目录

1 三角函数			3
	1.1	基础知识	3
	1.2	终边一点	5
	1.3	平移	5
	1.4	sin 和 cos 互化	5
	1.5	区间内最值, 值域	5
	1.6	伸缩变换	5
	1.7	对称中心, 对称轴, 单调区间	5
	1.8	sinx 图像翻转	6
	1.9	零点个数	6
2	····································	7	
	2.1	基础知识	7
	2.2	多解取舍两种思路	7
	2.3	角化边, 边化角, 角化角	7
	2.4	三角形形状 (讨论 n 种情况)	7
	2.5	己知三边判断三角形形状	8
3	向量	$ar{\underline{I}}$	9
	3.1	基础知识	9
	3.2	绝对值	9
	3.3	夹角, 锐角, 钝角	9
	3.4	基础图形 (理)	10
	3.5	基底建模法 (理)	10
4	数列	J	11
	4.1	分式数列单调性	11
	4.2	分段数列单调性	11

数学笔记

于洋

1 三角函数

1.1 基础知识

诱导公式:

$$\sin(2k\pi + \alpha) = \sin \alpha, k \in \mathbb{Z}$$

$$\cos(2k\pi + \alpha) = \cos \alpha, k \in \mathbb{Z}$$

$$\tan(2k\pi + \alpha) = \tan \alpha, k \in \mathbb{Z}$$

$$\sin(\pi + \alpha) = -\sin \alpha$$

$$\cos(\pi + \alpha) = -\cos \alpha$$

$$\tan(\pi + \alpha) = \tan \alpha$$

$$\sin(\pi - \alpha) = -\tan \alpha$$

$$\sin(\pi - \alpha) = -\tan \alpha$$

$$\sin(\pi - \alpha) = -\cos \alpha$$

$$\cos(\pi - \alpha) = -\cos \alpha$$

$$\tan(\pi - \alpha) = -\tan \alpha$$

$$\tan(\pi - \alpha) = -\cot \alpha$$

$$\sin(\pi - \alpha) = -\cot \alpha$$

$$\sin(\pi - \alpha) = -\cot \alpha$$

$$\sin(\pi - \alpha) = -\cot \alpha$$

$$\tan(\pi - \alpha) = -\cot \alpha$$

$$\tan(\pi - \alpha) = -\cot \alpha$$

$$\tan(\pi - \alpha) = \cot \alpha$$

两角和差:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \qquad \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

二倍角和降幂:

$$\begin{aligned} \sin 2\alpha &= 2 \sin \alpha \cos \alpha \\ \cos 2\alpha &= \cos^2 \alpha - \sin^2 \alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha \end{aligned} \qquad \begin{aligned} \cos^2 \alpha &= \frac{1 + \cos 2\alpha}{2}, \\ \tan 2\alpha &= \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \end{aligned} \qquad \sin^2 \alpha &= \frac{1 - \cos 2\alpha}{2}, \end{aligned}$$

辅助角公式: $a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \varphi), \tan\varphi = \frac{b}{a}$ 弧长和扇形面积公式: $l = r|\alpha|, \quad S = \frac{1}{2}\ln = \frac{1}{2}|\alpha|r^2$ 和差化积, 积化和差:

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) \qquad \cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right) \qquad \sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) \qquad \cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right) \qquad \sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

三角函数性质:

函数	$y = \sin x$	$y = \cos x$	$y=\tan x$
图像	ν 1 0 -1 x	y 1	-\frac{1}{2} \tag{2} \tag{1}{x}
定义域	R	R	$\{x!x \in \mathbf{R} \perp x \neq \frac{\pi}{2} + k\pi, \\ k \in \mathbf{Z}\}$
值域	[-1,1]	<u>[-1,1]</u>	R
单调性	[$-\frac{\pi}{2} + 2k\pi$, $\frac{\pi}{2} + 2k\pi$]($k \in \mathbb{Z}$) 上递增; [$\frac{\pi}{2} + 2k\pi$, $\frac{3\pi}{2} + 2k\pi$]($k \in \mathbb{Z}$) 上递減	[-π+2kπ, 2kπ](k∈ Z)上 递增; [2kπ, π+2kπ](k∈ Z)上递 减	$(-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi)(k\in \mathbf{Z})$ 上递增
最值	$x = \frac{\pi}{2} + 2k\pi(k \in \mathbf{Z})$ $\exists f$, y_{max} = 1; $x = -\frac{\pi}{2} + 2k\pi(k \in \mathbf{Z})$ $\exists f$, $y_{\text{min}} = -1$	$x=2k\pi(k\in \mathbf{Z})$ 时, $y_{\max}=1$; $x=\pi+2k\pi(k\in \mathbf{Z})$ 时, $y_{\min}=$	
奇偶性	奇函数	偶函数	奇函数
对称中心	$(k\pi, 0)(k \in \mathbf{Z})$	$(\frac{\pi}{2}+k\pi, 0) (k \in \mathbf{Z})$	$(\frac{k\pi}{2}, 0)(k \in \mathbf{Z})$
对称轴方程	$x = \frac{\pi}{2} + k\pi(k \in \mathbf{Z})$	$x = k\pi(k \in \mathbf{Z})$	
周期	2π	2π	<u>π</u>

1.2 终边一点

角 α 终边上一点 (-4,3):

$$\cos \alpha = \frac{x}{r} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{-4}{\sqrt{(-4)^2 + 3^2}} = -\frac{4}{5}$$
$$\sin \alpha = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}} = \frac{3}{\sqrt{(-4)^2 + 3^2}} = \frac{3}{5}$$

1.3 平移

 $\sin\left(2x+\frac{\pi}{3}\right)$ 移动变成 $\sin\left(2x+\frac{\pi}{6}\right)$:

1) 提括号: $\sin \left[2 \left(x + \frac{\pi}{6} \right) \right]$ $\sin \left[2 \left(x + \frac{\pi}{12} \right) \right]$

2) 相减: $\left(x + \frac{\pi}{12}\right) - \left(x + \frac{\pi}{6}\right) = -\frac{\pi}{12}$

3) 翻译: $-\frac{\pi}{12}$ 是向右移动 $\frac{\pi}{12}$

1.4 sin 和 cos 互化

$$\cos\left(2x + \frac{\pi}{3}\right) = \sin\left(2x + \frac{\pi}{3} + \frac{\pi}{2}\right) \quad$$
根据
$$\cos x = \sin\left(x + \frac{\pi}{2}\right)$$

$$\sin\left(2x + \frac{\pi}{3}\right) = \cos\left(2x + \frac{\pi}{3} - \frac{\pi}{2}\right) \quad \text{RE } \sin x = \cos\left(x - \frac{\pi}{2}\right)$$

1.5 区间内最值、值域

$f(x) = 4\sin\left(2x - \frac{\pi}{3}\right) + \sqrt{3}$ 在 $\left[0, \frac{\pi}{2}\right]$ 上的最大值, 最小值

$$x \in \left[0, \frac{\pi}{2}\right]$$

 $2x \in [0,\pi]$

$$2x - \frac{\pi}{3} \in \left[-\frac{\pi}{3}, \frac{2}{3}\pi \right]$$

如图此区间的最小值 $-\frac{\sqrt{3}}{2}$, 最大值 1, 所以

$$\sin\left(2x - \frac{\pi}{3}\right) \in \left[-\frac{\sqrt{3}}{2}, 1\right]$$

$$4\sin\left(2x - \frac{\pi}{3}\right) \in \left[-2\sqrt{3}, 4\right]$$

$$4\sin\left(2x - \frac{\pi}{3}\right) + \sqrt{3} \in \left[-\sqrt{3}, 4 + \sqrt{3}\right]$$

1.6 伸缩变换

 $y = \cos x$

横坐标缩短到原来的 $\frac{1}{2}$ (x 换成 2x) $\longrightarrow y = \cos 2x$

纵坐标伸长到原来的 2 倍 (A 换成 2A) $\longrightarrow y = 2\cos 2x$

向左平移 $\frac{\pi}{4}$ (x 换成 $x + \frac{\pi}{4}) \longrightarrow y = 2\cos\left[2\left(x + \frac{\pi}{4}\right)\right]$

1.7 对称中心,对称轴,单调区间

$y = \sin\left(2x - \frac{\pi}{3}\right)$ 的减区间

图 1: sin x 减区间

与基础图形对照:

: }	$\sin x$ 减区间	$x \in \left[\frac{\pi}{2} + 2k\pi, \frac{3}{2}\pi + 2k\pi\right] (k \in z)$
	$\sin\left(2x - \frac{\pi}{3}\right)$ 减区间	$2x - \frac{\pi}{3} \in \left[\frac{\pi}{2} + 2k\pi, \frac{3}{2}\pi + 2k\pi\right] (k \in z)$

计算出 x 范围即可. 对称中心, 对称轴, 同样原理, 都是根据基础图形, 替换即可

1.8 sinx 图像翻转

 $y = |\sin x|$, $y = \sin |x|$, $y = -\sin x$ (绿虚线: $\sin x$ 图像, 红线: 翻转后图像)

图 4: $y=-\sin x$ 整体加负号: 沿 x 轴上下翻折.

1.9 零点个数

 $f(x) = \left(\frac{1}{2}\right)^x - \sin x$ 零点个数

 $\Leftrightarrow f(x) = 0 \ \mathbb{P}\left(\frac{1}{2}\right)^x = \sin x$

画出等号左右两侧图像, 交点个数就是零点个数 (2 个)

图 5:
$$f(x) = \left(\frac{1}{2}\right)^x$$
, $f(x) = \sin x$

2.1 基础知识

正弦定理:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

余弦定理:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A \qquad b^{2} = a^{2} + c^{2} - 2ac \cos B \quad c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \qquad \cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac} \qquad \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

面积公式:

$$S_{\Delta ABC} = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B = \frac{1}{2}bc\sin A$$

$$S = \frac{(a+b+c)r}{2}$$
 $S = \frac{abc}{4R}$ $S = \sqrt{p(p-a)(p-b)(p-c)}$ $(p = \frac{1}{2}(a+b+c))$

判断三角形形状: 最短两条边的平方与第三条边平方比较

$$a^2 > b^2 + c^2$$
 ΔABC 为钝角三角形

$$a^2 = b^2 + c^2$$
 ΔABC 为直角三角形

2.2 多解取舍两种思路

在 $\triangle ABC$ 中, $b = \sqrt{3}$, $B = 60^{\circ}$, c = 1, 求 C

角度取舍两种思路:

1) 依据大边对大角: $\therefore b > c, \therefore B > C \therefore C = 30^{\circ}$

2) 三角形内角和 180° : $\therefore B = 60^{\circ}, \therefore 0^{\circ} < C < 120^{\circ} \therefore C = 30^{\circ}$

2.3 角化边, 边化角, 角化角

$3a\cos A = c\cos B + b\cos C$, $\Re \cos A$

两种思路都可以:

边→角

 $3\sin A\cos A = \sin C\cos B + \sin B\cos C = \sin(B+C) = \sin A : \cos A = \frac{1}{3}$

角→边

 $3a\cos A = c\cdot \tfrac{a^2+c^2-b^2}{2ac} + b\cdot \tfrac{a^2+b^2-c^2}{2ab} \mathrel{\dot{.}.} \cos A = \tfrac{1}{3}$

2.4 三角形形状 (讨论 n 种情况)

图 6: 2A=2B

图 7: $2A + 2B = \frac{\pi}{2} * 2$

图 8: $2A + 2B = \frac{3\pi}{2} * 2$

$\sin 2A = \sin 2B$

 $0 < A < \pi : 0 < 2A < 2\pi$

如图: 三种情况

- 1) 当 2A = 2B 时等腰三角形
- 2) 当 $2A + 2B = \frac{\pi}{2} * 2$ 时, 直角三角形
- 3) 当 $2A + 2B = \frac{3\pi}{2} * 2$ 时,不符合三角形

2.5 已知三边判断三角形形状

已知三角形三边为 3,5,7 求三角形是形状 (锐角, 直角, 钝角)

 $:: 3^2 + 5^2 < 7^2$... 钝角

3.1 基础知识

	线性运算	坐标运算
加法	三角形法则: 首尾相连首尾连: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$	$\vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2)$
NHIA	平行四边形法则: 同起点, 对角线	$w+v=(w_1+w_2,g_1+g_2)$
减法	三角形法则: 同起点,连终点,指向被减向量: \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB}	$\vec{a} - \vec{b} = (x_1 - x_2, y_1 - y_2)$
数乘	$x\vec{a}$ 表示与 \vec{a} 的方向相同 $(x > 0)$ 或者相反 $(x < 0)$, 长度为 \vec{a} 的 x 倍	$\lambda \vec{a} = (\lambda x_1, \lambda y_1)$
数量积	$ec{a}\cdotec{b}= ec{a} \cdot ec{b} \cos heta$	$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2$
模	$ \vec{a} = \sqrt{\vec{a} \cdot \vec{a}} \qquad (\vec{a}^2 = \vec{a} ^2)$	$ \vec{a} = \sqrt{x_1^2 + y_1^2}$
夹角	$\cos heta = rac{ec{a} \cdot ec{b}}{ ec{a} ec{b} }$	$\cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}$
平行	$ec{a}=\lambda ec{b}(ec{b} eq0)$	$x_1 y_2 = x_2 y_1$
垂直	$\vec{a} \cdot \vec{b} = 0$	$x_1 x_2 + y_1 y_2 = 0$
大写坐标	设 $A(x_1, y_1), B(x_2, y_2)$ 则 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_2)$	$-y_1)$

3.2 绝对值

题目:

已知向量 \overrightarrow{a} , \overrightarrow{b} 满足 $|\overrightarrow{a}+\overrightarrow{b}|=2\sqrt{2}$, $|\overrightarrow{a}|=\sqrt{2}$, $|\overrightarrow{b}|=\sqrt{3}$, 则 $|\overrightarrow{a}-\overrightarrow{b}|=$ () 。

A: $\sqrt{2}$

B: 2

C: 1

D: $-\frac{1}{2}$

解: 绝对值、想平方, 算完之后不要慌.

$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 8$$

 $\therefore 2\vec{a} \cdot \vec{b} = 3$

$$\therefore |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} = 2$$

∴选 A

3.3 夹角, 锐角, 钝角

题目:

已知 $\overrightarrow{a}=(\lambda,2)$, $\overrightarrow{b}=(-3,5)$,且 \overrightarrow{a} 与 \overrightarrow{b} 的夹角为锐角,则 λ 的取值范围()

解: $\vec{a} \cdot \vec{b} > 0$ 且不共线

解:由题意可得 $\overrightarrow{a} \cdot \overrightarrow{b} > 0$,且 \overrightarrow{a} 与 \overrightarrow{b} 不共线,即 $-3\lambda + 10 > 0$,且, $5\lambda \neq 2 \times (-3)$,解得 $\lambda < \frac{10}{3}$ 且 $\lambda \neq -\frac{6}{5}$,所以C选项是正确的

3.4 基础图形 (理)

题目:

3.5 基底建模法 (理)

题目:

如图所示,在△ABC中,点M是BC的中点,点N在AC上,且AN=2NC,AM与BN相交于点P,求AP∶PM

解:以 \overrightarrow{BM} , \overrightarrow{CN} 为基底,进行计算.

设:
$$e_1 = \overrightarrow{BM}$$
, $e_2 = \overrightarrow{CN}$, 则

$$\overrightarrow{AM} = \overrightarrow{AC} + \overrightarrow{CM} = -3e_2 - e_1$$

$$\overrightarrow{BN} = \overrightarrow{BC} + \overrightarrow{CN} = 2e_1 + e_2$$

因为 A,P,M 和 B,P,N 分别共线所以:

$$\overrightarrow{AP} = \lambda \overrightarrow{AM} = -\lambda e_1 - 3\lambda e_2$$

$$\overrightarrow{BP} = \mu \overrightarrow{BN} = 2\mu e_1 + \mu e_2$$

$$\overrightarrow{BA} = \overrightarrow{BP} - \overrightarrow{AP} = (\lambda + 2\mu)e_1 + (3\lambda + \mu)e_2$$

$$\overrightarrow{BA} = \overrightarrow{BC} + \overrightarrow{CA} = 2e_1 + 3e_2$$

$$\begin{cases} \lambda + 2\mu = 2 \\ 3\lambda + \mu = 3 \end{cases} \lambda = \frac{4}{5}$$
$$\therefore AP : PM = 4 : 1$$

4.1 分式数列单调性

数列 $a_n=\frac{n-\sqrt{2016}}{n-\sqrt{2017}},$ 则前 100 项的最大项, 最小项是第几项解: $a_n=\frac{n-\sqrt{2016}}{n-\sqrt{2017}}=1+\frac{\sqrt{2017}-\sqrt{2016}}{n-\sqrt{2017}}$

解:
$$a_n = \frac{n-\sqrt{2016}}{n-\sqrt{2017}} = 1 + \frac{\sqrt{2017}-\sqrt{2016}}{n-\sqrt{2017}}$$

根据函数图像:

当 $n \in [1,44]$ 时, $\{a_n\}$ 单调递减,

当 $n \in [45, +\infty)$ 单调递增,

$$(a_n)_{\text{max}} = a_{45}, (a_n)_{\text{min}} = a_{44}$$

4.2 分段数列单调性

题目:

已知函数
$$f(x)=\left\{egin{array}{c} (3-a)x-3,x\leq 7 \\ a^{x-6},x>7 \end{array}
ight.$$
 ,若数列 $\{a_n\}$ 满足 $a_n=f(n)(n\in N^*)$,且 $\{a_n\}$ 是递增数列,则实数a

的取值范围是()

A.
$$\left[\frac{9}{4},3\right)$$

B.
$$(\frac{9}{4},3)$$

C.
$$(2,3)$$

D.
$$(1,3)$$

解:

解:根据题意,
$$a_n = f(n) = \begin{cases} (3-a)n - 3, n \le 7 \\ a^{n-6}, n > 7 \end{cases}$$
; 要使 $\{a_n\}$ 是递增数列,必有
$$\begin{cases} 3-a > 0 \\ a > 1 \\ (3-a) \times 7 - 3 < a^{8-6} \end{cases}$$
;

解可得, 2 < a < 3;

所以C选项是正确的.

4.3 一般数列单调性