Packaging and containerizing of bioinformatics software: advances, challenges, and opportunities

This manuscript (permalink) was automatically generated from Mangul-Lab-USC/pkg-manager-review@00f21ef on August 14, 2020.

Unsorted list of authors

ⓑ 0000-0003-1176-5386 **♀** sbpw

Computer Science Department, Samueli School of Engineering, University of California, Los Angeles

· Serghei Mangul

• Sharon Waymost

ⓑ 0000-0003-4770-3443 **⋰** smangul1

Department of Clinical Pharmacy, School of Pharmacy, University of Southern California

• Neha Rajkumar

Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles

• Ram Ayyala

Department of Neuroscience, School of Life Sciences, University of California Los Angeles

• Heng Li

None

Nathan LaPierre

None

André Santos

None

• Titus Brown

University of California, Davis

• Casey S. Greene

D 0000-0001-8713-9213

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Childhood Cancer Data Lab

• Brendan Lawlor

None

• Qiyang Hu

None

· Jaqueline J. Brito

© 0000-0002-7158-3253 • ☐ jaquejbrito ■ jaquejbrito

Department of Clinical Pharmacy, School of Pharmacy, University of Southern California

• Thiago Mosqueiro

None

Introduction

The rapid advancement of omics and sequencing technologies has led to an accelerated growth of genomic data. Driven by this data, there are similar increases in the number of available bioinformatics software tools, often containing novel and diverse algorithms of particular interest to biomedical researchers.[1,2]. Biomedical researchers wanting to use this software often have access to high-performance clusters ("clusters"), but lack the operating system-level permissions and advanced skills required to install and run the software. None of the necessary skills are currently included in the traditional life science curriculum at major universities. Usability is further hindered by the absence of any standardization and the wide variety of software development tools employed. This is directly observable in many academic software tools lacking a user-friendly interface[5].

As the dependence of biomedical researchers on computational software continues to increase, software developers need to consider more user-friendly distribution and install methods. Modern software distribution, having already faced user-friendliness issues, is already becoming more reliant on platforms such as package managers[6,7] and containers[8]. Both promise to simplify software development while increasing the usability and reproducibility of biomedical research[8,9].

Package managers first appeared nearly thirty years ago as software developers sought to streamline the entire installation process. To install via package manager, the user must only specify the desired software, called a "package;" the download, installation, configuration, and dependencies are all handled by the package manager. Many operating systems have built-in package managers (e.g. APT), which may not be available to cluster users, while others must be downloaded and installed by the user. Some package managers (e.g. Conda[6]) are programming language agnostic, while others are designed for a particular language (e.g pip[10]).

A more recent software distribution solution is containerization. The end-user downloads a container "image" that includes the software, dependencies, and anything else necessary to run the software. Though the imaged software is not typically itself installed, many do require the installation of containerization runtime software. When run, the runtime software creates a consistent, isolated sandbox environment, then runs the imaged software inside the sandbox[11]. This sandbox design makes the images both highly portable (compatible with different computers) and easily shareable (transferable between different computers), which has already led to wide adaptation in bioinformatics[7,12].

In addition to the ease of installation and use offered by both package managers and containers, such platforms must also meet the biomedical community's need for compatibility with high performance clusters. However, the relative performance of these package managers and containers remains unknown. Our review summarizes developing practices across the most common package managers and containers, while discussing the challenges, advantages, and limitations of using them from both the developer and the user perspectives. By taking a survey of all the available package managers and container software, there is now a comprehensive list of the different attributes of each one, informing the community so that people can make educated decisions about which package manager or container makes the most sense for their project. We also propose principles that can make packaging and containerizing of bioinformatics software more sustainable and reproducible, ultimately increasing the usability of bioinformatics software.

Discussion

Existing problems with software distribution and installation

The installation process of bioinformatics research software is typically a multi-step process, starting with the end-user locating and downloading the software. Next is the actual installation, during which the end-user must determine what dependencies are missing and resolve them by installing the required software 5. Even in cases where the end-user is familiar with this process, they are typically installing on high-performance clusters where they are constrained by user-level permissions that prevent them from following standard installation procedures.

- · root access limitations
- · reproducibility of findings
- version conflicts
- · dependency resolution

Definitions and explanations of distribution system types

- · package managers
 - definition

Package Sche

Package

Software

version number list of dependence checksum

Installing Software Via Package Manager

- o benefits for the developer
 - mature technology higher degree of familiarity
 - allows dependency specification (including versions) -limitations for the developer
 - can't always use to install missing dependencies for end-user
- benefits for the end-user
 - package size is minimal (dependencies aren't duplicated)
 - installs missing dependencies
- o limitations for the end-user
 - not always accessible (unless admin user)

- can't install multiple versions of same software
- containerization
 - o definition

Containeriz

Running Containerized Software

- o benefits for the developer
 - include specific versions of dependencies
 - known running environment
 - fewer test variables
 - reproducibility of results
- o limitations for the developer
 - learn a new system instead of focusing on research
- o benefits for the end-user
 - no installation (except possible runtime)

- no dependency issues
- sandbox provides computer system security
- o limitations for the end-user
 - container size

 - duplication of dependencies
 root access requirement to install runtime
 configuration in cluster
- centralized repositoriesdefinition

 - benefits
 - known download site
 - hosting is taken of
 - limitations
 - repo specific restrictions

Tables

Distribution System Name	URL	Publication	Туре	License
Applmage	https://appimage.org	-	containerization	MIT
APT	https://wiki.debian.org/Apt	-	package manager	GNU GPL 2+
Bioconda	https://bioconda.github.io	Grüning et al, 2018	package manager	MIT
Bioconductor	https://www.bioconductor.org	Gentleman et al, 2004	package manager	MIT
conda	https://docs.conda.io/en/latest/	-	package manager	3-Clause BSD
CRAN	https://cran.r-project.org/index.html	-	package manager	GNU GPL
Docker	https://www.docker.com	-	containerization	Apache 2.0
Easybuild	https://easybuilders.github.io/easybuild/	Hoste et al, 2012	package manager	GNU GPL 2
Flatpak	https://flatpak.org	-	containerization	LGPL
GNU Guix	https://guix.gnu.org	Courtès, 2013	package manager	GNU AGPL
Homebrew	https://brew.sh	-	package manager	2-Clause BSD
pip	https://pypi.org/project/pip/	-	package manager	MIT
Singularity	https://sylabs.io	-	containerization	3-Clause BSD
Snap	https://snapcraft.io	-	containerization	propriertary
Spack	https://spack.io	Gamblin et al, 2015	package manager	MIT or Apache
Vagrant	https://www.vagrantup.com	-	virtual machine	MIT
yum	http://yum.baseurl.org	-	package manager	
Zero Install	https://0install.net	-	package manager	GNU LGPL 2.1+

Distribution System Name	Supported Operating Systems	Supported Languages	Root to Install	Root to Run
Applmage	Linux	any	n/a	no
APT	Debian, Ubuntu	any	yes	yes
Bioconda	Linux, macOS, Windows	any	no	no
Bioconductor	Linux, macOS, Windows	R	no	no
conda	Linux, macOS, Windows	any	no	no
CRAN	Linux, macOS, Windows	R	no	no
Docker	Linux, macOS, Windows	any	yes	no
Easybuild	Linux	any	no	no
Flatpak	Linux	any	no	no
GNU Guix	Linux	any	no	no
Homebrew	Linux, macOS	any	no	no
pip	Linux, macOS, Windows	Python	no	no
Singularity	Linux, macOS	any	yes	no
Snap	Linux	any	yes	no
Spack	Linux, macOS	any	no	no
Vagrant	Linux, macOS, Windows	any	yes	
yum	Linux, macOS, Windows	any	no	yes
Zero Install	Linux, macOS, Windows	any	no	no

Distribution System Name	First Release	Latest Release	Age in Years	Number of Releases	Number of Tools	Number of Bio Tools
Applmage	2014-01-24	2020-06-01	7	121		
APT	1998-03-31	2020-05-08	22	362		
Bioconda	2014-01-24	2016-09-06	7	39		
Bioconductor	2002-05-01	2020-04-28	17	37		
conda	2014-01-24	2020-04-13	6	261		
CRAN	1997-04-23	2020-02-29	22	29		
Docker*	2013-03-23	2020-06-01	7	121		
Easybuild	2012-11-09	2020-04-14	7	51		
Flatpak	2015-03-23	2020-04-03	5	128		
GNU Guix	2012-07-07	2020-04-15	7	23		
Homebrew	2009-05-20	2020-05-04	10	155		
pip	2009-01-20	2020-04-28	11	81		

Distribution System Name	First Release	Latest Release	Age in Years	Number of Releases	Number of Tools	Number of Bio Tools
Singularity	2012-07-07	2020-04-15	7	23		
snapd	2014-12-09	2020-07-15	5	232		
Spack	2014-07-09	2020-04-15	5	27		
Vagrant						
yum**	2002-06-08	2011-06-28	18	221		
Zero Install	2005-02-04	2020-05-04	15	145		

^{*}Docker Engine

^{**}need to find someone with a redhat license who can confirm numbers

Distribution System Name	Official Repository Name	Repository URL
Applmage	ApplmageHub	https://appimage.github.io/apps/
APT	-	-
Bioconda	bioconda channel	https://github.com/bioconda/bioconda-recipes
Bioconductor	-	https://www.bioconductor.org/packages/release/BiocViews.html#Software
conda	-	https://repo.anaconda.com/pkgs/
CRAN	-	https://cran.r-project.org/web/packages/available_packages_by_name.html
Docker	Docker Hub	https://hub.docker.com
Easybuild		
Flatpak	Flathub	https://flathub.org
GNU Guix	-	https://guix.gnu.org/packages/
Homebrew	Homebrew Formulae	https://formulae.brew.sh
pip	Python Package Index (PyPI)	https://pypi.org
Singularity	Singularity Hub	https://singularity-hub.org
Snap	Snapcraft	https://snapcraft.io/store
Spack	-	-
Vagrant	Vagrant Cloud	https://app.vagrantup.com/boxes/search
yum	-	-
Zero Install	-	https://apps.0install.net