

Chapter 4. Frequency Analysis: The Fourier Series

Han-You Jeong

Networked Smart Systems Laboratory

Department of Electrical Engineering

Pusan National University

CONTENTS

- Introduction
- Eigenfunctions Revisited
- Complex Exponential Fourier Series
 - Line Spectra
 - Trigonometric Fourier Series
 - Fourier Coefficients from Laplace
 - Convergence of the Fourier Series
 - Time and Frequency Shifting
- Response of LTI Systems to Periodic Signals
- Operations Using Fourier Series

Introduction

- This chapter considers
 - Spectral representation: The frequency representation of periodic and aperiodic signals indicates how their power or energy is allocated to different frequencies.
 - The spectrum of a periodic signal is discrete, as its power is concentrated at frequencies multiples of fundamental frequency.
 - The spectrum of a aperiodic signal is a continuous function of frequency.
 - Eigenfunctions and Fourier analysis: Complex exponentials and sinusoids are used in the Fourier representation of signals by taking advantage of the eigenfunction property of LTI systems.
 - Steady-state analysis: Fourier analysis is in the steady state, while
 Laplace analysis considers both transient and steady state.
 - Application of Fourier analysis: The frequency representation of signals and systems is extremely important in signal processing and in communications.

EIGENFUNCTIONS REVISITED

Eigenfunctions Revisited

If $x(t) = e^{j\Omega_0 t}$, $-\infty < t < \infty$ is the input to a **causal** and a **stable system** with **impulse response** h(t), the output in the steady state is given by

$$y(t) = e^{j\Omega_0 t} H(j\Omega_0)$$

where

$$H(j\Omega_0) = \int_0^\infty h(\tau)e^{-j\Omega_0\tau} d\tau$$

is the **frequency response** of the system at Ω_0 .

- The input signal x(t) is a linear combination of complex exponentials, with different amplitudes, frequencies, and phases, or

$$x(t) = \sum_{k} X_{k} e^{j\Omega_{k}t} \implies y(t) = \sum_{k} X_{k} e^{j\Omega_{k}t} H(j\Omega_{k})$$

EIGENFUNCTIONS REVISITED

Eigenfunctions Revisited

The input signal is an integral (a sum, after all) of complex exponentials,

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega \implies y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} H(j\Omega) d\Omega$$

- The frequency response is $H(j\Omega) = H(s)|_{s=j\Omega}$.
 - Its magnitude is an even function of frequency, or $|H(j\Omega)| = |H(-j\Omega)|$.
 - Its phase is an odd function of frequency, or $\angle H(j\Omega) = -\angle H(-j\Omega)$.
- One application of LTI systems is filtering, where one is interested in preserving desired frequency and getting rid of less-desirable components of a signal.

EIGENFUNCTIONS REVISITED

Phasor Interpretation of Eigenfunction Property

For a stable LTI system with transfer function H(s), if the input is

$$x(t) = A \cos (\Omega_0 t + \theta) = Re[Xe^{j\Omega_0 t}]$$

where $X = Ae^{j\theta}$ is the phasor of x(t), the steady-state output of the system is

$$y(t) = Re[XH(j\Omega_0)e^{j\Omega_0t}] = Re[AH(j\Omega_0)e^{j(\Omega_0t+\theta)}]$$
$$= A|H(j\Omega_0)|\cos(\Omega_0t + \theta + \angle H(j\Omega_0))$$

where the **frequency response** of the system at Ω_0 is

$$H(j\Omega_0) = H(s)\Big|_{s=i\Omega} = Y/X$$

[Ex 4.1] Consider the RC circuit with R = 1Ω and C = 1F. Let voltage source be $v_s(t) = 4\cos(t + \pi/4)$ volts, find the steady-state voltage across the capacitor.

Complex Exponential Fourier Series

- Fourier series is a representation of a periodic signal x(t) in terms of complex exponentials or sinusoids of frequency multiples of its fundamental frequency.
 - Consider a set of complex functions $\{\psi_k(t)\}\$ defined in [a,b]. Let's say $\psi_l(t)$ and $\psi_m(t)$, $l \neq m$, is called **orthonormal**, iff

$$\int_a^b \psi_l(t)\psi_m^*(t) \ dt = \begin{cases} 0 & l \neq m \\ 1 & l = m \end{cases}$$

— A finite energy signal x(t) defined in [a,b] can be approximated by a series

$$\widehat{x}(t) = \sum_{k} a_{k} \psi_{k}(t)$$

- We consider a **periodic signal** x(t) such that
 - It is defined for $-\infty < t < \infty$.
 - For any integer k, $x(t + kT_0) = x(t)$, where T_0 is the fundamental period.

Complex Exponential Fourier Series

The Fourier series representation of a periodic signal x(t) of period T_0 is an infinite sum of weighted complex exponentials with frequency multiples of the signal's fundamental frequency $\Omega_0 = 2\pi/T_0$, or

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t} \qquad \Omega_0 = \frac{2\pi}{T_0}$$

where the Fourier coefficients X_k are found according to

$$X_{k} = \frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t) e^{-jk\Omega_{0}t} dt$$

for $k=0,\pm 1,\pm 2,\cdots$ and any t_0 .

Parseval's Theorem

- Periodic signals are infinite-energy finite-power signals.
 - Fourier series provides a way to find how much of the signal power is in a certain band of frequencies.

The power P_x of a periodic signal x(t) of period T_0 can be equivalently calculated in either the time or the frequency domain:

$$P_x = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_k |X_k|^2$$

- The power of the signal is distributed over the **harmonic** frequencies $\{k\Omega_0\}$.
 - Given the discrete nature of the harmonic frequencies, this plot consists of a line at each frequency, which is called the power line spectrum.

Symmetry of Line Spectra

```
For a real-valued periodic signal x(t) of period T_0, the Fourier coefficients \{X_k = |X_k|e^{j\angle X_k}\} at harmonic frequencies \{k\Omega_0 = 2\pi k/T_0\} we have that X_k = X_{-k}^*. Equivalently, |X_k| = |X_{-k}| (even function) and \angle X_k = -\angle X_{-k} (odd function).
```

Trigonometric Fourier Series

The trigonometric Fourier series of a real-valued periodic signal x(t) of period T_0 , is given by

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\Omega_0 t + \theta_k)$$

$$= X_0 + 2\sum_{k=1}^{\infty} [c_k \cos(k\Omega_0 t) + d_k \sin(k\Omega_0 t)] \qquad \Omega_0 = \frac{2\pi}{T_0}$$

where $X_0 = c_0$ is the **DC component** and $2|X_k|\cos(k\Omega_0t + \theta_k)$ are the **k-th harmonics**.

$$c_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \cos(k\Omega_0 t) dt \quad k = 0, 1, ...$$

$$d_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \sin(k\Omega_0 t) dt \quad k = 1, 2, ...$$

Example

[Ex 4.4] Find the Fourier series of a raised-cosine signal $(B \ge A)$,

$$x(t) = B + A \cos(\Omega_0 t + \theta)$$

which is periodic with period T_0 and fundamental frequency $\Omega_0=2\pi/T_0.$ Call

$$y(t) = B + A \cos(\Omega_0 t - \pi/2),$$

then find its Fourier series coefficients and compare them to those for x(t). Use symbolic MATLAB to compute the Fourier series of $y(t) = 1 + \sin(100t)$, find and plot its magnitude and phase line spectra.

Fourier Coefficients from Laplace

For a periodic signal x(t) of period T_0 , if we know or easily compute the Laplace transform of a period of x(t)

$$x_1(t) = x(t)[u(t - t_0) - u(t - t_0 - T_0)]$$

Then the Fourier coefficients of x(t) are given by

$$X_k = \frac{1}{T_0} \mathcal{L}[x_1(t)]_{s=jk\Omega_0} \qquad \qquad \Omega_0 = \frac{2\pi}{T_0}$$

[Ex 4.5] Consider the periodic pulse train x(t) of period $T_0 = 1$, shown below. Find its Fourier series.

Reflection and Even/Odd Periodic Signals

The Fourier coefficients of x(-t) are $\{X_{-k}\}$.

The Fourier coefficients X_k of even periodic signal x(t) are real, and its trigonometric Fourier series is

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} X_k \cos(k\Omega_0 t)$$

The Fourier coefficients X_k of odd periodic signal x(t) are imaginary and its trigonometric Fourier series is

$$x(t) = 2\sum_{k=1}^{\infty} jX_k \sin(k\Omega_0 t)$$

For any periodic signal $x(t) = x_e(t) + x_o(t)$, then

$$X_k = X_{ek} + X_{ok} = 0.5[X_k + X_{-k}] + 0.5[X_k - X_{-k}]$$

Examples

[Ex 4.6] Consider the periodic signals x(t) and y(t) shown in below. Determine their Fourier coefficients by using the symmetry conditions and the even-odd decomposition.

Examples

[Ex 4.7] Find the Fourier series of full-wave rectified signal $x(t) = |\cos \pi t|$

shown below.

[Ex 4.8] Consider a train of triangular pulses y(t) with fundamental period $T_0 = 2$. Let x(t) = dy(t)/dt. Find its Fourier series and compare $|X_k|$ and $|Y_k|$ to determine which of the signals is smoother.

Convergence of Fourier Series

• A signal x(t) is said to be piecewise smooth if it has a finite number of discontinuities, while a smooth signal has a derivative that changes continuously.

The Fourier series of a piecewise smooth periodic signal x(t) converges for all values of t. The sufficient condition of the Fourier series convergence is (over a one period)

- Be absolutely integrable
- Have a finite number of maxima, minima, and discontinuities.

The infinite series equals x(t) at every continuity point and equals the average $0.5[x(t+0^+)+x(t+0^-)]$ of the right limit $x(t+0^+)$ and the left limit $x(t+0^-)$ at every discontinuity point.

Gibb's Phenomenon

- Although the Fourier series converges to the arithmetic average at discontinuities, there is a ringing before and after the discontinuity point, called Gibb's phenomenon.
 - The smoother the signal x(t) is, the easier it is to approximate it with a Fourier series with a finite number of terms.
 - The N-th order approximation of a periodic signal x(t) is

$$X_N(t) = \sum_{k=-N}^{N} X_k e^{jk\Omega_0 t}$$

The average quadratic error over a period is

$$E_N = \frac{1}{T_0} \int_{T_0} \left[x(t) - x_N(t) \right]^2 dt$$

Examples

[Ex 4.11] We wish to approximate x(t) below by $x_2(t)=\alpha+2\beta\cos\Omega_0t$. Compute α and β to minimize the mean-square error

$$E_2 = \frac{1}{T_0} \int_{T_0} \left[x(t) - x_2(t) \right]^2 dt$$

Time and Frequency Shifting

Time shifting causes only a change in phase.

- A periodic signal x(t) of period T_0 remains periodic of the same period when shifted in time. If X_k are the Fourier coefficients of x(t), the Fourier coefficients for $x(t-t_0)$ are

$$\left\{X_k e^{-jk\Omega_0 t_0} = |X_k| e^{j(\angle X_k - k\Omega_0 t_0)}\right\}$$

When a periodic signal x(t) of period T_0 modulates a complex exponential $e^{j\Omega_1 t}$ (frequency shifting).

- If $\Omega_1 = M\Omega_0$ for an integer $M \ge 1$, the modulated signal $x(t)e^{j\Omega_1 t}$ is periodic with period T_0 .
- The Fourier coefficients X_k are shifted to frequencies $k\Omega_0 + \Omega_1$.
- The modulated signal is real-valued by $x(t) \cos \Omega_1 t$.

RESPONSE OF LTI SYSTEMS TO PERIODIC SIGNALS

Response of LTI Systems to Periodic Signals

If the input x(t) of a causal and stable LTI system, with impulse response h(t), is periodic of period T_0 and has the Fourier series

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\Omega_0 t + \angle X_k) \qquad \Omega_0 = \frac{2\pi}{T_0}$$

the steady-state response of the system is

$$y(t) = X_0|H(j\mathbf{0})|\cos(\angle H(j\mathbf{0})) + 2\sum_{k=1}^{\infty}|X_k||H(jk\Omega_0)|\cos(k\Omega_0t + \angle X_k + \angle H(jk\Omega_0))$$

where

$$H(jk\Omega_0) = \int_0^\infty h(\tau)e^{-jk\Omega_0\tau} d\tau$$

is the frequency response of the system at $k\Omega_0$.

Sum of Periodic Signals

```
If x(t) and y(t) are periodic signals with the same fundamental frequency \Omega_0. The Fourier series coefficients of z(t) = \alpha x(t) + \beta y(t) are Z_k = \alpha X_k + \beta Y_k.

If x(t) is periodic of period T_1 and y(t) is periodic of period T_2 such that T_2/T_1 = N/M for non-divisible integers N and M. The Fourier series coefficients of z(t) = \alpha x(t) + \beta y(t) are periodic of period T_0 = MT_2 = NT_1, are Z_k = \alpha X_{k/N} + \beta Y_{k/M} for integers k such that k/N, and k/M are integers.
```

[Ex 4.15] Consider the sum z(t) of a periodic signal x(t) of period $T_1 = 2$, with a periodic signal y(t) with period $T_2 = 0.2$. Find the Fourier coefficients Z_k of z(t) in terms of the Fourier coefficients X_k and Y_k .

Multiplication of Periodic Signals

If x(t) and y(t) are periodic signals of the same period T_0 , then their product z(t) = x(t)y(t) is also periodic of period T_0 , and with Fourier coefficients that are the convolution sum of the Fourier coefficients of x(t) and y(t):

$$Z_k = \sum_{l} X_l Y_{k-l}$$

[Ex 4.16] Consider the train of rectangular pulses x(t) shown below. Let $z(t) = 0.25 \ x^2(t)$. Use the Fourier series z(t) to show that

$$X_k = \alpha \sum_{m} X_m X_{k-m}$$

for some constant α . Determine α .

Derivatives and Integrals of Periodic Signals

The derivative dx(t)/dt of periodic signal x(t), of period T_0 , is periodic of the same period T_0 . If X_k are the coefficients of the Fourier series of x(t), the Fourier coefficients of dx(t)/dt are $jk\Omega_0X_k$.

For a zero-mean, periodic signal y(t), of period T_0 , the integral

$$z(t) = \int_{-\infty}^{t} y(\tau) \ d\tau$$

is periodic of the same period as y(t), with Fourier coefficients

$$Z_k = \frac{Y_k}{jk\Omega_0}$$
 $k \neq 0$, $Z_0 = -\sum_{m\neq 0} Y_m \frac{1}{jm\Omega_0}$ $\Omega_0 = \frac{2\pi}{T_0}$

Examples

[Ex 4.17] Let g(t) be the derivative of a triangular train of pulses f(t), of period $T_0 = 1$. The period of f(t), $0 \le t \le 1$, is

$$f_1(t) = 2r(t) - 4r(t - 0.5) + 2r(t - 1)$$

Use the Fourier series of g(t) to find the Fourier series of f(t).

[Ex 4.18] Find the Fourier coefficients Z_k of z(t)

$$z(t) = \int_{-\infty}^{t} g(\tau) \ d\tau$$

where g(t) is defined in [Ex 4.17]

Thank You

