Original Source: https://materialsdata.nist.gov/bitstream/handle/11115/177/Mecnanical%20Properties%20Data.pdf?sequence=3&isAllowed=y

APPENDIX 7

Mechanical Properties Data for Selected Aluminum Alloys

LIMITED MECHANICAL PROPERTIES DATA for several selected aluminum alloys are compiled in this appendix. Relatively new aluminum alloys included are 7033, Al-Li 8090 and 2090, rapidly solidified power metallurgy (P/M) aluminum, and B201 and D357 aluminum castings.

A7.1 Conventional and High-Strength Aluminum Alloys

Both 2000 and 7000 series aluminum alloys are used in the aerospace/aircraft industry. Ta-

bles A7.1 and A7.2 along with Fig. A7.1 to A7.3 present tensile properties and fracture toughness test data for several of these alloys. Plane-stress fracture toughness values and crack growth resistance curves for these alloys are shown in Fig. A7.4 and A7.5, respectively. Figures A7.6 and A7.7 plot fatigue crack growth rate curves.

Tensile and fracture toughness data for the new 7033-T6 high-strength automotive alloy are presented in Table A7.3, which also compares these properties with the conventional 2014-T6 and 6061-T6 alloys. *S-N* curves for all three alloys are presented in Fig. A7.8.

Fig. A7.1 Comparison of regular and high-purity (lower iron and silicon contents) versions of alloys 2024 and 7075. Plane-strain fracture toughness is higher in the high-purity alloys (designated as 2124 and 7475). Source: Ref A7.2

A7.2 P/M Aluminum

Mechanical properties data for several P/M aluminum forgings and extrusions are listed in Table A7.4. These data are taken from a report for the Air Force Advanced Aluminum Fighter Structures (AAFS) program (Ref A7.11).

A7.3 Aluminum-Lithium Alloys

Sheet and plate mechanical properties data for the low-density 8090 and 2090 Al-Li alloys are presented in Table A7.5. Table A7.6 lists the test results for extrusions. Fatigue and fatigue crack growth rate data for the 8090-TU51 extrusion are shown in Fig. A7.9 to A7.11.

A7.4 Aluminum Casting Alloys

This appendix includes mechanical test data for two casting materials: B201-T7 and D357-T6. Composition specifications for these castings are, respectively, AMS 4242 and AMS 4241, to which a small amount of strontium (0.014 wt% max) or sodium (0.012 wt% max) was added as a silicon modifier. Tensile properties and plane-strain fracture toughness data are listed in Tables A.7.7 to A7.10. High- and low-cycle fatigue and fatigue crack growth rate data are shown in Fig. A7.12 to A7.17.

Table A7.1 Mechanical properties of aluminum alloys at room temperature

		<u> </u>				
Alloy	7150-T6E189(a)	7050-T7451	7050-T7651	7475-T7351	7475-T7651	7475-T651
Plate thickness, mm (in.)	25.4 (1)	6.4–38.1 (0.25–1.5)	6.4–25.4 (0.25–1.0)	6.4–38.1 (0.25–1.5)	12.7–25.4 (0.5–1.0)	12.7-25.4 (0.5-1.0)
Orientation	LT	T	T	T	T	T
E, MPa (ksi)		71,070 (10,300)	71,070 (10,300)	71,070 (10,300)	70,380 (10,200)	70,380 (10,200)
F_{tu} , MPa (ksi)	628 (91)	524 (76)	524 (76)	504 (73)	483 (70)	538 (78)
F _{tv} , MPa (ksi)	587 (85)	455 (66)	455 (66)	428 (62)	407 (59)	469 (68)
Elongation, %	12	9	8	9	8	9
E _c , MPa (ksi)		73,140 (10,600)	74,520 (10,800)	73,140 (10,600)	73,140 (10,600)	73,140 (10,600)
$F_{\rm cv}$, MPa (ksi)		469 (68)	469 (68)	435 (63)	428 (62)	490 (7)
$F_{\rm su}$, MPa (ksi)		297 (43)	297 (43)	290 (42)	269 (39)	297 (43)
F_{bru} , MPa (ksi)		759 (110)	759 (110)	725 (105)	711 (103)	780 (113)
(e/D = 1.5)		757 (110)	757 (110)	720 (100)	711 (100)	700 (115)
F _{bry} , MPa (ksi)		614 (89)	600 (87)	580 (84)	559 (81)	642 (93)
(e/D = 1.5)						
K_{IC} , MPa \sqrt{m} (ksi \sqrt{in} .)	31 (28)			(b)		
$K_{\rm C}$, MPa $\sqrt{\rm m}$ (ksi $\sqrt{\rm in.}$)					110 (100)(c)	99 (90)(c)
Alloy	2124-T351(a)	2124-T851	2024-T351	2024-T851	7075-T651	7075-T7351
Plate thickness,	25.4 (1)	25.4–38.1 (1.0–1.5)	12.7-25.4 (0.5-1.0)	12.7-25.4 (0.5-1.0)	12.7-25.4 (0.5-1.0)	6.4-12.7 (0.25-0.5)
mm (in.)						
Orientation	LT	T	T	T	T	T
E, MPa (ksi)		71,760 (10,400)	73,830 (10,700)		71,070 (10,300)	71,070 (10,300)
F_{tu} , MPa (ksi)	469 (68)	455 (66)	449 (65)	455 (66)	552 (80)	476 (69)
F_{ty} , MPa (ksi)	366 (53)	393 (57)	304 (44)	400 (58)	476 (69)	393 (57)
Elongation, %	22	5			7	7
Ec, MPa (ksi)		75,210 (10,900)	75,210 (10,900)		73,140 (10,600)	73,140 (10,600)
$F_{\rm cy}$, MPa (ksi)		393 (57)	324 (47)	407 (59)	511 (74)	407 (59)
F _{su} , MPa (ksi)			262 (38)	262 (38)	311 (45)	262 (38)
F _{bru} , MPa (ksi)			676 (98)	697 (101)	828 (120)	704 (102)
(e/D = 1.5)						
F_{bry} , MPa (ksi) ($e/D = 1.5$)			524 (76)	600 (87)	711 (103)	545 (79)
$K_{\rm IC}$, MPa $\sqrt{\rm m}$	47.9 (43.5)	(b)		(b)	30.3 (27.5)(d)	(b)
(ksi√in. <u>)</u> K _C , MP <u>a√</u> m			105 (95)(c)		71.5 (65)(c)	
(ksi√in.) Fatigue strength,			138 (20)(e)		159 (23)(e)	
MPa (ksi)					,	

(a) Ref A7.1. (b) See Fig. A7.1. (c) Thin-sheet K_C value (Ref A7.2). (d) Ref A7.3. (e) At 500 million cycles, $K_t = 1$, R = -1 (Ref A7.4). All test data in this table are S or B values (per Ref A7.5), unless otherwise noted.

REFERENCES

- A7.1. G.V. Scarich and P.E. Pretz, "Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading, Vol I—Commercial 2XXX and 7XXX Alloys," Report NOR 85-141, Northrop Corp., Aircraft Division, 1985
- A7.2. R.R. Senz and E.H. Spuhler, Fracture Mechanics' Impact on Specifications and Supply, *Met. Prog.*, March 1975, p 64–66
- A7.3. J.C. Evall, T.R. Brussat, A.F. Liu, and M. Creager, "Engineering Criteria and Analysis Methodology for the Appraisal of Potential Fracture Resistant Primary Aircraft Structure," Report AFFDL-TR-72-80, Wright Research and Development Center, Flight Dynamics Laboratory, Air Force Systems Command, 1972
- A7.4. Guide to Engineering Materials (GEM 2002), *Adv. Mater. Process.*, Vol 159 (No. 12), 2001
- A7.5. Military Standardization Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5E, U.S. Department of Defense, 1987
- A7.6. J.G. Kaufman, Fracture Toughness of Aluminum Alloy Plate—Tension Test of Large Center Slotted Panels, *J.*

- *Mater.*, Vol 2, 1967, p 889–914
- A7.7. J.T. Staley, Microstructure and Toughness of Higher Strength Aluminum Alloys, STP 605, ASTM, 1976
- A7.8. R.J. Bucci, G. Nordmark, and E.A. Starke, Jr., Selecting Aluminum Alloys to Resist Failure by Fracture Mechanisms, *ASM Handbook*, Vol 19, *Fatigue and Fracture*, ASM International, 1996, p 779
- A7.9. W.H. Reimann and A.W. Brisbane, *Eng. Fract. Mech.*, Vol 5, 1973, p 67
- A7.10. D. Childree, High-Strength Aluminum Automotive Alloy, *Adv. Mater. Process.*, Vol 154 (No. 3), 1998, p 27–29
- A7.11. P.G. Porter and D. Kane, "Advanced Aluminum Fighter Structures," Report WRDC-TR-90-3049, Wright Research and Development Center, Flight Dynamics Laboratory, Air Force Systems Command, 1990
- A7.12. M.W. Ozelton, S.J. Mocarski, and P.G. Porter, "Durability and Damage Tolerance of Aluminum Castings," Materials Directorate, Wright Research and Development Center, Air Force Systems Command, 1991
- A7.13. S.J. Mocarski, G.V. Scarich, and K.C. Wu, Effect of Hot Isostatic Pressure on Cast Aluminum Airframe Components, *AFS Trans.*, Vol 91, 2002, p 77–81

Table A7.2 Plane-strain fracture toughness data for aluminum alloys at various test temperatures

		om- rature					Fractu	re toughness	s, K _{1c} or K _{1c}	(J) at:		
Alloy and	yie	eld ngth	Specimen			°C °F)		06 °C 20 °F)	- 25. (-42	3 °C 3 °F)		59 °C 52 °F)
condition	MPa	ksi	design	Orientation	$MPa\sqrt{m}$	ksi√in.	$MPa\sqrt{m}$	ksi√in.	MPa√m	ksi√in.	MPa√m	ksi√in.
2014-T651	432	62.7	Bend	T-L	23.2	21.2	28.5	26.1				
2024-T851	444	64.4	Bend	T-L	22.3	20.3	24.4	22.2				
2124-T851(a)	455	66.0	CT	T-L	26.9	24.5	32.0	29.1				
	435	63.1	CT	L-T	29.2	26.6	35.0	31.9				
	420	60.9	CT	S-L	22.7	20.7	24.3	22.1				
2219-T87	382	55.4	Bend	T-S	39.9	36.3	46.5	42.4	52.5	48.0		
			CT	T-S	28.8	26.2	34.5	31.4	37.2	34.0		
	412	59.6	CT	T-L	30.8	28.1	38.9	32.7				
5083-O	142	20.6	CT	T-L	27.0(b)	24.6(b)	43.4(b)	39.5(b)			48.0(b)	43.7(b)
6061-T651	289	41.9	Bend	T-L	29.1	26.5	41.6	37.9				
7039-T6	381	55.3	Bend	T-L	32.3	29.4	33.5	30.5				
7075-T651	536	77.7	Bend	T-L	22.5	20.5	27.6	25.1				
7075-T7351	403	58.5	Bend	T-L	35.9	32.7	32.1	29.2				
7075-T7351	392	56.8	Bend	T-L	31.0	28.2	30.9	28.1				

(a) 2124 is similar to 2024, but with higher-purity base and special processing to improve fracture toughness. (b) $K_{1c}(J)$. Source: Metals Handbook, 9th ed., Vol 3, American Society for Metals, 1980, p 746, compiled from several references

Fig. A7.2 Plane-strain fracture toughness as a function of material tensile yield strength. Comparison of several 2000 and 7000 series aluminum alloys. Source: Ref A7.1

Fig. A7.3 Plane-strain fracture toughness for 25.4 to 38.1 mm (1 to 1.5 in.) thick commercial aluminum alloys. Source: Ref A7.6

Fig. A7.4 Plane-stress fracture toughness for 1 to 4.8 mm (0.04 to 0.2 in.) thick aluminum alloy sheet. Source: Ref A7.7

Fig. A7.5 Crack growth resistance curves for thin 7475 aluminum sheet. Source: Ref A7.8

Fig. A7.6 da/dN curves for 12 aerospace aluminum alloys, R = 0.33. Source: Ref A7.9

Table A7.3 Comparison of mechanical properties for 7033-T6, 2014-T6, and 6061-T6 aluminum alloys

Property	7033-T6	6061-T6	2014-T6
Tensile			
Tensile strength, MPa (ksi)	518 (75)	331 (48)	449 (65)
Yield strength, MPa (ksi)	483 (70)	297 (43)	407 (59)
Elongation, % (2.0 in. gage length)	12	14	9
Elevated-temperature yield strength, MPa (ksi)			
40 °C (100 °F)	483 (70)	290 (42)	407 (59)
95 °C (200 °F)	455 (66)	283 (41)	435 (63)
150 °C (300 °F)	373 (54)	262 (38)	276 (40)
205 °C (400 °F)	248 (36)	228 (33)	110 (16)
260 °C (500 °F)	138 (20)	124 (18)	65 (9.5)
Compression			
Peak stress, MPa (ksi)	483 (70)	317 (46)	Not tested
Yield stress, MPa (ksi)	455 (66)	297 (43)	Not tested
Fracture toughness, MPa√m (ksi√in.)			
Round bar (plate equivalent orientation)			
R-L (T-L)	41 (37)	26 (24)	21 (19)
L-R (L-T)	66 (60)	Invalid test	7.7 (7)
R-C (S-T)	39 (36)	Not tested	Not tested
Hardness, HRB	80	60	79
Electrical conductivity, % IACS	39	44	40
Source: Ref A7.10			

Fig. A7.7 da/dN curves for 15 aluminum alloys, R = 0 to 0.1. Source: Ref A7.8

Fig. A7.8 *S-N* curves for three aluminum alloys, R = 0.1. Curves A and B: 7033-T6; curves C and D: 2014-T6; curves E and F: 6061-T6. Source: Ref A7.10

Table A7.4 Tensile strength and plane-strain fracture toughness of P/M (RST) aluminum alloys

Alloy and temper	CW67	CW67-T7E94 (Alcoa data)	ata)	CW67-T7E94	T7E94		PM7064-TX7652	TX7652
Product form Orientation F MDa (Lei)	(a) L	(a) T	(a) S	(a) L 71 070 (10 300)	(a) T		Hand forging L	orging T
$E_{\rm tr}$, Mr a (ks) $F_{\rm tr}$, MPa (ksi) $F_{\rm tv}$, MPa (ksi)	631.7 (91.55) 611.3 (88.6)	574.4 (83.25) 534.1 (77.4)	573.0 (83.05) 526.8 (76.35)	600.6 (87.05) 600.6 (87.05) 572.0 (82.9)	567.9 (82.3) 532.3 (77.15)		601.2 (87.13)	596.4 (86.43) 549.0 (79.57)
Elongation, % E_{c} , MPa (ksi) F_{cy} , MPa (ksi) K_{fC} , MPa $\sqrt{\text{m}}$	12.2 43.07 (39.15)	8		96.6	10.87		9.18 78,660 (11,400) 587.4 (85.13)	6.52 77,970 (11,300) 576.7 (83.58)
Alloy and temper	SWS	CW67-T7E94 (Alcoa data)	ata)	CW67-T7E94			PM7064-TX76510	FX76510
Product form Orientation E. MPa (ksi) Fu, MPa (ksi) Fy, MPa (ksi) Elongation, % Ec, MPa (ksi) Kfc, MPa (ixi) Alloy and temper Product form Orientation E. MPa (ksi) Fy, MPa (ksi) Fy, MPa (ksi) Fy, MPa (ksi) Formation E. MPa (ksi) Fy, MPa (ksi) Elongation, % Kfc, MPa (ksi)	(b) L 657.2 (95.25) 638.3 (9.25) 11.25 76.935 (11,150) 599.2 (86.84) CW67 (c) L L 572.4 (82.95) 535.4 (77.6) 14.38 43.73 (39.75)	(b) T T T T (c) T (e) T (e) T (e) T (f) T	(b) S85.1 (84.8) 564.1 (84.8) 564.1 (81.75) 5.15 22.1 (20.1) ata) (c) S 559.1 (81.03) 508.4 (73.68) 6.75 30.8 (28)	(b) L T5,555 (10,950) 631.4 (91.5) 651.0 (94.35) 9.71 (c) L 69,462 (10,067) 606.3 (87.87) 580.3 (84.1) 11.52	CW67-T7E94 (c) T 70,953 (10,283) 583.7 (84,6) 548.2 (79,45) 8.45	(c) S 70,842 (10,267) 565.3 (81.93) 526.1 (76.25) 8.3	Extrusion 1.298 (10,333) 74,0 6514 (944) 62, 617,1 (89,43) 588 8.29 76,590 (11,100) 79,5 629.4 (91.22) 629	rsion T 74,058 (10,733) 623.3 (90.33) 586.5 (85) 8.67 79,578 (11,533) 620.2 (89.88)
(a) Specimens cut from the 58.4 mm (2.3 in.) thick flange of a die forging. (b) Specimens cut from the 12.7 mm (0.5 in.) thick flange of a die forging. (c) Specimens cut from a 114.3 mm (4.5 in.) thick hand forging. Source: Ref A7.11	in.) thick flange of a die	e forging. (b) Specime	ens cut from the 12.7 mm (0.5	in.) thick flange of a die for	ging. (c) Specimens c.	ıt from a 114.3 mm (4.5 in.) th	hick hand forging. Source: Rel	f A7.11

Table A7.5 Tensile strength and plane-strain fracture toughness of 8090 and 2090 Al-Li sheet and plate

Alloy and temper	8090-TU51	8090-TU51	8090-TU51	8090-TU51	8090-TU51		9L-0608	9T-0608
mm (in.)	1.6 (0.063)	1.6 (0.063)	63.5 (2.5)	63.5 (2.5)	63.5 (2.5)		1.6 (0.063)	1.6 (0.063)
Orientation F MPa (Lei)	L 80 502 (11 667)	T (007 11) 082 08	L 78 432 (11 367)	T 79 578 (11 533)	S 76 818 (11 133)		L 80 058 (11 733)	T 82 800 (12 000)
	529.9 (76.8)	517.3 (74.97)	492.7 (71.4)	492.7 (71.4)	451.1 (65.37)		481.1 (69.73)	463.9 (67.23)
	464.4 (67.3)	438.2 (63.5)	458.0 (66.37)	405.0 (58.7)	351.0 (50.87)		380.7 (55.17)	376.9 (54.63)
	3.35	8.35	4.85	5.22	1.71		5.86	8.85
Ec, MPa (ksi)	:	:	81,248 (11,775)	83,490 (12,100)	82,110 (11,900)		:	:
$F_{\rm cv}$, MPa (ksi)	:	:	424.0 (61.45)	442.6 (64.15)	403.3 (58.45)		:	:
F _{su} , MPa (ksi)	:	:	249.6 (36.17)	240.6 (34.87)	:		:	:
$F_{\text{bru}}, \text{MPa (ksi) } (e/D = 2)$	774.2 (112.2)	:	908.2 (131.63)	:	:		719.7 (104.3)	:
F_{bry} , MPa (ksi) $(e/D = 2)$	635.3 (92.07)	:	704.7 (102.13)	:	:		578.4 (83.83)	:
$K_{\rm IC}$, MPa $\sqrt{\rm m}$ (ksi $\sqrt{\rm in}$.)	:	:	37.5 (34.08)	29.1 (26.45)	:			:
Alloy and temper	2090-T3E27	2090-T3E27	2090-T8(a)	2090-T8(a)	2090-T8(b)	2090-T8(b)	2090-T6	2090-T6
Thickness, mm (in.)	1.6 (0.063)	1.6 (0.063)	1.6 (0.063)	1.6 (0.063)	1.6 (0.063)	1.6 (0.063)	1.6 (0.063)	1.6 (0.063)
Orientation E. MPa (ksi)	L 80.040 (11.600)	80.385 (11.650)	78.315 (11.350)	77.280 (11.200)	L 77.970 (11.300)	77.625 (11.250)	L 76.935 (11.150)	75.900 (11.000)
(1	349.5 (50.65)	349.5 (50.65)	534.8 (77.5)	540.3 (78.3)	549.6 (79.65)	533.0 (77.25)	458.9 (66.5)	476.8 (69.1)
	233.2 (33.8)	231.2 (33.5)	484.4 (70.2)	509.9 (73.9)	525.4 (76.15)	479.9 (69.55)	380.5 (55.15)	411.6 (59.65)
Elongation, %	17.93	17.39	7.54	6.24	5.36	7.59	8.03	6.9
$E_{\rm c}$, MPa (ksi)	:	:	:	: :	:	:	:	:
$F_{\rm cy}$, MPa (ksi)	:	:	:	::	::	:	::	:
$F_{\rm bru}$, MPa (ksi)($e/D = 1.5$)	477.5 (69.2)	:	774.5 (112.25)	:	724.2 (104.95)	:	650.7 (94.3)	:
$F_{\rm bry}$, MPa (ksi) ($e/D = 1.5$)	323.6 (46.9)	:	671.7 (97.35)	:	623.4 (90.35)	:	548.6 (79.5)	:
(a) Peak age 24 h at 160 °C (325 °F). (b) Peak age 24 h at 175 °C (350 °F). Source: Ref A7.11) Peak age 24 h at 175 °C	C (350 °F). Source: Ref A7.	11.					

Table A7.6 Tensile properties of 8090 and 2090 Al-Li extrusions

Alloy and temper	8090-TU51 A	l-Li		2029-T8E41 ((Alcoa data)
Product form	25.4 × 102 mm (1 × 4	in.) extrusion		10.2 × 51 mm (0.4	× 2 in.) extrusion
Orientation	L	T		L	T
E, MPa (ksi)	80,268 (11,633) 7	9,350 (11,500)		81,192 (11,767)	77,508 (11,233)
F _{tu} , MPa (ksi)	589.3 (85.4)	530.1 (76.83)		595.0 (86.23)	532.9 (77.23)
F_{tv} , MPa (ksi)	555.5 (80.5)	455.2 (65.97)		574.1 (83.2)	502.8 (72.87)
Elongation, %	4.29	6.34		7.98	5.01
E _c , MPa (ksi)	81,648 (11,833) 8	1,993 (11,883)			
$F_{\rm cv}$, MPa (ksi)	511.8 (74.17)	489.7 (70.97)			
F_{bru} , MPa (ksi) ($e/D = 2$)	736.2 (106.7)				
F_{bry} , MPa (ksi) ($e/D = 2$)	549.8 (79.68)				
Alloy and temper		8090-TU51 Al-Li		2029-T8E41	(Kaiser data)
Product form	76.2	× 102 mm (3 × 4 in.)	extrusion	T-ext	rusion
Orientation	L	T	S	L	T
E, (ksi)	79,350 (11,500	80,040 (11,600)	78,833 (11,425)	80,040 (11,600)	81,192 (11,767)
F_{fu} , (ksi)	562.7 (81.55)	497.5 (72.1)	489.6 (70.95)	600.0 (86.95)	541.0 (78.4)
$F_{\rm tv}$, (ksi)	532.0 (77.1)	403.13 (58.425)	379.8 (55.05)	572.7 (83)	494.2 (71.63)
Elongation, %	5.30	4.28	3.33	3.07	1.33
Source: Ref A7.11					

Fig. A7.9 Comparison of *S-N* curves for 8090-TU51 extrusion with 2090-T8E41 plate and typical 7075-T6/T7351 aluminum, R = 0.1, $K_t = 1$. Source: Ref A7.11

Fig. A7.10 Comparison of *S-N* curves for 8090-TU51 extrusion with 2090-T8E41 plate and typical 7075-T6/T7351 aluminum, R = 0.1, $K_t = 3$. Source: Ref A7.11

Fig. A7.11 Comparison of da/dN curves for 8090-TU51 extrusion (LT and TL) with 7149-T73511 extrusion and 7050-T7451 plate, R=0.1. Source: Ref A7.11

Table A7.7 Tensile properties of 31.8 mm (1.25 in.) thick B201-T7 plate

	Utimate tens	sile strength, MPa (ksi)	Yield st	rength, MPa (ksi)	Elon	gation, %
Foundry	Avg.	Range	Avg.	Range	Avg.	Range
A	455 (66)	449-462 (65-67)	393 (57)	373-400 (54-58)	8.7	8.3-11
В	483 (70)	469-504 (68-73)	435 (63)	414–455 (60–66)	8.2	7.5-8.8
C	462 (67)	442-483 (64-70)	414 (60)	400-428 (58-62)	8.3	6.5-9.5
Average	469 (68)		414 (60)		8.4	
Source: Ref A7.	12					

Table A7.8 Fracture toughness and notch tensile strength of 31.8 mm (1.25 in.) thick B201-T7 plate

	Fracture tou	ghness (KQ)	Notch tensi	le strength	Yield st		
Foundry	$MPa\sqrt{m}$	ksi√ in.	MPa	ksi	MPa	ksi	NTS/YS
A	51	46	639.6	92.7	398.1	57.7	1.62
	43	39	611.3	88.6	394.7	57.2	1.55
В	30	27	562.4	81.5	431.3	62.5	1.37
	35	32	585.1	84.8	454.0	65.8	1.29
C	54	49	625.8	90.7	416.1	60.3	1.50
	51	46	593.4	86.0	414.7	60.1	1.44
Average	44	40	602.4	87.3	418.1	60.6	1.46

Table A7.9 Tensile properties of 31.8 mm (1.25 in.) thick water- and glycol-quenched D357-T6 plate

		Ultimate tens	sile strength, MPa (ksi)	Yield st	rength, MPa (ksi)	Elon	gation, %
Foundry	Quench medium(a)	Avg.	Range	Avg.	Range	Avg.	Range
A	Water	373 (54)	352-380 (51-55)	311 (45)	304-324 (44-47)	5.9	3.5-8.5
	Glycol(b)	366 (53)	352-380 (51-55)	297 (43)	290-304 (42-44)	6.6	5.5-9.0
В	Water	359 (52)	345-366 (50-53)	311 (45)	304-317 (44-46)	4.5	3.0-5.6
	Glycol(b)	338 (49)	331-345 (48-50)	290 (42)	283-297 (41-43)	3.4	2.5-4.3
C	Water	373 (54)	366–380 (53–55)	324 (47)	317-331 (46-48)	5.4	3.9-8.2
	Glycol(b)	352 (51)	345-359 (50-52)	304 (44)	297-304 (43-44)	4.9	4.6-5.2
Average	Water	366 (53)		317 (46)		5.2	
Ü	Glycol(b)	352 (51)		297 (43)		5.0	

Table A7.10 Fracture toughness and notch tensile strength of 31.8 mm (1.25 in.) thick D357-T6 plate

			toughness, (ksi√in.)	Notch t stren		Yield st	rength	
Foundry	Quench medium	K _{IC}	$K_{\mathbb{Q}}$	MPa	ksi	MPa	ksi	NTS/YS
A	Water		28 (25)	435	63	311	45	1.4
	Glycol(a)	23 (21)		400	58	297	43	1.3
В	Water		26 (24)	429	62	311	45	1.4
	Glycol(a)	24 (22)		400	58	290	42	1.4
C	Water		25 (23)	366	53	324	47	1.1
	Glycol(a)	24 (22)		304	44	304	44	1.0
Average	Water		26 (24)	407	59	317	46	1.3
Ü	Glycol(a)	24 (22)	•••	366	53	297	43	1.2

Fig. A7.12 Comparison of S-N curves for B201-T7 aluminum casting with HIP A201-T7 casting (dashed line, Northrop data: Ref A7.13), 7075-T73 wrought (Alcoa Green Letter GL-206, 1971), and 7475-T7651 wrought (Alcoa Green Letter GL-216, 1985). Source: Ref A7.12

Fig. A7.13 Strain-life data for B201-T7 aluminum casting. Source: Ref A7.12

Ъ

Log N_f

 $K_t = 3.0, R = 0.1$

Foundry A
Foundry B
Foundry C

10⁷

10⁷

10⁶

Fig. A7.14 Comparison of da/dN curves for B201-T7 aluminum casting with other Northrop in-house data (dotted line) and 7075-T7351 plate. Source: Ref A7.12

Fig. A7.15 Comparison of S-N curves for D357-T6 aluminum casting with 7075-T73 (Alcoa Green Letter GL-206, 1971) and 7475-T7651 (Alcoa Green Letter GL-216, 1985) wrought materials. Source: Ref A7.12

Fig. A7.16 Strain-life data for D357-T6 aluminum casting. Source: Ref A7.12

Fig. A7.17 Comparison of *da/dN* curves for D357-T6 aluminum casting with other Northrop in-house data (dotted line) and 7075-T7351 plate. Source: Ref A7.12