Pattern Recognition and Machine Learning

Lab - 11 Assignment Report

Aryan Himmatlal Prajapati (B21EE012)

Question 1.

Pre-Processed the dataset by handling missing values and normalizing the data. Split in the ratio 70:20:10 for train-test-validation.

Applied Dimensionality reduction on dataset using PCA(n_components=2).

Question 2.

Trained an SVM classifier using Sklearn library. Analyzed the performance (classification accuracy) for different values of 'C'.

For C = 0.03125:

Accuracy: 0.6626506024096386

For C = 0.5:

Accuracy: 0.7710843373493976

Decision Boundary:

For C = 8:

Accuracy: 0.7590361445783133

For C = 128:

Accuracy: 0.7590361445783133

Decision Boundary:

For C = 32768:

Accuracy: 0.7590361445783133

Question 3.

Used various types of kernels(RBF, Linear, Quadratic etc) and trained the SVM model using the Sklearn library. Plotted the decision boundary for different svm models trained.

For Kernel = 'Poly':

Accuracy: 0.6626506024096386

Decision Boundary:

For Kernel = 'rbf':

Accuracy: 0.8674698795180723

For Kernel = 'linear':

Accuracy: 0.7710843373493976

Decision Boundary:

Question 4.

Varying values of v and linear kernel:

For v = 0.25:

For v = 0.5:

For v = 0.75:

Varying Kernels:

Quadratic Kernel:

Radial Basis Function Kernel:

Sigmoid Kernel:

Varying values of γ and Quadratic kernel:

For $\gamma = 0.001$:

For $\gamma = 0.1$:

For $\gamma = 0.5$:

Varying values of C0 and Quadratic kernel:

For C0 = 0.001:

For C0 = 1:

