Heinrich-Heine-Universität Düsseldorf Institut für Theoretische Physik II Computational Physics Wintersemester 2018/2019 Prof. Dr. J. Horbach M. Eshraghi (mojtaba.eshraghi@hhu.de) M. Golkia (mehrdad.golkia@hhu.de) Blatt 9 vom 11.12.2018 Abgabe bis 16:00 Uhr am 18.12.2018

Problem 9.1: Monte-Carlo Integration

Integrals can be computed using the Monte-Carlo method. Here in this exercise we calculate the area of a circle in 2D. Consider a circle of radius r=0.5 embedded in a square of length l=1. The constant π is equal to the ratio between the area of the circle A_c and the area of the square A_c

$$\frac{A_c}{A_s} = \frac{\pi}{4} \tag{1}$$

The ratio in Eq. (1) can be approximated by sampling uniformly distributed random points (x, y) in the square, $x \in [-0.5, 0.5]$ and $y \in [-0.5, 0.5]$, using the equation

$$\frac{A_c}{A_s} = \frac{N_c}{N} \,, \tag{2}$$

where N and N_c correspond to the total number of sampling points and the number of points inside the circle, respectively. A trial point contribute to N_c if $x^2 + y^2 < r^2$ with r = 0.5.

- a) Plot the value of the estimated π as a function of N; try $N=10,\ N=100,\ N=1000,$ and N=10000.
- b) Repeat a), but now using the Markov chain sampling.
- c) Find the optimum value of the maximum number displacement δ , i.e. the value of δ for which the convergence is faster (see lecture for a definition of δ).

<u>Hints</u>: To generate uniform random numbers $u_n \in [0,1]$ can use the recursive equation

$$x_n = \operatorname{mod}(a \cdot x_{n-1}, b)$$
$$u_n = \frac{x_n}{c} ,$$

with a = 16807, b = 2147483648, c = b + 1 and $x_0 \in [0, 1]$.

<u>Problem 9.2</u>: The volume of a hyper-sphere

The shape of a circle (defined in 2D by $x^2 + y^2 < R^2$) can be generalized to three dimensions by $x^2 + y^2 + z^2 < R^2$ (referred to as sphere). One can continue the generalization to higher dimensions although they are difficult to imagine.

- a) Find, in the literature, the general definition of a sphere in n-dimensions.
- b) By extending your code Exercise 9.1, find the volume of a sphere in 5 dimensions.