1. Medial Axis Transform

The purpose of this section is to compare some familiar properties of the medial axis transform $A \mapsto M(A)$ (introduced by [Blu67]) with the singularity structures formalized in our Kantorovich contravariant functor $Z: 2^{\partial A} \to 2^A$ (introduced in [Mar]). To compare the functors Z with medial axis transform requires we interpret the inclusion $M(A) \hookrightarrow A$ in the category of mass transportation.

Let A be a bounded open subset of \mathbb{R}^N . The medial axis M(A) introduced by Blum consists of all $x \in A$ for which $dist(x, \partial A)$ is attained by at least two distinct points,

(1)
$$M(A) := \{ x \in A \mid \#argmin_{y \in \partial A} \{ d(x, y) \} \ge 2 \}.$$

A long-known "folk theorem" states that the inclusion $M(A) \hookrightarrow A$ is a homotopy-isomorphism, and even a strong deformation retract. This implies M(A) contains all the topology of A, and a connected subset whenever A is. A formal proof is established [Lie04]. We do not know if M(A) is a strong retract for more general Riemannian spaces (X,d), and a search through the literature does not address the question. But our recent thesis [Mar] contains some results, namely "Theorem B", identify conditions for which inclusions denoted $Z_2 \hookrightarrow A$ are homotopy isomorphisms, even strong deformation retracts. This subvariety Z_2 is derived from a contravariant functor $Z = Z(\mu, \nu, c)$ defined by mass transport data (μ, ν, c) . The medial axis M(A) and Z_2 will rarely coincide set-theoretically, but this present note demonstrates they are usually topologically isomorphic.

The medial axis transform corresponds to a "degenerate" transport problem in the following sense: if $A \leftarrow \mathbb{R}^N$ is bounded open subset, then we nominate

(2)
$$\mu := \frac{1}{\mathscr{H}_A[A]} \mathscr{H}_A$$

as the canonical probability measure on the source A. Consider the probability measures π on $A \times \partial A$ for which $proj_A\#\pi = \mu$ and with unconstrained second marginal $proj_{\partial A}\#\pi$. Here $proj_A$, $proj_{\partial A}$ are the canonical projections $A \times \partial A \to A$, ∂A . The set-mapping

(3)
$$T: x \mapsto argmin_{y \in \partial A} \{d(x, y)\}, \text{ for } x \in A,$$

defines a measurable set-valued map $T: A \to \partial A$. The pushforward

$$(4) \nu := T \# \mu$$

is a probability measure on ∂A with $spt(\nu) = \partial A$. With respect to, say, quadratic cost $c = d^2/2$ or distance cost c = d, the map $x \mapsto T(x)$ defines a c-optimal transport from μ to ν , with c-optimal coupling $\pi = (Id \times T) \# \mu$ on $A \times \partial A$.

Finally M(A) coincides with the locus-of-discontinuity of $T: A \to \partial A$, or more specifically the singularity Z_2 defined by Kantorovich's contravariant functor $Z = Z(\mu, \nu, d): 2^{\partial A} \to 2^A$. Thus we arrive at an instance where $M(A) = Z_2$ for the specific coupling program defined by μ, ν, c . This identification suggests the following generalization of medial axis transform: for general probability measures $\nu \in \Delta(\partial A)$ on the boundary of A, we may study the c-optimal couplings π from μ to ν , and obtain a Singularity functor $Z(\mu, \nu, c)$. The generalized medial axis in this setting is Z_2 , i.e. the "locus-of-discontinuity" of the c-optimal transport π from μ to ν .

Our thesis developed a Reduction-to-Singularity principle, and identifies conditions for which, say, the inclusion $Z_2 \leftarrow Z_1$ is a homotopy-isomorphism. In the above setting with $Z = Z(\mu, \nu, c)$, we have $A = Z_1$, $M(A) = Z_2$, and naturally we inquire whether the hypotheses of our topological theorems are satisfied for any particular costs c

If we fix $c = d^2/2$, then our Theorem B takes the following form. For $x \in A = Z_1$, let $y_0 := T(x)$. Then define

$$\eta(x,y) := |c(x,y) - c(x,y_0)|^{-1/2} \cdot \nabla_x (c(x,y_0) - c(x,y)), \text{ for } y \in \partial A - \{y_0\}.$$

Observe that $c(x, y) - c(x, y_0) > 0$ is nonvanishing throughout A - M(A) in the above notations. Our Theorem B requires the following hypotheses (6), (7) be satisfied for $x \in A - M(A) = Z_1 - Z_2$: the averaged Bochner integral defined as

(5)
$$\eta(x, avg) := (\nu[\partial A - \{y_0\}])^{-1} \cdot \int_{\partial A - \{y_0\}} \eta(x, y) d\nu(y),$$

and we require that

(6)
$$\eta(x, avg)$$
 is nonzero finite tangent vector,

and there exists a constant C > 0 such that

$$(7) ||\eta(x, avg)|| \ge C > 0$$

for $x \in A - M(A)$, uniformly with x. The verification of hypotheses (6)–(7) can be difficult to verify. Evidently (7) implies (6).

We need also remark on a complication arising from the nonconvexity of A. What is the natural distance function d on $A \subset \mathbb{R}^N$, and the physical "transport cost" of a unit mass at $x \in A$ to target mass $y \in \partial A$? There are at least two popular possibilities. First we may restrict the ambient euclidean distance $d_{\mathbb{R}^N}(x,y) = ||x-y||$ to $A \times \partial A \subset \mathbb{R}^N \times \mathbb{R}^N$. But this restriction does not represent a path length distance in the sense of Gromov [Gro+01, 1.A-B]. In otherwords the restriction does not represent geodesic transport in A, and there is no variational description of the metric in terms of shortest-length curves.

A second approach defines $d = d_A$ as the induced length distance defined by

$$d_A(x,y) = \inf_{\gamma} \int_{\gamma} Length(\gamma),$$

where the infimum is over all curves $\gamma:[0,1]\to A$ contained in A with $\gamma(0)=x$, $\gamma(1)=y$. The reader will observe that both possibilities define coincident medial axes M(A) according to (1), since euclidean balls are geodesically convex. The induced length distance $d=d_A$ is possibly most preferred by metric geometers, yet is difficult to numerically evaluate. Moreover geodesics with respect to the induced path distance $c=d_A$ can oftentimes be branching. The possible branching of geodesics implies gradients $y\mapsto \nabla_x d(x,y)$ are noninjective maps $\partial A\to T_x A$ for $x\in A$. This possible noninjectivity violates an important transport condition called (Twist), and is obstruction to hypothesis (6). Thus neither the restricted distance $c=d|A\times\partial A$ nor the induced distance $c=d_A$ are especially convenient costs.

We article explores a third possibility: namely a variant of Hubbard's so-called 1/d-metric (see [HH06, Ch. 2.2, pp.33]). Let $A \subset \mathbb{R}^N$ be open subset. Then for every real parameter α we define the Riemannian metric

(8)
$$g_{\alpha} := (dist(x, \mathbb{R}^N - A))^{-\alpha} \cdot ds^2,$$

where

$$ds^2 = dx_1^2 + dx_2^2 + \cdots$$

is the standard Euclidean metric on \mathbb{R}^N . The choice $\alpha = 0$ yields $g_0 = ds^2$. Let $\kappa = \kappa(g)$ denotes the sectional curvature of the metric g.

Lemma 1. For every parameter $\alpha \geq 0$, the Riemannian metric g_{α} has nonpositive sectional curvature $\kappa \leq 0$ throughout A.

Proof. We follow Hubbard's proof [HH06, Thm. 2.2.9, pp.36], where the key observation is that: for every $y \in \mathbb{R}^N - A$, the function $f_y(x) := -\log||x - y||^{\alpha}$ is subharmonic for $x \in A$ (in fact, the function is harmonic). Therefore the supremum

$$f(x) := \sup_{y \in \partial A} f_y(x) = \sup_{y \in \mathbb{R}^N - A} f_y(x)$$

is subharmonic. But the metric g_{α} is conformal to the standard Euclidean metric ds^2 , and the formula for the sectional curvature of conformal metrics is well-known, namely $\kappa = -\Delta \log f \cdot ds^2$, which is ≤ 0 by above subharmonicity.

For variable α the metric g_{α} , and the corresponding path length distance $d_{\alpha}(x,y)$ is possibly incomplete on A. However incompleteness only occurs at the boundary ∂A of A as subset of \mathbb{R}^N . For A an open subset there may exist sequences (relative to the distance d_{α}) $\{x_k\}_{k\in\mathbb{N}}$ in A which have no limit point in A. Despite the metric

 g_{α} diverging as $x \to \partial A$, we prefer the lengths of geodesics $\gamma : [0,1] \to A$ converging to ∂A to have finite length, and seek parameters α for which

$$Length_{\alpha}(\gamma) = \int_{0}^{1} \sqrt{g_{\alpha}(\gamma'(t), \gamma'(t))} dt < +\infty.$$

Example 2. Hubbard's definition of 1/d-metric corresponds to $\alpha = 2$ in equation (8). Amazingly the 1/d-metric on the upper halfspace $H := \{x_1 > 0\}$ in \mathbb{R}^N in x_1, \ldots, x_N coordinates is the complete constant-curvature hyperbolic metric on H! Yet for $0 < \alpha < 2$ the metric is incomplete. The curve $\gamma(t) = (1 - t, 0, 0, \cdots)$ for $0 \le t \le 1$ is a curve in H. The g_{α} -length of γ evaluates to $\int_0^1 (1 - t)^{-\alpha/2} dt$, which is improper integral converging to

$$1 < (1 - \alpha/2)^{-1} < +\infty$$

when $0 < \alpha < 2$. While $0 < \alpha < 2$ we can uniquely extend d_{α} to a complete metric pairing

$$\tilde{d}_{\alpha}: \overline{H} \times \overline{H} \to \mathbb{R},$$

where $\overline{H} = \{x_1 \geq 0\}$. Note that \overline{H} is not homeomorphic to adjoining a sphere at-infinity S^2_{∞} to H.

Example 3. The 1/d-metric ($\alpha=2$) on the once-punctured plane $A=\mathbb{R}^2-\{0\}$ is isometric to a straight cylinder of circumference 2π ([HH06, Ex.2.2.6]). The same computations as previous example show for $0<\alpha<2$, the metric d_{α} is incomplete with completion \tilde{d}_{α} equal to an infinite cone with angle [FORMULA] at the origin vertex.

The above two examples have A unbounded open subset. But our applications to medial axes concern bounded open subsets.

Example 4. We modify example 3 by restricting to the punctured disk, say, $D^{\times} := \{0 < ||x|| < R\}$ for a constant R > 0. Then the medial axis $M(D^{\times}) = \{||x|| = R/2\}$ is a circle in D^{\times} . Now we propose that sufficient (UHS) conditions, namely (6)–(7), are satisfied throughout D^{\times} and the inclusion $Z_2 \hookrightarrow D^{\times}$ is homotopy-isomorphism (by Theorem B) for $Z = Z(\mu, \nu, c_{\alpha})$ for $0 < \alpha < 2$. Moreover we propose Z_2 is also a circle, diffeomorphic to M(A), but not identical!

Proposition 5 (Work-In-Progress). Let A be open subset of \mathbb{R}^N . For parameters $0 < \alpha < 2$ the metric g_{α} is incomplete metric on A, and geodesics in A converging to the boundary ∂A have uniquely defined finite length with respect to the metric g_{α} .

Now we propose a more interesting mass-transport interpretation of medial axis transforms. Let A be bounded open subset of \mathbb{R}^N , with boundary ∂A , and probability

measures μ, ν as previously defined in (2), (4). Then we choose cost $c = \tilde{d}_{\alpha}$: $A \times \partial A \to \mathbb{R}$ defined by restricting the completion to $A \times \partial A \subset \overline{A} \times \overline{A}$. The subvarieties $Z_2, M(A)$ will not coincide set-theoretically, but we conjecture that they do coincide topologically:

Theorem 6 (Work-In-Progress). Let A be bounded open subset of \mathbb{R}^N . Let $c = \tilde{d}_{\alpha}$ be the metric completion of d_{α} to \overline{A} , and let $Z = Z(\mu, \nu, c) : 2^{\partial A} \to 2^A$ be the Singularity functor with respect to (μ, ν, c) as defined in (2), (4). Then sufficient (UHS) Conditions are satisfied to apply Theorem B [ref][section], and the inclusion $Z_2 \hookrightarrow A$ is a homotopy isomorphism and even a strong deformation retract.

The completion of Hubbard's 1/d-distance and the cost $c = \tilde{d}_{\alpha}$ yields an alternative to the medial axis M(A) in the subvariety Z_2 defined by c-optimal couplings. We propose this construction of Z_2 yields a useful improvement over the conventional definition of M(A) per (1). For instance the medial axis is defined on the category of open subsets A of \mathbb{R}^N , whereas the functors Z are more generally defined for measure spaces.

Another objection to M(A) is it's notorious instability (c.f. [Sun+13, §1]). Small perturbations of the open subset A often leads to large changes in the medial axis M(A). Therefore M(A) suffers large variability when A has background noise. Many authors have suggested modified media axes (c.f. [FLM03], [TH03] and references therein) which "filter out" possible noise. On the other hand, it's well-known that optimal transportation enjoys strong continuity properties, and c-optimal semicouplings vary continuously (in appropriate narrow topology) with perturbations of μ, ν (c.f. [Vil09, Thm. 28.9, pp.780]).

In conclusion, Blum identified the medial axis transform as convenient/efficient mode of describing objects, and heuristics showed the inclusions $M(A) \hookrightarrow A$ were always homotopy isomorphisms. However Blum's medial axis is but a particular instance of a more useful topological object, namely Z_2 the contravariant functors $Z(\mu, \nu, c) : 2^{\partial A} \to 2^A$. This Z_2 is stable topological object, and the inclusions $Z_2 \hookrightarrow A$ are identified as homotopy isomorphisms when the (UHS) Conditions (6), (7) hold throughout the open complement $A - Z_2$. Thus we propose more stable topological "folk-theorems" regarding a mass transport extension of so-called medial axis transforms, and Theorem B from [Mar].

References

[Blu67] Harry Blum. "A Transformation for Extracting New Descriptors of Shape". In: *Models for the Perception of Speech and Visual Form.* Ed. by Weiant Wathen-Dunn. Cambridge: MIT Press, 1967, pp. 362–380.

- [FLM03] Mark Foskey, Ming C. Lin, and Dinesh Manocha. "Efficient Computation of a Simplified Medial Axis". In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications. SM '03. Seattle, Washington, USA, 2003, pp. 96–107. URL: http://doi.acm.org/10.1145/781606.781623.
- [Gro+01] M. Gromov et al. Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics. Birkhäuser Boston, 2001.
- [HH06] JH Hubbard and JH Hubbard. "Teichmüller Theory and Applications to Geometry, Topology and Dynamics, Volume I: Teichmüller Theory". In: (2006).
- [Lie04] Andre Lieutier. "Any open bounded subset of Rn has the same homotopy type as its medial axis". In: Computer-Aided Design 36.11 (2004), pp. 1029-1046. DOI: https://doi.org/10.1016/j.cad.2004.01.011. URL: http://www.sciencedirect.com/science/article/pii/S0010448504000065.
- [Mar] J.H. Martel. "Applications of Optimal Transport to Algebraic Topology: How to Build Spines from Singularity". PhD thesis. University of Toronto. URL: https://github.com/marvinMLKUltra/thesis/blob/master/ut-thesis.pdf.
- [Sun+13] Feng Sun et al. "Medial Meshes for Volume Approximation". In: (Aug. 2013). URL: https://arxiv.org/abs/1308.3917.
- [TH03] R. Tam and W. Heidrich. "Shape simplification based on the medial axis transform". In: *IEEE Visualization*, 2003. VIS 2003. 2003, pp. 481–488.
- [Vil09] C. Villani. Optimal transport: old and new. Grundlehren der mathematischen wissenschaften Vol. 338. Springer-Verlag, 2009.