Experiment No: 05	TE AI&DS
Date of Performance:	Roll No: 9696

Aim: To Implement Naïve Bayesian classification algorithm to build classification model and predict class for unseen data.

Related CO5: Implement Classification, Clustering and Association mining techniques to extract knowledge

Objective:

To learn how classification is used for Prediction.

Rubrics for assessment of Experiment:

Sr. No	Parameters	Exceed	Meet	Below
		Expectations(EE)	Expectations (ME)	Expectations (BE)
1	Timeline (2)	Early or on time (2)	One session late (1)	More than one session late (0)
2	Preparedness (2)	Knows the basic theory related to the experiment very well. (2)	Managed to explain the theory related to the experiment. (1)	Not aware of the theory to the point. (1)
3	Effort (3)	Done expt on their own. (3)	Done expt with help from other. (2)	Just managed. (1)
4	Documentation(2)	Lab experiment is documented in proper format and maintained neatly. (2)	Documented in proper format but some formatting guidelines are missed. (1)	Experiments not written in proper format (0.5)
5	Result (1)	Specific conclusion.(1)	Partially specific conclusion. (0.5)	Not specific at all. (0)

Assessment Marks:

Timeline(2)	Preparedness(2)	Effort(3)	Documentation(2)	Result(1)	Total(10)

Theory:

Naive Bayes classifiers are a family of "probabilistic classifiers" based on <u>Bayes'</u> theorem with strong independence between the features. They are among the simplest Bayesian network models and are capable of achieving high accuracy levels. Bayes theorem states mathematically as:

P(A|B) = (P(B|A) * P(A)) / P(B)

where A and B are events and P(B) != 0.

P(A|B) is a conditional probability: the probability of event A occurring given that B is true. P(B|A) is also a conditional probability: the probability of event B occurring given that A is true.

P(A) and P(B) are the probabilities of observing A and B respectively without any given conditions.

A and B must be different events.

Bayes Theorem

- Based on prior knowledge of conditions that may be related to an event, Bayes theorem describes the probability of the event
- conditional probability can be found this way
- Assume we have a Hypothesis(*H*) and evidence(*E*), According to Bayes theorem, the relationship between the probability of Hypothesis before getting the evidence represented as *P*(*H*) and the probability of the hypothesis after getting the evidence represented as *P*(*H*|*E*) is:

$$P(H|E) = P(E|H)*P(H)/P(E)$$

- **Prior probability** = P(H) is the probability before getting the evidence **Posterior probability** = P(H|E) is the probability after getting evidence
- In general,

P(class|data) = (P(data|class) * P(class)) / P(data)

Bayes Theorem Example

Assume we have to find the probability of the randomly picked card to be king given that it is a face card.

There are 4 Kings in a Deck of Cards which implies that P(King) = 4/52

as all the Kings are face Cards so P(Face|King) = 1

there are 3 Face Cards in a Suit of 13 cards and there are 4 Suits in total so P(Face) = 12/52

Therefore,

P(King|face) = P(face|king)*P(king)/P(face) = 1/3

We can frame classification as a conditional classification problem with Bayes Theorem as follows:

• $P(yi \mid x1, x2, ..., xn) = P(x1, x2, ..., xn \mid yi) * P(yi) / P(x1, x2, ..., xn)$ The prior P(yi) is easy to estimate from a dataset, but the conditional probability of the observation based on the class $P(x1, x2, ..., xn \mid yi)$ is not feasible unless the number of examples is extraordinarily large, e.g. large enough to effectively estimate the probability distribution for all different possible combinations of values.

Example

#Weather Outlook	Dataset Temp	Humidity	Windy	Play
Rainy	Hot	High	f	no
Rainy	Hot	High	t	no
Overcast	Hot	High	f	yes
Sunny	Mild	High	f	yes
Sunny	Cool	Normal	f	yes
Sunny	Cool	Normal	t	no
Overcast	Cool	Normal	t	yes
Rainy	Mild	High	f	no
Rainy	Cool	Normal	f	yes
Sunny	Mild	Normal	f	yes
Rainy	Mild	Normal	t	yes
Overcast	Mild	High	t	yes
Overcast	Hot	Normal	f	yes
Sunny	Mild	High	t	no

Calculate Prior Probability of Classes P(y)

#Frequency tableP (Play=Yes) = 9/14 = 0.64 P(Play=No) = 5/14 = 0.36

Calculate the Likelihood Table for all features

#Likelihood Table#Outlook

Play Overcast Rainy Sunny Yes 4/9 2/9 3/9 No 0/5 3/5 2/5 4/14 5/14 5/14

#Temp

Play	Cool	Mild	Hot
Yes	3/9	4/9	2/9
No	1/5	2/5	2/5
#Hıımi		6/14	4/14

```
Play High Normal
Yes
     3/9
          6/9
No
     4/5 1/5
     7/14 7/14
#Windy
Play
Yes
      6/9
          3/9
No
      2/5
          3/5
      8/14 6/14
```

Now, Calculate Posterior Probability for each class using the Naive Bayesian equation. The Class with maximum probability is the outcome of the prediction.

Query: Whether Players will play or not when the weather conditions are [Outlook=Rainy, Temp=Mild, Humidity=Normal, Windy=t]?

Calculation of Posterior Probability:

Since Conditional independence of two random variables, A and B gave C holds just in case $P(A, B \mid C) = P(A \mid C) * P(B \mid C)$

```
P(y=Yes|x) = P(Yes|Rainy,Mild,Normal,t)

P(Rainy,Mild,Normal,t|Yes) * P(Yes)

= _______

P(Rainy,Mild,Normal,t)

P(Rainy|Yes)*P(Mild|Yes)*P(Normal|Yes)*P(t|Yes)*P(Yes)

= ______

P(Rainy)*P(Mild)*P(Normal)*P(t)

(2/9) * (4/9) * (6/9) * (3/9) * (9/14)

= ______

(5/14) * (6/14) * (7/14) * (6/14)
```

Algorithm/steps:

- 1) Load the dataset and convert it into list.
- 2) Separating the data as per class(0,1)-mp[0], mp[1]
- 3) define the test input: test = [2,1,0,1]
- 4) find the prior probability of each class
- 5) Find the conditional probability of test for each class-[yes,no]

```
probYes = 1 // probNO = 1
count = 0
total = 0
//find the length of test
for i in range(len(test)):
count = 0
total = 0
for row in mp[1]: //mp[0] for NO
if(test[i] == row[i]):
    count += 1
total += 1
probYes *= count/total //probNO*= count/total
```

6) Display the posterior probability of each class and find maximization

Code with output:

Code:-

import numpy as np import pandas as pd

```
import matplotlib.pyplot as plt
import math
def accuracy score(y true, y pred):
       *****
                  score = (y true - y pred) / len(y true) """
       return round(float(sum(y pred == y true))/float(len(y true)) * 100,2)
def pre processing(df):
       """ partioning data into features and target """
       X = df.drop([df.columns[-1]], axis = 1)
       y = df[df.columns[-1]]
       return X, y
class NaiveBayes:
         Bayes Theorem:
       Likelihood * Class prior probability
                            Posterior Probability = -----
       Predictor prior probability
                                                                                     P(x|c)
* p(c)
                                                          P(c|x) = -----
        P(x)
       def init (self):
         ** ** **
                   Attributes:
                            likelihoods: Likelihood of each feature per class
                            class priors: Prior probabilities of classes
                            pred priors: Prior probabilities of features
                            features: All features of dataset
         self.features = list
         self.likelihoods = {}
         self.class priors = {}
```

```
self.pred priors = {}
         self.X train = np.array
         self.y train = np.array
         self.train size = int
         self.num feats = int
       def fit(self, X, y):
         self.features = list(X.columns)
         self.X train = X
         self.y train = y
         self.train size = X.shape[0]
         self.num feats = X.shape[1]
         for feature in self.features:
                   self.likelihoods[feature] = {}
                   self.pred priors[feature] = {}
                   for feat val in np.unique(self.X train[feature]):
                             self.pred priors[feature].update({feat val: 0})
                             for outcome in np.unique(self.y train):
       self.likelihoods[feature].update({feat val+' '+outcome:0})
                                      self.class priors.update({outcome: 0})
         self. calc class prior()
         self. calc likelihoods()
         self. calc predictor prior()
       def calc class prior(self):
         """ P(c) - Prior Class Probability """
         for outcome in np.unique(self.y train):
                   outcome count = sum(self.y train == outcome)
                   self.class priors[outcome] = outcome count / self.train size
       def calc likelihoods(self):
         """ P(x|c) - Likelihood """
         for feature in self.features:
                   for outcome in np.unique(self.y train):
                             outcome count = sum(self.y train == outcome)
                             feat likelihood = self.X_train[feature][self.y_train[self.y_train
== outcome].index.values.tolist()].value counts().to dict()
```

```
for feat val, count in feat likelihood.items():
                                      self.likelihoods[feature][feat val + ' ' + outcome] =
count/outcome count
       def calc predictor prior(self):
         """ P(x) - Evidence """
         for feature in self.features:
                   feat vals = self.X train[feature].value counts().to dict()
                   for feat val, count in feat vals.items():
                             self.pred priors [feature] [feat_val] = count/self.train_size
       def predict(self, X):
         """ Calculates Posterior probability P(c|x) """
         results = []
         X = np.array(X)
         for query in X:
                   probs outcome = {}
                   for outcome in np.unique(self.y train):
                             prior = self.class priors[outcome]
                             likelihood = 1
                             evidence = 1
                             for feat, feat val in zip(self.features, query):
                                      likelihood *= self.likelihoods[feat][feat val + ' ' +
outcome]
                                      evidence *= self.pred priors[feat][feat val]
                             posterior = (likelihood * prior) / (evidence)
                             probs outcome[outcome] = posterior
                   result = max(probs outcome, key = lambda x: probs outcome[x])
                   results.append(result)
         return np.array(results)
if name == " main ":
       #Weather Dataset
       print("\nWeather Dataset:")
```

```
df = pd.read table("Weather dataset.txt")
      #print(df)
      #Split fearures and target
      X,y = pre processing(df)
      nb clf = NaiveBayes()
      nb clf.fit(X, y)
      print("Train Accuracy: {}".format(accuracy score(y, nb clf.predict(X))))
      #Query:
      query = np.array([['Rainy','Mild', 'Normal', 't']])
      print("Query 1:- {} ---> {}".format(query, nb clf.predict(query)))
# Output:-
# Weather Dataset:
# Train Accuracy: 92.4
# Query 1:- [['Rainy' 'Mild' 'Normal' 't']] ---> ['Overcast Cool Normal t yes']
Part 2:
import pandas as pd
from sklearn.naive bayes import CategoricalNB
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy score
# Load Weather Dataset
df = pd.read csv("Weather dataset.txt")
# Encode the target variable (class labels)
le = LabelEncoder()
y = le.fit transform(df['Play'])
# Encode the categorical features
X = df.drop('Play', axis=1).apply(le.transform)
# Create and train the Naive Bayes classifier
nb clf = CategoricalNB()
nb clf.fit(X, y)
# Predict and calculate accuracy on the training data
y_pred = nb_clf.predict(X)
```

accuracy = accuracy score(y, y pred)

```
print("Train Accuracy: {:.2f}%".format(accuracy * 100))

# Query:
query = pd.DataFrame({'Outlook': ['Rainy'], 'Temperature':
['Mild'], 'Humidity': ['Normal'], 'Windy': ['False']})

# Use the same LabelEncoder for query data
query_encoded = query.apply(Lambda col: le.transform(col))

prediction = nb_clf.predict(query_encoded)
print("Query 1:", le.inverse_transform(prediction))
```

```
# Output:-
# Weather Dataset:
# Train Accuracy: 92.4
# Query 1:- [['Rainy' 'Mild' 'Normal' 't']] ---> ['Overcast Cool Normal t yes']
```

References:

Naïve Bayes Classification Program in Python from Scratch - japp.io

Naïve Bayes Algorithm -Implementation from scratch in Python. | by ranga vamsi | Medium

ML | Naive Bayes Scratch Implementation using Python - GeeksforGeeks How to Develop a Naive Bayes Classifier from Scratch in Python (machinelearningmastery.com)

Conclusion:

I am able to understand the navie bayes theorem and am able to implement the code