Ayush Sharma > Scaler > Leed DSA

2019 > CSE, IIT Patra

Strand hipe Sciences

Sceler (2021)

Joees >> Hierarchical Date

X Merch 30 days Module Mock duterview Expises. End Date 20 mertos session 8 (duteractue) 12 (Mock onterviews) Mandeton Reettenpt Languege Level > Afper or SQLV lover then What we have LLD HLD Covered 100 > 701.

90% chame of cleaning the Man

	An element in a tree > Node.
S I	Child nodes of Node 2 4, 3, 6
	Parent Node of 7
	eaf Nodes > Nodes with mo children
	4, 5, 8, 9, 10.
(2,10,

Siblings 4> Nodes with same perent

Level, Height & Depth

Depth of a Node

There at which a node is present

(Distance of the node from root)

Height of a Node hength of the longest path from a node to the ferthest beef. Height of Node 2 > 2 Height of = 4 =

Height of the Tree.

Height of Leef Node = 0.

for a tree h find the tot possible ?!	oith N nodes. al w. of sustrees
N unique soot nodes > possible	N Unique subtrees possible
Vomen datose	La Jree
	on the basis of any node can have.
Max no. of childre	en Name
2	Binery Free
3	dernary dree
•	
\sim	N-azy tree

Dinary Note

A tree where any node can have atmex
2 children (0,1 or 2)

10 5 15 4 4 4 3 8 12 18

Structure et a Node in B.T.

Node X int data Node left; Node right; left child right Node (int x) x dete = x's left = right = NOLL

Vraversals of Tree Right Sustree Left Sustree

Subtree rooted at → Entre Tree heft sustree of 10 > Sustree rooted at left child of 10

-) Poe Order > Node, Left, Right
 Traveral
- 2) du Order => heft, Node, Right
- 3) Post Order => Left, Right, Node
- 4) hevel Order Traversal
- 5) Verbiel Order Franceral

Dext Clers

On-Order Traversel

Non Root

NOLL NOLL NOLL N N N N N N

3,5,8,10,12,1≤,18

void in Order (Node root) &

if (root == NULL) & return; }

het

in Order (root. left);

Node

Print (root. date);

in Order (root. right);

Post Order

H.W.

void postOrder (Node root) &

if (root == NULL) & return; }

heft post Order (root. left);

Right post Order (root. right);

Node print (root. date);

T.C. of Recursion = (# Reassive) × (Fine per Recursive) (all)

 $\mathcal{T}\cdot \mathcal{C} = \mathcal{O}(\mathcal{N}) \times \mathcal{O}(\mathcal{C})$

 $T \cdot C \cdot = O(N)$ $S \cdot C \cdot = O(Height)$

N N Skewed Feel

4 2 5 1 3

Code

Stack (Node) st Node curs = root;

while (curs /= NULL || |st. is Empty ()) d

if (cars /= NULL) d

st. push (cars);

Curr = curr. left; curs = St.pop()
point (curs. deta);
curs = curs. night; 4, 2, 5, 1, 3 Wednesday > Contest Linkel List, Stack Juene

Friday (26th January) > Off Wext Class

Mondy > 29th January

Last Clars
Clars of Sol

DSA 4.2 1 months 951.4 the companies of the companies DSP1,2,3,7 SPL

Source

Course