2.3 Lecture 3

Preamble:In this lecture, we will discuss more than one linear congruences. Under certain conditions, we will show that such simultaneous congruences have a solution. We will also discuss the uniqueness of such a solution. For solving such congruences, there is a well-known method known as the Chinese Remainder Theorem.

Keywords: simultaneous congruences, Chinese Remainder Theorem

2.3.1 Simultaneous Linear Congruences

Consider the congruences

```
x \equiv 3 \mod 10, \qquad x \equiv 2 \mod 8.
```

Clearly, there is no common solution to both. The first one indicates that a solution x_0 must be an odd integer, as $x_0 - 3$ is divisible by 2, whereas the second one can have only even integers as solutions. On the other hand, the congruences

$$x \equiv 3 \mod 10, \qquad x \equiv 2 \mod 7$$

have a common solutions 23. We will now determine a sufficient condition for such congruences to have common solutions. We will also see when such a solution is unique. Note that in the second set of congruences, the moduli 10 and 7 are coprime. We will first show that when we have coprime moduli the simultaneous congruences will always have a solution.

2.3.2 Chinese Remainder Theorem

The following theorem is known as the Chinese Remainder Theorem. It gives us a sufficient condition for existence of a solution to simultaneous linear congruences.

Theorem 2.13. Consider the linear congruences

```
x \equiv a_1 \mod m_1,
x \equiv a_2 \mod m_2,
\vdots \qquad \vdots
x \equiv a_n \mod m_n.
```

If the m_i are pairwise coprime, then these congruences have a common solution. Further, such a common solution is unique modulo $M = m_1 \cdot \cdots \cdot m_n$.

Proof: Let us define n integers

$$M_i = \frac{M}{m_i} = m_1 \cdot \dots \cdot m_{i-1} \cdot m_{i+1} \cdot \dots \cdot m_n, \qquad 1 \le i \le n.$$

As m_i 's are pairwise coprime, each M_i is coprime to the corresponding m_i . For each i $(1 \le i \le n)$, consider the linear congruence

$$M_i x \equiv 1 \mod m_i$$
.

As M_i and m_i are coprime, the above congruence has a solution. So there is an integer \tilde{m}_i such that

$$M_i \tilde{m}_i \equiv 1 \mod m_i$$
.

We claim that

$$x_0 = a_1 M_1 \tilde{m}_1 + \dots + a_i M_i \tilde{m}_i + \dots + a_n M_n \tilde{m}_n$$

satisfies all the given congruences in the theorem. Observe that

$$x_0 = a_1 M_1 \tilde{m}_1 + \dots + a_i M_i \tilde{m}_i + \dots + a_n M_n \tilde{m}_n$$

$$\equiv a_i M_i \tilde{m}_i \mod m_i$$

$$\equiv a_i \mod m_i.$$

As for the uniqueness of common solutions, let x_1 be another common solution to the above system of linear congruences. Then, for each i, we have

$$x_1 \equiv a_i \equiv x_0 \mod m_i \implies m_i | (x_1 - x_0).$$

As the m_i 's are coprime, we have

$$(m_1 \cdot \dots \cdot m_n)|(x_1 - x_0) \implies x_1 \equiv x_0 \mod M.$$

Let us illustrate the method with the following example.

Exercise: Solve the following system of linear congruences

$$x \equiv 2 \mod 6$$
, $x \equiv 1 \mod 5$, $x \equiv 3 \mod 7$.

Solution: Observe that the moduli are pairwise coprime. Here,

$$M = 6.5.7 = 210,$$
 $M_1 = 5 \cdot 7 = 35,$ $M_2 = 6 \cdot 7 = 42,$ $M_3 = 6 \cdot 5 = 30.$

Now,

$$35\tilde{m}_1 \equiv 1 \mod 6 \implies -\tilde{m}_1 \equiv 1 \mod 6 \implies \tilde{m}_1 \equiv 5 \mod 6$$

 $42\tilde{m}_2 \equiv 1 \mod 5 \implies 2\tilde{m}_2 \equiv 1 \mod 5 \implies \tilde{m}_2 \equiv 3 \mod 5$
 $30\tilde{m}_3 \equiv 1 \mod 7 \implies 2\tilde{m}_3 \equiv 1 \mod 7 \implies \tilde{m}_3 \equiv -3 \mod 7$

Hence, by , we have a solution

$$x_0 = 2 \cdot 35 \cdot 5 + 1 \cdot 42 \cdot 3 + 3 \cdot 30 \cdot (-3) = 350 + 126 - 270 = 206.$$

The solution is unique modulo $M = 6 \cdot 5 \cdot 7 = 210$.

It may appear that the Chinese Remainder Theorem does not cover a general system of linear congruences with coprime moduli, as we have not really taken congruences of the type

$$b_i x \equiv a_i \mod m_i$$
, $1 \le i \le n$, $gcd(m_i, m_j) = 1$ when $i \ne j$.

But we can reduce a congruence of this form to a form considered in the above theorem, provided $gcd(b_i, m_i) = 1$. We know that $b_i c_i \equiv 1 \mod m_i$ has a solution if and only if $gcd(b_i, m_i) = 1$. Then,

$$b_i x \equiv a_i \mod m_i \Leftrightarrow x \equiv c_i a_i \mod m_i$$

and we obtain a linear congruence which is in the desired form so that the Chinese Remainder Theorem can be applied. Let us demonstrate this with an example:

Exercise: Solve the system of linear congruences

$$5x \equiv 1 \mod 6$$
, $3x \equiv 2 \mod 5$, $4x \equiv 5 \mod 7$.

Solution: Observe that each of the above congruences is solvable, for example, in the first one, 5 is coprime to 6. We have $5.5 \equiv 1 \mod 6$, so we can multiply the first congruence by 5 to obtain $x \equiv 5 \mod 6$. Similarly, we multiply the second congruence by 2 (as $3 \cdot 2 \equiv 1 \mod 5$) to obtain $x \equiv 4 \mod 5$. We multiply the the congruence above by 2 to obtain $x \equiv 10 \equiv 3 \mod 7$. Thus, the given system is reduced to

$$x \equiv 5 \mod 6$$
, $x \equiv 4 \mod 5$, $x \equiv 3 \mod 7$.

Proceeding as in the previous example, we have

$$M = 6 \cdot 5 \cdot 7 = 210,$$
 $M_1 = 5 \cdot 7 = 35,$ $M_2 = 6 \cdot 7 = 42,$ $M_3 = 6 \cdot 5 = 30.$

$$M_1 = 5 \cdot 7 = 35$$
.

$$M_2 = 6 \cdot 7 = 42$$
.

$$M_3 = 6 \cdot 5 = 30$$

and

$$35\tilde{m}_1 \equiv 1 \mod 6 \implies \tilde{m}_1 \equiv 5 \mod 6$$

$$42\tilde{m}_2 \equiv 1 \bmod 5 \quad \Longrightarrow \quad \tilde{m}_2 \equiv 3 \bmod 5$$

$$30\tilde{m}_3 \equiv 1 \mod 7 \implies \tilde{m}_3 \equiv -3 \mod 7$$

Hence, by Chinese Remainder Theorem, we have a solution

$$x_0 = 5 \cdot 35 \cdot 5 + 4 \cdot 42 \cdot 3 + 3 \cdot 30 \cdot (-3) = 875 + 504 - 270 = 1109 \equiv 59 \mod 210.$$

The solution is unique modulo 210.