Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Информационная безопасность

Работа №6

«Криптография на практике: шифрование файлов и сообщений»

Барсуков Максим Андреевич

Группа: Р3415

Выполнение

Симметричное шифрование

Установим VeraCrypt, создадим зашифрованный контейнер (Create Volume \rightarrow Create an encrypted file container \rightarrow Standard VeraCrypt volume), придумаем пароль. Далее смонтируем созданный контейнер, как показано на рисунке 1:

Рисунок 1 — Смонтированный контейнер

В проводник появится новый диск, что видно на рисунке 2:

Рисунок 2 — Новый виртуальный диск

Скопируем туда несколько текстовых файлов и картинку, после чего размонтируем диск, как показано на рисунках 3 и 4:

Рисунок 3 — Добавленные файлы

Рисунок 4 — Размонтированный диск

Асимметричное шифрование

Сгенерируем свою пару ключей с помощью gnupg, как показано на рисунке 5:

```
gpg --full-generate-key
gpg (GnuPG) 2.4.7; Copyright (C) 2024 g10 Code GmbH
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Выберите тип ключа:
Выберите тип ключа:

(1) RSA and RSA

(2) DSA and Elgamal

(3) DSA (sign only)

(4) RSA (sign only)

(9) ECC (sign and encrypt) *default*

(10) ECC (только для подписи)

(14) Existing key from card
Ваш выбор? 1

длина ключей RSA может быть от 1024 до 4
длина ключей RSA может быть от 1024 до 4096.
Какой размер ключа Вам необходим? (3072) 4096
Запрошенный размер ключа – 4096 бит
<n>y = срок действия ключа - п лет
Срок действия ключа? (0) 1н
срок действия ключа. (б) 11
недопустимое значение
Срок действия ключа? (0) 1у
Ключ действителен до Чт 01 окт 2026 01:10:40 MSK
Все верно? (у/N) у
GnuPG должен составить идентификатор пользователя для идентификации ключа.
Ваше полное имя: Max Barsukov
Адрес электронной почты: maximbarsukov@bk.ru
Примечание:
Вы выбрали следующий идентификатор пользователя:
"Max Barsukov <maximbarsukov@bk.ru>"
Сменить (N)Имя, (C)Примечание, (E)Адрес; (О)Принять/(Q)Выход? о
Необходимо получить много случайных чисел. Желательно, чтобы Вы
пеооходимо получить жного случанных чисел, жела телью, чтою вы
в процессе генерации выполняли какие-то другие действия (печать
на клавиатуре, движения мыши, обращения к дискам); это даст генератору
случайных чисел больше возможностей получить достаточное количество энтропии.
Необходимо получить много случайных чисел. Желательно, чтобы Вы
в процессе генерации выполняли какие-то другие действия (печать
в процессе генерации выполняли какие-то другие действия (печатва
на клавиатуре, движения мыши, обращения к дискам); это даст генератору
случайных чисел больше возможностей получить достаточное количество энтропии.
gpg: создан каталог '/home/max/.gnupg/openpgp-revocs.d'
gpg: сертификат отзыва записан в '/home/max/.gnupg/openpgp-revocs.d/5B1FBABAAD
открытый и секретный ключи созданы и подписаны.
               rsa4096 2025-09-30 [SC] [ годен до: 2026-09-30]
5B1FBABAADB1A86677016244D3D2DCE2188DDE3D
pub
             Мах Barsukov <maximbarsukov@bk.ru>
rsa4096 2025-09-30 [Е] [ годен до: 2026-09-30]
```

Рисунок 5 — Сгенерированная пару ключей

Прилагаю вместе с отчетом открытый PGP ключ, как показано на рисунке 6:

```
) gpg --export --armor "maximbarsukov@bk.ru" > public_key.asc
) cat public key.asc
----BEGIN PGP PUBLIC KEY BLOCK----

mQINBGjcVXoBEACdonIewep6+Tue/3b1CR1BnT/iAd7GszxyiE7LBicl63GYFKNB
LpJnky3mszfeQ1s39qZw+piUzVL0iqiqf6guDiSLeGTV9SvQymm3o5lOLwGtVEfT
5fkgofEhTSkhUpM/TpOYHjrmftSDdr2OymESfauKP0dU0UzyiRfbl6/0D002060n
/ScgEuuvQh0pDFH6n2kLMIbIGSKrYi8u/6cZBuscdF/1FULCkNNUPZcY6EgZM+Ox
fIxsRrm7wFqYEd/224Q5xqNe6Dotf8NL/BXs39ZHrXJrq01bdFOS0ETWUg7gtirR
hUZKh5TEfjkaUQ8uDk/K/z9vTMb+F33UZoHreJchMlQrAh23AoPAn3tmKtSp6Nrq
```

Рисунок 6 — Открытый PGP ключ

Далее друг (моя вторая почта) шифрует сообщение с помощью моего публичного ключа, как показано на рисунке 7, и мы получаем от него зашифрованное сообщение, как показано на рисунке 8:

Рисунок 7 — Зашифрованное сообщение от друга мне

Рисунок 8 — Полученное зашифрованное сообщение

Далее расшифровываем полученное сообщение с помощью моего приватного ключа и passphrase, как показано на рисунке 9:

```
) gpg --decrypt <u>secret message friend2me.txt.asc</u>
gpg: encrypted with rsa4096 key, ID 64AB00AACD1FA1B8, created 2025-09-30
"Max Barsukov <maximbarsukov@bk.ru>"
Привет! Это секретное сообщение для тебя.
```

Рисунок 9 — Расшифрованное сообщение

А теперь попробуем подписать ответное сообщение с помощью открытого ключа друга, как показано на рисунках 10 и 11:

```
) echo "3дравствуй! A это мой ответ для тебя." > secret_message_me2friend.txt
) cat secret message me2friend.txt
3дравствуй! A это мой ответ для тебя.
) gpg --encrypt --armor --recipient maxbarsukov@bk.ru secret message me2friend.txt
) cat secret message me2friend.txt.asc
----BEGIN PGP MESSAGE----

hQIMA7b3XkutbPuOAQ/+LhcyQPHc/1j4EwCoysy28SgMoahSzChs5g2CYWJZLIPZ
oSczUx79NUNZy7LR26mByJAPdL3AOA7ZJ1k1fsQKiWzfLroYGa+ZeO+TYSTMHEOF
qOvYXDz7b6QgSPDobSK3qIXgc7GcjT0D217Dd+6/ncURcDcIK3XFZu0/zT5DDK/n
zBDcONIpqeVT8VZQT8OvbSf306BG3cVROw489ia9MK6ZTrXA4wJbykylsQgC23me
BJGpQDKlFwgUY+qPWigek2m0g/2MDFwd7qseNcGVhqFXzB0V5wnKI4MxpyByZofj
5lfuY/2sTu/bkagasMm0ZAofGhOQcYjUNyRDyTHqFYQSiXWaPOUZaIIAACTJINZ
MjmIVrnMu5C+HNemSMEyXhcjp2qg4040Cbi2j5BDaOvMLkB6fFzBndBimenAJ2S/
6F0Xm4/oEcdB1BV2Ws5n8w2dOsdr2xZ1xXz8FlIY0fJ4X8iqXJj1RkSHsmvkv0Vw
prswW2KP20dsd/vgkud6y5tn4JhYL4Tv/lNg0ta2Ut8Z4UFzsTz7z44qdEx4EdRv
CAil/AhpDGMdJ4gkFFudtYh7NgvunX6ZcWLUivdHYyGcIlL5AAIrvXN44TtNh6xf
HLLd8W5TUjeappR3Dcu2nsgMNnHj+BgXS+gthVkE5fmSegGilFhzzPoDFSutMPLU
oQEJAhAzsEBi+if0Y8zM9PkXyaIXXTA5JepJuMuWhp5sdVLUeKT/nLhMAZBq45A4
MKQ7rZx+BeU+juKEeAFOwuAqYlVI5PJoSjzozphX8P08wJxABZxxMsxNAnNMNUmf
alivU917gGR3WDdFPnvpBWDryAO+08T/DQF+zyJeKdyga3pUc29x99lPExjWxeea
lSOWyfXR46+QCHSKQ9+0wqnz
=HQhP
----END PGP MESSAGE----
```

Рисунок 10 — Зашифрованное сообщение от меня другу

Рисунок 11 — Полученное зашифрованное сообщение от меня другу

Далее друг успешно расшифровывает полученное сообщение с помощью своего приватного ключа, как показано на рисунке 12:

```
pgg --decrypt <u>secret message me2friend.txt.asc</u>
gpg: encrypted with rsa4096 key, ID B6F75E4BAD6CFB8E, created 2025-09-30
"Maxim Barsukov <maxbarsukov@bk.ru>"
Здравствуй! А это мой ответ для тебя.
```

Рисунок 12 — Расшифрованное сообщение от меня другу

Таким образом, получилось успешно обменяться открытыми ключами и отправить друг другу зашифрованное текстовое сообщение.

Разница между симметричным и асимметричным шифрованием

Симметричное шифрование использует один и тот же секретный ключ как для шифрования, так и для расшифровки данных. Это означает, что отправитель и получатель должны заранее договориться о ключе и обеспечить его безопасную передачу. Пример алгоритма: AES. Такой подход быстр и эффективен для шифрования больших объёмов данных (например, файлов или дисков), но требует надёжного канала для обмена ключом.

Асимметричное шифрование (или шифрование с открытым ключом) использует пару математически связанных ключей: открытый ключ — публичный, им может пользоваться любой желающий для шифрования сообщения; закрытый ключ — хранится в тайне владельцем и используется только для расшифровки. Благодаря этому отпадает необходимость в предварительном обмене секретной информацией: чтобы отправить зашифрованное сообщение, достаточно знать открытый ключ. Примеры алгоритмов: RSA, ECC. Однако асимметричное шифрование значительно медленнее, поэтому на практике его часто используют только для обмена симметричным ключом (например, в TLS/SSL или PGP).