Lec 9	
Page/	CS59009 - RL
	Agenda.
	MOSS & Bernoulli bandit, Adverserial bandit
	contextual and linear bandit
	- Linear regression.
	Minimax Optimal Strategy is Stochastic
	multi-armed bandit (MOSS)
	With a different analysis, we can set
MO	SS $VCB_{i}(s,t) = \sqrt{\frac{4}{T_{i}(t-1)}} los^{\dagger} \left(\frac{n}{KT_{i}(t-1)}\right) + \hat{f}_{i,t-1}$
	where last(n) = las (max fl, n)
	Theorem. For any 1-sub_Canssian K_armed bundit, the regret of MOSS satisfies
	R _n < 38√Kn + ≥ △;
	Proof. Chapter 9. Bandit Algorithm.

Page 2 tou are given some a side information. Bernaulli bandit: Consider a K-armed bandib with pie [0,1] for all i and $X_t \sim B(\mu_{A_t})$ Def: Relative entropy between Bernaulli distributions with parameters p, q E [c, 17 is $d(P,q) = P \log \left(\frac{P}{q}\right) + (I-P) \log \left(\frac{I-P}{I-q}\right)$ Relative entropy is also known as Kullback-leibler (Kl. divergence. KL-UCB $A_t = \operatorname{argmax}_{\text{max}} \{ \mu \in [0,1] : d(\hat{\mu}_{i,t-1}, \mu) \}$ (los (1+t las2+) } T: (+-1) Chapter 10 Bandl Algorith.

Page 3 Adversarial bandit. - A K-armed adversarial bandit is an arbibrary sequence of reward vectors $\gamma = (\alpha_1 - \alpha_n)$ where $\alpha_i \in [\alpha_i, 1]^k$ for each $i \in [n]$ (i,t) entry represent the rewart at time t if arm i is pulled. In each round of the learner chooses an action $A_{+} \in [K]$ and then observes $X_{i} = x_{i}$ Let's look at the worst-case regret. $R_{n}^{*}(J) = \sup_{v \in [0,1]} R_{n}(J,v)$ For deterministic policies = Rn >, n(1-1)

There is an algorithm called Exponential weight algorithm for Exploration and Exploitation (EXP3) which acheives regret of <2 VNK logik, (chapter 1) Bundib Algerithm) Contextual bandit: - Consider abandib setting where at each time step t, we have a set of actions At, and, before making a decision, we are also give a context Ct. When we observe a context c, and choose an action a, we receive a reward X, which depends on a and Linear bandit Consider a setting of Contextual boundit where $X_t = \langle \mathcal{L}(C, \alpha), \theta_* \rangle + \eta_t$ By (4a)

S feature representation

Pages	
	Def. let X, be a sequence of random variables, on (s. , F, IP), and F= f. F. It, a filtration. An Fadapted sequence of random variable (xt) to a F-adapted supermartingle sequence if
-	a) $E\left[\begin{array}{c} x_{t} / J_{t-1} \end{array} \right] \left(\begin{array}{c} x_{t-1} \\ \end{array} \right)$ a.s. $\forall t > 0$
	b) Xt is integrable t>0
	Note that a martingale sequence is also sypermartingale (similarly, submartingale is defined when E[X+ 17] >, X6-1)
	The seneral case of maximal inequality: Theorem: (Maximal inequality): Let (X_t) be a supermarkingale with $X_t \geq 0$ a.s. for all t . Then for any $\delta > 0$
	$P(\sup_{t \in N} x_t > s) < E[x_o]$