An overview of Recurrent Neural Networks

Jeremy Watt

Some data types have independent features

- Some data types have independent features
- Order in which we feed them in doesn't matter

Race	Gender	Diabetes	Weight	Readmitted
caucasian	male	No	188	No

Some data types have spatially correlated features

- Some data types have spatially correlated features
- Order in which we feed them in definitely matters

- Some data types have spatially correlated features
- Order in which we feed them in definitely matters
- Convolutional modeling can leverage this

Some data types have temporarly ordered features

- Some data types have temporarly ordered features
- Order in which we feed them in definitely matters

- Some data types have temporarly ordered features
- Order in which we feed them in definitely matters
- Recursive modeling can leverage this (e.g., RNNs)

Popular problems with ordered sequential I/O

- predict future values of a time series
- input: ordered sequence of past series values
- output: ordered sequence of future series values

Machine translation

- Translate language X into language Y
- input: ordered sequence of words (in X)
- output: ordered sequence of words (in Y)

"I do not like cats" —> "Los gatos me caen mal"

Speech recognition

- Speech to text
- · input: ordered sequence of raw audio
- output: ordered sequence of words

Text generation

- generate valid but wacky text automatically
- input: ordered sequence of characters (training text corpus)
- output: ordered sequence of characters

- Generate wacky sentences with this academic RNN text generator
- Various twitter bots that tweet automatically generated text like this one.
- NanoGenMo annual contest to automatically produce a 50,000+ novel automatically
- Robot Shakespear a text generator that automatically produces Shakespear-esk sentences

Ingesting sequential I/O data for supervised learning

• Sequence of P (floating point) numbers: $\langle s_0, s_1, s_2, \dots, s_P \rangle$

- Sequence of P (floating point) numbers: $\langle s_0, s_1, s_2, \dots, s_P \rangle$
- s_p : the pth value

- Sequence of P (floating point) numbers: $\langle s_0, s_1, s_2, \dots, s_P \rangle$
- s_p : the pth value
- regression problem- I/O are windowed subsequences

- Sequence of P (floating point) numbers: $\langle s_0, s_1, s_2, \dots, s_P \rangle$
- s_p : the pth value
- regression problem- I/O are windowed subsequences
 - so need training and testing sets
 - lets see how both are formed, start with training

training

testing

One more time - with notation

Input	Output	
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄	

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	:

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	•

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	:
$\langle s_{P-4}, s_{P-3}, s_{P-2}, s_{P-1} \rangle$	SP

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄
$\langle s_1, s_2, s_3, s_4 \rangle$	S ₅
	:
$\langle s_{P-4}, s_{P-3}, s_{P-2}, s_{P-1} \rangle$	SP

testing

One more time - with notation

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}
$\langle \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3}, \hat{s}_{P+4} \rangle$	\hat{s}_{P+5}

here we illustratred with window size T = 4

ı	
Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}
$\langle \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3}, \hat{s}_{P+4} \rangle$	\hat{s}_{P+5}
	:

Ingesting sequential I/O data

Text generation

- Sequence of P characters: $\langle s_0, s_1, s_2, \dots, s_P \rangle$
- s_p : the pth character

Text generation

- Sequence of P characters: $\langle s_0, s_1, s_2, \dots, s_P \rangle$
- s_p : the pth character
- - classification problem- I/O are windowed subsequences

Text generation

- Sequence of P characters: $\langle s_0, s_1, s_2, \dots, s_P \rangle$
- s_p : the pth character
- classification problem- I/O are windowed subsequences
 - so need training and testing sets
 - lets see how both are formed, start with training

dogs are great

dogs are great

dogs are great

dogs are great

training

testing

One more time - with notation

dogs are great

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅

do**gs are** great

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	:

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	•

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	•

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> 4
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	•

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	:

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	•

input output

Input	Output
$\langle s_0, s_1, s_2, s_3 \rangle$	<i>S</i> ₄
$\langle s_1, s_2, s_3, s_4 \rangle$	<i>S</i> ₅
	:
$\langle s_{P-4}, s_{P-3}, s_{P-2}, s_{P-1} \rangle$	SP

dogs are great

input output

training

testing

dogs are great

training

testing

dogs are greate input prediction

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}

dogs are greater input prediction

Input Output $\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$ \hat{s}_{P+1} $\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$ \hat{s}_{P+2}

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}

dogs are greater

input prediction

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}

dogs are gre<mark>ater</mark>

input

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}

dogs are gre<mark>ater t</mark>

input prediction

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}

dogs are grea<mark>ter t</mark>

input

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}

dogs are grea<mark>ter th</mark>

input prediction

Output
\hat{s}_{P+1}
\hat{s}_{P+2}
\hat{s}_{P+3}
\hat{s}_{P+4}
\hat{s}_{P+5}

dogs are great<mark>er th</mark>

input

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}
$\langle \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3}, \hat{s}_{P+4} \rangle$	\hat{s}_{P+5}

dogs are greater tha

input prediction

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}
$\langle \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3}, \hat{s}_{P+4} \rangle$	\hat{s}_{P+5}
	:

here we illustratred with window size T = 4

dogs are greater than

Input	Output
$\langle s_{P-3}, s_{P-2}, s_{P-1}, s_P \rangle$	\hat{s}_{P+1}
$\langle s_{P-2}, s_{P-1}, s_P, \hat{s}_{P+1} \rangle$	\hat{s}_{P+2}
$\langle s_{P-1}, s_P, \hat{s}_{P+1}, \hat{s}_{P+2} \rangle$	\hat{s}_{P+3}
$\langle s_P, \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3} \rangle$	\hat{s}_{P+4}
$\langle \hat{s}_{P+1}, \hat{s}_{P+2}, \hat{s}_{P+3}, \hat{s}_{P+4} \rangle$	\hat{s}_{P+5}
:	:

dogs are greater than

(character pre-processing)

- characters —> numbers for supervised models
- use one-hot encoding scheme

$$a \leftarrow \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \qquad b \leftarrow \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \qquad c \leftarrow \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \cdots$$

RNN architecture

RNN architecture

- Want: parameterized supervised learning model that enforces ordered sequential-ness on I/O
- So: extend feedforward nets to ingest sequences

feed input in as vector

$$h = anh\left(v_0 + \sum_{t=1}^T v_t s_t\right) \frac{\text{RNN}}{h_0 = anh\left(v_0 + v s_0\right)}$$

$$h_0 = \tanh\left(v_0 + v s_0\right)$$

$$h_t = \tanh\left(v_0 + vs_t + uh_{t-1}\right)$$

$$\hat{y} = b + wh_T$$

$$(y-\hat{y})^2$$

$$\hat{y} = b + wh$$

$$(y-\hat{y})^2$$

RNN technical issues

- RNN still trained via gradient descent (a.k.a. backprop)
- Similar 'vanishing gradient' problem as with feedforward nets
- Using different activation (relu) helps, but additional unit architecture helps a lot (<u>Long Term Short Memory</u> module)

SUMMARY Supervised learning + structured data

Beyond vanilla

- Vanilla models don't exploit ordered sequential I/O
- Include I/O structure in learning framework —> better results
 - Engineer into fixed feature extraction
 - limbed parameterized feature extractor in model (e.g., convnets, RNNs)
- RNNs one parameterized way to exploit sequential I/O
- RNNs are natural extension of feedforward nets, and inherit similar technical issues