

模拟信号数字处理

*系统简化结构

- *信号变化情况
 - > 信号形态
 - > 表示方法

2019/4/16

数字信号处理 北京航空航天大学

模拟-数字转换

*系统结构

*模数转换

数字信号处理 北京航空航天大学

模拟-数字转换

❖时域采样

模拟-数字转换

*模数转换

2019/4/16

数字信号处理 北京航空航天大学

模拟-数字转换

❖描述方法—两级模型

2019/4/16

数字信号处理 北京航空航天大学

模拟-数字转换

❖ 调制过程 *x_s*(*t*) = *x*(*t*)*s*(*t*)

$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$\langle \square \rangle$$
 $S(j)$

$$\langle \square \rangle \quad S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s)$$

2019/4/16

$$(nT)\delta(t-nT)$$

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT) \iff X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$$

数字信号处理 北京航空航天大学

模拟-数字转换

模拟-数字转换

❖信号恢复

2019/4/16

数字信号处理 北京航空航天大学

9

2019/4/16

数字信号处理 北京航空航天大学

10

模拟-数字转换

* 序列转换

模拟-数字转换

❖从冲激串到序列转换

$$X_{s}(t) = \sum_{n=-\infty}^{\infty} x_{c}(nT)\delta(t-nT) \longrightarrow X_{s}(j\Omega) = \frac{1}{2\pi} X_{c}(j\Omega) *S(j\Omega)$$

$$X_{s}(j\Omega) = \sum_{n=-\infty}^{\infty} x_{c}(nT)e^{-j\Omega T n} \qquad X_{s}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{s}))$$

$$X_{s}(j\Omega) = X(e^{j\omega})|_{\omega = \Omega T} \qquad X(e^{j\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{s}))$$

$$= X(e^{j\Omega T}) \qquad X_{s}(nT) = x[n]$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \qquad X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)\right)$$

2019/4/16

数字信号处理 北京航空航天大学

模拟-数字转换

*图示描述

2019/4/16

数字信号处理 北京航空航天大学

数字-模拟转换

❖转换模型—两级描述

2019/4/16

数字信号处理 北京航空航天大学

数字-模拟转换

❖重构方法——理想滤波

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h_r(t - nT)$$

$$h_r(t) = \frac{\sin(\pi t/T)}{\pi t/T}$$

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

2019/4/16 数字信号处理 北京航空航天大学

数字-模拟转换

2019/4/16

数字信号处理 北京航空航天大学

第10次作业

❖书中作业:

4.1

❖补充作业:论述如下框图各个模块的基本功能,并 从时域与频域角度,论述各阶段信号形式的变化,

2019/4/16

数字信号处理 北京航空航天大学

47