Конспект к экзамену по билетам (математический анализ) (3-й семестр)

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Лимар Иван Александрович (лектор) https://t.me/limvan

3 мая 2023 г.

Содержание

1	Как работать с этим сжатым конспектом	3
2	Определения	3
3	Процесс Бернулли, предельные теоремы	5
4	Переход вероятностному пространству распределения	6
5	Примеры дискретных распределений	6
6	Примеры непрерывных распределений	6
7	Случайные векторы	7
8	Свёртки	8
9	Независимые случайные величины 9.1 Некоторые распределения в связи с независимостью	8 10
10	Об интегрировании	10
11	Числовые характеристики случайных величин	11

1. Как работать с этим сжатым конспектом

Составлено в соответствии с лекциями весны 2023

2. Определения

Определение (Веростностное пространство). Это пространство с *вероятностной* (то есть P(X)=1) мерой: мера должна быть счётно-аддитивной функцией $2^X \to [0,\infty)$ на σ -алгебре.

Используется «птичий язык»:

$$AB \stackrel{\text{def}}{=} A \cap B$$
$$A + B \stackrel{\text{def}}{=} A \cup B$$
$$\overline{A} \stackrel{\text{def}}{=} A^{\mathbb{C}}$$

Почему определяем на какой-то странной сигма-алгебре, а не на полной (2^X) ?

В случае с \mathbb{R}^n — на всём не получится сделать адекватную меру, так как, например, если в \mathbb{R} объявим $\mu[0,1]=1$, то множество Витали будет неизмеримо.

(Вспомним из матана, что вообще любая мера, инвариантая относительно сдвига, на той же сигма-алгебре— в константу раз отличается от меры Лебега).

Определение (Вероятностное пространство *в широком смысле*). Теперь работаем в алгебре, а мера — счётно-дизъюнктно аддитивна на множествах, объединение которых уже лежит в алгебре.

Теорема 1 (Единственность стандартного распространения). ...веростностной меры с веростностного пространства в широком смысле на вероятностное пространство в обычном, а именно — на .

Доказательство. Как легко видеть, $\left|\bigoplus_{k\in S}\left(\mathfrak{K}^{\mathbb{F}^{\alpha}(i)}\right)_{i\in\mathcal{U}_k}\right|\preccurlyeq\aleph_1$ при $[\mathfrak{H}]_{\mathcal{W}}\cap\mathbb{F}^{\alpha}(\mathbb{N})\neq\emptyset$.

Замечание. Из матана известно, что достаточно потребовать первоначальное задание меры на полукольце и сигма-конечности, чтобы она совпадала со стандартным распространением на сигма-алгебре измеримых.

Пример. Примеры веростностных пространств:

- 1. Дискретное: состоит из элементарных исходов, у каждого вес. $\mathbb{A}=2^\Omega$, $P(A)=\sum_{w\in A}w$
 - (а) Броски монеты до первого орла
 - (b) Модель классической вероятности: $\forall i: w_i = \frac{1}{n}$. Колчичество элементарных исходов в событии считается комбинаторикой.

Пример: шарики и перегородки кодируют k-элементные мультимножества n объектов или же n-кортежи длины k.

2. Геометрическая вероятность. $\Omega \subset \mathbb{R}^n, \Omega \in \mathbb{A}_n$, $P(A) = \frac{P(A)}{P(\Omega)}$. Пример: вычисление π Монте-Карловскими бросками иголки (считаем меру допустимого множества, интегрируя его сечение по проекции).

Свойство 2.1 (Элементарные свойства веростности). • Монотонность

- $P(\overline{A}) = 1 P(A)$
- Включения-исключения
- Полуаддитивность

Теорема 2 (Равносильность непрерывности и счётной аддитивности объёма). *Утверждения равносильны:*

- 1. *P* мера
- 2. Р объём, непрерывный снизу
- 3. P объём, непрерывный сверху

Доказательство. $2 \Leftrightarrow 3$: инвертируем.

 $(2,3)\Leftrightarrow 1$: разбиваем на кольца, остаток сходящегося ряда $\to 0$.

Теорема 3 (Формула полной вероятности). *Пусть* $\{A_i\}^n$ дизъюнктны, $B\in\bigcup_i A_i$.

Тогда
$$P(B) = \sum_i P(A_i) P(B|A_i).$$

Теорема 4 (Байеса).

$$\underbrace{P(A|B)}_{\text{likelihood}} = \underbrace{\underbrace{\overbrace{P(A)}^{\text{prior}}\underbrace{P(B|A)}_{\text{prior}}}_{\text{marginal}} \tag{2.1}$$

Можно переписать в виде:

 $\{A_i\}$ — система дизъюнктных событий, $B\in\bigcup A_i$. (((Каждое из них "могло вызвать" B и какое-то точно вызвало))). Вопрос — какое:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_i P(A_i)P(B|A_i)} \tag{2.2}$$

То есть при получении информации, что произошло B, ожидания событий скейлятся пропорционально тому, насколько вероятно они вызывают B.

3. Процесс Бернулли, предельные теоремы

Процесс Бернулли: серия экспериментов подбрасывания p-монетки (p может как меняться, так и не меняться).

Предельными теоремами можно аппроксимировать биномиальное (или более извращённое, но порождённое процессом Бернулли) распределение

Теорема Пуассона: аппроксимация $P(S_n=k)$ для p_n $\frac{\lambda}{n}$ распределением Пуассона: $e^{\lambda} \frac{\lambda^k}{k!}$.

(Локальная) теорема Муавра-Лапласа: асимптотическое поведение $P(S_n=k)$ при $n,(n-k)\to\infty$.

Интегральная теорема Муавра-Лапласа (частный случай ЦПТ): аппроксимация биномиального распределения нормальным ($F_{\rm Bin} \approx {\rm erf}$).

4. Переход вероятностному пространству распределения

Случайная величина — $\in \mathcal{B}\left(\Omega \to \mathbb{R}\right)$ (измерима относительно сигма-алгебры этого в.п.).

Распределение с.в.: $P_X:\mathcal{B}_1 \to \mathbb{R}.$

$$P_X(B) \stackrel{\text{\tiny def}}{=} P\left(\{\omega|X\left(\omega\right) \in B\} = P\left(X^{-1}(B)\right) \stackrel{\text{\tiny def}}{=} P\left(X \in B\right)\right) \tag{4.1}$$

Получили веростностную меру на борелевской σ -алгебре \mathcal{B}_1 .

Вроде и существует какое-то вероятностное пространство с каким-то множеством исходов, но часто будем говорить о некоей «проекции» этой информации — о функции распределения случайной величины: $P_X\left(A\right) = P$

Абсолютно непрерывная с.в., если найдётся p_X , т.ч.: $P_X\left(A\right)=\int_A p_X\,\mathrm{d}\mu$

5. Примеры дискретных распределений

- Одноточечное $I_c:P\left(I_c=c\right)=1$
- . Бернулли: X Bern $(p) \Leftrightarrow \begin{cases} P(X=0) = 1 p \\ P(X=1) = p \end{cases}$
- Бионмиальное: X Bin $(n,p) \Leftrightarrow P(X=k) = \binom{n}{k} p^k q^{n-k}$
- Обратное биномиальное (вероятность, что продолбаем k лишних шагов до достижения r-того успеха): X NB $(r,p)\Leftrightarrow X=\min\{n|S_n\geqslant r\}-r; P(X=k)=\binom{r-1}{k+r-1}p^rq^k$...
- Частный случай геометрическое распределение: количество неудач до первого выпадения удачи:

6. Примеры непрерывных распределений

Юниформа, автомат и противогаз

Намаааа

Гамма

Пуассон

Экспоненциальное

7. Случайные векторы

Задаётся совместная функция вероятности P_X , уже потом можно из неё получить маргинальные распределения.

$$P_X(B_1, B_2, \dots, B_n) = P(X_1 \in B_1, X_2 \in B_2, \dots, X_n \in B_n), B_i \in \mathcal{B}$$
 (7.1)

Финкция распределения:

$$F_X(x_1, x_2, \dots, x_n) = P(X_1 \leqslant x_1, X_2 \leqslant x_2, \dots, X_n \leqslant x_n)$$
 (7.2)

Отсюда можно выразить P для отрезков через F. Введём разностный оператор Δ_i : $\Delta_{i,a,b}f(x_1,\dots,x_n)=f(x_1,\dots,x_{i-1},b,x_{i+1},\dots,x_n)-f(x_1,\dots,x_{i-1},a,x_{i+1},\dots,x_n)$. Тогда

$$P(X_i \in [a_i,b_i]) = \Delta_{i,a_i,b_i} \dots \Delta_{1,a_1,b_1} F_X(x_1,\dots,x_n) \tag{7.3}$$

Мультиномиа $\hat{}$ льное (полиномиа $\hat{}$ льное) распределе $\hat{}$ ние — обобщение биномиального распределения на случай произвольного числа исходов.

$$P(X_1 = k_1, \dots, X_n = k_n) = \binom{n}{k_1, \dots, k_n} p_1^{k_1} \dots p_n^{k_n} \tag{7.4}$$

(то есть коэфициент при $t_1^{k_1} \dots t_n^{k_n}$ в формальном многочлене $(p_1 t_1 + \dots + p_n t_n)^n$)

Нормальное распределение для случайного вектора $X \sim \mathcal{N}(\mu, \Sigma)$:

$$p_X(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \tag{7.5}$$

Расшифровка такая: для стандартного нормального распределения $N(0,\mathbb{I}_n)$:

$$p_X(x) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \tag{7.6}$$

то есть как для n независимых с.в. $X_i \sim \mathcal{N}(0,1)$.

А для произвольных μ, Σ : $Y = \mu + \sqrt{\Sigma} X$. Матрица, на самом деле — матрица ковариации, а вектор μ — матожидание.

8. Свёртки

Нагрузка вероятности для суммы с.в. — свёртка нагрузок:

$$p_{X+Y}(z) = \sum_{x \in \mathbb{R}} p_X(x) p_Y(z-x) \tag{8.1} \label{eq:8.1}$$

Абсолютно непрерывные с.в.:

$$F_{X+Y}(z) = \int_{x+y < z} p_X(x) p_Y(y) \, \mathrm{d}x \, \mathrm{d}y \tag{8.2}$$

$$p_{X+Y}(z) = \int_{\mathbb{D}} p_X(x) p_Y(z-x) \, \mathrm{d}x \tag{8.3}$$

Маргинальная плотность: $p_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} p_X(x_1,\dots,x_n) dx_1\dots dx_{i-1}\, dx_{i+1}\dots dx_n$, интегрировать можно по проекции \mathbb{P} $\mathbb{P}_{1,\dots,i-1,i+1,\dots,n}$ \mathbb{R}^n : $\{(x_1,\dots,x_{i-1},x_{i+1},\dots,x_n)|\exists x_i\in\mathbb{R}\colon p_X(x_1,\dots,x_n)>0\}$.

9. Независимые случайные величины

Определение. Случайные величины X_1,\dots,X_n называются независимыми, если $\forall B_1,\dots,B_n\in\mathcal{B}(\mathbb{R})$: $P(X_1\in B_1,\dots,X_n\in B_n)=\prod_{i=1}^n P(X_i\in B_i)$.

Определение. Последовательность случайных величин $\{X_i\}_{i=0}^\infty$ называется независимой, если $\forall m \in \mathbb{N} \colon X_1, \dots, X_m$ независимы.

Теорема 1 (Критерий независимости). Случайные величины X_1,\dots,X_n независимы тогда и только тогда, когда $\forall x_1,\dots,x_n \in \mathbb{R}$:

$$F_{X_1,\dots,X_n}(x_1,\dots,x_n) = \prod_{i=1}^n F_{X_i}(x_i) \tag{9.1}$$

Доказательство. Аналогично теореме о задании случайной величины функцией распределения. ■

Теорема 2 (Критерий независимости с.в. для дискретного случая). Случайные величины X_1,\dots,X_n независимы тогда и только тогда, когда $\forall x_1,\dots,x_n \in \mathbb{R}$:

$$p_{X_1,\dots,X_n}(x_1,\dots,x_n) = \prod_{i=1}^n p_{X_i}(x_i) \tag{9.2}$$

 \mathcal{L} оказательство. (\Rightarrow) Очевидно из определения

 (\Leftarrow) Пусть $B_1,\dots,B_n\in\mathcal{B}(\mathbb{R})$. Тогда:

$$\begin{split} P(X_1 \in B_1, \dots, X_n \in B_n) &= \\ &\sum_{(x_1, \dots, x_n) \in B_1 \times \dots \times B_n} p_{X_1, \dots, X_n}(x_1, \dots, x_n) &= \\ &\sum_{(x_1, \dots, x_n) \in B_1 \times \dots \times B_n} \prod_{i=1}^n p_{X_i}(x_i) &= \\ &\sum_{x_1 \in B_1} \dots \sum_{x_n \in B_n} \prod_{i=1}^n p_{X_i}(x_i) &= \\ &\prod_{i=1}^n \sum_{x_i \in B_i} p_{X_i}(x_i) &= \\ &\prod_{i=1}^n P(X_i \in B_i) \quad \text{(9.3)} \end{split}$$

Теорема 3 (Критерий независимости с.в. для абсолютно непрерывного случая). Случайные величины X_1,\dots,X_n независимы тогда и только тогда, когда $\forall x_1,\dots,x_n \in \mathbb{R}$:

$$p_{X_1,\dots,X_n}(x_1,\dots,x_n) = \prod_{i=1}^n p_{X_i}(x_i) \tag{9.4}$$

Доказательство. Через общий критерий независимости и ингтегрирование/дифференцирование. ■

9.1. Некоторые распределения в связи с независимостью

Пусть X_1,\dots,X_n независимы и $X_i\sim \mathrm{Bern}(p)$. Тогда $X_1+\dots+X_n\sim \mathrm{Bin}(n,p)$.

Для Пуассона: параметры складываются.

Нормальное: сумма нормальных независимых нормальных нормальна. Медианы и средние кваадратичные отклонения складываются.

Сумма r независимых геометрических $\sim {\sf NB}\left(r,p\right)$

10. Об интегрировании

Мера образа множества при отображении.

$$P_X(B) = P(X \in B) = P(\{\omega \colon X(\omega) \in B\}) = P(X^{-1}(B)) \tag{10.1}$$

Мера, заданная таким образом, называется:

PushForward measure.

Пусть есть функция от с.в. $g: \mathbb{R}^n \to \mathbb{R}$.

Тогда

$$\int_{\Omega}g(X(w))P(\mathrm{d}w)=\int_{\mathbb{R}^n}g(x)P_X(\mathrm{d}x)=\begin{cases} \sum_ig(x_i)p_X(x_i) & \text{ дискретный случай }\\ \int_{\mathbb{R}^n}g(x)p_X(x)\,\mathrm{d}x & \text{абсолютно непрерывный случай } \end{cases}$$
 (10.2)

Особый случай для n=1: интеграл Лебега-Стилтьеса.

Теорема Фубини/Тонелли: проецируем на часть осей, деля интеграл на два вложенных.

11. Числовые характеристики случайных величин

Определение. Пусть X — случайная величина. Тогда её математическим ожиданием называется число

$$\mathbb{E}X = \int_{\mathbb{R}} x \, \mathrm{d}P_X(x) \tag{11.1}$$