EXAMEN DE ESTRUCTURAS ALGEBRAICAS

Ingeniero en Informática – 31 de mayo de 2010

Duración: 3 horas

NOMBRE Y APELLIDOS:

GRUPO:

1. [1.5 puntos] Resuelve el siguiente sistema de congruencias:

$$\begin{cases} 2x \equiv 12 \mod 13 \\ 3x \equiv 3 \mod 20 \\ x \equiv 6 \mod 15 \end{cases}$$

- 2. [1.5 puntos]
 - a) Prueba que el conjunto T de los elementos de orden finito de un grupo abeliano G es un subgrupo de G.
 - b) Consideramos las matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \quad B = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

del grupo $G' = GL_2(\mathbb{Q})$. Halla los órdenes de A, B y de AB. Estudia si el conjunto T' de los elementos de orden finito de G' es un subgrupo.

- 3. [2 puntos] Describe geométricamente el grupo diédrico D_4 indicando generadores y relaciones. Determina los subgrupos de D_4 y di cuáles son normales. Indica si hay subgrupos isomorfos a \mathbb{Z}_3 , \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$ o \mathbb{Z}_8 , justificando la respuesta en cada caso.
- 4. [3 puntos]
 - a) Calcula el máximo común divisor de los polinomios $f = x^5 x + 1$ y $g = x^2 + x 1$ vistos en los anillos $\mathbb{Z}_3[x]$ y $\mathbb{Z}_2[x]$.
 - b) Denotamos por α la clase de x en el anillo cociente $A_n := \mathbb{Z}_n[x]/(f)$. Determina, en el caso de que exista, el inverso de $\alpha^2 + \alpha 1$ en los anillos A_2 y A_3 .
 - c) Halla los polinomios mónicos irreducibles de grado dos en $\mathbb{Z}_3[x]$. Demuestra que el polinomio $f = x^5 x + 1$ es irreducible en $\mathbb{Z}_3[x]$
 - d) Construye si es posible cuerpos con 243 elementos o con 135 elementos.
- 5. [1.5 puntos]
 - a) Estudia la irreducibilidad de los siguientes polinomios en $\mathbb{Q}[x]$

i)
$$f = 3x^3 + 3x + 9$$
, ii) $g = x^5 + 6x^3 - 4x + 4$, iii) $h = 2x^5 + 12x^3 + 18x + 6$, iv) $k = 2x^3 + 5x^2 + 5x + 3$.

b) Para cada entero $n \geq 2$ se pide dar un ejemplo de polinomio $f_n \in \mathbb{Z}[x]$ de grado n, tal que f_n sea irreducible en $\mathbb{Q}[x]$ (justificando la respuesta). Explica por qué todo polinomio $f \in \mathbb{R}[x]$ de grado n > 2 es reducible en $\mathbb{R}[x]$.

EXAMEN DE ESTRUCTURAS ALGEBRAICAS

Ingeniero en Informática – 10 de septiembre de 2010

Duración: 3 horas

NOMBRE Y APELLIDOS:

GRUPO:

1. [1.5 puntos] Halla las soluciones enteras positivas de la ecuación

$$516x + 564y = 6432.$$

- 2. [2 puntos]
 - a) Calcula los órdenes de los elementos de los grupos de unidades \mathbb{Z}_{15}^* y \mathbb{Z}_{24}^* de los anillos \mathbb{Z}_{15} y \mathbb{Z}_{24} .
 - b) ¿Es alguno de estos grupos isomorfo a \mathbb{Z}_8 ? Estudia si los grupos \mathbb{Z}_{15}^* y \mathbb{Z}_{24}^* son isomorfos.
 - c) Determina el resto de dividir $(13)^{230}$ entre 15.
- 3. [2 puntos] Consideramos las matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 , $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

y el subconjunto $G = \{\pm I, \pm A, \pm B, \pm C\}$ de $GL_2(\mathbb{R})$.

- a) Halla los órdenes de los elementos de G.
- b) Comprueba que G es el subgrupo de $GL_2(\mathbb{R})$ generado por A y B.
- c) ¿Hay algun subgrupo de G que no sea cíclico? ¿hay algún subgrupo normal? Estudia si G puede ser isomorfo al grupo \mathbb{Z}_8 o al grupo diédrico D_4 .
- 4. [3 puntos] Consideramos los siguientes anillos:

$$A = \mathbb{Z}_3[x]/(x^2 + x + 1), \quad B = \mathbb{Z}_3 \times \mathbb{Z}_3, \quad C = \mathbb{Z}_3[x]/(x^2 - x + 1), \quad D = \mathbb{Z}_9$$

- a) Indica cuáles de los anillos anteriores son cuerpos.
- b) Determina los elementos de los anillos A y B que no tienen inverso para el producto.
- c) ¿Puede el anillo A ser isomorfo a B, a C o a D?
- 5. [1.5 puntos]
 - a) Dados polinomios $0 \neq f, g \in k[x]$ prueba que el conjunto $I = \{af + bg \mid a, b \in k[x]\}$ es un ideal de k[x]. Demuestra que I es el ideal principal generado por el máximo común divisor de f y g.
 - b) Consideramos los polinomios $f = x^3 + x + a$ y $g = x^3 2$ con $a \in \mathbb{Z}$. Prueba que el máximo común divisor de f y g en $\mathbb{Q}[x]$ es igual a 1, para cualquier entero $a \in \mathbb{Z}$. Calcula el máximo común divisor de f y g en $\mathbb{Z}_3[x]$ según los valores de g mod 3.