

计算机控制系统课程报告

正标题 ——副标题

姓 名: XXX

学 号: 11202XXXXX

班 级: XXXXXXXX

学 院: XXX 学院

专 业: XX

指导老师: XXX

2025年4月24日

摘 要

本文围绕"XXXXXXXXX"这一主题,分析了XXX。

关键词: 计算机控制系统; 数字 PID; 仿生机器人; 脑机接口; 抗干扰; 智能控制

目 录

摘	罢.		I
1	绪论		1
	1.1	研究背景与意义	L
	1.2	杭州"六小龙"概况	l
	1.3	报告结构与研究方法 2	2
2	计算	机控制系统核心技术概论 3	3
	2.1	控制系统的基本组成结构 3	3
	2.2	通道接口与系统总线技术 3	3
	2.3	数字控制器设计方法 3	3
	2.4	电磁兼容性设计原则 3	3
3	仿生	机器人系统中的控制技术应用	1
	3.1	宇树科技的控制系统架构分析	1
		3.1.1 传感器输入与数据采集模块	1
		3.1.2 运动控制器与控制算法实现	1
		3.1.3 执行器驱动与反馈回路设计	1
		3.1.4 系统通信与抗干扰设计	1
	3.2	云深处科技的感知融合与控制优化 4	1
		3.2.1 多传感器融合与状态估计	1
		3.2.2 路径规划与导航控制器设计	1
		3.2.3 执行结构与平台调度	1
		3.2.4 系统抗干扰设计与容错机制	1
	3.3	控制器设计方法在企业系统中的工程实现 4	1
4	脑机	接口中的计算机控制系统应用 5	5
	4.1	脑机接口技术发展概述	5
	4.2	强脑科技的非侵入式脑控系统案例	5
	4.3	人机交互系统的闭环反馈控制设计	5
	4.4	典型控制系统分析与信号噪声处理对策	5

++	曾和	挖制	系统	课程	計	生
νı	/// ////	וינוו דר	ホニル	VAC /1'-	+11X	\Box

目录

5	总结	与展望
	5.1	本文总结
	5.2	当前存在的挑战与发展瓶颈
	5.3	对未来技术路线的展望
参	考	文 献

1 绪论

- 1.1 研究背景与意义
- 1.2 杭州"六小龙"概况

图片引用测试1-1:

图 1-1 "六小龙"核心技术与计算机控制系统的关系

文献引用示例^[1] 公式示例1.1:

$$\begin{cases} u(k) = q_0 e(k) + B(k-1) \\ B(k) = u(k) + q_1 e(k-1) + q_2 e(k-2) \end{cases}$$

$$q_0 = K_p \left(1 + \frac{T_s}{T_i} + \frac{T_d}{T_s} \right)$$

$$q_1 = -K_p \left(1 + 2 \cdot \frac{T_d}{T_s} \right)$$

$$q_2 = K_p \cdot \frac{T_d}{T_s}$$
(1.1)

表格示例:

续表

感应频率	感应发生器功率	工件移动速度	感应圈与零件间隙
(KHz)	$(\% \times 80 \text{Kw})$	(mm/min)	(mm)
250	88	5900	1.65
250	88	5900	1.65

表 1-1 高频感应加热的基本参数

感应频率	感应发生器功率	工件移动速度	感应圈与零件间隙
(KHz)	$(\% \times 80 \text{Kw})$	(mm/min)	(mm)
250	88	5900	1.65
250	88	5900	1.65
250	88	5900	1.65
250	88	5900	1.65

1.3 报告结构与研究方法

计算机控制系统核心技术概论 2

- 2.1 控制系统的基本组成结构
- 通道接口与系统总线技术 2.2
- 2.3 数字控制器设计方法
- 2.4 电磁兼容性设计原则

仿生机器人系统中的控制技术应用 3

- 3.1 宇树科技的控制系统架构分析
- 3.1.1 传感器输入与数据采集模块
- 3.1.2 运动控制器与控制算法实现
- 3.1.3 执行器驱动与反馈回路设计
- 3.1.4 系统通信与抗干扰设计
- 3.2 云深处科技的感知融合与控制优化
- 3.2.1 多传感器融合与状态估计
- 3.2.2 路径规划与导航控制器设计
- 3.2.3 执行结构与平台调度
- 3.2.4 系统抗干扰设计与容错机制
- 3.3 控制器设计方法在企业系统中的工程实现

脑机接口中的计算机控制系统应用 4

- 脑机接口技术发展概述 4.1
- 强脑科技的非侵入式脑控系统案例 4.2
- 4.3 人机交互系统的闭环反馈控制设计
- 4.4 典型控制系统分析与信号噪声处理对策

5 总结与展望

- 5.1 本文总结
- 5.2 当前存在的挑战与发展瓶颈
- 5.3 对未来技术路线的展望

参 考 文 献

[1] 董宁, 陈振. 计算机控制系统(第 3 版)[M]. 电子工业出版社, 2017.