Basic Electrical and electronic Engineering (EEE1001)

NAME: O G Ragavi

REG.NO: 20BCE1988

LAB EX: 2

TITLE: Verification of Kirchhoff's Voltage law

Aim:

To verify Kirchhoff's voltage law by Simulation by using LT spice simulation and by conducting experiment.

Theory:

Kirchhoff's voltage law states that the algebraic sum of all the potential differences around a closed network must be equal to zero.

Formula:

$$v_1 + v_2 + v_3 - v_4 = 0$$
, or $v_1 + v_2 + v_3 = v_4$.

I. Simulation verification

Circuit Diagram:

Theoretical calculation:

Theoretical calculation:

Resistance:

$$\Rightarrow 15 \times 10 = 150 = 60$$
 $15 + 10$
 25

$$\Rightarrow \frac{6 \times 10}{6 + 10} = \frac{60}{16} - 2.52$$

Current:

$$I_1 = V = 10 = 0.8A$$
 $Req = 12.5$
 $I_2 = 0.8 \times 6 = 0.3A$
 $I_3 = 0.8 \times 10 = 0.5A$
 $I_4 = 0.5 \times 15 = 0.3A$
 $I_5 = 0.5 \times 10 = 0.2A$
 $I_7 = 0.5 \times 10 = 0.2A$
 $I_7 = 0.5 \times 10 = 0.2A$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3 \times 10$
 $I_7 = 0.5 \times 10 = 0.3$

Simulation diagram:

Simulation Result:

2.Experiment

Circuit Diagram:

Theoretical calculation:

Experiment Result:

The voltages calculated manually in the experiment matched the voltages observed.

Result:					
The Kirchh	off's voltage la	aw is verifie	d using LTS	Spice.	