Completezza funzionale

1 Tavole di verità e funzioni booleane

Si consideri la tavola di verità per $H = (p \lor q) \land (r \lor \neg p) \rightarrow (q \land r)$:

p	q	r	$\neg p$	$p\vee q$	$r \vee \neg p$	$(p \vee q) \wedge (r \vee \neg p)$	$q\wedge r$	H
0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	0	0	1
0	1	0	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1
1	0	0	0	1	0	0	0	1
1	0	1	0	1	1	1	0	0
1	1	0	0	1	0	0	0	1
1	1	1	0	1	1	1	1	1

Si osserva che, nelle colonne corrispondenti alle variabili proposizionali, sono presenti tutte le possibili triple di valori booleani (cioè in $\{0,1\}$). Questa tabella definisce allora una corrispondenza che associa a ciascuna delle possibili triple di valori booleani, $\{0,1\}^3$, il valore (anch'esso in $\{0,1\}$) della formula H. Per evidenziare tale corrispondenza, è utile considerare solo le colonne "indispensabili" della tabella:

p	q	r	H
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Perciò, la tabella può essere interpretata come la rappresentazione tabellare di una funzione $f:\{0,1\}^3 \to \{0,1\}$, che associa a ogni tripla di valori booleani $\langle b_1,b_2,b_3\rangle$ un valore booleano $f(b_1,b_2,b_3)$:

b_1	b_2	b_3	$f(b_1,b_2,b_3)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

In generale, una funzione

$$f: \{0,1\}^n \to \{0,1\}$$
 $n \ge 1$

è detta funzione booleana.

2 Formule e rappresentazione di funzioni booleane

La procedura appena vista fornisce un modo per associare una funzione booleana a una formula.

Data una formula H, con $Var(H) = \{p_1, \dots, p_n\}$, la funzione booleana associata ad H è la funzione

$$f_H: \{0,1\}^n \to \{0,1\}$$

i cui valori sono definiti dalle possibili valutazioni di H: per ognuna delle n-uple booleane $\langle b_1, \ldots, b_n \rangle \in \{0,1\}^n$, si costruisce una valutazione v che assegna alle variabili di H i valori di tale n-upla, 1

$$v(q) = \begin{cases} b_i & \text{se } q = p_i \\ 0 & \text{altrimenti} \end{cases}$$

e si pone

$$f_H(b_1,\ldots,b_n)=v(H)$$

Ad esempio, tornando a considerare la formula

$$H = (p \lor q) \land (r \lor \neg p) \rightarrow (q \land r)$$

contenente le variabili $Var(H)=\{p,q,r\}$, la funzione booleana associata a essa è $f_H:\{0,1\}^3 \to \{0,1\}$:

¹La scelta di porre v(q) = 0 per $q \notin \{p_1, \ldots, p_n\}$ è puramente convenzionale: come visto in precedenza, il valore di una formula dipende soltanto dalle variabili proposizionali che occorrono nella formula (che qui sono p_1, \ldots, p_n , per la definizione di H), quindi i valori delle altre possono essere scelti in modo arbitrario, senza influenzare il valore v(H).

$\langle b_1, b_2, b_3 \rangle$	$f_H(b_1, b_2, b_3)$
$\overline{\langle 0,0,0\rangle}$	1
$\langle 0, 0, 1 \rangle$	1
$\langle 0, 1, 0 \rangle$	0
$\langle 0, 1, 1 \rangle$	1
$\langle 1, 0, 0 \rangle$	1
$\langle 1, 0, 1 \rangle$	0
$\langle 1, 1, 0 \rangle$	1
$\langle 1,1,1 \rangle$	1

Siccome questo metodo per la definizione della funzione booleana associata può essere applicato a qualunque formula, si deduce che ogni formula H rappresenta una funzione booleana f_H .

3 Completezza funzionale

Avendo osservato che ogni formula rappresenta una funzione booleana, ci si pone allora la domanda di determinare se valga anche il viceversa, cioè se, data un'arbitraria funzione booleana $f: \{0,1\}^n \to \{0,1\}$, esista una formula H che la rappresenti, ovvero che contenga esattamente n variabili e sia tale che $f_H = f$.

Siccome una funzione booleana descrive una tavola di verità, questo problema equivale a chiedersi se, per ogni tavola di verità, esista una formula con quella tavola di verità.

La risposta a questa domanda è fornita dal teorema di completezza funzionale.

3.1 Completezza funzionale – DNF

Teorema: Per ogni funzione $f: \{0,1\}^n \to \{0,1\}$, esiste una formula H in forma normale disgiuntiva contenente n variabili (ovvero un numero di variabili uguale al numero di argomenti della funzione) tale che $f_H = f$.

Dimostrazione: Si considera una funzione booleana $f: \{0,1\}^n \to \{0,1\}$. Prendendo n variabili proposizionali distinte p_1, \ldots, p_n , si costruisce la formula

$$H_f = \bigvee_{\langle b_1, \dots, b_n \rangle \in f^{-1}(1)} \left(\bigwedge_{i=1}^n l_i \right) \quad \text{dove } l_i = \begin{cases} p_i & \text{se } b_i = 1 \\ \neg p_i & \text{se } b_i = 0 \end{cases}$$

Questa formula:

 $^{^{2}}$ Questa è una dimostrazione *costruttiva*: non solo afferma che esiste una formula H, ma indica anche come costruirla.

- è in DNF, quindi è una disgiunzione di congiunzioni;
- ha un disgiunto per ogni n-upla appartenente alla controimmagine del valore 1 rispetto alla funzione f,

$$f^{-1}(1) = \{ \langle b_1, \dots, b_n \rangle \in \{0, 1\}^n \mid f(b_1, \dots, b_n) = 1 \}$$

cioè per ogni n-upla per la quale f assume valore 1;

• ciascun disgiunto è una congiunzione di n letterali, uno per ognuna delle variabili proposizionali p_1, \ldots, p_n scelte: l'i-esimo letterale è p_i se il valore dell'i-esimo argomento di f (nella n-upla considerata) è 1, o $\neg p_i$ se invece l'i-esimo argomento vale 0.

In altre parole, si considerano tutte le *n*-uple $\langle b_1, \ldots, b_n \rangle$ di elementi di $\{0, 1\}^n$ tali che $f(b_1, \ldots, b_n) = 1$ (cioè, appunto, quelle appartenenti a $f^{-1}(1)$). Si suppone che ci siano k di queste n-uple (con $k \geq 0^3$):

$$f^{-1}(1) = \{ \langle b_{1,1}, \dots, b_{1,n} \rangle, \dots, \langle b_{k,1}, \dots, b_{k,n} \rangle \}$$

Ognuna di esse definisce un disgiunto della DNF, nel modo seguente:

$$\begin{array}{ccc} \langle b_{1,1}, \dots, b_{1,n} \rangle & \Longrightarrow & l_{1,1} \wedge \dots \wedge l_{1,n} \\ \vdots & & \vdots & \\ \langle b_{k,1}, \dots, b_{k,n} \rangle & \Longrightarrow & l_{k,1} \wedge \dots \wedge c_{k,n} \end{array} \quad \text{dove } l_{i,j} = \begin{cases} p_j & \text{se } b_{i,j} = 1 \\ \neg p_j & \text{se } b_{i,j} = 0 \end{cases}$$

Ad esempio, il letterale $l_{2,1}$ si riferisce alla variabile proposizionale p_1 , e alla n-upla $\langle b_{2,1}, \ldots, b_{2,n} \rangle$: si decide se prendere p_1 positiva ("così com'è") o negata in base al valore di $b_{2,1}$.

Complessivamente, la formula H sarà allora:

$$H_f = (l_{1,1} \wedge \cdots \wedge l_{1,n}) \vee \cdots \vee (l_{k,1} \wedge \cdots \wedge l_{k,n})$$

Adesso, bisogna verificare che, effettivamente, $f_{H_f} = f$. Per prima cosa, si osserva che, per definizione, entrambe queste funzioni sono da $\{0,1\}^n$ a $\{0,1\}$.

$$f: \{0,1\}^n \to \{0,1\}$$

 $f_{H_f}: \{0,1\}^n \to \{0,1\}$

Successivamente, si considera una qualunque *n*-upla appartenente al dominio delle funzioni, $\langle b_1, \ldots, b_n \rangle \in \{0, 1\}^n$, e si associa a essa una valutazione v tale che

$$v(p_1) = b_1, \ldots, v(p_n) = b_n$$

³In particolare, se f ha valore costante 0, allora $f^{-1}(1) = \emptyset$, e quindi k = 0: non ci saranno n-uple da considerare.

⁴Se invece le due funzioni avessero domini e/o codomini diversi, si escluderebbe in partenza che esse possano coincidere.

Allora, per la definizione di funzione associata a una formula, si ha che

$$f_{H_f}(b_1,\ldots,b_n)=v(H_f)$$

e, per dimostrare che le due funzioni coincidono, bisogna verificare che anche

$$f(b_1,\ldots,b_n)=v(H_f)$$

Nella dimostrazione, si considerano separatamente i casi in cui la funzione assume i valori 1 e 0:

• Sia $\langle b_1, \ldots, b_n \rangle \in \{0,1\}^n$ tale che $f(b_1, \ldots, b_n) = 1$. In questo caso, bisogna mostrare che

$$f_{H_f}(b_1, \dots, b_n) = v(H_f) = 1$$

(dove la valutazione v è definita come in precedenza: $v(p_1) = b_1, \ldots, v(p_n) = b_n$).

Dato che $\langle b_1, \ldots, b_n \rangle \in f^{-1}(1)$, esiste per costruzione un disgiunto in H_f corrispondente a tale n-upla; sia D_h tale disgiunto:

$$H_f = \cdots \vee \underbrace{(l_{h,1} \wedge \cdots \wedge l_{h,n})}_{D_h} \vee \cdots$$

Per definizione della formula D_h e della valutazione v, ogni letterale del disgiunto è tale che:

$$l_{h,i} = \begin{cases} p_i & \text{se } b_i = 1 \implies v(l_{h,i}) = v(p_i) = b_i = 1 \\ \neg p_i & \text{se } b_i = 0 \implies v(l_{h,i}) = v(\neg p_i) = 1 \quad (\text{perch\'e } v(p_i) = b_i = 0) \end{cases}$$

Si osserva quindi che tutti i letterali di D_h hanno valore 1 in v. Allora, la congiunzione D_h è vera $(v(D_h) = 1)$, e ciò è sufficiente a rendere vera anche la disgiunzione H_f , cioè l'intera formula: $v(H_f) = 1$, ovvero

$$f_{H_f}(b_1, \dots, b_n) = v(H_f) = 1 = f(b_1, \dots, b_n)$$

• Sia invece $\langle c_1, \ldots, c_n \rangle \in \{0, 1\}^n$ tale che $f(c_1, \ldots, c_n) = 0$. Adesso, bisogna mostrare che

$$f_{H_f}(b_1,\ldots,b_n)=v(H_f)=0$$

dove $v(p_1) = c_1, ..., v(p_n) = c_n$.

Siccome $\langle c_1, \ldots, c_n \rangle \notin f^{-1}(1)$, tutte le *n*-uple appartenenti a $f^{-1}(1)$ devono essere diverse da questa: per ogni $\langle b_1, \ldots, b_n \rangle \in f^{-1}(1)$, c'è almeno un indice k tale che $b_k \neq c_k$.

Considerando il disgiunto D_h che corrisponde a una qualunque n-upla $\langle b_1, \ldots, b_n \rangle \in f^{-1}(1)$,

$$H_f = \cdots \vee \underbrace{(l_{h,1} \wedge \cdots \wedge l_{h,n})}_{D_h} \vee \cdots$$

e il suo letterale $l_{h,k}$, corrispondente agli elementi $c_k \neq b_k$ delle n-uple, si ha che

$$l_{h,k} = \begin{cases} p_k & \text{se } b_k = 1 \implies c_k = 0 \implies v(l_{h,k}) = v(p_k) = c_k = 0 \\ \neg p_k & \text{se } b_k = 0 \implies c_k = 1 \implies v(l_{h,k}) = v(\neg p_k) = 0 \\ & \text{perché } c_k \neq b_k & \text{(perché } v(p_k) = c_k = 1) \end{cases}$$

Questo ragionamento vale per tutti i disgiunti di H_f : così, in ogni disgiunto D_h esiste almeno un letterale $l_{h,k}$ che viene valutato falso, rendendo falsa la congiunzione. Allora, $v(D_h) = 0 \ \forall h$ e, complessivamente, l'intera disgiunzione H_f è falsa: $v(H_f) = 0$, cioè

$$f_{H_f}(c_1,\ldots,c_n) = v(H_f) = 0 = f(c_1,\ldots,c_n)$$

3.1.1 Esempio

Si considera la seguente funzione $f: \{0,1\}^2 \to \{0,1\}$:

$$\begin{array}{c|ccc} b_1 & b_2 & f \\ \hline 0 & 0 & \mathbf{1} \\ 0 & 1 & 0 \\ 1 & 0 & \mathbf{1} \\ 1 & 1 & 0 \\ \end{array}$$

Ricordando la definizione di H_f data dal teorema,

$$H_f = \bigvee_{\langle b_1, \dots, b_n \rangle \in f^{-1}(1)} \left(\bigwedge_{i=1}^n l_i \right) \quad \text{dove } l_i = \begin{cases} p_i & \text{se } b_i = 1 \\ \neg p_i & \text{se } b_i = 0 \end{cases}$$

si scelgono le variabili proposizionali p_1 e p_2 , e si costruiscono i disgiunti corrispondenti alle coppie $\langle b_1, b_2 \rangle \in f^{-1}(1)$:

$$\langle 0, 0 \rangle \implies \neg p_1 \wedge \neg p_2$$

 $\langle 1, 0 \rangle \implies p_1 \wedge \neg p_2$

Quindi:

$$H_f = (\neg p_1 \land \neg p_2) \lor (p_1 \land \neg p_2)$$

Adesso, si vuole verificare che effettivamente, per ogni $\langle b_1, b_2 \rangle \in \{0, 1\}^2$, $f(b_1, b_2) = f_{H_f}(b_1, b_2)$. A tale scopo, si può seguire sostanzialmente lo schema della dimostrazione del teorema.

Si inizia considerando le coppie $\langle b_1, b_2 \rangle$ per cui $f(b_1, b_2) = 1$:

• a $\langle b_1, b_2 \rangle = \langle 0, 0 \rangle$ è associata la valutazione $v(p_1) = v(p_2) = 0$, perciò:

$$v(\neg p_1) = 1$$

$$v(\neg p_1) \wedge \neg p_2) = 1 \implies v(H_f) = 1$$

$$v(\neg p_2) = 1$$

• a $\langle b_1, b_2 \rangle = \langle 1, 0 \rangle$ è associata la valutazione $v(p_1) = 1, \ v(p_2) = 0,$ perciò:

$$v(p_1)=1$$

$$v(p_1) \wedge \neg p_2 = 1 \implies v(H_f) = 1$$

$$v(p_1)=1$$

Poi, si considerano invece le coppie $\langle b_1, b_2 \rangle$ per cui $f(b_1, b_2) = 0$:

• per $\langle b_1, b_2 \rangle = \langle 0, 1 \rangle$, corrispondente a $v(p_1) = 0$, $v(p_2) = 1$, si ha:

$$v(\neg p_1 \land \neg p_2) = 0$$

$$v(\neg p_1 \land \neg p_2) = 0$$

$$v(\underbrace{p_1}_{v(p_1)=0} \land \neg p_2) = 0 \implies v(H_f) = 0$$

• per $\langle b_1, b_2 \rangle = \langle 1, 1 \rangle$, corrispondente a $v(p_1) = v(p_2) = 1$, si ha:

$$v(\neg p_1)=0$$

$$v(\neg p_1) \wedge \neg p_2) = 0$$

$$v(p_1 \wedge \neg p_2) = 0 \implies v(H_f) = 0$$

$$v(\neg p_2)=0$$

3.2 Completezza funzionale – CNF

Il teorema di completezza funzionale può anche essere dimostrato facendo riferimento alle CNF invece che alle DNF.

Teorema: Per ogni funzione $f: \{0,1\}^n \to \{0,1\}$, esiste una formula H in forma normale congiuntiva contenente n variabili tale che $f_H = f$.

La formula in CNF è costruita in modo analogo a quella in DNF,

$$H_f = \bigwedge_{\langle b_1, \dots, b_n \rangle \in f^{-1}(0)} \left(\bigvee_{i=1}^n l_i \right) \quad \text{dove } l_i = \begin{cases} p_i & \text{se } b_i = 0 \\ \neg p_i & \text{se } b_i = 1 \end{cases}$$

sfruttando una sorta di principio di dualità:

• qui si hanno le congiunzioni dove nella DNF si avevano le disgiunzioni, e viceversa;

- si "scambiano" gli 0 e gli 1:
 - invece delle n-uple appartenenti alla controimmagine di 1, si considerano quelle appartenenti alla controimmagine di 0, $f^{-1}(0)$;
 - come letterale l_i si mette p_i quando $b_i = 0$, e $\neg p_i$ quando $b_i = 1$, al contrario di ciò che si faceva per la DNF.

La dimostrazione è analoga a quella della DNF.

3.2.1 Esempio

Si considera la stessa funzione $f: \{0,1\}^2 \to \{0,1\}$ usata come esempio per la DNF:

$$\begin{array}{c|cccc} b_1 & b_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & \mathbf{0} \\ 1 & 0 & 1 \\ 1 & 1 & \mathbf{0} \end{array}$$

Dopo aver scelto le variabili proposizionali p_1 e p_2 , si costruiscono i congiunti corrispondenti alle coppie $\langle b_1, b_2 \rangle \in f^{-1}(0)$:

$$\langle 0, 1 \rangle \implies p_1 \vee \neg p_2$$

 $\langle 1, 1 \rangle \implies \neg p_1 \vee \neg p_2$

Quindi:

$$H_f = (p_1 \vee \neg p_2) \wedge (\neg p_1 \vee \neg p_2)$$

(mentre la DNF era $H_f = (\neg p_1 \wedge \neg p_2) \vee (p_1 \wedge \neg p_2)$).

Si verifica poi che, per ogni $\langle b_1, b_2 \rangle \in \{0,1\}^2$, $f(b_1, b_2) = f_{H_f}(b_1, b_2)$:

- per le coppie $\langle b_1, b_2 \rangle$ tali che $f(b_1, b_2) = 0$:
 - con $\langle b_1, b_2 \rangle = \langle 0, 1 \rangle$ si ha $v(p_1) = 0, v(p_2) = 1$, che implica:

$$v(p_1)=0$$

$$v(p_1) \vee (p_2)=0 \implies v(H_f)=0$$

- con $\langle b_1, b_2 \rangle = \langle 1, 1 \rangle$ si ha $v(p_1) = v(p_2) = 1$, che implica:

$$v(\neg p_1) = 0$$

$$v(\neg p_1) \lor \neg p_2) = 0 \implies v(H_f) = 0$$

$$v(\neg p_2) = 0$$

- per le coppie $\langle b_1, b_2 \rangle$ tali che $f(b_1, b_2) = 1$:
 - con $\langle b_1,b_2\rangle=\langle 0,0\rangle$ si ha $v(p_1)=v(p_2)=0,$ che implica:

$$v(\neg p_2)=1$$

$$v(p_1 \vee \neg p_2) = 1$$

$$v(\neg p_1 \vee \neg p_2) = 1 \implies v(H_f) = 1$$

$$v(\neg p_1)=1$$

– con $\langle b_1, b_2 \rangle = \langle 1, 0 \rangle$ si ha $v(p_1) = 1, \ v(p_2) = 0$, che implica:

$$v(p_1)=1$$

$$v(p_1) \lor \neg p_2) = 1$$

$$v(\neg p_1 \lor \neg p_2) = 1 \implies v(H_f) = 1$$

$$v(\neg p_2)=1$$