Essence of the project: Take the initial wave function $\Psi(x,0) = Ax\sin(\pi x/a)$ in the **standard infinite square well**, and study (through plotting) how the **probability density function** varies with time.

Define the **Characteristic angular frequency** (angular frequency for ground state): $\omega = \pi^2 \hbar / 2ma^2$.

Recall that the revival time for any wave function in the square well is given by $T = 2\pi / \omega$.

For your convenience, the normalization constant and the expansion coefficients for the given wave function are presented below:

$$A = \frac{1}{a^{3/2}} \sqrt{\frac{12\pi^2}{2\pi^2 - 3}} \; ;$$

$$c_1 = \frac{1}{2} \sqrt{\frac{6\pi^2}{2\pi^2 - 3}}$$

$$c_n = -\frac{1}{\pi^2} \sqrt{\frac{24\pi^2}{2\pi^2 - 3}} \left[\frac{1}{(n-1)^2} - \frac{1}{(n+1)^2} \right]$$
 for even n ;

 $c_n = 0$ for odd n except n = 1.

Hence, the wave function at a later time t will be given by:

$$\Psi(x,t) = \frac{1}{2} \sqrt{\frac{6\pi^2}{2\pi^2 - 3}} \sqrt{\frac{2}{a}} \sin(\pi x/a) e^{-i\omega t} - \frac{1}{\pi^2} \sqrt{\frac{24\pi^2}{2\pi^2 - 3}} \sqrt{\frac{2}{a}} \sum_{\text{even } n} \left[\frac{1}{(n-1)^2} - \frac{1}{(n+1)^2} \right] \sin(n\pi x/a) e^{-in^2 \omega t}$$

Task

(a) Using the expansion coefficients from $n=1$ up to $n=20$ (instead of worr sum), plot the regenerated initial wave function. Take $\hbar=1; m=1; a=1$.	• •
matches the given initial wave function.	(3 points)
(b) Plot the initial probability density function.	(1 points)
(c) Plot the probability density function at times	
t = T / 8;	
t = T / 4;	
t = 3T / 8;	
t = T/2;	
t = 5T / 8;	
t = 3T / 4;	
t = 7T/8;	
t = T.	
Plot all these on the same graph along with the plot at $t=0$!	(5 points)
Check if indeed the density function at $t=T$ matches the density function a	at $t=0$.
(d) For which value/s of t is the density function an even function about the	e midpoint $(x=a/2)$?
Mathematically explain why!	(3 points)
(e) For which value/s of <i>t</i> is the density function a mirror reflection (about	the line $x=a/2$)
of the initial density function?	
Mathematically explain why!	(3 points)
If you can make an actual movie of the evolution (which I cannot, alas!) we function at, say, 100 equally spaced values of t (instead of the eight plotted t = T , you get 3 extra bonus points!	•