Test of Tehama Wireless TW100

To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TEHA01-U1 Rev A

Test of Tehama Wireless TW100

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TEHA01-U1 Rev A

This report supersedes: None

Manufacturer: Tehama Wireless

423 Tehama Street

San Francisco

California 94103, USA

Product Function: Remote Sensor

Copy No: pdf Issue Date: 11th January 2011

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

TESTING CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 3 of 92

This page has been left intentionally blank

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 4 of 92

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	5
	RECOGNITION	
	PRODUCT CERTIFICATION	
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
	3.1. Technical Details	
	3.2. Scope of Test Program	
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports	15
	3.6. Test Configurations	
	3.7. Equipment Modifications	
	3.8. Deviations from the Test Standard	
	3.9. Subcontracted Testing or Third Party Data	
4.	TEST SUMMARY	
5.	TEST RESULTS	20
	5.1. Device Characteristics	20
	5.1.1. 20 dB Bandwidth	
	5.1.2. Transmitter Channels - Channel Spacing	
	5.1.3. Transmitter Channels	
	5.1.4. Output Power	
	5.1.5. Maximum Permissible Exposure	
	5.1.6. Conducted Spurious Emissions Transmitter	
	5.1.7. Conducted Spurious Emissions Stand-By 5.1.8. Radiated Emissions - Transmitter and Receiver	
	5.1.9. Radiated Emissions - Transmitter and Receiver	
	5.1.10. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
6.	PHOTOGRAPHS	
	6.1. General Measurement Test Set-Up	
	6.2. Radiated Emissions >1 GHz	
	6.3. Radiated Emissions <1 GHz	
7	TEST FOUIPMENT DETAILS	0.4

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 5 of 92

ACCREDITATION, LISTINGS & RECOGNITION

MiCOM Labs, Inc. an accredited laboratory complies with the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 14th day of April 2010.

President & CEO
For the Accreditation Council
Certificate Number 2381.01
Valid to November 30, 2011

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 6 of 92

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	VCCI	-	-	No. 2959
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	1100450
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 7 of 92

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf

The American Association for Laboratory Accreditation

World Class Accreditation

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996

General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), and IC (Canada) requirements.

Presented this 24th day of June 2010.

President & CEO For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2011

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

<u>United States of America – Telecommunication Certification Body</u>

TCB Identifier - US0159

Industry Canada – Certification Body

CAB Identifier - US0159

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 8 of 92

DOCUMENT HISTORY

	Document History						
Revision	Date	Comments					
Draft							
Rev A	11 th January 2011	Initial release.					

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 9 of 92

1. TEST RESULT CERTIFICATE

Manufacturer: Tehama Wireless Tested By: MiCOM Labs, Inc.

423 Tehama Street 440 Boulder Court

San Francisco Suite 200
California 94103, USA Pleasanton

California, 94566, USA

EUT: Wireless Auto Metering Telephone: +1 925 462 0304

(WAM) System

Model: TW100 Fax: +1 925 462 0306

S/N: 81000102

Test Date(s): 10th - 15th May 2010 Website: www.micomlabs.com

STANDARD(S) TEST RESULTS

FCC 47 CFR Part15.247 & IC RSS-210 EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TESTING CERTIFICATE #2381.01

Graeme/Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 10 of 92

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2007	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	2008 2006+A1:2 007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA P101	9 th June 2010	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 11 of 92

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Tehama Wireless TW100 to FCC Part
	15.247 and Industry Canada RSS-210 regulations
Applicant:	As Manufacturer
Manufacturer:	Tehama Wireless
	423 Tehama Street
	San Francisco
	California 94103, USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	TEHA01-U1 Rev A
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Date EUT received:	10 th May 2010
Dates of test (from - to):	10th - 15th May 2010
No of Units Tested:	Two (2):
	1 Unit – FCC Test Code
	1 Unit – With Hopping enabled
Type of Equipment:	915 MHz RFID Reader
Manufacturers Trade Name:	Tehama Wireless
Model:	TW100
Location for use:	
Declared Frequency Range(s):	902 - 928 MHz
Type of Modulation:	FSK
Declared Nominal Output Power:	11 dBm (+2 dB /- 2dB)
EUT Modes of Operation:	FHSS
Transmit/Receive Operation:	Transceiver, Simplex
Rated Input Voltage and Current:	3 VDC (Battery Powered)
Operating Temperature Range:	-20 - +50 C
Microprocessor(s) Model:	Atmel AVR Micro (8MHz internal LC oscillator)
Clock/Oscillator(s):	8 MHz, 2 MHz, 12.8 MHz, 32.768 kHz
Frequency Stability:	±20ppm
EUT Dimensions:	1.8" x 3.2" x 0.8"
EUT Weight :	3.5 oz
Primary function of equipment:	Remote Sensor

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 12 of 92

3.2. Scope of Test Program

The scope of the test program was to test the Tehama Wireless TW100 in the frequency ranges 902 - 928 MHz against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications for radiated and conducted emissions for intentional radiators.

TW100 PCB Top

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 13 of 92

TW100 PCB Underside\

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 14 of 92

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	TW100 with FCC test code	Tehama Wireless	TW100	81000102
Support	Laboratory DC Power Supply	Hewlett Packard	6274B	2713A-09023
Support	Dell Inspiron 4150 Laptop – Hyperterminal control over EUT (FCC test code)	Dell	PP01L	CN-04P449-48643- 2CN-9629 Rev Ao2
Support	USB to serial converter	Tehama Wireless	N/A	N/A

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 15 of 92

3.4. Antenna Details

Integral PCB Whip Antenna: Antenna gain = 2.15 dBi

3.5. Cabling and I/O Ports

Number and type of I/O ports

- RF Port (915 MHz)
- Battery Terminals (2 x AA type)
- Serial Port (3 pin) Local Maintenance Terminal

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 16 of 92

3.6. Test Configurations

EUT was set to 100% duty cycle by FCC Test Code for testing purposes.

Frequency Bands:

Start Freq. (MHz)	Stop Freq. (MHz)	Rated Output Power (Watts)	Frequency Tolerence (p.p.m.)	20dB BW (KHz)	Emission Designator	Microprocessor
903	926	0.013	20	304K	304KF1D	ATMega 644
903	926	0.014	20	133K	133KF1D	ATMega 644
903	913.325	0.014	20	133K	133KF1D	ATMega 644
914.9	926	0.014	20	133K	133KF1D	ATMega 644

Operating Channel	Frequencies (MHz)	Data Rate	Deviation	Channel Spacing
0	903.0	25 Kbits/S	33 kHz	350 kHz
31	914.9	25 Kbits/S	33 kHz	350 kHz
59	926.0	25 Kbits/S	33 kHz	350 kHz
0	903.0	100 Kbits/S	100 kHz	350 kHz
31	914.9	100 Kbits/S	100 kHz	350 kHz
59	926.0	100 Kbits/S	100 kHz	350 kHz
0	903.0	25 Kbits/S	33 kHz	175 kHz
31	908.425	25 Kbits/S	33 kHz	175 kHz
59	913.325	25 Kbits/S	33 kHz	175 kHz
0	914.775	25 Kbits/S	33 kHz	175 kHz
31	921.1	25 Kbits/S	33 kHz	175 kHz
59	926.0	25 Kbits/S	33 kHz	175 kHz

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 17 of 92

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

The following tests were performed by a MiCOM Labs approved test facility;-

1. NONE

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 18 of 92

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(1) A8.1	20 dB BW	20 dB BW	Conducted	Complies	5.1.1
15.247(a)(1) A8.1	Transmitter Channels	Channel Spacing	Conducted	Complies	5.1.2
15.247(a)(1) A8.1	Transmitter Channels	Number of Channels	Conducted	Complies	5.1.3.1
		Channel Occupancy	Conducted	Complies	5.1.3.2
15.247(b)(2) A8.4	Output Power	Transmit Power	Conducted	Complies	5.1.4
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.5
15.247(d) A8.5	Conducted Spurious Emissions	Band Edge	Conducted	Complies	5.1.6
		Spurious Emissions Transmitter	Conducted	Complies	
§7.2.3		(1 to 10 GHz) Standby	Conducted	Complies	5.1.7

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 19 of 92

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 15.209 A8.5 2.2 2.6 4.9	Radiated Emissions above 1 GHz	Transmitter Peak Emissions Radiated Spurious Emissions	Radiated	Complies	5.1.8.1 5.1.8.2
4.10		Receiver	Radiated	Complies	5.1.8.3
15.247(d) 15.205 15.209 A8.5 2.2 2.6	Radiated Emissions - Digital Emissions		Radiated	Complies	5.1.9
15.207 7.2.2	Conducted	AC Wireline Conducted Emissions	Conducted	N/A	5.1.10

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 20 of 92

5. TEST RESULTS

5.1. Device Characteristics

5.1.1. 20 dB Bandwidth

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The 20 dB bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for 20 dB bandwidth test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 21 of 92

Test Results for 20 dB Bandwidth

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Testing was performed on all data rates available on the EUT.

TABLE OF RESULTS: 33kHz Deviation;

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	Specification (kHz)
0	903.00	126.2525	
31	914.90	132.2645	<500
59	926.00	126.5030	

TABLE OF RESULTS: 100kHz Deviation;

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	Specification (kHz)
0	903.00	303.6072	
31	914.90	302.1042	<500
59	926.00	303.6072	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 22 of 92

5.1.1.1. 33kHz Deviation Test Results:

CH 0 903.00 MHz 20 dB Bandwidth

Date: 11.MAY.2010 18:23:56

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 23 of 92

CH 31 914.90 MHz 20 dB Bandwidth

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 24 of 92

CH 59 926.00 MHz 20 dB Bandwidth

Date: 11.MAY.2010 18:58:19

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 25 of 92

5.1.1.2. 100kHz Deviation Test Results:

CH 0 903.00 MHz 20 dB Bandwidth

Date: 11.MAY.2010 18:13:36

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 26 of 92

CH 31 914.90 MHz 20 dB Bandwidth

Date: 11.MAY.2010 18:38:31

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 27 of 92

CH 59 926.00 MHz 20 dB Bandwidth

Date: 11.MAY.2010 18:42:59

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 28 of 92

Specification

Limits

FCC §15.247 (a)(1) Industry Canada RSS-210 §8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Measurement Uncertainty for Spectrum Measurement

1110a0a10111011t a11001ta111ty ===:0.1 aB	Measurement uncertainty	±2.81 dB
---	-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 29 of 92

5.1.2. <u>Transmitter Channels - Channel Spacing</u>

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §8.1(2)

Test Procedure

The channel spacing is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for Channel Spacing Test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 30 of 92

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel(s)	Channel Spacing (KHz)	Specification
36-37 (33kHz Dev.)	175.51	Greater than maximum 20 dB Bandwidth
36-37 (33kHz Dev.)	350.2004	Greater than maximum 20 dB Bandwidth
36-37 (100kHz Dev.)	351.7034	Greater than maximum 20 dB Bandwidth

Maximum 20 dB bandwidth = 126.50 kHz (33kHz)

Maximum 20 dB bandwidth = 302.6072 kHz (100kHz)

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 31 of 92

Channel Spacing for CH 36 - CH 37; 30 kHz Deviation; 175kHz Channel Separation

Date: 1.JAN.1997 00:38:32

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 32 of 92

Channel Spacing for CH 36 - CH 37; 30 kHz Deviation; 350kHz Channel Separation

Date: 11.MAY.2010 19:09:03

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 33 of 92

Channel Spacing for CH 36 - CH 37; 100 kHz Deviation; 350kHz Channel Separation

Date: 11.MAY.2010 19:14:15

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 34 of 92

Specification for Channel Spacing

Limits

FCC §15.247 (a)(1)

Industry Canada RSS-210 §A8.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm

Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 35 of 92

5.1.3. Transmitter Channels

5.1.3.1. Number of Channels

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Test set up to measure the number of channels and channel occupancy

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 36 of 92

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Number of Channels	Specification
60	Minimum of 50 hopping channels

NUMBER OF TRANSMISSION CHANNELS

Date: 12.MAY.2010 10:33:44

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 37 of 92

5.1.3.2. Channel Occupancy

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Channel Dwell Time

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Channel Dwell Time (single channel) (mSecs)	
31	914.9	253.3066	

Note: Device test code was set-up to provide the maximum dwell time supported by the EUT hardware. This mode was chosen since EUT only transmits on each channel a maximum of one (1) time during each 10s or 20s period specified in FCC Part 15.247(a)(1)(i). Maximum dwell times will vary by data rate and channel spacing, but all are within compliance based on hardware limitation of the device.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 38 of 92

Channel Dwell Time Ch 39 914.90 MHz

Date: 15.MAY.2010 01:00:47

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 39 of 92

Channel Occupancy

TABLE OF RESULTS

Channel #	Center Frequency (MHz) Channel Occupancy within 10 Second Period (mSeconds)	
39	919.0	253.3066

Note: Channel repeats after 60.27 seconds

Channel Occupancy CH39 919.0 MHz

Date: 15.MAY.2010 01:22:38

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 40 of 92

Specification for Number of Channels and Channel Occupancy

Limits

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

Traceability

Method	Test Equipment Used	
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,	
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 41 of 92

5.1.4. Output Power

FCC, Part 15 Subpart C §15.247(b)(2) Industry Canada RSS-210 §A8.4

Test Procedure

The transmitter terminal of EUT was set for CW (continuous wave) operation and connected to the input of the power meter which was calibrated to measure power. The value of measured power including antenna cable loss was reported.

Test Measurement Set up

Measurement set up for Transmitter Output Power

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 42 of 92

Measurement Results for Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS: 33 kHz Deviation

Channel #	Center Frequency (MHz)	Power (dBm)
0	903.00	+10.47
31	914.90	+11.03
59	926.00	+11.22

TABLE OF RESULTS: 100 kHz Deviation

Channel #	Center Frequency (MHz)	Power (dBm)
0	903.00	+10.40
31	914.90	+10.98
59	926.00	+10.99

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 43 of 92

Specification

Limits

FCC, Part 15 Subpart C §15.247 (b)(2) The maximum output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Industry Canada RSS-210 §A8.4

For frequency hopping systems operating in the 902 - 928 MHz band, the maximum peak conducted power output power is not to succeed 1.0 W if the hopset uses 50 or more hopping channels and 0.25 W if the hopset uses less than 50 hopping channels.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 44 of 92

5.1.5. <u>Maximum Permissible Exposure</u>

FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band	Antenna Gain	Peak Output Power	Antenna Gain	EIRP	Distance @ 1mW/cm2	Minimum Separation Distance
(MHz)	(dBi)	(dBm)	(numeric)	(mW)	Limit(cm)	(cm)
2400 - 2483.5	2.15	11.22	1.6405898	21.73	1.32	20

^{*}Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 45 of 92

5.1.6. Conducted Spurious Emissions Transmitter

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 46 of 92

Conducted Band-Edge Results

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Band-edge Frequency (MHz)	Limit (dBm)	Amplitude @ Band-edge (dBm)	Margin (dB)
0	903.00	902.0	-9.88	-46.22	-36.34
59	926.00	928.0	-9.26	-44.57	-35.31

902 MHZ LOWER BAND EDGE - HOPPING OFF

Date: 12.MAY.2010 11:09:46

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 47 of 92

902 MHZ LOWER BAND EDGE - HOPPING ON

Date: 12.MAY.2010 11:14:33

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 48 of 92

928 MHZ UPPER BAND EDGE - HOPPING OFF

Date: 12.MAY.2010 11:19:31

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 49 of 92

928 MHZ UPPER BAND EDGE - HOPPING ON

Date: 12.MAY.2010 11:23:40

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 50 of 92

Spurious Emissions (1-10 GHz)

Conducted spurious emissions (30MHz - 10 GHz) are provided below. The maximum emissions observed are indicated in the results table before each plot.

< Plots available beginning next page>

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 51 of 92

TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
903.00	30	10,000	-36.07	-10.46	-25.61

The emission breaking the limit line is the carrier.

CHANNEL 903.00 MHZ - 30 MHZ TO 10,000 MHZ

Date: 12.MAY.2010 11:29:48

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 52 of 92

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
914.90	30	10,000	-33.65	-9.68	-23.97

The emission breaking the limit line is the carrier.

CHANNEL 914.90 MHZ - 30 MHZ TO 10,000 MHZ

Date: 12.MAY.2010 11:36:36

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 53 of 92

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
926.00	30	10,000	-35.08	-9.68	-25.40

The emission breaking the limit line is the carrier.

CHANNEL 926.00 MHZ - 30 MHZ TO 10,000 MHZ

Date: 12.MAY.2010 11:35:27

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 54 of 92

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
902 MHz	928 MHz	≥ 20 dB

FCC, Part 15 Subpart C §15.247(d)

Industry Canada RSS-210 §A.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
Measurement uncertainty	±2.3/ UD

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 55 of 92

5.1.7. Conducted Spurious Emissions Stand-By

Industry Canada RSS-Gen §7.2.3

Test Procedure

Conducted Stand-By emissions were measured on the device on the mid channel. The EUT was placed in Stand-By mode and emissions were measured 30 MHz – 7 GHz.

Test Measurement Set up

Stand-By spurious emissions test configuration

Measurement Results of Stand -By Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 56 of 92

5.1.7.1. Conducted Stand-By Spurious Emissions 30M - 10 GHz

Date: 12.MAY.2010 12:42:24

No emissions were observed breaking the limit.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 57 of 92

Specification

Antenna Conducted Measurement Industry Canada RSS-Gen §7.2.3

If the device has a detachable antenna of known antenna impedance, then the antenna conducted method is permitted in lieu of a radiated measurement.

Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 58 of 92

5.1.8. Radiated Emissions - Transmitter and Receiver

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 59 of 92

Test Measurement Set Up

Radiated Emission Measurement Setup – Above 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 60 of 92

Radiated Emission Measurement Setup - Below 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 61 of 92

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 62 of 92

Specification

Radiated Spurious Emissions

FCC §15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 63 of 92

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty +5.6/-4.5 dB

Traceability:

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 64 of 92

5.1.8.1. Transmitter Peak Emissions

Radiated Emissions - Peak Fundamental Emissions

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 65 of 92

Test Freq.	915.00 MHz	Engineer	CSB		
Variant	FSK	Temp (°C)	21.5		
Freq. Range	902 - 928 MHz	Rel. Hum.(%)	37		
Power Setting	Maximum	Press. (mBars)	1009		
Antenna	Integral Whip	Duty Cycle (%)	100		
Test Notes 1	Peak Emissions				
Test Notes 2					
MiceiMLabs	dBu\/m Vasona by E	MiSoft Template: FCC 15.209 Re 30 a01- remote sensor test program	10 May 10 15:41 - [1] Horizont: [2] Vertical — Quasi Lt + Debug Meas Dist 3m Spec Dist 3m Frequency: MHz 1000MHz North america\15.24;		

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
914.922	66.2	17.4	22.9	106.4	Peak [Scan]	Н						PK

Legend:

 ${\sf TX = Transmitter\ Emissions;\ DIG = Digital\ Emissions;\ FUND = Fundamental;\ WB = Wideband\ Emission}$

PK = Peak Emission of Fundamental

To: FCC 47 CFR Part15.247 & IC RSS-210

P CC 15.209 RE 30-1000MHz sensoritest program/north america/15.24

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 66 of 92

Test Freq.	926.00 MHz	Engineer	CSB
Variant	FSK	Temp (°C)	21.5
Freq. Range	902 - 928 MHz	Rel. Hum.(%)	37
Power Setting	Maximum	Press. (mBars)	1009
Antenna	Integral Whip	Duty Cycle (%)	100
Test Notes 1	Peak Emissions		
Test Notes 2			
B.A. COA ALL-I-			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
926.072	65.5	17.4	22.9	105.8	Peak [Scan]	Н						PK

Legend:

 ${\sf TX = Transmitter\ Emissions;\ DIG = Digital\ Emissions;\ FUND = Fundamental;\ WB = Wideband\ Emission}$

PK = Peak Emission of Fundamental

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 67 of 92

5.1.8.2. Transmitter Radiated Spurious Emissions

Radiated Spurious Emissions - [30-1000MHz]

Note: Please see Radiated Digital Emissions for emissions results not categorized as radio emissions (TX, NRB. FUND)

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 68 of 92

Note: Please see Radiated Digital Emissions for emissions results not categorized as radio emissions (TX, NRB. FUND)

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 69 of 92

Note: Please see Radiated Digital Emissions for emissions results not categorized as radio emissions (TX, NRB. FUND)

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 70 of 92

Radiated Spurious Emissions – [1000MHz – 10,000MHz]

EUT was tested at 100% duty cycle. Typical packet lengths are below 15ms, and channel does not repeat over a period of approximately 60 seconds. The slowest baud rate (highest spectral density) and longest operational packet length was used to calculate the duty cycle correction factor displayed below.

Slowest baud rate = 25Kbit/sec. At 25Kbit/sec, the longest packet will be 23.68mS, and our typical packet under 15mS.

Duty Cycle Correction Factor:

Duty cycle correction factor was applied to spurious emissions in the restricted bands closest to the fundamental transmission.

EUT Operational Duty Cycle: 23.68mS per 100mS window Correction Factor = 20 * LOG (23.68 / 100) Correction Factor = -12.51dB Corrected Value = Measured Value (dB) - 12.51 (dB)

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 71 of 92

Test Freq.	903 MHz	Engineer	CSB
Variant	FSK	Temp (°C)	21.5
Freq. Range	1000 - 10000 MHz	Rel. Hum.(%)	37
Power Setting	Maximum	Press. (mBars)	1009
Antenna	Integral Whip	Duty Cycle (%)	100
Test Notes 1	Duty Cycle correction factor to be applied		
Test Notes 2			

Duty Cycle Correction Factor (dB): 12.51

Formally measured emission peaks

Frequency M	lHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2708.983		70.3	3.2	-11.2	62.3	Peak [Scan]	Н	100	0	54	-4.2	Pass	RB
5417.966	6	61.3	4.6	-9.2	56.7	Peak [Scan]	V	100	0	54	-9.8	Pass	RB
3611.980	1	59.9	3.7	-10.7	52.8	Peak [Scan]	V	100	0	54	-13.7	Pass	RB
6321.022		54.1	5.1	-6.7	52.4	Peak [Scan]	Н	> 20dB below fundamental			Pass	NRB	
7224.078		51.5	5.4	-5.5	51.4	Peak [Scan]	Н	> 20dB below fundamental				Pass	NRB
3411.320	1	58.5	3.6	-11.6	50.5	Peak [Scan]	V	> 20dB below fundamental				Pass	NRB
1805.972		60.4	2.6	-12.7	50.3	Peak [Scan]	V	> 20dB below fundamental				Pass	NRB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

DCCF = Duty Cycle Correction Factor Applied

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 72 of 92

Test Freq.	914.9 MHz	Engineer	CSB					
Variant	FSK	Temp (°C)	21.5					
Freq. Range	1000 - 10000 MHz	Rel. Hum.(%)	37					
Power Setting	Maximum	Press. (m Bars)	1009					
Antenna	Integral Whip	Duty Cycle (%)	100					
Test Notes 1	Duty Cycle correction factor to be applied							
Test Notes 2								

Duty Cycle Correction Factor (dB): 12.51

Formally measured emission peaks

Frequency	Raw	Cable	AF	Level	M easurement	Pol	Hgt	Azt	Limit	Margin	Pass	Comments
MHz	dBuV	Loss	dB	dBuV	Туре	-	cm	Deg	dBuV	dB	/Fail	Comments
2744.729	68.2	3.2	-11.6	59.8	Peak [Scan]	Н	100	0	54	-6.7	Pass	RB
6404.349	56.4	5.1	-6.6	54.9	Peak [Scan]	Н	> 20dB below fundamental			Pass	NRB	
3659.619	60.0	3.7	-10.7	53.0	Peak [Scan]	٧	100	0	54	-13.5	Pass	RB
7319.078	51.4	5.4	-5.0	51.8	Peak [Scan]	Н	100	0	54	-14.7	Pass	RB
3456.343	59.3	3.6	-11.6	51.4	Peak [Scan]	V	> 20dB below fundamental			Pass	NRB	
5489.389	54.9	4.6	-8.8	50.8	Peak [Scan]	Н	> 20dB below fundamental				Pass	NRB
1829.817	58.7	2.6	-12.8	48.5	Peak [Scan]	V	> 20dB below fundamental				Pass	NRB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 73 of 92

Test Freq.	926 MHz	Engineer	CSB
Variant	FSK	Temp (°C)	21.5
Freq. Range	1000 - 10000 MHz	Rel. Hum.(%)	37
Power Setting	Maximum	Press. (mBars)	1009
Antenna	Integral Whip	Duty Cycle (%)	100
Test Notes 1	Duty Cycle correction factor to be applied		
Test Notes 2			

Duty Cycle Correction Factor (dB): 12.51

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV	Margin dB	Pass /Fail	Comments
2777.996	67.0	3.2	-11.6	58.6	Peak [Scan]	Н	100	0	54	-7.9	Pass	RB
5556.012	61.4	4.7	-8.5	57.5	Peak [Scan]	Н	> 2	20dB be	elow fundar	nental	Pass	NRB
3703.977	58.1	3.7	-10.5	51.4	Peak [Scan]	V	100	0	54	-15.1	Pass	RB
7407.943	49.8	5.5	-4.6	50.6	Peak [Scan]	Н	100	0	54	-15.9	Pass	RB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 74 of 92

5.1.8.3. Receiver Radiated Spurious Emissions

- 1 ubuv iiiss ubuviii iype ciii beg ubuviii ub /raii				1							
Freq. Range 30 MHz - 1000 MHz Rel. Hum.(%) 37 Power Setting Maximum Press. (mBars) 1009 Antenna Integral Whip Duty Cycle (%) 100 Test Notes 1 EUT Vertical on Test Table Test Notes 2 MICOMILLADS deviation Vasona by EMISoft 10 May 10 10:58 - [1] Horizont: 20 Uses it 1 Debug Meas Dist 3m Spec Dist 3m	•										
Power Setting Maximum Press. (mBars) 1009 Antenna Integral Whip Duty Cycle (%) 100 Test Notes 1 EUT Vertical on Test Table Test Notes 2 MiCOMLabs denote the press of the	Variant	FSK				Temp (°C)			21.5		
Antenna Integral Whip Duty Cycle (%) 100 Test Notes 1 EUT Vertical on Test Table Test Notes 2 Micon Wilder State Sta	Freq. Range	30 MHz - 1000 l	MHz				Rel.	Hum.(%)	37		
Test Notes 2 MiCOMLabs dBuv/m Vasona by EMISoft 10 May 10 10:58 - eD 11 Horizonti Debug Meas Dist 3m Spec	Power Setting	Maximum					Press	. (mBars)	1009		
Test Notes 2 MiCOMLabs dBuWm Vasona by EMiSoft 10 May 10 10:58 - 10 May 10 10:58 - 11 Horizont: 20 Vertical Dussi Lt Debug Meas Dist 3m Spec Di	Antenna	Integral Whip					Duty	Cycle (%)	100		
Micci Labs May 10 10:58 -	Test Notes 1	EUT Vertical on	Test Table								
Frequency: MHz Radiated Emissions Filename: k:\brogram\tehama\text{wireless\teha01-remote sensor\test program\north\text{aministration}} Formally measured emission peaks AF dB	Test Notes 2										
to radio emissions within 6dB of limit	Formally mea	Assured emission peaks [1] Horizont: [2] Vertical [3] Vertical [4] Ouasi Lt [5] Debug Meas Dist 3m Spec Dist 3m Spec Dist 3m Frequency: MHz Template: FCC 15.209 RE 30-1000MHz Filename: k:\program\tehama wireless\teha01- remote sensor\test program\north america\15.24;									
			dBuV/m		Pol	cm			dB		Comments
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission	No radio emissions within 6dB of limit										
	Legend: TX = T	ransmitter Emiss	sions; DIG =	Digital Emissio	ns; FUI	ND = F	undam	ental; WB	= Wideba	and Emi	ssion

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 75 of 92

Test Freq.	2437 MHz	Engineer	CSB
		3 11	
Variant	FSK	Temp (°C)	21.5
Freq. Range	1 - 10 GHz	Rel. Hum.(%)	37
Power Setting	Maximum	Press. (mBars)	1009
Antenna	Integral Whip	Duty Cycle (%)	100
Test Notes 1	EUT Vertical on Test Table		
Test Notes 2	0		
Mic®M Labs	dBu√ Vasona by E	MiSoft	10 May 10 14:22 - [1] Horizont: [2] Vertical Peak Limit Average Lt
	6DD #		Debug Meast first or

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
---------------	-------------	---------------	-------	-----------------	---------------------	-----	-----------	------------	-----------------	--------------	---------------	----------

No radio emissions within 6dB of limit.

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 76 of 92

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Specification

FCC Part 15 Subpart C §15.247(d)

Industry Canada §A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of	0287, 0335, 0338, 0158, 0134, 0304, 0311, 0315, 0310, 0312
Radiated Emissions'	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 77 of 92

5.1.9. Radiated Spurious Emissions - Digital Emissions

FCC, Part 15 Subpart C §15.247(d), §15.205, 15.109

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 78 of 92

Test Measurement Set Up

Radiated Emission Measurement Setup – Above 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 79 of 92

Radiated Emission Measurement Setup – Below 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 80 of 92

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 81 of 92

Specification

Radiated Spurious Emissions

FCC §15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 82 of 92

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty +5.6/ -4.5 dB

Traceability:

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 83 of 92

5.1.9.1. Radiated Digital Emissions

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 84 of 92

Test Freq.	2437 MHz	Engineer	CSB
Variant	FSK	Temp (°C)	21.5
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	37
Power Setting	Maximum	Press. (mBars)	1009
Antenna	Integral Whip	Duty Cycle (%)	100
Test Notes 1	EUT Vertical on Test Table		
Test Notes 2			
MiceMaha			10.14 10.14.00

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
---------------	-------------	---------------	-------	-----------------	---------------------	-----	-----------	------------	-----------------	--------------	---------------	----------

No radio emissions within 6dB of limit.

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 85 of 92

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 3 meters, shall not exceed the following:

§15.109 (b) Limit Matrix Class A digital device

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	49.5	3
88-216	150	54.0	3
216-960	200	57.0	3
Above 960	500	60.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used	
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0335, 0338, 0158, 0134, 0304, 0311, 0315, 0310, 0312, 0341	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 86 of 92

5.1.10. AC Wireline Conducted Emissions (150 kHz - 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

No Measurement Results presented. EUT does not utilize connection to the AC Mains.

Test Procedure

The measurement frequency range extends from 150 kHz to 30 MHz. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Setup

Measurement set up for Conducted Emissions Test

Specification

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 87 of 92

Limits

Frequency of Emission (MHz)	Conducted Limit (dBµV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency

Traceability

All conducted emission measurements are traceable to national standards. The uncertainty of measurement at a confidence level of not less than 95 %, with a coverage factor of k=2, in the range 9 kHz - 30 MHz (Average & Quasi-peak) is ± 2.64 dB.

Laboratory Measurement Uncertainty	
Measurement uncertainty	±2.64 dB

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of	0158, 0184, 0193, 0190, 0293, 0307, 156, 193, 190
Conducted Emissions'	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 88 of 92

6. PHOTOGRAPHS

6.1. General Measurement Test Set-Up

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 89 of 92

6.2. Radiated Emissions >1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 90 of 92

6.3. Radiated Emissions <1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA01-U1 Rev A Issue Date: 11th January 2011

Page: 91 of 92

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0158	Barometer /Thermometer	Control Co.	4196	E2844
0184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwarz	ESH3Z5	836679/006
0223	Power Meter	Hewlett Packard	HP EPM-442A	US37480256
0251	K-Cable	Megaphase	Sucoflex 104	Unknown
0252	K-Cable	Megaphase	Sucoflex 104	Unknown
0253	K-Cable	Megaphase	Sucoflex 104	Unknown
0256	K-Cable	Megaphase	Sucoflex 104	Unknown
0271	Amplifier	1 to 26.5 GHz	MiCOM	
0287	EMI Receiver	Rhode & Schwarz	ESIB 40	100201
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30 dB N-Type Attenuator	ARRA	N944-30	1623
0335	Horn Antenna	The Electro-Mechanics Company	3117	00066580
0337	Amplifier	30 MHz – 3 GHz	MiCOM	
0338	Antenna (30M-3GHz)	Sunol Sciences	JB3	A052907
0341	902-928 MHz Notch Filter	EWT	EWT-14-0199	H1
0363	Switch	MiCOM Labs		

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306

www.micomlabs.com