Langages de spécification – cours 3 Introduction en logique temporelle

Catalin Dima

Specifying temporal properties

- Automata are nice, graphical representations of properties.
- Algorithmics for them turn into graph algorithmics.
 - Essentially reachability and search for strongly connected components.
 - And various constructions of new graphs from smaller ones.
- It's visual, easy to implement, easy to read, but not very easy to write...
 - It's not easy to guess that an automaton represents a responsiveness property.

Regular expressions as a specification language

- Equivalent with finite-state automata.
- Clearly more compact than automata specifications.
- But do we really understand what regular expression mean?
- Write a regular expression for
 - A property of the type *p* holds forever on.
 - A property of the type p holds until q holds.
 - ▶ A property of the type there exists a point where *p* holds.
- Wouldn't it be possible to have some primitives that correspond to these?

Linear Temporal Logic defined

- Extension of propositional logic.
 - Hence all propositional connectives are present.
- Temporal primitives :
 - ▶ Next : $X\phi$ or $\bigcirc p$. ▶ Until : $\phi \mathcal{U} \psi$.
 - ▶ Globally : $G\phi$ or $\Box \phi$.
 - Forward : $F\phi$ or $\diamondsuit \phi$.

Linear Temporal Logic defined

- Extension of propositional logic.
 - Hence all propositional connectives are present.
- Temporal primitives :
 - Next : Xφ or p.
 Until : φU ψ.
 - ► Globally : $G\phi$ or $\Box \phi$. ► Forward : $F\phi$ or $\Diamond \phi$.
 - φ Toward . φ Or φ .
- Past time operators can also be employed :
 - Yesterday ϕ held : Y ϕ or $\bullet \phi$.
 - ϕ held ever since ψ held : $\phi S \psi$.
 - ▶ Historically or always in the past ϕ held : $H\phi$ or $\blacksquare \phi$.
 - Once ϕ held : $O\phi$ or ϕ .

Semantics

- ▶ Models of LTL are runs $\rho : \mathbb{N} \longrightarrow 2^{AP}$.
 - Equivalently, infinite words over the alphabet 2^{AP}.
- Each atomic proposition has a truth value at each time point :
 - ▶ $p \in \rho(0)$ means p holds at the first time instant of the run.
 - ▶ $p \in \rho(251)$ means p holds at the 251th time instant of the run.
- Each formula will also be interpreted at each time point along the run :

$$\begin{aligned} (\rho,i) &\models \rho & \text{if } \rho \in \rho(i) \\ (\rho,i) &\models \phi_1 \land \phi_2 & \text{if } (\rho,i) \models \phi_1 \text{ and } (\rho,i) \models \phi_2 \\ (\rho,i) &\models \neg \phi & \text{if } (\rho,i) \not\models \phi \\ (\rho,i) &\models \bigcirc \phi & \text{if } (\rho,i+1) \models \phi \\ (\rho,i) &\models \phi_1 \mathcal{U} \phi_2 & \text{if there exists } j \geq i \text{ with } (\rho,j) \models \phi_2 \\ &\text{and for all } i \leq k < j, (\rho,k) \models \phi_1 \end{aligned}$$

- Similar semantics for the past operators.
- Examples...

Semantics (2)

Semantics, continued :

$$(\rho, i) \models \Diamond \phi$$
 if there exists $j \in \mathbb{N}$ with $(\rho, j) \models \phi$
 $(\rho, i) \models \Box \phi$ if for any $j \in \mathbb{N}, (\rho, j) \models \phi$

But the first modalities are sufficient :

$$\Diamond \phi = \operatorname{true} \mathcal{U} \phi$$
$$\Box \phi = \neg \Diamond \neg \phi$$

Semantics (3)

- Other future-time operators : new formulas read as follows :
 - $\phi_1 \mathcal{W} \phi_2 : \phi_1$ holds weakly until ϕ_2 holds.
 - $\phi_1 \mathcal{R} \phi_2 : \phi_2 \text{ releases } \phi_1.$
- Semantics:

$$\phi_1 \mathcal{W} \phi_2 = \phi_1 \mathcal{U} \phi_2 \vee \Box \phi_1$$

$$\phi_1 \mathcal{R} \phi_2 = \neg (\neg \phi_1 \mathcal{U} \neg \phi_2) = \phi_2 \mathcal{W} (\phi_1 \wedge \phi_2)$$

Sample formulas

... and their natural-language statement

- Safety formula : Gφ.
 - Mutual exclusion : G¬(critical₁ ∧ critical₂).
- Guarantee formula : $F\phi$.
 - ▶ Reachability : $F(chass \land loup \land chevre \land chou)$.
- ▶ Intermittence formula : $GF\phi$.
- Persistence formula : FGφ.
 - Convergence : FG(Voyager reaches Alpha Centauri).
- ▶ Request-response formula : $G(\phi \longrightarrow F\psi)$.
 - ▶ Fairness : $G(ready_i \longrightarrow Fcritical_i)$.

Sample tautologies

- ► Tautology: formula that is true regardless of the truth values given to the atomic propositions.
- Examples :

Formulas which are not tautologies :

$$\Diamond(p \land q) \Leftrightarrow \Diamond p \land \Diamond q$$
$$p\mathcal{U}(q\mathcal{U} r) \Leftrightarrow (p\mathcal{U} q)\mathcal{U} r$$

▶ To prove they are not tautologies, give a counter-model!

Fixpoints

Until, weak until, release and the others can be defined "inductively":

- May define least fixpoints and greatest fixpoints
- ▶ The "equation" for pUq is $X = q \lor (p \land \bigcirc X)$.
 - ► Constructing the solution works by replacing *X* with false and iterating.
- ▶ The "equation" for $\neg(p W q)$ is $X = \neg p \land (\neg q \lor \bigcirc X)$.
 - Constructing the solution works by replacing X with true and iterating.

Fixpoint LTL

- ▶ Utilize only () and boolean connectives.
- And two fixpoint operators :
 - μX , least fixpoint, computed starting with X := false.
 - νX, greatest fixpoint, computed starting with X := true.
- What does this mean :
 - $\blacktriangleright \mu X \nu Y (p \land \bigcirc (X \lor q \land Y)) ?...$
- Not easy to read...
- But more expressive than temporal logic.

Axiomatizing time

- Axioms and rules for the propositional part (any deduction system).
- ► Axioms and rules for () and U :
 - ▶ Distributivity : $\bigcirc \phi \land \bigcirc (\phi \longrightarrow \psi) \longrightarrow \bigcirc \psi$.
 - ▶ Linear time : $\neg \bigcirc \phi \Leftrightarrow \bigcirc \neg \phi$.
 - ► Fixpoint axiom for until : $\phi U \psi \Leftrightarrow \psi \lor (\phi \land \bigcirc (\phi U \psi))$.
 - ▶ Next time rule : from ϕ infer $\Box \phi$.
 - ▶ Until inference (or induction) rule : from $\phi' \longrightarrow \neg \psi \land \bigcirc \phi'$ infer $\phi' \longrightarrow \neg (\phi \mathcal{U} \psi)$.
- ▶ \Box and \Diamond can be expressed in terms of \mathcal{U} .
- A reduced axiomatic system can also be given only for the fragment with ○ and □.
 - ▶ Replace the fixpoint axiom for until with the fixpoint axiom for \Box : $\Box \phi \Leftrightarrow \phi \land \bigcirc \Box \phi$.
 - Replace the until inference rule with □ inference (induction) rule : from φ ⇒ ψ and φ ⇒ φ infer φ ⇒ □ ψ.

The model-checking problem

▶ Given a transition system $T = (Q, V, Q_0, \delta, \pi)$ and a formula ϕ , do all the runs of T satisfy ϕ ?

$$\forall \rho \in Runs(T), (\rho, 0) \models \phi$$
?

► Examples :

Infinite words and repeating states

- ► A Büchi automaton is a finite-state automaton,
- ... but it works on never-ending sequences of labels.
- There is no "final" state, as an infinite word does not have an end!
- ▶ There are repeated states F:

Acceptance condition

To accept an infinite word, a run must pass infinitely often through F

► This is equivalent with requiring that the run must pass infintely often through a state from F! (ain't it?)

Algorithms for Büchi automata

- Emptiness?
 - Check whether some repeated state is reachable,
 - ... and reaches itself again!
 - Strongly connected component!
- ▶ Union?
 - Easily adaptable from finite automata!
- Intersection?
 - Try to adapt the intersection algorithm from automata over finite words.
 - ... but which are the repeated states ?...

From LTL to Büchi automata

- ▶ For each formula ϕ , we may build a Büchi automaton A.
- ▶ Construction for $\bigcirc p$ and $\neg \bigcirc p$:

From LTL to Büchi automata (2)

▶ Construction for pUq and $\neg(pUq)$.

▶ But a Büchi acceptance condition must be added! Which one?

Model-checking algorithm

- ▶ Construct the automaton *A* for $\neg \phi$.
 - Spares a complementation step!
- Intersect A with the automaton for the system.
- Check for emptiness.