Encodec

High Fidelity Neural Audio Compression

Кодеки

MP3. Это формат сжатия с потерями, который значительно уменьшает размер файла за счет удаления звуковой информации, которую человеческое ухо не воспринимает.

FLAC. Это формат без потерь, который сжимает файлы без утраты качества.

Encodec

Encoder

- Состоит из 1D сверток со skip-connection и stride.
- Каждый блок сжимает данные за счет stride, но при этом увеличивает число каналов.
- Предпоследний слой двухслойный LSTM

Decoder

• Зеркальное отображение Encoder, за исключением того что используется transposed 1D свертки.

Quantizer

 Еще больше сжимает информацию, с помощью остаточной векторной квантизации, и арифметического кодирования.

Vector Quantization

- Сопоставляет вектору
 пришедшему на вход,
 ближайший вектор по модулю
 разности из codebook, и
 возвращает его номер.
- Не работает ввиду большой размерности vector.

Residual Vector Quantization

Arithmetic coder

Пусть у нас есть алфавит {A,B,C,D},и мы знаем их распределение.

$$P(A) = 0.6$$
, $P(B) = 0.2$

$$P(C) = P(D) = 0.1$$

На примере закодирована последовательность ACD, числом 0.538

Discriminator

• Предсказывает является аудио, оригинальным или сгенерированным.

STFT

$$\mathbf{STFT}\{x[n]\}(m,\omega)\equiv X(m,\omega)=\sum_{n=-\infty}^{\infty}x[n]w[n-m]e^{-i\omega n}$$

Encodec

Reconstruction Loss

Лосс по дискретизации

$$\ell_t(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|_1$$

Лосс по спектрограммам

$$\ell_f(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \frac{1}{|\alpha| \cdot |s|} \sum_{\alpha_i \in \alpha} \sum_{i \in e} \|\mathcal{S}_i(\boldsymbol{x}) - \mathcal{S}_i(\hat{\boldsymbol{x}})\|_1 + \alpha_i \|\mathcal{S}_i(\boldsymbol{x}) - \mathcal{S}_i(\hat{\boldsymbol{x}})\|_2$$

Vector Quantization Loss

Лосс, по которому обучается квантизатор

$$l_w = \sum_{c=1}^{C} \| \boldsymbol{z}_c - q_c(\boldsymbol{z}_c) \|_2^2.$$

Discriminative Loss

Лосс по которому Encoder-Decoder обманывает дискриминатор

$$\ell_g(\hat{\boldsymbol{x}}) = \frac{1}{K} \sum_k \max(0, 1 - D_k(\hat{\boldsymbol{x}}))$$

Лосс по которому дискриминатор не обманывается

$$L_d(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \frac{1}{K} \sum_{k=1}^{K} \max(0, 1 - D_k(\boldsymbol{x})) + \max(0, 1 + D_k(\hat{\boldsymbol{x}}))$$

Общий лосс дискриминатора

$$\ell_{feat}(\boldsymbol{x}, \hat{\boldsymbol{x}}) = \frac{1}{KL} \sum_{k=1}^{K} \sum_{l=1}^{L} \frac{\|D_k^l(\boldsymbol{x}) - D_k^l(\hat{\boldsymbol{x}})\|_1}{\text{mean}(\|D_k^l(\boldsymbol{x})\|_1)}$$

Final Loss

$$L_G = \lambda_t \cdot \ell_t(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_f \cdot \ell_f(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_g \cdot \ell_g(\hat{\boldsymbol{x}}) + \lambda_{feat} \cdot \ell_{feat}(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_w \cdot \ell_w(w)$$
where λ_t , λ_f , λ_g , λ_{feat} , and λ_w the scalar coefficients to balance between the terms.

Балансировщик лоссов

$$\tilde{g}_i = R \frac{\lambda_i}{\sum_j \lambda_j} \cdot \frac{g_i}{\langle \|g_i\|_2 \rangle_\beta}$$

$$g_i = rac{\partial \ell_i}{\partial \hat{x}}$$
 - градиент і-ого лосса

 $\langle \|g_i\|_2 \rangle_{\beta}$

Эксперименты

MUSHRA

Model	Bandwidth	Entropy Coded	Clean Speech	Noisy Speech	Music Set-1	Music Set-2
Reference	-	-	$95.5{\pm}1.6$	$93.9{\pm}1.8$	93.2 ± 2.5	97.1 ± 1.3
Opus Opus	6.0 kbps 12.0 kbps	-	$30.1{\pm}2.8 \\ 76.5{\pm}2.3$	$19.1{\pm}5.9$ $61.9{\pm}2.1$	$20.6{\pm}5.8\\77.8{\pm}3.2$	$17.9{\pm}5.3$ $65.4{\pm}2.7$
EVS	9.6 kbps	-	$84.4{\pm}2.5$	80.0±2.4	89.9 ± 2.3	87.7±2.3
Lyra-v2 Lyra-v2	3.0 kbps 6.0 kbps	-	$53.1{\pm}1.9$ $66.2{\pm}2.9$	$52.0{\pm}4.7$ $59.9{\pm}3.3$	$69.3 \pm 3.3 \\ 75.7 \pm 2.6$	$42.3{\pm}3.5$ $48.6{\pm}2.1$
ENCODEC ENCODEC ENCODEC	1.5 kbps 3.0 kbps 6.0 kbps 12.0 kbps	0.9 kbps 1.9 kbps 4.1 kbps 8.9 kbps	$49.2{\pm}2.4$ $67.0{\pm}1.5$ $83.1{\pm}2.7$ $90.6{\pm}2.6$	41.3 ± 3.6 62.5 ± 2.3 69.4 ± 2.3 80.1 ± 2.5	68.2 ± 2.2 89.6 ± 3.1 92.9 ± 1.8 91.8 ± 2.5	$66.5{\pm}2.3$ $87.8{\pm}2.9$ $91.3{\pm}2.1$ $92.9{\pm}1.2$

Результат

Model	Streamable	SI-SNR	ViSQOL
Opus	✓	2.45	2.60
EVS	1	1.89	2.74
ENCODEC	1	6.67	4.35
ENCODEC	X	7.46	4.39

Источники:

https://github.com/facebookresearch/encodec/tree/main/encodec

https://en.wikipedia.org/wiki/Short-time_Fourier_transform

https://en.wikipedia.org/wiki/Arithmetic_coding