Simple Linear Regression

- Useful for Predicting quantitative <u>Response</u>
- Predicting Y on the basis of a single predictor variable X
- ullet Assuming that there is a linear relationship between X and Y

$$Ypproxeta_0+eta_1X$$

- This can be read as regressing Y on X
- or Y onto X

Example :

- ullet TV ads o X
- Sales o Y
- Sales $pprox eta_0 + eta_1 TV$
 - β_0,β_1 two unknown **constants**
 - $eta_0 o {\sf Slop}$ of X
 - $\beta_1 o ext{intercept of } Y$
 - They are called model Coefficients or Parameters

After Using Training data to estimate \hat{eta}_0,\hat{eta}_1

$$\hat{y}=\hat{eta}_0+\hat{eta}_1 x$$

Estimating the Coefficients

- In practice β_0, β_1 are unknown, we usually use <u>Training Data</u> to estimate them $(x_1, y_1), \dots, (x_n, y_n)$
- we try to estimate β_0,β_1 as close as possible to the data points so:

$$ullet \ y_ipprox\hateta_0+\hateta_1x_i$$

ullet To minimize as much as possible o we use Least squares criterion

Let
$$\hat{y} = \hat{eta}_0 + \hat{eta}_1 x_i
ightarrow e_i = y_i - \hat{y}_i$$

- y_i observed response o true values in <u>Training Data</u>
- \hat{y}_i predicted response o from the regression line With that we have Residual Sum of Squares (RSS)

- The Blue line fit is found by the lease squares
- Minimizing the residual sum of squares
 - Minimizing both β_0, β_1 Ordinary Least Squares
- ullet Every grey line is the residual of $y_i \hat{y}_i$

Assessing the Accuracy of the Coefficients β_0, β_1

- 1. Standard Error $SE(\hat{\beta}_1)$
- 2. Confidence Interval
- 3. Hypothesis Testing
- We assumed that the true relationship between X and Y is on form :

$$Y=f(X)+arepsilon$$

• If *f* is approximated to be linear then we can write the relationship as:

$$Y=eta_0+eta_1x+arepsilon$$

- $\beta_1 \rightarrow$ The average increase in Y associated with one unite increase in X
- The population mean μ is usually unknown so the sample mean $\bar{\mu}$ will provide a good estimate to μ
- The sample mean $\bar{\mu}$ is unbiased \to it averages out an estimation of huge biased estimations so that the sample mean $\bar{\mu}$ will be as close to the real population mean μ

Using the same Logic we make multiple estimations for Coefficients \hat{eta}_0,\hat{eta}_1 and averaging it out will be spot on

ullet The question now is how a single estimation is far from the mean $ightarrow {
m variance}$

$$\operatorname{Standard\ error\ }\operatorname{Var}(\hat{\mu})=SE(ar{\mu})^2=rac{\sigma^2}{n}$$

 $oldsymbol{\sigma}$ is the standard deviation of each realization y_i

In the same tone we can see how close $\hat{\beta}_0, \hat{\beta}_1$ are to true values β_0, β_1

$$egin{align} \mathrm{SE}(\hat{eta}_o)^2 &= \sigma^2 \left[rac{1}{n} + rac{ar{x}^2}{\sum_{i=1}^n (x_i - ar{x})^2}
ight] \ \mathrm{SE}(\hat{eta}_1)^2 &= rac{\sigma^2}{\sum_{i=1}^n (x_i - ar{x})^2} \ \end{aligned}$$

Standard Error Derivation