Classification of irreducible representations
of the Inahon'- Heche algebre

Calda Monton-Ferguson

Recall: $\mathcal{H}_{I} \longrightarrow \mathcal{H}_{a}$, $a = (s,t) \in G \times C \times \mathcal{C}$ $\mathcal{H}_{I} = K^{G \times C \times} (Z)$

Ha \simeq Ext°(L, L), L = MACNO \simeq \bigoplus Lp \otimes ICp ϕ are parametrized by nilp. orbits

R an ined. rep. χ of $\pi(L(y))$ \sim a local sys. on the orbit.

To understand Lp concretely, we exhibited tham as the image of a map between std 8 costd modules.

The Std module HBM (BS)

costandard module in terms of transcasal slice ...

 $H^*(\tilde{\mathfrak{col}}) \longrightarrow H^*(\tilde{\mathfrak{col}})$ The image is $La_{1}x_{1}x_{2} \cong L\phi$ sta costd.

Theorem 1. For any semisimple elt $\alpha = (s,t) \in G \times C^{\times}$, and any $x \in \gamma^{\alpha}$, $\chi \in C(s, x)^{\Lambda}$, the Ha-module La, x, χ is simple (provided that it's nonzero). Two such modules La, x, χ , La, χ', χ' isom. iff (χ, χ) and (χ', χ') are G(s)-conjugate.

Theorem 2 (Doligne - Langlands) I med. H-modules one parametrized by long.

Granj. Classes of triples. (S, x, x) where $SxS^{-1} = qx$, and $X \in C(S, x)^{\Lambda}$ (see. X shows up in $H^{BM}(B_{x}^{S})$)

Non-vanishing theorem, (Kazhdan-Luszeig- arojnoushi- lingburg)

Proposition A. Assume $t \in \mathbb{C}^{\times}$ is not a root of unity. there exists a G(s)-stable union of complete G of F^{α} s.t. G(G) = G.

Let $\widehat{B}_{S} = B_{S}^{s} \cap \widehat{G}$, (For any G(s)-orbit G(s))

Proposition B. Assume a = (s,t), t not a root unity, then any simple C(s,x) -module occurring in $H^*(\mathcal{B}_x^s)$ by nonzero mult. also occurs in $H^*(\mathcal{B}_x^s)$ by nonzero multiplicity.

Theorem (non-varishing theorem) If X shows up in H. (B_X^2), then $L_{a, x, x}$ is nonzero.

Prot Recall he have:

 $\mu_{x} \subseteq \mathcal{F}^{\alpha} = \bigoplus L_{\alpha,x,\chi} \boxtimes Ic(\mathcal{D},\chi)$ $0,\chi$

. The complex $\mu_{x} \subseteq j_{x}^{-\alpha}$ contains $\mu_{x} \subseteq j_{0}^{-\alpha}$ as a direct summand.

 $\mu_{x} \subseteq G = \begin{pmatrix} \bigoplus_{\chi} & L_{\chi} \otimes IC(\mathcal{D}, \chi) \end{pmatrix} \oplus B$ (supp. on the boundary)and L_{χ} are excutly the mult. of χ in $H^{\bullet}(B_{\chi}^{c})$

Sketch of Proof of Prop A:

Lemma 1. a) The group G(S) is a count reductive gp, and each countd component of BS is a Submanifold of B which is G(S)-equil. isom. to the flog variety for G(S).

b) If $t \in \mathbb{C}^{\times}$ is not a root of unity, then $g^a = h^a$.

(Consider only of nilp-elements.

Lemma 2. a) There is an embedding $sl_2(C) \stackrel{Y}{\hookrightarrow} g$ associated to x s.t. $S=S_T \cdot S_0$ where S_0 is a semisimple element commuting w the image of y, and $S_T=Y\begin{pmatrix} T & 0 \\ 0 & T^{-1} \end{pmatrix}$, T=t.

b) There is a gamp homomorphism v: CX -> IR W V(T) > 0.

Let r, t, so be es in Lemma 2.

We have a ut spraw decomposition of 9 by conjugation by so

 $g = \bigoplus_{d \in C^{\times}} g_{d}$, and we define $p = \bigoplus_{u(d) \le 0} g_{d}$, $l = \bigoplus_{u(d) \ge 0} g_{d}$, $u = \bigoplus_{u(d) \ge 0} g_{d}$.

One can check that $x \in l$, and $s \in L$.

Let $P \supset B$ be the subsar. of all Borel subalgo $b \subset P$ (the flag var. tor L)

Let $P_x^s = B_x^s \land p \neq \phi$, (It's the sand $\exp(x)$ -fixed p^* set at the closed subset p)

Det Let & be the union of all connected components of Na which have nonempty intersection of Ps.

On It's easy to see that $\widehat{\Theta}$ is G(s) -stuble, and that the image of any countd component of $\widehat{\Theta}$ contains $x \Rightarrow$ contains the G(s)-value G(s)

Checking that $p(\vec{\Phi}) = \vec{\Phi}$ reduces to:

Lemma: Let $\vec{\Phi} \in P_X^3$ and \vec{n} is its nilradical, then

Ad $a(s) \cdot (n \cdot n \cdot g^a) = \vec{\Phi} \cdot [Very technical]$

Sketch of Proof of Prop B.

idea. [H'(B'x): x) \$0 → [H'(p'x): x) \$0 → [H'(B'x): x] \$0. Let Z= Z°(L) be the identity component of the center of L, then Z is a complex torus which commutes of both x and s (since x = 1, s = L) so Bx in Z-stable variety of B. Let T be the moral cost of Z, (B) 12 = (B))T fixed pt reduction =) [H'(Bs,)] = [H'(Bs,) 2°(L)] in the Contlandich gp of L(s,x)-modules no this is also true in the Conthendielle gp of L(s,x)/L(s,x) = modules. ~ holds as h(s,x)/h(s,x) = modules. If x is sit. [H'(Bx): x] to => [H'(Bx) 8°(L): x] to. then one can show that $(B_{\lambda}^{\varsigma})^{\varrho^{\circ}(L)}$ is a disject union of pieces isom to B(L) = Px.

Finally, Ps. c Bs. ~ H'(Ps.c) is canonially adject summand of H'(Bs.c) = (L)

So we know (2) for L(s,x)-modules $\frac{(2)}{\sigma} \frac{for}{u(s,x)} / u(s,x)^{\sigma-1} modules \chi$

M& Cm = O Lo OSCO (x)

Thm. The multiplicity of the simple Ha-module Lø in the standard module H. (Mx)4 is given by the following formula:

[H. (Mx)4: Lø] = \(dim Hk (ix Icø)4.

Proof Recall that if $L = \mu \times C_M$, this is the same as finding the mult. of the RHom (L, L) module L4 in the module $H'(ixL)_{\Psi}$.

Apply the functor $H'(\dot{x})$ to the elecomposition. (K), and we get $H^{BM}(M_X) = H'(\dot{x})$ $M_X \subseteq M = \bigoplus_{\phi} L_{\phi} \otimes H'(\dot{x}) = L_{\phi}$.

For any j, k, we have $\operatorname{Ext}^k(\mathbb{L},\mathbb{L}): \bigoplus \operatorname{L}_{\phi}\otimes\operatorname{H}^{\mathsf{J}}(\operatorname{ix}^{\mathsf{L}}\operatorname{IC}_{\phi})$

-> @ La OHith (if ICA)

Define FPH' (iz L) = & (& Lp OH)(iz ICA)), it is Ext' (L, L)-stable.

we can consider gr. f f (ix^iL) . Here the action factors through projection to $Ext^*(L,L) \simeq G$ End(L4)

As a vertex space, gr f H° isi $L = \bigoplus L \phi \otimes H$ (ix $I(\phi)$).

Components $\begin{cases} q & \text{f H' ixi } L \end{pmatrix} \psi = \bigoplus L \phi \otimes (H' \text{ (ixi } I(\phi)) \psi \end{cases}$

so Ly occurs exactly dim (H'(ix IC4))4.

$$K^{\tilde{a} \times c^{*}}(z) \simeq \mathcal{H}_{I} \simeq \mathbb{C}[I \setminus G(k)/I]$$

$$\begin{cases} & & & & \\ & &$$