# Simulation d'algorithmes d'équilibrage de charge dans un environnement distribué

Identifications des besoins

Kevin Barreau Guillaume Marques Corentin Salingue

22 février 2015

#### Résumé

Dans une première partie, nous présenterons le projet, le contexte et les hypothèses. Ensuite, nous développerons les besoins fonctionnels et les besoins non-fonctionnels. De plus, nous dégageons une première version de la plannification du projet (GANTT). Enfin, nous présenterons les livrables.

# Sommaire

| 1 | Pré               | sentation du projet                                                    |  |  |  |  |  |  |
|---|-------------------|------------------------------------------------------------------------|--|--|--|--|--|--|
| _ | 1.1               | Utilisation d'une base de données par un client                        |  |  |  |  |  |  |
|   | 1.2               |                                                                        |  |  |  |  |  |  |
|   | 1.3               |                                                                        |  |  |  |  |  |  |
|   | 1.0               | 1.3.1 Requêtes de lecture                                              |  |  |  |  |  |  |
|   |                   | 1.3.2 Requêtes d'écriture                                              |  |  |  |  |  |  |
|   | 1.4               | Stockage des données                                                   |  |  |  |  |  |  |
|   | $1.4 \\ 1.5$      | Protocoles de réaffectation des requêtes de lecture                    |  |  |  |  |  |  |
|   | 1.0               |                                                                        |  |  |  |  |  |  |
|   |                   |                                                                        |  |  |  |  |  |  |
|   | 1.0               | 1.5.2 Algorithme AverageDegree                                         |  |  |  |  |  |  |
|   | 1.6               | Gestion de la popularité des objets                                    |  |  |  |  |  |  |
|   | 1.7               | Gestion des copies d'un objet                                          |  |  |  |  |  |  |
|   | 1.8               | Visualisation des statistiques de fonctionnement de la base de données |  |  |  |  |  |  |
|   |                   | distribuée                                                             |  |  |  |  |  |  |
| 2 | Déf               | inition du projet                                                      |  |  |  |  |  |  |
| _ | 2.1               | Contexte                                                               |  |  |  |  |  |  |
|   | $\frac{2.1}{2.2}$ | Finalité                                                               |  |  |  |  |  |  |
|   | 2.3               | Hypothèses                                                             |  |  |  |  |  |  |
|   | 2.3               | Trypotheses                                                            |  |  |  |  |  |  |
| 3 | Ord               | lonnancement des besoins                                               |  |  |  |  |  |  |
|   | 3.1               | Priorité                                                               |  |  |  |  |  |  |
|   | 3.2               | Criticité                                                              |  |  |  |  |  |  |
| 4 | Dag               | oins fonctionnels 10                                                   |  |  |  |  |  |  |
| 4 | 4.1               | Gestion d'un réseau                                                    |  |  |  |  |  |  |
|   | 4.1               |                                                                        |  |  |  |  |  |  |
|   |                   | 4.1.1 Gestion des noeuds                                               |  |  |  |  |  |  |
|   |                   | 4.1.2 Réplication d'un objet                                           |  |  |  |  |  |  |
|   | 4.0               | 4.1.3 Popularité d'un objet                                            |  |  |  |  |  |  |
|   | 4.2               | Protocoles d'affectation                                               |  |  |  |  |  |  |
|   | 4.3               | Requêtes                                                               |  |  |  |  |  |  |
|   |                   | 4.3.1 Générations de requêtes                                          |  |  |  |  |  |  |
|   |                   | 4.3.2 Importation d'un jeu de requête                                  |  |  |  |  |  |  |
|   | 4.4               | Visualisation des données                                              |  |  |  |  |  |  |
|   |                   | 4.4.1 Enregistrement des données                                       |  |  |  |  |  |  |
|   |                   | 4.4.2 Affichage des données                                            |  |  |  |  |  |  |
| 5 | Bes               | oins non fonctionnels                                                  |  |  |  |  |  |  |
|   | 5.1               | Cassandra                                                              |  |  |  |  |  |  |
|   | 5.2               | Maintenabilité du projet                                               |  |  |  |  |  |  |
|   | 5.3               | Gestion d'un réseau                                                    |  |  |  |  |  |  |
|   | 0.0               | 5.3.1 Communication entre noeuds                                       |  |  |  |  |  |  |
|   |                   | 5.3.2 Taille des données                                               |  |  |  |  |  |  |
|   | 5.4               | Protocole de test                                                      |  |  |  |  |  |  |
|   | $5.4 \\ 5.5$      | Visualisation des données                                              |  |  |  |  |  |  |
|   | 0.0               | 5.5.1 Etat du réseau                                                   |  |  |  |  |  |  |
|   |                   |                                                                        |  |  |  |  |  |  |
|   |                   | 5.5.2 Actualisation de la vue                                          |  |  |  |  |  |  |
| 6 | Rép               | partitions des tâches 16                                               |  |  |  |  |  |  |
|   | 6.1               | Diagramme de Gantt                                                     |  |  |  |  |  |  |
|   | 6.2               | Affectation des tâches                                                 |  |  |  |  |  |  |

| 7 | Livrables |                          |    |
|---|-----------|--------------------------|----|
|   | 7.1       | Livrables intermédiaires | 18 |
|   | 7.2       | Livrable final           | 18 |

### 1 Présentation du projet

### 1.1 Utilisation d'une base de données par un client

Un *objet* est composé d'une clé d'identification appelé *token* et d'un ensemble de données, codage (une représentation sous forme binaire), propre au système de base de données, d'une information quelconque.

Une base de données est un outil permettant de stocker et récupérer des objets.

Dans un premier temps, le client se connecte à la base de données. Le client intéragit avec la base de données en envoyant des *requêtes* à celle-ci, message, dont la forme dépend de la base de données, permettant de stocker, récupérer ou modifier des données.

Selon les requêtes émisent par le client, la base de données envoie des resultats.



FIGURE 1 – Intéractions client/base de données

On distingue deux types de requêtes :

- Les requêtes de **lecture** : requête ne modifiant pas les données contenues dans la base de données. Il s'agit de récupérer des objets contenus dans la base de données.
- Les requêtes d'écriture : requêtes modifiant les données contenues dans la base de données.

Le client peut être une personne physique comme un logiciel. Dans notre cas, il s'agit d'un logiciel permettant l'importation de fichiers contenant des requêtes ou de génerer des requêtes pseudo-aléatoirement.

#### 1.2 Base de données distribuée

Présentation de la base de données, qui est en fait distribuée. Explication de ce que cela signifie. Plusieurs machines connectées, elles communiques entre elles. Structure appelée cluster possédant des data center. Un ensemble de noeuds stockant chacun un intervalle de tokens ressemble à un cercle (ring).

2 schémas : base de données distribuée, et partitionnement des données

### 1.3 Gestion des requêtes dans la base de données distribuée

#### 1.3.1 Requêtes de lecture

Explication du cheminement d'une requête de lecture dans la base de données. Parler des files d'attentes. Parler de l'affectation d'une requête (on prend le traitement et on averti les autres de ne pas le prendre).

1 schéma : cheminement d'une requête de lecture

#### 1.3.2 Requêtes d'écriture

Explication du cheminement d'une requête d'écriture dans la base de données. Parler des files d'attentes.

1 schéma : cheminement d'une requête d'écriture

### 1.4 Stockage des données

Petite partie indiquant que les données sont stockées sur les ordinateurs. Rapide explication des méthodes utilisées par les bases de données. Précisions comme quoi ce c'est pas sur ça que nous allons travailler.

### 1.5 Protocoles de réaffectation des requêtes de lecture

Explication sur la raison d'un algorithme de réaffectation (pour rééquilibrer la charge des noeuds). Explication du fonctionnement des algorithmes.

1 schéma : réaffectation des requêtes

#### 1.5.1 Algorithme SLVO

Charge min

#### 1.5.2 Algorithme AverageDegree

Charge moyenne

### 1.6 Gestion de la popularité des objets

Parler du pourquoi on cherche à connaître la popularité d'un objet. Explication des méthodes pour calculer, stocker, et diffuser le popularité des objets. Gérer le nombre de copies grâce à ça (c'est pas la partie sur laquelle j'ai travaillé, je vois beaucoup de problème là dedans encore).

1 schéma : (je vois pas quoi faire non plus là)

### 1.7 Gestion des copies d'un objet

Explication de la méthode de fonction de hash pour chaque index de copie. Mettre en comparaison avec une méthode connu de placement de réplica (mettre sur le noeud suivant). Distribution plus homogène des copies de cette manière.

# 1.8 Visualisation des statistiques de fonctionnement de la base de données distribuée

Le but est de visualiser les statistiques de fonctionnement de la base de données pour permettre une comparaison de l'efficacité des algorithmes d'équilibrage de charge.

On souhaite récuperer :

- la charge effective de chaque noeud ou taille de la file d'attente des requêtes de lecture.
- une représentation de la file d'attente des requêtes de lecture
- la popularité de chaque objet
- la requête en cours de traitement

On enregistre les statistiques de fonctionnement de la base de données distribuée dans des fichiers. Un outil de visualisation traite ces fichiers et affiche ensuite les statistiques.



FIGURE 2 – Processus pour la visualisation des statistiques

### 2 Définition du projet

#### 2.1 Contexte

**Définition** Un *environnement distribué* est constitué de plusieurs machines (ordinateurs généralement), appelées *noeuds*, sur lesquelles sont stockées des données et pouvant traiter des requêtes. Chaque noeud possède des informations locales propres à son fonctionnement (exemple : une liste des noeuds voisins).

**Définition** Une base de données est une entité permettant de stocker des données afin d'en faciliter l'exploitation (ajout, mise à jour, recherche de données).

**Définition** Une charge est associée à un noeud et désigne le nombre de requêtes restantes que le noeud doit traiter à l'instant T.

**Définition** La réplication d'une donnée est une action qui réalise des copies de cette donnée sur d'autres noeuds.

**Définition** Un *réseau* est un ensemble de noeuds qui sont reliés entre eux (par exemple par Internet) et qui communiquent ensemble.

L'expansion, au cours des deux dernières décennies, des réseaux et notamment d'Internet a engendré une importante création de données, massives par leur nombre et leur taille. Stocker ces informations sur un seul point de stockage (ordinateur par exemple) n'est bien sûr plus envisageable, que ce soit pour des raisons techniques ou pour des raisons de sûreté (pannes potentielles par exemple). Pour cela des systèmes de stockages dits distribués sont utilisés en pratique afin des les répartir sur différentes unités de stockages.

Pour répartir toutes ces données, notre client a développé de nouveaux algorithmes d'équilibrage de charge basés sur la réplication qu'il souhaite tester dans un environnement distribué.

#### 2.2 Finalité

Nous devons développer une solution logicielle permettant de tester ces nouveaux algorithmes d'équilibrage de charge et de réplication proposés par le client dans un environnement distribué.

**Définition** Une *charge minimum* d'un environnement distribué est la plus petite charge trouvée sur un noeud parmi l'ensemble des noeuds. La *charge moyenne*, est la moyenne des charges de l'ensemble des noeuds.

Il s'agira d'implémenter les algorithmes développés par le client. On distingue les algorithmes d'affectation de requête :

- **SLVO** Si la charge du noeud est inférieure ou égale à la charge minimum, il s'affecte toutes les requêtes en attente et en avertit les autres noeuds.
- **AverageDegree** Si la charge du noeud est inférieure ou égale à la charge moyenne, il s'affecte toutes les requêtes en attente et en avertit les autres noeuds.

**Définition** La popularité d'un objet est le nombre de requêtes que va recevoir un objet durant un intervalle de temps T défini par l'utilisateur.

Ainsi que l'algorithme de gestion de copie, permettant d'établir le nombre de réplicas d'un objet en fonction de sa popularité.

Pour comparer l'efficacité de ces algorithmes, on peut visualiser l'état du réseau en temps réel.

### 2.3 Hypothèses

Nous évoluerons dans un environnement distribué constitué de n noeuds de stockage dans lequel on souhaite stocker m objets. C'est un réseau statique : on ne peut pas ajouter ou supprimer de noeuds après création du réseau.

**Définition** Un *message* est un envoi d'information d'un noeud vers un autre noeud pour mettre à jour ses données locales ou effectuer des actions particulières (autre que des requêtes, comme par exemple, "donne à tel noeud ta charge actuelle").

Données locales d'un noeud Un noeud contient les données locales suivantes :

- la charge de tous les noeuds du réseau
- la popularité de chaque objet stocké sur ce noeud
- une file d'attente de message à traiter
- la requête en cours de traitement

Requêtes Nous supposerons que les requêtes seront effectuées en un temps fixe.

### 3 Ordonnancement des besoins

Nous avons dégagé une liste de besoins fonctionnels et non-fonctionnels. Pour mieux les comparer, nous les avons ordonnés en fonction de leur priorité et de leur criticité.

### 3.1 Priorité

La priorité est un indicateur de l'ordre dans lequel nous devrons implémenter les fonctionnalités afin de satisfaire les besoins du client.

| Valeur | Signification    | Description                                   |  |
|--------|------------------|-----------------------------------------------|--|
| 1      | Priorité haute   | A implémenter en premier.                     |  |
| 2      | Priorité moyenne | A implémenter.                                |  |
| 3      | Priorité faible  | A implémenter (en fonction du temps restant). |  |

### 3.2 Criticité

Le niveau de criticité d'un besoin est un indicateur de l'impact qu'aura la non-implémentation de ce besoin sur le bon fonctionnement de l'application.

| Valeur | Signification     | Description                                              |  |
|--------|-------------------|----------------------------------------------------------|--|
| 1      | Criticité extrême | L'application ne sera pas utilisable par le client.      |  |
|        | Criticité haute   | L'application est utilisable par le client. En revanche, |  |
| 2      |                   | certaines fonctionnalités de l'application ne seront     |  |
|        |                   | pas utilisables.                                         |  |
|        | Criticité moyenne | L'application est utilisable par le client. En revanche, |  |
| 3      |                   | certaines fonctionnalités de l'application n'améneront   |  |
|        |                   | pas au résultat attendu.                                 |  |
| 4      | Criticité faible  | L'application peut fonctionner sans l'ajout de ces       |  |
| 4      |                   | fonctionnalités                                          |  |

### 4 Besoins fonctionnels

#### 4.1 Gestion d'un réseau

Un réseau est un ensemble de noeuds qui sont reliés entre eux (par exemple par Internet) et qui communiquent ensemble afin de traiter toutes les requêtes reçues. On peut rassembler des noeuds pour former un *data center*, et rassembler des data center pour former un *cluster* (voir la figure 3).

#### 4.1.1 Gestion des noeuds

Création d'un noeud (*Priorité* : 1, *criticité* : 1) Il est possible de séparer ce besoin en plusieurs sous-besoins :

- créer un noeud dans l'environnement
- initialiser les données locales d'un noeud

Mise à jour des données locales (*Priorité*: 1, *criticité*: 1) Afin de connaître l'état du réseau de manière précise, les données locales doivent être mise à jour à chaque action, c'est à dire lors du traitement d'un message dans la file d'attente.

Communication des données locales (*Priorité* : 1, *criticité* : 1) Un noeud doit être capable de communiquer ses données locales à d'autres noeuds du réseau.

Récupération de l'état du réseau (*Priorité* : 1, *criticité* : 1) L'application doit permettre la description de l'état du réseau. On souhaite connaître :

- le nombre de requêtes en attente
- la popularité des objets

#### 4.1.2 Réplication d'un objet

**Définition** Une fonction de hachage est une fonction mathématique déterministe (c'est à dire, si on lui donne la même entrée, elle renvoie la même sortie). Nous définissons ses entrées et sorties dans le paragraphe suivant.

**Définition** Un token permet comme une étiquette sur un produit, de désigner une donnée.

Il s'agit de copier un objet sur un autre noeud. Il est possible de définir le nombre de copies d'un objet au sein d'un ensemble de noeuds, appelé *data center*. Pour savoir quel noeud stocke l'objet, on utilise une fonction de hachage dans laquelle on fait passer la clé de l'objet (la clé de l'objet est une donnée permettant d'identifier un objet de manière unique). On obtient ainsi un *token*.

Tous les noeuds possèdent un intervalle (ou ensemble) de tokens dont ils sont responsables. On regarde le token de l'objet pour savoir quel noeud va le prendre en charge (voir la figure 4).

Une stratégie de réplication est la méthode qui permet de placer les copies d'un objet dans un data center. La stratégie consiste à utiliser une fonction de hachage différente pour chaque copie (voir la figure 5). Le numéro de la copie définit la fonction à utiliser. Ainsi, sur le schéma, la deuxième copie de tous les objets utilisera la fonction de hachage Hash2 pour obtenir un token et placer la copie.

Définition des fonctions de hachage (Priorité : 1, criticité : 3)

Mise en place de la stratégie de réplication (Priorité : 1, criticité : 3)

#### 4.1.3 Popularité d'un objet

Les algorithmes à implémenter nécessitent de connaître la popularité d'un objet dans le réseau. La popularité d'un objet est défini par le nombre de requêtes sur cet objet. Plus le nombre de requêtes est grand, plus l'objet est populaire.

```
Calcul de la popularité (Priorité : 1, criticité : 1)
```

Stockage de la popularité (*Priorité* : 1, *criticité* : 1) Chaque noeud stocke la popularité des objets qu'il contient.

Communication de la popularité (*Priorité* : 1, *criticité* : 1) Un noeud stockant des copies d'un objet doit communiquer la popularité de ces derniers au noeud possédant l'objet original.

#### 4.2 Protocoles d'affectation

Une affectation consiste, pour un noeud, à effectuer le traitement d'une requête. Les requêtes peuvent arriver sur n'importe quel noeud. On dit alors que ce noeud devient le noeud coordinateur pour cette requête. Il transmet la requête aux noeuds possédant l'objet de la requête (voir la figure 6).

Les noeuds possédant l'objet mettent la requête dans leur file d'attente. Dès qu'un noeud aura à traiter cette requête, il communique aux autres noeuds possédant l'objet qu'il se charge de la traiter. Les noeuds suppriment la requête de leur file d'attente. Le noeud qui prend en charge la requête la traite et donne le résultat de la requête au noeud coordinateur, qui peut ainsi renvoyer le résultat.

Communication d'un message d'ajout d'une requête dans la file d'attente (*Priorité* : 1, *criticité* : 1)

Communication d'un message de suppression d'une requête de la file d'attente (*Priorité* : 1, *criticité* : 1)

Ajout d'une requête dans la file d'attente (Priorité: 1, criticité: 1)

Suppression d'une requête de la file d'attente (Priorité: 1, criticité: 1)

Des protocoles (équivalent algorithmes) d'affectation plus spécifiques peuvent être implémentés. Ils utilisent les données locales du noeud pour décider de l'affectation des requêtes.

Implémentation de l'algorithme SLVO (Priorité : 1, criticité : 1)

Implémentation de l'algorithme AverageDegree (Priorité: 1, criticité: 1)

### 4.3 Requêtes

#### 4.3.1 Générations de requêtes

Pour tester la validité des algorithmes, l'application devra posséder une fonction de génération de requêtes. Si l'utilisateur ne détient pas de suites de requêtes prêtes, il pourra demander à l'application d'en créer pour lui. L'application, ne connaissant pas la nature des données, ne pourra qu'effectuer un nombre restreint de requêtes différentes. Elle pourra par exemple, compter le nombre de données sauvegardées, chercher si une donnée existe réellement, mais ne pourra pas en modifier une.

#### 4.3.2 Importation d'un jeu de requête

**Définition** La notion d'efficacité est laissée à l'appréciation du client. Une brève approche serait de comparer les temps d'exécution.

Pour comparer l'efficacité des algorithmes, il doit être possible d'envoyer sur le réseau une même suite de requêtes : un jeu de requêtes.

Importation (*Priorité* : 1, *criticité* : 2) L'application doit pouvoir lire un fichier contenant une suite de requêtes et envoyer ces requêtes sur le réseau.

#### 4.4 Visualisation des données

Afin de suivre l'évolution des charges de chaque noeud lors de l'exécution des algorithmes, on enregistre les données locales de chaque noeud à chaque modifications de celles-ci.

#### 4.4.1 Enregistrement des données

Ecriture dans un fichier (*Priorité*: 1, *criticité*: 2) Lorsque les données locales d'un noeud sont modifiées, on les enregistre dans un fichier. L'écriture est de la forme itération de l'algorithme; identifiant du noeud; charge du noeud;

#### 4.4.2 Affichage des données

**Définition** Un graphe est un ensemble de points appelés sommets, dont certaines paires sont directement reliées par un (ou plusieurs) lien(s) appelé(s) arêtes [com15].

**Noeuds** (*Priorité* : 3, *criticité* : 2) L'application doit permettre la représentation de chaque noeud par un sommet.

Analyse syntaxique (Priorité : 2, criticité : 1) Lors de l'éxecution d'un algorithme, la charge de chaque noeud est enregistrée dans un fichier. Un analyseur syntaxique (un programme qui possède des règles et qui agit sur un fichier donné en entrée selon celles-ci) découpe chaque ligne du fichier pour récupérer le moment auquel a été enregistrée l'information (itération de l'algorithme), le noeud concerné (identifiant du noeud) et la charge de ce noeud à ce moment (charge du noeud).

Charge des noeuds (*Priorité* : 3, *criticité* : 3) A chaque sommet est associée une valeur correspondant à la charge de ce noeud. Ces données sont récupérées grâce à l'analyseur syntaxique.

Film de l'éxecution (Priorit'e: 3, criticit'e: 3) Cela consiste à afficher la charge des noeuds dans l'ordre chronologique, c'est à dire dans l'ordre des itérations croissant.

### 5 Besoins non fonctionnels

#### 5.1 Cassandra

Cassandra est une base de données distribuée. Nous créons notre environnement distribué à partir de la dernière version stable de Cassandra.

Le choix de cette solution nous a été fortement recommandé par le client. En effet, celui-ci dispose de connaissances sur cette application et pourra donc plus facilement intervenir s'il souhaite faire évoluer le projet en implémentant par exemple de nouveaux algorithmes.

### 5.2 Maintenabilité du projet

L'envergure du projet fait qu'il est possible que d'autres personnes travaillent sur la finalité de ce projet, peu importe son état d'avancement. Afin de faciliter la compréhension, nous avons défini quelques normes pour que le projet puisse être repris :

- documentation dans le code source suivant la norme du langage utilisé;
- document externe spécifiant les fichiers modifiés par rapport au code source original;
- guide d'installation pour utiliser le projet et pour modifier le projet.

#### 5.3 Gestion d'un réseau

#### 5.3.1 Communication entre noeuds

Algorithme Le calcul de la popularité nécessite l'implémentation de l'algorithme d'approximation Space-Saving Algorithm [ADA05].

Pour connaître l'état du réseau, il faut regrouper les données locales des noeuds. Nous cherchons donc à récupérer ces données en un temps raisonnable  $(O(\log(n)))$  pour n noeuds).

Pour cela, nous nous appuierons sur le protocole Gossip [Fou14a]. Périodiquement, chaque noeud choisi n noeuds aléatoirement dont un noeud seed [Fou14b], noeud en mesure d'avoir une connaissance globale du système, et il communique à ces noeuds ses statistiques (valeur de sa charge, objets les plus populaires...).

Ainsi, la connaissance globale du système se fait, dans la théorie, en O(log(n)).

#### 5.3.2 Taille des données

La taille de chaque donnée est laissée à l'appréciation de l'équipe. Néanmoins, celleci doit être suffisamment importante, afin de permettre de créer des requêtes qui "stressent" le système pour avoir des résultats cohérents (sur la base de l'hypothèse : chaque requête prend un même temps à être traitée).

#### 5.4 Protocole de test

La conformité des algorithmes implémentés est assurée par un protocole de test suivant la démarche :

- Définir un réseau R, un ensemble d'objets O et un ensemble de requêtes Q
- Faire tourner l'algorithme à la main avec R, O et Q
- Stocker l'état final du réseau

- Faire valider ce processus par le client
- Exécuter l'algorithme sur ordinateur avec R, O et Q
- Vérifier les résultats constatés avec les résultats attendus

S'il y a une différence entre les deux résultats, une vérification par le client peut être envisagée dans le cas de résultats *presque* similaires. La notion de similitude est laissée à l'appréciation de l'équipe en charge du projet, lors de la vérification.

#### 5.5 Visualisation des données

#### 5.5.1 Etat du réseau

La vue permet de montrer l'état du réseau.

Le réseau est représenté par un graphe, les machines par des noeuds. Pour chaque machine, les données affichées sont la charge ainsi que le contenu de la file d'attente.

#### 5.5.2 Actualisation de la vue

L'état du réseau doit être visible en temps réel.

La vue peut donc être actualisée toutes les 0.5 secondes. Un délai plus faible risquerait de ralentir le système, étant donné que l'obtention des données nécessaires à la visualisation se fait sur la même base de données que celle qui est testée.

# 6 Répartitions des tâches

## 6.1 Diagramme de Gantt



### 6.2 Affectation des tâches

| Fct | Description                   | Développeur(s) | Commentaire                      |
|-----|-------------------------------|----------------|----------------------------------|
| A1  | Création des noeuds           |                |                                  |
| A2  | Données locales des noeuds    |                | Initialisation et implémentation |
| A3  | Communication des données     |                |                                  |
| АЭ  | locales entre noeuds          |                |                                  |
| A4  | Gestion des replicas          |                |                                  |
| AT  | Tests groupe A                |                | Vérification, tests, mémoire     |
| B1  | Générateur de requêtes        |                | A détailler                      |
| B2  | Importateur de jeu de         |                | A détailler                      |
| 102 | requêtes                      |                | A detainer                       |
| BT  | Tests groupe B                |                | Vérification, tests, mémoire     |
| C1  | Popularité objet sur noeud    |                |                                  |
| C2  | Space-Saving Algorithm        |                |                                  |
| СЗ  | Popularité d'un objet dans le |                |                                  |
|     | réseau                        |                |                                  |
| CT  | Tests groupe C                |                | Vérification, tests, mémoire     |
| D1  | Implémentation SLVO           |                |                                  |
| D2  | Implémentation                |                |                                  |
| 102 | AverageDegree                 |                |                                  |
| DT  | Tests groupe D                |                | Avec client                      |
| E1  | Prise en main Tulip           |                |                                  |
| E2  | Ecriture des données dans un  |                | (+Analyseur syntaxique)          |
| E/Z | fichier                       |                | (+Anaryseur syntaxique)          |
| E2  | Représentation réseau         |                |                                  |
| E3  | Représentation données        |                |                                  |
| Т   | Tests finaux                  |                | Vérification, tests, mémoire     |

Remarque Il s'agit d'une première version de notre GANTT. Nous n'avons pas encore défini l'affectation des tâches aux développeurs.

### 7 Livrables

#### 7.1 Livrables intermédiaires

Un livrable intermédiaire est une ébauche de l'application. C'est à dire que seulement quelques fonctionnalités sont implémentées.

Il n'a pas encore été décidé de remettre un ou plusieurs livrables intermédiaires au client.

#### 7.2 Livrable final

Il devra être remis le 8 Avril 2015. Il comportera les besoins de priorité 1 et 2.

### Références

- [ADA05] Metwally A, Agrawal D, and El Abbadi A. Efficient computation of frequent and top-k elements in data streams. 2005.
- [com15] Wikipedia community. Théorie des graphes wikipédia. <a href="http://fr.wikipedia.org/wiki/Th%C3%A9orie\_des\_graphes#D.C3.A9finition\_degraphe\_et\_vocabulaire">http://fr.wikipedia.org/wiki/Th%C3%A9orie\_des\_graphes#D.C3.A9finition\_degraphe\_et\_vocabulaire</a>, 2015. [Accessed 5 February 2015].
- [Fou14a] The Apache Software Foundation. Architecturegossip cassandra wiki. <a href="http://wiki.apache.org/cassandra/ArchitectureGossip">http://wiki.apache.org/cassandra/ArchitectureGossip</a>, 2014. [Accessed 21 January 2015].
- [Fou14b] The Apache Software Foundation. Faq cassandra wiki. <a href="http://wiki.apache.org/cassandra/FAQ#seed">http://wiki.apache.org/cassandra/FAQ#seed</a>, 2014. [Accessed 21 January 2015].



 $\label{eq:figure 3-Visualisation} Figure 3-Visualisation d'une base de données distribuée sous forme de clusters possédant quatre data center$ 



 $\label{eq:figure 4-Exemple} Figure \ 4-Exemple \ de partitionnement \ des \ données \ dans \ une \ base \ de \ données \ distribuée$ 



FIGURE 5 — Partitionnement des réplicas d'un objet avec une fonction de hachage pour chaque réplica



FIGURE 6 – Cheminement d'une requête dans une base de données distribuée avec la prise en charge de l'affectation (un seul noeud traite la requête)