# Exercices de Révision sur les Circuits Combinatoires, Multiplexeur, Démultiplexeur et Circuit Séquentiel (Solution)

### Exercice 1 : Parité d'un mot

Le but de cet exercice est de concevoir un circuit permettant de détecter la parité d'un mot de 3 bits code sur les entrées A, B et C. La sortie vaudra O si le nombre de « 1 » en entrée est pair (ex : 0011) et 1 sinon (ex : 1000).

- 1. Ecrire la table de vérité correspondante.
- 2. Utiliser un multiplexeur 8 x 3 pour réaliser cette fonction.
- 3. Utiliser un démultiplexeur 3x 8 pour réaliser cette fonction.

| <u>Vérité :</u> | Α         | В      | С        | Р       |           |
|-----------------|-----------|--------|----------|---------|-----------|
|                 | 0         | 0      | 0        | 1       |           |
|                 | 0         | 0      | 1        | 0       |           |
|                 | 0         | 1      | 0        | 1       |           |
|                 | 0         | 1      | 1        | 0       |           |
|                 | 1         | 0      | 0        | 1       |           |
|                 | 1         | 0      | 1        | 0       |           |
|                 | 1         | 1      | 0        | 1       |           |
|                 | 1         | 1      | 1        | 0       |           |
|                 |           |        |          |         | 1         |
| 1 16            | 0 15 1 14 | 0 13 1 | 2 0 11 1 | 10      |           |
|                 |           | T T    |          |         |           |
| †               | † †       | † †    | 1 1      |         |           |
|                 |           |        |          | 0       |           |
|                 |           |        |          | 1       |           |
|                 |           |        |          | 2       |           |
|                 |           |        |          | 3<br>O/ | p         |
|                 |           |        |          | 4       |           |
|                 |           |        |          | 5       | 0 LProbe0 |
|                 |           |        |          | 6 1     |           |
|                 |           |        |          | 7 2 sel |           |
|                 |           |        |          | - + +   | +         |
|                 |           |        |          | MuxD    |           |
|                 |           |        |          |         | L.        |
|                 |           |        |          |         |           |
|                 |           |        |          | A       | С         |
|                 |           |        |          | T t     | В         |
|                 |           |        |          |         |           |



### Exercice 2 : Incrémenteur

Une (grande) partie des additions effectuées par un ordinateur consistent simplement a ajouter 1 a une autre valeur x (on incrémente la valeur x).

- 1. Réaliser un incrémenter 3 bit avec retenue de sortie (Entrées AOA1A2 ; Sorties RIOI1I2).
- 2. Réaliser aussi le circuit d'un décrémenteur 3 bits, avec « 000 » cas indéfinis (Entrées A0A1A2 ; Sorties D0D1D2).
- 3. Réaliser la fonction DO avec un Mux de 3 entrées d'adresses.
- 4. Réaliser la fonction D1 avec un DEMux de 3 entrées d'adresses.
- 5. Réaliser la fonction D2 avec un DEMux de 1x4 et un Mux 4x1.

| <i>A</i> 0 | A1 | A2 | R | IO | I1 | I2 |
|------------|----|----|---|----|----|----|
| 0          | 0  | 0  | 0 | 0  | 0  | 1  |
| 0          | 0  | 1  | 0 | 0  | 1  | 0  |
| 0          | 1  | 0  | 0 | 0  | 1  | 1  |
| 0          | 1  | 1  | 0 | 1  | 0  | 0  |
| 1          | 0  | 0  | 0 | 1  | 0  | 1  |
| 1          | 0  | 1  | 0 | 1  | 1  | 0  |
| 1          | 1  | 0  | 0 | 1  | 1  | 1  |
| 1          | 1  | 1  | 1 | 0  | 0  | 0  |

2016/2017 M.LICHOURI

LCS

|    | AO | A1 | A2 | D0                                      | D1                             | D2 |       |
|----|----|----|----|-----------------------------------------|--------------------------------|----|-------|
|    | 0  | 0  | 0  | 0                                       | 0                              | 0  | -     |
|    | 0  | 0  | 1  | 0                                       | 0                              | 0  |       |
|    | 0  | 1  | 0  | 0                                       | 0                              | 1  |       |
|    | 0  | 1  | 1  | 0                                       | 1                              | 0  |       |
|    | 1  | 0  | 0  | 0                                       | 1                              | 1  |       |
|    | 1  | 0  | 1  | 1                                       | 0                              | 0  |       |
|    | 1  | 1  | 0  | 1                                       | 0                              | 1  |       |
|    | 1  | 1  | 1  | 1                                       | 1                              | 0  |       |
| A0 |    |    |    | 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 | 0 1 2 3 4 5 0 6 1 7 2 sel Muxp | Do | OR D1 |



### **Exercice 3:** Rotation

On aime concevoir un circuit qui fait la rotation de 3 bit (CBA) à droite ou à gauche selon la valeur d'une variable en entrée D.

Ex : DCBA=0100 => D=0 (rotation à gauche) ; résultat (ROR1R2=001) DCBA=1100 => D=1 (rotation à droite) ; résultat (ROR1R2=010)

- 1. Donner la table de vérité du circuit.
- 2. Donner les deux formes canoniques des sorties.
- 3. Réaliser les trois sorties avec des portes Nand ou Nor seulement.



LCS 2016/2017 FEI-USTHB M.LICHOURI



Exercice 4 :

Réaliser le circuit qui permet d'effectuer le complément à deux d'un nombre binaire de 3 bits à l'aide de 3 Mux 8x1.

| Α | В | С | WO | M1 | M2 |  |
|---|---|---|----|----|----|--|
| 0 | 0 | 0 | 0  | 0  | 0  |  |
| 0 | 0 | 1 | 1  | 1  | 1  |  |
| 0 | 1 | 0 | 1  | 1  | 0  |  |
| 0 | 1 | 1 | 1  | 0  | 1  |  |
| 1 | 0 | 0 | 1  | 0  | 0  |  |
| 1 | 0 | 1 | 0  | 1  | 1  |  |
| 1 | 1 | 0 | 0  | 1  | 0  |  |
| 1 | 1 | 1 | 0  | 0  | 1  |  |



# Exercice 5 : Incrément de 5

Le code ROT5 permet de faire la rotation d'un nombre binaire en ajoutant 5 en binaire, sans retenue.

Ex: ROT5(0000)=0101; ROT5(1111)=0100

Réaliser le circuit de conversion de binaire au ROT5 en utilisant un décodeur de 4 à 16 et 4 portes Or.

| Α | В | С | D | R0 | R1 | R2 | R3 |
|---|---|---|---|----|----|----|----|
| 0 | 0 | 0 | 0 | 0  | 1  | 0  | 1  |
| 0 | 0 | 0 | 1 | 0  | 1  | 1  | 0  |
| 0 | 0 | 1 | 0 | 0  | 1  | 1  | 1  |
| 0 | 0 | 1 | 1 | 1  | 0  | 0  | 0  |
| 0 | 1 | 0 | 0 | 1  | 0  | 0  | 1  |
| 0 | 1 | 0 | 1 | 1  | 0  | 1  | 0  |
| 0 | 1 | 1 | 0 | 1  | 0  | 1  | 1  |
| 0 | 1 | 1 | 1 | 1  | 1  | 0  | 0  |
| 1 | 0 | 0 | 0 | 1  | 1  | 0  | 1  |
| 1 | 0 | 0 | 1 | 1  | 1  | 1  | 0  |
| 1 | 0 | 1 | 0 | 1  | 1  | 1  | 1  |
| 1 | 0 | 1 | 1 | 0  | 0  | 0  | 0  |
| 1 | 1 | 0 | 0 | 0  | 0  | 0  | 1  |
| 1 | 1 | 0 | 1 | 0  | 0  | 1  | 0  |
| 1 | 1 | 1 | 0 | 0  | 1  | 0  | 0  |
| 1 | 1 | 1 | 1 | 0  | 1  | 0  | 1  |



# Exercice 6 : Circuit Séquentiel

1. Trouvez la fonction  $F_t$  en fonction de A, B, C et D et  $F_{t-1}$  à partir du circuit suivant.



2. Donnez la table de vérité réduite et éclaté de F pour C=D=1.



| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

## Exercice 7:

En utilisant la table de transition de la bascule CD ; transformer la bascule CD en Bascule RS.

| Qn | $Q_{n+1}$ | С | D |
|----|-----------|---|---|
| 0  | 0         | 0 | X |
| 0  | 1         | × | 1 |
| 1  | 0         | 0 | 1 |
| 1  | 1         | 1 | 0 |

