

The NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond

Kenneth A. LaBel

Michael J. Sampson

ken.label@nasa.gov

michael.j.sampson@nasa.gov

301-286-9936

301-614-6233

Co- Managers, NEPP Program

NASA/GSFC

http://nepp.nasa.gov

Acknowledgment:

This work was sponsored by: NASA Office of Safety & Mission Assurance

Open Access

Acronyms

Acronym	Definition
CBRAM	Conductive Bridging Random Access Memory
CGA	Column Grid Array
CMOS	Complementary Metal Oxide Semiconductor
COTS	Commercial Off The Shelf
EEE	Electrical, Electronic, and Electromechanical
EPC	Efficient Power Conversion
FeRAM	Ferroelectric RAM
FPGA	Field Programmable Gate Array
FY	Fiscal Year
GaN	Gallium Nitride
Gen	Generation
GSFC	Goddard Space Flight Center
HEMTs	High-electron-mobility transistors
HP Labs	Hewlett-Packard Laboratories
IC	Integrated Circuit

Acronym	Definition
IR	Infrared
IR/Infineon	International Rectifier/Infineon Technologies
MOSFETS	Metal Oxide Semiconductor Field Effect Transistors
MRAM	Magnetoresistive Random Access Memory
NASA	National Aeronautics and Space Administration
NAVY Crane	Naval Surface Warfare Center, Crane, Indiana
NEPP	NASA Electronic Parts and Packaging
RERAM	Resistive Random Access Memory
SEE	Single Event Effect
SiC	Silicon Carbide
SOC	Systems on a Chip
TI	Texas Instruments
VNAND	Vertical NAND
WBG	Wide Band Gap

Technology Selection Criteria for NEPP Investigation

- The technologies should satisfy all or most of the following criteria:
 - Wide applicability,
 - Product level or in productization, and,
 - No distinction: COTS to hi-reliability aerospace.
- Partnering arrangements with other organizations preferred.
- In general, we avoid:
 - Laboratory technologies, e.g., <TRL3,
 - Limited application devices with certain exceptions (critical application or NASA center specialization).

COTS = Commercial Off The Shelf

Technology Investigation Roadmap Discussion

- Technology assurance efforts are not explicitly included except on "Small Missions" chart.
 - Guidelines are a product of many technology evaluation tasks.
- Only major product categories shown.
- Technology areas not on Roadmap but under consideration include:
 - Electro-optics (fiber optics),
 - Advanced analog and mixed-signal devices,
 - Imaging sensors,
 - Modeling and simulation,
 - High-speed communication (SERDES, fast data switches), and,
 - Adjunct processors (eg., graphics, signal processing)
- Note 1: Advanced CMOS technologies not explicitly included:
 - NEPP leverages samples from ongoing DoD and/or commercial sources.
 - 14nm is current target.
- Note 2: "Reliability testing" may include product and/or package testing.

Field Programmable Gate Arrays (FPGAs)

DoD Development

Altera

- Stratix 5 (28nm TSMC process commercial)
- Max 10 (55nm NOR based commercial - small mission candidate)
- Stratix 10 (14nm Intel process commercial)

Microsemi

RTG4 (65nm RH)

Xilinx

- 7 series (28nm commercial)
- Ultrascale (20nm commercial planar)

FY14

- Ultrascale+ (16nm commercial - vertical)
- Virtex 5QV (65nm RH)

FY=Fiscal Year

Xilinx Zynq UltraScale+ Multi-Processor System on a Chip (MPSoC) family

Advanced Processors

Next Generation Space Processor (NGSP)

- Joint NASA-AFRL Program for RH multi-core processor
- TBD architecture/process

TBD – (track status)

RH Processor

- BAE Systems RAD5510/5545
- Replacement for RAD750

Intel Broadwell Processors

- 14nm FinFET commercial
- 1st high-performance sans heatsink (lower power for performance)

Freescale P5020/5040

- Commercial 45nm network processor
- Preparation for RH processor

Radiation Testing

Note: Future considerations under discussion include automotive "self-driving" processor options.

FY14

Preliminary Radiation testing of 14nm Intel with Navy Crane

Microcontrollers and Mobile Processors (Small Missions)

To be presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.

Commercial Memory Technology

Other

- **MRAM**
- **FeRAM**

TBD – (track status)

Resistive

- **CBRAM (Adesto)**
- ReRAM (Panasonic)
- ReRAM (Tezzaron)
- **TBD (HP Labs, others)**

Radiation and Reliability Testing

Radiation and Reliability Testing

Radiation and Reliability Testing

TBD – (track status)

DDR 3/4

- **Intelligent Memory (robust** cell twinning)
- Micron 16nm DDR3
- TBD other commercial

Radiation Testing

Radiation Testing Reliability Testing

TBD – (track status)

FLASH

- Samsung VNAND (gen 1 and 2)
- Micron 16nm planar
- **Micron Hybrid memory Cube**
- **TBD** other commercial

Radiation and Reliability Testing

Radiation and Reliability Testing

TBD - (track status)

Radiation and Reliability Testing

FY15

FY16

MRAM=Magnetoresistive Random Access Memory FeRAM=Ferroelectric RAM CBRAM=Conductive Bridging Random Access Memory ReRAM=Resistive Random Access Memory HP Labs=Hewlett-Packard Laboratories VNAND=Vertical NAND

Small Missions

EEE Parts Guidelines

- Small missions (Class D, CubeSat – 2 documents)
- System on a chip (SOC) single event effects (SEE) guideline

Guideline development

Guideline development

Commodities evaluation

- See commodities roadmaps for processors, power
- CubeSat Star Tracker

Radiation Testing

Reliability Testing

Automotive grade electronics

- Multiple classes of electronics (passives, actives, ICs)
- Testing by NASA and Navy Crane

Reliability Testing

Alternate test – board level

- Freescale MPC56XX
- Automotive Grade
- Both part and board level reliability testing

Reliability Testing

Radiation Testing

FY14 FY15

FY16

FY17

EEE = Electrical, Electronic, and Electromechanical

NAVY Crane = Naval Surface Warfare Center, Crane, Indiana

ICs = Integrated Circuits

Automotive Processors and Systems for Self-Driving Cars?

S32V234 Block Diagram

From Freescale.com

Wide Band Gap (WBG) Technology

GaN=Gallium Nitride
Gen=Generation

HEMTs=High-electron-mobility transistors

IC=Integrated Circuit
MOSFETS=Metal Oxide Semiconductor Field Effect Transistors
SiC=Silicon Carbide

Silicon Power Devices

Packaging Technologies (1 of 2)

Packaging Technologies (2 of 2)

Bump Reliability

- Technology review
- Test vehicle options

3D Packaging Technologies

- Technology review
- Test vehicle options

QFN package reliability

Reliability/Qualification metrics

Guideline research

Guideline research

Reliability Testing

FY14 FY15 FY16 FY17

And Just When You Think Your Roadmap is Set, New Parts are Released

- Examples
 - More complex processors
 - TI Multicore DSP+ARM KeyStone II System-on-Chip (SoC)
 - Integrated "instruments"
 - TI DLP2010NIR near IR sensing and controller

IR=Infrared

Summary and Comments

- NEPP Roadmaps are constantly evolving as technology and products become available.
 - Like all technology roadmaps, NEPP's is limited to funding and resource availability.
 - Not shown are TBD passives and connector roadmaps under development.
 - NEPP is working to develop preliminary plans on interfacing to the NASA Reliability and Maintainability
 Program and its work on Model Based System Engineering (MBSE) approaches.
- We look forward to further opportunities to partner.

https://nepp.nasa.gov