Organização de Computadores I DCC006

Aula 5 – Aritmética Computacional Ponto Flutuante

Prof. Omar Paranaiba Vilela Neto

Ponto Flutuante

- Nós necessitamos de uma maneira para representar
 - -Números com frações, ex., 3.1416
 - -Números muito pequenos, ex., .00000001
 - -Números muito grandes, ex., 3.15576 × 10⁹
- Representação:
 - -Sinal, expoente e fração: (-1)^{Sinal} x fração × 2^{expoente}
 - -Quanto mais bits a fração tiver, maior a precisão
 - -Quanto mais bits o expoente tiver, maior é a faixa representável
- Compromisso entre:
 - -Tamanho da fração;
 - -Tamanho do expoente.

Ponto Flutuante

- Padrão de ponto flutuante IEEE 754 :
 - Precisão simples: 8 bit expoente, 23 bit fração

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	s exponent										fraction																				
	1 bit 8 bits									23 bits																					

- •Formato: $(-1)^s \times F \times 2^E$
- •Pode ocorrer overflow em ponto flutuante?
- Novidade: underflow.

Ponto Flutuante

Como minimizar o overflow e o underflow?

Precisão Dupla

Precisão dupla: 11 bit expoente, 52 bit fração

- Bit à esquerda do ponto binário é implícito, vale "1"
- Expoente
 - -Todo 0s é o menor expoente, todo 1s é o maior
 - -Peso (excesso) de 127 para precisão simples e 1023 para precisão dupla
 - -sumário: (-1)sinal × (1+fração) × 2expoente peso
- Exemplo:
 - –Mostre a representação binária para o número decimal:
 - -0.75 em precisão simples e dupla.

- O número -0,75 também é:
- −-3/4_{dec} ou -3/2²_{dec}• A representação binária é:
- -11_{bin}/2²_{dec} ou -0,11_{bin}
 A notação científica é:
- - --0,11_{bin} x 2⁰
- A notação científica normalizada
 - --1,1_{bin} x 2⁻¹
- A representação geral em precisão simples é:
 - -(-1)^s x (1+fração) x 2 (Expoente 127)

Exercício

•Qual o número decimal representado por este float em precisão simples?

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1																															

Exercício

•Qual o número decimal representado por este float em precisão simples?

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1																														

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = 10000001₂ = 129

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Vamos somar os números 0,5_{dec} e -0,4375_{dec} em binário.

Vamos transformá-los em binários na notação científica normalizada, supondo que mantemos 4 bits de precisão.

$$0.5_{\text{dec}} = 1/2_{\text{dec}} = 1/2_{\text{dec}}^1 = 0.1_{\text{bin}} \times 2^0 = 1.0_{\text{bin}} \times 2^{-1}$$

$$-0.4375_{\text{dec}} = -7/16_{\text{dec}} = -7/2^{4}_{\text{dec}} = -0.0111_{\text{bin}} \times 2^{0} = -1.110_{\text{bin}} \times 2^{-2}$$

Vamos somar os números 0,5_{dec} e -0,4375_{dec} em binário.

1º – O significado do número com menor expoente (-1,110_{bin} x 2⁻²) é deslocado para a direita até seu expoente combinar com o número menor:

$$-1,110_{\text{bin}} \times 2^{-2} = -0,111_{\text{bin}} \times 2^{-1}$$

2º – Some os significados:

$$1,000_{\text{bin}} \times 2^{-1} + -0,111_{\text{bin}} \times 2^{-1} = 0,001_{\text{bin}} \times 2^{-1}$$

Vamos somar os números 0,5_{dec} e -0,4375_{dec} em binário.

3º – Normalize a soma e verifique overflow ou underflow:

$$0.001_{\text{bin}} \times 2^{-1} = 1.000_{\text{bin}} \times 2^{-4}$$

Como 127 > 4 > -126, o número está ok.

4º – Arredonde a soma:

$$1,000_{\rm bin} \times 2^{-4}$$

Verificando

$$1,000_{\text{bin}} \times 2^{-4} = 0,0001_{\text{bin}} = 1/2^{4}_{\text{dec}} = 1/16_{\text{dec}} = 0,0625_{\text{dec}}$$

Multiplicação de Ponto Flutuante

Vamos multiplicar os números 0,5_{dec} e -0,4375_{dec} em binário.

Vamos transformá-los em binários na notação científica normalizada, supondo que mantemos 4 bits de precisão.

$$0.5_{\text{dec}} = 1/2_{\text{dec}} = 1/2_{\text{dec}}^1 = 0.1_{\text{bin}} \times 2^0 = 1.0_{\text{bin}} \times 2^{-1}$$

$$-0.4375_{\text{dec}} = -7/16_{\text{dec}} = -7/2^{4}_{\text{dec}} = -0.0111_{\text{bin}} \times 2^{0} = -1.110_{\text{bin}} \times 2^{-2}$$

Multiplicação de Ponto Flutuante

Vamos multiplicar os números 0,5_{dec} e -0,4375_{dec} em binário.

1º – Somando os expoentes sem bias

$$-1+(-2)=-3$$

2º – Multiplicando os significados:

Multiplicação de Ponto Flutuante

Vamos multiplicar os números 0,5_{dec} e -0,4375_{dec} em binário.

3º – Normalize a multiplicação e verifique overflow ou underflow:

$$1,110_{\text{bin}} \times 2^{-3}$$

Como 127 > -3 > -126, o número está ok.

4º – Arredonde a soma:

$$-1,110_{\rm bin} \times 2^{-3}$$

Verificando

$$-1,110_{\text{bin}} \times 2^{-3} = -0,00111_{\text{bin}} = -7/2^{5}_{\text{dec}} = -7/32_{\text{dec}} = -0,21875_{\text{dec}}$$

Instruções de Ponto Flutuante no RISC-V

- Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - flw, fld
 - fsw, fsd

Instruções de Ponto Flutuante no RISC-V

- Single-precision arithmetic
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.se.g., fadds.s f2, f4, f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
 e.g., fadd.d f2, f4, f6
- Single- and double-precision comparison
 - feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Result is 0 or 1 in integer destination register
 - Use beq, bne to branch on comparison result
- Branch on FP condition code true or false
 - B.cond

Exemplo

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in f10, result in f10, literals in global memory space
- Compiled RISC-V code:

```
f2c:

flw f0,const5(x3) // f0 = 5.0f

flw f1,const9(x3) // f1 = 9.0f

fdiv.s f0, f0, f1 // f0 = 5.0f / 9.0f

flw f1,const32(x3) // f1 = 32.0f

fsub.s f10,f10,f1 // f10 = fahr - 32.0

fmul.s f10,f0,f10 // f10 = (5.0f/9.0f) * (fahr-32.0f)

jalr x0,0(x1) // return
```

Sumário

- Operações são mais complexas
- Além de overflow podemos ter "underflow"
- Precisão pode ser um grande problema
 - -IEEE 754 mantém 2 bits extra, guarda e arredondamento
 - -Quatro modos de arredondamento
 - -Positivo dividido por zero produz "infinito"
 - -Zero dividido por zero produz "não é um número"
 - -Outras complexidades
- •Implementar o padrão pode ser macetoso
- •Não usar o padrão pode ser pior ainda
 - -Veja o texto da descrição do 80x86 e do bug do Pentium!

Sumário

- •A aritmética do computador é restringida pela precisão limitada.
- •Padrões de bits não têm significado inerente, mas há normas
 - -Complemento de dois
 - -Ponto flutuante IEEE 754.
- •As instruções do computador determinam o sentido dos padrões de bits.
- •Desempenho e precisão são importantes e portanto há muitas complexidades nas máquinas reais (algoritmos e implementações).
- Estamos prontos para seguir (e implementar um processador)