Worksheet 1

Problem 1. ([Al] Ex. 3.2-3.3)

We discussed the discriminant functions $g_i(x), i \in [K]$ where K is the number of classes. When K = 2 we can also define a single discriminant

$$g(x) = g_1(x) - g_2(x)$$

and we choose C_1 if g(x) > 0 and C_2 if g(x) < 0.

1. In a two-class problem, the likelihood ratio is

$$\frac{p(x|C_1)}{p(x|C_2)}.$$

Write a discriminant function in terms of the likelihood ratio.

2. In a two-class problem, the log odds is defined as

$$\log \frac{P(C_1|x)}{P(C_2|x)} .$$

Write a discriminant function in terms of the log odds.

Problem 2. ([Al] Ex. 3.4)

In a two-class, two-action problem, if the loss function is $\lambda_{11}=\lambda_{22}=0$, $\lambda_{12}=10$ and $\lambda_{21}=5$, write the optimal decision rule. How does the rule change if we add a third action of reject with $\lambda=1$? [Note: we don't have 0/1 loss for this problem.]

Problem 3. (Poisson MLE)

Let X be a random variable. $X \sim \mathsf{Poisson}(\lambda)$ with the density

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- 1. Find $\mathbb{E}X$ and Var(X) if $X \sim Poisson(\lambda)$.
- 2. Consider the sample $\mathcal{X} = \{x_n\}_{n=1}^N$ where $x_n \sim^{i.i.d.} \mathsf{Poisson}(\lambda)$. For the parameter λ above, write the likelihood $l(\lambda|\mathcal{X})$ and the log-likelihood $\mathcal{L}(\lambda|\mathcal{X})$.

1

- 3. Find the maximum likelihood estimator $\hat{\lambda}_{\mathrm{MLE}}.$
- 4. Is $\hat{\lambda}_{MLE}$ biased?

Problem 4. (Uniform MLE)

Let X be a random variable. $X \sim \mathsf{Unif}(\theta)$ with the density

$$p(x) = \begin{cases} \frac{1}{\theta}, & \text{if } 0 \le x \le \theta \\ 0, & \text{otherwise} \ . \end{cases}$$

- 1. Find $\mathbb{E}X$ and Var(X) if $X \sim Unif(\theta)$.
- 2. Consider the sample $\mathcal{X} = \{x_n\}_{n=1}^N$ where $x_n \sim^{i.i.d.} \mathsf{Unif}(\theta)$. For the parameter θ above, write the likelihood $l(\theta|\mathcal{X})$ and the log-likelihood $\mathcal{L}(\theta|\mathcal{X})$.
- 3. Find the maximum likelihood estimator $\hat{\theta}_{\text{MLF}}$.
- 4. Is $\hat{\theta}_{MLE}$ biased?

Problem 5. (See [AI] Ch.16.2.2)

Find \hat{q}_{MAP} for the Bernoulli likelihood

$$p(\mathcal{X}|q) = \prod_{n=1}^{N} q^{x_n} (1-q)^{1-x_n}$$

with the beta prior

$$p(q) = beta(q|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} q^{\alpha - 1} (1 - q)^{\beta - 1}.$$

Problem 6. (Exponential family)

A probability distribution in the exponential family is given by

$$p(\boldsymbol{x}|\boldsymbol{\eta}) = h(\boldsymbol{x}) \exp\left(\boldsymbol{\eta}^{\mathsf{T}} T(\boldsymbol{x}) - A(\boldsymbol{\eta})\right),$$

where η is the parameter vector.

- 1. Prove that $\mathcal{N}(\mu, I)$ with identity covariance (where μ is the parameter) is in the exponential family.
- 2. Prove that

$$\nabla_{\boldsymbol{\eta}} A = \mathbb{E}_{\mathbf{x} \sim p(\boldsymbol{x}|\boldsymbol{\eta})}[T(\mathbf{x})].$$

Hint: Use the fact that $\int p(x|\eta) dx = 1$ to get an expression of A first.

3. Verify Part 2 using the example in Part 1.