$12a_{0581} (K12a_{0581})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{59} + u^{58} + \dots + 3u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 59 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{59} + u^{58} + \dots + 3u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{9} + 4u^{7} + 5u^{5} - 3u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} + 5u^{10} + 9u^{8} + 4u^{6} - 6u^{4} - 5u^{2} + 1 \\ -u^{14} - 6u^{12} - 13u^{10} - 10u^{8} + 4u^{6} + 8u^{4} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{22} + 9u^{20} + \dots - 2u^{2} + 1 \\ -u^{24} - 10u^{22} + \dots - 4u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{42} + 17u^{40} + \dots - 5u^{2} + 1 \\ -u^{42} - 16u^{40} + \dots - 12u^{4} - u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{32} + 13u^{30} + \dots - 8u^{2} + 1 \\ -u^{34} - 14u^{32} + \dots + 14u^{4} + u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{57} + 4u^{56} + \cdots + 16u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{59} + 33u^{58} + \dots + 6u + 1$
c_{2}, c_{6}	$u^{59} - u^{58} + \dots + 2u - 1$
c_3, c_4, c_9	$u^{59} - u^{58} + \dots - 20u - 17$
c_5, c_{10}, c_{11}	$u^{59} + u^{58} + \dots + 3u^2 - 1$
c_7, c_8, c_{12}	$u^{59} - 3u^{58} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{59} - 13y^{58} + \dots - 18y - 1$
c_{2}, c_{6}	$y^{59} - 33y^{58} + \dots + 6y - 1$
c_3, c_4, c_9	$y^{59} - 53y^{58} + \dots - 2694y - 289$
c_5, c_{10}, c_{11}	$y^{59} + 47y^{58} + \dots + 6y - 1$
c_7, c_8, c_{12}	$y^{59} + 59y^{58} + \dots + 94y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.058378 + 1.130960I	-2.04129 + 1.77189I	0
u = 0.058378 - 1.130960I	-2.04129 - 1.77189I	0
u = -0.847163 + 0.084618I	-1.74912 - 9.58388I	5.65604 + 6.28826I
u = -0.847163 - 0.084618I	-1.74912 + 9.58388I	5.65604 - 6.28826I
u = 0.848749 + 0.035449I	5.75598 + 5.05092I	9.97613 - 6.12158I
u = 0.848749 - 0.035449I	5.75598 - 5.05092I	9.97613 + 6.12158I
u = -0.844748 + 0.015661I	6.96091 - 0.69784I	12.84524 - 0.01265I
u = -0.844748 - 0.015661I	6.96091 + 0.69784I	12.84524 + 0.01265I
u = 0.839398 + 0.078837I	1.60637 + 4.73223I	8.74881 - 3.21994I
u = 0.839398 - 0.078837I	1.60637 - 4.73223I	8.74881 + 3.21994I
u = -0.829147 + 0.087395I	-2.39103 - 0.42285I	4.73097 + 0.13131I
u = -0.829147 - 0.087395I	-2.39103 + 0.42285I	4.73097 - 0.13131I
u = 0.795102	2.32839	4.51790
u = -0.371549 + 1.173570I	-5.71912 - 3.91206I	0
u = -0.371549 - 1.173570I	-5.71912 + 3.91206I	0
u = 0.110941 + 1.236520I	-3.06428 + 1.85081I	0
u = 0.110941 - 1.236520I	-3.06428 - 1.85081I	0
u = -0.396405 + 1.182980I	-5.12049 + 5.11297I	0
u = -0.396405 - 1.182980I	-5.12049 - 5.11297I	0
u = 0.384434 + 1.189160I	-1.80148 - 0.32610I	0
u = 0.384434 - 1.189160I	-1.80148 + 0.32610I	0
u = -0.154739 + 1.285240I	-5.10187 - 5.52444I	0
u = -0.154739 - 1.285240I	-5.10187 + 5.52444I	0
u = 0.391966 + 1.238580I	2.03937 - 0.59806I	0
u = 0.391966 - 1.238580I	2.03937 + 0.59806I	0
u = -0.058596 + 1.302090I	-6.34517 + 0.28249I	0
u = -0.058596 - 1.302090I	-6.34517 - 0.28249I	0
u = -0.387543 + 1.257050I	3.11544 - 3.72547I	0
u = -0.387543 - 1.257050I	3.11544 + 3.72547I	0
u = 0.349231 + 1.275480I	-1.63836 + 4.11991I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.349231 - 1.275480I	-1.63836 - 4.11991I	0
u = -0.384823 + 1.282600I	2.92232 - 5.11207I	0
u = -0.384823 - 1.282600I	2.92232 + 5.11207I	0
u = 0.386365 + 1.297270I	1.60085 + 9.48535I	0
u = 0.386365 - 1.297270I	1.60085 - 9.48535I	0
u = -0.126651 + 1.360960I	-9.41765 - 3.50298I	0
u = -0.126651 - 1.360960I	-9.41765 + 3.50298I	0
u = 0.476903 + 0.415250I	-7.45872 + 6.23445I	1.86893 - 7.19389I
u = 0.476903 - 0.415250I	-7.45872 - 6.23445I	1.86893 + 7.19389I
u = 0.441341 + 0.448361I	-7.59241 - 2.90093I	1.279113 - 0.509070I
u = 0.441341 - 0.448361I	-7.59241 + 2.90093I	1.279113 + 0.509070I
u = 0.118145 + 1.368160I	-13.24570 - 1.08745I	0
u = 0.118145 - 1.368160I	-13.24570 + 1.08745I	0
u = 0.134795 + 1.367180I	-13.0323 + 8.2643I	0
u = 0.134795 - 1.367180I	-13.0323 - 8.2643I	0
u = 0.375249 + 1.324440I	-2.78863 + 9.10055I	0
u = 0.375249 - 1.324440I	-2.78863 - 9.10055I	0
u = -0.368450 + 1.327520I	-6.82502 - 4.73394I	0
u = -0.368450 - 1.327520I	-6.82502 + 4.73394I	0
u = -0.378790 + 1.328850I	-6.1782 - 13.9904I	0
u = -0.378790 - 1.328850I	-6.1782 + 13.9904I	0
u = -0.445899 + 0.414347I	-3.89834 - 1.60598I	4.85193 + 4.07841I
u = -0.445899 - 0.414347I	-3.89834 + 1.60598I	4.85193 - 4.07841I
u = -0.451600 + 0.225417I	-0.51874 - 3.38908I	6.72883 + 9.41856I
u = -0.451600 - 0.225417I	-0.51874 + 3.38908I	6.72883 - 9.41856I
u = -0.171695 + 0.376972I	-1.43291 + 1.09097I	0.441701 - 0.484421I
u = -0.171695 - 0.376972I	-1.43291 - 1.09097I	0.441701 + 0.484421I
u = 0.404352 + 0.062637I	0.771139 + 0.080818I	13.47182 - 1.34489I
u = 0.404352 - 0.062637I	0.771139 - 0.080818I	13.47182 + 1.34489I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{59} + 33u^{58} + \dots + 6u + 1$
c_2, c_6	$u^{59} - u^{58} + \dots + 2u - 1$
c_3, c_4, c_9	$u^{59} - u^{58} + \dots - 20u - 17$
c_5, c_{10}, c_{11}	$u^{59} + u^{58} + \dots + 3u^2 - 1$
c_7, c_8, c_{12}	$u^{59} - 3u^{58} + \dots - 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{59} - 13y^{58} + \dots - 18y - 1$
c_2, c_6	$y^{59} - 33y^{58} + \dots + 6y - 1$
c_3, c_4, c_9	$y^{59} - 53y^{58} + \dots - 2694y - 289$
c_5, c_{10}, c_{11}	$y^{59} + 47y^{58} + \dots + 6y - 1$
c_7, c_8, c_{12}	$y^{59} + 59y^{58} + \dots + 94y - 1$