Algèbre et Arithmétique 1

Corrigé

Exercice 1

Exercice 2

(a)
$$\frac{1}{2+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2}$$
;

(b)
$$\frac{1+i}{1-i} = \frac{(1+i)^2}{(1-i)(1+i)} = \frac{1+2i-1}{2} = 2;$$

(c)
$$(1+i)^4 = ((1+i)^2)^2 = (2i)^2 = -4;$$

(d)
$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 = \left(\frac{1}{2}\right)^3 - 3i\frac{\sqrt{3}}{2}\left(\frac{1}{2}\right)^2 + 3\left(\frac{i\sqrt{3}}{2}\right)^2 - \left(\frac{i\sqrt{3}}{2}\right)^3 = \frac{1}{8} - \frac{3i\sqrt{3}}{8} - \frac{9}{8} + \frac{3i\sqrt{3}}{8} = -1;$$

Exercice 3

Soit $z \in \mathbb{C}$, alors

(a)
$$z + 2i = iz - 1 \iff z(1 - i) = -1 - 2i \iff z = -\frac{1 + 2i}{1 - i} = \boxed{\frac{1 - 3i}{2}};$$

(b)
$$(3+2i)(z-1) = i \iff (3+2i)z = 3+3i \iff z = \frac{3+3i}{3+2i} = \boxed{\frac{15+3i}{13}};$$

(c)
$$(2-i)z + 1 = (3+2i)z - i \iff 1+i = (1+3i)z \iff z = \frac{1+i}{1+3i} = \boxed{\frac{2-i}{5}};$$

(d)
$$(4-2i)z^2 = (1+5i)z \iff z = 0 \text{ ou } (4-2i)z = 1+5i \iff z = 0 \text{ ou } z = \frac{1+5i}{4-2i} = \left| \frac{-3+11i}{10} \right|;$$

Exercice 4

Soit z un nombre complexe. Soient M_1 , M_2 et M_4 les points d'affixes z, z^2 et z^4 . Alors

$$M_1$$
, M_2 et M_4 sont alignés $\iff z^2 = z$ ou $\frac{z^4 - z^2}{z^2 - z} \in \mathbf{R}$ $\iff z \in \{0, 1\}$ ou $\frac{(z^2 - z)(z^2 + z)}{z^2 - z} = z^2 + z \in \mathbf{R}$

On note z = a + ib, alors

$$z^{2} + z \in \mathbf{R} \iff (a + ib)^{2} + a + ib \in \mathbf{R}$$
$$\iff a^{2} + i2ab - b^{2} + a + ib \in \mathbf{R}$$
$$\iff 2ab + b = 0$$
$$\iff b = 0 \text{ ou } a = -\frac{1}{2}$$

Exercice 5

(a) On a
$$z^2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
 et $z^3 = -1$.

(b) On a donc
$$z^4 = z^3 z = -z$$
 et $z^5 = z^3 z^2 = -z^2$ et $z^6 = (z^3)^2 = 1$.

(c) Comme
$$z^6 = 1$$
, l'inverse de z est $z^{-1} = z^5$.

(d) On a
$$1 + i\sqrt{3} = 2z$$
, donc

$$(1+i\sqrt{3})^5 = (2z)^5 = 32z^5 = -32z^2 = 16 - 16i\sqrt{3}$$

(e) On en déduit

$$(1+i\sqrt{3})^5 + (1-i\sqrt{3})^5 = 32$$
$$(1+i\sqrt{3})^5 - (1-i\sqrt{3})^5 = -32i\sqrt{3}$$

Exercice 6

Soit $z = a + ib \in \mathbb{C}$ tel que |1 + iz| = |1 - iz|. Alors

$$|1+\mathfrak{i}(\mathfrak{a}+\mathfrak{i}\mathfrak{b})|=|1-\mathfrak{i}(\mathfrak{a}+\mathfrak{i}\mathfrak{b})|$$

Donc

$$|1 - b + ia| = |1 + b - ia|$$

Donc

$$(1-b)^2 + \alpha^2 = (1+b)^2 + \alpha^2$$

Donc

$$1 - 2b + b^2 = 1 + 2b + b^2$$

Donc

$$b = -b$$

Ainsi b = 0 et $z \in \mathbf{R}$.

On a

$$\begin{split} \sum_{k=0}^{7} (1+i)^k &= \frac{1-(1+i)^8}{1-(1+i)} \\ &= \frac{1-16}{-i} \\ &= -15i \end{split}$$

Exercice 8

Soit $z \in \mathbb{C}$. On a (par le changement d'indice j = k + 1)

$$\begin{split} (1-z)S_n &= (1-z)\sum_{k=0}^n kz^k = \sum_{k=0}^n kz^k - \sum_{k=0}^n kz^{k+1} \\ &= \sum_{k=1}^n kz^k - \sum_{j=1}^{n+1} (j-1)z^j \\ &= \sum_{k=1}^n z^k - nz^{n+1} \\ &= \frac{1-z^{n+1}}{1-z} - 1 - nz^{n+1} \\ &= \frac{1-z^{n+1} - (1-z) - n(1-z)z^{n+1}}{1-z} \\ &= \frac{nz^{n+2} - (n+1)z^{n+1} + z}{1-z} \end{split}$$

Ainsi

$$S_n = \frac{nz^{n+2} - (n+1)z^{n+1} + z}{1-z}$$

iz

Exercice 9

 $z = 2e^{i\frac{\pi}{4}}$ $z^{-1} = \frac{1}{2}e^{-i\frac{\pi}{4}}$ $-z=2e^{i\frac{-3\pi}{4}}$ $iz = 2e^{i\frac{3\pi}{4}}$

. z

 \overline{z}

Exercice 10

(a)
$$1 = e^{i0}$$
;

(b)
$$-1 = e^{i\pi}$$
;

(c)
$$i = e^{i\frac{\pi}{2}}$$
;

(d)
$$-i = e^{-i\frac{\pi}{2}}$$
;

(e)
$$1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$
;

(f)
$$1 - i = \sqrt{2}e^{-i\frac{\pi}{4}}$$
;

(g)
$$-1 + i\sqrt{3} = 2e^{i\frac{2\pi}{3}}$$
;

(h)
$$1 + i\sqrt{3} = 2e^{i\frac{\pi}{3}}$$

(a) On a

$$\cos^{3}(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{3}$$

$$= \frac{e^{i3x} + 3e^{i2x}e^{-ix} + 3e^{ix}e^{-i2x} + e^{-i3x}}{8}$$

$$= \frac{(e^{i3x} + e^{-i3x}) + 3(e^{ix} + e^{-ix})}{8}$$

$$= \left[\frac{3}{4}\cos(x) + \frac{1}{4}\cos(3x)\right]$$

(b) On a

$$\sin^{3}(x) = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{3}$$

$$= \frac{e^{i3x} - 3e^{i2x}e^{-ix} + 3e^{ix}e^{-i2x} - e^{-i3x}}{-8i}$$

$$= \frac{(e^{i3x} - e^{-i3x}) - 3(e^{ix} - e^{-ix})}{-8i}$$

$$= \left[\frac{3}{4}\sin(x) - \frac{1}{4}\sin(x)\right]$$

(c) On a

$$\sin^{2}(5x) = \left(\frac{e^{i5x} - e^{-i5x}}{2i}\right)^{2}$$

$$= \frac{e^{i10x} - 2e^{i5x}e^{-i5x} + e^{-i10x}}{-4}$$

$$= \frac{1}{2} - \frac{1}{2}\cos(10x)$$

Donc

$$\begin{split} \cos(3x)\sin^2(5x) &= \frac{1}{2}\cos(3x) - \frac{1}{2}\cos(3x)\cos(10x) \\ &= \frac{1}{2}\cos(3x) - \frac{1}{2}\left(\frac{e^{i3x} + e^{-i3x}}{2} \cdot \frac{e^{i10x} + e^{-i10x}}{2}\right) \\ &= \frac{1}{2}\cos(3x) - \frac{1}{4}\left(\frac{e^{i13x} + e^{i7x} + e^{-i7x} + e^{-i13x}}{2}\right) \\ &= \left[\frac{1}{2}\cos(3x) - \frac{1}{4}\cos(7x) - \frac{1}{4}\cos(13x)\right] \end{split}$$

(d) On a

$$\cos^3(3x) = \frac{3}{4}\cos(3x) + \frac{1}{4}\cos(9x)$$

et

$$\begin{split} \cos^2(x)\sin(2x) &= \left(\frac{e^{\mathrm{i}x} + e^{-\mathrm{i}x}}{2}\right)^2 \left(\frac{e^{\mathrm{i}2x} - e^{-\mathrm{i}2x}}{2\mathrm{i}}\right) \\ &= \frac{\left(e^{\mathrm{i}2x} + 2 + e^{-\mathrm{i}2x}\right) \left(e^{\mathrm{i}2x} - e^{-\mathrm{i}2x}\right)}{8\mathrm{i}} \\ &= \frac{e^{\mathrm{i}4x} + 2e^{\mathrm{i}2x} + 1 - 1 - 2e^{-\mathrm{i}2x} - e^{-\mathrm{i}4x}}{8\mathrm{i}} \\ &= \frac{e^{\mathrm{i}4x} - e^{-\mathrm{i}4x}}{8\mathrm{i}} + 2\frac{e^{\mathrm{i}2x} - e^{-\mathrm{i}2x}}{8\mathrm{i}} \\ &= \frac{1}{2}\sin(2x) + \frac{1}{4}\sin(4x) \end{split}$$

Ainsi,

$$\cos^2(x)\sin(2x) + \cos^3(3x) = \boxed{\frac{1}{2}\sin(2x) + \frac{3}{4}\cos(3x) + \frac{1}{4}\sin(4x) + \frac{1}{4}\cos(9x)}$$

Exercice 12

On a

$$\frac{e^{i\frac{\pi}{3}}}{e^{i\frac{\pi}{4}}} = e^{i\left(\frac{\pi}{3} - \frac{\pi}{4}\right)} = e^{i\frac{\pi}{12}}$$

Donc

$$\cos(\pi/12) + \mathrm{i}\sin(\pi/12) = e^{\mathrm{i}\frac{\pi}{12}} = e^{\mathrm{i}\frac{\pi}{3}}e^{-\mathrm{i}\frac{\pi}{4}} = (\cos(\pi/3) + \mathrm{i}\sin(\pi 3))(\cos(\pi/4) - \mathrm{i}\sin(\pi/4))$$

En développant on obtient

$$\cos(\pi/12) = \cos(\pi/3)\cos(\pi/4) + \sin(\pi/3)\sin(\pi/4)$$

$$= \frac{1}{2}\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

et

$$\sin(\pi/12) = -\sin(\pi/4)\cos(\pi/3) + \sin(\pi/3)\cos(\pi/4)$$

$$= -\frac{\sqrt{2}}{2}\frac{1}{2} + \frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

Exercice 13

(a)
$$(1+i)^9 = (\sqrt{2}e^{i\frac{\pi}{4}})^9 = 16\sqrt{2}e^{i\frac{9\pi}{4}} = 16\sqrt{2}e^{i\frac{\pi}{4}}$$
;

(b)
$$(1-i)^7 = (\sqrt{2}e^{-i\frac{\pi}{4}})^7 = 8\sqrt{2}e^{-i\frac{7\pi}{4}} = 8\sqrt{2}e^{i\frac{\pi}{4}};$$

(c)
$$\frac{(1+i)^9}{(1-i)^7} = \frac{16\sqrt{2}e^{i\frac{\pi}{4}}}{8\sqrt{2}e^{i\frac{\pi}{4}}} = 2;$$

Exercice 14

(a) On a

$$1 + e^{\mathfrak{i} \, \mathfrak{a}} = e^{\mathfrak{i} \, \frac{\mathfrak{a}}{2}} \left(e^{-\mathfrak{i} \, \frac{\mathfrak{a}}{2}} + e^{\mathfrak{i} \, \frac{\mathfrak{a}}{2}} \right) = 2 e^{\mathfrak{i} \, \frac{\mathfrak{a}}{2}} \frac{e^{\mathfrak{i} \, \frac{\mathfrak{a}}{2}} + e^{-\mathfrak{i} \, \frac{\mathfrak{a}}{2}}}{2} = 2 \cos(\mathfrak{a}/2) e^{\mathfrak{i} \, \frac{\mathfrak{a}}{2}}$$

Ce nombre est bien sous forme exponentielle car $\left|\frac{\alpha}{2}\right| \leqslant \frac{\pi}{2}$ donc $\cos(\alpha/2) \geqslant 0$.

(b) On a

$$e^{i\alpha} + e^{ib} = e^{i\frac{\alpha + b}{2}} \left(e^{i\frac{b - \alpha}{2}} + e^{-i\frac{b - \alpha}{2}} \right) = 2e^{i\frac{\alpha + b}{2}} \frac{e^{i\frac{b - \alpha}{2}} + e^{-i\frac{b - \alpha}{2}}}{2} = 2\cos((b - a)/2)e^{i\frac{\alpha + b}{2}}$$

Ce nombre est bien sous forme exponentielle car $\left|\frac{b-a}{2}\right| \leqslant \frac{\pi}{2} \ donc \cos((b-a)/2) \geqslant 0.$

Exercice 15

(a) Soit $x \not\equiv 0 \pmod{2\pi}$. Alors

$$\sum_{k=0}^{n} e^{ikx} = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = \frac{e^{i\frac{n+1}{2}x} \left(e^{-i\frac{n+1}{2}x} - e^{i\frac{n+1}{2}x}\right)}{e^{i\frac{x}{2}} \left(e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}\right)} = \frac{e^{i\frac{n+1}{2}x}}{e^{i\frac{x}{2}}} \times \frac{2\frac{e^{i\frac{n+1}{2}x} - e^{-i\frac{n+1}{2}x}}{2}}{2\frac{e^{i\frac{x}{2}} - e^{-i\frac{x}{2}}}{2}}} = e^{i\frac{n}{2}x} \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}$$

(b) On en déduit

$$\sum_{k=0}^{n}\cos(kx) = \sum_{k=0}^{n}\operatorname{Re}(e^{ikx}) = \operatorname{Re}\left(\sum_{k=0}^{n}e^{ikx}\right) = \operatorname{Re}\left(e^{i\frac{n}{2}x}\frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}\right) = \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}\cos\left(\frac{n}{2}x\right)$$

$$\sum_{k=0}^n \sin(kx) = \sum_{k=0}^n \operatorname{Im}(e^{\mathfrak{i}kx}) = \operatorname{Im}\left(\sum_{k=0}^n e^{\mathfrak{i}kx}\right) = \operatorname{Im}\left(e^{\mathfrak{i}\frac{n}{2}x}\frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}\right) = \frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)}\sin\left(\frac{n}{2}x\right)$$

Exercice 16

(a) Les points M d'affixe z vérifiant |z-1| = |z-3-2i| forment la médiatrice du segment [1; 3+2i].

(b) Soit $z \in \mathbb{C}$, alors

$$\left| (1+i)z - 2 - i \right| = 2 \iff \left| z - \frac{2+i}{1+i} \right| = \frac{2}{|1+i|} \iff \left| z - \frac{3-i}{2} \right| = \sqrt{2}$$

Les points M d'affixe z vérifiant |(1+i)z-2-i|=2 forment donc le cercle de centre O $\left(\frac{3-i}{2}\right)$ et de rayon $\sqrt{2}$

(c) Les points M d'affixe z vérifiant $|z-3+i| \le 2$ forment le disque de centre O(-3+i) et de rayon 2

(d) Les points M d'affixe z vérifiant $|z+3-{\rm i}|\geqslant |z|$ forment le demi-plan sous la médiatrice du segment $[0;-3+{\rm i}]$

(e) Les points M d'affixe z vérifiant $|z| < |z+3-\mathfrak{i}| < 2$ forment l'intersection du demi-plan sous la médiatrice du segment $[0; -3+\mathfrak{i}]$ et du cercle de centre $O(-3+\mathfrak{i})$ de rayon 2.

(a) Soit $a + ib \in C$, alors

$$(a+ib)^2 = i \iff a^2 - b^2 + 2abi = i$$

$$\iff \begin{cases} a^2 - b^2 &= 0 \\ 2ab &= 1 \\ a^2 + b^2 &= 1 \end{cases}$$

$$\iff \begin{cases} 2a^2 &= 1 \\ 2b^2 &= 1 \\ ab &> 0 \end{cases}$$

$$\iff a = b = \pm \frac{\sqrt{2}}{2}$$

Ainsi les racines carrées de i sont $\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ et $-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$.

(b) Soit $a + ib \in C$, alors

$$(a+ib)^{2} = 5 + 12i \iff a^{2} - b^{2} + 2abi = 5 + 12i$$

$$\iff \begin{cases} a^{2} - b^{2} = 5 \\ 2ab = 12 \\ a^{2} + b^{2} = 13 \end{cases}$$

$$\iff \begin{cases} 2a^{2} = 18 \\ 2b^{2} = 8 \\ ab > 0 \end{cases}$$

$$\iff a = \pm 3, b = \pm 2$$

Ainsi les racines carrées de 5 + 12i sont 3 + 2i et -3 - 2i.

(c) Soit $a + ib \in C$, alors

$$(a+ib)^2 = 1 + 4\sqrt{5}i \iff a^2 - b^2 + 2abi = 1 + 4\sqrt{5}i$$

$$\iff \begin{cases} a^2 - b^2 &= 1\\ 2ab &= 4\sqrt{5}\\ a^2 + b^2 &= 9 \end{cases}$$

$$\iff \begin{cases} 2a^2 &= 10\\ 2b^2 &= 8\\ ab &> 0 \end{cases}$$

$$\iff a = \pm\sqrt{5}, b = \pm 2$$

Ainsi les racines carrées de $1 + 4\sqrt{5}i$ sont $\sqrt{5} + 2i$ et $-\sqrt{5} - 2i$.

(d) Soit $a + ib \in C$, alors

$$(a+ib)^2 = 1 + i\sqrt{3} \iff a^2 - b^2 + 2abi = 1 + i\sqrt{3}$$

$$\iff \begin{cases} a^2 - b^2 &= 1\\ 2ab &= \sqrt{3}\\ a^2 + b^2 &= 2 \end{cases}$$

$$\iff \begin{cases} 2a^2 &= 3\\ 2b^2 &= 1\\ ab &> 0 \end{cases}$$

$$\iff a = \pm \sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2}, \quad b = \pm \frac{\sqrt{2}}{2}$$

Ainsi les racines carrées de $1+i\sqrt{3}$ sont $\frac{\sqrt{6}}{2}+i\frac{\sqrt{2}}{2}$ et $-\frac{\sqrt{6}}{2}-i\frac{\sqrt{2}}{2}$.

(a) On calcule le discriminant de l'equation :

$$\Delta = (-2)^2 - 4 \cdot 1 \cdot 1 = 4 - 4 = 0$$

L'équation a donc une racine réelle double

$$z_0 = \frac{-(-2)}{2} = 1$$

(b) On calcule le discriminant de l'équation :

$$\Delta = (1+i)^2 - 4 \cdot 1 \cdot i = 2i - 4i = -2i$$

On calcule une racine carrée de $\Delta=-2\mathrm{i}=2\mathrm{e}^{-\mathrm{i}\frac{\pi}{2}}$, on trouve

$$\delta = \sqrt{2}e^{-i\frac{\pi}{4}} = 1 - i$$

Les solutions sont alors

$$z_1 = \frac{-(1+i) - \delta}{2} = -i$$

 $z_2 = \frac{-(1+i) + \delta}{2} = -1$

(c) On calcule le discriminant de l'équation :

$$\Delta = (2i)^2 - 4 \cdot 1 \cdot 1 = -8$$

On calcule une racine carrée de $\Delta = -8$, on trouve

$$\delta = 2\sqrt{2}i$$

Les solutions sont alors

$$z_1 = \frac{-2i - \delta}{2} = -(1 + \sqrt{2})i$$

 $z_2 = \frac{-2i + \delta}{2} = -(1 - \sqrt{2})i$

(d) On calcule le discriminant de l'équation :

$$\Delta = 2^2 - 4 \cdot (1 + i) \cdot i = 8 - 4i = 4(2 - i)$$

On calcule une racine carrée de $\Delta=8-4i$, pour cela on résout un système. Soit $a+bi\in \mathbf{C}$ alors

$$(a+ib)^{2} = 2-i \iff a^{2}-b^{2}+2abi=2-i$$

$$\iff \begin{cases} a^{2}-b^{2} &= 2\\ 2ab &= -1\\ a^{2}+b^{2} &= \sqrt{5} \end{cases}$$

$$\iff \begin{cases} 2a^{2} &= 2+\sqrt{5}\\ 2b^{2} &= \sqrt{5}-2\\ ab &< 0 \end{cases}$$

$$\iff a = \pm \sqrt{\frac{2+\sqrt{5}}{2}}, \quad b = \pm \sqrt{\frac{\sqrt{5}-2}{2}}$$

Une racine de Δ est donc

$$\delta = 2\left(\sqrt{\frac{2+\sqrt{5}}{2}} - i\sqrt{\frac{\sqrt{5}-2}{2}}\right)$$

Ainsi, les solutions de l'équation sont

$$z_{1} = \frac{-2 - \delta}{2(1 + i)} = \frac{-1 - \sqrt{\frac{2 + \sqrt{5}}{2}} + i\sqrt{\frac{\sqrt{5} - 2}{2}}}{1 + i}$$
$$z_{2} = \frac{-2 + \delta}{2(1 + i)} = \frac{-1 + \sqrt{\frac{2 + \sqrt{5}}{2}} - i\sqrt{\frac{\sqrt{5} - 2}{2}}}{1 + i}$$

Question (d) de substitution : $z^2 - 4z + 7 + 4i = 0$:

On calcule le discriminant de l'équation :

$$\Delta = (-4)^2 - 4(1)(7 + 4i) = 16 - 28 - 16i = -12 - 12i$$

On calcule une racine carrée de $\Delta=-12-16i$, pour cela on résout un système. Soit $a+bi\in \mathbb{C}$, alors

$$(a+ib)^2 = -12 - 16i \iff a^2 - b^2 + 2abi = -12 - 16i$$

$$\iff \begin{cases} a^2 - b^2 = -12 \\ 2ab = -16 \\ a^2 + b^2 = 20 \end{cases}$$

$$\iff \begin{cases} 2a^2 = 8 \\ 2b^2 = 32 \\ ab < 0 \end{cases}$$

$$\iff a = \pm 2, \quad b = \mp 4$$

Une racine de Δ est donc

$$\delta = 2 - 4 \mathfrak{i}$$

Ainsi, les solutions de l'équation sont

$$z_1 = \frac{4+\delta}{2} = \frac{4+2-4i}{2} = 3-2i$$
$$z_2 = \frac{4-\delta}{2} = \frac{4-2+4i}{2} = 1+2i$$

Exercice 19

Soient z_1 et z_2 des nombres complexes. Alors

$$z_1$$
 et z_2 sont solutions de $z^2 - sz + p = 0 \iff z^2 - sz + p = (z - z_1)(z - z_2)$
 $\iff z^2 - sz + p = z^2 - z_1z - z_2z + z_1z_2$
 $\iff s = z_1 + z_2$ et $p = z_1z_2$

Exercice 20

(a) Les racines 3^e de l'unité sont 1, $e^{i\frac{2\pi}{3}}$ et $e^{i\frac{4\pi}{3}}$. Une racine 3^e de $1+i=\sqrt{2}e^{i\frac{\pi}{4}}$ est $\sqrt[6]{2}e^{i\frac{\pi}{12}}$. Ainsi, les 3 racines 3^e de 1+i sont :

$$\begin{array}{c} 1 \times \sqrt[6]{2} e^{i\frac{\pi}{12}} = \sqrt[6]{2} e^{i\frac{\pi}{12}} \\ e^{i\frac{2\pi}{3}} \times \sqrt[6]{2} e^{i\frac{\pi}{12}} = \sqrt[6]{2} e^{i\frac{9\pi}{12}} = \sqrt[6]{2} e^{i\frac{3\pi}{4}} \\ e^{i\frac{4\pi}{3}} \times \sqrt[6]{2} e^{i\frac{\pi}{12}} = \sqrt[6]{2} e^{i\frac{17\pi}{12}} = \sqrt[6]{2} e^{-i\frac{7\pi}{12}} \end{array}$$

(b) Les racines 4^e de l'unité sont 1, i, -1 et -i. Une racine 4^e de 4i est $\sqrt{2}e^{i\frac{\pi}{8}}$. Ainsi, les 4 racines 4^e de 4i sont :

$$\begin{split} 1\times\sqrt{2}e^{i\frac{\pi}{8}} &= \sqrt{2}e^{i\frac{\pi}{8}} \\ i\times\sqrt{2}e^{i\frac{\pi}{8}} &= \sqrt{2}e^{i\frac{5\pi}{8}} \\ -1\times\sqrt{2}e^{i\frac{\pi}{8}} &= \sqrt{2}e^{-i\frac{7\pi}{8}} \\ -i\times\sqrt{2}e^{i\frac{\pi}{8}} &= \sqrt{2}e^{-i\frac{3\pi}{8}} \end{split}$$

(c) Les racines 6^e de l'unité sont 1, $e^{i\frac{\pi}{3}}$, $e^{i\frac{2\pi}{3}}$, -1, $e^{-i\frac{2\pi}{3}}$ et $e^{-i\frac{\pi}{3}}$. De plus

$$\frac{1 - i\sqrt{3}}{1 + i} = \frac{2e^{-i\frac{\pi}{3}}}{\sqrt{2}e^{i\frac{\pi}{4}}} = \sqrt{2}e^{-i\frac{7\pi}{12}}$$

Une racine 6^e de ce nombre est $\sqrt[12]{2}e^{-i\frac{7\pi}{72}}$. Ainsi, les 6 racines 6^e de $\frac{1-i\sqrt{3}}{1+i}$ sont

On dispose des formules suivantes pour le calcul des invariants d'une similitude $z' = \alpha z + \beta$:

$$\omega = \frac{\beta}{1 - \alpha} \quad \alpha \neq 1$$

$$k = |\alpha|$$
 $\theta = \arg(\alpha)$

Le point Ω d'affixe ω est le *centre* de la similitude (i.e. son unique point fixe), k est son *rapport* et θ son *angle*.

- (a) La similitude z' = z + 3 i est une translation de vecteur (3, -1).
- (b) La similitude z' = 2z + 3 a pour centre le point Ω d'affixe $\frac{3}{1-2} = -3$, pour angle $\arg(2) = 0$ et pour rapport |2| = 2.
- (c) La similitude z' = iz + 1 a pour centre le point Ω d'affixe $\frac{1}{1-i} = \frac{1+i}{2}$, pour angle $\arg(i) = \frac{\pi}{2}$ et pour rapport |i| = 1.
- (d) La similitude z' = (1-i)z + 2 + i a pour centre le point Ω d'affixe $\frac{2+i}{1-(1-i)} = \frac{2+i}{i} = 1-2i$, pour angle $arg(1-i) = -\frac{\pi}{4}$ et pour rapport $|1-i| = \sqrt{2}$.

Exercice 22

(a) La similitude $z'=\frac{3+i\sqrt{3}}{4}z+\frac{1-i\sqrt{3}}{2}$ a pour rapport $k=|\alpha|=\frac{\sqrt{3}}{2}$, pour angle $\arg(\alpha)=\frac{\pi}{6}$ et pour centre le point Ω d'affixe

$$\omega = \frac{\beta}{1 - \alpha} = \frac{\frac{1 - i\sqrt{3}}{2}}{1 - \frac{3 + i\sqrt{3}}{4}} = \frac{e^{-i\frac{\pi}{3}}}{\frac{1}{2}e^{-i\frac{\pi}{3}}} = 2$$

(b) Le triangle (Ω, M, M') est rectangle en M' si et seulement si les vecteurs $\overrightarrow{M'\Omega}$ et $\overrightarrow{M'M}$ sont orthogonaux, si et seulement si

$$\frac{z'-z}{z'-\omega}\in i\mathbf{R}$$

On calcule

$$\begin{split} \frac{z'-z}{z'-\omega} &= \frac{(\alpha-1)z+\beta}{\alpha z+\beta-\omega} \\ &= \frac{\frac{-1+i\sqrt{3}}{4}z+\frac{1-\sqrt{3}}{2}}{\frac{3+i\sqrt{3}}{4}z+\frac{-3-i\sqrt{3}}{2}} \\ &= \frac{-\frac{1}{2}e^{-i\frac{\pi}{3}}z+e^{-i\frac{\pi}{3}}}{\frac{\sqrt{3}}{2}e^{i\frac{\pi}{6}}z-\sqrt{3}e^{-\frac{\pi}{6}}} \\ &= -\frac{e^{-i\frac{\pi}{3}}\left(\frac{z}{2}-1\right)}{\sqrt{3}e^{i\frac{\pi}{6}}\left(\frac{z}{2}-1\right)} \\ &= -\frac{\sqrt{3}}{2}e^{-i\frac{\pi}{2}} \\ &= \frac{\sqrt{3}}{2}i \end{split}$$

Ainsi, le rectangle (Ω, M, M') est bien rectangle en M'.

Soient $k \in \mathbf{R}$, $\theta \in [-\pi, \pi]$ et $\omega \in \mathbf{C}$. La similitude directe de centre Ω d'affixe ω , d'angle θ et de rapport k a pour forme complexe

$$z' = ke^{i\theta}(z - \omega) + \omega$$

(a) On a $\omega=1+i$, $\theta=\frac{\pi}{2}$ et k=2, donc la similitude a pour forme complexe

$$z' = 2e^{i\frac{\pi}{2}}(z - (1+i)) + 1 + i = 2iz + 3 - i$$

(b) On a $\omega = 0$, $\theta = \frac{\pi}{3}$ et $k = \sqrt{3}$, donc la similitude a pour forme complexe

$$z' = \sqrt{3}e^{i\frac{\pi}{3}}z = \left(\frac{\sqrt{3}}{2} + i\frac{3}{2}\right)z$$

(c) On a $\omega = 1 - 2i$, $\theta = \frac{\pi}{4}$ et $k = 2\sqrt{2}$, donc la similitude a pour forme complexe

$$z' = 2\sqrt{2}e^{i\frac{\pi}{4}}(z - (1 - 2i)) + 1 - 2i = (2 + 2i)z - 5$$

Exercice 24

Soient M et N deux points d'affixes respectives z et w. Soient M' et N', d'affixes respectives z' et w', leur image par une similitude directe $z' = \alpha z + \beta$. On dispose des formules suivantes :

$$\alpha = \frac{z' - w'}{z - w}$$

$$\beta = \frac{zw' - z'w}{z - w}$$

(a) On a z = 1, z' = 1 + i, w = 2i et w' = -3 - i. Ainsi

$$\alpha = \frac{1+i+3+i}{1-2i} = 2i$$

$$\beta = \frac{-3 - i - 2i(1 + i)}{1 - 2i} = 1 - i$$

Donc la similitude a pour centre le point Ω d'affixe $\frac{1-i}{1-2i}=\frac{3+i}{5}$, pour angle $\arg(2i)=\frac{\pi}{2}$ et pour rapport |2i|=2.

(b) On a z = 5 - 4i, z' = -1 - 4i, w = -1 - 4i et w' = -4 - i. Ainsi

$$\alpha = \frac{-1 - 4i + 4 + i}{5 - 4i + 1 + 4i} = \frac{1 - i}{2}$$

$$\beta = \frac{(5-4\mathfrak{i})(-4-\mathfrak{i}) - (-1-4\mathfrak{i})^2}{6} = \frac{-3+\mathfrak{i}}{2}$$

Donc la similitude a pour centre le point Ω d'affixe $\frac{-\frac{3+i}{2}}{1-\frac{1-i}{2}}=-1+2i$, pour angle $\arg\left(\frac{1-i}{2}\right)=-\frac{\pi}{2}$ et pour rapport $\left|\frac{1-i}{2}\right|=\frac{\sqrt{2}}{2}$.

(c) On a z = 0, z' = 0, $w = -\sqrt{2} + \sqrt{2}i$ et $w' = 2\sqrt{3} - 2i$. Ainsi

$$\alpha = \frac{-\sqrt{2} + \sqrt{2}i}{-2\sqrt{3} - 2i} = \frac{4e^{-i\frac{5\pi}{6}}}{2e^{i\frac{3\pi}{4}}} = 2e^{i\frac{7\pi}{12}}$$
$$\beta = 0$$

Donc la similitude a pour centre le point Ω d'affixe 0, pour angle $\arg(\alpha) = \frac{7\pi}{12}$ et pour rapport $|\alpha| = 2$.

(a) La translation de vecteur (1,-1) a pour forme complexe

$$z' = z + 1 - i$$

(b) L'homothétie de centre (1,-1) et de rapport 2 a pour forme complexe

$$z' = 2(z-1+i) + 1 - i = 2z - 1 + i$$

(c) La symétrie ^a de centre (0,0) a pour forme complexe

$$z' = -z$$

(d) La symétrie de centre (1, -1) a pour forme complexe

$$z' = -(z-1+i) + 1 - i = -z + 2 - 2i$$

Exercice 26

(a) La table de vérité de la proposition $(p \implies q) \wedge (\neg q \vee r)$ est

р	q	r	$p \implies q$	$\neg q \lor r$	$(p \implies q) \land (\neg q \lor r)$
T	T	Т	T	T	Т
T	T	F	T	F	F
T	F	Т	F	T	F
T	F	F	F	T	F
F	T	Т	T	T	Т
F	T	F	T	F	F
F	F	Т	T	T	Т
F	F	F	T	T	Т

(b) La table de vérité de la proposition $\neg(p \land \neg r) \implies (q \lor r)$ est

р	q	r	$\neg(p \land \neg r)$	$q \lor r$	$\neg(p \land \neg r) \implies (q \lor r)$
T	Т	Т	Т	T	Т
T	Т	F	F	Т	T
T	F	Т	T	Т	T
T	F	F	F	F	Т
F	Т	Т	T	Т	Т
F	Т	F	T	T	Т
F	F	Т	T	Т	Т
F	F	F	Т	F	F

a. Les symétrie centrales sont des rotation d'angle π

(c) La table de vérité de la proposition $\underbrace{((\mathfrak{p}\implies \mathfrak{q})\wedge (\mathfrak{q}\implies \mathfrak{r}))\implies (\mathfrak{p}\implies \mathfrak{r})}_{\bigstar}$ est

p	q	r	$p \implies q$	$q \implies r$	$(\mathfrak{p} \implies \mathfrak{q}) \wedge (\mathfrak{q} \implies \mathfrak{r})$	$p \implies r$	*
Т	Т	Т	T	T	T	T	Т
T	Т	F	T	F	F	F	Т
T	F	Т	F	T	F	T	Т
T	F	F	F	T	F	F	Т
F	Т	Т	T	T	T	T	Т
F	Т	F	T	F	F	T	Т
F	F	Т	T	T	T	T	Т
F	F	F	T	T	T	T	Т

La proposition est toujours vraie, c'est une tautologie.

(d) La table de vérité de la proposition $(\neg p \lor q) \implies ((p \land r) \implies q)$ est

p	q	r	$\neg p \lor q$	p∧r	$(p \wedge r) \implies q$	$\boxed{ (\neg p \lor q) \implies ((p \land r) \implies q) }$
T	T	Т	T	Т	Т	T
T	Т	F	T	F	Т	F
T	F	Т	F	Т	F	Т
T	F	F	F	F	Т	Т
F	Т	Т	T	F	Т	Т
F	T	F	T	F	Т	Т
F	F	Т	Т	F	Т	Т
F	F	F	T	F	T	T

Exercice 27

- (a) « $n \le 5$ »est une condition suffisante pour que n ne soit pas strictement supérieur à 10, mais pas nécessaire.
- (b) «2 | n »est une condition nécessaire pour que n soit divisible par 6, mais pas suffisante.

Exercice 28

Avant de déterminer la contraposée, on exprime formellement « $f \geqslant g$ » :

$$f\geqslant g \stackrel{\mathrm{def}}{\iff} \forall x\in\mathbf{R},\ f(x)\geqslant g(x)$$

La contraposée de « $f \geqslant g \implies \exists x \in \mathbf{R}, \ f(x) \geqslant g(x)$ »est donc

$$\forall x \in \mathbf{R}, \ f(x) < g(x) \implies \exists x \in \mathbf{R}, \ f(x) < g(x)$$

L'option (d) est donc la contraposée recherchée.

Exercice 29

- (a) $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, m > n$ est vraie, il suffit de prendre m = n + 1.
- (b) $\exists n \in \mathbb{N}, \forall m \in \mathbb{N}, m > n$ est fausse, car sa négation est vraie (m = 0).
- (c) $\forall x \in \mathbf{R}, \exists y \in \mathbf{R}, x + y \leq 0$ est vraie, il suffit de prendre y = -|x| 1.
- (d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \ x + y \leq 0$ est fausse, car sa négation est vraie (y = |x| + 1).
- (e) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \ x + y \leq 0$ est fausse, un contre-exemple est x = y = 1.
- (f) $\exists x \in \mathbf{R}, \exists y \in \mathbf{R}, \ x + y \leq 0$ est vraie, il suffit de prendre x = y = -1.

(a) Montrons par contraposition que, pour tout entier naturel n, si n^2 est pair, alors n est pair : Supposons n impair. Alors n peut s'écrire n=2k+1 avec k un entier. Alors

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Donc n^2 est impair. Par contraposition, on obtient le résultat voulu.

(b) Montrons par contraposition que, pour tout réel x, si $x^2 = 2$, alors x < 2: Supposons $x \ge 2$, alors, comme la fonction carrée est croissante sur $[0, +\infty[$,

$$x^2 \ge 2^2 = 4$$

Donc $x^2 \neq 2$. Par contraposition, on obtient le résultat voulu.

Exercice 31

(a) Montrons par l'absurde la proposition suivante

$$\forall x \in \mathbf{R}_+^*, \exists y \in \mathbf{R}_+^*, y < x$$

Supposons donc sa négation :

$$\exists x \in \mathbf{R}_{+}^{\star}, \forall y \in \mathbf{R}_{+}^{\star}, y \geqslant x$$

Alors, comme $\frac{x}{2}$ est un réel strictement positif, on a

$$\frac{x}{2} \geqslant x$$

Comme $x \neq 0$, on peut le simplifier en

$$\frac{1}{2} \geqslant \frac{1}{2}$$

Ce qui est absurde. Ainsi, la négation de la proposition initiale est fausse, donc la proposition est vraie.

(b) Montrons par l'absurde que $\sqrt{2}$ n'est pas rationnel.

Supposons que $\sqrt{2}$ soit rationnel, alors il existe des entiers p et q premiers entre eux (i.e. $\operatorname{pgcd}(p,q)=1$) tels que

$$\sqrt{2} = \frac{p}{q}$$

Ainsi,

$$2=\sqrt{2}^2=\left(\frac{p}{q}\right)^2=\frac{p^2}{q^2}$$

Donc $p^2 = 2q^2$ donc p est pair. Ainsi p peut s'écrire p = 2k pour un certain entier naturel k. Alors

$$2q^2 = p^2 = (2k)^2 = 4k^2$$

D'où $q^2 = 2k^2$, donc q est également pair.

Ceci contredit l'hypothèse que p et q sont premiers entre eux. Ainsi, $\sqrt{2}$ ne peut pas être rationnel.

(a) Soit $x \in E$, alors

$$x \in A \implies x \in A \cup B \implies x \in A \cap B \implies x \in B$$

 $x \in B \implies x \in A \cup B \implies x \in A \cap B \implies x \in A$

Ainsi, $A \subseteq B$ et $B \subseteq A$, donc A = B.

(b) ¹ On raisonne par contraposée, on suppose $A \subset B$. Soit $x \in E$, alors

$$x \in A \implies x \in B \implies x \notin B^{\complement} \implies A \cap B^{\complement} = \emptyset$$

(c) On suppose $A = A \setminus B$. On a

$$B \setminus A = B \setminus (A \setminus B)$$

$$= B \cap (A \setminus B)^{\complement}$$

$$= B \cap (A \cap B^{\complement})^{\complement}$$

$$= B \cap (A^{\complement} \cup B)$$

$$= (B \cap A^{\complement}) \cup (B \cap B)$$

$$= (B \setminus A) \cup B$$

$$= B$$

Exercice 40

Supposons par l'absurde que le disque unité

$$\mathbf{D} = \{ (x, y) \in \mathbf{R}^2 \mid x^2 + x^2 \le 1 \}$$

soit un produit $A \times B$ de parties de \mathbf{R} . Alors, comme $(1,0) \in \mathbf{D}$, $1 \in A$, et comme $(0,1) \in \mathbf{D}$, $1 \in B$. Donc $(1,1) \in A \times B$, donc $(1,1) \in \mathbf{D}$. Or, $1^2 + 1^2 > 1$, donc $(1,1) \notin \mathbf{D}$.

^{1.} Attention, typo dans le sujet, lire $A \cap B^{\complement} \neq \emptyset \implies A \not\subset B$.

Exercice BONUS (Relations d'équivalence)

(a) Soit \mathcal{R} la relation binaire sur \mathbf{R} définie par

$$\forall x \in \mathbf{R}, \ \forall y \in \mathbf{R}, \qquad x \mathcal{R} y \iff \cos^2 x + \sin^2 y = 1$$

Montrer que \Re est une relation d'équivalence.

(b) Soient E un ensemble non vide et A une partie de E. Soit \Re la relation binaire sur $^2 \Re(E)$ définie par

$$\forall X \in \mathfrak{P}(E), \ \forall Y \in \mathfrak{P}(E), \qquad X \mathcal{R} Y \iff X \cap A = Y \cap A$$

Montrer que \Re est une relation d'équivalence.

(a) On vérifie les axiomes un par un :

Réflexivité : Soit $x \in \mathbf{R}$, alors

$$\cos^2 x + \sin^2 x = 1$$

par identité trigonométrique, donc $x\Re x$.

Symétrie : Soient x et y deux réels tels que $x\Re y$ (i.e. $\cos^2 x + \sin^2 y = 1$), alors

$$(1 - \sin^2 x) + (1 - \cos^2 y) = 1$$

Donc

$$\sin^2 x + \cos^2 y = 1$$

D'où yRx.

Transitivité : Soient x, y et z trois réels tels que xRy et yRz. Alors

$$\cos^2 x + \sin^2 z = \cos^2 x + \sin^2 y + \cos^2 y + \sin^2 z$$

On a donc

$$2 = (\cos^2 x + \sin^2 y) + (\cos^2 y + \sin^2 z) = (\cos^2 x + \sin^2 z) + (\cos^2 y + \sin^2 y) = (\cos^2 x + \sin^2 z) + 1$$

D'où

$$\cos^2 x + \sin^2 z = 1$$

D'où xRz.

(b) On vérifie les axiomes un par un :

Réflexivité: Soit X une partie de E, on a bien

$$X \cap A = X \cap A$$

Donc $X \mathcal{R} X$.

Symétrie : Soient X et Y deux parties de E telles que XRY (i.e. $X \cap A = Y \cap A$), alors

$$Y \cap A = X \cap A$$

Donc YRX.

Transitivité: Soient X, Y et Z trois parties de E telles que XRY et YRZ, alors

$$X \cap A = Y \cap A = Z \cap A$$

Donc

$$X \cap A = Z \cap A$$

Donc XRZ.

^{2.} On rappelle que $\mathfrak{P}(E)$ désigne l'ensemble des parties de E, i.e. l'ensemble des ensembles contenus dans E