Lecture 2 (2011-10-13):

Definition 2.1 (connected):

A graph is called *connected* (zusammenhängend) if there exists a [s,t]-Path between all pairs of vertices $s, t \in V$.

Definition 2.2 (forrest, tree, spanning, forest problem, minimum spanning tree): A *forest* (Wald) is a graph that does not contain a cycle (Kreis). A connected forest is called a *tree* (Baum). A tree in a graph (as subgraph) is called *spanning* (aufspannend), if it contains all vertices.

Given a graph G=(V,E) with edge weights $c_e\in\mathbb{R}$ for all $e\in E$, the task to find a forest $W\subset E$ such that $c(W):=\sum_{e\in W}$ is maximal, is called the *Maximum Forest*

Problem (Problem des maximalen Waldes). The task to find a tree $T \subset E$ which spans G and which weight c(T) is minimal, is called the *Minimum Spanning Tree* (MST) problem (minimaler Spannbaum).

Lemma 2.3:

A tree G = (V, E) with at leat 2 vertices has at least 2 vertices of degree 1.

Proof. Let v be arbitrary. Since G is connected, $deg(v) \geq 1$. Assume deg(v) = 1. So $\delta(v) = \{vw\}$. If deg(w) = 1, we found two vertices with $degree\ 1$. If deg(w) > 1, there exist a neighbour of w, different from v : u. Now, again u has $degree\ 1$ or higher. If we repeat this procedure we either find a vertix of degree 1 or find again new vertices. Hence, after at most n-1 vertices we end up at a vertex of degree 1. Now, if $deg(v) \geq 2$, we do the same and find a vertex of degree 1, say w. Then repeat the above, staring from w to find a second vertex of degree 1.

Corollary 2.4:

A tree G = (V, E) with maximum degree Δ has at least Δ vertices of degree 1.

Lemma 2.5: (a) For every graph G = (V, E) it holds that $2|E| = \sum_{u \in V} deg(u)$

(b) for every tree G = (v, E) it holds that |E| = |V| - 1.

Proof. (a) trivial

(b) Proof by induction. Clearly, if |V|=1 or |V|=2 it holds. Assumption: true for $n\geq 2$. Let G be a tree with n+1 vertices. By Lemma 2.3, there exists a vertex $v\in G$ with $deg(v)=1.G-v=G[V\setminus \{v\}]$ is a tree again with n vertices and thus |E(G-v)|=V(G-v)|-1. Since G differs by one vertex and one edge from G-v, the claim holds got G as well.

Lemma 2.6:

If G = (V, E) whith $|V| \ge 2$ has |E| < |V| - 1, G is not connected.

Algorithm MST

$$\begin{aligned} & \min_{x \in X} = -max_{x \in X} - c(x) \text{ maximal forest} \\ & \text{X spanning trees} \\ & \min_{x \in X} + (n-1)D = -max_{x \in X} - c(x)(n-1)D = max_{x \in X} \sum \underbrace{D - C_{ij}x_{ij}}_{\geq 0 \text{ if } D \geq max_{ij \in E}c_{ij}} \end{aligned}$$

Theorem 2.7:

Kruskal's Algorithm returns the optimal solution.

Proof. Let T be Kruskal's tree and assume there exists a tree T' with c(T') < c(T). Then there exist an edge $e' \in T' \setminus T$. Then $T \cup \{e'\}$ contains a cycle $\{e_1, e_2, \ldots, e_k, e'\}$. Let $c_f = \max_{i=1,\ldots,k} c_{l_i}$. At the moment Kruskal chooses edge f, edge e' cannot be added yet and therefore $c(e') \geq c(f)$. Now exchange e' by f in T'. Hence the number of differences beetween T' and T is reduced by one, $C(T'_{new}) \leq c(T') < c(T)$. Repeating the procedure results in $c(T) \leq \ldots < c(T)$, a contradiction.

Lecture 3 (2011-10-17):

Definition 2.7(+1):

The *running time of algorithms* (Laufzeit) of an algorithm is measured by the number of operations needed in worst case of a function of the input size. We use the $O(\cdot)$ notation (Big-O-notation) ot focus on the most important factor of the running time, ignoring constants and smaller factors.

Example 2.7(+2):

If the running time is $3n \cdot \log n + 26n$, the algorithm runs in $O(n \cdot \log n)$. If the running time is $3n \cdot \log n + 25n^2$, the algorithm runs in $O(n^2)$.

For graph Problems, the running is expressed in the number of vertices n = |V| and the number of edges m = |E|. Sometimes m is approximated by n^2 .

Example 2.7(+3) (Kruskal's Algorithm):

First, the edged are sorted according to nondecreasing weights. This can be done in $O(m \cdot \log m)$. Next, we repeatedly select an edge or reject its selection until n-1 edges are selected. Since the last selected edge might be after m steps, this routine is performed at most O(m) times.

Checking whether the end nodes of $\{u,v\}$ are already in the same tree can be done in constant time, if we label the vertices of the trees selected so far: $r(u) = \#trees\ containing\ u$. If $r(u) \neq r(v)$, the trees are connected by $\{u,v\}$ to a new tree.

Without going into details, the resetting of labels in one of the old trees, can be done $O(\log n)$ on average. Since this update has to be done at most n-1 times, it takes $O(n \cdot \log n)$.

Overall, Kruskal runs in

$$O(n\log m + m + n \cdot \log n) = O(m \cdot \log m) = O(m \cdot \log n^2) = O(m \cdot \log n)$$

Definition 2.7(+4) (Shortest paths in acyclic digraphs):

A directed graph (digraph) D=(V,A) is called *acyclic* (azyklisch) if it does not contain any *directed cycles*, i.e. a *chain* (Kette) $(v_0,a_1,v_1,a_2,v_2,\ldots a_k,v_k)$, $k\geq 0$, with $a_i(v_{i-1},v_i)\in A$ and $v_k=v_0$. In particular, D does not contain *antiparallel* arcs: if $(u,v)\in A$, $(v,u)\not\in A$. With $\delta_D^+(v)$ we denote the arcs leaving vertex v:

$$\delta_D^+(v) = \{(u, w) \in A : u = v\}$$

similarly:

$$\delta_D^-(v) = \{(u, w) \in A : w = v\}$$

are the arcs entering v.

The *outdegree* of v is $deg_D^+(v) = |\delta^+(v)|$ (assuming simple digraph)

The *indegree* of v is $deg_D^-(v) = |\delta^-(v)|$

Definition 3.1:

The *shortest path* problem in a acyclic digraph is, given an acyclic digraph D = (V, A), a length function $C : A \to \mathbb{R}$ and two vertices $s, t \in V$, find a [s, t]-path of minimal length.

Question 1:

Does there exist a [s, t]-path at all?

Theorem 3.2:

A digraph D=(V,A) is acyclic, if and only if there exists a permutaion $\sigma:V\to\{1,...,n\}$ of the vertices such that $\deg_{D[v_1,...,v_n]}^-(v_i)=0$ for all i=1,...,n with $v_i=\sigma^{-1}(i)$.

Proof. By induction:

For digraph with |V|=1, the statement is true. Assume the statement is true for all digraphs with $|V|\leq n$ and consider D=(V,A) acyclic with n+1 vertices. If there does not exist a vertex with $\deg_D^-(v)=0$, a directed cycle can be detected by following incoming arcs backwards until a vertex is repeated, a contradiction regarding the acyclic property of D.

Hence, let v be a vertex with $\deg_D^-(v) = 0$. Set $v_1 = v$. The digraph $D - v_1$ has n vertices and is acyclic, and thus has a permutation (v_2, \ldots, v_{n+1}) with

$$\deg_{D[v_i,\ldots,v_{n+1}]}^-(v_i)=0 \qquad \forall i=2,\ldots,n+1$$

Now, (v_1, \ldots, v_{n+1}) is a permutation fulfilling the condition.

In reverse, if there exists a permutation $(v1, \ldots, v_{n+1})$, $\deg_D^-(v_1) = 0$ and there cannot exist a directed cycle containing v_1 . By induction, neither cycles containing v_i , $i = 2, \ldots, n+1$ exist.

Theorem 3.3:

A [s, t]-path exists in a acyclic Digraph D=(V,A) if and only if in all permutations $\sigma:V\to\{1,\ldots,n\}$ with $\deg_{D[v_i,\ldots,v_n]}^-(v_i)=0$ for all $i=1,\ldots,n$, it holds that $\sigma(s)<\sigma(t)$.

Proof. Assume there exists a permutation σ with $\sigma(s) > \sigma(t)$. Since outgoing arcs only go to higher ordered vertices, there does not exist a path from s to t in D.

In reverse, if there does not exist a path from s to t, we order all vertices with paths to t first, followed by t and s afterwards.

Question 2:

How do we find the shortest [s, t]-path if it exists?

To simplify notation, let $V = \{1, ..., n\}$, s = 1, t = n and $(i, j) \in A \Rightarrow i < j$. Let D(i) be the distance from i to n and NEXT(i) be the next vertex on the shortest path from i to n.

Bellmann's Algorithm

- (a) $D(i) = {\infty : i < nandNEXT(i) = NIL, 0 : i = n}$
- (b) FOR i = n 1 DOWNTO 1 DO
- (c) $D(i) = \min_{j=i+1,\ldots,n} \{D(j) + c(i,j)\} \text{ with } c(i,j) = \infty \text{ if } (i,j) \notin A$

(d)
$$NEXT(i) = argmin_{j=i+1,...,n} \{D(j) + c(i,j)\}$$

Theorem 3.4:

Bellmann's Algorithm is correct and runs in O(m+n) time.

Proof. Every path from 1 to n passes through vertices of increasing ID. Assume there exists a path (a_1,\ldots,a_k) with $\sum_{i=1}^k c(a_i) < D(1)$. Let $a_1=(1,j_1)$. Since $D(1) \leq c(a_1) + D(j_1)$, it should hold that

$$\sum_{i=2}^2 c(a_i) < D(j_1)$$

But $D(j_1) \le c(a_2) + D(j_2)$ with $a_2 = (j_1, j_2)$, etc. In the end, $c(a_k) < D(j_{k-1})$ but $D(j_{k-1}) \le c(a_k) + D(n) = c(a_k)$, contradiction.