

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Изучение колебаний струны

Работа №1.4.5; дата: 22.11.21 Семестр: 1

Выполнил: Кошелев Александр

1. Аннотация

В данной работе изучапиются поперечные, стоячие волны на тонкой натянутой струне; измеряются собственные частоты колебаний струны и проверяются условия образования стоячих волн; измеряются скорость распространения поперечных волн на струне и исследуется её зависимость от натяжения струны.

Схема установки:

Рис. 1: Схема установки

В работе используются: закрепленная на станине стальная струна, набор грузов, электромагнитные датчики, звуковой генератор, двухканальный осциллограф, частотомер.

2. Теоретические сведения

Пусть F - сила натяжения струны, ρ_l - погонная масса струны, u - скорость распространения поперечной волны в струне. Тогда:

$$u = \sqrt{\frac{F}{\rho_l}} \tag{1}$$

Зафиксируем частоту ν . Тогда длина волны:

$$\lambda = -\frac{u}{\nu} \tag{2}$$

При этом на длине струны должно укладываться целое число полуволн n, тогда при длине струны l из уравнения (2) получаем:

$$\nu_n = n \cdot \frac{u}{2l} \tag{3}$$

3. Проведение эксперимента

Визуальное наблюдение стоячих волн

При массе нагрузков m=1.1 кг будем медленно менять частоту звукового генератора в диапазоне $\nu=\nu_1\pm 5\Gamma$ ц и добьемся возбуждения стоячей волны на основной гармонике (одна пучность), а после и на больших гармнониках, и запишем результаты в Табл. 1 (удалось пронаблюдать 6 гармоник).

	ν, Гц					
1	136.9 ± 0.1					
2	274.5 ± 0.1					
3	413.7 ± 0.1					
4	550.1 ± 0.1					
5	688.4 ± 0.1					
6	831.2 ± 0.1					

Табл. 1: Измерение частот прямым наблюдением

Регистрация стоячих волн с помощью осцилллографа

Будем изменять массу грузов, создающих натяжение струны, и измерять частоты различных гармоник при данной нагрузке с помощью осциллографа. Каждый раз будем проводить измерение частот 8 гармоник, так как на больших гармониках шумы слишком велики, и зафиксировать результат измерения частоты не представляется возможным. Частоты в герцах занесем в Табл. 2.

T, H	7.02 ± 0.01	10.78 ± 0.01	15.33 ± 0.01	20.13 ± 0.01	24.99 ± 0.01
1	121.4 ± 0.1	137.6 ± 0.1	166.4 ± 0.1	190.1 ± 0.1	204.1 ± 0.1
2	248.9 ± 0.1	277.8 ± 0.1	329.8 ± 0.1	379.3 ± 0.1	407.3 ± 0.1
3	373.8 ± 0.1	416.5 ± 0.1	499.8 ± 0.1	566.0 ± 0.1	610.3 ± 0.1
4	497.8 ± 0.1	551.1 ± 0.1	663.6 ± 0.1	748.6 ± 0.1	812.2 ± 0.1
5	622.7 ± 0.1	690.9 ± 0.1	831.3 ± 0.1	935.1 ± 0.1	1020.4 ± 0.1
6	746.4 ± 0.1	836.7 ± 0.1	998.3 ± 0.1	1124.3 ± 0.1	1224.7 ± 0.1
7	886.5 ± 0.1	977.3 ± 0.1	1165.1 ± 0.1	1321.2 ± 0.1	1431.1 ± 0.1
8	995.6 ± 0.1	1107.2 ± 0.1	1333.7 ± 0.1	1513.4 ± 0.1	1640.2 ± 0.1

Табл. 2: Измерение частот с помощью осциллографа

Построим графики зависимости частоты от номера гармоники по полученным данным. Для сравнения представим их на одном графике.

Рис. 2: Графики зависимости $\nu(n)$

Обозначим коэффициенты наклона γ . Воспользовавшись формулой (3), выясняем:

$$\gamma = \frac{\nu_n}{n} = \frac{u}{2l} \Rightarrow u = 2\gamma l$$

Для нашей струны известна длина $l=50\pm0.5\,\mathrm{cm}$. Получим соответствующие γ и u для всех прямых при помощи линейной аппроксимации и занесем их в таблицу:

T, H	7.02 ± 0.01	10.78 ± 0.01	15.33 ± 0.01	20.13 ± 0.01	24.99 ± 0.01
γ, c^{-1}	125.6 ± 0.8	139.1 ± 0.6	166.8 ± 0.2	188.5 ± 0.8	205.0 ± 0.42
и, м/с	125.6 ± 1.5	139.1 ± 1.5	166.8 ± 1.7	188.5 ± 2.0	205.0 ± 2.1
u^2 , $(M/c)^2$	15800 ± 400	19300 ± 400	27800 ± 600	35500 ± 800	42000 ± 900

Табл. 3: Рассчет *u*

Теперь вспомним формулу (1) и определим зависимость между скоростью и натяжением:

$$u^2 = \frac{T}{\rho_l} = \gamma' T$$

Пусть $\gamma' = \rho_l^{-1}$ - коэффициент наклона зависимости $u^2(T)$. Построим график данной зависимости, определим γ' и, наконец, получим погонную плотность струны:

При помощи линейной аппроксимации:

$$\gamma' = 1700 \pm 100 \,\mathrm{m/kg}$$

$$\rho_l = (590 \pm 50) \, \text{MT/M}$$

4. Выводы

В работе было исследовано явление возникновения стоячих волн в струне. Установлено, что зависимость частоты гармоники от ее номера является линейной, а зависимость скорости звука в струне от натяжения струны - квадратичной. Было проверено условие возникновения стоячих волн в струне, а также определена погонная плотность струны:

$$\rho_l = 590 \pm 50 \, \frac{\mathrm{M}\Gamma}{\mathrm{M}}$$

Что хорошо (в пределах погрешности) согласуется со значением, полученным непосредственным взвешиванием:

$$\rho_l = 568.4 \, \frac{\mathrm{M}\Gamma}{\mathrm{M}}$$

Отдельно отметим весьма большую погрешность полученной плотности. Такие значения следуют из метода наименьших квадратов. Для увеличения точности стоило бы провести большее количество измерений, что уменьшило бы стандартные отклонения.