Міністерство освіти і науки України Національний університет "Львівська політехніка"

Кафедра ЕОМ

Звіт

з лабораторної роботи №2

з дисципліни: "Моделювання комп'ютерних систем" на тему: "Структурний опис цифрового автомата"

Виконав: ст. гр. КІ-202 Гавриляк Д. В. Прийняв: Козак Н.Б. Мета: "На базі стенда реалізувати цифровий автомат світлових ефектів".

Завдання до варіанту № 5:

Варіант – 5:

• Пристрій повинен реалізувати 8 комбінацій вихідних сигналів згідно таблиці:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	1	0	0	0	0	0	0
3	0	0	0	0	0	0	1	0
4	0	0	1	0	0	0	0	0
5	0	0	0	0	0	1	0	0
6	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда $Elbert\ V2 Spartan\ 3A\ FPGA$. Тактовий сигнал заведено нв вхід $LOC = P129\ FPGA$ (див. Aodamok 1).
- Інтерфейс пристрою повинен мати вхід синхронного скидання (RESET).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід (TEST) для подачі логічної «1» на всі виходи одночасно:
 - Якщо TEST=0 то автомат перемикає сигнали на виходах згідно заданого алгоритму.
 - Якщо TEST=1 то на всіх виходах повинна бути логічна «1» (всі LED увімкнені).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. Додаток – 1).
- Для керування сигналами RESET/TEST використати будь як з PUSH BUTTON кнопок (див. Додаток – 1).

Хіл виконання:

1) Створюю TransitionLogic.vhd

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity Transition_Logic_intf is
Port ( CUR_STATE : in std_logic_vector(2 downto 0);
       MODE : in std_logic;
       NEXT_STATE : out std_logic_vector(2 downto 0)
end Transition Logic intf:
architecture Transition_Logic_arch of Transition_Logic_intf is
   NEXT_STATE(0) <= (MODE and not(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (MODE and not (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (MODE and (CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (MODE and (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (not(MODE) and not(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (not(MODE) and not(CUR_STATE(2)) and(CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (not(MODE) and(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (not (MODE) and (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0)));
    NEXT_STATE(1) <= (MODE and not(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or</pre>
                     (MODE and(CUR_STATE(2)) and (CUR_STATE(1)) and(CUR_STATE(0))) or
                     (MODE and (CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (MODE and not (CUR_STATE(2)) and (CUR_STATE(1)) and (CUR_STATE(0))) or
                     (not (MODE) and not (CUR STATE(2)) and not (CUR STATE(1)) and (CUR STATE(0))) or
                     (not(MODE) and not(CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (not(MODE) and(CUR_STATE(2)) and not(CUR_STATE(1)) and (CUR_STATE(0))) or
                     (not(MODE) and(CUR_STATE(2)) and(CUR_STATE(1)) and not (CUR_STATE(0)));
    NEXT_STATE(2) <= (MODE and not(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or</pre>
                     (MODE and (CUR_STATE(2)) and (CUR_STATE(1)) and (CUR_STATE(0))) or
                     (MODE and (CUR_STATE(2)) and (CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (MODE and (CUR_STATE(2)) and not(CUR_STATE(1)) and (CUR_STATE(0))) or
                     (not(MODE) and not(CUR_STATE(2)) and(CUR_STATE(1)) and (CUR_STATE(0))) or
                     (not(MODE) and(CUR_STATE(2)) and not(CUR_STATE(1)) and not (CUR_STATE(0))) or
                     (not(MODE) and(CUR_STATE(2)) and not(CUR_STATE(1)) and (CUR_STATE(0))) or
                     (not(MODE) and(CUR_STATE(2)) and(CUR_STATE(1)) and not (CUR_STATE(0)));
end Transition_Logic_arch;
```

2) Створюю OutputLogic.vhd

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity Out_Logic_intf is
Port ( IN_BUS : in std_logic_vector(2 downto 0);
       OUT BUS : out std logic vector (7 downto 0)
end Out Logic intf;
architecture Out_Logic_arch of Out_Logic_intf is
begin
OUT BUS(0) <= (not(IN BUS(2)) and not(IN BUS(1)) and not(IN BUS(0)));
    OUT BUS(1) <= (not(IN BUS(2)) and IN BUS(1) and not(IN BUS(0)));
    OUT_BUS(2) <= (IN_BUS(2) and not(IN_BUS(1)) and not(IN_BUS(0)));
    OUT BUS(3) <= (IN BUS(2) and IN BUS(1) and not(IN BUS(0)));
    OUT_BUS(4) <= (IN_BUS(2) and IN_BUS(1) and IN_BUS(0));
   OUT BUS(5) <= (IN BUS(2) and not(IN BUS(1)) and IN BUS(0));
    OUT BUS(6) <= (not(IN BUS(2)) and IN BUS(1) and IN BUS(0));
    OUT BUS(7) <= (not(IN BUS(2)) and not(IN BUS(1)) and IN BUS(0));
end Out_Logic_arch;
```

3) Створюю схему LightController.sch

4) Створюю файл TopLevel.sch

5) Додаю Constraints.ucf файл

```
1 CONFIG VCCAUX = "3.3";
2
   # Clock 12 MHz
3
4
   NET "CLK"
                    LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
5
  6
                           LED
  8
9
     NET "OUT LED 0"
                      LOC = P46
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
10
     NET "OUT_LED_1"
NET "OUT LED_2"
                      LOC = P47
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
11
                      LOC = P48
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
12
     NET "OUT_LED_3"
NET "OUT_LED_4"
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                      LOC = P49
13
                      LOC = P50
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
14
     NET "OUT_LED_5"
NET "OUT_LED_6"
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                      LOC = P51
15
                      LOC = P54
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
16
     NET "OUT_LED_7"
                      LOC = P55
                             | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
17
18
  19
20
                        DP Switches
21
  22
     NET "MODE"
                LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
23
24
  25
                         Switches
26
  27
28
                        | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
29
     NET "RESET"
                  LOC = P79 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
30
31
  32
33
```

6) Симулюю роботу OutputLogic:

7) Симулюю роботу TransitionLogic :

8) Симулюю роботу LightController.sch :

	6 us		8 us		10 us		12 us		14 us			16 us		18 us			20 us		22 us
01	000000	0000	0100	0010	0000	0000	1000	0001	0000	χ	0000	0001	Χ	00010000	χ ο	000	1000	(00100	(00000)
	011 100		0)1		.0	(1:		(1:		X X	001	0 111	X	111 110	X X		10)1	X 101 X 100	000

9) Симулюю роботу TopLevel.sch:

10) Генерую BIN файл:

🌉 Комп'ютер	out_logic_intf.spl	17.04.2023 18:43	Файл SPL	1 KB	
G	out_logic_intf.sym	17.04.2023 18:43	Файл SYM	1 KB	
🖣 Мережа	out_logic_intf_isim_beh.exe	17.04.2023 22:06	Застосунок	93 KE	
	OutputLogic.vhd	17.04.2023 18:42	Файл VHD	2 KE	
	pepExtractor.prj	17.04.2023 18:43	Файл PRJ	1 KF	
	sch2HdlBatchFile	17.04.2023 22:21	Файл	0 KE	
	toplevel.bgn	17.04.2023 22:22	Файл BGN	7 KB	
	toplevel.bin	17.04.2023 22:22	Файл BIN	54 KB	
toplevel.bin Дата змінення: 17.04.2023 22:22 Файл BIN Розмір: 53,3 КБ		Дата створення: 17.04.2023 22:22	2		

Висновок: На даній лабораторній роботі я на базі стенда Elbert V2- Spartan 3A FPGA реалізував цифровий автомат світлових ефектів. Навчився створювати нові елементи і описувати логіку їх роботи засобами VHDL.