Bayesian probabilistic propagation

Polina Barabanshchikova

MIPT

October 11, 2022

Motivation

- 1. Backpropagation (BP) based optimization requires tuning of hyperparameters.
- **2.** In classic BP we can only obtain point estimates of the weights. As a result, the predictions do not account for uncertainty.
- **3.** On the other hand, Bayesian learning suffers from the lack of scalability in both network architecture and data size.

Problem statement

Probabilistic model

Given data $\mathcal{D} = \{x_n, y_n\}_{n=1}^N$, made up of *D*-dimensional feature vectors and corresponding scalar target variables, we assume that $y_n = f(x_n; W) + \varepsilon_n$, where f(W) is the output of a multi-layer neural network with weights given by W and $\varepsilon_n \sim \mathcal{N}(0, \gamma^{-1})$. Prior distributions:

$$p(W|\lambda) = \prod_{w \in W} \mathcal{N}(w|0, \lambda^{-1}),$$
$$p(\lambda) = \Gamma(\lambda|\alpha_0^{\lambda}, \beta_0^{\lambda}),$$
$$p(\gamma) = \Gamma(\gamma|\alpha_0^{\gamma}, \beta_0^{\gamma}).$$

Theory

Likelihood for the weights W and the noise precision γ is

$$p(\mathbf{y}|W,\mathbf{X},\gamma) = \prod_{n=1}^{N} \mathcal{N}(y_n|f(x_n;W),\gamma^{-1}).$$

The posterior distribution for W, γ , λ

$$p(W,\gamma,\lambda|\mathcal{D}) = \frac{p(\mathbf{y}|W,\mathbf{X},\gamma)p(W|\lambda)p(\lambda)p(\gamma)}{p(\mathbf{y}|\mathbf{X})}.$$

Probabilistic backpropagation (PBP) approximates the exact posterior with a factored distribution given by

$$q(W,\gamma,\lambda) = \prod_{w \in W} \mathcal{N}(w|m_w,v_w) \times \Gamma(\gamma|\alpha^{\gamma},\beta^{\gamma})\Gamma(\lambda|\alpha^{\lambda},\beta^{\lambda}).$$

Stages of PBP

1. In the first phase, the input data is propagated forward through the network. PBP sequentially approximates the marginal posterior distributions of each weight with a collection of one-dimensional Gaussians that match their marginal means and variances. At the end of this phase, PBP computes the logarithm of the marginal probability of the target variable.

Stages of PBP

- 1. In the first phase, the input data is propagated forward through the network. PBP sequentially approximates the marginal posterior distributions of each weight with a collection of one-dimensional Gaussians that match their marginal means and variances. At the end of this phase, PBP computes the logarithm of the marginal probability of the target variable.
- 2. In the second phase, the gradients of this quantity with respect to the means and variances of the approximate Gaussian posterior are propagated back. These derivatives are used to update the means and variances of the posterior approximation.

Update rule

Let f(w) encode an arbitrary likelihood function for the single weight w and let our current beliefs regarding the scalar w be captured by a distribution q(w). After seeing the data, our beliefs about w are updated according to Bayes' rule:

$$s(w) = Z^{-1}f(w)q(w),$$

where Z is the normalization constant.

We approximate this posterior with a distribution q^{new} that has the same form as q. The parameters of q^{new} are chosen to minimize the KL divergence between s and q^{new} .

Update rule (Example)

Assume that $q(w) = \mathcal{N}(w|m,v)$. In this case, the parameters of the new Gaussian beliefs $q^{new}(w) = \mathcal{N}(w|m^{new},v^{new})$ that minimize the KL divergence between s and q^{new} can be obtained by

$$m^{new} = m + v \frac{\partial \log Z}{\partial m},$$

$$v^{new} = v - v^2 \left[\left(\frac{\partial \log Z}{\partial m} \right)^2 - 2 \frac{\partial \log Z}{\partial v} \right].$$

Update rule (Example)

Assume that $q(w) = \mathcal{N}(w|m,v)$. In this case, the parameters of the new Gaussian beliefs $q^{new}(w) = \mathcal{N}(w|m^{new},v^{new})$ that minimize the KL divergence between s and q^{new} can be obtained by

$$m^{new} = m + v \frac{\partial \log Z}{\partial m},$$

$$v^{new} = v - v^2 \left[\left(\frac{\partial \log Z}{\partial m} \right)^2 - 2 \frac{\partial \log Z}{\partial v} \right].$$

Remark: Z is approximated during forward pass. Then its derivative is used to update the parameters of marginal distributions.

Experiments

Probabilistic Backpropagation

			Avg. Te	Avg. Test RMSE and Std. Errors			Avg. Test LL and Std. Errors		Avg. Running Time in Secs		
Dataset	N	d	VI	BP	PBP	VI	PBP	VΙ	BP	PBP	
Boston Housing	506	13	4.320±0.2914	3.228±0.1951	3.014 ± 0.1800	-2.903±0.071	-2.574 ± 0.089	1035	677	13	
Concrete Compression Strength	1030	8	7.128 ± 0.1230	5.977±0.2207	5.667 ± 0.0933	-3.391 ± 0.017	-3.161 ± 0.019	1085	758	24	
Energy Efficiency	768	8	2.646 ± 0.0813	1.098 ± 0.0738	1.804 ± 0.0481	-2.391 ± 0.029	-2.042 ± 0.019	2011	675	19	
Kin8nm	8192	8	0.099 ± 0.0009	0.091 ± 0.0015	0.098 ± 0.0007	0.897 ± 0.010	0.896 ± 0.006	5604	2001	156	
Naval Propulsion	11,934	16	0.005 ± 0.0005	0.001 ± 0.0001	0.006 ± 0.0000	3.734 ± 0.116	3.731 ± 0.006	8373	2351	220	
Combined Cycle Power Plant	9568	4	4.327 ± 0.0352	4.182 ± 0.0402	4.124 ± 0.0345	-2.890 ± 0.010	-2.837 ± 0.009	2955	2114	178	
Protein Structure	45,730	9	4.842 ± 0.0305	4.539 ± 0.0288	4.732 ± 0.0130	-2.992 ± 0.006	-2.973 ± 0.003	7691	4831	485	
Wine Quality Red	1599	11	0.646 ± 0.0081	0.645 ± 0.0098	0.635 ± 0.0079	-0.980 ± 0.013	-0.968 ± 0.014	1195	917	50	
Yacht Hydrodynamics	308	6	6.887±0.6749	1.182 ± 0.1645	1.015 ± 0.0542	-3.439 ± 0.163	-1.634 ± 0.016	954	626	12	
Year Prediction MSD	515,345	90	9.034±NA	8.932±NA	$\textbf{8.879} \pm \textbf{NA}$	-3.622±NA	$-3.603\pm$ NA	142,077	65,131	6119	

Table 1. Characteristics of the analyzed data sets, average test performance in RMSE and log likelihood, and average running time.

Literature

[1] José Miguel Hernández-Lobato and Ryan P. Adams. *Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks*.

2015. DOI: 10.48550/ARXIV.1502.05336. URL:

https://arxiv.org/abs/1502.05336.

Questions

- 1. Assume that the current posterior distribution for γ is
- $q(\gamma) = \Gamma(\alpha^{\gamma}, \beta^{\gamma})$. After seeing new data, we update the posterior and approximate it by $q^{new}(\gamma)$. To which family of distributions does q^{new} belong?
- a) Gaussian
- b) Gamma
- c) Uniform
- d) Depends on new data
- **2.** What is computed at the end of the PBP forward pass instead of the prediction error?