Изучение тембра на практике

1. Извлечение гармоник из спектра

Красницкий Никита

Темб - есть окрас музыкального заука, который может быть описан отношением амплитуд гармоник звука и их временными зависимостями. Для исследования тембра возьму в пример извлеченный звук гитарной струны и эксперементально найду математическое описание тембра. После чего попробую искусственно повлиять на тембр и синтезировать новое звучание.

Загружаю аудиофрагмент звукоизвлечения басовой ноты РЕ и вывожу на графиках левый и правый канал

```
clear all
close all
[x, fs] = audioread('Sound2.m4a');
sound(x, fs);
```

Что бы получить переменную соответствующую времени делаю следующее. Нахожу временной интервал между отчетами (dt). Через время между отчетами и кол-вом отчетов получаю время длительности сигнала (Ts). Создаю переменную времени (t)

```
dt = 1/fs;
N = length(x);
Ts = (N-1)*dt;
t = 0:dt:Ts;
figure
subplot(2,1,1);
plot(t, x(:,1), 'LineWidth', 2);
ylim([-0.75 0.75]);
xlim([0 t(end)]);
title('Right chanel of sound');
xlabel('t, s');
subplot(2,1,2);
plot(t, x(:,2), 'LineWidth', 2);
ylim([-0.75 0.75]);
xlim([0 t(end)]);
title('Left chanel of sound');
xlabel('t, s');
```


Спектр звука

Для этого сначала введу переменную частоты. Она находится в пределах от -fs/2 до fs/2 и имеет столько же отчетов, сколько имеет входной сигнал (N)

```
df = fs/N;
Fm = fs/2;
f = -Fm:df:Fm - df;
```

Найду спектры каждого из каналов и обозначу их как Rs и Ls. Их удобно смещенные модули обозначу как Rsa и Lsa (right/left spectrum absolute)

```
Rs = fft(x(:,1));
Ls = fft(x(:,2));

Rsa = abs(fftshift(Rs)) / N;
Lsa = abs(fftshift(Ls)) / N;

figure
  subplot(2,1,1);
  plot(f, Rsa);
  title('Right chanel spectrum');
  xlabel('f, Hz');

subplot(2,1,2);
  plot(f, Lsa);
  title('Left chanel spectrum');
```


Отобразим эти спектры в масштабе.

Обозначим пороговую частоту, до которой нас интересует спектр (Fi - interest frequency) равной 2кГц

```
Fi = 2e3;
```

Нужно найти индекс переменной частоты, которым будет ограничен график (Ni). Зависимость индекса переменной частоты (f) от требуемой частоты (Fi) линейна и может быть выражена следующим выражением для положительных частот

```
Ni = (N/2) * (1 + Fi/fs);
```

Для показа положительных частот на графике введу переменную частоты отображающую только положительные частоты ограничиваясь интересующей частотой (Fi).

```
fp = f (N/2 + 1: Ni);
Rsap = Rsa(N/2 + 1: Ni);
Lsap = Lsa(N/2 + 1: Ni);

figure
subplot(2,1,1);
plot(fp, Rsap);
title('Right chanel spectrum');
xlabel('f, Hz');
```

```
subplot(2,1,2);
plot(fp, Lsap);
title('Left chanel spectrum');
xlabel('f, Hz');
```


Как видно из графиков спектр ноты РЕ наполнен кратными по частоте гармониками основного тона и характеристика их амплитуд не монотонно затухающая.

Некоторые векторы достаточно длинные, удалю ненужные для сбережения памяти

```
clear Rs Ls Rsa Lsa f;
```

Найду частоты каждой гармоники.

Для этого воспользуюсь функцией поиска пиков и задам минимальное расстояние между пиками обеспечивающее игнорирование шума и прочего.

Вектор Fharm будет заполнен частотами гармоник, для перевода частот в индексы используется вектор Nharm. В вектор pks будут записаны высоты каждой гармоники.

```
[pks, Fharm] = findpeaks(Rsap, fp, 'MinPeakDistance', 100, 'MinPeakHeight', 5e-5);
Nip = Ni - N/2;
Nharm = floor(Nip * Fharm/Fi);
```

Вывожу спектр правого канала

```
figure
area(fp, Rsap);
```

Поверх него накладываю фигуры, обозначающие положения пиков

```
hold on
plot(Fharm, pks, 'rv', 'MarkerFaceColor', 'r');
```

Создаю текст с частотами и накладываю текст на каждый пик спектра. Текст должен быть незначительно выше пиков для повышения читабельности, для чего был введен параметер масштаба yScaleAdd, поднимающий надписи на 5%

```
yScaleAdd = max(pks)*0.05;

cellpeaks = cellstr(num2str(round(Fharm', 0)));
text(Fharm, yScaleAdd+pks, cellpeaks, 'FontSize', 16);
ylim([0 max(pks)+2*yScaleAdd]);
hold off
title('Spectrum harmonics');
xlabel('f, Hz');
```


Воспользовавшись таблицей соответствия нотам частот можно определить слышимые ноты

Ноты	Суббконтр- октава	Контр- октава	Большая	Малая	Первая	Вторая	Третья	Четвертая	Пятая
до	16,35	32,70	65,41	130,82	261,63	523,26	1046,52	2093,04	4186,08
ДО диез	17,32	34,65	69,30	138,59	277,18	554,36	1108,72	2217,44	4434,88
PE	18,35	36,71	73,42	146,83	293,66	587,32	1174,64	2349,28	4698,56
РЕ диез	19,45	38,89	77,78	155,57	311,13	622,26	1244,52	2489,04	4978,08
МИ	20,60	41,20	82,41	164,82	329,63	659,26	1318,52	2637,04	5274,08
ФА	21,83	43,65	87,31	174,62	349,23	698,46	1396,92	2793,84	5587,68
ФА диез	23,12	46,25	92,50	185,00	369,99	739,98	1479,96	2959,92	5919,84
СОЛЬ	24,50	49,00	98,00	196,00	392,00	784,00	1568,00	3136,00	6272,00
СОЛЬ диез	25,96	51,91	103,83	207,65	415,30	830,60	1661,20	3322,40	6644,80
ЛЯ	27,50	55,00	110,00	220,00	440,00	880,00	1760,00	3520,00	7040,00
ЛЯ диез	29,14	58,27	116,54	233,08	466,16	932,32	1864,64	3729,28	7458,56
СИ	30,87	61,74	123,47	246,94	493,88	987,76	1975,52	3951,04	7902,08

Найду отношение гармоник к основному тону

Из пиков видно, что основной тон соответсвует первой гармонике, основной тон обозначу как F0. (Fr - frequency ratio)

```
F0 = Fharm(1);
Fr = Fharm ./ F0;
strMessage = ['Harmonics frequency ratio ', num2str(Fr)];
disp(strMessage);
Harmonics frequency ratio 1 2.0037 3.0025 4.0049 5.0037 6.0099
```

С точностью до тысячных частоты гармоник кратные основной.

Найду отношения амплитуд гармоник к амплитуде основной.

(Ar - amplitude ratio)

```
Ar = (pks ./ pks(1) )';
strMessage = ['Harmonics amplitude ratio ', num2str(Ar)];
disp(strMessage);

Harmonics amplitude ratio 1  1.4889  0.43814  0.19305  0.049476  0.027427

figure
stem(Ar);
title('Harmonics amplitude ratio')
```


2. Временная зависимость амплитуд гармоник

Как известно музыкальные звуки одних и тех же нот отличаются друг от друга на слух раличным тембром. Тембр описывается отношением гармоник и, как утверждают, во времени звучания тембр звука меняется и он меняется уникально для каждого инструмента. В этой части будет найдены временные зависимости тембра.

Такую зависимость можно найти используя оконное преобразование фурье и анализ гармоник, приведенный выше. Так можно получить амплитуды каждой гармоники в заданых временных промежутках и найти их временные изменения. Поскольку нельзя единовременно увеличивать уменьшать шаг частот преобразования фурье и уменьшать время наблюдения - прийдется выбрать оптимальное количество делений звукового сигнала так, что бы спектры временных промежутков несли полезную информациб и качество этой информации было высоким.

Утверждают, что большая часть информации находится в временном промежутке аттаки звука. В этот период темб меняется быстрее всего и несет в себе много информации. А значит длительность аттаки может служить критерием оптимального количества разбитых временных промежутков.

Нахожу длительность аттаки

```
clear all
close all
[x, fs] = audioread('Sound2.m4a');
```

```
dt = 1/fs;
N = length(x);
Ts = (N-1)*dt;
t = 0:dt:Ts;
StartAttack = ones(100)*1.35;
           = ones(100)*1.47;
EndAttack
Amplitude
            = linspace(-0.5, 0.5, 100);
figure
subplot(2,1,1);
plot(t(6e4:1:10e4), x(6e4:1:10e4,1), 'LineWidth', 2);
title('Sound around attack');
xlabel('t, s');
subplot(2,1,2);
plot(t(6.4e4:1:7.5e4), x(6.4e4:1:7.5e4,1), 'LineWidth', 2);
hold on
plot(StartAttack, Amplitude, '--g', 'LineWidth', 2);
plot(EndAttack, Amplitude, '--r', 'LineWidth', 2);
hold off
title('Attack zone');
xlabel('t, s');
legend('Sound', 'Zone start', 'Zone end');
```


Экспериментально была найдено, что время аттаки длится примерно 120мс (1350 - 1470). Этот временной промежуток обозначен желтыми линиями на графике. Для получения полезной информации было выбрано разбить участок аттаки минимум на 6 частей (длительностью dT).

Найду количество отчетов, попадающих в один временной промежуток (Nw - number of samples in window)

```
Ta = 0.120;
Na = 6;
dT = Ta / Na; % Time revolution

Nw = floor((dT/Ts)*N + 1);
Nfrag = floor(N/Nw);
```

Теперь создаю временную матрицу, где в каждой строке будет Nw отчетов времени, а количеству строк будет соответствовать количесвто фрагментов, на которые разбит аудиофайл

```
T = reshape(t(1:Nfrag*Nw), Nfrag, Nw);
```

Оцениваю разрешение частот

Произведение шага частот на длительность одного временного фрагмента равна 1 по определению. Из чего нахожу шаг частотной сетки.

```
df = fs / Nw; % Frequency revoltion
```

Проверка определения (произведение должно быть равным единице)

```
strMessage = ['df * dT = ', num2str(df * dT)];
disp(strMessage);
```

```
df * dT = 0.99896

strMessage = ['Frequency step is ', num2str(df)];
disp(strMessage);
```

```
Frequency step is 49.948
```

Эмпирическим путем было найдено, что если шаг частот меньше половины основного тона - это минимальный удовлетворительный расклад.

Матрица спектров

Для каждого временного промежутка надо найти спектр и записать его в соответствующей строке матрицы Rs

```
Ni = floor(Nw*(Fi/fs));
```

Тут можно просмотреть анимацию изменения спектра по времени

figure


```
for i = 1:Nfrag
    area(fp(1:Ni), Rsap(i,1:Ni));
    drawnow
end
```


Теперь создам матрицу временных зависимостей первых 4 гармоник от времени (т.к. они более выражены) Ввожу уже известные частоты этих гармоник как опорные (reference)

```
Harm = zeros(4, N);
Fref = [146 293 440 586];
```

Если выбранный пик соответствует одной из исследуемых гармоник - заполню временное окно (dT) гармоники значением пика (pks).

```
for i = 1:Nfrag
    [pks, Fharm] = findpeaks(Rsap(i,:), fp, 'MinPeakDistance', 60);
    for j = 1:length(Fharm)
        for z = 1:length(Fref)
            if abs(Fharm(j) - Fref(z)) < 60
                ns = (i-1)*Nw + 1;
                ne = i*Nw;
                Harm(z, ns:ne) = ones(1,Nw) * pks(j);
            end
        end
    end
end
maxY = max(max(Harm)');
figure
subplot(2,1,1);
plot(t, Harm(1,:), 'LineWidth', 2);
```

```
ylim([0 maxY]);
xlim([0 t(end)]);
title('First Harmonic');
xlabel('t, s');

subplot(2,1,2);
plot(t, Harm(2,:), 'LineWidth', 2);
ylim([0 maxY]);
xlim([0 t(end)]);
title('Second Harmonic');
xlabel('t, s');
```



```
figure
subplot(2,1,1);
plot(t, Harm(3,:), 'LineWidth', 2);
ylim([0 maxY]);
xlim([0 t(end)]);
title('Third Harmonic');
xlabel('t, s');

subplot(2,1,2);
plot(t, Harm(4,:), 'LineWidth', 2);
ylim([0 maxY]);
xlim([0 t(end)]);
title('Fourth Harmonic');
xlabel('t, s');
```



```
figure
subplot(1,1,1);
plot(t, Harm(1,:), 'LineWidth', 2);
hold on
plot(t, Harm(2,:), 'LineWidth', 2);
plot(t, Harm(3,:), 'LineWidth', 2);
plot(t, Harm(4,:), 'LineWidth', 2);
ylim([0 maxY]);
xlim([0 t(end)]);
grid on
title('Harmonics together');
xlabel('t, s');
legend('First', 'Second', 'Third', 'Fourth');
```


Покажу изменение во времени тембра, то есть отношения гармоник

```
for i = 1:3
    for j = 1:N
        if Harm(i+1, j) < 7e-7 \mid Harm(1,j) < 7e-7
            Ar(i,j) = 0;
        else
            Ar(i,j) = Harm(i+1,j) ./ Harm(1,j);
        end
    end
end
maxY = max(max(Ar)');
figure
subplot(1,1,1);
plot(t, Ar(1,:), 'LineWidth', 2);
hold on
plot(t, Ar(2,:), 'LineWidth', 2);
plot(t, Ar(3,:), 'LineWidth', 2);
ylim([0 maxY]);
xlim([0 t(end)]);
grid on
title('Harmonics ratio in time');
xlabel('t, s');
legend('Second', 'Third', 'Fourth');
```


Можно сравнить полученные результаты отношения гармоник с полученными ранее для всей длительности сигнала. Временное проедставление отношения гармоник дает намного больше полезной информации о тембре

Обратный синтез с потерями фазы

Воссоздаю обратно звук как сумму этих гармоник. Звук должен отличаться от гитарной струны, но и чем то быть похожим

Синтез звука

```
NewSound = zeros(1,N);
for i = 1:4
    NewSound = NewSound + Harm(i,:) .* sin(Fharm(i)*2*pi*t);
end
```

Gain

```
Gain = 1e3;
NewSound = NewSound .* Gain;

figure
plot(t, NewSound);
xlabel('t, s');
title('Synthesized sound');
```



```
figure
plot(t(8e4:13e4), NewSound(8e4:13e4));
xlabel('t, s');
title('Synthesized sound Scale 1:5');
```



```
figure
plot(t(85e3:95e3), NewSound(85e3:95e3));
xlabel('t, s');
title('Synthesized sound Scale 1:27');
```



```
sound(NewSound, fs);
```

Обратный синтез с учетом фазы

При мат анализе выше использовался только правый канал звукоряда и при исследовании спектра использовался его модуль, чем была проигнорирована фаза. Повторю все действия без потери фазы и при обратном синтезе воссоздам спектр только из гармоник и получу синтезированный звук обратным преобразованием фурье.

(Rs - right spectrum)

```
Rs = zeros(Nfrag, Nw);
Ls = zeros(Nfrag, Nw);
Rsap = zeros(Nfrag, floor(Nw/2));
for i = 1:Nfrag
    ns = (i-1)*Nw + 1;
    ne = i*Nw;
    Rs(i,:) = fft(x(ns:ne,1));
    Ls(i,:) = fft(x(ns:ne,2));
end
```

Собираю временные зависимости каждой из гармоник каждого канала в комплексном виде, не упуская фазу

```
HarmR = zeros(4, N);
```

```
HarmL = zeros(4, N);
Fref = [146 293 440 586];
     = -fs/2:df:fs/2 - df;
for i = 1:Nfrag
    [pksR, FharmR] = findpeaks(fftshift(abs(Rs(i,:))), f, 'MinPeakDistance', 60);
    [pksL, FharmL] = findpeaks(fftshift(abs(Ls(i,:))), f, 'MinPeakDistance', 60);
    for j = 1:length(Fharm)
        for z = 1:length(Fref)
            if length(FharmR) > j-1
                if abs(FharmR(j) - Fref(z)) < 60
                    ns = (i-1)*Nw + 1;
                    ne = i*Nw;
                    Nr = floor(Nw * FharmR(j)/fs + 1 + Nw/2);
                    HarmR(z, ns:ne) = ones(1,Nw) * Rs(i,Nr);
                end
            end
            if length(FharmL) > j-1
                if abs(FharmL(j) - Fref(z)) < 60
                    ns = (i-1)*Nw + 1;
                    ne = i*Nw;
                    Nl = floor(Nw * FharmL(j)/fs + 1 + Nw/2);
                    HarmL(z, ns:ne) = ones(1,Nw) * Ls(i,Nl);
                end
            end
        end
    end
end
```

На каждое временное окно наблюдения создаю свой спектр, получаю матрицу спектров для каждого промежутка времени. После чего получу звукоряд для каждого промежутка и объединю его в один вектор звукоряда

Не использовать код. Зависает компьютер!!!

```
SpecR = zeros(Nfrag, Nw);
SpecL = zeros(Nfrag, Nw);
for i = 1:Nfrag
    for j = 1:Nw
        for z = 1:4
                  = floor(Nw * FharmL(z)/fs + 1 + Nw/2);
            Nharm = floor(j + (i-1) * Nw)
            SpecR(Nf)
                           = SpecR(Nf) + HarmR(z, Nharm);
            SpecR(Nw - Nf) = SpecR(Nf);
            SpecL(Nf)
                           = SpecL(Nf) + HarmL(z, Nharm);
            SpecL(Nw - Nf) = SpecL(Nf);
        end
    end
end
```

```
Nharm = 1
Subscript indices must either be real positive integers or logicals.
```

Получаю левый и правый канал

```
SoundR = ifft(fftshift(SpecR));
SoundL = ifft(fftshift(SpecL));

figure
plot(t, SoundR);
xlabel('t, s');
title('Synthesized sound');

figure
plot(t(8e4:13e4), SoundR(8e4:13e4));
xlabel('t, s');
title('Synthesized sound Scale 1:5');

figure
plot(t(85e3:95e3), SoundR(85e3:95e3));
xlabel('t, s');
title('Synthesized sound Scale 1:27');

Sound = [SoundR; SoundL]
```

3. Изменение тембра методом апроксимации кубическими сплайнами

Повторю нахождение временных зависимостей амплитуд гармоник, найденых во 2 пункте и вместо прямого их использования в качестве амплитуд гармонических колебаний сперва интерполирую их сплайнами тем самым повысив частоту дискретизации и, возможно, улучшив качество звука.