

PROGRAMA ANALÍTICO DE ASIGNATURA

1. IDENTIFICACION DE LA MATERIA

NOMBRE DE LA ASIGNATURA: SISTEMAS OPERATIVOS I

PRE-REQUISITOS : INF310

SIGLA Y CODIGO : INF-323

NIVEL : Sexto Semestre

HORAS : 6 (4 HT, 2 HP)

CREDITOS : 5

REVISADO EN : Agosto-2011

2. JUSTIFICACION

Los Sistemas Operativos son una parte esencial de cualquier sistema informático, por lo que un curso sobre esta materia constituye un componente fundamental de la carrera de informática y afines. A pesar de que este campo esta cambiando rápidamente, ya que ahora las computadoras ocupan una parte esencial de nuestra cotidianidad, los conceptos y principios básicos del área de Sistemas Operativos siguen siendo los mismos, y son esos principios lo que serán presentados en esta asignatura.

Los sistemas operativos son sistemas de software complejos. El entendimiento de los conceptos utilizados y la implementación de estos programas, proporciona desafíos y ejemplos al estudiante, que en el futuro le permitirá realizar aplicaciones que aprovechen los recursos eficientemente.

3. OBJETIVOS DE LA ASIGNATURA

3.1. OBJETIVO GENERAL.

Al finalizar la asignatura, el estudiante será capaz de:

Obtener una comprensión sólida de los mecanismos clave de los sistemas operativos modernos, las concesiones y las decisiones que acarrean los diferentes componentes de un Sistema Operativo y el contexto en el que éstos operan.

3.2. OBJETIVOS ESPECIFICOS

- Adquirir la facultad de describir la vista funcional de los Sistemas Operativos, como un mecanismo para compartir recursos.
- Comprender los conceptos, la estructura y los componentes de los Sistemas Operativos y la interrelación existente entre ellos.
- Conocer la naturaleza y las características de los sistemas operativos actuales.
- Establecer la importancia del Administrador de Memoria y del Administrador de Procesos en un entorno multiprogramado.

4. CONTENIDO MINIMO

Conceptos introductorios: Definición y capas de un SO. Tipos de SO.

Administración de Procesos: Planificación RR y con cola de prioridades.

Administración de Memoria Contigua.

Administración de Memoria no-contigua: Paginación y swapping.

Programación de Hilos y Exclusión Mutua.

5. UNIDADES DEL PROGRAMA ANALITICO

UNIDAD I. CONCEPTOS INTRODUCTORIOS.

Tiempo: 9 horas

Objetivo

Conocer la arquitectura básica de un Sistema Operativo, identificando la función que desempeña cada una de las partes que lo componen.

Contenido

- 1.1. ¿Qué es un Sistema Operativo?
- 1.2. Capas o estratos de un SO.
 - 1.2.1 Núcleo o Kernel.
 - 1.2.2 Administradores de Memoria, Procesos, Información, I/O, Red.
 - 1.2.3 El Shell.
- 1.3. Tipos de Sistemas Operativos, según su procesamiento.
 - 1.3.1 Sistemas Operativos Multiprocesos.
 - 1.3.2 Sistemas Operativos Monoprocesos. Procesamiento Batch.
- 1.4. Implementación moderna del Multiproceso.
 - 1.4.1 Concepto de Proceso.
 - 1.4.2 Time-Sharing.
 - 1.4.3 Estados de un Proceso.
- 1.5 Modos de Procesamiento.
 - 1.5.1 Paralelo.
 - 1.5.2 Tiempo Real.

UNIDAD II. ADMINISTRACION DE PROCESOS.

Tiempo: 21 horas

Objetivo

Establecer nítidamente como lleva a cabo sus funciones el Administrador de Procesos de un SO a través del estudio de varias estrategias de planificación.

Contenido

- 2.1 Funciones del Administrador de Procesos.
- 2.2 Planificador y Despachador.
- 2.3 Esquema general de un planificador.
- 2.4. Planificación Round-Robin (RR)
- 2.5. Planificador SJF
- 2.6 Planificación con cola de prioridades.
- 2.7 Planificación con baja de prioridad.
- 2.8 Aplicación en el área de las APP's.

UNIDAD III. ADMINISTRACION DE MEMORIA CONTIGUA.

Tiempo: 21 horas

Objetivo

Analizar con un enfoque práctico las diferentes políticas y técnicas para realizar la administración contigua de la memoria primaria de la computadora.

Contenido

- 3.1 Conceptos Introductorios.
 - 3.1.1 Administración de Memoria Contigua.
 - 3.1.2 Administración de Memoria No-Contigua.
 - 3.1.3 Variables del Administrador de Memoria.
 - 3.1.4 Principales estrategias en la Adm. de Memoria Contigua.
- 3.2 Asignación Contigua Simple.
- 3.3 Asignación Contigua Múltiple.
 - 3.3.1. Estructura de Datos usada.
 - 3.3.2. FF y BF
 - 3.3.3. Fragmentación y Compactación.
- 3.4 Asignación Contigua por Particiones Fijas.

UNIDAD IV. ADMINISTRACION DE MEMORIA NO-CONTIGUA.

Tiempo: 21 horas

Objetivo

Estudiar las estrategias que permiten a un Administrador de Memoria moderno gestionar más bytes de RAM de los que realmente dispone.

Contenido

- 4.1 Paginación.
- 4.2 Paginación bajo solicitud.
 - 4.2.1 Memoria virtual o de intercambio (swap).
 - 4.2.2 Fallo de página (page-fault).
- 4.3. Algoritmos para el intercambio de páginas.
 - 4.3.1 LRU
 - 4.3.2 NRU
 - 4.3.3 FIFO

UNIDAD V. HILOS Y EXCLUSION MUTUA

Tiempo: 21 horas

Objetivo

Aprender a desarrollar aplicaciones Multihilos tomando en cuenta a las condiciones de concurso que se puedan generar dentro de ellas.

Contenido

- 5.1 Concepto de Hilo (thread).
- 5.2 Uso de hilos en un lenguaje de programación.
- 5.3. Condiciones de Concurso y Exclusión Mutua.
- 5.4 Aplicaciones.

6. METODOLOGIA

COMPONENTE	MÉTODO
Temas teóricos conceptuales	Clases magistrales y multimedia.
Temas Prácticos	Usando el SO Windows 7.
Proyectos	Consulta bibliográfica, internet y presentaciones.

7. CRONOGRAMA

8. <u>SISTEMA DE EVALUACION</u>

La nota final de 100 puntos, se obtiene de la siguiente manera:

2 exámenes parciale	es60%
Proyectos	15%
Examen Final	25%

9. **BIBLIOGRAFIA**

- Harvey M. Deitel, **Operating Systems**, Addison-Wesley, 2nd Ed., 1990, USA.
- Carretero Jesús, **Sistema Operativo: "Una Visión Aplicada"**, McGraw-Hill 2004
- Casillas Aratza, **Sistema Operativo**, Prentice Hall 2002
- Silberschatz Abrahan, Galvin, Peter Baer, Gogne Grec. Fundamentos De Sistemas Operativos, Mcgraw-Hill - 7ma Edición 2006.
- Stallings William, **Sistemas Operativos**, 5ta Edición Prentice Hall 2006.
- Tanenbaum Andrew, **Sistemas Operativos Modernos**, Prentice Hall 2005.