MATH 371 Sampling Distributions

Name	Statistic	Distribution
Sample Mean	$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$	$N(\mu, \frac{\sigma^2}{n})$
Standard Normal	$Z = \frac{\overline{Y} - \mu}{\sigma_{\overline{Y}}} = \frac{\sqrt{n}(\overline{Y} - \mu)}{\sigma}$	N(0,1)
Sum of Squares of S.N.	$\sum_{i=1}^{n} Z_i^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \mu)^2$	$\chi^2(n)$
	$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \overline{Y})^2$	$\chi^2(n-1)$
	$\frac{Z}{\sqrt{\frac{\chi^2(\nu)}{\nu}}}$	t-distribution with ν degrees of freedom
	$\frac{\sqrt{n}(\overline{Y} - \mu)}{S}$	t-distribution with $n-1$ degrees of freedom
	$\frac{\frac{\chi^{2}(\nu_{1})}{\nu_{1}}}{\frac{\chi^{2}(\nu_{2})}{\nu_{2}}}$	F-distribution ν_1 numerator, ν_2 denominator d.f.
	$\frac{S_{1}^{2}}{\sigma_{1}^{2}}$ $\frac{S_{2}^{2}}{\sigma_{2}^{2}}$	F-distribution $n_1 - 1$ numerator, $n_2 - 1$ denominator d.f.

Reading tables:

 t_{α} is the value on the horizontal axis that cuts off an area (probability) of α .