

MEMEMATCH: YOUR AI MEME RECOMMENDATION ASSISTANT

I. PROBLEMS

- Multimodal Meme and Meme Template Retrieval and Recommendation.
- Text-to-Image Relevance Evaluation.
- Information Retrieval Metrics and Analysis.

II. DATA

BACKGROUND

Dataset:

- ~301K image-with-text memes from Reddit and ImageFlip.
- ~2100 meme templates from ImageFlip.
- Metadata includes: upvotes, titles, urls, created time.

2 parts: local context and global context.

Part of local context

Part of global context

III. DATA PREPROCESSING, METHODOLOGY & RESULTS

1. Text Extraction

3DS owners: OH NO! We'll have to pirate games now!

Wii owners:

"3DS owners: OH NOI We'll have to pirate games now! Wii owners: made with mematic First time?"

"Corporate needs you to find the differences between this picture and this picture: made with mematic They're the same picture. Fat free milk water"

OCR result

-> Cannot be used because of improper format (watermark, global context, delimiter issue, etc.)

1. Text Extraction

Local Context

3DS owners: OH NO! We'll have to pirate games now!

Wii owners:

"3DS owners: OH NOI We'll have to pirate games now! Wii owners:"

OCR result after data cleaning

-> Good to use!

"Fat free milk water"

→ Final local context: "Fat free milk water No difference whatsoever"

whatsoever

3. Image Captioning

"a man with a rope around his neck"

"a woman in a purple jacket is holding a piece of paper"

- PaddleOCR for white masking
- "Salesforce/blip-image-captioning-base" for Image Captioning

4. Sentiment Analysis

2 RoBERTa models 14 sentiments and their corresponding scores

3DS owners: OH NO! We'll have to pirate

Wii	owners:

· Anger 😡 🖰
· Anticipation 🛮 😕
· Disgust 😡 🗟
· Fear 😧 🔟
· Joy 😃 🏂
· Love 💙 🔮
· Optimism 😊 🔅
· Pessimism 😔 🥋
· Sadness 😡 💔
· Surprise 😧 🕡
· Trust 💝 🛮 🗎
· Negative 🛇 무
· Neutral 😐 🕮
· Positive 🗹 👍

0.479241	0.593545
0.19945	0.054121,
0.647908	0.673541
0.066868	0.010768
0.032594	0.033441
0.002387	0.003806
0.016223	0.021999
0.075464	0.022189
0.217513	0.673541
0.060239	0.022189
0.00559	0.00443
<mark>0.768447</mark>	0.079837
0.215292	0.720003
0.016261	0.20016

"cardiffnlp/twitter-roberta-base-emotion-multilabel-latest" & "cardiffnlp/twitter-roberta-base-sentiment-latest"

5. Introduction of Meme Usages

3DS owners: OH NO! We'll have to pirate games now!

Wii owners:

Sarcasm or Irony|
Confusion or Disbelief|
Reaction or Reply Meme|
Parody or Spoof|
Popular Meme Format|
Self-Deprecation|
Absurd or Random Humor|
Comparison or Contrast|
Emotional Frustration|
Product or Brand Promotion|
Media or Brand Critique|
Hyperbole or Exaggeration|
Sadness or Disappointment|
Punchline or Joke

Parody or Spoof | Absurd or Random Humor

-> Methodology: Zero-shot classification with Hugging Face Transformers (BART-Large-MNLI) and using custom usage labels.

Feature 1: Find similar memes based on Global Context (Image-based)

Output: Top n similar memes based on image

military in the

2022

2nd best military in Ukraine

2023

2nd best military in Russia

Feature 2: Find similar memes based on Local Context (Text-based)

Output: Top n similar memes based on text

Uploaded Meme:

STATE __EasyOCR_

Extracted Text

SentenceTransformers

Embedding

Cosine
Similarity
with
precomputed
embedding

Star Wars

Star Trek

Battlestar Galactica

- noTemplate_noTopic_usage.npy
- noTemplate_topicGlobal_noUsage.npy
- noTemplate_topicGlobal_usage.npy
- □ noTemplate_topicLocal_noUsage.npy
- noTemplate_topicLocal_usage.npy

Feature 3: Natural Language Query

Query: My day has been really bad, I want a meme that can cheer me up. I really like the movie Despicable Me, give me some Minions memes.

Semantic Searching & Ranking Stage

Top n

Recommendations

```
{'need_template': False,
'has_topics': True,
'has_usages': True,
'details': {

    'topics': ['Minions'],
    'recommendation_focus': 'global',
    'usages': ['Humor', 'cheering up']
    }
}

SentenceTransformers
User input embedding

wembedding

vembeddings

in otherwise in the computed case-based embedding

which precomputed case-based embedding

which precomput
```

✓ embeddings
 ≡ noTemplate_noTopic_usage.npy
 ≡ noTemplate_topicGlobal_noUsage.npy
 ≡ noTemplate_topicGlobal_usage.npy
 ≡ noTemplate_topicLocal_noUsage.npy
 ≡ noTemplate_topicLocal_usage.npy
 ≡ template_noTopic_usage.npy
 ≡ template_topic_noUsage.npy
 ≡ template_topic_noUsage.npy
 ≡ template_topic_usage.npy

```
Feature 3: Natural Language Query
Query: I just want to see some memes.
                                                                                      Fallback Condition
   {'need_template': False,
   'has_topics': False,
   'has_usages': False,
                                                    Sentiment score ranking
                                                                                  Top n
    'details': {
                                                                                  Recommendations
             'sentiment_preference': 'neutral'
```


Frontend

Deployment

Web Interface

- Frontend: Built with HTML, CSS, and JavaScript for the user interface.
- **Backend**: Powered by FastAPI to handle HTTP requests and responses via RESTful endpoints.
- Tunneling: Ngrok is used to expose the local FastAPI server to the internet through a secure tunnel.

Android App

- UI Layer.
- ViewModel Layer.
- **Backend Communication**: Retrofit is used to interact with a Python-based backend API.
- Firebase Integration: Firebase Authentication, Firestore Database.
- Extra features: Favorites, sharing to social media platforms.

Demo!

III. PERFORMANCE EVALUATION & ANALYSIS

when the teacher askes you to do a self assessment

1. Semi-automated Test Label Generation

How relevant are the meme/meme template retrieval results and the query?

Meme/ meme template

retrieval model

- Generate ~200 meme queries and ~200 meme template queries by GeminiGenAPI that are diverse in lengths, topics, and expressions.
- 20 results per meme query.
- **10 results** per meme template query.

Output (A pair of query

GeminiGenAPI

• Threshold = 1, relevant

Evaluation results for meme retrieval	Evaluation results for meme template retrieval
nDCG@5: 0.6383	nDCG@5: 0.5008
Precision@5: 0.8465	Precision@5: 0.4960
Recall@5: 0.2590	Recall@5: 0.5233
nDCG@10: 0.6837	nDCG@10: 0.7029
Precision@10: 0.8446	Precision@10: 0.4697
Recall@10: 0.5151	Recall@10: 1.0000
nDCG@20: 0.8411	MAP: 0.5982
Precision@20: 0.8255	MRR: 0.6558
Recall@20: 1.0000	
MAP: 0.8635	
MRR: 0.9163	

- The meme retriever is very strong. It's precise, retrieves all relevant memes, and ranks them well.
- o The meme template retriever finds all relevant results (great recall).
- o Compared to meme retrieval, **template performance is weaker**, especially in **early precision** and **ranking sharpness** (due to the nature of meme template and the size of template dataset).

• Threshold = 2, **highly relevant**

Evaluation results for meme retrieval	Evaluation results for meme template retrieval
nDCG@5: 0.6383	nDCG@5: 0.5008
Precision@5: 0.4901	Precision@5: 0.3714
Recall@5: 0.2503	Recall@5: 0.5021
nDCG@10: 0.6837	nDCG@10: 0.7029
Precision@10: 0.4871	Precision@10: 0.3417
Recall@10: 0.4893	Recall@10: 0.9657
nDCG@20: 0.8411	MAP: 0.4944
Precision@20: 0.4869	MRR: 0.5509
Recall@20: 0.9802	
MAP: 0.5623	
MRR: 0.6578	

- o Model does **very well in finding** highly relevant memes. There's **room to improve early ranking** (P@5/10).
- o The template retriever finds the right items, but doesn't rank them aggressively enough at the top.
- The performance of the meme template retriever is decent but weaker than meme retriever, especially on early precision.

Statistics We will work together Computer Science Now I m DATA SCIENTIST Please teach me statistics

IV. FUTURE WORK

III. Future Work

- Update and increase the meme dataset.
- Extend the scope of the project to GIFs dataset.
- Improve the performance of the existing text-to-image model.
- Manually checking the text-to-image model performance on small batch.
- IOS deployment.

How Neural Networks work? Neurons:

THANK YOU

Tri An Le

Emails: triandole@gmail.com

Contact: +36 20 492 3602

