© Eskil Johnson, Göteborg 2001.

1.		
20	0010100	
28	0 0 1 1 1 0 0	
38	0100110	$\sqrt{}$
52	0110100	$\sqrt{}$
39	0 1 0 0 1 1 1	
60	0 1 1 1 1 0 0	$\sqrt{}$
102	1100110	$\sqrt{}$
91	1011011	

1100111

101111

1111011

1111111

20,28	001-100	$\sqrt{}$
20,52	0 - 10100	$\sqrt{}$
28,60	0 - 11100	
38,39	010011-	
38,102	- 100110	$\sqrt{}$
52,60	011-100	V
39,103	- 100111	$\sqrt{}$
102,103	110011-	$\sqrt{}$
91,95	1011-11	
91,123	1 - 1 1 0 1 1	$\sqrt{}$
95,127	1 - 11111	
123,127	1111-11	$\sqrt{}$

20,28,52,60	0 - 1 - 1 0 0	A
38,39,102,103	-10011-	В
91,95,123,127	1 - 1 1 - 1 1	C

 $\sqrt{}$

Primimplikatorer:

$$A = \Sigma(20,28,52,60) = x_1 x_3 x_5 x_6 x_7$$

$$B = \Sigma(38,39,102,103) = x_2 x_3 x_4 x_5 x_6$$

$$C = \Sigma(91,95,123,127) = x_1 x_3 x_4 x_6 x_7$$

Av uttrycken för primimplikatorerna framgår direkt att samtliga är väsentliga (primimplikatorerna är disjunkta).

$$f(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = A + B + C$$
, där uttrycken för A, B och C ges ovan.

2.

103

95

123

127

•		1	lΖ				1	lΖ				ν	z	
	00	01	11	10		100	01 -	11	10		00	01	11	10
00	-	0	0	-	00		0	0	0	00	0	0	0	
01 <i>wx</i>	0	0	0	0	01 <i>wx</i>	0	-	0	0	01 <i>wx</i>	0	0	-	0
11	[-	-	1	1	11	0	1	0	0	11	0	1	-	0
10	1	0	0	0	10	1	0	0	1	10	1	0	0	-
	f					g					h			Т

Använd yz som styrvariabler för utgångsmultiplexrarna eftersom detta val ger lägst antal multiplexrar (framgår av Karnaughdiagrammen).

3.
$$f(w, x, y, z) = [(x'+y)'+y\cdot(z+w)]\cdot[x'+(y+z)']$$

 $f(w, x, 0, 1) = [(x'+0)'+0\cdot(1+w)]\cdot[x'+(0+1)'] = x\cdot x'$

Statisk 0-hasard för övergången mellan (0001) och (0101) samt för övergången mellan (1001) och (1101).

$$f(1, 1, y, 0) = [(0+y)'+y\cdot(0+1)]\cdot[0+(y+0)'] = (y+y')\cdot y'$$

Dynamisk hasard för övergången mellan (1100) och (1110).

4.

$\delta(\lambda)$	00	01	11	10
00	00(00)	01(01)	00(00)	10(10)
01	01(01)	01(01)	01(01)	10(10)
11	-	-	-	-
10	10(10)	01(01)	10(10)	10(10

Av tillståndsgrafen och $\delta(\lambda)$ -tabellen framgår direkt, att $u_1=q_1^+$ och $u_2=q_2^+$.

$$q_1^+ = q_1 x + q_1 y' + xy' = q_1 \cdot (x'y)' + xy'$$

$$q_2^+ = q_2 y + q_2 x' + x' y = q_2 \cdot (xy')' + x' y$$

Starttillståndet $q_1q_2 = 00$ ger $z_1z_2 = 00$

$$u_1 = q_{n+1}$$

$$u_2 = q_{n+1,2}$$

5.

Fortsättning nästa sida

Uppgift 5 fortsättning.

Maximala förenlighetsmängder: $\{1,3\}$, $\{1,6,7\}$, $\{2,3,4\}$, $\{2,4,8\}$, $\{2,7\}$, $\{3,5\}$, $\{4,6,8\}$, $\{5,6,8\}$.

C _i	$I(C_i)$
{1,3}	Φ
{1,6,7}	{4,6}, {1,3}
{2,3,4}	{4,8}
{2,4,8}	Φ
{2,7}	Φ
{3,5}	Φ
{4,6,8}	{3,5}
{5,6,8}	{4,6}, {3,5}

{1}, {2,7}, {3,5} och {4,6,8} bildar en minimal, sluten och täckande uppsättning av förenlighetsmängder.

$\delta(\lambda)$	00	01	11	10
$A = \{1\}$	-	B (1)	D(1)	-
$B = \{2,7\}$	A (1)	D (0)	B (0)	A (0)
$C = \{3,5\}$	C (0)	D (0)	D(1)	B (-)
$D = \{4,6,8\}$	B (-)	D (0)	D(1)	C(1)

6.

Av tillståndsgrafen framgår, att man kan välja $Q = q_2$

δ	00	01	11	10
00	00	00	01	01
01	11	01	01	11
11	11	10	10	11
10	00	00	10	10

Fortsättning nästa sida.

Uppgift 6 fortsättning.

