Linear Programming

Optimization Techniques (ENGG*6140)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Winter 2023 Linear Programming

Linear programming

A linear programming problem is of the form:

minimize linear function in x

subject to $\,$ affine inequality constraints in x,

affine equality constraints in x.

Standard linear programming

A **standard linear programming** problem is of the form:

Maximization:

$$\begin{array}{ll} \underset{\boldsymbol{x}=[x_1,\ldots,x_n]^\top}{\mathsf{maximize}} & \boldsymbol{\alpha}^\top \boldsymbol{x} \\ \mathsf{subject to} & \textit{\textbf{Gx}} \preceq \textit{\textbf{h}}, \\ & \boldsymbol{x} \succeq \mathbf{0}, \end{array}$$

Minimization:

$$\begin{array}{ll} \underset{\mathbf{x}=[x_1,\ldots,x_n]^\top}{\mathsf{minimize}} & \boldsymbol{\alpha}^\top \mathbf{x} \\ \mathsf{subject to} & \textit{Gx} \succeq \mathbf{\textit{h}}, \\ & \mathbf{\textit{x}} \succeq \mathbf{\textit{0}}, \end{array}$$

where $\mathbf{\textit{G}} \in \mathbb{R}^{m \times n}$ and $\mathbf{\textit{h}} \in \mathbb{R}^{m}$.

Standard linear programming

Equivalently:

minimize/maximize
$$\alpha_1x_1+\cdots+\alpha_nx_n$$
 subject to linear inequality constraint 1, \vdots linear inequality constraint m , $x_1,\ldots,x_n\geq 0$,

where $m \geq n$.

For example:

$$\begin{array}{lll} \underset{x_1, x_2}{\text{minimize}} & 12x_1 + 16x_2 & \underset{x_1, x_2}{\text{maximize}} & 40x_1 + 30x_2 \\ \\ \text{subject to} & x_1 + 2x_2 \geq 40, & \text{subject to} & x_1 + 2x_2 \leq 12, \\ & x_1 + x_2 \geq 30, & 2x_1 + x_2 \leq 16, \\ & x_1, x_2 \geq 0. & x_1, x_2 \geq 0. \end{array}$$

Solving linear programming by visualization

Visualization: example 1

Minimization example:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & 12x_{1}+16x_{2} \\ \text{subject to} & x_{1}+2x_{2}\geq 40, \\ & x_{1}+x_{2}\geq 30, \\ & x_{1},x_{2}\geq 0. \end{array}$$

near Programming 7 / 51

Visualization: example 2

Maximization example:

$$\label{eq:maximize} \begin{array}{ll} \underset{x_1, x_2}{\text{maximize}} & 40x_1 + 30x_2 \\ \\ \text{subject to} & x_1 + 2x_2 \leq 12, \\ & 2x_1 + x_2 \leq 16, \\ & x_1, x_2 \geq 0. \end{array}$$

Visualization: example 3

Example with more number of constraints:

$$\label{eq:minimize} \begin{aligned} & \underset{x_1, x_2}{\text{minimize}} & & 2x_1 + 3x_2 \\ & \text{subject to} & & x_1 + 2x_2 \geq 8, \\ & & 2x_1 + 0.5x_2 \geq 4, \\ & & x_1 + x_2 \leq 8, \\ & & x_1 \leq 5, \\ & & x_2 \leq 10, \\ & & x_1, x_2 \geq 0. \end{aligned}$$

Simplex Method Description

Simplex method description

- As you saw in the pictures, the feasible set (determined by the constraints) in the linear programming has affine/linear boundaries.
- It is because the constraints are affine/linear.
- Therefore, the feasible set is like a simplex with linear edges and some corners.
- The corners of the feasible set are named the extreme points.

The images are taken from Wikipedia.

Simplex method description

- The simplex algorithm was initially proposed in 1947 [1].
- It works on the linear boundaries (edges) and extreme points of the simplex feasible set.
- Obviously, the solution is at one of the extreme points.

gramming 12 / 51

Simplex method description

- The simplex algorithm starts from an extreme point and it goes to one of its neighbor extreme points having the smallest/largest cost function at that point (only if the neighbor extreme point has smaller/larger cost value compared to the current extreme point).
- It continues this procedure until we reach an extreme point whose neighbor extreme points do not have smaller/larger cost value.

The images are taken from Wikipedia.

One of the methods for Simplex Algorithm: Tableau Method for Maximization

Slack variables

Consider this example:

maximize
$$6x_1 + 5x_2 + 4x_3$$

subject to $2x_1 + x_2 + x_3 \le 240$, $x_1 + 3x_2 + 2x_3 \le 360$, $2x_1 + x_2 + 2x_3 \le 300$, $x_1, x_2, x_3 \ge 0$.

- We convert each inequality ≤ constraint to an equality constraint by adding slack variables.
- Slack variables are positive scalars which are added to the left hand side of inequality
 constraint to make it equality.
- Example:

$$2x_1 + x_2 + x_3 \le 240 \implies 2x_1 + x_2 + x_3 + s_1 = 240,$$

 $x_1 + 3x_2 + 2x_3 \le 360 \implies x_1 + 3x_2 + 2x_3 + s_2 = 360,$
 $2x_1 + x_2 + 2x_3 \le 300 \implies 2x_1 + x_2 + 2x_3 + s_3 = 300,$
 $s_1, s_2, s_3 \ge 0.$

Slack variables

So, this problem:

$$\begin{array}{ll} \underset{x_1, x_2, x_3}{\text{maximize}} & 6x_1 + 5x_2 + 4x_3 \\ \text{subject to} & 2x_1 + x_2 + x_3 \leq 240, \\ & x_1 + 3x_2 + 2x_3 \leq 360, \\ & 2x_1 + x_2 + 2x_3 \leq 300, \\ & x_1, x_2, x_3 \geq 0. \end{array}$$

is converted to:

$$\begin{array}{ll} \underset{x_1,x_2,x_3,s_1,s_2,s_3}{\text{maximize}} & 6x_1+5x_2+4x_3 \\ \text{subject to} & 2x_1+x_2+x_3+s_1=240, \\ & x_1+3x_2+2x_3+s_2=360, \\ & 2x_1+x_2+2x_3+s_3=300, \\ & x_1,x_2,x_3,s_1,s_2,s_3\geq 0. \end{array}$$

Forming equalities

$$\begin{array}{ll} \underset{x_1, x_2, x_3, s_1, s_2, s_3}{\text{maximize}} & 6x_1 + 5x_2 + 4x_3 \\ \text{subject to} & 2x_1 + x_2 + x_3 + s_1 = 240, \\ & x_1 + 3x_2 + 2x_3 + s_2 = 360, \\ & 2x_1 + x_2 + 2x_3 + s_3 = 300, \\ & x_1, x_2, x_3, s_1, s_2, s_3 \geq 0. \end{array}$$

The cost function is: $c := 6x_1 + 5x_2 + 4x_3 \implies c - 6x_1 - 5x_2 - 4x_3 = 0$. Therefore:

$$2x_1 + x_2 + x_3 + s_1 = 240,$$

$$x_1 + 3x_2 + 2x_3 + s_2 = 360,$$

$$2x_1 + x_2 + 2x_3 + s_3 = 300,$$

$$c - 6x_1 - 5x_2 - 4x_3 = 0.$$

Forming the table in the tableau method

$$2x_1 + x_2 + x_3 + s_1 = 240,$$

$$x_1 + 3x_2 + 2x_3 + s_2 = 360,$$

$$2x_1 + x_2 + 2x_3 + s_3 = 300,$$

$$c - 6x_1 - 5x_2 - 4x_3 = 0.$$

	χ_{l}	7/2	% 3	Si	Sz	53	RHS
5(2	1	1	1	0	0	240
Sz	l	3	2	O	1	٥	240 360 300
5 3	2	ţ	2	0	0		300
	-6	-5	4	ø	0	D	, 0

Pivot and min test

- 1 In maximization problem, choose the most negative value for the pivot column.
- ② Do the min test: divide RHS values (of rows except the c row) to the values of the pivot column. Ignore the negative or zero values in min test.
- Set the minimum division value for the pivot row. The intersection of pivot row and pivot column gives the pivot value.

Simplifying the pivot column

- Make the pivot value one and other values zero in the pivot column.
- 2 For every row, use the row itself and the pivot row only.
- 3 Replace the name of the pivot row with the name of the pivot column.

	(ZI	$\sqrt{\chi_2}$	1 3	Sı	Sz	53	RH	<u>S</u>
451	2	1	1		0	0	240	
52	1	3	2	0	1	٥	360	
5 ₃	2	1	2	0	0	1	300	
	-6	-5	4	0	0	D	0	
	۲۲,	,						
	١	% 1	χ_2	1 3	51	52	53	RHS
r _{1/2}	α_{l}	ł	0.5	0.5	0.5	0	0	120
1/2 5- 1/2	52	0	2,5	1.5	-0.	5 (0	240
2 Z 13-12	53	0				0	(60
r4+3r1	C	D	-2	-1	3	0	١٥	720

Linear Programming

Continuing the table

• In the maximization problem, we continue the table until all the values in the c row are non-negative (positive or zero).

/	[R	$\sqrt{\chi_2}$	% 3	Sı	Sz	53	RH	5
451	(2)	1	1]	0	0	240	$\overline{)}$
S ₂	11	3	2	0	1	٥	360	
5 ₂	2	1	2	0	0	1	300	
c	1-6	-5	4	0	O	D	0	
	1	1 18 1	72	1 3	Sį	52	53	RHS
۲/	2(1	0.5	0.5	0.5	0	0	120
[/2 5- 1/2	52	0	2,5	1.5	-0.9	T (0	240
73-Y2	53	0	O	1	-1	0	1	60
r4+3r1	C	D	-2	-1	3	0	٥	720

ear Programming

Continuing the table

	1 % i	1/2	1 3 51	\int_{2}	53 1	RHS	min test
$\overline{\alpha_i}$	1	0.5	0.5 0.5	0	0	120	120 = 240
(52	0	2.5	1.5 -0	.5 (0	240) ego = 96 e.5
53	0	0	-	0	1	60	_
C	D	-2	-1	3 0	0	720	
1- 125 126.5 13 14-4512	8/1 2/2 53	0 1	3/5 1 0 /5	3/5 -1/5 -(-13 245 0 75		2+15 72 66 50 112) T. mum cat naximum (c*)

Basic and non-basic variables

Once the table is over:

- A row with having only one 1 and the rest 0 is a basic variable.
- The other columns are non-basic variables.

Checking the optimal values

- Once the table is over, the RHS of the c row is the **optimal cost function**. Here it is $c^* = 912$.
- The optimal values for the variables are the RHS of the rows. In other words, the optimum basic variables are the RHS of rows. Here they are $x_1^* = 72$, $x_2^* = 96$, $s_3^* = 60$.
- The optimum value for the rest of the variables (the **non-basic variables**) is **zero**. Here they are $x_3^* = 0$, $s_1^* = 0$, $s_2^* = 0$.
- We can check if the optimal cost is correct:

$$c := 6x_1 + 5x_2 + 4x_3 \implies c^* = 6x_1^* + 5x_2^* + 4x_3^* = 6(72) + 5(96) + 4(0) = 912$$

	ı	Я١	A 2	Яз	<u>ح</u> د	Sz	53	RHS
r1- 12	91 72 53	1	,	1/5	3/5	-13-	0	72
Y2/9.5	Δh		į	3/5	-1/5	45	٥	96
12/2.5	/\Z S2	0	0	ĺ	-(ъ	i	60
,		-		- <u>-</u> -	13/5	4-	0	(912)
4+4512	C	10	. <i>-</i>	<u> 5</u>	75	'3		T. ut
		_	all	hor	n-nego	hve		maximum last function (c*)

Big M method

When to use the big M method

We should use the big M method when there are one or some \geq constraints.

Consider this example:

$$\begin{array}{ll} \underset{x_1, x_2}{\text{maximize}} & c = 3x_1 + 4x_2 \\ \text{subject to} & 2x_1 + x_2 \leq 600, \\ & x_1 + x_2 \leq 225, \\ & 5x_1 + 4x_2 \leq 1000, \\ & x_1 + 2x_2 \geq 150, \\ & x_1, x_2 \geq 0. \end{array}$$

• For \leq constraints, we use slack variables as before:

$$2x_1 + x_2 \le 600 \implies 2x_1 + x_2 + s_1 = 600,$$

 $x_1 + x_2 \le 225 \implies x_1 + x_2 + s_2 = 225,$
 $5x_1 + 4x_2 \le 1000 \implies 5x_1 + 4x_2 + s_3 = 1000,$
 $s_1, s_2, s_3 \ge 0.$

Big M method: \geq constraints

$$\begin{array}{ll} \underset{x_1,x_2}{\text{maximize}} & c = 3x_1 + 4x_2 \\ \text{subject to} & 2x_1 + x_2 \leq 600, \\ & x_1 + x_2 \leq 225, \\ & 5x_1 + 4x_2 \leq 1000, \\ & x_1 + 2x_2 \geq 150, \\ & x_1,x_2 \geq 0. \end{array}$$

$$x_1 + 2x_2 > 150 \implies x_1 + 2x_2 + s_4 = 150 \implies s_4 < 0.$$

• For \geq constraints, we use excess variables e and artificial variables a:

$$x_1 + 2x_2 \ge 150 \implies x_1 + 2x_2 + a_4 - e_4 = 150,$$

 $a_4, e_4 > 0.$

• We want the additional variable to be very small $(a_4 = \epsilon)$ so we add it to the cost function with a very big multiplication factor $M \gg 1$:

maximize
$$c = 3x_1 + 4x_2 - Ma_4$$
,

because if $M \gg 1$, then $a_4 \to 0$ to cancel its effect in the cost function.

Programming 27 / 51

Tableau method with the big M method

$$\begin{array}{ll} \underset{x_1,x_2,s_1,s_2,s_3,a_4,e_4}{\text{maximize}} & c = 3x_1 + 4x_2 - \textit{Ma}_4 \\ \text{subject to} & 2x_1 + x_2 + s_1 = 600, \\ & x_1 + x_2 + s_2 = 225, \\ & 5x_1 + 4x_2 + s_3 = 1000, \\ & x_1 + 2x_2 + a_4 - e_4 = 150, \\ & x_1,x_2,s_1,s_2,s_3,a_4,e_4 \geq 0. \end{array}$$

 We make zero the column value of additional variable in the c row, because the value of a₄ should be about zero rather than M.

	ı	A)	αz	Sı	Sz	53	a4	e4	RHS
-		9	1	S ₁	0	•	0	6	600
	>1 S2	1	·	ь	1	D	0	6	225
	- 1		,		Ċ	1		6	1000
	53	5	4	6	ь		1	-1	150
	94	1/	2	0	-		<u></u>		
	<u></u>	-3	_4-	٥	٥	0	M	•	
		1-	-2A	14 0	0	0	D	W	-150M
-MY	_	1-3-M	-21	1					

gramming 28 / 51

Tableau method with the big M method

Tableau method with the big M method

51 52 53 42	3/2 1/2 3 1/2 1/2	72 0 0 0 1	1	0	0 -	74 /2 /2 /2 /2 /2 /2	e4 - 12 - 12 - 2 - 1/2 - 2	750 750 750 75	525=1150 0.5=300 150=350 700=350
11-42 212 13-42 14+12 15+452	51 e4 53 912	1 1	720000000000000000000000000000000000000	51	52 0 2 A 1 A	0 0	94 D	e4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8H5 375 300 100 225 900

Therefore: $s_1^* = 375, e_4^* = 300, s_3^* = 100, x_2^* = 225, x_1^* = 0, s_2^* = 0, s_3^* = 0, a_4^* = 0, c^* = 900.$ Check: $c^* = 3x_1^* + 4x_2^* = 3(0) + 4(225) = 900$

The reason for the tableau method

$$\label{eq:continuous} \begin{array}{ll} \underset{x_1,x_2,x_3,x_4}{\text{maximize}} & c = 4x_1 + 6x_2 - 5x_4 \\ \text{subject to} & x_1 + x_2 + x_3 \leq 50, \\ & 2x_1 + 3x_2 + x_4 \leq 42, \\ & 3x_3 - x_4 \leq 250, \\ & x_1,x_2,x_3,x_4 \geq 0. \end{array}$$

is converted to:

$$\begin{array}{ll} \underset{x_1,x_2,x_3,x_4,s_1,s_2,s_3}{\text{maximize}} & c = 4x_1 + 6x_2 - 5x_4 \\ \text{subject to} & x_1 + x_2 + x_3 + s_1 = 50, \\ & 2x_1 + 3x_2 + x_4 + s_2 = 42, \\ & 3x_3 - x_4 + s_3 = 250, \\ & x_1,x_2,x_3,x_4,s_1,s_2,s_3 \geq 0. \end{array}$$

- # variables: 7, # equations: 3
- We can set 7-3=4 variables to zero (non-basic variables) and find the other 3 variables (basic variables).
- How many ways can we choose the three variables out of the 7 variables? $\binom{7}{3} = 35$.

Example variables to choose

One of the ways:

non-basic variables:
$$x_1=x_2=x_3=x_4=0$$
, basic variables: s_1,s_2,s_3 .
$$\begin{aligned} &\max &\max_{s_1,s_2,s_3} & c=0 \\ &\text{subject to} & s_1=50, \\ &s_2=42, \\ &s_3=250, \\ &s_1,s_2,s_3\geq 0. \end{aligned}$$

Therefore, $s_1 = 50$, $s_2 = 42$, $s_3 = 250$. The cost function becomes: c = 0.

Example variables to choose

One of the ways:

Therefore, $x_2 = 14$, $x_3 = 36$, $s_3 = 142$. The cost function becomes: c = 6(14) = 84.

The reason for the pivot column

Which variable should we increase which maximizes the cost function the most?

$$c = 4x_1 + 6x_2 - 5x_4$$
.

Increasing the variable x_2 has the most effect because it has the biggest multiplication factor, i.e., 6.

Recall that we had:

$$c - 4x_1 - 6x_2 + 5x_4 = 0.$$

That is why, in the tableau method, we find the most negative value in the c row. This is the reason for the **pivot column**.

The reason for the min test

How much can we increase the x_2 variable?

- In the first constraint, the worst case scenario is $x_1 = x_3 = s_1 = 0$ and the most we can increase $x_2 : x_2 = 50$
- In the second constraint, the worst case scenario is $x_1 = x_4 = s_2 = 0$ and the most we can increase x_2 : $3x_2 = 42 \implies x_2 = 42/3 = 14$
- In the third constraint, the worst case scenario is $x_3=x_4=s_3=0$ and the most we can increase $x_2\colon 30x_2=250 \implies x_2=\infty$
- Therefore, the minimum increase we can have for x_2 is: $min(50, 42, \infty) = 42$.

36 / 51

An example minimization linear problem is:

minimize
$$12x_1 + 16x_2$$

subject to $x_1 + 2x_2 \ge 40$, $x_1 + x_2 \ge 30$, $x_1, x_2 \ge 0$.

- When we have a minimization linear programming, we can convert the minimization problem to a maximization problem.
- We should find the dual problem for the minimization problem. The dual for the minimization is a maximization problem. We will learn the dual problem of linear programming soon.

An example minimization linear problem is:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & 12x_{1}+16x_{2} \\ \text{subject to} & x_{1}+2x_{2}\geq 40, \\ & x_{1}+x_{2}\geq 30, \\ & x_{1},x_{2}\geq 0. \end{array}$$

Consider the constraints:

$$x_1 + 2x_2 \ge 40 \xrightarrow{\times y_1} y_1x_1 + 2y_1x_2 \ge 40y_1,$$

 $x_1 + x_2 \ge 30 \xrightarrow{\times y_2} y_2x_1 + y_2x_2 \ge 30y_2,$

where $y_1, y_2 \ge 0$. Summing the sides together gives:

$$(y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

$$12x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2$$
.

Summing the sides together gives:

$$(y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

$$12x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2$$
.

Therefore:

$$12x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$

Hence:

$$y_1 + y_2 \le 12$$
,
 $2v_1 + v_2 \le 16$.

We want to find the best (maximum) lower bound, so:

maximize
$$40y_1 + 30y_2$$
.

Therefore:

maximize
$$40y_1 + 30y_2$$

subject to $y_1 + y_2 \le 12$, $2y_1 + y_2 \le 16$, $y_1, y_2 \ge 0$.

is the dual problem for the following problem:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & 12x_{1}+16x_{2} \\ \text{subject to} & x_{1}+2x_{2}\geq 40, \\ & x_{1}+x_{2}\geq 30, \\ & x_{1},x_{2}\geq 0. \end{array}$$

This maximization problem can be solved as explained before.

Solving the problem by tableau method

$$\begin{array}{ll} \underset{y_{1},y_{2}}{\text{maximize}} & c = 40y_{1} + 30y_{2} \\ \\ \text{subject to} & y_{1} + y_{2} + s_{1} = 12, \\ & 2y_{1} + y_{2} + s_{2} = 16, \\ & y_{1}, y_{2} \geq 0. \end{array}$$

((7)	Уz	SI	52	RHS
51	1	1	1	D	12
T52	2		0	1	16)
c	40)	-30	0	0	0
•	191	٧z	51	SZ	RHJ
r 1/2 <.	191	9z 0.5	51	Sz _0.5	RHJ 4
1- 1- 51	 		51		4 8
\(\frac{\fir}{\fint}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\firk}}}}}}{\frac{\fir}}}}}}}}{\	0	0.5	1	_0.5	RHS 4 8 320

$$\min_{12/1 = 12}$$
 $16/2 = 8$

Solving the problem by tableau method

<u> </u>	91	0.5	51	Sz _0.5	RH1 4	min test 4/0.5 = 8 80.5 = 16
<u> 41</u>	0	0.5	0	20	320 1 RHS	. 6.7
2r ₁	٥	9 ₂ 1	2 -1	-1 1	8 4	
r3 + 20r1 C	0	all	20 positive	10	400	

Therefore:
$$y_2^* = 8$$
, $y_1^* = 4$, $s_1^* = 0$, $s_2^* = 0$, $c^* = 400$.
Check: $c^* = 40y_1^* + 30y_2^* = 40(4) + 30(8) = 400$

The strong duality holds for linear programming, so:

 $c^* = 400$ for the primal problem, too.

Dual Simplex Method

Why we need the dual simplex method?

- We converted the minimization linear problem to its dual problem which is the maximization linear problem. Then, we solved it using the simplex method for maximization.
- However, it only gave us the optimal cost function c^* and not the optimum primal variables $\{x_1^*, \ldots, x_n^*\}$.
- For finding these optimum primal variables in the minimization linear programming, we can use the dual simplex method.
- The dual simplex method only works for the minimization linear problem if:
 - all its multiplication factors in the cost function are non-negative.
 - at least one of the inequality constraints is ≥.

Dual simplex method: example

$$\begin{array}{ll} \underset{x_1,x_2}{\text{minimize}} & c = 3x_1 + 4x_2 \\ \\ \text{subject to} & 2x_1 + x_2 \leq 600, \\ & x_1 + x_2 \leq 225, \\ & 5x_1 + 4x_2 \leq 1000, \\ & x_1 + 2x_2 \geq 150, \\ & x_1, x_2 \geq 0. \end{array}$$

For inequality \geq , we have:

$$x_1 + 2x_2 \ge 150 \implies -x_1 - 2x_2 \le -150$$

Using slack variables:

minimize
$$c-3x_1+4x_2=0$$

subject to $2x_1+x_2+s_1=600$, $x_1+x_2+s_2=225$, $5x_1+4x_2+s_3=1000$, $-x_1-2x_2+s_4=-150$, $x_1,x_2\geq 0$.

Dual simplex method: example

$$\begin{array}{ll} \underset{x_1,x_2}{\text{minimize}} & c-3x_1+4x_2=0\\ \\ \text{subject to} & 2x_1+x_2+s_1=600,\\ & x_1+x_2+s_2=225,\\ & 5x_1+4x_2+s_3=1000,\\ & -x_1-2x_2+s_4=-150,\\ & x_1,x_2\geq 0. \end{array}$$

- 1 Pivot row: Pick the most negative value in RHS
- 2 min test: Divide the non-zero values of c row by the negative values of the pivot row. Take absolute value in division.

Dual simplex method: example

min test:
$$\begin{cases} |\frac{3}{2}| = 3 \\ |\frac{4}{2}| = 2 \end{cases}$$

Therefore: $s_1^* = 525, s_2^* = 150, s_3^* = 700, x_2^* = 75, c^* = 300, x_1^* = 0, s_4^* = 0.$ Check: $c^* = 3x_1^* + 4x_2^* = 3(0) + 4(75) = 300$

Acknowledgment

This lecture is inspired by the lectures of Prof. Shokoufeh Mirzaei on linear programming: [Link]

References

[1] G. B. Dantzig, "Reminiscences about the origins of linear programming," in *Mathematical Programming The State of the Art*, pp. 78–86, Springer, 1983.