Plan of Attack

Plan of Attack

What we will learn in this section:

- · What are Convolutional Neural Networks?
- Step 1 Convolution Operation
- Step 1(b) ReLU Layer
- · Step 2 Pooling
- Step 3 Flattening
- Step 4 Full Connection
- Summary
- EXTRA: Softmax & Cross-Entropy

What are convolutional neural networks?

Image Source: a talk by Geoffrey Hinton

Source: google trends

Yann Lecun

Google

Facebook

Deep Learning A-Z

© SuperDataScience

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0							
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0	0	0	0	0	0	0	0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0	0	1	0	0	0	1	0
0 1 0 0 0 1 0 0 0 1 1 1 0 0	0	0	0	0	0	0	0
0 0 1 1 1 0 0	0	0	0	1	0	0	0
	0	1	0	0	0	1	0
0 0 0 0 0 0 0	0	0	1	1	1	0	0
	0	0	0	0	0	0	0

STEP 1: Convolution

STEP 2: Max Pooling

STEP 3: Flattening

STEP 4: Full Connection

Additional Reading:

Gradient-Based Learning Applied to Document Recognition

By Yann LeCun et al. (1998)

Link:

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

$$(f*g)(t) \stackrel{\mathrm{def}}{=} \int_{-\infty}^{\infty} f(\tau) \, g(t-\tau) \, d\tau$$

Additional Reading:

Introduction to Convolutional Neural Networks

By Jianxin Wu (2017)

$$\begin{split} \frac{\partial z}{\partial (\text{vec}(\boldsymbol{y})^T)}(F^T \otimes I) &= \left((F \otimes I) \frac{\partial z}{\partial \text{vec}(\boldsymbol{y})} \right)^T \\ &= \left((F \otimes I) \text{vec} \left(\frac{\partial z}{\partial Y} \right) \right)^T \\ &= \text{vec} \left(I \frac{\partial z}{\partial Y} F^T \right)^T \\ &= \text{vec} \left(\frac{\partial z}{\partial Y} F^T \right)^T \,, \end{split}$$

Link:

http://cs.nju.edu.cn/wujx/paper/CNN.pdf

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	1
1	0	0
0	1	1

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1		

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input Image

Feature Detector

Sharpen:

0	0	0		0
0	0	-1	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

Blur:

Edge Enhance:

Edge Detect:

Emboss:

1	0	-1
2	0	-2
1	0	-1

Image Source: eonardoaraujosantos.gitbooks.io

Image Source: http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Image Source: http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Image Source: http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Additional Reading:

Understanding Convolutional Neural Networks with A Mathematical Model

By C.-C. Jay Kuo (2016)

Link:

https://arxiv.org/pdf/1609.04112.pdf

Additional Reading:

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

By Kaiming He et al. (2015)

Link:

https://arxiv.org/pdf/1502.01852.pdf

Image Source: Wikipedia

Image Source: Wikipedia

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Max Pooling

Feature Map

Max Pooling

Feature Map

Max Pooling

1 1

Feature Map

Max Pooling

Feature Map

Feature Map

Feature Map

Feature Map

Feature Map

Feature Map

Max Pooling

Additional Reading:

Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition

By Dominik Scherer et al. (2010)

Link:

http://ais.uni-bonn.de/papers/icann2010 maxpool.pdf

Input Image

Deep Learning A-Z

© SuperDataScience

Example

Image Source: scs.ryerson.ca/~aharley/vis/conv/flat.html

1	1	0
4	2	1
0	2	1

Image Source: a talk by Geoffrey Hinton

Summary

Summary

Summary

Additional Reading:

The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

Adit Deshpande (2016)

Link:

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

$$L_i = -\log\!\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$

$$H(p,q) = -\sum p(x)\,\log q(x)$$

NN1

Row	Dog^	Cat [^]	Dog	Cat
#1	0.9	0.1	1	0
#2	0.1	0.9	0	1
#3	0.4	0.6	1	0

NN2

Row	Dog^	Cat [^]	Dog	Cat
#1	0.6	0.4	1	0
#2	0.3	0.7	0	1
#3	0.1	0.9	1	0

Classification Error

$$1/3 = 0.33$$

$$1/3 = 0.33$$

Mean Squared Error

0.71

Cross-Entropy

1.06

Additional Reading:

A Friendly Introduction to Cross-Entropy Loss

By Rob DiPietro (2016)

Link:

https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/

Additional Reading:

How to implement a neural network Intermezzo 2

By Peter Roelants (2016)

$$\begin{split} \frac{\partial \xi}{\partial z_i} &= -\sum_{j=1}^C \frac{\partial t_j log(y_j)}{\partial z_i} = -\sum_{j=1}^C t_j \frac{\partial log(y_j)}{\partial z_i} = -\sum_{j=1}^C t_j \frac{1}{y_j} \frac{\partial y_j}{\partial z_i} \\ &= -\frac{t_i}{y_i} \frac{\partial y_i}{\partial z_i} - \sum_{j\neq i}^C \frac{t_j}{y_j} \frac{\partial y_j}{\partial z_i} = -\frac{t_i}{y_i} y_i (1-y_i) - \sum_{j\neq i}^C \frac{t_j}{y_j} (-y_j y_i) \\ &= -t_i + t_i y_i + \sum_{j\neq i}^C t_j y_i = -t_i + \sum_{j=1}^C t_j y_i = -t_i + y_i \sum_{j=1}^C t_j \\ &= y_i - t_i \end{split}$$

Link:

http://peterroelants.github.io/posts/neural_network_implementation_intermez zo02/