

ABB MEASUREMENT & ANALYTICS | FICHE PRODUIT

TTH300

Transmetteurs de température montage en tête

Measurement made easy

Convertisseur de mesure de température pour tous les protocoles de communication. Redondance par deux entrées

Mesure de température fiable pour les exigences les plus élevées

- Précision, fiabilité et longévité élevées
- Linéarisation spécifique du capteur par coefficients Callendar-Van Dusen et avec tableau de paires de valeurs (32 points)
- Homologué pour les mesures soumises à vérification (Custody Transfer) par certificat MID conformément à la directive sur les instruments de mesure 2014/32/EU.
- Convient pour des températures ambiantes à partir de -50 °C (-58 °F)

Câblage d'entrée et communication

- Deux entrées universelles pour sondes à résistance (par ex. 2 × Pt100 en montage circuit 3 fils) et thermocouples
- 4 à 20 mA, HART®, PROFIBUS PA®, FOUNDATION Fieldbus®

Sécurité

- Homologations globales pour la protection antidéflagrante jusqu'à la zone 0
- Sécurité fonctionnelle SIL 2 / SIL 3 selon IEC 61508 (HART)
- Versionnement des appareils conforme NE 53
- Surveillance continue de la tension d'alimentation
- Surveillance de rupture de fil / de corrosion selon NE 89
- Diagnostic étendu selon NE 107, Contrôle de la dérive de capteur

Configuration

- Selon FDT / DTM, EDD ou FDI (FIM)
- Afficheur LCD rotatif avec touches

Caractéristiques techniques

Marquage CE

Selon les directives applicables, l'appareil répond à toutes les exigences relatives au marquage CE.

Séparation galvanique

3,5 kV DC (env. 2,5 kV AC), 60 s, entrée contre sortie

MTBF (Mean Time Between Failure)

190 ans à 40 °C (104 °F) de température ambiante

Filtre d'entrée

50 / 60 Hz

Relais temporisé

- HART: < 10 s (la ≤ 3,6 mA pendant la mise sous tension)
- PROFIBUS: 10 s, max. 30 s
 FOUNDATION Fieldbus: < 10 s

Délai de préchauffage

5 minutes

Temps de montée t90

400 à 1000 ms

Actualisation des valeurs de mesure

10/s pour 1 capteur, 5/s pour 2 capteurs, en fonction du type de capteur et du circuit

Filtre de sortie

Filtre numérique 1er ordre : 0 à 100 s

Poids

50 g

Matériau

- Boîtier : polycarbonate
 Caulant polycarbonate
- Couleur : gris RAL9002
- Matériau de scellement: polyuréthane (PUR), WEVO PU-417

Conditions d'installation

- Lieu de montage : pas de limitations
- Possibilités de montage :

Tête de raccordement selon DIN 43729 forme B Montage sur rail (35 mm) selon EN 60175 sur pied d'appui Boîtier de terrain

Raccordement électrique

- Bornes de connexion avec vis imperdables en acier inoxydable, avec cosses à souder
- Fils jusqu'à max. 1,5 mm² (AWG 16)
- Raccordement pour terminal portable

Dimensions

Voir le chapitre **Dimensions** à la page 17.

Conditions ambiantes

Température ambiante

- Standard: -40 à 85 °C (-40 à 185 °F)
- En option : -50 à 85 °C (-58 à 185 °F)
- Plage restreinte pour fonctionnement avec écran LCD :
 -20 à 70 °C (-4 à 158 °F)
- Plage restreinte pour version Ex : voir le certificat correspondant

Température de transport / de stockage

-50 à 85 °C (-58 à 185 °F)

Classe climatique selon DIN EN 60654-1

Cx -40 à 85 °C (-40 à 185 °F) pour une humidité relative de l'air de 5 à 95 %

Humidité max. admise selon IEC 60068-2-30

100 % d'humidité relative de l'air

Résistance à l'oscillation selon IEC 60068-2-6

10 à 2000 Hz pour 5 g, en fonctionnement et lors du transport

Résistance aux chocs selon IEC 68-2-27

gn = 30, en fonctionnement et lors du transport

Indice de protection IP

- Circuit d'alimentation : IP 20
- Courant de court-circuit : IP 00 ou Indice de protection du boîtier de montage

... Caractéristiques techniques

Compatibilité électromagnétique

Immunité aux émissions parasites IEC EN 61326 et Namur NE 21.

Résistance aux interférences selon IEC 61326 et Namur NE 21 Pt100 : plage de mesure 0 à 100 °C (32 à 212 °F), étendue 100 K

Catégorie de contrôle	Acuité de	Influence
	contrôle	
Décharge sur signal et communication	2 kV	< 0,5 %
Décharge statique		
Plaque de couplage (indirect)	8 kV	non
Bornes d'alimentation*	6 kV	non
Bornes de capteur*	4 kV	non
champ rayonnant		
80 MHz à 2 GHz	10 V/m	< 0,5 %
Couplage		
150 kHz à 80 MHz	10 V	< 0,5 %
Surtension		
entre les fils d'alimentation	0,5 kV	Pas de
Fil mis à la terre	1 kV dysf	onctionnement

^{*} Décharge dans l'air (écart 1 mm (0,04 in))

Sécurité fonctionnelle SIL

Uniquement pour les appareils avec communication HART. Avec conformité selon IEC 61508 pour l'utilisation dans des applications liées à la sécurité jusqu'à SIL niveau 3 (redondant).

- Avec l'utilisation d'un convertisseur de mesures, l'appareil répond aux exigences de la norme SIL 2.
- En cas d'utilisation de convertisseurs de mesure à commande redondante, les exigences selon SIL 3 peuvent être remplies.

Vous trouverez des informations à ce sujet dans le manuel de sécurité SIL.

Ecran LCD de type A et de type AS

- 1 Quitter / Annuler
- (3) Faire défiler en avant
- (2) Faire défiler en arrière
- (4) Valider

Figure 1: A Écran LCD de type A Écran LCD de type AS

L'écran LCD de type AS dispose d'une fonction d'affichage et des fonctions de configuration supplémentaires avec l'écran LCD de type A.

Les deux écrans LCD ne peuvent être commandés qu'avec des convertisseurs de mesure de température.

Marquage CE

Selon les directives applicables, les écrans LCD de types A et AS satisfont toutes les exigences relatives au marquage CE.

Caractéristiques

Écran LCD graphique (alphanumérique) raccordé au convertisseur de mesure

- Taille des caractères dépendant du mode
- Signes, 4 chiffres, 2 chiffres après la virgule
- Affichage Bargraph
- Pivotable en 12 positions de 30°

Capacité d'affichage

- Valeur de processus capteur 1
- · Valeur de processus capteur 2
- Température de l'électronique / température ambiante
- Valeur de sortie
- % de sortie

Informations de diagnostic d'écran, convertisseur de mesure et statut du capteur

Caractéristiques techniques

Plage de température -20 à 70 °C (-4 à 158 °F)

Fonctions d'affichage limitées (contraste, temps de réaction) dans les plages de température :

- -50 à -20 °C (-58 à -4 °F)
- 70 à 85 °C (158 à 185 °F)

Humidité de l'air

0 à 100 %, de condensation admissible

Fonction de configuration

- · Configuration des capteurs standard
- Plage de mesure
- Comportement en cas d'erreur (HART)
- Taquet logiciel de protection des données de configuration
- Adresse d'appareil pour HART et PROFIBUS PA

Entrée – thermomètre à résistance / résistances

Thermomètre de résistance

- Pt100 selon IEC 60751, JIS C1604, MIL-T-24388
- Ni selon DIN 43760
- Cu selon la recommandation OIML R 84

Mesure de la résistance

- 0 à 500 Ω
- 0 à 5000 Ω

Type de raccordement du capteur

circuit à deux, trois, quatre conducteurs

Ligne de transfert

- Résistance de câble de capteur maximale : par conducteur 50 Ω selon NE 89
- Circuit à trois fils : résistances de ligne du capteur symétriques
- Circuit à deux fils : résistance de ligne compensable jusqu'à 100 Ω

Courant de mesure

< 300 µA

Court-circuit du capteur

 $< 5 \Omega$ (pour thermomètres à résistance)

Rupture de fil du capteur

- Plage de mesure 0 à 500 Ω > 0,6 à 10 k Ω
- Plage de mesure 0 à 5 k Ω > 5,3 à 10 k Ω

Contrôle de la corrosion selon NE 89

- Mesure de la résistance à trois fils : > 50 Ω
- Mesure de la résistance à quatre fils : > 50 Ω

Signalisation d'erreur du capteur

- Thermomètre à résistance : court-circuit du capteur et rupture de fil du capteur
- Mesure de résistance linéaire : rupture de fil du capteur

... Caractéristiques techniques

Entrée - thermocouples / tensions

Types

- B, E, J, K, N, R, S, T selon IEC 60584
- U, L selon DIN 43710
- C, D selon ASTM E-988

Tensions

- -125 à 125 mV
- -125 à 1100 mV

Ligne de transfert

• Résistance de câble de capteur maximale (RW) : par conducteur 1,5 k Ω , somme 3 k Ω

Contrôle de rupture de fil du capteur NE 89

- Pulsé avec 1 µA hors de l'intervalle de mesure
- Mesure de thermocouple 5,3 à 10 k Ω
- Mesure de la tension 5,3 à 10 k Ω

Résistance d'entrée

> 10 MΩ

Point de comparaison interne Pt1000, IEC 60751 Kl. B

(aucun pont électrique supplémentaire)

Signalisation d'erreur du capteur

- Thermocouple: rupture de fil du capteur
- Mesure de tension linéaire : rupture de fil du capteur

Fonctionnalités d'entrée

Courbe caractéristique en mode libre / tableau de 32 points d'appui

- Mesure de résistance jusqu'à un maximum de $5 \text{ k}\Omega$
- Tensions jusqu'à un maximum de 1,1 V

Compensation d'erreur de capteur

- Par coefficients Callendar-Van Dusen
- Par tableau de valeurs, à 32 points
- Par réglage à un point (compensation d'offset)
- Par réglage à deux points

Fonctionnalité d'entrée

- 1 capteur
- 2 capteurs:

Mesure de moyenne, mesure différentielle, redondance des capteurs, Surveillance de dérive des capteurs

Sortie HART®

Comportement de transmission

- · Température linéaire
- Résistance linéaire
- · Tension linéaire

Signal de sortie

- Configurable 4 à 20 mA (standard)
- Configurable 20 à 4 mA
 (Plage de crête : 3,8 à 20,5 mA selon NE 43)

Mode de simulation

3,5 à 23,6 mA

Consommation propre

< 3.5 mA

Courant de sortie maximal

23,6 mA

Signal de courant de défaut configurable

- Écrêtage 22 mA (20,0 à 23,6 mA)
- Sous-excitation 3,6 mA (3,5 à 4,0 mA)

Sortie PROFIBUS PA®

Signal de sortie

- PROFIBUS MBP (IEC 61158-2)
- Vitesse de transmission 31,25 kbit/s
- PA-profil 3.01
- Conforme FISCO (IEC 60079-27)
- Numéro ID: 0x3470 [0x9700]

Signal de courant de fuite

• FDE (Fault Disconnection Electronic)

Structure de blocs

- Bloc physique
- Transducer Block 1 température
- Transducer Block 2 HMI (écran LCD)
- Transducer Block 3 diagnostic étendu
- Analog Input 1 Primary Value (Calculated Value*)
- Analog Input 2 SECONDARY VALUE_1 (Sensor 1)
- Analog Input 3 SECONDARY VALUE_2 (Sensor 2)
- Analog Input 4 SECONDARY VALUE_3 (température point de comparaison)
- Analog Output affichage IHM en option (bloc transducteur 2)
- Discrete Input 1 diagnostic étendu 1 (bloc transducteur 3)
- Discrete Input 2 diagnostic étendu 2 (bloc transducteur 3)
- * Capteur 1, capteur 2, différentiel ou moyenne

Sortie FOUNDATION Fieldbus®

Signal de sortie

- FOUNDATION Fieldbus H1 (IEC 611582-2)
- Vitesse de transmission 31,25 kbit/s, ITK 5.x
- Conforme FISCO (IEC 60079-27)
- ID appareil: 000320001F...

Signal de courant de fuite

• FDE (Fault Disconnection Electronic)

Structure de blocs*

- Resource Block
- Transducer Block 1 température
- Transducer Block 2 HMI (écran LCD)
- Transducer Block 3 diagnostic étendu
- Analog Input 1 PRIMARY_VALUE_1 (Sensor 1)
- Analog Input 2 PRIMARY_VALUE_2 (Sensor 2)
- Analog Input 3 PRIMARY VALUE 3 (Calculated Value**)
- Analog Input 4 SECONDARY_VALUE (température point de comparaison)
- Analog Output affichage IHM en option (bloc transducteur 2)
- Discrete Input 1 diagnostic étendu 1 (bloc transducteur 3)
- Discrete Input 2 diagnostic étendu 2 (bloc transducteur 3)
- PID régulateur PID

LAS (Link Active Scheduler) fonctionnalité Link Master

- * Pour la description du bloc, de l'index de bloc, du temps d'exécution et de la classe de bloc, voir description de l'interface
- ** Capteur 1, capteur 2, différentiel ou moyenne

... Caractéristiques techniques

Alimentation

Technologie à deux fils, protection contre les inversions de polarité; fils d'alimentation = fils de signalisation

Remarque

Les calculs suivants sont valables pour les applications standards. Prendre en compte, le cas échéant, un courant maximal plus élevé.

Alimentation - HART®

Tension d'alimentation

- Application non Ex:
 U_S = 11 à 42 V CC
- Applications Ex:
 U_S = 11 à 30 V CC

Ondulation résiduelle maximale admissible de la tension d'alimentation

Pendant la communication elle correspond à la spécification HART FSK « Physical Layer ».

Détection de sous-tension au niveau du convertisseur de mesure

Si la tension de la borne au niveau du convertisseur de mesure passe en dessous des 10 V, l'intensité de sortie est alors de $I_a \le 3,6$ mA.

Charge maximale

 R_B = (tension d'alimentation - 11 V) / 0,022 A

- (A) TTH300
- © Résistance de communication HART
- (B) TTH300 Applications Ex:
- Figure 2: Charge maximale en fonction de la tension d'alimentation

Puissance absorbée maximale

 $P = U_s \times 0,022 A$

PAR EX : $U_s = 24 \text{ V} \rightarrow P_{\text{max}} = 0,528 \text{ W}$

Alimentation - PROFIBUS® / FOUNDATION Fieldbus®

Tension d'alimentation

- Application non Ex :
 - $U_S = 9 \text{ à } 32 \text{ V CC}$

Applications Ex:

 $U_S = 9 \text{ à } 17,5 \text{ V CC (FISCO)}$

 U_S = 9 à 24 V CC (Fieldbus Entity model I.S.)

Consommation électrique

< 12 mA

Précision de mesure

Y compris erreur de linéarité, reproductibilité / hystérésis à 23 °C (73,4 °F) \pm 5 K et 20 V de tension réseau. Les caractéristiques relatives à la précision de mesure correspondent à 3 σ (loi normale gaussienne). Dérive à long terme : \pm 0,05 °C (\pm 0,09 °F) ou \pm 0,05 %* par an, la valeur la plus élevée s'applique.

Capteur		Limites de capteur de mesure	Échelle de mesure	Précision de mesure	
			minimale	Entrée	Sortie analogique*
				(convertisseur A/D	(convertisseur A / D
				24 bits)	16 bits)
Thermomètre à	résistance / résistance				
DIN IEC 60751	Pt10 (a=0,003850)	-200 à 850 °C (-328 à 1562 °F)	10 °C (18 °F)_	±0,80 °C (±1,44 °F)	± 0,05 %
	Pt50 (a=0,003850)		_	±0,16 °C (±0,29 °F)	± 0,05 %
	Pt100 (a=0,003850)**		_	±0,08 °C (±0,14 °F)	± 0,05 %
	Pt200 (a=0,003850)		_	±0,24 °C (±0,43 °F)	± 0,05 %
	Pt500 (a=0,003850)		_	±0,16 °C (±0,29 °F)	± 0,05 %
	Pt1000 (a=0,003850)			±0,08 °C (±0,14 °F)	± 0,05 %
JIS C1604	Pt10 (a=0,003916)	-200 à 645 °C (-328 à 1193 °F)	10 °C (18 °F)_	±0,80 °C (±1,44 °F)	± 0,05 %
	Pt50 (a=0,003916)			±0,16 °C (±0,29 °F)	± 0,05 %
	Pt100 (a=0,003916)			±0,08 °C (±0,14 °F)	± 0,05 %
MIL-T-24388	Pt10 (a=0,003920)	-200 à 850 °C (-328 à 1562 °F)	10 °C (18 °F)_	±0,80 °C (±1,44 °F)	± 0,05 %
	Pt50 (a=0,003920)		_	±0,16 °C (±0,29 °F)	± 0,05 %
	Pt100 (a=0,003920)		_	±0,08 °C (±0,14 °F)	± 0,05 %
	Pt200 (a=0,003920)		_	±0,24 °C (±0,43 °F)	± 0,05 %
	Pt1000 (a=0,003920)			±0,08 °C (±0,14 °F)	± 0,05 %
DIN 43760	Ni50 (a=0,006180)	-60 à 250 °C (-76 à 482 °F)	10 °C (18 °F)_	±0,16 °C (±0,29 °F)	± 0,05 %
	Ni100 (a=0,006180)			±0,08 °C (±0,14 °F)_	± 0,05 %
	Ni120 (a=0,006180)			_	± 0,05 %
	Ni1000 (a=0,006180)				± 0,05 %
OIML R 84	Cu10 (a=0,004270)	-50 à 200 °C (-58 à 392 °F)	10 °C (18 °F)	±0,80 °C (±1,44 °F)	± 0,05 %
	Cu100 (a=0,004270)			±0,08 °C (±0,14 °F)	± 0,05 %
	Mesure de la résistance	0 à 500 Ω	4 Ω	±32 mΩ	± 0,05 %
		0 à 5000 Ω	40 Ω	±320 mΩ	± 0,05 %

Les pourcentages se rapportent à l'échelle de mesure configurée, sauf pour PROFIBUS PA® et FOUNDATION Fieldbus®

^{**} Version standard

... Caractéristiques techniques

Capteur		Limites de capteur de mesure	Échelle de mesure		Précision de mesure
			minimale	Entrée (convertisseur A/D 24 bits)	Sortie analogique* (convertisseur A / D 16 bits)
Thermocouple	s** / Tensions				
IEC 60584	Type K (Ni10Cr-Ni5)	-270 à 1372 °C (-454 à 2502 °F)	50 °C (90 °F)	±0,35 °C (±0,63 °F)	± 0,05 %
	Type J (Fe-Cu45Ni)	−210 à 1200 °C (−346 à 2192 °F)			± 0,05 %
	Type N (Ni14CrSi-NiSi)	-270 à 1300 °C (-454 à 2372 °F)			± 0,05 %
	Type T (Cu-Cu45Ni)	-270 à 400 °C (-454 à 752 °F)			± 0,05 %
	Type E (Ni10Cr-Cu45Ni)	-270 à 1000 °C (-454 à 1832 °F)			± 0,05 %
	Type R (Pt13Rh-Pt)	−50 à 1768 °C (−58 à 3215 °F)	100 °C (180 °F)	±0,95 °C (±1,71 °F)_	± 0,05 %
	Type S (Pt10Rh-Pt)				± 0,05 %
	Type B (Pt30Rh-Pt6Rh)	-0 à 1820 °C (32 à 3308 °F)			± 0,05 %
DIN 43710	Type L (Fe-CuNi)	-200 à 900 °C (-328 à 1652 °F)	50 °C (90 °F)	±0,35 °C (±0,63 °F)	± 0,05 %
	Type U (Cu-CuNi)	−200 à 600 °C (−328 à 1112 °F)			± 0,05 %
ASTM E 988	Type C	-0 à 2315 °C (32 à 4200 °F)	100 °C (180 °F)	±1,35 °C (±2,43 °F)_	± 0,05 %
	Type D				± 0,05 %
	Mesure de tension	−125 à 125 mV	2 mV	±12 μV	± 0,05 %
		−125 à 1100 mV	20 mV	±120 μV	± 0,05 %

^{*} Les pourcentages se rapportent à l'échelle de mesure configurée, sauf pour PROFIBUS PA® et FOUNDATION Fieldbus®

^{**} Pour la précision de mesure numérique, il faut ajouter l'erreur de point de comparaison : Pt1000, DIN IEC 60751 Kl. B

Influence opérationnelle

Les pourcentages se rapportent à l'échelle de mesure configurée.

Influence de la tension d'alimentation / influence de la charge :

A l'intérieur des valeurs limites de tension / de charge définies, l'influence générale est inférieure à 0,001 % par volt.

Défaut de mode commun :

Pas d'influence jusqu'à 100 $V_{\rm eff}$ (50 Hz) ou 50 VDC

Influence de la température ambiante :

Rapportée à 23 °C (73,4 °F) pour la plage de température ambiante -40 à 85 °C (-40 à 185 °F) 4

Capteur		Influence de la température ambiante par 1 °C (1,8 °F)	écart par rapport à 23 °C (73,4 °F)
		Entrée	Sortie analogique ^{1, 2}
		(convertisseur A / D-24 bits)	(convertisseur A /D-16 bits)
Thermomètre à résis	stance, deux, trois ou quat	re fils	
IEC, JIS, MIL	Pt10	±0,04 °C (±0,072 °F)	±0,003 %
	Pt50	±0,008 °C (±0,014 °F)	±0,003 %
	Pt100	±0,004 °C (±0,007 °F)	±0,003 %
IEC, MIL	Pt200	±0,02 °C (±0,036 °F)	±0,003 %
	Pt500	±0,008 °C (±0,014 °F)	±0,003 %
	Pt1000	±0,004 °C (±0,007 °F)	±0,003 %
DIN 43760	Ni50	±0,008 °C (±0,014 °F)	±0,003 %
	Ni100	±0,004 °C (±0,007 °F)	±0,003 %
	Ni120	±0,003 °C (±0,005 °F)	±0,003 %
	Ni1000	±0,004 °C (±0,007 °F)	±0,003 %
OIML R 84	Cu10	±0,04 °C (±0,072 °F)	±0,003 %
	Cu100	±0,004 °C (±0,007 °F)	±0,003 %
Mesure de la résistar	nce		
	0 à 500 Ω	±0,002 Ω	±0,003 %
	0 à 5000 Ω	±0,02 Ω	±0,003 %
Thermocouple, tous	les types définis		
		± [(0,001 % × (ME[mV] / MS[mv]) + (100 % × (0,009 °C / MS [°C])] ³	±0,003 %
Mesure de tension			
	-125 à 125 mV	±1,5 μV	±0,003 %
	−125 à 1100 mV	±15 μV	±0,003 %

- 1 Les pourcentages se rapportent à l'échelle de mesure configurée du signal de sortie analogique
- 2 L'influence du convertisseur-D / A supprimée avec PROFIBUS PA® et FOUNDATION Fieldbus®
- 3 ME = valeur de tension du thermocouple en fin d'échelle de mesure selon la norme
 - MA = valeur de tension du thermocouple en début d'échelle de mesure selon la norme
 - MS = valeur de tension du thermocouple sur l'échelle de mesure selon la norme. MS = (ME MA)
- 4 Pour l'option de la plage de température étendue -50 °C (-58 °F), les valeurs d'influence doublées s'appliquent à la plage -50 à -40 °C (-58 à -40 °F)

Raccordements électriques

Affectation des raccordements

Thermomètre de résistance (RTD) / résistances (potentiomètre)

- (A) Potentiomètre, circuit à quatre conducteurs
- (B) Potentiomètre, circuit à trois conducteurs
- (C) Potentiomètre, circuit à deux conducteurs
- (D) 2 × RTD, circuit à trois conducteurs*
- (E) 2 × RTD, circuit à deux conducteurs*
- (F) RTD, circuit à quatre conducteurs
- RTD, circuit à trois conducteurs

- (H) RTD, circuit à deux conducteurs
- (Capteur 1
- J Capteur 2*
- K Interface pour indicateur LCD et Service
- (1) (6) Port du capteur (de l'élément de mesure)
- (7) (8) 4 à 20 mA HART®, PROFIBUS PA®, FOUNDATION Fieldbus®

* Backup capteur / redondance capteur, contrôle de la dérive du capteur, mesure de la moyenne ou différentielle

Figure 3: Schéma de raccordement Thermomètre de résistance (RTD) / résistances (potentiomètre)

Thermocouples / tensions et thermomètre de résistance (RTD) / combinaisons de thermocouples

- A 2 × mesure de tension*
- (B) 1 × mesure de tension
- © 2 × thermocouples*
- (D) 1 × thermocouple
- (E) 1 × RTD, circuit à quatre fils et 1 x thermocouple*
- F) 1 × RTD, circuit à trois fils et 1 x thermoecouple*

- G 1 × RTD, circuit à deux fils et 1 x thermoecouple*
- (H) Capteur 1
- (I) Capteur 2*)
- J Interface pour indicateur LCD et Service
- 1 6 Port du capteur (de l'élément de mesure)
- 7 8 4 à 20 mA HART®, PROFIBUS PA®, FOUNDATION Fieldbus®

Figure 4: Schéma de raccordement Thermocouples / tensions et thermomètre de résistance (RTD) / combinaisons de thermocouples

^{*} Backup capteur / redondance capteur, contrôle de la dérive du capteur, mesure de la moyenne ou différentielle

Communication

Paramètre de configuration

Type de mesure

- Type de capteur, catégorie de raccordement
- · Signalisation d'erreur
- · Plage de mesure
- Données générales p. ex. numéro TAG
- Amortissement
- Seuils d'avertissement et d'alarme
- · Simulation de signal de la sortie
- Pour les détails, se reporter au Configuration formulaire de commande à la page 24.

Protection en écriture

Taquet logiciel

Informations de diagnostic selon NE 107

Standard:

- Signalisation d'erreur du capteur (Rupture de fil ou court-circuit)
- Erreur de l'appareil
- Alarme de dépassement du seuil supérieur / inférieur
- Dépassement par le bas / haut de la plage de mesure
- Simulation active

Avancé:

- Redondance du capteur / Backup du capteur actif (panne d'un capteur) avec signalisation d'alarme à impulsions analogique configurable
- Contrôle de la dérive avec signalisation d'alarme à impulsions configurable
- Protection capteur / corrosion du fil capteur
- Seuil de dépassement inférieur de la tension d'alimentation
- Suiveuse entraînée pour capteur 1, capteur 2 et température ambiante
- Seuil de dépassement supérieur de la température ambiante
- Seuil de dépassement inférieur de la température ambiante
- · Compteur d'heures de service

Communication HART®

L'appareil figure dans la liste de FieldComm Group.

- 1 Transmetteur
- (5) Mise à la terre (en option)
- 2 Terminal portatif3 Modem HART®
- 6 Appareil d'alimentation (interface processus)
- 4 Ordinateur avec Asset Management Tool
- R_B Résistance ohmique (si nécessaire)

Figure 5 : Exemple de connexion HART®

Manufacturer-ID	Ox1A
ID appareil	HART 5 : 0x000B,
	HART 7 : 0x1A0B
Profil	HART 5.1 (commutable en HART 7)
Configuration	À l'appareil par l'écran LCD
	DTM, EDD, FDI (FIM)
Signal de transmission	BELL Standard 202

Modes de fonctionnement

- Mode de communication point à point standard (adresse générale 0)
- Mode multidrop (adressage 1 à 15)
- Mode rafale

Configurations possibles / outils

Ne dépendant pas des pilotes :

- Ecran LCD HMI avec fonction de configuration Dépendant des pilotes :
 - Outils de gestion d'appareils / de gestion des équipements
 - Technologie FDT via pilote DTM TTX300 (Asset Vision Basic / DAT200)
 - EDD via pilote EDD TTX300 (terminal portatif, Field Information Manager / FIM)
 - Technologie FDI via package TTX300 (Field Information Manager / FIM)

Message de diagnostic

- Seuil de dépassement supérieur / inférieur selon NE 43
- Diagnostic HART

Communication PROFIBUS PA®

L'interface est conforme au profil 3.01 (PROFIBUS standard, EN 50170, DIN 1924 [PRO91]).

Figure 6 : Exemple de connexion PROFIBUS PA®

Manufacturer-ID	0x1A
Numéro d'ID	0x3470 [0x9700]
Profil	PA 3.01
Configuration	à l'appareil par l'écran LCD
	DTM
	EDD
	GSD
Signal de transmission	IEC 61158-2

Consommation de tension / consommation électrique

 Consommation électrique moyenne: 12 mA.
 En cas d'erreur, la fonction FDE (= Fault Disconnection Electronic) intégrée dans l'appareil veille à ce que la consommation de courant puisse atteindre 20 mA maximal.

Communication FOUNDATION Fieldbus®

Figure 7: Exemple de connexion FOUNDATION Fieldbus®

ID appareil	000320001F
ІТК	5.x
Configuration à l'apparei	à l'appareil par l'écran LCD
	EDD
Signal de transmission	IEC 61158-2

Consommation de tension / consommation électrique

 Consommation électrique moyenne : 12 mA.
 En cas d'erreur, la fonction FDE (= Fault Disconnection Electronic) intégrée dans l'appareil veille à ce que la consommation de courant puisse atteindre 20 mA maximal.

Certification MID

TTH300 avec certification MID

Le transmetteur de température TTH300 dispose d'un certificat de pièces MID (certificat d'ensembles MID / MID Parts Certificate) selon la directive sur les instruments de mesure 2014/32/UE « MID – Measuring Instruments Directive » et la norme WELMEC 7.2. Cela signifie que l'instrument peut être utilisé avec la configuration appropriée pour les mesures « Custody Transfer ».

La certification MID souligne la grande précision, la fiabilité et la longévité de TTH300.

Remarque

Ce chapitre fournit des informations de base sur le convertisseur de mesure certifié MID TTH300. Avant la mise en service de l'appareil, les informations complètes doivent être obtenues à partir des documents MID fournis (certificat de pièces et description « Description » associée). Les versions d'application générale du convertisseur de mesure TTH300, en particulier pour la protection antidéflagrante et la sécurité de l'appareil, ne sont pas concernées.

Généralités

Les appareils certifiés MID ont leur propre déclaration de conformité CE. De plus, le certificat de pièces associé « Parts Certificate » et la description associée « Description » accompagnent l'appareil.

Les domaines d'application, les conditions et les restrictions qui y sont décrites sont obligatoires pour l'utilisation prévue de l'appareil et doivent être strictement respectées!

Les exigences en matière de protection contre les explosions et de sécurité fonctionnelle (SIL) ne sont pas affectées par la certification MID.

Le numéro de certificat de pièces (TC11002) de l'organisme notifié NMi Certin B.V. et la somme de contrôle (0x46c9) de la révision certifiée SW 01.03.00 sont imprimés sur la plaque signalétique de l'appareil.

Domaines d'application, conditions et exigences

Le transmetteur de température TTH300 avec certification MID pour les mesures soumises à vérification est particulièrement adapté aux systèmes de mesure et de contrôle dans l'industrie pétrolière et gazière. En plus du gaz, tous les liquides, à l'exception de l'eau, sont autorisés pour la mesure.

La certification MID se réfère à une configuration spéciale du convertisseur de mesure. Elle ne doit pas être modifiée. Vous trouverez ci-dessous un extrait des conditions et des exigences énoncées dans le certificat :

- Protocole de communication : HART 5, HART 7
- Révision HW: 1.07
- Révision SW: 01.03.00 avec somme de contrôle 0x46c9
- La somme de contrôle du logiciel (firmware) est imprimée sur la plaque signalétique de l'appareil
- Un capteur Pt100 sur circuit 4 fils
- Température de fluide de mesure admissible : -50 à 150 °C (-58 à 302 °F)
- Plage de température ambiante sans écran LCD:
 -40 à 85 °C (-40 à 185 °F)

Remarque

- Sur la base du certificat MID, l'utilisation du TTH300 avec un écran LCD connecté n'est pas autorisée.
- La certification MID peut en principe être combinée avec toutes les certifications de protection contre les explosions.

Toutefois, la température ambiante et les plages de mesure spécifiées dans le certificat de protection contre les explosions correspondant peuvent limiter les plages autorisées dans le certificat MID.

Remarque

Après l'installation et la configuration, la protection en écriture HW doit être activée sur l'appareil. Le couvercle du boîtier doit être fixé et le boîtier de l'appareil scellé avec le joint fourni.

Dimensions

1 Interface pour indicateur LCD

Figure 8 : Dimensions en mm (in)

Utilisation dans les zones à risque d'explosion selon ATEX et IECEx

Remarque

- Pour de plus amples informations sur l'homologation Ex des appareils, veuillez vous rapporter aux certifications de contrôle (sur www.abb.com/temperature).
- En fonction de la version, un marquage spécifique selon ATEX ou IECEx s'applique.

Identification Ex

Convertisseur de mesure Sécurité intrinsèque ATEX

L'appareil, si la commande l'exige, satisfait les exigences de la directive ATEX 2014/34/EU et il est homologué pour les zones 0, 1 et 2.

Modèle T	TH300-E1H	
Attestation d'examen « CE » de type		PTB 05 ATEX 2017 X
II 1 G	Ex ia IIC T6 Ga	
II 2 (1) G	Ex [ia IIC Ga] ib IIC T6 Gb	
II 2 G (1D)	Ex [ia IIIC Da] ib IIC T6 Gb	
Modèle T	TH300-E1P et TTH300-E1F	
Attestati	on d'examen « CE » de type	PTB 09 ATEX 2016 X
II 1 G	Ex ia IIC T6 Ga	
II 2 (1) G	Ex [ia IIC Ga] ib IIC T6 Gb	
II 2 G (1D)	Ex [ia IIIC Da] ib IIC T6 Gb	

ATEX sans étincelles

L'appareil, si la commande l'exige, satisfait les exigences de la directive ATEX 2014/34/EU et il est homologué pour la zone 2.

Modèle TTH300-E2X	
Déclaration de conformité	
II 3 G Ex nA IIC T1-T6 Gc	

Sécurité intrinsèque IECEx

Homologué pour les zones 0, 1 et 2.

Modèle TTH300-H1H	
IECEx Certificate of Conformity	IECEx PTB 09.0014X
Modèle TTH300-H1P et TTH300-H1F	
IECEx Certificate of Conformity	IECEx PTB 11.0108X
Ex ia IIC T6T1 Ga	
Ex [ia IIC Ga] ib IIC T6T1 Gb	
Ex [ia IIIC Da] ib IIC T6T1 Gb	

Écran LCD

Sécurité intrinsèque ATEX

L'appareil, si la commande l'exige, satisfait les exigences de la directive ATEX 2014/34/EU et il est homologué pour les zones 0, 1 et 2.

Attestation d'examen « CE » de type	PTB 05 ATEX 2079 X
II 1G Ex ia IIC T6 Ga	

ATEX sans étincelles

L'appareil, si la commande l'exige, satisfait les exigences de la directive ATEX 2014/34/EU et il est homologué pour la zone 2.

Déclaration de conformité	
II 3 G Ex nA IIC T1-T6 Gc	

Sécurité intrinsèque IECEx

Homologué pour les zones 0, 1 et 2.

IECEx Certificate of Conformity	IECEx PTB 12.0028X
Ex ia IIC T6	

Données de température

Convertisseur de mesure Sécurité intrinsèque ATEX / IECEx, ATEX sans étincelles

Classe de	Plage de température ambiante admissible		
température	Utilisation catégorie d'appareils 1	Utilisation catégorie d'appareils 2 et 3	
T6	−50 à 44 °C	−50 à 56 °C	
	(-58 à 111,2 °F)	(-58 à 132,8 °F)	
T5	−50 à 56 °C	−50 à 71 °C	
	(-58 à 132,8 °F)	(-58 à 159,8 °F)	
T4-T1	−50 à 60 °C	−50 à 85 °C	
	(-58 à 140,0 °F)	(-58 à 185,0 °F)	

Écran LCD Sécurité intrinsèque ATEX / IECEx, ATEX sans étincelles

Classe de	Plage de température ambiante admissible		
température	Utilisation catégorie	Utilisation catégorie	
	d'appareils 1	d'appareils 2 et 3	
T6	-40 à 44 °C	−40 à 56 °C	
	(-40 à 111,2 °F)	(-40 à 132,8 °F)	
T5	−40 à 56 °C	−40 à 71 °C	
	(-40 à 132,8 °F)	(-40 à 159,8 °F)	
T4-T1	−40 à 60 °C	−40 à 85 °C	
	(-40 à 140 °F)	(-40 à 185 °F)	

Données électriques

Convertisseur de mesure

Mode de protection sécurité intrinsèque Ex ia IIC (partie 1)

Circuit d'alimentation*			
	TTH300-E1H	ттнз	00-E1P / -H1P
	TTH300-H1H	TTH3	00-E1F / -H1F
		FISCO*	ENTITY
Tension maximale	U _i = 30 V	U _i ≤ 17,5 V	U _i ≤ 24,0 V
Courant de court-circuit	I _i = 130 mA	I _i ≤ 183 mA**	I _i ≤ 250 mA
Puissance maximale	P _i = 0,8 W	$P_i \le 2,56 \text{ W}^{**}$	P _i ≤ 1,2 W
Inductance interne	L _i = 0,5 mH	L _i ≤ 10 μH	L _i ≤ 10 μH
Capacité interne	C _i = 0,57 nF***	C _i ≤ 5 nF	C _i ≤ 5 nF

- * FISCO selon 60079-27
- ** II B FISCO : li ≤ 380 mA, Pi ≤ 5,32 W
- *** Uniquement pour variante HART. À partir de la version matérielle 1.07, précédemment 5 nF

Mode de protection sécurité intrinsèque Ex ia IIC (partie 2)

Courant de court-circuit		
	Thermomètres à	Thermocouples,
	résistance, résistances	tensions
Tension maximale	U _o = 6,5 V	U _o = 1,2 V
Courant de court-circuit	I _o = 25 mA	I _o = 50 mA
Puissance maximale	P _o = 38 mW	P _o = 60 mW
Inductance interne	L _i = 0 mH	L _i = 0 mH
Capacité interne	C _i = 49 nF	C _i = 49 nF
Inductance externe	$L_o = 5 \text{ mH}$	L _o = 5 mH
maximale		
Capacité externe	C _o = 1,55 μF	C _o = 1,05 μF
maximale		

Mode de protection sécurité intrinsèque Ex ia IIC (partie 3)

Interface écran LCD	
Tension maximale	U _o = 6,2 V
Courant de court-circuit	I _o = 65,2 mA
Puissance maximale	P _o = 101 mW
Inductance interne	L _i = 0 mH
Capacité interne	C _i = 0 nF
Inductance externe maximale	L _o = 5 mH
Capacité externe maximale	C _o = 1,4 μF

Écran LCD Mode de protection sécurité intrinsèque Ex ia IIC

Circuit d'alimentation	
Tension maximale	U _i = 9 V
Courant de court-circuit	I _i = 65,2 mA
Puissance maximale	P _i = 101 mW
Inductance interne	L _i = 0 mH
Capacité interne	C; = 0 nF

Utilisation en zones à risque d'explosion selon FM et CSA

Remarque

- Pour de plus amples informations sur l'homologation Ex des appareils, veuillez vous rapporter aux certifications de contrôle (sur www.abb.com/temperature).
- Selon la version, un marquage spécifique FM ou CSA s'applique.

Identification Ex

Convertisseur de mesure FM Intrinsically Safe

Modèle TTH300-L1H	
Control Drawing	SAP_214829
Modèle TTH300-L1P	
Control Drawing	TTH300-L1P (IS)
Modèle TTH300-L1F	
Control Drawing	TTH300-L1F (IS)
Class I, Div. 1 + 2, Groups A, B, C, D	
Class I, Zone 0, AEx ia IIC T6	

FM Non-Incendive

Modèle TTH300-L2H	
Control Drawing	214831 (Non-Incendive)
Modèle TTH300-L2P	
Control Drawing	TTH300-L2P (NI_PS)
	TTH300-L2P (NI_AA)
Modèle TTH300-L2F	
Control Drawing	TTH300-L2F (NI_PS)
	TTH300-L2F (NI_AA)
Class I, Div. 2, Groups A, B, C, D	

CSA Intrinsically Safe

Modèle TTH300-R1H	
Control Drawing	214826
Modèle TTH300-R1P	
Control Drawing	TTH300-R1P (IS)
Modèle TTH300-R1F	
Control Drawing	TTH300-R1F (IS)
Class I, Div. 1 + 2, Groups A, B, C, D	
Class I, Zone 0, Ex ia Group IIC T6	

CSA Non-Incendive

Modèle TTH300-R2H	
Control Drawing	SAP_214824 (Non-Incendive)
	SAP_214896 (Non-Incendive)
Modèle TTH300-R2P	
Control Drawing	TTH300-R2P (NI_PS)
	TTH300-R2P (NI_AA)
Modèle TTH300-R2F	
Control Drawing	TTH300-R2F (NI_PS)
	TTH300-R2F (NI_AA)
Class I, Div. 2, Groups A, B, C, D	

Écran LCD

FM Intrinsically Safe

Control Drawing	SAP_214 748
I.S. Classe I Div 1 et Div 2, Groupes : A, B, C, D ou	
I.S. Classe I Zone 0 AEx ia IIC T*	
$U_i / V_{max} = 9 \text{ V}, I_i / I_{max} < 65,2 \text{ mA}, P_i = 101 \text{ mW}, C_i = 0,4 \mu\text{F}, L_i =$	0

FM Non-Incendive

Control Drawing	SAP_214 751
N.I. Classe I Div 2, Groupe : A, B, C, D ou Ex nL IIC T**, Classe I Z	Zone 2
$U_i / V_{max} = 9 \text{ V}, I_i / I_{max} < 65.2 \text{ mA}, P_i = 101 \text{ mW}, C_i = 0.4 \mu\text{F}, L_i = 0.00 \text{ mW}$	0

CSA Intrinsically Safe

Control Drawing	SAP_214 749
I.S. Classe I Div 1 et Div 2, Groupes : A, B, C, D ou	
I.S zone 0 Ex ia IIC T*	
$U_i / V_{max} = 9 \text{ V}, I_i / I_{max} < 65,2 \text{ mA}, P_i = 101 \text{ mW}, C_i < 0,4 \mu\text{F}, L_i = 100 \text{ mW}$: 0

CSA Non-Incendive

Control Drawing	SAP_214 750	
N.I. Classe I Div 2, Groupe : A, B, C, D ou Ex nL IIC T**, Classe I Zone 2		
$U_i / V_{max} = 9 \text{ V}, I_i / I_{max} < 65,2 \text{ mA}, P_i = 101 \text{ mW}, C_i < 0,4 \mu\text{F},$	L _i = 0	
* Ident town TC T		

* Ident. temp. : T6, T_{amb} 56 °C, T4 T_{amb} 85 °C

** Ident. temp. : T6, T_{amb} 60 °C, T4 T_{amb} 85 °C

Informations de commande

TTH300

Modèle de base	ттнзоо	XX	X	2
TTH300 Transmetteur de température pour montage de tête de capteur, Pt100 (RTD), thermocouples, séparation galvanique				
Protection Ex				
Sans protection Ex		Y0		
Mode de protection ATEX sécurité intrinsèque : Zone 0 : Il 1 G Ex ia IIC T6 Ga, Zone 1 (0) : Il 2 (1) G Ex [ia IIC Ga] ib IIC T6 Gb,				
Zone 1 (20) : Il 2 G (1D) Ex [ia IIIC Da] ib IIC T6 Gb		E1		
Mode de protection ATEX sans étincelles : Zone 2 : II 3 G Ex nA IIC T1-T6 Gc		E2		
Mode de protection IECEx sécurité intrinsèque : Zone 0 : Ex ia IIC T6 Ga, Zone 1 (0) : Ex [ia IIC Ga] ib IIC T6 Gb,				
Zone 1 (20) : Ex [ia IIIC Da] ib IIC T6 Gb		H1		
FM Intrinsic Safety (IS): Class I, Div. 1+2, Groups A, B, C, D, Class I, Zone 0, AEx ia IIC T6		L1		
FM Non-incendive (NI): Class I, Div. 2, Groups A, B, C, D ou Class I Zone 2 Group IIC T6		L2		
CSA Intrinsic Safety (IS): Class I, Div. 1+2, Groups A, B, C, D, Class I, Zone 0, Ex ia IIC		R1		
CSA Non-incendive (NI): Class I, Div. 2, Groups A, B, C, D		R2		
GOST Russie - Autorisation métrologique		G1		
GOST Russie - Métrologique et EAC Ex sécurité intrinsèque, Ex i - Zone 0		P2		
GOST Kazakhstan - Autorisation métrologique		G3		
GOST Kazakhstan – Métrologique et EAC Ex sécurité intrinsèque, Ex i - Zone 0		T2		
GOST Biélorussie - Autorisation métrologique		M5		
GOST Biélorussie – Métrologique et EAC Ex sécurité intrinsèque, Ex i - Zone 0		U2		
Inmetro Ex ia IIC T6T4 Ga, Ex ib [ia Ga] IIC T6T4 Gb Exib [ia IIIC Da] IIC T6T4 Gb		C1		
KOSHA Ex ia IIC T6		S 5		
Protocole de communication				
HART, réglable, sortie 4 à 20 mA			Н	
PROFIBUS PA			Р	
FOUNDATION Fieldbus			F	
Configuration				
Configuration standard				
Configuration spécifique au client sans courbe caractéristique d'utilisateur spécifique				
Configuration spécifique au client avec courbe caractéristique d'utilisateur spécifique				

^{*} P. ex. plage de mesure spécifique au client, n° d'identification

... Informations de commande

Informations supplémentaires de commande TTH300

Informations de commande supplémentaires	XX	XX	XXX	XX	XX	XX	XX	X
Certificats et attestations								
Déclaration de conformité SIL2	CS*							
Certificat usine selon EN 10204-2.1, conformité de commande	C4							
Certificat de réception selon EN 10204-3.1 de contrôle visuel, dimensionnel et fonctionnel	C 6							
MID - certificat de pièces (Parts Certificate) pour la mesure soumise à vérification (Custody Transfer)	CO*							
Certificat d'étalonnage								
Avec certificat d'étalonnage en usine en 5 points		EM						
Certificat de réception selon EN 10204-3.1 pour étalonnage en 5 points		EP						
Utilisation des certificats								
Envoi par e-mail			GHE					
Envoi par la poste			GHP					
Envoi express			GHD					
Envoi avec instrument			GHA					
Archivage uniquement			GHS					
Plage de température étendue								
-50 à 85 °C (-58 à 185 °F)				SE				
Boîtier de terrain								
Boîtier de terrain aluminium 80 \times 75 \times 57 mm, IP 65, avec 2 presse-étoupes M16					H1**			
Boîtier de terrain en polyester 75 \times 80 \times 55 mm, IP 65, avec 2 presse-étoupes M16					H2**			
Boîtier de terrain en polycarbonate 80 × 82 × 55 mm, IP 65, avec 2 presse-étoupes M16					H3**			
Boîtier de terrain en aluminium 175 × 80 × 57 mm, sans bloc séparé de bornes de connexion, IP 65,								
avec 2 presse-étoupe M16 et 1 presse-étoupes M20					H6**			
Boîtier de terrain en polyester 190 × 75 × 55 mm, avec bloc séparé de bornes de connexion, IP 65,								
avec 2 presse-étoupe M16 et 1 presse-étoupes M20					H7**			
Boîtier de terrain en polyester 190 × 75 × 55 mm, sans bloc séparé de bornes de connexion, IP 65,								
avec 2 presse-étoupe M16 et 1 presse-étoupes M20					H8**			
Options d'écran								
Préparé pour afficheur						D1		
Non préparé pour afficheur						D2		
Ecran LCD de type AS						D3		
Ecran LCD configurable de type A						D4		
Options de montage								
Kit de pieds d'appui pour rail de 35 mm selon EN 60175 (avec vis de fixation)							SF	
Versions spécifiques au client								

Disponible uniquement avec **protocole de communication** code H (HART)

^{**} Non disponible avec protection antidéflagrante

Informations supplémentaires de commande TTH300	
Langue de la documentation	
Allemand	M1
Anglais	M5
Kit linguistique Europe occidentale / Scandinavie (langues : DA, ES, FR, IT, NL, PT, FI, SV)	MW
Kit linguistique Europe orientale (langues : EL, CS, ET, LV, LT, HU, HR, PL, SK, SL, RO, BG)	ME

Accessoires	Numéro de commande
Kit de pieds d'appui TTH (unité de conditionnement par 10), pour rail de 35 mm selon EN 60175 (avec vis de fixation)	3KXT091230L0001
Kit de pieds d'appui TTH (unité de conditionnement par 1), pour rail de 35 mm selon EN 60175 (avec vis de fixation)	3KXT091230L0002
Instructions de mise en service TTH300, allemand	3KXT231001R4403
Instructions de mise en service TTH300, anglais	3KXT231001R4401
Instructions de mise en service TTH300, avec sets de langues d'Europe occidentale / Scandinavie	3KXT231001R4493
Instructions de mise en service TTH300, avec sets de langues d'Europe orientale	3KXT231001R4494

Configuration formulaire de commande

Version d'appareil HART

Configuration spécifique au client	Sélection
Nombre de capteurs	☐ 1 capteur (standard) ☐ 2 capteurs
Type de mesure	☐ Redondance de capteur / Backup de capteur
(pour l'achat de 2 capteurs seulement)	□ Contrôle de la dérive du capteur°C / K Différence de la dérive de capteur s Limite de temps
	pour dépassement de la dérive
	☐ Mesure différentielle : point zéro la = 4 mA
	☐ Mesure différentielle : point zéro la = 12 mA
	☐ Mesure de la moyenne
IEC 60751 Thermomètres à résistance	☐ Pt10 ☐ Pt50 ☐ Pt100 (standard) ☐ Pt200 ☐ Pt500 ☐ Pt1000
JIS C1604	□ Pt10 □ Pt50 □ Pt100
MIL-T-24388	□ Pt10 □ Pt50 □ Pt100 □ Pt200 □ Pt1000
DIN 43760	□ Ni50 □ Ni100 □ Ni120 □ Ni1000
OIML R 84	□ Cu10 □ Cu100
Mesure de la résistance	□ 0 à 500 Ω □ 0 à 5 000 Ω
IEC 60584 Thermocouple	□ Type K □ Type J □ Type N □ Type R □ Type S □ Type T □ Type E □ Type B
DIN 43710	□ Type L □ Type U
ASTM E-988	□ Type C □ Type D
Mesure de tension	□ -125 à 125 mV □ -125 à 1100 mV
Circuit de capteur	☐ Deux fils ☐ trois fils (standard) ☐ quatre fils
(pour les thermomètres à résistance et la mesure	Circuit à deux fils : compensation de la résistance du circuit du capteur max. 100 $\Omega\square$
de résistance seulement)	\square Capteur 1 : $\underline{\hspace{1cm}}$ Ω
Point de comparaison	☐ Interne (pour thermocouple standard sauf type B) ☐ aucun (type B)
(pour les thermocouples seulement)	☐ Externe / Température : °C
Plage de mesure	☐ Début de mesure de plage : (standard : 0)
	☐ Fin de mesure de plage : (standard : 100)
Unité	☐ Celsius (standard) ☐ Fahrenheit ☐ Rankine ☐ Kelvin
Comportement de la courbe caractéristique	□ croissant 4 à 20 mA (standard) □ décroissant 20 à 4 mA
Comportement de sortie en cas d'erreur	☐ Ecrêtage / 22 mA (standard) ☐ Sous-excitation / 3,6 mA
Sortie amortissement (T ₆₃)	☐ Arrêt (standard) ☐ secondes (1 à 100 s)
Numéro de capteur	□ Capteur 1 : □ Capteur 2 :
Valeur de résistance à 0 °C / R _o	Capteur 1 : R _o : Capteur 2 : R _o :
Coefficient Callendar-Van Dusen A	A:
Coefficient Callendar-Van Dusen B	B:
Coefficient Callendar-Van Dusen C	C:
(optionnel, pour thermomètres à résistance	
seulement)	
Courbe caractéristique d'utilisateur selon tableau	□ selon tableau de couples de valeurs joint
de linéarisation	
Numéro TAG	□ (8 caractères max.)
Version HART	□ HART5 (standard) □ HART7
Taquet logiciel	☐ Arrêt (standard) ☐ Marche
Signalisation alarme, impulsion ou permanente	☐ Sans (standard) largeur d'impulsion s (0,5 59,5 s incrément 0,5 s
« Maintenance required » selon NE 107	

Modèle d'appareil PROFIBUS PA/FOUNDATION Fieldbus

Configuration spécifique au client		Sélection				
Nombre de capteurs		☐ 1 capteur (standard) ☐ 2 capteurs				
Type de mesure		☐ Redondance de capteur / Backup de capteur				
(pour l'achat de 2 capteurs seulement)		☐ Contrôle de la dérive du capteur°C / K Différence de la dérive de capteur s Limite de temps				
		pour dépassement de la dérive				
		☐ Mesure différentielle : point zéro la = 4 mA				
		☐ Mesure différentielle : point zéro la = 12 mA				
		☐ Mesure de la moyenne				
IEC 60751	Thermomètres à résistance	□ Pt10 □ Pt50 □ Pt100 (standard) □ Pt200 □ Pt500 □ Pt1000				
JIS C1604		□ Pt10 □ Pt50 □ Pt100				
MIL-T-24388		□ Pt10 □ Pt50 □ Pt100 □ Pt200 □ Pt1000				
DIN 43760		□ Ni50 □ Ni100 □ Ni120 □ Ni1000				
OIML R 84		□ Cu10 □ Cu100				
	Mesure de la résistance	□ 0 à 500 Ω □ 0 à 5 000 Ω				
IEC 60584	Thermocouple	□ Type K □ Type J □ Type N □ Type R □ Type S □ Type T □ Type E □ Type B				
DIN 43710		□ Type L □ Type U				
ASTM E-988		□ Type C □ Type D				
	Mesure de tension	□ -125 à 125 mV □ -125 à 1100 mV				
Circuit de capte	ur	☐ Deux fils ☐ trois fils (standard) ☐ quatre fils				
(pour les thermo	omètres à résistance et la mesure	Circuit à deux fils : compensation de la résistance du circuit du capteur max. 100 $\Omega\square$				
de résistance se	eulement)	\square Capteur 1 : $\underline{\hspace{1cm}}$ Ω				
Point de compa	raison	☐ Interne (pour thermocouple standard sauf type B) ☐ aucun (type B)				
(pour les thermo	ocouples seulement)	☐ Externe / Température : °C				
Unité		☐ Celsius (standard) ☐ Fahrenheit ☐ Rankine ☐ Kelvin				
Valeur de résista	ance à 0 °C / R _o	Capteur 1 : R _o : Capteur 2 : R _o :				
Coefficient Calle	endar-Van Dusen A	A:				
Coefficient Callendar-Van Dusen B		B:				
Coefficient Callendar-Van Dusen C		C:				
(optionnel, pour	r thermomètres à résistance					
seulement)						
IDENT_Number	(PROFIBUS)	□ spécifique à l'appareil 0x3470 (standard) □ Profil 0x9700 (bloc 1 Al)				
Adresse bus PROFIBUS PA		□ PA : 0 à 125 □ PA standard : 126				
Numéro TAG		□ (16 caractères max.)				
Taquet logiciel		☐ Arrêt (standard) ☐ Marche				

Marques déposées

HART est une marque déposée de la FieldComm Group, Austin, Texas, USA PROFIBUS et PROFIBUS PA sont des marquées déposées de PROFIBUS & PROFINET International (PI).

FOUNDATION Fieldbus est une marque déposée de FieldComm Group, Austin, Texas, États-Unis

Service commercial

ABB France SAS Measurement & Analytics

3 avenue du Canada Les Ulis F-91978 COURTABOEUF Cedex

France

Tel: +33 1 64 86 88 00 Fax: +33 1 64 86 99 46

ABB Automation Products GmbH Measurement & Analytics

Schillerstr. 72 32425 Minden Germany

Tel: +49 571 830-0 Fax: +49 571 830-1806

abb.com/temperature

ABB Inc.

Measurement & Analytics

3450 Harvester Road Burlington Ontario L7N 3W5 Canada

Tel: +905 639 8840 Fax: +905 639 8639

ABB Automation Products GmbH Measurement & Analytics

Im Segelhof 5405 Baden-Dättwil

Schweiz

Tel: +41 58 586 8459 Fax: +41 58 586 7511

Email: instr.ch@ch.abb.com

Nous nous réservons le droit d'apporter des modifications techniques ou de modifier le contenu de ce document sans préavis. En ce qui concerne les commandes, les caractéristiques spéciales convenues prévalent.

ABB ne saura en aucun cas être tenu pour responsable des erreurs potentielles ou de l'absence d'informations constatées dans ce document.

Tous les droits de ce document, tant ceux des textes que des illustrations, nous sont réservés. Toute reproduction, divulgation à des tiers ou utilisation de son contenu (en tout ou partie) est strictement interdite sans l'accord écrit préalable d'ABB.

DS/TTH300-FR Rev. E 03.2019