MCUXSDKMIMXRT5XXGSUG

Getting Started with MCUXpresso SDK for EVK-MIMXRT595

Rev. 2.13.0 — 22 December 2022

User guide

Document information

Information	Content
•	MCUXSDKMIMXRT5XXGSUG, EVK-MIMXRT595. EVKMIMXRT595, Getting Started, MIMXRT595
Abstract	This document describes the steps to get started with MCUXpresso SDK for EVK-MIMXRT595.

1 Overview

The NXP MCUXpresso software and tools offer comprehensive development solutions designed to optimize, ease, and help accelerate embedded system development of applications based on general purpose, crossover, and Bluetooth-enabled MCUs from NXP. The MCUXpresso SDK includes a flexible set of peripheral drivers designed to speed up and simplify development of embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an extensive and rich set of example applications covering everything from basic peripheral use case examples to full demo applications. The MCUXpresso SDK contains optional RTOS integrations such as FreeRTOS and Azure RTOS, a USB host and device stack, and various other middleware to support rapid development.

For supported toolchain versions, see *MCUXpresso SDK Release Notes for EVK-MIMXRT595* (document MCUSDKRT595RN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

2 MCUXpresso SDK board support package folders

- cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.
- demo_apps: Full-featured applications that highlight key functionality and use cases
 of the target MCU. These applications typically use multiple MCU peripherals and may
 leverage stacks and middleware.

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved

- driver_examples: Simple applications that show how to use the MCUXpresso SDK peripheral drivers for a single use case. These applications typically only use a single peripheral but there are cases where multiple peripherals are used (for example, SPI conversion using DMA).
- emwin examples: Applications that use the emWin GUI widgets.
- rtos_examples: Basic FreeRTOS OS examples that show the use of various RTOS objects (semaphores, queues, and so on) and interfaces with the MCUXpresso SDK RTOS drivers.
- usb examples: Applications that use the USB host/device/OTG stack.
- usb_dongle_examples: Simple applications to be used on the PCB2459-2 JN5189 USB DONGLE.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK API Reference Manual.

Each

loard_name> folder in the boards directory contains a comprehensive set of
examples that are relevant to that specific piece of hardware. Although we use the
hello_world example (part of the demo_apps folder), the same general rules apply to any type of example in the

hello_apps folder.

In the hello world application folder you see the following contents:

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, various source files are referenced. The MCUXpresso SDK devices folder is the central component to all

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved

example applications. It means that the examples reference the same source files and, if one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

- devices/<device_name>: The device's CMSIS header file, MCUXpresso SDK feature file, and a few other files
- devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCIJ
- devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU
- devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector table definitions
- devices/<device_name>/utilities: Items such as the debug console that are used by many of the example applications
- devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing an RTOS, there are references to the appropriate source code. RTOSes are in the rtos folder. The core files of each of these are shared, so modifying one could have potential impacts on other projects that depend on that file.

3 Run a demo using MCUXpresso IDE

Note: Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso SDK package.

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug example applications. The hello_world demo application targeted for the MIMXRT595-EVK hardware platform is used as an example, though these steps can be applied to any example application in the MCUXpresso SDK.

3.1 Select the workspace location

Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is built on top of Eclipse which uses workspace to store information about its current configuration, and in some use cases, source files for the projects are in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be located outside the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the **Installed SDKs** view to install an SDK. In the window that appears, click **OK** and wait until the import has finished.

2. On the Quickstart Panel, click Import SDK examples....

- 3. In the window that appears, expand the MIMXRT500 folder and select MIMXRT595S. Then, select evkmimxrt595 and click Next.
- 4. Expand the demo apps folder and select hello world. Then, click Next.
- 5. Ensure **Redlib:** Use floating-point version of printf is selected if the example prints floating-point numbers on the terminal. Otherwise, it is not necessary to select this option. Then, click **Finish**.

3.3 Run an example application

For more information on debug probe support in the MCUXpresso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

- See the table in <u>Section 10</u> to determine the debug interface that comes loaded on your specific hardware platform.
 - For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit <u>developer.mbed.org/handbook/Windows-serial-configuration</u> and follow the instructions to install the Windows operating system serial driver. If running on Linux OS, this step is not required.
 - For boards with a P&E Micro interface, see <u>PE micro</u> to download and install the P&E Micro Hardware Interface Drivers package.
- 2. Connect the development platform to your PC via a USB cable.
- Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect
 to the debug serial port number (to determine the COM port number, see <u>Section 8</u>).
 Configure the terminal with these settings:
 - a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in board.h file)
 - b. No parity
 - c. 8 data bits
 - d. 1 stop bit

4. On the **Quickstart Panel**, click **Debug evkmimxrt595_hello_world** [Debug] to launch the debug session.

5. The first time you debug a project, the **Debug Emulator Selection** dialog is displayed, showing all supported probes that are attached to your computer. Select the probe through which you want to debug and click **OK**. (For any future debug sessions, the stored probe selection is automatically used, unless the probe cannot be found.)

Note: If the debugging application is running in flash, make sure that the board is set to FlexSPI flash boot mode.

6. The application is downloaded to the target and automatically runs to main().

7. Start the application by clicking **Resume**.

The hello_world application is now running and a banner is displayed on the terminal. If not, check your terminal settings and connections.

3.4 Build a TrustZone example application

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug TrustZone example applications. The TrustZone version of the hello_world example application targeted for the MIMXRT595-EVK hardware platform is used as an example, though these steps can be applied to any TrustZone example application in the MCUXpresso SDK.

- TrustZone examples are imported into the workspace in a similar way as single core applications. When the SDK zip package for MIMXRT595-EVK is installed and available in the Installed SDKs view, click Import SDK example(s)... on the Quickstart Panel. In the window that appears, expand the MIMXRT500 folder and select MIMXRT595S. Then, select evkmimxrt595 and click Next.
- Expand the trustzone_examples/ folder and select hello_world_s. Because
 TrustZone examples are linked together, the non-secure project is automatically
 imported with the secure project, and there is no need to select it explicitly. Then,
 click Finish.

3. Now, two projects should be imported into the workspace. To start building the TrustZone application, highlight the evkmimxrt595_hello_world_s project (TrustZone master project) in the Project Explorer. Then, choose the appropriate build target, **Debug** or **Release**, by clicking the downward facing arrow next to the hammer icon, as shown in Figure 13. For this example, select the **Debug** target.

The project starts building after the build target is selected. It is requested to build the application for the secure project first, because the non-secure project must know the secure project since CMSE library when running the linker. It is not possible to finish the non-secure project linker when the secure project since CMSE library is not ready.

Note: When the Release build is requested, it is necessary to change the build configuration of both the secure and non-secure application projects first. To do this, select both projects in the Project Explorer view by clicking to select the first project, then using shift-click or control-click to select the second project. Right click in the Project Explorer view to display the context-sensitive menu and select Build Configurations > Set Active > Release. This is also possible by using the menu item of Project > Build Configuration > Set Active > Release. After switching to the Release build configuration. Build the application for the secure project first.

3.5 Run a TrustZone example application

To download and run the application, perform all steps as described in <u>Section 3.3</u>. These steps are common for single core, and TrustZone applications, ensuring evkmimxrt595_hello_world_s is selected for debugging.

In the Quickstart Panel, click **Debug** to launch the second debug session.

Now, the TrustZone sessions should be opened. Click **Resume**. The hello_world TrustZone application then starts running, and the secure application starts the non-secure application during runtime.

4 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

Note: IAR Embedded Workbench for Arm version 8.40.2 is used in the following example, and the IAR toolchain should correspond to the latest supported version, as described in the MCUXpresso SDK Release Notes (document ID: MCUXSDKRN).

4.1 Build an example application

Do the following steps to build the hello world example application.

 Open the desired demo application workspace. Most example application workspace files can be located using the following path:

```
<install_dir>/boards/<board_name>/<example_type>/
<application_name>/iar
```

Using the MIMXRT595-EVK hardware platform as an example, the hello_world workspace is located in:

```
<install_dir>/boards/evkmimxrt595/demo_apps/hello_world/iar/
hello_world.eww
```

Other example applications may have additional folders in their path.

Select the desired build target from the drop-down menu. For this example, select hello_world – debug.

3. To build the demo application, click Make, highlighted in red in Figure 17.

MCUXSDKMIMXRT5XXGSUG

4. The build completes without errors.

4.2 Run an example application

To download and run the application, perform these steps:

- 1. See the table in <u>Section 10</u> to determine the debug interface that comes loaded on your specific hardware platform.
 - For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_ find.cfm and download the P&E Micro Hardware Interface Drivers package.
- 2. Connect the development platform to your PC via USB cable.
- Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to determine the COM port number, see <u>Section 8</u>). Configure the terminal with these settings:
 - a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)
 - b. No parity
 - c. 8 data bits
 - d. 1 stop bit

4. In IAR, click the **Download and Debug** button to download the application to the target.

5. The application is then downloaded to the target and automatically runs to the main () function.

6. Run the code by clicking the Go button.

MCUXSDKMIMXRT5XXGSUG

7. The hello_world application is now running and a banner is displayed on the terminal. If it does not appear, check your terminal settings and connections.

4.3 Build a TrustZone example application

This section describes the particular steps that must be done in order to build and run a TrustZone application. The demo applications workspace files are located in this folder:

```
<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/
[<core_type>]/iar/<application_name>_ns/iar

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/
[<core_type>]/iar/<application_name>_s/iar
```

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello World IAR workspaces are located in this folder:

```
<install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/
hello_world_ns/iar/hello_world_ns.eww

<install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_s/
iar/hello_world_s.eww

<install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_s/
iar/hello_world.eww
```

This project hello_world.eww contains both secure and non-secure projects in one workspace and it allows the user to easily transition from one project to another. Build both applications separately by clicking **Make**. It is requested to build the application for the secure project first, because the non-secure project must know the secure project, since the CMSE library is running the linker. It is not possible to finish the non-secure project linker with the secure project since CMSE library is not ready.

4.4 Run a TrustZone example application

The secure project is configured to download both secure and non-secure output files, so debugging can be fully managed from the secure project. To download and run the TrustZone application, switch to the secure application project and perform steps 1 – 4 as described in *Section 4.2, Run an example application*. These steps are common for both single core, and TrustZone applications in IAR. After clicking **Download and Debug**, both the secure and non-secure images are loaded into the device memory, and the secure application is executed. It stops at the Rest Hander function.

Run the code by clicking ${f Go}$ to start the application.

The TrustZone hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your terminal settings and connections.

Note: If the application is running in RAM (debug/release build target), in **Options** > **Debugger** > **Download** tab, disable **Use flash loader(s)**. This can avoid the _ns download issue on i.MXRT500.

MCUXSDKMIMXRT5XXGSUG

5 Run a demo using Arm GCC

This section describes the steps to configure the command-line Arm GCC tools to build, run, and debug demo applications and necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application is targeted for the MIMXRT595-EVK hardware platform which is used as an example.

Note: ARMGCC version 7-2018-q2 is used as an example in this document. The latest GCC version for this package is as described in the MCUXpresso SDK Release Notes (document MCUXSDKMIMXRT5XXRN).

5.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run an MCUXpresso SDK demo application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use Arm GCC tools, but this example focuses on a Windows operating system environment.

5.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from GNU Arm Embedded Toolchain. This is the actual toolset (in other words, compiler, linker, and so on). The GCC toolchain should correspond to the latest supported version, as described in *MCUXpresso SDK Release Notes*.

5.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third-party C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW build tools, but

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

- 1. Download the latest MinGW mingw-get-setup installer from MinGW.
- 2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.
 - **Note:** The installation path cannot contain any spaces.
- 3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

4. In the **Installation** menu, click **Apply Changes** and follow the remaining instructions to complete the installation.

5. Add the appropriate item to the Windows operating system path environment variable. It can be found under **Control Panel->System and Security->System-**

>Advanced System Settings in the Environment Variables... section. The path is:

```
<mingw install dir>\bin
```

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set correctly, the toolchain will not work.

Note: If you have $C: \MinGW\msys\x.x\bin$ in your PATH variable (as required by Kinetis SDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

5.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new *system* environment variable and name it as <code>ARMGCC_DIR</code>. The value of this variable should point to the Arm GCC Embedded tool chain installation path. For this example, the path is:

See the installation folder of the GNU Arm GCC Embedded tools for the exact pathname of your installation.

Short path should be used for path setting, you could convert the path to short path by running command for %I in (.) do echo %~sI in above path.

5.1.4 Install CMake

- 1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
- 2. Install CMake, ensuring that the option **Add CMake to system PATH** is selected when installing. The user chooses to select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all users.

- 3. Follow the remaining instructions of the installer.
- 4. You may need to reboot your system for the PATH changes to take effect.
- 5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of mingw32-make.

5.2 Build an example application

To build an example application, follow these steps.

 Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating system Start menu, go to Programs >GNU Tools Arm Embedded <version> and select GCC Command Prompt.

2. Change the directory to the example application project directory which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/
<application_name>/armgcc

For this example, the exact path is:

<install_dir>/examples/evkmimxrt595/demo_apps/hello_world/
armgcc

Note: To change directories, use the cd command.

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

3. Type **build_debug.bat** on the command line or double click on **build_debug.bat** file in Windows Explorer to build it. The output is as shown in <u>Figure 34</u>.

Figure 34. hello_world build successful

5.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To perform this exercise, make sure that either:

- The OpenSDA interface on your board is programmed with the J-Link OpenSDA firmware. To determine if your board supports OpenSDA, see <u>Section 10</u>. For instructions on reprogramming the OpenSDA interface, see <u>Section 11</u>. If your board does not support OpenSDA, a standalone J-Link pod is required.
- You have a standalone J-Link pod that is connected to the debug interface of your board. Note that some hardware platforms require hardware modification in order to function correctly with an external debug interface.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

- Connect the development platform to your PC via USB cable between the OpenSDA USB connector and the PC USB connector. If using a standalone J-Link debug pod, also connect it to the SWD/JTAG connector of the board.
- Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to determine the COM port number, see <u>Section 8</u>). Configure the terminal with these settings:
 - a. 115200 or 9600 baud rate, depending on your board (reference BOARD DEBUG UART BAUDRATE variable in the board.h file)
 - b. No parity
 - c. 8 data bits
 - d. 1 stop bit

- Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched by going to the Windows operating system Start menu and selecting Programs->SEGGER->J-Link
- 4. Modify the settings as shown in <u>Figure 36</u>. The target device selection chosen for this example is **MIMXRT595_M33**.

5. After it is connected, the screen should be as shown in Figure 37.

SEGGER J-Link GDB Server V6.40 Eile Help GDB Waiting for connection Stay on top ✓ Show log window J-Link Connected SWD 4000 kHz Device XRT595S_M33 (Halted) 1.83V Generate logfile Verify download Clear Log Hardware: V10.10 S/N: 600109561
Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target voltage...
Target voltage: 1.83 V
Listening on TCP/IP port 2331
Connecting to target... s/N: 600109561 Connected to target Waiting for GDB connection... 0 bytes downloaded Figure 37. SEGGER J-Link GDB Server screen after successful connection

6. If not already running, open a GCC Arm Embedded tool chain command window. To launch the window, from the **Start** menu of the Windows operating system, go to Programs->GNU Tools Arm Embedded <version> and select GCC Command Prompt.

Figure 38. Launch command prompt

- 7. Change to the directory that contains the example application output. The output can be found in using one of these paths, depending on the build target selected: <install dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/
 - <install dir>/boards/<board name>/<example type>/<application name>/armgcc/ release
 - For this example, the path is: <install dir>/boards/evkmimxrt595/demo apps/hello world/armgcc/debug
- 8. Run the arm-none-eabi-gdb.exe <application name>.elf command. For this example, it is arm-none-eabi-gdb.exe hello world.elf.

```
2.6.0_EVK-MIMXRT995\boards\evkmimxrt595\deno_apps\hello_world\armgcc\debug>arm=none-eabi=gdb hello_world.elf
Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major\bin\arm=none-eabi=gdb.exe: warning: Couldn't determine a
Windex cache directory.
(C) 1018 for Arm Embedded Processors 8-2018-q4-major) 8.2.50.20181213-git
(C) 2018 Free Software Foundation, Inc.
                                                                                are/gdb/bugs/>.
ther documentation resources online at:
oftware/gdb/documentation/>.
                                                   pos word to search for commands related to "word"...
Figure 39. Run arm-none-eabi-gdb
```

Note: Make sure that the board is set to FlexSPI flash boot mode before debugging.

- 9. Run these commands:
 - a. target remote localhost:2331
 - b. monitor reset
 - c. monitor halt
 - d. load
 - e. monitor reset
- 10. The application is now downloaded and halted. Execute the $_{\mathbb{C}}$ command to start the demo application.

The hello world application is now running and a banner is displayed on the terminal. If this is not true, check your terminal settings and connections.

MCUXSDKMIMXRT5XXGSUG

5.4 Build a TrustZone example application

This section describes the steps to build and run a TrustZone application. The demo application build scripts are located in this folder:

```
<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/
[<core_type>]/<application_name>_ns/armgcc

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/
[<core_type>]/<application_name>_s/armgcc
```

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello World GCC build scripts are located in this folder:

```
<install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/
hello_world_ns/armgcc/build_debug.bat

<install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_s/
armgcc/build_debug.bat
```

Build both applications separately, following steps for single core examples as described in *Section 6.2, "Build an example application"*. It is requested to build the application for the secure project first, because the non-secure project must know the secure project, since CMSE library is running the linker. It is not possible to finish the non-secure project linker with the secure project because the CMSE library is not ready.

EXCLMINDOWS/system32\cmdexe

[52%] Building C object ClakeFiles/hello_world_ns.eif.dir/C_/nxp/SDR_2.6.0_EVK_MIMARI595/devices/MIMARI595S/utilities/files/hello_world_ns.eif.dir/C_/nxp/SDR_2.6.0_EVK_MIMARI595/devices/MIMARI595S/utilities/files/hello_world_ns.eif.dir/C_/nxp/SDR_2.6.0_EVK_MIMARI595/devices/MIMARI595S/utilities/files/hello_world_ns.eif.dir/C_/nxp/SDR_2.6.0_EVK_MIMARI595/devices/MIMARI595S/drivers/fsl
[68%] Building C object ClakeFiles/hello_world_ns.eif.dir/C_/nxp/SDR_2.6.0_EVK_MIMARI595/devices/MIMARI595/drivers/fsl
 cache.c.obj
[68%] Building C object ClakeFiles/hello_world_ns.eif.dir/C_/nxp/SDR_2.6.0_EVK_MIMARI595/components/serial_manager/serial_manag

5.5 Run a TrustZone example application

Figure 42. hello_world_ns example build successful

When running a TrustZone application, the same prerequisites for J-Link/J-Link OpenSDA firmware, and the serial console as for the single core application, apply, as described in <u>Section 6.3</u>.

To download and run the TrustZone application, perform steps 1 to 10, as described in <u>Section 5.3</u>. These steps are common for both single core and TrustZone applications in Arm GCC.

Then, run these commands:

- arm-none-eabi-gdb.exe
- 2. target remote localhost:2331
- 3. monitor reset
- 4. monitor halt
- 5. monitor exec SetFlashDLNoRMWThreshold = 0x20000
- 6. load <install_dir>/boards/evkmimxrt595/trustzone_examples/
 hello world/hello world ns/armgcc/debug/hello world ns.elf

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved

- 7. load <install_dir>/boards/evkmimxrt595/trustzone_examples/
 hello world/hello world s/armgcc/debug/hello world s.elf
- 8. monitor reset

The application is now downloaded and halted. Execute the \circ command to start the demo application.

Hello from secure world!
Entering normal world.
Welcome in normal world!
This is a text printed from normal world!
Comparing two string as a callback to normal world
String 1: Test1
String 2: Test2

Figure 44. Text display of the TrustZone hello_world application

oth strings are not equal!

6 Run a demo using Keil MDK/µVision

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

6.1 Install CMSIS device pack

After the MDK tools are installed, Cortex Microcontroller Software Interface Standard (CMSIS) device packs must be installed to fully support the device from a debug perspective. These packs include things such as memory map information, register definitions, and flash programming algorithms. Follow these steps to install the MIMXRT595S CMSIS pack.

- 1. Download the MIMXRT595S CMSIS pack.
- 2. After downloading the DFP, double click to install it.

6.2 Build an example application

1. Open the desired example application workspace in:

```
<install_dir>/boards/<board_name>/<example_type>/
<application_name>/mdk
```

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual path is:

<install_dir>/boards/evkmimxrt595s/demo_apps/hello_world/mdk/
hello world.uvmpw

2. To build the demo project, select Rebuild, highlighted in red.

3. The build completes without errors.

6.3 Run an example application

To download and run the application, perform these steps:

- Reference the table in <u>Section 10</u> to determine the debug interface that comes loaded on your specific hardware platform.
- 2. Connect the development platform to your PC via USB cable.
- 3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to determine the COM port number, see <u>Section 8</u>). Configure the terminal with these settings:
 - a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the board.h file)
 - b. No parity
 - c. 8 data bits
 - d. 1 stop bit

MCUXSDKMIMXRT5XXGSUG

4. To debug the application, click **load** (or press the F8 key). Then, click the **Start/ Stop Debug Session** button, highlighted in red in Figure 47. If using **J-Link** as the debugger, click **Project option >Debug >Settings >Debug >Port**, and select **SW**. **Note:** When debugging with jlink, it expects one jlinkscript file named JLinkSettings.JLinkScript in the folder where the uVision project files are located. For details, see Segger Wiki. For the contents in this JlinkSettings.JLinkScript, use contents in evkmimxrt1020_sdram_init.jlinkscript.

Note: Make sure that the board is set to FlexSPI flash boot mode before debugging.

5. Run the code by clicking **Run** to start the application, as shown in <u>Figure 48</u>.

The hello_world application is now running and a banner is displayed on the terminal, as shown in <u>Figure 49</u>. If this is not true, check your terminal settings and connections.

6.4 Build a TrustZone example application

This section describes the particular steps that must be done in order to build and run a TrustZone application. The demo applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/
<application name> s/mdk

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello World Keil MSDK/µVision workspaces are located in this folder:

 $< install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_ns.uvmpw$

 $$$ < install_dir>/boards/evkmimxrt595/trustzone_examples/hello_world/hello_world_s/mdk/hello world s.uvmpw \\$

This project hello_world.uvmpw contains both secure and non-secure projects in one workspace and it allows the user to easily transition from one project to another.

Build both applications separately by clicking **Rebuild**. It is requested to build the application for the secure project first, because the non-secure project must know the secure project since CMSE library is running the linker. It is not possible to finish the non-secure project linker with the secure project because CMSE library is not ready.

6.5 Run a TrustZone example application

The secure project is configured to download both secure and non-secure output files so debugging can be fully managed from the secure project.

To download and run the TrustZone application, switch to the secure application project and perform steps as described in Section 6.5. These steps are common for single core, dual-core, and TrustZone applications in $\mu Vision$. After clicking Download and Debug, both the secure and non-secure images are loaded into the device flash memory, and the secure application is executed. It stops at the main () function.

Run the code by clicking **Run** to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If not, check your terminal settings and connections.

```
Hello from secure world!
Entering normal world.
Welcome in normal world!
This is a text printed from normal world!
Comparing two string as a callback to normal world
String 1: Test1
String 2: Test2
Both strings are not equal!

Figure 52. Text display of the TrustZone hello_world application
```

7 MCUXpresso IDE New Project Wizard

MCUXpresso IDE features a new project wizard. The wizard provides functionality for the user to create new projects from the installed SDKs (and from pre-installed part support). It offers user the flexibility to select and change multiple builds. The wizard also includes a library and provides source code options. The source code is organized as software components, categorized as drivers, utilities, and middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the **QuickStart Panel** at the bottom left of the MCUXpresso IDE window. Select **New project**, as shown in Figure 53.

For more details and usage of new project wizard, see the MCUXpresso IDE User Guide.pdf in the MCUXpresso IDE installation folder.

8 How to determine COM port

This section describes the steps necessary to determine the debug COM port number of your NXP hardware development platform.

1. **Linux**: The serial port can be determined by running the following command after the USB Serial is connected to the host:

```
$ dmesg | grep "ttyUSB" [503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0 [503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1
```

There are two ports, one is Cortex-A core debug console and the other is for Cortex M4

- Windows: To determine the COM port open Device Manager in the Windows operating system. Click the Start menu and type Device Manager in the search bar.
- 3. In the Device Manager, expand the **Ports (COM & LPT)** section to view the available ports. The COM port names are different for all the NXP boards.

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved

9 How to define IRQ handler in CPP files

With MCUXpresso SDK, users could define their own IRQ handler in application level to override the default IRQ handler. For example, to override the default PIT_IRQHandler define in startup DEVICE.s, application code like app.c can be implement like:

```
c
void PIT_IRQHandler(void)
{
    // Your code
}
```

When application file is CPP file, like app.cpp, then <code>extern "C"</code> should be used to ensure the function prototype alignment.

```
cpp
extern "C" {
    void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{
    // Your code
}
```

10 Default debug interfaces

The MCUXpresso SDK supports various hardware platforms that come loaded with various factory programmed debug interface configurations. <u>Table 1</u> lists the hardware platforms supported by the MCUXpresso SDK, their default debug interface, and any version information that helps differentiate a specific interface configuration.

Note: The OpenSDA details column in Table 1 is not applicable to LPC.

Table 1. Hardware platforms supported by MCUXpresso SDK

Hardware platform	Default interface	OpenSDA details
EVK-MC56F83000	P&E Micro OSJTAG	N/A
EVK-MIMXRT595	CMSIS-DAP	N/A
EVK-MIMXRT685	CMSIS-DAP	N/A
FRDM-K22F	CMSIS-DAP/mbed/DAPLink	OpenSDA v2.1
FRDM-K28F	DAPLink	OpenSDA v2.1
FRDM-K32L2A4S	CMSIS-DAP	OpenSDA v2.1
FRDM-K32L2B	CMSIS-DAP	OpenSDA v2.1
FRDM-K32W042	CMSIS-DAP	N/A
FRDM-K64F	CMSIS-DAP/mbed/DAPLink	OpenSDA v2.0
FRDM-K66F	J-Link OpenSDA	OpenSDA v2.1
FRDM-K82F	CMSIS-DAP	OpenSDA v2.1
FRDM-KE15Z	DAPLink	OpenSDA v2.1
FRDM-KE16Z	CMSIS-DAP/mbed/DAPLink	OpenSDA v2.2

MCUXSDKMIMXRT5XXGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved

Table 1. Hardware platforms supported by MCUXpresso SDK...continued

Hardware platform	Default interface	OpenSDA details
FRDM-KL02Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KL03Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KL25Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KL26Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KL27Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KL28Z	P&E Micro OpenSDA	OpenSDA v2.1
FRDM-KL43Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KL46Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KL81Z	CMSIS-DAP	OpenSDA v2.0
FRDM-KL82Z	CMSIS-DAP	OpenSDA v2.0
FRDM-KV10Z	CMSIS-DAP	OpenSDA v2.1
FRDM-KV11Z	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KV31F	P&E Micro OpenSDA	OpenSDA v1.0
FRDM-KW24	CMSIS-DAP/mbed/DAPLink	OpenSDA v2.1
FRDM-KW36	DAPLink	OpenSDA v2.2
FRDM-KW41Z	CMSIS-DAP/DAPLink	OpenSDA v2.1 or greater
Hexiwear	CMSIS-DAP/mbed/DAPLink	OpenSDA v2.0
HVP-KE18F	DAPLink	OpenSDA v2.2
HVP-KV46F150M	P&E Micro OpenSDA	OpenSDA v1
HVP-KV11Z75M	CMSIS-DAP	OpenSDA v2.1
HVP-KV58F	CMSIS-DAP	OpenSDA v2.1
HVP-KV31F120M	P&E Micro OpenSDA	OpenSDA v1
JN5189DK6	CMSIS-DAP	N/A
LPC54018 IoT Module	N/A	N/A
LPCXpresso54018	CMSIS-DAP	N/A
LPCXpresso54102	CMSIS-DAP	N/A
LPCXpresso54114	CMSIS-DAP	N/A
LPCXpresso51U68	CMSIS-DAP	N/A
LPCXpresso54608	CMSIS-DAP	N/A
LPCXpresso54618	CMSIS-DAP	N/A
LPCXpresso54628	CMSIS-DAP	N/A
LPCXpresso54S018M	CMSIS-DAP	N/A
LPCXpresso55s16	CMSIS-DAP	N/A
LPCXpresso55s28	CMSIS-DAP	N/A
LPCXpresso55s69	CMSIS-DAP	N/A
MAPS-KS22	J-Link OpenSDA	OpenSDA v2.0

Table 1. Hardware platforms supported by MCUXpresso SDK...continued

Hardware platform	Default interface	OpenSDA details
MIMXRT1170-EVK	CMSIS-DAP	N/A
TWR-K21D50M	P&E Micro OSJTAG	N/AOpenSDA v2.0
TWR-K21F120M	P&E Micro OSJTAG	N/A
TWR-K22F120M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-K24F120M	CMSIS-DAP/mbed	OpenSDA v2.1
TWR-K60D100M	P&E Micro OSJTAG	N/A
TWR-K64D120M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-K64F120M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-K65D180M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-K65D180M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-KV10Z32	P&E Micro OpenSDA	OpenSDA v1.0
TWR-K80F150M	CMSIS-DAP	OpenSDA v2.1
TWR-K81F150M	CMSIS-DAP	OpenSDA v2.1
TWR-KE18F	DAPLink	OpenSDA v2.1
TWR-KL28Z72M	P&E Micro OpenSDA	OpenSDA v2.1
TWR-KL43Z48M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-KL81Z72M	CMSIS-DAP	OpenSDA v2.0
TWR-KL82Z72M	CMSIS-DAP	OpenSDA v2.0
TWR-KM34Z75M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-KM35Z75M	DAPLink	OpenSDA v2.2
TWR-KV10Z32	P&E Micro OpenSDA	OpenSDA v1.0
TWR-KV11Z75M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-KV31F120M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-KV46F150M	P&E Micro OpenSDA	OpenSDA v1.0
TWR-KV58F220M	CMSIS-DAP	OpenSDA v2.1
TWR-KW24D512	P&E Micro OpenSDA	OpenSDA v1.0
USB-KW24D512	N/A External probe	N/A
USB-KW41Z	CMSIS-DAP\DAPLink	OpenSDA v2.1 or greater

11 Updating debugger firmware

11.1 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug interface (known as LPC-Link2). This firmware in this debug interface may be updated using the host computer utility called LPCScrypt. This typically used when switching between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating

MCUXSDKMIMXRT5XXGSUG

Getting Started with MCUXpresso SDK for EVK-MIMXRT595

this firmware with new releases of these. This section contains the steps to re-program the debug probe firmware.

Note: If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5 on some boards, but consult the board user manual or schematic for specific jumper number), LPC-Link2 debug probe boots to DFU mode, and MCUXpresso IDE automatically downloads the CMSIS-DAP firmware to the probe before flash memory programming (after clicking **Debug**). Using DFU mode ensures that most up-to-date/compatible firmware is used with MCUXpresso IDE.

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest versions of CMSIS-DAP and J-Link firmware onto LPC-Link2 or LPCXpresso boards. The utility can be downloaded from www.nxp.com/lpcutilities.

These steps show how to update the debugger firmware on your board for Windows operating system. For Linux OS, follow the instructions described in LPCScrypt user guide (www.nxp.com/lpcutilities, select **LPCScrypt**, and then the documentation tab).

- 1. Install the LPCScript utility.
- 2. Unplug the board's USB cable.
- 3. Make the DFU link (install the jumper labeled DFUlink).
- 4. Connect the probe to the host via USB (use Link USB connector).
- 5. Open a command shell and call the appropriate script located in the LPCScrypt installation directory (<LPCScrypt install dir>).
 - a. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/ scripts/program CMSIS
 - b. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/ program JLINK
- 6. Remove DFU link (remove the jumper installed in Step 3).
- 7. Repower the board by removing the USB cable and plugging it in again.

12 Revision history

This table summarizes the revisions to this document.

Table 2. Revision history

Revision number	Date	Substantive changes
2.13.0	22 December 2022	Updated for MCUXpresso SDK v2.13.0

13 Legal information

13.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

13.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

13.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile—are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

Kinetis — is a trademark of NXP B.V.

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

MCUXSDKMIMXRT5XXGSUG

Getting Started with MCUXpresso SDK for EVK-MIMXRT595

Tower — is a trademark of NXP B.V.

MCUXSDKMIMXRT5XXGSUG

Getting Started with MCUXpresso SDK for EVK-MIMXRT595

Contents

1	Overview	2
2	MCUXpresso SDK board support package	
	folders	2
2.1	Example application structure	3
2.2	Locating example application source files	3
3	Run a demo using MCUXpresso IDE	
3.1	Select the workspace location	4
3.2	Build an example application	
3.3	Run an example application	6
3.4	Build a TrustZone example application	10
3.5	Run a TrustZone example application	12
4	Run a demo application using IAR	13
4.1	Build an example application	
4.2	Run an example application	
4.3	Build a TrustZone example application	16
4.4	Run a TrustZone example application	
5	Run a demo using Arm GCC	
5.1	Set up toolchain	
5.1.1	Install GCC Arm Embedded tool chain	18
5.1.2	Install MinGW (only required on Windows	
	OS)	18
5.1.3	Add a new system environment variable for	
	ARMGCC DIR	20
5.1.4	Install CMake	21
5.2	Build an example application	22
5.3	Run an example application	23
5.4	Build a TrustZone example application	27
5.5	Run a TrustZone example application	28
6	Run a demo using Keil MDK/µVision	29
6.1	Install CMSIS device pack	30
6.2	Build an example application	
6.3	Run an example application	30
6.4	Build a TrustZone example application	
6.5	Run a TrustZone example application	33
7	MCUXpresso IDE New Project Wizard	35
8	How to determine COM port	
9	How to define IRQ handler in CPP files	
10	Default debug interfaces	
11	Updating debugger firmware	
11.1	Updating LPCXpresso board firmware	
12	Revision history	39
12	Logal information	40

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.