PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C25D 3/56	A1	(11) International Publication Number: WO 94/1386 (43) International Publication Date: 23 June 1994 (23.06.94)
(21) International Application Number: PCT/U (22) International Filing Date: 17 December 1993	S93/124 (17.12.9	(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MG
(30) Priority Data:	NTERN ina Nigu cerry Wa Gerald, (US).	Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt amendments.

(54) Title: ELECTRODEPOSITION OF NICKEL-TUNGSTEN AMORPHOUS AND MICROCRYSTALLINE COATINGS

(57) Abstract

A nickel tungsten-containing coating (30) is electrodeposited onto a substrate (34) from an electrodeposition bath having in solution from about 0.034 to about 0.047 moles per liter of nickel, from about 0.15 to about 0.28 moles per liter of tungsten, from about 0.13 to about 0.43 moles per liter of hydroxycarboxylic acid, and 0 or from about 0.077 to about 0.15 moles per liter of boron. The bath has a pH of from about 9, and the electrodeposition is preferably accomplished at a temperature of from about 100 °F to about 140 °F.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU		GE	Georgia	MW	Malawi
	Australia		•	NE	
BB	Barbados	GN	Guinea		Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo	•	of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	Ц	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Vict Nam
GA	Gahon		-		

5

10

15

20

25

30

35

Electrodeposition of Nickel-Tungsten Amorphous and Microcrystalline Coatings

Technical Field

This invention relates to electrodeposited coatings, and, more particularly, to such a coating incorporating nickel, tungsten, and boron and that has high hardness but low residual stress.

Background Art

widely used to protect Coatings are wear-inducing and/or corrosive substrates in Amorphous and microcrystalline environments. promise for use as protective materials offer An amorphous material has no long-range coatings. short-range crystallographic order, and therefore no grain boundaries that can preferentially erode or corrode. Microcrystalline (including nanocrystalline) materials have very small grains, but have been observed to have excellent erosion and corrosion resistance. Certain types of amorphous and microcrystalline materials also exhibit making them ideal high hardnesses. extremely candidates for protective coatings.

One approach to depositing amorphous and microcrystalline materials as protective coatings is to rapidly solidify a melt against the substrate to be coated. This rapid solidification approach is practiced for some applications, but not for others such as the coating of the insides of tubes.

Another approach is electrodeposition from a bath onto a cathode. One such electrodeposition approach is described in US Patent 4,529,668. According to this process, a boron-containing amorphous alloy is deposited from a bath containing, for example, ions of tungsten, cobalt, and boron. The resulting tungsten-cobalt-boron compound is

amorphous with a high hardness and wear resistance. Ιt may be deposited on exterior and interior surfaces, uniformly and with great control. approach of the '688 patent has a deposition rate of inches 0.001-0.003 about in eight hours This rate is fully acceptable for many deposition. applications, but may be too slow for other coating requirements.

Thus, there is always an ongoing need for techniques to produce desirable coatings at higher deposition rates. The present invention fulfills this need, and further provides related advantages.

• . • : .

Disclosure of Invention

The present invention provides a process for 15 depositing a nickel/tungsten-based coating onto surfaces. and the resulting coating and coated articles. Preferably, the coating also contains coating is amorphous, microcrystalline (including nanocrystalline), or a mixture 20 amorphous and microcrystalline, has high hardness and wear resistance, is corrosion resistant, and has low internal residual stress. The coating process is highly efficient, having a coating efficiency of over 40 percent. The coating can be deposited at 25 rates of up to about 0.014 inches in eight hours, over four times the highest rate previously possible electrodeposited amorphous coatings deposited at comparable temperatures. It may also deposited at lower rates and at relatively lower 30 temperatures that are easier to implement commercially in some cases. The coating resistant to cracking.

In accordance with the invention, an electrodeposition process for depositing a

nickel-tungsten coating onto a substrate includes steps of preparing an electrodeposition bath comprising in solution from about 0.034X to about 0.047X moles per liter of nickel, from about 0.15X 5 to about 0.28X moles per liter of tungsten, from about 0.13X to about 0.43X moles per liter of hydroxycarboxylic acid, and 0 or from about 0.077X 0.15% moles per liter of boron, the bath to about having a pH of from about 6 to about 9. The scaling 10 factor X can range from about 0.67 to about 1.7. The bath constituents are provided from bath additions of sources such as salts. nickel-tungsten coating is electrodeposited onto a substrate from the electrodeposition bath.

15 The resulting coating has a composition in weight percent of about 60 percent nickel, percent tungsten, and 1 percent boron. It has a hardness of about 600 HV (Vicker's Hardness) in the as-plated condition, and the hardness can 20 increased to 900-1100 HV by heat treating the deposited coating at a temperature of about 600F for four The hours. coating is amorphous, microcrystalline (including nanocrystalline), mixture of amorphous and microcrystalline, both when 25 deposited and after heat treating.

The coating of the invention can be deposited on exterior surfaces and also interior surfaces of articles, such as the interior bore of a cylinder. It is highly controllable in deposition rate and final characteristics. Deposition and coating modifiers such as brightening agents (for example, butyne diol) and wetting agents (for example, sodium lauryl sulfate) can be added to the deposition bath, to improve the characteristics of the final coating.

The present invention provides an advance in the art of wear-resistant and corrosion-resistant coatings. The coatings are hard, yet have low

residual stress. Amorphous and microcrystalline at relatively high coatings can be prepared Other features and advantages of deposition rates. the present invention will be apparent from the 5 following more detailed description of the preferred embodiment, taken in conjunction with accompanying drawings, which illustrate, by way of example, the principles of the invention.

Brief Description of The Drawings

Figure 1 is a schematic illustration of a preferred electrodeposition apparatus for conducting the process of the invention;

Figure 2 is a schematic side sectional view of a coated substrate;

Figure 3 is an X-ray diffraction pattern of a coating that has a mixture of amorphous and nanocrystalline regions;

Figure 4 is an X-ray diffraction pattern of a nanocrystalline coating; and

Figure 5 is an X-ray diffraction pattern of a crystalline coating.

Best Mode for Carrying Out The Invention

illustrated in Figure 1, electrodeposition process in which the anode is not 25 consumed is typically accomplished in a tank 10 sufficiently large to hold a quantity of electrodeposition bath 12 containing the elements to be co-deposited. The tank 10 further contains an anode 14 having a positive potential applied thereto 30 and a cathode 16 having a negative potential applied thereto, both immersed in the bath 12.

potentials are applied by a power supply 18 having a current capacity sufficient for the size of the In the presently preferred design, the cathode 16. is placed in a sealed anode chamber anode 14 5 separated from the remainder of the bath 12 by an ion permeable membrane 20, in an approach familiar to those in the art. The bath 12 is preferably gently stirred by a stirrer 22, and may also be mildly agitated by pumping the electrodeposition bath through the tank. Under the influence of the potential applied across the anode 14 and the cathode 16, dissociated positive species migrate toward the cathode 16 and are deposited thereon, while electrons may be visualized as traveling from the 16 cathode to the anode 14 as the electrodeposition current.

structure illustrated in Figure 1 is the presently preferred apparatus for accomplishing the electrodeposition in accordance with the invention, 20 but use of the present invention is not limited to this apparatus. Other means for electrodepositing the coatings may be utilized. For example, the cathode may become a container for the bath, as, for example, where the electrodeposition bath and anode 25 are placed within the container and the negative potential is applied to the container. The coating thereafter deposited on the inner bore of the cathode/container. A curved or irregularly shaped anode may be provided to conform to a curved or irregularly 30 shaped cathode, facilitating deposition of a desired coating on the cathode. Such modifications are known to those skilled in the and the present invention is compatible with such apparatus modifications.

35 The structure produced by the present approach is illustrated in Figure 2. A coating 30 of an amorphous-microcrystalline alloy is deposited

15

20

25

onto a surface 32 of a substrate 34. The coating 30 amorphous, microcrystalline (including is nanocrystalline), or a mixture of amorphous and microcrystalline regions. The substrate 34 is made 5 the cathode 16 of the cell depicted in Figure 1 during the electrodeposition process.

The deposition bath 12 is formed from a number of constituents, each selected for its in operability combination with the other The bath includes a source of nickel constituents. ions which may be chosen from a variety of compounds such as nickel oxide, nickel carbonate, nickel sulfate, nickel chloride, or combinations thereof. The source of nickel preferably provides a nickel concentration in the deposition bath of from about 0.034X to about 0.047X moles per liter, most preferably about 0.046X moles per liter. X is a scaling factor that can vary from 0.67 to 1.7, and is selected by the user of the invention. It is used to scale the amounts of all of the constituents of the deposition bath by the same amount, for any particular value of X chosen.

The bath further includes a source of tungsten ions which may be chosen from a variety of compounds such as sodium tungstate, ammonium tungstate. ammonium meta tungstate, tungstic acid, or combinations thereof. The source of tungsten preferably provides a tungsten concentration in the deposition bath of from about 0.15% to about 0.28% 30 moles per liter, most preferably about 0.21% moles per liter.

The bath further includes a source of boron which may be chosen from a variety of compounds such as boron phosphate, boric acid, or combinations 35 thereof. The source of boron preferably provides a boron concentration in the deposition bath of from about 0.077X to about 0.15X moles per liter, most

30

preferably about 0.11X moles per liter.

The bath further includes a source of a hydroxycarboxylic acid, preferably a citrate or a tartrate, or combinations thereof. The source of 5 hydroxycarboxylic preferably provides acid hydroxycarboxylic acid concentration of from about 0.43X moles per liter, 0.13X to about preferably about 0.23X moles per liter for a citrate and about 0.29% moles per liter for a tartrate.

. 10 In all cases, the same scaling factor X is used to determine the amount of each constituent of As an example, if the user selected a scaling factor X equal to 1.4, then the preferred concentration of the source of nickel yields a bath nickel content of 0.046 times 1.4 or 0.064 moles per the preferred concentration of the source of liter: tungsten yields a bath tungsten content of 0.21 times 1.4 or 0.29 moles per liter; the preferred concentration of the source of boron yields a bath 20 boron content of 0.11 times 1.4 or 0.15 moles per liter; and the preferred concentration of the source hydroxycarboxylic acid yields hydroxycarboxylic acid content of 0.23 times 1.4 or 0.32 moles per liter for a citrate.

The scaling factor X can vary in the range of from about 0.67 to about 1.7. If X is outside this either substantially below or substantially the quality of the coating is reduced and above, unacceptable. Within the range, the becomes selection of a particular value of X is made to achieve particularly preferred properties. example, characteristics such as deposition efficiency, deposition rate, coating adherence. coating strength, and coating corrosion resistance 35 vary according to the value of the scaling factor In some instances, improved economics of selected. deposition are more important than attaining

10

15

20

25

30

35

particular physical properties, and in other cases the opposite may be true. The inventors have found that selection of the scaling factor X of 1.4 yields the best mix of desirable coating properties and economic deposition for their requirements.

Bath deposition conditions are generally to all compositions. The pH of the bath 12 adjusted to from about 6 to about 9 by the a base such as sodium hydroxide or addition of ammonium hydroxide to the bath. The temperature of the bath during electrodeposition is preferably higher the deposition 100F-140F. The about temperature, the faster the rate of deposition. a particular advantage of the present However. is that relatively high deposition rates invention can be achieved even for relatively low temperatures such as 120F. The applied voltage between the anode 14 and the cathode 16 is typically from about 3 to about 8 volts. The current density at the cathode 16 is from about 0.3 to about 1.2 amperes per square inch.

composition most-preferred Α of electrodeposition bath 12 is about 5.8 grams per liter of nickel carbonate, about 70 grams per liter of sodium tungstate, about 53 grams per liter of ammonium citrate monohydrate, and about 6.3 grams of boric acid. The pH is from about 8.4 liter to about 8.6, and the temperature is about 120F. A most-preferred composition using other secondary sources of species to be deposited is about 13 grams liter of nickel sulfate hexahydrate, about 70 per liter of sodium tungstate, about 50 grams grams per ammonium citrate, about 12 grams per liter ofliter of boron phosphate. The pH is from about 8.4 to about 8.6, and the temperature is about 120F. deposition temperature may the each case. increased to increase the deposition rate of the coating.

A number of plating characteristics are of The deposition rate is interest and importance. normally preferred to be as great as possible, as efficiency is directly related to 5 the process The rate of thickness buildup of deposition rate. should be as great as possible, coating consistent with acceptable plating quality and the The hardness is related to required hardness. 10 strength. The hardness tends to predict wear resistance, particularly if the wearing medium is no harder than the plating.

Another important characteristic of the plating is the plating or residual stress in the coating. The lowest residual stress is preferred. When the residual stress is too high, cracking and lifting of the coating from the substrate can be experienced. Where adherence of the coating to the substrate is good, cracking may be acceptable in certain applications, such as some parts of internal combustion engines. However, where corrosion resistance is required, cracking must be avoided completely.

Thus, the preferred electrodeposition bath compositions are those that have deposition rates of at least about 0.4 grams per ampere-hour at a current density of 0.3 amperes per square inch, have a plating thickening rate of at least 19 micrometers per hour, have a minimum microhardness of at least about 900 HV after a 4 hour oven soak at 600F, and exhibit a qualitative plating stress of less than about 30,000 pounds per square inch (tensile) or in certain cases of no more than about 60,000 pounds per square inch (tensile) even at large plating thicknesses and high coating hardness.

A number of samples were prepared and evaluated to establish the limits of the deposition

parameters and the nature of the results obtained. The following Table I lists the results of these In Table I, column (1) is an Example number Column (2) is the current density for reference. in amperes per square inch. deposition during Columns (3)-(6) express the electrodeposition bath Column (3) is the nickel content expressed content. liter of nickel supplied as either as moles per nickel carbonate (c) or nickel sulfate (s) or nickel chloride (1) or a mixture (m) of nickel carbonate 10 and nickel chloride. Column (4) is the tungsten content expressed as moles per liter of tungsten supplied as sodium tungstate. Column (5) is the hydroxycarboxylic acid (HCA) content expressed as 15 moles per liter of HCA supplied by ammonium citrate (c) or ammonium tartrate (t). Column (6) is the boron content expressed as moles per liter of boron supplied by boric acid (ba) or boron phosphate Column (7) is the pH of the electrodeposition (bp). 20 Column (8) is the temperature of the bath. electrodeposition bath during deposition. is the deposition rate in grams per ampere-hour, a measure of electrodeposition efficiency. Column is the hardness of the coating measured in (10)25 Vicker's Hardness Number with a 25 gram load, after substrate and coating have been heat treated for four hours at 600F. In some cases, incipient cracking of the coating was observed either after deposition or after heat treatment, as indicated by 30 a letter c after the hardness value. Column (11) is the rate of thickness increase of the coating during deposition, in micrometers per hour.

Column (12) is a qualitative coating residual stress index, stated in terms of level 1, level 2, or level 3 residual stress index. To obtain the residual stress index, the coating material was electrodeposited onto one side of a thin strip of

steel about 0.6 inches wide and 1.6 inches long. If after plating the strip was flat or nearly so, the coating was nearly free of residual stress, with a residual stress estimated to be below 30,000 psi (termed Level 1). If after plating the strip had a bowing of about 3-4 millimeters with a residual stress estimated to be below 60,000 psi (termed If after plating the strip was bowed Level 2). more, the residual stress was estimated to be above 10 Level 1 residual 60,000 psi (termed Level 3). stress is acceptable for all applications, while level 2 residual stress is acceptable for some applications. Level 3 residual stress is not acceptable for the coating.

Table I lists acceptable and preferred compositions.

Table I

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
		Curr.							Dep.		Thick.	Resid.
20	No.	Dens.	N1	W	<u>HCA</u>	B	рН	Temp.	Rate	Hard.	Rate	Stress
	1	0.3	.047c	.21	.23c	.10ba	8.4	120	.482	1033	23	1
	2	0.75	.047c	.21	.23c	.10ba	8.4	120	.255	974	30	1
	3	0.48	.046s	.21	.22c	.12bp	8.4	120	.455	1003	32	1
	4	1.07	.046s	.21	.22c	.12bp	8.5	140	.265	980	45	1
25	5	0.3	.047c	.21	.23c	.11ba	8.6	120	.452	1033	21.5	1
	6	0.3	.047c	.21	.22c	.10ba	8.6	120	.500	989	23.8	1
	7	0.3	.047c	.21	.22c	.10ba	8.5	120	.456	1064	21.7	1
	8	0.3	.047c	.21	.22c	.08ba	8.5	120	.483	1018	23	1
	9	0.3	.046c	.21	.15c	.10ba	8.7	120	.476	940	22.7	1
30	10	0.3	.047c	.21	.26c	.10ba	8.6	120	.495	1033	23.6	1
	11	0.3	.047c	.21	.30c	.10ba	8.6	120	.459	953	21.8	1
	12	0.3	.047c	.15	.22c	.10ba	8.7	120	.443	940	21.1	1
	13	0.3	.030c	.21	.23c	.10ba	8.4	120	.400	920	19.0	1

-12-

Table I (continued)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
		Curr.							Dep.		Thick.	Resid.
	No.	Dens.	N1_	<u>w</u>	HCA_	<u>B</u>	рН	Temp.	Rate	Hard.	Rate	Stress
	14	0.3	.038c	.21	.22c	.10ba	8.5	120	.403	1115	19.2	1
5	15	0.3	.054c	.21	.22c	.10ba	8.5	119	.523	940	24.9	1
	16	0.3	.065c	.30	.31c	.14ba	8.5	120	.496	9 89	23.6	2
	17	0.4	.065c	.30	.31c	.14ba	8.4	120	.512	1064	32.5	2
	18	0.5	.065c	.30	.31c	.14ba	8.4	120	.456	1049	36.2	1
	19	0.6	.065c	.30	.31c	.14ba	8.5	120	.408	1033	38.5	2
10	20	0.5	.079c	.36	.38c	.17ba	8.5	120	.508	894	40.3	1
	21	0.55	.079c	.36	.38c	.17ba	8.4	120	.461	1064	40	1
	22	0.6	.079c	.36	.38c	.17ba	8.5	120	.442	974	41.7	1
	23	0.5	.047c	.21	.26t	.10ba	8.5	120	.444	981	34.0	1
	24	0.3	.048c	.21	.22c	.11ba	8.5	120	.434	946	19.8	1
15	25	0.5	.046c	.21	.22c	.12bp	6.4	120	.251	1048	19.0	1
	26	0.5	.077s	.35	.37c	.20bp	6.5	121	.237	1064	. 19.0	1
	27	0.3	.046c	.21	.15c	.10ba	8.7	120	.476	940	22.7	1

Of these acceptable examples, nos. 3, 18, 20, and 21 are most preferred. These specimens plate with low stress, have a thickness buildup of at least 30 microinches per hour, have a deposition rate of at least 0.45 grams per ampere-hour, and have a hardness of at least 900 HV.

The following Table II lists marginal specimens.

111

25

111

///

111

111

-13-

Table II

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
		Curr.	•						Dep.		Thick.	Resid.
	No.	Dens.	Ni	W	HCA	B	рН	Temp.	Rate	<u>Hard.</u>	Rate	Stress
5	28	0.3	.047c	.21	.22c	.15ba	8.7	120	.448	946	21.3	2
	29	0.3	.047c	.21	.23c	.03ba	8.6	120	.492	882	23.4	1
	30	0.3	.047c	.21	.23c	0	8.5	120	.509	894	24.3	1
	31	0.3	.047c	.27	.22c	.10ba	8.6	120	.460	974	21.9	2
	32	0.3	.047c	.28	.29c	.10ba	8.6	120	.403	985	19.2	2
10	33	0.3	.047c	.21	.22c	.10ba	9.1	120	.447	93 8	21.0	2
	34	0.3	.047c	.21	.22c	.10ba	9.0	100	.390	870	18.6	1

samples in the marginal group generally electroplate well, but show medium levels of residual stress or are low in the rate of thickness buildup, 15 deposition rate, and/or hardness. Generally, as the composition or deposition conditions depart further from the preferred ranges, more than one parameter In example 28, with boron at the high deteriorates. stress increases and the hardness end. the residual 20 In examples 29 and 30, with boron at is moderate. the low end, the hardness falls to barely acceptable The absence of boron in example 30 causes levels. to become nanocrystalline rather than sample The high tungsten level of example 31 amorphous. 25 results in increased residual stress in the coating. elevated tungsten and hydroxycarboxylic acid levels of example 32 result in reduced deposition rate and rate of thickness increase, as well as increased residual stress. The high pH of example 33 plating stress and moderated increased 30 causes The reduced plating temperature of example hardness. lowers the deposition rate and rate of thickness buildup, and reduces the hardness significantly.

Table III lists unacceptable electrodeposition bath compositions and/or conditions.

Table III

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
5		Curr.							Dep.		Thick.	Resid.
	No.	Dens.	<u>Ni</u>	<u>w</u>	<u>HCA</u>	<u>B</u>	рН	Temp.	Rate	<u>Hard.</u>	Rate	Stress
	35	0.7	.047c	.21	.22c	.10ba	8.4	160	.39 8	946	44.3	2c
	3 6	0.3	.055c	.21	.22c	.10ba	8.6	120	.520	824	24.8	2
	37	0.3	.064c	.21	.22c	.10ba	8.5	120	.521	85 8	24.8	3
10	38	0.3	.039c	.21	.22c	.10ba	8.6	120	.374	960	17.8	2
	39	0.3	.035c	.21	.22c	.075ba	8.6	120	.401	803	19.1	1
	40	0.3	.047c	.21	.23c	.016ba	8.6	120	.492	7 90	23.4	3
•	41	0.3	.047c	.21	.23c	.05ba	8.5	120	.494	835	23.5	1
	42	0.3	.047c	.21	.22c	.10ba	8.4	140	.507	782	24.2	3c
15	43	0.5	.032c	.14	.17t	.07ba	8.9	120	.239	960	19.0	2
	44	0.8	.032c	.14	.17t	.07ba	8.9	180	.445	907	35.3	2
	45	0.3	.030c	.21	.22c	.10ba	8.5	120	.336	1003	16.0	1

Example 35 demonstrates that increasing the current density and temperature produces a marginal 20 deposition rate and results in high stress and cracking of the coating. As shown in examples 36 and 37, increased nickel content results in low hardness and increasing residual stress. Low nickel content results in low deposition rate and low rate of 25 thickening, and increased stress, as shown in example Example 39 shows that low nickel and boron produce a coating having a low hardness. A very low boron content is worse than no boron, since the residual stress is very high and the hardness is low, 30 example 40.

A low boron content results in improved, but

PCT/US93/12420 WO 94/13863

-15-

low, hardness, example 41. Example 42 shows still temperature that lower deposition vields acceptable deposition rate, but high residual stress in the coating and low hardness. In example 42, a lower concentration bath with tartrate as the hydroxycarboxylic acid produces a low deposition rate and high residual stress. Example 44 utilizes a high deposition temperature and current density to improve deposition rate and rate of thickening, but also results in a high residual stress. Operation at 180F also more difficult than at lower temperatures. Example 45 illustrates the effect of excessively low nickel content. The deposition rate and the rate of thickness buildup of the coating are very low.

5

10

30

35

15 Figure 3 is an X-ray diffraction pattern, using copper K-alpha radiation, of the coating of Example 24, a mixed amorphous and nanocrystalline There is a short, wide peak at about 44 coating. degrees two-theta, corresponding to nearest neighbor 20 and a broad secondary peak at 70-80 diffraction, degrees two-theta, corresponding to second-nearest neighbor diffraction. This X-ray diffraction structure is to be contrasted with that of Figure 4, the coating of Example 30. This coating has a 25 nanocrystalline structure. There is a first crystalline peak at about 44 degrees two-theta and a second crystalline reflection at about 50 degrees two-theta due to (211) reflections. A further peak is found at 75 degrees two-theta. The principal peak nominally 1.5 degrees wide at half height, corresponding to a crystallite size of about Figure 5, presented for comparison, is nanometers. the X-ray diffraction pattern of Example 45, which is fully crystalline and has sharp X-ray diffraction peaks.

Although particular embodiments of invention have been described in detail for purposes of illustration, various modifications may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.

15

25

. 30

Claims

- 1. An electrodeposition process for depositing a nickel-tungsten coating onto a substrate, comprising the steps of:
- 5 preparing an electrodeposition bath comprising in solution

from about 0.034X to about 0.047X moles per liter of nickel,

from about 0.15% to about 0.28% moles per 10 liter of tungsten,

from about 0.13% to about 0.43% moles per liter of hydroxycarboxylic acid, and

boron in an amount selected from the group of zero boron and from about 0.077X to about 0.15X moles per liter of boron,

where X is a scaling factor that can range from about 0.67 to about 1.7 and the bath has a pH of from about 6 to about 9; and

electrodepositing a coating onto a substrate from the electrodeposition bath.

- 2. The process of claim 1, wherein the bath has a composition of about 0.046X moles per liter of nickel, about 0.21X moles per liter of tungsten, about 0.23X moles per liter of hydroxycarboxylic acid, and about 0.11X moles per liter of boron.
- 3. The process of claim 1, wherein the nickel is supplied by a nickel-containing constituent selected from the group consisting of nickel carbonate, nickel sulfate, nickel chloride, nickel oxide, and combinations thereof.
- 4. The process of claim 1, wherein the tungsten is supplied by a tungsten-containing constituent selected from the group consisting of sodium tungstate, ammonium tungstate, ammonium meta tungstate, tungstic acid, and

15

20

35

combinations thereof.

- 5. The process of claim 1, wherein the hydroxycarboxylic acid is supplied by a constituent selected from the group consisting of ammonium citrate and ammonium tartrate.
- 6. The process of claim 1, wherein the boron is supplied by a constituent selected from the group consisting of boric acid, boron phosphate, and combinations thereof.
- 7. The process of claim 1, wherein the step of electrodepositing is accomplished at a temperature of from about 100F to about 140F.
 - 8. The process of claim 1, wherein the step of electrodepositing is accomplished at a cathodic current density of from about 0.3 amperes per square inch to about 1.2 amperes per square inch.
 - 9. The process of claim 1, including the additional step, after the step of electrodepositing, of

heating the coated substrate to a temperature of from about 400F to about 700F.

- 10. The process of claim 1, wherein the electrodeposition bath further comprises a substance selected from the group consisting of a leveling agent, a brightening agent, and a wetting agent.
- 25 11. A substrate having a coating prepared by the process of claim 1.
 - 12. An electrodeposition process for depositing a nickel-tungsten coating onto a substrate, comprising the steps of:
- preparing an electrodeposition bath comprising in solution

from about 0.034X to about 0.047X moles per liter of nickel, the nickel being provided by a bath addition of a nickel-containing constituent selected from the group consisting of nickel carbonate, nickel

5

10

20

sulfate, nickel chloride, nickel oxide, and combinations thereof,

from about 0.15% to about 0.28% moles per liter of tungsten, the tungsten being provided by a bath addition of a tungsten-containing constituent selected from the group consisting of sodium tungstate, ammonium tungstate, ammonium meta tungstate, tungstic acid, and combinations thereof,

from about 0.13X to about 0.43X moles per liter of hydroxycarboxylic acid, the hydroxycarboxylic acid being provided by a bath addition of a hydroxycarboxylic acid-containing constituent selected from the group consisting of ammonium citrate and ammonium tartrate, and

15 from about 0.077X to about 0.15X moles per liter of boron, the boron being provided by a bath addition of a boron-containing constituent selected from the group consisting of boric acid, boron phosphate, and combinations thereof,

where X is a scaling factor that can range from about 0.67 to about 1.7 and the bath has a pH of from about 6 to about 9; and

electrodepositing a nickel-tungsten-boron coating onto a substrate from the electrodeposition bath.

SUBSTITUTE SHEET

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

Inter onal Application No
PCT/US 93/12420

A. CLASSIF IPC 5	FICATION OF SUBJECT MATTER C25D3/56		
According to	International Patent Classification (IPC) or to both national cl	assification and IPC	
	SEARCHED		
Minimum do IPC 5	cumentation searched (classification system followed by classi C25D	fication symbols)	
110 5	;		
Documentation	on searched other than minimum documentation to the extent t	hat such documents are in	cluded in the fields searched
		1 11	1 accept theme modify
Electronic da	ata base consulted during the international search (name of data	oase and, where practical	a, search withis used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of t	he relevant passages	Relevant to claim No.
A _.	PATENT ABSTRACTS OF JAPAN vol. 9, no. 160 (C-289)(1883) & JP,A,60 033 382 (NIHON PUREE 20 February 1985 see abstract	4 July 1985 TEINGU K.K.)	
A	FR,A,789 883 (ARMSTRONG) 7 Nov see page 5; example 1	ember 1935	
A	US,A,4 529 668 (CROOPNICK) 16 cited in the application	July 1985	
	•		•
Furt	her documents are listed in the continuation of box C.	X Patent famil	ly members are listed in annex.
* Special car	tegories of cited documents :		
,	ent defining the general state of the art which is not	or priority date	published after the international filing date and not in conflict with the application but tand the principle or theory underlying the
consid	lered to be of particular relevance document but published on or after the international	invention	urticular relevance; the claimed invention
filing		cannot be consi	idered novel or cannot be considered to naive step when the document is taken alone
which	is cited to establish the publication date of another in or other special reason (as specified)	"Y" document of par	urticular relevance; the claimed invention idered to involve an inventive step when the
'O' docum	means referring to an oral disclosure, use, exhibition or	document is con	ombined with one or more other such docu- mbined to being obvious to a person skilled
'P' docum	means tent published prior to the international filing date but han the priority date claimed	in the art.	ther of the same patent family
	actual completion of the international search		of the international search report
1	5 April 1994		2 9. 04. 94
Name and	mailing address of the ISA	Authorized office	cer
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	M	- The Nebica A
1	Fax: (+31-70) 340-2040, 1x. 31 651 epo m,	Nguye	n The Nghiep, N

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/US 93/12420

				FC1703 33712420		
Patent document ited in search report	Publication date	Patent f membe	Publication date			
FR-A-789883	•	BE-A-	414790	,		
,		BE-A-	416235			
	•	CH-A-	282704			
		CH-A-	285458	-		
		CH-A-	289581			
		CH-A-	289582			
	•	DE-C-	654270			
		DE-C-	683879			
		DE-C-	941190			
		FR-E-	59392	•		
		FR-A-	809371			
		FR-A-	989933			
		GB-A-	P3266			
		GB-A-	P3267			
	•	GB-A-	460840			
	•	GB-A-	460886			
	•	GB-A-	460931			
		GB-A-	477519			
		GB-A-	682878			
		GB-A-	682879			
		GB-A-	941190			
		IT-A-	482373	•		
		NL-C-	76882			
•		NL-C-	79528			
		US-A-	2145241			
		US-A-	2145745			
		US-A-	2160322			
		US-A-	2599867			
		US-A-	2681299			
US-A-4529668	16-07-85	AU-B-	564336	06-08-87		
	•	AU-A-	4406085	13-12-85		
		CA-A-	1251761	28-03-89		
		EP-A,B	0181927	28-05-86		
		JP-T-	61502263	09-10-86		
			8505382	05-12-85		