

Learning Objectives

- 1. What is the Markov decision process (MDP)?
- 2、What is the partial observable MDP?
- 3. What is the Bellman equation?
- 4. What are value iteration and policy iteration?
- 5. What are policy improvement and policy evaluation?
- 6. How to use observation and prediction to update belief?
- 7. What is the max-sum algorithm?
- 8. How to reduce the computational complexity of POMDP?

Outlines

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation

Reinforcement Learning

Robot Navigation Problem

Uncertainty in Motion

Uncertainty in Motion and Observation

2nd Step

Markov Decision Process

Markov Decision Process

		RIGHT GOAL
	OBSTACLE	WRONG GOAL
START POSITION		

Markov Decision Process Setup

☐ Given:

States *x*, Actions *u*

Transition probabilities p(x'|u, x)

Reward function r(x, u)

■ Wanted:

Policy $\pi(x)$ that maximizes the future expected reward

Policy and Cumulative Reward

- \square Policy (fully observable case): $\pi: \chi_t \to u_t$
- lacksquare Expected cumulative reward: $R_T = E \left| \sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau} \right|$

$$R_{\infty} \leq r_{\max} + \gamma r_{\max} + \gamma^2 r_{\max} + \gamma^3 r_{\max} + \dots = \frac{r_{\max}}{1 - \gamma}$$

T=1 : greedy policy

T>1 : finite horizon case, typically no discount

T=infinity: infinite-horizon case, finite reward if discount < 1

Optimal Policy

■ Expected cumulative reward of policy:

$$R_T^{\pi}(x_t) = E\left[\sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau} \mid u_{t+\tau} = \pi(x_{t+\tau})\right]$$

☐ Optimal policy:

$$\pi^* = \underset{\pi}{\operatorname{argmax}} \quad R_T^{\pi}(x_t)$$

Return from Rewards

episodic (vs. continuing) tasks "game over" after N steps optimal policy depends on N; harder to analyze

□ additive rewards

 $R(x_t, x_{t+1}, ...) = r(x_t) + r(x_{t+1}) + r(x_{t+2}) + ...$ infinite value for continuing tasks

□ discounted rewards

 $R(x_t, x_{t+1}, ...) = r(x_t) + \gamma * r(x_{t+1}) + \gamma^2 * r(x_{t+2}) + ...$ value bounded if rewards bounded

State Value Function

Expected return when starting from x_t and following policy π :

$$V^{\pi}(x_t) = R^{\pi}_{\infty}(x_t)$$

 \square Bellman equation for policy π :

$$V^{\pi}(x) = \sum_{u} \pi(x, u) \left[r(x, u) + \gamma \int V^{\pi}(x') p(x'|x, u) dx' \right]$$

Optimal Value Function

☐ Optimal return for all possible policies:

$$V(x) = \max_{\pi} V^{\pi}(x)$$

Bellman equation for optimal value function:

$$V(x) = \sum_{u} \pi(x, u) \left[r(x, u) + \gamma \int V(x') p(x'|x, u) dx' \right]$$

1-Step Optimal Policy and Value Function

■ 1-step optimal policy:

$$\pi_1(x) = \underset{u}{\operatorname{argmax}} \quad r(x, u)$$

■ Optimal value function of 1-step optimal policy:

$$V_1(x) = \max_{u} r(x, u)$$

2-Step Optimal Policy and Value Function

2-step optimal policy:

$$\pi_2(x) = \underset{u}{\operatorname{argmax}} \left[r(x,u) + \gamma \int V_1(x') \; p(x' \mid u,x) \; dx' \right]$$

$$\text{Current Reward}$$
Predicted Value

2-step optimal value function:

$$V_2(x) = \max_u \left[r(x,u) + \gamma \int V_1(x') \; p(x' \mid u,x) \; dx' \right]$$

Current Reward Predicted Value

T-Step Optimal Policy and Value Function

☐ T-step optimal policy:

$$\pi_T(x) = \underset{u}{\operatorname{argmax}} \left[r(x,u) + \gamma \int V_{T-1}(x') \; p(x' \mid u,x) \; dx' \right]$$
 Current Reward Predicted Value

■ T-step optimal value function:

$$V_T(x) = \max_{u} \left[r(x,u) + \gamma \int V_{T-1}(x') \ p(x' \mid u, x) \ dx' \right]$$
Current Reward
Predicted Value

Infinite Horizon

☐ Optimal value function:

$$V_{\infty}(x) = \max_{u} \left[r(x,u) + \gamma \int V_{\infty}(x') \; p(x' \mid u,x) \; dx' \right]$$
 Current Reward Predicted Value

- Bellman equation
 - ✓ Fixed point is optimal policy
 - ✓ Necessary and sufficient condition

Outlines

- Markov Decision Process (MDP)
- Value Iteration and Policy Iteration
- Partially Observable MDP (POMDP)
- POMDP Observation and Prediction
- POMDP Approximation

Value Iteration

for all x do

$$\hat{V} \leftarrow r_{\min}$$

endfor

repeat until convergence

for all x do

$$\hat{V}(x) \leftarrow \max_{u} \left[r(x,u) + \gamma \int \hat{V}(x') \ p(x' \mid u, x) \ dx' \right]$$

endfor

endrepeat

$$\pi(x) = \underset{u}{\operatorname{argmax}} \left[r(x, u) + \gamma \int \hat{V}(x') p(x' \mid u, x) dx' \right]$$

MDP Model

Environment and reward:

- a) Green rectangle: destination, reward = 0 for any action
- b) Black rectangle: wall, reward = -1
- c) reward = 0.1 for each step in other states
- d) action = {up, down, left, right}

MDP Model

0	1	2	3
4	5	6	7
8	9	10	11

- a) Position 3: reward = 0 for any action
- b) Positions 5 and 7: wall, reward = -1
- c) reward = 0.1 for each step in other states
- d) action = {up/0, down/1, left/2, right/3}

transition probabilities:

```
{x: {u_1: (x', p(x'|x, u_1), r), u_2: (x', p(x'|x, u_2), r), u_3: (x', p(x'|x, u_3), r), u_4: (x', p(x'|x, u_4), r) }}
```

```
{0: {0: (0, 1.0, -0.1), 1: (4, 1.0, -0.1), 3: (1, 1.0, -0.1), 2: (0, 1.0, -0.1)}, 1: {0: (1, 1.0, -0.1), 1: (1, 1.0, -1), 3: (2, 1.0, -0.1), 2: (0, 1.0, -0.1)}, 2: {0: (2, 1.0, -0.1), 1: (6, 1.0, -0.1), 3: (3, 1.0, -0.1), 2: (1, 1.0, -0.1)}, 3: {0: (3, 1.0, 0), 1: (3, 1.0, 0), 3: (3, 1.0, 0), 2: (3, 1.0, 0)}, 4: {0: (0, 1.0, -0.1), 1: (8, 1.0, -0.1), 3: (4, 1.0, -1), 2: (4, 1.0, -0.1)}, 5: {0: (1, 1.0, -0.1), 1: (9, 1.0, -0.1), 3: (6, 1.0, -0.1), 2: (4, 1.0, -0.1)}, 6: {0: (2, 1.0, -0.1), 1: (10, 1.0, -0.1), 3: (6, 1.0, -1), 2: (6, 1.0, -1)}, 7: {0: (3, 1.0, -0.1), 1: (11, 1.0, -0.1), 3: (7, 1.0, -1), 2: (6, 1.0, -0.1)}, 8: {0: (4, 1.0, -0.1), 1: (8, 1.0, -0.1), 3: (9, 1.0, -0.1), 2: (8, 1.0, -0.1)}, 9: {0: (9, 1.0, -1), 1: (9, 1.0, -0.1), 3: (11, 1.0, -0.1), 2: (9, 1.0, -0.1)}, 11: {0: (11, 1.0, -1), 1: (11, 1.0, -0.1), 3: (11, 1.0, -0.1), 2: (10, 1.0, -0.1)}}
```

Value Iteration (I)

Value Function V⁰

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$V^0(0) = 0.0$$

$$V^1(0) = -0.1$$

$$r(0, up) + V^{0}(0)*p(0|0,up) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, do) + V^{0}(4)*p(4|0,do) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, rig) + V^{0}(1)*p(1|0,rig) = -0.1 + (-0.0)*1 = -0.1$$

$$r(0, lef) + V^{0}(0)*p(0|0,lef) = -0.1 + (-0.0)*1 = -0.1$$

$$V^0(1) = 0.0$$
 $V^1(1) = -0.1$

$$r(1, up) + V^{0}(1)*p(1|1,up) = -0.1 + (-0.0)*1 = -0.1$$

$$r(1, do) + V^{0}(1)*p(1|1,do) = -1.0 + (-0.0)*1 = -1.0$$

$$r(1, rig) + V^{0}(2)*p(2|1,rig) = -0.1 + (-0.0)*1 = -0.1$$

$$r(1, lef) + V^{0}(0)*p(0|1,lef) = -0.1 + (-0.0)*1 = -0.1$$

Value Iteration (II)

Value Function V¹

- 0.1	- 0.1	- 0.1	0.0
- 0.1	0.0	-0.1	0.0
- 0.1	- 0.1	- 0.1	- 0.1

$$V^1(0) = -0.1$$
 $V^2(0) = -0.2$

$$r(0, up) + V^{1}(0)*p(0|0,up) = -0.1+(-0.1)*1=-0.2$$

$$r(0, do) + V^{1}(4)*p(4|0,do) = -0.1+(-0.1)*1=-0.2$$

$$r(0, rig) + V^{1}(1)*p(1|0,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(0, lef) + V^{1}(0)*p(0|0,lef) = -0.1+(-0.1)*1=-0.2$$

$$V^{1}(1) = -0.1 \quad V^{2}(1) = -0.2$$

$$r(1, up) + V^{1}(1)*p(1|1,up) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, do) + V^{1}(1)*p(1|1,do) = -1.0 + (-0.1)*1 = -1.1$$

$$r(1, rig) + V^{1}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{1}(0)*p(0|1,lef) = -0.1 + (-0.1)*1 = -0.2$$

Value Iteration (III)

Value Function V²

- 0.2	- 0.2	- 0.1	0.0
- 0.2	0.0	- 0.2	0.0
- 0.2	- 0.2	- 0.2	- 0.2

$$V^2(0) = -0.2$$
 $V^3(0) = -0.3$

$$r(0, up) + V^{2}(0)*p(0|0,up) = -0.1+(-0.2)*1=-0.3$$

$$r(0, do) + V^{2}(4)*p(4|0,do) = -0.1+(-0.2)*1=-0.3$$

$$r(0, rig) + V^{2}(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$$

$$r(0, lef) + V^{2}(0)*p(0|0,lef) = -0.1+(-0.2)*1=-0.3$$

$$V^{2}(1) = -0.2 \qquad V^{3}(1) = -0.2$$

$$r(1, up) + V^{2}(1)*p(1|1,up) = -0.1 + (-0.2)*1 = -0.3$$

$$r(1, do) + V^{2}(1)*p(1|1,do) = -1.0 + (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{2}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{2}(0)*p(0|1,lef) = -0.1 + (-0.2)*1 = -0.3$$

Value Iteration (IV)

Value Function V³

- 0.3	- 0.2	- 0.1	0.0
- 0.3	0.0	- 0.2	0.0
- 0.3	- 0.3	- 0.3	- 0.3

$$V^3(0) = -0.2$$
 $V^4(0) = -0.3$

$$r(0, up) + V^{3}(0)*p(0|0,up) = -0.1+(-0.3)*1=-0.4$$

$$r(0, do) + V^{3}(4)*p(4|0,do) = -0.1+(-0.3)*1=-0.4$$

$$r(0, rig) + V^{3}(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$$

$$r(0, lef) + V^{3}(0)*p(0|0,lef) = -0.1+(-0.3)*1=-0.4$$

$$V^{3}(1) = -0.2 \qquad V^{4}(1) = -0.2$$

$$r(1, up) + V^{3}(1)*p(1|1,up) = -0.1 + (-0.2)*1 = -0.3$$

$$r(1, do) + V^{3}(1)*p(1|1,do) = -1.0 + (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{3}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{3}(0)*p(0|1,lef) = -0.1 + (-0.3)*1 = -0.4$$

Value Iteration (V)

Value Function V⁴

- 0.3	- 0.2	- 0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.4	- 0.4	- 0.3	- 0.4

$$V^4(0) = -0.2$$
 $V^5(0) = -0.3$

$$r(0, up) + V^{1}(0)*p(0|0,up) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, do) + V^{1}(4)*p(4|0,do) = -0.1 + (-0.4)*1 = -0.5$$

$$r(0, rig) + V^{1}(1)*p(1|0,rig) = -0.1 + (-0.2)*1 = -0.3$$

$$r(0, lef) + V^{1}(0)*p(0|0,lef) = -0.1 + (-0.3)*1 = -0.4$$

$$V^{4}(1) = -0.2 \qquad V^{5}(1) = -0.2$$

$$r(1, up) + V^{1}(1)*p(1|1,up) = -0.1 + (-0.2)*1 = -0.3$$

$$r(1, do) + V^{1}(1)*p(1|1,do) = -1.0 + (-0.2)*1 = -1.2$$

$$r(1, rig) + V^{1}(2)*p(2|1,rig) = -0.1 + (-0.1)*1 = -0.2$$

$$r(1, lef) + V^{1}(0)*p(0|1,lef) = -0.1 + (-0.3)*1 = -0.4$$

Stationary Value Function

Stationary Value Function

- 0.3	- 0.2	- 0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.5	- 0.4	- 0.3	- 0.4

$$V(0) = -0.3$$

$$r(0, up) + V(0)*p(0|0,up) = -0.1 + (-0.3)*1 = -0.4$$

$$r(0, do) + V(4)*p(4|0,do) = -0.1 + (-0.4)*1 = -0.5$$

$$r(0, rig) + V(1)*p(1|0,rig) = -0.1 + (-0.2)*1 = -0.3$$

$$r(0, lef) + V(0)*p(0|0,lef) = -0.1 + (-0.3)*1 = -0.4$$

$$V(1) = -0.2$$

$$r(1, up) + V(1)*p(1|1,up) = -0.1+(-0.2)*1=-0.3$$

$$r(1, do) + V(1)*p(1|1,do) = -1.0+(-0.2)*1=-1.0$$

$$r(1, rig) + V(2)*p(2|1,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(1, lef) + V(0)*p(0|1,lef) = -0.1+(-0.3)*1=-0.4$$

Optimal Policy for Value Iteration

Stationary Value Function

-0.3	-0.2	-0.1	0.0
-0.4	-0.0	-0.2	-0.0
-0.5	-0.4	-0.3	-0.4

$$V(0) = -0.3$$

Optimal Action: right →

$$r(0, up) + V(0)*p(0|0,up) = -0.1+(-0.3)*1=-0.4$$

$$r(0, do) + V(4)*p(4|0,do) = -0.1+(-0.4)*1=-0.5$$

$$r(0, rig) + V(1)*p(1|0,rig) = -0.1+(-0.2)*1=-0.3$$

$$r(0, lef) + V(0)*p(1|0,lef) = -0.1+(-0.3)*1=-0.4$$

Optimal Policy

$$V(1) = -0.2$$

Optimal Action: right →

$$r(1, up) + V(1)*p(1|1,up) = -0.1+(-0.2)*1=-0.3$$

$$r(1, do) + V(1)*p(1|1,do) = -1.0+(-0.0)*1=-1.0$$

$$r(1, rig) + V(2)*p(2|1,rig) = -0.1+(-0.1)*1=-0.2$$

$$r(1, lef) + V(0)*p(0|1,lef) = -0.1+(-0.3)*1=-0.4$$

Policy Iteration

- ☐ Often the optimal policy has been reached long before the value function has converged.
- Policy iteration (1) calculates a new policy based on the current value function and (2) then calculates a new value function based on this policy.
 - (1) Policy improvement $\pi^* = \underset{\pi}{\operatorname{argmax}} R_T^{\pi}(x_t)$
 - (2) Policy evaluation

$$R_T^{\pi}(x_t) = E\left[\sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau} \mid u_{t+\tau} = \pi \left(x_{t+\tau}\right)\right]$$

Often converges faster to the optimal policy.

Policy Iteration

Policy evaluation

$$V_{k+1}^{\pi}(x) = \sum_{u} \pi(x, u) \left[r(x, u) + \gamma \int V_k^{\pi}(x') p(x'|x, u) dx' \right]$$
Until converged

Policy improvement

$$\pi^*(x) = \arg\max_{u} \left[r(x, u) + \gamma \int V^{\pi}(x') p(x'|x, u) dx' \right]$$

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Evaluation Algorithm

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\Delta \leftarrow 0$$
Loop for each $s \in S$:
$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta,|v - V(s)|)$$
until $\Delta < \theta$

Policy Iteration Algorithm

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r | s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Policy Iteration (I)

Policy π^0

Value Function $V^{\pi 0}$

- 0.1	- 0.325	- 0.1	0.0
- 0.325		- 0.55	
- 0.1	- 0.325	-0.1	- 0.325

Initial Value Function

0.0	0.0	0.0	0.0
0.0		0.0	
0.0	0.0	0.0	0.0

Policy π^1

_1	← →	→	
↑		↑	
—	* *	\	~

Policy Iteration (II)

Policy π^1

	+ →	→	
↑		↑	
—	* *	V	+

Value Function $V^{\pi 1}$

- 0.2	- 0.2	- 0.1	0.0
- 0.2		- 0.2	
- 0.2	- 0.2	- 0.2	- 0.2

Value Function $V^{\pi 0}$

- 0.1	- 0.325	- 0.1	0.0
- 0.325		- 0.55	
- 0.1	- 0.325	- 0.1	- 0.325

$\boxed{\leftarrow \uparrow} \rightarrow$	→	→	
 ← ↑		↑	
$\begin{array}{ c c c }\hline & & \\ & & $	← →	← ↑ →	← →

Policy Iteration (III)

Policy π^2

Value Function $V^{\pi 2}$

- 0.3	-0.2	- 0.1	0.0
- 0.3		- 0.2	
- 0.3	- 0.3	- 0.3	- 0.3

Value Function $V^{\pi 1}$

- 0.2	- 0.2	- 0.1	0.0
- 0.2		- 0.2	
- 0.2	- 0.2	- 0.2	- 0.2

→	→	→	
← ↑		†	
← ↑→	← →	↑	← →

Policy Iteration (IV)

Policy π^3

→	→	†	
← ↑		↑	
← ↑→	← →	↑	← →

Value Function $V^{\pi 2}$

- 0.3	- 0.2	- 0.1	0.0
- 0.3		- 0.2	
- 0.3	- 0.3	- 0.3	- 0.3

Value Function $V^{\pi 3}$

- 0.3	- 0.2	-0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.4	- 0.4	- 0.3	- 0.4

→	→	→	
↑		↑	
← ↑ →	→	†	~

Policy Iteration (V)

Policy π^4

→	→	→	
1		↑	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	→	1	-

Value Function $V^{\pi 3}$

- 0.3	- 0.2	- 0.1	0.0
- 0.4		- 0.2	
- 0.4	- 0.4	- 0.3	- 0.4

Value Function $V^{\pi 4}$

- 0.3	-0.2	-0.1	0.0
- 0.4	0.0	- 0.2	0.0
- 0.5	- 0.4	- 0.3	- 0.4

→	→	→	
1		↑	
1-	→	1	~