Introduction:

How do online news article features explain and predict the bias of the article content? In this thesis, I intend to argue that news article topics (along with the source of publication) are associated with the extent to which news sources converge or diverge from each other in news content. I define this distance as *bias*. Mathematically, this *bias* is a cosine distance between vector forms of text contents of news articles and their corresponding sources (more on computing variable measures in the Data Engineering and Analysis Section).

I hypothesize that there is a statistically significant difference in the bias measure between different news sources' articles, conditional on topics. That is, one would expect that for topic A the average cosine distance between texts of sources X and Y should be different than for topic B. The intuition is that, for example, CNN's articles may be quite different from RT's articles on topics such as "politics", but not as different on less politicized topics like "crime."

In terms of analysis methods, for these preliminary results, I use Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003), a probabilistic topic modelling technique to infer the most dominant topic for each observation (i.e. article). I use this method as outlined in Grimmer and Stewart (2013, 17–19). Prior Political Science research used topic modelling to infer predominant topics in Senate floor speeches (Quinn et al. 2010) and article topics in US news covering women in predominantly Muslim countries (Terman 2017). Hence, this is an appropriate method to engineer the topic variable for the data, the "predominant topic" for each news article observation.

To construct the independent variable, cosine distances, I vectorize texts using word2vec word embeddings, which represent each text string in its vector form as extracted from a vector space that represents latent semantic content of news articles (Mikolov et al. 2013). There are two reasons for using these pre-trained word embeddings. First, to train our own word embeddings, one would need a very large corpus (of news, in this case) (Chollet 2017). Since the article dataset for the purposes of this analysis has only 3327 observations, I resort to pretrained word embeddings. Second, the embeddings I use were trained on Google News. This is appropriate as the vector space of word embeddings is tied to the language context (Chollet 2017). Since the embeddings were trained on 100 billions words from Google News, I expect that these embeddings would be appropriate to this project's context (Google 2013).

For the purposes of the preliminary analysis, I use Welch's T-test for difference in means in cosine distances between pairs of news sources, conditional on topics. However, for the full version of the analysis, I anticipate experimenting with multiple linear regression and supervised machine learning methods to infer a function that maps article sources and topics onto values of cosine distances (more on that in the Further Steps and Limitations).

Data Engineering and Analysis

The dataset was gathered through a scraping process with RSS feeds and using Python's newspaper3k package, as outlined in the Methods paper.

Source	Count
BBC News	797
CNN	939
Fox News	760
RT	831
Total	3327

Table 1: Source Article Counts

Table 1 summarizes total counts of articles per each source. Note that MSNBC source is missing. This is because the project could not discover a reliable RSS feed service for the website and data has not been gathered for this source using RSS feeds. For this analysis, the range of scraping dates is between January 31 and February 7, 2019.

After cleaning and word-preprocessing steps outlined in the methods paper, the next step in analysis consists of generating predominant topics for each of the articles, which necessitates building a topic model. Since this is an unsupervised algorithm, one does not know a priori the optimal number of topics that the texts would cluster round. One way to decide an appropriate number is the coherence measure; higher coherence measures demonstrate a better topic number (Röder, Both, and Hinneburg 2015). Figure 1 is a result of training 38 different LDA topic models, each associated with a number of topics ranging from 2 to 40.

Figure 1: Coherence vs Number of Topics

Note that the coherence measure reaches its maximum and levels off at 20 topics. Thus, I choose the 20-topics LDA model for further analysis.

¹ However, the project is collecting the data from the website using non-RSS scraping, though this may render this data not comparable to data from other sources for which RSS feeds were used.

LDA assumes that each topic is composed words (lemmas), with each word responsible for a proportion of a topic. Appendix contains a table of the 10 of the 20 topics², with the listing of each top lemmas associated with a given topic and the corresponding weights within the topic. Topic labels in the first column are researcher's interpretations based on the lemmas within each topic and partial manual reading of news articles in which the topic is dominant. Note that some topics are more human-interpretable than others, topic labels that are less interpretable are appended with the question mark.

Once I assign a predominant to each article, we can see the distribution of topic for each source (Figure 2).

Topic Distribution by Source

CNN Fox News Count RT BBC Count 75 9 10 11 12 13 14 15 16 17 18 19 Topic Topic

Figure 2: Topic Count Distribution per Source

² There is a technical issue printing out all 20 topics' probabilities that is yet to be resolved.

Next variable for analysis is the cosine difference, the dependent variable. Cosine difference is $1 - (cosine \ similarity)$. For computation purposes, I use cosine similarity, but the statistical results do not differ as statistical tests for difference in cosine distances (i.e. bias) are mathematically equivalent to tests in cosine similarities. The interpretation is that two "similar" news articles would have "little" bias, as defined by this study. The bias measure (cosine difference) between two news articles in their vector representations \vec{u} and \vec{v} is:

$$1 - \frac{\vec{u} * \vec{v}}{\|\vec{u}\| * \|\vec{v}\|}$$

Where vector norms used in the denominator are L2-norms. Since there are 3327 article observations, I compute $\binom{3327}{2} = 5532801$ pairwise article cosine similarities. For the purposes of this preliminary analysis, let us look at CNN as the baseline standard for bias measure and Fox News and RT as compared to CNN and constrain the search to topics "Crime" and "US Politics."

Table 2 reports summary statistics on cosine similarities with the data constrained to the conditions in the previous paragraphs.

Table 2: CNI	V to Target	Source Co	osine Simila	arity Summ	ary Statistics

topic	target	count	mean	std	min	25%	50%	75%	max
	source								
Crime	Fox	11160	0.829556933	0.05382656	0.546680808	0.799793571	0.835678518	0.86743091	0.983913898
	News								
	RT	6789	0.839204574	0.048338039	0.622709155	0.811861634	0.844044447	0.872817934	0.970934093
US	Fox	3848	0.883838486	0.053207771	0.616143465	0.859033167	0.89343968	0.919283092	0.986397505
Politics	News								
	RT	11856	0.880364607	0.048124528	0.603044808	0.857095465	0.889096975	0.914100915	0.977500319

For instance, on the topic of "Crime," there are 11160 cosine similarities between CNN and Fox News news articles, with an average similarity value of 0.82956 and standard deviation of 0.05384, with values ranging from 0.54668 and 0.98391. So, with constraints, there are a total of 33653 cosine similarity observations.

For this analysis, I would hypothesize that, on average, the cosine similarity between CNN and Fox News articles to be different from between Crime and US Politics topics. One

would expect that, since US Politics should be a more polarizing topic. On the other hand, when writing on Crime, the two sources should be closer on average, so the mean difference (and similarity) should be significantly lower, or different from the US Politics. Similarly, average similarities between CNN and RT should be different conditional on the topic. So I perform two unequal variance t-tests, one between the two similarity means of CNN and Fox News and one between CNN and RT. More formally, the null hypothesis is that there is no difference between the two cosine similarity means within each target source. Alternative hypothesis is that there is a statistical difference. The assumption of normal distributions of sample values is acceptable due to a large sample size and equal variances are not assumed.

Table 3: Welch's 2 Sample T-Tests

	Mean Difference	Test Statistic	p-value
CNN vs Fox News	-0.05428	-54.40851	0.0
CNN vs RT	-0.04115	-56.03709	0.0

Based on results in Table 3, we can reject the null hypotheses of no difference. There is a statistically significant difference within each set of means, for both t-tests (at any alpha significance threshold).

In terms of interpretation of the results, there is a confirmation of the intuition outlined above. However, as a counterpoint, one thing to consider is the practical interpretation of the small (albeit statistically significant) mean difference. Would such small mean differences between the two categories for CNN vs Fox News and CNN vs RT (-.05 and -0.04 respectively) have an impact in terms of a reader being able to tell the difference in content? Would a reader be able to tell the difference in similarity by reading articles between two topics? What does a value of -0.05 mean practically for a news reader? This is unclear based on the design of the study.

Further steps and Limitations

The analysis performed above is quite rudimentary in terms of statistical machinery and is also limited in that it is constrained to a small subset of the data (in both sources and topic categories). Therefore, a natural extension of this analysis will be expanding the data set to all topics and all news sources. This would mean including BBC and expanding to eighteen more topics. However, for more feasible statistical analysis, one can still keep the analysis constrained to one baseline source (as CNN in the preliminary analysis). Moreover, one more variable not considered above is the time of publication, a data point that I have also been extracting during data gathering.

The expansion of the analysis may naturally necessitate different statistical methods, because the use of many isolated t-tests may become insufficient.³ One way to do so is to use supervised machine learning to infer a function that takes in constructed dominant topics and news sources to predict the continuous dependent variable values of cosine similarities. A successful model should be able to capture this mapping, suggesting that topics and sources may play a nontrivial role in determining news bias.

Another extension of the current methodology is to account for the "dominance" of a topic. Currently, the project only accounts for what the dominant topic is for each article, but not to what extent that article is dominated by the dominant article. As of the writing of this, it is not yet clear how to incorporate this data into the statistical analysis.

One challenge is the interpretability of topics coming out of the LDA topic model. This is especially important since the hypotheses are based on the researcher's interpretations of the

³ Though I would need further consultation on what other more sophisticated statistical techniques may be needed.

topics. When topic interpretation is vague or unclear, as is the case with the "Europe/Religion" or "Miscellaneous" topic, it is unclear what hypotheses to posit for further analysis.

A final important extension needed for the project is a methods validation step. For instance, as Denny and Spirling (2018) suggest in application to text-as-data methods in Political Science, text preprocessing steps such as lemmatization and tokenization of words may have non-trivial consequences for the later analysis. The authors also provide a software tool to measure such sensitivity mathematically. Employing this method can contribute to validating this project's methodology.

Bibliography

- Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. "Latent Dirichlet Allocation." *Journal of Machine Learning Research* 3 (Jan): 993–1022.
- Chollet, Francois. 2017. *Deep Learning with Python*. 1 edition. Shelter Island, New York: Manning Publications.
- Denny, Matthew J., and Arthur Spirling. 2018. "Text Preprocessing For Unsupervised Learning: Why It Matters, When It Misleads, And What To Do About It." *Political Analysis* 26 (2): 168–89. https://doi.org/10.1017/pan.2017.44.
- Google. 2013. "Google Code Archive Long-Term Storage for Google Code Project Hosting." 2013. https://code.google.com/archive/p/word2vec/.
- Grimmer, Justin, and Brandon M. Stewart. 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts." *Political Analysis* 21 (3): 267–97. https://doi.org/10.1093/pan/mps028.
- Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. "Efficient Estimation of Word Representations in Vector Space." *arXiv:1301.3781 [Cs]*, January. http://arxiv.org/abs/1301.3781.
- Quinn, Kevin M., Burt L. Monroe, Michael Colaresi, Michael H. Crespin, and Dragomir R. Radev. 2010. "How to Analyze Political Attention with Minimal Assumptions and Costs." *American Journal of Political Science* 54 (1): 209–28. https://doi.org/10.1111/j.1540-5907.2009.00427.x.
- Röder, Michael, Andreas Both, and Alexander Hinneburg. 2015. "Exploring the Space of Topic Coherence Measures." In *Proceedings of the Eighth ACM International Conference on Web Search and Data Mining*, 399–408. ACM.
- Terman, Rochelle. 2017. "Islamophobia and Media Portrayals of Muslim Women: A Computational Text Analysis of US News Coverage." *International Studies Quarterly* 61 (3): 489–502. https://doi.org/10.1093/isq/sqx051.

Appendix

Topic	Lemma	Weight
Healthcare	health	0.021356275
	drug	0.017169613
	patient	0.014966376
	hospital	0.014058208
	doctor	0.013041544
	medical	0.012904156
	death	0.011811129
	child	0.011142593
	die	0.009480785
	accord	0.009249739
	case	0.007865488
	marijuana	0.007396302
	state	0.006826073
	disease	0.006820308
	care	0.006795365
	virus	0.006617869
	treatment	0.006525188
	physician	0.005527902
	report	0.005455626
	colorado	0.005275759
Virginia Scandal	woman	0.03458775
	white	0.01401055
	northam	0.013049183
	racist	0.012259012
	blackface	0.012191094
	state	0.011485968
	abortion	0.010237206
	statement	0.009424654
	page	0.008444632
	black	0.008390697
	law	0.008121205
	racism	0.007457194
	female	0.007386289
	photo	0.007292737
	resign	0.007125538
	allegation	0.007048612

	1	1
	call	0.006940115
	man	0.006812302
	male	0.006213304
	fox_new	0.00565377
Internet	company	0.032780383
	facebook	0.02512524
	user	0.02503532
	datum	0.024067476
	use	0.019326303
	арр	0.012956737
	apple	0.008173591
	location	0.00787725
	bezos	0.007579328
	device	0.007099449
	account	0.0068419
	information	0.006777159
	content	0.006568655
	online	0.006307459
	ad	0.006261959
	amazon	0.006236916
	platform	0.006192211
	technology	0.006115128
	access	0.006042211
	service	0.006024787
Film Entertainment	film	0.029596165
	star	0.014588127
	show	0.014189566
	actor	0.007148785
	award	0.0070799
	movie	0.006924432
	viewer	0.006377359
	character	0.006114045
	director	0.006041962
	gold	0.006004583
	screen	0.005792552
	singer	0.0055738
	art	0.005544589
	series	0.005529801
	jackson	0.005524482
· · · · · · · · · · · · · · · · · · ·	1 -	1

	1	
	tv	0.005436325
	feature	0.005275256
	documentary	0.005188048
	oscar	0.005068018
	audience	0.005006113
Europe/Religion (?)	percent	0.022427117
	france	0.012742646
	migrant	0.012226461
	agent	0.011093353
	italian	0.010313642
	indian	0.009704245
	christian	0.008950181
	brown	0.008346878
	church	0.007707134
	client	0.006923214
	muslim	0.00682775
	pope	0.006379222
	religious	0.006205661
	local	0.006123465
	india	0.006082493
	french	0.005540685
	melenchon	0.00534454
	rap	0.005307347
	rally	0.004812846
	yellow_v	0.004779587
Social Media	post	0.018759077
	show	0.011776809
	write	0.011317118
	twitter	0.011096339
	tweet	0.010678786
	photo	0.010215716
	social_media	0.009319095
	picture	0.008589178
	claim	0.008389646
	appear	0.007832815
	black	0.00766507
	comment	0.007629905
	book	0.007580692
	story	0.007560819
	· ·	1

	news	0.006640774
	call	0.00648081
	medium	0.005961065
	share	0.005669491
	message	0.005569206
	white	0.005273922
Crime	say	0.03543368
	police	0.017489148
	report	0.01704276
	investigation	0.010634722
	tell	0.009418309
	case	0.008900867
	man	0.008822541
	court	0.008685392
	charge	0.008662362
	accord	0.008612257
	officer	0.00778858
	statement	0.007241639
	incident	0.007031478
	arrest	0.006884985
	release	0.006214471
	claim	0.006078404
	kill	0.005821042
	authority	0.005523318
	official	0.005438603
	department	0.005374842
Military Technology	new	0.015843192
	use	0.007960635
	system	0.007286145
	could	0.006790177
	build	0.005663232
	large	0.005628427
	make	0.005056441
	say	0.004959554
	need	0.004699855
	test	0.004691333
	missile	0.004619563
	time	0.004604614
	provide	0.004378165
	1	

	work	0.004273396
	technology	0.004106806
	project	0.003706465
	create	0.003641293
	part	0.003542974
	small	0.003276763
	year	0.00319213
Miscellaneous (?)	say	0.042327397
	not	0.023021588
	get	0.016169745
	go	0.016026348
	people	0.013929803
	do	0.013088849
	time	0.010979071
	know	0.010479162
	be	0.01028548
	tell	0.010213814
	S	0.010200537
	make	0.00943996
	think	0.009119026
	take	0.009084662
	want	0.008767445
	see	0.008444416
	would	0.008057352
	work	0.007879037
	come	0.006913245
	thing	0.006682945
Government	say	0.040766444
	would	0.018493077
	could	0.008005157
	make	0.007651093
	deal	0.007466237
	take	0.006904717
	plan	0.00637016
	add	0.006093674
	government	0.005916797
	year	0.005739184
	come	0.005267058

	issue	0.005138557
	time	0.00488225
	decision	0.004870927
	change	0.004532074
	thursday	0.004511569
	however	0.004392966
	support	0.004349074
	tell	0.004121621
	leave	0.003997585