

Chapter 3

Mobile Radio Propagation

Outline

- Speed, Wavelength, Frequency
- Types of Waves
- Radio Frequency Bands
- Propagation Mechanisms
- Radio Propagation Effects
- Free-Space Propagation
- Land Propagation
- Path Loss
- Fading: Slow Fading / Fast Fading
- Delay Spread
- Doppler Shift
- Co-Channel Interference
- The Near-Far Problem
- Digital Wireless Communication System
- Analog and Digital Signals
- Modulation Techniques

Speed, Wavelength, Frequency

Light speed = Wavelength x Frequency = $3 \times 10^8 \text{ m/s} = 300,000 \text{ km/s}$

System	Frequency	Wavelength	
AC current	60 Hz	5,000 km	
FM radio	100 MHz	3 m	
Cellular	800 MHz	37.5 cm	
Ka band satellite	20 GHz	15 mm	
Ultraviolet light	$10^{15} \mathrm{Hz}$	10 ⁻⁷ m	

Radio Frequency Bands

Classification Band	Initials	Frequency Range	Characteristics	
Extremely low	ELF	< 300 Hz		
Infra low	ILF	300 Hz ~ 3 kHz		
Very low	VLF	3 kHz ~ 30 kHz		
Low	LF	30 kHz ~ 300 kHz	Surface/ground	
Medium	MF	300 kHz ~ 3 MHz	wave	
High	HF	3 MHz ~ 30 MHz	Sky wave	
Very high	VHF	30 MHz ~ 300 MHz	Space wave	
Ultra high	UHF	300 MHz ~ 3 GHz		
Super high	SHF	3 GHz ~ 30 GHz		
Extremely high	EHF	30 GHz ~ 300 GHz	Satellite wave	
Tremendously high	THF	300 GHz ~ 3000 GHz		

Propagation Mechanisms

Reflection

- Propagation wave impinges on an object which is large as compared to wavelength
 - e.g., the surface of the Earth, buildings, walls, etc.

Diffraction

- Radio path between transmitter and receiver obstructed by surface with sharp irregular edges
- Waves bend around the obstacle, even when LOS (line of sight) does not exist

Scattering

- Objects smaller than the wavelength of the propagation wave
 - e.g, foliage, street signs, lamp posts

Radio Propagation Effects

Free-space Propagation

• The received signal power at distance *d*:

$$P_{r} = \frac{A_{e}G_{t}P_{t}}{4\pi d^{2}}$$

where P_t is transmitting power, A_e is effective area, and G_t is the transmitting antenna gain. Assuming that the radiated power is uniformly distributed over the surface of the sphere.

Antenna Gain

For a circular reflector antenna

$$G = \eta (\pi D / \lambda)^2$$

 η = net efficiency (depends on the electric field distribution over the antenna aperture, losses, ohmic heating, typically 0.55)

D = diameter

thus, $G = \eta (\pi D f/c)^2$, $c = \lambda f$ (c is speed of light)

Example:

- Antenna with diameter = 2 m, frequency = 6 GHz, wavelength = 0.05 m G = 39.4 dB
- Frequency = 14 GHz, same diameter, wavelength = 0.021 m G = 46.9 dB
- * Higher the frequency, higher the gain for the same size antenna

Land Propagation

The received signal power:

$$P_r = \frac{G_t G_r P_t}{L}$$

where G_r is the receiver antenna gain,

L is the propagation loss in the channel, i.e.,

Path Loss (Free-space)

Definition of path loss L_P:

$$L_P = \frac{P_t}{P_r},$$

Path Loss in Free-space:

$$L_{PF}(dB) = 32.45 + 20\log_{10} f_c(MHz) + 20\log_{10} d(km),$$

where f_c is the carrier frequency.

This shows greater the $f_{c_{\ell}}$ more is the loss.

Path Loss (Land Propagation)

Simplest Formula:

$$L_p = A d^{-\alpha}$$

where

A and α: propagation constants

d: distance between transmitter and receiver

 α : value of 3 ~ 4 in typical urban area

Example of Path Loss (Free-space)

Path Loss (Urban, Suburban and Open areas)

Urban area:

$$L_{PU}(dB) = 69.55 + 26.16 \log_{10} f_c(MHz) - 13.82 \log_{10} h_b(m) - \alpha \left[h_m(m) \right]$$
$$+ \left[44.9 - 6.55 \log_{10} h_b(m) \right] \log_{10} d(km)$$

where

$$\alpha \left[h_{m}(m)\right] = \begin{cases} \left[1.1\log_{10} f_{c}(MHz) - 0.7\right]h_{m}(m) - \left[1.56\log_{10} f_{c}(MHz) - 0.8\right], & \text{for } l \text{ arg } e \text{ city} \\ 8.29\left[\log_{10} 1.54h_{m}(m)\right]^{2} - 1.1, & \text{for } f_{c} \leq 200MHz \\ 3.2\left[\log_{10} 11.75h_{m}(m)\right]^{2} - 4.97, & \text{for } f_{c} \geq 400MHz \end{cases}, & \text{for small } \& \text{ medium city} \end{cases}$$

Suburban area:

$$L_{PS}(dB) = L_{PU}(dB) - 2 \left[\log_{10} \frac{f_c(MHz)}{28} \right]^2 - 5.4$$

Open area:

$$L_{PO}(dB) = L_{PU}(dB) - 4.78 \left[\log_{10} f_c(MHz)\right]^2 + 18.33 \log_{10} f_c(MHz) - 40.94$$

Path Loss

- Path loss in decreasing order:
 - Urban area (large city)
 - Urban area (medium and small city)
 - Suburban area
 - Open area

Example of Path Loss (Urban Area: Large City)

Example of Path Loss(Urban Area: Medium and Small Cities)

Example of Path Loss (Suburban Area)

Example of Path Loss (Open Area)

Slow Fading

- The long-term variation in the mean level is known as slow fading (shadowing or log-normal fading). This fading caused by shadowing.
- Log-normal distribution:
 - The <u>pdf</u> of the received signal level is given in decibels by

$$p(M) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(M-\overline{M})^2}{2\sigma^2}},$$

where M is the true received signal level m in decibels, i.e., $10\log_{10}m$, \overline{M} is the area average signal level, i.e., the mean of M, σ is the standard deviation in decibels

Log-normal Distribution

The pdf of the received signal level

Fast Fading

- The signal from the transmitter may be reflected from objects such as hills, buildings, or vehicles.
 - When MS far from BS, the envelope distribution of received signal is
 Rayleigh distribution. The pdf is

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}}, \quad r > 0$$

where σ is the standard deviation.

• Middle value r_m of envelope signal within sample range to be satisfied by

$$P(r \le r_m) = 0.5.$$

• We have $r_m = 1.7778$

Rayleigh Distribution

The pdf of the envelope variation

Fast Fading (Continued)

 When MS far from BS, the envelope distribution of received signal is <u>Rician</u> distribution. The pdf is

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2 + \alpha^2}{2\sigma^2}} I_0\left(\frac{r\alpha}{\sigma}\right), \quad r \ge 0$$

where

 σ is the standard deviation,

 $I_0(x)$ is the zero-order Bessel function of the first kind.

Rician Distribution

The pdf of the envelope variation

Characteristics of Instantaneous Amplitude

- Level Crossing Rate:
 - Average number of times per second that the signal envelope crosses the level in positive going direction.
- Fading Rate:
 - Number of times signal envelope crosses middle value in positive going direction per unit time.
- Depth of Fading:
 - Ratio of mean square value and minimum value of fading signal.
- Fading Duration:
 - Time for which signal is below given threshold.

Doppler Shift

- <u>Doppler Effect</u>: When a wave source and a receiver are moving towards each other, the frequency of the received signal will not be the same as the source.
 - When they are moving toward each other, the frequency of the received signal is higher than the source.
 - When they are opposing each other, the frequency decreases.

Thus, the frequency of the received signal is

$$f_R = f_C - f_D$$

where f_C is the frequency of source carrier,

 f_D is the Doppler frequency.

Doppler Shift in frequency:

$$f_D = \frac{v}{\lambda} \cos \theta$$

where v is the moving speed,

 λ is the wavelength of carrier.

Delay Spread

- When a signal propagates from a transmitter to a receiver, signal suffers one or more reflections.
- This forces signal to follow different paths.
- Each path has different path length, so the time of arrival for each path is different.
- This effect which spreads out the signal is called "Delay Spread".

Moving Speed Effect

Delay Spread

Intersymbol Interference (ISI)

- Caused by time delayed multipath signals
- Has impact on burst error rate of channel
- Second multipath is delayed and is received during next symbol
- For low bit-error-rate (BER)

$$R < \frac{1}{2\tau_d}$$

 R (digital transmission rate) limited by delay spread.

Coherence Bandwidth

- Coherence bandwidth B_c:
 - Represents correlation between 2 fading signal envelopes at frequencies f_1 and f_2 .
 - Is a function of delay spread.
 - Two frequencies that are larger than coherence bandwidth fade independently.
 - Concept useful in diversity reception
 - Multiple copies of same message are sent using different frequencies.

Cochannel Interference

- Cells having the same frequency interfere with each other.
- \bullet r_d is the desired signal
- β is the protection ratio, such that $r_d \leq \beta r_u$ (so that the signals interfere the least)
- If P is the probability that $r_d \le \beta r_u$
- Cochannel probability $P_{co} = P$