

DARA: Domain- and Relation-aware Adapters Make Parameter-efficient Tuning for Visual Grounding

Ting Liu^{*} Xuyang Liu^{*} Siteng Huang Honggang Chen Quanjun Yin Long Qin Donglin Wang Yue Hu⊠ National University of Defense Technology & Sichuan University & Westlake University

Overview

Research Question

How can parameter-efficient transfer learning (PETL) be effectively applied to the visual grounding (VG) to reduce computational costs during finetuning, while achieving competitive performance?

Contributions

- present an in-depth exploration of adapting PETL methods for VG. To the best of our knowledge, this is the first study to investigate parameter-efficient tuning paradigm for visual grounding.
- propose DARA, a novel PETL framework incorporating Domain-aware Adapters and Relation-aware Adapters, to facilitate effective and efficient intra- and inter-modality representation transfer for VG.
- achieve the best accuracy while saving numerous updated parameters compared to full fine-tuning and other PETL methods.

Full Fine-tuning vs DARA

Overall Architecture

- Baseline Model: we use a typical transformer-based VG framework, to implement, including: a Vision Backbone, a Language Backbone, and a Vision-language Transformer.
- DARA: DARA consists of Domainaware Adapters and Relationaware Adapters. During fine-tuning, We freeze the vision and language backbones and update our DARA to facilitate effective and efficient single-modality and cross-modality representations transfer for VG. Notably, with only 2.13% tunable DARA backbone parameters, average accuracy by 0.81% across three benchmarks compared to the baseline model.

Domain-aware and Relation-aware Adapters

Domain- and Relation-aware Adapters

- Adapter: typically inserting an MLP into each frozen backbone layer.
- Domain-aware Adapters (DA): DA refine pre-trained intra-modality representations to be more finegrained for the visual grounding domain, enhancing the precision in describing and locating objects.
- Relation-aware Adapters (RA) : RA facilitate early cross-modality interactions by sharing weights between the vision and language backbones, thus improving spatial reasoning and the effectiveness of fusion for visual grounding.

Quantitative Results

Methods	Backbone	bone #Updated		RefCOCO			RefCOCO+			RefCOCOg		
Methous	(vision/language)	Params.	val	testA	testB	val	testA	testB	val-g	val-u	test-u	
Full fine-tuning methods												
Two-stage:												
MAttNet	RN101/LSTM	47 M	76.65	81.14	69.99	65.33	71.62	56.02	-	66.58	67.27	
RvG-Tree	RN101/LSTM	47M	75.06	78.61	69.85	63.51	67.45	56.66	-	66.95	66.51	
One-stage:									1			
FAOA	DN53/LSTM	43M	72.54	74.35	68.50	56.81	60.23	49.60	56.12	61.33	60.26	
SAFF	DN53/BERT	152M	79.26	81.09	76.55	64.43	68.46	58.43	-	68.94	68.91	
PFOS	DN53/BERT	152M	77.37	80.43	72.87	63.74	68.54	55.84	61.46	67.08	66.35	
Transformer-based:												
VGTŘ	RN50/LSTM	52M	78.70	82.09	73.31	63.57	69.65	55.33	62.88	65.62	65.30	
DMRNet	DN53/BERT	152M	76.99	79.71	72.67	61.58	66.60	54.00	-	66.03	66.70	
TransVG [†]	RN50/BERT	151M	80.32	82.67	78.12	63.50	68.15	55.63	66.56	67.66	67.44	
Parameter-efficient fine-tuning methods												
Adapter	RN50/BERT	3.27M	78.02	79.89	75.23	61.35	66.34	54.21	63.18	65.26	66.65	
LoRA	RN50/BERT	2.37M	77.57	78.22	73.37	61.24	66.53	53.95	64.27	67.36	66.43	
AdaptFormer	RN50/BERT	2.38M	76.32	77.16	73.94	60.96	65.19	53.88	61.81	65.44	64.37	
CM Adapter	RN50/BERT	3.27M	77.37	78.81	74.07	61.34	66.10	53.31	63.93	65.75	64.72	
MRS-Adapter	RN50/BERT	1.58M	77.14	77.80	74.80	61.13	66.38	53.13	63.07	66.46	65.16	
DARA (ours)	RN50/BERT	3.21M	81.16	82.76	76.72	65.58	69.83	57.22	67.21	69.22	67.67	
$\Delta_{baseline}$	RN50/BERT	2.13%	+0.84	+0.09	-1.40	+2.08	+1.68	+1.59	+0.65	+1.56	+0.23	

Qualitative Results

Ground Truth "second woman

Expression 1:

on left"

Quantitative Results

DARA achieves the best accuracy while ensuring parameter efficiency among all methods, thus validating its effectiveness and efficiency.

Qualitative Results

DARA focuses more on the referred object, which suggests that weightsharing strategy of RA Adapters promotes the synergy between vision and language modalities, thereby enhancing spatial reasoning for VG.

For more experimental results, please refer to our paper.