```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.datasets import load iris, load diabetes
import pandas as pd
from sklearn.model selection import train test split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import seaborn as sns
import matplotlib.pyplot as plt
from google.colab import files
uploaded = files.upload()
     Choose Files income.csv

    income.csv(text/csv) - 1111971 bytes, last modified: 5/5/2025 - 100% done

     Saving income.csv to income.csv
df = pd.read csv('income.csv')
df
```

_	_
_	_
7	~

	age	fnlwgt	education_num	capital_gain	capital_loss	hours_per_week	income_le	
0	39	77516	13	2174	0	40		
1	50	83311	13	0	0	13		
2	38	215646	9	0	0	40		
3	53	234721	7	0	0	40		
4	28	338409	13	0	0	40		
48837	39	215419	13	0	0	36		
48838	64	321403	9	0	0	40		
48839	38	374983	13	0	0	50		
48840	44	83891	13	5455	0	40		
48841	35	182148	13	0	0	60		
48842 rows × 7 columns								

New interactive sheet Next steps: Generate code with df View recommended plots X = df.drop("income_level", axis=1) y = df["income level"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model_10 = AdaBoostClassifier(n_estimators=10, random_state=42) model_10.fit(X_train, y_train) y_pred_10 = model_10.predict(X_test) score_10 = accuracy_score(y_test, y_pred_10) print(f"Accuracy with 10 estimators: {score_10:.4f}") → Accuracy with 10 estimators: 0.8182 estimator_range = range(10, 101, 10) scores = [] for n in estimator_range: model = AdaBoostClassifier(n_estimators=n, random_state=42) model.fit(X_train, y_train) y_pred = model.predict(X_test) acc = accuracy_score(y_test, y_pred) scores.append(acc)

print(f"n_estimators={n}, Accuracy={acc:.4f}")

```
→ n_estimators=10, Accuracy=0.8182
    n_estimators=20, Accuracy=0.8244
    n_estimators=30, Accuracy=0.8310
    n_estimators=40, Accuracy=0.8314
    n_estimators=50, Accuracy=0.8327
    n estimators=60, Accuracy=0.8328
    n_estimators=70, Accuracy=0.8334
    n_estimators=80, Accuracy=0.8335
    n estimators=90, Accuracy=0.8329
    n_estimators=100, Accuracy=0.8328
```

```
plt.figure(figsize=(10,6))
plt.plot(estimator range, scores, marker='o')
plt.title("AdaBoost Accuracy vs Number of Estimators")
plt.xlabel("Number of Estimators")
plt.ylabel("Accuracy")
plt.grid(True)
plt.show()
```



```
best_n = estimator_range[scores.index(max(scores))]
best_score = max(scores)
```

print(f"\nBest Accuracy: {best_score:.4f} with n_estimators={best_n}")

Best Accuracy: 0.8335 with n_estimators=80

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
best_model = AdaBoostClassifier(n_estimators=80, random_state=42)
best_model.fit(X_train, y_train)
y_best_pred = best_model.predict(X_test)
cm = confusion_matrix(y_test, y_best_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
plt.title("Confusion Matrix (n_estimators = 80)")
plt.show()

