Online Learning Applications

Part 5: Online gradient descent

OLA - M. Castiglioni 1/20

Batched supervised learning

We observe a dataset

$$\mathcal{D}_n := \{(x_i, y_i)\}_{i=1}^n \in \mathcal{X} \times \mathcal{Y}.$$

containing pairs of "labeled examples": features x_i , label y_i . Typically $\mathcal{X} = \mathbb{R}^d$ (features are represented by vectors) and

- $\mathcal{Y} = \{0, 1\}$: binary classification
- $3 \le |\mathcal{Y}| < \infty$: multi-class classification
- $\mathbf{y} = \mathbb{R}$: regression

Goal: build a predictor $\hat{g}_n : \mathcal{X} \to \mathcal{Y}$ which is a function that depends on the data \mathcal{D}_n , such that for a new observation $(\hat{x}, \hat{y}) \notin \mathcal{D}_n$

$$\hat{g}_n(\hat{x}) \simeq \hat{y}$$
.

Good predictor if it can generalize from training examples.

OLA - M. Castiglioni 2/20

Examples

Image classification

Features: pixel values Label: type of image (classification)

House prices prediction

Features : information on the house

Label: selling price

(regression)

OLA - M. Castiglioni 3/20

Mathematical formalization

Modelling assumption: \mathcal{D}_n contains **i.i.d. samples** whose distribution is that of a random vector $(x, y) \sim \mathcal{P}$.

Goal: given a loss function $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, build a predictor with small risk

$$R(g) := \mathbb{E}_{(x,y) \sim \mathcal{P}}[\ell(g(x),y)].$$

Empirical risk minimization

Given a class $\mathcal G$ of possible predictors, one can compute/approximate

$$\hat{g}_n^{\text{ERM}} \in \operatorname*{arg\,min}_{g \in \mathcal{G}} \left[\frac{1}{n} \sum_{i=1}^n \ell(g(x_i), y_i) \right].$$

OLA - M. Castiglioni 4/20

Supervised learning algorithms

Some of them can be related to an ERM:

- linear regression (Gauss, 1795)
- logistic regression (1950s)
- Support Vector Machines (1995)
- Neural Networks (1960s-80s, Deep Learning 2010s)

OLA - M. Castiglioni 5/20

Example: linear regression

$$\mathcal{X} = \mathbb{R}^d$$
 and $\mathcal{Y} = \mathbb{R}$.

Linear regression

$$\hat{g}_n: \mathcal{X} \ni x \mapsto \langle x, \hat{\theta}_n \rangle$$
 where

$$\hat{ heta}_n \in rg \min_{ heta \in \mathbb{R}^d} \sum_{i=1}^n (y_i - \langle x_i, heta
angle)^2.$$

Linked to ERM by choosing:

- lacksquare \mathcal{G} : space of linear functions
- Squared error loss: $\ell(z,y) = (z-y)^2$

OLA - M. Castiglioni 6/20

Example: logistic regression

$$\mathcal{X} = \mathbb{R}^d$$
 and $\mathcal{Y} = \{-1, +1\}$ (binary classification).

Logistic regression

$$\hat{g}_n: \mathcal{X} \ni x \mapsto \operatorname{sgn}\left(\langle x, \hat{\theta}_n \rangle\right)$$
 where

$$\hat{ heta}_n \in rg \min_{ heta \in \mathbb{R}^d} \sum_{i=1}^n \ln\Bigl(1 + e^{-y_i \cdot \langle \mathsf{x}_i, heta
angle}\Bigr).$$

Linked to ERM by choosing:

- lacksquare \mathcal{G} : space of linear functions
- Logistic loss: $\ell(z, y) = \ln(1 + e^{-zy})$

OLA - M. Castiglioni 7/20

Online learning vs supervised learning

Online learning is the process of answering a sequence of questions given (possibly partial) knowledge of the correct answers to previous questions and possibly additional available information

OLA - M. Castiglioni 8/20

Online learning vs supervised learning

Online learning is the process of answering a sequence of questions given (possibly partial) knowledge of the correct answers to previous questions and possibly additional available information

- Supervised learning: predictions based on large database (batch). Predict the label of a new data point (e.g., from a test set)
- Online learning: data is collected sequentially, we have to predict labels one-by-one, after which the true label is revealed
 - Decisions/predictions can influence the data collection process, and are based on past observations
 - Collect data in a smart way in order to optimize some criterion (e.g., maximize some cumulated reward)

OLA - M. Castiglioni 8/20

Online learning vs supervised learning

Online learning is the process of answering a sequence of questions given (possibly partial) knowledge of the correct answers to previous questions and possibly additional available information

- Supervised learning: predictions based on large database (batch). Predict the label of a new data point (e.g., from a test set)
- Online learning: data is collected sequentially, we have to predict labels one-by-one, after which the true label is revealed
 - Decisions/predictions can influence the data collection process, and are based on past observations
 - Collect data in a smart way in order to optimize some criterion (e.g., maximize some cumulated reward)

Examples:

- predict the value of a stock
- day-ahead prediction of electricity supply/demand
- predict behavior of user on a web page/app

OLA - M. Castiglioni 8/20

Online learning: general framework

Online learning

At every time step t = 1, 2, ... T,

- **1** Observe (features) $x_t \in \mathcal{X}$
- **2** Predict (label) $\hat{y}_t \in \mathcal{Y}$
- **3** Observe true label y_t and incur loss $\ell(y_t, \hat{y}_t)$

Goal: minimize cumulated loss $\sum_{t=1}^{T} \ell(y_t, \hat{y}_t)$

OLA - M. Castiglioni 9/20

Online learning: general framework

Online learning

At every time step t = 1, 2, ..., T,

- **1** Observe (features) $x_t \in \mathcal{X}$
- **2** Predict (label) $\hat{y}_t \in \mathcal{Y}$
- 3 Observe true label y_t and incur loss $\ell(y_t, \hat{y}_t)$

Goal: minimize cumulated loss $\sum_{t=1}^{T} \ell(y_t, \hat{y}_t)$

We compare the performance of the online algorithm to a suitable baseline.

Example:

lacksquare performance of best predictor in a family ${\cal G}$

OLA - M. Castiglioni 9/20

Online convex optimization

OLA - M. Castiglioni 10/20

Learning the best predictor online

Let \mathcal{G} be a class of predictors

A particular online learning problem

At every time step t = 1, 2, ..., T,

- lacktriangle Choose a predictor $g_t \in \mathcal{G}$
- Observe (features) $x_t \in \mathcal{X}$ and predict $\hat{y}_t = g_t(x_t)$
- **3** Observe true label y_t and incur loss $\ell(y_t, \hat{y}_t)$

Goal: minimize regret

Regret: difference between the cumulative loss of the online algorithm and the cumulative loss of the best predictor in \mathcal{G} up to time \mathcal{T} :

$$R_T := \sum_{t=1}^T \ell(y_t, \hat{y}_t) - \min_{g \in \mathcal{G}} \sum_{t=1}^T \ell(y_t, g(x_t)).$$

OLA - M. Castiglioni 11/20

Example: online logistic regression

```
\mathcal{X}=\mathbb{R}^d, \mathcal{Y}=\mathbb{R} (can be converted to predictions in \{-1,1\}).
```

- $\mathcal{G} := \{g(x) = \langle x, \theta \rangle, \theta \in \mathbb{R}^d\}$ is the class of linear predictors parametrized in θ
- lacksquare The predictor g_t corresponds to parameters $heta_t \in \mathbb{R}^d$: $g_t(x) = \langle x, heta_t
 angle$
- ℓ is the logistic loss: $\ell(y_t, \hat{y}_t) \coloneqq \ln(1 + \exp\{-y_t \langle \theta_t, x_t \rangle\})$

OLA - M. Castiglioni 12/20

Example: online logistic regression

 $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$ (can be converted to predictions in $\{-1,1\}$).

- ullet $\mathcal{G} \coloneqq \{g(x) = \langle x, heta
 angle, heta \in \mathbb{R}^d\}$ is the class of linear predictors parametrized in heta
- The predictor g_t corresponds to parameters $\theta_t \in \mathbb{R}^d$: $g_t(x) = \langle x, \theta_t \rangle$
- ℓ is the logistic loss: $\ell(y_t, \hat{y}_t) \coloneqq \ln(1 + \exp\{-y_t \langle \theta_t, x_t \rangle\})$

At each time $t = 1, \ldots, T$,

- **1** Choose a vector $\theta_t \in \mathbb{R}^d$
- 2 Observe function $\ell_t(\theta) = \ln(1 + \exp\{-y_t\langle x_t, \theta \rangle\})$
- **3** Suffer loss $\ell_t(\theta_t)$

OLA - M. Castiglioni 12/20

Example: online logistic regression

$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \mathbb{R}$ (can be converted to predictions in $\{-1,1\}$).

- $\mathcal{G} := \{g(x) = \langle x, \theta \rangle, \theta \in \mathbb{R}^d\}$ is the class of linear predictors parametrized in θ
- The predictor g_t corresponds to parameters $\theta_t \in \mathbb{R}^d$: $g_t(x) = \langle x, \theta_t \rangle$
- ℓ is the logistic loss: $\ell(y_t, \hat{y}_t) := \ln(1 + \exp\{-y_t \langle \theta_t, x_t \rangle\})$

At each time
$$t = 1, ..., T$$
,

- \blacksquare Choose a vector $\theta_t \in \mathbb{R}^d$
- 2 Observe function $\ell_t(\theta) = \ln(1 + \exp\{-y_t\langle x_t, \theta \rangle\})$
- 3 Suffer loss $\ell_t(\theta_t)$

The regret reads as follows:

$$R_T = \sum_{t=1}^T \ln(1 + \exp\{-y_t \langle heta_t, x_t
angle\}) - \underbrace{\min_{ heta \in \mathbb{R}^d} \sum_{t=1}^T \ln(1 + \exp\{-y_t \langle heta, x_t
angle\})}_{t=1}.$$

loss obtained by the best logistic regression predictor trained over the whole dataset

OLA - M. Castiglioni 12/20

Online convex optimization

Online logistic regression fits the framework of **online convex optimization** introduced by Zinkevich [2003]

Online convex optimization (OCO)

Given a **convex set** C, at each time t = 1, ..., T,

- 1 Choose $\theta_t \in \mathcal{C}$
- 2 Observe a convex loss function ℓ_t
- **3** Suffer loss $\ell_t(\theta_t)$

Goal: minimize

$$R_T = \sum_{t=1}^T \ell_t(heta_t) - \min_{\substack{\theta \in \mathbb{R}^d \ ext{t}=1}} \sum_{t=1}^T \ell_t(heta).$$
 loss obtained by the best static choice of $heta$ in hindsight

OLA - M. Castiglioni 13/20

Recap: convex sets and convex function

Definition

A set $C \subseteq \mathbb{R}^d$ is convex if, for any $x, y \in C$ and $\alpha \in [0, 1]$, it holds $\alpha x + (1 - \alpha)y \in C$.

We denote with $D = \max_{x,y} ||x - y||_2$, the diameter of the set C. This is a measure of how large is the set of possible decisions.

Definition

A function $\ell: \mathcal{C} \to \mathbb{R}$ is convex if for any $x, y \in \mathcal{C}$ and $\alpha \in [0, 1]$ it holds $\ell(\alpha x + (1 - \alpha y)) \le \alpha \ell(x) + (1 - \alpha)\ell(y)$.

We assume that ℓ_t are differentiable and let $G = \max_{t \in \{1,...,T\}} ||\nabla \ell_t(\theta_t)||_2$. G is a measure of the magnitude of the losses.

OLA - M. Castiglioni 14/2

Recap: projection

Definition

We define as

$$\Pi_{\mathcal{C}}(\theta) = \arg\min_{\theta' \in \mathcal{C}} \lVert \theta - \theta' \rVert$$

the projection of θ on the convex set C.

Theorem

Let $\theta \in \mathbb{R}^d$, and $\theta' = \Pi_{\mathcal{C}}(\theta)$. Then, for any $\hat{\theta} \in \mathcal{C}$, it holds

$$\|\theta - \hat{\theta}\| \ge \|\theta' - \hat{\theta}\|_2.$$

OLA - M. Castiglioni 15/20

First algorithm for OCO: online gradient descent

Online gradient descent (OGD)

```
1 convex set \mathcal{C} \subseteq \mathbb{R}^d, number of rounds T, step size \eta, initial point \theta_1 \in \mathcal{C}
```

```
2 for t = 1, 2, ..., T do
```

- \exists take decision $\theta_t \in \mathcal{C}$
- ℓ observe loss function ℓ_t and suffer loss $\ell_t(heta_t)$
- $5 \quad \theta_{t+1} \leftarrow \Pi_{\mathcal{C}}(\theta_t \eta \nabla \ell_t(\theta_t))$

OLA - M. Castiglioni 16/20

Performance guarantees

Theorem

The online gradient descent algorithm with step size $\eta = \frac{D}{G\sqrt{T}}$ achieves regret

$$R_T \leq DG\sqrt{T}$$
.

OLA - M. Castiglioni 17/20

Performance guarantees

Theorem

The online gradient descent algorithm with step size $\eta = \frac{D}{G\sqrt{T}}$ achieves regret

$$R_T \leq DG\sqrt{T}$$
.

Better regret guarantees are possible for "more regular functions" (e.g., smooth, strongly convex). See, e.g., Hazan [2022].

OLA - M. Castiglioni 17/20

Proof.

Let θ^* be the best fixed decision in hindsight, namely $\theta^* \in \arg\min_{\theta \in \mathcal{C}} \sum_{t=1}^T \ell_t(\theta)$. Then,

$$\|\theta_{t+1} - \theta^*\|^2 - \|\theta_t - \theta^*\|^2 = \|\Pi_{\mathcal{C}}(\theta_t - \eta \nabla \ell_t(\theta_t)) - \theta^*\|^2 - \|\theta_t - \theta^*\|^2$$

$$\leq \|\theta_t - \eta \nabla \ell_t(\theta_t) - \theta^*\|^2 - \|\theta_t - \theta^*\|^2$$

$$= -2\eta \langle \nabla \ell_t(\theta_t), \theta_t - \theta^* \rangle + \eta^2 \|\nabla \ell_t(\theta_t)\|^2$$

$$\leq -2\eta (\ell_t(\theta_t) - \ell_t(\theta^*)) + \eta^2 \|\nabla \ell_t(\theta_t)\|^2,$$

where the first inequality comes from the previous theorem about projections and the second one by the convexity of ℓ_t . Indeed, an equivalent definition of convex for a differentiable function ℓ is that for any θ, θ'

$$\ell(\theta) \ge \ell(\theta') + \langle \nabla \ell(\theta'), \theta - \theta' \rangle.$$

OLA - M. Castiglioni 18/20

Proof.

Then,

$$\sum_{t=1}^{T} (\ell_{t}(\theta_{t}) - \ell_{t}(\theta^{*})) \leq \sum_{t=1}^{T} \left(\frac{1}{2\eta} \|\theta_{t} - \theta^{*}\|^{2} - \frac{1}{2\eta} \|\theta_{t+1} - \theta^{*}\|^{2} + \frac{\eta}{2} \|\nabla \ell_{t}(\theta_{t})\|^{2} \right)$$

$$= \frac{1}{2\eta} \|\theta_{1} - \theta^{*}\|^{2} - \frac{1}{2\eta} \|\theta_{T+1} - \theta^{*}\|^{2} + \sum_{t=1}^{T} \frac{\eta}{2} \|\nabla \ell_{t}(\theta_{t})\|^{2}$$

$$\leq \frac{1}{2\eta} D^{2} + \frac{\eta}{2} G^{2} T$$

$$= DG\sqrt{T}/2 + DG\sqrt{T}/2$$

$$= DG\sqrt{T}.$$

where the first equality is obtained by telescoping the terms in the summation.

OLA - M. Castiglioni 18/20

Online gradient descent for the expert problem

We can apply online gradient descent to the expert problem:

- The convex set of actions is $\mathcal{C} \coloneqq \Delta_{\mathcal{A}}$
- The **expected** loss of $\theta \in \Delta_A$ is $\langle \ell_t, \theta_t \rangle$ (linear loss)
- The diameter is O(1)
- $G \le \sqrt{K}$ (upper bound on the Euclidean norm of gradients)

Theorem

Online gradient descent applied to the expert problem provides regret $O(\sqrt{KT})$.

- Gradient descent provides suboptimal performance
- It is possible to recover optimal regret bound with mirror descent (a generalization of gradient descent)

OLA - M. Castiglioni 19/20

Online gradient descent for the expert problem

We can apply online gradient descent to the expert problem:

- lacksquare The convex set of actions is $\mathcal{C}\coloneqq \Delta_{\mathcal{A}}$
- The **expected** loss of $\theta \in \Delta_A$ is $\langle \ell_t, \theta_t \rangle$ (linear loss)
- The diameter is O(1)
- $G \le \sqrt{K}$ (upper bound on the Euclidean norm of gradients)

$\mathsf{Theorem}$

Online gradient descent applied to the expert problem provides regret $O(\sqrt{KT})$.

- Gradient descent provides suboptimal performance
- It is possible to recover optimal regret bound with mirror descent (a generalization of gradient descent) → not in this course

OLA - M. Castiglioni 19/20

References

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *International Conference on Machine Learning (ICML)*, pages 928–936, 2003.

Elad Hazan. Introduction to online convex optimization. MIT Press, 2022.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2019.

OLA - M. Castiglioni 20/20