Transmission Fundamentals

Chapter 2

Electromagnetic Signal

- Function of time
- Can also be expressed as a function of frequency
 - Signal consists of components of different frequencies

Time-Domain Concepts

- Analog signal signal intensity varies in a smooth fashion over time
 - No breaks or discontinuities in the signal
- Digital signal signal intensity maintains a constant level for some period of time and then changes to another constant level
- Periodic signal analog or digital signal pattern that repeats over time
 - s(t+T) = s(t)
 - where *T* is the period of the signal

Time-Domain Concepts

- Aperiodic signal analog or digital signal pattern that doesn't repeat over time
- Peak amplitude (*A*) maximum value or strength of the signal over time; typically measured in volts
- Frequency (*f*)
 - Rate, in cycles per second, or Hertz (Hz) at which the signal repeats

4

Time-Domain Concepts

- Period (T) amount of time it takes for one repetition of the signal
 - T = 1/f
- Phase (φ) measure of the relative position in time within a single period of a signal
- Wavelength (λ) distance occupied by a single cycle of the signal
 - Or, the distance between two points of corresponding phase of two consecutive cycles

1

Sine Wave Parameters

- General sine wave
 - $s(t) = A \sin(2\pi f t + \phi)$
- Figure 2.3 shows the effect of varying each of the three parameters
 - (a) A = 1, f = 1 Hz, $\phi = 0$; thus T = 1s
 - (b) Reduced peak amplitude; A=0.5
 - (c) Increased frequency; f = 2, thus $T = \frac{1}{2}$
 - (d) Phase shift; $\phi = \pi/4$ radians (45 degrees)
- note: 2π radians = 360° = 1 period

Figure 2.3 $s(t) = A \sin(2 ft + \phi)$

Time vs. Distance

- When the horizontal axis is *time*, as in Figure 2.3, graphs display the value of a signal at a given point in *space* as a function of *time*
- With the horizontal axis in *space*, graphs display the value of a signal at a given point in *time* as a function of *distance*
 - At a particular instant of time, the intensity of the signal varies as a function of distance from the source

Frequency-Domain Concepts

- Fundamental frequency when all frequency components of a signal are integer multiples of one frequency, it's referred to as the fundamental frequency
- Spectrum range of frequencies that a signal contains
- Absolute bandwidth width of the spectrum of a signal
- Effective bandwidth (or just bandwidth) narrow band of frequencies that most of the signal's energy is contained in

Frequency-Domain Concepts

- Any electromagnetic signal can be shown to consist of a collection of periodic analog signals (sine waves) at different amplitudes, frequencies, and phases
- The period of the total signal is equal to the period of the fundamental frequency

Relationship between Data Rate and Bandwidth

- The greater the bandwidth, the higher the information-carrying capacity
- Conclusions
 - Any digital waveform will have infinite bandwidth
 - BUT the transmission system will limit the bandwidth that can be transmitted
 - AND, for any given medium, the greater the bandwidth transmitted, the greater the cost
 - HOWEVER, limiting the bandwidth creates distortions

Data Communication Terms

- Data entities that convey meaning, or information
- Signals electric or electromagnetic representations of data
- Transmission communication of data by the propagation and processing of signals

Examples of Analog and Digital Data

- Analog
 - Video
 - Audio
- Digital
 - Text
 - Integers

Analog Signals

- A continuously varying electromagnetic wave that may be propagated over a variety of media, depending on frequency
- Examples of media:
 - Copper wire media (twisted pair and coaxial cable)
 - Fiber optic cable
 - Atmosphere or space propagation
- Analog signals can propagate analog and digital data

Digital Signals

- A sequence of voltage pulses that may be transmitted over a copper wire medium
- Generally cheaper than analog signaling
- Less susceptible to noise interference
- Suffer more from attenuation
- Digital signals can propagate analog and digital data

Reasons for Choosing Data and Signal Combinations

- Digital data, digital signal
 - Equipment for encoding is less expensive than digitalto-analog equipment
- Analog data, digital signal
 - Conversion permits use of modern digital transmission and switching equipment
- Digital data, analog signal
 - Some transmission media will only propagate analog signals
 - Examples include optical fiber and satellite
- Analog data, analog signal
 - Analog data easily converted to analog signal

Analog Transmission

- Transmit analog signals without regard to content
- Attenuation limits length of transmission link
- Cascaded amplifiers boost signal's energy for longer distances but cause distortion
 - Analog data can tolerate distortion
 - Introduces errors in digital data

Digital Transmission

- Concerned with the content of the signal
- Attenuation endangers integrity of data
- Digital Signal
 - Repeaters achieve greater distance
 - Repeaters recover the signal and retransmit
- Analog signal carrying digital data
 - Retransmission device recovers the digital data from analog signal
 - Generates new, clean analog signal

About Channel Capacity

- Impairments, such as noise, limit data rate that can be achieved
- For digital data, to what extent do impairments limit data rate?
- Channel Capacity the maximum rate at which data can be transmitted over a given communication path, or channel, under given conditions

Concepts Related to Channel Capacity

- Data rate rate at which data can be communicated (bps)
- Bandwidth the bandwidth of the transmitted signal as constrained by the transmitter and the nature of the transmission medium (Hertz)
- Noise average level of noise over the communications path
- Error rate rate at which errors occur
 - Error = transmit 1 and receive 0; transmit 0 and receive

Nyquist Bandwidth

- For binary signals (two voltage levels)
 - C = 2B
- With multilevel signaling
 - $C = 2B \log_2 M$
 - ullet M = number of discrete signal or voltage levels

Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's present at a particular point in the transmission
- Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)

$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$

- A high SNR means a high-quality signal, low number of required intermediate repeaters
- SNR sets upper bound on achievable data rate

4

Shannon Capacity Formula

Equation:

$$C = B \log_2(1 + SNR)$$

- Represents theoretical maximum that can be achieved
- In practice, only much lower rates achieved
 - Formula assumes white noise (thermal noise)
 - Impulse noise is not accounted for
 - Attenuation distortion or delay distortion not accounted for

•

Example of Nyquist and Shannon Formulations

 Spectrum of a channel between 3 MHz and 4 MHz; SNR_{dB} = 24 dB

Using Shannon's formula

4

Example of Nyquist and Shannon Formulations

 Spectrum of a channel between 3 MHz and 4 MHz; SNR_{dB} = 24 dB

$$B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}$$

 $SNR_{dB} = 24 \text{ dB} = 10 \log_{10}(SNR)$
 $SNR = 251$

Using Shannon's formula

$$C = 10^6 \times \log_2(1 + 251) \approx 10^6 \times 8 = 8$$
Mbps

Example of Nyquist and Shannon Formulations

How many signaling levels are required?

Example of Nyquist and Shannon Formulations

How many signaling levels are required?

$$C = 2B \log_2 M$$

$$8 \times 10^6 = 2 \times (10^6) \times \log_2 M$$

$$4 = \log_2 M$$

$$M = 16$$

Transmission Medium

- Physical path between transmitter and receiver
- Guided Media
 - Waves are guided along a solid medium
 - E.g., copper twisted pair, copper coaxial cable, optical fiber

Unguided Media

- Provides means of transmission but does not guide electromagnetic signals
- Usually referred to as wireless transmission
- E.g., atmosphere, outer space

Unguided Media

- Transmission and reception are achieved by means of an antenna
- Configurations for wireless transmission
 - Directional
 - Omnidirectional

General Frequency Ranges

- Microwave frequency range
 - 1 GHz to 40 GHz
 - Directional beams possible
 - Suitable for point-to-point transmission
 - Used for satellite communications
- Radio frequency range
 - 30 MHz to 1 GHz
 - Suitable for omnidirectional applications
- Infrared frequency range
 - Roughly, $3x10^{11}$ to $2x10^{14}$ Hz
 - Useful in local point-to-point multipoint applications within confined areas

Terrestrial Microwave

- Description of common microwave antenna
 - Parabolic "dish", 3 m in diameter
 - Fixed rigidly and focuses a narrow beam
 - Achieves line-of-sight transmission to receiving antenna
 - Located at substantial heights above ground level
- Applications
 - Long haul telecommunications service
 - Short point-to-point links between buildings

Satellite Microwave

- Description of communication satellite
 - Microwave relay station
 - Used to link two or more ground-based microwave transmitter/receivers
 - Receives transmissions on one frequency band (uplink), amplifies or repeats the signal, and transmits it on another frequency (downlink)
- Applications
 - Television distribution
 - Long-distance telephone transmission
 - Private business networks

Broadcast Radio

- Description of broadcast radio antennas
 - Omnidirectional
 - Antennas not required to be dish-shaped
 - Antennas need not be rigidly mounted to a precise alignment
- Applications
 - Broadcast radio
 - VHF and part of the UHF band; 30 MHZ to 1GHz
 - Covers FM radio and UHF and VHF television

Multiplexing

- Capacity of transmission medium usually exceeds capacity required for transmission of a single signal
- Multiplexing carrying multiple signals on a single medium
 - More efficient use of transmission medium

Multiplexing

Reasons for Widespread Use of Multiplexing

- Cost per kbps of transmission facility declines with an increase in the data rate
- Cost of transmission and receiving equipment declines with increased data rate
- Most individual data communicating devices require relatively modest data rate support

Multiplexing Techniques

- Frequency-division multiplexing (FDM)
 - Takes advantage of the fact that the useful bandwidth of the medium exceeds the required bandwidth of a given signal
- Time-division multiplexing (TDM)
 - Takes advantage of the fact that the achievable bit rate of the medium exceeds the required data rate of a digital signal

Frequency-division Multiplexing

Time-division Multiplexing

