This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(9) BUNDESREPUBLIK DEUTSCHLAND

Off nl gungsschrift

DEUTSCHES **PATENTAMT**

3844444 A1

- (21) Aktenzeichen:
- P 38 44 444.5
- Anmeldetag: Offenlegungstag:
- 31. 12. 88 9. 8.90

(5) Int. Cl. 5:

C 07 C 69/96 C 07 C 233/27 C 07 C 225/16 C 07 D 335/16 C 07 C 265/10 C 07 C 319/22 C 07 C 309/69 C 07 C 335/16 C 08 F 2/50 C 08 F 20/30 C 08 F 20/58 C 08 F 20/60 // C07C 69/54, C07D 295/108

(7) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

② Erfinder:

Boettcher, Andreas, Dr., 6907 Nussloch, DE; Rehmer, Gerd, Dr., 6712 Bobenheim-Roxheim, DE

Strahlungsempfindliche, ethylenisch ungesättigte, copolymerisierbare Verbindungen und Verfahren zu deren Herstellung

Die Erfindung betrifft strahlungsempfindliche, ethylenisch ungesättigte Verbindungen und ein Verfahren zu deren Herstellung.

Die ethylenisch ungesättigten organischen Verbindungen entsprechen der allgemeinen Formel

R für einen Alkylrest, für einen Arylrest oder den Rest R1 stehtund R¹ für den Rest

steht, wobei die Reste R² bis R⁶ für H, Alkyl, OH, O-Alkyl, SH, S-Alkyl, Halogen, N(Alkyl)₂, N(Alkyl)(Aryl) stehen und mindestens einer aber maximal drei der Reste R2 bis R6 für den Rest

stehen, worin X für einen Alkylenrest, Cycloalkylenrest, einen Oxaalkylenrest oder Arylenrest, Y für H oder CH3- und Z für O oder NY stehen.

Beschreibung

Die Erfindung betrifft neuartige strahlungsempfindliche, ethylenisch ungesättigte Phenonderivate und ein Verfahren zu ihrer Herstellung.

UV-lichtempfindliche Aceto- und Benzophenone werden häufig als sog. äußere Initiatoren strahlungsempfindlichen Polymeren zugesetzt (z. B. G. Li Bassi, J. Rad. Cur. 14, 18 [1987]). Im allgemeinen sind solche Arbeitsweisen aber nicht vollständig befriedigend, denn es treten nach Mischung mit dem Polymeren Probleme mit der Verträglichkeit, der Gleichförmigkeit der Verteilung, der Flüchtigkeit, des Geruches, der Toxizität, des Ausschwitzens und der Wanderung des Zusatzstoffes auf, die häufig zu einer unerwünschten, vorzeitigen und ungleichmäßigen Reaktion führen. Beim eigentlichen Belichtungsvorgang wird dann eine geringere Reaktivität aufgrund erniedrigter effektiver Initiatorkonzentrationen sowie nach dem Belichten eine Reihe störender Nebenreaktionen beobachtet.

Es ist bekannt, daß die genannten Probleme z. T. gelöst werden können, wenn der strahlungsempfindliche Initiator mit Monomeren nach einem üblichen Verfahren mischpolymerisiert, d. h. in eine Polymerkette eingebaut wird. Der lichtempfindliche Photoinitiator hängt mit einer Ankergruppe, dem sog. Spacer, am Basispolymeren. Der Spacer dient weiterhin dazu, den Einfluß der Basispolymerkette auf das photochemische Verhalten des Initiators zu reduzieren.

Copolymerisierbare Initiatoren haben daher prinzipiell folgenden Aufbau:

Schema I

Initiator — Spacer — reaktive Doppelbindung

In den US-Patentschriften 32 14 492, 34 29 852, 36 22 848 und 43 04 895 sind mit Acryloxy- oder Methacryloxygruppen substituierte Aceto- und Benzophenonderivate, wie z. B.

20

25

beschrieben. Diese können mit Ethylen oder anderen Vinylmonomeren mischpolymerisiert werden. Dabei entstehen Polymere, die beispielsweise nach der thermischen Verformung durch Bestrahlung gehärtet werden. Im Rahmen des Modells nach Schema I werden bei diesen strahlungsempfindlichen Monomeren die reaktive Doppelbindung und der Initiator durch die Carbonyloxygruppe als Spacer getrennt. Aus photochemischer Sicht sind diese Verbindungen weniger interessant, da der Acryloylsubstituent noch sehr stark die langwellige Absorption des Initiatorfragmentes beeinflußt.

In ähnlicher Weise ist dies auch bei den copolymerisierbaren Acetophenonacrylaten aus der DE-A-35 34 645 zu beobachten, bei denen die

Photoreaktivität durch eine zu enge Kopplung der reaktiven Acrylatgruppe an das zur Carbonylgruppe α -ständige Kohlenstoffatom gesenkt wird. Die Ursache für dieses Verhalten ist darin zu sehen, daß bei der photochemisch initiierten α -Spaltung neben dem Benzoylradikal ein weiteres nur wenig reaktives Radikal gebildet wird.

Um die photochemische Aktivität des copolymerisierbaren Initiators im Vergleich zum Grundkörper nicht wesentlich zu verringern, muß die reaktive Doppelbindung vom Photoinitiatorteil mesomer und induktiv abgekoppelt werden.

Beim 2-Acryloyl-thioxanthon (Eur. Polym. J. 23, 985 [1987])

ist diese Trennung noch nicht vollständig gelungen. Das Copolymerisat mit Methylmethacrylat ist weniger

diversity of a contract of the property of the

reaktiv als 2-Hydroxythioxanthon.
Beim 4-(4'-Vinylbenzyloxy)benzophenon,

beschrieben in der DE-A-28 18 763, erweist sich der Styrylbenzyloxyrest als guter Spacer.

Beim "Uvecryl® P36", einem Handelsprodukt der Fa. UCB, trennt ein besonders langer Spacer aus vier Ethylenoxyeinheiten das Benzophenon vom Acryloxy-Rest.

10

15

55

Diese z. B. im Technical Bulletin 2480/885 (1985) der Fa. UCB oder in New Polym. Mat. 1, 63 (1987) beschriebene Verbindung kann in Photopolymeren für Überzugsmassen eingesetzt werden. Die Synthese ist aufwendig und dieses Produkt ist photochemisch nur mäßig reaktiv, da der Spacer zu lang ist.

Die Einführung von funktionellen Gruppen im Spacer beeinflußt das photochemische Verhalten des Chromophoren nur unwesentlich, wenn diese durch eine Alkylenoxygruppe voneinander getrennt sind. Die in der EP-A-2 79 475 genannten Benzophenonderivate des Typs

sind Beispiele dafür.

Nach dem oben angeführten Stand der Technik sollte also eine Ether- oder eine Estergruppe Bestandteil des Spacers sein (Schema II).

Zu einem neuen Spacerschema gelangt man, indem man den Einfluß und die Funktion des Spacers als Substituenten auf das photochemisch angeregte Aceto- bzw. Benzophenonfragment betrachtet. So sind beispielsweise Spacer denkbar, die aufgrund ihrer Struktur stabilisierend oder destabilisierend wirken können. Insbesondere die carbamoylsubstituierten Benzophenone des Typs

Schema III

stellen unter diesem Gesichtspunkt eine interessante Substanzklasse dar. In der US-PS 33 22 818 werden allyl-

age of control pages and the control process of the control pages and the control pages

bzw. methallyl-substituierte Carbamoylbenzophenone beschrieben. Sie eignen sich aber nur als Fungizide (vgl. Schema: IV).

Schema IV

Carbamoylgruppe

O

NH—CH₂—CH=CH₂

Initiator Spacer Doppelbindung

Für Copolymerisationen ist eine Allyl- bzw. Methallylgruppe nicht geeignet. Diese Benzoylphenyl-allyl-carbamate haben daher im Polymerbereich keine praktische Bedeutung.

Neue, aber photochemisch wenig reaktive Monomere mit einem extrem langen Spacer werden in der GB-PS 21 00 722 beschrieben.

In der DE-A-38 20 463 werden schließlich Monomere des Typs (Schema V)

Schema V

Initiator—O NH—

beansprucht, die besonders reaktiv und bequem aus Hydroxyaromaten und (Meth)acryloylalkylisocyanaten zugänglich sind. Die notwendigen Isocyanate, wie z. B.

oder

5

10

15

25

30

sind jedoch sehr toxisch und aufwendig herzustellen.

Aufgabe der vorliegenden Erfindung ist es, strahlungsempfindliche, ethylenisch ungesättigte Phenonderivare, wie z. B. Aceto-, Benzophenon oder Thioxanthonderivate aufzuzeigen, die leicht zugänglich sind und einen auf den Photoinitiatorteil optimal abgestimmten Spacer beinhalten.

Es sind eine Reihe von Aceto- bzw. Benzophenoncarbonaten für unterschiedliche Einsatzbereiche bekannt. Bei der Totalsynthese von Griseofulvin (A. C. Day et al., J. Chem. Soc. 1961, 4067) wird die Verbindung

als Vorstufe eingesetzt. Weitere Beispiele für pharmakologisch interessante Carbonate des oben angegebenen Typs sind in J. Chem. Soc. C 1969, 1721; dito 1970, 392; Tetrahedron Lett. 1979, 4363 und NL-PS 70 08 636 beschrieben.

Als Herbizide wirken nach JP-OS 54-002323 und JP-OS 57-181001 die halogenierten Benzophenoncarbonate

A1 38 44 444 DE

Führt man dagegen im Benzophenongrundkörper mindestens eine OH-Gruppe in o-Stellung zu > C = O ein, dann gelangt man in die Klasse der UV-Stabilisatoren. Über die Carbonatgruppe werden – wie im folgenden Beispiel zu erkennen - häufig Chromophore

15

20

25

30

35

55

60

65

$$\bigcap_{O} \bigcap_{O} \bigcap_{O$$

(vgl. US-PS 39 81 822, 41 15 348, 41 74 321) oder ein weiteres Strukturelement mit UV-absorbierenden Eigenschaften, wie in SU-PS 3 52 883, SU-PS 4 91 661 oder JP-OS 58-159460 und JP-OS 61-130362 beschrieben, an das Benzophenon angehängt.

Zur Photopolymerisation werden schließlich die in der JP-OS 61-228007 aufgeführten, nicht copolymerisierbaren Benzildimethylketale

bzw. die Benzoinmonomethylether

beansprucht.

Es sind also bisher nur Alkyl- und Aryl-substituierte Aceto- und Benzophenoncarbonate bekannt, die keine funktionelle Gruppe enthalten, die eine Copolymerisation ermöglicht.

Aufgabe der vorliegenden Erfindung ist es, copolymerisierbare Phenonderivate des Typs

The first and the second of th

Schema VI

Gegenstand der Erfindung sind ethylenisch ungesättigte copolymerisierbare, strahlungsempfindliche organische Verbindungen der allgemeinen Formel (I),

$$R - C - R^1$$
 (I)

- worin für einen geradkettigen Alkylrest mit 1 bis 4 Kohlenstoffatomen, vorzugsweise Methyl, Ethyl, n-Propyl, einen verzweigten, gegebenenfalls substituierten, Alkylrest mit 3 oder 4 Kohlenstoffatomen, wie iso-Propyl, sek.-Hydroxyisopropyl, sek.-Dimethylaminopropyl, sek.-Morpholinopropyl, tert.-Butyl, einen Arylrest, wie z. B. Phenyl, Tolyl oder Naphthyl, oder den Rest R¹ steht und
- für den Rest

 R²

 R³

 R⁴
- steht, wobei die Reste R² bis R⁶ untereinander gleich oder verschieden sind und für H, Alkyl mit 1 bis 4 Kohlenstoffatomen, z. B. Methyl, Ethyl, n-Propyl, iso-Propyl, tert-Butyl, Phenyl, OH, OCH₃, OC₂H₅, SH, SCH₃, SC₂H₅, F, Cl, Br, CN, COOH, COOAlkyl mit Alkyl enthaltend 1 bis 17 Kohlenstoffatome, COOAryl, CF₃, N(Alkyl)₂, N(Alkyl)₄, N(Aryl)₂, N(Alkyl)₃, N[®](Alkyl)₃A[®], N[®]H(Alkyl)₂A[®] mit Alkyl enthaltend 1 bis 4 Kohlenstoffatome und A[®] für das Anion einer Säure, z. B. Cl[®], SO₄^{2®}, PO₄^{3®}, Acetat[®], BF₄[®], CF₃SO₃[®], SbF₆[®], AsF₆[®], PF₆[®] stehen und mindestens einer aber maximal drei der Reste R² bis R⁶ für den Rest

- stehen, worin X für einen zweiwertigen, gegebenenfalls substituierten Alkylenrest $-(CH_2)_m$, einen Rest
 - $\begin{bmatrix}
 R' \\
 -C \\
 R''
 \end{bmatrix}$

:..

- mit m = 1 bis 10, worin R' und R" untereinander gleich oder verschieden sind und für Aryl, z. B. Phenyl, C_1 bis C_4 -Alkyl, H, COOH, COOCH₃ oder COOC₂H₅ stehen, einen perfluorierten Alkylenrest $-(CF_2)_m mit m = 1$ bis 10, vorzugsweise ein Perfluorethylenrest, einen Oxaalkylenrest des Typs $-(CH_2)_n O (CH_2)_p mit n = 1$ bis 5 und p = 1 bis 5, vorzugsweise n = p = 2, d. h. $-C_2H_4 O C_2H_4 -$, einen perfluorierten Oxaalkylenrest des Typs $-(CF_2)_n O (CF_2)_p mit n, p = 1$ bis 5, beispielsweise Tetrafluorethylen, oder einen gegebenenfalls perfluorierten Polyoxaalkylenrest mit 2 bis 20 Sauerstoffatomen, die miteinander über mindestens eine $-CH_2 CH_2 CH_3 CH_3 CH_4 CH_3 CH_3 CH_4 CH_4 CH_4 CH_4 CH_4 CH_5 C$
- -CF₂-oder -CH₂-CH(CH₃)-Gruppe verbunden sind, für einen Alkylenrest des Typs
 -(CH₂)_m-O-CO-O-(CH₂)_n-, -(CH₂)_n-O-CO-NH-(CH₂)_m-,
 -(CH₂)_n-NH-CO-O-(CH₂)_m-, -(CH₂)_m-CO-O-(CH₂)_n- oder -(CH₂)_m-O-CO-(CH₂)_nmit m = 1 bis 10, n = 1 bis 10, einen gegebenenfalls mit Alkyl mit 1 bis 4 Kohlenstoffatomen, z. B. Methyl, n-Propyl, iso-Propyl, OH, OCH₃, OC₂H₅, SH, SCH₃, SC₂H₅, Cl, F, N(Alkyl)₂ oder N(CH₃)C₆H₅ in o-, m- und/oder p-Stellung substituierten Phenylen-, oder einen Cycloalkylenrest mit 5 bis 10 Kohlenstoff-Atomen, z. B. Cyclohexylen-, Cyclooctylen-, für einen (Bis)methylencycloalkylenrest mit 6 bis 12 Kohlenstoffatomen,
 Y für H, Alkyl mit 1 bis 6 Kohlenstoffatomen oder Phenyl,
- Z für O, NY stehen, oder für den Fall, daß R für einen Arylrest steht, einer der Reste R₂ oder R₆ für ein Schwefelatom stehen kann, durch das der Arylrest R in ortho-Position mit R¹ verbunden ist und beispielsweise einen Thioxanthon-yl-rest ergibt.
- Überraschenderweise zeigen die erfindungsgemäßen Verbindungen eine besonders hohe photochemische
 Reaktivität im kurz- bis längerweiligen UV-Bereich von 254 bis 400 nm, sowie eine gute Lagerstabilität.
 - Eine weitere Aufgabe der vorliegenden Erfindung bestand darin, ein Verfahren zur Herstellung neuartiger strahlungsempfindlicher Aceto-, Benzophenon- und Thioxanthoncarbonate mit mindestens einer Acrylat- bzw. Methacrylatendgruppe aufzuzeigen.
- Die Synthese von Arylcarbonaten ohne copolymerisationsfähige Endgruppe ist bekannt (JP-OS 59-0 01 438, JP-OS 59-1 70 033). Eine gute Übersicht geben: a) Houben-Weyl, Methoden der Organischen Chemie, Bd. 8, S. 75, 101 107, Thieme-Verlag 1952, b) Kirk-Othmer, Encyclopedia of Chemical Technology, Bd. 4, S. 758 771, John Wiley 1978 und c) Ullmann's Encyclopedia of Industrial Chemistry, Bd. A5, S. 197 202, Verlag Chemie 1986

The second secon

38 44 444 DE A₁

Das wichtigste Darstellungsverfahren für Carbonate ist die Umsetzung von Kohlensäureesterchloriden mit Alkoholen. Die Prozedur ist ausführlich in Houben-Weyl, Bd. 8 (s. o.) und in der DE-PS 10 80 546 sowie in J. Org. Chem. 26, 5119 (1961) beschrieben. Die Kohlensäureester entstehen in guten bis sehr guten Ausbeuten, wenn der Alkohol und der Chlorkohlensäureester im Molverhältnis 1:1 ohne Solvens oder in überschüssigem Alkohol als Lösungsmittel miteinander zur Reaktion gebracht werden. In den Fällen, in denen der Alkohol bzw. das Phenol und/oder der Chlorkohlensäureester als Feststoff vorliegen, verwendet man aprotische Lösungsmittel, wie z. B. Dichlormethan, Dichlorethan, Acetonitril, Toluol, Xylol usw.

Für die Synthese der im Anspruch 1 genannten Verbindungen stehen prinzipiell zwei Wege offen (Sche-

ma VII):

10

15

20

25

30

35

40

55

Die als Ausgangsmaterial benötigten Hydroxyacetophenone und Hydroxybenzophenone sind nach bekannten Verfahren herstellbar. So erhält man beispielsweise 4-Hydroxybenzophenon in ca. 90% iger Ausbeute durch Friedel-Crafts-Acylierung von Phenol mit Benzoylchlorid in Nitrobenzol in Gegenwart von AlCl₃ oder TiCl₄ (Houben-Weyl 7/2a, S. 186) oder isomerenfrei durch Oxidation von 4-Hydroxy-diphenylmethan mit 5,6-Dichlor-2,3-dicyan-p-benzochinon (Houben-Weyl 7/2a, S. 681).

Die Synthesen der aminosubstituierten Benzophenone, wie z. B. 2-Benzyl-2-(dimethylamino)-1-(4-hydroxyphenyl)-butan-1-on oder 1-(4-Hydroxyphenyl)-2-methyl-2-morpholino-propan-1-on sind in EP-A-2 84 561 und

38 44 444 **A**1 DE

EP-A-1 17 233 beschrieben.

Das 2-Hydroxythioxanthon kann nach dem in den GB-PS 21 08 487 (1981) und GB-PS 21 08 979 (1982)

beschriebenen Verfahren aus Thiosalicylsäure und Phenol dargestellt werden.

Die aromatischen Chlorformiate (vgl. J. Prakt. Chem. 313, 331 [1971], dito 317, 62, 73, 81 [1975]) der allgemeinen Formel (IIIb) lassen sich aus einem substituierten Phenol, z. B. 4-Chlor-5'-fluor-2'-hydroxybenzophenon, 4-Fluor-4'-hydroxybenzophenon, 2,4-Dihydroxybenzophenon, 4-Fluor-4'-hydroxybenzophenon, 4droxybenzophenon, 2-Hydroxybenzophenon, 4-Hydroxybenzophenon, 2-Hydroxy-4-methoxybenzophenon, 2,3,4-Trihydroxybenzophenon, 2-Hydroxy-thioxanthon, 3-Hydroxy-thioxanthon, (4-Hydroxyphenyl)-2-hydroxy-2-propylketon (DE-OS 35 34 645) durch Phosgenierung nach literaturbekannten Standardverfahren mit Phosgen, s. z. B. Houben-Weyl, Methoden der Organischen Chemie, Bd. 8, Thieme-Verlag 1952, Trichlormethylchlorformat (Diphosgen), J. Prakt. Chem. 126, 210 (1930), dito 128, 233 (1930), Chem. Abstr. 95, 81766, J. Org. Chem. 50, 715 (1985), J. Org. Chem. 41, 2070 (1976), Angew. Chem. 89, 267 (1977), dem kristallinen Triphosgen, Angew. Chem. 99, 922 (1987), N,N'-Carbonyldiimidazol oder N,N'-Carbonyldi-s-triazol (Fieser 1, 116 [1967]), in guten Ausbeuten herstellen.

Über den Einsatz alternativer Verfahren für die Phosgenierung, z. B. die Umsetzung mit Chlorkohlensäuree-

stern gibt "Merck Kontakte" 1981 (1), 14-18 Auskunft.

Die Hydroxyalkylen(meth)acrylate und Hydroxyalkylen(meth)acrylamide entstehen durch Acylierung oder Veresterung geeigneter α,ω-Alkandiole bzw. Aminoalkohole, wie z. B. 1,2-Ethan-, 1,3-Propan-, 1,2-Butan-, 1,4-Butan-, 1,5-Pentan-, 1,6-Hexandiol-, 1,4-Cyclohexandiol, 1,2-Cyclohexandiol, Ethanolamin, p-Hydroxyanillin oder Diole, wie Polytetrahydrofuran, Polyethylenoxid, Polypropylenoxid mit Säurechloriden, Estern oder Anhydriden der Acryl- und Methacrylsäure. Von besonderem Interesse ist die Umesterungsreaktion. Für die Umesterung werden beispielsweise Acrylsäuremethylester, Acrylsäureethylester, Acrylsäure-n-butylester, Methacrylsäuremethylester, -ethylester, -propylester, -n-butylester und -t-butylester verwendet. Von besonderem Interesse ist Methacrylsäuremethylester. Bei der praktischen Durchführung des Verfahrens kann der Acryl- oder Methacrylester im Unterschuß oder vorzugsweise im Überschuß eingesetzt werden. Im allgemeinen setzt man, bezogen auf das Diol die 1 bis 1,5fache molare Menge des Acryl- oder Methacrylsäureesters ein, wobei ein Überschuß von der 1,5fachen bis zur 5fachen Menge besonders zu vermeiden ist, um den Anteil an Diacrylat minimal zu halten. Zusätzlich kann das Reaktionsgemisch auch noch Lösungsmittel, z. B. Benzol, Toluol, Xylol, Chlorbenzol, Dioxan, Cyclohexan, n-Heptan, n-Octan, n-Nonan oder n-Decan enthalten. Bevorzugt arbeitet man in Abwesenheit von Lösungsmitteln.

Im allgemeinen verwendet man bei der Umesterungsstufe einen für Umesterungen üblichen Katalysator. Als solche kommen z. B. Alkalialkoholate, wie Natriummethylat, -ethylat, -propylat, Lithiummethylat und vorzugsweise Verbindungen von Titan, Zinn und Zirkon in Betracht. Beispielhaft genannt seien Titantetramethylat, -tetraethylat, -tetrapropylat, -tetrabutylat, Dibutylzinnoxid, Dibutylzinndilaurat, Dimethoxydibutylzinn und Zir-

koniumpentan-2,4-dionat.

Die Mengen der Katalysatoren liegen häufig im Bereich von 0,0005 bis 0,5 Mol, vorzugsweise von 0,001 bis 0,02 Mol Katalysator je Mol Diol. Bei der Umesterung arbeitet man im allgemeinen bei Temperaturen von 50 bis 150°C, vorzugsweise von 80 bis 120°C unter Sieden des Reaktionsgemisches, wobei das bei der Umesterung freigesetzte Alkanol gegebenenfalls zusammen mit einem Anteil des Acrylsäureesters oder Methacrylsäure-

esters als Azeotrop aus dem Reaktionsgemisch abdestilliert wird.

Nach Durchführung der Umesterungsreaktion können der überschüssige Acryl- oder Methacrylester und gegebenenfalls Lösungsmittel z. B. durch Destillation, vorzugsweise unter vermindertem Druck, vom Reaktionsgemisch abgetrennt werden. Soweit gewünscht, kann der erhaltene Monohydroxyalkylen-(meth)acrylsäureester z. B. durch Destillation unter vermindertem Druck, durch Extraktion oder durch Kristallisation gereinigt werden. Man kann jedoch auch das Reaktionsprodukt der Umesterungsstufe ohne weitere Reinigung oder gegebenenfalls nach Abtrennung des Katalysators bzw. seines Salzes durch Hydrolyse und Filtration der nächsten Stufe des Verfahrens zuführen.

Bei Durchführung der Acylierung mit (Meth)acrylsäureanhydrid setzt man die Edukte bevorzugt stöchiometrisch ein. Man arbeitet im allgemeinen bei Temperaturen von 80 bis 140°C, vorzugsweise von 90 bis 110°C. Als Katalysatoren kommen vor allem Säuren, insbesondere konzentrierte Schwefelsäure in Betracht, die in Mengen von 0,1 bis 2 Mol% verwendet werden. Nach Abtrennen von Katalysator und (Meth)acrylsäure z. B. durch Neutralisieren mit wäßrigen Basen, z. B. Natriumcarbonatlösung oder verdünnter Natronlauge, kann das Rohprodukt, gegebenenfalls nach Trocknung z. B. mit Natriumsulfat oder Magnesiumsulfat, ohne weitere Reinigung

in der nächsten Stufe eingesetzt werden. Um eine vorzeitige Polymerisation der α,β-monoolefinisch ungesättigten Reaktionsteilnehmer zu verhindern, setzt man dem Reaktionsgemisch vorzugsweise einen üblichen Stabilisator zu. Als solche kommen z. B. Hydrochinon, Hydrochinonmonomethylether, 2,6-Di-tert.-butyl-4-methylphenol, para-Nitrosophenol und/oder Phenothiazin in Betracht. Darüber hinaus hat es sich als äußerst vorteilhaft erwiesen, während der Acylierung

Sauerstoff oder Luft durch das Reaktionsgemisch zu leiten.

Die Hydroxyalkyl- bzw. -alkylenmonovinylether sind in guten Ausbeuten nach dem in Liebigs Ann. Chem. 601,

81 (1956) beschriebenen Verfahren gut zugänglich.

Control of the Control of the September of September 1995 the Control of the Control of the September 1995

Die folgenden erfindungsgemäß verwendbaren (Meth)acrylate, (Meth)acrylamide und Hydroxyalkylvinylether seien beispielhaft genannt:

65

10

15

20

30

35

45

50

في المجولين فيمين المي في ويولو في في المعد المعروب الم

10

45

55

60

Für die Umsetzung der Hydroxyaceto-, -benzophenone bzw. -thioxanthone werden im allgemeinen die entsprechenden ω-(Meth)acryloyloxyalkyl-chloroformiate benötigt. Diese sind nach literaturbekannten Verfahren, wie z. B. in Eur. Polym. J. 14, 205 (1978); J. Polym. Sci. Polym. Symp. 66, 41 (1979); Bull. Soc. Chim. Belg. 93, 159 (1984) beschrieben, bequem und in guten Ausbeuten darstellbar.

Überraschend wurde gefunden, daß die erfindungsgemäßen Aceto- und Benzophenon- sowie Thioxanthonderivate auf den im Schema VII angegebenen Wegen A und B leicht und in sehr guter Ausbeute zugänglich sind. Dies ist insbesondere im Hinblick auf die Reaktivität und Bifunktionalität der (Meth)acrylat- bzw. Vinyletherkomponente unerwartet, da eine Vielzahl verschiedener Reaktionsprodukte denkbar ist. Die Wege A und B unterscheiden sich insbesondere auch von der in der DE-A-38 20 463 beschriebenen Variante, bei der unter neutralen Bedingungen schwer zugängliche und toxische Isocyanate eingesetzt werden.

Die Wege A und B sind ökonomischer, effizienter und im Hinblick auf die Bifunktionalität der Einsatzstoffe neuartig gegenüber dem Stand der Technik (vgl. Houben-Weyl, Bd. 8, S. 75, 101 – 107).

Gegenstand der vorliegenden Erfindung ist außerdem ein Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I), wobei man eine Verbindung der Formel (IIa) oder (IIb)

worin
X. Y und Z die obengenannte Bedeutung haben und

A, Tulio 2 die Oethgeriamie Bedatalig macht die Bfür eine der Gruppen Tosylat, Alkoxy mit 1 bis 5 Kohlenstoffatomen, Halogen, wie z. B. Cl, Br, Chlorcarbonyl, Imidazolyl, Pyrazolyl, Ammonium-, Pyridinium-, Phosphonium-, Sulfoniumkation steht — vorzugsweise wären dies z. B. 2-(Acryloyloxyethyl)-, 2-(Methacryloyloxyethyl)chlorkohlensäureester, 2-(Methacryloyloxyethyl)chlorglyoxylsäureester, (2-(Meth)acryloyloxyethyl)-methyl-carbonat — mit einer Verbindung der allgemeinen Formel (IIIa)

$$R^{7} - C \qquad R^{4} \qquad R^{9}$$

$$R^{12} \qquad R^{10} \qquad (IIIa)$$

worin
R⁷ für einen geradkettigen Alkylrest mit 1 bis 4 Kohlenstoffatomen, einen verzweigten, gegebenenfalls substituierten, Alkylrest mit 3 oder 4 Kohlenstoffatomen, für einen Arylrest oder den Rest R¹ steht und worin die Reste R⁸ bis R¹² untereinander gleich oder verschieden sind und für H, Alkyl mit 1 bis 4 Kohlenstoffatomen, Phenyl,

OH, OCH₃, OC₂H₅, SH, SCH₃, SC₂H₅, F, Cl, Br, CN, COOH, COOAlkyl mit Alkyl enthaltend 1 bis 17 Kohlenstoff-atome, COOAryl, CF₃, N(Alkyl)₂, N(Alkyl)₂, N(Alkyl)₃, N(Alkyl)₃A[©], N[®]H(Alkyl)₂A[©] mit Alkyl, enthaltend 1 bis 4 Kohlenstoffatome, und A[©] für das Anion einer Säure, z. B. Cl[©], SO₄^{2©}, PO₄^{3©}, Acetat[©], BF₄[©], CF₃SO₃[©], ASF₆[©], SPF₆[©], PF₆[©] usw. stehen oder einer der Reste R⁸ oder R¹² für ein Schwefelatom stehen kann, durch das der Arylrest in ortho-Position mit R⁷ verbunden ist, mit der Maßgabe, daß mindestens einer der Reste R⁸ bis R¹² für eine Hydroxylgruppe steht, im äquimolaren Verhältnis (mit gegebenenfalls bis zu 20%igem Überschuß) oder entsprechend der Anzahl der Hydroxylgruppen in den Resten R⁸ bis R¹² dem Zwei- oder Dreifachen davon, gegebenenfalls in Gegenwart eines inerten Lösungsmittels oder Lösungsmittelgemisches und eines basischen Katalysators, bei Temperaturen von 0 bis 100°C unter wasserfreien Bedingungen umsetzt (Weg B).

Gegenstand der vorliegenden Erfindung ist weiterhin ein Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I), wobei man eine Verbindung der Formel (IVa) oder (IVb)

worin X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, vorzugsweise sind dies die oben beispielhaft angegebenen (Meth)acrylate, Methacrylamide oder Hydroxyalkylvinylether, mit einer Verbindung der allgemeinen Formel (IIIb),

$$\begin{array}{c|c}
C & R^{1} \\
R^{7} - C & R^{9} \\
\hline
R^{12} & R^{10}
\end{array}$$
(IIIb)

worin R? für einen geradkettigen Alkylrest mit 1 bis 4 Kohlenstoffatomen, vorzugsweise Methyl, Ethyl, n-Propyl, einen verzweigten, gegebenenfalls substituierten, Alkylrest mit 3 oder 4 Kohlenstoffatomen, wie i-Propyl, sek.-Hydroxyisopropyl, sek.-Dimethylaminopropyl, sek.-Morpholinopropyl, tert.-Butyl, oder einen Arylrest, z. B. Phenyl, Tolyl oder Naphthyl, vorzugsweise Phenyl steht und worin die Reste R8 bis R12 untereinander gleich oder verschieden sind und für H, Alkyl mit 1 bis 4 Kohlenstoffatomen, z. B. Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Phenyl, OH, OCH3, OC2H5, SH, SCH3, SC2H5, F, Cl, Br, CN, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Phenyl, OH, OCH3, OC2H5, SH, SCH3, SC2H5, F, Cl, Br, CN, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Phenyl, OH, OCH3, OC2H5, SH, SCH3, SC2H5, F, Cl, Br, CN, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Phenyl, OH, OCH3, OC2H5, SH, SCH3, SC2H5, F, Cl, Br, CN, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Phenyl, OH, OCH3, OC2H5, SH, SCH3, SC2H5, F, Cl, Br, CN, Methyl, Methyl

Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Phenyl, OH, OCH₃, OC₂H₅, SH, SCH₃, SC₂H₅, F, Cl, Br, CN, COOH, COOAlkyl mit Alkyl enthaltend 1 bis 17 Kohlenstoffatome, COOAryl, CF₃, N(Alkyl)₂, N(Alkyl)(Aryl), N(Aryl)₂, N[®](Alkyl)₃A[®], N[®]H(Alkyl)₂A[®] mit Alkyl enthaltend 1 bis 4 Kohlenstoffatome und A[®] für das Anion einer Säure, z. B. Cl[®], SO₄^{2®}, PO₄^{3®}, Acetat[®], BF₄[®], CF₃SO₃[®], AsF₆[®], SbF₆[®], PF₆[®] usw. stehen oder einer der Reste R[®] oder R¹² für ein Schwefelatom steht, durch das der Arylrest in ortho-Position mit R₇ verbunden ist, mit der Maßgabe, daß mindestens einer der Reste R[®] bis R¹² für eine Gruppe des Typs B—CO—O, worin B die in den Formeln (IIa) und (IIb) angegebene Bedeutung hat, steht, beispielsweise

35

50

ومارا بالمراب والراب والمراب والمنطوع ويوسي ويواني ويوسيون والمنطوع والمنط والمنطوع والمنط والمنطوع والمنط والمنط والمنط والمنط والمنط والمنطوع والمنطوع والمنطوع والمنطوع وال

60

im äquimolaren Verhältnis (gegebenenfalls mit bis zu 10 bis 30%igem Überschuß) oder entsprechend der Anzahl der Gruppen B—CO—O in den Resten R⁸ bis R¹² dem Zwei- oder Dreifachen davon unter Feuchtigkeitsausschluß, gegebenenfalls in Gegenwart eines inerten Lösungsmittels oder Lösungsmittelgemisches und eines basischen Katalysators, bei Temperaturen von 0 bis 100°C, vorzugsweise bei 20 bis 50°C, miteinander umsetzt (Weg A).

Zum Herstellverfahren ist im einzelnen Folgendes auszuführen.

Die bei der Reaktion eingesetzten Chlorformiate reagieren leicht mit Nucleophilen, u. a. auch mit Wasser. Deshalb ist bei der Reaktion auf Feuchtigkeitsausschluß durch Verwendung getrockneter nicht nucleophiler Lösungsmittel, wie z. B. Acetonitril, Dichlormethan, Dichlorethan, THF, Toluol, Xylol, Chlorbenzol, Essigester, Chloroform usw. und gegebenenfalls auf den Aufbau einer Inertgasatmosphäre, z. B. Stickstoff, Argon oder Kohlendioxid zu achten.

In der Regel wird eine Lösung oder Suspension der Hydroxyverbindung in einem inerten Lösungsmittel, welches auch wegfallen kann, wenn die Verbindung bei der Reaktionstemperatur flüssig ist, bei Temperaturen von 0 bis 100°C, vorzugsweise bei 10 bis 50°C, in Gegenwart eines basischen, nicht nucleophilen Amins, vorzugsweise Triethylamin, 4-Dimethylaminopyridin, Imidazol, 1,4-Diazabicyclo[2.2.2]octan, 1,5-Diazabicyclo[4.3.0]-non-5-en, 1,8-Diazabicyclo[5.4.0]undec-7-en, Polyvinylpyridin, N,N'-Dimethylpropylenharnstoff, N,N'-Dimethylethylenharnstoff usw., vorgelegt. Dann wird die Chlorformylverbindung, u. U. in einem inerten Lösungsmittel gelöst, wie z. B. Dichlormethan, Dichlorethan, Acetonitril, Toluol, Chlorbenzol, Xylol usw. unter Rühren im oben angegebenen Temperaturbereich zugetropft. Diese Arbeitsweise eignet sich besonders für größere Ansätze.

Nach einer Nachrührzeit von 1 bis 48 Stunden, vorzugsweise 1 bis 20 Stunden bei 10 bis 40°C wird nach Standardverfahren filtriert, gewaschen, getrocknet und das Produkt nach dem Umkristallisieren, Destillieren oder Extrahieren isoliert.

Die erfindungsgemäß funktionalisierten Acetophenone, Benzophenone und Thioxanthone eignen sich als polymerisierbare oder mit ungesättigten Verbindungen copolymerisierbare Photoinitiatoren für strahlungshärtbare Zusammensetzungen.

Überraschenderweise wurde gefunden, daß die mit der Carbonatgruppe ausgerüsteten Photoinitiatoren ab einer bestimmten Spacerlänge nach photochemischer Anregung reaktiver sind als die beispielsweise in der DE-A-37 38 567 beschriebenen Derivate. Im Gegensatz zu den in DE-A-38 20 463 beschriebenen Carbamoylderivaten neigen die Carbonate im bestrahlten Polymeren nicht zur Vergilbung, sie sind völlig geruchlos und universell einsetzbar, weil sie mit vielen Bindemitteln und Bindemittelsystemen gut verträglich sind.

Für alle in den folgenden Beispielen angegebenen Verbindungen wurde die Struktur z. T. durch unabhängige Synthesen und in allen Fällen durch korrekte ¹H-NMR-, 1R- und Massenspektren sowie durch übereinstimmende Elementaranalysen bestätigt.

Beispiel 1

4-Chlorformylbenzophenon

In eine Lösung von 4 kg 4-Hydroxybenzophenon und 190 g Benzyltrimethylammoniumchlorid in 11,4 kg o-Xylol wurden in 5 Stunden insgesamt 3,4 kg Phosgen eingeleitet. Die Innentemperatur wurde während dieser Zeit von 95 auf 120°C erhöht. Nach Beendigung der Phosgeneinleitung wurde 30 Minuten bei 115°C nachgerührt. Zur Aufarbeitung wurde der Phosgenüberschuß mit Stickstoff ausgetrieben. Das gegen Ende der Reak-

المحاصلات المحافظة المحافظة المحاريين والمرازي والمستعلق والمعروب والمرازي والمرازي والمستعلق المستعلق

tion ausgefallene Salz (Katalysator) wurde abfiltriert und das Lösungsmittel abdestilliert. Man erhielt 4,9 kg (93%) gelblich gefärbtes 4-Chlorformylbenzophenon vom Schmp. 67-72°C. Dieses Rohprodukt mit Cl-Wert = 12,69% (theor. 13,60%) wurde direkt ohne weitere Reinigung für die Folgereaktionen verwendet. In Analogie zu der im Beispiel 1 genannten Vorschrift wurden die folgenden Chlorformylverbindungen hergestellt:	5
Beispiel 2	
Aus 2-Hydroxythioxanthon wurden in 79% Ausbeute 2-Chlorformyl-thioxanthon (Cl: Ber. = 12,19%; Gef. = 12,03%) erhalten.	10
Beispiel 3	
3-Chlorformylthioxanthon war in 63% Ausbeute aus 3-Hydroxythioxanthon (Cl: Ber. = 12,19%; Gef. = 11,22%) zugänglich.	15
Beispiel 4	
Aus (4-Hydroxyphenyl)-(2-hydroxy-2-propyl)keton wurden in 75%iger Ausbeute (4-Chlorformylphenyl)-(2-hydroxy-2-propyl)keton als Rohprodukt (Cl: Ber. = 14,61%; Gef. = 13,07%) erhalten.	20
Beispiel 5	
Aus 1-(4-Hydroxyphenyl)-2-methyl-2-morpholinopropan-1-on wurde durch Phosgenierung zunächst das Hydrochlorid erhalten, welches nach vorsichtigem Versetzen mit 1,5-Diazabicyclo[4.3.0]non-5-en in das freie Amin überführt werden konnte; Ausbeute: 62% (Cl: Ber. = 11,37%; Gef. = 11,21%).	25
Beispiel 6	
4,4'-Benzoylphenyl-ethyl-carbonat	30
Zu einer Lösung von 0,25 kg Ethanol und 0,53 kg Triethylamin in 1,33 kg Tetrahydrofuran wurden bei Raumtemperatur 1,3 kg 4-Chlorformylbenzophenon in 2,2 kg Tetrahydrofuran zugetropft. Nach 1stündigem Kochen am Rückfluß wurde auf 25-30°C abgekühlt und in 20 kg Eiswasser eingerührt. Die wäßrige Phase wurde dreimal mit Dichlormethan extrahiert und die organische Phase nach dem Trocknen über Natriumsulfat im Vakuum eingeengt. Der Rückstand wurde aus Methanol umkristallisiert. Ausbeute: 1,05 kg (78%) helle Kristalle vom Schmp. 121-122°C.	35
vom Schmp. 121-122 C. Das 4,4'-Benzoylphenyl-ethyl-carbonat war mit authentischem Material (Can. J. Chem. 56, 1031 [1978]) identisch.	
Beispiele 7 bis 18	40
· · · · · · · · · · · · · · · · · · ·	
In Analogie zu der im Beispiel 6 angegebenen Vorschrift wurden die folgenden unsymmetrischen Carbonate hergestellt.	45
	50
	55
	. 60

Nr.	Verbindung	Ausbeute [%]
7	O OCH,	83
8		58
	o L	
9	O OCH,	65
10	H,CO O OCH,	67,
11	о СН, С—СН, ОН	75
12	O CH, C—CH, OH	69
13	о сн, С—сн, Он	52
14	H,CO O CH,	88

Nr.	Verbindung	Ausbeute [%]	
15	O CH ₃ C—CH ₃ N O	73	10
16	O OCH,	72	20
17	O OC,H,	77	25
18	O OC2H3	70	30 35

Beispiel 19

α,ω-Acryloylbutylen-(4,4'-benzoylphenyl)-carbonat

Zu der Lösung von 7,2 kg Butandiolmonoacrylat und 5,3 kg Triethylamin in 17 kg Toluol wurden bei 25 bis 30°C 13,0 kg 4-Chlorformyl-benzophenon in 22 kg Toluol zugetropft. Nach zweistündigem Nachrühren bei Raumtemperatur wurde nacheinander mit Wasser, Natriumhydrogencarbonatlösung und wieder mit Wasser gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und im Wasserstrahlvakuum eingeengt. Es wurden 17,9 kg (97%) einer gelblichen, viskosen Flüssigkeit isoliert, die dünnschichtchromatographisch einheitlich war.

Beispiel 20

In der Lösung von 0,5 kg Triethylamin in 4,3 kg Toluol wurden 0,91 kg 2-Hydroxythioxanthon suspendiert und zu dieser Mischung bei 20 bis 24°C eine Lösung von 0,81 kg 2-Chlorformyl-ethylmethacrylat zu 1,7 kg Toluol langsam zugetropft. Nach Zusatz von 0,002 kg Phenothiazin wurde 18 Stunden bei Raumtemperatur nachgerührt. Die organische Phase wurde dann mit Wasser, Natriumhydrogencarbonat-Lösung und wieder mit Wasser gewaschen. Nach dem Trocknen über Natriumsulfat und Einengen im Wasserstrahlvakuum wurde der Rückstand aus Isopropanol umkristallisiert.

Ausbeute: 0,97 kg (63%) gelbe Kristalle vom Schmp. 72-76°C.

Beispiele 21 bis 34

In Analogie zu den in den Beispielen 19 bzw. 20 ausführlich beschriebenen Verfahren wurden die folgenden 6 Verbindungen synthetisiert:

65

55

40

Nr.	Verbindung	Ausbeute [%]
21		89
22		94
23		95
24		49
25	H,C — O O O O	64
26	H ₃ C O O O O O O O O O O O O O O O O O O O	71
27	$H_1C \xrightarrow{N} O O O O$	76

Nr.	Verbindung	Ausbeute [%]
28		58
	o H	
29	O O O O O O O O O O O O O O O O O O O	73
30	O O O NH	97
31		42
32		88
33		79
34		82
	0 0 0	•

Beispiele 35 bis 53

Anwendung der Aceto-, Benzophenon- und Thioxanthonderivate als Photoinitiatoren

65

In einem Modellpolymeren aus 62 Gew.-% eines bifunktionellen Epoxidacrylats (Acrylat, abgeleitet vom Bisphenolglycidylether), 35 Gew.-% Hexandioldiacrylat und 3 Gew.-% Butanol (Viskositätseinstellung, Filmbildung) werden 0,1 bis 0,3 g des zu prüfenden Photoinitiators zusammen mit 0,2 bis 0,3 g Amin und gegebenenfalls

einem Sensibilisator gelöst und 1 Stunde nachgerührt. Während dieser Zeit wird die Meßzelle vorbereitet. Sie besteht aus zwei hochtransparenten NaCl-Fenstern, die durch zwei je 25 µm dicke Folien getrennt sind. Die zu messende Polymerprobe wird nun auf eine der Folien aufgetragen, mit der anderen abgedeckt und der Stapel mit den NaCl-Fenstern in einem Metallrahmen so eingespannt, daß zwischen den Folien ein ca. 10 bis 30 µm dicker Film entsteht.

Dieser Sandwich wird mit einer Quecksilber-Höchstdrucklampe (HBO 200 W) im Abstand von 51 cm bestrahlt, wobei durch Interferenzfilter zusätzlich nur eine bestimmte Wellenlänge (z. B. 330, 365, 404 nm) ausge-

wählt werden kann.

Vor der Bestrahlung wird ein IR-Spektrum des Proben-Sandwichs gemessen (t=0) und dies nach 5 s Bestrahlung wiederholt. Bei einem guten Photoinitiator hat die Intensität der den Acrylatgruppen zugeordneten Banden deutlich abgenommen, während die des aromatischen internen Standards unverändert bleiben. Daraus kann für jede Bande eine für den Photoinitiator charakteristische Zahl berechnet werden.

Diese Auswertung wird für die drei intensivsten "Acrylatbanden" durchgeführt und die Werte additiv zur sog. Initiatorkennzahl zusammengefaßt. Diese Kennzahl ist eine reine Maßzahl und umfaßt die Werte 1 bis 15. Je

besser ein Initiator die Polymerisation initiiert, umso höher ist seine Kennzahl.

Die Kennzahlen korrelieren mit den für Photopolymere typischen Kenngrößen wie Bleistifthärte und Pendel-

härte nach König.

20

25

30

35

40

45

50

55

60

65

Folgende Werte wurden gefunden:

22

Beispiel Nr.	Verbindung	Sensibilisator	Initiator- kennzahl
	0=		
35		ſ	5.4
36	desgl.	Michler's Keton	10.7
37	о осн, с с с с с с с с с с с с с с с с с с	1	©: 88
38	о сн, с—сн, он	·	8.6
39	о сн, с-сн, о он он		2.8
	НО		

DE 38 44 444 A1

Beispiel Nr.	Verbindung	Sensibilisator K	loitiator- kennzahl
04	о сн, с-сн, о о о о о о о о о о о о о о о о о о о	1	4.2
4 1	$ \begin{array}{c c} c & c & c \\ c & c & $		۲,4
42	о NH О С С С С С С С С С О О О О О О О О О		5.0
. 43	$ \begin{array}{c c} 0 & CH, \\ C & CH$		6.1

Beispiel Nr.	Verbindung	Sensibilisator	Initiator- kennzahl
	0 0 CH,		
4	z – z – z – z – z – z – z – z – z – z –		5.5
45		l	9.1
. 46		1	11.4
ţ		Michigale Keton	11.7
4	desgr.	Michiga S Neton	•
48		ı	7.3

Beispiel Nr.	Verbindung	Sensibilisator	Initiator- kennzahl
49			8 4.
20	H,C C C C C C C C C C C C C C C C C C C	ı	10.1
51	н,с но—с сн,		6.8
52	desgl.	Thioxanthon	10.5

Verbindung	Sensibilisator ln	Initiator- kennzahl
		9.5

Beispiel Nr.

Legende zu den Beispielen Nr.:

53

41: nach DE-A-35 34 645;
42: in guten Ausbeuten zugänglich aus Darocur[®] 2959 und Isocyanatoethylmethacrylat;
43: aus Darocur 2959 und 2-Chlorformylethylmethacrylat in 79% Ausbeute zugänglich;
44: aus 2-Benzyl-2-(dimethylamino)-1-{4-(2-hydroxyetbyloxy)-phenyl|butan-1-on und 2-Chlorformylethylmethacrylat in 84% Ausbeute zugänglich.

Die Beispiele 35 bis 44 sind Vergleichsbeispiele.

Patentansprüche

1. Ethylenisch ungesättigte copolymerisierbare, Strahlungsempfindliche organische Verbindungen der allgemeinen Formel (I)

worin

10

15

20

25

30

35

40

50

55

60

65

R für einen geradkettigen Alkylrest mit 1 bis 4 Kohlenstoffatomen, einen verzweigten, gegebenenfalls substituierten, Alkylrest mit 3 oder 4 Kohlenstoffatomen, für einen Arylrest oder den Rest R¹ steht und für den Rest

steht, wobei die Reste

R² bis R⁶ untereinander gleich oder verschieden sind und für H, Alkyl mit 1 bis 4 Kohlenstoffatomen, Phenyl, OH, OCH₃, OC₂H₅, SH, SCH₃, SC₂H₅, F, Cl, Br, CN, COOH, COOAlkyl enthaltend 1 bis 17 Kohlenstoffatome, COOAryl, CF₃, N(Alkyl)₂, N(Alkyl)₂, N(Alkyl)₂, N(Alkyl)₃, N(Alkyl)₂, N[⊕](Alkyl)₃A[⊕], N[⊕]H(Alkyl)₂A[⊕] mit Alkyl enthaltend 1 bis 4 Kohlenstoffatome, und A[⊕] für das Anion einer Säure stehen und mindestens einer, aber maximal drei der Reste R² bis R⁶ für den Rest

$$-0-C-O-X-Z-C-C=CH_2$$
 oder $-O-C-O-X-Z-CH=CH$

stehen, worin

X für einen zweiwertigen, gegebenenfalls substituierten, gegebenenfalls perfluorierten, Alkylenrest $-(CH_2)_m$, oder $-(CF_2)_m$, einen Rest

mit m = 1 bis 10,

worin R' und R" untereinander gleich oder verschieden sind und für Aryl, H, COOH, COOCH₃, COOC₂H₅ oder Alkyl stehen, für einen, gegebenenfalls perfluorierten, Oxaalkylenrest $-(CH_2)_n - O - (CH_2)_p -$ oder $-(CF_2)_n - O - (CF_2)_p -$ mit n = 1 bis 5 und p = 1 bis 5 oder einen, gegebenenfalls perfluorierten, Polyoxaalkylenrest mit 2 bis 20 Sauerstoffatomen, die miteinander über mindestens eine $-CH_2 -$, $-CF_2 -$ oder $-CH_2 -$ CH(CH₃)-Gruppe verbunden sind, für einen Rest

 $-(CH_2)_m - O - CO - O - (CH_2)_n - , -(CH_2)_n - O - CO - NH - (CH_2)_m - ,$

 $-(CH_2)_m - NH - CO - O - (CH_2)_m - , -(CH_2)_m - CO - O - (CH_2)_n - oder - (CH_2)_m - O - CO - (CH_2)_n - oder - (CH_2)_m - O - (CH_2)_n - oder - (CH_2)_m - oder - ($

Y für H, Alkyl mit 1 bis 6 Kohlenstoffatomen oder Phenyl und

Z für O oder NY stehen,

oder für den Fall, daß R für einen Arylrest steht, einer der Reste R² oder R⁶ für ein Schwefelatom stehen kann, durch das der Arylrest R in ortho-Position mit R¹ verbunden ist.

2. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I), dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel (IIa) oder (IIb)

Α1 DE 38 44 444

X, Y und Z die in Anspruch 1 angegebene Bedeutung haben und B für eine der Gruppen Tosylat, Alkoxy, Halogen, Chlorcarbonyl, Imidazolyl, Pyrazolyl, Phosphonium-, Sulfonium-, Ammonium- oder Pyridiniumkation steht, mit einer Verbindung der allgemeinen Formel (IIIa)

10

15

25

40

45

50

$$R^{7} - C \qquad R^{4}$$

$$R^{10} \qquad R^{10}$$

$$R^{10} \qquad R^{10}$$

$$R^{10} \qquad R^{10}$$

R7 für einen geradkettigen Alkylrest mit 1 bis 4 Kohlenstoffatomen, einen verzweigten, gegebenenfalls substituierten, Alkylrest mit 3 oder 4 Kohlenstoffatomen oder einen Arylrest steht und worin die Reste R8 bis R12 untereinander gleich oder verschieden sind und für H, Alkyl mit 1 bis 4 Kohlenstoffatomen, Phenyl, OH, OCH₃, OC₂H₅, SH, SCH₃, SC₂H₅, F, Cl, Br, CN, COOH, COOAlkyl, enthaltend 1 bis 17 Kohlenstoffatome, COOAryl, CF₃, N(Alkyl)₂, N(Alkyl)₂, N(Aryl)₂, N(Alkyl)₂A[©], N[®](Alkyl)₂A[©] mit Alkyl, enthaltend 1 bis 4 Kohlenstoffatome, und A[©] für das Anion einer Säure stehen oder einer der Reste R⁸ oder R12 für ein Schwefelatom stehen kann, durch das der Arylrest in ortho-Position mit R7 verbunden ist, mit der Maßgabe, daß mindestens einer der Reste R⁸ bis R¹² für eine Hydroxylgruppe steht, im äquimolaren Verhältnis oder entsprechend der Anzahl der Hydroxylgruppen in den Resten R⁸ bis R¹² dem Zwei- oder Dreifachen davon, gegebenenfalls in Gegenwart eines inerten Lösungsmittels oder Lösungsmittelgemisches und eines basischen Katalysators, bei Temperaturen von 0 bis 100°C unter wasserfreien Bedingungen miteinander umsetzt. 3. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I), dadurch gekennzeichnet, daß

 $HO-X-Z-CH=CH_1$ (IVb) 0

(IVa)

man eine Verbindung der allgemeinen Formel (IVa) oder (IVb)

X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, mit einer Verbindung der allgemeinen Formel (IIIb)

$$R^{7} - C \qquad R^{6}$$

$$R^{12} \qquad R^{10}$$

$$R^{12} \qquad R^{10}$$

$$R^{12} \qquad R^{10}$$

$$R^{13} \qquad R^{10}$$

$$R^{14} \qquad R^{15} \qquad R^{10}$$

R7 für einen geradkettigen Alkylrest mit 1 bis 4 Kohlenstoffatomen, einen verzweigten, gegebenenfalls substituierten, Alkylrest mit 3 oder 4 Kohlenstoffatomen oder einen Arylrest steht und worin die Reste R8 bis R12 untereinander gleich oder verschieden sind und für H, Alkyl mit 1 bis 4 Kohlenstoffatomen, Phenyl, OH, OCH₃, OC₂H₅, SH, SCH₃, SC₂H₅, F, Cl, Br, CN, COOAlkyl mit Alkyl enthaltend 1 bis 17 Kohlenstoffatome, COOAryl, CF₃, N(Alkyl)₂, N(Alkyl)(Aryl), N(Aryl)₂, N[®](Alkyl)₃A^O, N[®]H(Alkyl)₂A^O mit Alkyl, enthaltend 1 bis 4 Kohlenstoffatome, und A^O für das Anion einer Säure stehen oder einer der Reste R[®] oder R12 für ein Schwefelatom stehen kann, durch das der Arylrest in ortho-Position mit R7 verbunden ist,

5

10

15

20

25

30

35

40

45

50

55

60

65

mit der Maßgabe, daß mindestens einer der Reste R⁸ bis R¹² für eine Gruppe B-CO-O, worin B für Tosylat, Alkoxy, Halogen, Chlorcarbonyl, Imidazolyl, Pyrazolyl, Phosphonium-, Sulfonium-, Ammonium-oder Pyridiniumkation steht, im äquimolaren Verhältnis oder entsprechend der Anzahl der Gruppen B-CO-O in den Resten R⁸ bis R¹² dem Zwei- oder Dreifachen davon, gegebenenfalls in Gegenwart eines inerten Lösungsmittels oder Lösungsmittelgemisches und eines basischen Katalysators, bei Temperaturen von 0 bis 100°C unter wasserfreien Bedingungen miteinander umsetzt.

4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß es sich bei den Verbindungen der allgemeinen Formel (IIa) und (IIb) um ω-Chlorformylalkyl-(meth)-acrylare und ω-Chlorformylalkylvinylether handelt.

- 5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß es sich bei den Verbindungen der allgemeinen Formel (IIIb) um ein gegebenenfalls substituiertes Chlorformylacetophenon, Chlorformylbenzophenon oder Chlorformylthioxanthon handelt.
- 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine äquimolare Menge einer starken, nicht nucleophilen Base, vorzugsweise eines tertiären Amins, anwesend ist.
- 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Reaktionstemperatur im Bereich von 20 bis 60°C liegt.
- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in einem inerten, wasserfreien Lösungsmittel, gegebenenfalls unter Feuchtigkeitsausschluß, gearbeitet wird.
- 9. Strahlungsempfindliches Gemisch, dadurch gekennzeichnet, daß es als Photoinitiator mindestens eine ethylenisch ungesättigte, copolymerisierbare organische Verbindung nach Anspruch 1, gegebenenfalls im Gemisch mit weiteren reaktiven ethylenisch ungesättigten Verbindungen, Sensibilisatoren und weiteren üblichen Zusatzstoffen enthält.
- 10. Verwendung der copolymerisierbaren ethylenisch ungesättigten Verbindungen nach Anspruch 1 zur Herstellung polymerer, strahlungsempfindlicher Verbindungen.
- 11. Verwendung der Vinylether-Monomeren nach Anspruch 1 als reaktive Komponenten bei kationischen Polymerisationen zur Herstellung polymerer, strahlungsempfindlicher Verbindungen und als Comonomere in Hybrid-(Double-Cure)Systemen.