Seaborn

i	m	าท	O	rt	SE	al	ეი	rr	ı a	s s	:ns
		יףי	0		\sim	<i>,</i> u,	$\overline{}$		·		,, ,,

#getting seaborn available datasets sns.get_dataset_names()

data = sns.load_dataset('dataset_name')

Seaborn Plots							
Categorical	Distribution	Relational	Regression	Matrix			
countplot	histplot	scatterplot	regplot	heatmap			
barplot	kdeplot	lineplot					
boxplot	rugplot	relplot					
violinplot	ecdfplot						
stripplot	displot						
swarmplot	jointplot						
catplot	pairplot						

Note:

Hue should be only a categorical variable.

Data specifies dataframe.

x should be usually categoric variable

y should be numeric variable

Changing the order might change the orientation. (*i.e* vertical to horizontal)

x, y need not be provided at the same time. They can be used alone.

Press shift + tab to get function details

Press tab for auto completion

1) Count Plot

vertical plot
sns.countplot(x, data, palette, hue)

horizontal plot sns.countplot(y, data)

2) Bar Plot

sns.barplot(x, y, data, hue, order, hue_order, color, palette, errorbar=None, estimator=len)

order - list of columns by which the plot should be plotted.

hue_order - list of values for hue

estimator - np.mean (default), np.median, np.sum, len (actual value)

3) Box Plot

Note:

*Box plot cannot be plotted for categorical variables alone. But it can be plotted for numerical alone

```
For Categorical - x
For Numerical - y
```

```
sns.boxplot(x, y, data, linewidth, hue, showmeans=True, meanprops={'marker':'o', 'markerfacecolor':'white', 'markeredgecolor':'black', 'markersize':5}, palette
```

Box plot for all numerical variables of the dataframe sns.boxplot(data)

4) Violin Plot

Same note as that of boxplot.

sns.violinplot(x, y, data, hue, order, hue_order, color, palette, split=True, bw)

5) Strip Plot

Strip plot can be plotted for both numeric and categorical variables.

sns.stripplot(x, y, data, jitter=0.2, linewidth=0.8, hue, dodge=True, color, palette)

jitter - provides space, dodge=True - separates hue

Drawing strip plot on top of violin plot (also used for box plot) sns.stripplot(x='Payment', y='Total', data=data, jitter=0.3, palette='Pastel1') sns.violinplot(x='Payment', y='Total', data=data)

6) Swarm Plot

sns.swarmplot(x, y, data, hue, dodge=True, color, palette, marker, size)

Drawing swarm plot on top of violin plot (also used for box plot) sns.swarmplot(x='Payment', y='Total', data=data, palette='Pastel1') sns.violinplot(x='Payment', y='Total', data=data)

7) Cat Plot

sns.catplot(x, y, data, kind='bar/violin/box/strip/swarm', hue, row, col, palette)

8) Histogram

Can be uni as well as bivariate.

sns.histplot(x, y, data, binwidth=10, bins=value/list, kde=True, hue, color, palette, multiple='stack', element='step'/'poly', fill=False, stat= 'count' (default) /density/ probability/ frequency/ percent)

9) KDE Plot (Kernel Density Estimation)

Can be uni as well as bivariate.

sns.kdeplot(x, y, data, fill=True, bw_adjust=0.2, hue, multiple='stack', color, palette, alpha, levels)

levels - specify the number of contours.

kde plot for all numeical variables of dataframe sns.kdeplot(data)

10) Rug Plot

Can be uni/bi variate. Can be used for both categoric and numeric.

sns.rugplot(x, y, data, hue, height=0.1, color)

#Combining with kde plot sns.rugplot(x='gross income', y='Quantity', data=data, height=0.05) sns.kdeplot(x='gross income', y='Quantity', data=data, fill=True, color='purple')

11) ECDF Plot (Empirical Cumulative Distribution Function)

It is a univariate plot. Can be used for both categoric and numeric.

sns.ecdfplot(x, data, hue, color, palette, stat='proportion/count/percent/density')

12) Displot

sns.displot(x, data, kde=True, rug=True, hue, multiple='stack', element='poly', row, col, color, palette rug_kws=dict(height=0.1), kde_kws=dict(bw_adjust=0.12))

13) Joint Plot

Bivariate plot

sns.jointplot(x, y, data, kind='scatter/hex/kde/resid/hist', hue, marginal_ticks=True, height=3, joint_kws=dict(marker='*', color='red'), marginal_kws=dict(color='pink', element='poly'))

drawing kde and rugplot on top of joint plot pl = sns.jointplot(x='petal_length', y='petal_width', data=data, color='#BC2E12',height=4) pl.plot_joint(sns.kdeplot, color='pink') pl.plot_joint(sns.rugplot, height=0.1, color='green')

14) Pair Plot

sns.pairplot(data, diag_kind='kde/hist/None', kind='scatter/reg/kde/hist', hue, color, palette, x_vars=value/list, y_vars=value/list, corner=True, diag_kws=dict(kde=True, color='#16FF00'), plot_kws=dict(color='#060047', marker='D', s=5))

Creating kde plot on top of pairplot
pl = sns.pairplot(data=data, plot_kws=dict(color='red'), diag_kws=dict(element='poly',
color='pink'))
pl.map_upper(sns.kdeplot) # For only upper
pl.map_lower(sns.kdeplot, fill=True) # For only lower

15) Scatter Plot

Bivariate plot

sns.scatterplot(data=data, x, y, hue, palette, s=200, edgecolor='black')

16) Line Plot

Bivariate Plot

sns.lineplot(data, x, y, errorbar=None, hue, color, palette, estimator='mean/sum/None')

None = actual value

17) Relational Plot

Bivariate, both must be numerical only

sns.relplot(data, x, y, kind='line/scatter', errorbar=None, hue, row, col, col_wrap)

18) Regression Plot

Bivariate Plot.

sns.regplot(data, x, y, color, marker, ci=None, scatter_kws=dict(color='#5800FF', s=100, alpha=0.5), line_kws=dict(color='#FF0060', linestyle='--'))

19) HeatMap

Note:

For heatmap, all columns in the dataframe should be numeric.

sns.heatmap(data, annot=True, fmt='.0f', linewidth=0.5, linecolor='white', cmap, annot_kws=dict(size=15, weight='bold'))

sns.heatmap(data.corr(), vmin=-1, vmax=1, center=0, cmap)

20) Subplots

Basic Syntax

fig, ax = plt.subplots(n_rows, n_cols, figsize=(x, y))

#1D

fig, ax = plt.subplots(1, 2, figsize=(x, y)) sns.barplot(ax=ax[0], x, y, data) sns.histplot(ax=ax[1], x, y, data)

1D

fig, ax = plt.subplots(2, 1, figsize=(x, y)) sns.barplot(ax=ax[0], x, y, data) sns.histplot(ax=ax[1], x, y, data)

2D

fig, ax = plt.subplots(2, 2, figsize=(x, y)) sns.barplot(ax=ax[0, 0], x, y, data) sns.histplot(ax=ax[0, 1], x, y, data) sns.barplot(ax=ax[1, 0], x, y, data) sns.histplot(ax=ax[1, 1], x, y, data)