Basic Introduction to LTE

Ben Fellows -2015-

Topics

- Very Brief History (GSM -> LTE)
- LTE and LTE-Advanced
- Basic LTE Architecture Components
- Data Path
 - o PDNs, Bearers, Network Roaming
 - Protocols and Layers
- Air Interface
 - Channels, PHY, Resource Grid, Scheduler
- Security
 - Air Interface, EPC
- Voice Overview
 - o IMS, Circuit Switched Fall-back,

Very Brief History

- 3GPP (3rd Generation Partnership Project)
 - Combination of standards bodies to develop mobile telecom standards from GSM
- GSM (Global System for Mobile Communications)
 - "2G" circuit switched
- UMTS (Universal Mobile Telecommunications System)
 - "3G" Updated air interface not backwards compatible
 - Retained GSM core network circuit switched
 - HSPA (High Speed Packet Access)
 - "3.5G" Enhanced core network to support high speed data
 - Same channel for voice and data
 - Wideband CDMA w/ 5 MHz channels
 - Issue w/ NA market
- LTE (Long Term Evolution)
 - o "4G" 1st deployed in 2009 in Sweden and Norway
 - No backwards compatibility requirements fully packet switched
 - Uses UMTS basic core architecture

Very Brief History

- 3GPP2 (3rd Generation Partnership Project 2)
 - Combination of standards bodies to develop mobile telecom standards from IS-95 (cdmaOne)
- IS-95 (cdmaOne)
 - o "2G" circuit switched
- CDMA2000
 - "3G" w/ 1.25 MHz channels works better for NA market
 - Backwards compatible
 - EV-DO (Evolution Data Optimized)
 - "3.5G" Support high speed data
 - Different channels for voice and data
- UMB (Ultra Mobile Broadband)
 - "4G" standard abandoned by Qualcomm in 2008 when it became clear that LTE had won the race

LTE and LTE-Advanced

LTE specifications include

- Minimum of 100 Mbps DL and 50 Mbps UL w/ 20 MHz channel not seen in practice
- Maximum of 5 ms latency from mobile to network boundary
- Mobile transition from IDLE to ACTIVE less than 100 ms
- Mobile speeds up to 350 kph (215 mph) w/ reduced performance

LTE-Advanced

- Response to ITU requirements for "4G" systems
- Channel multiplexing and combining
- Minimum of 1000 Mbps DL and 500 Mbps UL w/ 5x20 MHz channel not seen in practice
- Cooperative interference mitigation between eNB's (base stations)
- Other advanced eNB cooperative actions

LTE Architecture Components

Data Path

- User data is placed on 'bearers'
 - Provide capability to roam between eNB at high rate
 - Provide SLA/QoS by user and data class
 - Guaranteed average bit rate
 - Bi-directional data pipe
 - Between UE and P-GW if using GTP-U
 - Between UE and S-GW if using GRE
 - Within the EPC, bearers are identified by a 32-bit 'Tunnel Endpoint ID' (TEID)
 - Maximum of 11 bearers per UE
- User data is tunnelled on bearers through the EPC to external packet data networks PDNs which provide services
 - P-GW is the gateway to the external user networks
 - Internet access, private corporate networks, VoIP service (IMS), etc. Identified by Access Point Name (APN) - Associated to UE in HSS record
 - UEs are connected to PDNs and are assigned IP addresses (per PDN) based on the profile in the HSS static, dynamic

Network Roaming

EPC: Evolved Packet Core

Transport Protocol Features

Air Interface

- Custom radio control protocols
- Hybrid Automatic Repeat Request (HARQ) to assist with maintaining an error-free datalink
 - Only request repeat of specific sub-frames that fail error check (CRC)
 - Continuous feedback (fixed delay of 4 sub-frames) of acknowledgements on radio control channels (RLC)
- Data Scheduler
 - Many inputs to determine data priority and is a differentiator among manufacturers
- Header compression
 - Compresses repeated headers
- Security

Packet Core

- Native IP
- UDP is used for all user traffic transport and most internal signalling traffic
- GPRS Tunneling Protocol (GTP)
 - User and Control types
 - Used to define user data bearers across the EPC

Air Interface Protocols

IP, Radio Resource Control

Packet Data Convergence Protocol

Radio Link Control

Medium Access Control

User Data		Control Data
IP		RRC
PDCP		
RLC		
MAC		
Physical		

Data

Header Compression, Security

Maintains Data Link, HARQ

Scheduling, Data TX/RX

User Data Protocols

Air Interface PHY

- Downlink (DL): Base Station (eNB) -> User Equipment
 - OFDMA
 - Data transmissions to UEs uses resource blocks (12 sub-carriers) as the fundamental scheduling unit
- Uplink (UL): User Equipment -> Base Station (eNB)
 - SC-FDMA: Small peak-to-average power ratio helps with inexpensive transmitters
 - Cannot span discontiguous sub-carrier blocks
- FDD and TDD
 - FDD is the primary use in US
 - Supported channels span from 1.4 MHz to 20 MHz wide
- Frequency specific scheduling
 - Uses pilot carriers on the DL to assist UE with channel estimation
 - UE provides channel estimation feedback to eNB
 - eNB uses per-UE feedback as input to the DL scheduler to select minimally faded subcarriers
 - eNB schedules all UL and DL transmissions and publishes the schedule every 1 ms

Air Interface PHY

Fractional frequency reuse

- In FDD mode, LTE cells typically use the same frequency channels
- Every eNB can use the same set of frequencies, but allocate the sub-carriers in a flexible way
- 100% reuse on 'near' UEs while avoiding sub-carriers being used by adjacent eNBs for 'far' UEs that may overlap adjacent eNB coverage area
- Possible for adaptive coordination with adjacent eNBs for scheduling

Adaptive modulation

- Per resource block (12 sub-carriers)
- QPSK: 2 bit/symbol, QAM16: 4 bit/symbol, QAM64: 6 bit/symbol

MIMO

More on another slide...

Timing advance

- 'far' EU UL TX before 'near' EU UL TX and even before the final DL TX symbol boundary
- Ensures all EU UL TX arrive at eNB at the same time
- Diferent timing advance assigned per UE eNB synchronization and roaming

Resource Grid

Symbol Time (Ts) = 66.7 us Slot Time = 0.5 ms Subframe = 2 Slots = 1 ms Frame = 10 Subframes = 10 ms

*Subframes are the smallest resource time to be scheduled.

*Frames are used for TX of system information and reference signals for random access procedures.

MIMO

- LTE expects at least 2 antennas on the EU (usually different polarizations due to close proximity)
- RX Diversity at the eNB
 - Helps with UL fade resistance
- TX Diversity at the eNB
 - Closed loop phase shift applied based on feedback from EU, only good for slow moving EU
 - Open loop Alamouti technique using coding with block transmissions (space-time block code)
- Single User Spatial Multiplexing "traditional MIMO"
 - Parallel data streams using uncorrelated RF channels, not good for LOS propagation
 - Increases data speed, not eNB capacity
- Multi User MIMO UL
 - Subset (typically 2) of UEs TX simultaneously using uncorrelated RF channels on same frequency without pre-coding
 - Increases eNB capacity, not data transfer speed

MIMO

Beamforming

- If appropriate, the eNB can be configured to use beamforming instead of spatial multiplexing for LOS geometries (e.g. rural hilltop)
- Requires physically different antenna separation configuration than spatial multiplexing
- Increases system gain resulting in increased coverage and higher modulation modes

Air Interface Security

Authentication

Both the UE and the network confirm identities when joining

User Confidentiality

- Protect user identity from cloning
- Use of temporary IDs across the air interface derived from common algorithms and preshared permanent IDs

Encryption

- All keys derived from shared secret key which is derived from the International Mobile Subscriber Identity (IMSI) on the UICC/SIM card
- Keys stored on UICC and HSS server
- Prevents replay attacks
- All interface data is encrypted* including RCC signalling at the PDCP air interface layer
- 128 bit keys (taken from LSB of 256 bit key) capable of being increased to 256 bit in the future
- Approved encryption algorithms are: SNOW 3G (legacy), AES, ZUC (China), *NULL
 - If NULL is used, the user is supposed to be notified

EPC Security

- IKE/IPSec on transport data streams
- Security Domains usually different network operators
- Signalling Encryption
 - Required between Security Domains, optional internal to a Security Domain
- User Data
 - No encryption is required internal to a Security Domain or between Security Domains
 - Standards assume that security will be handled at the application level for user data
 - Why do you think this is the case?

Voice Service

- IP Multimedia System (IMS) Entire books cover this topic...
 - External network with signalling to create bearers with correct QoS
 - Subscribes to subscriber location information service
 - Long-term integration solution
- 3rd Party VolP
 - May not be associated with a bearer with correct QoS
 - May not receive subscriber location information from the network
- Dual Radio (2/3G and LTE)
 - Expensive used as a CDMA transition feature in some phones
- Circuit Switched Fallback
 - Most used solution at the current time, but being phased out
 - When UE initiates a voice call, the network moves the UE to a 2/3G base station and onto the existing circuit switched voice system
 - When the call is completed the UE is moved back to the LTE eNB for high speed data
 - Complicated dance of signalling to handle the hand-offs