SEQUENCE LISTING

The Scripps Research Institute Schultz, Peter Wang, Lei Zhang, Zhiwen

<120> GLYCOPROTEIN SYNTHESIS

<130> 54A-000610US

<140> US 10/686,944

<141> 2003-10-15

<160> 10

<170> PatentIn version 3.1

<210> 1

<211> 306

<212> PRT

<213> Artificial

<220>

<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
RNA synthetase

<400> 1

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser 1 5 10 15

Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Leu 20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln 35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile 50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp 65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met 85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Glu Phe Gln Leu Asp Lys
100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys 115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro 130 135 Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Gly Cys His 155 150 Tyr Arg Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile 170 His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His 185 Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser 200 Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala 220 Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro 230 Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys 250 Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu 270 Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys 280 Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys 295 300 Arg Leu 305 <210> <211> 306 <212> PRT <213> Artificial <220> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t <223> RNA synthetase <400> 2

Met 1	Asp	Glu	Phe	GIu 5	Met	Ile	Lys	Arg	Asn 10	Thr	Ser	GIu	lle	11e 15	Ser
Glu	Glu	Glu	Leu 20	Arg	Glu	Val	Leu	Lys 25	Lys	Asp	Glu	Lys	Ser 30	Ala	Leu
Ile	Gly	Phe 35	Glu	Pro	Ser	Gly	Lys 40	Ile	His	Leu	Gly	His 45	Tyr	Leu	Gln
Ile	Lys 50	Lys	Met	Ile	Asp	Leu 55	Gln	Asn	Ala	Gly	Phe 60	Asp	Ile	Ile	Ile
Leu 65	Leu	Ala	Asp	Leu	His 70	Ala	Tyr	Leu	Asn	Gln 75	Lys	Gly	Glu	Leu	Asp 80
Glu	Ile	Arg	Lys	Ile 85	Gly	Asp	Tyr	Asn	Lys 90	Lys	Val	Phe	Glu	Ala 95	Met
Gly	Leu	Lys	Ala 100	Lys	Tyr	Val	Tyr	Gly 105	Ser	Glu	Phe	Gln	Leu 110	Asp	Lys
Asp	Tyr	Thr 115	Leu	Asn	Val	Tyr	Arg 120	Leu	Ala	Leu	Lys	Thr 125	Thr	Leu	Lys
Arg	Ala 130	Arg	Arg	Ser	Met	Glu 135	Leu	Ile	Ala	Arg	Glu 140	Asp	Glu	Asn	Pro
Lys 145	Val	Ala	Glu	Val	Ile 150	Tyr	Pro	Ile	Met	Gln 155	Val	Asn	Gly	Thr	His 160
Tyr	Arg	Gly	Val	Asp 165	Val	Ala	Val	Gly	Gly 170	Met	Glu	Gln	Arg	Lys 175	Ile
His	Met	Leu	Ala 180	Arg	Glu	Leu	Leu	Pro 185	Lys	Lys	Val	Val	Cys 190	Ile	His
Asn	Pro	Val 195	Leu	Thr	Gly	Leu	Asp 200	Gly	Glu	Gly	Lys	Met 205	Ser	Ser	Ser
Lys	Gly 210	Asn	Phe	Ile	Ala	Val 215	Asp	Asp	Ser	Pro	Glu 220	Glu	Ile	Arg	Ala
Lys 225	Ile	Lys	Lys	Ala	Tyr 230	Cys	Pro	Ala	Gly	Val 235	Val	Glu	Gly	Asn	Pro 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys 245 250 Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu 260 265 Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys 275 280 Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys 295 300 Arg Leu 305 <210> 3 <211> 306 <212> PRT <213> Artificial <220> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t <223> RNA synthetase <400> 3 Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Ala 25 Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln 40 Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile 50 55 Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp 70 65 Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met 90 85

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys Page 4

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Glu Phe Gln Leu Asp Lys

105

100

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro 130 Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Gly Gly His 150 155 160

Tyr Leu Gly Val Asp Val Ile Val Gly Gly Met Glu Gln Arg Lys Ile 165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His
180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser 195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala 210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro 225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys 245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu 260 265 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys 275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys 290 295 300

Arg Leu 305

<210> 4

<211> 306

<212> PRT

<213> Artificial

<220>

<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t RNA synthetase

<400> 4

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser 1 10 15

Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Tyr
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln
35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile 50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp 65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met 85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Pro Phe Gln Leu Asp Lys 100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys 115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro 130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Cys Tyr His 145 150 155 160

Tyr Arg Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile 165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His 180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser 195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala 210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro 225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys 245 250 Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu 260 265 Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys 280 275 Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys 290 295 Arg Leu 305 <210> 5 <211> 306 <212> PRT <213> Artificial <220> <223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t RNA synthetase <400> 5 Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser 10 Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Gly 20 25 Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln 40 Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile 55 50 Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp 70 80 65 Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met 85 90 Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Gly Phe Gln Leu Asp Lys 100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys 115 120 Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro 135 Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Cys Met His 150 155 Tyr His Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile 170 His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His 185 Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser 200 Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala 220 Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu 270 Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys 275 280 Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys 295 290 Arg Leu 305 <210> 6 <211> 306 <212> PRT <213> Artificial <220>

<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t

Page 8

RNA synthetase

<220>

<221> MISC_FEATURE

<222> (107)..(107)

<223> X can be either C or S

<400> 6

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser 1 5 10 15

Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Tyr
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln 35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile
50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp 65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met 85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Xaa Phe Gln Leu Asp Lys 100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys 115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro 130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn His Asp His 145 150 155 160

Tyr Met Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile 165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser 195 200 205

Lys	Gly 210	Asn	Phe	Ile	Ala	Val 215	Asp	Asp	Ser	Pro	Glu 220	Glu	Ile	Arg	Ala	
Lys 225	Ile	Lys	Lys	Ala	Tyr 230	Суз	Pro	Ala	Gly	Val 235	Val	Glu	Gly	Asn	Pro 240	
Ile	Met	Glu	Ile	Ala 245	Lys	Tyr	Phe	Leu	Glu 250	Tyr	Pro	Leu	Thr	Ile 255	Lys	
Arg	Pro	Glu	Lys 260	Phe	Gly	Gly	Asp	Leu 265	Thr	Val	Asn	Ser	Tyr 270	Glu	Glu	
Leu	Glu	Ser 275	Leu	Phe	Lys	Asn	Lys 280	Glu	Leu	His	Pro	Met 285	Asp	Leu	Lys	
Asn	Ala 290	Val	Ala	Glu	Glu	Leu 295	Ile	Lys	Ile	Leu	Glu 300	Pro	Ile	Arg	Lys	
Arg 305	Leu															
<210 <210 <210 <210	1> ' 2> 1	7 77 RNA Arti:	ficia	al												
<22 <22		mutaı	nt t <u>i</u>	yros	ine a	ambei	r suj	ppre	ssor	tRN	Ą					
<40		7 uag 1	uuca	gcag	gg ca	agaad	egge	g ga	cucua	aaau	ccg	caug	gcg (cuggi	uucaaa	60
		cgc (77
<21: <21: <21: <21:	1>	8 921 DNA Arti:	ficia	al												
<22 <22	3> 1	muta: RNA :		-		e de:	rive	d fr	om M	etha	noco	ccus	janı	nasc)	hii ty:	rosyl-t
<40		8 aat	ttaa	aato	at aa	aaga	gaaa	c ac	atct	gaaa	tta	tcag	cga (ggaa	gagtta	60
_	_														ggtaaa	120
2+2	aa++	+ > ~	aaa a	++ =+	at a	~~~	+	2 22	anta	atta	2++	taca	222	tact	aaattt	180

gatataatta	tattgttggc	tgatttacac	gcctatttaa	accagaaagg	agagttggat	240
gagattagaa	aaataggaga	ttataacaaa	aaagtttttg	aagcaatggg	gttaaaggca	300
aaatatgttt	atggaagtcc	attccagctt	gataaggatt	atacactgaa	tgtctataga	360
ttggctttaa	aaactacctt	aaaaagagca	agaaggagta	tggaacttat	agcaagagag	420
gatgaaaatc	caaaggttgc	tgaagttatc	tatccaataa	tgcaggttaa	ttgctatcat	480
tataggggcg	ttgatgttgc	agttggaggg	atggagcaga	gaaaaataca	catgttagca	540
agggagcttt	taccaaaaaa	ggttgtttgt	attcacaacc	ctgtcttaac	gggtttggat	600
ggagaaggaa	agatgagttc	ttcaaaaggg	aattttatag	ctgttgatga	ctctccagaa	660
gagattaggg	ctaagataaa	gaaagcatac	tgcccagctg	gagttgttga	aggaaatcca	720
ataatggaga	tagctaaata	cttccttgaa	tatcctttaa	ccataaaaag	gccagaaaaa	780
tttggtggag	atttgacagt	taatagctat	gaggagttag	agagtttatt	taaaaataag	840
gaattgcatc	caatggattt	aaaaaatgct	gtagctgaag	aacttataaa	gattttagag	900
ccaattagaa	agagattata	a				921

<220>

<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t RNA synthetase

<400> 9						
	ttgaaatgat	aaagagaaac	acatctgaaa	ttatcagcga	ggaagagtta	60
agagaggttt	taaaaaaaga	tgaaaaatct	gctggaatag	gttttgaacc	aagtggtaaa	120
atacatttag	ggcattatct	ccaaataaaa	aagatgattg	atttacaaaa	tgctggattt	180
gatataatta	tattgttggc	tgatttacac	gcctatttaa	accagaaagg	agagttggat	240
gagattagaa	aaataggaga	ttataacaaa	aaagtttttg	aagcaatggg	gttaaaggca	300
aaatatgttt	atggaagtgg	attccagctt	gataaggatt	atacactgaa	tgtctataga	360
ttggctttaa	aaactacctt	aaaaagagca	agaaggagta	tggaacttat	agcaagagag	420
gatgaaaatc	caaaggttgc	tgaagttatc	tatccaataa	tgcaggttaa	ttgtatgcat	480
tatcacggcg	ttgatgttgc	agttggaggg	atggagcaga	gaaaaataca	catgttagca	540
agggagcttt	taccaaaaaa	ggttgtttgt	attcacaacc	ctgtcttaac	gggtttggat	600
ggagaaggaa	agatgagttc	ttcaaaaggg	aattttatag	ctgttgatga	ctctccagaa	660
gagattaggg	ctaagataaa	gaaagcatac	tgcccagctg		aggaaatcca	720

<210> 9

<211> 921 <212> DNA

<213> Artificial

ataatggag.	a tagctaaata	cttccttgaa	tatcctttaa	ccataaaaag	gccagaaaaa	780
tttggtgga	g atttgacagt	taatagctat	gaggagttag	agagtttatt	taaaaataag	840
gaattgcat	c caatggattt	aaaaaatgct	gtagctgaag	aacttataaa	gattttagag	900
ccaattaga	a agagattata	a				921
<210> 10 <211> 92 <212> DN <213> Ar						
	tant synthet A synthetase				nnaschii tyr	cosyl-t
<400> 10	t ttgaaatgat	neeneneee	acatctgaaa	ttatcagcga	ggaagagtta	60
	t taaaaaaaga					120
atacattta	g ggcattatct	ccaaataaaa	aagatgattg	atttacaaaa	tgctggattt	180
gatataatt	a tattgttggc	tgatttacac	gcctatttaa	accagaaagg	agagttggat	240
gagattaga	a aaataggaga	ttataacaaa	aaagtttttg	aagcaatggg	gttaaaggca	300
aaatatgtt	t atggaagttc	attccagctt	gataaggatt	atacactgaa	tgtctataga	360
ttggcttta	a aaactacctt	aaaaagagca	agaaggagta	tggaacttat	agcaagagag	420
gatgaaaat	c caaaggttgc	tgaagttatc	tatccaataa	tgcaggttaa	tcatgatcat	480
tatatgggc	g ttgatgttgc	agttggaggg	atggagcaga	gaaaaataca	catgttagca	540
agggagctt	t taccaaaaaa	ggttgtttgt	attcacaacc	ctgtcttaac	gggtttggat	600
ggagaagga	a agatgagttc	ttcaaaaggg	aattttatag	ctgttgatga	ctctccagaa	660
gagattagg	g ctaagataaa	gaaagcatac	tgcccagctg	gagttgttga	aggaaatcca	720
ataatggag	a tagctaaata	cttccttgaa	tatcctttaa	ccataaaaag	gccagaaaaa	780
tttggtgga	g atttgacagt	taatagctat	gaggagttag	agagtttatt	taaaaataag	840
gaattgcat	c caatggattt	aaaaaatgct	gtagctgaag	aacttataaa	gattttagag	900
ccaattaga	a agagattata	. a				921

ccaattagaa agagattata a