سیگنالها و سیستمها

استاد: دکتر صامتی

دانشکدهی مهندسی کامپیوتر طرح: سیدعماد ذوالحواریه تمرین سری سوم مباحث تمرین: سیگنالهای زمان گسسته ، مقیاس بندی در حوزه زمان و فرکانس تاریخ: ۱۲ آذر

مجموع نمرات این تمرین (۱۰۰ نمره)

۱. تبدیل فوریه گسسته و عکس آن (۱۰ نمره)

تبدیل فوریه سیگنالهای گسسته در زمان زیر را حساب کنید.

 $(\tilde{1})$

 $x[n] = \frac{1}{5}^{-n} u[-n-1]$

(ب) x[n] = u[n+2] - u[n-3]

(ج)

 $2\delta[4-2n]$

(c) $x[n] = \sin(\frac{5\pi n}{3}) + \cos(\frac{7\pi n}{3})$

(0)

 $x[n] = \begin{cases} 0.5 + 0.5\cos(\frac{\pi}{N}n) & n \le N \\ 0 & \text{otherwise} \end{cases}$

(و) $x[n] = \left[\frac{\sin(\frac{\pi}{4}n)}{\pi n}\right] * \left[\frac{\sin(\frac{\pi}{4}(n-8))}{\pi(n-8)}\right]$

عکس تبدیل فوریههای سیگنالهای زیر را محاسبه کنید.

 $X(e^{j\omega}) = \cos^2(\omega) + \sin^2(3\omega)$

(ب)

 $(\tilde{1})$

 $X(e^{j\omega}) = e^{\frac{j\omega}{2}}, \quad \text{for} \pi > \omega > -\pi$

رج) شکلی سیگنالی در حوزه ی فرکانس به صورت زیر است. (طبیعی است که شکل با دوره تناوب 2π متناوب است)

$$X(e^{j\omega}) = \cos(2\omega) + j\sin(2\omega)$$
 (2)

$$X(e^{j\omega}) = \cos(\omega) + j\cos(\frac{\omega}{2})$$

$$X(e^{j\omega}) = \begin{cases} 1 & \frac{\pi}{4} < \omega < \frac{3\pi}{4} \\ 0 & \text{otherwise} \end{cases}$$

$$argX(e^{j\omega}) = -4\omega$$

۲. تجزیه به مقادیر جزئی (۳۵ نمره)

با استفاده از بسط تجزیه به مقادیر جزئی ، DTFTمعکوس سیگنالهای زیر را به دست آورید.

$$X(e^{j\omega}) = \frac{2e^{-j\omega}}{-0.25e^{-j2\omega} + 1} \tag{1}$$

$$X(e^{j\omega}) = \frac{6 - 2e^{-jw} + 0.5e^{-j2\omega}}{(-0.25e^{-j2\omega} + 1)(1 - 0.25e^{-jw})}$$

۳. DTFT سیگنال نامتعارف (۱۰ نمره)

سیگنال x[n]دارای تبدیل فوریه $X(e^{j\omega})$ است. اگر $x[n]=x\left\lfloor \frac{n}{2}\right\rfloor$ باشد. تبدیل فوریه y[n]را بیابید. (منظور از x[n] ، بزرگترین عدد صحیح کوچکتر یا مساوی x[n] است.)

۴. فاز تبدیل (۱۰ نمره)

$$\theta(\omega) = (aN + b)\omega + c$$

۵. معادله تفاضلی (۱۰ نمره)

(آ) یک سیستم LTI زمان گسسته علّی با معادله تفاضلی زیر توصیف می شود.

$$y[n] + \frac{1}{2}y[n-1] = x[n] - x[n-1]$$

به ازای ورودی x[n] توان متوسط خروجی این سیستم، y[n] را حساب کنید.

$$x[n] = \begin{cases} 3 & \text{even is } n \text{ if} \\ 2 & \text{odd is } n \text{ if} \end{cases}$$

(ب) معادله تفاضلی مربوط به پاسخ فرکانسی زیر را بدست آورید.

$$X(e^{j\omega}) = 1 + \frac{e^{-j\omega}}{(1 - 0.5e^{-j\omega} + 1)(1 + 0.25e^{-j\omega})}$$

(ج) معادله تفاضلی مربوط به پاسخ ضربه زیر را بدست آورید.

$$h[n] = \delta[n] + 2(0.5)^2 u[n] + (0.5)^n u[n]$$

اثبات خواص (۱۰ نمره)

خواص DTFT زير را اثبات كنيد.

- (آ) خاصیت شیفت زمانی
 - (ب) خاصیت کانولوشن
 - (ج) خاصیت ضرب
- (د) خاصیت Expansion Time

پاسخ سوال:

تبدیل فوریه زمان_ناوریان دیجیتال (DTFT) یک ابزار اساسی در تحلیل سیستمهای دیجیتال و پردازش سیگنال است. در اینجا خواص مهم DTFT را بیان و اثبات میکنیم:

۱. خاصیت شیفت زمانی (Time-Shifting Property) اگر x[n] تبدیل فوریه داشته باشد که $X(e^{j\omega})$ است، آنگاه برای هر عدد صحیح n_0 ، داریم:

$$x[n-n_0] \longleftrightarrow X(e^{j\omega})e^{-j\omega n_0}$$

**اثبات: **

$$\begin{split} DTFT\{x[n-n_0]\} &= \sum_{n=-\infty}^{\infty} x[n-n_0]e^{-j\omega n} \\ &= \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega(m+n_0)} \quad (\text{letting} m = n-n_0) \\ &= e^{-j\omega n_0} \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m} \\ &= X(e^{j\omega})e^{-j\omega n_0} \end{split}$$

۲. خاصیت کانولوشن (Convolution Property) کانولوشن دو سیگنال n[n] و n[n] در زمان به تبدیل فوریه حاصل ضرب آنها متناظر است:

$$x[n] * h[n] \longleftrightarrow X(e^{j\omega}) \cdot H(e^{j\omega})$$

اثبات:

$$\begin{split} DTFT\{x[n]*h[n]\} &= DTFT \left\{ \sum_{m=-\infty}^{\infty} x[m]h[n-m] \right\} \\ &= \sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} x[m]h[n-m] \right) e^{-j\omega n} \\ &= \sum_{m=-\infty}^{\infty} x[m] \left(\sum_{n=-\infty}^{\infty} h[n-m]e^{-j\omega n} \right) \\ &= \sum_{m=-\infty}^{\infty} x[m]e^{-j\omega m} \cdot \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} \\ &= X(e^{j\omega}) \cdot H(e^{j\omega}) \end{split}$$

۳. خاصیت ضرب (Multiplication Property) ضرب دو سیگنال [n] و [n] در زمان به کانولوشن تبدیل فوریههای آنها متناظر است:

$$x[n] \cdot h[n] \longleftrightarrow \frac{1}{2\pi} X(e^{j\omega}) * H(e^{j\omega})$$

**اثبات: ** این خاصیت معمولاً از طریق مفهوم تبدیل فوریه و معکوس آن اثبات می شود و مشابه با خاصیت کانولوشن است اما در فضای فرکانس.

۴. خاصیت Expansion Time (خاصیت توسعه زمانی) اگر x[n] را در زمان با ضریب a توسعه دهیم، تبدیل فوریه آ

ن متناسباً در فركانس تراكم خواهد يافت:

$$x[an] \longleftrightarrow \frac{1}{|a|} X\left(e^{j(\omega/a)}\right)$$

اثبات:

$$DTFT\{x[an]\} = \sum_{n=-\infty}^{\infty} x[an]e^{-j\omega n}$$

$$= \frac{1}{|a|} \sum_{m=-\infty}^{\infty} x[m]e^{-j(\omega/a)m} \quad \text{an}$$

$$= \frac{1}{|a|} X\left(e^{j(\omega/a)}\right)$$

این خواص فرمولهای پایهای هستند که در تحلیل سیستمهای دیجیتال و پردازش سیگنال استفاده میشوند و اثباتها نشان میدهند چگونه هر خاصیت به صورت ریاضی میتواند از تعاریف اولیه DTFT نتیجه گرفته شود.

٧. محاسبه مقدار لحظهاى هر دنباله بازگشتى خطى با ضرايب ثابت (١٠ نمره)

دنباله زیر را در نظر بگیرید.

$$1, \frac{3}{4}, \frac{7}{16}, \frac{15}{64}, \cdots$$

فرض کنید این دنباله خروجی یک سیستم LTI و علّی با ورودی ضربه واحد است.

را a,b معادلات تفاضلی خطی سیستم به صورت زیر و بر حسب پارامتری از a,b میباشد. پارامترهای a,b بیابید.

$$y[n]-ay[n-1]+by[n-2]=x[n]$$

(ب) جمله عمومی دنباله را به دست آورید. (منظور از جمله عمومی فرمولی است که بتوان عنصر nام را بر حسب n و بدون نیاز به جملات قبلی بدست آورد.)

ياسخ سوال:

b و a و مارامترهای a

داده شده است که دنباله خروجی y[n] با معادله تفاضلی خطی زیر مرتبط است:

$$y[n] - ay[n-1] + by[n-2] = x[n]$$

x[n] > 0 که x[n] = 0 و رودی ضربه واحد است. برای یک ورودی ضربه واحد، x[n] = 0 و x[n] = 0 برای

مقادير اوليه دنباله عبارتند از:

$$y[0] = 1$$
, $y[1] = \frac{3}{4}$, $y[2] = \frac{7}{16}$, $y[3] = \frac{15}{64}$, ...

با جایگذاری این مقادیر در معادله تفاضلی، میتوانیم مقادیر a و b را بدست آوریم.

٢. جمله عمومي دنباله

بعد از به دست آوردن a و b، میتوانیم جمله عمومی دنباله را با استفاده از روشهای حل معادله تفاضلی بیابیم. این معمولاً شامل پیدا کردن ریشههای معادله مشخصه و سپس به کار بردن این ریشهها برای ساختن فرمول عمومی است.

اجازه دهید ابتدا پارامترهای a و b را بیابیم.

پارامترهای a و b در معادله تفاضلی سیستم LTI به ترتیب ۰.۷۵ و ۰.۱۲۵ میباشند. با این مقادیر، معادله تفاضلی به صورت زیر در می آید:

$$y[n] - 0.75y[n-1] + 0.125y[n-2] = x[n]$$

حال که مقادیر a و b را داریم، میتوانیم جمله عمومی دنباله را با استفاده از روشهای مربوط به معادلات تفاضلی خطی حل کنیم. این معمولاً شامل پیدا کردن ریشههای معادله مشخصه و سپس استفاده از این ریشهها برای ساختن فرمول عمومی است. بیایید این کار را انجام دهیم.

ریشههای معادله مشخصه $r^2 - 0.75r + 0.125 = 0$ به ترتیب ۰.۲۵ و ۰.۵ هستند. با توجه به اینکه ریشهها متمایز هستند، فرمول عمومی دنباله می تواند به صورت ترکیب خطی از توانهای این ریشهها نوشته شود:

$$y[n] = C_1 \times 0.25^n + C_2 \times 0.5^n$$

که در آن C_1 و C_2 ثابتهایی هستند که باید از شرایط اولیه دنباله به دست آیند. برای این کار، ما مقادیر اولیه دنباله را در این فرمول قرار می دهیم و سپس C_1 و C_2 را حل می کنیم.

ثابتهای C_1 و C_2 در فرمول عمومی دنباله به ترتیب - ۱ و ۲ به دست آمدند. بنابراین، فرمول عمومی دنباله به صورت زیر خواهد بود:

$$y[n] = -1 \times 0.25^n + 2 \times 0.5^n$$

این فرمول به ما امکان می دهد تا هر عنصر nام دنباله را بر حسب n و بدون نیاز به دانستن جملات قبلی محاسبه کنیم.

۸. مدلاسیون (۱۰ نمره)

 $\Omega_0=rac{\pi}{2}$ خروجی سیستم زیر را بیابید اگر

فرض کنید طیف x[n] به صورت زیر باشد.

پاسخ سوال:

برای یافتن خروجی y[n] سیستم، باید چندین مرحله را دنبال کنیم:

۱. **مدولاسیون: ** ابتدا، ورودی x[n] با x[n] می مدوله می شود که باعث تغییر فرکانس طیف x[n] می شود.

۲. **فیلترینگ:** سپس، سیگنال مدوله شده از طریق یک فیلتر با پاسخ فرکانسی $H(\Omega)$ عبور داده می شود. این فیلتر یک فیلتر یایین گذر مربعی است با عرض $\Omega_0=\frac{\pi}{2}$ که در اینجا $\Omega_0=\frac{\pi}{2}$ داده شده است.

y[n]. **دمدولاسیون: ** در نهایت، سیگنال فیلتر شده دوباره با $(-1)^n$ دمدوله می شود تا خروجی نهایی y[n] به دست آید.

برای اینکه به طور دقیق خروجی y[n] را محاسبه کنیم، باید ابتدا تأثیر مدولاسیون را بر طیف x[n] ببینیم، سپس اثر فیلتر را بر طیف مدوله شده بررسی کنیم، و در نهایت خروجی دمدوله شده را محاسبه کنیم.

مرحله ۱: مدولاسیون مدولاسیون $(-1)^n$ موجب انتقال فرکانس x[n] به اندازه π می شود. این باعث می شود که مثلثهای موجود در طیف x[n] در فرکانسهای x[n] و x[n] به جای صفر قرار گیرند.

مرحله ۲: فیلترینگ از آنجا که فیلتر یک فیلتر پایینگذر مربعی با عرض $2\Omega_0$ است و $\frac{\pi}{2}=\Omega_0$ داده شده، فیلتر فرکانسهای بین $\frac{\pi}{2}=0$ و عبور می دهد و بقیه را حذف می کند. با توجه به اینکه مدولاسیون فرکانسهای و آ π را به π و π منتقل کرده است، این فرکانسها توسط فیلتر حذف می شوند.

مرحله T: دمدولاسیون پس از فیلتر شدن، دمدولاسیون با $(-1)^n$ باعث بازگشت سیگنال به حالت اولیه فرکانسی خود می شود. از آنجا که طیف x[n] توسط فیلتر کاملا حذف شده، دمدولاسیون تأثیری بر سیگنال نخواهد داشت و خروجی y[n] باید صفر باشد.

بن

ابراین، بر اساس این تحلیل، خروجی y[n] باید تابعی باشد که در همه نقاط صفر است، چرا که طیف ورودی x[n] به طور کامل توسط فیلتر حذف می شود.

۹. رسم دامنه و فاز (۱۰ نمره)

دامنه و فاز پاسخ فرکانسی $X(\omega)$ را رسم کنید اگر

$$X(\omega)=1+2e^{-j\omega}~(\tilde{\mathbf{1}})$$

$$X(\omega) = \frac{1}{(1 - \frac{1}{4}e^{-j\omega})(1 + \frac{3}{4}e^{-j\omega})}$$
 ($\dot{\varphi}$)

$$X(\omega) = \frac{1}{(1+\frac{1}{2}e^{-j\omega})^3}$$
 (ج)

ياسخ سوال:

در اینجا نمودارهای دامنه و فاز پاسخ فرکانسی $X(\omega)$ برای هر سه تابع داده شده را میبینید:

- برای $X_1(\omega)=1+2e^{-j\omega}$ ، نمودار دامنه نشان دهنده تغییرات دامنه با فرکانس است و نمودار فاز نشان دهنده تغییر فاز است که با تغییر فرکانس، خطی کاهش می یابد.

- برای برجسته و نمودار دامنه پیکهای برجسته و نمودار دامنه پیکهای در اطراف فرکانسهای مشخصی $X_2(\omega)=\frac{1}{(1-\frac{1}{4}e^{-j\omega})(1+\frac{3}{4}e^{-j\omega})}$ دارد که نشاندهنده نقاط تقویت و ضعف است و نمودار فاز نوساناتی دارد که نشاندهنده تغییرات فاز در آن نقاط فرکانسی است.

برای $X_3(\omega)=rac{1}{(1+rac{1}{2}e^{-j\omega})^3}$ ، دامنه با توان سوم تغییر میکند که باعث می شود دامنه در نقاط خاصی بسیار بزرگ شود و فاز نیز نوسانات بزرگ تری دارد که نشان دهنده تغییر فاز در این نقاط است.

شكل ١: شكل دامنه و فاز

١٠. سيستم مجهول خطي (١٠ نمره)

ورودی یک سیستم مجهول خطی به صورت زیر است.

$$x[n] = (\frac{1}{2})^n u[n] - \frac{1}{4} (\frac{1}{2})^{n-1} u[n-1]$$

اگر خروجی این سیستم در پاسخ به ورودی فوق برابر مقدار زیر باشد.

$$y[n] = (\frac{1}{3})^n u[n]$$

مطلوب است پاسخ فرکانسی سیستم و پاسخ ضربه آن.

ناسخ سوال:

پاسخ فرکانسی $H(e^{j\omega})$ یک سیستم خطی و زمان_ناوریان (LTI) از طریق نسبت تبدیل فوریه خروجی به ورودی به دست می آید:

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

که در آن $Y(e^{j\omega})$ و $Y(e^{j\omega})$ به ترتیب تبدیل فوریه خروجی و ورودی سیستم هستند. بنابراین، برای به دست آوردن پاسخ فرکانسی، ما ابتدا باید تبدیل فوریه x[n] و y[n] را محاسبه کنیم. ورودی داده شده x[n] را میتوانیم به صورت زیر بازنویسی کنیم:

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

تبدیل فوریه برای $(\frac{1}{2})^n u[n]$ به صورت زیر است:

$$X_1(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

و برای $(\frac{1}{2})^{n-1}u[n-1]$ به صورت زیر است:

$$X_2(e^{j\omega}) = \frac{e^{-j\omega}}{1 - \frac{1}{2}e^{-j\omega}}$$

بنابراین تبدیل فوریه کلی x[n] خواهد بود:

$$X(e^{j\omega}) = X_1(e^{j\omega}) - \frac{1}{4}X_2(e^{j\omega})$$

و تبديل فوريه خروجي y[n] خواهد بود:

$$Y(e^{j\omega}) = \frac{1}{1 - \frac{1}{3}e^{-j\omega}}$$

با جایگذاری این تبدیلات فوریه در معادله پاسخ فرکانسی، پاسخ فرکانسی سیستم $H(e^{j\omega})$ به دست میآید. پاسخ ضربه h[n] سیستم، که تابعی از زمان است، از طریق تبدیل معکوس فوریه پاسخ فرکانسی به دست میآید. بیایید ابتدا پاسخ فرکانسی را محاسبه کنیم. ا به دست آوریم.

پاسخ فرکانسی سیستم $H(e^{j\omega})$ به صورت ساده شده زیر است:

$$H(e^{j\omega}) = \frac{e^{2j\omega}}{(e^{j\omega} - \frac{1}{3})(e^{j\omega} + \frac{1}{8})}$$