"信息安全数学基础"习题答案

第一章

1、证明:

- $\therefore a \mid b \Rightarrow b = ma(m \in Z), \quad c \mid d \Rightarrow d = nc(n \in Z),$ $\therefore bd = acmn(mn \in Z), \quad \Box ac \mid bd.$
- (2) $\frac{ \cdot \cdot a \mid b_1, a \mid b_2, \cdot \cdot \cdot, a \mid b_k, \cdot \cdot \cdot \text{ 根据整除的性质1-1(3)及递归法,可证得:}}{ a \mid (b_1c_1 + b_1c_1 + \cdot \cdot \cdot + b_kc_k), \text{ 其中<math>c_1, c_2, \cdot \cdot \cdot c_k$ 为任意整数。

2、证明:

根据例题1-2(2)的证明结论知:

 \therefore (3,5)=1, \mathbb{X} \therefore 3 | a \mathbb{H} 5 | a, \therefore 15 | a,

又::(15,7)=1, 且7|a, ::105|a 。

3、证明:

因为 $n > p > n^{1/3}$,且 $p \in n$ 的最小素因数,若假设 n/p 不是素数,则有

 $n/p = p_1 \times p_2 \times \cdots \times p_k$, (其中 $k \ge 2$, p_1, p_2, \cdots, p_k 为素数且均 $\ge p$) 若 k = 2, 则 $n/p = p_1 \times p_2 \ge p^2$, $\therefore n \ge p^3$, 即 $p \le n^{1/3}$,与题设 $n > p > n^{1/3}$ 矛盾,所以假设不成立,即n/p为素数得证。

7、证明:

首先证明形如 6k-1 的正整数 n 必含有 6k-1 形式的素因子,这显然是成立的。因为如果其所有素因数均为 6k+1 形式,则 $n=p_1\times p_2\times\cdots\times p_j, (p_i=6k_i+1,\ i=1,2,\cdots,j)$,从而得到 n是形如 6k+1 形式的正整数,这与题设矛盾。

其次,假设形如 6k-1 的素数为有限个,依次为 $q_1,q_2,\cdots q_s$, 考虑整数 $n=6q_1q_2\cdots q_s$ -1,则 n 是形如 6k-1 的正整数,所以 n 必有相同形式的素因数 q,使得使得 $q=q_j$ (1 $\leq j\leq s$)。由整数的基本性质(3)有:

$$q \mid (6q_1q_2\cdots q_s - n) = 1$$
,

这是不可能的。故假设错误,即存在无穷多个形如 4k-1 的素数得证。

11、解:

		n^2		n^3			
	最小非负余	最小正余数	绝对值最	最小非负	最小正余数	绝对值最小	
	数		小余数	余数		余数	
3	0, 1	1, 3	0, 1	0, 1, 2	1, 2, 3	-1, 0, 1	
4	0, 1	1, 4	0, 1	0, 1, 3	1, 3, 4	-1, 0, 1	
8	0, 1, 4	1, 4, 8	1, 0	0, 1, 3, 5,	1, 3, 5, 7,	3, 1, -3, -1,	
				7	8	0	
10	0, 1, 4, 5,	1, 4, 5, 6,	-4, -1, 0,	0,1,2,3,4,5,	1,2,3,4,5,6,7,8	-5,-4,-3,-2,-1,	
	6, 9	9, 10	1, 4, 5	6,7,8,9	,10	0,1,2,3,4	

13、解:

(1)

$$259 = 222 \times 1 + 37$$

$$222 = 37 \times 6$$

$$\Rightarrow$$
 (222, 259) = 37

$$37 = 259 - 222 \times 1$$
, $\therefore s = 1$, $t = -1$

(2)

$$1395 = 713 \times 1 + 682$$

$$713 = 682 \times 1 + 31$$

$$682 = 31 \times 22$$

$$\Rightarrow$$
 (1395, 713) = 31

$$31 = 713 - 682 \times 1 = 713 - (1395 - 713 \times 1) = 2 \times 713 + (-1) \times 1395$$

∴
$$s = -1$$
, $t = 2$

16、解:

(1)

$$(112, 56) = 56$$

$$[112,56] = \frac{112 \times 56}{(112,56)} = 112$$

(2)

$$(67, 335) = 67$$

$$[67,335] = \frac{67 \times 335}{(67,335)} = 335$$

(3)

$$(1124, 1368) = 4$$

$$[1124, 1368] = \frac{1124 \times 1368}{(1124, 1368)} = 384408$$

19、解:

$$(7,4) = 1, c = 0, \therefore 7 \times (-1) + 4 \times 2 = 1$$

∴
$$s = -1, t = 2$$

而不定方程的一切解为:
$$\begin{cases} x = -\frac{4k}{1} = -4k \\ & \text{其中, } k = 0, \pm 1, \pm 2, \dots \end{cases}$$

$$\mathbb{X} \begin{cases} |x| \le 1000 \\ |y| \le 1000 \end{cases} \therefore k \le 142$$

$$∴ 方程的全部解为
$$\begin{cases} x = -4k \\ y = 7k \end{cases}$$
 其中 , $k = 0, \pm 1, \dots \pm 142$$$

第二章

1、解:

- (1) 错误。反例: a=7, b=3, m=8
- (2) 错误。该命题当 m 为素数时才成立($\because a^2+b^2 \equiv 0 \pmod{m} \Leftrightarrow (a+b)(a-b)\equiv 0 \pmod{m}$ $\Leftrightarrow m|(a+b)(a-b)$,而只有 m 为素数时,才 $\Leftrightarrow m|(a+b)$ 或 m|(a-b))
- (3) 错误。反例: a=1, b=4, m=3
- (4) 正确。

证明: 当 a, b 为偶数时,设 a=2k, b=2k',则 $a^2=(2k)^2=4k^2$, $b^2=(2k')^2=4k'^2$,因为 $4k^2=4k'^2\equiv 0 \pmod 4$,所以 $a^2\equiv b^2 \pmod 4$;

当 a, b 为 奇 数 时 , 设 a=2k+1, b=2k'+1 , 则 $a^2=(2k+1)^2=4(k^2+k)+1$, $b^2=(2k'+1)^2=4(k'^2+k')+1$, 因为 $4(k^2+k)+1\equiv 4(k'^2+k')+1\equiv 1 \pmod{4}$,所以 $a^2\equiv b^2 \pmod{4}$ 。

4、解:

设未知数为x,则根据弃九法,有:

 $((7+8+9+5+4) \mod 9 \times (9+8+3+5+1) \mod 9) \mod 9 = (7+7+6+5+x+4+8+5+4) \mod 9$ 解之得: x=2

5、解:

因为 ord₇(3)=6, 即 $3^6 \equiv 1 \pmod{7}$, 所以

 $3^{3025} \equiv ((3^6)^{504} \times 3) \equiv 1 \times 3 \equiv 3 \pmod{7}$, 故此后第 3^{3025} 是星期日。

6、解:

因为 ord₁₀₀(3)=20, 即 3²⁰≡1(mod 100), 所以

 $3^{408}\equiv (3^{20})^{20}\times 3^8\equiv 1\times 3^8\equiv 61 (mod\, 100)$,故 3^{408} 写成十进制时的最后两位数是 61 。

9、解:

- (1) 模 11 的一组全为奇数的完全剩余系为: 1, 3, 5, 7, 9, 11, 13, 17, 19, 21
- (2) 模 11 的一组全为偶数的完全剩余系为: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
- (3) 设模 m 的完全剩余系为: $k_0 m$, $k_1 m + 1$, $k_2 m + 2$, ..., $k_{m-1} m + (m+1)$, $(k_i \in \mathbb{Z})$

由于 2|m, 所以 $2|k_im+r_i(k_i \in Z, r_i = 0, 2, 4, \dots, m-2)$,

 \overline{m} 2 $\chi k_i m + r_i (k_i \in \mathbb{Z}, r_i = 1, 3, 5, \dots, m-1)$,

因此,模m的完全剩余系中一半是偶数,一半是奇数。

12,

证明: 因为 $\{1, 2, \dots, n\}$ 中,与n互素的个数为 $\varphi(n)$,将 $\{1, 2, \dots, nk\}$ 分成k个集合,每个集合由n个连续的整数构成。每个集合都是一组模n的完全剩余系,由例题 2-8 的结论:

模 m 的同一个剩余类中任意两个整数与 m 的最大公约数相同知,每个集合中与 n 互素的整数为 $\varphi(n)$ 个,故在不超过 nk 的正整数中,和 n 互素的整数的个数为 $k\varphi(n)$ 。

13、(该题有问题,可不做)

证明:

因为
$$a + a^2 + \dots + a^{\varphi(m)} = \frac{a(a^{\varphi(m)} - 1)}{a - 1}$$
,所以原命题等价于证明 $\frac{a(a^{\varphi(m)} - 1)}{a - 1} \equiv 0 \pmod{m}$,

又因为(a, m)=1?, 由同余的性质 2-2(1)和(5)知,

$$\frac{a(a^{\varphi(m)}-1)}{a-1} \equiv 0 \pmod{m} \Leftrightarrow a(a^{\varphi(m)}-1) \equiv 0 \pmod{m}$$

又因为(a,m)=1,所以由欧拉定理有 $a^{\varphi(m)}=1 \pmod{m}$,即 $a(a^{\varphi(m)}-1)\equiv 0 \pmod{m}$ 成立。

所以, 原命题
$$a + a^2 + \cdots + a^{\varphi(m)} \equiv 0 \pmod{m}$$
 成立。

15、证明:

(1) 由 Wilson 定理有:

$$n$$
 是素数 \Leftrightarrow $(n-1)! \equiv -1 \pmod{n} \Leftrightarrow (n-1)! + 1 \equiv 0 \pmod{n} \Leftrightarrow n \mid (n-1)! + 1$

(2) 由 Wilson 定理有:

$$n$$
 是素数 \Leftrightarrow $(n-1)! \equiv -1 \pmod{n}$ \Leftrightarrow

$$(n-1)! \equiv n-1 \pmod{n} \Leftrightarrow (n-2)!(n-1) \equiv n-1 \pmod{n}$$

又因为 ((n-1), n) = (-1, n) = (1, n) = 1, 所以由同余的性质 2-2(1)和(5)有:

$$(n-2)!(n-1) \equiv n-1 \pmod{n} \Leftrightarrow (n-2)! \equiv 1 \pmod{n} \Leftrightarrow n \mid ((n-2)!-1)$$

即 n 是素数的充要条件为 n|((n-2)!-1)。

(3) 由 Wilson 定理有:

$$n$$
 是素数 \Leftrightarrow $(n-1)! \equiv -1 \pmod{n}$

$$\Leftrightarrow (n-k)!(n-(k-1))(n-(k-2))\cdots(n-1) \equiv -1 \pmod{n}$$

$$\Leftrightarrow (n-k)!(-(k-1))(-(k-2))\cdots(-1) \equiv -1 \pmod{n}$$

$$\Leftrightarrow (n-k)!(k-1)!(-1)^{k-1} \equiv -1 \pmod{n}$$

$$\Leftrightarrow (n-k)!(k-1)! \equiv -(-1)^{k-1} \pmod{n}$$

$$\Leftrightarrow n \mid ((n-k)!(k-1)! + (-1)^{k-1})$$

17、证明:

(方法一) 首先, 令
$$p = 4k + 1(k \ge 0)$$
, 则

$$(\frac{p-1}{2}!)^2 \equiv (2k!)^2 \equiv 2k \times (-(p-2k)) \times (2k-1) \times (-(p-(2k-1)) \cdots \times 1 \times (-(p-1)))$$

$$\equiv (-1)^{2k} \times 2k \times (2k+1) \times (2k-1) \times (2k+2) \cdots \times 1 \times 4k \equiv (-1)^{2k} \times (4k)! \equiv (-1)^{2k} \times (p-1)! = -1 \pmod{p}$$

所以 $x^2 \equiv -1 \pmod{p}$ 的解为: $x \equiv \pm \frac{p-1}{2}! \pmod{p}$.

又因为p为奇素数,所以 $\frac{p-1}{2}$! 和 $-\frac{p-1}{2}$! 模p不同余,

综上可证,同余式 $x^2 \equiv -1 \pmod{p}$ 有两个不同的解 $x \equiv \pm \frac{p-1}{2}! \pmod{p}$ 。

(方法二) 由第三章的知识有,因为 p 为 4k+1 形式的素数,所以 $\left(\frac{-1}{p}\right)=1$,即

同余式 $x^2 \equiv -1 \pmod{p}$ 有两个不同的解。再由方法一中的证明过程可得:

$$x^2 \equiv -1 \pmod{p}$$
的两个不同的解为: $x \equiv \pm \frac{p-1}{2}! \pmod{p}$ 。

18、解:

(1) 利用算法 2-1, 有

$$m_0 = 1, a_0 = 2, b_0 = 2, m_1 = 1, a_1 = 4, b_1 = 8, m_2 = 1, a_2 = 16, b_2 = 6,$$

 $m_3 = 0, a_3 = 12, b_3 = 6, m_4 = 1, a_4 = 22, b_4 = 10, m_5 = 1, a_5 = 57, b_5 = 21,$
 $m_6 = 0, a_6 = 16, b_6 = 21, m_7 = 0, a_7 = 12, b_7 = 21, m_8 = 0, a_8 = 22, b_8 = 21,$
 $m_9 = 1, a_9 = 57, b_9 = 38,$

故,
$$2^{567} \mod 61 = 38$$
。

(2) 运用相同的算法,有 $41^{54321} \mod 103 = 93$ 。

19、解:

(1) (方法一)

$$\varphi(325) = 325 \times (1 - \frac{1}{5}) \times (1 - \frac{1}{13}) = 240 \Rightarrow 7^{-1} \mod 325 = 7^{240 - 1} \mod 325 = 7^{239} \mod 325$$

利用算法 2-1,解得 7^{325} mod 325 = 93

(方法二)

$$325 = 46 \times 7 + 3$$

$$7 = 2 \times 3 + 1$$

$$3 = 3 \times 1$$

故
$$(7,325) = 1 = 7 - 2 \times 3 = 7 - 2 \times (325 - 46 \times 7) = 93 \times 7 - 2 \times 325$$

⇒
$$s = 93$$
, $\Box 7^{-1} \mod 325 = 93$

$$(2) 61^{-1} \mod 1024 = 789$$

$$(3) 79^{-1} \mod 2623 = 2457$$

24、解:

- (1) 取模 11 的最小非负完全剩余系: $0, \dots, 10$,直接计算可知,2 是同余式 $x^3 2x + 7 \equiv 0 \pmod{11}$ 的解,故该同余式的解为: $x \equiv 2 \pmod{11}$,解数为 1。
- (2) 取模 7 的最小非负完全剩余系: 0, …, 6, 直接计算可知, 0 和 2 是同余式 $x^5 2x^4 + 14 \equiv 0 \pmod{7}$ 的解,故该同余式的解为: $x \equiv 0, 2 \pmod{7}$,解数为 2。
- (3) 该同余式的解为: $x \equiv 7,19 \pmod{24}$,解数为 2。
- (3) 该同余式无解为

25、解:(过程略,见算法 2-7)

- (1) 因为(5,11)=1|4, 所以同余式 $5x \equiv 4 \pmod{11}$ 有 1 个解, 其解为: $x \equiv 4 \times 5^{-1} \equiv 3 \pmod{11}$ 。
- (2) 因为(3,9)=3|6,所以同余式 $3x \equiv 6 \pmod{9}$ 有3个解,其解为: $x \equiv 2,5,8 \pmod{9}$ 。
- (3) $87x \equiv 16 \pmod{61} \Leftrightarrow 26x \equiv 16 \pmod{61}$, 所以原同余式有 1 个解, 其解为: $x \equiv 10 \pmod{61}$ 。

26、解:

设至少 x 周后, 他可以在周三休息,

如果周三是他休息的第一天,则 $7x+2 \equiv 0 \pmod{13}$,解为 $x \equiv 9 \pmod{13}$ 。

如果周三是他休息的第二天,则 $7x+1 \equiv 0 \pmod{13}$,解为 $x \equiv 11 \pmod{13}$ 。

如果周三是他休息的第一天,则 $7x \equiv 0 \pmod{13}$,解为 $x \equiv 13 \pmod{13}$ 。

综上,至少在9周之后,他可以在周三休息。

28、解:

(1) 原题设等价于:

$$\begin{cases} x \equiv 3 \pmod{11} \\ x \equiv 2 \pmod{72} \\ x \equiv 1 \pmod{13} \end{cases}$$

根据中国剩余定理,可知:

$$m_1 = 11, m_2 = 72, m_3 = 13$$

$$M_1 = 72 \times 13 = 936, M_2 = 11 \times 13 = 143, M_3 = 11 \times 72 = 792$$

$$M_1' = 936^{-1} \mod 11 = 1$$
, $M_2' = 143^{-1} \mod 72 = 71$, $M_3' = 792^{-1} \mod 13 = 12$,

$$\therefore x = 936 \times 1 \times 3 + 143 \times 71 \times 2 + 792 \times 12 \times 1 = 1730 \pmod{10296}$$

 $\Rightarrow x \equiv 1730 \pmod{10296}$

所以,该数为1730。

(2) 原题设等价于:

$$\begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 2 \pmod{5} \\ x \equiv 3 \pmod{7} \\ x \equiv 4 \pmod{9} \end{cases}$$

根据中国剩余定理,可知:

$$m_1 = 2, m_2 = 5, m_3 = 7, m_4 = 9$$

$$M_1 = 5 \times 7 \times 9 = 315, M_2 = 2 \times 7 \times 9 = 126, M_3 = 2 \times 5 \times 9 = 90, M_4 = 2 \times 5 \times 7 = 70,$$

$$M'_1 = 315^{-1} \mod 2 = 1, M'_2 = 126^{-1} \mod 5 = 1, M'_3 = 90^{-1} \mod 7 = 6, M'_4 = 70^{-1} \mod 9 = 4,$$

$$\therefore x = 315 \times 1 \times 1 + 126 \times 1 \times 2 + 90 \times 6 \times 3 + 70 \times 4 \times 4 \pmod{630}$$

$$\Rightarrow x = 157 \pmod{630}$$

所以,该数为157。

31、解:

因为 $6x \equiv 4 \pmod{8}$ 有2个解,其解为: $x \equiv 2,6 \pmod{8}$

所以原同余式组等价于:

$$\begin{cases} x \equiv 5 \pmod{7} \\ x \equiv 2, 6 \pmod{8} \end{cases}$$

根据中国剩余定理可求得:该同余时组有 2 个解,其解为 $x \equiv 26,54 \pmod{56}$ 。

32、解:

原同余式组等价于:

$$\begin{cases} x \equiv 3 \pmod{1} \\ x \equiv 6 \pmod{9} \end{cases}$$

根据中国剩余定理可求得:该同余式组的解为 $x \equiv 69 \pmod{99}$ 。

33、解:

该命题等价于求解同余式组
$$\begin{cases} x \equiv 2^{1000000} \pmod{11} \\ x \equiv 2^{1000000} \pmod{5} \end{cases}$$

因为 ord₁₁(2)=10, ord₅(2)=4, 所以

$$\begin{cases} x \equiv 2^{1000000} \pmod{11} \\ x \equiv 2^{1000000} \pmod{5} \end{cases} \Leftrightarrow \begin{cases} x \equiv (2^{10})^{100000} \equiv 1 \pmod{11} \\ x \equiv (2^4)^{250000} \equiv 1 \pmod{5} \end{cases}$$

根据中国剩余定理可求得:该同余式组的解为 $x \equiv 1 \pmod{55}$ 。

所以, 2¹⁰⁰⁰⁰⁰⁰mod55=1。

第三章

1、解:

(1)

j	± 1	± 2	±3	±4	± 5	± 6	± 7	± 8	±9	±10	± 11
$a = j^2 \bmod 23$	1	4	9	16	2	13	3	18	12	8	6

所以, 23 的平方剩余为: 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18,

23 的平方非剩余为: 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22

(2)

j		± 1	± 5	± 7	± 11
$a = j^2 \mod$	24	1	1	1	1

所以,24的平方剩余为:1

24 的平方非剩余为: 5, 7, 11, 13, 17, 19, 23

2、解:

$$(1) x^2 \equiv 2 \pmod{3}$$

$$\because (\frac{2}{37}) = (-1)^{\frac{37^2-1}{8}} = -1, :: 同余式无解,解数为 0.$$

(2)
$$x^2 \equiv 3 \pmod{39} \Leftrightarrow \begin{cases} x^2 \equiv 3 \equiv 0 \pmod{3} \\ x^2 \equiv 3 \pmod{13} \end{cases}$$

$$\mathbb{X}$$
: $(\frac{3}{13}) = (-1)^{\frac{3-1}{2} \times \frac{3-1}{2}} (-1) = 1$

所以,同余式有解,解数为2。

(3)
$$x^2 \equiv 4 \pmod{45} \Leftrightarrow \begin{cases} x^2 \equiv 4 \pmod{3^2} & (1) \\ x^2 \equiv 4 \pmod{5} & (2) \end{cases}$$

又:: $(\frac{4}{3}) = 1, (\frac{4}{5}) = 1$,所以(1)(2)的解数分别为2,故原同余式的解数为4。

(4)
$$x^2 \equiv 5 \pmod{48} \Leftrightarrow \begin{cases} x^2 \equiv 5 \pmod{3} \\ x^2 \equiv 5 \pmod{2^4} \end{cases}$$
 (2)

又::
$$(\frac{5}{3}) = (\frac{2}{3}) = -1$$
,:.同余式(1)无解,

所以原同余式也无解。

3、证明:

(1) 设模 p 的所有平方剩余的乘积对模 p 的剩余是 A,因为 p 是奇素数,

则由定理 3-2 有:

$$A \equiv 1^{2} \cdot 2^{2} \cdot \cdot \cdot \left(\frac{p-1}{2}\right)^{2}$$

$$\equiv 1 \cdot (-1) \cdot 2 \cdot (-2) \cdot \cdot \cdot \left(\frac{p-1}{2}\right) \cdot \left(-\frac{p-1}{2}\right) \cdot (-1)^{\frac{p-1}{2}}$$

$$\equiv 1 \cdot (p-1) \cdot 2 \cdot (p-2) \cdot \cdot \cdot \left(\frac{p-1}{2}\right) \cdot \left(\frac{p+1}{2}\right) \cdot (-1)^{\frac{p-1}{2}}$$

$$\equiv (p-1)!(-1)^{\frac{p-1}{2}} \pmod{p}$$

又由 Wilson 定理有, $A \equiv (-1) \cdot (-1)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p+1}{2}} \pmod{p}$ 。

- \therefore 当 p 是奇素数时,模 p 的所有平方剩余的乘积对模 p 的剩余是 $(-1)^{\frac{p+1}{2}}$ 。
- (2) 设模 p 的所有平方非剩余的乘积对模 p 的剩余是 B,则有:

$$A \times B \equiv (p-1)! \pmod{p},$$

又由 Wilson 定理和(1)的证明结果有:

$$B \cdot (-1)^{\frac{p+1}{2}} \equiv -1 \pmod{p}$$

\$\iff B \equiv (-1) \cdot (-1)^{\frac{p+1}{2}} \equiv (-1)^{\frac{p-1}{2}+2} \equiv (-1)^{\frac{p-1}{2}} \text{ (mod } p)\$

- \therefore 当 p 是奇素数时,模 p 的所有平方非剩余的乘积对模 p 的剩余是 $(-1)^{\frac{p-1}{2}}$ 。
- (3) 设模 p 的所有平方剩余的和对模 p 的剩余是 C,模 p 的所有平方非剩余的和对模 p 的剩余是 D,则由定理 3-2 有:

$$C = 1^2 + 2^2 + \dots + \left(\frac{p-1}{2}\right)^2 = \frac{(p^2-1) \cdot p}{24} \pmod{p}$$
,其中 $\frac{(p^2-1) \cdot p}{24}$ 为整数,

因为 p 是奇素数,且 p>3,而 $24 = 2^3 \times 3$,所以 (p, 24)=1,即 $24 \mid (p^2-1)$ 。 所以, $C \equiv 0 \pmod{p}$,即模 p 的所有平方剩余的和对模 p 的剩余是 0。

又因为
$$D \equiv (1+2+\cdots+p-1)-C \equiv \frac{(p-1)\cdot p}{2}-0 \equiv \frac{(p-1)\cdot p}{2} \pmod{p}$$
,

4、解:

$$(1) \left(\frac{23}{17}\right) = \left(\frac{6}{17}\right) = \left(\frac{2}{17}\right) \times \left(\frac{3}{17}\right) = 1 \times \left(-1\right)^{\frac{3-1}{2} \times \frac{17-1}{2}} \left(\frac{17}{3}\right) = \left(\frac{2}{3}\right) = -1$$

$$(2) \left(\frac{23}{37}\right) = \left(-1\right)^{\frac{23-1}{2} \times \frac{31-1}{2}} \left(\frac{31}{23}\right) = -\left(\frac{8}{23}\right) = -\left(\frac{2}{23}\right) \times \left(\frac{2}{23}\right) \times \left(\frac{2}{23}\right) = -1$$

(3)
$$\left(\frac{24}{23}\right) = \left(\frac{1}{23}\right) = 1$$

$$(4) \left(\frac{21}{29}\right) = \left(-1\right)^{\frac{21-1}{2}} \times \frac{29-1}{2} \left(\frac{29}{21}\right) = \left(\frac{8}{21}\right) = \left(\frac{2}{21}\right) \times \left(\frac{2}{21}\right) \times \left(\frac{2}{21}\right) = -1$$

5、证明:

假设形如 8k+5 的素数只有有限多个,设这些素数为 $p_1,p_2,\cdots p_k$,考虑整数

$$N = \left(p_1 p_2 \cdots p_k\right)^2 + 4,$$

因为 $p_1p_2\cdots p_k$ 为奇数,所以, $N=\left(2k+1\right)^2+4=4\left(k^2+k\right)+5=4k\left(k+1\right)+5$,

又因为 k + 1 一定有一个为偶数, 故 $N = 4 \times 2k' + 5 = 8k' + 5$ 。

因为 $N > p_i$, $i = 1, 2, \dots, k$, 所以, N 为形如 8k+5 的合数,其任意素因数 p 均为奇素数,且 $(p_i, p) = 1$, $(i = 1, 2, \dots, k)$ (假设 $p = p_i$,则 $p | (N - (p_1 p_2 \dots p_k)^2 = 4)$,这是不可能的。)

$$\therefore \left(\frac{-4}{p}\right) = \left(\frac{4}{p}\right) \left(\frac{-1}{p}\right) = \left(\frac{-1}{p}\right) = \left(\frac{-4+N}{p}\right) = \left(\frac{(p_1p_2\cdots p_k)^2}{p}\right) = 1 = (-1)^{\frac{p-1}{2}},$$

由该式可知,p 是 4k+1 形式的素数,即 p 只可能为 8k+1 和 8k+5 形式的素数。 若 N 的素因数均为 8k+1 形式,则 N 为 8k+1 形式,所以 N 的素因数中至少包含一个 8k+5 形式的奇素因数 p,即存在整数 j $(1 \le j \le k)$,使得 $p = p_j$,这与 $(p, p_i) = 1$, $(i = 1, 2, \dots, k)$ 矛盾。故,假设不成立,即形如 8k+5 的素数有无限多个得证。

6、解:

(1)
$$\left(\frac{23}{75}\right) = \left(\frac{23}{5}\right)^2 \left(\frac{23}{3}\right) = \left(\frac{2}{3}\right) = -1$$

(2)
$$\left(\frac{77}{45}\right) = \left(\frac{32}{5}\right) \left(\frac{32}{3}\right)^2 = \left(\frac{2}{5}\right) = -1$$

(3)
$$\left(\frac{25}{33}\right) = \left(\frac{5}{33}\right)^2 = 1$$

(4)
$$\left(\frac{21}{25}\right) = \left(\frac{21}{5}\right)^2 = 1$$

12、解:

$$(1): \left(\frac{176}{401}\right) = \left(\frac{2^4}{401}\right) \left(\frac{11}{401}\right) = (-1)^{\frac{401-1}{2}\frac{11-1}{2}} \cdot \left(\frac{5}{11}\right) = (-1)^{\frac{11-1}{2}\frac{5-1}{2}} \cdot \left(\frac{1}{5}\right) = 1, 所以同余式有解。$$

又: $p = 401 \equiv 1 \pmod{4}$, 运用情形2: $p-1=2^4 \times 25$, t=4, s=25

任意选择模 401 的平方非剩余,n=3, $\left(\frac{3}{401}\right)=-1$,

计算 $(176^{25})^4 \mod 401 = 400$,所以, $j_0 = 1, a_1 = a \times n^2 = 176 \times 9$

计算 $(a_1^{25})^2 \mod 401 = 400$,所以, $j_1 = 1, a_2 = a_1 \times n^4 = 1584 \times 81$

计算 $a_2^{25} \mod 401 = 1$,所以, $j_2 = 0$

因此,原同余式的解为 $x \equiv \pm 176^{\frac{25+1}{2}} \times 3^{25\times(1+2)} \pmod{p} \equiv \pm 101 \pmod{401}$

(2)
$$\because \left(\frac{176}{103}\right) = \left(\frac{2^4}{103}\right) \left(\frac{11}{103}\right) = (-1)^{\frac{103-1}{2}\frac{11-1}{2}} \cdot \left(\frac{4}{11}\right) = (-1) \cdot 1 = -1$$
, 所以同余式有解。

14、解: (该同余式的求解也可以参见定理 2-14, 即先求 $x^2 \equiv 41 \pmod{2}$ 的解)

::41 = 1(mod 8),::同余式有4个解。

 $x^2 \equiv 41 \pmod{8}$ 的解为: $x = \pm (1 + 4t_3), t_3 = 0, 1, \cdots$

曲 $(1+4t_3)^2 \equiv 41 \pmod{16}$ 得 $t_3 \equiv 1 \pmod{2}$

故 $x^2 \equiv 41 \pmod{16}$ 的解为: $x = \pm (1 + 4(1 + 2t_4)) = \pm (5 + 8t_4), t_4 = 0, 1, \cdots$

由 $(5+8t_4)^2 \equiv 41 \pmod{32}$ 得 $t_4 \equiv 1 \pmod{2}$

故 $x^2 \equiv 41 \pmod{32}$ 的解为: $x = \pm (13 + 16t_5), t_5 = 0, 1, \cdots$

曲 $(13+16t_5)^2 \equiv 41 \pmod{64}$ 得 $t_5 \equiv 0 \pmod{2}$

故 $x^2 \equiv 41 \pmod{64}$ 的解为: $x = \pm (13 + 32t_6), t_6 = 0, 1, \cdots$

即,同余式 $x^2 \equiv 41 \pmod{64}$ 的解为: $x \equiv 13,19,45,51 \pmod{64}$

第四章

2、解:

(1) φ (18)=6, 其正因数为 1, 2, 3, 6,

$$5^1 \equiv 5 \pmod{18}, 5^2 \equiv 7 \pmod{18}, 5^3 \equiv -1 \pmod{18}, 5^6 \equiv 1 \pmod{18}$$
 $\therefore \operatorname{ord}_{18}(5) = 6$

(2) $\varphi(79)=78$,其正因数为 1, 2, 3, 6, 13, 26, 39, 78

$$4^1 \equiv 4 \pmod{79}$$
, $4^2 \equiv 16 \pmod{79}$, $4^3 \equiv 64 \pmod{79}$, $4^6 \equiv -12 \pmod{79}$,

$$4^{13} \equiv 23 \pmod{79}, \ 4^{26} \equiv 55 \pmod{79}, \ 4^{39} \equiv 1 \pmod{79},$$

$$\therefore$$
 ord₄ (4) = 39 \circ

(3)
$$: (9,11) = 1$$
, $: \operatorname{ord}_{99}(91) = [\operatorname{ord}_{11}(91), \operatorname{ord}_{9}(91)]$,

$$X : \operatorname{ord}_{9}(91) = \operatorname{ord}_{9}(1) = 1$$
, $\operatorname{ord}_{11}(91) = \operatorname{ord}_{11}(3)$,

而 $\varphi(11)=10$, 其正因数为1,2,5,10

计算:
$$3^1 \equiv 3 \pmod{11}$$
, $3^2 \equiv 9 \pmod{11}$, $3^5 \equiv 1 \pmod{11}$, 所以 $\operatorname{ord}_{11}(3) = 5$

$$\therefore ord_{99}(91) = [1,5] = 5$$

(4)
$$:: (3,73) = 1, :: \text{ord}_{219}(7) = [\text{ord}_3(7), \text{ord}_{73}(7)]$$

又
$$\because ord_3(7) = ord_3(1) = 1$$
,而

$$\varphi(73)$$
 = 72,其正因数为1,2,3,4,6,8,9,12,18,24,36,72,经计算得: ord₇₃(7) = 24

$$\therefore$$
 ord₂₁₉(7) = [1,24] = 24 \circ

5、解:

$$\varphi(101) = 100 = 2^2 \times 5^2$$
, :: 100的素因数为2和5.

100/2 = 50; 100/5 = 20, 验证:
$$2^{20} \equiv -95 \pmod{101}$$
; $2^{50} \equiv 100 \pmod{101}$

所以, 2 是模 101 的原根。

6、解:

- \because 2 是模 101 的一个原根,又 \because 2¹⁰⁰ ≡ 8074 ≠ 1(mod 101²),
- ∴根据定理 4-2 有: 2 或 2+101=103 都是模 101² 的原根。

7、解:

由定理 4-2 和上题可知,103 和 $2+101^2=10203$ 都是模 2×101^2 的原根。

8、解:

$$\varphi(43) = 42 = 2 \times 3 \times 7$$
, $42/2 = 21$, $42/3 = 14$, $42/7 = 6$

验证: $2^6 \mod 43 = 21$, $2^{14} \mod 43 = 1$, $3^6 \mod 43 = -2$, $3^{14} \mod 43 = 36$, $3^{21} \mod 43 = 42$, 故, 3 是模 43 的最小原根。计算:

$$3^{1} \mod 43 = 3, 3^{2} \mod 43 = 9, 3^{3} \mod 43 = 27, 3^{4} \mod 43 = 38, 3^{5} \mod 43 = 28,$$
 $3^{6} \mod 43 = 41, 3^{7} \mod 43 = 37, 3^{8} \mod 43 = 25, 3^{9} \mod 43 = 32, 3^{10} \mod 43 = 10,$
 $3^{11} \mod 43 = 30, 3^{12} \mod 43 = 4, 3^{13} \mod 43 = 12, 3^{14} \mod 43 = 36, 3^{15} \mod 43 = 22,$
 $3^{16} \mod 43 = 23, 3^{17} \mod 43 = 26, 3^{18} \mod 43 = 35, 3^{19} \mod 43 = 19, 3^{20} \mod 43 = 14,$
 $3^{21} \mod 43 = 42, 3^{22} \mod 43 = 40, 3^{23} \mod 43 = 34, 3^{24} \mod 43 = 16, 3^{25} \mod 43 = 5,$
 $3^{26} \mod 43 = 15, 3^{27} \mod 43 = 21, 3^{28} \mod 43 = 6, 3^{29} \mod 43 = 18, 3^{30} \mod 43 = 11,$

$$3^{26} \mod 43 = 15, 3^{27} \mod 43 = 21, 3^{28} \mod 43 = 6, 3^{29} \mod 43 = 18, 3^{30} \mod 43 = 11,$$

$$3^{31} \, mod \, 43 = 33, 3^{32} \, mod \, 43 = 13, 3^{33} \, mod \, 43 = 39, 3^{34} \, mod \, 43 = 31, 3^{35} \, mod \, 43 = 7,$$

$$3^{36} \ mod \ 43 = 21, 3^{37} \ mod \ 43 = 20, 3^{38} \ mod \ 43 = 17, 3^{39} \ mod \ 43 = 8, 3^{40} \ mod \ 43 = 24,$$

所以,以3为底的模43的指标为:

	0	1	2	3	4	5	6	7	8	9
0		42	27	1	12	25	28	35	39	2
1	10	30	13	32	20	26	24	38	29	19
2	37	36	15	16	40	8	17	3	5	41
3	11	34	9	31	23	18	14	7	4	33
4	22	6	21							

查表可知,
$$3^{29} \equiv 18 \pmod{43}$$
,即有 $x^{12} \equiv 18 \equiv 3^{29} \pmod{43}$

9、解:(过程略)

- (1) 查表可知, $ind_67=39$, $::(22, \varphi(41))=2$, 不能整除39, 所以, 同余式无解。
- (4) 解: 原方程等价于 $x^{30} \equiv 37 \times 5^{-1} \equiv 37 \times 33 \equiv 32 \pmod{41}$,

通过查表得知, $\operatorname{ind}_6 32 = 10$,即 $6^{10} \equiv 32 \pmod{41}$,∴ $x^{30} \equiv 6^{10} \equiv 32 \pmod{41}$

$$\Rightarrow x = 6^y \mod 41 \Leftrightarrow 6^{30y} \equiv 6^{10} \pmod {41} \Rightarrow 30y \equiv 10 \pmod {40} ,$$

因为(30,40)=10|10, 所以该同余式有10个解, 其解为:

$$y \equiv 3,7,11,15,19,23,27,31,35,39 \pmod{40}$$

通过查表得原同余式的解为: $x \equiv 11,29,28,3,34,30,12,13,38,7 \pmod{41}$

 $^{3^{41} \}mod 43 = 29, 3^{42} \mod 43 = 10,$

第五章

- 1、解: ×表示不构成代数系统, √表示构成代数系统。
- $(1) \times$
- (2) √
- (3) √
- $(4) \times$
- (5) ×
- (6) √
- (7) 加法×,乘法√
- (8) √
- (9) √
- (10) 加法×, 乘法 √

2、解:

	交换律	结合律	分配律	单位元	零元	逆元	
	√	√		N阶0矩阵	无	N 阶负阵	
2	×	√		N阶单位阵	N阶0阵	除 0 阵外逆元 为其逆矩阵	
3	√	√		1	无	1 的逆元为 1, 其他元素无逆	
6	×	√		无	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	无	
7	√	√		1	无	1 的逆元为 1, 其他元素无逆	
8	√	√		0	无	0 的逆元为 0, 其他元素 i 的 逆元为 n-i	
9	√	√		全集	空集	全集的逆元为 本身,其他元 素无逆元	
9	√	√		空集	全集	空集的逆元为 本身,其他元 素无逆元	
10	√	√		1	0	1 的逆元为 1	

- 6、解:
- (2) 加法乘法均构成群
- (3) 幺半群
- (6) 半群
- (7) 乘法构成幺半群

- (8) 群
- (9) 并集和交集均构成幺半群
- (10) 乘法构成群

7、解:是幺半群。

11、证明:

首先,设 k_1 为a*b的阶, k_2 为(b*a)的阶,即 $(a*b)^{k_1}=e$, $(b*a)^{k_2}=e$,,

$$\therefore a^{-1} * (a * b)^{k_1} * b^{-1} = (b * a)^{k_1 - 1} = a^{-1} * b^{-1}, \quad \therefore (b * a)^{k_1} = a^{-1} * b^{-1} * b * a = e$$

即: $(b*a)^{k_1} = e$, 所以, $k_2 \mid k_1$,

同理, $k_1 \mid k_2$

所以, $k_1 = k_2$,得证。

12、证明:

首先, 若群为交换群, 则, 根据定理 5-7, 直接得证。

其次, $(x*y)^2 = x^2 * y^2 \Rightarrow x*(y*x)*y = x*(x*y)*y$,根据群的消去律,y*x = x*y,命题得证。

15、证明:

首先,H 是 G 的子群,那么 H 至少含有一个元素 e,则 $xex^{-1} = e \in xHx^{-1}$,即 xHx^{-1} 是 G 的非空子集。

其次, $\forall x h_1 x^{-1}, x h_2 x^{-1} \in x H x^{-1}$,其中 $h_1, h_2 \in H$,因为 $(x h_2 x^{-1})^{-1} = (x h_2^{-1} x^{-1})$,

而 $(xh_1x^{-1})(xh_2^{-1}x^{-1}) = xh_1x^{-1}xh_2x^{-1} = xh_1h_2^{-1}x^{-1}$,其中由 H 是 G 的子群得 $h_1h_2^{-1} \in H$,

所以 $xh_1h_2^{-1}x^{-1} \in xHx^{-1}$ 。根据子群的判断定理二证得: xHx^{-1} 构成G的子群。

16、证明: 首先, 因为 $\exists e \in S$, 使得 $eSe^{-1} = S$, 所以 N(s)为非空集合,

其次, $\forall x_1, x_2 \in N(s)$, 有 $x_1 S x_1^{-1} = S$, $x_2 S x_2^{-1} = S$,

 $\text{ } \text{ } \mathbb{M} x_1 x_2 S(x_1 x_2)^{-1} = x_1 x_2 S x_2^{-1} x_1^{-1} = x_1 S x_1^{-1} = S \text{ , } \text{ } \mathbb{H} x_1 x_2 \in N(s),$

又因为 $\forall x \in N(s)$, 有 $xSx^{-1} = S$,则 $x^{-1}Sx = x^{-1}(xSx^{-1})x = x^{-1}xSx^{-1}x = S$,即 $x^{-1} \in N(s)$, 所以,根据子群的判定定理一证得: N(s)构成 G 的子群。

20、证明:

 $f: A \rightarrow |A|, f(A) = |A|,$ 设 $\forall A, B \in G$, 则 $f(A \times B) = |A \times B| = |A| \times |B| = f(A) \cdot f(B)$, 命题得证。

21、证明:

$$\forall a, b \in G, a = 2^{m_1} 3^{n_1}, b = 2^{m_2} 3^{n_2}, \quad \text{if } a \times b = 2^{m_1} 3^{n_1} \times 2^{m_2} 3^{n_2} = 2^{m_1 + m_2} 3^{n_1 + n_2},$$

则
$$f(a \times b) = 2^{m_1 + m_2} = 2^{m_1} \times 2^{m_2} = f(a) \times f(b)$$
, 得证。

23、证明:

设•,*分别是 G_1,G_2 上的运算,因为 $\varphi:G_1\to G_2$ 是同构映射,所以

$$\forall a,b \in G_1, \varphi(a \cdot b) = \varphi(a) * \varphi(b)$$
,设 $\varphi(a) = a'$, $\varphi(b) = b' \in G_2$,则由 $\varphi: G_1 \to G_2$ 为双射

得:
$$\varphi^{-1}(a') = a, \varphi^{-1}(b') = b$$
,

故:
$$\varphi^{-1}(a'*b') = \varphi^{-1}(\varphi(a)*\varphi(b)) = \varphi^{-1}(\varphi(a \bullet b)) = a \bullet b = \varphi^{-1}(a') \bullet \varphi^{-1}(b')$$
, 即:

又 φ 为双射,所以 φ^{-1} 也是双射,得证。

25、解:

- (1) 共有 $\varphi(15) = 8$ 个生成元,分别为, $a^1, a^2, a^4, a^7, a^8, a^{11}, a^{13}, a^{14}$
- (2) 15 的正因子为, 1, 3, 5, 15, 所以:

$$\therefore |a^{d_1}| = \frac{|a|}{(|a|, d_1)} = \frac{15}{(15, d_1)} = 1, \quad \exists \exists d_1 = 15,$$

∴1阶子群为:< a¹⁵ >=< e >= {e}

$$: |a^{d_3}| = \frac{|a|}{(|a|, d_5)} = \frac{15}{(15, d_3)} = 3, \quad \exists \Box d_3 = 5, 10,$$

::3阶子群为:< a^5 >=< a^{10} >={ e, a^5, a^{10} }

$$\therefore |a^{d_5}| = \frac{|a|}{(|a|, d_5)} = \frac{15}{(15, d_5)} = 5, \quad \exists \exists d_5 = 3, 6, 9, 12,$$

:.5阶子群为: $< a^3 > = < a^6 > = < a^9 > = < a^{12} > = \{e, a^3, a^6, a^9, a^{12}\}$

15阶子群为:
$$< a > = < a^2 > = < a^4 > = < a^7 > = < a^8 > = < a^{11} > = < a^{13} > = < a^{14} > = \{e, a^1, a^2, \dots, a^{14}\}$$

28、解: (该题是按照先进行前一个置换,再进行后一个置换的顺序计算的)

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 4 & 5 \end{pmatrix}$$

$$\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 3 & 2 & 4 \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4 \end{pmatrix} = (1 \quad 2)(3 \quad 5 \quad 4)$$

$$\tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix}$$

$$\sigma^{-1}\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 5 & 2 & 4 \end{pmatrix}$$
 (5)

$$\tau^{-1}\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 & 5 & 3 \end{pmatrix}$$

$$\sigma^{-1}\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 2 & 5 & \end{pmatrix}$$
 (3)

29、解:(该题是按照先进行前一个置换,再进行后一个置换的顺序计算的) $\alpha^{-1}=\alpha$, $\beta^{-1}=\beta$

(1)
$$x = \alpha^{-1}\beta = \begin{pmatrix} a & b & c & d & e \\ d & e & a & b & c \end{pmatrix}$$

(2)
$$x = \beta^{-1}\alpha = \begin{pmatrix} a & b & c & d & e \\ c & d & e & a & b \end{pmatrix}$$

补充题:写出 $\langle Z_{13}^*, \otimes \rangle$ 的所有生成元和子群。

解: $\varphi(13) = 12 = 2^2 \times 3$, $\therefore 12$ 的素因数为2和3,

$$12/2 = 6$$
, $12/3 = 4$, 验证: $2^6 \equiv -1 \pmod{13}$; $2^4 \equiv 3 \pmod{13}$

∴2 是模 13 的原根,即是 $\langle Z_{13}^*, \otimes \rangle$ 一个生成元。

又: $\langle Z_{13}^*, \otimes \rangle$ 是 12 阶循环群, φ (12) = 4,

∴ $\langle Z_{13}^*, \otimes \rangle$ 共有 4 个生成元,分别为:2, 2^5 mod13=6, 2^7 mod13=11, 2^{11} mod13=7。

 $∵\langle Z_{13}^*, ⊗ \rangle$ 是 12 阶循环群,12 的正因子有 1, 2, 3, 4, 6, 12,

∴ $\langle Z_{13}^*, \otimes \rangle$ 的子群有 6 个,分别是:

$$:: |2^{d_1}| = \frac{|2|}{(|2|, d_1)} = \frac{12}{(12, d_1)} = 1, \quad \exists □ d_1 = 12,$$

∴1阶子群为:<2¹² mod13=1>={1}

$$\therefore |2^{d_3}| = \frac{|2|}{(|2|, d_2)} = \frac{12}{(12, d_2)} = 2, \quad \exists I d_2 = 6,$$

::2阶子群为:<2⁶>={1,2⁶}

$$\therefore |2^{d_3}| = \frac{|2|}{(|2|, d_3)} = \frac{12}{(12, d_3)} = 3, \quad \mathbb{R}^3 d_3 = 4, 8,$$

∴3阶子群为:<2⁴>=<2⁵>={1,2⁴,2⁵}

$$\therefore |2^{d_4}| = \frac{|2|}{(|2|, d_4)} = \frac{12}{(12, d_4)} = 4, \quad \exists I d_4 = 3, 9,$$

::4阶子群为:<2³>=<2°>={1,2³,26,29}

$$\therefore |2^{d_6}| = \frac{|2|}{(|2|, d_6)} = \frac{12}{(12, d_6)} = 6, \quad \exists \exists d_6 = 2, 10,$$

12 阶子群为:
$$< a > = < a^5 > = < a^7 > = < a^{11} > = \{1, 2, 3, \dots, 12\}$$

第六章

1、证明:

首先,不难验证,集合对于加法构成群。

又对
$$\forall a_1, b_1, a_2, b_2, a_1 + b_1 i + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2) i = a_2 + b_2 i + (a_1 + b_1 i)$$

故,构成交换群。

其次,对于乘法,可验证其满足封闭性和结合性,可以构成半群。 根据环的定义,可构成环。

3、解:

∴零因子为 2, 3, 4, 6, 8, 9, 10

6、证明:

(1)

$$\forall a,b \in S_1 \cap S_2 \Rightarrow a,b \in S_1, a,b \in S_2$$

 $\Rightarrow a-b,ab \in S_1, a-b,ab \in S_2$ (因为 S_1 、 S_2 是环)
 $\Rightarrow a-b,ab \in S_1 \cap S_2$,得证

(2) 不一定。

10、证明: (略)

11、证明:

根据例题 6-12, 可验证, $\langle Q(\sqrt{5}), +, \bullet \rangle$ 是整环。

对于
$$Q(\sqrt{5})$$
 中任意元素 $a+b\sqrt{5}$, a,b 不全为零,存在 $c=\frac{a}{a^2-5b^2}-\frac{b}{a^2-5b^2}\sqrt{5}\in Q(\sqrt{5})$,

使得,
$$c(a+b\sqrt{5})=(a+b\sqrt{5})c=1$$
,即,c是 $a+b\sqrt{5}$ 的逆元,故 $\langle Q(\sqrt{5}),+,\bullet \rangle$ 是域。

13、证明:

$$\because F$$
 是域,由域的定义知, $\forall a,b \in F, b \neq 0$,有 $ab^{-1} \in F$,即 $\frac{a}{b} \in F$,

 $\therefore A(F) \subset F$.

又由分式域的定义知, $F \subset A(F)$ 。

 \therefore A(F) = F, 即域 F 的分式域为 F 自身。

第七章

2、解:

因为 32-1=31 为素数,所以由定理 7-24 知 GF(2)上的 5 次不可约多项式均为 5 次本原多项式,其不可约多项式的根也均为本原元。且因 φ (31)=30,所以 GF(32)中,除了 0 和 1 以外的其他元素均为本原元。

进而由不可约多项式 x^5+x^2+1 构造的 GF(32)中的本原元即为 $\alpha=x$,其最小多项式即为 x^5+x^2+1 。

3、解:

因为 7 为素数,所以 $\mathrm{GF}(7) = \left\langle \mathbf{Z}_7, \oplus, \otimes \right\rangle$,其加法记为模 7 加法,乘法即为模 7 乘法。

加法表:

mod7 加法	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

乘法表:

mod7 乘法	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

4、解:

因为 9=3², 所以构造 GF(9) = GF(3²) = $\left\{\overline{a_0 + a_1 x} \mid a_0, a_1 \in \mathbb{Z}_3\right\}$,

取不可约多项式 $g(x) = x^2 + 1$ 构造该有限域,则其加法表和乘法表如下:

加法表:

+	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
0	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
1	1	2	0	x+1	x+2	X	2x+1	2x+2	2x
2	2	0	1	x+2	X	x+1	2x	2x+1	2x+2
X	X	x+1	x+2	2x	2x+1	2x+2	0	1	2
x+1	x+1	x+2	X	2x+1	2x+2	2x	1	2	0

x+2	x+2	X	x+1	2x+2	2x	2x+1	2	0	1
2x	2x	2x+1	2x	0	0	2	X	x+1	x+2
2x+1	2x+1	2x+2	2x+1	1	1	0	x+1	x+2	X
2x+2	2x+2	2x	2x+2	2	2	1	x+2	X	x+1

乘法表:

	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	X	x+2	x+1
X	0	X	2x	2	x+2	2x+2	1	x+1	2x+1
x+1	0	x+1	2x+2	x+2	2x	1	2x+1	2	X
x+2	0	x+2	2x+1	2x+2	1	X	x+1	2x	2
2x	0	2x	X	1	2x+1	x+1	2	2x+2	x+2
2x+1	0	2x+1	x+2	x+1	2	2x	2x+2	X	1
2x+2	0	2x+2	x+1	2x+1	2x	2	x+2	1	x+2

8、解: (过程略)

$$\overline{x^7 + x^4 + x^2 + x + 1} \cdot \overline{x^6 + x^5 + x^3 + x + 1}$$

$$= (x^7 + x^4 + x^2 + x + 1)(x^6 + x^5 + x^3 + x + 1) \mod(x^8 + x^4 + x^3 + x + 1)$$

$$= (x^{13} + x^{12} + x^9 + x^5 + 1) \mod(x^8 + x^4 + x^3 + x + 1)$$

$$= (x^5(x^8 + x^4 + x^3 + x + 1) + x^{12} - x^8 - x^6 + 1) \mod(x^8 + x^4 + x^3 + x + 1)$$

$$= (x^5(x^8 + x^4 + x^3 + x + 1) + x^4(x^8 + x^4 + x^3 + x + 1) - 2x^8 - x^7 - x^6 - x^5 + x^4 + 1) \mod(x^8 + x^4 + x^3 + x + 1)$$

$$= x^7 + x^6 + x^5 + x^4 + 1$$

Q. 解

$$s(x)\overline{x^{7} + x^{4} + x^{3} + 1} + t(x)\overline{x^{8} + x^{4} + x^{3} + x + 1} = 1$$

$$\therefore r_{-1} = x^{8} + x^{4} + x^{3} + x + 1, t_{0} = x^{7} + x^{4} + x^{3} + 1,$$

$$r_{1} = r_{-1} - xr_{0} = x^{5} + x^{3} + 1, t_{1} = 1 - 0 \cdot x = 1, s_{1} = 0 - x = -x$$

$$r_{2} = r_{0} - (x^{2} + 1)r_{1} = x^{4} + x^{2}, t_{2} = 0 - (x^{2} + 1), s_{2} = 1 - x(x^{2} + 1) = x^{3} + x + 1$$

$$r_{3} = r_{1} - xr_{2} = 1, t_{3} = 1 - x(x^{2} + 1) = x^{3} + x + 1, s_{3} = x - x^{4} - x^{2} - x = x^{4} + x^{2}$$

$$r_{4} = 0$$

$$\therefore \overline{x^{7} + x^{4} + x^{3} + 1}^{-1} = \overline{x^{4} + x^{2}}$$

10、解:

$$GF(16) = GF(2^4) = GF(2)[x]/(x^4 + x + 1) = \{a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_i \in Z_2, i = 0, 1, 2, 3\}$$

因为16-1=15的正因子为1,3,5,15,分别验证得,只有 $x^{-15}=\bar{1}$ 成立,所以x的阶为15,即x为本原元,多项式 x^4+x+1 为本原多项式。

$$\overline{x}^{0} = 1, \overline{x}^{1} = \overline{x}, \overline{x}^{2} = \overline{x}^{2}, \overline{x}^{3} = \overline{x}^{3}, \overline{x}^{4} = \overline{x+1}, \overline{x}^{5} = \overline{x}^{2} + x, \overline{x}^{6} = \overline{x}^{3} + x^{2},$$

$$\overline{x}^{7} = \overline{x}^{3} + x + 1, \overline{x}^{8} = \overline{x}^{2} + 1, \overline{x}^{9} = \overline{x}^{3} + x, \overline{x}^{10} = \overline{x}^{2} + x + 1, \overline{x}^{11} = \overline{x}^{3} + x^{2} + x,$$

$$\overline{x}^{12} = \overline{x}^{3} + x^{2} + x + 1, \overline{x}^{13} = \overline{x}^{3} + x^{2} + 1, \overline{x}^{14} = \overline{x}^{2} + 1 = 1$$

对数表和反对数表即可构造, 略。