www.trenepabers.com

Specimen Paper

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9702/04

PHYSICS Paper 4

Page 1	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - SPECIMEN PAPER	9702	4

Section A

	pointing inwards	B1 B1 B1	[3]	
(b) (i)	$= (6.67 \times 10^{-11} \times 5.98 \times 10^{24}) / (6380 \times 10^{3})^{2}$			
(ii)	$\omega = 2\pi / T$ $F_{\rm C} = (4\pi^2 \times 6380 \times 10^3) / (8.64 \times 10^4)^2$	C1 C1		
/:::\			[6]	
(111)	$F_{\rm G}$. – $F_{\rm C}$ = 9.77 N	ΑΊ	[6]	
(c) bed	cause acceleration (of free fall) is (resultant) force per unit mass celeration = 9.77 m s ⁻²	B1 B1	[2]	
(a) (i)	$\omega = 2\pi f$	B1		
(ii)	(-)ve because a and x in opposite directions OR a directed towards mean position / centre	B1	[2]	
(b) (i)	(i) forces in springs are $k(e + x)$ and $k(e - x)$ resultant = $k(e + x) - k(e - x)$ = $2kx$			
(ii)	a = -2kx/m	B1 A0 B1	[2] [2]	
(iii)		C1 C1 A1	[3]	
	(ii) (b) (i) (iii) (c) becacc (a) (i) (ii) (b) (i) (iii)	(ii) no difference OR lines closer near surface of smaller sphere (b) (i) $F_G = GMm/R^2$ $= (6.67 \times 10^{-11} \times 5.98 \times 10^{24}) / (6380 \times 10^3)^2$ $= 9.80 \text{ N}$ (ii) $F_C = mR\omega^2$ $\omega = 2\pi / T$ $F_C = (4\pi^2 \times 6380 \times 10^3) / (8.64 \times 10^4)^2$ $= 0.0337 \text{ N}$ (iii) $F_G - F_C = 9.77 \text{ N}$ (c) because acceleration (of free fall) is (resultant) force per unit mass acceleration = 9.77 m s^{-2} (a) (i) $\omega = 2\pi f$ (ii) (-)ve because a and x in opposite directions OR a directed towards mean position / centre (b) (i) forces in springs are $k(e + x)$ and $k(e - x)$ resultant $= k(e + x) - k(e - x)$ $= 2kx$ (ii) $F = ma$ $a = -2kx/m$ (-)ve sign explained (iii) $\omega^2 = 2k/m$ $(2\pi f)^2 = (2 \times 120) / 0.90$	pointing inwards (ii) no difference OR lines closer near surface of smaller sphere B1 (b) (i) $F_G = GMm/R^2$ $= (6.67 \times 10^{-11} \times 5.98 \times 10^{24}) / (6380 \times 10^3)^2$ $= 9.80 \text{ N}$ A1 (ii) $F_C = mR\omega^2$ $\omega = 2\pi / T$ $F_C = (4\pi^2 \times 6380 \times 10^3) / (8.64 \times 10^4)^2$ $= 0.0337 \text{ N}$ A1 (iii) $F_G - F_C = 9.77 \text{ N}$ A1 (c) because acceleration (of free fall) is (resultant) force per unit mass acceleration = 9.77 m s ⁻² B1 (a) (i) $\omega = 2\pi f$ B1 (ii) (-)ve because a and x in opposite directions OR a directed towards mean position $/$ centre B1 (b) (i) forces in springs are $k(e + x)$ and $k(e - x)$ resultant = $k(e + x) - k(e - x)$ M1 $= 2kx$ A0 (ii) $F = ma$ $a = -2kx / m$ (-)ve sign explained B1 (iii) $\omega^2 = 2k / m$ C1 $(2\pi f)^2 = (2 \times 120) / 0.90$ C1	

3	(a) single diode in series with R OR in series with a.c. supply				M1 A1	[2]	
	(b)	(i)	1	5.4 \	V (allow ±0.1 V)	A1	
	` ,			V :			
		•		I :	$= 5.4 / 1.5 \times 10^3$	C1	
					$= 3.6 \times 10^{-3} \text{ A}$	A1	
		` '			s = 0.027 s	A1	[4]
		(ii)	1		$= it = 3.6 \times 10^{-3} \times 0.027$	C1	
					$= 9.72 \times 10^{-5} \text{ C}$	A1	
		(ii)	2		= $\Delta Q / \Delta V$ (allow $C = Q/V$ for this mark) = $(9.72 \times 10^{-5}) / 1.2$	C1	
					$= 8.1 \times 10^{-5} \text{F}'$	A1	[4]
	(c)	line) :	reas	sonable shape with less ripple	B1	[1]
4	(2)	/:\	5 0	T		A1	
4	(a)		50		DAN	C1	
		(ii)		linka ow 4	age = BAN = $50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150 = 3.0 \times 10^{-4} \text{ Wb}$ $9 \text{ mT} \rightarrow 2.94 \times 10^{-4} \text{ Wb or } 51 \text{ mT} \rightarrow 3.06 \times 10^{-4} \text{ Wb})$	A1	[3]
	(b) e.m.f. / induced voltage (do not allow current) proportional/equal to						
					/equal to	B1 B1	.
	rate of change/cutting of flux (linkage)						[2]
	(c) (i) new flux linkage = $8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$			_			
			cha	nao	$= 4.8 \times 10^{-5} \text{ Wb}$ = $2.52 \times 10^{-4} \text{ Wb}$	C1 A1	[0]
		/::\		_		C1	[2]
		(11)	e.n	e.m.f. = $(2.52 \times 10^{-4}) / 0.30$ = $8.4 \times 10^{-4} \text{ V}$			[2]
	(d)	eith	ner		linkage decreases as distance increases peed must increase to keep rate of change constant	B1 B1	[2]
		or			onstant speed, e.m.f. / flux linkage decreases as x increases acrease speed to keep rate constant	(B1) (B1)	

Mark Scheme
A and AS LEVEL – SPECIMEN PAPER

Syllabus

9702

Paper

4

Page 2

	Pag	e 3	Mark Scheme	Syllabus	Paper	
	3		A and AS LEVEL – SPECIMEN PAPER	9702	4	
5	(a) into	o (plane d	of) paper / downwards		B1	[1]
	(b) (i)		ripetal force = mv^2 / r Bqv hence q/m = v/r B (some algebra essential)		B1 B1	[2]
	(ii)		= $(8.2 \times 10^6) / (23 \times 10^{-2} \times 0.74)$ = 4.82×10^7 C kg ⁻¹		C1 A1	[2]
	(c) (i)		= $(1.6 \times 10^{-19}) / (4.82 \times 10^7 \times 1.66 \times 10^{-27})$ = $2u$		C1	[2]
	(ii)	proton +			B1	[1]
6	T	= 985 K	$\times 10^6 \times 30 \times 300) / (1.1 \times 10^5 \times 540)$		C1 C1 A1	[3]
	(b) (i)		y + w s identified correctly as correct		M1 A1	[2]
	(ii)	$\Delta \dot{U}$ is ris	ove $OR \Delta U = w$ and U increases se in kinetic energy of atoms an kinetic energy ∞T of the last two marks if states 'U increases so T rises	s')	B1 B1 M1 A1	[4]
7		greater (parent) nucleus	probability of decay or $dN/dt = (-)\lambda N$ OR $A =$ per unit time with symbols explained energy of α -particle means nucleus less stable more likely to decay addium-224	(-) <i>λN</i>	M1 A1 M0 A1 A1 A1	[2]
	(b) (i)	unit	$\lambda = \ln 2 / 3.6 \text{ or } \lambda = \ln 2 / 3.6 \times 24 \times 3600$ = 0.193 = 2.23 × 10 ⁻⁶ day ⁻¹ s ⁻¹ u.fig., -1, allow λ in hr^{-1})		A1 A1	[2]
	(ii)	= 6.	2.24×10^{-3}) / 224} × 6.02×10^{23} 02×10^{18}		C1 C1	
			= λN = $2.23 \times 10^{-6} \times 6.02 \times 10^{18}$ = 1.3×10^{13} Bq		C1 A1	[4]

Page 4	Mark Scheme	Syllabus	Paper
	A and AS LEVEL - SPECIMEN PAPER	9702	4

Section B

8	(a)	+	-	B1	[1]
		(i)	 4.5 V Use of potential divider formula 9 × 800 / (800 + 2200) 2.4 V - 9.0 V 	B1 C1 A1 B1	[4]
		(11)	green (e.c.f. from (a) and (i)3)	B1	[1]
	(c)		temperature rises, potential/voltage at B increases 60 °C, green goes out, red comes on	M1 A1	[2]
9	(a)	(i)	clear distinction of boundaries between regions	B1	
		(ii)	significant difference in blackening of different regions	B1	[2]
	(b)	(i)	$\frac{1}{2} = e^{-\mu}$ $\mu = 0.693 \text{ mm}^{-1}$	C1 A1	[2]
		(ii)	X-ray (photons) are more penetrating μ is smaller	M1 A1	[2]
10	(a)		plitude of carrier wave varies synchrony with (displacement of information) signal	M1 A1	[2]
	(b)	syn	ee vertical lines nmetrical with smaller sidebands requencies 70, 75 and 80 kHz	B1 B1 B1	[3]
	(c)	bar	ndwidth = 10 kHz	B1	[1]
11	(a)	unv	vanted energy / power that is random or that covers whole spectrum	B1	[1]
	(b)	63	mber of dB = $10 \lg(P_{OUT} / P_{IN})$ = $10 \lg (P_{OUT} / (2.5 \times 10^{-6}))$ $g_{T} = 5.0 \text{ W}$	C1 C1 A1	[3]
	(c)		enuation = $10 \lg(5 / 3.5 \times 10^{-8}) = 81.5 dB$ gth = $81.5 / 12 = 6.8 \text{ km}$	C1 A1	[2]
12	sele allo mo allo	ects cate nito ocate	mits entry to PSTN base station for any handset es a carrier frequency/channel es handset signal to re-allocate base station es time slot for multiplexing etc eur sensible suggestions, 1 each to max 4)	B4	[4]