Maestría en Computo Estadístico Inferencia Estadística Tarea 6

F

3 de noviembre de 2020 Enrique Santibáñez Cortés Repositorio de Git: Tarea 6, IE.

Escriba de manera concisa y clara sus resultados, justificando los pasos necesarios. Serán descontados puntos de los ejercicios mal escritos y que contenga ecuaciones sin una estructura gramatical adecuada. Las conclusiones deben escribirse en el contexto del problema. Todos los programas y simulaciones tienen que realizarse en R.

2. Demuestre que la sucesión del inciso e) del Ejercicio 1 converge en probabilidad y casi seguramente, pero que no converge en L_2 . Demuestre que la sucesión del inciso f) del Ejercicio 1 converge en L_2 .

RESPUESTA

Recordemos la definición de las tres tipos de convergencia

Teorema: 1 Sea $\{X_n, n \ge 1\}$ una sucesión de v.a. y sea X una v.a. Denotemos por F_n a la función de distribución de X_n y por F a la función de distribución de X.

1. X_n converge a X en probabilidad, denotado por $X_n \xrightarrow{P} X$, si para cada $\epsilon > 0$,

$$\lim_{r \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$$

2. X_n converge a X en media cuadrádtica (o en L_2), denotado por $X_n \xrightarrow{L_2} X$, si

$$\lim_{r \to \infty} \mathbb{E}[(X_n - X)^2] = 0.$$

3. Diremos que X_n converge casi seguramente a X, denotado por $X_n \xrightarrow{c.s} X$, si

$$\mathbb{P}(\{\omega: X_n(\omega) \to X(\omega)\}) = 1.$$

Primero demostremos que la sucesión del inciso e) no converge en L_2 a 0. Tenemos que $X_n = 2^n 1_{[0,1/n]}(Z), Z \sim Unif(0,1)$, lo anterior se puede interpretar como

$$f_{X_n}(x_n) = \begin{cases} \mathbb{P}\left(0 \le Z \le \frac{1}{n}\right) & x_n = 2^n \\ 1 - \mathbb{P}\left(0 \le Z \le \frac{1}{n}\right) & x_n = 0 \end{cases} \Leftrightarrow f_{X_n}(x_n) = \begin{cases} \frac{1}{n} & x_n = 2^n \\ 1 - \frac{1}{n} & x_n = 0 \end{cases},$$

la anterior es cierto ya que como $Z \sim Unif(0,1) \Rightarrow$

$$\mathbb{P}\left(0 \le Z \le \frac{1}{n}\right) = \int_0^{\frac{1}{n}} dz = \frac{1}{n}.$$

Ahora calculamos la media cuadrática de $X_n - X \equiv 0$

$$\mathbb{E}[(X_n - X)^2] = \mathbb{E}[(X_n)^2] = \frac{1}{n}(2^n)^2 + \left(1 - \frac{1}{n}\right)0 = \frac{4^n}{n}$$

Veamos que la función de arriba es exponencial y la de abajo es polinomial de grado 1, por lo que podemos afirmar que 4^n crece más rápido que n, por lo que podemos decir que el lím $_{n\to\infty} \frac{4^n}{n} = \infty$, es decir diverge, y por lo tanto podemos concluir que

$$\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = \lim_{n \to \infty} \frac{4^n}{n} \neq 0,$$

por lo cuál, podemos decir que $X_n=2^n1_{[0,1/n]}(Z),\ Z\sim Unif(0,1),$ no converge en L_2 a 0.

Ahora, para demostrar que $X_n = 2^n 1_{[0,1/n]}(Z)$, $Z \sim Unif(0,1)$ converge casi seguramente utilizando la distribución de probabilidad de X_n tenemos que

$$f_{X_n}(x_n) = \begin{cases} \frac{1}{n} & x_n = 2^n \\ 1 - \frac{1}{n} & x_n = 0 \end{cases} \Rightarrow \lim_{n \to \infty} f_{X_n}(x_n) = \begin{cases} 0 & x_n = \infty \\ 1 & x_n = 0 \end{cases}$$

Y por lo anterior, podemos concluir que

$$\mathbb{P}(\{\omega: X_n(\omega) \to 0\} = 1,$$

es decir, X_n converge casi seguramente a 0. Ahora, ocupando el teorema (5) y como sabes que converge casi seguramente a 0, esto implica que X_n también converge en probabilidad a 0.

Ahora, demostremos que la sucesión del incso f) ejercicio 1 converge en L_2 . Tenemos que $Y_1, \dots Y_n \sim N(0,1)$ v.a.i. y $X_1 = X_2 = 1$,

$$X_n = \frac{\sum_{i=1}^n Y_i}{(2n \log(\log(n)))^{1/2}}, \quad n \ge n.$$

Para mostrar que X_n converge en L_2 a 0 tenemos que

$$\mathbb{E}[(X_n - 0)^2] = \mathbb{E}[X_n^2] = \mathbb{E}\left[\left(\frac{\sum_{i=1}^n Y_i}{(2n\log(\log(n)))^{1/2}}\right)^2\right] = \frac{1}{2n\log(\log(n))}\mathbb{E}\left[\left(\sum_{i=1}^n Y_i\right)^2\right],$$

pero como las $Y_i's \sim N(0,1)$ entonces podemos decir que $\sum_{i=1}^n Y_i \sim N(0,n)$ (propiedad de v.a's normales), y entonces

$$Var\left(\sum_{i=1}^{n}Y_{i}\right) = \mathbb{E}\left[\left(\sum_{i=1}^{n}Y_{i}\right)^{2}\right] - \left(\mathbb{E}\left[\sum_{i=1}^{n}Y_{i}\right]\right)^{2} = \mathbb{E}\left[\left(\sum_{i=1}^{n}Y_{i}\right)^{2}\right] = n.$$

Entonces

$$\mathbb{E}[(X_n - 0)^2] = \frac{1}{2n \log(\log(n))} \mathbb{E}\left[\left(\sum_{i=1}^n Y_i\right)^2\right] = \frac{n}{2n \log(\log(n))} = \frac{1}{2 \log(\log(n))}.$$

y por lo tanto el límite de la 2da esperanza de X_n es

$$\lim_{x \to \infty} \mathbb{E}[(X_n - 0)^2] = \lim_{x \to \infty} \frac{1}{2 \log(\log(n))} = 0.$$

Por lo tanto, podemos concluir que X_n converge en L_2 a 0.

- 3. Supongamos que X_0, X_1, \cdots es una sucesión de experimentos Bernoulli independientes con probabilidad de éxito p. Supongamos también que X_i es la indicadora del éxito de su equipo en el i-ésimo juego de un rally de fútbol. Su equipo anota un punto cada vez que tiene un éxito seguido de otro. Denotemos por $S_n = \sum_{i=1}^n X_{i-1} X_i$ al número de puntos que su equipo anota al tiempo n.
 - a) Encuentre la distribución asintótica de S_n .

RESPUESTA

Calculemos la esperanza de $X_{i-1}X_i$ (recordemos que las $X_i's$ son independientes), para ello utilizaremos las propiedades de la esperanza

$$\mathbb{E}(X_{i-1}X_i) = \mathbb{E}(X_{i-1})\mathbb{E}(X_i) - Cov(X_{i-1}X_i) = p^2 - 0 = p^2.$$

Ahora calculemos la varianza de S_n , por como esta descrito el problema podemos asumir independencia entre cualquier pareja de $X_{i-1}X_i$ y $X_{j-1}X_j$, $j \neq i$, entonces ocupando lo anterior podemos calcular la varianza como

$$Var(X_{i-1}X_i) = \mathbb{E}(X_{i-1}^2)\mathbb{E}(X_i^2) - (\mathbb{E}(X_{i-1})\mathbb{E}(X_i))^2$$

= $p * p - p^2p^2 = p^2(1 - p^2) = p^2(1 - p^2).$

Por lo tanto, ocupando el teorema central de limite tenemo

$$\frac{S_n - np^2}{\sqrt{np^2(1 - p^2)}} \to Normal(0, 1).$$

Es decir, $\frac{S_n - np^2}{\sqrt{np^2(1-p^2)}}$ tiene una distribución asintótica Normal(0,1). Igual podemos decir, que para un n fínito, S_n aproximadamente se distribuye como $Normal(np^2, \sqrt{np^2(1-p^2)})$.

4. Sean X_1, X_2, \cdots v.a.i tales que $X_i \sim Unif[-j, j], \ j = 1, 2, \cdots$ Muestre que la sucesión satisface la condición de Lindeberg.

RESPUESTA

Enunciemos la condición de Lindeberg

Teorema: 2 Sea $\{X_n, n \geq 1\}$ independientes (pero no necesariamente idénticamente distribuidas) y suponga que X_k tiene distribución F_k y que $\mathbb{E}(X_k) = 0$ y $Var(X_k) = \sigma_k^2$. Definamos

$$s_n = \sum_{j=1}^n \sigma_j^2 = Var(\sum_{j=1}^n X_j).$$

Diremos que $\{X_k\}$ satisface la condición de Lindeberg si, para todo t>0, cuando $n\to\infty$

$$\frac{1}{s_n^2} \sum_{j=1}^n \mathbb{E}(X_j^2 1_{\{|X_j/s_n| > t\}}) \to 0.$$

y además ocupemos el siguiente teorema

Teorema: 3 Sea $\{X_n, n \geq 1\}$ independientes (pero no

Demostremos primero que se cumple la condición de Lyapunov (definición 4), como $X'_j s \sim Unif(-j, j)$ entonces tenemos que la distribución de probabilidad es

$$f_{X_j} = \begin{cases} \frac{1}{2j} & -j < x < j \\ 0 & \text{en otro caso} \end{cases}$$

y ocupando lo anterior, tenemos que

$$\mathbb{E}\left(|X_j|^{\delta+2}\right) = \int_{-j}^{j} |x_j|^{\delta+2} \frac{1}{2j} dx_i = 2 \int_{0}^{j} x_k^{\delta+2} \frac{1}{2j} dx_j = \frac{1}{j} \left. \frac{x_j^{\delta+3}}{\delta+3} \right|_{0}^{j} = \frac{j^{\delta+2}}{\delta+3}.$$

Ahora calculemos s_n^2 , tenemos que $\sigma_i^2 = \frac{j^2}{3}$ entonces

$$s_n^2 = \sum_{i=1}^n \sigma_i^2 = \sum_{j=1}^n \frac{j^2}{3} \Rightarrow s_n^{2+\delta} = s_n^2 \left(\sqrt{s_n^2}\right)^{\delta} = \left(\sum_{j=1}^n \frac{j^2}{3}\right)^{\frac{\delta}{2}+1}$$

Entonces, sea $\delta = 2$ esto implica que

$$\frac{\sum_{j=1}^{n} \mathbb{E}\left[|X_j|^{2+2}\right]}{s_n^{2+2}} = \frac{\sum_{j=1}^{n} \frac{j^4}{5}}{\left(\sum_{j=1}^{n} \frac{j^2}{3}\right)^2} = \frac{9}{5} \frac{\sum_{j=1}^{n} j^4}{\left(\sum_{j=1}^{n} j^2\right)^2},\tag{1}$$

observemos que

$$\left(\sum_{j=1}^{n} j^2\right)^2 = \sum_{j=1}^{n} j^4 + 2\sum_{j=1}^{n} \sum_{\substack{k=1\\k\neq j}} j^2 k^2 \Rightarrow \left(\sum_{k=1}^{n} j^2\right)^2 > \sum_{k=1}^{n} j^4.$$

Por lo tanto, como el denominador es más grade que el numerador en la expresión (1) podemos decir que el converge a 0 cuando $n \to \infty$, es decir,

$$\lim_{n \to \infty} \frac{\sum_{j=1}^{n} \mathbb{E}\left[|X_j|^{2+2}\right]}{s_n^{2+2}} = \frac{9}{5} \lim_{n \to \infty} \frac{\sum_{j=1}^{n} j^{2}}{\left(\sum_{j=1}^{n} j^{2}\right)^{2}} = 0$$
 (2)

Cómo encontramos en $\delta=2$ tal que se cumpla (4), podemos concluir que se cumple la condición de Lyapunov. Y por lo tanto, **ocupando el teorema (3) podemos concluir que igual se cumple la condición de Lindeberg.** \blacksquare .

5. Sean X_1, X_2, \cdots v.a.i tales que $\mathbb{P}(X_j = \mp j^a) = \mathbb{P}(X_j = 0) = 1/3$, donde $a > 0, \ j = 1, 2, \cdots$. Muestre que se cumple la condición de Lyapunov.

RESPUESTA

La condición de Lyapunov nos dice que

Teorema: 4 Sea $\{X_k, k \geq 1\}$ una sucesión de v.a.i. satisfaciendo $\mathbb{E}[X_k] = 0$, $Var(X_k) = \sigma_k^2 < \infty$ y $s_n^2 = \sum_{j=1}^n \sigma_j^2$. Si para algún $\delta > 0$

$$\frac{\sum_{k=1}^{n} \mathbb{E}\left[|X_k|^{\delta+2}\right]}{s_n^{\delta+2}} \to 0.$$

Calculemos la esperanza y la varianza de X_k , la cual es

$$\mathbb{E}(X_k) = \frac{k^a - k^a}{3} = 0 \quad \text{y} \quad Var(X_k) = \mathbb{E}(X_k^2) - [E(X_k)]^2 = \frac{(k^a)^2 + (-k^a)^2}{3} = \frac{2}{3}k^{2a}.$$

Ahora calculemos $\mathbb{E}[|X_k|^{\delta+2}]$ y $s_n^{\delta+2}$,

$$\mathbb{E}(|X_k|^{\delta+2}) = \frac{(|k^a|)^{\delta+2} + (|-k^a|)^{\delta+2}}{3} = \frac{2}{3}k^{a(\delta+2)}.$$

$$s_n^{\delta+2} = s_n^2 \left(\sqrt{s_n^2}\right)^{\delta} = \left(\sum_{k=1}^n \frac{2}{3}k^{2a}\right)^{\frac{\delta}{2}+1}$$

Entonces, sea $\delta=2$ esto implica que

$$\frac{\sum_{k=1}^{n} \mathbb{E}\left[|X_{k}|^{\delta+2}\right]}{s_{n}^{\delta+2}} = \frac{\sum_{k=1}^{n} \frac{2}{3}k^{4a}}{\left(\sum_{k=1}^{n} \frac{2}{3}k^{2a}\right)^{2}} = \frac{\frac{2}{3}\sum_{k=1}^{n}k^{4a}}{\frac{4}{9}\left(\sum_{k=1}^{n}k^{2a}\right)^{2}} = \frac{3}{2}\frac{\sum_{k=1}^{n}k^{4a}}{\left(\sum_{k=1}^{n}k^{2a}\right)^{2}},$$

observemos que

$$\left(\sum_{k=1}^{n} k^{2a}\right)^2 = \sum_{k=1}^{n} k^{4a} + 2\sum_{j=1}^{n} \sum_{\substack{k=1\\k\neq j}} j^{2a} k^{2a} \Rightarrow \left(\sum_{k=1}^{n} k^{2a}\right)^2 > \sum_{k=1}^{n} k^{4a}.$$

Si observamos la última igualdad anterior observamos que cuando $n \to \infty$ tanto el número y denominador divergente, pero observamos que el denominador crece más rápido que el denominador, es decir, es de un orden mayor. Por lo tanto, como el denominador tiende a ∞ más rápido que el denominador podemos concluir que la toda la expresión tiene a 0, es decir cuándo $n \to \infty$

$$\frac{\sum_{k=1}^{n} \mathbb{E}\left[|X_k|^{\delta+2}\right]}{S_n^{\delta+2}} \to 0.$$

Por lo tanto, como ya encontramos un $\delta = 2$ tal que se cumple

$$\frac{\sum_{k=1}^{n} \mathbb{E}\left[|X_k|^{\delta+2}\right]}{s_n^{\delta+2}} \to 0.$$

podemos concluir que se cumple la condición de Lyapunov.

- 6. Justifique que $X_n \xrightarrow{P} 1$ en cada uno de los siguientes casos:
- a) $X_n = 1 + nY_n$, con $Y_n \sim Bernoulli(1/n)$.
- b) $X_n = Y_n / \log n$, con $Y_n \sim Poisson(\sum_{i=1}^n 1/i)$. c) $X_n = \frac{1}{n} \sum_{i=1}^n Y_i^2$, con las $Y_i's$ v.a.i.i.d. y $Y_i \sim N(0,1)$.

¿En qué casos $X_n \xrightarrow{L_2} 1$?

RESPUESTA

Primero recordemos que

Teorema: 5 Sea $\{X_n\}$ una sucesión de v.a.i y X una variable aleatoria X, entonces se tienen las siguientes relaciones:

- a) $X_n \xrightarrow{L_2} X$ implica que $X_n \xrightarrow{P} X$.
- b) $X_n \xrightarrow{P} X$ implies que $X_n \xrightarrow{d} X$.
- c) $X_n \xrightarrow{c.s} X$ implies que $X_n \xrightarrow{P} X$.

Entonces para este ejercicio primero procederemos a validar si convergen en L_2 y si lo satisfacen entonces ocupando el teorema (5) podríamos concluir que también convergen en probabilidad.

a) $X_n = 1 + nY_n$, con $Y_n \sim Bernoulli(1/n)$. Para probar que $X_n \xrightarrow{L_2} 1$ ocupemos la definición (1) de convergencia en L_2 , tenemos que

$$\mathbb{E}[(X_n - 1)^2] = \mathbb{E}[X_n^2 - 2X_n + 1] = \mathbb{E}[X_n^2] - 2\mathbb{E}[X_n] + 1 = \mathbb{E}[(1 + nY_n)^2] - 2\mathbb{E}[(1 + nY_n)] + 1$$

$$= \mathbb{E}[1 + 2nY_n + 4n^2Y_n^2] - 2\left(1 + n\frac{1}{n}\right) + 1$$

$$= 1 + 2n\mathbb{E}[Y_n] + 4n^2\mathbb{E}[Y_n^2] - 4 + 1$$

$$= 1 + 2n\frac{1}{n} + 4n^2\left(1^2\frac{1}{n} + 0\right) - 4 + 1$$

$$= 1 + 2 + 4n - 4 + 1 = 4n,$$

lo anterior implica que

$$\lim_{x \to \infty} \mathbb{E}[(X_n - 1)^2] = \lim_{x \to \infty} 4n = \infty,$$

es decir, la serie diverge, lo que podemos concluir que $X_n=1+nY_n$, con $Y_n\sim Bernoulli(1/n)$ no converge en L_2 a 1, $X_n \stackrel{L_2}{\longrightarrow} 1$. Ahora probemos que $X_n \stackrel{P}{\longrightarrow} 1$, para ello ocuparemos la relación que existe de convergencia casi segura y probabilidad (teorema (5)), primero probaremos que converge casi seguramente a 1, es decir, $X_n \stackrel{c.s}{\longrightarrow} 1$, tenemos que la función de distribución de $X_n=1+nY_n$, $Y_n\sim Bernoulli(1/n)$ es

$$f_{X_n}(x_n) = \begin{cases} \frac{1}{n} & x_n = 1+n\\ 1 - \frac{1}{n} & x_n = 1 \end{cases}$$

entonces

ya que
$$\lim_{n\to\infty} f_{X_n}(x_n) = \begin{cases} 0 & \lim_{n\to\infty} x_n = \lim_{n\to\infty} 1+n \\ 1 & \lim_{n\to\infty} x_n = \lim_{n\to\infty} 1=1 \end{cases}$$
 ir place que $\mathbb{P}(\{\omega: X_n(\omega)\to 1\}=1)$.

Es decir, lo anterior demuestra que $X_n \xrightarrow{c.s} 1$. Por lo tanto, **ocupando el teorema (5) podemos** concluir que X_n también converge en probabilidad a 1.

b) $X_n = Y_n/\log n$, con $Y_n \sim Poisson\left(\sum_{i=1}^n 1/i\right)$. Veamos si converge en L_2 a 1, para ello observemos que

$$\mathbb{E}[(X_n - 1)^2] = \mathbb{E}[X_n^2 - 2X_n + 1] = \mathbb{E}[X_n^2] - 2\mathbb{E}[X_n] + 1 = \mathbb{E}[(Y_n/\log n)^2] - 2\mathbb{E}[(Y_n/\log n)] + 1$$

$$= \frac{1}{(\log n)^2} \mathbb{E}(Y_n^2) - \frac{2}{\log n} \mathbb{E}(Y_n) + 1$$

$$= \frac{\sum_{i=1}^n \frac{1}{i} + \left(\sum_{i=1}^n \frac{1}{i}\right)^2}{(\log n)^2} - \frac{2\sum_{i=1}^n \frac{1}{i}}{\log n} + 1$$

$$= \frac{\sum_{i=1}^n \frac{1}{i}}{(\log n)^2} + \left(\frac{\sum_{i=1}^n \frac{1}{i}}{\log n}\right)^2 - \frac{2\sum_{i=1}^n \frac{1}{i}}{\log n} + 1,$$

Ocupemos la siguiente propiedad conocida de la serie armónica (la demostración es sencilla ocupando la definición de logaritmo como integral)

Teorema: 6 Serie armónica

$$\sum_{i=1}^{n} \frac{1}{i} \le \log n + 1$$

Entonces ocupando la propiedad anterior podemos demostrar que

$$\lim_{n\to\infty}\left(\frac{\sum_{i=1}^n\frac{1}{i}}{\log n}\right)<\lim_{n\to\infty}\left(\frac{\log n+1}{\log n}\right)=1+\lim_{n\to\infty}\left(\frac{1}{\log n}\right)=1.$$

Entonces ocupando lo anterior podemos observar que

$$\lim_{n \to \infty} \mathbb{E}[(X_n - 1)^2] = \lim_{n \to \infty} \left(\frac{\sum_{i=1}^n \frac{1}{i}}{(\log n)^2} + \left(\frac{\sum_{i=1}^n \frac{1}{i}}{\log n} \right)^2 - \frac{2\sum_{i=1}^n \frac{1}{i}}{\log n} + 1 \right)$$

$$= \lim_{n \to \infty} \left(\frac{\sum_{i=1}^n \frac{1}{i}}{\log n} \frac{1}{\log n} \right) + \lim_{n \to \infty} \left(\frac{\sum_{i=1}^n \frac{1}{i}}{\log n} \right)^2 - 2\lim_{n \to \infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\log n} + 1$$

$$= \lim_{n \to \infty} \left(\frac{\sum_{i=1}^n \frac{1}{i}}{\log n} \right) \lim_{n \to \infty} \left(\frac{1}{\log n} \right) + \left(\lim_{n \to \infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\log n} \right)^2 - 2\lim_{n \to \infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\log n} + 1$$

$$= 1(0) + 1^2 - 2(1) + 1 = 0.$$

Por lo anterior, queda demostrado que $X_n \xrightarrow{L_2} 1$. Entonces, ocupando el teorema (5) podemos concluir que como $X_n \xrightarrow{L_2} 1$ esto implica que $X_n \xrightarrow{P} 1$.

c) $X_n = \frac{1}{n} \sum_{i=1}^n Y_i^2$, con las $Y_i's$ v.a.i.i.d. y $Y_i \sim N(0,1)$, recordemos lo siguiente

Teorema: 7 (Demostrado en clase) Sea Y_1, Y_2, \cdots, Y_n v.a.i.i.d con distribución Normal(0,1), entonces $Y_i^2 \sim Ji - cuadrada(1)$ y además $\sum_{i=1}^n Y_i^2 \sim Ji - cuadrada(n)$.

Sabiendo lo anterior denotemos a $\sum_{i=1}^n Y_i^2 \equiv W_n \sim Ji - cuadrada(n)$ para facilitar la notación, procedemos a demostrar si $X_n = \frac{1}{n}W_n$ entonces converge en L_2 a 1 o no. Recordemos que si $X \sim Ji - cuadrada(n) \Rightarrow \mathbb{E}[X] = n$ y Var(X) = 2n. Entonces tenemos que

$$\mathbb{E}[(X_n - 1)^2] = \mathbb{E}[X_n^2 - 2X_n + 1] = \mathbb{E}[X_n^2] - 2\mathbb{E}[X_n] + 1 = \mathbb{E}\left[\left(\frac{W_n}{n}\right)^2\right] - 2\mathbb{E}\left[\left(\frac{W_n}{n}\right)\right] + 1$$

$$= \frac{1}{n^2}\mathbb{E}(W_n^2) - \frac{2}{n}\mathbb{E}(W_n) + 1$$

$$= \frac{1}{n^2}\left(Var(W_n) + \mathbb{E}[W_n]^2\right) - \frac{2n}{n} + 1$$

$$= \frac{1}{n^2}\left(2n + n^2\right) - 2 + 1$$

$$= \frac{2}{n} + 1 - 2 + 1 = \frac{2}{n}.$$

Ocupando lo anterior podemos observar que

$$\lim_{n \to \infty} \mathbb{E}[(X_n - 1)^2] = \lim_{n \to \infty} \frac{2}{n} = 0.$$

Por lo tanto, como $\mathbb{E}[(X_n-1)^2] \to 0$, podemos concluir que $X_n = \frac{1}{n} \sum_{i=1}^n Y_i^2$ converge en L_2 a 1. Entonces, ocupando el teorema (5) podemos concluir que como $X_n \xrightarrow{L_2} 1$ esto implica que $X_n \xrightarrow{P} 1$.

Ejericios de las Notas:

1. (Diapositiva 85) La proporción real de familias en cierta ciudad que viven en casa propia es 0.7. Si se escogen al azar 84 familias de esa ciudad y se les pregunta si viven o no en casa propia, ¿Con qué probabilidad podemos asegurar que el valor que se obtendrá de la proporción muestral caerá entre 0.64 y 0.76? Resolverlo usando la corrección por continuidad.

RESPUESTA

Denotemos por X_i a la variable de que la i-ésima familia viva en en casa propia (1 ó 0). En este caso tenemos que $X_i \sim Bernoulli(0,7)$. La proporción muestral está dada por

$$\hat{\theta}_{84} = \frac{1}{84} \sum_{i=1}^{84} X_i.$$

La corrección por continuidad nos dice que si $X \sim Bin(n,p)$ y si np y np(1-p) son grandes, entonces

$$\mathbb{P}(X < x + 1) \approx \mathbb{P}(Y \le x + 1/2)$$

donde Y es una variable aleatoria que se distribuye como una normal con media np y varianza np(1-p) es decir, $Y \sim N(np, \sqrt{np(1-p)})$.

Entonces podemos aproximar la probabilidad de que se la proporción muestral este entre $0.64 \ y \ 0.76$ como

$$\mathbb{P}(0.64 < \hat{\theta}_{84} < 0.76) = \mathbb{P}(0.64 < \frac{1}{84} \sum_{i=1}^{84} X_i < 0.76) = \mathbb{P}((0.64) * 84 < \sum_{i=1}^{84} X_i < (0.76) * 84)$$

$$= \mathbb{P}(53.76 < \sum_{i=1}^{84} X_i < 63.84),$$

como $X_i \sim Bernoulli(0,7) \sim \sum_{i=1}^{84} X_i \sim Binomial(84,0,7)$, como np = 58,8 y np(1-p) = 17,64 son grandes podemos ocupar la corrección de continuidad utilizando $Z \sim Normal(58,8,4,2)$. Es decir, tenemos que

$$\mathbb{P}(0.64 < \hat{\theta}_{84} < 0.76) = \mathbb{P}(54 < \sum_{i=1}^{84} X_i < 64) \approx \mathbb{P}(Z \le 63.5) - \mathbb{P}(Z \le 53.5) = 0.8684401 - 0.1034915$$
$$= 0.7649486.$$

Si comparamos la aproximación obtenida por la corrección de continuidad y la aproximación utilizando el TLC vista en clase, observamos que la que mejor aproxima a la teórica (0.7621075) es la obtenida por la por la corrección de continuidad.

2. (Diapositiva 93) De hecho una suma de l variables aleatorias Ji-cuadradas independientes con n_i grados de libertad (i = 1, ..., l) es una variable aleatoria Ji- cuadrada con $m = n_1 + n_2 + ... + n_l$ grados de libertad. Verificar.

RESPUESTA

Recordemos que la función generadora de momentos de una variable $X_1 \sim Ji - cuadrada(n_1)$ es

$$M_{X_1}(t) = (1 - 2t)^{-\frac{n_1}{2}},$$

entonces si tenemos X_1, X_2, \dots, X_l variables independientes que se distribuye como Ji-cuadrada (n_1) , Ji-cuadrada $(n_2), \dots,$ Ji-cuadrada (n_l) respectivamente entonces la función generadora de momentos de la suma de estas variables independientes es

$$M_{\sum_{i=1}^{l} X_i}(t) = \mathbb{E}\left(e^{t\sum_{i=1}^{l} X_i}\right) = \mathbb{E}\left(e^{tX_1}\right) \mathbb{E}\left(e^{tX_2}\right) \cdots \mathbb{E}\left(e^{tX_l}\right) = M_{X_1}(t)M_{X_2}(t) \cdots M_{X_l}(t)$$

$$= (1 - 2t)^{-\frac{n_1}{2}} (1 - 2t)^{-\frac{n_2}{2}} + (1 - 2t)^{-\frac{n_l}{2}} = (1 - 2t)^{\frac{n_l}{2}}$$

$$= (1 - 2t)^{-\frac{m}{2}}.$$

donde $m = \sum_{i=1}^{l} n_i$. Por lo tanto, como la generadora de momentos es igual a la generadora de momentos de una Ji-cuadrada(m), podemos concluir que la suma de l variables aleatorias Ji-cuadradas independientes con n_i grados de libertad (i = 1, ..., l) es una variable aleatoria Ji- cuadrada con $m = n_1 + n_2 + ... + n_l$ grados de libertad. \blacksquare .

3. (Diapositiva 141, opcional) Demostrar que

$$n\mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log f(x)\right)^2\right] = -n\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2}\log f(x)\right].$$

4. (Diapositiva 110) Otro estimador para σ^2 en poblaciones normales es $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$. Calcular el sesgo de este estimador.

RESPUESTA

Recordemos la siguiente definición de sesgo

Definición: 1 Si un estimador $\hat{\theta}$ no es insesgado para θ , se dice que es sesgado y se define el sesgo de $\hat{\theta}$ como

$$Sesgo(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta.$$

Tenemos que,

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \frac{n-1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n-1}{n} S^2,$$

donde S^2 es un estimador insesgado para σ^2 en poblaciones normales. Lo anterior implica que

$$\mathbb{E}(S_n^2) = \mathbb{E}\left(\frac{n-1}{n}S^2\right) = \frac{n-1}{n}\mathbb{E}\left(S^2\right) = \frac{n-1}{n}\sigma^2.$$

Y por lo tanto el sesgo de S_n^2 es

$$Sesgo(S_n^2) = \frac{n-1}{n}\sigma^2 - \sigma^2 = -\frac{\sigma^2}{n}. \quad \blacksquare.$$

5. (Diapositiva 118) Se dejará como ejercicio demostrar que la función de densidad de $X_{(n)}$ y su varianza son

$$f_{X_{(n)}}(x) = n \frac{x^{n-1}}{\theta^n}, \quad 0 < x < \theta$$

$$Var(X_{(n)}) = \frac{n}{(n+1)^2(n+2)}\theta^2,$$

respectivamente.

RESPUESTA

Tenemos que la función de distribución del estadístico de orden n es

$$f_{X_{(n)}}(x) = n[F_X(x)]^{n-1}f_X(x).$$

En este problema, tenemos que $X_i \sim Unif(0,\theta)$, entonces esto implica que la función de distribución de $X_{(n)}$ sea

$$f_{X_{(n)}}(x) = n[F_X(x)]^{n-1} f_X(x) = n \left[\frac{x}{\theta}\right]^{n-1} \frac{1}{\theta} = n \frac{x^{n-1}}{\theta^n} \quad 0 < x < \theta.$$

Por lo que la varianza se puede calcular como:

$$Var(X_{(n)}) = \mathbb{E}(X_{(n)}^{2}) - [\mathbb{E}(X_{(n)})]^{2}$$

$$= \int_{0}^{\theta} x^{2} n \frac{x^{n-1}}{\theta^{n}} dx - \left(\int_{0}^{\theta} x n \frac{x^{n-1}}{\theta^{n}} dx \right)^{2}$$

$$= \frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n+1} dx - \left(\frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n} dx \right)^{2}$$

$$= \frac{n}{\theta^{n}} \frac{x^{n+2}}{n+2} \Big|_{0}^{\theta} - \left(\frac{n}{\theta^{n}} \frac{x^{n+1}}{n+1} \Big|_{0}^{\theta} \right)^{2}$$

$$= \frac{n\theta^{2}}{n+2} - \frac{n^{2}\theta^{2}}{(n+1)^{2}} = \theta^{2} \frac{n(n+1)^{2} - n^{2}(n+2)}{(n+2)(n+1)^{2}}$$

$$= \theta^{2} \frac{n^{3} + 2n^{2} + n - n^{3} - 2n^{2}}{(n+2)(n+1)^{2}} = \theta^{2} \frac{n}{(n+2)(n+1)^{2}}.$$

6. (Diapositiva 131) Calcular el valor esperado de la variable aleatoria T_r y a partir del resultado proponer un estimador insesgado para μ , donde $T_r = \mathbf{el}$ tiempo de vidad total acumulado de las componentes a la terminación del experimento es

$$T_r = \sum_{i=1}^r Y_i + (n-r)Y_r.$$

RESPUESTA

Notemos que los Y_i son los estadísticos de orden i de los tiempos de vida. Una forma de proceder puede ser obteniendo el valor esperado de la fórmula anterior, sin embargo necesitamos conocer las densidades de los estadísticos de orden, hasta el de orden r inclusive. Esto sería algo extenuante ya que la distribución estaría cambiando para cada valor de la variable Y_i , por ello se prefiere una forma alternativa de escribir el tiempo T_r . Es importante recalcar el hecho de que cuando falla una componente las restantes siguen teniendo una distribución exponencial con el mismo parámetro θ , a pesar de saber que han vivido por lo menos el tiempo de las componentes que fallaron. Esta es la propiedad de pérdida de memoria.

Con lo anterior en mente observemos que:

• las n componentes duran hasta lo que dura el estadístico de primer orden, Y_1 , de las n componentes, cada una $\text{Exp}(\theta)$.

- las (n-1) componentes restantes duran un tiempo adicional de $Y_2 Y_1$, que representa el nuevo estadístico de orden uno de las (n-1) componentes restantes, cada una $\text{Exp}(\theta)$.
- las (n-2) componentes restantes duran un tiempo adicional de $Y_3 Y_2$ que representa el nuevo estadístico de orden uno de las (n-2) componentes restantes, cada una $\text{Exp}(\theta)$.
- y así sucesivamente.

Por lo tanto, otra expresión para T_r es

$$T_r = nY_1 + (n-1)(Y_2 - Y_1) + (n-2)(Y_3 - Y_2) + \dots + [n-(r-1)](Y_r - Y_{r-1})$$

donde se están sumando los mínimos tiempos cada vez. Observemos que

$$\mathbb{E}(Y_1) = \frac{\theta}{n}, \ Y_1 = \text{est. de orden 1 de las} n \text{comp. cada una} exp(\theta)$$

$$\mathbb{E}(Y_2 - Y_1) = \frac{\theta}{(n-1)}, \ Y_2 - Y_1 = \text{est. orden 1 de las} n - 1 \text{comp. restantes}$$

$$\mathbb{E}(Y_3 - Y_2) = \frac{\theta}{(n-2)}, \ Y_3 - Y_2 = \text{est. orden 1 de las} n - 2 \text{comp. restantes}$$

$$\vdots$$

$$\mathbb{E}(Y_r - Y_{r-1}) = \frac{\theta}{(n-(r-1))},$$

Con lo anterior, podemos calcular la esperanza de T_r de manera más sencilla

$$\mathbb{E}(T_r) = \mathbb{E}[nY_1 + (n-1)(Y_2 - Y_1) + (n-2)(Y_3 - Y_2) + \dots + [n-(r-1)](Y_r - Y_{r-1})]$$

$$= n\frac{\theta}{n} + (n-1)\frac{\theta}{(n-1)} + \dots + [n-(r-1)]\frac{\theta}{[n-(r-1)]}$$

$$= \theta + \theta + \dots + \theta = r\theta.$$

Por lo tanto,

$$\mathbb{E}(T_r) = r\theta,$$

de donde un estimador insesgado utilizando este procedimiento sería

$$\hat{\theta} = \frac{T_r}{r}$$
. \blacksquare .