Math 325 Exam 1 practice problems

1. Show that if $x, y \ge 0$, then the arithmetic mean $m = \frac{x+y}{2}$ and the geometric mean $\mu = \sqrt{xy}$ of x and y always satisfies $m \ge \mu$.

[Hint: show that $2(m-\mu)$ is a square!]

Following the hint, $2(m-\mu)=(x+y)-2\sqrt{xy}=(\sqrt{x})^2-2\sqrt{x}\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2$; \sqrt{x} and \sqrt{y} both make sense since $x,y\geq 0$. So since $2(m-\mu)=a^2\geq 0$ for some $a\in\mathbb{R}$, we have $2(m-\mu)\geq 0$, so $m-\mu\geq 0$, so $m\geq \mu$.

Show by an example that this inequality can be strict (that is, $m > \mu$).

Most any pair of numbers will do! Setting x=1 and y=9, m=(1+9)/2=5 and $\mu=\sqrt{1\cdot 9}=\sqrt{9}=3,$ so $m>\mu.$

2. Show that $\alpha = \sqrt{2 + \sqrt{7}}$ is **not** a rational number.

We show that α is the root of a polynomial p with integer coefficients, and then show that p has no rational roots. We have $\alpha^2 = 2 + \sqrt{7}$, so $\alpha^2 - 2 = \sqrt{7}$ and so $(\alpha^2 - 2)^2 = 7$. This means that $\alpha^4 - 5\alpha^2 + 4 = 7$, so $\alpha^4 - 4\alpha^2 - 3 = 0$. So α is a root of the polynomial $p(x) = x^4 - 4x^2 - 3$.

But by the Rational Roots Theorem, the only possible rational roots of p(x) are 1, -1, 3, or -3, since these are the numbers p/q with p dividing -3 and q dividing 1. But: $p(1) = p(-1) = 1 - 4 - 3 = -6 \neq 0$, and $p(3) = p(-3) = 3^4 - 4 \cdot 3^2 - 3 = 81 - 106 - 3 = 81 - 109 = -28 \neq 0$. So no potential rational roots <u>are</u> roots, so p has no rational roots.

So α , which is a root of p, cannot be rational.

3. Use induction to show that for every $n \ge 1$,

$$a_n = \sum_{k=1}^n \frac{1}{k(k+2)} = \frac{n(3n+5)}{4(n+1)(n+2)} = f(n)$$

(Hint: write out what f(n+1) is; it will help.)

To establish the result "For $n \in \mathbb{N}$ we have $\sum_{k=1}^{n} \frac{1}{k(k+2)} = \frac{n(3n+5)}{4(n+1)(n+2)}$ by induction, we show:

(True for
$$n=1$$
) $\sum_{k=1}^{1} \frac{1}{k(k+2)} \frac{1}{1(1+2)} = \frac{1}{3} = \frac{8}{24} = \frac{(1)(8)}{4(2)(3)} = \frac{1(3\cdot 1+5)}{4(1+1)(1+2)}$, so the result is true for $n=1$.

(n implies
$$n+1$$
) If we suppose that $\sum_{k=1}^{n} \frac{1}{k(k+2)} = \frac{n(3n+5)}{4(n+1)(n+2)} = f(n)$, then

$$\sum_{k=1}^{n+1} \frac{1}{k(k+2)} = \frac{1}{(n+1)(n+3)} + \sum_{k=1}^{n} \frac{1}{k(k+2)} = \frac{1}{(n+1)(n+3)} + \frac{n(3n+5)}{4(n+1)(n+2)}.$$
 But!

$$\frac{1}{(n+1)(n+3)} + \frac{n(3n+5)}{4(n+1)(n+2)} = \frac{4(n+2)}{4(n+1)(n+2)(n+3)} + \frac{n(n+3)(3n+5)}{4(n+1)(n+2)(n+3)}$$

$$= \frac{4(n+2) + n(n+3)(3n+5)}{4(n+1)(n+2)(n+3)} = \frac{4n+8+n(3n^2+14n+15)}{4(n+1)(n+2)(n+3)} = \frac{4n+8+3n^3+14n^2+15n)}{4(n+1)(n+2)(n+3)}$$

$$= \frac{3n^3+14n^2+19n+8)}{4(n+1)(n+2)(n+3)} = \frac{(n+1)(3n^2+11n+8)}{4(n+1)(n+2)(n+3)} = \frac{(3n+8)(n+1))}{4(n+2)(n+3)}$$

$$= \frac{(n+1))(3(n+1)+5)}{4((n+1)+1)((n+1)+2)} = f(n+1).$$

So both the base (n = 1) and inductive steps are true, so $\sum_{k=1}^{n} \frac{1}{k(k+2)} = \frac{n(3n+5)}{4(n+1)(n+2)}$ is true by induction.

4. (a) Use induction to show that for all $n \ge 1$, n(n+1) is divisible by 2.

We want to show that for all $n \in \mathbb{N}$ we have n(n+1) = 2K for some $K \in \mathbb{N}$. Arguing by induction, for n = 1 we have $1(1+1) = 2 = 2 \cdot 1$ so K = 1 works, and for the inductive step we have that if n(n+1) = 2K, then $(n+1)((n+1)+1) = (n+2)(n+2) = n^2 + 3n + 2 = (n^2+n) + (2n+2) = n(n+1) + 2(n+1) = 2K + 2(n+1) = 2(K+n+1)$, so (n+1)(n+2) is also a multiple of 2.

Having established the base (n=1) and inductive steps, for every $n \in \mathbb{N}$ we have n(n+1) = 2K for some $K \in \mathbb{N}$.

(b): Use induction to show that for every $n \ge 1$, $n^3 + 5n$ is divisible by 6.

Arguing in the same way, for n=1 we have $n^3+5n=1+5=6=6\cdot 1$ is a multiple of 6. for the inductive step, if we assume that $n^3+5n=6K$ for some $K\in\mathbb{N}$, then

$$(n+1)^3 + 5(n+1) = (n^3 + 3n^2 + 3n + 1) + (5n+5) = n^3 + 3n^2 + 8n + 6 = (n^3 + 5n) + (3n^2 + 3n) + (6) = (n^3 + 5n) + 3(n^2 + n) + 6 = 6K + 3(2L) + 6 = 6(K + L + 1),$$

since by part (a) n^2+n is always even. So $n^3+5n=$ a multiple of 6 implies that $(n+1)^3+5(n+1)=$ a(nother) multiple of 6. This establishes the inductive step, and therefore, n^3+5n is a multiple of 6 for every $n\in\mathbb{N}$.

5. Use the rational roots theorem to show that $\alpha=\sqrt{2}-\sqrt{5}$ is not a rational number. We show that α is the root of a polynomial p with integer coefficients, and then show that p has no rational roots. We have $\alpha^2=(\sqrt{2}-\sqrt{5})^2=2-2\sqrt{2}\sqrt{5}+5=7-2\sqrt{10}$, so $\alpha^2-7=-2\sqrt{10}$ and so $(\alpha^2-7)^2=\alpha^4-14\alpha^2+49=40$. This means that $\alpha^4-14\alpha^2+9=0$, and so α is a root of the polynomial $p(x)=x^4-14x^2+9$.

But by the Rational Roots Theorem, the only rational numbers that could be a root of $p(x) = x^4 - 14x^2 + 9$ are 1, -1, 3, -3, 9 or -9. But $p(1) = p(-1) = 1 - 14 + 9 = -4 \neq 0$, $p(3) = p(-3) = 9 \cdot 9 - 14 \cdot 9 + 9 = -4 \cdot 9 = -35 \neq 0$, and $p(9) = p(-9) = 9 \cdot 729 - 14 \cdot 9 \cdot 9 + 9 = 9(729 - 126 + 1) \neq 0$. So none of these numbers are roots of p, so p has no rational roots. So α , which is a root fo p, canot be rational.

6. Suppose that S and T are both non-empty subsets of the real line, and both are bounded from above. Show that if $lub(S) \leq lub(T)$, then $lub(S \cup T) = lub(T)$.

Set $\alpha = \text{l}ub(S)$ and $\beta = \text{l}ub(T)$. Then $x \leq \alpha$ for every $x \in S$, and so since $\alpha \leq \beta$, we have $x \leq \beta$ for all $x \in S$. Since we also have $x \leq \beta$ for every $a \in T$, we then have that $x \leq \beta$ for every $x \in S \cup T$, so β is an upper bound for $S \cup T$.

To show that β is the <u>least</u> upper bound, suppose that $\gamma < \beta$. Then since β is the least upper bould of T, there is an $x \in T$ so that $\gamma < x$. But then $x \in S \cup T$, so there is an $x \in S \cup T$ with $\gamma < x$. So no number smaller than β is an upper bound for $S \cup T$, and so $\beta = \text{lub}(S \cup T)$.

7. Show, directly from the ϵ - δ definition, that $f(x) = x^2 - 3x - 5$ is continuous at x = a for every $a \in \mathbb{R}$.

We want to show that for every $a \in \mathbb{R}$, then for every $\epsilon > 0$ there is a $\delta > 0$ so that $|x - a| < \delta$ implies that $|f(x) - f(a)| = |(x^2 - 3x - 5) - (a^2 - 3a - 5)| < \epsilon$.

But
$$|f(x)-f(a)| = |(x^2-3x-5)-(a^2-3a-5)| = |(x^2-a^2)-3(x-a)| = |(x-a)(x+a-3)| = |x-a| \cdot |x+a-3| = |x-a| \cdot |(x-a)+(2a-3)| \le |x-a| \cdot (|x-a|+|2a-3|)$$
.

So if we insist, first, that |x-a| < 13, then |x-a| + |2a-3| < 13 + |2a-3| = R, where R is a constant (bigger then 13). Then so longer as |x-a| < 13 we have $|f(x)-f(a)| \le |x-a| \cdot (|x-a| + |2a-3|) = R \cdot |x-a|$, and this is less than ϵ so long as $|x-a| < \epsilon/R$.

So for a given $\epsilon > 0$, if we set $\delta = \min\{13, \epsilon/R\}$, then $|x - a| < \delta$ implies that |x - a| + |2a - 3| < R, and so $|f(x) - f(a)| < R\delta \le R(\epsilon/r) = \epsilon$. So f is continuous at every $a \in \mathbb{R}$.

8. Prove, directly from the definition of a limit, that

$$\lim_{x \to 1} (x^2 - 3x + 1) = -1$$

Well, this is practically a special case of the previous problem, but....

We want to show that for any $\epsilon > 0$ there is a $\delta > 0$ so that $|x-1| < \delta$ implies that $|(x^2 - 3x + 1) - (-1)| = |x^2 - 3x + 2| = |(x - 1)(x - 2)| = |x - 1| \cdot |x - 2| < \epsilon$. But $|x-2| = |(x-1)-1| \le |x-1| + |-1| = |x-1| + 1 < 4$ so long as |x-1| < 3, and then $|(x^2 - 3x + 1) - (-1)| \le |x - 1|(|x - 1| + 1) < 4|x - 1| < \epsilon$ so long as, in addition, $|x-1| < \epsilon/4$. So if we set $\delta = \min\{3, \epsilon/4\}$, then $|x-1| < \delta$ implies that |x-1| + 1 < 4, and so $(x^2 - 3x + 1) - (-1)| < 4|x - 1| \le 4(\epsilon/4) = \epsilon$, as desired.

9. Find the following limits (you need not give ϵ - δ level explanations):

(a):
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + x + 1}{x^2 - 3x + 2}$$

 $x^{3} - 3x^{2} + x + 1 = (x - 1)(x^{2} - 2x - 1) \text{ and } x^{2} - 3x + 2 = (x - 1)(x - 2), \text{ so } f(x) = \frac{x^{3} - 3x^{2} + x + 1}{x^{2} - 3x + 2} = \frac{x^{2} - 2x - 1}{x - 2}, \text{ so long as } x \neq 1. \text{ Since } x^{2} - 2x - 1 \to 1 - 2 - 1 = -2$ and $x - 2 \to 1 - 2 = -1$ as $x \to 1$ (since polynomials are continuous), we know that $\frac{x^{2} - 2x - 1}{x - 2} \to \frac{-2}{-1} = 2 \text{ as } x \to 1 \text{ (since the limit of a quotient is the quotient of the } x \to 1$

limits). And since f(x) and $\frac{x^2 - 2x - 1}{x - 2}$ agree everywhere except at x = 1, and the limit as we approach 1 ignores what happens at 1, we have $f(x) \to 2$ as $x \to 1$.

(b):
$$\lim_{x \to -1} \frac{x^2 + 4x + 3}{x^3 - x^2 + x - 1}$$

This one is quicker: $x^2 + 4x + 3 \rightarrow (-1)^2 + 4(-1) + 3 = 1 - 4 + 3 = 0$ as $x \rightarrow -1$, by continuity, and $x^3 - x^2 + x - 1 \rightarrow (-1)^3 - (-1)^2 + (-1) = 1 = -1 - 1 + 1 - 1 = -2$ as

 $x \to -1$, again by continuity. Therefore, $f(x) = \frac{x^2 + 4x + 3}{x^3 - x^2 + x - 1} \to \frac{0}{-2} = 0$ as $x \to -1$, since the limit of a quotient is the quotient of the limits.

(c):
$$\lim_{x\to 2} \frac{(x+1)^2 - 9}{x^4 - 3x^2 - 3x + 2}$$

Since $(x+1)^2 - 9 = x^2 + 2x - 8 = (x-2)(x+4)$ and $x^4 - 3x^2 - 3x + 2 = (x-2)(x^3 + 2x^2 + x - 1)$, we have $f(x) = \frac{(x+1)^2 - 9}{x^4 - 3x^2 - 3x + 2} = \frac{(x-2)(x+4)}{(x-2)(x^3 + 2x^2 + x - 1)} = \frac{x+4}{x^3 + 2x^2 + x - 1}$ so long as $x \neq 2$. Then since $\frac{x+4}{x^3 + 2x^2 + x - 1} \to \frac{2+4}{2^3 + 2 \cdot 2^2 + 2 - 1} = \frac{6}{17}$ as $x \to 2$ (since the limit of a quotient is the quotient of the limits, and the numerator and denomenator are both continuous functions), and $f(x)$ and this quotient agree everywhere but $x = 2$, we have $f(x) \to \frac{6}{17}$ as $x \to 2$.