Событийный алгоритм моделирования (ЛИД – модель элемента).

Событийный алгоритм:

Выполняет только то, где возможны изменения, а не повторяет все, как итерационный алгоритм (то есть просчитываются только те элементы, на входах которых произошли изменения). Для этого нужна таблица будущих событий (ТБС) и таблица текущих событий (ТТС).

На одном наборе меняют значение 30-40% элементов.

Пример:

задержки Тили = 1 Tu = 2 Tили-не = 3

a	В	c	d	e	f	k	1	1	2	3	4	5	6	7	8	9	10	11	Т	TTC	ТБС	
								0	0	0	0	0	0	0	0	0	0	0				
1	0	1	1	0	0	1	0	0	1	0	1	1	0	0	1	0	0	0			1-4-6-10	
1	1	1	0	0	1	0	0	1			0		0				0		0	1-4-6-10	2-5	
									0			0							2	2-5	3-7- 3	
										1				0					5	3-7		

Модели элементов.

Элементом называется конструктивно и функционально законченная часть устройства, не подлежащая дальнейшему расщеплению. В общем виде логические элементы описываются $E = \{\phi, A, \Delta\}$, где ϕ - функция, A – алфавит, Δ - динамические параметры. Обязательно нужно задать ϕ . Если Δ не задано, то модель – статическая. Если же элемент задан только $E = \{\phi\}$, то $A = \{0, 1\}$ – это.

Любой элемент можно представить функциональным и динамическим блоком:

Такая модель предполагает временные характеристики. Если нет временных, то это аналитическая статическая модель (Л -модель).

Самое общее описание задержек — это задержка срабатывания. Δ - блок можно представить в виде задержки срабатывания, если у(t + t Δ) = f(x(t)). Задержка срабатывания t Δ предполагает, что модель элемента обладает совершенной задержкой, т.е. временем переключения из одного состояния в другое. Для увеличения адекватности блок Δ может быть расширен с учетом времени фронта и задержки распространения сигнала с входа на выход: t Δ = t фp+ tp. Т.к. передний и задний фронт отличаются по длительности, то t Δ = t фp01+ t фp10+ tp01+ tp10.

Это ЛД (логико - динамическая) модель.

Необходимо учитывать инерционные свойства:

