Pondichéry 2015. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

1) Pour tout réel x, $1 + e^{-2x} > 1$. En particulier, pour tout réel x, $1 + e^{-2x} \neq 0$. Par suite, la fonction f est dérivable sur $\mathbb R$ en tant qu'inverse d'une fonction dérivable sur $\mathbb R$ dont le dénominateur ne s'annule pas sur $\mathbb R$. De plus, pour tout réel x,

$$f'(x) = 3 \times -\frac{\left(1 + e^{-2x}\right)'}{\left(1 + e^{-2x}\right)^2} = -3 \times \frac{(-2x)'e^{-2x}}{\left(1 + e^{-2x}\right)^2} = -3 \times \frac{-2e^{-2x}}{\left(1 + e^{-2x}\right)^2} = \frac{6e^{-2x}}{\left(1 + e^{-2x}\right)^2}.$$

Pour tout réel x, $\frac{6e^{-2x}}{(1+e^{-2x})^2} > 0$. Ainsi, la fonction f' est strictement positive sur $\mathbb R$ et donc la fonction f est strictement croissante sur $\mathbb R$.

- 2) $\lim_{x\to +\infty} e^{-2x} = \lim_{X\to -\infty} e^X = 0$. Par suite, $\lim_{x\to +\infty} f(x) = \frac{3}{1+0} = 3$. On en déduit que la droite Δ est asymptote à la courbe $\mathscr C$ en $+\infty$.
- 3) Soit $x \in \mathbb{R}$.

$$\begin{split} f(x) &= 2,999 \Leftrightarrow \frac{3}{1+e^{-2x}} = 2,999 \Leftrightarrow 1+e^{-2x} = \frac{3}{2,999} \Leftrightarrow e^{-2x} = \frac{3}{2,999} - 1\\ &\Leftrightarrow e^{-2x} = \frac{0,001}{2,999} \Leftrightarrow -2x = \ln\left(\frac{0,001}{2,999}\right) \Leftrightarrow x = -\frac{1}{2}\ln\left(\frac{0,001}{2,999}\right)\\ &\Leftrightarrow x = \frac{1}{2}\ln\left(\frac{2,999}{0,001}\right) \Leftrightarrow x = \frac{1}{2}\ln(2999). \end{split}$$

Donc, l'équation f(x) = 2,999 admet une unique solution dans \mathbb{R} à savoir $\alpha = \frac{1}{2} \ln(2999)$. La calculatrice fournit $\alpha = 4,00301\ldots$ et en particulier

$$4 < \alpha < 4,01.$$

Partie B

- 1) D'après la partie A, la fonction f est strictement croissante sur \mathbb{R} et $\lim_{x \to +\infty} f(x) = 3$. Par suite, pour tout réel x, f(x) < 3 ou encore, pour tout réel x, h(x) > 0.
- 2) Puisque pour tout réel x, $1+e^{-2x}>0$, la fonction H est dérivable sur $\mathbb R$ et pour tout réel x,

$$H'(x) = -\frac{3}{2} \times \frac{\left(1 + e^{-2x}\right)'}{1 + e^{-2x}} = -\frac{3}{2} \times \frac{-2e^{-2x}}{1 + e^{-2x}} = \frac{3e^{-2x}}{1 + e^{-2x}}.$$

D'autre part, pour tout réel x,

$$h(x) = 3 - \frac{3}{1 + e^{-2x}} = \frac{3 + 3e^{-2x} - 3}{1 + e^{-2x}} = \frac{3e^{-2x}}{1 + e^{-2x}} = H'(x).$$

Ceci montre que la fonction H est une primitive de la fonction h sur \mathbb{R} .

- 3) Soit a un réel strictement positif.
- a) La fonction f est continue sur le segment $[0, \alpha]$ et pour tout réel x de $[0, \alpha]$, $f(x) \leq 3$. Par suite, $\int_0^\alpha h(x) \, dx = \int_0^\alpha (3 f(x)) \, dx$ est égale à l'aire, exprimée en unités d'aire, du domaine du plan compris entre la courbe $\mathscr C$ et la droite Δ d'une part, les droites d'équations respectives x = 0 et $x = \alpha$ d'autre part.

$$\mathbf{b})\,\int_0^\alpha h(x)\,\,dx = \left[H(x)\right]_0^\alpha = \left(-\frac{3}{2}\ln\left(1+e^{-2\alpha}\right)\right) - \left(-\frac{3}{2}\ln\left(1+e^0\right)\right) = \frac{3}{2}\left(\ln(2) - \ln\left(1+e^{-2\alpha}\right)\right) = \frac{3}{2}\ln\left(\frac{2}{1+e^{-2\alpha}}\right).$$

c) L'aire demandée est $\lim_{\alpha \to +\infty} \int_0^\alpha h(x) \ dx$. Or, $\lim_{\alpha \to +\infty} e^{-2\alpha} = 0$ et donc

$$\lim_{\alpha \to +\infty} \int_0^\alpha h(x) \ dx = \frac{3}{2} \ln \left(\frac{2}{1+0} \right) = \frac{3 \ln(2)}{2}.$$

L'aire, exprimée en unités d'aire, du domaine \mathscr{D} est égale à $\frac{3\ln(2)}{2}$.

EXERCICE 2

Partie A

1) Soit n un entier naturel.

$$\begin{split} \nu_{n+1} &= u_{n+1} - \frac{b}{1-a} = au_n + b - \frac{b}{1-a} = au_n + \frac{b(1-a)-b}{1-a} = au_n + \frac{b-ab-b}{1-a} \\ &= au_n - \frac{ab}{1-a} = a\left(u_n - \frac{b}{1-a}\right) \\ &= av_n. \end{split}$$

Donc la suite $(\nu_n)_{n\in\mathbb{N}}$ est géométrique de raison $\mathfrak{a}.$

$$\textbf{2)} \text{ Si } \textbf{a} \in]-1, \textbf{1}[, \text{ on sait que } \lim_{n \to +\infty} \nu_n = \textbf{0}. \text{ On en d\'eduit que } \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(\frac{b}{1-a} + \nu_n\right) = \frac{b}{1-a}.$$

Partie B

1) Quand Max rentre chez lui, il enlève à la plante le quart de sa hauteur. La plante ne mesure plus que $80 - \frac{1}{4} \times 80 = 60$ cm. Entre mars 2016 et mars 2016, la plante pousse de 30 cm. En mars 2016, la plante mesure donc 60 + 30 = 90 cm.

2) a) En mars de l'année 2015+n, la plante a une hauteur de h_n cm. Max enlève alors à la plante le quart de sa hauteur. Celle-ci ne mesure plus que $h_n - \frac{h_n}{4} = \frac{3h_n}{4} = 0,75h_n$. Puis, entre mars de l'année 2015+n et mars de l'année 2015+n+1, la plante pousse de 30 cm. En mars 2015+n+1, sa hauteur en cm est donc

$$h_{n+1} = 0,75h_n + 30.$$

b) La calculatrice fournit $h_0=80,\ h_1=90,\ h_2=97,5,\ h_3=103,125.$ Il semblerait que la suite $(h_n)_{n\in\mathbb{N}}$ soit strictement croissante.

Montrons par récurrence que pour tout entier naturel n, $h_{n+1} - h_n > 0$.

- \bullet $h_1-h_0=10>0.$ L'inégalité à démontrer est donc vraie quand $\pi=0.$
- Soit $n \ge 0$. Supposons que $h_{n+1} h_n > 0$ et montrons que $h_{n+2} h_{n+1} > 0$.

$$h_{n+2} - h_{n+1} = (0,75h_{n+1} + 30) - (0,75h_n + 30) = 0,75h_{n+1} - 0,75h_n$$

= 0,75 (h_{n+1} - h_n) > 0 (par hypothèse de récurrence).

On a montré par récurrence que pour tout entier naturel n, $h_{n+1} - h_n > 0$ ou encore que pour tout entier naturel n, $h_{n+1} > h_n$. La suite $(h_n)_{n \in \mathbb{N}}$ est strictement croissante.

c) On applique la partie A avec a=0,75 et b=30. $a\in]-1,1[$ et donc la suite $(h_n)_{n\in \mathbb{N}}$ converge et

$$\lim_{n \to +\infty} h_n = \frac{30}{1 - 0.75} = 120.$$

$$\lim_{n\to+\infty}h_n=120.$$

EXERCICE 3

Partie A

1) a) Puisque $\frac{64+104}{2}=84=\mu$, les deux nombres 64 et 104 sont symétriques par rapport à μ . On en déduit que

$$P(64 \leqslant X \leqslant 104) = 1 - P(X \leqslant 64) - P(X \geqslant 104) = 1 - 2P(X \leqslant 64) = 1 - 2 \times 0, 16 = 0, 68.$$

$$P(64 \leqslant X \leqslant 104) = 0,68.$$

b) D'après le cours, $P(\mu - \sigma \le X \le \mu + \sigma) \approx 0,68$. On peut donc proposer $\sigma = \mu - 64 = 20$.

$$\sigma = 20$$
 à 1 près.

2) a) On sait que la variable aléatoire Z suit la loi normale centrée réduite c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.

b) $X \leqslant 64 \Leftrightarrow X - 84 \leqslant -20 \Leftrightarrow \frac{X - 84}{\sigma} \leqslant -\frac{20}{\sigma} \Leftrightarrow Z \leqslant -\frac{20}{\sigma}$. Les événements $X \leqslant 64$ et $Z \leqslant -\frac{20}{\sigma}$ se produisent simultanément. Donc

$$P(X \leqslant 64) = P\left(Z \leqslant -\frac{20}{\sigma}\right).$$

c) La calculatrice fournit

$$P(X \le 64) = 0, 16 \Leftrightarrow P\left(Z \le -\frac{20}{\sigma}\right) = 0, 16 \Leftrightarrow -\frac{20}{\sigma} = -0,9944... \Leftrightarrow \sigma = \frac{20}{0,9944...}$$
$$\Leftrightarrow \sigma = 20,1114...$$

$$\sigma=20,111~\mathrm{arrondi}$$
 à 10^{-3} .

3) a) La probabilité demandée est $P(24 \le X \le 60)$. La calculatrice fournit

$$P(24 \leqslant X \leqslant 60) = 0,115 \text{ arrondi à } 10^{-3}.$$

b) La probabilité demandée est $P(X \ge 120)$ ou encore $1 - P(X \le 120)$. La calculatrice fournit

$$P(X \le 120) = 0,037 \text{ arrondi à } 10^{-3}.$$

Partie B

- 1) a) Notons Y la variable aléatoire égale au nombre de clients faisant jouer l'extension de garantie. La variable Y suit une loi binomiale. En effet,
 - 12 expériences identiques et indépendantes sont effectuées;
 - chaque expérience a deux éventualités à savoir « le client fait jouer l'extension de garantie » avec une probabilité p = 0, 115 et « le client ne fait pas jouer l'extension de garantie » avec une probabilité 1 p = 0, 885.

La variable Y suit donc une loi binomiale de paramètres n = 12 et p = 0, 115.

La probabilité demandée est P(Y=3). La calculatrice fournit

$$P(Y = 3) = {12 \choose 3} \times 0,115^3 \times 0,885^9 = 0,111 \text{ arrondi à } 10^{-3}.$$

b) La probabilité demandée est $P(Y \ge 6)$. La calculatrice fournit

$$P(Y \ge 6) = 1 - P(Y \le 5) = 0,001 \text{ arrondi à } 10^{-3}.$$

2) Dans cette question, Y désigne la variable aléatoire égale au gain algébrique en euros réalisé sur ce client par l'entreprise.

a) La variable Y prend deux valeurs : 65 euros si la panne est réparable et 65-399=-334 euros si la panne est irréparable. La loi de probabilité de Y est

$$P(Y = -334) = 0,115$$
 et $P(Y = 65) = 0,885$.

b) L'espérance de la variable Y est

$$E(Y) = 0,115 \times (-334) + 0,885 \times 65 = 19,115.$$

L'entreprise gagne donc en moyenne 19,115 euros par client ayant pris l'extension de garantie. Puisque cette espérance est strictement positive, cette offre d'extension de garantie est financièrement avantageuse pour l'entreprise.

EXERCICE 4.

- 1) b divise a. Donc il existe un entier k tel que a = kb. c divise a ou encore c divise kb. De plus, c est premier à b. D'après le théorème de Gauss, c divise k. Par suite, il existe un entier k' tel que k = k'c. Mais alors a = k'bc. Puisque k' est un entier, ceci montre que bc divise a.
- 2) a) Puisque les entiers 3 et 4 sont premiers entre eux, si 3 divise $2^{33} 1$ et 4 divise $2^{33} 1$, la question 1) montre que $12 = 3 \times 4$ doit diviser $2^{33} 1$ ce qui ne semble pas être le cas.
- b) Un multiple de 4 est en particulier un nombre pair. Mais 2^{33} est un nombre pair et donc $2^{33} 1$ est un nombre impair. Donc $2^{33} 1$ n'est pas un multiple de 4 ou encore 4 ne divise pas $2^{33} 1$.
- c) Puisque $2 \equiv -1$ [3], on en déduit que $2^{33} 1 \equiv (-1)^{33} 1$ [3] ou encore $2^{33} 1 \equiv -2$ [3]. En particulier, $2^{33} 1$ n'est pas congru à 0 modulo 3 ou encore $2^{33} 1$ n'est pas un multiple de 3 ou enfin 3 ne divise pas $2^{33} 1$.
- d) Puisque $2^3 \neq 1$,

$$S = 1 + 2^3 + (2^3)^2 + (2^3)^3 + \ldots + (2^3)^{10} = \frac{(2^3)^{11} - 1}{2^3 - 1} = \frac{2^{33} - 1}{7}.$$

- e) Ainsi, $\frac{2^{33}-1}{7}$ est un entier et donc 7 divise $2^{33}-1$.
- 3) On sait qu'un entier naturel supérieur ou égal à 2 est premier si et seulement si cet entier n'est divisible par aucun des nombres premiers inférieurs ou égaux à sa racine carrée. $\sqrt{2^7-1} = \sqrt{127} = 11, \dots$ Les nombres premiers inférieurs ou égaux à $\sqrt{2^7-1}$ sont 2, 3, 5, 7 et 11 et $2^7-1=127$.

• 127 est impair et donc 127 n'est pas divisible par 2.

- La somme des chiffres de 127, à savoir 10, n'est pas divisible par 3 et donc 127 n'est pas divisible par 3.
- Le chiffre des unités de 127 n'est ni 0, ni 5, et donc 127 n'est pas divisble par 5.
- $\frac{127}{7}$ = 18, 1... n'est pas un entier et donc 127 n'est pas divisble par 7.
- $\frac{127}{11}$ = 11,5... n'est pas un entier et donc 127 n'est pas divisble par 11.

On a montré que $2^7 - 1$ est un nombre premier.

4) a) Le nombre $2^{33}-1$ n'est divisible ni par 2 (car $2^{33}-1$ est impair, ni par 3 (d'après 2)c)), ni par 5 (car, modulo 5, $2^{33}-1=2\times 4^{16}-1\equiv 2\times (-1)^{16}-1=1$) et donc n'est divisible par aucun des entiers 2, 3, 4, 5, 6. D'autre part, $2^{33}-1$ est divisible par 7 (d'après 2)e)). Enfin, $7<\sqrt{2^{33}-1}$. Ainsi, si n=33, l'algorithme affiche 7 puis CAS 2.

D'après la question 3), le nombre 2^7-1 est premier. Donc, 2^7-1 n'est divisible par aucun des entiers k inférieurs ou égaux à $\sqrt{2^7-1}=11,\ldots$ Ainsi, si n=7, l'algorithme affiche 12 qui est le premier entier strictement supérieur à $\sqrt{2^7-1}$ puis CAS 2.

- b) Le CAS 2 est le cas où le nombre de MERSENNE étudié n'est pas premier. Le nombre k affiché est le plus petit diviseur supérieur ou égal à 2 de ce nombre de MERSENNE.
- c) Le CAS 1 est le cas où le nombre de MERSENNE étudié est premier.