Analysis II (Marciniak-Czochra)

Robin Heinemann

20. April 2017

Inhaltsverzeichnis

1	Met	rische und normierte Räume	1
	1.1	Metrische Räume	1
	1.2	Normierte Räume	2

1 Metrische und normierte Räume

1.1 Metrische Räume

Definition 1.1 Sei M eine Menge, $d:M\times M\to [0,\infty)$ heißt **Metrik** auf M genau dann wenn $\forall x,y,z\in M$

• (D1)
$$d(x, y) = 0 \Leftrightarrow x = y$$
 (Definitheit)

• (D2)
$$d(x,y) = d(y,x)$$
 (Symmetrie)

• (D3)
$$d(x,z) \le d(x,y) + d(z,y)$$
 (Dreiecksungleichung)

Beispiel 1.2 1. Charakterische (diskrete) Metrik

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & \text{sonst} \end{cases}$$

2. Sei $X=\mathbb{K}^n(\mathbb{K}=\mathbb{R} \text{ oder } \mathbb{C})$ mit Metrik

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{n}{2}}$$

(euklidische Metrik)

3. Sei $X=\mathbb{R}^n$. Für $1\leq \phi \leq \infty$. Sei

$$d_{\phi}(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{n}{\phi}}$$

Ist $\phi = \infty$, so definieren wir

$$d_{\infty}(x,y) = \max_{i-1,\dots,n} \lvert x_i - y_i \rvert$$

4. $X = \mathbb{R}$ mit Metrik

$$d(x,y) = \frac{|x-y|}{1+|x-y|}$$

5. Der Raum der Folgen $a:\mathbb{N} \to \mathbb{R}$ (beziehungsweise $\mathbb{R}^\mathbb{N}$) kann mit der Metrik

$$d(x,y) = \sum_{k=0}^{\infty} 2^{-k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

Definition 1.3 Sei M eine Menge mit Metrik d. Wir definieren für $x \in M, \varepsilon > 0$, die offene ε-Kugel um x durch

$$K_{\varepsilon}(x) := \{ y \in M \mid d(x, y) < \varepsilon \}$$

 $A\subset M$ heißt **Umgebung** von $x\in M\Leftrightarrow \exists \varepsilon: K_{\varepsilon}(x)\subset A$

Konvergenz und Stetigkeit in metrischen Räumen

 $\begin{array}{l} \textbf{Definition 1.4} \ \, \text{Eine Folge} \left(x_n \right)_{n \in \mathbb{N}} \text{in einem metrischen Raum} \left(X, d \right) \text{ist konvergent gegen einem} \\ x \in X \, \text{genau dann wenn} \, \forall \varepsilon > 0 \\ \exists n_0 \in \mathbb{N} : \forall n \geq n_0 d(x_n, x) < \varepsilon \end{array}$

1. Sei (X,d) ein metrischer Raumn. Dann ist $A\subseteq X$ abgeschlosen genau dann wenn $(X_n)_{n\in\mathbb{N}}$ Folge in A mit $x_n\to x\Rightarrow x\in A$

2. Seien $(X,d_1),(Y,d_2)$ zwei metrische Räume. Dann ist die Funktion stetig in $x\in X$ genau $\mathrm{dann}\ \mathrm{wenn}\ (x_n)_{n\in\mathbb{N}}\ \mathrm{Folge}\ \mathrm{in}\ X\ \mathrm{mit}\ x_n\to x\Rightarrow f(x_n)\to f(x).$

Definition 1.6 ((Cauchy Folgen und Vollständigkeit)) Sei (X, d) ein metrischer Raum. Eine Folge $(x_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge falls $d(x_n,x_m)\to 0$ für $n,m\to\infty$. Der metrische Raum heißt vollständig, falls jede Cauchy-Folge konvergent ist.

1.2 Normierte Räume

Definition 1.7 Ein normierter Raum $(X, \|\cdot\|)$ ist ein Paar bestehend aus einem \mathbb{K} -Vektorraum Xund einer Abbildung $\|\cdot\|: X \to [0,\infty)$ mit

1.
$$||x|| = 0 \Leftrightarrow x = 0$$

2. $\|\lambda x\| = |\lambda| \|x\| \forall \lambda \in \mathbb{K}, x \in X$

3.
$$||x + y|| \le ||x|| + ||y|| \forall x, y \in X$$

Bemerkung 1.8 1. Die Norm $\|\cdot\|$ induziert auf X eine Metrik $d(x,y) = \|x-y\|$

2. Eine Metrik d auf einem Vektorraum definiert die Norm ||d(x,0)|| nur dann, wenn

$$\forall \lambda \in \mathbb{K} \\ \forall x,y,z \in X: d(\lambda x,\lambda y) = |\lambda| d(x,y) \tag{Homagenität} \\ d(x+z,y+z) = d(x,y) \tag{Translations invarianz}$$

Definition 1.9 (1.8 Banachraum) Ein normierter Raum $(X, \|\cdot\|)$ heißt vollständig, falls X als metrischer Raum mit der Metrik $d(x,y) = \|x-y\|$ vollständig ist. Ein solcher vollständiger normierter Raum heißt Banachraum

1. $(\mathbb{R}^n, \|\cdot\|_2)$, wobei Beispiel 1.10 (1.9)

$$\|x\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{n}{2}}$$

2. Sei K eine kompakte Menge:

$$C_{\mathbb{K}} := \{f: K \to \mathbb{K} \mid f \text{ stetig}\}$$

$$\left\| \cdot \right\|_{\infty} = \max_{\lambda \in K} \lvert f(x) \rvert$$

 $(C_{\mathbb{K}(K)}, \|\cdot\|_{\infty})$ ist ein Banachraum.

1. Sede Cauchy-Folge in \mathbb{K}^n konvergiert, das heißt $(\mathbb{K}^n, \|\cdot\|)$ ist vollständig Bemerkung 1.11

2. Jede beschränkte Folge in \mathbb{K}^n besitzt eine konvergente Teilfolge. (Bolzano-Weierstraß Satz gilt in \mathbb{R}^n) (Beweis für \mathbb{R}^n zum Beispiel in RR Ana
2 Satz 1.1)

Satz 1.12 (1.10 (Äquivalenz von Normen)) Auf dem endlich dimesionalen Vektorraum \mathbb{K}^n sind alle Normen **äquivalent** zur Maximumnorm, das heiht zu jeder Norm || ·|| gibt es positive Konstanten w, M mit denen gilt

$$m\|x\|_{\infty} \le \|x\| \le M\|x\|_{\infty}, x \in \mathbb{K}^n$$

Beweis Sei $\|\cdot\|$ irgendeine Norm $\forall x \in \mathbb{K}^n$ gilt

$$\|x\| \leq \sum_{k=1}^n |x_k| \big\| e^{(k)} \big\| \leq M \|x\|_{\infty}$$

mit

$$M := \sum_{k=1}^n \! \big\| e^{(k)} \big\|$$

Wir setzen

$$S_1:=\{x\in\mathbb{K}^m\mid \left\|x\right\|_{\infty}=1\}, m:=\inf\{\|x\|, x\in S_1\}\geq 0$$

Zu zeigen m>0 (dann ergibt sich für $x\neq 0$ wegen $\|x\|_{\infty}^{-1}x\in S_1$ auch $m\leq \|x\|_{\infty}^{-1}\|x\|\Rightarrow 0< m\|x\|_{\infty}\leq \|x\|$ $x\in \mathbb{K}^n$) Sei also angenommen, dass m=0

Dann gibt eine eine Folge $\left(x^{(k)}\right)_{k\in\mathbb{N}}\in S_1$ mit $\left\|x^{(k)}\right\|\xrightarrow{k\to\infty}0$. Da die
e Folge bezüglich $\left\|\cdot\right\|_{\infty}$ beschränkt ist, gibt ei nach dew B.-W. Satz eine Teilfolge auch von $\left(x^{(k)}\right)$, die bezüglich $\left\|\cdot\right\|_{\infty}$ gegen ein $x \in \mathbb{K}^n$ konvergiert.

$$\left|1-\left\|x\right\|_{\infty}\right|=\left|\left\|x^{(k)}\right\|_{\infty}-\left\|x\right\|_{\infty}\right|\leq\left\|x^{(k)}-x\right\|_{\infty}\rightarrow0\Rightarrow\left\|x\right\|_{\infty}=1\Rightarrow x\in S_{1}$$

Anderseits gilt

$$\forall k \in \mathbb{N}: \|x\| \leq \left\|x-x^{(k)}\right\| + \left\|x^{(k)}\right\| \leq M \left\|x-x^{(k)}\right\|_{\infty} + \left\|x^{(k)}\right\| \xrightarrow{k \to \infty} \Rightarrow x = 0$$

$$\forall \text{zu } x \in S_1$$