Adopted Levels, Gammas

	History	7	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Tilley, Weller, Cheves, Chasteler	NP A595.1 (1995)	31-Oct-1994

 $Q(\beta^-)=-1655.9\ 5;\ S(n)=8045;\ S(p)=15942\ 15;\ Q(\alpha)=-6228$ 2012Wa38

Note: Current evaluation has used the following Q record \$-1665.50 638044.39 7815941 15

1993Au05.

¹⁸O Levels

Cross Reference (XREF) Flags

Α	10 B(9 Be,p), 11 B(9 Be,d)	Q	$^{17}O(^{12}C,^{11}C)$	AF	¹⁸ O(¹² C, ¹² C), (¹³ C, ¹³ C)
В	$^{12}\mathrm{C}(^{7}\mathrm{Li},\mathrm{p})$	R	18 N β^- decay	AG	$^{18}O(^{16}O,^{16}O)$
C	13 C(6 Li,p)	S	$^{18}O(\gamma,n), (\gamma,2n), (\gamma,p), (\gamma,t)$	AH	¹⁸ O(¹⁷ O, ¹⁷ O), (¹⁸ O, ¹⁸ O)
D	$^{13}\text{C}(^{9}\text{Be},\alpha)$	T	$^{18}O(\gamma,\gamma)$	ΑI	$^{18}O(^{19}F,^{19}F)$
E	$^{13}C(^{17}O,^{12}C)$	U	$^{18}O(e,e)$	AJ	$^{18}\text{O}(^{24}\text{Mg},^{24}\text{Mg}), (^{26}\text{Mg},^{26}\text{Mg})$
F	$^{14}\mathrm{C}(\alpha,\gamma)$	V	$^{18}O(\pi,\pi)$	AK	$^{18}O(^{27}Al,^{27}Al)$
G	$^{14}C(\alpha,\alpha), (\alpha,n)$	W	$^{18}O(n,n)$	AL	$^{18}O(^{28}Si,^{28}Si)$
H	$^{14}\text{C}(^{6}\text{Li,d})$	X	$^{18}O(p,p)$	AM	¹⁸ O(⁴⁰ Ca, ⁴⁰ Ca), (⁴⁴ Ca, ⁴⁴ Ca)
I	$^{14}\mathrm{C}(^{7}\mathrm{Li},\mathrm{t})$	Y	$^{18}O(d,d)$	AN	18 F β^+ decay
J	$^{14}C(^{14}C,^{10}Be)$	Z	$^{18}O(t,t)$	AO	19 F(γ ,p)
K	$^{14}C(^{16}O,^{12}C)$	Other	s:	AP	19 F(n,d)
L	$^{16}O(t,p)$	AA	$^{18}O(^{3}He,^{3}He)$	AQ	$^{19}F(p,2p)$
M	$^{16}O(\alpha,2p)$	AB	$^{18}\mathrm{O}(\alpha,\alpha)$	AR	19 F(d, 3 He)
N	$^{16}O(^{10}B, ^{8}B), (^{13}C, ^{11}C)$	AC	¹⁸ O(⁶ Li, ⁶ Li), (⁷ Li, ⁷ Li)	AS	19 F(t, α)
0	$^{17}\mathrm{O}(\mathrm{d,p})$	AD	$^{18}O(^{9}Be, ^{9}Be)$	AT	²² Ne(d, ⁶ Li)
P	$^{17}\mathrm{O}(\alpha,^3\mathrm{He})$	AE	$^{18}O(^{10}B, ^{10}B), (^{11}B, ^{11}B)$		

E(level)	J^{π}	T _{1/2}	XREF	F	Comments
0.0	0+	stable	BCDEFGHIJKL OF	OPQRSTUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG, AH, AI, AJ, AK, AL, AM, AN, AO, AP, AQ, AR, AS, AT
1982.07 9	2+	1.94 ps 5	ABCDEFGHIJ L NOI	OPQR UVWXY	T=1 XREF: Others: AA, AB, AG, AH, AJ, AL, AM, AO, AP, AQ, AR, AS, AT %IT=100
3554.84 40	4+	17.2 ps 8	BC F HI LMNOI	DPQR U X	g=-0.287 15 XREF: Others: AB, AG, AH, AS, AT %IT=100 g=-0.62 10
3633.76 11	0_{+}	0.96 ps 11	BC F HI L O	ORUX	XREF: Others: AB, AG, AH, AR, AS, AT %IT=100
3920.44 <i>14</i>	2+	18.4 fs 20	BC F HI L O	ORUX	XREF: Others: AB, AG, AS %IT=100
4455.54 10	1-	45 fs 10	BC F HI L O	ORUX	XREF: Others: AB, AG, AH, AR, AS %IT=100
5097.78 <i>54</i>	3-	43 fs <i>17</i>	BC F HI L O	O R UVWX	XREF: Others: AB, AG, AH, AM, AS, AT %IT=100
5254.8 9	2+	7.0 fs <i>3</i>	BC F HI L NO	X U C	XREF: Others: AB, AR, AS %IT=100
5336.4 6	0^{+}	139 fs 28	BC H L O	O U	XREF: Others: AB, AS %IT=100
5377.8 12	3 ⁺	<21 fs	BC L OI	OP	XREF: Others: AS
5530.24 29	2-	<17 fs	BC L	R U X	%IT=100 XREF: Others: AB, AS
6198.22 40	1-	2.6 fs 4	BC H L O	O R TU	%IT=100 XREF: Others: AB, AS

¹⁸O Levels (continued)

E(level)	J^{π}	$T_{1/2}$			XR	EF				Comments
6351.3 6	(2-)	<24 fs	ВС		L	0	R	U		%IT=100 XREF: Others: AB, AS, AT
6404.4 12	3-	21 fs <i>10</i>	ВС		L					%IT=100 XREF: Others: AB, AS
6880.45 27	0-	<17 fs	ВС		L		R			%IT=100 XREF: Others: AB, AR, AS
							K			%IT=100
7116.9 <i>12</i>	4 ⁺	<17 fs	ВС	F HI	L	NOP		U	X	XREF: Others: AB, AF, AG, AH, AS $\%$ IT=?; $\%\alpha$ =?
7615.9 7	1-	<2.5 keV	ВС	F H	L		R	U		XREF: Others: AB, AF, AG, AH, AS $\%$ IT=?; $\%\alpha$ =?
7771.07 50	2-	<50 keV	BC		L		R	U		XREF: Others: AS %IT=100
7864 5	5-		ВС	F HI	L	OP		U		XREF: Others: AB, AF, AG, AH, AS, AT %IT=100
7977 4	$(3^+,4^-)$		ВС		L	0				XREF: Others: AS %IT=100
8037.8 7	1-	<2.5 keV	ВС	FG	LM	N	R	U		XREF: Others: AF, AG, AH, AS
8125 2	5-		ВС	F HI	L			U		%IT=?; $\%\alpha$ =? XREF: Others: AS
8213 4	2+	1.0 keV 8	ВС	FG	L			U	X	
										%IT=?; %n=?; % α =? T=(1)
8282 3	3-	8 keV 1	BC	FGHI	L			U		XREF: Others: AB, AS %IT=?; $%$ n=?; $%$ α=?
8410 8	(2-)	8 keV 6		G	L			U		XREF: Others: AS
8521 6					L			U		$%$ n=?; $%\alpha$ =? XREF: Others: AS %IT=100
8660 <i>6</i> 8817 <i>12</i>	(1 ⁺)	70 keV <i>12</i>		G	L	P			X	XREF: Others: AS
	(1)					r			Λ	%n=?; %α=?
8955 4		43 keV <i>3</i>		G	L			U		XREF: Others: AB $\%$ n=?; $\%\alpha$ =?
900×10 ¹ † 20	(1-)						R			%lpha=? Level uncertain.
9030					L	0				XREF: Others: AB
9100 9270 [†] 20	$(0,1,2)^{-}$						R			XREF: Others: AB
9361 6	(3^{-})	27 keV 15		GI	L		K	U		XREF: Others: AB, AF, AG, AH
9414 <i>18</i>		≈120 keV		GI	L					%IT=?; %n=?; % α =? XREF: Others: AB
9480 <i>24</i>		≈65 keV		G	L					$\%$ n=?; $\%\alpha$ =? $\%$ n=?; $\%\alpha$ =?
9672 7	(3-)	60 keV <i>30</i>		G	L					XREF: Others: AB, AF, AG, AH $\%$ n=?; $\%\alpha$ =?
9713 7					L			U		XREF: Others: AB
9890 11		≈150 keV		G	L					%IT=100 XREF: Others: AB
10118 <i>10</i>	3-	16 keV 4		GH	L					$%$ n=?; $%\alpha$ =? XREF: Others: AB
10240 [†] 20	$(0,1,2)^{-}$						R			$%$ n=?; $%\alpha$ =? %n=100
10295 14	4+	<50 keV		GHI	LM			U		XREF: Others: AB, AF, AG, AH %IT=?; $\%$ n=?; $\%$ α =?

¹⁸O Levels (continued)

E(level)	${ m J}^{\pi}$	T _{1/2}	XREI	-	Comments
10396 9	3-		G L		XREF: Others: AB
					$%n=?; %\alpha=?$
10430 40	(2^{-})	<50 keV		U	%IT=100
10595 15	(2-)	450 1V	G L		$%$ n=?; $%\alpha$ =?
10670 <i>20</i> 10820 <i>20</i>	(2^{-})	<50 keV	G	U	%IT=100 %n=?; $%\alpha$ =?
10820 20			G I		$\%$ n=?; $\%\alpha$ =?
10990 20	(2^{-})	<50 keV	G	U	$\%IT=?; \%n=?; \%\alpha=?$
11060	(6-)	100 110 1		P	, , , , , , , , , , , , , , , , , , , ,
11130 20	,		GI		XREF: Others: AR
					$%n=?; %\alpha=?$
11390 20	(2^{+})		GH		$%$ n=?; $%\alpha$ =?
11410 20	(4^{+})		GH		$%n=?; %\alpha=?$
11490 [†] <i>30</i>	$(0,1,2)^{-}$			R	%n=100
11520 <i>50</i>	(2^{-})	<50 keV		U	%IT=100
11620 20	5-		GHI	U	XREF: Others: AB, AF, AG, AH
11670 20	(2-)	112 00 17/ 2			$%$ n=?; $%\alpha$ =?
11670 <i>20</i> 11690 <i>20</i>	(3 ⁻) 6 ⁺	112.00 keV 2	GHI	U	XREF: Others: AB
11090 20	U		GIII		$% = ?$; $% \alpha = ?$
11820 20	(3^{-})		G		$%$ n=?; $%\alpha$ =?
11900 <i>30</i>	(2^{-})	<50 keV		U	%IT=100
12040 20	(2^{+})		GH		%IT=?; %n=?; %α=?
12090 20	$(1^-,2^+)$	<50 keV		U	
12250 20	(1^{-})		GH		$%$ n=?; $%\alpha$ =?
12330 20	5-	1401 1704	GHI		$%$ n=?; $%\alpha$ =?
12410 20	(3 ⁻) 4 ⁺	143 keV 24	C	U	%IT=100
12500 20	4 '		G		XREF: Others: AF, AG, AH
12520 20		<50 keV		U	$%$ n=?; $%\alpha$ =? $%$ IT=100
12530 20	6+	<50 RC V	GHI	O	XREF: Others: AF, AG, AH
12000 20			0112		$%$ n=?; $%\alpha$ =?
12660 20	(2^{-})	<50 keV		U	%IT=100
12990 20	(4^{-})	68 keV 18		U	%IT=100
13100	1-	700 keV		S	%IT=?; %n=?
13400 20	(2^{-})	108 keV 20		U	%IT=100
13800	1-	600 keV		S	%IT=?; %n=?
13850 <i>13</i> 14170 <i>40</i>	(6 ⁻)	≈200 keV 140 keV <i>50</i>		P U P U	%IT=100 %IT=100
14470 40	(6 ⁻)	≈1070 keV		r U	%IT=100 %IT=100
14700	1-	800 keV		S	%IT=?; %n=?
15230 40	•	≈300 keV		U	%IT=100
15800	1-	700 keV		S	%IT=?; %n=?
15950 <i>30</i>		<50 keV		U	%IT=100
16210 <i>10</i>	1(-)			U	%IT=100
16315 <i>10</i>	$(3,2)^{-}$			U	%IT=100
16399 <i>5</i>	2-	<20 keV		U X	%IT=100
16000 20	(4- 2-)	450 1V			T=2
16880 <i>30</i>	$(4^-,2^-)$	<50 keV		U	%IT=100 T=(1)
16948 <i>10</i>	$(3,2)^{-}$			U	%IT=100
17025 10	$(3,2)$ (3^{-})	20 keV 6		U	%IT=100 %IT=100
	(-)	,		-	T=2
17050	(7^{-})	≈350 keV	H		
17398 <i>10</i>	1-	600 keV		S U	%IT=?; %n=?; %p=?
					T=(2)

¹⁸O Levels (continued)

E(level)	J^π	$T_{1/2}$	XREF		Comments
17450 10	$(2,1,3)^-$			U	%IT=100
17460 <i>30</i>	(4^{-})	≈600 keV		Ū	%IT=100
17.100.00	(.)	1000 110 1			T=1
17500		≈150 keV		U	%IT=100
17502 10	$(1,2,3)^{-}$	100 110 (Ū	%IT=100
$1760 \times 10^{1} \ 20$	(8^+)		Н	· ·	7011 100
17635 10	(0)		11	U	%IT=100
18049 <i>10</i>				Ŭ	%IT=100 %IT=100
18200		≈150 keV		U	%IT=100 %IT=100
18450 20	(3^{-})	≈130 keV 75 keV 27		U	%IT=100 %IT=100
18430 20	(3)	73 KeV 27		U	
10500		4200 1 37		**	T=(1)
18500	(4-)	≈4300 keV		U	%IT=100
18700 <i>20</i>	(4-)	<20 keV		U	%IT=100
10051 5					T=2
18871 <i>5</i>	1+			U	%IT=100
1000 70					T=2
18927 10	$(1,2^+)$			U	%IT=100
18950	(7^{-})	≈350 keV	Н		
19027 <i>10</i>	$(1,3)^{-}$			U	%IT=100
19150 <i>10</i>	$(1^-,2^+,3^-)$			U	%IT=100
19240 <i>20</i>	(≥3)	<20 keV		U	%IT=100
					T=2
19400	1-	900 keV		S	%IT=?; %p=?
					T=(2)
19700		≈200 keV		U	%IT=100
20200		≈180 keV		U	%IT=100
20360 20	(4^{-})	<20 keV		U	%IT=100
					T=2
20860 20		97 keV 41		U	%IT=100
21000	1-	≈150 keV		SU	%IT=?; %n=?; %p=?
					T=(1)
21420 20	(4^{-})	<50 keV		U	%IT=100
	. ,				T=(2)
22400 20	4-	91 keV 8		U	%IT=100
					T=2
22700	1-			S	%IT=?; %n=?; %p=?
23100 20		49 keV 24		U	%IT=100
23800	1-	≈1500 keV		SÜ	%IT=?; %n=?; %p=?
2000	•	1500 115 (T=(1)
27000	1-			S	%IT=?; %n=?; %p=?
					T=(2)
30000				S	%IT=?; %n=?
36000				S	%IT=100

 $^{^{\}dagger}$ See $^{18}{\rm N}$ β^- decay for disscusion of this level.

 γ (18O)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	Comments	
1982.07	2+	1982	100	0.0	0+	E2	-	B(E2)(W.u.)=3.32 9
3554.84	4+	1573	100	1982.07	2+	E2		B(E2)(W.u.)=1.19 6
3633.76	0_{+}	1652	99.70 <i>6</i>	1982.07	2+	E2		B(E2)(W.u.)=17.2
		3634	0.30 6	0.0	0_{+}			$\Gamma(\pi)/\Gamma=3.0\times10^{-3}~6~(1975\text{So}05).$
3920.44	2+	1938	87.6 <i>7</i>	1982.07	2+	M1		B(M1)(W.u.)=0.14 2

γ ⁽¹⁸O) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
3920.44	2+	3920	12.4 7	0.0 0+	E2		B(E2)(W.u.)=1.3 2
4455.54	1-	535	2.5 9	3920.44 2 ⁺	E1		$\Gamma(\pi)/\Gamma=0.003$ 6. B(E1)(W.u.)=0.0035 11
		821	70.4 17	3633.76 0 ⁺	E1		B(E1)(W.u.)=0.027 7
		2473	27.1 26	1982.07 2+	E1	†	B(E1)(W.u.)=0.00041 10
5097.78	3-	1178	17.6 7	3920.44 2+	E1	†	B(E1)(W.u.)=0.0025 11
		1543	6.3 8	3554.84 4 ⁺	E1	†	B(E1)(W.u.)=0.00036 15
50540	2+	3116	76.1 8	1982.07 2+	E1	†	B(E1)(W.u.)=0.00057 23
5254.8	2'	799 1334	3.0 <i>3</i> 8.7 <i>4</i>	4455.54 1 ⁻ 3920.44 2 ⁺	E1 M1		B(E1)(W.u.)=0.0082 8 B(M1)(W.u.)=0.111 8
		1621	1.0 6	3633.76 0 ⁺	E2		B(E2)(W.u.)=23 15
		1699	1.1 6	3554.84 4+	E2	0.4.7.4	B(E2)(W.u.)=21 <i>12</i>
		3272	55.9 10	1982.07 2+	M1+E2	0.15 <i>4</i> †	D/E0//W \ 0.15 II
5336.4	0+	5254 880	30.3 <i>9</i> 42 <i>2</i>	$0.0 0^{+} $ $4455.54 1^{-}$	E2 E1	ı	B(E2)(W.u.)=2.15 <i>11</i> B(E1)(W.u.)=0.0042 <i>9</i>
2220.1	O	3354	58 2	1982.07 2+	E2		B(E2)(W.u.)=2.04
		5336		$0.0 0^{+}$			$\Gamma(\pi)/\Gamma \leq 0.0023$.
5377.8	3 ⁺	1459	13.5 22	3920.44 2 ⁺		†	
		3396	86.5 22	1982.07 2+		† †	
5530.24	2-	1074 1610	27 2 24 2	4455.54 1 ⁻ 3920.44 2 ⁺		1	
		3548	49 2	1982.07 2 ⁺		†	
6198.22	1-	862	1.1 3	5336.4 0+	E1		B(E1)(W.u.)=0.0064 20
		943	3.6 4	5254.8 2+	E1		B(E1)(W.u.)=0.016 3
		1742 2564	4.1 <i>4</i> 2.5 <i>3</i>	4455.54 1 ⁻ 3633.76 0 ⁺	M1 E1		B(M1)(W.u.)=0.063 <i>13</i> B(E1)(W.u.)=0.00055 <i>12</i>
		6198	88.7 9	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00033 12 B(E1)(W.u.)=0.0014 3
6351.3	(2^{-})	1895	12 2	4455.54 1		†	
		2431	55 2	3920.44 2 ⁺		†	
		4369	32 2	1982.07 2+		†	
6404.4	3-	1149 1306	5.6 9 9.8 9	5254.8 2 ⁺ 5097.78 3 ⁻	E1 M1		B(E1)(W.u.)=0.0017 9 B(M1)(W.u.)=0.045 26
		1948	2.8 10	4455.54 1 ⁻	E2		B(E2)(W.u.)=9 6
		2484	6.3 10	3920.44 2 ⁺	E1	†	B(E1)(W.u.)=0.00020 11
		2849	7.4 12	3554.84 4+	E1		B(E1)(W.u.)=0.00015 8
		4422	68.1 <i>18</i>	1982.07 2+	E1	† †	B(E1)(W.u.)=0.00037 20
6880.45 7116.9	0 ⁻ 4 ⁺	2424 1857	100 0.30 <i>6</i>	4455.54 1 ⁻ 5254.8 2 ⁺		1	
/110.9	4	2019	1.3 2	5097.78 3	E1		B(E1)(W.u.)=0.00029 8
		3197	2.1 2	3920.44 2+	E2		B(E2)(W.u.)=2.2 6
		3562	69.2 7	3554.84 4 ⁺	M1		B(M1)(W.u.)=0.071 16
		5135	27.1 <i>4</i>	1982.07 2+	E2+(M3)	-0.052 35	$\Gamma_{\gamma}/\Gamma \alpha = 0.9 \ I.$ B(E2)(W.u.)=3.2 6
7615.9	1-	1418	1 1	6198.22 1	M1		B(M1)(W.u.)=0.07 7
		2280	6 1	5336.4 0+	E1	0.027.0	B(E1)(W.u.)=0.0045 13
		3160 5634	8 <i>1</i> 62 <i>3</i>	4455.54 1 ⁻ 1982.07 2 ⁺	M1+E2 E1+M2	-0.027 <i>8</i> -0.21 <i>3</i>	
		7616	23 2	$0.0 0^{+}$	E1		B(E1)(W.u.)=0.00046 11
7771.07	2-	2673	36 3	5097.78 3-			
		3315 5789	11 2 53 <i>3</i>	4455.54 1 ⁻ 1982.07 2 ⁺			
7864	5-	4309	>75	3554.84 4 ⁺	E1		B(E1)(W.u.)>0.0009

$\gamma(^{18}\text{O})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$E_f \underline{J_f^{\pi}}$	Mult.	Comments
7977	$(3^+,4^-)$	2599	21 2	5377.8 3+		
	. , ,	2879	12 2	5097.78 3-		
		4422	67 2	3554.84 4 ⁺		
8037.8	1-	2783	4 1	5254.8 2 ⁺	E1	B(E1)(W.u.)=0.0043 14
		4404	10 <i>I</i>	3633.76 0+	E1	B(E1)(W.u.)=0.00028 8
		6057	70 2	1982.07 2 ⁺	E1	$B(E1)\downarrow = 0.0072 \ 15$
						$\Gamma \alpha \Gamma_{\gamma}/\Gamma = 0.89 \text{ eV}.$
		8038	16 <i>I</i>	$0.0 0^{+}$	E1	B(E1)(W.u.)=0.00070 17
8125	5-	3027	1 <i>1</i>	5097.78 3-	E2	B(E2)(W.u.)=5.5
		4570	99 <i>1</i>	3554.84 4 ⁺	E1	B(E1)(W.u.)=0.0061 11
						$\Gamma \alpha \Gamma_{\gamma}/\Gamma = 0.22 \text{ eV}.$
8213	2+	3115	17 <i>1</i>	5097.78 3-	E1	B(E1)(W.u.)=0.0050 11
		3757	29 <i>3</i>	4455.54 1	E1	B(E1)(W.u.)=0.0049 16
		4293	3 1	3920.44 2+	M1	B(M1)(W.u.)=0.0072 30
		4658	3 1	3554.84 4 ⁺	E2	B(E2)(W.u.)=2.4 10
		6231	29 <i>3</i>	1982.07 2+	M1	B(M1)(W.u.)=0.024 8
		8213	19 <i>4</i>	$0.0 0^{+}$	E2	B(E2)(W.u.)=0.9 3
8282	3-	3022	36 <i>3</i>	$5254.8 2^+$	E1	B(E1)(W.u.)=0.014 5
		3826	3 3	4455.54 1	E2	B(E2)(W.u.)=8 8
		4727	61 <i>3</i>	3554.84 4 ⁺	E1	B(E1)(W.u.)=0.0061 16

 $^{^{\}dagger}$ δ is consistent with 0.

Adopted Levels, Gammas

Level Scheme

Intensities: Type not specified

Legend

 ${}^{18}_{8}\mathrm{O}_{10}$ -7

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Type not specified

Legend

