Course 6

Software Quality Factors in detail
Integrity / Security / Safety

S. Motogna - Software Quality

S. Motogna - Software Quality
Assurance

Integrity vs. Security vs. Safety

Integrity = ability to withstand attacks
to its security

- -Safety requires security: when unauthorized access results in an incident
- -Security ⊆ safety when any unauthorized access is considered an accident

Integrity vs. Security vs. Safety

Integrity

- Extent to which access to software or data by unauthorized persons can be controlled [McCall].
- Internal consistency or lack of corruption in electronic data and at the human level
- Prevents unauthorized or improper access & allow proper access

Security

- Protect data and resources contained in and controlled by the software
- Risk for privacy

Safety

- Freedom from software hazards
- Elimination of conditions hazardous to operation as a result of errors in process control software [Deutsch & Willis model]
- Risk for human lives or environment

S. Motogna - Software Quality
Assurance

Integrity [McCall]

- Criteria:
 - -Access control
 - -Access audit

- Measured in: analysis, design, implementation
- Impact in operation

Access Control

- User access control (ID, password)
- Database access control (authorization table, privacy)
- Memory protection across tasks (mobile app, partitions)

Access Audit

- Support for recording and reporting access
- Support for awareness of access violation

Security

- Remarks:
 - -Weakest link
 - Environment dependable

- Approach Risk analysis:
 - -Identify risks
 - -Evaluate ways to protect against it
- Detect security vulnerabilities

Security vulnerabilities

- 1. Buffer overflow / overrun:
 - write outside the limits of data structure
 - C/C++
- 2.Race conditions: an atomic operation is performed in 2 steps
 - File access permission
- 3.API functions insecure interfaces

Security vulnerabilities

- 4.Untrusted input: accept and use data from untrusted sources
- 5. Result verification:
 - function and system calls fail
 - Traceroute / tracert (Windows) track the route of internet packages
- 6.Data and privilege leakage

Solutions

- Java approach:
 - Associating permissions with code and checking them - security manager
- Tools:
 - Flawfinder C/C++ code
 - Looking for functions known for security vulnerabilities associations
 - http://www.dwheeler.com/flawfinder/
 - Splint C code
 - Checks for security vulnerabilities and coding mistakes
 - Parse C code
 - Allows code annotation
 - http://lclint.cs.virginia.edu/

OWASP Top 10 Security Risks - 2017 / 2013

- 1. Injection
- Broken Authentication and session management
- 3. Sensitive Data Exposure (former 6)
- 4. XML external entities (new)
- 5. Broken access control (new)
- 6. Security misconfiguration (former 8)
- 7. Cross-Site Scripting
- 8. Insecure deserialization (new)
- 9. Using components with known vulnerability
- 10. Insufficient Logging & Monitoring

Categories	© Vulnerabilities	Security Hotspot		
		Open	In Review	Won't Fix
A1 - Injection 🔞	0 A	<u>17</u>	0	0
A2 - Broken Authentication	0 A	0	0	0
A3 - Sensitive Data Exposure 🔞	<u>2</u> B	<u>6</u>	0	0
A4 - XML External Entities (XXE)	0 A	0	0	0
A5 - Broken Access Control 🔞	0 A	79	0	0
A6 - Security Misconfiguration 🔞	4 E	<u>1</u>	0	0
A7 - Cross-Site Scripting (XSS)	0 A	4	0	0
A8 - Insecure Deserialization 👩	0 A	0	0	0
A9 - Using Components with Known Vulnerabilities	0 A	0	0	0
A10 - Insufficient Logging & Monitoring	0 A	0	0	0
Not OWASP	1 D	0	0	0

S. Motogna - Software Quality Assurance

New

• OWASP Mobile Security Project - top 10 (2016)

Software Security Measurement and Assurance

- CWE Common Weakness Enumeration <u>cwe.mitre.org</u>
 - Community-developed formal list of common software weaknesses
- CERT Computer Emergency Center -Carnegie Melon Univ.

http://www.cert.org/

- Software security assurance
- Security measurements and analysis
- Frameworks and protocols
- Methods and tools
- IBM, Microsoft, RedHat, Apple, ...

CERT Risk analysis

• 2 approaches:

- 1. Tactical
 - risk = probability that an event will lead to a negative consequence or a loss
 - Goal: evaluate systems components for potential failure
- 2. Systemic
 - Risk = probability of mission failure

CERT - IMAF

- Integrated Measurement and Analysis Framework
- Application in software security

[C. Alberts, J. Allen, R. Stoddard Risk-Based Measurement and Analysis:
Application to Software Security]

CERT - IMAF

Case study Microsoft — security checklists

[M. Howard, D. LeBlanc - Writing Secure Code]

- Designer
- Developer
 - General
 - Web & database-specific
 - RPC
 - ActiveX, COM and DCOM
 - Crypto and Secret Management
 - Managed Code
- Tester

Snapshot Designer's Security Checklist

- Person responsible for bug tracking (BugTrack - http://www.bugtrack.net/)
- Competitor's vulnerabilities analyzed
- Past vulnerabilities in previous versions analyzed
- Safe-for-scripting controls reviewed
- Sample code reviewed for security issues
- Default install is secure
- Threat models complete for design phase
- Security failures logged for later analysis

•

Safety

- Freedom of conditions that can cause death, injury, damage, loss, environmental harm
- Important in safe critical systems
- Harm severity classification:
 - Catastrophic
 - -Critical (severe)
 - Major
 - Minor
 - -No effect (negligible)

System Safety Plan

[Firesmith, D., Engineering Safety-Related Requirements for Software-Intensive Systems]

S. Motogna - Software Quality
Assurance

- 1228-1994 IEEE Standard for Software Safety Plans
- Software Safety Analysis
 Procedures USA, 2014