The application of Generalized Linear Mixed Models in the combined analysis of clinical trials

Zichen Xu zichenxu407@gmail.com

Advisor: Dr. Mengxi Yi School of Statistics, Beijing Normal University Co-advisor: Dr. Yang Wang

Medical Research & Biometrics Center, National Center for Cardiovascular Diseases

> School of Statistics Beijing Normal University

> > May 7, 2024

Zichen Xu

Overall Directory

- 1 Background
- 2 Methods
- Simulation study

- 4 A case study
- **6** Discussions
- 6 References

Background

- 1 Background Review Innovations
- Methods Frequentist methods

Type-I error and Power

- A case study Research profile

Zichen Xu

Review

The average investment cost before a drug reaches the market is 1,335.9 million dollars[1], with clinical trials being the most time-consuming and expensive phase.[2]

According to ICH E8[3], the new drug development period is generally divided into four phases, where similarities often exist between phases and trials.

Question: If a similar design already exists, can we borrow information from it?

Related topics: Combining analysis between:

- Randomized Control Trials(RCTs)
- Q Current RCT and observational data

Zichen Xu School of Statistics, BNU The application of Generalized Linear Mixed Models in the combined analysis of clinical trials 4/36

Review

Background 0

Main Goals

- Gather more information to support our effect evaluations.
- Avoid compromising statistical properties.

Main Questions

- Can we utilize information from historical trials? (Criteria)
- How should we utilize it? (Methods)
- How much information should/can we utilize? (Quantitative evaluations)

Zichen Xu School of Statistics, BNU The application of Generalized Linear Mixed Models in the combined analysis of clinical trials 5/36

Innovations

Background

Zichen Xu

Methodology

- Reformulate the relevant methods within the theoretical framework of the Generalized Linear Mixed Model (GLMM).
- Comprehensive comparison between frequentist and Bayesian combination methodologies.

Application

- Evidence for the combination in "drop-the-loser" dose-finding trials.
- A comprehensive to-do list and recommendations for historical combinations.

- 2 Methods Frequentist methods Bayesian methods

Methods 000

Type-I error and Power

- A case study Research profile

Zichen Xu

7/36

Zichen Xu

Framework: Generalized Linear Mixed Model

Typically, GLMMs can be written as the formula shown below.

$$E\left(y|\eta\right)=\mu$$

$$g(\mu) = X\beta + Z\gamma$$

Likelihood function:

$$L(\beta, D) = \prod_{i} \int f(y_{ik}|\gamma_k) f(\gamma_k) d\gamma_k$$

Specifically, in the context of Bernoulli distribution, we have the probability density function as shown below.

$$P(y_{ki} = 1 | \beta, \gamma_k) = \frac{exp(\gamma_k + X_{ki}\beta)}{1 + exp(\gamma_k + X_{ki}\beta)}$$

Question: How to deal with the complex likelihood function and estimate the parameter we are interested in?

Frequentist methods

- 1 (Two-stage) Meta analysis
- **2** MLE with Laplace approximation(LA)
- 3 MLE with Panelized Quasi Likelihood(PQL)

Bayesian Hierarchical Modeling(BHM)

- Standard BHM
- **2** BHM with Power Prior(PP)
- **3** BHM with Normalized Power Prior(NPP)
- **4** BHM with Commensurate Priors(CPs)

(Two-stage) Meta analysis

Methods

The first stage: Estimate β_k and $var(\beta_k)$

$$y_{ik} \sim \text{Bernoulli}(p_{ik})$$

$$logit(p_{ik}) = ln\left(\frac{p_{ik}}{1 - p_{ik}}\right) = \gamma_k + \beta_k x_{ki}$$

The second stage: Estimate β and τ_{β}

1 For the fixed effect β : Inverse variance weighted average

$$\hat{\beta} = \frac{\sum_{k=1}^{N} \widehat{\beta_k} w_k}{\sum_{k=1}^{N} w_k}, \text{ where } w_k = \frac{1}{var\left(\widehat{\beta_k}\right)}$$

2 For the random effect: REsidual Maximum Likelihood method(REML)

$$\widehat{\beta_k} \sim \mathcal{N}\left(\beta, \tau_{\beta}^2 + var\left(\widehat{\beta_k}\right)\right)$$

Zichen Xu School of Statistics, BNU

MLE with Laplace Approximation

For the likelihood:

$$\int f(y_k|\beta,\gamma_k)f(\gamma_k) d\gamma_k = \int e^{\log(a(\gamma_k|y_k,\beta,\Sigma))} d\gamma_k := \int e^{l(t)} dt$$

Using the second-order truncated Taylor Expansion at \hat{t} :

$$\int e^{l(t)}dt \approx \int e^{l\left(\hat{t}\right)+\frac{1}{2}\left(t-\hat{t}\right)^T l''\left(\hat{t}\right)\left(t-\hat{t}\right)}dt = (2\pi)^{\frac{K}{2}} \left|-\hat{l}''\left(\hat{t}\right)\right|^{-\frac{1}{2}} e^{l\left(\hat{t}\right)}$$

$$L_{k}\left(\beta,\Sigma|y_{k}\right)\approx\left(2\pi\right)^{\frac{K}{2}}\left|\widehat{\Omega_{k}}\right|^{\frac{1}{2}}f\left(y_{k}|\beta,\widehat{\gamma_{k}}\right)f(\widehat{\gamma_{k}}|0,\Sigma)$$

Based on the first-order Taylor expension of V_k :

$$y_{ki} \approx b(X_{ki}\hat{\beta} + Z_{ki}\widehat{\gamma_k}) + b'(X_{ki}\hat{\beta} + Z_{ki}\widehat{\gamma_k})X_{ki}(\beta - \hat{\beta}) + b'(X_{ki}\hat{\beta} + Z_{ki}\widehat{\gamma_k})Z_{ki}(\gamma_k - \widehat{\gamma_k}) + \epsilon_{ki}$$

, where $b(\cdot)$ denotes the inverse of the link function $g(\cdot)$. The goal function:

$$\sum_{k=1}^{K} \left(\log(f(y_k|\beta, \gamma_k)) - \frac{1}{2} \gamma_k^T \Sigma^{-1} \gamma_k \right)$$

Methods

Zichen Xu

Based on Carvalho et al.(2021)[6] and Peter F. Thall et al.(2003)[7], we present the standard BHM model as shown below.

$$Y_{gi} \sim \mathbf{Bernoulli}(\theta_i)$$

$$logit(\theta_i) = \gamma_g + \beta_g x_{gi}$$

$$\gamma_g \sim \mathcal{N}(\mu_\gamma, \sigma_\gamma^2), \beta_g \sim \mathcal{N}(\mu_\beta, \sigma_\beta^2)$$

$$\sigma_\gamma^2 \sim \mathbf{IGamma}(a_\gamma, b_\gamma), \sigma_\beta^2 \sim \mathbf{IGamma}(a_\beta, b_\beta)$$

$$q(\beta|D_0, D) \propto \pi_0(\beta) L(D_0|\beta) L(D|\beta)$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

The application of Generalized Linear Mixed Models in the combined analysis of clinical trials

Standard Bayesian Hierarchical Models(BHM)

The graphical representation is shown below.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める○

Zichen Xu

BHM with Power Prior(Ibrahim and Chen, 2000)

Methods 00000

Based on Ibrahim et al.(2000)[8] and Carvalho et al.(2021), we can incorporate a power prior into our model, as shown below.

$$Y_{gi} \sim \text{Bernoulli}(\theta_i)$$

$$logit(\theta_i) = \gamma + \beta x_{gi}$$

$$\pi\left(\beta|D_{0},a_{0}\right)\propto L\left(D_{0}|\beta\right)^{a_{0}}\pi\left(\beta\right)$$

$$q(\beta, \alpha_0|D_0, D) \propto L(D|\beta)\pi (\beta|D_0, a_0) \pi_A(\alpha_0)$$

Zichen Xu School of Statistics, BNU Methods

BHM with Normalized Power Prior(Duan et al., 2006)

Based on Duan et al. (2006) [9], we can incorporate a normalized power prior into our model as shown below.

$$c(a_0) := \int L(D_0|\beta)^{a_0} \pi(\beta) d\beta$$

$$p(\beta, a_0|D_0, D) \propto \frac{1}{c(a_0)} L(D|\beta) L(D_0|\beta)^{a_0} \pi(\beta) \pi_A(a_0)$$

$$p(a_{0}|D_{0}, D) = \int p(\beta, a_{0}|D_{0}, D) d\beta$$

$$\propto \frac{\pi_{A}(a_{0})}{c(a_{0})} \int L(D|\beta) L(D_{0}|\beta)^{a_{0}} \pi(\beta) d\beta$$

Zichen Xu The application of Generalized Linear Mixed Models in the combined analysis of clinical trials

Zichen Xu

BHM with Commensurate Priors

Hobbs et al.(2011&2012)[10][11] introduced an advanced approach by measuring commensuration across trials. The commensurate power prior:

$$\gamma_1 \sim \mathcal{N}\left(\gamma_0, \tau^2\right), \beta_1 \sim \mathcal{N}\left(\beta_0, \tau^2\right)$$

$$\gamma_0 \sim \mathcal{N}\left(0, 1000\right), \beta_0 \sim \mathcal{N}\left(0, 1000\right)$$

$$q\left(\beta,\beta_{0},a_{0}|D_{0},D,\tau^{2}\right)\propto\mathcal{N}\left(\beta|\beta_{0},\tau^{2}\right)L\left(\beta_{0}|D_{0}\right)^{\alpha_{0}}L\left(\beta|D\right)\pi_{A}\left(a_{0}|\tau^{2}\right)\pi\left(\beta\right)\pi\left(\beta_{0}\right)$$

According to Scott Berry et al.(2010)[12], we adopt $Beta\left(\frac{a\sigma^2}{\tau^2},1\right)$ as the prior distribution for α_0 .

- 4 D ト 4 団 ト 4 差 ト 4 差 ト - 差 - 夕 Q C

The application of Generalized Linear Mixed Models in the combined analysis of clinical trials

Section Directory

- Methods Frequentist methods
- **3** Simulation study

Basic settings Type-I error and Power analysis

- A case study Research profile

Zichen Xu

- We simulated three scenarios with varying heterogeneity: complete homogeneity, moderate homogeneity, and significant heterogeneity.
- The current treatment response (true value) was varied to assess the statistical power and Type-I error characteristics of each method.

Simulation scenario dictionary

		Historical Control	Historical Treatment	Concurrent Control	Concurren	t Treatment
Scenario 1 Scenario 2	Response rate	0.6	0.72	0.6	G	rids
Scenario 1	Sample size		21		228	
Cooperie 2	Response rate	0.7	0.82	0.6	G	rids
Scenario 2	Sample size		21		228	
Ci- 2	Response rate	0.8	0.92	0.6	G	rids
Scenario 3	Sample size		21		228	

Type-I error and Power analysis Scenario 1: Complete homogeneity

Simulation study results for scenario 1

			Effec	t size		
Methods	Type-I error			Power		
	0	0.05	0.1	0.12	0.15	0.2
Chi-sq test	0.05(set)	0.124	0.350	0.474	0.656	0.884
Two-stage Meta	0.112	0.326	0.576	0.659	0.714	0.732
PQL	0.051	0.144	0.390	0.515	0.690	0.870
Std BHM(High borrowing)	0.04	0.165	0.395	0.495	0.710	0.935
Std BHM(Moderate borrowing)	0.04	0.125	0.365	0.470	0.655	0.920
Std BHM(Low borrowing)	0.05	0.080	0.390	0.540	0.680	0.935
BHM with Power Prior	0.03	0.145	0.300	0.500	0.720	0.905
BHM with NPP approximate a_0	0.075	0.135	0.420	0.520	0.735	0.905
BHM with CP	0.04	0.165	0.405	0.495	0.650	0.940
BHM with CPP(w/out cov)	0.055	0.115	0.330	0.555	0.645	0.930

Zichen Xu School of Statistics, BNU

Type-I error and Power analysis Scenario 2: Partial homogeneity

Simulation study results for scenario 2

			Effec	t size		
Methods	Type-I error			Power		
	0	0.05	0.1	0.12	0.15	0.2
Chi-sq test	0.05(set)	0.124	0.350	0.474	0.656	0.884
Two-stage Meta	0.039	0.129	0.340	0.475	0.605	0.815
PQL	0.048	0.155	0.416	0.523	0.718	0.902
Std BHM(High borrowing)	0.04	0.170	0.365	0.500	0.680	0.910
Std BHM(Moderate borrowing)	0.035	0.120	0.320	0.515	0.660	0.935
Std BHM(Low borrowing)	0.05	0.080	0.335	0.490	0.735	0.920
BHM with Power Prior	0.1	0.095	0.410	0.480	0.660	0.885
BHM with NPP approximate a_0	0.02	0.140	0.405	0.490	0.715	0.925
BHM with CP	0.045	0.175	0.395	0.485	0.685	0.920
BHM with CPP(w/out cov)	0.03	0.115	0.345	0.495	0.680	0.945

Zichen Xu School of Statistics, BNU

Simulation study results for scenario 3

			Effec	t size		
Methods	Type-I error			Power		
	0	0.05	0.1	0.12	0.15	0.2
Chi-sq test	0.05(set)	0.124	0.350	0.474	0.656	0.884
Two-stage Meta	0.063	0.207	0.491	0.640	0.782	0.904
PQL	0.053	0.144	0.419	0.532	0.719	0.929
Std BHM(High borrowing)	0.04	0.170	0.375	0.520	0.680	0.910
Std BHM(Moderate borrowing)	0.035	0.125	0.325	0.485	0.660	0.935
Std BHM(Low borrowing)	0.055	0.105	0.515	0.485	0.680	0.935
BHM with Power Prior	0.05	0.155	0.390	0.515	0.755	0.910
BHM with NPP approximate a_0	0.03	0.170	0.390	0.515	0.700	0.920
BHM with CP	0.04	0.180	0.430	0.550	0.690	0.940
BHM with CPP(w/out cov)	0.04	0.135	0.370	0.570	0.675	0.865

Zichen Xu School of Statistics, BNU

Highlights

Zichen Xu

- Frequentist methods, particularly two-stage meta-analysis, are more prone to Type I error inflation.
- In cases of small effect sizes, historical trials become more influential, leading to inflated statistical power.
- Commensurate priors demonstrate the best overall performance in terms of Type I error rates and statistical power.(i.e., BHM with CP)

Section Directory

- 1 Background
 Review
 Innovations
- 2 Methods
 Frequentist methods
 Bayesian methods
- 3 Simulation study

Basic settings
Type-I error and Power

- 4 A case study
 Research profile
 Results
- **5** Discussions
- 6 References

Zichen Xu

Profile of trials and their data

- Investigational product: rhM-tPA
- Comparator: rt-PA
- Purposes:

Zichen Xu

- 1. Observe the efficacy and safety for patients with acute ST-segment elevation myocardial infarction.
- 2. Select doses subsequently.
- Primary efficacy endpoint (**binary**): The proportion of TIMI 2+3 grade blood flow in the infarct-related artery at 90 minutes post-thrombolysis as determined by coronary angiography.

Profile of trials and their data

Historical trial: A Phase IIa trial for rhM-tPA

- 1. 5 doses
- 2. Sample size (design): 50 participants(10 for each dose)

Current trial: A Phase IIb trial for rhM-tPA

- 1. 3 doses (included in IIa)
- 2. Sample size (design): 360 participants(120 for each dose)

Commensuration

Same medicine, inclusive doses, same researchers, same baseline features, same control and treatments...

- 4 D ト 4 団 ト 4 差 ト 4 差 ト 2 差 - 夕 Q ()

Zichen Xu School of Statistics, BNU
The application of Generalized Linear Mixed Models in the combined analysis of clinical trials 26 / 36

•0

Baseline: analysis separately

Laplace Approximation Panelized Quasi-Likelihood Std BHM(High shrinkage) Std BHM(Moderate shrinkage)

Std BHM(Low shrinkage) BHM with Power Prior BHM with NPP

BHM with NPP BHM with NPP BHM with NPP approximate a 0 BHM with CP BHM with CPP(w/out cov)

0.5534

0.2830

0.0013

0.4mg/kg

	Chi-sq test					0.442					0.8901
	Baseline: GLM										
	Two-stage Meta	0.2107	0.2741	-0.3260	0.7505	0.442	0.1335	0.9667	-1.8157	2.0885	0.89
	Laplace Approximation										
	Panelized Quasi-Likelihood										
	Std BHM(High shrinkage)										
0.0	Std BHM(Moderate shrinkage)										
0.3mg/kg	Std BHM(Low shrinkage)										
	BHM with Power Prior										
	BHM with NPP BHM with NPP	0.2126	0.2743	-0.3242	0.7514		0.1753	0.9689	-1.7220	2.0940	
	BHM with NPP										
	BHM with NPP approximate a 0										
	BHM with CP										
	BHM with CPP(w/out cov)										
	Chi-sq test					0.051*		_		7,7,7	0.5254
	Baseline: GLM					0.001					0.5254
	Two-stage Meta										
	TWO-stage Weta	0.5501	0.2826	-0.0005	1.1099	0.052*	0.6568	1.0427	-1.3807	2.8866	0.529

1.1110

0.7235

1.0540

Global comparison between methods (b)Treatment Effect (b)Std Frr (b)2.5% Quantile (b)97.5% Quantile (b)P-value (a)Treatment Effect (a)Std Frr (a)2.5% Quantile

200

-1.2870

2.8700

Zichen Xu School of Statistics, BNU The application of Generalized Linear Mixed Models in the combined analysis of clinical trials

00

Combining analysis: the global comparison

			parison betwee				
Doses	Methods	(a+b)Treatment Effect	(a+b)Std. Err	(a+b)2.5% Quantile	(a+b)97.5% Quantile	α_0	(a+b)P-value
	Chi-sq test						0.43
	Two-stage Meta	0.204969	0.26373	-0.3119	0.7219		0.437
	Laplace Approximation	0.204972	0.26371	-0.4019	0.8143		0.437
	Panelized Quasi-Likelihood	0.204972	0.26372	-0.3145	0.7244		0.4405
	Std BHM(High borrowing)	0.208173	0.26510	-0.3117	0.7283	1.00	
	Std BHM(Moderate borrowing)	0.206323	0.26712	-0.3162	0.7306	1.00	
0.3mg/kg	Std BHM(Low borrowing)	0.205748	0.27193	-0.3276	0.7394	1.00	
u.smg/kg	BHM with Power Prior	0.212986	0.27358	-0.3226	0.7504	0.08	
	BHM with NPP	0.210406	0.26366	-0.3070	0.7267	0.99(set)	
	BHM with NPP	0.211456	0.27044	-0.3162	0.7458	0.50(set)	
	BHM with NPP	0.213595	0.27647	-0.3290	0.7575	0.01(set)	
	BHM with NPP approximate a_0	0.210373	0.26713	-0.3098	0.7342	0.66	חתו
	BHM with CP	0.210357	0.26545	-0.3087	0.7277	1.00	1 / / / / /
	BHM with CPP(w/out cov)	0.212700	0.27569	-0.3260	0.7542	0.10	
	Chi-sq test						0.039*
	Two-stage Meta	0.557418	0.27280	0.0227	1.0921		0.041*
	Laplace Approximation	0.557460	0.27278	-0.0660	1.2414		0.041*
	Panelized Quasi-Likelihood	0.557460	0.27275	0.0202	1.0947		0.043*
	Std BHM(High borrowing)	0.563446	0.27649	0.0214	1.1135	1.00	
	Std BHM(Moderate borrowing)	0.558577	0.27680	0.0204	1.1034	1.00	
0.4ma/ka	Std BHM(Low borrowing)	0.554849	0.27971	0.0108	1.1063	1.00	
0.4mg/kg	BHM with Power Prior	0.555955	0.28235	0.0059	1.1120	0.08	
	BHM with NPP	0.564997	0.27386	0.0343	1.1074	0.99(set)	
	BHM with NPP	0.561970	0.27861	0.0201	1.1106	0.50(set)	
	BHM with NPP	0.557110	0.28397	0.0002	1.1169	0.01(set)	
	BHM with NPP approximate a_0	0.562603	0.27739	0.0227	1.1081	0.65	
	BHM with CP	0.564063	0.27584	0.0283	1.1098	1.00	
	BHM with CPP(w/out cov)	0.557105	0.28238	0.0068	1.1146	0.11	

Zichen Xu School of Statistics, BNU

- Methods Frequentist methods

Type-I error and Power

- A case study Research profile
- Discussions

Zichen Xu

Discussions

- With only two clinical trials, particularly with small sample sizes in each, frequentist methods are at greater risk of inflating Type I errors and are less stable in estimating between-group heterogeneity.
- Commensuration evaluations based on covariates and baseline (intercept) significantly improve methodological stability against model misspecification.
- Frequentist methods consistently demonstrate better precision than Bayesian methods.
- Sensitivity testing is highly recommended due to the inherent arbitrariness in selecting Bayesian hyperparameters and conducting Bayesian hierarchical modeling.

- Methods Frequentist methods

Type-I error and Power

- A case study Research profile
- References

Zichen Xu

References I

Zichen Xu

- [1] Wouters, O. J., et al. (2020). "Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018." Jama 323(9): 844-853.
- [2] Sertkaya A, Birkenbach A, Berlind A, Eyraud J.
 Examination of Clinical Trial Costs and Barriers for Drug
 Development. Lexington (MA): Eastern Research Group,
 Inc., 2014.
- [3] ICH. General considerations for clinical studies E8(R1)[R], 2021.
- [4] Debray, T. P. A., et al. (2015). "Get real in individual participant data (IPD) meta-analysis: a review of the methodology." Research Synthesis Methods 6(4): 293-309.

4 D > 4 D > 4 E > 4 E > E 9 Q C

References II

Zichen Xu

- [5] Burke, D. L., et al. (2017). "Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ." Stat Med 36(5): 855-875.
- [6] Carvalho, L. M. and J. G. Ibrahim (2021). "On the normalized power prior." Statistics in Medicine 40(24): 5251-5275.
- Thall, P. F., et al. (2003). "Hierarchical Bayesian [7]approaches to phase II trials in diseases with multiple subtypes." Statistics in Medicine 22(5): 763-780.
- Ibrahim, J. G. and M.-H. Chen (2000). "Power Prior [8] Distributions for Regression Models." Statistical Science 15(1): 46-60.

- Duan, Y., et al. (2006). "Evaluating water quality using [9] power priors to incorporate historical information." Environmetrics 17(1): 95-106.
- [10] Hobbs, B. P., et al. (2011). "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials." Biometrics 67(3): 1047-1056.
- Hobbs, B. P., et al. (2012). "Commensurate Priors for [11] **Incorporating Historical Information in Clinical Trials** Using General and Generalized Linear Models." Bayesian Anal 7(3): 639-674.

Zichen Xu School of Statistics, BNU

References IV

[12] Berry, S. M., et al. (2010). Bayesian adaptive methods for clinical trials, CRC press.

References 000

The End

Thanks!

