Luhuan Wu

Website: luhuanwu.github.io Email: lw2827@columbia.edu Last updated: Aug. 2022

Research Interests

I have broad research interests in machine learning and statistics. Specifically, my recent interests lie in:

- Probabilistic Machine Learning: latent variable models, deep generative models, variational inference
- Uncertainty Quantification: Bayesian modeling, conformal prediction
- Representation Learning: causal representational learning, invariant prediction, out-of-distribution generalization

EDUCATION

Columbia University

Ph.D. in Statistics M.S. in Data Science New York, NY, USA 2020 -Current 2018 -2020

Nanjing University

B.S. in Mathematics

Nanjing, Jiangsu, China 2014–2018

PUBLICATION

1. Variational Nearest Neighbor Gaussian Process In ICML, 2022

Luhuan Wu, Geoff Pleiss, and John P. Cunningham

A variational Gaussian process approximation that enables (1) setting inducing points to observations (2) mini-batch optimization over both observations and inducing points.

- 2. Bias-free Scalable Gaussian Processes via Randomized Truncations In ICML, 2021
 - Andres Potapczynski*, Luhuan Wu*, Dan Biderman*, Geoff Pleiss, and John P. Cunningham

A theoretical study of the biases in two popular Gaussian process learning methods: conjugate gradients and random Fourier features. Randomized truncation estimators that eliminate these biases in exchange for increased variance.

- 3. Hierarchical Inducing Point Gaussian Process for Inter-domian Observations In AISTATS, 2021 Luhuan Wu*, Andrew Miller*, Lauren Anderson, Geoff Pleiss, David Blei, and John P. Cunningham An inter-domain Gaussian process inference method that scales to millions of inducing points and its application to a large astronomical modeling problem.
- 4. Variational Objectives for Markovian Dynamics with Backward Simulation In *ECAI*, 2021 Antonio Khalil Moretti*, Zizhao Wang*, **Luhuan Wu***, Iddo Drori, Itsik Pe'er An inference and learning algorithm for deep state space models that utilize backward simulation and particle smoothing techniques.
- 5. Inverse Articulated-body Dynamics from Video via Variational Sequential Monte Carlo In NeurIPS Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning, 2020

 Dan Biderman, Christian A Naesseth, Luhuan Wu, Taiga Abe, Alice C Mosberger, Leslie J Sibener, Rui Costa, James Murray, John P Cunningham.

A pipeline for body dynamics inference from video: use a convolutional network to track joint positions, embed these as the joints of a linked robotic manipulator, and finally apply a probabilistic physical model whose states specify second-order rigid-body dynamics. A novel distributed nested SMC inference algorithm.

6. Smoothing Nonlinear Variational Objectives with Sequential Monte Carlo In ICLR Workshop on Deep Generative Models for Highly Structured Data, 2019

Antonio Khalil Moretti*, Zizhao Wang*, Luhuan Wu, Itsik Pe'er

An inference and learning algorithm for deep state space models that conditions proposal distributions on the full time-ordered sequence of observations.

SKILLS

Programming: Python (PyTorch, TensorFlow, etc), R, Matlab, Java

Open-source contribution: Implemented the Variational Nearest Neighbbor Gaussian Process in GpyTorch (a Gaussian process library with GPU acceleration and implemented in PyTorch).

Professional Service

Reviewer for AISTSTS (2022), JMLR (2021)

INVITED TALK

Variational Nearest Neighbor Gaussian Process In The 35th New England Statistical Symposium, 2022.

SCHOLARSHIPS AND AWARDS

Merit Student of Nanjing University	2017
Scholarship for Chinese National Elite Program in Basic Science	2016, 2017
People's Scholarship	2016, 2017
Aegon Industrial Fund Scholarship	2015