

Biopotential Amplifiers

- Basic function
 - to increase the amplitude of a weak electric signal of biological origin (next slide)
 - typically process voltages
 - but in some cases also process currents
- Typical bio-amp requirements
 - high input impedance -greater than 10 Mohms
 - safety: protect the organism being studied
 - careful design to prevent macro and microshocks
 - isolation and protection circuitry to limit the current through the electrode to safe level
 - output impedance of the amplifier
 - should be low to drive any external load with minimal distortion
 - gain greater than 1000
 - biopotentials are typically less than a millivolt
 - most biopotential amplifiers are differential
 - signals are recorded using a bipolar electrodes which are symmetrically located
 - <u>high common mode rejection</u> ratio
 - biopotentials ride on a large offset signals
 - rapid calibration of the amplifier in laboratory conditions
 - adjustable gains
 - often the change in scale is automatic
 - therefore calibration of the equipment is very important

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 1

Voltage and Frequency Range for Biopotentials

Electrocardiograph amplifiers

- Beating heart generates electric signal
 - monitored to understand heart functions
- Measurements are functions of
 - · location at which the signal is detected
 - time-dependence of the signal amplitude
- Different pairs of electrodes at different locations yield different measurements
 - hence placement is standardized
- Electrical model of heart
 - electric dipole located in a partially conducting medium (thorax)
 - dipole represented as a cardiac vector **M**
 - M is the dipole moment
 - during the cardiac cycle
 - magnitude and direction of the dipole vector will vary
 - electric potentials appears throughout the body and on its surface

 $v_{a1} = \mathbf{M} \cdot \mathbf{a}_1, \ v_{a1} = |\mathbf{M}| \cos \theta$

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 3

Electrocardiograph Leads

- In clinical electrocardiography
 - more than one lead must be recorded to describe the heart's electric activity fully
 - several leads are taken in the frontal plane and the transverse plane
 - frontal plane: parallel to the back when lying
 - transverse plane: parallel to the ground when standing
- Frontal plane lead placement
 - called *Eindhoven's triangle*
- Additional leads
 - unipolar measurements
 - potential measured at electrodes wrt a reference; average of the 2 electrodes
 - · Wilson central terminal
 - three limb electrodes connected through equal-valued resistors to a common node
 - augmented leads
 - some nodes disconnected
 - increase the amplitude of measurement using

Functional blocks of electrocardiograph

Problems in ECG Measurement

- Frequency distortion
 - if filter specification does not match the frequency content of biopotential
 - then the result is high and low frequency distortion
- Saturation or cutoff distortion
 - high electrode offset voltage or improperly calibrated amplifiers can drive the amplifier into saturation
 - then the peaks of QRS waveforms are cut off
- Ground loops
 - if two monitoring instruments are placed at disjoint ground points
 - then small current could flow through the patient's body
- Electric/magnetic field coupling
 - open lead wires (floating connections) pick up EMI
 - long leads produce loop that picks up EMI (induces loop current)
- Interference from power lines (common mode interference)
 - · can couple onto ECG signal

Biopotential Amplifiers. p. 6

Interference Reduction Techniques

Common-mode voltages can be responsible for much of the interference in biopotential amplifiers.

- Solution 1:
 - amplifier with a very high common-mode rejection
- Solution 2:
 - eliminate the source of interference

Ways to eliminate interference

- Use shielding techniques
 - electrostatic shielding: Place a grounded conducting plane between the source of the electric field and the measurement system
 - · very important for EEG measurement
- Magnetic shield
 - use high permeability materials (sheet steel)
- Use twisted cables to reduce magnetic flux, reduce lead loop area

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 7

Differential Amplifier

- One-amp differential amplifier
 - gain determination
 - Rule 1: virtual short at op-amp inputs
 - Rule 2: no current into op-amp

$$v_5 = \frac{v_{in+}R_4}{R_3 + R_4}$$
 $i = \frac{v_{in-} - v_5}{R_3} = \frac{v_5 - v_o}{R_4}$

$$\rightarrow v_{o} = \frac{(v_{in+} - v_{in-})R_{4}}{R_{3}}$$

Gain of differential amplifier $\frac{v_o}{v_{in}} = \frac{R_4}{R_3} = G$

- characteristics
 - no common mode gain, Gc = 1
 - input resistance of the diff. amp is lower than ideal op-amp
 - OK for low resistance sources (like Wheatstone bridge), but not good for many biomedical applications
 common mode rejection ratio: CMRR =

Differential Amplifier

- How do we fix low input resistance of 1-op-amp diff amp?
- Option 1: Add voltage follower to each input

• Problem: ?

- Option 2: Add non-inverting amp at each input
 - · Provides additional gain

• Problem: ?

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 9

Instrumentation Amplifier

- Better option:
 - connect Ri's of input amps together
 - eliminate ground connection

- This 3-op-amp circuit is called an *instrumentation amplifier*
- Input stage characteristics
 - low common-mode gain -rejects common mode voltages (noise)
 - high input impedance
 - input stage gain adjusted by R₁ $G_d = \frac{v_3 v_4}{v_1 v_2} = \frac{2R_2 + R_1}{R_1}$

Instrumentation Amplifier

- Input stage
 - high input impedance
 - buffers gain stage
 - no common mode gain
 - can have differential gain

• differential gain, low input impedance

total differential gain

$$G_{\rm d} = \frac{2R_2 + R_1}{R_1} \left(\frac{R_4}{R_3}\right)$$

Overall amplifier

amplifies only the differential component
high common mode rejection ratio

 high input impedance suitable for biopotential electrodes with high output impedance

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 11

ECG Amplifier

With 776 op amps, the circuit was found to have a CMRR of 86 dB at 100 Hz and a noise level of 40 mV peak to peak at the output. The frequency response was 0.04 to 150 Hz for ± 3 dB and was flat over 4 to 40 Hz. The total gain is 25 (instrument amp) x 32 (non-inverting amp) = 800.

HPF

instrumentation amplifier

non-inverting amp

Driven Right Leg System

- Motivation
 - reduce interference in amplifier
 - · improve patient safety
- Approach
 - patient right leg tied to output of an auxiliary amp rather than ground
 - common mode voltage on body sensed by averaging resistors, Ra's & fed back to right leg
 - provides negative feedback to reduce common mode voltage
 - if high voltage appears between patient and ground, auxiliary amp effectively un-grounds the patient to stop current flow

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 13

Driven Right Leg System: Example

- **Problem**: Determine the common-mode voltage $v_{\rm cm}$ on the patient in the driven-right-leg circuit of Slide 13 when a displacement current $i_{\rm d}$ flows to the patient from the power lines. Choose appropriate values for the resistances in the circuit so that the common-mode voltage is minimal and there is only a high-resistance path to ground when the auxiliary operational amplifier saturates.
- What is v_{cm} for this circuit when $i_d = 0.2 \mu A$?
- **Answer**: The equivalent circuit is shown here. Note that because the common-mode gain of the input stage is 1, and because the input stage as shown has a very high input impedance, ν_{cm} at the input is isolated from the output circuit. R_{RL} represents the resistance of the right-leg electrode. Summing the currents at the negative input of the operational amplifier, we get

• this gives
$$\frac{2v_{\rm cm}}{R_{\rm a}} + \frac{v_{\rm o}}{R_{\rm f}} = 0$$

$$v_{\rm o} = -\frac{2R_{\rm f}}{R_{\rm a}}v_{\rm cm}^{1} \quad \text{but} \quad v_{\rm cm} = R_{\rm RL}i_{\rm d} + v_{\rm o}^{2}$$

• thus, substituting (1) into (2) yields $v_{\rm cm} = \frac{R_{\rm RL}i_{\rm d}}{1+2R_{\rm f}/R}$

Example continued

• The effective resistance between the right leg and ground is the resistance of the right-leg electrode divided by 1 plus the gain of the auxiliary operational-amplifier circuit. When the amplifier saturates, as would occur during a large transient $\nu_{\rm cm}$, its output appears as the saturation voltage $\nu_{\rm s}$. The right leg is now connected to ground through this source and the parallel resistances $R_{\rm f}$ and $R_{\rm O}$. To limit the current, $R_{\rm f}$ and $R_{\rm O}$ should be large. Values as high as 5 M Ω are used.

• When the amplifier is not saturated, we would like ν_{cm} to be as small as possible or, in other words, to be an effective low-resistance path to ground. This can be achieved by making $R_{\rm f}$ large and $R_{\rm a}$ relatively small. $R_{\rm f}$ can be equal to $R_{\rm o}$, but $R_{\rm a}$

can be much smaller.

• A typical value of Ra would be 25 k Ω . A worst-case electrode resistance $R_{\rm RL}$ would be 100 k Ω . The effective resistance between the right leg and ground would then be

$$\frac{100 \,\mathrm{k}\Omega}{1 + \frac{2 \times 5 \,\mathrm{M}\Omega}{25 \,\mathrm{k}\Omega}} = 249 \,\Omega$$

• For the 0.2 μA displacement current, the common-mode voltage is

$$v_{\rm cm} = 249 \ \Omega \times 0.2 \ \mu A = 50 \ \mu V$$

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 15

Compensation of electrode artifacts

- Microelectrodes detect potentials on the order of 50-100mV.
- -Small size implies high source impedance which also results in a large shunting capacitance.
- Degraded frequency response.

Compensation of electrode artifacts

- Compensate large shunt capacitance using a positive feedback
- -Circuit below realizes a negative capacitance

$$v_i = \frac{1}{C_f} \int i_1 dt + A_v v_i$$

$$v_i = \frac{1}{(1 - A_v)C_f} \int i_1 dt$$

- Total capacitance

$$C = C_s + (1 - A_v)C_f$$

- Compensation criteria $C_s = (A_v - 1)C_f$

ECE 445: Biomedical Instrumentation

Biopotential Amplifiers. p. 17