AMENDMENT TO THE CLAIMS

The following listing of claims will replace all previous listings:

Listing of Claims

- 1. (Canceled)
- 2. (Currently Amended) The method of claim 1, A method for detecting an abused sensor adapted for determining a concentration of a medically significant component of a biological fluid, comprising the steps of:
 - a) applying a signal having an AC component to the sensor;
 - b) measuring an AC response to the signal; and
 - c) using the AC response to determine if the sensor is abused, wherein steps (a), (b) and (c) are performed before application of the biological fluid to the sensor.
- 3. (Currently amended) The method of claim 42, wherein the AC response comprises an admittance.
- 4. (Currently amended) The method of claim $\frac{12}{2}$, wherein the signal is an AC signal.
- 5. (Currently amended) The method of claim 42, wherein the AC response comprises phase angle information.
- 6. (Currently amended) The method of claim <u>42</u>, wherein the AC component of the signal has a frequency not less than 1 Hz and not greater than 20kHz.

- 7. (Currently amended) The method of claim 42, wherein the biological fluid is blood.
- 8-17. (Canceled)
- 18. (Currently amended) The method of claim 8, A method for detecting an abused sensor for determining a concentration of a medically significant component of a biological fluid placed upon the sensor, comprising the steps of:
 - a) placing the biological fluid sample upon the sensor;
 - b) applying a first signal to the biological fluid;
 - c) <u>measuring a current response to the first signal;</u>
 - d) repeating step (c) at least once;
 - e) <u>calculating a normalized Cottrell Failsafe Ratio using the current response data;</u>
 - f) applying a second signal having an AC component to the biological fluid;
 - g) measuring an AC response to the second signal; and
 - h) combining the normalized Cottrell Failsafe Ratio and the AC response to produce an indication of whether the sensor has been abused, wherein step (h) comprises calculating a FAILSAFE number as follows:

FAILSAFE = 1000 x arctan[NCFR/($fs_0 + fs_1(\Phi_1 - \Phi_2)$)]

where 1000 = scaling factor

NCFR = normalized Cottrell Failsafe Ratio

 $fs_0 = constant$

 $fs_1 = constant$

 Φ_1 = phase angle at a first frequency

 Φ_2 = phase angle at a second frequency;

wherein a value of FAILSAFE below zero indicates an abused sensor and a value of FAILSAFE above zero indicates a non-abused sensor.

- 19. (Canceled)
- 20. (Currently amended) The method of claim 19, A method of determining a failure condition indicating an abused sensor in a blood glucose concentration test, comprising the steps of:
 - a) applying a first test signal having an AC component to a test sample;
 - b) measuring a first phase angle response to the first test signal;
 - c) applying a second test signal having an AC component to the test sample;
 - d) measuring a second phase angle response to the second test signal; and
 - e) determining a failure condition value based upon the first phase angle response
 the second phase angle response and a predetermined Cottrell Failsafe Ratio,
 wherein step (e) is performed based at least in part upon evaluating:

arctan [CFR / (fs
$$_0$$
 + fs $_1$ (Φ_A – Φ_B)]

where

CFR = Cottrell Failsafe Ratio

 $fs_0 = a \ constant$

 $fs_1 = a constant$

 Φ_A = first phase angle response

 Φ_B = second phase angle response.

21. (Canceled)