

INT247 Machine Learning Foundations

Lecture #2.1

K-Nearest Neighbour and Bayesian Learning

K- Nearest Neighbour Algorithm

- Lazy Learner
- Uses K
 "closest"
 points for
 performing
 classification.

K- Nearest Neighbour Algorithm

 If it walks like a duck, quacks like a duck, then it's probably a duck

- Requires three things:
 - The set of stored records.
 - Distance Metric to compute distance between records.
 - The value of K, the number of nearest neighbours to retrieve.
- To classify an unknown record:
 - Compute distance to other training records.
 - Identify k nearest neighbours.
 - Use class labels of nearest neighbours to determine the class label of unknown record.

Compute Distance

Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - qi)^2}$$

Numerical Example

- Consider a dataset with 2 attributes:
 - Acid durability (x1)
 - Strength (x2)

to classify whether a special paper tissue is good or bad (y).

```
      x1
      x2
      y

      7
      7
      Bad

      7
      4
      Bad

      3
      4
      Good

      1
      4
      Good
```

 Classify paper tissue with x1=3 and x2=7 considering K=3.

K- Nearest Neighbour Algorithm

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

Note:

- If K is too small, sensitive to noise points.
- If K is too large, neighbourhood may include points from other classes.

Scaling Issues

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes.

Examples:

- Height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

Advantages of KNN

- No assumption about data.
- Simple algorithm.
- High accuracy.
- Versatile useful for classification or regression.

Disadvantages of KNN

- Computationally expensive.
- High memory requirement.
- Store all the training data.
- Sensitive to irrelevant features and the scale of the data.

Bayesian Learning

- Probabilistic approach to inference.
- Quantities of interest are governed by probability distributions.
- Optimal decisions can be made by reasoning about these probabilities together with observed training data.

Bayesian Learning

- Initial knowledge of many probabilities is required.
- Significant computational costs required.

Bayes Theorem

Direct method of calculating the probability of best hypothesis.

$$P(h|D) = \frac{P(D|h).P(h)}{P(D)}$$

- P(h): prior probability of (h) hypothesis.
- P(D): prior probability of (D) observation.
- P(D|h): Probability of observing D in which h holds.
- P(h|D): posterior probability of h, reflects confidence that h holds after D has been observed.

MAP (Maximum a Posteriori) Hypotnesis

•
$$h_{MAP} =$$

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

 P(D) can be dropped, because it is a constant independent of h.

Example

- Consider a medical diagnosis problem where:
 - P(cancer)=0.008
 - P(pos | cancer)=0.98
 - P(pos | ~cancer) = 0.03
- If a new patient comes in with a positive test result, what is the probability that he has cancer?

```
P(pos | cancer).P(cancer)=0.98*0.008=0.0078
```

Thus,
$$h_{MAP} = \text{``cancer'}$$

Brute Force MAP Learning

- In order to specify a learning problem of the algorithm, values for P(h) and P(D|h) must be specified.
- Assumptions:
 - Training data D is noise free (i.e. $d_i=c(x_i)$)
 - Target concept c is contained in H i.e.

$$(\exists h \in H)[(\forall x \in X)[h(x) = c(x)]]$$

 No reason to believe that any hypothesis is more probable than any other.

Learning a Real-Valued function

- Consider any real-value target function f.
- Training examples <x_i,d_i>, where d_i is noisy training value.
- $d_i = f(x_i) + e_i$
- Where e_i is random variable drawn independently for each x_i according to some Gaussian distribution with mean=0.
- The maximum likelihood hypothesis h_{ML} is defined as:

$$h_{\text{ML}}$$
 = $\operatorname{argmax}_{h \in H} p(D \mid h)$
= $\operatorname{argmax}_{h \in H} \prod_{i=1}^{m} p(d_i \mid h)$

 $h_{\mathrm{ML}} = \mathrm{argmin}_{h \in H} \sum_{i=1}^{m} \left(d_i - h(x_i)\right)^2$

Dataset with 3 classes:

- Parrot
- Dog
- Fish
- 4 features:
 - Swim
 - Wings
 - Green Color
 - Dangerous Teeth

OVELY

Swim	Wings	Green Color	Dangerous Teeth	Animal Type
50	500/500	400/500	0	Parrot
450/500	0	0	500/500	Dog
500/500	0	100/500	50/500	Fish

Table shows a frequency table of dataset.

- Considering the dataset predict the type of animal if:
 - Swim=True
 - Wings=False
 - Green=True
 - Teeth=False

LOVELY PROFESSIONAL UNIVERSITY

Example of Naïve Bayes Classifier

Use naïve bayes approach for multiple evidances:

$$P(H|E_{1}, E_{2} ... EN)$$

$$= \frac{P(E_{1}|H) * P(E_{2}|H) ... * P(E_{N}|H) * P(H)}{P(E_{1}, E_{2}, ... EN)}$$

For hypothesis testing for animal to be a dog:

```
P(Dog|Swim,
Green)=P(Swim|Dog)*P(Green|Dog)*P(Dog)/P(Swim, Green)
=0.9*0*0.333/P(Swim, Green)
=0
```


For hypothesis testing for animal to be a Parrot:

```
P(Parrot|Swim,
Green)=P(Swim|Parrot)*P(Green|Parrot)*P(Parrot)/
P(Swim, Green)
```

- =0.1*0.8*0.333/P(Swim, Green)
- =0.0264/P(Swim, Green)

For hypothesis testing for animal to be a Fish:

```
P(Fish|Swim,
Green)=P(Swim|Fish)*P(Green|Fish)*P(Fish)/P(Swim, Green)
```

- =1*0.2*0.333/P(Swim, Green)
- =0.0666/P(Swim, Green)

- For all the three cases, denominator is same.
- The value of P(Fish|Swim, Green) is greater than P(Parrot|Swim, Green).
- Thus, Class of animal is Fish.

Exercise

- Predict the class of animal if:
 - Swim=True
 - Wings=False
 - Green=True
 - Teeth=True

