Lecture 12: Analysis of Covariance

• 12. 1 Introduction

- A psychologist interested in music education designs five music training programs for young children labeled Bach, Chopin, Mozart, Stravinsky, and Debussy. She randomly assigns children to training programs but is concerned that differences in the children's musical abilities will obscure the differences between the programs. Therefore, she measures the children's musical abilities before the training program
- What can she say about the effectiveness of her music training programs when considering the children's initial musical ability?

Program	Performance (Y)	Ability (X)	_
В	18	10	
В	17	20	$\Sigma_Y = 77$
В	23	15	$\Sigma_X = 57$
В	19	12	
C	40	22	
C	22	31	$\Sigma_Y = 121$
C	28	16	$\Sigma_X = 86$
C	31	17 J	
M	38	30	
M	40	31	$\Sigma_Y = 159$
M	41	18	$\Sigma_X = 101$
M	40	22	
S	25	35	
S	45	37	$\Sigma_Y = 171$
S	50	41	$\Sigma_X = 143$
S	51	30 J	
D	15	11	
D	17	16	$\Sigma_Y = 75$
D	20	19	$\Sigma_X = 71$
D	23	25 J	

- ANCOVA is a statistical technique that permits a post-hoc, statistical control for one or more simultaneous variables, removing their influence from the comparison of groups on the experimental factor(s)

- One IV is categorical (e.g., teaching program)
- One IV is continuous (e.g., music ability)
- DV is continuous (e.g., performance)
- Could use ANOVA for categorical and Regression for continuous. But both are part of the GLM
- Many people call mixing categorical and continuous variables Analysis of Covariance (ANCOVA)

• 12. 2 Statistical Model

$$Y_{ij} = \mu + \alpha_j + \beta_{Y \cdot X} (x_{ij} - \mu_X) + \varepsilon_{ij}$$

 Y_{ij} = score for person i in group j

 μ = population mean

 α_i = effect of treatment j

 $\beta_{Y:X}(x_{ij} - \mu_X)$ = value of x for person i in group j, independent from μ_X , and weighted by the linear regression coefficient $\beta_{Y:X}$. This value is assumed to not depend on j

 ε_{ij} = error or residual for score Y_{ij}

$$\varepsilon_{ii} \sim \text{NID}(0, \sigma^2)$$

Within each treatment population, the relationship between X and Y is assumed to be linear and has the regression coefficient $\beta_{Y \cdot X}$

- The partitioning of variance is the same as in the ANOVA approach but we now need to consider partitions of variance for Y, X, and XY

$$SS_{Y \text{ TOTAL}} = \sum_{j} \sum_{i} (Y_{ij} - \overline{Y}_{.})^{2} = SS_{Y \text{ BETWEEN}} + SS_{Y \text{ WITHIN}}$$

$$SS_{Y \text{ BETWEEN}} = \sum_{i} n_i (\overline{Y}_i - \overline{Y}_.)^2$$

$$SS_{Y \text{ WITHIN}} = \sum_{i} \sum_{i} (Y_{ij} - \overline{Y}_{j})^{2}$$

$$SS_{X \text{ TOTAL}} = \Sigma_{i} \Sigma_{i} (X_{ij} - \overline{X}_{.})^{2} = SS_{X \text{ BETWEEN}} + SS_{X \text{ WITHIN}}$$

$$SS_{X \text{ BETWEEN}} = \sum_{j} n_i (\overline{X}_j - \overline{X}_{\cdot})^2$$

$$SS_{X \text{ WITHIN}} = \sum_{i} \sum_{i} (X_{ij} - \overline{X}_{j})^{2}$$

$$SP_{XY \text{ TOTAL}} = \sum_{i} \sum_{i} (X_{ij} - \overline{X}_{\cdot})(Y_{ij} - \overline{Y}_{\cdot})$$

$$SP_{XY \text{ BETWEEN}} = \sum_{j} n_i (\overline{X}_j - \overline{X}_.) (\overline{Y}_j - \overline{Y}_.)$$

$$SP_{XY \text{ WITHIN}} = \sum_{i} \sum_{i} (X_{ij} - \overline{X_{i}})(Y_{ij} - \overline{Y_{i}})$$

Thus, the computation for analysis of covariance is based on:

- 1. The SS values for an ANOVA carried out on X
- 2. The SS values for an ANOVA carried out on Y
- 3. The SP values for an ANCOVA carried out on XY products

These computations can be put in matrix form as

$$\mathbf{SSCP_{TOTAL}} = \begin{bmatrix} SSx \ total & SPxY \ total \\ SPyx \ total & SSY \ total \end{bmatrix}$$

$$\mathbf{SSCP_{BETWEEN}} = \begin{bmatrix} SSx \ between & SPxy \ between \\ SPyx \ between & SSy \ between \end{bmatrix}$$

$$\mathbf{SSCP_{WITHIN}} = \begin{bmatrix} SSx \text{ within } & SPxy \text{ within} \\ SPyx \text{ within } & SSy \text{ within} \end{bmatrix}$$

Thus, in matrix form, **SSCP**_{TOTAL} = **SSCP**_{BETWEEN} + **SSCP**_{WITHIN}

• 12.4 Computations in ANCOVA

- A simple one-way ANCOVA (i.e., one IV and one covariate) requires three sets of calculations, for *Y*, *X*, and *XY*

$$SS_{X \text{ total}} = \Sigma_j \Sigma_i x_{ij}^2 - \frac{T_x^2}{N}$$
, where $T_x = \Sigma_j \Sigma_i x_{ij}$

$$SS_{X \text{ between}} = \sum_{j} \frac{T_{xij}^{2}}{n_{j}} - \frac{T_{x}^{2}}{N}$$

$$SS_{X \text{ within}} = SS_{X \text{ total}} - SS_{X \text{ between}}$$

$$SS_{Y \text{ total}} = \sum_{j} \sum_{i} y_{ij}^{2} - \frac{T_{y}^{2}}{N}$$

$$SS_{Y \text{ between}} = \sum_{j} \frac{T_{yij}^{2}}{n_{i}} - \frac{T_{y}^{2}}{N}$$

$$SS_{Y \text{ within}} = SS_{Y \text{ total}} - SS_{Y \text{ between}}$$

$$SP_{XY \text{ total}} = \sum_{j} \sum_{i} x_{ij} y_{ij} - \frac{(T_x)(T_y)}{N}$$

$$SP_{XY \text{ between}} = \sum_{j} \frac{(T_{xj})(T_{yj})}{n_i} - \frac{(T_x)(T_y)}{N}$$

$$SP_{XY \text{ within}} = SP_{XY \text{ total}} - SP_{XY \text{ between}}$$

- Now we need to find the adjusted sums of squares, in order to remove the regression of *Y* on the covariate *X*

$$SS_{Y \text{ adjusted means}} = SS_{Y \text{ between}} + \frac{(SP_{XY \text{ within}})^2}{SS_{X \text{ within}}} - \frac{(SP_{XY \text{ total}})^2}{SS_{X \text{ total}}}$$

$$SS_{Y \text{ adjusted error}} = SS_{Y \text{ within}} - \frac{(SP_{XY \text{ within}})^2}{SS_{X \text{ within}}}$$

- Source Table for ANCOVA

Source	SS	df	MS	F
Adjusted Means	$SS_{Yadjustedbetween}$	<i>J</i> – 1	$\frac{SS_{Y\ adjusted\ means}}{J-1}$	$\frac{MS_{Y}}{MS_{Y}}$ adjusted means
Adjusted Error	$SS_{Yadjustedwithin}$	N-J-1	$\frac{SS_{Y \ adjusted \ error}}{N-J-1}$	
Adjusted Total		N-2		

- In addition to the SS, we can obtain the Pearson correlation between the covariate X and the dependent variable Y over the entire sample

$$r_{xy} = \frac{SP_{XY total}}{\sqrt{(SS_{X total})(SS_{Y total})}}$$

12. 5 Example (a)

- Based on the example of music performance, teaching program, and ability

$$SS_{X \text{ total}} = \Sigma_{j}\Sigma_{i} x_{ij}^{2} - \frac{T_{x}^{2}}{N} = 12,066 - \frac{(458)^{2}}{20} = 1,577.8$$
, where $T_{x} = \Sigma_{j}\Sigma_{i} x_{ij}$
 $SS_{X \text{ between}} = \Sigma_{j} \frac{T_{xij}^{2}}{n_{j}} - \frac{T_{x}^{2}}{N} = \frac{46,336}{4} - \frac{(458)^{2}}{20} = 1,095.8$
 $SS_{X \text{ within}} = SS_{X \text{ total}} - SS_{X \text{ between}} = 1,577.8 - 1,095.8 = 482.00$

For *Y*,

$$SS_{Y \text{ total}} = 20,851 - \frac{(603)^2}{20} = 2,670.55$$

 $SS_{Y \text{ between}} = \frac{80,717}{4} - \frac{(603)^2}{20} = 1,998.8$
 $SS_{Y \text{ within}} = 2,670.55 - 1,998.8 = 671.75$

For XY,

$$SP_{XY \text{ total}} = \sum_{j} \sum_{i} x_{ij} y_{ij} - \frac{(T_x)(T_y)}{N} = 15,140 - \frac{458 \times 603}{20} = 1,331.3$$

$$SP_{XY \text{ between}} = \sum_{j} \frac{(T_{xj})(T_{yj})}{n_j} - \frac{(T_x)(T_y)}{N} = \frac{60,632}{4} - \frac{458 \times 603}{20} = 1,349.3$$

$$SP_{XY \text{ within}} = SP_{XY \text{ total}} - SP_{XY \text{ between}} = 1,331.3 - 1,349.3 = -18$$

And the adjusted SS are

$$SS_{Y \ adjusted \ total} = 2,670.55 - \frac{(1,331.3)^2}{1,577.8} = 1,547.24$$

 $SS_{Y \ adjusted \ error} = 671.75 - \frac{(-18)^2}{482} = 671.08$
 $SS_{Y \ adjusted \ means} = 1,547.24 - 671.08 = 876.16$

- Summary Table

Source	SS	df	MS	F	p
Adjusted Means	876.16	4	219.1	4.6	< .05
Adjusted Error	671.08	14	47.9		
Adjusted Total	1,547.24	18			

The observed F > critical F, thus we reject the null hypothesis of no difference between the *adjusted means* (music teaching program after controlling for initial music ability)

The F value if the covariate X (music ability) had not been introduced would be 11.6, with degrees of freedom (4, 15). Therefore, introducing the covariate in the model did reduce the discrepancies among music teaching programs.

The average correlation within groups (or factor levels) can be calculated as

$$r_w = \frac{SP_{XY \text{ within}}}{\sqrt{(SS_{X \text{ within}})(SS_{Y \text{ within}})}} = \frac{-18}{\sqrt{(482)(671.75)}} = -.032$$

- Effect of Gender and MAT score on GPA in law school

		N 4 A T	<u> </u>) T		N 4 A T	004
N	Sex	MAT	GPA	N	Sex	MAT	GPA
1	1	51	3.7	21	-1	47	2.72
2	1	53	3.28	22	-1	53	3.62
3	1	52	3.79	23	-1	51	3.45
4	1	50	3.23	24	-1	51	3.78
5	1	54	3.58	25	-1	46	3.14
6	1	50	3.34	26	-1	48	2.89
7	1	52	3.05	27	-1	51	3.36
8	1	56	3.78	28	-1	51	3.05
9	1	49	3.23	29	-1	53	3.65
10	1	52	3.16	30	-1	55	3.61
11	1	50	3.46	31	-1	50	3.45
12	1	51	3.47	32	-1	51	3.43
13	1	49	3.73	33	-1	52	3.56
14	1	54	3.63	34	-1	50	3.14
15	1	48	3.09	35	-1	49	3.19
16	1	48	3.18	36	-1	49	3.32
17	1	53	3.58	37	-1	50	3.06
18	1	53	3.26	38	-1	52	3.47
19	1	48	3.11	39	-1	44	3.07
20	1	47	3.22	40	-1	52	3.66

MAT & GPA

- Testing Sequence:

- 1 Construct vectors X, G and XG

X is continuous

G is group (categorical)

XG is the product of the two

$$Y = a + b_1G + b_2X + b_3GX$$

where a is the intercept for common group, b_1 represents the difference in groups, b_2 represents the common slope, and b_3 represents the interaction term (difference in group slopes). That is, there are two common terms and two difference terms

- 2 Estimate 3 slopes (and intercept)

Examine R^2 for model. If R^2 is significant and large enough:

Examine b_3 . If significant, there is an interaction. Then, estimate separate regressions for different groups. If b_3 is not significant, re-estimate the model without XG. Examine and interpret b_1 and b_2

- Heuristic Table

	Is b_1 significant	t? (G, categorical)
Is b_2 significant? (X, cont)	Yes	No
Yes	Parallel slopes, different intercepts	Identical regressions
No	Mean diffs only; slopes are zero	Only possible with severe confounding; ambiguous story.

- Illustration

$R^2 = .44; p < .0$)5		
Y' =0389 + .7	5G +.0673X0)146GX	
Term	Estimate	SE	t
G (b1; Sex)	.75	.6856	1.0567
X (b2; MAT)	.0673	.0125	4.9786*
GX (b3; Int)	0146	.0135	-1.0831

Step 1. R^2 is large and significant

Step 2. Slope for interaction (b_3) is non-significant

Step 3. Drop *GX* and re-estimate the model

$R^2 = .42$: p < .0)5		
Y' = .1154 + .004	45G+.0687X		
Term	Estimate	SE	t
G (b1: Sex)	.0045	.0833	.1365
X (b2; MAT)	.0687	.0135	5.0937*

Step 4. Examine slopes (b weights). The only significant slope is for MAT. We can conclude that both gender groups have identical regression lines and the slight apparent differences are due to sampling error

- Now, suppose that the data look like this, should we expect any differences in the results?

$R^2 = .72$; p < .05	5			
Y' = -11.54 + .826	68G+.0643X	0117GX		
Term	Estimate	SE	t	p
G (b1; Sex)	.8268	.6627	1.2476	.22
X (b2; MAT)	.0643	.0131	4.2947	.0001
GX (b3; Int)	0117	.0131	8945	.3770

- Is there any interaction?

$R^2 = 72 \cdot n < 0$	5			
Y' = -1805 + 23	46G+ 0655X			
Term	Estimate	SE	t	n
G (b1: Sex)	2346	0320	7 34	0001
X (b2; MAT)	.0655	.0130	5.05	.0001

• 12. 6 More Complex Designs

- With more complex designs, logic and sequence of tests remain the same
- The categorical variables may have more than 2 levels
- We may have several continuous IVs
- If multiple categories, create multiple (G-1) interaction terms. If multiple Xs, create products for each. Test the terms as a block using hierarchical regression

12. 7 Should One Categorize Continuous IVs?

- This is sometimes used as the median split (e.g., personality, stress, BEM sex-role scales)
- This procedure is not desirable because
 - Loss of power and information treat IQs of 100 and 140 as identical
 - Loss of replication (median changes by sample)
 - Arbitrary value of split "high stress" group may not be very stressed
- An alternative is to throw out middle people but this is also a problem because of range enhancement bias

Model1: Dependent Variable: relsat1

					Sum of				
	Source		DF		Squares	Mea	an Square	F Value	Pr > F
	Model		1	25.	7996156		5.7996156	64.46	<.0001
	Error		260	104.	0612930	(0.4002357		
	Corrected Total		261 1	129.	8609086				
		R-Square	Coeff \		Root		relsat1		
		0.198671	10.224	429	0.632	2642	6.18	37637	
	Parame	ter	Estimate		Eri	ror	t Value	Pr > t	
	Interc	ept 7.1	194924963		0.131406	697	54.75	<.0001	
	avoid1	-0.4	100713850		0.049909	978	-8.03	<.0001	
Model2:	Dependent Varia	ble: relsati	I						
	•				Sum of				
	Source		DF		Squares	Mea	an Square	F Value	Pr > F
	Model		2	78.	2943706	39	9.1471853	196.62	<.0001
	Error		259	51.	5665380	(0.1990986		
	Corrected Total		261	129.	8609086				
		R-Square	Coeff \	/ar	Root	MSE	relsat1	Mean	
		0.602909	7.2112		0.446			37637	
	_				_			5	
	Parame		Estimate			ror	t Value	Pr > t	
	Interc avoid1	-	164038986		0.103033		62.74	<.0001	
			128104762 198013567		0.039000		-3.28 16.24	0.0012 <.0001	
	grp	0	+96013307		0.030070	J2J	10.24	\.0001	
Model3:	Dependent Varia	ble: relsati	I						
	0		DE		Sum of		0	E 1/-1 -	D
	Source Model		DF 3	70	Squares 5625424		an Square 5.5208475	F Value 136.04	Pr > F <.0001
	Error		258		2983662		0.1949549	130.04	<.0001
	Corrected Total				8609086	,	7.1949549		
		R-Square	Coeff \	√ar	Root	MSE	relsat1	Mean	
		0.612675	7.1357	793	0.44	1537	6.18	37637	
					Stand	dard			
	Parame	ter	Estimate	Э	Er	rror	t Value	Pr > t	
	Interc	ept 6.	.507570668	3	0.10337	7482	62.95	<.0001	
	avoid1	-0.	132106261	1	0.03862	2402	-3.42	0.0007	
	grp		.245976747		0.10337		2.38	0.0181	
	avoid1	*grp 0.	.098509800)	0.03862	2402	2.55	0.0113	

				vations Read		119		
		Number	of Obser	vations Used	1	119		
pendent Variab	le: relsat1							
		_		Sum of			- v 1	5
Source)F	Squares		n Square	F Value	Pr > F
Model				.33945822		33945822	9.52	0.0025
Error	d Takal	11		.03240434	0.	35070431		
Correcte	d lotal	11	8 44	.37186255				
	R-Squ	ıare	Coeff Va	r Root	MSE	relsat1	Mean	
	0.07	5261	10.5813	6 0.592	2203	5.59	6664	
				Standa	ard			
	Parameter	Es	timate	Err	ror	t Value	Pr > t	
	Intercept	6.261	593922	0.222213	399	28.18	<.0001	
	avoid1	-0.230	616061	0.074734	167	-3.09	0.0025	
				• .				
				vations Read	d	143		
				• .	d			
ependent Variab	le: relsat1			vations Read	d	143		
	le: relsat1	Number	of Obser	vations Read vations Used Sum of	i i	143 143		
Source	le: relsat1	Number C	of Obser OF	vations Read vations Used Sum of Squares	i i Mea	143 143 n Square	F Value	Pr > F
Model	le: relsat1	Number E	of Obser OF 1 O	vations Read vations Used Sum of Squares .07687511	Mea 0.	143 143 n Square 07687511		Pr > F 0.2813
Source Model Error		Number	of Obser F 1 0 1 9	vations Read vations Used Sum of Squares .07687511 .26596187	Mea 0.	143 143 n Square	F Value	
Source Model		Number E	of Obser F 1 0 1 9	vations Read vations Used Sum of Squares .07687511	Mea 0.	143 143 n Square 07687511	F Value	
Source Model Error	d Total	Number D 14	of Obser 0F 1 0 1 9 2 9	Sum of Squares .07687511 .26596187 .34283698	Mea O.	143 143 n Square 07687511 06571604	F Value 1.17	
Source Model Error	d Total R-Squ	Number 14 14 uare	of Obser OF 1 0 1 9 2 9 Coeff Va	Sum of Squares .07687511 .26596187 .34283698	Mea O.	143 143 n Square 07687511 06571604 relsat1	F Value 1.17 Mean	
Source Model Error	d Total	Number 14 14 uare	of Obser 0F 1 0 1 9 2 9	Sum of Squares .07687511 .26596187 .34283698	Mea O.	143 143 n Square 07687511 06571604 relsat1	F Value 1.17	
Source Model Error	d Total R-Squ	Number 14 14 uare	of Obser OF 1 0 1 9 2 9 Coeff Va	Sum of Squares .07687511 .26596187 .34283698	Mea 0. 0. MSE 6351	143 143 n Square 07687511 06571604 relsat1	F Value 1.17 Mean	
Source Model Error	d Total R-Squ	Number 14 14 Jare 3228	of Obser OF 1 0 1 9 2 9 Coeff Va	vations Read vations Used Sum of Squares .07687511 .26596187 .34283698 r Root 5 0.256	Mea 0. 0. MSE 6351	143 143 n Square 07687511 06571604 relsat1	F Value 1.17 Mean	
Source Model Error	d Total R-Squ 0.008	Number 14 14 14 12 13 14 15 16 17 16 17 18 18 18 18 18 18 18 18 18	of Obser OF 1 0 1 9 2 9 Coeff Va 3.83792	vations Read vations Used Sum of Squares .07687511 .26596187 .34283698 r Root 5 0.256	Mea 0. 0. MSE 5351	143 143 n Square 07687511 06571604 relsat1 6.67	F Value 1.17 Mean 9427	