M10

Use superposition (or set up as a set of urknowns)

Ha SD 2 ARD

$$5F_{x} = 0$$
: $H_{A} + H_{8} = 0$

Bor frices: Melhod of jouts

$$Cos O = \sqrt{s}$$

$$Sii O = \sqrt{s}$$

$$\begin{aligned}
& = 0 \\
& = 0 \\
& = 0
\end{aligned}$$

$$\begin{aligned}
& = 0 \\
& = 0
\end{aligned}$$

$$\begin{aligned}
& = 0 \\
& = 0
\end{aligned}$$

$$\sum_{x=0}^{\infty} F_{x} = 0 : -F_{AC} - F_{BC} \cos \Theta = 0$$

$$\sum_{F_{X}=0}^{7} = 0: -F_{AC} - F_{BC} \cos 0 = 0$$

$$F_{AC} = R_{DM}S. \frac{2}{MS} = 2R_{D} = 0$$

2R_D/AE

$$R_{D}.2 + F_{BC}Sin O = 0$$

$$F_{BC} = -\frac{1}{4}R_{D}\sqrt{3} = -\sqrt{5}R_{D}$$

$$Ched$$

Bar	Langth	Free 120	5/RD/AE
AB		ð	0
AC	2	2	4
BC	5	- 5	 S
AD	NS		0
CD			

Don displacement diagram

Dobisplaces upward
$$\triangle Dy = 18.5 R_D$$

At

Since Dis von a roller $\delta(M9) + \delta(M10) = 0$

$$\frac{92.5 \times 10^{3}}{600} + \frac{18.5 R_{D}}{600} = 0 \qquad R_{D} = -\frac{92.5 \times 10^{3}}{18.5} = -5 \text{ kN} \in$$

Huisouhl deflectron:

$$\Delta D_{x}^{Mq} + \Delta D_{x}^{M10} = \frac{75 \times 10^{3}}{AE} + \frac{(9.5 \times -5) \times 10^{3}}{AE} = \frac{786 \times 10^{-6}}{AE}$$

Reachus

$$R_{A}H_{B} = H_{B}^{Mq} + H_{B}^{MlO} = +10 + 2(-5) = 0 = 0$$
 $H_{A} = H_{A}^{Mq} + H_{A}^{MlO} = -20 + 2(-2(-5)) = -10 \text{ kW} = 0$
 $V_{B} = V_{B}^{Mq} + V_{B}^{MlO} = 0 - (-5) = +5 \text{ kN} = 0$

