

h(125)→aa→yyyy

NEU Meeting 26th September 2018

Tanvi Wamorkar¹, Toyoko Orimoto¹, Andrea Massironi²
[1] Northeastern University
[2] INFN Milano-Bicocca and CERN

Overview of the updates

- Discussion of distributions at pre-selection level
- Further selections and optimization
- Technicalities:
 - Data: DoubleEGReReco ReMiniAOD
 - $\mathcal{L} = 36 \text{ fb}^{-1}$

At preselection level

- Require presence of at least one di-photon that has passed the pre-selection criteria
- \bullet On top of this selection, the pixel seed veto is applied on all 4y's
 - Note:
 - Pixel seed veto has a $\varepsilon_{\text{sig}} \sim 75 \%$
 - Pixel seed veto is tighter than electron veto (Why?); Which selection should be applied to maximally reject e-'s faking γ 's?
 - In this presentation, pixel seed veto has been applied
- Background MC scaled by $\frac{\textit{Luminosity*Xsection}}{\textit{MCWeights}}$
- For signal MC:
 - X-section is an arbitrary choice (have chosen 0.001 pb)
 - Can improve on this: Without any assumption of a model, we know that $Br(h \rightarrow BSM) < 0.34$, so for the signal X-sec, I can use the cross-section of the ggF production mode of the SM Higgs boson = 4.858E+01 pb (from CERN Yellow report at 13 TeV) multiplied by 0.34

At preselection level

- Investigation ongoing: Where is the tail in the di-photon mass distribution coming from?
- Signal MC is gen-matched
- To be checked:
 - Are the y's in the tail from ECAL EE or EB?
 - Should an R9 selection be applied on the γ 's here?
- Another possibility: No scales and smearing are applied here; could that bring an improvement?

MVA optimization

- Note: γ's are p_T ordered
- Apply a selection on MVA score of the highest $p_T \gamma$ s.t we keep 99% ϵ_{sig}
- **y**1 MVA > -0.9
- ullet After this, add selection on MVA score of second $oldsymbol{\gamma}$
- χ 2 MVA > -0. 9

MVA optimization

- ullet Iteratively, add selection on the MVA score of the 3^{rd} and 4^{th} \upgamma
- Tried to optimize the selection on the MVA score of the 4 γ 's so as to retain a good ϵ_{sig} and reject maximum background
- **y**3 MVA > -0.5
- **y**4 MVA > 0

Some numbers..

	@ Pre-selection	W/ MVA selection
Background		
γ + Jets	9047.83	270.87
γγ + Jets	6487.34	86.63
QCD	11403.74	241.53
Signal		
m(a) = 60 GeV	1784.47	1405.48
m(a) = 30 GeV	994.09	709.41
m(a) = 15 GeV	922.44	688.46

- The MVA selections reject 97% of the background and retain ~70% of the signal
- These values should be interpreted w/ a grain of salt, because the background MC samples are scaled to match data (background modeling is completely datadriven)
- But, they are an indicator of where the analysis stands as of now

Tetraphoton Mass distribution

- Side note:
 - The signal $m_{4\chi}$ resolution can be improved (?)
 - Since there are 4γ 's, $\sigma_{\text{eff}} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2}$ $\sigma_{\text{eff}} = 2\sigma$
 - Can calculate σ_{eff} and compare with that for standard h(125) \rightarrow aa \rightarrow yyyy
 - Not a priority, since this is still a search and not a measurement :)

Background model: Envelope method

- Built directly from data from the tetraphoton mass spectrum in the sideband region
- Envelope method or discrete profiling method used, the choice of background function will be treated as a discrete parameter in the likelihood fit
- Four families of analytic functions considered (sums of exponentials, sums of Bernstein polynomials, Laurent series, sum of power laws) and maximum order for each family is determined through F-test

More selections and next steps

Mass difference of the two diphoton candidates

 Next step: Create windows of diphoton mass and optimize selections for different m(a) signal points

