Homework 5

5.1

a. State Transition Matrix

	0	1	2	3	4
0	0.520	0.413	0.044	0.019	0.004
1	0.284	0	0.716	0	0
2	0.284	0	0	0.716	0
3	0.284	0	0	0	0.716
4	1	0	0	0	0

b.

i) 2(+1/2(+)=0) = { 0.520
ii) 2(++1/2(+) & 21,2,33) = {0 if r \(\preceq \) 0.284 \(\frac{2}{2}(+)+1 \) if .284 \(\text{r} \) \(\preceq \)
iii) q(6+1(q(+)=4)=0

C.

c) t [3(t) 3(t+1) 0 0.765 0 1 1 0.557 1 2 2 0.347 2 3 3 0.098 3 0 4 0.039 0 0 5 0.132 0 0	<i>c</i>)
--	------------

d.

*See Jupyter Notebook File

```
estimated stationary distribution (solved using simulation): P(q=0) = 0.466 \text{ (out)} P(q=1) = 0.195 \text{ (first)} P(q=2) = 0.153 \text{ (second)} P(q=3) = 0.106 \text{ (third)} P(q=4) = 0.080 \text{ (home)}
```

a.

b.

C.

16		-	1 1	1300	148	N. W. Y.		R VI			1
	i	t(i)	8(:)	torrives (1)	teence(i)	1t(i)	g(i+1)	€(1+1)	60	(1)	w(i)
W 1	0	0	0	2.97	1.19	2.97		2.97	0	1	0
100	2	5.49	2	3.07	2.67		2	5.62	2.52		0.26
	3	_	1	2.42	2.03	2.03		7,65			2.03
	4		0	2.56	1.25	2.56	1	10.21	0	1	0
		7 11 1								1 113	

d.
*See Excel

e.

The utilization ratio and average waiting time decreased from part a to part d from both candidates. You could get a more accurate estimation of the steady-state utilization ratio and average waiting time by increasing the number of events to a larger value of N.

f. For small values of N, outliers have more influence over the final results because there are fewer normal values to balance them out.