Complexe Analyse

Luc Veldhuis

20 Maart 2017

Definitie

Een domein $D \subset \mathbb{C}$ wordt **enkelvoudig samenhangend** genoemd als voor elke simpel gesloten contour $C \subset D$ ook alle inwendig gelegen punten in D liggen.

Voorbeeld

(a) Wel enkelvoudig samenhangend (b) Niet enkelvoudig samenhangend

Corollary

Zij $D \subset \mathbb{C}$ enkelvoudig samenhangend en $f: D \to \mathbb{C}$ analytisch. Dan geldt $\int_C f(z)dz = 0$ voor elke gesloten contour $C \subset D$ en f heeft dus een primitieve $F: D \to \mathbb{C}$.

Voorbeeld

- $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^n$ heeft $F(z) = \frac{z^{n+1}}{n+1}$ met n > 0. \mathbb{C} is enkelvoudig samenhangend.
- $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$, $f(z) = \frac{1}{z}$ heeft geen primitieve, omdat $\mathbb{C} \setminus \{0\}$ niet enkelvoudig samenhangend is. (Dus geen tegenspraak)

Bewijs

Als C simpel is, is het meteen duidelijk met Cauchy-Goursat. Als C zichzelf doorsnijdt, dan kan C gesplitst worden in simpel gesloten contouren en er geldt $\int_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz = 0$

Opmerking

Alle gehele functies (die op het gehele complexe vlak gedefinieerd zijn) hebben een primitieve.

Stelling

Zij C een linksom draaiende simpel gesloten contour en zij $\{C_1,\ldots,C_n\}$ een verzameling van rechtsom draaiende simpel gesloten contouren. Neem aan dat f analytisch is op C,C_1,\ldots,C_n en alle punten, die inwendig van C en uitwendig van C_1,\ldots,C_n liggen. Dan

$$\int_C f(z)dz + \sum_{i=1}^n \int_{C_i} f(z)dz = 0$$

Bewijs

$$\begin{split} &\text{Geeft } \int_{L_1} + \int_{C_1^+} + \int_{L_2} + \int_{C_2^+} + \int_{L_3} + \int_{C^+} = 0. \\ &\int_{-L_3} + \int_{C_2^-} + \int_{-L_2} + \int_{C_1^-} + \int_{-L_1} + \int_{C^-} = 0 \text{ volgens} \\ &\text{Cauchy-Goursat. Dus } \int_C + \int_{C_1} + \int_{C_3} = 0. \end{split}$$

Corollary

Zij C_1 en C_2 twee linksom draaiende (of rechtsom draaiende) simpel gesloten contouren, zodat C_1 inwendig van C_2 ligt. Neem aan dat f analytisch is op alle punten tussen C_1 en C_2 . Dan $\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$.

Voorbeeld

Zij C een linksom draaiende simpel gesloten contour om z=0. Dan geldt $\int_C \frac{1}{z} dz = 2\pi i$

Bewijs

$$C_2 = C$$
, $C_1 = \{z = e^{it} | 0 \le t \le 2\pi\}$, gebruik corollary.

Stelling (Integraalformule van Cauchy)

Zij f analytisch op een linksom draaiende simpel gesloten contour C en ook alle inwendig gelegen punten. Dan geldt voor elke inwendig gelegen punt z_0 :

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

Dus vooral is f bepaald op alle inwendig gelegen punten.

Bewijs

Zij $C_{\rho}=\{z\in C|\ |z-z_0|=\rho\}$ een linksom draaiende cirkel om z_0 , waarbij $\rho>0$ voldoende klein is gekozen, zodat C_{ρ} inwendig van C ligt. Dan geldt

$$\int_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz = \int_{C} \frac{f(z) - f(z_0)}{z - z_0} dz = \int_{C} \frac{f(z)}{z - z_0} dz - f(z_0) \int_{C} \frac{1}{z - z_0}.$$

We zien dat $\int_C \frac{1}{z-z_0} = 2\pi i$. Ook geldt $z \mapsto \frac{f(z)-f(z_0)}{z-z_0}$ analytisch is tussen C_ρ en C.

Het is nu voldoende om te bewijzen dat $\int_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} \to 0$ als $\rho \to 0$. Omdat f continu is, bestaat voor elke $\epsilon > 0$ een $\delta > 0$ met $|z - z_0| < \delta$, dan $|f(z) - f(z_0)| < \epsilon$. Kies $\rho = \delta$, dan

$$\left|\int_{C_{\rho}} \frac{f(z) - f(z_0)}{z - z_0} dz\right| \le 2\pi \delta \frac{\epsilon}{\delta} = 2\pi \epsilon \to 0$$

Dus dit geeft $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-z_0} dz$

Voorbeeld

- $\int_C \frac{e^{-z}}{z \frac{\pi i}{2}} dz = 2\pi i e^{-\frac{\pi i}{2}}$ met $\frac{\pi i}{2}$ in het inwendige van C.
- $\int_C \frac{z}{2z+1} dz = \frac{1}{2} \int_C \frac{z}{z-(-\frac{1}{2})} dz = -\frac{\pi i}{2}$ met $-\frac{1}{2}$ in het inwendige van C.
- $C = \{z \in \mathbb{C} | |z i| = 2\}.$ $\int_C \frac{1}{z+4} dz = \int_C \frac{\frac{1}{z+2i}}{z-2i} dz = 2\pi i \frac{1}{2i+2i} = \frac{\pi}{2}. \text{ Hier is } f(z) = \frac{1}{z+2i}$ analytisch op het inwendige van C.

Corollary

Zij f en C zoals in de integraal formule van Cauchy. Dan geldt voor alle inwendigen gelegen z_0 :

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$

Bewijs

Voor n = 0, de integraal formule.

$$f(z) = \frac{1}{2\pi i} \int_{C} \frac{f(w)}{w - z} dw.$$

$$f^{(n)}(z) = \frac{d^{n}}{dz^{n}} \frac{1}{2\pi i} \int_{C} \frac{f(w)}{w - z} dw = \frac{1}{2\pi} \int_{C} f(w) \frac{d^{n}}{dz^{n}} (\frac{1}{w - z}) dw = \frac{1}{2\pi} \int_{C} f(w) \frac{m!}{(w - z)^{n+1}} dw$$

Voorbeeld

$$\int_{|z-i|=2} \frac{dz}{(z^2+4)^2} dz = \int_C \frac{\frac{1}{(z+2i)^2}}{(z-2i)} dz = 2\pi i f'(2i) = 2\pi i \frac{-2}{(2i+2i)^3} = \frac{\pi}{16}$$
 met $f(z) = \frac{1}{(z+2i)^2}$.

