Alberto Del Pia Carla Michini University of Wisconsin-Madison

Lehigh University – Industrial and Systems Engineering October 20, 2020

 $P \subseteq \mathbb{R}^n$ is a polyhedron if, for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

A bounded polyhedron is called polytope

A vertex is a 0-dimensional face

An edge is a 1-dimensional face

Two vertices are adjacent if they lie on a common edge

 $P \subseteq \mathbb{R}^n$ is a polyhedron if, for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

A bounded polyhedron is called polytope

A vertex is a 0-dimensional face

An edge is a 1-dimensional face

Two vertices are adjacent if they lie on a common edge

 $P \subseteq \mathbb{R}^n$ is a polyhedron if, for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

A bounded polyhedron is called polytope A vertex is a 0-dimensional face

Two vertices are adjacent if they lie on a common edge

An edge is a 1-dimensional face

 $P \subseteq \mathbb{R}^n$ is a polyhedron if, for some $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$P = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

A bounded polyhedron is called polytope

A vertex is a 0-dimensional face

An edge is a 1-dimensional face

Two vertices are adjacent if they lie on a common edge

1-skeleton

The 1-skeleton of P is a graph having:

- a node for each vertex of P
- ▶ an edge joining two nodes ⇔ the corresponding vertices of P are adjacent

Linear Programming (LP)

$$\max \quad \mathbf{c}^{\top} x$$

s.t. $x \in P$

- $P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$
- ▶ P is a polyhedron in \mathbb{R}^n , where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- $c \in \mathbb{R}^n$

A powerful tool for tackling wide classes of optimization problems

The most popular algorithm for LP is the simplex method

The most popular algorithm for LP is the simplex method

- Start at an initial vertex of P
- ▶ Move along an (improving) edge to an adjacent vertex
- Repeat until an optimal vertex is found or unboundedness is detected

- Start at an initial vertex of P
- Move along an (improving) edge to an adjacent vertex [pivot]
- Repeat until an optimal vertex is found or unboundedness is detected

The choice of the next vertex depends on a pivoting rule

MAJOR OPEN QUESTION #1:

pivoting rule that performs a polynomial nb of steps?

MAJOR OPEN QUESTION #1:

pivoting rule that performs a polynomial nb of steps?

MAJOR OPEN QUESTION #2:

'best possible' pivoting rule performs a polynomial nb of steps?

Diameter

Distance between two vertices:

length of shortest path between two vertices on 1-skeleton of P

Diameter

Distance between two vertices:

length of shortest path between two vertices on 1-skeleton of P

Diameter

Diameter:

largest value among the distances between any pair of vertices of $\ensuremath{\textit{P}}$

The diameter of P is a LOWER BOUND on the worst-case simplex path length for a LP problem on P

MAJOR OPEN QUESTION #1:

pivoting rule that performs a polynomial nb of steps?

MAJOR OPEN QUESTION #2: (Polynomial Hirsch conjecture)

'best possible' pivoting rule performs polynomial nb of steps?

MAJOR OPEN QUESTION #1:

pivoting rule that performs a polynomial nb of steps?

MAJOR OPEN QUESTION #2: (Polynomial Hirsch conjecture)

'best possible' pivoting rule performs polynomial nb of steps?

⇔ diameter bounded by a polynomial?

Lattice polytopes

Lattice polytope: polytope whose vertices are integral

LP on lattice polytopes

We study the LP problem:

$$\max \quad \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{x} \in P$

- ightharpoonup P is a lattice polytope in $[0, k]^n$
- ▶ $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$
- $ightharpoonup c \in \mathbb{Z}^n$

Applications in: polyhedral combinatorics, integer programming, combinatorial optimization

LP on lattice polytopes

We study the LP problem:

$$\max \quad \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{x} \in P$

- ▶ P is a lattice polytope in $[0, k]^n$
- ▶ $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$
- $ightharpoonup c \in \mathbb{Z}^n$

GOAL: Simplex algorithm that traces "short" simplex paths on P from given vertex x^0 to optimal vertex x^*

...possibly, polynomially far from the worst-case diameter

How "short" can a simplex path be

on a lattice polytope?

Upper bounds:

- ightharpoonup n if k = 1 [Naddef 89]
- ► *nk* [Kleinschmidt Onn 92]
- ► $nk \left\lceil \frac{2}{3}n \right\rceil (k-3)$ if $k \ge 3$ [Deza Pournin 18]

Lower bounds:

- ightharpoonup *n* if k=1
- ▶ $\left\lfloor \frac{1}{2}n(k+1) \right\rfloor$ if k < 2n [Deza Manoussakis Onn 18]
- $ck^{\frac{2}{3}}$ if n = 2, $k \to \infty$ [Balog Bárány 91]
- ▶ $c(n)k^{\frac{n}{n+1}}$ if n fixed, $k \to \infty$ [Deza Pournin Sukegawa 19]

Take-home message: Worst-case diameter $\approx nk$.

Take-home message: Worst-case diameter $\approx nk$.

GOAL: Simplex algorithm that traces simplex paths of length polynomially far from nk

Other simplex algorithms

Dantzig, best improvement [Kitahara Mizuno '12], and steepest edge [Blanchard, De Loera, Louveaux '20] pivoting rules:

⇒ simplex path length

$$\leq n^2 \max\{k, S\} \log(n \max\{k, S\})$$

where
$$S = \max\{\|b - Ax\|_{\infty} \mid x \in P\}.$$

- ► However even for k = 1, S can be $\frac{(n-1)^{\frac{n-2}{2}}}{2^{2n+o(n)}}$
- ► This bound is not polynomially bounded in *nk*.

Other simplex algorithms

Dantzig, best improvement [Kitahara Mizuno '12], and steepest edge [Blanchard, De Loera, Louveaux '20] pivoting rules:

⇒ simplex path length

$$\leq n^2 \max\{k, S\} \log(n \max\{k, S\})$$

where
$$S = \max\{\|b - Ax\|_{\infty} \mid x \in P\}.$$

- ► However even for k = 1, S can be $\frac{(n-1)^{\frac{n-1}{2}}}{2^{2n+o(n)}}$
- ightharpoonup This bound is not polynomially bounded in nk.

Can we eliminate dependence on S?

Theorem 1: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length in $O(n^4 k \log(nk))$

The simplex path length is polynomially far from optimal $\approx nk$

Theorem 1: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length in $O(n^4 k \log(nk))$

Independent on:

- cost vector c
- ▶ description $Ax \le b$ of P
- number of inequalities m

Theorem 1: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length in $O(n^4 k \log(nk))$

Most known lattice polytopes are defined via $0,\pm 1$ constraint matrices

Can we exploit the largest absolute value α of the entries in the constraint matrix?

Theorem 2: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length in $O(n^2 k \log(nk\alpha))$

Most known lattice polytopes are defined via $0,\pm 1$ constraint matrices

Can we exploit the largest absolute value α of the entries in the constraint matrix?

Theorem 2: Simplex algorithm for lattice polytopes in $[0, k]^n$ s.t. simplex path length in $O(n^2 k \log(nk\alpha))$

- ▶ If $\alpha \le \text{poly}(n, k)$, then simplex path length in $O(n^2 k \log(nk))$
- ▶ If also k = 1, then simplex path length in $O(n^2 \log n)$

How does it work?

How does it work?

We move to an adjacent vertex by calling:

Oracle

Input: Polytope P, $\mathbf{c} \in \mathbb{Z}^n$, vertex $\bar{\mathbf{x}}$ of P

Output:

- ▶ Either a statement that \bar{x} maximizes $c^{\top}x$ over P
- ightharpoonup or a vertex adjacent to \bar{x} with strictly larger cost

The input to the oracle is key to compute a short simplex path...

How does it work?

- 1. Basic algorithm length $\leq nk \|c\|_{\infty}$
- 2. Scaling algorithm length $O(nk \log ||c||_{\infty})$

3. Preprocessing & scaling algorithm length $O(n^4k \log(nk))$

4. Face-fixing algorithm length $O(n^2k \log(nk\alpha))$

Basic algorithm

Basic algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $c^T x$.

for t = 0, 1, 2, ... do

Invoke oracle(P, c, x^t)

If the **oracle** states that x^t is optimal, return x^t Otherwise, $x^{t+1} := \text{oracle}(P, c, x^t)$

Observation: The length of the simplex path generated is at most $c^{\top}x^* - c^{\top}x^0 \le nk \|c\|_{\infty}$

Example: c = (1, 1)

Basic algorithm

Basic algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $c^T x$.

for
$$t = 0, 1, 2, ...$$
 do

Invoke **oracle** (P, c, x^t)

If the **oracle** states that x^t is optimal, return x^t

Otherwise, $x^{t+1} := \operatorname{oracle}(P, \mathbf{c}, x^t)$

Observation: The length of the simplex path generated is at most $c^{\top}x^* - c^{\top}x^0 \le nk \|c\|_{\infty}$

Example: c = (1, 1)

Basic algorithm

Basic algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $c^T x$.

for t = 0, 1, 2, ... do

Invoke oracle(P, c, x^t)

If the **oracle** states that x^t is optimal, return x^t Otherwise, $x^{t+1} := \text{oracle}(P, c, x^t)$

Observation: The length of the simplex path generated is at most $c^{\top}x^* - c^{\top}x^0 \le nk \|c\|_{\infty}$

Example: c = (1, 4)

Let $\ell := \lceil \log \| \mathbf{c} \|_{\infty} \rceil$ For $t = 0, \dots, \ell$, define the integral approximations of \mathbf{c} :

$$c^t := \left\lceil \frac{c}{2^{\ell-t}} \right\rceil$$
 (Note: $c^\ell = c$)

Example:

$$c = (1, 2, 3, 4, 5, 6, 7)$$

$$c^{0} = (1, 1, 1, 1, 1, 1, 1)$$

$$c^{1} = (1, 1, 1, 1, 2, 2, 2)$$

$$c^{2} = (1, 1, 2, 2, 3, 3, 4)$$

 $c^3 = (1, 2, 3, 4, 5, 6, 7)$

$$\|c^t\|_{\infty} \leq 2^t \text{ for } t = 0, \dots, \ell$$

$$c^{\ell} = c$$

$$ightharpoonup 2c^{t-1} - c^t \in \{0,1\}^n$$
 for $t = 1, \dots, \ell$

For
$$t = 0, \dots, \ell$$
: $c^t := \left\lceil \frac{c}{2^{\ell-t}} \right\rceil$

Scaling algorithm

```
Input: Lattice polytope P in [0, k]^n, c \in \mathbb{Z}^n, vertex x^0 of P
Output: A vertex x^* of P maximizing c^\top x

for t = 0, \dots, \ell do
x^{t+1} := \text{basic algorithm}(P, c^t, x^t)
Return x^{\ell+1}
```

For
$$t = 0, \dots, \ell$$
: $c^t := \left\lceil \frac{c}{2^{\ell - t}} \right\rceil$ Example: $c = (1, 4)$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $c^T x$

for
$$t = 0, ..., \ell$$
 do
 $x^{t+1} := \text{basic algorithm}(P, c^t, x^t)$

For
$$t = 0, \dots, \ell$$
: $c^t := \left\lceil \frac{c}{2^{\ell - t}} \right\rceil$
Example: $c = (1, 4) c^0 = (1, 1)$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P **Output:** A vertex x^* of P maximizing $c^\top x$

for
$$t = 0, ..., \ell$$
 do
 $x^{t+1} := \text{basic algorithm}(P, c^t, x^t)$

For
$$t = 0, \dots, \ell$$
: $c^t := \left\lceil \frac{c}{2^{\ell - t}} \right\rceil$
Example: $c = (1, 4) c^1 = (1, 2)$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P **Output:** A vertex x^* of P maximizing $c^\top x$

for $t = 0, ..., \ell$ do $x^{t+1} :=$ basic algorithm (P, c^t, x^t)

For
$$t = 0, \dots, \ell$$
: $c^t := \left\lceil \frac{c}{2^{\ell - t}} \right\rceil$
Example: $c = (1, 4) c^2 = (1, 4)$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $c^T x$

for
$$t = 0, ..., \ell$$
 do
 $x^{t+1} := \text{basic algorithm}(P, c^t, x^t)$

Proposition: Simplex path length is in $O(nk \log ||c||_{\infty})$

Scaling algorithm

```
Input: Lattice polytope P in [0, k]^n, c \in \mathbb{Z}^n, vertex x^0 of P

Output: A vertex x^* of P maximizing c^\top x

for t = 0, \dots, \ell do
x^{t+1} := \text{basic algorithm}(P, c^t, x^t)

Return x^{\ell+1}
```

Proposition: Simplex path length is in $O(nk \log \|c\|_{\infty})$ **Proof**:

- ▶ Basic algorithm is called $\ell + 1 := \lceil \log \| \mathbf{c} \|_{\infty} \rceil + 1$ times.
- ▶ Each time **basic algorithm** generates path of length $\leq nk$:
 - $2c^{t-1} c^t \in \{0,1\}^n$
 - $c^{t^{\top}} x^{t+1} \le 2c^{t-1^{\top}} x^{t+1} \le 2c^{t-1^{\top}} x^{t}$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P **Output:** A vertex x^* of P maximizing $c^\top x$

for
$$t = 0, ..., \ell$$
 do $x^{t+1} :=$ basic algorithm (P, c^t, x^t)

Proposition: Simplex path length is in $O(nk \log \|c\|_{\infty})$ **Proof**:

- ▶ Basic algorithm is called $\ell + 1 := \lceil \log \|c\|_{\infty} \rceil + 1$ times.
- ▶ Each time **basic algorithm** generates path of length $\leq nk$:
 - $ightharpoonup 2c^{t-1} c^t \in \{0,1\}^n$
 - $c^{t^{\top}} x^{t+1} \leq 2c^{t-1^{\top}} x^{t+1} \leq 2c^{t-1^{\top}} x^{t}$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P **Output:** A vertex x^* of P maximizing $c^\top x$

Proposition: Simplex path length is in $O(nk \log \|c\|_{\infty})$ **Proof**:

- ▶ Basic algorithm is called $\ell + 1 := \lceil \log \| \mathbf{c} \|_{\infty} \rceil + 1$ times.
- **Each** time **basic algorithm** generates path of length $\leq nk$:
 - $ightharpoonup 2c^{t-1} c^t \in \{0,1\}^n$
 - $c^{t^{\top}} x^{t+1} \le 2c^{t-1^{\top}} x^{t+1} \le 2c^{t-1^{\top}} x^{t}$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $c^T x$

for
$$t = 0, ..., \ell$$
 do
 $x^{t+1} := \text{basic algorithm}(P, c^t, x^t)$

Proposition: Simplex path length is in $O(nk \log \|c\|_{\infty})$ **Proof**:

- ▶ Basic algorithm is called $\ell + 1 := \lceil \log \|c\|_{\infty} \rceil + 1$ times.
- ▶ Each time **basic algorithm** generates path of length $\leq nk$:

$$ightharpoonup 2c^{t-1} - c^t \in \{0,1\}^n$$

$$c^{t^{\top}} x^{t+1} \leq 2c^{t-1^{\top}} x^{t+1} \leq 2c^{t-1^{\top}} x^{t}$$

Scaling algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $\mathbf{c}^\top x$

Preprocessing algorithm

Preprocessing algorithm

Input: $c \in \mathbb{Q}^n$, positive integer N

Output: $\tilde{c} \in \mathbb{Z}^n$ such that

- $\|\tilde{c}\|_{\infty} \leq 2^{4n^3} N^{n(n+2)}$
- ▶ $\operatorname{sign}(\boldsymbol{c}^{\top}z) = \operatorname{sign}(\tilde{\boldsymbol{c}}^{\top}z) \ \forall z \in \mathbb{Z}^n \ \text{with} \ \|z\|_1 \leq N 1$
- ► Due to [Frank Tardos 87]
- Relies on the simultaneous approximation algorithm of [Lenstra Lenstra Lovász 82]

Setting N := nk + 1, x^* optimal for $\tilde{c} \Rightarrow$ optimal for c:

- $\forall x \in P \cap \mathbb{Z}^n$:
- ▶ $x x^* \in \mathbb{Z}^n$ and $||x x^*||_1 \le nk = N 1$
- $\tilde{c}^{\top}(x-x^*) \leq 0 \quad \Rightarrow \quad c^{\top}(x-x^*) \leq 0$

Preprocessing algorithm

Preprocessing algorithm

Input: $c \in \mathbb{Q}^n$, positive integer N

Output: $\tilde{c} \in \mathbb{Z}^n$ such that

- $\|\tilde{c}\|_{\infty} \leq 2^{4n^3} N^{n(n+2)}$
- ▶ $\operatorname{sign}(\boldsymbol{c}^{\top}z) = \operatorname{sign}(\tilde{\boldsymbol{c}}^{\top}z) \ \forall z \in \mathbb{Z}^n \ \text{with} \ \|z\|_1 \leq N 1$
- ▶ Due to [Frank Tardos 87]
- Relies on the simultaneous approximation algorithm of [Lenstra Lenstra Lovász 82]

Setting N := nk + 1, x^* optimal for $\tilde{c} \Rightarrow$ optimal for c:

- $\forall x \in P \cap \mathbb{Z}^n$:
- $\triangleright x x^* \in \mathbb{Z}^n$ and $||x x^*||_1 \le nk = N 1$
- $ightharpoonup \tilde{c}^{\top} x^* \geq \tilde{c}^{\top} x \quad \Rightarrow \quad c^{\top} x^* \geq c^{\top} x$

Preprocessing & scaling algorithm

Preprocessing & scaling algorithm

```
Input: Lattice polytope P in [0, k]^n, c \in \mathbb{Z}^n, vertex x^0 of P
```

Output: A vertex x^* of P maximizing $\mathbf{c}^\top x$

 $\tilde{c} := \text{preprocessing algorithm}(c, N := nk + 1)$

 $x^* :=$ scaling algorithm (P, \tilde{c}, x^0)

Return x*

Theorem 1: Simplex path length in $O(nk \log \|\tilde{c}\|_{\infty})$

 $\log \|\tilde{c}\|_{\infty}$ in $O(n^3 \log(nk))$

Preprocessing & scaling algorithm

Preprocessing & scaling algorithm

```
Input: Lattice polytope P in [0, k]^n, \mathbf{c} \in \mathbb{Z}^n, vertex \mathbf{x}^0 of P
```

Output: A vertex x^* of P maximizing $\mathbf{c}^\top x$

 $\tilde{c} := \text{preprocessing algorithm}(c, N := nk + 1)$

 $x^* :=$ scaling algorithm (P, \tilde{c}, x^0)

Return x*

Theorem 1: Simplex path length in $O(n^4k \log(nk))$

Face-fixing algorithm

GOAL: shorter simplex path length, dependent on α

$$P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$$
, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$
 $\alpha :=$ largest absolute value of the entries of A

IDEA: Identify at each iteration one constraint of $Ax \leq b$ that is active at each optimal solution of $\max\{c^\top x \mid x \in P\}$ Inspired by [Tardos '86]

Face-fixing algorithm

Face-fixing algorithm

Input: Lattice polytope P in $[0, k]^n$, $c \in \mathbb{Z}^n$, vertex x^0 of P

Output: A vertex x^* of P maximizing $\mathbf{c}^\top x$

- 0: Let $\mathcal{E} := \emptyset$ and $\mathbf{x}^* := \mathbf{x}^0$
- 1: Let \bar{c} be the projection of c onto $\{x \in \mathbb{R}^n \mid a_i^\top x = 0 \ \forall i \in \mathcal{E}\}.$ If $\bar{c} = 0$ return x^*
- 2: Let $\tilde{c} \in \mathbb{Z}^n$ be defined by $\tilde{c}_i := \left| \frac{n^3 k \alpha}{\|\tilde{c}\|_{\infty}} \overline{c}_i \right|$ for $i = 1, \ldots, n$
- 3: Consider the following pair of primal and dual LP problems:

$$\max_{\substack{s.t. \\ a_i^\top x = b_i \\ a_i^\top x \le b_i }} \tilde{i} \in \mathcal{E} \qquad \min_{\substack{i \in \mathcal{E} \\ b_i = i \in [m] \setminus \mathcal{E}}} \tilde{P} \qquad \sup_{\substack{s.t. \\ y_i \ge 0}} \tilde{b}^\top y \qquad \tilde{D}$$

Compute optimal vertex \tilde{x} of (\tilde{P}) with scaling alg from x^* Compute an optimal solution \tilde{y} to (\tilde{D}) s.t. $[\dots]$ Let $\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$ $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}, x^* \leftarrow \tilde{x}$ and go back to step 1

Main Results

```
(correctness)

Proposition: Vector x^* returned maximizes c^Tx over P.

(short simplex paths)

Theorem 2: Simplex path length in O(n^2k\log(nk\alpha))

(polynomial runtime)
```

Proposition: The number of operations to construct the next vertex in the simplex path is bounded by $poly(n, m, log \alpha, log k)$. If P is 'well-described' by $Ax \leq b$, then it is bounded by poly(n, m, log k).

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{c^T x \mid x \in P\}$ lies in F

$$\begin{array}{llll} \max & \tilde{c}^{\top}x & \min & b^{\top}y \\ \text{s.t.} & a_i^{\top}x = b_i & i \in \mathcal{E} \\ & a_i^{\top}x \leq b_i & i \in [m] \setminus \mathcal{E} \end{array} \qquad \begin{array}{ll} \min & b^{\top}y \\ \text{s.t.} & A^{\top}y = \tilde{c} \\ & y_i \geq 0 & i \in [m] \setminus \mathcal{E} \end{array} \qquad (\tilde{D})$$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{c^T x \mid x \in P\}$ lies in F

- ▶ Beginning of the algorithm: $\mathcal{E} = \emptyset \Rightarrow F = P$.
- Prove claim is true when we update $\mathcal E$ in step 3:

Let
$$\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$$
. Set $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}$

$$\begin{array}{llll} \max & \tilde{c}^{\top}x & \min & b^{\top}y \\ \text{s.t.} & a_i^{\top}x = b_i & i \in \mathcal{E} \\ & a_i^{\top}x \leq b_i & i \in [m] \setminus \mathcal{E} \end{array} \qquad \begin{array}{ll} \min & b^{\top}y \\ \text{s.t.} & A^{\top}y = \tilde{c} \\ & y_i \geq 0 & i \in [m] \setminus \mathcal{E} \end{array} \qquad (\tilde{D})$$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{c^{\top}x \mid x \in F\}$ satisfies $a_i^{\top}x = b_i$ for $i \in \mathcal{H} := \{i \mid \tilde{y}_i > nk\}$

- ▶ Beginning of the algorithm: $\mathcal{E} = \emptyset \Rightarrow F = P$.
- Prove claim is true when we update \mathcal{E} in step 3:

Let
$$\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$$
. Set $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{c^{\top}x \mid x \in F\}$ satisfies $a_i^{\top}x = b_i$ for $i \in \mathcal{H} := \{i \mid \tilde{y}_i > nk\}$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{\overline{c}^{\top}x \mid x \in F\}$ satisfies $a_i^{\top}x = b_i$ for $i \in \mathcal{H} := \{i \mid \widetilde{y}_i > nk\}$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{\overline{c}^{\top}x \mid x \in F\}$ satisfies $a_i^{\top}x = b_i$ for $i \in \mathcal{H} := \{i \mid \widetilde{y}_i > nk\}$

Let
$$\hat{c}$$
 be defined by $\hat{c}_i := \frac{n^3 k \alpha}{\|\bar{c}\|_{\infty}} \bar{c}_i$ for $i = 1, \dots, n \implies \tilde{c} = \lfloor \hat{c} \rfloor$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{\hat{c}^{\top}x \mid x \in F\}$ satisfies $a_i^{\top}x = b_i$ for $i \in \mathcal{H} := \{i \mid \tilde{y}_i > nk\}$

Let
$$\hat{c}$$
 be defined by $\hat{c}_i := \frac{n^3 k \alpha}{\|\bar{c}\|_{\infty}} \bar{c}_i$ for $i = 1, \dots, n \implies \tilde{c} = \lfloor \hat{c} \rfloor$

$$\begin{array}{llll} \max & \widehat{\boldsymbol{c}}^{\top} \boldsymbol{x} & \min & \boldsymbol{b}^{\top} \boldsymbol{y} \\ \text{s.t.} & \boldsymbol{a}_{i}^{\top} \boldsymbol{x} = \boldsymbol{b}_{i} & i \in \mathcal{E} \\ & \boldsymbol{a}_{i}^{\top} \boldsymbol{x} \leq \boldsymbol{b}_{i} & i \in [m] \setminus \mathcal{E} \end{array} \qquad \begin{array}{ll} \min & \boldsymbol{b}^{\top} \boldsymbol{y} \\ \text{s.t.} & \boldsymbol{A}^{\top} \boldsymbol{y} = \tilde{\boldsymbol{c}} \\ & \boldsymbol{y}_{i} \geq \boldsymbol{0} & i \in [m] \setminus \mathcal{E} \end{array} \tag{\tilde{D}}$$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, \ a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: Each optimal solution of $\max\{\hat{c}^{\top}x \mid x \in F\}$ satisfies $a_i^{\top}x = b_i$ for $i \in \mathcal{H} := \{i \mid \tilde{y}_i > nk\}$

Complementary slackness conditions for $(\hat{P})/(\tilde{D})$:

If \tilde{y} optimal for (\tilde{D}) then $\forall \hat{x}$ optimal for (\hat{P}) :

$$\tilde{y}_i > nk \quad \Rightarrow \quad a_i^{\top} \hat{\mathbf{x}} = b_i \qquad \qquad i \in [m] \setminus \mathcal{E} \quad (*)$$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

(correctness)

Proposition: Vector x^* returned maximizes $\mathbf{c}^\top x$ over P.

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

At each iteration, we run the **scaling algorithm** to solve (\tilde{P}) **Obs**: F is a lattice polytope in $[0, k]^n$ and $\|\tilde{c}\|_{\infty} \leq n^3 k \alpha$.

At each iteration the scaling algorithm constructs a simplex path of length in $O(nk \log \|\tilde{c}\|_{\infty}) \in O(nk \log(nk\alpha))$

Theorem 2: Simplex path length in $O(n^2 k \log(nk\alpha))$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

In step 3: Compute an optimal solution \tilde{y} to (\tilde{D}) s.t. [...] Let $\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$, and set $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

We prove that at each iteration the rank of the row submatrix of A indexed by $\mathcal E$ increases by at least 1

In step 3: Compute an optimal solution \tilde{y} to (\tilde{D}) s.t. [...] Let $\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$, and set $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

We prove that at each iteration the rank of the row submatrix of A indexed by $\mathcal E$ increases by at least 1

In step 3: Compute an optimal solution \tilde{y} to (\tilde{D}) s.t. [...] Let $\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$, and set $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}$

(i) $\tilde{y}_i = 0 \ \forall \ j \in [m] \setminus \mathcal{E}$ s.t. a_i is linear combination of $a_i, \ i \in \mathcal{E}$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

We prove that at each iteration $\mathcal{H} \setminus \mathcal{E} \neq \emptyset$

In step 3: Compute an optimal solution \tilde{y} to (\tilde{D}) s.t. [...] Let $\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$, and set $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}$

(i) $\tilde{y}_j = 0 \ \forall \ j \in [m] \setminus \mathcal{E}$ s.t. a_j is linear combination of $a_i, \ i \in \mathcal{E}$

At each iteration, we restrict to a face F of P defined as

$$F := \{ x \in \mathbb{R}^n \mid a_i^\top x \le b_i \text{ for } i \in [m] \setminus \mathcal{E}, a_i^\top x = b_i \text{ for } i \in \mathcal{E} \}$$

Lemma: At the end of iteration j: $\dim(F) \le n - j$ \Rightarrow at most n iterations

We prove that at each iteration $\mathcal{H} \setminus \mathcal{E} \neq \emptyset$

In step 3: Compute an optimal solution \tilde{y} to (\tilde{D}) s.t. [...] Let $\mathcal{H} := \{i \mid \tilde{y}_i > nk\}$, and set $\mathcal{E} \leftarrow \mathcal{E} \cup \mathcal{H}$

(i) $\tilde{y}_j = 0 \ \forall \ j \in [m] \setminus \mathcal{E}$ s.t. a_j is linear combination of $a_i, \ i \in \mathcal{E}$ (ii) \tilde{y} has at most n nonzero components

min
$$b^{\top}y$$

s.t. $A^{\top}y = \tilde{c}$
 $y_i \ge 0$ $i \in [m] \setminus \mathcal{E}$

min
$$b^{\top}y$$

s.t. $A^{\top}y = \tilde{c}$
 $y_i \ge 0$ $i \in [m] \setminus \mathcal{E}$

Let
$$\mathcal{B} = \{i \in \{1, \dots, m\} \mid \tilde{y}_i \neq 0\}$$

$$\tilde{c} = \sum_{i \in [m]} a_i \tilde{y}_i = \sum_{i \in \mathcal{B}} a_i \tilde{y}_i$$

min
$$b^{\top}y$$

s.t. $A^{\top}y = \tilde{c}$
 $y_i \ge 0$ $i \in [m] \setminus \mathcal{E}$

 \tilde{y} optimal solution of (\tilde{D}) with at most n nonzero components

Let
$$\mathcal{B} = \{i \in \{1, \dots, m\} \mid \tilde{y}_i \neq 0\}$$

 $i \in [m]$ $i \in \mathcal{B}$

$$ilde{c} = \sum a_i ilde{y}_i = \sum a_i ilde{y}_i$$
 By contradiction, $\mathcal{H} \setminus \mathcal{E} = \emptyset$

$$\mathcal{H} := \{i \mid \tilde{y}_i > nk\} \qquad \Rightarrow |\tilde{y}_j| \le nk \ \forall \ j \in \mathcal{B} \setminus \mathcal{E}$$

min
$$b^{\top}y$$

s.t. $A^{\top}y = \tilde{c}$
 $y_i \ge 0$ $i \in [m] \setminus \mathcal{E}$ (\tilde{D})

Let
$$\mathcal{B} = \{i \in \{1, \dots, m\} \mid \tilde{y}_i \neq 0\}$$

$$\tilde{c} = \sum_{i \in [m]} a_i \tilde{y}_i = \sum_{i \in \mathcal{B}} a_i \tilde{y}_i$$
 By contradiction, $\mathcal{H} \setminus \mathcal{E} = \emptyset$

$$\mathcal{H} := \{i \mid \tilde{y}_i > nk\} \qquad \Rightarrow |\tilde{y}_j| \le nk \ \forall \ j \in \mathcal{B} \setminus \mathcal{E}$$

$$\|\tilde{c}\|_{\infty} \leq \sum_{j \in \mathcal{B}} \|a_j \tilde{y}_j\|_{\infty} = \sum_{j \in \mathcal{B}} (|\tilde{y}_j| \|a_j\|_{\infty})$$

min
$$b^{\top}y$$

s.t. $A^{\top}y = \tilde{c}$
 $y_i \ge 0$ $i \in [m] \setminus \mathcal{E}$ (\tilde{D})

Let
$$\mathcal{B} = \{i \in \{1, \dots, m\} \mid \tilde{y}_i \neq 0\}$$

$$\tilde{c} = \sum_{i \in Iml} a_i \tilde{y}_i = \sum_{i \in \mathcal{B}} a_i \tilde{y}_i$$
 By contradiction, $\mathcal{H} \setminus \mathcal{E} = \emptyset$

$$\mathcal{H} := \{i \mid \tilde{y}_i > nk\} \qquad \Rightarrow |\tilde{y}_j| \le nk \ \forall \ j \in \mathcal{B} \setminus \mathcal{E}$$

Case 1:
$$\mathcal{B} \setminus \mathcal{E} = \mathcal{B}$$

$$\|\tilde{c}\|_{\infty} \leq \sum_{j \in \mathcal{B}} \|a_{j}\tilde{y}_{j}\|_{\infty} = \sum_{j \in \mathcal{B}} (|\tilde{y}_{j}| \|a_{j}\|_{\infty}) \leq \sum_{j \in \mathcal{B}} (nk \cdot \alpha) \leq \frac{n^{2}k\alpha}{n^{2}k\alpha}$$

min
$$b^{\top}y$$

s.t. $A^{\top}y = \tilde{c}$
 $y_i \ge 0$ $i \in [m] \setminus \mathcal{E}$ (\tilde{D})

Let
$$\mathcal{B} = \{i \in \{1, \dots, m\} \mid \tilde{y}_i \neq 0\}$$

$$\tilde{c} = \sum_{i \in Iml} a_i \tilde{y}_i = \sum_{i \in \mathcal{B}} a_i \tilde{y}_i$$
 By contradiction, $\mathcal{H} \setminus \mathcal{E} = \emptyset$

$$\mathcal{H} := \{i \mid \tilde{y}_i > nk\} \qquad \Rightarrow |\tilde{y}_j| \le nk \ \forall \ j \in \mathcal{B} \setminus \mathcal{E}$$

Case 1:
$$\mathcal{B} \setminus \mathcal{E} = \mathcal{B}$$

$$\|\tilde{c}\|_{\infty} \leq \sum_{j \in \mathcal{B}} \|a_{j}\tilde{y}_{j}\|_{\infty} = \sum_{j \in \mathcal{B}} (|\tilde{y}_{j}| \|a_{j}\|_{\infty}) \leq \sum_{j \in \mathcal{B}} (nk \cdot \alpha) \leq n^{2}k\alpha$$

But
$$\tilde{c} = \begin{bmatrix} \frac{n^3 k \alpha}{\|\bar{\epsilon}\|_{\infty}} \bar{c} \end{bmatrix} \Rightarrow \|\tilde{c}\|_{\infty} = \frac{n^3 k \alpha}{n^3 k \alpha}$$
 contradiction

min
$$b^{\top}y$$

s.t. $A^{\top}y = \tilde{c}$
 $y_i \ge 0$ $i \in [m] \setminus \mathcal{E}$ (\tilde{D})

 \tilde{y} optimal solution of (\tilde{D}) with at most n nonzero components

Let
$$\mathcal{B} = \{i \in \{1, \dots, m\} \mid \tilde{y}_i \neq 0\}$$

$$\tilde{c} = \sum_{i \in [m]} a_i \tilde{y}_i = \sum_{i \in \mathcal{B}} a_i \tilde{y}_i$$
 By contradiction, $\mathcal{H} \setminus \mathcal{E} = \emptyset$

$$\mathcal{H} := \{i \mid \tilde{y}_i > nk\} \qquad \Rightarrow |\tilde{y}_j| \le nk \ \forall \ j \in \mathcal{B} \setminus \mathcal{E}$$

Case 2:
$$\mathcal{B} \setminus \mathcal{E} \neq \mathcal{B}$$

$$\left\|\tilde{c}\right\|_{\infty} \leq \sum_{j \in \mathcal{B}} \left\|a_{j}\tilde{y}_{j}\right\|_{\infty} = \sum_{j \in \mathcal{B}} \left(\left|\tilde{y}_{j}\right| \left\|a_{j}\right\|_{\infty}\right)$$

more involved...

Thank you!