Introduction to Language Modeling

Manu Madhavan

Department of Computer Science and Engineering, Amrita School of Engineering

Topic 6

Outline

- Why probability to explain theory of language?
- Language Modeling
- Basic idea
- Examples
- N-gram Language Modeling

Language and cognition as probabilistic phenomena

- Human cognition is probabilistic and that language must therefore be probabilistic too since it is an integral part of cognition.
- We live in a world filled with uncertainty and incomplete information.
- We make decisions by processing these information
- These cognitive processes are best formalized as probabilistic processes
- Processing the words, forming an idea of the overall meaning of the sentence, and weighing it in making a decision is no different in principle
- \bullet Meaning of the word is defined by the circumstances of its use \to uncertainty
- So Probability plays an important role in tackle the questions of meaning

Language Modeling

A language model is a probability distribution over strings on an alphabet

Language Modeling

- A language model is a probability distribution over strings on an alphabet
- Language Models are the development of probabilistic models that are able to predict the next word in the sequence given the words that precede it.

Language Modeling

- A language model is a probability distribution over strings on an alphabet
- Language Models are the development of probabilistic models that are able to predict the next word in the sequence given the words that precede it.
- Language models explain various linguistics phenomena using probability
- It is a root problem for a large range of natural language processing tasks
 - Machine Translation
 - Spell checking
 - Next word prediction
 - Text generation

The cat

Language Model- Other Applications

- LM can assign probability to the sentence (how probable the sequences are?)
 P(The cat sat on the mat) =
 P(The).P(cat|the).P(sat|the cat).P(on|The cat sat)...
- This will give higher probability to common/syntactically/semantically correct usages Large wind tonight $\rightarrow 0.31$ High wind tonight $\rightarrow 0.97$

Language Model-Other Applications

- Spelling mistake or correct word? P(I was late by fitteen minutes) > P(I was late by fitteen minutes)
- Speech Recognition P(I saw a van) >> P(eyes awe of an)
- Machine Translation: which usage is more plausible in target language $P(high\ wind) > P(large\ wind)$ $P(He\ immediately\ moved\ to\ hospital) > P(He\ quickly\ moved\ to\ hospital)$

Language Model-Other Applications

- Spelling mistake or correct word? P(I was late by fitteen minutes) > P(I was late by fitteen minutes)
- Speech Recognition P(I saw a van) >> P(eyes awe of an)
- Machine Translation: which usage is more plausible in target language $P(high\ wind) > P(large\ wind)$ $P(He\ immediately\ moved\ to\ hospital) > P(He\ quickly\ moved\ to\ hospital)$

Language Model-Other Applications

- Context sensitive spelling correction
- Natural Language generation
- Next word prediction
- Auto completion (In mail, search engines)
 - Please, call
 - Can you

Language Model

- Goal: Compute the probability of a sentence or sequence of words $P(W) = P(w_1, w_2, ..., w_n)$
- Related Task:

$$P(w_{n+1}|w_1,...w_n)$$

Language model compute either of the above

Language Model

- Probability of a sentence is the joint probability of the words $P(W) = P(w_1, w_2, ..., w_n)$
- This relay on conditional probability $P(A|B) = \frac{P(A,B)}{P(B)}$ P(A,B) = P(B)P(A|B)
- This can be expanded P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)

Counting Probabilities

- $P(the \ cat \ sat \ on \ the \ mat) = P(the)P(cat|the)P(sat|the \ cat)...P(mat|the \ cat \ sat \ on \ the)$
- How do you compute this probability? $P(sat|the\ cat) = \frac{Count(the,cat,sat)}{Count(the,cat)}$
- We may never see enough data to estimate the long sequences

Markov Assumption and Language Model

- In the previous examples, the next word is represented by a conditional probability of previous word $P(W_{n+1}|W_1...W_n) = \frac{P(W_1...W_{n+1})}{P(W_1...W_n)}$
- Exponential number of sequences, counting is difficult
- The question here is how much history is required?
 - It depends only a limited history (3 or 4 words)
- Markov Assumption

$$P(W_{n+1}|W_1...W_n) = P(W_{n+1}|W_n)$$

• Generally, we can say, it depends only on previous k words (k-order Markov model, k < n) $P(W_{n+1}|W_1...W_n) = P(W_{n+1}|W_{n-k}...W_n)$

$$P(vv_{n+1}|vv_1...vv_n) = P(vv_{n+1}|vv_{n-k}...vv_n)$$

Markov Assumption and n-gram model

Looks only at n words at a time.

- 0^{th} order: $P(W_{n+1}|W_1...W_n) = P(W_{n+1})$ (independent of previous words, unigram model)
- 1st order: $P(W_{n+1}|W_1...W_n) = P(W_{n+1}|W_n)$ (bigram model) P(cat|the), P(sat|cat)...
- 2^{nd} order: $P(W_{n+1}|W_1...W_n) = P(W_{n+1}|W_n, W_{n-1})$ (trigram model)

Simple N-Gram Model

- Goal is to estimate the probability of a word given history, P(w|h)
- P(apple|the boy ate)
- $P(apple|the\ boy\ ate) = \frac{Count(the\ boy\ ate\ apple)}{Count(the\ boy\ ate)}$
- Beware!— language is creative and new sentences are added every time
- It is hard to estimate sufficient statistics even from a large corpus (like web)

Some Notations

- Word sequence $w_1, ... w_n$ is represented as w_1^n
- Joint probability $P(X = w_1, Y = w_2,....)$ is represented as $P(w_1, w_2,...w_n)$

Chain Rule

- $P(X_1,...X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)....P(X_n|X_1,...X_{n-1})$
- $P(X_1,...X_n) = \prod_{i=1}^n P(X_i|X_1^{i-1})$
- $P(w_1^n) = \prod_{i=1}^n P(w_i|w_1^{i-1})$
- The joint probability of a sequence and computing the conditional probability of a word given previous words
- We don't know any way to compute the exact probability of a word given a long sequence of preceding words
- Approximate: The intuition of the N-gram model is that instead of computing the probability of a word given its entire history, we will approximate the history by just the last few words.

Bigram

- Bigram model approximates the probability of a word given all the previous words
- $P(w_n|w_1^{n-1}) = P(w_n|w_{n-1})$
- $P(apple|the\ boy\ ate) = P(apple|ate)$
- Markov Assumption
- We can generalize bigram to N-gram model

How to estimate N-gram probability

- Maximum Likelihood Estimate (MLE)
- ullet For example to compute a particular bigram probability of a word y given a previous word x, we'll compute the count of the bigram C(xy) and normalize by the sum of all the bigrams that share the same first word x
- $P(w_n|w_{n-1}) = \frac{Count(w_{n-1},w_n)}{\sum_w (Count(w_{n-1},w))}$
- Since the sum of all bigram counts that start with a given word w_{n1} must be equal to the unigram count for that word w_{n1}
- $P(w_n|w_{n-1}) = \frac{Count(w_{n-1},w_n)}{Count(w_{n-1})}$

Example

Here are the calculations for some of the bigram probabilities from this corpus

$$\begin{array}{ll} P(\text{I}|\text{~~}) = \frac{2}{3} = .67 & P(\text{Sam}|\text{~~}) = \frac{1}{3} = .33 & P(\text{am}|\text{I}) = \frac{2}{3} = .67 \\ P(\text{~~}|\text{Sam}) = \frac{1}{2} = 0.5 & P(\text{Sam}|\text{am}) = \frac{1}{2} = .5 & P(\text{do}|\text{I}) = \frac{1}{3} = .33 \end{array}~~$$

- For N-gram model: $P(w_n|w_1^{n-1}) = \frac{count(w_{n-N+1}^{n-1}w_n)}{Count(w_{n-N+1}^{n-1})}$
- This ratio is called relative frequency

Example¹

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Figure 4.1 Bigram counts for eight of the words (out of V=1446) in the Berkeley Restaurant Project corpus of 9332 sentences.

Fig. 4.2 shows the bigram probabilities after normalization (dividing each row by the following unigram counts):

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Example

$$\begin{array}{ll} P(\textrm{i}\,|\,\textrm{~~}) = 0.25 & P(\textrm{english}\,|\,\textrm{want}) = 0.0011 \\ P(\textrm{food}\,|\,\textrm{english}) = 0.5 & P(\textrm{~~}\,|\,\textrm{food}) = 0.68 \end{array}$$

Example

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus of 9332 sentences.

$$\begin{split} P(<\mathbf{s}> \text{ i want english food }) \\ &= P(\mathbf{i}\mid <\mathbf{s}>)P(\mathbf{want}\mid \mathbf{I})P(\mathbf{english}\mid \mathbf{want}) \\ &\quad P(\mathbf{food}\mid \mathbf{english})P(\mid \mathbf{food}) \\ &= .25\times.33\times.0011\times0.5\times0.68 \\ &= = .000031 \end{split}$$

Lecture-11

So far

- Language Modeling is assigning probabilities to sequence of words/characters
- Markov assumption and N-gram models
- Counting probability
- Example

Next

- Evaluation Perplexity
- Smoothing

Training and Test corpus

- The probabilities of the N-gram model come from the corpus it trained on
- Training on some data and testing on some other data (mutually exclusive sets)
- Divide the dataset into Training corpus and test corpus
- Its important not to let the test sentences into the training set

Training and Test corpus

- The probabilities of the N-gram model come from the corpus it trained on
- Training on some data and testing on some other data (mutually exclusive sets)
- Divide the dataset into Training corpus and test corpus
- Its important not to let the test sentences into the training set
- How to split input corpus: 80:20, 70:30,...

Issues in N-gram modeling

- The probabilities of the N-gram model come from the corpus it trained on
- It may not TRUE for another testing corpus
- Sensitivity to the value of N
- Create a general purpose corpus by collecting different genres

Treating unknown words

- Test set may contain unknown words (Out of Vocabulary words-OOV)
- Choose a Vocabulary which is fixed
- Convert OOV to < UNK > unknown category
- Estimate the probability of < UNNK >

Evaluating the model

- Extrinsic (in vivo) vs intrinsic evaluation
- If know the expected model in prior, we can us extrinsic measures (eg: accuracy)
- For example: We can apply a model on some application (say text classification and predict accuracy)
- Intrinsic measures evaluate without any external applications
- Perplexity

Perplexity

- Perplexity is the most common intrinsic evaluation metric for N-gram language models.
- Given two probabilistic models, the better model is the one that
 has a tighter fit to the test data, or predicts the details of the test
 data better.
- The perplexity (sometimes called PP for short) of a language model on a test set is a function of the probability that the language model assigns to that test set.
- For sequence of $W = w_1, ... w_N$
- $PP(W) = P(w_1, ...1_N)^{-1} = \sqrt[N]{\frac{1}{P(w_1, ...w_N)}}$

Perplexity

- For sequence of $W = w_1, ... w_N$
- $PP(W) = P(w_1, ... 1_N)^{-1} = \sqrt[N]{\frac{1}{P(w_1, ... w_N)}}$
- $PP(W) = \sqrt[N]{\prod_{i=1}^{n} \frac{1}{P(w_i|w_1,...w_{i-1})}}$
- $PP(W) = \sqrt[N]{\prod_{i=1}^{n} \frac{1}{P(w_i|w_{i-1})}}$ For bigram model

Perplexity

- The best model will be the one that assigns the highest probability to the test set.
- Intuitively, if a model assigns a high probability to the test set, it
 means that it is not surprised to see it (its not perplexed by it)
- Low perplexity indicates it has a good understanding of how the language works.
- $PP(W) = \sqrt[N]{\prod_{i=1}^{n} \frac{1}{P(w_i|w_1,...w_{i-1})}}$ (we are taking inverse of probability)
- A lower perplexity indicates a better model

Perplexity

- Perplexity also indicate average branching factor of a language model
- Branching factor is the number of possible next words that can follow a word
- perplexity is high means: "when trying to guess the next word, our model is as confused as if it had to pick between many different words"

Next: Smoothing

- The estimating probabilities from sparse data
- Zero count affect entire MLE computation
- Addressing poor estimation: smoothing
- Different Smoothing techniques
 - Laplace smooting
 - Good-Turing discounting
- Interpolation

Read: Chapter 4, SLP, Jurafsky

Language Modeling

Smoothing: Add-one (Laplace) smoothing

The intuition of smoothing (from Dan Klein)

When we have sparse statistics:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

Steal probability mass to generalize better

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total

Add-one estimation

Also called Laplace smoothing

Pretend we saw each word one more time than we did Just add one to all the counts!

MLE estimate:

$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

Maximum Likelihood Estimates

The maximum likelihood estimate

- of some parameter of a model M from a training set T
- maximizes the likelihood of the training set T given the model M

Suppose the word "bagel" occurs 400 times in a corpus of a million words

What is the probability that a random word from some other text will be "bagel"?

MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus

 But it is the estimate that makes it most likely that "bagel" will occur 400 times in a million word corpus.

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted counts

 $c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Compare with raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-1 estimation is a blunt instrument

So add-1 isn't used for N-grams:

We'll see better methods

But add-1 is used to smooth other NLP models

- For text classification
- In domains where the number of zeros isn't so huge.

Language Modeling

Smoothing: Add-one (Laplace) smoothing

Language Modeling

Interpolation, Backoff, and Web-Scale LMs

Backoff and Interpolation

Sometimes it helps to use less context

Condition on less context for contexts you haven't learned much about

Backoff:

- use trigram if you have good evidence,
- otherwise bigram, otherwise unigram

Interpolation:

mix unigram, bigram, trigram

Interpolation works better

Linear Interpolation

Simple interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1})
+ \lambda_2 P(w_n|w_{n-1})
+ \lambda_3 P(w_n)$$

$$\sum_{i} \lambda_i = 1$$

Lambdas conditional on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

How to set the lambdas?

Use a **held-out** corpus

Training Data

Held-Out Data

Test Data

Choose \(\lambda\)s to maximize the probability of held-out data:

- Fix the N-gram probabilities (on the training data)
- Then search for λs that give largest probability to held-out set:

$$\log P(w_1...w_n \mid M(\lambda_1...\lambda_k)) = \sum_{i} \log P_{M(\lambda_1...\lambda_k)}(w_i \mid w_{i-1})$$

Unknown words: Open versus closed vocabulary tasks

If we know all the words in advanced

- Vocabulary V is fixed
- Closed vocabulary task

Often we don't know this

- Out Of Vocabulary = OOV words
- Open vocabulary task

Instead: create an unknown word token <UNK>

- Training of <UNK> probabilities
 - Create a fixed lexicon L of size V
 - At text normalization phase, any training word not in L changed to <UNK>
 - Now we train its probabilities like a normal word
- At decoding time
 - If text input: Use UNK probabilities for any word not in training

Huge web-scale n-grams

How to deal with, e.g., Google N-gram corpus

Pruning

- Only store N-grams with count > threshold.
 - Remove singletons of higher-order n-grams
- Entropy-based pruning

Efficiency

- Efficient data structures like tries
- Bloom filters: approximate language models
- Store words as indexes, not strings
 - Use Huffman coding to fit large numbers of words into two bytes
- Quantize probabilities (4-8 bits instead of 8-byte float)

Smoothing for Web-scale N-grams

"Stupid backoff" (Brants *et al*. 2007) No discounting, just use relative frequencies

$$S(w_{i} \mid w_{i-k+1}^{i-1}) = \begin{cases} \frac{\text{count}(w_{i-k+1}^{i})}{\text{count}(w_{i-k+1}^{i-1})} & \text{if } \text{count}(w_{i-k+1}^{i}) > 0 \\ 0.4S(w_{i} \mid w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

$$S(w_i) = \frac{\text{count}(w_i)}{N}$$

N-gram Smoothing Summary

Add-1 smoothing:

OK for text categorization, not for language modeling

The most commonly used method:

Extended Interpolated Kneser-Ney

For very large N-grams like the Web:

Stupid backoff

Advanced Language Modeling

Discriminative models:

choose n-gram weights to improve a task, not to fit the training set

Parsing-based models

Caching Models

Recently used words are more likely to appear

$$P_{CACHE}(w \mid history) = \lambda P(w_i \mid w_{i-2}w_{i-1}) + (1 - \lambda) \frac{c(w \in history)}{|history|}$$

 These turned out to perform very poorly for speech recognition (why?)

Language Modeling

Interpolation, Backoff, and Web-Scale LMs