Acceptance Testing UAT Execution & Report Submission

Date	19 November 2022
Team ID	PNT2022TMID30863
Project Name	Project emerging method for early detection of
	forest fires
Maximum Marks	4 Marks

Purpose of Document

Forests are the savior of earth's ecological balance. Forest fires usually occur in areas remote from populated places, in order to that their detection at an early stage and timely reports to the competent services are of utmost importance. Forest fires are one among the foremost important and prevalent sort of disasters and that they can create great environmental problems for Nature. it's known that they're detectable and simply preventable.

The detection of forest fire should be fast and accurate as they may cause damage and destruction at a large scale. Recently, Amazon forest confronted a devastating forest fire which remained obscured for over 15 days. Hence resulting in huge loss of ecosystem and adversely affecting the global conditions. As the technology is developing, Wireless Sensor Networks (WSN) is gaining importance in recent research areas as it has shown its usefulness in warning disasters and save lives. As soon as an unusual event is noticed in the networks, an event is detected through the sensor devices placed at distributed locations. This event detection information is passed to the base station and decision is taken. Due to the static configuration of such sensor data in WSN generally lead to false alarm generation. In such a scenario we can use machine learning algorithms to prevent false alarm since they get configured efficiently in dynamic nature, that too automatically .Therefore for eliminating the static essence of WSN, we present a machine learning algorithm imbibed with WSN. In this paper, we propose a decision tree machine learning approach for detecting events.

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37

Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2