# Homework 3, STAT 5205

Zongyi Liu

Thu, Mar 13, 2025

#### Question 1 1

Let  $X \in \mathbb{R}^{n \times p}$ ,  $y \in \mathbb{R}^n$  be the covariates/regressors and response. Let  $\hat{y}$  be the fitted values of least square estimation, that is  $\hat{y} = X\hat{\beta}$ . Please prove that

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

where  $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ . **Answer** 

#### Prove in Simple Algebra 1.1

This is actually called the ANOVA Analysis, that is, Total Sum of Squares=Regression Sum of Squares+Sum of Squared Errors. Firstly we need to square both sides and summing over i:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} [(y_i - \hat{y}_i) + (\hat{y}_i - \bar{y})]^2$$

Expanding the square, we can get  $\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + 2\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y})$ Then we need to prove the cross term is 0. For the last term,

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}),$$

is zero because in least squares regression, the residuals  $e_i = y_i - \hat{y}_i$  are orthogonal to the fitted values  $\hat{y}_i$ . That is,

Since the cross-term can be canceled, we obtain the desired identity:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2.$$

#### 1.2 Prove in Matrices

The residual vector  $\hat{e}$  is  $y - \hat{y} = y - X\hat{\beta} = y - X(X^TX)^{-1}X^Ty$ , so the residual sum of squares  $\hat{e}^T\hat{e}$  is  $y^Ty - \hat{y}$  $y^T X (X^T X)^{-1} X^T y$ 

We can rewrite the Total Sum of Squares as

$$TSS = (y - \bar{y})^T (y - \bar{y}) = y^T y - 2y^T \bar{y} + \bar{y}^T \bar{y}$$

The Sum of Squared Errors is  $ESS = (\hat{y} - \bar{y})^T (\hat{y} - \bar{y}) = \hat{y}^T \hat{y} - 2\hat{y}^T \bar{y} + \bar{y}^T \bar{y}$ Also.

$$\hat{y}^{T}\hat{y} = y^{T}X(X^{T}X)^{-1}X^{T}X(X^{T}X)^{-1}X^{T}y = y^{T}X(X^{T}X)^{-1}X^{T}y = \hat{y}^{T}y$$

Thus we can have:

$$\begin{split} TSS &= \|y - \bar{y}\|^2 = \|y - \hat{y} + \hat{y} - \bar{y}\|^2 \\ &= \|y - \hat{y}\|^2 + \|\hat{y} - \bar{y}\|^2 + 2\langle y - \hat{y}, \hat{y} - \bar{y}\rangle \\ &= RSS + ESS + 2y^T \hat{y} - 2\hat{y}^T \hat{y} - 2y^T \bar{y} + 2\hat{y}^T \bar{y} \\ &= RSS + ESS - 2y^T \bar{y} + 2\hat{y}^T \bar{y} \end{split}$$

which again gives the result that TSS = ESS + RSS:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

since 
$$(y - \hat{y})^T \bar{y} = 0$$
.

#### 2 Question 2

We consider a simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, iid for  $i = 1, \dots, n$ .

Given the sample data points generated from the above model,

$$(x_1, y_1) = (1, 3.9)$$

$$(x_2, y_2) = (2, 6.05)$$

$$(x_3, y_3) = (3, 8.84)$$

$$(x_4, y_4) = (4, 12.36)$$

$$(x_5, y_5) = (5, 14.16)$$

$$(x_6, y_6) = (6, 17.40)$$

$$(x_7, y_7) = (7, 21.12)$$

$$(x_8, y_8) = (8, 25.21)$$

$$(x_9, y_9) = (9, 27.97)$$

$$(x_{10}, y_{10}) = (10, 29.67)$$

complete the following two tasks:

#### 2.1Part a

construct a 95% confidence for  $\beta_1$ . You need to compute  $\hat{\beta}_1$ , SSX, SSE, and briefly explain why

$$\mathbb{P}\{\beta_1 \in \text{your confidence interval}\} = 95\%.$$

Answer

Compute  $\beta_1$  and  $\beta_0$  First we need to compute the Least Squares Estimate of  $\beta_1$  to get  $\hat{\beta}_1$ ; the simple linear regression model is  $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ , and the estimate of  $\beta_1$  is given by  $\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$ .

We have  $\bar{x} = \frac{1+2+3+...+10}{10} = 5.5$ , and  $\bar{y} = \frac{3.9+6.05+8.84+12.36+14.16+17.40+21.12+25.21+27.97+29.67}{10} = 16.668$ . Thus  $\sum (x_i - \bar{x})(y_i - \bar{y}) = \sum (x_i - 5.5)(y_i - 16.668)$ 

For  $\sum (x_i - \bar{x})(y_i - \bar{y}) = \sum (x_i - 5.5)(y_i - 16.668)$ , we compute separately:

$$(1-5.5)(3.9-16.668) = 57.456$$
  
 $(2-5.5)(6.05-16.668) = 37.163$   
 $(3-5.5)(8.84-16.668) = 19.57$   
 $(4-5.5)(12.36-16.668) = 6.462$   
 $(5-5.5)(14.16-16.668) = 1.254$   
 $(6-5.5)(17.4-16.668) = 0.366$   
 $(7-5.5)(21.12-16.668) = 6.678$   
 $(8-5.5)(25.21-16.668) = 21.355$   
 $(9-5.5)(27.97-16.668) = 39.357$   
 $(10-5.5)(29.67-16.668) = 58.509$ 

57.456 + 37.163 + 19.57 + 6.462 + 1.254 + 0.366 + 6.678 + 21.355 + 39.557 + 58.509 = 248.37

$$SSX = 4.5^{2} \times 2 + 3.5^{2} \times 2 + 2.5^{2} \times 2 + 1.5^{2} \times 2 + 0.5^{2} \times 2 = 82.5$$

Thus 
$$\hat{\beta}_1 = \frac{248.37}{82.5} = 3.0105$$
 and  $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 16.668 - (3.0105 \times 5.5) = 0.11025$ 

Then we need to compute the Sum of Squared Errors (SSE), as the residuals are given by:

$$\epsilon_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

We compute the fitted values  $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$  $\hat{y} = [0.1100 + 3.0105 \times x_i] = [3.1205, 6.1310, 9.1415, 12.1520, 15.1625, 18.1730, 21.1835, 24.1940, 27.2045, 30.2150]$  Compute residuals:

$$\epsilon_i = y_i - \hat{y}_i = [3.9 - 3.1205, 6.05 - 6.1310, 8.84 - 9.1415, ..., 29.67 - 30.2150]$$

$$= [0.7795, -0.0810, -0.3015, 0.2080, -1.0025, -0.7730, -0.0635, 1.0160, 0.7655, -0.5450]$$

Compute SSE:

$$SSE = \sum \epsilon_i^2 = 4.2702$$

Compute Standard Error of  $\hat{\beta}_1$ 

$$\sigma_{\hat{\beta}_1}^2 = \frac{SSE}{n-2} \times \frac{1}{SSX}$$

where n = 10, so degrees of freedom = n - 2 = 8.

$$\sigma_{\hat{\beta}_1}^2 = \frac{4.2702}{8} \times \frac{1}{82.5} = 0.002578$$

$$SE(\hat{\beta}_1) = \sqrt{0.002578} = 0.0508$$

#### Get the 95% Confidence Interval

The confidence interval for  $\beta_1$  is given by:

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot \text{SE}(\hat{\beta}_1)$$

For  $\alpha = 0.05$ , the t-critical value for 8 degrees of freedom is:

$$t_{0.025,8} = 2.306$$

Compute the margin of error:

$$ME = 2.306 \times 0.0508 = 0.1855$$

Confidence interval:

$$(3.0105 - 0.1855, 3.0105 + 0.1855) = (2.8251, 3.1960)$$

This means that we are 95% confident that the true slope  $\beta_1$  lies within the interval (2.8251, 3.1960). That is:

$$\mathbb{P}\left\{\beta_1 \in (2.8251, 3.1960)\right\} = 95\%$$

## 2.2 Part b

Hypothesis testing for

$$H_0: \beta_1 = 0 \quad H_1: \beta_1 \neq 0$$

You need to construct your test statistic (t statistic), compute its value based on the sample points, and then decide to whether accept or reject the null hypothesis.

#### Answer

We conduct a two-tailed t-test to determine if  $\beta_1$  is significantly different from zero. Firstly we need to get the t-statistic for testing  $H_0: \beta_1 = 0$ , which is given as  $t = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$ , and we substitute the values  $t = \frac{3.0105}{0.0804} = 37.43$ 

Then we need to compute the p-value for a two-tailed test:

$$p = 2 \times (1 - \text{CDF of t-distribution at } |t|)$$

Using a t-distribution with n-2=8 degrees of freedom:

$$p = 2.85 \times 10^{-10}$$

As we learned previously, the significance level is  $\alpha = 0.05$ , if  $p < \alpha$ , we reject  $H_0$ ; otherwise, we fail to reject  $H_0$ . Since  $p = 2.85 \times 10^{-10}$  is much smaller than 0.05, we reject the null hypothesis.

#### 2.3 Do it in R.

I also double checked it in R

```
x < -c(1,2,3,4,5,6,7,8,9,10)
        y < c(3.9,6.05,8.84,12.36,14.16,17.40,21.12,25.21,27.97,29.67)
2
3
        model <- lm(y ~x)
4
5
        beta_0_hat <- coef(model)[1] # Intercept</pre>
6
        beta_1_hat <- coef(model)[2] # Slope</pre>
        # Compute SSX (Sum of Squares of x)
9
         x_mean <- mean(x)</pre>
10
        SSX \leftarrow sum((x - x_mean)^2)
11
12
        # Compute residuals and SSE
13
        residuals <- model$residuals
14
        SSE <- sum(residuals^2)</pre>
15
16
        # Compute standard error of beta_1_hat
17
        n <- length(x)
18
         sigma_squared_hat <- SSE / (n - 2)
19
         se_beta_1_hat <- sqrt(sigma_squared_hat / SSX)</pre>
20
21
         # Compute 95% confidence interval for beta_1
22
         alpha <- 0.05
23
         t_{crit} \leftarrow qt(1 - alpha/2, df=n-2) # t-critical value
24
25
        CI_lower <- beta_1_hat - t_crit * se_beta_1_hat
        CI_upper <- beta_1_hat + t_crit * se_beta_1_hat
28
         cat("Estimate_of_beta1:", beta_1_hat, "\n")
29
         cat("SSX:", SSX, "\n")
30
        cat("SSE:", SSE, "\n")
31
        cat("95%_Confidence_Interval_for_beta1:_(", CI_lower, ",", CI_upper, ")\n")
32
33
        plot(x, y, main="Simple_Linear_Regression", xlab="x", ylab="y", pch=19, col="blue")
34
         abline(model, col="red", lwd=2) # Add regression line
35
         legend("topleft", legend=c("Observed_Data", "Regression_Line"),
36
         col=c("blue", "red"), pch=c(19, NA), lwd=c(NA, 2))
37
38
         summary (model)
39
```

And the printout is:

Estimate of beta1: 3.010545

SSX: 82.5

SSE: 4.270185

95% Confidence Interval for beta1: ( 2.825059 , 3.196032 )

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max -1.00273 -0.48450 -0.07245 0.62577 1.01564

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.11000 0.49909 0.22 0.831 x 3.01055 0.08044 37.43 2.85e-10 \*\*\*

---

Signif. codes: 0 '\*\*\*, 0.001 '\*\*, 0.01 '\*, 0.05 '., 0.1 ', 1

Residual standard error: 0.7306 on 8 degrees of freedom

Multiple R-squared: 0.9943, Adjusted R-squared: 0.9936

F-statistic: 1401 on 1 and 8 DF, p-value: 2.849e-10

# **Simple Linear Regression**



## 3 Question 3

Let  $M \in \mathbb{R}^{d \times d}$  be a real symmetric matrix (that is, all its elements are real numbers and  $M_{ij} = M_{ji}$  for  $i, j = 1, \dots, d$ ).

## 3.1 Part a

Read and understand "Spectral theorem" and "Dyadic decomposition" on this document.

### Summary of the Reading

### Spectral Theorem

Let  $A \in \mathbb{R}^{n \times n}$  be real and symmetric. Then:

- 1. The eigenvalues of A are real.
- 2. A is diagonalizable.
- 3. There is an orthonormal basis of  $\mathbb{R}^n$  consisting of eigenvectors of A.

In short, A may be orthonormally diagonalized:  $A = V\Lambda V^{\top}$  where  $V \in \mathbb{R}^{n \times n}$  is an orthonormal matrix of eigenvectors of A, and  $\Lambda \in \mathbb{R}^{n \times n}$  is a real diagonal matrix of eigenvalues.

### **Dyadic Decomposition**

Dyadic decomposition is a concept from linear algebra that involves representing a matrix as a sum of dyadic products. Dyadic products, also known as outer products, are matrices obtained from two vectors. Specifically, if  $\mathbf{u}$  and  $\vec{v}$  are vectors, their dyadic product is a matrix  $\mathbf{u}\vec{v}^T$ , where  $\vec{v}^T$  denotes the transpose of  $\vec{v}$ . 3.1 Dyadic Decomposition for Symmetric Matrices

Any symmetric matrix  $A \in \mathbb{R}^{n \times n}$  can be represented as a sum of outer products of vectors, which can be considered a form of dyadic decomposition. This representation is closely related to the spectral decomposition of A. For a symmetric matrix, the dyadic decomposition can be expressed in terms of its eigenvectors and eigenvalues as follows:

$$A = \sum_{i=1}^{r} \lambda_i u_i u_i^T$$

where  $u_i$  are the eigenvectors of  $A, \lambda_i$  are the corresponding eigenvalues, and r is the rank of A. Each term  $u_i u_i^T$  represents a dyadic product, contributing to the overall structure of A.

#### 3.2 Part b

Suppose all the eigenvalues of M are non-negative, show that all the eigenvalues of  $M + \sigma^2 I_{d \times d}$  are larger or equal to  $\sigma^2$ , where  $\sigma > 0$  and  $I_{d \times d}$  is the  $d \times d$  identity matrix.

#### Answer

We can apply the definition of spectrum theorem as learned before, since M is a symmetric matrix (which is a necessary condition for applying the theorem), it can be decomposed as:

$$M = Q\Lambda Q^T$$

where Q is an orthogonal matrix (i.e.,  $Q^T = Q^{-1}$ ), and  $\Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_d)$  is a diagonal matrix consisting of the eigenvalues  $\lambda_i$  of M, all of which are non-negative by assumption.

For eigenvalues of  $M + \sigma^2 I_{d \times d}$ , we can rewrite the combination as:

$$\boldsymbol{M} + \sigma^2 \boldsymbol{I}_{d \times d} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T + \sigma^2 \boldsymbol{I}_{d \times d}.$$

Using the property that the identity matrix commutes with any matrix,

$$M + \sigma^2 I_{d \times d} = Q \Lambda Q^T + Q (\sigma^2 I_{d \times d}) Q^T.$$

Since  $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}_{d\times d}$ , this simplifies to:

$$M + \sigma^2 I_{d \times d} = Q(\Lambda + \sigma^2 I_{d \times d})Q^T.$$

Since  $\mathbf{\Lambda} + \sigma^2 \mathbf{I}_{d \times d}$  is a diagonal matrix with entries  $\lambda_i + \sigma^2$ , its eigenvalues are simply  $\lambda_i + \sigma^2$ , for  $i = 1, 2, \dots, d$ .

Since we assumed that  $\lambda_i \geq 0$  for all i, it follows that  $\lambda_i + \sigma^2 \geq \sigma^2$ . Thus, every eigenvalue of  $M + \sigma^2 I_{d \times d}$  is at least  $\sigma^2$ .  $\square$