Dr Sarah Marshall

Department of Information Systems and Operations Management University of Auckland Business School, New Zealand sarah.marshall@auckland.ac.nz

4th December 2023 Statistics Teachers Day University of Auckland

Introduction

Tēnā koutou katoa Ko Ingarangi a Kōtirana te whakapaparanga mai engari Ko Kaitaia te whenua tupu Nō Napier au Kei Tāmaki Makaurau au e noho ana He pouako matua au i He Manga Tauhokohoko Ko Sarah Marshall au Tēnā tātou katoa

Greetings to you all
English and Scottish
is my ancestry
however,
Kaitaia is where I was born
I am from Napier
I am living in Auckland

I am a Senior Lecturer at University of Auckland Business Schoo My name is Sarah Marshall Greetings to one and all

A bit about me ...

- Grew up in Napier
- Studied Conjoint BSc/BCA and MSc at Victoria University of Wellington
- Studied PhD at University of Edinburgh, UK
- · AUT 2014 2023
- UOA since October 2023
- I love using maths to model systems
- I teach Business Analytics and Operations and Supply Chain Management

Overview

- · Introduction to modelling queues
- · Task 1
- Task 2

Who has been stuck in this kind of queue?

http://www.geograph.ie/photo/3414308

.... or this kind of queue?

Source: Sarah's Phone

.... or this kind of queue?

http://en.wikipedia.org/wiki/File:Waiting_in_line_at_a_food_store.JPG

How can we describe this queue?

http://en.wikipedia.org/wiki/File:Waiting_in_line_at_a_food_store.JPG

- Arrival Process
 - Probability distribution for time between customer arrivals (interarrival time)

- Service Process
 - · Number of Servers
 - Probability distribution for service time

- Queueing Discipline
 - · First-come-first-served
 - · Last-come-first-served
 - · Priority-based service
 - · Service in random order

Type of queues (one vs several lines)

Probability distributions

In queueing: need distributions with values that are ≥ 0 .

M/M/1 Queue

- · Arrival: interarrival time is exponentially distributed
- · Service: service time is exponentially distributed
- · Number of servers is 1

Exponential distribution

Measuring Performance of a Queue

- · Number of customers in the:
 - · Queue, La
 - · Service, Ls
 - · System, L
- · Time spent in the:
 - · Queue, Wa
 - · Service, W_s
 - · System, W

Questions of interest

- What happens if customers arrive faster than they are being served?
- If a queue has 3 servers, is it better to have individual queues or one queue?

Task 1: Supermarket Checkout Simulation

Scan the QR code or go to https://tinyurl.com/yytpyadt

 Click "Run code" to run with the default parameters

- · Two versions:
 - 1 queue with n servers
 - *n* queues with *n* servers

Task 1: Questions to investigate

1. Simulation length

- a. Change the code so the simulation runs for a longer time,e.g. simulation length = 10000
- b. Run the simulation using the "run code" button and inspect the output
- c. Repeat a few times
- 2. Number of servers
 - a. Change the number of servers num_servers = 2
 - b. Run the simulation and inspect the output
 - c. Repeat a few times

Task 1: Questions to investigate

- 3. What happens if customers arrive faster than they are served?
 - a. Change the number of servers back to 1 num_servers = 1
 - b. Change the values of lambda (arrival rate) and/or mu (service rate) so that lambda > mu. e.g. lambda = 3 and mu = 2
 - c. Run the simulation and inspect the output
 - d. Repeat a few times
 - e. Conclusion: What happens to the number of people in the system if lambda > mu?

Task 1: Questions to investigate

- 3. Which queuing configuration is best?
 Is it better to have 3 servers each with their own queue, or with a combined queue?
 - a. Change the parameters as follows:

```
lambda = 1
mu = 2
num_servers = 3
```

- Run the simulation and compare the output on the left and right
- c. Repeat a few times
- d. Conclusion: Which queueing configuration performs the best?

Task2: Designing your own supermarket checkout

Scan the QR code or go to https://tinyurl.com/38h2tzmb

- Two types of customers
 - Express (12 items or less)
 - · Arrival rate 4 per minute
 - Service rate 1 per minute (service time = 1 min)
 - · Regular (more than 12 items)
 - · Arrival rate 1 per minute
 - Service rate 0.2 per minute (service time = 5 min)
- Two types of checkouts
 - Self-checkout (12 items or less)cost = \$10
 - Staffed-checkout (any number of items) cost = \$100

Task2: Activity

Find a configuration of self and staffed checkouts which:

- Minimum cost, and must be \$700 or less
- Average waiting time in the queue is less than the average service time
 - Express customers average time in queue less than 1 minute
 - Regular customers average time in queue less than 5 minutes

e.g. 7 staffed checkouts costs \$700 so in budget, but the waiting time is too long.

 Make sure you run the simulation multiple times to ensure that your configuration consistently meets the waiting time requirements.

Conclusion

- · Queueing is fun! (and is a great application of probability)
- Simulation is useful when theoretical results are not available and also for verifying theory
- · Lots of cool applications beyond supermarket checkouts

Acknowledgments: Dr Anna Fergusson for setting the simulation up on the web

More info

Resources on github:

https://github.com/sarahemarshall/queueing_is_ fun_2023

- slides
- full R source code (can run in RStudio)

Contact: Dr Sarah Marshall
Dept of Information Systems and Operations Management,
University of Auckland Business School
sarah.marshall@auckland.ac.nz