Regression Analysis

OVERVIEW

- Covariance, Correlation
- OLS vs. Regression model
- Regression formulas
- Example (sklearn, statsmodels)
- Confidence intervals vs. Prediction intervals

COVARIANCE

The covariance, s_{xy} , is a non-standard measure on how strong is a linear relationship between two variables x and y

Covariance is a real number (it can be negative)

The *correlation* r is a standardized measure on how strong is a linear relationship between two variables x and y

CORRELATION

The *correlation* r is a standardized measure on how strong is a linear relationship between two variables

The coefficient of correlation r is in [-1, +1] always

$$r = \frac{s_{xy}}{s_x \, s_y}$$

CORRELATION AND CORRELATION

- Covariance shows if there is a linear relationship between two variables
- Correlation measures how strong it is
- None shows what is that relationship

REGRESSION ANALYSIS

- Regression analysis is useful to estimate the relationship between a response and a set of predictors
- That relation can be found by building a regression model
- It can be used to predict the value of the response
- Response variable : Y
- predictors
 X₁, X₂, ..., X_p

REGRESSION ANALYSIS

Two types of Linear Regression Models

- Simple linear regression (SLR)
- Multiple linear regression (MLR)

Least Squares line (OLS)

scatterplot

What is the OLS line?

- X, Y not random variables
- No statistics required
- Not a regression line

Regression line

Regression Statistical Model

- Y is random variable
- X is not random
- Mean of Y changes with X
- There is a relationship between E[Y] and X

- This is an unknown relation
- We will try to estimate it from an OLS line

- This is an unknown relation
- We will try to estimate it from an OLS line
- Find OLS line from a dataset

REGRESSION ASSUMPTIONS

At each value of X, say x,
 Y is a normal random variable
 with E[Y] that changes with x

$$E[Y] = \beta_0 + \beta_1 x$$

- There is one r.v. Y for each X
- All rv_s Y have same variance σ^2

$$Y \sim N (\beta_0 + \beta_1 x, \sigma^2)$$

• All Y variables are independent

The regression line is

$$\mathsf{E}[\mathsf{Y}] = \beta_0 + \beta_1 x$$

(not a random line)

The mean of Y changes with X

 The regression relation is between X (not random) and the means (not random)
 of many random variables Y

This is an unknown relation

True population line (unknown) $E[Y] = \beta_0 + \beta_1 x$

This is an unknown relation

We will try to estimate it

from a random sample

True population line (unknown) $E[Y] = \beta_0 + \beta_1 x$

Regression assumptions

 $Y_1, Y_2, ..., Y_n$ are random vars.

independent (independence)

normal (normality)

with same variance (constant variance)

True population line (unknown) $E[Y] = \beta_0 + \beta_1 x$

Residual Analysis

Residual Analysis

- To verify regression assumptions
- To identify outliers

Simple linear Regression

Analytics

Finding OLS line (finding b₀ and b₁)

$$\hat{y}_1 = b_0 + b_1 x_1$$

$$\hat{y}_2 = b_0 + b_1 x_2$$

$$\vdots$$

$$\hat{y}_n = b_0 + b_1 x_n$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = b_0 \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} + b_1 \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Finding OLS line

Finding OLS line

Want to find b_0 and b_1 such that the distance from (x_i, y_i) to the fitted line is minimized. We consider the sum of all squared distances SSE

Let e_i be the residual of (x_i, y_i) then

$$SSE = \sum_{i=1}^{n} e_i^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$Q(b_0, b_1) = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

	Χ	Υ
1		
1 2		
N		

To find b_0 and b_1 that makes Q as small as possible, we find

$$\frac{\partial Q}{\partial b_0} = 2 \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)(-1)$$

$$Q(b_0, b_1) = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

$$\frac{\partial Q}{\partial b_1} = 2\sum_{i=1}^n (y_i - b_0 - b_1 x_i)(-x_i)$$

Make the partial derivatives equal to zero: $\frac{\partial Q}{\partial b_0} = 0$ and $\frac{\partial Q}{\partial b_1} = 0$

$$Q(b_0, b_1) = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

$$\frac{\partial Q}{\partial b_0} = 2 \sum_{i=1}^n (y_i - b_0 - b_1 x_i)(-1)$$

$$= \sum_{i=1}^n (y_i - b_0 - b_1 x_i) = 0$$

$$\frac{\partial Q}{\partial b_1} = 2 \sum_{i=1}^n (y_i - b_0 - b_1 x_i)(-x_i)$$

$$= \sum_{i=1}^n (y_i - b_0 - b_1 x_i)(x_i) = 0$$

The normal equations are

$$\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0$$

$$\sum_{i=1}^{n} (y_i x_i - b_0 x_i - b_1 x_i^2) = 0$$

lets remove the parenthesis

The normal equations are

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} b_0 - \sum_{i=1}^{n} b_1 x_i = 0$$

$$\sum_{i=1}^{n} y_i x_i - \sum_{i=1}^{n} b_0 x_i - \sum_{i=1}^{n} b_1 x_i^2 = 0$$

move some terms to the RHS

The normal equations are

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} b_{0} + \sum_{i=1}^{n} b_{1}x_{i}$$

$$\sum_{i=1}^{n} y_{i}x_{i} = \sum_{i=1}^{n} b_{0}x_{i} + \sum_{i=1}^{n} b_{1}x_{i}^{2}$$

take b_0 and b_1 out of the sums

The normal equations are

$$\sum_{i=1}^{n} y_{i} = b_{0} \sum_{i=1}^{n} 1 + b_{1} \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} y_{i} x_{i} = b_{0} \sum_{i=1}^{n} x_{i} + b_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$\sum_{i=1}^{n} y_{i} = b_{0} \sum_{i=1}^{n} 1 + b_{1} \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} y_{i} x_{i} = b_{0} \sum_{i=1}^{n} x_{i} + b_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$\sum_{i=1}^{n} y_{i} = b_{0} \sum_{i=1}^{n} 1 + b_{1} \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} y_{i} x_{i} = b_{0} \sum_{i=1}^{n} x_{i} + b_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$\begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix} = b_0 \begin{bmatrix} \sum 1 \\ \sum x_i \end{bmatrix} + b_1 \begin{bmatrix} \sum x_i \\ \sum x_i^2 \end{bmatrix}$$

$$\begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix} = b_0 \begin{bmatrix} \sum 1 \\ \sum x_i \end{bmatrix} + b_1 \begin{bmatrix} \sum x_i \\ \sum x_i^2 \end{bmatrix}$$

$$\begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix} = \begin{bmatrix} \sum 1 \sum x_i \\ \sum x_i \sum x_i^2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

Finding OLS line

recall the following matrices

	Х	Υ
1		
2		
N		

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} X = \begin{bmatrix} 1, x_1 \\ 1, x_2 \\ \vdots \\ 1, x_n \end{bmatrix}$$

$$\begin{bmatrix} \sum y_i \\ \sum y_i x_i \end{bmatrix} = \begin{bmatrix} \sum 1 \sum x_i \\ \sum x_i \sum x_i^2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

$$X'Y = (X'X) \qquad \underline{b}$$

$$\begin{bmatrix} \sum y_i \\ \sum y_i \, x_i \end{bmatrix} &= \begin{bmatrix} \sum 1 \, \sum x_i \\ \sum x_i \, \sum x_i^2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$
 solve for \underline{b}
$$(X'X)^{-1} \, X'Y &= \underbrace{(X'X)^{-1}(X'X)}_{I} \, \underline{b}$$

$$\begin{bmatrix} \sum y_i \\ \sum y_i \, x_i \end{bmatrix} &= \begin{bmatrix} \sum 1 \, \sum x_i \\ \sum x_i \, \sum x_i^2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$
 solve for \underline{b}
$$(X'X)^{-1} \, X'Y &= (X'X)^{-1}(X'X) \, \underline{b}$$

$$(X'X)^{-1} \, X'Y &= \underline{b}$$

Simple linear Regression (SLR)

SLR Example using libraries sklearn and statsmodels

Simple linear Regression - Example

Predict price of used cars using the odometer reading

Simple linear Regression - Example

Predict price of used cars using the odometer reading

sklearn model m1

statsmodels.formula.api model m2

statsmodels.api model m3

Simple linear Regression

library sklearn model m1

Simple linear Regression - Example

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
df1 = pd.read_csv('Odometer.csv')
df1[:5]
```

Odometer		Price
0	37.4	14.6
1	44.8	14.1
2	45.8	14.0
3	30.9	15.6
4	31.7	15.6

```
# Target variable (response) is Price
# Odometer is predictor
```

Simple linear Regression – Finding the correlation (response, predictor)

Does it make sense to find the regression line?

Simple linear Regression – Finding the correlation (response, predictor)

Does it make sense to find the regression line?

```
Price = df1.Price
Odometer = df1["Odometer"] ← pandas Series

# Predictor(s) must be in a DataFrame for sklearn

Odometer = pd.DataFrame(Odometer) ← DataFrame
```

Simple linear Regression – using sklearn to build model m1

```
from sklearn.linear_model import LinearRegression

m1 = LinearRegression().fit(Odometer,Price)

# intercept and slope

m1.intercept_

17.24872734291551

m1.coef_

array([-0.06686089])
```

Simple linear Regression – using sklearn to build model m1

from sklearn.linear model import LinearRegression m1 = LinearRegression().fit(Odometer, Price) # intercept and slope 16.0 ml.intercept_ 15.5 17.24872734291551 .한 15.0 slope m1.coef 14.5 array([-0.06686089]) 14.0 slope 13.5 30 Odometer

Simple linear Regression – using sklearn to build model m1

from sklearn.linear_model import LinearRegression

m1 = LinearRegression().fit(Odometer,Price)

intercept and slope

m1.intercept_
17.24872734291551

m1.coef__
array([-0.06686089])

m1.score(Odometer,Price)

R² 0.6482954749384247

Simple linear Regression - R-squared

intercept and slope

ml.intercept_

17.24872734291551

ml.coef_
array([-0.06686089])

ml.score(Odometer, Price)

model m1 explains 64.83% of price variability

• 64.83% variability of car prices is explained by regression line

Cesar Acosta Ph.D.

0.6482954749384247

Simple linear Regression – Prediction with sklearn

Predict the Average Price of a used car with Odometer 40 miles

```
newval = pd.DataFrame([40],columns = ['Odometer'])
newval
```

	Odometer	
0	40	

Simple linear Regression – Prediction

Predict the Average Price of a used car with Odometer 40 miles

```
newval = pd.DataFrame([40],columns = ['Odometer'])
newval
```

Odometer 0 40 ml.predict(newval) array([14.57429193])

Simple linear Regression – y values are the vertical coordinates of data points

Simple linear Regression – yhat values are the vertical coordinates to the OLS line

yhat = m1.predict(Odometer)

find yhat values for all points in the data set

Simple linear Regression – Add yhat values to DataFrame

```
yhat = m1.predict(Odometer)

df2 = df1.copy()
df2['prediction'] = yhat
df2[:5]
```

	Odometer	Price	prediction
0	37.4	14.6	14.748130
1	44.8	14.1	14.253360
2	45.8	14.0	14.186499
3	30.9	15.6	15.182726
4	31.7	15.6	15.129237

Simple linear Regression – Plot OLS line on the scatterplot

```
yhat = m1.predict(Odometer)

df2 = df1.copy()
df2['prediction'] = yhat
df2[:5]
```

	Odometer	Price	prediction
0	37.4	14.6	14.748130
1	44.8	14.1	14.253360
2	45.8	14.0	14.186499
3	30.9	15.6	15.182726
4	31.7	15.6	15.129237

```
plt.figure()
plt.scatter(Odometer, Price, c='k', s=9)
# add regression line
plt.plot(Odometer, yhat, color = 'r', linewidth = 0.5)
plt.ylabel('Price')
plt.xlabel('Odometer')
plt.grid()
```


Simple linear Regression

statsmodels.formula.api

model m2

```
Simple linear Regression - import statsmodels.formula.api as smf
```

```
m2 = smf.ols(formula = 'Price ~ Odometer',data = df1).fit()
```

Simple linear Regression – statsmodels.formula.api to build model m2

```
m2 = smf.ols(formula = 'Price ~ Odometer', data = df1).fit()
m2.summary()
OLS Regression Results
    Dep. Variable:
                                          R-squared:
                                                        0.648
                              Price
           Model:
                              OLS
                                     Adj. R-squared:
                                                        0.645
                      Least Squares
         Method:
                                          F-statistic:
                                                        180.6
            Date: Mon, 14 Sep 2020 Prob (F-statistic): 5.75e-24
                           16:11:56
                                     Log-Likelihood:
            Time:
                                                      -28.948
No. Observations:
                                                        61.90
                               100
                                                AIC:
     Df Residuals:
                                98
                                                BIC:
                                                        67.11
        Df Model:
                                 1
 Covariance Type:
                         nonrobust
              coef std err
                                           [0.025 0.975]
 Intercept 17.2487
                     0.182
                            94.725 0.000 16.887 17.610
 Odometer -0.0669
                     0.005 -13.440 0.000 -0.077 -0.057
```

```
m2 = smf.ols(formula = 'Price ~ Odometer',data = df1).fit()
m2.summary()
```

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.648
Model:	OLS	Adj. R-squared:	0.645
Method:	Least Squares	F-statistic:	180.6
Date:	Mon, 14 Sep 2020	Prob (F-statistic):	5.75e-24
Time:	16:11:56	Log-Likelihood:	-28.948
No. Observations:	100	AIC:	61.90
Df Residuals:	98	BIC:	67.11
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	17.2487	0.182	94.725	0.000	16.887	17.610
Odometer	-0.0669	0.005	-13.440	0.000	-0.077	-0.057

m2.params

Intercept 17.248727
Odometer -0.066861
dtype: float64

m2.rsquared

0.6482954749384251

Simple linear Regression – statsmodels.formula.api

Prediction

```
newval = pd.DataFrame([40],columns = ['Odometer'])
newval
```

Odometer

0 40

m2.predict(newval)

0 14.574292

Simple linear Regression

statsmodels.api

model m3

import statsmodels.api as sm

	Odometer	Price		Odomet	er1 = Odometer.cop	у()
0	37.4	14.6				
1	44.8	14.1				
2	45.8	14.0			Odometer	
3	30.9	15.6		0	37.4	
4	31.7	15.6		1	44.8	
Price = df1.Price		2	45.8			
Odometer = df1["Odometer"] Odometer = pd.DataFrame(Odometer)		3	30.9			

import statsmodels.api as sm

	Odometer	Price	
0	37.4	14.6	
1	44.8	14.1	
2	45.8	14.0	
3	30.9	15.6	
4	31.7	15.6	
	rice = df lometer =		ce "Odometer"]
Od	lometer =	pd.Da	taFrame(Odomete:

```
Odometer1 = Odometer.copy()
Odometer1.insert(0,'const',1)
Odometer1[:4]
```

	const	Odometer
0	1	37.4
1	1	44.8
2	1	45.8
3	1	30.9

```
m3 = sm.OLS(Price,Odometer1).fit()
m3.summary()
```

OLS Regression Results

```
Dep. Variable:
                             Price
                                         R-squared:
                                                         0.648
          Model:
                             OLS
                                     Adj. R-squared:
                                                         0.645
         Method:
                     Least Squares
                                          F-statistic:
                                                         180.6
           Date: Sat, 20 Feb 2021
                                   Prob (F-statistic): 5.75e-24
           Time:
                          20:39:16
                                     Log-Likelihood:
                                                       -28.948
                                                         61.90
No. Observations:
                              100
                                                AIC:
    Df Residuals:
                               98
                                                BIC:
                                                         67.11
                                       t P>|t| [0.025
                   coef std err
                                                         0.975
         const 17.2487
                           0.182
                                  94.725 0.000 16.887 17.610
      Odometer -0.0669
                          0.005 -13.440 0.000 -0.077 -0.057
```

```
m3 = sm.OLS(Price,Odometer1).fit()
m3.summary()
```

OLS Regression Results

ı	Dep. Variable	:	Pric	е	R-squa	ared:	0.648
	Model	:	OLS		Adj. R-squared:		0.645
	Method	: Leas	Least Squares		F-statistic:		180.6
	Date	: Sat, 20	Feb 202	1 Prob	(F-stati	stic):	5.75e-24
	Time	:	20:39:1	6 Log	-Likelih	ood:	-28.948
No. Observations: 100			0		AIC:	61.90	
Df Residuals:			9	8		BIC:	67.11
		coef	std err	t	P> t	[0.02	5 0.975]
	const	17.2487	0.182	94.725	0.000	16.887	7 17.610
	Odometer	-0.0669	0.005	-13.440	0.000	-0.077	7 -0.057

ANOVA Table

Simple linear Regression – ANOVA TABLE

```
import statsmodels.api as sm
table1 = sm.stats.anova_lm(m2)
table1
```

	df	sum_sq	mean_sq	F	PR(>F)
Odometer	1.0	19.255607	19.255607	180.642989	5.750781e-24
Residual	98.0	10.446293	0.106595	NaN	NaN

Simple linear Regression – ANOVA TABLE

```
table1 = sm.stats.anova_lm(m2)
table1
```

	df	sum_sq	mean_sq	F	PR(>F)
Odometer	1.0	19.255607	19.255607	180.642989	5.750781e-24
Residual	98.0	10.446293	0.106595	NaN	NaN
	n - 2	SSE	MSE =	SSE / (n-2)

SSE: Residuals Sum of squares

MSE: Mean Squared Error

Confidence Interval and Prediction Interval

Confidence Interval

Random interval that may contain the expected value of Y with probability $(1-\alpha)$

Prediction Interval

Random interval that may contain the value of Y with probability $(1-\alpha)$

Confidence Interval

Random interval that may contain the expected value of Y with probability $(1-\alpha)$

Prediction Interval (wider)

Random interval that may contain the value of Y with probability $(1-\alpha)$

Confidence Interval

$$\hat{y} \pm t_{\alpha/2, n-2} s_{\varepsilon} \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{(n-1)s_x^2}}$$

Prediction Interval

$$\hat{y} \pm t_{\alpha/2, n-2} s_{\varepsilon} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{(n-1)s_x^2}}$$

Confidence Interval

$$\hat{y} \pm t_{\alpha/2, n-2} s_{\varepsilon} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{(n-1)s_x^2}}$$
Prval \sqrt{MSE}

Prediction Interval

$$\hat{y} \pm t_{\alpha/2, n-2} s_{\varepsilon} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{(n-1)s_x^2}}$$

Use

get_prediction() with model m3

from statsmodels.api (sm) to get

- Confidence intervals (CI)
- Prediction intervals (PI)

Prediction with CI and PI

Prediction with CI and PI

```
# predict price of used cars with 30 and 40 miles
newval = sm.add_constant([40,30])
newval
array([[ 1., 40.],
       [ 1., 30.]])
m3.predict(newval)
array([14.57429193, 15.24290078])
predictions = m3.get_prediction(newval)
predictions.summary_frame(alpha = 0.04)
                                                       Confidence Interval
                                                                                        Prediction Interval
                                                  mean_ci_lower mean_ci_upper
                                                                                obs_ci_lower obs_ci_upper
                                         mean se
                              14.574292
                                         0.038206
                                                       14.494767
                                                                      14.653816
                                                                                   13.890087
                                                                                                 15.258497
                              15.242901
                                         0.044273
                                                       15.150749
                                                                      15.335053
                                                                                   14.557113
                                                                                                 15.928689
```

Simple linear Regression – DataFrame with all possible odometer values in (10,60)

```
xaxis = range(10,60)
newval = pd.DataFrame()
newval['Odometer'] = range(10,60)
newval.insert(0,'constant',1)
newval[:5]
```

	constant	Odometer
0	1	10
1	1	11
2	1	12
3	1	13
4	1	14

Simple linear Regression – Find Cis and PIs with model m3

```
xaxis = range(10,60)
newval = pd.DataFrame()
newval['Odometer'] = range(10,60)
newval.insert(0,'constant',1)
newval[:5]
d2 = m3.get_prediction(newval)
d2.summary_frame()[:5]
```

	Prediction		Confidence Interval			iction Interval
	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	16.580118	0.133451	16.315290	16.844947	15.880178	17.280059
1	16.513258	0.128633	16.257990	16.768526	15.816878	17.209637
2	16.446397	0.123828	16.200665	16.692129	15.753456	17.139337
3	16.379536	0.119036	16.143312	16.615760	15.689910	17.069162
4	16.312675	0.114261	16.085928	16.539421	15.626238	16.999112

store each column of d2.summary_frame in an object

```
predictions = d2.summary_frame()['mean']
ci_lwr = d2.summary_frame().mean_ci_lower
ci_upr = d2.summary_frame().mean_ci_upper
pi_lwr = d2.summary_frame().obs_ci_lower
pi_upr = d2.summary_frame().obs_ci_upper
```

d2.summary frame()[:5]

	Prediction		Confiden	ce Interval	Pred	iction Interval
	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	16.580118	0.133451	16.315290	16.844947	15.880178	17.280059
1	16.513258	0.128633	16.257990	16.768526	15.816878	17.209637
2	16.446397	0.123828	16.200665	16.692129	15.753456	17.139337
3	16.379536	0.119036	16.143312	16.615760	15.689910	17.069162
4	16.312675	0.114261	16.085928	16.539421	15.626238	16.999112

Simple linear Regression – Plot with Intervals

```
plt.figure(figsize=(12,6))
plt.scatter(Odometer, Price, s=6, c='k')
plt.xlim(10,60)
plt.ylim(12,18)
plt.xlabel('Odometer')
plt.ylabel('Price')
plt.grid()
plt.plot(xaxis, predictions, c='r', lw = 0.75)
scatterplot
regression line
```

Simple linear Regression – Plot with Intervals

```
plt.figure(figsize=(12,6))
plt.scatter(Odometer, Price, s=6, c='k')
plt.xlim(10,60)
plt.ylim(12,18)
                                                    scatterplot
plt.xlabel('Odometer')
plt.ylabel('Price')
plt.grid()
plt.plot(xaxis, predictions, c='r', lw = 0.75)
                                                    regression line
# plot CIs -blue
plt.plot(xaxis,ci lwr,c='b',lw=0.75)
plt.plot(xaxis,ci upr,c='b',lw=0.75)
                                                    Prediction intervals
# plot PIs -black
plt.plot(xaxis,pi lwr,c='k',lw=0.75)
plt.plot(xaxis,pi upr,c='k',lw=0.75);
```


