Stochastic Differential Equations, Spring 2021

Homework 12, Due Jun 24

Nar	ne.		

1. Let $\Omega \subset \mathbb{R}^n$, $n \geq 1$, be a bounded domain with smooth boundary $\partial \Omega$. According to PDE theory, there exists a smooth solution u = u(x) of the following equation

$$\begin{cases}
-\frac{1}{2}\Delta u = 1, & x \in \Omega, \\
u = 0, & x \in \partial\Omega.
\end{cases}$$
(0.1)

Prove that for each point $x \in \Omega$, $u(x) = E(\tau_x)$, where τ_x is the first time that a Brownian motion starting at x hits $\partial\Omega$.

2. Consider the following equation

$$\begin{cases}
-\frac{1}{2}\Delta u + cu = f, & x \in \Omega, \\
u = 0, & x \in \partial\Omega,
\end{cases}$$
(0.2)

where c = c(x) and f = f(x) are smooth functions, and $c \ge 0$ in Ω . Prove that, for each $x \in \Omega$,

$$u(x) = E\left(\int_0^{\tau_x} f(X_t) e^{-\int_0^t ic(X_s)ds} dt\right),\,$$

where $X_t = W_t + x$, i.e., the n-D Brownian motion statuting at x and τ_x is the first time that X_t hits $\partial\Omega$. Hint: find $d(u(X_t)e^{-\int_0^t c(X_s)ds})$ first and then mimic the proof of Feynman–Kac Theorem. This is an extension of the previous problem.