

Department of Computer Science

Ramakrishna Mission Vivekananda Educational Research Institute, Belur Math Optimization for ML –BDA 2023 Problem Set on Matrix Calculus

- 1. Recall the definition of the derivative of a scalar with respect to a matrix $(dy/d\mathbf{X})$. We will now check if this is a valid extension of the scalar and vector case. Evaluate the derivatives when $\mathbf{X} \in \mathbb{R}^{1 \times 1}$, $\mathbf{X} \in \mathbb{R}^{n \times 1}$, and $\mathbf{X} \in \mathbb{R}^{1 \times n}$. Which definition does each of them correspond to?
- 2. We have derived that $d(\mathbf{A}\mathbf{x})/d\mathbf{x} = \mathbf{A}^T$ for $\mathbf{x} \in \mathbb{R}^p$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$ that does not depend on \mathbf{x} . $\mathbf{A}\mathbf{x}$ results in a vector, and thus we have used the $d\mathbf{y}/d\mathbf{x}$ definition. Now consider $d(\mathbf{x}^T\mathbf{B})/d\mathbf{x}$ for $\mathbf{B} \in \mathbb{R}^{p \times n}$. Recall that the definition of $d\mathbf{y}/d\mathbf{x}$ does not change even when \mathbf{y} is a row vector. Evaluate $d(\mathbf{x}^T\mathbf{B})/d\mathbf{x}$.
- 3. The quadratic form $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is a form we will encounter often.* In this question, we are interested in $d(\mathbf{x}^T \mathbf{A} \mathbf{x})/d\mathbf{x}$. Assume that \mathbf{A} is not a function of \mathbf{x} .
 - (a) Evaluate $\mathbf{x}^T \mathbf{A} \mathbf{x}$ when $\mathbf{x} = [x_1, x_2]^T$ and the (i, j)-th element of \mathbf{A} is A_{ij} . Why do you think $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is called the quadratic form?
 - (b) Which definition of the derivative do we need in order to evaluate $d(\mathbf{x}^T \mathbf{A} \mathbf{x})/d\mathbf{x}$?
 - (c) Assume $\mathbf{x} \in \mathbb{R}^2$ and $\mathbf{A} \in \mathbb{R}^{2 \times 2}$. Evaluate $d(\mathbf{x}^T \mathbf{A} \mathbf{x})/d\mathbf{x}$.
 - (d) Generalize the previous result to when $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ and evaluate $d(\mathbf{x}^T \mathbf{A} \mathbf{x})/d\mathbf{x}$. Can you express the result in matrix form?
 - (e) What happens when **A** is a symmetric matrix, i.e., $\mathbf{A}^T = \mathbf{A}$?
- 4. Evaluate $\partial f/\partial x$ and $\partial f/\partial y$ for each of the following:*
 - (a) $f(u,v) = (u-v)e^u$, where u = xy and $v = x^2 y^2$
 - (b) $f(u,v) = u \log v + v \log u$, where $u = \frac{x}{2} + \frac{2}{y}$ and $v = xe^y$
 - (c) $f(u, v) = u \log v$, where $u = x \sin y + y \sin x$ and $v = x \cos y + y \cos x$
 - (d) f(u,v) = (u+v)/(1-uv), where $u = \tan\frac{x+y}{2}$ and $v = \tan\frac{x-y}{2}$
- **5.** (a) Evaluate $\frac{d}{dx}\sigma(x)$ where $\sigma(x) = 1/(1 + e^{-x})$. This is called the sigmoid function.
 - (b) Express your answer in (a) using only $\sigma(x)$ and constants.
 - (c) Evaluate $\frac{d}{dx} \tanh(x)$ where $\tanh(x) = (e^x e^{-x})/(e^x + e^{-x})$. This is called the hyperbolic tangent function.
 - (d) Express your answer in (c) using only tanh(x) and constants.

6

- (a) $\nabla f(x,y)$ where $f(x,y) = xy^2 + x^2y$
- (b) $\nabla f(x,y)$ where $f(x,y) = (x+y)^2$
- (c) $\nabla^2 f(x, y)$ where $f(x, y) = \sin(e^{xy})$
- (d) $\nabla f(\mathbf{x})$ where $f(\mathbf{x}) = ||\mathbf{x}||_2^2$
- (e) Express your answer in (d) using only one variable (no limit on constants).
- (f) $\nabla f(\mathbf{x})$ where $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ and \mathbf{w} is a constant vector
- (g) Express your answer in (f) using only one variable (no limit on constants).

7.

- (a) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x,y) = x^y + y^x$
- (b) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x,y) = \sin(y + \cos x)$
- (c) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x,y) = e^{xy} + y \log 3x$
- (d) $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$, and $\frac{\partial^2 f}{\partial y^2}$ where $f(x,y) = \sin(xy) + \cos(xy)$
- (e) $\nabla_x f(x,y)$ and $\nabla_y f(x,y)$ where $f(x,y) = x^{\log y} + x^2 + 2y$
- (f) $\nabla_x f(x,y)$ and $\nabla_y f(x,y)$ where $f(x,y) = (x+y)^2$
- (g) $\frac{\partial f}{\partial x_i}$ where $f(\mathbf{x}) = \|\mathbf{x}\|_2^2$ $(1 \le i \le n)$ Hint: Recall that $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$
- (h) $\frac{\partial f}{\partial x_i}$ where $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ and \mathbf{w} is a constant vector $(1 \le i \le n)$