宇宙開発研究同好会活動記録

2020/2/28 実験責任者:髙橋俊暉 作業者:森一茶

本報告書では、既存のバランを取り付けたフォールデットダイポールの利得測定を行いました。

実験で使用した道具は以下の通りです。

- nanoVNA
- 各種バラン
- フォールデットダイポール
- 標準ダイポール①,②
- SSG
- SDR

実験は以下の手順で行いました。

- 1. 各種バランにフォールデットダイポールを取り付け、nanoVNAで特性を見ながらフォールデットダイポールの長さを調整しました。
- 2. 調整したフォールデットダイポールを SDR 側、標準ダイポール①を SSG 側に取り付けアンテナ間 の距離を 50cm に設置しました。
- 3. SSG の周波数を 437MHz に設定し、HD-SDR の TunerGain を 0 dB に設定しました。
- 4. SSG で-80dBmから-20dBm まで出力して記録をとりました。
- 5. SDR 側を各種フォールデットダイポールおよび、標準ダイポール②に繋ぎ変え4の手順を繰り返した。

図1に実験環境の様子を示します。

図 1 実験環境

はじめに、新しくお貸しいただいている SSG を用いて SDR の Tuner Gain を変化させた時のダイナミックレンジを調べました。

表1にダイナミックレンジの調査結果を示す。

表 1 ダイナミックレンジ

RTL-SDR	Tuner Gain[dB](RF+)									
SSG[dBm]	0	9	20	30	40	50				
-20	-47.2									
-30	-55.7	-46.9								
-40	-65.7	-50.6	-46.9							
-50	-75.7	-60.6	-51.2	-46.9						
-60	-85.7	-70.7	61.3	-51.7	-46.9					
-70	-95.1	-80.6	-71.1	-61.4	-50.4	-47				
-80	-102.7	-90.5	-81.1	-71.4	-60.4	-53.3				
-90	-110.4	-99	-91.6	-83.9	-73.5	-64.6				
-100	-114.7	-106.6	-100.1	-92.9	-81.5	-73.8				
-110	-116.2	-113.8	-109.1	-105.1	-94	-85.5				
-120		-115.6	-113.8	-110.8	-100.4	-94.7				
-130			-115.9	-113.2	-106.8	-101.5				
-140				-115	-109.4	-105.3				

表 1 の色の付いたセルは前後で $\pm 1 dB$ の範囲である事を示しています。このことから本実験では Tuner Gain を 0 にして、SSG の出力を $\pm 80 dB$ から $\pm 20 dB$ の範囲で変化させた時の各種アンテナの利得を調査しました。

本実験で調整したフォールデットダイポールの特性を以下の図2~図5に示します。

図 2 フォールデットダイポール①

図 3 フォールデットダイポール②

図 4 フォールデットダイポール3

図 5 フォールデットダイポール④

表2に各種フォールデットダイポールの特性を示します。

表 2 各種フォールデットダイポールの特性

	抵抗	キャパシタンス[pF]	インダクタンス[nH]
フォールデットダイポール①	31.8	270	
フォールデットダイポール②	49.1		2.6
フォールデットダイポール③	82.5		0.739
フォールデットダイポール④	22.8	287	

表 3 各種アンテナの利得

SSG出力[dB]	-80	-70	-60	-50	-40	-30	-20
フォールデットダイポール①	-115.2	-113.7	-111.2	-98.8	-90.8	-81.1	-72.7
フォールデットダイポール②	-114.7	-110.9	-104.5	-96.4	-87.4	-77.2	-67.6
フォールデットダイポール③	-114.2	-110.2	-104.1	-95.8	-86.7	-76.9	-68.2
フォールデットダイポール④	-113.4	-108.6	-102.6	-94.2	-84.2	-74.2	-64.6
標準ダイポール②	-112.1	-106.8	-98.9	-90.8	-80.8	-70.8	-60.5

バランを接続し、アンテナの長さを調整したフォールデットダイポールを用いた時の利得が、標準ダイポールを用いた時の利得よりも低くなることが確認できました。

インピーダンスが 50Ω に近く調整できたアンテナよりも、 $437 \mathrm{MHz}$ でより共振しているアンテナの方が利得がよい事が分かりました。