Aprendizagem de Máquina

Algoritmos Evolutivos e Inteligência de Enxames

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

Sumário

Introdução

Metaheurísticas

Algoritmos Evolutivos

Otimização por Enxames de Partículas (PSO)

Para Terminar

Introdução

- Comportamento racional = agir corretamente na hora certa
- Agir corretamente = fazer o que é esperado para atingir seus objetivos, dada a informação disponível
- Não necessariamente envolve pensamentos (raciocínios lógicos)
 - A ação pode ser resultado de um reflexo
 - Ex.: Tirar a mão de um objeto quente
 - O raciocínio lógico deve ser usado para alcançar um objetivo

Agentes Racionais

- Um agente é algo que percebe e age
- De forma abstrata, um agente é uma função que mapeia uma sequência de percepções em uma ação
- Para cada tipo de ambiente e tarefa, buscamos o agente com a melhor performance
- Às vezes limitações computacionais impedem a racionalidade perfeita
 - Racionalidade limitada: fazer o melhor possível dentro das limitações computacionais

Agentes Racionais

Um agente é algo capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores

Exemplos

- Agente humano
 - Sensores: Olhos, ouvidos e outros órgãos
 - Atuadores: Mãos, pernas, boca e outras partes do corpo
- Agente robótico
 - Sensores: câmeras e detectores de infravermelho
 - Atuadores: vários motores
- Agente de software
 - Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede
 - Atuadores: tela, disco, envio de pacotes pela rede

Inteligência de Enxames

- Seria possível construir sistemas com comportamento inteligente inspirados no comportamento de insetos sociais?
 - Comportamento coletivo descentralizado, auto-organizado
 - População de agentes simples que interagem localmente entre si e com o ambiente
 - Normalmente não há controle centralizado
 - Interações locais produzem comportamento global

Inteligência de Enxames

Pesquisa e projeto de algoritmos ou dispositivos para solução de problemas distribuídos inspirados no comportamento coletivo de colônias de insetos sociais e outras sociedades de animais

Metaheurísticas

Heurística

É um método ou processo criado com o objetivo de encontrar soluções para um problema. É um procedimento simplificador (embora não simplista) que, em face de questões difíceis envolve a substituição destas por outras de resolução mais fácil a fim de encontrar respostas viáveis, ainda que imperfeitas

Metaheurística

- É um método heurístico para resolver de forma genérica problemas de otimização (normalmente da área de otimização combinatória)
- Metaheurísticas são geralmente aplicadas a problemas para os quais não se conhecem algoritmos eficientes.
- Utilizam combinação de escolhas aleatórias e conhecimento histórico dos resultados anteriores adquiridos pelo método para se guiarem e realizar suas buscas pelo espaço de pesquisa em vizinhanças dentro do espaço de pesquisa, o que evita paradas prematuras em ótimos locais

Metaheurística

- Iterativamente melhorar um conjunto de soluções
- Pouco conhecimento do problema
- Precisa poder distinguir boas soluções
- Geralmente encontra boas soluções
- Não é garantido encontrar o ótimo global
- Adaptáveis: parâmetros ajustáveis

Quando aplicar

- Algoritmos usados em problemas nos quais existe pouca informação:
 - não se conhece a forma de uma solução ótima
 - não se sabe como encontrá-la
- Uma exploração completa é impossível devido ao tamanho do espaço
- Porém se você tem uma solução candidata, ela pode ser avaliada

Aplicações

- Evolução de redes neurais artificiais
- Agrupamento
- Escalonamento de tarefas (Multi-objective Job shop scheduling)
- Roteamento de veículos (Capacitated Vehicle Routing)
- Definição de formato e tamanho para componentes
- Caminho ótimo para operações de perfuração automatizadas
- Posicionamento de bases em computação móvel

Algoritmos Evolutivos

Algoritmos Evolutivos

- Uma população de indivíduos existe em um ambiente com fontes limitadas
- A competição por estas fontes causa a seleção dos indivíduos que melhor se adaptam ao ambiente
- Estes indivíduos atuam como sementes para as novas gerações através de recombinação e mutação
- Os novos indivíduos têm seus fitness avaliados e competem (inclusive com seus pais) pela sobrevivência
- A Seleção Natural causa um aumento no fitness da população.

Algoritmos Evolutivos

- Os AEs estão na categoria dos algoritmos de geração e teste
- Os AEs são estocásticos e baseados em população
- Os Operadores de Variação (ou operadores genéticos recombinação e mutação) criam a diversidade da população
- A Seleção reduz a diversidade e atua com a força propulsora para a qualidade

Esquema AE

Pseudocódigo Típico

```
BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END
```


Tipos de AEs

- Historicamente, diferentes representações de soluções têm sido associadas com vários AEs, sendo os principais:
 - Strings Binárias: Algoritmos Genéticos
 - Vetores de Reais: Estratégias Evolutivas

Tipos de AEs

- Conceitualmente, as diferenças são bastante irrelevantes
- Já para a técnica de implementação, as diferenças são bem relevantes
- Cada uma das técnicas tem uma representação distinta que deve se adequar ao problema
- A escolha dos operadores de variação deve se adequar às representações escolhidas
- Os operadores de seleção em todos os casos usam apenas informações do fitness e são independentes das representações

Representações

- Dado um problema que será abordado por um AE
 - Uma solução candidata (indivíduo) existe em um espaço fenotípico (ou espaço de indivíduos)
 - Os indivíduos são codificados em cromossomos, que geram um espaço genotípico
 - Os cromossomos contêm genes, que são posições (usualmente fixadas) chamadas de locus, tendo um determinado valor
 - De forma a garantir um ótimo global, toda possível solução deve ser representada no espaço genotípico

Função de Avaliação - Fitness

- Representa as condições as quais a população deve se adaptar
- Assinala um valor real para o fitness (ou adaptação) de cada fenótipo, formando o critério base para a seleção
- Quanto maior o poder de discriminação melhor

Função de Avaliação - Fitness

- Tipicamente, quando se fala em fitness deseja-se uma maximização
 - Ex.: Imagine que deseja-se medir a qualidade de uma solução através de um ERRO. Assim,

$$fitness = \frac{1}{1 + ERRO}$$

- Quanto maior a função fitness, melhor a solução
- Porém pode-se ter também fitness = ERRO
 - Quanto menor melhor (menos intuitivo quando se pensa no termo fitness)

População

- É um conjunto de possíveis soluções (estáticas)
- Usualmente tem um tamanho fixo e é um multi-conjunto de genótipos
- Alguns AEs sofisticados também consideram estruturas espaciais sobre a população, e.g., uma grade
 - Este tipo de característica é muito comum quando o AE está sobre uma arquitetura paralela de processamento
 - Também é usado para se referir a questões como distância e vizinhança

População

- Os operadores de seleção usualmente utilizam unicamente informações da população
 - As probabilidades de seleção são referentes à geração atual
- A diversidade de uma população refere-se ao diferente número de fitness, fenótipos e genótipos presentes
- Geralmente, a população é fixa e se renova com base no fitness dos indivíduos

Mecanismo de Seleção dos Pais

- Assinala a probabilidade dos indivíduos atuarem como pais, o que depende dos seus respectivos valores de Fitness
 - Quanto mais apto, maior o poder de reprodução
- O mecanismo de seleção é usualmente probabilístico
 - As melhores soluções tem maiores chances de se tornarem pais do que as soluções de baixa qualidade
 - Porém, nenhum indivíduo tem probabilidade zero de seleção!
- A natureza estocástica deste processo auxilia na fuga de máximos locais

Método Da Roleta

Assinala para cada indivíduo uma fatia da roleta proporcional ao seu fitness

$$p(\textit{ind}_i) = \frac{\textit{fitness}(\textit{ind}_i)}{\sum_{\textit{pop}} \textit{fitness}(\textit{ind})}$$

► Gira-se a roleta para selecionar um indivíduo

Recombinação

- ightharpoonup Mistura informações: Pais ightarrow Prole
- O processo de mistura (partes dos pais) é estocástico
- A maior parte da prole é esperada ser pior, ou de mesma qualidade dos pais
- Entretanto, este processo também garante que alguns filhos serão melhores que os pais devido a combinação de elementos de genótipos que conduzam a boas características
- Este princípio tem sido utilizado pela Natureza por milhões de anos

Cruzamento (Crossover) de 1 Ponto

- Escolhe-se aleatoriamente um ponto sobre os dois pais
- Divide-se os pais nesse ponto sorteado
- Cria-se os filhos através da troca dos "pedaços" dos pais
- Crossover geralmente é feito com uma probabilidade p_c , tipicamente escolhida no intervalo [0.6, 0.9]

Cruzamento (Crossover) de n Pontos

- Escolha n pontos aleatórios de corte
- Divida os cromossomos ao longo destes pontos
- Una as partes, alternando as contribuições dos pais

parents	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
children	1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0	

Cruzamento (Crossover) Uniforme

- Assinale "CARA" para um pai, e "COROA" para o outro
- Arremesse uma moeda para a escolha de cada gene do filho
- Faça uma cópia inversa para o segundo filho
- A herança dos genes fica independente da posição

Para Outras Representações

- Para representações com números reais ou inteiros, pode-se usar as mesmas formas de cruzamento que vimos até agora
- Para o caso real, podemos também realizar combinações aritméticas entre os pais $z_i = \alpha x_i + (1 \alpha)y_i$, onde $0 \le \alpha \le 1$
- ightharpoonup α pode ser
 - Constante: Cruzamento Aritmético Uniforme
 - Variável (varia com a geração)
 - Aleatório, sendo um diferente valor para cada utilização

Cruzamento Aritmético Simples

- Seleciona-se aleatoriamente apenas um gene para aplicar o cruzamento aritmético
- O outro filho fica com o resultado contrário, ou seja $z_i = (1 \alpha)x_i + \alpha y_i$
- **Com** α = 0.5, teríamos:

Cruzamento Aritmético por Ponto

- Aplique o cruzamento aritmético a partir de um ponto aleatório dos cromossomos pais
- **Com** α = 0.5, teríamos:

Cruzamento Aritmético Completo

- Mais comumente utilizado
- **Com** α = 0.5, teríamos:

Mutação

- Atua sobre um genótipo e gera outro genótipo
- Elemento essencial de aleatoriedade (diversidade)
- Garante conectividade ao espaço de busca
 - Dado um número infinito de gerações, todas posições do espaço de busca são alcançáveis

Mutação

- Altere cada gene independentemente com probabilidade p_m
- ho_m é tipicamente escolhida entre $1/(tamanho_pop)$ e $1/(tamanho_crom)$

Mutação em Números Reais

- Para cromossomos de números reais, podemos selecionar o valor resultante da mutação uniformemente de [LB_i, UB_i], onde LB_i e UB_i são o valor mínimo e máximo possíveis para a i-ésima posição do cromossomo
- Porém, o método mais comum é somar um número aleatório para cada variável separadamente, a partir de uma distribuição Gaussiana $\mathcal{N}(0, \sigma^2)$, garantindo o intervalo de validade de cada variável

Seleção por Sobrevivência

- O mesmo que recolocação
- A maior parte dos AEs usam uma população de tamanho fixo, necessitando de uma forma para garantir as novas gerações
- Geralmente determinística
 - Baseada em fitness: e.g., descartar o menos apto
 - Baseado em Geração: extingue os pais para a sobrevivência dos filhos

Inicialização

- A inicialização do AE geralmente é aleatória
- Necessita que seja garantido a possibilidade da varredura e mistura de todos os possíveis valores dos genes
- É possível a utilização e inclusão de soluções existentes, ou heurísticas específicas ao problema para "semear" a população

Condição de Término

- A condição de término deve ser checada a cada geração
 - Busca por um fitness mínimo
 - Quantidade máxima de gerações permitida
 - Queda a um nível mínimo de diversidade
 - Quantidade máxima de gerações sem aumento do fitness
 - Busca por alguma característica específica do problema

Exemplo

- Encontrar o máximo da função x^2 no intervalo inteiro [0, 1, ..., 31]
 - ► Representação binária: 01101₂ = 13₁0
 - ► Tamanho da população: 4
 - Cruzamento de 1 ponto, mutação de 1 bit

Exemplo

População inicial:

$$01101 = 13_{10} \rightarrow x^2 = 169$$

$$11000 = 24_{10} \rightarrow x^2 = 576$$

$$01000 = 8_{10} \rightarrow x^2 = 64$$

$$10011 = 19_{10} \rightarrow x^2 = 361$$

Exemplo – Evolução

		Χ	f(x)
1	11011	27	729
2	11000	24	576
3	10111	23	529
4	10101	21	441
		Χ	f(x)
1	11011	27	729
2	10111	23	529
3	01111	15	225
4	00111	7	49
	1 2	2 11000 3 10111 4 10101 1 11011 2 10111 3 01111	1 11011 27 2 11000 24 3 10111 23 4 10101 21

Exemplo – Evolução

Quarta Geração	1 2 3 4	11111 11011 10111 10111	X 31 27 23 23	f(x) 961 729 529 529
Quinta Geração	1 2 3 4	11111 11111 11111 10111	X 31 31 31 23	f(x) 961 961 961 529

Otimização por Enxames de Partículas (PSO)

PSO - Particle Swarm Optimization

- Desenvolvida por James Kennedy (psicólogo) e Russell Eberhart (engenheiro), com base no comportamento de pássaros em revoadas modelado pelo biólogo Frank Heppner
- Inspirado no comportamento e na dinâmica dos movimentos dos pássaros, insetos e peixes
- Originalmente desenvolvido para problemas de otimização com variáveis contínuas
- Desempenho similar ao dos Algoritmos Genéticos

PSO - Particle Swarm Optimization

PSO

- PSO é um método baseado em população, como o Algoritmo Genético
 - Entretanto, o conceito básico é cooperação em vez da rivalidade
- Apesar da semelhança com AG, esta técnica não usa operadores genéticos (crossover, mutação, etc)
- Uma partícula movimenta-se com velocidade
 - Usando a própria experiência
 - Além da experiência de todas as partículas

Elementos do PSO

- A população de agentes.
- ightharpoonup \mathbf{x}_i : posição do agente a_i no espaço de soluções
- f: função de avaliação
- \mathbf{v}_i : velocidade do agente a_i .
- $V(a_i)$: conjunto fixo de vizinhos do agente a_i .
 - ▶ Todos os agentes estão conectados, direta ou indiretamente

Elementos do PSO

- **p**_i: pbest_i, a melhor posição encontrada pela partícula i
- **g**: *gbest*, melhor posição encontrada por todas as partículas
- c₁ e c₂: parâmetros cognitivo e social
- \blacktriangleright w e c_2 : parâmetro de inércia
- r_{1j} e r_{2j}: números aleatórios entre [0, 1]

Algoritmo do PSO

```
inicialize a nuvem de partículas
repita
    para i=1 até m
        se f(\mathbf{x}_i) < f(\mathbf{p}_i) então
            \mathbf{p}_i = \mathbf{x}_i
            se f(\mathbf{x}_i) < f(\mathbf{q}) então
                \mathbf{q} = \mathbf{x}_i
            fim se
        fim se
        para j = 1 até n
            r_{1i} = \text{rand}(), r_{2i} = \text{rand}()
            V_{ij} = WV_{ij} + c_1 r_{1i}(p_{ij} - x_{ij}) + c_2 r_{2i}(g_i - x_{ij})
        fim para
        \mathbf{X}_i = \mathbf{X}_i + \mathbf{V}_i
    fim para
até satisfazer o critério de parada
```


Termos da Velocidade

- Termo de inércia:
 - Força a partícula a mover-se na mesma direção
 - ► Tendência para seguir a própria direção com a mesma velocidade
- Termo cognitivo:
 - Melhora o indivíduo
 - Força a partícula a voltar a uma posição anterior que seja melhor do que a atual
 - Tendência conservativa
- Termo social:
 - Força a partícula a seguir a direção de seus melhores vizinhos
 - Como em todo rebanho, mas seguindo os melhores

Interpretação Geométrica

Prós e Contras do PSO

Prós:

- Insensível a mudança de escala das variáveis
- Implementação simples
- Adaptável a computadores paralelos
- Não requer cálculo de derivadas
- Poucos parâmetros para serem definidos pelo usuário
- Bom para encontrar o mínimo global

Contras:

- Rápido para localizar a bacia de atração das boas soluções, mas lento no ajuste fino da solução (como nos algoritmos genéticos)
- As partículas tendem a se agrupar, ou seja, devido a uma convergência rápida demais, a solução fica presa em um ponto ótimo local

Problema: Partículas tendem a se agrupar, reduzindo a capacidade de movimentos da nuvem para soluções melhores

Solução: reiniciar algumas partículas em novas posições, podendo resultar em soluções melhores. As demais partículas podem mover-se para estas áreas

Alguns Detalhes de Implementação

- Limites superior e inferior: $x_{ij} \in [LB_j, UB_j]$, caso x_{ij} saia desse intervalo, fazer $x_{ij} = LB_j$ ou $x_{ij} = UB_j$, conforme o caso, além de $v_{ij} = 0$
- Velocidade máxima: $-v_{max} \le v_{ij} \le v_{max}$
- Em geral, não é necessário armazenar o g
 - ightharpoonup Basta armazenar o índice *i* tal que $\mathbf{p}_i = \mathbf{g}$

Para Terminar

- Algoritmos Genéticos/Evolutivos e de enxames não são em si métodos preditivos, mas podem ser usados para treiná-los
 - Exemplo: ao invés de ajustar os coeficientes e intercepto de uma regressão logística para um problema com *p* variáveis usando métodos tradicionais, podemos:
 - \triangleright criar uma população aleatória de possíveis soluções como vetores de p+1 posições
 - usar os algoritmos que vimos hoje para encontrar a melhor solução, tendo como alvo alguma medida de desempenho, como acurácia, precisão ou cobertura

Para Terminar

- Também é muito comum usá-los para otimizar os hiperparâmetros (tuning) dos modelos de AM
- Inicializa-se uma população aleatória com combinações de valores para os hiperparâmetros desejados
- A função de avaliação é uma medida de desempenho do modelo ajustado tendo como base a combinação de hiperparâmetros contida na partícula
 - Exemplo: para uma RNA cada partícula/cromossomo pode representar a quantidade de neurônios em cada camada escondida: [15, 5, 0, 30, 12]
- Naturalmente isso pode ser muito custoso, mas é um método muito utilizado pelas gigantes da computação (Google, Facebook, Amazon) para encontrar as arquiteturas de redes que melhor resolvem os problemas

Sugestão de Atividade

- Implemente o PSO e o Algoritmo Genético para dados reais
- Teste suas implementações usando funções clássicas de benchmark para algoritmos populacionais:
 - https://en.wikipedia.org/wiki/Test_functions_for_optimization
- Trabalhe no projeto :D

Aprendizagem de Máquina

Algoritmos Evolutivos e Inteligência de Enxames

Telmo de Menezes e Silva Filho tmfilho@gmail.com/telmo@de.ufpb.br www.de.ufpb.br

