Example. Suppose that (X,Y) is a bivariate discrete random variable such that the point (1,2) occurs with probability 1/8, (1,3) with probability 3/8, (2,3) with probability 1/4, and (3,1) with probability 1/4. Then (X,Y) assumes as values only one of these for points.

V = 1 V = 2 V = 2 marginal of V

	1 — 1	1 — 2	Y = 3	marginal of A
X = 1	0	1/8	3/8	1/2
X = 2	0	0	1/4	1/4
X = 3	1/4	0	0	1/4
marginal of Y	1/4	1/8	5/8	1

Note that, similarly to the univariate case, (i) all the probabilities must be non-negative and (ii) $\sum_{\mathbf{x} \in \mathbb{R}} P[\mathbf{X} = \mathbf{x}] = 1$ (for both marginal and joint probabilities).