

Sessão 2 Conceitos básicos

Prof. E.A.Schmitz

Probabilidade – visão empírica

- Espaço amostral: conjunto de pontos que representa o resultado de um experimento.
 - Quando o experimento é repetido cada resultado aparece com uma determinada frequência.
 - Aumentando o número de vezes do experimento: cada resultado começa a aparecer com uma determinada frequência com relação aos outros.
- Probabilidade: frequência relativa de ocorrência de cada resultado quando o número de experimentos →∞

Variável aleatória

- Variável aleatória (VA): variável cujo domínio é o espaço amostral.
- Variável aleatória discreta (X):
 - o número de valores para os quais X tem probabilidade diferente de zero é finita
 - cada intervalo da escala real contém um número finito de valores

Função de probabilidade

X= {
$$x_1, x_2, x_n$$
} e { p_1, p_2, p_n }

• $f(x_i) = p_i$ se $x = x_i$ ($f(x_i) = 0$ se $x \ne x_i$)

• $f(x)$ é a função de probabilidade de X.

$$\sum f(x_i) = 1$$

$$P(a < X < b) = \sum f(x_i) x_i \text{ in } \{ \text{ a..b} \}$$

Se a variável aleatória X é continua:

$$f(x) >= 0$$

$$\int f(x) dx = 1$$

Exemplo 1

Função de probabilidade para a variável aleatória X = "total de pontos obtidos ao jogar um dado".

Função distribuição cumulativa

- Funções discretas
 - $F(b) = P(X \le b) = \sum f(x_i)$ onde x_i in $\{-\infty..b\}$
- Funções contínuas
 - $F(b) = \int f(x) dx x in { -\infty..b}$
 - P(a < X < b) = F(b) F(a)

Exemplo 2

Função distribuição cumulativa para o total de pontos obtidos ao jogar um dado.

Exemplo 3-Total de pontos ao jogar dois dados

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Exemplo 3

Função de probabilidade para o total de pontos obtidos ao jogar dois dados.

Parâmetros das distribuições: Média

$$m = \sum x_i * f(x_i) - discreta$$

$$m = \int x^* f(x) dx - discreta$$

Média representa o centro de massa do gráfico

Parâmetros das distribuições: Variância

$$s^{2} = \sum (x_{i} - m)^{2*} f(x_{i}) - discreta$$

$$s^{2} = \int (x - m)^{2*} f(x) dx - continua$$

Variância representa a dispersão

desvio padrão =
$$s = \sqrt{s^2}$$

Exemplo 4

- X = "valor obtido ao jogar uma moeda".
- Cara = 0, Coroa = 1

$$X = \{0,1\} \{1/2,1/2\}$$

 $m = 0*1/2+1*1/2=1/2$
 $s^2 = (0-1/2)^2*1/2 + (1-1/2)^2*1/2=1/4$

Distribuições de probabilidade usadas na análise de risco

- Uniforme
- Valores possíveis encontram-se numa faixa
- Discreta
- Conjunto de valores possíveis é finito
- Triangular
- Estimativa de 3 pontos

Técnica de Monte Carlo

- Idéia: conseguir soluções aproximadas para funções complexas através de amostragem computacional.
- Algoritmo para calcular valor de π por amostragem:
- 1. Lançar N dardos ao acaso dentro do quadrado
- 2. Contar o número de acertos A dentro do círculo.
- 3. $\pi \cong 4*(A/N)$

Monte Carlo em R

- Gerar "sorteios" de valores aleatórios
- Coletar os resultados amostrados
- Agregar resultados

Distribuição uniforme

- Sabemos a faixa de valores e assumimos todos igualmente prováveis
- Função do R: (n, min = 0, max = 1)
- Exemplo: Valor da taxa Selic em Janeiro/2017

Distribuição contínua 0..1

- X = variável contínua entre 0..1 onde todos os valores são equiprováveis.
- $= \int x^* f(x) dx = \int x^* 1 dx = x^2/2 = 1/2$
- $s^2 = \int (x-m)^{2*} f(x) dx = 1/12$

Distribuição de probabilidade triangular

- Valor estimado é definido por:
- limite inferior que aumenta até um máximo e decai até um limite superior
- Função do R: rtriangle(min, max,mprov)
 - Package: triangle
- Exemplo: preço do barril de petróleo em dezembro/2017

Distribuição Triangular

X = variável contínua onde : otimista (a), mais provável(m) e pessimista (b)

- = m= (a+m+b)/3
- $s^2 = (a (a-m)+b(b-a)+m(m-b))/18$

Distribuição Normal (1)

- $f(x) = k*e^{-1/2 ((x-m)/s)^2}$ $k = 1/(s.\sqrt{2\pi})$

Distribuição Normal (4)

 Φ = cumulativa da normal reduzida

Distribuição Normal (5)

Números importantes da normal reduzida:

```
P(m-s \le x \le m-s) = 0.68 (68\%)

P(m-2s \le x \le m+2s) = 0.95 (95\%)

P(m-2.3s \le x \le m+2.3s) = 0.98 (98\%)

P(m-3s \le x \le m+3s) = 0.995 (99,5\%)
```

Teoremas importantes (1)

Transformações lineares de VAs

Teorema 1: Seja X uma VA com média=m e desvio padrão =s

se
$$X1 = c_1 * X + c_2$$

- então X1 têm como parâmetros
 - $\mathbf{m}_1 = \mathbf{c}_1 * \mathbf{m} + \mathbf{c}_2$
 - $S_1^2 = C_1^2 * S_1^2$
- Se $c_1 = (1/s)$ e $c_2 = (-m/s)$ então...

Teoremas importantes (2)

Soma de n variáveis aleatórias independentes

$$Z = \sum x_i i \in \{1..n\}$$

- Teorema 2: Se (m_{i,}s_i) são os parâmetros de x_{i.} então Z tem como parâmetros:
 - $m = \sum m_i$
 - $s^2 = \sum s_i^2$

Teoremas importantes (3)

Uso da distribuição normal reduzida

Teorema 3:

- Seja X normal e sua distribuição cumulativa com parâmetros F (m , s).
- $P(a < x < = b) = F(b) F(a) = \Phi((b m)/s) \Phi((a m)/s)$

Teoremas importantes (4)

Soma de n variáveis aleatórias independentes

- Teorema 4: Sejam $(m_{i,} s_{i)}$ são os parâmetros de x_{i} $i \in \{1..n\}$ onde x_{i} segue uma normal e $Z = \sum x_{i}$ Então Z segue uma distribuição **Normal** com:
 - Média(Z) = $m = \sum m_i$
 - Variância(Z) = $s^2 = \sum s_i^2$

Teoremas importantes (5)

Teorema central do limite (TCL) (forma forte)

Teorema 5: Se (m_i, s_i) são os parâmetros de x_i
 e Z=∑ x_i i ∈ {1..n} onde x_i segue uma distribuição qualquer.

Então Z **tende** a uma distribuição normal:

- Média(Z) = $m = \sum m_i$
- Variância(Z) = $s^2 = \sum s_i^2$

(vale para n $\rightarrow \infty$, na prática n>30)