Covariance, correlation and linear regression

* We are often interested in studying if/how one continuous variable **covaries** with another - i.e. whether they change in concert

* Covariance between two such variables, Y₁ and Y₂:

Estimate	Standard error	
$s_{Y_1Y_2} = \frac{\sum_{i=1}^{n} (y_{i1} - \bar{y}_1) (y_{i2} - \bar{y}_2)}{n - 1}$	n/a	
$r_{Y_1Y_2} = \frac{\sum_{i=1}^{n} [(y_{i1} - \bar{y}_1)(y_{i2} - \bar{y}_2)]}{\sqrt{\sum_{i=1}^{n} (y_{i1} - \bar{y}_1)^2 \sum_{i=1}^{n} (y_{i2} - \bar{y}_2)^2}}$	$s_r = \sqrt{\frac{(1-r^2)}{(n-2)}}$	
	$s_{\gamma_1 \gamma_2} = \frac{\sum_{i=1}^{n} (y_{i1} - \bar{y}_1) (y_{i2} - \bar{y}_2)}{n - 1}$ $\sum_{i=1}^{n} [(y_{i1} - \bar{y}_1) (y_{i2} - \bar{y}_2)]$	

- * Standardized to range between -1 over 0 to 1 \rightarrow the Pearson correlation coefficient (r).
- * Tested with a t-test: t = r / standard error of r (with df = n-2).
- * Assumes that Y₁ and Y₂ are both continuous and normally distributed variables (also independence of observations and random sampling).
- * Note: only measures strength of **linear** relationships!

Linear regression

- Whenever you have a continuous variable *Y* that you suspect is a response or function of variation in another variable (a predictor variabe) *X*, you model this with a linear regression (Y: dependent variable; X: independent variable).
- If you want to fit a line in a bivariate space, this line needs a "height" (i.e., an intercept) and a slope....
- $Y = \beta_0 + \beta_1 X + \varepsilon$
- What is the best fit of our model to data?
 - 1) Least squares minimization (O)LS (sums of squares of deviations) simple analytical solution...
 - 2) Maximum likelihood ML (maximizes the likelihood of observing our data) iterative procedure...

Parameter	OLS estimate	Standard error
$\boldsymbol{eta}_{\scriptscriptstyle \parallel}$	$b_{1} = \frac{\sum_{i=1}^{n} [(x_{i} - \bar{x})(y_{i} - \bar{y})]}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$	$s_{b_1} = \sqrt{\frac{MS_{Residual}}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$
$oldsymbol{eta}_0$	$b_0 = \bar{y} - b_1 \bar{x}$	$s_{b_0} = \sqrt{MS_{Residual} \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right]}$
E,	$\mathbf{e}_{i} = \mathbf{y}_{i} - \hat{\mathbf{y}}_{i}$	$\sqrt{MS_{Residual}}$ (approx.)

- What can we do with our model? Most commonly....
 - 1) Test the null hypotheses that our parameters (slope and intercept) are equal to zero: $t = b / s_b$ with df = n 2.
 - 2) Predict values for Y given a known value of X: $\hat{y} = b_0 + b_1 X$
 - 3) Calculate confidence intervals for our predicted $\hat{\boldsymbol{y}}$
 - 4) r^2 (or R^2) expresses the proportion of variance in Y that is explained by variation in X (measure of the strength of an association).
- When fitting a model and testing its parameters, we make five important **assumptions** about our data. These should be checked!
 - 1) Observations are statistically independent from one another. If not, another model should be employed.

- 2) The response variable is **continuous**, i.e. can assume any value (so, not a ratio, count data or other forms of discrete variables). If not, use a generlized linear model. Predictor variable (X) can be of any kind.
- 3) The error (E) has a normal distribution test residual distribution with e.g. Shapiro-Wilk's or Kolmogorov-Smirnov test. *Note that it is the error, not the response variable, that is assumed to be normal.* If not, easiest to test parameter estimates with a randomization test.
- 4) Homogeneity of variance (homoscedasticity): Y should have the same variance for all values of X otherwise a problem with heteroscedasticity! Check best by plotting residuals against predicted value of Y (below). If heteroscedastic, try transforming Y (e.g. a Y' = log [1+Y] transformation) or else test parameter estimates with a randomization test.

Plot of residuals against predicted values

Plot of residuals against predicted values

- 5) The response variable is measured with error (ε) but the independent variable is fixed and measured without error...- if both X and Y are random variables with similar error, then use
- if both X and Y are random variables with similar error, then use type II regression (major axis or reduced major axis regression).
- Common misunderstandning: what does **linear** mean? As in, for example, *linear* regression, general *linear* models, generlized *linear* models... Does **not** necessarily require a linear relationship between response variable and independent variables/factors, but refer to the linear and additive structure of the model $(Y = \beta_0 + \beta_1 X + \varepsilon) i.e.$ is linear in a mathematical sense (as opposed to e.g. $Y = \beta_1 * X^{\beta_2}$).

Multiple regression

- We often wish to simultaneously analyze the independent effects of two (or more) predictor variables on a single continuous response variable:
 - 1) If all predictors are categorical variables \rightarrow **ANOVA**
 - 2) If all predictors are continuous variables → multiple regression
 - 3) A mix of categorical and continuous predictor variables → **ANCOVA** (analysis of covariance)
- All are sometimes referred to collectively as **general linear models**

- If we want to study the independent effect of two or more (correlated)
 variables on a third → multiple regression!
- The example above linear regressions:

Effect	Coefficient	Std Error	Std Coef	t	P(2 Tail)
CONSTANT	3.92991	0.79287	0.00000		0.00000
X1	1.04283	0.26422	0.37199		0.00015

and...

Effect	Coefficient	Std Error	Std Coef	t	P(2 Tail)
CONSTANT	2.65455	0.76233	0.00000	3.48216	
X2	1.42213	0.24608	0.50609	5.77921	

- However, X1 and X2 are correlated (r = 0.22)...one could have an effect through the other \rightarrow known as a confounding effect.....
- For their independent effects, extend the linear regression model to:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

- In this case; both X variables had *independent* effects on Y (not always the case....!!)
- Standardized partial regression coefficients (where variables are put on a common scale – standardized) tells us that the effects X2 is larger than that of X1.
- Model easily extended to ij predictor variables;

$$Y=\beta_0+\beta_iX_i+.....+\beta_jX_j+\epsilon$$

• Same **five assumptions** apply as for linear regression – should be checked!

- Additional problem: if the predictor variables are too tightly corrlelated, estimates become biassed and/or model becomes totally inestimable → collinearity (or, multicollinearity). If correlation coefficients between X's are higher than about 0.5, there may be cause for concern. Problem can be assessed with several indicies (see book). If a problem, drop X variables that are highly corrlelated with others (or reduce the number of X-variables by a PCA).
- Common form of multiple regression: **polynomial regression** Second order: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$ (i.e., quadratic regression) Third order: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$

Allows tests of non-linear relationships between X and Y (despite being a linear model!). *NOTE*: independent variable has to be standardized (i.e., $\overline{X} = 0$, SD=1) prior to polynomial regression!

Linear regression model Quadratic regression model

• An unrelated note: always ask yourself if your regression must pass through the origin! If so, drop the intercept, which forces the model through the origin (i.e.; $Y = \beta_1 X + \epsilon$)

Questions we ask in multiple regression: **comparing hierarchical models!**

- Relies on analysis of variance (next week) so will be dealt with only in principle here.
- Is our entire model significant, i.e. does it explain a significant amount of variance in Y?

Equals comparing the models

$$(A) \ Y = \beta_0 + \beta_i X_i + + \beta_j X_j + \epsilon \ \ \text{and} \ \ (B) \ Y = \beta_0 + \epsilon$$

with a **partial F-test** – is fit to data significantly better in A than in B? This is the overall ANOVA that is often given in stat programs after a regression model has been fitted to data.

• *Is the relationship between X and Y significantly non-linear?* Equals comparing the models

(A)
$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$
 and

(B)
$$Y = \beta_0 + \beta_1 X + \varepsilon$$

with a partial F-test – is fit to data significantly better in A than in B?

• Does the addition of X_{kl} significantly improve a model with X_{ij} already in it?

Equals comparing the models

(A)
$$Y = \beta_0 + \beta_i X_i + \dots + \beta_l X_l + \beta_k X_k + \dots + \beta_l X_l + \epsilon$$
 and

(B)
$$Y = \beta_0 + \beta_i X_i + \dots + \beta_j X_j + \epsilon$$

with a partial F-test – is fit to data significantly better in A than in B?

When many X's are at hand: which is the best model?

- Model building strategies is a a bit of a shadow land...few simple answers...little consensus...three principal strategies:
- When many X's: **step-wise multiple regression** comes in two forms:
 - 1) Forward selection (inclusion): starting with the simplest model with only an intercept, add X's one at the time, starting with the one with the greatest regression coefficient \rightarrow retain if P is larger than some criteria, drop if it is not.
 - 2) Backward selection (elimination): start with the full model, drop terms one by one, starting with the least significant, stop when all remaining X's have effects larger than some criteria.

Main problem: increases the rate of type I errors. If you have 100 X's, you are likely to end up with a nice model with about 5 significant variables... For this reason, mostly used for hypothesis building, rather than testing...

- Run all possible models, then compare fit to data using some criterion:
 - 1) R^2 doesn't work....more X's means higher R^2 ...look at **adjusted R^2** (adjusted for the number of X's).
 - 2) Akaike Information Criterion (AIC) minimized
 - 3) Bayesian Information Criterion (BIC)
 - 4) Mallow's C_p
- Build and compare groups of hierarchical models that make "biological sense", using partial F-tests...