

Delta: A Cloud-assisted Data Enrichment Framework for On-Device Continual Learning

Chen Gong¹, Zhenzhe Zheng¹, Fan Wu¹, Xiaofeng Jia², Guihai Chen¹

¹ Shanghai Jiao Tong University, ² Beijing Big Data Center

2024-11-18

Outline

- 1 Background
- ² Formulation & Challenges
- 3 Design of Delta
- 4 Evaluation Results

On-device Machine Learning

Machine learning models are crucial in modern mobile apps

Image Analytics

Activity Recognition

Text Analysis

On-device Continual Learning

Mobile users typically encounter dynamic contexts

Image Analytics

Activity Recognition

New device positions, human activities

Text Analysis

Different languages, topics, ...

On-device Continual Learning

It is critical to enable continual learning on mobile devices

Prior Focus: System Bottleneck

Efficient on-device deployment of cloud-side approaches

Our Focus: Data Bottleneck

Scarce data resource on mobile devices is a key bottleneck

Data scarcity is a prevalent issue

Average person takes ≈12 photos daily [1]

Siri Statistics

- 31. Over 500 million electronic devices worldwide feature Sir
- 32. Almost 98% of smartphone users reported that they have lifetime.
- 33. Siri is reported to use an average of 63 kB per query.
- 34. 62% of iPhone users said that they used Siri while driving
- 35. Siri was used several times a day by 16% of iPhone users
- 36. Over 45% of voice assistant users prefer Apple Siri over c

16% of iPhone users use Siri several times a

day [2]

Data sets the performance ceiling

Existing Solutions

Model-and-Param-based methods are ineffective or inefficient

#1 Param-based: Few-Shot CL

Pre-train on Base Contexts

Transfer to Similar Contexts

Ineffective for Unpredictable User Contexts

#2 Model-based: Federated CL

Inefficient for Heterogeneous Cross-Device Contexts

Existing Solutions

Model-and-Param-based methods are ineffective or inefficient

#1 Param-based: Few-Shot CL

Pre-train on Base Contexts

Transfer to Similar Contexts

Ineffective for Unpredictable User Contexts

#2 Model-based: Federated CL

Inefficient for Heterogeneous Cross-Device Contexts

Fundamental Solution from Data Aspect: Enrich scarce device data with cloud data!

Observations

#1 Abundant Cloud Data

Public Datasets

Crawled Internet Data

Crowd-Sourced Data

#2 Large Potential Improvement

More Efficient than Federated CL

Outline

- 1 Background
- **2** Formulation & Challenges
- 3 Design of Delta
- 4 Evaluation Results

Problem Formulation

Select the cloud data subset most similar to device data

Challenges

Developing a feasible framework face critical challenges

Challenge 1: Privacy and Efficiency

Developing a feasible framework face critical challenges

Download All Cloud Data

Challenge 2: Efficiency and Effectiveness

Developing a feasible framework face critical challenges

Challenge 3: Effectiveness in Continual Learning

Developing a feasible framework face critical challenges

New Context Conflicts with Past Contexts

Outline

- 1 Background
- ² Formulation & Challenges
- 3 Design of Delta
- 4 Evaluation Results

Privacy: Problem Decomposition

Introduce cloud directory dataset for problem decomposition

Privacy: Device-Cloud Collaboration

Device-side Operations

Privacy: Device-Cloud Collaboration

Device-side Operations

Cloud-side Operations

w/o Sharing Raw User Data Samples

Privacy: Directory Dataset Construction

How to construct a representative directory dataset?

Efficiency: Failure of Naïve Solutions

Naïve solutions are inefficient for device and cloud sub-objectives

Sub-Objective (A)

 $\max_{w^t} Sim(D_{de}^t, w^t D_{cl}^{dir} | \theta)$

Sub-Objective (B) $\max_{S^t \subseteq D_{cl}} Sim(w^t D_{cl}^{dir}, S^t | \theta)$

Overfitted Weight Scarce Data

Exponential Subsets

Optimal Subset

Efficiency: Device-Side Soft Matching

Device-side soft matching strategy for representative weight

Sub-Objective (A)

$$\max_{w^t} Sim(D_{de}^t, w^t D_{cl}^{dir} | \theta)$$

Soft Matching

$$w_c^t \leftarrow w_c^t + Softmax\left(\frac{Sim((x, y), (\bar{x}_c, \bar{y}_c) \mid \theta^{t-1})}{\tau}\right),$$

Exponential Subsets Optimal Subset

Efficiency: Cloud-Side Optimal Sampling

Cloud-side optimal sampling with constant time complexity

Soft Matching

$$w_c^t \leftarrow w_c^t + Softmax\left(\frac{Sim((x, y), (\bar{x}_c, \bar{y}_c) \mid \theta^{t-1})}{\tau}\right)$$

Optimal Sampling Strategy

Optimal in Expectation

Efficiency: Cloud-Side Optimal Sampling

Cloud-side optimal sampling with constant time complexity

Soft Matching

$$w_c^t \leftarrow w_c^t + Softmax\left(\frac{Sim((x, y), (\bar{x}_c, \bar{y}_c) \mid \theta^{t-1})}{\tau}\right),$$

Effectiveness: Theoretical Analysis

Theorem. The impact of enriched data on overall continual learning performance is determined by

- (1) new-context representativeness
- (2) past-contexts proximity
- (3) cross-context heterogeneity

$$\mathbb{E}_{\mathcal{S}^{t} \sim P_{\mathcal{D}_{cl}}^{t}} \left[\underbrace{L(\mathcal{D}_{de}^{1:t}, \theta^{t,m+1}) - L(\mathcal{D}_{de}^{1:t}, \theta^{t,m})}_{} \right]$$

loss reduction in m-th model update

$$\leq \frac{1}{2} (H\eta^2 - \eta) L_{\psi} \underbrace{\mathbb{V}_{\mathcal{S}^t \sim P_{\mathcal{D}_{cl}}^t} \left[\phi(\mathcal{D}_{de}^t) - \phi(\mathcal{S}^t) \right]}_{+} +$$

representativeness to new context t

$$\frac{\eta L_{\psi}}{2} \underbrace{\mathbb{V}_{\mathcal{S}^{t} \sim P_{\mathcal{D}_{cl}}^{t}} \left[\phi(\mathcal{D}_{de}^{1:t-1}) - \phi(\mathcal{S}^{t}) \right]}_{\text{proximity to past contexts } 1 \sim t-1} + \frac{\eta L_{\psi}}{2} \underbrace{\left\| \phi(\mathcal{D}_{de}^{t}) - \phi(\mathcal{D}_{de}^{1:t-1}) \right\|^{2}}_{\text{heterogeneity across contexts}}$$

Effectiveness: Theoretical Analysis

Theorem. The impact of enriched data on overall continual learning

performance is determined by

- (1) new-context representativeness
- (2) past-contexts proximity
- (3) cross-context heterogeneity

$$\mathbb{E}_{\mathcal{S}^{t} \sim P_{\mathcal{D}_{cl}}^{t}} \left[\underbrace{L(\mathcal{D}_{de}^{1:t}, \theta^{t,m+1}) - L(\mathcal{D}_{de}^{1:t}, \theta^{t,m})}_{} \right]$$

loss reduction in m-th model update

$$\leq \frac{1}{2} (H\eta^2 - \eta) L_{\psi} \mathbb{V}_{\mathcal{S}^t \sim P_{\mathcal{D}_{cl}}^t} \left[\phi(\mathcal{D}_{de}^t) - \phi(\mathcal{S}^t) \right] +$$

representativeness to new context t

$$\frac{\eta L_{\psi}}{2} \underbrace{\mathbb{V}_{\mathcal{S}^{t} \sim P_{\mathcal{D}_{cl}}^{t}} \left[\phi(\mathcal{D}_{de}^{1:t-1}) - \phi(\mathcal{S}^{t}) \right]}_{\text{proximity to past contexts } 1 \sim t-1} + \frac{\eta L_{\psi}}{2} \underbrace{\left\| \phi(\mathcal{D}_{de}^{t}) - \phi(\mathcal{D}_{de}^{1:t-1}) \right\|^{2}}_{\text{heterogeneity across contexts}}$$

Re-Optimize
Sampling Strategy

Optimal in Expectation

Intra-Cluster Sampling Probability

Refer to our paper for more details!

Overall Workflow

Outline

- 1 Background
- ² Formulation & Challenges
- 3 Design of Delta
- **Evaluation Results**

Evaluation Setup

Implementation

Device: Jetson Nano

Cloud: NVIDIA 3090Ti

Baselines

- 3 few-shot CL algorithms
- Federated CL
- Random data enrichment

Tasks & Datasets

- 4 tasks & data modalities
- Each with ≥2 categories of ≥5 contexts
- 4 ML models

Configurations

- Cloud data: random 50% samples
- Device data: 5 samples/context
- Directory: 20 x num. of classes

Modality	Context Category	Dataset	Model(#params)		
Image	Object (O), Weather (W), Noise (N), Blur (B), Digital Corruption (D)	Cifar10-C	ResNet18(11.2M)		
IMU	Activity (A), Physical Condition (P), Device Placement (D)	HHAR, UCI, Motion, Shoaib	DCNN(17.3K)		
Audio	User Command (C), Tone (T), Environmental Noise (N)	Google Speech	VGG11(9.75M)		
Text	Article Topic (T), Language (L)	XGLUE	BERT(0.178B)		

Overall Performance

Higher overall CL performance compared with few-shot CL:

- 15.1%, 12.4%, 1.1%, 5.6% accuracy improvement for visual, IMU, audio, textual tasks

Tasks	Context	Vanilla	Few-Shot CL			Federated CL			Data Enrichment		ΔAcc.	ΔComm.
	Category	CL	FS-KD	FS-RO	FS-PF	Fed-0.1	Fed-0.2	Fed-0.4	Random	Delta	ΔACC.	ΔComm.
IC	O+W	32.7±1.49	41.7±1.78	39.2±2.13	36.9 ± 2.87	31.8±0.24	46.4±1.65	55.1 ± 0.42	42.5±2.42	57.7 ± 0.54	16.0% ↑	93.7% ↓
	O+N	31.3±1.74	36.2±2.34	35.5 ± 1.65	32.3 ± 1.25	31.1±0.04	$40.4{\pm}0.51$	$45.0{\pm}0.12$	35.8±1.00	50.9 ± 1.66	14.8% ↑	93.5% ↓
	O+B	35.6 ± 0.94	43.7±1.12	40.6 ± 0.24	39.2 ± 0.06	32.6±0.16	39.6 ± 0.24	50.1 ± 0.31	39.9±1.69	57.7 ± 0.98	14.0% ↑	91.1% ↓
	O+D	45.0 ± 2.57	55.1±1.17	51.5 ± 2.66	52.2 ± 3.10	36.9±0.04	$49.0{\pm}0.51$	61.7 ± 0.34	53.7±2.24	72.3 ± 2.27	17.1% ↑	92.2% ↓
	O+W+N+B+D	77.3 ± 0.49	81.2±1.53	80.4 ± 0.81	75.3 ± 0.41	30.0±0.05	39.8 ± 0.71	50.8 ± 0.41	47.8±6.64	94.8±2.74	13.6% ↑	95.3% ↓
HAR	A	52.4±3.67	55.0±3.93	52.9 ± 2.55	48.3 ± 2.69	54.0±0.64	60.0 ± 0.21	61.3 ± 0.55	58.4±0.35	69.3±1.96	14.3% ↑	99.6% ↓
	A+P	51.2±4.53	53.3±3.20	50.1 ± 3.52	49.4 ± 2.95	60.5±1.28	61.1±1.89	63.1 ± 0.85	58.5±0.75	66.6 ± 1.78	13.3% ↑	99.8% ↓
	A+P+D	81.0±4.75	80.3±2.35	78.7 ± 4.37	$71.0{\pm}4.27$	62.2±3.58	66.8 ± 3.97	70.1 ± 4.28	61.1±3.25	90.3±5.09	10.0% ↑	99.7% ↓
AR	С	93.6±0.16	93.5±0.07	92.9±0.65	94.2 ± 0.28	88.1±1.65	88.3 ± 0.83	88.5 ± 1.78	90.4±0.19	94.3±0.17	0.2% ↑	99.9%↓
	C+T	89.0±0.41	89.4±0.57	89.4 ± 0.38	90.3 ± 0.79	86.5±0.24	$88.5{\pm}0.62$	88.7 ± 0.25	90.3±0.26	91.1±1.17	0.8% ↑	99.9%↓
	C+T+N	84.7 ± 0.64	84.8±1.52	86.2 ± 0.79	86.9 ± 0.40	87.5±0.54	87.7 ± 0.31	88.0 ± 0.61	88.5±1.45	89.2 ± 1.60	2.3% ↑	99.9%↓
TC	T	73.2±2.15	73.5±1.35	75.7±4.07	73.3±2.56	79.6±0.37	79.6±0.19	79.8±0.14	73.9±2.69	83.1±2.26	7.3% ↑	99.8% ↓
	T+L	77.7±3.19	82.2±0.29	80.1±3.02	80.0 ± 1.89	84.3±0.14	84.4 ± 0.18	84.7 ± 0.09	79.7±2.21	86.2±2.16	4.0% ↑	99.4% ↓

Overall Performance

Lower communication overheads compared with federated CL:

- More than 91% communication cost reduction for different tasks

Tasks	Context	Vanilla	Few-Shot CL			Federated CL			Data Enrichment		ΔAcc.	ΔComm.
	Category	CL	FS-KD	FS-RO	FS-PF	Fed-0.1	Fed-0.2	Fed-0.4	Random	Delta	ΔAcc.	ДСоппп.
IC	O+W	32.7±1.49	41.7±1.78	39.2±2.13	36.9±2.87	31.8±0.24	46.4±1.65	55.1±0.42	42.5±2.42	57.7±0.54	16.0% ↑	93.7% ↓
	O+N	31.3±1.74	36.2±2.34	35.5 ± 1.65	32.3 ± 1.25	31.1±0.04	$40.4{\pm}0.51$	$45.0{\pm}0.12$	35.8±1.00	50.9 ± 1.66	14.8% ↑	93.5% ↓
	O+B	35.6 ± 0.94	43.7±1.12	40.6 ± 0.24	39.2 ± 0.06	32.6±0.16	39.6 ± 0.24	50.1 ± 0.31	39.9±1.69	57.7 ± 0.98	14.0% ↑	91.1% ↓
	O+D	45.0 ± 2.57	55.1±1.17	51.5 ± 2.66	52.2 ± 3.10	36.9±0.04	49.0 ± 0.51	61.7 ± 0.34	53.7±2.24	72.3 ± 2.27	17.1% ↑	92.2% ↓
	O+W+N+B+D	77.3 ± 0.49	81.2±1.53	80.4 ± 0.81	75.3 ± 0.41	30.0±0.05	39.8 ± 0.71	50.8 ± 0.41	47.8±6.64	94.8±2.74	13.6% ↑	95.3% ↓
HAR	A	52.4±3.67	55.0±3.93	52.9±2.55	48.3±2.69	54.0±0.64	60.0±0.21	61.3±0.55	58.4±0.35	69.3±1.96	14.3% ↑	99.6% ↓
	A+P	51.2±4.53	53.3±3.20	50.1 ± 3.52	49.4 ± 2.95	60.5±1.28	61.1±1.89	63.1 ± 0.85	58.5±0.75	66.6±1.78	13.3% ↑	99.8% ↓
	A+P+D	81.0±4.75	80.3±2.35	78.7 ± 4.37	$71.0{\pm}4.27$	62.2±3.58	66.8 ± 3.97	$70.1{\pm}4.28$	61.1±3.25	90.3±5.09	10.0% ↑	99.7% ↓
AR	С	93.6±0.16	93.5±0.07	92.9 ± 0.65	94.2 ± 0.28	88.1±1.65	88.3 ± 0.83	88.5 ± 1.78	90.4±0.19	94.3±0.17	0.2% ↑	99.9% ↓
	C+T	89.0±0.41	89.4±0.57	89.4 ± 0.38	90.3 ± 0.79	86.5±0.24	88.5 ± 0.62	88.7 ± 0.25	90.3±0.26	91.1±1.17	0.8% ↑	99.9% ↓
	C+T+N	84.7 ± 0.64	84.8±1.52	86.2 ± 0.79	86.9 ± 0.40	87.5±0.54	87.7 ± 0.31	88.0 ± 0.61	88.5±1.45	89.2 ± 1.60	2.3% ↑	99.9% ↓
ТС	T	73.2±2.15	73.5±1.35	75.7±4.07	73.3±2.56	79.6±0.37	79.6±0.19	79.8±0.14	73.9±2.69	83.1±2.26	7.3% ↑	99.8% ↓
	T+L	77.7±3.19	82.2±0.29	80.1±3.02	80.0±1.89	84.3±0.14	84.4±0.18	84.7±0.09	79.7±2.21	86.2±2.16	4.0% ↑	99.4% ↓

Marginal System Overheads

Latency (ms)

- Device-Side: 1.05 109
 ms/sample
- Cloud-Side: 2.56 7.15 ms/context

Memory (MB)

- Device-Side: No increased peak memory footprint
- Cloud-Side: 0.12 7.8 MB extra memory cost

Communication (KB)

- Upload: ≤1KB for directory weights
- **Download:** 2.89 30.4 KB

for enriched data

System Scalability

Latency (ms)

- Device-Side: 1.05 109 ms/sample
- Cloud-Side: 2.56 7.15 ms/context

Memory (MB)

- **Device-Side:** No increased peak memory footprint
- Cloud-Side: 0.12 7.8 MB extra memory cost

Communication (KB)

- **Upload:** ≤1KB for directory weights
- **Download:** 2.89 30.4 KB

for enriched data

More Details in Our Paper:

Component-Wise Analysis, Sensitivity Analysis, Different Impacts on New and Past Contexts

Conclusion

Problem

- The data bottleneck in on-device continual learning
- Existing solutions show ineffectiveness and inefficiency

Solution

 Delta, a cloud-assisted data enrichment framework that simultaneously achieves privacy, efficiency and effectiveness

Result

 Delta shows superior continual learning performance in different tasks with varied data modalities with marginal system overheads

Conclusion

Problem

- The data bottleneck in on-device continual learning
- Existing solutions show ineffectiveness and inefficiency

Solution

• Delta, a cloud-assisted data enrichment framework that simultaneously achieves privacy, efficiency and effectiveness

Result Thank You for Your Attention!

 Delta shows superior contichen Gong ing performance in different tasks with varied datagongchen@sjtu.edu.cnrginal system overheads