CS & IT ENGINEERING

Operating Systems

Deadlock

Lecture No. 1

By- Dr. Khaleel Khan Sir

TOPICS TO BE COVERED

Concept of Deadlock

Characterization

Deadlock Prevention

Deadlock Concept:

-> Swofmore Processes are Said to be in Deadlock

iff they wait for the Rappening of an

event which will never happen.

Consequences:

-> Thrubut Efficiency drops

-> Ineffective utilization of Resources;

-> Deadlock is therefore understable

Decdlock Infinite Blocking of Processes forever

vs <u>Starnation</u> Indefinite Blocking

Cross Road Traffic Jam

Ross! You release the lock first! Once I have finished my task, You can continue. Rachel!! Why Should I? You release the lock first And wait until I complete my task.

Adamaning

Deadlock in OS

H/W or S/W

System Model: -> no. g Processes < P1 - - Pm> → m': Resources < R-m> < HIW SIW Single Instance Instance (Copies) (copy)

ncers Regnest Stourvation -beloare 0.5 derry grant Protens gets Rolens Use Blocked Resource Poreur Deadlock

seadlock characterization 1. Necessary Condition: Mutual Enclusion: Lis Shared Resources Hold and wout:

G, (System) R_1 R_3 P1-R1-P2-R3-P3-R2-P1) Eyele

GZ: No-seadlock R_1 NOW albasa R_2 (P1-P3-R2-P1)

	Deadlock	Handling	Strategies		
1.	seadbock F	revention			
2.	Deadlock	Avindama) : Deach	ock Never occ Algo Digksli	ans;
3.	Deadlock	setection	- > 1>000yeurs	STIGO COMPOSION	1905/1900 -
	& F	Recovery	Tz: Dead	bok sofinitely	
4.	Deadlock	. Ignorance		ocoun	
		(NO-Strate	JY) /		
			- Asiata O	A(20)	

I. seadlock-Ignorance (Ostrich Algo)

(No-Strategy)

The Ostrich Algorithm

- Pretend there is no problem
- Reasonable if
 - Dead locks occur very rarely
 - Cost of prevention is high
- UNIX and Windows take this approach
- It is a trade-off between
 - Convenience -
 - Correctness

Ignorant Strategy 3

Circular-wait: is Prevented by a total order (Inc)
relation among all processes & resources; J) Assign unique Nos to each Resource; I) Never allow a Process to request a Lower numbered Kesource than the last one allocated! Resources Res-Id 3->8-->10 5 3->5->8-10 9-1- 2

H/w $Man \rightarrow 10$ $Min \rightarrow 2$

