Package 'vizplore'

April 22, 2025

Type Package
Title Visualization of High-Dimensional Labeled Data Using Dimensionality Reduction
Version 0.1.0
Author Radoslava Hatalova, Radoslav Harman
Maintainer Radoslava Hatalova <radoslava.hatalova@g.fmph.uniba.sk></radoslava.hatalova@g.fmph.uniba.sk>
Description The 'vizplore' package provides functions for dimensionality reduction and visualization of high-dimensional data labeled with a categorical variable. The implemented techniques include standard Principal Component Analysis and t-distributed Stochastic Neighbor Embedding, as well as methods based on Canonical Correlations and Neural Networks that are specialized for dimensionality reduction of labeled classification data.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Imports Rtsne, keras3, plotly, reshape2, stats
Depends R (>= $3.5.0$)
Contents
cca_viz

2 cca_viz

cca_viz CCA Visualization	cca_viz	CCA Visualization	
---------------------------	---------	-------------------	--

Description

Creates a 2D (or 3D) visualization of multidimensional labeled data using categorical canonical correlation analysis.

Usage

```
cca_viz(X, y, dim = 2, center.scale = TRUE, asp.equal = TRUE, views = 1)
```

Arguments

Χ	A matrix representing the input features (quantitative variables).
У	A vector representing the categories corresponding to the input data.
dim	Integer indicating the desired dimensionality of the visualization: 2 for 2D, 3 for 3D. Default is 2.
center.scale	A logical (boolean) value indicating whether the data should be centered and scaled before processing.
asp.equal	A logical (boolean) value, relevant only for 2D visualization, indicating whether the aspect ratio on both axes should be the same.
views	An integer specifying the number of independent views. For 3D visualization, the maximum is 4. Subsequent views are based on orthogonal projections to capture different perspectives of the data.
center	A logical value indicating whether to center the quantitative data.

Value

A list containing:

projected_data The projected data onto the canonical components.

transformation_matrix The eigenvectors corresponding to the canonical components.

Additionally, a Plotly plot representing the data points in the reduced feature space, with points colored by their categories is displayed.

```
data(iris)
X <- iris[,-5]
y <- iris[,5]
cca_viz(X, y)  # Default 2D visualization
cca_viz(X, y, dim = 3) # 3D visualization</pre>
```

nn_viz 3

nn_viz Neural Network Dimensionality Rea	luction Visualization
--	-----------------------

Description

Creates a 2D (or 3D) visualization of multidimensional labeled data using a simple neural network.

Usage

```
nn_viz(X, y, dim = 2, center.scale = TRUE, asp.equal = TRUE, views = 1)
```

Arguments

Χ	A numeric matrix $(n \times m)$ representing the input features, where n is the number of samples and m is the number of features.
У	A vector of length n representing the categories or labels corresponding to the input data.
dim	Integer indicating the desired dimensionality of the visualization: 2 for 2D, 3 for 3D. Default is 2.
center.scale	A logical (boolean) value indicating whether the data should be centered and scaled before processing.
asp.equal	A logical (boolean) value, relevant only for 2D visualization, indicating whether the aspect ratio on both axes should be the same.
views	An integer specifying the number of independent views. For 3D visualization, the maximum is 4. Subsequent views are based on orthogonal projections to capture different perspectives of the data.

Value

A list containing:

projected_data The data projected onto the lower-dimensional space using the neural network.

transformation_matrix The weight matrix of the neural network's first layer used for dimensionality reduction.

Additionally, a Plotly plot representing the data points in the reduced feature space, with points colored by their categories is displayed.

```
data(iris)
X <- iris[,-5]
y <- iris[,5]
nn_viz(X, y)  # Default 2D visualization
nn_viz(X, y, dim = 3) # 3D visualization</pre>
```

pca_viz

pca_viz	PCA Visualization	

Description

Creates a 2D (or 3D) visualization of multidimensional labeled data using Principal Component Analysis (PCA).

Usage

```
pca_viz(X, y, dim = 2, center.scale = TRUE, asp.equal = TRUE, views = 1)
```

Arguments

X	A matrix representing the input features (quantitative variables).
у	A vector representing the categories corresponding to the input data.
dim	Integer indicating the desired dimensionality of the visualization: 2 for 2D, 3 for 3D. Default is 2.
center.scale	A logical (boolean) value indicating whether the data should be centered and scaled before processing.
asp.equal	A logical (boolean) value, relevant only for 2D visualization, indicating whether the aspect ratio on both axes should be the same.
views	An integer specifying the number of independent views. For 3D visualization, the maximum is 4. Subsequent views are based on orthogonal projections to capture different perspectives of the data.

Value

projected_data The data projected onto the principal components.

transformation_matrix The eigenvectors corresponding to the selected principal components.

Additionally, a plotly object representing the PCA visualization is displayed.

```
data(iris)
X <- iris[,-5]
y <- iris[,5]
pca_viz(X, y, views = 2)  # 2D visualization
pca_viz(X, y, dim = 3) # 3D visualization</pre>
```

tsne_viz 5

tsne_viz	t-SNE Visualization	

Description

Creates a 2D (or 3D) visualization of multidimensional labeled data using t-distributed Stochastic Neighbor Embedding.

Usage

```
tsne_viz(X, y, dim = 2, center.scale = TRUE, asp.equal = TRUE)
```

Arguments

Χ	A matrix representing the input features (quantitative variables).
у	A vector representing the categories corresponding to the input data.
dim	Integer indicating the desired dimensionality of the visualization: 2 for 2D, 3 for 3D. Default is 2.
center.scale	A logical (boolean) value indicating whether the data should be centered and scaled before processing.
asp.equal	A logical (boolean) value, relevant only for 2D visualization, indicating whether the aspect ratio on both axes should be the same.

Value

A list containing:

projected_data The projected data onto the canonical components.

 ${\bf transformation_matrix} \ \ {\bf The \ eigenvectors \ corresponding \ to \ the \ canonical \ components}.$

Additionally, a Plotly plot representing the data points in the reduced feature space, with points colored by their categories is displayed.

Note

This function uses the 'Rtsne' function from the 'Rtsne' package for dimensionality reduction.

```
data(iris)
iris <- unique(iris)
X <- iris[,-5]
y <- iris[,5]
tsne_viz(X, y)  # Default 2D visualization
tsne_viz(X, y, dim = 3) # 3D visualization</pre>
```

Index

- cca_viz, 2
 nn_viz, 3
 pca_viz, 4
- tsne_viz, 5