

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Jong-Hwa LEE et al.

Serial No. : Not Yet Assigned

Filed : Concurrently Herewith

For : METHOD FOR MEASURING THE ABSOLUTE STEERING ANGLE OF
STEERING SHAFT FOR VEHICLE

CLAIM OF PRIORITY

Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Sir:

Applicant hereby claims the right of priority granted pursuant to 35 U.S.C. 119 based upon
Korean Application No. 10-2003-0079321, filed November 11, 2003. As required by 37 C.F.R. 1.55,
a certified copy of the Korean application is being submitted herewith.

Respectfully submitted,
Jong-Hwa LEE et al.

*Will. Z. Lytle Reg. No.
Bruce H. Bernstein 41,568
Reg. No. 29,027*

December 24, 2003
GREENBLUM & BERNSTEIN, P.L.C.
1950 Roland Clarke Place
Reston, VA 20191
(703) 716-1191

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2003-0079321
Application Number

출 원 년 월 일 : 2003년 11월 11일
Date of Application NOV 11, 2003

출 원 인 : 현대모비스 주식회사
Applicant(s) HYUNDAI MOBIS CO., LTD.

2003 년 11 월 13 일

특 허 청
COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0003
【제출일자】	2003.11.11
【발명의 명칭】	차량용 조향축의 절대조향각 측정방법
【발명의 영문명칭】	Method for measuring the absolute steering angle of steering shaft for vehicle
【출원인】	
【명칭】	현대모비스 주식회사
【출원인코드】	1-1998-004570-8
【대리인】	
【명칭】	특허법인다래
【대리인코드】	9-2003-100021-7
【지정된변리사】	박승문, 조용식, 윤정열, 김정국, 안소영, 김희근, 권경희
【포괄위임등록번호】	2003-031763-1
【발명자】	
【성명의 국문표기】	이종화
【성명의 영문표기】	LEE, Jong Hwa
【주민등록번호】	790107-1685021
【우편번호】	151-057
【주소】	서울특별시 관악구 봉천7동 1619-12 301호
【국적】	KR
【발명자】	
【성명의 국문표기】	김완섭
【성명의 영문표기】	KIM, Wan Sub
【주민등록번호】	600930-1489713
【우편번호】	442-470
【주소】	경기도 수원시 팔달구 영통동 969-1 태영A 933/1601
【국적】	KR
【발명자】	
【성명의 국문표기】	강창원
【성명의 영문표기】	KANG, Chang Won

1020030079321

출력 일자: 2003/11/19

【주민등록번호】 751101-1009718
【우편번호】 137-030
【주소】 서울특별시 서초구 잠원동 49-8 한강아파트 2/806
【국적】 KR
【심사청구】 청구
【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사 를 청구합니다. 대리인
특허법인다래 (인)
【수수료】
【기본출원료】 18 면 29,000 원
【가산출원료】 0 면 0 원
【우선권주장료】 0 건 0 원
【심사청구료】 2 항 173,000 원
【합계】 202,000 원
【첨부서류】 1. 요약서·명세서(도면)_1통

【요약서】**【요약】**

본 발명은 제1회전체를 이용하여 조향축의 절대 조향각 Φ 를 측정하되, 조향축의 절대조향각 Φ 의 이전값을 측정한 후 그 다음의 현재값을 측정함에 있어서는, 측정범위가 요인 각도센서를 이용하여 상기 제1회전체의 상대회전각 Ψ' 을 측정하여 그 측정값 Ψ_M' 를 얻고, 상기 Ψ_M' 의 이전값과 현재값을 비교하여 상기 제1회전체의 주기수 i 의 현재값을 그 이전값으로부터 결정하여 얻은 다음, 상기 Ψ_M' 및 i 의 현재값으로부터 제1회전체의 절대 회전각 Ψ 의 현재값을 얻은 후 이로부터 조향축의 절대조향각 Φ 의 현재값을 얻는 것을 특징으로 한다.

【대표도】

도 4

【색인어】

조향각, 측정, 회전체, 절대조향각, 각도센서

【명세서】**【발명의 명칭】**

차량용 조향축의 절대조향각 측정방법{Method for measuring the absolute steering angle of steering shaft for vehicle}

【도면의 간단한 설명】

도1은 본 발명의 바람직한 하나의 실시예를 나타내고 있다.

도2는 조향축의 조향각에 따른 Ψ' 과 Θ' 의 관계를 나타낸다.

도3은 본 발명에 의한 방법으로 Φ_1 을 구하는 과정을 도식적으로 나타내고 있다.

도4는 본 발명에 의한 방법을 통해 i 를 간단하게 구하는 과정을 도식적으로 나타내고 있다.

도면의 주요부분에 대한 설명

1...조향축, 2...제1회전체, 3...제2회전체, 4,5...각도센서, 6...연산회로

【발명의 상세한 설명】**【발명의 목적】****【발명이 속하는 기술분야 및 그 분야의 종래기술】**

- <7> 본 발명은 차량용 조향축의 조향각을 측정하는 방법에 관한 것으로서, 더욱 상세하게는 상기 조향축이 회전함에 따라 소정의 회전비로 회전하는 회전체를 이용하여 조향축의 조향각을 측정하는 방법에 관한 것이다.
- <8> 조향축의 절대 조향각을 측정함에 있어서는 그 측정범위가 360° 를 넘기 때문에 단지 각도센서만을 이용하여 이를 측정하는 것이 용이하지 않은 문제가 있다.

- <9> 또한, 조향축의 조향각은 차량의 시동을 켰을 때 그것이 임의의 각도 위치에 있더라도 바로 측정될 수 있어야 한다.
- <10> 미국특허 제5930905호와 제6466889B1호에서는 조향축이 회전함에 따라 일정한 회전비로 회전하는 제1회전체와 제2회전체의 회전각을 측정하여 이로부터 조향축의 절대 조향각을 얻는 방법을 소개하고 있다.
- <11> 상기에서 제1회전체 및 제2회전체의 절대 회전각은 각각 $\Psi = \Psi' + i\Omega$ 와 $\Theta = \Theta' + j\Omega$ 로 표현될 수 있는데(여기서, Ω 는 상기 Ψ' 와 Θ' 를 측정하는 각도센서의 측정범위를 나타내고, i 는 제1회전체의 절대 회전각 Ψ 가 상기 Ω 를 넘어선 횟수를 나타내는 정수로서 제1회전체의 주기수를 나타내고, j 는 마찬가지로 제2회전체의 주기수를 나타냄), 상기의 미국특허는 모두 Ψ' 와 Θ' 를 측정하여 소정의 계산과정을 거쳐 조향축의 절대 조향각 Φ 를 얻고 있다.
- <12> 상기의 미국특허 제5930905호에서는 상기의 Ψ' 와 Θ' 를 측정하고, 그 측정된 값을 Ψ , Θ 및 Φ 상호간의 기하학적 관계로부터 도출되는 아래와 같은 특정한 식(1)에 대입한 후 이를 반올림하여 정수값 k 를 얻은 다음, 그 k 와 Ψ' 및 Θ' 을 이용해 아래의 식(2)를 통해 Φ 를 계산하여 구하게 된다.
- <13>
- $$k = \frac{(m+1)\Theta' - m\Psi'}{\Omega} \quad \text{식(1)}$$
- <14>
- $$\Phi = \frac{m\Psi' + (m+1)\Theta' - (2m+1)k\Omega}{2n} \quad \text{식(2)}$$
- <15> (여기서, m 은 제1회전체의 기어 이빨 수, $m+1$ 은 제2회전체의 기어 이빨 수, n 은 조향축에 형성된 기어 이빨 수로서 조향축에 제1회전체 및 제2회전체가 치합되어 있다.)

- <16> 한편, 상기의 미국특허 제6466889B1호에서는 두 회전체의 절대 회전각 차이인 $\Psi - \Theta$ 과 제1회전체(제2회전체가 될 수도 있음)의 i 의 관계를 이용해 i 를 직접 구하여 조향각 Φ 를 얻고 있다. 여기서, $\Psi - \Theta$ 는 측정하여 얻은 $\Psi' - \Theta'$ 이 음의 수인 경우에는 Ω 를 더하여 구하고, 그렇지 않은 경우에는 그 값을 그대로 유지함으로서 구하고 있다. 그 다음 $\Psi - \Theta$ 와 i 의 관계로부터 i 를 계산하고, Ψ' 과 i 로부터 계산된 Ψ 를 이용해 조향축의 절대 조향각 Φ 를 얻는 방법을 취하고 있다.
- <17> 이때, 각도센서의 측정범위는 Ω 이므로 조향축이 최대로 회전되어 i 가 k_1 이 되었을 때 상기의 회전각 차이 $\Psi - \Theta$ 는 Ω 과 같거나 그보다 작아야 한다(단, 상기의 미국특허 제6466889B1호에서는 Ω 과 같도록 하였음). 즉, 조향축이 최대로 회전될 때까지 상기의 회전각 차이 $\Psi - \Theta$ 는 0° 에서 Ω 까지 연속적으로 변하며, i 는 0 에서 k_1 까지 단계적으로 변하게 된다.
- <18> 여기서, 미국특허 제6466889B1호에서는 상기의 회전각 차이 $\Psi - \Theta$ 가 0° 에서 Ω 까지 연속적으로 변할 때, i 는 0 에서 k_1 까지 연속적으로 변하여 선형비례관계이 있는 것으로 가정하고, 상기 두 개의 회전각을 측정하여 얻은 $\Psi - \Theta$ 에 k_1/Ω 을 곱하여 얻은 값으로부터 그 값보다 작은 최대의 정수값을 취하여 i 를 얻고 있다. 예컨대, $\Psi - \Theta$ 에 k_1/Ω 을 곱하여 얻은 값이 5.9...인 경우 i 는 5가 된다.
- <19> 이와 같은 미국특허 제6466889B1호의 방법은 $\Psi - \Theta$ 의 최대값이 Ω 보다 클 수 없기 때문에 $i - j$ 는 항상 0 또는 1이어야 하며, 2이상이 될 수 없는 제한을 받는다.
- 【발명이 이루고자 하는 기술적 과제】**
- <20> 본 발명은 360° 범위를 넘어 회전하는 조향축의 절대 조향각을 측정하는 방법으로서, 측정으로 인한 에러가 적고, 계산량이 현저히 감소하는 방법을 제공하는데 그 목적이 있다.

- <21> 그리고, i를 저장할 수 있는 메모리 수단이 함께 구비되면 단지 하나의 회전체만을 이용해서도 절대조향각을 측정할 수 있는 방법을 제공한다.
- <22> 또한, 본 발명은 $\Psi - \Theta$ 를 이용하지 않고, 제1회전체의 주기수 i나 또는 제2회전체의 주기수 j를 직접 구할 수 있는 방법을 제공하고, i 또는 j가 한번 결정된 다음부터는 간단한 계산과정을 통해 얻어 낼 수 있는 방법을 제공한다.

【발명의 구성 및 작용】

- <23> 본 발명에 의해 차량 조향축의 조향각을 측정하는 방법은, 조향축이 회전함에 따라 일정한 회전비로 회전하는 제1회전체를 이용한다. 경우에 따라서는 조향축이 회전함에 따라 일정한 회전비로 회전하는 제2회전체를 추가로 이용할 수도 있다.
- <24> 제1회전체의 절대 회전각 Ψ 는 $\Psi' + i\Omega$ 로 표현될 수 있고, 제2회전체를 추가로 포함하는 경우 그 절대 회전각 Θ 는 $\Theta' + j\Omega$ 로 표현될 수 있으며, 각도센서를 이용해 상기의 Ψ' 과 Θ' 을 측정하게 된다. 여기서, Ω 는 상기 Ψ' 와 Θ' 를 측정하는 각도센서의 측정범위를 나타내고, i는 제1회전체의 절대 회전각 Ψ 가 상기 Ω 를 넘어선 횟수를 나타내는 정수로서 제1회전체의 주기수를 나타내고, j는 마찬가지로 제2회전체의 주기수를 나타낸다. 즉, 제1회전체의 절대 회전각 Ψ 는 측정범위가 Ω 인 각도센서를 이용해 측정되는 상대 회전각 Ψ' 과 주기수 i 및 Ω 의 곱의 합으로 표현될 수 있고, 제2회전체의 절대 회전각 Θ 도 같은 방식으로 표현될 수 있다.
- <25> 상기에서 각도센서는 측정범위 Ω 는 180° 나 360° 또는 그 외의 다른 값이 될 수 있다. 그리고, 상기의 각도센서는 Ψ' 과 Θ' 을 측정할 수 있는 것이라면 접촉식이건 비접촉식이건 관계없이 어떠한 종류라도 될 수 있다.

- <26> 본 발명은 제1회전체를 이용하여 조향축의 절대 조향각 Φ 를 측정하되, 조향축의 절대조향각 Φ 의 이전값을 측정한 후 그 다음의 현재값을 측점함에 있어서는, 측정범위가 요인 각도센서를 이용하여 상기 제1회전체의 상대회전각 Ψ' 를 측정하여 그 측정값 Ψ_M' 를 얻고, 상기 Ψ_M' 의 이전값과 현재값을 비교하여 상기 제1회전체의 주기수 i 의 현재값을 그 이전값으로부터 결정하여 얻은 다음, 상기 Ψ_M' 및 i 의 현재값으로부터 제1회전체의 절대 회전각 Ψ 의 현재값을 얻은 후 이로부터 조향축의 절대조향각 Φ 의 현재값을 얻는 것을 특징으로 한다.(이와 같이 얻어진 Φ 를 편의상 Φ_1 이라 한다.)
- <27> 상기에서 절대조향각 Φ 의 현재값을 측정하기 위해서는, 먼저, 제1회전체의 주기수 i 의 이전값이 미리 결정되어야 한다. 즉, 본 발명에 의해 제시되는 방법으로 제1회전체의 주기수 i 의 현재값을 구하여 절대조향각 Φ 를 구하기 위해서는, 먼저, 상기 i 의 이전값을 구할 수 있는 방법이 구비되어야 할 것이다.
- <28> 이와 같이 i 를 먼저 결정하는 것은 여러 가지 방법에 의해 가능 할 것인데, 일례로 상기 i 를 메모리에 저장시켜 놓았다가 읽어들이는 방법에 의할 수도 있을 것이다. 상기와 같이 메모리를 이용하게 되면, 상기의 제1회전체와 같은 하나의 회전체만 가지고도 절대조향각을 측정할 수 있게 된다.
- <29> 한편, 조향축이 회전함에 따라 일정한 회전비로 회전하는 제2회전체를 추가로 이용하면, 상기와 같은 메모리 수단 없이도 i 를 결정할 수 있다. 즉, 측정범위가 요인 각도센서를 이용해 Ψ' 과 Θ' 의 측정값 Ψ_M' 및 Θ_M' 를 얻은 다음, Ψ' 및 Θ' 의 관계로부터 상기 Ψ_M' 에 대응될 수 있는 다수의 Θ' 들을 계산하여 그 계산값인 다수의 Θ_C' 들을 얻고, 상기 다수의 Θ_C' 들과 Θ_M' 을 비교하여 상기 제1회전체의 주기수 i 를 얻을 수 있다. 이 방법에 대한 보다 상세한 설명은 후술하기로 한다.

- <30> 상기와 같은 방법들을 통해 i 의 이전값이 결정되면, 그 다음부터는 상기의 제1회전체의 상대회전각 Ψ' 을 측정범위가 요인 각도센서를 이용해 측정하고, 그 측정값 Ψ_M' 의 이전값과 현재값을 비교하여 i 의 이전값에 1을 더하거나 뺌으로서 i 의 현재값을 얻게 된다. 이는 i 가 1만큼 증가하는 순간 Ψ_M' 의 절대값은 0에서 0으로 변하고, i 가 1만큼 감소하는 순간 Ψ_M' 의 절대값은 0에서 0으로 변하게 되는 사실을 이용한 것이다. 즉, i 가 변하게 되는 순간을 전후해서 Ψ_M' 은 큰 폭으로 변하게 됨을 이용한 것이다. 이와 같은 과정을 통해 i 를 구하게 되면 계산량이 감소하는 장점도 있지만, 더욱 중요하게는 제2회전체를 포함하는 경우 그 상대회전각 Θ' 의 측정값 Θ_M' 에 포함된 측정 오차가 i 에 영향을 주지 않게 된다.
- <31> 또한, 제2회전체를 추가로 이용하는 경우에는, 상기와 같은 방법과 마찬가지로 제2회전체의 주기수 j 를 결정한 다음, 마찬가지로 Θ_M' 의 이전값과 현재값을 비교하여 j 의 이전값에 1을 더하거나 뺌으로서 j 의 현재값을 구하여 이로부터 절대조향각 Φ 의 현재값을 추가로 구한다.(이와 같이 얻어진 Φ 를 편의상 Φ_2 라 한다.) 그리고, 상기 Φ_1 과 Φ_2 를 평균하여 절대조향각 Φ 를 얻는다. 이와 같이 평균을 하면 Ψ_M' 과 Θ_M' 에 포함되어 있는 측정오차가 서로 상쇄되어 없어지기 때문에 예러를 감소시킬 수 있어 바람직하다.
- <32> 이하에서는 도면에 나타난 실시예를 통해 보다 상세하게 설명하도록 한다. 도1에는 조향축(1)과 이에 치합되어 있는 제1회전체(2) 및 제2회전체(3)와, 상기 제1회전체 및 제2회전체의 상대회전각 Ψ' 및 Θ' 을 측정할 각도센서(4,5)와, 상기 센서로부터 측정된 Ψ_M' 및 Θ_M' 를 입력 받아 소정의 연산을 수행하여 Φ 를 결과로 출력하는 연산회로(6)가 나타나 있다. 여기서 조향축과 제1회전체의 회전비 r_1 은 $7/4$ 이고, 조향축과 제2회전체의 회전비 r_2 는 $6.5/4$ 이다(도1에 나타난 기어 이빨 수는 정확하지 않을 수 있음). 도2에는 조향축이 총4회전하는 동안 상기 제1회전체의 상대회전각 Ψ' 과 상기 제2회전체의 상대회전각 Θ' 의 관계를 나타내고 있다. 여기

서, x축은 조향각 Φ 이고, 오는 180° 이다. 그리고, 도3에는 상기 Ψ' 및 Θ' 을 측정하여 제1회전체의 주기수 i 를 결정한 후 조향축의 절대 조향각 Φ 를 구하는 과정을 도식적으로 나타내고 있다. 즉, 도3에는 앞서 기술한 바와 같이 별도의 메모리 수단 없이도 제1회전체 및 제2회전체를 이용해 제1회전체의 주기수 i 를 결정할 수 있는 방법이 나타나 있다.

<33> 여기서, 도2와 같은 제1회전체 및 제2회전체의 상대회전각 관계는 조향축의 조향각을 변화시키면서 제1회전체의 상대회전각 Ψ' 과 제2회전체의 상대회전각 Θ' 을 측정함으로서 시험적으로 얻는 것이 가장 바람직하다.

<34> 도3에서 보이듯이 각도센서를 이용해 Ψ_M' 및 Θ_M' 을 얻으면, 상기의 Ψ_M' 으로부터 도2와 같은 관계를 이용해 상기 Ψ_M' 에 대응될 수 있는 다수의 Θ_C' 들을 계산하여 얻는다(도3에서 Θ_{Ci}' 는 i 에 대응하는 Θ_C' 을 의미함). 그리고, 이와 같이 얻은 다수의 Θ_C' 들 중 Θ_M' 과 가장 근접한 것을 찾음으로서 i 를 구한다. 예컨대, Ψ_M' 은 130° 이고, Θ_M' 은 105° 라고 가정하면, 도2와 같은 관계에서 Ψ' 이 130° 일 때 이에 대응될 수 있는 Θ_C' 은 i 가 0에서 13까지 증가함에 따라 도2의 그래프에서 점으로 표시되고 있는 바와 같이 순차적으로 120.7° , 107.9° , 95° , 82.1° , 69.3° , 56.4° , 43.6° , 30.7° , 17.9° , 5° , 172.1° , 159.3° , 146.4° , 133.6° 등이 된다. 이와 같은 다수의 Θ_C' 들 중 105° 인 Θ_M' 과 가장 근접한 것은 107.9° 이며, 이때 i 는 1이 된다.

<35> 그리고, 이와 같이 얻은 i 와 Ψ_M' 을 이용해 조향축의 조향각 Φ_1 을 계산하면 다음과 같다.

$$\Phi_1 = \frac{1}{r_1} (\Psi_M' + i\Omega) = \frac{4}{7} (130^\circ + 180^\circ) = 177^\circ \quad \text{식(5)}$$

<37> 상기와 같은 과정을 통해 i 가 결정되고 나면, 그 다음부터는 단지 Ψ_M' 의 현재값을 그 이전값과 비교하여 i 의 이전값에 1을 더하거나 뺏으로서 간단하게 구하게 된다. 예컨대, Ψ_M' 의

현재값에서 이전값을 뺀 값 $\Delta \Psi_M'$ 이 어떤 음의 특정값보다 작으면 i의 이전값에 1을 더하고, 어떤 양의 특정값보다 크면 1을 빼며, 그렇지 않으면 i의 이전값을 그대로 유지하도록 하여 i의 현재값을 얻는다.

<38> 이를 도4를 통해 보다 구체적으로 살펴본다. 도4에 보이듯이 $\Delta \Psi_M'$ 이 특정값 -As보다 작으면 i의 이전값에 1을 더하고, As보다 크면 1을 빼며, 그렇지 않으면 i의 이전값을 그대로 유지하여 i의 현재값을 얻는다. 여기서, i의 이전값은 3, 상기의 특정값 As는 170° , Ψ_M' 의 이전값은 179° , Ψ_M' 의 현재값은 1° 라고 가정하면, $\Delta \Psi_M'$ 는 -178° 가 되어 -170° 보다 작으므로 현재의 i는 4가 된다. 그리고, 여기서 만약 Ψ_M' 의 이전값은 1° , Ψ_M' 의 현재값은 179° 라고 가정하면, $\Delta \Psi_M'$ 는 178° 가 되어 170° 보다 작으므로 현재의 i는 2가 된다.

<39> 이와 같이 i의 현재값이 결정되면, Ψ_M' 의 현재값과 함께 식(5)에 대입하여 $\Phi 1$ 의 현재값을 얻는다.

<40> 한편, 상기에서 Ψ_M' 으로부터 다수의 Θ_C' 들을 계산하여 i를 결정하는 것과 마찬가지로 Θ_M' 으로부터 다수의 Ψ_C' 들을 계산하여 j를 결정할 수 있으며, 이와 같이 j가 한번 결정되고 나면 그 다음부터는 마찬가지로 Θ_M' 의 이전값과 현재값을 비교하여 j의 현재값을 얻을 수 있다. 그리고, 이로부터 조향축의 조향각 $\Phi 2$ 의 현재값은 아래의 식을 통해 얻을 수 있다.

$$<41> \Phi 2 = \frac{1}{r^2} (\Theta_M' + j\Omega) \quad \text{식(6)}$$

<42> 이와 같이 $\Phi 1$ 과 $\Phi 2$ 가 얻어지면 이를 평균하여 조향축의 조향각을 얻는다. 이로써 Ψ_M' 과 Θ_M' 에 포함될 수 있는 측정오차에 의한 조향각의 에러를 최소화할 수 있다.

【발명의 효과】

- <43> 본 발명에 의하면, $\Psi - \Theta$ 를 이용하지 않고도 i 또는 j를 직접 구하여 절대조향각을 구할 수 있다. 그리고, i 또는 j가 한번 결정되고 나면, 그 다음부터는 아주 간단한 계산과정을 통해 구할 수 있다.
- <44> i를 한번 구하고 나면, 단지 Ψ_M' 의 이전값과 현재값만을 비교하여 i를 구할 수 있기 때문에 계산량을 감소시킬 수 있으며, 더욱 중요하게는 제2회전체를 추가로 이용하는 경우에 Θ_M' 에 포함되는 측정 오차의 영향을 받지 않고 i를 구할 수 있다. 그리고, 만약 이때 Θ_M' 을 측정하는 각도센서가 고장 등으로 그 기능을 수행하지 못하더라도 조향각을 측정할 수 있는 효과가 있다.
- <45> 또한, 본 발명에 의하면, 절대 조향각을 측정하기 위해 정수화시키는 과정(예컨대 미국특허 제5930905호에서 k를 구하는 과정이나 미국특허 제6466889B1호에서 i를 구하는 과정)을 제거하여 에러를 감소시킬 수 있다. 즉, 정수화시키는 과정에서 쿠의 에러가 발생하여 절대조향각에 큰 에러가 포함되게 되는 문제를 제거할 수 있다.
- <46> 그리고, 본 발명에 의하면, i를 저장시킬 메모리 수단만 함께 구비되면, 단지 하나의 회전체만을 이용해 절대조향각을 측정할 수 있게 되는 효과도 있다.

【특허청구범위】**【청구항 1】**

차량의 조향축이 회전함에 따라 일정한 회전비로 회전하는 제1회전체를 이용하여 조향축의 절대 조향각 Φ 를 측정하되, 상기 Φ 의 이전값을 측정한 후 그 다음의 현재값을 측정함에 있어서는,

측정범위가 요인 각도센서를 이용하여 상기 제1회전체의 상대회전각 Ψ' 을 측정하여 그 측정값 Ψ_M' 를 얻는 단계와;

상기 Ψ_M' 의 이전값과 현재값을 비교하여 상기 제1회전체의 주기수 i 의 현재값을 그 이전값으로부터 결정하여 얻는 단계와;

상기 Ψ_M' 및 i 의 현재값으로부터 제1회전체의 절대 회전각 Ψ 의 현재값을 얻은 후 이로부터 조향축의 절대조향각 Φ_1 의 현재값을 얻는 단계를;

포함하여 구성되는 것을 특징으로 하는 차량용 조향축의 절대조향각 측정방법.

【청구항 2】

제1항에 있어서, 차량의 조향축이 회전함에 따라 일정한 회전비로 회전하는 제2회전체를 추가로 이용하되,

측정범위가 요인 각도센서를 이용하여 상기 제2회전체의 상대회전각을 측정하여 그 측정값 Θ_M' 를 얻는 단계와;

상기 Θ_M' 의 이전값과 현재값을 비교하여 상기 제2회전체의 주기수 j 의 현재값을 그 이전값으로부터 결정하여 얻는 단계와;

1020030079321

출력 일자: 2003/11/19

상기 Θ_M' 및 j 의 현재값으로부터 제2회전체의 절대 회전각 Θ 의 현재값을 얻은 후 이로부터 조향축의 절대조향각 Φ_2 의 현재값을 얻는 단계와;

상기 Φ_1 과 Φ_2 의 평균값을 얻는 단계를;

추가로 포함하여 구성되는 것을 특징으로 하는 차량용 조향축의 절대조향각 측정방법

【도면】

【도 1】

1020030079321

출력 일자: 2003/11/19

【도 2】

【도 3】

1020030079321

출력 일자: 2003/11/19

【도 4】

