EPITA / InfoS1		November 2017
NAME :	. Firstname:	Group :

Electronics Midterm

Calculators and extra documents are not allowed. The marking scale is given as a rough guide.

Please answer only on exam sheets. If more space is needed, write on the back.

<u>Exercise 1.</u> Questions about lecture topics (5 points – no negative points for the MCQ)

- A. Choose the correct answers:
- 1. A potential difference between 2 points is called:

a- A current

c- A power

b- A voltage

d- A conductance

2. To measure the current intensity in some dipole, one uses an ammeter which is in series with that dipole.

a- TRUE

b- FALSE

3. The incoming current in a generator has a lower intensity than the outgoing one.

a- TRUE

b- FALSE

4. In the following sketch one considers the currents:

$$I_1 = 5mA$$
; $I_2 = 1mA$; $I_3 = 1mA$; $I_4 = -3mA$

Compute current I.

a-
$$I = 4 mA$$

c-
$$I = 10 \, mA$$

b-
$$I = 2 \, mA$$

d- $I = 8 \, mA$

5. If two resistors in parallel are associated, one conserves:

a- The current flowing through them

c- Nothing

b- The voltage at their terminals

B. Consider the following resistances $R_1=1\,\Omega$ and $R_2=1\mathrm{k}\Omega$. Compute the equivalent resistances:

1. R_2 and R_2 in series

2. R_1 and R_2 in series

3. R_1 and R_1 in parallel

4. 10 resistances R_1 in series

5. 10 resistances R_2 in parallel

<u>Exercise 2.</u> Generalities and Kirchhoff's laws (6 points)

Let us consider the following circuit for which ${\cal I}$ and ${\cal R}$ are known.

1. Express the resistance R' in terms of R to get $U = \frac{RJ}{4}$.

2.	Write the expr	ression of the v	oltage U^\prime in ter	ms of I and resi	stances (still cor	nsider $U = \frac{R.I}{4}$).

EPITA / InfoS1 November 2017

Exercise 3. Kirchhoff's laws (4.5 points)

Consider the following circuit:

Note: the expected answers depend on the states of the switches and are independent from each other: so, this is not a "long" exercise but rather 4 "short" ones starting with the same sketch. Draw it on your draft to answer questions correctly. Start by solving the cases that you find the simplest!

We assume that the voltage E and the three resistances are known.

Fill out the following table (only the result, no computation details). The voltages must depend <u>ONLY on</u> <u>E and/or resistances R_1 , R_2 or R_3 (except if these are vanishing!) <u>and NOT on each other!!</u></u>

Ask yourselves the right questions... you will get the right answers!!

K_1	K_2	U_1	U_3	U
0	0			
0	F			
F	0			
F	F			

Note : O = Opened C = Closed

Exercise 4. Superposition theorem (2,5 points)

Consider the following circuit:

Determine the expression of I_1 in R_1 in terms of E_1 , I_3 , R_1 , R_2 , R_3 by using superposition theorem.

EPITA / InfoS1 November 2017

Exercise 5. Resistors association (2 points)

What is the total equivalent resistance? (Detail your reasoning – let us imagine that the current «goes in» at point A and «goes out» at B)

