Algorithm Homework1

PB18111704 Zhu Enzuo

2020年11月3日

0.1 Prob1

a1 线性查找伪代码如下

Algorithm 1 线性查找

```
1: \operatorname{procedure} \operatorname{FETCH}(A, v)
2: \operatorname{for} i \leftarrow 1, n \operatorname{do}
3: \operatorname{if} a_i = v \operatorname{then}
4: \operatorname{return} i
5: \operatorname{end} \operatorname{if}
6: \operatorname{end} \operatorname{for}
7: \operatorname{return} NIL
8: \operatorname{end} \operatorname{procedure}
```

a2 循环不变式证明如下

初始化 首先需要证明迭代开始之前循环不变式成立。此时 i=0,已查找的元素集合中和 v 不相等的元素的集合 S 为 \emptyset 。而空集中不会有元素和 v 相等。

保持 我们需要证明每一次循环之后 $v \notin S$,而我们可以看到只有满足 $a_i \neq v$ 的 a_i 才会被加入到 S 当中。故该性质对循环成立。

终止 当循环中途跳出的时候,说明我们找到了一个 $a_i = v$,满足要求。当循环正常结束之后,说明对任意 a_i ,都有 $a_i \neq v$,满足题目要求。故我们可以得出结论该算法是正确的。

b 平均需要检查的元素个数 $P=\sum_{k=1}^n \frac{k}{n}=\frac{k+1}{2}$,最坏情况需要检查的元素个数为 n。 $f(A,v)=O(n)=\Theta(n)$

0.2 Prob2

- **a** 错误。考虑 $f(n) = \frac{1}{n}$,可以发现 $O(f(n)^2) = \frac{1}{n^2} < f(n)$ 。
- **b** 正确。利用 Θ 的定义,取 $c1 = 1, c2 = 2, n_0 = 1$,有 $\forall n \geq n_0, 0 \leq max(f(n), g(n)) \leq f(n) + g(n) \leq 2max(f(n), g(n))$ 。故命题正确。
- **c** $True_{\cdot}$ g(n) = O(f(n)), 0 < g(n), cf(n)
- **d** 错误。 $f(n) = \Sigma(g(n)) \rightarrow \exists n_0, \forall n > n_0, f(n) \leq g(n)$,而后者与之矛盾。

0.3 Prob3

证明
$$lg(n!) = \Theta(nlg(n))$$

$$\begin{split} n! &= \sqrt{2\pi n} (\frac{n}{e})^n e^{\alpha_n} \\ lg(n!) &= lg(\sqrt{2\pi n}) + nlg(n) - nlg(e) + \alpha_n lg(e) \\ &= \Theta(lgn) + \Theta(nlgn) + \Theta(n) + \Theta(\frac{1}{n}) \\ &= \Theta(nlgn) \end{split}$$

证明 $n! = \omega(2^n)$ 令 $n_0 = 4$,则 $\forall n \geq n_0$,有 $n! = n*(n-1)*(n-2)*...*4*3*2*1 <math>\geq 2*2*2*...*2*2*2*2$ 故 $n! = \omega(2^n)$

证明
$$n! = o(n^n)$$
 令 $n_0 = 2$,则 $\forall n \ge n_0$,有 $n! = n*(n-1)*(n-2)*...*2*1 \le n*n*n*...*n*n$ 故 $n! = o(2^n)$

0.4 Prob4

证明 假设 T(n) = O(lgn)

不妨设 $T(n)=O(\lg n)$,则对于 $n_0=2$,有 $2\lg 2\geq T(2)=T(1)+1=2$ 又 $\forall n>n_0$,若已知 $T(n)\leq 2\lg n$,有 $T(n+1)=T(\frac{n+1}{2})+1\leq 2\lg(\frac{n+1}{2})+1=2\lg(n+1)-2\lg 2+1=2\lg(n+1)-1\leq 2\lg(n+1)$ 故 $T(n)=O(\lg n)$

0.5 Prob5

ha)。故可求得

$$O(T(n)) = \sum_{h=0}^{\left\lfloor \frac{n}{a} \right\rfloor} c(n - ha)$$

$$= c \sum_{h=0}^{\left\lfloor \frac{n}{a} \right\rfloor} (n - ha)$$

$$= c \sum_{h=0}^{\left\lfloor \frac{n}{a} \right\rfloor} n - c \sum_{h=0}^{\left\lfloor \frac{n}{a} \right\rfloor} ha$$

$$= O(n^2)$$

0.6 Prob6

$$\mathbf{a} \quad T(n) = \sqrt{n} lgn$$

$$\mathbf{b} \quad T(n) = n^2$$

0.7 Prob7

不可以,由于对于递归式有 $n^{\log_2 4} < n^2 lgn$,但不存在 $\epsilon > 0$,使得 $f(n) = \Omega(n^(4+\epsilon))$ 。故考虑递归树。可以看出来第 i 层的复杂度为 $n^2 lg(\frac{n}{2^i})$ 。故总复杂度为 $n^2 lg(\frac{n^{(lgn)}}{2^{1+2+\cdots +lgn}}) = n^2 lg^2(n)$