Brownian Motion

Reflection Principle

SUPQUANT - Course Research Team

July 6, 2025

Reflection Principle

Suppose that $\{B_t\}_{t\geqslant 0}$ is a standard Brownian motion. Define the running maximum and minimum as

$$M_t = \max_{0 \leqslant s \leqslant t} B_s \text{ and } m_t = \min_{0 \leqslant s \leqslant t} B_s. \tag{1}$$

Obviously, we have $M_t \geqslant 0 \geqslant m_t$ since $B_0 = 0$. Define a stopping time T_a for any $a \in \mathbb{R}$:

$$T_a = \min\left\{t : B_t = a\right\},\tag{2}$$

which is the first time when $\{B_t\}_{t\geqslant 0}$ hits level a. By convention, $T_a=\infty$ when $\{B_t\}_{t\geqslant 0}$ never hits level a. We give two claims without proof.

Theorem

 $T_a < \infty$ almost surely.

Theorem

(Strong independent increments) Process $\{X_t\}_{t\geqslant 0}$ given by $X_t=B_{T_a+t}-a$ is a standard Brownian motion and is independent of $\{B_t\}_{0\leqslant t\leqslant T_a}$.

Reflection Principle

Theorem

(Reflection principle) For each $a \geqslant 0$ we have

$$\mathbb{P}(M_t \geqslant a) = 2\mathbb{P}(B_t \geqslant a) = \frac{2}{\sqrt{2\pi t}} \int_a^\infty \exp\left(-\frac{x^2}{2t}\right) dx. \tag{3}$$

For each $a \leq 0$ we have

$$\mathbb{P}\left(m_{t} \leqslant a\right) = 2\mathbb{P}\left(B_{t} \leqslant a\right) = \frac{2}{\sqrt{2\pi t}} \int_{-\infty}^{a} \exp\left(-\frac{x^{2}}{2t}\right) dx. \tag{4}$$

Proof:

Reflection Principle

Theorem

For each $a \ge 0, y \ge 0$ we have

$$\mathbb{P}(M_t \geqslant a, B_t \leqslant a - y) = \mathbb{P}(B_t \geqslant a + y). \tag{5}$$

For each $a \leq 0, y \geq 0$ we have

$$\mathbb{P}\left(m_{t} \leqslant a, B_{t} \geqslant a + y\right) = \mathbb{P}\left(B_{t} \leqslant a - y\right). \tag{6}$$

Proof:

