GEOS 639 – INSAR AND ITS APPLICATIONS GEODETIC IMAGING AND ITS APPLICATIONS IN THE GEOSCIENCES

Lecturer:

Franz J Meyer, Geophysical Institute, University of Alaska Fairbanks, Fairbanks; fimeyer@alaska.edu

Lecture 3: Introduction to Geodetic Imaging II - Optical Remote Sensing

SENSOR TYPES RELEVANT FOR THIS COURSE OPTICAL REMOTE SENSING SYSTEMS

The Genesis of an Electro Optical Image

Relevant Sensor Parameters

1. Spatial resolution

Ability to separate parts of targets or other properties pertinent to RS

2. Spectral resolution

– location, width and sensitivity of chosen λ bands

3. Temporal sampling

time between observations

4. Radiometric resolution

Sensitivity of the sensor to incoming radiance

- Minimum distance at which two objects can still be distinguished
- The smallest quantity measurable in an image
- Measuring spatial resolution of image data:
 - Calibration targets:

Spatial Resolution vs. Pixel Size

Resolution vs. Pixel Size

Resolution: 10m **Pixel size**: 10m

Resolution: 30m Pixel size: 10m

Resolution: 80m Pixel size: 10m

Resolution and visual appearance of images

Pixel size & res: 10m 160×160 pixels

Pixel size & res: 20m 80×80 pixels

Pixel size & res: 40m 40×40 pixels

Pixel size & res: 80m 20×20 pixels

Point Spread Function

• **Point Spread Function**: Response of imaging system to a point source stimulant

- Idealized case: pixel response is same as source impulse $\delta(x)$
- In practice: each pixel responds imperfectly to input signal ($\rightarrow \delta(x)$) deteriorates to a broader PSF(x))

Point Spread Function of Real Sensors

3. Temporal Sampling

Repeat period crucial for resolving dynamic processes

May 27, 2019

May 28, 2019

May 29, 2019

May 30, 2019

Ice break-up

Tanana River

Cubesat constellation: daily coverage

Think - Pair - Share

Temporal Sampling and Feature Tracking

- You want to develop an algorithm to measure the velocity of glacier flow using a time series of Landsat imagery such as the data to the right
 - Q1: What approach would you use to measure glacier flow from this time series
 - Q2: How may the temporal sampling provided by Landsat influence your algorithm design?

4. Radiometric Resolution

• Sensitivity of measurement
Smallest change in intensity that can be distinguished

16 Values (4 bit)

Digital images
 # bits often referred to as radiometric resolution

4 Values (2 bit)

4. Radiometric Resolution

Distinguishing signal from noise

Signal to noise ratio

A complementary way of describing measurement fidelity

$$SNR [dB] = 10 \log_{10} \frac{P_{signal}}{P_{noise}}$$

The Landsat Program

• Landsat 1: 1972 – 1978

• Landsat 2: 1975 – 1981

• Landsat 3: 1978 – 1983

• Landsat 4: 1982 – 1993

• Landsat 5: 1984 – 2013

• Landsat 6: 1993, failed to reach orbit

• Landsat 7: 1999, still functioning, but with faulty scan line corrector (May 2003)

• Landsat 8: 2013, still active

• Landsat 9: Launched 2021

Benefit of the Long Landsat Time Series

• Example: Urban Growth of Las Vegas (and Effects on Lake Mead)

The DigitalGlobe High-Resolution Commercial Imaging Systems

- DigitalGlobe is the commercial vendor for the following high-res satellite systems:
 - EarlyBird-1
 - IKONOS
 - QuickBird
 - GeoEye-1
 - WordView-1 to -3

• All systems focus on high resolution (meter to sub-meter) and offer multispectral imaging capabilities with up to 8 bands between VIS and near IR.

WordView-3 Image

Sentinel-2

ESA's new & freely available VIS and IR resource

Sentine-2 vs. Landsat-7 and -8

Spectral Bands

Question: What do you think Sentinel-2 Band 10 and Landsat-8 Band 9 are useful for?

Answer: They are used for mapping Cirrus clouds (high altitude clouds)

Want to Know More?

For a Deeper Dive Into Optical Remote Sensing: Register for GEOS 654 Visual and Infrared Remote Sensing

Reading Assignment

• Next Lecture: Intro. To Geodetic Imaging – Synthetic Aperture Radar

• To prepare for this upcoming lecture, continue reading:

SAR Handbook Chapter 2: SAR Principles, Data Access, and Basis Processing Techniques [Meyer, 2019]

Chapters 2.1 and 2.2

QUESTIONS?

