$20240919 \ \mathrm{MATH} 3541 \ \mathrm{NOTE} \ 5[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Intr	roduction	3
2	Quotient Map		3
	2.1	Partition Induced by a Surjective Function	3
	2.2	Quotient Map and Its Criterion	4
3	Compactness in Topological space		5
	3.1	Compact Topological Space	5
	3.2	Construct New Compact Spaces from Old Ones	6
	3.3	Tychonoff's Theorem	6
	3.4	Compactness as a Topological Invariant	8
4	Compactness in Metric Space		10
	4.1	Completeness, Total Boundedness and Compactness	10
	4.2	Compact Subsets of \mathbb{R} and $M_m(\mathbb{C})$	12
	4.3	Limit Point Compactness and Sequential Compactness	15

1 Introduction

This note aims at quotient map and compact topological space.

2 Quotient Map

2.1 Partition Induced by a Surjective Function

Definition 2.1. (Partition)

Let X be a set, and \widetilde{X} be a subset of $\mathcal{P}(X)$. If:

- $(1) \ \forall \widetilde{x} \in \widetilde{X}, \widetilde{x} \neq \emptyset;$
- $(2) \ \forall \widetilde{x}_1, \widetilde{x}_2 \in \widetilde{X}, \widetilde{x}_1 \neq \widetilde{x}_2 \implies \widetilde{x}_1 \cap \widetilde{x}_2 = \emptyset;$
- (3) $\forall x \in X, \exists \widetilde{x} \in X, x \in \widetilde{x},$

then \widetilde{X} partitions X.

Proposition 2.2. Let X, Y be two sets, and $\sigma : X \to Y$ be a surjective function. The set $\{\pi(y) = \sigma^{-1}(\{y\})\}_{y \in Y}$ of fibres of σ partitions X.

Proof. We may divide our proof into three parts.

Part 1: For all fibre $\sigma^{-1}(\{y\})$ of σ :

$$\exists x \in X, \sigma(x) = y \implies \exists x \in X, x \in \sigma^{-1}(\{y\})$$
$$\implies \sigma^{-1}(\{y\}) \neq \emptyset$$

Part 2: For all fibres $\sigma^{-1}(\{y_1\}), \sigma^{-1}(\{y_2\})$ of σ :

$$\sigma^{-1}(\{y_1\}) \neq \sigma^{-1}(\{y_2\}) \implies y_1 \neq y_2$$

$$\implies \sigma^{-1}(\{y_1\}) \cap \sigma^{-1}(\{y_2\}) = \sigma^{-1}(\{y_1\} \cap \{y_2\}) = \sigma^{-1}(\emptyset) = \emptyset$$

Part 3: For all $x \in X$:

$$x \in \sigma^{-1}(\{\sigma(x)\})$$

To conclude, $\{\sigma^{-1}(\{y\})\}_{y\in Y}$ partitions X. Quod. Erat. Demonstrandum.

Remark: Restrict the potential function V to a surjective function, then the set of all equipotential surfaces partitions the whole space.

Proposition 2.3. Let X, Y be two sets, and $\sigma: X \to Y$ be a surjective function. The relation $\widetilde{\sigma}: \widetilde{X} \to Y, \widetilde{X}(\pi(y)) = y$ is a bijective function.

Remark: This proposition sets up a one to one correspondence between the equipotential surfaces and the potentials. Is this map continuous? Is this map a homeomorphism? These questions will be answered in the next subsection.

2.2 Quotient Map and Its Criterion

Definition 2.4. (Quotient Map)

Let X, Y be two topological spaces,

and $\sigma: X \to Y$ be a surjective continuous function.

If $\widetilde{\sigma}: \widetilde{X} \to Y, \widetilde{\sigma}(\pi(y)) = y$ is a homeomorphism,

then σ is a quotient map.

Definition 2.5. (Saturated Set)

Let X be a topological space,

 $\sim: X \to X$ be an equivalence relation on X,

 \widetilde{X} be the quotient space of \sim on X, and U be a subset of X.

If $\pi^{-1}(\pi(U)) = U$, then U is saturated in X.

Proposition 2.6. Let X, Y be two topological spaces,

and $\sigma: X \to Y$ be a surjective continuous function.

The following two statements are logically equivalent:

- (1) σ is a quotient map.
- (2) $\forall U \in \mathcal{P}(X), U$ is saturated and open in $X \implies \sigma(U)$ is open in Y.

Proof. We may divide our proof into two parts.

 $(1) \implies (2) : \text{For all } V \in \mathcal{P}(\widetilde{X}):$

V is open in $\widetilde{X} \iff \pi^{-1}(V)$ is saturated and open in X

 $\iff \widetilde{\sigma}(V) = \sigma(\pi^{-1}(V)) \text{ is open in } Y$

(2) \Longrightarrow (1): For all $U \in \mathcal{P}(X)$:

U is saturated and open in $X \implies \pi(U)$ is open in \widetilde{X}

 $\implies \sigma(U) = \widetilde{\sigma}(\pi(U)) \text{ is open in } Y$

Combine the two parts above, we've proven the biconditional.

Quod. Erat. Demonstrandum.

Definition 2.7. (Hawaii Earring \mathbb{H}_N)

Define $S(z_0, r) = \{z \in \mathbb{C} : |z - z_0| = r\}.$

Define the subspace $\bigcup_{n=N}^{+\infty} \mathbb{S}\left(\frac{\mathrm{i}}{3^n}, \frac{1}{3^n}\right)$ of \mathbb{C} as the Hawaii earring \mathbb{H}_N .

Proposition 2.8. The Hawaii earring \mathbb{H}_N is not a wedge sum.

Proof. Consider the point $0 \in \mathbb{H}_N$.

Figure 1: Hawaii Earring \mathbb{H}_0

For all $\epsilon > 0$, there exists $M \ge N$, such that for all $n \ge M$, the diameter $\frac{2}{3^n} < \epsilon$. This implies the partial union $\bigcup_{n=M}^{+\infty} \mathbb{S}\left(\frac{\mathrm{i}}{3^n}, \frac{1}{3^n}\right)$ is contained in $\mathbb{D}(0, \epsilon)$. That is, every open neighbour of $0 \in \mathbb{H}_N$ contains infinitely many circles, which is not true in the wedge sum case. Quod. Erat. Demonstrandum.

Proposition 2.9. The projection σ from $\coprod_{n=N}^{+\infty} \mathbb{S}$ to \mathbb{H}_N is surjective and continuous. As \mathbb{H}_N is strictly coarser than $\coprod_{n=N}^{+\infty} \mathbb{S}$, $\widetilde{\sigma}$ is not continuous.

3 Compactness in Topological space

3.1 Compact Topological Space

Definition 3.1. (Open Cover)

Let X be a topological space, and $(U_{\lambda})_{\lambda \in I}$ be an indexed family of open sets of X. If $\bigcup_{\lambda \in I} U_{\lambda} = X$, then $(U_{\lambda})_{\lambda \in I}$ is an open cover of X.

Definition 3.2. (Subcover)

Let X be a topological space, $(U_{\lambda})_{\lambda \in I}$ be an open cover of X, and J be a subset of I. If $(U_{\lambda})_{\lambda \in J}$ is also an open cover of X, then $(U_{\lambda})_{\lambda \in J}$ is a subcover of $(U_{\lambda})_{\lambda \in I}$. If J is finite, then the subcover $(U_{\lambda})_{\lambda \in J}$ is finite.

Definition 3.3. (Compact Topological Space)

Let X be a topological space. If all open cover $(U_{\lambda})_{\lambda \in I}$ of X has a finite subcover $(U_{\lambda_k})_{k=1}^m$, then X is compact.

3.2 Construct New Compact Spaces from Old Ones

Proposition 3.4. Let X, Y be two topological spaces,

and $\sigma: X \to Y$ be a surjective continuous function.

If X is compact, then Y is compact.

Proof. For all open cover $(V_{\lambda})_{{\lambda}\in I}$ of Y, $(\sigma^{-1}(V_{\lambda}))_{{\lambda}\in I}$ is an open cover of X.

There exists $(\lambda_k)_{k=1}^m$ in I, such that $(\sigma^{-1}(V_{\lambda_k}))_{k=1}^m$ covers X.

There exists $(\lambda_k)_{k=1}^m$ in I, such that $(V_{\lambda_k} = \sigma(\sigma^{-1}(V_{\lambda_k})))_{k=1}^m$ covers Y.

Hence, Y is compact. Quod. Erat. Demonstrandum.

Proposition 3.5. Let X be a topological space,

and X' be a closed subspace of X.

If X is compact, then X' is compact.

Proof. For all open cover $(U'_{\lambda})_{{\lambda}\in I}$ of X', each $U'_{\lambda}=U_{\lambda}\cap X'$ for some $U_{\lambda}\in\mathcal{O}_X$.

This implies $(U_{\lambda}, X'^c)_{\lambda \in I}$ is an open cover of $(X, \mathcal{O}_{\mathcal{X}})$.

There exists $(\lambda_k)_{k=1}^m$ in I, such that $(U_{\lambda_k}, X'^c)_{k=1}^m$ covers X.

There exists $(\lambda_k)_{k=1}$ in I, such that $(U'_{\lambda_k})_{k=1}^m$ covers X.

Hence, X' is compact. Quod. Erat. Demonstrandum.

3.3 Tychonoff's Theorem

Definition 3.6. (Product Space Topology)

Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces.

Define the product topology \mathcal{O}_X of $(X_{\lambda})_{{\lambda}\in I}$ on $X=\prod_{{\lambda}\in I}X_{\lambda}$ as the topology generated by the subbasis \mathcal{B}_X , which is the union of each initial topology of X_{λ} on X via $\pi_{\lambda}: X \to X_{\lambda}, \pi_{\lambda}(x) = x(\lambda)$.

Definition 3.7. (Partial Order)

Let X be a set, and $\leq: X \to X$ be a relation on X. If:

- $(1) \ \forall x \in X, x \le x;$
- (2) $\forall x_1, x_2 \in X, x_1 \leq x_2 \text{ and } x_2 \leq x_1 \implies x_1 = x_2;$
- (3) $\forall x_1, x_2, x_3 \in X, x_1 \le x_2 \text{ and } x_2 \le x_3 \implies x_1 \le x_3,$

then \leq is a partial order on X.

If $x_1 \leq x_2$ and $x_1 \neq x_2$, then $x_1 < x_2$.

Definition 3.8. (Total Order)

Let X be a set, and $\leq: X \to X$ be a relation on X. If:

- (1) $\forall x \in X, x \leq x$;
- (2) $\forall x_1, x_2 \in X, x_1 \le x_2 \text{ and } x_2 \le x_1 \implies x_1 = x_2;$
- (3) $\forall x_1, x_2, x_3 \in X, x_1 \leq x_2 \text{ and } x_2 \leq x_3 \implies x_1 \leq x_3;$
- (4) $\forall x_1, x_2 \in X, x_1 \leq x_2 \text{ or } x_2 \leq x_1,$

then \leq is a total order on X.

Definition 3.9. (Upper Bound)

Let (X, \leq) be a partially ordered set,

A be a subset of X, and β be an element of X.

If $\forall x \in A, x \leq \beta$, then β is an upper bound of A.

Definition 3.10. (Maximal Element)

Let (X, \leq) be a partially ordered set, and x be an element of X.

If $\forall x' \in X, x \leq x' \implies x = x'$, then x is maximal.

Lemma 3.11. (Zorn's Lemma[2])

Let (X, \leq) be a nonempty partially ordered set,

If each totally ordered nonempty subset A of X has an upper bound $\beta \in X$, then X has a maximal element $x \in X$.

Remark: In this note, we assume Lemma 3.11. without proof.

Theorem 3.12. (Alexander's Subbasis Theorem[2])

Let X be a topological space, and \mathcal{B}_X be a subbasis of X. X is compact if and only if every open cover $\mathcal{V} \subseteq \mathcal{B}_X$ of X has a finite subcover.

Proof. It suffices to prove "if" direction.

Assume to the contrary that X is not compact.

Step 1: Define Φ as the set of all open cover \mathcal{U} of X with no finite subcover.

Define a partial order $\leq : \Phi \to \Phi, \mathcal{U}_1 \leq \mathcal{U}_2$ if $\mathcal{U}_1 \subseteq \mathcal{U}_2$ on Φ .

For all nonempty totally ordered subset Ψ of Φ :

Property 1.1: $\forall (U_k)_{k=1}^m \text{ in } \bigcup_{\mathcal{U} \in \Psi} \mathcal{U}, \exists (\mathcal{U}_k)_{k=1}^m \text{ in } \Psi, \text{ each } U_k \in \mathcal{U}_k.$

Without loss of generality, assume that $(\mathcal{U}_k)_{k=1}^m$ is ascending.

This implies $(U_k)_{k=1}^m$ in \mathcal{U}_m , so $(U_k)_{k=1}^m$ doesn't cover X. Hence, $\bigcup_{\mathcal{U}\in\Psi}\mathcal{U}\in\Phi$.

Property 1.2: $\forall \mathcal{V} \in \Psi, \mathcal{V} \leq \bigcup_{\mathcal{U} \in \Psi} \mathcal{U}$. Hence, $\bigcup_{\mathcal{U} \in \Psi} \mathcal{U}$ is an upper bound of Ψ .

According to **Lemma 3.11.**, Φ has a maximal element \mathcal{V} .

Step 2: Assume to the contrary that $\mathcal{V} \cap \mathcal{B}_X$ is an open cover of X.

 \mathcal{V} has no finite subcover, neither does $\mathcal{V} \cap \mathcal{B}_X$.

However, $\mathcal{V} \cap \mathcal{B}_X \subseteq \mathcal{B}_X$, which has a finite subcover, a contradiction.

Hence, our assumption is false, and we've proven $\mathcal{V} \cap \mathcal{B}_X$ is not an open cover of X.

Step 3: Assume that $\mathcal{V} \cap \mathcal{B}_X = (V_\lambda)_{\lambda \in J}$, where $J \subset I$, and fix $x_0 \in \bigcup_{\lambda \in I \setminus J} V_\lambda$.

As \mathcal{B}_X is a subbasis of X, $x_0 \in \bigcap_{k=1}^m W_k \subseteq V_{\lambda_*}$, where each $W_k \in \mathcal{B}_X$, $\lambda_* \in I$.

Assume to the contrary that some $W_k \in \mathcal{V}$.

As $W_k \in \mathcal{B}_X$, $x_0 \in W_k \in \mathcal{V} \cap \mathcal{B}_X$, but $\mathcal{V} \cap \mathcal{B}_X$ doesn't cover x_0 , a contradiction.

Hence, our assumption is false, and we've proven each $W_k \notin \mathcal{V}$.

Step 4: For each W_k , define \mathcal{V}_k as a finite subcover of $\mathcal{V} \cup \{W_k\}$.

Assume to the contrary that $W_k \notin \mathcal{V}_k$.

This implies V has a finite subcover V_k , a contradiction.

Hence, each V_k is in the form $(W_k, V_{\lambda_{kl_k}})_{l_k=1}^{n_k}$. This implies:

$$X = W_k \cup \bigcup_{l_k = 1}^{n_k} V_{\lambda_{kl_k}} \implies \bigcap_{l_k = 1}^{n_k} V_{\lambda_{kl_k}}^c \subseteq W_k \implies \bigcap_{k = 1}^m \bigcap_{l_k = 1}^{n_k} V_{\lambda_{kl_k}}^c \subseteq \bigcap_{k = 1}^m W_k \subseteq V_{\lambda_*}$$

To conclude, our assumption is false, as we've constructed a finite subcover $(V_{\lambda_*}, V_{\lambda_{kl_k}})$ of \mathcal{V} . Quod. Erat. Demonstrandum.

Theorem 3.13. (Tychonoff Theorem[2])

Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces,

and X be the product space of $(X_{\lambda})_{{\lambda}\in I}$.

If each X_{λ} is compact, then X is compact.

Proof. For all $\lambda \in I$, define \mathcal{U}_{λ} as the initial topology of X_{λ} on X via π_{λ} .

It suffices to show that each open cover $\mathcal{V} \subseteq \bigcup_{\lambda \in I} \mathcal{U}_{\lambda}$ of X has a finite subcover.

Step 1: Assume to the contrary that no $\pi_{\lambda}(\mathcal{V} \cap \mathcal{U}_{\lambda})$ covers X_{λ} .

For all $\lambda \in I$, the assumption above guarantees the existence of $\xi_{\lambda} \in (\pi(\mathcal{V} \cap \mathcal{U}_{\lambda}))^{c}$.

Construct $x \in X, x(\lambda) = \xi_{\lambda}$.

As each $\mathcal{V} \cap \mathcal{U}_{\lambda}$ doesn't cover x, neither does $\mathcal{V} = \bigcup_{\lambda \in I} (\mathcal{V} \cap \mathcal{U}_{\lambda})$, a contradiction.

Hence, our assumption is wrong, and we've proven that some $\pi_{\lambda}(\mathcal{V} \cap \mathcal{U}_{\lambda})$ covers X_{λ} .

Step 2: As some $\pi_{\lambda}(\mathcal{V} \cap \mathcal{U}_{\lambda})$ covers X_{λ} , a finite subcover $\pi_{\lambda}(\mathcal{W})$ exists.

Hence, we've reduced our original open cover \mathcal{V} to a finite subcover \mathcal{W} .

Quod. Erat. Demonstrandum.

3.4 Compactness as a Topological Invariant

Proposition 3.14. Compactness is a topological invariant.

Proof. For all X, Y, assume that there exists a homeomorphism $\sigma: X \to Y$.

As σ is surjective and continuous, X is compact implies Y is compact.

As σ^{-1} is surjective and continuous, Y is compact implies X is compact.

Hence, we've proven that compactness is a topological invariant.

Quod. Erat. Demonstrandum.

Proposition 3.15. Let X be a topological space, and X' be a subspace of X. If X is Hausdorff and X' is compact, then $X' \in \mathcal{C}_X$.

Proof. For all $x \in X'^c$ and $x' \in X'$, there exist $U_{xx'}, V_{xx'} \in \mathcal{O}_X$,

such that $x \in U_{xx'}$ and $x' \in V_{xx'}$ and $U_{xx'} \cap V_{xx'} = \emptyset$.

Fix $x \in X'^c$, and we get an open cover $(V_{xx'} \cap X')_{x' \in X'}$ of X'.

There exists $(x'_k)_{k=1}^m$ in X', such that $(V_{xx'_k} \cap X')_{k=1}^m$ covers X'.

There exist $U_x = \bigcap_{k=1}^m U_{xx'_k}, V_{X'} = \bigcup_{k=1}^m V_{xx'_k} \in \mathcal{O}_X$,

such that $x \in U_x$ and $X' \subseteq V_{X'}$ and $U_x \cap V_{X'} = \emptyset$.

Hence, $X'^c = \bigcup_{x \in X'^c} U_x \in \mathcal{O}_X$, which implies $X' \in \mathcal{C}_X$.

Quod. Erat. Demonstrandum.

Lemma 3.16. (Closed Map Lemma[3])

Let X, Y be two topological spaces,

and $\sigma: X \to Y$ be a continuous function.

If X is compact and Y is Hausdorff, then σ is closed.

Proof. For all $X' \in \mathcal{C}_X$:

According to **Proposition 3.5.**, X' is compact.

According to **Proposition 3.4.**, $\sigma(X')$ is compact.

According to **Proposition 3.15.**, $\sigma(X') \in \mathcal{C}_X$.

Hence, σ is closed. Quod. Erat. Demonstrandum.

Remark: Prof. Hua said that closeness is a global property of certain function. This lemma offers us an insight into it. Notice that two topological invariants, i.e., compactness and Hausdorffness, are involved to ensure the closeness of a continuous function.

Definition 3.17. (Proper Map)

Let X, Y be two topological spaces, and $\sigma: X \to Y$ be a function.

If $\forall V \in \mathcal{P}(Y), V$ is compact $\implies \sigma^{-1}(V)$ is compact, then σ is proper.

Proposition 3.18. Let X, Y be two topological spaces,

and $\sigma: X \to Y$ be a function.

If X is compact, Y is Hausdorff and σ is continuous, then σ is proper.

Proof. For all $V \in \mathcal{P}(Y)$, assume that V is compact.

According to **Proposition 3.15.**, Y is Hausdorff implies $V \in \mathcal{C}_Y$.

As σ is continuous, $V \in \mathcal{C}_Y$ implies $\sigma^{-1}(V) \in \mathcal{C}_X$.

According to **Proposition 3.5.**, $\sigma^{-1}(V) \in \mathcal{C}_X$ implies $\sigma^{-1}(V)$ is compact.

Hence, σ is proper. Quod. Erat. Demonstrandum.

Definition 3.19. (Locally Compact Topological Space)

Let X be a Hausdorff topological space.

If $\forall x \in X, \exists U \in \mathcal{O}_X, x \in U$ and \overline{U} is compact, then X is locally compact.

Lemma 3.20. (The Proper Map Lemma[3])

Let X, Y be two topological spaces, and $\sigma: X \to Y$ be a function.

If Y is locally compact, and σ is continuous and proper, then σ is closed.

Proof. For all $U \in \mathcal{P}(X)$, let's assume $U \in \mathcal{C}_X$, and prove $\sigma(U) \in \mathcal{C}_Y$.

For all $y \in \sigma(U)^c$, we try to find $W \in \mathcal{O}_Y$ with $W \subseteq \sigma(U)^c$, such that $y \in W$:

As Y is locally compact, there exists $V \in \mathcal{O}_Y$, such that $y \in V$ and \overline{V} is compact.

As σ is proper, \overline{V} is compact implies $\sigma^{-1}(\overline{V})$ is compact.

According to **Proposition 3.5.**, $U \cap \sigma^{-1}(\overline{V})$ is closed implies $U \cap \sigma^{-1}(\overline{V})$ is compact.

As σ is continuous, $\sigma(U \cap \sigma^{-1}(\overline{V})) = \sigma(U) \cap \overline{V}$ is compact.

According to **Proposition 3.15.**, $\sigma(U) \cap \overline{V}$ is compact implies $\sigma(U) \cap \overline{V}$ is closed.

Take $W = V \setminus [\sigma(U) \cap \overline{V}] \in \mathcal{O}_Y$.

Note that $y \in W = V \setminus \sigma(U) \subseteq \sigma(U)^c$, so $\sigma(U)^c \in \mathcal{O}_Y$.

This implies $\sigma(U) \in \mathcal{C}_X$, so σ is closed. Quod. Erat. Demonstrandum.

4 Compactness in Metric Space

4.1 Completeness, Total Boundedness and Compactness

Definition 4.1. (Metric Space)

Let X be a set, and $d_X: X \times X \to \mathbb{R}$ be a function. If:

- (1) $\forall x_1, x_2 \in X, d_X(x_1, x_2) \ge 0$ and $d_X(x_1, x_2) = 0 \iff x_1 = x_2$;
- (2) $\forall x_1, x_2 \in X, d_X(x_1, x_2) = d_X(x_2, x_1);$
- (3) $\forall x_1, x_2, x_3 \in X, d_X(x_1, x_2) + d_X(x_2, x_3) \ge d_X(x_1, x_3),$

then X is a metric space.

Definition 4.2. (Metric Space Topology)

Let X be a metric space.

Define metric space topology on X as the topology \mathcal{O}_X generated by the basis $\mathcal{B}_X = \{B(x,r)\}_{(x,r)\in X\times\mathbb{R}_{>0}}$, where $B(x,r) = \{x'\}_{d(x,x')< r}$.

Definition 4.3. (Convergent Sequence)

Let X be a metric space, $(x_n)_{n\in\mathbb{N}}$ be a sequence in X, and x_* be a point in X. If $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}_{\geq N}, d(x, x_*) < \epsilon$, then $(x_n)_{n\in\mathbb{N}}$ is a convergent sequence in X with limit x_* .

Definition 4.4. (Cauchy Sequence)

Let X be a metric space, and $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. If $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n_1, n_2 \in \mathbb{N}_{\geq N}, d(x_{n_1}, x_{n_2}) < \epsilon$, then $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in X.

Proposition 4.5. Let X be a metric space, and $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. If $(x_n)_{n\in\mathbb{N}}$ is convergent in X, then $(x_n)_{n\in\mathbb{N}}$ is Cauchy.

Proof. Assume that $(x_n)_{n\in\mathbb{N}}$ is a convergent sequence in X with limit x_* .

 $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}_{\geq N}, d(x_n, x_*) < \frac{\epsilon}{2}.$

 $\forall \epsilon>0, \exists N\in\mathbb{N}, \forall n_1,n_2\in\mathbb{N}_{\geq N}, d(x_{n_1},x_{n_2})\leq d(x_{n_1},x_*)+d(x_{n_2},x_*)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$

Hence, $(x_n)_{n\in\mathbb{N}}$ is Cauchy. Quod. Erat. Demonstrandum.

Definition 4.6. (Complete Metric Space)

Let X be a metric space.

If every Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ in X is convergent in X,

then X is complete.

Proposition 4.7. Let X be a metric space.

If X is compact, then X is complete.

Proof. Assume to the contrary that X is not complete.

There exists some Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ in X, such that it has no limit.

For each $x \in X$, there exists $r_x > 0$, such that $B(x, r_x)$ only contains finitely many terms of $(x_n)_{n \in \mathbb{N}}$, so if the open cover $(B(x, r_x))_{x \in X}$ is shrinked to a finite subcover, we get a contradiction where $(x_n)_{n \in \mathbb{N}}$ should and shouldn't contain finitely many terms.

Hence, our assumption is false, and we've proven that X is complete.

Quod. Erat. Demonstrandum.

Definition 4.8. (Totally Bounded Metric Space)

Let X be a metric space.

If every r > 0 gives a finite cover $(B(x_k, r))_{k=1}^m$ of X,

then X is totally bounded.

Proposition 4.9. Let X be a metric space.

If X is compact, then X is totally bounded.

Proof. For all r > 0, construct an open cover $(B(x,r))_{x \in X}$ of X.

There exists a finite subcover $(B(x_k, r))_{k=1}^m$.

Hence, X is totally bounded. Quod. Erat. Demonstrandum.

Proposition 4.10. Let X be a metric space.

If X is complete and totally bounded, then X is compact.[4]

Proof. Assume to the contrary that X is not compact.

There exists an open cover $(U_{\lambda})_{{\lambda}\in I}$ of X, which has no finite subcover.

Let's find a hole in X.

Step 1: Construct a sequence of open balls.

 $\exists (x_{k_1}^1)_{k_1=1}^{m_1} \text{ in } X, (B(x_{k_1}^1,1))_{k_1=1}^{m_1} \text{ is an open cover of } X,$

so some $B(x_{k_1}^1, 1) \cap X$ can't be finitely covered by $(U_{\lambda})_{{\lambda} \in I}$.

 $\exists (x_{k_{n+1}}^{n+1})_{k_{n+1}=1}^{m_{n+1}} \text{ in } X, (B(x_{k_{n+1}}^{n+1}, 2^{-n-1}))_{k_{n+1}=1}^{m_{n+1}} \text{ is an open cover of } B(x_{k_n}^n, 2^{-n}),$

so some $B(x_{k_{n+1}}^{n+1}, 2^{-n-1}) \cap B(x_{k_n}^n, 2^{-n})$ can't be finitely covered by $(U_{\lambda})_{\lambda \in I}$.

Step 2: State some key properties of this sequence of open balls.

Property 2.1: The radius sequence $(r_n = 2^{-n-1})_{m=0}^{+\infty}$ tends to 0;

Property 2.2: The centre sequence $(c_n = x_{k_n}^n)_{n \in \mathbb{N}}$ is Cauchy;

Property 2.3: Each $B(c_n, r_n)$ cannot be finitely covered by $(U_{\lambda})_{{\lambda} \in I}$.

As $(c_n)_{n\in\mathbb{N}}$ converges to some $c_*\in X$, there exists $U_{\lambda_*}\ni c_*$.

This implies some $B(c_n, r_n)$ is covered by U_{λ_*} , a contradiction.

Hence, our assumption is false, and we've proven that X is compact.

Quod. Erat. Demonstrandum.

4.2 Compact Subsets of \mathbb{R} and $M_m(\mathbb{C})$

Proposition 4.11. Let X be a metric space, and U be a subset of X.

If X is complete, then U is closed if and only if U is complete.

Proof. We may divide our proof into two parts.

Part 1: Assume that *U* is complete.

For all $x_* \in U^c$, construct the following set:

$$R = U^c \backslash \{x_*\}$$

Define the following number:

$$r = \begin{cases} 1 & \text{if} \quad R = \emptyset; \\ \inf_{x \in R} d_X(x, x_*) & \text{if} \quad R \neq \emptyset; \end{cases}$$

There exists an open ball $B(x_*,r)$ with $B(x_*,r) \subseteq U^c$,

such that $B(x_*,r) \ni x_*$, which implies U is closed.

Part 2: Assume to the contrary that *U* is not complete.

There exists a Cauchy sequence $(x_n)_{n\in\mathbb{N}}$ in U, which is not convergent in U.

As $(x_n)_{n\in\mathbb{N}}$ is in X, which is complete, it must converge to some $x_*\in U^c$.

This implies the existence of $n \in \mathbb{N}$, such that $x_n \in U^c$, a contradiction.

Hence, our assumption is false, and we've proven that U is complete.

Combine the two parts above, we've proven the biconditional.

П

Quod. Erat. Demonstrandum.

Definition 4.12. (Bounded Metric Space)

Let X be a metric space.

If $\exists x \in X$ and r > 0, B(x, r) = X, then X is bounded.

Proposition 4.13. Let X be a metric space.

If X is totally bounded, then X is bounded.

Proof. 1 gives a finite cover $(B(x_k, 1))_{k=1}^m$ of X.

If we take $r = \max\{d_X(x_1, x_k)\}_{k=1}^m + 1 > 0$, then $X = B(x_1, r)$,

which implies X is bounded. Quod. Erat. Demonstrandum.

Proposition 4.14. In metric space \mathbb{R} ,

if a subspace U is bounded, then U is totally bounded.

Proof. Assume that U is bounded, then U is contained in some open interval.

Without loss of generality, we may assume that it is (0,1).

For all r > 0, there exists $m \in \mathbb{N}$, such that mr > 1.

Hence, r > 0 gives a finite cover $(((k-1)r, (k+1)r))_{k=1}^m$ of U.

This implies U is totally bounded. Quod. Erat. Demonstrandum.

Theorem 4.15. (Heine-Borel Theorem)

In metric space \mathbb{R} , every $U \subseteq \mathbb{R}$ is compact if and only if U is closed and bounded.

Proof. We may divide our proof into two parts.

"if" direction: Assume that U is closed and bounded.

According to **Proposition 4.11.**, U is closed implies U is complete.

According to **Proposition 4.14.**, U is bounded implies U is totally bounded.

According to **Proposition 4.10.**, U is compact.

"only if" direction: Assume that U is compact.

According to **Proposition 4.7.**, U is compact implies U is complete.

According to **Proposition 4.11.**, U is complete implies U is closed.

According to **Proposition 4.9.**, U is compact implies U is totally bounded.

According to **Proposition 4.13.**, U is totally bounded implies U is bounded.

Combine the two parts above, we've proven the biconditional.

Quod. Erat. Demonstrandum.

Definition 4.16. (Normed Vector Space)

Let Z be a vector space over field \mathbb{C} , and $\|\cdot\|_Z:Z\to\mathbb{R}$ be a function. If:

- (1) $\forall \mathbf{z} \in Z, \|\mathbf{z}\|_{Z} \geq 0 \text{ and } \|\mathbf{z}\|_{Z} = 0 \iff \mathbf{z} = \mathbf{0};$
- (2) $\forall \lambda \in \mathbb{C}, \|\lambda \mathbf{z}\|_Z = |\lambda| \|\mathbf{z}\|_Z;$
- (3) $\forall \mathbf{z}_1, \mathbf{z}_2 \in Z, \|\mathbf{z}_1\|_Z + \|\mathbf{z}_2\|_Z \ge \|\mathbf{z}_1 + \mathbf{z}_2\|_Z$,

then $(Z, \|\cdot\|)$ is a normed vector space.

Proposition 4.17. In metric space $M_m(\mathbb{C})$, let A be a matrix. Define:

$$\|A\|_{\operatorname{spectral}} = \sup_{\|\mathbf{z}\|=1} \|A\mathbf{z}\| \quad \|A\|_{\operatorname{Frobenius}} = \sqrt{\sum_{k=1}^{m} \|A\mathbf{e}_k\|^2}$$

The two norms above induce the same topology on $M_m(\mathbb{C})$.

Proof.

$$||A||_{\text{spectral}} = \sup_{\|\mathbf{z}\|=1} ||A\mathbf{z}|| = \sup_{\|\mathbf{z}\|=1} \left| \sum_{k=1}^{m} z_k A \mathbf{e}_k \right| \le \sup_{\|\mathbf{z}\|=1} \sum_{k=1}^{m} |z_k| ||A\mathbf{e}_k||$$

$$\le \sup_{\|\mathbf{z}\|=1} \sqrt{\sum_{k=1}^{m} |z_k|^2} \sqrt{\sum_{k=1}^{m} ||A\mathbf{e}_k||^2} = ||A||_{\text{Frobenius}}$$

$$||A||_{\text{Frobenius}} = \sqrt{\sum_{k=1}^{m} ||A\mathbf{e}_k||^2} \le \sqrt{\sum_{k=1}^{m} \left(\sup_{\|\mathbf{z}\|=1} ||A\mathbf{z}|| \right)^2} = \sqrt{m} ||A||_{\text{spectral}}$$

Hence, the two norms induce the same topology on $M_m(\mathbb{C})$.

Quod. Erat. Demonstrandum.

Proposition 4.18. Let $O_m(\mathbb{C})$ be a subspace of $M_m(\mathbb{C})$. $O_m(\mathbb{C})$ is compact.

Proof. With spectral norm, $O_m(\mathbb{C}) = \partial B(O, 1)$ is a closed bounded subspace of $M_m(\mathbb{C})$, so it is compact. Quod. Erat. Demonstrandum.

Proposition 4.19. Let \mathcal{A} be a compact subset of $M_m(\mathbb{C})$.

The function $\phi: \mathbb{C} \times \mathcal{A} \to \mathbb{C}, \phi(\lambda, A) = \det(\lambda I - A)$ is proper.

Proof. For all $V \in \mathcal{P}(\mathbb{C})$, assume that V is compact, let's prove that $\phi^{-1}(V)$ is compact. According to **Theorem 4.15.**, V is compact implies V is closed and bounded.

As ϕ is continuous, V is closed implies $\phi^{-1}(V)$ is closed.

Assume to the contrary that $\pi_1(\phi^{-1}(V))$ is not bounded.

Fix $A \in \mathcal{A}$, find $(\lambda_n)_{n \in \mathbb{N}}$ in $\pi_1(\phi^{-1}(V))$, such that:

$$\lim_{n \to +\infty} \lambda_n = \infty \implies \lim_{n \to +\infty} \phi(\lambda_n, A) = \lim_{n \to +\infty} \lambda_n^m = \infty$$

Hence, our assumption is false, and we've proven that $\pi_1(\phi^{-1}(V))$ is bounded. $\pi_1(\phi^{-1}(V)), \pi_2(\phi^{-1}(V))$ are bounded implies $\phi^{-1}(V)$ is bounded.

According to **Theorem 4.15.**, $\phi^{-1}(V)$ is closed and bounded implies $\phi^{-1}(V)$ is compact, so ϕ is proper. Quod. Erat. Demonstrandum.

Proposition 4.20. Let \mathcal{A} be a compact subset of $M_m(\mathbb{C})$. spec $(\mathcal{A}) = \pi_1(\phi^{-1}(\{0\}))$ is compact.

4.3 Limit Point Compactness and Sequential Compactness

Definition 4.21. (Distance from Point to Subet)

Let X be a metric space, x be a point of X, and X' be a nonempty subset of X. Define $d_X(x, X') = \inf_{x' \in X'} d_X(x, x')$ as the distance from x to X'.

Definition 4.22. (Distance from Subset to Subset)

Let X be a metric space, and X', X'' be two nonempty subsets of X. Define $d_X(X', X'') = \inf_{(x', x'') \in X' \times X''} d_X(x', x'')$ as the distance from X' to X''.

Proposition 4.23. Let X be a metric space, and X' be a nonempty subset of X. $\rho_{X'}: X \to \mathbb{R}, \rho_{X'}(x) = d_X(x, x')$ is 1-Lipschitz continuous.

Proof. For all $x_1, x_2 \in X$:

$$\begin{split} \rho_{X'}(x_2) &= \inf_{x' \in X'} d_X(x_2, x') \\ &\leq \inf_{x' \in X'} [d_X(x_2, x_1) + d_X(x_1, x')] = d_X(x_2, x_1) + \rho_{X'}(x_1) \\ \rho_{X'}(x_1) &= \inf_{x' \in X'} d_X(x_1, x') \\ &\leq \inf_{x' \in X'} [d_X(x_1, x_2) + d_X(x_2, x')] = d_X(x_1, x_2) + \rho_{X'}(x_2) \\ |\rho_{X'}(x_2) - \rho_{X'}(x_1)| &\leq d_X(x_2, x_1) \end{split}$$

Hence, $\rho_{X'}$ is 1-Lipschitz continuous. Quod. Erat. Demonstrandum.

Definition 4.24. (Lebesgue Function)

Let X be a metric space, U be a nonempty subset of X, and $(U_{\lambda})_{\lambda \in I}$ be a nontrivial open cover of U. If $\forall x \in X, \{d_X(x, U_{\lambda}^c)\}_{\lambda \in I}$ is bounded above,

then define the Lebesgue function with respect to $U, (U_{\lambda})_{\lambda \in I}$ as:

$$\ell_U: U \to \mathbb{R}, \ell(x) = \sup_{\lambda \in I} d_X(x, U_{\lambda}^c)$$

Proposition 4.25. Let X be a metric space,

U be a nonempty subset of X, and $(U_{\lambda})_{{\lambda}\in I}$ be a nontrivial open cover of U. If $\forall x \in U, \{d_X(x, U_{\lambda}^c)\}_{{\lambda}\in I}$ is bounded above, then ℓ_U is 1-Lipschitz continuous.

Proof. For all $x_1, x_2 \in X$:

$$\begin{split} \ell_U(x_2) &= \sup_{\lambda \in I} d_X(x_2, U_{\lambda}^c) \\ &\leq \sup_{\lambda \in I} \left[d_X(x_2, x_1) + d_X(x_1, U_{\lambda}^c) \right] = d_X(x_2, x_1) + \ell_U(x_1) \\ \ell_U(x_1) &= \sup_{\lambda \in I} d_X(x_1, U_{\lambda}^c) \\ &\leq \sup_{\lambda \in I} \left[d_X(x_1, x_2) + d_X(x_2, U_{\lambda}^c) \right] \\ &= d_X(x_1, x_2) + \ell_U(x_2) |\ell_U(x_2) - \ell_U(x_1)| \leq d_X(x_2, x_1) \end{split}$$

Hence, ℓ_U is 1-Lipschitz continuous. Quod. Erat. Demonstrandum.

Remark: The two 1-Lipschitz continuous functions seem similar, but the second function is more interesting because it is positive definite.

Proposition 4.26. Let X be a metric space,

U be a nonempty subset of X, and $(U_{\lambda})_{{\lambda}\in I}$ be a nontrivial open cover of U. If $\forall x \in U, \{d_X(x, U_{\lambda}^c)\}_{{\lambda}\in I}$ is bounded above, then $\forall x \in U, \ell_U(x) > 0$.

Proof. For all $x \in U$:

As $(U_{\lambda})_{{\lambda}\in I}$ covers U, x is in some $U_{{\lambda}_*}$.

As $U_{\lambda_*} \in \mathcal{O}_X$, U_{λ_*} contains some $B(x, r_{\lambda_*})$.

As $(U_{\lambda})_{{\lambda}\in I}$ is nontrivial, $U_{{\lambda}_*}\not\supseteq U$.

This implies $U_{\lambda_*}^c \neq \emptyset$, so:

$$\ell_U(x) = \sup_{\lambda \in I} d_X(x, U_\lambda^c) \ge d_X(x, U_{\lambda_*}^c) \ge r_* > 0$$

Quod. Erat. Demonstrandum.

Remark: We would like to minimize this function.

Definition 4.27. (Lebesgue Number)

Let X be a metric space, U be a nonempty subset of X, and $(U_{\lambda})_{\lambda \in I}$ be a nontrivial open cover of U.

If $\forall x \in U, \{d(x, U_{\lambda}^c)\}_{\lambda \in I}$ is bounded above and $\min_{x \in U} \ell_U(x)$ exists, then define:

$$L_U = \min_{x \in U} \, \ell_U(x)$$

as the Lebesgue number with respect to $U, (U_{\lambda})_{{\lambda} \in I}$.

Definition 4.28. (Limit Point Compact Set)

Let X be a metric space, and U be a subset of X. If every infinite subset V of U has an limit point, then X is limit point compact.

Definition 4.29. (Sequentially Compact Set)

Let X be a metric space, and U be a subset of X. If every sequence $(x_n)_{n\in\mathbb{N}}$ has a convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$, then U is sequentially compact.

Proposition 4.30. Let X be a metric space, and U be a subset of X. U is sequentially compact if and only if U is limit point compact.

Proof. As long as an denumerable infinite set $\{x_n\}_{n\in\mathbb{N}}$ is identified with $(x_n)_{n\in\mathbb{N}}$, the logical equivalency will be clear. Quod. Erat. Demonstrandum.

Lemma 4.31. Let $(X, d_X), (Y, d_Y)$ be two metric spaces, U be a subset of X, and $\sigma: U \to V$ be a continuous function. If U is sequentially compact, then $\sigma(U)$ is sequentially compact.

Proof. For all $(y_n)_{n\in\mathbb{N}}$ in $\sigma(U)$, each y_n is the image of some $x_n\in U$. As U is sequentially compact, (x_n) has a convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$. As σ is continuous, $(\sigma(x_n))_{n\in\mathbb{N}}$ has a convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$. Hence, $\sigma(U)$ is sequentially compact. Quod. Erat. Demonstrandum.

Remark: The continuous image of a sequentially compact set is sequentially compact. Hence, any continuous function defined on a sequentially compact domain has minimum.

Lemma 4.32. Let X be a metric space, U be a subset of X, and $(U_{\lambda})_{{\lambda}\in I}$ be a nontrivial open cover of U. If U is sequentially compact, then $\forall x\in U, \{d(x,U_{\lambda}^c)\}_{x\in I}$ is bounded above.

Proof. Assume to the contrary that $\exists x_* \in U, \{d_X(x_*, U^c_\lambda)\}_{\lambda \in I}$ is not bounded above, so there exists $(\lambda_k)_{k \in \mathbb{N}} \in I$, such that $\lim_{k \to +\infty} d_X(x_*, U^c_{\lambda_k}) = +\infty$. As $(U_\lambda)_{\lambda \in I}$ is nontrivial, each $U_{\lambda_k} \not\supseteq U$, we may choose x_k from $U \cap U^c_{\lambda_k}$ as $U \cap U^c_{\lambda_k} \neq \emptyset$. As $d_X(x_*, x_k) \geq d_X(x_*, U^c_{\lambda_k})$ and $\lim_{k \to +\infty} d_X(x_*, U^c_{\lambda_k}) = +\infty$, $\lim_{k \to +\infty} d_X(x_*, x_k) = +\infty$. This implies $(x_k)_{k \in \mathbb{N}}$ has no convergent subsequence, so U is not sequentially compact. Quod. Erat. Demonstrandum.

Remark: Sequential compactness bounds the set $\{d_X(x, U_{\lambda}^c)\}_{\lambda \in I}$.

Lemma 4.33. Let X be a metric space, and U be a subset of X. If U is sequentially compact, then U is totally bounded.

Proof. Assume to the contrary that U is not totally bounded, so for some r > 0, for all finite sequence $(x_k)_{k=1}^m$ in U, $\bigcup_{k=1}^n B(x_k, r) \subset U$.

Step 1: Construct a sequence in U.

As $U \setminus \emptyset$ is not totally bounded,

 $\exists x_1 \in U \backslash \emptyset, \bigcup_{k=1}^1 B(x_k, r) \subset U.$

As $U \setminus \bigcup_{k=1}^n B(x_k, r)$ is not totally bounded,

 $\exists x_{n+1} \in U \setminus \bigcup_{k=1}^{n} B(x_k, r), \bigcup_{k=1}^{n+1} B(x_k, r) \subset U.$

Step 2: State some key properties of this sequence.

Property 2.1: Each $x_n \in U$;

Property 2.2: Each distinct x_n, x_m satisfies $d_X(x_n, x_m) > r$.

This implies some $(x_n)_{n\in\mathbb{N}}$ in U has no convergent subsequence, so U is not sequentially compact. Quod. Erat. Demonstrandum.

Remark: Sequential compactness implies total boundedness.

Lemma 4.34. Let X be a metric space, U be a nonempty subset of X, and $(U_{\lambda})_{{\lambda}\in I}$ be a nontrivial open cover of U.

If U is sequentially compact, then for all $x \in U$ and r > 0:

$$r < L_U \implies B(x,r)$$
 is contained in some A_{λ}

Proof. Assume that $r < L_U$. According to **Definition 4.24.** and **Definition 4.27.**:

$$r < L_U \le \ell_U(x) = \sup_{\lambda \in I} d_X(x, U_\lambda^c)$$

So there exists $\lambda \in I$, such that $d_X(x, U_{\lambda}^c) > r$. For all $x' \in B(x, r)$:

$$d_X(x, x') < r < d_X(x, U_{\lambda}^c) = \inf_{x'' \in U_{\lambda}^c} d_X(x, x'') \implies x' \notin U_{\lambda}^c \implies x' \in U_{\lambda}$$

Hence, B(x,r) is contained in some U_{λ} . Quod. Erat. Demonstrandum.

Remark: This important property helps us reduce the cardinality of an open cover.

Proposition 4.35. Let X be a metric space, and U be a subset of X. If U is sequentially compact, then U is compact.

Proof. Assume that U is sequentially compact.

For all nontrivial open cover $(U_{\lambda})_{{\lambda}\in I}$ of U:

According to **Lemma 4.34.**, for all r > 0, for all $x \in U$:

$$r < L_U \implies \exists \lambda_* \in I, B_r(x) \subseteq U_{\lambda_*}$$

According to **Lemma 4.33.**, $\frac{1}{2}L_U > 0$ gives a finite cover $(B(x_k, \frac{1}{2}L_U))_{k=1}^m$ of U. For each $B(x_k, r)$, choose one superset U_{λ_k} of it in $(U_{\lambda})_{\lambda \in I}$.

This gives a finite subcover $(U_{\lambda_k})_{k=1}^m$ of U.

Hence, U is compact. Quod. Erat. Demonstrandum.

Proposition 4.36. Let X be a metric space, and U be a subset of X.

If U is compact, then U is sequentially compact.

Proof. Assume to the contrary that U is not sequentially compact,

so each $x \in U$ gives $V_x \in \mathcal{O}_X$ with $x \in V_x$, such that $V_x \cap \{x_n\}_{n \in \mathbb{N}}$ is finite.

As U is compact, its open cover $(V_x)_{x\in U}$ has a finite subcover $(V_{x_k})_{k=1}^m$.

This implies $U \subseteq \bigcup_{k=1}^m V_{x_k}$ contains finitely many terms in $(x_n)_{n \in \mathbb{N}}$, a contradiction.

Hence, our assumption is false, and we've proven that U is sequentially compact.

Quod. Erat. Demonstrandum.

Theorem 4.37. (Cantor's Intersection Theorem)

Let X be a metric space, and $(U_n)_{n\in\mathbb{N}}$ be a nested family of nonempty closed and totally bounded sets. If X is complete, then $\bigcap_{n=1}^{+\infty} U_n \neq \emptyset$.

Proof. Assume to the contrary that $\bigcap_{n=1}^{+\infty} U_n = \emptyset$.

Step 1: Construct a sequence in U.

For each U_n , as $U_n \neq \emptyset$, there exists $x_n \in U_n$.

As $(U_n)_{n\in\mathbb{N}}$ is a nested sequence with empty intersection,

there exists $m \in \mathbb{N}$, such that $x_n \notin U_k$ whenever $k \geq m$.

Step 2: State some key properties of this sequence.

As X is complete, U_m is closed implies U_m is complete.

As U_m is complete and totally bounded, U_m is compact.

As U_m is compact, U_m is sequentially compact.

As $(x_n)_{n\in\mathbb{N}}$ is a sequence in a sequentially compact set U_1 ,

it has a convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$ with limit $x_*\in U_1$.

For each U_m , by removing finitely many terms if necessary,

 $(x_{n_k})_{k\in\mathbb{N}}$ becomes a sequence in the sequentially compact set U_m .

This implies $x_* \in \bigcap_{m=1}^{+\infty} U_m$, which is a contradiction.

Hence, our assumption is false, and we've proven that $\bigcap_{n=1}^{+\infty} U_n \neq \emptyset$.

Quod. Erat. Demonstrandum.

Proposition 4.38. Let $\theta: [0, +\infty) \to \mathbb{R}$ be a function of class C^2 , where $\exists \beta > 0, \forall s \geq 0, \theta'(s) > 0$ and $\theta''(s) \geq \beta$, and $\widetilde{\alpha}: [0, +\infty) \to \mathbb{C}$ be a path defined by:

$$\widetilde{\alpha}(s) = \int_0^s e^{i\theta(u)} du$$

- (1) The limit $\widetilde{\alpha}(+\infty) = \int_0^{+\infty} e^{i\theta(u)} du$ exists;
- (2) The estimation $\widetilde{\alpha}(s) = \widetilde{\alpha}(+\infty) + \mathcal{O}\left(\frac{1}{\theta'(s)}\right)$ is valid as $s \to +\infty$. [5]

Proof. For each $s \in [0, +\infty)$, determine the curvature of $\widetilde{\alpha}$:

$$\widetilde{T}(s) = \widetilde{\alpha}'(s) = e^{i\theta(s)} \implies \kappa(s) = ||\widetilde{T}'(s)|| = \theta'(s)$$

Define \mathcal{D}_s as the osculating disk at s. For all $s_1 \leq s_2$:

$$\begin{split} \|\widetilde{\alpha}_0(s_2) - \widetilde{\alpha}_0(s_1)\| &= \left\| \widetilde{\alpha}(s_2) - \widetilde{\alpha}(s_1) + \frac{\mathrm{i}\mathrm{e}^{\mathrm{i}\theta(s_2)}}{\theta'(s_2)} - \frac{\mathrm{i}\mathrm{e}^{\mathrm{i}\theta(s_1)}}{\theta'(s_1)} \right\| \\ &= \left\| \int_{s_1}^{s_2} \mathrm{e}^{\mathrm{i}\theta(u)} \mathrm{d}u + \frac{\mathrm{i}\mathrm{e}^{\mathrm{i}\theta(u)}}{\theta'(u)} \right\|_{s_1}^{s_2} = \left\| \int_{s_1}^{s_2} \frac{\theta''(u)\mathrm{e}^{\mathrm{i}\theta(u)}}{\theta'(u)^2} \mathrm{d}u \right\| \\ &\leq \int_{s_1}^{s_2} \left\| \frac{\theta''(u)\mathrm{e}^{\mathrm{i}\theta(u)}}{\theta'(u)^2} \right\| \mathrm{d}u = \int_{s_1}^{s_2} \frac{\theta''(u)}{\theta'(u)^2} \mathrm{d}u = \frac{1}{\theta'(s_1)} - \frac{1}{\theta'(s_2)} \end{split}$$

So we've constructed a nested family of closed disks $(\mathcal{D}_s)_{s\geq 0}$ in \mathbb{C} with radius $\frac{1}{\theta'(s)} \to 0$. There exists a unique $\widetilde{\xi} \in \bigcap_{s\geq 0} \mathcal{D}_s$, such that:

- (1) $\forall s \geq 0, \widetilde{\alpha}(s) \in \mathcal{D}_s$ implies the existence of $\widetilde{\alpha}(+\infty) = \widetilde{\xi}$;
- (2) $\forall s \geq 0, \|\widetilde{\alpha}(s) \widetilde{\alpha}(+\infty)\| \leq \|\widetilde{\alpha}_0(s) \widetilde{\alpha}(s)\| + \|\widetilde{\alpha}_0(s) \widetilde{\alpha}(+\infty)\| \leq \frac{2}{\theta'(s)}$ implies $\widetilde{\alpha}(s) = \widetilde{\alpha}(+\infty) + \mathcal{O}\left(\frac{1}{\theta'(s)}\right)$ as $s \to +\infty$.

Quod. Erat. Demonstrandum.

References

- [1] H. Ren, "Template for math notes," 2021.
- [2] sumeragi693, "拓扑学入门 16——吉洪诺夫(tychonoff)定理," 2023. [Online]. Available: https://zhuanlan.zhihu.com/p/556647150
- [3] D. T. W. Ching and P. J.-H. Lu, "Introduction to topology," 2022, lecture notes, HKU, Spring 2022.
- [4] user360359, "Proofs for complete + totally bounded \implies compact." Mathematics Stack Exchange, Aug 2016. [Online]. Available: https://math.stackexchange.com/questions/1883634/proofs-for-complete-totally-bounded-implies-compact
- [5] Z. T. Yuan, "Tangent line and osculating circle," https://www.youtube.com/watch? v=_HhQZNw4g0Q, 2024.