Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1-0,2): 2+0,3\cdot 2=0,8: 2+0,6=$	3p
	=0,4+0,6=1	2p
2.	f(2) = 0, $g(2) = 2 + m$	3 p
	0 = 2 + m, de unde obținem $m = -2$	2p
3.	$7^{x+3} = 7^{2x}$, de unde obținem $x+3=2x$	3 p
	x = 3	2p
4.	$x - \frac{30}{100} \cdot x = 210$, unde x este prețul înainte de ieftinire	3 p
	x = 300 de lei	2p
5.	$M(1,2)$, deci $OM = \sqrt{5}$ și $MB = \sqrt{10}$	3 p
	$OB = \sqrt{5}$, deci $MB^2 = OB^2 + OM^2$, de unde obținem că triunghiul OMB este dreptunghic în O	2p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}$, $\sin 30^\circ = \frac{1}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$	3p
	$\sqrt{3}\sin 45^{\circ} + 2\sin 30^{\circ} - \sqrt{2}\cos 30^{\circ} = \sqrt{3} \cdot \frac{\sqrt{2}}{2} + 1 - \sqrt{2} \cdot \frac{\sqrt{3}}{2} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 4 & -2 \\ 2 & 1 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 4 & -2 \\ 2 & 1 \end{vmatrix} = 4 \cdot 1 - (-2) \cdot 2 =$	3р
	=4+4=8	2p
b)	$A(0) = \begin{pmatrix} 2 & -2 \\ 2 & -1 \end{pmatrix} \Rightarrow A(0) \cdot A(0) = \begin{pmatrix} 0 & -2 \\ 2 & -3 \end{pmatrix}$	3p
	$\begin{pmatrix} 0 & -2 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} x+2 & -2 \\ 2 & x-1 \end{pmatrix}, \text{ de unde obținem } x = -2$	2p
c)	$\det(A(x)) = x^2 + x + 2$, pentru orice număr real x	2p
	$x^2 + x + 2 = y^2 + y + 2 \Rightarrow (x - y)(x + y + 1) = 0$ şi, cum x şi y sunt numere reale distincte, obţinem $x + y + 1 = 0$, deci $x + y = -1$	3р
2.a)	$1*2 = 4 \cdot 1 \cdot 2 - 3 \cdot 1 + 2 \cdot 2 - 1 =$	3p
	=8-3+4-1=8	2p
b)	x*(-1) = -7x - 3, pentru orice număr real x	2p
	$-7x-3=4 \Rightarrow -7x=7$, de unde obținem $x=-1$	3 p

c)	$4ax-3x+2a-1=-x \Rightarrow 4ax-2x+2a-1=0 \Rightarrow 2x(2a-1)+2a-1=0$, pentru orice număr real x	3p	
	$a = \frac{1}{2}$	2p	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 2 - \frac{8}{x^2} =$	3p
	$=\frac{2x^2-8}{x^2} = \frac{2(x^2-4)}{x^2}, \ x \in (0,+\infty)$	2p
b)	f(2)=7, f'(2)=0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 7$	3p
c)	$f'(x) = 0 \Rightarrow x = 2$; $f'(x) \le 0$, pentru orice $x \in (0,2] \Rightarrow f$ este descrescătoare pe $(0,2]$	2p
	$0 < 1 - x < 1 + x < 2$, pentru orice $x \in (0,1)$, de unde obținem $f(1-x) \ge f(1+x)$, pentru orice $x \in (0,1)$	3 p
2.a)	$\int_{0}^{2} (f(x) - 4x) dx = \int_{0}^{2} (3x^{2} + 2) dx = (x^{3} + 2x) \Big _{0}^{2} =$	3p
	$=2^3+2\cdot 2=12$	2p
b)	$\int_{0}^{1} \left(f(x) - 3x^{2} - 2 \right) e^{x} dx = \int_{0}^{1} 4x e^{x} dx = 4(x - 1) e^{x} \Big _{0}^{1} =$	3 p
	= 0 + 4 = 4	2p
c)	$\int_{-1}^{0} a \cdot f'(x) \cdot (f(x))^{a-1} dx = (f(x))^{a} \begin{vmatrix} 0 \\ -1 \end{vmatrix} = 2^{a} - 1, \text{ pentru orice } a \in (0, +\infty)$	3p
	$2^a - 1 = 63$, de unde obținem $a = 6$, care convine	2p