

teaching@ths.rwth-aachen.de
https://ths.rwth-aachen.de/teaching/

Satisfiability Checking - WS 2023/2024 Series 9

Exercise 1

Consider the first-order logical formula over the integers with addition:

$$\varphi^{LIA} := 2 \cdot x_1 \ge 1 \wedge 2 \cdot x_2 \ge 1 \wedge -2 \cdot x_1 - x_2 \ge -3$$

Show how a theory solver that employs a Simplex algorithm with branch and bound solves this formula.

For pivoting, choose the smallest variable and branch on the smallest variable x_k according to the following variable order:

$$s_1 < \cdots < s_7 < x_1 < x_2$$

Branch for $x_k \leq i$ first and for $x_k \geq i+1$ afterwards.

Solution:

First build the initial tableau:

The initial assignment for all variables is

$$\alpha(s_1) = 0, \alpha(s_2) = 0, \alpha(s_3) = 0, \alpha(x_1) = 0, \alpha(x_2) = 0$$

We apply the Simplex method. The first variable violating its bound is s_1 , only x_1 is suitable to fix this. We solve the equation for the row of s_1 :

$$s_1 = 2 \cdot x_1 \Leftrightarrow x_1 = 0.5 \cdot s_1$$

We substitute and update the tableau and the assignments:

$$\alpha(s_1) = 1, \alpha(s_2) = 0, \alpha(s_3) = -1, \alpha(x_1) = 0.5, \alpha(x_2) = 0$$

The first variable violating its bound is s_2 , only x_2 is suitable to fix this. We solve the equation for the row of s_2 :

$$s_2 = 2 \cdot x_2 \Leftrightarrow x_2 = 0.5 \cdot s_2$$

We substitute and update the tableau and the assignments:

1

$$\alpha(s_1) = 1, \alpha(s_2) = 1, \alpha(s_3) = -1.5, \alpha(x_1) = 0.5, \alpha(x_2) = 0.5$$

Now, all variables satisfy their bounds and we obtain $x_1 = 0.5, x_2 = 0.5$ as first real assignment. We select x_1 for branching and try $x_1 \le 0$ first. We add a new constraint with a new slack variable s_4 .

$$\frac{\begin{array}{c|c|c|c} s_1 & s_2 \\ \hline x_1 & 0.5 & 0 \\ \hline x_2 & 0 & 0.5 \\ \hline s_3 & -1 & -0.5 \\ \hline s_4 & 0.5 & 0 \\ \hline \end{array} \quad \begin{array}{c|c|c} s_1 \geq 1 \\ s_2 \geq 1 \\ s_3 \geq -3 \\ s_4 \leq 0 \\ \hline \end{array}$$

$$\alpha(s_1) = 1, \alpha(s_2) = 1, \alpha(s_3) = -1.5, \alpha(s_4) = 0.5, \alpha(x_1) = 0.5, \alpha(x_2) = 0.5$$

 s_4 violates its bound, but s_1 is not suitable for pivoting. Hence, we continue with the other branch $x_1 \ge 1$: We backtrack and add a new slack variable s_5 .

$$\frac{\begin{array}{c|c|c} s_1 & s_2 \\ \hline x_1 & 0.5 & 0 \\ \hline x_2 & 0 & 0.5 \\ \hline s_3 & -1 & -0.5 \\ \hline s_5 & 0.5 & 0 \end{array} \quad \begin{array}{c|c} s_1 & \geq & 1 \\ s_2 & \geq & 1 \\ s_3 & \geq & -3 \\ s_5 & \geq & 1 \\ \hline \alpha(s_1) = 1, \alpha(s_2) = 1, \alpha(s_3) = -1.5, \alpha(s_5) = 0.5, \alpha(x_1) = 0.5, \alpha(x_2) = 0.5
\end{array}$$

 s_5 violates its bound and s_1 is suitable for pivoting. We solve the equation for the row of s_5 :

$$s_5 = 0.5s_1 \Leftrightarrow s_1 = 2 \cdot s_5$$

We substitute and update the tableau and the assignments:

Now, all variables satisfy their bounds and we obtain $x_1 = 1, x_2 = 0.5$ as real assignment. We select x_2 for branching and try $x_2 \le 0$ first. We add a new constraint with a new slack variable s_6 .

$$\alpha(s_1) = 2, \alpha(s_2) = 1, \alpha(s_3) = -2.5, \alpha(s_5) = 1, \alpha(s_6) = 0.5, \alpha(x_1) = 1, \alpha(x_2) = 0.5$$

 s_6 violates its bound, but s_2 is not suitable for pivoting. Hence, we continue with the other branch $x_2 \ge 1$: We backtrack and add a new slack variable s_7 .

$$\alpha(s_1) = 2, \alpha(s_2) = 1, \alpha(s_3) = -2.5, \alpha(s_5) = 1, \alpha(s_7) = 0.5, \alpha(x_1) = 1, \alpha(x_2) = 0.5$$

 s_7 violates its bound and s_2 is suitable for pivoting. We solve the equation for the row of s_7 :

$$s_7 = 0.5s_2 \Leftrightarrow s_2 = 2 \cdot s_7$$

We substitute and update the tableau and the assignments:

	s_5	<i>s</i> ₇			1
x_1	1	0	s_1	<u>></u>	1
x_2	0	1	s_2	>	<u>-</u> 3
s_3	-2	-1	s_5	>	1
s_1	2	0	S7	>	1
s_2	0	2	- 1	_	_

$$\alpha(s_1) = 2, \alpha(s_2) = 2, \alpha(s_3) = -3, \alpha(s_5) = 1, \alpha(s_7) = 1, \alpha(x_1) = 1, \alpha(x_2) = 1$$

Now, all variables satisfy their bounds and we obtain $x_1 = 1, x_2 = 1$ as real assignment. As this assignment is integral, we are done and obtain a satisfying assignment for the input formula.