

Fig. 1

Fig. 3

Fis. 5

Demand on spotting of color

- Low diffusion rate of the large chromphors
- Rapidly evaporating solvent
- Absorbent paper

Demand on spotting of monomers for the combinatorial synthesis

- High diffusion rate of small monomers
- Very slowly evaporating solvent

Fig. 7

600 dpi = 600 dots per inch 600 dpi = ca 1 dot all 40μm 1.200 dpi = ca 1 dot all 20μm 2.400 dpi = ca 1 dot all 10μm 4.800 dpi = ca 1 dot all 5μm

Dots per DinA4 Page:

600 dpi = ca 5.000 x 7.500 = ca 30 millions dots 1.200 dpi = ca 10.000 x 15.000 = ca 125 millions dots 2.400 dpi = ca 20.000 x 30.000 = ca 500 millions dots 4.800 dpi = ca 40.000 x 60.000 = ca 2 milliards dots

10/20

Fig. 11

 $50~\mu \mathrm{m}$

 $20^1 = 20$ different amino acids

 $20^2 = 400$ different dipeptides

 $20^3 = 8.000$ different tripeptides

 $20^4 = 160.000$ different tetrapephides

 $20^5 = 3.2$ millions different pentapeptides

206 = 64 millions different hexapeptides

 $20^7 = 1.280$ millions different heptapeptides

13/20

complete tripeptide library: = 203 = 8.000 different peptide

NH2 X X X X X X X X X X X COOH Complete tetrapeptide library! = 204 = 160.000 different peptide

X X X X X X X X COOH

Complete pentapeptide library:
= 205 = 3/2 millions different peptide

complete hexapeptide library: =206 = 64 millions different peptide

N= Set amino acid position X= Mixture of 20 different amino acid

14/20

Fes. 16

Fis. 18

15/20

Fg. 17

16/20

Frs. 13

syntheticed peptides Asp Asp Tyr ~ 6 Asp ~ ✓ Glu 2 Lys ~ 7 Glu~3 $Asp \sim P$ Thr 4 Asp — 9 Thr~5 Asp~10 Asp Asp Lys Lys

anti-FLAG antibody anti-Aktin antibody anti-FLAG antibody anti-Aktin antibody

anti-FLAG antibody anti-Aktin antibody anti-FLAG antibody anti-Aktin antibody

Fig. 20

Fg. 24

