Teoría de la Computación y Lenguajes Formales

Propiedades de los Lenguajes Libres de Contexto (LLC)

Prof. Hilda Y. Contreras

Departamento de Computación

hyelitza@ula.ve

Lenguaje Regular y Lenguaje Libre de Contexto

Jerarquía de Chomsky (Tipo 3 y Tipo 2)

Tipo	Lenguaje	Máquina	Gramática
0	Recursivamente enumerable	Máquina de Turing	Sin restricciones
1	Dependiente del Contexto	Autómata linealmente acotado	Gramática dependiente del contexto αΑβ → αγβ
2	Independiente del Contexto	Autómata de Pila	Gramática libre de contexto A → γ
3	Lenguaje Regular	Autómata finito	Gramática Regular A → aB A → a

Contenido

- Lema del Bombeo para los LLC
- Propiedades cerradas de los LLC
- Algoritmos de decisión de los LLC

Antecedentes para LLC:

- Forma Normal de Chomsky (1959)
- Debido a Bar-Hillel, Perles & Shamir (1961)
- El lema de bombeo para los LRs es una simplificación del lema de bombeo para LLC

Demostrar que un Lenguaje L NO es LLC

Importancia: identificar el tipo de lenguaje para poder usar las herramientas adecuadas para procesarlo.

Para demostrar que un Lenguaje L si es LLC → Obtener un AP o una GLC

- Sea L un lenguaje libre de contexto sobre Σ. Existe un número natural **m** (dependiente del lenguaje L) tal que para todo w en L si |w| ≥ **m**, existen **u**,**v**,**x**,**y**,**z** en Σ* tales que w = **uvxyz** y donde:
 - 1. |**vxy**| ≤ **m**
 - 2. |**vy**| ≥ 1
 - 3. Para todo i ≥ 0, **uv**ixyiz en L
- Condición **necesaria** para que un lenguaje sea libre de contexto: todos LLC tiene esta propiedad.

Si una cadena de L es suficientemente larga, siempre hay 2 subcadenas cortas (v, y) lo suficientemente cerca que pueden ser bombeadas el mismo número de veces.

$$S \rightarrow uAz$$

 $A \rightarrow vAy \mid x$

```
S => uAz => uvAyz => uvxyz en L

S => uAz => uvAyz => uvvAyyz => uvvAyyz => ... => uv^iAy^iz => uv^ixy^iz en L para i \ge 0
```

Método de uso:

- Tomar m como el valor de la constante del lema de bombeo
- 2. Escoger una palabra w en L, tal que |w| ≥ m
- 3. Considerar todas las posibles factorizaciones de w (uvxyz según #2 y #1 del lema)
- Mostrar que, para todas las factorizaciones posibles, puede encontrarse un valor de i tal que uvixyiz no esta L (contradicción #3)

- Por ejemplo: L = { $a^ib^ic^i | i \ge 0$ }
- Escoger una palabra w tal que |w| ≥ m
 w = a^mb^mc^m
- 2. Considerar todas las posibles factorizaciones de **w**
- Mostrar que, para todas las factorizaciones posibles, puede encontrarse un valor de i tal que uvixyiz no esta L

Por ejemplo: L = { $a^ib^ic^i | i \ge 0$ }, w = $a^mb^mc^m$

- Escogiendo u, v, x, y, z según el lema, v e y pueden constar o sólo de as, bs o sólo de cs (si uno de ellos tuviera as, bs y bs y cs, la palabra uv²xyx²z tendría más de dos cambios).
- Si v e y constan sólo de as, bs o sólo de cs entonces cada uno de ellos está enteramente contenido en uno de los tres grupos de símbolos iguales que forman w.
- Pero entonces en uv²xy²z a lo sumo dos de los grupos de símbolos iguales que forman w habrán crecido, pero debe haber otro que se mantiene en k símbolos, por lo que uv²xy²z no está en L.

Por ejemplo: L = { $a^ib^ic^i | i \ge 0$ }, w = $a^mb^mc^m$

Caso 1: vxy en contenido en las a's

Caso 2: vxy tiene a's & b's

Caso 3: vxy está en el bloque de b's

Caso 4: vxy tiene b's & c's

Caso 5: vxy está en el bloque de c's

Usar JFLAP para ver demostración:

http://www.jflap.com/

Propiedades cerradas: operaciones aplicadas a un conjunto cuyo resultado pertenece al mismo conjunto

Importancia: componer varios lenguajes de un tipo y obtener otro lenguaje

$$L = \{ a^i b^j c^k \mid i < j < k \}$$

Pueden verse dos lenguajes

$$L_1 = \{ a^i b^j c^k \mid i < j \}$$
 es LLC

$$L_2 = \{ a^i b^j c^k \mid j < k \}$$
 es LLC

 $L = L_1 \cap L_2$ no es LLC porque la intersección no es cerrada

Propiedad	LR	LLC
U (unión)	S	S
∩ (intersección)	S	N
complemento	S	N
concatenación	S	S
∩ LR	S	S

Propiedad	LR	LLC
Kleene-clausura	S	S
Reflejo	S	S
Morfismo	S	S
Morfismo ⁻¹	S	S
Diferencia	S	N

Unión, concatenación y clausura de Kleene:

Si
$$G_1$$
 y G_2 son GLC, $G_i = (V_i, T_i, P_i, S_i)$

• Unión: $L_1 U L_2 = L(G)$

$$G = (V_1 \cup V_2, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}, S)$$

• Concatenación: $L_1L_2 = L(G)$

$$G = (V_1 \cup V_2, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}, S)$$

• Clausura: $L_1^* = L(G)$

$$G = (V_1, T_1, P_1 \cup \{S \rightarrow S_1 S \mid \lambda\}, S)$$

Algoritmos de decisión

Problemas	LR	LLC
Equidad	D	N
Inclusión	D	N
Membresía	D	D
Vacuidad	D	D
Finitud	D	D

Algoritmos de decisión

Vacuidad: L_1 es vacio?. Dada G=(V,T,P,S)

 L_1 = L(G) es vacío: si S es inútil (S es derivable)

Finitud: L₁ es finito?. Dada G=(V,T,P,S)

- L₁= L(G) es finito: si G es recursiva. Parte de una G simplificada, determinar a través de un digrafo las secuencias de derivaciones de G.
- Si P contiene A → DB | C, D→ 1A, entonces el digrafo tiene los arcos {(A,D), (A,B), (A,C), (D,A)}. Si hay ciclos en el digrafo entonces es no es finito

Algoritmos de decisión

Membresía: w en Σ* esta en L₁?. Dada
 G=(V,T,P,S), si w es generado a partir de G
 Proceso de Análisis o reconocimiento sintáctico
 Se puede realizar con Algoritmos de parsing. Por ejemplo:

- Algoritmo de Cocke-Younger-Kasami (CYK)
- Algoritmo de Graham-Harrison-Ruzzo (GHR)
- Algoritmo de Earley

Algoritmo de Cocke-Younger-Kasami (CYK)

- La gramática G es una GLC en FNC.
- Las subcadenas de w, |w| = n, se identifican mediante su posición inicial y su longitud.
 p.e.: w_{ij} es la subcadena de w que comienza en la posición i y tiene una longitud j.
- El algoritmo construye conjunto de no terminales N_{ij} que generan las subcadenas w_{ij} de w. Si S esta en N_{1n}, entonces w esta en L(G).

Algoritmo de Cocke-Younger-Kasami (CYK)

- Algoritmo basado en programación dinámica conocido como algoritmo de "relleno de tabla" o "tabulación".
- <u>Teorema</u>: El algoritmo CYK calcula correctamente N_{ij} para todo i,j, por lo tanto, w está en L(G) si y solo si S esta en N_{1n}. El tiempo de ejecución del algoritmo es O(n3)

Algoritmo: Entrada $w = w_1 w_2 ... w_n$, w en T^* y G = (V,T,P,S)

Para i = 1..n hacer

- 1. $N_{i1} = \{ A \mid A \text{ en } V \text{ y } A \rightarrow W_{i1} \}$
- 2. Para j = 2...n hacer

Parai = 1..(n-j+1) hacer

- a.Inicializa N_{ij}= φ
- b.Para K = 1..(j-1) añadir a N_{ij} todos los no terminales A para los que A→BC, con B en N_{ik} y C en N_{i+k,j-k}
- 3. Si S en N_{1n} entonces w en L(G)

 $G = (\{S,A,B,C\},\{0,1\},P,S) \text{ en FNC}$

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid 0$

 $B \rightarrow CC \mid 1$

 $C \rightarrow AB \mid 0$

4		
3		

2

Determinar si:

 $\pm W = 0010$

1	N ₁₁ ={A,C}	N ₂₁ ={A,C}	N ₃₁ ={B}	N ₄₁ ={A,C}
	$w_1 = 0$	$w_2 = 0$	w ₃ = 1	$w_4 = 0$

 $G = (\{S,A,B,C\},\{0,1\},P,S) \text{ en FNC}$

 $S \rightarrow AB \mid BC -$

 $A \rightarrow BA \mid 0$

 $B \rightarrow CC \mid 1$

 $C \rightarrow AB \mid 0$

4		
3		

2 $N_{12}=\{B\}$ $N_{22}=\{S,C\}$ $N_{32}=\{A,S\}$	2	N ₁₂ ={B}	N ₂₂ ={S,C}	N ₃₂ ={A,S}	
--	---	----------------------	------------------------	------------------------	--

Determinar si:

 $\pm W = 0010$

1	N ₁₁ ={A,C}	$N_{21} = \{A, C\}$	N ₃₁ ={B}	N ₄₁ ={A,C}
	a ₁ = 0	a ₂ = 0	a ₃ = 1	a ₄ = 0

 $G = (\{S,A,B,C\},\{0,1\},P,S) \text{ en FNC}$

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid 0$

 $B \rightarrow CC \mid 1$

 $C \rightarrow AB \mid 0$

3	$N_{13} = \{B\}$	$N_{23} = \{B\}$

Determinar si:

 $\pm W = 0010$

1	N ₁₁ ={A,C}	N ₂₁ ={A,C}	N ₃₁ ={B}	N ₄₁ ={A,C}
	a ₁ = 0	a ₂ = 0	a ₃ = 1	a ₄ = 0

 $G = (\{S,A,B,C\},\{0,1\},P,S) \text{ en FNC}$

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid 0$

 $B \rightarrow CC \mid 1$

 $C \rightarrow AB \mid 0$

4	$N_{14} = \{S, C, A\}$			
3	N ₁₃ ={B}	N ₂₃ ={B}		
2	N ₁₂ ={B}	N ₂₂ ={S,C}	N ₃₂ ={A,S}	
1	N ₁₁ ={A,C}	N ₂₁ ={A,C}	N ₃₁ ={B}	N ₄₁ ={A,C}

Determinar si:

$$\pm W = 0010$$

1	$N_{11} = \{A,C\}$	$N_{21} = \{A,C\}$	$N_{31} = \{B\}$	$ N_{41} = \{A,C\} $
	$a_1 = 0$	$a_2 = 0$	a ₃ = 1	$a_4 = 0$

Jerarquía de los Lenguajes

Tipo de Lenguajes

Ejemplos de lenguajes:

- Lenguaje de las expresiones regulares

Con
$$\Sigma = \{a,b\} \rightarrow L = \{\lambda,\Phi,a,b,a^*,b^*,a+b+\lambda,(a+b)^*,(b+\lambda),a^*bb(ab+b)^*b,...\}$$

Análogo a: expresiones algebraicas (operaciones binarias de + y .) y 0ⁿ1ⁿ

- Lenguajes de programación y Lenguajes de marcado: HTML, XML, OWL, etc.
- Con Σ caracteres gráficos → Lenguaje L estructurado con expresiones algebraicas y control de abrir y cerrar (llaves, paréntesis, condicionales, etiquetas, nodos).

Análogo a 0ⁿ1ⁿ

Lenguaje Libre de Contexto

GLC para el siguiente lenguaje:

L₁ = { 0ⁿ1ⁿ | n ≥ 0 } y G = ({S},{0,1},P,S)
P = { S →
$$\lambda$$
 , S → 0S1 } ó { S → λ | 0S1 }
Dado el homomorfismo: h(0) = (y h(1) =)
P = { S → λ | (S) }
Si se quiere validar las secuencias de paréntesis
correctamente anidados p.e: "(()())(())"
G = ({S},{(,)},P,S) con P = { S → λ | (S) | SS }

Tipo de Lenguajes

Ejemplos de lenguajes:

- Lenguas humanas

Niveles de procesamiento lingüístico: léxico, sintáctico, semántico, contextual, pragmático.

- Lenguajes biológicos: ADN, ARN

Debe preguntarse si hay estructuras 0ⁿ1ⁿ, en caso contrario es regular. PROSITE asume que ADN es regular

- Códigos: Morse, ASCII

Si el código es una función homomórfica de un alfabeto a un lenguaje es regular. La letra "a" es "00001010"

Tipo de Lenguajes

Ejemplos de lenguajes:

- Lenguaje de las Gramáticas Libres de Contexto
- Lenguaje de la Música
- Lenguaje Latex
- Lenguaje de un protocolo de comunicación
- Etc.

Si no conoce el tipo de lenguaje

- Puede estar sub utilizando el modelo →
 más recursos y costo cuando no lo
 necesita. "Solo necesita sumar y usa un
 computador en lugar de una calculadora".
- El modelo esta limitado para procesar el lenguaje → no se resuelve el problema.
 "Usa una calculadora para realizar transformaciones no algebraicas".