Fast Inference for Spatial Generalized Linear Mixed Models

Based on joint work with Yawen Guan, SAMSI/NC State John Hughes, U Colorado-Denver

Microsoft Seminar, University of Washington, Seattle

May 2018

Murali Haran

Department of Statistics, Penn State University

Murali Haran, Penn State

Talk Summary

- Gaussian and non-Gaussian spatial data are common: disease modeling, ecology, climate science, sociology
- Spatial generalized linear mixed models (SGLMMs)
 - ▶ Popular for lattice or areal data Besag, York, Mollie (1991) \approx 3,000 citations
 - ▶ and continuous-domain data Diggle et al. (1998) \approx 2,000 citations
 - Very widely used in multiple disciplines
- Shortcomings of SGLMMs:
 - Inference presents difficult computational issues, especially with large data sets
 - 2. Regression parameter interpretation is unreliable
- I will describe projection-based methods that simultaneously resolve both these issues

Murali Haran, Penn State

Outline

Latent Gaussian Models for Spatial Data

Challenges

A Solution to the Problem

Generalized Projection-based Approach

Results and Conclusions

US Infant Mortality Data by County

Ratio of deaths to births, each averaged over 2002-2004.

Darker indicates higher rate. n = 3071

Question: which factors impact infant mortality?

Greenland Ice Sheet Thickness

Bamber et al. (2001)

Question: How to interpolate this surface?

How to calibrate (infer parameters for) ice sheet model based on these data?

House Finch Abundances

Pardieck et al. 2015. North American Breeding Bird Survey Dataset 1966 - 2014

Question: Abundance at unsampled locations?

Models for these Data

- Spatial linear mixed models (SLMMs): for Gaussian data
- Spatial generalized linear mixed models (SGLMMs): for non-Gaussian data
- What are these models used for?
 - interpolation (continuous-domain) or smoothing the spatial field (lattice-domain)
 - 2. regression while adjusting for residual spatial dependence

Spatial Linear Mixed Models (SLMMs)

▶ Spatial process at location $\mathbf{s} \in D \subset \mathbb{R}^d$ is

$$Z(\mathbf{s}) = X(\mathbf{s})\beta + W(\mathbf{s})$$

- \blacktriangleright $X(\mathbf{s})$ is covariate at \mathbf{s} , and β is a vector of coefficients
- Model dependence among spatial random variables by imposing it on W(s), the random effects
- Same framework works for both lattice data and continuous-domain data. Model for W(s)
 - Continuous domain: Gaussian process (GP)
 - Lattice data: Gaussian Markov Random field (GMRF)

Gaussian Processes

Infinite dimensional process $\{W(\mathbf{s}) : \mathbf{s} \in D\}$ such that

$$(W(\mathbf{s}_1), \dots W(\mathbf{s}_n))^T \mid \Theta \sim N(\mathbf{0}, \Sigma(\Theta)),$$

for $s_i \in D$, i = 1, ..., n.

- ► Covariance often specified via a positive definite covariance function with parameters Θ
- E.g. (stationary) exponential covariance function
- $ightharpoonup \Theta = (\sigma^2, \phi)$

$$\Sigma_{ij}(\Theta) = \text{Cov}(W(\mathbf{s}_i), W(\mathbf{s}_i)) = \sigma^2 \exp(-|\mathbf{s}_i - \mathbf{s}_i|/\phi)$$

Gaussian Markov Random Fields

$$(W(\mathbf{s}_1), \dots W(\mathbf{s}_n))^T \mid \Theta \sim N(\mathbf{0}, Q(\Theta)^{-1})$$

 $Q(\Theta)$ is a precision matrix based on a graph that describes a neighborhood structure: adjacencies specify dependence (skip details....)

Outline

Latent Gaussian Models for Spatial Data

Challenges

A Solution to the Problem

Generalized Projection-based Approach

Results and Conclusions

Inference for Spatial Linear Mixed Models

MLE involves low-dimensional optimization

$$\underset{\Theta,\beta}{\operatorname{arg\,max}} \ \mathcal{L}(\Theta,\boldsymbol{\beta};\mathbf{Z})$$

- Bayesian inference:
 - ▶ Priors for Θ , β
 - ▶ Inference based on $\pi(\Theta, \beta \mid \mathbf{Z}) \propto \mathcal{L}(\Theta, \beta; \mathbf{Z}) p(\Theta) p(\beta)$
- Markov chain Monte Carlo with low-dimensional posterior

Literature on Computing for Spatial Linear Models

- ▶ Likelihood: high-dimensional matrices, $\mathcal{O}(n^3)$ operations
- ► Lots of excellent approaches that scale very well
 - Multiresolution methods, with parallelizations (Katzfuss, 2017; Katzfuss and Hammerling, 2014)
 - Nearest neighbor process (Datta et al., 2016)
 - Random projections (Banerjee, A., Tokdar, Dunson, 2013)
 - Stochastic PDEs (Lindgren et al., 2011)
 - Lattice kriging (Nychka et al., 2010)
 - Predictive process (Banerjee, Gelfand, Finley, Sang 2008)

Largely a "solved" problem

Spatial Generalized Linear Mixed Models (SGLMMs)

Model for Z at location \mathbf{s}_i

- 1. $Z(\mathbf{s}_i)|\beta, \Theta, W(\mathbf{s}_i), i = 1, ..., n$, conditionally independent E.g. $Z(\mathbf{s}_i) \mid \beta, W(\mathbf{s}_i) \sim \text{Poisson}(\mu(\mathbf{s}_i))$
- 2. Link function $g(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$ E.g. $\log(\mu_i) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$
- 3. $\mathbf{W} = (W(\mathbf{s}_1), \dots, W(\mathbf{s}_n))^T$ modeled as
 - Gaussian Markov random field model (Besag et al., 1991)
 - Gaussian processes (Diggle et al., 1998)
- **4**. Priors for Θ, β

Commonly embedded within hierarchical models (cf. Banerjee, Carlin, Gelfand, 2014), say $\mathbf{Y}|\mathbf{X},\ \mathbf{X}|\mathbf{W},\ \mathbf{W}|\mathbf{U},\dots$

Challenges

Challenges posed by spatial generalized linear mixed models (SGLMMs):

- Computational challenges
 Rue and Held (2002, 2005), Haran (2011)
- (2) Confounding between spatial random effects and fixed effects (covariates) Reich, Hodges, Zadnik (2006), Paciorek (2010)

Problem 1. Computational Challenge

MLE: low-dimensional optimization of integrated likelihood

$$\operatorname*{arg\,max}_{\Theta,\beta}\int\mathcal{L}(\Theta,\boldsymbol{\beta},\mathbf{W};\mathbf{Z})d\mathbf{W}$$

High-dimensional integration (**W** is high-dimensional) MCMC-EM or MCMC-MLE: slow, challenging to implement (Zhang, 2002, 2003; Christensen, 2004)

Bayesian inference based on

$$\pi(\Theta, \boldsymbol{\beta}, \mathbf{W} \mid \mathbf{Z})$$

Computing for SGLMMs

Bayes approach:

- Handle missing data easily
- Combine multiple data sets in a hierarchy
- An MCMC algorithm is easy to construct

Computing for SGLMMs

Bayes approach:

- Handle missing data easily
- Combine multiple data sets in a hierarchy
- An MCMC algorithm is easy to construct
- But... MCMC algorithms do not scale well
 - MCMC is slow per iteration due to high-dimensional

$$\pi(\Theta, \boldsymbol{\beta}, \mathbf{W} \mid \mathbf{Z})$$

- Markov chain is slow mixing (need longer chain) due to strong cross-correlations among W
- Can become impractical for large N

MCMC for SGLMMs

- Markov chain is slow mixing (need longer Markov chain) due to strong cross-correlations among W
- Block updating schemes may help. E.g. blocks:

$$\left[\pi(\mathbf{W}\mid\Theta,\beta,\mathbf{Z})\right]\left[\pi(\Theta\mid\beta,\mathbf{W},\mathbf{Z})\right]\left[\pi(\beta\mid\Theta,\mathbf{W},\mathbf{Z})\right]$$

- Challenging to obtain good proposals for W, especially for high-dimensions
- Computationally expensive per update

Attempts to address these issues: Rue and Held (2005), Christensen et al. (2006), Haran and Tierney (2012) They do not scale well (problem when N > 1000)

Problem 2. Spatial Confounding

▶ Let
$$P = X(X^TX)^{-1}X^T$$
, and $P^{\perp} = I - P$

$$g\{E(\mathbf{Z} \mid \beta, \mathbf{W}, \Theta) = X\beta + \mathbf{W} = X\beta + P\mathbf{W} + P^{\perp}\mathbf{W}$$

- PW is in span of X
- Basic regression issue: multicollinearity

Leads to variance inflation, unstable estimates of β (Hodges and Reich 2010; Paciorek, 2010) Hints of the symptom, without diagnosis, by others (e.g. Diggle, 1994)

Outline

Latent Gaussian Models for Spatial Data

Challenges

A Solution to the Problem

Generalized Projection-based Approach

Results and Conclusions

Sketch of Our Solution

- Culprit: W (latent variable vector) is cause of confounding as well as computational challenges
- ▶ W: just a device to induce dependence
- ldea: project **W** to δ such that
 - Preserve spatial dependence implied by original W
 - δ is low-dimensional
 - lacktriangle is less dependent (less "cross-correlated")
 - Project orthogonal to space spanned by X
- Applies to both Gaussian process and GMRF models
 - GMRF models: projection based on Moran operator which uses neighborhood structure (Hughes and Haran, 2013)
 - GPs and GMRFs: general approach using eigendecomposition (Guan and Haran, 2018)

Sparse Reparameterization for GMRFs

- ▶ Regular Gaussian Markov random field ⇒undesirable, unintended dependence structure (cf. Wall, 2004)
- Reparameterization (Hughes and Haran, 2013)
 - Deletes non-meaningful spatial dependence (weak or negative): "data-based" approach to reduce dimensions
 - Faster inference and a better model
- Regression coefficients are easier to interpret
- Automated MCMC is computationally efficient, allowing for routine analysis of large data sets
- Approach takes advantage of the underlying graph

What should we do in continuous-domain settings (in the absence of a graph)?

Murali Haran, Penn State 22

Outline

Latent Gaussian Models for Spatial Data

Challenges

A Solution to the Problem

Generalized Projection-based Approach

Results and Conclusions

SGLMMs with Latent Gaussian Processes

Recall: example model for count data $Z(\mathbf{s}), s \in \mathcal{D} \subset \mathbb{R}^d$.

1. Data model:

$$Z(\mathbf{s}_i) \mid eta, W(\mathbf{s}_i) \stackrel{Indep.}{\sim} \mathsf{Poisson}(\mu(\mathbf{s}_i)), i = 1, \dots, n$$

$$\log (\mu(\mathbf{s}_i)) = X(\mathbf{s}_i) \beta + W(\mathbf{s}_i),$$

2. Process model: impose dependence via Gaussian process

$$\mathbf{W} \mid \sigma^2, \phi \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \Sigma_{\phi}\right)$$

3. Priors for β , σ^2 , ϕ

MCMC Inference based on posterior, $\pi(\beta, \sigma^2, \phi, \mathbf{W} \mid \mathbf{Z})$

Posterior Distribution

$$\pi(\beta, \sigma^2, \phi, \mathbf{W} \mid \mathbf{Z}) \propto \prod_{i}^{n} f(Z(\mathbf{s}_i) \mid \beta, W(\mathbf{s}_i)) |\sigma^2 \Sigma_{\phi}|^{-\frac{1}{2}} \exp\left(-\frac{\mathbf{W}' \Sigma_{\phi}^{-1} \mathbf{W}}{2\sigma^2}\right) p(\beta, \sigma^2, \phi),$$

where the covariance matrix is specified by the covariance function, for example the i, jth element

$$\Sigma_{ij} = \exp(-|\mathbf{s}_i - \mathbf{s}_j|/\phi)$$

for an exponential covariance function.

Outline of Projection-based Approach

- 1. Fast approximation to the principal components of Σ_{ϕ}
 - ▶ Approximate first m eigenvectors $U = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ and eigenvalues $D_m = \text{diag}(\lambda_1, \dots, \lambda_m)$
- 2. Replace n-dimensional W with $UD_m^{1/2}\delta$
 - $\pmb{\delta}$: lower dimensional and pprox independent

faster and better mixing MCMC algorithm

- 3. Project $UD_m^{1/2}\delta$ to $C^{\perp}(X)$ Makes random effects orthogonal to fixed effects handles confounding issues
- 4. Fit the reduced model under Bayesian framework

Step 1: Eigendecomposition

For speed we use a fast approximate eigendecomposition

Left: deterministic approximation Center: **random approximation** Right: exact eigendecomposition

 Random projections used in Banerjee, Tokdar, Dunson (2013); also Sarlos (2006), Halko et al. (2009)

Murali Haran, Penn State

Step 2: Reducing Dimensions via Projection

- Approximates the leading m eigencomponents of the covariance matrix Σ_{ϕ}
- ► Replace W with $UD_m^{1/2}\delta$

Step 3: Projection to Handle Confounding

- ▶ Let $P = X(X^TX)^{-1}X^T$, and $P^{\perp} = I P$
- ► Recall: PW is in span of X, causes confounding
- ► Solution: Remove it (cf. Reich et al., 2006; Hughes and Haran, 2013)

$$g\{E(\mathbf{Z} \mid \beta, \mathbf{W}, \sigma^2, \phi)\} = X\beta + \mathbf{W} = X\beta + P\mathbf{W} + P^{\perp}\mathbf{W}$$

- High-dimensional P[⊥]W ~ N(0, P[⊥]ΣP[⊥])
 If X is nxp input matrix, then P[⊥]ΣP[⊥] has rank n-p
- ▶ Only reduces dimensions from n to n − p
- ▶ Instead: Reduce dimension **and** confounding by $P^{\perp}UD_m^{1/2}\delta$

Step 4: Inference Based on Reparameterizaion

- Spatial generalized linear mixed models
 Usual: inference based on π(β, σ², φ, W | Z)
- ▶ Obtain U, D_m of Σ_{ϕ}
- ▶ D_m is m-dim diagonal matrix with $D_{ii} = i^{th}$ eigenvalue
- ► FRP: replace **W** with $UD_m^{1/2}\delta$ to approximate SGLMM or RRP: replace **W** with $P^{\perp}UD_m^{1/2}\delta$ to approximate restricted spatial model
- Reduced Model:

$$g\{E(Z_i \mid \beta, U, D_m, \delta)\} = X_i\beta + (P^{\perp}UD_m^{1/2})_i\delta$$
$$\delta \mid \dots \stackrel{approx}{\sim} N_m(\mathbf{0}, \sigma^2 I)$$

Now: inference based on $\pi(\beta, \sigma^2, \phi, \delta \mid \mathbf{Z})$

Computational Advantages: Improved MCMC Mixing

- Alleviate confounding between fixed and random effects
- ightharpoonup Reparameterized δ are approximately independent
- De-correlating random effects: better MCMC mixing

Plots of sample cross-correlations

Outline

Latent Gaussian Models for Spatial Data

Challenges

A Solution to the Problem

Generalized Projection-based Approach

Results and Conclusions

Computational Advantages: Reduced Random Effects

- ► Can reduce dimension of random effects, δ to m << n e.g. m = 50, n = 1000.
- ► Computational complexity: O(n²m) versus O(n³) + mixing improvement (harder to quantify)

Poisson Model Simulation Study: Point Estimation

► Simulate: $\beta = (1,1)^T$, and Matérn $(\nu, \phi, \sigma^2) = (2.5, 0.2, 1)$

FRP: full model

RRP: restricted model (orthogonalized random effects)

A-RRP: adjusted inference

Poisson Model Prediction Performance

- ► Simulate n = 1000 spatial count data
- Prediction on 20 x 20 grid using rank = 50

FRP: full model

RRP: restricted model (orthogonalized random effects)

Murali Haran, Penn State 35

Summary

Projection-based approach

- reduces dimensions + better MCMC mixing
- 2. adjusts for spatial confounding
- 3. simple to implement, mostly "automated"
- 4. good inference and prediction performance
- other approaches (nn-GP, random-proj, Multi-Re) are better than ours for basic linear model; we are better for SGLMMs
- extends easily to more complex hierarchical settings (not true for multiresolution-type methods even in the spatial linear model case)

Caveats and Follow-up

- ▶ Have not studied method carefully for n > 10,000
 - ► For fixed *m*, computational cost grows with *n* (mostly) due to eigendecomposition. Address via (i) discretization of space/pre-computing and (ii) other eigendecompositions
- No obvious way to adapt existing theory (e.g. pseudo-marginal MCMC) to our MCMC algorithm
- MLE: MCMC-EM algorithm with projection of latent variables at each iteration (Guan and Haran, 2018):
 - Surrogate function involves lower-dimensional integration
 - Faster than MCMC for Bayes, but trickier to construct
 - Algorithm has "probabalistic" ascent property
 - Not as easily adaptable to complicated hierarchical models

Murali Haran, Penn State 37

Acknowledgments

- Yawen Guan, SAMSI/NC State
- John Hughes, U of Colorado-Denver
- Discussions with
 - ▶ Bo Li (Purdue U.)
 - Doug Nychka (NCAR)
 - Dorit Hammerling (NCAR)
- Support from NSF-CDSE/DMS-1418090

Key References

- Guan and Haran (2018), A Computationally Efficient
 Projection-Based Approach for Spatial Generalized Linear
 Mixed Models, arxiv.org
- Hughes and Haran (2013), Dimension reduction and alleviation... Journal of the Royal Statistical Society (B)
- Banerjee A, Tokdar, S., Dunson, D. (2013) Efficient
 Gaussian process regression for large datasets, *Biometrika*
- Reich et al. (2006), Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models Biometrics
- Haran (2011) Gaussian random field models for spatial data, Handbook of MCMC

Frequently Asked Questions (FAQs)

- Q. Why not use nearest neighbor Gaussian processes? (Datta et al., 2016)
 - Works well for spatial linear mixed models
 - Effective way to reduce matrix calculations via composite likelihood. But does not reduce number of random effects
- Q. How does your approach compare to the Gaussian predictive process (Banerjee et al., 2008)?
 - Applicable to SGLMMs, involves dimension-reduction
 - Choice of knots can be non-trivial. Our low-dimensional representation is also "optimal"
 - Does not address spatial confounding
 - In simulated examples, we do better with prediction
 - ► They provide a process, we do not. But our predictions appear to be as good/better in practice

FAQs

- ▶ Q. Is this necessary when we have the Integrated Nested Laplace Approximation (INLA) (Rue et al., 2008)?
 - ▶ INLA is very fast
 - Hard to handle complications: (i) additional hierarchy, (ii) complicated mean structure (e.g. physical model)
 - Approximation error is fixed and hard to assess
- Q. General relationship to fixed rank approaches?
 - If we fixed covariance parameters, this is a fixed rank approach with fixed eigenvectors/eigenfunctions as basis
 - Eliminating small scale variations can impact SLMMs (Stein, 2014), but less impact in SGLMMs