Iterative Quantum Phase Estimation: Moving Beyond Traditional QPE

Kaelyn Ferris, PhD

Qiskit Researcher & Community Coordinator

Introduction

- At this point you've learned a lot about basic quantum algorithms and have begun to start considering the effects of noise.

- Many of these algorithms (Grover's , Shor's, QPE, etc.) require long depth circuits with many nonlocal operators.

- Here we'll discuss a technique to do phase estimation which is more achievable on *today's* quantum computers. Using a *single* auxiliary qubit to store the phase

Why is the phase important to estimate in the first place?

H

Why is the phase important to estimate in the first place?

In physics, often we are looking for the eigenvalue, λ , of an operator U. Knowing information like this allows us to characterize a simulated physical system

HH

Why is the phase important to estimate in the first place?

In physics, often we are looking for the eigenvalue, λ , of an operator U. Knowing information like this allows us to characterize a simulated physical system

But what form does this have generally?

Why is the phase important to estimate in the first place?

In physics, often we are looking for the eigenvalue, λ , of an operator U. Knowing information like this allows us to characterize a simulated physical system

But what form does this have generally?

For some eigenstate, $|\lambda\rangle$, of U

$$U|\lambda\rangle = \lambda|\lambda\rangle$$

$$\langle\lambda|U^{\dagger} = \langle\lambda|\lambda^{*}\rangle$$

$$= |\lambda|^{2} = 1$$

Why is the phase important to estimate in the first place?

In physics, often we are looking for the eigenvalue, λ , of an operator U. Knowing information like this allows us to characterize a simulated physical system

But what form does this have generally?

For some eigenstate, $|\lambda\rangle$, of U $U|\lambda\rangle = \lambda|\lambda\rangle \\ \langle \lambda|U^\dagger = \langle \lambda|\lambda^* \rangle \\ = |\lambda|^2 = 1$ $\lambda = e^{i2\pi\theta}$

QPE Review: Phase Kickback

QPE Review: Phase Kickback

Recall also how we store the phase in binary:

$$e^{i2\pi\theta}$$
; $\theta \in (0,1]$ $\theta = \frac{\theta_1}{2} + \frac{\theta_1}{4} + \dots + \frac{\theta_m}{2^m} = 0.\theta_1\theta_2 \dots \theta_m$

Recall QPE algorithm

Iterative Phase Estimation

Recall:
$$e^{i2\pi\theta}$$
; $\theta \in (0,1]$ $\theta = \frac{\theta_1}{2} + \frac{\theta_2}{4} + \dots + \frac{\theta_m}{2^m} = 0.\theta_1\theta_2\dots\theta_m$

Recall:
$$e^{i2\pi\theta}$$
; $\theta \in (0,1]$ $\theta = \frac{\theta_1}{2} + \frac{\theta_2}{4} + \dots + \frac{\theta_m}{2^m} = 0.\theta_1\theta_2\dots\theta_m$

Recall:
$$e^{i2\pi\theta}$$
; $\theta \in (0,1]$ $\theta = \frac{\theta_1}{2} + \frac{\theta_2}{4} + \dots + \frac{\theta_m}{2^m} = 0.\theta_1\theta_2\dots\theta_m$

$$k = 1; e^{i2\pi\theta 2^{0}} = e^{i2\pi0.\theta_{1}\theta_{2}...\theta_{m}}$$

$$k = 2; e^{i2\pi\theta 2^{1}} = e^{i2\pi\theta_{1}}e^{i2\pi0.\theta_{2}...\theta_{m}}$$

$$k = 3; e^{i2\pi\theta 2^{2}} = e^{i2\pi\theta_{1}}e^{i2\pi\theta_{2}}e^{i2\pi0.\theta_{3}...\theta_{m}}$$

Recall:
$$e^{i2\pi\theta}$$
; $\theta \in (0,1]$ $\theta = \frac{\theta_1}{2} + \frac{\theta_2}{4} + \dots + \frac{\theta_m}{2^m} = 0.\theta_1\theta_2\dots\theta_m$

$$k = 1; e^{i2\pi\theta 2^{0}} = e^{i2\pi0.\theta_{1}\theta_{2}...\theta_{m}}$$

$$k = 2; e^{i2\pi\theta 2^{1}} = e^{i2\pi\theta_{1}}e^{i2\pi0.\theta_{2}...\theta_{m}}$$

$$k = 3; e^{i2\pi\theta 2^{2}} = e^{i2\pi\theta_{1}}e^{i2\pi\theta_{2}}e^{i2\pi0.\theta_{3}...\theta_{m}}$$

Instead of needing so many auxiliary qubits, let's use one and iterate the estimation of the phase.

Recall: $e^{i2\pi\theta}$; $\theta \in (0,1]$ $\theta = \frac{\theta_1}{2} + \frac{\theta_2}{4} + \dots + \frac{\theta_m}{2^m} = 0.\theta_1\theta_2\dots\theta_m$

$$t = 1; e^{i2\pi\theta 2^{0}} = e^{i2\pi 0.\theta_{1}\theta_{2}...\theta_{m}}$$

$$t = 2; e^{i2\pi\theta 2^{1}} = e^{i2\pi 0.\theta_{2}...\theta_{m}}$$

$$t = 3; e^{i2\pi\theta 2^{2}} = e^{i2\pi 0.\theta_{3}...\theta_{m}}$$

$$\vdots$$

$$k = m - 1; e^{i2\pi\theta 2^{m-1}} = e^{i2\pi 0.\theta_{m}}$$

Instead of needing so many auxiliary qubits, let's use one and iterate the estimation of the phase.

What is the first step?

Instead of needing so many auxiliary qubits, let's use one and iterate the estimation of the phase.

The second step?

Instead of needing so many auxiliary qubits, let's use one and *iterate* the estimation of the phase.

The second step?

Further Steps

Strategy: Iterate this circuit m times by either resetting the aux qubit or use dynamic circuits until the bitstring $\theta = 0. \theta_1 \theta_2 \dots \theta_m$ is found.

Further Steps

Qiskit | Global Summer School 2023

The usage of auxiliary qubits to store phase information ends up being a useful tool!

We can use this technique of phase kickback to directly measure expectations values of a pair of observables

 $\frac{\langle X + iY \rangle = \langle U^{\dagger}V \rangle}{\langle X + iY \rangle}$

V or U^{\dagger} can be αny unitary operator, including the identity: I

TH H

But how can this be the case?

We know that:
$$\langle X + iY \rangle = \langle HZH \rangle + \langle ZHZH \rangle$$

And: $|\Psi\rangle = \left[\frac{|0\rangle U|\psi\rangle + |1\rangle V|\psi\rangle}{\sqrt{2}}\right]$
 $\langle HZH \rangle = \langle \Psi|HZH|\Psi \rangle$
 $= \frac{1}{2}[\langle 0|U^{\dagger}\langle \psi| + \langle 1|V^{\dagger}\langle \psi|]HZH[|0\rangle U|\psi\rangle + |1\rangle V|\psi\rangle]$
 $= \frac{1}{2}[\langle 0|U^{\dagger}\langle \psi| + \langle 1|V^{\dagger}\langle \psi|]ZHZH[|0\rangle U|\psi\rangle + |1\rangle V|\psi\rangle]$
 $= \frac{1}{2}[\langle 0|U^{\dagger}\langle \psi| + \langle 1|V^{\dagger}\langle \psi|]ZHZH[|0\rangle U|\psi\rangle + |1\rangle V|\psi\rangle]$
 $= \frac{1}{2}[\langle \psi|U^{\dagger}V|\psi\rangle - \frac{1}{2}[\langle \psi|V^{\dagger}U|\psi\rangle$

$$\langle X + iY \rangle = \langle \psi | U^{\dagger} V | \psi \rangle = \langle U^{\dagger} V \rangle$$

We can also utilize time evolution to characterize physical systems

Review

- "Traditional" QPE is too expensive to achieve given the current hardware available. Both in terms of the circuit depth and the required number of qubits.
- Using an auxiliary qubit to measure individual bits in the estimation string is much more achievable.
 - This allows us to estimate the phase by instead running more circuits which is generally cheaper to do
- This technique of utilizing an auxiliary qubit to store and measure phase information can be extended to characterize simulations of physical systems. Very useful indeed!

Thank you