(a)

$$(0+1)^*111(0+1)^*10 + (0+1)^*1110$$

The string requires a suffix 10 and a substring 111. There two subcases

- 1. the substring 111 in string is separated from the suffix 10 of the string. The corresponding regular expression is (0+1)*111(0+1)*10. (0+1)* is the expression for any string.
- 2. the last letter of substring 111 in string is the first letter in the suffix 10 of the string. The corresponding regular expression is $(0+1)^*1110$

(b)

$$1*0*1*$$

If the string does not contain subsequence 010, it should not have any 0 appears after the string already have a subsequence of 01.

(c)

$$(0^*10^*10^*10^*)^*1(0^*10^*10^*10^*)^* + (0^*10^*10^*10^*)^*1(0^*10^*10^*10^*)^*1(0^*10^*10^*10^*)^*$$

The regular expression $(0^*10^*10^*10^*)^*$ means any string where $\ 1$ appears $3n(n\in\mathbb{N}^+)$ times. To make number of $\ 1$ s not be divisible by $\ 3$. The $\ 1$ should appear either 3n+1 or 3n+2 times $(n\in\mathbb{N}^+)$. We insert extra $\ 1$ s into the regular expression, $(0^*10^*10^*10^*)^*$. This corresponds to $(0^*10^*10^*10^*)^*1(0^*10^*10^*10^*)^*$ and $(0^*10^*10^*10^*)^*1(0^*10^*10^*)^*1(0^*10^*10^*10^*)^*$, respectively.

(d)

$$w_1 + w_2 + w_3 + \cdots + w_k$$

Treat each string w_i in L as a regular expression. The regular expression that define the L is the one that accept any string in L. The regular expression is thus the union of all the string in L.

(e)

Define $h = \max_{1 \le i \le k} |w_i|$ as the maximum length of all the string in language L. Therefore, there are several cases to consider:

1. For $l \leq h$, we could pick a subset $S_l \subseteq L$ that $S_l = \{s: |s| = l\}$. We could also have Σ^l (that is the set of all string with the length l). Define $K_l = \Sigma^l \backslash S_l$. Then K_l is all the string in the \bar{L} with length l, and the regular expression $x_l = \sum_{s \in K_l} s$ (the \sum means regular expression union). For $0 \leq i \leq h$, the regular expression for all string in \bar{L} with length less than or equal to l is expressed by (call this regular expression l)

$$x = x_0 + x_i + \cdots + x_h$$

2. For any string s that |s|>h, It's in \bar{L} . It could be expressed as $(0+1)^{h+1}(0+1)^*$. $(0+1)^{h+1}$ means $(0+1)(0+1)\cdots(0+1)$ for h+1 times)

The resulting regular expression is just $x + (0+1)^{h+1}(0+1)^*$.