MATH 157: Mathematics in the world Homework 8 (Due April 17th, 2017 at 4PM)

PLEASE SOLVE COMPLETELY BOTH OF THE FOLLOWING 2 PROBLEMS

Problem 1

1. Write a function intersect_sorted(A, B) which intersects two given sorted arrays. For example, if

$$A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],$$

 $B = [5, 7, 9, 11, 13],$

then the output should be

2. Let m and n be the lengths of A and B. What is the time-complexity of your solution (as a function of m and n)?

Problem 2

Recall the *sorted matrix* search problem from class (see Notes 18 on Canvas).

- 1. Implement search_sorted_matrix(A, k) which searches the sorted matrix A for a value k. It should return the position (i,j) of the first occurrence of k, or None if no matches exist. ¹
- 2. Let the size of A be $m \times n$. What is the time-complexity of search_sorted_matrix (as a function of m and n).
- 3. Use search_sorted_matrix to implement a function find_sum_sq(n) which finds a pair of integers x, y > 0 such that $x^2 + y^2 = n$. The return value should either be a tuple (x, y) if one exists, or None otherwise.

¹ If A is a Numpy matrix (2-dimensional array), the number of rows is A.shape[0]. Similarly, the number of columns is A.shape[1].

² Such pairs may not be unique. If you are looking for a fun problem, try to find the smallest n for which two distinct pairs exist. What about three pairs?

³ Hint: Use the matrix np.fromfunction(lambda x, y: (1+x)**2 + (1+y)**2, (nrows, ncols)).

- 4. What are the time- and space-complexities of $find_sum_sq$ as a function of the input n?
- 5. Produce an alternative implementation ${\tt find_sum_sq_alternative}$ which does not use matrices. 4
- 6. What are the time- and space-complexities of find_sum_sq_alternative as a function of the input n?
- 7. (Extra credit) Generalize your function search_sorted_matrix to sorted arrays of arbitrary dimension. What is the time-complexity of your solution? ⁵

⁴ Hint: Given a value n, we can check if x can take part of a suitable pair (x, y) by inspecting $n - x^2$. What are the possible values of x?

⁵ Higher dimensional arrays are called *tensors* in mathematics and physics.