

W	ritten	By:

Concurred By:

Approved By:

February 2023

1 CONTENTS

1	Scope		5
2	Reference St	standards and Specifications	5
3		Definitions	
4	Acronyms		6
5	Data Broadc	casting	7
		T: Direct Broadcast	
	5.1.1	Contents of MPT real-time data broadcasting	7
	5.1.2	Process of MPT real-time data broadcasting	8
	5.1.3	Multi-load Data Processing	8
	5.1.4	Scrambling	9
	5.1.5	Error Correction Coding	10
	5.1.6	Modulation	13
	5.1.7	Index of MPT real-time transmission downlink	13
	5.1.8	MPT link control link-calculation	16
	5.2 FY3-	-E data transmission format	18
	5.2.1	Source package format	18
	5.2.2	Low-rate load data stream	18
	5.3 Orbit	ital parameters	24

FIGURE 1	WORKING PROCESS OF MPT REAL-TIME DATA BROADCASTING	8
FIGURE 2	Data scrambling flow	(
FIGURE 3	RS CODING WITH AN INTERLEAVING DEPTH OF I = 4	11
FIGURE 4	CONVOLUTIONAL CODING (7, 3/4)	
	CONVOLUTIONAL CODING (7, 1/2)	
FIGURE 6	QPSK FLOW	13
FIGURE 7	MPT Antenna gain curve	15
FIGURE 8	- CADU data format	.23

Table 1- four-PHASE GRAY-CODE MODULATION	13
Table 2- MPT ANTENNA GAIN INDICATORS	15
Table 3 – MPT links	16
Table 4 -Input information for data processing	18
Table 5 – Basic format of 1553B data source package	19
Table 6— the implication of the dominant element in the 1553B data source package	19
Table 7 – Information processing virtual channel assignment	20
Table 8- frame format	21
Table 9 – Elements of data format	22

1 Scope

This document of standard illustrates technical requirements for the moderate resolution spectral image transmission (MPT) of FY-3E meteorological satellite.

The standard is applicable for data transmission and data receiving system between the satellite and ground station for FY-3E meteorological satellite.

2 Reference Standards and Specifications

The following documents are essential for the application of this document of standard. For the referred documents with specific dates noted, only the versions with those specific dates are applicable for this standard. For those without specific dates, the latest versions of the referred documents (including all the amendments) are applicable for this standard.

GB 50174 Requirements for design of computer room

GB 13615 Requirements for Earth station electromagnetic environment protection

CCSDS 101.0-B-3 Telemetry channel coding

CCSDS 102.0-B-3 Packet telemetry

CCSDS 202.1-B-1 Command operation procedures

CCSDS 202.0-B-2 Data routing service

3 Terms and Definitions

Followings are the terms and definitions applied in this document.

1) FENGYU 3E Meteorological Satellite; China's second generation polar orbiting meteorological satellites include FENGYUN 3A Meteorological Satellite (FY-3A), FENGYUN 3B Meteorological Satellite (FY-3B), FENGYUN 3C Meteorological Satellite (FY-3C), FENGYUN 3D meteorological Satellite (FY3-D) and FENGYUN 3E Meteorological Satellite (FY-3E). FY3-E carries 11 observation instruments in 9 categories. These observation instruments provide global scanning, all-weather

scanning, multi spectral scanning, three-dimensional remote sensing and quantitative observation data to Earth stations.

2) Moderate Resolution Picture Transmission; MPT

Broadcast image data from moderate resolution spectrum imaging instrument on polar orbiting satellite in real time through satellite X-band data transmission link.

3) Primitive packet data

Observation data and auxiliary data observed from satellite payload.

4) Multiplexing Transmission Technology

Techniques for transmitting data from various detectors and application processes simultaneously using one actual physical channel.

5) Transmission Frame

Data structure for physical channel transmission.

4 Acronyms

Following are the acronyms applicable to this document.

HIRAS Hyper infrared Atmosphere Sounder
SSIM Solar Spectral Irradiance Monitor
SIM-II Solar Irradiance Monitor -II

WindRAD Wind Radar

TRI-IPM Triple Ionospheric PhotoMeter

X-EUVI Solar X-ray Extreme Ultraviolet Imager GNOS-GPS GNSS Radio Occultation Sounder-GPS GNOSBDS GNSS Radio Occultation Sounder-BDS BDS MWTS-III MicroWave Temperature Sounder

MWHS-II MicroWave Humidity Sounder

MERSI-LL Medium Resolution Spectral Imager

SEM Space Environment Monitor

VASS Vertical Atmospheric Sounding System

BPSK: Binary Phase Shift Keying CADU: Channel Access Data Unit

Conv: Convolutional Code

EIRP: Equivalent Isotropically Radiated Power

G/T: Gain/Temperature

QPSK: 4-Phase Shift Keying

RHCP: Right Hand Circular Polarized LHCP: Left Hand Circular Polarized

RS: Reed-Solomon codes

SBUS: Solar Backscatter Ultraviolet Sounder

SIM: Solar Irradiance Monitor

TOU: Total Ozone Unit
USB: Universal Serial Bus
VC: Virtual Channel

VC-ID: Virtual Channel-Identity VCDU: Virtual Channel Data Unit

VCDU-ID: Virtual Channel Data Unit-Identity
VIRR: Visible and Infrared Radiometer

5 Data Broadcasting

FY3E transmits data to the ground station through two satellite links. These data include real-time data MPT and global delay data DPT. Detailed technical specifications of MPT link is shown as followings:

5.1 MPT: Direct Broadcast

5.1.1 Contents of MPT real-time data broadcasting

MPT broadcasts real-time data including:

MERS-LL: Medium Resolution Spectral Imager -LL

HIRAS:High-spectral Resolution Infrared Atomospheric Sounder

MWTS (III): Microwave thermometer (III)

MWHS (II): Microwave Humidity Sounder (II)

5.1.2 Process of MPT real-time data broadcasting

The working process of MPT real-time data broadcasting is shown as in Figure 1, which includes channel coding, modulation, transition, etc. The working process of MPT data broadcasting in FY-3E meteorological satellite is:

- 1) Format the MPT data based on the standards from CCSDS 102. Q-B-3;
- 2) Perform multiplexing, RS encoding and scrambling on the data to form a transmission frame data stream, using multiplexing technology to carry out the transmission of the load data frame operation;
- 3) Apply serial-to-parallel conversion and differential coding to transmission frame stream;
- 4) After the serial-to-parallel conversion, apply convolutional coding with constrained length of 7 and rate of 3/4 to the data, which is Conv (7, 3/4);
- 5) Modulate the encoded data by QPSK mode, perform upward conversion, power amplifying and filtering on these data and finally transmit these data through antenna;
- 6) MPT downlink works on concatenated codes, or RS (255,223) + CONV (7,3/4), with its flow shown in Figure 1.

Figure 1 Working process of MPT real-time data broadcasting

5.1.3 Multi-load Data Processing

5.1.3.1Low rate data payload source package

Create the low rate data payload source package based on format shown in 5.2.2.

5.1.3.2 Multiplexed data broadcasting technology

Multiplex the source package data and create virtual channels based on the parameters from 5.2.4.

5.1.3.3 Data transmission frame

Create data transmission frames using data from the virtual channels based on the data format standards specified in CCSDS 102.0-B-3. Format of the transmission frame is shown in Table 12 and Figure 8.

5.1.4 Scrambling

With scrambling, Pseudo randomized sequence generates a polynomial equation:

$$F(X)=X^8+X^7+X^5+X^3+1$$
 (1)

Where,

F(x) – Polynomial equation

X – Data bits.

Reduction of consecutive codes of "0" or "1" to ensure the timely recovery of data quality is quite essential in digital base-band signal transmission. To perform "randomization" on binary digital information into a pseudo randomized sequence could also limit the length of consecutive "0"s (or consecutive "1"s), where this randomization is often called "code scrambling".

Code scrambling brings better synchronization between clock and data. CCSDS suggests a polynomial of F(X)=X8+X7+X5+X3+1 for code scrambling process, where the sequence shall be repeated for every 255 bits and in each synchronous cycle the sequence generator will be reinitialized into "full 1" status.

The scrambling principle workflow is shown as below:

Figure 2 Data scrambling flow

5.1.5 Error Correction Coding

Based on characteristics of space communication efficiency (which is quite limited) and also considering construction costs of ground station, FY-3E satellite MPT data link adopts cascade coding scheme where RS(255,223) works as outer code and convolutional code works as inner code, which is suggested by CCSDS, meanwhile interleaving depth of RS code is I=4.

5.1.5.1. RS Coding

In accord with the requirements of the CCSDS 101.0-B-3, encode with the number of symbols of 255, message length of 223, and the symbol for 8 of RS (255,223, 8). The interleaver depth is 4.

To make RS(255,233) code meet the standards defined by CCSDS, the finite field GF(2⁸) generates following polynomial in its character field GF(2):

$$F(X) = X^8 + X^7 + X^2 + X + 1$$

Then the code generation polynomial is:

$$g_{(x)} = \prod_{j=112}^{143} (x - \alpha^{11j}) = \sum_{i=0}^{32} G_i x^i$$

Where, α : generation cell for limited field GF(2⁸)

 α^{11} : primitive cell for limited field GF(28)

Gi - coefficient

RS code derived from above polynomial is a system code which means the first 223 digits of generated codeword are primitive code cells, while the last 32 digits of the codeword are the verification code cells (generated by information code cells).

To enhance the burst error correcting capability of data transmission sub-systems, an RS code whose interleaving depth of I = 4 is adopted. Its flow diagram is shown as in Figure 3.

Input: a1b1C1d1a2b2C2d2a3b3C3d3.....a223b223C223d223.

RS encoder 1 input: $a_1a_2a_3a_4....a_{223}$, output: $a_1a_2a_3a_4....a_{223}A_1A_2....A_{32}$;

RS encoder 2 input: $b_1b_2b_3b_4....b_{223}$, output: $b_1b_2b_3b_4....b_{223}B_1B_2....B_{32}$;

RS encoder 3 input: $c_1c_2c_3c_4.....c_{223}$, output: $c_1c_2c_3c_4.....c_{223}C_1C_2.....C_{32}$;

RS encoder 4 input: $d_1d_2d_3d_4....d_{223}$, output: $d_1d_2d_3d_4....d_{223}D_1D_2....D_{32}$;

Output: a1b1c1d1a2b2c2d2a3b3c3d3.....a223b223c223d223, A1B1C1D1A2B2C2D2.....A32B32C32D32

Figure 3 RS coding with an interleaving depth of I = 4

On-board RS codes are generated using the Berlekamp Approach.

5.1.5.2. Convolutional Coding

Convolutional coding of Conv (7, 3/4) is applied based on the requirements from CCSDS 101.0-B-3.

To improve code rate while avoiding unnecessary demands of bandwidth and reducing the complicated calculation, MPT data link adopts Conv(7,3/4) convolutional coding.

3/4 code rate is derived from the output of 1/2 convolutional encoder. The coding flow is shown as in Figure 4.

Figure 4 Convolutional coding (7, 3/4)

Code generating vector (7, 1/2): $G_1 = 1111001$, $G_2 = 1011011$, with a flow shown in Figure 5.

Figure 5 Convolutional coding (7, 1/2)

Flow 1: $X_1X_2X_3X_4X_5X_6X_7X_8...$

Flow 2: Y₁Y₂Y₃Y₄Y₅Y₆Y₇Y₈.....

Output: $X_1Y_1X_2Y_2X_3Y_3X_4Y_4X_5Y_5X_6Y_6X_7Y_7X_8Y_8...$

2/3 punch module input::

$$L(k) = \ldots l(k), \quad \boxed{l(k+1)}, \quad l(k+2), \quad l(k+3), \quad \boxed{l(k+4)}, \quad l(k+5), \quad l(k+6), \quad \ldots \qquad \qquad M(k) = \ldots m(k), \quad m(k+1), \quad M(k) = \ldots m(k), \quad m(k+1), \quad M(k) = \ldots m(k), \quad M(k) = \ldots m(k),$$

$$m(k+2)$$
, $m(k+3)$, $m(k+4)$, $m(k+5)$, $m(k+6)$,

2/3 punch module output:

$$L'(k)=...l(k)$$
, $l(k+2)$, $l(k+3)$, $l(k+5)$, $l(k+6)$,

$$M'(k)=...m(k), m(k+1), m(k+3), m(k+4), m(k+6),$$

CONV(7,3/4) serial output::

$$...l(k),m(k),m(k+1),l(k+2),l(k+3),m(k+3),m(k+4),l(k+5),l(k+6),....$$

5.1.5.3. Data transfer bit conversion

1) Serial-Parallel Converter

Serial data streams will be separated into odd and even parallel data streams. In one of the flows, there will be a 1 bit delay, making two consecutive symbols to form a pair of symbols. After data processing, X-band real-time information processing module will produce a code rate of 4.5Mbps in non-return to zero code, for MPT transmission.

If input: m1, m2, m3, m4, m5, m6, m7, m8 The output will be:

2) Differential Coding

There are two kinds of differential coding based on the previous pair of output code cells.

When the previous pair of output code cells is the same, then the current output of the encoder is:

$$X_{\text{out } i} = X_{\text{in } i} + X_{\text{out } (i-1)}$$

$$Y_{\text{out }i}=Y_{\text{in }i}+Y_{\text{out(i-1)}}$$

Where,

X_{out i} means the 1st flow current output of the encoder;

 $Y_{out\,i}$ means the 2^{nd} flow current output of the encoder;

 $X_{in i}$ means the 1st flow current input of the encoder; $Y_{in i}$ means the 2nd flow

current input of the encoder; Xout(i-1) means the 1st flow of previous output of

the encoder;

Y_{out(i-1)} means the 2nd flow of previous output of the encoder.

When the previous pair of output code cells is not the same, then,

$$X_{out} = Y_{in} + X_{out(i-1)}$$

$$Y_{out} = X_{in} + Y_{out(i-1)}$$

5.1.6 Modulation

FY3E is designed with a QPSK modulation system. The onboard QPSK is realized through two BPSKs which differentiates of $\pi/2$. The input data of Channel I and Channel Q are the two output values of gray-code logic.

Specifications for the 4-phase gray-code modulation: dual-bit coding pair AB are 00, 01, 11, and 10, and the corresponding carrier phases are: 0° , 90° , 180° , and 270° respectively. The onboard QPSK is a $\pi/2$ system.

Channel I and Channel Q are the convolutional coding outputs.

Figure 6 QPSK flow

By using gray-code logic, the modulator works in line with the following specifications:

Twell I few III. BE GIVE CODE MODELLING.					
Dual-bit coding pair AB	Carrier phase φ				
00	0°				
01	90°				
11	180°				
10	270°				

Table 1- four-PHASE GRAY-CODE MODULATION

5.1.7 Index of MPT real-time transmission downlink

MPT real-time transmission downlink parameters are shown as below:

1) Data rate: 57.750 Mbps (after RS coding I = 4)

2) Data rate: 77 Mbps (after:CONV (7, 3/4)

3) Frequency: X-band 7860MHz±78KHz

4) Modulation mode: QPSK

5) Bandwidth: 77MHz

6) EIRP: 46 dBm (EL=5°)

7) Polarization: RHCP

8) Axial ratio: not larger than 5dB for an area of $\pm 62^{\circ}$

- 8) Direction pattern: multiple beams, and axis of symmetry
- 9) Real-time transmission covers the abroad area within international cooperation, and the domestic area with system of receiving capacity.

The antenna gain distribution is shown in Table 2:

Table 2- MPT ANTENNA GAIN INDICATORS

Antenna Elevation Angle θ	Antenna Gain
(° degree)	(dBi)
±62°	≥5.0
±60°	≥5.5
±55°	≥4.5
±50°	≥2.8
±45°	≥1.0
±40°	≥-0.4
±35°	≥-1.5
±30°	≥-2.3
±25°	≥-3.0
±20°	≥-3.3
±15°	≥-3.7
±10°	≥-4.0
±5°	≥-4.3
0°	≥-4.5

Gain curves smooth out between $\pm 60^{\circ} \sim 0^{\circ}$ as follows:

Figure 7 MPT Antenna gain curve

5.1.8 MPT link control link-calculation

Table 3 – MPT links

	PARAMETERS	LINK MARGIN FOR DIFFERENT ANGLES			
System	Link	MPT LINK	MPT LINK	MPT LINK	MPT LINK
	Elevation angle (°)	5.00	35.00	65.00	90.00
	Earth radius (km)	6371.00	6371.00	6371.00	6371.00
	Satellite Track height (km)	830.00	830.00	830.00	830.00
Parameters	Satellite-ground distance (km)	2846.65	1307.43	904.60	830.00
	Working frequency (GHz)	7.86	7.86	7.86	7.86
	Ground antenna diameter (m)	4.2	4.2	4.2	4.2
	antenna efficiency	0.55	0.55	0.55	0.55
	Information bit rate (Mbps)	57.75	57.75	57.75	57.75
	Modulation symbol rate Rs (Mbps)	77.00	77.00	77.00	77.00
Satellite	EEC i'	RS(223,255)+	RS(223,255)+	RS(223,255)+	RS(223,255)+
	FEC coding	CONV(7,3,4)	CONV(7,3,4)	CONV(7,3,4)	CONV(7,3,4)
	Transmitting power (W)	23.00	23.00	23.00	23.00
	Antenna gain (dBi)	5.65	4.01	(0.17)	(0.91)
	EIRP (dBW)	19.27	17.63	13.45	12.71
	Loss in space (dB)	179.44	172.68	169.48	168.73
Channel	Absorption loss in atmosphere (dB)	0.30	0.30	0.30	0.30
	Rainfall loss (dB)	4.50	4.50	4.50	4.50

NSMC	- P	interface Control Book		8	
	Antenna pointing loss (dB)	0.50	0.50	0.50	0.50
	Polarization loss (dB)	1.00	1.00	1.00	1.00
Ground	Total transmission loss[L](dB)	185.74	178.98	175.78	175.03
Receiver	Signal receiving power on the ground (dBW)	166.47	161.35	162.33	162.32
	[Gr/Tr] (dB)	25.678	25.678	25.678	25.678
	Boltzmann constant [k] (dBW/K/Hz)	228.60	228.60	228.60	228.60
	Receiver input C/N ₀ (dBHz)	88.464	93.582	92.601	92.609
	Code rate (dBbps)	78.865	78.865	78.865	78.865
	[Eb/N0] (dB)	9.599	14.717	13.736	13.744
	Coding gain [Gc] (dB)	5.000	5.000	5.000	5.000
	Demodulation Loss (dB)	1.800	1.800	1.800	1.800
	The need for Eb/N0 (dB) (error rate of 1e-7)	11.400	11.400	11.400	11.400
	Eb/N0 design margin [M] (dB)	1.399	6.517	5.536	5.544

5.2 FY3-E data transmission format

5.2.1 Source package format

The input information of multi-load data processing is shown in Table 4:

Table 4 -Input information for data processing

Remote sensing instrument	Code rate	Virtual channel	VC-ID	APID	Notes
MERSI-LL	8Mbps	VC1	00,0011		Broadcasts X-band data directly in real time
HIRAS (original)	22.5Mbps	VC6	00,0110		Broadcasts X-band data directly in real time
HIRAS (depressed data)	10Mbps	VC9	11,0110		Broadcasts X-band data directly in real time
Microwave Thermometer	packets			000,0000,0111	Enter terminal processor through the number pipe 1553B, as X real- time data
Microwave Humidity Sounder	packets	VC10	00,1100	000,0001,0000	Enter terminal processor through the number pipe 1553B, as X real-time data

5.2.2 Low-rate load data stream

8 kinds of low rate load data streams transmitted through 1553B are in accordance with the basic format shown as below.

Table 5 – Basic format of 1553B data source package

Packet Primary header (6bit)							Package		
Packet marking 2bit		Packet equence control packet length 2bit 2bit		assistant head 6 bit	user	data			
Packet Version number	Packet Type symbol	Packet header label	Appliction process label	Grouping flag	Packet sequence count		Time mark	Secondary data	Application process data
3bits "000"	1bits "0"	1bit	11bits	2bits	14bits	16bits	48bits	Can change	Can change

The main elements of the package lead are shown in the following table:

Table 6- the implication of the dominant element in the 1553B data source package

Elements	Means
Version number	Set to 000, version of a CCSDS package
Type indicator	Set to 0, not used in ASO
Header flag	Set to 1, indicating the existence of deputy head; set to 0, said no deputy head, or idle packets, or encryption source package
Application process identifier	Set to 0-2015, indicating the logical path of the message;
	"01": Package group of the first source;
Grouping flag	"00": Package group connected source package;
	"10": The last source of Package group;
	"11": Source package does not belong to the package group.
Packet sequence count	An application process for the binary count of each source package, module 16384;
Packet data length	The number of bytes in the packet header and user data fields is reduced by 1

Bit stream traffic from different SLS users cannot share the same virtual channel. FY3-E data transmission system processes information for each bit stream traffic service and it assigns one virtual channel for each user. The information data stream inputted by the 1553B bus shares one virtual channel. FY3-E number system information processing virtual channel assignment and virtual channel identifier (VC-ID) of each virtual channel are shown in Table 11.

Table 7 – Information processing virtual channel assignment

Remote sensing instrument	Virtual channel	VC-ID	
Medium Resolution Spectral Imager -LL	VC1	00,0011	
Hyper infrared Atmosphere Sounder (Original)	VC6	00,0110	
Hyper infrared Atmosphere Sounder	T/C0	11.0110	
(Depressed)	VC9	11,0110	
Microwave Thermometer (III)	VC10	00,1100	
Microwave Humidity Sounder (II)	VC10	00,1100	

Output data from two channels to the MPT transmitter and solid state recorder. The data output to the MPT transmitter must be continuous and if necessary, fill the idle data to ensure continuous physical channel. FY3-E uses frame format shown in Table 11.

Table 8- frame format

A., 1. 16	Versio	Aerocraft							Data area	
Attached Sync Marker(ASM)	n (01)	(001101	VC identification		count	playback	patcharea	pointer (2Bytes)	data (882Bytes)	RS (128Bytes)
1A CF FC 1D	01	001110	Medium Resolution Spectral Imager - LL	03		Real-time	Encrypt ion:	MPT: 3F FF		
			Hyper infrared Atmosphere Sounder (Original)	06		: 00	FF+key			
			Hyper infrared Atmosphere Sounder (Depressed)	36		Delayed:	number code :			
							00 00			

Table 9 – Elements of data format

Element	Definition					
Attached Sync Marker(ASM)	32bits, "1ACFFC1D", mean the head of CADU frame					
Version number	2bits ,Set to "01"B, representing CCSDS version 2.					
Aerocraft		8bits ,Form VCDU-ID,"00111000"B,with VC identifier.				
VC-ID	6bits ,Virtual channel identifier. Filled CADU set for all "1"B。					
VCDU count	The order of the number of the total number of VCDU transmitted on each VC (1677721 together with the VCID domain is used to maintain a separate count for each VC, the VC count of the filled CADU is counted for the order (mode 16777216).					
Signal field	In the proposed CCSDS interpretation, playback flag is set to "0" on behalf of B, representing L band /X band real-time VCDU; playback flag is set to "1", representing X band delayed VCDU; spare flag is set to all "0".					
Patch area	Encryption control					
Spare/guide	B-PDU	Spare 2bits are set to all "0" B, bit stream data pointer 14bits are set to all "1" B.				
head pointer	M- PDU	Spare 5bits are set to all "0" B, 11bits indicate M-PDU head pointer.				

Figure 8 – CADU data format

5.3 Orbital parameters

1) Orbit type: polar orbiting, sun-synchronous

2) Theoretical orbit altitude: 830km
3) Theoretical inclination angle: 98.75°
4) Orbit precision: semi major axis deviation: |Δa|≤5km
5) Inclination angle deviation: |Δi|≤0.08°
6) Deviation of eccentricity: ≤0.003

7) Sub-satellite point return cycle: D = 4 - 10 days

8) Orbit maintenance eccentricity: ≤0.0025

9) Satellite launch window: symmetrical window for launches in early morning, when the descending node local time at $5:30\sim5:50$.

10) Descending (ascending) node local time shift: less than 20 minutes in 8 years (reference to orbit descending node local time)

Technical person in charge of this document: Zhu Aijun Professor

Organization: National Satellite Meteorological Center CMA

E-Mail: zhuaj@cma.gov.cn