import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.metrics import confusion_matrix
import warnings
warnings.filterwarnings('ignore')

from google.colab import files
uploaded = files.upload()

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving archive (2).zin to archive (2).zin

df = pd.read_csv('/content/archive (2).zip')
df.head()

\Rightarrow		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

df['species'].value_counts()

 \Rightarrow species

ris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: count, dtype: int64

df.describe()

₹

	sepal length	sepal width	petal length	petal width
	3epai_iength	Sepai_width	petai_ieligtii	pecar_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

df.info()

#	Column	Non-Null Count	Dtype		
0	sepal_length	150 non-null	float64		
1	sepal_width	150 non-null	float64		
2	petal_length	150 non-null	float64		
3	petal_width	150 non-null	float64		
4	species	150 non-null	object		
<pre>dtypes: float64(4), object(1)</pre>					

memory usage: 6.0+ KB

df.isnull().sum()

sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64

→ <Axes: >

df['sepal_width'].hist()

df['petal_length'].hist()


```
colors = ['red', 'orange', 'blue']
species = ['Iris-virginica', 'Iris-versicolor', 'Iris-setosa']

for i in range(3):
    x = df[df['species'] == species[i]]
    plt.scatter(x['sepal_length'], x['sepal_width'], c = colors[i], label = species[i])
    plt.xlabel('sepal_length')
    plt.ylabel('sepal_width')
    plt.legend()
```



```
for i in range(3):
    x = df[df['species'] == species[i]]
    plt.scatter(x['petal_length'], x['petal_width'], c = colors[i], label = species[i])
    plt.xlabel('petal_length')
    plt.ylabel('petal_width')
    plt.legend()
```

```
colors = ['green','blue','red']
species = ['Iris-setosa','Iris-versicolor','Iris-virginica']

for i in range(3):
    x = df[df['species'] == species[i]]
    plt.scatter(x['sepal_length'], x['petal_length'], c = colors[i], label = species[i])
    plt.xlabel('sepal_length')
    plt.ylabel('petal_length')
    plt.legend()
```



```
corr = df.drop('species', axis = 1).corr()
fig, ax = plt.subplots(figsize = (5,4))
sns.heatmap(corr, annot = True, ax = ax, cmap = 'coolwarm')
```


numeric_df = df.drop(columns=['species'])

correlation_matrix = numeric_df.corr()

correlation_matrix.corr()

_					
\Rightarrow		sepal_length	sepal_width	petal_length	petal_width
	sepal_length	1.000000	-0.941225	0.975716	0.963204
	sepal_width	-0.941225	1.000000	-0.992071	-0.994744
	petal_length	0.975716	-0.992071	1.000000	0.997991
	petal_width	0.963204	-0.994744	0.997991	1.000000

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df['species']= le.fit_transform(df['species'])
df.head()

$\overline{\Rightarrow}$		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

km = KMeans(n_clusters=3, random_state=0,)
y_predicted= km.fit_predict(df[['petal_length','petal_width']])
y_predicted

from sklearn.model_selection import train_test_split
x = df.drop(columns=['species'])

y = df['species']

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()

→ Accuracy: 91.1111111111111