```
In [1]: import warnings
warnings.filterwarnings('ignore')

%matplotlib inline
import numpy as np
import pandas as pd

import seaborn as sns; sns.set()
plt.rcParams['figure.figsize'] = (10, 8)

executed in 1.42s, finished 03.40.42 2021-01-05

In [2]: df = pd.read_csv('train_FD001.txt', header=None, sep=' ').dropna(how='all', axis=1)
index_names = ['id', 'cycle']
setting names = ['setting1', 'setting2', 'setting3']
```

In [2]: df = pd.read_csv('train_FD001.txt', header=None, sep=' ').dropna(how='all', axis=1)
 index_names = ['id', 'cycle']
 setting_names = ['setting1', 'setting2', 'setting3']
 sensor_names = ['s{}'.format(i+1) for i in range(0,21)]
 col_names = index_names + setting_names + sensor_names

df.columns = col_names
 df
 executed in 148ms, finished 03:40:42 2021-01-05

Out[2]:

	id	cycle	setting1	setting2	setting3	s1	s2	s3	s4	s5	 s12	s13	s14	s15	s16	s17	s18	s19	s20	s21
0	1	1	-0.0007	-0.0004	100.0	518.67	641.82	1589.70	1400.60	14.62	 521.66	2388.02	8138.62	8.4195	0.03	392	2388	100.0	39.06	23.4190
1	1	2	0.0019	-0.0003	100.0	518.67	642.15	1591.82	1403.14	14.62	 522.28	2388.07	8131.49	8.4318	0.03	392	2388	100.0	39.00	23.4236
2	1	3	-0.0043	0.0003	100.0	518.67	642.35	1587.99	1404.20	14.62	 522.42	2388.03	8133.23	8.4178	0.03	390	2388	100.0	38.95	23.3442
3	1	4	0.0007	0.0000	100.0	518.67	642.35	1582.79	1401.87	14.62	 522.86	2388.08	8133.83	8.3682	0.03	392	2388	100.0	38.88	23.3739
4	1	5	-0.0019	-0.0002	100.0	518.67	642.37	1582.85	1406.22	14.62	 522.19	2388.04	8133.80	8.4294	0.03	393	2388	100.0	38.90	23.4044
20626	100	196	-0.0004	-0.0003	100.0	518.67	643.49	1597.98	1428.63	14.62	 519.49	2388.26	8137.60	8.4956	0.03	397	2388	100.0	38.49	22.9735
20627	100	197	-0.0016	-0.0005	100.0	518.67	643.54	1604.50	1433.58	14.62	 519.68	2388.22	8136.50	8.5139	0.03	395	2388	100.0	38.30	23.1594
20628	100	198	0.0004	0.0000	100.0	518.67	643.42	1602.46	1428.18	14.62	 520.01	2388.24	8141.05	8.5646	0.03	398	2388	100.0	38.44	22.9333
20629	100	199	-0.0011	0.0003	100.0	518.67	643.23	1605.26	1426.53	14.62	 519.67	2388.23	8139.29	8.5389	0.03	395	2388	100.0	38.29	23.0640
20630	100	200	-0.0032	-0.0005	100.0	518.67	643.85	1600.38	1432.14	14.62	 519.30	2388.26	8137.33	8.5036	0.03	396	2388	100.0	38.37	23.0522

20631 rows × 26 columns

In [3]: rul = df.groupby('id')['cycle'].max()
sns.boxplot(rul);

executed in 191ms, finished 03:40:43 2021-01-05

- 1.00

0 0.55 0.54 0.62 0 0.11 <mark>-0.6</mark> 0.48 0.44 0 0.63 <mark>-0.61</mark> 0.48 0.37 0.59 -0 0.57 cycle 1 -0 0.02 0.580.5 -0 1 0.01 - 0.75 setting1 0.020.01 1 0.01-0.0 setting2 setting3 1 0 -0 0 1 0 0 -0 0 1 0 -0 -0 0 1 0 sl 0 1 0.6 0.71 0 0.13 <mark>-0.7</mark> 0.660.27 0 0.74 <mark>-0.72</mark> 0.660.18 0.68 0 0.63 0.660.6 s2 0.55 0.01 0.01 - 0.50 -0 0.6 1 0.68 -0 0.12-0.66 0.6 0.32 -0 0.7-0.68 0.6 0.24 0.64 -0 0.6 s3 0.54-0.010.01 0.630.6 s4 0.62 0.01 <u>0.01</u> 0 0.710.68 1 0 0.15-0.790.75 0.3 0 0.83-0.820.75 0.19 0.76 0 0.7 0.750.7 1 0 -0 0 1 0 0 -0 0 1 0 -0 -0 0 1 0 0 0.130.120.15 0 1 -0.160.150.02 0 0.16-0.160.16 -0 0.15 0 0.13 s6 - 0.25 0 -0.7-0.660.79 0 -0.16 1 -0.77-0.22 0 -0.82<mark>0.81</mark>-0.760.11-0.75 0 -0.69 -0.6-0.010.02 0.740.74 .48 -0 0.01 -0 <mark>0.66 0.6 0.75</mark> -0 0.15<mark>-0.77 1 -</mark>0.03 -0 <mark>0.78</mark>-0.79<mark>0.83</mark>-0.14 0.7 -0 0.63 0.690.6 0 0.270.32 0.3 0 0.02-0.220.03 <mark>1</mark> 0 0.27-0.21-0.03<mark>0.96</mark>0.29 0 0.34 44 -0 -0.01 0.290.2 s9 1 0 -0 0 1 0 0 -0 0 1 0 -0 -0 0 1 0 s10 - 0.00 0 <mark>0.74 0.7 0.83</mark> 0 0.16<mark>-0.82</mark>0.78 0.27 0 1 <mark>-0.85</mark>0.78 0.16 <mark>0.78</mark> 0 0.72 s11 0.63 0.01 0.01 0.77-0.7 -0 -0.720.680.82 -0 -0.16<mark>0.81</mark>-0.790.21 -0 -0.85 1 -0.79-0.1-0.77 -0 -0.7 s12 -0.61 -0 -0.01 0.75 0.76 -0 0.66 0.6 0.75 -0 0.16-0.760.83-0.03 -0 0.78-0.79 1 -0.15 0.7 -0 0.63 s13 .48 0 0.02 0.690.69 .37 -0 -0.01 -0 0.180.240.19 -0 -0 -0.110.14<mark>0.96</mark> -0 0.16-0.1-0.15 1 0.19 -0 0.25 - -0.25 0.59<mark>0.010.01</mark> 0 <mark>0.680.640.76</mark> 0 0.15<mark>-0.75</mark> 0.7 0.29 0 <mark>0.78-0.77</mark> 0.7 0.19 1 0 <mark>0.67</mark> s15 1 0 -0 0 1 0 0 -0 0 1 0 -0 -0 -0 1 0 s16 0 0.63 0.6 0.7 0 0.13<mark>-0.69</mark>0.630.34 0 0.72<mark>-0.7</mark> 0.630.25 0.67 0 1 0.57 0 0.01 0.650.6 s18 - -0.50

-0 -0.660.630.75 -0 -0.14<mark>0.74</mark>-0.690.29 -0 -0.7<mark>70.75</mark>-0.690.190.71 -0 -0.65

-0 -0.670.630.75 -0 -0.14<mark>0.74</mark>-0.690.29 -0 -0.77<mark>0.76</mark>-0.690.19-0.7 -0 -0.66

s20

s21 -0.590.010.01

1 0.69

0.69 1

- -0.75

Engine #: All

Engine #: 1

In [7]: order = abs(df.drop(columns='id').corrwith(df.rul)).sort_values(ascending=False)[2:]
 order2 = list(order[np.where(order>0.5)[0]].index)
 order
 executed in 46ms, finished 03:40:55 2021-01-05

Out[7]: s11 6.962281e-01 s4 s12 s7 6.789482e-01 6.719831e-01 6.572227e-01 s15 6.426670e-01 s21 6.356620e-01 6.294285e-01 6.064840e-01 6.061536e-01 s20 s2 s17 s3 s8 5.845204e-01 5.639684e-01 5.625688e-01 3.901016e-01 3.067689e-01 s13 s9 s14 s6 1.283484e-01 setting1 3.198458e-03 1.947628e-03 3.969701e-16 3.969701e-16 setting2 s5 s16 setting3 NaN NaN s10 NaN s18 s19 dtype: float64 NaN NaN

```
In [10]: clipped_rul = df.loc[df['id']==1].copy()
clipped_rul['rul'].clip(upper=95, inplace=True)
           fig, ax1 = plt.subplots(1,1, figsize=(13,5))
          signal = ax1.plot('rul', 's12', 'b'
                             data=df.loc[df['id']==1])
          plt.xlim(200, 0) # reverse the x-axis so RUL counts down to zero
          plt.xticks(np.arange(0, 200, 25))
          ax1.set_ylabel('s12', labelpad=20)
ax1.set_xlabel('RUL', labelpad=20)
          ax2 = ax1.twinx()
          rul_line = ax2.plot('rul', 'rul', 'k', linewidth=4,
                                data=df.loc[df['id']==1])
          rul = df.loc[df['id']==1, 'rul']
rul_line2 = ax2.plot(rul, rul.where(rul <= 95, 95), '--g', linewidth=4, label='clipped_rul') # SET LABEL MANUALLY?
          ax2.set ylabel('RUL', labelpad=20)
          # code to have equal spacing of y ticks for both axes, so the gridlines allign
ax2.set_ylim(0, 200) # set limits of axis you want to display neatly
          ax2.set vticks(
               np.linspace(ax2.get_ybound()[0], ax2.get_ybound()[1], 6)) # choose integer to neatly divide your axis, in our case 6
          ax1.set_yticks(
               np.linspace(ax1.get_ybound()[0], ax1.get_ybound()[1], 6)) # apply same spacing to other axis
          # code to have a unified Legend
          lines = signal+rul_line+rul_line2
          labels = [line.get_label() for line in lines]
          ax1.legend(lines, labels, loc=0)
          plt.show()
          executed in 297ms, finished 02:41:53 2021-01-05
                 523.027
                                                                                                                                      200
                                                                                                                        - s12
                                                                                                                          rul
                                                                                                                         clipped rul
                 522.294
                                                                                                                                     - 160
                 521 561
                                                                                                                                     - 120
            s12
                 520.829
                                                                                                                                      80
                 520.096
                 519.363 -
                                     175
                                                  150
                                                               125
                                                                             100
                                                                                           75
                                                                                                         50
                                                                             RUL
 In [8]: test = pd.read_csv('test_FD001.txt', header=None, sep=' ').dropna(how='all', axis=1)
          test.columns = col_names
          executed in 76ms, finished 03:40:59 2021-01-05
 In [9]: X_train = df[['id', 'cycle']+order2]
          y_train = df.rul
          X_test = test.groupby('id').last().reset_index()[['id', 'cycle']+order2]
           executed in 23ms, finished 03:41:00 2021-01-05
In [10]: from sklearn.preprocessing import StandardScaler, MinMaxScaler
          scaler = MinMaxScaler()
          sensors_scaled = scaler.fit_transform(X_train.drop(columns=['id', 'cycle']))
          executed in 796ms, finished 03:41:01 2021-01-05
In [11]: X_train_scaled = pd.concat([X_train[['id', 'cycle']],
                                          pd.DataFrame(sensors_scaled,
                                                         columns=X_train.columns[2:])], 1)
          X_test_scaled = pd.concat([X_test[['id', 'cycle']],
                                         pd.DataFrame(scaler.transform(
                                                        X_test.drop(columns=['id', 'cycle'])),
                                                        columns=X_test.columns[2:])], 1)
          executed in 10ms, finished 03:41:01 2021-01-05
```

```
In [12]: from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor from sklearn.linear_model import LinearRegression
           GBM = GradientBoostingRegressor()
           GBM.fit(X_train_scaled,y_train)
           y_pred_GBM = GBM.predict(X_test scaled)
           RF = RandomForestRegressor()
           RF.fit(X_train_scaled,y_train)
           y pred RF = RF.predict(X test scaled)
           LR = LinearRegression()
           LR.fit(X_train_scaled,y_train)
           y_pred_LR = LR.predict(X_test_scaled)
           executed in 20.5s, finished 03:41:22 2021-01-05
In [140]: truth = pd.read_fwf('RUL_FD001.txt', sep=' ', header=None)
           executed in 13ms, finished 04:30:26 2021-01-05
 In [14]: from sklearn.metrics import r2_score, mean_squared_error
           def evaluate(y_true, y_hat, label='test'):
               mse = mean_squared_error(y_true, y_hat)
rmse = np.sqrt(mse)
               variance = r2_score(y_true, y_hat)
print('{} set RMSE:{}, R2:{}'.format(label, rmse, variance))
           executed in 4ms, finished 03:41:23 2021-01-05
 In [15]: print('GBM')
           evaluate(df.rul, GBM.predict(X_train_scaled), 'train')
           evaluate(truth[0].values, GBM.predict(X_test_scaled))
           print('\nRF')
           evaluate(df.rul, RF.predict(X_train_scaled), 'train')
           evaluate(truth[0].values, RF.predict(X_test_scaled))
           print('\nLR')
           evaluate(df.rul, LR.predict(X train scaled), 'train')
           evaluate(truth[0].values, LR.predict(X_test_scaled))
           executed in 460ms, finished 03:41:24 2021-01-05
           train set RMSE:23.26120790703591, R2:0.8859522257614105
           test set RMSE:32.976327482927374, R2:0.3702835615026916
           train set RMSE:5.587904247923458, R2:0.9934185710200077
           test set RMSE:37.3666886812305, R2:0.19144478367098483
           train set RMSE:39.76776517274139, R2:0.6666621274831255 test set RMSE:32.33996686227092, R2:0.39435296292622124
 In [16]: y_train_clipped = y_train.clip(upper=125)
           GBM = GradientBoostingRegressor()
           GBM.fit(X_train_scaled,y_train_clipped)
           y_pred_GBM = GBM.predict(X_test_scaled)
           RF = RandomForestRegressor()
           RF.fit(X_train_scaled,y_train_clipped)
           y_pred_RF = RF.predict(X_test_scaled)
           LR = LinearRegression()
           LR.fit(X_train_scaled,y_train_clipped)
           y_pred_LR = LR.predict(X_test_scaled)
           executed in 20.1s, finished 03:41:44 2021-01-05
```

```
In [17]: print('GBM')
           evaluate(df.rul, GBM.predict(X train scaled), 'train')
           evaluate(truth[0].values, GBM.predict(X test scaled))
           evaluate(df.rul, RF.predict(X_train_scaled), 'train')
           evaluate(truth[0].values, RF.predict(X_test_scaled))
           evaluate(df.rul, LR.predict(X_train_scaled), 'train')
           evaluate(truth[0].values, LR.predict(X_test_scaled))
           executed in 427ms, finished 03:41:45 2021-01-05
           train set RMSE:46.404713828803644, R2:0.5461143153081366
           test set RMSE:21.603339389320976, R2:0.729739713542825
           train set RMSE:43.79988729728767, R2:0.5956399198105808 test set RMSE:23.2729984746272, R2:0.6863501112070071
           train set RMSE:49.570833118562405, R2:0.4820656391699114
           test set RMSE:23.53847639939435, R2:0.679153613448957
 In [99]: import tensorflow as tf
           from tensorflow.keras import Sequential
           from tensorflow.keras.layers import (LSTM, Dense, Dropout, Masking,
                                                    TimeDistributed, Flatten)
           from keras.optimizers import RMSprop
 In [84]: from rul_codes import *
           executed in 5ms, finished 04:10:12 2021-01-05
 In [25]: X train['rul'] = y train clipped
           remaining_sensors = ['s'+i[1:] for i in order2]
           drop_sensors = [element for element in sensor_names if element not in
                            remaining_sensors]
           executed in 8ms, finished 03:43:34, 2021-01-05
 In [82]: X_train = exponential_smoothing(X_train, remaining_sensors, 0, 0.4)
           X_test = exponential_smoothing(X_test, remaining_sensors, 0, 0.4)
           executed in 438ms, finished 04:09:48 2021-01-05
In [129]: from sklearn.model_selection import GroupShuffleSplit
           sequence length = 20
           gss = GroupShuffleSplit(n_splits=1, train_size=0.8, random_state=42)
           for train_unit, val_unit in gss.split(X_train['id'].unique(),
                groups=X_train['id'].unique()):
train_unit = X_train['id'].unique()[train_unit]
                val unit = X train['id'].unique()[val unit]
                \label{train_split_array} \mbox{ = gen\_data\_wrapper(X\_train, sequence\_length,} \\
                                                        remaining_sensors, train_unit)
               train_split_label = gen_label_wrapper(X_train, sequence_length, ['rul'],
                                                          train_unit)
               val_split_array = gen_data_wrapper(X_train, sequence_length,
               remaining_sensors, val_unit)
val_split_label = gen_label_wrapper(X_train, sequence_length, ['rul'],
                                                       val_unit)
           # create sequences train, test
           train_array = gen_data_wrapper(X_train, sequence_length, remaining_sensors)
label_array = gen_label_wrapper(X_train, sequence_length, ['rul'])
           test_gen = (list(gen_test_data(X_train[X_train['id']==unit_nr],
                                             sequence_length, remaining_sensors, -30.))
                       for unit_nr in X_train['id'].unique())
           test_array = np.concatenate(list(test_gen)).astype(np.float32)
           executed in 677ms, finished 04:26:15 2021-01-05
In [146]: del model
           model = Sequential()
           model.add(Masking(mask_value=-99., input_shape=(sequence_length,
                                                                train_array.shape[2])))
           # model.add(Flatten(input_shape=(sequence_length,
                                                                  train_array.shape[2])))
           model.add(LSTM(64, activation='relu'))
           model.add(Dense(32))
           model.add(Dense(1))
           rmse = tf.keras.metrics.RootMeanSquaredError()
           model.compile(loss='mean_squared_error', optimizer=RMSprop(),
                          metrics=[rmse])
            executed in 111ms, finished 04:32:26 2021-01-05
```

```
epochs=5,
                     batch_size=32)
       executed in 2m 20s, finished 04:34:52 2021-01-05
       Epoch 1/5
       n squared error: 66.7300
       Epoch 2/5
       _squared_error: 59.3455
       Epoch 3/5
       quared_error: 51.7459
       Epoch 4/5
       471/471 [===
                     =========] - 27s 58ms/step - loss: 1815.1530 - root_mean_squared_error: 42.6018 - val_loss: 2026.2130 - val_root_mean_s
       quared error: 45.0135
       Epoch 5/5
       quared_error: 43.1396
 epochs=5,
                     batch_size=32)
In [148]: # plot history
       def plot_loss(fit_history):
          plt.figure(figsize=(13,5))
          plt.plot(range(1, len(fit_history.history['loss'])+1), fit_history.history['loss'], label='train')
plt.plot(range(1, len(fit_history.history['val_loss'])+1), fit_history.history['val_loss'], label='validate')
          plt.xlabel('Epochs')
          plt.ylabel('Loss')
          plt.legend()
          plt.show()
       plot_loss(history)
       executed in 220ms, finished 04:34:54 2021-01-05
                                                                           - train
          60000
         50000
          40000
        30000
          20000
         10000
            0
                               2.0
                                                       3.5
                                                              4.0
                                                                      4.5
                                                                              5.0
                1.0
                        1.5
                                       2.5
                                              Epochs
In [149]: # predict and evaluate
       y_hat_train = model.predict(train_array)
       evaluate(label_array, y_hat_train, 'train')
       v hat test = model.predict(test array)
       evaluate(truth, y_hat_test)
       executed in 4.73s, finished 04:35:00 2021-01-05
       train set RMSE:42.993988037109375, R2:-0.05571037087489472
       test set RMSE:45.000595707791035, R2:-0.17267315033865982
In [150]: from sklearn.decomposition import PCA
       pca = PCA()
       pca.fit(sensors_scaled)
       100*pca.explained_variance_ratio_
       executed in 27ms, finished 04:35:21 2021-01-05
In [151]: pca = PCA(n_components=3, whiten=True)
       sensors_pca = pca.fit_transform(sensors_scaled[:, :6])
       100*pca.explained_variance_ratio_
       executed in 233ms, finished 04:35:27 2021-01-05
Out[151]: array([81.91677609, 4.81393047, 4.16760062])
 In [ ]:
```