Programa de Verão FGV EMAp 2019

Introduction to Machine Learning with Python

CLUSTERING TECHNIQUES

Prof. Luis Gustavo Nonato University of São Paulo - São Carlos - SP

Learning Strategies

Clustering: learns a model that groups "similar" observations. The similarity criterion is predefined and application dependent. Input data is typically not annotated - unsupervised task.

Learning Strategies

Clustering: learns a model that groups "similar" observations. The similarity criterion is predefined and application dependent. Input data is typically not annotated - unsupervised task.

Applications were data is partially annotated are also common (semi-supervised tasks, more common for classification).

Learning Strategies

Clustering: learns a model that groups "similar" observations. The similarity criterion is predefined and application dependent. Input data is typically not annotated - unsupervised task.

Applications were data is partially annotated are also common (semi-supervised tasks, more common for classification).

Introduction

There are many clustering techniques:

Introduction

There are many clustering techniques:

- Hierarchical
 - Agglomerative
 - Divisive
- Partitional
 - K-means
 - Mixture Resolving
 - Spectral Clustering
 - Density-based
 - •

Introduction

There are many clustering techniques:

- Hierarchical
 - Agglomerative
 - Divisive
 - **.**
- Partitional
 - K-means
 - Mixture Resolving
 - Spectral Clustering
 - Density-based

1 Start with *n* clusters (one for each instance)

- 1 Start with *n* clusters (one for each instance)
- 2 Find the most similar pair of clusters C_i and C_j and merge them into a single cluster

- 1 Start with *n* clusters (one for each instance)
- 2 Find the most similar pair of clusters C_i and C_j and merge them into a single cluster
- 3 Update distances between clusters

- 1 Start with *n* clusters (one for each instance)
- 2 Find the most similar pair of clusters C_i and C_j and merge them into a single cluster
- 3 Update distances between clusters
- 4 Repeat steps 2-3 until a single cluster (or the desired number of clusters) is obtained

- 1 Start with *n* clusters (one for each instance)
- 2 Find the most similar pair of clusters C_i and C_j and merge them into a single cluster
- 3 Update distances between clusters
- 4 Repeat steps 2-3 until a single cluster (or the desired number of clusters) is obtained

Step 3 can assume different forms:

$$d(C_a, C_b) = \min_{i \in C_a, j \in C_b} \{d(i, j)\}$$
 Single Link $d(C_a, C_b) = \max_{i \in C_a, j \in C_b} \{d(i, j)\}$ Complete Link $d(C_a, C_b) = \frac{1}{n_a n_b} \sum_{i \in C_a, i \in C_b} \{d(i, j)\}$ Average Link

Dendogram

Dendogram

Dendogram

Suppose a data set $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, $\mathbf{x}_i \in \mathbb{R}^d$ and $k \geq 2$ the number of cluster.

Suppose a data set $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, $\mathbf{x}_i \in \mathbb{R}^d$ and $k \geq 2$ the number of cluster.

The idea is to partition the data set into k clusters such that inter-cluster distances are smaller than distances between points in different clusters.

Suppose a data set $\{x_1, ..., x_n\}$, $x_i \in \mathbb{R}^d$ and $k \ge 2$ the number of cluster.

The idea is to partition the data set into k clusters such that inter-cluster distances are smaller than distances between points in different clusters.

Mathematically this idea can be state as:

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2}$$

Suppose a data set $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, $\mathbf{x}_i \in \mathbb{R}^d$ and $k \geq 2$ the number of cluster.

The idea is to partition the data set into k clusters such that inter-cluster distances are smaller than distances between points in different clusters.

Mathematically this idea can be state as:

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} \boxed{r_{ij}} \|\mathbf{x}_i - \boldsymbol{\mu}_j\|^2$$

 $r_{ij} = 1$ if \mathbf{x}_i in cluster j, 0 otherwise, and

Suppose a data set $\{x_1, ..., x_n\}$, $x_i \in \mathbb{R}^d$ and $k \ge 2$ the number of cluster.

The idea is to partition the data set into k clusters such that inter-cluster distances are smaller than distances between points in different clusters.

Mathematically this idea can be state as:

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} [r_{ij}] \|\mathbf{x}_i - \boldsymbol{\mu}_j\|^2$$

 $r_{ij} = 1$ if \mathbf{x}_i in cluster j, 0 otherwise, and $\boldsymbol{\mu}_j$ is a "prototype" associated to *cluster*_j.

Suppose a data set $\{x_1, ..., x_n\}$, $x_i \in \mathbb{R}^d$ and $k \ge 2$ the number of cluster.

The idea is to partition the data set into k clusters such that inter-cluster distances are smaller than distances between points in different clusters.

Mathematically this idea can be state as:

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} [r_{ij}] \|\mathbf{x}_i - [\boldsymbol{\mu}_j]\|^2$$

 $r_{ij} = 1$ if \mathbf{x}_i in cluster j, 0 otherwise, and $\boldsymbol{\mu}_j$ is a "prototype" associated to *cluster*_j.

The goal is to find $\{r_{ij}\}$ and $\{\mu_i\}$ so as to minimize J.

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2}$$

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2}$$

If the $\{\mu_i\}$ are fixed then the minimum of J is reached when

$$r_{ij} = \begin{cases} 1 & \text{if } j = \arg\min_{s} \|\mathbf{x}_i - \boldsymbol{\mu}_s\|^2 \\ 0 & \text{otherwise} \end{cases}$$

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2}$$

If the $\{\mu_j\}$ are fixed then the minimum of J is reached when

$$r_{ij} = \begin{cases} 1 & \text{if } j = \arg\min_{s} \|\mathbf{x}_i - \boldsymbol{\mu}_s\|^2 \\ 0 & \text{otherwise} \end{cases}$$

If $\{r_{ij}\}$ is fixed then the minimum can be obtained by setting the derivative of J w.r.t. μ_j to zero, resulting in

$$\boldsymbol{\mu}_j = \frac{\sum_i r_{ij} \mathbf{x}_j}{\sum_i r_{ij}}$$

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{j}\|^{2}$$

If the $\{\mu_j\}$ are fixed then the minimum of J is reached when

$$r_{ij} = \begin{cases} 1 & \text{if } j = \arg\min_{s} \|\mathbf{x}_i - \boldsymbol{\mu}_s\|^2 \\ 0 & \text{otherwise} \end{cases}$$

If $\{r_{ij}\}$ is fixed then the minimum can be obtained by setting the derivative of J w.r.t. μ_i to zero, resulting in

$$\boldsymbol{\mu}_j = \frac{\sum_i r_{ij} \mathbf{x}_j}{\sum_i r_{ij}}$$

 μ_j is simply the average of the $\mathbf{x}_i \in cluster_j$.

Algorithm

Algorithm

1 Initialize μ_1, \ldots, μ_k

Algorithm

- 1 Initialize μ_1, \ldots, μ_k
- 2 Assign instances to their closest prototype μ_j

Algorithm

- 1 Initialize μ_1, \ldots, μ_k
- 2 Assign instances to their closest prototype μ_j

$$3 \, \boldsymbol{\mu}_j = \frac{\sum_i r_{ij} \mathbf{x}_j}{\sum_i r_{ij}}$$

Algorithm

- 1 Initialize μ_1, \ldots, μ_k
- 2 Assign instances to their closest prototype μ_j

3
$$\boldsymbol{\mu}_j = \frac{\sum_i r_{ij} \mathbf{x}_j}{\sum_i r_{ij}}$$

4 Repeat 2-3 until there are no changes in the prototypes

(figure extracted from Bishop's book)

■ K-means always converges to a local minimum

- K-means always converges to a local minimum
- The algorithm can be adapted to deal with "distances" (dissimilarities) other than Euclidean

- K-means always converges to a local minimum
- The algorithm can be adapted to deal with "distances" (dissimilarities) other than Euclidean
- Unstable as to the initial centroids

- K-means always converges to a local minimum
- The algorithm can be adapted to deal with "distances" (dissimilarities) other than Euclidean
- Unstable as to the initial centroids
- Outliers can unduly influence the clusters

- K-means always converges to a local minimum
- The algorithm can be adapted to deal with "distances" (dissimilarities) other than Euclidean
- Unstable as to the initial centroids
- Outliers can unduly influence the clusters
- K-means generates spherically shaped clusters

- K-means always converges to a local minimum
- The algorithm can be adapted to deal with "distances" (dissimilarities) other than Euclidean
- Unstable as to the initial centroids
- Outliers can unduly influence the clusters
- K-means generates spherically shaped clusters
- K-means is a particular case of a more general method called *Mixture Resolving*

Bisecting K-means

- 1: Initialize the list of clusters to contain the cluster consisting of all points.
- 2: repeat
- 3: Remove a cluster from the list of clusters.
- 4: {Perform several "trial" bisections of the chosen cluster.}
- 5: **for** i = 1 to number of trials **do**
- 6: Bisect the selected cluster using basic K-means.
- 7: end for
- 8: Select the two clusters from the bisection with the lowest total SSE.
- 9: Add these two clusters to the list of clusters.
- 10: **until** Until the list of clusters contains K clusters.

Given a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, a mixture solving algorithm aims to find parameters c_i , $\boldsymbol{\mu}_i$, Σ_i and a "responsibility" (membership) function γ_{ij} so as to maximize the likelihood

$$p(\mathbf{X}|\boldsymbol{c},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \prod_{i=1}^{n} \left(\sum_{j=1}^{k} c_{j} N(\mathbf{x}_{i}|\boldsymbol{\mu}_{j}, \Sigma_{j}) \right)$$

Given a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, a mixture solving algorithm aims to find parameters c_i , $\boldsymbol{\mu}_i$, Σ_i and a "responsibility" (membership) function γ_{ij} so as to maximize the likelihood

$$p(\mathbf{X}|\boldsymbol{c},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \prod_{i=1}^{n} \left(\sum_{j=1}^{k} c_{j} N(\mathbf{x}_{i}|\boldsymbol{\mu}_{j}, \Sigma_{j}) \right)$$

the γ_{ij} should be such that $N(\mathbf{x}_i|\boldsymbol{\mu}_j, \Sigma_j) > N(\mathbf{x}_i|\boldsymbol{\mu}_s, \Sigma_s)$, $j \neq s$.

Given a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, a mixture solving algorithm aims to find parameters c_i , $\boldsymbol{\mu}_i$, Σ_i and a "responsibility" (membership) function γ_{ij} so as to maximize the likelihood

$$p(\mathbf{X}|\boldsymbol{c},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \prod_{i=1}^{n} \left(\sum_{j=1}^{k} c_{j} N(\mathbf{x}_{i}|\boldsymbol{\mu}_{j}, \Sigma_{j}) \right)$$

the γ_{ij} should be such that $N(\mathbf{x}_i|\boldsymbol{\mu}_j, \Sigma_j) > N(\mathbf{x}_i|\boldsymbol{\mu}_s, \Sigma_s)$, $j \neq s$.

Such optimization can be accomplish via an Expectation Maximization strategy (chapter 9 of Bishop's book).

The optimization works as follows:

Mixture Resolving

The optimization works as follows:

Mixture Resolving

I (E-step) Fixing c_i , μ_i , Σ_i we can compute the probability of a Gaussian with parameters μ_j , Σ_j generates to point \mathbf{x}_i as:

$$\gamma_{ij} = \frac{c_j N(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{s=1}^k c_s N(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)}$$

I (E-step) Fixing c_i , μ_i , Σ_i we can compute the probability of a Gaussian with parameters μ_j , Σ_j generates to point \mathbf{x}_i as:

$$\gamma_{ij} = \frac{c_j N(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{s=1}^k c_s N(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)}$$

2 (M-step) Fixing γ_{ij} the parameters can be obtained by setting to zero the derivative of the likelihood, resulting in:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{1}{N_{j}} \sum_{i=1}^{n} \gamma_{ij} \mathbf{x}_{i}$$

$$\hat{\Sigma}_{j} = \frac{1}{N_{j}} \sum_{i=1}^{n} \gamma_{ij} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{j}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{j})^{\top}$$

$$\hat{c}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij}}{n}$$

The optimization works as follows:

Mixture Resolving

I (E-step) Fixing c_i , μ_i , Σ_i we can compute the probability of a Gaussian with parameters μ_j , Σ_j generates to point \mathbf{x}_i as:

$$\gamma_{ij} = \frac{c_j N(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{s=1}^k c_s N(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s)}$$

2 (M-step) Fixing γ_{ij} the parameters can be obtained by setting to zero the derivative of the likelihood, resulting in:

$$\hat{\boldsymbol{\mu}}_{j} = \frac{1}{N_{j}} \sum_{i=1}^{n} \gamma_{ij} \mathbf{x}_{i}$$

$$\hat{\Sigma}_{j} = \frac{1}{N_{j}} \sum_{i=1}^{n} \gamma_{ij} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{j}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}_{j})^{\top}$$

$$\hat{c}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij}}{n}$$

(figure extracted from Bishop's book)

It can be shown that the K-means algorithm is a particular case of the Mixture Resolving when

It can be shown that the K-means algorithm is a particular case of the Mixture Resolving when

• variances $\Sigma_i = \epsilon \mathbf{I}$ for all Gaussians (spherically shaped Gaussians)

It can be shown that the K-means algorithm is a particular case of the Mixture Resolving when

- variances $\Sigma_i = \epsilon \mathbf{I}$ for all Gaussians (spherically shaped Gaussians)
- $ightharpoonup \gamma_{ij}
 ightharpoonup r_{ij}$ when $\epsilon
 ightharpoonup 0$.

It can be shown that the K-means algorithm is a particular case of the Mixture Resolving when

- variances $\Sigma_i = \epsilon \mathbf{I}$ for all Gaussians (spherically shaped Gaussians)
- $ightharpoonup \gamma_{ij}
 ightharpoonup r_{ij}$ when $\epsilon
 ightharpoonup 0$.

Therefore, K-means tends to generate spherically shaped clusters!!

It can be shown that the K-means algorithm is a particular case of the Mixture Resolving when

- variances $\Sigma_i = \epsilon \mathbf{I}$ for all Gaussians (spherically shaped Gaussians)
- $ightharpoonup \gamma_{ij}
 ightharpoonup r_{ij}$ when $\epsilon
 ightharpoonup 0$.

Therefore, K-means tends to generate spherically shaped clusters!!

The convergence of Mixture Resolving is slower than the convergence of K-means.

K-means is typically used to set initial conditions!!

■ DBSCAN is density-based clustering algorithm.

- DBSCAN is density-based clustering algorithm.
- A cluster is primarily defined by points whose neighbourhood within a given radius contains at least a minimum number of points.

- DBSCAN is density-based clustering algorithm.
- A cluster is primarily defined by points whose neighbourhood within a given radius contains at least a minimum number of points.
- The algorithm demands two parameters
 - lacksquare ϵ : the radius defining the neighbourhood area
 - *npt*: the minimum number of points within in the *ϵ*-neighbourhood.

- DBSCAN is density-based clustering algorithm.
- A cluster is primarily defined by points whose neighbourhood within a given radius contains at least a minimum number of points.
- The algorithm demands two parameters
 - \bullet ϵ : the radius defining the neighbourhood area
 - *npt*: the minimum number of points within in the *ε*-neighbourhood.
- The clustering process is based on the classification of the points as *core points, border points,* and *noise points*.

■ Core Point: a point whose ϵ -neighbourhoo contains at least npt points.

- **Core Point**: a point whose ϵ -neighbourhoo contains at least *npt* points.
- **Border Point**: a point whose ϵ -neighbourhoo contains less than *npt* points but it belongs to the ϵ -neighborhood of some core point.

- **Core Point**: a point whose ϵ -neighbourhoo contains at least *npt* points.
- **Border Point**: a point whose ϵ -neighbourhoo contains less than *npt* points but it belongs to the ϵ -neighborhood of some core point.
- **Noisy Point**: a point that is neither a core nor a border point.

Algorithm

Algorithm

■ Find the points in the ϵ -neighborhood of every point and identify the core points with more than npt neighbors.

Algorithm

- Find the points in the ϵ -neighborhood of every point and identify the core points with more than npt neighbors.
- Find the ϵ -nearest neighbor graph of core points ignoring all non-core points and label each connected component of the graph as being a cluster

Algorithm

- Find the points in the ϵ -neighborhood of every point and identify the core points with more than npt neighbors.
- Find the ϵ -nearest neighbor graph of core points ignoring all non-core points and label each connected component of the graph as being a cluster
- Assign each non-core point to a nearby cluster if the non-core point is in the ϵ -neighbor of a core point of the cluster, otherwise assign it to noise.

Properties

dthe number of clusters is not specified

- dthe number of clusters is not specified
- can find arbitrarily shaped clusters
- has a notion of noise while being robust to outliers

- dthe number of clusters is not specified
- can find arbitrarily shaped clusters
- has a notion of noise while being robust to outliers
- not entirely deterministic: border points that are reachable from more than one cluster can be part of either cluster, depending on the order the data is processed

- dthe number of clusters is not specified
- can find arbitrarily shaped clusters
- has a notion of noise while being robust to outliers
- not entirely deterministic: border points that are reachable from more than one cluster can be part of either cluster, depending on the order the data is processed
- cannot cluster data sets well with large differences in densities

- dthe number of clusters is not specified
- can find arbitrarily shaped clusters
- has a notion of noise while being robust to outliers
- not entirely deterministic: border points that are reachable from more than one cluster can be part of either cluster, depending on the order the data is processed
- cannot cluster data sets well with large differences in densities
- for $npt \le 2$ the result tends to be the same as of hierarchical clustering with the single link metric

- dthe number of clusters is not specified
- can find arbitrarily shaped clusters
- has a notion of noise while being robust to outliers
- not entirely deterministic: border points that are reachable from more than one cluster can be part of either cluster, depending on the order the data is processed
- cannot cluster data sets well with large differences in densities
- for $npt \le 2$ the result tends to be the same as of hierarchical clustering with the single link metric
- there are several methods for estimating ϵ and npt automaticall (for instance, using histograms)