EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul școlar 2022 - 2023

Matematică

Simulare

BAREM DE EVALUARE ŞI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ȘI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	d)	5 p
2.	a)	5 p
3.	c)	5 p
4.	d)	5 p
5.	c)	5 p
6.	b)	5p

SUBIECTUL al II-lea

(30 de puncte)

1.	d)	5p
2.	c)	5p
3.	b)	5p
4.	c)	5p
5.	a)	5p
6.	b)	5p

SUBIECTUL al III-lea

(30 de puncte)

1.	a) În 16 apartamente cu patru camere sunt $4 \cdot 16 = 64$ de camere	1p
	Cum numărul total de camere din bloc este egal cu 60 , deducem că nu este posibil ca blocul să aibă 16 apartamente cu patru camere, deoarece $64 > 60$	1p
	b) $2x+4(22-x)=60$, unde x reprezintă numărul apartamentelor cu două camere	1p
	2x = 28	1p
	x = 14 apartamente cu două camere	1p
2.	a) $E(x) = \frac{x^2 - 9 - x^2 + 16}{x^2 - 16} : \frac{x - 4 + x + 4 - 3}{(x - 4)(x + 4)} =$	1p
	$= \frac{7}{(x-4)(x+4)} \cdot \frac{(x-4)(x+4)}{2x-3} = \frac{7}{2x-3}, \text{ unde } x \text{ este număr real, } x \neq -4, x \neq 4 \text{ și } x \neq \frac{3}{2}$	1p
	b) $E(n) = \frac{7}{2n-3}$, unde <i>n</i> este număr natural	1p
	$\frac{7}{2n-3} \in \mathbb{N}$, deci $2n-3=1$ sau $2n-3=7$	1p
	n=2 sau $n=5$, care convin	1p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

	2	
3.	a) $a = \left(-\frac{1}{3}\right)^2 \cdot \left(-6\right)^2 =$	1p
	$=\frac{1}{9}\cdot 36=4$	1p
	b) $b = \left(\frac{1}{3} + \frac{1}{6}\right) \cdot \left(\frac{5}{10}\right)^{-2} =$	1p
	$=\frac{3}{6}\cdot\left(\frac{10}{5}\right)^2=2$	1р
	$\frac{a+b}{2} = \frac{4+2}{2} = 3$	1p
4.	a) $BP \perp AC$, $P \in AC$, decitriunghiul BPC este dreptunghic, $\angle BCP = 30^{\circ} \Rightarrow BP = \frac{BC}{2} = 5 \text{ cm}$	1p
	$\mathcal{A}_{\Delta ABC} = \frac{AC \cdot BP}{2} = \frac{20 \cdot 5}{2} = 50 \mathrm{cm}^2$	1p
	b) $\angle BCD = \angle BCA$ și $\angle CBD = \angle BAC \Rightarrow \Delta CBD \sim \Delta CAB$	1p
	$\frac{CD}{BC} = \frac{BC}{AC}$	1p
	$\frac{CD}{10} = \frac{10}{20} \Rightarrow CD = 5 \text{cm}$	1p
5.	a) Triunghiul ABE este dreptunghic isoscel, deci $\angle BAE = 45^{\circ}$	1p
	$\angle DAE = \angle DAB + \angle BAE = 90^{\circ}$, deci dreapta DA este perpendiculară pe dreapta AE	1p
	b) $BC \cap AE = \{N\}, \ DA \parallel BN, \ DA \perp AE \implies BN \perp AE$	1p
	În triunghiul dreptunghic isoscel ABE , $AE=10\sqrt{2}\mathrm{cm}$, BN înălțime $\Rightarrow BN$ mediană, deci $BN=\frac{AE}{2}=AN=5\sqrt{2}\mathrm{cm}$	1p
	În triunghiul dreptunghic ACN, $tg(\angle CAE) = \frac{CN}{AN} = \frac{10 + 5\sqrt{2}}{5\sqrt{2}} = \sqrt{2} + 1$	1p
6.	a) $AC = 6\sqrt{2} \text{ cm}$	1p
	$CP = AC - AP = 4\sqrt{2} \text{ cm} = 2 \cdot AP$	1p
	b) $\triangle BRC \sim \triangle MRB' \Rightarrow \frac{B'R}{RC} = \frac{1}{2}$	1p
	Cum $\frac{AP}{PC} = \frac{1}{2} \Rightarrow \frac{B'R}{RC} = \frac{AP}{PC}$, deci $PR \parallel AB'$	1p
	$ \angle (PR, AD') = \angle (AB', AD') = \angle D'AB' \text{ si, cum } \Delta D'AB' \text{ este echilateral } \Rightarrow \angle (PR, AD') = 60^{\circ} $	1p