Some Functors and Adjunctions involving Complexes and Bicomplexes

Definition/Notation 1. For an abelian category \mathcal{A} , by a *complex* over \mathcal{A} , we mean unbounded cochain complexes of objects in \mathcal{A} . We let $\mathsf{Comp}(\mathcal{A})$ denote the abelian category of complexes over \mathcal{A} . Similarly, by a *bicomplex* over \mathcal{A} , we mean an unbounded cochain complex over $\mathsf{Comp}(\mathcal{A})$. Equivalently and more conveniently, a bicomplex over \mathcal{A} essentially consists of

- Objects $A^{i,j}$ in \mathcal{A} for all $i, j \in \mathcal{A}$
- Morphisms $d^{i,j}_{+A}:A^{i,j}\to A^{i,j+1}$ in $\mathcal A$ for all $i,j\in\mathbb Z$
- Morphisms $d^{i,j}_{\rightarrow A}: A^{i,j} \rightarrow A^{i+1,j}$ in $\mathcal A$ for all $i,j \in \mathbb Z$

such that

- $d_{\uparrow,A}^{i,j+1} \circ d_{\uparrow,A}^{i,j} = 0$ for all $i,j \in \mathbb{Z}$
- $d_{\rightarrow A}^{i,j+1} \circ d_{\rightarrow A}^{i,j} = 0$ for all $i, j \in \mathbb{Z}$
- $d_{\uparrow,A}^{i+1,j} \circ d_{\rightarrow,A}^{i,j} = d_{\rightarrow,A}^{i,j+1} \circ d_{\uparrow,A}^{i,j}$ for all $i, j \in \mathbb{Z}$.

We denote the category of bicomplexes over \mathcal{A} by $\mathsf{Bicomp}(\mathcal{A})$.

Remark 2. We will use the notation introduced in Definition/Notation 1 to describe bicomplexes, often without explicit mention. For instance, we simply write "X is a bicomplex over \mathcal{A} " to indicate the data of objects $X^{i,j}$ and morphisms $d^{i,j}_{\to,X}, d^{i,j}_{\uparrow,X}$ satisfying the appropriate conditions as in Definition/Notation 1. Furthermore, if the underlying complex and indices are either clear from the context or irrelevant, we abuse notation and write d_{\to} (resp. d_{\to}) instead of $d^{i,j}_{\to,X}$ (resp. $d^{i,j}_{\to,X}$). Analogously, when we say "Y is a complex", we take for granted the data of objects Y^i in \mathcal{A} and morphisms $d^i_Y: Y^i \to Y^{i+1}$ for all $i \in \mathbb{Z}$, such that $d^{i+1}_Y \circ d^i_Y = 0$ for all $i \in \mathbb{Z}$. Again, we shorten d^i_Y to d_Y or just d if it causes no confusion.

Convention 3. Throughout, we will reserve the symbol \mathcal{A} for an arbitrary abelian category that has all countable products and coproducts. Unless otherwise mentioned, complexes and bicomplexes are assumed to be over \mathcal{A} .

Definition 4. Define a functor $\mathcal{D}: \mathsf{Comp}(\mathcal{A}) \to \mathsf{Bicomp}(\mathcal{A})$ in the following manner

• For $A \in \mathsf{Comp}(A)$, $\mathcal{D}(A)$ is the bicomplex given by

$$\begin{split} & - \ \mathcal{D}(A)^{i,j} = A^{i+j} \ \text{for all} \ i,j \in \mathbb{Z} \\ & - \ d^{i,j}_{\rightarrow,\mathcal{D}(A)} = d^{i,j}_{\uparrow,\mathcal{D}(A)} = d^{i+j}_A \ \text{for all} \ i,j \in \mathbb{Z}. \end{split}$$

• If $f:A\to B$ is a morphism in $\mathsf{Comp}(\mathcal{A})$, then $\mathcal{D}(f)$ is the morphism of bicomplexes induced by the maps $\mathcal{D}(A)^{i,j}=A^{i+j}\xrightarrow{f^{i+j}}B^{i+j}=\mathcal{D}(B)^{i,j}$

Definition 5. Suppose that \mathcal{A} admits all countable coproducts. Then, we may define a functor $\mathcal{L}:\mathsf{Bicomp}(\mathcal{A})\to\mathsf{Comp}(\mathcal{A})$ in the following manner.