COVID-19

국내 코로나 현황

코로나 완치 기간 예측

산업경영공학과 20182890 임성민

(1) 분석 주제

(2) 데이터 전처리

(3) 데이터 분석 및 결과

(4) Q&A

1) 분석 주제

분석 주제

: 연령, 감염경로, 성별에 따른 코로나 완치 기간 예측

연령

연령에 따라 코로나 완치 기간이 다를까? 가장 활발한 연령이 옮겨 가장 불편한 연령이 죽는다

성별

성별이 코로나 면역력 연구에 도움이 될까? 무차별적으로 걸리는 듯 하지만 남성은 감기에 덜 걸린다는 유사과학

감염경로

이태원, 신천지 어느 곳이 더 빨리 번질까? 용서 받지 못할 사람들 #고강도 사회적 거리두기

2) 데이터 전처리

사용한 데이터 원본

< Pat	ientInfo	o.csv (477.4 k	(B)					4	m :	13
Detail	Compa	act Column						10 of 14 col	umns '	~
A country	=	A province	=	A city	=	A infection_case	=	# infected_by	=	#
he country of th	ne patient	the province of the patient		the city of the pat	ient	the case of infection	n	the ID of who infected patient		the
orea	99%	Seoul	25%	Gyeongsan-si	12%	contact with patien	t 31%			
hina	0%	Gyeongsangbuk-do	24%	Seongnam-si	3%	[null]	18%			
)ther (31)	1%	Other (2599)	50%	Other (4353)	84%	Other (2636)	51%	12.7k 7.	.00b	0
orea		Seoul		Gangseo-gu		overseas inflow				75
orea		Seoul		Jungnang-gu		overseas inflow				31
orea		Seoul		Jongno-gu		contact with pa	tient	2002000001		17
orea		Seoul		Mapo-gu		overseas inflow				9
orea		Seoul Seoul		Seongbuk-gu		contact with pa	tient	1000000002		2
orea		Seoul		Jongno-gu		contact with par	tient	1000000003		43
orea		Seoul		Jongno-gu		contact with pa	tient	1000000003		0
orea		Seoul		etc		overseas inflow				Θ

불러오기

,	Ju. read_CSV	('C:/Users/	smcom/D	esktop/sm_	20/ps	thon/fre	ee/new2/d	atasets_52	7325_120	5308_Patienti	nfo.csv',sep='	.')	
	patient_id	global_num	sex	birth_year	age	country	province	city	disease	infection_case	infection_order	infected_by	contact_num
0	1000000001	2.0	male	1964	50s	Korea	Seoul	Gangseo- gu	NaN	overseas inflow	1.0	NaN	
1	1000000002	5.0	male	1987	30s	Korea	Seoul	Jungnang- gu	NaN	overseas inflow	1.0	NaN	
2	1000000003	6.0	male	1964	50s	Korea	Seoul	Jongno-gu	NaN	contact with patient	2.0	2002000001	
3	1000000004	7.0	male	1991	20s	Korea	Seoul	Mapo-gu	NaN	overseas inflow	1.0	NaN	
4	1000000005	9.0	female	1992	20s	Korea	Seoul	Seongbuk- gu	NaN	contact with patient	2.0	1000000002	
999	700000010	NaN	female	NaN	20s	Korea	Jeju-do	Jeju-do	NaN	overseas inflow	NaN	NaN	
000	7000000011	NaN	male	NaN	30s	Korea	Jeju-do	Jeju-do	NaN	contact with patient	NaN	7000000009	
001	700000012	NaN	female	NaN	20s	Korea	Jeju-do	Jeju-do	NaN	overseas inflow	NaN	NaN	
002	700000013	NaN	female	NaN	10s	China	Jeju-do	Jeju-do	NaN	overseas inflow	NaN	NaN	
003	7000000014	NaN	female	NaN	30s	Korea	Jeju-do	Jeju-do	NaN	Itaewon Clubs	NaN	NaN	

https://www.kaggle.com/kimjihoo/coronavirusdataset?select=TimeAge.csv

원하는 데이터 뽑아서 확인하기

```
In [2]: sel = df.loc[:,['sex','city', 'infection_case']
        'confirmed_date', 'released_date']]
sel2 = df.loc[:,['infection_case', 'birth_year']]
In [3]: sel['diff_date'] = 100
        sel2['diff_year'] = 100
In [4]: sel.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4004 entries, 0 to 4003
        Data columns (total 6 columns):
         # Column
                            Non-Null Count Dtype
                            3674 non-null object
         1 city
                            3926 non-null object
         2 infection_case 3211 non-null object
         3 confirmed_date 4001 non-null object
         4 released_date 1508 non-null object
        5 diff date 4004 non-null int64
        dtypes: int64(1), object(5)
        memory usage: 187.8+ KB
```

2차데이터 분리 (diff_date 형성)

```
In [10]: self['confirmed_date'] = self'confirmed_date'], astype('datetime64[ns]')
self('released_date') = self'(released_date'), astype('datetime64[ns]')

In [11]:
self('diff_date') = self('released_date') - self('confirmed_date')
self('diff_wear') = 100
self('dompairing loade = True)
self('birth_wear') - dronnol()
self('birth_wear') - pod.to_numeric(self('birth_wear'), errors='coerce')

In [12]:
self('birth_wear') - count()
self('birth_wear') - pod.to_numeric(self('birth_wear'), errors='coerce')

In [12]:
self('birth_wear') - count()
self('diff_date') = self('released_date') - self('confirmed_date')
self('birth_wear') - pod.to_numeric(self('birth_wear'), errors='coerce')

In [12]:
self('diff_date') = self('released_date') - self('confirmed_date')
self('diff_wear') = numeric(self('birth_wear'), errors='coerce')

In [12]:
self('diff_date') = self('released_date') - self('confirmed_date')
self('diff_wear') = numeric(self('birth_wear'), errors='coerce')

In [12]:
self('diff_date') = self('released_date') - self('confirmed_date')
self('diff_wear') = numeric(self('birth_wear'), errors='coerce')

In [12]:
self('diff_date') = self('released_date') - self('confirmed_date')
self('diff_wear') = numeric(self('birth_wear'), errors='coerce')

In [12]:
self('diff_date') = self('released_date') - self('confirmed_date')
self('diff_wear') = numeric(self('birth_wear'), errors='coerce')

In [12]:
self('birth_wear') = numeric(self('bi
```


- 원본데이터의 컬럼은 18개 -> 필요한 컬럼 6개로 줄인다.
- 나중에 계산한 값이 들어갈 컬럼을 미리 생성해준다 (diff_date, diff_year)
- 연산을 편리하게 하기 위해 데이터를 한번 더 분리한다.
- 연산을 위해 null값 제거
- Object형태의 날짜 데이터를 datetime으로 바꿔주고 계산하여 diff_date에 넣는다.
- 연도만 존재하는 데이터는 float형태로 바꿔준다.

2) 데이터 전처리

연도데이터로 대상자의 연령을 확인하기

```
qwe = sel2['birth_year'] <= 2020.0
asd = sel2['birth_year'] > 2020.0
is owe = sel2[owe]
is_asd = sel2[asd]
is_qwe.diff_year = 2020.0 - is_qwe.birth_year
is_asd.diff_year = 2020.0 - is_asd.birth_year
#df1 = pd.merge(is gwe . is asd. left on = "infection case", right index=True)
df1 = pd.concat([is_qwe,is_asd],axis = 1)
df1.columns = ["infection_case","birth_year","diff_year","sd","df","fg"]
df1.drop(["sd","df","fg"], axis='columns', inplace=True)
 C:\Users\smcom\anaconda3\lib\site-packages\pandas\core\generic.pv:5303: Setting\ithCopy\arning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-c
 self[name] = value
       infection_case birth_year diff_year
      overseas inflow
                       1964.0
 2 contact with patient
      overseas inflow
                     1991.0
 4 contact with natient 1992 0 28 0
```

concat()으로 데이터를 붙여주고 기초데이터 완성

데이터 출처 https://www.kaggle.com/kimjihoo/coronavirusdataset?select=TimeAge.csv

데이터 확인하기

```
In [19]: df.info()
         #결측값 무시하고 진행
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 4004 entries, 0 to 4003
         Data columns (total 7 columns):
             Column
                              Non-Null Count Dtype
              sex
                              4004 non-null
                                             int32
                              3926 non-null
                                             object
                                             object
              infection_case
                             3211 non-null
                              4004 non-null
                                             int64
                              4004 non-null
                                             int64
          4
             diff date
                              1508 non-null
                                             float64
                              2558 non-null
                                             float64
             diff year
         dtypes: float64(2), int32(1), int64(2), object(2)
         memory usage: 234.6+ KB
```

성별, 연령과 날짜 데이터를 값으로 표현

```
In [17]: df.sex = (df.sex == "female").astype(int)#10/ 여성, 00/ 남성
                     = np.where(df['dlff year'] >= 0, 0, df['age']) # 0\sim10
                     np.where(df['diff_year'] >= 10, 10, df['age']) # 10~20
                     np.where(df['diff_year'] >= 20 , 20, df['age']) # 20~30
                     = np.where(df['diff_year'] >= 30 , 30, df['age']) # 30~40
         df['age'] = np.where(df['diff_year'] >= 40 , 40, df['age']) # 40~a//
         df.diff_date = df.diff_date / np.timedelta64(1, 'D')
         df['date'] = 100
                      np.where(df['diff_date'] >= 0 , 0, df['date']) # 0~10
         df['date']
                      = np.where(df['diff_date'] >= 10 , 10, df['date']) # 0~10
= np.where(df['diff_date'] >= 20 , 20, df['date']) # 10~20
         df['date']
         df['date'] = np.where(df['diff_date'] >= 30 , 30, df['date']) # 20~30
In [20]: df = df[['sex','city','infection_case','date','age','diff_date','diff_year']]
          dfs = df.dropna()
          dfs head(5)
          4 1 Seongbuk-gu contact with patient 20 20 24.0 28.0
```


- 2020년을 기준으로 논리연산을 이용해 diff_year라는 이름으로 감염자들의 연령을 계산한다.
- 이용할 모든 데이터를 concat()함수로 붙여준다.
 이때 컬럼명과 위치도 바꿈
- 데이터의 최종형태를 확인한다.
- diff_date를 숫자형으로 바꿔주고, 완치일자와 연령대, 성별을 묶어서 표현해준다.
 - 모든 null값을 제거한 최종 데이터 갯수

679 rows × 7 columns

3) 데이터 분석

1차 분석

사용한 분석기법 : svm (비선형 분류)

입력변수 : age, sex

출력변수: date

주제: 성별과 나이로 완치 기간을 얼마나 예측 할 수 있을까?

출력된 acuracy

: 0.30514705882352944

결론: 예측이 거의 불가 하다고 할 수 있다.

```
x = dfs[['age','sex']]
x.std = StandardScaler().fit_transform(x)
y = dfs['date']
x_train, x_test,y_train, y_test = train_test_split(x,y,test_size = 0.4)
svc = SVC(kernel = 'rbf', C = 100, gamma=0.01)
model = svc.fit(x_train,y_train)
y_pred = model.predict(x_test)
array([20, 20, 20, 20, 10, 10, 10, 20, 20, 10, 10, 10, 10, 10, 20, 10, 20,
       20, 10, 10, 10, 20, 20, 20, 20, 10, 20, 10, 10, 10, 20, 10, 20, 10,
       10, 10, 10, 10, 10, 20, 20, 10, 10, 20, 20, 10, 10, 10, 10, 10, 10,
       10, 10, 20, 10, 20, 20, 10, 20, 20, 10, 10, 10, 20, 10, 10, 20, 20,
       20, 20, 20, 10, 20, 20, 20, 10, 10, 20, 10, 10, 10, 20, 10, 20, 20,
       20, 20, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 10, 20, 20, 10,
       20, 10, 20, 10, 20, 10, 0, 10, 10, 10, 10, 20, 10, 10, 10, 20, 20,
       20, 20, 20, 20, 10, 10, 10, 10, 20, 20, 20, 20, 20, 10, 20, 10, 10,
       10, 10, 10, 20, 10, 10, 20, 10, 10, 10, 20, 20, 20, 20, 10, 10, 10,
       20, 20, 10, 20, 10, 20, 10, 20, 10, 10, 10, 10, 10, 10, 10, 20, 20,
       10, 20, 20, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 10, 10, 10, 20,
       10, 20, 20, 10, 20, 10, 10, 20, 20, 10, 10, 10, 10, 20, 20, 10, 20,
       10, 10, 20, 20, 20, 10, 10, 10, 10, 10, 10, 10, 20, 20, 10, 10, 20]
      dtype=int64)
pd.crosstab(y_test, y_pred)
 col_0 0 10 20
   0 0 21 10
from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))
                       recall f1-score support
                         0.00
                                  0.00
                0.33
                         0.58
                                  0.42
                0.27
                         0.34
                                  0.30
                                  0.00
                0.00
                         0.00
   accuracy
   macro avg
                0.15
                         0.23
                                  0.18
weighted avg
                0.20
C:#Users#smcom#anaconda3#lib#site-packages#sklearn#metrics#_classification.py:1272: UndefinedMetric#arning: Precision and F-score are i
II-defined and being set to 0.0 in labels with no predicted samples. Use 'zero_division' parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
### acuracy
model.score(x_test,y_test)
0.30514705882352944
```

3) 데이터 분석

2차 분석

사용한 분석기법 : svm (비선형 분류)

입력변수: date 외 전부

출력변수: date

주제: 성별과 나이, 접촉경로로 완치 기간을 얼마나 예측 할 수 있을까?

출력된 acuracy

: 0.37209302325581395

결론 :1차 분석보다는 유의미한 결과를 낳았으나, 참고자료 정도가 적합한 활용방안이다.

	date	sex	age	infection_case_contact with patient	infection_case_etc	infection_case_Eunpyeong St. Mary's Hospital	infection_case_Geochang Church	infection_case_Guro- gu Call Center	infection_case_Gye Cham Joeun Com
0	20	0	40	1	0	0	0	0	
1	10	1	40	1	0	0	0	0	
2	10	0	20	1	0	0	0	0	
3	20	0	20	0	0	0	0	0	
4	20	0	20	0	0	0	0	0	
423	10	1	40	1	0	0	0	0	
424	30	1	40	1	0	0	0	0	
425	10	0	40	1	0	0	0	0	
426	20	0	20	0	1	0	0	0	
427	0	0	20	0	1	0	0	0	

```
### 교자표
pd.crosstab(y_test, y_pred)

col_0 0 10 20 30
date

0 0 5 3 4

10 1 12 22 11

20 1 11 25 15

30 1 12 22 27

from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))

precision recall f1-score support

0 0.00 0.00 0.00 0.00 12
```

	precision	recall	f1-score	support
0 10 20 30	0.00 0.30 0.35 0.47	0.00 0.26 0.48 0.44	0.00 0.28 0.40 0.45	12 46 52 62
accuracy macro avg weighted avg	0.28 0.36	0.29 0.37	0.37 0.28 0.36	172 172 172

acuracy model.score(x_test,y_test)

0.37209302325581395

3) 데이터 분석

3차 분석

사용한 분석기법 : 로지스틱 회귀분석

입력변수: date 외 전부

출력변수: date

주제: 성별과 나이, 접촉경로로 완치 기간을 얼마나 예측 할 수 있을까?

출력된 acuracy

: 0.45348837209302323

결론 : 성별과 나이, 접촉경로로 완치기간을 정확히 예측 할 수는 없지만 1,2차 분석 보다 더 높은 예측율을 보였다.

```
x = aa.iloc[:,1:]
y = aa['date']
y,y_levels = pd.factorize(y)

y_levels

Int64Index([20, 10, 30, 0], dtype='int64')

### Train & test data
x_train, x_test,y_train, y_test = train_test_split(x,y,test_size = 0.4)

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
### logistic regression()
model = logistic.fit(x_train, y_train)
```

### 교치丑 pd.crosstab(y_test, y_pred)						In [84]:	<pre>from sklearn.metrics import classification_report print(classification_report(y_test,y_pred))</pre>					
								precision	recall	f1-score	support	
col_0	0	10	20	30			0	0.40	0.04	0.07	54	
							1	0.00	0.00	0.00	48	
row_0							2	0.00	0.00	0.00	60	
							3	0.00	0.00	0.00	10	
0	2	11	31	10			10	0.00	0.00	0.00	0	
	_	• •					20	0.00	0.00	0.00	0	
1	2	11	20	15			30	0.00	0.00	0.00	0	
2	1	13	32	14			accuracy			0.01	172	
							macro avg	0.06	0.01	0.01	172	
3	0	4	4	2			weighted avg	0.13	0.01	0.02	172	

acuracy
model.score(x_test,y_test)

0.45348837209302323

Q & A

| 코로나 완치 기간 예측

감사합니다

| <mark>코로나 완치 기간 예측</mark> 파이썬 활용 박영호 교수님 분석 과제

