Exercice 1: automorphismes du Vierergruppe.

- 1. L'énoncé admet que la loi \star est associative. Pour prouver que (V,\star) est un groupe, il nous suffit de prouver l'existence d'un neutre et l'inversibilité de tous les éléments de V pour la loi \star .
 - D'après la table de Cayley de V, l'élément e de V vérifie

$$\forall x \in V, x \star e = e \star x = x$$

Par conséquent, (V, \star) est unifère.

• En lisant la table de Cayley, on constate que

$$e \star e = e, a \star a = e, b \star b = e, c \star c = e$$

Par conséquent, tout élément de *V* possède un inverse, à savoir lui-même.

En conclusion, (V, \star) est un groupe, de neutre e.

- 2. Il s'agit de la loi de composition des applications.
- 3. Comme f est un automorphisme de V, f est bijective et f(e) = e. Comme f est en particulier injective et $\forall x \in X, x \neq e$, alors $\forall x \in X, f(x) \neq f(e) = e$, i.e $\forall x \in X, f(x) \in X$. Ainsi, l'application restreinte $f|_X$ est bien à valeurs dans X. De plus, elle est toujours injective puisque f l'est. Comme X est de cardinal fini égal à S, on en déduit que $\tilde{f} = f|_X$ est une bijection.
- 4. Soit $(x, y) \in V^2$. Calculons $g(x \star y)$ en distinguant différents cas.
 - x = y. Alors $g(x * y) = g(x^2) = g(e) = e = g(x)^2 = g(x) * g(y)$.
 - $x \neq y$.
 - -x = e et $y \in X$. Alors $g(e \star y) = g(y) = e \star g(y) = g(e) \star g(y)$.
 - $-x \in X$ et y = e se traite de même par commutativité de \star .
 - $-x \in X$ et $y \in X$. D'après la table de Cayley de V, $X = \{x, y, x \star y\}$ puisque x et y sont différents. Mais alors par injectivité de σ , $X = \{\sigma(x), \sigma(y), \sigma(x) \star \sigma(y)\}$. Or par surjectivité de σ , $X = \sigma(X) = \{\sigma(x), \sigma(y), \sigma(x \star y)\}$. On en déduit $\sigma(x \star y) = \sigma(x) \star \sigma(y)$, i.e $g(x \star y) = g(x) \star g(y)$.

Conclusion, $g(x \star y) = g(x) \star g(y)$, et ce pour tout $(x, y) \in V^2$. Donc g est un morphisme de groupes de V dans V. De plus, il est clairement injectif puisque σ l'est et $X \cap \{e\} = \emptyset$. Comme V est de cardinal fini, g est bijectif.

- 5. Notons $\Phi: \operatorname{Aut}(V) \to \mathfrak{S}(X), f \mapsto \tilde{f}$ l'application construite en question 3, et $\Psi: \mathfrak{S}(X) \to \operatorname{Aut}(V), \sigma \mapsto g$ l'application construite en question 4. Il est clair que $\Phi \circ \Psi = \operatorname{Id}_{\mathfrak{S}(X)}$ et $\Psi \circ \Phi = \operatorname{Id}_{\operatorname{Aut}(V)}$. Par conséquent, Φ et Ψ sont bijectives. Soit à présent g,h deux automorphismes de V. On a $(h \circ g)_{|X}^{|X} = h_{|X}^{|X} \circ g_{|X}^{|X}$, soit encore $\Phi(h \circ g) = \Phi(h) \circ \Phi(g)$. Ainsi, Φ est un morphisme de groupes bijectif de $\operatorname{Aut}(V)$ dans $\mathfrak{S}(X)$, donc ces deux groupes sont isomorphes.
- 6. On sait que le neutre de G commute avec tout élément de G, donc Z(G) n'est pas vide. Soit $(x,y) \in Z(G)^2$ et $z \in G$. Alors

$$(xy)z = x(yz) = x(zy) = (xz)y = (zx)y = z(xy)$$

et ce pour tout z dans G. Donc $xy \in Z(G)$. Ainsi, Z(G) est stable par la loi de G. D'autre part, en multipliant xz = zx par x^{-1} à gauche, on obtient $z = x^{-1}zx$. En multipliant ensuite à droite par x, on déduit $zx^{-1} = x^{-1}z$, et ce pour tout z dans G, donc $x^{-1} \in Z(G)$. Ainsi, Z(G) est stable par inverse. Donc Z(G) est un sous-groupe de G d'après la première caractérisation des sous-groupes.

7. Notons $\varphi: G \to H$ un isomorphisme de groupes de G vers H. Soit $x \in Z(G)$. Montrons que $\varphi(x) \in Z(H)$. Soit $h \in H$. Notons $y = \varphi^{-1}(h)$. Alors

$$\varphi(x)h = \varphi(x)\varphi(y) = \varphi(xy) = \varphi(yx) = \varphi(y)\varphi(x) = h\varphi(x)$$

Par conséquent, $\varphi(x) \in Z(H)$ et ce pour tout x dans Z(G). Ainsi, $\varphi(Z(G)) \subset Z(H)$. On en déduit $Z(G) \subset \varphi^{-1}(Z(H))$. Or en appliquant ce qui précède à l'aide de l'isomorphisme $\varphi^{-1}: H \to G$, on a également $\varphi^{-1}(Z(H)) \subset Z(G)$. En conclusion, $\varphi^{-1}(Z(H)) = Z(G)$, donc ces deux groupes sont isomorphes.

8. Commençons par montrer $Z(\mathfrak{S}(X)) = \{ \mathrm{Id}_X \}$. Soit $\sigma \in \mathfrak{S}(X)$ tel que $\sigma \neq \mathrm{Id}_X$. Alors on dispose de $x \in X$ tel que $\sigma(x) \neq x$. On note alors y l'unique élément de $X \setminus \{x, \sigma(x)\}$, puis $\tau : X \to X$, $x \mapsto x$, $\sigma(x) \mapsto y$, $y \mapsto \sigma(x)$. L'application τ est bien une application injective de X dans X de cardinal fini S, donc bijective. De plus, $(\tau \circ \sigma)(x) = \tau(\sigma(x)) = y$, tandis que $(\sigma \circ \tau)(x) = \sigma(x) \neq y$. Par conséquent, $\sigma \circ \tau \neq \tau \circ \sigma$, donc $\sigma \notin Z(\mathfrak{S}(X))$. Comme le neutre est toujours dans le centre, on en déduit que $Z(\mathfrak{S}(X)) = \{ \mathrm{Id}_X \}$. D'après les questions S et S, on en déduit que S(Aut(S)) est isomorphe à S(Aut(

Exercice 2 : étude de deux suites.

1. (a) La fonction f est dérivable comme produit des fonctions dérivables. De plus,

$$\forall x \in \mathbb{R}, f'(x) = 3e^{-x^2} - 6x^2e^{-x^2} = 3e^{-x^2}(1 - 2x^2)$$

On en déduit que f' est négative sur $]-\infty,-1/\sqrt{2}[$, positive sur $]-1/\sqrt{2},1/\sqrt{2}[$, négative sur $]1/\sqrt{2},+\infty[$, donc que f est décroissante sur $]-\infty,-1/\sqrt{2}[$, croissante sur $]-1/\sqrt{2},1/\sqrt{2}[$, décroissante sur $]1/\sqrt{2},+\infty[$. D'après les croissances comparées, $xe^{-x^2}\xrightarrow[x\to\pm\infty]{}0$, donc $f(x)\xrightarrow[x\to\pm\infty]{}-1$.

(b) L'expression de f' précédente indique que f' est dérivable et que

$$\forall x \in \mathbb{R}, f''(x) = 3e^{-x^2}(-4x - 2x(1 - 2x^2)) = -6xe^{-x^2}(3 - 2x^2)$$

En particulier, f''(0) = 0.

(c) On note $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) - f(0) - f'(0)x = f(x) + 1 - 3x = 3x(e^{-x^2} - 1)$. Or $\forall x \in \mathbb{R}$, $e^{-x^2} \le -1$, donc pour tout réel x, g(x) est du signe de -x. Ainsi, g est négative sur \mathbb{R}_+ et positive sur \mathbb{R}_- . Ainsi, le graphe de f est au-dessus de sa tangente en 0 sur \mathbb{R}_- et en-dessous de sa tangente en 0 sur \mathbb{R}_+ . On retrouve qu'il y a un point d'inflexion en 0, ce qui est cohérent avec f''(0) = 0.

- 2. (a) $f_n(0) = -1 < 0$ et $f_n(1) = \frac{3}{e} 1 = \frac{3 e}{e} > 0$ d'après le rappel de l'énoncé.
 - (b) La fonction f_n est dérivable et

$$\forall x \in \mathbb{R}, f'_n(x) = 3nx^{n-1}e^{-x^2} + 3x^n(-2x)e^{-x^2} = 3e^{-x^2}x^{n-1}(n-2x^2)$$

2

Soit $x \in \mathbb{R}_+^*$, alors $f_n'(x)$ est du signe de $n-2x^2$. Ainsi, $f_n'(x)>0 \iff n-2x^2>0 \iff x<\sqrt{n/2}$ puisque x>0. On en déduit que f_n est strictement croissante sur $\left[0,\sqrt{n/2}\right]$ et strictement décroissante sur $\left[\sqrt{n/2},+\infty\right[$. De plus, par croissances comparées, $f_n(x)\xrightarrow[x\to+\infty]{}-1$.

Comme $n \ge 2$, $\sqrt{n/2} \ge 1$, donc f_n est strictement croissante sur [0,1]. Comme est elle est continue, le théorème de la bijection nous indique que f_n induit une bijection de [0,1[dans $[f_n(0),f_n(1)[=[-1,\frac{3-e}{e}[$.

Comme $-1 \le 0 < \frac{3-e}{e}$, il existe un unique antécédent de 0 par f_n dans [0,1[, que nous notons u_n . De même, f_n induit une bijection de $[\sqrt{n/2},+\infty[$ dans $]-1,f_n(\sqrt{n/2})]$, puisque strictement décroissante et continue. Or $f_n(\sqrt{n/2}) \ge f_n(1) > 0$, donc il existe un unique antécédent de 0 par f_n dans $]\sqrt{n/2},+\infty[$, que nous notons v_n . Cet antécédent appartient a fortiori à $]1,+\infty[$.

- 3. D'après la question précédente, $\forall n \geq 2, v_n \geq \sqrt{n/2}$. Or $\sqrt{n/2} \xrightarrow[n \to +\infty]{} +\infty$. On en déduit par théorème de comparaison, $v_n \xrightarrow[n \to +\infty]{} +\infty$.
- 4. (a) Soit $n \ge 2$. L'égalité $f_n(u_n) = 0$ entraı̂ne $3u_n^n e^{-u_n^2} 1 = 0$. Or $u_n > 0$ puisque $f_n(0) < 0$, on en déduit $\exp(-u_n^2) = \frac{1}{3u_n^n}$.
 - (b) Soit $n \ge 2$. Comme $u_n < 1$, on a

$$f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} - 1 = 3u_n^{n+1}\frac{1}{3u_n^n} - 1 = u_n - 1 < 0$$

- (c) Soit $n \ge 2$. D'après ce qui précède, $f_{n+1}(u_n) < 0 = f_{n+1}(u_{n+1})$. Or f_{n+1} est strictement croissante sur [0,1[donc la réciproque induite de [0,1[dans [-1,(3-e)/e[est strictement croissante, i.e $u_n < u_{n+1}$. On en déduit que la suite $(u_n)_{n\ge 2}$ est strictement croissante.
- (d) On sait que $\forall n \geq 2, u_n < 1$. Donc, la suite $(u_n)_{n\geq 2}$ est majorée. D'après le théorème de la limite monotone, cette suite est convergente.
- (e) Soit $n \ge 2$. Alors $u_n > 0$, donc $g_n(u_n) = \ln\left(3u_n^n e^{-u_n^2}\right) = \ln(1) = 0$. On en déduit $\ln(u_n) = \frac{u_n^2 \ln(3)}{n}$. Le numérateur tend vers $\ell^2 \ln(3)$ par opérations sur les limites finies, donc $\ln(u_n) \xrightarrow[n \to +\infty]{} 0$. On en déduit via les limites de l'exponentielle que $u_n \xrightarrow[n \to +\infty]{} 1$. Ainsi, $\ell = 1$.

Exercice 3 : des suites récurrentes.

1. (a) Pour tout réel x > 0, $f(x) = \exp\left(\frac{\ln(x)}{x}\right)$, donc f est dérivable. De plus,

$$\forall x > 0, f'(x) = \left(\frac{1}{x^2} - \frac{\ln(x)}{x^2}\right) f(x) = (1 - \ln(x)) \frac{f(x)}{x^2}.$$

On en déduit que f' est positive sur]0,e] et négative sur $[e,+\infty[$, donc que f est croissante sur]0,e] et décroissante sur $[e,+\infty[$. On en déduit que f atteint un maximum global en e, égal à $e^{1/e}$. De plus, par croissances comparées, $\frac{\ln(x)}{x} \xrightarrow[x \to +\infty]{} 0$, d'après les limites de l'exponentielle, on en déduit par composition des limites que $f(x) \xrightarrow[x \to +\infty]{} 1$. En 0^+ , il n'y pas de formes indéterminées, $\frac{\ln(x)}{x} \xrightarrow[x \to 0^+]{} -\infty$, d'où $f(x) \xrightarrow[x \to 0^+]{} 0$.

- (b) D'après l'étude précédente, f admet une limite finie égale à 0 en 0. On peut ainsi la prolonger par continuité en 0 par f(0) = 0.
- (c) Soit $x \in \mathbb{R}_+^*$. Alors le taux d'accroissement de f en 0 vérifie $\tau_0(f)(x) = \frac{x^{1/x} 0}{x 0} = x^{1/x 1} = \exp\left[\ln(x)\left(\frac{1}{x} 1\right)\right]$. Pas de formes indéterminées ici, $\ln(x)\left(\frac{1}{x} 1\right) \xrightarrow[x \to +0^+]{} -\infty$, donc $\tau_0(f)(x) \xrightarrow[x \to 0^+]{} 0$. On en déduit que f est dérivable en 0 et que f'(0) = 0.

On peut également passer par le théorème de la limite de la dérivée, l'étude de la limite à étudier n'est pas plus simple que celle du taux d'accroissement.

- (d) L'étude des variations montre que f est strictement croissante sur [0,e]. Comme elle y est continue, elle induit donc une bijection de [0,e] sur [f(0),f(e)], i.e $[0,e^{1/e}]$.
- (e) On sait que la réciproque d'une bijection continue est continue. On sait que la réciproque d'une bijection dérivable est dérivable uniquement aux réels y tels que $f'(f^{-1}(y)) \neq 0$. D'après l'étude précédente, f' s'annule uniquement en 0 et e, donc f^{-1} est dérivable sur $[f(0), f(e)] \setminus \{f(0), f(e)\}$, i.e $]0, e^{1/e}[$.

- 2. a) L'application Φ_1 est l'application constante égale à 1. Par conséquent, la suite $(t_n^1)_{n\in\mathbb{N}}$ est constante égale à 1, donc convergente de limite 1. On en déduit h(1) = 1.
 - b) L'application Φ_x est continue, donc $\Phi_x(t_n^x) \xrightarrow[n \to +\infty]{} \Phi_x(h(x))$. D'autre part, $t_{n+1}^x \xrightarrow[n \to +\infty]{} h(x)$ comme suite extraite de $(t_n^x)_{n \in \mathbb{N}}$. Par unicité de la limite, $\Phi_x(h(x)) = h(x)$, soit encore $x^{h(x)} = h(x)$. Comme x > 0, $x^{h(x)} \neq 0$, donc $h(x) \neq 0$. On peut alors appliquer la puissance 1/h(x) à cette égalité, ce qui fournit $x = h(x)^{1/h(x)} = f(h(x))$.
 - c) ln(x) > 0, donc $t \mapsto t ln(x)$ est strictement croissante. Comme l'exponentielle est strictement croissante, on en déduit que Φ_x est strictement croissante.
 - d) On remarque que $\Phi_x(t_0^x) = \Phi_x(1) = x^1 = x > 1 = t_0^x$. On en déduit par récurrence, d'après la stricte croissante de Φ_x , $\forall n \in \mathbb{N}$, $t_n^x < t_{n+1}^x$.
 - e) $t_0^x = 1 \le e$, De plus, $x \le e^{1/e}$, donc $\ln(x) \le \frac{1}{e}$. On en déduit que pour tout réel t dans [0,e], $t\ln(x) \le 1$, puis $0 \le \Phi_x(t) \le e$. Ainsi, Φ_x stabilise [0,e], donc $\forall n \in \mathbb{N}, t_n^x \le e$. (On peut également raisonner par récurrence). Mais alors la suite $(t_n^x)_{n \in \mathbb{N}}$ est majorée, croissante d'après la question précédente, donc convergente.
 - f) Comme prouvé en question 2.c), cette suite est croissante. D'après le théorème de la limite monotone, cette suite est convergente ou tend vers $+\infty$. Supposons par l'absurde qu'elle converge. Alors d'après 2.b), sa limite h(x) vérifie x = f(h(x)), donc $f(h(x)) > e^{1/e}$. Cependant, d'après les variations de f étudiées en 1), f a pour maximum $e^{1/e}$. Cette absurdité entraîne que la suite $(t_n^X)_{n\in\mathbb{N}}$ tend vers $+\infty$.
 - g) $\ln(x) < \ln(1) = 0$, donc $t \mapsto t \ln(x)$ est strictement décroissante. Comme l'exponentielle est croissante, on en déduit que Φ_x est décroissante. Mais alors $\Phi_x \circ \Phi_x$ est strictement croissante.
 - h) $t_1^x = \Phi_x(t_0^x) = \Phi_x(1) = x < 1 = t_0^x$. Comme $\Phi_x \circ \Phi_x$ est strictement croissante, on en déduit par récurrence $\forall n \in \mathbb{N}, t_{2n+1}^x < t_{2n}^x$.
 - i) Comme $x \in]0,1[$, donc $\ln(x)/x \le 0$. On en déduit $t_2^x = \Phi_x(t_1^x) = \Phi_x(x) = x^x = \exp(\ln(x)/x) \le \exp(0) = 1 = t_0^x$. Ainsi, $t_2^x \le t_0^x$, donc la suite $(t_{2n})_{n \in \mathbb{N}}$ est décroissante. La suite $(t_{2n+1})_{n \in \mathbb{N}}$ est de monotonie contraire, i.e croissante.

- j) Pour tout t dans [0,1], $0 \le \Phi_x(t) \le 1$, donc Φ_x stabilise [0,1]. Par conséquent, ces deux suites monotones bornées, donc convergentes. Comme leur itératrice est la fonction continue $\Phi_x \circ \Phi_x$, leur limite est nécessairement un point fixe de $\Phi_x \circ \Phi_x$ dans [0,1].
- k) On note $g:[0,1]\to\mathbb{R}$, $(\Phi_x\circ\Phi_x)(t)-t$. Comme Φ_x est dérivable, et $\forall\,t\in[0,1]$, $\Phi_x'(t)=\ln(t)\Phi_x(t)$, g est dérivable et

$$\forall t \in [0, 1], g'(t) = \ln(x)\Phi_{x}(t)\ln(x)\Phi_{x}(\Phi_{x}(t)) - 1 = \ln(x)^{2}\Phi_{x}(t)(\Phi_{x} \circ \Phi_{x})(t) - 1$$

On en déduit que g est deux fois dérivable et que

$$\forall t \in [0, 1], g'(t) = \ln(x)^3 \Phi_x(t) (\Phi_x \circ \Phi_x)(t) (1 + \ln(x))$$

Comme $x \in [1/e,1[,(1+\ln(x))\geq 0.$ On en déduit que g'' est négative, donc que g' est décroissante sur [0,1]. Or $g'(0)=\ln(x)^2x-1.$ Or $0<\ln(x)^2\leq 1$ et $0\leq x<1$, donc g'(0)<0. Ainsi, g' est strictement négative sur [0,1], donc g est strictement décroissante sur [0,1]. De plus, g(0)=x>0 et $g(1)=x^x-1=\exp(x\ln(x))-1<0.$ Comme g est continue, il existe un unique zéro a de a dans a dans