SME0104 Cálculo Numérico Aula 4

Maria Luísa Bambozzi de Oliveira marialuisa @ icmc . usp . br Sala: 3-241

Página: tidia-ae.usp.br

5 de março de 2015

Aula Anterior

- Sistema $F(\beta, t, m, M)$
 - Arredondamento
- Operações Aritméticas
- Efeitos Numéricos:
 - Cancelamento
 - Propagação de erro

Equações Não-Lineares

OBJETIVO

Calcular raízes de equações da forma

$$f(x) = 0$$

com f(x) sendo um polinômio em x ou função transcendente.

Em raros casos, conseguimos obter raízes exatas (polinômios fatoráveis).

Numericamente, obtemos solução aproximada através de sequência de aproximações, cada uma mais precisa que a anterior, através de *métodos iterativos para aproximar raízes isoladas*.

Equações Não-Lineares (cont.)

Teorema

Se uma função contínua f(x) assume valores de sinais opostos (ou zero) nos pontos extremos do intervalo [a,b], i.e., se $f(a) \times f(b) \le 0$, então existe pelo menos um ponto $\overline{x} \in [a,b]$ tal que $f(\overline{x}) = 0$.

Definições

- **(1)** Se $f:[a,b] \to \mathbb{R}$ é uma função dada, um ponto $\overline{x} \in [a,b]$ é um **zero** (ou raiz) de f se $f(\overline{x}) = 0$.
- (2) Um ponto $\overline{x} \in [a, b]$ é uma raiz de multiplicidade m da equação f(x) = 0 se $f(x) = (x \overline{x})^m g(x)$, com $g(\overline{x}) \neq 0$ em [a, b].

Métodos numéricos para calcular a raiz de f(x) = 0: método da Bissecção; método Iterativo Linear; método de Newton; método das Secantes; método Regula-Falsi.

Método da Bissecção

Para cada passo *k*:

- **1.** Consideramos intervalo $[a_k, b_k]$ onde $f(a_k) \times f(b_k) < 0$.
- **2.** Calculamos f(x) no ponto médio $x_{k+1} = \frac{a_k + b_k}{2}$.
- Três possibilidades:
 - ► $f(x_{k+1}) = 0 \rightarrow x_{k+1}$ é zero; TERMINAMOS.
 - ► $f(a_k) \times f(x_{k+1}) < 0 \rightarrow f$ tem zero entre a_k e x_{k+1} . Repetimos processo (1,2,3) com intervalo $[a_k, x_{k+1}]$ e k = k+1.
 - ► $f(b_k) \times f(x_{k+1}) < 0 \rightarrow f$ tem zero entre x_{k+1} e b_k . Repetimos processo (1,2,3) com intervalo $[x_{k+1}, b_k]$ e k = k+1.

Cada repetição é uma *iteração*, e aproximações sucessivas são *termos iterados*.

Método da Bissecção (cont.)

Exemplo: Seja $f : \mathbb{R} \to \mathbb{R}$. Calcule uma aproximação para a raiz de $f(x) = x^2 + 4x + 1$ no intervalo [-1, 0].

Raízes: x = -3,73205; x = -0,267949

Com o Método da Bissecção:

$$f(x) = x^2 + 4x + 1;$$
 $a_0 = -1;$ $b_0 = 0.$

$$f(a_0) = f(-1) = (-1)^2 + 4(-1) + 1 = -2 \neq 0;$$

 $f(b_0) = f(0) = (0)^2 + 4(0) + 1 = 1 \neq 0$

$$f(a_0) \times f(b_0) = (-2) \times (1) = -2 < 0$$

Método da Bissecção (cont.)

▶
$$k = 1$$
:
$$a_0 = -1; \quad f(a_0) = -2; \quad b_0 = 0; \quad f(b_0) = 1;$$

$$x_1 = \frac{-1+0}{2} = -0.5; \quad f(x_1) = -0.75 \neq 0;$$

$$f(a_0) \times f(x_1) = (-2) \times (-0.75) = +1.5 > 0$$

$$f(x_1) \times f(b_0) = (-0.75) \times (1) = -0.75 < 0$$
Intervalo escolhido: $[x_1, b_0] = [a_1, b_1] = [-0.5, 0]$

▶
$$k = 2$$
:
 $a_1 = -0.5$; $f(a_1) = -0.75$; $b_1 = 0$; $f(b_1) = 1$;
 $x_2 = \frac{-0.5+0}{2} = -0.25$; $f(x_2) = +0.0625 \neq 0$;
 $f(a_1) \times f(x_2) = (-0.75) \times (0.0625) = -0.046875 < 0$
 $f(x_2) \times f(b_1) = (0.0625) \times (1) = +0.0625 > 0$
Intervalo escolhido: $[a_1, x_2] = [a_2, b_2] = [-0.5, -0.25]$

e assim por diante.

Método da Bissecção (cont.)

Algoritmo (Método da Bissecção) - Versão 1:

Entrada: $a_0, b_0, f(x)$

Saída: \overline{x} ou mensagem de erro

[P1] Calcular $f(a_0)$ e $f(b_0)$ e verificar:

- ▶ Se $f(a_0) = 0$, RETORNAR a_0 e PARAR (com sucesso).
- ► Se $f(b_0) = 0$, RETORNAR b_0 e PARAR (com sucesso).
- Se $f(a_0) \times f(b_0) > 0$, PARAR com erro (não tem sinais opostos)

[P2] Definir $x_0 = a_0$.

[P3] Para k = 1, 2, ...

- ► Calcular $x_k = \frac{a_{k-1} + b_{k-1}}{2}$ e $f(x_k)$;
- ▶ Se $f(x_k) = 0$, RETORNAR x_k e PARAR (com sucesso);
- ► Se $f(a_{k-1}) \times f(x_k) > 0$, $a_k = x_k$ e $b_k = b_{k-1}$; senão, $a_k = a_{k-1}$ e $b_k = x_k$.

Processo de Parada

Como o computador determina que a aproximação x_k está perto o suficiente da solução exata \overline{x} , se não sabemos qual é a solução exata?

Definimos um **processo de parada** para métodos numéricos.

Para obter raiz com precisão $\varepsilon = 10^{-m}$ (m escolhido: número de casas decimais corretas), fazemos o seguinte teste durante o processo iterativo.

Se

$$\frac{|x_k - x_{k-1}|}{|x_k|} < \varepsilon, \quad \text{(erro relativo)}$$

então x_k é raiz procurada ($\overline{x} = x_k$).

Processo de Parada (cont.)

Por que não utilizar

$$|f(x_k)| < \varepsilon$$
 ou $|x_k - x_{k-1}| < \varepsilon$

como método de parada?

Explicação:

1) Um valor de $f(x_k)$ menor que ε não implica em valor de x_k próximo da raiz.

Exemplo:
$$f(x) = xe^{-3x} \Rightarrow \overline{x} = 0$$
.

Mas
$$f(2) = 0.4958 \times 10^{-2}$$
; $f(3) = 0.3702 \times 10^{-3}$,...

Processo de Parada (cont.)

2) A utilização do *erro absoluto* $|x_k - x_{k-1}|$ como teste de parada pode causar problemas se os valores de x_{k-1} , x_k são muito maiores em relação a ε .

Exemplo:
$$f(x) = x^2 - 381x + 36180 = (x - 180)(x - 201)$$
.

Se escolhermos $\varepsilon=10^{-6}$, quantos passos k serão necessários para o método parar com a solução aproximada $\overline{x}=x_k$?

Para **implementar** erro relativo em programa computacional, escrever como

$$|x_k - x_{k-1}| < \varepsilon \cdot \max\{1, |x_k|\}.$$

Por segurança, adicionar também *número máximo de iterações* (MAXITER).

Algoritmo: Método da Bissecção - v. 2

Método da Bissecção - Com Método de Parada

Entrada: f(x), a_0 , b_0 , ε , MAXITER **Saída:** \overline{x} ou mensagem de ERRO

[P1] Calcular $f(a_0)$ e $f(b_0)$ e verificar:

- ► Se $f(a_0) = 0$, RETORNAR a_0 ; se $f(b_0) = 0$, RETORNAR b_0 ; PARAR (com sucesso).
- ► Se $f(a_0) \times f(b_0) > 0$, PARAR com erro (mesmo sinal)

[P2] Definir $x_0 = a_0$.

[P3] Para k = 1, 2, ..., MAXITER:

- ► Calcular $x_k = \frac{a_{k-1} + b_{k-1}}{2}$ e $f(x_k)$;
- ► Se $f(x_k) = 0$ ou $|x_k x_{k-1}| < \varepsilon \cdot \max\{1, |x_k|\}$, RETORNAR x_k e PARAR (com sucesso);
- ► Se $f(a_{k-1}) \times f(x_k) > 0$, $a_k = x_k$ e $b_k = b_{k-1}$; senão, $a_k = a_{k-1}$ e $b_k = x_k$.
- **[P4]** RETORNAR erro (MAXITER atingido sem sucesso).

Iteração Linear

Queremos escrever f(x) = 0 na forma $x = \psi(x)$, tal que as soluções \overline{x} são iguais, isto é,

$$f(\overline{x}) = \overline{x} - \psi(\overline{x}) = 0.$$

Para qualquer ψ , qualquer solução de $x = \psi(x)$ é chamada de **ponto fixo** de $\psi(x)$.

Como determinar $\psi(x)$?

$$\psi(x) = x + f(x)$$

$$\psi(x) = x - 3f(x)$$

$$\psi(x) = \dots$$

Iteração Linear (cont.)

Queremos raiz de f(x) = 0, tal que \bar{x} é raiz:

$$f(x) = 0 \Rightarrow$$

$$A(x)f(x) = 0 \quad [A(\overline{x}) \neq 0] \Rightarrow$$

$$\psi(x) = x + A(x)f(x)$$

para qualquer A(x) tal que $A(\overline{x}) \neq 0$.

Exemplo:
$$f(x) = x^5 - 2x^3 + 2$$
. Raiz real: $\overline{x} \approx -1,58258581424$

$$\psi(x) = x - x^5 + 2x^3 - 2$$

$$\psi(x) = -\sqrt{2 - \frac{2}{x^3}}$$

$$\psi(x) = \frac{x^3}{2} + \frac{1}{x^2}$$

$$\psi(x) = x - \frac{x^5 - 2x^3 + 2}{5x^4 - 6x^2}$$

$$\psi(x) = \dots$$

Método Iterativo Linear

Se supormos que \overline{x} é uma raiz de f, com $\psi(x)$ e $\psi'(x)$ contínuas num intervalo que contém a raiz, e escolhermos um x_0 que é uma aproximação inicial para a raiz \overline{x} de $x=\psi(x)$, determinamos aproximações sucessivas x_k de \overline{x} obtidas usando o processo iterativo

$$x_{k+1} = \psi(x_k), \quad k = 0, 1, \ldots$$

Essa sequência deve convergir (cada aproximação x_{k+1} chega mais perto de \overline{x}), e se $x_k = \overline{x}$, $x_{k+1} = \psi(\overline{x}) = \overline{x}$.

Como garantir que sequência converge?

Existem **condições suficientes** para convergência do método.

Método Iterativo Linear (cont.)

Teorema: Seja $\psi(x)$ uma função contínua, com derivadas primeira e segunda contínuas num intervalo fechado $I = \left[\overline{x} - h, \overline{x} + h\right]$, com centro \overline{x} sendo a solução de $x = \psi(x)$. Se $x_0 \in I$ e M é um limitante tal que

$$|\psi'(x)| \le M < 1$$

em I, então:

- **1.** A iteração $x_{k+1} = \psi(x_k)$, k = 0, 1, ... pode ser executada indefinidamente, pois $x_k \in I$, $\forall k$.
- **2.** $|x_k \overline{x}| \to 0$.
- **3.** Se $\psi'(\overline{x}) \neq 0$, ou se $\psi'(\overline{x}) = 0$ e $\psi''(\overline{x}) \neq 0$, e se $|x_0 \overline{x}|$ for suficientemente pequeno, então a sequência x_1, x_2, \ldots é monotônica ou oscilante.

Método Iterativo Linear (cont.)

Algoritmo: Método Iterativo Linear

Entrada: $\psi(x)$, x_0 , ε , MAXITER; **Saída:** \overline{x} ou mensagem de ERRO

[P1] Para k = 1, ..., MAXITER:

- Calcular $x_k = \psi(x_{k-1})$;
- ► Se $|x_k x_{k-1}| < \varepsilon \cdot \max\{1, |x_k|\}$, RETORNAR x_k e PARAR (com sucesso).

[P2] RETORNAR erro (número máximo de iterações atingido sem sucesso).

Método Iterativo Linear (cont.)

Exemplo: Raiz de $f(x) = x^3 + 4x^2 - 10 = 0$ no intervalo [1, 2].

Raiz real: $\bar{x} \approx 1,365230013$.

a)
$$\psi(x) = x - x^3 - 4x^2 + 10$$