

【例 1】 函数 $y = 2\sin(3x + \frac{\pi}{6}), x \in \mathbb{R}$ 的最小正周期是()

A. 2π

B. π

C. $\frac{2\pi}{3}$

D. $\frac{\pi}{3}$

【解】 $T = \frac{2\pi}{\Omega} = \frac{2\pi}{3}$, 故选 B.

【例 2】 已知 $y = A\sin(\omega x + \frac{\pi}{4})$ ($\omega > 0$) 的最小正周期为 π , 则函数 f(x) 的图像 ()

A. 关于直线 $x = \frac{\pi}{4}$ 对称

B. 关于直线 $x = \frac{\pi}{8}$ 对称 D. 关于点 $(\frac{\pi}{8}, 0)$ 对称

C. 关于点 $(\frac{\pi}{4}, 0)$ 对称

【解】由函数 $y = A\sin(\omega x + \frac{\pi}{4})$ 的最小正周期为 π , 可得 $T = \frac{2\pi}{\omega} = \pi$, 求得 $\omega = 2$, $y = A\sin(2x + \frac{\pi}{3})$. 由于当 $x = \frac{2k\pi + \frac{\pi}{2} - \varphi}{\omega} = k\pi + \frac{\pi}{8}$ 时,函数 f(x) 取得最大值为 1,故函数 f(x)的图像关于直线 $x = \frac{\pi}{8}$ 对称, 故选 B.

【例 3】 设函数 $f(x) = A\sin(\omega x + \varphi)$ $(A \neq 0, \omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2})$ 的图像关于直线 $x = \frac{2\pi}{3}$ 对称, 它的最小正周期为 π , 则 (

A. f(x) 的图像过点 $(0, \frac{1}{2})$

B. f(x) 在 $\left[\frac{\pi}{12}, \frac{2\pi}{3}\right]$ 上是减函数

 \underline{C} . f(x) 的一个对称中心为 $(\frac{5\pi}{12},0)$

D. f(x) 的一个对称中心为 $(\frac{\pi}{6},0)$

【解】由题意可得 $T=\frac{2\pi}{\omega}=\pi$,所以 $\omega=2$,可得 $y=A\sin(\omega x+\varphi)$.再由函数关于 $x=\frac{2\pi}{3}$ 对称,故 $\frac{2\pi}{3}=\frac{k\pi+\frac{\pi}{2}-\varphi}{2}=\frac{k\pi+\frac{\pi}{2}-\varphi}{2}\Rightarrow \varphi=k\pi+\frac{\pi}{6}$,取 $\varphi=\frac{\pi}{6}$,故函数 $f(x)=A\sin(2x+\frac{\pi}{6})$.

根据公式 $\left[\frac{2k\pi + \frac{\pi}{2} - \phi}{\omega}, \frac{2k\pi + \frac{3\pi}{2} - \phi}{\omega}\right]$ 可求得函数的减区间为 $[k\pi + \frac{\pi}{6}, k\pi + \frac{2\pi}{3}]$, B 错. 由于

A 不确定, 故选项 A 不正确. 对称中心为 $(\frac{k\pi - \phi}{t}, 0)$, 即 $(\frac{k\pi}{2} - \frac{\pi}{12}, 0)$, k = 1 时, 选项 C 正确. 选项 D 不正确