1 ЛАБОРАТОРНАЯ РАБОТА №21

Наименование работ Изучение резонанса тока **Цель работы** изучить явление резонанса токов, вычислить сопротивление контура

Принадлежности

- 1. Рабочая установка
- 2. Амперметры

Рабочая формула

$$R = \frac{\varphi^2}{Z_{\text{pes}}} \tag{1}$$

1.1 Ход работы

C , мк Φ	I_1	I_2	I
0	85	0	85
1	85	0	84
3	85	0	81
5	85	0	80
10	85	0	74
20	85	20	62
30	85	40	51
50	85	62	35
66	85	85	32
70	85	90	32
80	85	102	38
90	85	116	47
95	85	122	51
97	85	124	53
99	85	126	55
100	85	128	56

Полное сопротивление резонансного контура при резонансе токов по отношению к питающему контур генератору

$$Z_{\rm pes} = \frac{V}{I_{\rm pes}} = \frac{36}{32} = 1,125~{\rm Om} \eqno(2)$$

Волновое сопротивление контура:

$$p = \frac{V}{I_{1_{\rm pes}}} = \frac{V}{I_{2_{\rm pes}}} = \frac{36}{85} = 0,424 \cdot 10^2 \ {\rm Om} \eqno(3)$$

Сопротивление катушки:

$$R_1 = \frac{p^2}{Z_{\text{pes}}} = \frac{(0,424)^2}{(1,125)} = 0,16 \text{ Om} \tag{4}$$

Добротность контура:

$$Q = \frac{p}{R} = \frac{I_{2_{\text{pes}}}}{I_{\text{pes}}} = \frac{85}{32} = 2,66 \tag{5}$$

Резонансная частота:
$$f_0=rac{1}{2\pi(LC)^{rac{1}{2}}}=rac{1}{\left(2\pi(0,11685\cdot65\cdot10^{-6})^{rac{1}{2}}
ight)}pprox 57,75$$
 Гц

Вывод Данилы В ходе лабораторной работы мы исследовали волновое сопротивление и добротность электрического контура, определили их значения и поняли влияние на резонансное поведение тока. Волновое сопротивление характеризует взаимодействие с волновыми процессами в передающих линиях и было рассчитано с учётом параметров контура. Добротностю мы оценили потери энергии в контуре.

Вывод Вики В ходе лабораторной работы мы исследовали ключевые параметры электрического контура: волновое сопротивление и добротность. Мы установили их взаимосвязь с резонансными явлениями. При расчете волнового сопротивления были учтены геометрические и электрические характеристики линии. Добротность же позволила оценить эффективность колебаний.