Kartkówka 2

gr.1, 11 stycznia 2012

- 1. Załóżmy, że X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale [0, a]. Wyznacz wszystkie liczby a > 0 takie, że ciąg $R_n = X_1^3 X_2^3 \cdots X_n^3$ jest nadmartyngałem względem filtracji generowanej przez X_n . Czy ten nadmartyngał jest zbieżny według rozkładu?
- 2. Dany jest ciąg zmiennych losowych X_n o wartościach całkowitych taki, że $X_0=2, |X_n-X_{n-1}|\leqslant 1$, $\limsup_{n\to\infty}|X_n|=\infty$ p.n. oraz $(X_n^2-\frac{1}{6}n)$ jest martyngałem względem pewnej filtracji. Niech $\tau=\inf\{n\colon |X_n|=5\}$, oblicz $\mathbf{E}\tau$.

Kartkówka 2

gr.2, 11 stycznia 2012

- 1. Dany jest ciąg zmiennych losowych X_n o wartościach całkowitych taki, że $X_0 = -1, |X_n X_{n-1}| \le 1$, $\limsup_{n \to \infty} |X_n| = \infty$ p.n. oraz $(X_n^2 \frac{1}{5}n)$ jest martyngałem względem pewnej filtracji. Niech $\tau = \inf\{n: |X_n| = 7\}$, oblicz $\mathbf{E}\tau$.
- 2. Załóżmy, że X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale [a, 2a]. Wyznacz wszystkie liczby a > 0 takie, że ciąg $R_n = X_1^2 \cdots X_n^2$ jest nadmartyngałem względem filtracji generowanej przez X_n . Czy ten nadmartyngał jest zbieżny według rozkładu?