Visuals

Chet Gutwein

April 16, 2018

Collection of Visuals for Presentation & Final Report

for MIDS W241 Project, "Attitude Towards Artificial Intelligence"

Histograms

In this section, we'll generate simple histograms for each covariate included our data.

```
d_raw <- fread('./Filtering_Qualtrics_for_final_data/Filtered_Raw_Survey_data_04_05_2018.csv')
ggplot(data = d) +
   geom_histogram(mapping = aes(x = AI_educated), bins = 5, fill = 'darkblue', col='violet')+
   labs(x= 'Rating (1 to 5)', title = 'How well educated are you about AI?')</pre>
```

How well educated are you about AI?


```
#ggsave('../documentation/images/hist_AI_educated.png')

ggplot(data = d) +
   geom_histogram(mapping = aes(x = house_income), bins = 4, fill = 'darkblue', col='violet')+ labs(x= '...)
```

Warning: Removed 1 rows containing non-finite values (stat_bin).


```
#ggsave('../documentation/images/hist_house_income.png')

ggplot(data = d) +
  geom_histogram(mapping = aes(x = education_level), bins = 5, fill = 'darkblue', col='violet')+ labs(t
```

Warning: Removed 1 rows containing non-finite values (stat_bin).

Highest Education Completed


```
#ggsave('../documentation/images/hist_education_level.png')

ggplot(data = d) +
  geom_histogram(mapping = aes(x = gender), fill = 'darkblue', col='violet', stat='count')+ labs(title = color)
```

Warning: Ignoring unknown parameters: binwidth, bins, pad

geom_histogram(mapping = aes(x = learn_anything), bins = 2, fill = 'darkblue', col='violet')+ labs(ti

Did you learn anything?

Copying ZH's Code for Control/Treatment Group

```
d$treatment_type <- ""</pre>
                            # initialize a column with empty strings
for (i in 1:nrow(d)) {
  d[i]$treatment_type = paste(toString(d[i,"assignment_undesirable"]),
                                toString(d[i,"assignment_jobs"]),
                                toString(d[i,"assignment_oversight"]),
                                toString(d[i,"assignment_recommender"]),
                                toString(d[i,"assignment_beneficial"]),
                                sep="")
  }
d$treatment_type <- as.factor(d$treatment_type)</pre>
library(sqldf)
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
kable(sqldf('select treatment_type, avg("gender") as male, 1 - avg("gender") as female from d group by
```

treatment_type	male	female
01011	0.4400000	0.5600000
01101	0.5652174	0.4347826
01110	0.4862385	0.5137615
10011	0.4660194	0.5339806
10101	0.5046729	0.4953271
10110	0.4260870	0.5739130
11001	0.4945055	0.5054945
11010	0.4476190	0.5523810
11100	0.5052632	0.4947368

Map of Subjects

We have some subjects who had locations outside of the United States. We're assuming that these are people who have MTurk accounts associated with addresses in the United States, but perhaps were travelling outside of the country when they completed the survey. To get a better resolution, we'll simply crop out lat/long values outside of the US.

```
d_map <- d[d$LocationLatitude < 50 & d$LocationLatitude > 25]
d_map <- d_map[d_map$LocationLongitude < -60 & d_map$LocationLongitude > -130]

usa <- map_data("usa")
ggplot() + geom_polygon(data = usa, aes(x=long, y = lat, group = group)) +
    coord_fixed(1.3) + geom_point(data = d_map, aes(x = LocationLongitude, y = LocationLatitude), color =</pre>
```


ggsave("../documentation/images/exp_map.png")

Saving 6.5 x 4.5 in image