浙江大学 20<u>21</u> - 20<u>22</u> 学年<u>春夏</u>学期 《 普通物理学 I (H) 》课程期中考试试卷

课程号: <u>R61R0060</u>, 开课学院: <u>物理学院</u> 考试试卷: A. ***、B 卷(请在选定项上打 √) 考试形式: Ø、开卷(请在选定项上打 √),允许带<u>计算器和字典</u>入场 考试日期: <u>2022</u>年 <u>04</u> 月 <u>20</u> 日, 考试时间: <u>95</u> 分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:		字号:			
题序	_	=	Ξ	四	总 分
得分					
评卷人					

Instructions:

-W. EL. Jul. A-

- 1. There are 4 problems. They are comprehensive questions. Please find out the easier ones to solve first.
- Please include the necessary intermediate results, for which you can get partial credits. If you guess the final results, please state clearly and write down why you guess so; otherwise, you may not get any credit.
- 3. In the long questions, even if you cannot solve the earlier part, you may still be able to solve the later ones. So do not give up easily.
- 4. If you cannot complete your answer in the corresponding box, indicate clearly where the rest of your answer can be found.
- 5. There are two blank pages at the end which you may use if you need scrap paper.

1. Dynamics of a block (25 points).

A hemisphere of mass M and radius R is put on a frictionless horizontal table and can move freely. A block of mass m is located on the top of this hemisphere. Initially both the hemisphere and the block are at rest, and the initial position of the block infinitesimally deviates from $\theta=0$ so that it starts to slide down the hemisphere from rest. The block detaches the hemisphere at angle θ_0 , as shown in Fig. 1. Neglect the size of the block and the friction between the block and the hemisphere.

Figure 1: A block sliding down a hemisphere.

- (a) Find the angle θ_0 . (It is enough to give the equation in which θ_0 is the only unknown quantity. You do not need to solve this equation if it is too complicated for you.)
- (b) What is the value of θ_0 when $m \ll M$ and $m \gg M$?

2. A rolling body (25 points).

A round uniform body (sphere, cylinder, ring, etc.) of mass M and radius R is initially placed at the top of a ramp of height h at angle θ (Fig. 2). Then it rolls down the ramp from rest without slipping. The moment of inertia with respect to the rotation axis through its center of mass is I.

Figure 2: A round uniform body with mass M and radius R rolling down the ramp with angle θ .

- (a) Determine the time required for the body to reach the bottom of the ramp.
- (b) Is the time obtained in (a) shorter or longer for the body with larger I? Explain its physical reason.
- (c) Assuming that the friction reaches the maximal static friction, find the static friction coefficient.

3. Vibrational modes of CO_2 (25 points).

Consider a linear triatomic molecule of CO_2 [Fig. 3(a)]. We model the CO_2 molecule by two kinds of balls (with mass m_1 for O atoms and m_2 for C atom) connected by two identical springs with the spring constant k [Fig. 3(b)], where the force F between the C and O atoms follows the simple relation

$$F = -k\Delta x\,, (1)$$

where Δx is the deviation from their equilibrium distance a_0 .

Figure 3: Schematic pictures of a CO₂ molecule.

- (a) Calculate three eigenfrequencies for longitudinal vibrational modes along the C-O bond direction (x direction) and illustrate the motion of the atoms in each normal mode.
- (b) For transverse vibrational modes, assume that the O atoms are stationary and fixed at $x = \pm a_0$, and the C atom oscillates in the y direction with a small amplitude compared to the equilibrium distance a_0 [Fig. 3(c)]. Calculate the restoring force acting on C atom as a function of the perpendicular displacement y. Is this vibrational mode a harmonic motion? Explain the reason of your answer.

4. Galilean transformation of the wave equation (25 points).

Consider an oscillatory wave traveling on a string (Fig. 4) whose linear density (mass per unit length) is σ . Introduce x and y coordinates as the horizontal and the vertical coordinates, respectively, and describe the wave by y coordinate of the string at x and time t as y = y(x, t). Assume that the magnitude F of the tension is constant throughout the string, and the amplitude of the oscillation is small.

Figure 4: An oscillatory wave on a string.

- (a) First, write down the equation of motion for the mass element Δm of the string between x and $x + \Delta x$. Then, derive the wave equation for y(x, t) with F and σ .
- (b) Consider a traveling wave moving at the speed c described by a wave function y = y(x - ct). From the wave equation obtained in (a), derive an expression of c in terms of F and σ .
- (c) Consider the following Galilean transformation from the original frame K with (x,t) to another inertial frame K' with (x',t') moving against K-frame at the relative velocity V in the x direction:

$$x' = x - Vt,$$

$$t' = t.$$
(2)

$$t' = t. (3)$$

Express $\partial/\partial x$ and $\partial/\partial t$ in terms of the variables in K'-frame, i.e., $\partial/\partial x'$ and $\partial/\partial t'$.

- (d) Using the result obtained in (c), derive the wave equation in K'-frame (i.e., write down the wave equation in terms of x' and t'). Here, express the final result using cinstead of F and σ . Is the wave equation Galilean invariant?
- (e) Discuss the physical meaning of c: in which reference frame(s) is the wave speed equal to c?