

Abbildung 1: Auslenkungs-Zeit-Diagramm von Grund- und Oberschwingungen

Abbildung 2: Auslenkungs-Zeit-Diagramm von verschiedenen Grund- und Oberschwingungen

FOURIERANALYSE

HINTERGRUND UND ANWENDUNGEN VON FREQUENZANALYSEN

Adrian Schrader

2. Dezember 2015

Physik 4h, Herr Kuhn

INHALTSÜBERSICHT

- 1. Einführung und Herleitung
- 2. Diagramme und Darstellungen
- Anwendungen und Beispiele Klangwiedergange einer Geige Charakteristika von Sprache

AUFGABENSTELLUNG

Abbildung 3: Beispiel einer Fouriertransformation (https://i.ytimg.com/vi/-GYB7khbIAO/maxresdefault.jpg, 08.11.15)

AUFGABENSTELLUNG

Abbildung 4: Beispiel einer Fouriertransformation (https://i.ytimg.com/vi/-GYB7khbIA0/maxresdefault.jpg, 08.11.15)

GRUND- UND OBERSCHWINGUNGEN

$$f(t) = \frac{a_0}{2} + a_1 \cdot \cos(t) + a_2 \cdot \cos(2t) + a_3 \cdot \cos(3t) + \dots + b_1 \cdot \sin(t) + b_2 \cdot \sin(2t) + b_3 \cdot \sin(3t) + \dots$$

$$f(t) = \alpha_0 + \alpha_1 \cdot e^{i \cdot t} + \alpha_2 \cdot e^{i \cdot (2t)} + \alpha_3 \cdot e^{i \cdot (3t)} + \dots$$
$$= \sum_{n=0}^{\infty} \alpha_n \cdot e^{i \cdot n \cdot t}$$

$$e^{i \cdot n \cdot t} = \cos(n \cdot t) + i \cdot \sin(n \cdot t)$$
 $i^2 = -1$

MATHEMATISCHE HERLEITUNG

$$e^{i \cdot n \cdot t} = \cos(n \cdot t) + i \cdot \sin(n \cdot t)$$
 $\{n \neq m \text{ und } n, m \in \mathbb{Z}\}$

$$\int_{-\pi}^{\pi} e^{i \cdot n \cdot t} dt = 0$$

$$\int_{-\pi}^{\pi} e^{i \cdot n \cdot t} \cdot e^{-i \cdot m \cdot t} dt = \int_{-\pi}^{\pi} e^{i \cdot (n-m) \cdot t} dt = 0$$

$$\int_{-\pi}^{\pi} e^{i \cdot n \cdot t} \cdot e^{-i \cdot n \cdot t} dt = \int_{-\pi}^{\pi} e^{0} dt = 2\pi$$

MATHEMATISCHE HERLEITUNG

$$f(t) = \alpha_0 + \alpha_1 \cdot e^{i \cdot t} + \alpha_2 \cdot e^{i \cdot (2t)} + \alpha_3 \cdot e^{i \cdot (3t)} + \dots$$

$$\int_{-\pi}^{\pi} f(t) \cdot e^{-i \cdot (2t)} dt = \int_{-\pi}^{\pi} \alpha_0 \cdot e^{-i \cdot (2t)} dt + \int_{-\pi}^{\pi} \alpha_1 \cdot e^{i \cdot t} \cdot e^{-i \cdot (2t)} dt + \int_{-\pi}^{\pi} \alpha_2 \cdot e^{i \cdot (2t)} \cdot e^{-i \cdot (2t)} dt + \int_{-\pi}^{\pi} \alpha_3 \cdot e^{i \cdot (3t)} \cdot e^{-i \cdot (2t)} dt + \dots$$

FOURIER-TRANSFORMATON

$$\int_{-\pi}^{\pi} f(t) \cdot e^{-i \cdot (2t)} dt = 0 + 0 + 2\pi \cdot \alpha_2 + 0 + 0 \dots$$
$$= 2\pi \cdot \alpha_2$$

FOURIER-TRANSFORMATON

$$\int_{-\pi}^{\pi} f(t) \cdot e^{-i \cdot (2t)} dt = 0 + 0 + 2\pi \cdot \alpha_2 + 0 + 0...$$
$$= 2\pi \cdot \alpha_2$$

$$\mathcal{F}(f)(\omega) = \hat{f}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \cdot e^{-i \cdot n \cdot t} dt$$

DIAGRAMME UND DARSTELLUNGEN

FFT UND FREQUENZSPEKTREN

Abbildung 5: http://www.maplesoft.com/products/maple/features/Signal_Processing.aspx, 21.11.15

SPEKTROGRAMME

Abbildung 6: http://www.maplesoft.com/products/maple/features/Signal_Processing.aspx, 21.11.15

KLANGCHARAKTERISTIKA EINER GEIGE

KLANGCHARAKTERISTIKA EINER GEIGE

Abbildung 7: https://commons.wikimedia.org/wiki/File: Spectrogram_-iua-.png, 02.12.15

SPRACHE

Vokal-Formant-Zentren			
deutscher Vokal	IPA	Formant f ₁	Formant f ₂
U	u	320 Hz	800 Hz
0	0	500 Hz	1000 Hz
å	α	700 Hz	1150 Hz
A	а	1000 Hz	1400 Hz
Ö	Ø	500 Hz	1500 Hz
ü	у	320 Hz	1650 Hz
ä	3	700 Hz	1800 Hz
E	е	500 Hz	2300 Hz
I	i	320 Hz	3200 Hz

LITERATUR

- [1] S. V. Konyagin. On everywhere divergence of trigonometric fourier series. *Sbornik: Mathematics*, 191(1):97, 2000.
- [2] H. Lang. Schnelle fouriertransformation (fft), 2012. abgerufen am 29.11.15.
- [3] H. van Hees. Der hilbertraum, 1998. abgerufen am 29.11.15.