Estimation and Detection (Fall 2016)

* Total points: 100

* Due 1/9/2016

1. Given the system model:

$$x[n] = a\cos(2\pi f_0 n) + b\sin(2\pi f_0 n) + \omega[n], \ n = 0, 1, \dots, N - 1.$$

Let N = 1000 and $f_0 = \frac{1}{16}$. Let $\omega[n] \sim \mathcal{N}(0, \sigma^2)$. We would like to estimate $\boldsymbol{\theta} = [a \ b]^T$ by Bayesian philosophy, where $\boldsymbol{\theta}$ has prior PDF $\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta}^2 \mathbf{I})$. Define SNR be $\frac{\sigma_{\theta}^2}{\sigma^2}$.

- (a) (5 points) Obtain the MMSE estimator for θ .
- (b) (5 points) Obtain the closed-form expressions for $B_{MSE}(\hat{a})$ and $B_{MSE}(\hat{b})$.
- (c) (50 points) Plot theoretical and simulation results for $B_{MSE}(\hat{a})$ and $B_{MSE}(\hat{b})$ for SNR from -20 to 20 dB. (Let the number of realizations be $M=10^5$)
- (d) (10 points) How would the value of SNR affects the estimator and the B_{MSEs} .
- (e) (30 points) Let N=10 and N=100, repeat (a)-(d). How would the value of N affect the estimator and the B_{MSEs} . The solution for (c) needs plot to get points.