

Clustering

Anàlisi de Dades i Explotació de la Informació

Grau d'Enginyeria Informatica.

Information System track

Prof. Mónica Bécue Bertaut & Lidia Montero

Monica.becue@upc.edu lidia.montero@upc.edu

Outline

- 1. Principles
- 2. Direct partitioning
- 3. Hierarchical clustering
- 4. Clustering and principal axes methods
- 5. Clusters description

29/09/2014 Clustering 2

1. Principles

Objective: to group the elements into "homogeneous and well separated clusters"

29/09/2014 Clustering 3

Two main families of clustering methods:

- Direct partitioning methods
- Hierarchical methods

2. Direct partitioning

A distance is supposed to be defined

on the set of elements to cluster

Manhattan

$$d(i, l) = \sum_{k=1}^{K} |x_{ik} - x_{lk}|$$

Euclidean

$$d^{2}(i,l) = \sum_{k=1}^{K} (x_{ik} - x_{lk})^{2}$$

used with factorial analysis (orthogonal projection)

Mobile centres

- 1. Random selection of q centres at stp 0 (here, q=2)
- 2. These centres determine 2 zones, which are considered as the two clusters at this step 0

- 3. The "true" centroids of the clusters computed at step 0 are computed. Thus a new partition in two zones (clusters) is determined (=clusters at step 1)
- 4. The "true" centroids of the clusters computed at step 1 are computed. Thus a new partition in two zones (clusters) is determined (=clusters at step 2). Clustering
 - ... This process stabilizes

Step 0: Random selection of 2 centers

Step 1: Centroids of P^0

Step 0: formation of partition P^0

Step 1: Formation of partition P^{I}

Close techniques

<u>K-means</u> (MacQueen, 1967)

q centroids are randomly selected but the centroids are newly computed at every reassignation of an individual to a center

In only one iteration, a partition of good enough quality is obained although the final results (=clusters) depend on the order of the individuals in the file.

29/09/2014 Clustering 9

Strong forms and stable groups (Diday, 1972)

To try to have a better solution (closer to the global optimum), several partitions are computed in the following way:

29/09/2014 Clustering 10

Strong forms and stable groups(Diday, 1972)

Partition 1

Strong forms **Partition 2 Product partition**

29/09/2014 Clustering 11

3. Hierarchical clustering

12 29/09/2014 Clustering

Hierarchical clustering

A distance is supposed to be defined

- on the set of elements to cluster
- on "groups" of elements (aggregation criterium/ method)

Distance on the set of elements

Manhattan

$$d(i, l) = \sum_{k=1}^{K} |x_{ik} - x_{lk}|$$

Euclidean

$$d^{2}(i,l) = \sum_{k=1}^{K} (x_{ik} - x_{lk})^{2}$$

used with factorial analysis (orthogonal projection)

• Minimum linkage: Chain effects are possible

• Complete linkage: Compact clusters

• Average linkage: Compromise between the formers. Individual weights are taken into account

Example of clustering

Distance=manhattan and criteria=complete linkage

Final: **hierarchy** that can be cutted to provide a partition

- n elements to be classified are the terminal nodes (from 1 to I)
- The following nodes, group several elements, are numbered as I+1, I+2,....
- Cutting the tree provides a partition
- A hierarchy of partitions is obtained
- Remember that clustering aims to group the elements into "homogeneous and well separated clusters"

- Euclidean distance
- Aim: To find a good partition maximizing quality of the partition
 - A good partition means: inside clusters elements are homogenous and between clusters elements are different
- Inertia decomposition: $I_{total} = I_{inter} + I_{intra}$

$$\sum_{q=1}^{Q} \sum_{i=1}^{I_q} \sum_{k=1}^{K} (y_{iqk} - \bar{y}_k)^2 = \sum_{q=1}^{Q} \sum_{k=1}^{K} I_q (\bar{y}_{qk} - \bar{y}_k)^2 + \sum_{q=1}^{Q} \sum_{i=1}^{I_q} \sum_{k=1}^{K} (y_{iqk} - \bar{y}_{qk})^2$$

- Q: clusters, Iq: Elements in cluster q, K: variables
- y_{iak} : Value of element *i* from cluster *q* for variable *k*

Ward criterion (II)

- At every step, intra-cluster inertia increases
- Ward criterion means to aggregate, at every step, the two elements or the two nodes that leads to <u>minimum increase in</u> total intra-cluster inertia after merging
- For clusters p and q, Ward criterion has the following value:

$$\Delta(p,q) = \frac{I_p I_q}{I_p + I_q} d^2(g_p, g_q)$$

 I_p : Elements in cluster p, I_q : Elements in cluster q

 g_p : Gravity center of cluster p, g_q : Gravity center of cluster q

- Minimize $\Delta(p,q)$ means to choose:
 - Clusters with gravity centers closest $(d^2(g_p, g_q) \text{ low})$
 - Clusters with few elements ($\frac{I_pI_q}{}$ low)

Choosing a partition

- Not too much clusters
- Take a partition that you can interpret
- Criterion to choose an optimum partition

$$\min_{\substack{q_{min} \le q \le q_{max}}} \frac{\Delta(q)}{\Delta(q+1)}$$

 $\Delta(q)$: Gain of inter-cluster inertia going from q-1 to q clusters

- Income in a tha final mantitian ...!th ((Canaalidatian))

4. Principal axes methods and clustering

inertia gain

29/09/20

Factor map

6. Cluster description

From the categorical variables

29/09/2014 Clustering 27

From the categories

> res.hcpc\$desc.var\$category \$`1`

	Cla/Mod	Mod/Cla	Global	p.value	v.test
B1=health_poor	90.412272	48.0387163	20.706770	0.000000e+00	Inf
Edad_Skol=OldLow	66.666667	37.3917473	21.858249	5.403491e-99	21.118273
B1=health_fair	48.108926	32.3993887	26.245781	3.360483e-15	7.876734
Sex=female	42.852470	66.7345899	60.690887	1.850993e-12	7.045272
Edad_Skol=OldMedium	48.005908	16.5562914	13.440540	2.880527e-07	5.131101
Edad_Skol=MidLow	48.265896	8.5073867	6.869168	2.801679e-04	3.632979
Edad_Skol=OldHigh	46.255507	5.3489557	4.506651	2.254253e-02	2.281100
Edad_Skol=MidMedium	34.720571	14.8751910	16.696446	5.406843e-03	-2.781739
Edad_Skol=MidHigh	27.345845	5.1961284	7.405202	1.065718e-06	-4.879099
Edad_Skol=JovLow	17.801047	1.7320428	3.791940	1.345397e-10	-6.421950
Sex=male	32.979798	33.2654101	39.309113	1.850993e-12	-7.045272
Edad_Skol=JovHigh	11.673152	1.5282731	5.102243	2.449031e-23	-9.952915
B1=health_good	23.189466	16.1487519	27.139170	9.788030e-47	-14.355876
Edad_Skol=JovMedium	16.992188	8.8639837	20.329561	4.079413e-64	-16.905773
B1=health_excellent	1.694915	0.4075395	9.370657	7.632784e-93	-20.438316
B1=health_very good	7.082833	3.0056037	16.537622	1.428371e-114	-22.750203

Clustering 29/09/2014 28

\$`1`

	v.test	Mean in	category	Overall mean	sd i	n category	Overall sd	p.value
Edad	8.061905		51.71472	49.08557		18.38630	18.49395	7.511481e-16
RE_Role.li	-38.726772		44.86323	72.42412		44.61223	40.35830	0.000000e+00
PF_Phisica	-39.462304		48.55833	69.92952		28.22450	30.71124	0.000000e+00
MH_Mental	-43.241226		46.73255	61.69069		17.88921	19.61691	0.000000e+00
P_Pain	-46.759448		39.82454	64.50947		24.40165	29.93736	0.000000e+00
EV_Energy	-47.369413		33.84870	51.83145		16.42762	21.52827	0.000000e+00
SF_Social	-48.508473		44.98724	64.83442		21.02165	23.20236	0.000000e+00
HP_General	-48.525317		34.58839	54.26444		16.98673	22.99433	0.000000e+00
RP_Role.li	-50.446527		25.01274	63.00377		34.73299	42.70719	0.000000e+00

29/09/2014 Clustering 29

From the individuals

```
> res.hcpc$desc.ind$para
Cluster: 1
   I3045 I2801 I3404 I4561
                                      I2477
0.0140178 0.0454952 0.0748305 0.1016992 0.1131562
Cluster: 2
    I3451 I3063 I3158 I4466 I1166
0.02458791 0.04874171 0.04874171 0.07030856 0.07354237
> res.hcpc$desc.ind$dist
Cluster: 1
  I1780 I0392 I1413 I0545 I1781
7.783213 7.566054 7.559595 7.543709 7.482944
Cluster: 2
```

29/09/2014 Clustering 30

I0536 I0977 I4932 I3460 I3806

6.219741 6.058947 6.047333 5.978893 5.978893

Individuals factor map (PCA)

Variables values of the individuals "para" and "dist" (cluster 1)

res.hcpc\$data.clust[which(rownames(res.hcpc\$data.clust)%in%names(res.hcpc\$desc.ind\$para[[1]])),]

	Sex I	B1 Eda	d PF	_Phisica	RP_Role.li	RE_Role.li	SF_	_Social	MH_Mental	EV_Ene	rgy	P_Pain	HP_General	Edad_Skol	clust
I2477	female health_poo	or 3	3	30	75	66.67	7	44.44	36		25	44.44	25	OldLow	1
I2801	female health_fa:	ir 2	7	40	0	0.00)	44.44	52		50	44.44	45	OldMedium	1
I3045	female health_fa:	ir 7	5	35	25	66.67	7	44.44	28		45	55.56	30	MidMedium	1
I3404	female health_poo	or 8	7	90	0	33.33	3	44.44	68		25	22.22	30	MidMedium	1
I4561	male health_poo	or 7	1	50	25	33.33	3	44.44	56		30	55.56	25	OldMedium	1

> res.hcpc\$data.clust[which(rownames(res.hcpc\$data.clust)%in%names(res.hcpc\$desc.ind\$dist[[1]])),]

	Sex B	l Edad	PF_Phisica	RP_Role.li	RE_Role.li	SF_	_Social	MH_Mental	EV_Energy	P_Pain	HP_General	Edad_Skol	clust
I0392	female health_poor	r 49	30	0	0		0.00	4	5	0.00	0	MidLow	1
I0545	female health_poo:	r 67	0	0	0		0.00	24	0	0.00	0	OldLow	1
I1413	male health_poo:	r 61	40	0	0		0.00	0	0	11.11	0	MidLow	1
I1780	female health_poo:	r 26	25	0	0		0.00	0	0	0.00	0	MidLow	1
I1781	female health_poor	r 52	5	0	0		11.11	8	0	11.11	0	OldMedium	1

29/09/2014 Clustering 32