Gramáticas e Autómatos de Pilha Linguagens Formais e Autómatos

Francisco Coelho fc@di.uevora.pt

Departamento de Informática Escola de Ciências e Tecnologia Universidade de Évora

Gramáticas Independentes do Contexto

Autómatos de Pilha

Exemplo


```
<frase> → <sujeito> < predicado>
    <sujeito> → <artigo> <substantivo>
 <artigo> \rightarrow a

ightarrow os
<substantivo> → água

ightarrow golfinhos
    < verbo> \rightarrow evapora-se
              \rightarrow mergulham
  <advérbio> → lentamente
              \rightarrow profundamente
```

- Os termos <assim> são símbolos não terminais;
- Os termos neste tipo são símbolos terminais;

Exemplo — Aplicado

Gramática Independente do Contexto

Uma gramática independente do contexto (abrev. GIC) é um tuplo $G=(V,\Sigma,P,S)$ onde

- ▶ não terminais (ou variáveis) V é um conjunto dos símbolos;
- ▶ terminais Σ é um conjunto dos símbolos, disjunto de V $(V \cap \Sigma = \emptyset)$;
- ▶ produções (ou regras) $P \subseteq V \times (V \cup \Sigma)^*$. A produção $(A, w) \in P$ é escrita na forma $A \to w$;
- ightharpoonup símbolo inicial $S \in V$;

Derivação

Seja $G=(V,\Sigma,P,S)$ uma gramática independente do contexto.

- ▶ se existe uma produção $A \rightarrow w$ em P então uAv deriva directamente uwv: $uAv \Rightarrow_G uwv$;
- ▶ se existem $w_0, \dots, w_n \in (V \cup \Sigma)^*, n \ge 0$ tais que

$$w = w_0 \Rightarrow_G w_1 \Rightarrow_G \dots \Rightarrow_G w_n = v$$

então w deriva v em n passos: $w \Rightarrow_C^n v$;

▶ se existe $n \ge 0$ tal que $w \Rightarrow_G^n v$ então w deriva v: $w \Rightarrow_G^* v$;

Linguagem Gerada

Seja $G = (V, \Sigma, P, S)$ uma gramática independente do contexto.

O conjunto das palavras deriváveis a partir de $v \in (V \cup \Sigma)^*$ é

$$\mathcal{D}(v) = \{ w : v \Rightarrow^* w \}$$

A linguagem gerada por G é o conjunto das palavras de Σ^* deriváveis a partir de S:

$$\mathcal{L}(G) = \{ w \in \Sigma^* : S \Rightarrow^* w \}$$

Nesse caso $\mathcal{L}\left(G\right)$ é uma linguagem independente do contexto.

Duas gramáticas são equivalentes se geram a mesma linguagem.

Exemplo

Qual é a linguagem gerada por $G_1 = (\{S\}, \{0,1\}, \{S \rightarrow \lambda | 0S1\}, S)$?

Quando várias produções têm o mesmo lado esquerdo, como em

$$A \to w_1, A \to w_2, \dots, A \to w_n$$

abreviamos a escrita $A \to w_1 |w_2| \dots |w_n|$.

Neste exemplo $S \to \lambda |0S1$ resulta de abreviar $S \to \lambda, S \to 0S1$.

Como só há um símbolo não terminal em G_1 e a única regra que o mantém é $S \to 0S1$, as derivações de G_1 são da forma

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow \cdots \Rightarrow 0^n S1^n \Rightarrow 0^n 1^n.$$

Portanto $\mathcal{L}(G) = \{0^n 1^n : n \ge 0\}$. Esta linguagem é regular?

Recursividade

Uma produção (directamente) recursiva tem a forma

$$A \rightarrow uAv$$

O não terminal A é recursivo se

$$A \Rightarrow^+ uAv$$

Uma derivação da forma

$$A \Rightarrow w \Rightarrow^+ uAv$$

onde A não ocorre em w, é indirectamente recursiva (com $u, v, w \in (V \cup \Sigma)^*$).

Independência das Sub-derivações

Sejam $G = (V, \Sigma, P, S)$ uma GIC e $v \Rightarrow^n w$ uma derivação em G onde

$$v = w_1 A_1 w_2 A_2 \cdots w_k A_k w_{k+1}$$

com os $w_i \in \Sigma^*$.

Então existem palavras $p_i \in (V \cup \Sigma)^*$ tais que

- $ightharpoonup A_i \Rightarrow^{t_i} p_i$
- $\blacktriangleright \sum_{i=1}^k t_i = n$

Derivação Esquerda e Direita

Numa derivação esquerda (\Rightarrow_L) em todos os passos é reescrito o não terminal mais à esquerda.

Numa derivação direita (\Rightarrow_R) em todos os passos é reescrito o não terminal mais à direita.

Teorema (existência de derivação esquerda)

Seja
$$G=(V,\Sigma,P,S)$$
 uma GIC. Para cada $w\in \Sigma^*$

$$w \in \mathcal{L}\left(G\right) \text{ sse } S \Rightarrow_{L}^{*} w \text{ sse } S \Rightarrow_{R}^{*} w$$

Árvore de Derivação

Seja $G = (V, \Sigma, P, S)$ uma GIC.

A árvore de derivação de $S \Rightarrow^* w$ é formada por

- 1. a raiz é o símbolo inicial S;
- 2. se $A \to x_1 x_2 \cdots x_n$ (com $x_i \in V \cup \Sigma$) é a produção usada para reescrever o símbolo A então o nó A na árvore tem filhos x_1, x_2, \ldots, x_n por esta ordem;
- 3. se $A \to \lambda$ é a produção usada pra reescrever o símbolo A então o nó A na árvore tem λ como único filho;

Uma palavra w tem árvore de derivação T (e T é uma árvore de derivação de w) se w for a concatenação das folhas de T.

Ambiguidade

Uma gramática G é ambígua se alguma palavra de $\mathcal{L}\left(G\right)$ tem pelo menos

- duas árvores de derivação distintas ou
- duas derivações esquerdas distintas ou
- duas derivações direitas distintas.

Uma linguagem é inerentemente ambígua se não existir uma gramática não ambígua que a gere.

$$\left\{a^ib^jc^k\ :\ i=j\vee j=k\right\}$$

Em "if A then if B then C else D"

- ▶ o "else D" é de "if A"?
- ▶ ou de "if B"?

Exemplo — Expressões Aritméticas

Seja $G_{EA} = (\{E, \dots\}, \{n, +, -, \times, \div\}, \dots, E)$ com produções... 1^a versão ambígua: $n + n \times n$

$$E \rightarrow E + E \mid E - E \mid E \times E \mid E \div E \mid n$$

precedência ainda ambígua: $n+n\times n\checkmark$, mas...n+n+n

$$E \to E + E \mid E - E \mid T$$
$$T \to T \times T \mid T \div T \mid F$$
$$F \to n$$

precedência + associatividade não ambígua

$$E \to E + T \mid E - T \mid T$$

$$T \to T \times F \mid T \div F \mid F$$

$$F \to n$$

E para incluir parênteses... por exemplo para $(n+n) \times n$? Basta acrescentar a produção $F \to (E)$.

Gramáticas Regulares

Uma gramática regular é uma GIC (V,Σ,P,S) em que todas as produções têm uma das formas

$$A \to a$$
$$A \to aB$$
$$A \to \lambda$$

com $A, B \in V$ e $a \in \Sigma$.

A linguagem gerada por uma gramática regular é uma linguagem regular.

Uma linguagem regular pode ser gerada por uma gramática não regular.

Equivalência entre AFND e Gramáticas Regulares UNIVERSIDADE DE ÉVORA

Seja $A = (Q, \Sigma, \delta, q_I, F)$ um AFND.

A GIC equivalente a $A \in G = (V, \Sigma, P, S)$ em que

- $V = \{X_i : i \in Q\}$:
- $\triangleright S = X_{a_T}$;
- ▶ para cada $a \in \Sigma$, se $p \in \delta(q, a)$ então $X_q \to aX_p \in P$;
- \blacktriangleright se $p \in \delta(q, \lambda)$ então $X_q \to X_p \in P$;
- ▶ se $q \in F$ então $X_q \to \lambda \in P$;

Para cada AFND A, a gramática G obtida assim é regular e $\mathcal{L}(A) = \mathcal{L}(G).$

A aplicação do processo inverso produz um AFND a partir de uma gramática regular (atenção às regras $A \to a$ e $X_q \to X_p$).

Gramáticas Independentes do Contexto

Autómatos de Pilha

Autómatos de Pilha

Um autómato de pilha (AP) é um tuplo $A=(Q,\Sigma,\Gamma,\delta,q_I,F)$ onde

- ▶ Q, Σ, q_I e F são como nos autómatos finitos;
- ightharpoonup alfabeto da pilha Γ é um conjunto finito de símbolos;
- ▶ transição é uma função com assinatura

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\lambda\}))$$

As palavras na pilha (i.e. em Γ^*) são denotadas por letras gregas minúsculas $\alpha, \beta, \gamma, \dots$

Configuração de um Autómato de Pilha

Uma configuração de um AP é um triplo $[q, w, \alpha] \in Q \times \Sigma^* \times \Gamma^*$

A configuração inicial é
$$[q_I,w,\lambda]$$
 e
$$(\mathsf{AFND}) \text{ se } (p,\lambda) \in \delta(q,a,\lambda)$$

$$[q,aw,\alpha] \vdash [p,w,\alpha]$$

$$[q,aw,A\alpha] \vdash [p,w,\alpha]$$

$$[q,aw,A\alpha] \vdash [p,w,\alpha]$$
 (acrescenta) se $(p,B) \in \delta(q,a,\lambda)$
$$[q,aw,\alpha] \vdash [p,w,B\alpha]$$

$$(\mathsf{troca}) \text{ se } (p,B) \in \delta(q,a,A)$$

$$[q,aw,A\alpha] \vdash [p,w,B\alpha]$$

Linguagem Reconhecida

Seja $A = (Q, \Sigma, \Gamma, \delta, q_I, F)$ um AP.

Uma palavra $w \in \Sigma^*$ é aceite por A se existe uma computação

$$[q_I, w, \lambda] \vdash_A^* [q_f, \lambda, \lambda]$$

com $q_f \in F$ (critério de aceitação por estado final e pilha vazia);

A linguagem reconhecida por A é o conjunto das palavras aceites por A.

Um autómato de pilha é determinista se para cada combinação de estado, símbolo de entrada e topo da pilha existe no máximo uma transição aplicável.

Variantes

Um autómato de pilha atómico só tem transições das formas

$$(p,\lambda) \in \delta(q,a,\lambda)$$

 $(p,\lambda) \in \delta(q,\lambda,A)$
 $(p,A) \in \delta(q,\lambda,\lambda)$

Um autómato de pilha estendido permite transições em que são empilhados mais do que um símbolo como, por exemplo

$$(p, BCD) \in \delta(q, a, \lambda)$$

- Qualquer linguagem reconhecida por um AP também é reconhecida por um AP atómico
- Qualquer linguagem reconhecida por um AP estendido também é reconhecida por um AP

Converter uma GIC num AP

Seja $G=(V,\Sigma,P,S)$ uma GIC e $A=(\{q\}\,,\Sigma,\Sigma\cup V,\delta,q,\{q\})$ um AP estendido com transição δ definida por. . .

- ▶ para cada $A \in V$, $\delta(q, \lambda, A) = \{(q, w) : A \to w \in P\}$;
- ▶ para cada $a \in \Sigma$, $\delta(q, a, a) = \{(q, \lambda)\}$

Então a linguagem gerada por G coincide com a linguagem aceite por A se a pilha for iniciada com S.

Pumping Lemma para Linguagens Independentes Linguagens Independentes Contexto

Seja L uma linguagem independente do contexto.

Existe um k tal que qualquer palavra $p \in L$ com |p| > k pode ser escrita como

$$p = uvwxy, \qquad \quad \text{com } |vwx| \le k, |v| + |x| > 0$$

e $uv^nwx^ny\in L$ para cada $n\geq 0$

Hierarquia de Chomsky

Qualquer gramática $G=(V,\Sigma,P,S)$ é de um dos seguintes tipos

- tipo 0 ou sem restrições se as produções forem da forma $u \to v \text{ com } u \in (V \cup \Sigma)^+ \text{ e } v \in (V \cup \Sigma)^*$
- tipo 1 ou dependente do contexto se as produções forem da forma $u\to v$ com $u,v\in (V\cup \Sigma)^+$ e $|u|\leq |v|$
- tipo 2 ou independente do contexto
- tipo 3 ou regular