Following a consistent programming style often helps readability. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Normally the first step in debugging is to attempt to reproduce the problem. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. There exist a lot of different approaches for each of those tasks. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. There are many approaches to the Software development process. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages.