Wiskundige Structuren Huiswerk

Jasper Vos Huiswerkset 3 28 september 2025

Studentnr: *s2911159*

Opgave 1

Bewijs. Ik bewijs voor zowel n=0 en n=1, omdat er vaak dubbelzinnigheid is over $0\in\mathbb{N}$ of $0\notin\mathbb{N}$.

1. Basisstap: n = 0, n = 1

Neem $|A| = |\emptyset| = 0$, dan en slechts dan als $|\mathcal{P}(A)| |\{\emptyset\}| = 2^0 = 1$. Dus de uitspraak geldt voor n = 0. Neem $|A| = |\{a\}| = 1$ dan en slechts dan als $|\mathcal{P}(A)| = |\{\emptyset, \{a\}\}| = 2^1 = 2$. Dus de uitspraak geldt voor n = 1.

2. Inductiehypothese: Neem aan dat de stelling geldt voor $0 \le k < n$, dan geldt dus: |A| = k en $|\mathcal{P}(A)| = 2^k$. Laat k = n - 1, en $B = A \cup \{b\}$, Dan kunnen we de machtsverzameling opstellen voor $\mathcal{P}(B)$ waarbij:

$$C = \{V \in \mathcal{P}(B) : \{b\} \notin V\} = \mathcal{P}(A)$$

en:

$$D = \{V \in \mathcal{P}(B) : \{b\} \in V\}$$

Hieruit volgt $C \cup D = \mathcal{P}(B)$. Merk op dat $D = \{V \cup \{b\} : V \in \mathcal{P}(A)\}$, en dus:

$$|D| = |\mathcal{P}(A)|$$

Als we nu alles optellen krijgen we:

$$|\mathcal{P}(B)| = |C| + |D|$$

$$= |\mathcal{P}(A)| + |\mathcal{P}(A)|$$

$$= 2^k + 2^k$$

$$= 2(2^k)$$

$$= 2^{k+1}$$

- 3. Uitspraak waar voor alle n: We stellen dat de uitspraak waar is voor alle n en gaan dit bewijzen door te stellen dat dit niet zo is door vervolgens een tegenspraak te vinden.
 - Vanuit de welordening van \mathbb{N} is er een kleinste element $n_0 \in \mathbb{N}$. We zeggen dat er een kleinste n_0 moet bestaan waarvoor de uispraak niet waar is, maar we hebben al bewezen dat voor $0 \le k \le n$ de uitspraak waar is. Dit is dus een tegenspraak en daarom geldt voor alle $n \in \mathbb{N}$ dat de uitspraak waar is.

Opgave 2

Voor alle $a \in A$: f(f(a)) = a, dan betekent dus ook omdat f een bijectie is dat $ff = id_A$