

Character Formulas from Lusztig Varieties and Affine Springer Fibers

Minh-Tâm Quang Trinh

Yale University

This talk is about...

- 1 Braids
- 2 Lusztig Varieties
- 3 Springer Fibers
- 4 Affine Springer Fibers

This talk is about...

- 1 Braid
- 2 Lusztig Varieties
- 3 Springer Fibers
- 4 Affine Springer Fibers

1 Braids The braid group $Br_n =$

$$\left\langle \sigma_1, \dots, \sigma_{n-1}, \left| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \end{array} \right. \right\rangle$$

appears in knot theory and representation theory.

$$\sigma_i$$

A link is a collection of circles (tamely) embedded in \mathbb{R}^3 . Knot theory is about isotopy invariants of links.

(Alexander) Every link is the closure of some braid.

$$\bigcap_{\alpha \in B_1} - \bigoplus_{\hat{a} = \text{closure of } \alpha}$$

1 Braids The braid group $Br_n =$

$$\left\langle \sigma_1, \dots, \sigma_{n-1}, \left| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \end{array} \right\rangle$$

appears in knot theory and representation theory.

A link is a collection of circles (tamely) embedded in \mathbb{R}^3 . Knot theory is about isotopy invariants of links.

(Alexander) Every link is the closure of some braid.

$$\bigcap_{\alpha \in B_{\lambda}} - \bigcap_{\hat{a} = \text{closure of } \alpha}$$

Let $G = GL_n$ and B its upper-triangular subgroup.

$$\begin{split} &V_{n}(q) = \{ \text{functions } G(\mathbf{F}_{q})/B(\mathbf{F}_{q}) \to \mathbf{C} \}, \\ &H_{n}(q) = \text{End}_{G(\mathbf{F}_{q})}(V_{n}(q)). \end{split}$$

$$\mbox{(Iwahori)} \quad H_n(q) \simeq \frac{{\bf C} B r_n}{\langle \sigma_i^2 - (q-1) \sigma_i - q \rangle}.$$

To explain, recall Bruhat: $G = \coprod_{w \in S_n} B \dot{w} B$. Then $\mathbf{C} B r_n \curvearrowright V_n(q)$ via

$$\sigma_i \cdot \mathbf{1}_{xB(\mathbf{F}_q)} = \sum_{\substack{xB \to yB}} \mathbf{1}_{yB(\mathbf{F}_q)},$$

where $xB \xrightarrow{i} yB$ means $Bx^{-1}yB = B\dot{w}_{(i,i+1)}B$.

1 Braids The braid group $Br_n =$

$$\left\langle \sigma_1, \dots, \sigma_{n-1}, \left| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \\ \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \end{array} \right\rangle$$

appears in knot theory and representation theory.

$$\sigma_i$$
 $[\cdots] \sum_{i=1}^{n} [\cdots]$

A link is a collection of circles (tamely) embedded in ${\bf R}^3$. Knot theory is about isotopy invariants of links.

(Alexander) Every link is the *closure* of some braid.

$$\alpha \in B_3$$
 $\hat{\alpha} = \text{closure of } \alpha$

Let $G = GL_n$ and B its upper-triangular subgroup.

$$V_n(q) = \{ \text{functions } G(\mathbf{F}_q)/B(\mathbf{F}_q) \to \mathbf{C} \},$$

 $H_n(q) = \text{End}_{G(\mathbf{F}_q)}(V_n(q)).$

(Iwahori)
$$H_n(q) \simeq rac{{f C} B r_n}{\langle \sigma_i^2 - (q-1)\sigma_i - q
angle}.$$

To explain, recall Bruhat: $G = \coprod_{w \in S_n} B\dot{w}B$.

Then $\mathbf{C}Br_n \curvearrowright V_n(q)$ via

$$\sigma_i \cdot \mathbf{1}_{xB(\mathbf{F}_q)} = \sum_{xB \xrightarrow{i} yB} \mathbf{1}_{yB(\mathbf{F}_q)},$$

where $xB \xrightarrow{i} yB$ means $Bx^{-1}yB = B\dot{w}_{(i,i+1)}B$.

Let $G = GL_n$ and B its upper-triangular subgroup.

$$V_n(q) = \{ \text{functions } G(\mathbf{F}_q)/B(\mathbf{F}_q) \to \mathbf{C} \},$$

 $H_n(q) = \text{End}_{G(\mathbf{F}_q)}(V_n(q)).$

(Iwahori)
$$H_n(q) \simeq \frac{\mathbf{C} B r_n}{\langle \sigma_i^2 - (q-1)\sigma_i - q \rangle}.$$

To explain, recall Bruhat: $G = \coprod_{w \in S_n} B \dot{w} B$. Then $\mathbf{C} B r_n \curvearrowright V_n(q)$ via

$$\sigma_i \cdot \mathbf{1}_{xB(\mathbf{F}_q)} = \sum_{xB \xrightarrow{i} yB} \mathbf{1}_{yB(\mathbf{F}_q)},$$

where $xB \xrightarrow{i} yB$ means $Bx^{-1}yB = B\dot{w}_{(i,i+1)}B$.

Motivates a Hecke algebra $H_n(q)$ over $\mathbf{C}[q^{\pm 1}]$.

Ocneanu used functions $Br_n \to H_n(\mathsf{q}) \to \mathbf{C}(\mathsf{q}^{\frac{1}{2}})[a^{\pm 1}]$ to construct a link invariant

HOMFLYPT: {links in
$$\mathbb{R}^3$$
}/isotopy $\to \mathbb{C}(q^{\frac{1}{2}})[a^{\pm 1}]$.

Jones computed it for torus knots. Remarkably, the values encode q-Catalan (and q-Kirkman) numbers.

On the other hand, Iwahori suggests that HOMFLYPT is related to the geometry of G/B.

We'll discuss a Springer-theoretic function of β that refines the HOMFLYPT invariant of its closure $\hat{\beta}$.

Motivates a Hecke algebra $H_n(q)$ over $\mathbf{C}[q^{\pm 1}]$.

Ocneanu used functions $Br_n \to H_n(\mathsf{q}) \to \mathbf{C}(\mathsf{q}^{\frac{1}{2}})[a^{\pm 1}]$ to construct a link invariant

$$\text{HOMFLYPT}: \{ \text{links in } \mathbf{R}^3 \} / \text{isotopy} \to \mathbf{C}(\mathsf{q}^{\frac{1}{2}})[\mathsf{a}^{\pm 1}].$$

Jones computed it for torus knots. Remarkably, the values encode q-Catalan (and q-Kirkman) numbers.

On the other hand, Iwahori suggests that Homflypt is related to the geometry of G/B.

We'll discuss a Springer-theoretic function of β that refines the HOMFLYPT invariant of its closure $\hat{\beta}$.

2 Lusztig Varieties Suppose that β is *positive*:

$$\beta = \sigma_{i_1} \cdots \sigma_{i_\ell}.$$

(Deligne) The variety $O(\beta) =$

$$\left\{ (g_0B, g_1B, \dots, g_\ell B) \mid g_{j-1}B \xrightarrow{i_j} g_j B \text{ for all } j \right\}$$

only depends on β , up to isomorphisms that keep g_0B and $g_\ell B$ fixed.

For any positive β, β' , we have

$$O(\beta\beta') \simeq O(\beta) \times_{G/B} O(\beta'),$$

where $\times_{G/B}$ means the variety of pairs $(\vec{g}B, \vec{g}'B)$ such that $g_{\ell}B = g'_{0}B$.

A literal geometric representation of positive braids.

Motivates a Hecke algebra $H_n(q)$ over $\mathbb{C}[q^{\pm 1}]$.

Ocneanu used functions $Br_n \to H_n(q) \to \mathbf{C}(q^{\frac{1}{2}})[a^{\pm 1}]$ to construct a link invariant

HOMFLYPT: {links in
$$\mathbb{R}^3$$
}/isotopy $\to \mathbb{C}(q^{\frac{1}{2}})[a^{\pm 1}]$.

Jones computed it for torus knots. Remarkably, the values encode q-Catalan (and q-Kirkman) numbers.

On the other hand, Iwahori suggests that HOMFLYPT is related to the geometry of G/B.

We'll discuss a Springer-theoretic function of β that refines the HOMFLYPT invariant of its closure $\hat{\beta}$.

2 Lusztig Varieties Suppose that β is *positive*:

$$\beta = \sigma_{i_1} \cdots \sigma_{i_\ell}.$$

(Deligne) The variety $O(\beta) =$

$$\left\{ (g_0B, g_1B, \dots, g_\ell B) \,\middle|\, g_{j-1}B \xrightarrow{i_j} g_j B \text{ for all } j \right\}$$

only depends on β , up to isomorphisms that keep g_0B and $g_\ell B$ fixed.

For any positive β, β' , we have

$$O(\beta\beta') \simeq O(\beta) \times_{G/B} O(\beta'),$$

where $\times_{G/B}$ means the variety of pairs $(\vec{g}B, \vec{g}'B)$ such that $g_{\ell}B = g'_{0}B$.

A literal geometric representation of positive braids.

2 Lusztig Varieties Suppose that β is positive

$$\beta = \sigma_{i_1} \cdots \sigma_{i_\ell}.$$

(Deligne) The variety $O(\beta) =$

$$\left\{ (g_0 B, g_1 B, \dots, g_{\ell} B) \mid g_{j-1} B \xrightarrow{i_j} g_j B \text{ for all } j \right\}$$

only depends on β , up to isomorphisms that keep g_0B and $g_\ell B$ fixed.

For any positive β, β' , we have

$$O(\beta\beta') \simeq O(\beta) \times_{G/B} O(\beta')$$

where $\times_{G/B}$ means the variety of pairs $(\vec{g}B, \vec{g}'B)$ such that $g_{\ell}B = g'_{0}B$.

A literal geometric representation of positive braids.

For any $x \in G(\mathbf{F}_q)$, form the braid Lusztig variety

$$\mathcal{B}(\beta)_x = \{ \vec{g}B \in O(\beta) \mid g_\ell B = xg_0 B \}.$$

(Shende–Treumann–Zaslow) Up to a monomial in $q^{\frac{1}{2}}$,

$$\frac{|\mathcal{B}(\beta)_1(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|}$$

is the "highest" a-degree of HOMFLYPT($\hat{\beta}$) at $\mathbf{q} \to q$.

Example Let n=2 and $\beta=\sigma_1^3\in Br_2$.

Then $HOMFLYPT(\hat{\beta}) = a^2(q + q^{-1}) - a^4$.

$$O(\beta) \simeq \{ \vec{g} \in (\mathbf{P}^1)^4 \mid g_0 \neq g_1 \neq g_2 \neq g_3 \},$$

$$\mathcal{B}(\beta)_1 \simeq \{\vec{g} \in (\mathbf{P}^1)^3 \mid g_1, g_2, g_3 \text{ pairwise distinct}\}.$$

 PGL_2 acts simply transitively on the latter.

For any $x \in G(\mathbf{F}_q)$, form the braid Lusztig variety

$$\mathcal{B}(\beta)_x = \{ \vec{g}B \in O(\beta) \mid g_\ell B = xg_0 B \}.$$

(Shende–Treumann–Zaslow) Up to a monomial in $q^{\frac{1}{2}}$,

$$\frac{|\mathcal{B}(\beta)_1(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|}$$

is the "highest" a-degree of HOMFLYPT($\hat{\beta}$) at $q \to q$.

Example Let n=2 and $\beta=\sigma_1^3\in Br_2$.

Then HOMFLYPT($\hat{\beta}$) = $a^2(q+q^{-1})-a^4$.

$$O(\beta) \simeq \{ \vec{g} \in (\mathbf{P}^1)^4 \mid g_0 \neq g_1 \neq g_2 \neq g_3 \},$$

$$\mathcal{B}(\beta)_1 \simeq \{\vec{g} \in (\mathbf{P}^1)^3 \mid g_1, g_2, g_3 \text{ pairwise distinct}\}.$$

 PGL_2 acts simply transitively on the latter.

3 Springer Fibers How to access other a-degrees? Let $\mathcal{U} \subseteq G$ be the unipotent variety. Observe that

$$\mathcal{B}_x := \mathcal{B}(1)_x = \{gB \mid gB = xgB\}$$

is the usual Springer fiber over x, whose cohomology defines a character of S_n :

$$\Psi_{\boldsymbol{x}}(w) := \sum_i \mathsf{q}^i \mathrm{tr}(w \mid \mathrm{H}^{2i}(\mathcal{B}_x)).$$

Thm 1 (T) Let

$$\Psi_{\beta}(w) = \sum_{u \in \mathcal{U}(\mathbf{F}_q)} \frac{|\mathcal{B}(\beta)_u(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|} \Psi_u(w)|_{\mathsf{q} \to q}.$$

Recall $Irr(S_n) = \{\chi_{\lambda} \mid \lambda \vdash n\}.$

Then $(\chi_{(n-k,1,\ldots,1)}, \Psi_{\beta})_{S_n}$ sees the kth a-degree.

For any $x \in G(\mathbf{F}_q)$, form the braid Lusztig variety

$$\mathcal{B}(\beta)_x = \{ \vec{g}B \in O(\beta) \mid g_\ell B = xg_0 B \}.$$

(Shende–Treumann–Zaslow) Up to a monomial in $q^{\frac{1}{2}}$,

$$\frac{|\mathcal{B}(\beta)_1(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|}$$

is the "highest" a-degree of HOMFLYPT($\hat{\beta}$) at $q \to q$.

Example Let n=2 and $\beta=\sigma_1^3\in Br_2$.

Then
$$\text{HOMFLYPT}(\hat{\beta}) = a^2(\mathbf{q} + \mathbf{q}^{-1}) - a^4$$
.

$$O(\beta) \simeq \{ \vec{g} \in (\mathbf{P}^1)^4 \mid g_0 \neq g_1 \neq g_2 \neq g_3 \},$$

$$\mathcal{B}(\beta)_1 \simeq \{\vec{g} \in (\mathbf{P}^1)^3 \mid g_1, g_2, g_3 \text{ pairwise distinct}\}.$$

 PGL_2 acts simply transitively on the latter.

3 Springer Fibers How to access other a-degrees?

Let $\mathcal{U} \subseteq G$ be the unipotent variety. Observe that

$$\mathcal{B}_x := \mathcal{B}(1)_x = \{ gB \mid gB = xgB \}$$

is the usual Springer fiber over x, whose cohomology defines a character of S_n :

$$\Psi_{\boldsymbol{x}}(w) := \sum_i \mathsf{q}^i \mathrm{tr}(w \mid \mathrm{H}^{2i}(\mathcal{B}_x)).$$

Thm 1 (T) Let

$$\Psi_{\beta}(w) = \sum_{u \in \mathcal{U}(\mathbf{F}_q)} \frac{|\mathcal{B}(\beta)_u(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|} \Psi_u(w)|_{\mathbf{q} \to q}.$$

Recall $Irr(S_n) = \{ \chi_{\lambda} \mid \lambda \vdash n \}.$

Then $(\chi_{(n-k,1,...,1)}, \Psi_{\beta})_{S_n}$ sees the kth a-degree.

3 Springer Fibers How to access other a-degrees? Let $\mathcal{U} \subseteq G$ be the unipotent variety. Observe that

$$\mathcal{B}_x := \mathcal{B}(1)_x = \{ gB \mid gB = xgB \}$$

is the usual Springer fiber over x, whose cohomology defines a character of S_n :

$$\Psi_{\boldsymbol{x}}(w) := \sum_{i} \mathsf{q}^{i} \mathrm{tr}(w \mid \mathrm{H}^{2i}(\mathcal{B}_{x})).$$

Thm 1 (T) Let

$$\Psi_{\beta}(w) = \sum_{u \in \mathcal{U}(\mathbf{F}_q)} \frac{|\mathcal{B}(\beta)_u(\mathbf{F}_q)|}{|\mathrm{PGL}_n(\mathbf{F}_q)|} \Psi_u(w)|_{\mathsf{q} \to q}.$$

Recall $Irr(S_n) = \{\chi_{\lambda} \mid \lambda \vdash n\}$

Then $(\chi_{(n-k,1,\ldots,1)}, \Psi_{\beta})_{S_n}$ sees the kth a-degree.

Think of $\beta \mapsto \Psi_{\beta}$ as a function

$$Br_n \to H_n(q) \to \{\text{characters of } S_n\}.$$

Closely related to work of Lusztig–Abreu–Nigro.

Example Again, let n=2 and $\beta=\sigma_1^3\in Br_2$. Recall HOMFLYPT $(\hat{\beta})=a^2(\mathsf{q}+\mathsf{q}^{-1})-a^4$.

$$\Psi_u = \left\{ egin{array}{ll} 1 + \mathsf{q} \, \mathsf{sgn} & u = 1, \\ 1 & u
eq 1. \end{array}
ight.$$
 $\Psi_\beta = g^2 + 1 + g \, \mathsf{sgn}.$

Thm 2 (T) The cohomology of $\mathcal{U}(\beta) \times_{\mathcal{U}} \mathcal{U}(1)$, where

$$\mathcal{U}(\beta) = \{(u, \vec{g}B) \mid u \in \mathcal{U} \text{ and } \vec{g}B \in \mathcal{B}(\beta)_u\},\$$

encodes finer invariants of $\hat{\beta}$.

Think of $\beta \mapsto \Psi_{\beta}$ as a function

$$Br_n \to H_n(q) \to \{\text{characters of } S_n\}.$$

Closely related to work of Lusztig-Abreu-Nigro.

Example Again, let n = 2 and $\beta = \sigma_1^3 \in Br_2$.

Recall HOMFLYPT($\hat{\beta}$) = $a^2(q+q^{-1}) - a^4$.

$$\Psi_u = \left\{ \begin{array}{ll} 1 + \mathsf{q} \, \mathsf{sgn} & u = 1, \\ 1 & u \neq 1. \end{array} \right.$$

$$\Psi_{\beta} = q^2 + 1 + q \operatorname{sgn}.$$

Thm 2 (T) The cohomology of $\mathcal{U}(\beta) \times_{\mathcal{U}} \mathcal{U}(1)$, where

$$\mathcal{U}(\beta) = \{(u, \vec{g}B) \mid u \in \mathcal{U} \text{ and } \vec{g}B \in \mathcal{B}(\beta)_u\},$$

encodes finer invariants of $\hat{\beta}$.

The full twist $\pi = (\sigma_1 \cdots \sigma_{n-1})^n$:

Thm 3 (T) Suppose $\beta^m = \pi^d$ for some d, m > 0. Then up to a monomial, $\Psi_{\beta}(w)$ is the $\mathbf{q} \to q$ limit of

$$\frac{\operatorname{sgn}(w)}{\det(1-\operatorname{q} w\mid \mathfrak{h})} \sum_{\lambda \vdash n} \operatorname{q}^{c(\lambda)d/m} D_{\lambda}(e^{2\pi i d/m}) \chi_{\lambda}(w)$$

where:

- h is the reflection representation.
- $c(\lambda)$ is the sum of contents of λ .
- $D_{\lambda}(t) = K_{\lambda,(1^n)}(t)$ is the fake degree of λ .

Subsumes Jones's ${\tt HOMFLYPT}$ formula for torus knots.

Think of $\beta \mapsto \Psi_{\beta}$ as a function

$$Br_n \to H_n(q) \to \{\text{characters of } S_n\}.$$

Closely related to work of Lusztig-Abreu-Nigro.

Example Again, let n=2 and $\beta=\sigma_1^3\in Br_2$. Recall HOMFLYPT $(\hat{\beta})=a^2(\mathsf{q}+\mathsf{q}^{-1})-a^4$.

$$\Psi_u = \begin{cases} 1 + \mathsf{q} \operatorname{sgn} & u = 1, \\ 1 & u \neq 1. \end{cases}$$

$$\Psi_\beta = q^2 + 1 + q \operatorname{sgn}.$$

Thm 2 (T) The cohomology of $\mathcal{U}(\beta) \times_{\mathcal{U}} \mathcal{U}(1)$, where

$$\mathcal{U}(\beta) = \{(u, \vec{g}B) \mid u \in \mathcal{U} \text{ and } \vec{g}B \in \mathcal{B}(\beta)_u\},\$$

encodes finer invariants of $\hat{\beta}$.

The full twist $\pi = (\sigma_1 \cdots \sigma_{n-1})^n$:

Thm 3 (T) Suppose $\beta^m = \pi^d$ for some d, m > 0.

Then up to a monomial, $\Psi_{\beta}(w)$ is the $q \to q$ limit of

$$\frac{\operatorname{sgn}(w)}{\det(1-\operatorname{q} w\mid \mathfrak{h})} \sum_{\lambda \vdash n} \operatorname{q}^{c(\lambda)d/m} D_{\lambda}(e^{2\pi i d/m}) \chi_{\lambda}(w)$$

where:

- h is the reflection representation.
- $c(\lambda)$ is the sum of contents of λ .
- $D_{\lambda}(t) = K_{\lambda,(1^n)}(t)$ is the fake degree of λ .

Subsumes Jones's HOMFLYPT formula for torus knots.

The full twist $\pi = (\sigma_1 \cdots \sigma_{n-1})^n$:

Thm 3 (T) Suppose $\beta^m = \pi^d$ for some d, m > 0. Then up to a monomial, $\Psi_{\beta}(w)$ is the $q \to q$ limit of

$$\frac{\operatorname{sgn}(w)}{\det(1-\operatorname{q} w\mid \mathfrak{h})} \sum_{\lambda \vdash n} \operatorname{q}^{c(\lambda)d/m} D_{\lambda}(e^{2\pi i d/m}) \chi_{\lambda}(w)$$

where

- h is the reflection representation
- $c(\lambda)$ is the sum of *contents* of λ .
- $D_{\lambda}(t) = K_{\lambda,(1^n)}(t)$ is the fake degree of λ .

Subsumes Jones's HOMFLYPT formula for torus knots.

Thm 3 generalizes to any reductive G, once we replace:

- S_n with the Weyl group W.
- $c(\lambda)$ with $c(\chi) = \sum_{\text{refl. } t} \frac{\chi(t)}{\chi(1)}$.
- fake degrees D_{λ} with generic degrees D_{χ} .

If $\gcd(d,m)=1$ and m is the Coxeter number of W, then the formula simplifies:

$$(\text{monomial}) \cdot \left| \frac{\det(1 - \mathsf{q}^d w \mid \mathfrak{h})}{\det(1 - \mathsf{q} w \mid \mathfrak{h})} \right| =: \Pi_{\mathsf{q}}^{(d)}.$$

 $\Pi_{\mathbf{q}}^{(d)}$ is the character of a rational parking space. (triv, $\Pi_{\mathbf{q}}^{(d)})_W$ is a rational q-Catalan number.

Example If
$$W = S_n$$
, then $(\operatorname{triv}, \Pi_{\mathbf{q}}^{(d)})_W = \frac{[n+d-1]!}{[n]![d]!}$.

Thm 3 generalizes to any reductive G, once we replace:

- S_n with the Weyl group W.
- $c(\lambda)$ with $c(\chi) = \sum_{\text{refl. } t} \frac{\chi(t)}{\chi(1)}$.
- fake degrees D_{λ} with generic degrees D_{χ} .

If gcd(d, m) = 1 and m is the Coxeter number of W, then the formula simplifies:

$$(\text{monomial}) \cdot \left| \frac{\det(1 - \mathsf{q}^d w \mid \mathfrak{h})}{\det(1 - \mathsf{q} w \mid \mathfrak{h})} \right| =: \Pi_{\mathsf{q}}^{(d)}.$$

 $\Pi_{\mathbf{q}}^{(d)}$ is the character of a rational parking space. (triv, $\Pi_{\mathbf{q}}^{(d)})_W$ is a rational q-Catalan number.

Example If
$$W = S_n$$
, then $(\operatorname{triv}, \Pi_{\mathsf{q}}^{(d)})_W = \frac{[n+d-1]!}{[n]![d]!}$.

4 Affine Springer Fibers

Rational parking spaces appear in a loop or *affine* analogue of Springer theory.

finite Springer	affine Springer
G	$G(\!(z)\!)$
G/B	$G(\!(z)\!)/I$
W	$\widetilde{W} = W \ltimes X^{\vee}$

Above:

- G((z)) is the loop group G((z))(R) := G(R((z))).
- I is the preimage of B in G[[z]].
- X^{\vee} is the cocharacter lattice of $T \subseteq B$.

Dream Braid Lusztig varieties know about affine Springer representations.

Thm 3 generalizes to any reductive G, once we replace:

- S_n with the Weyl group W.
- $c(\lambda)$ with $c(\chi) = \sum_{\text{refl. } t} \frac{\chi(t)}{\chi(1)}$.
- fake degrees D_{λ} with generic degrees D_{χ} .

If gcd(d, m) = 1 and m is the Coxeter number of W, then the formula simplifies:

$$(\text{monomial}) \cdot \left| \frac{\det(1 - \mathsf{q}^d w \mid \mathfrak{h})}{\det(1 - \mathsf{q} w \mid \mathfrak{h})} \right| =: \Pi_{\mathsf{q}}^{(d)}.$$

 $\Pi_{\mathsf{q}}^{(d)}$ is the character of a rational parking space. $(\mathsf{triv}, \Pi_{\mathsf{q}}^{(d)})_W$ is a rational q-Catalan number.

Example If
$$W = S_n$$
, then $(\operatorname{triv}, \Pi_{\mathbf{q}}^{(d)})_W = \frac{[n+d-1]!}{[n]![d]!}$.

4 Affine Springer Fibers

Rational parking spaces appear in a loop or affine analogue of Springer theory.

$$\begin{array}{ll} \text{finite Springer} & \text{affine Springer} \\ G & G(\!(z)\!) \\ G/B & G(\!(z)\!)/I \\ W & \widetilde{W} = W \ltimes X^\vee \end{array}$$

Above:

- G((z)) is the loop group G((z))(R) := G(R((z))).
- I is the preimage of B in G[[z]].
- X^{\vee} is the cocharacter lattice of $T \subseteq B$.

 $\begin{array}{ll} \textbf{Dream} & \textbf{Braid Lusztig varieties know about affine} \\ \textbf{Springer representations.} \end{array}$

4 Affine Springer Fibers

Rational parking spaces appear in a loop or affine analogue of Springer theory.

finite Springer	affine Springer
G	G((z))
G/B	G((z))/I
W	$\widetilde{W} = W \ltimes X^{\vee}$

Above

- G((z)) is the loop group G((z))(R) := G(R((z)))
- I is the preimage of B in G[[z]].
- X^{\vee} is the cocharacter lattice of $T \subseteq B$.

Dream Braid Lusztig varieties know about affine Springer representations. We now study Springer fibers over the Lie algebras, not the groups, and over ${\bf C},$ not ${\bf F}_q.$

$$x: \quad \mathcal{B}_x = \{ gB \in G/B \mid g^{-1}xg \in \mathfrak{b} \},$$

$$\gamma = \gamma(z): \quad \mathcal{B}_{\gamma}^{\text{aff}} = \{ gI \in G((z))/I \mid g^{-1}\gamma g \in \mathfrak{I} \}.$$

The table hides key differences:

In the finite case, \mathcal{B}_x is most interesting for x nilpotent.

In the affine case, $\mathcal{B}_{\gamma}^{\text{aff}}$ is terribly infinite for $\gamma = \gamma(z)$ nilpotent, but interesting for $\gamma(z)$ regular semisimple.

Example If
$$G=\operatorname{SL}_2$$
 and $\gamma(z)=\begin{pmatrix}0&1\\z^3&0\end{pmatrix}$, then
$$\mathcal{B}_{\gamma}^{\operatorname{aff}}\simeq \mathbf{P}^1\sqcup_{\operatorname{pt}}\mathbf{P}^1.$$

We now study Springer fibers over the Lie algebras, not the groups, and over ${\bf C}$, not ${\bf F}_q$.

$$x: \quad \mathcal{B}_x = \{ gB \in G/B \mid g^{-1}xg \in \mathfrak{b} \},$$

$$\gamma = \gamma(z): \quad \mathcal{B}_{\gamma}^{\text{aff}} = \{ gI \in G((z))/I \mid g^{-1}\gamma g \in \mathfrak{I} \}.$$

The table hides key differences:

In the finite case, \mathcal{B}_x is most interesting for x nilpotent.

In the affine case, $\mathcal{B}_{\gamma}^{\mathrm{aff}}$ is terribly infinite for $\gamma = \gamma(z)$ nilpotent, but interesting for $\gamma(z)$ regular semisimple.

Example If
$$G=\operatorname{SL}_2$$
 and $\gamma(z)=\begin{pmatrix}0&1\\z^3&0\end{pmatrix}$, then
$$\mathcal{B}_{\gamma}^{\operatorname{aff}}\simeq \mathbf{P}^1\sqcup_{\operatorname{pt}}\mathbf{P}^1.$$

Fix $\nu = d/m > 0$ in lowest terms. Let $\mathbf{C}^{\times} \curvearrowright \mathfrak{g}((z))$:

$$c_{\nu} \gamma(z) = c^{2d\rho} \gamma(c^{2m}z) c^{-2d\rho},$$

where $2\rho^{\vee} = \sum_{\alpha \in \Phi^+} \alpha^{\vee}$.

Let $\mathfrak{g}((z))_{\nu,k}$ be the weight-2k eigenspace.

Lemma If γ is an eigenvector for \cdot_{ν} , then the induced action on $G(\!(z)\!)/I$ preserves $\mathcal{B}_{\gamma}^{\mathrm{aff}}$.

Lemma $\mathfrak{g}(\!(z)\!)_{\nu,0}$ is the Lie algebra of a connected reductive group $\underline{L}_{\nu}\subseteq G(\!(z)\!)$. Moreover,

$$(G((z))/I)^{\mathbf{C}^{\times}} = \coprod_{w \in W(L_{\nu}) \setminus \widetilde{W}} L_{\nu} \dot{w} I/I.$$

We now study Springer fibers over the Lie algebras, not the groups, and over \mathbb{C} , not \mathbb{F}_q .

$$x: \quad \mathcal{B}_x = \{gB \in G/B \mid g^{-1}xg \in \mathfrak{b}\},$$

$$\gamma = \gamma(z): \quad \mathcal{B}_{\gamma}^{\text{aff}} = \{gI \in G((z))/I \mid g^{-1}\gamma g \in \mathfrak{I}\}.$$

The table hides key differences:

In the finite case, \mathcal{B}_x is most interesting for x nilpotent.

In the affine case, $\mathcal{B}_{\gamma}^{\text{aff}}$ is terribly infinite for $\gamma = \gamma(z)$ nilpotent, but interesting for $\gamma(z)$ regular semisimple.

Example If
$$G = \operatorname{SL}_2$$
 and $\gamma(z) = \begin{pmatrix} 0 & 1 \\ z^3 & 0 \end{pmatrix}$, then
$$\mathcal{B}_{\gamma}^{\operatorname{aff}} \simeq \mathbf{P}^1 \sqcup_{\operatorname{pt}} \mathbf{P}^1.$$

Fix $\nu = d/m > 0$ in lowest terms. Let $\mathbb{C}^{\times} \curvearrowright \mathfrak{g}((z))$:

$$c_{\nu} \gamma(z) = c^{2d\rho^{\vee}} \gamma(c^{2m} z) c^{-2d\rho^{\vee}},$$

where $2\rho^{\vee} = \sum_{\alpha \in \Phi^+} \alpha^{\vee}$.

Let $\mathfrak{g}((z))_{\nu,k}$ be the weight-2k eigenspace.

Lemma If γ is an eigenvector for \cdot_{ν} , then the induced action on $G(\!(z)\!)/I$ preserves $\mathcal{B}_{\gamma}^{\mathrm{aff}}$.

Lemma $\mathfrak{g}((z))_{\nu,0}$ is the Lie algebra of a connected reductive group $\underline{L}_{\nu} \subseteq G((z))$. Moreover,

$$(G((z))/I)^{\mathbf{C}^{\times}} = \coprod_{w \in W(L_{\nu}) \setminus \widetilde{W}} L_{\nu} \dot{w} I/I.$$

Fix $\nu = d/m > 0$ in lowest terms. Let $\mathbb{C}^{\times} \curvearrowright \mathfrak{g}((z))$:

$$c_{\nu} \gamma(z) = c^{2d\rho} \gamma(c^{2m}z) c^{-2d\rho},$$

where $2\rho^{\vee} = \sum_{\alpha \in \Phi^+} \alpha^{\vee}$.

Let $\mathfrak{g}((z))_{\nu,k}$ be the weight-2k eigenspace.

Lemma If γ is an eigenvector for \cdot_{ν} , then the induced action on $G(\!(z)\!)/I$ preserves $\mathcal{B}_{\gamma}^{\mathrm{aff}}$.

Lemma $\mathfrak{g}(\!(z)\!)_{\nu,0}$ is the Lie algebra of a connected reductive group $L_{\nu}\subseteq G(\!(z)\!)$. Moreover,

$$(G((z))/I)^{\mathbf{C}^{\times}} = \coprod_{w \in W(L_{\nu}) \setminus \widetilde{W}} L_{\nu} \dot{w} I/I.$$

Fix $\gamma \in \mathfrak{g}(\!(z)\!)_{\nu,d}$. In the SL₂ example, $\gamma \in \mathfrak{g}(\!(z)\!)_{3/2,\,3}$.

Springer:
$$\widetilde{W} \curvearrowright \mathrm{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}), \mathrm{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}).$$

(Sommers) If m is the Coxeter number, then:

- $L_{\nu} = T$ and $L_{\nu}\dot{w}I = \dot{w}I$.
- $(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}}$ is a finite subset of the $\dot{w}I$.
- Writing $H^*_{\mathbf{C}^{\times}}(pt) = \mathbf{C}[\epsilon]$, we have

$$\begin{split} \mathbf{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}) &= \mathbf{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}})|_{\epsilon \to 1} \\ &= \{ \mathrm{functions} \ \mathrm{on} \ (\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} \}. \end{split}$$

• $\Pi_{\mathsf{q}}^{(d)}(w)|_{\mathsf{q}\to 1}$ is the W-character of $\mathrm{H}^*_c(\mathcal{B}^{\mathrm{aff}}_\gamma)$.

(Oblomkov–Yun) Filtration on $H_{c,\mathbf{C}^{\times}}^*|_{\epsilon \to 1}$ restores q.

Fix $\gamma \in \mathfrak{g}(\!(z)\!)_{\nu,d}$. In the SL₂ example, $\gamma \in \mathfrak{g}(\!(z)\!)_{3/2,\,3}$.

Springer:
$$\widetilde{W} \curvearrowright \mathrm{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}), \mathrm{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}).$$

(Sommers) If m is the Coxeter number, then:

- $L_{\nu} = T$ and $L_{\nu} \dot{w} I = \dot{w} I$.
- $(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}}$ is a finite subset of the $\dot{w}I$.
- Writing $H^*_{\mathbf{C}^{\times}}(pt) = \mathbf{C}[\epsilon]$, we have

$$\begin{split} \mathbf{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}) &= \mathbf{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}})|_{\epsilon \to 1} \\ &= \{ \mathrm{functions} \ \mathrm{on} \ (\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} \}. \end{split}$$

• $\Pi_{\mathsf{q}}^{(d)}(w)|_{\mathsf{q}\to 1}$ is the W-character of $\mathrm{H}^*_c(\mathcal{B}_{\gamma}^{\mathrm{aff}})$.

(Oblomkov–Yun) Filtration on $H_{c,\mathbf{C}^{\times}}^*|_{\epsilon\to 1}$ restores q.

(Goresky–Kottwitz–MacPherson) For general ν ,

$$(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} = \coprod_{w \in W(L_{\nu}) \setminus \widetilde{W}} \mathrm{Hess}_{\gamma, w},$$

a disjoint union of partial Hessenberg varieties

$$\operatorname{Hess}_{\gamma, w} = \{ g P_{\nu, w} \in L_{\nu} / P_{\nu, w} \mid g^{-1} \gamma g \in \dot{w} \Im \dot{w}^{-1} \},$$

where $P_{\nu,w} := L_{\nu} \cap \dot{w} I \dot{w}^{-1}$. They are smooth.

(Oblomkov–Yun) Suppose $\operatorname{Hess}_{\gamma,w} \neq \emptyset$.

Then its codimension in $L_{\nu}/P_{\nu,w}$ is the number of affine roots $\alpha + k$ such that:

- $\bullet \quad \langle \alpha, \nu \rho^{\vee} \rangle + k = \nu.$
- $\{\alpha + k = 0\}$ separates $\nu \rho^{\vee}$ and $w \cdot \frac{1}{n} \rho^{\vee}$ in $X^{\vee} \otimes \mathbf{R}$.

Fix $\gamma \in \mathfrak{g}((z))_{\nu,d}$. In the SL₂ example, $\gamma \in \mathfrak{g}((z))_{3/2,3}$.

$$\text{Springer}: \quad \widetilde{W} \curvearrowright \mathrm{H}^*_c(\mathcal{B}^{\mathrm{aff}}_{\gamma}), \mathrm{H}^*_{c,\mathbf{C}^{\times}}(\mathcal{B}^{\mathrm{aff}}_{\gamma}).$$

(Sommers) If m is the Coxeter number, then:

- $L_{\nu} = T$ and $L_{\nu} \dot{w} I = \dot{w} I$.
- $(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}}$ is a finite subset of the $\dot{w}I$.
- Writing $H^*_{\mathbf{C}^{\times}}(pt) = \mathbf{C}[\epsilon]$, we have

$$\begin{split} \mathbf{H}_{c}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}}) &= \mathbf{H}_{c,\mathbf{C}^{\times}}^{*}(\mathcal{B}_{\gamma}^{\mathrm{aff}})|_{\epsilon \to 1} \\ &= \{ \mathrm{functions} \ \mathrm{on} \ (\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} \}. \end{split}$$

• $\Pi_{\mathsf{q}}^{(d)}(w)|_{\mathsf{q}\to 1}$ is the W-character of $\mathrm{H}_c^*(\mathcal{B}_{\gamma}^{\mathrm{aff}})$.

(Oblomkov–Yun) Filtration on $H_{c, \mathbf{C}^{\times}}^*|_{\epsilon \to 1}$ restores q.

(Goresky–Kottwitz–MacPherson) For general ν ,

$$(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} = \coprod_{w \in W(L_{\nu}) \setminus \widetilde{W}} \mathrm{Hess}_{\gamma, w},$$

a disjoint union of $partial\ Hessenberg\ varieties$

$$\text{Hess}_{\gamma, w} = \{ gP_{\nu, w} \in L_{\nu} / P_{\nu, w} \mid g^{-1} \gamma g \in \dot{w} \Im \dot{w}^{-1} \},$$

where $P_{\nu,w} := L_{\nu} \cap \dot{w} I \dot{w}^{-1}$. They are smooth.

(Oblomkov–Yun) Suppose $\operatorname{Hess}_{\gamma,w} \neq \emptyset$.

Then its codimension in $L_{\nu}/P_{\nu,w}$ is the number of affine roots $\alpha + k$ such that:

- $\bullet \quad \langle \alpha, \nu \rho^{\vee} \rangle + k = \nu.$
- $\{\alpha + k = 0\}$ separates $\nu \rho^{\vee}$ and $w \cdot \frac{1}{n} \rho^{\vee}$ in $X^{\vee} \otimes \mathbf{R}$.

(Goresky–Kottwitz–MacPherson) For general ν ,

$$(\mathcal{B}_{\gamma}^{\mathrm{aff}})^{\mathbf{C}^{\times}} = \coprod_{w \in W(L_{\nu}) \setminus \widetilde{W}} \mathrm{Hess}_{\gamma, w}$$

a disjoint union of partial Hessenberg varieties

$$\operatorname{Hess}_{\gamma, w} = \{ gP_{\nu, w} \in L_{\nu} / P_{\nu, w} \mid g^{-1} \gamma g \in \dot{w} \Im \dot{w}^{-1} \},$$

where $P_{\nu,w} := L_{\nu} \cap \dot{w} I \dot{w}^{-1}$. They are smooth.

(Oblomkov–Yun) Suppose $\operatorname{Hess}_{\gamma,w} \neq \emptyset$.

Then its codimension in $L_{\nu}/P_{\nu,w}$ is the number of affine roots $\alpha + k$ such that:

- $\bullet \quad \langle \alpha, \nu \rho^{\vee} \rangle + k = \nu.$
- $\{\alpha + k = 0\}$ separates $\nu \rho^{\vee}$ and $w \cdot \frac{1}{n} \rho^{\vee}$ in $X^{\vee} \otimes \mathbf{R}$.

Conj (T) For general ν , the representation

$$W \curvearrowright \mathrm{H}^*_{c,\mathbf{C}^{\times}}(\mathcal{B}^{\mathrm{aff}}_{\gamma})|_{\epsilon \to 1}$$

contains a summand whose character is the $q \rightarrow 1$ limit of our earlier formula:

$$\frac{\operatorname{sgn}(w)}{\det(1-\operatorname{q} w\mid \mathfrak{h})} \sum_{\chi \in \operatorname{Irr}(W)} \operatorname{q}^{c(\chi)\nu} D_{\chi}(e^{2\pi i \nu}) \chi(w) \ .$$

Moreover, the Oblomkov-Yun filtration restores q.

Thank you for listening.