Optimization in Machine Learning

Mathematical Concepts

Taylor Approximation

Learning goals

- Taylor's theorem (univariate)
- Taylor series (univariate)
- Taylor's theorem (multivariate)
- Taylor series (multivariate)

TAYLOR APPROXIMATIONS: OVERVIEW

- To optimize (find minima and maxima) it can be extremely helpful to approximate nonlinear functions locally
- We can use Taylor polynomials to approximate functions and
- Taylor's theorem provides us with the tools to estimate the error of this approximation

 helpful for analyzing optimization algorithms
- Some functions can locally or even globally equal their Taylor series, i.e. the limit of Taylor polynomials

TAYLOR APPROXIMATIONS: MOTIVATION

- Since the geometry of linear and quadratic functions is very well understood we will often want to use those for approximations
- ullet For example, for a function $f:\mathcal{S}\subseteq\mathbb{R}^d o\mathbb{R}$

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x}) \mathbf{h} + o(\mathbf{h})$$

 You might also often see an approximation via the gradient and Hessian of a function:

$$f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x}) \mathbf{h} + \frac{1}{2} \mathbf{h}^{\top} \nabla_{\mathbf{x}}^{2} f(\mathbf{x}) \mathbf{h}$$

• In fact, $f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x}) \mathbf{h}$ and $f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x}) \mathbf{h} + \frac{1}{2} \mathbf{h}^{\top} \nabla_{\mathbf{x}}^{2} f(\mathbf{x}) \mathbf{h}$ are, respectively, the first and second **Taylor polynomial of** f **at** \mathbf{x} , evaluated at $\mathbf{x} + \mathbf{h}$

TAYLOR POLYNOMIALS

- Idea: Find a polynomial that locally behaves like a function f at point a, i.e. matches f's value (f), slope (f'), curvature (f''), etc.
- ⇔ Find polynomial so that

$$f(x) \approx T_k(x, \boldsymbol{a})$$
 for all x near \boldsymbol{a}

where k denotes the highest order of derivative of f used in T_k

• Wording: We "expand f (via Taylor) around a"

Definition of Taylor polynomial (univariate): Let $I \subseteq \mathbb{R}$ be an open interval and $f \in \mathcal{C}^k(I, \mathbb{R})$. For each $a, x \in I$, the kth order Taylor polynomial for f at a is defined as

$$T_k(x,a) := \sum_{j=0}^k \frac{f^{(j)}(a)}{j!} (x-a)^j$$

MULTIVARIATE TAYLOR POLYNOMIALS

For the multivariate version, we need a concise way to express derivatives and powers involving several variables

- A multi-index is a vector $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{N}^d$.
- Its **order** is the sum of its components: $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_d$.
- Partial derivative is written as $D^{\alpha}f = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\cdots\partial x_d^{\alpha_d}}$
- Factorials generalize componentwise: $\alpha! = \alpha_1! \alpha_2! \cdots \alpha_d!$.
- ullet For \mathbf{x} , $\mathbf{a} \in \mathbb{R}^d$: $(\mathbf{x} \mathbf{a})^{\alpha} = (x_1 a_1)^{\alpha_1} \cdots (x_d a_d)^{\alpha_d}$.

Definition of Taylor polynomial (multivariate): Let I be an open subset of \mathbb{R}^n and $f \in \mathcal{C}^k(I,\mathbb{R})$. For each $\boldsymbol{a}, \mathbf{x} \in I$, the kth order Taylor polynomial for f at \boldsymbol{a} is defined as

$$T_k(\mathbf{x}, \mathbf{a}) := \sum_{|\boldsymbol{\alpha}| \leq k} \frac{D^{\boldsymbol{\alpha}} f(\mathbf{a})}{\boldsymbol{\alpha}!} (\mathbf{x} - \mathbf{a})^{\boldsymbol{\alpha}}$$

MULTIVARIATE TAYLOR POLYNOMIAL IDENTITIES

For $f \in C^k(I, \mathbb{R})$ as before, we will often use the following identities:

$$\bullet \ T_1(\mathbf{x}, \mathbf{a}) = f(\mathbf{a}) + \nabla f(\mathbf{a})(\mathbf{x} - \mathbf{a})$$

$$\bullet T_2(\mathbf{x}, \mathbf{a}) = f(\mathbf{a}) + \nabla f(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \frac{1}{2}(\mathbf{x} - \mathbf{a})^T H(\mathbf{a})(\mathbf{x} - \mathbf{a})$$

(Which squares with the notation of the motivation slide by setting $\mathbf{a} = \mathbf{x}$ and $\mathbf{x} = \mathbf{x} + \mathbf{h}$)

α_{1}	α_2	$ \alpha $	$D^{\alpha}f$	$\alpha!$	$(\mathbf{x}-\mathbf{a})^{lpha}$	_
0	0	0	f	1	1	- - and, therefore
1	0	1	$\partial f/\partial x_1$	1	$x_1 - a_1$	and, increiore
0	1	1	$\partial f/\partial x_2$	1	$x_2 - a_2$	-

$$T_{1}(\mathbf{x}, \mathbf{a}) = \frac{f(\mathbf{a})}{1} \cdot 1 + \frac{\partial f(\mathbf{a})}{\partial x_{1}} (x_{1} - a_{1}) + \frac{\partial f(\mathbf{a})}{\partial x_{2}} (x_{2} - a_{2})$$

$$= f(\mathbf{a}) + \left(\frac{\frac{\partial f(\mathbf{a})}{\partial x_{1}}}{\frac{\partial f(\mathbf{a})}{\partial x_{2}}}\right)^{T} \begin{pmatrix} x_{1} - a_{1} \\ x_{2} - a_{2} \end{pmatrix} = f(\mathbf{a}) + \nabla f(\mathbf{a})(\mathbf{x} - \mathbf{a})$$

TAYLOR'S THEOREM

General version for both univariate and multivariate functions:

Let I be an open subset of \mathbb{R}^n , $n \in \mathbb{N}_{>0}$, and $f \in \mathcal{C}^k(I, \mathbb{R})$. There exists a function $R_k : I \times I \to \mathbb{R}$ so that for each $\mathbf{a}, \mathbf{x} \in I$

$$R_k(\mathbf{x}, \mathbf{a}) = o(\|\mathbf{x} - \mathbf{a}\|^k)$$
 as $\mathbf{x} \to \mathbf{a}$

and

$$f(\mathbf{x}) = T_k(\mathbf{x}, \mathbf{a}) + R_k(\mathbf{x}, \mathbf{a})$$

- $R_k(\mathbf{x}, \mathbf{a})$ is called **remainder term** and different specific forms have been established
- However, we will usually focus on the property $R_k(\mathbf{x}, \mathbf{a}) = o(\|\mathbf{x} \mathbf{a}\|^k)$ as $\mathbf{x} \to \mathbf{a}$ or upper bounds derived for specific function classes when analyzing optimization algorithms

TAYLOR SERIES

• For $f \in \mathcal{C}^{\infty}$, there might exist an open ball $B_r(\boldsymbol{a})$ with radius r > 0 around \boldsymbol{a} such that the **Taylor series**

$$T_{\infty}(\mathbf{x}, \mathbf{a}) = \begin{cases} \sum_{k=0}^{\infty} \frac{f^{(k)}(\mathbf{a})}{k!} (x - \mathbf{a})^k & \text{if } f \text{ is univariate} \\ \sum_{|\alpha| \ge 0} \frac{D^{\alpha} f(\mathbf{a})}{\alpha!} (\mathbf{x} - \mathbf{a})^{\alpha} & \text{if } f \text{ is multivariate} \end{cases}$$

converges to f on $B_r(\boldsymbol{a})$

- If such an open Ball exists for all a in the domain of f, f is called an analytic function
- Even if Taylor series converges, it might not converge to f
- Upper bound $R = \sup \{r \mid \text{Taylor series converges on } B_r(\boldsymbol{a})\}$ is called the radius of convergence of Taylor series around \boldsymbol{a}
- If R > 0 and f analytic, Taylor series converges absolutely and uniformly to f on compact sets inside $B_R(\mathbf{a})$
- No general convergence behaviour on boundary of $B_R(\mathbf{a})$

EXAMPLES OF ANALYTIC FUNCTIONS

For analytic functions the remainder term eventually vanishes, i.e. $R_k(\mathbf{x}, \mathbf{a}) \to 0$ as $k \to \infty$ for all $\mathbf{x} \in B_r(\mathbf{a})$.

Important examples are

- Polynomials
- Exponential function (exp)
- Trigonometric functions (sin, cos)

And important rules are

- Any analytic function of a polynomial is again an analytic function
- Analytic functions are closed under sum and product (due to the properties of series)
- The derivative of an analytic function is again an analytic function

One specific example: $f: \mathbb{R}^2 \longrightarrow \mathbb{R} \mathbf{x} \mapsto \sin(2x_1) + \cos(x_2)$

EXAMPLE: TAYLOR APPROXIMATION OF

$$f(\mathbf{x}) = \sin(2x_1) + \cos(x_2) \mathbf{AT} \mathbf{a} = (1,1)^T$$

1st order: we know that
$$f(\mathbf{x}) = \underbrace{f(\mathbf{a}) + \nabla f(\mathbf{a})(\mathbf{x} - \mathbf{a})}_{T_1(\mathbf{x}, \mathbf{a})} + H_1(\mathbf{x}, \mathbf{a})$$
 and since

$$\nabla f(\mathbf{x}) = (2\cos(2x_1), -\sin(x_2)),$$

$$f(\mathbf{x}) = T_1(\mathbf{x}) + R_1(\mathbf{x}, \mathbf{a}) = f(\mathbf{a}) + \nabla f(\mathbf{a})(\mathbf{x} - \mathbf{a}) + R_1(\mathbf{x}, \mathbf{a})$$

= $\sin(2) + \cos(1) + (2\cos(2), -\sin(1)) \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} + R_1(\mathbf{x}, \mathbf{a})$

EXAMPLE: TAYLOR APPROXIMATION OF

$$f(\mathbf{x}) = \sin(2x_1) + \cos(x_2) \mathbf{AT} \mathbf{a} = (1,1)^T$$

2nd order: we know that

$$f(\mathbf{x}) = \underbrace{f(\mathbf{a}) + \nabla f(\mathbf{a})(\mathbf{x} - \mathbf{a}) + \frac{1}{2}(\mathbf{x} - \mathbf{a})^T H(\mathbf{a})(\mathbf{x} - \mathbf{a})}_{T_2(\mathbf{x}, \mathbf{a})} + R_2(\mathbf{x}, \mathbf{a})$$

and since
$$H(\mathbf{x}) = \begin{pmatrix} -4\sin(2x_1) & 0 \\ 0 & -\cos(x_2) \end{pmatrix}$$
,

$$f(\mathbf{x}) = T_1(\mathbf{x}, \mathbf{a}) + \frac{1}{2} \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix}^T \begin{pmatrix} -4\sin(2) & 0 \\ 0 & -\cos(1) \end{pmatrix} \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} + R_2(\mathbf{x}, \mathbf{a})$$

