Глава 14

Точкови оценки

14.1 Точкови оценки за средно и дисперсия

За целите на настоящата глава ще напомним някои понятия отново.

Нека имаме извадка от независими наблюдения над дадена сл.в.: $X_1, X_2, ... X_n \sim X \sim f(x|\theta)$, т.е. от разпределение, чиято вероятностна плътност зависи от неизвестен параметър θ . Основавайки се на нея, какво можем да заключим за параметъра на разпределението θ , или за някаква функция от него $\tau(\theta)$?

Определение 14.1 Статистика наричаме всяка функция $W(X_1, X_2, ... X_n)$ от извадката. Всяка статистика е точкова оценка.

Оценката на параметъра θ ще отбелязваме с $\hat{\theta}$.

Нека отново да дадем дефинициите на извадъчното средно и извадъчната дисперсия.

Определение 14.2 Извадъчно средно (оценка на очакването) наричаме:

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i.$$

Определение 14.3 Извадъчна дисперсия (оценка на дисперсията) наричаме:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

Теорема 14.1 Нека е дадена извадка x_1, x_2, \ldots, x_n от произволно разпределение. То-гава:

a)
$$\min_{a} \sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
,.

b)
$$(n-1)s^2 = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$$

Доказателство: За да докажем a) прибавяме и изваждаме \bar{x} :

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - a)^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - a) + \sum_{i=1}^{n} (\bar{x} - a)^2$$
$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + 0 + \sum_{i=1}^{n} (\bar{x} - a)^2.$$

Очевидно е, че този израз е минимален за $a = \bar{x}$. За да докажем b), трябва само да положим a=0 в a).

Теорема 14.2 Нека е дадена извадка X_1, X_2, \ldots, X_n от разпределение с очакване μ и $\partial ucnepcus \sigma^2$. Тогава:

- a) $\mathbf{E}X = \mu$,
- b) $Var\bar{X} = \frac{\sigma^2}{n}$, c) $Es^2 = \sigma^2$.

Доказателство: За точка a) имаме:

$$\mathbf{E}\bar{X} = \mathbf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\mathbf{E}\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}n\mathbf{E}X_{1} = \mu.$$

Аналогично за b):

$$Var\bar{X} = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n^2}Var\left(\sum_{i=1}^{n}X_i\right) = \frac{1}{n^2}nVarX_1 = \frac{\sigma^2}{n}.$$

За c) ще използваме резултата от Теорема 14.1:

$$\mathbf{E}s^{2} = \mathbf{E}\left(\frac{1}{n-1}\left[\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2}\right]\right) = \frac{1}{n-1}(n\mathbf{E}X_{1}^{2} - n\mathbf{E}\bar{X}^{2})$$
$$= \frac{1}{n-1}\left(n(\sigma^{2} + \mu^{2}) - n\left(\frac{\sigma^{2}}{n} + \mu^{2}\right)\right) = \sigma^{2}.$$

14.2Методи за получаване на точкови оценки

14.2.1Метод на моментите

Нека $X_1, X_2, \dots X_n \sim f(x|\theta_1, \theta_2, \dots, \theta_k)$. Определяме всички емпирични m_i (както са дефинирани по-долу) и теоретични μ_i' моменти по следния начин:

$$m_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{1}, \quad \mu'_{1} = EX^{1},$$

$$m_{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, \quad \mu'_{2} =^{2},$$

$$\dots$$

$$m_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}, \quad \mu'_{k} =^{k}.$$

Приравняваме ги за съответните степени и образуваме толкова уравнения, колкото са необходими за намиране на неизвестните параметри:

$$m_1 = \mu'_1(\theta_1, \theta_2, \dots, \theta_k),$$

$$m_2 = \mu'_2(\theta_1, \theta_2, \dots, \theta_k),$$

$$m_k = \mu'_k(\theta_1, \theta_2, \dots, \theta_k),$$

Решението на получената система спрямо $\theta_1, \theta_2, \dots, \theta_k$ е т.нар. оценка по метода на моментите.

Пример 14.1 Да се намери оценка по метода на моментите за параметрите μ и σ^2 по извадка от нормално разпределение $N(\mu, \sigma^2)$.

Решение:
$$m_1 = \bar{X}$$
, $\mu_1 = EX = \mu \Rightarrow \hat{\mu} = \bar{X}$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$.

14.2.2 Метод на максималното правдоподобие (ММП)

Определение 14.4 Функция на правдоподобие на извадката x_1, x_2, \ldots, x_n от разпределение с плътност $f(x|\theta_1, \theta_2, \ldots, \theta_k)$ наричаме:

$$L(\theta|\mathbf{x}) = L(\theta_1, \theta_2, \dots, \theta_k | x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i | \theta_1, \theta_2, \dots, \theta_k).$$

Определение 14.5 Максимално-правдоподобна оценка (МПО) наричаме стойността на параметъра θ , за която стойността на функцията на правдоподобие е максимална:

$$\hat{\theta} = \arg\max_{\theta} L(\theta|\mathbf{x}).$$

Решаването на тази задача е с методи от анализа: решаване на уравненията $\frac{\partial}{\partial \theta_i} L(\theta|\mathbf{x}) = 0$, $i=1,2,\ldots,k$ за определяне на локални екстремуми, проверка в границите на областта, втори производни и т.н.

Пример 14.2 Да се намери оценка по ММП за параметъра μ по извадка от нормално разпределение $N(\mu, 1)$.

Решение:

$$L(\mu|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x_i - \mu)^2} = (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^2}$$

Вместо максимума на $\frac{d}{d\mu}L(\mu|\mathbf{x})$, може да търсим този на $\frac{d}{d\mu}\ln L(\mu|\mathbf{x})$, тъй като \ln е строго растяща функция. Тогава от:

$$\frac{d}{d\mu} \left[-\frac{n}{2} \ln(2\pi) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 \right] = 0$$

следва

$$\sum_{i=1}^{n} (\mu - x_i) = 0,$$

откъдето

$$\sum_{i=1}^{n} \mu = \sum_{i=1}^{n} x_i,$$

или $n\mu = \sum_{i=1}^{n} x_i$, откъдето $\mu = \bar{X}$.

Остава да проверим дали $\frac{d^2}{d\mu^2}L(\mu|\mathbf{x})<0$ и какви са границите на $L(\mu|\mathbf{x})$ в $\pm\infty$, за да довършим решението на задачата.

Окончателно $\hat{\mu} = \bar{X}$.

14.3 Свойства на точковите оценки

Определение 14.6 Средноквадратична грешка на дадена оценка W на параметъра θ е функция на θ , дефинирана по следния начин: $\mathbf{E}_{\theta}(W-\theta)^2$.

Средноквадратичната грешка може да се разложи на сума от две компоненти - дисперсията на оценката плюс (квадрата на) нейното изместване:

$$\mathbf{E}_{\theta}(W - \theta)^{2} = Var_{\theta}W + (\mathbf{E}_{\theta}W - \theta)^{2} = Var_{\theta}W + (Bias_{\theta}W)^{2}.$$

Определение 14.7 Изместване ($Bias_{\theta}W$) на т.о. W от параметъра θ наричаме разликата $\mathbf{E}_{\theta}W - \theta$. Ако $Bias_{\theta}W = 0$, то оценката е неизместена, т.е. $\mathbf{E}_{\theta}W = \theta$.

Пример 14.3 Нека е дадена извадка $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$. Разглеждаме оценките \bar{X} и s^2 . За тях от Теорема 14.2 имаме, че $\mathbf{E}\bar{X} = \mu$ и $\mathbf{E}s^2 = \sigma^2$, т.е. те са неизместени. Оттук средноквадратичната грешка и за двете оценки ще бъде равна на дисперсията им: $\mathbf{E}(\bar{X} - \mu)^2 = Var\bar{X} = \frac{\sigma^2}{n}$ и $\mathbf{E}(s^2 - \sigma^2)^2 = Vars^2 = \frac{2\sigma^4}{n-1}$ (докажете последното).

Пример 14.4 Разглеждаме оценката $\hat{\sigma}^2 = \frac{n-1}{n} s^2$. За нея $\mathbf{E} \hat{\sigma}^2 = \frac{n-1}{n} \sigma^2$ и $Var \hat{\sigma}^2 = \left(\frac{n-1}{n}\right)^2 Var s^2 = \frac{2(n-1)}{n^2} \sigma^4$. Тогава:

$$\mathbf{E}(\hat{\sigma}^2 - \sigma^2)^2 = \frac{2(n-1)}{n^2} \sigma^4 + \left(\frac{n-1}{n} \sigma^2 - \sigma^2\right)^2 = \frac{2n-1}{n^2} \sigma^4$$

$$< \frac{2}{n-1} \sigma^4 = E(s^2 - \sigma^2)^2.$$

Виждаме, че неизместената оценка s^2 се оказа с по-голяма дисперсия от изместената σ^2 , а оттам и по-голяма средноквадратична грешка. Тази "размяна" между дисперсия и изместеност е една от причините за трудностите при определянето на оценка с минимална средноквадратична грешка. Изобщо класът от всички оценки е твърде широк и за да можем да определим по-добри и най-добри оценки е необходимо да го ограничим. Един възможен подход е да разгледаме класа от неизместените оценки.

Определение 14.8 Дадена оценка W^* се нарича най-добра неизместена оценка (или равномерно неизместена оценка с минимална дисперсия) за $\tau(\theta)$, ако удовлетворява $\mathbf{E}_{\theta}W^* = \tau(\theta)$, за $\forall \theta$ и за всяка друга оценка W, за която $\mathbf{E}_{\theta}W = \tau(\theta)$, имаме $Var_{\theta}W^* \leq Var_{\theta}W$, $\forall \theta$.

Възможно е да ограничим отдолу дисперсията на коя да е неизместена оценка за даден параметър. Такава граница ни дава неравенството на Рао - Крамер. Ако намерим оценка, която достига тази граница, то тя ще бъде най-добра неизместена оценка за този параметър.

Теорема 14.3 (неравенство на Рао - Крамер) Нека е дадена извадка $X_1, X_2, \ldots, X_n \sim f(\mathbf{x}|\theta)$ и нека $W(\mathbf{X}) = W(X_1, X_2, \ldots, X_n)$ е коя да е оценка, удовлетворяваща условията:

 $\frac{d}{d\theta} \mathbf{E}_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} [W(\mathbf{x}) f(\mathbf{x}|\theta)] d\mathbf{x}$

u

$$Var_{\theta}(\mathbf{X}) < \infty.$$

Тогава

$$Var_{\theta}(W(\mathbf{X})) \ge \frac{(\frac{d}{d\theta}\mathbf{E}_{\theta}W(\mathbf{X}))^2}{\mathbf{E}_{\theta}((\frac{\partial}{\partial \theta}\log f(\mathbf{X}|\theta))^2)}.$$

Доказателствого се базира на неравенството на Коши за сл.в., т.е. факта, че ако имаме две сл.в. X и Y, то за тях е изпълнено:

$$[Cov(X,Y)]^2 \le (VarX)(VarY), \tag{14.3.1}$$

или по друг начин:

$$VarX \ge \frac{[Cov(X,Y)]^2}{VarY},\tag{14.3.2}$$

като долна граница на дисперсията на X. Ще положим в (14.3.2) $X = W(\mathbf{X})$ и $Y = \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)$ и ще приложим неравенството на Коши.

Да отбележим, че:

$$\frac{d}{d\theta} \mathbf{E}_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} W(\mathbf{x}) \left[\frac{\partial}{\partial \theta} f(\mathbf{x}|\theta) \right] d\mathbf{x}$$

$$= \mathbf{E}_{\theta} \left[W(\mathbf{X}) \frac{\partial}{\partial \theta} f(\mathbf{X}|\theta) \right]$$
 след като сме вмъкнали втория множител под диференциала
$$= \mathbf{E}_{\theta} \left[W(\mathbf{X}) \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right], \tag{14.3.3}$$

което е първият елемент от ковариацията на $W(\mathbf{X})$ и $\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)$. За да я пресметнем, ни трябва произведението на двете очаквания. Но, ако в (14.3.3) положим $W(\mathbf{x})=1$, то получаваме, че:

$$\mathbf{E}_{\theta}(\frac{\partial}{\partial \theta}\log f(\mathbf{X}|\theta)) = \frac{d}{d\theta}\mathbf{E}_{\theta}[1] = 0,$$

и така за ковариацията получихме, че е равна на очакването на произведението. Оттук:

$$Cov_{\theta}\left(W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)\right) = \mathbf{E}_{\theta}\left[W(\mathbf{X}) \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)\right] = \frac{d}{d\theta} E_{\theta} W(\mathbf{X}).$$

Освен това, от $\mathbf{E}_{\theta}(\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)) = 0$ следва, че:

$$Var_{\theta} \left(\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right) = \mathbf{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta) \right)^{2} \right).$$

Прилагайки неравенството на Коши (14.3.1), получаваме:

$$Var_{\theta}(W(\mathbf{X})) \ge \frac{(\frac{d}{d\theta}\mathbf{E}_{\theta}W(\mathbf{X}))^2}{\mathbf{E}_{\theta}((\frac{\partial}{\partial \theta}\log f(\mathbf{X}|\theta))^2)}.$$

 $\mathit{Cnedcmeue}$: Ако $X_1, X_2, \dots, X_n \sim f(x|\theta)$ са н.е.р. сл.в., то неравенството се опростява:

$$Var_{\theta}(W(\mathbf{X})) \ge \frac{\left(\frac{d}{d\theta}\mathbf{E}_{\theta}W(\mathbf{X})\right)^{2}}{n\mathbf{E}_{\theta}\left(\left(\frac{\partial}{\partial\theta}\log f(X|\theta)\right)^{2}\right)}.$$