Homework 1

1. In each of the following situations, indicate where ther f=O(g), or $f=\Omega(g),$ or both (in which case $f=\Theta(g))$

	f(n)	g(n)	$O, \Omega, \text{ or } \Theta$?
(a)	n - 100	n - 200	$f = \Theta(g)$
(b)	$n^{1/2}$	$n^{2/3}$	f = O(g)
(c)	$100n + \log n$	$n + (\log n)^2$	$f = \Theta(g)$
(d)	$n \log n$	$10n \log 10n$	$f = \Theta(g)$
(e)	$\log 2n$	$\log 3n$	$f = \Theta(g)$
(f)	$10\log n$	$\log(n^2)$	$f = \Theta(g)$
(g)	$n^{1.01}$	$n\log^2 n$	$f = \Omega(g)$
(h)	$n^2/\log n$	$n(\log n)^2$	$f = \Omega(g)$
(i)	$n^{0.1}$	$(\log n)^{10}$	$f = \Omega(g)$
(j)	$(\log n)^{\log n}$	$n/\log n$	$f = \Omega(g)$
(k)	$\sqrt(n)$	$(\log n)^3$	f = O(g)
(l)	$n^{1/2}$	$5^{\log_2 n}$	f = O(g)
(m)	$n2^n$	3n	$f = \Omega(g)$
(n)	2^n	2^{n+1}	$f = \Theta(g)$
(o)	n!	2^n	$f = \Omega(g)$
(p)	$(\log n)^{\log n}$	$2^{(\log_2 n)^2}$	f = O(g)
(q)	$\sum_{i=1}^{n} i^k$	n^{k+1}	f = O(g)

2. Is the difference of $5^{30,000}$ and $6^{123,456}$ a multiple of 31?