Measurement Team 1 Report

Introduction:

Measurement team 1 is aimed to deal with all the sensors and the algorithms for calculating the required values for the cube sat in the following areas:

- 1. **GPS** (Longitude, Latitude, Altitude, SNR, Velocity, Satellite Numbers, Azimuth)
- 2. Sun Radiation (UV index, IR and visible light Intensity)
- **3. Weather Monitoring** (Pressure, Humidity, Temperature)

Work assigned:

- 1. Interface all the sensors with Arduino UNO and calibrate the sensors.
- 2. Modify/Rewrite the libraries present for the sensors for the more accurate calculation.
- 3. Store the data from the sensors in an array format converting them to a binary array.
- 4. Sending the Data format to the on-board software team for decoding the information.

Work Completed:

- 1. Interface all the sensors with Arduino UNO and calibrate the sensors.
- 2. Modify/Rewrite the libraries present for the sensors for the more accurate calculation.

Requirement and Specifications:

1.SUNLIGHT SENSOR (Si1145):

- Using Digital sensor to avoid the Albedo effect.
- Can measure the level of UV radiation in any type of light.
- Sun sensor at different layers of the atmosphere.
- Communicates its information via the I²C bus, making it compatible with all types of microcontrollers.
- Programming the sensor
- Problem with the ozone layer

2.WEATHER SENSOR (PHT sensor):

- BME280
- Low power consumption
- High accuracy, resolution and lower noise
- Provides both SPI and I²C interfaces

3.GPS MODULE (NEO 6M):

Excellent navigation performance even the most challenging environments.

- High-performance u-blox 6 positioning engine.
- Flexible and cost-effective receivers.

Power Requirements:

Sensor	Use	Current Rating	Voltage Rating	Protocol
Neo-6M	GPS	10mA	2.7~ 6 VDC 5V (we prefer)	Serial Communication
BME-280	Pressure, Humidity and Temperatu re	2mA	5V	12C
Sun Sensor	UV index, IR and Visible light measurem ent.	3.5mA	3.0 to 5.5 V	12C

Specifications of Sensors:

GPS NEO-6M

Model	Ublox NEO-6M	
	50 Channels	
Receiver Type	GPS L1 frequency, C/A Code	
	SBAS: WAAS, EGNOS, MSAS	
Supply Voltage (V)	2.7~ 6 VDC	
Main Chip	NEO-6	
	Cold Start (without aiding): -147 dBm	
12/14/2020	Hot Start: -156 dBm	
Sensitivity	Reacquisition: -160 dBm	
	Tracking & Navigation: -161 dBm	
Navigation Update Rate	5Hz	
Position Accuracy	2 M and better with multiple good satellite signals	
Operating Temperature Range	-24°C ~ 84°C	
Tracking Sensitivity	-161 dBm	
Cold Start Time	27s	
Warm Start Time	278	
Maximum Speed	500 M/s	
	Antenna – 25 x 25 x 7	
Dimensions (mm) LxWxH	GPS Board - 22 x 30 x 4	
Weight (gm)	12	

Sun Sensor:

Operating Voltage	3.0-5.5V
Working current	3.5mA
Wave length	280-950nm
Default I2C Address	0x60
Operating Temperature	-45-85°C

PHT Sensor:

Supply Voltage: 1.8 - 5V DC

• Interface: I2C (up to 3.4MHz)

• Operational Range:

o Temperature: -40 to +85°C

o Humidity: 0-100%

o Pressure: 300-1100 hPa

Resolution:

o Temperature: 0.01°C Humidity: 0.008% o Pressure: 0.18Pa

Accuracy:

Temperature: +-1°C Humidity: +-3% o Pressure: +-1Pa

I2C address

o SDO LOW: 0x76 o SDO HIGH: 0x77

Components and Software used:

• Arduino IDE

Proteus

• Fritzing

Circuit Diagrams:

VCC=3.3V

R1=4.7 Kohm; R2=30 ohm; c1=0.1 uF; c2=15uF;

FIG: SI1145 BASIC APPLICATION

Software Requirements:

Proteus Professional(If available)

Interface Requirements from other groups:

Communication and onboard software team for the requirement of data format for their programs.

Plan of Action:

A week more time is required for completing a final code

All other teammates are inactive no one responds so require a week for coding.

Conclusion:

Measurement team 1 has completed all ground and in-depth research of the sensor libraries for accurate data and work to be done is data formatting for the easy and low power communication.