	Symbol	Value ^[1]	Example (some are approximate)			
exa	E	10^{18}	exameter	Em	10 ¹⁸ m	distance light travels in a century
peta	Р	10 ¹⁵	petasecond	Ps	10 ¹⁵ s	30 million years
tera	т	10 ¹²	terawatt	TW	10 ¹² W	powerful laser output
giga	G	10 ⁹	gigahertz	GHz	10 ⁹ Hz	a microwave frequency
mega	м	10 ⁶	megacurie	мсі	10 ⁶ Ci	high radioactivity
kilo	k	10 ³	kilometer	km	10 ³ m	about 6/10 mile
hecto	h	10 ²	hectoliter	hL	10 ² L	26 gallons
deka	da	10 ¹	dekagram	dag	10 ¹ g	teaspoon of butter
_	-	10 ⁰ (=1)				
deci	d	10-1	deciliter	dL	10 ⁻¹ L	less than half a soda
centi	С	10^{-2}	centimeter	cm	10 ⁻² m	fingertip thickness
milli	m	10 ⁻³	millimeter	mm	10 ⁻³ m	flea at its shoulders
micro	μ	10-6	micrometer	μm	10 ⁻⁶ m	detail in microscope
nano	n	10-9	nanogram	ng	10 ⁻⁹ g	small speck of dust
pico	р	10-12	picofarad	pF	10 ⁻¹² F	small capacitor in radio
femto	f	10-15	femtometer	fm	10 ⁻¹⁵ m	size of a proton
atto	a	10-18	attosecond	as	10 ⁻¹⁸ s	time light crosses an atom

2.14 A car is traveling to the left, which is the negative direction. The direction of travel remains the same throughout this problem. The car's initial speed is 11.0 m/s, and during a 7.34 -second interval, it changes to a final speed of (a) 13.4 m/s and (b) 7.58 m/s. In each case, find the average acceleration (magnitude and algebraic sign), <u>AND</u> state whether the car is speeding up or slowing down.

Velocity and Acceleration

- 1. When the velocity and acceleration of an object have the same algebraic sign, the object is speeding up.
- 2. When the velocity and acceleration of an object have opposite algebraic signs (i.e., one is positive the other negative), the object is slowing down.

2.34 A race driver has made a pit stop to refuel. After refueling, he starts from rest and leaves the pit area with an acceleration whose magnitude is 5.4 m/s²; after 4.1 s he enters the main speedway. At the same instant, another car on the speedway and traveling at a constant velocity of 74.0 m/s overtakes and passes the entering car. The entering car maintains its acceleration. How much time is required for the entering car to catch up with the other car?

Equation

$$v = v_0 + at$$

$$\Delta x = \frac{1}{2}(v_0 + v)t$$

$$\Delta x = v_0 t + \frac{1}{2}at^2$$

$$v^2 = v_0^2 + 2a\Delta x$$

2.40 A Boeing 747 "Jumbo Jet" has a length of 59.7 m. The runway on which the plane lands intersects another runway. The width of the intersection is 21.1 m. The plane decelerates through the intersection at a rate of 5.80 m/s² and clears it with a final speed of 38.3 m/s. How much time is needed for the plane to clear the intersection?

