US Macro Data Forecasting Report

This is a report on analyzing and forecasting the US macro data using **Recurrent Neural N Convolutional Neural Network** (**CNNs**) and **Generative Adversarial Net**roport is:

Part I. Statistical analysis

- · Basic manipulation
- · Correlation analysis
- Time series analysis with ARIMA

Part II. Deep learning models

- Basic model: single-step, single-feature forecasting with LSTM
- · Generalized model: multi-step, multi-feature forcasting with LSTM
- Advanced model: Generative Adversarial Network (GAN) with RNN and CNN.

Part III. Conclusions and Next steps

- Conclusions
- Next steps

- Introduction

1. The Notebook

Follow the notebook, we can recreate all the results, notice that

- Upload the USMacroData.xls file to the root folder on google colab.
- To navigate better, use the table of contents bottom on the upper-left sidebar.
- For clarity, all code cells are hiden, double click on the cell to get thε
- Change the parameters as indicated in the comments to create more custom outputs.
- All source code can also be found in the project file folder

2. The US Macro dataset

This report uses a US Macro Dataset provided by the ADP.

Before analyzing the data with codes, we have the following observations.

• This dataset contains 6 different features (the **Inflation**, **Wage**, **Unemployment**, **InterstRate**) about the macro economy of the US.

- Data were collected every 1 month, beginning in 1965-01-01 to 2015-12-01.
- In total, we have **612 rows** (month) and **6 columns** (features).

- Part I.1 Basic manipulation

▼ Code and examples

basic.py

read the file and show the head

₽		Month	Inflation	Wage	Unemployment	Consumption	Investment	InterestRat
	0	1965-01-01	1.557632	3.200000	4.9	6.972061	12.3	3.9
	1	1965-02-01	1.557632	3.600000	5.1	7.811330	13.2	3.9
	2	1965-03-01	1.242236	4.000000	4.7	7.828032	18.7	4.0
	3	1965-04-01	1.552795	3.585657	4.8	8.477938	9.8	4.(
	4	1965-05-01	1.552795	3.968254	4.6	7.139364	10.2	4.1

Basic checks: find null values and fill, set index, etc.

Null values summary:

Inflation	0
Wage	0
Unemployment	0
Consumption	0
Investment	0
InterestRate	0
dtype: int64	

	Inflation	Wage	Unemployment	Consumption	Investment	InterestRate
Month						
1965-01-01	1.557632	3.200000	4.9	6.972061	12.3	3.90
1965-02-01	1.557632	3.600000	5.1	7.811330	13.2	3.98
1965-03-01	1.242236	4.000000	4.7	7.828032	18.7	4.04
1965-04-01	1.552795	3.585657	4.8	8.477938	9.8	4.09
1965-05-01	1.552795	3.968254	4.6	7.139364	10.2	4.10

Example: plot the "Inflation" column

As a high level overview, some distinguishable patterns appear when we plot the data:

- In the 80's (1979-1989), all features experienced some drastic change
- The time-series has **seasonality pattern**, for example, **Unemployment** has **long** goes through 1 or 2 major up and downs. We will examine the seasonality more carefully in

- Part I.2 Correlation analysis

Though it's indicated that there's no obvious correlation among the 6 features, we compute severa **Naive correlation**, **Pearson correlation**, **local Pearson correlation**, **instan** and related statistics in order to

- Test the validity of the assumption (i.e. no two features are apprantly correlated).
- Chose source and target features for later model builds.

By doing so, we can get more understanding about the 'quality' and 'inner relations' of the data. If a explanatory power to the feature that we want to predict (e.g. "Inflation"), then there is no need for learning models. On the other hand, if one feature has higher-than-random correlations to another

the feature and the other as the target. In this case, to determine which feature leads, the Dynamic time wrapping.

Code and Examples

correlation.py

Requirement already satisfied: dtw in /usr/local/lib/python3.6/dist-packages (1.4.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from

Example: Naive correlation.

₽		Inflation	Wage	Unemployment	Consumption	Investment	InterestR
	Inflation	1.000000	0.778155	0.191886	0.617820	-0.341421	0.773
	Wage	0.778155	1.000000	-0.068529	0.703745	-0.125412	0.647
	Unemployment	0.191886	-0.068529	1.000000	-0.097183	-0.038286	-0.027
	Consumption	0.617820	0.703745	-0.097183	1.000000	0.203165	0.655
	Investment	-0.341421	-0.125412	-0.038286	0.203165	1.000000	-0.234
	InterestRate	0.773616	0.647482	-0.027809	0.655305	-0.234573	1.000

Example: Pearson correlation

Pandas computed Pearson r: 0.7781551675438367
Scipy computed Pearson r: 0.7781551675438365 and p-value: 2.53137614903759e-125

Example: local Pearson correlation

С→

Smiling data and rolling window correlation

Example: instantaneous phase synchronization

Example: dynamic time wraping

Data analysis

Inspecting the correlations from different angles, we find

- Inflation and Wage have the highest correlation, 0.778155, among all the
- Inflation, Wage, Consumption and IntestRate show quite high positive correlation, and low n Unemployment and Investment.
- Most features slightly leads the Inflation feature.
- For the first 30 years, certain feature pairs show **high instantaneous phase synch**1

We conclude that

- The assumption that no two features have apparent correlation is w
- It's reasonable to
 use Inflation as target and the other 5 features as source for forcasting

- Part I.3 Time series analysis with ARIMA

As we mentioned above, some remarkable patterns (e.g. seasonality pattern) naturally appear in c

- We visualize our data using **time-series decomposition** that allows us to decompos trend, seasonality, and noise.
- We train an ARIMA (Autoregressive Integrated Moving Average) m Inflation values. To get optimal output, we first
- Use **grid** search to get the optimal parameters for the ARIMA mode.
- We use **ARIMA diagnostics** to investigate any unusual behavior.

Code and examples

time_series.py

Example: decompose "Consumption" column into trend, seasonal and residua

▼ Time series analysis with ARIMA
 Grid search for optimal ARIMA parameters

ARIMA training

ARIMA diadonostics

ARIMA predictions

 \Box

The Mean Squared Error of our forecasts is 0.004963826636415743

The Root Mean Squared Error of our forecasts is 0.07

ARIMA forcasts

- Components plot show the obvious seasonality, for example, in every 10 years, the "Inflatial a half-year seasonality."
- The optimal ARIMA parameters for "Inflation" are (1, 1, 1)x(0, 0, 1, 12)
- The ARIMA diagonostics show that the **noise distribution is narrower than the**
- The one-step ahead forcast captures the overall trend well.
- As we forecast further out into the future, we becomes less confident in our values. This is r by our model, which grow larger as we move further out into the future.

- Part II.1 Basic model: single-step, single-feature fo

Recurrent Neural Networks (RNNs) are good fits for time-series analysis because f designed to capture patterns developing through time.

However, vanilla RNNs have a major disadvantage---the vanishing gradient problem---"the changes so small, making the network unable to converge to a optimal solution.

LSTM (**Long-Short Term Memory**) is a variation of vanilla RNNS,it overcomes the variable problem by clipping gradients if they exceed some constant bounds.

In this section, we will

- Process the data to fit the LSTM model
- Build and train the LSTM model for single-step, single-feature pred tomorrow value with only today's values of the other 5 features).

imports

Data preparation

Build and train the LSTM model

Make sure data forms are correct

LSTM with SGD, RMSprop, Adam optimizers, epochs = 100

```
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/optimizers.py:75
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/pythor
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
Train on 427 samples, validate on 184 samples
Epoch 1/100
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl
Epoch 2/100
Epoch 3/100
427/427 [============== ] - 1s 3ms/step - loss: 1.8379 - acc: 0.0000e+
Epoch 4/100
427/427 [=============== ] - 1s 3ms/step - loss: 1.4932 - acc: 0.0000e+
Epoch 5/100
Epoch 6/100
Epoch 7/100
427/427 [============== ] - 1s 3ms/step - loss: 1.0970 - acc: 0.0000e+
Epoch 8/100
Epoch 9/100
Epoch 10/100
427/427 [============= ] - 1s 3ms/step - loss: 1.0670 - acc: 0.0000e+
Epoch 11/100
427/427 [============== ] - 1s 3ms/step - loss: 1.0320 - acc: 0.0000e+
Epoch 12/100
Epoch 13/100
427/427 [============== ] - 1s 3ms/step - loss: 0.9960 - acc: 0.0000e+
Epoch 14/100
Epoch 15/100
Epoch 16/100
Epoch 17/100
```

```
Epoch 18/100
Epoch 19/100
427/427 [============= ] - 1s 3ms/step - loss: 0.9319 - acc: 0.0000e+
Epoch 20/100
Epoch 21/100
Epoch 22/100
Epoch 23/100
Epoch 24/100
Epoch 25/100
Epoch 26/100
Epoch 27/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.8588 - acc: 0.0000e+
Epoch 28/100
427/427 [============ ] - 1s 3ms/step - loss: 0.8365 - acc: 0.0000e+
Epoch 29/100
Epoch 30/100
Epoch 31/100
427/427 [============== ] - 1s 3ms/step - loss: 0.7964 - acc: 0.0000e+
Epoch 32/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.8261 - acc: 0.0000e+
Epoch 33/100
Epoch 34/100
Epoch 35/100
Epoch 36/100
427/427 [================ ] - 1s 3ms/step - loss: 0.8105 - acc: 0.0000e+
Epoch 37/100
Epoch 38/100
Epoch 39/100
Epoch 40/100
427/427 [============== ] - 1s 3ms/step - loss: 0.7406 - acc: 0.0000e+
Epoch 41/100
Epoch 42/100
Epoch 43/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.7781 - acc: 0.0000e+
Epoch 44/100
Epoch 45/100
Epoch 46/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.7355 - acc: 0.0000e+
Epoch 47/100
Fnoch 48/100
```

```
427/427 [============ ] - 1s 3ms/step - loss: 0.7791 - acc: 0.0000e+
Epoch 49/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.7407 - acc: 0.0000e+
Epoch 50/100
Epoch 51/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.7301 - acc: 0.0000e+
Epoch 52/100
Epoch 53/100
Epoch 54/100
427/427 [============= ] - 1s 3ms/step - loss: 0.7170 - acc: 0.0000e+
Epoch 55/100
427/427 [============== ] - 1s 3ms/step - loss: 0.7276 - acc: 0.0000e+
Epoch 56/100
Epoch 57/100
Epoch 58/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.7016 - acc: 0.0000e+
Epoch 59/100
Epoch 60/100
427/427 [============== ] - 1s 3ms/step - loss: 0.7264 - acc: 0.0000e+
Epoch 61/100
427/427 [============= ] - 1s 3ms/step - loss: 0.6682 - acc: 0.0000e+
Epoch 62/100
Epoch 63/100
427/427 [================ ] - 1s 3ms/step - loss: 0.6951 - acc: 0.0000e+
Epoch 64/100
Epoch 65/100
Epoch 66/100
427/427 [============== ] - 1s 3ms/step - loss: 0.7045 - acc: 0.0000e+
Epoch 67/100
Epoch 68/100
Epoch 69/100
427/427 [================ ] - 1s 3ms/step - loss: 0.6832 - acc: 0.0000e+
Epoch 70/100
Epoch 71/100
Epoch 72/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.6946 - acc: 0.0000e+
Epoch 73/100
Epoch 74/100
Epoch 75/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.6901 - acc: 0.0000e+
Epoch 76/100
427/427 [============== ] - 1s 3ms/step - loss: 0.6839 - acc: 0.0000e+
Epoch 77/100
Epoch 78/100
```

```
Epoch 79/100
Epoch 80/100
Epoch 81/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.6555 - acc: 0.0000e+
Epoch 82/100
Epoch 83/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.6115 - acc: 0.0000e+
Epoch 84/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.6476 - acc: 0.0000e+
Epoch 85/100
Epoch 86/100
427/427 [================ ] - 1s 3ms/step - loss: 0.6768 - acc: 0.0000e+
Epoch 87/100
427/427 [============== ] - 1s 3ms/step - loss: 0.6399 - acc: 0.0000e+
Epoch 88/100
Epoch 89/100
Epoch 90/100
427/427 [============== ] - 1s 3ms/step - loss: 0.6269 - acc: 0.0000e+
Epoch 91/100
427/427 [============== ] - 1s 3ms/step - loss: 0.6289 - acc: 0.0000e+
Epoch 92/100
427/427 [============== ] - 1s 3ms/step - loss: 0.6331 - acc: 0.0000e+
Epoch 93/100
Epoch 94/100
Epoch 95/100
427/427 [=============== ] - 1s 3ms/step - loss: 0.6257 - acc: 0.0000e+
Epoch 96/100
427/427 [============== ] - 1s 3ms/step - loss: 0.6182 - acc: 0.0000e+
Epoch 97/100
Epoch 98/100
427/427 [============= ] - 1s 3ms/step - loss: 0.5794 - acc: 0.0000e+
Epoch 99/100
Epoch 100/100
```

Plot result

Plot result

Гэ

Plot predictions

Plot predictions

₽

Train Score: 0.71 RMSE Test Score: 1.53 RMSE

We only trained the model for 100 epochs, feel free to modify it to any number as long as we have results we find during the experiments

- LSTM with Adam or RMSprop optimizers work better than the SGD optimizer in this project.
- Each model fits the training dataset very well.
- · The prediction captures the range and characteristics of the real dat
- The model doesn't predict the rapid increasing near the 100th test d

- Part II.2 Generalized model: multi-step, multi-fea

We build a multi-step, multi-feature LSTM model in this section. That means we can use several-d features in the future.

For example, we can use last 12-month's data of Wage, Consumption, In . In this section, we

- Process the data to fit the requirements of all possible multi-step, multi-feature prediction ta
- We modify the LSTM model accordingly.
- Plot the 3-month prediction for Inflation and Unemployment with last 12-month's data of Wa InterestRate.

Data preparation

Make the data forms are all correct

```
(418, 12, 4)
(418, 6)
(180, 12, 4)
(418, 6)
```

Scaling, vectorize and de_vectorize

Multi-step LSTM model, change the input_shape and Dense layer parameter to

Train the model. Change the optimizer parameter to use other optimizers, e.g.

С

```
Train on 418 samples, validate on 180 samples
Epoch 1/200
Epoch 2/200
Epoch 3/200
Epoch 4/200
Epoch 5/200
Epoch 6/200
Epoch 7/200
Epoch 8/200
Epoch 9/200
Epoch 10/200
Epoch 11/200
Epoch 12/200
Epoch 13/200
Epoch 14/200
Epoch 15/200
Epoch 16/200
Epoch 17/200
Epoch 18/200
Epoch 19/200
Epoch 20/200
Epoch 21/200
Epoch 22/200
Epoch 23/200
Epoch 24/200
Epoch 25/200
Epoch 26/200
Epoch 27/200
Epoch 28/200
Epoch 29/200
Epoch 30/200
```

```
Epoch 31/200
Epoch 32/200
Epoch 33/200
Epoch 34/200
Epoch 35/200
Epoch 36/200
Epoch 37/200
Epoch 38/200
Epoch 39/200
Epoch 40/200
Epoch 41/200
Epoch 42/200
Epoch 43/200
Epoch 44/200
Epoch 45/200
Epoch 46/200
Epoch 47/200
Epoch 48/200
Epoch 49/200
Epoch 50/200
Epoch 51/200
Epoch 52/200
Epoch 53/200
Epoch 54/200
Epoch 55/200
Epoch 56/200
Epoch 57/200
Epoch 58/200
Epoch 59/200
Epoch 60/200
Epoch 61/200
```

```
------
Epoch 62/200
Epoch 63/200
Epoch 64/200
Epoch 65/200
Epoch 66/200
Epoch 67/200
Epoch 68/200
Epoch 69/200
Epoch 70/200
Epoch 71/200
Epoch 72/200
Epoch 73/200
Epoch 74/200
Epoch 75/200
Epoch 76/200
Epoch 77/200
Epoch 78/200
Epoch 79/200
Epoch 80/200
Epoch 81/200
Epoch 82/200
Epoch 83/200
Epoch 84/200
Epoch 85/200
Epoch 86/200
Epoch 87/200
Epoch 88/200
Epoch 89/200
Epoch 90/200
Epoch 91/200
Epoch 92/200
```

```
Epoch 93/200
Epoch 94/200
Epoch 95/200
Epoch 96/200
Epoch 97/200
Epoch 98/200
Epoch 99/200
Epoch 100/200
Epoch 101/200
Epoch 102/200
Epoch 103/200
Epoch 104/200
Epoch 105/200
Epoch 106/200
Epoch 107/200
Epoch 108/200
Epoch 109/200
Epoch 110/200
Epoch 111/200
Epoch 112/200
Epoch 113/200
Epoch 114/200
Epoch 115/200
Epoch 116/200
Epoch 117/200
Epoch 118/200
Epoch 119/200
Epoch 120/200
Epoch 121/200
Epoch 122/200
Epoch 123/200
```

```
Epoch 124/200
Epoch 125/200
Epoch 126/200
Epoch 127/200
Epoch 128/200
Epoch 129/200
Epoch 130/200
Epoch 131/200
Epoch 132/200
Epoch 133/200
Epoch 134/200
Epoch 135/200
Epoch 136/200
Epoch 137/200
Epoch 138/200
Epoch 139/200
Epoch 140/200
Epoch 141/200
Epoch 142/200
Epoch 143/200
Epoch 144/200
Epoch 145/200
Epoch 146/200
Epoch 147/200
Epoch 148/200
Epoch 149/200
Epoch 150/200
Epoch 151/200
Epoch 152/200
Epoch 153/200
```

```
Epoch 154/200
Epoch 155/200
Epoch 156/200
Epoch 157/200
Epoch 158/200
Epoch 159/200
Epoch 160/200
Epoch 161/200
Epoch 162/200
Epoch 163/200
Epoch 164/200
Epoch 165/200
Epoch 166/200
Epoch 167/200
Epoch 168/200
Epoch 169/200
Epoch 170/200
Epoch 171/200
Epoch 172/200
Epoch 173/200
Epoch 174/200
Epoch 175/200
Epoch 176/200
Epoch 177/200
Epoch 178/200
Epoch 179/200
Epoch 180/200
Epoch 181/200
Epoch 182/200
Epoch 183/200
Epoch 184/200
```

```
Epoch 185/200
Epoch 186/200
Epoch 187/200
Epoch 188/200
Epoch 189/200
Epoch 190/200
Epoch 191/200
Epoch 192/200
Epoch 193/200
Epoch 194/200
Epoch 195/200
Epoch 196/200
Epoch 197/200
Epoch 198/200
```

Make predictions with the trained model

Plot Multi-step, Multi-feature predictions.

To read to graph below

- Each short line segment is a 3-month prediction: start, middle, end point of the line segment month's data respectively.
- X axies is the data.
- The long line is the real data.
- We plot the prediction for year 2001, change the parameter as you want to get prediction for

We show the first 12 month's data and corresponding 3-month predictions for

₽

Though the dataset is not big enough, we still successfully capture several features in the predicti

- Model predictions shows similar trend as the real data, e.g. from the prec predicted values are more or less in the most correct range and goes in the same direction a
- The model captures the range of the real data very precisely.
- All 3-month predictions are continuous, which means the modell successfully

- Part II.3 Advanced model: Generative Adversaria

Generative Adversarial Networks (GAN) have been a successful model in genera The idea that GANs can to used to predict time-series data is new and experience in learning characteristics of data, our model is based on the assumptions.

- Values of a **feature has certain patterns** and behavior (characteristics).
- The future values of a feature should follow more or less the same pa operating in a totally different way, or the economy drastically changes).

Our **goal** is that

- Generate future data that has similar (surely not exactly the same) distribution as the histori
 In our model, we use
 - LSTM as a time-series generator.
 - 1-dimensional CNN as a discriminator.

imports

Data preparation

Make sure all data forms are as what we want

```
(418, 12, 4)
(418, 6)
(180, 12, 4)
(180, 6)
```

▼ Model architecture: LSTM generator

It's a 1-layer LSTM model.

- 50 hidden layers of LSTM cells
- 1 dense layer with 6 (2*3) dimensional output, since we have 2 features and 3 months to pre

Create generator

Model: "sequential_6"

Layer (type)	Output Shape	Param #
lstm_5 (LSTM)	(None, 50)	11000
dense_5 (Dense)	(None, 6)	306

Total params: 11,306 Trainable params: 11,306 Non-trainable params: 0

Model architecture: CNN discriminator

The structure of the discriminator is given by

- Reshape layer. Each row in y_train is acturally 1-dimensional (6,), which is different from (6,1)
- 1-dimensional Convolutional layer with 32, 3×1 filters to capture the characteristics of 3-mc
- LeakyReLU layer
- Dropout layer. Random reconfigurate 10% of the weights to zero to prevent overfitting.
- 1-dimensional Convolutional layer with 64, 3×1 filters to capture more characteristics of the
- Batchnormalization layer. To normalize the data.
- 1 Dense layer with 50 hidden nets.
- Dropout layer.
- 1 Dense layer with 1 net.

Create discriminator

С→

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorfl Instructions for updating:

Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob Model: "sequential_7"

Layer (type)	Output Shape	Param #
reshape_1 (Reshape)	(None, 6, 1)	0
conv1d_1 (Conv1D)	(None, 4, 32)	128
leaky_re_lu_1 (LeakyReLU)	(None, 4, 32)	0
dropout_1 (Dropout)	(None, 4, 32)	0
conv1d_2 (Conv1D)	(None, 2, 64)	6208
batch_normalization_1 (Batch	(None, 2, 64)	256
dense_6 (Dense)	(None, 2, 50)	3250
dropout_2 (Dropout)	(None, 2, 50)	0
flatten_1 (Flatten)	(None, 100)	0
dense_7 (Dense)	(None, 1)	101
Total narams: 9 943		

Total params: 9,943 Trainable params: 9,815 Non-trainable params: 128

Create a GAN model with LSTM as the generator and CNN as the discriminator

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 12, 4)	0
sequential_6 (Sequential)	(None, 6)	11306
sequential_7 (Sequential)	(None, 1)	9943

Total params: 21,249
Trainable params: 11,306
Non-trainable params: 9,943

Training function for the entangled GAN model

training(x_train, y_train, x_test, y_test, epochs=100, random_size=128)

• Our LSTM generator is not pre-trained, which means The GAN model get results as good as the previous models, but this experimental model shows p

- The GAN model successfully learned the correct range.
- The GAN model learns the most drastic characteristics of the data.

- Part III Conclusions and Next steps

Conclusions

In this project on analyzing and forecasting the US macro data we managed to accomplish the fol

- Statistical analysis in Part I
 - Basic manipulation: read the file, find null values and set index and some column plott
 - Correlation analysis: compute different correlations and use to to validate our choice c
 - o Time series analysis with ARIMA: grid search for optimal parameters and train the ARIM
- Build 3 Deep learning models from basic one to advanced one in Par
 - Basic model: single-step, single-feature forecasting with LSTM
 - Generalized model: multi-step, multi-feature forcasting with LSTM
 - Advanced model: Generative Adversarial Network (GAN) with LSTM and CNN.

Along the way, we find several remarkable patterns and features of our data

- Features show long-period seasonality.
- Several features show apparent correlations.
- Most features slightly leads the Inflation feature.
- The GAN model successfully learned the correct range.
- The GAN model learns the most drastic characteristics of the data.

Next steps

The USMacroData is not a big dataset, the following are a few furthur steps that we have done bu directions we can try to investigate:

- It's natural to include the target feature itself into consideration, because i
 most relevant to the future value of the feature itself. It can be easily achieved by modifying
- Investigate the difference between the first thirty years and the last twenty years.
 - Pre-train the LSTM model in the GAN model. In this way, the model

https://colab.research.google.com/drive/15eRh90lvpynFFSyrKMkzfIGOZeIH9Rg4#scrollTo=5AcGIrHOIQPt&printMode=true