CURTIN UNIVERSITY Department of Mathematics and Statistics

Linear Algebra and Statistics for Engineers

MID-SEMESTER TEST

Semester 2, 2017

INSTRUCTIONS:	Answer all questions	in the spaces provided.
----------------------	----------------------	-------------------------

To obtain full marks for a question you must **clearly** show appropriate working.

TIME ALLOWED: 55 minutes.

TOTAL MARKS: 40

AIDS ALLOWED: 1. Scientific Calculator.

2. A4 Sheet of handwritten or typed notes (both

sides).

Last Name:	
Given Name:	
Student Number:	
Tutors Name:	
Workshop Day: Workshop Time:	

Solve following systems of linear equations by first writing it in the form of an augmented matrix [A|b] and then using the Gaussian Elimination method. Make sure you state the rank of A and the rank of [A|b].

$$x_1 + x_2 - x_3 = 0$$

 $2x_1 - x_2 - x_3 = -2$
 $4x_1 + x_2 - 3x_3 = 5$ (6 marks)

Solve the following homogeneous system of linear equations by first writing it in the form of an augmented matrix $[A|\mathbf{0}]$ and then using the Gaussian Elimination method. Make sure you state the rank of A.

$$2x_1 - x_2 + 2x_3 = 0$$

$$-x_1 + x_2 + x_3 = 0$$

$$-x_1 - 3x_3 = 0$$
 (8 marks)

Find the inverse of the matrix,

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$$

(6 marks)

Solve the following system of linear equations by using the inverse of the coefficient matrix,

$$7x_1 + 3x_2 = -8$$
$$8x_1 + 4x_2 = -8$$

(6 marks)

Question 5

Calculate the determinant |B| of the matrix $B = \begin{bmatrix} 1 & 0 & 3 \\ 5 & 6 & 2 \\ 3 & -2 & 1 \end{bmatrix}$. From this determinant value, does B have an inverse? Give a reason for

value, does *B* have an inverse? Give a reason for your decision. (Note: you <u>do not</u> have to calculate the inverse matrix if it exists) (8 marks)

Use Cramer's rule to solve the following system for x_1 ,

$$2x_1 + 4x_2 = -2$$

$$-3x_1 + x_2 = -11$$

(6 marks)