Резюме: Идея метода остовных потенциалов

• Уравнение Шредингера для «валентных» электронов:

$$H_{val}\Psi_{val}(1,2,...,N_v) = E_{val}\Psi_{val}(1,2,...,N_v)$$
(1.1)

• Эффективный гамильтониан для «валентных» электронов:

$$H_{val} = \sum_{i=1}^{N_{v}} \left[\frac{1}{2} p_{i}^{2} + \sum_{A} V_{A}(i) \right] + \sum_{i < j}^{N_{v}} \frac{1}{r_{ij}}$$
(1.2)

 V_A – остовный потенциал атома A

Приближение Хартри-Фока для замкнутых оболочек

Полная электронная волновая функция – определитель Слэтера:

$$\Psi = \frac{1}{\sqrt{N!}} \det \{ \varphi_c \alpha; \varphi_c \beta; \varphi_v \alpha; \varphi_v \beta \}$$

Полная электронная энергия:

$$E = 2\sum_{c} h_{cc} + \sum_{c,c'} (2J_{cc'} - K_{cc'}) + E_{core} + 2\sum_{v} h_{vv} + 2\sum_{c,v} (2J_{cv} - K_{cv}) + \sum_{v,v'} (2J_{vv'} - K_{vv'}) + \sum_{v,v'} (2J_{vv'} - K_{vv'})$$

- сумма остовной и валентной энергии (по определению!)

• Канонические уравнения Хартри-Фока (замкнутые оболочки):

$$\hat{F} arphi_c = arepsilon_c arphi_c$$
, $\hat{F} arphi_v = arepsilon_v arphi_v$, $\hat{F} = \hat{h} + \sum_c \left(2\hat{J}_c - \hat{K}_c \right) + \sum_v \left(2\hat{J}_v - \hat{K}_v \right)$ – единый оператор Фока.

• Валентная энергия в случае замкнутых оболочек:

$$E_{val} = \langle \Psi_{val} | H_{val} | \Psi_{val} \rangle$$
,

где
$$\Psi_{val} = \frac{1}{\sqrt{N_v!}} \det \left\{ \varphi_v \alpha; \varphi_v \beta \right\}$$
 – валентная волновая функция,

$$\hat{H}_{val} = \sum_{i=1}^{N_{v}} \hat{h}^{c}(i) + \sum_{i < j}^{N_{v}} \frac{1}{r_{ij}}$$
 — эффективный валентный гамильтониан,

$$\hat{h}^c = \hat{h} + \sum_c \left(2\hat{J}_c - \hat{K}_c \right) = -\frac{1}{2}\Delta + -\frac{Z_A}{r} + \sum_c \left(2\hat{J}_c - \hat{K}_c \right)$$
 – оператор остова

• Приближение «замороженного остова» ("frozen core")

C вариационной точки зрения: $\delta \varphi_{\mathcal{C}} \equiv 0$.

Экстремали валентной энергии относительно *только* вариаций $\delta \varphi_v$:

$$\left[\hat{h}^{c} + \sum_{v} (2\hat{J}_{v} - \hat{K}_{v})\right] \varphi_{v} = \varepsilon_{v} \varphi_{v}$$
 (2.1)

- уравнение Хартри–Фока в приближении замороженного остова.
- Можно искать только валентные орбитали, зная остовный оператор.
- Остовный оператор для любого атома А можно рассчитать один раз (и в дальнейшем использовать для молекулярных расчетов).
- Проблема: уравнение (2.1) имеет «остово-подобные» решения, более низкие по энергии, чем искомые валентные опасность вариационного коллапса в процессе ССП.

- Пути решения проблемы вариационного коллапса.
- Принудительная ортогонализация валентных и «замороженных» остовных орбиталей (⇔ проектирование) в процессе ССП:

$$\langle \varphi_{fc} | \varphi_{v} \rangle = 0$$

- Сдвиг остовных уровней вверх проекционными операторами ⇒ методы модельного потенциала (Model Potential methods, MP).
- Преобразование валентных орбиталей с узловыми поверхностями в «гладкие» (безузловые) псевдоорбитали ⇒
 методы псевдопотенциала (Pseudopotential methods, PP)
 Другое название методы эффективного остовного потенциала (Effective Core Potential methods, ECP)

Методы модельного потенциала Хузинаги

Оператор сдвига остовных уровней:
$$\sum_{c} B_c |\varphi_c\rangle\!\langle\varphi_c|$$
 (2.2)

Псевдооператор Фока:
$$\hat{F}_{ps} = \hat{h}^c + \sum_{v} (2\hat{J}_v - \hat{K}_v) + \sum_{c} B_c |\varphi_c\rangle\langle\varphi_c|$$
 (2.3)

$$\mathcal{E}_c + B_c$$

$$\mathcal{E}_{c}$$

$$\hat{F} \qquad \Longrightarrow \qquad \hat{F}_{ps}$$

$$(B_c > \varepsilon_v - \varepsilon_c > 0)$$

Пример: атом Ве (1s² 2s²)

F.Bonifacic, S.Huzinaga /Journal of Chemical Physics 60 (1974) 2779–2786

Y.Sakai, S.Huzinaga /Journal of Chemical Physics 76 (1982) 2537–2551

Полноэлектронное приближение Хартри–Фока (All-Electron, AE):

$$\hat{F}\varphi_{1s} = \varepsilon_{1s}\varphi_{1s}, \qquad \hat{F}\varphi_{2s} = \varepsilon_{2s}\varphi_{2s},$$

$$\hat{F} = -\frac{1}{2}\Delta - \frac{4}{r} + (2\hat{J}_{1s} - \hat{K}_{1s}) + (2\hat{J}_{2s} - \hat{K}_{2s})$$

$$\varphi_{ns} = R_{ns}(r) \cdot Y_{00}(\theta, \phi) = \frac{1}{\sqrt{4\pi}} R_{ns}(r)$$

⇒ Можно свести задачу к решению радиального уравнения.

Альтернатива: Искать радиальные орбитали в виде разложений по ГФ:

$$R_{ns}(r) = \sum_{i} C_i N_i \exp\left(-\zeta_i r^2\right), \qquad N_i = (\zeta_i/\pi)^{3/4}$$

Коэффициенты C_i – из уравнений Хартри–Фока–Рутана (ХФР).

Пример: атом Ве (1s² 2s²)

Базис гауссовых функций (11s)

R_{ns}	1s	2s	
€ (a.u.)	-4.7326	-0.3093	
6224.2707	0.000267	0.000049	
929.64434	0.002086	0.000379	
209.18580	0.011022	0.002031	
58.118390	0.045396	0.008377	
18.473156	0.144402	0.028189	
6.4412781	0.325841	0.068310	
2.4098300	0.428220	0.128130	
0.95027815	0.195428	0.112731	
0.24498654	0.006474	-0.289253	
0.098435410	-0.001438	-0.587491	
0.040469770	0.000316	-0.254391	

Пример: атом Ве (1s² 2s²)

«Заморозим» остовную орбиталь: $\varphi_{1s}\mapsto \varphi_{1s}^f$ и введем псевдооператор

Фока для валентной орбитали 2s:

$$\hat{F}_{ps} = \left[-\frac{1}{2} \Delta - \frac{4}{r} + \left(2\hat{J}_{1s}^f - \hat{K}_{1s}^f \right) + B \left| \varphi_{1s}^f \right\rangle \left\langle \varphi_{1s}^f \right| \right] + \left(2\hat{J}_{2s} - \hat{K}_{2s} \right)$$

$$\hat{h}_{ps}$$

$$(2.4)$$

Будем искать методом ССП низшее по энергии решение задачи:

$$\hat{F}_{ps} \; \widetilde{\varphi}_{2s} = \widetilde{\varepsilon}_{2s} \; \widetilde{\varphi}_{2s} \tag{2.5}$$

 $\widetilde{\varphi}_{2s}$ – псевдовалентная орбиталь

Псевдоорбитальная энергия $\widetilde{arepsilon}_{2s}$ атома Ве при различных параметрах В

ε_{1s} (AE)		\mathcal{E}_{2s} (AE)			
	B = 0.0	B = 3.0	B = 4.0	B = 9.0	
-4.7326	-3.5513	-0.7592	-0.3273	-0.3093	-0.3093

$$B = 9.4653 = 2|\varepsilon_{1s}|$$
 (AE)

- Пример: атом Ве (1s² 2s²)
- \mathfrak{S} Почему $\widetilde{\varphi}_{2s} \neq \varphi_{2s}$?
- ullet Строгая ортогональность $\left\langle arphi_{1s}^f \middle| \widetilde{arphi}_{2s}
 ight
 angle = 0$ только в пределе $B o \infty$
- При конечных значениях B псевдовалентная орбиталь $\widetilde{\varphi}_{2s}$ содержит некоторую примесь остовной компоненты:

$$\widetilde{\varphi}_{2s} = C \, \varphi_{2s} + c \, \varphi_{1s}$$

которая возникает вследствие (а) нелинейности псевдооператора Фока (*«обратная связь»*) и (б) вариационного принципа.

(оператор сдвига остовного уровня – «штрафная функция»)

- Это **плюс**, т.к. позволяет несколько ослабить приближение «замороженного остова» при изменении валентного состояния атома.
- **Вопрос**: каким взять параметр сдвига остовного уровня B ?

F.Bonifacic, S.Huzinaga /Journal of Chemical Physics 60 (1974) 2779–2786

Полная электронная волновая функция – определитель Слэтера:

$$\Psi = \frac{1}{\sqrt{3!}} \det \{ \varphi_{1s} \alpha; \varphi_{1s} \beta; \varphi_{2s} \alpha \}$$
 (2.6)

Полная электронная энергия:

$$E = \underbrace{2h_{1s,1s} + \left(2J_{1s,1s} - K_{1s,1s}\right)}_{E_{core}} + \underbrace{h_{2s,2s} + \left(2J_{1s,2s} - K_{1s,2s}\right)}_{E_{val}}$$

$$h_{ij} = \left\langle \varphi_{i} \left| h \middle| \varphi_{j} \right\rangle, \quad J_{ij} = \left\langle \varphi_{i} \varphi_{j} \middle| \varphi_{i} \varphi_{j} \right\rangle, \quad K_{ij} = \left\langle \varphi_{i} \varphi_{j} \middle| \varphi_{j} \varphi_{i} \right\rangle,$$

$$\hat{h} = -\frac{1}{2}\Delta - \frac{3}{r}$$

$$(2.7)$$

Задание: вывести (2.7) из правил Слэтера

Канонические уравнения Хартри–Фока (ограниченный метод для открытых оболочек – ROHF)

$$|\varphi_{1s}\rangle\mapsto|\varphi_{1s}\rangle+|\delta\varphi_{1s}\rangle; \qquad |\varphi_{2s}\rangle\mapsto|\varphi_{2s}\rangle+|\delta\varphi_{2s}\rangle$$
 $\langle\varphi_{1s}|\varphi_{1s}\rangle=\langle\varphi_{2s}|\varphi_{2s}\rangle=1; \qquad \langle\varphi_{1s}|\varphi_{2s}\rangle=0$

Метод множителей Лагранжа:

$$\delta\{E - 2\varepsilon_{11}\langle\varphi_{1s}|\varphi_{1s}\rangle - 2\varepsilon_{22}\langle\varphi_{2s}|\varphi_{2s}\rangle - 4\varepsilon_{12}\langle\varphi_{1s}|\varphi_{2s}\rangle\} = 0$$

$$\Rightarrow \qquad \hat{F}_1|\varphi_{1s}\rangle = \varepsilon_{11}|\varphi_{1s}\rangle + \varepsilon_{12}|\varphi_{2s}\rangle$$
(2.8)

$$\hat{F}_2 | \varphi_{2s} \rangle = 2\varepsilon_{12} | \varphi_{1s} \rangle + 2\varepsilon_{22} | \varphi_{2s} \rangle \tag{2.9}$$

где

$$\hat{F}_1 = \hat{h} + (2\hat{J}_{1s} - \hat{K}_{1s}) + (\hat{J}_{2s} - \hat{K}_{2s}/2); \quad \hat{F}_2 = \hat{h} + (2\hat{J}_{1s} - \hat{K}_{1s}).$$
 (2.10)

Задание: вывести (2.8–2.10) (орбитали для простоты вещественные)

• Уравнения Хартри-Фока (2.8)–(2.9) не являются каноническими (в них фигурирует недиагональная матрица множителей Лагранжа) Преобразуем их в канонические уравнения ROHF.

• «Искусственный приём» – метод связывающего оператора:

Умножим $\hat{F}_1|arphi_{1s}
angle=arepsilon_{11}|arphi_{1s}
angle+arepsilon_{12}|arphi_{2s}
angle$ (2.8) слева (скалярно) на $\langlearphi_{2s}|$:

$$\langle \varphi_{2s} | \hat{F}_1 | \varphi_{1s} \rangle = \varepsilon_{11} \langle \varphi_{2s} | \varphi_{1s} \rangle + \varepsilon_{12} \langle \varphi_{2s} | \varphi_{2s} \rangle = \varepsilon_{12}$$
 (2.11)

и домножим (в обычном смысле) на $|arphi_{2s}
angle$:

$$|\varphi_{2s}\rangle\langle\varphi_{2s}|\hat{F}_1||\varphi_{1s}\rangle = \varepsilon_{12}|\varphi_{2s}\rangle$$
 (2.12)

Подставляя в (2.8), получим:

$$\hat{F}_{1}|\varphi_{1s}\rangle = \varepsilon_{11}|\varphi_{1s}\rangle + |\varphi_{2s}\rangle\langle\varphi_{2s}|\hat{F}_{1}|\varphi_{1s}\rangle \tag{2.13}$$

$$\left\{ \hat{F}_{1} - |\varphi_{2s}\rangle\langle\varphi_{2s}|\hat{F}_{1} \right\} |\varphi_{1s}\rangle = \varepsilon_{11} |\varphi_{1s}\rangle \tag{2.14}$$

Можно симметризовать оператор в фигурных скобках в (2.14):

$$\left\{\hat{F}_{1} - |\varphi_{2s}\rangle\langle\varphi_{2s}|\hat{F}_{1} - \hat{F}_{1}|\varphi_{2s}\rangle\langle\varphi_{2s}|\right\}|\varphi_{1s}\rangle = \varepsilon_{1s}|\varphi_{1s}\rangle, \tag{2.15}$$

где $arepsilon_{1s} = \langle arphi_{1s} | \hat{F}_1 | arphi_{1s}
angle = arepsilon_{11}$ – орбитальная энергия, а выражение:

$$|arphi_{2s}
angle\!\langlearphi_{2s}|\hat{F}_1|+\hat{F}_1|arphi_{2s}
angle\!\langlearphi_{2s}|=\hat{R}_1-$$
связывающий оператор.

Поступаем аналогично с уравнением $\hat{F}_2|\varphi_{2s}\rangle=2arepsilon_{12}|\varphi_{1s}\rangle+2arepsilon_{22}|\varphi_{2s}\rangle$ (2.9):

$$\left\{\hat{F}_{2} - |\varphi_{1s}\rangle\langle\varphi_{1s}|\hat{F}_{2} - \hat{F}_{2}|\varphi_{1s}\rangle\langle\varphi_{1s}|\right\}|\varphi_{2s}\rangle = \varepsilon_{2s}|\varphi_{2s}\rangle, \tag{2.16}$$

где $\varepsilon_{2s} = \langle \varphi_{2s} | \hat{F}_2 | \varphi_{2s} \rangle = 2\varepsilon_{22}$ и $\hat{R}_2 = |\varphi_{1s}\rangle \langle \varphi_{1s} | \hat{F}_2 + \hat{F}_2 | \varphi_{1s} \rangle \langle \varphi_{1s} |$ – орбитальная энергия и связывающий оператор в этом уравнении.

• Уравнения (2.15)–(2.16) – один из вариантов ROHF (неединственный!).

Задание: проверить выкладки (2.11)-(2.16)

- Другой пример: атом Li (1s² 2s¹)
- Структура уравнения (2.16) подсказывает путь к введению остовного приближения для атома Li.

$$|\hat{F}_2|\varphi_{1s}\rangle = \{\hat{h} + (2\hat{J}_{1s} - \hat{K}_{1s})\}|\varphi_{1s}\rangle \approx \varepsilon_{1s}|\varphi_{1s}\rangle.$$

(Это-точное равенство для иона Li⁺!)

Тогда связывающий оператор в уравнении (2.16):

$$\hat{R}_2 = |\varphi_{1s}\rangle\langle\varphi_{1s}|\hat{F}_2 + \hat{F}_2|\varphi_{1s}\rangle\langle\varphi_{1s}| \approx 2\varepsilon_{1s}|\varphi_{1s}\rangle\langle\varphi_{1s}|$$

Уравнение (2.16) преобразуется к виду:

$$\{\hat{F}_2 - 2\varepsilon_{1s} | \varphi_{1s} \rangle \langle \varphi_{1s} |\} | \varphi_{2s} \rangle = \varepsilon_{2s} | \varphi_{2s} \rangle$$

$$\underbrace{\left\{\hat{h} + \left(2\hat{J}_{1s} - \hat{K}_{1s}\right) + B\left|\varphi_{1s}\right\rangle\!\left\langle\varphi_{1s}\right|\right\}}_{\hat{F}_{ps}} \left|\varphi_{2s}\right\rangle = \varepsilon_{2s}\left|\varphi_{2s}\right\rangle, \quad B = 2\left|\varepsilon_{1s}\right| \quad (!)$$

Получили псевдовалентное уравнение метода Хузинаги.