2D, 3D Vectors

Dot Product and Cross Product

Dot Product

11.3.1 DEFINITION If $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are vectors in 2-space, then the *dot product* of \mathbf{u} and \mathbf{v} is written as $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

Similarly, if $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ are vectors in 3-space, then their dot product is defined as

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Properties of Dot Product

11.3.2 THEOREM If **u**, **v**, and **w** are vectors in 2- or 3-space and k is a scalar, then:

(a)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

(b)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

(c)
$$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$$

$$(d) \quad \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$$

(e)
$$0 \cdot \mathbf{v} = 0$$

Magnitude, Length, **Norm** of V: $|V| = \sqrt{v1^2 + v2^2 + v3^2}$ **Zero Vector**: $\mathbf{0} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k} = <\mathbf{0}$, $\mathbf{0}$, $\mathbf{0}$ >

Unit Vector is a vector of length 1, e.g., standard unit vectors i = <1,0,0>, j = <0,1,0>, k = <0,0,1>

Vector Representation $\mathbf{U} = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \rangle = \mathbf{u}_1 i + \mathbf{u}_2 j + \mathbf{u}_3 k$

11.3.3 THEOREM If \mathbf{u} and \mathbf{v} are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then $\mathbf{u} \cdot \mathbf{v}$

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \tag{2}$$

Dot Product: $u \cdot v = ||u|| ||v|| \cos \theta$

Orthogonal Projections

$$proj_{\mathbf{b}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \mathbf{b}$$

Cross Product

11.4.2 **DEFINITION** If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ are vectors in 3-space, then the *cross product* $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$
 (3)

or, equivalently,

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2)\mathbf{i} - (u_1 v_3 - u_3 v_1)\mathbf{j} + (u_1 v_2 - u_2 v_1)\mathbf{k}$$
(4)

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Properties of Cross Product

11.4.3 **THEOREM** If **u**, **v**, and **w** are any vectors in 3-space and k is any scalar, then:

- (a) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
- (b) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
- (c) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
- (d) $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
- (e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- (f) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$

11.4.5 **THEOREM** Let **u** and **v** be nonzero vectors in 3-space, and let θ be the angle between these vectors when they are positioned so their initial points coincide.

- (a) $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$
- (b) The area A of the parallelogram that has **u** and **v** as adjacent sides is

$$A = \|\mathbf{u} \times \mathbf{v}\| \tag{8}$$

(c) $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are parallel vectors, that is, if and only if they are scalar multiples of one another.

Area of the parallelogram

Area of the parallelogram = $||u \times v|| = ||u|| ||v|| \sin \theta$

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

- 11.4.6 THEOREM Let u, v, and w be nonzero vectors in 3-space.
- (a) The volume V of the parallelepiped that has u, v, and w as adjacent edges is

$$V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \tag{10}$$

(b) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0$ if and only if \mathbf{u} , \mathbf{v} , and \mathbf{w} lie in the same plane.

Volume of the parallelepiped

Volume of the parallelepiped = $|u \cdot (v \times w)|$