Descriptive Statistics II

Dr. Umesh R A

Agenda

- Measures of Dispersion
- Skewness
- Kurtosis

Is Central Tendency of data is enough to describe the frequency distribution?

Yes or No?

What is Measures of Dispersion (Variation)?

Why Measures of Dispersion?

Dispersion

Dispersion:

The property of deviation of values from the average is called variation or dispersion.

Measures of Variations:

The degree of variation is indicated by Measures of Variations.

Dispersion

Measures of Variation:

- Range
- Interquartile Range
- Mean Deviation (M.D.)
- Standard Deviation (S.D.)

The above measures are <u>absolute measures</u> of variation.

Relative measures of variation

However, for comparison of variation in two or more frequency distribution, a <u>relative measure</u> of variation should be calculated.

Relative measures of variation:

- 1. Coefficient of Range
- 2. Coefficient of Quartile Deviation
- 3. Coefficient of Mean Deviation
- 4. Coefficient of Variation (C.V.)

Absolute vs Relative Measures

- The absolute measures are dependent of the units of Measurement. So, we can not compare two different frequency distributions directly.
- The relative measures are independent of the units of Measurement. And so, they facilitate comparison.

Requisites of Good Measure of Dispersion

- It should be based on all the observations.
- It should not be affected by extreme value.
- It should be rigidly defined.
- It should be easy to calculate and understand.
- It should be capable of further algebraic treatment.
- It should be Possible to find for open end class intervals.

Range

Range is the difference between the highest and the lowest value in the data.

$$R = H - L$$

where, H-Highest Value, L-Lowest Value

Coefficient of range:

Coef. of Range =
$$\frac{H - L}{H + L}$$

Example: 12, 25, 27, 29, 36, 38, 40, 43, 50, 54, 62

Range = 62 - 12 = 50

Range

 A major drawback of Range is that, since it is based on extreme values, it is highly affected by abnormal values.

This drawback is rectified in quartile deviation.

Quartile Deviation (Q.D.)

Quartile Deviation (or Semi-Interquartile Range)

- It is based on only lower and upper Quartiles.
- It is not based on all the observations.
- So, it is not affected by abnormal extreme values.

Q.D.: Formulae

Quartile Deviation:

$$Q.D. = \frac{Q_3 - Q_1}{2}$$

Coefficient of Quartile deviation:

Coef. Q. D. =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1}$$

Interquartile Range (IQR):

$$IQR = Q_3 - Q_1$$

Mean Deviation

 The mean deviation of a set of values from a central value is the mean of absolute deviations of the values from the central value (Mean or Median or Mode).

Mean deviation about AM

For Raw data:

$$M.D.(\overline{X}) = \frac{\sum |x - \overline{x}|}{n}$$

For tabulated data:

$$M.D.(\overline{X}) = \frac{\sum f |x - \overline{x}|}{N}$$

Relative Measure:

Coeff of M.D.(
$$\overline{X}$$
) = $\frac{M.D.(X)}{\overline{X}}$

Mean deviation about Median

For Raw data:

$$M.D.(M) = \frac{\sum |x - M|}{n}$$

For tabulated data:

$$M.D.(M) = \frac{\sum f|x-M|}{N}$$

Relative Measure:

Coeff of
$$M.D.(M) = \frac{M.D.(M)}{M}$$

Tip! (about Mean deviation)

Mean deviation can be calculated about any average - mean, mode, median, G.M., H.M., etc.

But, mean deviation is the least when it is measured from the median (Minimal property of Median).

Therefore, M.D.(M) should be preferred.

Standard Deviation (S.D.)

 The standard deviation of a set of values is the positive square-root of mean of the squared deviations of the values from their Arithmetic Mean.

• It is denoted by σ (sigma).

S.D.: Formulae

Raw data

Tabulated data

For
$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$
 $\sigma = \sqrt{\frac{\sum f(x - \overline{x})^2}{N}}$

$$\sigma = \sqrt{\frac{\sum f(x - \overline{x})^2}{N}}$$

For
$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$
 $\sigma = \sqrt{\frac{\sum f(x - \overline{x})^2}{N - 1}}$

$$\sigma = \sqrt{\frac{\sum f(x - \overline{x})^2}{N - 1}}$$

Properties

- 1. S.D. is independent of the origin of measurement but not independent of scale.
- 2. Always, σ ≥ 0.
- 3. S.D. is the least of all root-mean-square deviations.

Note: SD= σ ,Variance= σ^2

Coefficient of Variation (C.V.)

 Coefficient of Variation is relative measure of Standard deviation.

$$C.V. = \frac{Standard Deviation}{Arithmetic Mean} \times 100$$

$$C.V. = \frac{\sigma}{x} \times 100$$

It is independent of units of measurement. So, useful while comparing variation present in different frequency distributions.

Is Central Tendency and variation enough to describe frequency distributions?

Yes or No?

- Clearly NO.
- There few measures need to be computed to describe data, such as;
 - -Skewness
 - Kurtosis

 To compute skewness and kurtosis we need to know the "Moments".

Lets see!

Moments

- The characteristics of a frequency distributions are described by its Moments.
- Definition: The r^{th} moment of the set of values about any constant is the mean of r^{th} powers of the deviation of the values from the constant.
- Types of Moments:
 - Central Moments
 - Raw moments

Moments: Formulae

Here, 'a' is any constant except AM.

	Central Moments	Raw Moments
Raw data	$\mu_r = \frac{\sum (x - \bar{x})^r}{n}$	$\mu_r' = \frac{\sum (x-a)^r}{n}$
Tabulated data	$\mu_r = \frac{\sum f(x - \bar{x})^r}{N}$	$\mu_r' = \frac{\sum f(x-a)^r}{N}$

Moments

 Moments helps in measuring the scatteredness, asymmetry and peakedness of a curve for a particular distribution.

Applications of Moments

- The first moment about zero is the mean.
- The second moment about the mean is the sample variance.
- The third moment about the mean in calculating skewness.
- The fourth moment about the mean in the calculation of kurtosis.

Skewness

Skewness means non-symmetry or asymmetry or lack of symmetry.

Skewness

If *mean = median = mode*, the shape of the distribution is **symmetric**.

If mode < median < mean, the shape of the distribution trails to the right, is **positively skewed**.

If mean < median < mode, the shape of the distribution trails to the left, is negatively skewed.

Aegi

Measures of Skewness

- 1. Based on Moments
- 2. Karl Pearson's Coefficient of Skewness
- 3. Bowley's Coefficient of Skewness

1. Based on Moments

Formula:

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3}$$
 OR $\gamma_1 = +\sqrt{\beta_1}$

• Measure based on moments (i.e. β_1) is **more exact** in indicating degree of skewness of skewness than others.

2. Karl Pearson's Coefficient of Skewness

Formula:

$$S = \frac{mean - mode}{S.D.} = \frac{\bar{x} - Z}{\sigma}$$

Note:

If mode is ill-defined, we can go for following formula;

$$S = \frac{3(mean - median)}{S.D.} = \frac{3(\bar{x} - M)}{\sigma}$$

since we know, $Z = 3M - 2\bar{x}$

3. Bowley's Coefficient of Skewness

Bowley's Coefficient of Skewness is based on quartiles. Also called as *Galton skewness*.

Formula:

$$S = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)}$$

Kurtosis

Kurtosis is the degree of peakedness (non-flatness).

Kurtosis: Based on Moments

Formula:

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$
 OR $\gamma_1 = \beta_2 - 3$

If,	Decision	If,
$\beta_2 = 3$	Platykurtic	$\gamma_1 = 0$
$\beta_2 < 3$	Mesokurtic	$\gamma_1 < 0$
$\beta_2 > 3$	Leptokurtic	$\gamma_1 > 0$

Skewness

 If skewness = 0, the data are perfectly symmetrical. But a skewness of exactly zero is quite unlikely for real-world data, so how can you interpret the skewness number?

Skewness

Bulmer, "Principles of Statistics" (1979) suggests the following rule of thumb:

- If skewness is less than -1 or greater than +1,
 the distribution is highly skewed.
- If skewness is between -1 and -½ or between +½ and +1, the distribution is moderately skewed.
- If skewness is between -½ and +½, the distribution is **approximately symmetric**.

Example:

Question: In frequency distribution, first four central moments are 0, 4, -2 and 2.4. Comment on Skewness and Kurtosis of the distribution.

Solution:

Given, $\mu_1=0$, $\mu_2=4$, $\mu_3=-2$ and $\mu_4=2.4$ Therefore,

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = 0.0625$$
 and $\beta_2 = \frac{\mu_4}{\mu_2^2} = 0.15$

Since, μ_3 is negative, the distribution is negatively skewed. Also, $\beta_1 = 0.0625$ is very small, the distribution is slightly skewed.

Since, $\beta_1 = 0.15 < 3$, the distribution is **platykurtic**.

Next Lecture

- Topic: Probability
 - -Introduction to Probability
 - -Conditional probability
 - -Bayes Theorem
- Background material to study
 - -Business Statistics, Chpt2, pp. 50
- •We will have MCQ on this lecture: 10 Questions
- And will have recap of the lecture one.
- Discuss on the assignment of this lecture.

Thank You

