Zomato Dataset Exploratory Data Analysis

By - Aryan Shriva

What is EDA?

Exploratory Data Analysis (EDA) is an approach to analyse the data using visual techniques. It is used to discover trends, patterns, or to check assumptions with the help of statistical summaries and graphical representations.

```
In [4]:  ## Importing Python Libraries:-
2
3 import pandas as pd
4 import numpy as np
5 import matplotlib.pyplot as plt
6 import seaborn as sns
7 %matplotlib inline
8 #to display images and visualization

In [5]:  ## To read the dataset.
2 df=pd.read_csv('zomato.csv',encoding='latin-1')
3 # Encoding is used based on the dataset, search for pandas documentation for
```

In [6]:

1 # Reading the dataset

2 df.head()

Out[6]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508

5 rows × 21 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

Ducu	COTAMINIS (COCAT ZI COTA	a	
#	Column	Non-Null Count	Dtype
0	Restaurant ID	9551 non-null	int64
1	Restaurant Name	9551 non-null	object
2	Country Code	9551 non-null	int64
3	City	9551 non-null	object
4	Address	9551 non-null	object
5	Locality	9551 non-null	object
6	Locality Verbose	9551 non-null	object
7	Longitude	9551 non-null	float64
8	Latitude	9551 non-null	float64
9	Cuisines	9542 non-null	object
10	Average Cost for two	9551 non-null	int64
11	Currency	9551 non-null	object
12	Has Table booking	9551 non-null	object
13	Has Online delivery	9551 non-null	object
14	Is delivering now	9551 non-null	object
15	Switch to order menu	9551 non-null	object
16	Price range	9551 non-null	int64
17	Aggregate rating	9551 non-null	float64
18	Rating color	9551 non-null	object
19	Rating text	9551 non-null	object
20	Votes	9551 non-null	int64
dtype	es: float64(3), int64(!	5), object(13)	
memoi	∽y usage: 1.5+ MB		

localhost:8888/notebooks/Zomato Dataset Exploratory Data Analysis.ipynb#

Out[10]:

	Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggreç rai
count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000
mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2.666
std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1.516
min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	0.000
25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2.500
50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3.200
75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3.700
max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	4.900

In Data Analysis What All Things We Do

- 1. Missing Values
- 2. Explore About the Numerical Variables
- 3. Explore About categorical Variables
- 4. Finding Relationship between features

Out[11]: (9551, 21)

```
In [12]:
           1 # Show the sum of null values with respect to columns.
           2 df.isnull().sum()
Out[12]: Restaurant ID
                                  0
         Restaurant Name
                                  0
         Country Code
                                  0
         City
         Address
                                  0
         Locality
                                  0
         Locality Verbose
                                  0
         Longitude
                                  0
         Latitude
         Cuisines
                                  9
         Average Cost for two
         Currency
         Has Table booking
                                  0
         Has Online delivery
                                  0
         Is delivering now
                                  0
         Switch to order menu
         Price range
                                  0
         Aggregate rating
                                  0
         Rating color
                                  0
         Rating text
                                  0
         Votes
         dtype: int64
```

Out[13]: ['Cuisines']

Out[16]: <AxesSubplot:>


```
        Out[18]:
        Country Code
        Country

        0
        1
        India

        1
        14
        Australia

        2
        30
        Brazil

        3
        37
        Canada

        4
        94
        Indonesia
```

```
In [22]: 1 # For checking all columns Names Available in a dataset.
2 df_contry.columns
```

Out[22]: Index(['Country Code', 'Country'], dtype='object')

```
In [23]:
           1 # For checking all columns Names Available in a dataset.
           2 df.columns
Out[23]: Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                'Average Cost for two', 'Currency', 'Has Table booking',
                'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                'Votes'],
               dtype='object')
In [24]:
             # pd.merge() is used to Merge Two Dataframe in one
           2 | final_df = pd.merge(df,df_contry, on = 'Country Code', how ='left')
In [26]:
           1 # for Checking top 3 rows from a dataset
           2 final_df.head()
```

Out[26]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508

5 rows × 22 columns

```
In [27]:
           1 # To check Data Types
           2 final_df.dtypes
Out[27]: Restaurant ID
                                    int64
         Restaurant Name
                                   object
         Country Code
                                    int64
         City
                                   object
         Address
                                   object
                                   object
         Locality
         Locality Verbose
                                   object
         Longitude
                                  float64
         Latitude
                                  float64
                                   object
         Cuisines
         Average Cost for two
                                    int64
         Currency
                                   object
         Has Table booking
                                   object
         Has Online delivery
                                   object
         Is delivering now
                                   object
         Switch to order menu
                                   object
         Price range
                                    int64
         Aggregate rating
                                  float64
         Rating color
                                   object
         Rating text
                                   object
         Votes
                                    int64
         Country
                                   object
         dtype: object
```

```
In [29]:
           1 # With Respect to Country columns ,it is used to find total value counts.
           2 final df.Country.value counts()
Out[29]: India
                            8652
         United States
                             434
         United Kingdom
                              80
         Brazil
                              60
         UAE
                              60
         South Africa
                              60
         New Zealand
                              40
         Turkey
                              34
         Australia
                              24
         Phillipines
                              22
         Indonesia
                              21
         Singapore
                              20
         Qatar
                              20
         Sri Lanka
                              20
         Canada
                               4
         Name: Country, dtype: int64
In [31]:
              # In this Country Value Counted with the help of Indexing.
              country_names =final_df.Country.value_counts().index
In [32]:
             # Displaying the Value Store in Contry name variables.
              country names
Out[32]: Index(['India', 'United States', 'United Kingdom', 'Brazil', 'UAE',
                 'South Africa', 'New Zealand', 'Turkey', 'Australia', 'Phillipines',
                 'Indonesia', 'Singapore', 'Qatar', 'Sri Lanka', 'Canada'],
               dtype='object')
In [34]:
              # In this Country Value Counted with the help of Value function.
              country val = final df.Country.value counts().values
In [35]:
              country val
Out[35]: array([8652,
                        434,
                               80,
                                     60,
                                           60,
                                                  60,
                                                        40,
                                                              34,
                                                                    24,
                                                                          22,
                                                                                21,
                   20,
                         20,
                               20,
                                      4], dtype=int64)
```


Observation:Zomato maximum records or transaction are from India After that USA and then United Kingdoms

```
In [38]: 1 # We are Grouping the columns 'Aggregate rating', 'Rating color', 'Rating te 2 final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size()
```

Out[38]:	Aggregate rating	Rating color	Rating text	
	0.0	White	Not rated	2148
	1.8	Red	Poor	1
	1.9	Red	Poor	2
	2.0	Red	Poor	7
	2.1	Red	Poor	15
	2.2	Red	Poor	27
	2.3	Red	Poor	47
	2.4	Red	Poor	87
	2.5	Orange	Average	110
	2.6	Orange	Average	191
	2.7	Orange	Average	250
	2.8	Orange	Average	315
	2.9	Orange	Average	381
	3.0	Orange	Average	468
	3.1	Orange	Average	519
	3.2	Orange	Average	522
	3.3	Orange	Average	483
	3.4	Orange	Average	498
	3.5	Yellow	Good	480
	3.6	Yellow	Good	458
	3.7	Yellow	Good	427
	3.8	Yellow	Good	400
	3.9	Yellow	Good	335
	4.0	Green	Very Good	266
	4.1	Green	Very Good	274
	4.2	Green	Very Good	221
	4.3	Green	Very Good	174
	4.4	Green	Very Good	144
	4.5	Dark Green	Excellent	95
	4.6	Dark Green	Excellent	78
	4.7	Dark Green	Excellent	42
	4.8	Dark Green	Excellent	25
	4.9	Dark Green	Excellent	61
	dtype: int64			

In [40]: 1 ratings

Out[40]:	Aggregate rating	Rating color	Rating text	Rating count
0	0.0	White	Not rated	2148
1	1.8	Red	Poor	1
2	1.9	Red	Poor	2
3	2.0	Red	Poor	7
4	2.1	Red	Poor	15
5	2.2	Red	Poor	27
6	2.3	Red	Poor	47
7	2.4	Red	Poor	87
8	2.5	Orange	Average	110
9	2.6	Orange	Average	191
10	2.7	Orange	Average	250
11	2.8	Orange	Average	315
12	2.9	Orange	Average	381
13	3.0	Orange	Average	468
14	3.1	Orange	Average	519
15	3.2	Orange	Average	522
16	3.3	Orange	Average	483
17	3.4	Orange	Average	498
18	3.5	Yellow	Good	480
19	3.6	Yellow	Good	458
20	3.7	Yellow	Good	427
21	3.8	Yellow	Good	400
22	3.9	Yellow	Good	335
23	4.0	Green	Very Good	266
24	4.1	Green	Very Good	274
25	4.2	Green	Very Good	221
26	4.3	Green	Very Good	174
27	4.4	Green	Very Good	144
28	4.5	Dark Green	Excellent	95
29	4.6	Dark Green	Excellent	78
30	4.7	Dark Green	Excellent	42
31	4.8	Dark Green	Excellent	25
32	4.9	Dark Green	Excellent	61

Observation

- 1. When Rating is between 4.5 to 4.9---> Excellent
- 2. When Rating are between 4.0 to 3.4--->very good
- 3. when Rating is between 3.5 to 3.9----> good
- 4. when Rating is between 3.0 to 3.4----> average
- 5. when Rating is between 2.5 to 2.9----> average
- 6. when Rating is between 2.0 to 2.4----> Poor

In [41]: 1 ratings.head()

Out[41]:

	Aggregate rating	Rating color	Rating text	Rating count
0	0.0	White	Not rated	2148
1	1.8	Red	Poor	1
2	1.9	Red	Poor	2
3	2.0	Red	Poor	7
4	2.1	Red	Poor	15

Out[43]: <AxesSubplot:xlabel='Aggregate rating', ylabel='Rating count'>

Out[44]: <AxesSubplot:xlabel='Aggregate rating', ylabel='Rating count'>

Observation:-

- · Not Rated count is very High.
- Maximum Number of rating are between 2.5 to 3.4

Find the Countries name that has given 0 rating?

```
In [46]:
              # Showing All the columns name Available in the dataset.
              final_df.columns
Out[46]: Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                 'Average Cost for two', 'Currency', 'Has Table booking',
                 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                 'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                 'Votes', 'Country'],
                dtype='object')
In [47]:
              # Solution for Above Questions :-
              final_df.groupby(['Aggregate rating','Country']).size().reset_index().head(5
Out[47]:
             Aggregate rating
                                 Country
                                            0
          0
                        0.0
                                   Brazil
                                            5
                        0.0
                                   India 2139
```

3

Observations:-

3

Maximum Number of 0 Ratings are from Indian customers

India

0.0 United Kingdom

United States

0.0

1.8

Find Out which currency is used by which country?

```
In [48]:
               # Showing All the columns name Available in the dataset.
               final df.columns
Out[48]: Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
                   'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                   'Average Cost for two', 'Currency', 'Has Table booking',
                   'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                   'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                   'Votes', 'Country'],
                 dtype='object')
In [49]:
               # Finding Currency for Country by using Groupby()
               final_df[['Country','Currency']].groupby(['Country','Currency']).size().rese
Out[49]:
                                         Currency
                     Country
                                                      0
            0
                     Australia
                                          Dollar($)
                                                     24
            1
                        Brazil
                                  Brazilian Real(R$)
                                                     60
            2
                      Canada
                                          Dollar($)
                                                      4
            3
                        India
                                  Indian Rupees(Rs.) 8652
            4
                    Indonesia
                              Indonesian Rupiah(IDR)
                                                     21
            5
                 New Zealand
                                     NewZealand($)
                                                     40
            6
                    Phillipines
                                   Botswana Pula(P)
                                                     22
            7
                        Qatar
                                     Qatari Rial(QR)
                                                     20
            8
                    Singapore
                                          Dollar($)
                                                     20
            9
                  South Africa
                                          Rand(R)
                                                     60
            10
                    Sri Lanka
                              Sri Lankan Rupee(LKR)
                                                     20
                                    Turkish Lira(TL)
            11
                       Turkey
                                                     34
            12
                        UAE
                                 Emirati Diram(AED)
            13
               United Kingdom
                                        Pounds(£)
                                                     80
```

Which Countries do have online deliveries option

Dollar(\$)

434

14

United States

In [52]: 1 # Country which has online delivery Available or Which has Not Availables bo
2 final_df[['Has Online delivery','Country']].groupby(['Has Online delivery','

Out[52]:

	Has Online delivery	Country	0
0	No	Australia	24
1	No	Brazil	60
2	No	Canada	4
3	No	India	6229
4	No	Indonesia	21
5	No	New Zealand	40
6	No	Phillipines	22
7	No	Qatar	20
8	No	Singapore	20
9	No	South Africa	60
10	No	Sri Lanka	20
11	No	Turkey	34
12	No	UAE	32
13	No	United Kingdom	80
14	No	United States	434
15	Yes	India	2423
16	Yes	UAE	28

Observation:-

• Online Deliveries are available in India and UAE

Create a Pie chart for Cities Distribution

```
In [54]:
             # Plotting the Pie Chart
             plt.pie(city_values[:5],labels = city_labels[:5],autopct ='%1.2f%%')
Out[54]: ([<matplotlib.patches.Wedge at 0x15ab60c01f0>,
           <matplotlib.patches.Wedge at 0x15ab60c0970>,
           <matplotlib.patches.Wedge at 0x15ab60ce0d0>,
           <matplotlib.patches.Wedge at 0x15ab60ce7f0>,
           <matplotlib.patches.Wedge at 0x15ab60cef10>],
          [Text(-0.6145352824185932, 0.9123301960708633, 'New Delhi'),
           Text(0.0623675251198054, -1.0982305276263407, 'Gurgaon'),
           Text(0.8789045225625368, -0.6614581167535246, 'Noida'),
           Text(1.0922218418223437, -0.13058119407559224, 'Faridabad'),
           Text(1.099946280005612, -0.010871113182029924, 'Ghaziabad')],
          [Text(-0.3352010631374145, 0.497634652402289, '68.87%'),
           Text(0.0340186500653484, -0.5990348332507311, '14.07%'),
           Text(0.47940246685229276, -0.36079533641101336, '13.59%'),
           Text(0.5957573682667329, -0.07122610585941394, '3.16%'),
           Text(0.5999706981848791, -0.005929698099289049, '0.31%')])
```


Observations:-

So, Number of transaction is mainly done by city 'New Delhi'.

In []: 1