计算机组成原理

文杰

计算机科学与技术学院

wenjie@hit.edu.cn

个人主页: http://faculty.hitsz.edu.cn/wenjie

第二章 计算机的运算方法

第二章 计算机的运算方法

- 计算机中数的表示
- 定点运算与浮点运算

计算机中数的表示

- 计算机中数的表示
 - 无符号数和有符号数

机器数与真值;原码/补码/反码/移码表示法

- 定点表示和浮点表示
- IEEE754标准

无符号数

• 以8位寄存器为例

寄存器的位数反映无符号数的表示范围

有符号数: 真值与机器数

真值: 带符号的数

- +0.1011或0.1011
- -0.1011

- +1100或1100
- -1100

机器数: 符号数字化的数

- 注:以后非特殊说明,默认二进制数表示;
 - 二进制数位数不是8的倍数,只是为了讲解方便。

有符号数: 真值与机器数

真值: 带符号的数

+0.1011

+1011

机器数:符号数字化的数

- 小数和整数在计算机中的表示一模一样?
- 如何表示既有整数又有小数的数据,如+11.01?

原码表示法:整数

带符号的绝对值表示

$$x = +1110$$
 $[x]_{\mathbb{R}} = 0$, 1110 用 逗号 将符号位和数值部分隔开 $x = -1110$ $[x]_{\mathbb{R}} = 1$, 1110 $[x]_{\mathbb{R}} = 2^4 - (-1110) = 1$, 1110 $[x]_{\mathbb{R}} = \begin{cases} 0, x & 2^n > x \geq 0 \\ 2^n - x & 0 \geq x > -2^n \end{cases}$

x是真值,n是数值位数

原码表示法: 小数

$$x = +0.1101$$
 $[x]_{\mathbb{R}} = 0$ 1101 用小数点将符号位和数值部分隔开 $x = -0.1101$ $[x]_{\mathbb{R}} = 1$ 1101 = 1 - (-0.1101) $x = +0.1000000$ $[x]_{\mathbb{R}} = 0$ 10000000 用小数点将符号位和数值部分隔开 $x = -0.1000000$ $[x]_{\mathbb{R}} = 1$ 10000000 = 1 - (-0.10000000) $[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \geq 0 \\ 1 - x & 0 \geq x > -1 \\ x$ 是真值

举例: 根据原码求真值

• 例1. 已知 $[x]_{\mbox{\scriptsize g}} = 1.0011$,求 x解: 由小数原码定义得 $x = 1 - [x]_{\mbox{\tiny g}} = 1 - 1.0011 = -0.0011$

• 例2. 已知 $[x]_{\mbox{\sc g}} = 1,1100$,求 x 解: 由整数原码定义得 $x = 2^4 - [x]_{\mbox{\sc g}} = 10000 - 1,1100 = -1100$

举例

- 例4. 求 x = 0 的原码

解:对于小数,设 x = +0.0000 则 $[+0.0000]_{\mbox{\tiny \mathfrak{g}}} = 0.0000$ x = -0.0000 则 $[-0.0000]_{\mbox{\tiny \mathfrak{g}}} = 1.0000$

同理,对于整数 $[+0]_{\mbox{\scriptsize \mathbb{R}}} = 0,0000$ 假设整数的数值位是4位 $[-0]_{\mbox{\scriptsize \mathbb{R}}} = 1,0000$

 $\vdots \quad [+0]_{\mathbb{R}} \neq [-0]_{\mathbb{R}}$

注意: x = 0的原码要分成小数和整数分别讨论

原码的优缺点

• 优点: 简单、直观

• 缺点: 1) +0和-0原码不一样

2) 作加法运算时,会出现如下问题:

要求	数1	数2	实际操作	结果符号	
加法	正	正	加法	正	
加法	正	负	减法	可正可负	
加法	负	正	减法	可正可负	
加法	负	负	加法	负	

实际运算时能否只作加法运算?

原码的缺点

原码运算不等于十进制运算?

补数表示法

- 例:将时钟从5点调到3点
- 补的概念: 时钟以12为模
 - 逆时针: 5-2 = 3
 - 顺时针: 5+10 = 3 + 12

- 可见 -2 可用 +10 代替
 - 称 +10 是 -2 (以 12 为模)的补数
 - 记作 $-2 \equiv +10 \pmod{12}$ 同理 $-4 \equiv +8 \pmod{12}$ $-5 \equiv +7 \pmod{12}$

减法 — 加法

补数——续

可见-1011 与 + 0101 作用等价

记作
$$-1011 \equiv +0101$$
 (mod 2⁴)

同理
$$-011 \equiv +101$$
 (mod 2^3)

$$-0.1001 \equiv +1.0111 \pmod{2^1}$$

- •结论(真值的绝对值小于模)
 - •一个负数加上"模"即得该负数的补数
 - •一个负数和一个正数互为补数时,绝对值之和即为模数

自然去掉

补数——续

正数的补数即为其本身

对于时钟:
$$3点、15点、27点都是3点 \longrightarrow 3 \equiv 15 \equiv 27 \pmod{12}$$
 $3 \equiv 3+12 \equiv 3+24 \equiv 3 \pmod{12}$

同理:
$$+0101 \equiv +0101 + 2^4 \equiv +0101 \pmod{2^4}$$

前面已证明:
$$-1011 \equiv -1011 + 2^4 \equiv +0101 \pmod{2^4}$$

$$2^{4+1} + (-1011) = 1000000 -1011 \over 1,0101 \pmod{2^{4+1}}$$

问题: + 0101 究竟是-1011 的补数还是+0101的补数呢?

补码表示法: 二进制整数

整数补码定义:

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\begin{subarr$$

$$x = +0101000$$
 $x = -1011000$
$$[x]_{N} = 0,0101000$$

$$[x]_{N} = 2^{7+1} + (-1011000)$$

$$= 1000000000$$

$$- 1011000$$

$$1,0101000$$
 和数值部分隔开

补码表示法:二进制(纯)小数

小数补码定义:

$$[x]_{\stackrel{}{\mathbb{A}}} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \\ + x & 0 > x \ge -1 \pmod{2} \end{cases}$$
其中: x 为真值

$$x = +0.1110$$
 $x = -0.1100000$ $[x]_{\uparrow \downarrow} = 0.1110$ $[x]_{\uparrow \downarrow} = -0.1100000+2$ $= 10.0000000$ $= 0.1100000$ $= 1.0100000$ 和数值部分隔开

求补码的快捷方式

当<u>真</u>值为负时,补码可用原码除符号位外每位取反,末位加1求得

举例:已知小数补码求真值

已知 $[x]_{i} = 1.0001$,求 x和 $[x]_{原}$ 。

解:由定义得
$$x = [x]_{-1} - 2$$

= 1.0001-10.0000
= -0.1111

根据真值x

[x]补除符号位外,按位取反

$$|x|_{\mathbb{R}} = 1.1111 = 1.1110 + 0.0001$$

结论: 当真值为负时,已知补码求原码的快捷方法:

- 补码除符号位外,每位取反,末位加1
- 补码除符号位外,末位减 1,再每位取反

练习:已知负数补码求真值

己知
$$[x]_{*} = 1,1110$$
,求 x

解:由定义得
$$x = [x]_{-7} - 2^{4+1}$$
 = 1,1110 - 100000 = -0010

或:
$$[x]_{\stackrel{}{\wedge}} \longrightarrow [x]_{\stackrel{}{\otimes}} \longrightarrow x$$

根据快捷求法: $[x]_{\mathbb{R}} = 1,0001+1=1,0010$

$$\therefore x = -0010$$

练习: 求下列真值的补码

 $[-1.0000]_{36} = 2 + x = 10.0000 - 1.0000 = 1.0000$

反码表示法: 二进制整数

整数反码定义:

$$[x]_{\mathbb{R}} = \begin{cases} 0, x & 2^{n} > x \ge 0 \\ (2^{n+l}-1) + x & 0 \ge x > -2^{n} \pmod{2^{n+l}-1} \end{cases}$$

其中: x 为真值, n 为数值位数

$$x = +1101$$
 $x = -1101$ $[x]_{\overline{\mathbb{C}}} = 0,1101$ $[x]_{\overline{\mathbb{C}}} = (2^{4+1}-1)-1101$ $= 11111-1101$ 用 逗号 将符号位 $= 1,0010$ 数值位按位取反

反码表示法: 二进制小数

小数反码定义:

$$[x]_{\mathbb{Z}} = \begin{cases} x & 1 > x \ge 0 \\ (2-2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

其中: x 为真值, n 为数值位数

$$x = -0.1010$$
 $[x]_{\overline{\mathbb{Q}}} = (2-2^{-4}) - 0.1010$ $= 1.1111 - 0.1010$ $= 1.0101$ 和数值部分隔开 $[x]_{\overline{\mathbb{Q}}} = [1.1010]$ 数值位按位取反

例子:已知反码求真值,0的反码

- 已知 $[x]_{\overline{\mathbb{Q}}} = 1,1110$,求 x 解: 由定义得 $x = [x]_{\overline{\mathbb{Q}}} (2^{4+1} 1)$ = 1,1110 11111 = -0001
- 求 0 的反码 解: 对于小数: 设 x = +0.0000, $[+0.0000]_{\overline{\mathbb{Q}}} = 0.0000$ x = -0.0000, $[-0.0000]_{\overline{\mathbb{Q}}} = 1.1111$ 同理,对于整数 $[+0]_{\overline{\mathbb{Q}}} = 0,0000$, $[-0]_{\overline{\mathbb{Q}}} = 1,1111$

三种机器数的小结

- •最高位为符号位, 书写上用","(整数)或"."(小数)将数值部分和符号位隔开
- •对于正数,符号位为0,原码 = 补码 = 反码
- •对于负数,符号位为 1,其数值部分
 - 原码除符号位外每位取反(反码) 末位加 1 -> 补码
- 当真值为 负 时,已知补码求原码的方法:
 - 补码除符号位外,每位取反,末位加 1
 - 补码除符号位外,末位减 1,再每位取反

例子: 机器数的真值

• 设机器数字长为8位(其中1位为符号位);对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

二进制代码	无符号数	原码对应	补码对应	反码对应
	对应的真值	的真值	的真值	的真值
00000000	0	+0	±0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
•	•	•	•	:
01111111	127	+127	+127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
11111101	: 253	125	•	:
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例:已知 $[y]_{i}$,求 $[-y]_{i}$

例: 设
$$[y]_{\uparrow h} = y_0 \cdot y_1 y_2 \dots y_n$$
, 其中 $y \neq -1.0...0$, 求 $[-y]_{\uparrow h}$ 。

解: *$$[y]_{\stackrel{?}{\Rightarrow}_{\!h}} = 0. \ y_1 y_2 \dots y_n$$

$$y = 0. \ y_1 y_2 \dots y_n$$

$$-y = -0. \ y_1 y_2 \dots y_n$$

$$[-y]_{\stackrel{?}{\Rightarrow}_{\!h}} = 1.\overline{y_1} \overline{y_2} \dots \overline{y_n} + 2^{-n}$$*

$$\langle \mathbf{II} \rangle \qquad \boxed{[y]_{\not \uparrow \downarrow} = 1. \ y_1 y_2 \cdots y_n}$$

$$[y]_{\overline{y}} = 1.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

$$y = -(0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n})$$

$$-y = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

$$[-y]_{\nmid h} = 0.\overline{y_1}\overline{y_2}\cdots\overline{y_n} + 2^{-n}$$

[y]_补连同符号位在内, 每位取反,末位加1, 即得[-y]_补

补码加减

移码表示法

• 补码表示很难直接判断其真值大小

如 十进制	二进制	补码
x = +21	+10101	0,10101
x = -21	-10101	0,10101 十 1,01011 大
x = +31	+11111	0,11111
x = -31	-11111	0,11111 1,00001 大
以上 $x+2^5$	+10101 + 1	000000 = 110101 大 000000 = 001011 大 正确
	-10101 + 1	00000 = 001011
	+11111 + 10	00000 = 1111111 00000 = 000001 正确
	-11111 + 10	00000 = 000001

移码表示法: 二进制整数

• 移码定义

$$[x]_{8} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

其中: x 为真值, n 为 整数的位数

小数的移码定义呢?

• 移码在数轴上的表示

x = 10100

• 例:

$$[x]_{8} = 2^{5} + 10100 = 1,10100$$

 $x = -10100$ 用 逗号 将符号位
和数值位隔开

$$[x]_{8} = 2^5 - 10100 = 0,01100$$

移码和补码的比较

设
$$x = +1100100$$
 $[x]_{8} = 2^{7} + 1100100 = 1,1100100$ $[x]_{1} = 0,1100100$ 设 $x = -1100100$ $[x]_{1} = 2^{7} + (-1100100) = 0,0011100$ $[x]_{1} = 2^{7+1} - 1100100 = 1,0011100$ 补码与移码只差一个符号位

真值、补码和移码的对照表

补码与移码只差一个符号位

真值 x (n=5)	$[x]_{ eqh}$	[x] _移	[x] _移 对应的 十进制整数
-100000 - 11111	100000 100001	00000 000001	0 1
- 11110 : - 00001	$ \begin{array}{c} 100010 \\ \vdots \\ 111111 \end{array} $	$ \begin{array}{c} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \\ \vdots \\ 0 \ 1 \ 1 \ 1 \ 1 \end{array} $	2 : 31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccc} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	$\begin{array}{c} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{array}$	32 33 34
÷ 11110	: 011110	: 111110	: 62
+ 11111	011111	111111	63

移码的特点

续前表, n=5

最小真值 $-2^5 = -100000$ 对应的移码为 $2^5-100000 = 000000$ 最小真值的移码为全 0

可用移码思想表示浮点数的阶码,便于判断浮点数阶码大小

第二章 计算机中数的表示

• 计算机中数的表示

- 无符号数和有符号数
- 定点表示和浮点表示
- IEEE754标准
- 算数移位与逻辑移位

定点表示

- 小数点按约定方式标出
- 定点表示

定点机 小数定点机 整数定点机 原码
$$-(1-2^{-n}) \sim +(1-2^{-n})$$
 $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

浮点表示

为什么要引入浮点数表示?

- 编程困难,程序员要调节小数点的位置;
- **数的表示范围小**,为了能表示两个大小相差很大的数据,需要很长的机器字长;

例如:太阳的质量是 $0.2*10^{34}$ 克,一个电子的质量大约为 $0.9*10^{-27}$ 克,两者的差距为 10^{61} 以上,若用定点数据表示: $2^x>10^{61}$,解得: x>203位。

数据存储单元的利用率往往很低。

浮点表示

```
N = S \times r^{j}
              浮点数的一般形式
 S 尾数 i 阶码 r 基数 (基值)
 计算机中r取 2、4、8、16 等
                               二进制表示
 当 r=2 N=11.0101
            ✓= 0.110101×2<sup>10</sup> 规格化数
              = 1.10101 \times 2^{1}
              = 1101.01 \times 2^{-10}
            \checkmark = 0.00110101 \times 2^{100}
计算机中 S 小数、可正可负
          i 整数、可正可负
```

浮点数的表示形式

 $N = S \times r^{j}$

- $S_{\rm f}$ 代表浮点数的符号
- n 其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- j_f和 m 共同表示小数点的实际位置

浮点数的表示范围

 $-2^{-10} \times 2^{-15}$

小数点位置

n = 10

练习

• 设机器数字长为 24 位, 欲表示±3万的十进制数, 试问 在保证数的最大精度的前提下, 除阶符、数符各 取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

·· 15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15} \times 0.\times \times \times \cdots \times \times \times \times \\ m = 4, 5, 6, \cdots$$

满足 最大精度 可取 m = 4, n = 18

• 浮点数的规格化形式

$$r=2$$
 尾数最高位为 1

$$r=4$$
 尾数最高 2 位不全为 0 基数不同,浮点数的

$$r=8$$
 尾数最高 3 位不全为 0 规格化形式不同

• 浮点数的规格化

$$r=2$$
 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

$$r=4$$
 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位, 阶码加 1

$$r=8$$
 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度越低

$$N = 11.0101$$

$$\checkmark = 0.110101 \times 2^{10}$$

$$= 1.10101 \times 2^{1}$$

$$= 1101.01 \times 2^{-10}$$

$$= 0.00110101 \times 2^{100}$$

机器数规格化

(1) 规格化数的定义

$$r=2 \quad \frac{1}{2} \leq |S| < 1$$

(2) 规格化数的判断

原码 不论正数、负数,第一数位为1

补码 符号位和第1数位不同

特例

(1) 规格化数的定义

$$r=2 \quad \frac{1}{2} \leq |S| < 1$$

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \text{ } \cdots \text{ } 0$$

$$[S]_{?} = [1.1]00 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i}$ 不是规格化的数

$$S = -1$$

$$[S]_{\dagger} = \boxed{1.0000} \cdots 0$$

∴ [-1]¾ 是规格化的数

• 例1. 设 m = 4, n = 10, r = 2, 求尾数规格化后的浮点数表示范围(阶码与尾数都是原码表示)

• 例2. 将+19 写成二进制定点数、浮点数及在定点机和浮点 机中的机器数(原/补/反码)形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。 解: 设 $x = +\frac{19}{128}$ 二进制形式 x = 0.0010011定点表示 x = 0.0010011000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中 $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{D}} = 0.0010011000$

浮点机中 阶码 尾数

 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{k} = 1, 1110; 0.1001100000$

 $[x]_{\mathbf{x}} = 1,1101; 0.1001100000$

• 例3. 将 -58 表示成二进制定点数和浮点数,并写出它在定点机和浮点机中的三种机器数及**阶码为移码、尾数为补码**的形式(其中数值部分 10 位,数符1位,阶码5 位(含1位阶符))。

解: 设x = -58

二进制形式 x = -111010

定点表示 x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

浮点机中

定点机中

 $[x]_{\text{ff}} = 1,0000111010$ $[x]_{\text{ff}} = 0,0110; 1.1110100000$

 $[x]_{3h} = 1, 1111000110$ $[x]_{3h} = 0, 0110; 1.0001100000$

 $[x]_{\cancel{\boxtimes}} = 1, 1111000101$ $[x]_{\cancel{\boxtimes}} = 0, 0110; 1.0001011111$

 $[x]_{\text{max}} = 1,0110; 1.0001100000$

•例4. 写出对应下图所示的浮点数的补码形式。设 n = 10, m = 4, 阶符、数符各取1位。

机器零

- 当浮点数尾数为 0 时,不论其阶码为何值,按机器零处理
- 当浮点数阶码小于它所表示的最小数时,按机器零处理

如 m = 4 n = 10 当阶码和尾数都用补码表示时,机器零为 $\times, \times \times \times;$ 0.00 0 0 0 或者阶码 <-16,按照机器零处理

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0 有利于机器中"判0"电路的实现 16位长的浮点数,其中阶码7位(含1位阶符),尾数9位(含1位数符),当浮点数采用原码表示时,表示的数的范围是[填空1],当浮点数采用补码表示时,数的表示的范围是[填空2]

- A. $-2^{64} \sim 2^{64} (1-2^{-8})$
- B. $-2^{63} \sim 2^{63} (1-2^{-8})$
- C. $-2^{63} \sim 2^{64} (1-2^{-8})$
- D. -2^{63} (1-2⁻⁸) ~ 2^{63} (1-2⁻⁸)

16位长的浮点数,其中阶码7位(含1位阶符),尾数9位(含1位数符),当浮点数采用原码表示时,表示的数的范围是[D],当浮点数采用补码表示时,数的表示的范围是[B]

A.
$$-2^{64} \sim 2^{64} (1-2^{-8})$$
B. $-2^{63} \sim 2^{63} (1-2^{-8})$
C. $-2^{63} \sim 2^{64} (1-2^{-8})$
D. $-2^{63} (1-2^{-8}) \sim 2^{63} (1-2^{-8})$

原码的阶码范围是-63 ~ 63 原码的尾数范围- (1-2⁻⁸) ~ (1-2⁻⁸) 原码的表示范围很明显,选D

补码的尾数范围: -1~ (1-2⁻⁸) 补码的阶码范围是: -64 ~63

补码表示最小数的范围就是 阶码的最大 乘上 尾数的最小 所以选B

第二章 计算机中数的表示

- 计算机中数的表示
 - 无符号数和有符号数
 - 定点表示和浮点表示
 - IEEE754标准

IEEE 754 标准

尾数为规格化表示时:

非"0"的有效位最高位为"1"(隐含)

	符号位S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

IEEE 754浮点数标准

• 单精度 (32-bit)

31	30	29	28	27	26	25	24	23	22 ~ 0
S		8	3位指	数()	无符 [。]	号数)			23位尾数(无符号数)

• 双精度 (64-bit)

63	62	61	60	59	58	57	56	55	54	53	52	51~0
S				11	位指数	女(无	符号数	ζ)				52位尾数(无符号数)

	符号位 S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

IEEE 754浮点数: 单精度为例

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
S 8位指数(无符号数)									23位尾数(无符号数)							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	23位尾数(无符号数)															

指数	尾数	表示对象	换算方法
0	0	0	规定 (符号位不同, 存在+0.0和-0.0)
0	非0	正负 <mark>非</mark> 规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ⁽⁰ - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负浮点数

- 正负浮点数 = $(-1)^S$ × $(1 + 尾数_9)$ × $2^{(指数 127)}$
- 尾数前加一?
 - 因为规格化二进制数,小数点前要求是1,这个1称为**前导数**。为了打包更多的位到数中,就在二进制表示中省略了前导数,默认小数点前有1。
 - **有效位数**: 隐含的1加上尾数共有多少位。对单精度来说,有效位数是 24 位(隐含的1和 23 位尾数);对双精度来说,是 53 位(1 + 52)。
 - 由于尾数0和非规格化数没有前导数,所以被赋予特殊的指数 0, 硬件不会给它附加 1。

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负 <mark>非</mark> 规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ⁽⁰ - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负浮点数

- 正负浮点数 = $(-1)^S$ × $(1 + 尾数_9)$ × $2^{(指数 127)}$
- 指数 127?
 - 使用**移码的思想(偏移值是127)**。二进制表示中的指数部分是**移码**,可以直接进行大小比较。如果两个数的**符号相同**,那么具有**更大二进制指数的数就更大**。
 - 对于真值而言, 其**实际的"指数"范围:** [1-127: 254-127] = [-126: 127]

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ^(0 - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负非规格化数

- 正负非规格化数 = $(-1)^S$ × (尾数₂) × $2^{(0-126)}$
- 什么是非规格化数?
 - 规格化数: 科学计数法中整数部分没有前导 0 的数称为规格化数;
 - 非规格化数: 整数部分前导为 0 的数
- 非规格化数的绝对值比浮点数绝对值更小
 - 对于正负浮点数来说,若二进制指数部分为1,则真值指数部分为 -126,和非规格化数相同。但浮点数尾数有前导1,导致浮点数绝对值更大。

指数	尾数	表示对象	换算方法
0	0	0	规定
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ^(0 - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 正负非规格化数

• 正负浮点数 = $(-1)^S \times (1 + 尾数_2) \times 2^{(指数 - 127)}$

尾数23位

• 正负非规格化数 = $(-1)^S \times (尾数_2) \times 2^{(0-126)}$

最小正浮点数: $S_2 = (1 + 0_2) * 2^{(1-127)} = 2^{-126}$

第二小正浮点数: $S_1 = (1 + 0.0...01_2) * 2^{(1-127)} = 2^{-126} + 2^{-149}$

最大非规格化数: $S_3=0.1...11_2*2^{(0-126)}=(1-2^{-23})*2^{-126}=2^{-126}-2^{-149}$

最小非规格化正数: S_4 =0.0...01₂*2⁽⁰⁻¹²⁶⁾= 2⁻²³ * 2⁻¹²⁶= 2⁻¹⁴⁹

IEEE 754浮点数: 真值转二进制

- 例题
 - 将十进制 -0.75 转为单精度 IEEE 754格式二进制
- 解: 根据十进制小数转二进制小数算法: $-0.75_{10} = -0.11_2$ 规格化: $-0.11 = -1.1 * 2^{-1}$,能够规格化,说明是正负浮点数表示 $-1.1 * 2^{-1} = (-1)^S \times (1 + \mathbf{E}\mathbf{\underline{w}}_2) \times 2^{(\frac{1}{2}6 \frac{1}{2}7)}$ $= (-1)^1 \times (1 + 0.1_2) \times 2^{(\frac{1}{2}6 \frac{1}{2}7)}$

符号位: 1; 指数部分: 126; 尾数部分: 0.12

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IEEE754相关网址: https://www.h-schmidt.net/FloatConverter/IEEE754.html

IEEE 754浮点数: 真值转二进制

IEEE754相关网址: https://www.h-schmidt.net/FloatConverter/IEEE754.html

Tools & Thoughts IEEE-754 Floating Point Converter Translations: de				
This page allows you to convert between the decimal representa	ation of r	numbers (like "1.02") and the	e binary format used by all modern CPUs (IEEE 754 floating point).	
		IEEE 7	754 Converter (JavaScript), V0.22	
	Sign	Exponent	Mantissa	
Value:	-1	2 ⁻¹	1.5	
Encoded as:	1	126	4194304	
Binary:	Vou o	ntered -0.75		
		actually stored in float: -0.75		
		due to conversion: 0.00		
			111110100000000000000000000000000000000	
	Hexad	lecimal Representation 0xbf40	400000	

Update

There has been an update in the way the number is displayed. Previous version would give you the represented value as a possibly rounded decimal number and the same number with the increased pre float. Now the original number is shown (either as the number that was entered, or as a possibly rounded decimal string) as well as the actual full precision decimal number that the float value is represent a nice example to see this behaviour. The difference between both values is shown as well, so you can easier tell the difference between what you get in IFFF-754.

IEEE 754浮点数: 二进制转真值

• 例题

• 将二进制IEEE754浮点数表示转换为十进制浮点数(空白为0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

解

符号位为1,指数字段为129,尾数字段为2⁻² = 0.25。是浮点数 $(-1)^S \times (1 + 尾数_2) \times 2^{(\frac{1}{2})} = (-1)^1 \times (1 + 0.25) \times 2^{(\frac{1}{2})} = -1 \times 1.25 * 2^2$

-5.0

			:
0	非0	正负 <mark>非</mark> 规格化 数	正负非规格化数 = (-1)^S * (尾数₂) * 2^(0 - 126) (S代表符号位,1为负数,0为正数)
[1· 254]	任意	正角浮点数	正角浮点数 = (-1) ^S * (1 + 尾数 。) * 2(指数 - 127)

IEEE 754浮点数: 二进制转真值

Tools & Thoughts IEEE-754 Floating Point Converter Translations: de This page allows you to convert between the decimal represe	itation of i	numbers (like "1.02") and the bin	nary format used by all modern CPUs (IEEE 754 floating point).		
	IEEE 754 Converter (JavaScript), V0.22				
	Sign	Exponent	Mantissa		
Value:	-1	2 ²	1.25		
Encoded as Binary:	1	129	2097152		
, -	Decim	nal representation -5.0			
Value actually stored in float:			+1		
	Error	due to conversion:	-1		
	Binary	Representation 11000000	01010000000000000000000		
	Hexad	lecimal Representation 0xc0a000	000		