Problem A. Точки

Input file: Standard input
Output file: Standard output

Time limit: 2 секунды Memory limit: 256 мегабайт

Даны три попарно неколлинеарных вектора $\vec{a}=(a_x,a_y), \vec{b}=(b_x,b_y), \vec{c}=(c_x,c_y)$ и натуральное число N. Посчитайте количество различных точек p таких, что $p=u_a\cdot\vec{a}+u_b\cdot\vec{b}+u_c\cdot\vec{c}$, где числа u_a,u_b и u_c целые и $0\leq u_a,u_b,u_c\leq N-1$. Две точки $p=(p_x,p_y)$ и $q=(q_x,q_y)$ считаются различными, если $p_x\neq q_x$ или $p_y\neq q_y$.

Input

В первой строке задано целое число N ($1 \le N \le 2000$). Во второй строке перечислены через пробел шесть целых чисел: $a_x, a_y, b_x, b_y, c_x, c_y$ ($1 \le a_x, a_y, b_x, b_y, c_x, c_y \le 1000$).

Output

В единственной строке выведите искомое количество точек.

Standard input	Standard output
5	61
2 1 1 2 3 3	
5	125
10 1 5 5 1 10	
2	7
2 3 1 2 1 1	

Problem B. Остатки

Input file: Standard input
Output file: Standard output

Time limit: 2 секунды Memory limit: 256 мегабайт

Маленький Петя очень любит математику. Недавно на уроке математики он узнал про целочисленное деление с остатком. В качестве домашнего задания Петя получил такую задачу: даны числа a_1 , a_2, \ldots, a_n , требуется посчитать значение выражения

$$(\dots((a_1 \bmod a_2) \bmod a_3) \dots \bmod a_{n-1}) \bmod a_n$$

Здесь $a \mod b$ означает взятие остатка от деления числа a на число b. Петя записал сами числа a_i , но забыл, в каком именно порядке они были даны на доске. Поэтому он решил перебрать все N! перестановок чисел a_i и для каждой посчитать значение требуемого выражения, чтобы учительница сама выбрала нужную перестановку. Вскоре Петя понял, что перестановок может быть очень много, и он не успеет перебрать их все до следующего урока математики. К счастью, несмотря на большое количество перестановок, различных результатов выражения может быть не так и много. Поэтому Петя решил найти все числа, которые могут быть результатами вычисления выражения, записанного выше, для некоторой перестановки чисел a_i . Вам же предстоит всего лишь посчитать их количество.

Input

Первая строка содержит целое число N ($2 \le N \le 100$) — количество чисел, которые дала учительница. Следующая строка содержит N целых положительных чисел, разделённых пробелами. Все эти числа не превосходят $3 \cdot 10^5$.

Output

Выведите количество различных значений выражения из задачи Пети.

Examples

Standard input	Standard output
4	4
5 6 7 8	
3	3
10 7 10	
5	16
34 20 199 22 135	

Note

В первом примере возможными ответами являются числа 1, 2, 3 и 5.

Во втором примере возможны всего три перестановки чисел, и все они дают разные ответы:

$$(7 \mod 10) \mod 10 = 7,$$

 $(10 \mod 7) \mod 10 = 3,$

 $(10 \mod 10) \mod 7 = 0.$

Problem C. Прямоугольники и области связности

Input file: Standard input
Output file: Standard output

Time limit: 3 секунды Memory limit: 256 мегабайт

Маленький Петя очень любит прямоугольные таблицы. Недавно мама подарила ему таблицу, состоящую из N строк и M столбцов, каждая клетка которой покрашена либо в белый, либо в чёрный цвет. Больше чем таблицы Петя любит только играть с маленькой Машей. Маша предложила ему сыграть в игру с новой таблицей. Игра состоит из Q раундов. В каждом раунде Маша выбирает в таблице прямоугольник, а Петя ей сообщает количество связных областей клеток одного цвета, которые находятся в этом прямоугольнике (см. определение ниже). Поскольку дети пока умеют считать только до двух, все числа, которые больше двух, для них одинаковые (смотрите примеры для дальнейшего разъяснения). Ваша задача — помочь Пете ответить на все вопросы Маши.

Считается, что две клетки одного цвета находятся в одной связной области внутри заданного прямоугольника, если существует такой путь, начинающийся в первой клетке и заканчивающийся во второй, который удовлетворяет следующим условиям:

- Все клетки на пути окрашены в один цвет.
- Любые две последовательные клетки этого пути имеют общую сторону.
- Все клетки пути лежат в заданном прямоугольнике.

Input

В первой строке записаны два целых числа N и M ($1 \le N \le 2000$, $1 \le M \le 2000$) — количество строк и столбцов в таблице, соответственно. Следующие N строк содержат по M символов и задают Петину таблицу. Символ «1» соответствует чёрной клетке, а символ «0» — белой.

Следующая строка содержит целое число Q ($1 \le Q \le 500\,000$) — количество вопросов Маши. Каждая из следующих Q строк содержит четыре целых числа r_1 , c_1 , r_2 и c_2 ($1 \le r_1 \le r_2 \le N$, $1 \le c_1 \le c_2 \le M$) таких, что (r_1, c_1) и (r_2, c_2) — координаты двух противоположных углов прямо-угольника.

Output

Выведите Q строк — ответы на вопросы Маши в том же порядке, в котором они заданы на входе. Если ответ на какой-либо вопрос больше или равен 3, выведите вместо него число 0.

Standard input	Standard output
4 5	0
01011	2
10101	2
01011	1
00001	0
5	
1 1 2 3	
3 1 4 3	
3 3 4 5	
1 5 4 5	
1 4 4 5	
5 5	1
11111	2
11111	2
11111	
11101	
11111	
3	
1 1 3 3	
1 1 5 5	
3 3 5 5	

Problem D. Инверсии

Input file: Standard input
Output file: Standard output

Time limit: 2 секунды Memory limit: 256 мегабайт

Маленький Петя очень любит перестановки. Больше чем перестановки он любит только играть с маленькой Машей. Скоро у неё день рождения, на который Петя решил ей подарить перестановку. Он знает, что любимое число Маши — это K. Поэтому перестановка, которую Петя будет дарить, должна иметь ровно K инверсий (см. определение ниже). Среди всех перестановок с K инверсиями Петя хочет выбрать такую, которая состоит из наименьшего количества элементов, а среди них — лексикографически минимальную. Помогите ему найти требуемую перестановку.

Перестановка — это упорядоченный набор чисел 1, 2, ..., N, в котором каждое из них встречается ровно один раз. Число, стоящее на позиции i в перестановке π , будем обозначать как $\pi(i)$.

Инверсией в перестановке π чисел $1, 2, \ldots, N$ называется всякая пара индексов (i, j) такая, что $1 \le i < j \le N$ и $\pi(i) > \pi(j)$.

Считается, что перестановка π лексикографически меньше перестановки σ , если для некоторого j от 1 до N выполняются следующие два свойства:

- $\pi(j) < \sigma(j)$;
- $\pi(i) = \sigma(i)$ для всех i от 1 до j-1, включительно.

Input

На входе записано целое число K (0 $\leq K \leq 1\,000\,000\,000$) — требуемое количество инверсий в перестановке.

Output

Первая строка должна содержать целое положительное число N — количество элементов в искомой перестановке. Следующая строка должна содержать N чисел, разделённых пробелами — искомую перестановку.

Standard input	Standard output
0	1
	1
1	2
	2 1
2	3
	2 3 1
3	3
	3 2 1

Problem E. Точки

Input file: Standard input
Output file: Standard output

Time limit: 2 секунды Memory limit: 256 мегабайт

Даны три попарно неколлинеарных вектора $\vec{a}=(a_x,a_y), \vec{b}=(b_x,b_y), \vec{c}=(c_x,c_y)$ и натуральное число N. Посчитайте количество различных точек p таких, что $p=u_a\cdot\vec{a}+u_b\cdot\vec{b}+u_c\cdot\vec{c}$, где числа u_a,u_b и u_c целые и $0\leq u_a,u_b,u_c\leq N-1$. Две точки $p=(p_x,p_y)$ и $q=(q_x,q_y)$ считаются различными, если $p_x\neq q_x$ или $p_y\neq q_y$.

Input

В первой строке задано целое число N ($1 \le N \le 2000$). Во второй строке перечислены через пробел шесть целых чисел: a_x , a_y , b_x , b_y , c_x , c_y ($1 \le a_x$, a_y , b_x , b_y , c_x , $c_y \le 1000$).

Output

В единственной строке выведите искомое количество точек.

Standard input	Standard output
5	61
2 1 1 2 3 3	
5	125
10 1 5 5 1 10	
2	7
2 3 1 2 1 1	

Problem F. Permutation Cube

Input file: Standard input
Output file: Standard output

Time limit: 3 секунды Memory limit: 256 мегабайт

Девочка Ксюша недавно установила себе на компьютер игру «Permutation Cube». Правила игры таковы. В начале раунда генерируются три перестановки чисел 1, 2, ..., N: X, Y и Z. Во время каждого хода игрок может сделать одно из двух действий:

- Выставить курсор в произвольную точку (u, v, t), где $1 \le u, v, t \le N$, заплатив штраф в один тугрик.
- Переставить курсор бесплатно в точку (X_u, Y_v, Z_t) , где (u, v, t) его текущее положение.

Целью игры является посетить курсором все N^3 точек (точки (u,v,t) такие, что $1 \le u,v,t \le N$). Считается, что изначально курсор не выставлен ни в одну точку поля. Найдите минимальное число тугриков, которое придется заплатить Ксюше, чтобы пройти игру.

Напомним, что $nepecmanos \kappa a$ — это упорядоченный набор чисел $1, 2, \ldots, N$, в котором каждое из них встречается ровно один раз.

Input

В первой строке входных данных содержится целое число N — размер игрового поля $(1 \le N \le 30\,000)$. В следующих трёх строках, по одной в строке, заданы перестановки $X_i,\,Y_i,\,Z_i$. Гарантируется, что каждая из этих строк корректно задаёт перестановку чисел $1,\,2,\,\ldots,\,N$. Элементы каждой перестановки разделены пробелами.

Output

Необходимо вывести единственное число — минимальное количество тугриков, которое необходимо заплатить для прохождения игры «Permutation Cube».

Standard input	Standard output
3	6
1 2 3	
3 1 2	
2 1 3	
3	6
1 3 2	
2 3 1	
3 1 2	