DS numéro 2

19 Novembre 2018

Compétence	Maitrise
Identifier les interactions mises en jeu (de contact ou à distance) et les modéliser par des forces.	
Action de contact et action à distance.	
Force: point d'application, direction, sens et valeur.	

Seul l'Exercice 1 est à faire sur le sujet, les autres seront rédigés sur une feuille à part. Le soin et la qualité de la rédaction seront pris en compte.

Exercice 1 Questions à choix multiples (3 points)

Pour chaque question, choisir la (ou les) bonne(s) réponse(s).

1)
Dans la situation ci-dessous, l'action qui déforme le trampoline est :

- √ celle exercée par l'enfant sur le trampoline.
- celle exercée par le trampoline sur l'enfant.
- O le poids du trampoline.
- 2)
 Dans la situation ci-dessous, la force modélisée par la flèche est celle exercée :

- O par la fille sur le garçon.
- $\sqrt{\ }$ par la corde sur le garçon.
- o par la fille sur la corde.
- 3)
 Dans la situation ci-dessous, le plongeur est soumis :

- O à l'action exercée par le plongeoir.
- $\sqrt{}$ à l'action exercée par la Terre.
- $\sqrt{\ }$ à l'action exercée par l'air.

Exercice 2 Diagramme objet-interaction (4 points)

Pour chaque diagramme objet-interaction, expliquer quelle est la situation décrite.

1)

Solution:

Une table posée sur le sol. Une assiette sur cette table avec un verre dedans.

Solution:

Théo est debout sur un tabouret et touche une lampe attachée au plafond.

2)

Exercice 3 Des actions qui se compensent (3 points)

Un corps est soumis à des forces qui se compensent.

1) Dans quels cas des forces se compensent-elles?

Solution:

Des forces se compensent si elles ont même direction et même valeur mais des sens opposés.

2)

Ce corps est au repos:

(a) Son état de repos va-t-il être modifié?

Solution:

Si un corps est au repos et soumis a des actions qui se compensent, alors il restera dans son état de repos.

(b) Que faut-il pour que l'état soit modifié?

Solution:

L'état de repos sera modifié si une (des) force(s) s'exerce(nt) sur le corps sans se compenser.

Exercice 4 Un coup de marteau (3 points)

Jeanne pose du plancher. Elle cherche à comprendre ce que subit le clou lorsqu'on vient le frapper avec le marteau.

1) Établir un diagramme objet-interaction pour l'objet «clou».

Solution:

2)
Faire un schéma de la situation et représenter les forces qui s'exercent sur le clou.

3)
Quel est l'effet de l'ensemble des actions qui s'exercent sur le clou.

Solution:

L'ensemble des actions qui s'exercent sur le clou fait qu'il s'enfonce dans le plancher.

Données

- Force exercée par le marteau sur le clou : 50 000 N;
- Force exercée par la planche sur le clou : 5000 N;
- Échelle : 1 cm \leftrightarrow 10 000 N.

Exercice 5 Grues de chantier (3 points)

Les grues permettent de déplacer de lourdes charges sur un chantier. On s'intéresse à la charge soulevée par la grue.

1)
Avec quels objets ou (quels corps) la charge est-elle en interaction? Préciser à chaque fois le type d'interaction.

Solution:

La charge est en interaction de contact avec le câble de la grue et à distance avec la Terre.

2) Établir le diagramme objet-interaction de la charge.

3)
Représenter sur un schéma la force de 10 000 N exercée par le câble de la grue sur la charge.
Préciser l'échelle choisie.

NOM Prénom :

Exercice 6 Caractéristiques d'une force (3 points)

Dans chacun de ces 6 cas donner les caractéristiques de la force représentée. La réponse peut être donnée sous la forme d'un tableau ou d'une liste de caractéristiques pour chaque cas.

Solution:

Cas	Direction de la force	Sens de la force	Point d'application
1	Horizontale	Vers la droite	A
2	Oblique	Vers le haut	В
		et vers la droite	
3	Oblique	Vers le bas	В
		et vers la droite	
4	Horizontale	Vers la gauche	В
5	Horizontale	Vers la droite	В
6	Verticale	Vers le haut	С