APS Estatística I - Analisando os times do Brasil

Victor Alves

03/09/2021

Importando os dados

```
library(tidyverse)
## -- Attaching packages --
                                                         ----- tidyverse 1.3.0 --
## v ggplot2 3.3.3
                     v purrr
                                0.3.4
## v tibble 3.1.0
                      v dplyr
                               1.0.5
                      v stringr 1.4.0
## v tidyr
            1.1.3
## v readr
            1.4.0
                      v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(janitor)
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
      chisq.test, fisher.test
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
      combine
library(viridis)
## Loading required package: viridisLite
library(RColorBrewer)
theme_set(theme_minimal())
dados <- readxl::read_excel("C:/Users/alves/OneDrive - Insper - Institudo de Ensino e Pesquisa/Estudos/
                           col_types = c("text", "text", "numeric",
                                         "date", "text", "text", "text", "numeric",
                                         "numeric", "numeric", "text", "numeric",
                                         "numeric", "numeric")) %>% clean_names() %>%
                           mutate('somagols' = golcasa+golvisitante)
```

Manipulando dados

Considerando a contagem de resultados por time e temporadas.

```
Contagem de cada resultado por temporada
```

```
resultado_ano <- dados %>% group_by(res, temporada) %>%
  summarise(n = n())
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
Computando a quantidade de resultados do time mandante
resultado ano casa <- dados %>% group by(res, temporada, casa) %>%
  summarise(n = n()) \%% mutate(freq = round((n / sum(n))*100,2))
## `summarise()` has grouped output by 'res', 'temporada'. You can override using the `.groups` argumen
Computando a quantidade de resultados do time visitante
resultado_ano_visitante <- dados %>% group_by(res, temporada, visitante) %>%
  summarise(n = n()) \%\% mutate(freq = round((n / sum(n))*100,2))
## `summarise()` has grouped output by 'res', 'temporada'. You can override using the `.groups` argumen
Calculando algumas medidas de posição e dispersão da contagem dos resultados por time e por ano
medidas_res_c <- as.tibble(resultado_ano_casa %>% filter(res == 'C') %>%
                             summarise('media' = mean(n),
                                       'mediana' = median(n),
                                       'desvpad' = sd(n)))
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## Please use `as_tibble()` instead.
## The signature and semantics have changed, see `?as tibble`.
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas res v <- as.tibble(resultado ano casa %>% filter(res == 'V') %>%
                             summarise('media' = mean(n),
                                        'mediana' = median(n),
                                        'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_res_e <- as.tibble(resultado_ano_casa %% filter(res == 'E') %>%
                             summarise('media' = mean(n),
                                        'mediana' = median(n),
                                        'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_res_casa <- as.tibble(resultado_ano_casa %>% group_by(casa, res, temporada) %>%
                      summarise('media' = mean(n),
                                 'mediana' = median(n),
                                 'desvpad' = sd(n)))
```

Trabalhando com os climas e estações do ano

Criando vetores com as estações de cada ano

`summarise()` has grouped output by 'casa', 'res'. You can override using the `.groups` argument.

```
inverno_2012 <- c(dados %>% select(data) %% filter(data > '2012-03-20' & data < '2012-09-22'))
verao_2012 <- dados %>% select(data) %>% filter(data > '2012-09-22' & data < '2013-03-20')</pre>
inverno_2013 <- dados %>% select(data) %>% filter(data > '2013-03-20' & data < '2013-09-22')
verao_2013 <- dados %>% select(data) %>% filter(data > '2013-09-22' & data < '2014-03-20')
inverno_2014 <- dados %>% select(data) %>% filter(data > '2014-03-20' & data < '2014-09-22')
verao 2014 <- dados %>% select(data) %% filter(data > '2014-09-22' & data < '2015-03-20')
inverno_2015 <- dados %>% select(data) %>% filter(data > '2015-03-20' & data < '2015-09-22')
verao_2015 <- dados %>% select(data) %>% filter(data > '2015-09-22' & data < '2016-03-20')
inverno_2016 <- dados %>% select(data) %>% filter(data > '2016-03-20' & data < '2016-09-22')
verao_2016 <- dados %>% select(data) %>% filter(data > '2016-09-22' & data < '2017-03-20')</pre>
inverno_2017 <- dados %>% select(data) %>% filter(data > '2017-03-20' & data < '2017-09-22')
verao_2017 <- dados %>% select(data) %>% filter(data > '2017-09-22' & data < '2018-03-20')
inverno_2018 <- dados %>% select(data) %>% filter(data > '2018-03-20' & data < '2018-09-22')
verao_2018 <- dados %>% select(data) %>% filter(data > '2018-09-22' & data < '2019-03-20')</pre>
inverno_2019 <- dados %>% select(data) %>% filter(data > '2019-03-20' & data < '2019-09-22')
verao_2019 <- dados %>% select(data) %>% filter(data > '2019-09-22' & data < '2020-03-20')
inverno_2020 <- dados %>% select(data) %>% filter(data > '2020-03-20' & data < '2020-09-22')
verao_2020 <- dados %>% select(data) %>% filter(data > '2020-09-22' & data < '2021-03-20')
Vetor com os estados mais quentes da amostra
estados_quentes <- c('Alagoas','Bahia','Ceara','Pernambuco','Goias','Rio de Janeiro')
Dataset contendo a contagem de resultados por data a cada período do dia nos estados mais quentes
climao_quente <- dados %>% group_by(res, data, periodo) %>% filter(estado %in% estados_quentes) %>%
  summarise(n = n())
## `summarise()` has grouped output by 'res', 'data'. You can override using the `.groups` argument.
Dataset contendo a contagem de resultados por data a cada período do dia nos estados menos quentes
climao_gelado <- dados %>% group_by(res, data, periodo) %>% filter(!estado %in% estados_quentes) %>%
  summarise(n = n())
## `summarise()` has grouped output by 'res', 'data'. You can override using the `.groups` argument.
Computando medidas da quantidade de resultados a cada estação por ano de cada estado mais quente
medidas_frio_quentes_2014 <- as.tibble(climao_quente %>%
                             filter(data %in% inverno_2014$data) %>%
                             summarise('media' = mean(n),
                                        'mediana' = median(n),
                                        'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_quentes_2014 <- as.tibble(climao_quente %>%
                                 filter(data %in% verao_2014$data) %>%
```

summarise('media' = mean(n),

```
'mediana' = median(n),
                                            'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_quentes_2015 <- as.tibble(climao_quente %>%
                                 filter(data %in% inverno_2015$data) %>%
                                 summarise('media' = mean(n),
                                            'mediana' = median(n),
                                           'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_quentes_2015 <- as.tibble(climao_quente %>%
                                  filter(data %in% verao 2015$data) %>%
                                  summarise('media' = mean(n),
                                            'mediana' = median(n).
                                            'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_quentes_2016 <- as.tibble(climao_quente %>%
                                 filter(data %in% inverno 2016$data) %>%
                                 summarise('media' = mean(n),
                                            'mediana' = median(n),
                                           'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_quentes_2016 <- as.tibble(climao_quente %>%
                                  filter(data %in% verao 2016$data) %>%
                                  summarise('media' = mean(n),
                                            'mediana' = median(n),
                                             'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_quentes_2017 <- as.tibble(climao_quente %>%
                                 filter(data %in% inverno_2017$data) %>%
                                 summarise('media' = mean(n),
                                            'mediana' = median(n),
                                            'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_quentes_2017 <- as.tibble(climao_quente %>%
                                  filter(data %in% verao_2017$data) %>%
                                  summarise('media' = mean(n),
                                            'mediana' = median(n),
                                             'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_quentes_2018 <- as.tibble(climao_quente %>%
                                 filter(data %in% inverno 2018$data) %>%
                                 summarise('media' = mean(n),
                                           'mediana' = median(n),
                                           'desvpad' = sd(n)))
```

```
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_quentes_2018 <- as.tibble(climao_quente %>%
                                  filter(data %in% verao_2018$data) %>%
                                  summarise('media' = mean(n),
                                             'mediana' = median(n),
                                             'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_quentes_2019 <- as.tibble(climao_quente %>%
                                 filter(data %in% inverno_2019$data) %>%
                                 summarise('media' = mean(n),
                                            'mediana' = median(n),
                                            'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_quentes_2019 <- as.tibble(climao_quente %>%
                                  filter(data %in% verao_2019$data) %>%
                                  summarise('media' = mean(n),
                                            'mediana' = median(n),
                                             'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas frio quentes 2020 <- as.tibble(climao quente %>%
                                 filter(data %in% inverno 2020$data) %>%
                                 summarise('media' = mean(n),
                                            'mediana' = median(n),
                                            'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_quentes_2020 <- as.tibble(climao_quente %>%
                                  filter(data %in% verao_2020$data) %>%
                                  summarise('media' = mean(n),
                                             'mediana' = median(n),
                                             'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
Computando medidas da quantidade de resultados a cada estação por ano de cada estado menos quente
medidas_frio_gelado_2014 <- as.tibble(climao_gelado %>%
                                         filter(data %in% inverno_2014$data) %>%
                                         summarise('media' = mean(n),
                                                    'mediana' = median(n),
                                                    'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas calor gelado 2014 <- as.tibble(climao gelado %>%
                                          filter(data %in% verao 2014$data) %>%
                                           summarise('media' = mean(n),
                                                     'mediana' = median(n),
                                                     'desvpad' = sd(n)))
```

`summarise()` has grouped output by 'res'. You can override using the `.groups` argument.

```
medidas_frio_gelado_2015 <- as.tibble(climao_gelado %>%
                                         filter(data %in% inverno_2015$data) %>%
                                         summarise('media' = mean(n),
                                                   'mediana' = median(n),
                                                   'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_gelado_2015 <- as.tibble(climao_gelado %>%
                                          filter(data %in% verao_2015$data) %>%
                                          summarise('media' = mean(n),
                                                     'mediana' = median(n),
                                                     'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas frio gelado 2016 <- as.tibble(climao gelado %>%
                                         filter(data %in% inverno_2016$data) %>%
                                         summarise('media' = mean(n),
                                                   'mediana' = median(n),
                                                   'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas calor gelado 2016 <- as.tibble(climao gelado %>%
                                          filter(data %in% verao_2016$data) %>%
                                          summarise('media' = mean(n),
                                                     'mediana' = median(n),
                                                    'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_gelado_2017 <- as.tibble(climao_gelado %>%
                                         filter(data %in% inverno_2017$data) %>%
                                         summarise('media' = mean(n),
                                                   'mediana' = median(n),
                                                   'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_gelado_2017 <- as.tibble(climao_gelado %>%
                                          filter(data %in% verao_2017$data) %>%
                                          summarise('media' = mean(n),
                                                    'mediana' = median(n),
                                                     'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_gelado_2018 <- as.tibble(climao_gelado %>%
                                         filter(data %in% inverno_2018$data) %>%
                                         summarise('media' = mean(n),
                                                   'mediana' = median(n),
                                                   'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_calor_gelado_2018 <- as.tibble(climao_gelado %>%
                                          filter(data %in% verao_2018$data) %>%
```

```
summarise('media' = mean(n),
                                                     'mediana' = median(n),
                                                     'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_gelado_2019 <- as.tibble(climao_gelado %>%
                                          filter(data %in% inverno_2019$data) %>%
                                          summarise('media' = mean(n),
                                                    'mediana' = median(n),
                                                    'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas calor gelado 2019 <- as.tibble(climao gelado %>%
                                           filter(data %in% verao 2019$data) %>%
                                           summarise('media' = mean(n),
                                                     'mediana' = median(n),
                                                     'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas_frio_gelado_2020 <- as.tibble(climao_gelado %>%
                                          filter(data %in% inverno 2020$data) %>%
                                          summarise('media' = mean(n),
                                                    'mediana' = median(n),
                                                    'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
medidas calor gelado 2020 <- as.tibble(climao gelado %>%
                                           filter(data %in% verao_2020$data) %>%
                                           summarise('media' = mean(n),
                                                     'mediana' = median(n),
                                                     'desvpad' = sd(n)))
## `summarise()` has grouped output by 'res'. You can override using the `.groups` argument.
Medidas da soma de gols em cada estado (desconsiderando qual mais quente) a cada ano por estação do ano
medidas_sg_inverno_2014 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% inverno_2014$data) %>%
                                          summarise('media' = mean(somagols),
                                                    'mediana' = median(somagols),
                                                    'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_verao_2014 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% verao_2014$data) %>%
                                          summarise('media' = mean(somagols),
                                                    'mediana' = median(somagols),
                                                    'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_inverno_2015 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% inverno 2015$data) %>%
                                          summarise('media' = mean(somagols),
```

```
'mediana' = median(somagols),
                                                    'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_verao_2015 <- as.tibble(dados %% group_by(estado, periodo) %>%
                                          filter(data %in% verao_2015$data) %>%
                                         summarise('media' = mean(somagols),
                                                    'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_inverno_2016 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                         filter(data %in% inverno 2016$data) %>%
                                         summarise('media' = mean(somagols),
                                                   'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_verao_2016 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% verao_2016$data) %>%
                                         summarise('media' = mean(somagols),
                                                    'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_inverno_2017 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                         filter(data %in% inverno_2017$data) %>%
                                         summarise('media' = mean(somagols),
                                                   'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_verao_2017 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% verao_2017$data) %>%
                                         summarise('media' = mean(somagols),
                                                    'mediana' = median(somagols),
                                                    'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_inverno_2018 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                         filter(data %in% inverno_2018$data) %>%
                                         summarise('media' = mean(somagols),
                                                   'mediana' = median(somagols),
                                                    'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_verao_2018 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% verao 2018$data) %>%
                                         summarise('media' = mean(somagols),
                                                    'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
```

```
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_inverno_2019 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                         filter(data %in% inverno_2019$data) %>%
                                         summarise('media' = mean(somagols),
                                                   'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_verao_2019 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% verao 2019$data) %>%
                                         summarise('media' = mean(somagols),
                                                   'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_inverno_2020 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                         filter(data %in% inverno_2020$data) %>%
                                         summarise('media' = mean(somagols),
                                                   'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
medidas_sg_verao_2020 <- as.tibble(dados %>% group_by(estado, periodo) %>%
                                          filter(data %in% verao_2020$data) %>%
                                         summarise('media' = mean(somagols),
                                                   'mediana' = median(somagols),
                                                   'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
Trabalhando com a soma dos gols por período do dia
Dataset contendo a soma dos gols por estado e por período
somagols_estado_periodo <- dados %>% group_by(somagols, estado, periodo)
Medidas das soma de gols por período e por estado
medidas_gols_estado_periodo <- as.tibble(somagols_estado_periodo %>% group_by(estado, periodo) %%
                                  summarise('media' = mean(somagols),
                                            'mediana' = median(somagols),
                                            'desvpad' = sd(somagols)))
## `summarise()` has grouped output by 'estado'. You can override using the `.groups` argument.
Medidas da soma de gols por estado
medidas_gols_estado <- as.tibble(somagols_estado_periodo %>% group_by(estado) %>%
                                  summarise('media' = mean(somagols),
                                            'mediana' = median(somagols),
```

Trabalhando com os gols da casa quando ele ganha

Calculando medidas dos gols da casa e visitante, por ano

'desvpad' = sd(somagols)))

```
medidas_gols_ano <- as.tibble(dados %>% group_by(temporada)%>%
                                             summarise('media casa' = mean(golcasa),
                                                           'mediana casa' = median(golcasa),
                                                           'desvpad casa' = sd(golcasa),
                                                           'media visitante' = mean(golvisitante),
                                                           'mediana visitante' = median(golvisitante),
                                                           'desvpad visitante' = sd(golvisitante)))
Gerando frequências
Obtendo a frequência de jogos por período do dia
dados %>% group_by(periodo) %>% summarise(n = n()) %>% mutate(freq = round((n / sum(n))*100,2))
## # A tibble: 2 x 3
##
      periodo
                      n freq
##
      <chr>>
                 <int> <dbl>
## 1 Noite
                  1953 57.1
## 2 Tarde
                  1467 42.9
Obtendo a frequência de jogos por estado
dados %>% group_by(estado) %>% summarise(n = n()) %>% mutate(freq = round((n / sum(n))*100,2))
## # A tibble: 11 x 3
##
        estado
                                     n freq
##
        <chr>
                                <int> <dbl>
## 1 Alagoas
                                   19 0.56
## 2 Bahia
                                  228 6.67
## 3 Ceara
                                   95 2.78
## 4 Goias
                                  152 4.44
## 5 Minas Gerais
                                  361 10.6
## 6 Parana
                                  304 8.89
## 7 Pernambuco
                                  190 5.56
## 8 Rio de Janeiro
                                  627 18.3
## 9 Rio Grande do Sul
                                  323 9.44
## 10 Santa Catarina
                                  304 8.89
## 11 Sao Paulo
                                  817 23.9
Obtendo a frequência de jogos por temporada por período
dados %>% group_by(periodo, temporada) %>% summarise(n = n()) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n))*100, freq = n())) %>% mutate(freq = round((n / sum(n)))*100, freq = n())
## `summarise()` has grouped output by 'periodo'. You can override using the `.groups` argument.
## # A tibble: 18 x 4
## # Groups:
                   periodo [2]
##
       periodo temporada
                                     n freq
##
        <chr>
                        <dbl> <int> <dbl>
##
     1 Noite
                         2012
                                  236 12.1
## 2 Noite
                         2013
                                  231 11.8
```

3 Noite

4 Noite

5 Noite

6 Noite

7 Noite

8 Noite

2014

2015

2016

2017

2018

2019

225 11.5

191 9.78

183 9.37

192 9.83

200 10.2

231 11.8

```
## 9 Noite
                  2020
                          264 13.5
                  2012
## 10 Tarde
                        144 9.82
## 11 Tarde
                  2013
                        149 10.2
## 12 Tarde
                  2014
                         155 10.6
## 13 Tarde
                   2015
                         189 12.9
## 14 Tarde
                  2016
                         197 13.4
## 15 Tarde
                  2017
                         188 12.8
## 16 Tarde
                   2018
                          180 12.3
## 17 Tarde
                   2019
                          149 10.2
## 18 Tarde
                   2020
                          116 7.91
Obtendo a frequência de jogos por temporada por estado
dados %>% group_by(periodo, estado) %>% summarise(n = n()) %>% mutate(freq = round((n / sum(n))*100,2))
## `summarise()` has grouped output by 'periodo'. You can override using the `.groups` argument.
## # A tibble: 22 x 4
## # Groups:
              periodo [2]
                                    n freq
##
     periodo estado
##
      <chr>
                                <int> <dbl>
              <chr>>
##
  1 Noite
                                  14 0.72
             Alagoas
## 2 Noite
             Bahia
                                  122 6.25
## 3 Noite Ceara
                                  68 3.48
## 4 Noite Goias
                                  100 5.12
## 5 Noite Minas Gerais
                                  206 10.6
## 6 Noite Parana
                                  159 8.14
## 7 Noite Pernambuco
                                  118 6.04
## 8 Noite Rio de Janeiro
                                  368 18.8
## 9 Noite
             Rio Grande do Sul
                                  166 8.5
## 10 Noite
             Santa Catarina
                                  174 8.91
## # ... with 12 more rows
Obtendo a frequência de gols totais por estado
dados %>% group_by(somagols) %>% summarise(n = n()) %>% mutate(freq = round((n / sum(n))*100,2))
## # A tibble: 10 x 3
##
      somagols
                  n freq
##
         <dbl> <int> <dbl>
                 308 9.01
## 1
            0
## 2
                 782 22.9
            1
##
  3
            2
                868 25.4
##
  4
            3
                748 21.9
## 5
            4
                 406 11.9
## 6
            5
                 183 5.35
## 7
                 78 2.28
            6
##
  8
            7
                  32 0.94
                  13 0.38
## 9
            8
            9
                  2 0.06
Obtendo a frequência de gols totais por estado
dados %>% group_by(somagols, estado) %>% summarise(n = n()) %>% mutate(freq = round((n / sum(n))*100,2)
## `summarise()` has grouped output by 'somagols'. You can override using the `.groups` argument.
## # A tibble: 92 x 4
## # Groups: somagols [10]
```

```
##
     somagols estado
                                 n freq
##
        <dbl> <chr>
                             <int> <dbl>
          O Alagoas
## 1
                                2 0.65
                                22 7.14
## 2
           0 Bahia
## 3
           0 Ceara
                                13 4.22
## 4
           O Goias
                                12 3.9
           O Minas Gerais
                                31 10.1
           0 Parana
                                27 8.77
## 6
## 7
           O Pernambuco
                                17 5.52
           O Rio de Janeiro
## 8
                                46 14.9
           O Rio Grande do Sul 31 10.1
## 9
           O Santa Catarina
                                38 12.3
## 10
## # ... with 82 more rows
```

Plots

Plot dos resultados ao longo dos anos

Distribuição da quantidade dos resultados a cada temporada

```
dist_res_2020 <- resultado_ano %>%
   group_by(temporada) %>%
   ggplot(aes(temporada, n, colour = res)) + geom_point() +
   scale_color_viridis(discrete = TRUE) +
   ggtitle('Quantidade de vitórias do mandante por temporada') +
   xlab('Temporada') + ylab('Quantidade') + labs(col = 'Resultado') +
   ggeasy::easy_center_title()
```

Distribuição da quantidade de vitórias da casa por temporada

```
dist_c_casa_ano <- resultado_ano_casa %% filter(res == 'C') %>%
  mutate(casa = fct_reorder(casa, n)) %>%
  group_by(casa) %>%
  ggplot(aes(temporada, casa, colour = n)) + geom_point() +
  scale_color_viridis(discrete = FALSE) +
  ggtitle('Quantidade de vitórias da casa por ano') +
  xlab('Temporada') + ylab('Time') + labs(col = 'Quantidade') +
  ggeasy::easy_center_title()
```

Distribuição da quantidade de derrotas da casa por temporada

```
dist_v_casa_ano <- resultado_ano_casa %>% filter(res == 'V') %>%
  mutate(casa = fct_reorder(casa, n)) %>%
  group_by(casa) %>%
  ggplot(aes(temporada, casa, colour = n)) + geom_point() +
  scale_color_viridis(discrete = FALSE) +
  ggtitle('Quantidade de derrotas da casa por ano') +
  xlab('Temporada') + ylab('Time') + labs(col = 'Quantidade') +
  ggeasy::easy_center_title()
```

Unindo a distribuição das vitórias e derrotas do time mandante

Distribuição da quantidade de resultados do time mandante

Quantidade de vitórias da casa por ano

Quantidade de derrotas da casa por ano

Plot de gols

Distribuição da média de gols por estado e período

```
dist_med_gols_periodo <- medidas_gols_estado_periodo %>%
  mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols a tarde por estado') +
  xlab('Média de gols') + ylab('Estado') +
  ggeasy::easy_center_title()
```

Distribuição da média de gols por estado

```
dist_med_gols_estado <- medidas_gols_estado %>%
  mutate(estado = fct_reorder(estado, media)) %>%
  ggplot(aes(media, estado, colour = media)) + geom_point() +
  scale_color_viridis(discrete = FALSE) +
  ggtitle('Media de gols da casa por estado') +
  xlab('Ano') + ylab('Media de gols') +
  theme(legend.position="none")
  ggeasy::easy_center_title()
```

```
## List of 1
## $ plot.title:List of 11
## ..$ family : NULL
```

```
##
    ..$ face
                    : NULL
##
    ..$ colour
                    : NULL
##
    ..$ size
                    : NULL
##
    ..$ hjust
                    : num 0.5
##
    ..$ vjust
                     : NULL
##
    ..$ angle
                    : NULL
    ..$ lineheight : NULL
                     : NULL
##
    ..$ margin
                     : NULL
##
    ..$ debug
##
    ..$ inherit.blank: logi FALSE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi FALSE
## - attr(*, "validate")= logi TRUE
```

Plots medias gol por estado e média gol por temporada

Distribuição dos gols do mandante por ano

```
medias_gols_casa_ano <- medidas_gols_ano %>%
    ggplot(aes(temporada, `media casa`, colour = `media casa`)) + geom_point() +
    scale_color_viridis(discrete = FALSE) +
    ggtitle('Media de gols da casa por ano') +
    xlab('Ano') + ylab('Media de gols') +
    theme(legend.position="none")
    ggeasy::easy_center_title()
```

```
## List of 1
## $ plot.title:List of 11
    ..$ family
##
                   : NULL
##
    ..$ face
                     : NULL
##
    ..$ colour
                    : NULL
                    : NULL
##
    ..$ size
##
                    : num 0.5
    ..$ hjust
##
    ..$ vjust
                     : NULL
##
    ..$ angle
                    : NULL
    ..$ lineheight : NULL
##
##
    ..$ margin
                     : NULL
##
    ..$ debug
                     : NULL
##
    ..$ inherit.blank: logi FALSE
    ..- attr(*, "class")= chr [1:2] "element_text" "element"
## - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi FALSE
## - attr(*, "validate")= logi TRUE
```

Distribuição dos gols do visitante por ano

```
medias_gols_visitante_ano <- medidas_gols_ano %>%
   ggplot(aes(temporada, `media visitante`, colour = `media visitante`)) + geom_point() +
   scale_color_viridis(discrete = FALSE) +
   ggtitle('Media de gols do visitante por ano') +
   xlab('Ano') + ylab('Media de gols') +
   theme(legend.position="none")
   ggeasy::easy_center_title()
```

List of 1

```
##
    $ plot.title:List of 11
##
     ..$ family
                       : NULL
     ..$ face
                       : NULL
##
                       : NULL
##
     ..$ colour
##
     ..$ size
                       : NULL
##
     ..$ hjust
                       : num 0.5
##
     ..$ vjust
                       : NULL
##
     ..$ angle
                       : NULL
                       : NULL
##
     ..$ lineheight
##
                       : NULL
     ..$ margin
##
     ..$ debug
                      : NULL
##
     ..$ inherit.blank: logi FALSE
     ..- attr(*, "class")= chr [1:2] "element_text" "element"
   - attr(*, "class")= chr [1:2] "theme" "gg"
   - attr(*, "complete")= logi FALSE
   - attr(*, "validate")= logi TRUE
```

Unindo os plots da média de gols da casa e do visitante

Distribuição da média de gols da casa e do visitante por temporada Media de gols da casa por ano

Media de gols do visitante por ano

Distribuição da soma de gols por estado

```
dist_sg_al <- dados %>% filter(estado == 'Alagoas') %>%
   ggplot(aes(somagols, y = stat(density), fill = periodo)) +
   geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0, 4) +
   scale_fill_viridis(discrete = TRUE) +
```

```
ggtitle('Distribuição da soma dos gols por período em Alagoas') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_ba <- dados %>% filter(estado == 'Bahia') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0,8) +
  scale fill viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período na Bahia') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_ce <- dados %>% filter(estado == 'Ceara') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0,5) +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período no Ceara') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_go <- dados %>% filter(estado == 'Goias') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0,8) +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período em Goias') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_mg <- dados %>% filter(estado == 'Minas Gerais') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0,8) +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período em Minas Gerais') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_pr <- dados %>% filter(estado == 'Parana') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0, 8) +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período no Parana') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_pb <- dados %>% filter(estado == 'Pernambuco') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0, 8) +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período no Pernambuco') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_rs <- dados %>% filter(estado == 'Rio Grande do Sul') %>%
```

```
ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0,8) +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período no Rio de Janeiro') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_sc <- dados %>% filter(estado == 'Santa Catarina') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom_histogram(color = 'black', breaks = seq(0,10, 1)) +
  scale_x_continuous(breaks = seq(0, 9, 1)) +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição da soma dos gols por período em Santa Catarina') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
dist_sg_sp <- dados %>% filter(estado == 'Sao Paulo') %>%
  ggplot(aes(somagols, y = stat(density), fill = periodo)) +
  geom histogram(color = 'black', breaks = seq(0,10, 1)) +
  scale_fill_viridis(discrete = TRUE) + xlim(0,8) +
  ggtitle('Distribuição da soma dos gols por período em São Paulo') +
  xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +
  ggeasy::easy_center_title()
Unindo os plots da soma de gols por estado
dist_sg1 <- grid.arrange(arrangeGrob(dist_sg_al, dist_sg_ba, dist_sg_ce,</pre>
                         dist_sg_go,dist_sg_mg, dist_sg_pb),
                         top = 'Distribuição da quantidade total de gols por estado e período (1)')
## Warning: Removed 12 rows containing missing values (geom_bar).
## Warning: Removed 4 rows containing missing values (geom_bar).
## Warning: Removed 10 rows containing missing values (geom_bar).
## Warning: Removed 4 rows containing missing values (geom_bar).
```

ggplot(aes(somagols, y = stat(density), fill = periodo)) +

dist sg rj <- dados %>% filter(estado == 'Rio de Janeiro') %>%

Warning: Removed 4 rows containing missing values (geom_bar).

Warning: Removed 4 rows containing missing values (geom_bar).

scale_fill_viridis(discrete = TRUE) +

ggeasy::easy_center_title()

geom_histogram(color = 'black', breaks = seq(0,10, 1)) + xlim(0, 8) +

ggtitle('Distribuição da soma dos gols por período no Rio Grande do Sul') +
xlab('Soma dos gols por jogos') + ylab('Densidade') + labs(fill = 'Período') +

Distribuição da quantidade total de gols por estado e período (1)

o da soma dos gols por período Deistr/Islaigão sola soma dos gols por período na Bal

;ão da soma dos gols por períodoistoilo istailo da soma dos gols por período em Go

da soma dos gols por período istril Minção Gerstisma dos gols por período no Pernan

- ## Warning: Removed 4 rows containing missing values (geom_bar).
- ## Warning: Removed 4 rows containing missing values (geom bar).
- ## Warning: Removed 1 rows containing non-finite values (stat_bin).
- ## Warning: Removed 4 rows containing missing values (geom_bar).
- ## Warning: Removed 4 rows containing missing values (geom_bar).

Distribuição da quantidade total de gols por estado e período (2)

ão da soma dos gols por pe**Diextioibruiç Rarda a**soma dos gols por período no Rio de 🕻

soma dos gols por período Driet Ribio i Çarandhe sobom Saudos gols por período em Santa C

da soma dos gols por período em São Paulo

Plots dos resultados por estação do ano

Distribuição da quantidade de resultados nos estados "não quentes"

```
dist_frio_gelados2012 <- climao_gelado %>%
  filter(data %in% inverno_2012$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2012') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_gelados2012 <- climao_gelado %>%
  filter(data %in% verao_2012$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2012') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill ='Resultado') +
  ggeasy::easy_center_title()
dist_frio_gelados2013 <- climao_gelado %>%
  filter(data %in% inverno_2013$data) %>%
  ggplot(aes(res, fill = res)) +
```

```
geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2013') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_gelados2013 <- climao_gelado %>%
  filter(data %in% verao 2013$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2013') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_gelados2014 <- climao_gelado %>%
  filter(data %in% inverno_2014$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2014') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist calor gelados2014 <- climao gelado %>%
  filter(data %in% verao 2014$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2014') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_gelados2015 <- climao_gelado %>%
  filter(data %in% inverno_2015$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2015') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_gelados2015 <- climao_gelado %>%
  filter(data %in% verao_2015$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2015') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
```

```
dist_frio_gelados2016 <- climao_gelado %>%
  filter(data %in% inverno_2016$data) %>%
  ggplot(aes(res, fill = res)) +
  geom bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2016') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy center title()
dist_calor_gelados2016 <- climao_gelado %>%
  filter(data %in% verao_2016$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2016') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill ='Resultado') +
  ggeasy::easy_center_title()
dist_frio_gelados2017 <- climao_gelado %>%
  filter(data %in% inverno 2017$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2017') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_gelados2017 <- climao_gelado %>%
  filter(data %in% verao_2017$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2017') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_gelados2018 <- climao_gelado %>%
  filter(data %in% inverno 2018$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2018') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_gelados2018 <- climao_gelado %>%
  filter(data %in% verao_2018$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2018') +
```

```
xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_gelados2019 <- climao_gelado %>%
  filter(data %in% inverno_2019$data) %>%
  ggplot(aes(res, fill = res)) +
  geom bar(alpha = .6,color = 'black') +
  scale fill viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2019') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_gelados2019 <- climao_gelado %>%
  filter(data %in% verao_2019$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6, color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2019') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_gelados2020 <- climao_gelado %>%
  filter(data %in% inverno 2020$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no inverno de 2020') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill ='Resultado') +
  ggeasy::easy_center_title()
dist_calor_gelados2020 <- climao_gelado %>%
  filter(data %in% verao_2020$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados frios no verão de 2020') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
```

Distribuição da quantidade de resultados nos estados mais quentes

```
dist_frio_quentes2012 <- climao_quente %>%
  filter(data %in% inverno_2012$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2012') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill ='Resultado') +
  ggeasy::easy_center_title()

dist_calor_quentes2012 <- climao_quente %>%
  filter(data %in% verao_2012$data) %>%
```

```
ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2012') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_quentes2013 <- climao_quente %>%
  filter(data %in% inverno 2013$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2013') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_quentes2013 <- climao_quente %>%
  filter(data %in% verao_2013$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2013') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy center title()
dist_frio_quentes2014 <- climao_quente %>%
  filter(data %in% inverno_2014$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2014') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_quentes2014 <- climao_quente %>%
  filter(data %in% verao_2014$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2014') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_quentes2015 <- climao_quente %>%
  filter(data %in% inverno_2015$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2015') +
```

```
xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_quentes2015 <- climao_quente %>%
  filter(data %in% verao_2015$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale fill viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2015') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_quentes2016 <- climao_quente %>%
  filter(data %in% inverno_2016$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2016') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_quentes2016 <- climao_quente %>%
  filter(data %in% verao_2016$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale fill viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2016') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_quentes2017 <- climao_quente %>%
  filter(data %in% inverno_2017$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2017') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_quentes2017 <- climao_quente %>%
  filter(data %in% verao 2017$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2017') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_quentes2018 <- climao_quente %>%
  filter(data %in% inverno_2018$data) %>%
```

```
ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2018') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist calor quentes2018 <- climao quente %>%
  filter(data %in% verao_2018$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2018') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_frio_quentes2019 <- climao_quente %>%
  filter(data %in% inverno_2019$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2019') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy center title()
dist_calor_quentes2019 <- climao_quente %>%
  filter(data %in% verao_2019$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2019') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill ='Resultado') +
  ggeasy::easy_center_title()
dist_frio_quentes2020 <- climao_quente %>%
  filter(data %in% inverno_2020$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no inverno de 2020') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
dist_calor_quentes2020 <- climao_quente %>%
  filter(data %in% verao_2020$data) %>%
  ggplot(aes(res, fill = res)) +
  geom_bar(alpha = .6,color = 'black') +
  scale_fill_viridis(discrete = TRUE) +
  ggtitle('Distribuição de resultado nos estados quentes no verão de 2020') +
  xlab('Quantidade de resultados') + ylab('Ocorrências') + labs(fill = 'Resultado') +
  ggeasy::easy_center_title()
```

Unindo os plots para comparação de resultados ano-ano clima-clima

Distribuição dos resultados em 2012

e resultado nos estados fibiostrifouição de estados quentes no verão

resultado nos estados filiostritouição rde des 2014 do nos estados quentes no inverno

e resultado nos estados fibiostrifouição de estados quentes no verão

resultado nos estados filiostritouição rde des 20146 nos estados quentes no inverno

e resultado nos estados fibiostrifouição code escultado nos estados quentes no verão

resultado nos estados filiostritouição rde des 2014 do nos estados quentes no inverno

e resultado nos estados fribistribuição de resultado nos estados quentes no verão

resultado nos estados filiostritouição rde des 20146 nos estados quentes no inverno

e resultado nos estados fribistribuição de resultado nos estados quentes no verão

resultado nos estados filiostritouiçãerde des 20146 nos estados quentes no inverno

e resultado nos estados filiostrifouição de estados quentes no verão

resultado nos estados filiostritouição rde des 201a do nos estados quentes no inverno

e resultado nos estados filiostrifouição colder escultado nos estados quentes no verão

resultado nos estados filiostritouição rde des 20146 nos estados quentes no inverno

e resultado nos estados Distriboição adede 20112 do nos estados quentes no inverno

resultado nos estados filiostritouição rde des 20140 nos estados quentes no inverno

e resultado nos estados filicistritouiçãã ade escultado nos estados quentes no verão

resultado nos estados f**Diostritouiçãerde des20220**o nos estados quentes no inverno

Plot da soma de gols por estação

```
somagols_inverno2014 <- medidas_sg_inverno_2014 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2014') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_verao2014 <- medidas_sg_verao_2014 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2014') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols inverno2015 <- medidas sg inverno 2015 %>% mutate(estado = fct reorder(estado, media)) %>%
  group by (estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2015') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_verao2015 <- medidas_sg_verao_2015 %>% mutate(estado = fct_reorder(estado, media)) %>%
```

```
group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2015') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols inverno2016 <- medidas sg inverno 2016 %>% mutate(estado = fct reorder(estado, media)) %>%
  group by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2016') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_verao2016 <- medidas_sg_verao_2016 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2016') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols inverno2017 <- medidas sg inverno 2017 %>% mutate(estado = fct reorder(estado, media)) %>%
  group by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2017') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_verao2017 <- medidas_sg_verao_2017 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2017') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_inverno2018 <- medidas_sg_inverno_2018 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2018') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_verao2018 <- medidas_sg_verao_2018 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
```

```
ggtitle('Média de gols no inverno por período por estado em 2018') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_inverno2019 <- medidas_sg_inverno_2019 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom point() +
  scale color viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2014') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_verao2019 <- medidas_sg_verao_2019 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2019') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_inverno2020 <- medidas_sg_inverno_2020 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom point() +
  scale color viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2020') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
somagols_verao2020 <- medidas_sg_verao_2020 %>% mutate(estado = fct_reorder(estado, media)) %>%
  group_by(estado) %>%
  ggplot(aes(media, estado, colour = periodo)) + geom_point() +
  scale_color_viridis(discrete = TRUE) +
  ggtitle('Média de gols no inverno por período por estado em 2020') +
  xlab('Média de gols') + ylab('Estado') + labs(col = 'Período') +
  ggeasy::easy_center_title()
gols0 <- grid.arrange(arrangeGrob(somagols_verao2014, somagols_inverno2014,</pre>
                         somagols verao2015, somagols inverno2015),
                         top = 'Distribuição da soma dos gols por estação (1)')
```

Distribuição da soma dos gols por estação (1)

de gols no inverno por período po Mesdad de gro 2014 inverno por período por estad

de gols no inverno por período pol/Mesdadde gro 2015 inverno por período por estad

Distribuição da soma dos gols por estação (2)

de gols no inverno por período po Mesdad de gro 2016 inverno por período por estad

de gols no inverno por período po Mésdad de gols 017 inverno por período por estad

Distribuição da soma dos gols por estação (3)

de gols no inverno por período pol/Messlande gro 2016 inverno por período por estad

de gols no inverno por período pol/Messlandeegro 2019 inverno por período por estad

Distribuição da soma dos gols por estação (4) Média de gols no inverno por período por estado em 2020

Média de gols no inverno por período por estado em 2020

