The sound is the sound of the sound in the s

PRIMER EXAMEN PARCIAL CÁLCULO II

Licenciatura en Actuaría Semestre 2024-2025B

Lunes 31 de abril de 2025

Instrucciones:

- Resuelve los siguientes ejercicios justificando tus respuestas de manera clara, ordenada y detallada. Es fundamental desarrollar correctamente el procedimiento en cada respuesta.
- Escribe tus respuestas en las hojas blancas proporcionadas. Si necesitas hojas adicionales, solicítalas al profesor.
- Duración: 2 horas una vez entregado la hoja del examen al primer estudiante en el aula.
- Puedes utilizar los resultados vistos en clase, siempre que los cites correctamente en tus respuestas.
- No se permite el uso de calculadora.
- No se permite el uso de ningún material de apoyo.

Ejercicio 1 (2 puntos). Analiza la convergencia de la sucesión

$$\left(\frac{n^{2024}}{n^{2025}+1}+\pi\right)_{n=1}^{\infty}$$

En caso de ser convergente determina el límite y proporciona una demostración rigurosa basada en la definición formal de convergencia de sucesiones, verificando que $\lim_{n\to\infty} a_n = L$.

Ejercicio 2 (3 puntos). Analiza la convergencia o divergencia de cada una de las siguientes sucesiones. Si una sucesión es convergente, determina su límite L y justifica claramente utilizando las propiedades y teoremas de sucesiones que $\lim_{n\to\infty} a_n = L$.

2.1.
$$\left(\frac{(n+1)(n+2)(n+3)}{n^3}\right)_{n=1}^{\infty}$$

2.2.
$$\left(\frac{\sqrt{4n^2 + 2025}}{n}\right)_{n=1}^{\infty}$$

Ejercicio 3 (3 puntos). Analiza la convergencia de cada una de las siguientes series. Si una serie es convergente, determina su suma. En todos los casos, proporciona una justificación clara y detallada de tu respuesta.

3.1.
$$1 + \frac{1}{\sqrt{3}} + \frac{1}{3} + \frac{1}{3\sqrt{3}} + \frac{1}{9} + \dots$$

3.2.
$$\sum_{n=1}^{\infty} \left[\frac{n^{2024}}{n^{2025} + 1} + \pi \right]$$

Ejercicio 4 (2 puntos). Sea $\sum_{n=1}^{\infty} x_n$ una serie en \mathbb{R} tal que $|x_n| \leq \frac{1}{3^n}$, para cada $n=1,2,\ldots$ Demostrar que la serie $\sum_{n=1}^{\infty} x_n$ converge y que $\left|\sum_{n=1}^{\infty} x_n\right| \leq \frac{1}{2}$.