Tomawac Reference Manual

Otto Mattic

Version 7.2
December 29, 2016

AVERTISSEMENT / CAUTION

L'accès à ce document, ainsi que son utilisation, sont strictement limités aux personnes expressément habilitées par EDF.

EDF ne pourra être tenu responsable, au titre d'une action en responsabilité contractuelle, en responsabilité délictuelle ou de tout autre action, de tout dommage direct ou indirect, ou de quelque nature qu'il soit, ou de tout préjudice, notamment, de nature financier ou commercial, résultant de l'utilisation d'une quelconque information contenue dans ce document.

Les données et informations contenues dans ce document sont fournies "en l'état" sans aucune garantie expresse ou tacite de quelque nature que ce soit.

Toute modification, reproduction, extraction d'éléments, réutilisation de tout ou partie de ce document sans autorisation préalable écrite d'EDF ainsi que toute diffusion externe à EDF du présent document ou des informations qu'il contient est strictement interdite sous peine de sanctions.

The access to this document and its use are strictly limited to the persons expressly authorized to do so by EDF.

EDF shall not be deemed liable as a consequence of any action, for any direct or indirect damage, including, among others, commercial or financial loss arising from the use of any information contained in this document.

This document and the information contained therein are provided "as are" without any warranty of any kind, either expressed or implied.

Any total or partial modification, reproduction, new use, distribution or extraction of elements of this document or its content, without the express and prior written consent of EDF is strictly forbidden. Failure to comply to the above provisions will expose to sanctions.

Contents

1	Detail list of keywords	10
1.1	1D SPECTRA RESULTS FILE	10
1.2	2D RESULTS FILE	10
1.3	2D RESULTS FILE FORMAT	11
1.4	ABSCISSAE OF SPECTRUM PRINTOUT POINTS	11
1.5	AIR DENSITY	11
1.6	BAJ MODELING	11
1.7	BINARY CURRENTS FILE	12
1.8	BINARY CURRENTS FILE FORMAT	12
1.9	BINARY DATA FILE 1 FORMAT	12
1.10	BINARY FILE 1	13
1.11	BINARY FILE 1 BINARY	13
1.12	BINARY TIDAL WATER FILE FORMAT	13
1.13	BINARY TIDAL WATER LEVEL FILE	13
1.14	BINARY WINDS FILE	14
1.15	BINARY WINDS FILE FORMAT	14
1.16	BOTTOM FRICTION COEFFICIENT	14
1.17	BOTTOM FRICTION DISSIPATION	14
1.18	BOTTOM SMOOTHINGS	15
1.19	BOTTOM TOPOGRAPHY FILE	15
1.20	BOUNDARY ANGULAR DISTRIBUTION FUNCTION	15
1.21	BOUNDARY CONDITIONS FILE	16
1.22	BOUNDARY DIRECTIONAL SPREAD 1	16
1.23	BOUNDARY DIRECTIONAL SPREAD 2	16
1.24	BOUNDARY MAIN DIRECTION 1	16
1.25	BOUNDARY MAIN DIRECTION 2	17

1.26	BOUNDARY MAXIMUM PEAK FREQUENCY	17
1.27	BOUNDARY MEAN FETCH VALUE	17
1.28	BOUNDARY PEAK FACTOR	17
1.29	BOUNDARY PEAK FREQUENCY	18
1.30	BOUNDARY PHILLIPS CONSTANT	18
1.31	BOUNDARY SIGNIFICANT WAVE HEIGHT	18
1.32	BOUNDARY SPECTRUM VALUE OF SIGMA-A	18
1.33	BOUNDARY SPECTRUM VALUE OF SIGMA-B	19
1.34	BOUNDARY WEIGHTING FACTOR FOR ADF	19
1.35	CHARNOCK CONSTANT	19
1.36	CHECKING THE MESH	19
1.37	COEFFICIENT OF THE TIME SUB-INCREMENTS FOR BREAKING	20
1.38	CONSIDERATION OF A STATIONARY CURRENT	20
1.39	CONSIDERATION OF A WIND	20
1.40	CONSIDERATION OF PROPAGATION	20
1.41	CONSIDERATION OF SOURCE TERMS	21
1.42	CONSIDERATION OF TIDE	21
1.43	CURRENTS FILE BINARY	21
1.44	CURRENTS FILE FORMAT	22
1.45	DATE OF COMPUTATION BEGINNING	22
1.46	DEBUGGER	22
1.47	DEFAULT EXECUTABLE	22
1.48	DEFAULT PARALLEL EXECUTABLE	23
1.49	DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY	23
1.50	DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA	23
1.51	DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1	24
1.52	DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2	24
1.53	DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD	25
1.54	DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD	25
1.55	DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY	25
1.56	DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B	26
1.57	DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA	26
1.58	DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION	27
1.59	DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY	27
1.60	DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA	28
1.61	DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA	28

1.62	DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2	28
1.63	DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION	29
1.64	DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION	29
1.65	DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY	30
1.66	DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0	30
1.67	DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR	31
1.68	DEPTH-INDUCED BREAKING DISSIPATION	31
1.69	DESCRIPTION OF LIBRARIES	32
1.70	DICTIONARY	33
1.71	DIFFRACTION	33
1.72	DIFFRACTION FILTER	33
1.73	DISSIPATION BY STRONG CURRENT	33
1.74	DISSIPATION COEFFICIENT FOR STRONG CURRENT	34
1.75	FINITE ELEMENT ASSEMBLY	34
1.76	FORMATTED CURRENTS FILE	34
1.77	FORMATTED FILE 1	35
1.78	FORMATTED TIDAL WATER LEVEL FILE	35
1.79	FORMATTED WINDS FILE	35
1.80	FORTRAN FILE	35
1.81	FREQUENTIAL RATIO	36
1.82	GEOMETRY FILE	36
1.83	GEOMETRY FILE BINARY	36
1.84	GEOMETRY FILE FORMAT	36
1.85	GLOBAL RESULT FILE	37
1.86	GLOBAL RESULT FILE BINARY	37
1.87	GLOBAL RESULT FILE FORMAT	37
1.88	IMPLICITATION COEFFICIENT FOR SOURCE TERMS	38
1.89	INFINITE DEPTH	38
1.90	INITIAL ANGULAR DISTRIBUTION FUNCTION	38
1.91	INITIAL DIRECTIONAL SPREAD 1	39
1.92	INITIAL DIRECTIONAL SPREAD 2	39
1.93	INITIAL MAIN DIRECTION 1	39
1.94	INITIAL MAIN DIRECTION 2	39
1.95	INITIAL MAXIMUM PEAK FREQUENCY	40
1.96	INITIAL MEAN FETCH VALUE	40
1.97	INITIAL PEAK FACTOR	40

1.98	INITIAL PEAK FREQUENCY	40
1.99	INITIAL PHILLIPS CONSTANT	41
1.100	INITIAL SIGNIFICANT WAVE HEIGHT	41
1.101	INITIAL STILL WATER LEVEL	41
1.102	INITIAL TIME SET TO ZERO	41
1.103	INITIAL VALUE OF SIGMA-A FOR SPECTRUM	41
1.104	INITIAL VALUE OF SIGMA-B FOR SPECTRUM	42
1.105	INITIAL WEIGHTING FACTOR FOR ADF	42
1.106	LIMIT SPECTRUM MODIFIED BY USER	42
1.107	LINEAR WAVE GROWTH	43
1.108	LIST OF FILES	43
1.109	MAXIMUM VALUE OF THE RATIO HM0 ON D	43
1.110	MINIMAL FREQUENCY	44
1.111	MINIMUM WATER DEPTH	44
1.112	NAMES OF VARIABLES	44
1.113	NEXT COMPUTATION	45
1.114	NON-LINEAR TRANSFERS BETWEEN FREQUENCIES	45
1.115	NUMBER OF BREAKING TIME STEPS	45
1.116	NUMBER OF DIRECTIONS	46
1.117	NUMBER OF FIRST ITERATION FOR GRAPHICS PRINTOUTS	46
1.118	NUMBER OF FREQUENCIES	46
1.119	NUMBER OF ITERATIONS FOR THE SOURCE TERMS	46
1.120	NUMBER OF PRIVATE ARRAYS	47
1.121	NUMBER OF TIME STEP	47
1.122	OPTION FOR DIAGNOSTIC TAIL	47
1.123	OPTION FOR SECOND DERIVATIVES	48
1.124	ORDINATES OF SPECTRUM PRINTOUT POINTS	48
1.125	ORIGIN COORDINATES	48
1.126	PARALLEL PROCESSORS	48
1.127	PARTITIONING TOOL	48
1.128	PERIOD FOR GRAPHIC PRINTOUTS	49
1.129	PERIOD FOR LISTING PRINTOUTS	49
1.130	PREVIOUS COMPUTATION FILE	49
1.131	PREVIOUS COMPUTATION FILE BINARY	50
1.132	PREVIOUS COMPUTATION FILE FORMAT	50
1.133	PUNCTUAL RESULTS FILE	50

1.134	PUNCTUAL RESULTS FILE BINARY	51
1.135	RANK OF THE WATER LEVEL DATA IN THE TELEMAC FILE	51
1.136	RECOVERY OF TELEMAC DATA ITEM	51
1.137	REFERENCE FILE	52
1.138	REFERENCE FILE FORMAT	52
1.139	RELEASE	52
1.140	SATURATION THRESHOLD FOR THE DISSIPATION	52
1.141	SETTING FOR INTEGRATION ON OMEGAT	53
1.142	SETTING FOR INTEGRATION ON OMEGA2	53
1.143	SETTING FOR INTEGRATION ON THETA 1	53
1.144	SHIFT GROWING CURVE DUE TO WIND	53
1.145	SPECTRUM ENERGY THRESHOLD	53
1.146	SPECTRUM FILE FORMAT	54
1.147	SPECTRUM TAIL FACTOR	54
1.148	SPHERICAL COORDINATES	54
1.149	STANDARD CONFIGURATION PARAMETER	54
1.150	STARTING TIME STEP FOR DIFFFRACTION	55
1.151	STATIONARY WIND	55
1.152	STEERING FILE	55
1.153	THRESHOLDO FOR CONFIGURATIONS ELIMINATION	55
1.154	THRESHOLD1 FOR CONFIGURATIONS ELIMINATION	56
1.155	THRESHOLD2 FOR CONFIGURATIONS ELIMINATION	56
1.156	TIDAL WATER LEVEL FILE BINARY	56
1.157	TIDAL WATER LEVEL FILE FORMAT	57
1.158	TIDE REFRESHING PERIOD	57
1.159	TIME INCREMENT NUMBER IN TELEMAC FILE	58
1.160	TIME SHIFT IN CURRENTS FILE	58
1.161	TIME SHIFT IN TIDAL WATER LEVEL FILE	58
1.162	TIME SHIFT IN WINDS FILE	58
1.163	TIME STEP	58
1.164	TIME UNIT IN CURRENTS FILE	59
1.165	TIME UNIT IN TIDAL WATER LEVEL FILE	59
1.166	TIME UNIT IN WINDS FILE	59
1.167	TITLE	59
1.168	TRIAD INTERACTIONS	59
1.169	TRIADS 1 (LTA) COEFFICIENT ALPHA	60

1.170	TRIADS 1 (LTA) COEFFICIENT RFMLTA	60
1.171	TRIADS 2 (SPB) COEFFICIENT K	60
1.172	TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY	61
1.173	TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY	61
1.174	TRIGONOMETRICAL CONVENTION	61
1.175	TYPE OF BOUNDARY DIRECTIONAL SPECTRUM	62
1.176	TYPE OF INITIAL DIRECTIONAL SPECTRUM	62
1.177	VALIDATION	63
1.178	VARIABLES FOR 2D GRAPHIC PRINTOUTS	63
1.179	VARIANCE THRESHOLD FOR DIFFRACTION	65
1.180	VECTOR LENGTH	65
1.181	VEGETATION TAKEN INTO ACCOUNT	65
1.182	VON KARMAN CONSTANT	65
1.183	WATER DENSITY	65
1.184	WAVE GROWTH LIMITER	66
1.185	WESTHUYSEN DISSIPATION COEFFICIENT	66
1.186	WESTHUYSEN WEIGHTING COEFFICIENT	66
1.187	WESTHUYSEN WHITE CAPPING DISSIPATION	67
1.188	WHITE CAPPING DISSIPATION	67
1.189	WHITE CAPPING DISSIPATION COEFFICIENT	67
1.190	WHITE CAPPING WEIGHTING COEFFICIENT	68
1.191	WIND DRAG COEFFICIENT	68
1.192	WIND GENERATION	68
1.193	WIND GENERATION COEFFICIENT	69
1.194	WIND MEASUREMENTS LEVEL	69
1.195	WIND VELOCITY ALONG X	69
1.196	WIND VELOCITY ALONG Y	70
1.197	WINDS FILE BINARY	70
1.198	WINDS FILE FORMAT	70
1.199	YAN GENERATION COEFFICIENT D	71
1.200	YAN GENERATION COEFFICIENT E	71
1.201	YAN GENERATION COEFFICIENT F	71
1.202	YAN GENERATION COEFFICIENT H	72
2	List of keywords classified according to type	73
2.1	BOTTOM FRICTION	73

		9
2.2	BOUNDARY CONDITIONS	73
2.3	BREAKING	73
2.4	COMPUTATION ENVIRONMENT	74
2.5	COMPUTATIONAL INFORMATION	74
2.6	CURRENT	74
2.7	DATA FILE	74
2.8	DIFFRACTION	75
2.9	DISSIPATION	75
2.10	GENERAL	75
2.11	INITIAL CONDITIONS	76
2.12	INPUT-OUTPUT, FILES	76
2.13	INPUT-OUTPUT, INFORMATION	76
2.14	MISCELLANEOUS	76
2.15	NAMES	77
2.16	NUMERICAL PARAMETERS	77
2.17	RESULTS	77
2.18	SPECTRUM	77
2.19	TIDE	77
2.20	TIME	78
2.21	TRANSFERS	78
2.22	USELESS	78
2.23	WHITE CAPPING	78
2.24	WIND	79
3	Glossary	80
3.1	English/French glossary	80
3.2	French/English glossary	87
	Bibliography	94

1. Detail list of keywords

1.1 1D SPECTRA RESULTS FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACSPE)

DEFAULT VALUE:

French keyword: FICHIER DES RESULTATS SPECTRES 1D

Name of the file into which the frequential punctual spectra (integrated according to the directions) will be written.

Related keywords

PUNCTUAL RESULTS FILE

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

ORDINATES OF SPECTRUM PRINTOUT POINTS

PERIOD FOR GRAPHIC PRINTOUTS

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.2 2D RESULTS FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACRES)

DEFAULT VALUE: 'resu2d'

French keyword: FICHIER DES RESULTATS 2D

Name of the file into which the results of the two-dimensional computation will be written.

Related keywords

2D RESULTS FILE BINARY

VARIABLES FOR 2D GRAPHIC PRINTOUTS

PERIOD FOR GRAPHIC PRINTOUTS

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.3 2D RESULTS FILE FORMAT

Type: String Dimension: -1

Mnemo WAC_FILES(WACRES)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS 2D

Geometry file format. Possible values are:

• SERAFIN : classical single precision format in Telemac;

• SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5

1.4 ABSCISSAE OF SPECTRUM PRINTOUT POINTS

Type: Real
Dimension: 2
Mnemo XLEO

DEFAULT VALUE:

French keyword: ABSCISSES DES POINTS DE SORTIE DU SPECTRE

Array providing the abscissae of the Seraphin spectrum printout points with a maximum dimension of 99. The chosen spectrum points are the closest 2D points to the specified co-ordinates.

Related keywords

ORDINATES OF SPECTRUM PRINTOUT POINTS

PUNCTUAL RESULTS FILE

1.5 AIR DENSITY

Type: Real
Dimension: 0
Mnemo ROAIR
DEFAULT VALUE: 1.225

French keyword: DENSITE DE L'AIR

The ratio ROAIR/ROEAU is used in the wind generation source term.

Related keywords

WIND GENERATION WATER DENSITY

1.6 BAJ MODELING

Type: Integer
Dimension: 0
Mnemo CBAJ
DEFAULT VALUE: 0

French keyword: MODELISATION BAJ

Choice of the calculus of centrale frequency if its value is 0, classical choice if its value is 1,

BAJ choice proposed by Laugel (2013).

Related keywords

CONSIDERATION OF SOURCE TERMS

1.7 BINARY CURRENTS FILE

Type: String Dimension: 0

Mnemo Variable WAC FILES(WACCOB)

DEFAULT VALUE: '

French keyword: FICHIER DES COURANTS BINAIRE

Name of the current data file (if binary).

Related keywords

CONSIDERATION OF A STATIONARY CURRENT

CONSIDERATION OF TIDE FORMATTED CURRENTS FILE CURRENTS FILE FORMAT

1.8 BINARY CURRENTS FILE FORMAT

Type: String Dimension: -1

Mnemo WAC_FILES(WACCOB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES COURANTS BINAIRE

Currents binary file format. Possible values are:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.9 BINARY DATA FILE 1 FORMAT

Type: String
Dimension: -1

Mnemo WAC_FILES(WACBI1)

DEFAULT VALUE: '

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 1

binary data file format. Possible values are:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.10 BINARY FILE 1 13

1.10 BINARY FILE 1

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACBI1)

DEFAULT VALUE: '

French keyword: FICHIER BINAIRE 1 Binary-coded data file made available to the user.

1.11 BINARY FILE 1 BINARY

Type: String Dimension: 0

Mnemo Variable BINBI1

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER BINAIRE 1

Type of the binary used for writing the binary file1. This type depends on the machine in which the file was generated. The possible values are the same as for the geometry file.

Related keywords

BINARY FILE 1

1.12 BINARY TIDAL WATER FILE FORMAT

Type: String Dimension: -1

Mnemo WAC_FILES(WACMAB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE LA MAREE BINAIRE

binary tidal water file format. Possible values are:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;

MED: MED format based on HDF5

1.13 BINARY TIDAL WATER LEVEL FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACMAB)

DEFAULT VALUE: '

French keyword: FICHIER DU NIVEAU DE LA MAREE BINAIRE

Name of the water level data file (if binary).

Related keywords

CONSIDERATION OF TIDE

FORMATTED TIDAL WATER LEVEL FILE

TIDAL WATER LEVEL FILE FORMAT

TIDE REFRESHING PERIOD

TIDAL WATER LEVEL FILE BINARY

1.14 BINARY WINDS FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACVEB)

DEFAULT VALUE:

French keyword: FICHIER DES VENTS BINAIRE

Name of wind data file (if binary).

Related keywords

CONSIDERATION OF WIND FORMATTED WINDS FILE WINDS FILE FORMAT

1.15 BINARY WINDS FILE FORMAT

Type: String Dimension: -1

Mnemo WAC_FILES(WACVEB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES VENTS BINAIRE

wind data binary file format. Possible values are:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5

1.16 BOTTOM FRICTION COEFFICIENT

Type: Real Dimension: 0

Mnemo CFROT1 DEFAULT VALUE: 0.038

French keyword: COEFFICIENT DE FROTTEMENT SUR LE FOND

Bottom friction coefficient.

Related keywords

INFINITE DEPTH

BOTTOM FRICTION-INDUCED DISSIPATION

1.17 BOTTOM FRICTION DISSIPATION

Type: Integer
Dimension: 0
Mnemo SFROT
DEFAULT VALUE: 0

French keyword: DISSIPATION PAR FROTTEMENT SUR LE FOND

Selection of the modelling type of the bottom friction source term. If its value is 0, the bottom friction dissipation is ignored; if its value is 1, it is integrated in accordance with a formula that

is similar to that of WAM cycle 4.

Related keywords

INFINITE DEPTH

BOTTOM FRICTION COEFFICIENT

1.18 BOTTOM SMOOTHINGS

Type: Integer Dimension: 1

Mnemo LISFON

DEFAULT VALUE: 0

French keyword: LISSAGES DU FOND

Number of smoothings made on bottom features. Each smoothing, being made by means of a mass matrix, is conservative. To be used when the bathymetric data yield too irregular data after interpolation. Also refer to the CORFON subroutine.

1.19 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACFON)

DEFAULT VALUE: "

French keyword: FICHIER DES FONDS

Name of any file containing the bathymetric data associated to the SINUSX-formatted grid. It this keyword is used, these bathymetric data shall be used for the computation.

1.20 BOUNDARY ANGULAR DISTRIBUTION FUNCTION

Type: Integer
Dimension: 0
Mnemo FRABL

DEFAULT VALUE: 1

French keyword: FONCTION DE REPARTITION ANGULAIRE AUX LIMITES Is part of the set of constants used for computing the boundary directional spectrum. Allow the computation of the angular distribution function

- 1 : $cos^{2s}(T-T0)$; with T in [T0-pi/2;T0+pi/2]
- 2: $exp(-0.5((T-T0)/s)^2)$; with T in [T0-pi/2;T0+pi/2]
- $3 : cos^{2s}((T-T0)/2)$ (of type Mitsuyasu)

where s is the boundary directionnal spread (SPRE1L or SPRE2L)

Related keywords

1.21 BOUNDARY CONDITIONS FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACCLI)

DEFAULT VALUE: 'dynam'

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is automatically filled by the grid generator by means of colours that are assigned to the boundary nodes in the computational domain.

1.22 BOUNDARY DIRECTIONAL SPREAD 1

Type: Real Dimension: 0

Mnemo Variable SPRE1L

DEFAULT VALUE: 2.

French keyword: ETALEMENT DIRECTIONNEL 1 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.23 BOUNDARY DIRECTIONAL SPREAD 2

Type: Real Dimension: 0

Mnemo Variable SPRE2L

DEFAULT VALUE: 2.

French keyword: ETALEMENT DIRECTIONNEL 2 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.24 BOUNDARY MAIN DIRECTION 1

Type: Real Dimension: 0

Mnemo Variable TETA1L

DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 1 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

1.25 BOUNDARY MAIN DIRECTION 2

Type: Real Dimension: 0

Mnemo Variable TETA2L

DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 2 AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.26 BOUNDARY MAXIMUM PEAK FREQUENCY

Type: Real Dimension: 0

Mnemo Variable FPMAXL

DEFAULT VALUE: 0.2

French keyword: FREQUENCE DE PIC MAXIMALE AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.27 BOUNDARY MEAN FETCH VALUE

Type: Real Dimension: 0

Mnemo Variable FETCHL

DEFAULT VALUE: 30000.

French keyword: VALEUR MOYENNE DU FETCH AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.28 BOUNDARY PEAK FACTOR

Type: Real Dimension: 0

Mnemo Variable GAMMAL

DEFAULT VALUE: 3.3

French keyword: FACTEUR DE PIC AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

1.29 BOUNDARY PEAK FREQUENCY

Type: Real Dimension: 0

Mnemo Variable FPICL

DEFAULT VALUE: 0.067

French keyword: FREQUENCE DE PIC AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.30 BOUNDARY PHILLIPS CONSTANT

Type: Real Dimension: 0

Mnemo Variable APHILL

DEFAULT VALUE: 0.018

French keyword: CONSTANTE DE PHILLIPS AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.31 BOUNDARY SIGNIFICANT WAVE HEIGHT

Type: Real Dimension: 0

Mnemo Variable HM0L

DEFAULT VALUE: 1.

French keyword: HAUTEUR SIGNIFICATIVE AUX LIMITES

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.32 BOUNDARY SPECTRUM VALUE OF SIGMA-A

Type: Real Dimension: 0

Mnemo Variable SIGMAL

DEFAULT VALUE: 0.07

French keyword: VALEUR AUX LIMITES DE SIGMA-A POUR SPECTRE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

1.33 BOUNDARY SPECTRUM VALUE OF SIGMA-B

Type: Real Dimension: 0

Mnemo Variable SIGMBL

DEFAULT VALUE: 0.09

French keyword: VALEUR AUX LIMITES DE SIGMA-B POUR SPECTRE Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.34 BOUNDARY WEIGHTING FACTOR FOR ADF

Type: Real Dimension: 0

Mnemo Variable XLAMDL

DEFAULT VALUE: 1.

French keyword: FACTEUR DE PONDERATION POUR FRA AUX LIMITES Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.35 CHARNOCK CONSTANT

Type: Real
Dimension: 0
Mnemo ALPHA

DEFAULT VALUE: 0.01
French keyword: CONSTANTE DE CHARNOCK

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.36 CHECKING THE MESH

Type: Logical Dimension: 0

Mnemo CHECK_MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

if this key word is equal to yes, a call to subroutine checkmesh will look for errors in the mesh, superimposed points, etc.

1.37 COEFFICIENT OF THE TIME SUB-INCREMENTS FOR BREAKING

Type: Real Dimension: 0

Mnemo Variable XDTBRK

DEFAULT VALUE: 1.45

French keyword: COEFFICIENT POUR LES SOUS-PAS DE TEMPS POUR LE DEFERLEMENT

Geometrical ratio of the time sub-increments for the depth-induced breaking

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION NUMBER OF BREAKING TIME STEPS

1.38 CONSIDERATION OF A STATIONARY CURRENT

Type: Logical Dimension: 0

Mnemo COUSTA DEFAULT VALUE: .FALSE.

French keyword: PRISE EN COMPTE D'UN COURANT STATIONNAIRE Indicates whether a stationary current is taken into account, either in a file or in condiw.f.

Related keywords

CURRENTS FILE

1.39 CONSIDERATION OF A WIND

Type: Logical Dimension: 0

Mnemo Variable VENT

DEFAULT VALUE: .FALSE.

French keyword: PRISE EN COMPTE DU VENT

Indicates whether a wind is taken into account, either in a file or in cdicow.f.

Related keywords

WINDS FILE

1.40 CONSIDERATION OF PROPAGATION

Type: Logical Dimension: 0

Mnemo Variable PROP

DEFAULT VALUE: .TRUE.

French keyword: PRISE EN COMPTE DE LA PROPAGATION

Indicates whether propagation is taken into account.

1.41 CONSIDERATION OF SOURCE TERMS

Type: Logical

Dimension: 0

Mnemo Variable TSOU

DEFAULT VALUE: .FALSE.

French keyword: PRISE EN COMPTE DES TERMES SOURCES

Indicates whether the source terms are taken into account or not.

Related keywords

WIND GENERATION

BOTTOM FRICTION DISSIPATION

WHITE CAPPING DISSIPATION

DEPTH-INDUCED BREAKING DISSIPATION

WAVE BLOCKING DISSIPATION

NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

TRIAD INTERACTION

1.42 CONSIDERATION OF TIDE

Type: Logical

Dimension: 0

Mnemo Variable MAREE

DEFAULT VALUE: .FALSE.

French keyword: PRISE EN COMPTE DE LA MAREE

Indicates whether a current is taken into account, either in a file or in cdicow.f.

Related keywords

FORMATTED TIDAL WATER LEVEL FILE

BINARY TIDAL WATER LEVEL FILE

TIDAL WATER LEVEL FILE FORMAT

TIDE REFRESHING PERIOD

TIDAL WATER LEVEL FILE BINARY

1.43 CURRENTS FILE BINARY

Type: String Dimension: 0

Mnemo Variable BINCOU

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES COURANTS

Type of the binary used for writing the currents file. That type depends on the machine in which the file was generated. The possible values are as follows: - IBM; for a file created in an IBM machine; - I3E; for a file created in a HP machine; - STD; normal READ and WRITE instructions are then generated.

Related keywords

BINARY CURRENTS FILE FORMATTED CURRENTS FILE CURRENTS FILE FORMAT

1.44 CURRENTS FILE FORMAT

Type: Integer
Dimension: 0
Mnemo INDIC
DEFAULT VALUE: 3

French keyword: FORMAT DU FICHIER DES COURANTS

Selection of the type of currents file format:

- 3 = selafin, TELEMAC type
- 4 = user format (the couuti.f procedure should then be amended)

Related keywords

CURRENTS BINARY FILE CURRENTS FORMATTED FILE CURRENTS FILE BINARY

1.45 DATE OF COMPUTATION BEGINNING

Type: Real
Dimension: 0
Mnemo DDC
DEFAULT VALUE: 0

French keyword: DATE DE DEBUT DU CALCUL

Gives the date of the computation beginning. The format is yyyymmddhhmm, as an exemple 199310241524 means the 24 october 93 at 15h24. This date gives a reference for reading the wind file.

Related keywords

BINARY WIND FILE FORMATTED WIND FILE WIND FILE BINARY WIND FILE FORMAT

1.46 DEBUGGER

Type: Integer
Dimension: 0
Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, calls of subroutines will be printed in the listing

1.47 DEFAULT EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEF

DEFAULT VALUE: 'builds|PPP|bin|tomawacMMMVVV.exe'

French keyword: EXECUTABLE PAR DEFAUT

Default executable for TOMAWAC

1.48 DEFAULT PARALLEL EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEFPARA

DEFAULT VALUE: 'builds|PPP|bin|tomawacMMMVVV.exe'
French keyword: EXECUTABLE PARALLELE PAR DEFAUT

Default parallel executable for Tomawac

1.49 DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRBJ
DEFAULT VALUE: 2

French keyword: DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2 : Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)
- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method
- 6 : Frequency Fread ordre 8 (peak frequency, 8th order Read method

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

1.50 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA

Type: Real
Dimension: 0
Mnemo ALFABJ

DEFAULT VALUE: 1.

French keyword: DEFERLEMENT 1 (BJ) CONSTANTE ALPHA

ALPHA constant for the Battjes and Janssen model.

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1 DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2

1.51 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1

Type: Real Dimension: 0

Mnemo GAMBJ1 DEFAULT VALUE: 0.88

French keyword: DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1

GAMMA1 constant of the Battjes and Janssen model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

DEFERLEMENT 1 (BJ) CONSTANTE ALPHA DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2

1.52 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

Type: Real Dimension: 0

Mnemo GAMBJ2

DEFAULT VALUE: 0.8

French keyword: DEFERLEMENT 1 (BJ) CONSTANTE GAMMA2

GAMMA1 constant of the Battjes and Janssen model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

DEFERLEMENT 1 (BJ) CHOIX FREQUENCE CARACTERISTIQUE

DEFERLEMENT 1 (BJ) CONSTANTE ALPHA DEFERLEMENT 1 (BJ) CONSTANTE GAMMA1

1.53 DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

Type: Integer
Dimension: 0
Mnemo IHMBJ
DEFAULT VALUE: 1

French keyword: DEFERLEMENT 1 (BJ) MODE DE CALCUL DE HM

Selection of the depth-induced breaking criterium giving the breaking wave height (1 : Hm = GAMMA*D; 2 : Hm given the Miche criterium).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FRE-

OUENCY

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

1.54 DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD

Type: Integer
Dimension: 0
Mnemo IQBBJ
DEFAULT VALUE: 2

French keyword: DEFERLEMENT 1 (BJ) MODE DE CALCUL DE QB

Selection of the method for the resolution of the implicit equation for QB.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FRE-

OUENCY

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1 DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

1.55 DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRTG
DEFAULT VALUE: 5

French keyword: DEFERLEMENT 2 (TG) CHOIX FREQUENCE CARACTERISTIQUE

Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2 : Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)

- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method
- 6: Frequency Fread ordre 8 (peak frequency, 8th order Read method

DEPTH-INDUCED BREAKING DISSIPATION DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

1.56 DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B

Type: Real Dimension: 0

Mnemo Variable BORETG

DEFAULT VALUE: 1.0

French keyword: DEFERLEMENT 2 (TG) CONSTANTE B

Coefficient B of the Thornton and Guza model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

1.57 DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

Type: Real Dimension: 0

Mnemo Variable GAMATG

DEFAULT VALUE: 0.42

French keyword: DEFERLEMENT 2 (TG) CONSTANTE GAMMA

Coefficient GAMMA of the Thornton and Guza model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B

1.58 DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION

Type: Integer
Dimension: 0
Mnemo IWHTG

DEFAULT VALUE: 2

French keyword: DEFERLEMENT 2 (TG) FONCTION DE PONDERATION Selection of the expression for the weighting function based on a probability distribution of the wave heights.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B
DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

1.59 DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRRO

DEFAULT VALUE: 5

French keyword: DEFERLEMENT 3 (RO) CHOIX FREQUENCE CARACTERISTIQUE Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2 : Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)
- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method
- 6: Frequency Fread ordre 8 (peak frequency, 8th order Read method

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.60 DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

Type: Real Dimension: 0

Mnemo Variable ALFARO

DEFAULT VALUE: 1.

French keyword: DEFERLEMENT 3 (RO) CONSTANTE ALPHA

Coefficient ALPHA of the Roelvink model (1993).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBU-

TION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING

FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FRE-

OUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.61 DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

Type: Real Dimension: 0

Mnemo Variable GAMARO

DEFAULT VALUE: 0.54

French keyword: DEFERLEMENT 3 (RO) CONSTANTE GAMMA

Coefficient GAMMA of the Roelvink model (1993).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBU-

TION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING

FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.62 DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

Type: Real Dimension: 0

Mnemo Variable GAM2RO

DEFAULT VALUE: 0.65

French keyword: DEFERLEMENT 3 (RO) CONSTANTE GAMMA2

Coefficient GAMMA2 of the Roelvink model (1993).

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBU-

TION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING

FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

1.63 DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION

Type: Integer Dimension: 0

Mnemo IEXPRO DEFAULT VALUE: 10

French keyword: DEFERLEMENT 3 (RO) EXPOSANT FONCTION DE PONDERATION

n exponent of the weighting function used in the Roelvink breaking model.

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBU-

TION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.64 DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION

Type: Integer
Dimension: 0
Mnemo IDISRO

DEFAULT VALUE: 1

French keyword: DEFERLEMENT 3 (RO) DISTRIBUTION DES HAUTEURS DE HOULE Selection of the wave height distribution for the Roelvink breaking model: 1...Weibull, 2...Rayleigh.

DEPTH-INDUCED BREAKING DISSIPATION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FRE-OUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

1.65 DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY

Type: Integer
Dimension: 0
Mnemo IFRIH
DEFAULT VALUE: 5

French keyword: DEFERLEMENT 4 (IH) CHOIX FREQUENCE CARACTERISTIQUE

Selection of the characteristic frequency of the wave spectrum

- 1 : Frequency Fmoy
- 2 : Frequency F01 (defined by the moments of order 0 and 1 of the spectrum)
- 3 : Frequency F02 (defined by the moments of order 0 and 2 of the spectrum)
- 4 : Frequency Fpic (sampling frequency corresponding to the max)
- 5 : Frequency Fread ordre 5 (peak frequency, 5th order Read method
- 6: Frequency Fread ordre 8 (peak frequency, 8th order Read method

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION
DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0
DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

1.66 DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETAO

Type: Real Dimension: 0

Mnemo Variable BETAIH

DEFAULT VALUE: 1.8

French keyword: DEFERLEMENT 4 (IH) CONSTANTE BETA0

coefficient BETA0 of the Izumiya and Horikawa model (1984).

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

1.67 DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

Type: Real Dimension: 0

Mnemo Variable EM2SIH

DEFAULT VALUE: 0.009

French keyword: DEFERLEMENT 4 (IH) CONSTANTE M2STAR

coefficient M2STAR of the Izumiya and Horikawa model (1984).

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0

1.68 DEPTH-INDUCED BREAKING DISSIPATION

Type: Integer Dimension: 0

Mnemo SBREK

DEFAULT VALUE: 0

French keyword: DISSIPATION PAR DEFERLEMENT

Selection of the modelling type of the bathymetric-induced breaking dissipation source term :

- 0 : Breaking is ignored.
- 1 : Battjes and Janssen model (1978).
- 2: Thornton and Guza model (1983).
- 3 : Roelvink model (1993).
- 4 : Izumiya and Horikawa model (1984).

NUMBER OF BREAKING TIME STEPS

DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD

DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1

DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2

DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION

DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B

DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBU-

TION

DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING

FUNCTION

DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FRE-

OUENCY

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA

DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2

DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FRE-

QUENCY

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETA0

DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR

1.69 DESCRIPTION OF LIBRARIES

Type: String Dimension: 6

Mnemo LINKLIBS

DEFAULT VALUE: 'builds|PPP|lib|tomawacMMMVVV.LLL;

builds|PPPllib|biefMMMVVV.LLL; builds|PPPllib|hermesMMMVVV.LLL; builds|PPPllib|damoMMMVVV.LLL; builds|PPPllib|paralle|MMMVVV.LLL; builds|PPPllib|specia|MMMVVV.LLL'

French keyword: DESCRIPTION DES LIBRAIRIES

TOMAWAC LIBRARIES description

1.70 DICTIONARY 33

1.70 DICTIONARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'tomawac.dico' French keyword: DICTIONNAIRE

Key word dictionary.

1.71 DIFFRACTION

Type: Integer
Dimension: 0
Mnemo DIFFRA

DEFAULT VALUE: 0

French keyword: DIFFRACTION

Caution: We do not guarantee the modele of diffraction. Select

- 0 : Diffraction is not taken into account
- 1 : Mild Slope Equation model (Berkhoff 1972)
- 2 : Revised Mild Slope Equation model (Porter 2003)

The phase-decoupled approach proposed by Holthuijsen (2003) is used to simulate diffraction in TOMAWAC

Related keywords

STARTING TIME STEP FOR DIFFRACTION VARIANCE THRESHOLD FOR DIFFRACTION DIFFRACTION FILTER

1.72 DIFFRACTION FILTER

Type: Logical Dimension: 0

Mnemo Variable FLTDIF

DEFAULT VALUE: .FALSE.

French keyword: FILTRE POUR DIFFRACTION

If diffraction is considered, the keyword indicates whether the local amplitudes of the directional spectra are filtered to compute the diffraction parameter and the transfer rates.

Related keywords

DIFFRACTION

VARIANCE THRESHOLD FOR DIFFRACTION STARTING TIME STEP FOR DIFFFRACTION

1.73 DISSIPATION BY STRONG CURRENT

Type: Integer
Dimension: 0
Mnemo SDSCU

DEFAULT VALUE: 0

French keyword: DISSIPATION PAR FORT COURANT

When wave-blocking effects are present (wave stopped by a strong opposing current), two options are possible. If its value is 1, an upper limit is imposed to the spectrum, using a Phillips (1977) shape. If its value is 2, a dissipative term is added, following Van der Westhuysen (2012).

Related keywords

DISSIPATION COEFFICIENT FOR STRONG CURRENT

1.74 DISSIPATION COEFFICIENT FOR STRONG CURRENT

Type: Real Dimension: 0

Mnemo CDSCUR DEFAULT VALUE: 0.65

French keyword: COEFFICIENT DE DISSIPATION PAR FORT COURANT Dissipation coefficient for waves stopped by a strong opposing current (wave blocking effects). Van der Westhuysen (2012) expression: Cds,cur.

Related keywords

DISSIPATION BY STRONG CURRENT

1.75 FINITE ELEMENT ASSEMBLY

Type: Integer Dimension: 0

Mnemo MODASS

DEFAULT VALUE: 1

French keyword: ASSEMBLAGE EN ELEMENTS FINIS

1: normal 2: with I8 integers

1.76 FORMATTED CURRENTS FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACCOF)

DEFAULT VALUE: '

French keyword: FICHIER DES COURANTS FORMATE

Name of the current data file (if formatted).

Related keywords

CONSIDERATION OF A STATIONARY CURRENT

CONSIDERATION OF TIDE BINARY CURRENTS FILE CURRENTS FILE FORMAT

1.77 FORMATTED FILE 1

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACFO1)

DEFAULT VALUE: '

French keyword: FICHIER FORMATE 1 Formatted data file made available to the user.

1.78 FORMATTED TIDAL WATER LEVEL FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACMAF)

DEFAULT VALUE: '

French keyword: FICHIER DU NIVEAU DE LA MAREE FORMATE

Name of the current data file (if formatted).

Related keywords

CONSIDERATION OF TIDE

BINARY TIDAL WATER LEVEL FILE TIDAL WATER LEVEL FILE FORMAT

TIDE REFRESHING PERIOD

TIDAL WATER LEVEL FILE BINARY

1.79 FORMATTED WINDS FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACVEF)

DEFAULT VALUE:

French keyword: FICHIER DES VENTS FORMATE

Name of wind data file (if formatted).

Related keywords

CONSIDERATION OF WIND

BINARY WINDS FILE WINDS FILE FORMAT

1.80 FORTRAN FILE

Type: String Dimension: -1

Mnemo Variable NOMFOR

DEFAULT VALUE: 'DEFAUT1'

French keyword: FICHIER FORTRAN Name of FORTRAN file to be submitted.

1.81 FREQUENTIAL RATIO

Type: Real
Dimension: 0
Mnemo RAISF
DEFAULT VALUE: 1.1

French keyword: RAISON FREQUENTIELLE
Define the ratio between 2 successive discretised frequencies

Related keywords

MINIMAL FREQUENCY NUMBER OF FREQUENCIES SPECTRUM TAIL FACTOR

1.82 GEOMETRY FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACGEO)

DEFAULT VALUE: '

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the grid of the computation to be made.

Related keywords

GEOMETRY FILE BINARY

1.83 GEOMETRY FILE BINARY

Type: String Dimension: 0

Mnemo Variable BINGEO

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DE GEOMETRIE

Type of the binary used for writing the geometry file. That type depends on the machine in which the file was generated. The possible values are as follows: - IBM; for a file created in an IBM machine; - I3E; for a file created in a HP machine; - STD; normal READ and WRITE instructions are then generated.

Related keywords

GEOMETRY FILE

1.84 GEOMETRY FILE FORMAT

Type: String Dimension: -1

Mnemo WAC_FILES(WACGEO)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Geometry file format. Possible values are:

• SERAFIN : classical single precision format in Telemac;

- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.85 GLOBAL RESULT FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACRBI)

DEFAULT VALUE:

French keyword: FICHIER DES RESULTATS GLOBAUX

Name of the file in which the table F (density spectrum) is written at the end of the computation in order to realise a next computation.

Related keywords

BINARY OF THE GLOBAL RESULT FILE

1.86 GLOBAL RESULT FILE BINARY

Type: String Dimension: 0

Mnemo Variable BINRBI

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES RESULTATS GLOBAUX

Type of the binary used for writing the global result file. That type depends on the machine in which the file was generated. The possible values are as follows:

- IBM; for a file created in an IBM machine;
- I3E; for a file created in a HP machine;
- STD; normal READ and WRITE instructions are then generated.

Related keywords

GLOBAL RESULT FILE

1.87 GLOBAL RESULT FILE FORMAT

Type: String
Dimension: -1

Mnemo WAC FILES(WACRBI)

DEFAULT VALUE: 'SERAFIND'

French keyword: FORMAT DU FICHIER DES RESULTATS GLOBAUX

Previous computation results file format. Possible values are:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.88 IMPLICITATION COEFFICIENT FOR SOURCE TERMS

Type: Real Dimension: 0

Mnemo Variable CIMPLI

DEFAULT VALUE: 0.5

French keyword: COEFFICIENT IMPLICITATION POUR TERMES SOURCES

Implicitation coefficient for the source terms integration, included between 0 et 1.

• CIMPLI=0. : explicit

• CIMPLI=0.5 : semi-implicit

• CIMPLI=1. : implicit.

Related keywords

CONSIDERATION OF SOURCE TERMS

1.89 INFINITE DEPTH

Type: Logical Dimension: 0

Mnemo Variable PROINF

DEFAULT VALUE: .FALSE.

French keyword: PROFONDEUR INFINIE

Indicates whether an infinite depth is assumed. If so, bottom friction is inhibited.

1.90 INITIAL ANGULAR DISTRIBUTION FUNCTION

Type: Integer
Dimension: 0
Mnemo FRABI
DEFAULT VALUE: 1

French keyword: FONCTION DE REPARTITION ANGULAIRE INITIALE

Is part of the set of constants used for computing the initial directional spectrum. Allow the computation of the angular distribution function

- 1: $cos^{2s}(T-T0)$; with T in [T0-pi/2;T0+pi/2]
- 2: $exp(-0.5((T-T0)/s)^2)$; with T in [T0-pi/2;T0+pi/2]
- $3 : cos^{2s}((T-T0)/2)$ (of type Mitsuyasu)

where s is the boundary directionnal spread (SPRED1 or SPRED2)

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.91 INITIAL DIRECTIONAL SPREAD 1

Type: Real Dimension: 0

Mnemo SPRED1

DEFAULT VALUE: 2.

French keyword: ETALEMENT DIRECTIONNEL 1 INITIAL

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.92 INITIAL DIRECTIONAL SPREAD 2

Type: Real Dimension: 0

Mnemo SPRED2

DEFAULT VALUE: 2

French keyword: ETALEMENT DIRECTIONNEL 2 INITIAL

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.93 INITIAL MAIN DIRECTION 1

Type: Real
Dimension: 0
Mnemo TETA1
DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 1 INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.94 INITIAL MAIN DIRECTION 2

Type: Real
Dimension: 0
Mnemo TETA2
DEFAULT VALUE: 0.

French keyword: DIRECTION PRINCIPALE 2 INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.95 INITIAL MAXIMUM PEAK FREQUENCY

Type: Real Dimension: 0

Mnemo FREMAX

DEFAULT VALUE: 0.2

French keyword: FREQUENCE DE PIC MAXIMALE INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.96 INITIAL MEAN FETCH VALUE

Type: Real
Dimension: 0
Mnemo FETCH
DEFAULT VALUE: 30000.

French keyword: VALEUR MOYENNE DU FETCH INITIAL

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.97 INITIAL PEAK FACTOR

Type: Real Dimension: 0

Mnemo GAMMA DEFAULT VALUE: 3.3

French keyword: FACTEUR DE PIC INITIAL

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.98 INITIAL PEAK FREQUENCY

Type: Real
Dimension: 0
Mnemo FPIC
DEFAULT VALUE: 0.067

French keyword: FREQUENCE DE PIC INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.99 INITIAL PHILLIPS CONSTANT

Type: Real Dimension: 0

Mnemo ALPHIL DEFAULT VALUE: 0.018

French keyword: CONSTANTE DE PHILLIPS INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.100 INITIAL SIGNIFICANT WAVE HEIGHT

Type: Real
Dimension: 0
Mnemo HM0
DEFAULT VALUE: 1.

French keyword: HAUTEUR SIGNIFICATIVE INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.101 INITIAL STILL WATER LEVEL

Type: Real Dimension: 0

Mnemo ZREPOS

DEFAULT VALUE:

French keyword: COTE INITIALE DU PLAN D'EAU AU REPOS

Parameter used in the computation of the initial water DEPTH: DEPTH=ZREPOS-ZF.

1.102 INITIAL TIME SET TO ZERO

Type: Logical

Dimension: 0

Mnemo RAZTIM DEFAULT VALUE: NO

French keyword: REMISE A ZERO DU TEMPS

Initial time set to zero in case of restart

1.103 INITIAL VALUE OF SIGMA-A FOR SPECTRUM

Type: Real Dimension: 0

Mnemo SIGMAA DEFAULT VALUE: 0.07

French keyword: VALEUR INITIALE DE SIGMA-A POUR SPECTRE

Is part of the set of constants used for computing the boundary directional spectrum as a function

of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.104 INITIAL VALUE OF SIGMA-B FOR SPECTRUM

Type: Real Dimension: 0

Mnemo SIGMAB DEFAULT VALUE: 0.09

French keyword: VALEUR INITIALE DE SIGMA-B POUR SPECTRE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.105 INITIAL WEIGHTING FACTOR FOR ADF

Type: Real Dimension: 0

Mnemo XLAMDA

DEFAULT VALUE: 1.

French keyword: FACTEUR DE PONDERATION POUR FRA INITIALE

Is part of the set of constants used for computing the boundary directional spectrum as a function of the wind field.

Related keywords

TYPE OF INITIAL DIRECTIONAL SPECTRUM

1.106 LIMIT SPECTRUM MODIFIED BY USER

Type: Logical
Dimension: 0
Mnemo SPEULI
DEFAULT VALUE: .FALSE.

French keyword: SPECTRE AUX LIMITES MODIFIE PAR L'UTILISATEUR Indicates whether the user wants to modify the boundary spectrum. He should then retrieve the limwac.f subroutine, if the spectrum is frequency discretized, or the spelim.f subroutine, otherwise.

Related keywords

TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

1.107 LINEAR WAVE GROWTH

Type: Integer
Dimension: 0
Mnemo LVENT

DEFAULT VALUE: 0

French keyword: CROISSANCE LINEAIRE DES VAGUES

Possibility to add a linear wave growth term to the wind generation source term. If its value is 0, the linear wave growth is ignored; if its value is 1, it is added to the source term, as in the formula of Cavaleri and Malanotte-Rizzoli (1981).

Related keywords

CONSIDERATION OF A WIND

WINDS FILE

1.108 LIST OF FILES

Type: String Dimension: 21

Mnemo

DEFAULT VALUE: 'STEERING FILE;

DICTIONARY; FORTRAN FILE; GEOMETRY FILE;

BOUNDARY CONDITIONS FILE; BOTTOM TOPOGRAPHY FILE;

2D RESULTS FILE;

PUNCTUAL RESULTS FILE;

PREVIOUS COMPUTATION FILE;

GLOBAL RESULT FILE; BINARY CURRENTS FILE; FORMATTED CURRENTS FILE;

BINARY FILE 1; FORMATTED FILE 1; BINARY WINDS FILE; FORMATTED WINDS FILE;

PA'

French keyword: LISTE DES FICHIERS

Names of the files used by the software

1.109 MAXIMUM VALUE OF THE RATIO HMO ON D

Type: Real Dimension: 0

Mnemo Variable COEFHS

DEFAULT VALUE: 1.

French keyword: VALEUR MAXIMALE DU RAPPORT HMO SUR D

At the beginning of the integration of the source terms, the wave height is lopped in order to satisfy the specified criterium.

DEPTH-INDUCED BREAKING DISSIPATION

1.110 MINIMAL FREQUENCY

Type: Real
Dimension: 0
Mnemo F1
DEFAULT VALUE: 1

French keyword: FREQUENCE MINIMALE

Define the minimal frequency in Hz. The discretised frequencies are computed from the FRE-QUENTIAL RATIO r and the NUMBER OF FREQUENCIES NF by the relation $f = f_0 * r^{k-1}$ k=1,NF.

Related keywords

FREQUENTIAL RATIO NUMBER OF FREQUENCIES SPECTRUM TAIL FACTOR

1.111 MINIMUM WATER DEPTH

Type: Real Dimension: 0

Mnemo Variable PROMIN

DEFAULT VALUE: 0.1

French keyword: PROFONDEUR D'EAU MINIMALE

Defines the minimum water depth below which bottom elevations are regarded as dry.

1.112 NAMES OF VARIABLES

Type: String Dimension: 5

Mnemo NAMEU, NAMEV, NAMEWX, NAMEWY, NAMEH

DEFAULT VALUE: 'VITESSE U M/S;

VITESSE V M/S; VENT X M/S; VENT Y M/S;

HAUTEUR D'EAU M'

French keyword: NOMS DES VARIABLES Names of variables in SERAFIN format files

- 1: Velocity U
- 2: Velocity V
- 3: Wind velocity along X
- 4: Wind velocity along Y
- 5: Depth

1.113 NEXT COMPUTATION

Type: Logical

Dimension: 0

Mnemo Variable SUIT DEFAULT VALUE: .FALSE.

French keyword: SUITE DE CALCUL Indicates whether a next compution is done.

Related keywords

PREVIOUS RESULTS FILE

1.114 NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

Type: Integer
Dimension: 0
Mnemo STRIF
DEFAULT VALUE: 0

French keyword: TRANSFERTS NON LINEAIRES INTER-FREQUENCES

Selection of the modelling type of the non-linear transfert source term. If its value is 0, the non-linear transfers are ignored; if its value is 1, they are integrated in accordance with the formula of WAM cycle 4 (DIA method), if its value is 2, the MDIA (Multiple DIA) method is used to calculate the non linear transfer term, if its value is 3, the non linear transfer term is calculated with the exact GQM method.

Related keywords

STANDARD CONFIGURATION PARAMETER

SETTING FOR INTEGRATION ON OMEGA1

SETTING FOR INTEGRATION ON THETA1

SETTING FOR INTEGRATION ON OMEGA2

THRESHOLDO FOR CONFIGURATIONS ELIMINATION

THRESHOLD1 FOR CONFIGURATIONS ELIMINATION

THRESHOLD2 FOR CONFIGURATIONS ELIMINATION

1.115 NUMBER OF BREAKING TIME STEPS

Type: Integer Dimension: 0

Mnemo NDTBRK

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-PAS DE TEMPS POUR LE DEFERLEMENT Number of time steps for the breaking source term. These time steps are in a geometric progression

Related keywords

DEPTH-INDUCED BREAKING DISSIPATION
COEFFICIENT FOR THE BREAKING TIME STEPS

1.116 NUMBER OF DIRECTIONS

Type: Integer
Dimension: 0
Mnemo NPLAN
DEFAULT VALUE: 12

French keyword: NOMBRE DE DIRECTIONS

Defines the number of wave propagation directions. The propagation directions are evenly distributed from 0 to 360 degrees.

1.117 NUMBER OF FIRST ITERATION FOR GRAPHICS PRINTOUTS

Type: Integer

Dimension: 0

Mnemo GRADEB

DEFAULT VALUE: 0

French keyword: NUMERO DE LA PREMIERE ITERATION POUR LES SORTIES GRAPHIQUES

Determines the number of iterations over mean angular frequency from which the results are first written into the 2D RESULTS FILE and the PUNCTUAL RESULTS FILE.

Related keywords

PERIOD FOR GRAPHIC PRINTOUTS

VARIABLES FOR 2D GRAPHIC PRINTOUTS

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

ORDINATES OF SPECTRUM PRINTOUT POINTS

2D RESULTS FILE

PUNCTUAL RESULTS FILE

1.118 NUMBER OF FREQUENCIES

Type: Integer
Dimension: 0
Mnemo NF
DEFAULT VALUE: 15

French keyword: NOMBRE DE FREQUENCES

Defines the number of wave propagation frequencies. The propagation frequencies are geometrically distributed as a fonction of the MINIMAL FREQUENCY OF THE COMPUTATION and the FREQUENTIAL REASON

Related keywords

FREQUENTIAL RATIO SPECTRUM TAIL FACTOR

1.119 NUMBER OF ITERATIONS FOR THE SOURCE TERMS

Type: Integer
Dimension: 0
Mnemo NSITS
DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS-ITERATIONS POUR LES TERMES SOURCES Number of sub-iterations for the computation of the source terms. The time step considered in

the integration of the source terms is the ratio between the TIME STEP and the NUMBER OF SUB-ITERATIONS FOR THE SOURCE TERMS

Related keywords

TIME STEP

1.120 NUMBER OF PRIVATE ARRAYS

Type: Integer

Dimension: 0

Mnemo Variable NPRIV

DEFAULT VALUE: 0

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of private arrays used by the user

1.121 NUMBER OF TIME STEP

Type: Integer
Dimension: 0
Mnemo NIT
DEFAULT VALUE: 1

French keyword: NOMBRE DE PAS DE TEMPS

Define the number of time step.

Related keywords

TIME STEP

1.122 OPTION FOR DIAGNOSTIC TAIL

Type: Integer
Dimension: 0
Mnemo DIAGHF

DEFAULT VALUE: 1

French keyword: OPTION POUR LA QUEUE DIAGNOSTIQUE

Option to treat the spectrum diagnotic tail.

- 0 : No diagnostic tail
- 1 : A decrease in f^{-TAILF} is imposed beyond max(4fPM;2.5fmoy)

Related keywords

SPECTRUM TAIL FACTOR NUMBER OF FREQUENCIES FREQUENTIAL RATIO

1.123 OPTION FOR SECOND DERIVATIVES

Type: Integer Dimension: 0

Mnemo OPTDER

DEFAULT VALUE: 1

French keyword: OPTION POUR LES DERIVEES SECONDES

1: Freemesh method 2: two simple derivatives

1.124 ORDINATES OF SPECTRUM PRINTOUT POINTS

Type: Real
Dimension: 2
Mnemo YLEO

DEFAULT VALUE:

French keyword: ORDONNEES DES POINTS DE SORTIE DU SPECTRE

Array providing the ordinates of the Seraphin spectrum printout points with a maximum dimension of 99. The spectrum printout points are the closest 2D points to the specified co-ordinates

Related keywords

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

PUNCTUAL RESULT FILE

1.125 ORIGIN COORDINATES

Type: Integer

Dimension: 2

Mnemo I_ORIG,J_ORIG

DEFAULT VALUE: 0;0

French keyword: COORDONNEES DE L'ORIGINE

Value in metres, used to avoid large real numbers, added in Selafin format, but so far no other

treatment

1.126 PARALLEL PROCESSORS

Type: Integer
Dimension: 0
Mnemo NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

NUMBER OF PROCESSORS FOR PARALLEL PROCESSING 0 : 1 machine, compiling without parallel library 1 : 1 machine, compiling with a parallel library 2 : 2 processors or machines in parallel etc....

1.127 PARTITIONING TOOL

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR PARTITIONING TOOL SELECTION

• 1: METIS

• 2: SCOTCH

• 3 : PARMETIS

• 4: PTSCOTCH

1.128 PERIOD FOR GRAPHIC PRINTOUTS

Type: Integer Dimension: 0

Mnemo GRAPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES GRAPHIQUES

Determines the printing period, in number of time step of the VARIABLES FOR 2D GRAPHIC PRINTOUTS in the 2D RESULTS FILE and the PUNCTUAL RESULTS FILE.

Related keywords

VARIABLES FOR 2D GRAPHIC PRINTOUTS ABSCISSAE OF SPECTRUM PRINTOUT POINTS ORDINATES OF SPECTRUM PRINTOUT POINTS

2D RESULTS FILE

PUNCTUAL RESULTS FILE

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.129 PERIOD FOR LISTING PRINTOUTS

Type: Integer
Dimension: 0
Mnemo LISPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES LISTING

Determines the period, in number of time step of the software messages in the listing file.

1.130 PREVIOUS COMPUTATION FILE

Type: String Dimension: 0

Mnemo Variable WAC FILES(WACPRE)

DEFAULT VALUE: "

French keyword: FICHIER DU CALCUL PRECEDENT

Name of the file containing the global results of a previous computation realised with the same mesh. This file gives the initial conditions for a next computation.

Related keywords

BINARY OF THE PREVIOUS COMPUTATION FILE

1.131 PREVIOUS COMPUTATION FILE BINARY

Type: String Dimension: 0

Mnemo Variable BINPRE

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DU CALCUL PRECEDENT

Type of the binary used for reading the previous computation file. That type depends on the machine in which the file was generated. The possible values are as follows:

- IBM; for a file created in an IBM machine;
- I3E; for a file created in a HP machine;
- STD; normal READ and WRITE instructions are then generated.

Related keywords

PREVIOUS COMPUTATION FILE

1.132 PREVIOUS COMPUTATION FILE FORMAT

Type: String Dimension: -1

Mnemo WAC_FILES(WACPRE)

DEFAULT VALUE: 'SERAFIND'

French keyword: FORMAT DU FICHIER DU CALCUL PRECEDENT

Previous computation results file format. Possible values are only:

- SERAFIN : classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.133 PUNCTUAL RESULTS FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACLEO)

DEFAULT VALUE: 'spect'

French keyword: FICHIER DES RESULTATS PONCTUELS

Name of the file into which the punctual spectra will be written.

Related keywords

PUNCTUAL RESULTS FILE BINARY

ABSCISSAE OF SPECTRUM PRINTOUT POINTS

ORDINATES OF SPECTRUM PRINTOUT POINTS

PERIOD FOR GRAPHIC PRINTOUTS

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS

1.134 PUNCTUAL RESULTS FILE BINARY

Type: String Dimension: 0

Mnemo Variable BINLEO

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES RESULTATS PONCTUELS Type of the binary used for writing the puntual results file. That type depends on the machine in which the file was generated. The possible values are as follows:

- IBM; for a file created in an IBM machine;
- I3E; for a file created in a HP machine;
- STD; normal READ and WRITE instructions are then generated.

Related keywords

PUNCTUAL RESULTS FILE

1.135 RANK OF THE WATER LEVEL DATA IN THE TELEMAC FILE

Type: Integer
Dimension: 0
Mnemo IDHMA

DEFAULT VALUE: 4

French keyword: RANG DU NIVEAU DE LA MAREE DANS LE FICHIER TELEMAC

Rank of the water level data in the TELEMAC file

Related keywords

CONSIDERATION OF TIDE

BINARY TIDAL WATER LEVEL FILE

FORMATTED TIDAL WATER LEVEL FILE

TIDAL WATER LEVEL FILE BINARY

TIDE REFRESHING PERIOD

1.136 RECOVERY OF TELEMAC DATA ITEM

Type: Logical Dimension: 0

Mnemo Variable DONTEL

DEFAULT VALUE: .FALSE.

French keyword: RECUPERATION DE DONNEE TELEMAC

Indicates whether TELEMAC data are recovered in LECDON. If so, a proper-formatted CUR-RENTS FILE should be used and the rank of the respective variable should be entered into the TELEMAC file.

Related keywords

BINARY CURRENTS FILE

FORMATTED CURRENTS FILE

CURRENTS FILE TYPE

RANK OF THE TELEMAC DATA ITEM TO BE RECOVERED

TIME INCREMENT NUMBER IN TELEMAC FILE

1.137 REFERENCE FILE

Type: String Dimension: 0

Mnemo Variable WAC_FILES(WACREF)

DEFAULT VALUE:

French keyword: FICHIER DE REFERENCE

Name of validation data file

Related keywords

VALIDATION

1.138 REFERENCE FILE FORMAT

Type: String
Dimension: -1

Mnemo WAC_FILES(WACREF)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Previous computation results file format. Possible values are:

- SERAFIN: classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;
- MED: MED format based on HDF5

1.139 RELEASE

Type: String Dimension: 0

Mnemo Variable VERS

DEFAULT VALUE: 'V7P2'

French keyword: NUMERO DE VERSION

Release number

1.140 SATURATION THRESHOLD FOR THE DISSIPATION

Type: Real Dimension: 0

Mnemo Variable CMOUT4

DEFAULT VALUE: 0.00175

French keyword: SEUIL DE SATURATION POUR LA DISSIPATION

White capping dissipation coefficient of van der Westhuysen (2007): Br (saturation threshold).

Related keywords

WHITE CAPPING DISSIPATION

WESTHUYSEN DISSIPATION COEFFICIENT WESTHUYSEN WHITE CAPPING DISSIPATION

WESTHUYSEN WEIGHTING COEFFICIENT

1.141 SETTING FOR INTEGRATION ON OMEGA1

Type: Integer Dimension: 0

Mnemo Variable IQ OM1

DEFAULT VALUE: 3

French keyword: REGLAGE POUR INTEGRATION SUR OMEGA1

Choice of setting giving the number of integration points on omega1 when the non linear transfer term is calculated with the exact GQM method: rough 3; medium 1; fine 2

1.142 SETTING FOR INTEGRATION ON OMEGA2

Type: Integer Dimension: 0

Mnemo NQ_OM2

DEFAULT VALUE: 6

French keyword: REGLAGE POUR INTEGRATION SUR OMEGA2

Number of integration points on omega2 when the non linear transfer term is calculated with the exact GQM method: rough 6; medium 8; fine 12

1.143 SETTING FOR INTEGRATION ON THETA 1

Type: Integer
Dimension: 0
Mnemo NQ_TE1

DEFAULT VALUE: 3

French keyword: REGLAGE POUR INTEGRATION SUR THETA1

Choice of setting giving the number of integration points on theta1 (number of integration points= 2*NQ_TE1) when the non linear transfer term is calculated with the exact GQM method: rough 3; medium 4; fine 8

1.144 SHIFT GROWING CURVE DUE TO WIND

Type: Real
Dimension: 0
Mnemo DECAL
DEFAULT VALUE: 0.011

French keyword: DECALAGE COURBE DE CROISSANCE DUE AU VENT

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.145 SPECTRUM ENERGY THRESHOLD

Type: Real Dimension: 0

Mnemo E2FMIN DEFAULT VALUE: 1.D-30

French keyword: SEUIL D'ENERGIE CONSIDERE POUR LE SPECTRE

For initial conditions, the energy on a frequency-direction component lower to this threshold is taken to 0. Useful for comparisons with WAM cycle 4.

1.146 SPECTRUM FILE FORMAT

Type: String Dimension: -1

Mnemo WAC_FILES(WACLEO)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE SPECTRE

Spectrum results file format. Possible values are:

- SERAFIN: classical single precision format in Telemac;
- SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5

1.147 SPECTRUM TAIL FACTOR

Type: Real
Dimension: 0
Mnemo TAILF
DEFAULT VALUE: 5.

French keyword: FACTEUR DE QUEUE DU SPECTRE

Used to consider in the computations the contribution of the non discretised high frequencies

Related keywords

NUMBER OF FREQUENCIES

FREQUENTIAL RATIO

1.148 SPHERICAL COORDINATES

Type: Logical Dimension: 0

Mnemo Variable SPHE DEFAULT VALUE: .FALSE.

French keyword: COORDONNEES SPHERIOUES

Indicates whether the coordinates are spherical (unit=degree) or cartesian (unit=meter).

1.149 STANDARD CONFIGURATION PARAMETER

Type: Real Dimension: 0

Mnemo Variable XLAMD

DEFAULT VALUE: 0.25

French keyword: PARAMETRE DE LA CONFIGURATION STANDARD

Parameter defining the standard configuration for the quadruplet interactions in the DIA method.

Related keywords

NON-LINEAR TRANSFERS

1.150 STARTING TIME STEP FOR DIFFFRACTION

Type: Integer
Dimension: 0
Mnemo NPTDIF

DEFAULT VALUE:

French keyword: PAS DE TEMPS DEBUT DIFFRACTION

Number of the time step from which the diffraction is taken into account until the end of the simulation.

Related keywords

DIFFRACTION

VARIANCE THRESHOLD FOR DIFFRACTION

DIFFRACTION FILTER

1.151 STATIONARY WIND

Type: Logical Dimension: 0

Mnemo Variable VENSTA

DEFAULT VALUE: .TRUE.

French keyword: VENT STATIONNAIRE

Indicates whether the wind evolves temporally and requires to be updated

Related keywords

CONSIDERATION OF A WIND

1.152 STEERING FILE

Type: String Dimension: 0

Mnemo Variable WACCAS

DEFAULT VALUE: 'cas'

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation to be made.

1.153 THRESHOLDO FOR CONFIGURATIONS ELIMINATION

Type: Real Dimension: 0

Mnemo Variable SEUIL

DEFAULT VALUE: 0.00

French keyword: SEUILO ELIMINATION DE CONFIGURATIONS

Choice of threshold for configurations elimination when the non linear transfer term is calculated with the exact GQM method

Related keywords

THRESHOLD1 FOR CONFIGURATIONS ELIMINATION THRESHOLD2 FOR CONFIGURATIONS ELIMINATION NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

1.154 THRESHOLD 1 FOR CONFIGURATIONS ELIMINATION

Type: Real Dimension: 0

Mnemo Variable SEUIL1 DEFAULT VALUE: 10000000000.0

French keyword: SEUIL1 ELIMINATION DE CONFIGURATIONS

Choice of threshold1 for configurations elimination when the non linear transfer term is calculated with the exact GQM method

Related keywords

THRESHOLD0 FOR CONFIGURATIONS ELIMINATION THRESHOLD2 FOR CONFIGURATIONS ELIMINATION NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

1.155 THRESHOLD2 FOR CONFIGURATIONS ELIMINATION

Type: Real Dimension: 0

Mnemo Variable SEUIL2

DEFAULT VALUE: 0.15

French keyword: SEUIL2 ELIMINATION DE CONFIGURATIONS

Choice of threshold2 for configurations elimination when the non linear transfer term is calculated with the exact GQM method: rough 0.15; medium 0.01; fine 0.001

Related keywords

THRESHOLDO FOR CONFIGURATIONS ELIMINATION THRESHOLDO FOR CONFIGURATIONS ELIMINATION NON-LINEAR TRANSFERS BETWEEN FREQUENCIES

1.156 TIDAL WATER LEVEL FILE BINARY

Type: String Dimension: 0

Mnemo BINMAR DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DU NIVEAU DE LA MAREE

Type of the binary used for writing the currents file. That type depends on the machine in which the file was generated. The possible values are as follows:

- IBM; for a file created in an IBM machine;
- I3E; for a file created in a HP machine;
- STD; normal READ and WRITE instructions are then generated.

CONSIDERATION OF TIDE
BINARY TIDAL WATER LEVEL FILE
FORMATTED TIDAL WATER LEVEL FILE
TIDAL WATER LEVEL FILE FORMAT
TIDE REFRESHING PERIOD

1.157 TIDAL WATER LEVEL FILE FORMAT

Type: Integer
Dimension: 0
Mnemo INDIM
DEFAULT VALUE: 3

French keyword: FORMAT DU FICHIER DU NIVEAU DE LA MAREE

Selection of the type of tidal water level file format:

• 3 = selafin, TELEMAC type

• 4 = user format (the maruti.f procedure should then be amended)

Related keywords

CONSIDERATION OF TIDE
BINARY TIDAL WATER LEVEL FILE
FORMATTED TIDAL WATER LEVEL FILE
TIDAL WATER LEVEL FILE BINARY
TIDE REFRESHING PERIOD

1.158 TIDE REFRESHING PERIOD

Type: Integer
Dimension: 0
Mnemo LAM
DEFAULT VALUE: 1

French keyword: PERIODE D'ACTUALISATION DE LA MAREE

Determines the period in number of iterations to update the tidal currents and the water depth.

Related keywords

CONSIDERATION OF TIDE
BINARY TIDAL WATER LEVEL FILE
FORMATTED TIDAL WATER LEVEL FILE
TIDAL WATER LEVEL FILE BINARY
FORMAT DU FICHIER DU NIVEAU DE LA MAREE

1.159 TIME INCREMENT NUMBER IN TELEMAC FILE

Type: Integer
Dimension: 0
Mnemo NPTT
DEFAULT VALUE: 1

French keyword: NUMERO DU PAS DE TEMPS DU FICHIER TELEMAC

Indicates the number of the time increment in the TELEMAC results file (currents file) corresponding to the desired time for data recovery.

Related keywords

RANK OF THE TELEMAC DATA ITEM TO BE RECOVERED

RECOVERY OF TELEMAC DATA ITEM

1.160 TIME SHIFT IN CURRENTS FILE

Type: Real Dimension: 0

Mnemo PHASCOB

DEFAULT VALUE: 0.

French keyword: DEPHASAGE DU FICHIER DES COURANTS Will be withdrawn from the time read in the file. The unit is that of the file

1.161 TIME SHIFT IN TIDAL WATER LEVEL FILE

Type: Real Dimension: 0

Mnemo PHASMAB

DEFAULT VALUE: 0.

French keyword: DEPHASAGE DU FICHIER DU NIVEAU DE LA MAREE

Will be withdrawn from the time read in the file. The unit is that of the file

1.162 TIME SHIFT IN WINDS FILE

Type: Real Dimension: 0

Mnemo PHASVEB

DEFAULT VALUE: 0.

French keyword: DEPHASAGE DU FICHIER DES VENTS Will be withdrawn from the time read in the file. The unit is that of the file

1.163 TIME STEP

Type: Real
Dimension: 0
Mnemo DT
DEFAULT VALUE: 1.

French keyword: PAS DE TEMPS

Define the time step in seconds.

Related keywords

NUMBER OF TIME STEPS

1.164 TIME UNIT IN CURRENTS FILE

Type: Real Dimension: 0

Mnemo UNITCOB

DEFAULT VALUE: 1.

French keyword: UNITE DE TEMPS DU FICHIER DES COURANTS

Unit given in seconds, for example 3600. if time is given in hours

1.165 TIME UNIT IN TIDAL WATER LEVEL FILE

Type: Real Dimension: 0

Mnemo UNITMAB

DEFAULT VALUE: 1.

French keyword: UNITE DE TEMPS DU FICHIER DU NIVEAU DE LA MAREE

Unit given in seconds, for example 3600. if time is given in hours

1.166 TIME UNIT IN WINDS FILE

Type: Real Dimension: 0

Mnemo UNITVEB

DEFAULT VALUE: 1.

French keyword: UNITE DE TEMPS DU FICHIER DES VENTS

Unit given in seconds, for example 3600. if time is given in hours

1.167 TITLE

Type: String Dimension: 0

Mnemo Variable TITCAS
DEFAULT VALUE: 'SET A TITLE!!!'

French keyword: TITRE Title of the case being studied.

1.168 TRIAD INTERACTIONS

Type: Integer
Dimension: 0
Mnemo STRIA
DEFAULT VALUE: 0

French keyword: TRANSFERTS ENTRE TRIPLETS DE FREQUENCES

Selection of the triad interaction model:

• 0 : no triad interactions

• 1 : LTA model (Eldeberky, 1996)

• 2 : SPB model (Becq, 1998)

TRIADS 1 (LTA) COEFFICIENT ALPHA

TRIADS 1 (LTA) COEFFICIENT RFMLTA

TRIADS 2 (SPB) COEFFICIENT K

TRIADS 2 (SPB) LOWER DIRECTIONAL BOUND

TRIADS 2 (SPB) UPPER DIRECTIONAL BOUND

1.169 TRIADS 1 (LTA) COEFFICIENT ALPHA

Type: Real Dimension: 0

Mnemo Variable ALFLTA

DEFAULT VALUE:

French keyword: TRIADS 1 (LTA) CONSTANTE ALPHA

Coefficient alpha of the LTA model proposed by Eldeberky(1996). If alpha=0, no energy transfers. The energy transfers increase with alpha.

Related keywords

TRIAD INTERACTIONS

TRIADS 1 (LTA) COEFFICIENT RFMLTA

1.170 TRIADS 1 (LTA) COEFFICIENT RFMLTA

Type: Real Dimension: 0

Mnemo Variable RFMLTA

DEFAULT VALUE: 2.5

French keyword: TRIADS 1 (LTA) CONSTANTE REMLTA

RFMLTA determines the upper frequency on which the energy transfers may occur. The maximal frequency is calculated as the product of the constant RFMLTA by the peak frequency of the spectrum.

Related keywords

TRIAD INTERACTIONS

TRIADS 1 (LTA) COEFFICIENT ALPHA

1.171 TRIADS 2 (SPB) COEFFICIENT K

Type: Real Dimension: 0

Mnemo Variable KSPB

DEFAULT VALUE: 0.34

French keyword: TRIADS 2 (SPB) CONSTANTE K

coefficient K of the SPB model

TRIAD INTERACTIONS
TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY
TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

1.172 TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY

Type: Real Dimension: 0

Mnemo Variable BDISPB

DEFAULT VALUE: 0.

French keyword: TRIADS 2 (SPB) BORNE DIRECTIONNELLE INFERIEURE

Lower directional boundary of the SPB model

Related keywords

TRIAD INTERACTIONS

TRIADS 2 (SPB) COEFFICIENT K

TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

1.173 TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

Type: Real Dimension: 0

Mnemo Variable BDSSPB

DEFAULT VALUE: 360.

French keyword: TRIADS 2 (SPB) BORNE DIRECTIONNELLE SUPERIEURE

Upper directional boundary of the SPB model

Related keywords

TRIAD INTERACTIONS

TRIADS 2 (SPB) COEFFICIENT K

TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY

1.174 TRIGONOMETRICAL CONVENTION

Type: Logical
Dimension: 0
Mnemo TRIGO
DEFAULT VALUE: .FALSE.

French keyword: CONVENTION TRIGONOMETRIQUE

True if the wave directions are measured counterclockwise from the positive x-axis, false if they are measured clockwise fron geographic North

1.175 TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

Type: Integer Dimension: 0

Mnemo Variable LIMSPE

DEFAULT VALUE: 0

French keyword: TYPE DE SPECTRE DIRECTIONNEL AUX LIMITES

If this keyword is set to 0, a non-existent spectrum is speci fied at the inlet boundaries of the domain. If it ranges from 1 to 7, a JONSWAP (or TMA) -typed spectrum is specified at these very points as a function of the initial wind field and/or of the values of the following keywords

Related keywords

BOUNDARY SIGNIFICANT HEIGHT

BOUNDARY PEAK FREQUENCY

BOUNDARY PEAK FACTOR

BOUNDARY VALUE OF SIGMA-A FOR SPECTRUM

BOUNDARY VALUE OF SIGMA-B FOR SPECTRUM

BOUNDARY PHILLIPS CONSTANT

BOUNDARY MEAN FETCH VALUE

BOUNDARY MAXIMUM PEAK FREQUENCY

BOUNDARY MAIN DIRECTION 1

BOUNDARY DIRECTIONAL SPREAD 1

BOUNDARY MAIN DIRECTION 2

BOUNDARY DIRECTIONAL SPREAD 2

BOUNDARY WEIGHTING FACTOR FOR ADF

1.176 TYPE OF INITIAL DIRECTIONAL SPECTRUM

Type: Integer
Dimension: 0
Mnemo INISPE
DEFAULT VALUE: 0

French keyword: TYPE DE SPECTRE DIRECTIONNEL INITIAL

If this keyword is set to 0, a non-existent spectrum is speci fied at the inlet boundaries of the domain. If it ranges from 1 to 7, a JONSWAP (or TMA)-typed spectrum is specified at these points as a function of the initial wind field and/or of the values of the following keywords

1.177 VALIDATION 63

Related keywords

INITIAL SIGNIFICANT HEIGHT

INITIAL PEAK FREQUENCY

INITIAL PEAK FACTOR

INITIAL VALUE OF SIGMA-A FOR SPECTRUM

INITIAL VALUE OF SIGMA-B FOR SPECTRUM

INITIAL PHILLIPS CONSTANT

INITIAL MEAN FETCH VALUE

INITIAL MAXIMUM PEAK FREQUENCY

INITIAL MAIN DIRECTION 1

INITIAL DIRECTIONAL SPREAD 1

INITIAL MAIN DIRECTION 2

INITIAL DIRECTIONAL SPREAD 2

INITIAL WEIGHTING FACTOR FOR ADF

1.177 VALIDATION

Type: Logical
Dimension: 0
Mnemo VALID
DEFAULT VALUE: .FALSE.
French keyword: VALIDATION
True if the computation is a validation

Related keywords

REFERENCE FILE

1.178 VARIABLES FOR 2D GRAPHIC PRINTOUTS

Type: String Dimension: 0

Mnemo Variable SORT2D DEFAULT VALUE: 'HM0,DMOY'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES 2D

Codes of the variables the user wants to write into the 2D RESULTS FILE. The available variables are as follows

• M0: Total variance

• HM0: Spectral significant wave height

• DMOY: Mean wave direction

• SPD: Mean directional spreading

• ZF : Sea bottom level

• WD: Water depth

• UX : Current along X

• UY : Current along Y

- VX : Wind along X
- VY: Wind along Y
- FX : Driving force along X
- FY : Driving force along Y
- SXX : Radiation stress along xx
- SYY : Radiation stress along yy
- SXY : Radiation stress along xy
- UWB : Bottom celerity
- POW: Wave power (per meter along wave crest)
- FMOY: Mean frequency FMOY
- FM01 : Mean frequency FM01
- FM02 : Mean frequency FM02
- FPD : Discrete peak frequency
- FPR5: Peak frequency by Read method of order 5
- FPR8: Peak frequency by Read method of order 8
- US : Surface friction velocity u*
- CD: Surface drag coefficient CD
- Z0 : Surface roughness length Z0
- WS : Surface wave stress
- TMOY : Mean period Tmoy
- TM01: Mean period Tm01
- TM02 : Mean period Tm02
- TPD: Discrete peak period
- TPR5: Peak period by Read method of order 5
- TPR8: Peak period by Read method of order 8
- PRI : Private table
- BETA: Breaking waves coefficient

2D RESULTS FILE

NUMBER OF FIRST ITERATION FOR GRAPHIC PRINTOUTS PERIOD FOR GRAPHIC PRINTOUTS

1.179 VARIANCE THRESHOLD FOR DIFFRACTION

Type: Real Dimension: 0

Mnemo F2DIFM DEFAULT VALUE: 1.D-12

French keyword: SEUIL DE VARIANCE CONSIDEREE POUR DIFFRACTION Minimum spectral variance threshold taken into account when diffraction is considered

Related keywords

DIFFRACTION

STARTING TIME STEP FOR DIFFRACTION

DIFFRACTION FILTER

1.180 VECTOR LENGTH

Type: Integer
Dimension: 0
Mnemo LVMAC

DEFAULT VALUE: 1

French keyword: LONGUEUR DU VECTEUR

Indicates the vector length of the vectorial machine being used.

1.181 VEGETATION TAKEN INTO ACCOUNT

Type: Logical

Dimension: 1

Mnemo VEGETATION

DEFAULT VALUE: NO

French keyword: PRISE EN COMPTE DE LA VEGETATION

If YES, subroutine QVEG will be called, it contains data on vegetation that are case-specific and must thus be modified

1.182 VON KARMAN CONSTANT

Type: Real Dimension: 0

Mnemo XKAPPA DEFAULT VALUE: 0.41

French keyword: CONSTANTE DE VON KARMAN

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.183 WATER DENSITY

Type: Real
Dimension: 0
Mnemo ROEAU
DEFAULT VALUE: 1000.

French keyword: DENSITE DE L'EAU

The ratio ROAIR/ROEAU is used in the wind generation source term.

Related keywords

WIND GENERATION

AIR DENSITY

1.184 WAVE GROWTH LIMITER

Type: Integer
Dimension: 0
Mnemo LIMIT
DEFAULT VALUE: 1

French keyword: LIMITEUR DE CROISSANCE

Choice of the wave growth limiter.

- If LIMIT=0, no wave growth limiter.
- If LIMIT=1, WAM 4 original limiter.
- If LIMIT=2, Hersbach et Janssen (1999) limiter.
- If LIMIT=3, Laugel BAJ limiter.

Related keywords

CONSIDERATION OF SOURCE TERMS

1.185 WESTHUYSEN DISSIPATION COEFFICIENT

Type: Real Dimension: 0

Mnemo Variable CMOUT3

DEFAULT VALUE: 0.00005

French keyword: COEFFICIENT DE DISSIPATION DE WESTHUYSEN White capping dissipation coefficient of van der Westhuysen (2007): Cdis,break.

Related keywords

WHITE CAPPING DISSIPATION SATURATION THRESHOLD FOR THE DISSIPATION WESTHUYSEN WHITE CAPPING DISSIPATION

WESTHUYSEN WEIGHTING COEFFICIENT

1.186 WESTHUYSEN WEIGHTING COEFFICIENT

Type: Real Dimension: 0

Mnemo Variable CMOUT6

DEFAULT VALUE: 0.0

French keyword: COEFFICIENT DE PONDERATION DE WESTHUYSEN

White capping dissipation coefficient of van der Westhuysen (2007): delta.

WHITE CAPPING DISSIPATION
WESTHUYSEN DISSIPATION COEFFICIENT
SATURATION THRESHOLD FOR THE DISSIPATION
WESTHUYSEN WHITE CAPPING DISSIPATION

1.187 WESTHUYSEN WHITE CAPPING DISSIPATION

Type: Real Dimension: 0

Mnemo Variable CMOUT5

DEFAULT VALUE: 3.29

French keyword: DISSIPATION PAR MOUTONNEMENT DE WESTHUYSEN White capping dissipation coefficient of van der Westhuysen (2007): Cdis,non-break.

Related keywords

WHITE CAPPING DISSIPATION

WESTHUYSEN DISSIPATION COEFFICIENT

SATURATION THRESHOLD FOR THE DISSIPATION

WESTHUYSEN WEIGHTING COEFFICIENT

1.188 WHITE CAPPING DISSIPATION

Type: Integer
Dimension: 0
Mnemo SMOUT

DEFAULT VALUE: 0

French keyword: DISSIPATION PAR MOUTONNEMENT

Selection of the modelling type of the white capping source term. If its value is 0, the white capping dissipation is ignored; if its value is 1, it is integrated in accordance with a formula that is similar to that of WAM cycle 4; if its value is 2, it is integrated in accordance with the formula of van der Westhuysen (2007).

Related keywords

WHITE CAPPING DISSIPATION COEFFICIENT

WHITE CAPPING WEIGHTING COEFFICIENT

WESTHUYSEN DISSIPATION COEFFICIENT

SATURATION THRESHOLD FOR THE DISSIPATION

WESTHUYSEN WHITE CAPPING DISSIPATION

WESTHUYSEN WEIGHTING COEFFICIENT

1.189 WHITE CAPPING DISSIPATION COEFFICIENT

Type: Real Dimension: 0

Mnemo CMOUT1

DEFAULT VALUE: 4.5

French keyword: COEFFICIENT DE DISSIPATION PAR MOUTONNEMENT

White capping dissipation coefficient.

WHITE CAPPING DISSIPATION
WHITE CAPPING WEIGHTING COEFFICIENT

1.190 WHITE CAPPING WEIGHTING COEFFICIENT

Type: Real Dimension: 0

Mnemo CMOUT2 DEFAULT VALUE: 0.5

French keyword: COEFFICIENT DE PONDERATION POUR LE MOUTONNEMENT

White capping weighting coefficient.

Related keywords

WHITE CAPPING DISSIPATION

WHITE CAPPING DISSIPATION COEFFICIENT

1.191 WIND DRAG COEFFICIENT

Type: Real Dimension: 0

Mnemo CDRAG DEFAULT VALUE: 1.2875E-3

French keyword: COEFFICIENT DE TRAINEE DE VENT

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.192 WIND GENERATION

Type: Integer
Dimension: 0
Mnemo SVENT
DEFAULT VALUE: 0

French keyword: APPORTS DUS AU VENT

Selection of the type of modelling of the wind generation source term. If its value is 0, the wind generation is ignored; if its value is 1, it is integrated in accordance with the WAM cycle 4 formula; if its value is 2, it is integrated in accordance with the WAM cycle 3 formula; if its value is 3, it is integrated in accordance with the Yan (1987) expression.

CONSIDERATION OF A WIND

WINDS FILE

AIR DENSITY

WATER DENSITY

WIND GENERATION COEFFICIENT

VON KARMAN CONSTANT

CHARNOCK CONSTANT

SHIFT GROWING CURVE DUE TO WIND

WIND MEASUREMENTS LEVEL

WIND DRAG COEFFICIENT

WIND GENERATION COEFFICIENT A

WIND GENERATION COEFFICIENT B

WIND GENERATION COEFFICIENT C

WIND GENERATION COEFFICIENT D

WIND GENERATION COEFFICIENT TM

1.193 WIND GENERATION COEFFICIENT

Type: Real Dimension: 0

Mnemo BETAM DEFAULT VALUE: 1.2

French keyword: COEFFICIENT DE GENERATION PAR LE VENT

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.194 WIND MEASUREMENTS LEVEL

Type: Real
Dimension: 0
Mnemo ZVENT
DEFAULT VALUE: 10.

French keyword: COTE DE MESURE DES VENTS

Constant used in the wind source term.

Related keywords

WIND GENERATION

1.195 WIND VELOCITY ALONG X

Type: Real Dimension: 0

Mnemo Variable VX_CTE

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT X Wind velocity along X axis, constant and homogeneous (m/s)

CONSIDERATION OF A WIND

1.196 WIND VELOCITY ALONG Y

Type: Real Dimension: 0

Mnemo Variable VY_CTE

DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT Y Wind velocity along Y axis, constant and homogeneous (m/s)

Related keywords

CONSIDERATION OF A WIND

1.197 WINDS FILE BINARY

Type: String Dimension: 0

Mnemo Variable BINVEN

DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES VENTS

Type of the binary used for writing the winds file. This type depends on the machine in which the file was generated. The possible values are the same as for the geometry file. WARNING! This file is a binary one is the keyword WINDS FILE FORMAT is higher than or equal to 3.

Related keywords

BINARY WINDS FILE WINDS FILE FORMAT

1.198 WINDS FILE FORMAT

Type: Integer
Dimension: 0
Mnemo INDIV
DEFAULT VALUE: 3

French keyword: FORMAT DU FICHIER DES VENTS

Selection of winds file format type:

- 3 = selafin, TELEMAC type
- 4 = user format (the venuti.f procedure should then be amended)

Related keywords

WINDS FILE TYPE WINDS FILE

WINDS FILE BINARY

1.199 YAN GENERATION COEFFICIENT D

Type: Real Dimension: 0

Mnemo Variable COEFWD

DEFAULT VALUE: 0.04

French keyword: COEFFICIENT DE GENERATION DE YAN D

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT E YAN GENERATION COEFFICIENT F YAN GENERATION COEFFICIENT H

1.200 YAN GENERATION COEFFICIENT E

Type: Real Dimension: 0

Mnemo Variable COEFWE

DEFAULT VALUE: 0.00552

French keyword: COEFFICIENT DE GENERATION DE YAN E

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT D YAN GENERATION COEFFICIENT F YAN GENERATION COEFFICIENT H

1.201 YAN GENERATION COEFFICIENT F

Type: Real Dimension: 0

Mnemo Variable COEFWF

DEFAULT VALUE: 0.000052

French keyword: COEFFICIENT DE GENERATION DE YAN F

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT D YAN GENERATION COEFFICIENT E YAN GENERATION COEFFICIENT H

1.202 YAN GENERATION COEFFICIENT H

Type: Real Dimension: 0

Mnemo Variable COEFWH

DEFAULT VALUE: -0.000302

French keyword: COEFFICIENT DE GENERATION DE YAN H

Constant used in the wind source term of Yan (1987).

Related keywords

WIND GENERATION

YAN GENERATION COEFFICIENT D YAN GENERATION COEFFICIENT E YAN GENERATION COEFFICIENT F

2. List of keywords classified according to type

2.1 BOTTOM FRICTION

BOTTOM FRICTION COEFFICIENT BOTTOM FRICTION DISSIPATION

2.2 BOUNDARY CONDITIONS

BOUNDARY ANGULAR DISTRIBUTION FUNCTION BOUNDARY DIRECTIONAL SPREAD 1 BOUNDARY DIRECTIONAL SPREAD 2 BOUNDARY MAIN DIRECTION 1 BOUNDARY MAIN DIRECTION 2 BOUNDARY MAXIMUM PEAK FREQUENCY BOUNDARY MEAN FETCH VALUE BOUNDARY PEAK FACTOR BOUNDARY PEAK FREQUENCY BOUNDARY PHILLIPS CONSTANT BOUNDARY SIGNIFICANT WAVE HEIGHT BOUNDARY SPECTRUM VALUE OF SIGMA-A BOUNDARY SPECTRUM VALUE OF SIGMA-B BOUNDARY WEIGHTING FACTOR FOR ADF LIMIT SPECTRUM MODIFIED BY USER TYPE OF BOUNDARY DIRECTIONAL SPECTRUM

2.3 BREAKING

```
COEFFICIENT OF THE TIME SUB-INCREMENTS FOR BREAKING
DEPTH-INDUCED BREAKING 1 (BJ) CHARACTERISTIC FREQUENCY
DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT ALPHA
DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA1
DEPTH-INDUCED BREAKING 1 (BJ) COEFFICIENT GAMMA2
DEPTH-INDUCED BREAKING 1 (BJ) HM COMPUTATION METHOD
DEPTH-INDUCED BREAKING 1 (BJ) QB COMPUTATION METHOD
```

```
DEPTH-INDUCED BREAKING 2 (TG) CHARACTERISTIC FREQUENCY
DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT B
DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA
DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION
DEPTH-INDUCED BREAKING 3 (RO) CHARACTERISTIC FREQUENCY
DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT ALPHA
DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA
DEPTH-INDUCED BREAKING 3 (RO) COEFFICIENT GAMMA2
DEPTH-INDUCED BREAKING 3 (RO) EXPONENT WEIGHTING FUNCTION
DEPTH-INDUCED BREAKING 3 (RO) WAVE HEIGHT DISTRIBUTION
DEPTH-INDUCED BREAKING 4 (IH) CHARACTERISTIC FREQUENCY
DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT BETAO
DEPTH-INDUCED BREAKING 4 (IH) COEFFICIENT M2STAR
DEPTH-INDUCED BREAKING DISSIPATION
MAXIMUM VALUE OF THE RATIO HMO ON D
NUMBER OF BREAKING TIME STEPS
```

2.4 COMPUTATION ENVIRONMENT

DICTIONARY

2.5 COMPUTATIONAL INFORMATION

DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION OF LIBRARIES

2.6 CURRENT

CONSIDERATION OF A STATIONARY CURRENT CURRENTS FILE FORMAT

2.7 DATA FILE

2D RESULTS FILE FORMAT
BINARY CURRENTS FILE
BINARY CURRENTS FILE FORMAT
BINARY DATA FILE 1 FORMAT
BINARY TIDAL WATER FILE FORMAT
BINARY TIDAL WATER LEVEL FILE
BINARY WINDS FILE
BINARY WINDS FILE FORMAT
BOTTOM TOPOGRAPHY FILE
BOUNDARY CONDITIONS FILE
FORMATTED CURRENTS FILE
FORMATTED FILE 1

2.8 DIFFRACTION 75

FORMATTED TIDAL WATER LEVEL FILE

FORTRAN FILE

GEOMETRY FILE

GEOMETRY FILE FORMAT

GLOBAL RESULT FILE FORMAT

NAMES OF VARIABLES

PREVIOUS COMPUTATION FILE

PREVIOUS COMPUTATION FILE FORMAT

REFERENCE FILE

REFERENCE FILE FORMAT

SPECTRUM FILE FORMAT

STEERING FILE

TIME SHIFT IN CURRENTS FILE

TIME SHIFT IN TIDAL WATER LEVEL FILE

TIME SHIFT IN WINDS FILE

TIME UNIT IN CURRENTS FILE

TIME UNIT IN TIDAL WATER LEVEL FILE

TIME UNIT IN WINDS FILE

2.8 DIFFRACTION

DIFFRACTION
DIFFRACTION FILTER
OPTION FOR SECOND DERIVATIVES
STARTING TIME STEP FOR DIFFFRACTION
VARIANCE THRESHOLD FOR DIFFRACTION

2.9 DISSIPATION

DISSIPATION BY STRONG CURRENT
DISSIPATION COEFFICIENT FOR STRONG CURRENT

2.10 GENERAL

CHECKING THE MESH

CONSIDERATION OF PROPAGATION

CONSIDERATION OF SOURCE TERMS

DEBUGGER

FINITE ELEMENT ASSEMBLY

IMPLICITATION COEFFICIENT FOR SOURCE TERMS

INFINITE DEPTH

INITIAL TIME SET TO ZERO

MINIMUM WATER DEPTH

NEXT COMPUTATION

PARTITIONING TOOL

SPHERICAL COORDINATES

TITLE

TRIGONOMETRICAL CONVENTION
VALIDATION
VEGETATION TAKEN INTO ACCOUNT
WAVE GROWTH LIMITER
WIND VELOCITY ALONG X
WIND VELOCITY ALONG Y

2.11 INITIAL CONDITIONS

INITIAL ANGULAR DISTRIBUTION FUNCTION INITIAL DIRECTIONAL SPREAD 1 INITIAL DIRECTIONAL SPREAD 2 INITIAL MAIN DIRECTION 1 INITIAL MAIN DIRECTION 2 INITIAL MAXIMUM PEAK FREQUENCY INITIAL MEAN FETCH VALUE INITIAL PEAK FACTOR INITIAL PEAK FREQUENCY INITIAL PHILLIPS CONSTANT INITIAL SIGNIFICANT WAVE HEIGHT INITIAL STILL WATER LEVEL INITIAL VALUE OF SIGMA-A FOR SPECTRUM INITIAL VALUE OF SIGMA-B FOR SPECTRUM INITIAL WEIGHTING FACTOR FOR ADF TYPE OF INITIAL DIRECTIONAL SPECTRUM

2.12 INPUT-OUTPUT, FILES

BINARY FILE 1 LIST OF FILES

2.13 INPUT-OUTPUT, INFORMATION

DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION OF LIBRARIES
DICTIONARY

2.14 MISCELLANEOUS

BOTTOM SMOOTHINGS
NUMBER OF PRIVATE ARRAYS
ORIGIN COORDINATES
PARALLEL PROCESSORS
RECOVERY OF TELEMAC DATA ITEM

2.15 NAMES 77

TIME INCREMENT NUMBER IN TELEMAC FILE

2.15 NAMES

BINARY FILE 1 LIST OF FILES

2.16 NUMERICAL PARAMETERS

FINITE ELEMENT ASSEMBLY
INITIAL TIME SET TO ZERO
PARTITIONING TOOL
VEGETATION TAKEN INTO ACCOUNT

2.17 RESULTS

1D SPECTRA RESULTS FILE
2D RESULTS FILE
ABSCISSAE OF SPECTRUM PRINTOUT POINTS
GLOBAL RESULT FILE
NUMBER OF FIRST ITERATION FOR GRAPHICS PRINTOUTS
ORDINATES OF SPECTRUM PRINTOUT POINTS
PERIOD FOR GRAPHIC PRINTOUTS
PERIOD FOR LISTING PRINTOUTS
PUNCTUAL RESULTS FILE
VARIABLES FOR 2D GRAPHIC PRINTOUTS

2.18 SPECTRUM

BAJ MODELING
FREQUENTIAL RATIO
MINIMAL FREQUENCY
NUMBER OF DIRECTIONS
NUMBER OF FREQUENCIES
OPTION FOR DIAGNOSTIC TAIL
SPECTRUM ENERGY THRESHOLD
SPECTRUM TAIL FACTOR

2.19 TIDE

CONSIDERATION OF TIDE
RANK OF THE WATER LEVEL DATA IN THE TELEMAC FILE
TIDAL WATER LEVEL FILE FORMAT
TIDE REFRESHING PERIOD

2.20 TIME

DATE OF COMPUTATION BEGINNING
NUMBER OF ITERATIONS FOR THE SOURCE TERMS
NUMBER OF TIME STEP
TIME STEP

2.21 TRANSFERS

NON-LINEAR TRANSFERS BETWEEN FREQUENCIES
SETTING FOR INTEGRATION ON OMEGA1
SETTING FOR INTEGRATION ON OMEGA2
SETTING FOR INTEGRATION ON THETA1
STANDARD CONFIGURATION PARAMETER
THRESHOLDO FOR CONFIGURATIONS ELIMINATION
THRESHOLDO FOR CONFIGURATIONS ELIMINATION
THRESHOLDO FOR CONFIGURATIONS ELIMINATION
TRIAD INTERACTIONS
TRIADS 1 (LTA) COEFFICIENT ALPHA
TRIADS 1 (LTA) COEFFICIENT RFMLTA
TRIADS 2 (SPB) COEFFICIENT K
TRIADS 2 (SPB) LOWER DIRECTIONAL BOUNDARY
TRIADS 2 (SPB) UPPER DIRECTIONAL BOUNDARY

2.22 USELESS

BINARY FILE 1 BINARY
CURRENTS FILE BINARY
GEOMETRY FILE BINARY
GLOBAL RESULT FILE BINARY
PREVIOUS COMPUTATION FILE BINARY
PUNCTUAL RESULTS FILE BINARY
RELEASE
TIDAL WATER LEVEL FILE BINARY
VECTOR LENGTH
WINDS FILE BINARY

2.23 WHITE CAPPING

SATURATION THRESHOLD FOR THE DISSIPATION
WESTHUYSEN DISSIPATION COEFFICIENT
WESTHUYSEN WEIGHTING COEFFICIENT
WESTHUYSEN WHITE CAPPING DISSIPATION
WHITE CAPPING DISSIPATION
WHITE CAPPING DISSIPATION COEFFICIENT
WHITE CAPPING WEIGHTING COEFFICIENT

2.24 WIND 79

2.24 WIND

AIR DENSITY
CHARNOCK CONSTANT
CONSIDERATION OF A WIND
LINEAR WAVE GROWTH
SHIFT GROWING CURVE DUE TO WIND
STATIONARY WIND
VON KARMAN CONSTANT
WATER DENSITY
WIND DRAG COEFFICIENT
WIND GENERATION
WIND GENERATION COEFFICIENT
WIND MEASUREMENTS LEVEL
WINDS FILE FORMAT
YAN GENERATION COEFFICIENT D
YAN GENERATION COEFFICIENT E

YAN GENERATION COEFFICIENT F YAN GENERATION COEFFICIENT H

3. Glossary

3.1 English/French glossary

1D SPECTRA RESULTS FILE	FICHIER DES RESULTATS SPECTRES
2D RESULTS FILE	FICHIER DES RESULTATS 2D
2D RESULTS FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
120010012 02 02202214 222022	2D
ABSCISSAE OF SPECTRUM PRINTOUT	ABSCISSES DES POINTS DE SORTIE
POINTS	DU SPECTRE
AIR DENSITY	DENSITE DE L'AIR
BAJ MODELING	MODELISATION BAJ
BINARY CURRENTS FILE	FICHIER DES COURANTS BINAIRE
BINARY CURRENTS FILE FORMAT	FORMAT DU FICHIER DES COURANTS
	BINAIRE
BINARY DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES
	BINAIRE 1
BINARY FILE 1	FICHIER BINAIRE 1
BINARY FILE 1 BINARY	BINAIRE DU FICHIER BINAIRE 1
BINARY TIDAL WATER FILE FORMAT	FORMAT DU FICHIER DE LA MAREE
	BINAIRE
BINARY TIDAL WATER LEVEL FILE	FICHIER DU NIVEAU DE LA MAREE
	BINAIRE
BINARY WINDS FILE	FICHIER DES VENTS BINAIRE
BINARY WINDS FILE FORMAT	FORMAT DU FICHIER DES VENTS
	BINAIRE
BOTTOM FRICTION COEFFICIENT	COEFFICIENT DE FROTTEMENT SUR
	LE FOND
BOTTOM FRICTION DISSIPATION	DISSIPATION PAR FROTTEMENT SUR
	LE FOND
BOTTOM SMOOTHINGS	LISSAGES DU FOND
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOUNDARY ANGULAR DISTRIBUTION	FONCTION DE REPARTITION
FUNCTION	ANGULAIRE AUX LIMITES
1 01/011014	111100111111111111111111111111111111111

	I
BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX
	LIMITES
BOUNDARY DIRECTIONAL SPREAD 1	ETALEMENT DIRECTIONNEL 1 AUX
	LIMITES
BOUNDARY DIRECTIONAL SPREAD 2	ETALEMENT DIRECTIONNEL 2 AUX
	LIMITES
BOUNDARY MAIN DIRECTION 1	DIRECTION PRINCIPALE 1 AUX
	LIMITES
BOUNDARY MAIN DIRECTION 2	DIRECTION PRINCIPALE 2 AUX
	LIMITES
BOUNDARY MAXIMUM PEAK FREQUENCY	FREQUENCE DE PIC MAXIMALE AUX
	LIMITES
BOUNDARY MEAN FETCH VALUE	VALEUR MOYENNE DU FETCH AUX
	LIMITES
BOUNDARY PEAK FACTOR	FACTEUR DE PIC AUX LIMITES
BOUNDARY PEAK FREQUENCY	FREQUENCE DE PIC AUX LIMITES
BOUNDARY PHILLIPS CONSTANT	CONSTANTE DE PHILLIPS AUX
	LIMITES
BOUNDARY SIGNIFICANT WAVE	HAUTEUR SIGNIFICATIVE AUX
HEIGHT	LIMITES
BOUNDARY SPECTRUM VALUE OF	VALEUR AUX LIMITES DE SIGMA-A
SIGMA-A	POUR SPECTRE
BOUNDARY SPECTRUM VALUE OF	VALEUR AUX LIMITES DE SIGMA-B
SIGMA-B	POUR SPECTRE
BOUNDARY WEIGHTING FACTOR FOR	FACTEUR DE PONDERATION POUR FRA
ADF	AUX LIMITES
CHARNOCK CONSTANT	CONSTANTE DE CHARNOCK
CHECKING THE MESH	VERIFICATION DU MAILLAGE
COEFFICIENT OF THE TIME	COEFFICIENT POUR LES SOUS-PAS
SUB-INCREMENTS FOR BREAKING	DE TEMPS POUR LE DEFERLEMENT
CONSIDERATION OF A STATIONARY	PRISE EN COMPTE D'UN COURANT
CURRENT	STATIONNAIRE
CONSIDERATION OF A WIND	PRISE EN COMPTE DU VENT
CONSIDERATION OF PROPAGATION	PRISE EN COMPTE DE LA
	PROPAGATION
CONSIDERATION OF SOURCE TERMS	PRISE EN COMPTE DES TERMES
	SOURCES
CONSIDERATION OF TIDE	PRISE EN COMPTE DE LA MAREE
CURRENTS FILE BINARY	BINAIRE DU FICHIER DES COURANTS
CURRENTS FILE FORMAT	FORMAT DU FICHIER DES COURANTS
DATE OF COMPUTATION BEGINNING	DATE DE DEBUT DU CALCUL
DEBUGGER	DEBUGGER
DEFAULT EXECUTABLE	EXECUTABLE PAR DEFAUT
DEFAULT PARALLEL EXECUTABLE	EXECUTABLE PARALLELE PAR DEFAUT
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CHOIX
CHARACTERISTIC FREQUENCY	FREQUENCE CARACTERISTIQUE

DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CONSTANTE
COEFFICIENT ALPHA	ALPHA
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CONSTANTE
COEFFICIENT GAMMA1	GAMMA1
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) CONSTANTE
COEFFICIENT GAMMA2	GAMMA2
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) MODE DE
HM COMPUTATION METHOD	CALCUL DE HM
DEPTH-INDUCED BREAKING 1 (BJ)	DEFERLEMENT 1 (BJ) MODE DE
QB COMPUTATION METHOD	CALCUL DE QB
DEPTH-INDUCED BREAKING 2 (TG)	DEFERLEMENT 2 (TG) CHOIX
CHARACTERISTIC FREQUENCY	FREQUENCE CARACTERISTIQUE
DEPTH-INDUCED BREAKING 2 (TG)	DEFERLEMENT 2 (TG) CONSTANTE B
COEFFICIENT B	DEEDI DMDNE 2 (EC) CONCEANED
DEPTH-INDUCED BREAKING 2 (TG)	DEFERLEMENT 2 (TG) CONSTANTE
COEFFICIENT GAMMA DEPTH-INDUCED BREAKING 2 (TG)	GAMMA DEFERLEMENT 2 (TG) FONCTION DE
WEIGHTING FUNCTION	PONDERATION
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CHOIX
CHARACTERISTIC FREQUENCY	FREQUENCE CARACTERISTIQUE
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CONSTANTE
COEFFICIENT ALPHA	ALPHA
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CONSTANTE
COEFFICIENT GAMMA	GAMMA
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) CONSTANTE
COEFFICIENT GAMMA2	GAMMA2
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) EXPOSANT
EXPONENT WEIGHTING FUNCTION	FONCTION DE PONDERATION
DEPTH-INDUCED BREAKING 3 (RO)	DEFERLEMENT 3 (RO) DISTRIBUTION
WAVE HEIGHT DISTRIBUTION	DES HAUTEURS DE HOULE
DEPTH-INDUCED BREAKING 4 (IH)	DEFERLEMENT 4 (IH) CHOIX
CHARACTERISTIC FREQUENCY	FREQUENCE CARACTERISTIQUE
DEPTH-INDUCED BREAKING 4 (IH)	DEFERLEMENT 4 (IH) CONSTANTE
COEFFICIENT BETA0	BETA0
DEPTH-INDUCED BREAKING 4 (IH)	DEFERLEMENT 4 (IH) CONSTANTE
COEFFICIENT M2STAR	M2STAR
DEPTH-INDUCED BREAKING	DISSIPATION PAR DEFERLEMENT
DISSIPATION	
DESCRIPTION OF LIBRARIES	DESCRIPTION DES LIBRAIRIES
DICTIONARY	DICTIONNAIRE
DIFFRACTION	DIFFRACTION
DIFFRACTION FILTER	FILTRE POUR DIFFRACTION
DISSIPATION BY STRONG CURRENT	DISSIPATION PAR FORT COURANT
DISSIPATION COEFFICIENT FOR	COEFFICIENT DE DISSIPATION PAR
STRONG CURRENT	FORT COURANT
FINITE ELEMENT ASSEMBLY	ASSEMBLAGE EN ELEMENTS FINIS
FORMATTED CURRENTS FILE	FICHIER DES COURANTS FORMATE
	•

FORMATTED FILE 1	FICHIER FORMATE 1
FORMATTED FILE I	FICHIER DU NIVEAU DE LA MAREE
FILE	FORMATE
FORMATTED WINDS FILE	FICHIER DES VENTS FORMATE
FORTRAN FILE	FICHIER FORTRAN
FREQUENTIAL RATIO	RAISON FREQUENTIELLE
GEOMETRY FILE	FICHIER DE GEOMETRIE
GEOMETRY FILE BINARY	BINAIRE DU FICHIER DE GEOMETRIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE
GLOBAL RESULT FILE	FICHIER DES RESULTATS GLOBAUX
GLOBAL RESULT FILE BINARY	BINAIRE DU FICHIER DES
	RESULTATS GLOBAUX
GLOBAL RESULT FILE FORMAT	FORMAT DU FICHIER DES RESULTATS GLOBAUX
IMPLICITATION COEFFICIENT FOR	COEFFICIENT IMPLICITATION POUR
SOURCE TERMS	TERMES SOURCES
INFINITE DEPTH	PROFONDEUR INFINIE
INITIAL ANGULAR DISTRIBUTION	FONCTION DE REPARTITION
FUNCTION	ANGULAIRE INITIALE
INITIAL DIRECTIONAL SPREAD 1	ETALEMENT DIRECTIONNEL 1
	INITIAL
INITIAL DIRECTIONAL SPREAD 2	ETALEMENT DIRECTIONNEL 2 INITIAL
INITIAL MAIN DIRECTION 1	DIRECTION PRINCIPALE 1 INITIALE
INITIAL MAIN DIRECTION 2	DIRECTION PRINCIPALE 2 INITIALE
INITIAL MAXIMUM PEAK FREQUENCY	FREQUENCE DE PIC MAXIMALE
11.111111111111111111111111111111111111	INITIALE
INITIAL MEAN FETCH VALUE	VALEUR MOYENNE DU FETCH INITIAL
INITIAL PEAK FACTOR	FACTEUR DE PIC INITIAL
INITIAL PEAK FREQUENCY	FREQUENCE DE PIC INITIALE
INITIAL PHILLIPS CONSTANT	CONSTANTE DE PHILLIPS INITIALE
INITIAL SIGNIFICANT WAVE HEIGHT	HAUTEUR SIGNIFICATIVE INITIALE
INITIAL STILL WATER LEVEL	COTE INITIALE DU PLAN D'EAU AU REPOS
INITIAL TIME SET TO ZERO	REMISE A ZERO DU TEMPS
INITIAL VALUE OF SIGMA-A FOR	VALEUR INITIALE DE SIGMA-A POUR
SPECTRUM INITIAL VALUE OF SIGMA-B FOR	SPECTRE
SPECTRUM	SPECTRE SPECTRE
INITIAL WEIGHTING FACTOR FOR	FACTEUR DE PONDERATION POUR FRA
ADF	INITIALE
LIMIT SPECTRUM MODIFIED BY USER	SPECTRE AUX LIMITES MODIFIE PAR L'UTILISATEUR
LINEAR WAVE GROWTH	CROISSANCE LINEAIRE DES VAGUES
LIST OF FILES	LISTE DES FICHIERS
MAXIMUM VALUE OF THE RATIO HMO	VALEUR MAXIMALE DU RAPPORT HMO
ON D	SUR D

[
MINIMAL FREQUENCY	FREQUENCE MINIMALE
MINIMUM WATER DEPTH	PROFONDEUR D'EAU MINIMALE
NAMES OF VARIABLES	NOMS DES VARIABLES
NEXT COMPUTATION	SUITE DE CALCUL
NON-LINEAR TRANSFERS BETWEEN	TRANSFERTS NON LINEAIRES
FREQUENCIES	INTER-FREQUENCES
NUMBER OF BREAKING TIME STEPS	NOMBRE DE SOUS-PAS DE TEMPS
	POUR LE DEFERLEMENT
NUMBER OF DIRECTIONS	NOMBRE DE DIRECTIONS
NUMBER OF FIRST ITERATION FOR	NUMERO DE LA PREMIERE ITERATION
GRAPHICS PRINTOUTS	POUR LES SORTIES GRAPHIQUES
NUMBER OF FREQUENCIES	NOMBRE DE FREQUENCES
NUMBER OF ITERATIONS FOR THE	NOMBRE DE SOUS-ITERATIONS POUR
SOURCE TERMS	LES TERMES SOURCES
NUMBER OF PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES
NUMBER OF TIME STEP	NOMBRE DE PAS DE TEMPS
OPTION FOR DIAGNOSTIC TAIL	OPTION POUR LA QUEUE
	DIAGNOSTIQUE
OPTION FOR SECOND DERIVATIVES	OPTION POUR LES DERIVEES
	SECONDES
ORDINATES OF SPECTRUM PRINTOUT	ORDONNEES DES POINTS DE SORTIE
POINTS	DU SPECTRE
ORIGIN COORDINATES	COORDONNEES DE L'ORIGINE
PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARTITIONING TOOL	PARTITIONNEUR
PERIOD FOR GRAPHIC PRINTOUTS	PERIODE POUR LES SORTIES
	GRAPHIQUES
PERIOD FOR LISTING PRINTOUTS	PERIODE POUR LES SORTIES
	LISTING
PREVIOUS COMPUTATION FILE	FICHIER DU CALCUL PRECEDENT
PREVIOUS COMPUTATION FILE	BINAIRE DU FICHIER DU CALCUL
BINARY	PRECEDENT
PREVIOUS COMPUTATION FILE	FORMAT DU FICHIER DU CALCUL
FORMAT	PRECEDENT
PUNCTUAL RESULTS FILE	FICHIER DES RESULTATS PONCTUELS
PUNCTUAL RESULTS FILE BINARY	BINAIRE DU FICHIER DES
	RESULTATS PONCTUELS
RANK OF THE WATER LEVEL DATA IN	RANG DU NIVEAU DE LA MAREE DANS
THE TELEMAC FILE	LE FICHIER TELEMAC
RECOVERY OF TELEMAC DATA ITEM	RECUPERATION DE DONNEE TELEMAC
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
RELEASE	NUMERO DE VERSION
SATURATION THRESHOLD FOR THE	SEUIL DE SATURATION POUR LA
DISSIPATION	DISSIPATION
SETTING FOR INTEGRATION ON	REGLAGE POUR INTEGRATION SUR
OMEGA1	OMEGA1

SETTING FOR INTEGRATION ON	REGLAGE POUR INTEGRATION SUR
OMEGA2	OMEGA2
SETTING FOR INTEGRATION ON	REGLAGE POUR INTEGRATION SUR
THETA1	THETA1
SHIFT GROWING CURVE DUE TO WIND	DECALAGE COURBE DE CROISSANCE
	DUE AU VENT
SPECTRUM ENERGY THRESHOLD	SEUIL D'ENERGIE CONSIDERE POUR
	LE SPECTRE
SPECTRUM FILE FORMAT	FORMAT DU FICHIER DE SPECTRE
SPECTRUM TAIL FACTOR	FACTEUR DE QUEUE DU SPECTRE
SPHERICAL COORDINATES	COORDONNEES SPHERIQUES
STANDARD CONFIGURATION	PARAMETRE DE LA CONFIGURATION
PARAMETER	STANDARD
STARTING TIME STEP FOR	PAS DE TEMPS DEBUT DIFFRACTION
DIFFFRACTION	
STATIONARY WIND	VENT STATIONNAIRE
STEERING FILE	FICHIER DES PARAMETRES
THRESHOLDO FOR CONFIGURATIONS	SEUILO ELIMINATION DE
ELIMINATION	CONFIGURATIONS
THRESHOLD1 FOR CONFIGURATIONS	SEUIL1 ELIMINATION DE
ELIMINATION	CONFIGURATIONS
THRESHOLD2 FOR CONFIGURATIONS	SEUIL2 ELIMINATION DE
ELIMINATION	CONFIGURATIONS
TIDAL WATER LEVEL FILE BINARY	BINAIRE DU FICHIER DU NIVEAU DE
	LA MAREE
TIDAL WATER LEVEL FILE FORMAT	FORMAT DU FICHIER DU NIVEAU DE
	LA MAREE
TIDE REFRESHING PERIOD	PERIODE D'ACTUALISATION DE LA
	MAREE
TIME INCREMENT NUMBER IN	NUMERO DU PAS DE TEMPS DU
TELEMAC FILE	FICHIER TELEMAC
TIME SHIFT IN CURRENTS FILE	DEPHASAGE DU FICHIER DES
	COURANTS
TIME SHIFT IN TIDAL WATER LEVEL	DEPHASAGE DU FICHIER DU NIVEAU
FILE	DE LA MAREE
TIME SHIFT IN WINDS FILE	DEPHASAGE DU FICHIER DES VENTS
TIME STEP	PAS DE TEMPS
TIME UNIT IN CURRENTS FILE	UNITE DE TEMPS DU FICHIER DES
	COURANTS
TIME UNIT IN TIDAL WATER LEVEL	UNITE DE TEMPS DU FICHIER DU
FILE	NIVEAU DE LA MAREE
TIME UNIT IN WINDS FILE	UNITE DE TEMPS DU FICHIER DES
	VENTS
TITLE	TITRE
TRIAD INTERACTIONS	TRANSFERTS ENTRE TRIPLETS DE
	FREQUENCES
L	1

TRIADS 1 (LTA) COEFFICIENT ALPHA	TRIADS 1 (LTA) CONSTANTE ALPHA
TRIADS 1 (LTA) COEFFICIENT RFMLTA	TRIADS 1 (LTA) CONSTANTE RFMLTA
TRIADS 2 (SPB) COEFFICIENT K	TRIADS 2 (SPB) CONSTANTE K
TRIADS 2 (SPB) LOWER	TRIADS 2 (SPB) BORNE
DIRECTIONAL BOUNDARY	DIRECTIONNELLE INFERIEURE
TRIADS 2 (SPB) UPPER	TRIADS 2 (SPB) BORNE
DIRECTIONAL BOUNDARY	DIRECTIONNELLE SUPERIEURE
TRIGONOMETRICAL CONVENTION	CONVENTION TRIGONOMETRIQUE
TYPE OF BOUNDARY DIRECTIONAL	TYPE DE SPECTRE DIRECTIONNEL
SPECTRUM	AUX LIMITES
TYPE OF INITIAL DIRECTIONAL	TYPE DE SPECTRE DIRECTIONNEL
SPECTRUM	INITIAL
VALIDATION	VALIDATION
VARIABLES FOR 2D GRAPHIC	VARIABLES POUR LES SORTIES
PRINTOUTS	GRAPHIQUES 2D
VARIANCE THRESHOLD FOR	SEUIL DE VARIANCE CONSIDEREE
DIFFRACTION	POUR DIFFRACTION
VECTOR LENGTH	LONGUEUR DU VECTEUR
VEGETATION TAKEN INTO ACCOUNT	PRISE EN COMPTE DE LA
VON KARMAN CONSTANT	VEGETATION CONSTANTE DE VON KARMAN
WATER DENSITY	DENSITE DE L'EAU
WAVE GROWTH LIMITER	LIMITEUR DE CROISSANCE
WESTHUYSEN DISSIPATION	COEFFICIENT DE DISSIPATION DE
COEFFICIENT	WESTHUYSEN
WESTHUYSEN WEIGHTING	COEFFICIENT DE PONDERATION DE
COEFFICIENT	WESTHUYSEN
WESTHUYSEN WHITE CAPPING	DISSIPATION PAR MOUTONNEMENT DE
DISSIPATION	WESTHUYSEN
WHITE CAPPING DISSIPATION	DISSIPATION PAR MOUTONNEMENT
WHITE CAPPING DISSIPATION COEFFICIENT	COEFFICIENT DE DISSIPATION PAR MOUTONNEMENT
WHITE CAPPING WEIGHTING	COEFFICIENT DE PONDERATION POUR
COEFFICIENT	LE MOUTONNEMENT
WIND DRAG COEFFICIENT	COEFFICIENT DE TRAINEE DE VENT
WIND GENERATION	APPORTS DUS AU VENT
WIND GENERATION COEFFICIENT	COEFFICIENT DE GENERATION PAR
	LE VENT
WIND MEASUREMENTS LEVEL	COTE DE MESURE DES VENTS
WIND VELOCITY ALONG X	VITESSE DU VENT SUIVANT X
WIND VELOCITY ALONG Y	VITESSE DU VENT SUIVANT Y
WINDS FILE BINARY	BINAIRE DU FICHIER DES VENTS
WINDS FILE FORMAT	FORMAT DU FICHIER DES VENTS
YAN GENERATION COEFFICIENT D	COEFFICIENT DE GENERATION DE
	YAN D

YAN GENERATION COEFFICIENT E	COEFFICIENT DE GENERATION DE
	YAN E
YAN GENERATION COEFFICIENT F	COEFFICIENT DE GENERATION DE
	YAN F
YAN GENERATION COEFFICIENT H	COEFFICIENT DE GENERATION DE
	YAN H

3.2 French/English glossary

ABSCISSES DES POINTS DE SORTIE	ABSCISSAE OF SPECTRUM PRINTOUT
DU SPECTRE	POINTS
APPORTS DUS AU VENT	WIND GENERATION
ASSEMBLAGE EN ELEMENTS FINIS	FINITE ELEMENT ASSEMBLY
BINAIRE DU FICHIER BINAIRE 1	BINARY FILE 1 BINARY
BINAIRE DU FICHIER DE GEOMETRIE	GEOMETRY FILE BINARY
BINAIRE DU FICHIER DES COURANTS	CURRENTS FILE BINARY
BINAIRE DU FICHIER DES	GLOBAL RESULT FILE BINARY
RESULTATS GLOBAUX	
BINAIRE DU FICHIER DES	PUNCTUAL RESULTS FILE BINARY
RESULTATS PONCTUELS	
BINAIRE DU FICHIER DES VENTS	WINDS FILE BINARY
BINAIRE DU FICHIER DU CALCUL	PREVIOUS COMPUTATION FILE
PRECEDENT	BINARY
BINAIRE DU FICHIER DU NIVEAU DE	TIDAL WATER LEVEL FILE BINARY
LA MAREE	
COEFFICIENT DE DISSIPATION DE	WESTHUYSEN DISSIPATION
WESTHUYSEN	COEFFICIENT
COEFFICIENT DE DISSIPATION PAR	DISSIPATION COEFFICIENT FOR
FORT COURANT	STRONG CURRENT
COEFFICIENT DE DISSIPATION PAR	WHITE CAPPING DISSIPATION
MOUTONNEMENT	COEFFICIENT
COEFFICIENT DE FROTTEMENT SUR	BOTTOM FRICTION COEFFICIENT
LE FOND	
COEFFICIENT DE GENERATION DE	YAN GENERATION COEFFICIENT D
YAN D	
COEFFICIENT DE GENERATION DE	YAN GENERATION COEFFICIENT E
YAN E	
COEFFICIENT DE GENERATION DE	YAN GENERATION COEFFICIENT F
YAN F	
COEFFICIENT DE GENERATION DE	YAN GENERATION COEFFICIENT H
YAN H	
COEFFICIENT DE GENERATION PAR	WIND GENERATION COEFFICIENT
LE VENT	
COEFFICIENT DE PONDERATION DE	WESTHUYSEN WEIGHTING
WESTHUYSEN	COEFFICIENT
COEFFICIENT DE PONDERATION POUR	WHITE CAPPING WEIGHTING
LE MOUTONNEMENT	COEFFICIENT
COEFFICIENT DE TRAINEE DE VENT	WIND DRAG COEFFICIENT

COEFFICIENT IMPLICITATION POUR	IMPLICITATION COEFFICIENT FOR
TERMES SOURCES	SOURCE TERMS
COEFFICIENT POUR LES SOUS-PAS	COEFFICIENT OF THE TIME
DE TEMPS POUR LE DEFERLEMENT	SUB-INCREMENTS FOR BREAKING
CONSTANTE DE CHARNOCK	CHARNOCK CONSTANT
CONSTANTE DE PHILLIPS AUX	BOUNDARY PHILLIPS CONSTANT
LIMITES	BOONDING THEBETTO CONSTINCT
CONSTANTE DE PHILLIPS INITIALE	INITIAL PHILLIPS CONSTANT
CONSTANTE DE VON KARMAN	VON KARMAN CONSTANT
CONVENTION TRIGONOMETRIQUE	TRIGONOMETRICAL CONVENTION
COORDONNEES DE L'ORIGINE	ORIGIN COORDINATES
COORDONNEES SPHERIQUES	SPHERICAL COORDINATES
COTE DE MESURE DES VENTS	WIND MEASUREMENTS LEVEL
COTE INITIALE DU PLAN D'EAU AU	INITIAL STILL WATER LEVEL
REPOS	
CROISSANCE LINEAIRE DES VAGUES	LINEAR WAVE GROWTH
DATE DE DEBUT DU CALCUL	DATE OF COMPUTATION BEGINNING
DEBUGGER	DEBUGGER
DECALAGE COURBE DE CROISSANCE	SHIFT GROWING CURVE DUE TO WIND
DUE AU VENT	
DEFERLEMENT 1 (BJ) CHOIX	DEPTH-INDUCED BREAKING 1 (BJ)
FREQUENCE CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 1 (BJ) CONSTANTE	DEPTH-INDUCED BREAKING 1 (BJ)
ALPHA	COEFFICIENT ALPHA
DEFERLEMENT 1 (BJ) CONSTANTE	DEPTH-INDUCED BREAKING 1 (BJ)
GAMMA1	COEFFICIENT GAMMA1
DEFERLEMENT 1 (BJ) CONSTANTE	DEPTH-INDUCED BREAKING 1 (BJ)
GAMMA2	COEFFICIENT GAMMA2
DEFERLEMENT 1 (BJ) MODE DE	DEPTH-INDUCED BREAKING 1 (BJ)
CALCUL DE HM	HM COMPUTATION METHOD
DEFERLEMENT 1 (BJ) MODE DE	DEPTH-INDUCED BREAKING 1 (BJ)
CALCUL DE QB	QB COMPUTATION METHOD
DEFERLEMENT 2 (TG) CHOIX	DEPTH-INDUCED BREAKING 2 (TG)
FREQUENCE CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 2 (TG) CONSTANTE B	DEPTH-INDUCED BREAKING 2 (TG)
DEEDLEMENT O (TO) CONCTANTE	COEFFICIENT B
DEFERLEMENT 2 (TG) CONSTANTE GAMMA	DEPTH-INDUCED BREAKING 2 (TG) COEFFICIENT GAMMA
DEFERLEMENT 2 (TG) FONCTION DE PONDERATION	DEPTH-INDUCED BREAKING 2 (TG) WEIGHTING FUNCTION
DEFERLEMENT 3 (RO) CHOIX	DEPTH-INDUCED BREAKING 3 (RO)
FREQUENCE CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 3 (RO) CONSTANTE	DEPTH-INDUCED BREAKING 3 (RO)
ALPHA	COEFFICIENT ALPHA
DEFERLEMENT 3 (RO) CONSTANTE	DEPTH-INDUCED BREAKING 3 (RO)
GAMMA	COEFFICIENT GAMMA
01111111	COULT TOTHIST OUTIFIT

DEFERLEMENT 3 (RO) CONSTANTE	DEPTH-INDUCED BREAKING 3 (RO)
GAMMA2	COEFFICIENT GAMMA2
DEFERLEMENT 3 (RO) DISTRIBUTION	DEPTH-INDUCED BREAKING 3 (RO)
DES HAUTEURS DE HOULE	WAVE HEIGHT DISTRIBUTION
DEFERLEMENT 3 (RO) EXPOSANT	DEPTH-INDUCED BREAKING 3 (RO)
FONCTION DE PONDERATION	EXPONENT WEIGHTING FUNCTION
DEFERLEMENT 4 (IH) CHOIX	DEPTH-INDUCED BREAKING 4 (IH)
FREQUENCE CARACTERISTIQUE	CHARACTERISTIC FREQUENCY
DEFERLEMENT 4 (IH) CONSTANTE	DEPTH-INDUCED BREAKING 4 (IH)
BETA0	COEFFICIENT BETAO
DEFERLEMENT 4 (IH) CONSTANTE	DEPTH-INDUCED BREAKING 4 (IH)
M2STAR	COEFFICIENT M2STAR
DENSITE DE L'AIR	AIR DENSITY
DENSITE DE L'EAU	WATER DENSITY
DEPHASAGE DU FICHIER DES	TIME SHIFT IN CURRENTS FILE
COURANTS	
DEPHASAGE DU FICHIER DES VENTS	TIME SHIFT IN WINDS FILE
DEPHASAGE DU FICHIER DU NIVEAU	TIME SHIFT IN TIDAL WATER LEVEL
DE LA MAREE	FILE
DESCRIPTION DES LIBRAIRIES	DESCRIPTION OF LIBRARIES
DICTIONNAIRE	DICTIONARY
DIFFRACTION	DIFFRACTION
DIRECTION PRINCIPALE 1 AUX	BOUNDARY MAIN DIRECTION 1
LIMITES	
DIRECTION PRINCIPALE 1 INITIALE	INITIAL MAIN DIRECTION 1
DIRECTION PRINCIPALE 2 AUX	BOUNDARY MAIN DIRECTION 2
LIMITES	
DIRECTION PRINCIPALE 2 INITIALE	INITIAL MAIN DIRECTION 2
DISSIPATION PAR DEFERLEMENT	DEPTH-INDUCED BREAKING
	DISSIPATION
DISSIPATION PAR FORT COURANT	DISSIPATION BY STRONG CURRENT
DISSIPATION PAR FROTTEMENT SUR	BOTTOM FRICTION DISSIPATION
LE FOND	
DISSIPATION PAR MOUTONNEMENT	WHITE CAPPING DISSIPATION
DISSIPATION PAR MOUTONNEMENT DE	WESTHUYSEN WHITE CAPPING
WESTHUYSEN	DISSIPATION
ETALEMENT DIRECTIONNEL 1 AUX	BOUNDARY DIRECTIONAL SPREAD 1
LIMITES	
ETALEMENT DIRECTIONNEL 1	INITIAL DIRECTIONAL SPREAD 1
INITIAL	
ETALEMENT DIRECTIONNEL 2 AUX	BOUNDARY DIRECTIONAL SPREAD 2
LIMITES	
ETALEMENT DIRECTIONNEL 2	INITIAL DIRECTIONAL SPREAD 2
INITIAL	
EXECUTABLE PAR DEFAUT	DEFAULT EXECUTABLE
EXECUTABLE PARALLELE PAR DEFAUT	DEFAULT PARALLEL EXECUTABLE
FACTEUR DE PIC AUX LIMITES	BOUNDARY PEAK FACTOR

FACTEUR DE PIC INITIAL	INITIAL PEAK FACTOR
FACTEUR DE PONDERATION POUR FRA	BOUNDARY WEIGHTING FACTOR FOR
AUX LIMITES	ADF
FACTEUR DE PONDERATION POUR FRA	INITIAL WEIGHTING FACTOR FOR
INITIALE	ADF
FACTEUR DE QUEUE DU SPECTRE	SPECTRUM TAIL FACTOR
FICHIER BINAIRE 1	BINARY FILE 1
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DES CONDITIONS AUX	BOUNDARY CONDITIONS FILE
LIMITES	
FICHIER DES COURANTS BINAIRE	BINARY CURRENTS FILE
FICHIER DES COURANTS FORMATE	FORMATTED CURRENTS FILE
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES RESULTATS 2D	2D RESULTS FILE
FICHIER DES RESULTATS GLOBAUX	GLOBAL RESULT FILE
FICHIER DES RESULTATS PONCTUELS	PUNCTUAL RESULTS FILE
FICHIER DES RESULTATS SPECTRES	1D SPECTRA RESULTS FILE
1D	
FICHIER DES VENTS BINAIRE	BINARY WINDS FILE
FICHIER DES VENTS FORMATE	FORMATTED WINDS FILE
FICHIER DU CALCUL PRECEDENT	PREVIOUS COMPUTATION FILE
FICHIER DU NIVEAU DE LA MAREE	BINARY TIDAL WATER LEVEL FILE
BINAIRE	
FICHIER DU NIVEAU DE LA MAREE	FORMATTED TIDAL WATER LEVEL
FORMATE	FILE
FICHIER FORMATE 1	FORMATTED FILE 1
FICHIER FORTRAN	FORTRAN FILE
FILTRE POUR DIFFRACTION	DIFFRACTION FILTER
FONCTION DE REPARTITION	BOUNDARY ANGULAR DISTRIBUTION
ANGULAIRE AUX LIMITES	FUNCTION
FONCTION DE REPARTITION	INITIAL ANGULAR DISTRIBUTION
ANGULAIRE INITIALE	FUNCTION
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 1 FORMAT
BINAIRE 1	
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE LA MAREE	BINARY TIDAL WATER FILE FORMAT
BINAIRE	
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
FORMAT DU FICHIER DE SPECTRE	SPECTRUM FILE FORMAT
FORMAT DU FICHIER DES COURANTS	CURRENTS FILE FORMAT
FORMAT DU FICHIER DES COURANTS	BINARY CURRENTS FILE FORMAT
BINAIRE	
FORMAT DU FICHIER DES RESULTATS	2D RESULTS FILE FORMAT
2D	

FORMAT DU FICHIER DES RESULTATS	GLOBAL RESULT FILE FORMAT
GLOBAUX	CHODAL RESULT THE TORNAL
FORMAT DU FICHIER DES VENTS	WINDS FILE FORMAT
FORMAT DU FICHIER DES VENTS	BINARY WINDS FILE FORMAT
BINAIRE	BINING WINDS TIES TOTALL
FORMAT DU FICHIER DU CALCUL	PREVIOUS COMPUTATION FILE
PRECEDENT	FORMAT
FORMAT DU FICHIER DU NIVEAU DE	TIDAL WATER LEVEL FILE FORMAT
LA MAREE	
FREQUENCE DE PIC AUX LIMITES	BOUNDARY PEAK FREQUENCY
FREQUENCE DE PIC INITIALE	INITIAL PEAK FREQUENCY
FREQUENCE DE PIC MAXIMALE AUX	BOUNDARY MAXIMUM PEAK FREQUENCY
LIMITES	
FREQUENCE DE PIC MAXIMALE	INITIAL MAXIMUM PEAK FREQUENCY
INITIALE	
FREQUENCE MINIMALE	MINIMAL FREQUENCY
HAUTEUR SIGNIFICATIVE AUX	BOUNDARY SIGNIFICANT WAVE
LIMITES	HEIGHT
HAUTEUR SIGNIFICATIVE INITIALE	INITIAL SIGNIFICANT WAVE HEIGHT
LIMITEUR DE CROISSANCE	WAVE GROWTH LIMITER
LISSAGES DU FOND	BOTTOM SMOOTHINGS
LISTE DES FICHIERS	LIST OF FILES
LONGUEUR DU VECTEUR	VECTOR LENGTH
MODELISATION BAJ	BAJ MODELING
NOMBRE DE DIRECTIONS	NUMBER OF DIRECTIONS
NOMBRE DE FREQUENCES	NUMBER OF FREQUENCIES
NOMBRE DE PAS DE TEMPS	NUMBER OF TIME STEP
NOMBRE DE SOUS-ITERATIONS POUR	NUMBER OF ITERATIONS FOR THE
LES TERMES SOURCES	SOURCE TERMS
NOMBRE DE SOUS-PAS DE TEMPS	NUMBER OF BREAKING TIME STEPS
POUR LE DEFERLEMENT	
NOMBRE DE TABLEAUX PRIVES	NUMBER OF PRIVATE ARRAYS
NOMS DES VARIABLES	NAMES OF VARIABLES
NUMERO DE LA PREMIERE ITERATION	NUMBER OF FIRST ITERATION FOR
POUR LES SORTIES GRAPHIQUES	GRAPHICS PRINTOUTS
NUMERO DE VERSION	RELEASE
NUMERO DU PAS DE TEMPS DU	TIME INCREMENT NUMBER IN
FICHIER TELEMAC	TELEMAC FILE
OPTION POUR LA QUEUE	OPTION FOR DIAGNOSTIC TAIL
DIAGNOSTIQUE	
OPTION POUR LES DERIVEES	OPTION FOR SECOND DERIVATIVES
SECONDES DE CONTRE DE CONTRE	
ORDONNEES DES POINTS DE SORTIE	ORDINATES OF SPECTRUM PRINTOUT
DU SPECTRE	POINTS
PARAMETRE DE LA CONFIGURATION	STANDARD CONFIGURATION
STANDARD	PARAMETER
PARTITIONNEUR	PARTITIONING TOOL

PAS DE TEMPS	TIME STEP
PAS DE TEMPS DEBUT DIFFRACTION	STARTING TIME STEP FOR
	DIFFFRACTION
PERIODE D'ACTUALISATION DE LA	TIDE REFRESHING PERIOD
MAREE	
PERIODE POUR LES SORTIES	PERIOD FOR GRAPHIC PRINTOUTS
GRAPHIQUES	
PERIODE POUR LES SORTIES	PERIOD FOR LISTING PRINTOUTS
LISTING	
PRISE EN COMPTE D'UN COURANT	CONSIDERATION OF A STATIONARY
STATIONNAIRE	CURRENT
PRISE EN COMPTE DE LA MAREE	CONSIDERATION OF TIDE
PRISE EN COMPTE DE LA PROPAGATION	CONSIDERATION OF PROPAGATION
PRISE EN COMPTE DE LA	VEGETATION TAKEN INTO ACCOUNT
VEGETATION	VEGETATION TAKEN INTO ACCOUNT
PRISE EN COMPTE DES TERMES	CONSIDERATION OF SOURCE TERMS
SOURCES	CONDIDERNITION OF BOOKER TENTE
PRISE EN COMPTE DU VENT	CONSIDERATION OF A WIND
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PROFONDEUR D'EAU MINIMALE	MINIMUM WATER DEPTH
PROFONDEUR INFINIE	INFINITE DEPTH
RAISON FREQUENTIELLE	FREQUENTIAL RATIO
RANG DU NIVEAU DE LA MAREE DANS	RANK OF THE WATER LEVEL DATA IN
LE FICHIER TELEMAC	THE TELEMAC FILE
RECUPERATION DE DONNEE TELEMAC	RECOVERY OF TELEMAC DATA ITEM
REGLAGE POUR INTEGRATION SUR	SETTING FOR INTEGRATION ON
OMEGA1	OMEGA1
REGLAGE POUR INTEGRATION SUR	SETTING FOR INTEGRATION ON
OMEGA2	OMEGA2
REGLAGE POUR INTEGRATION SUR	SETTING FOR INTEGRATION ON
THETA1	THETA1
REMISE A ZERO DU TEMPS	INITIAL TIME SET TO ZERO
SEUIL D'ENERGIE CONSIDERE POUR	SPECTRUM ENERGY THRESHOLD
LE SPECTRE	CARLIDARION RUDROUOLD ROD RUD
SEUIL DE SATURATION POUR LA	SATURATION THRESHOLD FOR THE
DISSIPATION SEUIL DE VARIANCE CONSIDEREE	DISSIPATION VARIANCE THRESHOLD FOR
POUR DIFFRACTION	DIFFRACTION
SEUILO ELIMINATION DE	THRESHOLDO FOR CONFIGURATIONS
CONFIGURATIONS	ELIMINATION
SEUIL1 ELIMINATION DE	THRESHOLD1 FOR CONFIGURATIONS
CONFIGURATIONS	ELIMINATION
SEUIL2 ELIMINATION DE	THRESHOLD2 FOR CONFIGURATIONS
CONFIGURATIONS	ELIMINATION
SPECTRE AUX LIMITES MODIFIE PAR	LIMIT SPECTRUM MODIFIED BY USER
L'UTILISATEUR	

Bibliography 93

SUITE DE CALCUL	NEXT COMPUTATION
TITRE	TITLE
TRANSFERTS ENTRE TRIPLETS DE	TRIAD INTERACTIONS
FREQUENCES	
TRANSFERTS NON LINEAIRES	NON-LINEAR TRANSFERS BETWEEN
INTER-FREQUENCES	FREQUENCIES
TRIADS 1 (LTA) CONSTANTE ALPHA	TRIADS 1 (LTA) COEFFICIENT
, ,	ALPHA
TRIADS 1 (LTA) CONSTANTE RFMLTA	TRIADS 1 (LTA) COEFFICIENT
	RFMLTA
TRIADS 2 (SPB) BORNE	TRIADS 2 (SPB) LOWER
DIRECTIONNELLE INFERIEURE	DIRECTIONAL BOUNDARY
TRIADS 2 (SPB) BORNE	TRIADS 2 (SPB) UPPER
DIRECTIONNELLE SUPERIEURE	DIRECTIONAL BOUNDARY
TRIADS 2 (SPB) CONSTANTE K	TRIADS 2 (SPB) COEFFICIENT K
TYPE DE SPECTRE DIRECTIONNEL	TYPE OF BOUNDARY DIRECTIONAL
AUX LIMITES	SPECTRUM
TYPE DE SPECTRE DIRECTIONNEL	TYPE OF INITIAL DIRECTIONAL
INITIAL	SPECTRUM
UNITE DE TEMPS DU FICHIER DES	TIME UNIT IN CURRENTS FILE
COURANTS	
UNITE DE TEMPS DU FICHIER DES	TIME UNIT IN WINDS FILE
VENTS	
UNITE DE TEMPS DU FICHIER DU	TIME UNIT IN TIDAL WATER LEVEL
NIVEAU DE LA MAREE	FILE
VALEUR AUX LIMITES DE SIGMA-A	BOUNDARY SPECTRUM VALUE OF
POUR SPECTRE	SIGMA-A
VALEUR AUX LIMITES DE SIGMA-B	BOUNDARY SPECTRUM VALUE OF
POUR SPECTRE	SIGMA-B
VALEUR INITIALE DE SIGMA-A POUR	INITIAL VALUE OF SIGMA-A FOR
SPECTRE	SPECTRUM
VALEUR INITIALE DE SIGMA-B POUR	INITIAL VALUE OF SIGMA-B FOR
SPECTRE	SPECTRUM
VALEUR MAXIMALE DU RAPPORT HMO	MAXIMUM VALUE OF THE RATIO HMO
SUR D	ON D
VALEUR MOYENNE DU FETCH AUX	BOUNDARY MEAN FETCH VALUE
LIMITES	
VALEUR MOYENNE DU FETCH INITIAL	INITIAL MEAN FETCH VALUE
VALIDATION	VALIDATION
VARIABLES POUR LES SORTIES	VARIABLES FOR 2D GRAPHIC
GRAPHIQUES 2D	PRINTOUTS
VENT STATIONNAIRE	STATIONARY WIND
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VITESSE DU VENT SUIVANT X	WIND VELOCITY ALONG X
VITESSE DU VENT SUIVANT Y	WIND VELOCITY ALONG Y

- [1] JOLY A., GOEURY C., and HERVOUET J.-M. Adding a particle transport module to telemac-2d with applications to algae blooms and oil spills. Technical Report H-P74-2013-02317-EN, EDF R&D-LNHE, 2013.
- [2] AUTHOR. Title. Journal de Mickey, 666.
- [3] PHAM C.-T., BOURBAN S., DURAND N., and TURNBULL M. Méthodologie pour la simulation de la marée avec la version 6.2 de telemac-2d et telemac-3d. Technical Report H-P74-2012-02534-FR, EDF R&D-LNHE, 2012.
- [4] Sampath Kumar Gurram, Karam S. Karki, and Willi H. Hager. Subcritical junction flow. *Journal of Hydraulic Engineering*, 123(5):447–455, may 1997.
- [5] TSANIS I. Simulation of wind-induced water currents. *Journal of hydraulic Engineering*, 115(8):1113–1134, 1989.
- [6] SMAGORINSKY J. General simulation experiments with the primitive equations. *Monthly Weather Review*, 91(3):99–164, March 1963.
- [7] HERVOUET J.-M. *Méthodes itératives pour la solution des systèmes matriciels*. Rapport EDF HE43/93.049/A, 1996.
- [8] HERVOUET J.-M. Hydrodynamics of Free Surface Flows. Modelling with the finite element method. Wiley, 2007.
- [9] HERVOUET J.-M. Guide to programming in the telemac system version 6.0. Technical Report H-P74-2009-00801-EN, EDF R&D-LNHE, 2009.
- [10] JANIN J.-M., HERVOUET J.-M., and MOULIN C. A positive conservative scheme for scalar advection using the M.U.R.D technique in 3D free-surface flow problems. XIth International Conference on Computional methods in water resources, 1996.
- [11] GAUTHIER M. and QUETIN B. Modèles mathématiques de calcul des écoulements induits par le vent. In *17e congrès de l'AIRH*, Baden-Baden, August 1977.
- [12] METCALF M. and REID J. Fortran 90 explained. Oxford Science Publications, 1990.