Kholle 8 filière MPSI Planche 1

- 1. Soit u et v deux suites numériques convergentes, α et β deux scalaires. Démontrer que $\alpha u + \beta v$ est convergente et donner sa limite.
- 2. Étudier les limites éventuelles quand n tend vers $+\infty$ de $\sqrt{n+\sqrt{n}+\sqrt{n}}-\sqrt{n}$ et de $\left(\frac{\ln(n)}{n}\right)^{1/n}$.
- 3. On définit deux suites u et v via

$$\forall n \in \mathbb{N}, u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n \cdot n!}$

Démontrer que ces suites adjacentes et que leur limite commune est irrationnelle.

Kholle 8 filière MPSI Planche 2

- 1. Soit u une suite numérique convergente. Démontrer que sa limite est unique.
- 2. Étudier les limites éventuelles quand n tend vers $+\infty$ de $n^2/\ln(e^n+1)$ et de $\ln(1+1/n)\ln(\ln((n+1)/n))$.
- 3. On suppose qu'il existe une suite $x : \mathbb{N} \to \mathbb{R}$ bijective de \mathbb{N} dans \mathbb{R} .
 - (a) Construire deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, a_n \le a_{n+1} < b_{n+1} \le b_n$$
, et $x_n \notin [a_{n+1}, b_{n+1}]$

(b) Aboutir à une contradiction.

Kholle 8 filière MPSI Planche 3

- 1. Énoncer et démontrer le théorème de convergence monotone des suites numériques.
- 2. Étudier les limites éventuelles quand n tend vers $+\infty$ de $n\lfloor 1/n\rfloor$ et de $(\ln(n) + \sin(n))^2$.
- 3. On dit qu'une suite *u* est de Cauchy lorsque

$$\forall \varepsilon > 0, \exists \, N \in \mathbb{N}, \forall \, p \geq N, \forall \, q \geq N, |u_p - u_q| \leq \varepsilon$$

Montrer qu'une telle suite est bornée, puis qu'elle est convergente.

Kholle 7 filière MPSI Bonus

1. Soient $(a_n)_{n\in\mathbb{N}}$ une suite réelle positive, bornée et $(u_n)_{n\in\mathbb{N}}$ la suite récurrente défnie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{u_n + a_n + 1}.$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge si, et seulement si, la suite $(a_n)_{n\in\mathbb{N}}$ converge.

2. On considère les suites u et v définies par

$$\forall n \in \mathbb{N}^*, u_n = \sum_{p=n+1}^{2n} \frac{1}{p}$$
 et $v_n = \sum_{p=n}^{2n-1} \frac{1}{p}$

Démontrer que ces suites sont adjacentes et que leur limite commune vaut ln(2).

