Test de Tukey (LSD)

ABOUZAID Mehdi TOOMEY Damien

INSA – Institut National des Sciences Appliquées de Rouen

May 23, 2018

May 23, 2018

- Base de données
- 2 Analyse de la variance (ANOVA)
- **③** Test de Fisher (LSD : Least Significant Difference)
- 4 Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

- Base de données
- 2 Analyse de la variance (ANOVA)
- Test de Fisher (LSD : Least Significant Difference)
- Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

Base de données

Temps d'un sprint (en secondes) sur 35 mètres

33 athlètes par colonne

(Non fumeur	Ancien fumeur	Fumeur actuel		
l	7.9780	7.4430	7.3120		
l	8.0040	7.0250	6.4990		
ł	4.6500	7.7060	7.0130		
l	4.7500	5.5370	7.4940		
l					
l	4.8730	6.2330	8.2320		

- Base de données
- 2 Analyse de la variance (ANOVA)
- 3 Test de Fisher (LSD : Least Significant Difference
- Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

Les limites du test de Student

Utilisé pour comparer soit :

- deux variables quantitatives
- une variable quantitative et une variable qualitative

Exemple d'hypothèses du test de Student :

$$\begin{cases}
H_0: \mu_1 = \mu_2 \\
H_1: \mu_1 \neq \mu_2
\end{cases}$$

Inflation de α

$$egin{pmatrix} c \\ 2 \end{pmatrix}$$
 tests de Student | Pour $c=5 \Rightarrow egin{pmatrix} 5 \\ 2 \end{pmatrix} = 10$ tests de Student

Au départ, $\alpha=0.05$ pour chaque test mais 10 tests de Student sur le même jeu de données entraı̂ne $\alpha'=1-(1-\alpha)^{10}=0.40$ Soit 40% de risque de faire une erreur de type 1 sur les 10 tests menés

6 / 31

L'ANOVA : une généralisation du test de Student

Remarque

L'ANOVA (analysis of variance) permet d'éviter cette inflation de lpha

Il existe différents types d'ANOVA et d'autres variantes :

- ANOVA à un facteur
- ANOVA à deux facteurs
- ...
- ANOVA à n facteurs

- ANCOVA
- MANOVA
- MANCOVA

But de notre étude : les tests a posteriori

Ils ne sont réalisés que si l'on rejette H_0 à la suite d'une ANOVA

- test de Fisher (LSD)
- test de Tukey (HSD)

L'ANOVA : une généralisation du test de Student

Remarque

L'ANOVA (analysis of variance) permet d'éviter cette inflation de lpha

Il existe différents types d'ANOVA et d'autres variantes :

- ANOVA à un facteur
- ANOVA à deux facteurs
- ...
- ANOVA à n facteurs

- ANCOVA
- MANOVA
- MANCOVA

But de notre étude : les tests a posteriori

Ils ne sont réalisés que si l'on rejette H_0 à la suite d'une ANOVA

- test de Fisher (LSD)
- test de Tukey (HSD)

Les conditions d'application de l'ANOVA à un facteur (1/3)

Remarque : ANOVA à un facteur

On ne prend en compte qu'un seul facteur de variabilité

- I la variable quantitative est continue
- II au moins deux variables qualitatives (identique au test de Student si on en a exactement deux)
- III chaque groupe analysé est indépendant des autres groupes

Non fumeur	Ancien fumeur	Fumeur actuel
7.9780	7.4430	7.3120
8.0040	7.0250	6.4990
4.6500	7.7060	7.0130
4.7500	5.5370	7.4940
4.8730	6.2330	8.2320

Les conditions d'application de l'ANOVA à un facteur (2/3)

IV pas de valeur aberrante

Les conditions d'application de l'ANOVA à un facteur (3/3)

- V les groupes suivent une loi normale (fonction *chi2gof*)
- VI les variances sont les mêmes dans chaque groupe (fonction *vartestn*)

Les hypothèses de l'ANOVA à un facteur

$$\left\{ \begin{array}{l} H_0: \mu_1 = \mu_2 = \ldots = \mu_c \quad \text{(c : nombre de groupes)} \\ H_1: \exists \ (i,j) \in \llbracket 1 \ ; \ c \rrbracket^2 \ \text{tel que } \mu_i \neq \mu_j \end{array} \right.$$

 $\Leftrightarrow \left\{ \begin{array}{l} \textit{H_0 : les moyennes de chaque groupe sont égales} \\ \textit{H_1 : il existe au moins une moyenne qui n'est pas égale aux autres} \end{array} \right.$

Définition du modèle

On choisit le modèle suivant :

$$y_{ij} = \mu_i + \epsilon_{ij}$$

i = 1...c (c : nombre de groupes)

j=1...r (r : effectif de chaque groupe)

Partie mathématique (1/2)

L'ANOVA se base sur deux types de variance :

- variance expliquée (inter-classes) : résume la variabilité entre les classes (traitement et hasard)
- variance résiduelle (intra-classe) : résume la variabilité à l'intérieur des classes (hasard)

Décomposition de la variance (de la SCE_T plus précisément)

$$SCE_T = SCE_F + SCE_R$$
inter-classes (due au facteur) intra-classe (résiduelle)

Démonstration

Degrés de liberté associés

$$n-1 = c-1 + n - c$$

- c : nombre de groupes
- n : effectif total

• SCE : somme des carrés des écarts

Partie mathématique (2/2)

L'ANOVA utilise la loi de Fisher

$$F_{observe} = \frac{\frac{SCE_F}{c-1}}{\frac{SCE_R}{n-c}} = \frac{CM_F}{CM_R}$$

SCE : somme des carrés des écarts

CM: carré moyen

- $F_{observe} < F_{tables} \Rightarrow$ acceptation de H_0
- $F_{observe} \ge F_{tables} \Rightarrow \text{rejet de } H_0$

Les résultats de l'ANOVA

$$F_{observe}=10.3687 \geq F_{tables}=3.09$$
 donc on rejette H_0 $p-valeur=8.3744 \cdot 10^{-5} < lpha=0.05$ ce qui conforte le rejet de H_0

	Tableau ANOVA à la main				
Source	SCE	DDL		CM	F
Inter-classes	25.4242		2	12.7121	10.3687
Intra-classe	117.6970		96	1.2260	
Total	143.1212		98		

Tableau ANOVA fonction anova1 de Matlab

Source	SCE	DDL		CM	F	Prob>F
Inter-classes	25.4242		2	12.7121	10.3687	8.3744e-05
Intra-classe	117.6970		96	1.2260		
Total	143.1212		98			

- Base de données
- 2 Analyse de la variance (ANOVA)
- 3 Test de Fisher (LSD : Least Significant Difference)
- Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

Test de Fisher (LSD) : Partie mathématique

Rejet de $H_0 \Rightarrow$ déterminer les groupes qui diffèrent en comparant les moyennes des groupes deux à deux

Fisher établit le test LSD pour deux groupes

Nombre de groupes $c>2\Rightarrow$ inflation de α , d'où l'appellation de différence la moins significative

Les groupes diffèrent $(\mu_i \neq \mu_j)$ si :

$$\mid \mu_i - \mu_j \mid > \underbrace{t_{\frac{\alpha}{2}, DDL_{intra}}^{\alpha} \cdot \sqrt{CM_R \cdot (\frac{1}{r_i} + \frac{1}{r_j})}}_{\mathsf{LSD}}$$

- μ_i et μ_i : moyennes des deux groupes i et j
- $t_{\frac{\alpha}{2},DDL_{intra}}$: valeur critique (<u>table des t-distributions</u>)
- CM_R : carré moyen résiduel
- r_i et r_i : effectifs des deux groupes i et j

Les résultats du test LSD de Fisher

Données issues de l'ANOVA

- DDL_{intra} = 96
- r = 33 : effectif de chaque groupe
- $CM_R = 1.226$: carré moyen résiduel
- t = 1.6632 : issu des tables

$$\Rightarrow LSD_{calcule} = 0.4534$$

- $|\mu_1 \mu_2| = |\mu_2 \mu_1| = 0.8585 > LSD_{calcule}$
- $|\mu_1 \mu_3| = |\mu_3 \mu_1| = 1.2057 > LSD_{calcule}$
- $\mid \mu_2 \mu_3 \mid = \mid \mu_3 \mu_2 \mid = 0.3472 < LSD_{calcule}$

 \Rightarrow Groupes qui diffèrent : 1 et 2, 1 et 3

Les résultats du test LSD de Fisher avec Matlab

- Base de données
- 2 Analyse de la variance (ANOVA)
- 3 Test de Fisher (LSD : Least Significant Difference)
- 4 Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

Test de Tukey (HSD) : Partie mathématique

Tukey a trouvé une distribution prenant en compte le nombre total de groupes c évitant ainsi le problème d'inflation de α

Les groupes diffèrent
$$(\mu_i \neq \mu_j)$$
 si :

$$\mid \mu_i - \mu_j \mid > \underbrace{\frac{q_{\alpha,c,DDL_{intra}}}{\sqrt{2}} \cdot \sqrt{CM_R \cdot (\frac{1}{r_i} + \frac{1}{r_j})}}_{\mathsf{HSD}}$$

- μ_i et μ_j : moyennes des deux groupes i et j
- $q_{\alpha,c,DDL_{intra}}$: valeur critique (table des q)
- CM_R: carré moyen résiduel
- r_i et r_j : effectifs des deux groupes i et j

Les résultats du test HSD de Tukey

Données issues de l'ANOVA

- DDL_{intra} = 96
- r = 33 : effectif de chaque groupe
- $CM_R = 1.226$: carré moyen résiduel
- q = 3.3612: issu des tables (avec c = 3 le nombre de groupes)

$$\Rightarrow HSD_{calcule} = 0.6479$$

- $|\mu_1 \mu_2| = |\mu_2 \mu_1| = 0.8585 > HSD_{calcule}$
- $\mid \mu_1 \mu_3 \mid = \mid \mu_3 \mu_1 \mid = 1.2057 > HSD_{calcule}$
- $\mid \mu_2 \mu_3 \mid = \mid \mu_3 \mu_2 \mid = 0.3472 < HSD_{calcule}$

 \Rightarrow Groupes qui diffèrent : 1 et 2, 1 et 3

Les résultats du test HSD de Tukey avec Matlab

- Base de données
- 2 Analyse de la variance (ANOVA)
- Test de Fisher (LSD : Least Significant Difference)
- 4 Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

Comparaison des tests a posteriori

Les deux tests a posteriori donnent le même résultat malgré :

$$LSD_{calcule} = 0.4534 \neq HSD_{calcule} = 0.6479$$

Ici l'inflation de α avait peu d'impact car le nombre de groupes (c=3) est faible (proche de 2)

- Base de données
- 2 Analyse de la variance (ANOVA)
- Test de Fisher (LSD : Least Significant Difference)
- Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

La robustesse de l'ANOVA

Retrait d'une valeur par groupe :

$$F_{observe}=9.0357 \geq F_{tables}=3.09$$
 donc on rejette H_0 $p-valeur=2.5938 \cdot 10^{-4} < lpha=0.05$ ce qui conforte le rejet de H_0

 Ajout d'une valeur aberrante au groupe Non fumeur : $F_{observe} = 5.2827 \ge F_{tables} = 3.09$ donc on rejette H_0

 $p-valeur=0.0067<\alpha=0.05$ ce qui conforte le rejet de H_0

La robustesse du test LSD de Fisher

- (c) Retrait d'une valeur par groupe
- (d) Ajout d'une valeur aberrante dans le groupe Non fumeur

La robustesse du test HSD de Tukey

- (e) Retrait d'une valeur par groupe
- (f) Ajout d'une valeur aberrante dans le groupe Non fumeur

- Base de données
- 2 Analyse de la variance (ANOVA)
- Test de Fisher (LSD : Least Significant Difference)
- Test de Tukey (HSD : Honest Significant Difference)
- 5 Comparaison des tests a posteriori
- 6 Robustesse des tests
- Bibliographie

Bibliographie

 Base de données https://libguides.library.kent.edu/SPSS/OneWayANOVA

 Stéphane Canu Cours de M8 INSA de Rouen

Laerd Statistics

https://statistics.laerd.com/stata-tutorials/ one-way-anova-using-stata.php

MathWorks

https://fr.mathworks.com/help/stats

Stephanie Glen

http://www.statisticshowto.com

Bradfordx

https://www.youtube.com/user/Bradfordx/videos

mathAgrocampus

https://www.youtube.com/user/mathAgrocampus/videos