习题课材料(十二)

注: 带 ♡ 号的习题有一定的难度、比较耗时, 请量力为之.

记号: 对于线性映射 T, 我们用 $\ker(T)$ 表示 T 的核, Im(T) 表示 T 的值域/像集。

习题 1. 考虑函数空间的子空间 $span(sin^2 x, cos^2 x)$.

- (1) 证明 $\sin^2 x$, $\cos^2 x$ 和 1, $\cos 2x$ 分别是子空间的一组基。
- (2) 分别求从 $\sin^2 x, \cos^2 x$ 到 $1, \cos 2x$,和从 $1, \cos 2x$ 到 $\sin^2 x, \cos^2 x$ 的过渡矩阵。
- (3) 分别求 1 和 $\sin^2 x$ 在两组基下的坐标。

习题 2. 考虑线性空间 $P_2[x] := \{y(x)|y(x) = a + bx + cx^2, a, b, c \in \mathbb{R}\}$ 。已知 $w_1(x), w_2(x), w_3(x) \in P_2[x]$ 且满足 $w_1(-1) = 1, w_1(0) = 0, w_1(1) = 0, \ w_2(-1) = 0, w_2(0) = 1, w_2(1) = 0, \ w_3(-1) = 0, w_3(0) = 0, w_3(1) = 1$ 。

- (1) 证明: $w_1(x), w_2(x), w_3(x)$ 构成 $P_2[x]$ 的一组基。
- (2) 取 $v_1(x) = 1, v_2(x) = x, v_3(x) = x^2$,分别求从 v_1, v_2, v_3 到 w_1, w_2, w_3 的过渡矩阵和从 w_1, w_2, w_3 到 v_1, v_2, v_3 的过渡矩阵。

习题 3. 在 \mathbb{R}^3 中,设线性变换 T 关于基 $\mathbf{v}_1 = (-1,1,1), \mathbf{v}_2 = (1,0,-1), \mathbf{v}_3 = (0,1,1)$ 的矩阵是

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{array} \right].$$

- (1) 求 T 关于基 $\mathbf{e}_1 = (1,0,0), \ \mathbf{e}_2 = (0,1,0), \ \mathbf{e}_3 = (0,0,1)$ 的矩阵。
- (2) 设向量 $\mathbf{v} = \mathbf{v}_1 + 6\mathbf{v}_2 \mathbf{v}_3$, $\mathbf{w} = \mathbf{e}_1 \mathbf{e}_2 + \mathbf{e}_3$, 求 $T(\mathbf{v})$ 和 $T(\mathbf{w})$ 关于基 $\mathbf{v}_1 \times \mathbf{v}_2 \times \mathbf{v}_3$ 的坐标。

习题 4 (♡). 设 $\dim V = n$, $\dim W = m$. $T \in V$ 到 W 的线性映射,且 T 的秩为 r. 证明:可以分别选取 V 与 W 的合适基底,使得在此选取下 T 的矩阵表示为

$$A = \left[egin{array}{cc} I_r & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{array}
ight]_{m imes n}.$$

习题 5 (♡). 设线性空间 \mathcal{V} 有直和分解: $\mathcal{V} = \mathcal{M}_1 \oplus \mathcal{M}_2$ (即 $\mathcal{V} = \mathcal{M}_1 + \mathcal{M}_2$ 且满足 $\mathcal{M}_1 \cap \mathcal{M}_2 = \{0\}$), 则任取 $a \in \mathcal{V}$, 都有唯一的分解式: $a = a_1 + a_2$, 其中 $a_1 \in \mathcal{M}_1, a_2 \in \mathcal{M}_2$. 定义 \mathcal{V} 上的变

换:

$$P_{\mathcal{M}_1}(a) = a_1, \qquad P_{\mathcal{M}_2}(a) = a_2.$$

- (1) 证明, $P_{\mathcal{M}_1}$, $P_{\mathcal{M}_2}$ 都是 \mathcal{V} 上的线性变换。
- (2) 证明, $\ker(\mathbf{P}_{\mathcal{M}_1}) = \mathcal{M}_2, \operatorname{Im}(\mathbf{P}_{\mathcal{M}_1}) = \mathcal{M}_1.$
- (3) 证明, $P_{\mathcal{M}_1}^2 = P_{\mathcal{M}_1}, P_{\mathcal{M}_1} + P_{\mathcal{M}_2} = I, P_{\mathcal{M}_1} P_{\mathcal{M}_2} = O.$
- (4) 分别求 P_{M_1} , P_{M_2} 的特征值和特征向量。
- 6. 设 A=(a_{ij})为 n 阶实对称矩阵, $\mathbf{a}_{ij}=1$ 且 $\sum_{j=1}^{n}\left|a_{ij}\right|<2$ 证明 $|\mathbf{A}|\leq 1$

7.设 A 为 n 阶实矩阵, A+A'为正定阵, 证明:

- (1) A 的特征值实部大于 0
- (2) |A|>0

8.设 A,C 为对称正定阵,B 是满足 AX+XA=C 的唯一解,证明 B 对称正定。

9. A, B是俩方阵, 且 A²=A,B²=B,证明(A+B)²=A+B 当且仅当 AB=BA=0

10.设 A, B为实对称阵,证明 tr(ABAB) ≤ tr(AABB)