EECS 376: Foundations of Computer Science

Chris Peikert 8 February 2023

Today's Agenda

- * Recap: Barber Paradox, Undecidability of $L_{\mathsf{ACC}}, L_{\mathsf{HALT}}$
- * Turing reducibility and its consequences
- * More undecidable problems for Turing Machines
- * Undecidable problems that don't (seem to) relate to TMs

(Computational) Barber Paradox

- * Sign: "Barber B is the best barber in town! B cuts the hair of all those—and only those—who do not cut their own hair."
- * Let's consider a computational analogy, where:
 - * barber, people ⇒ program(s)
 - * hair \Rightarrow source code
 - * $\underline{\text{cut}} \Rightarrow \underline{\text{accept}}$
- * Result: "Program B accepts the source code of all programs—and only those programs—that do not accept their own source code."
- * Reminder: The *language of a program* is the set of inputs it <u>accepts</u>.

Thus,
$$L(B) = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle \}$$

Computational Barber Paradox

- * Result: " $\underline{Program} \ B \ \underline{accepts} \ the \ \underline{source \ code} \ of \ all \ \underline{programs} and \ only \ those \ \underline{programs} that \ do \ not \ \underline{accept} \ their \ own \ \underline{source \ code}.$ "
- * Question: Does program B accept its own source code?
- * Answer: Suppose P is a program.
- 1. P accepts its own code $\Longrightarrow B$ does not accept P's code.
- 2. P does not accept its own code $\Longrightarrow B$ accepts P's code.
- * Question: What if P = B?
- 1. B accepts its own code $\Longrightarrow B$ does not accept B's code.
- 2. B does not accept its own code $\Longrightarrow B$ accepts B's code.

Contradiction! B doesn't exist; no machine decides L_{BARBER}

L_{ACC} : A "Useful" Language

Could we have a program that, given a Turing Machine M and string x, determines whether M accepts x?

I.e., is this language decidable?

$$L_{ACC} = \{ \langle M, x \rangle : M \text{ accepts } x \}$$

- st Any decider C for $L_{
 m ACC}$ must behave as follows:
 - * M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$
 - * M does not accept $x \Longrightarrow C$ rejects $(\langle M \rangle, x)$

We showed: if such a C exists, we can use it to decide L_B .

Contradiction!: L_B is undecidable. So L_{ACC} is undecidable too.

$L_{ m ACC}$ is Undecidable

We need to implement:

B takes one input: $\langle M \rangle$ M does not accept $\langle M \rangle \Longrightarrow B$ accepts $\langle M \rangle$ M accepts $\langle M \rangle \Longrightarrow B$ rejects $\langle M \rangle$

We have:

C takes two inputs: $\langle M \rangle$ and x. M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$

M doesn't accept $x \Longrightarrow C$ rejects $(\langle M \rangle, x)$

* Proof: Assume (for contradiction) that a decider C exists for $L_{\rm ACC} = \big\{ \big(\langle M \rangle, x \big) : M \text{ accepts } x \big\}.$

We will use C to construct a decider B for

 $L_{\text{BARBER}} = \{ \langle M \rangle : M \text{ does not accept } \langle M \rangle \}$:

Halting Problem

Halting Problem: Given a TM M and string x as input, decide if M halts on x.

We showed: if $L_{\rm HALT}$ is decidable, then we can build a decider for $L_{\rm ACC}$. Contradiction!

(As we shall see, $L_{\rm ACC}$ and $L_{\rm HALT}$ are very useful for showing undecidability of even more problems.)

To prove that language L is undecidable: use a hypothetical decider for L to design a decider for $L_{\rm ACC}$ (say).

Requires some insight, but a few tricks go a long way...

$\overline{L_{ m HALT}}$ is Undecidable

We need to implement:

C is given two inputs: $\langle M \rangle$ and x M accepts $x \Longrightarrow C$ accepts $(\langle M \rangle, x)$ M does not accept $x \Longrightarrow C$ rejects $(\langle M \rangle, x)$

We have:

H takes two inputs: $\langle M \rangle$ and x M accepts/rejects $x \Longrightarrow H$ accepts $(\langle M \rangle, x)$ M loops on $x \Longrightarrow H$ rejects $(\langle M \rangle, x)$

- * Claim: $L_{\text{HALT}} = \left\{ \left(\langle M \rangle, x \right) : M \text{ halts on } x \right\}$ is undecidable.
- * Proof: Assume (for contradiction) that some H decides $L_{\rm HALT}$. We construct a decider C for $L_{\rm ACC} = \big\{ \big(\langle M \rangle, x \big) : M \text{ accepts } x \big\} \text{:}$

Reducibility

- * **Definition:** Language A is *Turing reducible* to language B, written $A \leq_T B$, if there exists a TM that decides A given a <u>membership oracle</u> for B (a "black box").
 - * The oracle correctly answers any query "is $x \in B$?"
- st Intuition: B is " $\underline{no\ easier}$ " to solve than A is.
- * Previous results rephrased: $L_{\text{BARBER}} \leq_T L_{\text{ACC}} \leq_T L_{\text{HALT}}$.

(The order can be confusing at first, and it is easy to make mistakes. To prove $L_{\rm HALT}$ undecidable, we show: decider for $L_{\rm HALT} \Rightarrow$ decider for $L_{\rm ACC}$. I.e., we "reduce" the task of deciding $L_{\rm ACC}$ to that of deciding $L_{\rm HALT}$.)

Consequences of Reducibility

- * Theorem: If $A \leq_T B$ and B is decidable, then A is decidable.
- * Proof: implement the oracle ("black box") using a decider for B. This yields an ordinary TM that decides A.
- * Corollary: If $A \leq_T B$ and A is undecidable, then B is undecidable.
- * Strategy: Pick an undecidable language A and show that $A \leq_T B$.

More Undecidable Problems

- * Q: Is $L_{\varepsilon\text{-HALT}} = \{\langle M \rangle : M \text{ halts on input } \varepsilon\}$ decidable?
- * It looks "easier" than L_{HALT} , since it asks about just a *single* input ε rather than an arbitrary input x.

 Indeed, $L_{\varepsilon\text{-HALT}} \leq_T L_{\text{HALT}}$. (Why?)
- * Caution: That reduction doesn't answer the above question, because it goes in the 'wrong direction'!
- * To prove that $L_{\varepsilon\text{-HALT}}$ is undecidable, we can instead show that $L_{\text{HALT}} \leq_T L_{\varepsilon\text{-HALT}}$.

We need to implement:

H takes two inputs: $\langle M \rangle$ and x M halts on $x \Longrightarrow H$ accepts $\langle M \rangle, x$ M loops on $x \Longrightarrow H$ rejects $\langle M \rangle, x$

We have:

E takes **one** input: $\langle M
angle$ M halts on $arepsilon \Longrightarrow E$ accepts $\langle M
angle$

M loops on $\varepsilon \Longrightarrow E$ rejects $\langle M \rangle$

- * Task: Let E be a membership oracle for $L_{\varepsilon\text{-HALT}}$. We need to construct a decider H for L_{HALT} .
- * E only tells us whether a queried program halts on ε . What program should we ask it about, to determine whether M halts on the given x?
- * New Idea: Pass a <u>different program</u> to E than M itself! Have H construct a program M' whose behavior on ε matches the behavior of M on x.

We need to implement:

H takes two inputs: $\langle M \rangle$ and x M halts on $x \Longrightarrow H$ accepts $\langle M \rangle, x$ M loops on $x \Longrightarrow H$ rejects $\langle M \rangle, x$

We have:

E takes **one** input: $\langle M \rangle$ M halts on $\varepsilon \Longrightarrow E$ accepts $\langle M \rangle$ M loops on $\varepsilon \Longrightarrow E$ rejects $\langle M \rangle$

- * Have H construct a program M' whose behavior on ε matches the behavior of M on x.
- * Program M': ignore input, run M on x and answer as M does.

Key Point: H constructs M' "live". So H can hard-code its given M,x into M'.

Q: What is the language of M'?

We need to implement:

H takes two inputs: $\langle M \rangle$ and x M halts on $x \Longrightarrow H$ accepts $\langle M \rangle, x$ M loops on $x \Longrightarrow H$ rejects $\langle M \rangle, x$

We have:

E takes one input: $\langle M \rangle$

M halts on $\varepsilon \Longrightarrow E$ accepts $\langle M \rangle$

M loops on $\varepsilon \Longrightarrow E$ rejects $\langle M \rangle$

* Have H construct a program M' whose behavior on ε matches the behavior of M on x.

* Note: H doesn't run M' — it just constructs and passes it to E.

Trick: Create new program M' using M,x. Ask E about M'.

We need to implement:

H takes two inputs: $\langle M \rangle$ and x M halts on $x \Longrightarrow H$ accepts $\langle M \rangle, x$ M loops on $x \Longrightarrow H$ rejects $\langle M \rangle, x$

We have:

E takes **one** input: $\langle M \rangle$ M halts on $\varepsilon \Longrightarrow E$ accepts $\langle M \rangle$ M loops on $\varepsilon \Longrightarrow E$ rejects $\langle M \rangle$

- * Proof: Let E be a membership oracle for $L_{arepsilon ext{-HALT}}.$ We construct a decider H for $L_{ ext{HALT}}:$
- * $H(\langle M \rangle, x)$:
 - 1. Construct a program "M'(w): run M on x and answer as M does" (hard-code M,x)
 - 2. Run E on $\langle M' \rangle$ and answer as E does (accept if E accepts, else reject)
- * Analysis: H halts on any input (it can construct M', and E halts on $\langle M' \rangle$). Moreover:
 - * M halts on $x \iff M'$ halts on $\varepsilon \iff E$ accepts $\langle M' \rangle \iff H$ accepts $(\langle M \rangle, x)$
- * Conclusion: H is a decider for $L_{\rm HALT}$, so $L_{\rm HALT} \leq_T L_{\varepsilon {\rm HALT}}$. Since $L_{\rm HALT}$ is undecidable, so is $L_{\varepsilon {\rm HALT}}$

Post Mortem

- \ast H constructs a program M' that either:
 - 1. halts on *every* input (including ε), or
 - 2. loops on *every* input (including ε), depending on whether M halts on x.

Then it asks the $L_{e ext{-HALT}}$ membership oracle which of these is the case.

Observe: There is nothing special about the empty string ε here!

Exercise: Show that this language is undecidable:

$$L_{376-HALT} = \{\langle M \rangle : M \text{ halts on input string "376"} \}$$

Autograder (Equal Langs Problem)

We need to implement:

C takes two inputs: $\langle M \rangle$ and x M accepts $x \Longrightarrow C$ accepts $\langle M \rangle, x$ M does not accept $x \Longrightarrow C$ rejects $\langle M \rangle, x$

We have:

Q takes two inputs: $\langle M_1, M_2 \rangle$

 $L(M_1) = L(M_2) \Longrightarrow Q \text{ accepts } \langle M_1, M_2 \rangle$

 $L(M_1) \neq L(M_2) \Longrightarrow Q \text{ rejects } \langle M_1, M_2 \rangle$

- * Claim: $L_{\text{EQ}} = \{\langle M_1, M_2 \rangle : L(M_1) = L(M_2) \}$ is undecidable.
- * Proof: We show $L_{\rm ACC} \leq_T L_{\rm EQ}$. Let Q be a membership oracle for $L_{\rm EQ}$.

We construct a decider ${\it C}$ for ${\it L}_{\rm ACC}$.

- * Idea: C fixes M_2 to accept every string, so $L(M_2) = \Sigma^*$.
- * Then C constructs M_1 where:
 - * M accepts $x \Rightarrow L(M_1) = \Sigma^*$
 - * M does not accept $x \Rightarrow L(M_1) \neq \Sigma^*$
- * " $M_1(w)$: ignore input, run M(x) and answer as M does."

Conclusion:

There is no universal autograder!

Do All Undecidable Problems Involve Turing Machines?

No!

Many other "natural" problems are undecidable, despite not seeming to be "about" computation.

Post's Correspondence Problem

* Input: finite set of "dominoes" with strings written on each half.

* E.g.:

Problem: Is there a sequence of these dominoes (repetitions allowed) for which top string = bottom string?

* Match: = abccabcc

a ab bcc

a cabc bcc c

Post's Correspondence Problem

Theorem (Post 1946): This problem is undecidable:

There is no general algorithm to determine if a match is possible!

Key proof ideas:

- Reduction $L_{\mathsf{ACC}} \leq_T L_{\mathsf{PCP}}$: given $\langle M \rangle$ and x, design "dominoes" so that a "match" is equivalent to the "history" of an accepting run of M(x).
- Dominoes correspond to initial tape contents, effects of M's transition rules, and ending in the accept state.
- They only "fit together" in a way that mirrors the execution of M(x).
- Membership oracle for L_{PCP} reveals whether M(x) accepts!

Mortal Matrix Problem

Given two 15-by-15 matrices A and B:

Is it possible to multiply A and B together (in any order, with repetitions allowed) to get an all-0s matrix?

Theorem (Cassaigne, Halava, Harju, Nicolas 2014): The problem is undecidable!

Richardson Problem

Input: A set S of rational numbers.

You can build an expression E from the numbers in S, the numbers π and $\ln(2)$, the variable x, and operations +, -, ·, •, sin, exp, abs.

Question: Can you make an E such that E(x) = 0 for all x?

Theorem (Richardson, 1968): This problem is undecidable!

Many More...

Hilbert's 10th problem: given a polynomial in finitely many variables with integer coefficients, does it have an integral solution? Undecidable!

Wikipedia list of many more: https://en.wikipedia.org/wiki/List_of_undecidable_problems

Tiling the Plane

- * S is a finite set of shapes.
- * There is an infinite supply of each shape.
- Question: Can we "tile the plane" using these shapes?
 (No overlaps or gaps allowed.)

Tiling the Plane

- * S is a finite set of shapes.
- * There is an infinite supply of each shape.
- * Question: Can we "tile the plane" using these shapes? (No overlaps or gaps allowed.)
- * Formally: $L_{\text{TILE}} = \{\langle T \rangle : T \text{ is a set of shapes that tiles the plane}\}$

Example

Example

*
$$T = \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$$

- * Question: Is it possible for a computer to determine if a given set T tiles the plane?
- st Formally: Is $L_{
 m TILE}$ decidable?
- * Answer: No!
- * Idea: Tiling can simulate a TM: we can use an $L_{\rm TILE}$ oracle to solve the Halting Problem.

Wang Tilings [Hao Wang 1966]

Consider the positive quadrant of a plane

- Two squares can be adjacent only if their colors match
- Squares cannot be rotated or flipped
- The boundary of the quadrant is colored white

All tiles are square, each side has a "color"

Surprisingly, undecidable even when no choice is involved; (exactly one valid choice for tile at each step)

Tiling the Plane is Undecidable

- * General Idea: Given a TM M, construct a set of tiles T s.t. T can tile the plane $\iff M$ does <u>not</u> halt on empty string:
 - * Each row can be tiled in exactly one way, given the previous row.
 - * The i^{th} row encodes the tape of the TM after i steps.
 - * If the TM does not halt, the quadrant has a unique tiling.
 - * If the TM does halt, the quadrant cannot be tiled.
- * Formally: $L_{\varepsilon\text{-HALT}} \leq_T L_{\text{TILE}}$
- st Conclusion: $L_{
 m TILE}$ is undecidable

Converting a TM to a Set of Tiles

- * Consider the following TM: (with no accept or reject states)
- * Make one tile for each symbol in Γ :

Make two tiles for each transition:

Transitions for the TM above

* Make two special tiles for the start state and \perp symbol:

Only one tile is white on both corner edges

a	b		Г
a	6		۱,

]	b	(q_0,\perp)
l	$ q_0 $	q_0
l	(a_1,\perp)	

$$\left[egin{array}{c|c} a & (q_I,\!\!\perp) \ q_I & q_I \end{array}
ight]$$

Only one way to tile the first row

a	b		
a	<i>h</i>		

b	(q_0,\perp)
q_0	$ q_0 $
(q_1,\perp)	

$$egin{array}{c|c} a & (q_I,\!\!\perp) \ q_I & q_I \ \end{array} \ (q_0,\!\!\perp) & \perp \end{array}$$

Only one tile with bottom color $\left(q_0,\perp\right)$ Only one tile with right color q_1 , bottom color \perp

a	b		b	(q_0,\perp)
			q_0	$ q_0 $
$\mid a \mid$	$\mid b \mid$		$(a_{i,\perp})$	

a	(q_{l},\perp)	q
q_1	$ q_1 $	
(a_0,\perp)		

Only one tile with south color $\left(q_{1},\perp\right)$ Only one tile with right color q_{0} , bottom color \perp

The Turing Machine's Tape:

a	b		b
a	$\begin{vmatrix} b \end{vmatrix}$	_	$ a_{l} $

b	(q_0,\perp)
$oldsymbol{q}_{\scriptscriptstyle 0}$	$ q_0 $
(a_{i},\downarrow)	

$$egin{array}{c|c} a & (q_I,\!\perp) \ q_I & q_I \ \end{array} \ (q_0,\!\perp) & \perp \end{array}$$

Etc ...

The Turing Machine's Tape:

a	b	\Box	b	(q_0,\perp)	
			q_0	$ q_0 $	
a	$oxedsymbol{b}$		(q_1,\perp)		(9

a	(q_{l},\perp)	(q_0,\perp)		Τ	
q_1	q_I	*	*		*
(q_0,\perp)					

