

husIP1	1	MRRAE-----LAGLKTM A WVPAE S AVEELMPRLLP	30
XeSIP1	1		6
Brr1	1	MKRGE S QAPDAIF G OSRAFALSDSSVNPDVIEY L K S	36
husIP1	31	V E PCDLTE G FDPSVPPRTP O EYLRRVO I EAA O CP-D	65
XeSIP1	7	V E ACDL P EDYDPSVPPRTP O EYLRRVO I EAA R CP-D	41
Brr1	37	V R QE A LR T NAISIKNHMN L OKRT R KSS M YD D E E GA	72
husIP1	66	V V VA O IDPKKL R KOSVN I SLSGCOPA P EG G YSP---	98
XeSIP1	42	V V IA O IDPKKL R K O T V S I SLSGCOPA P D G YSP---	74
Brr1	73	L K R H A I S P SL I R L Q R N V E I W V RWFNSVKATVLTNAY	108
husIP1	99	-T L IQ W OO Q OA V AF S T V R Q N V N K H R S H W K S Q O-----	128
XeSIP1	75	-S L R W OO Q OA V AF S AV R OS I H K H R G H W R S O P-----	104
Brr1	109	E F T G Y E DE T L D L L F L K N Y L E D M P S K C T T V E K I I S V	144
husIP1	129	L D SN V T M P K SE D -----E E G W KK F CL G -----E K L	153
XeSIP1	105	L D SN V T M P S TE D -----E E SW W KK F CL G -----E R L	129
Brr1	145	L N Q H S F P E K A E E K E N L Q I D E E W A K N I L V R L E K T K I	180
husIP1	154	C A D G A V G P A T N-----E S P G I D Y V O I G F P P LL S	181
XeSIP1	130	Y S DL A A A L N SE S -----O H P G I D Y I K V G F P P LL S	158
Brr1	181	D S E D V K K V I T E G D K HE L V G Y N Q W F O Y L I N N E P O H T T	216
husIP1	182	I V S R M N Q A T V T S V L E Y I S N-W F G E R D -----F T PE L G	212
XeSIP1	159	I V S R M S Q A T V T S V L E Y I V N-W F E E R N -----F T PE L G	189
Brr1	217	F H E K I T S K Q L W V L I K Y M S N T W I K E I H K G R H Y R R L Q	252
husIP1	213	R W L Y A L L A C L E K P L P E A H S L I R O L A R R C S E V R --L	246
XeSIP1	190	R W L Y A L L A C L E K P L P E A H S L I R O L A R R C S O I R --A	223
Brr1	253	D W L F Y I L V H T P E R V T A E Y T S I L R D L G K K C L E L I Q K K	288
husIP1	247	L V D S K D D-----E R V P A L N L I	263
XeSIP1	224	G V E H K E D-----D R V S P L N L F I	240
Brr1	289	P V E A H E N K I T L P K E M A E L N V E I P A V E N M T I T E L T V	324
husIP1	264	C L V S R Y F D O R D L A D E--P S	280
XeSIP1	241	C L V G R Y F E O R D L A D C G D P S	259
Brr1	325	S V I A V N Y G Ö K D L I E -----	338

FIG. 1

2/56

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3E

FIG. 3F

4/56

FIG. 4A

FIG. 4B

5/56

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 6A

FIG. 6B

7/56

FIG. 7

8/56
 ^{32}P -RNA antibody

15 hr

C • N

—	2B1	2E17	Y12				
N	C	N	C	N	C	N	C

FIG. 8A

^{32}P -RNA antibody

15 hr

C • N

—	+2E17						
U1	U2	U4	U5	U1	U2	U4	U5
N	C	N	C	N	C	N	C

U2 —
 U1 —
 U4 —
 U5 —

FIG. 8B

9/56

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 11A

FIG. 11B

12/56

FIG. 12A

FIG. 12B

FIG. 13A

FIG. 13B

14/56

FIG. 14

15/56

FIG. 15A

FIG. 15B

16/56

FIG. 16A

FIG. 16B

FIG. 16C

FIG. 16D

FIG. 16E

FIG. 16F

combined

17/56

FIG. 17A

FIG. 17B

FIG. 17C

FIG. 17D

FIG. 17E

FIG. 17F

18/56

FIG. 18A

FIG. 18B

FIG. 18C

FIG. 18D

FIG. 18E

FIG. 18F

19/56

FIG. 19A

FIG. 19B

20/56

FIG. 20

21/56

FIG. 21

22/56

FIG. 22

FIG. 23

FIG. 24A

FIG. 24B

FIG. 25A

FIG. 25B

26/56

FIG. 26

27/56

FIG. 27

FIG. 28C

FIG. 28B

FIG. 28A

29/56

FIG. 29A

Gemin 3

FIG. 29B

DIC

FIG. 29C

Gemin 3

p80 coilin

FIG. 29D

SMN

p80 coilin

FIG. 29E

Gemin 3

SMN

FIG. 29

30/56

FIG. 30A

FIG. 30B

FIG. 30D

FIG. 30C

32/56

FIG. 30E

33/56

FIG. 31A

FIG. 31B

34/56

FIG. 31C

FIG. 31D

35/56

FIG. 31E

FIG. 31F

36/56

FIG. 32A

FIG. 32B

37/56

FIG. 33A

FIG. 33B

38/56

FIG. 34A

FIG. 34B

39/56

Chicken SMN Protein Sequence

MAGRVLFRRGAGQSDDSDMWDDTALIKAYDKAVASFKNALKNGCDSEPSDKQ
EQRAGVKRKNSKKNRNRNKSNAVPLKQWKVGDSCNAVWSEDGNVYPATIASI
NLKRGTCVVTYTGYGNKEEQNLADLLPPASDETNEPYSTDESEKSSQSHHN
ENNCTKARFSPKNLRFPIPPPTPPGLGRHGSKFRTLPPFLSCWPPPFPAGPPLIPPPP
MGPDSPEDDEALGSMLIAWYMSGYHTGYYLGLKQSRMEAALEREAYLK

FIG. 35A

Chicken SMN DATA Sequence

ATGGCGGGCAGGGTGCTGTTCCGGCGCGGCCGGCAGAGCGACGACTCG
GACATGTGGGACGACACGGCCCTCATCAAGGCCTACGACAAGGCCTGGCCT
CCTCAAGAACATGCTTAAAGAACAGGGGACTGCTCAGAGCCTCGGACAAACA
GGAGCAGCGGGGGGGGTGAAAAGGAAAAACAGCAAGAACAGGAACA
GAAACAAGAGCAACGCCGTGCCGTTGAAGCAGTGGAAAGTGGCGACAGCT
GTAACGCTGTTGGTCTGAGGATGGAATGTCTACCCCTGCAACTATTGCCTCC
ATAAAATCTGAAGAGGGGTACATGCCTGTTACTTACACCGGATATGGAAACA
AGGAGGAACAGAACCTGGCTGATCTACTCCTCCAGCTAGCGATGAAACAAA
TGAAAATGAGACTCCGTATTCAACAGATGAAAGTGAAAAATCTCCAGTCA
CATCACAATGAAAACAACACTGCACAAAAGCAAGATTCTCTCTAAAAACTTAC
GGTTCCCCTCCACCAACACCTCCAGGATTGGAAGGCATGGTCAAAATT
CAGAACACTCCACCATTCTGCTTGCTGGCCCCCACCCCTTCCAGCAGGAC
CACCGTTGATTCCCTCCACCACCTATGGGGCCAGATTCTCCTGAGGATGAT
GAAGCGTTGGGGAGCATGTTAGCTTGGTATATGAGTGGTTATCACACTCG
GATATTACCTGGGGTTAAAACAAAGTCGAATGGAAGCAGCCCTAGAGAGAG
AAGCCTATCTAAAATAG

FIG. 35B

40/56

50

MAA AFE ASG ALA AVA TAM PAE HVA VQV PAP EPT PGP VIR LRT AQD LSS PRT

100

RTG DVL LAE PAD FES LLL SRP VLE GLR AAG FER PSP VQL KAI PLG RCG LDL

150

IVQ AKS GTG KTC VFS TIA LDS LVL ENL STQ ILI LAP TRE IAV QIH SVI TAI

200

GIK MEG LEC HVF IGG TPL SQD KTR LKK CHI AVG SPG RIK QLI ELD YLN PGS

250

IRL FIL DEA DKL LEE GSF QEQ INW IYS SLP ASK QML AVS ATY PEF LAN ALT

300

KYM RDP TFV RLN SSD PSL IGL KQY YKV VNS YPL AHK VFE EKT QHL QEL FSR

350

IPF NQA LVF SNL HSR AQH LAD ILS SKG FPA ECI SGN MNQ NQR LDA MAK LKH

400

FHC RVL IST DLT SRG IDA EKV NLV VNL DVP LDW ETY MHR IGR AGR FGT LGL

450

TVT YCC RGE EEN MMM RIA QKC NIN LLP LPD PIP SGL MEE CVD WDV EVK AAV

500

HTY GIA SVP NQP LKK QIQ KIE RTL QIQ KAH GDH MAS SRN NSV SGL SVK SKN

550

NTK QKL PVK SHS ECG IIE KAT SPK ELG CDR QSE EQM KNS VQT PVE NST NSQ

600

HQV KEA LPV SLP QIP CLS SFK IHQ PYT LTF AEL VED YEH YIK EGL EKP VEI

650

IRH YTG PGD QTV NPQ NGF VRN KVI EQK VPV LAS SSQ SGD SES DSD SYS SRT

700

SSQ SKG NKS YLE SSS DNQ LKD SES TPV DDR ISL EQP PNG TDT PNT EKY QES

750

FIG. 36A

41/56

*

PGI QMK TRL KEG ASQ RAK QSR RNL PRR SSF RLQ TEA QED DWY DCH REI RLS

800

*

FSD TYQ DYE EYW RAT YRA WQE YYA AAS HSY YWN AQR HPS WMA AYH MNT IYL

QEM MHS NQ

FIG. 36B

42/56

50
*

ATG GCG GCG GCA TTT GAA GCC TCG GGA GCC TTA GCA GCA GTG GCG ACT GCT

100
*

ATG CCG GCT GAG CAT GTG GCC GTG CAG GTC CCG GCC CCA GAG CCA ACA CCC

150
*

GGG CCT GTG AGG ATC CTG CGG ACC GCT CAG GAT CTC AGC AGC CCG CGG ACC

200
*

CGC ACG GGG GAT GTG CTG TTG GCG GAG CCG GCC GAC TTC GAG TCA CTG CTG

250
*

CTT TCG CGG CCG GTG CTG GAG GGG CTG CGG GCG GCC GGC TTC GAG AGG CCC

300
*

TCG CCG GTG CAG CTC AAG GCC ATC CCG TTG GGG CGC TGC GGG CTC GAT TTA

350
*

ATT GTT CAA GCT AAA TCT GGC ACC GGG AAA ACC TGT GTG TTC TCC ACC ATA

400
*

GCT TTG GAC TCT CTT GTT CTT GAA AAC TTA AGT ACC CAG ATT TTG ATC TTG

450
*

GCT CCT ACA AGA GAA ATT GCT ATA CAG ATA CAT TCT GTT ATT ACA GCC ATT

500
*

GGA ATA AAA ATG GAA GGC TTA GAG TGT CAT GTC TTT ATT GGA GGG ACC CCA

550
*

TTA TCA CAA GAC AAA ACC AGA CTT AAA AAG TGT CAT ATT GCT GTT GGA TCT

600
*

CCT GGC AGA ATT AAG CAA CTC ATA GAA CTT GAC TAC TTG AAC CCA GGC AGT

650
*

ATA CGC CTC TTT ATT CTT GAT GAA GCA GAT AAG CTT TTA GAA GAA GGC AGC

700
*

TTC CAG GAG CAA ATA AAT TGG ATT TAT TCT TCC TTG CCT GCC AGT AAA CAG

750

FIG. 36C

43/56

ATG CTG GCA GTA TCA GCT ACT TAT CCC GAA TTT TTG GCT AAT GCT TTG ACA
800 *
AAG TAC ATG AGA GAT CCC ACT TTT GTA AGA CTG AAT TCC AGT GAT CCA AGT
850 *
CTC ATA GGT TTG AAG CAG TAT TAC AAA GTT GTC AAT TCA TAC CCT TTG GCA
900 *
CAT AAG GTT TTT GAG GAA AAG ACT CAG CAT TTA CAG GAA CTG TTC AGC AGA
950 *
ATT CCA TTT AAT CAA GCT TTA GTC TTT TCT AAT TTG CAC AGC AGA GCA CAA
1000 *
CAT TTG GCT GAT ATC CTT TCT TCT AAA GGC TTT CCT GCT GAG TGC ATT TCA
1050 *
GGC AAT ATG AAT CAG AAT CAG CGT CTT GAT GCT ATG GCT AAA CTG AAG CAC
1100 *
TTT CAT TGC AGA GTC CTC ATT TCC ACA GAT TTG ACT TCT CGT GGG ATT GAT
1150 *
GCT GAG AAG GTG AAT CTG GTT GTA AAT CTG GAT GTA CCA TTG GAT TGG GAG
1200 *
ACA TAC ATG CAT CGC ATT GGG AGA GCT GGC CGT TTT GGT ACA TTG GGG CTG
1250 *
ACA GTG ACC TAC TGT TGC CGG GGA GAG GAA AAT ATG ATG AGA ATT
1300 *
GCC CAG AAA TGT AAT ATC AAC CTT CTC CCT TTA CCA GAT CCC ATT CCT TCT
1350 *
GGT CTG ATG GAA GAA TGT GTG GAT TGG GAT GTG GAA GTT AAA GCT GCT GTG
1400 *
CAT ACA TAT GGT ATA GCA AGT GTA CCT AAC CAA CCC TTA AAA AAG CAA ATT
1450 *

FIG. 36D

44/56

CAG AAA ATA GAG AGA ACC CTT CAA ATT CAG AAA GCT CAT GGT GAC CAC ATG
1500
*
GCT TCC TCT AGA AAT AAT TCT GTA TCT GGA CTA TCA GTC AAA TCA AAA AAT
1550
*
AAT ACC AAA CAA AAG CTT CCT GTG AAA AGC CAC TCA GAA TGT GGA ATC ATA
1600
*
GAA AAA GCA ACG TCA CCA AAA GAA CTG GGC TGT GAC AGG CAA TCC GAA GAG
1650
*
CAA ATG AAG AAT TCT GTT CAG ACT CCC GTT GAA AAC TCC ACC AAC AGT CAG
1700
*
CAC CAG GTC AAA GAA GCT TTA CCT GTG TCA CTC CCC CAG ATT CCT TGT CTG
1750
*
TCT TCC TTT AAA ATC CAT CAG CCA TAC ACG TTG ACT TTT GCT GAA TTG GTA
1800
*
GAG GAT TAT GAA CAT TAT ATTT AAA GAG GGG TTA GAG AAA CCT TG GAA ATC
1850
*
ATC AGG CAC TAC ACA GGC CCT GGG GAT CAG ACT GTG AAT CCT CAA AAT GGT
1900
*
TTT GTG AGA AAT AAA GTT ATT GAA CAG AAA GTC CCT GTG TTG GCA AGT AGT
1950
*
AGC CAA TCT GGA GAC TCT GAG AGT GAC AGT GAT TCT TAC AGC TCA AGA ACC
2000
*
TCT TCC CAG AGC AAA GGA AAT AAG TCA TAC TTG GAA AGC TCT TCT GAT AAT
2050
*
CAG CTG AAA GAC TCT GAA TCT ACG CCT GTG GAT GAT CGT ATT TCT TTG GAA
2100
*
CAA CCA CCA AAT GGA ACT GAC ACC CCC AAT CCA GAG AAA TAT CAA GAA TCA
2150
*
CCT GGA ATC CAG ATG AAG ACA AGA CTT AAA GAG GGG GCT AGC CAG AGA GCT

FIG. 36E

45/56

2200 *
AAG CAG AGC CGG AGA AAC CTA CCC AGG CGG TCT TCC TTC AGA TTG CAG ACT
2250 *
GAA GCC CAG GAA GAT GAT TGG TAT GAC TGT CAT AGG GAA ATA CGT CTG AGT
2300 *
TTT TCT GAT ACC TAT CAG GAT TAT GAG GAG TAC TGG AGA GCT TAC TAC AGG
2350 *
GCA TGG CAA GAA TAT TAT GCT GCC GCT TCT CAT TCA TAT TAT TGG AAT GCT
2400 *
CAG AGA CAT CCA AGT TGG ATG GCA GCT TAT CAC ATG AAT ACC ATT TAT CTA
2450 *
CAA GAA ATG ATG CAT AGT AAC CAG TGA TTA TAG GAT ATA CCT GAG ACC ATC
2500 * 2550 *
AGG AAC TGT CAA CAA ATG ATA CCT TTG GAT ATC CAT CCT CGA CTT ATA
2600 *
GTA CAG TGG TGT ATA GTG GCA TTT CTG ATA AAC TTG AAA AGA CTT GGA TCT
2650 *
TTC CAC TGG GAC ACA TCC ATT TTT CAG ATT GTT TTG ATT TAG GCC AGG TAT
2700 *
ATT ATC TTC ATT TTT AAG AGT TTC TTT AAG AAA CCT CAT CAG AGT GTT GAA
2750 *
AGC ATC AGT TTC TGG GAC CAT AGA TGC TGA CAG TTT CAG GGT GCC ATT GTC
2800 *
CAT AAG ATC TTC CCA AAC GAT ACA GTT GAA GCG AGG ACA TAT ACC TCC ACT
2850 *
TAC CTA GCT ACG ATA AAA GCA GTA GAC TTG GTT AGT AAA AAA AAA AAA AAA
AAA

46/56

1 taacgtccc taaactggca ctgtntcagg tcgcgcctt agtgtctat tagtgccct
61 gcgctgtgac ctagaatggg cgcatgcgcc gaggcggact ggctggttt aaaaacctgg
121 cgtgggtacc agcggagtcc qcagtggaaag agtgtatgg ccggtagagg

181 cttgcgactt gacggaaagg ttgcgtccct cggttacccctt cggacgcctt caggaatacc
241 tggcggtt ctagatcgaa qcggctcaat gtcggatgt tgfggtatgt caaattggacc
231 caaaggaaag cttcaatgtga attattctt tgcggatgc caaccggccc
361 ctgggtta ctgggtt aacaggcaaca ctggcactt aatggcacag ttcaactg
421 ttgcacagaat tggaaatcaatggaaatc acacagttt gatagttaatg
481 tgacatggcc aaaatctgaa gatggaaagg qctggaaagg attttgtctt ggtggaaaatg
541 tttgtgtt gggccgtt gggccggca caaatggaaat tcctggaaata gattatgtac
601 aaatggtt cttccctgtt ctttagatgtt tagcggaaat gaatcaggca acatgttaacta
661 gtgttggaa atatctgatgtt aattgggtt gggggatggat ctttactcca gaaatggaa
721 gatgggttfa tggttatgtt gcttgcgttgg aattttatggat gttacccctt gttacccct
781 tggatcgcca gcttgcggca gcttgcgttgg aattttatggat gttacccctt gttacccct
841 atggagggtt gatggatfaqcc tgatggccatggatgtt gctgtatctt caggataga agatattct
901 gatggatfaqcc tgatggccatggatgtt gctgtatctt caggataga agatattct
961 catggaggca ggcctaactctt gggaaaaca atgccaatttc aagtgcacat ttcaacacat
1021 cttcaacactt atgtgggg ttcaatctt aaccctgtgca attcagatgt atactcaggaa
1081 tatgggttga ttgaaatatca atggaaatcccaatc tttgatggat gaaattttac
1141 agttgttggaaatcaatggcggcc ttggatcatggaa atttgtatgtt gaaattttac
1201 atagggttctt ggtgttggat ttgggttggat attttactt gaaattttac
1261 atacataaa aatettatgg aaaaat

FIG. 37

1 gaattcgca cgaggggcc gatgcccagg ctgttaccgg ttgaggcctg
61 tgcattccc gaggactatg atccctcg acccctcg agfatctcg
121 gaggtccag atgaaagcag cacgttgcc tgcgttcg attgcacaga
181 aaggatgcga aaggaaacaga cctgttagtc atctctgtcg ggatgccc
241 ccaggctcc gctggcagca gcaacaaga gcaagtttgcatttgc
301 cacaaggaca ggggtcacgt gagggtctcg cctttggaca gcaatgttac
361 acagggtatg aaggaggatg aaggaggatg gaaaatgtc tgcttgggg
421 taaacagcga gagccaggat caggaaatgg attacattaa
481 ccaggctccc tggcattgt tagtcggatg agccaggcga cagtaacaagg
541 tacttgatg actggtttgc cttgcctgg cttggctgg ctggctgg
601 ttgggtttat gctttgttcat gatgtttatg gaaaccatg
661 tatfaggcgg tggcacgaa gatgctaca aatcaggatct
721 tgcactgaa actfattcat ctgtctggtt ggaggatct
781 gactgtgtg acccatcttgc atgatgttgc gggatctt
841 cccactctcc cggcaatatc catgctatcc actcccttc
901 gtgcaccaac tatfctgtt tggatgtcgg gaaactgtt
961 aaaaggccc ttggaggagg taggacaggc atggataatc
1021 ctcaaacactc caaggaggcc aanaagtgg acacngtct
1081 gccaatcccc gaatttggc accgaccat tgacgttca
1141 ntatantata atgtttccc ttcttggga atctgttgc
1201 nnnnngttnn ggntnnnnn ttttcnanc ntttccat
1261 aaaaattaa antggaa aaatattaa ntggctcnn
1321 taaaacccc cccctgtt taccctcc ttftgccc
1381 aaaattttt aatttttca aatccttc
1441 aantttt aantttt aantttt
1501 cnccctttn tnaaacnncc ccmgttintn
1561 tnaaaannnc ttnccnnntt nngggancc
1621 naaccnnntt tnnnnnnnaat ngtccnnat

FIG. 38

48/56

FIG. 39

FIG. 40

49/56

FIG. 41

FIG. 43

FIG. 44

FIG. 45

52/56

FIG. 46A

FIG. 46B

FIG. 47

53/56

FIG. 49

FIG. 48

FIG. 50A

FIG. 50B

FIG. 50C

FIG. 50D

54/56

FIG. 50E

FIG. 50F

FIG. 50G

FIG. 50H

FIG. 51A

FIG. 51B

FIG. 51C

FIG. 51D

56/56

FIG. 52A

FIG. 52B

FIG. 52C

FIG. 52D

