Introduction to Program Synthesis (SS 25) Chapter 4 - Advanced Methodologies

Dr. rer. nat. Roman Kalkreuth

Chair for Al Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany

Neural Program Synthesis vs Genetic Programming

Genetic Programming

- → Gradient-free symbolic search heuristic
- \sim Direct search in symbolical spaces
- → Ill-conditioned, noisy search spaces
- → Interpretable symbolic solutions

Neural Program Synthesis

- → Gradient-based search in the latent space of a neural network
- → Numerical, non-interpretable solutions
- → Turing complete programs?

- ► Artificial Neural Network (ANN) → model of computation inspired by biological brain topology and functioning
- ► Set of *artificial neurons* called **perceptron** and connections that mimic synapses
 - \sim Perceptrons \rightarrow **nodes**
 - \sim Synapses \rightarrow edges, weights
- lacktriangle ANN ightarrow directed, weighted and acyclic graph
- lacktriangle Perceptron ightarrow equipped with an activation function
 - → Mimics firing of a neuron

Weights	_	Modelling of weighted transitions
Bias	_	Shifting of transitions
Backpropagation	_	Derivation-based update of parameters
Perceptron	_	Artificial neuron
Layer	_	Set of perceptrons
Transition function	_	Calculation of the neuron's output
Activation function	_	Decision on forward propagation (of the output)
Batch	_	Set of input samples
Epoch	_	Iteration of the training phase

Table: List of important terms which are commonly used in the field of deep learning

arphi — activation function η — learning rate β — batch size

Table: List of general symbols

Deep Learning

1943 ♦ McCulloch, Pitts: **Electronic Brain**

1950 Turing: Learning Machine
1958 Rosenblatt: Perceptron

1969 Minsky, Papert: XOR Problem

1982 Hopfield: Recurrent Neural Network

1986 • Rumelhart, Hinton, Williams: **Multi-layered Perceptron**, **Backpropagation**

1989 ♦ LeCun: **Convolutional Neural Networks**

1997 Hochreiter, Schmidhuber: Long Short Term Memory (LSTM)

2006 Hinton, Rusian: Deep Neural Networks 2012 Ng, Dean: Recognizing Cats on YouTube

2017 ♦ Ashish et al.: **Transformer**

Figure: Biological neuron

Figure: Artificial neuron (perceptron)

Definition (Perceptron)

A perceptron \mathcal{P} is a composite function g of the transition function Σ and activation function φ that receives a signal $s=(s_1,...,s_m)$ which is weighted by $w=(w_1,...,w_m)$. The function $g(\sigma\circ\varphi)$ generates a one dimensional output g.

Identity	x		$(-\infty,\infty)$
Binary step	$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$	11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	{0,1}
Logistic (sigmoid)	$\sigma(x) \doteq \frac{1}{1 + e^{-x}}$	11 11 11 11 11 11 11 11 11 11 11 11 11	(0,1)
Hyperbolic tangent (tanh)	$\tanh(x) \doteq \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$	15	(-1,1)
Rectified linear unit (ReLU)	$x^{+} = \max(0, x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$		$[0,\infty)$

► Linear activation functions

- \sim Can only represent linear relationships \rightarrow linear separation of data
- \leadsto Data from real world problems \to often noisy and correlations are mostly non-linear
- → Used only at the output layer

Non-linear activation functions

→ Enable the network to approximate a wider range of functions

Deep Learning

- ▶ General topology of ANN's → input, hidden and output layers
- ▶ Single layer neural networks → one hidden layer
 - → Traditional neural learning paradigm
- ► Multilayer neural networks → multiple hidden layers
 - → Modern deep learning approach
- ► Hidden layer(s) → sets of artificial neurons
- ▶ Each artificial neuron k has a transition and activation function

$$\rightsquigarrow y_k = \varphi\left(\sum_{j=0}^m w_{kj}x_j\right)$$

 $\,\,\,\,\,\,\,\,$ Transition function \to typically sum of the input parameters

Deep Learning

- ► General deep learning paradigm
 - \sim Given a set of *n* samples $D = \{[x_1, ...x_n], [y_1, ..., y_n]\}$, find a model that approximates a function $f(x_i) = y_i$
 - \sim **Forward propagation:** Model is feed with a sample data set D where the matrix $[x_1, ... x_n]$ is the input and $[\hat{y}_1, ..., \hat{y}_n]$ the output matrix
 - \rightarrow For each sample $(x_i, y_i) \in D$, the distance of the prediction to the actual is measured by the loss function \mathcal{L}
 - \sim Parameters are adjusted in accordance to the error \rightarrow Backpropagation via partial derivatives of the loss function
 - \rightarrow Efficient use of the chain rule $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

Deep Learning

- ► Feed-forward neural network → Commonly used type of ANN
 - $\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ Two modes with different directions of the computation flow
 - \sim Multilayer perceptron model \rightarrow **fully connected** (feed-forward) network with at least three layers
- ► Forward pass: Computation of predictions based on given observations or features
 - → Forward propagation of the input data
 - \sim Calculation of the loss \mathcal{L} and cost \mathcal{C}
 - \sim Quantification of the error $\mathcal E$ based on $\mathcal L$ and $\mathcal C$
- Backward pass: Backpropagation of the error
 - → Derivation-based method
 - \sim Adjustment of the parameters (weights and biases) in accordance to a learning rate η
 - \sim Minimization of \mathcal{E}

Figure: Feed-forward neural network with two hidden layers

Deep Learning

Notation:

- \rightarrow $\mathbf{x_i}$ is the *i*-th feature of the input batch
- \rightarrow $\hat{\mathbf{y}}_{i}$ is the *i*-th predicted output
- \rightarrow y_i is the *i*-th desired output
- \sim $\mathbf{w}_{\mathbf{j},\mathbf{i}}^{\mathbf{t}}$ the weight of the connection between j-th node in layer t and i-th node in layer t-1
- \rightarrow **b**^t is the bias for the layer t
 - ▶ Global for the respective hidden layer
- \rightarrow **z**^t is the intermediate net-input for layer t
- \rightarrow a_i^t is the result of the activation function of the *i*-th node in layer t

Deep Learning: Representation

Configuration:

- → n: number of features (inputs)
- $\sim k^t$: number of nodes of layer t
 - \sim 1: number of hidden layers
- → o: number of outputs

Representation:

- \sim Weights matrix \rightarrow **W**
- ightarrow Activation vectors ightarrow $\mathbf{a^t} \in \mathbb{R}^{k^t}$
- \sim Biases \rightarrow **b** $\in \mathbb{R}^{I}$

▶ Dimensions:

- \rightarrow dim($W^{t=1}$) = $k^1 \times n$ (first hidden layer)
- \rightarrow dim($W^{t>1}$) = $k^t \times k^t$
- \rightarrow dim(W^o) = $o \times k$ (output layer)

$$W^{h>1} = \begin{pmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,n} \\ w_{2,1} & w_{2,2} & \dots & w_{2,n} \\ \vdots & \vdots & & \vdots \\ w_{k,1} & w_{k,2} & \dots & w_{k,k} \end{pmatrix}$$

Deep Learning

- ightharpoonup Intuition of backpropagation ightarrow analytical gradient
 - \rightarrow Intermediate variables \rightarrow calculated by forward propagation
 - → Intermediate gradients → used for backpropagation
- lacktriangledown Chain rule ightarrow differentiation of a composite function
 - \rightarrow $h = f \circ g \rightarrow h'(x) = f'(g(x))g'(x)$
 - Analysis how the change of the rate of a composite function is affected

Deep Learning

$$\varphi = \sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\varphi' = \sigma'(x) = \sigma(x) * (1 - \sigma(x))$$

► Intermediate variables (forward pass)

$$\Rightarrow \hat{y} = \varphi(x^T * W_1 + b_1) * (W_2 + b_2)$$

$$\Rightarrow h_1 = x^T * W_1 + b_1$$

$$\Rightarrow z_1 = \varphi(h_1)$$

$$\Rightarrow z_2 = z_1 * W_2 + b_2$$

$$\Rightarrow \mathcal{L} = (z_2 - y)^2$$

$$\rightsquigarrow \frac{\partial h_1}{\partial x} = W_1^T$$

Deep Learning: MLP example

Figure: Feed-forward neural network with n = 3, l = 1, k = 4 and o = 2

Deep Learning: MLP example

Activation:

► Forward propagation:

$$\Rightarrow z^t = W^t * z^{t-1} + b^t$$

$$\Rightarrow a^t = \varphi(z^t)$$

$$\Rightarrow \hat{y} = a^{out}$$

► Backward propagation:

$$\begin{array}{ll} \sim & \mathcal{L} = \frac{1}{\beta} \sum_{i=1}^{\beta} (\hat{y} - y)^2 \rightarrow \text{Mean Squared Error (MSE)} \\ \sim & w_{i,j}^{\text{new}} = w_{i,j}^{\text{old}} - \eta \frac{\mathcal{L}}{\partial w_{i,j}} \\ \sim & b_t^{\text{new}} = b_t^{\text{old}} - \eta \frac{\mathcal{L}}{\partial b^t} \end{array}$$

Deep Learning: Backpropagation

$$\begin{array}{c} \bullet \quad \frac{\partial \mathcal{L}}{\partial w_{2,4}^{out}} = \frac{\partial \mathcal{L}}{\partial a_2^{out}} \frac{\partial a_2^{out}}{\partial w_{2,4}^{out}} \\ \bullet \quad \partial \mathcal{L} \quad = \begin{bmatrix} \partial \mathcal{L} & a_1^{out} \\ \partial a_2^{out} & a_2^{out} \end{bmatrix} \end{array}$$

$$\blacktriangleright \ \frac{\partial \mathcal{L}}{\partial b^{out}} = \left[\frac{\partial \mathcal{L}}{\partial a_1^{out}} \frac{\partial a_1^{out}}{\partial b^{out}} + \frac{\partial \mathcal{L}}{\partial a_2^{out}} \frac{\partial a_2^{out}}{\partial b^{out}} \right]$$

 $ightharpoonup rac{\partial \mathcal{L}}{\partial b^h}
ightarrow ext{left as exercise}$

Deep Learning: Backpropagation

- $\mathcal{E} = \hat{\mathbf{y}} \mathbf{y}_i$
- $\delta_j \rightarrow$ error term for each unit $\sim \delta_i = \varphi'(a_i^t)$
- ► $\Delta w_{j,i}$ → change in each weight $\rightarrow \Delta w_{j,i} = \eta \cdot \delta_i \cdot a_i^t$