Midterm Homework

name: Sangman Jung student number: 2014110374

Department of Applied Mathematics, Kyung Hee University

Let $\sigma(u,v) = (\cos u \cos v, \cos u \sin v, \sin u)$ and $\rho(r,s) = (-\cos r \cos s, \sin r, \cos r \sin s)$ be two patches for the unit sphere $S^2 = \{(x,y,z) | x^2 + y^2 + z^2 = 1\}$ such that both σ and ρ are defined in $U = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times (0,2\pi)$. Note that obtained from σ by applying the rotation about the x-axis by 90 degrees followed by the rotation about the z-axis by 180 degrees.

1. What is the domain V of the transition map $\Phi(r,s) = (u,v)$ from σ to ρ ? What is U-V?

Solution.

The overlapping region of two patches σ, ρ is shown in Figure 1.(c). Cautions in this region is the points not in V_{σ}, V_{ρ} . Since the transition map $\Phi: V_{\sigma} \to V_{\rho}$ is homeomorphism, we know that $\sigma(U_{\sigma}) \cap \rho(U_{\rho}) = V_{\sigma} \cup V_{\rho} = V_{\sigma} \cap V_{\rho}$, and that two patches have the same domain $(\because Rot_x(180)Rot_x(90)\sigma(u,v) \equiv \rho(r,s))$.

Thus, we must eliminate the points not in $V_{\sigma} \cap V_{\rho}$ simultaneously, hence, the removing points about u: 0 and the removing points about v: $\pi/2$, $3\pi/2$. Therefore, the domain of Φ is $V = \left(-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right) \times \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$ and $U - V = \{0\} \times \left\{\frac{\pi}{2}, \frac{3\pi}{2}\right\}$.

Figure 1. (a) the patch $\sigma(u,v)$ of S^2 , (b) the patch $\rho(r,s)$ of S^2 , (c) (a) and (b).

Differential Geometry I: Prof. ChangYong Han

2. Write u(r,s) and v(r,s) using the inverse trigonometric functions $y = \sin^{-1}x$ (from [-1,1] into $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$) and $y = \cos^{-1}x$ (from [-1,1] into $[0,\pi]$). The formula for v(r,s) changes according to the location of (r,s) in V. Plot u(r,s) and v(r,s) using Mathematica.

Solution.

We want to find a function Φ such that $\sigma(\Phi(u,v)) = \rho(r,s)$ when $\Phi(r,s) = (u(r,s),v(r,s))$, Φ : transition map, and so note that $\cos(\sin^{-1}(x)) = \sqrt{1-x^2}$ and $\sin(\cos^{-1}(x)) = \sqrt{1-x^2}$, then we can let:

$$u(r,s) = \sin^{-1}(\cos r \sin s) \implies v(r,s) = \cos^{-1}\left(\frac{-\cos r \cos s}{\sqrt{1 - (-\cos r \sin s)^2}}\right)$$
where $u,v \in \left\{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}\right\} \times \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right].$

Since $V = \left(-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right) \times \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$, also $v \in \left(\pi, \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$. So we now let:

$$v(r,s) = \begin{cases} \cos^{-1}\left(\frac{-\cos r \cos s}{\sqrt{1 - (-\cos r \sin s)^2}}\right) & \text{for } \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right] \\ -\cos^{-1}\left(\frac{-\cos r \cos s}{\sqrt{1 - (-\cos r \sin s)^2}}\right) & \text{for } \left(\pi, \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right) \end{cases}$$

Then, the equation of σ and ρ is satisfied the condition of transition formula in V:

$$\sigma(\Phi(u(r,s),v(r,s))) = \rho(r,s).$$

Figure 2. The graph of u,v using mathematica, (a) u(r,s) in V, (b) v(r,s) in V

3. Verify your answer by plotting $\sigma(\Phi(r,s))$. Do you get the whole sphere (except a few semicircles)?

Solution.

Look at the Figure 3. we can find the whole sphere except a few semicircles when

$$v(r,s) = \begin{cases} \cos^{-1}\left(\frac{-\cos r\cos s}{\sqrt{1 - (-\cos r\sin s)^2}}\right) & \text{for } \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right] \\ -\cos^{-1}\left(\frac{-\cos r\cos s}{\sqrt{1 - (-\cos r\sin s)^2}}\right) & \text{for } \left(\pi, \frac{3\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right) \end{cases}$$

Figure 3. The graph of $\sigma(\Phi(r,s))$. (a) v(r,s) in $0 \sim \pi$, (b) v(r,s) in $\pi \sim 2\pi$

Differential Geometry I: Prof. ChangYong Han

Mathematica programming codes in this homework

* Figure 1: (a) the patch $\sigma(u,v)$ of S^2 , (b) the patch $\rho(r,s)$ of S^2 , (c) (a) and (b).

Show[sigma,sigmaline,PlotRange -> All]
Show[rho,rholine,PlotRange -> All]
sigma=ParametricPlot3D[{Cos[u]*Cos[v],Cos[u]*Sin[v],Sin[u]},{u,-Pi/2,Pi/2},{v,0,2*Pi}];

 $sigmaline=ParametricPlot3D[\{Cos[u]*Cos[v],Cos[u]*Sin[v],Sin[u]\},\{u,-Pi/2,Pi/2\},\{v,-0.04,0.04\}];\\ rho=ParametricPlot3D[\{-Cos[r]*Cos[s],Sin[r],Cos[r]*Sin[s]\},\{r,-Pi/2,Pi/2\},\{s,0,2*Pi\}];\\ rholine=ParametricPlot3D[\{-Cos[r]*Cos[s],Sin[r],Cos[r]*Sin[s]\},\{r,-Pi/2,Pi/2\},\{s,-0.04,0.04\}];\\ rholine=ParametricPlot3D[\{-Cos[r]*Cos[s],Sin[s],Sin[s],Sin[s]\},\{r,-Pi/2,Pi/2\},\{s,-0.04,0.04\}];\\ rholine=ParametricPlot3D[\{-Cos[s],Sin[s],S$

• Figure 2: The graph of u,v using mathematica, (a) u(r,s) in V, (b) v(r,s) in V

u=ArcSin[Cos[r]*Sin[s]] Plot3D[u,{r,-Pi/2,Pi/2},{s,0,2*Pi}] v=ArcCos[(-Cos[r]*Cos[s])/Sqrt[1-(-Cos[r]Sin[s])^2]] Plot3D[v, {r,-Pi/2,Pi/2},{s,0,Pi}]

• Figure 3: The graph of $\sigma(\Phi(r,s))$. (a) v(r,s) in $0 \sim \pi$, (b) v(r,s) in $\pi \sim 2\pi$

 $sigma_PHI1=ParametricPlot3D[\{Cos[ArcSin[Cos[r]*Sin[s]]]*Cos[ArcCos[(-Cos[r]*Cos[s])/Sqrt[1-(-Cos[r]Sin[s])^2]]],\\ Cos[ArcSin[Cos[r]*Sin[s]]]*Sin[ArcCos[(-Cos[r]*Cos[s])/Sqrt[1-(-Cos[r]Sin[s])^2]]],\\ Sin[s])^2]]],\\ Sin[s])^2]]]],\\ Sin[s])^2]]],\\ Sin[s])]]],\\ Sin[s])]]],\\ Sin[s])]]]]]]]]]]]]]$

 $sigma_PHI2=ParametricPlot3D[\{Cos[ArcSin[Cos[r]*Sin[s]]]*Cos[-ArcCos[(-Cos[r]*Cos[s])/Sqrt[1-(-Cos[r]Sin[s])^2]]],\\Cos[ArcSin[Cos[r]*Sin[s]]]*Sin[-ArcCos[(-Cos[r]*Cos[s])/Sqrt[1-(-Cos[r]Sin[s])^2]]],\\Sin[ArcSin[Cos[r]*Sin[s]]],\\\{r,-Pi/2,Pi/2\},\\\{s,0,2*Pi\}]$