Face/Head Tracking

Ying Wu yingwu@ece.northwestern.edu

Electrical and Computer Engineering
Northwestern University, Evanston, IL
http://www.ece.northwestern.edu/~yingwu

Tracking Heads?

Courtesy of Y. Wu, 2001

■ The task:

Localize faces and track them in image sequences

Challenges:

Lighting, occlusion, rotation, etc.

Outline

- Motivation
- ✓ What is tracking?
- One solution (Birchfield_CVPR98)
- ✓ Other methods and open issues

Motivation

- Why tracking?
 - The complexity of face detection
 - ✓ scan all the pixel positions and several scales
 - The limitation of face detection
 - ✓ hard to handle out-of-plane rotation
 - Can we maintain the identity of the faces?
 - ✓ although face recognition is the ultimate solution for this, we may not need it, if not necessary
- Objectives
 - fast (frame-rate) face/head localization
 - handle 360° out-of-plane rotation

Visual Tracking

Four Elements

- Infer target states in video sequences
- Target states vs. image observations
- Visual cues and modalities
- Four elements

1 0110 of 10	epresentation	
— 1/1//9/1//	71)	
	preserventori	∠ ⊥

- Observation representation
- Hypotheses measurement $p(Z_t|X_t)$
- Hypotheses generating $p(X_t|X_{t-1})$

Visual Tracking

$$(E[X_{t-1} | \underline{Z}_{t-1}, Z_t]) \Rightarrow E[X_t | \underline{Z}_t]$$

Formulating Visual Tracking

$$(p(X_{t+1} | \underline{Z}_{t+1})) \sim p(Z_{t+1} | X_{t+1}) p(X_{t+1} | \underline{Z}_{t})$$

$$p(X_{t+1} | \underline{Z}_{t}) = \int p(X_{t+1} | X_{t}) p(X_{t} | \underline{Z}_{t}) dX_{t}$$

Tracking as Density Propagation

One Solution

(Birchfield_CVPR98)

- Framework
- Search strategy
- Edge cue
- Color cue

Framework

- $_{\rm S} = (x,y,\sigma)$
- Tracking is treated as a local search based on the prediction

Search Strategy

Local exhaustive search

 δ is the search step size

Do you have better ideas?

Edge Cue

Method I

$$\phi_g(\mathbf{s}) = \frac{1}{N_{\sigma}} \sum_{i=1}^{N_{\sigma}} |\mathbf{g}_{\mathbf{s}}(i)|,$$

The the magnitude of the gradient at perimeter pixel i of the ellipse s.

of pixels on the perimeter of the ellipse

Method II

$$\phi_g(\mathbf{s}) = \frac{1}{N_{\sigma}} \sum_{i=1}^{N_{\sigma}} |\mathbf{n}_{\sigma}(i) \cdot \mathbf{g}_{\mathbf{s}}(i)|,$$

unit vector normal to the ellipse at pixel i.

Which is better?

Normalization

$$\bar{\phi}_g(\mathbf{s}) = \frac{\phi_g(\mathbf{s}) - \min_{\mathbf{s}_i \in S} \phi_g(\mathbf{s}_i)}{\max_{\mathbf{s}_i \in S} \phi_g(\mathbf{s}_i) - \min_{\mathbf{s}_i \in S} \phi_g(\mathbf{s}_i)}.$$

- Why do we need normalization?
- How good is it?

Color Cue

Histogram intersection

of bins

$$\phi_c(\mathbf{s}) = \frac{\sum_{i=1}^{N} \min(I_{\mathbf{S}}(i), M(i))}{\sum_{i=1}^{N} I_{\mathbf{S}}(i)},$$

Model histogram

Color Cue

- Color space
 - -B-G
 - -G-R
 - -R+G+B (why do we need that)
- 8 bins for B-G and G-R, 4 for R+G+B
- Training the model histogram
- Normalization

$$\bar{\phi}_c(\mathbf{s}) = \frac{\phi_c(\mathbf{s}) - \min_{\mathbf{s}_i \in S} \phi_c(\mathbf{s}_i)}{\max_{\mathbf{s}_i \in S} \phi_c(\mathbf{s}_i) - \min_{\mathbf{s}_i \in S} \phi_c(\mathbf{s}_i)}.$$

Comments

- Can the rotation be handled?
- Can the scaling issue be handled?
- Is the search strategy good enough?
- Is the color module good?
- Is the motion prediction enough?
- Is the combination of the two cues good?
- Can it handle occlusion?
- Can it cope with multiple faces
 - Coalesce
 - Switch ID

Other Solutions

- Condensation algorithm
- 3D head tracking

Tracking as Density Propagation

Sequential Monte Carlo

- $P(X_t|Z_t)$ is represented by a set of weighted samples
- Sample weights are determined by $P(Z_t^{(n)}|X_t^{(n)})$
- Hypotheses generating is controlled by $P(X_t|X_{t-1})$

Challenge to Condensation

- Curse of dimensionality
 - What to track?
 - ✓ Positions, orientations
 - ✓ Shape deformation
 - ✓ Color appearance changing
 - The dimensionality of X
 - The number of hypotheses grows exponentially

3D Face Tracking: The Problem

The goal:

Estimate and track 3D head poses

The challenges:

- ✓ Side view
- ✓ Back view
- ✓ Poor illumination
- ✓ Low resolution
- ✓ Different users

3D Face Tracking: A Solution

Courtesy of Y. Wu and K. Toyama, 2000

3D Face Tracking: some results

