Goals:

• Isolate Eastern Bluebird

We choose the Eastern Bluebird (Sialia sialis) due to the abundance of data as well as the ease of analysis, as they are mostly contained within the eastern states of USA.

From SpeciesList.csv, we find that the AOU code for Eastern Bluebird is 7660.

```
In []: import pandas as pd

df = pd.read_csv("mourningdove.csv")
    df
```

Out[]:_ Country State Route Year Aou SpeciesTotal 124.0 4.0 1.0 1990.0 3160.0 124.0 4.0 1.0 1991.0 3160.0 4.0 1.0 1992.0 3160.0 3 124.0 4.0 1.0 1993.0 3160.0 2.0 124.0 4.0 1.0 1994.0 3160.0 5.0 **76660** 840.0 92.0 901.0 2018.0 3160.0 1.0 25.0 **76661** 840.0 92.0 902.0 2004.0 3160.0 **76662** 840.0 92.0 902.0 2006.0 3160.0 13.0 **76663** 840.0 92.0 902.0 2015.0 3160.0 2.0 **76664** 840.0 92.0 902.0 2017.0 3160.0

76665 rows × 6 columns

In []: # Grouping by State, ignoring individual routes and aggregating them to stat

df_grouped = df.groupby(['State', 'Year'], as_index=False)['SpeciesTotal'].s
 df_grouped

```
State Year SpeciesTotal
  0 2.0 1990.0
                    1891.0
1 2.0 1991.0
                   1802.0
  2 2.0 1992.0
                    1776.0
3 2.0 1993.0
                   2127.0
  4 2.0 1994.0
                    2098.0
1720 92.0 2016.0
1721 92.0 2017.0 795.0
1722 92.0 2018.0
1723 92.0 2019.0 519.0
1724 93.0 1994.0
                    1.0
```

1725 rows \times 3 columns

```
In []: # Visualizing our data
import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))
sns.lineplot(data=df_grouped, x="Year", y="SpeciesTotal", marker="o")

plt.title("Species Sightings for Mourning Dove in the US", fontsize=12)
plt.xlabel("Year", fontsize=10)
plt.ylabel("SpeciesTotal", fontsize=10)

plt.show()
```


The metadata defines each state:

"'02,Alabama; 03,Alaska; 04,Alberta; 06,Arizona; 07,Arkansas; 11,British Columbia; 14,California; 17,Colorado; 18,Connecticut; 21,Delaware; 25,Florida; 27,Georgia; 33,Idaho; 34,Illinois; 35,Indiana; 36,Iowa; 38,Kansas; 39,Kentucky; 42,Louisiana; 43,Northwest Territories; 44,Maine; 45,Manitoba; 46,Maryland; 47,Massachusetts; 49,Michigan; 50,Minnesota; 51,Mississippi; 52,Missouri; 53,Montana; 54,Nebraska; 55,Newada; 56,New Brunswick; 57,Newfoundland and Labrador; 58,New Hampshire; 59,New Jersey; 60,New Mexico; 61,New York; 62,Nunavut; 63,North Carolina; 64,North Dakota; 65,Nova Scotia; 66,Ohio; 67,Oklahoma; 68,Ontario; 69,Oregon; 72,Pennsylvania; 75,Prince Edward Island; 76,Quebec; 77,Rhode Island; 79,Saskatchewan; 80,South Carolina; 81,South Dakota; 82,Tennessee; 83,Texas; 85,Utah; 87,Vermont; 88,Virginia; 89,Washington; 90,West Virginia; 91,Wisconsin; 92,Wyoming; 93,Yukon "

We will use, for now, 07 Arkansas, 34 Illinois, 52 Missouri.

```
In []: # Visualizing our data
import seaborn as sns
import matplotlib.pyplot as plt

df_filtered = df_grouped[df_grouped["State"].isin([7,34,52])]

plt.figure(figsize=(12,6))
sns.lineplot(data=df_filtered, x="Year", y="SpeciesTotal", hue="State", mark

plt.title("Species Sightings for Mourning Dove in the US", fontsize=12)
plt.xlabel("Year", fontsize=10)
plt.ylabel("SpeciesTotal", fontsize=10)
plt.show()
```


In []: df_filtered

	State	Year	SpeciesTotal
90	7.0	1990.0	629.0
91	7.0	1991.0	542.0
92	7.0	1992.0	684.0
93	7.0	1993.0	676.0
94	7.0	1994.0	750.0
775	52.0	2015.0	2376.0
776	52.0	2016.0	2358.0
777	52.0	2017.0	2486.0
778	52.0	2018.0	2488.0
779	52.0	2019.0	2631.0

90 rows × 3 columns

Now comparing with emission types

```
In []: import pandas as pd

df_emissions = pd.read_csv("full_data.csv")

states = {
    'Arkansas': 7,
    'Illinois': 34,
    'Missouri': 52
}

df_emissions.rename(columns={'Region': 'State', 'Value': 'Emissions'}, inpla
df_emissions['State'] = df_emissions['State'].map(states)
df_emissions = df_emissions[df_emissions["State"].isin([7, 34, 52])]

df_emissions_pivoted = df_emissions.pivot_table(index=['State', 'Year'], col
df_emissions_pivoted.columns = [col for col in df_emissions_pivoted.columns]
df_emissions_pivoted.reset_index(inplace=True)
df_combined = pd.merge(df_filtered, df_emissions_pivoted, on=['State', 'Year
df_combined = df_combined.drop(columns=['Gross total', 'Net total'])
(df_combined)
```

Out[]:

		State	Year	SpeciesTotal	Carbon dioxide	Fluorinated gases	Land use and forestry carbon stock change	Methane	Nitrous oxide
	0	7.0	1990.0	629.0	54.132545	1.786645	-54.692963	19.292660	6.820905
	1	7.0	1991.0	542.0	52.856844	1.774128	-53.677058	20.753636	6.932789
	2	7.0	1992.0	684.0	54.872688	1.784589	-53.177882	19.099499	7.071014
3	3	7.0	1993.0	676.0	53.910021	1.821897	-52.455692	19.912666	7.185217
	4	7.0	1994.0	750.0	57.663686	1.931176	-51.678457	20.257696	7.031927
						***	***	***	
8	5	52.0	2015.0	2376.0	131.141261	3.751684	-24.649114	13.959973	16.166956
8	6	52.0	2016.0	2358.0	124.714462	3.251369	-23.865313	14.543042	14.071274
8	37	52.0	2017.0	2486.0	130.783979	3.384542	-23.793008	14.902632	15.683796
8	8	52.0	2018.0	2488.0	131.588221	3.078250	-24.213457	15.575442	16.136778
8	9	52.0	2019.0	2631.0	123.542202	3.249534	-22.699114	15.095425	14.753059

90 rows × 8 columns

Let's look at one state. We choose Arkansas for now.


```
Land use
                                                       and forestry
carbon
stock
                                 Carbon Fluorinated dioxide gases
                                                                                 Nitrous
oxide
                  SpeciesTotal
                                                                     Methane
                                                            change
    SpeciesTotal
                      1.000000 0.915412
                                            0.815209
                                                          0.814000 0.372454 0.873839
  Carbon dioxide
                      0.915412 1.000000
                                            0.858797
                                                           0.917618  0.430775  0.971450
     Fluorinated
                      0.815209 0.858797
                                            1.000000
                                                           0.711549 0.603259 0.794049
          gases
 Land use and 
forestry carbon 
stock change
                     0.814000 0.917618
                                             0.711549
                                                          1.000000 0.378159 0.936623
        Methane
                     0.372454 0.430775
                                            0.603259
                                                          0.378159 1.000000 0.382065
Nitrous oxide
                     0.873839 0.971450 0.794049
                                                          0.936623  0.382065  1.000000
```

In []: import statsmodels.api as sm $\label{eq:X} \begin{array}{ll} X = df_combined[['Carbon \ dioxide', \ 'Fluorinated \ gases', \ 'Land \ use \ and \ forest\\ X = sm.add_constant(X) \end{array}$ y = df_combined['SpeciesTotal'] # regression model
model = sm.OLS(y, X).fit()
print(model.summary())

OLS Regression Results

		====				
===			_			_
Dep. Variable: 848	SpeciesTo	tal	R-sq	uared:		0.
Model: 839		0LS	Adj.	R-squared	d:	0.
Method: 3.52	Least Squa	res	F-st	atistic:		9
Date:	Sun, 13 Apr 2	025	Prob	(F-stati	stic):	7.87e
-33 Time:	14:59	:10	Log-	-Likelihood	i:	-68
0.09						
No. Observations: 72.		90	AIC:			13
Df Residuals:		84	BIC:			13
87.		-				
Df Model:	nonrob	5				
Covariance Type:						
				cnef	std err	t
P> t [0.025	0.9751			COCI	stu en	
const			_	132 6606	820.532	_0 162
0.872 -1764.378	1499 057			132.0000	020.332	-0.102
Carbon dioxide	14331037			18.8798	4.155	4.544
	27.142			10.0750	255	
Fluorinated gases				35.3464	28.393	1.245
0.217 -21.116						
Land use and fore:	stry carbon stock	cha	nge	-5.3549	12.242	-0.437
0.663 -29.700	18.990					
Methane				-20.4860	15.413	-1.329
	10.165					
Nitrous oxide				-38.5389	44.114	-0.874
0.385 -126.265						
		====				
===						
Omnibus:	4.	980	Durb	in-Watson:		0.
532			-	5 (
Prob(Omnibus):	0.	083	Jarq	ue-Bera (3	JB):	4.
900 Skew:		EGO	Prob	(1D).		0.0
863	0.	209	F10L	(30):		0.0
Kurtosis:	2	894	Cond	I. No.		2.58e
+03	۷.	554	CONTO			2.500
=======================================				.=======		
===						

- Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 2.58e+03. This might indicate that there
- are strong multicollinearity or other numerical problems.