Masters of Computer Applications

MCAC-201: Data Structures
Unique Paper Code: 223401201

Semester II June -2023

Year of Admission: 2021

Duration: 3hours	•	Max Marks: 70
Note: Attempt all questions. Write Assumptions (if any) sh	ould be clearly stated.	
(a) Inserting an element in an Unsorted (b) Deleting a given element from a Bin (c) Returning the maximum element product (c) Searching an element in a Sorted are (c) Searching an element in a Sorted Si	e following operations in d Array. nary Search Tree. resent in a Doubly-Link rray.	the worst case (1*5=5)
O 2. Given head pointers head1, head2 of two is unknown), give a linear time algorithm number of nodes) at the end of the short than constant extra space. O 3. Construct a suffix tree for the text BAN tion	singly linked lists (the l n to append the longer l er list. The algorithm sh	ist (one with more nould take no more (5)
tion. In a directed graph $G(V, E)$, a node v is so is going out of v . Given a graph G (repreto check if G contains a sink node or not.	aid to be a sink node if a	(5)
(a) Binary Search Tree that is not an AVL T (b) Red Black tree that is not an AVL T (c) Heap that is also a Binary search Tree (d) Sorted Array that is also a Heap	VL Tree Yee	(2*5=10)
(e) 2-dimensional array that represents a 6 Assuming hash function $H(x) = x\%7$, In same sequence assuming		8, 24, 25, 5 in the

(a) Open addressing with Linear Probing (b) Chairing	
(b) Chaining	(3)
	(3)
appose voll have 2 at 1 at	+2=4)
Suppose you have 2 stacks $Stack1$ and $Stack2$. The only available operations are these two stacks as underlying data structure. You are required to write the pseudocodes only for $enqueue(key)$, $dequeue()$ and $isempty()$ functions for your Queue. Write a pseudocode to invel	
Write a pseudocode to imply () and isempty() functions for your Queue.	(5)
Write a pseudocode to implement a Min-Priority-Queue (only enqueue(key, priority), structure. Give the running time of your operations.	1"
9 The height of a tree is the number of	(5)
9 The height of a tree is the number of edges in the tree from the root to the deepest node. Given a pointer to the root of a tree, write a recursive function to return the height of the tree.	
O 10. Given k different sorted arrays $A_1, A_2, \ldots A_k$ each containing n integers, give an efficient algorithm to merge these k sorted arrays into a single sorted array. Analyze the time complexity of your algorithm.	(5)
	(5)
11. Construct a Binary Search Tree from a given Pre-Order Traversal: 25, 17, 22, 40, 30, 45, 42.	
12. Answer the following questions briefly.	(5)
What are the advantages of using an array over a linked list	2+1=5)
Show without explaining. Search Trees are possible for the set of keys {1, 2, 3}.	
What is the maximum and the minimum number of edges possible in a Tree with n nodes?	

Best wishes

Page 2