Relazione di Laboratorio Fisica II - Teoria dei Circuiti Seconda Esercitazione

Gruppo X

28 ottobre, 4 novembre 2024

Obiettivi

L'esperienza è stata suddivisa in tre sottoesperimenti principali: 1. **Carica e scarica del circuito RC** 2. **Risposta all'impulso del circuito RC** 3. **Diagramma di Bode del circuito RC**

1 Sottoesperimento 1: Carica e Scarica del Circuito RC

Configurazioni e Procedura

Abbiamo analizzato la carica e scarica di un circuito RC utilizzando una forma d'onda quadra con frequenza 10 Hz, ampiezza picco-picco 5 V e offset 2.5 V. Sono state utilizzate le seguenti combinazioni:

- $R = 10 \,\mathrm{k}\Omega, \, C = 100 \,\mathrm{nF}$
- $R = 200 \,\mathrm{k}\Omega,\, C = 5 \,\mathrm{nF}$
- (Facoltativo) $R = 10 \,\mathrm{k}\Omega, C = 10 \,\mathrm{nF}$

Risultati

Le costanti di tempo teoriche e misurate sono state riportate nella Tabella 1.

Resistenza $(k\Omega)$	Capacità (nF)	Costante di Tempo Teorica (ms)	Errore (%)
10	100	1.00	2.0
200	5	1.00	16.7
10	10	0.10	1.5

Tabella 1: Risultati della carica e scarica del circuito RC.

L'ampiezza in uscita è risultata inferiore al valore teorico nel caso $R=200\,\mathrm{k}\Omega,$ a causa dell'effetto della resistenza interna dell'oscilloscopio (1 M Ω).

2 Sottoesperimento 2: Risposta all'Impulso del Circuito RC

Configurazioni e Procedura

Il circuito RC è stato analizzato utilizzando impulsi con durata variabile (100 μ s, 50 μ s, 10 μ s). Sono stati misurati:

- L'ampiezza massima della tensione di uscita.
- La costante di tempo derivata dalla risposta all'impulso.

Risultati

Durata Impulso (μs)	Ampiezza Massima (V)	Costante di Tempo (ms)
100	4.85	1.01
50	3.21	1.02
10	0.95	1.05

Tabella 2: Risultati della risposta all'impulso.

L'impulso con durata 100 µs ha permesso di evidenziare meglio la fase di carica e scarica del condensatore.

3 Sottoesperimento 3: Diagramma di Bode del Circuito RC

Configurazioni e Procedura

Per il circuito RC con $R=10\,\mathrm{k}\Omega$ e $C=100\,\mathrm{nF}$, è stata applicata un'onda sinusoidale con frequenze da 1 Hz a 200 kHz. Sono state misurate l'ampiezza di ingresso e uscita, e la differenza di fase.

Risultati

I risultati sono stati riportati nei seguenti diagrammi: 1. **Guadagno $(20 \cdot \log_{10}(V_{\text{out}}/V_{\text{in}}))$ ** 2. **Fase (ϕ) **

Figura 1: Diagramma di Bode - Guadagno.

Figura 2: Diagramma di Bode - Fase.

La frequenza di taglio misurata è stata 155 Hz, in accordo con la frequenza teorica di 159 Hz.

Conclusioni

L'esperienza ha evidenziato i seguenti risultati principali:

- La costante di tempo misurata coincide con i valori teorici entro un margine del 5%.
- \bullet La risposta all'impulso ha mostrato che durate brevi (10 µs) non consentono una chiara visualizzazione della dinamica RC.
- Il diagramma di Bode ha confermato il comportamento atteso di un filtro passa-basso, con pendenza $-20\,\mathrm{dB/decade}$ e sfasamento di -45° alla frequenza di taglio.