9 September 2011 -- Computer Architectures -- part 2/2

Name, Matricola

Question 1

Considering the MIPS64 architecture presented in the following:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 6 stages
- FP arithmetic unit: pipelined 2 stages
- FP divider unit: not pipelined unit that requires 10 clock cycles
- branch delay slot: 1 clock cycle, and the branch delay slot is not enable
- forwarding is enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion.
- o and using the following code fragment, show the timing of the presented loop-based program and compute how many cycles does this program take to execute?

V1: V2:		e "100 values" e "100 values"			
V Δ.	.double	e 100 values			
V5:	.double	e "100 zeroes"			
V6:	.double	e "100 zeroes"			
		.text			
		.text			
main:	daddui r1,r0,0				
	daddui	r2,r0,100			
loop:	l.d	f1,v1(r1)			
	l.d	f2,v2(r1)			
	div.d	f4,f1,f2			
	s.d	f4,v4(r1)			
	l.d	f3,v3(r1)			
	mul.d	f5,f3,f4			
	s.d	f5,v5(r1)			
	daddi	r2,r2,-1			
	add.d	f6,f4,f5			
	s.d	f6,v6(r1)			
	daddui	r1,r1,8			
	bnez	r2,loop			
	halt	-			

comments	Clock cycles
n1. maintan	
r1← pointer	
r2 <= 100	
$fl \leftarrow v1[i]$	
f2← v2[i]	
$f4 \leftarrow v1[i]/v2[i]$	
$ \begin{array}{c} v4[i] \leftarrow f3 \\ f3 \leftarrow v3[i] \end{array} $	
$f5 \leftarrow v3[i]*v4[i]$	
$v5[i] \leftarrow f5$ $r2 \leftarrow r2 - 1$	
$f6 \leftarrow v4[i]+v5[i]$	
v6[i] ← f6	
r1 ← r1 + 8	

total

9 September 2011 -- Computer Architectures -- part 2/2

Name, Matricola

Question 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 6 stages
 - v. 1 FP divider unit, which is not pipelined: 10 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 2 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).

o Complete the table reported below showing the processor behavior for the 2 initial iterations.

0

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)					
1	l.d f2,v2(r1)					
1	div.d f4,f1,f2					
1	s.d f4,v4(r1)					
1	l.d f3,v3(r1)					
1	mul.d f5,f3,f4					
1	s.d f5,v5(r1)					
1	daddi r2,r2,-1					
1	add.d f6,f4,f5					
1	s.d f6,v6(r1)					
1	daddui r1,r1,8					
1	bnez r2,loop					
2	l.d f1,v1(r1)					
2	l.d f2,v2(r1)					
2	div.d f4,f1,f2					
2	s.d f4,v4(r1)					
2	l.d f3,v3(r1)					
2	mul.d f5,f3,f4					
2	s.d f5,v5(r1)					
2	daddi r2,r2,-1					
2	add.d f6,f4,f5					
2	s.d f6,v6(r1)					
2	daddui r1,r1,8					
2	bnez r2,loop					