CASE: LA0089 NP

AMENDMENT TO ABSTRACT

Abstract of the Disclosure

$$\begin{array}{c|c} & & & & Y\\ & & & & \\ R^{2b} & & & \\ R^{2a} & & & \\ R^{2b} & & & \\ R^{2b} & & & \\ R^{2b} & & & \\ Z^{2} & & \\ X_{4} & X_{5} & & \\ R^{2} & & & \\ Z^{2} & & \\ X_{4} & & \\ X_{5} & & \\ R^{1} & & \\ \end{array}$$

wherein Z^1 is $(CH_2)_q$ or C=O;

 Z^2 is $(CH_2)_p$ or C=O;

D is -CH= or C=O or $(CH_2)_m$ where m is 0, 1, 2 or 3;

n = 0, 1 or 2; p = 1 or 2; q = 0, 1 or 2;

Q is C or N;

A is $(CH_2)_x$ where x is 1 to 5, or A is $(CH_2)_x^{-1}$, where x^1 is 1 to 5 with an alkenyl bond or an alkynyl bond embedded anywhere in the chain, or A is $-(CH_2)_x^{-2}$ O $-(CH_2)_x^{-3}$ where x^2 is 0 to 5 and x^3 is 0 to 5, provided that at least one of x^2 and x^3 is other than 0[[;]]

B is a bond or is (CH₂)_{*} where x⁴ is 1 to 5[[;]]

X is CH or N;

 X_2 is C, N, O or S;

 X_3 is C, N, O or S;

X₄ is C, N, O or S;

 X_5 is C, N, O or S;

 X_6 is C, N, O or S;

provided that at least one of X_2 , X_3 , X_4 , X_5 and X_6 is N; and at least one of X_2 , X_3 , X_4 , X_5 and X_6 is C[[.]];

R¹ is H or alkyl[[;]]

R² is H, alkyl, alkoxy, halogen, amino or substituted amino[[;]]

CASE: LA0089 NP

R^{2a}, R^{2b}-and R^{2e}-may be the same or different and are selected from H, alkyl, alkoxy, halogen, amino, substituted amino or cyano[[;]]-and

 \underline{A} , \underline{R}

[[δ]]