Lecture 16: Mixed Logit Model II

ResEcon 703: Topics in Advanced Econometrics

Matt Woerman University of Massachusetts Amherst

Agenda

Last time

Mixed Logit Model

Today

Mixed Logit Model Example in R

Upcoming

- Reading for next time
 - Train textbook, Chapter 10
- Problem sets
 - Problem Set 3 is due
 - Problem Set 4 will be posted soon, due November 21

Mixed Logit

The utility that decision maker n obtains from alternative j is

$$U_{nj} = \beta'_n x_{nj} + \varepsilon_{nj}$$

For a given β_n , the conditional choice probability is a standard logit

$$L_{ni}(\beta_n) = \frac{e^{\beta'_n x_{ni}}}{\sum_{j=1}^J e^{\beta'_n x_{nj}}}$$

We model β as a random variable with density $f(\beta \mid \theta)$ and integrate over this density to get the choice probability

$$P_{ni} = \int \frac{e^{\beta' x_{ni}}}{\sum_{j=1}^{J} e^{\beta' x_{nj}}} f(\beta \mid \theta) d\beta$$

We estimate θ , the parameters that define the distributions of coefficients

Mixed Logit Model Example in R

Mixed Logit Model Example

We are again studying how consumers make choices about expensive and highly energy-consuming systems in their homes. We have data on 250 households in California and the type of HVAC (heating, ventilation, and air conditioning) system in their home. Each household has the following choice set, and we observe the following data

Choice set

- GCC: gas central with AC
- ECC: electric central with AC
- ERC: electric room with AC
- HPC: heat pump with AC
- GC: gas central
- EC: electric central
- ER: electric room

Alternative-specific data

- ICH: installation cost for heat
- ICCA: installation cost for AC
- OCH: operating cost for heat
- OCCA: operating cost for AC

Household demographic data

• income: annual income

Load Dataset

```
### Load and look at dataset
## Load tidyverse and mlogit
library(tidyverse)
library(mlogit)
## Load dataset from mlogit package
data('HC', package = 'mlogit')
```

Dataset

```
## Look at dataset
as_tibble(HC)
## # A tibble: 250 x 18
##
    depvar ich.gcc ich.ecc ich.erc ich.hpc ich.gc ich.ec ich.er
    <fct>
            <dbl>
                         <dbl>
                               <dbl>
                                     <dbl>
                                           <dbl>
##
                  <dbl>
                                                <dbl> <dbl>
           9.7 7.86 8.79 11.4
                                      24.1 24.5 7.37
                                                      27.3
##
   1 erc
   2 hpc 8.77 8.69 7.09 9.37
                                                      26.5
##
                                      28 32.7 9.33
          7.43 8.86 6.94
                               11.7
                                      25.7 31.7 8.14
                                                      22.6
##
   3 gcc
##
   4 gcc
          9.18 8.93 7.22
                               12.1
                                      29.7 26.7
                                                 8.04 25.3
##
   5 gcc
          8.05 7.02 8.44
                               10.5
                                      23.9 28.4 7.15
                                                      25.4
##
   6 gcc
          9.32 8.03 6.22 12.6
                                      27.0 21.4 8.6
                                                      19.9
           7.11 8.78 7.36 12.4 22.9 28.6 6.41
##
   7 gc
                                                      27.0
   8 hpc
           9.38 7.48 6.72 8.93
                                      26.2 27.9 7.3
                                                      18.1
##
##
   9 gcc
           8.08 7.39 8.79 11.2 23.0 22.6 7.85
                                                      22.6
                         7.46 8.28
##
  10 gcc
         6.24 4.88
                                      19.8 27.5
                                                 6.88
                                                      25.8
  # ... with 240 more rows, and 9 more variables: och.gcc <dbl>,
##
   och.ecc <dbl>, och.erc <dbl>, och.hpc <dbl>, och.gc <dbl>,
## #
    och.ec <dbl>, och.er <dbl>, occa <dbl>, income <dbl>
```

Format Dataset in a Long Format

```
### Format dataset
## Gather into a long dataset
hvac_long <- HC %>%
    mutate(id = 1:n()) %>%
    gather(key, value, starts_with('ich.'), starts_with('och.')) %>%
    separate(key, c('cost', 'alt')) %>%
    spread(cost, value) %>%
    mutate(choice = (depvar == alt)) %>%
    select(-depvar)
```

Dataset in a Long Format

```
## Look at long dataset
as_tibble(hvac_long)
## # A tibble: 1,750 x 8
##
    icca occa income
                   id alt ich
                                   och choice
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl>
##
## 1 17
          2.79
                     133 ec 20.3 4.52 FALSE
                 60
##
   2 17 2.79 60 133 ecc 8.46 4.52 FALSE
   3 17 2.79 60 133 er 7.7 4.32 FALSE
##
   4 17 2.79 60
                    133 erc 8.16 4.32 FALSE
##
##
   5 17 2.79 60
                     133 gc 25.3 2.26 FALSE
   6 17 2.79 60
                     133 gcc 6.33 2.26 TRUE
##
##
  7 17 2.79 60
                     133 hpc 11.1 1.63 FALSE
   8 18.1 2.55 50 14 ec 25.6 5.21 FALSE
##
##
   9 18.1 2.55 50 14 ecc 11.2 5.21 FALSE
## 10 18.1 2.55 50 14 er 9.3 3.8 FALSE
## # ... with 1,740 more rows
```

Clean Dataset

```
## Combine heating and cooling costs into one variable
hvac_clean <- hvac_long %>%
mutate(cooling = (nchar(alt) == 3),
    ic = if_else(cooling, ich + icca, ich),
    oc = if_else(cooling, och + occa, och)) %>%
select(id, alt, choice, ic, oc, income)
```

Cleaned Dataset

```
## Look at cleaned dataset
as_tibble(hvac_clean)
## # A tibble: 1,750 x 6
       id alt choice ic oc income
##
    <int> <chr> <lgl> <dbl> <dbl> <dbl> <dbl>
##
## 1 133 ec FALSE 20.3 4.52
                                60
## 2 133 ecc FALSE 25.5 7.31 60
   3 133 er FALSE 7.7 4.32 60
##
##
   4 133 erc FALSE 25.2 7.11 60
   5 133 gc FALSE 25.3 2.26 60
##
##
   6
      133 gcc TRUE 23.3 5.05 60
## 7
      133 hpc FALSE 28.1 4.42
                                60
## 8 14 ec FALSE 25.6 5.21
                                50
##
   9 14 ecc FALSE 29.2 7.76 50
## 10
    14 er FALSE 9.3 3.8
                                50
## # ... with 1,740 more rows
```

Convert Dataset to mlogit Format

Dataset in mlogit Format

```
## Look at data in mlogit format
as_tibble(hvac_mlogit)
## # A tibble: 1,750 x 6
       id alt choice ic oc income
##
    <int> <fct> <lgl> <dbl> <dbl> <dbl>
##
## 1 133 ec FALSE 20.3 4.52
                                60
## 2 133 ecc FALSE 25.5 7.31 60
   3 133 er FALSE 7.7 4.32 60
##
##
   4 133 erc FALSE 25.2 7.11 60
   5 133 gc FALSE 25.3 2.26 60
##
      133 gcc TRUE 23.3 5.05 60
##
   6
      133 hpc FALSE 28.1 4.42 60
## 7
## 8 14 ec FALSE 25.6 5.21 50
##
   9 14 ecc FALSE 29.2 7.76 50
## 10
    14 er FALSE 9.3 3.8
                                50
## # ... with 1,740 more rows
```

Mixed Logit Models to Estimate with mlogit()

The representative utility of each alternative is

$$V_{nj} = \alpha_j + \beta_1 I C_{nj} + \beta_2 O C_{nj}$$

Random coefficients to consider

- β_1 and β_2 distributed normal
- β_1 and β_2 distributed log-normal
- ullet eta_1 and eta_2 distributed log-normal and correlated

Mixed Logit Models in R

```
### Mixed logit model using the mlogit package
## Help file for the mlogit function
?mlogit
## Arguments for mlogit mixed logit functionality
mlogit(formula, data, reflevel, rpar, correlation, R, seed, ...)
```

mlogit() arguments for mixed logit

- formula, data, reflevel: same as a multinomial logit model
- 2 rpar: named vector of random coefficients and their distributions
- correlation: TRUE models random coefficient correlations
- R: number of simulations in MSLE
- seed: seed for random draws in simulation

Mixed Logit with Normal Distributions

Model Results with Normal Distributions

```
## Summarize model results
model_1 %>%
 summary()
##
## Call:
## mlogit(formula = choice ~ ic + oc | 1 | 0, data = ., reflevel = "hpc",
      rpar = c(ic = "n", oc = "n"), R = 1000, seed = 321)
##
##
## Frequencies of alternatives:
    hpc ec ecc er erc
                                   gc
                                       gcc
## 0.104 0.004 0.016 0.032 0.004 0.096 0.744
## bfgs method
## 23 iterations, Oh:Om:19s
## g'(-H)^-1g = 2.33E-07
## gradient close to zero
##
## Coefficients :
                   Estimate Std. Error z-value Pr(>|z|)
## ec:(intercept) -13.59196 6.59838 -2.0599 0.039409 *
## ecc:(intercept) 4.55227 1.91196 2.3809 0.017268 *
## er:(intercept) -26.84257
                             15.08477 -1.7794 0.075166 .
## erc:(intercept) 3.34782
                             2.28886 1.4627 0.143560
## gc:(intercept) -15.47410
                             7.12512 -2.1718 0.029873 *
## gcc:(intercept) 4.60586
                             1.42533 3.2314 0.001232 **
## ic
                   -0.53396
                             0.24426 -2.1860 0.028816 *
## oc
                  -3.80889
                             1.41603 -2.6898 0.007149 **
## sd.ic
                  0.34764 0.24761 1.4040 0.160331
                  -1.22028
                              0.82478 -1.4795 0.139003
## sd oc
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -192.75
## McFadden R^2: 0 14416
```

Normally Distributed Coefficients

Normally Distributed Coefficients Plot

Mixed Logit with Log-Normal Distributions

Format Dataset for Log-Normal Distributions

Dataset Formatted for Log-Normal Distributions

```
## Look at data in mlogit format
as_tibble(hvac_mlogit_neg)
## # A tibble: 1,750 x 6
       id alt choice ic oc income
##
    <int> <fct> <lgl> <dbl> <dbl> <dbl>
##
## 1 133 ec FALSE -20.3 -4.52
                                 60
## 2 133 ecc FALSE -25.5 -7.31 60
   3 133 er FALSE -7.7 -4.32 60
##
   4 133 erc FALSE -25.2 -7.11 60
##
## 5 133 gc FALSE -25.3 -2.26 60
##
   6 133 gcc TRUE -23.3 -5.05 60
## 7 133 hpc FALSE -28.1 -4.42 60
## 8 14 ec FALSE -25.6 -5.21 50
##
   9 14 ecc FALSE -29.2 -7.76 50
## 10 14 er FALSE -9.3 -3.8
                                 50
## # ... with 1,740 more rows
```

Mixed Logit with Log-Normal Distributions

Model Results with Log-Normal Distributions

```
## Summarize model results
model_2 %>%
 summary()
##
## Call:
## mlogit(formula = choice ~ ic + oc | 1 | 0, data = ., reflevel = "hpc",
      rpar = c(ic = "ln", oc = "ln"), R = 1000, seed = 321)
##
##
## Frequencies of alternatives:
    hpc ec ecc er erc
                                   gc
                                       gcc
## 0.104 0.004 0.016 0.032 0.004 0.096 0.744
##
## bfgs method
## 40 iterations, Oh:Om:35s
## g'(-H)^-1g = 6.71E-08
## gradient close to zero
##
## Coefficients :
                   Estimate Std. Error z-value Pr(>|z|)
## ec:(intercept) -17.93432 9.93335 -1.8055 0.0710020 .
## ecc:(intercept) 4.72345 2.07762 2.2735 0.0229964 *
## er:(intercept) -39.61551
                              27.17697 -1.4577 0.1449269
## erc:(intercept) 3.43598
                            2.51989 1.3635 0.1727113
## gc:(intercept) -19.91239 9.68510 -2.0560 0.0397843 *
## gcc:(intercept) 4.60527
                            1.39448 3.3025 0.0009583 ***
                   -0.43815
                             0.45590 -0.9611 0.3365171
## ic
## oc
                   1.36185 0.36511 3.7300 0.0001915 ***
## sd.ic
                  0.53322
                            0.25379 2.1010 0.0356401 *
                  0.41586
                              0.13312 3.1240 0.0017839 **
## sd.oc
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -189.72
```

McFadden R^2: 0.15761

Log-Normally Distributed Coefficients

Log-Normally Distributed Coefficients Plot

Mixed Logit with Correlated Log-Normal Distributions

Model Results with Correlated Log-Normal Distributions

```
## Summarize model results
model_3 %>%
 summary()
##
## Call:
## mlogit(formula = choice ~ ic + oc | 1 | 0, data = ., reflevel = "hpc",
      rpar = c(ic = "ln", oc = "ln"), R = 1000, correlation = TRUE,
##
      seed = 321)
##
## Frequencies of alternatives:
    hpc ec ecc er erc
## 0.104 0.004 0.016 0.032 0.004 0.096 0.744
##
## bfgs method
## 34 iterations, Oh:Om:34s
## g'(-H)^-1g = 6.52E-07
## gradient close to zero
##
## Coefficients :
##
                   Estimate Std. Error z-value Pr(>|z|)
## ec:(intercept) -18.13141 6.29638 -2.8797 0.003981 **
## ecc:(intercept) 3.64970
                            1.45116 2.5150 0.011902 *
## er:(intercept) -38.22791
                             16.94682 -2.2558 0.024086 *
## erc:(intercept) 2.43339
                            1.96325 1.2395 0.215172
## gc:(intercept) -21.53875
                             7.32033 -2.9423
                                              0.003258 **
## gcc:(intercept) 3.79386
                              0.88938 4.2657 1.992e-05 ***
                              0.30527 -1.4857
## ic
                   -0.45353
                                             0.137368
                              0.26512 4.7555 1.979e-06 ***
                  1.26077
## oc
## chol.ic:ic
                              0.24467 2.3198
                                             0.020350 *
              0.56759
## chol.ic:oc
              0.39855
                            0.19520 2.0418
                                              0.041174 *
                              0.23527 0.9358
                                              0.349388
## chol.oc:oc
                   0.22016
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

##

Choleski Transformation for Multivariate Normals

One way to draw multivariate (log-)normal random variables is to draw independent normal random variables and apply a Choleski transformation

We want β_1 and β_2 to be multivariate log-normal

$$\ln \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \mu_{\beta_1} \\ \mu_{\beta_2} \end{pmatrix}, \Omega \right)$$

We draw two standard normal random variables, ω_1 and ω_2 , and apply

$$\ln \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \mu_{\beta_1} \\ \mu_{\beta_2} \end{pmatrix} + \begin{pmatrix} s_{11} & 0 \\ s_{21} & s_{22} \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$$

The elements of the variance-covariance matrix, Ω , are

$$Var(\ln eta_1) = s_{11}^2$$
 $Var(\ln eta_2) = s_{21}^2 + s_{22}^2$
 $Cov(\ln eta_1, \ln eta_2) = s_{11}s_{21}$

Variance and Covariance of Log-Normal Coefficients

```
## Calculate coefficient variances and covariance
model 3 vcov <- c(model_3$coefficients[9]^2,
                 model 3$coefficients[10]^2 +
                   model_3$coefficients[11]^2,
                 model_3$coefficients[9] *
                   model 3$coefficients[10]) %>%
 setNames(c('var.ic', 'var.oc', 'cov.ic:oc'))
model 3 vcov
## var.ic var.oc cov.ic:oc
## 0.3221626 0.2073116 0.2262136
## Calculate coefficient variances and covariance using vcov
vcov(model_3, what = 'rpar') %>%
 summary()
##
      Estimate Std. Error z-value Pr(>|z|)
## var.ic 0.32216 0.27775 1.1599 0.2461
## var.oc 0.20731 0.16139 1.2845 0.1990
## cov.ic:oc 0.22621 0.18578 1.2177 0.2234
```

Implied Discount Rate

What is the implied discount rate of consumers? Assume (for simplicity) that the operating cost accrues in perpetuity.

$$U_{ni} = \alpha_i + \beta_1 I C_{ni} + \beta_2 O C_{ni} + \varepsilon_{ni}$$

Divide by β_1 to express in terms of present day dollars

$$\frac{U_{ni}}{\beta_1} = \frac{\alpha_i}{\beta_1} + IC_{ni} + \frac{\beta_2}{\beta_1}OC_{ni} + \frac{\varepsilon_{ni}}{\beta_1}$$

The net present value of a stream of future payments in perpetuity is

$$NPV_{ni} = \frac{1}{r}OC_{ni}$$

The last two equations give that

$$r = \frac{\beta_1}{\beta_2}$$

Distribution of Implied Discount Rate

If β_1 and β_2 are distributed log-normal with

$$\ln eta_1 \sim \mathcal{N}(\mu_{eta_1}, \sigma_{eta_1}^2)$$

 $\ln eta_2 \sim \mathcal{N}(\mu_{eta_2}, \sigma_{eta_2}^2)$

then the ratio is distributed log-normal with

$$\ln rac{eta_1}{eta_2} \sim extstyle extstyle extstyle (\mu_{eta_1} - \mu_{eta_2}, \sigma_{eta_1}^2 + \sigma_{eta_2}^2 - 2\sigma_{eta_1eta_2})$$

Implied Discount Rate Plot

Announcements

Reading for next time

• Train textbook, Chapter 10

Upcoming

• Problem Set 4 will be posted soon, due November 21