МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

ТЕМА: ПРЕДСТАВЛЕНИЕ И ОБРАБОТКА ЦЕЛЫХ ЧИСЕЛ. ОРГАНИЗАЦИЯ ВЕТВЯЩИХСЯ ПРОЦЕССОВ.

Студентка гр. 0383	Ханина М.И.
Преподаватель	 Ефремов М.А.

Санкт-Петербург

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Замечания:

- 1) при разработке программы нельзя использовать фрагменты, представленные на ЯВУ, в частности, для ввода-вывода данных. Исходные данные должны вводиться, а результаты контролироваться в режиме отладки;
- 2) при вычислении функций f1 и f2 вместо операции умножения следует использовать арифметический сдвиг и, возможно, сложение;
 - 3) при вычислении функций f1 и f2 нельзя использовать процедуры;
- 4) при разработке программы следует минимизировать длину кода, для чего, если надо, следует преобразовать исходные выражения для вычисления функций.

Вариант 18:

$$/7 - 4*i$$
, при a>b
 $i1 = f3 =$
 $/8 - 6*i$, при a<=b
 $/-(6*i+8)$, при a>b
 $i2 = f8 =$
 $/9 - 3*(i-1)$, при a<=b
 $/ |i1 - i2|$, при k<0
 $res = f6 =$
 $/ max(7, |i2|)$, при k>=0

Выполнение работы.

Числа для работы программы вводятся сразу в asm файл. Для реализации алгоритмов использовались команда сравнения стр и различные условные переходы. Для функций f3 и f8 условия одинаковы, поэтому их вычисление проходит в одном блоке. Сначала командой стр сверяются значения а и b. С помощью команды jle проверяется, что а <= b, и в зависимости от результата программа переходит к блоку, где рассчитываются соответствующие значения f3 и f8. Для операций умножения использовался битовый сдвиг влево(команда shl) и сложение (команда add).

Результаты тестирования представлены в табл. 1.

Тексты исходных файлов программ см. в приложении А.

Тексты файлов диагностических сообщений см. в приложении Б.

Таблица 1. Проверка работы программы.

№	Входные данные	Значение і1	Значение і2	Значение	Комментарий
				res	
1	a=2,	2	9	9	Программа
	b=3,				работает
	i=1,				корректно
	k = 4				
2	a=1,	-4	6	7	Программа
	b=4,				работает
	i=2,				корректно
	k = 0				
3	a=6,	-5	-26	21	Программа
	b=4,				работает
	i=3,				корректно
	k = -2				
4	a = 10,	3	-8	11	Программа
	b = -3,				работает
	i=0,				корректно
	k = -10				

Выводы.

В ходе выполнения данной лабораторной работы была изучена работа с целыми числами и условными переходами на языке Ассемблер.

ПРИЛОЖЕНИЕ А ТЕКСТЫ ИСХОДНЫХ ФАЙЛОВ ПРОГРАММ

Название файла: lr3.asm

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

;Данные программы

DATA SEGMENT

;Директивы описания данных

- a DW 6
- b DW 4
- i DW 3
- k DW -2
- il DW 0
- i2 DW 0

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

push AX

```
mov AX,DATA
 mov DS,AX
mov CX, 0
;вычисление f3
mov cx, i
mov ax, cx
shl cx, 1
shl cx, 1; 4i
cmp a, bx
jle f3second
 mov ax, cx
  mov cx, 7
  sub cx, ax
  jmp f3final
f3second:
 add cx, ax
  add cx, ax
  mov ax, cx
  mov cx, 8
  sub cx, ax
f3final:
mov i1, cx
;вычисление f8
mov cx, i
mov ax, cx
mov bx, b
cmp a, bx
```

```
jle f8second
  shl cx, 1
  shl cx, 1; 4i
  add cx, ax
  add cx, ax
  add cx, 8
  neg cx
  jmp f8final
f8second:
  add cx, -1
  mov ax, cx
  shl cx, 1
  shl cx, 1
  sub cx, ax
  neg cx
  add cx, 9
f8final:
mov i1, cx
mov cx, i2
cmp cx, 0
jge skip2
 neg cx
  mov ax, cx
skip2:
;рассчет f6
mov bx, k
cmp bx, 0
```

```
jl f6Second
    mov bx, ax
     cmp bx, 7
     jl max1
      mov cx, bx
                  ; |i2| >= 7
      jmp MainFinal
     max1:
      mov cx, 7
                     ; |i2| < 7
      jmp MainFinal
     f6Second:
    mov cx, i1
     sub cx, i2
     cmp cx, 0
     jge MainFinal
           neg cx
           jmp MainFinal
   MainFinal:
    ret
Main
          ENDP
CODE
          ENDS
END Main
```

приложение Б

ТЕКСТЫ ФАЙЛОВ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: **lr3.lst**

Microsoft (R) Macro Assembler Version 5.10

10/24/21 01:46:1

Page 1-1

ASSUME CS:CODE, DS:DATA, SS:AStack

	000 000 000C[????]		_	ограммы GMENT STACK DW 12 DUP(?)
00	018		ASta	ack EN	NDS
			;Дан	ные п	рограммы
00	000		DAT	A	SEGMENT
			;Дир	ректив	ы описания данных
00	000 0006		a	DW	6
00	002 0004		b	DW	4
00	004 0003		i	DW	3
00	006 FFFE		k	DW	-2
00	0000 800		i1	DW	0
00	000 A000		i2	DW	0
00	00C		DAT	TA .	ENDS
			; Ко	д прог	раммы
00	000		COI		SEGMENT

; Головная процедура

	, I onobiian	процедура
0000	Main	PROC FAR
0000 1E	push	DS
0001 2B C0		sub AX,AX
0003 50	push	AX
0004 B8 R	mov	AX,DATA
0007 8E D8		mov DS,AX
0009 B9 0000		mov CX, 0
	;вы	гчисление f3

000C 8B 0E 0004 R	mov cx, i
0010 8B C1	mov ax, cx
0012 D1 E1	shl ex, 1
0014 D1 E1	shl ex, 1; 4i
0016 39 1E 0000 R	cmp a, bx
001A 7E 0A	jle f3second
001C 8B C1	mov ax, cx
001E B9 0007	mov ex, 7
0021 2B C8	sub cx, ax
0023 EB 0C 90	jmp f3final
0026	f3second:
0026 03 C8	add cx, ax
0028 03 C8	add cx, ax
002A 8B C1	mov ax, cx
002C B9 0008	mov cx, 8
002F 2B C8	sub cx, ax
0031	f3final:
0031 89 0E 0008 R	mov i1, cx

;вычисление f8

0005	$\Delta D \Delta D \Delta \Delta \Delta A D$	•
0035	8B 0E 0004 R	mov cx, 1
0055	OD OL OOUT IX	IIIO V CA, I

Microsoft (R) Macro Assembler Version 5.10 10/24/21 01:46:1

Page 1-2

0039 8B C1	mov ax, cx
003B 8B 1E 0002 R	mov bx, b;
003F 39 1E 0000 R	cmp a, bx ; сравнение a и b
0043 7E 10	jle f8second
0045 D1 E1	shl cx, 1
0047 D1 E1	shl cx, 1; 4i
0049 03 C8	add cx, ax
004B 03 C8	add cx, ax
004D 83 C1 08	add cx, 8
0050 F7 D9	neg cx
0052 EB 11 90	jmp f8final
0055	f8second:
0055 83 C1 FF	add cx, -1
0058 8B C1	mov ax, cx
005A D1 E1	shl cx, 1
005C D1 E1	shl cx, 1
005E 2B C8	sub cx, ax
0060 F7 D9	neg cx
0062 83 C1 09	add cx, 9
0065	f8final:

mov i1, cx

0065 89 0E 0008 R

0069 8B 0E 000A R	mov cx	x, i2	
006D 83 F9 00	cmp cx	x, 0	
0070 7D 04	jge skij	p2	
0072 F7 D9	ne	g cx	
0074 8B C1	m	ov ax, cx	
0076	skip2:		
	;рассчет f6		
0076 8B 1E 0006 R	mov by	ĸ, k	
007A 83 FB 00	cmp by	α, 0	
007D 7C 12	jl f6Se	cond	
007F 8B D8	me	ov bx, ax	
0081 83 FB 07	CI	np bx, 7	
0084 7C 05	jl	max1	
0086 8B CB	1	nov cx, bx	; i2 >= 7
0088 EB 19 90	j	mp MainFinal	
008B	max1:		
008B B9 0007	1	mov cx, 7	; $ i2 < 7$
008E EB 13 90	j	mp MainFinal	
0091	f6Second	1 :	
0091 8B 0E 0008 R	mo	ov cx, i1	
0095 2B 0E 000A R	sı	ıb ex, i2	
0099 83 F9 00	cr	mp cx, 0	
009C 7D 05	jg	ge MainFinal	
009E F7 D9		neg cx	
00A0 EB 01 90		jmp Mainl	Final
00A3	MainFinal:	; в сх лежи	т зна
чение функции f8			
00A3 CB	ret		

00A4	Main	ENDP
00A4	CODE	ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10

10/24/21 01:46:1

Symbols-1

Segments and Groups:

N a m e	Length	n Align	Combine Class
ASTACK	0018	PARA	STACK
CODE	00A4	PARA	NONE
DATA	000C	PARA	NONE

Symbols:

N a m e	Type Value Attr
A	L WORD 0000 DATA
В	L WORD 0002 DATA
F3FINAL	L NEAR 0031 CODE
F3SECOND	L NEAR 0026 CODE
F6SECOND	L NEAR 0091 CODE
F8FINAL	L NEAR 0065 CODE
F8SECOND	L NEAR 0055 CODE

I L WORD 0004 DATA

I1 L WORD 0008 DATA

I2 L WORD 000A DATA

K L WORD 0006 DATA

MAIN F PROC 0000 CODE Length = 00A4

MAINFINAL L NEAR 00A3 CODE

MAX1..... L NEAR 008B CODE

SKIP2 L NEAR 0076 CODE

@CPU TEXT 0101h

@FILENAME TEXT lr3

@VERSION TEXT 510

104 Source Lines

104 Total Lines

23 Symbols

47990 + 461317 Bytes symbol space free

0 Warning Errors

0 Severe Errors