Scilab Textbook Companion for Heat Transfer: Principles And Applications by B. K. Dutta¹

Created by
Ankit Garg
B.TECH
Chemical Engineering
DCRUST,MURTHAL
College Teacher
Sunanda
Cross-Checked by
Mukul R. Kulkarni

November 19, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Heat Transfer: Principles And Applications

Author: B. K. Dutta

Publisher: PHI Learning Pvt. Ltd., New Delhi

Edition: 1

Year: 2006

ISBN: 8120316258

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Schad Codes		
2	Steady State conduction In one dimension	7	
3	Heat transfer coefficient	19	
4	Forced Convection	38	
5	free convection	55	
6	Boiling and condensation	64	
7	radiation heat transfer	77	
8	Heat Exchanger	95	
9	Evaporetion and Evaporators	108	
10	UNSTEADY STATE AND MULTIDIMENSIONAL HEAT CONDUCTION	123	
11	Boundary layer heat transfer	127	

List of Scilab Codes

Exa 2.1	STEADY STATE RATE OF HEAT GAIN	7
Exa 2.2	Rate of heat loss	9
Exa 2.3	fraction of resistance	10
Exa 2.4	Calculate Temprature	11
Exa 2.5	calculate refrigeration requirement	12
Exa 2.6		13
Exa 2.7	surface emp and maximun temp	15
Exa 2.8	percentage of total heat	16
Exa 2.9	temprature distribution	17
Exa 3.1	CALCULATE TIME REQUIRED	19
Exa 3.2	TIME FOR HEATING COIL	20
Exa 3.3	Steady State temprature distribution	21
Exa 3.4	THICKNESS OF INSULATION	22
Exa 3.5	8 percent SOLUTION OF ALCOHOL	23
Exa 3.6		25
Exa 3.7	rate of heat transfer	27
Exa 3.8	A 10 gauge electrical copper	28
Exa 3.9	Heat generating slab A	29
Exa 3.10	percentage increase in rate	32
Exa 3.11	Pre stresed multilayered shell	33
Exa 3.12	critical insulation thickness	35
Exa 3.13	critical insulation thickness	35
Exa 3.14	optimum thickness	36
Exa 4.2	±	38
Exa 4.3	temprature of wire	39
Exa 4.4		41
Exa 4.5	average time	42
Exa 4.6	Overall heat transfer coefficient	43

Exa 4.7	inlet and outlet temprature	14
Exa 4.8	drop in temprature	15
Exa 4.9		16
Exa 4.10		18
Exa 4.11		50
Exa 4.12		52
Exa 5.1		55
Exa 5.2		56
Exa 5.3		57
Exa 5.4		58
Exa 5.5		60
Exa 5.6		31
Exa 5.7		32
Exa 6.1		64
Exa 6.2		35
Exa 6.3		66
Exa 6.4		70
Exa 6.5		72
Exa 6.6		73
Exa 6.7		75
Exa 7.3		77
Exa 7.4		79
Exa 7.5		79
Exa 7.6		30
Exa 7.8		31
Exa 7.9		32
Exa 7.10		33
Exa 7.12		34
Exa 7.13		34
Exa 7.14		35
Exa 7.15		36
Exa 7.16		38
Exa 7.17	· · · · · · · · · · · · · · · · · · ·	39
Exa 7.18	*)1
Exa 7.20	0)2
Exa 7.21	8	93
Exa 8.1)5
Exa 8.2		98

Exa 8.3	The effectiveness	103
Exa 8.4	Thermal design	105
Exa 9.1	single effect evaporator calculation	108
Exa 9.2	SINGLE EFFECT EVAPORATOR CALCULATION	109
Exa 9.3	SINGLE EFFECT EVAPORATION	111
Exa 9.4	MULTIPLE EFFECT EVAPORATION	112
Exa 9.5	MULTIPLE EFFECT EVAPORATION	115
Exa 9.6	MULTIPLE EFFECT EVAPORATION	116
Exa 9.7	MULTIPLE EFFECT EVAPORATION	119
Exa 9.8	Mechanical vapour compression	121
Exa 10.8	MUMERICAL CALCULATION OF UNSTEADY STATE	E
	HEAT CONDUCTION	123
Exa 10.9	NUMERIC CALCULATION OF UNSTEADY STATE	
	HEAT CONDUCTION	124
Exa 11.1	water at 25 degree celcius	127
Exa 11.2	air at 30 degree celcius	129
Exa 11.3	A thin metal plate	130
Exa 11.4	calculate the temprature	131
Exa 11.5	Prandtl analogy	132

Chapter 2

Steady State conduction In one dimension

Scilab code Exa 2.1 STEADY STATE RATE OF HEAT GAIN

```
1 / \text{Example } 2.1
2 //(a) calculate the steady state rate of heat gain .
3/(b), th etemp. of interfaces of composite wall.
4 //(c) the percentage of total heat transfer
      resistance.
5 //additional thickness of cork.
6 //Given
7 A=1
                   //m^2, area
8 //for inner layer (cement)
                   //m, thickness
9 \text{ ti} = 0.06
10 \text{ ki} = 0.72
                   //W/m C, thermal conductivity
                   //C, temprature
11 \text{ Ti} = -15
12 //for middle layer (cork)
13 \text{ tm} = 0.1
                    //m, thickness
14 \text{ km} = 0.043
                   //W/m C, thermal conductivity
15 //for outer layer(brick)
                   //m, thickness
16 \text{ to} = 0.25
                   //W/m C, thermal conductivity
17 \text{ ko} = 0.7
18 \text{ To} = 30
                   //C, temprature
```

```
19
20 // Calculation
21 //Thermal resistance of outer layer //C/W
22 \text{ Ro=to/(ko*A)}
23 //Thermal resistance of middle layer
                                                //C/W
24 Rm = tm/(km * A)
25 //Thermal resistance of inner layer
                                                //C/W
26 \text{ Ri=ti/(ki*A)}
27 Rt = Ro + Rm + Ri
                      //temp driving force
28 tdf=To-Ti
29 //(a)
30 Q=tdf/Rt
                   //rate of heat gain
31 printf("the rate of heat gain is \%f W\n",Q)
32
33 //(b)
34 //from fig. 2.4
35 \text{ td1=Q*to/(ko*A)}
                        //C temp. drop across the brick
      layer
36 \quad T1 = To - td1
                        //interface temp. between brick
      and cork
37 //similarly
38 \text{ td2=Q*tm/(km*A)}
                        //C temp. drop across the cork
      laver
39 T2=T1-td2
                        //C, interface temp. between
      cement and cork
40 printf ("interface temp. between brick and cork is %f
       C \setminus n", T1)
41 printf("interface temp. between cement and cork is
      %f C\n", T2)
42
43
44 //(c)
45 \text{ Rpo=Ro/Rt}
                        //thermal resistance offered by
      brick layer
                        //thermal resistance offered by
46 \quad \text{Rpm} = \text{Rm} / \text{Rt}
      cork layer
                        //thermal resistance offered by
47 Rpi=Ri/Rt
      cement layer
```

```
48 printf ("thermal resistance offered by brick layer is
       %f percent n", Rpo*100)
49 printf ("thermal resistance offered by cork layer is
      %f percent n, Rpm *100)
50 printf("thermal resistance offered by cement layer
      is %f percent\n", Rpi*100)
51
52 //second part
53 x = 30
                       //percentage dec in heat transfer
                       //W, desired rate of heat flow
54 \quad Q1 = Q * (1 - x / 100)
55 \text{ Rth} = \text{tdf}/Q1
                       //C/W, required thermal resistance
                       //additional thermal resistance
56 Rad=Rth-Rt
57 Tad=Rad*km*A
58 printf ("Additional thickness of cork to be provided
      =\% f cm", Tad*100)
```

Scilab code Exa 2.2 Rate of heat loss

```
1 //Exm[ple 2.2
2 //Page no. 15
3 // Given
4 //outer thickness of brickwork (to) & inner
       thickness (ti)
                 //m
5 \text{ to} = 0.15
                 //m
6 \text{ ti} = 0.012
7 //thickness of intermediate layer(til)
8 \text{ til} = 0.07
                 //m
9 //thermal conductivities of brick and wood
10 \text{ kb} = 0.70
                 //W/m celcius
                 //W/m celcius
11 \text{ kw} = 0.18
12 //temp. of outside and inside wall
                //celcius
13 \text{ To} = -15
14 Ti=21
                //celcius
15 //area
16 \quad A = 1
                //\mathrm{m}^2
```

```
17 //(a) solution
18 //Thermal resistance of brick, wood and insulating
       laver
                    //C/W
19 TRb=to/(kb*A)
20 TRw=ti/(kw*A)
                    //C/W
21 \quad TRi = 2 * TRb
                    //C/W
22 //Total thermal resistance
23 TR = TRb + TRw + TRi
                    //C/W
24 //Temp. driving force
25 T=Ti-To
26 //Rate of heat loss
27 Q=T/TR
28 printf("Rate of heat loss is %f W\n",Q)
29 //(b)thermal conductivities of insulating layer
30 \text{ k=til/(A*TRi)}
31 printf("thermal conductivities of insulating layer
      is %f W/m C",k)
```

Scilab code Exa 2.3 fraction of resistance

```
1 / \text{Example } 2.3
2 //Page no. 19
3 // Given
4 //Length & Inside rdius of gas duct
5 L=1
               //m
                //m
6 \text{ ri} = 0.5
7 // Properties of inner and outer layer
8 \text{ ki} = 1.3
               //W/m C, thermal conductivity of inner
       bricks
9 \text{ ti} = 0.27
               //m, inner layer thickness
10 \text{ ko} = 0.92
               //W/m C, thermal conductivity of special
      bricks
               //m, outer layer thickness
11 \text{ to} = 0.14
12 \text{ Ti} = 400
               //C, inner layer temp.
13 To=65
               //C, outer layer temp.
```

```
14
15 //calculation
16 r_=ri+ti
              //m, outer radius of fireclay brick
      layer
17 \text{ ro=r\_+to}
              //m, outer radius of special brick layer
18 //Heat transfer resistance
19 //Heat transfer resistance of fireclay brick
20 R1=(\log(r_/ri))/(2*\%pi*L*ki)
21 //Heat transfer resistance of special brick
22 R2=(log(ro/r_{-}))/(2*%pi*L*ko)
23 //Total resistance
24 R = R1 + R2
25 // Driving force
26 T=Ti-To
27 //Rate of heat loss
28 \quad Q=T/(R)
29 printf("Rate of heat loss is %f W",Q)
30 //interface temp.
31 Tif=Ti-(Q*R1)
32 printf("interface temp. is %f C", Tif)
33 //Fractional resistance offered by the special
      brick layer
34 \text{ FR} = R2/(R1 + R2)
35 printf ("Fractional resistance offered by the
      special brick layer is %f ",FR)
```

Scilab code Exa 2.4 Calculate Temprature

```
1
2 //Example 2.4
3 //Calculate(a) hot end temprature;
4 //(b) temprature fradient at both the ends
5 //(c) the temprature at 0.15m away from the cold end
.
6 //Given
```

```
7 d1 = 0.06
                  //m, one end diameter of steel rod
8 d2=0.12
                  //m, other end diameter of steel rod
                  //m length of rod
91=0.2
                  //C, temp. at end 2
10 T2=30
11 Q=50
                  //W, heat loss
12 k = 15
                   //W/m c, thermal conductivity of rod
13
14 //NUMERIC PART
15 //T = 265.8 - (7.07/(0.06 - 0.15*x)) \dots (a)
16 //(a)
17 x1=0
18 //from eq. (a)
19 T1 = 265.8 - (7.07/(0.06 - 0.15 * x1))
20 printf("The hot end temp. is \%f C\n",T1)
         from eq. (i)
21 //(b)
22 C=50
                          //integration constant
23 //from eq. (i)
24 D1=-C/(\%pi*d1^2*k) //D=dT/dx, temprature gradient
25 printf ("The temprature gradient at hot end is %f C/m
      \n",D1)
26 //similarly
27 \quad D2 = -1179
                          // at x = 0.2m
28 printf("The temprature gradient at cold end is %f C/
     m \ n", D2)
29
30 //(c)
31 \times 2 = 0.15
                          //m, given,
                          //m, section away from the cold
32 x3=1-x2
       end
33 //from eq. (a)
34 \quad T2 = 265.8 - (7.07/(0.06 - 0.15 * x3))
35 printf("the temprature at 0.15m away from the cold
      end is \%f C", T2)
```

Scilab code Exa 2.5 calculate refrigeration requirement

```
1 / Exaple 2.5
2 // Page no.24
3 //Given
4 //inside and outside diameter and Temp.
      sphorical vessel
5 do = 16
6 t = 0.1
7 Ri=do/2
                    //m, inside radius
                    //m. outside radius
8 Ro = Ri + t
                    //C,
9 \text{ To} = 27
                    //C
10 \text{ Ti} = 4
                    //W/m C, thermal conductivity of foam
11 k=0.02
       layer
12 //from eq. 2.23 the rate of heat transfer
13 Q=(Ti-To)*(4*\%pi*k*Ro*Ri)/(Ro-Ri)
14 printf ("the rate of heat transfer is \%f W\n",Q)
15 // Refrigeration capacity (RC)
16 //3516 \text{ Watt} = 1 \text{ ton}
17 RC = -Q/3516
18 printf ("Refrigeration capacity is %f tons", RC)
```

Scilab code Exa 2.6 calculate temp gradient

```
1 / \text{Example } 2.6
2 // Calculate the temprature gradient at each end of
      the rod
3 //and the temprature midway in the rod at steady
      state
4 //Given
                  //m, diameter of rod
5 d=0.05
                  //m, length of rod
6 1 = 0.5
                  //CTemp. at one end (1)
7 T1=30
                  //C, temp at other end (2)
8 T2 = 300
9 T = poly(0, T')
10 k = 202 + 0.0545 * T
                          //W/mC thermal conductivity of
```

```
metal
11
12 //CALCULATION OF HEAT FLUX
13 \times 1 = 1/2
                     //m, at mid plane
14 //temprature distribution ,
15 //comparing with quadratic eq. ax<sup>2</sup>+bx+c
16 //and its solution as x=(-b+sqrt(b^2-4*a*c))/2*a
17 \quad a=1.35*10^-4
18 \ b=1
19 c = -(564 * x1 + 30.1)
20 T=(-b+sqrt(b^2-4*a*c))/(2*a)
21 printf("the temprature midway in the rod at steady
      state is %f C n, T)
22
23 //Temprature gradient at the ends of the rod
24 \times 2 = 0
                          //m, at one end
25 \quad a1=1.35*10^-4
26 b1=1
27 c1 = -(564 * x2 + 30.1)
28 T1=(-b1+sqrt(b1^2-4*a1*c1))/(2*a1)
29 k1 = 202 + 0.0545 * T1
30 C1=113930
                           //integration constant from eq.
      (1)
31 \quad TG1=C1/k1
                           //C/W, temprature gradient, dT/
      dx
32 //similarly
33 \times 3 = 0.5
34 \quad a2=1.35*10^-4
35 b2=1
36 c2 = -(564 * x3 + 30.1)
37 T2 = (-b2 + sqrt(b2^2 - 4*a2*c2))/(2*a2)
38 \text{ k2} = 202 + 0.0545 * T2
39 \text{ TG2} = \text{C1/k2}
40 printf("Temprature gradient at one end of the rod is
       %f C/W n, TG1)
41 printf ("Temprature gradient at other end of the rod
      is \%f C/W^{\circ}, TG2)
```

Scilab code Exa 2.7 surface emp and maximum temp

```
1 / Example 2.7
2 //(a) what are the surface tempratures and average
      temp. of wall.
3 //(b) calculate the maximum temp. in the wall and its
       location
4 //(c) calculate the heat flux at the surface.
5 //(d) if there is heat generation then what is the
6 // average volumetric rate of heat generation?
7 // Given
8 x = poly(0, 'x')
9 //temprature distribution in wall
10 T = 600 + 2500 * x - 12000 * x^2
11 t=0.3
                       //m, thickness of wall
12 k = 23.5
                       //W/m c thermal conductivity of
      wall
13
14 // Calculation
15 \times 1 = 0
16 T1=600+2500*x1-12000*x1^2 //C, at surface
17 \times 2 = 0.3
18 \quad T2 = 600 + 2500 * x2 - 12000 * x2^2
                                  //C, at x=0.3
19 Tav=1/t*integrate ('600+2500*x-12000*x^2', 'x',0,0.3)
20 printf ("At the surface x=0, the temp. is \%f \ C \ T1)
21 printf("At the surface x=0.3m, the temp. is %f C n",
      T2)
22 printf ("Rhe average temprature of the wall is %f C",
      Tav)
23
24 //(b)
25 D=derivat(T)
                                    //D = dT/dx
26 //for maximum temprature D=0
27 \times 3 = 2500/24000
```

```
28 printf("The maximum temprature occurs at %f m\n",x3)
29 Tmax = 600 + 2500 * x3 - 12000 * x3^2
30 printf("The maximum temp. is \%f C\n", Tmax)
31
32 //(c)
33 D1 = 2500 - 24000 * x1
                                //at x=0, temprature
      gradient
34 \text{ Hf } 1 = -k * D1
                                //W/m<sup>2</sup>, heat flux at left
      surface(x=0)
  D2=2500-24000*x2
                                //at x=0.3, temprature
      gradient
                                //W/m^2, heat flux at right
36 \text{ Hf2=-k*D2}
       surface(x=0.3)
37 printf("heat flux at left surface is %f W/m^2\n", Hf1
  printf("heat flux at right surface is %f W/m^2\n",
      Hf2)
39
40 // (d)
                               //W/m<sup>2</sup>, total rate of heat
41 Qt=Hf2-Hf1
      loss
42 \ Vw = 0.3
                               //m^3/m^2, volume of wall
      per unit surface area
43 Hav=Qt/Vw
                               //W/m<sup>3</sup>, average volumetric
      rate
44 printf("The average volumetric rate if heat
      genaration is %fW/m<sup>3</sup> ", Hav)
```

Scilab code Exa 2.8 percentage of total heat

```
1 //Example 2.8
2 //Derive equtations for temprature distribution.
3 //calculate the maximum temp. in the assembly
4 //Given
5 ka=24 //W/mC thermal conductivity of
```

```
material A
6 \text{ tA} = 0.1
                    //m, thickness of A material
7 kB = 230
                    //W/mC thermal conductivity of metl B
                    //W/mC thermal conductivity of metal C
8 kC = 200
9 \text{ tB} = 0.1
                    //m, thickness of B metal
10 \text{ tC=0.1}
                    //m, thickness of C metal
                    //C, outer surface temp. of B wall
11 TBo=100
                    //C, outer surface temp. of C wall
12 \text{ TCo} = 100
13 Q = 2.5 * 10^5
                    //W/m<sup>3</sup>, heat generated
14 //NUMERIC PART
15 //Temprature distribution in A, B and C
16 x = poly(0, 'x')
17 TA = -5208 * x^2 + 2175 * x - 74.5
18 TB = 100 + 96.6 * x
19 TC = 155.2 - 14 * x
20
21 //position of maximum temprature x,
22 D=derivat(TA)
\frac{23}{\text{At }} = 0
24 x = 2175/10416
25 printf("The maximum temp. will occur at a position
      %f m\n",x)
26 \times 1 = x
27 \quad TA = -5208 * x1^2 + 2175 * x1 - 74.5
28 printf("The maximum temprature is %f C", TA)
```

Scilab code Exa 2.9 temprature distribution

```
1 //Example 2.9
2 //(a) derive eq. for temprature distribution
3 //(b) find the maximum temp.
4 //Given
5 di=0.15 //m, inner diameter
6 do=0.3 //m, outer diameter
7 Q1=100*10^3 //W/,m^3,inner rate of heat generation
```

```
8 \quad Q2 = 40 * 10^3
                 //W/m<sup>3</sup>, outer rate of heat generation
9 \text{ Ti} = 100
                 //C, temp. at inside surface
10 To=200
                 //C, temp. at outside surface
                 //W/m C, thermal conductivity of
11 k1=30
      material for inner layer
                  //W/m C, thermal conductivity of
12 k2=10
      material for outer layer
13
14 // Calculation
15 / T1 = 364 + 100 * \log (r) - 833.3 * r^2
                                               (1)
16 / T2 = 718 + 216 * \log (r) - 1000 * r^2
                                               (2)
17 / (b) from eq. 1
18 r = sqrt (100/2*833.3)
19 printf("This radial position does not fall within
      layer 1.\n Therefore no temprature maximum occurs
       in this layer.")
20 //similarly
21 printf(" Similarly no temprature maximum occurs in
      layer 2.\n")
                 //m, outer boundary
22 \text{ ro=di}
23 Tmax=To
24 printf("The maximum temprature at the outer boundary
       is \%f C", Tmax)
```

Chapter 3

Heat transfer coefficient

Scilab code Exa 3.1 CALCULATE TIME REQUIRED

```
1 / Example 3.1
2 //calculate the time required for reduction .
3 // Given
4 \text{ di} = 0.06
                   //m, initial diameter of iceball
5 T1=30
                    //C, room temp.
                   //ice ball temp.
6 T2 = 0
7 h = 11.4
                   //W/m^2 C, heat transfer coefficient
8 x = 40
                    //\% for reduction
9 \text{ rho} = 929
                   //kg/m<sup>3</sup>, density of ice
                   //j/kg, latent heat of fusion
10 \text{ Lv} = 3.35 * 10^5
11 // m=4/3*\% pi*r^3
                           //kg, mass of ice ball
12 //rate of melting=-dm/dt
13 //rate of heat adsorption =-4*\%pi*r^2*rho*dr/dt*
      lamda
14 //at initial time t=0
15 \text{ C1} = \text{di}/2
                   //constant of integration
16 //if the volume of the ball is reduced by 40\% of the
       original volume
17 r=((1-x/100)*(di/2)^3)^(1/3)
18 //time required for melting using eq. 1
19 t=(di/2-r)/(h*(T1-T2)/(rho*Lv))
```

20 printf("The time required for melting the ice is %f s",t)

Scilab code Exa 3.2 TIME FOR HEATING COIL

```
1 / Example 3.2
2 //calculate the time required for the heating coil.
3 // Given
4 P=1*10<sup>3</sup>
                        //W, electrical heating capacity
5 V = 220
                        //V, applied voltage
                        //m, diameter of wire
6 d=0.574*10^{-3}
                        //ohm, electrical resistance
7 R=4.167
                        //C, room temp.
8 \text{ Tr} = 21
9 h = 100
                        //W/m<sup>2</sup> C, heat transfer
      coefficient
10 rho=8920
                        //kg/m<sup>3</sup>, density of wire
11 \text{ cp} = 384
                        //j/kg C, specific heat of wire
                        //%, percent of the steady state
12 percent=63
13 // Calculation
14 R_=V^2/P
                        //ohm, total electrical
      resistance
15 l=R_{R}
                        //m, length of wire
                        //m<sup>2</sup>, area of wire
16 \ A = \%pi*d*1
                        //final temp.
17 Tf = P/(h*A) + Tr
                        //C. steady state temp. rise
18 dtf=Tf-Tr
19 //temp. of wire after 63% rise
20 T=Tr+(percent/100)*dtf
21 //rate of heat accumulation on the wire
22 //d/dt (m*cp*T)
                                            (1)
23 //rate of heat loss
24 //h*A*(T-Tr) \dots (2)
25 //heat balance eq. (1) = (2)
26 m = \%pi * d^2 * l * rho / 4 / kg. mass of wire
27 //integrating heat balance eq.
28 t=integrate('1/((P/(m*cp))-((h*A)/(m*cp))*(T-Tr))',
```

```
T',21,322)
29 printf("The time required for the heating coil is %f
    s",t)
```

Scilab code Exa 3.3 Steady State temprature distribution

```
1 / Example 3.3
2 //(a) calculate the heat transfer coefficient
3 //(b) what can be said about the same at the other
      surface of wall.
4 //(c) what is average volumetric rate of heat
      generation
5 //given
6 t = 0.2
                     //m, thickness of wall
7 x = poly(0, 'x')
                     //position in the wall
8 T = 250 - 2750 * x^2
                     //C, steady state temp. distribution
9 k=1.163
                     //W/m C, thermal conductivity of
      material
10 \text{ Ta} = 30
                     //C, ambient temp
11
12 //calculation
13 //(a) at x=0.2
                     let T=T1 at x=x1
14 \times 1 = 0.2
15 \quad T1 = 250 - 2750 * x1^2
16 / let
             D=dT/dx
17 D=derivat(T)
18 D = -5500 * 0.2
                     //C/m, at x=0.2
19 h = -k * D / (T1 - Ta)
20 printf (" the heat transfer coefficient is %f W/m^2 C
      21
\frac{22}{(b)} at other surface of wall, x=0=x2 (say)
23 \times 2 = 0
24 a = -5500 * 0
25 printf ("So there is no heat flow at other surface of
```

Scilab code Exa 3.4 THICKNESS OF INSULATION

```
1 clc;
2 clear;
3 //Example 3.4
4 //calculate the thickness of insulation
5 //and the rate of heat loss per meter length of pipe
6 //Given
7 id=97*10^-3
                           //m, internal diameter of steam
      pipe
8 \text{ od} = 114 * 10^{-3}
                           //m, outer diameter of steam pipe
                           //bar, absolute pressure os
9 pr = 30
      saturated steam
                             //C, temp. at 30 bar absolute
10 \text{ Ti} = 234
      pressure
11 \text{ Ts} = 55
                           //C, skin temp.
12 To=30
                           //C, ambient temp.
13 \, \text{kc} = 0.1
                           //W/m C, thermal conductivity of
       wool
                           //W/m C, thermal conductivity of
14 \, \text{kw} = 43
       pipe
15 h=8
                           //W/m<sup>2</sup> C, external air film
      coefficient
16 L = 1
                           //m, assume length
```

```
17 // Calculation
18 ri=id/2
                        //m,
19 r1=(114*10^-3)/2
                           //m, outer radius of steam
      pipe
20
21 //thermal resistance of insulation
22 / Ri = log(ro/r1)/(2*\%pi*L*kc)
23 //Thermal resistance of pipe wall
24 Rp = log(r1/ri)/(2*\%pi*L*kw)
25 / RT = Ri + Rp
                        //C, driving force
26 DF=Ti-Ts
27 //At steady state the rate of heat flow through the
      insulation
28 // and the outer air film are equ
29
30 //by trial and error method :
31 deff('[x]=f(ro)', 'x=(Ti-Ts)/(log(ro/r1)/kc+log(r1/ri))
      )/kw)-(h*ro*(Ts-To))'
32 \text{ ro=fsolve}(0.1,f)
                    //m, required thickness of
33 th=ro-r1
      insulation
34 \ Q=2*\%pi*ro*h*L*(Ts-To)
35 printf("The rate of heat loss is %f W,",Q)
```

Scilab code Exa 3.5 8 percent SOLUTION OF ALCOHOL

```
1 //Example 3.5
2 //calculate
3 //(a) effective thickness of air and liquid films.
4 //(b) the overall heat transfer coefficient based on i.d of pipe.
5 //(c) the overall heat transfer coefficient based on od of insulation.
6 //(d) the percentage of total resistance offered by air film.
```

```
7 //(e) the rate of heat loss per meter length of pipe.
8 //(f) insulation skin temp.
9
10 //given
11 w1=8
                      //%, solubility of alcohol
12 \quad w2 = 92
                      //\%, solubility of water
13 k1 = 0.155
                      //W/m C, thermal conductivity of
      alcohol
14 k2=0.67
                      //W/m C thermal conductivity of
      water
15 \text{ ka} = 0.0263
                      //W/m C thermal conductivity of air
                      //W/m Cthermal conductivity of pipe
16 \, \text{kw} = 45
      wall
17 \text{ ki} = 0.068
                      //W/m C , thermal cond. of glass
18 id=53*10^-3
                      //m, internal diameter of pipe
19 \text{ od} = 60 * 10^{-3}
                      //m, outer diameter of pipe
                      //m, thickness of insulation
20 t = 0.04
21 hi=800
                      //W/m^2 C, liquid film coefficient
                      //W/m^2 C, air film coefficient
22 ho = 10
23 L = 1
                      //m, length of pipe
24 T1=75
                      //C, initial temp.
25 T2=28
                      //C, ambient air temp.
26 //calculation
27 //(a)
28 \text{ km} = (w1/100)*k1+(w2/100)*k2-0.72*(w1/100)*(w2/100)
      *(-(k1-k2))
29 deli=km/hi
                     //m, effective thickness of liquid
      film
                    //m, effective thickness of air film
30 delo=ka/ho
31 printf("effective thickness of air is %f mm", deli
32 printf ("effective thickness of liquid films is %f mm
      .",delo*10^3)
33 //(b)
34 \text{ Ai} = 2 * \% \text{pi} * \text{id} / 2 * \text{L}
                            //m<sup>2</sup>, inside area
                            //m, inside radius of pipe
35 \text{ ri=id/2}
36 r_=od/2
                            //m, outside radius of pipe
                            //m, outer radius of insulation
37 \text{ ro=r}_+t
```

```
38 Ao=2*%pi*ro*L
                              //m<sup>2</sup>, outer area
39 //from eq. 3.11, overall heat transfer coefficient
40 \text{Ui}=1/(1/\text{hi}+(\text{Ai}*\log(r_/\text{ri}))/(2*\%\text{pi}*L*\text{kw})+(\text{Ai}*\log(r_0/\text{ro}))
       r_{-}))/(2*\%pi*L*ki)+Ai/(Ao*ho))
41 printf ("the overall heat transfer coefficient based
       on i.d of pipe is %f W/m^2 C", Ui)
42
43 // (c)
44 //frim eq. 3.14
45 Uo=Ui*Ai/Ao
46 printf ("the overall heat transfer coefficient based
       on od of pipe is %f W/m^2 C", Uo)
47
48 //(d)
49 R = 1/(Ui * Ai)
                              //C/W, total heat transfer
       resistance
50 \text{ Rair} = 1/(\text{Ao} * \text{ho})
                              //C/W, heat transfer resistance
        of air film
51 p=Rair/R
52 printf("the percentage of total resistance offered
       by air film. is %f percent",p*100)
53
54 //(e)
55 \quad Q=Ui*Ai*(T1-T2)
56 printf("Rate of heat loss is %f W",Q)
57
58 //(f)
59 \text{ Ts} = \text{Uo} * \text{Ao} * (\text{T1} - \text{T2}) / (\text{ho} * \text{Ao}) + \text{T2}
60 printf("insulation skin temp.is %f C", Ts)
```

Scilab code Exa 3.6 Insulated flat headed

```
1 //Example 3.6
2 //calcu; ate the temp. of the liquid entering the
    bank.
```

```
3 //also calculate the insulation skin temp. at the
       flat
4 //top surface and at the cylindrical surface.
5 //Given
6 id=1.5
                              //m, internal diameter of tank
7 h=2.5
                               //m, height of tank
                              //m, thickness of wall
8 t1=0.006
9 t2=0.04
                               //m, thickness of insulation
10 \text{ Ta} = 25
                              //C, ambient temp.
                              //C, outlet temp. of liquid
11 T1=80
                              //j/kg C, specific heat of
12 \text{ cp} = 2000
      liquid
13 FR=700/3600
                              //KG/s, Liquid flow rate
14
15 // Calculation
16 \text{ ri} = id/2 + t1
                              //m, inner radius of
       insulation
                              //m, outer radius of
17 \text{ ro}=\text{ri}+\text{t2}
       insulation
18 \text{ ki} = 0.05
                              //W/m C, thermal conductivity
       of insulation
19 \text{ hc}=4
                              //W/m<sup>2</sup> C, heat transfer
       coefficient at cylindrical surface
                              //W/m^2 C, heat transfer
20 \text{ ht} = 5.5
       coefficient at flat surface
21 l=h+t1+t2
                              //m, height of the top of
       insulation
\frac{22}{\text{fromm}} = \frac{3.10}{2}
23 //heat transfer resistance of cylindrical wall
24 \text{ Rc} = \log(\text{ro/ri})/(2*\%\text{pi}*1*\text{ki}) + 1/(2*\%\text{pi}*\text{ro}*1*\text{hc})
25 //heat transfer resistance of flat insulated top
       surface
26 \text{ Ri} = (1/(\%\text{pi}*\text{ro}^2))*((\text{ro}-\text{ri})/\text{ki}+1/\text{ht})
27 tdf=T1-Ta
                              //C, temp. driving force
                                //W, total rate of heat loss
28 Q = tdf/Rc + tdf/Ri
29 Tt=Q/(FR*cp)+T1
                               //C, inlet temp. of liquid
30 printf("Inlet liquid temp. should be \%f C \n", Tt)
               //W, rate of heat loss from flat surface
31 Q1=tdf/Ri
```

```
32 T1=Q1/(%pi*ro^2*ht)+Ta
33 printf(" the insulation skin temp. at the flat top
        surface is %f C \n",T1)
34 //similarly
35 T2=38
36 printf("similarly the insulation skin temp at
        cylindrical surface is %f C",T2)
```

Scilab code Exa 3.7 rate of heat transfer

```
1 / \text{Example } 3.7
2 //what is the heat imput to the boiling.
3 // Given
4 id=2.5*10^-2
                                 //m, internal diameter of
      glass tube
5 t=0.3*10^-2
                                 //m, thickness of wall
61=2.5
                                 //m, length of nichrome
      wire
7 L=0.12
                                 //m, length of steel
      covered with heating coil
8 \text{ Re} = 16.7
                                 //ohm, electrical
      resistance
9 \text{ ti=} 2.5*10^-2
                                 //m, thickness of layer of
       insulation
                                 //W/m C, thermal
10 \, \text{kg} = 1.4
      conductivity of glass
11 \text{ ki} = 0.041
                                 //W/m C, thermal
      conductivity of insulation
12 T1=91
                                 //C, boiling temp. of
      liquid
13 T2=27
                                 //C, ambient temp.
14 \text{ ho} = 5.8
                                 //W/m ^2 C outside air
      film coefficient
15 V=90
                                 //V, voltage
16
```

```
17 // Calculation
18 \text{ Rc=Re*1}
                                   //ohm, resistance of
      heating coil
                                   //W, rate of heat
19 Q=V^2/Rc
       generation
20 \text{ ri}=id/2
                                   //m, inner radius of glass
        tube
                                   //m, outer radius of glass
21 r_=ri+t
        tube
22 ro=r_+ti
                                     //m, outer radius of
       insulation
23 //heat transfer resistance of glass wall
24 \text{ Rg} = \frac{\log(r_{ri})}{(2*\%pi*L*kg)}
25 //combined resistance of insulation and outer air
       film
26 \text{ Rt} = \log(\text{ro/r}_{-})/(2*\%\text{pi}*L*\text{ki}) + 1/(2*\%\text{pi}*\text{ro}*L*\text{ho})
27 //Rate of heat input to the boiling liquid in steel=
      Q1=(Ts-T1)/Rg
28 //Rate of heat loss through insulation ,Q2=(Ts-To)/(
      Rt)
29 / Q1 + Q2 = Q
30 Ts = (Q + T1/Rg + T2/Rt)/(1/Rg + 1/Rt)
31 \ Q1 = (Ts - T1) / Rg
32 \quad Q2 = Q - Q1
33 printf("the heat imput to the boiling.is %f W",Q1)
```

Scilab code Exa 3.8 A 10 gauge electrical copper

```
1 //Example 3.8
2 //determine(a) maximum allowable current
3 //(b) the corresponding remp. at the centre of wire and
4 //at the outer surface of insulation
5 //Given
6 ri=1.3*10^-3 //m, radius of 10 gauge wire
```

```
7 t=1.3*10^{-3}
                                 //m, thickness of rubber
       insulation
8 \text{ Ti} = 90
                                 //C, temp. Of insulation
                                 //C, ambient temp.
9 \text{ To} = 30
10 h = 15
                                 //W/m<sup>2</sup> C, air film
       coefficient
11 \, \text{km} = 380
                                 //W/m C, thermal cond. of
       copper
12 \, \text{kc} = 0.14
                                 //W/m C, thermal cond. of
      rubber (insulation)
                                 //ohm/m, eletrical
13 Rc = 0.422/100
       resistance of copper wire
14
15 //NUMERIC CALCULATIONS
16 \text{ Tcmax} = 90
                                 //X, the maximum temp. in
      insulation
17 \text{ ro=ri+t}
                                 //m, outside radius of 10
      gauge wire
18 Sv = ((Tcmax - To) * (2*kc/ri^2))/(log(ro/ri) + kc/(h*ro))
19 //from eq.(xii), Sv=I^2*rho/(\%pi*ri^2)
20 I=(%pi*ri^2*Sv/Rc)^0.5 //A, Current strength
21 printf("maximum allowable current is \%f A\n",I)
22
\frac{23}{(b)} = \frac{1}{(b)} = \frac{1}{(b)} = \frac{1}{(b)}
24 Tm=To+(ri^2*Sv/2)*(1/km+(log(ro/ri))/kc+1/(h*ro))
25 printf("remp. at the centre of wire is \%f C\n", Tm)
\frac{26}{\text{deg}} / \text{at r=ro}
27 Tc=30+(ri^2*Sv/(2*kc))*(kc/(h*ro))
28 printf("The temprature at the outer surface of
       insulation is %f C",Tc)
```

Scilab code Exa 3.9 Heat generating slab A

```
3 //what is the maximum Temp. in A.
4 //(b) determine the temp. gradient at both the
5 //surfaces of each of the slabs A,B
6 //(c) calculate the value of h1 & h2.
8 //Given
9 \text{ tA} = 0.25
                       //m, thickness of slab A
                       //m, thickness of slab B
10 \text{ tB} = 0.1
                       //m, thickness of slab C
11 tC=0.15
12 kA = 15
                       //W/m C, thermal comductivity of
      slab A
13 \, kB = 10
                       //W/m C, thermal comductivity of
      slab B
                       //W/m C, thermal comductivity of
14 kC=30
      slab C
15 x = poly(0, 'x')
                       //m, distance from left surface of
      B
16 //Temprature distribution in slab A
17 \quad TA = 90 + 4500 * x - 11000 * x^2
18 T1=40
                       //C, fluid temp.
19 T2=35
                       //C, medium temp.
20
21 //calculation
22 //(a)
23 x1=tB
24 \text{ TA1} = 90 + 4500 * x1 - 11000 * x1^2
25 //similarly at the right surface
26 \text{ x} 2 = \text{tA} + \text{tB}
27 \text{ TA2} = 90 + 4500 * x2 - 11000 * x2^2
28 / let dTA/dx=D
29 D=derivat(TA)
30 D=0
                       //for maximum temp.
31 \times 3 = 4500/22000
32 \quad TAmax = 90 + 4500 * x3 - 11000 * x3^2
33 printf("At x=0.1 the temp. at the surface of slab A
        is \%f C\n", TA1)
34 printf("At x=0.35 the temp. at the surface of slab A
         is \%f C\n", TA2)
```

```
35 printf(" the maximum Temp. in A occurs at %f m\n",
      x3)
36 printf (" the maximum Temp. in A is \%f TAmax \n",
      TAmax)
37
38 //(b)
39 //At the interface 2
                              //C/W, D1=dTA/dx, at x=0.1
40 \quad D1 = 4500 - 2 * 11000 * x1
41 //At the interface 3
42 D2=4500-2*11000*x2
                              //D12 = dTA/dx, at x = 0.35
43 //Temprature gradient in slab B and C
44 //by using the continuity of heat flux at interface
      (2)
45 \quad D3 = -kA * D1 / (-kB)
                              //D3=dTB/dx,
                                            at x=0.1
46 //at interface (1)
47 D4=D3
                              //D4=dTB/dx at x=0
48 //similarly
49 D5=-1600
                              //C/W, dTB/dx, x=0.35
50 D6=D5
                              //at interface 4
51 printf ("temp. gradient at interface 2 of the slabs A
       is \%f C/W\n",D1)
52 printf ("temp. gradient at interface 3 of the slabs A
       is \%f C/W\n",D2)
53 printf ("temp. gradient at interface 2 of the slabs B
       is \%f C/W\n",D3)
54 printf("temp. gradient at interface 1 of the slabs B
       is %f C/W n",D4)
55 printf ("temp. gradient at interface 3 of the slabs
      Cis \%f C/W\n",D5)
56 printf ("temp. gradient at interface 4 of the slabs C
       is \%f C/W n, D6)
57
58 //(c)
59 / \text{from D3} = 3450
                    and TB=beeta1*x+beeta2
60 \text{ beeta1} = 3450
61 beeta2=85
62 x = 0
63 TB=beeta1*x+beeta2
```

Scilab code Exa 3.10 percentage increase in rate

```
1 //Example 3.10
2 //calcuate the percentage increase in the rate of
      heat transfer
3 //for the finned tube over the plain tube.
4 // Given
5 id = 78 * 10^{-3}
                         //m, actual internal dia of pipe
6 \text{ tw}=5.5*10^{-3}
                        //m, wall thickness
7 nl=8
                        //no. of longitudinal fins
                        //m, thickness of fin
8 \text{ tf}=1.5*10^-3
                        //m, breadth of fin
9 \quad w = 30 * 10^{-3}
10 \text{ kf} = 45
                        //W/m C, thermal conductivity of
      fin
11 \text{ Tw} = 150
                        //C, wall temp.
12 To=28
                        //C, ambient temp.
13 h = 75
                         //W/m<sup>2</sup>C, surface heat transfer
      coefficient
14
15 // Calculation
16 / \text{from eq. } 3.27
17 e=sqrt(2*h/(kf*tf))
18 n = (1/(e*w))*tanh(e*w)
                             //efficiency of fin
```

```
19 L=1
                        //m, length of fin
20 Af = 2 * L * w
                        //m<sup>2</sup>, area of single fin
                          //m^2 total area of fin
21 \text{ Atf=nl*Af}
22 Qmax=h*Atf*(Tw-To)
                             //W, maximum rate of heat
       transfer
23 \quad Qa = n * Qmax
                            //W, actual rate of heat
       transfer
                            //m<sup>2</sup>, area of contact of fin
24 \text{ Afw=L*tf}
       with pipe wall
  Atfw = Afw * nl
                            //m<sup>2</sup>, area of contact of all
       fin with pipe wall
26 \text{ ro=id/2+tw}
                            //m, outer pipe radius
27 A = 2 * \%pi * L * ro
                            //m<sup>2</sup> area per meter
28 Afree=A-Atfw
                            //m<sup>2</sup>, free outside area of
      finned pipe
29 //Rate of heat transfer from free area of pipe wall
30 \quad Q1=h*Afree*(Tw-To)
                          //W,
31 //total rate of hewat gtransfer from finned pipe
32 \quad Qtotal = Qa + Q1
33 //Rate of heat transfer fromm unfinned pipe
34 \quad Q2 = h * A * (Tw - To)
35 \text{ per} = (Qtotal - Q2)/Q2
36 printf ("the percentage increase in the rate of heat
       transfer is %f percent ",per*100)
```

Scilab code Exa 3.11 Pre stresed multilayered shell

```
1 //Example 3.11
2 //Calculate
3 //(a) Is there any thermal contact resistance at the interface between the layer?
4 //(b) if so calculate the contact resistance and 5 //express it in contact heat transfer coefficient 6 //(c) Calculate the temp. jump.
```

```
8 //Given
9 id=90*10^-2
                       //m, internal diameter of steel
                       //m, outer diameter of steel
10 \text{ od} = 110 * 10^{-2}
11 Ti=180
                       //C, inside temp. of steel
12 \text{ To} = 170
                       //C, outside temp. of steel
13 k = 37
                      //W/m C, thermal conductivity of
      allov
                       //W, Rate of heat loss
14 \quad Q=5.18*10^3
15
16 //calculation
17 \text{ ri}=id/2
                       //m, inside radius of shell
18 \text{ ro=od/}2
                       //m, outside radius of shell
                       //m, boundary between the layers
19 r_{-}=0.5
20 L=1
                       //m, length of shell
21 //Rate of heat transfer in the absence of contact
      resistance
22 Q1=2*%pi*L*k*(Ti-To)/(log(ro/ri))
23 printf("Rate of heat transfer in the absence of
      contact resistance is %f KW\n",Q1/1000)
24 printf("The actual rate of heat loss is 5.18kW is
      much less than this value.\n So there is a
      thermal contact resistance at the interface
      between the layers \n")
25
26 //(b)
27 Ri=(\log(r_/ri)/(2*\%pi*L*k)) //C/W, Resistance of
      inner layer
28 Ro=(\log(ro/r_{-})/(2*\%pi*L*k))
                                   //C/W, Resistance of
      outer layer
29 Rc = ((Ti - To)/(Q)) - (Ri + Ro)
                                   //C/W, contact
      resistance
30 printf ("The contact resistance is \%f C/W \n", Rc)
31 Ac=2*%pi*L*r_
                                   //m<sup>2</sup>, area of contact
      surface of shell
32 \text{ hc}=1/(\text{Ac}*\text{Rc})
                                   //W/m^2 c, contact heat
       transfer coefficient
33 printf("contact heat transfer coefficient is %f W/m
      ^2 C \n",hc)
```

```
34
35 //(c)
36 dt=Q/(hc*Ac)
37 printf("The temprature jump is %f C",dt)
```

Scilab code Exa 3.12 critical insulation thickness

```
1 //Example 3.12
2 // calculate the critical thickness.
3 d=5.2*10^{-3}
                       //m, diameter of copper wire
4 \text{ ri=d/2}
                       //inner radius of insulation
5 \text{ kc} = 0.43
                       //W/m C, thermal conductivity of
      PVC
6 \text{ Tw} = 60
                       //C, temp. 0f wire
                       //W/m^2 C, film coefficient
7 h=11.35
8 \text{ To} = 21
                       //C, ambient temp.
9 //calculation
10 Ro=kc/h
                       //m, critical outer radius of
      insulation
11 t=Ro-ri
12 printf("the critical thickness is %f mm",t*10^3)
```

Scilab code Exa 3.13 critical insulation thickness

```
1 //Example 3.13
2 // calculate the critical insulation thickness.
3 d=15*10^-2 //m, length of steam main
4 t=10*10^-2 //m, thickness of insulation
5 ki=0.035 //W/m C, thermal conductivity of insulation
6 h=10 //W/m^2 C, heat transfer coefficient
7 //calculation
```

```
8 //from eq. 3.29
9 ro=ki/h
10 printf("ro= %f cm \n",ro*10^3)
11 printf("Radius of bare pipe is larger than outer
    radius of insulation \n So critical insulation
    thickness does not exist ")
```

Scilab code Exa 3.14 optimum thickness

```
1 //Example 3.14
2 //calculate the optimum thickness.
3 //Given
4 \text{ Ti} = 172
                       //C, saturation temp.
5 \text{ To} = 20
                       //C, ambient temp.
6 \text{ Cs} = 700
                       //per ton, cost of steam
                       //kcal/kg, latent heat of steam
7 \text{ Lv} = 487
                      //kcal/h m^2 C, outer heat transfer
8 \text{ ho} = 10.32
       coefficient
                       //W/m C, thermal conductivity of
9 \text{ kc} = 0.031
      insulation
10 \, n=5
                       //yr, service life of insulation
11 i=0.18
                     //Re/(yr)(Re), interest rate
12 // Calculation
13 di=0.168
                      //m, inner diameter of insulation
14 //Cost of insulation
15 Ci = 17360 - (1.91*10^4)*di
                                        //Rs/m^3
16 \text{ Ch=Cs/}(1000*Lv)
                                        //Rs/cal, cost of
      heat energy in steam
17 \text{ sm}=1/(1+i)+1/(1+i)^2+1/(1+i)^3+1/(1+i)^4+1/(1+i)^n
18 //from eq. 3.33
19 \text{ ri=di/}2
                      //m inner radius of insulation
                     //m, length of pipe
20 L = 1
21 //Pt=Ch*sm*2*\%pi*ri*L*( 1/(((ri/kc)*('log(ro/ri)'))+
      ri/(ho*ro)) *7.2*10^3*(Ti-To)+\%pi*(ro^2-ri^2)*L*
      Ci
```

Chapter 4

Forced Convection

Scilab code Exa 4.2 Air flow over a flat plate

```
1 / \text{Example } 4.2
2 // Determine
3 //(a) local heat transfer coefficient.
4 //(b) the average heat transfer coefficient
5 //the rate of heat loss from the surface.
7 // Given
8 1=2
                                //m, length of flat surface
9 T1=150
                                //C, surface temp.
10 p=1
                                //atm, pressure
11 T2=30
                                //C, bulk air temp.
12 V=12
                                //m/s, air velocity
13
14 // Calculation
15 Tf = (T1+T2)/2
                              //C, mean air film temp.
16 \text{ mu} = 2.131 * 10^{-5}
                                 //m^2/s, viscosity
                                 //W/m C, thermal
17 k = 0.031
      conductivity
18 rho=0.962
                                 //kg/m<sup>3</sup>, density of air
19 \text{ cp} = 1.01
                                 //kj/kg C, specific heat
      of air
```

```
//Prandtl no.
20 \text{ Pr=cp*10^3*mu/k}
21 Remax=1*V*rho/mu
                                //maximum Reynold no.
22 \text{ Re} = 5 * 10^5
                                 //Reynold no. during
      transition to turbulent flow
23 L_=(Re*mu)/(V*rho)
                                //m, distance from the
      leading edge
24 //for laminar flow heat transfer coefficient h,
25 //h16.707*x^-(1/2)
26 //(a)
27 / h2 = 31.4 * x^{(-1/5)}
28 //b
29 \text{ hav} = 22.2
30 / c
31 Q=hav*l*p*(T1-T2)
32 printf("The rate of heat loss is %f W',Q)
```

Scilab code Exa 4.3 temprature of wire

```
1 / Example 4.3
2 //what will be the temp. of the wire at steady state
3 // Given
4 d=7.24*10^-4
                                       //m, diameter of wire
5 1 = 1
                                       //m, length of wire
                                       //A, current in a wire
6 I=8.3
7 R=2.625
                                       //ohm/m, electrical
      resistance
8 V = 10
                                       //m/s, air velocity
9 \text{ Tb} = 27
                                       //C, bulk air temp.
10 //the properties at bulk temp.
11 \quad mu = 1.983 * 10^{-5}
                                       //\text{m}^2/\text{s}, viscosity
                                       //W/m C, thermal
12 k = 0.02624
      conductivity
13 \text{ rho} = 1.1774
                                       //kg/m^3, density of
      air
```

```
//kj/kg C, specific
14 \text{ cp}=1.0057
      heat of air
15
16 //calculation
17 Pr = cp * 10^3 * mu/k
                                        //Prandtl no.
18 \text{ Re}=d*V*rho/mu
                                        // Reynold no.
19 //from eq. 4.19, nusslet no.
20 Nu=0.3+(0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))
       ^(1/4))*(1+(Re/(2.82*10^5))^(5/8))^(4/5)
21 \text{ hav=Nu*k/d}
                                        //W/m<sup>2</sup> C, average
      heat transfer coefficient
22 Q = I^2 \times R
                                        //W, rate of
       electrical heat generation
23 A=%pi*d*1
24 \text{ dt=Q/(hav*A)}
                                        //C, temp. difference
                                        //C, steady state temp
25 T = dt + Tb
26 printf ("The steady state temprature is \%f C\n",T)
27 //REVISED CALCULATION
28 \text{ Tm} = (T + Tb)/2
                                        //C, mean air film
      temp.
29 //the properties at Tm temp.
30 \text{ mu1} = 2.30 * 10^{-5}
                                           //\text{m}^2/\text{s}, viscosity
                                           //W/m C, thermal
31 \text{ k1} = 0.0338
       conductivity
32 \text{ rho1} = 0.878
                                           //kg/m^3, density of
        air
33 \text{ cp1}=1.014
                                           //kj/kg C, specific
      heat of air
34 \text{ Re1=d*V*rho1/mu1}
                                           // Reynold no.
35 Pr1 = (1.014*10^3*2.30*10^-5)/k1
                                                        //Prandtl
        no.
36 //from eq. 4.19, nusslet no.
37 \text{ Nu1=0.3+(0.62*Re1^(1/2)*Pr1^(1/3)/(1+(0.4/Pr1)^(2/3))}
      )^(1/4))*(1+(Re1/(2.82*10^5))^(5/8))^(4/5)
38 \text{ hav1}=\text{Nu1}*\text{k1/d}
                                            //W/m<sup>2</sup> C, average
       heat transfer coefficient
39 \text{ dt1=Q/(hav1*A)}
                                           //C, temp. difference
```

```
40 T1=dt1+Tb //C, steady state temp.
41 printf("The recalculated value is almost equal to previous one.")
```

Scilab code Exa 4.4 Calculate Required time

```
1 / \text{Example } 4.4
2 // Calculate
3/(a) what is initial rate of melting of ice.
4 //(b) how much time would be needed to melt away 50 %
        of ice
5 // Given
6 \text{ di} = 0.04
                                        //m, diameter of ice
      ball
                                        //m/s, air velocity
7 V = 2
8 T1 = 25
                                        //C, steam temp.
9 T2 = 0
10 //the properties of air
11 mu=1.69*10^-5
                                        //kg/ms, viscosity
12 k=0.026
                                        //W/m C, thermal
      conductivity
                                        //kg/m<sup>3</sup>, density
13 \text{ rho} = 1.248
                                        //kj/kg C, specific
14 \text{ cp}=1.005
      heat
15 //propertice of ice
16 lamda=334
                                       //kj/kg, heat of
      fusion
17 \text{ rhoice} = 920
                                        //kg/m<sup>3</sup> density of
      ice
18
19 //calculation
20 \text{ Pr=cp*10^3*mu/k}
                                        //Prandtl no.
21 Re=di*V*rho/mu
                                        // Reynold no.
\frac{22}{\text{from eq. }} 4.19, nusslet no.
```

```
23 \text{Nu} = 2 + (0.4 * \text{Re}^{0.5} + 0.06 * \text{Re}^{(2/3)}) * \text{Pr}^{0.4}
24 hav=Nu*k/di
                                         //W/m<sup>2</sup> C, average
       heat transfer coefficient
25 Ai=%pi*di^2
                                         //initial area of
       sphere
26 \ Qi = Ai * hav * (T1 - T2)
                                         //W=J/s, initial rate
       of heat transfer
                                         //initial rate of
27 \text{ Ri=Qi/lamda}
       melting of ice
  printf("initial rate of melting of ice is \%f g/s n"
       ,Ri)
29
30 //(b)
31 // \text{mass of ice ball } 4/3 * \% \text{pi} * \text{r}^3
32 //Rate of melting= Rm = -d/dt(m)
33 //Rate of heat input required =-lamda*Rate of
       melting
34 //heat balance equation
35 // - \text{lamda} * (\text{Rm}) = h * 4 * \% pi * r^2 * dt
36 //integrating and solving
37 \text{ rf} = ((di/2)^3/2)^(1/3)
38 //solving eq. 3
39 t1=1.355*10^-4/(8.136*10^-8)
40 printf ("The required time is is \%f s\n", round (t1))
```

Scilab code Exa 4.5 average time

```
9 //the properties of solid particles.
10 dp=0.65*10^-3
                                      //m, average particle
      diameter
                                      //kcal/kg C, specific
11 \text{ cps} = 0.196
      heat
12 \text{ rhos} = 2550
                                      //kg/m<sup>3</sup>, density
13 // Properties of air
14 \text{ mu} = 3.6 * 10^{-5}
                                      //kg/ms, viscosity
15 k=0.05
                                      //kcal/hm C, thermal
      conductivity
16 \text{ rho} = 0.545
                                      //kg/m^3, density of
      air
17 \text{ cp} = 0.263
                                      //kcal/kg C, specific
      heat of air
18
19 //calculation
20 \text{ Pr=cp*mu*3600/k}
                                            //Prandtl no.
21 Redp=dp*Vo*rho/mu
                                      // Reynold no.
22 //from eq. 4.29(b) heat transfer coefficient
23 h=(k/dp)*(2+0.6*(Redp)^(1/2)*(Pr)^(1/3))
24 \text{ Tg} = 500
                                      //C, gas temp.
25 //from heat balance equation
26 // -(dTs/dt) = 6h/(dp*rhos*cps)*(Ts-Tg)
27 t=(dp*rhos*cps/(6*h))*integrate('(1/(Ts-Tg))', 'Ts'
       ,550,800)
28 printf("the required contact time is %f s",t*3600)
```

Scilab code Exa 4.6 Overall heat transfer coefficient

```
1 //Example 4.6
2 //Calculate the required rate of flow of water.
3 //calculate the overall heat transfer coefficient
4 //Given
5 mo_=1000 //kg/h, cooling rate of oil
6 cpo=2.05 //kj/kg C, specific heat of oil
```

```
7 T1 = 70
                          //C, initial temp. of oil
8 T2 = 40
                          //C, temp. of oil after cooling
                          //kj/kg C, specific heat of water
9 \text{ cpw} = 4.17
10 \quad T3 = 42
                          //C, initial temp. of water
11 T4 = 28
                          //C, temp. of oil after cooling
12 A = 3
                          //m<sup>2</sup>, heat exchange area
13 // Calculation, rate of flow of water
14 \text{ mw}_{-}\text{mo}_{*}\text{cpo}_{*}(T1-T2)/(\text{cpw}_{*}(T3-T4))
15 printf ("the required rate of flow of water is %f kg/
      h \setminus n", mw_{-})
16 \quad Q = mo_*cpo*(T1-T2)/3600
                                       //kw, heat duty
                         //C, hot end temp. difference
17 dt1=T1-T3
                         //C, cold end temp. difference
18 dt2 = T2 - T4
19 LMTD=(dt1-dt2)/(log(dt1/dt2)) //log mean temp.
       difference
20 \text{ dtm} = \text{LMTD}
21 U=Q*10^3/(A*dtm)
22 printf ("the overall heat transfer coefficient is %f
      W/m^2 C", U)
```

Scilab code Exa 4.7 inlet and outlet temprature

```
1 / Example 4.7
2 //calculatemthe inlet and outlet temp. of gas.
3 // Given
4 Q=38700
                          //kcal/h, heat duty
5 W = 2000
                          //kg/h gas flow rate
6 \text{ cp} = 0.239
                          //kcal/kg C, specific heat of
      nitrogen
7 \quad A = 10
                          //m<sup>2</sup>, heat exchanger area
8 U = 70
                          //kcal/hm^2 C, overall heat
      transfer coefficient
9 n = 0.63
                          //fin efficiency
10
11 // Calculation
```

Scilab code Exa 4.8 drop in temprature

```
1 / \text{Example } 4.8
2 // Calculate the drop in temp. of the water.
3 //Given
4 V = 1.8
                               //m/s, velocity of hot water
                              //C, initial temp.
5 T1=110
61=15
                              //m, length of pipe
                               //m, thickness of insulation
7 t=0.02
8 \text{ kc} = 0.12
                              //W/mC, thermal conductivity
      of insulating layer
9 ho = 10
                              //Wm<sup>2</sup> C, outside film
      coefficient
10 T2 = 20
                              //C, ambient temp.
11 //the properties of water at 110 C
12 \text{ mu} = 2.55 * 10^-4
                              //m^2/s, viscosity
13 k = 0.685
                               //W/m C, thermal conductivity
14 rho=950
                              //kg/m<sup>3</sup>, density of air
                              //kj/kg C, specific heat of
15 \text{ cp}=4.23
       air
16 \text{ di} = 0.035
                              //m, actual internal dia. of
```

```
pipe
17 \text{ ri}=di/2
                                                                                          //m, internal radius
18 t1=0.0036
                                                                                          //m, actual thickness of
                   1-1/4 schedule 40 pipe
19 \text{ ro=ri+t1}
                                                                                          //m, outer radius of pipe
20 r_{ro}+t
                                                                                          //m, outer radius of
                   insulation
21 \, \text{kw} = 43
                                                                                          //W/mC, thermal conductivity
                   of steel
22 //calculation
23 \text{ Pr} = \text{cp} * 10^3 * \text{mu/k}
                                                                                          //Prandtl no.
24 Re=di*V*rho/mu
                                                                                          // Reynold no.
25 / \text{from eq. } 4.9
                                                                     Nusslet no.
26 Nu=0.023*(Re)^0.88*Pr^0.3
27 \text{ hi=Nu*k/di}
                                                                                          //W/m<sup>2</sup> C, average heat
                    transfer coefficient
28 //the overall coefficient inside area basis Ui
29 \text{Ui}=1/(1/\text{hi}+(\text{ri}*\log(\text{ro}/\text{ri}))/\text{kw}+(\text{ri}*\log(\text{r}_{-}/\text{ro}))/\text{kc}+\text{ri}
                   /(r_*ho))
30 \text{ Ai=\%pi*di*l}
                                                                                     //m<sup>2</sup>, inside area basis
31 W=%pi*ri^2*V*rho
                                                                                     //kg/s, water flow rate
32 //from the relation b/w LMTD and rate of heat loss
33 // \det f('[x] = f(To)', 'x = W * cp * 10^3 * (T1 - To) - Ui * Ai * ((T1 - To) + Ui * ((T1 - To)
                   To)/log((T1-T2)/(To-T2)))
34 //To = f solve(1, f)
35
36 deff('[x]=f(To)', 'x=(W*cp*10^3)/(Ui*Ai)*(T1-To)-((T1))
                   -To)/log((T1-T2)/(To-T2)))
37 \quad To=fsolve(100,f)
38 printf("The outlet eater temp. is %f C",To)
```

Scilab code Exa 4.9 find the temprature

```
1 //Example 4.9 2 //at what temp. does the water leave the pipe.
```

```
3 //Given
4 T1=28
                          //C, inlet temp.
5 T2 = 250
                          //C, bulk temp.
6 V = 10
                          //m/s, gas velocity
71 = 20
                          //m, length of pipe
8 \text{ mw} = 1 * 3600
                          //kg/h, water flow rate
9 \text{ di} = 4.1 * 10^{-2}
                          //m, inlet diameter
10 Tm = (T1+T2)/2
                          //C, mean temp.
11 \text{ ro} = 0.0484
                          //m, outside radius
12 //properties of water
13 \text{ mu} = 8.6 * 10^{-4}
                          //kg/ms, viscosity
14 \text{ kw} = 0.528
                          //kcal/h m C, thermal
      conductivity
15 \text{ kw}_{-}=0.528*1.162
                          //W/ m C, thermal conductivity
16 rho=996
                          //kg/m<sup>3</sup>, density of air
                          //kj/kg C, specific heat of air
17 \text{ cp}=1*4.18
                          //kcal/kg C
18 \text{ cp}_{-}=1
19 //properties of flue gas
20 \text{ mu1} = 2.33 * 10^{-5}
                          //kg/ms, viscosity
21 \text{ ka} = 0.0292
                          //kcal/h m C, thermal
      conductivity
21 \text{ rho1} = 0.891
                          //kg/m<sup>3</sup>, density of air
                          //kcal/kg C, specific heat of air
23 \text{ cp1} = 0.243
24 \text{ Pr} = 0.69
25
26 //calculation
27 A = \%pi/4*di^2
                          //m^2, cross section of pipe
                          //m/s, velocity of warer
28 \quad Vw=1/(rho*A)
29 Re=di*Vw*rho/mu
                          // Reynold no.
                            //Prandtl no. for water
30 Pr1=cp*10^3*mu/kw_
                                                  //Nusslet no.
31 Nu=0.023*Re^0.8*Pr1^0.4
32 //water side heat transfer coefficient
33 hi=206*kw/di
34 //gas side heat transfer coefficient
                                                    ho
35 a = 41
                         //mm, i.d. schedule
36 \text{ Tw} = 3.7
                         //mm, wall thickness
37 \quad do = a + 2 * Tw
                         //mm, outer diameter of pipe
38 Re1=do*10^-3*V*rho1/mu1 // Reynold no
```

```
39 //from eq. 4.19, nusslet no.
40 Nu1=0.3+(0.62*Re1^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))
      ^(1/4))*(1+(Re1/(2.82*10^5))^(5/8))^(4/5)
                             //kcal/h m<sup>2</sup> C
41 ho=(Nu1*ka/do)*10^3
42 Uo=1/(ro/(di/2*hi)+1/ho)
                              //kcal/h m^2 C, overall
      heat transfer coefficient
43
44 //Heat balance
45 A1=%pi*ro*l
                        //m62, outside area of pipe
46 //from the formula of LMTD
47 deff('[x]=f(T2])', 'x=mw*cp_*(T2_-T1)-Uo*A1*((T2_-T1)
     /\log ((T2-T1)/(T2-T2_{-})))')
48 \quad T2_{=}fsolve(1,f)
49 printf("The exit water temp is %f K", round(T2_))
```

Scilab code Exa 4.10 length of heat exchanger

```
1 //Example 4.10
2 //calculate the length of heat exchanger.
3 // Given
4 dti=0.0212
                           //m inner tube
5 \text{ dto} = 0.0254
                           //cm, outer tube
                           //cm, outer pipe
6 \text{ dpi} = 0.035
                           //kh/h, cooling rate of oil
7 \text{ mo}_{-} = 500
                           //C, initial temo. of oil
8 \text{ To } 2 = 110
                           //C, temp. after cooling of oil
9 \text{ To } 1 = 70
                           //C, inlet temp. of water
10 \text{ Tw} 2 = 40
                           //C, outlet temp. of water
11 \text{ Tw} 1 = 29
12 //properties of oil
13 \text{ cpo} = 0.478
                           //kcal/kg C
                           //kcal/h m C, thermal conductivity
14 \text{ ko} = 0.12
15 rho=850
                           //kg/m<sup>3</sup>, density of oil
16 //properties of water
17 \text{ kw} = 0.542
                           //kcal/h m C, thermal conductivity
18 \text{ kw}_{-} = (\text{kw} * 1.162)
                           //kj/kg C
```

```
19 muw = 7.1 * 10^{-4}
                          //kg/ms, viscosity of water
                          //kcal/kg C
20 \text{ cpw=1}
                          //kcal/kg C
21 \text{ cpw}_=\text{cpw}*4.17
22 rhow=1000
                          //kg/m<sup>3</sup>, density
23 //calculation
24 \text{ HL}=\text{mo}_*\text{cpo}*(\text{To2}-\text{To1})
                                    //kcal/h, heat load of
       exchanger
25 mw_=HL/(cpw*(Tw2-Tw1))
                                    //kg/h water flow rate
26 \text{ mw}_1 = \text{mw}_/(3600*10^3)
                                    //m<sup>3</sup>/s water flow rate
                                    //m^2, flow area of tube
27 \quad A1 = (\%pi/4) * (dti)^2
                                    //m/s water velocity
28 \quad Vw = mw_1/A1
29 Rew=dti*Vw*rhow/muw
                                    //Reynold no.
30 Prw=cpw_*10^3*muw/kw_
                                    //Prandtl no.
31 Nuw=0.023*Rew^0.8*Prw^0.4 // nusslet no.
32 //water side heat transfer coefficient
                                                       hί
33 hi=Nuw*kw/dti
34
35 //oil side heat transfer coefficient
36 \quad A2 = \%pi/4*(dpi^2-dto^2)
                                    //m^2, flow area of
       annulus
37 \text{ Vo=mo}_/(3600*\text{rho}*A2)
                                    //m/s velocity of oil
38 de=(dpi^2-dto^2)/dto
                                    //m, equivalent dia of
       annulus
                                    //C, mean oil temp.
39 \text{ Tmo} = (\text{To}2 + \text{To}1)/2
40 muoil=\exp((5550/(Tmo+273))-19) //kg/ms, viscosity
       of oil
41 Reo=de*Vo*rho/muoil
                                    //prandtl no. for oil
42 Pro=cpo*muoil*3600/ko
43
44 //assume (1st approximation)
45 Nuo=3.66
46 \text{ ho=Nuo*ko/de}
                                   // kcal/h m^2 c
47 L = 1
                                   //assume length of tube
48 \text{ Ai=\%pi*dti*L}
49 \text{ Ao=\%pi*dto*L}
50 //overall heat transfer coefficient 1st
       approximation
51 \text{ Uo} = 1/(1/\text{ho} + \text{Ao}/(\text{Ai} * \text{hi}))
```

```
52 LMTD=((To2-Tw2)-(To1-Tw1))/(log((To2-Tw2)/(To1-Tw1))
53 \text{ Ao1=HL/(Uo*LMTD)}
                                 //m<sup>2</sup>, heat transfer area
                                  //m, tube length
54 \text{ Lt} = \text{Ao} 1 / (\% \text{pi} * \text{dto})
55 //from eq. 4.8
56 \text{ Nuo1=1.86*(Reo*Pro/(Lt/de))^(1/3)}
                                              //Nusslet no.
57 \text{ hol=Nuol*ko/de}
                               //C, mean water temp.
58 \text{ Tmw} = (\text{Tw}1 + \text{Tw}2)/2
59 //balancing heat transfer rate of oil and water
60
61 //average wall temp. Twall
62 Twall=((hi*dti*(-Tmw))-(ho1*dto*Tmo))/(-65.71216)
63 //viscosity of oil at this temp.
64 muwall=\exp((5550/(Twall+273))-19) //kg/ms,
       viscosity of oil
65 // Nusslet no.
66 \text{ Nuo2=1.86*(Reo*Pro/(Lt/de))^(1/3)*(muoil/muwall)}
      ^0.14
67 \text{ ho2=Nuo2*ko/de}
68 Uo2=1/((1/ho2)+(Ao/(Ai*hi)))
69 \text{ Ao2=HL/(Uo2*LMTD)}
70 Lt_=Ao2/(\%pi*dto)
71 printf("The tube length is %f m",Lt_)
```

Scilab code Exa 4.11 rate of heat transfer

```
diffusity
9 k=0.0375
                                      //W/m C, thermal
      conductivity
                                      //kg/m<sup>3</sup>, density of
10 \text{ rho} = 0.73
       air
11 \text{ cp=0.248}
                                      //kj/kg C, specific
      heat of air
12 V = 16
                                      //m/s, velociity
13 d=0.06
                                      //m, outside diameter
      of tube
14 \text{ Nt} = 15
                                      //no. of tubes in
      transverse row
15 Nl=14
                                      //no. of tubes in
      longitudinal row
16 N = N1 * Nt
                                      //total no. of tubes
17 L = 1
                                      //m, length
18 // Calculation
19 S1=(sqrt(3)/2)*St
20 \text{ Pr=cp*mu*3600*rho/k}
                                      //Prandtl no. of bulk
       air
21 Pr=0.62
                                      //Prandtl no. of air at
22 \text{ Prw} = 0.70
        wall temp. 70 C
\frac{23}{\text{from eq. }}4.25
24 \quad Vmax = (St/(St-d)) *V
\frac{25}{\text{from eq. }}4.26
26 \quad Vmax1 = (St/(2*(St-d)))*V
27 Redmax=d*Vmax/mu
28 p = St/S1
                                     //pitch ratio
29 p<2
30 //from table 4.3
31 m = 0.6
32 C=0.35*(St/S1)^0.2
33 h=(k/d)*C*(36163)^m*(Pr)^(0.36)*(Pr/Prw)^(0.25)
34 / \text{from eq. } 4.28
35 dt = 190 * exp(-\%pi*d*N*h/(rho*V*3600*Nt*St*cp))
36 LMTD=((Ti-Ts)-(dt))/log((Ti-Ts)/dt)
37 A = \%pi*d*L*N
                                    //m^2, heat transfer area
```

```
38 Q=h*A*LMTD
39 printf(" the rate of heat transfer to water.is %f kcal/h",Q)
```

Scilab code Exa 4.12 aniline is a tonnage oc

```
1 //Example 4.12
2 // Calculate the rise in temp. of water .
3 //Given
4 W = 0.057
                                      //\text{m}^3/\text{min}/\text{tube}, flow
      rate of water
5 W_{-} = W * 16.66
                                       //kg/s. water flow rate
                                      //m, inside diameter
6 \text{ di} = 0.0212
7 \text{ Ti} = 32
                                       //C, inlet water temp.
                                       //C, wall temp.
8 \text{ Tw} = 80
                                       //m, length of pip
9 L=3
10 // Calculation
11 V = (W/60) * (1/((\%pi/4)*di^2))
                                        //m/s, water velocity
12 //the properties of water at mean liquid temp...
13 \text{ mu} = 7.65 * 10^{-4}
                                        //\text{m}^2/\text{s}, viscosity
14 k = 0.623
                                        //W/m C, thermal
      conductivity
15 rho=995
                                        //kg/m^3, density of
      air
                                        //kj/kg C, specific
16 \text{ cp} = 4.17
      heat of air
17
18 //calculation
19 Pr = cp * 10^3 * mu/k
                                        //Prandtl no.
20 Re=di*V*rho/mu
                                        // Reynold no.
21 //from eq. 4.19, nusslet no.
22 //from dittus boelter eq.
23 Nu=0.023*Re^0.8*Pr^0.4
                                        //Prandtl no.
24 \text{ f=0.0014+0.125*Re}^--0.32
                                        //friction factor
25 //Reynold analogy
```

```
//Stanton no.
26 \text{ St}=f/2
27 \text{ Nu1=Re*Pr*St}
28 //Prandtl analogy
29 St1=(f/2)/(1+5*(Pr-1)*sqrt(f/2))
30 \text{ Nu2=St1*Re*Pr}
31 //colburn analogy
32 \text{ Nu3=Re*Pr}^{(1/3)*(f/2)}
                                                                                            //W/m<sup>2</sup> C av heat
33 h=Nu3*k/(di)
                 transfer coefficient
34 / Q=W_*cp*10^3*(To-Ti)=h*A*LMTD
35 A = \%pi*di*L
                                                             //\mathrm{m}^2
36 deff('[x]=f(To)', 'x=W_*cp*10^3*(To-Ti)-h*A*((To-Ti)/
                 log ((Tw-Ti)/(Tw-To)))')
37 \text{ To=} fsolve(1,f)
38 //Revised calculation
                                                                                            //C, mean liquid temp.
39 \text{ Tm} = (\text{Ti} + \text{To})/2
40 //the properties of water at new mean liquid temp...
41 \quad mu1=6.2*10^-4
                                                                                                     //m^2/s, viscosity
                                                                                                         //W/m C, thermal
42 k1=0.623
                 conductivity
43 rho1=991
                                                                                                         //kg/m^3, density of
                 air
44 \text{ cp1}=4.17
                                                                                                         //kj/kg C, specific
                 heat of air
45 //calculation
46 Pr1=cp1*10^3*mu1/k1
                                                                                                                 //Prandtl no.
47 Re1=di*V*rho1/mu1
                                                                                                               // Reynold no.
48 //from dittus boelter eq.
49 f1=0.0014+0.125*Re1^(-0.32)
                                                                                                                 //friction factor
50 //colburn analogy
51 \text{ Nu4=Re1*Pr1}^{(1/3)*(f1/2)}
                                                                                                  //W/m<sup>2</sup> C av heat
52 h1 = Nu4 * k1/(di)
                 transfer coefficient
53 deff('[x]=f(To_-)', 'x=W_*cp*10^3*(To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*A*((To_-Ti)-h1*
                 Ti)/log((Tw-Ti)/(Tw-To_{-})))
54 \text{ To}_{=} \text{fsolve}(1,f)
55 printf("Outlet temp. of water for one pass through
                 the tubes is %f C", To_)
```

Chapter 5

free convection

Scilab code Exa 5.1 Rate of heat loss

```
1 //Example 5.1
2 // Calculate the rate of heat loss .
3 // Given
4 T1=65
                               //C, furnace temp.
                               //C, ambient temp.
5 T2 = 25
6 h = 1.5
                               //m, height of door
7 \quad w = 1
                               //m, width of door
                               //c, average air film temp.
8 \text{ Tf} = (T1+T2)/2
9 //Properties of air at Tf
10 Pr=0.695
                               //Prandtl no.
                               //m^2/s, viscosity
11 mu = 1.85 * 10^{-5}
                               //K^{-1}. coefficient of
12 beeta=1/(Tf+273)
      volumetric expension
13 k=0.028
                               //W/m C, thermal
      conductivity
                               //m/s^2, gravitational
14 g = 9.8
      constant
                                              //Grashof no.
15 Grl=g*beeta*(T1-T2)*h^3/(mu^2)
16 Ral=Grl*Pr
                                              //Rayleigh no.
17 // Nusslet no.
18 Nul = (0.825 + (0.387 * (Ral)^(1/6)) / (1 + (0.492/Pr)^(9/16))
```

Scilab code Exa 5.2 steady state temprature

```
1 / Example 5.2
2 // Calculate the steady state temp. of the plate.
3 // Given
4 T1=60
                                 //C, plate temp.
5 T2 = 25
                                 //C, ambient temp.
6 h=1
                                 //m, width of door
7 \quad w = 1
8 q = 170
                                 //W, rate of heat transfer
9 \text{ Tf} = (T1+T2)/2
                                 //c, average air film temp.
10 // Properties of air at Tf
11 Pr = 0.7
                               //Prandtl no.
12 mu=1.85*10<sup>-5</sup>
                                 //\text{m}^2/\text{s}, viscosity
13 beeta=1/(Tf+273)
                                 //K^{-1}. coefficient of
      volumetric expension
14 k=0.028
                                 //W/m C, thermal
      conductivity
15 \text{ g=9.8}
                                 //m/s^2, gravitational
      constant
16
17 // Calculation
18 \quad A = h * w
                                 //m<sup>2</sup>, plate area
                                 //m, perimeter of plate
19 P = 2*(h+w)
                                 //m characteristic length
20 L=A/P
21 Grl=g*beeta*(T1-T2)*L^3/(mu^2)
                                              //Grashof no.
22 Ral=Grl*Pr
                                              //Rayleigh no.
```

Scilab code Exa 5.3 CALCULATE TIME REQUIRED

```
1 / Example 5.3
2 // Calculate the time required for cooling of the rod
3 //Given
4 d=0.0254
                                  //m, diameter of steel rod
                                  //m, length of rod
51=0.4
                                  //C, initial temp.
6 T1=80
7 T2 = 30
                                  //C, ambient temp.
                                  //c, temp. after cooling
8 T3 = 35
9 \text{ rho} = 7800
                                  //kg/m<sup>3</sup>, density of steel
       \operatorname{rod}
10 \text{ cp} = 0.473
                                  //kj/kg C. specific heat
11
12 // Calculation
13 \text{ m=\%pi/}4*d^2*l*rho
                                  //kg. mass of cylinder
14 A=%pi*d*1
                                  //m<sup>2</sup>, area of cylinder
15 dt = T1 - T2
                                  //c, instantaneous temp.
      difference
16 h=1.32*(dt/d)^0.25
                                  //W/m<sup>2</sup> C, heat transfer
      coefficient
17 i = integrate('1/(T^{(5/4)})', 'T', 5, 50)
18 t=i/(3.306*A/(m*cp*10^3))
19 printf ("The required time for cooling is %f hr", t
      /3600)
```

Scilab code Exa 5.4 Rate of heat loss

```
1 / \text{Example } 5.4
2 // Calculate the rate of heat loss by free convection
        per meter length of pipe.
3 //given
4 id = 78 * 10^{-3}
                                           //m, internal
       diameter
5 \text{ od} = 89 * 10^{-3}
                                           //m, outer diameter
6 \text{ Pg} = 15
                                           //kg/cm<sup>2</sup>, gauge
       pressure
7 t=2*10^-2
                                           //m, thickness of
      preformed mineral fibre
                                           //W/m C. thermal
8 k = 0.05
       conductivity
                                           //C, ambient air temp
9 \text{ Ta} = 25
10 \text{ Pr} = 0.705
                                           //Prandtl no.
11 //assume
12 \text{ Ts} = 50
                                           //C, skin temp.
13 1=1
                                           //m, length
                                            //C, initial temp.
14 Ti=200.5
15 \text{ rs} = \text{od}/2 + \text{t}
                                           //m, outer radius of
      insulation
16 \text{ ri=od/2}
                                           //m, inner radius of
       insulation
17 //Rate of heat transfer through insulation per meter
        length of pipe
18 Q=2*\%pi*l*k*(Ti-Ts)/(log(rs/ri))
19 //properties of air at taken at the mean film temp.
20 \text{ Tf} = (\text{Ta} + \text{Ts})/2
                                          //C
21 \text{ mu} = 1.76 * 10^{-5}
                                         //\text{m}^2/\text{s}. viscosity
22 beeta=(1/(Tf+273))
                                         //K^{-1}, coefficient of
        volumetric expansion
```

```
//W/m C, thermal
23 k1 = 0.027
      conductivity
24 \text{ ds}=2*\text{rs}
                                       //m, outer dia. of
      insulated pipe
25 g=9.8
                                       //m/s^2, gravitational
        constant
26 \text{ Grd=g*beeta*(Ts-Ta)*ds}^3/(\text{mu}^2)
                                                  //Grashof no.
                                                  //Rayleigh no
27 Rad=Grd*Pr
28 / \text{from eq. } 5.9
29 // Nusslet no.
30 \text{ Nu} = (0.60 + (0.387 * (Rad)^(1/6)) / (1 + (0.559/Pr)^(9/16))
      ^(8/27))^2
                                      //W/ m<sup>2</sup> C, average
31 \text{ hav=Nu*k1/ds}
      heat transfer coefficient
32 \text{ Ts} = (Q/(\%pi*ds*l*hav)) + Ta
                                      //C, skin temp.
33 //revised calculation by assuming
34 \text{ Ts} 1 = 70
                                     //C, skin temp.
35 //Rate of heat transfer through insulation
36 \ Q1=2*\%pi*l*k*(Ti-Ts1)/(log(rs/ri))
37 \text{ Tf1} = (\text{Ta} + \text{Ts1})/2
                                       //C, average aie mean
      film temp.
38 mu1=1.8*10^-5
                                         //\text{m}^2/\text{s}. viscosity
39 beeta1=(1/(Tf1+273))
                                          //K^{-1}, coefficient
       of volumetric expansion
40 \text{ k1} = 0.0275
                                       //W/m C, thermal
      conductivity
41 Pr1=0.703
                                       //Prandtl no.
42 Grd1=g*beeta1*(Ts1-Ta)*ds^3/(mu1^2)
                                                       //Grashof
        no.
                                                       //
43 Rad=Grd1*Pr1
      Rayleigh no.
44 / \text{from eq. } 5.9
45 // average heat transfer coefficient, in //W/ m^2 C,
46 hav1=(0.60+(0.387*(Rad)^(1/6))/(1+(0.559/Pr)^(9/16))
      ^(8/27))^2*(k1/ds)
47 Ts2=(Q1/(\%pi*ds*l*hav1))+Ta
48 //again assume skin temp.=74
```

Scilab code Exa 5.5 thickness of insulation

```
1 / \text{Example } 5.5
2 // Calculate, what thickness of insulation should be
3 //so that the insulation skin temp. does not exceed
      65 C
4 //Given
5 \text{ Ts} = 65
                                     //C, skin temp.
6 \text{ To} = 30
                                     //C, ambient temp.
7 \text{ Tw} = 460
                                     //C, wall temp.
8 \text{ Tf} = (\text{Ts} + \text{To})/2
                                        //C, mean air film temp
                                             //K^{-1}
9 beeta=(1/(Tf+273))
       coefficient of volumetric expansion
10 g=9.8
                                        //m/s^2, gravitational
       constant
11 mu=1.84*10<sup>-5</sup>
                                     //m<sup>2</sup>/s, viscosity
12 L=10.5
                                     //m, height of converter
                                     //m, diameter of
13 \, di = 4
      converter
14 \text{ Pr} = 0.705
                                     //Prandtl no.
15 k=0.0241
                                     //kcal/h m C, thermal
      conductivity
16
17 // Calculation
18 Grl=g*beeta*(Ts-To)*L^3/(mu^2)
                                                //Grashof no.
19 x = di/L
                                     //assume di/l=x
20 y = 35/(Gr1)^{(1/4)}
                                     // assume 35/(Grl)^(3/4) =
```

```
21 //printf "x>y""
22 //for a verticla flat plate, from eq. 5.3
23 \text{ Ral=Grl*Pr}
                                  //Rayleigh no.
24 //nusslet no.
25 Nu=(0.825+(0.387*(Ral)^(1/6))/(1+(0.496/Pr)^(9/16))
      ^(8/27))^2
                                 //kcal/h m^2 C, average
26 \text{ hav=Nu*k/L}
      heat transfer coefficient
  //w=poly(0,"w")
27
                                           //average
  //Dav = (4 + (4 + 2*w))/2
      diameter
  //Aav=%pi*Dav*L
                                           //average heat
      transfer area
  //Qi = \%pi *Dav *L *0.0602 * (Tw-Ts)/w
                                          //Rate of heat
      transfer through insulation
31 //rate of heat transfer from the outer surface of
      the insulation by free convection
32 //Qc=hav*\%pi*Dav*L*(Ts-To)
33 / Qi = Qc
34 deff('[x]=f(w)', 'x=\%pi*(4+w)*L*0.0602*(Tw-Ts)/w-hav*
      \%pi*(4+2*w)*L*(Ts-To)')
35 \text{ w=fsolve}(0.1,f)
36 printf ("The required insulation thickness is %f m", w
      )
```

Scilab code Exa 5.6 rate of heat gain

```
8 T2 = 30
                              //C, wall temp.
                              //C, Mean air temp.
9 \text{ Tm} = (T1+T2)/2
10 \text{ Pr} = 0.7
                              //Prandtl no.
11 //fpr air at 26 C
12 beeta=1/(Tm+273)
                              //K^{-1}. coefficient of
      volumetric expension
13 \text{ mu} = 1.684 * 10^{-5}
                              //\text{m}^2/\text{s}, viscosity
14 k=0.026
                              //W/m C, thermal conductivity
                              //m^2/s, thermal diffusity
15 alpha=2.21*10^-5
                              //m/s<sup>2</sup>, gravitational
16 g=9.8
      constant
17 Raw=g*beeta*(T2-T1)*w^3/(mu*alpha)
                                                    //Rayleigh
18 Nuw = 0.42*(Raw)^0.25*Pr^0.012*(L/w)^-0.3
                                                    //Nusslet
      no.
19 h = Nuw * k/w
                                                    // kcal/h m
      ^2 C, heat transfer coefficient
20 q=h*(T2-T1)*(L*b)
                                                    //W, the
      rate of heat transfer
21 printf("the rate of heat transfer is %f W",q)
```

Scilab code Exa 5.7 Rate of heat loss

```
1 // \text{example } 5.7
2 // Calculate the rate of heat loss by the combined
       free and forced convection.
3 // Given
                            //C, surface temp
4 \text{ Ts} = 60
5 \text{ To} = 30
                            //C, bulk temp.
                            //m, diameter of pipe
6 d=0.06
                            //m, length
7 1 = 1
8 \text{ Tm} = (\text{Ts} + \text{To})/2
9 //for air at Tm
10 \text{ rho} = 1.105
                                           // kg/m^3, density
                                           //kcal/kg C. specific
11 \text{ cp=0.24}
```

```
heat
12 mu=1.95*10<sup>-5</sup>
                                        //kg/m s. viscosity
13 P = 0.7
                                        //Prandtl no.
                                            //m<sup>2</sup>/s, kinetic
14 \text{ kv} = 1.85 * 10^{-5}
      viscosity
15 k=0.0241
                                        //kcal/f m C, thermal
      conductivity
16 beeta=(1/(Tm+273))
                                               //K^{-1}.
       coefficient of volumetric expension
17 \quad V = 0.3
                                        //m/s, velocity
                                       //m/s^2, gravitational
18 g=9.8
        constant
19 // Calculation of nusslet no.
20 Rad=g*beeta*(Ts-To)*d^3*P/(kv^2) //Rayleigh no.
21 / \text{from eq. } 5.9
22 Nufree=(0.60+(0.387*Rad^(1/6))/(1+(0.559/P)^(9/16))
       ^(8/27))^2
23 //calculation of forced convection nusslet no.
\frac{24}{\text{from eq. }} 4.19
25 \text{ Re}=d*V/(kv)
26 Nuforced=0.3+(0.62*Re^{(1/2)}*P^{(1/3)}/(1+(0.4/P)^{(2/3)}
      )^{(1/4)} \times (1+(Re/(2.82*10^5))^{(5/8)})^{(4/5)}
27 \text{ Nu} = (\text{Nuforced^3} + \text{Nufree^3})^{(1/3)}
                                                //nusslet no.
      for mixed convection
28 / Nu = h * d / k
29 h = Nu * k/d
                                      //kcal/h m^2 C, heat
       transfer confficient
30 q = h * \%pi * d * l * (Ts - To)
31 printf ("the rate of heat loss per meter length is %f
        kcal/h",q)
```

Chapter 6

Boiling and condensation

Scilab code Exa 6.1 Consider nucleate pool

```
1 / Example 6.1
2 //calculate (a) the diameter of cavity on the
      boiling surface
3 //which produce a bubble nucleus that does not
      collapse
4 //(b) what degree of superheat is necessary so that
      a bubble nucleus grow
5 //in size after detachment from the cavity.
6 //(a)
7 \text{ Tsat} = 350
                         //K, saturated temp.
8 Tl=Tsat+5
                         //K, liquid temp.
9 //By antoine eqn.
10 T = T1 - 273
                         //C,
11 pl = exp(4.22658 - (1244.95/(T+217.88)))
12 ST=26.29-0.1161*T //dyne/cm, Surface tension of
      liquid
13 \text{ ST}_{=}\text{ST}*10^{-3}
                         //N/m Surface tension of liquid
14 Lv=33605
                         //kj/kgmol, molar heat of
      vaporization
                         //m<sup>3</sup> bar/kgmol K, gas costant
15 R=0.08314
16 r = (2*ST_*R*Tsat^2)/((Tl-Tsat)*pl*(Lv*10^3))
```

```
17 printf("So a bubble nucleus that has been detached
      from a cavity will not collapse in the liquid if
      it is larger than \%f micrometer \n",r*10^6)
18
19 // (b)
20 r1=10^-6
                   //m
21 //pl1 = \exp(4.22658 - (1244.95/(Tl_--273+217.88)))
      vapour pressure
22 / ST1 = 0.02629 - 1.161 * 10^{-4} (T1_{-273})
                                                        //
      surface tension
23
24 deff('[x]=f(Tl)', 'x=(Tl-Tsat)
      -2*(0.02629-1.161*10^-4*(Tl-273))*R*Tsat^2/(r1*Lv
      *10^3)')
25 \quad Tl = fsolve(0.1, f)
T_{=}(T1-273.5)-(Tsat-273)
27 printf ("The superheat of the liquid is %f C", round (
      T_))
```

Scilab code Exa 6.2 rate of boiling of water

```
1 //Example 6.2
2 // Calculate the rate of boiling of water .
3 // Given
4 d=0.35
                                //m, diameter of pan
                                //bar, pressure
5 p=1.013
6 T1=115
                                //C, bottom temp.
                                //C, boiling temp.
7 T2 = 100
8 \text{ Te}=T1-T2
                                //C, excess temp.
9 //For Water
10 \text{ mu1} = 2.70 * 10^{-4}
                                //Ns/m^2, viscosity
                                //kj/kg C, specific heat
11 \text{ cp1}=4.22
12 rho1=958
                                //kg/m63. density
13 Lv1=2257
                                //kj/kg, enthalpy of
      vaporization
```

```
14 \text{ s1} = 0.059
                                //N/m , surface tension
15 Pr1=1.76
                                //Prandtl no.
16 //For saturated steam
17 rho2=0.5955
18 //For the pan
19 \text{ Csf} = 0.013
                               //constant
20 \quad n=1
                               //exponent
21 g = 9.8
                               //m/s^2, gravitational
      constant
22 //from eq. 6.6 //heat flux
23 Qs1=mu1*Lv1*(g*(rho1-rho2)/s1)^(1/2)*(cp1*Te/(Csf*
      Lv1*(Pr1)^n))^3
24 Rate=Qs1/Lv1
                                //kg/m<sup>2</sup> s. rate of boiling
                               //m^2, pan area
25 \text{ Ap=\%pi/4*d^2}
26 Trate=Rate*Ap
                               //kg/s, Total rate of
      boiling
  Trate_=Trate*3600.5
                              //kg/h. Total rate of
27
      boiling
28 printf ("total rate of boiling of water is %f kg/h \n
      ",Trate_)
29
30 //using Lienhard's eq., //critical heat flux
31 Qmax = 0.149 * Lv1 * rho2 * (s1 * g * (rho1 - rho2) / (rho2)^2)
      ^{(1/4)}
32 //by Mostinski eq.
                               //critical pressure
33 \text{ Pc} = 221.2
34 Pr=p/Pc
                               //reduced pressure
35 hb=0.00341*(Pc)^(2.3)*Te^(2.33)*Pr^(0.566)
      boiling heat transfer coefficient
36 \text{ hb}_=\text{hb}/1000
                                //kW/m<sup>2</sup> C boiling heat
      transfer coefficient
37 \quad Qs2=hb_*(Te)
38 printf("Qs2 compares reasonably well with the Qs1")
```

Scilab code Exa 6.3 formaldehyde is one of

```
1 / Example 6.3
2 // Calculate the rate of boiling.
3 //Given
4 A = 12.5673
5 B=4234.6
6 \text{ pv} = 1.813
7 T1 = 200
                              //C, tube wall temp.
8 //For methanol
9 \text{ Tc} = 512.6
                              //K, critical temp.
                              //acentric factor
10 \quad w = 0.556
11 Zra=0.29056-0.08775*w
12 R=0.08314
                             //m<sup>3</sup>bar/gmol K, universal gas
       constant
13 Pc=80.9
                             //bar, critical temp.
14 \, \text{Mw} = 32
                             //g, molecular wt
15
16 // Calculation
17 //Estimation of liquid and vapour properties
18 //from antoine eq.
                             //K, boiling point
19 T=B/(A-\log(pv))
                             //K, excess temp.
20 \text{ Te} = (T1 + 273) - T
                             //K, mean temp.
21 \text{ Tm} = ((T1+273)+T)/2
22
23 //Liquid properties
24 //(a)
25 \text{ Tr=T/Tc}
                            //K, reduced temp.
26 //from Rackett technique
27 \text{ Vm} = R * Tc * (Zra)^(1+(1-Tr)^(2/7))/Pc
                                                 //m^3/kg \mod 
       molar volume
                                                 // kg/m^3,
28 rhol=Mw/Vm
      density of satorated liquid density
29 //(b)
30 //from Missenard technique
31 T2=348
                            //K, given data temp.
32 T3=373
                            //K, given data temp.
                            //j/g mol K specific heat at T2
33 \text{ Cp2} = 107.5
                            //j/g mol K specific heat at T3
34 Cp3=119.4
^{35} //By linear interpolation at T=353.7 K
```

```
36 Cp = Cp2 + (Cp3 - Cp2) * ((T-T2)/(T3-T2)) //kj/kg mol C,
       specific heat at T=353.7 K
37 \text{ Cp} = \text{Cp} * 0.03125
                                                 //kj/kg C
38 //(c) Surface tension at given temp.(K)
39 \quad T4 = 313
40 \text{ St4} = 20.96
41 T5=333
42 St5=19.4
43 //By linear interpolation at T=353.7 \text{ K}
44 S = 17.8
                                                 //dyne/cm,
       surface temp.
45 //(d) liquid viscosity
46 T6=298
                                                //cP, liquid
47 MUt6=0.55
       viscosity at temp=298
48 MU = ((MUt6)^{-0.2661} + ((T-T6)/233))^{-1/0.2661}
      //cP
49 //(e) Prandtl no. a,b,c are constant
50 a=0.3225
51 b = -4.785 * 10^{-4}
52 c=1.168*10^-7
53 kl = a + b * T + c * T^2
                                               //W/m C, thermal
       conductivity
54 Prl=Cp_*1000*MU*10^-3/kl
                                               //Prandtl no.
55 //(f) heat of vaporization at 337.5 K
56 \text{ Lv} = 1100
                                               //kj/kg, enthalpy
        of vaporization
57
58 // Properties of methanol vapour at Tm
59 //(a)
                                            //m<sup>3</sup>/kg mol, molar
60 \text{ Vm1} = \text{R} * \text{Tm/pv}
       volume
61 \text{ rhov} = Mw/Vm1
                                            // kg/m^3, density
      of vapour
62 //(b) al, bl, cl, dl are costants
63 \quad a1 = -7.797 * 10^{-3}
64 \quad b1=4.167*10^-5
65 \text{ c1=1.214*10}^{-7}
```

```
66 \quad d1 = -5.184*10^{-11}
67 //thermal conductivity of vapour
68 kv=a1+b1*Tm+c1*Tm^2+d1*Tm^3 //W/m C
69 //(c) heat capacity of vapour, a2, b2, c2, d2 are
      costants
70 \quad a2 = 21.15
71 b2=7.092*10^-2
72 c2=2.589*10^-5
73 d2 = -2.852 * 10^{-8}
74 //heat capacity of vapour, in kj/kh mol K
75 Cpv = a2 + b2 * Tm + c2 * Tm^2 + d2 * Tm^3
76
77 //(d) viscosity of vapour
78 T7=67
79 \text{ MUt} 7 = 112
80 \quad T8 = 127
81 MUt8=132
82 //from linear inter polation at Tm
83 \text{ MUv} = 1.364 * 10^{-5}
                                     // kg/m s
84
85 //from Rohsenow's eq.
86 \text{ Csf} = 0.027
                                    //constant
                                   //exponent value
87 n = 1.7
88 //from eq. 6.6
                                   //m/s<sup>2</sup>, gravitational
89 g = 9.8
      constant
90 //heat flux
                  //kW/m^2
91 Q=MU*10^-3*Lv*(g*(rhol-rhov)/S*10^-3)^(1/2)*(Cp_*Te)
      /(Csf*Lv*(Prl)^n))^3
92 / \text{from eq. } 6.11
93 //from eq 6.11, critical heat flux
94 Qmax = 0.131*Lv*(rhov)^(1/2)*(S*10^-3*g*(rhol-rhov))
      ^{(1/4)}
95 //dimensionless radius r_
96 r = 0.016
97 r_=r*(g*(rhol-rhov)/(S*10^-3))^(1/2)
98 //peak heat flux
99 Qmax1 = Qmax*(0.89+2.27*exp(-3.44*sqrt(r_)))
```

Scilab code Exa 6.4 A mixture of benzene

```
1 / Example 6.4
2 // Calculate the physical properties of the liquid.
3
4 //Given
                          //kg/h, rate of entering toluene
5 W1 = 200
6 \text{ muv} = 10^{-5}
                          //kg/m s, viscosity of toluene
      vapour
                          //kg/m s, viscosity of benzene
7 \text{ mul} = 2.31 * 10^{-4}
                          //kg/m<sup>3</sup>, density of benzene
8 rhol=753
9 \text{ rhov} = 3.7
                          //kg/m<sup>3</sup>, density of toluene
      vapour
                          //j/kg C, specific heat of
10 Cpl=1968
      benzene
11 kl=0.112
                          //W/m C, thermal conductivity of
       benzene
12 T1=160
                          //C tube wall temp.
                          //C , saturated temp.
13 T2=120
14 Te=T1-T2
                          //C, excess temp.
                          //j/kg, enthalpy of vaporization
15 Lv=3.63*10<sup>5</sup>
16 \text{ s=1.66*10^--2}
                          //N/m, surface tension
17 // Calculation of hc & hb
18 \quad w = 0.125
                          //m, mean step size
19 d=0.0211
                          //, internal diameter of tube
20 G=W1/(3600*\%pi/4*(d^2))
                                       // kg/m^2 s, mass
```

```
flow rate
21 Re1=G*(1-w)*d/mul
                                         //Reynold no.
22 Prl=Cpl*mul/kl
                                         //Prandtl no.
\frac{23}{\text{from eq.}} 6.23
24 x = (w/(1-w))^{(0.9)} * (rhol/rhov)^{(0.5)} * (muv/mul)^{0.1}
      // let x=1/ succepsibility
25 //from eq. 6.22
                                       //factor signifies '
26 F=2.35*(x+0.231)^0.736
      liquid only reynold no.' to a two phase reynold
\frac{27}{\text{from eq.}} 7.21
28 \text{ Re}2=10^-4*\text{Re}1*\text{F}^1.25
                                       //Reynold no.
\frac{29}{\text{from eq. }} 6.18
30 S = (1+0.12*Re2^1.14)^-1
                                       //boiling supression
      factor
31 / \text{from eq. } 6.15
32 hc=0.023*Re1^(0.8)*Prl^(0.4)*(kl/d)*F //W/m^2 C,
      forced convection boiling part
\frac{33}{\text{from eq. }} 6.16
34 \text{ mulv} = (1/\text{rhov}) - (1/\text{rhol})
                                               //m^3/kg,
       kinetic viscosity of liquid vpaour
35 \text{ dpsat}=\text{Te}*\text{Lv}/((\text{T2}+273)*\text{mulv})
                                               //N/m<sup>2</sup>, change
      in saturated presssure
36 //nucleate boiling part hb
37 hb=1.218*10^-3*(kl^0.79*Cpl^0.45*rhol^0.49*Te^0.24*
      dpsat^0.75*S/(s^0.5*mul^0.29*Lv^0.24*rhov^0.24))
38 h=hc+hb
                                              //W/m^2 C, total
      heat transfer coefficient
39
40 //calculation of required heat transfer area
                                           //%, persentage
      change in rate of vaporization
42 \quad W2 = W1 * a / 100
                                           //kg/h, rate of
      vaporization
43 \quad W2_=W2/3600
                                            //kg/s
                                           //W, heat load
44 \ Q = W2 - *Lv
45 \quad A=Q/(h*Te)
                                           //m^2, area of heat
        transfer
```

```
46 l=A/(%pi*d) //m, required
length of tube
47 //from table 6.2
48 Tl=0.393
49 printf("The total tube length is %f m",Tl)
```

Scilab code Exa 6.5 Saturated vapour pressure

```
1 / \text{Example } 6.5
2 // Calculate the rate of condensation of propane.
3 //GIVEN
4 rhol=483
                                            //kg/m^3, density
       of liquid propane
5 \text{ mul} = 9.1 * 10^{-5}
                                            //P , viscosity of
       liquid propane
                                            //W/m K, thermal
6 \text{ kl} = 0.09
       conductivity of liquid propane
7 \text{ Lv} = 326
                                            //kj/kg. enthalpy
      of vaporization
                                            //kj/kg K, specific
8 \text{ Cpl} = 2.61
        heat of liquid propane
9 T1 = 32
10 T2=25
                                            //C, surface temp.
11 p1=11.2
12 \text{ rhov} = 24.7
                                           //kg/m^3, density of
        vapour
13 g=9.8
14 h = 0.3
15 // Calculation
16 \text{ Lv1=Lv+0.68*Cpl*(T1-T2)}
17 / h = 0.943*(g*Lv1*10^3*rhol*(rhol-rhov)*kl^3/(mul*L*(
      T1-T2)))^{(1/4)}
18 / Q = h * (L * 1) * (T1 - T2)
19 //\text{m=Q/(Lv1*10^3)} = 1.867*10^- - 2*L^{(3/4)}
20 \text{ Ref} = 30
```

```
21 //from the relation 4*m/mu=Re
22 L=(Ref*mul/(4*1.867*10^-2))^(4/3)
23 m=1.867*10^-2*L^(3/4)
                                     //rate of condensation
      for laminar flow
24 / \text{from eq. } 6.32
25 / \text{Nu1=h_/kl*(mul^2/(rhol*(rhol-rhov)*g))^(1/3)=Ref}
      /(1.08*(Ref)^(1.22) -5.2)
                   //length of plate over which flow is
26 \text{ Lp=h-L}
      wavy
                    //m<sup>2</sup> area of condensation
27 \quad A = Lp * 1
28
29 h_=poly(0,"h_=")
30 //Rate of condensation over total length=m(laminar)+
      m(wavy)
31 m2=m+h_*A*(T1-T2)/(Lv1*10^3)
32 \text{ Ref1} = 4 * m2 / mul
33
34 deff('[x]=f(h1)', 'x=h1/kl*(mul^2/(rhol*(rhol-rhov)*g)
      (1/3) - (29.76 + 0.262 * h1) / (1.08 * (29.76 + 0.262 * h1))
       (1.22) - 5.2)
35 \text{ h1=fsolve}(1000,f)
                        //W/m<sup>2</sup>C
36 \text{ m2=m+h1*A*(T1-T2)/(Lv1*10^3)}
37 \text{ Ref1}=4*m2/mul}
38 \text{ m2=m+h1*A*(T1-T2)/(Lv1*10^3)}
39 printf("Total rate of condensation is %f kg/h", m2
      *3600)
```

Scilab code Exa 6.6 Trichloro ethylene

```
1 //Example 6.6
2 //Calculate the rate of condensation of TCE
3 //(a)on a single horizontal tube
4 //(b) in a condenser
5 //Given
6 //data fot TCE
```

```
7 T1 = 87.4
                                                                                                                            //C, normal boiling
                    point
  8 T2 = 25
                                                                                                                             //C, surface temp.
  9 Lv = 320.8
                                                                                                                            //kj/kg, heat of
                    vaporization
10 \text{ cp}=1.105
                                                                                                                            //kj/kg C, specific
                   heat
11 mu = 0.45 * 10^{-3}
                                                                                                                            //P. liquid
                    viscosity
12 k=0.1064
                                                                                                                            //W/m C, thermal
                    conductivity
13 rhol=1375
                                                                                                                            //kg/m<sup>3</sup>, liquid
                    density
                                                                                                                            // kg/m^3, density of
14 \text{ rhov} = 4.44
                       vapour
15 \text{ Tm} = (T1+T2)/2
                                                                                                                             //C, mean film temp.
16 d=0.0254
                                                                                                                            //m, outside
                    diameter of tube
17 \quad 1 = 0.7
                                                                                                                             //m, length
                                                                                                                             //m/s^2,
18 \text{ g=9.8}
                    gravitational constant
19 // Calculation
20 //(a) from eq. 6.34
21 \text{ Lv1=Lv+0.68*cp*(T1-T2)}
22 h=0.728*(g*Lv1*10^3*rhol*(rhol-rhov)*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d*(T1-rhov))*k^3/(mu*d
                    T2)))^(1/4)
23 A=%pi*d*1
                                                                                                                             //m^2, area of tube
                                                                                                                            //W, rate of heat
24 \quad Q = h * A * (T1 - T2)
                    transfer
25 \text{ m} = (Q/Lv1)/1000
                                                                                                                            //kg/s rate of
                    condensation
26 printf("Rate of condensation is \%f \text{ kg/h } \n\text{",m*3600})
27
                                      from eq. 6.35
28 //(b)
                                                                                                                            //No. of tubes in
29 N = 6
                     vertical tire
30 h1=0.728*(g*Lv1*10^3*rhol*(rhol-rhov)*k^3/(N*mu*d*(
                    T1-T2)))^(1/4)
```

```
31 \text{ TN} = 36
                                        //total no. of tubes
32 \quad TA = TN * \%pi * d * 1
                                         //m<sup>2</sup>, total area
33 Q1=h1*TA*(T1-T2)
                                           //W, rate of heat
       transfer
34 \text{ m1} = (Q1/Lv1)/1000
                                          //kg/s rate of
      condensation
35 printf("Rate of condensation is \%f kg/h \n \n",m1
      *3600)
36 //from chail's corelation
37 h2=(1+0.2*cp*(T1-T2)*(N-1)/(Lv1))
38 printf("thus there will be increase in the
      calculated rate of heat transfer and in rate of
      condensation as %f percent",18.7)
```

Scilab code Exa 6.7 Saturated vapour

```
1 / Example 6.7
2 //What fraction of vapour woll condense .
4 //Given
5 \text{ Gy} = 20
                                 //kg/m<sup>2</sup> s, mass flow rate of
        benzene
6 \text{ di} = 0.016
                                 //m, tube diameter
7 muv = 8.9*(10^-6)
                                 //P, viscosity
8 \text{ Lv} = 391
                                 //kj/kg., enthalpy of
       vaporization
9 \text{ cpl} = 1.94
                                 //kj/kg C, specific heat
10 \text{ Tv} = 80
                                 //C, normal boiling point of
       benzene
11 \text{ Tw} = 55
                                 //C, wall temp.
12 g=9.8
                                 //m/s^2, gravitational
       constant
                                 //kg/m<sup>3</sup>, density of benzene
13 rhol=815
14 \text{ rhov}=2.7
                                 //kg/m<sup>3</sup>, density of benzene
       vapour
```

```
//W/m C, thermal conductivity
15 \text{ kl} = 0.13
                            //P, viscosity of benzene
16 \text{ mu} = 3.81 * 10^-4
                            //m, length of tube
17 \quad 1 = 0.5
18
19 //calculation
20 Rev=di*Gv/muv
                            //Reynold no. of vapour
21 //from eq. 6.38
22 Lv1=Lv+(3/8)*cpl*(Tv-Tw)
23 //heat transfer corfficient , h
24 h=0.555*(g*rhol*(rhol-rhov)*kl^3*Lv1*10^3/(di*mu*(Tv
      -Tw)))^(1/4)
25 Aavl=%pi*di*l
                            //m^2, available area
26 \quad Q = Aavl*h*(Tv-Tw)
                            //W, rate of heat transfer
27 \text{ m=Q/(Lv1*10^3)}
                            //kg/s, rate of condensation
      of benzene
28 Ratei=Gv*(%pi/4)*di^2
                           //kg/s rate of input of
      benzene vapour
29 n=m/Ratei
30 printf ("fraction of input vapour condensed is %f",n
      *100)
```

Chapter 7

radiation heat transfer

Scilab code Exa 7.3 the sun may be considered

```
1 / \text{Example } 7.3
2 //calculate (a) the fraction of solar radiation falls
       in visible range
3 //(b) the fraction occurs on the left of visible
      range
4 //(c) the fraction ooccurs on right on visible range
5 //(d) wavelength and frequency of maximum spectral
      emissive power
6 //(e) the maximum spectral emissive power
7 //(f) the hemispherical total emissive power
8 // Given
9 \text{ Ts} = 5780
                          //K, surface temp.
10 // CAlculation
11 //(a)
                        //micrometer, starting visible
12 \quad lamda1 = 0.4
      spectrum range
                        //micrometer, ending visible
13 \quad lamda2=0.7
      spectrum range
14 \quad E1 = lamda1 * Ts
                        //micrometer K,
15 \quad E2=lamda2*Ts
                        //micrometer K,
16 //from table 7.2
```

```
17 //fraction of radiation lying between 0 and lamda1
18 F1=0.1229
19 //fraction of radiation lying between 0 and lamda2
20 F2 = 0.4889
21 //the fraction of radiation falls betweem lamdal &
      lamda 2
22 F3=F2-F1
23 printf("the fraction of radiation falls in visible
      range is \%f \setminus n",F3)
24 //(b)
25 \text{ F4} = \text{F1}
26 printf ("the fraction of radiation on the left of
      visible range is \%f \n",F4)
27 //(c)
28 F5 = 1 - F2
29 printf ("the fraction in right of visible range is \%f
       \n", F5)
30 //(d)
31 //from wein's displacement law
32 \, \text{lmax} = 2898 / \text{Ts}
33 printf("The maximum wavelength is %f micrometer is",
      lmax)
                        //m/s, speed of light
34 c=2.998*10^8
35 \text{ mu=c/lmax}
36 printf ("The frequency is \%f s^-1\n", mu)
37 //(e)
\frac{38}{\text{from eq.}} 7.4
39 h=6.6256*10^{-34}
                               //Js planck's constant
40 \text{ k=1.3805*10^--23}
                               //J/K, boltzman constant
41 Eblmax=(2*\%pi*h*c^2*(lmax*10^-6)^-5)/((exp(h*c/(lmax)))
      *10^-6*k*Ts)))-1)
42 printf ("the maximum spectral emissive power is %f W/
      m^2 \ n", Eblmax)
43 //(f)
44 \text{ s=}5.668*10^-8
                               //stephen costant
45 \quad \text{Eb=s*Ts}^4
46 printf("the hemispherical total emissive power is %f
       W/m^2", Eb)
```

Scilab code Exa 7.4 wavelength

```
1 / \text{Example } 7.4
2 // Determine the surface temp of blackbody and
3 //wavelength of maximum emission.
4 //Find the range of the spectrum in which the
      wavelength falls
6 // Variables declaration
                      //W/m sq, Total emmisive power
7 \text{ Eb} = 4000
8 s=5.669*10^-8
                  //Stephen boltzman constant
9
10 // Calculation
11 T=(Eb/s)^0.25
                  //k, surface temp. of black body
                   //micro meter,
12 \text{ ym} = 2898/T
13 //By weins law: Max. wavelength of emmision is
      inversaly proportional
14 //to temprature. and constant is 2898 micrometer.
15
16 //Result
17 printf ("Surface temp. is %f C",T)
18 printf("wavength is %f micrometer", ym)
19 printf(" from fig 7.1 it falls in the infrared
      region of spectrum.")
```

Scilab code Exa 7.5 spectral emissivity

```
1 //Example 7.5
2 //calculate (a) total (hemispherical) emissive power
3 //(b) total (hemispherical) emissivity
4 //Given
```

```
//K, surface temprature
5 T = 1500
6 //from fig 7.7
               //emissivity ,when wavelength(l1) is 0 < 11
7 e1=0.2
      <2 micrometer
8 e2=0.6
               //emissivity, when wavelength (12) is 2<12
      <6 micrometer
               //emissivity ,when wavelength(13) is 6<13
9 e3=0.1
      <10 micrometer
10 e4 = 0
               //emissivity ,when wavelength(14) is 14
      >10 micrometer
11 //from table 7.2
12 F1=0.2733
                     //fraction of energy in wavelength
       (11)
                     //fraction of energy in
13 F2=0.89-F1
                                                 wavelength
       (12)
                    //fraction of energy in
                                                 wavelength
14 F3=0.9689-0.89
       (13)
15 // Calculation
16 \text{ s} = 5.669 * 10^{-8}
                     //stephen's constant
17 \quad Eb=s*T^4
                     //emissive power
18 E = (e1*F1+e2*F2+e3*F3)*Eb
19 printf ("total (hemispherical) emissive power is %f W
      /\text{m}^2 \setminus \text{n}", E)
20 //(b)
21 e=E/(s*T^4)
22 printf("total (hemispherical) emissivity of the
      surface is %f",e)
```

Scilab code Exa 7.6 fraction of radiation

```
1 //Example 7.6
2 //Calculate the fraction of radiation emitted by the surface.
3 ri=5 //cm ,inside radius of ring
4 w=3 //cm, width
```

Scilab code Exa 7.8 relevant view factor

```
1 //Example 7.8
2 // Consider an enclosure consisting of a hemisphere
3 //of diameter d and a flat surface
4 //of the same diameter.
5 //Find the relevant view factor
7 // Variables declaration
8 F11=0
                //view factor
                 //let it be
9 d = 1
10 printf("view factor F11 = \%f", F11)
11
12 // Calculation
13 F12=1-F11 //view factor
14 printf ("view factor F22 = \%f", F12)
15
16 A1=((\%pi)*d^2)/4 //sq m, area
                     //sq m, area
17 A2 = ((\%pi)*d^2)/2
                         //\text{from eq} . 7.26
18 F21 = A1/A2
19 printf ("view factor F21 = \%f", F21)
20 F22=1-F21
21 // Results
```

Scilab code Exa 7.9 determine the view factors

```
1 // Example 7.9
2 //Consider an enclousure formed by closing one end
3 //of a cylinder ( diameter= D, height=H) by a flat
      surface
4 //and the other end by hemispherical dome.
5 // Determine the view factor of all the surfaces of
      the enclousure
6 //if height is twice the diameter.
7 / 1, 2, 3, 4 are given surface of enclosure in fig.
      7.21
9 // Variable declaration
               //no. of surface
10 s = 3
              //total view factor
11 tvf=s^2
12 //using the result of example 7.8
13 F11=0
14 F33= 0.5
15 printf ("view factor F11 = \%f", F11)
16 printf("view factor F33 = \%f", F33)
17
18 // Calculation & Results
             //R = d/2*h \&h = 2d
19 R1=0.25
20 R2 = 0.25
21 X=1+((1+R2^2)/(R1^2))
22 F14=(0.5)*(X-sqrt((X^2)-4*(R2/R1)^2))
23 printf ("view factor F14 = \%f", F14)
24 F13=F14
25 printf ("view factor F13 = \%f", F13)
26 F12=1-F11-F13 // from eq. 7.31 for surface 1
27 printf ("view factor F12 = \%f", F12)
28
```

```
29 d=1 // say
30 \text{ A1} = (\%pi*(d^2))/4
31 \quad A3 = (\%pi*(d^2))/2
32 F31 = A1 * F13 / (A3)
33 printf ("view factor F31 = \%f", F31)
34
35 // from eq. 7.31 for surface 3
36 F33=0.5
37 F32=1-F31-F33
38 printf ("view factor F32 = \%f", F32)
39
40 //for surface 2
41 A2=2*%pi*d^2
42 F21 = A1 * F12 / A2
43 printf("view factor F21 = \%f", F21)
44 F23 = A3 * F32 / A2
45 printf ("view factor F23 = \%f", F23)
46 F22=1-F21-F23
47 printf ("view factor F22 = \%f", F22)
```

Scilab code Exa 7.10 view factors

```
1 //Example 7.10
2 // Calculate the view factors of the surfaces.
3 //Given
4 ds = 0.3
                   //m, diameter of shell
5 r1=0.1
                   //m, distance from the
6 // Calculation
7 //by the defination of view factor
8 F12=1
9 printf ("The view factor from surface 1 to 2 is \%f \ ""
      ,F12)
10 / F21
11 R=ds/2
                    //m, radius of sphere
12 r2=sqrt(R^2-r1^2)
```

Scilab code Exa 7.12 a carbon steel sphere

```
1 //Example 7.12
2 //calculate the time required for ball to cool down.
3 // Given
4 d=0.3
              //m, diameter of steel sphere
             //K, initial temp. of sphere
5 Ti=800
7 T1=343
             //C, ambient temp.
              //C, final tempreture
              //kg/m<sup>3</sup>, density of steel
8 rho=7801
             //kj/kg C, specific heat of steel
9 \text{ cp} = 0.473
10 //calculation
            //m, radius of sphere
11 R=d/2
12 \quad A1 = 4 * \%pi * R^2
                  //\text{m}^2, area of sphere
13 m=4/3*\%pi*R^3*rho //m<sup>3</sup>, mass of sphere
                        //view factor
14 F12=1
15 \text{ s} = 5.669 * 10^{-8}
                        //stephen Boltzman's constant
16 //-dT1/dt=A1*F12*s*(T^4-T2^4)/(m*cp)
17 I=integrate('(1/(T1^4-T2^4))', 'T1', 343,800)
18 t=I/(A1*F12*s/(m*cp*10^3))
19 printf ("The time required for the ball to cool is %f
       h",t/3600)
```

Scilab code Exa 7.13 A schedule pipe

```
1 //Example 7.13
```

```
2 //Calculate the net rate of heat loss
3 //from unit length of pipe by radiation if
4 //(a) tha pipe surface is considered black
\frac{5}{\sqrt{(b)}} the pipe surface has an emissivity of 0.74
7 // Variables declaration
8 d=0.114
                     //m, dia.o f pipe
                        //m, length of pipe
9 1 = 1
10 A = (\%pi)*d*1 //m sq, area
                     //emmisivity of black body
11 e1=1
12 F12= 1
                     //view factor, 1:pipe surface, 2:
     room walls
13 \text{ s=} 5.67*10^-8
                    //stephen boltzman constant
14 T1= 440
                     //K, steam temp.
15 T2=300
                     //K, wall temp.
16 // Caluclation
17 Q12=A*e1*F12*s*(T1^4-T2^4) //net rate of radiative
      heat loss
18
19 //Results
20 printf("(a) Net rate of radiative heat loss Q12 = \%f
     W \setminus n", Q12)
21 / Part-b
22 e2=0.74
23 Q12=A*e2*F12*s*(T1^4-T2^4) //net rate of radiative
      heat loss
24 printf("(b) Net rate of radiative heat loss Q12 = %f
     W, Q12)
```

Scilab code Exa 7.14 view factors and rate of loss

```
1 //Example 7.14
2 // a. Calculate i-View factors F12 and //F21, ii-
Calculate net rate of radiant energy gain by inner surface.
```

```
3 //(b) Hence calculate the rate of loss
4 //of saturated liquid nitrogen at 1 atm pressure
5 //stored in a double walled spherical Dewar flask.
7 // Variable declaration
8 F12=1
                          //view factor
9 r1=0.15
                          //m inner radius of phere
                         //m , outer radius
10 \text{ r}2=0.155
11
12 // Calculation
13 A1=4*(\%pi)*r1^2 //sq m inner area
14 A2=4*(\%pi)*r2^2 //sq m, outer area
15 \text{ F21} = \text{A1/A2}
                           //J/g, heat of vaporization of
16 h=200
       nitrogen
17 \text{ s=}5.669*10^-8
                       // boltzman constant
                          //K, temp. of outer wall
18 T2=298
19 T1=77
                          //K, Temp. of inner wall
20 \text{ e1=0.06}
                          //emmisivity
21 e2=0.06
                          //emmisivity
22 x = ((1-e1)/(e1*A1)) + (1/(A1*F12)) + ((1-e2)/(e2*A2))
23 Q1net=(s*(T2^4-T1^4))/(x)
24
25 / Result -a-i
26 printf("a-i) View factor F12 = \%f", F12)
27 printf ("view factor F21 = \%f", F21)
28 / Result - b
29 printf("(ii) The net rate of heat gain Q1net =\%f J/s
     ",Q1net)
30 \text{ nl=Q1net/h}
31 nl=nl*3600
                       //g/h
32 printf("(b) Rate of nitrogen loss = \%f g/h", nl)
```

Scilab code Exa 7.15 Net rate of radient heat

```
1 //Example 7.15
2 // Calculate the net rate of radiant heat transfer to
       the wall.
3
4 // Given
5 x = 0.15
                         //m, length of opening on a
      furnace
6 y = 0.12
                         //m, width of opening on a
      furnace
7 x 1 = 6
                         //m, width of wall
8 y1=5
                         //m, height of wall
9 e2=0.8
                        //emissivity of wall
10 T1=1400
                         //C, furnace temp.
11 T2=35
                        //C, wall temp.
                         //C, standard temp.
12 T3=273
13 \text{ s} = 5.669 * 10^{-8}
                        //stephen boltzman's constant
14 //in fig. 7.29
15 11=2
                         //m, 11=AF
16 12=1.5
                         //m, 12=AH
                         //m, E=dA1
17 h = 3
18 //for the dA1-A2 pair the equation is
19 F1=(1/(2*%pi))*((12/(sqrt(12^2+h^2)))*tanh(11/(sqrt(
      12^2+h^2)))+(11/(sqrt(11^2+h^2)))*tanh(12/(sqrt(
      11<sup>2</sup>+h<sup>2</sup>))))
20 // Similarly
21 //for the dA1-A3 pair the equation is
22 F2 = 0.1175
\frac{23}{for} the dA1-A4 pair the equation is
24 F3=0.1641
\frac{25}{\text{for the dA1-A5}} pair the equation is
26 F4=0.0992
27 //view factor b/w the opening (dA1) and the wall (W)
      is
28 F5=F1+F2+F3+F4
29 // Calculation of radient heat exchange
30 \, dA1 = x * y
31 \text{ Aw} = x1 * y1
32 \text{ Eb1=s*(T1+T3)}^4
```

```
33     Ebw=s*(T2+T3)^4
34     F6=dA1*F5/Aw
35     Q=dA1*F5*e2*(Eb1*(1-(1-e2)*F6)-Ebw)
36     printf("the net rate of radiant heat transfer to the wall is %f W",Q)
```

Scilab code Exa 7.16 the base of rectangular

```
1 //Example 7.16
  2 //Part-a-If the side walls are perfectly insulated
  3 //and the surfaces are diffuse gray
  4 // with an emissivity 0.7
  5 //, Calculate the required net rate of heat supplied
                   to base.
  6 //b- If the skin temp. of the outside of the top
                    wall is 60 degree celcius
  7 //and heat loss frim this surface occurs
  8 //to a big factory shade at 30 degree celcius
  9 //calculate the convective heat transfer coefficient
10
11 // Variable declaration
12 1=3
                                                           //m, length of wall
13 w = 2
                                                                               width of, wall
                                                            //m
14 d=3
                                                           //m
15 R1 = 1/d
16 A1=1*w
                                                           //sq m, area 1: front part
17 \quad A2 = A1
                                                           //sq m , area , 2"back part
18 \text{ e} 1 = 0.7
                                                           //emmisivity
                                                           //emmisivity
19 e2=0.7
20 T1=673
                                                            //k
21 T2=523
                                                           //k
                                                             //stephen boltzman constant
22 s=5.669*10^-8
23 // Calculation
24 F12= 0.148 //view factor , from fig. 7.12
x = (A1 + A2 - 2 * A1 * F12) / (A2 - (A1 * (F12^2))) + ((1/e1) - 1) + (A1/e1) + (A1/
```

```
A2)*((1/e2)-1)
26
27 // Results
28 Q1net=-1*A1*(s*(T2^4-T1^4))/(x)
29 printf ("the net rate of radiant heat loss = %f kW \n"
      ,Q1net/1000)
30 // (b)
                 //from fig 7.12
31 F24=1
                 //K, outer surface temp. of surface 2
32 T20=333
                 //K, ambient temp
33 \quad T4 = 303
34 \quad Q2rad = A2 * e2 * F24 * s * (T20^4 - T4^4)
35 q=Q1net-Q2rad
                  // Kw
36 q1=q/1000
37 h=q/(A2*(T20-T4))
38 printf ("convective heat transfer coeff. = %f W/sq m C
```

Scilab code Exa 7.17 two parallel disks

```
1 //Example 7.17
2 //calculate the net rate of exchange of radiation
     between the disks.
3 //given
                  //m, inner radius of disk 1
4 r1i=0.1
                  //m, outer radius of disk 1
5 \text{ r1o=0.2}
                  //m, inner radius of disk 2
6 \text{ r2i=0.12}
                  //m, outer radius of disk 2
7 r20 = 0.25
8 h=0.08
                  //m, distance between the disks
9 R2=r2o/h
10 R1=r1o/h
11 X=1+(1+R1^2)/R2^2
12 F23_14=1/2*(X-sqrt(X^2-4*(R1/R2)^2))
13 //calculation of F23_4
14 R2_=r2o/h
15 R1_=r1i/h
```

```
16 \quad X_=1+(1+R1_^2)/R2_^2
17 F23_4=1/2*(X_-sqrt(X_^2-4*(R1_/R2_)^2))
                                                 //view
      factor
18 //similarly
19 F3_14=0.815
                           //view factor
20 F34=0.4
                           //view factor
                           //area
21 A23=%pi*r2o^2
22 A3=%pi*r2i^2
23 \quad A1 = \%pi * (r1o^2 - r1i^2)
24 //from eq. 1
25 F12=A23*(F23_14-F23_4)/A1-(A3*(F3_14-F34))/A1
26 //calculation of the rate of radiative heat exchange
27 //given
28 T1=1000
                         //K, temprature of disk 1
                         //K, temprature of disk 2
29 T2=300
30 \text{ s}=5.669*10^-8
                         //stephen's Boltzman constant
                         //emissivity
31 \text{ e}1=0.8
32 e2=0.7
33 \quad A2 = \%pi*(r2o^2-r2i^2)
34 \quad F1s = 1 - F12
35 \quad F2s=1-(A1*F12/A2)
36 //calculation
37 //let some quantities equal to
38 a = (1-e1)/(e1*A1)
39 b=1/(A1*F12)
40 c = (1-e2)/(e2*A2)
41 d=1/(A1*F1s)
42 e=1/(A2*F2s)
43 f = s * T1^4
44 g = s * T2^4
45 / \text{from eq. } 7.42(a)
46 //(f-J1)/a=(J1-J2)/b+J1/d
47 / (g-J2)/c = (J2-J1)/b+J1/e
48 //solving two eqns by matrix
49 A = [-0.0564, 0.5036; 0.4712, -0.0564]
50 B = [161.847; 21376.31]
51 \quad X = inv(A) *B
52
```

Scilab code Exa 7.18 rate of heat gain

```
1 //Example 7.18
2 //calculate the rate of heat gain by the liquid.
3 //Given
4 \text{ di} = 0.0254
                     //m, inner diameter of tube
5 \text{ Ti} = 77
                     //K, liquid temprature
6 do=52.5*10^-3
                     //m, pipe internal diameter
7 \text{ To} = 270
                     //K, wall temprature
8 1=1
                     //m, length of tube
                     //emissivity of tube wall
9 e1=0.05
                     //emissivity of pipe wall
10 e2=0.1
11 = 3 = 0.02
                     //emissivity for inner surface of
      radiation field
12 \text{ e}4=0.03
                     //emissivity for outer surface of
      radiation field
13 \text{ s}=5.669*10^-8
                     //stephen boltzman costantl
14 // Calculation
15 \, ds = (do + di)/2
                     //m, diameter of radiation shield
16 Ao=%pi*do*1
                     //m<sup>2</sup>, outer pipe area
17 As=\%pi*ds*1
                     //m<sup>2</sup>, shield area
18 Ai=%pi*di*l
                     //m<sup>2</sup>, inner pipe area
19 //View factors
20 //for the long cylindrical enclosure made up of the
      outer pipe and the shield
             //because outer surface of shield cant see
21 \text{ Fso=1}
      itself
22 Fos=As/Ao
```

Scilab code Exa 7.20 carbon dioxide gas

```
1 //Example 7.20
2 // Calculate the spectral extinction coefficient.
3 //Given
4 T = 300
                   //K, temprature
5 per=91
                   //percent, adsorbed radiation
                   //micrometer, wavelength radiation
6 \ lam=4.2
7 L = 0.1
                   //m, path length
8 //calculation
9 // I2/I1=f
10 f = 1 - per/100
                   //fraction of incident radiation
      transmitted
11 //from
          eq. 7.69
12 a=-\log(f)/L
13 printf ("the spectral extinction coefficient is %f m
      ^{-1}",a)
```

Scilab code Exa 7.21 hot flue gas

```
1 //Example 7.21
2 // Calculate the rate of heat transfer .
3 // Given
4 Ts = 800
                     //C, wall temp.
                     //C. burner temprature
5 \text{ Tg} = 1100
                     //percent, composition of CO2 in flue
6 \text{ CO2=8}
        gas
7 M = 15.2
                     //percent, composition of moisture in
        flue gas
                      //m, length of
                                         duct
8 a = 0.4
                      //width of duct
9 b = 0.4
                      //W/m^2 C, heat transfer coefficient
10 h = 15
11 P=1
                      //atm pressure
12 //CAlCULATION of Eg(Tg)
                             //atm, partial pressure of CO2
13 \text{ pc} = \text{CO2} / 100 * \text{P}
14 \text{ pw=M/100*P}
                            //atm, partial pressure of
       moisture
15 1=1
                            //m, length of duct
16 \ V=a*b*1
                            //m<sup>3</sup>, volume of duct
                            //m^2 area of duct
17 A=1.6*1
18 Le=3.6*(V/A)
                            //m, mean beam length
19
20 \text{ pc*Le}
21 pw*Le
22 Tg_{Tg} = Tg + 273
23 Ts_{-} = Ts + 273
24 //from fig 7.38
25 \text{ Ec} = 0.06
                             //from fig 7.39
26 \text{ Eg} = 0.048
27 //a correction dE need to be calculated
28 \text{ pw/(pc+pw)}
29 \text{ pc*Le+pw*Le}
30 / \text{from fig. } 7.39
31 \text{ dE} = 0.003
32 Eg_Tg=Ec+Eg-dE //emissivity at temp. Tg
33
```

```
34 // Calculation of alpha
35 pc*Le*Ts/Tg
36 //from fig. 7.37
37 Ec1=0.068
38 //from fig. 7.38
39 \text{ Ew1} = 0.069
40 \, \text{Cc} = 1
                         //correction factor
41 \, \text{Cw} = 1
                         //correction factor
                         //AT 1 ATM TOTAL PRESSURE
42 d_alpha=dE
43 alpha=Cc*Ec1*(Tg_/Ts_)^0.65+Cw*Ew1*(Tg_/Ts_)^0.45-dE
44 //radiant
              heat ransfer rate
45 \text{ s=}5.669*10^-8
                                    //stephen's boltzman
      constant
46 Qrad=A*s*(Eg_Tg*Tg_^4-alpha*Ts_^4)
                                                //kW
47 Qconv=h*A*(Tg-Ts) //kW, convective heat transfer
      rate
48 Q=Qrad+Qconv
49 printf("The total rate of heat transfer from the gas
       to the wall is \%f\ kW, Q/1000)
```

Chapter 8

Heat Exchanger

Scilab code Exa 8.1 Benzene from condenser

```
2 //Example 8.1
3 //page no. 303
4 // Given
           Benzene
5 // for
                            //Kg, mass of benzene
6 \text{ Mb} = 1000
7 T1 = 75
                            //C initial temp. of benzene
8 T2 = 50
                           //C final temp. of benzene
                            //Kj/Kg C. specific heat of
9 \text{ Cp1}=1.88
      benzene
10 mu1=0.37
                            //cP. viscosity of benzene
11 rho1=860
                            //kg/m^3, density
                            //W/m K. thermal conductivity
12 k1=0.154
13
14 //for water
15 Tav=35
                            //C av, temp.
16 \text{ Cp2}=4.187
                            //specific heat
17 \text{ mu} 2 = 0.8
                            //cP. viscosity
18 \text{ k2=0.623}
                            //W/m K. thermal conductivity
                            //C. initial temp.
19 T3=30
20 \quad T4 = 40
                            //C final temp.
```

```
21 // Calculation
22 //(a)
23 HD=Mb*Cp1*(T1-T2) //Kj/h, heat duty
24 WR=HD/(Cp2*(T4-T3)) //kg/h Water rate
25 printf ("the heat duty of the exchanger is \%f kj/h",
26 printf("the water flow rate is %f kg/h", WR)
27
28 // (b)
29 //tube side (water) calculations
30 //given
                        //mm, inner diameter of inner tube
31 \text{ di1} = 21
32 \text{ do1} = 25.4
                        //mm, outer dia. of inner tube
33 t=2.2
                       //mm/ wall thickness
34 \text{ kw} = 74.5
                       //W/m K. thermal conductivity of
      the wall
35 \text{ di2}=41
                       //mm, inner diameter of outer pipe
36 \, do2 = 48
                       //mm, outer diameter of outer pipe
37
38 FA1 = (\%pi/4) * (di1*10^-3)^2
                                     //m^2, flow area
39 FR1=WR/1000
40 \text{ v1=FR1/(FA1*3600)}
                                                 //m/s,
      velocity
41 Re1=(di1*10^-3)*v1*1000/(mu2*10^-3)
                                               //Reynold no.
42 Pr1=Cp2*1000*(mu2*10^-3)/k2
                                               //Prandtl no.
43 //using dittus boelter eq.
44 Nu1=0.023*(Re1)^(0.8)*(Pr1)^(0.3)
                                               //nusslet no.
45 \text{ h1} = \text{Nu1} * \text{k2} / (\text{di1} * \text{10}^{-3})
                                               //W/m<sup>2</sup> C, heat
        transfer coefficient
46
47 //Outer side (benzene) calculation
48 FA2=(\%pi/4)*(di2*10^-3)^2-(\%pi/4)*(do1*10^-3)^2
                                                              //
      flow area
                                                              //
49 wp = \%pi * (di2 * 10^-3 + do1 * 10^-3)
      wettwd perimeter
50 \text{ dh}=4*FA2/wp
      hydrolic diameter
51 bfr=Mb/rho1
                                                              //
```

```
m<sup>3</sup>/h benzene flow rate
52 \text{ v2=bfr/(FA2*3600)}
                                                               //
      m/s, velocity
53 \text{ Re2=dh*v2*rho1/(mu1*10^-3)}
                                                               //
      Reynold no
54 Pr2=Cp1*10^3*(mu1*10^-3)/k1
                                                               //
      Prandtl no.
55 Nu2=0.023*(Re2)^(0.8)*(Pr2)^(0.4)
                                                               //
      nusslet no.
56 \text{ h2}=\text{Nu2}*\text{k1/(dh)}
                                                       //W/m^2
      C, heat transfer coefficient
57 printf ("heat transfer coefficient based on inside
      area is \%f W/m^2 C n, h1)
58 printf("heat transfer coefficient based on outside
      area is \%f W/m^2 C \n, h2)
59
60 //Calculation of clean overall heat transfer
      coefficient, outside area basis
61 //from eq. 8.28
62 //given
63 1=1
            //assume , length
64 \text{ Ao} = \% \text{pi} * \text{do} 1 * 10^{-3} * 1
65 \text{ Ai} = \% \text{pi} * \text{di} 1 * 10^{-3} * 1
66 Am = (do1*10^-3-di1*10^-3)*\%pi*1/(log(do1*10^-3/(di1))
      *10^-3)))
67
68 //overall heat transfer coefficient
69 Uo=1/((1/h2)+(Ao/Am)*((do1*10^-3-di1*10^-3)/(2*kw))
      +(Ao/Ai)*(1/h1))
70 Ui=Uo*Ao/Ai
71
72 // Calculation of LMTD
73 dt1=T1-T4
74 dt2=T2-T3
                                        //log mean temp.
75 LMTD=(dt1-dt2)/log(dt1/dt2)
       difference correction factor
76 \quad Q = HD * 1000 / 3600
                                        //W, heat required
77 Ao_=Q/(Uo*LMTD)
                                        //m^@, required area
```

```
//m, tube length
78 len=Ao_/(\%pi*do1*10^(-3))
      necessary
79
80 //(c)
81 la=15
                                       //m ,actual length
82 Aht=(\%pi*do1*10^(-3)*la)
83 Udo=Q/(Aht*LMTD)
                                      //W/m<sup>2</sup> C, overall
      heat transfer coefficient with dirt factor
84 / from eq. 8.2
                                    //\text{m}^2 \text{ C/W}
85 \text{ Rdo} = (1/\text{Udo}) - (1/\text{Uo})
86 printf ("overall heat transfer coefficient outside
      area basis is %f W/m^2 C \n", Uo)
87 printf("overall heat transfer coefficient inside
      area basis is \%f W/m^2 C n, Ui)
88 printf("The fouling factor is %f m^2 C/W", Rdo)
```

Scilab code Exa 8.2 design procedure

```
1 / Example 8.2
2 //Page no. 309
3
4 // Given
                     //tpd, plant capacity
5 \text{ Cp} = 50
                    //C, Temp.
6 T1=135
                    //C temp.
7 T2 = 40
8 T3 = 30
                    //C temp.
                    //C hot end temp.
9 	 dt1 = (T1 - T2)
                    //C cold end temp.
10 dt2 = (T2 - T3)
11 // Properties of ethylbenzene
12 rho1=840
                     // kg/m^3, density
                    //kj/kg K , specific heat
13 \text{ cp1}=2.093
14 T = 87.5
                    //C
15 mu1 = exp(-6.106 + 1353/(T+273) + 5.112*10^-3*(T+273)
      -4.552*10^{-6}*((T+273)^{2})
16 k1 = 0.2142 - (3.44*10^{-4})*(T+273) + (1.947*10^{-7})*(T+273)
```

```
^2
17 k1_=k1*0.86
                          //kcal/h m K
18 //properties of water
19 rho2=993
                   //kg/m<sup>3</sup>, density
20 \text{ mu}2=8*10^-4
                   //kg/m s , viscosity
21 \text{ cp2}=4.175
                   //kj/kg K , specific heat
                   //W/m K, thermal conductivity
22 k2=0.623
                    //kcal/h m^2 K
23 k2_=k2*0.8603
24 // Calculation
25 //(i) Energy balance
26 \text{ Cp=Cp*}1000/24
                              //kg/h, plant capacity
27 Cp=2083
                   //approx.
28 \text{ HD=Cp*cp1*dt1}
                        //kj/h, Heat duty
29 \text{ HD}_=\text{HD}*0.238837
                             //kcal/h
30 \text{ wfr=HD/(cp2*dt2)}
31
32 //(ii)
33 mu1=mu1
                  //cP, viscosity of ethylbenzene
                  //W/m K, thermal conductivity of
34 k1=k1
      ethylbenzene
35
36 //(iii)
37 //LMTD calculation
38 LMTD=(dt1-dt2)/log(dt1/dt2)
39 //assume
40 Udo=350
                          //kcal/h m^2 C, overall
      coefficient
41 A = HD_/(Udo*LMTD)
                          //m<sup>2</sup>, area required
42
43 / (iv)
44 id=15.7
                         //mm, internal diameter of tube
45 \text{ od} = 19
                         //mm, outer diameter of tube
46 1=3000
                         //mm, length
47 OSA=\%pi*(od*10^-3)*(1*10^-3) //m^2. outer surface
      area
48 n = A / OSA
                                      //no. of tubes
      required
49 fa=n*(\%pi/4)*(id*10^-3)^2
                                     //m^2, flow arae
```

```
50 \text{ lv} = (\text{wfr}/1000)/(3600*\text{fa})
                                       //m/s, linear velocity
51
52 //(v)
53 n1 = 44
                         //total no. of tubes that can be
      accomodated in a 10 inch shell
54 \, \text{np} = 11
                        //no. of tubes in each pass
55 // (vi)
                       //m, baffel spacing
56 \text{ bf} = 0.15
57 // (vii)
58 //estimation of heat transfer coefficient
59 //Tube side (water)
60 fa1=(\%pi/4)*(id*10^-3)^2*np
                                       //m<sup>2</sup>, flow area
61 \text{ v1=(wfr/1000)/(3600*fa1)}
                                       //m/s, velocity
62 Re=(id*10^-3)*v1*rho2/mu2
                                       //Reynold no.
63 //from fig . 8.11(a)
                                       //colburn factor
64 jh=85
65 // jh = (hi * di) / k * (cp * mu/k)^- - 1/3
66 // assume, (cp*mu/k)=x
67 hi=jh*(k2_/(id*10^-3))*(cp2*1000*mu2/k2)^(1/3)
      kcal/h m<sup>2</sup> C
68
69 //shell side(organic)
70 c = (25.4 - od) *10^-3
                                   //m, clearance b/w 2
      adjacent tubes
71 B=bf
                                   //m, baffel spacing
72 p = 0.0254
                                   //m, radius of 1 tube
73 \text{ Ds} = 0.254
                                   //m, inside diameter of
      shell
74 / \text{from eq. } 8.32
75 As=c*B*Ds/p
                                   //m^2, flow area
                                   // kg/m^2 h, mass flow
76 \text{ Gs=Cp/As}
      rate of shell fluid
77 \, do = od / 10
                                   //cm, outside diameter of
        shell
78 / \text{from eq. } 8.31
79 Dh=4*((0.5*p*100)*(0.86*p*100)-((%pi*(do)^2)/8))/((
      %pi*do)/2)
80 \text{ Dh}_=Dh*10^-2
                                  //m, hydrolic diameter
```

```
81 Re1=(Dh_*Gs)/(3600*(mu1*10^-3))
                                             //Reynold no.
82 //from fig 8.11(b)
83 \text{ jh1} = 32
                                            //colburn factor
 84 ho=jh1*(k1_/Dh_)*((6)^(1/3))
85 / \text{from eq. } 8.28
 86 ratio=od/id
                                            //ratio=Ao/Ai
87 \text{ Rdo} = 0.21 * 10^{-3}
                                            //outside dirt
       factor
88 \text{ Rdi} = 0.35 * 10^{-3}
                                            //inside dirt
       factor
89 Udo=1/((1/ho)+Rdo+(ratio)*Rdi+(ratio)*(1/hi))
90
91 //SECOND TRIAL
 92 //estimation of heat transfer coefficient
93 //Tube side (water)
94 \text{ np1}=12
95 fa2=(\%pi/4)*(id*10^-3)^2*np1
                                         //m<sup>2</sup>, flow area
96 \text{ v2=(wfr/1000)/(3600*fa2)}
                                        //m/s, velocity
97 \text{ Re2}=(id*10^-3)*v2*rho2/mu2
                                         //Reynold no.
98 //from fig . 8.11(a)
                                         //colburn factor
99 jht=83
100 // jh = (hi * di) / k * (cp * mu/k) ^-1/3
101 //assume, (cp*mu/k)=x
102 hit=jht*(k2_/(id*10^-3))*(cp2*1000*mu2/k2)^(1/3)
       kcal/h m<sup>2</sup> C
103
104 //shell side
105 \text{ c2} = (25.4 - \text{od}) * 10^{-3}
                                        //m, clearance b/w 2
       adjacent tubes
106 B2=0.1
                                        //m, baffel spacing
                                        //m, radius of 1 tube
107 p2=0.0254
108 \text{ Ds2} = 0.254
                                        //m, inside diameter
       of shell
109 / \text{from eq. } 8.32
110 As2=c2*B2*Ds2/p2
                                        //m^2, flow area
111 Gs2=Cp/As2
                                        // kg/m^2 h, mass flow
       rate of shell fluid
112 \, do2 = od/10
                                        //cm, outside diameter
```

```
of shell
113 / \text{from eq. } 8.30
114 Dh2=4*((p2*100)^2-((\%pi*(do2)^2)/4))/((\%pi*do2))
                                       //m, hydrolic diameter
115 \text{ Dh2} = \text{Dh2} * 10^{-2}
116 Re2=(Dh2_*Gs2)/(3600*(mu1*10^-3))
117 //from fig 8.11(b)
118 \text{ jh}2=48
                                       //colburn factor
119 ho2=jh2*(k1_/Dh2_)*((6)^(1/3))
120 / \text{from eq. } 8.28
121 ratio=od/id
                                        // ratio = Ao/Ai
122 Rdo2=0.21*10^-3
                                        //outside dirt factor
123 Rdi2=0.35*10^-3
                                        //inside dirt factor
124 Udo2=1/((1/ho2)+Rdo+(ratio)*Rdi+(ratio)*(1/hit))
125
126 //from eq. 8.10(a)
127 \text{ tauc} = (T2-T3)/(T1-T3)
                                       //Temprature ratio
128 R = (T1 - T2) / (T2 - T3)
                                       //Temprature ratio
129 Ft=0.8
                                       //LMTD correction ftor
130 Areq=HD_/(Udo2*Ft*LMTD)
                                       //area required
131 \text{ tubes} = 48
                                       //no. of tubes
                                       //length of 1 tube
132 \quad lnt = 4.5
133 Aavl=(%pi*od*10^-3)*tubes*1nt
                                            //available area
                                               //% excess area
134 \text{ excA} = ((\text{Aavl-Areq})/\text{Areq}) * 100
135
136 // Pressure drop calculation
137 //Tube side
138 / \text{from eq. } 8.33
139 Gt = wfr/(3600*fa2)
                                    // kg/m^2 s, mass flow
       rate of tube fluid
140 \text{ n} 2 = 4
                                    //tube passes
                                    //dimensionless viscosity
141 fit=1
        ratio
142 g=9.8
                                    //gravitational constant
143 \quad f = 0.0037
                                    //friction factor
144 dpt=f*Gt^2*lnt*n2/(2*g*rho2*id*10^-3*fit)
                                                            //kg/
       m<sup>2</sup>, tube side pressure drop
145
146 //eq.8.35
```

```
//kg/m<sup>2</sup>, return
147 \text{ dpr}=4*n2*v2^2*rho2/(2*g)
        tube pressure loss
148 dpr_=dpr*9.801
                                                //N/m^2
149 tpr=dpt+dpr
                                               //kg/m^2, total
       pressure drop
150 //shell side
151 \text{ fs} = 0.052
                                               //friction
       factor for shell
152 \text{ bf } 1 = 0.1
                                                //m, baffel
       spacing
153 Nb=lnt/bf1-1
                                                //no. of baffles
154 \text{ dps=fs*(Gs2/3600)^2*Ds*(Nb+1)/(2*g*rho1*Dh2_*fit)}
       //kg/m<sup>2</sup>, shell side pressure drop
                                               //N/m^2, shell
155 \text{ dps}_=\text{dps}*9.81
       side pressure drop
156 printf("Tube side Pressure drop is %f N/m^2 \n", dpr_
157 printf("Shell side Pressure drop is \%f N/m^2", dps_)
```

Scilab code Exa 8.3 The effectiveness

```
1 //Example 8.3
2 //How will the heat teansfer rate and the exit oil
3 //be affected if the water flow rate is increased by
       20 %
4
5 // Given
6 //for hot stream
7 \text{ Wh} = 10000
                              //kg/h, Rate of leaving a
      hydrolic system by the oil
8 \text{ Cph} = 0.454
                              //Kcal/Kg C, specific heat
      of oil
                              //C initial temp. of oil
9 Th1=85
10 \text{ Th} 2 = 50
                              //C final temp. of oil
```

```
11
12 //For cold stream
13 \text{ Cpc}=1
                                //Kcal/Kg C, specific heat
      of water
14 \text{ Tc} 2 = 30
                                  //C final temp. of water
15 Tc1=38
                                  //C initial temp. of water
16 //from heat balance eq.
17 //kg/h, Rate of leaving a hydrolic system by the
      water
18 Wc=Wh*Cph*(Th1-Th2)/(Cpc*(Tc1-Tc2))
19 //For the hot stream
20 \quad \text{Cmin} = \text{Wh} * \text{Cph}
                               //Kcal/h C. Taking hot stream
      as min. stream
21 //For cold stream
22 \quad Cmax = Wc * Cpc
                                //Kcal/h C. Taking cold
      stream as max. stream
23 Cr=Cmin/Cmax
                                  //Capacity ratio
24 n = (Th1 - Th2) / (Th1 - Tc2)
                                 //effectiveness factor
25 / \text{From eq. } 8.57
26 //No. of transfer units
27 \quad NTU = -(1+(Cr)^2)^--(1/2)*\log(((2/n)-(1+Cr)-(1+(Cr)^2))
       (1/2))/((2/n)-(1+Cr)+(1+(Cr)^2)^(1/2))
                                //kcal/h m^2C , overall
28 Ud=400
       dirty heat transfer coefficient
\frac{29}{\text{from eq. }} 8.53
                                //Area required
30 \quad A = (NTU*Cmin)/Ud
31 //if the water rate is increased by 20 \%,
32 a = 20
33 Wc_=Wc+(Wc*(a/100))
34 \quad Cmax_=Wc_*Cpc
35 \text{ Cr}_=\text{Cmin}/\text{Cmax}_=
36 / \text{From eq. } 8.56
37 \quad n_=2*((1+Cr_{-})+(1+(Cr_{-})^2)^(1/2)*(1+exp(-(1+(Cr_{-})^2))^2)
       (1/2)*NTU))/(1-exp(-(1+(Cr_)^2)^(1/2)*NTU)))
38 \text{ Th2}_=\text{Th1}-(n_*(\text{Th1}-\text{Tc2}))
39 q1=Wh*Cph*(Th1-Th2) //kcal/h previous rate of heat
        transfer
```

```
40 q2=Wh*Cph*(Th1-Th2_) //kcal/h new rate of heat transfer
41 //increase in rate of heat transfer
42 dq=(q2-q1)/q1
43 printf('the heat teansfer rate will be affected by %f percent ",dq*100 )
```

Scilab code Exa 8.4 Thermal design

```
1 / Example 8.4
2 //calculate the time required to heat the charge.
3
4 //given
5 p = 0.0795
                         //m. pitch of the coil
6 d1 = 0.0525
                        //m, coil diameter
7 h=1.464
                          //m, height of the limpetted
      section
8 d2=1.5
                          //m, diameter of batch
      polymerization reactor
9 d3 = 0.5
                          //m, diameter of agitator
10 \text{ rpm} = 150
                        //speed of agitator
11 rho=850
                         //kg/m3, density of monomer
12 rho1=900
                        //kg/m3, density of fluid
13 \text{ mu} = 0.7 * 10^{-3}
                    //poise, viscosity of monomer
                    //poise, viscosity of fluid
14 \text{ mu1} = 4 * 10^{-3}
                         //kcal/kg C, specific heat of
15 \text{ cp=0.45}
      monomer
16 \text{ cp1=0.5}
                         //kcal/kg C, specific heat of
      fluid
                          //kcal/h mC, thermal
17 k=0.15
      conductivity of monomer
18 k1=0.28
                          //kcal/h mC, thermal
      conductivity of fluid
19 Rdi=0.0002
                         //h m2 C/kcal, fouling factor for
       vessel
```

```
20 \, \text{Rdc} = 0.0002
                         //h m2 C/kcal, fouling factor for
       coil
21 \text{ Tci} = 120
                            //C, initial temp. of coil
      liquid
22
  Tvi=25
                             //C, initial temp. of vessel
      liquid
  Tvf = 80
                             //C, final temp. of vessel
23
      liquid
24
25 //calculation
26 \ a = \%pi * d2 * h
                        //outside area of the vessel
27 x = 60
                                     added of the unwetted
                              //%.
      area to the wetted area
28 ao = ((d1+(x/100)*(p-d1))/p)*a
                                        //m<sup>2</sup>, effective
      outside heat transfer area of vessel
                                        //m<sup>2</sup>, inside heat
29
   ai = 6.9
      transfer area of vessel
30
                                         //same as outside
                                             area , if
                                             thickness is very
                                             small
31 //vessel side heat transfer coefficient
32 \text{ Re} = (d3^2*(rpm/60)*rho)/mu
                                         //reynold no.
33 Pr = ((cp*3600)*(mu))/k
34 / \text{from eq. } 8.66
35 y = 1
                                         //x=mu/muw=1
36 \text{ Nu} = 0.74*(\text{Re}^{(0.67)})*(\text{Pr}^{(0.33)})*(\text{y}^{(0.14)})
                                                                 //
      Nusslet no
37 \text{ hi} = \text{Nu} * (k/d2)
                                                                 //
      heat transfer coefficient
38
39 //coil side heat transfer coefficient
40 \quad v = 1.5
                             //m/s, linear velocity of fluid
41 fa=((\%pi/4)*d1^2)
                             //m2, flow area of coil
42 \text{ fr=v*fa*3600}
                               //m3/h , flow rate of the
       fluid
43 \text{ Wc=fr*rho}
                              //kg/h , flow rate
44 dh = (4*(\%pi/8)*d1^2)/(d1+(\%pi/2)*d1) //m, hydrolic
```

```
diameter of limpet coil
45 \text{ Rel=v*rhol*dh/mul}
                                                   //coil
      revnold no.
                                                   //prandtl
46 Pr1=cp1*mu1*3600/k1
      no. of the coil fluid
47 //from eq. 8.68
48 d4=0.0321
                                                  //m, inside
      diameter of the tube
49 \text{Nu1=0.021*(Re1^(0.85)*Pr1^(0.4)*(d4/d2)^(0.1)*y}
      ^0.14)
                                              //coil side
50 \text{ hc} = \text{Nu1} * (\text{k1/dh})
      coefficient
51
                                               //overall heat
52 \text{ U=1/((1/hi)+(ai/(hc*ao))+Rdi+Rdc)}
       transfer corfficient
53 / \text{from eq. } 8.63
54 beeta=exp(U*ai/(Wc*cp1))
55 \text{ Wv} = 2200
                                              //kg, mass of
      fluid vessel
56 t = (beeta/(beeta-1))*((Wv*cp)/(Wc*cp1))*log((Tci-Tvi)
      /(Tci-Tvf))
57 printf("the time required to heat the charge %f min"
      ,t*60)
```

Chapter 9

Evaporetion and Evaporators

Scilab code Exa 9.1 single effect evaporator calculation

```
1 //Example 9.1
2 // page no.391
3 //calculate the rate at which heat must
4 //be supplied if evapiration occurs at
5 //(i) 1 atm pressure
6 //a vaccum of 650 mm Hg
7 //given data
8 \text{ ro} = 1020
                   // kg/m<sup>3</sup>, density of feed
                   //kj/kg C, specific heat of the feed
9 \text{ sf} = 4.1
                   //kj/kg C, specific heat of the product
10 \text{ sp=3.9}
               //initial concentration
11 ci=5
12 cw=100-ci //conc. of water
13 \text{ cf} = 40
                 //final conc.
14 rate=100
               //m<sup>3</sup>/day, rate of conc. of aq.
      solution
                   // C, feed temp.
15 \text{ ft} = 25
16 //calculation
17 //materiel balance
18 Wf=rate*ro
                  //Kg. feed entering
19 Ms=ro*ci
                   //Kg mass of solute
                   //kg, mass of water
20 \text{ Mw=ro*cw}
```

```
21 fc=cw/ci
                  //kg, feed concentration
22 pc=(100-cf)/cf // kg, product concentration
                   //Kg, water leaving with the product
23 \text{ wlwp=Ms*pc}
                    //kg, water evaporated
24 Ws=Mw-wlwp
25 \text{ Wp=wlwp+Ms}
                   // kg, product
26 //energy balance
27 rt=0
                    //C reference temp.
28 \text{ ef=sf*(ft-rt)}
                    //kj/kg, enthlpy of the feed
29 // case i
30 \text{ Tp} = 100
                     //temp. of the product (because the
      solute has a 'high molecular wt' the boiling pt
      elevation is neglected)
31 ip=sp*(Tp-rt)
                     //kj/kg, enthalpy of the product
32 iv = 2680
                     //kj/kg, enthalpy of the vapour
      generated at 100 C and 1 atm pr. from the steam
      table
33 //refer to fig. 9.23
34 //from energy balance eq. (Wf*if+qs=Wv*iv+Wp*ip)
35 qs=Ws*iv+Wp*ip-Wf-ef //Wv=Ws
36 printf("The rate at which heat must be supplied at 1
       atm pressure is %f kj/day\n",qs)
37
38 // case ii
39 / 650 \text{ mm Hg vaccum} = 110 \text{ mmHg pressure}
40 \text{ bp} = 53.5
                     //C, boiling point of water
41 \text{ ip2=sp*(bp-rt)}
                     //kj/kg, enthalpy of the product
42 \text{ es} = 2604
                     //kj/kg, enthalpy of the saturated
      steam (from steam table)
43 //from energy balnce eq.
44 \text{ qs2=Wp*ip+Ws*es-Wf-ef}
45 printf ("The rate at which heat must be supplied at a
       pressure of 600 mm Hg is %f kj/day ",qs2)
```

Scilab code Exa 9.2 SINGLE EFFECT EVAPORATOR CALCULATION

```
1 / Example 9.2
2 //Page no. 393
3 //calculae the steam requirement and the no. of
       tubes
4 //if the height of the calandria is 1.5 m.
6 //given
                       //\%, initial concentration
7 ci = 10
                       //\%, final conc
8 \text{ cf} = 40
                      //kg/h, feed rate
9 \text{ Wf} = 2000
                       //C feed temp.
10 \text{ ft} = 30
                       //kg/cm<sup>2</sup>, reduced pressure
11 \text{ rp} = 0.33
12 bt1=75
                        //C, boiling point temp.
13 \text{ sst} = 115
                        //C, saturated steam temp.
14 1=1.5
                         // m, height of calandria
15 \text{ sh} = 0.946
                       //kcal/kg C, specific heat of liquir
                       //kcal/kg latent heat of steam
16 lh=556.5
17 bt2=345
                       //K, boiling point of water
                       //kcal/h m^2 C, overall heat
18 h = 2150
       transfer coefficient
19 si=2000*(ci/100) //kg/h, solids in
                         //kg/h, wate in
20 \text{ wi} = 1800
21 \text{ Wp=si/(cf/100)}
                        //kg/h, product out
22 \text{ Wv=Wf-Wp}
                         //evaporation rate
23 \text{ ef=sh*(ft-bt1)}
24 ip=0
                     // kcal/kg, lamda_s=is-il
25 \quad lamda_s = 529.5
26 bpe=(273+bt1)-345 //boiling point elevation.
27 //from eergy balance eq.
28 \text{ Ws} = (\text{Wp} * \text{ip} + \text{Wv} * \text{lh} - \text{Wf} * \text{ef}) / \text{lamda_s}
                           //kcal/h, rate of heat transfer
29 q = Ws * lamda_s
                            // m^2
30 \quad A=q/(h*(sst-bt1))
31 di = 0.0221
                              //m, inside diameter
32 \text{ At=\%pi*l*di}
                           //m<sup>2</sup>, area of a single tube
33 N = A/At
                           //no. of tubes
34 printf ("The steam required is \%f kg/h\n", Ws)
35 printf("No. of tube are \%f",N)
```

Scilab code Exa 9.3 SINGLE EFFECT EVAPORATION

```
1 / Example 9.3
2 //calculate
3 //i) the steam lr. to be used in the calandria
4 //ii)heat transfer rate required
5 //iii) the steam requirement.
6 //given data
7 \text{ Wf} = 2000
                     //kg/h, feed rate
8 ci=8
                    //\% initial conc.
                     //\% final conc.
9 \text{ cf} = 40
10 \text{ ft} = 30
                    //C, feed temp.
11 \text{ vp} = 660
                    //mm Hg, vaccum pressure
                    // bar absolute, saturated steam pr.
12 \text{ ssp=8}
13 //calculation
14 \text{ sr}=Wf*(ci/100)
                      //kg/h, solid rate
15 Wp = sr/(cf/100)
                        //kg/h, concentrated product rate
16 \text{ ap} = 760 - \text{vp}
                        //mm Hg, absolute pressure in the
      evaporator
17 \text{ bt} = 325
                       //K, boiling temp. of water
                      //kj/kg, latent heat
18 \quad 1_s = 2380
19 R=8.303
                      //gas constant
20 \quad w = 40
                        //g, mass of solute
                     //g, molecular wt of solvent
21 M = 18
22 W = 60
                     //g, mass of the solvent
23 m = 2000
                     //g, molecular wt of solute
24 \text{ dtb} = (R*bt^2*w*M)/(1_s*W*m)
                                         //C, boiling point
       elevation
25 \text{ bp=bt+dtb}
                     //k, boiling point of 40% solution
                   //C, from given data flux becomes
26 dt = 70
      maximum at a temp. drop = 70 \text{ C}
27 \text{ st=bp+dt}
                   //K, saturation temp. of steam in the
      steam chest
                   // bar, from steam table, saturation lr
28 \text{ Sp} = 2.15
```

```
. of steam at this temp.
29
30 \text{ sh} = 4.2
                 //kj/kg C, specific heat of product
                 //C reference teml.
31 rt=0
32 ef=sh*(ft-rt) // kj/kg, enthalpy of the feed
33 ip=sh*(54-rt)
                   //kj/kg, enthalpy of the product
                   //kj/kg, enthalpy of vapour produced
34 \text{ iv} = 2607
35 //from eq 9.6
                  //enthalpy of evaporation
36 \text{ Wv} = 1600
37 q=Wp*ip+Wv*iv-Wf*ef //kj/h, heat transfe rate
      required
                  //kj/kg, heat of vaporization of
38 \text{ hvp} = 2188
      saturated steam at 397 K
                  //kg/h, rate of steam supply
39 \text{ rs=q/hvp}
40 printf("The steam pressure to be used in the
      calandria is %f bar(abs)\n",Sp);
41 printf ("The heat transfer rate required is \%f Kj/h\n
      ",q);
42 printf("Rate of steam supply is %f kg/h",rs);
```

Scilab code Exa 9.4 MULTIPLE EFFECT EVAPORATION

```
1 / Example 9.4
2 //calculate the evaporator areas and the steam
      economy.
3 //given
4 Wf=6000
                 //kg/h, feed rate
                 //%, initial concentration
5 \text{ ci=} 2
                 //\%, final conc.
6 \text{ cf} = 35
                 //C, feed temp.
7 \text{ ft} = 50
                 //bar abs, saturated steaam pr.
8 \text{ ssp=2}
                 //bar abs, maintained temp. in second
9 \text{ sep=0.0139}
      effect
10 h1=2000
                 //W/m^2 K, overall heat transfer
      coeffcient in 1st effect
```

```
//W/m^2 K, overall heat transfer
11 h2 = 1500
      coefficient in 2nd effect
12 \text{ cp}=4.1
                //kj/kg k, specific heat
13
14 //calculation
15 si=Wf*(ci/100) //kg/h, solid in
                 //kg/h, water in
16 wi=5880
17 Wp=si/(cf/100) //kg/h product out
18 wo=Wp*(1-cf/100) //kg/h, water out with the product
                    //kg/h, total evaporation rate
19 ter=wi-wo
20
21 //boiling temp. in the first effect
                 //C, Temprature
22 T1=120
1_s1=2200
                 //kj/kg, latent heat
                 //C, boiling point in second effect
24 T2 = 12
25 \quad 1_s2 = 2470
              // kj/kg in second effect
                   // C, tatd=dt1+dt2 =T1-T2 , total
26
     tatd=T1-T2
        available temp. drop
27
  //\text{from eq.} 9.20
     //h1*dt1=h2*dt2
28
29
     //solving above two equations by matrix
     A = [1, 1; 2000, -1500]
30
     C = [108; 0]
31
32
33
     X = inv(A) *C
34
35
     dt1=X([1])
     dt2=X([2])
36
                   //temp. of steam leaving the first
37
     t1=T1-dt1
        effect
     t2=T2-dt2
                   //temp. of steam leaving second
38
        effect
39 //energy balance over the 1st effect, from eq.9.14
40 rt1=t1
                      //kj/kg, enthalpy of feed
41
     ef = cp*(ft-t1)
42
     i1 = 0
     lam_s1=2330
                       //kj/kg
43
44
     is1=lam_s1
```

```
//Wf* e f+Ws* l_s = (Wf-Ws1)*i1+Ws1*is1
45
     //substituting we get,
46
     //Ws1 = 0.9442*Ws - 253.4....(1)
47
     //energy balance over second effect
48
49
     //from eq 9.15
50
    //(Wf-Ws1)*i1+Ws1*lam_s1=(Wf-Ws1-Ws2)*i2+Ws2*is2
51
     rt2=t2
52
     lam_s2 = 2470
53
     is2=lam_s2
     i2 = 0
54
55
     // substituting we get
     //Ws2 = 0.8404*Ws1 + 617.5...(2)
56
     // \text{ter}, Ws1+Ws2 = 5 6 5 7 . . . . . . . . . . . . . . . (3)
57
     //solving by matrix method
58
     A = [0.9442, -1, 0; 0, 0.8404, -1; 0, 1, 1]
59
60
     B = [253.4; -617.5; 5657]
     X = inv(A) *B
61
62 \text{ Ws=X([1])}
     Ws1=X([2])
63
64
     Ws2=X([3])
65
66
     //evaporator area
     A1=Ws*l_s1/(h1*dt1) // for 1st effect
67
     A2=Ws1*lam_s1/(h2*dt2) //for second effect
68
69
70
     //revised calculation
     //taking
71
     dt1_=48
72
     dt2_=60
73
74
     T1_=T1-dt1_
     T2_=T2-dt2_
75
76
     1s1_{=2335}
77
     1s2_{-}=2470
     // energy balance over first effect gives
78
     //Ws1 = 0.9422Ws - 231.8...(4)
79
80
     //energy balance over second effect gives
     //Ws2 = 0.8457Ws1 + 579.5....(5)
81
     //solving eq 3,4,5
82
```

```
83
     P = [0.9422, -1, 0; 0, 0.8457, -1; 0, 1, 1]
84
     Q = [231.8; -579.5; 5657]
     Y = inv(P) *Q
85
     Ws = Y([1])
86
87
     Ws1_=Y([2])
88
     Ws2_=Y([3])
89
     //eveporator area for 1st & 2nd effect in m^2
90
     A1_=Ws_*l_s1/(h1*dt1_)
91
     A2_=Ws1_*ls1_/(h2*dt2_)
92
93
     EA = (A1_+A2_)/2
     SE = (Ws1_+Ws2_-)/Ws_-
94
95
     printf ("The evaporator area is %f square metre \n"
         , EA);
     printf("Steam economy is %f", SE);
96
```

Scilab code Exa 9.5 MULTIPLE EFFECT EVAPORATION

```
1 / Example 9.5
2 //Determine the maximum no. of effects to be used.
3 //given
4 \text{ ssp} = 3.32
                  //bar abs, saturated steam pr.
                  // bar abs, residual pr. in the
5 \text{ rp} = 0.195
      condenser
                //K, sun of temp. losses because of BPE
6 \text{ tl} = 41
7 \text{ mt} = 8
                 //k, minimum available temp. driving
      force
8 //calculation
9 \text{ sst} = 410
                 //K, saturated steam temp.
                   //K, corresponding saturation temp.
10 \text{ st} = 333
      when pressure in the last effect is 0.195 bar
                   //K, total temp. difference
11 ttd=sst-st
12 atd=ttd-tl
                   // K, available temp. drop across the
      unit
13 \text{ n=atd/mt}
                  //maximum no. of effect
```

Scilab code Exa 9.6 MULTIPLE EFFECT EVAPORATION

```
1 //Example
               9.6
2 // Calculate the heat transfer area required
3 //(assuming equal area for the three effects)
4 //Rate of steam consumption, Steam economy
6 //given
7 \text{ fc} = 9.5
                //\%, feed concentration
                //\%, product conc.
8
     pc=50
9
     ft=40
                // C, feed temp.
10
     er=2000
                   //kg NaOH/h, evaporation rate
                //mm Hg, vaccum pr. in last effect
11
    vp = 714
     //heat transfer coefficients, W/m^2 C
12
                 //for first effect
13
     h1=6000
                 //for second effect
     h2=3500
14
                 //for third effect
15
     h3 = 2500
16
17
     //calculatiin
18
     Wf=er/(fc/100)
                      //kg/h, 2 tons NaOH per hour, feed
         rate
19
     Wp=er/(pc/100) //kg/h, product rate
20
     ter=Wf-Wp
                //kg/h, total evaporation
     //steam
21
22
     p = 3.3
                  //bar, assumed saturated
     //from steam table
23
24
     Ts = 137
                  //C, temp.
     1_s = 2153
                  //kj/kg, latent heat
25
                  //mm Hg, pressure in the last effect
26
     pl=760-vp
                  //C, boiling point of water
27
     bp = 37
     //refer to fig. 9.24
28
                 //C, apparent total temp. drop
29
     attd=Ts-bp
30
     //let assume the following evaporation rate for
```

```
three effects in kg/h
31
     ev1 = 5600
32
     ev2 = 5680
33
     ev3 = 5773
34
     //conc. in three effects
     c1=er/(Wf-ev1)
35
36
     c2=er/(Wf-ev1-ev2)
37
               //given
     c3 = 0.5
     //boiling point elevations in three effects in C
38
39
     bpe1 = 3.5
40
     bpe2=8
     bpe3=39
41
42
     attda=attd-(bpe1+bpe2+bpe3) //actual total temp.
        drop available
     //temp. drop in three effects
43
     //\text{from eq.} 9.23
44
     dt1=attda*((1/h1)/((1/h1)+(1/h2)+(1/h3)))
45
     dt2=attda*((1/h2)/((1/h1)+(1/h2)+(1/h3)))
46
     dt3=attda*((1/h3)/((1/h1)+(1/h2)+(1/h3)))
47
48
49
     //from table 9.4
     //enthalpy of solution in three effects in kj/kg
50
51
     i1 = 486
52
     i2 = 385
53
     i3 = 460
     //enthalpy of vapour generated for three effects
54
        in kj/kg
55
     is1 = 2729
56
     is2 = 2691
57
     is3 = 2646
     //Enthalpy of condensate over effect 1,2,3 in kj/
58
        kg
59
     il1=0
60
     i12 = 519
61
     i13 = 418
62
     //Enthalpy balance over effect 1
63
     ef=145
                  //kj/kg, enthalpy of feed
     //from energy balance eq.
64
```

```
//Ws1 = 0.96Ws - 3200....(1)
65
     //enthalpy balanc over effect 2
66
     //Ws2=0.9146Ws1+922....(2)
67
     //enthalpy balanc over effet 3
68
69
     //Ws3=1.073Ws2+0.0343Ws1-722....(3)
70
     // \text{ter} = \text{Ws1} + \text{Ws2} + \text{Ws3} = 17053....(4)
71
     //Solving above four eqns by matrix
72
73
     Α
        = [0.96, -1, 0, 0; 0, 0.9146, -1, 0; 0, 0.0343, 1.073, -1; 0, 1, 1, 1]
     B = [3200; -922; 722; 17053]
74
75
     X = inv(A) *B
     Ws=X([1])
76
77
     Ws1=X([2])
78
     Ws2=X([3])
     Ws3=X([4])
79
80
     //calculation of heat transfer areas iver effect
81
         1, 2, 3
     A1=Ws*l_s*10^3/(h1*dt1*3600)
82
     A2=Ws1*(is1-il2)*10^3/(h2*dt2*3600)
83
84
     A3=Ws2*(is2-il3)*10^3/(h3*dt3*3600)
85
     //Revised dt
86
87
     avar = (A1 + A2 + A3)/3
88
     dt1_=(A1/avar)*dt1
89
     dt2_=(A2/avar)*dt2
     dt3_=attda-dt1_-dt2_
90
91
     //from table 9.5
92
     //enthalpy of vapour generated over effect 1,2,3
93
         in kj/kg
     is1_=2720
94
     is2_{=2685}
95
     is3_{=}2646
96
97
     //enthalpy of soln on 1,2,3 in kj/kg
     i1_{-}=470
98
```

```
i2_=380
99
100
      i3_{-}=460
      //enthalpy of condensate over effect 1 ,2,3 in kj/
101
         kg
102
      il1_{-}=0
103
      i12_{=}513
104
      i13_{-}=412
      //enthalpy balance ove effect 1,2,3 gives
105
      Ws_{-} = 8854
106
      Ws1_{=}5432
107
108
      Ws2_{=}5812
109
      Ws3_{=}5809
110
      //revised heat transfer areas for effect 1 ,2,3 in
          m^2
      A1_=Ws_*l_s*1000/(h1*dt1_*3600)
111
      A2_=Ws1_*(is1_-il2_)*10^3/(h2*dt2_*3600)
112
      A3_=Ws2_*(is2_-il3_)*10^3/(h3*22.5*3600)
113
114
      avar_=(A1_+A2_+A3_)/3
      SE=ter/Ws_
115
116
117
      printf("The areas are now reasonably close \n")
118
      printf("Steam Rate is % f Kg/h \n", Ws_)
      printf("Steam economy is %f",SE)
119
```

Scilab code Exa 9.7 MULTIPLE EFFECT EVAPORATION

```
1 // Exalple 9.7
2 // Calculate the increase in evaporation capacity
    attainable
3 // also the % change in cost of concentrating a ton
    of feed.
4 // Given
5 Wf = 3000 // kg/h, feed
6 fc = 8 //%, feed concentration
7 pc = 40 //% product concentration
```

```
si=Wf*(fc/100)
                           //kg, solid in
8
9
     pr=si/(40/100)
                           //g/h, product rate
    ft=60
10
                    //C, feed temp.
                          //kg/h, evaporation rate
11
     er=Wf-pr
12
     cost=120000
                    //total cost per year
13
     p1 = 4.5
                   //bar, low pressure steam
14
                       //per ton. cost of steam
     scpt=700
     cp = 0.764
                       // kcal/kg, specific heat
15
16
  //from table 9.6
17
                   //atm existing evaporator pressure
18
     eep=1
                     // peryear ,other operatingcost
19
     oop = 400000
                      //per yr, for proposed condition
20
     oop_=600000
                      //days per year.working days
21
     wd = 300
                       //working hr
22
     wh = wd * 24
23
24
     //EXISTING OPERATING CONDITION
25
                   //C, reference temp.
     rt=0
26
                       //kcal/kg, enthalpy of feed
     ef=eep*(ft-rt)
27
                //C, product temp.
     i1=cp*(pt-rt) //kcal/kg, enthalpy of soln
28
                    //kcal/kg, enthalpy of vapour
29
     is1 = 639
        generated at 1 atm (from steam table)
                   //kcal/kg, latent heat of steam at 4.5
30
     1_s = 496
         bar
31
     T = 425
                 //K
32
     //heat balance
33
     Ws = (er*is1+pr*i1-Wf*ef)/l_s
                                         //kg/h, steam
        required
                      //ton/ hr, heat supplied
34
     q = Ws * l_s
35
     x=q/(T-(pt+273)) //x=Ud*A
36
     //hourly cost
     sc=Ws/1000*(scpt)
37
                           // /perh , steam cost
                        //per h, labour cost
38
     1c = 100
                      // per h, othe cost
39
     oc = oop/(wh)
     tc=sc+lc+oc
                  //total cost
40
     C = tc/(Wf/1000)
                        // per ton, cost per ton of feed
41
42
```

```
//PROPOSED OPERATING CONDITION
43
44
     bp1=320
                     //K, boiling point of liquid
     dt=T-bpl
45
                 //kcal/h, rate of heat supply
     q_=x*dt
46
                  //steam rate ton per hr
47
     sr=q_/l_s
48
    pt_=47
                 //C, product temp .
     ep=cp*(pt_-rt) //kcal/kg. enthalpy of product
49
                    //kcal/kg, enthalpy of vapour
     ev = 618
50
        generated
     //heat balance
51
     //24Wf_{-}-582Ws1_{-}=2825000 ....(1)
52
53
     //material balance
     // 4Wf_{-}-5Ws1_{-}=0
54
                        \ldots \ldots (2)
     //solving by matrix method
55
     a = [24, -582; 4, -5]
56
     b = [-2825000; 0]
57
     x_=inv(a)*b
58
     Wf_=x_{([1])}
59
     Ws1_=x_([2])
60
61
     ic = (Wf_--Wf)/Wf
62 printf("The increase in evaporation capacity ic %f
      percentage \n",ic*100)
                       //ton per hr ,steam rate
     sr_=Ws1_/1000
63
     //hourly cost
64
     sc_=Ws1_*scpt
                      //steam cost
65
               //labour cost rs.200/ h
66
     1c_{-}=200
67
     oc_=oop_/wh // other cost
     tc_=sc_/1000+lc_+oc_
68
     C_=tc_/(Wf_/1000) //cost per ton of feed
69
     ps = (C-C_{-})/C
70
     printf(" The percentage change in the cost of
71
        concentrating a ton of feed is %f percentage",
        ps *100)
```

Scilab code Exa 9.8 Mechanical vapour compression

```
1
2 //Example 9.8
3 //make a mechanical vapour recompression calculation
4 //given
5 q = 2200
                   //kj/kg heat of condensation of steam
6 //from example 9.1
                        //kj/day rate of heat supply
7 Qr = 2.337*10^8
8 //calculation
9 Rate=Qr/q
                       //kg/day steam supply rate
                       //approximate value
10 Rate_=1.062*10^5
11 E=2800
                        //kj/kg enthalpy of compressed
      vapour
12 T = 175.7
                        //C, temprature
                        //C Saturation temprature
13 \text{ Ts} = 121
14 E1=2700
                        //enthalpy at saturation
      temprature
                        //Superheat of vapour
15 \quad q1=T-Ts
16 T1=100
                        //C hot water temprature
17 E2=419
                         //Enthalpy at hot water temp.
18 x = (E-E1)/(E1-E2)
                         //water supplied per kg of
      superheated steam
19 S = 1.044
                         //steam obtained after
      desuperheating
20 R1=8.925*10<sup>4</sup>
                         //kg/day rate of vapour
      generation
21 R2 = S * R1
                         //Rate of recompressed sat.
      steam
22 R2_=9.318*10^4
                          //approximate value
23 SR=Rate_-R2_
24 printf ("Make up steam required is %f kg/day", round (
      SR))
```

Chapter 10

UNSTEADY STATE AND MULTIDIMENSIONAL HEAT CONDUCTION

Scilab code Exa 10.8 MUMERICAL CALCULATION OF UNSTEADY STATE HEAT CONDUCTION

```
1 //Example no. 10.8
2 // Page no. 444
3 // Calculate the bottom surface, mid plane, top
      surface temperatures
4 //of the slab after 4 hours
5 // given
61=0.05
                                    //m, thickness of
      margarine slab
                                    //Kg/m<sup>3</sup>, density of
7 \text{ ro} = 990
      margarine slab
                                    //Kcal/kg C, ddpecific
8 \text{ cp} = 0.55
      heat of slab
9 k = 0.143
                                    //kcal/h mC, thermal
      conductivity of slab
10 \text{ Ti} = 4
                                    //C, initial temp
11 To=25
                                    //C, ambient temp.
```

```
//hours, time
12 t = 4
13 h = 8
                                       //kcal/h m<sup>2</sup> C
14 //calculation
15 Fo=k*t/(ro*cp*l^2)
                                     //, fourier no.
16 \text{ Bi=h*l/k}
                                      //Biot no.
17 // \text{from fig. } 10.6 \text{ a}
18 Tcbar=0.7
                                      // \text{Tcbar} = (\text{Tc-To}) / (\text{Ti-To})
19 Tc=To+Tcbar*(Ti-To)
                                      //C, centre temp.
20 //from fig 10.6 b
21 / (T-To) / (Tc-To) = 0.382
22 T = 0.382*(Tc-To)+To
                                      //c, top surface temp.
\frac{23}{\text{again from fig. }} 10.6 b
24 \text{ Tm} = 0.842*(Tc-To)+To
                                      //, mid plane temp.
25 printf ("The bottom surface temperature of given slab
        is %f C", Tc);
26 printf ("The top surface temperature of given slab is
        %f C",T);
27 printf ("The mid plane temperature of given slab is
      %f C", Tm);
```

Scilab code Exa 10.9 NUMERIC CALCULATION OF UNSTEADY STATE HEAT CONDUCTION

```
1 //Example10.9
2 //Page no. 449
3 //calculate : (i) time required for the cantre—
    line temp.
4 //to drop down to 200 C
5 //(ii) the temp. at half radius at that moment
6 //(iii) the amount of heat that has been transfered
    to the liquid
7 // by that time per metre length of the shaft
8 //given data
9 Ti=870 //C, initial temp
```

```
//C, ambient
10 \text{ To} = 30
      temp.
11 \text{ Tc} = 200
                                              //C, centre line
      temp.
12 h=2000
                                               //W/m^2 C,
       surface heat transfer coefficient
                                              //m, radius of
13 a=0.05
      cylinder
14 k = 20
                                              //W/m C, thermal
      conductivity
15 ro=7800
                                              //kg/m<sup>3</sup>, density
16 \text{ cp=0.46*10^3}
                                             //j/kg C,
       specific heat
17
18 //calculation
19 // i
20 \quad Bi=h*a/k
                                             //Biot no.
21 alpha=k/(ro*cp)
                                               //m^2/C, thermal
        diffusivity
22 Tcbar=(Tc-To)/(Ti-To)
                                             // dimensionless
      centre line temp.
\frac{23}{\text{from fig}} 10.7 a
                                             //fourier no. fo=
24 \text{ fo=0.51}
      alpha*t/a^2
25 t=fo*a^2/alpha
                                             //s, time
26
27 // i i
28 //at the half radius, r/a=0.5 & Bi=5
29 T = To + 0.77 * (Tc - To)
                                             //from fig. 10.7 b
30
31 //iii
32 x=Bi^2*fo
33 // \text{for } x = 12.75 \& \text{Bi} = 5.0. \text{ fig.} 10.9 \text{ b gives}
34 //q/qi = 0.83
35 qi= %pi*a^2*(1)*ro*cp*(Ti-To)
                                         //kj, initial amount
        of heat energy
                                            //present in 1 m
36
                                               length of shaft
```

Chapter 11

Boundary layer heat transfer

Scilab code Exa 11.1 water at 25 degree celcius

```
1 //Example 11.1
2 //page no. 478
3 //a-Calculate Boundary layer thickness at x=0.5 m
4 //b-Calculate local drag coeff at x=0.5 \text{ m}
5 //c-Force req to hold the plate in position
6 //d-shear stress at a plane, distant t/2 from the
      surface at x = 0.5 \text{ m}
  //Variable declaration
9 v = 1 //m/s
10 //temprature
11 T = 25
                     // degree celcius
12 //length of plate, l=1m
14 / \text{width of plate, } w=0.5m
15 \text{ w} = 0.5 / \text{m}
16 //angle of incidence, theta=0 degree
17 \text{ theta=0}
                     //degree
18
19 // Calculation
20 //for water at 25 degree celcius ,momentum
```

```
diffusivity,
21 \quad MD = 8.63 * (10^-7)
                     // m^2/s
22 //local Reynold no.
23 x = 0.5 / m
24 \text{ Re} = x * v / MD
25 //from Eq. 11.39, the boundary layer thickness is
26 t=5*x/(Re^0.5)
27
28
29 // Results
30 printf ("i) Boundary layer thickness is %f m\n",t)
31
32 //local drag coefficient
33 //CD=local drag force per unit area (F)/kinetic
      energy per unit volume (KE)
34 / F = 0.332 * \text{rho} * \text{v}^2 * \text{Re}^0.5 \text{ and KE} = 0.5 * \text{rho} * \text{v}^2
35 CD=0.332*v^2*(Re^-0.5)/(0.5)*v^2
36
37 printf ("Local drag coefficient is \%f \n", CD)
38
39 //From eq 11.44, the drag force acting on one side
      of the plate is
40 //kinetic viscocity
41 mu=8.6*(10^-4)
42 fd=0.664*mu*v*(1*v/MD)^0.5*w
43 //the total force acting on both sides of the plate
44
45 \text{ tfd=2*fd}
46 printf("total drag force is %f N \n",tfd)
47
48 //shear stress at any point in the boundary layer
49 //at a point in the boundary layer,
50 x = 0.5 / m
51 y = t/2
52 // n=blasius dimensionless variable
53 n=y/(MD*x/v)^0.5
54 //From table 11.1, at n=2.5, f''(n)=0.218
55 //shear stress= tau
```

```
56 fn=0.218 //f"(n)=fn

57 tau=(mu*v*(v/(MD*x))^0.5)*fn

58 printf("Shear stress is %f N/m^2",tau)
```

Scilab code Exa 11.2 air at 30 degree celcius

```
1 //Example 11.2
2 // Page no. 488
3 // Calculate the thermal boundary layer thickness &
4 //local heat transfer coefficient 0.75 m from the
      leading edge.
6 // Variable declaration
7 \text{ Ts} = 200
                      // C, temp. of air
                      //C, temp .of surface
8 \text{ Ta} = 30
                      //m/s, velocity of air
9 Va=8
10 d=0.75
                      //m, distant from leading edge
11
12 // Calculation
13 \text{ Tm} = (\text{Ts} + \text{Ta})/2
                      //C, Mean temp. of boundary layer
14 mu=2.5*10<sup>-5</sup>
                     //\text{m}^2/\text{s}, viscosity
                      //prndatl no.
15 P=0.69
16 \text{ k=0.036}
                       //W/m c, thermal conductivity
17 Re=d*Va/mu
                      //reynold no.
18 t=5*d/(Re^0.5*P^(1/3))
                                         //m, thermal
      boundary layer thickness
19 printf ("Thermal boundary layer thickness is %f mm \n
      ",t*10^3)
20
21 N = (0.332*Re^{(0.5)*P^{(1/3)}}) // Nusslet no.
22 h=k*N/d
                                                      //heat
      transfer coefficent
23 printf("heat transfer coeff is %f W/m^2 C",h)
```

Scilab code Exa 11.3 A thin metal plate

```
1 //Example 11.3
2 // Page No. 489
3 //given
4 //Free stream velocity (v1) and temp.(t1) on side 1
5 \text{ v1=6} //\text{m/s}
6 t1=150 //degree celcius
7 //same on side 2
8 \text{ v2=3 } //\text{m/s}
9 t2=50 //degree celcius
10 //distant
11 x = 0.7 / m
12 //The plate temp. is assumed to be equal to the mean
       of the bulk air temp on the two sides of the
      plates
13 T=100 //degree celcius
14 // Side 1
15 //mean air temp.
16 \text{ tm1} = (T+t1)/2
17 //From thermophysical properties: kinetic viscosity (
      kv), Prandtl no.(P), thermal conductivity (k)
18 kv1=2.6*10^-5 //\text{m}^2/\text{s}
19 P1=0.69
20 \text{ k1=0.0336} //W/m degree celcius
21 //Reynold no.
22 Re1=x*v1/kv1
23 // Nusslet no(N1)
24 a = 1/3
25 N1=0.332*(Re1)^0.5*P1^a
26 h1 = k1 * N1/x
27 //Side 2 of the plate
28 \text{ tm} 2 = (T+t2)/2
29 // Similarly
```

```
30  kv2=2.076*(10)^-5 //m^2/s
31  P2=0.70
32  k2=0.03 //W/m degree celcius
33  Re2=x*v2/kv2
34  N2=0.332*(Re2)^0.5*P2^a
35  h2=k2*N2/x
36  // overall heat transfer coeff.
37  U=h1*h2/(h1+h2)
38  //The local rate of heat exchange
39  RH=U*(t1-t2)
40  printf("Local rate of heat exchange is %f W/m2\n\n",RH)
41  //the plate temp is given by
42  TP=t2+(t1-t2)*U/h2
43  printf("Plate temperature is :%f Celsius \n",TP)
```

Scilab code Exa 11.4 calculate the temprature

```
1 //Example 11.4
2 // Calculate the temprature of the plate after 1 hour
3 //if its initial temp, is 120 C
5 //Given
6 T1=120
                                            //C, initial temp
7 T2 = 25
                                            //C, Final temp.
8 \text{ Tm} = (T1+T2)/2
                                            //C, mean temp.
9 rho=8880
                                            // kg/m^3, density
       of plate
10 // Properties of air at mean temp.
                                            //\text{m}^2/\text{s},
11 mu = 2.07 * 10^{-5}
      viscosity
12 \text{ Pr} = 0.7
                                            //Prandtl no.
13 k = 0.03
                                             //W/m C, thermal
      conductivity
```

```
//m, length of
14 \quad 1 = 0.4
      plate
15 \quad w = 0.3
                                             //m, width of
      plate
16 d=0.0254
                                             //m, thickness of
       plate
                                             //m/s, air
17 Vinf=1
      velocity
18 Re=1*Vinf/mu
                                             //REynold no.
19
20 //from eq. 11.90 (b)
21 Nu=0.664*(Re)^(1/2)*(Pr)^(1/3)
                                            //average Nusslet
       no.
22 / Nu = l * h / k
23 h=Nu*k/1
                                             //W/m<sup>2</sup> C, heat
      transfer coefficient
24 //Rate of change of temp. is given by
25 \quad A = 2 * 1 * w
                                             //m^2. area of
      plate
26 t = 1 * 3600
                                             //s, time
27 \text{ cp} = 0.385 * 10^3
                                             //j/kg K,
      specific heat
28 \quad m=1*w*d*rho
                                             //kg, mass of
      plate
29
30 //-d/dt (m*cp8dt) = A*hv*(T1-T2)
31 //appling the boundary condition
32 T = (T1-T2) * exp(-A*h*t/(m*cp)) + T2
33 printf("The temprature of plate after 1 hour is %f
      C", round(T))
```

Scilab code Exa 11.5 Prandtl analogy

```
1 //Example 11.5
2 //Page no. 508
```