3.2 算术与逻辑单元

3.2.2 串行进位与并行进位

两个n位二进制数相加n位加法器,n个全加器相连。

串行进位或行波进位加法器:

- 1) 位间进位串行传送;
- 2) 高位的加法运算,须等到低位加法作完,送来<mark>进位</mark>时才能 进行(级延迟时间可计算);
- 3) 一级一级传递进位,运算时间与位数有关。

先行进位或并行进位加法器

思想:将进位信号同时送到各位全加器的进位输入端。

就 4 位加法器,讨论其进位 C_1 、 C_2 、 C_3 和 C_4 的产生条件:

- ① 下述条件中任一条满足就可生成 $C_1=1$:
 - 1) X₁、Y₁均为"1";
 - 2) X₁ 、 Y₁ 任一个为" 1" ,且进位 C₀ 为" 1" 。

$$C_i = X_i Y_i \overline{C}_{i-1} + \overline{X}_i Y_i C_{i-1} + X_i \overline{Y}_i C_{i-1} + X_i Y_i C_{i-1} = X_i Y_i + (X_i \oplus Y_i) C_{i-1}$$

可得 C_1 的表达式为:
 $C_i = (X_i + Y_i) C_{i-1} + X_i Y_i$

$$C_1 = X_1Y_1 + (X_1 + Y_1)C_0$$

- ② 下述条件中任一条满足,就可生成 $C_2=1$ 。
 - 1) X₂、Y₂均为"1";
 - 2) X₂、 Y₂任一个为"1", 且进位 C₁为"1"。

可得 C₂ 的表达式为:

$$C_{2} = X_{2}Y_{2} + (X_{2} + Y_{2})C_{1}$$

$$= X_{2}Y_{2} + (X_{2} + Y_{2})X_{1}Y_{1} + (X_{2} + Y_{2})(X_{1} + Y_{1})C_{0}$$

③ 同理,可得 C,的表达式为:

$$C_{3}=X_{3}Y_{3}+(X_{3}+Y_{3})C_{2}$$

$$=X_{3}Y_{3}+(X_{3}+Y_{3})[X_{2}Y_{2}+(X_{2}+Y_{2})X_{1}Y_{1}+(X_{2}+Y_{2})(X_{1}+Y_{1})C_{0}]$$

$$=X_{3}Y_{3}+(X_{3}+Y_{3})X_{2}Y_{2}+(X_{3}+Y_{3})(X_{2}+Y_{2})X_{1}Y_{1}+(X_{3}+Y_{3})(X_{2}+Y_{2})(X_{1}+Y_{1})C_{0}$$

④ 同理,可得 C_{a} 的表达式为:

$$C_{4} = X_{4}Y_{4} + (X_{4} + Y_{4})C_{3}$$

$$= X_{4}Y_{4} + (X_{4} + Y_{4})[X_{3}Y_{3} + (X_{3} + Y_{3})X_{2}Y_{2} + (X_{3} + Y_{3})(X_{2} + Y_{2})X_{1}Y_{1} + (X_{3} + Y_{3})(X_{2} + Y_{2})(X_{1} + Y_{1})C_{0}]$$

$$= X_{4}Y_{4} + (X_{4} + Y_{4})X_{3}Y_{3} + (X_{4} + Y_{4})(X_{3} + Y_{3})X_{2}Y_{2} + (X_{4} + Y_{4})(X_{3} + Y_{3})(X_{2} + Y_{2})X_{1}Y_{1} + (X_{4} + Y_{4})(X_{3} + Y_{3})(X_{2} + Y_{2})(X_{1} + Y_{1})C_{0}$$

定义两个辅助函数:

进位传递函数: $P_i = X_i + Y_i$

进位产生函数: $G_i = X_i Y_i$

进位传递函数 P_i : 当 X_i 、 Y_i 中有一个为" 1" 时,本位向高位传送低位进位 C_{i-1} 。

进位产生函数 G_i : 当 X_i 、 Y_i 均为" 1" 时,不管有无低位进位输入,本位一定向高位产生进位输出。

$$C_i = G_i + P_i C_{i-1}$$

▲ 将 P_i 、 G_i 代入前面的 $C_{1\sim C_4}$ 式,可得:

$$\begin{array}{ll} \mathbf{C}_1 = \mathbf{G}_1 + \mathbf{P}_1 \mathbf{C}_0 \\ \mathbf{C}_2 = \mathbf{G}_2 + \mathbf{P}_2 \mathbf{C}_1 \\ \mathbf{C}_3 = \mathbf{G}_3 + \mathbf{P}_3 \mathbf{C}_2 \\ \mathbf{C}_4 = \mathbf{G}_4 + \mathbf{P}_4 \mathbf{C}_3 \end{array} = \begin{aligned} & = \mathbf{G}_2 + \mathbf{P}_2 \mathbf{G}_1 + \mathbf{P}_2 \mathbf{P}_1 \mathbf{C}_0 \\ & = \mathbf{G}_3 + \mathbf{P}_3 \mathbf{G}_2 + \mathbf{P}_3 \mathbf{P}_2 \mathbf{G}_1 + \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{C}_0 \\ & = \mathbf{G}_4 + \mathbf{P}_4 \mathbf{G}_3 + \mathbf{P}_4 \mathbf{P}_3 \mathbf{G}_2 + \mathbf{P}_4 \mathbf{P}_3 \mathbf{P}_2 \mathbf{G}_1 + \mathbf{P}_4 \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{C}_0 \end{aligned}$$

▲ 先行进位产生电路及 4 位先行进位加法器的逻辑图。

先行进位产生电路

如 $C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2P_1C_0$

4 位先行进位加法器

- 4 位先行进位加法器:
 - 1) 4个全加器;
 - 2) 先行进位产生电路。
- 4 位先行进位加法器的符号表示:

16 位加法器

四个 4 位先行进位加法器串接起来。

组间为串行进位构成的 16 位加法器

组内并行、组间串行:在各加法单元之间,进位信号是 串行传送的,而在加法单元内,进位信号是并行传 送的。

16 位加法器

并行进位的概念可用于 16 位加法器;进一步提高 16 位加法器的运算速度。

组间进位:

$$C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2P_1C_0$$

表示成: $C_m = G_m + P_m C_0$

P. 和 G. 分别为:

16 位加法器

应用于四个4位先行进位加法器,则有:

$$\begin{split} \mathbf{C}_{m1} &= \mathbf{G}_{m1} + \mathbf{P}_{m1} \mathbf{C}_{0} \\ \mathbf{C}_{m2} &= \mathbf{G}_{m2} + \mathbf{P}_{m2} \mathbf{C}_{m1} = \mathbf{G}_{m2} + \mathbf{P}_{m2} \mathbf{G}_{m1} + \mathbf{P}_{m2} \mathbf{P}_{m1} \mathbf{C}_{0} \\ \mathbf{C}_{m3} &= \mathbf{G}_{m3} + \mathbf{P}_{m3} \mathbf{C}_{m2} = \mathbf{G}_{m3} + \mathbf{P}_{m3} \mathbf{G}_{m2} + \mathbf{P}_{m3} \mathbf{P}_{m2} \mathbf{G}_{m1} + \mathbf{P}_{m3} \mathbf{P}_{m2} \mathbf{P}_{m1} \mathbf{C}_{0} \\ \mathbf{C}_{m4} &= \mathbf{G}_{m4} + \mathbf{P}_{m4} \mathbf{C}_{m3} = \mathbf{G}_{m4} + \mathbf{P}_{m4} \mathbf{G}_{m3} + \mathbf{P}_{m4} \mathbf{P}_{m3} \mathbf{G}_{m2} + \\ \mathbf{P}_{m4} \mathbf{P}_{m3} \mathbf{P}_{m2} \mathbf{G}_{m1} + \mathbf{P}_{m4} \mathbf{P}_{m3} \mathbf{P}_{m2} \mathbf{P}_{m1} \mathbf{C}_{0} \end{split}$$

与组内进位表达式相似

并行进位链结构相同.

组间由先行进位链构成的 16 位加法器

3.2.3 ALU 部件

多功能算术 / 逻辑单元 (ALU) 的基本思想:

将全加器的功能扩展以完成多种算术逻辑运算。

多功能 ALU 的组成:

- 1) 四位全加器;
- 2) 并行进位逻辑;

3) 输入选择逻辑:通过改变加法器的进位产生函数 G 和进位传递函数 P 来获得多种运算能力。

74181 型 4 位 ALU 中规模集成电路工作原理:

1) 能对两个 4 位二进制代码 A₃A₂A₁A₀ 和 B₃B₂B₁B₀ 进行

```
16 种算术运算(当M为低电位时);
16 种逻辑运算(当M为高电位时);
产生结果 F,F,F,F,F。
```

2) 16 种运算操作由 $S_3S_2S_1S_0$ 四位控制选择。

一位 ALU 基本逻辑电路

- 1) 核心部分是由两个半加器组成的全加器;
- 2) 由 M 控制第二级半加器选择逻辑运算或 算术运算;
- 3) 输入选择逻辑, 4 个控制信号 S_0 , S_1 , S_2 , S_3 可选择 16 种功能。

参数 S₀,S₁,S₂,S₃ 分别控制输入 A_i 和 B_i,产生 X_i、 Y_i 函数。其中:

- X_i 是受 S_3 , S_2 控制的 A_i 和 B_i 组合函数。
- Y_i 是受 S_1 , S_0 控制的 A_i 和 B_i 的组合函数

ALU 的一位逻辑表达式为:

$$\mathbf{X}_{i} = \overline{\mathbf{S}_{3}\mathbf{A}_{i}\mathbf{B}_{i} + \mathbf{S}_{2}\mathbf{A}_{i}\mathbf{B}_{i}^{T}}$$

$$\mathbf{Y}_{i} = \mathbf{A}_{i} + \mathbf{S}_{0} \mathbf{B}_{i} + \mathbf{S}_{1} \mathbf{B}_{i}$$

$$\mathbf{F}_{i} = \mathbf{Y}_{i} \oplus \mathbf{X}_{i} \oplus \mathbf{C}_{i-1}$$

$$\mathbf{C}_{\mathbf{i}} = \mathbf{Y}_{\mathbf{i}} + \mathbf{X}_{\mathbf{i}} \mathbf{C}_{\mathbf{i}-1}$$

$$\mathbf{C}_{i} = \mathbf{Y}_{i} + \mathbf{X}_{i} \mathbf{C}_{i-1} \qquad \mathbf{C}_{i} = \mathbf{G}_{i} + \mathbf{P}_{i} \mathbf{C}_{i-1}$$

4 位算术 / 逻辑运算单元 (74181) :

- 1) 4× 一位 ALU ;
- 2) 并行进位链。

74181 逻辑图

P和G的含义

第 4 位的进位输出(即整个 4 位运算进位输出)公式为:

$$C_{n+4} = Y_3 + X_3 C_{n+3} = Y_3 + X_3 Y_2 + X_3 X_2 Y_1 + X_3 X_2 X_1 Y_0 + X_3 X_2 X_1 X_0 C_n$$

设
$$G = Y_3 + X_3 Y_2 + X_3 X_2 Y_1 + X_3 X_2 X_1 Y_0$$

$$P = X_3 X_2 X_1 X_0$$
则 $C_{n+4} = G + PC_n$

其中G称为片间进位产生函数,P称为片间进位传递函数。

电路中多加这两个进位输出的目的:

为了便于实现多片(组)ALU之间的先行进位

0

74181ALU 的图形符号 (引脚图):

- 1) C_n是 ALU 的最低位进位输入,低电平有效,即 C_n=L 表示有进位输入;
- 2) C_{n+4} 是 ALU 进位输出信号。

74181 功能表

S_3	S_2	S_1	S_0	M=H M=L 算术运算		
				逻辑运算	$\overline{\overline{C}}_n=1$	$\overline{\overline{C}}_{n}=0$
L	L	L	L	Ā	A	A+1
L	L	L	Н	A+B	A+B	(A+B)加 1
L	L	Н	L	$\overline{\mathrm{A}}^{ullet}\mathrm{B}$	$A+\overline{B}$	(A+ <u>B</u>)加 1
L	L	Н	Н	"0"	减 1	"0"
L	Н	L	L	$\overline{\mathrm{A}^{ullet}\mathrm{B}}$	A加(A [•] B)	A 加(A [•] B) 加 1
L	Н	L	Н	$\overline{\mathrm{B}}$	$(A^{ullet}\overline{B})$ 加 $(A+B)$	(A [•] B)加(A+B)加 1
L	Н	Н	L	$\mathrm{A}^{ ext{\textcircled{-}}}\mathrm{B}$	A 減 B 減 1	A 减 B
L	Н	Н	Н	A® B	(A [•] B̄)减 1	$A^{\bullet}\overline{B}$
Н	L	L	L	A+B	A 加(A [•] B)	A 加(A [•] B) 加 1
Н	L	L	Н	Ā [⊕] B	А т В	A to B to 1
Н	L	Н	L	В	$(A^{ullet}B)$ 加 $(A+\overline{B})$	(A [•] B)加(A+B) 加 1
Н	L	Н	Н	$A^{\bullet}B$	(A [●] B)减 1	$A^{\bullet}B$
Н	Н	L	L	"1"	A加A	A加A加1
Н	Н	L	Н	A+B	A 加(A+B)	A 加(A+B) 加 1
Н	Н	Н	L	A+B	A 加(A+B)	A 加(A+B) 加 1
Н	Н	Н	Н	A	A 減 1	A

ALU 单元的运算功能:

- 1. 算术运算功能 (M=L 时):
 - □ A加B:当 $S_3S_2S_1S_0$ =HLLH 时,ALU 实现对 $A_3A_2A_1A_0$ 和 $B_3B_2B_1B_0$ 两个 4 位二进制代码在进位输入 C_n 参与下的加法运算;
 - □ A减B、A加1等;
- 2. 逻辑运算功能 (M=H 时):
 - \Box AB, A+B, \overline{A} ;
 - □ 传送 A 、 B 等。
- 3. 表中有些功能没有实用价值。