

YC31xx SPI 应用说明

V1.0

Yichip Microelectronics ©2014

Revision History

Version	Date	Author	Description
V1.0	2020-2-20	Dengzhiqian	Initial version

Confidentiality Level:

confidential

目录

1.	文档	说明	4
	1.1		
	1.2	适用范围	
	1.3	文件说明	
2.	结构	体说明	
	2.1.	SPI 初始化结构体说明	
3.	函数	说明	
	3.1.	SPI_Init	5
	3.2.	SPI_SendData	
	3.3.	SPI_SendBuff	5
	3.4.	SPI_SendAndReceiveData	6
4.	示例	代码及说明	6
	4.1.	SPI_FLASH 部分示例代码	7
	4.2.	SPI_FLASH 部分示例代码 SPI_LCD 部分示例代码	7
	4.3.	SPI_SLAVE 部分示例代码	8

1. 文档说明

1.1 编写目的

为使用 SPI 相关 demo 及 demo 中相关 API 提供指南

1.2 适用范围

31xx 系列芯片

1.3 文件说明

2. 结构体说明

2.1. SPI 初始化结构体说明

结构体名称: SPI_InitTypeDef 说明: 目的保存 SPI 核心参数

元素名称	类型	说明 元素取值范围		
Mode	uint8_t	Specifies the SPI operating mode.	SPI_Mode_Master	
		This parameter can be a value of @ref	SPI_Mode_Slave	
		SPI_mode		
CPOL	uint8_t	Specifies the serial clock steady state.	SPI_CPOL_Low	
		This parameter can be a value of@ref	SPI_CPOL_High	
		SPI_Clock_Polarit		
СРНА	uint8_t	Specifies the clock active edge for the bit	SPI_CPHA_First_Edge	
		capture.	SPI_CPHA_Second_Edge	
		This parameter can be a value of @ref		
		SPI_Clock_Phase		
BaudRatePrescaler	uint8_t	Specifies the Baud Rate prescaler value which SPI_BaudRatePrescaler_1		
		will be used to configure the transmit and SPI_BaudRatePrescaler_2		
		receive SCK clock. This parameter can be a SPI_BaudRatePrescaler_4		
		value of @ref SPI_BaudRate_Prescaler.@note SPI_BaudRatePrescaler_8		
		The communication clock is derived from the SPI_BaudRatePrescaler_16		
		master clock.	SPI_BaudRatePrescaler_32	

		The slave clock does not need to be set.		SPI_BaudRatePrescaler_64
				SPI_BaudRatePrescaler_128
RW_Delay	uint8_t	Specifies the Delay time between send	and	0~127
		receive data, the value must be 0 to 127		

3. 函数说明

3.1. SPI_Init

函数原型: void SPI_Init(SPIx_TypeDef SPIx, SPI_InitTypeDef* SPI_InitStruct);

说明: SPI 初始化函数,目的是为 SPI 核心寄存器赋初值

参数	方向	说明
SPIx_TypeDef SPIx	IN	SPIx 的寄存器地址: 3121 有两个 SPI
		此参数的选择范围为: SPI0、SPI1
SPI_InitTypeDef*	IN	参考 SPI 初始化结构体说明
SPI_InitStruct		

返回值	说明
None	None

3.2. SPI_SendData

函数原型: void SPI_SendData(SPIx_TypeDef SPIx, uint8_t data) 说明: SPI 1 字节数据发送函数,目的是将数据写入 DMA。

参数	方向	说明
SPIx_TypeDef SPIx	IN	SPIx 的寄存器地址: 3121 有两个 SPI
		此参数的选择范围为: SPI0、SPI1
uint8_t data	IN	1 字节待发送数据

返回值	说明
None	None

3.3. SPI_SendBuff

函数原型: void SPI_SendBuff(SPIx_TypeDef SPIx, uint8_t *buff, int len)

说明: SPI 多字节数据发送函数, 目的是将数据写入 DMA。

1			
	∠ √1/1	<u>~ 1 .</u>	\⊻ п□
	元 杯	万回	3 N HO
	少奴	/ J L J	「元 7万

SPIx_TypeDef SPIx IN		SPIx 的寄存器地址:3121 有两个 SPI
		此参数的选择范围为: SPI0、SPI1
uint8_t *buff	IN	待发送数据地址
int len	IN	待发送数据长度

返回值	说明		
None	None		

3.4. SPI_SendAndReceiveData

函数原型: void SPI_SendAndReceiveData(SPIx_TypeDef SPIx,

uint8_t *TxBuff, uint16_t TxLen, uint8_t *RxBuff, uint16_t RxLen)

说明: SPI 多字节数据发送同时任意字节数据接收函数

参数	方向	说明
SPIx_TypeDef SPIx,	IN	SPIx 的寄存器地址:3121 有两个 SPI
		此参数的选择范围为:SPIO、SPI1
uint8_t *TxBuff,	IN	待发送数据地址
uint16_t TxLen,	IN	待发送数据长度
uint8_t *RxBuff	OUT	待接收数据地址
uint16_t RxLen	OUT	待接收数据长度

返回值	说明
None	None

4. 示例代码及说明

示例代码存放在 ModuleDemo\SPI 目录下(如下图)

- ① SPI_FLASH: SPI 操作 W25Q16 flash 示例,包括读取 ID、擦除及读写。
- ② SPI_LCD: SPI 操作 SHII06 lcd 示例,包括清屏、显示中文。

③ SPI_SLAVER: SPI0 做主机, SPI1 做从机进行数据传输示例。

4.1. SPI_FLASH 部分示例代码

```
int main(void)
    UART_Configuration(); // 串口初始化,配置说明参考 UART 应用说明文档
    SPI_Configuration(); // SPI 初始化
    /*以下操作的 GPIO,是对板子上其它 SPI_CS 进行操作,避免干扰*/
    GPIO Config(GPIOC, GPIO Pin 8, OUTPUT HIGH);
    GPIO_Config(GPIOC, GPIO_Pin_6, OUTPUT_HIGH);
    GPIO_Config(GPIOB, GPIO_Pin_8, OUTPUT_HIGH);
    FlashID = Spi_W25Q16_ReadDeviceID(); // 获取设备 ID
    MyPrintf("FlashID = 0x\%04x\n", FlashID);
    Spi_W25X_ChipErase(0x00); // 整片擦除
    Spi_W25Q16_PageWrite(0x00); // 写操作
    Spi_W25Q16_ReadData(0x00, 16, W25Q16_ReadBuff); // 读操作
    for (int i = 0; i < 15; i++)
        MyPrintf("%d\n", W25Q16_ReadBuff[i]);
    while (1)
}
void Spi_W25Q16_PageWrite(uint32_t Addr)
    uint8_t TxBuff[20]={W25X_PageProgram, Addr>>16, Addr>>8, Addr, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15};
    W25Q16_WriteEnable(); // 写使能
    SPI_SendAndReceiveData(SPI0, TxBuff, 19, 0, 0);
    W25Q16_WaitBusyState(); // 等待忙信号
}
```

4.2. SPI LCD 部分示例代码

int main(void)


```
{
    UART_Configuration(); // 串口初始化,配置说明参考 UART 应用说明文档 LCD_Configuration(); // LCD 初始化

    MyPrintf("Yichip Yc3121 LCD Demo V1.0.\r\n");

    GPIO_Config(GPIOA, GPIO_Pin_2, OUTPUT_HIGH); // 开背光

    /*以下操作的 GPIO,是对板子上其它 SPI_CS 进行操作,避免干扰*/
    GPIO_Config(GPIOC, GPIO_Pin_8, OUTPUT_HIGH);
    GPIO_Config(GPIOB, GPIO_Pin_8, OUTPUT_HIGH);
    GPIO_Config(GPIOB, GPIO_Pin_8, OUTPUT_HIGH);

    SPI_LCD_Test();

    while (1)
    {
        }
}

4.3. SPI_SLAVE 部分示例代码

int main(void)
```

```
UART_Configuration(); // 串口初始化,配置说明参考 UART 应用说明文档 SPI_Configuration(); // SPI 初始化

MyPrintf("Ychip 3121 SPI_SLAVER Demo !\n");

/*以下操作的 GPIO,是对板子上其它 SPI_CS 进行操作,避免干扰*/
GPIO_Config(GPIOC, GPIO_Pin_6, OUTPUT_HIGH);
GPIO_Config(GPIOC, GPIO_Pin_8, OUTPUT_HIGH);
GPIO_Config(GPIOC, GPIO_Pin_9, OUTPUT_HIGH);
GPIO_Config(GPIOB, GPIO_Pin_8, OUTPUT_HIGH);

M_txbuff[0] = 0xaa;
S_txbuff[0] = 0x55;
M_rxbuff[0] = 0;
S_rxbuff[0] = 0;
```


