Bankruptcy

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
raw_df = pd.read_csv("bankruptcy.csv")
```

In [3]:

```
raw_df.head(5)
```

Out[3]:

	Unnamed: 0	Bankrupt?	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Oper I
0	0	1	0.370594	0.424389	0.405750	0.601457	0.601457	0.99
1	1	1	0.464291	0.538214	0.516730	0.610235	0.610235	99.0
2	2	1	0.426071	0.499019	0.472295	0.601450	0.601364	0.99
3	3	1	0.399844	0.451265	0.457733	0.583541	0.583541	0.99
4	4	1	0.465022	0.538432	0.522298	0.598783	0.598783	0.99

5 rows × 97 columns

In [4]:

raw_df.isna().sum()

Out[4]:

Unnamed: 0	0
Bankrupt?	0
ROA(C) before interest and depreciation before interest	98
ROA(A) before interest and % after tax	100
ROA(B) before interest and depreciation after tax	98
	• • •
Liability to Equity	100
Degree of Financial Leverage (DFL)	99
Interest Coverage Ratio (Interest expense to EBIT)	99
Net Income Flag	100
Equity to Liability	100
Length: 97, dtype: int64	

In [5]:

```
x= raw_df.iloc[:,2:]
y= raw_df.iloc[:,1]
```

In [6]:

Χ

Out[6]:

	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Operating Profit Rate	Pre-tax net Interest Rate	Aft: Int
0	0.370594	0.424389	0.405750	0.601457	0.601457	0.998969	0.796887	0.80
1	0.464291	0.538214	0.516730	0.610235	0.610235	0.998946	0.797380	0.80
2	0.426071	0.499019	0.472295	0.601450	0.601364	0.998857	0.796403	0.80
3	0.399844	0.451265	0.457733	0.583541	0.583541	0.998700	0.796967	0.80
4	0.465022	0.538432	0.522298	0.598783	0.598783	0.998973	0.797366	0.80
6814	0.493687	0.539468	0.543230	0.604455	0.604462	0.998992	0.797409	0.80
6815	0.475162	0.538269	0.524172	0.598308	0.598308	0.998992	0.797414	0.80
6816	0.472725	0.533744	0.520638	0.610444	0.610213	0.998984	0.797401	0.80
6817	0.506264	0.559911	0.554045	0.607850	0.607850	0.999074	0.797500	0.80
6818	0.493053	0.570105	0.549548	0.627409	0.627409	0.998080	0.801987	0.8

In [7]:

6819 rows × 95 columns

from sklearn.impute import KNNImputer

In [8]:

imputer = KNNImputer(n_neighbors=2)
raw=imputer.fit_transform(x)

```
In [9]:
```

```
raw
Out[9]:
array([[0.37059426, 0.42438945, 0.40574977, ..., 0.56405011, 1.
        0.01646874],
       [0.46429094, 0.53821413, 0.51673002, ..., 0.57017495, 1.
        0.02079431],
       [0.42607127, 0.49901875, 0.47229509, ..., 0.56370608, 1.
        0.01647411],
       . . . ,
       [0.47272461, 0.533744 , 0.52063815, ..., 0.5651584 , 1.
        0.09764874],
       [0.50626432, 0.5599106, 0.55404465, ..., 0.56530151, 1.
        0.04400945],
       [0.49305319, 0.57010467, 0.54954762, ..., 0.56516694, 1.
        0.23390224]])
In [10]:
columns = x.columns.tolist()
In [11]:
df = pd.DataFrame(raw, columns = columns )
In [12]:
df.isna().sum()
Out[12]:
```

```
ROA(C) before interest and depreciation before interest
                                                             0
ROA(A) before interest and % after tax
                                                             0
ROA(B) before interest and depreciation after tax
                                                             0
Operating Gross Margin
                                                             a
Realized Sales Gross Margin
                                                             0
Liability to Equity
                                                             0
Degree of Financial Leverage (DFL)
                                                             0
Interest Coverage Ratio (Interest expense to EBIT)
                                                             0
Net Income Flag
Equity to Liability
Length: 95, dtype: int64
```

In [13]:

df									
	inserers	after tax	after tax	····ਚ· ਚ····	Margin		Rate	Rate	_
0	interest 0.370594	0.424389	0.405750	0.601457	0.601457	0.998969	0.796887	0.808809	
1	0.464291	0.538214	0.516730	0.610235	0.610235	0.998946	0.797380	0.809301	
2	0.426071	0.499019	0.472295	0.601450	0.601364	0.998857	0.796403	0.808388	
3	0.399844	0.451265	0.457733	0.583541	0.583541	0.998700	0.796967	0.808966	
4	0.465022	0.538432	0.522298	0.598783	0.598783	0.998973	0.797366	0.809304	
6814	0.493687	0.539468	0.543230	0.604455	0.604462	0.998992	0.797409	0.809331	
6815	0.475162	0.538269	0.524172	0.598308	0.598308	0.998992	0.797414	0.809327	
6816	0.472725	0.533744	0.520638	0.610444	0.610213	0.998984	0.797401	0.809317	
6817	0.506264	0.559911	0.554045	0.607850	0.607850	0.999074	0.797500	0.809399	
6818	0.493053	0.570105	0.549548	0.627409	0.627409	0.998080	0.801987	0.813800	•
∢									•

y 值 是類別,處理類別不平衡的問題

```
In [14]:
```

```
from imblearn.combine import SMOTEENN
from collections import Counter
```

```
In [15]:
```

```
counter= Counter(y)
print("before y ", counter)
```

before y Counter({0: 6599, 1: 220})

In [16]:

```
smenn= SMOTEENN()
```

In [17]:

```
x_sm,y_sm= smenn.fit_resample(df,y)
```

In [18]:

```
counters=Counter(y_sm)
print("after y", counters)
```

after y Counter({1: 6285, 0: 5423})

```
In [19]:
```

```
print("before y ", counter)
print("after y", counters)
```

before y Counter({0: 6599, 1: 220}) after y Counter({1: 6285, 0: 5423})

In [20]:

df

Out[20]:

	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Operating Profit Rate	Pre-tax net Interest Rate	Aft:
0	0.370594	0.424389	0.405750	0.601457	0.601457	0.998969	0.796887	0.80
1	0.464291	0.538214	0.516730	0.610235	0.610235	0.998946	0.797380	0.80
2	0.426071	0.499019	0.472295	0.601450	0.601364	0.998857	0.796403	0.80
3	0.399844	0.451265	0.457733	0.583541	0.583541	0.998700	0.796967	0.80
4	0.465022	0.538432	0.522298	0.598783	0.598783	0.998973	0.797366	0.80
	•••	•••		•••		•••	•••	
6814	0.493687	0.539468	0.543230	0.604455	0.604462	0.998992	0.797409	0.80
6815	0.475162	0.538269	0.524172	0.598308	0.598308	0.998992	0.797414	0.80
6816	0.472725	0.533744	0.520638	0.610444	0.610213	0.998984	0.797401	0.80
6817	0.506264	0.559911	0.554045	0.607850	0.607850	0.999074	0.797500	0.80
6818	0.493053	0.570105	0.549548	0.627409	0.627409	0.998080	0.801987	0.8
6819 r	ows × 95 colur	nns						

Feature selection

In [21]:

from sklearn.ensemble import RandomForestClassifier

In [162]:

```
model = RandomForestClassifier(n_estimators = 10)
model.fit(df,y)
importances = model.feature_importances_
```

In [23]:

```
final_df = pd.DataFrame({"Features":pd.DataFrame(df).columns,"Importances":importances})
#final_df.set_index("Importances")
final_df
```

Out[23]:

	Features	Importances
0	ROA(C) before interest and depreciation befor	0.003017
1	ROA(A) before interest and % after tax	0.016594
2	ROA(B) before interest and depreciation after	0.009073
3	Operating Gross Margin	0.010157
4	Realized Sales Gross Margin	0.004165
90	Liability to Equity	0.006228
91	Degree of Financial Leverage (DFL)	0.025248
92	Interest Coverage Ratio (Interest expense to	0.020463
93	Net Income Flag	0.000000
94	Equity to Liability	0.013462

95 rows × 2 columns

In [28]:

```
final= final_df.sort_values("Importances")
select = final.iloc[51:,:]
```

In [29]:

select

Out[29]:

	Features	Importances
2	ROA(B) before interest and depreciation after	0.009073
72	Working capitcal Turnover Rate	0.009075
46	Average Collection Days	0.009081
8	Non-industry income and expenditure/revenue	0.009160
53	Working Capital to Total Assets	0.009257
7	After-tax net Interest Rate	0.009549
55	Current Assets/Total Assets	0.009789
40	Contingent liabilities/Net worth	0.009805
5	Operating Profit Rate	0.010128
32	Current Ratio	0.010144
3	Operating Gross Margin	0.010157
86	Total assets to GNP price	0.010462
48	Fixed Assets Turnover Frequency	0.010495
10	Operating Expense Rate	0.010620
77	Current Liability to Equity	0.010815
6	Pre-tax net Interest Rate	0.010832
29	Net Value Growth Rate	0.011352
74	Cash Flow to Sales	0.011893
42	Net profit before tax/Paid-in capital	0.012271
34	Interest Expense Ratio	0.012536
58	Cash/Current Liability	0.012569
78	Equity to Long-term Liability	0.013001
45	Accounts Receivable Turnover	0.013300
59	Current Liability to Assets	0.013388
94	Equity to Liability	0.013462
52	Allocation rate per person	0.013712
87	No-credit Interval	0.013868
65	Current Liabilities/Equity	0.014369
1	ROA(A) before interest and % after tax	0.016594
13	Interest-bearing debt interest rate	0.016786
33	Quick Ratio	0.017909
56	Cash/Total Assets	0.018621
36	Debt ratio %	0.019233

	Features	Importances
92	Interest Coverage Ratio (Interest expense to	0.020463
15	Net Value Per Share (B)	0.020594
89	Net Income to Stockholder's Equity	0.022260
37	Net worth/Assets	0.022909
9	Continuous interest rate (after tax)	0.023742
91	Degree of Financial Leverage (DFL)	0.025248
64	Working Capital/Equity	0.026073
39	Borrowing dependency	0.027214
18	Persistent EPS in the Last Four Seasons	0.032335
22	Per Share Net profit before tax (Yuan ¥)	0.032726
85	Net Income to Total Assets	0.040368

In [30]:

```
select.to_excel("bankruptcy_output.xlsx")
```

In [31]:

```
final_df.plot.bar(color='teal')
```

Out[31]:

<AxesSubplot:>

Diamonds

In [32]:

```
raw_df2 = pd.read_csv("daimonds.csv")
```

```
In [33]:
```

```
raw_df2.head(5)
```

Out[33]:

	Unnamed: 0	Unnamed: 0.1	carat	cut	color	clarity	depth	table	x	у	z	р
0	0	1	0.23	NaN	Е	SI2	61.5	55.0	3.95	3.98	2.43	3:
1	1	2	0.21	Premium	Е	SI1	59.8	NaN	3.89	3.84	2.31	3:
2	2	3	0.23	Good	Е	VS1	56.9	65.0	4.05	4.07	2.31	3:
3	3	4	0.29	Premium	I	NaN	62.4	58.0	4.20	NaN	2.63	3:
4	4	5	0.31	Good	J	SI2	63.3	58.0	4.34	4.35	2.75	3:
4												•

In [34]:

```
raw_df2.isna().sum()
```

Out[34]:

Unnamed: 0 0 Unnamed: 0.1 0 993 carat 989 cut color 992 995 clarity 990 depth table 993 991 997 У Z 992 992 price dtype: int64

category features 先encode 再進行補值

In [37]:

```
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
```

In [38]:

```
raw_df2['cut'] = labelencoder.fit_transform(raw_df2['cut'])
raw_df2['color']= labelencoder.fit_transform(raw_df2['color'])
raw_df2['clarity']= labelencoder.fit_transform(raw_df2['clarity'])
```

In [39]:

```
from sklearn.impute import KNNImputer
```

```
In [40]:
```

```
imputer = KNNImputer(n_neighbors=2)
raw=imputer.fit_transform(raw_df2)
```

In [41]:

```
columns2 = raw_df2.columns.tolist()
```

In [42]:

```
df2 = pd.DataFrame(raw, columns = columns2 )
```

In [43]:

```
x1= df2.iloc[:,:11]
y1= df2.iloc[:,11]
```

In [44]:

```
y1 = np.array(y1, dtype=int)
```

y = price 非類別不用作data imbalance

feature selection (filter)

In [45]:

```
from sklearn.feature_selection import mutual_info_classif

importances= mutual_info_classif(x1,y1)
feat_importances = pd.Series(importances,x1.columns[0:len(x1.columns)])
feat_importances.plot(kind='barh',color='teal')
plt.show()
```


由此我們可以知道那些feature是重要的

```
In [47]:
```

```
feat_importances.to_excel("Diamond_output.xlsx")
```

iris data

```
In [48]:
```

```
raw_df3 = pd.read_csv("iris_data.csv")
```

In [49]:

```
raw_df3.head(5)
```

Out[49]:

	Unnamed: 0	Sepal length	Sepal width	Petal length	Petal width	label
0	0	5.1	3.5	1.4	0.2	setora
1	1	4.9	3.0	1.4	0.2	setora
2	2	4.7	3.2	1.3	0.2	setora
3	3	4.6	3.1	1.5	0.2	setora
4	4	5.0	3.6	1.4	0.2	setora

In [50]:

```
raw_df3.isna().sum()
```

Out[50]:

Unnamed: 0 0
Sepal length 15
Sepal width 15
Petal length 15
Petal width 15
label 0
dtype: int64

In [87]:

```
x3= raw_df3.iloc[:,1:5]
y3= raw_df3.iloc[:,5]
```

補空値

```
In [88]:
```

```
from sklearn.impute import KNNImputer
```

```
In [89]:
```

```
imputer = KNNImputer(n_neighbors=2)
raw=imputer.fit_transform(x3)
```

In [90]:

```
columns3 = x3.columns.tolist()
df3 = pd.DataFrame(raw, columns = columns3 )
```

In [91]:

df3

Out[91]:

	Sepal length	Sepal width	Petal length	Petal width
0	5.1	3.5	1.4	0.20
1	4.9	3.0	1.4	0.20
2	4.7	3.2	1.3	0.20
3	4.6	3.1	1.5	0.20
4	5.0	3.6	1.4	0.20
145	6.7	3.0	5.2	2.30
146	6.3	2.5	5.0	1.95
147	6.5	3.0	5.2	2.00
148	6.2	3.4	5.4	2.30
149	5.9	3.0	5.1	1.80

150 rows × 4 columns

類別不平衡

In [92]:

```
from imblearn.combine import SMOTEENN
from collections import Counter
```

```
In [93]:
у3
Out[93]:
0
          setora
1
          setora
2
          setora
3
          setora
4
          setora
145
       virginica
146
       virginica
       virginica
147
148
       virginica
149
       virginica
Name: label, Length: 150, dtype: object
In [94]:
counter3= Counter(y3)
print("before y ", counter3,'沒有類別不平衡的問題')
before y Counter({'setora': 50, 'versicolor': 50, 'virginica': 50}) 沒有類別
不平衡的問題
feature selection
In [95]:
from sklearn.linear_model import LogisticRegression
from sklearn.feature selection import SelectFromModel
In [96]:
logistic =LogisticRegression(C=1,penalty='l1',solver= 'liblinear',random_state= 7).fit(df3,
In [97]:
model =SelectFromModel(logistic,prefit=True)
In [98]:
x new = model.transform(df3)
In [99]:
from sklearn.ensemble import RandomForestClassifier
In [100]:
model1 = RandomForestClassifier(n estimators=150)
```

In [101]:

```
model1.fit(df3,y3)
```

Out[101]:

RandomForestClassifier(n_estimators=150)

In [102]:

```
importances= model1.feature_importances_
```

In [103]:

```
final_df3=pd.DataFrame({"Features":pd.DataFrame(df3).columns,"Importances":importances})
final_df3.set_index('Importances')
```

Out[103]:

Features

Importances

0.108022 Sepal length

0.035845 Sepal width

0.396007 Petal length

0.460127 Petal width

In [104]:

```
final df3.plot.bar(color='teal') # sepal width 比較不重要
```

Out[104]:

<AxesSubplot:>

In [147]:

```
final3=final_df3.sort_values("Importances")
```

```
In [149]:
```

```
final3.to_excel("iris_output.xlsx")
```

Stroke

```
In [105]:
```

```
raw_df4 = pd.read_csv("stroke.csv")
```

In [106]:

```
raw_df4.head(5)
```

Out[106]:

named: 0	id	gender	age	hypertension	heart_disease	ever_married	work_type	Reside
0	9046	Male	67.0	0	1	Yes	Private	
1	51676	Female	61.0	0	0	Yes	Self- employed	
2	31112	Male	80.0	0	1	Yes	Private	
3	60182	Female	49.0	0	0	Yes	Private	
4	1665	Female	79.0	1	0	Yes	Self- employed	
4								•

In [131]:

```
raw_df4.isna().sum()
```

Out[131]:

```
Unnamed: 0
                        0
                        0
id
gender
                        0
                        0
age
hypertension
                        0
heart_disease
                        0
                        0
ever_married
                        0
work type
Residence_type
                        0
avg_glucose_level
                        0
                      201
bmi
smoking_status
                        0
                        0
stroke
dtype: int64
```

In [132]:

```
x4= raw_df4.iloc[:,2:12]
y4= raw_df4.iloc[:,12]
```

先encoding 再進行補值

```
In [133]:
x4['gender'] = labelencoder.fit_transform(x4['gender'])
x4['ever_married'] = labelencoder.fit_transform(x4['ever_married'])
x4['work_type']= labelencoder.fit_transform(x4['work_type'])
x4['Residence_type']= labelencoder.fit_transform(x4['Residence_type'])
x4['smoking_status']= labelencoder.fit_transform(x4['smoking_status'])
In [134]:
from sklearn.impute import KNNImputer
In [135]:
imputer = KNNImputer(n neighbors=2)
raw=imputer.fit_transform(x4)
In [136]:
columns4 = x4.columns.tolist()
In [137]:
df4 = pd.DataFrame(raw, columns = columns4 )
In [138]:
y4 = np.array(y4, dtype=int)
y值類別不平衡
In [150]:
from imblearn.combine import SMOTEENN
from collections import Counter
In [151]:
counter4= Counter(y4)
print("before y ", counter4)
before y Counter({0: 4861, 1: 249})
In [152]:
smenn= SMOTEENN()
In [153]:
x \text{ sm 4,y sm 4} = \text{smenn.fit resample}(df 4, y 4)
```

```
In [154]:
```

```
counters=Counter(y_sm4)
print("after y", counters)

after y Counter({1: 4565, 0: 3662})

In [155]:

print("before y ", counter4)
print("after y", counters)

before y Counter({0: 4861, 1: 249})
after y Counter({1: 4565, 0: 3662})
```

feature selection

In [156]:

```
model4 = RandomForestClassifier(n_estimators = 10)
model4.fit(df4,y4)
importances = model4.feature_importances_
```

In [157]:

```
final_df4 = pd.DataFrame({"Features":pd.DataFrame(df4).columns,"Importances":importances})
#final_df.set_index("Importances")
final_df4
```

Out[157]:

Features Importances 0 0.027727 gender 1 0.234486 age 2 hypertension 0.028371 3 heart_disease 0.020468 4 ever_married 0.013618 5 0.050271 work_type 6 Residence type 0.028193 7 avg glucose level 0.301028 8 0.235493 bmi 9 0.060345 smoking_status

In [158]:

```
final4= final_df4.sort_values("Importances")
```

In [159]:

final4.to_excel("stroke_output.xlsx")

In []: