南京航空航天大学

2017 年硕士研究生入学考试初试试题 (A 卷)

科目代码:

829

计算机专业基础 科目名称:

满分: 150 分

注意:①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无 效: ③本试题纸须随答题纸一起装入试题袋中交回!

数据结构部分(50分)

- 1. (10 分) 为一个家谱管理程序设计一种数据结构,以一个四代人,11 个家庭成员为例, (A 有 3 个孩子 A1、A2、A3; A1 有 2 个孩子 A11、A12; A2 无子, A3 有 3 个孩子 A31、 A32、A33; A11 有 1 个孩子 A111; A32 有 1 个孩子 A321; 其余尚无子), 画出家谱示意图, 给出所设计的存储结构不意图,并给出在该存储结构上输出第k代所有人员的算法思想。
- 2. (10分)已知输入数据序列为 (58,68,42,10,88,32,70,52,55,46),给出建立 3 阶 B-树示意 图, 再给出删除 55, 70 后的 B-树。
- 3. (10 分) 试用 Dijkstra 算法, 求下图中从 VI 到其余各顶点的最短路径, 给出实现算法所 用的数据结构和求解过程中每一步的状态。

- 4. (10 分)设 A、B 为递减有序(元素值为整型)的单链表,编写函数,利用原结点将它 们合并成一个递增有序的单链表,相同元素值只保留一个结点。先给出算法思想,再写出 相应代码。
- 5. (10 分)设有 n 个学生成绩(0-100 整数)的顺序结构线性表 L,编写函数,将该线性表 中调整为成绩及格(大于等于 60) 在不及格之前,要求 T(n)=O(n), S(n)=O(1)。先给出算法 思想, 再写出相应代码。

操作系统部分(50分)

- 6. (16 分) 简答(4 分/题)
 - (1) 系统型线程和用户型线程有何区别?
 - (2) 分段式系统和分页式系统有何区别?
 - (3) 引入缓冲的目的是什么,有哪些常见的缓冲模式?
 - (4) SPOOLING 技术如何实现,在操作系统中起何作用?
- 7. (7分) 设有三道作业,它们的提交时间及执行时间由下表给出:

作业号		提交时间	执行时间
1	75/11.	8.5	2.0
2		9.2	1.6
3	JIII.	9.4	0.5

试计算在单道程序环境下,采用先来先服务调度算法和最短作业优先调度算法时的平均周 转时间

8. (9分)某系统有 A、B、C、D 四类资源可供五个进程 P1、P2、P3、P4、P5 共享。系统共有这四类资源为:A 类 3 个、B 类 14 个、C 类 12 个、D 类 12 个。进程对资源的需求和分配情况如下:

进程	已占有资源				最大需求数			×
	A	В	C	D	A	В	C	D
P1	0	0	1	2	0	0	1	2
P2	1	0	0	0	1	7	5	0
Р3	1	3	5	4	2	3	5	6
P4	0	6	3	2	0	6	5	2
P5	0	0	1	4	0	6	5	6

- (1) 现在系统是否处于安全状态? (4分)
- (2) 如果进程 P2 提出需要 A 类资源 $0 \land B$ 类资源 $4 \land C$ 类资源 $2 \land D$ 类资源 $0 \land R$ 系统能否去满足它的请求? (5 分)
- 9. (9分) 某分页系统,每个页面长为1KB,某时刻该用户进程的页表如下:

页号	物理块号	是否在快表
0	8	是
1	7	是
2	4	否
3	10	否
4	5	否
5	3	是
6	2	是

- (1) 请写出分页系统的地址转换过程(3分)
- (2) 计算两个逻辑地址: 0AC5H、1AC5H 对应的物理地址(16 进制表示)。(3 分)
- (3)已知主存的一次存取为 2us,对于快表的查询时间可以忽略,则访问上述两个逻辑地址分别耗费多少时间? (3分)
- 10. (9分) 一家四口人, 儿子喜欢吃苹果, 由父亲负责购买, 女儿喜欢吃橘子, 由母亲负责购买。父亲和母亲购买水果后放到家中的抽屉里, 儿子和女儿从抽屉里取出水果。假设抽屉只能容纳 20 个水果, 同时只能一人开关, 用纪录型信号量同步父母子女四个进程。

组成原理部分(50分)

- 11. (10分) 简答题 (5分/题)
- (1) 计算机内部的指令和数据均以二进制信息的形式存放在存储器中,请问计算机如何从时间和空间上区别它们?
 - (2) 为什么用算逻部件 ALU 和移位器能够实现定点数和浮点数的加减乘除运算?
- 12. (10 分) 下面一段 C 程序用于计算数组 a 中各元素之和。当参数 len 为 0 时,返回值应该为 0。但计算机执行该程序时,却发生了存储器访问异常。这是什么原因造成的?应该如何修改?

```
float sum_elements (float a[], unsigned len)

float sum_elements (float a[], unsigned len)

float i;

float result = 0;

for (i = 0; i <= len-1; i++)

result += a[i];

return result;

}</pre>
```

13. (15分) 高级语言语句 "for (i=0;i<N;i++) sum=sum+a[i];" 对应的一段 MIPS 汇编代码 如下。其中按字节编址,N 为正整数,存放在\$s5 中,sum 初始值为 0,存放在\$s2 中,数组 a 的首址在\$s3 中,最前面的数字是指令序号。

```
i1
            add $t0, $0, $0
                                  \# R[\$t0] \leftarrow 0
            add \$t1, \$0, \$0 # R[\$t1] \leftarrow 0
i2
i3
       loop:
                 add $t2, $t1, $s3
                                           \# R[\$t2] \leftarrow R[\$t1] + R[\$s3]
i4
            lw $t3, 0($t2)
                                  # R[\$t3] \leftarrow M[R[\$t2]+0], \square R[\$t3]=a[i]
            add \$s2, \$s2,\$t3 # R[\$s2] \( -\ R[\$s2] + R[\$t3]
i5
i6
            addi $t1, $t1, 8
                                 #R[$t1]←R[$t1]+8,即R[$t1]=8*i
i7
            addi $t0, $t0, 1
                                 # R[$t0]←R[$t0]+1, 即 i=i+1
                  $t0, $s5, loop # if R[$t0] \neq R[$s5] then goto loop
i8
            bne
```

假定这段指令存放在内存 0x0800 00C0 开始的一段内存中,请回答下列问题。

(1) 已知\$s2 的编号为 10010, \$t3 的编号为 01011, 指令 i5 的机器代码是什么?请用 16 进制表示。(提示: add 为 R-型指令、编码如图所示,其字段顺序为 OP、Rs、Rt、Rd、Sh 和 Func)

op(31:28)=000000 (R-format), func(5:0)							
2-0	000	001	010	011	100		
5-3			۷,				
000	shift left		shift right	sra	sllv		
001	jump	jalr			syscall		
010	mfhi	mthi	mflo	mlto			
011	mult	multu	div	divu	*		
100	add	addu	sub	subu	and		

- (2) 根据对汇编代码的分析可知数组 a 的每个数组元素占几个字节?
- (3) 若 N=10,则上述程序段执行过程中共执行了多少条指令?若单周期处理器的时钟频率为 2GHz,则上述程序段(N=10)在该单周期处理器中执行时的 CPU 时间为多少?
- 14. (15 分)假定一个计算机系统中有一个 TLB 和一个 L1 data cache。该系统按字节编址,虚拟地址 16 位,物理地址 13 位;页大小为 256B,TLB 为四路组相联,共有 16 个页表项;

L1 data cache 采用直接映射方式, 块大小为 4B, 共 16 行。在系统运行到某一时刻时, TLB、 页表和 L1 data cache 中的部分内容(用十六进制表示)如下表(a),(b),(c)所示: 组号/标记/页框号/有效位/标记/页框号/有效位/标记/页框号/有效位/标记/页框号/有效位

0	03	1	0	09	0D	1	00	I	0	01	02	1
1	03	2D	1	02	1	0	01	13	1	0A	1	0
2	02	1	0	01	19	1	06	-	0	03	1	0
3	01	11	1	63	0D	1	0A	34	1	72	I	0

(a) TLB(四路组相联)的四组/16个页表项

虚页号/页框号/有效位 行索引/标记/ 有效位/ 字节 3/ 字节 2/ 字节 1/ 字节 0

虚贝飞	引火性亏/	/有效位	付祭51	/ 你记/	有效位/	子ヿ
00	08	1-17	0	19	1	12
01	03	1	工厂	15	0	_
02	14	1	2	1B	1	03
03	02	1	3	36	0	_
04	ı	0	4	32	× ¹	23
05	16	1	5	0D		46
06	ı	0	6	-	0	-
07	07	1	7	16	1	12
08	13	1	8	24	1	23
09	17	1	9	2D	0	_
0A	09	1	A	2D	1	43
0B	-	0	В	_	0	_
0C	19	1	С	12	1	76
0D	-	0	D	16	1	A3
0E	11	1	Е	65	1	2D
0F	0D	1	F	14	0	_

19	1	12	56	C9	AC
15	0	-	1	-	-
1B	1	03	45	12	CD
36	0	-	-	-	-
32	K ¹	23	34	C2	2A
0D	78/12	46	67	23	3D
-	0 7	> _	_	-	_
16	1	12	54	65	DC
24	1	23	62	12	3A
2D	0	-	X.	-	_
2D	1	43	62	23	C3
-	0	-	_	_	_
12	1	76	83	21	35
16	1	A3	F4	23	11
65	1	2D	4A	45	55
14	0	-	-	-	-

⁽b) 部分页表(开始的 16 项) (c) L1 data cache: 直接映射, 共 16 行, 块大小为 4B

⁽¹⁾ 虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移量?虚拟页号中哪几位表示 TLB 标记?哪几位表示 TLB 索引?

- (2) 物理地址中哪几位表示物理页号? 哪几位表示页内偏移量?
- (3) 主存(物理)地址如何划分成标记字段、行索引字段和块内地址字段?
- (4) CPU 从地址 067AH 中取出的 short 型值(16bit-大端方式)为多少?说明 CPU 读取地址 067AH 中内容的过程。

计算机/软件工程专业 每个学校的 考研真题/复试资料/考研经验 考研资讯/报录比/分数线 免费分享

微信 扫一扫 关注微信公众号 计算机与软件考研