PROPERTIES OF SURFACES (TUTORIAL SHEET 6)

× 1. What are the coordinates of the centroid of the shaded area? The parabola is given as $Y^2=2X$. & Y are in mm. (Ans: 1.7 mm, 3.75 mm)

- 2. Locate the centroid of the volume formed by rotating the shaded area about the a-a axis. (Ans: 0.0m, 3.0m, 0.694m)
- (a) the first moments about X and Y axes, (b) the location of the centroid. (Ans:506x10³mm³, 758x10³mm³, 54.8mm, 36.6mm) 3. For the plane area shown, determine

R40.0

80 mm

60 mm

8

- Find the surface area & earth entry capsule Approximate the rounded nose with a for an unmanned mars sampling mission. pointed nose as shown with dashed lines 4.
- triangular figure formed by bending a thin homogenous wire. (Ans: 100mm, 30mm) S

6. Determine the moment of inertia and radius of gyration of the shaded area with respect to X & Y axes. (Ans: 3/35 ab³, 3/35 a³b, b $\sqrt{(9/35)}$, a $\sqrt{(9/35)}$)

- Determine the moment of inertia of the shaded area shown with respect to the X & Y axes when a=20mm. (Ans: 95.4x10⁴mm³, 46.3x10⁴mm³)
- 8. The shaded area is equal to 5000 mm^2 , determine the centroidal moment of inertia $I_x \& I_y$ knowing that $I_y=2I_x$ and the polar moment of inertia of the area about point A is $J_A=22.5 \times 10^6 \text{ mm}^4$.

 (Ans $1.5 \times 10^6 \text{ mm}$, $3.0 \times 10^6 \text{ mm}$)

9. Determine moment of inertia I_x , I_y , I_{xy} of the areas shown with respect to the centroidal X and Y axes. Also determine the orientation of the principal axes through the centroid and the principal moment of inertia.

Ans: (a) $3.2 \times 10^6 \text{ mm}^4$, $7.2 \times 10^6 \text{ mm}^4$, $2.4 \times 10^6 \text{ mm}^4$, $\theta = 25.1^\circ$, $8.32 \times 10^6 \text{ mm}^4$, $2.1 \times 10^6 \text{ mm}^4$,

(b) $0.61 \times 10^6 \text{ mm}^4$, $1.9 \times 10^6 \text{ mm}^4$, $-0.8 \times 10^6 \text{ mm}^4$, $\theta = -25.7^\circ$, $2.28 \times 10^6 \text{ mm}^4$, $0.23 \times 10^6 \text{ mm}^4$,

