# Image Processing II

Computer Vision: AI3604

## Image Processing I

Transform image to new one that is easier to manipulate.

#### Topics:

- (1) Pixel Processing
- (2) Convolution
- (3) Linear Filtering
- (4) Non-Linear Filtering
- (5) Correlation

Lecture 1

### Image Processing II

Transform image to new one that is easier to manipulate.

#### Topics:

- (6) Frequency Representation of Signals
- (7) Fourier Transform
- (8) Convolution and Fourier Transform
- (9) Deconvolution in Frequency Domain
- (10) Binary Image Processing

Lecture 2

Computer Vision: Algorithms and Appications (Chapter 3.3-3.4) Szelinski, 2011 (available online)

# Jean Baptiste Joseph Fourier



(1768-1830)

Any Periodic Function can be rewritten as a Weighted Sum of Infinite Sinusoids of Different Frequencies.

### Sinusoid

$$f(x) = A\sin(2\pi ux + \varphi)$$



A: Amplitude T: Period

 $\varphi$ : Phase u: Frequency (1/T)

### **Fourier Series**





### **Fourier Series**





## An Alternate Representation of Signal



### Sinusoid

#### Orthogonal bases

$$\int_{-\pi}^{\pi} \sin nx \cdot \cos mx \, dx = 0$$

$$\int_{-\pi}^{\pi} \sin nx \cdot \sin mx \, dx = 0 \ (n \neq m)$$

$$\int_{-\pi}^{\pi} \cos nx \cdot \cos mx \, dx = 0 \ (n \neq m)$$

$$\int_{-\pi}^{\pi} \sin nx \cdot \sin mx \, dx = 1 \ (n = m)$$

$$\int_{-\pi}^{\pi} \cos nx \cdot \cos mx \, dx = 1 \ (n = m)$$

## Exponential Sinusoid (Euler Formula)

What if the function is not periodic?



$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$i = \sqrt{-1}$$

## Finding FT and IFT

#### Fourier Transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx$$

x: space

*u*: frequency

#### **Inverse Fourier Transform:**

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} du$$

## Fourier Transform is Complex!

F(u) holds the Amplitude and Phase of the Exponential Sinusoid of frequency u.

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx$$

$$F(u) = \Re\{F(u)\} + i \Im\{F(u)\}$$

Amplitude:  $A(u) = \sqrt{\Re\{F(u)\}^2 + \Im\{F(u)\}^2}$ 

Phase:  $\varphi(u) = \operatorname{atan2}(\mathfrak{Im}\{F(u)\}, \mathfrak{Re}\{F(u)\})$ 

### Signal f(x)



$$f(x) = \cos 2\pi kx$$



$$F(u) = \frac{1}{2} [\delta(u+k) + \delta(u-k)]$$

### Signal f(x)



$$f(x) = \cos 2\pi k_1 x + \cos 2\pi k_2 x$$



$$F(u) = \frac{1}{2} [\delta(u + k_1) + \delta(u - k_1) + \delta(u + k_2) + \delta(u - k_2)]$$

### Signal f(x)



$$f(x) = \sin 2\pi kx$$



$$F(u) = \frac{1}{2}i[\delta(u+k) - \delta(u-k)]$$

### Signal f(x)



$$f(x) = 1$$



$$F(u) = \delta(u)$$

### Signal f(x)



$$f(x) = \delta(x)$$

| $\Re\{F(u)\}$ |
|---------------|
|               |
|               |
| u             |
|               |
|               |

$$F(u) = 1$$

### Signal f(x)



$$f(x) = \text{Rect}(\frac{x}{T})$$



$$F(u) = T \operatorname{sinc} Tu$$

### Signal f(x)



$$f(x) = \operatorname{Tri}\left(\frac{x}{T}\right)$$



$$F(u) = T \operatorname{sinc}^2 T u$$

### Signal f(x)



$$f(x) = e^{-ax^2}$$



$$F(u) = \sqrt{\pi/a} e^{-\pi^2 x^2/a}$$

### Convolution and Fourier Transform

Let 
$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(\tau)h(x - \tau) d\tau$$
.

Then FT of g(x):

$$G(u) = \int_{-\infty}^{\infty} g(x)e^{-i2\pi ux}dx$$

$$G(u) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)h(x - \tau)e^{-i2\pi ux}d\tau dx$$

$$G(u) = \int_{-\infty}^{\infty} f(\tau)e^{-i2\pi u\tau}d\tau \int_{-\infty}^{\infty} h(x-\tau)e^{-i2\pi u(x-\tau)}dx$$

F(u)

H(u)

### Convolution and Fourier Transform

| Spatial Domain                    |          |          | Frequency Domain                 |
|-----------------------------------|----------|----------|----------------------------------|
| g(x) = f(x) * h(x)<br>Convolution | <b>←</b> | <b>→</b> | G(u) = F(u) H(u)  Multiplication |
| g(x) = f(x) h(x)  Multiplication  | <b>←</b> | <b>→</b> | G(u) = F(u) * H(u) Convolution   |

#### **The Convolution Theorem**

# Properties of Fourier Transform

| Property        | Spatial Domain                   | Frequency Domain                         |
|-----------------|----------------------------------|------------------------------------------|
| Linearity       | $\alpha f_1(x) + \beta f_2(x)$   | $\alpha F_1(u) + \beta F_2(u)$           |
| Scaling         | f(ax)                            | $\frac{1}{ a }F\left(\frac{u}{a}\right)$ |
| Shifting        | f(x-a)                           | $e^{-i2\pi ua}F(u)$                      |
| Differentiation | $\frac{d^n}{dx^n}\big(f(x)\big)$ | $(i2\pi u)^n F(u)$                       |

## Convolution Using Fourier Transform

$$g(x) = f(x) * h(x)$$

$$IFT \qquad FT \qquad FT$$

$$G(u) = F(u) \times H(u)$$

## Gaussian Smoothing in Fourier Domain



Convolve the Noisy Signal with a Gaussian Kernel









Gaussian Blurred Signal g(x) Computer Vision, SJTU, Wei Shen

### 2D Fourier Transform

#### Fourier Transform:

$$F(u,v) = \iint_{-\infty}^{\infty} f(x,y)e^{-i2\pi(ux+vy)}dxdy$$

u and v are frequencies along x and y, respectively

#### **Inverse Fourier Transform:**

$$f(x,y) = \iint_{-\infty}^{\infty} F(u,v)e^{i2\pi(xu+yv)}dudv$$

### 2D Fourier Transform: Discrete Images

### Discrete Fourier Transform (DFT):

$$F[p,q] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-i2\pi pm/M} e^{-i2\pi qn/N}$$

$$p = 0 \dots M-1$$

$$q = 0 \dots N-1$$

J

p and q are frequencies along m and n, respectively

#### Inverse Discrete Fourier Transform (IDFT):

$$f[m,n] = \frac{1}{MN} \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} F[p,q] e^{i2\pi pm/M} e^{i2\pi qn/N}$$

$$m = 0 \dots M - 1$$
$$n = 0 \dots N - 1$$









 $\log(|F(p,q) + G(p,q)|)$ 

Note: log(|F|) is used just for display





# Low Pass Filtering



# Low Pass Filtering



# Low Pass Filtering



# Low Pass Filtering











# Gaussian Smoothing



# Gaussian Smoothing



# Gaussian Smoothing



#### **Motion Blur**



Scene f(x, y)



\*

PSF h(x, y) (Camera Shake)



Image g(x,y)

$$f(x,y) * h(x,y) = g(x,y)$$

#### **Motion Blur**



$$f(x,y) * h(x,y) = g(x,y)$$

Given captured image g(x,y) and PSF h(x,y), can we estimate actual scene f(x,y)?

#### Fourier Transform To the Rescue!



Let f' be the recovered scene.

f'(x,y) \* h(x,y) = g(x,y)

$$F'(u,v)H(u,v) = G(u,v)$$

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow IFT \longrightarrow f'(x,y)$$
Der 2022 Computer Vision, SJTU, Wei Shen 61

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$



$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$



Step 1: Recover F'(u, v) in Fourier Domain

$$F'(u,v) = \frac{G(u,v)}{H(u,v)} \longrightarrow \text{IFT} \longrightarrow f'(x,y)$$



Step 2: Compute IFT of F'(u, v) to recover scene

### From Continuous to Digital Image

Continuous Signal:



Digital Signal:



How "dense" should the samples be?

## Sampling Problem



Low Frequency Signal



Higher Frequency Signal



"Aliasing"

Reconstructed Signal
29 September 2022 Con

Reconstructed Signal Computer Vision, SJTU, Wei Shen

## Sampling Problem



"Well sampled" image



"Under sampled" image (visible aliasing artifacts)

## Sampling Theory

#### Continuous Signal:



#### **Shah Function** (Impulse Train):

$$s(x) = \sum_{n = -\infty}^{\infty} \delta(x - nx_0)$$



Sampled Function:

$$f_S(x) = f(x)S(x)$$

### Nyquist Theorem

Can we recover f(x) from  $f_s(x)$ ? In other words, can we recover F(u) from  $F_s(u)$ ?

Only if 
$$u_{max} \leq \frac{1}{2x_0}$$
 (Nyquist Frequency)



$$F(u) = F_{S}(u)C(u)$$

$$f(x) = IFT(F(u))$$

$$C(u) = \begin{cases} x_0, & |u| < 1/2x_0 \\ 0, & Otherwise \end{cases}$$

### Aliasing in Digital Image Sensors

Aliasing occurs when imaging a scene (signal) that has frequencies above the Nyquist Frequency





Aliasing artifacts usually occur in the form of Moiré patterns

Aliasing is unavoidable. But its effects can be minimized.

### Minimizing the Effects of Aliasing

Band Limit: Clip the signal above the Nyquist frequency.

Effectively, "blur" the scene before sampling.



Pixels are area-samplers (box-averaging filter)



Use optical low-pass filter (anti-aliasing filter)

# BINARY IMAGE PROCESSING

## What are Binary Images?

Binary Image: Can have only two values (0 or 1). Simple to process and analyze.









### Binary Images: Properties and Methods

Binary Image: Can have only two values (0 or 1). Simple to process and analyze.

#### Topics:

- (1) Geometric Properties
- (2) Discrete Binary Images
- (3) Multiple Objects (Connectivity)
- (4) Sequential and Iterative Processing

### Representation

• A (grey) image I is a function 
$$I:\left\{egin{array}{ccc} \Omega\subset\mathbb{R}^2 & o & \mathbb{R} \\ p=(x,y) & \mapsto & I(x,y) \end{array}
ight.$$

Represented, after sampling and quantization, by a matrix



### Representation





## Making Binary Images

Binary Image b(x,y): Usually obtained from Gray-level (or other) image g(x,y) by Thresholding.

#### Characteristic Function:

$$b(x,y) = \begin{cases} 0, & g(x,y) < T \\ 1, & g(x,y) \ge T \end{cases}$$

## Histograms





- H(x) is the number of pixels in image I with grey value x
- Probability of observing grey value x ?

$$p(x) = \frac{H(x)}{s_x \times s_y}$$

Invariant to pixel permutations

## Selecting a Threshold (T)



Gray Image g(x, y)









Binary Image  $\overline{b(x,y)}$ 

## Geometric Properties of Binary Images

#### Assume:

- b(x,y) is continuous
- Only one object



#### Area and Position

#### Area: (Zeroth Moment)

$$A = \iint\limits_I b(x,y)\,dx\,dy$$



Position: Center of Area (First Moment)

$$\overline{x} = \frac{1}{A} \iint_{I} x b(x, y) dx dy , \quad \overline{y} = \frac{1}{A} \iint_{I} y b(x, y) dx dy$$

### Discrete Binary Images

 $b_{ij}$ : Value at cell (pixel) in row i and column j.

Assume pixel area = 1.

Area: 
$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}$$



Position: Center of Area (First Moment)

$$\overline{x} = \frac{1}{A} \sum_{i=1}^{n} \sum_{j=1}^{m} j b_{ij}$$
  $\overline{y} = \frac{1}{A} \sum_{i=1}^{n} \sum_{j=1}^{m} i b_{ij}$ 

### Discrete Binary Images

#### **Second Moments:**

$$a' = \sum_{i=1}^{n} \sum_{j=1}^{m} i^2 b_{ij}$$
  $b' = 2 \sum_{i=1}^{n} \sum_{j=1}^{m} ij b_{ij}$   $c' = \sum_{i=1}^{n} \sum_{j=1}^{m} j^2 b_{ij}$ 

Note: a', b', c' are second moments w.r.t origin. a, b, c (w.r.t. center) can be found from a', b', c',  $\overline{x}$ ,  $\overline{y}$ , A

Hint: Expand  $a = \sum_{i=1}^{n} \sum_{j=1}^{m} (i - \overline{y})^2 b_{ij}$  and represent in terms of a',  $\overline{y}$ , A.

#### Orientation

Difficult to define!



Use: Axis of Least Second Moment

#### Orientation

Axis of Least Second Moment minimizes:

$$E = \iint_{I} r^2 b(x, y) \, dx \, dy$$



Which equation to use for axis?

$$y = mx + b$$
?  $-\infty \le m \le \infty$ 

Use: 
$$x \sin \theta - y \cos \theta + \rho = 0$$

 $\rho$ ,  $\theta$  are finite

Find  $\rho$  and  $\theta$  that minimize E for given b(x,y)

### Recall Polar Coordinates

$$x = r * \cos t$$

$$y = r * \sin t$$

$$r = \operatorname{sqrt}(x*x + y*y)$$

$$t = \operatorname{atan2}(y,x)$$

### Minimizing Second Moment

We can show that for any point (x, y):

$$r = x \sin \theta - y \cos \theta + \rho$$



So, minimize:

$$E = \iint_{I} (x \sin \theta - y \cos \theta + \rho)^{2} b(x, y) dx dy$$

Using 
$$\frac{\partial E}{\partial \rho} = 0$$
 we get:  $A(\overline{x}\sin\theta - \overline{y}\cos\theta + \rho) = 0$ 

Axis passes through center  $(\overline{x}, \overline{y})!$ 

### Shift the Coordinate System

#### Change coordinates:

$$x' = x - \overline{x}, \ y' = y - \overline{y}$$

$$x \sin \theta - y \cos \theta + \rho$$
$$= x' \sin \theta - y' \cos \theta$$



Therefore, we can rewrite *E* as:

$$E = a \sin^2 \theta - b \sin \theta \cos \theta + c \cos^2 \theta$$

$$a = \iint_{I'} (x')^2 b(x, y) dx' dy'$$
$$c = \iint_{I'} (y')^2 b(x, y) dx' dy'$$

$$b = 2 \iint_{I'} (x'y') b(x,y) dx' dy'$$

Computer Vision, SJTU, Wei Shen (a, b, c are easy to compute)

29 September 2022

## Finally, Minimize E

Using 
$$\frac{dE}{d\theta} = (a-c)\sin 2\theta - b\cos 2\theta = 0$$
 we get:

$$\tan 2\theta = \frac{b}{a-c}$$

We know that: 
$$\tan 2\theta = \tan(2\theta + \pi) = \frac{-b}{c - a}$$

 $\theta$  has two solutions.

1. 
$$\theta = \theta_1$$

$$2. \quad \theta = \theta_2 = \theta_1 + \frac{\pi}{2}$$

One gives Minimum of E and the other Maximum of E



### Which One To Use?

Using second derivative test:

If 
$$\frac{d^2E}{d\theta^2} = (a-c)\cos 2\theta + b\sin 2\theta$$
  $> 0$  then Minimum  $< 0$  then Maximum

Substituting  $\cos 2\theta_1$ ,  $\sin 2\theta_1$ ,  $\cos 2\theta_2$  and  $\sin 2\theta_2$ :

$$\frac{d^2E}{d\theta^2}(\theta_1) > 0 \quad \text{and} \quad \frac{d^2E}{d\theta^2}(\theta_2) < 0$$

Therefore,

Orientation: 
$$\theta = \theta_1 = \frac{atan2\left(\frac{b}{a-c}\right)}{2}$$

### Roundedness



$$E = a \sin^2 \theta - b \sin \theta \cos \theta + c \cos^2 \theta$$

Roundedness = 
$$\frac{E_{min}}{E_{max}}$$

where:  $E_{min} = E(\theta_1)$  and  $E_{max} = E(\theta_2)$ 

# Examples



### Multiple Objects





Need to Segment image into separate Components

Non-Trivial!

## Connected Component

Maximal Set of Connected Points



A and B are connected if path exists between A and B along which b(x,y) is constant.

### Connected Component Labeling

#### Region Growing Algorithm

- (a) Find Unlabeled "Seed" point with b = 1. If not found, Terminate.
- (b) Assign New Label to seed point
- (c) Assign Same Label to its Neighbors with b=1
- (d) Assign Same Label to Neighbors of Neighbors with b = 1. Repeat until no more Unlabeled Neighbors with b=1.
- (e) Go to (a)

### What do we mean by Neighbors?

#### Connectedness



4-Connectedness 4-C



8-Connectedness 8-C

Neither is Perfect!

### Connectedness

#### Jordan's Curve Theorem

Closed curve

→ 2 Connected Regions



#### Consider



4-C Hole without a closed loop!



8-C
Connected backgrounds
with a closed loop!



We want to label A. B, C, D are already labeled.



Raster Scanning

We want to label A. B, C, D are already labeled.

$$\begin{array}{c|c} D & X \\ \hline X & 1 \end{array} \rightarrow label(A) = label(D)$$

$$\begin{array}{c|c}
0 & B \\
\hline
0 & 1
\end{array}$$
| label(A) = label(B)

X: Value does not matter (Can be 0 or 1)

0B1

→ What if label(B) not equal to label(C)?



29 September 2022



→ What if label(B) not equal to label(C)?

Solution: Create Equivalence Table

- Note down that label(B) ≡ label(C)
- Assign label(A) = label(B)

Resolve Equivalence in Second Pass

# Morphological operators

## Binary dilation

- Defined by a Morphological structuring element S (a binary template)
- Images are represented by the sets  $(\subset Z^2)$  containing the positions of their non-zero elements
- Binary dilatation  $D(R,S) = R \oplus S = \{u v | u \in R, v \in S\}$
- (Intuitively: set of all possible positions of the center of *S* such that the two patterns overlap by at least one element)







Original binary image

Dilated image

$$S = \{(0,0), (1,0), (0,1)\}$$

$$R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1)\}$$

## Binary erosion

- Defined by a Morphological structuring element S
- Binary erosion  $E(R,S)=R\ominus S=\{u|\forall v\in S,u+v\in R\}$
- (Intuitively: all positions of the center of S such that pattern *S* is contained in pattern R)







Original binary image

**Eroded image** 

$$S = \{(0,0), (1,0), (0,1)\}$$

$$R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1)\}$$

# Binary Closing

- Defined by a Morphological structuring element S
- Binary closing C(R,S) = E(D(R,S),S)
  - Properties:

Fill the **holes smaller** than the structuring elements Smooth the contours by filling the cavities



Original binary image



Radius of the structuring element R = 1



R = 3



R = 10

# Binary opening

- Defined by a Morphological structuring element B
- ullet Binary opening  $\overline{O(R,S)}=\overline{D(E(R,S),S)}$ 
  - Properties:

Suppress the **structures smaller** than the structuring elements

Delete the link between weak connected components

Smooth the contours by deleting the outgrowths

Applications: Granulometry



# Examples

Removing the noise perturbation

(R,S),S)- Close-open operation:

(O(R,S),S)- Open-close operation:







Open



Close-open

Open-Close

Note: morphological operations can be generalized to grey value images

### References: Textbooks

Computer Vision: Algorithms and Applications (Chapter 3.3-3.4) Recommended Reading

Szelinski, 2011 (available online)

Digital Image Processing (Chapter 3 and 4) González, R and Woods, R., Prentice Hall

Computer Vision: A Modern Approach (Chapter 7) Forsyth, D and Ponce, J., Prentice Hall

Robot Vision (Chapter 3, 4) Horn, B. K. P., MIT Press

Robot Vision (Chapter 6 and 7) Horn, B. K. P., MIT Press