Analizando la heurística "piezas descolocadas"

Α

8	1	3
7	2	5
4		6

1	2	3
8		4
7	6	5

A 8 1 3 7 2 5 4 6

La solución óptima para esta configuración son 9 pasos

h*(A) = 9

1	2	3
8		4
7	6	5

El coste real del nodo A al GOAL es 9 \rightarrow h*(A)=9

El coste real del nodo A al GOAL es 9 \rightarrow h*(A)=9

(Sé el coste de la solución porque he ejecutado el programa del puzzle)

El coste real del nodo A al GOAL es 9 \rightarrow h*(A)=9

(Sé el coste de la solución porque he ejecutado el programa del puzzle)

Y la heurística "piezas descolocadas" estima un coste de 7 porque todas las fichas excepto la ficha 3 están descolocadas

El coste real del nodo A al GOAL es 9 \rightarrow h*(A)=9

(Sé el coste de la solución porque he ejecutado el programa del puzzle)

Y la heurística "piezas descolocadas" estima un coste de 7 porque todas las fichas excepto la ficha 3 están descolocadas

$$h^*(A) = 9$$
 Coste real de A al GOAL

1	1	١	
•		١	

	1	4
7	2	6
3	8	5

1	2	3
8		4
7	6	5

		1	4
Α	7	2	6
	3	8	5

1	2	3
8		4
7	6	5

A 7 2 6 3 8 5

Coste real de A al GOAL

Coste de la solución óptima

h*(A) =	18		
	1	2	3
	8		4
	7	6	5

 $h^*(A) = 18$

Coste de la solución óptima

(todas las fichas excepto la 5 están mal colocadas)

 $h^*(A) = 18$

h*(A) = 18

Coste real de A al GOAL

Coste de la solución óptima

$$h(A) = 7$$

(todas las fichas excepto la 5 están mal colocadas)

Coste estimado de A al GOAL con la heurística DESCOLOCADAS

2	3
	4
6	5

2	8	3
1		4
7	6	5

2	8	3
1		4
7	6	5

$$h^*(A) = 4$$
 $h(A) = 3$

$$h(A) = 3$$

$$h^*(A) = 9$$
 $h(A) = 7$

$$h(A) = 7$$

2	8	3
1		4
7	6	5

$$h^*(A) = 4$$
 $h(A) = 3$

$$h^*(A) = 9$$
 $h(A) = 7$

$$h^*(A) = 18$$
 $h(A) = 7$

2	8	3
1		4
7	6	5

$$h^*(A) = 4$$
 $h(A) = 3$

$$h(A) = 3$$

La heurística 'Descolocadas' siempre **SUBESTIMA** el coste real

$$h^*(A) = 9$$
 $h(A) = 7$

$$h(A) = 7$$

$$h^*(A) = 18$$
 $h(A) = 7$

$$h(A) = 7$$

2	8	3
1		4
7	6	5

$$h^*(A) = 4$$

$$h(A) = 3$$

La heurística 'Descolocadas' siempre SUBESTIMA el coste real

$$h^*(A) = 9$$
 $h(A) = 7$

Sí, porque solo estamos contando las fichas mal colocadas por tanto solo estamos estimando 1 movimiento por cada ficha mal colocada

$$h^*(A) = 18$$
 $h(A) = 7$

2	8	3
1		4
7	6	5

$$h^*(A) = 4$$

$$h(A) = 3$$

La heurística 'Descolocadas' siempre SUBESTIMA el coste real

$$h^*(A) = 9$$

$$h(A) = 7$$

Sí, porque solo estamos contando las fichas mal colocadas por tanto solo estamos estimando 1 movimiento por cada ficha mal colocada

$$h^*(A) = 18$$

$$h(A) = 7$$

Y para colocar una ficha en su lugar correcto hacen falta más movimientos como poner la casilla vacía adyacente a la ficha

h(n) = número de piezas descolocadas en el nodo 'n'

Se cumple siempre $\forall n \ h(n) \le h^*(n)$

h(n) es una heurística admisible

h(n) = número de piezas descolocadas en el nodo 'n'

Se cumple siempre $\forall n \ h(n) \le h^*(n)$

h(n) es una heurística admisible

$$f(n) = g(n) + h(n)$$

Algoritmo de tipo A

h(n) = número de piezas descolocadas en el nodo 'n'

Se cumple siempre $\forall n \ h(n) \le h^*(n)$

h(n) es una heurística admisible

$$f(n) = g(n) + h(n)$$

Algoritmo de tipo A

si h(n) es admisible

Algoritmo A*

h(n) = número de piezas descolocadas en el nodo 'n'

Se cumple siempre $\forall n \ h(n) \le h^*(n)$

h(n) es una heurística admisible

garantiza la SOLUCIÓN ÓPTIMA

¿Se puede encontrar una mejor estimación (heurística) para el problema del puzzle?

Distancias de Manhattan: para cada ficha mal colocada, calcular la distancia en horizontal y vertical a su posición objetivo y sumar todas las distancias.

Distancias de Manhattan: para cada ficha mal colocada, calcular la distancia en horizontal y vertical a su posición objetivo y sumar todas las distancias.

	1	4
7	2	6
3	8	5

Estado inicial del puzzle

1	2	3
8		4
7	6	5

Estado final del puzzle

Distancias de Manhattan: para cada ficha mal colocada, calcular la distancia en horizontal y vertical a su posición objetivo y sumar todas las distancias.

	1	4
7	2	6
3	8	5

Estado inicial del puzzle

1	2	3
8		4
7	6	5

Estado final del puzzle

Ficha 1: 1

Ficha 4: 1

Ficha 6: 2

Ficha 5: 0

Ficha 8: 2

Ficha 3: 4

Ficha 7: 1

Ficha 2: 1

Distancias de Manhattan: para cada ficha mal colocada, calcular la distancia en horizontal y vertical a su posición objetivo y sumar todas las distancias.

	1	4
7	2	6
3	8	5

Estado inicial del puzzle

1	2	3
8		4
7	6	5

Estado final del puzzle

Ficha 1: 1

Ficha 4: 1

Ficha 6: 2

Ficha 5: 0

Ficha 8: 2

Ficha 3: 4

Ficha 7: 1

Ficha 2: 1

TOTAL: 12

	1	4
7	2	6
3	8	5

$$h^*(A) = 18$$

Descolocadas h(n)=W(n)

	1	4
7	2	6
3	8	5

$$h^*(A) = 18$$

	1	4
7	2	6
3	8	5

$$h^*(A) = 18$$

Heurística admisible

Heurística admisible

	1	4
7	2	6
3	8	5

$$h*(A) = 18$$

Distancia Manhattan h(n)=D(n)

	1	4	
7	2	6	
3	8	5	
h*(A) = 18			

Heurística admisible

Heurística admisible

Heurística admisible

	1	4
7	2	6
3	8	5

$$h^*(A) = 18$$

Distancia Manhattan h(n)=D(n)

Heurística admisible

$$f(n) = g(n)+W(n)$$

solución óptima

Heurística admisible

 1
 4

 7
 2
 6

 3
 8
 5

 $h^*(A) = 18$

Distancia Manhattan h(n)=D(n)

Heurística admisible

$$f(n) = g(n)+W(n)$$

solución óptima

$$f(n) = g(n) + D(n)$$

solución óptima

Comparación de funciones heurísticas para el puzzle

 1
 4

 7
 2
 6

 3
 8
 5

 $h^*(A) = 18$

Distancia Manhattan h(n)=D(n)

D(A) = 12

Heurística admisible

$$f(n) = g(n) + W(n)$$

solución óptima

$$f(n) = g(n) + D(n)$$

Entonces, ¿cuál es la diferencia entre usar W(n) y D(n)?

$$D(n) \gg W(n)$$
 — $D(n)$ domina a $W(n)$

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

W(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

_____ W(n)

_____ h*

D(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

_____ W(n)

_____ h*

D(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

h*

D(n)

W(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

W(n)

D(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

D(n) >> W(n) — D(n) domina a W(n)

W(n)

D(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

$$D(n) \gg W(n)$$
 — $D(n)$ domina a $W(n)$

______ W(n)

_____ h*

D(n)

Los valores D(n) están mucho más cerca del coste real (h*) que W(n)

_ W(n)

D(n)

g(A)=0**RESUMEN g**(n) g(GOAL)=g(n)+h*(n)n h*(n) h(n) h(GOAL)=0 **GOAL**

g(A)=0**RESUMEN g**(n) g(GOAL)=g(n)+h*(n)n $g(GOAL)=h^*(A)$ h*(n) h(n) h(GOAL)=0 **GOAL**