Appendix A - Equations for cost estimation and assumed distributions

Fare per mile

$$fare_per_mile = (vehicle_financing + technology_financing + \\ licensing + insurance + maintenance + cleaning + \\ fuel + profit + labor + general_and_admin) \\ \times \frac{1}{utilization_rate}$$

Vehicle Financing and Technology Financing

Variable Name	Value	Source
vehicle_price	\$28,000	Compostella et al. (2020)
tech_price	\$150,000	Moreno (2021)
annual_interest_rate	7%	Nunes and Hernandez (2020)
vehicle_financing_lifespan	3 years	Nunes and Hernandez (2020)
vehicle_lifespan	5	Nunes and Hernandez (2020)
payment_periods_per_year	12	Assuming monthly payments
mileage_annual	65,000	Schaller Consulting (2006)

Equations:

$$monthly_loan_payment = \frac{vehicle_price}{([(1+i)^n-1] \div [i(1+i)^n]}$$

$$n = payment_periods_per_year \times vehicle_financing_lifespan$$

$$i = \frac{annual_interest_rate}{months_per_year}$$

 $total_loan_payment = monthly_loan_payment \times months_per_year \times vehicle_financing_duration$

$$financing = \frac{total_loan_payment}{miles_per_year \times vehicle_lifespan}$$

Licensing It is currently unclear whether robotaxis will be regulated under taxi or Transportation Network Company guidelines, which have differing licensing costs. See below for the calculation of taxi and TNC licensing fees.

Taxi Licensing - Chicago

The following costs are on a **per vehicle** basis

Variable Name	Value	Source
taxi_licensing_taxi_medallion_license	\$500 per 2 years	BACP (2020)
taxi_licensing_ground_transportation_tax	\$98/month	BACP (2020)
taxi_licensing_accessibility_fund	\$22/month	BACP (2020)
$taxi_licensing_advertising_fee$	\$100/year	BACP (2020)

Equations:

 $annual_licensing_taxi = taxi_licensing_taxi_medallion_license \\ + (taxi_licensing_ground_transportation_tax + taxi_licensing_accessibility_fund) \times months_per_year \\ + taxi_licensing_advertising_fee$

$$licensing = \frac{annual_licensing_taxi}{miles_per_year}$$

TNC Licensing - Chicago

The City of Chicago identified 148,351 unique TNC drivers in a recent study BACP (2023). Only a fraction of these drivers, however, were categorized as full-time drivers. We assume robotaxis would operate on a full-time basis and thus use the mean number of full-time TNC drivers (1,313) as the fleet size for TNC licensing calculations.

Variable Name	Value	Source
tnc_licensing_admin_fee_per_year tnc_licensing_admin_fee_per_trip tnc_licensing_ground_transport tnc_licensing_access_fund tnc_licensing_advertising_fee fleet_size miles_per_trip	\$10,000/year per company \$0.02/trip \$1/trip \$0.10/trip \$100/year per vehicle 1,313 vehicles 3.09 miles	BACP (2020) BACP (2020) BACP (2020) BACP (2020) BACP (2020) BACP (2020) BACP (2023) City of Chicago (n.d.)

$$licensing_tnc = \frac{tnc_licensing_admin_fee_tnc_per_year}{miles_per_year \times fleet_size} \\ + \frac{tnc_licensing_admin_fee_tnc_per_trip + tnc_licensing_ground_transport_tnc + access_fund_tnc}{miles_per_trip} \\ + \frac{tnc_licensing_advertising_fee}{miles_per_year}$$

Taxi Licensing - New York City

In New York City, taxi licensing occurs through the purchase of a taxi medallion. A down payment of 20% is applied with 25% of the down payment paid upfront and the remainder of the down payment financed over 5 years. The remaining balance is financed over 7 years.

Variable Name	Value	Source
taxi_medallion_price	\$225,000	New York City Taxi & Limousine
		Commission (n.d.)
downpayment_percent	20%	Nunes and Hernandez (2020)
downpayment_upfront_percent	25%	Nunes and Hernandez (2020)
financing_period_downpayment	7 years	Nunes and Hernandez (2020)
financing_period_remainder	5 years	Nunes and Hernandez (2020)
medallion_interest_rate	5.4%	Nunes and Hernandez (2020)
payment_periods_per_year	12	Nunes and Hernandez (2020)
medallion_lifespan	20	Nunes and Hernandez (2020)

Equations:

 $n_d = payment_periods_per_year \times financing_period_downpayment$

 $n_r = payment_periods_per_year \times financing_period_remainder$

$$i = \frac{medallion_interest_rate}{months_per_year}$$

 $downpayment_total = downpayment_percent \times taxi_licensing_taxi_medallion_price$

$$\begin{split} downpayment_upfront &= downpayment_upfront_percent \times downpayment_total \\ downpayment_remainder &= downpayment_total - downpayment_upfront \\ downpayment_monthly_loan_payment &= \frac{downpayment_remainder}{([(1+i)_d^n-1] \div [i(1+i)_d^n])} \end{split}$$

 $loan_remainder = taxi_licensing_taxi_medallion_price - downpayment_total$

 $remainder_monthly_loan_payment = \frac{loan_remainder}{([(1+i)^n_r-1] \div [i(1+i)^n_r]}$

 $total_medallion_payment = downpayment_upfront \\ + (downpayment_monthly_loan_payment \times n_d) \\ + (remainder_monthly_loan_payment \times n_r)$

 $licensing = \frac{total_medallion_payment}{miles_per_year \times medallion_lifespan}$

Insurance For the AV Baseline model, the av_operations_factor is 1. The listed av_operations_factor is used in the AV Advanced Technology scenario.

Variable Name	Value	Source
vehicle_operations_insurance	\$682/month	Bodine and Walker (2023); "Taxi Insurance" (2023)
$av_operations_factor_insurance$	0.5	Fagnant and Kockelman (2016)

Equation:

$$insurance = \frac{vehicle_operations_insurance \times months_per_year}{miles_per_year} \times av_operations_factor_insurance$$

Maintenance We assume maintenance costs are 0.06/mi. For the *AV Baseline* model, the av_operations_maintenance factor is 1. The listed av_operations_maintenance factor is used in the *AV Advanced Technology* scenario.

Variable Name	Value	Source
vehicle_operations_maintenance	0.06/mi	Parrott and Reich (2018); Reich and Parrott (2020)
$av_operations_factor_maintenance$	0.9	Fagnant and Kockelman (2016)

Equation:

 $maintenance = vehicle_operations_maintenance \times av_operations_factor_maintenance$

Cleaning We assume that taxi drivers clean the interiors of their vehicles every other day using \$6 doit-yourself cleaning supplies and clean the exterior of their vehicles using a \$10 automatic car wash once per week. Given the sensitive nature of their sensors, robotaxi vehicles must be cleaned by hand by field support agents. We thus account for the robotaxi cleaning costs as part of the field support agent labor cost, assuming that the cost of the worker is greater than the marginal cost of the cleaning supplies required to perform the cleaning task.

Variable Name	Value	Source
exterior_cleaning_price	\$6 per cleaning	Rainstorm Car Wash (2023)
interior_cleaning_price	\$10 per cleaning	Rainstorm Car Wash (2023)
mileage_annual	65,000	Schaller Consulting (2006)

Equation:

$$cleaning = \frac{(weeks_per_year \times exterior_cleaning_price) + (\frac{days_per_year}{2} \times interior_cleaning_price)}{mileage_annual}$$

Fuel For the AV Baseline scenario, the av_operations_fuel factor is 1. The listed av_operations_fuel factor is used in the AV Advanced Technology scenario.

Variable Name	Value	Source
fuel_cost_per_gal fuel_efficiency av_operations_factor_fuel	\$3.829/gallon 45 miles per gallon 0.8	AAA (2023) EPA (2021) Stephens et al. (2016); Bösch et al. (2018)

Equations:

$$annual_fuel_cost = \frac{miles_per_year}{fuel_efficiency} \times fuel_cost_per_gal$$

$$fuel = \frac{annual_fuel_cost}{miles_per_year} \times av_operations_factor_fuel$$

Labor

Traditional Taxis Overall equation:

labor = dispatcher + driver

Dispatcher

Variable Name	Value	Source
shift_days_per_year_dispatcher	365 days/year	Assumption
shift_length_dispatcher	8 hours	Assumption
wage_dispatcher	17.05/hr	BLS (2022)
$workers_per_shift_dispatcher$	1 per shift per cluster	Assumption
vehicles_per_cluster	20	Nunes and
		Hernandez (2020)
overhead_rate	1.59	Nunes and
		Hernandez (2020)

Equations:

$$dispatcher_per_day = workers_per_shift_dispatcher \times \frac{hours_per_day}{shift_length_dispatcher}$$

$$cluster_cost_dispatcher = (shift_days_per_year_dispatcher \times shift_length_dispatcher \times wage_dispatcher \times overhead_rate \times 1) \\ + (shift_days_per_year_dispatcher \times shift_length_dispatcher \times wage_dispatcher \\ \times (dispatcher_per_day - 1))$$

$$miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$$

$$dispatcher = \frac{cluster_cost_dispatcher}{miles_per_cluster}$$

Driver

Variable Name	Value	Source
shift_days_per_year_driver	365 days/year	Assumption
$shift_length_driver$	12 hours	Assumption
wage_driver	15.82/hr	Bureau of Labor Statistics (2022)
workers_per_shift_driver	1 per shift per cluster	Assumption
vehicles_per_cluster	1	Assumption

Equations:

$$driver_per_day = workers_per_shift_driver \times \frac{hours_per_day}{shift_length_driver}$$

 $cluster_cost_driver = (shift_days_per_year_driver \times shift_length_driver \times wage_driver \times driver_per_day)$

 $miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$

$$driver = \frac{cluster_cost_driver}{miles_per_cluster}$$

Robotaxis Overall equation:

labor = customer support + field support + monitor + coordinator

Field Support We assume that it takes a field support agent 20 minutes to clean and prepare a vehicle. Given that assumption, 24 vehicles could be cleaned by one person during an 8 hour shift. Additional field support agents are required in the deployment area to respond to incidents. We assume 4 field support agents are required to support 24 vehicles, yielding a worker to vehicle ratio of ratio of 1:6.

Variable Name	Value	Source
shift_days_per_year_fieldsupport shift_length_fieldsupport wage_fieldsupport workers_per_shift_fieldsupport vehicles_per_cluster overhead_rate	365 days/year 8 hours \$21/hr 1 per shift per cluster 6 1.59	Assumption Assumption Adecco (2023) Assumption Assumption Nunes and Hernandez (2020)

Equations:

$$field support_per_day = workers_per_shift_field support \times \frac{hours_per_day}{shift_length_field support}$$

$$cluster_cost_fieldsupport = (shift_days_per_year_fieldsupport \times shift_length_fieldsupport \\ \times wage_fieldsupport \times overhead_rate \times 1) \\ + (shift_days_per_year_fieldsupport \times shift_length_fieldsupport \times wage_fieldsupport \\ \times (fieldsupport_per_day - 1))$$

 $miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$

$$field support = \frac{cluster_cost_field support}{miles_per_cluster}$$

Remote Monitor

Variable Name	Value	Source
shift_days_per_year_monitor	365 days/year	Assumption
shift_length_monitor	8 hours	Pawlowski (2011)
wage_monitor	19/hr	ICONMA (2023)
workers_per_shift_monitor	1 per shift per cluster	Assumption
vehicles_per_cluster	16	Kolodny (2023)
overhead_rate	1.59	Nunes and Hernandez (2020)

Equations:

$$monitor_per_day = workers_per_shift_monitor \times \frac{hours_per_day}{shift_length_monitor}$$

$$cluster_cost_monitor = (shift_days_per_year_monitor \times shift_length_monitor \\ \times wage_monitor \times overhead_rate \times 1) \\ + (shift_days_per_year_monitor \times shift_length_monitor \times wage_monitor \\ \times (monitor_per_day - 1))$$

$$miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$$

$$monitor = \frac{cluster_cost_monitor}{miles_per_cluster}$$

Customer Support

Variable Name	Value	Source
shift_days_per_year_customersupport shift_length_customersupport wage_customersupport	365 days/year 8 hours \$19/hr	Assumption Pawlowski (2011) Indeed (2023); ICONMA (2023)
workers_per_shift_customersupport vehicles_per_cluster overhead_rate	1 per shift per cluster 16 1.59	Assumption Assumption Nunes and Hernandez (2020)

Equations:

$$customer support_per_day = workers_per_shift_customer support \times \frac{hours_per_day}{shift_length_customer support}$$

$$cluster_cost_customersupport = (shift_days_per_year_customersupport \times shift_length_customersupport \\ \times wage_customersupport * overhead_rate * 1) \\ + (shift_days_per_year_customersupport \times shift_length_customersupport \\ \times wage_customersupport \times (customersupport_per_day - 1))$$

 $miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$

$$customer support = \frac{cluster_cost_customer support}{miles_per_cluster}$$

Coordinator

Variable Name	Value	Source
shift_days_per_year_coordinator shift_length_coordinator wage_coordinator workers_per_shift_coordinator vehicles_per_cluster overhead_rate	365 days/year 8 hours \$29/hr 1 per shift per cluster 80 1.59	Assumption Assumption Salary.com (2022) Assumption Assumption Nunes and Hernandez
		(2020)

Equations:

$$coordinator_per_day = workers_per_shift_coordinator \times \frac{hours_per_day}{shift_length_coordinator}$$

$$cluster_cost_coordinator = (shift_days_per_year_coordinator \times shift_length_coordinator \\ \times wage_coordinator * overhead_rate * 1) \\ + (shift_days_per_year_coordinator \times shift_length_coordinator \\ \times wage_coordinator \times (coordinator_per_day - 1))$$

 $miles_per_cluster = vehicle_annual_miles \times vehicles_per_cluster$

$$coordinator = \frac{cluster_cost_coordinator}{miles_per_cluster}$$

References

- AAA. 2023. "National Average Gas Prices." https://gasprices.aaa.com/.
- Adecco. 2023. "Adecco @ Cruise: Driverless Support Specialist."
- BACP. 2020. "Chicago's Guide to Licensing Public Passenger Vehicles." Chicago, IL. https://www.chicago.gov/content/dam/city/depts/bacp/publicvehicleinfo/medallionowners/publicvehiclelicensingguide20200127.pdf.
- ——. 2023. "Public Passenger Vehicle (PPV) Study: Chauffeur Conditions and Effects on License Holders." https://www.chicago.gov/content/dam/city/depts/bacp/publicvehicleinfo/publicpassengervehiclestudyreports.pdf.
- BLS. 2022. "Dispatchers, Except Police, Fire, and Ambulance." https://www.bls.gov/oes/current/oes435032.htm.
- Bodine, Rachel, and Daniel Walker. 2023. "Auto Insurance for Taxi Cabs (2023)." https://www.autoinsurance.org/auto-insurance-for-taxi-cabs/.
- Bösch, Patrick M., Felix Becker, Henrik Becker, and Kay W. Axhausen. 2018. "Cost-Based Analysis of Autonomous Mobility Services." *Transport Policy* 64 (May): 76–91. https://doi.org/10.1016/j.tranpol. 2017.09.005.
- Bureau of Labor Statistics. 2022. "Taxi Drivers." https://www.bls.gov/oes/current/oes533054.htm#st.
- City of Chicago. n.d. "Taxi Trips | City of Chicago | Data Portal." https://data.cityofchicago.org/ Transportation/Taxi-Trips/wrvz-psew.
- Compostella, Junia, Lewis M. Fulton, Robert De Kleine, Hyung Chul Kim, and Timothy J. Wallington. 2020. "Near- (2020) and Long-Term (2030–2035) Costs of Automated, Electrified, and Shared Mobility in the United States." *Transport Policy* 85 (January): 54–66. https://doi.org/10.1016/j.tranpol.2019.10.001.
- EPA. 2021. "The 2020 EPA Automotive Trends Report." https://www.epa.gov/sites/default/files/2021-01/documents/420r21003.pdf.
- Fagnant, Daniel J., and Kara M. Kockelman. 2016. "Dynamic Ride-Sharing and Fleet Sizing for a System of Shared Autonomous Vehicles in Austin, Texas." *Transportation* 45 (1): 143–58. https://doi.org/10.1007/s11116-016-9729-z.
- ICONMA. 2023. "ICONMA @ Cruise: Assistance Advisor." https://www2.jobdiva.com/portal/?a=9bjdnw2mlhip8doaz2t0q9w4wphk960418ms6mtfp5oxvgnr76bfafpnr8c62y27&compid=0#/jobs/18844530.
- Indeed. 2023. "Beep Inc Jobs and Careers."
- Kolodny, Lora. 2023. "Cruise Confirms Robotaxis Rely on Human Assistance Every Four to Five Miles." https://www.cnbc.com/2023/11/06/cruise-confirms-robotaxis-rely-on-human-assistance-every-4-to-5-miles.html.
- Moreno, Johan. 2021. "Elon Musk Responds To Waymo CEO: 'Tesla Has Better AI Hardware And Software Than Waymo'." https://www.forbes.com/sites/johanmoreno/2021/01/25/elon-musk-responds-to-waymo-ceo-tesla-has-better-ai-hardware--software-than-waymo/.
- New York City Taxi & Limousine Commission. n.d. "Medallion Transfers TLC." https://www.nyc.gov/site/tlc/businesses/medallion-transfers.page.
- Nunes, Ashley, and Kristen D. Hernandez. 2020. "Autonomous Taxis & Public Health: High Cost or High Opportunity Cost?" *Transportation Research Part A: Policy and Practice* 138 (August): 28–36. https://doi.org/10.1016/j.tra.2020.05.011.
- Parrott, James A., and Michael Reich. 2018. "An Earnings Standard for New York City's App-Based Drivers." New York, NY. https://static1.squarespace.com/static/53ee4f0be4b015b9c3690d84/t/5b3a3aaa0e2e72ca74079142/1530542764109/Parrott-Reich+NYC+App+Drivers+TLC+Jul+2018jul1. pdf.
- Pawlowski, A. 2011. "What It's Like to Be an Air Traffic Controller." http://www.cnn.com/2011/TRAVEL/04/15/air.traffic.controller.job/index.html.
- Rainstorm Car Wash. 2023. "How Much Does a Car Wash Really Cost? A Comprehensive Guide." https://rainstormcarwash.com/how-much-does-a-car-wash-really-cost-a-comprehensive-guide/.
- Reich, Michael, and James A. Parrott. 2020. "A Minimum Compensation Standard for Seattle TNC Drivers." New York, NY. https://escholarship.org/uc/item/1fw4q65g.
- Salary.com, Site built by: 2022. "Watch Officer, Night Shift Job Opening in Phoenix, AZ at Cruise."

- https://www.salary.com/job/cruise/watch-officer-night-shift/j202204291018597191104.
- Schaller Consulting. 2006. "The New York City Taxicab Fact Book." http://www.schallerconsult.com/taxi/taxifb.pdf.
- Stephens, T. S., Jeff Gonder, Yuche Chen, Z. Lin, C. Liu, and D. Gohlke. 2016. "Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles." https://doi.org/10.2172/1334242.
- "Taxi Insurance." 2023. https://www.insurancenavy.com/services/commercial-auto-insurance/taxi-insurance/.