Valid Arrangement of Pairs

You are given a **0-indexed** 2D integer array pairs where pairs[i] = [start_i, end_i]. An arrangement of pairs is **valid** if for every index i where $1 \le i \le pairs$.length, we have end_{i-1} == start_i.

Return any valid arrangement of pairs.

Note: The inputs will be generated such that there exists a valid arrangement of pairs.

Example 1:

Input: pairs = [[5,1],[4,5],[11,9],[9,4]]

Output: [[11,9],[9,4],[4,5],[5,1]]

Explanation:

This is a valid arrangement since end_{i-1} always equals start_i.

 $end_0 = 9 == 9 = start_1$

 $end_1 = 4 == 4 = start_2$

 $end_2 = 5 == 5 = start_3$

Example 2:

Input: pairs = [[1,3],[3,2],[2,1]]

Output: [[1,3],[3,2],[2,1]]

Explanation:

This is a valid arrangement since end_{i-1} always equals start_i.

 $end_0 = 3 == 3 = start_1$

 $end_1 = 2 == 2 = start_2$

The arrangements [[2,1],[1,3],[3,2]] and [[3,2],[2,1],[1,3]] are also valid.

Example 3:

Input: pairs = [[1,2],[1,3],[2,1]]

Output: [[1,2],[2,1],[1,3]]

Explanation:

This is a valid arrangement since end_{i-1} always equals $start_i$.

$$end_0 = 2 == 2 = start_1$$

$$end_1 = 1 == 1 = start_2$$

Constraints:

- 1 <= pairs.length <= 10⁵
- pairs[i].length == 2
- $0 \le \text{start}_i$, end_i $\le 10^9$
- start_i!= end_i
- No two pairs are exactly the same.
- There **exists** a valid arrangement of pairs.