Statistics for Data Science - 2

Week 7 Graded assignment

Use the following values of standard normal distribution if needed.

$$F_Z(0.71) = 0.76115, F_Z(1.26) = 0.89617, F_Z(1.58) = 0.94295, F_Z(2.58) = 0.99506, F_Z(1.96) = 0.975$$

1. Let X_1, X_2, X_3 are three independent and identically distributed random variables with mean μ and variance σ^2 . Given below are 3 different formulations of sample mean. (Observe that E[A] = E[B] = E[C]).

$$A = \frac{X_1 + X_2 + X_3}{3}$$

$$B = 0.1X_1 + 0.3X_2 + 0.6X_3$$

$$C = 0.2X_1 + 0.3X_2 + 0.5X_3$$

Choose the correct option from the following:

- (a) Var(A) = Var(B) = Var(C)
- (b) $Var(A) \ge Var(B) \ge Var(C)$
- (c) $Var(A) \le Var(B) \le Var(C)$
- (d) $Var(A) \le Var(C) \le Var(B)$

Solution:

Let $X_1, X_2, X_3 \sim \text{i.i.d.} X$, where $E[X] = \mu, \text{Var}(X) = \sigma^2$

$$Var(A) = Var\left(\frac{X_1 + X_2 + X_3}{3}\right)$$
$$= \frac{1}{9} \left(Var[X_1] + Var[X_2] + Var[X_3]\right)$$
$$= \frac{1}{9} (3\sigma^2) = \frac{\sigma^2}{3}$$

$$Var(B) = Var(0.1X_1 + 0.3X_2 + 0.6X_3)$$

$$= 0.01Var[X_1] + 0.09Var[X_2] + 0.36Var[X_3]$$

$$= 0.46(3\sigma^2)$$

$$= 1.38\sigma^2$$

$$Var(C) = Var(0.2X_1 + 0.3X_2 + 0.5X_3)$$

$$= 0.04Var[X_1] + 0.09Var[X_2] + 0.25Var[X_3]$$

$$= 0.38(3\sigma^2)$$

$$= 1.14\sigma^2$$

Therefore, $Var(B) \ge Var(C) \ge Var(A)$.

2. A random sample of size 25 is collected from a normal population with mean of 50 and standard deviation of 5. Find the variance of the sample mean.

Solution:

We know that variance of the sample mean \overline{X} is given by

$$Var[\overline{X}] = \frac{\sigma^2}{n}$$
$$= \frac{5^2}{25} = 1$$

3. Let $X_1, X_2, \ldots, X_{50} \sim \text{i.i.d. Poisson}(0.04)$ and let $Y = \sum_{i=1}^{50} X_i$. Use Central Limit theorem to find P(Y > 3). Enter the answer correct to 2 decimal places.

Solution:

Let $X \sim \text{Poisson}(0.04)$.

Consider the samples X_1, X_2, \ldots, X_{50} from X.

$$E[X] = Var[X] = 0.04$$

$$E[Y] = E\left[\sum_{i=1}^{50} X_i\right] = 50 \times 0.04 = 2, \text{ Var}[Y] = \text{Var}\left[\sum_{i=1}^{50} X_i\right] = 50 \times 0.04 = 2$$

To find: P(Y > 3).

By CLT, we know that

$$\frac{Y - n\mu}{\sigma\sqrt{n}} \sim \text{Normal}(0, 1)$$

$$\Rightarrow \left(\frac{Y - 2}{\sqrt{2}}\right) \sim \text{Normal}(0, 1)$$

Now,

$$P(Y > 3) = P(Y - 2 > 1)$$

$$= P\left(\frac{Y - 2}{\sqrt{2}} > \frac{3 - 2}{\sqrt{2}}\right)$$

$$= P(Z > 0.707)$$

$$= 1 - F_Z(0.707) = 1 - 0.76 = 0.24$$

4. Let the moment generating function of a random variable X be given by

$$M_X(\lambda) = \left(\frac{1}{4}\right)e^{-2\lambda} + \left(\frac{1}{40}\right) + \left(\frac{3}{10}\right)e^{-\lambda} + \left(\frac{3}{40}\right)e^{2\lambda} + \left(\frac{7}{20}\right)e^{\lambda}$$

Find the distribution of X.

X	-2	-1	0	1	2
P(X=x)	$\frac{1}{4}$	$-\frac{3}{40}$	$\frac{3}{10}$	$\frac{1}{40}$	$\frac{7}{20}$

(a)

X	-2	-1	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{1}{40}$	$\frac{3}{10}$	$\frac{3}{40}$	$\frac{7}{20}$

(b)

X	-2	-1	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{3}{10}$	$\frac{1}{40}$	$\frac{7}{20}$	$\frac{3}{40}$

(c)

X	-2	-1	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{3}{40}$	$\frac{1}{40}$	$\frac{7}{20}$	$\frac{3}{10}$

(d)

Solution:

The MGF of a discrete random variable X with the PMF $f_X(x) = P(X = x), x \in T_X$ is given by

$$M_X(\lambda) = E[e^{\lambda X}]$$

$$= \sum_{x \in T_X} P(X = x)e^{\lambda x}$$

Now, MGF of a random variable X is given as

$$M_X(\lambda) = \left(\frac{1}{4}\right)e^{-2\lambda} + \left(\frac{1}{40}\right) + \left(\frac{3}{10}\right)e^{-\lambda} + \left(\frac{3}{40}\right)e^{2\lambda} + \left(\frac{7}{20}\right)e^{\lambda}$$

Therefore, distribution of X is given by

X	-2	-1	0	1	2
P(X=x)	$\frac{1}{4}$	$\frac{3}{10}$	$\frac{1}{40}$	$\frac{7}{20}$	$\frac{3}{40}$

5. A fair coin is tossed 1000 times. Use CLT to compute the probability that head appears at most 520 times. Enter the answer correct to 3 decimal places.

Solution:

Define a random variable X such that

$$X = \begin{cases} 1 & \text{if head appears on tossing a fair coin} \\ 0 & \text{otherwise} \end{cases}$$

Therefore,
$$E[X] = \mu = \frac{1}{2}$$
 and $Var(X) = \sigma^2 = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Let $X_1, X_2, \ldots, X_{1000}$ be outcomes on tossing the fair coin 1000 times.

Notice that $X_1 + X_2 + \ldots + X_{1000}$ will denote the number of times head appears in 1000 tosses.

Let
$$S = X_1 + X_2 + \ldots + X_{1000}$$

To find:
$$P(S \le 520)$$

$$\frac{S - 1000\mu}{\sigma\sqrt{n}} \sim \text{Normal}(0, 1)$$

$$\Rightarrow \frac{S - 500}{5\sqrt{10}} \sim \text{Normal}(0, 1)$$

Now,

$$P(S \le 520) = P(S - 500 \le 20)$$

$$= P\left(\frac{S - 500}{5\sqrt{10}} \le \frac{20}{5\sqrt{10}}\right)$$

$$= P(Z \le 1.26)$$

$$= 0.896$$

- 6. A fair die is rolled 100 times. Let $\frac{X}{X}$ denote the number of times six is obtained. Find a bound for the probability that $\frac{X}{100}$ differs from $\frac{1}{6}$ by less than 0.1 using weak law of large numbers.
 - (a) at least $\frac{5}{36}$
 - (b) at least $\frac{31}{36}$

(c) at most
$$\frac{5}{36}$$

(d) at most
$$\frac{31}{36}$$

Solution:

X denotes the number of times six is obtained on rolling a fair die 100 times. Let $X_1, X_2, \ldots, X_{100}$ be 100 i.i.d. samples such that

$$X_i = \begin{cases} 1 & \text{if six appears on rolling a fair die} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = \mu = \frac{1}{6} \text{ and }$$

$$Var(X_i) = \sigma^2 = \frac{5}{36}$$

Notice that $X = X_1 + X_2 + X_3 + \ldots + X_{100}$

To find: Bound on
$$P\left(\left|\frac{X}{100} - \frac{1}{6}\right| < 0.1\right)$$
.

By weak law of large numbers, we have

$$P(|\overline{X} - \mu| < \delta) \ge 1 - \frac{\sigma^2}{n\delta^2}$$

$$\Rightarrow P\left(\left|\frac{X}{100} - \frac{1}{6}\right| < 0.1\right) \ge 1 - \frac{5}{36 \times 100 \times 0.01}$$

$$\Rightarrow P\left(\left|\frac{X}{100} - \frac{1}{6}\right| < 0.1\right) \ge 1 - \frac{5}{36} = \frac{31}{36}$$

7. Let $X_1, X_2, \ldots, X_{500} \sim \text{i.i.d Normal}(0, 1)$. Evaluate $P(X_1^2 + X_2^2 + \ldots + X_{500}^2 > 550)$ using Central Limit theorem. Enter the answer correct to 2 decimal places.

Hint: $(X_1^2 + X_2^2 + \ldots + X_{500}^2) \sim \text{Gamma}(250, 0.5)$.

Solution:

Given $X_1, \ldots, X_{500} \sim \text{i.i.d. Normal}(0, 1)$.

We know that if $X \sim \text{Normal}(0,1) \implies X^2 \sim \text{Gamma}\left(\frac{1}{2},\frac{1}{2}\right)$

Also, Sum of n independent $Gamma(\alpha, \beta)$ is $Gamma(n\alpha, \beta)$.

Therefore, $X_i^2 \sim \text{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)$, for all i.

and
$$(X_1^2 + X_2^2 + \ldots + X_{500}^2) \sim \text{Gamma}(250, 0.5)$$

Let
$$Y = Y_1 + Y_2 + ... + Y_{500}$$
, where $Y_i = X_i^2$ for all $i: 1 \to 500$

$$E[Y_i] = \frac{0.5}{0.5} = 1$$
 and $Var[Y_i] = \frac{0.5}{0.25} = 2$, for $i: 1 \to 500$

$$E[Y] = \frac{250}{0.5} = 500$$
 and $Var[Y] = \frac{250}{0.5^2} = 1000$

To find: P(Y > 550)

By CLT, we know that

$$\frac{Y - 500\mu}{\sigma\sqrt{n}} \sim \text{Normal}(0, 1)$$

$$\Rightarrow \frac{Y - 500}{10\sqrt{10}} \sim \text{Normal}(0, 1)$$

Now,

$$P(Y > 550) = P(Y - 500 > 50)$$

$$= P\left(\frac{Y - 550}{10\sqrt{10}} > \frac{5}{\sqrt{10}}\right)$$

$$= P(Z > 1.58)$$

$$= 1 - F_Z(1.58) = 1 - 0.94 = 0.06$$

Use the below information to answer questions 8 and 9.

Let X be a random variable having the gamma distribution with the parameters $\alpha=2n$ and $\beta=1$.

Hint:

- If $X \sim \text{Gamma}(\alpha, \beta), E[X] = \frac{\alpha}{\beta}$ and $\text{Var}[X] = \frac{\alpha}{\beta^2}$
- Sum of n independent $Gamma(\alpha, \beta)$ is $Gamma(n\alpha, \beta)$
- 8. Use the Weak Law of Large number to find the value of n such that

$$P\left(\left|\frac{X}{2n} - 1\right| > 0.01\right) < 0.01$$

- (a) 505000
- (b) 470000
- (c) 498000
- (d) 482000

Solution:

Given $X \sim \text{Gamma}(2n, 1)$ Let $X = X_1 + X_2 + X_3 + \ldots + X_{2n}$, where $X_i \sim \text{Gamma}(1, 1)$.

$$E[X] = \mu = 1$$
 and $Var(X) = \sigma^2 = 1$
 $E[\bar{X}] = 1$ and $Var[\bar{X}] = \frac{1}{2n}$

To find: The value of n such that $P\left(\left|\frac{X}{2n}-1\right|>0.01\right)<0.01$.

By weak law of large numbers, we have

$$P(|\overline{X} - \mu| > \delta) \le \frac{\sigma^2}{n\delta^2}$$

$$\Rightarrow P\left(\left|\frac{X}{2n} - 1\right| > 0.01\right) \le \frac{1}{2n \times 0.01^2}$$

Therefore, $\frac{1}{2n \times 0.01^2} < 0.01 \implies 2n > \frac{1}{0.01^3} \implies n > 500000.$

9. Use CLT to find the value of n such that

$$P\left(\left|\frac{X}{2n} - 1\right| > 0.01\right) < 0.01$$

Hint: Use $F_Z(2.58) = 0.995, F_Z(1.96) = 0.975$ if needed.

- (a) 34570
- (b) 33500
- (c) 32500
- (d) 30000

Solution:

$$E[X_1 + \ldots + X_{2n}] = 2n$$
 and $Var[X_1 + \ldots + X_{2n}] = 2n$

To find: The value of n such that $P\left(\left|\frac{X}{2n}-1\right|>0.01\right)<0.01$.

By CLT, we know that

$$\frac{X - 2n\mu}{\sigma\sqrt{n}} \sim \text{Normal}(0, 1)$$

$$\Rightarrow \frac{X-2n}{\sqrt{2n}} \sim \text{Normal}(0,1)$$

Now,

$$P\left(\left|\frac{X}{2n} - 1\right| > 0.01\right) < 0.01$$

$$\Rightarrow P\left(\left|\frac{X_1 + \dots + X_n}{2n} - 1\right| > 0.01\right) < 0.01$$

$$\Rightarrow P\left(\left|\frac{X_1 + \dots + X_n - 2n}{\sqrt{2n}}\right| > 0.01\sqrt{2n}\right) < 0.01$$

$$\Rightarrow P(\left|Z\right| > 0.01\sqrt{2n}) < 0.01$$

$$\Rightarrow 2P(Z > 0.01\sqrt{2n}) < 0.01$$

$$\Rightarrow 1 - F_Z(0.01\sqrt{2n}) < \frac{0.01}{2}$$

$$\Rightarrow F_Z(0.01\sqrt{2n}) > 0.995$$

$$\Rightarrow F_Z(0.01\sqrt{2n}) > F_Z(2.58)$$

$$\Rightarrow n > 33282$$

- 10. Let the time taken (in hours) for failure of an electric bulb follow the exponential distribution with the parameter 0.05. Suppose that 100 such light bulbs say $L_1, L_2, \ldots, L_{100}$ are used in the following manner: For every i, as soon as the light L_i fails, L_{i+1} becomes operative, where $i: 1 \to 99$ (i.e. If L_1 fails, L_2 becomes operative, if L_2 fails, L_3 becomes operative, and so on). Let the total time of operation of 100 bulbs be denoted by T. Using CLT, compute the probability that T exceeds 2500 hours.
 - (a) $F_Z(1.5)$
 - (b) $1 F_Z(1.5)$
 - (c) $F_Z(2.5)$
 - (d) $1 F_Z(2.5)$

Solution:

Given, time to failure (in hours) of an electric bulb has the exponential distribution with the parameter $\lambda = 0.05$.

Since, the bulbs are used in such a way, that as soon as light L_1 fails, L_2 becomes operative, L_2 fails, L_3 becomes operative, and so on.

We know that if $X \sim \text{Gamma}(\alpha, \beta)$ with parameter $\alpha = 1$, then $X \sim \text{Exp}(\beta)$. Also, sum of n i.i.d. $\text{Exp}(\lambda)$ is $\text{Gamma}(n, \lambda)$. Since each of the L_i 's are exponentially distributed with parameter = 0.05, therefore

$$L_1 + ... + L_{100} \sim \text{Gamma}(n\alpha, \beta) = \text{Gamma}(100, 0.05)$$

Let $T = L_1 + \ldots + L_{100}$

$$E[L_i] = \mu = \frac{1}{0.05} = 20$$
 and $SD[L_i] = \sigma = \frac{1}{0.05} = 20$

To find: $P(T \ge 2500)$

By CLT, we know that

$$\frac{T - 100\mu}{\sigma\sqrt{n}} \sim \text{Normal}(0, 1)$$

$$\Rightarrow \frac{T - 2000}{20\sqrt{100}} \sim \text{Normal}(0, 1)$$

Now,

$$P(T \ge 2500) = P(T - 2000 \ge 500)$$

$$= P\left(\frac{T - 2000}{200} \ge \frac{500}{200}\right)$$

$$= P(Z \ge 2.5)$$

$$= 1 - F_Z(2.5)$$

11. Suppose speeds of vehicles on a particular road are normally distributed with mean 36 mph and standard deviation 2 mph. Find the probability that the mean speed \overline{X} of 20 randomly selected vehicles is between 35 and 38 mph.

(a)
$$F_Z(\sqrt{5}) - F_Z(-\sqrt{5})$$

(b)
$$F_Z(\sqrt{20}) - F_Z(-\sqrt{20})$$

(c)
$$F_Z(\sqrt{38}) - F_Z(-\sqrt{35})$$

(d)
$$F_Z(\sqrt{20}) - F_Z(-\sqrt{5})$$

Solution:

Let X denote the speed of a vehicle on a particular road.

Given that $X \sim \text{Normal}(36, 2^2)$.

Therefore, $\mu = 36$ and $\sigma = 2$

Select $X_1, X_2, \dots X_{20}$ samples such that $X_1, X_2, \dots X_{20} \sim \text{iid } X$

Let
$$\overline{X} = \frac{X_1 + X_2 + \ldots + X_{20}}{20}$$
 and $S = X_1 + X_2 + \ldots + X_{20}$

To find: $P(35 < \overline{X} < 38)$ From CLT, we know that

$$\frac{X_1 + X_2 \dots + X_n - nE[X]}{\sqrt{n}\sigma} \sim \text{Normal}(0, 1)$$

$$\Rightarrow \frac{S - n\mu}{\sqrt{n}\sigma} \sim \text{Normal}(0, 1)$$

$$\Rightarrow \frac{(S - 36(20))}{(2\sqrt{20})} \sim \text{Normal}(0, 1)$$

Now,

$$P(35 < \overline{X} < 38) = P(35 < \frac{S}{20} < 38)$$

$$= P(-1 < \frac{S}{20} - 36 < 2)$$

$$= P(-1 < \frac{S - 36(20)}{20} < 2)$$

$$= P(\frac{-\sqrt{20}}{2} < \frac{S - 36(20)}{2\sqrt{20}} < \sqrt{20})$$

$$= P(-\sqrt{5} < \frac{S - 36(20)}{2\sqrt{20}} < \sqrt{20})$$

$$= F_Z(\sqrt{20}) - F_Z(-\sqrt{5})$$