	Tenure	Balance	Num
0	1	15634602	Hargrave	619	France	Female	42.0	2	0.00	1
1	2	15647311	Hill	608	Spain	Female	41.0	1	83807.86	6 1
2	3	15619304	Onio	502	France	Female	42.0	8	159660.8	80 3
3	4	15701354	Boni	699	France	Female	39.0	1	0.00	2
4	5	15737888	Mitchell	850	Spain	Female	43.0	2	125510.8	82 1

```
# checking the number of rows and columns
num_train_rows, num_train_columns = train_data.shape
num_test_rows, num_test_columns = test_data.shape
num_orignal_rows, num_orignal_columns = orignal_data.shape
print('Training Data: ')
print(f"Number of Rows: {num_train_rows}")
print(f"Number of Columns: {num_train_columns}\n")

print('Test Data: ')
print(f"Number of Rows: {num_test_rows}")
print(f"Number of Columns : {num_test_columns}\n")
```

```
print("Orignal Data: ")
  print(f"Number of Rows: {num_orignal_rows}")
  print(f"Number of Columns: {num_orignal_columns}")
Training Data:
Number of Rows: 165034
Number of Columns: 14
Test Data:
Number of Rows: 110023
Number of Columns :13
Orignal Data:
Number of Rows: 10002
Number of Columns: 14
  # create a table for missing values, unique values, and data types
  missing_values_train = pd.DataFrame({
       'Feature': train_data.columns,
      '[TRAIN] No. of Missing Values' : train_data.isnull().sum().values,
      '[TRAIN] % of Missing Values' : ((train_data.isnull().sum().values)/len(train_data)*10
  })
  missing_values_test = pd.DataFrame({
       'Feature' : test_data.columns,
       '[TEST] No. of Missing Values' : test_data.isnull().sum().values,
      '[TEST]% of Missing Values': ((test_data.isnull().sum().values)/len(test_data)*100)
  })
  missing_values_orignal = pd.DataFrame({
       'Feature' : orignal_data.columns,
       '[ORIGNAL] No. of Missing Values': orignal_data.isnull().sum().values,
      '[ORIGNAL] % of Missing Values' : ((orignal_data.isnull().sum().values)/len(orignal_da
  })
  unique_values = pd.DataFrame({
       'Feature': train_data.columns,
       'No. of Unique Values [FROM TRAIN]' :train_data.nunique().values
```

```
feature_types = pd.DataFrame({
    'Feature': train_data.columns,
    'DataType': train_data.dtypes
})

merged_df = pd.merge(missing_values_train, missing_values_test, on= 'Feature', how= 'left'
merged_df = pd.merge(merged_df, missing_values_orignal, on = 'Feature', how = 'left')
merged_df = pd.merge(merged_df, unique_values, on= 'Feature', how= 'left')
merged_df = pd.merge(merged_df, feature_types, on = 'Feature', how= 'left')
merged_df
```

	Feature [TRA]	IN] No. of Missing	Values [TRAIN] % of Missing Values	[TEST] No. of Missing Values
0	id	0	0.0	0.0
1	CustomerId	0	0.0	0.0
2	Surname	0	0.0	0.0
3	CreditScore	0	0.0	0.0
4	Geography	0	0.0	0.0
5	Gender	0	0.0	0.0
6	Age	0	0.0	0.0
7	Tenure	0	0.0	0.0
8	Balance	0	0.0	0.0
9	NumOfProdu	cts 0	0.0	0.0
10	HasCrCard	0	0.0	0.0
11	Is Active Member 1	per 0	0.0	0.0
12	EstimatedSala	ary 0	0.0	0.0
13	Exited	0	0.0	NaN

```
# count duplicate rows in train_data
train_duplicates = train_data.duplicated().sum()

# count duplicate rows in test_data
test_duplicates = test_data.duplicated().sum()

# count duplicate rows in orignal_data
orignal_duplicates = orignal_data.duplicated().sum()
```

```
# print results
print(f"Number of duplicate rows in train_data: {train_duplicates}")
print(f"Number of duplicate rows in test_data: {test_duplicates}")
print(f"Number of duplicate rows in orignal_data: {orignal_duplicates}")

Number of duplicate rows in train_data: 0
Number of duplicate rows in test_data: 0
Number of duplicate rows in orignal_data: 2

# description of all numerical columns in the dataset
train_data.describe().T
#test_data.describe().T
#orignal_data.describe().T
```

	count	mean std m	in 25% 50%	75% max			
id	$\overline{165034.0}$	8.251650e + 04	47641.356500	0.00	41258.25	82516.5	1.2377
CustomerId	165034.0	1.569201e+07	71397.816791	15565701.00	15633141.00	15690169.0	1.5756
CreditScore	165034.0	6.564544e + 02	80.103340	350.00	597.00	659.0	7.1000
Age	165034.0	3.812589e + 01	8.867205	18.00	32.00	37.0	4.2000
Tenure	165034.0	5.020353e+00	2.806159	0.00	3.00	5.0	7.0000
Balance	165034.0	5.547809e + 04	62817.663278	0.00	0.00	0.0	1.1993
NumOfProducts	165034.0	1.554455e + 00	0.547154	1.00	1.00	2.0	2.0000
HasCrCard	165034.0	7.539537e-01	0.430707	0.00	1.00	1.0	1.0000
IsActiveMember	165034.0	4.977702e-01	0.499997	0.00	0.00	0.0	1.0000
EstimatedSalary	165034.0	1.125748e + 05	50292.865585	11.58	74637.57	117948.0	1.5515
Exited	165034.0	2.115988e-01	0.408443	0.00	0.00	0.0	0.0000

3. EDA

```
numerical_variables = ['CreditScore', 'Age', 'Balance', 'EstimatedSalary']
target_variable = 'Exited'
categorical_variables = ['Geography', 'Gender', 'Tenure', 'NumOfProducts', 'HasCrCard', 'I
```

3.1 Numerical Features

```
# Analysis
# custom color pallete define
custom_palette = ['#3498db', '#e74c3c','#2ecc71']
# add 'Dataset' column to distinguish between train and test data
train_data['Dataset'] = 'Train'
test_data['Dataset'] = 'Test'
orignal_data['Dataset'] = 'Orignal'
variables = [col for col in train_data.columns if col in numerical_variables]
# function to create and display a row of plots for a single variable
def create_variable_plots(variable):
    sns.set_style('whitegrid')
    fig, axes = plt.subplots(1,2, figsize= (12, 4))
    #Box plot
    plt.subplot(1, 2, 1)
    sns.boxplot(data = pd.concat([
        train_data, test_data, orignal_data.dropna()
    ]),
    x= variable, y = "Dataset", palette= custom_palette)
    plt.xlabel(variable)
    plt.title(f"Box Plot for {variable}")
    # Seperate Histograms
    plt.subplot(1,2,2)
    sns.histplot(data = train_data, x = variable, color= custom_palette[0], kde= True, bin
    sns.histplot(data = test_data, x= variable, color= custom_palette[1], kde= True, bins=
    sns.histplot(data = orignal_data.dropna(), x=variable, color=custom_palette[2], kde=Tr
    plt.xlabel(variable)
    plt.ylabel('Frequency')
    plt.title(f'Histogram for {variable} [TRAIN, TEST and ORIGNAL]')
    plt.legend()
    #adjust spacing between subplots
```