

Rahnema College Machine Learning Bootcamp

Demand Prediction

Shirjeh Team

Mentor: Amirhossein Shahdaei

August 2023

Content

Project Statement

- Introduction
- Main objective

Data Exploration

- Data structure
- Visualization

Approach

- Demand
- Time series
- Evaluation metrics

Phases

- Daily prediction
- 3-hour interval prediction
- Pair locations prediction

Conclusion

• Achievements

Project Statement

Problem introduction

- Marketplace forecasting (supply and demand)
- Directing drivers to high-demand areas
- Increasing the number of trips and earnings

Main objective

- Predicting demand
- Analyzing various factors influence demand prediction

Data Exploration

Data structure

- First four month of 2023
- Data frame shape :

(12672629, 19)

• Important columns :

pick-up and drop-off locations pick-up and drop-off date/time

	tpep_pickup_datetime	PULocationID	DOLocationID	PU_date
0	2023-01-01 00:32:10	161	141	2023-01-01
1	2023-01-01 00:55:08	43	237	2023-01-01
2	2023-01-01 00:25:04	48	238	2023-01-01
3	2023-01-01 00:03:48	138	7	2023-01-01
4	2023-01-01 00:10:29	107	79	2023-01-01

Data Exploration

Visualization

The daily sum of trips for the first four month

- Positive trend
- Weekly seasonality

Data Exploration

Visualization

The hourly sum of trips in a given month (January)

Daily and weekly seasonality

Demand

Number of rides in a specific time interval for each location

The most high demanded boroughs
 (Manhattan and Queens heatmap)

Demand

95% of demand is in just about 20% of locations

Time series features

• Feature engineering:

There is no concept of input and output in time series problems

Transforming time series problems into supervised learning problems

• Three classes of features :

Date time features

Lag features

Window features (Summary features)

Evaluation metrics

Mean Absolute Percentage Error (MAPE)

For high demand locations

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_{exp,i} - y_{pred,i}}{y_{exp,i}} \right|$$

Mean Absolute Error (MAE)

For low demand locations

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_{exp,i} - y_{pred,i} \right|$$

Phase 1

Daily Demand Prediction

Models

Classical & Statistical

ARIMA

Prophet

• Machine Learning

Ridge regression

XGBoost

Random forest

Phase 1 (daily prediction)

Features

Date time features

Day of week

Day of month

• Window features

Max demand of previous 1-2 week (each location)

Max/min/mean demand of previous week (grouped locations)

Lag features

Previous 1-14 day demand

Model-driven input (for XGBoost and Random forest)

Ridge model predictions

Phase 1 (daily prediction)

Table of results

	High Demand Locations	Low Demand Locations (Mean of Demand = 17.80)
Models	MAPE	MAE
Baseline (Last week demand)	9.64	4.59
Old XGBoost model	7.85	3.88
Ridge regression model	7.21	3.95
XGBoost model	7.31	3.78
Random forest model	7.09	3.58

Phase 1 (daily prediction)

Results (MAPE high demand)

Phase 1 (daily prediction)

Results (MAE low demand)

Phase 1 (daily prediction)

API


```
127.0.0.1:8000/get_day_demand .
POST
                                             Pre-request Script
                                                                       Settings
        Authorization
                      Headers (9)
                                    Body •
        form-data x-www-form-urlencoded raw binary
        "date": "2023-04-01",
        "location_ids": [132,32,250]
 4
   Cookies Headers (4) Test Results
Pretty
                 Preview
                            Visualize
                                        JSON V
         "2023-04-01": {
 3
              "32": 2,
             "132": 5159,
              "250": 3
 6
 7
```

Phase 2

3-hour interval Demand Prediction

Demand for each 1-hour interval

Demand for each 3-hour interval

Phase 2 (3-hour interval prediction)

Features

• Date time features

Day of week

Day of month

Lag features

Previous 1-14 day demand

Previous 1-2 interval of previous day

Window features

Max demand of previous week (each location)

Weighted moving average of previous day intervals

Model-driven input (for XGBoost and Random forest)

Ridge model predictions

Phase 2 (3-hour interval prediction)

Table of results

	High Demand Locations	Medium Demand Locations (Mean of Demand = 17.80)
Models	MAPE	MAE
Baseline (Last week demand)	21.43	3.28
Ridge regression model	18.08	2.43
XGBoost model	17.18	2.56
Random forest model	17.65	2.48

Phase 2 (3-hour interval prediction)

Results (MAPE high demand)

Phase 2 (3-hour interval prediction)

Results (MAE mid demand)

Phase 2 (3-hour interval prediction)

API

Phase 3

Pair locations prediction (pick-up and drop-off locations)

- Daily prediction
- Features (same as phase 1)

Phase 3 (pair locations prediction)

Table of results

	Demand for Selected Pair Locations
Models	MAPE
Baseline (Last week demand)	22.86
Ridge regression model	19.26
XGBoost model	17.68
Random forest model	18.40

Phase 3 (pair locations prediction)

Results (MAPE)

Conclusion

Achievements

Phase 1 (Daily prediction)	
Best Model	Random forest
MAPE (high)	7.09 (Improvement = 26%)
MAE (low)	3.58 (Improvement = 22%)

Phase 2	
(3-hour interval prediction)	
Best Model	XGBoost
MAPE (high)	17.18 (Improvement = 20%)
MAE (mid)	2.56 (Improvement = 22%)

Phase 3 (Pair locations prediction)	
Best Model	XGBoost
MAPE (high)	17.68 (Improvement = 23%)

Thanks for your attention:)