Lecture 1

Monday, January 11, 2021 1:38 PM

· Space Complexity: S(n)

· Time Complexity; T(n)

Sorting Problem

Input: $A = [a_1, a_2, \dots, a_n]$ Aize(A) = n

output: $A' = [a_{\pi_{(2)}}, a_{\pi_{(2)}}, \dots, a_{\pi_{(N)}}]$

Such that st

:

T: 10 a permutation of the indices max(4)

(1,2,3.-,n)

Look-up-table LUT

Plot A

123456
Analysis on Insection Sort
Analysio of Insertin Sort
(1) Correctness
What is the Loop invariant property?
LHS partition us parted
a) Titulization 1145
(h) Intituezacia of 2/13
a) Initialization of LHS Loop invariant exits
loop murano + exito
coop will carry excis
(b) Maintenance
Sortinj property 3 LHS holds after insorting the value m
after monting the vacce in
temp
T
(c) termination
11/h 1 m 1 d 6 m 1 m
When J=n+1, the for loop to terminated and IHS is
10 Teminated and LHS is
the sorted array.
urvay.

& temp, 1, c

419-s21 Page 4

Space Camplexity?

S(n) = n+3 Read Chapters 1 and 2 Matlab