- Introduction
 - Transistor switch model
- Logic Circuits
 - Regeneration of the level
- Circuit Timing / Dynamic Logic

Introduction

One of the main thing about this class is finding how to optimize the ratio of Op/s/W = Op/J. We want to enhance this ratio. Less and less foundry have smaller and smaller technology. We want to reduce it both for *plugged* and *battery* device. Either we don't have the requirements to pull out or the space to store the energy.

This class is all about Gate and transistor. Low level is king.

Transistor switch model

We can model a switch (MOSFET) with an ideal switch and a resistor :

Figure 1: Switch

By the transistor scaling, short channel are behaving differently due to the **velocity saturation**. The relation becomes linear and not quadratic like it used to be.

Logic Circuits

The swing here is equal to V_{dd} so we have a high noise margin. It is not a **ratioed** logic so we can't use tricks to minimize mismatch by taking advantage of ratios. We only have 1 resistor on so low output impedance but the input is the gate of MOS so we have a high input impedance. There is no static power consumption since no direct path from Vdd to ground. That's nice:)

- case 1 : $V_{min} = V_{DS} \rightarrow Linear region$ $I_{DSAT} = \mu C_{ox} \frac{W}{L} \left((V_{GS} V_T) V_{DS} \frac{{V_{DS}}^2}{2} \right)$
- case 2 : V_{min} = V_{GS} − V_T → (Channel) Saturation $I_{DSAT} = \frac{1}{2} \mu C_{ox} \frac{W}{L} ((V_{GS} V_{T})^{2}) (1 + \lambda V_{DS})$
- case 3 : $V_{min} = V_{DSAT} \rightarrow Velocity Saturation$

$$I_{DSAT} = \mu C_{ox} \frac{W}{L} \left((V_{GS} - V_{T}) V_{DSAT} - \frac{V_{DSAT}^{2}}{2} \right) (1 + \lambda V_{DS})$$

Figure 2: Equations

Figure 3: Regions

Figure 4: The static model

In the dynamic model we need to add an output cap C_L . The load cap is simply the sum of all capacitance at the output node. Transition time is determined by the charging of this cap by a resistor. The sizing impacts the dynamic behavior of the gate.

Figure 5: Switching threshold

Ideally we want V_M to be at the middle of the other nominal voltage. We call the region in between the *undefined region*.

Regeneration of the level

With using this type of gate we have some regeneration level, it will amplify the signal and so we won't have undefined level and we will have the signal that will reach one defined state. If we have no regeneration, we will reach meta-stability. We have to meet some conditions:

- \bullet The transient or undefined region in the VTC should have a gain |dVout/dVin| larger than 1
- In the "legal" or defined regions the VTC gain should be smaller than 1 in absolute value

Figure 6: NAND gate regeneration

• The boundary between the defined and undefined regions are V_{IH} and V_{IL} where the gain = -1

We need gain or the signal will be lost.

Circuit Timing / Dynamic Logic