

1 Technische Richtlinie BSI TR-03109-1

- 2 Anlage IV: Feinspezifikation "Drahtgebundene LMN-Schnittstelle"
- 3 Teil b: "SML Smart Message Language"

5 Version 1.0, Datum 18.03.2013

4

Bundesamt für Sicherheit in der Informationstechnik

Postfach 20 03 63 53133 Bonn

Tel.: +49 22899 9582-100

E-Mail: SmartMeter@bsi.bund.de Internet: https://www.bsi.bund.de

© Bundesamt für Sicherheit in der Informationstechnik 2013

Inhaltsverzeichnis

1 l	Einleitung Fehler! Textmarke ni	cht definiert.
2 1	Bezug	13
3 (Grundstruktur	13
4]	Begriffe	14
4.1	SML-Datei	
5 5	SML, Smart Message Language	16
5.1	Grundaufbau	
	SML-Nachrichten	
6.1	SML-Bezeichner	
6.1.1	SML_PublicOpen.Req	
6.1.2	= r	
6.1.3	= 1	
6.1.4		
6.1.5	1	
6.1.6	=	
6.1.7	<u> </u>	
6.1.8	=	
6.1.9	· · · · · · · · · · · · · · · · ·	
6.1.1	=	
6.1.1	<u> </u>	
6.1.1		
6.1.1		
6.1.1	= 1	
6.1.1	=	
6.1.1	<u> </u>	
6.1.1	=	
6.1.1	= 1	
6.1.1	=	
6.1.2	_ 1	
6.1.2	1 SML_ActionCosem.Res	40
7 5	SML binary encoding, direkt gepackte Kodierung	41
7.1	Type-Length-Field	42
7.2	Kodierung der Datentypen	43
7.2.1	Datentyp Octet String	43
7.2.2	Datentypen Integer8, Integer16, Integer32 und Integer64	43
7.2.3	Datentypen Unsigned8, Unsigned16, Unsigned32 und Unsigned64	44
7.2.4	Datentyp Boolean	45
7.2.5	Datentyp List of	45
7.3	Kodierung besonderer Merkmale	46

7.3.1	Merkmal Ende einer SML-Nachricht	46
7.3.2	Merkmal SEQUENCE	46
7.3.3	Merkmal CHOICE	
7.3.4	Merkmal OPTIONAL	46
8 XML - I	Kodierung	47
9 SML-Tr	ansport-Protokoll	67
9.1 Version	on 1	67
9.2 Versio	on 2	
9.2.1	Einleitung der Übertragung nach Version 2	69
9.2.2	Vereinbarung des zu verwendenden Timeouts	70
9.2.3	Prozess zum Aufbau der Übertragung	71
9.2.4	Prozess zum Ablauf einer Übertragung	
9.2.5	Beispiel zum Ablauf des Übertragungsvorgangs nach Version 2	

Abbildungsverzeichnis

Bild 1:	SML-Nachrichten und Kommunikationswege.	14
Bild 2:	SML-Kommunikationsmodell.	15
Bild 3:	Einordnung von SML in das Umfeld europäischer / internationaler Normen	15
Bild 4:	XML-Schema-Datei zur Kodierung von SML per XML.	67

Tabellenverzeichnis

Tab. 1:	Beispiel zur Verwendung des Merkmals 'Gruppen-Nummer'	19
Tab. 2:	Liste globaler Fehlernummern.	35
Tab. 3:	Liste globaler Hinweisnummern.	35
Tab. 4:	Bitkodierung im Type-Length-Field für das erste Byte einer TL-Field-Angabe	42
Tab. 5:	Bitkodierung im Type-Length-Field für das zweite und folgende TL-Field-Bytes.	43
Tab. 6:	Bitkodierung im Type-Length-Field für einen Octet String.	43
Tab. 7:	Escape-Merkmale zum SML-Transport-Protokoll.	69

SML

Smart Message Language

Version 1.04

(Entwurf: 13.07.2010 / AK 0.14)

Historie

Version	Datum	Kommentar	Verantwortlich
0.xx	26.04.07	Initiale Version, basierend auf Arbeiten aus 2005 / 2006	Wisy
0.xx	27.04.07	Redaktionelle / inhaltliche Überarbeitung	Landis+Gyr / Wisy
0.xx	08.05.07	Berechnung CRC-16: Das zu verwendende Verfahren wird konkretisiert	Wisy
0.xx	15.05.07	 Kodierer vereinfacht: Die Länge wird bei allen Datentypen immer in 4 Bit kodiert (alle Versionen zuvor hatten unterschiedliche Längen in Abhängigkeit vom Datentyp vorgesehen) Berechnung CRC-16: Die Berechnung erfolgt jetzt über alle Bytes im SML-Transportprotokoll 	Landis+Gyr / Wisy
1.00	20.05.07	Mit ZMP 2007 veröffentlichte, finale Version	Wisy
1.01	25.06.07	Die mit Tab. 2 und Tab. 3 festgelegten Bezeichner wurden aus dem herstellerspezifischen Bereich des OBIS in den applikationsspezifischen Bereich von OBIS-T verschoben	Landis+Gyr / Dr. Neuhaus / Wisy
		 Das Verhalten von ,SML_SetProcParameter' bei Angabe fehlerhafter Adressen wurde präzisiert (siehe Tab. 2) 	
		 Die Begriffe ,SML_Message', ,SML_Messageldentifier' und ,SML_MessageBody' wurden redaktionell korrekt zugeordnet 	
		Die Erkennung fehlerhafter SML-Dateien per CRC im SML-Transportprotokoll wurde um die Erkennung feh- lerhafter SML-Nachrichten per CRC in der Applikations- schicht erweitert, da nur mit dieser Variante Fehler bei der "on the fly" Bearbeitung (Einsatz per Streaming) be- reits mit der Auswertung einer SML-Nachricht erkannt und behandelt werden können (siehe Absatz (A) sowie Erläuterungen zu 'SML_Message')	
		 Zur Verwendung von SML in Broadcast-Anwendungen wurden Ergänzungen in ,SML_Open' und ,SML_SetProcParameter' vorgenommen 	
		In der Datenstruktur ,SML_TupelEntry' wurden die Ele- mente ,unit' und ,scaler' ergänzt	
		Der Begriff ,constraints' in ,SML_GetProcParameter.Req' wurde zu 'attribute' ge- ändert	
		 In 'SML_Message' wurde das Element 'endOfSmlMsg' ergänzt 	
		Die Formulierung zur 'clientld' bei 'SML_Open' wurde präzisiert	
1.02	19.01.08	Der Einsatz von 'SML_GetProfList' und 'SML_GetProfPack' im Zusammenhang mit ereignisori- entierten Aufzeichnungen wurde präzisiert.	Landis+Gyr / Dr. Neuhaus / Wisy
		Das Verhalten von ,SML_GetProfList' und	

Version	Datum	Kommentar	Verantwortlich
		,SML_GetProfPack' für den Fall der fehlenden Information zu den angefragten OBIS-Kennzahlen wurde präzisiert.	
		SML wurde auf den Anwendungsfall 'Broadcast' erweitert.	
		Die Verwendung von SML in Dateien wurde präzisiert.	
		Die Liste der Fehlernummern (siehe Tab. 2) wurde erweitert.	
1.03	12.02.08	Spezifikation eines weiteren Transport-Layers mit integrierter Flußsteuerung zur Verwendung bei Halb-Duplex-Medien ("Block Transport Layer")	Wisy
		Ergänzung von ,SML_GetList' für Werte-Liste.	
		Ergänzung weiterer Fehlernummern.	
	30.10.08	Freigabe als Version 1.03	tLZ-Projektgruppe
1.04	02.10.09	Erweiterung der Datenstruktur zu SML_Time	Wisy
	16.11.09	Erweiterung der Datenstruktur zu 'SML_ProcParValue'	
	08.01.10	Ergänzung des Bild 4 mit der XML-Schemadatei zur Kodierung von SML per XML	
	24.01.10	Korrektur einiger Fehler in der XML-Schemadatei sowie Angleichung der Notation von in ASN.1 benutzten Namen an die im XML-Schema gewählte Schreibweise.	Wisy
	03.02.10	Integration redaktioneller Korrekturen.	AK 0.14
	16.02.10	Ergänzung von SML_Value mit dem Ziel der Übertragung von Zeitstempeln in SML_ProfileList.Response. Ergänzung weiterer Fehlerkodes.	Wisy
	01.03.10	Überflüssige Auflistung der Nachricht 'SetProcParameter- Response' aus der Definition zum 'SML_MessageBody' gestrichen.	Wisy
	27.04.10	Erweiterung der Spezifikation auf den Transport von CO- SEM-Services sowie redaktionelle Korrekturen.	Wisy
	17.05.10	Präzisierung des Verhaltens bei Broadcast-Adressen.	Wisy
	18.05.10	Überarbeitung der Spezifikation zum Transport von CO- SEM-Services.	AK 0.14
	01.06.10 13.07.10	Präzisierung des Verhaltens bei Anfragen mit fehlerhaftem SML_Open.	Wisy AK 0.14
	13.07.10	Präzisierung des Verhaltens bei innen liegenden ESC- Sequenzen im SML-Transport-Protokoll der Version 1.	AK 0.14

Abkürzungsverzeichnis

Einheiten:

Hinsichtlich physikalischer Messgrößen und Einheiten gelten die im SI (siehe DIN 1301, Teil 1) getroffenen Vereinbarungen.

Relevante Abkürzungen:

Den nachfolgenden Abkürzungen können arabische Ziffern nachgestellt werden, um mehrfach auftretende Ausprägungen derselben Funktion / desselben Signals unterscheiden zu können.

> +A ⇔ Wirkenergie, Kunde bezieht aus Netz, -A ⇔ Wirkenergie, Kunde liefert an Netz,

ASN.1 ⇔ Abstract Syntax Notation One,

BER ⇔ Basic Encoding Rules,

CR ⇔ Carriage Return,

DIN ⇔ Deutsches Institut für Normung e.V.,

(E) DIN ⇔ Entwurf einer Norm des DIN,

EN ⇔ Europäische Norm,

ID ⇔ Identifikationsnummer,

IEC ⇔ International Electrotechnical Commission,
IEEE ⇔ Institute of Electrical and Electronics Engineers,

IP ⇔ Internet Protocol,

ISO ⇔ Internationale Organisation für Normung,

LSB ⇔ Least Significant Bit, niederwertigstes Bit,

MDE ⇔ Mobile Datenerfassungseinrichtung,

MSB ⇔ Most Significant Bit, höchstwertigstes Bit,

OBIS-T ⇔ OBIS Telemetrie,

R1 ⇔ Blindenergie Quadrant I,
R2 ⇔ Blindenergie Quadrant II,
R3 ⇔ Blindnergie Quadrant III,
R4 ⇔ Blindnergie Quadrant IV,
RS232 ⇔ Serielle Schnittstelle,

S-I ⇔ Sekunden-Index,

SML ⇔ Smart Message Language,

TAG \Leftrightarrow Merkmal / Kennzeichnung / Auszeichnung bei der Kodierung

von Datenelementen,

TCP ⇔ Transmission Control Protocol,

TL ⇔ Type-Length,

UDP ⇔ User Datagram Protocol,

WAN ⇔ Wide Area Network,

XML ⇔ Extensible Markup Language,

ZVEI

Zentralverband Elektrotechnik- und Elektronikindustrie.

Normen

DIN 1301, Teil 1	10.02	Einheiten, Teil 1: Einheitennamen, Einheitenzeichen	
E DIN 43863-4	09.06	Zählerdatenkommunikation – IP-Telemetrie	
DIN EN 62056-21	01.03	Elektrizitätszähler, Zählerstandsübertragung, Teil 21: Datenübertragung für festen und mobilen Anschluss (3rd edition of IEC 61107, vormals IEC 1107)	
DIN EN 62056-61	01.03	Messung der elektrischen Energie – Zählerstandsübertragung, Teil 61: OBIS Objekt Identification System	
IEC 62056-62 DIN EN 62056-62	2002 01/03	Messung der elektrischen Energie - Zählerstandsübertragung, Tarif- u Laststeuerung - Teil 62: Interface-Klassen (IEC 62056-62:2002)	
DIN EN 62056-46	01/03	Messung der elektrischen Energie - Zählerstandsübertragung, Tarif- Laststeuerung - Teil 46: Anwendung des HDLC-Protokolls in der Ve dungsschicht (IEC 62056-46:2002)	
CCITT-CRC16		Standard der CCITT zur Prüfsummenberechnung	
ISO 8859-15	03.99	Informationstechnik - 8-Bit-Einzelbyte-codierte Schriftzeichensätze - Teil 15: Lateinisches Alphabet Nr. 9	

1 Bezug

- Nachfolgende Spezifikation legt ein Kommunikationsprotokoll für Anwendungen im Umfeld der Datenbeschaffung und Parametrierung von Geräten fest.
- Zielsetzung bei der Ausarbeitung der Spezifikation war der primäre Wunsch, eine möglichst einfache, auch zur Implementation auf leistungsschwachen embedded Systems geeignete Struktur zu finden, die für die Datenbeschaffung über Weitverkehrsstrecken genutzt werden kann.
- (5) Vor diesem Hintergrund wurde die "Smart Message Language", SML, geschaffen.

2 Grundstruktur

- (6) Die Grundstruktur gliedert sich in die Elemente:
 - Smart Message Language definiert eine Dateistruktur / Dokumentstruktur zur Aufnahme der zwischen den Endpunkten zu übertragenden Nutzlasten.
 - SML Binary Encoding definiert eine gepackte binäre Kodierung der SML.
 - SML XML Encoding definiert die Kodierung von SML in XML.
 - SML-Transport-Protokoll, benötigt für serielle Punkt-zu-Punkt Verbindungen.
- SML-Nachrichten, siehe Kapitel 4, können, wie letztlich auch eine E-Mail, über zustandslose, gesicherte Kommunikationswege transportiert werden. Für das avisierte Einsatzszenario kann daher folgendes Modell zur Übersicht herangezogen werden:

Bild 1: SML-Nachrichten und Kommunikationswege.

3 Begriffe

(8) Nachstehend werden einige / wichtige der in diesem Dokument verwendeten Begriffe erläutert / definiert:

3.1 SML-Datei

- (9) Als SML-Datei soll eine Informationseinheit verstanden werden, die, vollkommen losgelöst von der jeweils eingesetzten konkreten Transporttechnik (Internet, Telefon, ...), in sich abgeschlossen ist.
- (10) SML-Dateien können in diesem Sinne als abgeschlossene Informationseinheiten aufgefaßt werden, die, genau wie eine E-Mail, in ein Protokoll eingebettet sind und übertragen werden (siehe Bild 2).
- Durch den Ansatz der Verwendung von SML-Dateien wird das Konzept unabhängig von der Aufgabe, konkrete Protokolle zum Informationsaustausch definieren zu müssen. Stattdessen wird lediglich verlangt, in einem konkreten Einsatzfall ein bestimmtes Protokoll (beispielsweise HTTP, FTP, ...) auszuwählen und dieses sachdienlich zu parametrieren.
- Soweit SML-Dateien als Dateien auf Rechnersystemen verwendet werden, sind diese Dateien ohne Einsatz zusätzlicher Rahmen und unter Verwendung der mit Kapitel 6 definierten Kodierung zu notieren, es sei denn, die konkrete Applikation trifft explizit eine anders lautende Vorgabe.

Bild 2: SML-Kommunikationsmodell.

Bild 3: Einordnung von SML in das Umfeld europäischer / internationaler Normen.

4 SML, Smart Message Language

4.1 Grundaufbau

- (13) Eine SML-Datei ist immer als Kette von SML-Nachrichten aufgebaut.
- (14) SML-Dateien können zur Reduktion der Dateigröße segmentiert werden.
- (15) SML-Dateien können in den Varianten ...
 - ... SML-Auftragsdatei,
 - ... SML-Antwortdatei oder
 - ... SML-Kombidatei auftreten.
- (16) SML-Auftragsdateien enthalten die Aufträge ("Requests"). SML-Antwortdateien fassen die Antworten ("Responses") zu den Aufträgen zusammen.
- Jede SML-Auftragsdatei beginnt mit genau einer und enthält genau eine SML_...Open.Req-Nachricht. Sie endet mit genau einer und enthält genau eine SML_...Close.Req-Nachricht. Diese Festlegung gilt ebenfalls für SML-Antwortdateien, denen keine SML-Auftragsdatei zugeordnet werden kann, wobei an Stelle der Variante Request die Variante Response zu verwenden ist.
- (18) SML-Antwortdateien, denen SML-Auftragsdateien zugeordnet werden können, beginnen mit genau einer SML_...Open.Res- oder einer SML_Attention.Res-Nachricht. Sie enden mit genau einer SML_...Close.Res- oder einer SML_Attention.Res-Nachricht.
- Zum Einsatz von SML über Transportmedien mit geringer Performance¹, können SML-Nachrichten ohne den Rahmen einer SML-Datei und ausschließlich als "Response without Request" versendet werden. Dieser Anwendungsfall ist explizit von der Applikation zu definieren.
- Eine SML-Kombidatei enthält die SML-Nachrichten einer SML-Auftragsdatei zuzüglich der SML-Nachrichten der zugehörigen SML-Antwortdatei(en).

5 SML-Nachrichten

- (21) Eine SML-Nachricht ist entweder eine "Request-Nachricht" oder eine "Response-Nachricht".
- (22) Eine SML-Nachricht umfaßt Aufgabe und zugeordnete Attribute.

16

¹ Im Sinne dieser Spezifikation gelten als "*Transportmedien mit geringer Performance*" ausschließlich folgende Varianten: Nahfunk- oder PLC-Strecken zwischen Sensoren und Konzentratoren.

```
SML_Message
                                              SEQUENCE
(A)
          {
           transactionId
                                              Octet String,
           groupNo
                                              Unsigned8,
           abortOnError
                                              Unsigned8,
           messageBody
                                              SML_MessageBody,
           crc16
                                              Unsigned16,
           endOfSmIMsg
                                              EndOfSmlMsg
          }
```

- Die 'transactionId' wird bei der Erzeugung von 'Request-Nachrichten' in ein-eindeutiger² Form durch den Auftraggeber gebildet. Jede 'Response-Nachricht' spiegelt die zu deren 'Request' gehörende Transaktionsnummer unverändert zurück, so dass eine 'Response' stets dem zugehörigen 'Request' zugeordnet werden kann.
- Wird im Sinne des "Push-Betriebs" eine SML-Datei erzeugt, zu deren SML-Response-Nachrichten prinzipbedingt keine SML-Request-Nachrichten existieren, erzeugt der Ersteller dieser SML-Response-Nachricht selbsttätig ein-eindeutige Transaktionsnummern.
- Das Attribut 'groupNo' erlaubt die Bildung von SML-Nachrichten-Gruppen. Dieser Mechanismus soll dazu verwendet werden, anzugeben, welche SML-Nachrichten in einer bestimmten Reihenfolge abzuarbeiten sind und welche nebenläufig (und zwar sowohl im Sinne von Simultanarbeit der ersten wie auch der zweiten Art) ausgeführt werden dürfen.
- (26) Generell erfolgt die Abarbeitung der Gruppen sequentiell und in der Reihenfolge, in der sie innerhalb einer SML-Datei auftreten.
- Das Vermischen von SML-Nachrichten verschiedener Gruppen ist unzulässig.
- Nachrichten innerhalb einer Gruppe können vom Empfänger wahlweise seriell oder nebenläufig abgearbeitet werden.
- Die Prüfsumme (Element ,crc16') ist als CRC16 nach DIN EN 62056-46 zu berechnen. Die Berechnung beginnt mit dem ersten Byte zu ,SML_Message' und endet mit dem letzten Byte zu ,messageBody'. Damit sind die Bytes der Elemente ,crc16' und ,null' von der Prüfsummenberechnung ausgeschlossen.
- Wird eine SML-Request-Nachricht empfangen, die dekodiert werden konnte und deren Prüfsumme fehlerhaft ist, so ist diese SML-Request-Nachricht mit einem 'SML_Attention' (81 81 C7 C7 FE 0B, siehe Tab. 2) und dem Feld 'transactionId'gemäß Absatz (24) zu beantworten. Wird in diesem Fall die Nachricht 'SML_Close-Request' empfangen, so ist der Fehler zu ignorieren und in der Antwort ein korrektes 'SML_Close-Request' zu liefern, dessen Feld 'transactionId'gemäß Absatz (24) gesetzt wird.

-

² Die Eindeutigkeit ist jeweils innerhalb des Umfelds des Erzeugers der Transaktionsnummer zu gewährleisten; nicht gefordert wird eine weltweite Eindeutigkeit (vergleichbar der MAC-Adresse bei Ethernet). Durch die Angaben in der SML-Open-Nachricht kann die Eindeutigkeit auf den jeweiligen Erzeuger zugeordnet werden.

- Wird die Nachricht ,SML_Open-Request' mit fehlerhafter Prüfsumme oder fehlerhafter Struktur ,SML PublicOpen.Req' empfangen, so ist die ganze SML-Datei zu ignorieren³.
- Wird eine SML-Request-Datei empfangen, die dekodiert werden konnte und die nicht mit "SML_Open-Request' beginnt, so ist mindestens⁴ für die erste SML-Nachricht dieser SML-Request-Datei ein SML-Attention mit Fehlerkode "unerwartete SML-Nachricht" zu senden. Die weitere Bearbeitung und / oder korrekte Beantwortung der nachfolgenden SML-Nachrichten ist unzulässig.
- Wird eine SML-Nachricht empfangen, die nicht dekodiert werden kann, so ist wie folgt zu verfahren:
 - Handelt es sich bei der SML-Nachricht um die erste Nachricht, so wird die ganze SML-Datei verworfen (gilt sowohl für SML-Auftragsdateien als auch für SML-Antwortdateien).
 - Handelt es sich um eine der nachfolgenden SML-Nachrichten, so wird als Antwort für die betroffene SML-Nachricht ein SML-Attention (81 81 C7 C7 FE 01, siehe Tab. 2) gefolgt von einem SML-Close gesendet (gilt nur für SML-Auftragsdateien). Alle weiteren SML-Nachrichten der betroffenen SML-Datei werden ignoriert (sowohl bei SML-Auftragsdateien als auch bei SML-Antwortdateien).
 - Die ,transactionId' ist für die SML-Attention sowie für das sich anschließende SML-Close gemäß Absatz (24) zu erzeugen.
- (34) SML-Nachrichten werden grundsätzlich in SML-Dateien zusammengefasst.

³ Ignorieren: Der empfangene Inhalt wird verworfen. Es wird keine Antwort generiert.

⁴ Alterantiv ist es zulässig, für jede SML-Nachricht der SML-Datei ein SML-Attention zu generieren.

Reihenfolge der SML-Nachrichten	Trans- aktions- nummer	Gruppen-Nr.	SML-Nachricht	Kommentar
0	0	1	OPEN	Wird zuerst ausgeführt.
1	1	4	GET_ProfilPack	Erste Gruppe, wird als zweiter
2	2	4	GET_ProfilPack	Block ausgeführt. Beispielsweise drei Lastgänge
3	3	4	GET_ProfilPack	ablesen.
4	4	7	GET_ProfilPack	Zweite Gruppe, wird als dritte
5	5	7	GET_ProfilList	Aktion ausgeführt, Beispielsweise einen Lastgang,
6	6	7	GET_ProfilList	die Verrechnungsliste und das Logbuch ablesen.
7	7	8	SET_ProcParameter	Wird als vierte Aktion ausgeführt. Beispielsweise den Bezugszeitpunkt nachführen
8	8	8	CLOSE.Req	Wird zuletzt bearbeitet.

Tab. 1: Beispiel zur Verwendung des Merkmals 'Gruppen-Nummer'.

- Damit ist die Transaktionsnummer lediglich das Merkmal, um die Responses den zugehörigen Requests zuzuordnen. Sie hat keinerlei Einfluss auf die Reihenfolge der Ausführung der SML-Nachrichten beim Empfänger.
- Das Attribut 'abortOnError' legt fest, wie im Falle von Fehlern bei der Ausführung der SML-Nachricht verfahren werden soll, wobei das abschließende Close immer ausgeführt werden muss und nicht ausgeführte Requests immer eine Response mit der Fehlermeldung 'nicht ausgeführt' als Rückmeldung erzeugen:

(B)	abortOnError	⇔ 0x00	Ausführung fortsetzen,
	abortOnError	⇔ 0x01	Ausführung ab der
			nächsten Gruppe fortsetzen,
	abortOnError	<⇒ 0x02	Ausführung ab der aktuellen
			Gruppe fortsetzen, danach
			keine weitere Gruppe
			mehr ausführen.
			Falls innerhalb der selben
			Gruppe ein ,0x02' zu finden
			ist, auf das ein ,0x01' folgt, ist
			die Ausführung sofort
			abzubrechen.
	abortOnError	⇔ 0xFF	Ausführung sofort abbrechen.

(C)	SML_MessageBody	::=CHOICE	
	OpenRequest OpenResponse	[0x00000100] [0x00000101]	SML_PublicOpen.Req SML_PublicOpen.Res
	CloseRequest CloseResponse	[0x00000200] [0x00000201]	SML_PublicClose.Req SML_PublicClose.Res
	GetProfilePackRequest GetProfilePackResponse	[0x00000300] [0x00000301]	SML_GetProfilePack.Req SML_GetProfilePack.Res
	GetProfileListRequest GetProfileListResponse	[0x00000400] [0x00000401]	SML_GetProfileList.Req SML_GetProfileList.Res
	GetProcParameterRequest GetProcParameterResponse	[0x00000501]	SML_GetProcParameter.Req SML_GetProcParameter.Res
	SetProcParameterRequest	[0x00000600]	SML_SetProcParameter.Req
	SetProcParameterResponse GetListRequest	[0x00000601] [0x00000700]	SML_SetProcParameter.Res SML_GetList.Req
	GetListResponse GetCosemRequest	[0x00000701] [0x00000800]	SML_GetList.Res SML_GetCosem.Req
	GetCosemResponse	[0x00000801]	SML_GetCosem.Res
	SetCosemRequest SetCosemResponse	[0x00000900] [0x00000901]	SML_SetCosem.Req SML_SetCosem.Res
	ActionCosemRequest ActionCosemResponse	[0x00000A00] [0x00000A01]	SML_ActionCosem.Req SML_ActionCosem.Res
	AttentionResponse }	[0x0000FF01]	SML_Attention.Res

5.1 SML-Bezeichner

5.1.1 SML_PublicOpen.Req

Der SML_PublicOpen.Req muss immer zu Beginn einer SML-Auftragsdatei vorhanden sein. Er dient der Identifikation des Auftraggebers und der Authentifizierung per Benutzer / Passwort sowie der Zuordnung von SML-Antwortdatei(en) an die SML-Auftragsdatei.

Jeder Auftragnehmer muss auf den SML_PublicOpen.Req entweder mit einer SML_PublicOpen.Res oder einer SML_Attention.Res antworten. Die leere "Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
SML_PublicOpen.Req
                                                SEQUENCE
(D)
            codepage
                                                Octet String OPTIONAL,
            clientId
                                                Octet String
            reqFileId
                                                Octet String
            serverId
                                                Octet String OPTIONAL,
                                                Octet String OPTIONAL.
            username
            password
                                                Octet String OPTIONAL,
            smlVersion
                                                Unsigned8 OPTIONAL,
          }
```

(39) Per ,codepage' wird, ist der Wert angegeben, eine andere als die Default-Codepage vereinbart. Die ,Codepage' legt fest, welcher Zeichensatz zur Interpretation von Zeichenketten zu verwenden ist. Fehlt der Wert, wird ,ISO 8859-15' verwendet.

Der Inhalt zur "Codepage" selber ist immer als Zeichenkette in ISO 8859-15 zu notieren.

- (40) Der Parameter 'serverld' erlaubt es, ist er angegeben, per 'PublicOpen.Req' im Sinne einer Adresse gezielt eine SML-Datenquelle (ein konkretes Messgerät) oder ein Softwaremodul anzusprechen. In diesem Fall müssen alle nachfolgenden SML-Nachrichten ebenfalls den Parameter 'serverld' mit Inhalt angeben. Fehlt der Parameter 'serverld' in einer der nachfolgenden Nachrichten, so ist für die entsprechende SML-Nachricht mit einem 'SML Attention' (81 81 C7 C7 FE 0C, siehe Tab. 2) zu antworten.
- Fehlt der Parameter 'serverld', wird die Anfrage als 'Broadcast' gewertet. In diesem Fall muß bei allen nachfolgenden SML-Nachrichten der Parameter 'serverld' ebenfalls fehlen. SML-Nachrichten, die in dieser Situation dennoch den Parameter 'serverld' angeben, sind zu ignorieren. In jedem Fall ist das abschließende 'SML_Close' zu beantworten.
- Der Parameter ,clientld' wird bei der Erzeugung einer SML-Auftragsdatei vom Auftraggeber erzeugt und dient der eindeutigen Adressierung der SML-Antwortdatei des Clients.
- Der Parameter 'reqFileId' bezeichnet in systemweit⁵ eindeutiger Form ein konkretes SML-Auftragsdatei- / SML-Antwortdatei-Tupel. Er erlaubt es, SML-Antworten zu deren Aufträgen zuzuordnen.

-

⁵ Die Eindeutigkeit ist jeweils innerhalb des Umfelds des Erzeugers der 'reqFileId' zu gewährleisten; nicht gefordert wird eine weltweite Eindeutigkeit (vergleichbar der MAC-Adresse bei Ethernet). Durch die anderen Angaben in der SML-Open-Nachricht kann die Eindeutigkeit auf den jeweiligen Erzeuger zugeordnet werden.

- Die 'reqFileld' liefert die eindeutige Kennzeichnung der SML-Datei, beispielsweise gebildet aus dem aktuellen Zeitstempel.
- (45) Fehlt der Parameter ,smlVersion', wird die Version 1 als Standard angenommen.

5.1.2 SML_PublicOpen.Res

Der SML_PublicOpen.Res steht immer zu Beginn einer SML-Antwortdatei. Er dient der Identifikation der SML-Antwortdatei zu der zugehörigen SML-Auftragsdatei.

```
SML PublicOpen.Res
                                                SEQUENCE
                                          ::=
(E)
          {
            codepage
                                                Octet String OPTIONAL,
            clientId
                                                Octet String OPTIONAL,
            regFileId
                                                Octet String,
            serverId
                                                Octet String,
            refTime
                                                SML_Time OPTIONAL,
            smlVersion
                                                Unsigned8 OPTIONAL,
          }
```

Das Element ,SML_Time' wird entweder als Sekunden-Index oder als Zeitstempel angegeben.

```
(F) SML_Time ::= CHOICE

{
    secIndex [0x01] Unsigned32,
    timestamp [0x02] SML_Timestamp,
    localTimestamp [0x03] SML_TimestampLocal
}
```

- Handelt es sich um einen Zeitstempel, wird dieser immer in Sekunden ausgehend vom 01.01.1970, 00:00:00 (UNIX-Bezugszeitpunkt, bezogen auf UTC), gebildet.
- (G) SML_Timestamp ::= Unsigned32
- (49) Handelt es sich um eine lokale Zeitangabe, wird diese wie folgt notiert:

- (50) Das Element ,localOffset' ist in Minuten anzugeben.
- (51) Das Element ,seasonTimeOffset' ist in Minuten anzugeben.
- Die lokale Zeit ergibt sich wie folgt:

 localTime = Timestamp + localOffset + seasonTimeOffset

- Falls die Antwort von einem Gerät oder einem Softwaremodul geliefert wird, das selbst nicht über eine Zeitinformation verfügt, fehlt diese Angabe im 'PublicOpen.Res'.
- (54) Fehlt der Parameter ,smlVersion', wird die Version 1 als Standard angenommen.
- (55) Ist die SML-Datei eine SML-Response-Datei, zu der eine SML-Request-Datei gehört, wird das Element ,reqFileId' der SML-Request-Datei zurückgegeben.
- (56) Ist die SML-Datei eine SML-Response-Datei, zu der keine SML-Request-Datei gehört, wird das Element ,reqFileId', vergleichbar der Erzeugung dieses Attributs beim Erstellen einer SML-Request-Datei, auf einen systemweit eindeutigen Namen gesetzt.
- Ist die SML-Datei eine SML-Response-Datei, zu der keine SML-Request-Datei gehört, darf das Element ,clientld' weggelassen werden; in allen anderen Fällen ist der mit dem ,PublicOpen.Req' angelieferte Wert dort einzutragen.
- (58) Das Feld ,refTime' liefert den Referenzzeitpunkt zur Erstellung der SML-Antwortdatei.

5.1.3 SML_PublicClose.Req

- (59) Der SML_PublicClose.Req muss immer am Ende einer SML-Auftragsdatei vorhanden sein. Er beendet diese Datei.
- Jeder Auftragnehmer muss auf den SML_PublicClose.Req mit einer SML_PublicClose.Res oder einer SML_Attention.Res antworten. Die leere "Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
(I) SML_PublicClose.Req ::= SEQUENCE {
    globalSignature SML_Signature OPTIONAL }
```

5.1.4 SML PublicClose.Res

(61) Der SML_PublicClose.Res steht immer am Ende einer SML-Antwortdatei. Er beendet diese Datei.

5.1.5 SML_GetProfilePack.Req

(62) In einer SML-Auftragsdatei kann eine oder können mehrere SML_GetProfilePack-Nachrichten vorhanden sein.

- Jede SML_GetProfilePack.Req dient der Anfrage von einzelnen Messwerten oder Messwerte-Listen, die in gepackter Form übertragen werden.
- Der Auftragnehmer muss auf jeden SML_GetProfilePack.Req mit genau einer SML_GetProfilePack.Res oder einer SML_Attention.Res antworten. Die leere 'Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
SML_GetProfilePack.Req
                                              SEQUENCE
                                         ∷=
(L)
           serverId
                                              Octet String OPTIONAL,
                                              Octet String OPTIONAL,
           username
                                              Octet String OPTIONAL,
           password
           withRawdata
                                              Boolean OPTIONAL,
                                              SML_Time OPTIONAL,
           beginTime
           endTime
                                              SML_Time OPTIONAL,
           parameterTreePath
                                              SML TreePath.
                                              List_of_SML_ObjRegEntry OPTIONAL,
           object_List
           dasDetails
                                              SML_Tree OPTIONAL
          }
     List_of_SML_ObjReqEntry
                                              SEQUENCE OF
(M)
          {
           object_List_Entry
                                              SML_ObjReqEntry
          }
     SML_ObjReqEntry
                                              Octet String
                                         ::=
(N)
```

- Das Element ,parameterTreePath' bezeichnet die Messwerte-Liste und dient damit der Einordnung in Varianten wie Logbuch, Lastgang oder vergleichbar. Es muß mindestens mit einer Kennzahl besetzt sein {zur Kodierung siehe Absätze (DD) und (97)}.
- Die ,object_List' wird benötigt, um die gewünschten Kanäle zur Ablesung von Lastgängen mit dem Auftrag angeben zu können. Ist dieses Element nicht angegeben oder leer, so sind alle in dem Profil vorhandenen Kanäle in der Antwort aufzuführen.
- (67) Der gewünschte Zielbereich wird über Zeitgrenzen angegeben.
- (68) Es gilt folgende Vereinbarung, falls Zeitgrenzen per Sekunden-Index definiert werden⁶:
 - (69) Der Sekunden-Index mit dem Wert ,00000000' beschreibt stets den zeitlich am weitesten in der Vergangenheit liegenden Wert.
 - (70) Der Sekunden-Index mit dem Wert 'FFFFFFF' beschreibt stets den 'aktuellen Eintrag', also den zeitlich direkt vor dem aktuellen Zeitpunkt liegenden Wert.

.

⁶ Das aktuell vorliegende Einsatzumfeld sieht ausschließlich die Verwendung des Sekunden-Index vor, siehe Erläuterung zu "SML_Time". Mögliche, künftige Erweiterungen können hierzu weitere Alternativen bezeichnen.

- (71) Falls bei Bereichsanfragen der gewünschte Sekunden-Index nicht verfügbar ist, ist in der Antwort ...
 - ... falls für den Beginn einer Bereichsgrenze vorhanden, immer der direkt zeitlich danach⁷ liegende Wert oder ... falls dieser nicht vorhanden ist, der 'aktuelle Eintrag'
 - ... falls für das Ende einer Bereichsgrenze vorhanden, immer der direkt zeitlich davor⁸ liegende Wert oder ... falls dieser nicht vorhanden ist, der 'aktuelle Eintrag'

zu verwenden.

- (72) Falls die ,beginTime' nicht angegeben ist, ist der Wert ,00000000' anzunehmen.
- (73) Falls die 'endTime' nicht angegeben ist, ist der Wert 'FFFFFFF' anzunehmen.
- Per ,dasDetails' können bedarfsweise ergänzend für die Datenbeschaffung benötigte Parameter übertragen werden. Diese werden, siehe Kapitel 5.1.10, als Baumstruktur übertragen.

5.1.6 SML GetProfilePack.Res

- (75) In einer SML-Antwortdatei kann eine oder können mehrere SML_GetProfilePack.Res-Nachrichten vorhanden sein.
- Jede SML-Datenquelle liefert genau eine SML_GetProfilePack.Res-Antwort auf einen SML_GetProfilePack.Req-Auftrag.

```
SML GetProfilePack.Res
                                                SEQUENCE
(O)
          {
            serverId
                                                Octet String,
            actTime
                                                SML Time,
            regPeriod
                                                Unsigned32,
            parameterTreePath
                                                SML_TreePath,
            header List
                                                List_of_SML_ProfObjHeaderEntry,
                                                List_of_SML_ProfObjPeriodEntry,
            period List
            rawdata
                                                Octet String OPTIONAL,
            profileSignature
                                                SML_Signature OPTIONAL
          }
```

Bundesamt für Sicherheit in der Informationstechnik

⁷ In Richtung größerer Indices.

⁸ In Richtung kleiner Indices.

```
List_of_SML_ProfObjHeaderEntry
                                          ::=
                                               SEQUENCE OF
(P)
           header_List_Entry
                                               SML_ProfObjHeaderEntry
     SML_ProfObjHeaderEntry
                                               SEQUENCE
(Q)
                                          ::=
          {
           objName
                                               Octet String,
                                               SML_Unit,
           unit
           scaler
                                               Integer8
          }
(R)
     List_of_SML_ProfObjPeriodEntry
                                          ::=
                                               SEQUENCE OF
          {
           period_List_Entry
                                               SML_ProfObjPeriodEntry
          }
     SML_ProfObjPeriodEntry
(S)
                                          ::=
                                               SEQUENCE
          {
                                               SML_Time,
           valTime
           status
                                               Unsigned64,
                                               List_of_SML_ValueEntry,
           value_List
                                               SML_Signature OPTIONAL
           periodSignature
          }
     List_of_SML_ValueEntry
                                               SEQUENCE OF
(T)
                                          ::=
           value_List_Entry
                                               SML_ValueEntry
          }
     SML_ValueEntry
                                          ::= SEQUENCE
(U)
          {
           value
                                               SML_Value,
           valueSignature
                                               SML_Signature OPTIONAL
          }
```

```
SML_Value
                                               ::= IMPLICIT CHOICE
(V)
           {
             boolean-Value
                                                                     boolean,
             byte-List
                                                                     Octet String<sup>9</sup>,
             8-Bit-Integer
                                                                     Integer8,
             16-Bit-Integer
                                                                     Integer16,
             32-Bit-Integer
                                                                     Integer32,
                                                                     Integer64,
             64-Bit-Integer
             8-Bit-Unsigned
                                                                     Unsigned8,
             16-Bit-Unsigned
                                                                     Unsigned16,
                                                                     Unsigned32,
             32-Bit-Unsigned
             64-Bit-Unsigned
                                                                     Unsigned64
             smlList
                                                                     SML_ListType
           }
     SML_Unit
                                               ::= Unsigned8
(W)
```

Zahlenwerte siehe DLMS-Unit-List, zu finden beispielsweise in IEC 62056-62.

- Die Anzahl der Elemente in der 'Überschriften-Liste' ('header_List') muss immer identisch mit der Anzahl der Elemente in der Liste der Registrierperioden ('value List') sein.
- (78) Die Anordnung der Registrierperioden in der Liste erfolgt nach dem Muster "der Wert mit dem kleinsten Sekunden-Index zuerst".
- (79) Das Element ,actTime' liefert die Zeitinformation, die zum Zeitpunkt des Beginns der Ausführung des Auftrags bei der Datenquelle vorgelegen hat.
- Das Element ,valTime' liefert die Zeitinformation, die zum Zeitpunkt der Messwertbildung bei der Datenquelle vorgelegen hat.
- Das Element ,regPeriod' legt die Dauer der verwendeten Registrierperiode fest. Der Wert wird in Sekunden angegeben. Handelt es sich bei der Aufzeichnung um ein ereignisorientiertes Profil (liegt also keine konkrete Registrierperiode vor), ist als Wert ,0' zu verwenden.
- Die Verwendung der beiden voneinander getrennten Listen ("header_List" und "period_List") wird gewählt, um auf die mehrfache Erfassung redundanter Informationen, wie beispielsweise Sekunden-Index und Status zum Zeitpunkt der Messwertbildung je Registrierperiode bei mehreren Lastgängen ("+A", "-A", …), verzichten zu können.
- Durch die wahlweise Verwendung von 'profileSignature', 'periodSignature' oder 'valueSignature' können sowohl ganze Lastgänge, EinzelMesswerte wie auch Tupel ganzer Registrierperioden gemeinsam geschützt werden. Welcher Ansatz verwendet wird, hängt dabei von der Applikation ab.

⁹ Hinweis: Die Verwendung eines Octet String mit der länge ,0' ist zulässig.

Mit dem Feld ,scaler' wird der Bezug zwischen der Einheit und dem Zahlenwert wie folgt hergestellt:

```
Zahlenwert = SML_Value x 10<sup>scaler</sup>
```

(85) Per ,smlList' können in einem SML Value folgende Datenstrukturen transportiert werden:

5.1.7 SML_GetProfileList.Req

- (86) In einer SML-Auftragsdatei kann eine oder können mehrere SML_GetProfileList-Nachrichten vorhanden sein.
- Jede SML_GetProfileList.Req dient der Anfrage von einzelnen Messwerten oder Messwerte-Listen, die in simpler Listenform übertragen werden. Im Gegensatz zu SML_GetProfilePack, bei der die Antworten möglichst ohne Redundanz und optimal gepackt übertragen werden, erwartet SML_GetProfile simple Listen. Diese bieten den Nachteil, bei der Übertragung von Tageslastgängen erheblich mehr Datenvolumen zu erzeugen, liefern im Gegenzug aber den Vorteil einer einfachen Struktur, die bei Systemen mit viertelstündlicher Datenbeschaffung erheblich effizienter in der Anwendung wird.
- Der Auftragnehmer kann auf jeden SML_GetProfileList.Req mit einer oder mehreren SML_GetProfileList.Res oder einer SML_Attention.Res antworten. Die leere ,Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
SML_GetProfileList.Req
                                              SEQUENCE
(Y)
          {
                                              Octet String OPTIONAL,
           serverId
                                              Octet String OPTIONAL,
           username
                                              Octet String OPTIONAL,
           password
                                              Boolean OPTIONAL,
           withRawdata
           beainTime
                                              SML Time OPTIONAL,
           endTime
                                              SML_Time OPTIONAL,
           parameterTreePath
                                              SML_TreePath,
           object List
                                              List_of_SML_ObjReqEntry OPTIONAL,
           dasDetails
                                              SML_Tree OPTIONAL
          }
```

(89) Für die Elemente zu SML_GetProfileList.Req gelten die unter SML_GetProfilePack.Req definierten Vorgaben.

5.1.8 SML_GetProfileList.Res

- (90) In einer SML-Antwortdatei kann eine oder können mehrere SML_GetProfileList.Res-Nachrichten vorhanden sein.
- (91) Jede SML-Datenquelle liefert eine oder mehrere SML_GetProfileList.Res-Antwort auf einen SML_GetProfileList.Req-Auftrag. Jede SML_GetProfileList.Res-Antwort enthält die Messwerte einer Registrierperiode (damit üblicherweise einer Viertelstunde) im Sinne eines Atoms.

```
SML GetProfileList.Res
                                                SEQUENCE
(Z)
                                          ::=
          {
            serverId
                                                Octet String,
            actTime
                                                SML Time,
            regPeriod
                                                Unsigned32,
            parameterTreePath
                                                SML TreePath,
            valTime
                                                SML Time,
            status
                                                Unsigned64,
            period List
                                                List_of_SML_PeriodEntry,
                                                Octet String OPTIONAL,
            rawdata
            periodSignature
                                                SML Signature OPTIONAL
          }
     List_of_SML_PeriodEntry
                                                SEQUENCE OF
(AA)
            period List Entry
                                                SML PeriodEntry
     SML_PeriodEntry
                                          ::= SEQUENCE
(BB)
            obiName
                                                Octet String,
                                                SML_Unit,
            unit
            scaler
                                                Integer8,
            value
                                                SML Value,
                                                SML_Signature OPTIONAL
            valueSignature
```

Durch die wahlweise Verwendung von 'periodSignature' oder 'valueSignature' können sowohl EinzelMesswerte als auch Tupel ganzer Registrierperioden gemeinsam geschützt werden. Welcher Ansatz verwendet wird, hängt dabei von der Applikation ab.

5.1.9 SML_GetProcParameter.Req

- (93) Per SML_GetProcParameter.Req können in einer SML-Auftragsdatei Betriebsparameter (Modem-Parameter, Protokoll-Parameter, Auslastung von Software-Modulen, ...) abgefragt werden.
- Der Auftragnehmer antwortet auf diese Nachricht per SML_GetProcParameter.Res oder SML_Attention.Res in der Antwortdatei. Die leere 'Server-ID' ist als Broadcast-Adresse für

zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

- (95) Ein einzelner Parameter ist immer durch dessen OBIS-Kennzahl definiert. Aus der OBIS-Kennzahl leitet sich implizit der konkrete Datentyp und der Wertebereich für das zu liefernde Ergebnis ab. Die konkrete Zuordnung sowie zulässige OBIS-Kennzahlen und deren Bedeutung sind dem Anhang zu entnehmen. Innerhalb der Kodierung einer SML-Nachricht werden die Datentypen außerdem mit kodiert, so dass die generische Implementation zur Konvertierung der Parameter in interne Programmelemente einfach möglich ist.
- (96) Da die Struktur und Anzahl der für einen konkreten Anwendungsfall benötigten Parameter im Vorfeld unbekannt ist, das ständige Anpassen der SML-Spezifikation an neue Anforderungen aber vermieden werden sollte, verwenden die "SML_..._ProcParameter"-Nachrichten eine Baumstruktur, so dass Parameter-Bäume beliebiger Anordnung transportiert werden können.

```
(cc) SML_GetProcParameter.Req
                                         ::=
                                              SEQUENCE
           serverId
                                              Octet String OPTIONAL,
           username
                                              Octet String OPTIONAL,
                                              Octet String OPTIONAL,
           password
           parameterTreePath
                                              SML TreePath
           attribute
                                              Octet String OPTIONAL,
          }
(DD)
    SML_TreePath
                                              SEQUENCE OF
          {
                                              Octet String
           path_Entry
```

- (97) Per SML_TreePath können gezielt Parameter innerhalb eines Parameterbaums adressiert werden. Dabei beginnt ein SML_TreePath grundsätzlich ab dem Root-Element des Parameterbaums. Die Bedeutung (entsprechend der Adresse) des Root-Elements ist mit dessen Parameter-Namen gegeben.
- Durch die Listen-Struktur wird der Parameter-Name des Root-Elements grundsätzlich in jenem SML_TreePath-Element zu finden sein, das als erstes und damit direkt unter "SML GetProcParameter.Reg' zu finden ist.
- Über die Eigenschaft ,attribute' kann im Bedarfsfall eine Einschränkung / Detailinformation zur Präzisierung des gewünschten Anfrageergebnisses mitgegeben werden.

5.1.10 SML_GetProcParameter.Res

(100) Per SML_GetProcParameter.Res wird in einer SML-Antwortdatei der Auftrag SML_GetProcParameter.Req quittiert.

```
SML_GetProcParameter.Res
                                           ::=
                                                SEQUENCE
(EE)
            serverId
                                                Octet String,
            parameterTreePath
                                                SML_TreePath,
            parameterTree
                                                SML_Tree
     SML_Tree
                                                SEQUENCE
(FF)
          {
            parameterName
                                                Octet String,
                                                SML_ProcParValue OPTIONAL,
            parameterValue
            child_List
                                                List_of_SML_Tree OPTIONAL
(GG)
    SML_ProcParValue
                                           ::= CHOICE
            smlValue
                                                [0x01]
                                                               SML_Value<sup>10</sup>,
                                                               SML_PeriodEntry,
            smlPeriodEntry
                                                [0x02]
            smlTupelEntry
                                                [0x03]
                                                               SML_TupelEntry,
            smlTime
                                                [0x04]
                                                               SML_Time,
            smlListEntry
                                                [0x05]
                                                               SML_ListEntry
          }
```

Hinweis

Applikationen sollten jeweils festlegen, ob Inhalte vom Typ SML_Time direkt per Choice 0.004 oder indirekt über den Inhalt von SML_Value zu übertragen sind.

```
SML_TupelEntry
                                            ::= SEQUENCE
(HH)
           {
                                            Octet String,
            serverId
            secIndex
                                            SML_Time,
            status
                                            Unsigned64,
            unit_pA
                                            SML_Unit,
                                            Integer8,
            scaler_pA
            value_pA
                                            Integer64,
            unit_R1
                                            SML_Unit,
            scaler_R1
                                            Integer8,
            value_R1
                                            Integer64,
            unit_R4
                                            SML_Unit,
            scaler_R4
                                            Integer8,
            value_R4
                                            Integer64,
            signature_pA_R1_R4
                                            Octet String,
                                            SML_Unit,
            unit_mA
            scaler_mA
                                            Integer8,
                                            Integer64,
            value_mA
            unit_R2
                                            SML_Unit,
            scaler_R2
                                            Integer8,
            value_R2
                                            Integer64,
            unit_R3
                                            SML_Unit,
            scaler_R3
                                            Integer8,
            value_R3
                                            Integer64,
            signature_mA_R2_R3
                                            Octet String
           }
     List_of_SML_Tree
                                                  SEQUENCE OF
(II)
                                            ::=
            tree_Entry
                                                  SML_Tree
```

- (101) Per ,SML_Tree' können einzelne Parameter (Blätter oder Knoten) mit deren (bei Knoten) darunter folgenden Kindern (siehe ,child_List') aufgebaut werden. Konkret kann durch einen ,SML Tree' damit ...
 - ... ein einzelner Parameter,
 - ... ein Knoten mit einer darunter hängenden Liste von weiteren Parametern oder
 - ... ein Knoten mit einer darunter hängenden Liste von weiteren Teilbäumen abgebildet werden.
- (102) Die Elemente 'parameterValue' und 'child_List' sind beide optional, so dass folgende Varianten abgebildet werden können:
 - Ein Parameter besteht aus Namen (angegeben per OBIS) und Wert.
 - Ein Parameter besteht aus Namen und Teilbaum oder Liste weiterer Parameter.
 - Ein Parameter besteht aus Namen, Wert und Teilbaum oder Liste weiterer Parameter.

- Namen werden per OBIS-Kennzahl kodiert.
- Ob ein ,SML_Tree' als Blatt oder Knoten zu werten ist, wird durch das Vorhandensein des Elements ,child_List' festgelegt. Hat ein ,SML_Tree' das Element ,child_List', ist es ein Knoten, fehlt dieses Element, ist es ein Blatt.

5.1.11 SML_SetProcParameter.Req

- (104) Per SML_SetProcParameter.Req können in einer SML-Auftragsdatei Betriebsparameter (beispielsweise die Baudrate zum Zugriff auf ein Endgerät) übertragen werden.
- (105) Zur Strukturierung sei auf die Hinweise in Kapitel 5.1.9 verwiesen.

(106) Der Auftragnehmer antwortet auf diese Nachricht per SML_Attention.Res. Die leere "Server-ID" ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

5.1.12 SML Attention.Res

- (107) Per SML_Attention.Res werden in einer SML-Antwortdatei potentielle positive Quittungen, Fehlermeldungen, Warnungen oder andere Hinweise des Auftragnehmers an den Auftraggeber gemeldet.
- (108) Damit die (Fehler-) Meldungen sowohl automatisch ausgewertet als auch als Text einfach an den Bediener ausgegeben werden können, werden die Elemente 'attentionNo' und 'attentionMsg' verwendet.
- (109) Die Vergabe global gültiger Nummern wird mit Kapitel 5.1.13 definiert.

5.1.13 Globale SML-Attentionnumber

(110) Nachstehend folgt die Liste der global definierten Fehlernummern, siehe Kapitel 5.1.12:

Fehlernummer	Bedeutung
(Darstellung als Bytekette in hexadezimaler Form)	
	reserviert.
81 81 C7 C7 E0 00	Beginn applikationsspezifischer Fehlernummern 应用特殊的错误号:开始
	Applikationsspezifische Fehlernummern
81 81 C7 C7 FC FF	Ende applikationsspezifischer Fehlernummern 应用特殊的错误号:结束
81 81 C7 C7 FD 00	Siehe Tab. 3 参见表3
	Siehe Tab. 3
81 81 C7 C7 FD FF	Siehe Tab. 3
81 81 C7 C7 FE 00	Fehlermeldung, die keiner der nachstehend definierten Bedeutungen zugeordnet werden können. 目前未定义
81 81 C7 C7 FE 01	Unbekannter SML-Bezeichner. sml 识别码不可识别,见20页的识别码
81 81 C7 C7 FE 02	Unzureichende Authentifizierung, Benutzer- / Passwort-Kombination unzulässig. 不允许的鉴定号、用户名、密码
81 81 C7 C7 FE 03	Zieladresse (,serverld') nicht verfügbar.
81 81 C7 C7 FE 04	Auftrag (,reqFileId') nicht verfügbar.
81 81 C7 C7 FE 05	Ein oder mehrere Zielattribut(e) nicht zu beschreiben.
81 81 C7 C7 FE 06	Ein oder mehrere Zielattribut(e) nicht zu lesen.
81 81 C7 C7 FE 07	Kommunikation mit Messstelle gestört.
81 81 C7 C7 FE 08	Rohdaten nicht zu interpretieren.
81 81 C7 C7 FE 09	Gelieferter Wert außerhalb des zulässigen Wertebereichs.
81 81 C7 C7 FE 0A	Auftrag nicht ausgeführt (beispielsweise, weil der angelieferte 'parameter-TreePath' auf ein nicht vorhandenes Element zeigt).
81 81 C7 C7 FE 0B	Prüfsumme fehlerhaft
81 81 C7 C7 FE 0C	Broadcast nicht unterstützt
81 81 C7 C7 FE 0D	Unerwartete SML-Nachricht (z.B. eine SML-Datei ohne ein Open Request)
81 81 C7 C7 FE 0E	Unbekanntes Objekt im Profil (der OBIS-Kode in der Anfrage eines Profils verweist auf eine Datenquelle, die nicht im Profil aufgezeichnet worden ist)
81 81 C7 C7 FE 0F	Nicht unterstützter Datentyp innerhalb eines Setzbefehles (z.B. entspricht der Datentyp in einer SetProcPar.Req Nachricht nicht dem erwarteten Datentyp)
81 81 C7 C7 FE 10	Optionales Element nicht unterstützt (Ein in SML als OPTIONAL definiertes Element wurde entgegen der von der Applikation getroffenen Annahme empfangen.)

Fehlernummer (Darstellung als Bytekette in hexadezimaler Form)	Bedeutung
81 81 C7 C7 FE 11	Angefragtes Profil hat keinen einzigen Eintrag
81 81 C7 C7 FE 12	Bei Profilanfragen: Endegrenze liegt vor Beginngrenze
81 81 C7 C7 FE 13	Bei Profilanfragen: Im angefragten Bereich liegen keine Einträge vor. In anderen Bereichen ist mindestens ein Eintrag vorhanden
81 81 C7 C7 FE 14	Eine SML-Datei wurde ohne SML-Close beendet.
81 81 C7 C7 FE 15	Bei Profilanfragen: Das Profil kann temporär nicht ausgegeben werden (weil es beispielsweise zum Zeitpunkt der Anfrage umorganisiert wird oder eine Signatur zum Profileintrag zu berechnen ist).
	reserviert.

Tab. 2: Liste globaler Fehlernummern.

(111) Nachstehend folgt die Liste der global definierten Hinweisnummern, siehe Kapitel 5.1.12:

Hinweisnummer (Darstellung als Bytekette in hexadezimaler Form)	Bedeutung
81 81 C7 C7 FD 00	Ok, positive Quittung.
81 81 C7 C7 FD 01	Auftrag wird später ausgeführt und Ergebnis wird per Response-without- Request an Serveradresse übermittelt.
	reserviert

Tab. 3: Liste globaler Hinweisnummern.

5.1.14 SML_GetList.Req

(112) Per SML_GetList.Req kann eine im Server vorparametrierte Liste von Datenwerten angefragt werden. Als Antwort ist entweder ein SML_GetList.Res oder ein SML_Attention.Res zu erzeugen. Die leere 'Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
SML_GetList.Req
                                                SEQUENCE
(LL)
          {
            clientId
                                                Octet String,
            serverId
                                                Octet String
                                                               OPTIONAL,
                                                Octet String
                                                               OPTIONAL,
            username
            password
                                                Octet String
                                                               OPTIONAL,
            listName
                                                Octet String
                                                               OPTIONAL
          }
```

(113) Per Attribut ,listName' kann die gewünschte Liste benannt werden. Es legt per OBIS die gewünschte Größe / Liste fest. Dadurch, dass dieses Element als "optional" gekennzeich-

net ist, können einfache Geräte auf dessen Interpretation verzichten und senden lediglich den einzig von ihnen zu liefernden Zählerstand, wobei sie in der Antwort dessen Bedeutung per OBIS angeben müssen.

5.1.15 SML_GetList.Res

(114) Per SML_GetList.Res kann eine Liste vorparametrierter Datenwerte übertragen werden.

```
SEQUENCE
(MM) SML_GetList.Res
                                         ::=
           clientId
                                              Octet String
                                                            OPTIONAL,
           serverId
                                              Octet String,
           listName
                                              Octet String
                                                            OPTIONAL,
           actSensorTime
                                              SML_Time
                                                            OPTIONAL,
           valList
                                              SML List,
           listSignature
                                              SML_Signature OPTIONAL,
           actGatewayTime
                                              SML_Time
                                                            OPTIONAL
          }
```

- (115) Mit dem optionalen Attribut 'actSensorTime' kann ein Sensor, der diese SML-Nachricht erzeugt, seine eigene, aktuelle Zeitinformation beifügen.
- (116) Mit dem optionalen Attribut 'actGatewayTime' kann ein Gateway, das diese SML-Nachricht transportiert / einer Zwischenverarbeitung unterzieht, seine eigene, aktuelle Zeitinformation anhängen.

```
SML List
                                              SEQUENCE OF
(NN)
          valListEntry
                                              SML_ListEntry
                                             SEQUENCE
(00) SML ListEntry
                                        ::=
           objName
                                              Octet String,
                                              SML Status
           status
                                                           OPTIONAL,
           valTime
                                              SML Time
                                                           OPTIONAL,
           unit
                                              SML_Unit
                                                           OPTIONAL,
           scaler
                                             Integer8
                                                           OPTIONAL,
           value
                                              SML_Value,
           valueSignature
                                              SML Signature OPTIONAL
         }
```

```
(PP) SML_Status ::= IMPLICIT CHOICE
{

status8 Unsigned8

status16 Unsigned16

status32 Unsigned32

status64 Unsigned64
```

5.1.16 SML_GetCosem.Req

(117) Per SML_GetCosem.Req wird der COSEM-Service ,Get' übertragen. Als Antwort ist entweder ein SML_GetCosem.Res oder ein SML_Attention.Res zu erzeugen. Die leere ,Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
(QQ) SML GetCosem.Req
                                               SEQUENCE
                                         ::=
           clientId
                                               Octet String,
           serverId
                                               Octet String
                                                             OPTIONAL,
                                               Octet String
                                                             OPTIONAL,
           username
                                               Octet String
                                                             OPTIONAL,
           password
           objName
                                               Octet String,
           classId
                                               Integer16,
           classVersion
                                               Integer16,
           attributeIndexList
                                               SML_CosemAttrIndexList OPTIONAL
    SML CosemAttrIndexList
                                               SEQUENCE OF
(RR)
                                         ::=
           attributeDescription
                                               SML CosemAttributeDesc
     SML CosemAttributeDesc
                                               SEQUENCE
(SS)
          {
           attributeIndex
                                               Integer16,
           selectiveAccessDescriptor
                                               SML CosemSelAccessDesc OPTIONAL
     SML CosemSelAccessDesc
                                               SEQUENCE OF
(TT)
                                         ::=
           accessSelector
                                               Unsigned8,
           accessParameters
                                               SML CosemValue
```

(118) Wird das Element 'attributeIndexList' nicht angegeben, sind alle Attribute des adressierten Objekts zu liefern.

5.1.17 SML_GetCosem.Res

(119) Per SML_GetCosem.Res wird die Antwort zu einem COSEM-Service ,Get' übertragen.

```
SEQUENCE
(UU) SML GetCosem.Res
                                         ::=
           clientId
                                               Octet String
                                                             OPTIONAL,
           serverId
                                               Octet String,
           objName
                                               Octet String,
           classId
                                               Integer16,
           classVersion
                                               Integer16,
           attributeList
                                               SML_CosemAttrList
          }
     SML_CosemAttrList
                                         ::=
                                               SEQUENCE OF
(VV)
                                               SML_CosemAttribute
           cosemAttribute
          }
(ww) SML_CosemAttribute
                                               SEQUENCE
                                         ::=
           attributeDescription
                                               SML_CosemAttributeDesc
           attributeContent
                                               SML CosemAttributeContent
     SML CosemAttributeContent
                                               CHOICE
                                         ::=
(XX)
                                                             SML CosemValue
           data
                                               [0x01]
                                               [0x02]
           dataAccessResult
                                                             Unsigned8,
          }
```

```
SML CosemValue
                                            ::= IMPLICIT CHOICE
(YY)
            alle Datentyp aus GreenBook Seite 210 übernehmen!
            nullData
                                                                 ???
            boolean-Value
                                                                 boolean,
            bitString
                                                                 ???
            byte-List
                                                                 Octet String,
            8-Bit-Integer
                                                                 Integer8,
            16-Bit-Integer
                                                                 Integer16,
            32-Bit-Integer
                                                                 Integer32,
            64-Bit-Integer
                                                                 Integer64,
            8-Bit-Unsigned
                                                                 Unsigned8,
            16-Bit-Unsigned
                                                                 Unsigned16,
            32-Bit-Unsigned
                                                                 Unsigned32,
            64-Bit-Unsigned
                                                                 Unsigned64,
            struct
                                                                 SML_CosemValueList,
                                                                 SML_CosemValueList
            array
          }
     SML CosemValueList
                                            ::= SEQUENCE OF
(ZZ)
           {
            cosemValue
                                                                 SML_CosemValue
           }
```

5.1.18 SML_SetCosem.Req

(120) Per SML_SetCosem.Req wird der COSEM-Service ,Set' übertragen. Als Antwort ist entweder ein SML_SetCosem.Res oder ein SML_Attention.Res zu erzeugen. Die leere ,Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
(AAA) SML SetCosem.Reg
                                                 SEQUENCE
          {
            clientId
                                                 Octet String,
            serverId
                                                 Octet String
                                                                OPTIONAL,
            username
                                                 Octet String
                                                                OPTIONAL,
            password
                                                 Octet String
                                                                OPTIONAL.
            objName
                                                 Octet String,
            classId
                                                 Integer16,
            classVersion
                                                 Integer16,
            attributeList
                                                 SML CosemAttrList
          }
```

5.1.19 SML_SetCosem.Res

(121) Per SML_SetCosem.Res wird die Antwort zu einem COSEM-Service ,Set' übertragen.

```
(BBB) SML SetCosem.Res
                                                 SEQUENCE
                                            ::=
          {
            clientId
                                                 Octet String
                                                                OPTIONAL,
            serverId
                                                 Octet String,
            obiName
                                                 Octet String,
            classId
                                                 Integer16,
            classVersion
                                                 Integer16,
            attributeList
                                                 SML_CosemAttrList OPTIONAL
          }
```

5.1.20 SML_ActionCosem.Req

(122) Per SML_ActionCosem.Req wird der COSEM-Service ,Execute' übertragen. Als Antwort ist entweder ein SML_ActionCosem.Res oder ein SML_Attention.Res zu erzeugen. Die leere ,Server-ID' ist als Broadcast-Adresse für zu beantwortende Nachrichten anzusehen. Verwendet eine Anwendung abweichend dazu Nachrichten mit speziellen Broadcast- oder Multicast-Adressen, sind diese explizit in der Anwendung zusammen mit dem Verhalten zu definieren.

```
(CCC) SML_ActionCosem.Req
                                           ..=
                                                SEQUENCE
          {
            clientId
                                                Octet String,
                                                Octet String
            serverId
                                                               OPTIONAL,
            username
                                                Octet String
                                                               OPTIONAL,
            password
                                                Octet String
                                                               OPTIONAL,
            objName
                                                Octet String,
            classId
                                                Integer16,
            classVersion
                                                Integer16,
            serviceIndex
                                                Unsigned8,
            serviceParameter
                                                SML_CosemValue OPTIONAL
          }
```

5.1.21 SML_ActionCosem.Res

(123) Per SML_ActionCosem.Res wird die Antwort zu einem COSEM-Service ,Execute' übertragen.

```
(DDD) SML_ActionCosem.Res
                                                 SEQUENCE
          {
            clientId
                                                 Octet String
                                                                 OPTIONAL,
            serverId
                                                 Octet String,
            objName
                                                 Octet String,
            classId
                                                 Integer16,
            classVersion
                                                 Integer16,
            attributeList
                                                 SML_CosemAttrList OPTIONAL
          }
```

6 SML binary encoding, direkt gepackte Kodierung

- (124) SML verwendet eine auf die Zielsetzung, im Datenvolumen möglichst kleine Nachrichten zu produzieren, optimierte Kodierung.
- Die Kodierung basiert dazu auf der klassischen Type-Length-Value Struktur. Im Gegensatz zu BER faßt sie aber Type und Length in einen für die meisten Anwendungsfälle auf ein einziges Byte reduzierten, als Type-Length-Field ("TL-Field") bezeichneten, Wert zusammen.
- (126) Das Längenfeld beziffert die Anzahl der Elemente, die zu einem einfachen oder komplexen Datentyp gehören.
- (127) Bei einfachen Datentypen entspricht die Längenangabe der Anzahl von Bytes, die zu dem Datentyp gehören.
- (128) Da das Längenfeld ein Teil des Kodes ist und das TL-Field selbst als Element angesehen werden kann, wird das TL-Field wie ein weiteres Element in der Längenangabe mitgezählt.
- (129) Bei komplexen Datentypen (beispielsweise Listen) entspricht die Längenangabe der Anzahl Elemente, die mit dem komplexen Datentyp zusammengefaßt werden (beispielsweise die Anzahl der Listeneinträge). Hier wird das TL-Field selber nicht mitgezählt.

6.1 Type-Length-Field

(130) Das TL-Field legt über die Bitkombination in den höherwertigen Bits des Datenworts fest, ob und wenn ja mit welcher Bedeutung, weitere Bytes mit dem aktuellen Byte zu einem Wort zusammengesetzt werden sollen.

Bitindex	MSB, D7	6	5	4	3	2	1	LSB, D0
Verwendet für Merkmal ,weiteres Byte zum TL-Field folgt	1	Х	Х	Х	Х	Х	Х	Х
Verwendet für Merkmal ,kein weiteres Byte zum TL-Field folgt	0	Х	Х	Х	Х	Х	Х	Х
Verwendet für Merkmal ,Datentyp Octet String' verwenden	Х	0	0	0	L	L	L	L
Verwendet für Merkmal ,Boolean' verwenden	0	1	0	0	L	L	L	L
Verwendet für Merkmal ,Datentyp Integer' verwenden	Х	1	0	1	L	L	L	L
Verwendet für Merkmal ,Datentyp Unsigned' verwenden	Х	1	1	0	L	L	L	L
Merkmal ,Datentyp List of' verwendet.	Х	1	1	1	L	L	L	L
Weiteres Byte mit Platz zur Definition zusätzlicher Datentypen folgt; derzeit reserviert	1	1	0	0	L	L	L	L
Reserviert für künftige Verwendung	Х	0	0	1	L	L	L	L
Reserviert für künftige Verwendung	Х	0	1	0	L	L	L	L
Reserviert für künftige Verwendung	Х	0	1	1	L	L	L	L

Tab. 4: Bitkodierung im Type-Length-Field für das erste Byte einer TL-Field-Angabe.

Falls ein zweites (und evtl. weitere) Byte mit einer TL-Field-Angabe folgt, werden die Bits zur Längeninformationen der jeweilig vorangegangenen TL-Field-Angabe nach links geschoben und die "neuen" Bits der folgenden TL-Field-Angabe von rechts her kommend angefügt.

Für das zweite und evtl. folgende weitere Bytes mit einer TL-Field-Angabe sind die Bits zum Datentyp stets wie folgt zu setzen:

Bitindex	MSB, D7	6	5	4	3	2	1	LSB, D0
Verwendet für Merkmal ,weiteres Byte zum TL-Field folgt	1	Χ	X	X	Χ	Χ	Χ	X
Verwendet für Merkmal ,kein weiteres Byte zum TL-Field folgt'	0	Х	Х	Х	Х	Х	Х	Х
Merkmal ,nachfolgende 4 Bit für die Länge verwenden'	Х	0	0	0	L	L	L	L
Reserviert für künftige Zwecke	Х	0	0	1	Х	Х	Х	Х
Reserviert für künftige Zwecke	Х	0	1	0	Х	Χ	Х	Х
Reserviert für künftige Zwecke	Х	0	1	1	Х	Х	Х	Х
Reserviert für künftige Zwecke	Х	1	Х	Х	Х	Х	Х	Х

Tab. 5: Bitkodierung im Type-Length-Field für das zweite und folgende TL-Field-Bytes.

6.2 Kodierung der Datentypen

6.2.1 Datentyp Octet String

(133) Ein Octet String (eine Bytekette) mit einer Länge von 0 bis max. 14 Bytes wird wie folgt kodiert:

Bitindex	MSB, D7	6	5	4	3	2	1	LSB, D0
Octet String mit einer Anzahl von 0 bis 14 Bytes	0	0	0	0	L	L	L	L

Tab. 6: Bitkodierung im Type-Length-Field für einen Octet String.

- Im Anschluss an das TL-Field folgt der Octet String (die Bytekette), wobei das Byte der Bytekette mit dem Index ,0' zuerst hinter dem TL-Field folgen muss.
- Falls der Octet String mehr als 14 Bytes enthält, werden entsprechend der Beschreibung in Kapitel 6.1 vor dem ersten Byte der Bytekette weitere Bytes des TL-Field eingefügt.

6.2.2 Datentypen Integer8, Integer16, Integer32 und Integer64

Diese Integer-Datentypen werden wie folgt kodiert, wobei in der Datenübertragung jeweils ganze Bytes, die führende Nullen (bei positiven Zahlen) oder führende Einsen (bei negativen Zahlen) enthalten, derart weggelassen werden dürfen, dass beim Empfänger keine Verfälschung entsteht:

```
(EEE) Integer8
                                                ::=
                                                               SEQUENCE
            TL-Field
                                                0x52,
            Datenwert
                                                0xYY
(FFF) Integer16
                                                               SEQUENCE
                                                ::=
            TL-Field
                                                0x53.
                                                0xYY 0xZZ
                                                               (0xYY ⇔ High-Byte,
            Datenwert
                                                               0xZZ ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
(GGG) Integer32
                                                               SEQUENCE
                                                ::=
            TL-Field
                                                0x55,
                                                0xYY 0xZZ 0xUU 0xVV (0xYY ⇔ High-Byte,
            Datenwert
                                                               0xVV ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
(HHH) Integer64
                                                ::=
                                                               SEQUENCE
            TL-Field
                                                0x59.
                                                0xYY ... 0xVV (0xYY ⇔ High-Byte,
            Datenwert
                                                               0xVV ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
```

6.2.3 Datentypen Unsigned8, Unsigned16, Unsigned32 und Unsigned64

Diese vorzeichenlosen Integer-Datentypen werden wie folgt kodiert, wobei in der Datenübertragung jeweils ganze Bytes, die führende Nullen enthalten, weggelassen werden dürfen:

```
(JJJ) Unsigned16
                                               SEQUENCE
          {
           TL-Field
                                               0x63.
           Datenwert
                                               0xYY 0xZZ
                                                              (0xYY ⇔ High-Byte,
                                                               0xZZ ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
(KKK) Unsigned32
                                                SEQUENCE
                                          ::=
          {
           TL-Field
                                               0x65,
           Datenwert
                                               0xYY 0xZZ 0xUU 0xVV (0xYY ⇔ High-Byte,
                                                               0xVV ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
                                               SEQUENCE
(LLL) Unsigned64
            TL-Field
                                               0x69.
                                               0xYY ... 0xVV (0xYY ⇔ High-Byte,
           Datenwert
                                                               0xVV ⇔ Low-Byte,
                                                               Darstellung Big Endian)
          }
```

6.2.4 Datentyp Boolean

(138) Dieser Boolean-Datentyp wird wie folgt kodiert:

```
      (MMM) Boolean
      ::=
      SEQUENCE

      {
      TL-Field
      0x42,

      Datenwert
      0xYY
      ( 0x00 ⇔ ,false', alles andere ⇔ ,true' )
```

6.2.5 Datentyp List of ...

- Falls Listen (oder Arrays oder Structures) kodiert werden sollen, enthält das TL-Field zu Beginn der Liste / des Arrays / der Struktur die Anzahl der Elemente. Daran schließt sich das erste Element der Liste / des Arrays / der Struktur an, das ebenfalls wieder mit einem TL-Field beginnt.
- (140) Die Elementangabe im TL-Field von "List of …' weist immer auf das nächste TL-Field, das hinter allen Elementen von "List of …' folgt. Der Wert "überspringt" damit alle TL-Fields, die je Element von "List of …' innerhalb der "List of …'-Daten stehen.

```
        (NNN) List of ...
        ::=
        SEQUENCE

        {
        TL-Field
        0x7z
        (,z' ⇔ Anzahl der Elemente der Liste)

        }
        }
```

6.3 Kodierung besonderer Merkmale

6.3.1 Merkmal Ende einer SML-Nachricht

Wegen der Verkettung der einzelnen Attribute einer SML-Nachricht kann über das TL-Field das Ende einer SML-Nachricht definiert / gefunden werden:

(ooo) EndOfSmlMsg ::= 0x00 ⇔ "Eintrag ohne TL-Field" ⇔ Ende

6.3.2 Merkmal SEQUENCE

- Bei Sequenzen werden grundsätzlich alle Komponenten der Sequenz in der Reihenfolge ihrer Auflistung in der ASN.1-Definition in den kodierten Datenstrom übernommen.
- (143) Eine Sequence wird generell als Struktur zusammengefaßt und damit durch den Datentyp "List of …' eingeleitet (siehe Kapitel 6.2.5).

6.3.3 Merkmal CHOICE

- (144) Bei Auswahllisten wird das TAG zum ausgewählten Element Unsigned kodiert. Das TAG erhält, genau wie jede andere Unsigned-Komponente auch, sein TL-Field vorangestellt.
- (145) Elemente vom Typ SML_MessageBody kodieren das TAG als Unsigned32, alle anderen als Unsigned8.
- Die CHOICE selbst wird als Struktur behandelt und damit durch den Datentyp ,List of ... eingeleitet (siehe Kapitel 6.2.5). Sie führt also immer zu einer Struktur mit zwei Elementen: Das erste Element ist das TAG und das zweite das damit definierte CHOICE-Element.

6.3.4 Merkmal OPTIONAL

(147) Falls in der ASN.1-Definition eine Komponente als 'OPTIONAL' gekennzeichnet wurde, ist diese in den Datenstrom mit dem TL-Field '0x01' zu setzen. Dabei wird für dieses TL-Field immer der Datentyp 'Octet String' angenommen und die Element-Angabe direkt hinter dem TL-Field positioniert.

7 XML - Kodierung

- (148) Alternativ kann SML auch per XML-Kodierung transportiert werden. Gegenüber der Darstellung nach Kapitel 6 bewirkt die XML-Kodierung prinzipiell ein deutlich erhöhtes Datenvolumen, liefert aber standardisiert lesbare SML-Dateien.
- (149) Das Kapitel soll bei Bedarf im weiteren Verlauf der Arbeiten mit Inhalt gefüllt werden; die XML-SML-Transformation wird aktuell nicht benötigt.

Nachfolgend wird das XML-Schema zur Kodierung von SML per XML vereinbart:

```
Bezug: SML-Spezifikation Version 1.04 (Entwurf)
<!--
                                                                                       -->
<!--
        Hinweise: Alle Namen werden in Anlehnung an die Namen der SML-ASN.1-Notation
                 gebildet.
<1--
        Historie: 03.11.09 / MW, - Initialversion auf Basis von iAD (www.iad-de.com) und
<!--
<!--
                                 Robotron (www.robotron.de) im Umfeld von SML benutzter
                                 Schemata.
                 08.01.10 / MW, - Umstellung der bisher anonymen Datentypen zu 'SML_Message' -->
<!--
                                 und 'SML_File' in benannte Typen.
                               - Die Notation zu 'List_of_SML_ObjReqEntry' wurde von
<!--
                                                                                       -->
<!--
                                  'complexType' auf 'simpleType' vereinfacht.
                               - Das Schema wurde auf den Stand des Entwurfs zu SML 1.04
                                 vom 08.01.2010 gebracht.
                                                                                       -->
<!--
                08.01.10 / MW, - Interne Ergänzung zur Verpackung von COSEM-Objekten auf-
                                 genommen.
                 24.01.10 / MW, - Mit Umstellung vom 08.01.10 war das Root-Element abhanden -->
< ! --
                                 gekommen; im Sinne einer künftig möglicherweise notwen-
```

```
<!--
                                digen Versionierung wurde nun ein Root-Element ergänzt.
                             - Zwei innere Elemente zu 'SML TupelEntry' wurden an die
<!--
                               Notation aus SML 1.04 angeglichen.
<!--
                                                                                  -->
<!--
                             - Die Notation zu 'SML_Tree->parameterValue' wurde an die
<!--
                               in SML 1.04 benutzte Schreibweise angepasst.
                                                                                  -->
                             - Die Notation zu 'SML_GetProfileList.Res->period_List'
<1--
                                                                                  -->
                                wurde an die in SML 1.04 benutzte Schreibweise angepasst. -->
                             - Die mit 08.01.10 zu 'List of SML ObjReqEntry' eingeführte -->
<!--
<!--
                                Änderung wurde zurückgenommen. Der Type wird nun wieder -->
<!--
                                als 'complexType' notiert.
               27.04.10 / MW, - Die Spezifikation wurde zum Transport von COSEM-Services, -->
<!--
                                (siehe Normenreihe IEC 62056 zu DLMS) erweitert.
                             - Die Definition der Datenstruktur zu 'SML Tree' wurde ge-
<!--
                                                                                 -->
<!--
                                ändert, um eine fehlerhafte XML-Notation (siehe "Unique -->
<!--
                                Particle Attribution (UPA) rule is XML Schema's mechanism -->
                                to prevent schema ambiguity") zu beheben.
<!--
                                                                                  -->
<!--
          Stand: 27.04.10 / MW
                                                                                  -->
<!-- Einfache Datentypen
name = "SML_Timestamp">
<xs:simpleType</pre>
   <xs:restriction base = "xs:dateTime"/>
</xs:simpleType>
<xs:simpleType name = "SML Signature">
   <xs:restriction base = "xs:hexBinary"/>
</xs:simpleType>
<xs:simpleType</pre>
                  name = "SML_ObjReqEntry">
   <xs:restriction base = "xs:hexBinary"/>
</xs:simpleType>
                    name = "SML Unit">
<xs:simpleType</pre>
```

```
<xs:restriction</pre>
                     base = "xs:unsignedByte"/>
</xs:simpleType>
<!-- Implizite Auswahl-Datentypen
                                                                                                 -->
<xs:group
                      name = "SML_Value">
    <xs:choice>
                       name = "valBoolean"
                                                 type = "xs:boolean"/>
        <xs:element</pre>
        <xs:element name = "valByteList"</pre>
                                                 type = "xs:hexBinary"/>
        <xs:element name = "valInteger8"</pre>
                                                 type = "xs:byte"/>
        <xs:element name = "valInteger16"</pre>
                                                 type = "xs:short"/>
        <xs:element name = "valInteger32"</pre>
                                                 type = "xs:int"/>
                       name = "valInteger64"
                                                 type = "xs:long"/>
        <xs:element</pre>
        <xs:element
                     name = "valUnsigned8"
                                                 type = "xs:unsignedByte"/>
        <xs:element name = "valUnsigned16"</pre>
                                                 type = "xs:unsignedShort"/>
        <xs:element name = "valUnsigned32"</pre>
                                                  type = "xs:unsignedInt"/>
        <xs:element name = "valUnsigned64"</pre>
                                                 type = "xs:unsignedLong"/>
    </xs:choice>
</xs:group>
<xs:group
                      name = "SML_Status">
    <xs:choice>
        <xs:element name = "status8"</pre>
                                                  type = "xs:unsignedByte"/>
        <xs:element name = "status16"</pre>
                                                 type = "xs:unsignedShort"/>
        <xs:element name = "status32"</pre>
                                                 type = "xs:unsignedInt"/>
        <xs:element
                       name = "status64"
                                                  type = "xs:unsignedLong"/>
    </xs:choice>
</xs:group>
                                                                                                 -->
<!-- Zusammengesetzte Datentypen
```

<xs:complexType</pre>

name = "SML TimestampLocal">

```
<xs:sequence>
                      name = "timestamp"
                                                        type = "SML_Timestamp"/>
        <xs:element
                                                        type = "xs:short"/>
        <xs:element name = "localOffset"</pre>
        <xs:element</pre>
                        name = "summerTimeOffset"
                                                        type = "xs:short"/>
    </xs:sequence>
</xs:complexType>
                        name = "SML Time">
<xs:complexType</pre>
   <xs:choice>
        <xs:element name = "secIndex"</pre>
                                                        type = "xs:unsignedInt"/>
                       name = "timestamp"
        <xs:element</pre>
                                                        type = "SML_Timestamp"/>
        <xs:element</pre>
                        name = "localTimestamp"
                                                        type = "SML_TimestampLocal"/>
    </xs:choice>
</xs:complexType>
                         name = "SML_ProfObjHeaderEntry">
<xs:complexType</pre>
    <xs:sequence>
                        name = "objName"
                                             type = "xs:hexBinary"/>
        <xs:element</pre>
        <xs:element</pre>
                     name = "unit"
                                             type = "SML_Unit"/>
                       name = "scaler"
                                             type = "xs:byte"/>
        <xs:element</pre>
    </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                         name = "SML_ProfObjPeriodEntry">
    <xs:sequence>
                        name = "valTime"
                                                             = "SML_Time"/>
        <xs:element</pre>
                                                  type
        <xs:element
                     name = "status"
                                                   type
                                                             = "xs:unsignedLong"/>
        <xs:element name = "value_List"</pre>
                                                             = "List_of_SML_ValueEntry"/>
                                                   type
                                                             = "SML_Signature"
        <xs:element</pre>
                        name = "periodSignature" type
                                                   minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
                        name = "SML_ValueEntry">
<xs:complexType</pre>
    <xs:sequence>
                       ref = "SML_Value" />
        <xs:group
        <xs:element</pre>
                        name = "valueSignature" type
                                                             = "SML_Signature"
                                                   minOccurs = "0"/>
```

```
</xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                      name = "SML_PeriodEntry">
   <xs:sequence>
       <xs:element</pre>
                      name = "objName"
                                               type
                                                         = "xs:hexBinary"/>
       <xs:element name = "unit"</pre>
                                                         = "SML Unit"/>
                                               type
       <xs:element name = "scaler"</pre>
                                                         = "xs:byte"/>
                                               type
       <xs:group
                     ref = "SML_Value" />
       <xs:element name = "valueSignature" type</pre>
                                                         = "SML Signature"
                                               minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                           name = "SML ProcParValue">
   <xs:choice>
       <xs:element
                            name = "smlValue">
           <xs:complexType>
               <xs:group ref = "SML Value"/>
           </xs:complexType>
       </xs:element>
       <xs:element
                           name = "smlPeriodEntry" type = "SML_PeriodEntry"/>
       <xs:element
                           name = "smlTupelEntry" type = "SML_TupelEntry"/>
       <xs:element
                           name = "smlTime"
                                                    type = "SML_Time"/>
       <xs:element</pre>
                           </xs:choice>
</xs:complexType>
<xs:complexType</pre>
                      name = "SML_TupelEntry">
   <xs:sequence>
                    name = "serverId"
                                                    type = "xs:hexBinary"/>
       <xs:element
                                                    type = "SML_Time"/>
       <xs:element</pre>
                    name = "secIndex"
                    name = "status"
       <xs:element</pre>
                                                    type = "xs:unsignedLong"/>
       <xs:element name = "unit_pA"</pre>
                                                    type = "SML_Unit"/>
       <xs:element name = "scaler_pA"</pre>
                                                    type = "xs:byte"/>
       <xs:element name = "value_pA"</pre>
                                                    type = "xs:long"/>
                    name = "unit_R1"
                                                    type = "SML_Unit"/>
       <xs:element
                       name = "scaler R1"
                                                    type = "xs:byte"/>
        <xs:element</pre>
```

```
name = "value_R1"
        <xs:element</pre>
                                                        type = "xs:long"/>
                     name = "unit R4"
                                                        type = "SML Unit"/>
        <xs:element
        <xs:element name = "scaler_R4"</pre>
                                                        type = "xs:byte"/>
        <xs:element name = "value_R4"</pre>
                                                        type = "xs:long"/>
        <xs:element
                       name = "signature pA R1 R4"
                                                        type = "xs:hexBinary"/>
                        name = "unit_mA"
                                                        type = "SML_Unit"/>
        <xs:element</pre>
                        name = "scaler mA"
                                                        type = "xs:byte"/>
        <xs:element</pre>
                        name = "value mA"
                                                        type = "xs:long"/>
        <xs:element
        <xs:element</pre>
                        name = "unit_R2"
                                                        type = "SML_Unit"/>
                        name = "scaler R2"
                                                        type = "xs:byte"/>
        <xs:element
                        name = "value_R2"
                                                        type = "xs:long"/>
        <xs:element</pre>
        <xs:element</pre>
                        name = "unit_R3"
                                                        type = "SML_Unit"/>
                       name = "scaler_R3"
                                                        type = "xs:byte"/>
        <xs:element</pre>
        <xs:element</pre>
                        name = "value_R3"
                                                        type = "xs:long"/>
        <xs:element
                        name = "signature_mA_R2_R3"
                                                        type = "xs:hexBinary"/>
    </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                       name = "SML TreePath">
   <xs:sequence>
                       name = "path_Entry"
                                                            = "xs:hexBinary"
        <xs:element</pre>
                                                   type
                                                   minOccurs = "1"
                                                   maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                             name = "SML_Tree">
   <xs:sequence>
        <xs:element</pre>
                             name = "parameterName"
                                                        type
                                                                ="xs:hexBinary"/>
        <xs:element</pre>
                             name = "parameterValue" type
                                                                 = "SML ProcParValue"
                                                        minOccurs = "0"
                                                        maxOccurs = "1"/>
                             name = "child List"
                                                                 = "List of SML Tree"
        <xs:element</pre>
                                                        type
                                                        minOccurs = "0"
                                                        maxOccurs = "1"/>
    </xs:sequence>
</xs:complexType>
```

```
<xs:complexType</pre>
                           name = "SML_ListEntry">
   <xs:sequence>
                           name = "objName"
                                                           = "xs:hexBinary"/>
       <xs:element</pre>
                                                   type
                           ref = "SML_Status"
                                                   minOccurs = "0"/>
       <xs:group
                           name = "valTime"
                                                            = "SML Time"
       <xs:element</pre>
                                                   type
                                                   minOccurs = "0"/>
       <xs:element</pre>
                           name = "unit"
                                                            = "SML Unit"
                                                   type
                                                   minOccurs = "0"/>
       <xs:element</pre>
                           name = "scaler"
                                                   type
                                                            = "xs:byte"
                                                   minOccurs = "0"/>
                           ref = "SML_Value"/>
       <xs:group
       <xs:element</pre>
                           name = "valueSignature" type
                                                           = "SML_Signature"
                                                   minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
<!-- Listen-Datentypen
                                                                                          -->
name = "List_of_SML_ValueEntry">
<xs:complexType</pre>
   <xs:sequence>
       <xs:element</pre>
                   name = "value_List_Entry"
                                                   type
                                                           = "SML_ValueEntry"
                                                   minOccurs = "0"
                                                   maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                     name = "List of SML ProfObjHeaderEntry">
   <xs:sequence>
                      name = "header_List_Entry"
                                                            = "SML_ProfObjHeaderEntry"
       <xs:element
                                                   type
                                                   minOccurs = "0"
                                                   maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                      name = "List_of_SML_ProfObjPeriodEntry">
```

```
<xs:sequence>
        <xs:element</pre>
                       name = "period_List_Entry"
                                                                = "SML_ProfObjPeriodEntry"
                                                       type
                                                       minOccurs = "0"
                                                       maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
                        name = "List_of_SML_PeriodEntry">
<xs:complexType</pre>
   <xs:sequence>
       <xs:element
                     name = "period_List_Entry"
                                                                 = "SML_PeriodEntry"
                                                       type
                                                       minOccurs = "0"
                                                       maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
                        name = "List_of_SML_Tree">
<xs:complexType</pre>
    <xs:sequence>
        <xs:element
                       name = "tree Entry"
                                                                = "SML Tree"
                                                       type
                                                       minOccurs = "1"
                                                       maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                       name = "SML_List">
    <xs:sequence>
        <xs:element name = "valListEntry"</pre>
                                                                 = "SML_ListEntry"
                                                       type
                                                       minOccurs = "0"
                                                       maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
                        name = "List_of_SML_ObjReqEntry">
<xs:complexType</pre>
   <xs:sequence>
                       name = "object_List_Entry"
                                                                = "SML_ObjReqEntry"
        <xs:element</pre>
                                                       type
                                                       minOccurs = "1"
                                                       maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
```

```
<!-- SML-Nachrichten
                                                                                              -->
    <!-- SML-Open
    <xs:complexType</pre>
                       name = "SML PublicOpen.Req">
   <xs:sequence>
       <xs:element</pre>
                       name = "codepage"
                                                type = "xs:hexBinary"
                                                                              minOccurs = "0"/>
                       name = "clientId"
                                                type = "xs:hexBinary"/>
       <xs:element</pre>
       <xs:element</pre>
                       name = "reqFileId"
                                                type = "xs:hexBinary"/>
       <xs:element
                       name = "serverId"
                                                type = "xs:hexBinary"
                                                                              minOccurs = "0"/>
                       name = "username"
                                                type = "xs:hexBinary"
                                                                              minOccurs = "0"/>
       <xs:element</pre>
       <xs:element</pre>
                       name = "password"
                                                type = "xs:hexBinary"
                                                                              minOccurs = "0"/>
                       name = "smlVersion"
                                                type = "xs:unsignedByte"
                                                                              minOccurs = "0"/>
       <xs:element</pre>
    </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                       name = "SML_PublicOpen.Res">
   <xs:sequence>
       <xs:element</pre>
                       name = "codepage"
                                                type = "xs:hexBinary"
                                                                              minOccurs = "0"/>
                       name = "clientId"
                                                type = "xs:hexBinary"
                                                                              minOccurs = "0"/>
       <xs:element</pre>
                       name = "reqFileId"
       <xs:element</pre>
                                                type = "xs:hexBinary"/>
       <xs:element</pre>
                       name = "serverId"
                                                type = "xs:hexBinary"/>
                       name = "refTime"
                                                type = "SML_Time"
                                                                              minOccurs = "0"/>
       <xs:element</pre>
                                                type = "xs:unsignedByte"
                                                                              minOccurs = "0"/>
       <xs:element
                       name = "smlVersion"
    </xs:sequence>
</xs:complexType>
                                                                                              -->
    <!-- SML-Close
```

```
<xs:complexType</pre>
                     name = "SML_PublicClose.Req">
   <xs:sequence>
                   name = "globalSignature" type = "SML_Signature"
                                                                       minOccurs = "0"/>
       <xs:element
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                     name = "SML PublicClose.Res">
   <xs:sequence>
       <xs:element</pre>
                     name = "globalSignature" type = "SML_Signature"
                                                                       minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
    <!-- SML-GetProfilePack
                                                                                         -->
    <!-- -->
<xs:complexType</pre>
                   name = "SML GetProfilePack.Req">
   <xs:sequence>
       <xs:element name = "serverId"</pre>
                                                          = "xs:hexBinary"
                                                  type
                                                  minOccurs = "0"/>
                                                           = "xs:hexBinary"
       <xs:element
                   name = "username"
                                                  type
                                                  minOccurs = "0"/>
       <xs:element name = "password"</pre>
                                                           = "xs:hexBinary"
                                                  type
                                                  minOccurs = "0"/>
       <xs:element name = "withRawdata"</pre>
                                                          = "xs:boolean"
                                                  minOccurs = "0"/>
       <xs:element name = "beginTime"</pre>
                                                          = "SML_Time"
                                                  type
                                                  minOccurs = "0"/>
       <xs:element name = "endTime"</pre>
                                                          = "SML Time"
                                                  type
                                                  minOccurs = "0"/>
                                                          = "SML TreePath"/>
       <xs:element</pre>
                    name = "parameterTreePath"
                                                  type
       <xs:element name = "object_List"</pre>
                                                          = "List_of_SML_ObjReqEntry"
                                                  type
                                                  minOccurs = "0"/>
       <xs:element name = "dasDetails"</pre>
                                                           = "SML_Tree"
                                                  type
                                                  minOccurs = "0"/>
   </xs:sequence>
```

```
</xs:complexType>
                      name = "SML_GetProfilePack.Res">
<xs:complexType</pre>
   <xs:sequence>
                     name = "serverId"
       <xs:element
                                                   type
                                                            = "xs:hexBinary"/>
                      name = "actTime"
       <xs:element</pre>
                                                   type
                                                            = "SML_Time"/>
       <xs:element
                    name = "regPeriod"
                                                            = "xs:unsignedInt"/>
                                                   type
                   name = "parameterTreePath"
                                                            = "SML TreePath"/>
       <xs:element
                                                   type
                                                            = "List_of_SML_ProfObjHeaderEntry"/>
       <xs:element name = "header_List"</pre>
                                                   type
       <xs:element name = "period_List"</pre>
                                                            = "List_of_SML_ProfObjPeriodEntry"/>
                                                   type
                      name = "rawdata"
                                                            = "xs:hexBinary"
       <xs:element</pre>
                                                   type
                                                   minOccurs = "0"/>
                     name = "profileSignature"
                                                            = "SML Signature"
       <xs:element</pre>
                                                   type
                                                   minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
    <!-- SML-GetProfileList
                                                                                          -->
    <xs:complexType</pre>
                     name = "SML_GetProfileList.Req">
   <xs:sequence>
                     name = "serverId"
                                                            = "xs:hexBinary"
       <xs:element
                                                   type
                                                   minOccurs = "0"/>
       <xs:element
                     name = "username"
                                                            = "xs:hexBinary"
                                                   type
                                                   minOccurs = "0"/>
       <xs:element
                   name = "password"
                                                            = "xs:hexBinary"
                                                   type
                                                   minOccurs = "0"/>
       <xs:element</pre>
                      name = "withRawdata"
                                                   type
                                                            = "xs:boolean"
                                                   minOccurs = "0"/>
                                                            = "SML_Time"
       <xs:element
                     name = "beginTime"
                                                   type
                                                   minOccurs = "0"/>
                     name = "endTime"
                                                            = "SML_Time"
       <xs:element
                                                   type
                                                   minOccurs = "0"/>
```

<xs:element</pre>

name = "parameterTreePath"

= "SML TreePath"/>

type

```
<xs:element</pre>
                      name = "object_List"
                                                   type
                                                            = "List_of_SML_ObjReqEntry"
                                                   minOccurs = "0"/>
                   name = "dasDetails"
                                                            = "SML_Tree"
       <xs:element
                                                   type
                                                   minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
                      name = "SML GetProfileList.Res">
<xs:complexType</pre>
   <xs:sequence>
       <xs:element name = "serverId"</pre>
                                                            = "xs:hexBinary"/>
                                                   type
                     name = "actTime"
                                                            = "SML_Time"/>
       <xs:element</pre>
                                                   type
       <xs:element</pre>
                   name = "regPeriod"
                                                            = "xs:unsignedInt"/>
                                                   type
                                                            = "SML TreePath"/>
       <xs:element name = "parameterTreePath"</pre>
                                                   type
       <xs:element name = "valTime"</pre>
                                                   type
                                                            = "SML_Time"/>
                                                            = "xs:unsignedLong"/>
       <xs:element name = "status"</pre>
                                                   type
                     name = "period_List"
                                                            = "List_of_SML_PeriodEntry"/>
       <xs:element
                                                   type
       <xs:element</pre>
                      name = "rawdata"
                                                            = "xs:hexBinary"
                                                   type
                                                   minOccurs = "0"/>
       <xs:element</pre>
                   name = "periodSignature"
                                                   type
                                                            = "SML_Signature"
                                                   minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
    <!-- SML-GetProcParameter
    <xs:complexType</pre>
                    name = "SML GetProcParameter.Req">
   <xs:sequence>
                      name = "serverId"
       <xs:element</pre>
                                                   type
                                                           = "xs:hexBinary"
                                                   minOccurs = "0"/>
                    name = "username"
                                                            = "xs:hexBinary"
       <xs:element
                                                   type
                                                   minOccurs = "0"/>
       <xs:element name = "password"</pre>
                                                            = "xs:hexBinary"
                                                   type
```

minOccurs = "0"/>

type

= "SML TreePath"/>

<xs:element</pre>

name = "parameterTreePath"

```
<xs:element</pre>
                   name = "attribute"
                                                  type
                                                          = "xs:hexBinary"
                                                  minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                      name = "SML_GetProcParameter.Res">
   <xs:sequence>
                   name = "serverId"
                                                  type = "xs:hexBinary"/>
       <xs:element</pre>
       <xs:element name = "parameterTreePath"</pre>
                                                  type = "SML_TreePath"/>
       <xs:element name = "parameterTree"</pre>
                                                 type = "SML_Tree"/>
   </xs:sequence>
</xs:complexType>
    <!-- SML-SetProcParameter
                                                                                        -->
    <!-- (Hier gibt es nur einen Request)
                                                                                        -->
    <!-- -->
                     name = "SML_SetProcParameter.Req">
<xs:complexType</pre>
   <xs:sequence>
       <xs:element
                     name = "serverId"
                                                  type
                                                          = "xs:hexBinary"
                                                  minOccurs = "0"/>
       <xs:element name = "username"</pre>
                                                           = "xs:hexBinary"
                                                  type
                                                  minOccurs = "0"/>
       <xs:element name = "password"</pre>
                                                  type
                                                          = "xs:hexBinary"
                                                  minOccurs = "0"/>
                                                          = "SML_TreePath"/>
       <xs:element name = "parameterTreePath"</pre>
                                                  type
                                                          = "SML Tree"/>
       <xs:element name = "parameterTree"</pre>
                                                  type
   </xs:sequence>
</xs:complexType>
    <!-- SML-GetList
```

```
<xs:complexType</pre>
                       name = "SML GetList.Req">
   <xs:sequence>
                                                              = "xs:hexBinary"/>
       <xs:element
                    name = "clientId"
                                                      type
                    name = "serverId"
                                                                = "xs:hexBinary"
        <xs:element
                                                      type
                                                      minOccurs = "0" />
        <xs:element</pre>
                       name = "username"
                                                                = "xs:hexBinary"
                                                      type
                                                      minOccurs = "0"/>
        <xs:element</pre>
                     name = "password"
                                                      type
                                                                = "xs:hexBinary"
                                                      minOccurs = "0"/>
                       name = "listName"
                                                                = "xs:hexBinary"
        <xs:element
                                                      type
                                                      minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
                       name = "SML_GetList.Res">
<xs:complexType</pre>
    <xs:sequence>
       <xs:element
                       name = "clientId"
                                                               = "xs:hexBinary"
                                                      type
                                                      minOccurs = "0"/>
                    name = "serverId"
                                                                = "xs:hexBinary"/>
        <xs:element</pre>
                                                      type
                       name = "listName"
                                                                = "xs:hexBinary"
        <xs:element
                                                      type
                                                      minOccurs = "0"/>
        <xs:element
                       name = "actSensorTime"
                                                                = "SML_Time"
                                                      type
                                                      minOccurs = "0"/>
        <xs:element name = "valList"</pre>
                                                                = "SML_List"/>
                                                      type
                       name = "listSignature"
                                                                = "SML_Signature"
        <xs:element
                                                      type
                                                      minOccurs = "0"/>
        <xs:element
                       name = "actGatewayTime"
                                                      type
                                                                = "SML_Time"
                                                      minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
```

<!-- SML-Attention -->
<!-- (Hier gibt es nur eine Response) -->

```
name = "SML_Attention.Res">
<xs:complexType</pre>
    <xs:sequence>
        <xs:element name = "serverId"</pre>
                                                                  = "xs:hexBinary"/>
                                                         type
        <xs:element
                        name = "attentionNo"
                                                         type
                                                                   = "xs:hexBinary"/>
                        name = "attentionMsg"
                                                                   = "xs:string"
        <xs:element</pre>
                                                         type
                                                         minOccurs = "0"/>
        <xs:element</pre>
                      name = "attentionDetails"
                                                                   = "SML_Tree"
                                                         type
                                                         minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
     <!-- SML-Message-Body
                                                                                                     -->
                        name = "SML_Message">
<xs:complexType</pre>
    <xs:sequence>
                        name = "transactionId"
                                                              type = "xs:hexBinary"/>
        <xs:element
        <xs:element name = "groupNo"</pre>
                                                              type = "xs:unsignedByte"/>
                      name = "abortOnError"
                                                              type = "xs:unsignedByte"/>
        <xs:element</pre>
        <xs:choice>
            <xs:element name = "OpenRequest"</pre>
                                                              type = "SML_PublicOpen.Req"/>
            <xs:element name = "OpenResponse"</pre>
                                                              type = "SML_PublicOpen.Res"/>
            <xs:element name = "CloseRequest"</pre>
                                                              type = "SML_PublicClose.Req"/>
            <xs:element name = "CloseResponse"</pre>
                                                              type = "SML PublicClose.Res"/>
            <xs:element name = "GetProfilePackRequest"</pre>
                                                              type = "SML_GetProfilePack.Req"/>
            <xs:element name = "GetProfilePackResponse"</pre>
                                                              type = "SML_GetProfilePack.Res"/>
            <xs:element name = "GetProfileListRequest"</pre>
                                                              type = "SML GetProfileList.Req"/>
                                                              type = "SML_GetProfileList.Res"/>
            <xs:element name = "GetProfileListResponse"</pre>
            <xs:element name = "GetProcParameterRequest"</pre>
                                                              type = "SML_GetProcParameter.Req"/>
            <xs:element name = "GetProcParameterResponse"</pre>
                                                              type = "SML_GetProcParameter.Res"/>
            <xs:element name = "SetProcParameterRequest"</pre>
                                                              type = "SML_SetProcParameter.Req"/>
```

type = "SML GetList.Req"/>

<xs:element name = "GetListRequest"</pre>

```
<xs:element name = "GetListResponse"</pre>
                                                      type = "SML_GetList.Res"/>
                                                      type = "SML_GetCosem.Req"/>
          <xs:element name = "GetCosemRequest"</pre>
          <xs:element name = "GetCosemResponse"</pre>
                                                      type = "SML_GetCosem.Res"/>
          <xs:element name = "SetCosemRequest"</pre>
                                                      type = "SML_SetCosem.Req"/>
          <xs:element name = "SetCosemResponse"</pre>
                                                      type = "SML SetCosem.Res"/>
          <xs:element name = "RunCosemRequest"</pre>
                                                      type = "SML_RunCosem.Req"/>
          <xs:element name = "RunCosemResponse"</pre>
                                                      type = "SML RunCosem.Res"/>
          <xs:element name = "AttentionResponse"</pre>
                                                      type = "SML Attention.Res"/>
       </xs:choice>
   </xs:sequence>
</xs:complexType>
<!-- SML-Datei
<xs:complexType name = "SML_File">
   <xs:sequence>
       <xs:element name = "SmlMessage" type = "SML_Message"</pre>
                     minOccurs = "1"
                                           maxOccurs = "unbounded"/>
   </xs:sequence>
</xs:complexType>
<!-- XML-Root-Elemente
<xs:complexType name = "SML_XML_Body_V_1_04">
   <xs:choice>
       <xs:element name = "smlFile" type = "SML_File"/>
                             = "smlMessage" type = "SML Message"/>
       <xs:element name</pre>
   </xs:choice>
</xs:complexType>
                     name = "SML_XML_1_04">
<xs:element</pre>
   <xs:complexType>
```

```
<xs:sequence>
                               = "smlXmlBody" type
                                                        = "SML XML Body V 1 04"/>
           <xs:element name</pre>
       </xs:sequence>
   </xs:complexType>
</xs:element>
<!-- COSEM-spezifische Datentypen
                                                                                           -->
    <!-- SML-GetCosem
    <xs:complexType</pre>
                    name = "SML_GetCosem.Req">
   <xs:sequence>
       <xs:element</pre>
                      name = "clientId"
                                                   type
                                                             = "xs:hexBinary"/>
                      name = "serverId"
                                                             = "xs:hexBinary"
       <xs:element</pre>
                                                   type
                                                   minOccurs = "0" />
                                                             = "xs:hexBinary"
       <xs:element</pre>
                      name = "username"
                                                   type
                                                   minOccurs = "0"/>
       <xs:element</pre>
                      name = "password"
                                                   type
                                                             = "xs:hexBinary"
                                                   minOccurs = "0"/>
       <xs:element name = "objName"</pre>
                                                   type
                                                             = "xs:hexBinary"/>
       <xs:element name = "classId"</pre>
                                                             = "xs:short"/>
                                                   type
                     name = "classVersion"
                                                             = "xs:short"/>
       <xs:element
                                                    type
       <xs:element</pre>
                      name = "attributeIndexList"
                                                   type
                                                             = "SML_CosemAttrIndexList"
                                                   minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                      name = "SML_GetCosem.Res">
   <xs:sequence>
                      name = "clientId"
       <xs:element</pre>
                                                   type
                                                           = "xs:hexBinary"
                                                   minOccurs = "0"/>
                   name = "serverId"
                                                             = "xs:hexBinary"/>
       <xs:element</pre>
                                                    type
       <xs:element
                   name = "objName"
                                                    type
                                                             = "xs:hexBinary"/>
                      name = "classId"
                                                             = "xs:short"/>
       <xs:element
                                                   type
```

```
<xs:element</pre>
                      name = "classVersion"
                                                   type
                                                            = "xs:short"/>
                      name = "attributeList"
                                                             = "SML CosemAttrList"/>
       <xs:element
                                                   type
   </xs:sequence>
</xs:complexType>
    <!-- SML-SetCosem
                                                                                          -->
    name = "SML_SetCosem.Req">
<xs:complexType</pre>
   <xs:sequence>
                      name = "clientId"
       <xs:element</pre>
                                                            = "xs:hexBinary"/>
                                                   type
       <xs:element
                   name = "serverId"
                                                   type
                                                             = "xs:hexBinary"
                                                   minOccurs = "0" />
                      name = "username"
                                                            = "xs:hexBinary"
       <xs:element
                                                   type
                                                   minOccurs = "0"/>
                     name = "password"
                                                            = "xs:hexBinary"
       <xs:element
                                                   type
                                                   minOccurs = "0"/>
       <xs:element name = "objName"</pre>
                                                            = "xs:hexBinary"/>
                                                   type
                     name = "classId"
                                                            = "xs:short"/>
       <xs:element</pre>
                                                   type
       <xs:element
                   name = "classVersion"
                                                   type
                                                            = "xs:short"/>
       <xs:element
                      name = "attributeList"
                                                             = "SML CosemAttrList"/>
                                                   type
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                      name = "SML_SetCosem.Res">
   <xs:sequence>
                      name = "clientId"
       <xs:element</pre>
                                                   type
                                                           = "xs:hexBinary"
                                                   minOccurs = "0"/>
                     name = "serverId"
                                                            = "xs:hexBinary"/>
       <xs:element
                                                   type
       <xs:element</pre>
                   name = "objName"
                                                   type
                                                            = "xs:hexBinary"/>
                     name = "classId"
       <xs:element</pre>
                                                            = "xs:short"/>
                                                   type
       <xs:element name = "classVersion"</pre>
                                                            = "xs:short"/>
                                                   type
       <xs:element
                   name = "attributeList"
                                                            = "SML_CosemAttrList"
                                                   type
                                                   minOccurs = "0"/>
   </xs:sequence>
</xs:complexType>
```

```
<!-- SML-RunCosem
                                                                                                  -->
<xs:complexType</pre>
                      name = "SML RunCosem.Req">
   <xs:sequence>
        <xs:element</pre>
                     name = "clientId"
                                                       type
                                                                 = "xs:hexBinary"/>
                       name = "serverId"
        <xs:element
                                                       type
                                                                  = "xs:hexBinary"
                                                       minOccurs = "0" />
        <xs:element</pre>
                        name = "username"
                                                                  = "xs:hexBinary"
                                                       type
                                                       minOccurs = "0"/>
        <xs:element</pre>
                       name = "password"
                                                       type
                                                                 = "xs:hexBinary"
                                                       minOccurs = "0"/>
                        name = "objName"
                                                                 = "xs:hexBinary"/>
        <xs:element</pre>
                                                       type
        <xs:element</pre>
                     name = "classId"
                                                                 = "xs:short"/>
                                                       type
                     name = "classVersion"
                                                                 = "xs:short"/>
        <xs:element
                                                       type
        <xs:element name = "serviceIndex"</pre>
                                                       type
                                                                 = "xs:byte"/>
                       name = "attributeList"
                                                                 = "SML CosemAttrList"
        <xs:element
                                                       type
                                                       minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
                       name = "SML_RunCosem.Res">
<xs:complexType</pre>
    <xs:sequence>
        <xs:element
                        name = "clientId"
                                                       type
                                                                 = "xs:hexBinary"
                                                       minOccurs = "0"/>
                                                                 = "xs:hexBinary"/>
        <xs:element
                     name = "serverId"
                                                       type
        <xs:element name = "objName"</pre>
                                                                  = "xs:hexBinary"/>
                                                       type
                       name = "classId"
                                                                 = "xs:short"/>
        <xs:element
                                                       type
                                                                 = "xs:short"/>
        <xs:element</pre>
                       name = "classVersion"
                                                       type
                        name = "attributeList"
                                                                 = "SML CosemAttrList"
        <xs:element</pre>
                                                       type
                                                       minOccurs = "0"/>
    </xs:sequence>
</xs:complexType>
```

```
<!-- COSEM-Attribute
     <xs:simpleType</pre>
                     name
                                = "SML CosemAttrIndexList">
   <xs:list
                      itemType = "xs:short"/>
</xs:simpleType>
<xs:complexType</pre>
                       name
                                 = "SML_CosemAttrList">
   <xs:sequence>
                                  = "SML_CosemAttr" minOccurs = "0"
                                                                          maxOccurs = "unbounded"/>
        <xs:element</pre>
                        name
    </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                                 = "SML_CosemAttr">
                       name
   <xs:sequence>
        <xs:element</pre>
                                  = "attributeIndex"
                                                           type = "xs:short"/>
                                                           type = "SML CosemValue"/>
                                 = "attributeContent"
       <xs:element</pre>
                       name
   </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                        name
                                 = "SML_CosemValue">
   <xs:choice>
       <xs:element</pre>
                       name
                                  = "valBoolean"
                                                           type = "xs:boolean"/>
                                  = "valByteList"
                                                           type = "xs:hexBinary"/>
       <xs:element</pre>
                       name
                                                           type = "xs:byte"/>
                                  = "valInteger8"
       <xs:element</pre>
                        name
        <xs:element</pre>
                                  = "valInteger16"
                                                           type = "xs:short"/>
                       name
       <xs:element</pre>
                                  = "valInteger32"
                                                           type = "xs:int"/>
                       name
       <xs:element
                        name
                                 = "valInteger64"
                                                           type = "xs:long"/>
        <xs:element</pre>
                                  = "valUnsigned8"
                                                           type = "xs:unsignedByte"/>
                       name
        <xs:element
                                  = "valUnsigned16"
                                                           type = "xs:unsignedShort"/>
                        name
        <xs:element</pre>
                       name
                                  = "valUnsigned32"
                                                           type = "xs:unsignedInt"/>
        <xs:element</pre>
                                 = "valUnsigned64"
                                                           type = "xs:unsignedLong"/>
                       name
                                 = "valList"
        <xs:element</pre>
                       name
                                                           type = "SML_CosemList"/>
        <xs:element</pre>
                                  = "valStruct"
                                                           type = "SML_CosemList"/>
                       name
                                  = "valArray"
                                                           type = "SML_CosemList"/>
        <xs:element</pre>
                        name
    </xs:choice>
</xs:complexType>
```

```
= "SML CosemList">
<xs:complexType</pre>
                          name
    <xs:sequence>
        <xs:element</pre>
                                     = "SML CosemListEntry"
                                                                minOccurs = "0"
                          name
                                                                 maxOccurs = "unbounded"/>
    </xs:sequence>
</xs:complexType>
<xs:complexType</pre>
                                     = "SML_CosemListEntry">
    <xs:choice>
                                     = "valBoolean"
                                                                 type = "xs:boolean"/>
        <xs:element</pre>
                          name
                                     = "valByteList"
                                                                 type = "xs:hexBinary"/>
        <xs:element</pre>
                          name
                                                                 type = "xs:byte"/>
        <xs:element</pre>
                                     = "valInteger8"
                          name
        <xs:element</pre>
                          name
                                     = "valInteger16"
                                                                 type = "xs:short"/>
                                                                 type = "xs:int"/>
        <xs:element</pre>
                                     = "valInteger32"
                          name
                                                                 type = "xs:long"/>
                                     = "valInteger64"
        <xs:element</pre>
                          name
        <xs:element</pre>
                                     = "valUnsigned8"
                                                                 type = "xs:unsignedByte"/>
                                     = "valUnsigned16"
        <xs:element</pre>
                                                                 type = "xs:unsignedShort"/>
                          name
        <xs:element
                          name
                                     = "valUnsigned32"
                                                                 type = "xs:unsignedInt"/>
                                     = "valUnsigned64"
        <xs:element</pre>
                          name
                                                                 type = "xs:unsignedLong"/>
    </xs·choice>
</xs:complexType>
</xs:schema>
```

Bild 4: XML-Schema-Datei zur Kodierung von SML per XML.

8 SML-Transport-Protokoll

8.1 Version 1

- Zur Übertragung von SML-Nachrichten über ungesicherte Verbindungen, wie beispielsweise direkte optische Ablesung per MDE vor Ort, Ablesung über PSTN-Modem, GSM-Modem oder vergleichbare Strecken, wird das SML-Transport-Protokoll definiert.
- (151) Es kann ebenfalls bei gesicherten Verbindungen (beispielsweise TCP) angewendet werden.

- (152) Es folgt als Streaming-Protocol dem Ansatz, in den Endgeräten den Datenverkehr ,on the fly' zu kodieren und damit auf den Einsatz umfangreicher Puffer verzichten zu können.
- (153) Das Regelwerk wird wie folgt definiert:
 - Beginn, Ende sowie weitere Merkmale einer Nachricht werden über Escape-Sequenzen gekennzeichnet.
 - Eine Escape-Sequenz wird mit einer Escape-Zeichenfolge eingeleitet. An diese Escape-Zeichenfolge schließt sich das der Nachricht hinzugefügte Merkmal (Beginn, Ende, ...) an.
 - Tritt im Nutzlastdatenstrom selbst die Escape-Zeichenfolge an beliebiger Stelle auf, wird diese selbst als Escape-Sequenz übertragen. In diesem Fall ist das der Nachricht hinzugefügte Merkmal die Escape-Zeichenfolge (sie wird damit zweimal nacheinander übertragen).
 - Die Anzahl der Bytes im Nutzlastdatenstrom wird am Ende immer auf eine restfrei durch die Anzahl der Bytes der Escape-Zeichenfolge teilbare Menge erweitert¹¹. Zur Erweiterung werden jeweils Bytes mit dem Inhalt ,00' (hex) verwendet.
- (154) Als Escape-Zeichenfolge wird die Byte-Kette ,1b 1b 1b 1b (Angabe in hex.) festgelegt.
- (155) Folgende Escape-Merkmale sind definiert:

Pos.	Escape-Merkmal (Angabe in hex)	Bedeutung / Hinweis
1	1b 1b 1b 1b	Kennzeichnet den Fall, dass die Escape-Sequenz selbst im Nutzdatenstrom enthalten ist.
2	01 01 01 01	Leitet Übertragung der Version 1 als Datenstrom ein. Kennzeichnet das Merkmal ,Beginn einer Nachricht'.
3	02 TT UU VV	Leitet Übertragung der Version 2 mit Blocktransfer ein, siehe Kapitel 8.2.
4	03 00 RR RR	Wird nur in Zusammenhang mit der Version 2 verwendet, und legt das zu verwendende Timeout fest, siehe Kapitel 8.2.
5	04 00 SS SS	Wird nur in Zusammenhang mit der Version 2 verwendet, und legt die zu verwendende Blocksize fest, siehe Kapitel 8.2.
6	1a XX YY ZZ	Kennzeichnet das Merkmal 'Ende einer Nachricht'. ,XX' ⇔ Kann Werte des Bereichs '00', '01', '02' oder '03' annehmen und liefert die Anzahl von Bytes, die am Ende der Nutzlast angefügt worden sind, um die Anzahl der Bytes der Nutzlast restfrei durch die Anzahl der Bytes einer Escape-Zeichenfolge teilen zu können.
		,YY ZZ' ⇔ Kann Werte im Bereich ,00FF' annehmen und enthält die Prüfsumme über die ganze Nachricht. YY ist dabei das Most Significant Byte und ZZ das

¹¹ Da die Escape-Zeichenfolge aus 4 Bytes besteht, wird die Anzahl der Bytes der Nutzlast ebenfalls immer so erweitert, dass eine Division modulo 4 genau 0 liefert. Damit muss der Absender entweder kein Byte, oder ein, zwei oder drei Bytes anfügen.

_

Pos.	Escape-Merkmal (Angabe in hex)	Bedeutung / Hinweis
		Least Significant Byte der Prüfsumme.
7	Alle anderen Kombinationen	Reserviert für künftige Erweiterungen.

Tab. 7: Escape-Merkmale zum SML-Transport-Protokoll.

- (156) Die Prüfsumme ist nach CCITT-CRC16 zu berechnen. Sie wird über alle Bytes des Datenstroms im SML-Transportprotokoll mit Ausnahme der letzten beiden Bytes (und damit ohne die Bytes der Prüfsumme selber) berechnet.
- (157) Die Berechnung erfolgt gemäß DIN EN 62056-46.
- (158) Erfolgt die Datenbeschaffung über TCP- oder UDP-Verbindungen, wird das SML-Transport-Protokoll zur Kennzeichnung zusammenhängender SML-Dateien verwendet.

8.2 Version 2

- Zur Übertragung von SML-Dateien über ungesicherte Halbduplex-Verbindungen kann das SML-Transport-Protokoll der Version 2 verwendet werden. Dieses bietet einen simplen Mechanismus zur Fluss-Steuerung, so dass der Sender seine Ausgaben an die Anfordernisse von möglicherweise mit wenig Ressourcen ausgestattete Clients anpassen kann.
- Das SML-Transport-Protokoll der Version 2 ist damit ebenfalls anzuwenden, wenn SML-Dateien über optischen Strecken, vergleichbar DIN EN 62056-21 zu übertragen sind.
- Das zur Lösung dieser Anforderungen realisierte Konzept teilt die zu übertragende SML-Datei in Blöcke auf und verwendet Timeouts zum Restart bei Fehlern. Sowohl die Blockgröße als auch die Timeouts werden bei Beginn der Übertragung zwischen Sender und Empfänger ausgehandelt. Als Timeout und minimale Blockgröße für das Aushandeln werden verwendet:

Inital zu verwendendes Timeout: 5 s; Initial zu verwendende minimale Blockgröße: 32 Bytes.

Die Version 2 verwendet drei gegenüber der Version 1 zusätzlich definierte ESC-Sequenzen.

8.2.1 Einleitung der Übertragung nach Version 2

Zur Unterscheidung der Version 2 des SML-Transport-Protokolls von der Version 1 (siehe Kapitel 8.1) wird als Einleitung die Sequence

1b 1b 1b 1b 02 TT UU VV verwendet (alle Angaben in hex, siehe Tab. 7).

Die Elemente "TT UU VV" dienen dabei Kennzeichnung von Blöcken, und SML-Dateien.

8.2.1.1 Kennzeichnung von Blöcken

(165) Blöcke werden per Element "TT", siehe Tab. 7, gekennzeichnet. Die Kennzeichnung verwendet folgende Merkmale: ■ Bit 7, MSB: 0 ⇔ Sendeblock,

1 ⇔ Empfangen als ACK;

Bit 6: 0 ⇔ weitere Blöcke folgen,

1 ⇔ letzter Block der SML-Datei.

Bit 5 ... Bit 0, LSB: Blocknummer,

beginnend mit 0x00, rollierend bei 0x3F auf 0x01.

8.2.1.2 Kennzeichnung von SML-Dateien

- (166) SML-Dateien werden per Element "UU", siehe Tab. 7, gekennzeichnet. Die Kennzeichnung verwendet folgende Merkmale:
 - Die erste über die Strecke zu übertragende SML-Datei erhält die Kennzeichnung ,0x00';
 - Mit jeder weiteren über die Strecke zu übertragenden SML-Datei wird das Merkmal um eins inkrementiert;
 - Wird der Wert ,0xFF' erreicht, ist danach wieder mit ,0x00' zu beginnen.

8.2.1.3 Merkmal ,VV'

Das Element "VV", siehe Tab. 7, ist für künftige Erweiterungen reserviert und immer auf .0x01' zu setzen.

8.2.2 Vereinbarung des zu verwendenden Timeouts

(168) Mit Beginn einer Übertragung schlägt der Sender das zu verwendende Timeout vor. Er verwendet dazu eine ESC-Sequenz der Art

1b 1b 1b 1b 03 00 RR RR

wobei per "RR RR" das von ihm vorgeschlagene Timeout in "ms' anzugeben ist.

(169) Das Timeout ist in der Form

1b 1b 1b 1b 03 00 High-Byte Low-Byte

in die ESC-Sequenz einzutragen.

Der Empfänger beantwortet diese ESC-Sequenz mit dem von ihm tatsächlich gewählten Timeout, wobei er nur denselben oder einen größeren Zahlenwert wählen darf. Der Sender hat das vom Empfänger abschließend festgelegte Timeout zu verwenden.

8.2.2.1 Vereinbarung der maximal zulässigen Blocksize

(171) Mit Beginn einer Übertragung schlägt der Sender die maximal zulässige Blocksize vor. Er verwendet dazu eine ESC-Sequenz der Art

1b 1b 1b 1b 04 00 SS SS

wobei per "SS SS" die von ihm vorgeschlagene Blocksize in 'Byte' anzugeben ist.

- (172) Die Blocksize ist in der Form1b 1b 1b 1b 04 00 High-Byte Low-Bytein die ESC-Sequenz einzutragen.
- (173) Der Empfänger beantwortet diese ESC-Sequenz mit der von ihm tatsächlich gewählten Blocksize, wobei er nur denselben oder einen kleineren Zahlenwert wählen darf. Der Sender hat die vom Empfänger abschließend festgelegte Blocksize zu verwenden.

8.2.3 Prozess zum Aufbau der Übertragung

(174) Eine Übertragung nach Version 2 wird durch folgenden Prozess eingeleitet:

• Der Sender versendet den ersten Datenblock, der exakt wie folgt aufzubauen ist:

```
1b 1b 1b 02 00 UU VV
1b 1b 1b 1b 03 00 RR RR
(mit RR RR proposed timeout in ms)
1b 1b 1b 1b 04 00 SS SS
(mit SS SS proposed block size in Byte)
1b 1b 1b 1a xx yy zz
```

• Der Empfänger quittiert diesen ersten Datenblock:

```
1b 1b 1b 02 80 UU VV
1b 1b 1b 1b 03 00 rr rr (mit rr rr confirmed timeout in ms)
1b 1b 1b 1b 04 00 ss ss (mit ss ss confirmed block size in Byte)
1b 1b 1b 1a xx yy zz
```

8.2.4 Prozess zum Ablauf einer Übertragung

- (175) Eine Übertragung nach Version 2 wird wie vorstehend beschrieben eingeleitet und arbeitet danach als "Ping-Pong" von gesendeten und quittierten Datenblöcken.
- (176) Der Zustandsautomat fällt mit einfachem Timeout an den Beginn des aktuellen Übertragungsschritts zurück, falls er keine Rückmeldung auf den zuletzt versendeten Block erhält.
- (177) Bei Fehlern ist nach doppeltem Timeout die komplette Dateiübertragung zu wiederholen.

8.2.5 Beispiel zum Ablauf des Übertragungsvorgangs nach Version 2

(178) Als Beispiel eines Übertragungsvorgangs kann nachstehender Ablauf angesehen werden:

• Start der Übertragung mit:

```
1b 1b 1b 02 00 UU VV
1b 1b 1b 1b 03 00 RR RR (mit RR RR proposed timeout in ms)
1b 1b 1b 1b 04 00 SS SS (mit SS SS proposed block size in Byte)
1b 1b 1b 1b 1a xx yy zz
```

- Wird der Start der Übertragung nicht korrekt dekodiert / empfangen, erfolgt keine Reaktion durch den Empfänger. Der Sender muss den Beginn der Übertragung erneut einleiten.
- Übertragung confirmed mit:
 1b 1b 1b 02 80 UU VV

1b 1b 1b 03 00 rr rr (mit rr rr confirmed timeout in ms)
1b 1b 1b 1b 04 00 ss ss (mit ss ss confirmed block size in Byte)
1b 1b 1b 1a xx yy zz

• Erste Nutzlast senden mit:

1b 1b 1b 1b 02 01 UU VV Nutzlast

1b 1b 1b 1b 1a xx yy zz

• Erste Nutzlast bestätigen mit ACK:

1b 1b 1b 1b 02 81 UU VV 1b 1b 1b 1b 1a xx yy zz

• Erste Nutzlast abweisen mit NAK:

1b 1b 1b 1b 02 80 UU VV 1b 1b 1b 1b 1a xx yy zz (mit "alter" Blocknummer in 0x80)

• Zweite Nutzlast senden mit:

1b 1b 1b 1b 02 02 UU VV

Nutzlast

1b 1b 1b 1b 1a xx yy zz

Zweite Nutzlast bestätigen mit ACK:

1b 1b 1b 1b 02 82 UU VV

1b 1b 1b 1b 1a xx yy zz

Zweite Nutzlast abweisen mit NAK:

1b 1b 1b 1b 02 81 UU VV

(mit "alter" Blocknummer in 0x81)

1b 1b 1b 1b 1a xx yy zz

Dritte und letzte Nutzlast senden mit:

1b 1b 1b 1b 02 43 UU VV

Nutzlast

1b 1b 1b 1b 1a xx yy zz

Dritte und letzte Nutzlast bestätigen mit ACK:

1b 1b 1b 1b 02 C3 UU VV

1b 1b 1b 1b 1a xx yy zz

Dritte und letzte Nutzlast abweisen mit NAK:

1b 1b 1b 1b 02 82 UU VV

(mit "alter" Blocknummer in 0x81)

1b 1b 1b 1b 1a xx yy zz