Informática I

Sistemas de numeración y representación de números signados

Daniel Slavutsky / Axel Gómez / Hernán Trinidad

Sistemas de numeración

Sistemas de numeración

Se entiende como sistemas de numeración a un conjunto de símbolos y reglas que permiten presentar datos numéricos.

Actualmente los sistemas de numeración son posicionales, es decir:

"los símbolos tienen distintos valores según su posición"

Este sistema se caracteriza por tener 10 símbolos

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

es denominado también de base 10

Un ejemplo:

 $693|_{10}$ se puede escribir de la forma: 600 + 90 + 3

o lo que es lo mismo:

$$6*10^2 + 9*10^1 + 3*10^0$$

La fórmula general, entonces, resulta:

$$a*10^n + b*10^{n-1} + c*10^{n-2} + ... + y*10^1 + z*10^0$$

 $con n \in N$

Adicionalmente, podemos enunciar la fórmula general para representar un número con decimales:

$$a*10^{n} + b*10^{n-1} + c*10^{n-2} + ... + w*10^{1} + x*10^{0} + y*10^{-1} + z*10^{-2}$$

$$con n \in Z$$

Por ejemplo:

 $27,41|_{10}$ se puede escribir de la forma:

$$2*10^{1} + 7*10^{0} + 4*10^{-1} + 1*10^{-2}$$

Este sistema se caracteriza por tener 2 símbolos:

0, 1

es denominado también de base 2

La fórmula general de pasaje de un número en sistema binario a decimal, resulta:

$$a^*2^n + b^*2^{n-1} + c^*2^{n-2} + ... + y^*2^1 + z^*2^0$$

 $con n \in N$

Por ejemplo:

 $1101|_2$ equivale a:

$$1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} =$$

 $8 + 4 + 0 + 1 = 13|_{10}$

Para pasar del sistema decimal a binario realizaremos <u>divisiones sucesivas</u> por el número de la base del sistema binario (2).

Entonces realizaremos <u>divisiones sucesivas por 2</u>

Por ejemplo: $13|_{10}$

Ahora, tomemos el resultado de la última división y los restos en el orden inverso al obtenido:

$$1101|_{2} = 13|_{10}$$

Este sistema se caracteriza por tener 8 símbolos:

0, 1, 2, 3, 4, 5, 6, 7

es denominado también de base 8

La fórmula general de pasaje de un número en sistema octal a decimal es:

$$a^*8^n + b^*8^{n-1} + c^*8^{n-2} + ... + y^*8^1 + z^*8^0$$

 $con n \in N$

Por ejemplo:

741₈ equivale a:

$$7*8^2 + 4*8^1 + 1*8^0$$

$$448 + 32 + 1 = 481|_{10}$$

Para pasar del sistema decimal a octal realizaremos <u>divisiones sucesivas</u> por el número de la base del sistema octal (8).

Entonces realizaremos <u>divisiones sucesivas por 8</u>

Por ejemplo: $481|_{10}$

$$481 / 8 = 60$$
, resto: 1

$$60 / 8 = 7$$
, resto: 4

Ahora, tomemos el resultado de la última división y los restos en el orden inverso al obtenido:

$$741|_{8} = 481|_{10}$$

Este sistema se caracteriza por tener 16 símbolos:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

es denominado también de base 16

La fórmula general de pasaje de un número en sistema hexadecimal a decimal es:

$$a*16^n + b*16^{n-1} + c*16^{n-2} + ... + y*16^1 + z*16^0$$

 $con n \in N$

Tabla de equivalencias:

Hexadecimal	Decimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

Hexadecimal	Decimal
8	8
9	9
А	10
В	11
С	12
D	13
Е	14
F	15

Por ejemplo:

 $1FD|_{16}$ equivale a:

$$1*16^2 + 15*16^1 + 13*16^0$$

$$256 + 240 + 13 = 509|_{10}$$

Para pasar del sistema decimal a hexadecimal realizaremos <u>divisiones</u> <u>sucesivas</u> por el número de la base del sistema hexadecimal (16). Entonces realizaremos <u>divisiones sucesivas por 16</u>

Por ejemplo: 509₁₀

509 / 16 = 31, resto: 13

31 / 16 = 1, resto: 15

Ahora, tomemos el resultado de la última división y los restos en el orden

inverso al obtenido:

1, 15, 13

1, 15, 13

Según la tabla de equivalencias busquemos la equivalencia de cada dígito decimal al sistema hexadecimal:

$$1|_{10} = 1|_{16}$$

$$|15|_{10} = F|_{16}$$

$$|13|_{10} = D|_{16}$$

Finalmente:

$$509|_{10} = 1FD|_{16}$$

Resumen

Resumen:

- Sistemas de numeración:
 - decimal
 - binario
 - octal
 - hexadecimal
- Pasajes entre sistemas:
 - decimal a binario (divisiones sucesivas)
 - binario a decimal *(fórmula general)*
 - decimal a octal (divisiones sucesivas)
 - octal a decimal *(fórmula general)*
 - decimal a hexadecimal (divisiones sucesivas)
 - hexadecimal a decimal *(fórmula general)*

Tabla de equivalencias

Tabla de equivalencias:

Hexadecimal	Decimal	Octal	Binario
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111

Hexadecimal	Decimal	Octal	Binario
8	8	10	1000
9	9	11	1001
А	10	12	1010
В	11	13	1011
С	12	14	1100
D	13	15	1101
Е	14	16	1110
F	15	17	1111

Representación de números signados

Representación de números signados

En la vida cotidiana la representación de números y su signo (positivo y negativo) se realiza mediante símbolos (+ y -)

Las computadoras reconocen el sistema binario, por lo que resultaría

imposible que reconozcan un símbolo + o un símbolo -

Representación de números signados

Hete aquí, que para operar con números signados se crearon los convenios:

- "Signo y Magnitud"
- "Complemento a 1"
- "Complemento a 2"

Signo y Magnitud

Signo y magnitud:

El convenio consiste en reservar un bit al signo y los bits restantes a la magnitud del valor a representar.

El bit reservado será 0 si el número es positivo y 1 si el número es negativo.

Entonces, para un número de n bits:

0 Magnitud (n-1)bitsNúmero positivo

1 Magnitud (n-1)bits

Número negativo

Complemento a 1

Complemento a 1:

Si el número es positivo su representación es exactamente igual a su representación en el sistema binario (tomando en cuenta la totalidad de los bits)

Si el número es negativo su representación se verá afectada por:

1. Invertir los bits

Not: Esta operación se conoce con el nombre de operación a nivel de bit.

Complemento a 2

Complemento a 2:

Si el número es positivo su representación es exactamente igual a su representación en el sistema binario (tomando en cuenta la totalidad de los bits)

Si el número es negativo su representación se verá afectada por:

- 1. Invertir los bits
- 2. Sumar 1 LSB (Least Significant Bit ó Bit Menos Significativo)

Nota: el bit menos significativo equivale al número de menor valor en el sistema que se trate (en nuestro caso: binario), es decir, el número 1.

Complemento a 1

Complemento a 2

Binario	Decimal
011	+3
010	+2
001	+1
000	0
111	0
110	-1
101	-2
100	-3

Binario	Decimal
011	+3
010	+2
001	+1
000	0
111	-1
110	-2
101	-3
100	-4

Fuentes:

- http://platea.pntic.mec.es/~lgonzale/tic/binarios/numeracion.html
- https://riunet.upv.es/bitstream/handle/10251/39555/signo_y_magnitud.pdf?sequence=3
- http://arantxa.ii.uam.es/~ig/practicas/enunciados/prac3/operacionescomplementoa1.pdf
- http://arantxa.ii.uam.es/~ig/practicas/enunciados/prac3/operacionescomplementoa2.pdf
- https://pvjl.pbworks.com/f/complemento%20a%202.pdf

