Question Bank

Semester: B.Tech 2nd **Subject: Mathematics-II**

Branch: Common to all Branches Course Code: A000212(014)

Unit-I MULTIVARIABLE CALCULUS (Integration)

2 marks Questions

- 1) Evaluate $\int_{1}^{2} \int_{1}^{3} xy^{2} dx dy$.
- 2) Evaluate $\int_0^4 \int_0^{x^2} e^{y/x} dx dy$.
- 3) State Stoke's theorem.
- 4) State Gauss Divergence theorem.
- 5) State Green's theorem.

4 marks Questions

- 1) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$. 2) Calculate the volume of the solid bounded by the planes x = 0, y = 0, x+y+z = 1 and z = 0.
- 3) If $\vec{F} = 3xy\hat{\imath} (y^2)\hat{\jmath}$, evaluate $\int_C \vec{F} \cdot d\vec{R}$, where C is the curve $y = 2x^2$ in the xy-plane from (0,0) to
- 4) If $\vec{F} = (x^2 yz)\hat{i} + (y^2 xz)\hat{j} + (z^2 xy)\hat{k}$, then find its scalar potential \emptyset .
- 5) Apply Green's theorem to prove that the area enclosed by a plane curve is $\frac{1}{2} \int_C x dy y dx$.

8 marks Questions

- 1) Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$.
- 2) Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z \ dz dx dy$
- 3) Evaluate by changing the order of integration $\int_0^a \int_{\sqrt{ax}}^a \frac{y^2 dx dy}{\sqrt{v^4 a^2 x^2}}$.
- 4) Evaluate by changing the order of integration ∫₀^{4a} ∫_{x²/4a}^{2√ax} dydx.
 5) Evaluate by changing the order of integration ∫₀[∞] ∫₀^x xe^{-x²/y} dydx.
- 6) Show that the area enclosed by the parabola $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.
- 7) Find the area included between the parabola $y = 4x x^2$ and the line y = x.
- 8) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.
- 9) Find the volume enclosed by the cylinders $x^2 + y^2 = 2ax$ and $z^2 = 2ax$.
- 10) Compute the line integral $\int y^2 dx x^2 dy$, about the triangle whose vertices are (1,0), (0,1) and (-1,0).
- 11) Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{\imath} + (2xz y)\hat{\jmath} + z\hat{k}$ along:
 - a. The straight line from (0,0,0) to (2,1,3).
 - b. The curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x=0 to x=2.
- 12) Verify the Green's theorem for: $\int_C [(3x 8y^2)dx + (4y 6xy)dy]$, where C is boundary of the region bounded by lines x = 0, y = 0 and x + y = 1.
- 13) Verify Stoke's theorem for the vector field $\vec{F} = (x^2 + y^2)\hat{\imath} 2xy\hat{\jmath}$ taken round the rectangle bounded by $x = \pm a, y = 0, y = b$.
- 14) Evaluate $\int_S \vec{F} \cdot d\vec{S}$, where $\vec{F} = 4x\hat{\imath} 2y^2\hat{\jmath} + z^2\hat{k}$ and the surface S is the region bounded by $x^2 + y^2 = 4$, z = 0 and z = 3.

15) Evaluate by Stoke's theorem $\int_C (yzdx + zxdy + xydz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$.

Unit -II First Order Ordinary Differential Equation

2 Marks Questions:

- 1) Define Exact Differential Equation.
- 2) State necessary condition for a differential equation M dx + N dy = 0 to be exact.
- 3) Define Integrating factor.
- 4) Write Clairaut's equation.
- 5) What is the general solution of y = px + ap(1-p).

4 Marks Questions:

- 1) Examine the Differential Equation $\frac{dy}{dx} = -\frac{\cos y}{v^2 x \sin y}$ for Exactness.
- 2) Find the general solution of the equation $p = \sin(y xp)$.
- 3) Solve $xdx + ydy + \frac{xdy ydx}{x^2 + y^2} = 0$
- 4) Find the Integrating Factor of the differential equation (ylogy)dx + (x logy) dy = 0
- 5) Solve the following equation $(\sec x \tan x \tan y - e^x) dx + \sec x \sec^2 y dy = 0$

8 Marks Questions:

1) Solve the following differential equations,

(i)
$$(xy^2 - e^{1/x^3})dx - x^2y dy = 0$$

(ii)
$$y(xy + 2x^2y^3)dx + x(xy - x^2y^2)dy = 0$$

(iii)
$$(y^2 + 2x^2y)dx + (2x^3 - xy)dy = 0$$

(iv)
$$x^4 \frac{dy}{dx} + x^3 y + cosec xy = 0$$

$$(v) (xy \sin xy + \cos xy)y dx + (xy \sin xy - \cos xy)x dy = 0$$

(vi)
$$(x^4e^x - 2m xy^2)dx + 2m x^2y dy = 0$$

(vii)
$$(1 + xy)y dx + (1 - xy)x dy = 0$$

2) Solve the following differential equations,

(i)
$$p^2 + 2py \cot x = y^2$$

(i)
$$p^2 + 2py \cot x = y^2$$

(ii) $p^3 + 2x p^2 - y^2 p^2 - 2x y^2 p = 0$

(iii)
$$y = x \left[p + \sqrt{1 + p^2} \right]$$

3) Solve the following differential equations,

$$(i) y = x + a \tan^{-1} p$$

(ii)
$$y = xp^2 + p$$

(iiii)
$$y + px = x^4p^2$$

4) Solve the following differential equations,

(i)
$$p^3 - 4xy p + 8 y^2 = 0$$

(i)
$$p^3 - 4xy p + 8 y^2 = 0$$

(ii) $p = \tan (x - \frac{p}{1+p^2})$

UNIT – III ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER

2 Marks Questions:

- 1. Define linear differential equation.
- 2. Explain Method of variation of parameters.
- 3. Define Cauchy's and Legendre's linear differential equation.
- 4. Define Ordinary and Singular point.
- 5. Solve $\frac{d^2y}{dx^2} + y = 0$.

4 Marks Questions:

- 1. Solve $\frac{d^2y}{dx^2} + 2y = x^2e^{3x} + e^x \cos 2x$.
- 2. Solve $\frac{d^2y}{dx^2} 4y = x \sinh x.$
- 3. Solve using variation of parameters $\frac{d^2y}{dx^2} + y = \sec x$.
- 4. Solve the equation $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + y = \log_e x$.
- 5. Solve in series the equation $\frac{d^2y}{dx^2} + xy = 0$.

8 Marks Questions:

1. Solve the equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$$

- 2. Solve the equation $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin\{\log(1+x)\}.$
- 3. Solve using variation of parameters $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$.
- 4. Solve using variation of parameters $\frac{d^2y}{dx^2} + 4y = \tan 2x$.
- 5. Solve using variation of parameters $\frac{d^2y}{dx^2} + y = x \sin x$.
- 6. Solve the equation $(D-2)^2 = 8(e^{2x} + \sin 2x + x^2)$.
- 7. Solve the equation $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10(x + \frac{1}{x})$.
- 8. Solve the equation $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^{x^x}$.

9. Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
.

- 10. Solve the differential equation $(D^2 1)y = x \sin 3x + \cos x$.
- 11. Solve in series the equation $9x(1-x)\frac{d^2y}{dx^2} 12\frac{dy}{dx} + 4y = 0$.
- 12. Solve in series the equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx} xy = 0$.
- 13. Obtain the series solution of the equation $x(1-x)\frac{d^2y}{dx^2} (1+3x)\frac{dy}{dx} y = 0$.
- 14. Solve in series $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 4)y = 0$.
- 15. Solve in series $x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + xy = 0$.

UNIT IV COMPLEX VARIABLE-DIFFERENTIATION

2 Marks Questions.

- 1. Separate $\exp(z^2)$ into real and imaginary parts.
- 2. Find the general value of $\log(-i)$
- 3. Define analytic function.
- 4. Find the real and imaginary parts of sinz.
- 5. Write the relations between circular and hyperbolic functions.

4 Marks Questions.

- 1. Find the general and principal values of i^i
- 2. If $\sin(\alpha + i\beta) = x + iy$, prove that:

$$\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1.$$

- 3. If f(z) = u + iv be an analytic function in some region of z plane, then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- 4. Prove that $\cosh^2 x \sinh^2 x = 1$
- 5. Determine the analytic function whose real part is $\log \sqrt{x^2 + y^2}$

8 Marks Questions

- 1. If $u = \log \tan(\pi/4 + \theta/2)$, prove that
 - (i) $\tanh u/2 = \tan \theta/2$ (ii) $\theta = -i \log \tan \left(\frac{\pi}{4} + \frac{iu}{2}\right)$
- 2. If $tan(\theta + i\phi) = e^{i\alpha}$, Show that

$$\theta = \left(n + \frac{1}{2}\right)\frac{\pi}{2}$$
 and $\phi = \frac{1}{2}\log \tan \left(\frac{\pi}{4} + \frac{\alpha}{2}\right)$

3. Reduce $\tan^{-1}(\cos\theta + i\sin\theta)$ to the form a+ib. Hence show that,

$$\tan^{-1}\left(e^{i\theta}\right) = \frac{n\pi}{2} + \frac{\pi}{4} - \frac{i}{2}\log\tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$$

- 4. If $\sin^{-1}(u+iv) = \alpha + i\beta$ prove that $\sin^2 \alpha$ and $\cosh^2 \beta$ are the roots of the equation $x^2 x(1 + u^2 + v^2) + u^2 = 0$
- 5. Show that $\tan^{-1} z = \frac{i}{2} \log \left(\frac{i+z}{i-z} \right)$
- 6. If i^{i} i^{i} = A + iB, Prove that $\tan \frac{\pi A}{2} = \frac{B}{A}$ and $A^2 + B^2 = e^{-\pi B}$
- 7. If $\tan(\theta + i\phi) = \tan \alpha + i \sec \alpha$, prove that

$$e^{2\phi} = \pm \cot \frac{\alpha}{2}$$
 and $2\theta = \left(n + \frac{1}{2}\right)\pi + \alpha$

8. Prove that
$$\tan \left[i \log \left(\frac{a - ib}{a + ib} \right) \right] = \frac{2ab}{a^2 - b^2}$$

9. If tan(x + iy) = sin(u + iv), prove that

$$\frac{\sin 2x}{\sinh 2y} = \frac{\tan u}{\tanh v}$$

10. Prove that the function f(z) defined by

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$$
 ($z \neq 0$), $f(0) = 0$ is continuous and the Cauchy-Riemann equations

are satisfied at the origin, yet f'(0) does not exist.

11. If $\omega = \phi + i\psi$ represents the complex potential for an electric field and

$$\psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$$
, determine the function ϕ .

- 12. If the potential function is $\log(x^2+y^2)$, find the flux function and the complex potential function.
- 13. Find the analytic function f(z) = u + iv, if $u v = (x y)(x^2 + 4xy + y^2)$.
- 14. If f(z) is a regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$
- 15. Find the analytic function f(z) = u + iv, whose imaginary part is given by

$$v = e^x (x \sin y + y \cos y).$$

UNIT-V Complex Variable – Integration

2 Marks Questions:

- 1. State Cauchy's Theorem
- 2. Evaluate $\int \frac{e^z}{(z-3)^2} dz$ at |z|=2
- 3. Define Isolated Singularity.
- 4. Singularity of $e^{z^{-1}}$ at z=0 is the type
- 5. Find the zeros of $f(z) = \left(\frac{z+1}{z^2+1}\right)^3$

4 Marks Questions:

- 1: Evaluate $\int_{c} \frac{\sin^{2}z}{(z-\pi/6)^{3}} dz$ where c is the circle |z| = 1 Using Cauchy Integral Formula.
- **2.** Evaluate $\int_C z^2 dz$ where C is the Straight line joining the origin O to the point p(2,1) on the complex plane.
- **3.** Evaluate $\int_C |z| dz$ where C is the straight line z=-i to z=i.
- **4.** Evaluate $\int_C \tan z dz$ where C is the circle |z| = 2
- **5.** Evaluate using Cauchy's integral formula $\int_C \frac{z}{z^2 3z + 2} dz \text{ where C is } |z 2| = \frac{1}{2}$

8 Marks Questions:

- 1. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region:
 - (a) |z| < 1 (b) 1 < |z| < 2 (c) |z| > 2
- 2. Find the Laurent's Series expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region 1 < |z+1| < 3
- 3. Find the Laurent's Series expansion of $f(z) = \frac{1}{z^2 \sinh z}$ and evaluate $\int_C \frac{dz}{z^2 \sinh z}$ where C is the circle |z-1|=2
- 4. Find Laurent's series expansion of $f(z) = \frac{e^{2z}}{(z-1)^2}$ about z=1
- 5. Find Laurent's series expansion of $f(z) = \frac{z^2 6z 1}{(z 1)(z 3)(z + 2)}$ in the region 3 < |z + 2| < 5

6. Evaluate
$$\int_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)} dz$$
 where C is the circle $|z| = 3$

- 7. Evaluate $\int_{C} \frac{z-3}{z^2+2z+5} dz$ where C is the Circle
 - (i) |z|=1
 - (ii) |z+1-i|=2
 - (iii) |z+1+i| = 2
- 8. Evaluate $\int_{C} \frac{3z^2 + 2}{(z 1)(z^2 + 9)} dz$ where C: |z 2| = 2
- 9. If $F(z) = \int_{C} \frac{4z^2 + z + 5}{z 3} dz$ where C is the ellipse $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$ Find the value of (a) F(3.5)
 - **(b)** F(i) F'(-1) and F''(-i)
- **10.** Find the Residue of $F(z) = \int_{C} \frac{z^3}{(z-1)^4(z-2)(z-3)} dz$ at its poles and hence evaluate $\int_{C} F(z) dz$ where C is

the circle |z| = 2.5

- 11. Show that $\int_{0}^{2\pi} \frac{d\theta}{25 24\cos\theta} = \frac{2\pi}{7}$
- 12. By integrating around unit circle , Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 4\cos \theta} d\theta$
- **13.** Show that $\int_{0}^{2\pi} \frac{d\theta}{1 2p\sin\theta + p^{2}} = \frac{2\pi}{1 p^{2}} \qquad (0$
- **14.** Apply the Calculus of residue to prove that $\int_{0}^{2\pi} \frac{ad\theta}{a^2 + \sin^2 \theta} = \frac{2\pi}{\sqrt{1 + a^2}} \quad a > 0$
- **15.** Apply the Calculus of residue to prove that $\int_{0}^{\pi} \frac{d\theta}{17 8\cos\theta} = \frac{\pi}{15}$