

Figure 37.12: Examples of open sets in the product topology for \mathbb{R}^2 and \mathbb{R}^3 induced by the Euclidean metric.

It is easy to show that

$$d_{\infty}((x_1,\ldots,x_n),(y_1,\ldots,y_n)) \leq d_2((x_1,\ldots,x_n),(y_1,\ldots,y_n)) \leq d_1((x_1,\ldots,x_n),(y_1,\ldots,y_n))$$

$$\leq nd_{\infty}((x_1,\ldots,x_n),(y_1,\ldots,y_n)),$$

so these distances define the same topology, which is the product topology.

If each $(E_i, || ||_{E_i})$ is a normed vector space, there are three natural norms that can be defined on $E_1 \times \cdots \times E_n$:

$$\|(x_1, \dots, x_n)\|_1 = \|x_1\|_{E_1} + \dots + \|x_n\|_{E_n},$$

$$\|(x_1, \dots, x_n)\|_2 = \left(\|x_1\|_{E_1}^2 + \dots + \|x_n\|_{E_n}^2\right)^{\frac{1}{2}},$$

$$\|(x_1, \dots, x_n)\|_{\infty} = \max\left\{\|x_1\|_{E_1}, \dots, \|x_n\|_{E_n}\right\}.$$

It is easy to show that

$$\|(x_1,\ldots,x_n)\|_{\infty} \le \|(x_1,\ldots,x_n)\|_2 \le \|(x_1,\ldots,x_n)\|_1 \le n\|(x_1,\ldots,x_n)\|_{\infty},$$

so these norms define the same topology, which is the product topology. It can also be verified that when $E_i = \mathbb{R}$, with the standard topology induced by |x - y|, the topology product on \mathbb{R}^n is the standard topology induced by the Euclidean norm.

Definition 37.13. Two metrics d and d' on a space E are equivalent if they induce the same topology \mathcal{O} on E (i.e., they define the same family \mathcal{O} of open sets). Similarly, two norms $\| \|$ and $\| \|'$ on a space E are equivalent if they induce the same topology \mathcal{O} on E.

Given a topological space (E, \mathcal{O}) , it is often useful, as in Proposition 37.7, to define the topology \mathcal{O} in terms of a subfamily \mathcal{B} of subsets of E.