Представлюсь

Ефим Алексеевич Кубышкин

- Сейчас студент магистратуры
- Заканчивал ТехПрог
- tg: @EfKub (если очень нужен)
- email: st098235@student.spbu.ru (если не срочно, но формально)

Зачем и что мы делаем

Зачем и что мы делаем

- Дать минимальную математическую культуру
 - Математика сложная, а мы не математики ⇒ надо прощупать на простом
 - Программистская интуиция, чтобы упростить понимание. Но с соблюдением формальностей

Зачем и что мы делаем

- Дать минимальную математическую культуру
 - lacktriangle Математика сложная, а мы не математики \Rightarrow надо прощупать на <mark>простом</mark>
 - Программистская интуиция, чтобы упростить понимание. Но с соблюдением формальностей
- Познакомить с базой
 - Дальше будут предполагать (преподаватели, работодатели), что вы знаете некоторые алгоритмы
 и определения
 - Кирпичики, из которых строится нечто большее, не освоите это дальше будет беда

Зачем и что мы делаем

- Дать минимальную математическую культуру
 - Математика сложная, а мы не математики \Rightarrow надо прощупать на простом
 - Программистская интуиция, чтобы упростить понимание. Но с соблюдением формальностей
- Познакомить с базой
 - Дальше будут предполагать (преподаватели, работодатели), что вы знаете некоторые алгоритмы
 и определения
 - Кирпичики, из которых строится нечто большее, не освоите это дальше будет беда

Дискретная математика – самая применимая математика для программиста, Вам придётся её знать, если хотите расти как специалист

- 1. Объединение (union) $A \cup B$
- 2. Пересечение (intersection) $A\cap B$
- 3. Разность (difference, subtraction) $A \setminus B$
- 4. Симметрическая разность (symmetric difference) $A\Delta B$
- 5. Декартово произведение (cartesian product) A imes B
- 6. Дополнение до универсума (complement) A^c или \overline{A}
- 7. Булеан, множество подмножеств (powerset) 2^A или P(A)

- 1. Объединение (union) $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение (intersection) $A\cap B$
- 3. Разность (difference, subtraction) $A \setminus B$
- 4. Симметрическая разность (symmetric difference) $A\Delta B$
- 5. Декартово произведение (cartesian product) A imes B
- 6. Дополнение до универсума (complement) A^c или \overline{A}
- 7. Булеан, множество подмножеств (powerset) 2^A или P(A)

- 1. Объединение (union) $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение (intersection) $A\cap B=\{x\mid x\in A \land x\in B\}$
- 3. Разность (difference, subtraction) $A \setminus B$
- 4. Симметрическая разность (symmetric difference) $A\Delta B$
- 5. Декартово произведение (cartesian product) A imes B
- 6. Дополнение до универсума (complement) A^c или \overline{A}
- 7. Булеан, множество подмножеств (powerset) 2^A или P(A)

- 1. Объединение (union) $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение (intersection) $A\cap B=\{x\mid x\in A \land x\in B\}$
- 3. Разность (difference, subtraction) $A \setminus B = \{x \mid x \in A \land x
 otin B\}$
- 4. Симметрическая разность (symmetric difference) $A\Delta B$
- 5. Декартово произведение (cartesian product) A imes B
- 6. Дополнение до универсума (complement) A^c или \overline{A}
- 7. Булеан, множество подмножеств (powerset) 2^A или P(A)

- 1. Объединение (union) $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение (intersection) $A\cap B=\{x\mid x\in A \land x\in B\}$
- 3. Разность (difference, subtraction) $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- 4. Симметрическая разность (symmetric difference) $A\Delta B=\{x\mid (x\in A\cup B)\land (x\notin A\cap B)\}$
- 5. Декартово произведение (cartesian product) A imes B
- 6. Дополнение до универсума (complement) A^c или \overline{A}
- 7. Булеан, множество подмножеств (powerset) 2^A или P(A)

- 1. Объединение (union) $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение (intersection) $A \cap B = \{x \mid x \in A \land x \in B\}$
- 3. Разность (difference, subtraction) $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- 4. Симметрическая разность (symmetric difference) $A\Delta B=\{x\mid (x\in A\cup B)\land (x\notin A\cap B)\}$
- 5. Декартово произведение (cartesian product) $A imes B = \{(x,y) \mid x \in A, \ y \in B\}$
- 6. Дополнение до универсума (complement) A^c или \overline{A}
- 7. Булеан, множество подмножеств (powerset) 2^A или P(A)

- 1. Объединение (union) $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение (intersection) $A \cap B = \{x \mid x \in A \land x \in B\}$
- 3. Разность (difference, subtraction) $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- 4. Симметрическая разность (symmetric difference) $A\Delta B=\{x\mid (x\in A\cup B)\wedge (x
 otin A\cap B)\}$
- 5. Декартово произведение (cartesian product) $A imes B = \{(x,y) \mid x \in A, \ y \in B\}$
- 6. Дополнение до универсума (complement) A^c или $\overline{A} = \{x \mid x
 otin A \wedge x \in \mathbb{U}\}$
- 7. Булеан, множество подмножеств (powerset) 2^A или P(A)

- 1. Объединение (union) $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение (intersection) $A \cap B = \{x \mid x \in A \land x \in B\}$
- 3. Разность (difference, subtraction) $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- 4. Симметрическая разность (symmetric difference) $A\Delta B=\{x\mid (x\in A\cup B)\wedge (x
 otin A\cap B)\}$
- 5. Декартово произведение (cartesian product) $A imes B = \{(x,y) \mid x \in A, \ y \in B\}$
- 6. Дополнение до универсума (complement) A^c или $\overline{A} = \{x \mid x
 otin A \wedge x \in \mathbb{U}\}$
- 7. Булеан, множество подмножеств (powerset) 2^A или $P(A) = \{X \mid X \subseteq A\}$

И как перестать его бояться

Пустое множество \varnothing – множество без элементов

И как перестать его бояться

Пустое множество \varnothing – множество без элементов

- 2[∅]
- 2^{2∞}
- 2^{2^{2∞}}

И как перестать его бояться

Пустое множество \varnothing – множество без элементов

- $lacksquare 2^arnothing = \{arnothing\}$
- 2^{2∞}
- 2^{2^{2∞}}

И как перестать его бояться

Пустое множество \varnothing – множество без элементов

- $\bullet \quad 2^\varnothing = \{\varnothing\}$
- $lacksquare 2^{2^arnothing}=\{arnothing, \{arnothing\}\}$
- 2^{2^{2∞}}

И как перестать его бояться

Пустое множество \varnothing – множество без элементов

- $\bullet \quad 2^\varnothing = \{\varnothing\}$
- $\bullet \ \ 2^{2^\varnothing}=\{\varnothing,\{\varnothing\}\}$
- $lacksymbol{\bullet} \ \ 2^{2^{2^{arnothingorea}}} = \{arnothing, \{arnothing\}, \{arnothing, \{arnothing\}\}, \{\ \{arnothing\}\}\}$

Отношения

Как выражать интуитивно понятные вещи на теории множеств

Пусть X_1,X_2,\ldots,X_n – непустые множества, тогда **Отношение** – это любое подмножество их декартового произведения $R\subset X_1\times X_2\times\cdots\times X_n$

Отношения

Как выражать интуитивно понятные вещи на теории множеств

Пусть X_1,X_2,\ldots,X_n – непустые множества, тогда **Отношение** – это любое подмножество их декартового произведения $R\subset X_1\times X_2\times\cdots\times X_n$

Примеры

- 1. "Больше или равно" над натуральными числами $a \geq b \Leftrightarrow (a,b) \in \mathbb{N} imes \mathbb{N}$
- 2. . . .

Бинарные отношения

Вечная классика

Бинарное отношение – это отношение на декартовом квадрате $R\subset X imes X$, обычно, если x и y находятся в отношении, то пишут xRy (инфиксная запись)

Бинарные отношения

Вечная классика

Бинарное отношение – это отношение на декартовом квадрате $R\subset X imes X$, обычно, если x и y находятся в отношении, то пишут xRy (инфиксная запись)

Важные типы отношений

- 1. Рефлексивное: $\forall x \,:\, xRx$
- 2. Симметричное: $\forall x,y: xRy \rightarrow yRx$
- 3. Транзитивное: $\forall x,y,z \;:\; xRy \wedge yRz o xRz$
- 4. Асимметричное: $\forall x,y \; : \; xRy
 ightarrow \lnot(yRx)$
- 5. Иррефлексивное: $\forall x : \neg (xRx)$
- 6. Антисимметричное: $\forall x,y \,:\, xRy \wedge yRx o x = y$
- 7. Эквивалентное: рефлексивность + симметричность + транзитивность
- 8. Отношение частичного порядка: рефлексивность + антисимметричность + транзитивность
- 9. Линейно упорядоченное множество: частично упорядоченное множество + $\forall x,y \; : \; xRy \lor yRx$

Частично упорядоченные множества

Некоторые примеры

Частично упорядоченные множества

Некоторые примеры

- $\langle \mathbb{N}, \leq \rangle, \langle \mathbb{R}, \leq \rangle$ числа с "обычным" порядком
- $\langle \mathbb{N}, | \rangle, \langle \mathbb{N}, \dot{:} \rangle$ отношение делимости на натуральных числах
- Лексикографический порядок
- Отношение "быть подстрокой"
- lacktriangledown $\langle 2^X, \, \subset
 angle$ булеан любого множества естественно упорядочен отношением включения
- DAG Directed Acyclic Graph направленный ациклический граф. Отношение заведем такое: если
 из одной вершины можно дойти по стрелочкам до другой, то мы будет говорить, что они находятся
 в отношении достижимости

Диаграммы Хассе

Диаграмма Хассе – представление конечного частично упорядоченного множества в виде рисунка его транзитивного сокращения. Проще: элементы множества – узлы, рисуем между ними стрелки только если они находятся в отношении, а лишние стрелки, которые гарантированы рефлексивностью и транзитивностью не рисуем

Диаграммы Хассе

Диаграмма Хассе – представление конечного частично упорядоченного множества в виде рисунка его транзитивного сокращения. Проще: элементы множества – узлы, рисуем между ними стрелки только если они находятся в отношении, а лишние стрелки, которые гарантированы рефлексивностью и транзитивностью не рисуем

Упражнения

- $\bullet \langle P(\{\varnothing,\{\varnothing\}\}),\subset\rangle$
- $\ \ \langle \{1,2,3,4,5,6\}, | \rangle$

Пример для $\langle P(\{x,y,z\}),\subset
angle$

Функции

Да, не просто "соответствие"

Отображение (тоже самое, что и функция) из X в Y (f:X o Y) – это кортеж $\langle X,Y,R
angle$, где

- **■** *X* домен
- Y кодомен
- lacktriangledown R график: отношение на X imes Y, такое что $orall x\in X\;\exists !y\in Y\;:\;xRy$

Функции

Да, не просто "соответствие"

Отображение (тоже самое, что и функция) из X в Y (f:X o Y) – это кортеж $\langle X,Y,R
angle$, где

- **■** *X* домен
- Y кодомен
- lacktriangledown R график: отношение на X imes Y, такое что $orall x\in X\ \exists !y\in Y\ :\ xRy$

Что тогда означает тогда запись f(x)=y ?

Функции

Да, не просто "соответствие"

Отображение (тоже самое, что и функция) из X в Y (f:X o Y) – это кортеж $\langle X,Y,R
angle$, где

- X домен
- Y кодомен
- lacktriangledown R график: отношение на X imes Y, такое что $orall x\in X\ \exists !y\in Y\ :\ xRy$

Что тогда означает тогда запись f(x)=y ?

Каверзные примеры

- lacktriangle Функции $id_1:\mathbb{N} o\mathbb{N}$ и $id_2:\mathbb{N} o\mathbb{R}$, которые работают одинаково $orall x\in\mathbb{N}$ $id_1(x)=id_2(x)=x$
- Если домен или кодомен является пустым множеством

- Инъективное:
- Сюрьективное:
- Биективное: инъективное + сюръективное

- lacktriangle Инъективное: $orall x_1 \in X \ orall x_2 \in X \ : \ f(x_1) = f(x_2) o x_1 = x_2$
- Сюрьективное:
- Биективное: инъективное + сюръективное

- lacktriangle Инъективное: $orall x_1 \in X \ orall x_2 \in X \ : \ f(x_1) = f(x_2) o x_1 = x_2$
- lacktriangle Сюрьективное: $orall y \in Y \ \exists x \in X \ : f(x) = y$
- Биективное: инъективное + сюръективное

- lacktriangle Инъективное: $orall x_1 \in X \ orall x_2 \in X \ : \ f(x_1) = f(x_2) o x_1 = x_2$
- lacktriangle Сюрьективное: $orall y \in Y \ \exists x \in X \ : f(x) = y$
- lacktriangle Биективное: инъективное + сюръективное, или $orall y \in Y \; \exists ! x \in X \; : \; f(x) = y$

Мышцы математики

Как можно доказывать какие-то утверждения?

Мышцы математики

Как можно доказывать какие-то утверждения?

• По определению. "Почему НОД двух разных простых чисел равен 1? По определению!!"

Мышцы математики

Как можно доказывать какие-то утверждения?

- lacktriangle По определению. "Почему НОД двух разных простых чисел равен 1? По определению!!"
- От противного. "Почему нельзя делить на ноль? Ну, давайте попробуем..."

Мышцы математики

Как можно доказывать какие-то утверждения?

- По определению. "Почему НОД двух разных простых чисел равен 1? По определению!!"
- От противного. "Почему нельзя делить на ноль? Ну, давайте попробуем..."
- По индукции (или как очень формально сказать "и так далее"). "Докажите, что сумма первых n чисел равна $\frac{n(n-1)}{2}$. Давайте посмотрим на простые случаи, убедимся, что паттерн сохранятся, и скажем "и так далее"

Мышцы математики

Как можно доказывать какие-то утверждения?

- По определению. "Почему НОД двух разных простых чисел равен 1? По определению!!"
- От противного. "Почему нельзя делить на ноль? Ну, давайте попробуем..."
- По индукции (или как очень формально сказать "и так далее"). "Докажите, что сумма первых n чисел равна $\frac{n(n-1)}{2}$. Давайте посмотрим на простые случаи, убедимся, что паттерн сохранятся, и скажем "и так далее"

Формально, математическая индукция – это аксиома (вообще, схема аксиом), которая формулируется так:

Для всякого свойства P верно

$$(P(0) \wedge (orall n \in \mathbb{N} \ P(n)
ightarrow P(n+1)))
ightarrow orall n \in \mathbb{N} \ P(n)$$