Universidad del Valle de Guatemala Facultad de Ingeniería Departamento de Ingeniería Electrónica IE2011 - Electrónica Digital I Kurt Kellner

Laboratorio #07

Gabriel Alexander Fong Penagos 19722

Ejercicio 1

SIN CODIFICAR

SIN CODII ICAN								
S	PUSH	S'						
S0	0	S0						
S0	1	S1						
S1	0	S1						
S1	1	S2						
S2	0	S2						
S2	1	S3						
S3	0	S3						
S3	1	S0						

S	CODIFICADO
S0	00
S1	01
S2	10
S3	11

CODIFI	CADO			
S 1	S0	PUSH	S'1	S'0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Ecuaciones minimizadas y Mapeo

Tabla de salidas y ecuaciones Minimizadas

TABLA DE SALIDAS							
S 1	S0	LED1	LED2	LED3			
0	0	0	0	0			
0	1	1	0	0			
1	0	1	1	0			
1	1	1	1	1			

Tabla de anti rebotes.

ANTIR	EBOTE	S					
S	BF	S'	BI	S	BF	S'	BI
S0	0	S'0	0	0	0	0	0
S0	1	S'1	1	0	1	1	1
S1	1	S'1	0	1	1	1	0
S1	0	S'0	0	1	0	0	0

EJERCICIO 2

TABLA DE ESTADOS EJERCICIO 2

S	PUSH 1	PUSH 2	TIMER	S'
S0	0	0	0	S0
S0	0	1	0	S1
S0	1	0	0	S2
S0	1	1	0	X
S1	X	X	0	S1
S1	X	X	1	S0
S2	X	X	0	S2
S2	X	X	1	S0

S1	S0	PUSH 1	PUSH:	CONTADOR	S'1	S'2
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	X	X
0	1	X	X	0	0	1
0	1	X	X	1	0	0
1	0	X	X	0	1	0
1	0	X	X	1	1	0

ECUACIONES MINIMIZADAS

```
Minimized:

SF1 = S1 T' + S1' S0' PUSH1 PUSH0';

SF0 = S0 T' + S1' S0' PUSH1' PUSH0;
```

IMAGEN DE TINKERCAD

ROTANDO EN SENTIDO CONTRARIO A LAS AGUJAS DEL RELOJ

ROTANDO SENTIDO DE LAS AGUJAS DEL RELOJ

EJERCICIO 3

TABLAS DE ESTADOS DEL EJERCICIO 3

S	D1	D0	S'	S1	S0	D1	D2	S'1	S'0
S0	0	0	S0	0	0	0	0	0	0
S0	0	1	S1	0	0	0	1	0	1
S1	0	0	S0	0	1	0	0	0	0
S1	0	1	S1	0	1	0	1	0	1
S1	1	0	S2	0	1	1	0	1	0
S2	0	1	S1	1	0	0	1	0	1
S2	1	0	S2	1	0	1	0	1	0
S2	1	1	S3	1	0	1	1	1	1
S3	1	0	S2	1	1	1	0	1	0
S3	1	1	S3	1	1	1	1	1	1

ECUACION MINIMIZADA

```
Minimized:
SF1 = D1;
SF0 = D0;
```

TABLA DE SALIDAS

S1	S0	LED1	LED2	LED3	SEÑAL 1	SEÑAL 2
0	0	0	0	0	0	0
0	1	1	0	0	1	0
1	0	1	1	0	0	1
1	1	1	1	1	1	1

FUNCION LENTO

FUNCION MEDIO

FUNCION RAPIDA

CODIGO DE ATTINY DE ENTRADA DEL POTENCIOMETRO

```
void setup()
 pinMode(1, OUTPUT);
 pinMode(4, OUTPUT);
pinMode(0, OUTPUT);
 pinMode(3, INPUT);
void loop()
  /*
  Esta línea sirve para convertir el voltaje analógico
  que está en el pin 3 (A3) y convertirlo en un valor
  decimal entre 0 y 1023.
  int a = analogRead(A3);
  /* Este bloque de código lo utilizamos para
     dividir el valor entregado por el ADC (analogRead)
     en 4 rangos diferentes (2 bits)
  if (a < 256) {
    digitalWrite(0, LOW);
   digitalWrite(4, LOW);
  else if (a \ge 256 \&\& a < 512){
    digitalWrite(0, LOW);
digitalWrite(4, HIGH);
  else if (a >= 512 \&\& a < 768){
   digitalWrite(0, HIGH);
    digitalWrite(4, LOW);
  else if (a >= 768) {
    digitalWrite(0, HIGH);
    digitalWrite(4, HIGH);
  delay(1);
```

CODIGO DE ATTINY DEL CONTROL DE VELOCIDAD DEL MOTOR

```
void setup()
{
   pinMode(0, OUTFUT);
   pinMode(2, INFUT);
   pinMode(5, INFUT);
}

void loop()
{
   // Aqui leemos ambos DIP switches
   // (DIP = Dual Inline Package)
   int a = digitalRead(5);
   int b = digitalRead(2);

   /*
   Este bloque nos sirve para dividir los 2 bits de entrada en 4 rangos diferentes
   */
   if (a == LOW && b == LOW)
        analogWrite(0, 0);

else if (a == HIGH && b == LOW)
   analogWrite(0, 85);

else if (a == LOW && b == HIGH)
   analogWrite(0, 170);

else if (a == HIGH && b == HIGH)
   analogWrite(0, 255);

delay(1);
```

ENLACES

EJERCICIO 2 https://www.tinkercad.com/things/eWaJEzwL1jz-ejercicio02/editel

EJERCICIO 3 https://www.tinkercad.com/things/h2C7u2dm9tE-ejercicio3/editel