Paper Helicopter Experiment

Nayeemuddin Mohammed

2026-05-09

Table of contents

	0.2 Anova Analysis		11
1	Results and Interpretation 1.1 Significant Effects		16 16
2	Optimal Settings		17
3	Final Model		19
4	Conclusions		20
li	brary(tidyverse)		
v v v v v x x	<pre>dplyr 1.1.4</pre>	5.1 3.0 3.1 tidyverse_conflicts() -	_
	brary(knitr) brary(kableExtra)		

Attaching package: 'kableExtra'

```
The following object is masked from 'package:dplyr':
    group_rows
library(ggplot2)
library(plotly)
Attaching package: 'plotly'
The following object is masked from 'package:ggplot2':
    last_plot
The following object is masked from 'package:stats':
    filter
The following object is masked from 'package:graphics':
    layout
library(corrplot)
corrplot 0.95 loaded
library(car)
Loading required package: carData
Attaching package: 'car'
The following object is masked from 'package:dplyr':
    recode
The following object is masked from 'package:purrr':
    some
library(broom)
library(GGally)
library(patchwork)
library(tinytex)
```

```
theme_set(theme_minimal() +
         theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold"),
               plot.subtitle = element_text(hjust = 0.5, size = 12)))
helicopter_data <- data.frame(
 RunID = 1:24,
 RunOrder = 1:24, # Randomized run order as executed
 Replicate = c(2, 2, 1, 1, 2, 3, 3, 3, 2, 1, 2, 1, 2, 3, 3, 2, 2, 1, 1, 1, 3, 1, 3),
 RotorLength_cm = c(7.5, 8.5, 8.5, 7.5, 8.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 8.5, 8.5)
 PaperClip = c(2, 0, 0, 0, 0, 2, 0, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0),
 Time_s = c(3.03, 3.42, 3.75, 3.4, 4.12, 3.07, 3.31, 2.32, 3.4, 2.62, 2.98, 2.45, 3.03, 3.25,
# Create coded factors for DOE analysis
helicopter_coded <- helicopter_data %>%
 mutate(
   # Convert to coded factors (-1, +1)
   A_Length = ifelse(RotorLength_cm == 7.5, -1, 1),
   B_Width = ifelse(RotorWidth_cm == 3.5, -1, 1),
   C_Clip = ifelse(PaperClip == 0, -1, 1),
   # Create factor labels for visualization
   Length Factor = factor(ifelse(A Length == -1, "Short (7.5cm)", "Long (8.5cm)")),
   Width_Factor = factor(ifelse(B_Width == -1, "Narrow (3.5cm)", "Wide (5.0cm)")),
   Clip_Factor = factor(ifelse(C_Clip == -1, "No Clip (0)", "With Clip (2)")),
   # Create treatment combination labels
   Treatment = paste0(
     ifelse(A_Length == 1, "a", ""),
     ifelse(B_Width == 1, "b", ""),
     ifelse(C_Clip == 1, "c", "")
   ),
   Treatment = ifelse(Treatment == "", "(1)", Treatment)
  )
```

Set theme for plots

Display first few rows
helicopter_coded %>%

head(10) %>%

Table 1: First 10 rows of experimental data with coded factors

select(RunID, RotorLength_cm, RotorWidth_cm, PaperClip, Time_s, A_Length, B_Width, C_Clip, T:

kable(caption = "First 10 rows of experimental data with coded factors") %>%

kable_styling(bootstrap_options = c("striped", "hover", "condensed"))

RunID	RotorLength_cm	RotorWidth_cm	PaperClip	$Time_s$	A_Length	B_Width	C_Clip	Treat
1	7.5	3.5	2	3.03	-1	-1	1	c
2	8.5	5.0	0	3.42	1	1	-1	ab
3	8.5	5.0	0	3.75	1	1	-1	ab
4	7.5	3.5	0	3.40	-1	-1	-1	(1)
5	8.5	3.5	0	4.12	1	-1	-1	a
6	8.5	5.0	2	3.07	1	1	1	abc
7	7.5	3.5	0	3.31	-1	-1	-1	(1)
8	7.5	5.0	2	2.32	-1	1	1	bc
9	8.5	3.5	2	3.40	1	-1	1	ac
10	7.5	5.0	0	2.62	-1	1	-1	b

```
design_summary <- helicopter_coded %>%
  group_by(A_Length, B_Width, C_Clip, Treatment) %>%
  summarise(
    n_runs = n(),
    mean_time = round(mean(Time_s), 3),
    sd_time = round(sd(Time_s), 3),
        .groups = 'drop'
) %>%
  arrange(A_Length, B_Width, C_Clip)

design_summary %>%
  kable(
    caption = "23 Factorial Design: Treatment Combinations and Summary Statistics",
    col.names = c("Length (A)", "Width (B)", "Clip (C)", "Treatment", "Replicates", "Mean Time
) %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

Table 2: 2³ Factorial Design: Treatment Combinations and Summary Statistics

Length (A)	Width (B)	Clip (C)	Treatment	Replicates	Mean Time (s)	SD Time (s)
-1	-1	-1	(1)	3	3.407	0.100
-1	-1	1	\mathbf{c}	3	3.007	0.040
-1	1	-1	b	3	2.513	0.110
-1	1	1	bc	3	2.583	0.350
1	-1	-1	a	3	4.147	0.031
1	-1	1	ac	3	3.367	0.104
1	1	-1	ab	3	3.610	0.171
1	1	1	abc	3	3.110	0.069

```
cat("\n**Design Characteristics:**\n")
```

```
**Design Characteristics:**
cat("- Factors: 3 (Length, Width, Paper Clips)\n")
- Factors: 3 (Length, Width, Paper Clips)
cat("- Levels per factor: 2\n")
- Levels per factor: 2
cat("- Design: 23 Full Factorial\n")
- Design: 2<sup>3</sup> Full Factorial
cat("- Total treatment combinations: 8\n")
- Total treatment combinations: 8
cat("- Total runs:", nrow(helicopter_coded), "\n")
- Total runs: 24
cat("- Replication: 3 replicates per treatment combination\n")
- Replication: 3 replicates per treatment combination
cat("- Randomization: Runs executed in randomized order\n")
- Randomization: Runs executed in randomized order
cat("- Response: Flight time from release to ground contact (seconds)\n")
- Response: Flight time from release to ground contact (seconds)
```

```
overall_summary <- helicopter_coded %>%
  summarise(
   n = n(),
   mean_time = round(mean(Time_s), 3),
   median_time = round(median(Time_s), 3),
   sd_time = round(sd(Time_s), 3),
   min_time = round(min(Time_s), 3),
   max_time = round(max(Time_s), 3),
   range_time = round(max(Time_s) - min(Time_s), 3)
)

overall_summary %>%
  kable(caption = "Overall Summary Statistics for Flight Time") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

Table 3: Overall Summary Statistics for Flight Time

n	mean_time	$median_time$	sd_time	min_time	\max_{time}	range_time
24	3.218	3.22	0.53	2.32	4.18	1.86

```
# Factor-level summaries
factor_summaries <- list(
    Length = helicopter_coded %>%
        group_by(Length_Factor) %>%
        summarise(n = n(), mean_time = round(mean(Time_s), 3), sd_time = round(sd(Time_s), 3)),

Width = helicopter_coded %>%
        group_by(Width_Factor) %>%
        summarise(n = n(), mean_time = round(mean(Time_s), 3), sd_time = round(sd(Time_s), 3)),

Clip = helicopter_coded %>%
        group_by(Clip_Factor) %>%
        summarise(n = n(), mean_time = round(mean(Time_s), 3), sd_time = round(sd(Time_s), 3)))

# Display factor summaries
cat("### Factor Level Summaries\n\n")
```

Factor Level Summaries

```
}
** Length Effect:**
\begin{longtable}[t]{lrrr}
\caption{\label{tab:unnamed-chunk-4}Length levels summary}\\
\toprule
Length\_Factor & n & mean\_time & sd\_time\\
\midrule
Long (8.5cm) & 12 & 3.558 & 0.410\\
Short (7.5cm) \& 12 \& 2.878 \& 0.409 \
\bottomrule
\end{longtable}
** Width Effect:**
\begin{longtable}[t]{lrrr}
\caption{\label{tab:unnamed-chunk-4}Width levels summary}\\
\toprule
Width\_Factor & n & mean\_time & sd\_time\\
Narrow (3.5cm) & 12 & 3.482 & 0.438 \
Wide (5.0cm) \& 12 \& 2.954 \& 0.495 \
\bottomrule
\end{longtable}
** Clip Effect:**
\begin{longtable}[t]{lrrr}
\caption{\label{tab:unnamed-chunk-4}Clip levels summary}\\
\toprule
Clip\_Factor & n & mean\_time & sd\_time\\
\midrule
No Clip (0) & 12 & 3.419 & 0.623\\
With Clip (2) & 12 & 3.017 & 0.335\\
\bottomrule
\end{longtable}
```

0.1 Data Visualization

cat("\n")

```
p1 <- helicopter_coded %>%
    ggplot(aes(x = Length_Factor, y = Time_s)) +
    geom_boxplot(aes(fill = Length_Factor), alpha = 0.7) +
    geom_jitter(width = 0.2, alpha = 0.6) +
```

```
labs(title = "Effect of Rotor Length", x = "Rotor Length", y = "Flight Time (s)") +
  theme(legend.position = "none")
p2 <- helicopter_coded %>%
  ggplot(aes(x = Width_Factor, y = Time_s)) +
  geom_boxplot(aes(fill = Width_Factor), alpha = 0.7) +
  geom_jitter(width = 0.2, alpha = 0.6) +
  labs(title = "Effect of Rotor Width", x = "Rotor Width", y = "Flight Time (s)") +
  theme(legend.position = "none")
p3 <- helicopter_coded %>%
  ggplot(aes(x = Clip_Factor, y = Time_s)) +
  geom_boxplot(aes(fill = Clip_Factor), alpha = 0.7) +
  geom_jitter(width = 0.2, alpha = 0.6) +
  labs(title = "Effect of Paper Clip", x = "Paper Clip", y = "Flight Time (s)") +
  theme(legend.position = "none")
# Combine plots
library(patchwork)
p1 + p2 + p3
```

Effect of Rotor Leng Effect of Rotor Widt Effect of Paper Cli


```
# Interaction plots
library(patchwork)
int1 <- helicopter_coded %>%
    group_by(Length_Factor, Width_Factor) %>%
    summarise(mean_time = mean(Time_s), .groups = 'drop') %>%
    ggplot(aes(x = Length_Factor, y = mean_time, color = Width_Factor, group = Width_Factor)) +
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

```
int2 <- helicopter_coded %>%
  group_by(Length_Factor, Clip_Factor) %>%
 summarise(mean_time = mean(Time_s), .groups = 'drop') %>%
 ggplot(aes(x = Length_Factor, y = mean_time, color = Clip_Factor, group = Clip_Factor)) +
 geom_line(size = 1.2) +
 geom_point(size = 3) +
 labs(title = "Length × Clip Interaction",
       x = "Rotor Length", y = "Mean Flight Time (s)",
       color = "Paper Clip") +
  theme(legend.position = "bottom")
int3 <- helicopter_coded %>%
  group_by(Width_Factor, Clip_Factor) %>%
 summarise(mean_time = mean(Time_s), .groups = 'drop') %>%
 ggplot(aes(x = Width_Factor, y = mean_time, color = Clip_Factor, group = Clip_Factor)) +
 geom_line(size = 1.2) +
 geom_point(size = 3) +
 labs(title = "Width x Clip Interaction",
       x = "Rotor Width", y = "Mean Flight Time (s)",
       color = "Paper Clip") +
  theme(legend.position = "bottom")
(int1| int2) / int3
```



```
# Calculate effects using the standard DOE approach (Yates algorithm)
# Get average response for each treatment combination
treatment_means <- helicopter_coded %>%
           group_by(A_Length, B_Width, C_Clip, Treatment) %>%
          summarise(mean_response = mean(Time_s), .groups = 'drop') %>%
          arrange(A_Length, B_Width, C_Clip)
# Extract the 8 treatment combination means in standard order
y <- treatment_means$mean_response</pre>
names(y) <- treatment_means$Treatment</pre>
# Calculate effects using contrast coefficients (standard DOE method)
n_reps <- 3 # number of replicates per treatment combination</pre>
# Main effects (contrast: high level - low level / 4)
B_{effect} \leftarrow (sum(y[c("b", "ab", "bc", "abc")]) - sum(y[c("(1)", "a", "c", "ac")])) / 4
C_{effect} \leftarrow (sum(y[c("c", "ac", "bc", "abc")]) - sum(y[c("(1)", "a", "b", "ab")])) / 4
# Two-factor interactions
AB_{effect} \leftarrow (sum(y[c("ab", "abc")]) + sum(y[c("(1)", "c")]) - sum(y[c("a", "ac")]) - sum(y[c("ab", "abc")]) - sum(y[c("abc", "abc")]) - sum(y[c("abc", "abc")]) - sum(y[c("abc", "abc", "abc")]) - sum(y[c("abc", "abc", "abc")]) - sum(y[c("abc", "abc", "abc", "abc")]) - sum(y[c("abc", "abc", "abc", "abc")]) - sum(y[c("abc", "abc", "abc", "abc", "abc")]) - sum(y[c("abc", "abc", 
AC_{effect} \leftarrow (sum(y[c("ac", "abc")]) + sum(y[c("(1)", "b")]) - sum(y[c("a", "ab")]) - sum(y[c("ac", "abc")]) - sum(y[c
BC_{effect} \leftarrow (sum(y[c("bc", "abc")]) + sum(y[c("(1)", "a")]) - sum(y[c("b", "ab")]) - su
# Three-factor interaction
ABC\_effect \leftarrow (sum(y[c("abc", "(1)", "ab", "c")]) - sum(y[c("a", "b", "ac", "bc")])) / 4
# Calculate standard errors for effects (assuming equal variance)
```

```
mse <- sum((helicopter_coded$Time_s - ave(helicopter_coded$Time_s, helicopter_coded$Treatment)
se_effect <- sqrt(mse / (4 * n_reps))  # Standard error for effects

# Create effects summary with statistical testing
effects_summary <- tibble(
    Effect = c("A (Length)", "B (Width)", "C (Clip)", "AB", "AC", "BC", "ABC"),
    Estimate = round(c(A_effect, B_effect, C_effect, AB_effect, AC_effect, BC_effect, ABC_effect
SE = round(rep(se_effect, 7), 4),
    t_stat = round(c(A_effect, B_effect, C_effect, AB_effect, AC_effect, BC_effect, ABC_effect)
    Abs_Effect = round(abs(c(A_effect, B_effect, C_effect, AB_effect, AC_effect, BC_effect, ABC_effect))
    %>%
    arrange(desc(Abs_Effect))

effects_summary %>%
    kable(caption = "Factorial Effects Summary (Ranked by Absolute Magnitude)") %>%
    kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

Table 4: Factorial Effects Summary (Ranked by Absolute Magnitude)

Effect	Estimate	SE	t_stat	Abs_Effect
A (Length)	0.6808	0.0447	15.236	0.6808
B (Width)	-0.5275	0.0447	-11.804	0.5275
C (Clip)	-0.4025	0.0447	-9.007	0.4025
AC	-0.2375	0.0447	-5.315	0.2375
BC	0.1875	0.0447	4.196	0.1875
AB	0.1308	0.0447	2.928	0.1308
ABC	0.1308	0.0447	2.928	0.1308

Table 5: Treatment Combination Means (Ordered by Flight Time)

Treatment	Length	Width	Clips	Mean Time (s)
b	Short (7.5)	Wide (5.0)	No Clip (0)	2.513333
bc	Short (7.5)	Wide (5.0)	With Clip (2)	2.583333
c	Short (7.5)	Narrow (3.5)	With Clip (2)	3.006667
abc	Long (8.5)	Wide (5.0)	With Clip (2)	3.110000
ac	Long (8.5)	Narrow (3.5)	With Clip (2)	3.366667
(1)	Short (7.5)	Narrow (3.5)	No Clip (0)	3.406667
ab	Long (8.5)	Wide (5.0)	No Clip (0)	3.610000
a	Long (8.5)	Narrow (3.5)	No Clip (0)	4.146667

0.2 Anova Analysis

```
# Fit full factorial model
model_full <- lm(Time_s ~ A_Length * B_Width * C_Clip, data = helicopter_coded)

# ANOVA table
anova_table <- anova(model_full)
print(anova_table)</pre>
```

Analysis of Variance Table

print(model_summary)

```
Response: Time_s
                          Df Sum Sq Mean Sq F value
                                                            Pr(>F)
                          1 2.78120 2.78120 116.0649 9.650e-09 ***
A_Length
                          1 1.66954 1.66954 69.6729 3.183e-07 ***
B_Width
                          1 0.97204 0.97204 40.5649 9.306e-06 ***
C Clip
                      1 0.10270 0.10270 4.2860 0.054967 .
1 0.33844 0.33844 14.1236 0.001718 **
1 0.21094 0.21094 8.8028 0.009084 **
A_Length:B_Width
A_Length:C_Clip
B_Width:C_Clip
A_Length:B_Width:C_Clip 1 0.01354 0.01354 0.5649 0.463188
Residuals
                          16 0.38340 0.02396
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Model summary
model_summary <- summary(model_full)</pre>
```

```
Call:
lm(formula = Time_s ~ A_Length * B_Width * C_Clip, data = helicopter_coded)
```

```
Residuals:
    Min
            1Q
                Median
                           3Q
                                  Max
-0.26333 -0.05917 0.00000 0.05750 0.39667
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    A_Length
B_Width
                   C_Clip
                   A_Length:B_Width
                    0.06542 0.03160 2.070 0.05497.
                             0.03160 -3.758 0.00172 **
A_Length:C_Clip
                   -0.11875
B_Width:C_Clip
                    Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1548 on 16 degrees of freedom
Multiple R-squared: 0.9408,
                         Adjusted R-squared: 0.9148
F-statistic: 36.3 on 7 and 16 DF, p-value: 1.177e-08
# Create a tidy ANOVA table
anova_tidy <- tidy(anova_table) %>%
 mutate(
   term = case_when(
    term == "A_Length" ~ "A: Rotor Length",
    term == "B_Width" ~ "B: Rotor Width",
    term == "C_Clip" ~ "C: Paper Clip",
    term == "A_Length:B_Width" ~ "AB: Length × Width",
    term == "A_Length:C_Clip" ~ "AC: Length × Clip",
    term == "B_Width:C_Clip" ~ "BC: Width × Clip",
    term == "A_Length:B_Width:C_Clip" ~ "ABC: Length × Width × Clip",
    term == "Residuals" ~ "Error",
    TRUE ~ term
   ),
   across(where(is.numeric), round, 4)
 select(Source = term, DF = df, SS = sumsq, MS = meansq, `F-value` = statistic, `p-value` = p
Warning: There was 1 warning in `mutate()`.
i In argument: `across(where(is.numeric), round, 4)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.
 # Previously
```

```
across(a:b, mean, na.rm = TRUE)

# Now
across(a:b, \(x) mean(x, na.rm = TRUE))

anova_tidy %>%
  kable(caption = "ANOVA Table for 23 Factorial Design") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

Table 6: ANOVA Table for 2^3 Factorial Design

Source	DF	SS	MS	F-value	p-value
A: Rotor Length	1	2.7812	2.7812	116.0649	0.0000
B: Rotor Width	1	1.6695	1.6695	69.6729	0.0000
C: Paper Clip	1	0.9720	0.9720	40.5649	0.0000
AB: Length \times Width	1	0.1027	0.1027	4.2860	0.0550
AC: Length \times Clip	1	0.3384	0.3384	14.1236	0.0017
BC: Width \times Clip	1	0.2109	0.2109	8.8028	0.0091
ABC: Length \times Width \times Clip	1	0.0135	0.0135	0.5649	0.4632
Error	16	0.3834	0.0240	NA	NA

0.3 Model Diagnostics

```
# Create diagnostic plots
par(mfrow = c(2, 2))
plot(model_full)
```

hat values (leverages) are all = 0.3333333 and there are no factor predictors; no plot no. 5


```
Levene's Test for Homogeneity of Variance (center = median)
     Df F value Pr(>F)
group 7 0.9019 0.5286
      16
# Residual analysis
residual_data <- helicopter_coded %>%
 mutate(
   fitted = fitted(model_full),
   residuals = residuals(model_full),
   std_residuals = rstandard(model_full)
 )
# Plot residuals vs fitted
res_plot <- residual_data %>%
  ggplot(aes(x = fitted, y = residuals)) +
 geom_point() +
 geom_smooth(method = "loess", se = FALSE, color = "red") +
 geom_hline(yintercept = 0, linetype = "dashed") +
 labs(title = "Residuals vs Fitted Values",
       x = "Fitted Values", y = "Residuals")
# Normal Q-Q plot
qq_plot <- residual_data %>%
  ggplot(aes(sample = std_residuals)) +
 stat_qq() +
 stat_qq_line() +
 labs(title = "Normal Q-Q Plot",
```

x = "Theoretical Quantiles", y = "Sample Quantiles")

res_plot + qq_plot

[`]geom_smooth()` using formula = 'y ~ x'

1 Results and Interpretation

1.1 Significant Effects

```
# Extract significant effects (p < 0.05)
significant_effects <- anova_tidy %>%
  filter(!is.na(`p-value`), `p-value` < 0.05) %>%
  arrange(`p-value`)

significant_effects %>%
  kable(caption = "Significant Effects (p < 0.05)") %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```

Table 7: Significant Effects (p < 0.05)

Source	DF	SS	MS	F-value	p-value
A: Rotor Length	1	2.7812	2.7812	116.0649	0.0000
B: Rotor Width	1	1.6695	1.6695	69.6729	0.0000
C: Paper Clip	1	0.9720	0.9720	40.5649	0.0000
AC: Length \times Clip	1	0.3384	0.3384	14.1236	0.0017
BC: Width \times Clip	1	0.2109	0.2109	8.8028	0.0091

```
# Effect interpretation
cat("### Effect Interpretations:\n\n")

### Effect Interpretations:

if (abs(A_effect) > 0.1) {
    cat("**Rotor Length (A):**",
        ifelse(A_effect > 0, "Longer rotors increase", "Longer rotors decrease"),
        "flight time by", round(abs(A_effect), 3), "seconds on average.\n")
}

**Rotor Length (A):** Longer rotors increase flight time by 0.681 seconds on average.

if (abs(B_effect) > 0.1) {
    cat("**Rotor Width (B):**",
        ifelse(B_effect > 0, "Wider rotors increase", "Wider rotors decrease"),
        "flight time by", round(abs(B_effect), 3), "seconds on average.\n")
}

**Rotor Width (B):** Wider rotors decrease flight time by 0.527 seconds on average.
```

```
if (abs(C_effect) > 0.1) {
   cat("**Paper Clip (C):**",
        ifelse(C_effect > 0, "Adding a paper clip increases", "Adding a paper clip decreases"),
        "flight time by", round(abs(C_effect), 3), "seconds on average.\n")
}
```

**Paper Clip (C): ** Adding a paper clip decreases flight time by 0.402 seconds on average.

2 Optimal Settings

```
# Find optimal settings for maximum and minimum flight time
optimal_max <- treatment_means %>%
   filter(mean_response == max(mean_response))

optimal_min <- treatment_means %>%
   filter(mean_response == min(mean_response))

cat("### Optimal Settings:\n\n")
```

Optimal Settings:

```
cat("**For MAXIMUM flight time:**\n")
**For MAXIMUM flight time:**
cat("- Treatment combination:", optimal_max$Treatment, "\n")
- Treatment combination: a
cat("- Rotor Length:", ifelse(optimal_max$A_Length == 1, "8.5 cm (Long)", "7.5 cm (Short)"), "
- Rotor Length: 8.5 cm (Long)
cat("- Rotor Width:", ifelse(optimal_max$B_Width == 1, "5.0 cm (Wide)", "3.5 cm (Narrow)"), "\s
- Rotor Width: 3.5 cm (Narrow)
cat("- Paper Clip:", ifelse(optimal_max$C_Clip == 1, "2 clips", "0 clips"), "\n")
- Paper Clip: 0 clips
cat("- Average flight time:", round(optimal_max$mean_response, 3), "seconds\n\n")
- Average flight time: 4.147 seconds
cat("**For MINIMUM flight time:**\n")
**For MINIMUM flight time:**
cat("- Treatment combination:", optimal_min$Treatment, "\n")
- Treatment combination: b
cat("- Rotor Length:", ifelse(optimal_min$A_Length == 1, "8.5 cm (Long)", "7.5 cm (Short)"), "
- Rotor Length: 7.5 cm (Short)
cat("- Rotor Width:", ifelse(optimal_min$B_Width == 1, "5.0 cm (Wide)", "3.5 cm (Narrow)"), "\alpha
- Rotor Width: 5.0 cm (Wide)
```

```
cat("- Paper Clip:", ifelse(optimal_min$C_Clip == 1, "2 clips", "0 clips"), "\n")
- Paper Clip: 0 clips
cat("- Average flight time:", round(optimal_min$mean_response, 3), "seconds\n")
- Average flight time: 2.513 seconds
```

3 Final Model

```
# Create reduced model with only significant terms (if any)
significant_terms <- anova_tidy %>%
 filter(!is.na(`p-value`), `p-value` < 0.05, Source != "Error") %>%
 pull(Source)
if (length(significant_terms) > 0) {
  cat("### Reduced Model with Significant Terms Only:\n")
 # Build model formula for significant terms
 formula_terms <- character()</pre>
 if ("A: Rotor Length" %in% significant_terms) formula_terms <- c(formula_terms, "A_Length")
  if ("B: Rotor Width" %in% significant_terms) formula_terms <- c(formula_terms, "B_Width")
  if ("C: Paper Clip" %in% significant_terms) formula_terms <- c(formula_terms, "C_Clip")
 if ("AB: Length × Width" %in% significant_terms) formula_terms <- c(formula_terms, "A_Length
  if ("AC: Length × Clip" %in% significant_terms) formula_terms <- c(formula_terms, "A_Length:
  if ("BC: Width × Clip" %in% significant_terms) formula_terms <- c(formula_terms, "B_Width:C_"
  if ("ABC: Length × Width × Clip" %in% significant_terms) formula_terms <- c(formula_terms, ".
 if (length(formula_terms) > 0) {
    formula_string <- paste("Time_s ~", paste(formula_terms, collapse = " + "))</pre>
    model_reduced <- lm(as.formula(formula_string), data = helicopter_coded)</pre>
    cat("**Reduced Model:**\n")
   print(summary(model_reduced))
    # Model comparison
    cat("\n**Model Comparison:**\n")
    comparison <- anova(model_reduced, model_full)</pre>
    print(comparison)
} else {
  cat("### No statistically significant effects found at = 0.05 level.\n")
```

```
cat("Consider using the grand mean as the best predictor.\n")
 cat("Grand mean flight time:", round(mean(helicopter_coded$Time_s), 3), "seconds\n")
}
### Reduced Model with Significant Terms Only:
**Reduced Model:**
Call:
lm(formula = as.formula(formula_string), data = helicopter_coded)
Residuals:
    Min
            1Q Median
                           3Q
                                  Max
-0.30500 -0.09708 -0.00167 0.06938 0.35500
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
              3.21792 0.03401 94.621 < 2e-16 ***
             A_Length
             B_Width
             C_Clip
B_Width:C_Clip 0.09375
                       0.03401 2.757 0.0130 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1666 on 18 degrees of freedom
Multiple R-squared: 0.9228,
                         Adjusted R-squared: 0.9014
F-statistic: 43.03 on 5 and 18 DF, p-value: 2.157e-09
**Model Comparison:**
Analysis of Variance Table
Model 1: Time_s ~ A_Length + B_Width + C_Clip + A_Length:C_Clip + B_Width:C_Clip
Model 2: Time_s ~ A_Length * B_Width * C_Clip
 Res.Df
          RSS Df Sum of Sq
                            F Pr(>F)
     18 0.49964
     16 0.38340 2 0.11624 2.4255 0.1202
```

4 Conclusions

```
cat("## Key Findings:\n\n")
```

Key Findings:

```
cat("1. **Design Summary:** This 23 factorial experiment successfully evaluated the effects of
1. **Design Summary: ** This 23 factorial experiment successfully evaluated the effects of rotor
cat("2. **Effect Magnitudes:** The largest effects in order of importance are:\n")
2. **Effect Magnitudes:** The largest effects in order of importance are:
for (i in 1:min(3, nrow(effects_summary))) {
  cat(" -", effects_summary$Effect[i], ":", sprintf("%+.3f", effects_summary$Estimate[i]), "
   - A (Length): +0.681 seconds
   - B (Width) : -0.527 seconds
   - C (Clip) : -0.403 seconds
cat("\n")
cat("3. **Physical Interpretation:**\n")
3. **Physical Interpretation:**
if (abs(A_effect) > 0.1) {
  cat(" - Rotor Length:", ifelse(A_effect > 0, "Longer rotors increase flight time", "Shorte:
      "by", round(abs(A_effect), 3), "seconds on average\n")
   - Rotor Length: Longer rotors increase flight time by 0.681 seconds on average
if (abs(B_effect) > 0.1) {
  cat(" - Rotor Width:", ifelse(B_effect > 0, "Wider rotors increase flight time", "Narrower
      "by", round(abs(B_effect), 3), "seconds on average\n")
}
   - Rotor Width: Narrower rotors increase flight time by 0.527 seconds on average
if (abs(C_effect) > 0.1) {
  cat(" - Paper Clips:", ifelse(C_effect > 0, "Adding clips increases flight time", "Removing
      "by", round(abs(C_effect), 3), "seconds on average\n")
```

- Paper Clips: Removing clips increases flight time by 0.402 seconds on average

```
cat("\n")
cat("4. **Statistical Significance:** ")
4. **Statistical Significance:**
if (nrow(significant_effects) > 0) {
  cat("The following effects were statistically significant (p < 0.05):\n")</pre>
 for (effect in significant_effects$Source) {
   cat(" -", effect, "\n")
 }
} else {
 cat("No effects were statistically significant at the = 0.05 level.\n")
}
The following effects were statistically significant (p < 0.05):
   - A: Rotor Length
   - B: Rotor Width
   - C: Paper Clip
   - AC: Length × Clip
   - BC: Width × Clip
cat("\n")
cat("5. **Optimal Conditions for Maximum Flight Time:**\n")
5. **Optimal Conditions for Maximum Flight Time:**
cat(" - Configuration: Treatment", optimal_max$Treatment, "\n")
   - Configuration: Treatment a
        - Rotor Length: ", ifelse(optimal_max$A_Length == 1, "8.5 cm (Long)", "7.5 cm (Short)")
cat("
   - Rotor Length: 8.5 cm (Long)
        - Rotor Width:", ifelse(optimal_max$B_Width == 1, "5.0 cm (Wide)", "3.5 cm (Narrow)"),
   - Rotor Width: 3.5 cm (Narrow)
```

```
cat(" - Paper Clips:", ifelse(optimal_max$C_Clip == 1, "2 clips", "0 clips"), "\n")
   - Paper Clips: 0 clips
cat(" - Predicted flight time:", round(optimal_max$mean_response, 3), "seconds\n\n")
   - Predicted flight time: 4.147 seconds
cat("6. **Model Adequacy Assessment:**\n")
6. **Model Adequacy Assessment:**
cat(" - R<sup>2</sup> =", sprintf("%.3f", summary(model full)$r.squared), "(explains", sprintf("%.1f%%"
   - R^2 = 0.941 (explains 94.1% of variation)
cat(" - Adjusted R<sup>2</sup> =", sprintf("%.3f", summary(model_full)$adj.r.squared), "\n")
   - Adjusted R^2 = 0.915
cat(" - Residual standard error =", sprintf("%.3f", summary(model_full)$sigma), "seconds\n")
   - Residual standard error = 0.155 seconds
if (shapiro_test$p.value > 0.05) {
  cat(" - Normality assumption: Satisfied (Shapiro-Wilk p =", sprintf("%.3f", shapiro_test$p
} else {
  cat(" - Normality assumption: Some concern (Shapiro-Wilk p =", sprintf("%.3f", shapiro_tes
   - Normality assumption: Satisfied (Shapiro-Wilk p = 0.112 )
cat("\n**Practical Recommendations:**\n")
**Practical Recommendations:**
cat("- This classic DOE demonstrates fundamental principles of factorial experimentation\n")
- This classic DOE demonstrates fundamental principles of factorial experimentation
```

cat("- The design efficiently evaluates all factor combinations with proper replication\n")

- The design efficiently evaluates all factor combinations with proper replication cat("- Results provide clear guidance for optimizing paper helicopter performance\n")
- Results provide clear guidance for optimizing paper helicopter performance cat("- Methodology is suitable for educational purposes and real process improvement\n")
- Methodology is suitable for educational purposes and real process improvement