

UNIVERSIDAD DE GRANADA

SIMULACIÓN DE SISTEMAS

Práctica 2

Alejandro Manzanares Lemus

alexmnzlms@correo.ugr.es

12 de noviembre de 2020

Índice general

1.	Mi S	Segund	do Modelo de Simulación de Monte Carlo	4
	1.1.	Modeli	ización por montecarlo	4
		1.1.1.	Planteamiento del problema	4
		1.1.2.	Distribuciones de datos	4
		1.1.3.	Análisis de resultados	4
		1.1.4.	Tablas de datos	ļ
		1.1.5.	Gráficas	7
	1.2.	Modifi	icaciones del modelo	13
		1.2.1.	Primera modificación	13
		1.2.2.	Segunda modificación	15
2.				19
	2.1.	Mejora	ando los generadores	19
			adores Congruenciales Lineales	

Apartado 1: Mi Segundo Modelo de Simulación de Monte Carlo

1.1: Modelización por montecarlo

1.1.1: Planteamiento del problema

El sistema que vamos a modelizar trata de un quiosco de periódicos que se abastece diariamente de un cierto numero de periódicos.

Por cada periodico vendido se obtiene una ganancia de x euros y por cada periodico no vendido se pierde una cantidad de y euros.

El número de periodicos solicitados al proveedor es s.

La demanda D es el numero de periodicos que vende el quiosco cada dia y obedece a una distribución de probabilidad P(D=d).

A continuación se definen las 3 distribuciones de probabilidad para D.

El objetivo de esta simulación es encontrar el número de periodicos que se solicitan — el valor de s— para el que la ganancia es maxima.

1.1.2: Distribuciones de datos

- Distribución a: $P(D=d) = \frac{1}{100}$, $\forall 0, ..., 99$ Esta es la distribución uniforme, es decir, todos los valores para D tiene la misma probabilidad.
- Distribución b: $P(D=d) = \frac{100-d}{5050}$, $\forall 0, ..., 99$ Esta es la distribución proporcianl, los valores mas pequeños de d tienen mayor probabildad cuanto mas pequeños sean.
- Distribución c: $P(D=d) = \frac{d}{2500}$ si $0 \le d < 50$ y $P(D=d) = \frac{100-d}{2500}$ si $50 \le d \le 99$ Esta es la distribución triangular, lo que significa que los valores centrales de d tiene mayor probabilidad que los valores extremos, es decir, si $0 \le d \le 99$ entonces 0 y 99 tienen una probabilidad muy baja mientras que 50 que es el valor medio tiene la probabilidad mas alta.

1.1.3: Análisis de resultados

A continuación pueden verse los resultados que se han obtenido para esta simulación variando le valor de y, es decir, modificando cuanto se pierde por cada unidad no vendida. El número de iteraciones ha sido de 100000, lo que quiere decir, que para cada posible valor de s, se han generado 100000 valores aleatorios para D siguiendo las diferentes distribuciones de probabilidad.

Distribución a						
Veces	Veces Ganancia/Unidad Perdida/Unidad Unidades Ganancia					
100000	10	1	90	449.356		
100000	10	5	66	327.772		
100000	10	10	50	245.066		

Distribución b						
Veces	Veces Ganancia/Unidad Perdida/Unidad Unidades Ganancia					
100000	10	1	69	283.013		
100000	10	5	42	187.965		
100000	10	10	29	133.422		

Distribución c						
Veces	Veces Ganancia/Unidad Perdida/Unidad Unidades Ganancia					
100000	10	1	77	464.006		
100000	10	5	59	386.296		
100000	10	10	50	333.032		

Para la distribución a:

Podemos observar como, al aumentar el valor de perdida/unidad, el valor optimo de s disminuye, es decir, cuanto mas aumenta lo que perdemos por una unidad, menos rentable resulta pedir muchas unidades, porque al ser la demanda igualmente probable, es igualmente posible vender 0 unidades que vender 99.

Para la distribución b:

En este caso podemos ver como, al ser mucho mas posible vender pocas unidades que vender mucho, es muy poco rentable encargar muchos periodicos cuanto mayor es el la perdida que obtenemos al dejar periodicos sin vender. Por el mismo motivo, las ganancias maximas se reducen, puesto que lo más probable es vender pocos periodicos.

Para la distribución c:

Vemos que es bastante parecida a los resultados obtenidos para la distribucion a. Esto tiene sentido puesto que la probabilidad de que salgan valores intermedios es mayor, por lo que de media obtendremos datos bastante pareciedos.

A continuación se pueden apreciar las graficas de la ganancia obtenida para cada valor de s.

1.1.4: Tablas de datos

A continuación se muestran los mismos datos, pero con variaciones en el numero de ejecuciones que se realizan para cada valor de s.

	Distribución a				
Veces	Ganancia/Unidad	Perdida/Unidad	Unidades	Ganancia	
100	10	1	89	463.86	
100	10	5	67	338.65	
100	10	10	53	251.8	
1000	10	1	90	453.356	
1000	10	5	68	329.135	
1000	10	10	51	241.68	
5000	10	1	91	454.153	
5000	10	5	68	330.752	
5000	10	10	49	239.772	
10000	10	1	90	451.672	
10000	10	5	67	330.668	
10000	10	10	50	246.502	
100000	10	1	90	449.356	
100000	10	5	66	327.772	
100000	10	10	50	245.066	

	Distribución b					
Veces	Ganancia/Unidad	Perdida/Unidad	Unidades	Ganancia		
100	10	1	68	296.65		
100	10	5	43	196.3		
100	10	10	31	138.4		
1000	10	1	70	287.731		
1000	10	5	43	189.82		
1000	10	10	30	132.2		
5000	10	1	71	287.868		
5000	10	5	43	190.486		
5000	10	10	29	130.584		
10000	10	1	70	284.796		
10000	10	5	43	190.042		
10000	10	10	29	134.678		
100000	10	1	69	283.013		
100000	10	5	42	187.965		
100000	10	10	29	133.422		

	Distribución c					
Veces	Ganancia/Unidad	Perdida/Unidad	Unidades	Ganancia		
100	10	1	77	472.23		
100	10	5	60	389.85		
100	10	10	52	334.4		
1000	10	1	79	466.281		
1000	10	5	60	385.515		
1000	10	10	51	330.16		
5000	10	1	79	467.379		
5000	10	5	59	383.501		
5000	10	10	50	329.704		
10000	10	1	79	465.595		
10000	10	5	60	387.565		
10000	10	10	50	334.46		
100000	10	1	77	464.006		
100000	10	5	59	386.296		
100000	10	10	50	333.032		

1.1.5: Gráficas

Aquí podemos ver los datos de manera grafica.

1.2: Modificaciones del modelo

1.2.1: Primera modificación

La primera modificación al sistema consiste en eliminar las perdidas por unidad no vendida, es decir, y=0. Sin embargo introducimos un nuevo parametro z que representa los gastos de devolución de las unidades no vendidas. Es decir, ahora las perdidas son independientes de cuanto gastemos, si no de cuanto cueste devolver las unidades no vendidas.

Podemos ver a continuación los resultados obtenidos en la simulación para esta modificiación. Lo primero debe ser notar que los posibles valores de z con los que trabajamos son 100, 500 y 1000. Esto es respectivamente que los costes de devolución equivalen a 10 ventas — porque por cada venta se obtiene un beneficio de 10 —, 50 ventas y 100 ventas, es decir, un 10 % de las ventas, la mitad de las ventas y el total de las ventas, ya que la demanda máxima puede ser 100 periodicos.

Distribución a					
Ganancia/Unidad Gastos Devolución Unidades Ganancia					
10	100	90	399.802		
10	500	49	127.062		
10	1000	0	-0.302		

Distribución b					
Ganancia/Unidad Gastos Devolución Unidades Ganancia					
10	100	80	235.934		
10	500	0	-0.251		
10	1000	0	-10.301		

Distribución c					
Ganancia/Unidad	Gastos Devolución	Unidades	Ganancia		
10	100	79	405.927		
10	500	36	204.343		
10	1000	24	119.323		

Podemos ver que para unos gastos de devolución de $100 \in la$ ganancia aumenta segun aumenta el numero de periodicos que contratamos, porque a mayor numero de periodicos tengamos, más probable es que vendamos mucho —sobre todo para la distribución a y c — y mayor beneficio obtendremos.

Para los gastos de devolución de 500€ podemos observar como el numero de unidades de periodicos necesarias para alcanzar el mismo se reduce drasticamente, llegando a incluso a obtener perdidas en vez de beneficios. Sobre todo para la distribución de probabilidad b, ya que es mucho menos problable vender un gran numero de periodicos.

Para los gastos de devolución de 1000 embargo, si es una opción posible si trabajamos con la distribución c, aunque los beneficios totales son bastante reducidos.

A continuación podemos ver los resultados obtenidos graficamente.

1.2.2: Segunda modificación

Finalmente la segunda modificación se basa en una combinación del problema original y la primera modificación. Ahora es posible elegir entre la opción que genere la minima perdida de dinero, es decir, podemos escoger entre la opción más rentable entre pagar por cada unidad no vendida — valor de y — y pagar un precio fijo por la devolución del total de unidades no vendidas —valor de z —. En este caso los valores de z e y son los mismos que para los casos anteriores.

Distribución a					
Ganancia/Unidad	Perdida/Unidad	Gastos Devolución	Unidades	Ganancia	
10	1	100	90	448.202	
10	5	100	89	406.718	
10	10	100	89	401.75	
10	1	500	90	446.33	
10	5	500	66	325.459	
10	10	500	49	241.906	
10	1	1000	90	446.33	
10	5	1000	66	325.459	
10	10	1000	49	241.906	

Distribución b					
Ganancia/Unidad	Perdida/Unidad	Gastos Devolución	Unidades	Ganancia	
10	1	100	69	280.685	
10	5	100	71	234.661	
10	10	100	75	230.966	
10	1	500	69	280.685	
10	5	500	42	186.603	
10	10	500	29	131.972	
10	1	1000	69	280.685	
10	5	1000	42	186.603	
10	10	1000	29	131.972	

Distribución c				
Ganancia/Unidad	Perdida/Unidad	Gastos Devolución	Unidades	Ganancia
10	1	100	78	461.712
10	5	100	72	412.534
10	10	100	75	405.259
10	1	500	78	461.712
10	5	500	59	383.876
10	10	500	50	329.892
10	1	1000	79	461.563
10	5	1000	59	382.647
10	10	1000	50	329.892

 ${\bf Podemos\ apreciar}$

Apartado 2: Generadores de datos

2.1: Mejorando los generadores

En este apartado se pedía introducir una serie de mejoras de enficiencia en los generadores de datos aleatorios. Dichas mejoras son las siguientes

- Forma numero 1: La forma numero 1 es la de referencia, ya que es la manera en la que se han obtenido los datos en los apartados anteriores, es decir, recorriendo la tabla de probabilidad de forma secuencial.
- Forma numero 2: Esta forma de mejora se basa en aplicar una busqueda binaria para encontrar el valor aleatorio en la tabla de probabilidad.
- Forma numero 3: Esta mejora es especifica para la distribución a y consigue obtener un tiempo constante de ejecución. Se basa en multiplicar por 100 el numero obtenido entre 0 y 1 de manera uniforme. Dado que en la distribución a todos los valores poseen la misma probabilidad, simplemente multiplicando el valor uniforme aleatorio por el máximo, obtenemos el resultado requerido.
- Forma numero 4: La forma número 4 de mejora es exclusiva para la distribución c y se basa en recorrer la tabla de probabilidad comenzando por los valores centrales y continuar en orden decreciente por la derecha y creciente por la izquierda. Así aseguramos comprobar primero los valores con mayor prioridad.

Podemos observar en las graficas que se adjuntan a continuación:

Para la distribución a, vemos como la mejora 2 — basada en busqueda binaria — consigue mejorar en eficiencia a la forma 1, obteniendo resultados casi un $50\,\%$ más rapido. Sin embargo vemos como la mejora 4 es inbatible, cosa que tiene sentido, ya que es capaz de obtener resultados en tiempo constante sin importar el tamaño de la tabla de búsqueda.

Para la distribución b observamos que la mejora 2, como es logico, obtiene mejores resultados a la hora de encontrar los valores deseados.

Para la distribución c, podemos ver que la mejora 4, es significativamente más eficiente que la forma normal — forma 1 —, pero es superada por la mejora 2.

2.2: Generadores Congruenciales Lineales