CPE 593-WS1 Data Structures and Algorithms

Real Time Pathfinding with Heuristic Algorithms

The Team

• • •

Lasya Addala

CWID: 20025775 MS in Applied AI

Priyanshu Singh Bisen

CWID: 20020360 MS in Applied AI

Prateek Pravanjan

CWID: 20021229 MS in Applied AI

Contents

OBJECTIVE

ALGORITHMS

ENVIRONMENT GENERATION

ENVIRONMENT COMPARISON

DYNAMIC PATH PLANNING

EVALUATION METRICS

CONCLUSION

FUTURE WORK

Objective

The objective of this work is to design and evaluate real-time pathfinding algorithms that dynamically recompute paths in changing environments. The focus is on handling dynamic obstacles, including both consistently and randomly moving ones, using heuristic-based algorithms. Metrics like Time Per Planning (TPP) and score are used to evaluate performance. This system aims to improve real-time navigation in unpredictable and complex environments.

Environment Generation

Environment Representation:

3D tensor: x, y coordinates, and state (obstacle, entity, start, or goal).

Obstacle Representation:

Tensor size: [0, 4, 2, 2] (O = number of obstacles).

Stores positional data of obstacle edges.

Velocity Representation:

Tensor size: [O, 1, 1, 2].

Enables dynamic updates using PyTorch broadcasting.

Environment Comparison

СМО

RMO

- Moves in a consistent direction
- Reverses at boundaries
- Highly predictable
- Easier to handle

- Moves with random directions
- Randomized within limits
- Less predictable
- Harder due to randomness

Dynamic Path Planning

Dynamic Obstacles:

CMO: Consistently Moving Obstacles

RMO: Randomly Moving Obstacles

Agent Reactions:

Recomputes path upon detecting collisions or changes.

Avoids static and dynamic obstacles efficiently.

Visualization:

Pygame library for rendering paths and environment.

Evaluation Metrics

TPP (Time Per Planning):

Measures the average computation time required for the algorithm to find a path at each planning step. It is calculated incrementally to reflect real-time performance.

Score:

The primary performance metric that evaluates the effectiveness of the algorithm in finding a valid and efficient path and it is tied to travel distance.

Conclusion

- A* and Bidirectional A*, being an adaptive algorithm, showed to be most suitable for unpredictable environments despite having lower arrival rates and is preferred for predictable environment as well for being computationally efficient.
- Algorithms like Dijkstra and MST prioritize optimality at the cost of computational efficiency.
- Greedy approaches like Best First are fast but unreliable in dynamic settings.

Future Work

- Enhance learning mechanisms to predict obstacle behaviors.
- Incorporate additional evaluation metrics.

Thank you