Overview Examples

Linear Homogeneous Constant Coefficient Differential Equations

Bernd Schröder

Overview Examples

Equation Type and Solution Method

Equation Type and Solution Method

We will focus on linear homogeneous constant coefficient differential equations of second order, because they are encountered most frequently.

1. The general form is ay'' + by' + cy = 0, where a, b, c are real constants.

Equation Type and Solution Method

- 1. The general form is ay'' + by' + cy = 0, where a, b, c are real constants.
- 2. Substituting $y = e^{\lambda x}$ into the equation leads to the equation $a\lambda^2 + b\lambda + c = 0$ for λ .

Overview Examples

Equation Type and Solution Method

- 1. The general form is ay'' + by' + cy = 0, where a, b, c are real constants.
- 2. Substituting $y = e^{\lambda x}$ into the equation leads to the equation $a\lambda^2 + b\lambda + c = 0$ for λ .
 - 2.1 If the equation has real solutions $\lambda_1 \neq \lambda_2$, then the general solution is $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$.

Overview Examples

Equation Type and Solution Method

- 1. The general form is ay'' + by' + cy = 0, where a, b, c are real constants.
- 2. Substituting $y = e^{\lambda x}$ into the equation leads to the equation $a\lambda^2 + b\lambda + c = 0$ for λ .
 - 2.1 If the equation has real solutions $\lambda_1 \neq \lambda_2$, then the general solution is $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$.
 - 2.2 If the equation has complex solutions $\lambda_{1,2} = u \pm iv$, then the general solution is $y = c_1 e^{ux} \cos(vx) + c_2 e^{ux} \sin(vx)$.

Equation Type and Solution Method

- 1. The general form is ay'' + by' + cy = 0, where a, b, c are real constants.
- 2. Substituting $y = e^{\lambda x}$ into the equation leads to the equation $a\lambda^2 + b\lambda + c = 0$ for λ .
 - 2.1 If the equation has real solutions $\lambda_1 \neq \lambda_2$, then the general solution is $y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$.
 - 2.2 If the equation has complex solutions $\lambda_{1,2} = u \pm iv$, then the general solution is $y = c_1 e^{ux} \cos(vx) + c_2 e^{ux} \sin(vx)$.
 - 2.3 If the equation has only one real solution λ , then the general solution is $y = c_1 e^{\lambda x} + c_2 x e^{\lambda x}$.

$$2y'' + 5y' + 2y = 0$$

$$2y'' + 5y' + 2y = 0 \qquad y = e^{\lambda x}$$

$$2y'' + 5y' + 2y = 0 y = e^{\lambda x}$$
$$2(e^{\lambda x})'' + 5(e^{\lambda x})' + 2(e^{\lambda x}) = 0$$

$$2y'' + 5y' + 2y = 0 y = e^{\lambda x}$$
$$2(e^{\lambda x})'' + 5(e^{\lambda x})' + 2e^{\lambda x} = 0$$

$$2y'' + 5y' + 2y = 0 y = e^{\lambda x}$$
$$2(e^{\lambda x})'' + 5\lambda e^{\lambda x} + 2e^{\lambda x} = 0$$

$$2y'' + 5y' + 2y = 0 y = e^{\lambda x}$$
$$2\lambda^2 e^{\lambda x} + 5\lambda e^{\lambda x} + 2e^{\lambda x} = 0$$

$$2y'' + 5y' + 2y = 0 y = e^{\lambda x}$$
$$2\lambda^2 e^{\lambda x} + 5\lambda e^{\lambda x} + 2e^{\lambda x} = 0$$
$$2\lambda^2 + 5\lambda + 2 = 0$$

$$2y'' + 5y' + 2y = 0 \qquad y = e^{\lambda x}$$

$$2\lambda^2 e^{\lambda x} + 5\lambda e^{\lambda x} + 2e^{\lambda x} = 0$$

$$2\lambda^2 + 5\lambda + 2 = 0$$

$$\lambda_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{4}$$

$$2y'' + 5y' + 2y = 0 \qquad y = e^{\lambda x}$$

$$2\lambda^2 e^{\lambda x} + 5\lambda e^{\lambda x} + 2e^{\lambda x} = 0$$

$$2\lambda^2 + 5\lambda + 2 = 0$$

$$\lambda_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{4}$$

$$= \frac{-5 \pm 3}{4}$$

$$2y'' + 5y' + 2y = 0 y = e^{\lambda x}$$

$$2\lambda^2 e^{\lambda x} + 5\lambda e^{\lambda x} + 2e^{\lambda x} = 0$$

$$2\lambda^2 + 5\lambda + 2 = 0$$

$$\lambda_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{4}$$

$$= \frac{-5 \pm 3}{4}$$

$$= -\frac{1}{2}, -2$$

$$2y'' + 5y' + 2y = 0 y = e^{\lambda x}$$

$$2\lambda^2 e^{\lambda x} + 5\lambda e^{\lambda x} + 2e^{\lambda x} = 0$$

$$2\lambda^2 + 5\lambda + 2 = 0$$

$$\lambda_{1,2} = \frac{-5 \pm \sqrt{25 - 16}}{4}$$

$$= \frac{-5 \pm 3}{4}$$

$$= -\frac{1}{2}, -2$$

$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2y'' + 5y' + 2y \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2y'' + 5y' + 2\left(c_1e^{-\frac{1}{2}x} + c_2e^{-2x}\right) \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2y'' + 5\left(-\frac{1}{2}c_1e^{-\frac{1}{2}x} - 2c_2e^{-2x}\right) + 2\left(c_1e^{-\frac{1}{2}x} + c_2e^{-2x}\right) \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2\left(\frac{1}{4}c_1e^{-\frac{1}{2}x} + 4c_2e^{-2x}\right) + 5\left(-\frac{1}{2}c_1e^{-\frac{1}{2}x} - 2c_2e^{-2x}\right) + 2\left(c_1e^{-\frac{1}{2}x} + c_2e^{-2x}\right) \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2\left(\frac{1}{4}c_{1}e^{-\frac{1}{2}x}+4c_{2}e^{-2x}\right)+5\left(-\frac{1}{2}c_{1}e^{-\frac{1}{2}x}-2c_{2}e^{-2x}\right)+2\left(c_{1}e^{-\frac{1}{2}x}+c_{2}e^{-2x}\right) \stackrel{?}{=} 0$$

$$\frac{1}{2}c_{1}e^{-\frac{1}{2}x}+8c_{2}e^{-2x}-\frac{5}{2}c_{1}e^{-\frac{1}{2}x}-10c_{2}e^{-2x}+2c_{1}e^{-\frac{1}{2}x}+2c_{2}e^{-2x} \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2\left(\frac{1}{4}c_{1}e^{-\frac{1}{2}x}+4c_{2}e^{-2x}\right)+5\left(-\frac{1}{2}c_{1}e^{-\frac{1}{2}x}-2c_{2}e^{-2x}\right)+2\left(c_{1}e^{-\frac{1}{2}x}+c_{2}e^{-2x}\right) \stackrel{?}{=} 0$$

$$\frac{1}{2}c_{1}e^{-\frac{1}{2}x}+8c_{2}e^{-2x}-\frac{5}{2}c_{1}e^{-\frac{1}{2}x}-10c_{2}e^{-2x}+2c_{1}e^{-\frac{1}{2}x}+2c_{2}e^{-2x} \stackrel{?}{=} 0$$

$$\left(\frac{1}{2}-\frac{5}{2}+2\right)c_{1}e^{-\frac{1}{2}x}$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2\left(\frac{1}{4}c_{1}e^{-\frac{1}{2}x}+4c_{2}e^{-2x}\right)+5\left(-\frac{1}{2}c_{1}e^{-\frac{1}{2}x}-2c_{2}e^{-2x}\right)+2\left(c_{1}e^{-\frac{1}{2}x}+c_{2}e^{-2x}\right) \stackrel{?}{=} 0$$

$$\frac{1}{2}c_{1}e^{-\frac{1}{2}x}+8c_{2}e^{-2x}-\frac{5}{2}c_{1}e^{-\frac{1}{2}x}-10c_{2}e^{-2x}+2c_{1}e^{-\frac{1}{2}x}+2c_{2}e^{-2x} \stackrel{?}{=} 0$$

$$\left(\frac{1}{2}-\frac{5}{2}+2\right)c_{1}e^{-\frac{1}{2}x}+\left(8-10+2\right)c_{2}e^{-2x}$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2\left(\frac{1}{4}c_{1}e^{-\frac{1}{2}x}+4c_{2}e^{-2x}\right)+5\left(-\frac{1}{2}c_{1}e^{-\frac{1}{2}x}-2c_{2}e^{-2x}\right)+2\left(c_{1}e^{-\frac{1}{2}x}+c_{2}e^{-2x}\right) \stackrel{?}{=} 0$$

$$\frac{1}{2}c_{1}e^{-\frac{1}{2}x}+8c_{2}e^{-2x}-\frac{5}{2}c_{1}e^{-\frac{1}{2}x}-10c_{2}e^{-2x}+2c_{1}e^{-\frac{1}{2}x}+2c_{2}e^{-2x} \stackrel{?}{=} 0$$

$$\left(\frac{1}{2}-\frac{5}{2}+2\right)c_{1}e^{-\frac{1}{2}x}+\left(8-10+2\right)c_{2}e^{-2x} \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2\left(\frac{1}{4}c_{1}e^{-\frac{1}{2}x}+4c_{2}e^{-2x}\right)+5\left(-\frac{1}{2}c_{1}e^{-\frac{1}{2}x}-2c_{2}e^{-2x}\right)+2\left(c_{1}e^{-\frac{1}{2}x}+c_{2}e^{-2x}\right) \stackrel{?}{=} 0$$

$$\frac{1}{2}c_{1}e^{-\frac{1}{2}x}+8c_{2}e^{-2x}-\frac{5}{2}c_{1}e^{-\frac{1}{2}x}-10c_{2}e^{-2x}+2c_{1}e^{-\frac{1}{2}x}+2c_{2}e^{-2x} \stackrel{?}{=} 0$$

$$\left(\frac{1}{2}-\frac{5}{2}+2\right)c_{1}e^{-\frac{1}{2}x}+\left(8-10+2\right)c_{2}e^{-2x} \stackrel{?}{=} 0$$

$$0 = 0$$

Does
$$y = c_1 e^{-\frac{1}{2}x} + c_2 e^{-2x}$$
 Really Solve $2y'' + 5y' + 2y = 0$?

$$2\left(\frac{1}{4}c_{1}e^{-\frac{1}{2}x}+4c_{2}e^{-2x}\right)+5\left(-\frac{1}{2}c_{1}e^{-\frac{1}{2}x}-2c_{2}e^{-2x}\right)+2\left(c_{1}e^{-\frac{1}{2}x}+c_{2}e^{-2x}\right)\overset{?}{=}0$$

$$\frac{1}{2}c_{1}e^{-\frac{1}{2}x}+8c_{2}e^{-2x}-\frac{5}{2}c_{1}e^{-\frac{1}{2}x}-10c_{2}e^{-2x}+2c_{1}e^{-\frac{1}{2}x}+2c_{2}e^{-2x}\overset{?}{=}0$$

$$\left(\frac{1}{2}-\frac{5}{2}+2\right)c_{1}e^{-\frac{1}{2}x}+\left(8-10+2\right)c_{2}e^{-2x}\overset{?}{=}0$$

$$= 0$$

$$y'' + 4y' + 5y = 0$$

$$y'' + 4y' + 5y = 0$$
$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 5e^{\lambda x} = 0$$

$$y'' + 4y' + 5y = 0$$
$$\lambda^{2}e^{\lambda x} + 4\lambda e^{\lambda x} + 5e^{\lambda x} = 0$$
$$\lambda^{2} + 4\lambda + 5 = 0$$

$$y'' + 4y' + 5y = 0$$

$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 5e^{\lambda x} = 0$$

$$\lambda^2 + 4\lambda + 5 = 0$$

$$\lambda_{1,2} = \frac{-4 \pm \sqrt{16 - 20}}{2}$$

$$y'' + 4y' + 5y = 0$$

$$\lambda^{2}e^{\lambda x} + 4\lambda e^{\lambda x} + 5e^{\lambda x} = 0$$

$$\lambda^{2} + 4\lambda + 5 = 0$$

$$\lambda_{1,2} = \frac{-4 \pm \sqrt{16 - 20}}{2}$$

$$= -2 \pm i$$

Find the general solution of y'' + 4y' + 5y = 0.

$$y'' + 4y' + 5y = 0$$

$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 5e^{\lambda x} = 0$$

$$\lambda^2 + 4\lambda + 5 = 0$$

$$\lambda_{1,2} = \frac{-4 \pm \sqrt{16 - 20}}{2}$$

$$= -2 \pm i$$

$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

$$\left(e^{-2x}\cos(x)\right)'' + 4\left(e^{-2x}\cos(x)\right)' + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

$$\left(e^{-2x}\cos(x)\right)'' + 4\left(e^{-2x}\cos(x)\right)' + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$\left(3e^{-2x}\cos(x) + 4e^{-2x}\sin(x)\right)$$

$$+4\left(-2e^{-2x}\cos(x) - e^{-2x}\sin(x)\right) + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

$$\left(e^{-2x}\cos(x)\right)'' + 4\left(e^{-2x}\cos(x)\right)' + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$\left(3e^{-2x}\cos(x) + 4e^{-2x}\sin(x)\right)$$

$$+4\left(-2e^{-2x}\cos(x) - e^{-2x}\sin(x)\right) + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$(3 - 8 + 5)e^{-2x}\cos(x)$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

$$\left(e^{-2x}\cos(x)\right)'' + 4\left(e^{-2x}\cos(x)\right)' + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$\left(3e^{-2x}\cos(x) + 4e^{-2x}\sin(x)\right)$$

$$+4\left(-2e^{-2x}\cos(x) - e^{-2x}\sin(x)\right) + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$(3 - 8 + 5)e^{-2x}\cos(x) + (4 - 4)e^{-2x}\sin(x) \stackrel{?}{=} 0$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

$$\left(e^{-2x}\cos(x)\right)'' + 4\left(e^{-2x}\cos(x)\right)' + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$\left(3e^{-2x}\cos(x) + 4e^{-2x}\sin(x)\right)$$

$$+4\left(-2e^{-2x}\cos(x) - e^{-2x}\sin(x)\right) + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$(3 - 8 + 5)e^{-2x}\cos(x) + (4 - 4)e^{-2x}\sin(x) \stackrel{?}{=} 0$$

$$0 = 0$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

$$\left(e^{-2x}\cos(x)\right)'' + 4\left(e^{-2x}\cos(x)\right)' + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$\left(3e^{-2x}\cos(x) + 4e^{-2x}\sin(x)\right)$$

$$+4\left(-2e^{-2x}\cos(x) - e^{-2x}\sin(x)\right) + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$(3 - 8 + 5)e^{-2x}\cos(x) + (4 - 4)e^{-2x}\sin(x) \stackrel{?}{=} 0$$

$$0 = 0 \quad \checkmark$$

Does
$$y = c_1 e^{-2x} \cos(x) + c_2 e^{-2x} \sin(x)$$
 Really Solve $y'' + 4y' + 5y = 0$?

$$y'' + 4y' + 5y \stackrel{?}{=} 0$$

$$\left(e^{-2x}\cos(x)\right)'' + 4\left(e^{-2x}\cos(x)\right)' + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$\left(3e^{-2x}\cos(x) + 4e^{-2x}\sin(x)\right)$$

$$+4\left(-2e^{-2x}\cos(x) - e^{-2x}\sin(x)\right) + 5\left(e^{-2x}\cos(x)\right) \stackrel{?}{=} 0$$

$$(3 - 8 + 5)e^{-2x}\cos(x) + (4 - 4)e^{-2x}\sin(x) \stackrel{?}{=} 0$$

$$0 = 0 \quad \checkmark$$

Check $y = e^{-2x} \sin(x)$ yourself.

$$y'' + 4y' + 4y = 0$$

$$y'' + 4y' + 4y = 0$$
$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 4e^{\lambda x} = 0$$

$$y'' + 4y' + 4y = 0$$
$$\lambda^{2}e^{\lambda x} + 4\lambda e^{\lambda x} + 4e^{\lambda x} = 0$$
$$\lambda^{2} + 4\lambda + 4 = 0$$

$$y'' + 4y' + 4y = 0$$

$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 4e^{\lambda x} = 0$$

$$\lambda^2 + 4\lambda + 4 = 0$$

$$\lambda_{1,2} = \frac{-4 \pm \sqrt{16 - 16}}{2}$$

$$y'' + 4y' + 4y = 0$$

$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 4e^{\lambda x} = 0$$

$$\lambda^2 + 4\lambda + 4 = 0$$

$$\lambda_{1,2} = \frac{-4 \pm \sqrt{16 - 16}}{2}$$

$$= -2$$

$$y'' + 4y' + 4y = 0$$

$$\lambda^2 e^{\lambda x} + 4\lambda e^{\lambda x} + 4e^{\lambda x} = 0$$

$$\lambda^2 + 4\lambda + 4 = 0$$

$$\lambda_{1,2} = \frac{-4 \pm \sqrt{16 - 16}}{2}$$

$$= -2$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$

$$y' = -2c_1 e^{-2x} + c_2 \left(e^{-2x} - 2x e^{-2x} \right)$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$

$$y' = -2c_1 e^{-2x} + c_2 \left(e^{-2x} - 2x e^{-2x} \right)$$

$$1 = c_1$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$

$$y' = -2c_1 e^{-2x} + c_2 \left(e^{-2x} - 2x e^{-2x} \right)$$

$$1 = c_1$$

$$0 = -2c_1 + c_2$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$

$$y' = -2c_1 e^{-2x} + c_2 \left(e^{-2x} - 2x e^{-2x} \right)$$

$$1 = c_1$$

$$0 = -2c_1 + c_2$$

$$c_2 = 2c_1 = 2$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$

$$y' = -2c_1 e^{-2x} + c_2 \left(e^{-2x} - 2x e^{-2x} \right)$$

$$1 = c_1$$

$$0 = -2c_1 + c_2$$

$$c_2 = 2c_1 = 2$$

$$y = e^{-2x} + 2x e^{-2x}$$

Does
$$y = e^{-2x} + 2xe^{-2x}$$
 Solve the Initial Value
Problem $y'' + 4y' + 4y = 0$, $y(0) = 1$, $y'(0) = 0$?

$$y'' + 4y' + 4y \stackrel{?}{=} 0$$

$$y'' + 4y' + 4y \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-2e^{-2x} + 2e^{-2x} - 4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$y'' + 4y' + 4y \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-2e^{-2x} + 2e^{-2x} - 4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$y'' + 4y' + 4y \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-2e^{-2x} + 2e^{-2x} - 4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$\left(-4 + 4\right)e^{-2x} + \left(8 - 16 + 8\right)xe^{-2x} \stackrel{?}{=} 0$$

$$y'' + 4y' + 4y \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-2e^{-2x} + 2e^{-2x} - 4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$\left(-4+4\right)e^{-2x} + \left(8-16+8\right)xe^{-2x} \stackrel{?}{=} 0$$

$$0 = 0$$

$$y'' + 4y' + 4y \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-2e^{-2x} + 2e^{-2x} - 4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$\left(-4e^{-2x} + 8xe^{-2x}\right)$$

$$+4\left(-4xe^{-2x}\right) + 4\left(e^{-2x} + 2xe^{-2x}\right) \stackrel{?}{=} 0$$

$$\left(-4+4\right)e^{-2x} + \left(8-16+8\right)xe^{-2x} \stackrel{?}{=} 0$$

$$0 = 0 \quad \checkmark$$

Does
$$y = e^{-2x} + 2xe^{-2x}$$
 Solve the Initial Value
Problem $y'' + 4y' + 4y = 0$, $y(0) = 1$, $y'(0) = 0$?

$$y = e^{-2x} + 2xe^{-2x}$$

Does
$$y = e^{-2x} + 2xe^{-2x}$$
 Solve the Initial Value
Problem $y'' + 4y' + 4y = 0$, $y(0) = 1$, $y'(0) = 0$?

$$y = e^{-2x} + 2xe^{-2x}$$
$$y(0) = 1$$

Does
$$y = e^{-2x} + 2xe^{-2x}$$
 Solve the Initial Value
Problem $y'' + 4y' + 4y = 0$, $y(0) = 1$, $y'(0) = 0$?

$$y = e^{-2x} + 2xe^{-2x}$$
$$y(0) = 1 \quad \sqrt{}$$

$$y = e^{-2x} + 2xe^{-2x}$$

$$y(0) = 1 \quad \sqrt{$$

$$y' = -2e^{-2x} + 2(e^{-2x} - 2xe^{-2x})$$

$$y = e^{-2x} + 2xe^{-2x}$$

$$y(0) = 1 \quad \sqrt{$$

$$y' = -2e^{-2x} + 2(e^{-2x} - 2xe^{-2x})$$

$$y'(0) = -2 + 2 = 0$$

$$y = e^{-2x} + 2xe^{-2x}$$

$$y(0) = 1 \quad \sqrt{$$

$$y' = -2e^{-2x} + 2(e^{-2x} - 2xe^{-2x})$$

$$y'(0) = -2 + 2 = 0 \quad \sqrt{$$