

Ανάπτυξη Fourier Παλμοσειράς

Συχνότητα

- Η συχνότητα είναι το φυσικό μέγεθος που αναφέρεται σε ένα περιοδικό φαινόμενο και που εκφράζει πόσες φορές λαμβάνει χώρα το φαινόμενο αυτό σε δεδομένο χρονικό διάστημα.
- Συνήθως τη συχνότητα την αντιλαμβανόμαστε καλύτερα θεωρώντας ένα σώμα σε ορισμένη περιοδική κίνηση που διαγράφει ένα πλήρη κύκλο
- Ο χρόνος που απαιτείται για ένα πλήρη κύκλο καλείται περίοδος και είναι το αντίστροφο της συχνότητας.

Πεδίο Συχνότητας (1)

- Στην πράξη όμως τα σήματα είναι πιο πολύπλοκα και συνήθως εμπεριέχουν - καταλαμβάνουν, περισσότερες της μιας συχνότητες
- Η αναπαράσταση ενός σήματος στο πεδίο της συχνότητας καλείται φάσμα του σήματος.
- Η φασματική αναπαράσταση είναι εξαιρετικά σημαντική στην ανάλυση και τη σχεδίαση των τηλεπικοινωνιακών συστημάτων, επιτρέποντας την περιγραφή των σημάτων με την μέση ισχύ ή το ενεργειακό περιεχόμενο σε διαφορετικές συχνότητες, την απεικόνιση του εύρους ζώνης, καθώς και της περιοχής του ηλεκτρομαγνητικού φάσματος που καταλαμβάνουν.

Πεδίο Συχνότητας (2)

 Περιγράφοντας ένα σήμα με το φάσμα του, ουσιαστικά προσδιορίζουμε το πλάτος και τη φάση του συναρτήσει της συχνότητας.

Ανάλυση Fourier

Ανάλυση Fourier : ανάλυση των σημάτων σε ημιτονοειδείς συνιστώσες.

Με την ανάλυση **Fourier** είναι δυνατή αναπαράσταση των σημάτων στο πεδίο της συχνότητας, δηλαδή ο υπολογισμός του φάσματος που καταλαμβάνουν.

Τα <u>Περιοδικά Σήματα</u> αναπαριστώνται με Σειρές Fourier και έχουν <u>διακριτό φάσμα</u>.

Ανάπτυξη Περιοδικών Σημάτων σε Σειρές Fourier

Το σήμα μπορεί να αναπτυχθεί με τη βοήθεια των μιγαδικών εκθετικών σημάτων

$$x(t) = \sum_{n=-\infty}^{\infty} x_n e^{j\frac{2\pi nt}{T_0}} = \sum_{n=-\infty}^{\infty} x_n e^{j2\pi nt f_0}$$

Όπου
$$x_n = \frac{1}{T_0} \int_a^{a+T_0} x(t) e^{-j\frac{2\pi nt}{T_0}} dt = \frac{1}{T_0} \int_a^{a+T_0} x(t) e^{j2\pi nt} f_0 dt$$
 $n=0, \pm 1, \pm 2, \pm 3, \dots$ και $a=0$ ή $a=-T_0/2$ συνήθως.

Περιοδικά Σήματα & Σειρές Fourier (1)

- Αυτή η ανάπτυξη του x(t) καλείται μιγαδική εκθετική σειρά Fourier. Οι συντελεστές x_n καλούνται μιγαδικοί συντελεστές Fourier.
- Η ποσότητα $f_o = 1/T_o$ καλείται **βασική συχνότητα** του σήματος.
- Οι συχνότητες των μιγαδικών εκθετικών σημάτων είναι πολλαπλάσια αυτής της βασικής συχνότητας και καλούνται **αρμονικές**.

Περιοδικά Σήματα & Σειρές Fourier (2)

Παρατηρήσεις

 Για n=0 προκύπτει μια σταθερή συνιστώσα του σήματος η οποία συνήθως αποκαλείται και dc συνιστώσα και είναι η μέση τιμή του σήματος στη διάρκεια μιας περιόδου, δηλαδή

$$x_0 = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t)dt$$

το φάσμα ενός περιοδικού σήματος είναι διακριτό,
με συνιστώσες σε συχνότητες ακέραια πολλαπλάσια
της βασικής 0, ±f₀, ±2f₀, ±3f₀, ...

Παράδειγμα (1)

Θεωρούμε την περιοδική παλμοσειρά

$$x(t) = \sum_{n=-\infty}^{\infty} A \, \Pi(\frac{t - nT_0}{\tau})$$

опои
$$-T_0/2 \le t \le T_0/2$$

$$x(t) = \begin{cases} A, -\tau/2 \le t \le \tau/2 \\ 0, \alpha\lambda\lambda o \circ \end{cases}$$

Παράδειγμα (2)

Μετά από υπολογισμούς προκύπτει ότι

$$x_{n} = \frac{A\tau}{T_{0}} \frac{T_{0}}{\pi n \tau} \sin \left(\frac{\pi n \tau}{T_{0}} \right) = \frac{A\tau}{T_{0}} \operatorname{sinc} \left(\frac{n \tau}{T_{0}} \right)$$

Μηδενισμοί για

$$\frac{n}{\tau} = \pm \frac{1}{\tau}, \pm \frac{2}{\tau}, \pm \frac{3}{\tau}, \dots$$

Duty cycle =
$$\frac{\tau}{T_o}$$

Παράδειγμα (3)

Παρατηρήσεις

- Το φάσμα είναι διακριτό και εμπεριέχει τις συχνότητες $\inf_0 = 0$,, $\pm f_o$, $\pm 2f_o$, $\pm 3f_o$,....
- Τα πλάτη των συντελεστών του φάσματος x_n καθορίζονται από τις τιμές της περιβάλλουσα στις αντίστοιχες συχνότητες (εκτός του x_0).
- Το μέγιστο πλάτος της περιβάλλουσας είναι Ατ/Τ₀ και αντιστοιχεί σε μηδενική συχνότητα. Σε αυτό το σημείο ο συντελεστής του φάσματος x₀ δεν παίρνει την τιμή Ατ/Τ₀ της περιβάλλουσας, αλλά ισούται με την τιμή της dc συνιστώσας του παλμού (η οποία μπορεί να είναι και μηδενική).
- Οι μηδενισμοί της περιβάλλουσας συμβαίνουν για ακέραια πολλαπλάσια του 1/τ.

Παράδειγμα (4)

• Τελικά η παλμοσειρά γράφεται ως

$$x(t) = \sum_{n=-\infty}^{\infty} \frac{A\tau}{T_0} sinc\left(\frac{n\tau}{T_0}\right) e^{j\frac{2\pi nt}{T_0}}$$

• Οι αρνητικές συχνότητες δεν έχουν φυσική υπόσταση αλλά παρατίθενται γιατί προκύπτουν από τη μαθηματική ανάλυση.