Finite Elements for Engineers

Lecture 2: Structural Dynamics

S. D. Rajan
Department of Civil Engineering
ASU

Introduction: Free Vibration

D'Alembert's Principle $m\ddot{u} + ku = 0$

$$m\ddot{u} + ku = 0$$

Let
$$\omega^2 = \frac{k}{m}$$
 \Longrightarrow $\ddot{u} + \omega^2 u = 0$

Introduction: Free Vibration

Angular Frequency
$$\omega = \sqrt{k/m} \quad rad/s$$

Natural Frequency
$$f = \omega/2\pi$$
 Hz

$$T = 1/f$$
 s

Introduction: Free Vibration

Solution

$$u(t) = C_1 \cos \omega t + C_2 \sin \omega t$$

$$t=t_0$$
 $u=u_0$ Initial displacement $\dot{u}=\dot{u}_0$ Initial velocity

Solution to free, undamped vibration

$$u = A\cos(\omega t - \alpha)$$

Amplitude
$$A = \sqrt{u_0^2 + \left(\frac{\dot{u}_0}{\omega}\right)^2}$$
 Phase $\alpha = \tan^{-1} \frac{\dot{u}_0}{\omega u_0}$

Introduction: Forced Vibration

Harmonic forcing function

$$m\ddot{u} + ku = P \sin \Omega t$$

$$p_m = \frac{P}{m} \Rightarrow \ddot{u} + \omega^2 u = p_m \sin \Omega t$$

Solution (particular solution + general solution)

$$u = C_3 \sin \Omega t$$

$$u = C_1 \cos \omega t + C_2 \sin \omega t + C_3 \sin \Omega t$$

Introduction: Forced Vibration

$$u = \left| \frac{1}{1 - \left(\frac{\Omega}{\omega}\right)^2} \right| \frac{P}{k} \sin \Omega t = \frac{1}{\beta} \frac{P}{k} \sin \Omega t$$

1D Eigenproblem

DE

$$-\frac{d}{dx}\left\{\alpha(x)\frac{du(x)}{dx}\right\} + \beta(x)u(x) - \lambda\gamma(x)u(x) = 0 \quad x_a < x < x_b$$

BCs

$$x_a \Rightarrow u(x_a) = 0$$
 or $\tau(x_a) = 0$

$$x_b \Rightarrow u(x_b) = 0$$
 or $\tau(x_b) = 0$

Galerkin's Method

Galerkin Step 1: Residual Equations

$$\int_{\Omega} \left[-\frac{d}{dx} \left\{ \alpha(x) \frac{du(x)}{dx} \right\} + \beta(x)u(x) - \lambda \gamma(x)u(x) \right] \phi_i(x) dx = 0 \quad i = 1, 2, ..., n$$

Galerkin Step 2: Integration by parts

$$\int_{\Omega} \frac{d\phi_{i}(x)}{dx} \alpha(x) \frac{d\tilde{u}}{dx} dx + \int_{\Omega} \phi_{i}(x) \beta(x) \tilde{u} dx - \lambda \int_{\Omega} \phi_{i}(x) \gamma(x) \tilde{u} dx =$$

$$-\left[\left\{-\alpha(x) \frac{d\tilde{u}}{dx}\right\} \phi_{i}(x)\right]_{x_{1}}^{x_{1}}$$

Galerkin's Method

Galerkin Step 3: Use of trial solution

$$\tilde{u}(x,y) = \sum_{j=1}^{n} \phi_j(x,y) u_j$$

$$\sum_{j=1}^{n} \left\{ \int_{\Omega} \frac{d\phi_i(x)}{dx} \alpha(x) \frac{d\phi_j(x)}{dx} dx + \int_{\Omega} \phi_i(x) \beta(x) \phi_j(x) dx \right\} a_j$$

$$-\lambda \sum_{j=1}^{n} \left\{ \int_{\Omega} \phi_i(x) \gamma(x) \phi_j(x) dx \right\} a_j = 0 \quad i = 1, 2, ..., n$$

$$\mathbf{k}_{n\times n}\mathbf{a}_{n\times 1}-\lambda\mathbf{m}_{n\times n}\mathbf{a}_{n\times 1}=\mathbf{0}$$

1D-C⁰ Linear Element

Galerkin Step 4

$$\phi_1(x) = \frac{x_2 - x}{x_2 - x_1}$$

$$\phi_2(x) = \frac{x - x_1}{x_2 - x_1}$$

$$\begin{bmatrix} \overline{\alpha} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \frac{\overline{\beta}L}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{a} - \lambda \frac{\overline{\gamma}L}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{a} = \mathbf{0}$$

System Equations

Eigenproblem

$$\mathbf{K}_{n\times n}\mathbf{\Phi}_{n\times n}=\mathbf{\Lambda}_{n\times n}\mathbf{M}_{n\times n}\mathbf{\Phi}_{n\times n}$$

Free Vibration of a Cable

Transverse Equilibrium

$$\frac{\partial F(x,t)}{\partial x} + k(x)w(x,t) = f(x) - \rho(x)\frac{\partial^2 w(x,t)}{\partial t^2}$$

Free motion

$$\frac{\partial F(x,t)}{\partial x} + k(x)w(x,t) = -\rho(x)\frac{\partial^2 w(x,t)}{\partial t^2}$$

Constitutive relation

$$F(x,t) = -T(x)\frac{\partial w(x,t)}{\partial x}$$

Free Vibration

$$-\frac{\partial}{\partial x} \left[T(x) \frac{\partial w(x,t)}{\partial x} \right] + k(x)w(x,t) = -\rho(x) \frac{\partial^2 w(x,t)}{\partial t^2}$$

Harmonic solution

$$w(x,t) = W(x) \sin \omega t$$

Governing DE

$$-\frac{d}{dx} \left[T(x) \frac{dW(x)}{dx} \right] + k(x)W(x) - \omega^2 \rho(x)W(x) = 0$$

BCs

$$W(0) = 0$$

$$W(L) = 0$$

Free Vibration

General 1D Eigenproblem

$$-\frac{d}{dx} \left[\alpha(x) \frac{du(x)}{dx} \right] + \beta(x)u(x) - \lambda \gamma(x)u(x) = 0$$

Free vibration of a cable

$$-\frac{d}{dx}\left[T(x)\frac{dW(x)}{dx}\right] + k(x)W(x) - \omega^2 \rho(x)W(x) = 0$$

Example

Problem data

$$L = 20 ft$$

$$T = 100 lb$$

$$\rho = 0.01553 slug/ft$$

$$k = 0$$

2-Element mesh

4-element mesh

2-Element Mesh

Element 1

$$\frac{100}{10} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} W_1 \\ W_2 \end{Bmatrix} - \lambda \frac{(0.01553)(10)}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} W_1 \\ W_2 \end{Bmatrix} = 0$$

Element 2

$$\frac{100}{10} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} W_2 \\ W_3 \end{Bmatrix} - \lambda \frac{(0.01553)(10)}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} W_2 \\ W_3 \end{Bmatrix} = 0$$

2-Element Model

System Equation

$$[20]{W_2} - \lambda [0.103533]{W_2} = 0$$

Solution

$$\det(20 - 0.103533\lambda) = 0 \Rightarrow \lambda_1 = 193$$

4-Element Model

Element 1

$$\frac{100}{5} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} W_1 \\ W_2 \end{Bmatrix} - \lambda \frac{(0.01553)(5)}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} W_1 \\ W_2 \end{Bmatrix} = 0$$

$$20 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} W_1 \\ W_2 \end{Bmatrix} - \lambda (0.0129417) \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} W_1 \\ W_2 \end{Bmatrix} = 0$$

Element 2, 3, 4

$$20 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} W_n \\ W_{n+1} \end{Bmatrix} - \lambda (0.0129417) \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} W_n \\ W_{n+1} \end{Bmatrix} = 0$$

4-Element Solution

System Equations

$$\begin{bmatrix} 40 & -20 & 0 \\ -20 & 40 & -20 \\ 0 & -20 & 40 \end{bmatrix} \begin{bmatrix} W_2 \\ W_3 \\ W_4 \end{bmatrix} - \lambda \begin{bmatrix} 0.0517668 & 0.0129417 & 0 \\ 0.0129417 & 0.0517668 & 0.0129417 \\ 0 & 0.0129417 & 0.0517668 \end{bmatrix} \begin{bmatrix} W_2 \\ W_3 \\ W_4 \end{bmatrix} = 0$$

Solution

$$\lambda_{1} = 169.38$$

$$\lambda_{2} = 782.8$$

$$\phi_{1} = \begin{cases} 0.146 \\ 0.207 \\ 0.146 \end{cases}$$

$$\phi_{2} = \begin{cases} 0.112 \\ 0 \\ -0.112 \end{cases}$$

$$\phi_{3} = \begin{cases} 0.061 \\ -0.086 \\ 0.061 \end{cases}$$

$$\lambda_{3} = 2067.1$$

4-Element Solution

Mode 1

Mode 2

Mode 3

Convergence Study

# of	Eigenvalue 1	Eigenvalue 2
elements		
4	169.38	782.8
6	162.5	695.4
18	159.3	642.1
24	159.0	639.3
30	159.0	637.7

Truss Element

Consistent mass matrix

$$m_{ij} = \int_{\Omega} \phi_i(x) \gamma(x) \phi_j(x) dx$$

Truss Element

$$\begin{cases} u \\ v \\ w \end{cases} = \begin{bmatrix} 1-a & 0 & 0 & a & 0 & 0 \\ 0 & 1-a & 0 & 0 & a & 0 \\ 0 & 0 & 1-a & 0 & 0 & a \end{bmatrix} \begin{cases} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \\ d_6 \end{cases} = \mathbf{A}_{3 \times 6} \mathbf{d}_{6 \times 1}$$

$$\mathbf{m}_{6\times 6} = \int_{\mathcal{O}} \gamma \mathbf{A}^T \mathbf{A} dV$$

Truss Element

Consistent mass matrix

$$\mathbf{m}_{6\times 6} = \frac{\gamma AL}{6} \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 2 \end{bmatrix}$$

Example: Ex1

$$E = 200 GPa$$

$$\rho = 7850 kg/m^3$$

$$A = 0.01m^2$$

$$f_1 = 167 Hz$$
$$f_2 = 223 Hz$$

DE

$$\frac{\partial}{\partial x^2} \left(EI \frac{\partial w}{\partial x^2} \right) = -\overline{\rho} \frac{\partial^2 w}{\partial t^2}$$

Solution

$$w(x,t) = W(x)\sin\omega t$$

Substituting

$$\frac{d^2}{dx^2} \left[EI \frac{d^2W}{dx^2} \right] - \frac{1}{\rho} \omega^2 W = 0$$

Galerkin Step 1: Residual Equations

$$\int_{x_{1}}^{x_{2}} \left[(EIW'')'' - \overline{\rho}\omega^{2}W \right] \phi_{i}(x) dx = 0 \quad i = 1, 2, 3, 4$$

Galerkin Step 2: Integration by parts

$$\int_{x}^{x_2} \left[(EIW'')' \phi_i'' - \omega^2 \overline{\rho} \quad W \phi_i \right] dx = \left[(EIW'') \phi_i' \right]_{x_1}^{x_2} - \left[(EIW'')' \phi_i \right]_{x_1}^{x_2}$$

Galerkin Step 3: Use of trial solution

$$W = \sum_{j=1}^{4} a_j \phi_j$$

$$\begin{bmatrix} \mathbf{k}_{4\times4} - \boldsymbol{\omega}^2 \mathbf{m}_{4\times4} \end{bmatrix} \mathbf{a}_{4\times1} = \begin{cases} -V(x_1) \\ M(x_1) \\ V(x_2) \\ -M(x_2) \end{cases} \qquad EI \frac{\partial^2 w}{\partial x^2} = -M$$

$$\frac{d}{dx} \left[EI \frac{\partial^2 w}{\partial x^2} \right] = -V$$

Sign Convention

$$EI\frac{\partial^2 w}{\partial x^2} = -M$$

$$\frac{d}{dx} \left[EI \frac{\partial^2 w}{\partial x^2} \right] = -V$$

Planar beam element (2 dof/element)

$$\mathbf{m'_{4\times4}} = \frac{\rho AL}{420} \begin{bmatrix} 156 & SYM \\ 22L & 4L^2 \\ 54 & 13L & 156 \\ -13L & -3L^2 & -22L & 4L^2 \end{bmatrix}$$

Planar beam element with axial deformation

$$\mathbf{m'}_{6\times6} = \frac{\rho AL}{420} \begin{bmatrix} 140 & & & SYM \\ 0 & 156 & & & \\ 0 & 22L & 4L^2 & & \\ 70 & 0 & 0 & 140 & & \\ 0 & 54 & 13L & 0 & 156 & \\ 0 & -13L & -3L^2 & 0 & -22L & 4L^2 \end{bmatrix}$$

$$\mathbf{m}_{6\times6} = \mathbf{T}_{6\times6}^T \mathbf{m'}_{6\times6} \ \mathbf{T}_{6\times6}$$

Example

$$E = 10^{10} Pa$$

$$\rho = 5000 \, kg/m^3$$
$$A = 0.001 \, m^2$$

$$A = 0.001 m^2$$

$$I = 0.0001 m^4$$

Analytical solution (bending modes)

$$\omega_n = \frac{\left(n\pi\right)^2}{L^2} \sqrt{\frac{EI}{\rho A}} \quad n = 1, 2, 3, \dots$$

Example: Ex21 (1 Element)

$$E = 10^{10} Pa$$

$$\rho = 5000 \, kg / m^3$$

$$A = 0.001 m^2$$

$$I = 0.0001 m^4$$

$$f_1 = 195 Hz$$

 $f_2 = 195 Hz$
 $f_3 = 893 Hz$

Example: Ex22 (2 Element)

$$E = 10^{10} Pa$$

$$\rho = 5000 \, kg / m^3$$

$$A = 0.001m^2$$

$$I = 0.0001 m^4$$

$$f_1 = 176 Hz$$
 $f_4 = 780 Hz$
 $f_2 = 181 Hz$ $f_5 = 1960 Hz$
 $f_3 = 633 Hz$

Convergence Study

Mode\	Frequency (Hz)				
Elements	1	2	4	8	Exact
1	195	176	176	176	175.6
2	195	181	177	177	
3	893	633	561	538	
4	_	780	705	703	702.5
5	_	1960	1020	920	

Lumped Mass Matrix

$$\mathbf{m'}_{6\times6} = \frac{\rho AL}{2} \begin{vmatrix} 1 & & & SYM \\ 0 & 1 & & \\ 0 & 0 & 0 & \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{vmatrix}$$

Consistent versus Lumped Mass (8 Elements)

Mode	Frequency (Hz)		
	Consistent	Lumped	
1	176	176	
2	177	176	
3	538	523	
4	703	702	
5	920	849	

Summary

- K is symmetric and positive definite
- M is symmetric and possibly positive definite
- Eigenvalues are real and positive
- Eigenvalues converge from above

Further Reading

- From the textbook
 - Chapter 11