Quantifying relic DNA

Jay T. Lennon, Mario E. Muscarella 05 October, 2017

Analysis of quantitative PCR data to test whether the abundance of bacterial communities is affected by relic DNA

Setup Work Environment

```
#rm(list=ls())
getwd()
setwd("~/GitHub/relicDNA/code")
require("plyr")
require("grid")
require("png")
require("car")
require("bbmle")
sem <- function(x, ...){sd(x, na.rm = TRUE)/sqrt(length(na.omit(x)))}</pre>
```

Load data and calcualte corrected copy number

```
eDNA.raw <- read.table(".../data/eDNA_qPCR.txt", sep = "\t", header = T)

# Correct for dilutions and sample processing

# eDNA.raw[,7] = copies not corrected by dilution factor

# eDNA.raw[,8] = dilution factor

# eDNA.raw[,9] = volume (uL) in supernatant of phenol-chloroform extraction

# eDNA.raw[,10] = volume (ul) from supernatant of phenol-chlorofom subsampled

copies.corr <- eDNA.raw[,7] * (eDNA.raw[,8] * (eDNA.raw[,9]/eDNA.raw[,10]))

# Make new dataframe with corrected copy numbers

eDNA.corr <- data.frame(eDNA.raw, copies.corr)
```

Take mean of technical replicates and sort

```
# Rename columns
colnames(eDNA) <- c("sample.number", "sample.name", "env", "treat", "copy.number")</pre>
```

Calculate proportion of degradable DNA per sample and test differences

Normal Q-Q Plot

plot(density(eDNA.prop\$prop))

density.default(x = eDNA.prop\$prop)


```
mean(eDNA.prop$prop)
## [1] 0.3256821
sd(eDNA.prop$prop)
## [1] 0.2175141
min(eDNA.prop$prop)
## [1] 0
max(eDNA.prop$prop)
## [1] 0.8304294
\# Use glm to test whether amount of eDNA differs among environments
eDNA.prop.test <- glm(prop ~ env, data = eDNA.prop)
summary(eDNA.prop.test)
##
## Call:
## glm(formula = prop ~ env, data = eDNA.prop)
## Deviance Residuals:
##
                   1Q
                         Median
                                       ЗQ
                                                 Max
## -0.35852 -0.15517 -0.01063
                                  0.13603
                                             0.39788
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.35852
                          0.07234
                                  4.956 2.64e-05 ***
## envsed
              -0.04905
                          0.10230 - 0.479
                                           0.6351
              -0.18304
## envsoil
                          0.10230 -1.789
                                           0.0837
## envwater
              0.07403
                          0.09705
                                   0.763
                                          0.4515
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.04186231)
##
##
      Null deviance: 1.5613 on 33 degrees of freedom
## Residual deviance: 1.2559 on 30 degrees of freedom
## AIC: -5.6623
##
## Number of Fisher Scoring iterations: 2
Anova(eDNA.prop.test, type = "II", test.statistic = "F")
## Analysis of Deviance Table (Type II tests)
##
## Response: prop
## Error estimate based on Pearson residuals
##
##
                 SS Df
                            F Pr(>F)
            0.30544 3 2.4321 0.08444 .
## env
## Residuals 1.25587 30
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Use Anova to test whether the amount of dDNA differs among environments
eDNA.prop.lm <- lm(prop ~ env, data = eDNA.prop)
summary(eDNA.prop.lm)
##
## Call:
## lm(formula = prop ~ env, data = eDNA.prop)
##
## Residuals:
##
                 10 Median
       Min
## -0.35852 -0.15517 -0.01063 0.13603 0.39788
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.35852
                                  4.956 2.64e-05 ***
                         0.07234
                          0.10230 -0.479
## envsed
              -0.04905
                                           0.6351
             -0.18304
                          0.10230 -1.789
## envsoil
                                           0.0837 .
## envwater
              0.07403
                          0.09705
                                  0.763 0.4515
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2046 on 30 degrees of freedom
## Multiple R-squared: 0.1956, Adjusted R-squared: 0.1152
## F-statistic: 2.432 on 3 and 30 DF, p-value: 0.08444
eDNA.anova <- Anova(eDNA.prop.lm, type = "II")
eDNA.anova
```

```
## Anova Table (Type II tests)
##
## Response: prop
##
              Sum Sq Df F value Pr(>F)
## env
             0.30544 3 2.4321 0.08444 .
## Residuals 1.25587 30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov(eDNA.prop.lm), "env")
##
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = eDNA.prop.lm)
##
## $env
##
                      diff
                                    lwr
                                               upr
## sed-feces
              -0.04905302 -0.327221734 0.22911570 0.9630471
## soil-feces -0.18304416 -0.461212879 0.09512455 0.2981258
## water-feces 0.07403322 -0.189860799 0.33792723 0.8704386
## soil-sed -0.13399114 -0.412159862 0.14417757 0.5640774
## water-sed
               0.12308623 -0.140807782 0.38698025 0.5896087
## water-soil 0.25707738 -0.006816637 0.52097139 0.0583852
# Calculate means, sem, and sample size by environment
eDNA.mean <- aggregate(eDNA.prop$prop ~ eDNA.prop$env, eDNA.prop, mean)
eDNA.n <- aggregate(eDNA.prop$prop ~ eDNA.prop$env, eDNA.prop, length)
eDNA.sem <- aggregate(eDNA.prop$prop ~ eDNA.prop$env, eDNA.prop, sem)
# Make table of proportion eDNA by environment
eDNA.table <- data.frame(eDNA.mean, eDNA.sem[ ,2], eDNA.n[ ,2])
colnames(eDNA.table) <- c("env", "mean", "sem", "n")</pre>
eDNA.table <- eDNA.table[order(eDNA.table[,2]), ]</pre>
# # Make bar plot with error bars by environment
# ```{r, eval=F}
# png(filename="../figures/qPCR.bar.png",
     width = 800, height = 800, res = 96*2)
# bp \leftarrow barplot(eDNA.table\$mean, ylim = c(0, 0.6),
                pch = 15, cex = 1.25, las = 1, cex.lab = 1.25, cex.axis = 1,
#
                col = "gray90", axis.lty = 1, lwd = 2, xlab = NA,
#
                ylab = "Proportion eDNA",
#
                names.arg = c("Soil", "Sediment", "Gut", "Water"), cex.names = 0.9)
                box(lwd = 2)
# arrows(x0 = bp, y0 = eDNA.table\$mean, y1 = eDNA.table\$mean - eDNA.table\$sem
        angle = 90, length = 0.1, lwd = 2)
\# arrows(x0 = bp, y0 = eDNA.table$mean, y1 = eDNA.table$mean + eDNA.table$sem,
        angle = 90, length=0.1, lwd = 2)
# # Close Plot Device
# dev.off()
# graphics.off()
```

```
# # Show Plot
# img <- readPNG("../figures/qPCR.bar.png")</pre>
# grid.raster(img)
# Make x-y plot with error bars by environment
\# \cdots \{r\}
# pnq(filename="../figures/Figure2-Prop eDNA.png",
      width = 800, height = 800, res = 96*2)
\# par(mar = c(3, 5, 1, 1))
# non.bp \leftarrow plot(eDNA.table\$mean, ylim = c(0, 0.6),
                  xlim = c(0.5, 4.5), pch = 22, bg = "gray90", lwd = 2,
                  cex = 3, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
#
                  las = 1, ylab = "", xlab = "")
#
\# box(lwd = 2)
# mtext(expression('Proportion Relic DNA'), side = 2,
        outer = FALSE, cex = 1.5, line = 3, adj = 0.5)
# # Major Axes
# axis(side = 2, lwd.ticks = 2, cex.axis = 1.25, las = 1,
      labels = c(0.0, 0.2, 0.4, 0.6), at = c(0.0, 0.2, 0.4, 0.6))
\# axis(side = 4, lwd.ticks = 2, cex.axis = 1.5, las = 1,
#
       at=c(0.0, 0.2, 0.4, 0.6), labels = F, tck = -0.02)
\# axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
#
       labels = c("Soil", "Sediment", "Gut", "Water"), at = c(1, 2, 3, 4))
#
# axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
       at = c(1, 2, 3, 4), labels = F, tck = -0.02)
\# \ axis(side = 1, \ labels = F, \ lwd.ticks = 2, \ tck = 0.02, \ at = c(1, 2, 3, 4))
\# \ axis(side = 2, \ labels = F, \ lwd.ticks = 2, \ tck = 0.02, \ at = c(0, \ 0.2, \ 0.4, \ 0.6))
\# \ axis(side = 3, \ labels = F, \ lwd.ticks = 2, \ tck = 0.02, \ at = c(1, 2, 3, 4))
\# \ axis(side = 4, \ labels = F, \ lwd.ticks = 2, \ tck = 0.02, \ at = c(0, \ 0.2, \ 0.4, \ 0.6))
\# arrows(x0 = c(1, 2, 3, 4), y0 = eDNA.table$mean,
         y1 = eDNA.table\$mean - eDNA.table\$sem, angle = 90,
#
         length = 0.1, lwd = 2)
#
\# arrows(x0 = c(1,2,3,4), y0 = eDNA.table\$mean,
         y1 = eDNA.table\$mean + eDNA.table\$sem, angle = 90,
#
         length=0.1, lwd = 2)
\# points(x = c(1:4), eDNA.table$mean,
        pch = 22, bq = "qray90", lwd = 2, cex = 3)
#
# # Close Plot Device
# dev.off()
# graphics.off()
# # Show Plot
# img <- readPNG("../figures/Figure2-Prop_eDNA.png")</pre>
```

Make x-y plot with error bars by environment with individual data points

```
# Relic DNA data for plotting
relic.soil <- eDNA.prop[ which(eDNA.prop$env == "soil"),]</pre>
relic.sed <- eDNA.prop[ which(eDNA.prop$env == "sed"),]</pre>
relic.feces <- eDNA.prop[ which(eDNA.prop$env == "feces"),]</pre>
relic.water <- eDNA.prop[ which(eDNA.prop$env == "water"),]</pre>
# Relic DNA table
relic.mean <- aggregate(eDNA.prop$prop ~ env, eDNA.prop, mean)</pre>
relic.sem <- aggregate(eDNA.prop$prop ~ env, eDNA.prop, sem)</pre>
relic.95.LL <- aggregate(prop ~ env, eDNA.prop,
          FUN = function(x) t.test(x)$conf.int[1])
relic.95.UL <- aggregate(prop ~ env, eDNA.prop,</pre>
          FUN = function(x) t.test(x)$conf.int[2])
relic.table <- data.frame(relic.mean[1], relic.mean[2], relic.sem[2],</pre>
          relic.95.LL[2], relic.95.UL[2])
colnames(relic.table) <- c("env", "mean", "sem", "LCI", "UCI")</pre>
relic.table <- relic.table[order(relic.table$mean),]</pre>
png(filename="../figures/Figure2-Prop.relic.png",
    width = 800, height = 800, res = 96*2)
par(mar = c(4, 5, 1, 1))
non.bp.rich <- plot(jitter(rep(1, length(relic.soil$prop)), amount = 0.1), relic.soil$prop,</pre>
      ylim = c(-0.1, 1), xlim = c(0.5, 4.5), pch = 21, col = "lightgrey", bg = "lightgrey", lwd = 2,
      cex = 1.7, yaxt = "n", xaxt = "n", cex.lab = 2, cex.axis = 1.5,
      las = 1, ylab = "", xlab = "")
      box(lwd = 2)
points(jitter(rep(2, length(relic.sed$prop)), amount = 0.1), relic.sed$prop, pch = 21,
       bg = "lightgrey", col = "lightgrey", lwd = 2, cex = 1.7)
points(jitter(rep(3, length(relic.feces$prop)), amount = 0.1), relic.feces$prop, pch = 21,
       bg = "lightgrey", col = "lightgrey", lwd = 2, cex = 1.7)
points(jitter(rep(4, length(relic.water$prop)), amount = 0.1), relic.water$prop, pch = 21,
       bg = "lightgrey", col = "lightgrey", lwd = 2, cex = 1.7)
# rect(xleft, ybottom, xright, ytop)
rect(0.8, (mean(relic.soil$prop) + 0.025), 1.2, (mean(relic.soil$prop)- 0.025), col = "NA", border = "b
rect(1.8, (mean(relic.sed$prop) + 0.025), 2.2, (mean(relic.sed$prop) - 0.025), col = "NA", border = "bla
rect(2.8, (mean(relic.feces$prop) + 0.025), 3.2, (mean(relic.feces$prop) - 0.025), col = "NA", border =
rect(3.8, (mean(relic.water$prop) + 0.025), 4.2, (mean(relic.water$prop) - 0.025), col = "NA", border =
box(lwd = 2)
```

```
mtext(expression('Proportion Relic DNA'), side = 2,
     outer = FALSE, cex = 1.5, line = 3.6, adj = 0.5)
# Major Axes
axis(side = 2, lwd.ticks = 2, cex.axis = 1.25, las = 1,
     labels = c("0.0", "0.25", "0.50", "0.75", "1.00"), at = c(0.0, 0.25, 0.5, 0.75, 1.0))
axis(side = 4, lwd.ticks = 2, cex.axis = 1.5, las = 1,
     at=c(0.0, 0.25, 0.5, 0.75, 1.0), labels = F, tck = -0.02)
axis(side = 1, lwd.ticks = 2, cex.axis = 0.9, las = 1,
     labels = c("Soil", "Sediment", "Gut", "Water"), at = c(1, 2, 3, 4))
axis(side = 3, lwd.ticks = 2, cex.axis = 1.5, las = 1,
     at = c(1, 2, 3, 4), labels = F, tck = -0.02)
arrows(x0 = c(1,2,3,4), y0 = relic.table$mean, y1 = relic.table$LCI, angle = 90,
       length = 0.1, lwd = 2)
arrows(x0 = c(1,2,3,4), y0 = relic.table\$mean, y1 = relic.table\$UCI, angle = 90,
       length=0.1, lwd = 2)
# Close Plot Device
dev.off()
## pdf
graphics.off()
# Show Plot
img <- readPNG("../figures/Figure2-Prop.relic.png")</pre>
grid.raster(img)
```