#### 带噪声复杂网络的一致性

#### 复旦大学博士论文答辩

答辩人: 易宇豪

15110240008

导师:章忠志 副研究员

计算机科学与技术学院

计算机软件与理论

2018年12月15日

### 提纲

- 1 绪论:背景、应用和基础知识
- ② 一致性稳态性能与网络结构的关系
  - 网络结构对一阶抗噪性的影响
  - 富环无标度网络的抗噪性
- ③ 一致性的计算和优化: 算法和复杂性
  - 相对测量误差对一致性的影响:边中心性的计算
  - 领导者选择问题的近似算法
  - 最小化网络熵的复杂性
- 4 带噪声的二阶一致性网络
  - 二阶抗噪性与双调和距离
- ⑤ 总结与展望

### 内容

- 1 绪论:背景、应用和基础知识
- ② 一致性稳态性能与网络结构的关系
  - 网络结构对一阶抗噪性的影响
  - 富环无标度网络的抗噪性
- ③ 一致性的计算和优化: 算法和复杂性
  - 相对测量误差对一致性的影响: 边中心性的计算
  - 领导者选择问题的近似算法
  - 最小化网络熵的复杂性
- 4 带噪声的二阶一致性网络
  - 二阶抗噪性与双调和距离
- ⑤ 总结与展望

### 一致性算法:背景和应用

一致性问题 (Consensus) 是指设计策略,使网络中的节点根据其当前状态和邻近节点的状态进行局部调整,使得所有节点状态达到或趋于一致。

#### 一致性算法:背景和应用

- 一致性问题 (Consensus) 是指设计策略,使网络中的节点根据其当前状态和邻近节点的状态进行局部调整,使得所有节点状态达到或趋于一致。
- 平均一致性算法广泛应用于分布式控制系统中
  - 状态估计
  - ② 时钟同步
  - ③ 负载均衡
  - 4 编队、覆盖控制
  - 电力系统同步
  - ◎ 传感器网络
  - ② 分布式优化和学习

...

#### 一致性算法: 背景和应用

- 一致性问题 (Consensus) 是指设计策略,使网络中的节点根据其当前状 态和邻近节点的状态进行局部调整,使得所有节点状态达到或趋于一致。
- 平均一致性算法广泛应用于分布式控制系统中
  - 状态估计
  - ② 时钟同步
  - ⑥ 负载均衡
  - △ 编队、覆盖控制
  - 电力系统同步
  - ◎ 传感器网络
  - 分布式优化和学习

...

区别于传统分布式系统中的一致性算法,如 2PC, 3PC, Paxos 等

# 拉普拉斯矩阵

对于图  $\mathcal{G} = (V, E, \mathbf{w})$ ,



# 拉普拉斯矩阵

对于图  $\mathcal{G} = (V, E, \mathbf{w})$ ,



#### 其拉普拉斯矩阵定义为:

$$L = D - A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix} = BWB^{\top}$$

$$= \sum_{e \in E} w(e) \boldsymbol{b}_e \boldsymbol{b}_e^T = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & -3 \\ 0 & -3 & 3 \end{pmatrix}$$

其中  $\boldsymbol{b}_e = \boldsymbol{b}_{u,v} = \boldsymbol{e}_u - \boldsymbol{e}_v$ ,  $e = (u,v) \in E$ .

一阶一致性

$$\dot{\pmb{x}}_{[i]}(t) = -\sum_{j} a_{ij} [\pmb{x}_{[i]}(t) - \pmb{x}_{[j]}(t)] + \pmb{\xi}_{[i]}(t) \,,$$

 $oldsymbol{\xi}_{[i]}(t)$  表示一个白噪声过程.

• 一阶一致性

$$\dot{x}_{[i]}(t) = -\sum_{j} a_{ij} [x_{[i]}(t) - x_{[j]}(t)] + \xi_{[i]}(t),$$

 $\boldsymbol{\xi}_{[i]}(t)$  表示一个白噪声过程.

• 表达为矩阵形式

$$\dot{\boldsymbol{x}}(t) = -\boldsymbol{L}\boldsymbol{x}(t) + \boldsymbol{\xi}(t) .$$

• 二阶一致性

$$\begin{pmatrix} \dot{\pmb{x}}_1(t) \\ \dot{\pmb{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \pmb{0} & \pmb{I} \\ -\pmb{L} & -\pmb{L} \end{pmatrix} \begin{pmatrix} \pmb{x}_1(t) \\ \pmb{x}_2(t) \end{pmatrix} + \begin{pmatrix} \pmb{0} \\ \pmb{I} \end{pmatrix} \pmb{\xi}(t) \,,$$

• 二阶一致性

$$\begin{pmatrix} \dot{\boldsymbol{x}}_1(t) \\ \dot{\boldsymbol{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{L} & -\boldsymbol{L} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1(t) \\ \boldsymbol{x}_2(t) \end{pmatrix} + \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{pmatrix} \boldsymbol{\xi}(t) \,,$$

● 一阶领导者-跟随者过程

$$\begin{pmatrix} \dot{\pmb{x}}_l(t) \\ \dot{\pmb{x}}_f(t) \end{pmatrix} = - \begin{pmatrix} \pmb{0} & \pmb{0} \\ * & \pmb{L}_{ff} \end{pmatrix} \begin{pmatrix} \pmb{x}_l(t) \\ \pmb{x}_f(t) \end{pmatrix} + \begin{pmatrix} \pmb{0} \\ \pmb{I} \end{pmatrix} \pmb{\xi}(t) \,.$$

二阶一致性

$$\begin{pmatrix} \dot{\boldsymbol{x}}_1(t) \\ \dot{\boldsymbol{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{L} & -\boldsymbol{L} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1(t) \\ \boldsymbol{x}_2(t) \end{pmatrix} + \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{pmatrix} \boldsymbol{\xi}(t) \,,$$

● 一阶领导者-跟随者过程

$$\begin{pmatrix} \dot{\pmb{x}}_l(t) \\ \dot{\pmb{x}}_f(t) \end{pmatrix} = - \begin{pmatrix} \pmb{0} & \pmb{0} \\ * & \pmb{L}_{ff} \end{pmatrix} \begin{pmatrix} \pmb{x}_l(t) \\ \pmb{x}_f(t) \end{pmatrix} + \begin{pmatrix} \pmb{0} \\ \pmb{I} \end{pmatrix} \pmb{\xi}(t) \,.$$

- 相对测量误差引入的噪声
- 受噪声侵扰的领导者
- 二阶领导者-跟随者过程



- 稳态性能度量
  - 点对方差:  $H_{\mathrm{FO}}(j,k) = \lim_{t \to \infty} \mathbb{E}[\left(\boldsymbol{x}_{[j]}(t) \boldsymbol{x}_{[k]}(t)\right)^2].$

- 稳态性能度量
  - 点对方差:  $H_{\text{FO}}(j,k) = \lim_{t \to \infty} \mathbb{E}[\left(\boldsymbol{x}_{[j]}(t) \boldsymbol{x}_{[k]}(t)\right)^2].$
  - ② 节点偏移方差:  $H_{\mathrm{FO}}(j) = \lim_{t o \infty} \mathbb{E}[\left(\pmb{x}_{[j]}(t) \bar{x}(t)\right)^2]$  .

- 稳态性能度量
  - 点对方差:  $H_{\mathrm{FO}}(j,k) = \lim_{t \to \infty} \mathbb{E}[\left(\boldsymbol{x}_{[j]}(t) \boldsymbol{x}_{[k]}(t)\right)^2].$
  - ② 节点偏移方差:  $H_{\mathrm{FO}}(j) = \lim_{t \to \infty} \mathbb{E}[\left( \boldsymbol{x}_{[j]}(t) \bar{x}(t) \right)^2]$ .
  - **③** 平均方差: 抗噪性 (Network Coherence)  $H_{\mathrm{FO}}(\mathcal{G}) = \frac{1}{n} \lim_{t \to \infty} \sum_{i=1}^n \mathbb{E}[\left( \boldsymbol{x}_{[i]}(t) \bar{x}(t) \right)^2]$ .

#### 以一阶一致性算法为例:

- 稳态性能度量
  - 点对方差:  $H_{\mathrm{FO}}(j,k) = \lim_{t \to \infty} \mathbb{E}[\left(\boldsymbol{x}_{[j]}(t) \boldsymbol{x}_{[k]}(t)\right)^2].$
  - ② 节点偏移方差:  $H_{\mathrm{FO}}(j) = \lim_{t \to \infty} \mathbb{E}[\left(x_{[j]}(t) \bar{x}(t)\right)^2]$ .
  - ③ 平均方差: 抗噪性 (Network Coherence)  $H_{\mathrm{FO}}(\mathcal{G}) = \tfrac{1}{n} \lim_{t \to \infty} \sum_{i=1}^n \mathbb{E}[\left(\textbf{\textit{x}}_{[j]}(t) \bar{x}(t)\right)^2] \,.$
  - 不确定状态体积和网络熵 (Network Entropy):

$$S(G) = -\log T(G),$$

其中 $\mathcal{T}(G)$ 表示网络的加权生成树数目.





# $\mathcal{H}_2$ 范数和李雅普诺夫方程

以一阶一致性系统为例:

*H*<sub>2</sub> 范数

$$H_{\mathrm{FO}}(\mathcal{G}) = \frac{1}{n}\mathcal{H}_2^2 = \frac{1}{n}\mathrm{Tr}\left(\int_0^\infty \mathrm{e}^{-\boldsymbol{L}^Tt}\boldsymbol{P}^T\boldsymbol{P}\mathrm{e}^{-\boldsymbol{L}t}\mathrm{d}t\right) \,.$$

# $\mathcal{H}_2$ 范数和李雅普诺夫方程

以一阶一致性系统为例:

H<sub>2</sub> 范数

$$H_{\mathrm{FO}}(\mathcal{G}) = \frac{1}{n}\mathcal{H}_2^2 = \frac{1}{n}\mathrm{Tr}\left(\int_0^\infty \mathrm{e}^{-\boldsymbol{L}^Tt}\boldsymbol{P}^T\boldsymbol{P}\mathrm{e}^{-\boldsymbol{L}t}\mathrm{d}t\right) \,.$$

•  $\mathcal{H}_2^2$  能够用  $\Sigma$  的迹表示,其中  $\Sigma$  是以下李雅普诺夫方程的解: $oldsymbol{M}^ op \Sigma + \Sigma oldsymbol{M} + oldsymbol{Z} = oldsymbol{0}$  .

# $\mathcal{H}_2$ 范数和李雅普诺夫方程

以一阶一致性系统为例:

H₂ 范数

$$H_{\text{FO}}(\mathcal{G}) = \frac{1}{n} \mathcal{H}_2^2 = \frac{1}{n} \text{Tr} \left( \int_0^\infty e^{-\boldsymbol{L}^T t} \boldsymbol{P}^T \boldsymbol{P} e^{-\boldsymbol{L} t} dt \right) .$$

- $\mathcal{H}_2^2$  能够用  $\Sigma$  的迹表示,其中  $\Sigma$  是以下李雅普诺夫方程的解: $m{M}^ op m{\Sigma} + m{\Sigma} m{M} + m{Z} = m{0}$  .
- 在最简单的设定中  $m \Sigma=(1/2)m L^\dagger$  , 在领导者-跟随者系统中,  $m \Sigma=(1/2)m L_S^{-1}$  , 等等.

### 电阻距离和基尔霍夫系数



$$d_R(s,t) = \frac{1}{\frac{3}{4} + 2} = \frac{4}{11} \,\Omega$$

ullet s,t 两点间的电阻距离  $d_R(s,t)$  定义为电阻网络中两点间的等效电阻。  $d_R(s,t)=m{b}_{s,t}^{ op}m{L}^{\dagger}m{b}_{s,t}.$ 

### 电阻距离和基尔霍夫系数



$$d_R(s,t) = \frac{1}{\frac{3}{4} + 2} = \frac{4}{11} \,\Omega$$

- $m{ullet}$  s,t 两点间的电阻距离  $d_R(s,t)$  定义为电阻网络中两点间的等效电阻。  $d_R(s,t)=m{b}_{s,t}^ opm{L}^\daggerm{b}_{s,t}.$
- 与随机游走的通勤时间有密切联系。 $\kappa(s,t)=\mathrm{vol}(G)d_R(s,t).$

### 电阻距离和基尔霍夫系数



$$d_R(s,t) = \frac{1}{\frac{3}{4} + 2} = \frac{4}{11} \,\Omega$$

- ullet s,t 两点间的电阻距离  $d_R(s,t)$  定义为电阻网络中两点间的等效电阻。  $d_R(s,t)=m{b}_{s,t}^ opm{L}^\daggerm{b}_{s,t}.$
- 与随机游走的通勤时间有密切联系。 $\kappa(s,t)=\mathrm{vol}(G)d_R(s,t).$
- 基尔霍夫系数: 所有点对的电阻距离的和:  $R(G) \stackrel{\mathrm{def}}{=} \sum_{u,v} d_R(s,t) = n \operatorname{Tr} \left( \boldsymbol{L}^{\dagger} \right).$

### 双调和距离



对于任意的点对 (s,t) [LRF10]:

$$d_B(s,t) = \left( \boldsymbol{b}_{s,t}^{\top} \boldsymbol{L}^{2\dagger} \boldsymbol{b}_{s,t} \right)^{1/2} .$$

图: 到一个源点的双调和距离 [LRF10]

● 最初在计算机图形学中提出,用于度量曲面上两点之间的距离 [**LRF10**].

#### 双调和距离



对于任意的点对 (s,t) [LRF10]:

$$d_B(s,t) = \left( oldsymbol{b}_{s,t}^{ op} oldsymbol{L}^{2\dagger} oldsymbol{b}_{s,t} 
ight)^{1/2} \,.$$

图: 到一个源点的双调和距离 [LRF10]

- 最初在计算机图形学中提出,用于度量曲面上两点之间的距离 [LRF10].
- 满足非负性、同时性、对称性和三角不等式。

#### 双调和距离



对于任意的点对 (s,t) [LRF10]:

$$d_B(s,t) = \left( \boldsymbol{b}_{s,t}^{\top} \boldsymbol{L}^{2\dagger} \boldsymbol{b}_{s,t} \right)^{1/2} .$$

图: 到一个源点的双调和距离 [LRF10]

- 最初在计算机图形学中提出,用于度量曲面上两点之间的距离 [LRF10].
- 满足非负性、同时性、对称性和三角不等式。
- 可用于描述二阶一致性网络的稳态性能。

# 本文各部分之间的联系



#### 内容

- 1 绪论:背景、应用和基础知识
- ② 一致性稳态性能与网络结构的关系
  - 网络结构对一阶抗噪性的影响
  - 富环无标度网络的抗噪性
- ③ 一致性的计算和优化: 算法和复杂性
  - 相对测量误差对一致性的影响: 边中心性的计算
  - 领导者选择问题的近似算法
  - 最小化网络熵的复杂性
- 4 带噪声的二阶一致性网络
  - 二阶抗噪性与双调和距离
- 5 总结与展望

## 一些典型网络结构的一阶抗噪性渐近行为

| 网络结构                                          | $\mu$                       | $H_{\mathrm{FO}}$           |
|-----------------------------------------------|-----------------------------|-----------------------------|
| 路径 [YSL10]                                    | $\Theta(n)$                 | $\Theta(n)$                 |
| 一维圆环面(环) [BJMP12, YSL10]                      | $\Theta(n)$                 | $\Theta(n)$                 |
| 规则格点网格 [YZLC15]                               | $\Theta(n)$                 | $\Theta(n)$                 |
| Vicsek 分形 [ <b>PB14</b> ]                     | $\Theta(n^{\log 3/\log 5})$ | $\Theta(n^{\log 3/\log 5})$ |
| T-分形 [ <b>PB14</b> ]                          | $\Theta(n^{\log 2/\log 3})$ | $\Theta(n^{\log 2/\log 3})$ |
| Peano Basin 分形 [ <b>PB14</b> ]                | $\Theta(n^{1/2})$           | $\Theta(n^{1/2})$           |
| 二维圆环面 [BJMP12]                                | $\Theta(n^{1/2})$           | $\Theta(\log n)$            |
| 法雷图 [YZLC15]                                  | $\Theta(\log n)$            | $\Theta(\log n)$            |
| 科赫图 [YZSC17]                                  | $\Theta(\log n)$            | $\Theta(\log n)$            |
| $d$ 维圆环面 ( $d\geqslant 3$ ) [ <b>BJMP12</b> ] | $\Theta(n^{1/d})$           | $\Theta(1)$                 |
| 星状图 [YSL10]                                   | $\Theta(1)$                 | $\Theta(1)$                 |
| 完全图 [YSL10]                                   | $\Theta(1)$                 | $\Theta(n^{-1})$            |

• 确定性小世界网络模型: 法雷图



- $H_{FO}(\mathcal{F}_n) = \frac{\log n_g}{24} + o(\log n_g).$
- 渐近行为: 网络规模的对数速度增长

• 确定性无标度网络模型: 科赫图



- $H_{FO}(\mathcal{K}_n) = \frac{\log n_g}{12} + o(\log n_g).$
- 渐近行为: 网络规模的对数速度增长

• 规则格点网络(作为比较)



● 规则格点网络(作为比较)



•  $H_{FO}(\mathcal{C}_{n,4}) = \frac{n}{24} + o(n)$ .  $H_{FO}(\mathcal{F}_n) = \frac{\log n_g}{24} + o(\log n_g)$ .

● 规则格点网络(作为比较)



- $H_{FO}(\mathcal{C}_{n,4}) = \frac{n}{24} + o(n)$ .  $H_{FO}(\mathcal{F}_n) = \frac{\log n_g}{24} + o(\log n_g)$ .
- $H_{FO}(\mathcal{C}_{n,3}) = \frac{n}{24} + o(n)$ .  $H_{FO}(\mathcal{K}_n) = \frac{\log n_g}{12} + o(\log n_g)$ .

### 一阶抗噪性的上下界

• 用平均度给出下界

#### 定理

对一个 n 个点,m 条边的(无权)连通图 G,其平均度为  $\rho=\frac{2m}{n}$ ,一阶网络抗噪性满足 $H_{\rm FO}\geq\frac{n}{4m}-\frac{1}{2m}+\frac{1}{4mn}$ ,等号当且仅当 G 是完全图时成立;当 n 很大时, $H_{\rm FO}\geq\frac{1}{2o}$ .

### 一阶抗噪性的上下界

• 用平均度给出下界

#### 定理

对一个 n 个点,m 条边的(无权)连通图 G,其平均度为  $\rho=\frac{2m}{n}$ ,一阶网络抗噪性满足 $H_{\rm FO}\geq\frac{n}{4m}-\frac{1}{2m}+\frac{1}{4mn}$ ,等号当且仅当 G 是完全图时成立;当 n 很大时, $H_{\rm FO}\geq\frac{1}{2\rho}$ .

• 用平均距离给出上界

#### 定理

对于一个 n 个点的(无权)连通图 G,如果它的图平均距离是  $\mu$ ,其一阶网络抗噪性满足  $H_{\rm FO}\leqslant \frac{n-1}{4n}\mu$ ,等号当且仅当 G 是一棵树时成立。当 n 很大时, $H_{\rm FO}\leqslant \frac{\mu}{4}$ .

#### 表: 一些现实网络的一阶抗噪性和基础统计量

|                         |        |         | _        |                   |                   | _               |
|-------------------------|--------|---------|----------|-------------------|-------------------|-----------------|
| Network                 | n      | m       | $\gamma$ | $\frac{1}{2\rho}$ | $H_{\mathrm{FO}}$ | $\frac{\mu}{4}$ |
| Zachary karate club     | 34     | 78      | 2.161    | 0.109             | 0.203             | 0.602           |
| David Copperfield       | 112    | 425     | 3.621    | 0.066             | 0.151             | 0.634           |
| Jazz musicians          | 198    | 2,742   | 5.271    | 0.018             | 0.051             | 0.559           |
| Haggle                  | 274    | 2,124   | 1.673    | 0.219             | 0.236             | 0.606           |
| Caenorhabditis elegans  | 453    | 2,025   | 1.566    | 0.056             | 0.135             | 0.666           |
| U. Rovira i Virgili     | 1,133  | 5,451   | 1.561    | 0.052             | 0.170             | 0.902           |
| Hamsterster friendships | 1,858  | 12,534  | 2.461    | 0.037             | 0.176             | 0.863           |
| Protein                 | 1,870  | 2,203   | 2.879    | 0.212             | 0.730             | 1.703           |
| Hamster full            | 2,426  | 16,631  | 2.421    | 0.037             | 0.142             | 0.897           |
| Facebook (NIPS)         | 2,888  | 2,981   | 4.521    | 0.242             | 0.675             | 0.967           |
| Human protein (Vidal)   | 3,133  | 6,149   | 2.132    | 0.127             | 0.388             | 1.210           |
| Reactome                | 6,327  | 146,160 | 1.363    | 0.011             | 0.138             | 1.053           |
| Route views             | 6,474  | 12,572  | 2.462    | 0.129             | 0.365             | 0.926           |
| Pretty Good Privacy     | 10,680 | 24,316  | 4.261    | 0.110             | 0.721             | 1.871           |
| arXiv astro-ph          | 18,771 | 198,050 | 2.861    | 0.024             | 0.128             | 1.049           |
| CAIDA                   | 26,475 | 53,381  | 2.509    | 0.124             | 0.361             | 0.969           |
| Internet topology       | 34,761 | 107,720 | 2.233    | 0.081             | 0.319             | 1.229           |
| Brightkite              | 58,228 | 214,078 | 2.481    | 0.068             | 0.359             | 0.942           |

### 富环无标度网络模型

- 一阶抗噪性不随网络规模增长
- Barabási-Albert (BA) 网络



### 富环无标度网络模型

- 一阶抗噪性不随网络规模增长
- 高维随机阿波罗网络



## 确定性富环无标度网络模型

- ullet  $H_{\mathrm{FO}}$  在伪分形网络和 4-团模体网络中,一阶抗噪性趋于一个常数。
- 伪分形网络: 典型的确定性无标度网络模型。



•  $H_{FO}(\mathcal{F}_g) = \frac{25}{84} + o(1)$ .

### 确定性富环无标度网络模型

- ullet  $H_{
  m FO}$  在伪分形网络和 4-团模体网络中,一阶抗噪性趋于一个常数。
- 伪分形网络: 典型的确定性无标度网络模型。



• 4-团模体网络:  $H_{FO}(\mathcal{T}_g) = \frac{39}{176} + o(1)$ .

### 内容

- 1 绪论:背景、应用和基础知识
- ② 一致性稳态性能与网络结构的关系
  - 网络结构对一阶抗噪性的影响
  - 富环无标度网络的抗噪性
- ③ 一致性的计算和优化: 算法和复杂性
  - 相对测量误差对一致性的影响:边中心性的计算
  - 领导者选择问题的近似算法
  - 最小化网络熵的复杂性
- 4 带噪声的二阶一致性网络
  - 二阶抗噪性与双调和距离
- 5 总结与展望

### 基于相对状态测量的一致性网络

● 系统的最佳线性无偏估计由以下方程给出 [BH06]

$$\dot{x}_{[u]} = D_u^{-1} \sum_{v \in \mathcal{N}_u} r_{u,v}^{-1} (y_{u,v} - \sigma_{u,v}) .$$

其中 
$$y_{u,v}= extbf{ extit{x}}_{[u]}- extbf{ extit{x}}_{[v]}+\xi_{u,v}$$
 .  $r_{u,v}$  为  $\xi_{u,v}$  的功谱密度。

### 基于相对状态测量的一致性网络

系统的最佳线性无偏估计由以下方程给出 [BH06]

$$\dot{x}_{[u]} = D_u^{-1} \sum_{v \in \mathcal{N}_u} r_{u,v}^{-1} (y_{u,v} - \sigma_{u,v}) .$$

其中  $y_{u,v} = x_{[u]} - x_{[v]} + \xi_{u,v} \cdot r_{u,v}$  为  $\xi_{u,v}$  的功谱密度。

ullet 如果将  $r_{u,v}$  理解为一条边的电阻,那么系统总(稳态)方差为

$$R_{RM} = \frac{1}{2n} R(G) \,,$$

R(G) 为基尔霍夫系数.

## 双调和距离相关中心性

- ullet 一条边 e 的重要性表现为 R(G) 关于边 e 的电阻的倒数。
  - $C(e) \stackrel{\text{def}}{=} \frac{\partial R(G)}{\partial r_e}$ .

### 双调和距离相关中心性

- ullet 一条边 e 的重要性表现为 R(G) 关于边 e 的电阻的倒数。
  - $C(e) \stackrel{\text{def}}{=} \frac{\partial R(G)}{\partial r_e}$ .
- 对于一条边 e=(u,v),  $\mathcal{C}(e)$  和两个端点间的双调和距离  $d_B(u,v)$  相关。

$$C(e) = \frac{\partial R(\mathcal{G})}{\partial r(e)} = n \frac{\partial \text{Tr} \left( \mathbf{L}^{\dagger} \right)}{\partial w_e} \frac{\mathrm{d}w_e}{\mathrm{d}r_e} = n \frac{\partial \text{Tr} \left( \mathbf{L}^{\dagger} + \mathbf{J} \right)}{\partial w_e} \frac{\mathrm{d}w_e}{\mathrm{d}r_e}$$
$$= n w_e^2 \mathbf{b}_e^{\dagger} \mathbf{L}^{2\dagger} \mathbf{b}_e = n w_e^2 d_B^2(u, v) .$$





• 介数中心性不能区分  $e_1$  和  $e_2$ 

$$\mathcal{B}(e_1) = \mathcal{B}(e_2) = 24.5$$
  
 $\mathcal{C}(e_1) = 1.1327, \, \mathcal{C}(e_2) = 0.5413$ 





• 介数中心性不能区分  $e_1$  和  $e_2$ 

$$\mathcal{B}(e_1) = \mathcal{B}(e_2) = 24.5$$
  
 $\mathcal{C}(e_1) = 1.1327, \ \mathcal{C}(e_2) = 0.5413$ 

● 生成树中心性不能区分 €3 和其他边

$$S(e_3) = S(e_4) = 1$$
  
 $C(e_3) = 7, C(e_4) = 0.9643$ 

### 和其他中心性指标的比较

实验

| Network name     | V     | E     |
|------------------|-------|-------|
| Lesmis           | 77    | 254   |
| Adjnoun          | 112   | 425   |
| Dolphins         | 62    | 159   |
| Celegansneural   | 297   | 2148  |
| High-energy      | 5835  | 13815 |
| Condensed matter | 13861 | 44619 |



• 
$$C(e) = nw_e^2 \boldsymbol{b}_e^{\mathsf{T}} \boldsymbol{L}^{2\dagger} \boldsymbol{b}_e = nw_e^2 \| \boldsymbol{L}^{\dagger} \boldsymbol{b}_e \|^2$$
.

- $C(e) = nw_e^2 \boldsymbol{b}_e^{\top} \boldsymbol{L}^{2\dagger} \boldsymbol{b}_e = nw_e^2 \| \boldsymbol{L}^{\dagger} \boldsymbol{b}_e \|^2$ .
- 避免计算伪逆:
  - 接近线性时间拉普拉斯求解器 [ST14, KS16]

- $C(e) = nw_e^2 \boldsymbol{b}_e^{\top} \boldsymbol{L}^{2\dagger} \boldsymbol{b}_e = nw_e^2 \| \boldsymbol{L}^{\dagger} \boldsymbol{b}_e \|^2$ .
- 避免计算伪逆:
  - 接近线性时间拉普拉斯求解器 [ST14, KS16]
- 在低维空间中近似距离:
  - 随机投影. (Johnson-Linerstrauss 引理)

- $C(e) = nw_e^2 \boldsymbol{b}_e^{\top} \boldsymbol{L}^{2\dagger} \boldsymbol{b}_e = nw_e^2 \| \boldsymbol{L}^{\dagger} \boldsymbol{b}_e \|^2$ .
- 避免计算伪逆:
  - 接近线性时间拉普拉斯求解器 [ST14, KS16]
- 在低维空间中近似距离:
  - 随机投影. (Johnson-Linerstrauss 引理)
- 算法以高概率返回  $(1\pm\epsilon)$  倍近似。
- 时间复杂度为  $\widetilde{O}(m(\log c)/\epsilon^2)$ , 其中  $c=\frac{w_{
  m max}^2}{w_{
  m min}^2}$
- ullet 通过一些技巧,空间复杂度可以降为 O(m).

● 算法概要

- 算法以高概率返回  $(1\pm\epsilon)$  倍近似。
- 时间复杂度为  $\widetilde{O}(m(\log c)/\epsilon^2)$ , 其中  $c=\frac{w_{\max}^2}{w_{\min}^2}$ .
- ullet 通过一些技巧,空间复杂度可以降为 O(m).

- 算法概要
  - 构造一个元素为随机  $\pm 1/\sqrt{k}$  的矩阵  $m{Q}$ ,大小为  $k \times n$ ,其中  $k = \lceil 24 \log n/\epsilon^2 \rceil$  .

- 算法以高概率返回  $(1\pm\epsilon)$  倍近似。
- 时间复杂度为  $\widetilde{O}(m(\log c)/\epsilon^2)$ , 其中  $c=\frac{w_{\max}^2}{w_{\min}^2}$
- ullet 通过一些技巧,空间复杂度可以降为 O(m).

#### 算法概要

- 构造一个元素为随机  $\pm 1/\sqrt{k}$  的矩阵 Q, 大小为  $k \times n$ , 其中  $k = \lceil 24 \log n / \epsilon^2 \rceil$ .
- ullet 令  $oldsymbol{q}_i^ op$  为  $oldsymbol{Q}$  的第 i 行,我们可以用拉普拉斯求解器近似  $oldsymbol{z}_i = oldsymbol{L}^\dagger oldsymbol{q}_i$ .  $\diamondsuit Z = (z_1, z_2, \cdots, z_k)^{\top}.$

- 算法以高概率返回  $(1 \pm \epsilon)$  倍近似。
- 时间复杂度为  $\widetilde{O}(m(\log c)/\epsilon^2)$ , 其中  $c=\frac{w_{\max}^2}{w^2}$ .
- 通过一些技巧,空间复杂度可以降为 O(m).



#### ● 算法概要

- 构造一个元素为随机  $\pm 1/\sqrt{k}$  的矩阵  $m{Q}$ ,大小为  $k \times n$ ,其中  $k = \lceil 24 \log n/\epsilon^2 \rceil$  .
- 令  $m{q}_i^ op$  为  $m{Q}$  的第 i 行,我们可以用拉普拉斯求解器近似  $m{z}_i = m{L}^\dagger m{q}_i$ . 令  $m{Z} = (m{z}_1, m{z}_2, \cdots, m{z}_k)^ op$ .
- 对于每一条边  $e \in E$ ,设其端点为 u,v,计算  $\|\mathbf{Z}(\mathbf{e}_u-\mathbf{e}_v)\|^2$ ,用于近似边 e 的双调和距离。
- 算法以高概率返回  $(1 \pm \epsilon)$  倍近似。
- 时间复杂度为  $\widetilde{O}(m(\log c)/\epsilon^2)$ , 其中  $c=\frac{w_{\max}^2}{w_{\min}^2}$
- 通过一些技巧,空间复杂度可以降为O(m).





### 实验:效率

表: 算法ExactBDRC 和ApExactBDRC 的运行时间,包含不同精度  $\epsilon$  的取值.

| Network             | # nodes # edges |           | ExactBDRC | AppxBDRC ( $s$ ) with various $\epsilon$ |        |        |
|---------------------|-----------------|-----------|-----------|------------------------------------------|--------|--------|
|                     |                 |           | (s)       | 0.3                                      | 0.2    | 0.1    |
| Chicago             | 823             | 822       | 0.1655    | 0.0496                                   | 0.1067 | 0.4184 |
| Facebook (NIPS)     | 2888            | 2 981     | 6.9439    | 0.6099                                   | 1.4355 | 5.4581 |
| Vidal               | 2 783           | 6 007     | 6.2797    | 1.5683                                   | 3.4950 | 13.950 |
| Powergrid           | 4941            | 6 5 9 4   | 34.851    | 3.8330                                   | 9.0637 | 40.202 |
| Reactome            | 5 973           | 145 778   | 61.673    | 18.916                                   | 44.870 | 176.13 |
| Route views         | 6 474           | 12572     | 78.039    | 3.1174                                   | 6.9604 | 27.826 |
| Pretty Good Privacy | 10 680          | 24316     | 272.87    | 10.622                                   | 23.832 | 90.053 |
| Astro-ph            | 17 903          | 196 972   | 1648.6    | 51.266                                   | 116.55 | 457.30 |
| CAIDA               | 26 475          | 53 381    | 7396.0    | 19.173                                   | 43.78  | 158.43 |
| Brightkite          | 56 739          | 212 945   | 35063     | 103.27                                   | 226.34 | 935.14 |
| Livemocha*          | 104 103         | 2 193 083 | -         | 3078.2                                   | 3558.8 | 6114.4 |
| WordNet*            | 145 145         | 656 230   | -         | 294.80                                   | 493.66 | 1818.4 |
| Gowalla*            | 196 591         | 950 327   | -         | 612.67                                   | 1005.7 | 3029.5 |
| Amazon*             | 334 863         | 925 872   | -         | 1307.5                                   | 2570.3 | 10517  |
| Pennsylvania*       | 1 087 562       | 1 541 514 | -         | 5314.5                                   | 11404  | 45560  |

# 实验:精度

表: 不同  $\epsilon$  时,算法AppxBDRC 给出结果的平均相对误差.

| Network             | Mean relative error with various $\epsilon$ |                       |                       |  |
|---------------------|---------------------------------------------|-----------------------|-----------------------|--|
|                     | 0.3                                         | 0.2                   | 0.1                   |  |
| Chicago             | $2.75 \times 10^{-2}$                       | $1.80 \times 10^{-2}$ | $9.01 \times 10^{-3}$ |  |
| Facebook (NIPS)     | $2.46 \times 10^{-2}$                       | $1.62 \times 10^{-2}$ | $8.14 \times 10^{-3}$ |  |
| Vidal               | $2.42 \times 10^{-2}$                       | $1.64 \times 10^{-2}$ | $7.97 \times 10^{-3}$ |  |
| Powergrid           | $2.35 \times 10^{-2}$                       | $1.57 \times 10^{-2}$ | $8.00 \times 10^{-3}$ |  |
| Reactome            | $2.36 \times 10^{-2}$                       | $1.58 \times 10^{-2}$ | $7.75 \times 10^{-3}$ |  |
| Route views         | $2.27 \times 10^{-2}$                       | $1.54 \times 10^{-2}$ | $7.93 \times 10^{-3}$ |  |
| Pretty Good Privacy | $2.26 \times 10^{-2}$                       | $1.52 \times 10^{-2}$ | $7.50 \times 10^{-3}$ |  |
| Astro-ph            | $2.18 \times 10^{-2}$                       | $1.47 \times 10^{-2}$ | $7.36 \times 10^{-3}$ |  |
| CAIDA               | $2.17 \times 10^{-2}$                       | $1.45 \times 10^{-2}$ | $7.24 \times 10^{-3}$ |  |
| Brightkite          | $2.08 \times 10^{-2}$                       | $1.39 \times 10^{-2}$ | $6.97 \times 10^{-3}$ |  |

## 领导者选择问题

• 系统模型:  $\dot{\boldsymbol{x}}_{[i]} = -\sum_{j \in \mathcal{N}_i} w(i,j) \left(\boldsymbol{x}_{[i]} - \boldsymbol{x}_{[j]}\right) - \kappa_i \boldsymbol{x}_{[i]} + \xi_i$ ,  $\kappa_i$  是倔强系数,领导者:  $\kappa_i > 0$ , 跟随者:  $\kappa_i = 0$ . 或者说,  $\dot{\boldsymbol{x}} = -(\boldsymbol{L} + \boldsymbol{D}_{\kappa} \boldsymbol{D}_S) \boldsymbol{x} + \boldsymbol{\xi}$ , (1)

 $D_S$  为 0,1 对角矩阵,用于选择 k 个节点作为领导者集合。

## 领导者选择问题

• 系统模型:  $\dot{\boldsymbol{x}}_{[i]} = -\sum_{j \in \mathcal{N}_i} w(i,j) \left(\boldsymbol{x}_{[i]} - \boldsymbol{x}_{[j]}\right) - \kappa_i \boldsymbol{x}_{[i]} + \xi_i$ ,  $\kappa_i$  是倔强系数,领导者:  $\kappa_i > 0$ ,跟随者:  $\kappa_i = 0$ . 或者说,  $\dot{\boldsymbol{x}} = -(\boldsymbol{L} + \boldsymbol{D}_{\kappa} \boldsymbol{D}_S) \boldsymbol{x} + \boldsymbol{\xi}$ , (1)

 $oldsymbol{D}_S$  为 0,1 对角矩阵,用于选择 k 个节点作为领导者集合。

#### 问题 (带噪声领导者选择问题)

给定一个网络 G=(V,E,w),要求找到大小至多为 k 的领导者集合  $S\subset V$ ,使得系统 (1)的抗噪性尽可能地好,即

minimize  $R_{NC}(S) \stackrel{\text{def}}{=} \operatorname{Tr} ((\boldsymbol{L} + \boldsymbol{D}_{\kappa} \boldsymbol{D}_{S})^{-1})$  subject to  $|S| \leq k$ .

### 转化为结构优化问题

• 我们证明了该问题等价于:在增广图 G 中添加虚拟节点  $\bar{s}$  到其他 k 个节点的连边,使得所有节点到  $\bar{s}$  的电阻距离之和最小。



### 超模性和单调性

#### 定理 (单调性 [DoSn00])

在问题 3中,对于任意满足  $S\subset T\subset V$  的非空子集 S 和 T ,

$$R_{\rm NC}(T) < R_{\rm NC}(S)$$
.

#### 定理 (超模性)

在问题 3中,对于任意满足  $S\subset T\subset V$  的非空子集 S 和 T,以及任意满足  $u\in V\setminus T$  的点 u ,

$$R_{\rm NC}(T) - R_{\rm NC}(T \cup \{u\}) \le R_{\rm NC}(S) - R_{\rm NC}(S \cup \{u\}).$$

## 贪心算法的近似比例

#### 定理

贪心算法 S= LeadSel $(G, \mathbf{D}_\kappa, k)$  输入一个图 G=(V, E, w) 及其拉普拉斯矩阵  $\mathbf{L}$ ,倔强系数矩阵  $\mathbf{D}_\kappa$  和一个整数  $2\leq k\leq n$ ,返回一个 k 个点的集合 S,S 满足

$$R_{\rm NC}(\{v^{\star}\}) - R_{\rm NC}(S) \ge \left(1 - \frac{k}{k-1} \cdot \frac{1}{e}\right) \left(R_{\rm NC}(\{v^{\star}\}) - R_{\rm NC}(S^{\star})\right),$$

其中, $S^\star \stackrel{\mathrm{def}}{=} \arg\min_{|Q| \leq k} R_{\mathrm{NC}}(Q)$ , $v^\star \stackrel{\mathrm{def}}{=} \arg\min_{u \in V} R_{\mathrm{NC}}(\{u\})$ 

• 节点 v 的信息中心性  $\mathcal{C}_v$  [SZ89] 与该点的电阻距离  $\mathcal{R}_v$  (所有节点到该点的电阻距离的和) 成反比。

- 节点 v 的信息中心性  $\mathcal{C}_v$  [SZ89] 与该点的电阻距离  $\mathcal{R}_v$  (所有节点到该点的电阻距离的和) 成反比。
- 最大化  $\mathcal{C}_v$  和最小化  $\mathcal{R}_v$  或  $R_{\mathrm{NC}}(S)$  等价。

- 节点 v 的信息中心性  $\mathcal{C}_v$  [SZ89] 与该点的电阻距离  $\mathcal{R}_v$  (所有节点到该点的电阻距离的和)成反比。
- 最大化  $\mathcal{C}_v$  和最小化  $\mathcal{R}_v$  或  $R_{\mathrm{NC}}(S)$  等价。
- 相似的贪心算法适用于最大化节点的信息中心性。

- 节点 v 的信息中心性  $\mathcal{C}_v$  [SZ89] 与该点的电阻距离  $\mathcal{R}_v$  (所有节点到该点的电阻距离的和) 成反比。
- 最大化  $\mathcal{C}_v$  和最小化  $\mathcal{R}_v$  或  $R_{\mathrm{NC}}(S)$  等价。
- 相似的贪心算法适用于最大化节点的信息中心性。
- 在连通图中,选择与 v 关联的 k 条边添加到图中,最小化点 v 的电阻距离,贪心算法的近似比为  $\left(1-\frac{1}{e}\right)$ .

### 简单贪心算法

根据 Sherman-Morrison 公式可得

$$(\boldsymbol{L}(\{e\}))^{\dagger} = (\boldsymbol{L} + w(e)\boldsymbol{b}_{e}\boldsymbol{b}_{e}^{\top})^{\dagger} = \boldsymbol{L}^{\dagger} - \frac{w(e)\boldsymbol{L}^{\dagger}\boldsymbol{b}_{e}\boldsymbol{b}_{e}^{\top}\boldsymbol{L}^{\dagger}}{1 + w(e)\boldsymbol{b}_{e}^{\top}\boldsymbol{L}^{\dagger}\boldsymbol{b}_{e}}.$$

### 简单贪心算法

根据 Sherman-Morrison 公式可得

$$(\boldsymbol{L}(\{e\}))^{\dagger} = \left(\boldsymbol{L} + w(e)\boldsymbol{b}_{e}\boldsymbol{b}_{e}^{\top}\right)^{\dagger} = \boldsymbol{L}^{\dagger} - \frac{w(e)\boldsymbol{L}^{\dagger}\boldsymbol{b}_{e}\boldsymbol{b}_{e}^{\top}\boldsymbol{L}^{\dagger}}{1 + w(e)\boldsymbol{b}_{e}^{\top}\boldsymbol{L}^{\dagger}\boldsymbol{b}_{e}}.$$

点 v 的电阻距离  $\mathcal{R}_v$  可以表示为

$$\mathcal{R}_v = n \boldsymbol{L}^{\dagger}_{[v,v]} + \operatorname{Tr}\left(\boldsymbol{L}^{\dagger}\right).$$

根据 Sherman-Morrison 公式可得

$$(\boldsymbol{L}(\{e\}))^{\dagger} = (\boldsymbol{L} + w(e)\boldsymbol{b}_{e}\boldsymbol{b}_{e}^{\top})^{\dagger} = \boldsymbol{L}^{\dagger} - \frac{w(e)\boldsymbol{L}^{\dagger}\boldsymbol{b}_{e}\boldsymbol{b}_{e}^{\top}\boldsymbol{L}^{\dagger}}{1 + w(e)\boldsymbol{b}_{e}^{\top}\boldsymbol{L}^{\dagger}\boldsymbol{b}_{e}}.$$

点 v 的电阻距离  $\mathcal{R}_v$  可以表示为

$$\mathcal{R}_v = n \boldsymbol{L}^{\dagger}_{[v,v]} + \operatorname{Tr}\left(\boldsymbol{L}^{\dagger}\right).$$

令 
$$\mathcal{R}_v^\Delta(e) = \mathcal{R}_v(S) - \mathcal{R}_v(S \cup \{e\})$$
,那么

$$\mathcal{R}_v^{\Delta}(e) = \frac{w(e) \left( n \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_e \boldsymbol{b}_e^{\top} \boldsymbol{L}^{\dagger} \right)_{[v,v]} + \operatorname{Tr} \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_e \boldsymbol{b}_e^{\top} \boldsymbol{L}^{\dagger} \right) \right)}{1 + w(e) \boldsymbol{b}_e^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{b}_e}$$

ullet 计算拉普拉斯矩阵的伪逆  $oldsymbol{L}^{\dagger}$ 

- ullet 计算拉普拉斯矩阵的伪逆  $oldsymbol{L}^{\dagger}$
- 贪心地选择 k 条边
  - ullet 对所有的侯选边计算增量  $\mathcal{R}_v^\Delta(e)$
  - ullet 将增量最大的边对应的节点加入集合 S,并从候选边中删除
  - ullet 用 Sherman-Morrison 公式更新  $oldsymbol{L}^{\dagger}$ .

- ullet 计算拉普拉斯矩阵的伪逆  $oldsymbol{L}^{\dagger}$
- 贪心地选择 k 条边
  - ullet 对所有的侯选边计算增量  $\mathcal{R}_v^\Delta(e)$
  - ullet 将增量最大的边对应的节点加入集合 S ,并从候选边中删除
  - ullet 用 Sherman-Morrison 公式更新  $oldsymbol{L}^{\dagger}$  .
- 总运行时间 O(n³).

$$\mathcal{R}_{v}^{\Delta}(e) = \frac{w(e) \left( n \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right)_{[v,v]} + \operatorname{Tr} \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right) \right)}{1 + w(e) \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e}}$$

$$\mathcal{R}_{v}^{\Delta}(e) = \frac{w(e) \left( n \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right)_{[v,v]} + \operatorname{Tr} \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right) \right)}{1 + w(e) \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e}}$$

• 对于分子,根据 Hutchinson's 蒙特卡罗方法,

$$\operatorname{Tr}\left(oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{L}^{\dagger}
ight) = rac{1}{M}\sum_{i=1}^{M}oldsymbol{x}_{i}^{ op}oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{b}_{e}^{ op}oldsymbol{L}^{\dagger}oldsymbol{x}_{i}$$
. 并且, $\left(oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{L}^{\dagger}
ight)_{[v,v]} = oldsymbol{e}_{v}^{ op}oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{b}_{e}^{ op}oldsymbol{L}^{\dagger}oldsymbol{e}_{v}.$ 

$$\mathcal{R}_{v}^{\Delta}(e) = \frac{w(e) \left( n \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right)_{[v,v]} + \operatorname{Tr} \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right) \right)}{1 + w(e) \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e}}$$

• 对于分子,根据 Hutchinson's 蒙特卡罗方法,

$$\operatorname{Tr}\left(oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{L}^{\dagger}
ight) = rac{1}{M}\sum_{i=1}^{M}oldsymbol{x}_{i}^{ op}oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{b}_{e}^{ op}oldsymbol{L}^{\dagger}oldsymbol{x}_{i}$$
. 并且, $\left(oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{L}^{\dagger}
ight)_{[v,v]} = oldsymbol{e}_{v}^{ op}oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{b}_{e}^{ op}oldsymbol{L}^{\dagger}oldsymbol{e}_{v}.$ 

ullet 用接近线性时间拉普拉斯求解器近似计算分子,时间复杂度为  $\widetilde{O}(m)$ .

$$\mathcal{R}_{v}^{\Delta}(e) = \frac{w(e) \left( n \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right)_{[v,v]} + \operatorname{Tr} \left( \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e} \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \right) \right)}{1 + w(e) \boldsymbol{b}_{e}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{b}_{e}}$$

• 对于分子,根据 Hutchinson's 蒙特卡罗方法,

$$\operatorname{Tr}\left(oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{L}^{\dagger}
ight) = rac{1}{M}\sum_{i=1}^{M}oldsymbol{x}_{i}^{ op}oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{b}_{e}^{ op}oldsymbol{L}^{\dagger}oldsymbol{x}_{i}$$
. 并且, $\left(oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{L}^{\dagger}
ight)_{[v,v]} = oldsymbol{e}_{v}^{ op}oldsymbol{L}^{\dagger}oldsymbol{b}_{e}oldsymbol{b}_{e}^{ op}oldsymbol{L}^{\dagger}oldsymbol{e}_{v}.$ 

- ullet 用接近线性时间拉普拉斯求解器近似计算分子,时间复杂度为  $\widetilde{O}(m)$ .
- 分母中  $d_R(u,v)=m{b}_e^{\top} m{L}^{\dagger} m{b}_e$  是边 e 两个端点  $\left(u,v\right)$  间的电阻距离,存在算法可用  $\widetilde{O}(m\epsilon^{-2})$  的时间近似 [SS11]。

# 快速近似算法

# 快速近似算法

- 用以下方式贪心地选择 k 条边
  - 用  $\widetilde{O}(m)$  的时间近似所有候选边的增量  $\mathcal{R}_v^{\Delta}(e)$ 。
  - 将增量最大的边对应的点加入集合 S,并从候选边中删除
  - ullet 更新拉普拉斯矩阵  $oldsymbol{L}$

# 快速近似算法

- 用以下方式贪心地选择 k 条边
  - 用  $\widetilde{O}(m)$  的时间近似所有候选边的增量  $\mathcal{R}_v^{\Delta}(e)$ 。
  - ullet 将增量最大的边对应的点加入集合 S,并从候选边中删除
  - ullet 更新拉普拉斯矩阵  $oldsymbol{L}$
- 算法的近似比为  $\left(1-\frac{1}{e}-\epsilon\right)$ .
- 总运行时间为  $\widetilde{O}(mk\epsilon^{-2})$ .

#### 实验: 优化结果



图: 两种贪心算法、随机加边与最优解的优化效果比较.

#### 实验: 优化结果



图: 贪心算法和启发式基准算法的优化效果比较.

# 实验:效率

表: 两种贪心算法的优化效果和运行时间的比较.

| Network      | Time (seconds) |          |        | Information centrality |        |        |
|--------------|----------------|----------|--------|------------------------|--------|--------|
|              | ASM            | ESM      | Ratio  | ASM                    | ESM    | Ratio  |
| Virgili      | 1.3996         | 0.9172   | 1.5259 | 2.5005                 | 2.5037 | 0.9987 |
| Euroroad     | 0.6563         | 0.7593   | 0.8643 | 0.4003                 | 0.4069 | 0.9838 |
| Hamster full | 3.0785         | 4.8528   | 0.6344 | 2.9904                 | 2.9944 | 0.9987 |
| Facebook     | 1.7151         | 12.9203  | 0.1327 | 0.7937                 | 0.7947 | 0.9987 |
| Powergrid    | 5.8727         | 58.3359  | 0.1006 | 0.4327                 | 0.4369 | 0.9904 |
| ca-GrQc      | 5.3023         | 34.0228  | 0.1558 | 1.2118                 | 1.2136 | 0.9985 |
| ca-HepPh     | 28.7462        | 620.4557 | 0.0463 | 2.2569                 | 2.2592 | 0.9990 |
| com-DBLP     | 697.1835       | -        | -      | 1.1327                 | -      | _      |
| roadNet-TX   | 1569.5059      | -        | -      | 0.0556                 | -      | -      |

# 结构设计问题

• 通过添加连接优化网络的性能。

### 结构设计问题

- 通过添加连接优化网络的性能。
- 基于网络抗噪性的一阶一致性网络的结构优化 (基数限制):
  - 复杂性:未知
  - 算法: 1) 贪心: 非次模, 启发式; 2) 凸松弛: 有额外要求、较慢

#### 结构设计问题

- 通过添加连接优化网络的性能。
- 基于网络抗噪性的一阶一致性网络的结构优化 (基数限制):
  - 复杂性:未知
  - 算法: 1) 贪心: 非次模, 启发式; 2) 凸松弛: 有额外要求、较慢
- 基于网络熵的一致性网络的结构优化 (基数限制):
  - 复杂性
  - 算法: 1) 贪心: 次模(超模); 2) 凸松弛: 有额外要求、较慢

• 定义:  $S(G) = -\log T(G)$ , T(G) 是一个网络的(加权生成树数目).

- 定义:  $S(G) = -\log T(G)$ , T(G) 是一个网络的(加权生成树数目).
- $\mathcal{T}(G)$  和一致性网络的不确定状态体积成反比.

- 定义:  $S(G) = -\log T(G)$ , T(G) 是一个网络的(加权生成树数目).
- $\mathcal{T}(G)$  和一致性网络的不确定状态体积成反比.
- 其他直接应用:
  - 机器人:即使定位和地图构建(SLAM)
  - 网络可靠性(Reliability)
  - 社交网络:信息传播

#### 基尔霍夫矩阵树定理

• 矩阵树定理

$$\mathcal{T}(G) = \det(\mathbf{L}_{-n}^G)$$
.

## 基尔霍夫矩阵树定理

● 矩阵树定理

$$\mathcal{T}(G) = \det(\mathbf{L}_{-n}^G)$$
.

ullet 添加边 e 以后,根据矩阵行列式引理 (matrix-determinant lemma):

$$\mathcal{T}(G+e) = (1 + w_e R_{\text{eff}}(u, v)) \mathcal{T}(G).$$

# 困难性的规约



图: 用于问题规约的一个实例

#### 近似最优的困难性

• 规约:

(1,2)-TSP $\leq_p$  最小路径覆盖 $\leq_p$  最大化生成树数目(最小化网络熵).

#### 近似最优的困难性

- 规约:
  - (1,2)-TSP $\leq_p$  最小路径覆盖 $\leq_p$  最大化生成树数目(最小化网络熵).
- 通过路径覆盖以外的边两端的电阻距离给出生成树数目的上界.

## 近似最优的困难性

- 规约:
  - (1,2)-TSP $\leq_p$  最小路径覆盖 $\leq_p$  最大化生成树数目(最小化网络熵).
- 通过路径覆盖以外的边两端的电阻距离给出生成树数目的上界.

#### 定理

存在一个常数 c>0 使得给定一个选边最小化网络熵问题的实例,找到集合  $P\subseteq Q,\ |P|\le k,\ Q$  是候选集,满足

$$S(G+P) - S(G) < (1-c) \cdot (S(G+P^*) - S(G)),$$

是  $\mathbf{NP}$ -难的。其中  $P^\star \stackrel{\mathrm{def}}{=} rg \max_{S \subseteq Q, |S| \le k} \mathcal{S}(G+S)$  是该问题的一个最优解。

#### 内容

- 1 绪论:背景、应用和基础知识
- ② 一致性稳态性能与网络结构的关系
  - 网络结构对一阶抗噪性的影响
  - 富环无标度网络的抗噪性
- ③ 一致性的计算和优化: 算法和复杂性
  - 相对测量误差对一致性的影响: 边中心性的计算
  - 领导者选择问题的近似算法
  - 最小化网络熵的复杂性
- 4 带噪声的二阶一致性网络
  - 二阶抗噪性与双调和距离
- ⑤ 总结与展望

• 状态方程

$$\begin{pmatrix} \dot{\boldsymbol{x}}_1(t) \\ \dot{\boldsymbol{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{L} & -\boldsymbol{L} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1(t) \\ \boldsymbol{x}_2(t) \end{pmatrix} + \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{pmatrix} \boldsymbol{\xi}(t) \,,$$

● 状态方程

$$\begin{pmatrix} \dot{\boldsymbol{x}}_1(t) \\ \dot{\boldsymbol{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{L} & -\boldsymbol{L} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1(t) \\ \boldsymbol{x}_2(t) \end{pmatrix} + \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{pmatrix} \boldsymbol{\xi}(t) \,,$$

• 抗噪性指标

• 状态方程

$$\begin{pmatrix} \dot{\boldsymbol{x}}_1(t) \\ \dot{\boldsymbol{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{L} & -\boldsymbol{L} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1(t) \\ \boldsymbol{x}_2(t) \end{pmatrix} + \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{pmatrix} \boldsymbol{\xi}(t) \,,$$

- 抗噪性指标
  - 点对方差:  $H_{\mathrm{SO}}(j,k) = \lim_{t \to \infty} \mathbb{E}[\left(oldsymbol{x}_{1[j]}(t) oldsymbol{x}_{1[k]}(t)
    ight)^2].$

● 状态方程

$$\begin{pmatrix} \dot{\boldsymbol{x}}_1(t) \\ \dot{\boldsymbol{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{L} & -\boldsymbol{L} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1(t) \\ \boldsymbol{x}_2(t) \end{pmatrix} + \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{pmatrix} \boldsymbol{\xi}(t) \,,$$

- 抗噪性指标
  - 点对方差:  $H_{\mathrm{SO}}(j,k) = \lim_{t \to \infty} \mathbb{E}[\left(\boldsymbol{x}_{1[j]}(t) \boldsymbol{x}_{1[k]}(t)\right)^{2}].$
  - ② 节点偏移方差:  $H_{\mathrm{SO}}(j) = \lim_{t \to \infty} \mathbb{E}[\left(\boldsymbol{x}_{1[j]}(t) \bar{x}_1(t)\right)^2]$ .

• 状态方程

$$\begin{pmatrix} \dot{\boldsymbol{x}}_1(t) \\ \dot{\boldsymbol{x}}_2(t) \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{L} & -\boldsymbol{L} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_1(t) \\ \boldsymbol{x}_2(t) \end{pmatrix} + \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{I} \end{pmatrix} \boldsymbol{\xi}(t) \,,$$

- 抗噪性指标
  - 点对方差:  $H_{\mathrm{SO}}(j,k) = \lim_{t \to \infty} \mathbb{E}[\left(\boldsymbol{x}_{1[j]}(t) \boldsymbol{x}_{1[k]}(t)\right)^{2}].$
  - ② 节点偏移方差:  $H_{\mathrm{SO}}(j) = \lim_{t \to \infty} \mathbb{E}[\left(\mathbf{x}_{1[j]}(t) \bar{x}_1(t)\right)^2]$ .
  - ullet 平均方差:  $H_{\mathrm{SO}}(\mathcal{G}) = rac{1}{n} \lim_{t o \infty} \sum_{j=1}^n \mathbb{E}[\left( oldsymbol{x}_{1[j]}(t) ar{x}_1(t) \right)^2]$ .

## 二阶抗噪性与双调和距离

• 双调和距离  $d_B^2(u,v) = oldsymbol{b}_{u,v}^T oldsymbol{L}^{2\dagger} oldsymbol{b}_{u,v}$  [LRF10]

# 二阶抗噪性与双调和距离

- 双调和距离  $d_B^2(u,v) = oldsymbol{b}_{u,v}^T oldsymbol{L}^{2\dagger} oldsymbol{b}_{u,v}$  [LRF10]
- 与二阶抗噪性指标之间的关系
  - $H_{SO}(j,k) = \frac{1}{2}d_B^2(j,k)$
  - $\bullet H_{SO}(j) = \frac{1}{2n} \sum_{i} d_B^2(i,j) \frac{1}{4n^2} \sum_{i,k} d_B^2(i,k).$
  - $H_{SO}(\mathcal{G}) = \frac{1}{4n^2} \sum_{i,k} d_B^2(i,k).$

### 二阶抗噪性与双调和距离

- ullet 双调和距离  $d_B^2(u,v)=oldsymbol{b}_{u,v}^Toldsymbol{L}^{2\dagger}oldsymbol{b}_{u,v}$  [LRF10]
- 与二阶抗噪性指标之间的关系
  - $H_{SO}(j,k) = \frac{1}{2}d_B^2(j,k)$
  - $\bullet H_{SO}(j) = \frac{1}{2n} \sum_{i} d_B^2(i,j) \frac{1}{4n^2} \sum_{i,k} d_B^2(i,k).$
  - **9**  $H_{SO}(\mathcal{G}) = \frac{1}{4n^2} \sum_{i,k} d_B^2(i,k).$
- 基于双调和距离的点指数、基尔霍夫指数

#### 二阶抗噪性与双调和距离

- ullet 双调和距离  $d_B^2(u,v)=oldsymbol{b}_{u,v}^Toldsymbol{L}^{2\dagger}oldsymbol{b}_{u,v}$  [LRF10]
- 与二阶抗噪性指标之间的关系
  - $H_{SO}(j,k) = \frac{1}{2}d_B^2(j,k)$
  - $H_{SO}(j) = \frac{1}{2n} \sum_{i} d_B^2(i,j) \frac{1}{4n^2} \sum_{i,k} d_B^2(i,k).$
  - **9**  $H_{SO}(\mathcal{G}) = \frac{1}{4n^2} \sum_{i,k} d_B^2(i,k).$
- 基于双调和距离的点指数、基尔霍夫指数
- 点中心性、图连通性

#### 二阶一致性系统抗噪性渐近行为

#### • 无领导者

| 网络结构 | $H_{	ext{FO}}(\mathcal{G})$ | $H_{\mathrm{SO}}(\mathcal{G})$ |
|------|-----------------------------|--------------------------------|
| 完全图  | $\Theta(1/n)$               | $\Theta(1/n^2)$                |
| 星形图  | $\Theta(1)$                 | $\Theta(1)$                    |
| 环    | $\Theta(n)$                 | $\Theta(n^3)$                  |
| 路径   | $\Theta(n)$                 | $\Theta(n^3)$                  |
| 科赫网络 | $\Theta(\log n)$            | $\Theta(n)$                    |

• 领导者-跟随者: 目前无法直接表达为双调和距离, 但可以得到一个下界

● 揭示网络结构对一致性功能的影响

- 揭示网络结构对一致性功能的影响
- 提出误差量化和计算边中心性的算法

- 揭示网络结构对一致性功能的影响
- 提出误差量化和计算边中心性的算法
- 提出领导者选择问题优化算法

- 揭示网络结构对一致性功能的影响
- 提出误差量化和计算边中心性的算法
- 提出领导者选择问题优化算法
- 证明最小化网络熵的复杂性

- 揭示网络结构对一致性功能的影响
- 提出误差量化和计算边中心性的算法
- 提出领导者选择问题优化算法
- 证明最小化网络熵的复杂性
- 二阶一致性稳态性能研究框架、建立相关量与网络结构的联系

• 相关网络优化问题的近似算法和复杂性分析

- 相关网络优化问题的近似算法和复杂性分析
- 二阶领导者选择问题

- 相关网络优化问题的近似算法和复杂性分析
- 二阶领导者选择问题
- 有向网络上的一致性问题、带拓扑切换的系统等

- 相关网络优化问题的近似算法和复杂性分析
- 二阶领导者选择问题
- 有向网络上的一致性问题、带拓扑切换的系统等
- 相关应用的性能分析: 如分布式优化等

# 谢谢!

## 致谢

章忠志老师

陈关荣老师、Stacy Patterson 老师

Richard Peng, Bassam Bamieh

林苑、齐轶、李寰、单立人、杨冰佳等合作者

复旦大学的老师和同学

家人与朋友

参与评审和答辩的专家