UE19CS251

DESIGN AND ANALYSIS OF ALGORITHMS

Unit 5: Limitations of Algorithmic Power and Coping with the Limitations

Backtracking

PES University

Outline

Concepts covered

- Backtracking
 - Introduction
 - -N Queens
 - Hamiltonian Circuit
 - Subset Sum
 - Algorithm

1 Tackling Difficult Combinatorial Problems

- There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems):
 - Use a strategy that guarantees solving the problem exactly but doesn't guarantee to find a solution in polynomial time
 - Use an approximation algorithm that can find an approximate (suboptimal) solution in polynomial time

2 Exact Solution Strategies

• Exhaustive search (brute force)

- useful only for small instances
- Dynamic programming
 - applicable to some problems (e.g., the knapsack problem)
- Backtracking
 - eliminates some unnecessary cases from consideration
 - yields solutions in reasonable time for many instances but worst case is still exponential
- Branch-and-bound
 - further refines the backtracking idea for optimization problems

3 Introduction

- ullet Construct the state-space tree
 - nodes: partial solutions
 - edges: choices in extending partial solutions
- Explore the state space tree using depth-first search
- "Prune" nonpromising nodes
 - DFS stops exploring subtrees rooted at nodes that cannot lead to a solution and backtracks to such a node's parent to continue the search

4 Example: N-Queens Problem

• Place N queens on an $N \times N$ chess board so that no two of them are in the same row, column, or diagonal

5 State-Space Tree of the 4-Queens Problem

6 Example: Hamiltonian Circuit Problem

Hamiltonian Circuit

A Hamiltonian circuit is defined as a cycle that passes through all the vertices of the graph exactly once.

• Example graph:

• State-space tree for finding a Hamiltonian circuit (numbers above the nodes of indicate the order in which the nodes are generated):

7 Example: Subset Sum Problem

Subset Sum Problem

Given set $A = \{a_1, \ldots, a_n\}$ of n positive integers, find a subset whose sum is equal to a given positive integer d

• State space tree for $A = \{3, 5, 6, 7\}$ and d = 15 (number in each node is the sum so far):

8 Algorithm

Backtrack Algorithm

```
1: procedure Backtrack(X[1...i])
      \triangleright Input: X[1 \dots i] specifies first i promising components of a solution
      ▷ Output: All the tuples representing the problem's solutions
3:
4:
      if X[1 \dots i] is a solution then
5:
          write X[1 \dots i]
6:
          for each element x \in S_{i+1} consistent with X[1...i] and the
7:
   constraints do
              X[i+1] \leftarrow x
8:
              Backtrack (X[1 \dots i+1])
9:
```

- Output: n-tuples $(x_1, x_2, ..., x_n)$
- Each $x_i \in S_i$, some finite linearly ordered set

9 Think About It

- Continue the backtracking search for a solution to the four-queens problem, to find the second solution to the problem
- Explain how the board's symmetry can be used to find the second solution to the four-queens problem