Math 6310 Algebra I

Taught by Marcelo Aguiar Notes by Aaron Lou Fall 2019

Contents

1	Aug								
	1.1	Basic Notions							
	1.2	Isomorphism Laws							
	1.3	Modularity							
2	Sep	September 3 8							
	2.1	Butterfly Lemma							
	2.2	Series							
	2.3	Simple Groups							
3	Sep	tember 5 11							
	3.1	Simple Groups Cont							
	3.2	Solvable Groups							
	3.3	The Derived Series							
	3.4	Nilpotent Groups							
4	Sep	tember 10 14							
	4.1	Nilpotent Groups Revisited							
	4.2	The Lower Central Series							
	4.3	Group Actions							
	4.4	Actions and groups of permutations							
5	Sep	tember 12 17							
	5.1	Applications to Existence of Normal Subgroups							
	5.2	p-groups							
	5.3	Sylow Theorems							
6	Sep	tember 17 20							
	6.1	Sylow Theorems Continued							
	6.2	Direct Groups							
	6.3	Nilpotent Groups again							
7	Sep	tember 19 23							
	7.1	Semidirect Product							
	7.2	Hall Subgroups							
	7.3	Looking Forward							
8	Sen	tember 24 27							
-	8.1	Simple Groups							
		The alternating groups 20							

9	_	tember 26 The Projective Special Linear	Gı	ot	ıps			•				•			29 29
10		1 Classification of Simple Groups Projective Geometries													
11	11.2	Monoids													36
12	12.2	8 More on Free Groups Presentations Zorn's Lemma													38
13	Oct 13.1	11 Zorn's Lemma Cont							•	•	•		•		40
14	Oct 14.1	22 Rings										•			41 41
15		24 Rings cont													
16		29 Modules													
	17.2	29 Noetherian Modules Free Modules Tensor Products													
18	18.2	5 Divisibility							•						54 54 55 56

19	19.2	7 Integrality	56 56 57 58
		Polynomial Rings	58
20		12 More Prime Factorization of UFDs	59 59 61
21	21.2	14 Principal Modules	61 62 64
22	22.2		64 64 65 66
23	23.2		67 68 69
24		26 Splitting Fields cont	69 69 70
25			71 71 72
26	Dec	5	74
27		10 Artin-Tate	74 74 75

1 Aug 29

1.1 Basic Notions

Def.

- Groups are sets with binary operation closed, associative, inverse, identity.
- Subgroup $H \leq G$ contains unit, inverse, and closed.
- Normal subgroup $N \leq G : gNg^{-1} = N$.
- We have quotient group G/N
- **Homomorphisms** $\varphi: G_1 \to G_2$ s.t. $\varphi(a+b) = \varphi(a) + \varphi(b)$. We have $\ker(\varphi) \leq G_1, \operatorname{im}(\varphi) \leq G_2$.
- Injectivity of φ means $\ker(\varphi) = \{1\}$, surjective means that $\operatorname{im}(\varphi) = G_2$, bijective means isomorphism and both and inverse is homomorphism.

1.2 Isomorphism Laws

Prop 1.1 (First Isomorphism Law).

- (i) Let $N \leq G$ and $\pi: G \to G/N$ be the canonical projection $\pi(g) = gN$. Then π is a surjective homomorphism and $\ker(\pi) = N$.
- (ii) Let $\varphi: G \to Q$ be a surjective homomorphism with $\ker(\varphi) = N$. Then $\widehat{\varphi}: G/N \to Q$ given by $\widehat{\varphi}(gN) = \varphi(g)$ is a well define isomorphism and the following diagram commutes

$$N \hookrightarrow G \xrightarrow{\pi} G/N$$

$$\varphi \downarrow_{\widehat{\varphi}}$$

$$Q$$

Prop 1.2 (Universal Property of Quotient UPQ). Let $N \subseteq G$ and $\varphi : G \to H$ be a homomorphism with $N \leq \ker(\varphi)$ then there is a homomorphism $\widehat{\varphi} : G/N \to H$ s.t. $\varphi = \widehat{\varphi} \circ \pi$.

$$G \xrightarrow{\varphi} H$$

$$\downarrow^{\pi} \quad \widehat{\varphi}$$

$$G/N$$

Moreover, $\ker(\widehat{\varphi}) = \ker(\varphi)/N \operatorname{im}(\widehat{\varphi}) = \operatorname{im}(\varphi)$

Def. Given subsets X, Y of $G, XY = \{xy, x \in X, y \in Y\}$.

Remark. Even if $X, Y \leq G$, $XY \leq G$ is not true necessarily.

Def. $N_G(X) = \{g \in G : gXg^{-1} = X\}.$ Y normalizes X if $Y \subseteq N_G(X)$.

Remark. $Y \leq G$, then: Y normalizes $X \iff yXy^{-1} \subseteq X \ \forall y \in Y$.

Proof. (\rightarrow) is trivial. (\leftarrow) is that $y^{-1}Xy \subseteq X \implies yy^{-1}Xyy^{-1} \subseteq yXy^{-1}$.

Remark. $N_G(X) \leq G$ for all $X \subseteq G$.

Prop 1.3 (Second Isomorphism Law). Let $N, H \leq G$ s.t. H normalizes N.

- (1) $NH = HN \leq G$.
- (2) $N \leq NH$ and $N \cap H \leq H$.
- (3) $NH/N \cong H/N \cap H$.

Proof.

(1) $hNh^{-1} = N \to hN = Nh$. $n_1h_1n_2h_1 = n_1n_3h_3h_2 \in NH$. $(nh)^{-1} = hn \in HN = NH$.

(2) H normalizes N by hypothesis. N normalizes N. $N ext{ } ext{ } ext{ } NH$ as $nh \in NH$ and $(nh)N(nh)^{-1} = nhNh^{-1}n^{-1} \subset nNn^{-1} \subseteq N$. For $N \cap H ext{ } ext{ } H$, note that $h \in H, x \in N \cap H$ then $hxh^{-1} \in H$ and $hxh^{-1} \in X$ so $h(N \cap H)h^{-1} \subseteq N \cap H$ and so $N \cap H$ is normal in H.

(3)

Let $\varphi: H \to NH/N$ be the restriction of $\pi: NH \to NH/N$ to H. Then $\ker(\varphi) = N \cap H$ and φ is surjective as $\overline{nh} = \overline{h} = \varphi(h)$. Apply first isomorphism to φ so we have that $H/N \cap H \cong NH/N$ as $N \cap H$ is kernel, H is domain, image is NH/N.

Prop 1.4 (Third Isomorphism Law). Let $N, K \subseteq G$ with $N \subseteq K$.

- (1) $K/N \leq G/N$.
- (2) $\frac{G/N}{K/N} \cong G/K$.

Proof. Consider $\pi: G \to G/K$, then $N \subseteq K = \ker(\pi)$. By UPQ there is a homomorphism $\widehat{\pi}: G/N \to G/K$ and $\ker(\widehat{\pi}) = G/N$ and $\operatorname{im}(\widehat{\widehat{\pi}}) = G/K$. By first isomorphism theorem, we are done.

Prop 1.5 (Fourth Isomorphism Law). Let $N \subseteq G$.

- (1) If $N \subseteq H \le G \implies H/N \le G/N$.
- (2) If $Q \leq G/N$ then there exists a unique H s.t. $N \subseteq H \leq G$ and Q = H/N. There is a bijective correspondence between subgroups of G/N and intermediate subgroup of G.

(3) This correspondence preserves inclusion and normality: $H_1 \leq H_2 \iff H_1/N \leq H_2/N$ and $H_1 \leq H_2 \iff H_1/N \leq H_2/N$.

1.3 Modularity

Let $X, Y, Z \leq G$. We ask if $X \cap YZ = (X \cap Y)(X \cap Z)$ (distributivity). This doesn't hold. If $G = \mathbb{Z}^2$ as if Y, Z are the axes and X a diagonal line, then $X \cap YZ = X \neq (X \cap Y)(X \cap Z) = \{1\}.$

Prop 1.6 (Dedekind's modularity law). Let $X, Y, Z \leq G$ s.t. $Z \subseteq X$. Then $X \cap YZ = (X \cap Y)Z$. Or we have $X \cap YZ = XZ \cap YZ = (X \cap Y)Z = (X \cap Y)(X \cap Z)$.

Proof. (\supseteq): $X \cap Y \subseteq X, Z \subseteq X \implies (X \cap Y)Z \subseteq X$. Furthermore, $X \cap Y \subseteq Y, Z \subseteq Z \implies (X \cap Y)Z \subseteq YZ$ so this proves this direction.

$$(\subseteq): x=yz \in X \cap YZ. \ y=xz^{-1} \in X \implies y \in X.$$
 So, $x=yz \in (X \cap Y)Z.$ \Box

Remark. $\mathcal{L}(G) = \{ H \subseteq G : H \leq G \}$. This is a poset by \subseteq . It's a lattice as well. The meet is $H_1 \cap H_2$ and the join is $\langle H_1 \cup H_2 \rangle$.

 $\mathcal{N}(G) = \{ N \leq G \}.$ $N_1 \wedge N_2 = N_1 \cap N_2, N_1 \vee N_2 = N_1 N_2.$ It is a modular lattice.

2 September 3

2.1 Butterfly Lemma

The butterfly law comes from trying to embed a chain of subgroups $B_1 \leq B$ into $A_1 \leq A$. We want to use the NH diamond to get $A_1 \leq A_1(A \cap B_1) \leq A_1(A \cap B) \leq A$. By Dedekind's Modularity Law, our ordering is unaffected as $A_1(A \cap B) = A \cap A_1B$ so our intersection and multiplication order doesn't matter.

Prop 2.1 (Butterfly, Zausenhaus). Let $A_1 \subseteq A \subseteq G$, $B_1 \subseteq B \subseteq G$. Then

- (1) $A_1(A \cap B_1) \leq A_1(A \cap B) \leq G$. $(A_1 \cap B)B_1 \leq (A \cap B)B_1 \leq G$.
- (2) $\frac{A_1(A \cap B)}{A_1(A \cap B_1)} \cong \frac{(A \cap B)B_1}{(A_1 \cap B)B_1}$.

Proof.

- (1) A normalizes A_1 so $A \cap b$ normalizes A_1 . Therefore, $A_1(A \cap B) \leq G$ and similarly for others. A_1 normalizes $A_1(A \cap B_1)$ as A_1 is a subgroup of $A_1(A \cap B_1)$. $A \cap B$ normalizes $A_1(A \cap B_1)$ as $A \cap B$ normalizes A_1 and $A \cap B_1$.
- (2) We build the butterfly diagram

The top left and right parallelograms are NH diamonds. Then apply 2nd isomorphism law to both and deduce the desired result. To show this, note that $A_1(A \cap B_1)(A \cap B) = A_1(A \cap B)$. Note that $A_1(A \cap B) \cap (A \cap B) = (A_1 \cap A \cap B)(A \cap B_1 \cap A \cap B) = (A_1 \cap B)(A \cap B_1)$ as $A \cap B$ normalizes $A_1(A \cap B_1)$.

2.2 Series

Def. Let G be a group. A **series** is a finite sequence of subgroups, each contained in the preceding and ranging from G to $\{1\}$.

$$G = G_0 \ge G_1 \dots \ge G_m = \{1\}$$

The **length** is m. It is proper if $G_i \neq G_{i-1}$. It is **subnormal** if $G_i \leq G_{i-1}$ and normal if $G_i \leq G \forall i$. A second series of G is a **refinement** if it contains all elements of the first series but more. In a subnormal series, the G_{i-1}/G_i are **slices**. Note that the group is **proper** if all slices are nontrivial. Two subnormal series are **equivalent** if their nontrivial slices are isomorphic, possibly in different order, with same multiplicity.

Theorem 2.1 (Schreir's Refinement). Let $\{G_i\}_{0 \leq i \leq n}$ and $\{H_j\}_{0 \leq j \leq m}$ be two subnormal series of G. There exists refinements $\{G'_i\}_{0 \leq i \leq mn}$ and $\{H'_j\}_{0 \leq j \leq m'}$ that are equivalent.

Proof. For each i and j, insert H_j into $G_{i+1} \leq G_i$ (as in butterfly lemma) $G_{ij} = G_{i+1}(G_i \cap H_j)$. We have that

$$G_i \ge G_{i,0} \ge \dots G_{i,m} \ge G_{i+1}$$

Note that $G_i = G_{i,0}, G_{i,m} = G_{i+1}$. By BL it is subnormal. Piecing these chains together with i to obtain a subnormal refinement of $\{G_i\}$ and do the same with $\{H_j\}$. These new chains are equivalent as $G_{i,j}/G_{i,j+1} \cong H_{j,i}/H_{j,i+1}$ by the BL.

2.3 Simple Groups

Def. A group G is **simple** if the only normal subgroups are G and 1 and is nontrivial.

Def. A composition series is a subnormal series for which all slices are simple.

Ex.

- $D_n = \{\rho, \sigma : \rho^m = \sigma^2 = 1, \sigma\rho = \rho^{-1}\sigma\}$. The elements $\sigma\rho^i$ and ρ^i and there are 2n elements. An example is $D_n \triangleright \langle \rho \rangle \triangleright \{1\}$ with slices $\mathbb{Z}_2, \mathbb{Z}_n$.
- $\mathbb{Z}_6 \triangleright \langle \overline{2} \rangle \triangleright \langle \overline{0} \rangle$ with slices $\mathbb{Z}_2, \mathbb{Z}_3$.
- $\mathbb{Z}_6 \triangleright \langle \overline{3} \rangle \triangleright \langle \overline{0} \rangle$ with slices $\mathbb{Z}_2, \mathbb{Z}_3$.
- $GL(n, \mathbb{F}) \triangleright SL(n, \mathbb{F}) \triangleright \mu_n(\mathbb{F}) \triangleright \{1\}$ as SL is kernel of determinant. Slice is \mathbb{F}^x , $PSL(n, \mathbb{F})$, μ_m .

3 September 5

3.1 Simple Groups Cont

Ex.

- A group is simple and abelian iff it is cyclic with prime order.
- $A_n = \{ \sigma \in S_n : \sigma \text{ is even} \}$ is simple for $n \neq 1, 2, 4$. A_4 is not simple as it contains $K_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. In particular $V_4 = \{id, (12)(34), (13)(24), (14)(23)\}$ and this is normal.
- $PSL(n, \mathbb{F}_q)$ is simple when n = 2, q = 2, 3 or n = 1 (will show in a couple of weeks).

Def. A composition series of a group if it is a proper subnormal series that has no proper refinements. Equivalently, all slices are simple groups. The slices are called the composition factors.

$\mathbf{E}\mathbf{x}$.

- \mathbb{Z} doesn't have a composition series, as everything must be of the form $\mathbb{Z} \triangleright p_1 \mathbb{Z} \triangleright p_1 p_2 \mathbb{Z} \dots$ and this never reaches 0.
- $\mathbb{Z}_6 \triangleright \langle \overline{2} \rangle \triangleright \{\overline{0}\}$ and $\mathbb{Z}_6 \triangleright \{\overline{3}\} \triangleright \{\overline{0}\}$ are two composition series.
- Any finite group has a composition series. Proof by strong induction.

Theorem 3.1 (Jordan-Holder Thm). Let G be a group with a composition series. Any two composition series of G are equivalent.

Proof. Any two composition series $\{G_i\}$ and $\{H_j\}$ have subnormal refinements that are equivalent by Schreir's. They are the same (added a bunch of 1 slices) and since the two composition series are proper they are equivalent as their refinements are equivalent.

Remark. The composition factors of G depend on G and not on the selection of composition series. However, the same doesn't hold the other way around: composition series factors may define two groups.

Ex. For n > 4, $S_n \triangleright A_n \triangleright \{id\}$ has slices \mathbb{Z}_2 , A_n and is a composition series as both are simple.

3.2 Solvable Groups

Def. A group is **solvable** if it admits a subnormal series with all slices abelian.

Ex.

- Any abelian group is solvable.
- $D_n \triangleright \langle \sigma \rangle \triangleright \{1\}.$

Prop 3.1. Let G be solvable and $H \leq G$. Then

- H is solvable
- iff $H \subseteq G$, G/H is solvable.

Proof. Same is true for abelian groups. Pick a subnormal series for G with abelian slices and intersect on H and project to G/H.

Prop 3.2. Let $N \triangleleft G$. Then G is solvable iff N, G/N solvable.

Proof. (\Rightarrow) . Previous prop

 (\Leftarrow) pick series for N, G/N and lift the former to subgroup between N and G using 4th isomorphism law.

Prop 3.3. Let G be solvable. Then every subnormal series has a refinement with abelian slices.

Proof. Schreir's on both.

Prop 3.4. Let G be a group with composition series. The following are equivalent

- (i) G is solvable.
- (ii) All composition factors are abelian.
- (iii) All composition factors are cyclic of prime order.

Proof. $(i) \rightarrow (ii)$. Apply previous prop to given comp series.

 $(ii) \rightarrow (iii)$. Simple Abelian groups are cyclic of prime order.

 $(iii) \rightarrow (i)$ by definition.

Ex. S_n is not solvable for n > 4 as A_n is not abelian.

3.3 The Derived Series

Def. The commutator of $g, h \in G$ is $[g, h] = ghg^{-1}h^{-1}$. The commutator of $H, K \leq G$ is $[H, K] = \bigcap_{S \leq G, \{[h,k]\} \subseteq S} S$.

Lemma.

- $[G, G] = \{1\}$ iff and only iff G is abelian.
- Let $N \leq G$. Then $[G,G] \subseteq N \iff N \leq G$ and G/N is abelian.

Proof. Homework exercise (2-11).

Def. The derived subgroup of G is $G^{(1)} = [G, G]$ and $G^{(i)} = (G^{(i-1)})^{(1)}$. Note that $G^{(i)} \leq G^{(i-1)}$ and $G^{(i-1)}/G^{(i)}$ are abelian, but it may not terminate. This is the **derived series**.

Prop 3.5. Each $G^{(i)}$ is characteristic in G. Recall that characteristic means that H is mapped to a subgroup of H for any automorphism of G.

Proof. $\sigma([g,h]) = [\sigma(g), \sigma(h)]$. Use the fact that being characteristic is transitive.

Prop 3.6. Let G be a group. The following are equivalent

- (i) G is solvable.
- (ii) $\exists m \geq 0 \text{ s.t. } G^{(m)} = \{1\}.$
- (iii) G has a normal series with abelian slices.

Proof. $(ii) \to (iii) \to (i)$ is obvious as we use the derived series and if normal series are subnormal. To prove $(i) \to (ii)$, we note that in a derived series $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = \{1\}$ then we can use our lemma to show that $G^{(1)} \leq G_1, G_1^{(1)} \leq G_2$ etc. and therefore we have by induction $G^{(i)} \leq G_i$ which proves (ii).

3.4 Nilpotent Groups

Def. A group G is **nilpotent** if it admits a normal series $G = G_0 \trianglerighteq G_1 \trianglerighteq \cdots \trianglerighteq G_n \trianglerighteq \{1\}$ s.t. $G_{i-1}/G_i \subseteq Z(G/G_i)$ for all $i = 1, \ldots, m$.

Ex. Abelian \implies nilpotent \implies solvable.

Remark. G nilpotent implies that $Z(G) \neq \{1\}$.

Prop 3.7.

- 1. G nilpotent, $H \leq G$ means H nilpotent.
- 2. G nilpotent, $N \subseteq G$ then G/N is nilpotent.
- 3. N < Z(G) and G/N nilpotent implies that G is nilpotent.

4 September 10

4.1 Nilpotent Groups Revisited

Prop 4.1.

- 1. G nilpotent and $H \leq G \implies H$ nilpotent.
- 2. G nilpotent and $N \subseteq G$ implies that G/N nilpotent.
- 3. $N \leq Z(G)$ and G/N is nilpotent means that G is nilpotent.

Proof. HW2, Exercise 9.

Ex. HW2, Ex 10. D_n is nilpotent iff $n = 2^{\alpha}$ for some α .

4.2 The Lower Central Series

Def. Define subgroups of G as follows.

$$G^{[0]} = G, G^{[i]} = [G, G^{[i-1]}]$$

 $G = G^{[0]} \supseteq G^{[1]} \cdots \supseteq is the lower central series of G.$

Prop 4.2.

- 1. $G^{[i]}$ is characteristic in G for each i.
- 2. $G = G^{[0]} \supseteq G^{[1]} \dots$ is well defined
- 3. $G^{[i-1]}/G^{[i]} \subset Z(G/G^{[i]})$.

Prop 4.3. *G* is nilpotent iff $\exists n \geq 0 \text{ s.t. } G^{[n]} = \{1\}.$

4.3 Group Actions

Def. Let G be a group and Ω a set. The **left action** of G on Ω is a function $G \times \Omega \to \Omega$ with $(g, \alpha) \to g \cdot \alpha$ s.t. $1 \cdot \alpha = \alpha$ and $g \cdot (h \cdot \alpha) = gh \cdot \alpha$. The **right action** is the same thing.

For $\alpha, \beta \in \Omega$, $\alpha \sim \beta$ if $g \cdot \alpha = \beta$ for some $g \in G$. \sim is an equivalence relation and the classes are called the **orbits** of the action. It is denoted $O_G(\alpha) = \{g \cdot \alpha | g \in G\}$.

The **stabilizer** of an element $\alpha \in \Omega$ is given by $S_G(\alpha) = \{g \in G | g \cdot \alpha = \alpha\}$. $O_G(\alpha) \subseteq \Omega$ and $S_G(\alpha) \leq G$.

Def. The action is **transitive** when there is only one orbit or $g \cdot \alpha = \beta$ for all α, β .

Ex.

- 1. $G = (\mathbb{R}, +)$, $\Omega = \mathbb{C}$. $x \cdot z = e^{ix}z$. The orbits are circles of varying radius and the stabilizer is $S_G(0) = \mathbb{R}$ and $S_G(z) = 2\pi\mathbb{Z}$.
- 2. G be any group, $\Omega = G$ then the **action of conjugation** is given by $h \to ghg^{-1}$. $S_G(h)$ is the centralizer of h in G and $O_G(h)$ is the conjugacy class of h in G.
- 3. S_n acts on $\{1, 2, ..., n\}$ by $\sigma \cdot i = \sigma(u)$. This action is transitive because there is always a permutation sending i to j.

Prop 4.4. Let G act on Ω , $\alpha \in \Omega$. Then

- 1. $S_G(\alpha) \leq G$.
- 2. $|G/S_G(\alpha)| = |O_G(\alpha)|$
- 3. $\alpha \sim \beta$ then there is a $q \in G$ s.t. $qS_G(\beta)q^{-1} = S_G(\alpha)$.

Ex. Let $k \leq n$ be nonnegative integers, $\mathbb{P}_k(n) = \{A \subseteq \{1, 2, ..., n\} | |A| = k\}$. S_n acts on $\mathbb{P}_k(n)$ by $\sigma \cdot A = \sigma(A)$. Let $A_0 = \{1, 2, ..., k\} \in \mathbb{P}_k(n)$. Then $O_{S_n}(A_0) = \mathbb{P}_k(n)$ so the action is transitive. $S_{S_n}(A_0) \cong S_k \times S_{n-k}$ under isomorphism $\sigma \to (\sigma|_{A_0}, \sigma|_{A_0^c})$. Therefore

$$|\mathbb{P}_k(n)| = |S_n/S_{S_n}(A_0)| = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Prop 4.5. Let G act on finite Ω and all stabilizers are trivial. Then the number of orbits is $|\Omega|/|G|$. G is finite and |G| $|\Omega|$.

Proof.
$$|O_G(\alpha)| = |G/S_G(\alpha)| = |G|$$
. We see that $\Omega = \bigsqcup_{i=1}^k O_G(\alpha_i)$ so $|\Omega| = \sum_{i=1}^k |O_G(\alpha_i)| = k|G|$.

Ex. Let $H \leq G$ with finite g. $(g,h) \rightarrow gh$ is a right action of H on G. $O_H(g) = gH$ so the orbits are the H-cosets. |G:H| = |G/H|. $S_H(g) = \{1\}$ so the stabilizers are trivial. By proposition we get Lagrange's thm |G/H| = |G|/|H|.

Ex. Let $\mathbb{P}^n(\mathbb{F})$ be the n-dimensional projective space over a field \mathbb{F} . This is the lines through the origin in \mathbb{F}^{n+1} . The slopes cover the line, with a point at infinity. HW3 exercise 3 will derive

$$|\mathbb{P}^n(\mathbb{F}_q)| = 1 + q + \dots + q^n$$

Def. For G acting on Ω , Ω^G is the set of fixed points $\{\alpha \in \Omega : g \cdot \alpha = \alpha \forall g \in G\}$.

Theorem 4.1 (Fixed point lemma). Let G act on finite Ω . Suppose there is a p s.t. p|[G:H] for all H < G. Then $|\Omega^G| \equiv |\Omega| \pmod{p}$.

Proof. Examine orbits $O_G(\alpha_1), \ldots, O_G(\alpha_i), O_G(\alpha_{i+1}), \ldots, O_G(\alpha_k)$, where $O_G(\alpha_i)$ and before are trivial and rest are not. Then $|\Omega| = |\Omega^G| + |G/S_G(\alpha_{i+1})| + \cdots + |G/S_G(\alpha_k)|$. Clearly the other stabilizer terms are proper, as their respective orbits are nontrivial and we have $|\Omega| \equiv |\Omega^G| \pmod{p}$.

4.4 Actions and groups of permutations

If G acts on Ω from the left. If we define $\varphi_g(\alpha) = g \cdot \alpha$ then $(\varphi_g)^{-1} = \varphi_{g^{-1}}$. If $S(\Omega)$ is the group of permutations of Ω then $\varphi : g \to \varphi_g$ is a group homomorphism and we can construct φ_g from φ and similarly the other way around.

Remark. Right actions give us an anti-homomorphism ie reverse order.

Def. Let G act on Ω and let $\varphi: G \to S(\Omega)$ be the group morphism. $\ker \varphi$ is the **kernel of the action**. The action is **faithful** if $\ker \varphi$ is trivial, or φ is injective.

Remark. $g \in \ker \varphi \iff \varphi_g = \mathrm{id}_{\Omega} \iff g \cdot \alpha = \alpha \ \forall \alpha \ or \ if \ g \in S_G(\alpha) \ for \ all \ \alpha.$ We have that

$$\ker \varphi = \bigcap_{\alpha \in \Omega} S_G(\alpha)$$

 $\mathbf{E}\mathbf{x}$.

- 1. G acts on itself by conjugation. Then $S_G(h)$ is the centralizer of h in G and ker $\varphi = \bigcap_{h \in G} S_G(h) = Z(G)$.
- 2. S_n acts on $\{1,\ldots,n\}$. $S_G(i) = \{\sigma \in S_n | \sigma(i) = i\} \equiv S_{n-1}$. however, $\ker \varphi = \{\sigma \in S_n | \sigma(i) = i \ \forall i\} = \{\mathrm{id}\}$. $\varphi : S_n \to S_n$ is the identity.
- 3. G acts on itself by left translations $g \cdot h = gh$. $S_G(h) = \{1\}$ so the action is faithful. $\varphi : G \to S(G)$ is injective. This is **Cayley's Thm** that any group is isomorphic to a subgroup of a permutation group.

5 September 12

5.1 Applications to Existence of Normal Subgroups

If we recall an action of G on X, then the kernel is the intersection of all stabilizers of x.

Prop 5.1 (n! lemma). Let $H \subseteq G$ and |G/H| = n (G/H is a set). Then there exists a $N \subseteq G$ s.t. $N \subseteq H$ and |G/N| divides n!.

Proof. Let $\Omega = G/H = \{gH\}$. Define $g \cdot xH = gxH$. This is a left action of G on Ω . Let $N = \ker(\varphi)$ where φ is associated morphism. The kernel is the intersection of stabilizers, and In particular $N \subseteq S_G(H) = H$ (note that H is 1H on the LHS).

By first isomorphism law, $G/N \hookrightarrow S(\Omega) \implies |G/N| \leq |S(\Omega)| = n!$.

Corrollary. Let G be finite and p the smallest prime divisor of |G|. If $\exists H \leq G \text{ with } |G/H| = p \text{ then } H \leq G$.

Proof. Let N be the normal subgroup contained in H. Note |G/N| = pk and pk|p! which means that k|(p-1)! therefore all prime divisors of k are < p. But k||G| so it follows that k has no prime divisors so it is 1 so |G/N| = p. \square

Def. N in the n! lemma is the **core** of H. IE if $N = \ker(\varphi)$ where φ is the morphism induced by G on G/H.

Corrollary. G finite. If $H \leq G$ and |G/H| = 2 then $H \leq G$.

5.2 p-groups

Def. Let p prime. A **p-group** is a group of order p^k , where $k \geq 0$. (Note that infinite p groups make sense by we won't consider them).

Corrollary (Fixed Point Lemma for p-groups). Let G be a p-group, Ω a finite set. G acts on Ω . Then $|\Omega^G| \equiv |\Omega| \pmod{p}$.

Proof. A proper subgroup H has index $|G/H| = p^i$. We apply FPL and we are done.

Corrollary. Let G be a non trivial p group. Then $Z(G) \neq \{1\}$.

Proof. Let G act on itself by conjugation. Then $G^G = Z(G)$. By fixed point lemma, we have that $|Z(G)| \equiv |G| \not\equiv 1 \pmod{p}$.

Corrollary. Every p-group is nilpotent.

Proof. G/Z(G) is a p-group. |G/Z(G)| < |G|. By induction G/Z(G) is nilpotent so G is nilpotent (previous prop).

Lemma. Let G be a finite abelian group and p a prime divisor of |G|. Then G contains an element of order p.

Proof. HW 1, Ex 17.
$$\Box$$

Theorem 5.1. Let G be a nontrivial p-group.

- 1. (big center) If $N \subseteq G$, $N \neq \{1\}$ then $Z(G) \cap N \neq \{1\}$.
- 2. (subgroups of all possible orders) If $N \subseteq G$ and d||N|. Then N has a subgroup of order d that is normal in G.
- 3. (normalizers grow) If $H < G \implies H < N_G(H) \le G$.
- 4. (maximal subgroups) If K < G is a maximal subgroup, then $K \triangleleft G$ and |G/K| = p.

Proof.

- 1. Apply FPL to action of G on N by conjugation.
- 2. Write $d = p^{\alpha}$. Induct on α . If $\alpha = 0$ done. If $\alpha \geq 1$, then $N \neq \{1\}$ so $Z(G) \cap N \neq \{1\}$. $N \cap Z(G)$ is abelian, so it has a subgroup of order N_1 of order p. $N_1 \subseteq Z(G)$ so $N_1 \subseteq G$.

Consider G/N_1 we have $N/N_1 \leq G/N_1$ and $p^{\alpha-1}$ divides $|N/N_1|$. By induction hypothesis, N/N_1 has a subgroup of order $p^{\alpha-1}$ that is normal in G/N_1 .

By 4th isomorphism theorem, this subgroup has form N_2 where $N_1 \leq N_2 \leq N$ and $N_2 \leq G$. $|N_2| = |N_2/N_1| \cdot |N_1| = p^{\alpha}$.

- 3. Let $\Omega = G/H$ and let h act on G/H by $h \cdot xH = hxH$. We see that $xH \in \Omega^H \iff hxH = xH$ for all $h \in H \iff x^{-1}hx \in H \iff h \in xHx^{-1} \ \forall h \in H \iff H \subseteq xHx^{-1} \iff x \in N_G(H)$. Therefore $\Omega^H = N_G(H)/H$ so we want $|\Omega^H| > 1$. By FPL, $|\Omega^H| \equiv |\Omega| \equiv 0$ (mod p) so it is greater than 1.
- 4. $K \triangleleft N_G(K) \leq G$ but no bigger subgroups, so it is G. G/K is a p-group has no proper subgroups so cyclic of prime order so |G/K| = p.

5.3 Sylow Theorems

Def. G finite group, p prime. Write $|G| = p^{\alpha}m$ with $\alpha \geq 0$ and $p \nmid m$. A **p-Sylow subgroup** / **p-Sylow** of G is a subgroup S with $|S| = p^{\alpha}$. Let $\mathrm{Syl}_p(G)$ be the set of all p-sylow subgroups of G.

Theorem 5.2 (first Sylow). G finite, p prime, $\operatorname{Syl}_p(G) \neq \emptyset$.

Proof. Induction on |G|. Alternatively (a) or (b)

- (a) If G has a proper subgroup H of index coprime to p. Then $|H| = p^{\alpha}m'$ with $p \nmid m'$. Then $\mathrm{Syl}_p(H) \neq \emptyset$ and $\mathrm{Syl}_p(H) \subseteq \mathrm{Syl}_p(G)$.
- (b) If G has a nontrivial normal p-subgroup N, then apply induction hypothesis to G/N and so there exists a $S/N \in \operatorname{Syl}_p(G/N)$ where $|S/N| = p^{\alpha-\beta}$ so $N \leq S \leq G$ and $|S| = p^{\alpha}$.

If (a) doesn't hold then all proper subgroups have index p. By FPL applied to conjugation action of G onto itself, then $|Z(G)| \equiv |G| \pmod{p}$. Z(G) is abelian so by lemma this has a subgroup of order p which implies (b).

Corrollary (Cauchy). G finite p||G| then there is a subgroup of order p.

Theorem 5.3 (Second Sylow). Let G be finite and $S \in \operatorname{Syl}_p(G)$ then $\operatorname{Syl}_p(G) = \{xSx^{-1} : x \in G\}$. In fact, letting $P \leq G$ a p subgroup then $P \subseteq xSx^{-1}$ for some $x \in G$.

Proof. Let $\Omega = G/S$ Let P act on Ω by $g \cdot \overline{x} = \overline{gx}$. By FPL (since P is p-group), $|\Omega^P| \equiv |\Omega| \not\equiv 0 \pmod{p}$. So $\Omega^p \not= \emptyset$ so there is a fixed point. Let $\overline{x} \in \Omega^p$. This means that $\overline{gx} = \overline{x}$ so in particular $x^{-1}gx \in S$ for all $g \in P$ so $x^{-1}Px \subseteq S$.

Corrollary. $S \in \operatorname{Syl}_p(G)$ then $S \subseteq G \iff \operatorname{Syl}_p(G) = \{S\}$.

6 September 17

6.1 Sylow Theorems Continued

 $\operatorname{Syl}_P(G) \neq \emptyset \text{ and } S \in \operatorname{Syl}_p(G) \text{ implies that } \operatorname{Syl}_p(G) = \{gSg^{-1} : g \in G\}.$

Lemma. Let $S, T \in Syl_n(G)$ s.t. S normalizes T. Then S = T.

Proof.

Note that $S, T \in \operatorname{Syl}_p(N_G(T))$ since both are of order $|p|^{\alpha}$. $T \subseteq \operatorname{Syl}_p(N_G(T))$ so S = T as they are conjugate.

Theorem 6.1 (Third Sylow Theorem). Let $S \in \text{Syl}_p(G)$.

- 1. $n_p(G) = |G/N_G(S)|$
- 2. $n_p(G) \mid m \text{ where } |G| = p^{\alpha} m \text{ with } p \nmid m.$
- 3. $n_p(G) \equiv 1 \pmod{p}$.

Proof.

1. $\Omega = \{X \subseteq G, |X| = p^{\alpha}\}$. G acts on Ω by conjugation. S $in\Omega$ since it is of order p^{α} . $O_G(S) = \mathrm{Syl}_p(G)$ by the second sylow theorem. $S_G(S) = \{g \in G : gSg^{-1} = S\} = N_G(S)$. We have by orbit-stabilizer reciprocity we have the desired.

2. This follows as |G:S| = |G|/|S| = m and $|G:N_G(S)| = n_p(G)$ with $|G:N_G(s)| \mid m$.

3. Let S act on $\mathrm{Syl}_p(G)$ by conjugation (it does by second sylow). $|\Omega| = n_p(G)$ and $\Omega^S = \{T \in \mathrm{Syl}_p(G) : T \text{ normalizes } S\} = \{S\}$ by our lemma. Therefore, we apply the fixed point lemma and are done.

Prop 6.1 (Frattini's argument). G arbitrary group, $N \subseteq G$ and finite. Let $S \in \text{Syl}_n(N)$ (for some prime p) and $H = N_G(S)$. Then G = NH.

Proof. Let $g \in G$. We want that g = nh for some $n \in N, h \in H$. Find $n \in N$ s.t. $n^{-1}g \in N_G(S)$ which occurs iff $gSg^{-1} = nSn^{-1}$. Note that $S \leq N$ and $gSg^{-1} \leq gNg^{-1} = N$ therefore gSg^{-1} is a p-sylow in N and there exists an n s.t. nSn^{-1} by second sylow.

6.2 Direct Groups

Def. Given groups A and B the direct product is $A \times B$ with product $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2)$ with identity $(1_A, 1_B)$.

- 1. If $A_1 \leq A, B_1 \leq B$ then $A_1 \times B_1 \leq A \times B$.
- $2. \ A_1 \times B_1 \leq A \times B \iff A_1 \leq A, B_1 \leq B.$
- 3. A subgroup of $A \times B$ needs not to be of the above for.

Prop 6.2. Let $H, K \leq G$ be subgroups. If

- 1. G = HK.
- $2. H, K \leq G.$

3. $H \cap K = \{1\}$.

Then $G \cong H \times K$.

Remark. The above is iff as we just take $H = \{(a, 1_B)\}, K = \{(1_A, b)\}.$

Remark. Let $H, K \leq G$.

- 1. $H, K \subseteq G \implies HK \subseteq G$. If one is normal then it is a subgroup.
- 2. If $H, K \subseteq G$ and $H \cap K = \{1\}$ then $hk = kh \ \forall h \in H, k \in K$.
- 3. If H, K finite then $|HK| = |H||K|/|H \cap K|$. Why since no second isomorphism law can be applied?
- 4. If gcd(|H|, |K|) = 1 then $H \cap K = \{1\}$ by Lagrange.

6.3 Nilpotent Groups again

Theorem 6.2. Let G be a finite group. The following are equivalent.

- 1. G nilpotent.
- 2. Normalizers grow.
- 3. All Sylow subgroups are normal.
- 4. G is direct product of p-groups.

Proof. For 1 implies 2, note that $G = N_0 \supseteq N - 1 \cdots \supseteq N_k = \{1\}$ be a central series. $N_i \subseteq G$ and $N_{i-1}/N_i \subseteq Z(G/N_i)$. Let H < G, $\exists i$ s.t. $N \supseteq N_i$ and $H \not\supseteq N_{i-1}$. We want that $N_G(H) \supseteq N_{i-1}$. Equivalently $[G, N_{i-1}] \subseteq N_i$. This implies that $[H, N_{i-1}] \subseteq [G, N_{i-1}] \subseteq N_i \subseteq H$ which implies that $N_{i-1} \subseteq N_G(H)$.

For 2 implies 3. Let $S \in \operatorname{Syl}_p(G)$. We use HW3 exercise 8 which shows that $N_G(N_G(S)) = N_G(S)$. If $N_G(S) < G$ this implies that $N_G(S) < N_G(N_S(S))$

For 3 implies 4, induction on |G| to show that G is the internal direct product of its nontrivial sylows. $|G| = p_1^{\alpha_1} \dots p_r^{\alpha_r}$. Let S_i be the unique p-sylow for each i. Let $H = S_1 \dots S_{r-1}$, $K = S_r$. $S_i \subseteq G \implies H \subseteq G$, $K \subseteq G$. $p_i^{\alpha_i} = |S_i| \mid |H|$ for all $i = 1, \dots, r-1$. Then $|H| \mid p_1^{\alpha_1} \dots p_{r-1}^{\alpha_{r-1}}$ so $|H| = p_1^{\alpha_1} \dots p_{r-1}^{\alpha_{r-1}}$, $|K| = p_r^{\alpha_r}$ by using the property 3 in the above remark. Therefore, $|H \cap K| = \{1\}$, and $|HK| = p_1^{\alpha_1} \dots p_r^{\alpha_r} = |G|$ and G is our direct

product of p-groups as we assume H is by induction. Note that H can use this induction (all Sylow subgroups are normal) since all sylows of p are unique (and are unique in G as well).

For 4 implies 1, we show that direct products of p-groups are nilpotent (p-groups are nilpotent). This is HW4 Ex 1.

Corrollary (Lagrange converse). Let G be finite nilpotent. For each divisor $d \mid |G|$, there is a normal $N \subseteq G$ with |N| = d.

Proof. We've proven this for our *p*-groups.

Theorem 6.3. Let G be finite. Then G nilpotent \iff all maximal subgroups are normal.

Proof. Refer to notes. \Box

7 September 19

7.1 Semidirect Product

We won't cover this, so we cover this ourselves.

Def. Let G, A be groups. Suppose G acts on A with $G \times A \to A$. We say that the action is **by automorphisms** if $g \cdot (ab) = (g \cdot a)(g \cdot b)$ for all $g \in G, a, b \in A$.

Remark.

- (a) $q \cdot 1_A = 1_A$.
- (b) Let $\varphi: G \to S(A)$ be the associated morphism of groups. Then $\operatorname{Aut}(A) = \{\sigma \in S(A) : \sigma \text{ is an isomorphism}\}$. $\operatorname{Aut}(A) \leq S(A)$ and the action is by automorphism iff $\operatorname{im} \varphi \subseteq \operatorname{Aut}(A)$. $\varphi_g(ab) = g \cdot ab = (g \cdot a)(g \cdot b) = \varphi_g(a)\varphi_g(b)$, so this is equivalent to saying φ_g is an automorphism of A.

Ex. $G \times G \to G, g \cdot h = ghg^{-1}$ is by automorphisms. $G \times G \to G, g \cdot g = gh$ is not by automorphisms.

Def. Suppose G acts on A by automorphisms. Then we have the **semi-direct product** $A \rtimes G$ is defined s.t. the underlying set $A \times G$ and $(a, g)(b, h) = (a(g \cdot b), gh)$. The unit is $(1_A, 1_G)$.

Prop 7.1. $A \rtimes G$ is a group. Proof is optional.

Remark. $A \rtimes G$ depends on the action. If the action changes then the semidirect product is different. We also want to show that $G \cong A \rtimes B$ for some A, B and some action.

7.2 Hall Subgroups

Def. Let π be a set of primes and n a positive integer. The π -part of n is the highest divisor of n involving primes from π only. The π' -part of n is the highest divisor of n not involving any of the primes in π .

Ex. $n = 60 = 2^3 \cdot 3 \cdot 5$. $\pi = \{2, 3\}$ then the π -part is 12 and the π' -part is 5.

Def. Let G be a group and $H \leq G$. Let π be a set of primes. We say that H is a π -hall subgroup of G if |H| is a π -part of |G|.

Remark.

- 1. If $\pi = \{p\}$, then π -halls are p-sylow.
- 2. $H \leq G$ is a π -hall for some π iff gcd(|H|, |G/H|) = 1.

Our goal is that G finite solvable implies that π -Hall exist for all π , an analogue to first Sylow Theorem.

Lemma. Let G be a finite solvable group and M is minimal normal subgroup (such a subgroup always exists). Then M is elementary abelian (homework). In particular M is a p-group for some prime p.

Proof. Homework 2 Ex 4. \Box

Lemma. G finite solvable and $N \triangleleft G$ then \exists a prime p and a p-subgroup P s.t. $N < NP \trianglelefteq G$.

Proof. $N < G \implies G/N \neq \{1\}$ so there is a minimal normal subgroup of G/N. Since G is solvable, then G/N is solvable, which implies this subgroup is a p-subgroup for some p. It is of the form M/N with $N < M < \unlhd G$. Let P be a p-Sylow of M (P is a p-subgroup of G). Let P be a p-Sylow of M, then we see that |M/N| is a power of p and |M/P| is prime to p since P is a p-Sylow. Then that implies that |M/N| = 1 as this divides for |M/P| and |M/N| so NP = M. □

Theorem 7.1 (Schur-Zassenhaus). G finite and N a normal Hall subgroup of G. Then N has a complement in G: $\exists H \leq G$ s.t. G = NH and $N \cap H = \{1\}$. Proof. We assume G is solvable since this is too big for our class.

Claim: It suffices to find $H \leq G$ with |H| = |G/N|. For then: $|N \cap H|$ divides both |N| and |G/N| which implies that $N \cap H = \{1\}$ and then $|NH/N| = |H/H \cap N| = |H| = |G/N| \implies |NH| = |G|$.

We induct on |G|. If |G| = 1 then this is true. if N = G this is true. Assume N < G. By Lemma 2, $\exists p$ subgroup P s.t. $N < NP \leq G$.

- 1. |P| is a power of p.
- 2. $|P/N \cap P|$ is a power of p since it divides |P|.
- 3. |NP/N| is a power of p by NH diamond.
- 4. |G/N| is divisible by p.
- 5. |N| prime to p (N is Hall).
- 6. $|N/N \cap P|$ is prime to p.
- 7. |NP/P| is prime to p.
- 8. $P \in \text{Syl}_n(NP)$.

Is P a complement of N? We note that $|N \cap P|$ divides both |N| and |P| so $N \cap P$ is $\{1\}$, but this is still not enough to get our value. So we enlarge P and let $K = N_G(P)$ and we have that G = NPK = NK by Frattini.

IS K a complement of N? Slice off $N \cap K$ from K using induction hypothesis.

- Can we? $N \cap K \triangleleft K$ because $N \triangleleft G$.
- If $N \cap K$ a Hall subgroup of K? Well we see that $|K/N \cap K| = |G/N|$ is prime to |N|, so it is prime to $|N \cap K|$ so yes.
- K is solvable since G is.

We need |K| < |G|.

- If |K| < |G| by induction \exists complement H of $N \cap K$ with K. In particular $|H| = |K/N \cap K| = |G/N|$ so H is a complement of H in G by our claim.
- If |K| = |G| then P is normal in G. Consider G/P. We claim that NP/P is a normal Hall subgroup of G/P. $|NP/P| = |N/N \cap P| = |N|$ (using NP diamond). $|\frac{G/P}{NP/P}| = |G|/|NP| = |G/N|/|P|$. Since |N| is prime to |G|/|N|, NP/P is Hall inside G/P. By induction we have complement H/P of NP/P in G/P and see that |H| = |G/N| so H is a complement of N in G.

Theorem 7.2 (Hall). G finite solvable. For any set of primes π . There exists a π -Hall subgroup of G.

Proof. Induction on |G|. If $G = \{1\}$ let M be a minimal normal subgroup. If G is solvable then M is a p-subgroup. By induction hypothesis, there exists a π -hall subgroup of G/M. It is of the form K/M for some $M \leq K \leq G$.

|K| = |K/M||M| involved only primes in $\pi \cup \{p\}$. |G/K| involved only primes in π' .

• If $p \in \pi$ then K is a π -Hall.

• If $p \notin \pi$ then we want to slice M from K. Note that M is a Hall subgroup as |K/M| does not involve p and |M| is a power of p and $\gcd(|K/M|, |M|) = 1$. Also, $M \subseteq K$ since $M \subseteq G$. By S-Z, exists a complement H of M in K. |H| = |K/M| induces only primes in π . Furthermore $|G/H| = |G/K| \cdot |M|$ involves only primes in $\pi' \cup \{p\} = \pi'$ so H is a π -Hall.

7.3 Looking Forward

Theorem 7.3. Let G be a finite solvable group. Then

- 1. Any two π -Halls are conjugate.
- 2. If $K \leq G$ with |K| involves primes in π only, this implies there exists a π -Hall H that contains K.

Theorem 7.4. If π -Halls exist for all π then G is solvable.

Theorem 7.5 (Burnside). If $|G| = p^a q^b$ then G is solvable.

Theorem 7.6 (Feit Thompson). All groups of odd order are solvable.

8 September 24

8.1 Simple Groups

Remark. Recall: let G act on Ω and $\varphi: G \to S(\Omega)$. The action is **faithful** if $\varphi: G \hookrightarrow S(\Omega)$ or $\ker(\varphi) = \{1\}$ or $\bigcap_{\alpha \in \Omega} S_G(\alpha) = \{1\}$ or no nontrivial g fix all elements of Ω . The action is **transitive** if for all α, β then there is a g s.t. $g \cdot \alpha = \beta$. In this case all stabilizers are conjugate since all elements are in one orbit.

Def. Consider $\Omega^2 \setminus \Delta = \{(\alpha, \alpha') \in \Omega^2 : \alpha \neq \alpha'\}$. Suppose $g\alpha = g\alpha' \Longrightarrow \alpha = \alpha'$. G acts on $\Omega^2 \setminus \Delta$ via $g \cdot (\alpha, \alpha') = (g \cdot \alpha, g \cdot \alpha')$. The action of G on Ω is 2-transitive if its action on $\Omega^2 \setminus \Delta$ is transitive. This means that given $\alpha \neq \alpha'$ and $\beta \neq \beta'$ in Ω , $\exists g \in G$ s.t. $g \cdot \alpha = \beta$ and $g \cdot \alpha' = \beta'$.

Ex. The action of S_n on [n] is 2-transitive for all $n \geq 1$. If n = 1 the condition is vacuous. If $n \geq 2$ given $a \neq a'$ and $b \neq b'$ in $[n]_{\dot{\sigma}}$ Pick any bijection $\tau : [n] \setminus \{a, a'\} \rightarrow [n] \setminus \{b, b'\}$. Define $\sigma : [n] \rightarrow [n]$ by $\sigma(a) = b, \sigma(a') = b', \sigma(i) = Z(i) \forall i \in [n] \setminus \{a, a'\}$. Then $\sigma \in S_n$ and $\sigma \cdot a = b, \sigma \cdot a' = b'$.

Prop 8.1. Suppose G acts on Ω 2-transitively. Then

- (a) It is transitive.
- (b) If $|\Omega| \geq 2$ all stabilizers are maximal subgroups.
- *Proof.* (a) If $|\Omega| = 1$ nothing to do . If $|\Omega| \ge 2$ Take $\alpha, \beta \in \Omega$. Pick any $\alpha' \in \Omega \setminus \{\alpha\}, \beta'$ similarly. By two transitivity there exists a g s.t. $(g\alpha, g\alpha) = (\beta, \beta')$.
 - (b) Let $\alpha \in \Omega$ and $H = S_G(\alpha)$. If H = G, then $\Omega = \{1\}$. But this isn't true since $|\Omega| \geq 2$ so H < G. Suppose $\exists K$ w.t. H < K < G. Then there exists a $g \in G \setminus K$ and a $k \in K \setminus H$. Since $k, g \notin H \implies x \neq k \cdot \alpha$, $\alpha = g\alpha$. Which implies that $\exists f \in G$ s.t. $f\alpha = \alpha, fk\alpha = g\alpha$ which implies that $f \in S_G(\alpha) = H$ and $k^{-1}g^{-1}g \in S_G(\alpha) = H$. This imlpies that $g \in fkH \in HKH = K$ which implies that H maximal as this is a contradiction.

Def. A group is **perfect** if G' = [G, G] = G.

Remark.

- 1. If G is solvable and nontrivial then G is not perfect.
- 2. G simple and nonabelian implies that G is perfect.
- 3. Not every perfect group is simple. Let S be a simple nonabelian group and take $G = S \times S$. G is non simple but $G' = S' \times S' = S \times S = G$ so G is perfect.

Theorem 8.1 (Iwasawa's Lemma). Let G be a nontrivial perfect group. Suppose G acts on Ω s.t.

- 1. The action is faithful and 2-transitive.
- 2. There exists a stabilizer H that contains a subgroup A s.t.
 - (i) $A \subseteq H$.
 - (ii) A is abelian.
 - (iii) The set $\bigcup_{g \in G} gAg^{-1}$ generates G.

Then G is simple.

Remark. Under a all stabilizers are conjugate. Hence if b holds for one stabilizer it holds for all stabilizers.

Proof. G nontrivial and faithful implies $|\Omega| \geq 2$ because $G \hookrightarrow S(\Omega)$. Now 2 transitive implies that stabilizers are maximal. Let $\{1\} \leq N \leq G$. If N is contained in all stabilizers then $N = \{1\}$ by faithful. Otherwise, \exists stabilizer H s.t. $N \not\subseteq H$ then that implies that $H < NH \leq G$ which implies that NH = G by maximality. We can assume H satisfies b. let $g \in G \implies g = nh, n \in N, h \in H$ which implies that $gAg^{-1} = nhAh^{-1}n^{-1} = nAn^{-1}$ since $A \subseteq H$ and is a subset of NAN = NNA as N is normal so G = NA. Note that $G/N = NA/N \cong A/N \cap A$ is abelian so $[G, G] \subseteq N$.

8.2 The alternating groups

Remark. Some facts about A_n from HW 5.

- 1. The (2,2) cycles form a conjugacy class in A_n for every $n \geq 4$.
- 2. The 3 cycles generate A_n for $n \geq 4$.
- 3. The (2,2) cycles generate A_n for $n \geq 5$.
- 4. A_n is perfect for $n \geq 5$ since [(a,b,c),(a,b,d)] = (ab)(cd).

Corrollary. A_5 is simple.

Proof. A_5 acts on [5] faithfully since A_5 is a subgroup of S_5 . Is it 2-transitive, we can check. Let $H = S_{A_5}(5) \implies H \cong A_4$. Let $A = \{1, (12)(34), (13)(24), (14)(23)\} \cong V_4$. Then $A \subseteq H$ and $A \cong V_4$ and is abelian. The conjugates of A in A_5 consist of all (2, 2) cycles. Use use Iwasawa's to prove that this is simple. \square

Remark. Can we do the same proof for $n \geq 6$? Well A_n is perfect, it is faithful and 2-transitive. The stabilizers of a point $\cong A_{n-1}$ simple so there are no normal subgroups so we can't use this. We can prove separately using induction.

9 September 26

9.1 The Projective Special Linear Groups

Def. Let \mathbb{F} be a field. Then $PGL(n, \mathbb{F}) = GL(n, \mathbb{F})/Z(GL(n, F))$ and $PSL(n, \mathbb{F}) = SL(n, \mathbb{F})/Z(SL(n, \mathbb{F}))$. Note that $Z(GL(n, \mathbb{F})) = \{aI_n : a \in \mathbb{F}^{\times}\}$ and $Z(SL(n, \mathbb{F})) = \{aI_n : a \in \mu_n(\mathbb{F})\}$ through computation. We will write $GL(n, \mathbb{F}_q) = GL(n, q)$ and similarly for all others.

$$SL(n, \mathbb{F}) \longleftrightarrow GL(n, \mathbb{F})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$PSL(n, \mathbb{F}) \longleftrightarrow PGL(n, F)$$

Remark.

1.
$$|GL(n,q)| = (q^n - 1) \dots (q^N - q^{n-1}).$$

2. $\mathbb{F}_2^{\times} = \{1\}$ then all four groups are the same.

3.
$$PGL(1, \mathbb{F}) = \{1\}.$$

4. $PSL(2,2) \cong S_3, PSL(2,3) \cong A_4$. The goal is the for other PSL(2,q) is simple for n > 2 or n = 2, q > 3.

Lemma. \mathbb{F} any field implies that $SL(2,\mathbb{F})$ is generated by $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix}$.

Proof. Take $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{F}).$

• If $b \neq 0$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ (d-1)/b & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ (a-1)/b & 0 \end{pmatrix}$$

• If $c \neq 0$ then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & (a-1)/c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \begin{pmatrix} 1 & (d-1)/c \\ 0 & 1 \end{pmatrix}$$

• If b = c = 0 then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ d-1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a-1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -d \\ 0 & 1 \end{pmatrix}$$

Remark. Notation is $U=\{\begin{pmatrix}1&b\\0&1\end{pmatrix}\}, B=\{\begin{pmatrix}a&b\\0&1/a\end{pmatrix}, a\in\mathbb{F}^x, b\in F\}.$

Lemma.

- (a) $U \subseteq B \subseteq SL(2, \mathbb{F})$.
- (b) $B \cong U \rtimes \mathbb{F}^{\times}$.
- (c) U is abelian.
- (d) U and its conjugates generate $SL(2, \mathbb{F})$.

Proof.
$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b+b' \\ 0 & 1 \end{pmatrix}$$
 so $U \cong (\mathbb{F}, +)$. Similarly, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -b & 1 \end{pmatrix}$

Lemma. If $|\mathbb{F}| \geq 4$ (possibly infinity) then $SL(2,\mathbb{F})$ is perfect.

Proof. Suffices to check that all elements $u \in U$ are commutators. Note that

$$\begin{bmatrix} \begin{pmatrix} a & 0 \\ 0 & 1/a \end{pmatrix}, \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 & (a^2 - 1)b \\ 0 & 1 \end{pmatrix}$$

It suffices that $\forall c \in \mathbb{F}$ there exists $a \in \mathbb{F}^{\times}$, $b \in F$ s.t. $c = (a^2 - 1)b$. Similarly, it suffices to find $a \in \mathbb{F}^{\times}$ s.t. $a^2 - 1 \neq 0$ or $a \in F$ s.t. $a^3 - a \neq 0$. This is true because $|\mathbb{F}| \geq 4$.

Remark. Recall the projective line = $\mathbb{P}^1(\mathbb{F})$ being the set of lines through 0 in \mathbb{F}^2 . $GL(2,\mathbb{F})$ acts on \mathbb{F}^2 by $A \cdot v = Av$.

Lemma. The action of $SL(2,\mathbb{F})$ on $\mathbb{P}^1(\mathbb{F})$:

- (a) Is 2-transitive.
- (b) The stabilizer of the x-axis is B.
- (c) The kernel of the action is $Z(SL(2,\mathbb{F}))$.

Proof. Let (ℓ_1, ℓ_2) and (r_1, r_2) be pairs of lines with $\ell_1 \neq \ell_2, r_1 \neq r_2$. We need that $A \in SL(2, \mathbb{F})$ s.t. $A\ell_1 = r_1, A\ell_2, r_2$. Choose $v_1 \in \ell_1, v_2 \in \ell_2, w_1 \in r_1, w_2 \in r_2$ nonzero vectors. Then $\{v_1, v_2\}$ and $\{w_1, w_2\}$ are bases of \mathbb{F}^2 . This implies that there exists $A \in GL(2, \mathbb{F})$ s.t. $Av_i = w_i$ for i = 1, 2.

Theorem 9.1. IF $|\mathbb{F}| \geq 4$ then $PSL(2,\mathbb{F})$ is simple.

Proof. The definition of $PSL(2,\mathbb{F})$; it is the mod operation of SL/Z(SL). We examine Iwasawa.

- It is perfect as shown in a previous lemma.
- 2 transitive, faithful action.
- \overline{B} is stabilizer, \overline{U} is an abelian normal subgroup. \overline{U} and its conjugates generate.

Remark. GL acts on $\mathbb{P}^1(\mathbb{F})$. This is not faithful and group is not perfect since $[GL, GL] \leq SL < GL$. SL is not faithful but is perfect. PGL is faithful but not perfect. PSL is the one which is faithful and perfect. A_n and S_n . S_n is faithful and not perfect.

Theorem 9.2. If $n \geq 3$, $PSL(n, \mathbb{F})$ is simple for any \mathbb{F} .

Proof. $PSL(n, \mathbb{F})$ acts on $\mathbb{P}^{n-1}(\mathbb{F})$ (set of line in *n*-dimensional space). The action is two transitive (pick bases again) and the kernel is $Z(SL(n, \mathbb{F}))$. The stabilizer of the line spanned by $(1, 0, \dots, 0) \in \mathbb{F}^n$ is

$$\left\{\begin{pmatrix} a & v \\ 0 & A \end{pmatrix}: a \in \mathbb{F}^{\times}, A \in GL(n-1, \mathbb{F}), v \in \mathbb{F}^{n-1}, a \det(A) = 1\right\}$$

B contains an abelian normal subgroup

$$U = \left\{ \begin{pmatrix} 1 & v \\ 0 & I_{n-1} \end{pmatrix} \right\}$$

U and its conjugates generate $SL(n,\mathbb{F})$ because any matrix in $SL(n,\mathbb{F})$ is a product of elementary matrices. $E_{i_j}(\lambda) = I_n + \lambda e_{ij}$ with $i \neq j, \lambda \in F$. For $n \geq 3$ $SL(n,\mathbb{F})$ is perfect

$$\begin{bmatrix} \begin{pmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 & 0 & \lambda \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E_{13}(\lambda)$$

Remark. $|PSL(n,q)| = |GL(n,q)|/(\gcd(n,q-1) \cdot (q-1))$. With that we can compute the orders of the first groups of that family

n/q	2	3	4	5	γ
2	6	12	60	60	168
3	168	5616	20160	37200	
4	20160				

And we see that

- 1. $PSL(2,2) \equiv S_3, PSL(2,3) \equiv A_4$.
- 2. There exists a unique simple group of order 60 $PSL(2,4) \cong PSL(2,5) \cong A_5$.
- 3. There exists a unique simple group of order 168 so $PSL(3,2) \cong PSL(2,7)$.
- 4. $PSL(4,2) \cong A_8 \ but \ PSL(3,4) \neq A_4$.

10 Oct 1

10.1 Classification of Simple Groups

In notes.

10.2 Projective Geometries

Def. An incidence geometry of rank 2 (plane) is a $g = (g_0, g_1, R)$ where g_0 and g_1 are sets and R is a relation between the two sets. Also known as a bipartite graph. The elements of g_0 are called **points**, the elements of g_1 are lines. We say p lives in ℓ or ℓ goes through p or that p and ℓ are incident if $p \sim \ell$. Note that in \mathbb{R}^2 g_0 is \mathbb{R}^2 and g_1 are lines in \mathbb{R}^2 .

Def. A plane is **projective** if

- Given 2 distinct points there is a unique line going through them. IE exists unique ℓ s.t. $p \sim \ell, q \sim \ell$.
- Given 2 distinct lines, there exists a unique points that lies in both.
- There are at least 3 noncollinear points.

$\mathbf{E}\mathbf{x}$.

1. The smallest projective plane is 3 points with lines pairwise.

2. With 4 points none collinear. If we connect them pairwise, we have a problem since for line bc there is no intersection with ad So, we need to create new points $a' \in \overline{bc}$. Also, we need to have a line connecting a', b', c' and this is enough. Thi is the Fano plane \mathcal{F} .

3. Let \mathbb{F} be a field. let $PG(2,\mathbb{F})$ be the plane with points being the 1-dimension subspaces of \mathbb{F}^3 and the lines are 2-dim subspaces of \mathbb{F}^3 . We can check the axioms.

Prop 10.1. $PG(2, \mathbb{F}_2) \cong \mathcal{F}$.

Proof. $\mathbb{F}_2^3 = \{(000), \dots, (111)\}$. Points are lines through the origin and these are the multiples of nonzero vector (7 possibilities) and each point in the \mathbb{F}_2^3 determines a unique point in our plane. Lines are the 3 types of coordinate planes which are x = 0, x + y = 0, x + y + z = 0. Note that x + y + z = 0 consists of origin and 3 points (110) permuted. We have 7 planes. IN particular the points (from top left to bottom right) is (001), (101), (011), (111), (100), (110), (010).

Remark. Projective geometries except for rank 2 are of the form $PG(n, \mathbb{F})$ where \mathbb{F} is a division ring.

Def. A symmetry of a plane g is a pair $\sigma = (\sigma_0, \sigma_1)$ where $\sigma_i : g_i \to g_i$ are bijection s s.t. p incident to ℓ iff $\sigma_0(p)$ incident to $\sigma_1(\ell)$. Let $\operatorname{Aut}(g)$ be the set of all symmetries of g. It is a group under composition.

Lemma. $|\operatorname{Aut}(\mathcal{F})| \leq 168$.

Proof. Choose 3 noncollinear points in \mathcal{F} pqr. Consider the function $\operatorname{Aut}(\mathcal{F}) \to \{(x,y,z) \in \mathcal{F}_0^3 : x \neq y, x \neq z, y \neq z\}$ by $\sigma \to (\sigma_0(p), \sigma_p(q), \sigma_0(r))$. We claim this is injective. To see this, $\sigma_0(p')$ must be third point on $\sigma_0(p)\sigma_0(q)$.

We have 7 choices for $\sigma_0(p)$, 6 for $\sigma_0(q)$, and 4 for the $\sigma_0(r)$ since one of the last elements is collinear with the other 2. Therefore, we see that $|\operatorname{Aut}(\mathcal{F})| \leq 168$.

Prop 10.2. Aut(\mathcal{F}) $\cong PSL(3,2) = GL(3,2)$.

Remark. Recall that $|GL(3,2)| = (2^3 - 1)(2^3 - 2)(2^3 - 2^2) = 168$.

Proof. GL(3,2) acts on \mathbb{F}_2^3 linearly. It preserves *i*-subspaces (i=1,2). So GL(3,2) acts on $PG(2,\mathbb{F}_2)$ by symmetries which implies that $GL(3,2) \to \operatorname{Aut}(PG(2,\mathbb{F}_2))$. Over \mathbb{F}_2 this action is faithful so this is injective. $|GP| = |GL(3,2)| \le |\operatorname{Aut}(PG(2,\mathbb{F}_2))| = |\operatorname{Aut}(\mathcal{F})| \le 168$.

Remark. One can define projective geometries of higher rank. $PG(n, \mathbb{F})$ is a projective geometry of rank n for which points are the 1-dim subspaces of \mathbb{F}^{n+1} , lines are 2-dim subspaces of \mathbb{F}^{n+1} , etc...

Theorem 10.1 (Fundamental Theorem of Projective Geometry). $\operatorname{Aut}(PG(n, \mathbb{F})) \cong PGL(n+1, \mathbb{F}) \rtimes \operatorname{Aut}(\mathbb{F}).$

11 Oct 3

11.1 Monoids

Def. A monoid M is a set with binary operation satisfying associativity and has identity. Note that this is a group without inverse operation.

Ex. \mathbb{N} is a monoid under +.

Def. Let M be a monoid and \sim is an equivalence relation on M. We say \sim is (left, right, two sided)-compatible if $a \sim b$ then $xa \sim xb$, or for right $ax \sim bx$, or for center $a \sim b$, $x \sim y \implies ax \sim by$.

Remark. 2 sided compatible iff both left and right compatible.

Def. Let \widetilde{M} be the set of equivalence classes defined by $\overline{a} \cdot \overline{b} = \overline{ab}$.

Prop 11.1. The operation is well defined iff \sim is 2-sided compatible. In this case, \widetilde{M} is a monoid. The unit is $\overline{1}$.

Def. Let $\pi: M \to \widetilde{M}$, $\pi(a) = \overline{a}$. π is a morphism of monoids.

Prop 11.2 (Universal Property of Quotient For Monoids). Let $\varphi: M \to N$ be a morphism of monoids s.t. if $a \sim b$ the $\varphi(a) = \varphi(b)$. Then $\exists!$ morphism of monoids $\widehat{\varphi}: \widetilde{M} \to N$ that commutes as shown below.

$$\begin{array}{ccc} M & \stackrel{\pi}{\longrightarrow} & \widetilde{M} \\ \downarrow^{\varphi} & & \widehat{\varphi} \\ N & & \end{array}$$

Proof. Define $\widehat{\varphi}(\overline{a}) = \varphi(a)$

Prop 11.3. Let G be a group and \sim an equiv relation. Then

(i) \sim is left compatible iff there is a subgroup $H \leq G$ s.t. $a \sim b \iff a^{-1}b \in H$.

- (ii) Right compatible is $ab^{-1} \in H$.
- (iii) Two sided compatible is a normal subgroup s.t. either hold.

11.2 Free Monoids

Def. Let S be a set and let $S^* = \bigcup_{m \geq 0} S^m$ which is the set of all finite sequence of S. A **concatenation** is $(s_1, \ldots, s_i) \cdot (t_1, \ldots, t_j) = (s_1, \ldots, s_i, t_1, \ldots, t_g)$.

Lemma. S^* is a monoid under concatenations. The unit is (). We define the elements of sS as letters, S is alphabet and S^* is words. Define $i: S \to S^*$ by $s \to (s)$. We say S^* is the **free monoid** on S.

Prop 11.4 (Universal Prop of the free monoid). Let M be a monoid and a map $f: S \to M$. Then $\exists !$ morphism of monoids $f^*: S^* \to M$ s.t.

$$S \xrightarrow{i} S^*$$

$$f^*$$

$$M$$

Proof. Define $f^*(s_1, \ldots, s_n) = f(s_1) \ldots f(s_n)$.

11.3 Free Groups

Remark. S^* is clearly not a group. Let $\overline{S} = \{\overline{s} : s \in S\}$ be a new copy of S. Let $T = S \cup \overline{S}$ and define operation Let $t^{-1} = \begin{cases} \overline{s} & t = s \in S \\ s & t = \overline{s} \in \overline{S} \end{cases}$. The free monoid T^*

Def. We say two words $w, w' \in T^*$ has $w \sim w'$ if if we can insert or delete finitely many pairs (t, t^{-1})

Ex. $S = \{a, b\}$ and we see that $(ab^{-1}aa^{-1}b) \sim (ab^{-1}b) \sim (a) \sim (bb^{-1}a)$.

Prop 11.5. This relation on the monoid T^* is two-sided compatible.

Def. $F(S) = \widetilde{T^*} = T^* / \sim$ is a monoid. We can see the operations and unit pretty simply. Let $i: S \to F(S)$ by i(s) = [s].

Lemma. F(S) is a group generated by i(S).

Proof. $[t_1, \ldots, t_n]^{-1} = [t_n^{-1}, \ldots, t_1^{-1}]$. This is trivial by induction. Easy to see that i(S) generates group.

Prop 11.6 (Universal Prop of Free Group). Let G be a group and $\varphi: S \to G$ a map. Then $\exists !$ morphism of groups $\widehat{\varphi}: F(S) \to G$ s.t.

$$S \xrightarrow{i} F(S)$$

$$\varphi \qquad \qquad \varphi$$

$$G$$

Recall that $S \hookrightarrow S^* \twoheadrightarrow F(S)$ is our i.

Proof.

$$S \stackrel{\varphi}{\longleftarrow} T \stackrel{\varphi}{\longleftarrow} T^* \stackrel{\mathscr{F}}{\longrightarrow} F(S)$$

Define $\overline{\varphi}: T \to G$ by $\overline{\varphi}(t) = \varphi(t)$ if $t \in S$ otherwise $\varphi(t^{-1})^{-1}$ if $t \in S^{-1}$. BY UP of free monoids, exists unique morphism φ^* on above. We check that $\varphi^*(w) = \varphi^*(w')$. Note that $\varphi^*(w') = \overline{\varphi}(t_1) \dots \overline{\varphi}(t_n)$. By UP of quotients for monoids, exists a unique morphism of monoids $\widehat{\varphi}: F(S) \to G$ (and since both are groups it is a morphism of groups). This is unique as must show that $\overline{\varphi}$ is unique.

12 Oct 8

12.1 More on Free Groups

Def. A pair of consecutive letters in a word $w \in T^*$ cancellable if it is of the from tt^{-1} .

Remark. Recall that $F(S) = T^*/\sim$ where $w \sim w'$ if one is obtained from the other by a finite sequence of intersections and deletions of cancellable pairs.

Def. A word $w \in T^*$ is **reduced** if it contains no cancellable pairs.

Prop 12.1. Each equivalence class contains exactly one reduced word. Then F(S) is bijective, with the set of reduced words.

Corrollary. $i: S \to F(S), s \to [s]$ is injective.

Proof. Suppose $[s_1] = [s_2] \implies (s_1) \sim (s_2)$. This means they are reduced and therefore are equal.

Ex. $S = \emptyset \implies F(S) = \{1\}$. $S = \{a\} \implies F(s) = \{a^n : n \in \mathbb{Z}\}$. So isomorphism from $\mathbb{Z} \to F(a)$ $n \to a^n$. $S = \{a,b\}$ is more complicated. It ends up forming a fractal tree, with each having 4 branches for a, a^{-1}, b, b^{-1} .

Proof. Given a class, choose a representative w. If w is reduced, we are done. If not, it contains a cancellable pair. Remove it and get word $w' \sim w$. Eventually must stop and by induction on length, exists reduced word. Suppose $w_1 \sim w_2$. WE can draw a diagram that goes up and down for insertion and deletion. We claim that w_1 to w_2 is a valley. The proof follows since we can't go down since w_1, w_2 are reduced.

To prove that claim, it suffices to show that each peak into a valley. We can invert each peak and then we have 1 less peak. Repeat until it's no peaks. This property is called **confluence**.

To prove confluence, it suffices to prove that special case in which one side of the peak is length 1. In particular, we prove that we can resolve a peak of both sides 1 to a valley of both sides at most 1. We prove this. There are 3 cases: they are disjoint, so they can be reversed, insertion is i(id)d, and these can be swapped.

12.2 Presentations

Def. Let S be a set. Consider words in T^* . Let N be the smallest normal subgroup of F(S) containing $[w_i][w_i]^{-1}$ for $i \in [n]$. The **group generated** by S subject to the relation $w_i \equiv w_i'$ is $\langle s : w_i \equiv w_i' \rangle = F(S)/N$ (group presentation)

Ex.
$$D_n = \langle \rho, \sigma : \rho^m = 1, \rho\sigma = \sigma\rho^{-1} \rangle$$
 then $\mathbb{Z}_n = \langle \rho \rangle$.

Prop 12.2. Let $\varphi: S \to G$ be a map s.t. $\varphi(w_i) = \varphi(w_i')$ for all $i \in [m]$. then exists a unique group morphism $\widehat{\varphi}: \langle s: w_i \equiv w_i' \rangle \to G$ s.t.

$$S \xrightarrow{i} F(s) \xrightarrow{\mathscr{F}} \langle s : w_i \equiv w_i' \rangle$$

12.3 Zorn's Lemma

Def. A **poset** is partially ordered set. A **chain** in X is a subset C that is totally ordered.

Remark.

- A chain may be uncountable.
- \emptyset is a chain in any poset X
- ϕ has a upper bound iff X is nonempty.

Def. Given a subset S of a poset X, an **upper bound** for S is an element $x \leq u$ for all $x \in S$.

Def. An element $m \in X$ is maximal if $\not\exists x \in X$ s.t. m < x. it is maximum if $x \le m$ for all $x \in X$. Note that maximum implies maximal.

Lemma (Baby Zorn's Lemma). Let X be a finite nonempty poset. Then X has a maximal element.

Proof. Induction.
$$\Box$$

Theorem 12.1 (Zorn's Lemma). Let X be a poset s.t. every chain in X has an upper bound in X. Then X has a maximal element.

Remark. The hypothesis implies $X \neq \emptyset$.

Prop 12.3. Any finitely generated nontrivial group has maximal subgroup.

Proof. Let X be the poset of proper subgroup ordered by inclusion. $X \neq \emptyset$ since $G \neq \{1\}$. Let $C = \{H_{\alpha}\}_{{\alpha} \in I}$ be a chain. Let $H = \bigcup_{{\alpha} \in I} H_{\alpha}$ then $H \leq G$ (uses C is a chain).

13 Oct 11

13.1 Zorn's Lemma Cont

Def. Let R be a ring and M a left R-module. A **basis** of M is a subset that is linearly independent and generating.

Prop 13.1. Let R be a division ring (ring in which every nonzero element is invertible). Then any non-trivial R-module has a basis.

Proof. Let X be the poset of linearly independent subsets of M ordered by inclusion. Let C be a chain and note that $c = \bigcup_{s \in C} s$ is an upper bound in X and is linearly independent since linearly independence only covers finite linear sums. Apply Zorn to get maximal linearly independent set B. Note that this also generates M since if $m \notin M$ then $B \cup \{m\}$ is linear independent, contradicting the maximal linear independent set B.

Remark. If every left module over R has a basis, then R is a division ring.

Remark. Division rings arise alongside projective geometries by adding Desarques axiom.

Prop 13.2. Let R be a non-trivial ring with identity 1 ie $0 \neq 1$ in R. Then R has a maximal ideal (left, right, or two-sided).

Proof. X poset of proper (left) ideals of R. If $C = \{I_{\alpha}\}_{{\alpha} \in A}$ is a chain in X, then $\bigcup_{{\alpha} \in A} I_{\alpha}$ is a (left) ideal. I is proper since if I = R then $1 \in I \implies 1 \in I_{\alpha}$ so $R \subseteq I_{\alpha}$, a contradiction. Apply Zorn's Lemma.

Def. A poset is **well-ordered** if it is totally ordered and every nonempty subset S has a minimum $m \in S$.

Prop 13.3 (ITransfinite Induction). Let A be a well-ordered poset and P be a property on A, $P: A \to \{T, F\}$. Suppose for any $b \in A$ that if P holds for all $a \prec b$ then it holds for n, or that P is inductive. Then P holds for all elements of A.

Proof. Otherwise $\{x \in A | P(x) = F\}$ has minimum b, but P is inductive so P holds for b. Contradiction.

Theorem 13.1 (Axiom of Choice). Let X be a set and $\{A_{\alpha}\}_{{\alpha}\in X}$ a family of nonempty sets. Then $\prod_{{\alpha}\in X}A_{\alpha}\neq\emptyset$. In other words, we have a function $f:X\to\bigcup_{{\alpha}\in X}A_{\alpha}$ s.t. $f(\alpha)\in A_{\alpha}$ for all α . Such an f is called a **choice** function.

Proof. (Zorn's Lemma) Suppose X has no maximal element. Choose for each $x \in X$ an x^+ s.t. $x \prec x^+$. This is possible by assumption that X has no maximal element and by Axiom of Choice. For each chain C, we choose upper bound $u(C) \in X$, again by hypothesis and Axiom of Choice.

Let A be a well-ordered set. We define a sequence $\{x_a\}_{a\in A}$ in X s.t. if a < b in A then $x_a \prec x_b$ in X. We do this by transfinite induction. Suppose we have defined x_a for all a < b. We have an increasing $\{x_a\}_{a < b}$ in X. This is a chain in X, so we can define $x_b = u(\{x_a\}_{a < b})^+$. Then $x_b > u(\{x_a\}_{a < b})$ in X. By transfinite induction, we have $\{x_a\}_{a \in A}$ strictly increasing in X. This contradicts **Hartog's Lemma**.

Lemma (Hartog's Lemma). Given a set X, there exists a well-ordered set A s.t. there is no injection $A \hookrightarrow X$.

14 Oct 22

14.1 Rings

Def. A ring $(R, +, 0, \cdot, 1)$ consists of

- an abelian group (R, +, 0)
- a Monoid $(R,\cdot,1)$.

s.t.

- $a \cdot (b+c) = a \cdot b + a \cdot c$
- $(a+b) \cdot c = a \cdot c + b \cdot c$

Ex.

- 1. \mathbb{Z} and \mathbb{Z}_n .
- 2. R[x] the ring of polynomials
- 3. $M_n(R)$ the set of $n \times n$ matrices with entries in R.
- 4. \mathbb{R}^X the ring of function $X \to R$ with $(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x)$.

Remark.

- 1. The inverse of a under addition is -a (opposite of a). The inverse of a multiplicatively is a^{-1} (inverse). The set of invertible elements in $(R,\cdot,1)$ is R^{\times} implies that $(R^{\times},\cdot,1)$ is a group.
- 2. For any $a \in R$ $a \cdot 0 = 0 \cdot a = 0$ (absorption).
- 3. If 0 = 1 then R is the zero ring (only 0).
- 4. An element $z \in R$ is a **zero divisor** if there is a w s.t. zw = 0 or wz = 0. Let R^z be the set of zero-divisors.
- 5. $0 \in \mathbb{R}^z, 1 \in \mathbb{R}^\times \text{ and } \mathbb{R}^\times \cap \mathbb{R}^z = \emptyset$.

Ex.

- 1. $R = \mathbb{Z} \implies R^z = \{0\}, R^{\times} = \{\pm 1\}.$
- 2. $R = M_n(\mathbb{F})$ where \mathbb{F} is a field. $R^{\times} = GL_n(\mathbb{F})$. $R^z = M_n(\mathbb{F}) \setminus GL_n(\mathbb{F})$.

Def. A nontrivial ring R is a **domain** if $R^z = \{0\}$. A **division ring** is $R^* = R \setminus \{0\}$ (also known as **skew-field**). It is an **integral domain** if it is commutative domain. It is a **field** if it is a commutative division ring.

Def. Let R be a ring. A subset $S \subseteq R$ is a **subring** if it is both a subgroup of (R, +, 0) the addition group and a submonoid of $(R, \circ, 1)$. In this case, S is a ring.

Def. Let R_1, R_2 be rings. $\varphi : R_1 \to R_2$ is a **morphism** of rings if it is a morphism of the groups $(R_1, +, 0) \to (R_2, +, 0)$ and the monoids $(R_1, \cdot, 1) \to (R_2, \cdot, 1)$ and $\varphi(a + b) = \varphi(a) + \varphi(b)$, $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ and $\varphi(1) = 1$.

Def. Let R be a ring and $I \subseteq R$ a subgroup if (R, +, 0). I is a **left ideal** if $\forall a \in R, x \in I$, $ax \in I$. Similarly we can define right and 2 sided ideals.

Let I be a 2-sided ideal. Write $a \equiv b \pmod{I}$ if $a - b \in I$. This is an equivalent relation and it is compatible with both + and \cdot . We can define R/I as the set of equivalence classes. It is also a ring.

Ex. $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$

Prop 14.1 (First isomorphism Theorem for Rings). Let $\varphi: R \to R'$ be a morphism of rings. $\ker(\varphi) = \{x \in R : \varphi(x) = 0\}$. It is a 2-sided ideal of R. The image φ is not an ideal, but is a subring of R'. $R/\ker \varphi \cong \operatorname{im} \varphi$ given by $\overline{a} \to \varphi(a)$.

Ex. $\varphi : \mathbb{R}[x] \to \mathbb{C}$ by $\varphi(p(x)) = p(i)$. φ is a surjective ring homomorphism. $\ker(\varphi) = (x^2 + 1)$, where the parenthesis is the generation of the ideal. $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$.

Prop 14.2 (Other Isomorphism Theorems for Rings). Let R be a ring

- 1. S a subring and I is a 2-sided ideal. Then
 - (a) S + I is a subring of R.
 - (b) $S \cap I$ is a 2-sided ideal of R.
 - (c) $(S+I)/I \cong S/S \cap I$.
- 2. Let I, J be 2-sided ideals of R $w/I \subseteq J$. Then
 - (a) J/I is a 2-sided ideal of R/I.
 - (b) $\frac{R/I}{J/I} \cong R/J$.
- 3. Let I be a 2-sided ideal of R there is a bijective correspondence between 2-sided ideals J of R containing I and 2-sided ideals of R/I. The same holds for left and right ideals.

Def. Let R be a nontrivial ring R. A **proper ideal** I (left, right, 2-sided) is **maximal** if it is a maximal element of the poset of ideals under inclusion.

Prop 14.3. A nontrivial ring has a maximal ideal (L, R, 2). More generally, any proper ideal is contained in a maximal ideal.

Prop 14.4. Let R be a nontrivial commutative ring. The following are equivalent

- 1. R is a field
- 2. {0} is the only proper ideal
- 3. $\{0\}$ is maximal ideal

Proof. For (1) \rightarrow (2). If $I \neq \{0\}$, take $a \in I$, take $a \in I$, $a \neq 0$ which implies $a \in R^{\times} \implies 1 = a^{-1} \cdot a \in I \implies b = b \cdot 1 \in I$ for all b.

Corrollary. Let I be an ideal of commutative ring R. I is maximal iff R/I is a field.

Proof. Use fourth isomorphism thm.

Prop 14.5. Let R be a nontrivial ring. The following are equivalent

- 1. R is a division ring.
- 2. {0} is the only proper left or right ideal.
- 3. {0} is a maximal left or right ideal.

Def. A ring is **simple** if it is nontrivial and $\{0\}$ is the only proper 2-sided ideal.

Remark. A division ring is a simple ring, but not backwards.

Ex. $M_n(\mathbb{F})$ is simple. It is not a division ring if n > 1. This is found in HW 8, Ex 15.

Def. Let I and J be 2-sided ideals of R. $I + J = \{a + b\}$ and $I \cdot J = \{\sum_{i=1}^{m} a_i b_i\}$. Then I + J, $I \cap J$, $I \cdot J$ are ideals.

Def. Two 2-sided ideals I and J are **comaximal** if I + J = R. Equiv no proper ideal contains both I and J or no maximal ideal.

Theorem 14.1 (CRT). Let I and J be comaximal 2-sided ideals of R. Let $\varphi: R \to R/I \times R/J$ be $\varphi(a) = (aI, aJ)$.

- 1. φ is surjective morphism of rings and $\ker(\varphi) = I \cap J$.
- 2. $R/(I \cap J) \cong R/I \times R/J$
- 3. $I \cap J = I \cdot J + J \cdot I$

15 Oct 24

15.1 Rings cont.

Theorem 15.1 (CRT). I, J comaximal ideals in R with $\varphi : R \to R/I \times R/J$ given by $a \to (\overline{a}, \overline{a})$. Then

- 1. φ is onto and $\ker \varphi = I \cap J$.
- 2. $R/(I \cap J) \cong R/I \times R/J$.
- 3. $I \cap J = IJ + JI$.

Proof.

- 1. Given $a, b \in R$ want $x \in R$ s.t. $\overline{x} = \overline{a} \pmod{I}$ and $\overline{x} + \overline{b} \pmod{J}$. Since I + J = R, then 1 = i + j for $i \in I, j \in J$. Tkae x = bi + aj.
- 2. Later.
- 3. Take $x \in I \cap J$. Then $x = xe + xf \in IJ + JI$.

 $\mathbf{E}\mathbf{x}$.

1. Let $R = \mathbb{Z}$. $n\mathbb{Z}$ is an ideal and are the only ideals. $n\mathbb{Z} \subseteq m\mathbb{Z} \iff m \mid n$ so the poset of ideals of \mathbb{Z} is anti-isomorphic to the poset of \mathbb{N} under divisibility. Then we see that

By CRT if gcd(n, m) = 1 then $\mathbb{Z}_{nm} \cong \mathbb{Z}_n \times \mathbb{Z}_m$. Explicitly, given $a, b \in \mathbb{Z}$ with $x \equiv a \pmod{n}$ and $x \equiv b \pmod{m}$ has a solution, unique modulo mn.

2. $R = \mathbb{F}^{\times}$ (X a set, \mathbb{F} a field). HW7 shows that every ideal is of the form $\mathcal{I}(S)$. For a unique $S \subseteq X$, where $\mathcal{I}(S) = \{f \in \mathbb{F}^{\times} : f|_{S} \equiv 0\}$. Also $\mathbb{F}^{\times}/\mathcal{I}(S) \cong \mathbb{F}^{S}$. The poset of ideals of R is anti-isomorphic to the poset of subsets of X (under inclusion).

where $I = \mathcal{I}(S), J = \mathcal{I}(T)$. BY CRT, if $S \cap T = \emptyset$ then $\mathbb{F}^{\times}/\mathcal{I}(S) \cap \mathcal{I}(T) \cong \mathbb{F}^{\times}/\mathcal{I}(S) \times \mathbb{F}^{\times}/\mathcal{I}(T)$ is given by $\mathbb{F}^{S \cup T} \cong \mathbb{F}^{S} \times \mathbb{F}^{T}$.

15.2 Noetherian Rings

Def. A poset satisfies the **ascending chain condition** (ACC) if every countable ascending chain stabilizers ie $x_0 \leq x_1, \dots \implies \exists N \text{ s.t. } x_N = x_n \ \forall n \geq N.$

Prop 15.1. A poset X satisfies ACC iff any nonempty subset S of X has a maximal element. (there is a $m \in S$ s.t. if m < x then $x \notin S$).

Proof. For forward, suppose $S \neq \emptyset$ has no max element. $S \neq \emptyset \implies \exists x_0 \in S \implies x_0$ is not maximal. This implies there exists $x_1 \in S, x_0 < x_1$. By induction, we can construct a sequence $x_n \in S$ for $n \in \mathbb{N}$ s.t. $x_0 < x_1 \dots$, which is a contradiction. This uses the axiom of countable choice.

For the backwards, given a chain $x_0 \leq x_1 \dots$ let $S = \{x_0, x_1 \dots\}$ and S has a maximal element which is x_N . This is the definition of ACC.

Def. A ring R is left noetherian if the poset of left ideals satisfies ACC (similarly right noetherian for right ideals).

Remark. Exist rings R that are left noetherian but not right noetherian. Maybe it could be both or neither.

Prop 15.2. Any quotient of a left noetherian ring is also left noetherian.

Def. Given a subset A in a ring R, the left ideal **generated** by A is $RA = \{\sum_{i \in F} r_i a_i : F \text{ finite }, a_i \in A, r_i \in R, \forall i \in F\}$ A left ideal I is **finitely generated** if there is a finite $A \subseteq R$ s.t. I = RA. I is **principal** if there is an $a \in R$ s.t. $I = R\{a\}$.

Prop 15.3. A ring is left noetherian \iff every left ideal is finitely generated.

Proof. For forward, let I be a left ideal $\mathcal{F} = \{RA : A \subseteq I, \text{finite}\}$. \mathcal{F} has a maximal element RA. We claim that RA = I. If note, then there is an $x \in I$ s.t. $x \notin RA$. Let $A' = A \cup \{x\}$ still finite and $A' \in \mathcal{F}$ with $RA \subseteq RA'$ so $x \in RA$ which is a contradiction.

For backwards, let $I_0 \subseteq I_1...$ be an ascending chain of left ideals. Let $I = \bigcup_{n \geq 0} I_n$. Then I is an ideal which implies I is finitely generated, $I = R\{a_1, \ldots, a_k\}$ which implies $a_i \in I_{n_i}$ for all $i \in [n]$. Let $N = \max\{n_1, \ldots, n_k\}$ then $a_i \in I_N$ so $I = I_N$.

$\mathbf{E}\mathbf{x}$.

- 1. Any division ring is left noetherian.
- 2. Any PID is noetherian (principal implies finitely generated)
- 3. $R[x_1, x_2, ...,]$ polynomials in countably many variables is not left noetherian. By $R[x_1] \subset R[x_1, x_2] ...$
- 4. R^{\times} (R a ring, X an infinite set). Not left or right noetherian.

Remark. R[x] is not commutative. R commutative iff R[x] is commutative. This is only the case when R is commutative.

Theorem 15.2 (Hilbert's Basis Theorem). If R is left noetherian then R[x] is left noetherian

Proof. Let I be a left ideal. Suppose I is not finitely generated. In particular, $I \neq \{0\}$. Let $f_0 \in I$ be a polynomial of minimal degree. Now $I \neq R[x]\{f_0\}$ let $f_1 \in I \setminus R[x]\{f_0\}$ of minimal degree. Note that deg $f_0 \leq \deg f_1$. Choose $f_n \in I \setminus R[x]\{f_0,\ldots,f_{n-1}\}$ of minimal degree. Then deg $f_{n-1} \leq \deg f_n$. Let $d_n = \deg f_n$ and let the leading term be $a_{\deg f}x^{\deg f}$. Consider the chain of left ideals in R given by $R\{a_0\} \subseteq R\{a_0,a_1\}\ldots R$ left noetherian implies this chain stabilizes. $\exists N \in \mathbb{N}$ s.t. $a_n \in R\{a_0,a_1,\ldots,a_N\}$ for all $n \geq N$. in particular $a_{N+1} = \sum_{i=1}^N r_i a_i$ for some $r_i \in R$. Consider $g = \sum_{i=1}^N r_i f_i x^{d_{N+1}-d_i}$. The leading term of g is the same as that of f_{N+1} , so $\deg(f_{N+1}-g) < \deg(f_{N+1})$ and note that $g \in R[x]\{f_1,\ldots,f_N\}$ but this contradicts the assumption that $\deg(f_{N+1})$ is the minimal degree polynomial of our set.

16 Oct 29

16.1 Modules

Def. Let R be a ring. A left R-module is an abelian group (M, +, 0) with a map $R \times M \to M$, $(a, m) \to a \cdot m$ s.t.

- (i) $a \cdot (b \cdot m) = ab \cdot m$. This also gives us $1 \cdot m = m$.
- (ii) $a \cdot (m+n) = a \cdot m + a \cdot n$.
- (iii) $(a+b) \cdot m = a \cdot m + b \cdot n$.

Remark.

- 1. (i) (i) occurs when $(R, \cdot, 1)$ acts on M as a set.
 - (ii) (ii) occurs when the action is by endomorphism of (M, +, 0).
 - (iii) (iii) means that the map $R \times M \to M$ is biadditive.
- 2. Replace $m \in M$ by $c \in R$. The axioms hold. So M = R is a left R-module with $a \cdot c = ac$. This is the **standard** R
- 3. The endomorphisms of M is a ring under (f+g)(m) = f(m) + g(m) and $(f \circ g)(m) = f(g(m))$. A map $R \times M \to M$ gives rise to $R \xrightarrow{\ell} M^M = \{f : M \to M\}$ given by $\ell(a) : M \to M, \ell(a)(m) = a \cdot m$. We see that properties (i), (ii), (iii) hold. Given an abelian group M, a left R-module structure on M is **equivalent** to a ring homomorphism $R \to \operatorname{End}_{\mathbb{Z}}(M)$.

Prop 16.1.

- 1. Let R be a ring. There exists a unique ring homomorphism $\mathbb{Z} \to R$. \mathbb{Z} is the initial ring.
- 2. Let M be an abelian group. There exists a unique \mathbb{Z} -module structure on M.

Proof.

1. Define $\varphi : \mathbb{Z} \to R$ by $\varphi(0) = 0$, $\varphi(1) = 1$ and $\varphi(n) = \varphi(1 + \dots + 1) = 1 + \dots + 1$ for positive n and $\varphi(n) = -(\varphi(-n))$ for negative n. Note that the addition is actually in n for the last term in the first equality chain.

2. There is a unique ring homomorphism $\mathbb{Z} \to \operatorname{End}_{\mathbb{Z}}(M)$ The \mathbb{Z} mod structure is $n \cdot m = m + m \cdot \cdots + m$ n times.

Def. Let M be a left R-module. A subset $N \subseteq M$ is a **submodule** if it is a subgroup of (M, +, 0) and $a \cdot n \in N \ \forall a \in R, n \in N$. In this case, N is a left R-module $(N \le M)$ and M/N is a left R-module with $a \cdot \overline{m} = \overline{a \cdot m}$.

Ex.

- 1. Let M = R the standard left R module. The submodules of M are the left ideal of R.
- 2. Let $R = \mathbb{Z}$ and let M be an abelian group. Then the submodule of M are the subgroups of M.

Def. Let M be a left R-module and $A \subseteq M$ be a subset. The R-submodule **generated** by A is $RA = \{\sum_{F} r_i a_i : F \text{ finite}, i \in F\}$. RA is the smallest submodule of M that has A. A module M is **finitely generated** if there is a finite $A \subseteq M$ s.t. M = RA. It is **cyclic** if it is generated by a single element.

Ex.

- 1. A submodule of M = R are left ideals of R. Finitely generated submodules are finitely generated left ideals. Cyclic submodules are principal left ideals.
- 2. Z-modules are abelian groups. Finitely generated Z-modules are finitely generated abelian groups. Cyclic Z-modules are cyclic groups.

Def. Let M and N be left R-modules. A homomorphism is a function $f: M \to N$ s.t. f(m+n) = f(m) + f(n) and $f(a \cdot m) = a \cdot f(m)$.

16.2 Products and sums

Def. Let I be a set and $\{M_i\}_{i\in I}$ be a collection of left R-modules. On the Cartesian product $\prod_{i\in I} M_i$, define $(m_i)_{i\in I} + (m'_i)_{i\in I}$ and $a \cdot (m_i)_{i\in I} = (a \cdot m_i)_{i\in I}$. Then $\prod_{i\in I} M_i$ is a left R-module called the **direct product** of $\{M_i\}$. Let $\bigoplus_{i\in I} M_i$ be the subset of $\prod_{i\in I} M_i$ consisting of $(m_i)_{i\in I}$ of **finite support:** $\{i \in I : m_i \neq 0\}$ is finite. Then $\bigoplus_{i\in I} M_i \leq \prod_{i\in I} M_i$. The left R-module $\bigoplus_{i\in I} M_i$ is the **direct sum** of $\{M_i\}$. If I is finite then notice they are equals.

For each $j \in I$ there are homomorphisms of the R-modules given by π_j : $\prod_{i \in I} M_i \to M_j$ by projection $\pi_j((m_i)_{i \in I}) = m_j$ and $\sigma_j : M_j \to \bigoplus_{i \in I} M_i, \sigma_j(m) = (m_i)_{i \in I}$ with $m_i = m$ if i = j and 0 if not.

Prop 16.2. Let $\{M_i\}_{i\in I}$ be a collection of left R-modules. let M be another left R-module.

1. For each $j \in I$ let $\varphi_j : M \to M_j$ be a homomorphism of R-modules. Then there exists a unique morphism of R-modules $\varphi : M \to \prod_{i \in I} M_i$ s.t.

2. For each $j \in I$, let $\psi_j : M_j \to M$ be a homomorphism of R-modules. Then exists unique morphism of R-modules $\psi : \bigoplus_{i \in I} M_i \to M$ s.t.

Proof.

- 1. Define $\varphi(m) = (\varphi_i(m))_{i \in M}$.
- 2. Define $\psi((m_i)_{i\in I}) = \sum_{i\in I} \psi_i(m_i)$ and since the preimage has finite support the map is well defined.

Remark.

 $General \ Category \ R\text{-}modules \qquad groups \qquad sets$

Product Direct Product Direct Product Cartesian Product
Coproduct Direct Sum Free product Disjoint Union

Ex. Let (X, \leq) be a poset. Define a category φ_x where objects are the elements of X and given $x, y \in X$ there exists a unique homomorphism $x \to y$ if $x \leq y$. The product of x and y exists iff $x \vee y$ exists and a coproduct if $x \wedge y$.

17 Oct 29

17.1 Noetherian Modules

Def. A left R-module os Noetherian if the poset of submodules satisfies ACC. IE every nonempty set of submodules has a maximal element.

Remark. R is left Noetherian iff it is noetherian as a left R-module.

Prop 17.1. A left R-module M is Noetherian iff every R-submodule is finitely generated. In particular it is itself finitely generated.

Prop 17.2. Let M be a left R-module and $N \leq M$. Then M is Noetherian iff N and M/N are Noetherian.

Proof. List from N to M/N.

Prop 17.3. Let $\{M_i\}_{i\in I}$ be Noetherian left R-modules. I finite, then $\bigoplus_{i\in I} M_i$ is Noetherian.

Proof. By induction, we examine $I = \{1, 2\}$. Note that $M_1 \leq M$ and $M/M_1 \cong M_2$ and use the previous proposition.

Prop 17.4. Let R be left Noetherian and M a left R-module. If M is finitely generated, then M is Noetherian.

Proof. $M = R\{x_1, \dots, x_k\}$. $R^k \to M$ with $e_j \to x_j$ is a surjection. So M is a quotient of R^k and R^k is Noetherian because it is finite direct sum of Noetherian modules.

Remark. If R arbitrary and M finitely generated, then not every submodule of M is necessarily finitely generated. For example, if R is not Noetherian then $R \leq M$ is a submodule that is not finitely generated.

17.2 Free Modules

Lemma. Recall the standard left R-module R under left multiplication. Let M be any left R-module and any $m \in M$ then $\exists !$ morphism of left R-modules $\varphi : R \to M$ s.t. $\varphi(1) = m$.

Proof.
$$\varphi(a) = a \cdot \varphi(1) = a \cdot m$$
.

Def. Let I be a set. For each $i \in I$, let $M_i = R$ the standard left R-module. The module $R^{(I)} := \bigoplus_{i \in I} M_i$ is the **free left** R-module on the set I. Let $e_j \in R^{(I)}$ be the I-tuple in $R^{(I)}$ with j component equal to 1, 0 elsewhere for all $(j \in I)$.

Remark. $R^I = \prod_{i \in I} M_i$ is different

Prop 17.5 (UP of Free Module). Let I be a set, M a left R-module. let $\{m_i\}_{i\in I}$ be a collection of elements in M. Then $\exists!$ morphism of R-modules $\varphi: R^{(I)} \to M$ s.t. $\varphi(e_i) = m_i$.

by $i \to e_i \to m_i$.

Remark. Use the Lemma to define a morphism $\varphi_i : R \to M_i$ s.t. $\varphi_i(1) = m_i$. By UP of direct sum, exists a unique morphism φ

$$M_i \xrightarrow{\sigma_i} R^{(I)}$$

$$\varphi_i \qquad \varphi$$

$$M$$

$$m_i = \varphi_i(1) = \varphi \sigma_i(1) = \varphi(e_i).$$

Def. Let M be a left R-module and $S \subseteq M$ a subset. S is **linearly independent** if $\sum_{i \in F} a_i m_i = 0$ with F finite $a_i \in R, m_i \in S$ implies $a_i = 0$ for all $i \in F$. S **generates** M if for any $m \in M$ there exists F finite, $a_i \in R_i, m_i \in S$ for $i \in F$. s.t. $m = \sum_{i \in F} a_i m_i$.

Prop 17.6. Let I be a set. Then

- 1. The set $\{e_i\}_{i\in I}$ is a basis of $R^{(I)}$.
- 2. Suppose M is a left R-module with basis I.. Then $M \cong R^{(I)}$.

Proof.

1. For any $(a_i)_{i \in I} \in R^{(I)}$ claim $(a_i)_{i \in I} = \sum_{i \in I} a_i \varphi_i$. Part 2 follows.

17.3 Tensor Products

Def. Let R be a **commutative ring**. This implies left R-modules are right R-modules. Note that left R-modules aren't necessarily right R-modules since $(m \cdot a) \cdot b = ba \cdot m \neq ab \cdot m$. Let M and L be R-modules. A homomorphism from $M \to L$ is **linear map**. This set is $\operatorname{Hom}_R(M, L)$.

Let N be another R-module. A function $\beta: M \times N \to L$ is **bilinear** if

- (i) $\beta(m + m', n) = \beta(m, n) + \beta(m', n)$.
- (ii) $\beta(m, n + n') = \beta(m, n) = \beta(m, m')$.
- (iii) $\beta(am, n) = a\beta(m, n) = \beta(m, an)$.

The set of these is $\operatorname{Hom}_R(M, N; L)$. **Multilinear maps** are defined similarly to $\operatorname{Hom}_R(M_1, \ldots, M_n; L)$.

Ex.

- 1. $\mu: R \times R \to R, (a,b) \to ab$. This is bilinear because rings are linear.
- 2. For any R-modules $R \times M \to M$, $(a, m) \to a \cdot m$ is bilinear.

Remark. $\operatorname{Hom}_R(M \times N, L) \neq \operatorname{Hom}_R(M, N; L)$. $f: M \times N \to L$ by f((m, n) + (m', n') = f(m, n) + f(m', n') isn't good enough. We'll construct $M \otimes N$ s.t. $\operatorname{Hom}_R(M \otimes N, L) \cong \operatorname{Hom}_R(M, N; L)$.

Prop 17.7 (UP of Tensor Products). Let M and N be R-modules. \exists an R-module X and a bilinear map $\theta: M \times N \to X$ s.t. given any R-module L and bilinear map $\beta: M \times N \to L$, $\exists!$ linear map $\widehat{\beta}: X \to L$ s.t.

$$\begin{array}{c}
M \times N \xrightarrow{\beta} L \\
\downarrow^{\theta} & \stackrel{\widehat{\beta}}{\xrightarrow{\widehat{\beta}}} & X
\end{array}$$

Moreover, (X, θ) is unique (up to isomorphism) with this property.

Proof. Let F be the free R-module in the set $M \times N$. F has basis $\{e_{(m,n)} : m \in M, n \in N\}$. Let F' be the submodule of F generated by

- $\bullet e_{(m+m',n)} e_{(m,n)} e_{(m',n)}$
- $\bullet e_{(m,n+n')} e_{(m,n)} e_{(m,n')}$

- \bullet $e_{(am,n)} ae_{(m,n)}$
- \bullet $e_{(m,an)} ae_{(m,n)}$

for all $m, m' \in M, n, n' \in N, a \in R$. Let X = F/F'. Define $\theta : M \times N \to X$ as $M \times N \hookrightarrow F \twoheadrightarrow F/F' = X$. by $(m, n) \to e_{(m,n)} \to \overline{e_{(m,n)}} = \theta(m, n) + \theta(m', n)$.

18 Nov 5

18.1 Divisibility

Remark. Normally we write $\langle a \rangle = Ra$. Today R will be an integral domain.

Def. Let $a, b \in R$. b divides a if a = bc, $c \in R$. We write $b \mid a$. a and b are associates if $a \mid b, b \mid a$ and we write $a \sim b$. Let $u \in R$. We say u is a unit if $u \mid 1$.

Prop 18.1.

- 1. u is a unit iff u is invertible iff $\langle u \rangle = R$.
- 2. $b \mid a \text{ iff } \langle a \rangle \subseteq \langle b \rangle$.
- 3. $a \sim b$ iff (a) = (b) iff there is a unit s.t. a = ub.

Def. Let $p \in R$. Assume $p \neq 0$ and p is not a unit. p is **irreducible** if $p = ab \implies a$ or b is a unit. It is **prime** if $p \mid ab$ implies that $p \mid a$ or b.

Prop 18.2. p prime implies that pis irreducible.

Prop 18.3. Suppose $p \sim q$.

- 1. p irreducible implies that q is irreducible.
- 2. p primes implies q is prime.

Def. Given $a: I \to R$ by $i \to a_i$ where I is finite, their **product** $\prod_{i \in I} a_i \in R$ is well defined. If $I = \emptyset$ then this product is defined to be 1.

Prop 18.4 (Uniqueness of Prime Factorization). Let I and J be finite sets. Let $(p_i)_{i\in I}$ and $(q_j)_{j\in J}$ be primes. Suppose $\prod_{i\in I} p_i \sim \prod_{j\in J} q_j$. Then there exists a bijection $\sigma: I \to J$ s.t. $p_i \sim q_{\sigma(i)}$.

Proof. Induction on |I|. If |I| = 0 we have $1 \sim \prod_{j \in J} q_j$. If $|J| \neq 0$ that implies there is a $j \in J$ s.t. $q_j \mid 1$. Suppose $|I| \geq 1 \implies \exists i_0 \in I \implies p_{i_0} \mid \prod_{i \in I} p_i = u \prod_{j \in J} q_j$ where u is a unit. p_{i_0} is a prime $\implies p_{i_0} \mid q_{j_0}$, some $j_0 \in J \implies q_{j_0} = p_{i_0}c, c \in R$. q_{j_0} irreducible and p_{i_0} not a unit implies that c is a unit so $p_{i_0} \sim q_{j_0}$. We have that $\prod_{i \in I} p_i = u \prod_{j \in J} q_j \implies \prod_{i \in I, i \neq i_0} p_i = u' \prod_{j \in J} j \neq j_0 q_j \sim \prod_{j \in J, j \neq j_0} q_j$. By induction hypothesis, we just define the σ for the other elements and define $\sigma(i_0) = j_0$.

Prop 18.5 (Existence of Irreducible Factorization). Let R be Noetherian. Let $a \in R, a \neq 0$. Then \exists a finite set I and irreducibles $(p_i)_{i \in I}$ s.t. $a \sim \prod_{i \in I} p_i$.

Proof. Suppose not. Let $\mathcal{F} = \{(x) : x \neq 0, x \not\sim \text{ finite product of irreducibles}\}$. Pick a maximal element element $(x) \in \mathcal{F}$. x is not a unit and it is not irreducible, so it has an irreducible factorization. x = yz where yz are not units. Both y and z. Also $y, z \neq 0$. Note that $(y), (z) \notin \mathcal{F}$ and we are done since we can find irreducible factorizations.

18.2 Unique Factorization Domains

Prop 18.6.

- 1. Every $a \in R$, $a \neq 0$ and non unit admits a irreducible factorization.
- 2. Any irreducible factorization is unique up reordering and units.
- 3. Every irreducible is prime

Then
$$(1) + (2) \iff (1) + (3)$$
.

Proof. (\Leftarrow) (3) implies primes are irreducible and unique factorization for prime factors so (2) holds.

(⇒) Let $p \in R$ be irreducible. Suppose $p \mid ab$. WANT $P \mid a$ or $p \mid b$ which implies that $ab = pc \implies c \neq 0$. Can factor each into irreducible $a \sim \prod_{i \neq I} p_i, b \sim \prod_{j \in J} q_j, c = \prod_{h \in H} r_h$. Then $\prod p_I \cdot \prod q_j \sim p \prod r_h$. By (2) we may assume that $p \sim p_i$ then $p \mid a$.

Def. An integral domain R is a **UFD** if (1) + (2) or (1) + (3) hold.

Remark. We saw that Noetherian implies there exists irreducible factor. However, there are UFDs that are not Noetherian ie $\mathbb{F}[x_1, x_2, ...]$ is a UFD (non trivial) but is not Noetherian. There are also Noetherian domains that are not UFD ie $\mathbb{Z}[\sqrt{-3}]$.

Prop 18.7. An integral domain is a UFD iff the (3) + (4) holds. where 4 is that principal ideals satisfy ACC.

Proof. Same proof as in Noetherian Case gives $(4) \implies (1)$. Forward is left as exercise.

18.3 Principal Ideal Domains

Def. An integral domain is a PID if every ideal is principal.

Lemma. R an integral domain. $p \in R$. p is prime iff (p) is a prime ideal. p is irreducible iff (p) is maximal among the principal ideals.

Corrollary. $PID \implies UFD$.

Proof. $PID \implies$ noetherian \implies (4). If p is irreducible then (p) is a maximal ideal so (p) is prime so p prime, so we have (3).

Def. Let R be an integral domain. A **Euclidean Norm** is a function δ : $R \setminus \{0\} \to \mathbb{N}$ s.t. for all $a \in R, b \in R \setminus \{0\}$ then there exists $q, r \in R$ with a = bq + r and $\delta(r) < \delta(b)$ when $r \neq 0$.

Def. R is a ED if it posses a Euclidean Norm.

Prop 18.8. $ED \implies PID$.

 $\mathbf{E}\mathbf{x}$.

- \mathbb{Z} is ED with $\delta(a) = |a|$.
- If \mathbb{F} is a field then $\mathbb{F}[x]$ is a ED with $\delta(p(x)) = \deg p(x)$.
- $\mathbb{Z}[i]$ is a ED with $\delta(z) = |z|^2$.

19 Nov 7

19.1 Integrality

Def. Let $R \subseteq S$ be an integral domain. We say $\alpha \in S$ is **integral** over R if \exists a monic polynomial $p(x) \in R[x]$ s.t. $p(\alpha) = 0$.

Remark. $\alpha \in R$ implies that α is a root of $x - \alpha$ so α is integral over R.

Ex. $\sqrt{2}$ is a zero of $x^2 - 2 \in \mathbb{Z}[x]$.

Def. Let R be an integral domain and F its field of fractions. The **integral** closure of R is $\overline{R} = \{\alpha \in F, \alpha \text{ integral over } R\}$. $R \subseteq \overline{R} \subseteq F$. We say R is integrally closed if $R = \overline{R}$.

Ex. \mathbb{Z} is integrally closed. Let $\alpha \in \mathbb{Q}$ with $p(x) \in \mathbb{Z}[x]$ monic and s.t. $p(\alpha) = 0$. $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Write $\alpha = a/b$ with $a, b \in \mathbb{Z}$ and $\gcd(a,b) = 1$. Then $p(\alpha) = 0 \implies a^n \equiv 0 \pmod{b} \implies b \mid a^n \implies b$ is a unit. In particular $\alpha \in \mathbb{Z}$.

Corrollary. $\sqrt{2} \notin \mathbb{Q}$.

Prop 19.1. Any UFD is integrally closed.

 ${\it Proof.}$ Same proof as before, using properties of gcds that hold in all UFDs.

Ex. Consider $\mathbb{Z}[\sqrt{-3}]$ and $\mathbb{Q}(\sqrt{-3})$. They are subrings of \mathbb{C} . $\mathbb{Q}(\sqrt{-3})$ is the field of fractions of $\mathbb{Z}[\sqrt{-3}]$. Let $w = \frac{-1+\sqrt{-3}}{2}$ and note that it is integral over $\mathbb{Z}[\sqrt{-3}]$ but not in it, so $\mathbb{Z}[\sqrt{-3}]$ is not integrally closed and as such is not a UFD.

19.2 Quadratic Integers

Def. $\alpha \in \mathbb{C}$ is a quadratic integer if \exists monic $p(x) \in \mathbb{Z}[x]$ of degree 2 s.t. $p(\alpha) = 0$.

Def. Given $\alpha \in \mathbb{C}$, let $Q(\alpha) = smallest$ subfield of \mathbb{C} containing α and similarly $\mathbb{Z}[\alpha]$ be the smallest subring of \mathbb{C} containing α . If α is a quadratic integer, then $Q(\alpha) = \{a + b\alpha : a, b \in \mathbb{Q}\}$ and $\mathbb{Z}[\alpha] = \{a + b\alpha : a, b \in \mathbb{Z}\}$. Note that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{d})$ where $d = m^2 - 4m \in \mathbb{Z}$. Write $d = k^2D$ where D is square-free. Then $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(\sqrt{D})$.

Let $\beta = \frac{-1+\sqrt{D}}{2} \in \mathbb{Q}(\sqrt{D}) \setminus \mathbb{Z}[\sqrt{D}]$ If $D \equiv 1 \pmod{4}$, β is integral over $\mathbb{Z}[\sqrt{D}]$ therefore this case is not integrally closed and not a UFD.

Def. Let $D \in \mathbb{Z}$ be square-free. The ring of quadratic integers of discriminant D is $\mathcal{O}(D) = \begin{cases} \mathbb{Z}[\sqrt{D}] & D \equiv 2, 3 \pmod{4} \\ \mathbb{Z}[\frac{-1+\sqrt{D}}{2}] & D \equiv 1 \pmod{4} \end{cases}$.

Ex. $\mathcal{O}(-1) = \mathbb{Z}[i]$ Gaussian integers, $(-3) = \mathbb{Z}[w]$ the Eisenstein integers.

Remark.

- $\mathcal{O}(D)$ is integrally closed for all D (in fact it is the integral closure of $\mathbb{Z}[\sqrt{D}]$).
- $\mathcal{O}(D)$ is UFD iff $\mathcal{O}(D)$ is PID.
- For D < 0 $\mathcal{O}(D)$ is a UFD for finitely many values of D.
- For D > 0, D = 10 is the first for which $\mathcal{O}(D)$ is not a UFD. Gauss conjectured that for it is a UFD for infinitely many values of D > 0.

19.3 Dedekind Domains

Def. A Dedekind domain (DD) is an integral domain that is Noetherian, Integrally Closed, and every prime ideal is maximal.

Remark.

- $\mathcal{O}(D)$ is always a DD.
- UFD and DD iff PID.

Remark. Fields - ED - PID - UFD/ DD - ID is ordering with fields the simplest.

Remark.

- \mathbb{Z} , $\mathbb{F}[x]$, $\mathbb{Z}[i]$, $\mathbb{Z}[w]$ are ED.
- $\mathcal{O}(-19)$ PID not ED.
- $\mathcal{O}(-5)$ and $\mathcal{O}(10)$ are DD's not UFD.
- $\mathbb{Z}[x_1,\ldots,x_n]$ UFD not DD. Same for $\mathbb{Z}[x_1,x_2,\ldots]$.

19.4 Polynomial Rings

Remark.

- R integral domain implies that R[x] is an integral domain. $\deg(f \cdot g) = \deg(f) + \deg(g)$.
- $f(x) \in R[x]^{\times}$ implies that f(x) = u with u a unit in R.
- F field implies F[x] ED implies F[x] PID.
- R PID does not implies R[x] PID. Our goal is to show that this holds for UFDs however.

Remark. R a UFD, F its fields of fractions. Factorization and irreducibles in F[x] of in R[x].

- If $f(x) \in R[x]$ factors in F[x], then we can juggle constants to get a factorization in R[x].
- Irreducibles in R[x] are the same as those in F[x] except for "obvious" differences involving constants.

Ex. $R = \mathbb{Z}, F = \mathbb{Q}$.

- 1. $f(x) = 8x^2 + 2x 15$. It is (4x 5)(2x + 3)
- 2. f = 2, g(x) = 2x + 4. f is irreducible in $\mathbb{Z}[x]$ but not $\mathbb{Q}[x]$ and g is irreducible in $\mathbb{Q}[x]$ but not $\mathbb{Z}[x]$.

20 Nov 12

20.1 More Prime Factorization of UFDs

Theorem 20.1 (Gauss Lemma). Let R be a UFD and F be its field of fractions. Let $h \in R[x]$. Suppose $\exists f(x), g(x) \in F[x]$ s.t. h(x) = f(x)g(x). Then there exists $A, B \in F^{\times}$ s.t. $\tilde{f}(x) = Af(x) \in R[x]$ and $\tilde{g}(x) = Bg(x) \in R[x]$ and $h(x) = \tilde{f}(x)\tilde{g}(x)$.

Ex.
$$h(x) = 8x^2 + 2x - 15$$
 and $h(x) = 8(x - 5/4)(x + 3/2)$ then $f(x) = 2x - 5/2$, $g(x) = 4x + 6$ then $\tilde{f}(x) = 4x - 5$, $\tilde{g}(x) = 2x + 3$.

Proof. Let d be the product of all denominators of f(x) and g(x) $d \in R^{\times}$. Then that implies that $dh(x) = f_1(x)g_1(x)$ with $f_1(x), g_1(x) \in R[x]$ and $f_1(x) = A_1f(x), g_1(x) = B_1g(x)$. Factor d into irreducibles (R is a UFD). We claim that if p is a prime, p/d then either p divides all coefficients of f_1 or all coefficients of g_1 . Can then cancel p from both sides and proceed.

Consider $\overline{R} = R/(p)$. p prime implies that (p) is a prime ideal which implies \overline{R} is an integral domain. This implies that $\overline{R}[x]$ is an integral domain and let $R[x] \to \overline{R}[x]$ by $\sum a_i x^i \to \sum \overline{a_i} x^i$. We have that $dh(x) = f_1(x)g_1(x) \Longrightarrow \overline{0} = \overline{f_1}(x)\overline{g_1}(x)$ which implies that either $\overline{f_1}(x) = 0$ or $\overline{g_1}(x) = 0$ since it is an integral domain. This completes the claim and the argument.

Corrollary. R a UFD, F is the fraction field of R. Let $h(x) \in R[x] \subseteq F[x]$. Then

- 1. Suppose deg(h) = 0. Write $h(x) = p \in R$. Then h(x) is irreducible in R[x] iff p is irreducible in R.
- 2. Suppose $deg(h) \ge 1$. Then h(x) is irreducible in R[x] iff h(x) is irreducible in F[x] and h(x) is primitive.

Remark. Recall that gcd(a, b) exists for any $a, b \in R$ if R is a UFD. It is unique up to units.

Prop 20.1. Given a, b if $d \sim \gcd(a, b)$ can write a = d'a, b = db' and $\gcd(a', b') \sim 1$. Also can speak of $\gcd(a_1, \ldots, a_n)$.

Def. The **content** of f(x) is $c(f) \sim \gcd(a_0, \ldots, a_n)$. $f(x) \in R[x] \setminus \{0\}$ is **primitive** if $c(f) \sim 1$. Given any $f(x) \in R[x] \setminus \{0\}$ we can write $f(x) = c(f)f_1(x)$ where $f_1(x)$ is primitive.

Ex. (hx) = 2x + 4 is irreducible in F[x] but reduces to 2(x + 2) in R[x].

Proof. Use $R[x]^{\times} = R^{\times}$.

h(x) = c(h)h'(x) where $\deg(h') = \deg(h) \ge 1$ which implies that h'(x) is not a unit. This implies c(h) is a unit in R[x] which implies that $c(h) \in R^{\times}$. So h(x) is primitive.

Suppose we have a factorization h(x) = f(x)g(x) with $f(x), g(x) \in F[x]$. By Gauss we have that $h(x) = f_1(x)g_1(x)$ where $f_1, g_1 \in R[x]$ and are multiples of f, g respectively. This implies that f_1 or $g_1 \in R[x]^{\times}$. and if we suppose the first holds then we get that $\deg(f_1) = 0 \implies f(x) \in F[x]^{\times}$.

For the converse, suppose h(x) = f(x)g(x) with $f(x), g(x) \in R[x]$ which implies that $f(x), g(x) \in F[x]$ and $f(x) \in F[x]^{\times}, g(x) \in F[x]^{\times}$. Suppose that the first holds then $f(x) = u \in F6 \times$. But $f(x) \in R[x]$ so $u \in R \setminus \{0\}$. We get that $h(x) = ug(x) \implies f(x) \in R[x]^{\times}$.

Ex.

- 1. Let $a, b \in R, a \neq 0$ then ax + b is irreducible in R[x] iff $gcd(a, b) \sim 1$.
- 2. Let $n \geq 0$. We claim that $x^n + y \in F[x,y] = F[x][y]$ is irreducible. The proof is that as an element of F[x][y], $x^n + y$ is of degree 1 and $gcd(x^n, 1) \sim 1$ and we apply the above.

Theorem 20.2. If R is a UFD then R[x] is a UFD.

Proof. We will do existence only. Let $f(x) \in R[x] \setminus \{0\}$. Write f(x) = c(f)f'(x). Since R is a UFD then $c(f) = \prod_{i \in I} p_i$ suffices to assume that f(x) is primitive.

Let F be the fraction field of R. Then F[x] is a PID which implies that F[x] is a UFD. So we can factor in F[x]. $f(x) = p_1(x) \dots p_n(x)$. where each $p_i(x)$ is irreducible in F[x]. By Gauss we can get $\tilde{p}_i(x) \in R[x]$, which are $\sim p_i(x)$ and as such are irreducible. But $c(\tilde{p}_i)/c(f) \sim 1$ so $\tilde{p}_i(x)$ primitive and are also irreducible, which is our desired factorization.

20.2 Modules over Domains

Def. Let M be a R-module. The rank of M is the maximal size of linearly independent subsets of M. Denote it as rk(M).

Prop 20.2. Suppose $M \cong R^r$ with $r < \infty$. $\operatorname{rk}(M) = r$. and any basis of M has r elements.

Proof. $M \subseteq F \otimes \cdots \otimes F$ where F is ff of R. We claim that if $S \subseteq M$ is a li over R then it is li over F. The proof of this is that if we have $\sum_{s \in S} a_s s = 0$ for $a_s \in F$ then we choose denominator that is multiple over all denominators. Therefore we have that $\sum_{s \in S} da_s s = 0$ so $\operatorname{rk}(M) \leq \dim_F F^r = r$.

For the converse inequality, we note that $S = \{e_1, \dots, e_r\}$ is good enough.

For the other claim let T be a basis of M. Let t = |T|. Then T is li implies $t \leq \operatorname{rk}(M) = r$. By the UP of free modules $M \cong R^{(T)} = R^t$. $\operatorname{rk}(M) = t$. \square

21 Nov 14

21.1 Principal Modules

Remark. Recall that for V vector space and $W \leq V$ then $V \cong W \oplus V/W$. If we choose a basis of V/W then we get this. This is not true for all modules since if $M = \mathbb{Z}$, $N = 2\mathbb{Z}$ then $M/N \cong \mathbb{Z}_2$ but $\mathbb{Z} \ncong 2\mathbb{Z} \oplus \mathbb{Z}_2$.

Lemma (Free quotients split). R a ring, M a left R-module $N \leq M$. Suppose M/N is free (as a left R-module). Then $M \cong N \oplus M/N$.

Lemma. R a PID, $I \leq R$ a non-zero ideal. Then I is free of rank 1 (as an R-Module).

Proof. I = (a) for some $a \in R \setminus \{0\}$. $\{a\}$ generates I and is linearly independent.

Prop 21.1. R PID. Let M be a free module of rank r, $N \leq M$. Then N is free of rank $\leq r$.

Proof. Assume $M = R^r$. Induct on r. If r = 1 then done by above. If $r \ge 2$ let $\varphi : R^r \to R$ and is equal to projection to the last element. φ is a morphism of module and is onto. Let $I = \varphi(N) \le R$. We see that

$$\ker \varphi \longrightarrow R^r \stackrel{\varphi}{\longrightarrow} R$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$N \cap \ker \varphi \longrightarrow N \stackrel{\varphi}{\longrightarrow} I$$

I ideal of R implies I is free of rank ≤ 1 . $\ker \varphi = \{(a_1, \ldots, a_r) : a_r = 0\} \cong R^{r-1}$ which implies $\ker \varphi$ is free or rank r-1. By induction $N \cap \ker \varphi$ is free of rank $\leq r-1$. By the lemma we have that $N \cong (N \cap \ker \varphi) \oplus I \cong R^{s+t}$ where $s \leq r-1, t \leq 1$ and we are done.

Remark. V vector space $W \leq V$. Given a basis S of V then it doesn't necessarily contain a basis of W, although there does exist one (extend the basis of W).

Is this true for free R-modules? If $N \leq M$ with M and N free, does there exists a basis containing a basis fo N. No if we set $R = \mathbb{Z}, M = \mathbb{Z}, N = 2\mathbb{Z}$. or $R = \mathbb{Z}, M = \mathbb{Z}^2$.

Theorem 21.1 (Stacked Basis Theorem). Let R be a PID, M a free module of rank $r < \infty$. $N \le M$. We know that N is free of rank $s \le r$. There exists a basis $\{m_1, m_r\}$ of M and a basis $\{n_1, \ldots, n_2\}$ and elements $a_1, \ldots, a_s \in R \setminus \{0\}$ s.t. $n_i = a_i m_i$ and $a_1 \mid a_2 \mid \cdots \mid a_s$ in R.

Lemma. R ring, $N_i \leq M_i$ $i \in I$. Then $\bigoplus_{i \in I} M_i / \bigoplus_{i \in I} N_i \cong \bigoplus_{i \in I} M_i / N_i$.

21.2 Structure Theorems for Finitely Generated Modules over PID

Corrollary (First Structure Theorem). R a PID, M fg R-Module. There exists $r, s \geq 0$ and elements $a_1, \ldots, a_s \in R$ with $a_i \neq 0$ and not units s.t. $M \cong R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_j)$. and $a_1 \mid a_2 \cdots \mid a_j$.

Proof. Let $\{x_1, \ldots, x_k\}$ be a set of generators of M. Let F be the free module of rank k. Let $\{e_1, \ldots, e_k\}$ be a basis of F. Consider $\pi: F \to M$ determined by $\pi(e_i) = x_i$. Let $N = \ker \pi$. Then $M \cong F/N$. Choose a pair of stacked bases for F and N $\{m_1, \ldots, m_k\}$ for F and $\{n_1, \ldots, n_h\}$ of N where $n_i = a_i m_i : a_1 \mid a_2 \cdots \mid a_n$. This implies that $N = Rn_1 \oplus \cdots \oplus n_h$, $F = Rm_1 \oplus \cdots \oplus Rm_h \oplus \ldots Rm_k$. We get that $M \cong F/N \cong Rm_1/Rn_1 \oplus \cdots \oplus Rm_h/Rn_h \oplus \cdots \oplus Rm_k$. We have that

$$\begin{array}{ccc}
R & \stackrel{\cong}{\longrightarrow} & Rm_i \\
\uparrow & & \uparrow \\
(a_i) & \stackrel{\cong}{\longrightarrow} & Rm_i
\end{array}$$

So we have that $Rm_i/Rm_i \cong R/(a_i)$ so $M \cong R/(a_1) \oplus \cdots \oplus R/(a_h) \oplus R \oplus \cdots \oplus R$. Can remove $R/(a_i)$ if a_i is a constant and we are done.

Remark. Given $a \in R$ a PID, $a \neq 0$ and not a unit. Then write $a = p_1^{\alpha_1} \dots p_k^{\alpha_k}$. Let each p_i irreducible and $p_i \not\sim p_j$. Then $\gcd(p_i^{\alpha_i}, \dots) \sim 1$ so $(p_i^{\alpha_i}) + (p_j^{\alpha_j}) = R$. Also (a) is the sum of $(p_i^{\alpha_i})$.

The CRT says there exists an isomorphism of rings. This map is an isomorphism of R-modules $R/(a) \cong R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_k^{\alpha_k})$.

Def. A partition $\lambda = (l_1, \dots, l_k)$ is a weakly decreasing sequence of positive integers: $l_1 \geq l_2 \cdots \geq l_n \geq 1$. Given λ and an irreducible $p \in R$, let $R/p^{\lambda} = R/(p^{\lambda_1}) \oplus \cdots \oplus R/(p^{l_n})$.

Corrollary (Second Structure Theorem). R a PID, M a finitely generated R module. There exists an $r \geq 0$ and irreducible $p_1, \ldots, p_k \in R$ and $\lambda_1, \ldots, \lambda_k$ partitions of various lengths s.t. $M \cong R^r \oplus R/p_1^{\lambda_1} \oplus \cdots \oplus R/p_k^{\lambda_k}$.

Proof. By the previous corollary we have that $M \cong R^r \oplus R/(a_1) \cdots \oplus R/(a_s)$. Writing $a_s \sim p_1^{\alpha_{s1}} \dots p_k^{\alpha_{sk}}$ and similarly for all $i \in [s]$. Examine α_{ij} , and we can have $\alpha_{ij} = \alpha_{ji}$ (square matrix). Since each p_i is irreducible and $\alpha_{si} \geq \cdots \geq \alpha_{1i} \geq 0$ by the divisibility condition on a_i . With λ_i this sequence (removing tailing zeros), we get the desired result. $R/(a_i) \cong R/(p_1^{\alpha_{i1}}) \oplus \cdots \oplus R/(p_k^{\alpha_{ik}})$ and can rearrange.

Remark. Both theorems are existence statements. Uniqueness holds. r is the rank of the module M, and a_i are determined by M. These are the **invariant** factors of M, the irreducibles p_i and partitions λ_i are determined. The $p_i^{\alpha_{ij}}$ are the **elementary divisors**.

21.3 Stacked Basis Theorem

Theorem 21.2 (Stacked Basis Theorem). R a PID and M a free R-module with rank $r < \infty$ and $N \leq M$. There exist bases $\{m_1, \ldots, m_r\}$ of M and $\{n_1, \ldots, n_s\}$ of N (for some $0 \leq s \leq r$) and $a_1, \ldots, a_s \in R \setminus \{0\}$ s.t.

- (i) $n_i = a_i \cdot m_i$ for all $i \in [s]$.
- (ii) $a_1 \mid a_2 \cdots \mid a_s$.

Def. We examine the **dual modules**. Let R be a ring and M be a left R-module. $M^* = \hom_R(M, R)$ be the set of left R-module homomorphisms $\varphi: M \to R$. Then

- (1) M* is a right R-module via $(\varphi \cdot a)(x) = \varphi(x)a$ for $\varphi \in M^*, a \in R, x \in M$
- (2) If R commutative then $(\varphi \cdot a)(x) = \varphi(x)a = a\varphi(x) = \varphi(a \cdot x)$.
- (3) For $x \in M$ with $\varepsilon_x : M^* \to R$ as $\varepsilon_x(\varphi) = \varphi(x)$ then ε_x is a homomorphism of right R-modules.
- (4) M is free of rank r and $\{x_1, \ldots, x_r\}$ is a basis. For each $i \in [r]$ define $\pi_i : M \to R$ by $\pi_i \left(\sum_{j=1}^r a_j \cdot x_j\right) = a_i$. This is well defined as we have a basis. π_i is a homomorphism of left R-modules, so $\pi_i \in M^*$.

Lemma. $\{\pi_1, \ldots, \pi_r\}$ forms a basis of M^* (it is free). This is the dual basis of $\{x_i\}$, and we often write x_i^* .

Proof. Obvious. Define φ as the sum of π_i and it is linearly independent by examining $\varphi(x_i)$.

Proof of Stacked Basis. Skipped.

22 Nov 19

22.1 Field Characteristic

Remark. Take $\varphi : \mathbb{Z} \to F$ with $\varphi(n) = 1 + \cdots + 1$ and negative is just $\varphi(-n) = -\varphi(n)$. ker φ is a prime ideal and im φ is integral domain. Therefore ker $\varphi = \{0\}$ or (p) for some prime, then im $\varphi \cong \mathbb{Z}$ or \mathbb{Z}_p .

Def. Using F and φ as defined, the **characteristic** of F, denoted char F is 0 if im $\varphi \cong \mathbb{Z}$ and p if im $\varphi \cong \mathbb{Z}_p$.

- (i) If char F = p then F contains a subfield isomorphic to \mathbb{F}_p .
- (ii) If charF = 0, then $\varphi : \mathbb{Z} \to F$ is injective. By universal property of fields of fractions, φ extends to \mathbb{Q} with $\varphi : \mathbb{Q} \to F$. The extension is still injective (any morphism from a field to a nontrivial ring is injective). So F contains a subfield isomorphic to \mathbb{Q} .

Every field F contains a copy of either of \mathbb{F}_p or \mathbb{Q} . This is the **prime** subfield of F and is the smallest subfield of F.

22.2 Field Extensions and Degree

Def. A **Field Extension** is a pair of a field K and subfield F. Write $F \leq K$ or $K \mid F$ or F - K.

Remark. If K is a vector space over F it is a F-algebra.

Def. The degree of the extension is $[K:F] = \dim_F K$ (might be ∞).

Remark. A ring extension and the degree are defined similarly.

Prop 22.1. Let $F \leq L \leq K$ be field extensions. Then

- (a) If $[L:F] < \infty$ and $[K:L] < \infty$ then $[K:F] = [K:L][L:F] < \infty$.
- (b) $[K:F] = \infty$ iff $[L:F] = \infty$ or $[K:L] = \infty$.

Proof.

- (a) Let $\{\alpha_1, \ldots, \alpha_n\}$ be an F basis of L and $\{\beta_1, \ldots, \beta m\}$ be an L-basis for K. Then note that $\{\alpha_i\beta_i\}$ is a basis for K over F.
- (b) The forward comes from (a). The backward comes from constructing a basis of K.

Def. Given a ring extension $R \leq S$ and $\alpha \in S$ then $R[\alpha]$ is the smallest subring of S with both R and α . This is true even if these are fields. But $F(\alpha)$ is the smallest subfield of $K \mid F$ that contains F and α . Note that these are not equal, in particular $F \leq F[\alpha] \leq F(\alpha) \leq K$ and $F(\alpha)$ is the Field of Fractions of $F[\alpha]$.

65

Def. K is a simple extension if $K = F(\alpha)$. α is the **primitive element** for the extension $K \mid F$ and K is obtained from F by **adjoining** α .

Given $K \mid F$ and $\alpha \in K$, the universal property of polynomial algebra F[x] yields F-algebra homomorphism $\varphi : F[x] \to K$ s.t. $\varphi(x) = \alpha$. We have $\varphi(a) = a$ for $a \in F$ and $\varphi(f(x)) = f(\alpha)$, so $\operatorname{im} \varphi = F[\alpha]$. Note that $\operatorname{im} \varphi$ is an integral domain (subring of K) so $\ker \varphi$ is a prime ideal in F[x]. Note that $\ker \varphi = \{0\}$ or (p(x)) since F[x] is a PID. Therefore $F[x]/\ker \varphi \cong F[\alpha]$.

If ker $\varphi = \{0\}$ we say that α is **transcendental** over F. Equivalently there is no $g(x) \in F[x]$ s.t. $g \neq 0$ and $g(\alpha) = 0$. We have $F[x] = F(\alpha)$, which extends to $F(\alpha) = F(x)$, which are the **rational functions**.

If ker φ is nonzero, then α is **algebraic** over F. IE there is a nonzero g(x) s.t. $g(\alpha) = 0$. So ker $\varphi = (p(x))$ for some irreducible p (unique up to scaling) and $F[x]/(p(x)) \cong F[\alpha]$. Note that by maximality of $(p(\alpha))$ we have that $F[\alpha]$ is a field and so $F(\alpha) = F[\alpha] = \{f(\alpha : f(x) \in F[x])\}$. The unique **monic** irreducible p(x) with $p(\alpha) = 0$ is the **minimum polynomial** of α over F, $m_{\alpha,F}(x)$ (or in some other contexts $irr(\alpha,F)(x)$). The degree of this is the **degree of** α **over** F, $\deg \alpha$.

Prop 22.2. Given $K \mid F$ let $\alpha \in K$ be algebraic over F. Then $\deg \alpha = [F(\alpha) : F]$.

Proof. Claim that
$$\{1, \overline{x}, \dots, \overline{x^{n-1}}\}$$
 is a basis for $F[x]/(p(x))$.

Corrollary. Let $K \mid F$ and $\alpha \in K$. α is algebraic over F iff $[F(\alpha) : F] < \infty$.

Proof. Forward shown by above. Backward is shown that if transcendental then $F(\alpha) \cong F(x) \geq F[x]$ but this means that $F(\alpha) : F[x] \geq \dim_F F[x] = \infty$.

22.3 Finite, Algebraic, and Finitely Generated Field Extensions

Def. $K \mid F$ is finite if $[K : F] < \infty$. It is **algebraic** if every $\alpha \in K$ is algebraic over F. It is transcendental when it is not algebraic.

Prop 22.3. $K \mid F$ is finite implies that it is algebraic.

Proof. Let $\alpha \in K$ and $F \leq F(\alpha) \leq K$. Then $[F(\alpha) : F] \leq [K : F] \leq \infty$ and as such α is algebraic over F for arbitrary α .

Remark. We note that $F[\alpha_1, \ldots, \alpha_n] = F[\alpha_1, \ldots, \alpha_{n-1}][\alpha_n]$.

Def. If there exists $\alpha_i \in K$ s.t. $K = F(\alpha_1, ..., \alpha_n)$, we say that $K \mid F$ is finitely generated.

23 Nov 21

23.1 More Field Extensions

Prop 23.1. Let $K \mid F, \alpha_1, \ldots, \alpha_n \in K$ s.t. α_i is algebraic over $F(\alpha_1, \ldots, \alpha_{i-1})$. Then $F(\alpha_1, \ldots, \alpha_n) \mid F$ is finite which implies it is algebraic and $F(\alpha_1, \ldots, \alpha_n) = F[\alpha_1, \ldots, \alpha_n]$.

Remark. If α_i algebraic over F for all i, then this is stronger than our prop.

Proof. Induction on n. For n=0 then we are done. Let $n\geq 1$. Let $L=F(\alpha_1,\ldots,\alpha_{n-1})$. By induction hypothesis, $L\mid F$ finite and $L=F[\alpha_1,\ldots,\alpha_{n-1}]$ where $F(\alpha_1,\ldots,\alpha_n)=L(\alpha_n)$ where α_n algebraic over L which implies that $[L(\alpha_n):L]<\infty$ and $L(\alpha_n)=L[\alpha_n]$. Hence $[L(\alpha_n):F]=[L(\alpha_n):L][L:F]<\infty$. Note that $F(\alpha_1,\ldots,\alpha_n)=L(\alpha_n)=L[\alpha_n]=F[\alpha_1,\ldots,\alpha_{n-1}][\alpha_n]$.

Corrollary. $K \mid F$ finite iff $K \mid F$ algebraic and finitely generated.

Proof. (\Leftarrow) is our proposition. (\Rightarrow) is because finite implies algebraic (last time). If F = K then done. Let $\alpha \in K \setminus F$. If $K = F(\alpha)$ then done. If not then there exists a $\beta \in K \setminus F(\alpha)$ s.t. $F \subset F(\alpha) \subset F(\alpha, \beta) \subset \ldots K$. The dimension (as vector spaces of F) at each stage is increasing by at least one and the dimension of K is finite, so this must eventually stop.

Def. Given $K \mid F$, the **algebraic closure** of F in K is $\Omega_K(F) = \{\alpha \in K : \alpha \text{ algebraic over } F\}$. Note that $F \leq \Omega_K(F) \leq K$.

Corrollary. $\Omega_k(F)$ is a subfield of K.

Proof. Let $\alpha, \beta \in K$ that are algebraic over F. We need that $\alpha \pm \beta, \alpha\beta, \alpha/\beta$ if $\beta \neq 0$ are all algebraic over F. All these elements are in $F(\alpha, \beta) \subseteq K$. By the prop, $F(\alpha, \beta) \mid F$ algebraic.

Remark (Variants of UD of F(x)). Let $\varphi : F \to R$ be a ring homomorphism. Let $\alpha \in R$. Then there exists a unique ring homomorphism $\varphi : F[x] \to R$ extending φ and sending $x \to \alpha$.

Our interpretation is that a field homomorphism $\varphi: F \to \tilde{F}$ extends uniquely to a ring homomorphism $\varphi: F[x] \to \tilde{F}[x]$ by

$$F[x] \xrightarrow{\varphi} \tilde{F}[x]$$

$$\uparrow \qquad \qquad \uparrow$$

$$F \xrightarrow{\varphi} \tilde{F}$$

By $\varphi(a_0 + a_1x + \dots + a_nx^n) = \varphi(a_0 + \varphi(a_1)x + \dots \varphi(a_n)x^n$.

23.2 Root Adjunction

Prop 23.2. F a field, $p(x) \in F[x]$ irreducible. Let K = F[x]/(p(x)) and $\alpha = \overline{x} \in K$. Then

- 1. K is a field and $F \hookrightarrow K$ and $p(\alpha) = 0$.
- 2. If K' is another field and $F \hookrightarrow K'$, $\alpha' \in K'$ with $p(\alpha') = 0$, then there exists a unique homomorphism of fields $\varphi : K \to K'$ s.t. $\varphi \mid_F = \mathrm{id}, \varphi(\alpha) = \alpha'$ and $F \hookrightarrow K, K'$ where $K \xrightarrow{\varphi} K'$.

Proof. For 1, p(x) is irreducible and is mapped to a PID so $(p(\alpha))$ is maximal which implies that K is a field. $F \hookrightarrow F[x] \twoheadrightarrow F[x]/(p(x)) = K$ so $F \hookrightarrow K$. $p(\alpha) = p(\overline{x}) = \overline{p(x)} = \overline{0}$.

For 2, given $F \hookrightarrow K'$, extend to $F[x] \to K'$ with $x \to \alpha'$. Note $\varphi(p(x)) = p(\alpha') = 0$. By UPQ, get $\varphi : K \to K'$.

Corrollary. F field, $f(x) \in F[x]$ with $n = \deg(P) \ge 1$. Then there exists a field K and $F \hookrightarrow K$ and $\alpha \in K$ s.t. $f(\alpha) = 0$. Moreover, K can be chosen s.t. $[K:F] \le n$.

Proof. Apply proposition (1) to any irreducible factorization of f(x). Then $[K:F] = \deg(p) \leq \deg(f) = n$.

23.3 Splitting Fields

Def. Let F be a field an $f(x) \in F[x]$. A **splitting field** over F is a field $K \geq F$ and containing elements $\alpha_1, \ldots, \alpha_n$ s.t.

- 1. $f(x) \sim (x \alpha_1) \dots (x \alpha_n)$
- 2. $K = F(\alpha_1, \ldots, \alpha_n)$.

Prop 23.3 (Existence of splitting fields). $f(x) \in F[x]$ where $\deg(f) = n$. There exists a splitting field K of f(x) over F with $[K:F] \leq n!$.

Proof. Use corollary: there exists a field $L \geq F$ and $\alpha_1 \in L$ s.t. $f(\alpha_1) = 0$ with $[L:F] \leq n$. Let $F_1 = F(\alpha_1) \leq L$. In $F_1[x]$ we have $f(x) = (x - \alpha_1)g(x)$ which implies that $\deg(g) = n - 1$. We now induct on g(x). There exists a splitting field K of g(x) over F_1 with $[K:F_1] \leq (n-1)!$ which implies that there exist $\alpha_2, \ldots, \alpha_n \in K$ s.t. $g(x) \sim (x - \alpha_2) \ldots (x - \alpha_n)$ and $K = F_1(\alpha_2, \ldots, \alpha_n)$. Hence $[K:F] = [K:F_1][F_1:F] \leq (n-1)!n = n!$. Note that $f(x) = (x - \alpha_1)g(x) \sim (x - \alpha_1) \ldots (x - \alpha_n)$ and $K = F_1(\alpha_2, \ldots, \alpha_n) = F(\alpha_1, \ldots, \alpha_n)$.

24 Nov 26

24.1 Splitting Fields cont

Lemma. Let $f(x) \in F[x]$ and take K a splitting field of f(x) over F. Let $\alpha \in K$ be a root of f(x) and write $f(x) = (x - \alpha)f_1(x)$ with $f_1(x) \in K[x]$. Let $F_1 = F(\alpha)$. Then K is the splitting field of $f_1(x)$ over F_1 .

Proof. Note $f_1(x) \in F_1[x]$. We have $f(x) \sim (x - \alpha_1) \dots (x - \alpha_n)$ in K[x]. and $K = F(\alpha_1, \dots, \alpha_n)$ assume $\alpha = \alpha_1$ which implies that $f_1(x) \sim (x - \alpha_2) \dots (x - \alpha_n)$ and $K = F_1(\alpha_2, \dots, \alpha_n)$.

Prop 24.1 (Uniqueness of splitting fields). Let $\varphi: F \to \tilde{F}$ be a field isomorphism. let $f(x) \in F[x]$ and $\tilde{f}(x) = \varphi(f(x)) \in \tilde{F}[x]$. Let K be a splitting field of f(x) over F and \tilde{K} be a splitting field of $\tilde{f}(x)$ over \tilde{F} . Then φ can be extended to an isomorphism

$$\begin{array}{c|c} K & \longrightarrow & \tilde{K}K \\ & & & \\ F & \longrightarrow & \tilde{F} \end{array}$$

Note that φ need not be unique.

Proof. Induction on $m = \deg(f(x))$. If n = 0 then $K = F, \tilde{K} = \tilde{F}$ and we are done. Assume $n \geq 1$. Let $\alpha \in K$ be a root of f(x). Let $F_1 = f(\alpha)$, $f_1(x) \in F_1[x]$ as in lemma. So K is a splitting field of $f_1(x)$ over F_1 . Let $p(x) = m_{\alpha}, F(x) \in F[x]$ and $\tilde{p}(x) = \varphi(p(x)) \in \tilde{F}[x]$. We have that $f(\alpha) = 0 \implies p(x) \mid f(x)$ in F[x]. This implies that $\tilde{p}(x) \mid \tilde{f}(x)$ in $\tilde{F}[x]$ so there exists $\tilde{\alpha} \in \tilde{K}$ s.t. $\tilde{p}(\tilde{\alpha}) = 0$. Then $\tilde{p}(x) = m_{\tilde{\alpha},\tilde{F}}(x)$ Let $\tilde{F}_1 = \tilde{F}(\tilde{\alpha})$. We know that $F_1 \cong F[x]/(p(x)) \stackrel{\varphi}{\to} F[x]/(\tilde{p}(x)) \cong \tilde{F}_1$. Let $\varphi_1 : F_1 \to \tilde{F}_1$ be the composite. $\varphi_1(\alpha) = tilde\alpha$. Consider $\tilde{f}_1(x) = \varphi_1(f_1(x)) \in \tilde{F}_1[x]$. We need to show that \tilde{K} is a splitting field of $\tilde{f}_1(x)$ over \tilde{F}_1 . Also follows from lemma because $\tilde{f}(x) = (x - \tilde{\alpha})\tilde{f}_1(x)$ where $f(x) = (x - \alpha)f_1(x)$.

Corrollary. Let F be a field and K and k' splitting fields for the same $f(x) \in F[x]$. Then there exists an isomorphism $\varphi : K \to K'$ s.t. $\varphi \mid_F = id$.

$$\begin{array}{ccc} & K & \xrightarrow{\varphi} & K' \\ Proof. & \uparrow & \uparrow \\ & F & \xrightarrow{\mathrm{id}} & F \end{array}$$

24.2 Separability

Def. $f(x) \in F[x]$ is **separable** if all its roots in some splitting field are distinct.

Lemma. Let $f(x) \in F[x]$ be separable and K some extension of F. Then all roots of f(x) that are in K are distinct.

Proof. Let K be a splitting field of f(x) over K ie $f(x) \sim (x - \alpha_1) \dots (x - \alpha_n)$ in $\tilde{K}[x]$ and $\tilde{K} = K(\alpha_1, \dots, \alpha_n)$. Any root α in K must be one of the α_i 's and $f(x) \sim (x - \alpha_1) \dots (x - \alpha_n)$ in $F(\alpha_1, \dots, \alpha_n)[x]$ implies that $F(\alpha_1, \dots, \alpha_n)$ is a splitting field of f(x) over F which implies the α_i 's are distinct.

Def. Given $f(x) \in F[x]$ its **derivative** defined $f(x) = \sum_{i=0}^{n} a_i x_i \to f'(x) = \sum_{i=1}^{m} i a_i x^{i-1}$.

Remark. The properties hold ie (f+g)' = f'+g', $(f \cdot g)' = f'g+fg'$, $f(g(x))' = f'(g(x)) \cdot g'(x)$.

Remark. If $i \in \mathbb{N}$ and $a \in F$, then $ia = a + a + \cdots + a$. In fact it lies in the prime field of F in the \mathbb{F}_p on \mathbb{Q} . if it is \mathbb{F} then $i1 = 0 \iff p \mid i$.

Prop 24.2. $f(x) \in F[x]$, K a splitting field over F. The following are equivalent

- (i) f(x) is separable.
- (ii) f(x) and f'(x) have no common roots in K
- (iii) $gcd(f(x), f'(x)) \sim 1$ take in F[x].

Corrollary. Let $p(x) \in F[x]$ be irred. Then p(x) is separable iff $p'(x) \neq 0$.

Proof. (\Rightarrow) If p'(x) = 0 then p(x) and p'(x) have common roots (all roots of p(x)) which is a contradiction. (\Leftarrow) suppose p(x) not separable. By three this implies that $d(x) = \gcd(f(x), f'(x)) \not\sim 1$ which implies that $d(x) \mid p(x) \Longrightarrow d(x) \sim p(x)$ and $d(x) \mid p'(x)$ but this implies that $p(x) \mid p'(x)$ which implies that p'(x) = 0, a contradiction.

Corrollary. Suppose that char F = 0. Then Any irreducible polynomial is separable.

Ex. $F = \mathbb{F}_p(y)$ rational functions. Let $f(x) = x^p - y \in F[x]$. Know that f(x) is irreducible in F[x] by Gauss Lemma. This is not separable because $f'(x) = px^{p-1} = 0$.

Let K be a splitting field of f(x) over F and let $\alpha \in K$ be a root of f(x). This implies that $0 = f(\alpha) = \alpha^p - y$ which implies that $\alpha^p = y$ then $f(x) = x^p - \alpha^p = (x - \alpha)^p$.

25 Dec 3

25.1 Finalizing Separability

Def. Given $k \mid F$, $\alpha \in K$ is **separable over** F if it is algebraic and $m_{\alpha,F}(x)$ is separable.

Remark. If char F = 0 or $|F| < \infty$, every algebraic element is separable.

Theorem 25.1 (Primitive Element Theorem). Let $K = F(\alpha_1, ..., \alpha_n)$ with all α_i algebraic over F and $\alpha_2, ..., \alpha_n$ are separable over F. Then there exists $\gamma \in K$ s.t. $K = F(\gamma)$.

Proof. Skipped for time but read it yourself.

25.2 Algebraic Independence

Def. Given $K \mid F$ elements $\alpha_1, \ldots, \alpha_n \in K$ is **algebraically independent** (a. i.) if there doesn't exist an $f(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n] \setminus \{0\}$ s.t. $f(\alpha_1, \ldots, \alpha_n) = 0$.

Let $\varphi : F[x_1, \ldots, x_n] \to K$ be an evaluation at $\alpha_1, \ldots, \alpha_n$. Then $\alpha_1, \ldots, \alpha_n$ are a.a.i. iff φ is injective. So φ extends to $\varphi : F(x_1, \ldots, x_n) \to K$ and this is still injective. In particular, $[K : F] = \infty$.

Prop 25.1. $K \mid F, \alpha_1, \ldots, \alpha_n \in K$. The following are equivalent

- (i) $\alpha_1, \ldots, \alpha_n$ are a.i. over F.
- (ii) Each α_i is transcendental over $F(\alpha_1, \ldots, \widehat{\alpha_i}, \ldots, \alpha_n)$ where $\widehat{\alpha_i}$ is α_i omitted.
- (iii) Each α_i is transcendental over $F(\alpha_1, \ldots, \alpha_{i-1})$.

Proof. $1 \implies 2$ suppose α_i is algebraic over $F(\alpha_1, \ldots, \widehat{\alpha_i}, \ldots, \alpha_n)$ for some i. This implies that there exists a nontrivial polynomial $\sum a_j \alpha_i^j = 0$ on the elt $a_j \in F[\alpha_1, \ldots, \widehat{\alpha_i}, \ldots, \alpha_n]$. But this is a nontrivial polynomial in $\alpha_1, \ldots, \alpha_n$.

 $2 \implies 3 \text{ because } F(\alpha_1, \dots, \alpha_{i-1}) \leq F(\alpha_1, \dots, \widehat{\alpha_i}, \dots, \alpha_n).$

 $3 \implies 1$. We dot it for n = 2. Given α trans over F, β trans over $F(\alpha)$. We want $\{\alpha, \beta\}$ is a.i. over F. Let $f(x, y) \in F[x, y] \setminus \{0\}$. Write $f(x, y) = \sum_{i,j} a_{ij} x^i y^j$ with some $a_{nm} \neq 0$. This implies $f(x, y) = \sum_j (\sum_i a_{ij}) x^i y^j = \sum_j a_j(x) y^j$. $a_m(x) = \sum_i a_{i,m} x^j \neq 0$ because $a_{nm} \neq 0$. α is trans in F implies that $a_m(\alpha) \neq 0$ which implies $f(\alpha, y) = \sum_j \alpha_j(\alpha) y^j \in F(\alpha)[u] \setminus \{0\}$. β trans in $F(\alpha)$ implies that $f(\alpha, \beta) \neq 0$.

Def. $K \mid F$ is purely transcendental if $\exists \alpha_1, \ldots, \alpha_n$ a.i. over F s.t. $K = F(\alpha_1, \ldots, \alpha_n)$. In particular each α_i is trans over F.

Def. Given $K \mid F$, a set of elements $\alpha_1, \ldots, \alpha_n \in K$ is a **finite transcendence basis** for $K \mid F$ if

- 1. $\alpha_1, \ldots, \alpha_n$ are a.i. over F
- 2. $K \mid F(\alpha_1, \ldots, \alpha_n)$ is algebraic.

Prop 25.2. Let $K \mid F$ be a f.g. extension. K = F(S) for some finite set $S \subseteq K$. Then S contains a transcendental basis for $K \mid F$.

Proof. Build $\alpha_1, \ldots, \alpha_d$ by picking elements of S one at a time, so that each step α_i is trans over the preceding ones. Because S is finite this process stops at α_d . This implies that there doesn't exist an element in S trans over $F(\alpha_1, \ldots, \alpha_d)$ which implies that $K = F(S) \mid F(\alpha_1, \ldots, \alpha_d)$ is algebraic.

So α_1 is trans over F, and in particular α_i is trans over $F(\alpha_1, \ldots, \alpha_{i-1})$ for $i \in [d]$. By our previous prop part 3, $\{\alpha_1, \ldots, \alpha_d\}$ is a.i. over F.

Def. Let $K \mid F$ be a finitely generated extension. The **transcendence degree** of $K \mid F$, $tr_F K$ is the site of transcendence basis. Next time we will show that this size is well defined in $tr_F K = 0 \iff K \mid F$ algebraically.

Ex. K = F(x, y, z) rational functions on x, y, z. We claim that $\{x, y, z\}$ is a.i. over F which implies $F[x, y, z] \to K$ is just the inclusion $x, y, z \to x, y, z$. It is a fact that $\{xy, xz, yz\}$ is also a.i. The algebraic dependents among $\{x, y, z, xy, xz, yz, xyz\}$ are described by a simplex where x - xy - y on the sides and xyz is in the middle and is connected to all others. Note that f(r, s, t) = rs - t vanishes on $\{x, y, xy\}$.

Remark. Compare with linear dependence. Let $\{x, y, z\}$ be a basis for a 3-dimensional F-vector space. $\{x, y, z, x+y, x+z, y+z, x+y+z\}$. The linear dependencies are captured by the same diagram but when char F=2 then it forms the Fano Plane. Note that any two are li and when 3 elements are ld we put them in a line.

Ex. $\mathbb{R}[S^1] = \mathbb{R}[x,y]/(x^2+y^2-1)$. We claim that x^2+y^2-1 is irreducible in $\mathbb{R}[x,y] = R[x]$. $x^2+y^2-1 \in R[x] \subset F[x]$ where $R = \mathbb{R}[y]$, $F = \mathbb{R}(y)$. This polynomial is primitive since it is $x^2+(y^2-1)$ as $\gcd(1,y^2-1)=1$. It is irreducible in F[x], since if not there is a root $\alpha \in F$ of x^2+y^2-1 . But by the rational root theorem there is a root $\alpha \in R$. We have that α^2+y^2-1 but if $\alpha = \sum_i a_i y^i$ then $(\sum a_i y^i)^2+y^2-1$ but we have that $a_0^2-1=0$, $a_1^2+1=0$ but this is impossible, so this polynomial is irreducible.

 $\mathbb{R}[s^1]$ is an integral domain. Let $R(s^1)$ be its field of fractions and $\alpha = \overline{x}$, $\beta = \overline{y} \in \mathbb{R}[S^1] \subseteq \mathbb{R}(S^1)$ which implies that $\mathbb{R}[S^1] = \mathbb{R}[\alpha, \beta], \mathbb{R}(S^1) = \mathbb{R}(\alpha, \beta)$. Clearly α is trans over \mathbb{R} . If not there exists an $f(x) \in \mathbb{R}[x] \setminus \{0\}$ s.t. $f(\alpha) = 0$ which implies that $\overline{f(x)} = \overline{0}$ in $\mathbb{R}[xy]/(x^2 + y^2 - 1)$ which implies that $x^2 + y^2 - 1 \mid f(x) \implies f(x) = 0$ (otherwise infinite number of roots).

We see that β is algebraic over $R(\alpha)$ because $\alpha^2 + \beta^2 - 1 = 0$ which implies $\{\alpha\}$ is trans for $\mathbb{R}(S^1) \mid \mathbb{R}$ which implies that $tr_{\mathbb{R}}\mathbb{R}(S^1) = 1$. Note that this has a lot to do with algebraic geometry (it is the dimension of the variety

and is based off of Noether's normalization theorem and that fact that $\mathbb{R}[S^1]$ is an integral domain).

26 Dec 5

27 Dec 10

27.1 Artin-Tate

Remark. Recall that the original formulation of Artin-Tate. If $R \leq S \leq T$ are Noetherian rings and T is finitely generated as an S-module and S is finitely generated as an R-algebra, then T is finitely generated as an R-algebra.

Remark. Let $F \leq K$ be fields. There are 3 types of finite generation for K over F. (1) If K is finitely generates as an F-module iff $\dim_F K < \infty$ iff $K \mid F$ extension is finite. (2) K is finitely generated as an F-algebra with $K = F[\alpha_1, \ldots, \alpha_n]$ for some $\alpha_i \in K$. (3) K is finitely generated as a field extension of F ie $K = F(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_i \in K$. Clearly $(1) \Rightarrow (2) \Rightarrow (3)$. But $(3) \not\Rightarrow (2)$ but $(2) \Rightarrow (1)$.

Lemma. If $d \ge 1$ the field of rational functions $F(x_1, ..., x_d)$ is not finitely generated as an F-algebra.

Proof. Suppose it is: $F(x_1,\ldots,x_d)=F[\alpha_1,\ldots,\alpha_n], \ \alpha_i\in F(x_1,\ldots,x_d)$ wher $e\alpha_i\in F(x_1,\ldots,x_d)$. Write $\alpha_i=f_i/g_i$ with $f_i,g_i\in F[x_1,\ldots,x_d]$. If all g_i are units this implies $\alpha_i\in F[x_1,\ldots,x_d]$ which implies that $F(x_1,\ldots,x_d)=F[x_1,\ldots,x_d]$ which is not a field for $d\geq 1$. At least the g_i is not constant which implies that $1+g_1\ldots g_n$ is not constant. So it has an irreducible factors $p\in F[x_1,\ldots,x_d]$ and as such $\frac{1}{p}\in F(x_1,\ldots,x_d)=F[\alpha_1,\ldots,\alpha_n]$. Cleaning denominators, we have that $\frac{g_1-g_n)^N}{p}\in F[x_1,\ldots,x_d]$ which implies that $p\mid (g_1\ldots g_n)^N$ in $F[x_1,\ldots,x_d]$ which implies that $p\mid g_j$ for some j. But $p\mid 1+\ldots g_1\ldots g_n$ which implies $p\mid 1$, which is a contradiction.

Remark. This is similar to the proof that there are infinite number of primes.

Theorem 27.1 (Zariski). Let $K \mid F$ be a field extension. if K is finitely generated as F-algebra this implies that $\dim_F K < \infty$.

Proof. Recall that $(2) \Rightarrow (3)$. $K \mid F$ is finitely generated as a field extension. We need that $K \mid F$ algebraically (and finitely generated implies finite). Recall that $K \mid F$ has a finite trans basis $\alpha_1, \ldots, \alpha_d$. We need to d = 0.

By hypothesis, $K \mid F$ is a finitely generated as an algebra. K is finitely generated as an $F(\alpha_1, \ldots, \alpha_d)$ -module because $K \mid F(\alpha_1, \ldots, \alpha_d)$ is finitely generated and algebraic. By Artin-Tate: $F(\alpha_1, \ldots, \alpha_d)$ is finitely generated as an F-module, which implies that $F(\alpha_1, \ldots, \alpha_d) \mid F$ is finite, which implies that this is algebraic, so d = 0.

27.2 Some first notions of Algebraic Geometry

Corrollary (Weak Nullstellensatz). Let F be a field, R a nontrivial commutative finitely generated F-algebra. Let M be a maximal ideal of R and K = R/M. Then K is a finite field extension of F.

Proof. Consider $F \hookrightarrow R \twoheadrightarrow R/M = K$ where we map $F \to R$ by $\lambda \to \lambda \cdot 1$.. This is injective since F is a field. R finitely generated as an F-algebra implies that K is finitely generated as an F-algebra. By Zariski, $\dim_F K < \infty$. \square

Def. The maximal spectrum of a commutative ring R is $Spec_M(R) = \{M : M \text{ max ideal of } R\}$. Given F-algebras R, S, let $Alg_F(R, s) = \{\varphi : R \rightarrow S : \varphi \text{ a morphism of } F$ -algebras $\}$.

Corrollary. Let F be an **algebraically closed** field F. Let R be a finitely generated F-algebra. Then $Alg_F(R,F) \to Spec_M(R)$ from $\varphi \to \ker \varphi$ is a bijection.

Proof. We show that for $\varphi : \operatorname{Alg}_F(R, F) \Longrightarrow \varphi |_F = \operatorname{id}_F \Longrightarrow \varphi$ is onto $\Longrightarrow R/\ker \varphi \cong \operatorname{im} \varphi = F$ field which implies $\ker \varphi$ is maximal. So this map is well defined.

This map is injective because because if $\ker \varphi = \ker \psi$ then $a - \varphi(a) \cdot 1 \in \ker \varphi = \ker \psi \implies \psi(a) = \varphi(a)$.

This map is surjective. Take $M \in \operatorname{Spec}_M(R)$. Consider that $\varphi : R \to R/M = K = F$. $K \mid F$ is finite which implies that K = F since F is algebraically closed. φ is an F-algebra homomorphism with $\ker \varphi = M$.

Def. Given $S \subseteq F[x_1, ..., x_n]$. let $\mathcal{Z}(S) = \{a \in F^n : f(a) = 0 \forall f \in S\}$. This is the **zero set/locus** of S.

Let I be an ideal of $F[x_1, ..., x_n]$ and $R = F[x_1, ..., x_n]/I$. Then

Given $a \in F^n$, let $\varphi_a : F[x_1, \dots, x_n] \to F$ be evaluated at $a : \varphi_a(f) = f(a)$. φ_a factors through R iff $\varphi_a(f) = 0 \forall f \in I$ iff $f(a) = 0 \forall f \in I$ iff $a \in \mathcal{Z}(I)$. Conclusion: there is a bijection between $\mathcal{Z}(I) \to Alg_F(R, F)$ by $a \to \varphi_a$.

Corrollary. Let F be algebraically closed. Let I be an ideal in $F[x_1, \ldots, x_n]$, $R = F[x_1, \ldots, x_n]/I$. There is a bijection $\mathcal{Z}(I) \to Spec_M(R)$ by $a \to \ker \varphi_a$.

Def. Given $A \subseteq F^n$, let $\mathcal{I}(A) = \{ f \in F[x_1, ..., x_n] : f(a) = 0 \ \forall a \in A \}$. This is the **vanishing set** of A.

Remark. {subsets of F^n } and {subsets of $F[x_1, ..., x_n]$ } are mapped to ach other by \mathcal{I} and \mathcal{Z} They are partially ordered by inclusion.

Prop 27.1.

- (1) \mathcal{I} and \mathcal{Z} are order-reversing.
- (2) $A \subseteq \mathcal{Z}\mathcal{I}(A)$ for all $A \subseteq F^n$. Similarly $S \subseteq \mathcal{I}\mathcal{Z}(S)$ for all $S \subseteq F[x_1, \ldots, x_n]$. So \mathcal{I}, \mathcal{Z} is a Galois Connection.
- (3) $\mathcal{I}\mathcal{Z}\mathcal{I} = \mathcal{I}$ and $\mathcal{Z}\mathcal{I}\mathcal{Z} = \mathcal{Z}$.
- (4) \mathcal{Z} and \mathcal{I} induce inverse bijections.

Def. A subset $A \subseteq F^n$ is **algebraic** if it is in im \mathbb{Z} .

Def. Let R be a commutative ring, I and ideal. The **radical of** I is $\sqrt{I} = \{a \in R : a^n \in I, \text{ for some } n \in \mathbb{N}\}$. This is also an ideal.

Theorem 27.2 (Strong Nullstellensatz). F algebraically closed and I is an ideal of $F[x_1, \ldots, x_n]$. Then $\mathcal{IZ}(I) = \sqrt{I}$.

Remark. Nullstellensatz translates to theorem of the locus of the zeros.

Corrollary. The image of \mathcal{I} is the set of radical ideals.

Proof. $R = F[x_1, \ldots, x_n]/I$. Given $a \in F^n$

 $f \in \mathcal{I}\mathcal{Z}(I) \iff f(a) = 0, \forall a \in \mathcal{Z}(I) \iff \varphi_a(f) = 0, \forall a \in \mathcal{Z}(I) \iff \overline{f} \in \ker \widehat{\varphi_a} \forall a \in \mathcal{Z}(I) \iff \overline{f} \text{ is in all maximal ideals of } R.$ But this occurs iff \overline{f} is nilpotent (ie there exists $n \in \mathbb{N}$ s.t. $\overline{f}^n = \overline{0}$) iff there exists $n \in \mathbb{N}$ s.t. $f^n \in I$ iff $f \in \sqrt{I}$, as desired.