

OWho we are

Spaghetti Vector Monster(SVM)

Jiajun He

Zelin Li

Major in Bioinformatics at UCPH

Models and Performances

Model	Single Mutation	Multiple Mutation
MLP*	0.8451	0.3177
Random Forest*	0.8136	0.3827
SVM*	0.8350	0.4089
Transformer Embedding + RNN	0.8912	0.5940

^{*} Use one-hot encoding for amino acids.

Best Model

Embedding by Transformer (ESM-1b)

RNN (LSTMs + FC layers)

- One Model for Single and Multiple Mutations.
- Early stopping, Drop out;
- Kaiming Initialization for FC layers,
 Orthogonal Initialization for LSTMs.

Model Performances: Training & Test Set

Single & Multiple Mutations (on Test Dataset) Correlation Coefficient: 0.8393820612327291 2.0 1.5 1.0 Stability Score 0.5 -0.5-1.0-1.5 1.5 -0.5 0.0 0.5 1.0 Predicted Score

Training: 0.879

Test: 0.839

Model Performances: Single & Multiple Mutations

Single: 0.891

Multiple: 0.594

Conclusion and Discussion

- Better feature engineering yields better results.
- Multiple mutation data is harder to predict than single mutation data, especially those protein with a negative score.

Is the Secondary Structure Necessary?

With SS:

Without SS:

Single: 0.891

Single: 0.894

Multiple: 0.594

Multiple: 0.597

Conclusion and Discussion

- Better feature engineering yields better results.
- Multiple mutation data is harder to predict than single mutation data, especially those protein with a negative score.
- Secondary structure is almost redundant for our task.
 - We have only 4 original sequences. So our task can be seen as 4 individual regressions, and the secondary structure only serves as a category label.
 - If the original energies are thought to be similar, then all the information is stored in the mutated amino acid sequence.

Room for Improvements

- Fine tuning for each dataset respectively.
- Better feature engineering, e.g., considering the chemical properties of amino acids.
- Better architecture, e.g., transfer Learning by Transformer, etc.
- Use more proteins to collect mutation data. (better from different organisms and environments)

