Notas de Aula

Cálculo Diferencial e Integral 3

Fernando RL Contreras

Nucleo de Tecnologia Universidade Federal de Pernambuco (UFPE)

August 19, 2018

1 Sequências

Exemplos de motivação

Definição 1. Entendemos por sequência infinita uma função S cujo domínio \acute{e} o conjunto $\{1,2,3,...\}$ de todos os inteiros positivos. O contradomínio de S, \acute{e} o conjunto $\{S(1),S(2),S(3),...\}$ também podemos escrever como $\{S_1,S_2,S_3,...\}$, e o valor da função S_n chama-se o termo n-ésimo da sequência.

Uma sequência infinita $S_1, S_2, ..., S_n, ...$ pode ser representado por $(S_n)_{n=1}^{\infty}$ ou por (S_n) . Graficamente temos:

Exemplo 1. Nos exemplos a seguir, damos três descrições da sequência, uma usando a notação anterior, outra empregando a formulação da definição e uma terceira escrevendo os termos da sequência

- $\left(\frac{n}{n+1}\right)_{n=1}^{\infty}$ $\left(\frac{n}{n+1}\right), n \ge 1$ $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$
- $(\sqrt{n-3})_{n=3}^{\infty}$ $(\sqrt{n-3}), n \ge 3$ $-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, ..., \frac{(-1)^n(n+1)}{3^n}, ...$
- $\left(\cos\left(\frac{n\pi}{6}\right)\right)_{n=0}^{\infty}$ $\left(\cos\left(\frac{n\pi}{6}\right)\right), n \ge 0$ $1, \frac{\sqrt{3}}{2}, \frac{1}{2}, ..., \cos\left(\frac{n\pi}{6}\right), ...$

Exemplo 2. calcule o n-ésimo termo da sequência 1,3,6,15,21,....

Solução.

Definição 2. uma sequência (S_n) é denominado crescente se $S_n \leq S_{n+1}$, para todo $n \geq 1$, isto é, $S_1 < S_2 < S_3$ É chamado decrescente se $S_n \geq S_{n+1}$ para todo $n \geq 1$. É dita monótona se for crescente ou decrescente.

Exemplo 3. Mostre que a sequência $\frac{n}{n^2+1}$ é decrescente.

Solução.

Definição 3. uma sequência (S_n) é limitada superiormente se existe um número M tal que $S_n \leq M$, para todo $n \geq 1$.

Exemplo 4. • A sequência (n) é limitada inferiormente, mas não superiormente.

• A sequência $\left(\frac{n}{n+1}\right)$ é limitada porque $0 < S_n < 1$, onde $S_n = \frac{n}{n+1}$, para todo n.

agora vamos desenhar a sequência dada no exemplo anterior

Nas figuras anteriores podemos observar que a sequência $\left(\frac{n}{n+1}\right)$ estão se aproximando de 1 quando n se torna grande. De fato a diferença $1-\frac{n}{n+1}$ pode ficar tão pequeno quanto se desejar tornando-se n suficientemente grande.

Definição 4. uma sequência (S_n) tem limite L, se para todo $\varepsilon > 0$ existe um número N > 0, tal que $|S_n - L| < \varepsilon$, para todo n > N e denotaremos com $\lim_{n \to \infty} S_n = L$.

Em forma simbólica temos:

Propriedades

Se (S_n) e (T_n) forem sequências convergentes e c uma constante, então:

•
$$\lim_{n \to \infty} (S_n \pm T_n) = \lim_{n \to \infty} S_n \pm \lim_{n \to \infty} T_n$$
.

$$\bullet \lim_{n \to \infty} cS_n = c \lim_{n \to \infty} S_n.$$

•
$$\lim_{n\longrightarrow\infty} S_n T_n = \lim_{n\longrightarrow\infty} S_n \lim_{n\longrightarrow\infty} T_n$$
.

$$\bullet \lim_{n\longrightarrow\infty}\frac{S_n}{T_n}=\frac{\lim_{n\longrightarrow\infty}S_n}{\lim_{n\longrightarrow\infty}T_n},\lim_{n\longrightarrow\infty}T_n\neq 0.$$

$$\bullet \lim_{n \to \infty} cS_n = c \lim_{n \to \infty} S_n$$

•
$$\lim_{n \to \infty} S_n^p = \left(\lim_{n \to \infty} S_n\right)^p$$
, $p > 0$ e $S_n > 0$.

Exemplo 5. Determine $\lim_{n \longrightarrow \infty} \frac{3n^2 - 5n + 2}{n^2 + 7n - 4}$

Solução.

Exemplo 6. calcule $\lim_{n \to \infty} \frac{n}{n+1}$

Solução.

Teorema 1. Sejam as sequências (S_n) , (R_n) e (T_n) . Se para todos os inteiros positivos n, $S_n \leq R_n \leq T_n$ e se $\lim_{n \to \infty} S_n = \lim_{n \to \infty} T_n = L$, então a sequência (R_n) converge e $\lim_{n \to \infty} R_n = L$.

Exemplo 7. Prove que $\lim_{n\longrightarrow\infty}\frac{\sin(n)}{n}=0$

Teorema 2. Seja a sequência (S_n) . Se $\lim_{n\longrightarrow\infty} |S_n| = 0$, então $\lim_{n\longrightarrow\infty} S_n = 0$.

Exemplo 8. calcule $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$ se ele existir.

Solução.

Teorema 3. Seja a sequência (S_n) . Se $\lim_{n \to \infty} S_n = L$, e se a função f for continua em L, então $\lim_{n \to \infty} f(S_n) = f(L)$.

Exemplo 9. Calcule $o \lim_{n \to \infty} \sin(\frac{\pi}{n})$.

Do exemplo 11 sabemos que nem toda sequência limitada é convergente. E também sabemos que nem toda sequência monótona é convergente. Mas se uma sequência for limitada e e monótona, então ela deve ser convergente. Esse fato é mostrado no seguinte teorema.

Teorema 4. Toda sequência monótona e limitada é convergente.

Exemplo 12. Investigue a sequência (S_n) definida pela relação de recorrência $S_1 = 2$, $S_{n+1} = \frac{1}{2}(S_n + 6)$ para n = 1, 2, 3, ...

Propriedade auxiliares

- Se $\lim_{n\longrightarrow\infty}S_n=L$, então $\lim_{n\longrightarrow\infty}S_{n+k}=L$ para todo $k\in\mathbb{N}$
- $\lim_{n\to\infty} |S_n \pm T_n| = \left| \lim_{n\to\infty} S_n \right|$.
- Se $S_n \ge 0$, então $\lim_{n \to \infty} S_n \ge 0$.
- Se $S_n \ge T_n$, então $\lim_{n \longrightarrow \infty} S_n \ge \lim_{n \longrightarrow \infty} T_n$.
- Se $S_n \ge 0$, então $\lim_{n \longrightarrow \infty} \sqrt{S_n} = \sqrt{\lim_{n \longrightarrow \infty} S_n}$.

Exemplo 13. Calcule $\lim_{n\longrightarrow\infty}\sqrt{\frac{4n^2+6n+3}{n^2-5}}$.

Solução.

Teorema 5. Se $\lim_{x \to \infty} f(x) = L$ e $f(n) = S_n$, então $\lim_{x \to \infty} S_n = L$

Exemplo 14. Calcule $\lim_{n \to \infty} \frac{\ln(n)}{n}$.

Séries

Breve introdução

Definição 5. Seja (a_n) uma sequência dada de numeros reais. Formemos uma nova sequência (s_n) como segue:

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k, n = 1, 2, \dots$$

Uma sequência (s_n) formada de esta maneira é chamada série, onde o número s_n é a soma parcial n-ésima da série e a_n é o termo n-ésimo da série.

Definição 6. uma sequência (s_n) converge ao ponto s, então dizemos que a série $\sum_{k=1}^{\infty} a_k$ tem soma s ou que é o mesmo dizer que $\sum_{k=1}^{\infty} a_k$ converge a s. Se a série $\sum_{k=1}^{\infty} a_k$ tem a soma s, então $s = \lim_{n \to \infty} s_n$, onde $s_n = \sum_{k=1}^{n} a_k$.

Exemplo 15. calcule a soma da série geométrica $\sum_{n=1}^{\infty} ar^{n-1}$. Solução.

Exemplo 16. A série geométrica $\sum_{n=1}^{\infty} \frac{2^{2n}}{3^{1-n}}$ é convergente ou divergente? Solução.

Exemplo 17. A série harmônica $\sum_{n=1}^{\infty} \frac{1}{n}$ é divergente? Solução.

Teorema 6. Se a série $\sum_{n=1}^{\infty} a_n$ é convergente, então $\lim_{n \to \infty} a_n = 0$. *Prova*.

Uma consequência do teorema é: se o $\lim_{n \to \infty} a_n$ não existir ou se $\lim_{n \to \infty} a_n \neq 0$, então a série $\sum_{n=1}^{\infty} a_n$ é divergente.

Exemplo 18. mostre que a série $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$ divergente. Solução.

Propriedades Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ forem séries convergentes, então também o serão as séries $\sum_{n=1}^{\infty} ca_n$ (onde c é uma constante) e $\sum_{n=1}^{\infty} a_n \pm b_n$ e

i.
$$\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n$$

ii.
$$\sum_{n=1}^{\infty} a_n \pm b_n = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$$
.

Exemplo 19. Calcule a soma da série $\sum_{n=1}^{\infty} \frac{3}{n(n+1)} + \frac{1}{2^n}$ Solução.

2.1 Teste de convergencia para séries numéricas com termos positivos

Seja $\sum_{n=1}^{\infty} a_n$, onde $a_n \ge 0$:

$$a_1 = s_1$$

$$a_2 = s_1 + s_2$$

$$a_3 = s_1 + s_2 + s_3$$

$$a_4 = s_1 + s_2 + s_3 + s_4$$

•••

$$a_n = s_1 + s_2 + s_3 + s_4 + \dots + s_n$$

. . . .

$$a_1 \le a_2 \le a_3 \le a_4 \le \dots \le a_n \le \dots$$

Portanto $\{a_n\}$ é sequencia de somas parciais monótonas.

2.1.1 Teste de comparação direta

Sejam as séries $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$

- 1. Se $\sum_{n=1}^{\infty} b_n$ Converge e $0 \le a_n \le b_n$, então $\sum_{n=1}^{\infty} a_n$ Converge.
- 2. Se $\sum_{n=1}^{\infty} a_n$ Diverge e $0 \le a_n \le b_n$, então $\sum_{n=1}^{\infty} b_n$ Diverge.

Prova

<u>Nota</u>: Ao usar este Teste de comparação direta, devemos ter algumas séries conhecidas $\sum_{n=1}^{\infty} b_n$ para o proposito de comparação. Usualmente se utiliza uma P-série ou uma série geométrica.

Exemplo 20. Estude das séries $\sum_{n=1}^{\infty} \frac{1}{n2^n} e \sum_{n=1}^{\infty} \frac{1}{2^n+1}$ Solução.

2.1.2 Teste da integral

Suponha que f seja uma função continua, positiva e decrescente em $[1,\infty)$ e seja $a_n=f(n)$. Então, a série $\sum_{n=1}^{\infty} a_n$ é convergente se e somente se a integral impropria $\int_1^{\infty} f(x) dx$ for convergente. Em outras palavras:

- i. Se $\int_1^\infty f)(x)dx$ for convergente, então $\sum_{n=1}^\infty a_n$ é convergente.
- ii. Se $\int_1^\infty f)(x)dx$ for divergente, então $\sum_{n=1}^\infty a_n$ é divergente

Exemplo 21. Para que valores de p a série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ é convergente ? Solução.

2.1.3 Teste de limite

Sejam as séries $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$:

- i. Se $\lim_{n\to\infty} \frac{a_n}{b_n}$, então $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ divergente ou convergente.
- ii. Se $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ e se $\sum_{n=1}^{\infty} b_n$ convergente, então $\sum_{n=1}^{\infty} a_n$ é convergente.
- iii. Se $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ e se $\sum_{n=1}^{\infty} b_n$ divergente, então $\sum_{n=1}^{\infty} a_n$ é divergente.

Exemplo 22. Estude a convergência ou divergência da série $\sum_{n=1}^{\infty} \frac{1}{n^n}$. Solução.

2.2 Séries alternadas

Uma série numérica da forma seguinte:

$$\sum_{n=1}^{\infty} (-1)^{n-1}a_n = a_n - a_2 + a_3 - a_4 + \ldots + (-1)^{n-1}a_n + \ldots$$
 onde $a_n > 0$, para todo $n \in \mathbb{N}$, denomina-se série alternada.

2.2.1 Teste da série alternada (Critério da Leibniz)

A série alternada da forma:

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_n - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} a_n + \dots$$
, é convergente se

- i. $a_{n+1} \le a_n$.
- ii. $\lim_{n\to\infty} = 0$, para todo $n \in \mathbb{N}$.

Exemplo 23. a série harmônica alternada $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ... = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ é convergente ? Solução.

Definição 7. Uma série $\sum_{n=1}^{\infty} a_n$ é dita absolutamente convergente se a série de valores absolutos $\sum_{n=1}^{\infty} |a_n|$ for convergente.

Definição 8. A série $\sum_{n=1}^{\infty} a_n$ é dita condicionalmente convergente se ela for convergente, mas não absolutamente convergente.

Exemplo 24. Teste a série $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ quanto a convergência ou divergência. Solução.

Exemplo 25. A série $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$ é absolutamente convergente por que?. Solução.

Exemplo 26. Determine se a série $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$ é convergente ou divergente?. Solução.

Exemplo 27. A série alternada $\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n}$ é absolutamente convergente ja que a série

Teorema 7. Se uma série é absolutamente convergente, então ela é convergente.

2.2.2 Teste da razão

- i. Se $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1$, então a série $\sum_{n=1}^{\infty}a_n$ é absolutamente convergente.
- ii. Se $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L>1$ ou $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty$, então a série $\sum_{n=1}^{\infty}a_n$ é divergente.
- iii. Se $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1$ o teste da razão não é conclusivo. Isto é, nenhuma conclusão pode ser tirada sobre a convergência ou divergência de $\sum_{n=1}^{\infty}a_n$.

Exemplo 28. Teste a série $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ quanto a convergência absoluta.

Exemplo 29. Teste a convergência ou divergência da série $\sum_{n=1}^{\infty} \frac{n^n}{n!}$.

2.2.3 Teste da raiz

- i. Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, então a série $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente.
- ii. Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ ou $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, então a série $\sum_{n=1}^{\infty} a_n$ é divergente.
- iii. Se $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$ o teste da razão não é conclusivo. Isto é, nenhuma conclusão pode ser tirada sobre a convergência ou divergência de $\sum_{n=1}^{\infty} a_n$.

Exemplo 30. Teste a convergência da série $\sum_{n=1}^{\infty} (\frac{2n+3}{3n+2})^n$ quanto a convergência absoluta.