What Do We Mean by Human Behavior Representation?

19 Jun 01

Dr. Mike Young
Technical Director
Human Effectiveness
Directorate

Air Force Research Laboratory

Overview

- Application areas
- Different classes of models
 - Reductionist/Behavior
 - First Principle/Information-Processing
- A few issues
- Mike's knee-jerk reaction to CHRIS
- An alternative goal

Application Areas

Simulation is a vast and diverse enterprise:

Live - real people using real equipment

 Virtual - real people using simulated equipment

Constructive - simulated people using simulated equipment

Simulation-based Acquisition

Unit Level Training

Air Force

- Four ship
- 4 V (4,6,8) maneuvers
 - Grinder
 - Wall
- What is critical in HBR?
 - Planning
 - Spatial reasoning
 - Very fast computation

Army

- Tank Platoon
- Platoon maneuvers
 - Movement to contact
 - Hasty defense
- What is critical in HBR?
 - Planning
 - Unit coordination
 - Not as fast computation

Two Approaches to HBR

Reductionist/Behavior

Behavior

- Implementation Architecture
 - Simulation environment
 - Language primitives
- Hardware Implementation (computer)

First principle/ Information processing

- Behavior
- Algorithm & Representation
 - Information processing
 - Cognitive architecture
- Integrative Architecture
 - Simulation environment
 - Language primitives
- Hardware Implementation (computer)

Reductionist/Behavior (1)

Finite State Machine

- A list of states
- A list of command that can be accepted in each state
- A list of actions for each command
- A list of required state conditions for each action
- Developed from authoritative sources and doctrine
- Advantages
 - Fast
 - Can be compiled into compact code
- Disadvantages
 - Number of states grows very fast
 - Brittle
 - Only appropriate for relatively simple behaviors

Reductionist/Behavior (2)

Task Network

- Discrete-event simulation environment
 - Language
 - Development and analysis tools
 - Micro models
- Describe performance as a series of tasks
- Developed from task list and subjective judgment
- Advantages
 - Easy to use
 - Provides good estimate of task time and difficulty
- Disadvantages
 - Fail to model adaptive behavior
 - Limited data/distributions available for complex behavior

First Principle/ Information Processing

- Identify and model the mechanisms that underlie and cause human behavior
 - Characterize and parameterize the different stages of information processing (visual processes, working memory, etc.)
- Developed (and validated) from scientific research
- Advantages
 - Excellent models of peripheral processes exist
 - Readily available data for most behavior
 - Models actually predict human performance
- Disadvantages
 - Many (central) cognitive processes not well understood
 - Meta awareness
 - Team skills
 - Computationally expensive

A Few Issues

- Modeling behavior versus predicting behavior
 - Building a model based upon experience
 - Creating a model that (accurately) predicts behavior
- Force on force versus "mind on mind"
- Hard problems:
 - Teams
 - Organizations
 - Societal groups (mobs, crowds, refugees, clans, etc.)
 - Cultural specificity

Mike's Knee-Jerk Reaction to CHRIS

- While a cloud might be a cloud and a road a road, I am not so sure that an HBR is an HBR
- The environment is pervasive; behavior is local
- Models differ in many ways
 - Level of abstraction
 - Required data
- What is it that we really want to communicate and share?

An Alternative Goal

- There will never be the "best" model; there will always be a best model for a specific application
- In developing a model you usually spend significantly more on knowledge acquisition than model creation
- The distinction between M&S and real world C2 is blurring
- Why not start creating an HBR ontology?
 - Might support composablity, aggregation/disaggregation
 - Might support better interaction with operational systems