

Week 2 - Limits

Secant

$$m_{sec} = rac{f(x) - f(a)}{x - a}$$

Average Velocity

$$v_{average} = rac{s(t_1) - s(t_2)}{t_1 - t_2}$$

- The instantaneous velocity is the average velocity when t_1 approaches t_2

One-Sided Limits

If limits from left ≠ limits from right, there is no limit (DNE)

Theorem 2.3 Infinite Limits from Positive Integers

$$f(x)=rac{1}{(x-a)^n}$$
 has infinite limits at a

Figure 2.20 The function $f(x) = 1/(x - a)^n$ has infinite limits at a.

The one-sided limit values depends on whether n is odd or even

Theorem 2.4 Basic Limit Results

 $\lim_{x o a}x=a$

 $\lim_{x o a}c=c$

Theorem 2.6

$$\lim_{x o a}p(x)=p(a)$$

$$\lim_{x o a}rac{p(x)}{q(x)}=rac{p(a)}{q(a)}$$
 when $q(a)
eq 0$

Theorem 2.7 - Squeeze

If
$$f(x) \leq g(x) \leq h(x)$$

and
$$\lim_{x o a}f(x)=L=\lim_{x o a}h(x)$$

then
$$\lim_{x o a} g(x) = L$$

Requirements for Continuity

1. f(a) is defined

2

- 2. $\lim_{x \to a} f(x)$ exists
- 3. $\lim_{x \to a} f(x) = f(a)$

Types of Discontinuities

Removable Discontinuity	If $\lim_{x o a} f(x)$ exists
Jump Discontinuity	The left limit and right limit exist, but are not equivalent
Infinite Discontinuity	If either the left or right limit go to $\pm\infty$

- A function is continuous from the right if $\lim_{x o a^+}=f(a)$
- ullet Continuous from the left if $\lim_{x o a^-}=f(a)$

Theorem 2.9 Composite Function

If
$$\lim_{x o a}g(x)=L$$
 then $\lim_{x o a}f(g(x))=f(\lim_{x o a}g(x))=f(L)$

Theorem 2.10 Continuity of Trigonometric Functions

Prove that $\lim_{x o a}\cos(x)=\cos(a)$

$$\lim_{x o a}\cos(x)$$

$$=\lim_{x o a}\cos((x-a)+a)$$

$$=\lim_{x o a}(\cos(x-a)\cos(a)-\sin(x-a)\sin(a))$$

$$=\cos(\lim_{x o a}(x-a))\cos(a)-sin(\lim_{x o a}(x-a))\sin(a)$$

$$=\cos(0)\cos(a)-\sin(a)\sin(a)$$

$$= 1\cos(a) - 0\sin(a) = \cos(a)$$

Therefore trigonometric functions are always continuous

Intermediate Value Theorem

IF f(x) IS CONTINUOUS

If there exists some z such that $f(a) \leq z \leq f(b)$

Then there is some c such that f(c)=z and $a\leq c\leq b$

Week 2 - Limits 4