

UHUZAM WEBINAR -1

Basics - General Introduction

y = f(Piwixi)

xi:inputs

wi:weights

f: non-linearity

Artificial Neuron

Organization in layers

Types of Deep Learning Algorithms

- Convolutional Neural Networks (CNNs)
- Long Short Term Memory Networks (LSTMs)
- Recurrent Neural Networks (RNNs)
- Generative Adversarial Networks (GANs)
- Radial Basis Function Networks (RBFNs)
- Multilayer Perceptrons (MLPs)
- Self Organizing Maps (SOMs)
- Deep Belief Networks (DBNs)
- Restricted Boltzmann Machines (RBMs)

- Convolutional Layer
- Non-Linearity Layer
- Pooling (Downsampling Layer)
- Flattening Layer
- Fully-Connected Layer

Original Image

Feature Map

Non-Linear

Creating Model - Example CNN

Create General Baseline Model

- Tensorflow
- Keras
- Pytorch
- MXNet
- Theano
- Caffe

Some DL frameworks

CSCRS

Scikit-learn

Pandas

Numpy

OpenCV

Numpy

The fundamental package for scientific computing with Python

```
import numpy as np
x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])
v = np.array([9,10])
w = np.array([11, 12])
# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))
# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))
# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
# [43 50]]
print(x.dot(y))
print(np.dot(x, y))
```


Pandas; open source data analysis and manipulation tool

```
In [2]: titanic = pd.read_csv("data/titanic.csv")
```

Out[3]:					
	PassengerId	Survived	Pclass	 Fare	Cabin	Embarked
0	1	0	3	 7.2500	NaN	S
1	2	1	1	 71.2833	C85	C
2	3	1	3	 7.9250	NaN	5
3	4	1	1	 53.1000	C123	5
4	5	0	3	 8.0500	NaN	S
886	887	0	2	 13.0000	NaN	S
887	888	1	1	 30.0000	B42	5
888	889	0	3	 23.4500	NaN	S
889	890	1	1	 30.0000	C148	C
890	891	0	3	 7.7500	NaN	Q

Scikit-learn

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various context
- Built on Numpy, SciPy, and Matplotlib

```
$ python
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits()
```



```
>>> print(digits.data)
[[ 0.  0.  5. ...  0.  0.  0.]
[ 0.  0.  0. ...  10.  0.  0.]
[ 0.  0.  0. ...  16.  9.  0.]
...
[ 0.  0.  1. ...  6.  0.  0.]
[ 0.  0.  2. ...  12.  0.  0.]
[ 0.  0.  10. ...  12.  1.  0.]]
```

```
>>> digits.target array([0, 1, 2, ..., 8, 9, 8])
```

Matplotlib

Visualization with Python

Matplotlib

Visualization with Python


```
import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2*np.pi*t)
plt.plot(t, s)

plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('About as simple as it gets, folks')
plt.grid(True)
plt.savefig("test.png")
plt.show()
```


OpenCV

CSCRS 1973

- OpenCV is an open source library used in real-time computer vision and machine learning software library.
- OpenCV has C++, Python, Java and MATLAB interfaces.

read data

```
image = cv2.imread(self.images_fps[i])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = cv2.imread(self.masks_fps[i], 0)
```


Deep Learning - Working Environment

Some environments that can be used while developing a deep learning model

Local Environment:

- Anaconda
- Spyder
- Jupyter Notebook

Cloud Environment:

- Google Colab
- AWS
- Azure

Computer Needed:

GPU Supported, Cuda, cuDNN

Container Engine

Docker

Suggested Resources

pdf desteği sonlanmıştır forum

Python Programlama Dili

next

+

Python 3 için Türkçe Kaynak

01. Bu Kitap Hakkında

- 01. Bu Kitaptan Nasıl Yararlanabilirim?
- 02. Nereden Yardım Alabilirim? 03. Projeye Nasıl Yardımcı Olabilirim?
- 04. Kullanım Koşulları
- 02. Python Hakkında
- 01. Python Nedir?
- 02. Neden Programlama Öğrenmek İsteyeyim?
- 03. Neden Python?
- 04. Python Nasıl Telaffuz Edilir?
- 05. Platform Desteği
- 06. Farklı Python Sürümleri
- 07. Hangi Seriyi Öğrenmeliyim?
- 03. Python Nasıl Kurulur?
 - 01. GNU/Linux Kullanıcıları
 - 01. Kurulu Python Sürümü

