VictorYuki Lili Lili

01

背景介绍

➤ 论文链接: https://arxiv.org/abs/2104.07636 \cup

▶ 代码链接: 无官方代码▶ 录用信息: TPAMI'22√

▶ 论文标题截图:

谷歌提出:基于条件扩散模型的图像超分辨率!放大 16 倍,效果绝绝... 即 AI算法与图像处理 · 2021-10-21

Image Super-Resolution via Iterative Refinement

Chitwan Saharia; Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, Mohammad Norouzi {sahariac, jonathanho, williamchan, salimans, davidfleet, mnorouzi}@google.com
Google Research, Brain Team

VictorYuki Sili Sili

论文摘要

▶ 论文摘要截图:

提出问题:

➤ 利用DDPM来做图像超分辨率

提出解决方案:

将超分任务描述为一个有条件生成

▶ 优势&实验结果:

➤ 实验表明该方案可以做图像超分, 且在某些指标上有相比基于GAN的方 法的较好的性能

把超的射擎描述成一个生成问题

性能好

Abstract

We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3 adapts denoising diffusion \$\foralle{100}\rmprobabilistic models [17, 48] to conditional image generation and performs super-resolution through a stochastic iterative denoising process. Qutput generation starts with pure Gaussian noise and iteratively refines the noisy output using a U-Net model trained on denoising at various noise levels. SR3 exhibits strong performance on super-resolution tasks at different magnification factors, on faces and natural images. We conduct human evaluation on a standard 8× face super-resolution task on CelebA-HQ, comparing with SOTA GAN methods. SR3 achieves a fool rate close to 50%, suggesting photo-realistic outputs, while GANs do not exceed a fool rate of 34%. We further show the effectiveness of SR3 in cascaded image generation, where generative models are chained with super-resolution models, yielding a competitive FID score of 11.3 on ImageNet.

VictorYuki Lili Lili

相关工作

SictorYuki Lili Lili

04

提出方法

• 怎么用扩散模型做超分辨率?

提出方法

• 怎么用扩散模型做超分辨率?

04

提出方法

· 怎么用扩散模型做超分辨率? 随机生机一小图控制的组然。

VictorYuki Bili Bili

04

提出方法

- 改动1:
 - ➤ 将LR作为condition,与噪声图concat之后送给UNet重建,即Unet现在是输入6通道,输出3通道
- 改动2:
 - ➤ 不再直接取bar_alpha_t,而是取均匀分布[bar_alpha_{t-1}, bar_alpha_{t}]
- 改动3:
 - ➤ 不再输入t给UNet,而是直接输入noise level,也就是改动2中均匀采样的值

X+ = Jat x0 + JF x+ 3

推理中,可以不按照结定的 以。…以下去做 训练 β= rd 10+→2×10-2 T=2000 推理 β=1-d'10+→2 0.1 T=100 步数多方每一步公翼强度增加 最终可公0

把新数效率七一一对一

致连维如果

t -> U[ati, at]

实验结果

• 主观效果上来说,虽然扩散模型没有使用GAN,但是重建图的细节质量是很不错的

05

实验结果

• 定量结果: ゆめ方孩みた SOTA

Metric	PULSE [28]	FSRGAN [7]	Regression	SR3
PSNR ↑	16.88	23.01	23.96	23.04
SSIM ↑	0.44	0.62	0.69	0.65
Consistency ↓	(161.1	33.8	2.71	2.68

Table 1: PSNR & SSIM on $16 \times 16 \rightarrow 128 \times 128$ face super-resolution. Consistency measures MSE ($\times 10^{-5}$) between the low-resolution inputs and the down-sampled super-resolution outputs.

Method	Top-1 Error	Top-5 Error	
Baseline	0.252	0.080	
DRCN [22]	0.477	0.242	
FSRCNN [13]	0.437	0.196	
PsyCo [35]	0.454	0.224	
ENet-E [44]	0.449	0.214	
RCAN [64]	0.393	0.167	
Regression	0.383	0.173	
SR3	0.317	0.120	

Table 3: Comparison of classification accuracy scores for 4× natural image super-resolution on the first 1K images from the ImageNet Validation set.

Model	FID ↓	IS \uparrow	$\mathbf{PSNR}\uparrow$	$\mathbf{SSIM} \uparrow$
Reference	1.9	240.8	-	-
Regression	15.2	121.1	27.9	0.801
SR3	5.2	180.1	26.4	0.762

Table 2: Performance comparison between SR3 and Regression baseline on natural image super-resolution using standard metrics computed on the ImageNet validation set.

Model	FID-50k
Training with Augmentation	
SR3	13.1
SR3 (w/ Gaussian Blur)	11.3
Objective L_p Norm	
$SR3(L_2)$	11.8
$SR3(L_1)$	11.8

Table 5: Ablation study on SR3 model for class-conditional 256×256 ImageNet.

总结

- ▶ 总结:
- ▶ 将图像超分辨率问题描述成一个条件生成问题
- ▶ 方法简单,实验部分一般

- (NIPSW'22) Palette: Image-to-Image Diffusion Models
- https://github.com/Janspiry/Image-Super-Resolution-via-Iterative-Refinement
- > 论文附录里面有模型结构参数的介绍

