Problemas

7. La Pro – raket fabrica y vende tres líneas de raquetas de tenis: A, B y C. A es una raqueta estándar, B y C son raquetas profesionales. El proceso de manufactura de las raquetas hace que se requieran dos operaciones de producción; todas las raquetas pasan a través de ambas operaciones. Cada raqueta requiere 3 horas de tiempo de producción en la operación 1. En la operación 2 la raqueta A requiere 2 horas de tiempo de producción; la raqueta B requiere 4 horas y la C, 5. La operación 1 tiene 50 horas de tiempo semanal de producción y la operación 2 tiene suficiente mano de obra para operar 80 horas a la semana. El grupo de mercadotecnia de la Pro – raket ha proyectado que la demanda de la raqueta estándar no será de más de 25 por semana. Debido a que las raquetas B y C son de calidad similar, se ha pronosticado que la demanda combinada para éstas será, en total, de diez o más, pero no más de 30 por semana. La venta de la raqueta A da como resultado \$70 de utilidades, en tanto que las raquetas B y C proporcionan utilidades de \$80 y \$85, respectivamente. ¿Cuántas raquetas del tipo A, B y C deben fabricarse por semana si la compañía busca maximizar sus utilidades?

Primero declaramos las variables como

X1=cantidad de raquetas A

X2=cantidad de raquetas B

X3=cantidad de raquetas C

Las utilidades están dadas por:

$$z = 70x1 + 80x2 + 85x3$$

Restricciones

Para la operación 1

$$3x1 + 3x2 + 3x3 \le 50$$

Para la operación 2

$$2x1 + 4x2 + 5x3 \le 80$$
$$x1 \le 25$$
$$x2 + x3 \le 30$$

Por lo tanto, se busca

$$maximizar z = 70x1 + 80x2 + 85x3$$

Sujeto a

$$3x1 + 3x2 + 3x3 \le 50$$

$$2x1 + 4x2 + 5x3 \le 80$$
$$x1 \le 25$$
$$x2 + x3 \le 30$$

8. Campos Hermanos fabrica piezas de metal de alta precisión que se utilizan en los motores de automóviles de carreras. La pieza se fabrica en un proceso de forjado y refinación y son necesarias cantidades mínimas de diversos metales. Cada pieza requiere 40 onzas de plomo, 48 de cobre y 60 de hierro colado. Existen 4 tipos de mineral disponible para el proceso de forjado y refinación. El mineral de tipo 1 contiene 4 onzas de plomo, 2 de cobre y 2 de acero colado por libra. Una libra de mineral del tipo 2 contiene 2 onzas de plomo, 6 de cobre y 6 de acero colado. Una libra del mineral tipo 3 contiene 1 onza de plomo, 4 de cobre y 4 de acero colado. Por último, el mineral de tipo 4 contiene 1/2 onza de plomo, 1 de cobre y 8 onzas de acero colado por libra. El costo por libra para los cuatro minerales es \$20, \$30, \$60 y \$50, respectivamente. A la Campos le gustaría mezclar los minerales de manera que se satisfagan las especificaciones de las piezas y se minimice el costo de fabricarlas. Defina las variables de decisión y plantee el apropiado modelo de PL.

Empezamos declarando los materiales como

X1= cantidad de tipo 1

X2= cantidad de tipo 2

X3= cantidad de tipo 3

X4= cantidad de tipo 4

El costo está dado por:

$$z = 20x1 + 30x2 + 60x3 + 50x4$$

Restricciones, cada pieza necesita plomo, cobre y acero, por lo que nos queda:

$$4x1 + 2x2 + x3 + 0.5x4 \ge 40$$

$$2x1 + 6x2 + 4x3 + 4x4 \ge 48$$

$$2x1 + 6x2 + 4x3 + 8x4 \ge 60$$

Entonces, se busca

$$minimizar z = 20x1 + 30x2 + 60x3 + 50x4$$

Sujeto a

$$4x1 + 2x2 + x3 + 0.5x4 \ge 40$$

$$2x1 + 6x2 + 4x3 + 4x4 \ge 48$$

$$2x1 + 6x2 + 4x3 + 8x4 \ge 60$$

- 9. Una compañía de zapatos fabrica tres tipos de calzado para caballeros:
- a) Mocasines
- b) Botas
- c) Pantuflas

El gerente de producción desea decidir cuál es el mejor programa de fabricación de los tres estilos que producirá la mayor contribución a las utilidades. Los datos de la siguiente tabla describen la operación de manufactura:

PRODUCTO	HORAS DE TIEMPO POR PAR DE ZAPATOS	UNIDADES DE PIEL REQUERIDAS POR PAR
MOCASINES	3.50	3.25
BOTAS	2.50	4.50
PANTUFLAS	2.00	2.00

Existe una oferta ilimitada de piel para el fabricante; sin embargo, se dispone de un máximo de 1200 horas de producción. El tiempo de producción cuesta \$10 por hora (por par); por cada unidad de piel, el costo es de \$4.00. Los precios de venta para cada par de zapatos son de \$60, \$64 y \$50, respectivamente. Además, se dispone únicamente de \$13 560 para hacer frente a la producción. Y tiene comprometidos 30, 55 y 32 pares de cada uno, vendiéndose por separado el exceso de producción.

Nuestras variables son

X1= cantidad de mocasines

X2= cantidad de botas

X3= cantidad de pantuflas

Las utilidades están dadas por

$$z = 60x1 + 64x2 + 50x3$$

Restricciones

Para el tiempo nos queda que:

$$3.5x1 + 2.5x2 + 2x3 \le 1200$$

Para el tiempo de producción se debe satisfacer

$$4(32.5x1 + 45x2 + 20x3) \le 13560$$

También se necesita que $x1 \ge 30 \ x2 \ge 55 \ x3 \ge 32$

Por lo tanto, se busca

$$maximizar z = 60x1 + 64x2 + 50x3$$

Sujeto a

$$3.5x1 + 2.5x2 + 2x3 \le 1200$$

 $4(32.5x1 + 45x2 + 20x3) \le 13560$

$$x1 \ge 30 \ x2 \ge 55 \ x3 \ge 32$$