OPTIMISATION EN NOMBRES ENTIERS:

COMPLEXITÉ

Hacène Ouzia

MAIN (5 ème année) Sorbonne Université

2020

Objectif du cours

Objectif

△ Démontrer que l'optimisation en variables entières est un problème *NP-difficile*, en général.

AGENDA

- Généralités
 - Modèle de calcul
 - Problème de décision
 - Classe P et NP
 - Réductions polynomiales

Généralités

■ MODÈLE DE CALCUL MACHINE DE TURING

FIGURE - Réalisation d'une machine de Turing.

- Toute autre modèle équivalent conviendrait!
- Attention, une machine de Turing est une machine conceptuelle!

Hacène Ouzia Optimisation en nombres entiers 2020 5/33

■ DÉFINTION PROBLÈMES DE DÉCISION

Un problème de décision est la donnée d'une description de la classe des instances du problème et d'une question.

Définition

Un problème de décision est la donnée d'une description de la classe des instances du problème et d'une question.

Nous adopterons la convention suivante :

ID-PROBLÈME

INSTANCE : Description informelle mais précise de la classe des instances :

QUESTION: Énoncer de la question.

6/33

Hacène Ouzia Optimisation en nombres entiers 2020

VERTEX-COVER

INSTANCE : Un graphe $G = \langle V, E \rangle$ non orienté ; Un entier k non nul.

 \square QUESTION: Existe-il dans G une couverture de taille k?

7/33

2020

SUBSET-SUM

INSTANCE: Un ensemble fini E de \mathbb{N}^* ; Un entier non nul k.

 \square QUESTION: Existe-il un sous-ensemble E' de E tel que:

$$\sum_{e \in F'} e = k.$$

La classe P

DÉFINITION LA CLASSE P

La classe P est celles des problèmes de décision pour lesquels il existe un algorithme en temps polynomial en la taille de l'instance.

La classe P

■ DÉFINITION LA CLASSE P

La classe P est celles des problèmes de décision pour lesquels il existe un algorithme en temps polynomial en la taille de l'instance.

Exemples de problèmes appartenant à la classe P?

DÉFINITION LA CLASSE NP

La classe NP est celles des problèmes de décision pour lesquels il existe un algorithme non déterministe en temps polynomial en la taille de l'instance.

$$\triangle x \in Sol(I)$$
 si:

$$\emptyset$$
 \leftarrow $C(x,y)$, $\operatorname{si} x \in \operatorname{Sol}(I)$, $\operatorname{Ko} \leftarrow C(x,y)$, sinon .

La classe NP

DÉFINITION LA CLASSE NP

La classe NP est celles des problèmes de décision pour lesquels il existe un algorithme non déterministe en temps polynomial en la taille de l'instance.

- $\triangle x \in Sol(I)$ si:
 - → Il existe un *certificat y* de longueur polynomiale
 - → Il existe un *vérifieur polynomial C* tel que

$$\begin{cases} \text{Ok} \leftarrow C(x, y), \text{ si } x \in \text{Sol}(I), \\ \text{Ko} \leftarrow C(x, y), \text{ sinon.} \end{cases}$$

- Exemples de problèmes appartenant à la classe NP?
- La classe NP est celle des problèmes vérifiable en temps polynomial. Donc, les preuves doivent être courtes!

Hacène Ouzia

Réductions polynomiales

■ DÉFINITION RÉDUCTION POLYNOMIALE

Soit Q_1 et Q_2 deux problèmes de décision. On dit que le problème Q_1 se réduit polynomialement au problème Q_2 , notée $Q_1 \propto Q_2$, s'il existe un algorithme A tel que :

- l'algorithme A est de complexité polynomiale;
- \square l'algorithme A transforme toute instance de Q_1 en une instance de Q_2 ;
- pour une instance I de Q_1 , A(I) est une instance oui du problème Q_2 si et seulement si I est une instance oui de Q_1 .

AGENDA

- Généralités
- NP-Complétude
 - Le problème 3-SAT
 - Le problème CLIQUE
 - Le problème VERTEX-COVER est NPC
 - Le problème SUBSET-SUM
- L'optimisation linéaire en nombres entiers est NP-C

Problèmes NP-Complet

■ DÉFINITION PROBLÈME NP-C

Un problème de décision Q est dit NP-Complet (NP-C en bref) si :

- le problème Q appartient à la classe NP;
- ② Tout problème Q' appartenant à NP se réduit polynomialement au problème Q, c.-à-d. :

$$\forall Q' \in NP : Q' \propto Q. \tag{1}$$

- un problème est qualifié de NP-difficile si seule la condition 2 est vérifiée (l'autre étant très difficile à prouver!).
- Notons que, la condition (1) est équivalente à

$$\exists Q' \in NP : Q' \propto Q$$

Problèmes NP-Complet

DÉFINITION PROBLÈME NP-C

Un problème de décision Q est dit NP-Complet (NP-C en bref) si :

- le problème Q appartient à la classe NP;
- Tout problème Q' appartenant à NP se réduit polynomialement au problème Q, c.-à-d.:

$$\forall Q' \in NP : Q' \propto Q. \tag{1}$$

- Un problème est qualifié de NP-difficile si seule la condition 2 est vérifiée (l'autre étant très difficile à prouver!).
- Notons que, la condition (1) est équivalente à :

$$\exists Q' \in NP : Q' \propto Q.$$

Technique de preuve

TECHNIQUE DE PREUVE

Pour montre qu'un problème Q appartient à la classe NP-C, il faut :

- Montrer que le problème Q appartient à la classe NP,
- Identifier un problème connu Q' appartenant à la classe NP-C,
- Construire une réduction polynomiale

$$Q' \propto Q$$

Hypothèse

2020

■ THÉORÈME COOK (GAREY)

Le problème SAT est NP-C.

42.D

SAT

- INSTANCE : Un ensemble V de variables booléennes $\{x_1, \ldots, x_n\}$; Une formule propositionnelle ϕ sur V.
- \square QUESTION: Existe-il une affectation sur V telle que ϕ soit vraie '

Hypothèse

■ THÉORÈME COOK (GAREY)

Le problème **SAT** est **NP-C**.

SAT

- INSTANCE : Un ensemble V de variables booléennes $\{x_1, \ldots, x_n\}$; Une formule propositionnelle ϕ sur V.
- \square QUESTION: Existe-il une affectation sur V telle que ϕ soit vraie?

3-SAT

INSTANCE: Un ensemble $\mathbb V$ de variables booléennes $\{x_1,\ldots,x_n\}$; Une formule propositionnelle ϕ sur $\mathbb V$ telle que :

$$\phi = \bigwedge_{k=1}^{m} C_k$$

où, pour chaque j, C_i est une clause à 3 littéraux.

 $^{\blacksquare \blacksquare \blacksquare}$ QUESTION : Existe-il une affectation de vérité sur $\mathbb V$ telle que ϕ soit vraie ?

THÉORÈME ... EN TD!

3-SAT

INSTANCE: Un ensemble $\mathbb V$ de variables booléennes $\{x_1,\ldots,x_n\}$; Une formule propositionnelle ϕ sur $\mathbb V$ telle que:

$$\phi = \bigwedge_{k=1}^{m} C_k$$

où, pour chaque j, C_i est une clause à 3 littéraux.

■ QUESTION : Existe-il une affectation de vérité sur $\mathbb V$ telle que ϕ soit vraie ?

■ THÉORÈME ... EN TD!

Le problème 3-SAT est NP-C.

Le problème 2-SAT

INSTANCE: Un ensemble fini \mathbb{V} de variables booléennes $\{x_1, \dots, x_n\}$ Une formule propositionnelle ϕ sur $\mathbb V$ telle que :

$$\phi = \bigwedge_{k=1}^m C_k$$

où, pour chaque j, C_i est une clause à 2 littéraux.

 \square QUESTION: Existe-il une affectation de vérité sur $\mathbb V$ telle que ϕ soit vraie?

17/33

Hacène Ouzia **OPTIMISATION EN NOMBRES ENTIERS**

Le problème 2-SAT

2-SAT

INSTANCE: Un ensemble fini $\mathbb V$ de variables booléennes $\{x_1,\ldots,x_n\}$ Une formule propositionnelle ϕ sur $\mathbb V$ telle que :

$$\phi = \bigwedge_{k=1}^{m} C_k$$

où, pour chaque j, C_i est une clause à 2 littéraux.

■ QUESTION : Existe-il une affectation de vérité sur $\mathbb V$ telle que ϕ soit vraie ?

Le problème 2-SAT appartient à la classe P!

Hacène Ouzia

Le problème CLIQUE

CLIQUE

- INSTANCE : Un graphe $G = \langle V, E \rangle$ non orienté ; Un entier k non nul.
- \square QUESTION: Existe-il dans G une clique de taille k?

■ Un sous-ensemble C de V est une clique si :

$$\forall u, v \in C : uv \in E$$
.

■ THÉORÈME

Le problème CLIQUE est NP-C

18/33

CLIQUE

- INSTANCE: Un graphe $G = \langle V, E \rangle$ non orienté; Un entier k non nul.
- \square QUESTION: Existe-il dans G une clique de taille k?

Un sous-ensemble C de V est une clique si :

$$\forall u, v \in C : uv \in E$$
.

■ THÉORÈME

Le problème CLIQUE est NP-C.

Le problème CLIQUE

PREUVE CLIQUE EST NP-C

- ▲ Le problème clique appartient-il à la classe NP?
- Exhiber une réduction? Considérer la formule suivante :

$$\phi = (\overline{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee x_3).$$

Cette réduction est-elle polynomiale?

Le problème VERTEX-COVER

VERTEX-COVER

- INSTANCE : Un graphe $G = \langle V, E \rangle$ non orienté ; Un entier k non nul.
- \square QUESTION: Existe-il dans G une couverture de taille k?

™ Un sous-ensemble C de V est une couverture si :

$$\forall (u,v) \in E : C \cap \{u,v\} \neq \emptyset.$$

■ THÉORÈME

Le problème VERTEX-COVER est NP-C

Le problème VERTEX-COVER

VERTEX-COVER

- INSTANCE: Un graphe $G = \langle V, E \rangle$ non orienté; Un entier k non nul.
- \square QUESTION: Existe-il dans G une couverture de taille k?

Un sous-ensemble C de V est une couverture si :

$$\forall (u,v) \in E : C \cap \{u,v\} \neq \emptyset.$$

■ THÉORÈME

Le problème VERTEX-COVER est NP-C.

Le problème EDGE-COVER

EDGE-COVER

- INSTANCE : Un graphe $G = \langle V, E \rangle$ non orienté ; Un entier k non nul.
- QUESTION : Existe-il dans G une couverture des sommets avec des arêtes de taille k?

Le problème Edgé-Cover appartient à la classe P

21/33

EDGE-COVER

- INSTANCE : Un graphe $G = \langle V, E \rangle$ non orienté ; Un entier k non nul.
- QUESTION : Existe-il dans G une couverture des sommets avec des arêtes de taille k?

Le problème **EDGE-COVER** appartient à la classe P!

SUBSET-SUM

- INSTANCE: Un ensemble fini E de \mathbb{N}^* ; Un entier non nul k.
- \blacksquare QUESTION: Existe-il un sous-ensemble E' de E tel que:

$$\sum_{e\in E'}e=k.$$

■ THÉORÈME

Le problème Subset-Sum est NP-C

SUBSET-SUM

- INSTANCE: Un ensemble fini E de \mathbb{N}^* ; Un entier non nul k.
- \square QUESTION: Existe-il un sous-ensemble E' de E tel que:

$$\sum_{e\in E'}e=k.$$

■ THÉORÈME

Le problème SUBSET-SUM est NP-C.

Le problème SUBSET-SUM

■ PREUVE SUBSET-SUM EST NP-C

- ▲ Le problème SUBSET-SUM appartient-il à la classe NP?
- Exhiber une réduction? Considérer la formule suivante :

$$\phi = (x_1 \lor x_2 \lor x_4) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor \overline{x}_3 \lor \overline{x}_4). \tag{2}$$

Cette réduction est-elle polynomiale?

Généralités NP-Complétude Opt. lin. en nbrs. entiers 3-SAT CLIQUE VERTEX-COVER SUBSE

Le problème SUBSET-SUM : la réduction

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄
p_1	1				1			
q_1	1					1	1	
p_2		1			1	1		
q_2		1				./		, 1
p_3			1		٠.,	\	_1/	
q_3			1		~ <	11.		1
p_4				1 <	1		1	
q_4				(1)	\vee			1
r_1				\sim	1			
s_1			>:		2			
r_2	/	7. K	ノ.			1		
s ₂		\				2		
r_3							1	
s ₃	•						2	
r_4	•							1
S ₄								2
k	1	1	1	1	4	4	4	4

TABLE - Réduction associé à la formule (4).

AGENDA

- Généralités
- NP-Complétude
- L'optimisation linéaire en nombres entiers est NP-C
 - L'optimisation linéaire en variables 0-1
 - L'optimisation quadratique en variables 0-1

Le problème 0-1-LIN-OPTIM

0-1-LIN-OPTIM

- INSTANCE: Une matrice $A \ m \times n$; Deux vecteurs $b \in \mathbb{Q}^m$ et $c \in \mathbb{Q}^n$; Un entier K.
- **QUESTION**: Existe-il un vecteur $x \in \{0,1\}^n$ tel que :

$$c^T x \leq K$$
 et $Ax \leq b$.

■ THÉORÈME

Le problème 0-1-LIN-OPTIM est NP-C

Le problème 0-1-LIN-OPTIM

0-1-LIN-OPTIM

INSTANCE: Une matrice $A \ m \times n$; Deux vecteurs $b \in \mathbb{Q}^m$ et $c \in \mathbb{Q}^n$; Un entier K.

 \square QUESTION: Existe-il un vecteur $x \in \{0,1\}^n$ tel que :

$$c^T x \leq K$$
 et $Ax \leq b$.

■ THÉORÈME

Le problème 0-1-LIN-OPTIM est NP-C.

Le problème 0-1-LIN-OPTIM

- ▲ Le problème 0-1-LIN-OPTIM appartient-il à la classe NP?
- Exhiber une réduction? Considérer la formule suivante :

$$\phi = (\overline{x}_1 \lor x_2 \lor x_4) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4). \tag{3}$$

Cette réduction est-elle polynomiale?

Le problème 0-1-LIN-OPTIM : la réduction

Considérons les variables :

$$y_i = 0 \; \mathbf{ssi} \; C_i \; \; \text{non SAT}$$

Fonction objectif :

$$\sum_{i=1}^m (1-y_i).$$

Les contraintes :

$$1 - x_1 + x_2 + x_3 + y_1 \ge 1$$

$$1 - x_3 + 1 - x_2 + x_1 + y_2 \ge 1$$

$$1 - x_4 + x_1 + 1 - x_3 + y_3 \ge 1$$

$$x_j \in \{0, 1\} \ \forall j = 1, \dots, n,$$

$$y_i \in \{0, 1\} \ \forall i = 1, \dots, m,$$

△ La valeur de K vaut m.

Le problème 0-1-QUAD-OPTIM

0-1-QUAD-OPTIM

- INSTANCE: Une matrice Q symétrique $n \times n$; Une matrice $A m \times n$; Deux vecteurs $b \in \mathbb{Q}^m$ et $c \in \mathbb{Q}^n$; Un entier K.
- \bigcirc QUESTION: Existe-il un vecteur $x \in \{0,1\}^n$ tel que:

$$x^T Q x + c^T x \le K$$
 et $A x \le b$.

■ THÉORÈME

Le problème 0-1-QUAD-OPTIM est NP-C

Le problème 0-1-QUAD-OPTIM

0-1-QUAD-OPTIM

- INSTANCE: Une matrice Q symétrique $n \times n$; Une matrice $A m \times n$; Deux vecteurs $b \in \mathbb{Q}^m$ et $c \in \mathbb{Q}^n$; Un entier K.
- \square QUESTION: Existe-il un vecteur $x \in \{0,1\}^n$ tel que:

$$x^T Q x + c^T x \le K$$
 et $Ax \le b$.

■ THÉORÈME

Le problème 0-1-QUAD-OPTIM est NP-C.

Le problème 0-1-QUAD-OPTIM

- ▲ Le problème 0-1-Quad-Optim appartient-il à la classe NP?
- Exhiber une réduction? Considérer la formule suivante :

$$\phi = (\overline{x}_1 \vee x_2 \vee \overline{x}_4) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_4). \tag{4}$$

Cette réduction est-elle polynomiale?

Le problème 0-1-QUAD-OPTIM : la réduction

Fonction objectif :

$$\sum_{j=1}^{n} x_j \left(1 - x_j\right).$$

Les contraintes :

$$1 - x_1 + x_2 + x_4 \ge 1$$

$$-1 - x_3 + 1 - x_2 + x_1 \ge 1$$

$$1 - x_4 + x_1 + 1 - x_3 \ge 1$$

$$x_j \in \{0, 1\} \ \forall j = 1, \dots, n.$$

△ La valeur de K vaut 0.

Résumons

- Réduction polynomiale et preuve d'NP-C
- Exemples de preuves : CLIQUE, SUBSET-SUM, ...
- L'optimisation quadratique en variables 0-1 est NP-C, en général.
- L'optimisation en variables 0-1 est NP-C, en général.

Prochainement : méthodes approchées avec garantie de performance

Résumons

- Réduction polynomiale et preuve d'NP-C
- Exemples de preuves : CLIQUE, SUBSET-SUM, ...
- L'optimisation quadratique en variables 0-1 est NP-C, en général.
- L'optimisation en variables 0-1 est NP-C, en général.

Prochainement : méthodes approchées avec garantie de performance!

Bibliographie

- I. Wegener (2005), Complexity Theory (1997), Springer
- J. Kleinberg and E. Tardos (2006), Algorithm Design, Pearson International Edition
- S. Arora and B. Barak (2009), Computational Complexity: a modern approach, Cambridge University Press

