Orbital stability of bound states of nonlinear Schrödinger equations with linear and nonlinear optical lattices

Tai-Chia Lin *†, Juncheng Wei ‡and Wei Yao §

We study the orbital stability and instability of single-spike bound states of semiclassical nonlinear Schrödinger (NLS) equations with critical exponent, linear and nonlinear optical lattices (OLs). These equations may model two-dimensional Bose-Einstein condensates in linear and nonlinear OLs. When linear OLs are switched off, we derive the asymptotic expansion formulas and obtain necessary conditions for the orbital stability and instability of single-spike bound states, respectively. When linear OLs are turned on, we consider three different conditions of linear and nonlinear OLs to develop mathematical theorems which are most general on the orbital stability problem.

1 Introduction

Recently, optical lattices have created many interesting phenomena in Bose-Einstein condensates (BECs) and attracted a great deal of attention. Two types of optical lattices are considered: a linear optical lattice (OL) (cf. [28]) and a nonlinear OL (cf. [1] and [35]). A linear OL is a series of potential wells having a periodic (in space) intensity pattern which may confine atoms of BECs in the potential minima. A nonlinear OL can be obtained by inducing a periodic spatial variation of the atomic scattering length, leading to a periodic space modulation of the nonlinear coefficient in the Gross-Pitaevskii equation (GPE) governing the dynamics of BECs. The GPE is a nonlinear Schrödinger (NLS) equation in the presence of the Kerr nonlinearity describing a BEC in a linear and a nonlinear OL given by

$$-i\frac{\partial\psi}{\partial t} = D\Delta\psi - V_{trap}\psi - g|\psi|^2\psi, \qquad (1.1)$$

for $x \in \mathbb{R}^N$, $N \leq 3$ and t > 0. Here $\psi = \psi(x,t) \in \mathbb{C}$ is the wavefunction, D is the diffraction (or dispersion) coefficient, and V_{trap} is the potential of the linear lattice. Besides, $g = \mu m(x) \sim a$

^{*}Department of Mathematics, National Taiwan University, Taipei, Taiwan 106. Email: tclin@math.ntu.edu.tw

[†]Taida Institute of Mathematical Sciences (TIMS), Taipei, Taiwan

[‡]Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. Email: wei@math.cuhk.edu.hk

[§]Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. Email: wyao@math.cuhk.edu.hk

characterizes the nonlinear lattice, where a denotes the spatially modulated scattering length, μ is a nonzero constant and $m(x) = m(x_1, \dots, x_N) > 0$ is a function depending on spatial variables (transverse coordinates) x_1, \dots, x_N (cf. [2], [6]).

The underlying dynamics of (1.1) is dominated by the interplay between adjacent potential wells of linear OLs and nonlinearity of nonlinear OLs. When the nonlinearity is self-focusing i.e. D > 0 and $\mu < 0$, a balance between these two effects may resist collapse or decay and result in bright solitons. Experimentally, bright solitons can be observed in linear and nonlinear OLs, respectively. One may find stable bright solitons in three-dimensional linear OLs (cf. [7]). On the other hand, two-dimensional bright solitons can also be investigated in two-dimensional nonlinear OLs (cf. [13]). Consequently, under the influence of linear and nonlinear OLs, two-dimensional bright solitons must have suitable stability for experimental observations. However, most theoretical results (e.g. [10] and [11]) focus on the orbital (dynamical) stability of only one-dimensional single-spike bound states which are steady state bright solitons in one-dimensional nonlinear OLs without the effect of linear OLs. To see how linear and nonlinear OLs affect the stability of two-dimensional single-spike bound states, we develop mathematical theorems for the orbital stability and instability of two-dimensional single-spike bound states of (1.1) under different conditions of linear and nonlinear OLs.

To get two-dimensional single-spike bound states of (1.1), we may assume N=2, D>0 and the scattering length a, i.e., μ is negative and large due to the Feshbach resonance (cf. [9]). Setting $h^2 = D/(-\mu)$, $V(x) = V_{trap}(x)/(-\mu)$ and suitable time scale, the equation (1.1) with negative and large μ can be equivalent to a semi-classical nonlinear Schrödinger equation (NLS) given by

$$-ih\frac{\partial\psi}{\partial t} = h^2\Delta\psi - V\psi + m|\psi|^2\psi, \quad x \in \mathbb{R}^2, t > 0,$$
(1.2)

where $0 < h \ll 1$ is a small parameter, V = V(x) is a smooth nonnegative function and m = m(x) is a smooth positive function. For the spatial dimension $N \ge 1$, we may generalize the equation (1.2) to a NLS having the following form

$$-ih\frac{\partial\psi}{\partial t} = h^2\Delta\psi - V\psi + m|\psi|^{p-1}\psi, \quad x \in \mathbb{R}^N, t > 0,$$
(1.3)

with critical exponent

$$p = 1 + \frac{4}{N}, \quad N \ge 1.$$
 (1.4)

In particular, when N=2, the equation (1.3) with (1.4) is exactly same as (1.2).

Single-spike bound states of (1.3) are of the form $\psi(x,t) = e^{i\lambda t/h}u(x)$, where λ is a positive constant and u = u(x) is a positive solution of the following nonlinear elliptic equation

$$h^2 \Delta u - (V + \lambda) u + m u^p = 0, \quad u \in H^1(\mathbb{R}^N),$$
 (1.5)

with zero Dirichlet boundary condition, i.e., $u(x) \to 0$ as $|x| \to \infty$. When $V \equiv 0$ and $m \equiv 1$, problem (1.5) admits a unique radially symmetric ground state which is stable for any $\lambda > 0$ if $p < 1 + \frac{4}{N}$, and unstable for any $\lambda > 0$ if $p \geq 1 + \frac{4}{N}$ (cf. [4], [8] and [43]). For $V \not\equiv 0$ or $m \not\equiv 1$, there exists u_h a single-spike solution of (1.5), provided both V and m are bounded and

satisfy another conditions, for example, conditions in the following Theorem 1.1-1.4 (cf. [20]). For other other nonlinearity in the possibly degenerate setting, see [3], [14], [19], [31], [32], [37], [39], [40], [41] and reference therein. Hereafter, we set $\psi_h(x,t) := e^{i\lambda t/h}u_h(x)$ as a single-spike bound state of (1.3), where u_h is the single-spike solution of (1.5).

In this paper, we want to study the orbital stability of the bound state ψ_h for the equation (1.3) with critical exponent (1.4). One may regard the bound state ψ_h as an orbit of (1.3). From [17], the orbital stability of ψ_h is defined as follows: For all $\epsilon > 0$, there exists $\delta > 0$ such that if $\|\psi_0 - u_h\|_{H^1} < \delta$ and ψ is a solution of (1.3) in some interval $[0, t_0)$ with $\psi|_{t=0} = \psi_0$, then $\psi(\cdot, t)$ can be extended to a solution in $0 \le t < \infty$ and $\sup_{0 < t < \infty} \inf_{s \in \mathbb{R}} \|\psi(\cdot, t) - \psi_h(\cdot, s)\|_{H^1} < \epsilon$. Otherwise, the orbit ψ_h is called orbital unstable.

The functions V = V(x) and m = m(x) may play a crucial role on the orbital stability of ψ_h . When $m \equiv 1$ and V is of class $(V)_a$ and fulfills other conditions in [29]-[30], the orbital stability and instability of ψ_h for the equation (1.3) was established by Lin and Wei [25] if V has non-degenerate critical points. Under different conditions, e.g., h = 1 and λ is large, results of the orbital stability problem can be found in [15]. One may also remark that the orbital stability problem of NLS with inhomogeneous nonlinearity has been investigated in [5] but only for the subcritical case, i.e., 1 .

To state our main results, we need to introduce some notations. It is well-known that the positive solution of

$$\begin{cases} \Delta w - w + w^p = 0 & \text{in } \mathbb{R}^N, \\ w(0) = \max_{y \in \mathbb{R}^N} w(y), \quad w(y) \to 0 \text{ as } |y| \to +\infty. \end{cases}$$
 (1.6)

is radial [16] and unique [24]. We denote the solution and its linearized operator as w = w(r) and

$$L_0 := \Delta - 1 + pw^{p-1}, (1.7)$$

respectively. For the orbital stability of ψ_h , we set

$$L_h := h^2 \Delta - (V + \lambda) + m \, p u_h^{p-1} \tag{1.8}$$

as the linearized operator of (1.5) with respect to u_h and

$$d(\lambda) = \int_{\mathbb{R}^N} \left[\frac{h^2}{2} |\nabla u_h|^2 + \frac{1}{2} (V + \lambda) u_h^2 - \frac{1}{p+1} m u_h^{p+1} \right] dx, \qquad (1.9)$$

as the energy of u_h . Observe that u_h may depend on the variable λ . Assume that $d(\lambda)$ is non-degenerate, i.e., $d''(\lambda) \neq 0$. Let p(d'') = 1 if d'' > 0; p(d'') = 0 if d'' < 0, and $n(L_h)$ be the number of positive eigenvalues of L_h . According to general theory of orbital stability of bound states (cf. [17], [18]), ψ_h is orbital stable if $n(L_h) = p(d'')$, and orbital unstable if $n(L_h) - p(d'')$ is odd (see page 309 of [18]). It is remarkable that if both V and m are constant and $p = 1 + \frac{4}{N}$, then $d''(\lambda) = 0$. Consequently, from now on, we consider the critical exponent $p = 1 + \frac{4}{N}$ and assume the point x_0 as a non-degenerate critical point of the function G defined by (cf. [20], [39])

$$G(x) := \left[V(x) + \lambda \right] m^{-N/2}(x), \quad \forall x \in \mathbb{R}^N, \tag{1.10}$$

provided $V \not\equiv 0$ and m > 0 in \mathbb{R}^N . When $V \equiv 0$ in \mathbb{R}^N , x_0 is set as a non-degenerate critical point of the function m.

For simplicity, we firstly switch off the potential V and obtain the following result.

Theorem 1.1. Let $N \leq 3$ be a positive integer, $p = 1 + \frac{4}{N}$ and the potential $V \equiv 0$. Assume the function m = m(x) satisfies

$$m \in C^4(\mathbb{R}^N); 0 < m_0 \le m(x) \le m_1 < \infty; |m^{(i)}(x)| \le C\exp(\gamma|x|), i = 1, 2, 3, 4,$$
 (1.11)

where m_0, m_1, γ and C are positive constants, and $m^{(i)}(x)$ are the i-th derivatives of m(x). Suppose also that x_0 be a non-degenerate critical point of m(x) (x_0 is independent of λ). Let $\psi_h(x,t) := e^{i\lambda t/h}u_h(x)$ be a bound state of (1.3), where u_h is a single-spike solution of (1.5) concentrating at x_0 . Assume also

$$m(x_0)\Delta^2 m(x_0) < C_{N,1}|\Delta m(x_0)|^2 + C_{N,2} \Big[N \|\nabla^2 m(x_0)\|_2^2 - |\Delta m(x_0)|^2 \Big]$$

+ $C_{N,3} m(x_0) \nabla (\Delta m)(x_0) \cdot \left[\nabla^2 m(x_0) \right]^{-1} \nabla (\Delta m)(x_0) , \qquad (1.12)$

where

$$C_{N,1} = \frac{2(N+2)^2 \int_{0}^{\infty} r^{N+1} w^p L_0^{-1} (r^2 w^p) dr}{N^2 \int_{0}^{\infty} r^{N+3} w^{p+1} dr},$$
(1.13)

$$C_{N,2} = \frac{4(N+2)\int_{0}^{\infty} r^{N+1} w^{p} \Phi_{0} dr}{N^{2} \int_{0}^{\infty} r^{N+3} w^{p+1} dr},$$
(1.14)

$$C_{N,3} = \frac{(N+2)\left(\int_{0}^{\infty} r^{N+1} w^{p+1} dr\right)^{2}}{N\int_{0}^{\infty} r^{N-1} w^{p+1} dr\int_{0}^{\infty} r^{N+3} w^{p+1} dr},$$
(1.15)

are constants depending only on N. Here $\Phi_0 = \Phi_0(r)$ satisfies

$$\begin{cases}
\Phi_0'' + \frac{N-1}{r}\Phi_0' - \Phi_0 + pw^{p-1}\Phi_0 - \frac{2N}{r^2}\Phi_0 - r^2w^p = 0, r = |x| \in (0, \infty), \\
\Phi_0(0) = \Phi_0'(0) = 0.
\end{cases}$$
(1.16)

where L_0 is defined in (1.7). Then for any $\lambda > 0$, ψ_h is orbitally stable if h is sufficiently small and x_0 is a non-degenerate local maximum point of the function m. Furthermore, for any $\lambda > 0$, ψ_h is orbitally unstable if h is sufficiently small and the number of positive eigenvalues of the Hessian matrix $\nabla^2 m(x_0)$ is odd.

Remark 1: When N = 1, $x_0 = 0$ and the function m satisfies $m'''(x_0) = 0$, (see (C.2) of [10]), the condition (1.12) of Theorem 1.1 is exactly same as the condition (4.14) of [10]. For $N \geq 2$, G.Fibich and X.-P.Wang (cf. [12]) considered the function m with radial symmetry, i.e., m = m(r), r = |x| and m'''(0) = 0, and studied the orbital stability problem only for radial perturbations. Here we may include the case that the function m is not radially symmetric and the third order derivatives of the function m at x_0 can be nonzero. Moreover, we study the orbital stability problem for general perturbations including the non-radial perturbations.

Consequently, Theorem 1.1 can be regarded as the most general theorem on the orbital stability problem of semiclassical NLS equations with critical exponent and nonlinear OLs.

When the potential V is turned on, we may generalize the argument of Theorem 1.1 to obtain three theorems as follows:

Theorem 1.2. Let $N \leq 3$ be a positive integer, $p = 1 + \frac{4}{N}$. Assume both the potential V = V(x) and the function m = m(x) satisfy the following conditions: there exist positive constants $V_0, V_1, m_0, m_1, \gamma$ and C such that

$$V \in C^2(\mathbb{R}^N); 0 < V_0 \le V(x) \le V_1 < \infty; \quad |V^{(i)}(x)| \le C\exp(\gamma|x|), i = 1, 2,$$
 (1.17)

and

$$m \in C^2(\mathbb{R}^N); 0 < m_0 \le m(x) \le m_1 < \infty; \quad |m^{(i)}(x)| \le C\exp(\gamma|x|), i = 1, 2,$$
 (1.18)

where $V^{(i)}(x)$, $m^{(i)}(x)$ are the i-th derivatives of V(x), m(x), respectively. Suppose also that x_0 be a non-degenerate critical point of the function G defined in (1.10) for fixed $\lambda > 0$ (x_0 may depend on λ). Let $\psi_h(x,t) := e^{i\lambda t/h}u_h(x)$ be a bound state of (1.3), where u_h is a single-spike solution of (1.5) concentrating at x_0 . Then ψ_h is orbitally unstable if h is sufficiently small and x_0 is a non-degenerate local minimum point of G such that $\nabla V(x_0) \neq 0$.

Theorem 1.3. Under the same hypotheses of Theorem 1.2, assume also that $\nabla V(x_0) = 0$ and $\Delta V(x_0) \neq 0$ (thus x_0 may be independent of λ). Let n be the number of negative eigenvalues of the matrix $\nabla^2 G(x_0)$. Then ψ_h is orbitally stable if h is sufficiently small and x_0 is a non-degenerate local minimum point of G with $\Delta V(x_0) > 0$. Furthermore, ψ_h is orbitally unstable if h is sufficiently small and $n - \frac{1}{2} \left(1 + \frac{\Delta V(x_0)}{|\Delta V(x_0)|} \right)$ is even.

Theorem 1.4. Under the same hypotheses of Theorem 1.2, assume also that $\nabla V(x_0) = 0$, $\Delta V(x_0) = 0$ and (1.11) holds for both V and m. Let n be the number of negative eigenvalues of the matrix $\nabla^2 G(x_0)$. Suppose also that $H(x_0) > 0$, where $H(x_0)$ defined in (4.33) involves the i-th derivatives (for $0 \le i \le 4$) of V and m at x_0 . Then ψ_h is orbitally stable if h is sufficiently small and x_0 is a non-degenerate local minimum point of G. Furthermore, ψ_h is orbitally unstable if n is odd.

Remark 2: Theorem 1.2-1.4 may include all the cases of values $\nabla V(x_0)$ and $\Delta V(x_0)$ for the orbital stability problem of (1.3) with critical exponent (1.4). Theorem 1.3 may generalize the main result of [25] to the case that the function m is a positive and nonconstant function. As $V \equiv 0$, Theorem 1.4 coincides with Theorem 1.1 because of

$$\nabla^2 G(x_0) = m(x_0)^{-\frac{N}{2} - 1} \left[m(x_0) \nabla^2 V(x_0) - \frac{N}{2} \left[V(x_0) + \lambda \right] \nabla^2 m(x_0) \right].$$

Remark 3: In the following we give examples in dimension N=2. Similar examples in dimension N=1 and 3 can also be given. Fist for $x \in \mathbb{R}$ we define

$$X_1(x) = \sin x + \frac{1}{6}\sin^3 x = \frac{9}{8}\sin x - \frac{1}{24}\sin(3x),$$

$$X_2(x) = 2(1 - \cos x) + \frac{1}{3}(1 - \cos x)^2 = \frac{5}{2} - \frac{8}{3}\cos x + \frac{1}{6}\cos(2x),$$

$$X_3(x) = \sin^3 x = \frac{3}{4}\sin x - \frac{1}{4}\sin(3x),$$

$$X_4(x) = 4(1 - \cos x)^2 = 6 - 8\cos x + 2\cos(2x),$$

respectively. Then X_1, X_2, X_3 and X_4 satisfy

$$|X_1| \le \frac{7}{6}, X_1'(0) = 1, X_1^{(j)}(0) = 0, \text{ for } 2 \le j \le 4,$$

$$0 \le X_2 \le \frac{16}{3}, X_2''(0) = 1, X_2^{(j)}(0) = 0, \text{ for } j = 1, 3, 4,$$

$$|X_3| \le 1, X_3^{(3)}(0) = 1, X_3^{(j)}(0) = 0, \text{ for } j = 1, 2, 4,$$

$$0 \le X_4 \le 16, X_4^{(4)}(0) = 1, X_4^{(j)}(0) = 0, \text{ for } j = 1, 2, 3.$$

Next for $(x, y) \in \mathbb{R}^2$ we set

$$V(x,y) = a_0 + \sum_{i=1}^{4} a_i X_i(x) + \sum_{i=1}^{4} b_i X_i(y),$$
(1.19)

and

$$m(x,y) = c_0 + \sum_{i=1}^{4} c_i X_i(x) + \sum_{i=1}^{4} d_i X_i(y),$$
(1.20)

where a_i, b_i, c_i , and d_i are constants. By the properties of X_1, X_2, X_3 and X_4 , the *i*-th derivatives of V and m at $x_0 = (0,0)$ depend only on a_i, b_i and c_i, d_i respectively for $1 \le i \le 4$. Recall that $G(x,y) = [V(x,y) + \lambda]m^{-1}(x,y)$ for N = 2, we have

$$\nabla G(0) = c_0^{-2} (c_0 a_1 - (a_0 + \lambda)c_1, c_0 b_1 - (a_0 + \lambda)d_1)^T,$$

and then if $\nabla G(0) = 0$,

$$\nabla^2 G(0) = c_0^{-2} \begin{pmatrix} c_0 a_2 - (a_0 + \lambda)c_2 & 0\\ 0 & c_0 b_2 - (a_0 + \lambda)d_2 \end{pmatrix}.$$

Now we can give examples for the potentials V and m which satisfy the assumptions in Theorems 1.2-1.4.

(I) (Examples for Theorem 1.2) N = 2, $x_0 = (0,0)$, V and m given in (1.19) and (1.20) and a_i, b_i, c_i, d_i satisfy

$$c_0 = a_0 + \lambda, (a_1, b_1) = (c_1, d_1) \neq 0, a_2 > c_2 > 0, b_2 > d_2 > 0,$$

and $c_0 > \frac{7}{6}(|a_1| + |b_1|), a_0 > \frac{7}{6}(|c_1| + |d_1|), a_i = b_i = c_i = d_i = 0$ for $i = 3, 4$,

- (II) (Examples for Theorem 1.3) First a special case for Theorem 1.3 is that $\nabla m(x_0) = 0$, $\nabla^2 m(x_0) = 0$ and x_0 is a non-degenerate critical point of V(x). Here we give another examples. The first one is in the stability case and the second is in the instability case.
 - (a) (Stability) $N = 2, x_0 = (0, 0), V$ and m given in (1.19) and (1.20) and a_i, b_i, c_i, d_i satisfy

$$a_0 > 0, c_0 > -\frac{32}{3}c_2 > 0, c_0 > -\frac{32}{3}d_2 > 0, a_2 > 0, b_2 > 0, a_i = b_i = c_i = d_i = 0 \text{ for } i = 1, 3, 4,$$

then for any $\lambda > 0$, the conditions in Theorem 1.3 for orbital stability will be satisfied.

(b) (Instability) $N=2, x_0=(0,0), V$ and m given in (1.19) and (1.20) and a_i, b_i, c_i, d_i satisfy

$$a_0 > -\frac{16}{3}b_2 > 0, c_0 > -\frac{16}{3}c_2 > 0, a_2 + b_2 > 0, d_2 > 0,$$

and $a_i = b_i = c_i = d_i = 0$ for $i = 1, 3, 4,$

then for any $\lambda > 0$, the conditions in Theorem 1.3 for orbital instability will be satisfied.

- (III) (Examples for Theorem 1.4) Here we give two different examples. First we give examples in the case of $a_4 = b_4 = 0$. Specially, Theorem 1.4 is in this case.
 - (a) (Stability) $N=2, x_0=(0,0), V$ and m given in (1.19) and (1.20) and a_i,b_i,c_i,d_i satisfy

$$a_0 > 0, c_0 > -\frac{32}{3}c_2 > 0, c_0 > -\frac{32}{3}d_2 > 0, c_0 > -32c_4 > 0, |c_2|, |d_2| \text{ small, or } c_0, |c_4| \text{ large,}$$

and $a_i = b_i = 0 = c_3 = d_3 = d_4$ for $i = 1, 2, 3, 4$,

then for any $\lambda > 0$, the conditions in Theorem 1.4 for orbital stability will be satisfied. Here $|c_2|, |d_2|$ small or $c_0, |c_4|$ large are independent on λ .

(b) (Instability) $N = 2, x_0 = (0,0), V$ and m given in (1.19) and (1.20) and a_i, b_i, c_i, d_i satisfy

$$a_0 > 0, c_0 > -\frac{16}{3}c_2 > 0, d_2 > 0, c_0 > -16c_4 > 0, |c_2|, |d_2| \text{ small, or } c_0, |c_4| \text{ large,}$$

and $a_i = b_i = 0 = c_3 = d_3 = d_4 \text{ for } i = 1, 2, 3, 4,$

then for any $\lambda > 0$, the conditions in Theorem 1.4 for orbital instability will be satisfied. Here $|c_2|, |d_2|$ small or $c_0, |c_4|$ large are independent on λ .

Second we give examples in the case of $a_4 + b_4 \neq 0$.

1 (Stability) $N=2, x_0=(0,0), V$ and m given in (1.19) and (1.20) and a_i, b_i, c_i, d_i satisfy

$$a_0 > 0, c_0 > -\frac{32}{3}c_2 > 0, c_0 > -\frac{32}{3}d_2 > 0, a_4 > 0, b_4 > 0, (a_4 + b_4)$$
 large,
and $a_i = b_i = 0 = c_3 = c_4 = d_3 = d_4$ for $i = 1, 2, 3$,

then for fixed $\lambda > 0$, the conditions in Theorem 1.4 for orbital stability will be satisfied. Here $(a_4 + b_4)$ large may depend on λ .

2 (Instability) $N = 2, x_0 = (0,0), V$ and m given in (1.19) and (1.20) and a_i, b_i, c_i, d_i satisfy

$$a_0 > 0, c_0 > -\frac{16}{3}c_2 > 0, d_2 > 0, a_4 > 0, b_4 > 0, (a_4 + b_4)$$
 large,
and $a_i = b_i = 0 = c_3 = c_4 = d_3 = d_4$ for $i = 1, 2, 3, 4$,

then for fixed $\lambda > 0$, the conditions in Theorem 1.4 for orbital instability will be satisfied. Here $(a_4 + b_4)$ large may depend on λ .

The rest of this paper is organized as follows: In Section 2, we show the properties of u_h . Then we state the proof of Theorem 1.1 in Section 3. Theorem 1.2-1.4 are proved in Section 4. **Acknowledgments:** The research of the first author is partially supported by a grant from NCTS and NSC of Taiwan. The research of the second author is partially supported by an Earmarked Grant from RGC of Hong Kong.

2 Preliminaries

In this section, we study the properties of u_h a single-spike bound state of (1.5) concentrated at a non-degenerate critical point of $G(x) := [V(x) + \lambda] m^{-N/2}(x)$ (cf. [20], [39]). Let x_h be the unique local maximum point of u_h . So $x_h \to x_0$ as $h \to 0$.

Let $v_h(y) := u_h(hy + x_h)$ for all $y \in \mathbb{R}^N$. Then by (1.5), v_h is a positive solution of

$$\Delta v - \left[V(hy + x_h) + \lambda\right]v + m(hy + x_h)v^p = 0.$$
(2.1)

For notation convenience, we still denote

$$L_h := \Delta - \left[V(hy + x_h) + \lambda \right] + m(hy + x_h) p v_h^{p-1}$$
(2.2)

as the linearized operator of the equation (2.1) with respect to the solution v_h . As the result of [39], v_h can be written as $v_h = w_{x_h} + \phi_h$, where w_{x_h} is the unique positive solution of

$$\begin{cases} \Delta w - \left[V(x_h) + \lambda\right] w + m(x_h) w^p = 0 & \text{in } \mathbb{R}^N, \\ w(0) = \max_{y \in \mathbb{R}^N} w(y), \quad w(y) \to 0 \text{ as } |y| \to +\infty, \end{cases}$$
(2.3)

and

$$\|\phi_h\|_{\infty} \to 0 \quad \text{as } h \to 0.$$
 (2.4)

Moreover,

$$v_h(y) \le C|y|^{\frac{1-N}{2}} \exp\left(-\overline{V}^{1/2}|y|\right), \quad \forall y \in \mathbb{R}^N,$$
 (2.5)

where $\overline{V} := \inf_{\mathbb{R}^N} [V(x) + \lambda]$. From (2.3), it is easy to check that

$$w_{x_h}(y) = \left[V(x_h) + \lambda \right]^{\frac{1}{p-1}} m(x_h)^{-\frac{1}{p-1}} w(\sqrt{V(x_h) + \lambda} y), \qquad (2.6)$$

where w is the positive solution of (1.6).

For the single-spike solution of (1.5), we recall the following result from [38] and [39]:

Lemma 2.1. Assume that there are positive constants γ and C such that

$$|\nabla V(x)|, |\nabla m(x)| \le C \exp(\gamma |x|), \quad \forall x \in \mathbb{R}^N.$$
 (2.7)

Then

$$\int_{\mathbb{R}^{N}} \left[\frac{1}{p+1} \nabla m(hy + x_h) v_h^{p+1} - \frac{1}{2} \nabla V(hy + x_h) v_h^2 \right] dy = 0$$
 (2.8)

for $0 < h < h_0$, where h_0 is a positive constant depending on γ and λ .

In the rest of this section, for simplicity, we switch off the potential V, i.e., set $V \equiv 0$. Then by Lemma 2.1, we obtain the uniqueness of u_h as follows:

Lemma 2.2. Suppose (2.7) holds, $V \equiv 0$ and x_0 is a non-degenerate critical point of m. Then u_h is unique.

Proof. Suppose $u_{h,1}$ and $u_{h,2}$ are different single-spike solutions of (1.5) concentrating at the same point x_0 . Let $v_1(y) := u_{h,1}(hy + x_0)$ and $v_2(y) := u_{h,2}(hy + x_0)$. Then both v_1 and v_2 satisfy

$$\Delta v - \lambda v + m(hy + x_0)v^p = 0$$
, for $y \in \mathbb{R}^N$,

and $v_1, v_2 \to w_{x_0}$ uniformly on \mathbb{R}^N as $h \to 0$. Due to $v_1 \not\equiv v_2$, we may set

$$\widetilde{v}_h := \frac{v_1 - v_2}{\|v_1 - v_2\|_{\infty}},$$

and then \widetilde{v}_h satisfies

$$\Delta \widetilde{v}_h - \lambda \widetilde{v}_h + m(x_0) p w_{x_0}^{p-1} \widetilde{v}_h + [m(hy + x_0) - m(x_0)] p w_{x_0}^{p-1} \widetilde{v}_h + N(\widetilde{v}_h) = 0,$$
 (2.9)

where $N(\widetilde{v}_h) = m(hy + x_0) \left[v_1^p - v_2^p - p w_{x_0}^{p-1}(v_1 - v_2) \right] / \|v_1 - v_2\|_{\infty}$. Hence by the standard elliptic PDE theorems on the equation (2.9), we may take a subsequence $\widetilde{v}_h \to \widetilde{v}_0$, where \widetilde{v}_0 solves

$$\Delta \widetilde{v}_0 - \widetilde{v}_0 + m(x_0) p w_{x_0}^{p-1} \widetilde{v}_0 = 0.$$

Consequently, there exist constants c_i 's such that

$$\widetilde{v}_0 = \sum_{j=1}^N c_j \partial_j w_{x_0} \,. \tag{2.10}$$

Let y_h be such that $\widetilde{v}_h(y_h) = \|\widetilde{v}_h\|_{\infty} = 1$ (the same proof applies if $\widetilde{v}_h(y_h) = -1$). Then by the Maximum Principle, we have $|y_h| \leq C$. On the other hand, as (2.8), we may obtain

$$\int_{\mathbb{R}^N} \nabla m(hy + x_0) v_1^{p+1} dy = 0 = \int_{\mathbb{R}^N} \nabla m(hy + x_0) v_2^{p+1} dy.$$

Thus

$$\int_{\mathbb{R}^N} \nabla m(hy + x_0) \left(\frac{v_1^{p+1} - v_2^{p+1}}{v_1 - v_2} \right) \widetilde{v}_h dy = 0.$$
 (2.11)

Note that for all $i = 1, \dots, N$, as $h \to 0$,

$$\partial_i m(hy + x_0) = h \sum_{k=1}^N \partial_{ik} m(x_0) y_k + o(h)$$
, and $\frac{v_1^{p+1} - v_2^{p+1}}{v_1 - v_2} = (p+1) w_{x_0}^p + o(1)$.

Hence from (2.10) and (2.11), we may obtain

$$0 = \int_{\mathbb{R}^N} \left[h \sum_{k=1}^N \partial_{ik} m(x_0) y_k \right] (p+1) w_{x_0}^p \left(\sum_{j=1}^N c_j \partial_j w_{x_0} \right) dy + o(h)$$
$$= -h \sum_{j=1}^N \partial_{ij} m(x_0) c_j \int_{\mathbb{R}^N} w_{x_0}^{p+1} dy + o(h).$$

Hence by the assumption that $\nabla^2 m(x_0)$ is non-degenerate, $c_j = 0$ for $j = 1, \dots, N$, i.e., $\widetilde{v}_0 \equiv 0$. This may contradict to the fact that $1 = \widetilde{v}_h(y_h) \to \widetilde{v}_0(y_0)$ for some $y_0 \in \mathbb{R}^N$. Therefore, we may complete the proof of Lemma 2.2.

By Lemma 2.1, we may simplify the proof of [21] and get a shorter proof of the asymptotic behavior of x_h 's as follows:

Lemma 2.3. Under the same hypotheses of Lemma 2.2,

$$x_h = x_0 + o(h)$$
 as $h \to 0$. (2.12)

Proof. Fix $i \in \{1, \dots, N\}$ arbitrarily. By Taylor's expansion of $\partial_i m(x)$ and $\nabla m(x_0) = 0$, we obtain

$$\partial_i m(hy + x_h) = \sum_{i=1}^N \partial_{ij} m(x_0) (hy_j + x_{h,j} - x_{0,j}) + o(h) + o(|x_h - x_0|).$$

Hence by Lemma 2.1 and $v_h = w_{x_0} + o(1)$, we have

$$0 = \int_{\mathbb{R}^N} \partial_i m(hy + x_h) v_h^{p+1} dy$$

= $\sum_{j=1}^N \partial_{ij} m(x_0) (x_{h,j} - x_{0,j}) \int_{\mathbb{R}^N} w_{x_0}^{p+1} dy + o(h) + o(|x_h - x_0|)$

Here we have used the fact that $\int_{\mathbb{R}^N} y_j w_{x_0}^{p+1} dy = 0$ for $j = 1, \dots, N$. Using the assumption that $\nabla^2 m(x_0)$ is non-degenerate, we obtain (2.12).

Following the idea of [25], we may use Lemma 2.3 to show the asymptotic behavior of v_h as follows:

Lemma 2.4. Under the same hypotheses of Lemma 2.2,

$$v_h = w_{x_h} + h^2 \phi_2 + o(h^2), \quad as \quad h \to 0,$$
 (2.13)

where ϕ_2 satisfies

$$\Delta\phi_2 - \lambda\phi_2 + m(x_h)pw_{x_h}^{p-1}\phi_2 + \frac{1}{2}\sum_{i,j=1}^N \partial_{ij}m(x_0)y_iy_jw_{x_h}^p = 0, \text{ and } \nabla\phi_2(0) = 0.$$
 (2.14)

Proof. Let $\phi_h = v_h - w_{x_h}$. Then it is easy to check that $|\phi_h| \to 0$ uniformly, and ϕ_h satisfies

$$\Delta \phi_h - \lambda \phi_h + m(hy + x_h) p w_{x_h}^{p-1} \phi_h + N(\phi_h) + R(\phi_h) = 0$$
, and $\nabla \phi_h(0) = 0$, (2.15)

where

$$N(\phi_h) = m(hy + x_h) \Big[(w_{x_h} + \phi_h)^p - w_{x_h}^p - pw_{x_h}^{p-1} \phi_h \Big],$$

and

$$R(\phi_h) = \left[m(hy + x_h) - m(x_h) \right] w_{x_h}^p.$$

Note that by Lemma 2.3 and $\nabla m(x_0) = 0$,

$$m(hy + x_h) - m(x_h) = hy \cdot \nabla m(x_h) + \frac{h^2}{2} \sum_{i,j=1}^{N} \partial_{ij} m(x_h) y_i y_j + o(h^2)$$
$$= \frac{h^2}{2} \sum_{i,j=1}^{N} \partial_{ij} m(x_0) y_i y_j + o(h^2). \tag{2.16}$$

Now we claim that $|\phi_h| \leq c h^2$ by contradiction. Suppose that $h^{-2} ||\phi_h||_{\infty} \to \infty$. Let $\widetilde{\phi}_h = \phi_h / ||\phi_h||_{\infty}$. Then $\widetilde{\phi}_h$ satisfies

$$\Delta \widetilde{\phi}_h - \lambda \widetilde{\phi}_h + m(hy + x_h) p w_{x_h}^{p-1} \widetilde{\phi}_h + \frac{N(\phi_h)}{\|\phi_h\|_{\infty}} + \frac{R(\phi_h)}{\|\phi_h\|_{\infty}} = 0.$$
 (2.17)

Note that by (2.16),

$$\frac{R(\phi_h)}{\|\phi_h\|_{\infty}} \le C \frac{h^2}{\|\phi_h\|_{\infty}}. \tag{2.18}$$

Let y_h be such that $\widetilde{\phi}_h(y_h) = \|\widetilde{\phi}_h\|_{\infty} = 1$ (the same proof applies if $\widetilde{\phi}_h(y_h) = -1$). Then by (2.17)-(2.18) and the Maximum Principle, we have $|y_h| \leq C$. On the other hand, by the usual elliptic regularity theory, we may take a subsequence $\widetilde{\phi}_h \to \widetilde{\phi}_0$, where $\widetilde{\phi}_0$ satisfies

$$\Delta \widetilde{\phi}_0 - \lambda \widetilde{\phi}_0 + m(x_0) p w_{x_0}^{p-1} \widetilde{\phi}_0 = 0$$
, and $\nabla \widetilde{\phi}_0(0) = 0$.

Hence $\widetilde{\phi}_0 \equiv 0$. This may contradict to the fact that $1 = \widetilde{\phi}_h(y_h) \to \widetilde{\phi}_0(y_0)$ for some y_0 . Therefore, we may complete the claim that $|\phi_h| \leq c h^2$.

Now we set $\phi_{h,2} = \phi_h - h^2 \phi_2$. Then $\phi_{h,2} = O(h^2)$ and satisfies

$$\Delta\phi_{h,2} - \lambda\phi_{h,2} + m(hy + x_h)pw_{x_h}^{p-1}\phi_{h,2} + N(\phi_{h,2}) + R(\phi_{h,2}) = 0$$
, and $\nabla\phi_{h,2}(0) = 0$

where

$$N(\phi_{h,2}) = m(hy + x_h) \left[(w_{x_h} + h^2 \phi_2 + \phi_{h,2})^p - w_{x_h}^p - p w_{x_h}^{p-1} (h^2 \phi_2 + \phi_{h,2}) \right],$$

and

$$R(\phi_{h,2}) = \left[m(hy + x_h) - m(x_h) - \frac{h^2}{2} \sum_{i,j=1}^{N} \partial_{ij} m(x_0) y_i y_j \right] w_{x_h}^p + h^2 \left[m(hy + x_h) - m(x_h) \right] p w_{x_h}^{p-1} \phi_2.$$

Thus as for previous argument, we may have $\phi_{h,2} = o(h^2)$ and complete the proof of Lemma 2.4.

As for Proposition 3.1 of [23], one may get two lemmas as follows:

Lemma 2.5. For h small enough, the maps

$$L_{x_h}\phi := \Delta\phi - \left[V(x_h) + \lambda\right]\phi + m(x_h)pw_{x_h}^{p-1}\phi$$

are uniformly invertible from $K_{x_h}^{\perp}$ to $C_{x_h}^{\perp}$, where

$$K_{x_h}^{\perp} = \left\{ \phi \in H^2(\mathbb{R}^N) \left| \int_{\mathbb{R}^N} \phi \partial_j w_{x_h} dy = 0, j = 1, \cdots, N \right. \right\} \subset H^2(\mathbb{R}^N),$$

$$C_{x_h}^{\perp} = \left\{ \phi \in L^2(\mathbb{R}^N) \left| \int_{\mathbb{R}^N} \phi \partial_j w_{x_h} dy = 0, j = 1, \cdots, N \right. \right\} \subset L^2(\mathbb{R}^N).$$

Lemma 2.6. The map

$$L_{x_0}\phi := \Delta\phi - [V(x_0) + \lambda]\phi + m(x_0)pw_{x_0}^{p-1}\phi$$

has eigenvalues μ_j , $j = 1, \dots, N+2$ satisfying

$$\mu_1 > 0 = \mu_2 = \dots = \mu_{N+1} > \mu_{N+2} \ge \dots$$

where the kernel of L_{x_0} is spanned by $\partial_j w_{x_0}$, $j = 1, \dots, N$ and μ_1 is simple.

In this section, our main result is the small eigenvalue estimates of L_h given by

Theorem 2.7. Under the same hypotheses of Lemma 2.2, for h small enough, the eigenvalue problem

$$L_h \varphi_h = \mu_h \varphi_h \tag{2.19}$$

has exactly N eigenvalues μ_h^j , $j=1,\cdots,N$, in the interval $\left[\frac{1}{2}\mu_1,\frac{1}{2}\mu_{N+2}\right]$, which satisfy

$$\frac{\mu_h^j}{h^2} \to c_0 \nu_j$$
, (up to a subsequence) as $h \to 0$, for $j = 1, \dots, N$, (2.20)

where μ_1 and μ_{N+2} are defined in Lemma 2.6, ν_j 's are the eigenvalues of the Hessian matrix $\nabla^2 m(x_0)$ and $c_0 = \frac{N}{2m(x_0)}$ is a positive constant. Furthermore, the corresponding eigenfunctions φ_h^j 's satisfy

$$\varphi_h^j = \sum_{i=1}^N \left[a_{ij} + o(1) \right] \partial_i w_{x_h} + O(h^2), \quad j = 1, \dots, N,$$
 (2.21)

where $\mathbf{a}_j = (a_{1j}, \dots, a_{Nj})^T$ is the eigenvector associated with ν_j , namely,

$$\nabla^2 m(x_0) \boldsymbol{a}_j = \nu_j \boldsymbol{a}_j. \tag{2.22}$$

Here o(1) is a small quantity tending to zero and O(1) is a bounded quantity as h goes to zero.

Remark 4: (1) Since L_h converges to L_{x_0} in the strong resolvent sense, in the interval $(\frac{1}{2}\mu_1, \infty)$ L_h has only one positive eigenvalues μ_h^0 , which is simple and goes to μ_1 as h goes to 0.

- (2) After changing variables $t \mapsto t/h$, $y = (x-x_0)/h$, L_h becomes $-R_h$, which is the notation used in page 190 of [17]. Thus the number of negative eigenvalues of R_h equals the number of positive eigenvalues of L_h , which we denote by $n(L_h)$.
- (3) By (2.20), the sign of small eigenvalue μ_h^j of L_h is the same as the one of eigenvalue ν_j of $\nabla^2 m(x_0)$. If we denote the number of positive eigenvalues of $\nabla^2 m(x_0)$ by n, then the number of positive eigenvalues of L_h in the interval $\left[\frac{1}{2}\mu_1, \frac{1}{2}\mu_{N+2}\right]$ equals n. Adding another one in the interval $\left(\frac{1}{2}\mu_1, \infty\right)$, the number of positive eigenvalues of L_h equals n+1. In particular, if $\nabla^2 m(x_0)$ is negative definite, then n=0 and thus $n(L_h)=1$.

Proof. We may follow the arguments given in Section 5 of [42]. Assume that $\|\varphi_h\|_{L^2} = 1$. By Lemma (2.6) it is easy to see that $\mu_h \to 0$ as $h \to 0$, where $\mu_h \in \{\mu_h^1, \dots, \mu_h^N\}$. Then the corresponding eigenfunctions φ_h 's can be written as

$$\varphi_h = \sum_{j=1}^N a_h^j \partial_j w_{x_h} + \varphi_h^{\perp}, \qquad (2.23)$$

where $\varphi_h^{\perp} \in K_{x_h}^{\perp}$. Hence by (2.19) and (2.23), φ_h^{\perp} satisfies

$$\Delta\varphi_h^{\perp} - \lambda\varphi_h^{\perp} + m(x_h)pw_{x_h}^{p-1}\varphi_h^{\perp} + R(\varphi_h^{\perp}) + \sum_{j=1}^N a_h^j L_h \partial_j w_{x_h} = \mu_h \left(\sum_{j=1}^N a_h^j \partial_j w_{x_h} + \varphi_h^{\perp}\right),$$
(2.24)

where

$$R(\varphi_h^{\perp}) = m(hy + x_h)p(v_h^{p-1} - w_{x_h}^{p-1})\varphi_h^{\perp} + \left[m(hy + x_h) - m(x_h)\right]pw_{x_h}^{p-1}\varphi_h^{\perp}.$$

Using (2.16) and Lemma 2.4, we have

$$L_h \partial_j w_{x_h} = m(hy + x_h) p(v_h^{p-1} - w_{x_h}^{p-1}) \partial_j w_{x_h} + \left[m(hy + x_h) - m(x_h) \right] p w_{x_h}^{p-1} \partial_j w_{x_h} = O(h^2).$$
(2.25)

From Lemma 2.5, the map $L_{x_h} = \Delta - \lambda + m(x_h)pw_{x_h}^{p-1}$ is uniformly invertible in the space $K_{x_h}^{\perp}$. Thus by (2.25) and $\mu_h \to 0$, we have

$$\|\varphi_h^{\perp}\|_{H^2} \le c(h^2 + |\mu_h|) \sum_{i=1}^N |a_h^i|.$$
 (2.26)

To estimate μ_h and a_h^j 's, multiplying (2.24) by $\partial_k w_{x_h}$ and integrating over \mathbb{R}^N , we may obtain

$$\int_{\mathbb{R}^N} \left(L_h \varphi_h^{\perp} \right) \partial_k w_{x_h} dy + \sum_{j=1}^N a_h^j \int_{\mathbb{R}^N} \left(L_h \partial_j w_{x_h} \right) \partial_k w_{x_h} dy = \mu_h \sum_{j=1}^N a_h^j \int_{\mathbb{R}^N} \partial_j w_{x_h} \partial_k w_{x_h} dy \,. \quad (2.27)$$

Here we have used the fact that $\varphi_h^{\perp} \in K_{x_h}^{\perp}$. Using (2.25), (2.26), $\mu_h = o(1)$ and integration by parts, we obtain

$$\int_{\mathbb{R}^N} \left(L_h \varphi_h^{\perp} \right) \partial_k w_{x_h} dy = \int_{\mathbb{R}^N} \varphi_h^{\perp} L_h \partial_k w_{x_h} dy = o(h^2) , \qquad (2.28)$$

and

$$\int_{\mathbb{R}^N} \left(L_h \partial_j w_{x_h} \right) \partial_k w_{x_h} dy = \frac{h^2}{p+1} \int_{\mathbb{R}^N} w_{x_h}^{p+1} dy \partial_{jk} m(x_0) + o(h^2) , \qquad (2.29)$$

which we have proved in Appendix A. Substituting (2.28) and (2.29) into (2.27), we may obtain

$$\frac{1}{p+1} \int_{\mathbb{R}^N} w_{x_h}^{p+1} dy \sum_{j=1}^N \partial_{jk} m(x_0) a_h^j = \frac{\mu_h}{h^2} a_h^k \int_{\mathbb{R}^N} (\partial_k w_{x_h})^2 dy + o(1).$$

Since $\|\varphi_h\|_{L^2}=1$, (2.23) implies that $\mathbf{a}_h:=(a_h^1,\cdots,a_h^N)^T$ is bound. Moreover, by (2.26), \mathbf{a}_h does not converge to 0. Thus $\frac{\mu_h^j}{h^2}\to c_0\nu_j$ for $j=1,\cdots,N$ and $\mathbf{a}_h\to\mathbf{a}_j$, where

$$c_0 = \frac{N \int_{\mathbb{R}^N} w_{x_0}^{p+1} dy}{(p+1) \int_{\mathbb{R}^N} |\nabla w_{x_0}|^2 dy} = \frac{N}{2m(x_0)},$$

and \mathbf{a}_i is the eigenvector corresponding to ν_i . Here we have use the fact that

$$\int_{\mathbb{R}^N} |\nabla w_{x_0}|^2 dy = \frac{N}{N+2} m(x_0) \int_{\mathbb{R}^N} w_{x_0}^{p+1} dy \,,$$

which can be proved by Pohozeve identity. The rest of the proof follows from a perturbation result, similar to page 1473-1474 of [42]. We may omit the details here. \Box

3 Proof of Theorem 1.1

In this Section, we firstly study the asymptotic expansion of $d''(\lambda)$ as $h \to 0$, and then complete the proof of Theorem 1.1. To drive the $O(h^4)$ order terms of $d''(\lambda)/h^N$, we need the following lemma:

Lemma 3.1. Under the same hypotheses of Lemma 2.2,

$$x_h = x_0 + h^2 \mathbf{x}_1 + O(h^3), \quad \text{as } h \to 0,$$
 (3.1)

where $\mathbf{x}_1 \in \mathbb{R}^N$ satisfies

$$\nabla^2 m(x_0) \mathbf{x}_1 = -\frac{\int\limits_{\mathbb{R}^N} |y|^2 w^{p+1} \, dy}{2N\lambda \int\limits_{\mathbb{R}^N} w^{p+1} \, dy} \nabla(\Delta m)(x_0). \tag{3.2}$$

Proof. By Lemma 2.3 and $\nabla m(x_0) = 0$, for all $i = 1, \dots, N$, we have

$$\partial_i m(hy + x_h) = \sum_{j=1}^N \partial_{ij} m(x_0) (hy_j + x_{h,j} - x_{0,j}) + O(h^2).$$
 (3.3)

Then by (2.8), (3.3) and Lemma 2.4, we have

$$0 = \int_{\mathbb{R}^{N}} \partial_{i} m(hy + x_{h}) v_{h}^{p+1} dy$$

$$= \sum_{j=1}^{N} \partial_{ij} m(x_{0}) \int_{\mathbb{R}^{N}} (hy_{j} + x_{h,j} - x_{0,j}) \left[w_{x_{h}}^{p+1} + O(h) \right] dy + O(h^{2})$$

$$= \sum_{j=1}^{N} \partial_{ij} m(x_{0}) (x_{h,j} - x_{0,j}) \int_{\mathbb{R}^{N}} w_{x_{0}}^{p+1} dy + O(h^{2}).$$

Here we have used the fact that $\int_{\mathbb{R}^N} y_j w_{x_h}^{p+1} dy = 0$ for $j = 1, \dots, N$. Thus $x_h = x_0 + O(h^2)$. Consequently, we may set $x_h = x_0 + h^2 \overline{x}_h$. Then $\overline{x}_h = O(1)$ and by Taylor's formula of $\partial_i m(x)$, we have

$$\partial_i m(hy + x_h) = \sum_{j=1}^N \partial_{ij} m(x_0) \left(hy_j + h^2 \overline{x}_h \right) + \frac{h^2}{2} \sum_{j,k=1}^N \partial_{ijk} m(x_0) y_j y_k + \mathcal{O}(h^3). \tag{3.4}$$

Hence by (2.8), (3.4) and Lemma 2.4, we may obtain

$$0 = h^{2} \sum_{j=1}^{N} \partial_{ij} m(x_{0}) \overline{x}_{h,j} \int_{\mathbb{R}^{N}} w_{x_{h}}^{p+1} dy + \frac{h^{2}}{2} \sum_{j,k=1}^{N} \partial_{ijk} m(x_{0}) \int_{\mathbb{R}^{N}} y_{j} y_{k} w_{x_{h}}^{p+1} dy + O(h^{3})$$
$$= h^{2} \sum_{j=1}^{N} \partial_{ij} m(x_{0}) \overline{x}_{h,j} \int_{\mathbb{R}^{N}} w_{x_{0}}^{p+1} dy + \frac{h^{2}}{2N} \sum_{k=1}^{N} \partial_{ikk} m(x_{0}) \int_{\mathbb{R}^{N}} |y|^{2} w_{x_{0}}^{p+1} dy + O(h^{3}).$$

Here we have used the fact that

$$\begin{cases} \int_{\mathbb{R}^{N}} y_{j} w_{x_{0}}^{p+1} dy = 0, \quad \forall j = 1, \cdots, N, \\ \int_{\mathbb{R}^{N}} y_{j} y_{k} w_{x_{0}}^{p+1} = \frac{\delta_{jk}}{N} \int_{\mathbb{R}^{N}} |y|^{2} w_{x_{0}}^{p+1} dy, \quad \forall j, k = 1, \cdots, N. \end{cases}$$

Therefore, we may complete the proof because

$$w_{x_0}(y) = \lambda^{N/4} m(x_0)^{-N/4} w(\sqrt{\lambda}y)$$

From Lemma 2.4 and 3.1, we may deduce that

Theorem 3.2. Under the same hypotheses of Lemma 2.2, for h small enough, u_h is smooth on λ . Let $R_h := \frac{\partial u_h}{\partial \lambda}(hy + x_h)$. Then

$$L_h R_h - v_h = 0. ag{3.5}$$

and

$$R_h = R_0 + \sum_{j=1}^{N} c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^{\perp}, \qquad (3.6)$$

where $R_0 = \lambda^{-1} \left(\frac{1}{p-1} v_h + \frac{1}{2} y \cdot \nabla v_h \right)$, $c_h^j = O(h)$, $R_h^{\perp} = O(h^3)$ and R_1 satisfies

$$\Delta R_1 - \lambda R_1 + m(x_h) p w_{x_h}^{p-1} R_1 - \frac{1}{2\lambda} \sum_{i,j=1}^N \partial_{ij} m(x_0) y_i y_j w_{x_h}^p = 0.$$
 (3.7)

Furthermore,

$$\nabla^2 m(x_0) \left(h^{-1} \mathbf{c}_h \right) \to -\frac{\int\limits_{\mathbb{R}^N} |y|^2 w^{p+1} \, dy}{2N \lambda^2 \int\limits_{\mathbb{R}^N} w^{p+1} \, dy} \nabla(\Delta m)(x_0) \,, \quad \text{as } h \to 0 \,, \tag{3.8}$$

where $\mathbf{c}_h := (c_h^1, \cdots, c_h^N)^T$.

Proof. By Lemma 2.2 and Theorem 2.7, u_h is unique and non-degenerate. Consequently, u_h is smooth on λ and R_h satisfies (3.5). Now we decompose R_h as

$$R_h = R_0 + \sum_{j=1}^{N} c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^{\perp},$$

where $R_h^{\perp} \in K_{x_h}^{\perp}$. Then R_h^{\perp} satisfies

$$L_h R_h^{\perp} + \left[L_h R_0 + h^2 L_h R_1 - v_h \right] + \sum_{i=1}^{N} c_h^j L_h \partial_j w_{x_h} = 0.$$
 (3.9)

As for the proof of Theorem 2.7, we have

$$||R_h^{\perp}||_{H^2} \le c \left(||L_h R_0 + h^2 L_h R_1 - v_h||_{L^2} + \sum_{j=1}^N |c_h^j| h^2 \right). \tag{3.10}$$

It is easy to check

$$L_h R_0 = v_h - \frac{h}{2\lambda} y \cdot \nabla m(hy + x_h) v_h^p. \tag{3.11}$$

Hence by Lemma 2.4, 3.1, (3.7) and (3.11), we obtain

$$L_h R_0 + h^2 L_h R_1 - v_h$$

$$= -\frac{h^3}{2\lambda} \left[\sum_{i,j=1}^{N} \partial_{ij} m(x_0) x_{1,i} y_j + \frac{1}{2} \sum_{i,j,k=1} \partial_{ijk} m(x_0) y_i y_j y_k \right] w_{x_h}^p + \mathcal{O}(h^4).$$
 (3.12)

Consequently, by (3.10),

$$||R_h^{\perp}||_{H^2} \le c \left(h^3 + \sum_{j=1}^N |c_h^j| h^2\right).$$
 (3.13)

To estimate c_h^j 's, we may multiply (3.9) by $\partial_k w_{x_h}$ and integrate over \mathbb{R}^N . Then

$$\int_{\mathbb{R}^N} (L_h R_h^{\perp}) \partial_k w_{x_h} dy + \int_{\mathbb{R}^N} \left[L_h R_0 + h^2 L_h R_1 - v_h \right] \partial_k w_{x_h} dy
+ \sum_{j=1}^N c_h^j \int_{\mathbb{R}^N} (L_h \partial_j w_{x_h}) \partial_k w_{x_h} dy = 0.$$
(3.14)

Hence by (2.29), (3.14) may imply

$$|c_h^j| \le \frac{C}{h^2} \left[\left| \int_{\mathbb{R}^N} (L_h R_h^{\perp}) \partial_k w_{x_h} dy \right| + \left| \int_{\mathbb{R}^N} \left[L_h R_0 + h^2 L_h R_1 - v_h \right] \partial_k w_{x_h} dy \right| \right]. \tag{3.15}$$

Using integration by parts and (2.25), we have

$$\int_{\mathbb{R}^{N}} (L_{h} R_{h}^{\perp}) \partial_{k} w_{x_{h}} dy = \int_{\mathbb{R}^{N}} R_{h}^{\perp} L_{h} \partial_{k} w_{x_{h}} dy = \|R_{h}^{\perp}\|_{L^{2}} O(h^{2}).$$
 (3.16)

Therefore, by (3.12), (3.13), (3.15) and (3.16), we may obtain $|c_h^j| = O(h)$. Consequently, by (3.13), $R_h^{\perp} = O(h^3)$. Thus by (3.16),

$$\int_{\mathbb{R}^N} (L_h R_h^{\perp}) \partial_k w_{x_h} dy = \mathcal{O}(h^5). \tag{3.17}$$

Hence by (2.29), (3.12) and (3.17), (3.14) gives

$$\frac{1}{p+1} \int_{\mathbb{R}^N} w_{x_0}^{p+1} dy \sum_{j=1}^N \partial_{jk} m(x_0) \left(h^{-1} c_h^j \right)
= \frac{1}{2\lambda} \int_{\mathbb{R}^N} \left[\sum_{i,j=1}^N \partial_{ij} m(x_0) x_{1,i} y_j + \frac{1}{2} \sum_{i,j=1}^N \partial_{ijl} m(x_0) y_i y_j y_l \right] w_{x_h}^p \partial_k w_{x_h} dy + o(1).$$
(3.18)

Using integration by parts, we obtain

$$\begin{cases} \int\limits_{\mathbb{R}^N} y_j w_{x_h}^p \partial_k w_{x_h} dy = -\frac{\delta_{jk}}{p+1} \int\limits_{\mathbb{R}^N} w_{x_h}^{p+1} dy ,\\ \int\limits_{\mathbb{R}^N} y_i y_j y_l w_{x_h}^p \partial_k w_{x_h} dy = -\frac{\delta_{ik}}{N(p+1)} \int\limits_{\mathbb{R}^N} |y|^2 w_{x_h}^{p+1} dy , \end{cases}$$

where δ is the Kronecker symbol. Hence by (3.18), $|c_h^j| = O(h)$ for $j = 1, \dots, N$. Moreover, by (3.2), we obtain (3.8) and complete the proof.

Let us now compute $d''(\lambda)$. From (1.9), it is easy to get

$$d'(\lambda) = \frac{1}{2} \int_{\mathbb{R}^N} u_h^2 dx$$

and hence

$$d''(\lambda) = \int_{\mathbb{R}^N} u_h \frac{\partial u_h}{\partial \lambda} dx = h^N \int_{\mathbb{R}^N} v_h R_h dy.$$
 (3.19)

Using integration by parts and (3.5), we have

$$\int_{\mathbb{R}^N} v_h R_0 dy = \int_{\mathbb{R}^N} v_h \lambda^{-1} \left(\frac{1}{p-1} v_h + \frac{1}{2} y \cdot \nabla v_h \right) dy = \lambda^{-1} \left(\frac{1}{p-1} - \frac{N}{4} \right) \int_{\mathbb{R}^N} v_h^2 dy = 0, \quad (3.20)$$

since $p = 1 + \frac{4}{N}$. Hence, by (3.19) and Theorem 3.2, we have

$$\frac{d''(\lambda)}{h^N} = \int_{\mathbb{R}^N} v_h \left[R_0 + \sum_{j=1}^N c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^{\perp} \right] dy$$

$$= \int_{\mathbb{R}^N} v_h \left[\sum_{j=1}^N c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^{\perp} \right] dy \qquad \text{(because } \int_{\mathbb{R}^N} v_h R_0 dy = 0 \text{)}$$

$$= \int_{\mathbb{R}^N} R_h \left[\sum_{j=1}^N c_h^j L_h \partial_j w_{x_h} + h^2 L_h R_1 + L_h R_h^{\perp} \right] dy \qquad \text{(because } L_h R_h = v_h \text{)}$$

$$= \int_{\mathbb{R}^N} \left[R_0 + \sum_{j=1}^N c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^{\perp} \right] \left[\sum_{j=1}^N c_h^j L_h \partial_j w_{x_h} + h^2 L_h R_1 + L_h R_h^{\perp} \right] dy .$$

Therefore, by (2.25), (3.9) and $c_h^j = O(h)$,

$$\frac{d''(\lambda)}{h^N} = \int_{\mathbb{R}^N} R_0 \left[v_h - L_h R_0 \right] dy + \sum_{j,k=1}^N c_h^j c_h^k \int_{\mathbb{R}^N} \partial_k w_{x_h} \left(L_h \partial_j w_{x_h} \right) dy + h^4 \int_{\mathbb{R}^N} R_1 \left(L_h R_1 \right) dy + \mathcal{O}(h^5) \,. \tag{3.21}$$

For the integral $\int_{\mathbb{R}^N} R_0 \left[v_h - L_h R_0 \right] dy$, by (3.11) and using integration by parts, we have

$$\int_{\mathbb{R}^N} R_0 \left[v_h - L_h R_0 \right] dy = \int_{\mathbb{R}^N} \lambda^{-1} \left(\frac{1}{p-1} v_h + \frac{1}{2} y \cdot \nabla v_h \right) \left[\frac{h}{2\lambda} y \cdot \nabla m (hy + x_h) v_h^p \right] dy$$

$$= \frac{1}{2\lambda^2} \int_{\mathbb{R}^N} \frac{N}{4(N+2)} \left[hy \cdot \nabla m (hy + x_h) - h^2 \sum_{i,j=1}^N \partial_{ij} m (hy + x_h) y_i y_j \right] v_h^{p+1} dy.$$

Note that by Lemma 2.4, 3.1 and Theorem 3.2, we have

$$hy \cdot \nabla m(hy + x_h) - h^2 \sum_{i,j=1}^{N} \partial_{ij} m(hy + x_h) y_i y_j$$

= $hy \cdot \nabla m(x_h) - \frac{h^3}{2} \sum_{i,j,k=1}^{N} \partial_{ijk} m(x_h) y_i y_j y_k - \frac{h^4}{3} \sum_{i,j,k,l=1}^{N} \partial_{ijkl} m(x_h) y_i y_j y_k y_l + o(h^4),$

and

$$v_h^p = w_{x_h}^p + h^2 p w_{x_h}^{p-1} \phi_2 + \mathcal{O}(h^3). \tag{3.22}$$

Hence

$$\int_{\mathbb{R}^{N}} R_{0} \left[v_{h} - L_{h} R_{0} \right] dy = \frac{N}{8(N+2)} \lambda^{-2} \int_{\mathbb{R}^{N}} \left[-\frac{h^{4}}{3} \sum_{i,j,k,l=1}^{N} \partial_{ijkl} m(x_{h}) y_{i} y_{j} y_{k} y_{l} \right] w_{x_{h}}^{p+1} dy + o(h^{4})$$

$$= -\frac{h^{4}}{8(N+2)^{2}} \lambda^{-2} \int_{\mathbb{R}^{N}} |y|^{4} w_{x_{h}}^{p+1} dy \Delta^{2} m(x_{0}) + o(h^{4})$$

$$= -\frac{h^{4}}{8(N+2)^{2}} \lambda^{-3} m(x_{0})^{-\frac{N}{2}-1} \int_{\mathbb{R}^{N}} |y|^{4} w^{p+1} dy \Delta^{2} m(x_{0}) + o(h^{4}) . \quad (3.23)$$

Here we have used the following identities:

$$\begin{cases} \int\limits_{\mathbb{R}^{N}} y_{i}w_{x_{h}}^{p+1}dy = \int\limits_{\mathbb{R}^{N}} y_{i}y_{j}y_{k}w_{x_{h}}^{p+1}dy = 0 \,, & \text{for all } i,j,k=1,\cdots,N \,; \\ \int\limits_{\mathbb{R}^{N}} y_{i}y_{j}y_{k}y_{l}w_{x_{h}}^{p+1}dy = 0 \,, & \text{if } y_{i}y_{j}y_{k}y_{l} \text{ is an odd function on one of its variate} \,; \\ \int\limits_{\mathbb{R}^{N}} y_{i}^{4}w_{x_{h}}^{p+1}dy = \frac{3}{N(N+2)} \int\limits_{\mathbb{R}^{N}} |y|^{4}w_{x_{h}}^{p+1}dy \,, & \text{for all } i=1,\cdots,N \,; \\ \int\limits_{\mathbb{R}^{N}} y_{i}^{2}y_{j}^{2}w_{x_{h}}^{p+1}dy = \frac{1}{N(N+2)} \int\limits_{\mathbb{R}^{N}} |y|^{4}w_{x_{h}}^{p+1}dy \,, & \text{for all } i\neq j \,, \end{cases}$$

which can be proved by polar coordinates.

For the sum $\sum_{j,k=1}^{N} c_h^j c_h^k \int_{\mathbb{R}^N} \partial_k w_{x_h} (L_h \partial_j w_{x_h}) dy$, we may use (2.29) and (3.8) to get

$$\sum_{j,k=1}^{N} c_{h}^{j} c_{h}^{k} \int_{\mathbb{R}^{N}} \partial_{k} w_{x_{h}} \left(L_{h} \partial_{j} w_{x_{h}} \right) dy$$

$$= \frac{h^{4}}{p+1} \int_{\mathbb{R}^{N}} w_{x_{h}}^{p+1} dy \sum_{j,k=1}^{N} (h^{-1} c_{h}^{j}) (h^{-1} c_{h}^{k}) \partial_{jk} m(x_{0}) + o(h^{4})$$

$$= \frac{h^{4}}{8N(N+2)} \lambda^{-3} m(x_{0})^{-\frac{N}{2}-1} \frac{\left(\int_{\mathbb{R}^{N}} |y|^{2} w^{p+1} dy \right)^{2}}{\int_{\mathbb{R}^{N}} w^{p+1} dy} \nabla(\Delta m)(x_{0}) \cdot \left[\nabla^{2} m(x_{0}) \right]^{-1} \nabla(\Delta m)(x_{0}) + o(h^{4}).$$
(3.24)

For the integral $h^4 \int_{\mathbb{R}^N} R_1(L_h R_1) dy$, by (3.7), it is obvious that $R_1(\lambda^{-\frac{1}{2}}y)$ satisfies

$$\Delta R - R + pw^{p-1}R - \frac{1}{2}\lambda^{\frac{N}{4}-2}m(x_h)^{-\frac{N}{4}-1}\sum_{i,j=1}^{N}\partial_{ij}m(x_0)y_iy_jw^p = 0.$$
 (3.25)

Hence

$$h^{4} \int_{\mathbb{R}^{N}} R_{1}(L_{h}R_{1}) dy = h^{4} \int_{\mathbb{R}^{N}} R_{1}(L_{x_{h}}R_{1}) dy + O(h^{6})$$

$$= \frac{h^{4}}{4} \lambda^{-3} m(x_{0})^{-\frac{N}{2} - 2} \sum_{i,j,k,l=1}^{N} \partial_{ij} m(x_{0}) \partial_{kl} m(x_{0}) \int_{\mathbb{R}^{N}} y_{i} w^{p} L_{0}^{-1}(y_{k} y_{l} w^{p}) dy + O(h^{6})$$

$$= \frac{h^{4}}{4N^{2}} \lambda^{-3} m(x_{0})^{-\frac{N}{2} - 2} |\Delta m(x_{0})|^{2} \int_{\mathbb{R}^{N}} r^{2} w^{p} L_{0}^{-1}(r^{2} w^{p}) dy$$

$$+ \frac{h^{4}}{2N(N+2)} \lambda^{-3} m(x_{0})^{-\frac{N}{2} - 2} ||\nabla^{2} m(x_{0})||_{2}^{2} \int_{\mathbb{R}^{N}} r^{2} w^{p} \Phi_{0}(r) dy$$

$$- \frac{h^{4}}{2N^{2}(N+2)} \lambda^{-3} m(x_{0})^{-\frac{N}{2} - 2} |\Delta m(x_{0})|^{2} \int_{\mathbb{R}^{N}} r^{2} w^{p} \Phi_{0}(r) dy + O(h^{6}). \tag{3.26}$$

Here $\|\nabla^2 m(x_0)\|_2^2 = \sum_{i,j=1}^N m_{ij}^2(x_0)$ and we have used the following identities:

$$\int_{\mathbb{R}^N} y_N^2 w^p L_0^{-1}(y_N^2 w^p) dy = \frac{1}{N^2} \int_{\mathbb{R}^N} r^2 w^p L_0^{-1}(r^2 w^p) dy + \frac{2(N-1)}{N^2(N+2)} \int_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy, \qquad (3.27)$$

$$\int_{\mathbb{R}^N} y_{N-1}^2 w^p L_0^{-1}(y_N^2 w^p) dy = \frac{1}{N^2} \int_{\mathbb{R}^N} r^2 w^p L_0^{-1}(r^2 w^p) dy - \frac{2}{N^2(N+2)} \int_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy, \quad (3.28)$$

$$\int_{\mathbb{R}^N} y_{N-1} y_N w^p L_0^{-1}(y_{N-1} y_N w^p) dy = \frac{1}{N(N+2)} \int_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy, \qquad (3.29)$$

where Φ_0 satisfies (1.16), which we have proved in Appendix B.

Therefore, combining (3.21), (3.23), (3.24) and (3.26), we obtain

$$\begin{split} &\frac{d''(\lambda)}{h^N} + \mathrm{o}(h^4) \\ &= -\frac{h^4}{8(N+2)^2} \lambda^{-3} m(x_0)^{-\frac{N}{2}-1} \int\limits_{\mathbb{R}^N} |y|^4 w^{p+1} dy \Delta^2 m(x_0) \\ &+ \frac{h^4}{8N(N+2)} \lambda^{-3} m(x_0)^{-\frac{N}{2}-1} \frac{\left(\int\limits_{\mathbb{R}^N} |y|^2 w^{p+1} dy\right)^2}{\int\limits_{\mathbb{R}^N} w^{p+1} dy} \nabla(\Delta m)(x_0) \cdot \left[\nabla^2 m(x_0)\right]^{-1} \nabla(\Delta m)(x_0) \\ &+ \frac{h^4}{4N^2} \lambda^{-3} m(x_0)^{-\frac{N}{2}-2} |\Delta m(x_0)|^2 \int\limits_{\mathbb{R}^N} |y|^2 w^p L_0^{-1} (|y|^2 w^p) dy \\ &+ \frac{h^4}{2N^2(N+2)} \lambda^{-3} m(x_0)^{-\frac{N}{2}-2} \left[N \|\nabla^2 m(x_0)\|_2^2 - |\Delta m(x_0)|^2\right] \int\limits_{\mathbb{R}^N} |y|^2 w^p \Phi_0(|y|) dy. \end{split}$$

Consequently,

$$\frac{8(N+2)^{2}m(x_{0})^{\frac{N}{2}+2}\lambda^{3}}{h^{N+4}\int_{\mathbb{R}^{N}}|y|^{4}w^{p+1}dy}d''(\lambda) = C_{N,1}|\Delta m(x_{0})|^{2} + C_{N,2}(N||\nabla^{2}m(x_{0})||_{2}^{2} - |\Delta m(x_{0})|^{2})
+ C_{N,3}m(x_{0})\left[\nabla(\Delta m)(x_{0})\cdot\left[\nabla^{2}m(x_{0})\right]^{-1}\nabla(\Delta m)(x_{0})\right]
- m(x_{0})\Delta^{2}m(x_{0}) + o(1),$$

where $C_{N,1}, C_{N,2}, C_{N,3}$ are constants given by (1.13), (1.14), (1.15), respectively.

Now we may prove Theorem 1.1 as follows: Suppose that x_0 is a non-degenerate local maximum point of the function m(x), then the Hessian matrix $\nabla^2 m(x_0)$ of m at x_0 is negative definite. By Theorem 2.7, we have $n(L_h) = 1$. On the other hand, we have p(d'') = 1. Thus ψ_h is orbital stable by the orbital stability criteria of [17]-[18]. For orbital instability, we denote the number of positive eigenvalues of the Hessian matrix $\nabla^2 m(x_0)$ by n. Then by Theorem 2.7, we obtain $n(L_h) = n + 1$. On the other hand, we have p(d'') = 1. Thus by the instability criteria of [18], we conclude that ψ_h is orbitally unstable if n is odd. This may complete the proof of Theorem 1.1.

4 Proof of Theorem 1.2-1.4

In this section, we may generalize the argument of Section 2 and 3 to prove Theorem 1.2-1.4. Let $v_h(y) := u_h(hy + x_h)$, where u_h is a single-spike bound state of (1.5) with a unique local maximum point at x_h . Then v_h satisfies

$$\Delta v_h - \left[V(hy + x_h) + \lambda \right] v_h + m(hy + x_h) v_h^p = 0 \quad \text{in } \mathbb{R}^N.$$
 (4.1)

Suppose (2.7) hold. By (2.8) and [39], we have

$$m(x_0)\nabla V(x_0) = \frac{N}{2} [V(x_0) + \lambda] \nabla m(x_0),$$
 (4.2)

so x_0 may depend on λ . Note that by (4.2), $\nabla m(x_0) = 0$ if and only if $\nabla V(x_0) = 0$. By direct computation on the function G,

$$\partial_{ij}G(x_0) = m(x_0)^{-\frac{N}{2}-1} \left[m(x_0)\partial_{ij}V(x_0) + (1 - \frac{N}{2})\partial_iV(x_0)\partial_jm(x_0) - \frac{N}{2} \left[V(x_0) + \lambda \right] \partial_{ij}m(x_0) \right].$$

In particular, if $\nabla m(x_0) = 0$, then

$$\nabla^2 G(x_0) = m(x_0)^{-\frac{N}{2}-1} \left[m(x_0) \nabla^2 V(x_0) - \frac{N}{2} \left[V(x_0) + \lambda \right] \nabla^2 m(x_0) \right].$$

Using the identity (2.8), one may follow the arguments of Lemma 2.2-2.4 to get the uniqueness of u_h and

$$x_h = x_0 + \mathrm{o}(h); \tag{4.3}$$

$$v_h = w_{x_h} + h\phi_1 + h^2\phi_2 + o(h^2), \qquad (4.4)$$

where ϕ_1 and ϕ_2 satisfy $\nabla \phi_1(0) = \nabla \phi_2(0) = 0$,

$$\Delta\phi_1 - [V(x_0) + \lambda] \phi_1 + m(x_0) p w_{x_0}^{p-1} \phi_1 - y \cdot \nabla V(x_0) w_{x_0} + y \cdot \nabla m(x_0) w_{x_0}^p = 0, \qquad (4.5)$$

and

$$\Delta\phi_{2} - \left[V(x_{h}) + \lambda\right]\phi_{2} + m(x_{h})pw_{x_{h}}^{p-1}\phi_{2} - y \cdot \nabla V(x_{0})\phi_{1} - \frac{1}{2}\sum_{i,j=1}^{N}\partial_{ij}V(x_{0})y_{i}y_{j}w_{x_{h}}$$

$$+ y \cdot \nabla m(x_0) p w_{x_h}^{p-1} \phi_1 + \frac{1}{2} \sum_{i,j=1}^{N} \partial_{ij} m(x_0) y_i y_j w_{x_h}^p + \frac{1}{2} m(x_0) p(p-1) w_{x_h}^{p-2} \phi_1^2 = 0.$$
 (4.6)

Here we have used the hypothesis that x_0 is a non-degenerate point of the function G. And the only difference in the proof is that we need to estimate the term

$$\frac{1}{p+1}\nabla m(x_0)\int\limits_{\mathbb{R}^N}v_h^{p+1}dy-\frac{1}{2}\nabla V(x_0)\int\limits_{\mathbb{R}^N}v_h^2dy\,,$$

to estimate which one may use the following Pohozaev identity (cf. [34])

$$\int_{\mathbb{R}^N} \left[\frac{2}{N+2} m(hy+x_h) + \frac{h}{p+1} y \cdot \nabla m(hy+x_h) \right] v_h^{p+1} dy$$

$$= \int_{\mathbb{R}^N} \left[V(hy+x_h) + \lambda + \frac{h}{2} y \cdot \nabla V(hy+x_h) \right] v_h^2 dy.$$

For the small eigenvalue estimates of L_h , one may generalize the idea of Theorem 2.7 to get Theorem 4.1. For h small enough, the eigenvalue problem

$$L_h \varphi_h = \mu_h \varphi_h \tag{4.7}$$

has exactly N eigenvalues μ_h^j , $j=1,\dots,N$, in the interval $\left[\frac{1}{2}\mu_1,\frac{1}{2}\mu_{N+2}\right]$, which satisfy and

$$\frac{\mu_h^j}{h^2} \to c_0 \nu_j \,, \quad as \ h \to 0 \,, \quad for \ j = 1, \dots N \,, \tag{4.8}$$

where μ_1 and μ_{N+2} are defined Lemma 2.6, ν_j 's are the eigenvalues of the Hessian matrix $\nabla^2 G(x_0)$, and $c_0 = -\frac{m(x_0)^{N/2}}{V(x_0) + \lambda} = -G(x_0)^{-1}$ is a negative constant. Furthermore, the corresponding eigenfunctions φ_h^j 's satisfy

$$\varphi_h^j = \sum_{i=1}^N \left[a_{ij} + o(1) \right] \left(\partial_i w_{x_h} + h \psi_i \right) + O(h^2), \quad j = 1, \dots, N,$$
 (4.9)

where each ψ_i is the solution of

$$\Delta \psi_{i} - \left[V(x_{h}) + \lambda \right] \psi_{i} + m(x_{h}) p w_{x_{h}}^{p-1} \psi_{i}$$

$$+ \left[-y \cdot \nabla V(x_{h}) + y \cdot \nabla m(x_{h}) p w_{x_{h}}^{p-1} + m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{1} \right] \partial_{i} w_{x_{h}} = 0,$$
(4.10)

and $\mathbf{a}_j = (a_{1j}, \cdots, a_{Nj})^T$ is the eigenvector corresponding to ν_j , namely,

$$\nabla^2 G(x_0) \mathbf{a}_j = \nu_j \mathbf{a}_j. \tag{4.11}$$

Remark 5: (1) To prove it, one may follow the arguments in the proof of Theorem 2.7 and use the following identity

$$\int_{\mathbb{R}^N} \partial_k w_{x_h} L_h \left(\partial_j w_{x_h} + h \psi_j \right) dy = -\frac{h^2}{N+2} \int_{\mathbb{R}^N} w^{p+1} dy \partial_{jk} G(x_0) + o(h^2), \tag{4.12}$$

to replace (2.29) (see Appendix C). The main difference between Theorem 2.7 and 4.1 is that (4.9) has the solution ψ_i of (4.10) which comes from

$$L_h \partial_i w_{x_h} = h \left[-y \cdot \nabla V(x_0) + y \cdot \nabla m(x_0) p w_{x_h}^{p-1} + m(x_0) p(p-1) w_{x_h}^{p-2} \phi_1 \right] \partial_i w_{x_h} + O(h^2).$$
(4.13)

(2) Let n be the number of negative eigenvalues of the matrix $\delta^2 G(x_0)$, then similar to the Remark 4(3), the number of positive eigenvalues of L_h equals n+1, i.e., $n(L_h)=n+1$.

Since the potential function V is nonzero, then x_0 may depend on λ and the asymptotic expansion of $d''(\lambda)$ becomes more complicated. Indeed, when $m \equiv 1$ and $\Delta V(x_0) \neq 0$, the result in [25] shows that the effect of potential function V on $d''(\lambda)$ is $O(h^2)$. On the other hand, when $V \equiv 0$ and condition (1.12) holds, the effect of m on $d''(\lambda)$ is $O(h^4)$ (see Section 3). Generally, when both m and V are not constant, we may show

- (I) The effect of V and m on $d''(\lambda)$ is O(1) if $\nabla V(x_0) \neq 0$ (see Theorem 1.2);
- (II) The effect of V and m on $d''(\lambda)$ is $O(h^2)$ if $\nabla V(x_0) = 0$ and $\Delta V(x_0) \neq 0$ (see Theorem 1.3);
- (III) The effect of V and m on $d''(\lambda)$ is $O(h^4)$ if $\nabla V(x_0) = 0$, $\Delta V(x_0) = 0$ and some local condition hold (see Theorem 1.4).

Now we divide three cases to prove these results.

Case I: $\nabla V(x_0) \neq 0$.

Let $R_h := \frac{\partial u_h}{\partial \lambda}(hy + x_h)$. Then (3.5) and (3.20) hold. Hence one may apply the idea of Theorem 3.2 to get

$$R_h = \sum_{i=1}^{N} c_h^i (\partial_i w_{x_h} + h\psi_i) + R_0 + R_h^{\perp}, \qquad (4.14)$$

where as $h \to 0$, $\mathbf{c}_h = (c_h^1, \dots, c_h^N)$ satisfies

$$\nabla^2 G(x_0)(h\mathbf{c}_h) \to -\frac{N}{2} m(x_0)^{-\frac{N}{2}-1} \nabla m(x_0), \qquad (4.15)$$

and

$$R_0 = \left[V(x_h) + \lambda \right]^{-1} \left(\frac{1}{p-1} v_h + \frac{1}{2} y \cdot \nabla v_h \right), \quad R_h^{\perp} = O(h).$$
 (4.16)

Thus

$$\frac{d''(\lambda)}{h^N} = \int_{\mathbb{R}^N} v_h R_h dy = \int_{\mathbb{R}^N} v_h \Big[\sum_{i=1}^N c_h^i (\partial_i w_{x_h} + h\psi_i) + R_0 + R_h^{\perp} \Big] dy$$

$$= \int_{\mathbb{R}^N} v_h \sum_{i=1}^N c_h^i (\partial_i w_{x_h} + h\psi_i) dy + O(h) \qquad \left(\text{because } \int_{\mathbb{R}^N} v_h R_0 dy = 0 \right)$$

$$= \int_{\mathbb{R}^N} R_h \sum_{i=1}^N c_h^i L_h (\partial_i w_{x_h} + h\psi_i) dy + O(h) \qquad \left(\text{because } L_h R_h = v_h \right)$$

$$= \int_{\mathbb{R}^N} \Big[\sum_{k=1}^N c_h^k (\partial_k w_{x_h} + h\psi_k) + R_0 + R_h^{\perp} \Big] \sum_{i=1}^N c_h^i L_h (\partial_i w_{x_h} + h\psi_i) dy + O(h) .$$

Therefore, by (4.10), (4.13), (4.12), (4.15) and (4.16), we obtain

$$\frac{d''(\lambda)}{h^N} = -\frac{N^2}{4(N+2)}m(x_0)^{-N-2} \int_{\mathbb{R}^N} w^{p+1} dy \nabla m(x_0) \cdot \left[\nabla^2 G(x_0)\right]^{-1} \nabla m(x_0) + \mathcal{O}(h). \tag{4.17}$$

Consequently, if x_0 is a non-degenerate local minimum point of G, then the Hessian matrix $\nabla^2 G(x_0)$ is positive definite. By Theorem 4.1, we have $n(L_h) = 1$. On the other hand, by (4.17), we have p(d'') = 0. Thus we complete the proof of Theorem 1.2 by the orbital instability criteria of [17]-[18].

Case II: $\nabla V(x_0) = 0$ and $\Delta V(x_0) \neq 0$.

Firstly, note that in this case, $\phi_1 \equiv 0$ and $\psi_i \equiv 0$. Then one may apply the idea of Lemma 3.1 and Theorem 3.2 to obtain

$$x_h = x_0 + h^2 \mathbf{x}_1 + \mathcal{O}(h^3);$$
 (4.18)

$$R_h = R_0 + \sum_{i=1}^{N} c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^{\perp}, \qquad (4.19)$$

where $\mathbf{x}_1 \in \mathbb{R}^N$ satisfies

$$\nabla^{2}G(x_{0})\mathbf{x}_{1} = -\frac{N+2}{4N} \left[V(x_{0}) + \lambda\right]^{-1} m(x_{0})^{-\frac{N}{2}} \left(\frac{\int_{\mathbb{R}^{N}} |y|^{2} w^{2} dy}{\int_{\mathbb{R}^{N}} w^{p+1} dy}\right) \nabla(\Delta V)(x_{0}) + \frac{1}{4} m(x_{0})^{-\frac{N}{2}-1} \left(\frac{\int_{\mathbb{R}^{N}} |y|^{2} w^{p+1} dy}{\int_{\mathbb{R}^{N}} w^{p+1} dy}\right) \nabla(\Delta m)(x_{0}),$$

$$(4.20)$$

 R_1 satisfies

$$\Delta R_{1} - \left[V(x_{h}) + \lambda\right] R_{1} + m(x_{h}) p w_{x_{h}}^{p-1} R_{1}$$

$$+ \left[V(x_{h}) + \lambda\right]^{-1} \left[\sum_{i,j=1}^{N} \partial_{ij} V(x_{0}) y_{i} y_{j} w_{x_{h}} - \frac{1}{2} \sum_{i,j=1}^{N} \partial_{ij} m(x_{0}) y_{i} y_{j} w_{x_{h}}^{p}\right] = 0, \qquad (4.21)$$

$$R_h^{\perp} = \mathcal{O}(h^3)$$
 and $c_h^j = \mathcal{O}(h)$ for $j = 1, \dots, N$. Moreover, $\mathbf{c}_h := (c_h^1, \dots, c_h^N)$ satisfies
$$\nabla^2 G(x_0) (h^{-1} \mathbf{c}_h) = \mathbf{c}_0 + o(1), \qquad (4.22)$$

where

$$\mathbf{c}_{0} = -\left[V(x_{0}) + \lambda\right]^{-1} m(x_{0})^{-\frac{N}{2}} \nabla^{2} V(x_{0}) \mathbf{x}_{1}$$

$$-\frac{N+2}{2N} \left[V(x_{0}) + \lambda\right]^{-2} m(x_{0})^{-\frac{N}{2}} \left(\frac{\int_{\mathbb{R}^{N}} |y|^{2} w^{2} dy}{\int_{\mathbb{R}^{N}} w^{p+1} dy}\right) \nabla(\Delta V)(x_{0})$$

$$+\frac{1}{4} \left[V(x_{0}) + \lambda\right]^{-1} m(x_{0})^{-\frac{N}{2}-1} \left(\frac{\int_{\mathbb{R}^{N}} |y|^{2} w^{p+1} dy}{\int_{\mathbb{R}^{N}} w^{p+1} dy}\right) \nabla(\Delta m)(x_{0}). \tag{4.23}$$

Hence

$$\frac{d''(\lambda)}{h^N} = \int_{\mathbb{R}^N} v_h R_h dy = \int_{\mathbb{R}^N} v_h \left[R_0 + \sum_{j=1}^N c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^\perp \right] dy$$

$$= \int_{\mathbb{R}^N} v_h \left[\sum_{j=1}^N c_h^j \partial_j w_{x_h} + h^2 R_1 + R_h^\perp \right] dy \quad \left(\text{because } \int_{\mathbb{R}^N} v_h R_0 dy = 0 \right)$$

$$= \int_{\mathbb{R}^N} R_h \left[\sum_{j=1}^N c_h^j L_h \partial_j w_{x_h} + h^2 L_h R_1 + L_h R_h^\perp \right] dy \quad \left(\text{because } L_h R_h = v_h \right)$$

$$= \int_{\mathbb{R}^N} \left[R_0 + \sum_{k=1}^N c_h^k \partial_k w_{x_h} + h^2 R_1 + R_h^\perp \right] \left[\sum_{j=1}^N c_h^j L_h \partial_j w_{x_h} + h^2 L_h R_1 + L_h R_h^\perp \right] dy .$$

Therefore, by (4.10), (4.13) and (4.19), we obtain

$$\frac{d''(\lambda)}{h^N} = \int_{\mathbb{R}^N} R_0 \left[v_h - L_h R_0 \right] dy + \sum_{j,k=1}^N c_h^j c_h^k \int_{\mathbb{R}^N} \partial_k w_{x_h} L_h \left(\partial_j w_{x_h} \right) dy + h^4 \int_{\mathbb{R}^N} R_1 \left(L_h R_1 \right) dy + \mathcal{O}(h^5) .$$
(4.24)

For the integral $\int_{\mathbb{R}^N} R_0 [v_h - L_h R_0] dy$, by direct computation, we have

$$v_{h} - L_{h}R_{0} = -\left[V(x_{h}) + \lambda\right]^{-1} \left[V(hy + x_{h}) - V(x_{h}) + \frac{h}{2}y \cdot \nabla V(hy + x_{h})\right] v_{h} + \frac{h}{2} \left[V(x_{h}) + \lambda\right]^{-1} y \cdot \nabla m(hy + x_{h}) v_{h}^{p}.$$
(4.25)

Thus by (4.4), (4.18) and (2.6), we obtain

$$\int_{\mathbb{R}^N} R_0 \left[v_h - L_h R_0 \right] dy = \frac{h^2}{2N} \left[V(x_0) + \lambda \right]^{-3} m(x_0)^{-\frac{N}{2}} \int_{\mathbb{R}^N} |y|^2 w^2 dy \Delta V(x_0) + \mathcal{O}(h^4) \,. \tag{4.26}$$

For the sum $\sum_{j,k=1}^{N} c_h^j c_h^k \int_{\mathbb{R}^N} \partial_k w_{x_h} (L_h \partial_j w_{x_h}) dy$, by (4.10), (4.13) and $c_h^j = O(h)$ for $j = 1, \dots, N$, we have

$$\sum_{j,k=1}^{N} c_h^j c_h^k \int_{\mathbb{R}^N} \partial_k w_{x_h} \left(L_h \partial_j w_{x_h} \right) dy = \mathcal{O}(h^4) \,. \tag{4.27}$$

Combining (4.26), (4.27) and (4.24), we obtain

$$\frac{d''(\lambda)}{h^N} = \frac{h^2}{2N} \left[V(x_0) + \lambda \right]^{-3} m(x_0)^{-\frac{N}{2}} \int_{\mathbb{R}^{N}} |y|^2 w^2 dy \Delta V(x_0) + \mathcal{O}(h^4) \,. \tag{4.28}$$

Consequently, by (4.28), we have $p(d'') = \frac{1}{2}(1 + \frac{\Delta V(x_0)}{|\Delta V(x_0)|})$. On the other hand, by Theorem 4.1, we have $n(L_h) = n + 1$. Thus we complete the proof of Theorem 1.3 by the orbital stability and instability criteria of [17]-[18].

Case III: $\nabla V(x_0) = 0$, $\Delta V(x_0) = 0$.

In this case, we shall use (4.23), (4.20) and (4.24) to compute the $O(h^4)$ term of $d''(\lambda)/h^N$. For the integral $\int_{\mathbb{R}^N} R_0 \left[v_h - L_h R_0 \right] dy$, by (4.25) and integration by parts, we obtain

$$\int_{\mathbb{R}^{N}} R_{0} \left[v_{h} - L_{h} R_{0} \right] dy$$

$$= - \left[V(x_{h}) + \lambda \right]^{-2} \int_{\mathbb{R}^{N}} \left(\frac{1}{p-1} v_{h} + \frac{1}{2} y \cdot \nabla v_{h} \right) \left[V(hy + x_{h}) - V(x_{h}) + \frac{h}{2} y \cdot \nabla V(hy + x_{h}) \right] v_{h} dy$$

$$+ \left[V(x_{h}) + \lambda \right]^{-2} \int_{\mathbb{R}^{N}} \left(\frac{1}{p-1} v_{h} + \frac{1}{2} y \cdot \nabla v_{h} \right) \frac{h}{2} y \cdot \nabla m(hy + x_{h}) v_{h}^{p} dy$$

$$= \frac{1}{8} \left[V(x_{h}) + \lambda \right]^{-2} \int_{\mathbb{R}^{N}} \left[3hy \cdot \nabla V(hy + x_{h}) + h^{2} \sum_{i,j=1}^{N} \partial_{ij} V(hy + x_{h}) y_{i} y_{j} \right] v_{h}^{2} dy$$

$$+ \frac{N}{8(N+2)} \left[V(x_{h}) + \lambda \right]^{-2} \int_{\mathbb{R}^{N}} \left[hy \cdot \nabla m(hy + x_{h}) - h^{2} \sum_{i,j=1}^{N} \partial_{ij} m(hy + x_{h}) y_{i} y_{j} \right] v_{h}^{p+1} dy .$$

Hence by (4.18), (4.19) and Taylor's formulas of V and m, we have

$$\int_{\mathbb{R}^{N}} R_{0} \left[v_{h} - L_{h} R_{0} \right] dy$$

$$= \frac{1}{8} \left[V(x_{h}) + \lambda \right]^{-2} \int_{\mathbb{R}^{N}} \left[4h^{2} \sum_{i,j=1}^{N} \partial_{ij} V(x_{0}) y_{i} y_{j} w_{x_{h}}^{2} + 8h^{4} \sum_{i,j=1}^{N} \partial_{ij} V(x_{0}) y_{i} y_{j} w_{x_{h}} \phi_{2} \right] dy$$

$$+ 4h^{4} \sum_{i,j,k=1}^{N} \partial_{ijk} V(x_{0}) x_{1,i} y_{j} y_{k} w_{x_{h}}^{2} + h^{4} \sum_{i,j,k,l=1}^{N} \partial_{ijkl} V(x_{0}) y_{i} y_{j} y_{k} y_{l} w_{x_{h}}^{2} dy$$

$$+ \frac{N}{8(N+2)} \left[V(x_{h}) + \lambda \right]^{-2} \int_{\mathbb{R}^{N}} \left[-\frac{h^{4}}{3} \sum_{i,j,k,l=1}^{N} \partial_{ijkl} m(x_{0}) y_{i} y_{j} y_{k} y_{l} \right] w_{x_{h}}^{p+1} dy + o(h^{4}). \tag{4.29}$$

For the sum $\sum_{j,k=1}^{N} c_h^j c_h^k \int_{\mathbb{R}^N} \partial_k w_{x_h} (L_h \partial_j w_{x_h}) dy$, by (4.12) and (4.22), we obtain

$$\sum_{j,k=1}^{N} c_{h}^{j} c_{h}^{k} \int_{\mathbb{R}^{N}} \partial_{k} w_{x_{h}} \left(L_{h} \partial_{j} w_{x_{h}} \right) dy = -\frac{h^{4}}{N+2} \int_{\mathbb{R}^{N}} w^{p+1} dy \nabla^{2} G(x_{0}) \mathbf{c}_{0} \cdot \mathbf{c}_{0} + o(h^{4}). \tag{4.30}$$

For the integral $\int_{\mathbb{R}^N} R_1(L_h R_1) dy$, by (4.21), $R_1(\frac{y}{\sqrt{V(x_h) + \lambda}})$ satisfies

$$\Delta R - R + pw^{p-1}R + \left[V(x_h) + \lambda\right]^{\frac{N}{4} - 3} m(x_h)^{-\frac{N}{4}} \sum_{i,j=1}^{N} \partial_{ij} V(x_0) y_i y_j w$$

$$- \frac{1}{2} \left[V(x_h) + \lambda\right]^{\frac{N}{4} - 2} m(x_h)^{-\frac{N}{4} - 1} \sum_{i,j=1}^{N} \partial_{ij} m(x_0) y_i y_j w^p = 0.$$
(4.31)

Hence

$$\int_{\mathbb{R}^{N}} R_{1}(L_{h}R_{1})dy = \int_{\mathbb{R}^{N}} R_{1}(L_{x_{h}}R_{1})dy + O(h^{2})$$

$$= [V(x_{h}) + \lambda]^{-5} m(x_{h})^{-\frac{N}{2}} \sum_{i,j,k,l=1}^{N} \partial_{ij}V(x_{0})\partial_{kl}V(x_{0}) \int_{\mathbb{R}^{N}} y_{i}y_{j}wL_{0}^{-1}(y_{k}y_{l}w)dy$$

$$- [V(x_{h}) + \lambda]^{-4} m(x_{h})^{-\frac{N}{2}-1} \sum_{i,j,k,l=1}^{N} \partial_{ij}V(x_{0})\partial_{kl}m(x_{0}) \int_{\mathbb{R}^{N}} y_{i}y_{j}wL_{0}^{-1}(y_{k}y_{l}w^{p})dy$$

$$+ \frac{1}{4} [V(x_{h}) + \lambda]^{-3} m(x_{h})^{-\frac{N}{2}-2} \sum_{i,j,k,l=1}^{N} \partial_{ij}m(x_{0})\partial_{kl}m(x_{0}) \int_{\mathbb{R}^{N}} y_{i}y_{j}w^{p}L_{0}^{-1}(y_{k}y_{l}w^{p})dy + O(h^{2}).$$
(4.32)

As in Section 3, we have used the following identities:

$$\sum_{i,j=1}^{N} \partial_{ij} V(x_0) \int_{\mathbb{R}^N} y_i y_j w_{x_h}^2 dy = \frac{1}{N} \int_{\mathbb{R}^N} |y|^2 w_{x_h}^2 dy \Delta V(x_0) = 0,$$

$$\sum_{i,j=1}^{N} \partial_{ij} V(x_0) \int_{\mathbb{R}^N} y_i y_j w_{x_h} \phi_2 dy$$

$$= \frac{1}{2} \left[V(x_h) + \lambda \right]^{-3} m(x_h)^{-\frac{N}{2}} \sum_{i,j,k,l=1}^{N} \partial_{ij} V(x_0) \partial_{kl} V(x_0) \int_{\mathbb{R}^N} y_i y_j w L_0^{-1}(y_k y_l w) dy$$

$$- \frac{1}{2} \left[V(x_h) + \lambda \right]^{-2} m(x_h)^{-\frac{N}{2} - 1} \sum_{i,j,k,l=1}^{N} \partial_{ij} V(x_0) \partial_{kl} m(x_0) \int_{\mathbb{R}^N} y_i y_j w L_0^{-1}(y_k y_l w^p) dy,$$

$$\begin{cases} & \sum_{i,j,k=1}^{N} \partial_{ijk} V(x_0) x_{1,i} \int_{\mathbb{R}^N} y_j y_k w_{x_h}^2 dy = \frac{1}{N} \int_{\mathbb{R}^N} |y|^2 w_{x_h}^2 dy \nabla(\Delta V)(x_0) \cdot \mathbf{x}_1, \\ & \sum_{i,j,k,l=1}^{N} \partial_{ijkl} V(x_0) \int_{\mathbb{R}^N} y_i y_j y_k y_l w_{x_h}^2 = \frac{3}{N(N+2)} \int_{\mathbb{R}^N} |y|^4 w_{x_h}^2 dy \Delta^2 V(x_0), \\ & \sum_{i,j,k,l=1}^{N} \partial_{ijkl} m(x_0) \int_{\mathbb{R}^N} y_i y_j y_k y_l w_{x_h}^{p+1} = \frac{3}{N(N+2)} \int_{\mathbb{R}^N} |y|^4 w_{x_h}^{p+1} dy \Delta^2 m(x_0), \end{cases}$$

$$\left\{ \begin{array}{l} \int\limits_{\mathbb{R}^N} y_N^2 w L_0^{-1}(y_N^2 w) dy = \frac{1}{N^2} \int\limits_{\mathbb{R}^N} r^2 w L_0^{-1}(r^2 w) dy + \frac{2(N-1)}{N^2(N+2)} \int\limits_{\mathbb{R}^N} r^2 w \Phi_1(r) dy \,, \\ \int\limits_{\mathbb{R}^N} y_{N-1}^2 w L_0^{-1}(y_N^2 w) dy = \frac{1}{N^2} \int\limits_{\mathbb{R}^N} r^2 w L_0^{-1}(r^2 w) dy - \frac{2}{N^2(N+2)} \int\limits_{\mathbb{R}^N} r^2 w \Phi_1(r) dy \,, \\ \int\limits_{\mathbb{R}^N} y_{N-1} y_N w L_0^{-1}(y_{N-1} y_N w) dy = \frac{1}{N(N+2)} \int\limits_{\mathbb{R}^N} r^2 w \Phi_1(r) dy \,, \end{array} \right.$$

$$\begin{cases} \int\limits_{\mathbb{R}^{N}} y_{N}^{2}wL_{0}^{-1}(y_{N}^{2}w^{p})dy = \frac{1}{N^{2}}\int\limits_{\mathbb{R}^{N}} r^{2}wL_{0}^{-1}(r^{2}w^{p})dy + \frac{2(N-1)}{N^{2}(N+2)}\int\limits_{\mathbb{R}^{N}} r^{2}w\Phi_{0}(r)dy \,, \\ \int\limits_{\mathbb{R}^{N}} y_{N-1}^{2}wL_{0}^{-1}(y_{N}^{2}w^{p})dy = \frac{1}{N^{2}}\int\limits_{\mathbb{R}^{N}} r^{2}wL_{0}^{-1}(r^{2}w^{p})dy - \frac{2}{N^{2}(N+2)}\int\limits_{\mathbb{R}^{N}} r^{2}w\Phi_{0}(r)dy \,, \\ \int\limits_{\mathbb{R}^{N}} y_{N-1}y_{N}wL_{0}^{-1}(y_{N-1}y_{N}w^{p})dy = \frac{1}{N(N+2)}\int\limits_{\mathbb{R}^{N}} r^{2}w\Phi_{0}(r)dy \,, \end{cases}$$

where Φ_0, Φ_1 satisfy

$$\begin{cases} &\Phi_0'' + \frac{N-1}{r}\Phi_0' - \Phi_0 + pw^{p-1}\Phi_0 - \frac{2N}{r^2}\Phi_0 - r^2w^p = 0, \ r \in (0, \infty), \\ &\Phi_0(0) = \Phi_0'(0) = 0, \end{cases}$$

and

$$\begin{cases} \Phi_1'' + \frac{N-1}{r}\Phi_1' - \Phi_0 + pw^{p-1}\Phi_1 - \frac{2N}{r^2}\Phi_1 - r^2w = 0, r \in (0, \infty), \\ \Phi_1(0) = \Phi_1'(0) = 0, \end{cases}$$

which can be proved as in Appendix B.

Therefore, combining (4.24), (4.29), (4.30) and (4.32), we obtain

$$\frac{d''(\lambda)}{h^{N+4}} + o(1) = H_2(x_0) + H_3(x_0) + H_4(x_0) \equiv H(x_0), \qquad (4.33)$$

where

$$H_{2}(x_{0}) = \frac{3}{N(N+2)} \left[V(x_{0}) + \lambda \right]^{-5} m(x_{0})^{-\frac{N}{2}} \int_{\mathbb{R}^{N}} |y|^{2} w \Phi_{1}(|y|) dy \|\nabla^{2} V(x_{0})\|_{2}^{2}$$

$$- \frac{3}{N(N+2)} \left[V(x_{0}) + \lambda \right]^{-4} m(x_{0})^{-\frac{N}{2}-1} \int_{\mathbb{R}^{N}} |y|^{2} w \Phi_{0}(|y|) dy \nabla^{2} V(x_{0}) \cdot \nabla^{2} m(x_{0})$$

$$+ \frac{1}{4N^{2}} \left[V(x_{0}) + \lambda \right]^{-3} m(x_{0})^{-\frac{N}{2}-2} \int_{\mathbb{R}^{N}} |y|^{2} w^{p} L_{0}^{-1}(|y|^{2} w^{p}) dy |\Delta m(x_{0})|^{2}$$

$$+ \frac{1}{2N(N+2)} \left[V(x_{0}) + \lambda \right]^{-3} m(x_{0})^{-\frac{N}{2}-2} \int_{\mathbb{R}^{N}} |y|^{2} w^{p} \Phi_{0}(|y|) dy \|\nabla^{2} m(x_{0})\|_{2}^{2}$$

$$- \frac{1}{2N^{2}(N+2)} \left[V(x_{0}) + \lambda \right]^{-3} m(x_{0})^{-\frac{N}{2}-2} \int_{\mathbb{R}^{N}} |y|^{2} w^{p} \Phi_{0}(|y|) dy |\Delta m(x_{0})|^{2}, \qquad (4.34)$$

$$H_{3}(x_{0}) = \frac{1}{2N} \left[V(x_{0}) + \lambda \right]^{-3} m(x_{0})^{-\frac{N}{2}} \int_{\mathbb{R}^{N}} |y|^{2} w^{2} dy \nabla (\Delta m)(x_{0}) \cdot \mathbf{x}_{1}$$
$$-\frac{1}{N+2} \int_{\mathbb{R}^{N}} w^{p+1} dy \mathbf{c}_{0} \cdot \left[\nabla^{2} G(x_{0}) \right]^{-1} \mathbf{c}_{0} , \qquad (4.35)$$

$$H_4(x_0) = \frac{3}{8N(N+2)} \left[V(x_0) + \lambda \right]^{-4} m(x_0)^{-\frac{N}{2}} \int_{\mathbb{R}^N} |y|^4 w^2 dy \Delta^2 V(x_0)$$
$$- \frac{1}{8(N+2)^2} \left[V(x_0) + \lambda \right]^{-3} m(x_0)^{-\frac{N}{2} - 1} \int_{\mathbb{R}^N} |y|^4 w^{p+1} dy \Delta^2 m(x_0). \tag{4.36}$$

Consequently, p(d'') = 1 if $H(x_0) > 0$, where $H(x_0)$ defined in (4.33) involves the *i*-th derivatives (for $0 \le i \le 4$) of V and m at x_0 . On the other hand, by Theorem 4.1, we have $n(L_h) = n + 1$. Thus we complete the proof of Theorem 1.4 by the orbital stability and instability criteria of [17]-[18].

5 Appendix A

In this section, we want to prove (2.29) of Section 2, i.e.

$$\int_{\mathbb{R}^{N}} (L_h \partial_j w_{x_h}) \, \partial_k w_{x_h} dy = \frac{h^2}{p+1} \int_{\mathbb{R}^{N}} w_{x_h}^{p+1} dy \, \partial_{jk} m(x_0) + o(h^2) \,. \tag{5.1}$$

Proof. Note that by Lemma 2.3 and 2.4, we obtain

$$L_h \partial_j w_{x_h} = \left[m(hy + x_h) - m(x_h) \right] p w_{x_h}^{p-1} \partial_j w_{x_h} + m(hy + x_h) p (v_h^{p-1} - w_{x_h}^{p-1}) \partial_j w_{x_h}$$

$$= \frac{h^2}{2} \sum_{i,l=1}^N \partial_{il} m(x_0) y_i y_l p w_{x_h}^{p-1} \partial_j w_{x_h} + h^2 m(x_h) p (p-1) w_{x_h}^{p-2} \phi_2 \partial_j w_{x_h} + o(h^2).$$

Hence we may write the integral $\int_{\mathbb{R}^N} (L_h \partial_j w_{x_h}) \partial_k w_{x_h} dy$ as follows:

$$\int_{\mathbb{P}^{N}} (L_{h} \partial_{j} w_{x_{h}}) \, \partial_{k} w_{x_{h}} \, dy = I_{1} + I_{2} + o(h^{2}), \tag{5.2}$$

where

$$I_1 = \frac{h^2}{2} \sum_{i,l=1}^N \partial_{il} m(x_0) \int_{\mathbb{R}^N} y_i y_l p w_{x_h}^{p-1} \partial_j w_{x_h} \partial_k w_{x_h} dy, \qquad (5.3)$$

$$I_{2} = h^{2} \int_{\mathbb{R}^{N}} m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{2} \partial_{j} w_{x_{h}} \partial_{k} w_{x_{h}} dy.$$
 (5.4)

Note that from (2.3), we have

$$\left[\Delta - \lambda + m(x_h)pw_{x_h}^{p-1}\right]\partial_{jk}w_{x_h} + m(x_h)p(p-1)w_{x_h}^{p-2}\partial_{j}w_{x_h}\partial_{k}w_{x_h} = 0.$$
 (5.5)

Hence by (2.14), (5.4) and (5.5), we may use integration by parts to get

$$I_{2} = -h^{2} \int_{\mathbb{R}^{N}} \phi_{2} \left[\Delta - \lambda + m(x_{h}) p w_{x_{h}}^{p-1} \right] \partial_{jk} w_{x_{h}} dy$$

$$= -h^{2} \int_{\mathbb{R}^{N}} \partial_{jk} w_{x_{h}} \left[\Delta - \lambda + m(x_{h}) p w_{x_{h}}^{p-1} \right] \phi_{2} dy$$

$$= \frac{h^{2}}{2} \sum_{i,l=1}^{N} \partial_{il} m(x_{0}) \int_{\mathbb{R}^{N}} y_{i} y_{l} w_{x_{h}}^{p} \partial_{jk} w_{x_{h}} dy$$

$$= -\frac{h^{2}}{2} \sum_{i,l=1}^{N} \partial_{il} m(x_{0}) \int_{\mathbb{R}^{N}} \frac{\partial (y_{i} y_{l} w_{x_{h}}^{p})}{\partial y_{j}} \partial_{k} w_{x_{h}} dy$$

$$= -\frac{h^{2}}{2} \sum_{i,l=1}^{N} \partial_{il} m(x_{0}) \int_{\mathbb{R}^{N}} y_{i} y_{l} p w_{x_{h}}^{p-1} \partial_{j} w_{x_{h}} \partial_{k} w_{x_{h}} dy - h^{2} \partial_{jk} m(x_{0}) \int_{\mathbb{R}^{N}} y_{k} w_{x_{h}}^{p} \partial_{k} w_{x_{h}} dy$$

$$= -\frac{h^{2}}{2} \sum_{i,l=1}^{N} \partial_{il} m(x_{0}) \int_{\mathbb{R}^{N}} y_{i} y_{l} p w_{x_{h}}^{p-1} \partial_{j} w_{x_{h}} \partial_{k} w_{x_{h}} dy + \frac{h^{2}}{p+1} \partial_{jk} m(x_{0}) \int_{\mathbb{R}^{N}} w_{x_{h}}^{p+1} dy . \tag{5.6}$$

Combining (5.2), (5.3) and (5.6), we obtain (5.1).

6 Appendix B

In this section, we prove (3.27), (3.28) and (3.29) of Section 3, i.e.

$$\int_{\mathbb{R}^N} y_N^2 w^p L_0^{-1}(y_N^2 w^p) dy = \frac{1}{N^2} \int_{\mathbb{R}^N} r^2 w^p L_0^{-1}(r^2 w^p) dy + \frac{2(N-1)}{N^2(N+2)} \int_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy, \qquad (6.1)$$

$$\int_{\mathbb{R}^N} y_{N-1}^2 w^p L_0^{-1}(y_N^2 w^p) dy = \frac{1}{N^2} \int_{\mathbb{R}^N} r^2 w^p L_0^{-1}(r^2 w^p) dy - \frac{2}{N^2(N+2)} \int_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy, \qquad (6.2)$$

$$\int_{\mathbb{R}^N} y_{N-1} y_N w^p L_0^{-1}(y_{N-1} y_N w^p) dy = \frac{1}{N(N+2)} \int_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy,$$
(6.3)

where r := |y| and Φ_0 satisfies

$$\begin{cases}
\Phi_0'' + \frac{N-1}{r}\Phi_0' - \Phi_0 + pw^{p-1}\Phi_0 - \frac{2N}{r^2}\Phi_0 - r^2w^p = 0, r \in (0, \infty), \\
\Phi_0(0) = \Phi_0'(0) = 0.
\end{cases}$$
(6.4)

Proof. From (6.4), it is easy to check that

$$L_0 \left[\Phi_0 \frac{y_N^2}{r^2} + \frac{1}{N} L_0^{-1}(r^2 w^p) - \frac{1}{N} \Phi_0 \right] = y_N^2 w^p, \text{ and } L_0 \left[\Phi_0 \frac{y_{N-1} y_N}{r^2} \right] = y_{N-1} y_N w^p.$$
 (6.5)

Then using the polar coordinate, we obtain

$$\begin{split} &\int\limits_{\mathbb{R}^N} y_N^2 w^p L_0^{-1}(y_N^2 w^p) dy \\ &= \int\limits_{\mathbb{R}^N} y_N^2 w_{x_0}^p \left[\Phi_0(r) \frac{y_N^2}{r^2} - \frac{1}{N} \Phi_0(r) + \frac{1}{N} L_0^{-1}(r^2 w^p) \right] dy \\ &= \int\limits_{\mathbb{R}^N} r^2 \cos^2 \theta_{N-1} w^p \left[\Phi_0(r) \frac{r^2 \cos^2 \theta_{N-1}}{r^2} - \frac{1}{N} \Phi_0(r) + \frac{1}{N} L_0^{-1}(r^2 w^p) \right] dy \\ &= \frac{\int\limits_{\mathbb{R}^N} \cos^4 \theta_{N-1} \sin^{N-2} \theta_{N-1} d\theta_{N-1}}{\int\limits_0^\pi \sin^{N-2} \theta_{N-1} d\theta_{N-1}} \int\limits_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy \\ &+ \frac{\int\limits_0^\pi \cos^2 \theta_{N-1} \sin^{N-2} \theta_{N-1} d\theta_{N-1}}{\int\limits_0^\pi \sin^{N-2} \theta_{N-1} d\theta_{N-1}} \int\limits_{\mathbb{R}^N} r^2 w_{x_0}^p \left[-\frac{1}{N} \Phi_0(r) + \frac{1}{N} L_0^{-1}(r^2 w_0^p) \right] dy \\ &= \frac{3}{N(N+2)} \int\limits_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy + \frac{1}{N} \int\limits_{\mathbb{R}^N} r^2 w^p \left[-\frac{1}{N} \Phi_0(r) + \frac{1}{N} L_0^{-1}(r^2 w^p) \right] dy \\ &= \frac{1}{N^2} \int\limits_{\mathbb{R}^N} r^2 w^p L_0^{-1}(r^2 w^p) dy + \frac{2(N-1)}{N^2(N+2)} \int\limits_{\mathbb{R}^N} r^2 w^p \Phi_0(r) dy \,. \end{split}$$

This completes the proof of (6.1). Similarly, one may obtain (6.2) and (6.3), respectively. \square

7 Appendix C

In this section, we prove (4.12) of Section 4, i.e.

$$\int_{\mathbb{R}^N} \partial_k w_{x_h} L_h \left(\partial_j w_{x_h} + h \psi_j \right) dy = -\frac{h^2}{N+2} \int_{\mathbb{R}^N} w^{p+1} dy \partial_{jk} G(x_0) + o(h^2). \tag{7.1}$$

Proof. Note that by (4.3), (4.4) and (4.10), we obtain

$$\begin{split} L_h \partial_j w_{x_h} = & L_{x_h} \partial_j w_{x_h} + \left[m(hy + x_h) - m(x_h) \right] p w_{x_h}^{p-1} \partial_j w_{x_h} \\ & + m(hy + x_h) p (v_h^{p-1} - w_{x_h}^{p-1}) \partial_j w_{x_h} - \left[V(hy + x_h) - V(x_h) \right] \partial_j w_{x_h} \\ = & h \Big[y \cdot \nabla m(x_h) p w_{x_h}^{p-1} + m(x_h) p(p-1) w_{x_h}^{p-2} \phi_1 - y \cdot \nabla V(x_h) \Big] \partial_j w_{x_h} \\ & + h^2 \Big[\frac{1}{2} \sum_{i,l}^N \partial_{il} m(x_h) y_i y_l p w_{x_h}^{p-1} + y \cdot \nabla m(x_h) p(p-1) w_{x_h}^{p-2} \phi_1 + m(x_h) p(p-1) w_{x_h}^{p-2} \phi_2 \\ & + \frac{1}{2} m(x_h) p(p-1) (p-2) w_{x_h}^{p-3} \phi_1^2 - \frac{1}{2} \sum_{i,l}^N \partial_{il} V(x_h) y_i y_l \Big] \partial_j w_{x_h} + \mathrm{o}(h^2) \,, \end{split}$$

and

$$L_h \psi_j = L_{x_h} \psi_j + \left[m(hy + x_h) - m(x_h) \right] p w_{x_h}^{p-1} \psi_j$$

$$+ m(hy + x_h) p (v_h^{p-1} - w_{x_h}^{p-1}) \psi_j - \left[V(hy + x_h) - V(x_h) \right] \psi_j$$

$$= - \left[y \cdot \nabla m(x_h) p w_{x_h}^{p-1} + m(x_h) p(p-1) w_{x_h}^{p-2} \phi_1 - y \cdot \nabla V(x_h) \right] \partial_j w_{x_h}$$

$$+ h \left[y \cdot \nabla m(x_h) p w_{x_h}^{p-1} + m(x_h) p(p-1) w_{x_h}^{p-2} \phi_1 - y \cdot \nabla V(x_h) \right] \psi_j + O(h^2).$$

Hence we may write the integral $\int_{\mathbb{R}^N} \partial_k w_{x_h} L_h(\partial_j w_{x_h} + h\psi_j) dy$ as follows:

$$\int_{\mathbb{R}^N} \partial_k w_{x_h} L_h \left(\partial_j w_{x_h} + h \psi_j \right) dy = I_0 + I_1 + I_2 + o(h^2), \tag{7.2}$$

where

$$I_0 = h^2 \int_{\mathbb{R}^N} \left[y \cdot \nabla m(x_h) p w_{x_h}^{p-1} + m(x_h) p(p-1) w_{x_h}^{p-2} \phi_1 - y \cdot \nabla V(x_h) \right] \psi_j \partial_k w_{x_h} dy, \qquad (7.3)$$

$$I_{1} = h^{2} \int_{\mathbb{R}^{N}} \left[\frac{1}{2} \sum_{i,l}^{N} \partial_{il} m(x_{h}) y_{i} y_{l} p w_{x_{h}}^{p-1} + y \cdot \nabla m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{1} \right]$$

$$+\frac{1}{2}m(x_h)p(p-1)(p-2)w_{x_h}^{p-3}\phi_1^2 - \frac{1}{2}\sum_{i,l}^N \partial_{il}V(x_h)y_iy_l\Big]\partial_j w_{x_h}\partial_k w_{x_h}dy, \qquad (7.4)$$

$$I_{2} = h^{2} \int_{\mathbb{R}^{N}} m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{2} \partial_{j} w_{x_{h}} \partial_{k} w_{x_{h}} dy.$$
 (7.5)

Note that from (2.3), we have

$$\left[\Delta - \left(V(x_h) + \lambda\right) + m(x_h)pw_{x_h}^{p-1}\right]\partial_{jk}w_{x_h} + m(x_h)p(p-1)w_{x_h}^{p-2}\partial_{j}w_{x_h}\partial_{k}w_{x_h} = 0.$$
 (7.6)

Hence by (4.6), (7.4) and (7.5), we may use integration by parts to get

$$\begin{split} I_{2} &= -h^{2} \int_{\mathbb{R}^{N}} \phi_{2} \Big[\Delta - \big(V(x_{h}) + \lambda \big) + m(x_{h}) p w_{x_{h}}^{p-1} \Big] \partial_{jk} w_{x_{h}} dy \\ &= -h^{2} \int_{\mathbb{R}^{N}} \partial_{jk} w_{x_{h}} \Big[\Delta - \big(V(x_{h}) + \lambda \big) + m(x_{h}) p w_{x_{h}}^{p-1} \Big] \phi_{2} dy \\ &= h^{2} \int_{\mathbb{R}^{N}} \Big[- y \cdot \nabla V(x_{h}) \phi_{1} - \frac{1}{2} \sum_{i,l=1}^{N} \partial_{il} V(x_{h}) y_{i} y_{l} w_{x_{h}} + y \cdot \nabla m(x_{h}) p w_{x_{h}}^{p-1} \phi_{1} \\ &\quad + \frac{1}{2} \sum_{i,l=1}^{N} \partial_{il} m(x_{h}) y_{i} y_{l} w_{x_{h}}^{p} + \frac{1}{2} m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{1}^{2} \Big] \partial_{jk} w_{x_{h}} dy \\ &= h^{2} \int_{\mathbb{R}^{N}} \Big[\partial_{j} V(x_{h}) \phi_{1} + y \cdot \nabla V(x_{h}) \partial_{j} \phi_{1} + \frac{1}{2} \sum_{i,l=1}^{N} \partial_{il} V(x_{h}) y_{i} y_{l} \partial_{j} w_{x_{h}} + \partial_{jk} V(x_{h}) y_{k} w_{x_{h}} \\ &\quad - \partial_{j} m(x_{h}) p w_{x_{h}}^{p-1} \phi_{1} - y \cdot \nabla m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{1} \partial_{j} w_{x_{h}} - y \cdot \nabla m(x_{h}) p w_{x_{h}}^{p-1} \partial_{j} \phi_{1} \\ &\quad - \frac{1}{2} \sum_{i,l=1}^{N} \partial_{il} m(x_{h}) y_{i} y_{l} p w_{x_{h}}^{p-1} \partial_{j} w_{x_{h}} - \partial_{jk} m(x_{h}) y_{k} w_{x_{h}}^{p} \\ &\quad - \frac{1}{2} m(x_{h}) p(p-1) (p-2) w_{x_{h}}^{p-3} \phi_{1}^{2} \partial_{j} w_{x_{h}} - m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{1} \partial_{j} \phi_{1} \Big] \partial_{k} w_{x_{h}} dy \\ &= -I_{1} - h^{2} \int_{\mathbb{R}^{N}} \Big[y \cdot \nabla m(x_{h}) p w_{x_{h}}^{p-1} + m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{1} - y \cdot \nabla V(x_{h}) \Big] \partial_{j} \phi_{1} \partial_{k} w_{x_{h}} dy \\ &\quad + h^{2} \int_{\mathbb{R}^{N}} \Big[\partial_{j} V(x_{h}) \phi_{1} + \partial_{jk} V(x_{h}) y_{k} w_{x_{h}} - \partial_{j} m(x_{h}) p w_{x_{h}}^{p-1} \phi_{1} - \partial_{jk} m(x_{h}) y_{k} w_{x_{h}}^{p} \Big] \partial_{k} w_{x_{h}} dy. \end{split}$$

Note that from (4.5), we have

$$\Delta(\partial_{j}\phi_{1}) - [V(x_{0}) + \lambda] \partial_{j}\phi_{1} + m(x_{0})pw_{x_{0}}^{p-1}\partial_{j}\phi_{1} + m(x_{0})p(p-1)w_{x_{0}}^{p-2}\phi_{1}\partial_{j}w_{x_{0}}
- y \cdot \nabla V(x_{0})\partial_{j}w_{x_{0}} - \partial_{j}V(x_{0})w_{x_{0}} + y \cdot \nabla m(x_{0})pw_{x_{0}}^{p-1}\partial_{j}w_{x_{0}} + \partial_{j}m(x_{0})w_{x_{0}}^{p} = 0,$$
(7.8)

and by direct computation,

$$\begin{cases}
L_{x_0} w_{x_0} = (p-1)m(x_0)w_{x_0}^p, \\
L_{x_0} \left(\frac{1}{p-1}w_{x_0} + \frac{1}{2}y \cdot \nabla w_{x_0}\right) = [V(x_0) + \lambda] w_{x_0}.
\end{cases} (7.9)$$

Thus we may use (7.3)-(7.9) and integration by parts to get

$$I_{0} + I_{1} + I_{2}$$

$$=h^{2} \int_{\mathbb{R}^{N}} \left[y \cdot \nabla m(x_{h}) p w_{x_{h}}^{p-1} + m(x_{h}) p(p-1) w_{x_{h}}^{p-2} \phi_{1} - y \cdot \nabla V(x_{h}) \right] \left(\psi_{j} - \partial_{j} \phi_{1} \right) \partial_{k} w_{x_{h}} dy$$

$$+ h^{2} \int_{\mathbb{R}^{N}} \left[\partial_{j} V(x_{h}) \phi_{1} + \partial_{jk} V(x_{h}) y_{k} w_{x_{h}} - \partial_{j} m(x_{h}) p w_{x_{h}}^{p-1} \phi_{1} - \partial_{jk} m(x_{h}) y_{k} w_{x_{h}}^{p} \right] \partial_{k} w_{x_{h}} dy$$

$$= - h^{2} \int_{\mathbb{R}^{N}} \left[\psi_{j} - \partial_{j} \phi_{1} \right] L_{x_{h}} \psi_{k} dy + h^{2} \int_{\mathbb{R}^{N}} \left[\partial_{j} V(x_{h}) - \partial_{j} m(x_{h}) p w_{x_{h}}^{p-1} \right] \phi_{1} \partial_{k} w_{x_{h}} dy$$

$$+ h^{2} \int_{\mathbb{R}^{N}} \left[\partial_{jk} V(x_{h}) y_{k} w_{x_{h}} - \partial_{jk} m(x_{h}) y_{k} w_{x_{h}}^{p} \right] \partial_{k} w_{x_{h}} dy$$

$$= h^{2} \int_{\mathbb{R}^{N}} \left[\partial_{j} V(x_{0}) w_{x_{0}} - \partial_{j} m(x_{0}) w_{x_{0}}^{p} \right] \psi_{k} dy - h^{2} \int_{\mathbb{R}^{N}} \left[\partial_{j} V(x_{h}) w_{x_{h}} - \partial_{j} m(x_{h}) w_{x_{h}}^{p} \right] \partial_{k} \phi_{1} dy$$

$$- h^{2} \int_{\mathbb{R}^{N}} \left[\frac{1}{2} \partial_{jk} V(x_{h}) w_{x_{h}}^{2} - \frac{1}{p+1} \partial_{jk} m(x_{h}) w_{x_{h}}^{p+1} \right] dy + o(h^{2})$$

$$= h^{2} \int_{\mathbb{R}^{N}} \left[\partial_{j} V(x_{0}) (V(x_{0}) + \lambda)^{-1} \left(\frac{1}{p-1} w_{x_{0}} + \frac{1}{2} y \cdot \nabla w_{x_{0}} \right) - \frac{1}{p-1} m(x_{0})^{-1} \partial_{j} m(x_{0}) w_{x_{0}} \right] L_{x_{0}} \left(\psi_{k} - \partial_{k} \phi_{1} \right) dy$$

$$- h^{2} \int_{\mathbb{R}^{N}} \left[\partial_{j} V(x_{0}) (V(x_{0}) + \lambda)^{-1} \left(\frac{1}{p-1} w_{x_{0}} + \frac{1}{2} y \cdot \nabla w_{x_{0}} \right) - \frac{1}{p-1} m(x_{0})^{-1} \partial_{j} m(x_{0}) w_{x_{0}} \right] \left[\partial_{k} V(x_{0}) w_{x_{0}} - \partial_{k} m(x_{0}) w_{x_{0}}^{p} \right] dy$$

$$- h^{2} \int_{\mathbb{R}^{N}} \left[\frac{1}{2} \partial_{jk} V(x_{0}) w_{x_{0}}^{2} - \frac{1}{p+1} \partial_{jk} m(x_{0}) w_{x_{0}}^{p+1} \right] dy + o(h^{2})$$

$$= - h^{2} \left[\left[\frac{1}{p-1} - \frac{N}{4} \right] \left[V(x_{0}) + \lambda \right]^{-1} \partial_{j} V(x_{0}) \partial_{k} V(x_{0}) - \frac{1}{p-1} m(x_{0})^{-1} \partial_{j} m(x_{0}) \partial_{k} V(x_{0}) \right] - \frac{1}{p-1} m(x_{0})^{-1} \partial_{j} m(x_{0}) \partial_{k} V(x_{0}) \right] \int_{\mathbb{R}^{N}} w_{x_{0}}^{2} dy$$

$$+ h^{2} \left[\left(\frac{1}{p-1} - \frac{1}{2} \frac{N}{p+1} \right) \left[V(x_{0}) + \lambda \right]^{-1} \partial_{j} V(x_{0}) \partial_{k} m(x_{0}) - \frac{1}{p-1} m(x_{0})^{-1} \partial_{j} m(x_{0}) \partial_{k} m(x_{0}) \right] \int_{\mathbb{R}^{N}} w_{x_{0}}^{p+1} dy$$

$$- h^{2} \int_{\mathbb{R}^{N}} \left[\frac{1}{p+1} \left(\frac{1}{p+1} \partial_{jk} m(x_{0}) w_{x_$$

Recall that

$$\begin{cases} w_{x_0}(y) = \left[V(x_0) + \lambda \right]^{\frac{1}{p-1}} m(x_0)^{-\frac{1}{p-1}} w(\sqrt{V(x_0) + \lambda} y), \\ m(x_0) \nabla V(x_0) = \frac{N}{2} \left[V(x_0) + \lambda \right] \nabla m(x_0), \\ \partial_{ij} G(x_0) = m(x_0)^{-\frac{N}{2} - 1} \left[m(x_0) \partial_{ij} V(x_0) + (1 - \frac{N}{2}) \partial_i V(x_0) \partial_j m(x_0) - \frac{N}{2} \left[V(x_0) + \lambda \right] \partial_{ij} m(x_0) \right], \end{cases}$$

and the integral identity

$$[V(x_0) + \lambda] \int_{\mathbb{R}^N} w_{x_0}^2 dy = \frac{2}{N+2} m(x_0) \int_{\mathbb{R}^N} w_{x_0}^{p+1} dy.$$

Combining (7.2) and (7.10), we obtain (7.1).

References

- [1] F.Kh. Abdullaev and J. Garnier, Phys.Rev. A 72 061605(R) (2005).
- [2] T. J. Alexander, A. A. Sukhorukov, and Y. S. Kivshar, Asymmetric Vortex Solitons in Nonlinear Periodic Lattices, Phys. Rev. Lett. 93 (2004), no.6, 063901(1-4).
- [3] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997), 285-300.
- [4] H. Berestycki and T. Cazenave, Instaiblite des etats stationnaires dans les equations de Schrödinger et de Klein-Gordon non lineaires, C. R. Acad. Sci. Paris 293 (1981), 489-492.
- [5] A. D. Bouard and R. Fukuizumi, Stability of Standing Waves for Nonlinear Schrödinger Equations with Inhomogeneous Nonlinearities, Ann. Henri Poincaré 6 (2005) 1157-1177.
- [6] D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424 (2003), 817-823.
- [7] S. L. Cornish, S. T. Thompson and C. E. Wieman, Formation of bright matter-wave solitons during the collapse of Bose-Einstein condensates, Phys. Rev. Lett. 96 (2006), 170401(1-4).
- [8] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561.
- [9] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates, Nature 19(412) (2001), 295-299.
- [10] G. Fibich, Y. Sivan, and M. I. Weinstein, Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure, Physica D 217 (2006), 31-57.
- [11] G. Fibich, Y. Sivan, and M. I. Weinstein, Waves in Nonlinear Lattices: Ultrashort Optical Pulses and Bose-Einstein Condensates, Phys. Rev. Lett. 97 193902 (2006).
- [12] G. Fibich and X. P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica D 175 (2003), 96-108.
- [13] J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147-150.

- [14] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
- [15] R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations 10 (2005), no. 3, 259V276.
- [16] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n , In Mathematical analysis and applications. Part A. Adances in Mathematical Supplementary Studies, vol.7A, pp. 369-402 (Academic,1981).
- [17] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), 160-197.
- [18] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990), 308-348.
- [19] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. in Partial Differential Equation 21 (1996), 787-820.
- [20] M. Grossi, Some results on a class of nonlinear Schrödinger equations, Math. Z . 235 (2000), 687-705.
- [21] M. Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equations, Ann. I. H. Poincare-AN 19, (2002), no.3, 261-280.
- [22] T.-L. Horng, S.-C. Gou, and T.-C. Lin, Bending-wave instability of a vortex ring in a trapped Bose-Einstein condensate, Phys. Rev. A 74, 041603(1-4) (2006).
- [23] X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Diff. Eqns. 5 (2000), no.7-9, 899-928.
- [24] M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0 \in \mathbb{R}^n$, Arch. Ration. Mech. Analysis 105 (1989), 243-266.
- [25] T.-C. Lin and J. Wei, Orbital stability of bound states of semi-classical nonlinear Schrödinger equations with critical nonlinearity, SIAM J. Mathematical Analysis, 40, no. 1, (2008) pp. 365-381.
- [26] D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, L. C. Crasovan, Y. V. Kartashov, and L. Torner, *Stable three-dimensional solitons in attractive Bose-Einstein condensates loaded in an optical lattice*, Phys. Rev. A 72 (2005), 021601(1-4).
- [27] L. A. Maia, E. Montefusco and B. Pellacci, *Positive solutions for a weakly coupled nonlinear Schrödinger system*, J. Differential Equations 229 (2006), no.2, 743-767.
- [28] O. Morsh and M. Oberthaler, Rev.Mod.Phys. 78, 179 (2006).
- [29] Y. G. Oh, On positive multi-bump states of nonlinear Schrödinger equation under multiple well potentials, Comm. Math. Phys., 131 (1990), 223-253.

- [30] Y. G. Oh, Stability of semiclassical bound state of nonlinear Schrödinger equations with potentials, Comm. Math. Phys., 121 (1989), 11-33.
- [31] M. del Pino, and P. Felmer, Semi-classical states for nonlinear Schrödinger equation, J. Funct. Anal.,149 (1997), 245-265.
- [32] M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324 (2002), no. 1, 1-32.
- [33] Victor M. Perez-Garcia and Juan Belmonte Beitia, Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates, Phys. Rev. A 72 (2005), 033620(1-5).
- [34] S. Pohozaev, Eigenfunction of the equation $\Delta u + f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.
- [35] H. Sakaguchi and B. A. Malomed, *Matter-wave solitons in nonlinear optical lattices*, PHYS-ICAL REVIEW E 72, 046610 (2005).
- [36] B. Sirakov, Standing wave solutions of the nonlinear Schrödinger equation in \mathbb{R}^N . Ann. Mat. Pura Appl. (4) 181 (2002), no. 1, 73-83.
- [37] P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.
- [38] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153 (1993), 229–244.
- [39] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal. 28 (1997), no.3, 633-655.
- [40] Z. Q. Wang, Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations. J. Differential Equations 159 (1999), no. 1, 102–137.
- [41] J. Wei, On the construction of single-peaked solutions to a singularly perturbed elliptic Dirichlet problem, J. Differential Equations 129 (1996), no.2, 315-333.
- [42] J. Wei, Uniqueness and critical spectrum of boundary spike solutions, Proc. Royal Soc. Edinburgh, Section A (Mathematics) 131 (2001), 1457-1480.
- [43] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576.
- [44] M. I. Weinstein, The nonlinear Schrödinger equation Singularity formation, stability and dispersion. The connection between infinite-dimensional and finite-dimensional dynamical systems, American Math. Soc., Providence, RI, 1989.