Evolution of LLMs and the Current State of the Art.

Hai Le
Research Engineer, NLP Lab @ Skoltech
Invited Lecturer, HSE

Who Am I?

- Hi! My name is Hai (no pun intended)
- Graduated from University of Maryland (USA) & Skoltech
- Currently a NLP researcher at Skoltech, and an incoming PhD student at Imperial College London
- Research Interest: human-centered language modelings:
 - o How can we better understand LLMs?
 - How can we make LLMs more accessible to researchers and engineers

Skoltech

Imperial College London

Agenda — Part 1

Part 1: Pre-Transformers & Attention: How the transformer architecture revolutionized NLP.

- Brief NLP Intro, Application, and Today's Focus
- "Prehistoric" Models: N-Gram based models
- RNNs (Recurrent Neural Networks) and LSTMs (Long Short Term Memories)
- Attention & Transformer

Agenda — Part 2

Part 2: Post Transformers: LLMs built on the transformer architecture; the past, present & future (state of the art)

- Transformer-based encoder models (Bert-like)
 - BERT, RoBERTa
- Transformer-based decoder models
 - GPT Family, LlaMA, Vicuna
- Transformer-based encoder-decoder models
 - o T5, BART

Part 1

Pre-Transformers & Attention: How the transformer architecture revolutionized NLP.

What is Natural Language Processing?

- type shiiiii
- We are currently communicating effortlessly in English.
- Not so "effortlessly" to replicate for computers.
 - How can computers "understand" the contents of natural language, including the contextual nuances of the language within them.
- NLP: ability to support and manipulate human language, enabling computers to understand, interpret, and generate human language in a valuable way.
 - Process large natural language datasets (ie text corpora or speech corpora) using ML approaches computer
- Example of NLP application: summarization, sentiment analysis, text classification, named entity recognition, **machine translation**

Language Modeling?

- Language modeling is the task of predicting what word comes next
 - The student opened their ____ (books | laptops | exams | minds |...)
- More formally: given a sequence of words $x_1, x_2, ..., x_t$, compute the **probability distribution** of the next word x_{t+1}
- A system that does it is called a language model (LM)
 - A probabilistic multi-class classifier: $P(x_{t+1}|x_1, x_2, ..., x_t)$
- Usages includes generating a translation (if the model is conditional on the input text)

Pre-historic Models: Statistical Language Modelings ~ N-Gram

Idea: Determine the probability of a sequence of words in a given language. The model is based on the assumption that the **probability of the next word** in a sequence **depends only on a fixed size window of the previous words**.

$$P(\boldsymbol{x}^{(t+1)}|\boldsymbol{x}^{(t)},\ldots,\boldsymbol{x}^{(1)}) = P(\boldsymbol{x}^{(t+1)}|\boldsymbol{x}^{(t)},\ldots,\boldsymbol{x}^{(t-n+2)})$$
 (assumption) prob of a n-gram
$$= P(\boldsymbol{x}^{(t+1)},\boldsymbol{x}^{(t)},\ldots,\boldsymbol{x}^{(t-n+2)})$$
 (definition of conditional prob)

- Question: How do we get these n-gram and (n-1)-gram probabilities?
- Answer: By counting them in some large corpus of text!

$$pprox rac{ ext{count}(oldsymbol{x}^{(t+1)},oldsymbol{x}^{(t)},\dots,oldsymbol{x}^{(t-n+2)})}{ ext{count}(oldsymbol{x}^{(t)},\dots,oldsymbol{x}^{(t-n+2)})}$$
 (statistical approximation)

Neural Language Models

Neural Net-based language > n-gram language models:

- neural language models don't need smoothing
- they can handle much longer history (longer sequence)
- they can generalize over contexts of similar words
 - word embeddings / distributed representations
- (+) a neural language model has much higher predictive accuracy than an n-gram language model!
- (-) neural net language models are strikingly **slower** to train than traditional language models

Machine Translation

What does one need for this "NLP Magic":

- Understand individual words
- Understand interaction between words (syntax)
- Translate the words (given the context)
- Compose a meaningful and fluent text

How does this list affect this "transformer architecture/attention mechanism"?

Recurrent Neural Network (RNN)

Types of RNNs and Its Downfall

- Vector to Sequence RNNs
 - Image description
- Sequence to Vector RNNs
 - Movie review classification
- Sequence to Sequence
 - Machine translation

Disadvantages:

- Very slow to train
- Vanishing gradients for long sequences
- Short term memory

What about Long Short Term Memories (LSTM)?

Longer memory & reference window

Longer sequences!

RNNs are slow, but LSTM are even **SLOWER**

What about Long Short Term Memories (LSTM)?

Not the best at capture true meaning/context of text

Everything is passed **sequentially**, and with **time steps**

Transformers — Problems Addressed

Transformers Architecture: An Overview

"Auto-regressive": Step by step generate output one by one, while being fed the previous generated output

Vaswani et al, 2017. Attention is all you need.

Positional encoder: vector that gives context based on the position of the word in the sentence

Hai is a Vogue **model**

Hai is a large language model

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Attention: How is the ith word relevant to the rest of the words in this sentence?

77

The	l0.71	0.04	0.07	$[0.18]^T$			
big	[0.01	0.84	0.02	$[0.13]^T$			
red	[0.09	0.05	0.62	$[0.24]^T$			
dog	[0.03	0.03	0.03	$0.91]^T$			
		Attention Vectors					

Attention vectors and the **encoder vectors** are fed into another Multi-Headed Attention block

Encapsulates the English-French Interactions

Feed forward layer
neurons = # words in French

Transformers Architecture: Encoder Deeper View

Q, K, V created from feeding input text into a fully connected layer. Q, K, V are split into n vectors N attention heads = Multi-head attention block

Attention weights

	the	big	red	dog
the	0.71	0.04	0.07	0.18
big	0.01	0.84	0.02	0.13
red	0.09	0.05	0.62	0.24
dog	0.03	0.03	0.03	0.91

Outputs = Attention weights x Value

Transformers Architecture: Decoder Deeper View

Masked Multi-Headed Attention?

Transformer Encoder & Decoder Summarized

How to map English words to French words?

Positional shifted right) Add & Norm Multi-Head Embedding Attention Softmax Outputs Masked Linear Feed Multi-Head ttention Inputs

Positional

What is English? What is context?

Part 2

Post Transformers: The Past, Present & Future of Transformer-based LLMs

Stacking Encoders?

Transformer Encoder

N times

.

Transformer Encoder

Bidirectional Encoder Representation of Transformer (BERT)

Problems to solve:

- Question Answering
- Sentiment Analysis
- Text Summarization
- Many more tasks

Language understanding

Solution:

- Pretraining this stacked transformer encoders architecture (BERT) to understand language
- **Finetune** BERT to learn a specific task

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.

BERT Pretraining Overview

Goal: "What is language?" "What is context?"

Masked Language Modeling (MLM)

Next Sentence Prediction (NSP)

BERT Finetuning Overview

BERT Pretraining Deeper View

BERT Pretraining Deeper View

BERT Finetuning Deeper View

Change output to display the answer's text

Change input to take in question & passage

BERT's Performance

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

MultiNLI

Premise: Hills and mountains are especially sanctified in Jainism.

Hypothesis: Jainism hates nature.

Label: Contradiction

CoLA

Sentence: The wagon rumbled down the road

Label: Acceptable

Sentence: The car honked down the road

Label: Unacceptable

Why is BERT so good?

- . Very large model & lots of compute!
- . Moderately large corpora (3.2B words),
- Deep bidirectional contextualized word representation (seeing all words when encoding each word in each layer)

GPT-2 **ULMfit GPT BERT** Jan 2018 June 2018 Oct 2018 Feb 2019 Training: **Training** Training Training ~2048 TPU v3 1 GPU day 240 GPU days 256 TPU days days according to ~320-560 a reddit thread **GPU** days

BERT's Relative!

- mBERT
- RoBERTa
- XLM-RoBERTa (XLM-R)

- Electra
- DeBERTa
- and many-many others!

BERT→**RoBERTa**

RoBERTa: Robustly optimized BERT approach.

After BERT, there have been many improvements on pretrained transformer encoder.

However, RoBERTa was the biggest leap

Subword embeddings

- Dynamic masking
- Change of pretrained word embeddings: 30k WordPiece →50k byte-level BPE vocabulary
- Removal of NSP (next sentence prediction)
- Careful selection of optimization hyperparameters for pretraining and finetuning
- Larger dataset & larger batch size

RoBERTa Masking

- BERT: data was duplicated 10 times and perturbed (masked, etc.) before training for 40 epochs
- RoBERTa: randomly perturbs inputs during training.
 - No need to duplicate large datasets
 - More diverse data when training more epochs
 - Similar or better results

Masking	SQuAD 2.0	MNLI-m	SST-2			
reference	76.3	84.3	92.8			
Our reimplementation:						
static	78.3	84.3	92.5			
dynamic	78.7	84.0	92.9			

Table 1: Comparison between static and dynamic masking for BERT_{BASE}. We report F1 for SQuAD and accuracy for MNLI-m and SST-2. Reported results are medians over 5 random initializations (seeds). Reference results are from Yang et al. (2019).

RoBERTa Performance

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	_	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Table 5: Results on GLUE. All results are based on a 24-layer architecture. BERT_{LARGE} and XLNet_{LARGE} results are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoBERTa results on the development set are a median over five runs. RoBERTa results on the test set are ensembles of *single-task* models. For RTE, STS and MRPC we finetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained from the GLUE leaderboard.

Transformer Encoder-Decoder LLM - T5

Text-to-Text Transfer Transformer (T5), trained on C4 (large common crawl dataset); MLM style

Figures from Raffel et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2019

T5 Performance

	GLUE	CoLA	SST-2	MRPC	MRPC	STS-B	STS-B
Model	Average	Matthew's	Accuracy	$\mathbf{F}1$	Accuracy	Pearson	Spearman
Previous best	89.4^{a}	69.2^{b}	97.1^{a}	93.6^b	91.5^b	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8

Model	$\begin{array}{c} {\rm SQuAD} \\ {\rm EM} \end{array}$	SQuAD F1	$\begin{array}{c} {\rm SuperGLUE} \\ {\rm Average} \end{array}$	BoolQ Accuracy	CB F1	CB Accuracy	COPA Accuracy
Previous best	90.1^{a}	95.5^{a}	84.6^{d}	87.1^{d}	90.5^{d}	95.2^d	90.6^{d}
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	90.3	94.4	92.0
T5-11B	91.26	96.22	88.9	91.2	93.9	96.8	94.8

Stacking Decoders?

Autoregressively generate the next word in the sequence; taking in the previous generate words from the decoder and the embeddings from the encoder

Generative Pretrained Transformer (GPT)

- GPT: Pretrained on general language data to answer "what is language?"
- Feed input sequences and predict their next token

Chat Generative Pretrained Transformer (ChatGPT)

Using the Pretrained GPT as a language model, we **finetune**:

- ChatGPT: Firstly, the model underwent supervised fine-tuning: human trainers' dialogues to emulate human vs. Al
 - Conversational use cases, hence the Chat in GPT
- Then, the model underwent reinforcement learning: assessing Al trainers' response in a dialogue
 - Process of achieving some goal using rewards

ChatGPT's Reinforcement Learning

	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	+10

- Agent
- Reward
- State
- Action
- Policy

GPT → LlaMA (Large Language Model Meta Al)

- Decoder only model, similar to the GPT family.
 - Stacked decoders

LIaMA > GPT?

- Open source.
- Public data.
- Limited GPU requirements for finetuning.
- Smaller architecture, more training data
 - 7 billions to 70 billions vs. 175 billions.
 - Comparable performance, sometimes even better!
- Fast inference!

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

LlaMA Performance

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	=
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-0	-
PaLM	540B	88.0	82.3	=	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
I I aMA	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
LLaMA	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

Transformers → Large Language Modelings

To conclude:

- Transformer architecture; given enough resource, can look back and forward without limitations: real contexts & meaning of language.
 - Unlike RNNs, LSTMs, GRUs!
- Incredibly fast, due to the ability to fully utilize parallelization
- With transformer, we give rise to LLMs as we know it today (BERT, RoBERTa, ELECTRA, GPT, LlaMA, Mistral)
 - Building brick by brick, what's next?

Concluding Thoughts

Email: hai.le@skol.tech

Telegram: @hlet0