Matt study, Nuclear transparency

Mathieu Ouillon

 $\begin{array}{c} 2024 \\ \text{September} \end{array}$

0.1 Strategy

0.1.1 Carbon target

 $\begin{array}{l} {\rm Carbon\ runs}:\ 018339,\ 018340,\ 018341,\ 018342,\ 018343,\ 018344,\ 018346,\ 018440,\ 018441,\ 018442,\ 018443,\ 018444,\ 018445,\ 018475,\ 018498,\ 018524,\ 018756,\ 018850 \end{array}$

path: /cache/hallb/scratch/rg-d/production/Bspot/v5dstCxC/dst/recon/

- Find event with a trigger electron(REC::Particle::pid == 11 and status<0), at least a π^+ and at least a π^- .
- Apply cut on electron: $-5 < \chi^2_{pid} < 5$ and $-12 < v_z < 5$
- Find all π^+ in event: REC::Particle::pid == 211
- Apply cut on π^+ : $-10 < \chi^2_{pid} < 10$
- Find all π^- in event: REC::Particle::pid == -211
- Apply cut on π^- : $-10 < \chi^2_{pid} < 10$
- Find all combinaison of π^+ and π^-
- Cut to select reaction:

$$-W = (p_i + \gamma^*)^2 > 2GeV, \text{ with } p_i = (0, 0, 0, M_p), M_p = 0.938GeV^2$$
$$-z_h = \frac{E_{\rho^0}}{v} > 0.9$$
$$-0.1 < -t = (\gamma^* - p_{\rho^0})^2 < 0.5GeV^2$$
$$-l_c < 0.5fm$$

- Fill invariant mass of ρ^0 for the Q^2 bins : $1 \le Q^2 < 2$, $2 \le Q^2 < 2.5$, $2.5 \le Q^2 < 3$, $3 \le Q^2 < 3.5$, $3.5 \le Q^2 < 4.5$, $4.5 < Q^2 < 6$
- Fit the distribution with a Breit-Wigner and a 3rd order polynom between 0.3 and 1.4 GeV/c^2 :

$$BW(x; x_0, \Gamma, \alpha) = \alpha \times \frac{1}{\pi} \times \frac{\frac{1}{2}\Gamma}{(x - x_0)^2 + \frac{1}{2}\Gamma}$$
(1)

$$pol3(x; a, b, c, d) = a + b \times x + c \times x^2 + d \times x^3$$
(2)

where x_0 is the location parameter, specifying the location of the peak of the distribution, γ is full width at half maximum (FWHM).

• Take the integral of the fit function using Integral root function between 0.3 and 1.4 GeV/c^2 .

0.2 Carbon data

0.2.1 Numbers

- Total number of event: 354888652
- Number of event with a trigger electron (REC::Particle::pid == 11 and status<0) and at least a π^+ and at least a π^- : 22585713; ratio between this one and the previous number: 0.0636417
- Number of event with a good electron: 20067249; ratio: 0.888493
- Number of π^+ after electron cuts: 27575088
- Number of good π^+ after electron and π^+ cuts : 18219354; ratio : 0.660718
- Number of bad π^+ after electron and opposite π^+ cuts: 9355734; ratio : 0.339282
- Number of π^- after electron cuts: 25090248
- Number of good π^- after electron and π^- cuts: 20446619; ratio : 0.814923
- Number of bad π^- after electron and opposite π^- cuts: 4643629; ratio : 0.185077
- Number of ρ^0 : 20411533;

- • Number of ρ^0 that pass the W cut : 19735078; ratio : 0.966859
- Number of ρ^0 that pass the W and z_h cuts : 355804; ratio : 0.018029
- Number of ρ^0 that pass the W, z_h and t cuts : 163572; ratio : 0.459725
- Number of ρ^0 that pass the $W,\,z_h,\,t$ and l_c cuts : 10173; ratio : 0.0621928

0.2.2 Electron

0.2.5 Event selection

0.2.6 ρ^0 invariant mass

0.2.7 LD2

 $LD2 \; runs: \; 018419, \; 018421, \; 018424, \; 018427, \; 018428, \; 018429, \; 018431, \; 018432, \; 018433, \; 018439, \; 018528, \; 018559, \; 018644, \; 018656, \; 018851, \; 018873, \; 019021, \; 019058$

path: /cache/hallb/scratch/rg-d/production/Bspot/v5dstLD2/dst/recon/

- Select the trigger electron: REC::Particle::pid == 11 and status<0
- Apply cut on electron: $-3 < \chi^2_{pid} < 3$ and $-12 < v_z < 5$

- Find all π^+ in event: REC::Particle::pid == 211
- Apply cut on π^+ : $-10 < \chi^2_{pid} < 10$
- Find all π^- in event: REC::Particle::pid == -211
- Apply cut on π^- : $-10 < \chi^2_{pid} < 10$
- \bullet Find all combination of π^+ and π^-
- Cut to select reaction :

$$-W = (p_i + \gamma^*)^2 > 2GeV$$

$$-z_h = \frac{E_{\rho^0}}{z_h} > 0.9$$

$$-z_h = \frac{E_{\rho^0}}{v} > 0.9$$
$$-0.1 < -t < 0.5 GeV^2$$

$$-l_c \leq 0.5 fm$$