Chapter 6:

Physical Database Design and Performance

Lecture 6

Objectives

- Definition of terms
- Describe the physical database design process
- Choose storage formats for attributes
- Select appropriate file organizations
- Describe three types of file organization
- Describe indexes and their appropriate use
- Translate a database model into efficient structures
- Know when and how to use denormalization

Physical Database Design

- Purpose—translate the logical description of data into the technical specifications for storing and retrieving data
- Goal—create a design for storing data that will provide adequate performance and insure database integrity, security, and recoverability

Physical Design Process

Inputs

- Normalized relations
- •Volume estimates
- Attribute definitions
- Response time expectations
- Data security needs
- Backup/recovery needs
- Integrity expectations
- •DBMS technology used

Decisions

- Attribute data types
- Physical record descriptions

 (doesn't always match logical design)
- File organizations
- •Indexes and database architectures
- Query optimization

(Pine Valley Furniture Company)

(Pine Valley Furniture Company) (cont.)

Lecture 6

(Pine Valley Furniture Company) (cont.)

(Pine Valley Furniture Company) (cont.)

(Pine Valley Furniture Company) (cont.)

Designing Fields

- Field: smallest unit of data in database
- Field design
 - Choosing data type
 - Coding, compression, encryption
 - Controlling data integrity

Choosing Data Types

- CHAR—fixed-length character
- VARCHAR2—variable-length character (memo)
- LONG—large number
- NUMBER-positive/negative number
- INEGER—positive/negative whole number
- DATE—actual date
- BLOB—binary large object (good for graphics, sound clips, etc.)

TABLE 5-1	Commonly Used Data Types in Oracle 12c
Data Type	Description
VARCHAR2	Variable-length character data with a maximum length of 4,000 characters; you must enter a maximum field length (e.g., VARCHAR2(30) specifies a field with a maximum length of 30 characters). A string that is shorter than the maximum will consume only the required space. A corresponding data type for Unicode character data allowing for the use of a rich variety of national character sets is NVARCHAR2.
CHAR	Fixed-length character data with a maximum length of 2,000 characters; default length is 1 character (e.g., CHAR(5) specifies a field with a fixed length of 5 characters, capable of holding a value from 0 to 5 characters long). There is also a data type called NCHAR, which allows the use of Unicode character data.
CLOB	Character large object, capable of storing up to 4 gigabytes of one variable-length character data field (e.g., to hold a medical instruction or a customer comment).
NUMBER	Positive or negative number in the range 10^{-130} to 10^{126} ; can specify the precision (total number of digits to the left and right of the decimal point to a maximum of 38) and the scale (the number of digits to the right of the decimal point). For example, NUMBER(5) specifies an integer field with a maximum of 5 digits, and NUMBER(5,2) specifies a field with no more than 5 digits and exactly 2 digits to the right of the decimal point.
DATE	Any date from January 1, 4712 B.C., to December 31, 9999 A.D.; DATE stores the century, year, month, day, hour, minute, and second.
BLOB	Binary large object, capable of storing up to 4 gigabytes of binary data (e.g., a photograph or sound clip).

Figure 6-2 Example code look-up table

(Pine Valley Furniture Company)

Field Data Integrity

- Default value—assumed value if no explicit value
- Range control—allowable value limitations (constraints or validation rules)
- Null value control—allowing or prohibiting empty fields
- Referential integrity—range control (and null value allowances) for foreign-key to primary-key match-ups

Sarbanes-Oxley Act (SOX) legislates importance of financial data integrity

Handling Missing Data

- Substitute an estimate of the missing value (e.g., using a formula)
- Construct a report listing missing values
- In programs, ignore missing data unless the value is significant (sensitivity testing)

Physical Records

- Physical Record: A group of fields stored in adjacent memory locations and retrieved together as a unit
- Page: The amount of data read or written in one I/O operation

Denormalization

- Transforming normalized relations into unnormalized physical record specifications
- Benefits:
 - Can improve performance (speed) by reducing number of table lookups (i.e. reduce number of necessary join queries)
- Costs (due to data duplication)
 - Wasted storage space
 - Data integrity/consistency threats
- Common denormalization opportunities
 - One-to-one relationship (Fig. 6-3)
 - Many-to-many relationship with attributes (Fig. 6-4)
 - Reference data (1:N relationship where 1-side has data not used in any other relationship) (Fig. 6-5)

Figure 6-3 A possible denormalization situation: two entities with one-to-one relationship

Figure 6-4 A possible denormalization situation: a many-to-many relationship with nonkey attributes

Figure 6-5
A possible denormalization situation: reference data

Partitioning

- Horizontal Partitioning: Distributing the rows of a table into several separate files
 - Useful for situations where different users need access to different rows
- Vertical Partitioning: Distributing the columns of a table into several separate relations
 - Useful for situations where different users need access to different columns
 - The primary key must be repeated in each file
- Combinations of Horizontal and Vertical

Partitioning (cont.)

Advantages of Partitioning:

- Efficiency: Records used together are grouped together
- Local optimization: Each partition can be optimized for performance
- Security, recovery
- Load balancing: Partitions stored on different disks, reduces contention
- Take advantage of parallel processing capability

Disadvantages of Partitioning:

- Inconsistent access speed: Slow retrievals across partitions
- Complexity: Non-transparent partitioning
- Extra space or update time: Duplicate data; access from multiple partitions

Data Replication

- Purposely storing the same data in multiple locations of the database
- Improves performance by allowing multiple users to access the same data at the same time with minimum contention
- Sacrifices data integrity due to data duplication
- Best for data that is not updated often