Imagine you work for a bank and you want to predict whether a loan applicant will default on their loan or not based on some demographic and financial data. Here is a sample dataset containing 10 loan applicants and whether they defaulted on their loan or not Defaulted Bachelor's 80.000 Master's Yes 70,000 Master's 18,000 High School Yes 48.000 Bachelor's 25,000 High School Yes

Applicant ID	Age	Income	Education Level	Defaulted
11	31	55,000	Bachelor's	?
n this example, we ha	ave a new	applicant who	is 31 years old, has an ann	ual income of
\$55,000, and has a B	achelor's	degree. The qu	estion mark in the Defaulte	ed column
indicates that we do r	not know v	whether this ap	plicant will default on their	loan or not. We
can use our Naive Ba	yes classif	ier to predict th	ne value of the Defaulted c	olumn for this

Age: 10-19, 20-29, 30-39, 40-49

Income: < 20,000, 20,001-39,999, 40,000-59,999, 60,000-80,000

class :

C1: Defaulted = "yes" = 3/10 C2: Defaulted = "no" = 7/10

compute P(x1ci) for each class

```
P(Age = "10-19" | C1) = 0 P(Age = "10-19" | C2) = 0 P(Age = "20-29" | C1) = 2/3 P(Age = "30-39" | C1) = 1/3 P(Age = "30-39" | C2) = 3/7 P(Age = "40-49" | C1) = 0 P(Age = "40-49" | C2) = 2/7
```

```
P(Income = "\angle 20,000" | C1) = 1/3 P(Income = "\angle 20,000" | C2) = 0

P(Income = "\angle 20,001 - 39,999" | C1 = 1/3 P(Income = "\angle 20,001 - 39,999" | C2 = 2/7

P(Income = "\angle 40,000 - 59,999" | C1 = 1/3 P(Income = "\angle 40,000 - 59,999" | C2 = 2/7

P(Income = "\angle 60,000 - 80,000" | C2 = 3/7
```

P(Education Level = "High School" | C1) = 2/3 P(Education Level = "High School" | C2) = 2/7 P(Education Level = "Bachelor's" | C1) = 1/3 P(Education Level = "Bachelor's" | C2) = 3/7 P(Education Level = "Master's" | C1) = 0 P(Education Level = "Master's" | C2) = 2/7

D11 = (Age = "30-39, Income = "40,000-59,999", Education Level = "Bachelor's")

 $P(x|Ci): (P|C1) = 1/3 \times 1/3 \times 1/3 = 1/27 = 0.037 \times 0.3 = 0.0111$: $(P|C2) = 3/7 \times 2/7 \times 3/7 = 18/343 = 0.052 \times 0.7 = 0.0364$

:. Therefore, ID11 belong to class ("Defaulted" = "no")