Interacción persona-ordenador Estilos y paradigmas

- # Entender y aprender qué es un estilo de interacción
- # Tener una visión general y comparativa de los estilos y paradigmas de interacción
- Conocer el estado actual y la evolución futura de los estilos de interacción
- # Aprender a elegir entre los diferentes paradigmas y, dentro de estos, qué estilos de interacción utilizar para una determinada aplicación

Contenidos

- **#** Introducción
- # Estilos de interacción

 - Menús y navegación
 - Lenguaje natural
 - Manipulación directa
 - ☑ Interacción asistida
- # Paradigmas de interacción
 - Realidad virtual
 - Computación ubicua
 - Realidad aumentada
- # Comparación de los paradigmas de interacción

Evolución de la interacción

Interacciones

☐ Todos los intercambios que suceden entre la persona y el ordenador (Baecker and Buxton, 1987)

Interacción multimodal

Estilo de interacción

☐ Término genérico que agrupa las diferentes maneras en que los usuarios se comunican o interaccionan con el ordenador (Preece, 1994)

Estilos de interacción

- # Estilos de interacción predominantes:
 - ☑ Interfaz por línea de órdenes
 - Menús y navegación
 - Lenguaje Natural
 - Manipulación directa
 - ☑ Interacción asistida

Interfaz por línea de órdenes

- # Primer estilo de interacción de uso generalizado y todavía hoy en uso
- # Consiste en dar instrucciones directamente al ordenador mediante
 - Palabras enteras
 - Abreviaturas
 - Caracteres

más fáciles de recordar

más rápidas de ejecutar $\begin{cases} CTRL + z \end{cases}$

Ejemplos:

Interfaz por línea de órdenes

Ventajas

- Flexibilidad
 - ∠Las opciones de la orden pueden modificar su comportamiento
 - ∠La orden puede ser aplicada a muchos objetos a la vez
- Permite la iniciativa del usuario
- - ☑Ofrece acceso directo a la funcionalidad del sistema
- Potencialmente rápido para tareas complejas
- Capacidad para hacer macros

Desventajas

- Requiere un memorización y entrenamiento importantes
 - ☑No hay indicación visual de la orden que se necesita
 - ☑ Más útil para usuarios expertos que para usuarios noveles
- □ Gestión de errores pobre

Interfaz por línea de órdenes

```
C:\TMP\> dir
El volumen en unidad C es PCDOS 6
Número de Serie del Volumen es 1D8F-82B0
Directorio de C:\TMP
          <DIR> 02-02-98 21:08
         <DIR> 02-02-98 21:08
       TXT 206 02-02-98 21:08
HELP
       DOC 1.107 22-10-96 9:51
CARTA
      4 archivo(s) 1.313 bytes
                   24.850.432 bytes libres
C:\TMP\>del help.txt
C:\TMP\>dir
El volumen en unidad C es PCDOS 6
Número de Serie del Volumen es 1D8F-82B0
Directorio de C:\TMP
          <DIR> 02-02-98 21:08
          <DIR> 02-02-98 21:08
              1.107 22-10-96 9:51
CARTA DOC
      3 archivo(s) 1.107 bytes
                   24.850.738 bytes libres
C:\TMP\>
```


Menús y navegación

- Conjunto de opciones visualizadas en pantalla que se pueden seleccionar y llevan a la ejecución de una acción asociada
- **#** Suelen estructurarse jerárquicamente
- # Existen guías de estilo para diseñar menús
 - Número ideal de opciones: entre 3 y 8

Menús y navegación

% Ventajas

- Entrenamiento reducido, menos tecleo
- Permiten el uso de herramientas de gestión de diálogos

Desventajas

- Requieren una visualización rápida

<u>N</u>uevo Vista rápi<u>d</u> En<u>v</u>iar a

Cortar Copiar

Eliminar

Lenguaje natural

Fragmento del vídeo "El navegante del conocimiento"

Lenguaje natural

Beneficios y problemas

Beneficios

- Conocimiento del propio lenguaje
- □ Uso de la voz, por tanto manos libres

Problemas

- □ Diferencias en lenguajes, argots, voces
 - ☑ Pueden ser necesarios diálogos de clarificación

Manipulación directa

- # Características: (Schneiderman, 1991)
 - Representación continua de los objetos y acciones de interés
 - Cambio de una sintaxis de órdenes compleja por la manipulación de objetos y acciones
 - Acciones rápidas, incrementales y reversibles que provocan un efecto visible inmediato en el objeto seleccionado
- Posible gracias a las pantallas gráficas de alta resolución y los dispositivos apuntadores
- # Historia: Xerox Star, Apple Macintosh
- # Entorno más común: interfaz WIMP

Manipulación directa

Beneficios y problemas

Beneficios

- Los nuevos usuarios aprenden más rápidamente
- Los usuarios expertos pueden trabajar rápidamente
- Los usuarios ven rápidamente el resultado de sus acciones
- Las acciones son reversibles

Problemas

- No todas las tareas pueden ser descritas por objetos concretos
- No todas las acciones se pueden hacer directamente

- # La manipulación directa exige que el usuario explicite todas las tareas y controle todos los eventos
- # El creciente número de nuevos usuarios exige un cambio en la forma de interactuar con el ordenador
- La interacción asistida usa la metáfora del asistente personal o agente que colabora con el usuario
 - El usuario no dirige la interacción
- # Se reduce el esfuerzo del usuario
- **#** Agentes vs Asistentes

Fragmento del vídeo "El navegante del conocimiento"

Ejemplo: aumento del número de menús e iconos en Word

Agentes de la interfaz

- **Agente**: es un programa que el usuario ve como un programa que le ayuda y no como una herramienta
- Tiene algunas de las características asociadas a la inteligencia humana
 - △ Capacidad de aprender, inferencia, adaptabilidad, independencia, creatividad, etc (Lieberman, 97)
- # El usuario no ordena, delega tareas al agente (Maes, 94)
- # El agente es más discreto que el asistente
 - □ Trabaja en segundo plano y actúa por propia iniciativa cuando encuentra información que puede ser relevante para el usuario

Interacción asistida - agentes

Características

Autonomía

- Observa al usuario y las fuentes de información disponibles

Inteligencia

- Actúa por propia iniciativa
- Se adapta a múltiples situaciones, variando su estrategia

Uso personal

- No insiste en una solución si el usuario decide otra

Interacción asistida – agentes

Integración con aplicaciones

- # Para poder interaccionar con agentes las aplicaciones deben tener ciertas propiedades:
 - Programable
 - Controlable
 - Examinable

Applications

Interacción asistida - agentes

Ejemplo: Microsoft Agent

Asistentes, magos, guías

- # Son entidades computacionales que nos asisten en el uso de las aplicaciones existentes
- Nos exponen de manera fácil lo que se ha de hacer y pueden entender palabras escritas o habladas o acciones gráficas e interpretarlas
- Son muy flexibles en la forma en que reciben las instrucciones: el usuario tan sólo dice lo que quiere hacer
- # Pueden ser capaces de aprender del usuario
- # El asistente es activado por el usuario

Interacción asistida - asistentes **Ejemplos**

Contenidos

- **X** Introducción
- **X** Estilos de interacción
 - □ Interfaz por línea de órdenes

 - □ Lenguaje natural

 - ☐ Interacción asistida

Paradigmas de interacción

- Realidad virtual
- Computación ubicua
- Realidad aumentada
- # Comparación de los paradigmas de interacción

Paradigmas de interacción

- **Son los modelos de los que se derivan todos los sistemas de interacción**
- # Los paradigmas interactivos actuales son:
 - □ El ordenador
 - La realidad virtual
 - La computación ubicua

- # Es el paradigma dominante actualmente.
- Se realiza sentado frente al ordenador y utilizando interfaces de manipulación directa (pantalla, ratón, teclado, etc.).

Realidad virtual

- # El término RV se suele aplicar a
 - ☑ Interfaces en 3D con las que se puede interactuar y se actualizan en tiempo real
 - Sistemas cuyo nivel de autonomía, interacción y sensación de presencia es casi igual al del mundo real
- # Condiciones para hablar de un sistema de RV:
 - Sensación de presencia física directa mediante indicaciones sensoriales (visuales, auditivas, hápticas) creadas por la tecnología

 - ☑ Interacción natural. Permiten manipular los objetos virtuales con los mismos gestos que los reales: coger, girar, etc.

Realidad virtual

Dispositivos

Beneficios

Simulaciones imposibles en otro estilo

Problemas

- △ Alto coste
- Cansancio del usuario

- **X** La Computación Ubicua trata de extender la capacidad computacional al entorno del usuario
- # Permite que:
 - □ la capacidad de información esté presente en todas partes
 - en forma de **pequeños dispositivos muy diversos**
 - que permiten interacciones de poca dificultad
 - conectados en red a servidores de información (internet de las cosas)
- # El diseño y localización de los dispositivos son específicos de la tarea objeto de interacción
- # El ordenador queda relegado a un segundo plano, intentando que resulte "transparente" al usuario (ordenador invisible)

- # Origen: Mark Weiser, Xerox PARC, 1991
- # Hay una gran variedad de dispositivos:

 - Marcas

 - □ Pizarras, etc.
- # Podemos hablar de entornos en los que los usuarios no interaccionan directamente con ordenadores, sino con dispositivos de diverso tipo y tamaño

Mark Weiser y su grupo en un entorno ubicuo

Insignias activas y Marcas

Insignias activas

Marcas

Tabletas

- # 1 m x 1½ m
- # 1024 x 768
- ₩ b & n
- # tiza electrónica
- X Tablón de anuncios (cambia según la marca o insignia activa)
- # Pizarra clásica, pero que cambia con el usuario

- **%** Necesidades para la computación ubicua:
 - Ordenadores baratos y de bajo consumo
 - Programas de ejecución ubicua
 - Red que lo unifique todo
- Los avances en el hardware empiezan a ser suficientes para que el paradigma de la computación ubicua sustituya al del ordenador de sobremesa

Computación ubicua

Laboratorio de Sony (I)

A) Problemas con las pizarras blancas actuales

B) La aproximación multi-dispositivo

Computación ubicua

Laboratorio de Sony (II)

Computación ubicua

Beneficios y problemas

Beneficios

- Simplicidad o invisibilidad de la interacción
- Fiabilidad

Problemas

- "Tecnología no asentada"
- No resuelve todos los problemas

- La RA trata de reducir las interacciones con el ordenador utilizando la información del entorno como una entrada implícita
- # La RA integra el mundo real y el computacional:
 - □ El mundo real aparece aumentado por información sintética
 - Se consigue una disminución importante del coste interactivo

Objetivos:

- Mejorar la interacción con el mundo real
- Integrar el uso del ordenador en actividades cotidianas
- ☑ Posibilitar el acceso a usuarios diversos y no especializados
 ☑ Los objetos cotidianos se convierten en objetos interactivos
- Trasladar el foco de atención del ordenador al mundo real

Método más común:

- Solapamiento entre la información digital y las imágenes del mundo real a través del uso de visualizadores en casco o proyecciones de vídeo
- △La situación del usuario será automáticamente reconocida utilizando diversas técnicas de reconocimiento (tiempo, posición, objetos, códigos de barra...)

Corrientes existentes (1)

Aplicar la realidad virtual al mundo real

- Se aumenta o mejora la visión que el usuario tiene del mundo real con información adicional sintetizada
- △La información se superpone mediante el uso de gafas especializadas

Corrientes existentes (2)

Usar dispositivos que aumentan la realidad e interaccionan directamente con ella

□ El usuario interactúa con el mundo real, que está aumentado con información sintetizada

No se trata de superponer la información real con la virtual, sino de hacer participar a objetos cotidianos como un lápiz o una mesa que interactúan con el sistema de forma

automática

Aplicaciones

Medicina

Aplicaciones

- # El fontanero del futuro
- ****** Mantenimiento mecánico y reparación
- **#** Diseño interior

Aplicaciones

Líneas de trabajo

Superficies interactivas

□ Transformación de la superficie dentro de un espacio arquitectónico (paredes, mesas, puertas, ventanas) en una superficie activa entre el mundo físico y el mundo real

Acoplamiento de bits y átomos

Acoplamiento sin interrupciones entre los objetos de cada día que se pueden coger (tarjetas, libros, etc.) y la información digital que está relacionada con ellos

Medio ambiente

Uso del medio ambiente como sonido, luz, corrientes de aire y movimiento de agua como interfaces de fondo

Ordenadores corporales

Objetivos:

- Llevar encima el ordenador
- ☑ Interactuar con el usuario según el contexto
- ☑ Enlazar la información del entorno personal con la de un sistema informático

Características:

- Comodidad
- Naturalidad
- ✓ Integración con la vestimenta

Comparación de los paradigmas de interacción

- ←→ Persona Computador
- ←→ Persona Mundo real
- ←→ Mundo real Computador

- C Computador
- R Mundo Real

[Rekimoto, 1995]

Conclusiones

- Se ha presentado una visión de los distintos estilos y paradigmas de interacción
- El problema a resolver y los conocimientos del usuario decidirán para cada caso concreto el estilo de interacción más idóneo a utilizar
- # En el futuro coexistirán prácticamente todos los estilos de interacción en una mezcla que mejorará el conjunto