hipSPARSELt Data Types

Data Structures

hipsparseLtHandle_t

The structure holds the hipSPARSELt library context (device properties, system information, etc.).

The handle must be initialized and destroyed

with hipsparseLtInit() and hipsparseLtDestroy() functions respectively.

hipsparseLtMatDescriptor_t

The structure captures the shape and characteristics of a matrix.

It is initialized

with hipsparseLtDenseDescriptorInit() or hipsparseLtStructuredDescriptorInitfunctions and destroyed with hipsparseLtMatDescriptorDestroy().

hipsparseLtMatDescriptor_t

The structure holds the description of the matrix multiplication operation.

It is initialized with hipsparseLtMatmulDescriptorInit() function.

${\bf hipsparseLtMatmulAlgSelection_t}$

The structure holds the description of the matrix multiplication algorithm.

It is initialized with hipsparseLtMatmulAlgSelectionInit() function.

hipsparseLtMatmulPlan_t

The structure holds the matrix multiplication execution plan, namely all the information necessary to execute the https://hipsparseltMatmull()) operation.

It is initialized and destroyed

with hipsparseLtMatmulPlanInit() and hipsparseLtMatmulPlanDestroy() functions respectively.

Enumerators

hipsparseLtSparsity_t

The enumerator specifies the sparsity ratio of the structured matrix as

$$sparisty\ ratio = \frac{nnz}{num_rows*num_cols}$$

Value	Description	
HIPSPARSELT_SPARSITY_50_PERCENT	50% Sparsity Ratio: - 2:4 for half, bfloat16, int8 - 1:2 for tf32, int (CUDA only)	

The sparsity property is used in the hipsparseLtStructuredDescriptorInit() function.

hipsparseLtComputetype_t

The enumerator specifies the compute precision modes of the matrix

Value	Description
HIPSPARSELT_COMPUTE_32F	 Default mode for 32-bit floating-point precision All computations and intermediate storage ensure at least 32-bit precision Matrix Core will be used whenever possible (ROC only)
HIPSPARSELT_COMPUTE_32I	 Default mode for 32-bit integer precision All computations and intermediate storage ensure at least 32-bit integer precision Matrix Core / Tensor Core will be used whenever possible
HIPSPARSELT_COMPUTE_16F	 Default mode for 16-bit floating-point precision All computations and intermediate storage ensure at least 16-bit precision Matrix Core / Tensor Core will be used whenever possible
HIPSPARSELT_COMPUTE_TF32_FAST	 Default mode for 32-bit floating-point precision The inputs are supposed to be directly represented in TensorFloat-32 precision. The 32-bit floating-point values are truncated to TensorFloat-32 before the computation

Value	Description		
	 All computations and intermediate storage ensure at least TensorFloat-32 precision Tensor Cores will be used whenever possible (CUDA only) 		
HIPSPARSELT_COMPUTE_TF32	 All computations and intermediate storage ensure at least TensorFloat-32 precision The inputs are rounded to TensorFloat-32 precision. This mode is slower than httpsparselt_compute_tf32_fast, but could provide more accurate results Tensor Cores will be used whenever possible (CUDA only) 		

The compute precision is used in the hipsparseLtMatmulDescriptorInit() function.

hipsparseLtMatDescAttribute_t

The enumerator specifies the additional attributes of a matrix descriptor

Value	Description
HIPSPARSELT_MAT_NUM_BATCHES	Number of matrices in a batch (int data type)
HIPSPARSELT_MAT_BATCH_STRIDE	Stride between consecutive matrices in a batch expressed in terms of matrix elements (int64_t data type)

The algorithm enumerator is used in

 $the\ hipsparseLtMatDescSetAttribute ()\ and\ hipsparseLtMatDescGetAttribute ()\ functions.$

hipsparseLtMatmulDescAttribute_t

The enumerator specifies the additional attributes of a matrix multiplication descriptor

Value	Туре	Defau It Value	Description
HIPSPARSELT_MATMUL_ACTIVATION_RELU	int 0: false, t rue otherwise	false	ReLU activation function
HIPSPARSELT_MATMUL_ACTIVATION_RELU_UP PERBOUND	float	inf	Upper bound of the ReLU activation function
HIPSPARSELT_MATMUL_ACTIVATION_RELU_TH RESHOLD	float	0.0f	Lower threshold of the ReLU activation function
HIPSPARSELT_MATMUL_ACTIVATION_GELU	int 0: false, t rue otherwise	false	GeLU activation function
HIPSPARSELT_MATMUL_ACTIVATION_ABS	int 0: false, t rue otherwise	false	ABS activation function (ROC only)
HIPSPARSELT_MATMUL_ACTIVATION_LEAKYRE LU	int 0: false, t rue otherwise	false	LeakyReLU activation function (ROC only)
HIPSPARSELT_MATMUL_ACTIVATION_LEAKYRE LU_ALPHA	float	1.0f	Alpha value of the LeakyReLU activation function (ROC only)
HIPSPARSELT_MATMUL_ACTIVATION_SIGMOID	int 0: false, t rue otherwise	false	Sigmoid activation function (ROC only)
HIPSPARSELT_MATMUL_ACTIVATION_TANH	int 0: false, t rue otherwise	false	Tanh activation function (ROC only)
HIPSPARSELT_MATMUL_ACTIVATION_TANH_AL PHA	float	1.0f	Alpha value of the Tanh activation function (ROC only)
HIPSPARSELT_MATMUL_ACTIVATION_TANH_BE TA	float	1.0f	Beta value of the Tanh activation function (ROC only)

where the ReLU activation function is defined as:

$$ReLU(v) = \begin{cases} v > threshold, min(v, upperbound) \\ v \leq threshold, 0 \end{cases}$$

The algorithm enumerator is used in

the hipsparseLtMatmulDescSetAttribute() and hipsparseLtMatmulDescGetAttribute() functions.

hipsparseLtMatmulAlg_t

The enumerator specifies the algorithm for matrix-matrix multiplication

Value	Description
HIPSPARSELT_MATMUL_ALG_DEFAULT	Default algorithm

The algorithm enumerator is used in the hipsparseLtMatmulAlgSelectionInit() function.

hipsparseLtMatmulAlgAttribute_t

The enumerator specifies the matrix multiplication algorithm attributes

Value	Description	
HIPSPARSELT_MATMUL_ALG_CONFIG_ID	Algorithm ID (set and query)	
HIPSPARSELT_MATMUL_ALG_CONFIG_MAX_ID	Algorithm ID limit (query only)	
HIPSPARSELT_MATMUL_SEARCH_ITERATIONS	Number of iterations (kernel launches per algorithm) for hipsparseLtMatmulSearch(), default=10	

The algorithm attribute enumerator is used in

the hipsparseLtMatmulAlgGetAttribute() and hipsparseLtMatmulAlgSetAttribute() functions.

hipsparseLtPruneAlg_t

The enumerator specifies the pruning algorithm to apply to the structured matrix before the compression

Value	Description
	- half, bfloat16, int8: Zero-out eight values in a 4x4 tile to maximize the <i>L1-norm</i> of the resulting tile, under the constraint of selecting exactly two elements for each row and column
HIPSPARSELT_PRUNE_SPMMA_TILE	- float, tf32: Zero-out two values in a 2x2 tile to maximize the <i>L1-norm</i> of the resulting tile, under the constraint of selecting exactly one element for each row and column (CUDA only)
	 half, bfloat16, int8 float8, bfloat8 (ROC only) Zero-out two values in a 1x4 strip to maximize the L1-norm of the resulting strip
HIPSPARSELT_PRUNE_SPMMA_STRIP	The strip direction is chosen according to the operation op and matrix layout applied to the structured (sparse) matrix
	- float, tf32: Zero-out one value in a 1x2 strip to maximize the $L1$ -norm of the resulting strip
	The strip direction is chosen according to the operation op and matrix layout applied to the structured (sparse) matrix (CUDA only)

The pruning algorithm is used in the hipsparseLtSpMMAPrune() function.

hipSPARSELt Functions

Library Management Functions

hipsparseLtInit

hipsparseLtStatus_t
hipsparseLtInit(hipsparseLtHandle_t* handle)

The function initializes the hipsparselt library handle (hipsparseltHandle_t) which holds the hipsparselt library context. It allocates light hardware resources on the host, and must be called prior to making any other hipsparselt library calls. Calling any hipsparselt function which uses hipsparseltHandle_t without a previous call of hipsparseltInit() will return an error.

The hipsparselt library context is tied to the current ROCm/CUDA device. To use the library on multiple devices, one hipsparselt handle should be created for each device.

Parameter	Memory	In/Out	Description
handle	Host	OUT	hipsparselt library handle

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtDestroy

hipsparseLtStatus_t
hipsparseLtDestroy(const hipsparseLtHandle_t* handle)

The function releases hardware resources used by the hipsparselt library. This function is the last call with a particular handle to the hipsparselt library.

Calling any hipsparselt function which uses hipsparseltHandle_t after hipsparseltDestroy() will return an error.

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle

Matrix Descriptor Functions

hipsparseLtDenseDescriptorInit

The function initializes the descriptor of a *dense* matrix.

Parameter	Memory	In/Out	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
matDescr	Host	OUT	Dense matrix description	
rows	Host	IN	Number of rows	
cols	Host	IN	Number of columns	
ld	Host	IN	Leading dimension	≥ rows if column-major, ≥ cols if row-major
alignment	Host	IN	Memory alignment in bytes	Multiple of 16 (CUDA only)
valueType	Host	IN	Data type of the matrix	HIPSPARSELT_R_32F (CUDA only), HIPSPARSELT_R_16F, HIPSPARSELT_R_16BF, HIPSPARSELT_R_8I, HIPSPARSELT_R_8F (ROC only), HIPSPARSELT_R_8BF (ROC only)
order	Host	IN	Memory layout	HIPSPARSELT_ORDER_COLUMN, HIPSPARSELT_ORDER_ROW (CUDA only)

Constrains:

ROC Backend:

- row, col must ≥ 8
- For matrix B = K x N, K must be a multiple of 8

CUDA Backend:

- rows, cols, and ld must be a multiple of
 - 16 if valueType is hipsparselt_R_8i
 - 8 if valueType is hipsparselt_r_16F or hipsparselt_r_16BF
 - 4 if valueType is HIPSPARSELT_R_32F
- The total size of the matrix cannot exceed:
 - 2³² 1elements for hipsparselt_r_81
 - 2³¹ 1 elements for hipsparselt_r_16F or hipsparselt_r_16BF
 - 2³⁰ 1 elements for HIPSPARSELT_R_32F

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtStructuredDescriptorInit

```
hipsparseLtStatus t
hipsparseLtStructuredDescriptorInit(const hipsparseLtHandle t* handle,
                                    hipsparseLtMatDescriptor_t* matDescr,
                                    int64_t
                                                                rows,
                                    int64_t
                                                                cols,
                                    int64 t
                                                                ld,
                                    uint32_t
                                                                alignment,
                                    hipsparseLtDatatype_t
                                                                valueType,
                                    hipsparseLtOrder_t
                                                                order,
                                    hipsparseLtSparsity_t
                                                                sparsity)
```

The function initializes the descriptor of a *structured* matrix.

Parameter	Memory	In/Out	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
matDescr	Host	OUT	Dense matrix description	

Parameter	Memory	In/Out	Description	Possible Values
rows	Host	IN	Number of rows	
cols	Host	IN	Number of columns	
ld	Host	IN	Leading dimension	≥ rows if column-major, ≥ cols if row-major
alignment	Host	IN	Memory alignment in bytes	Multiple of 16 (CUDA only)
valueType	Host	IN	Data type of the matrix	HIPSPARSELT_R_32F (CUDA only), HIPSPARSELT_R_16F, HIPSPARSELT_R_16BF, HIPSPARSELT_R_8I, HIPSPARSELT_R_8F (ROC only), HIPSPARSELT_R_8BF (ROC only)
order	Host	IN	Memory layout	HIPSPARSELT_ORDER_COLUMN, HIPSPARSELT_ORDER_ROW (CUDA only)
sparsity	Host	IN	Matrix sparsity ratio	HIPSPARSELT_SPARSITY_50_PERCENT

Constrains:

• ROC Backend:

- row, col must ≥ 8
- For op = HIPSPARSELT_OPERATION_NON_TRANSPOSE
 - col must be the multiplication of 8
- For op = HIPSPARSELT_OPERATION_TRANSPOSE
 - row must be the multiplication of 8

• CUDA Backend:

- rows, cols, and ld must be a multiple of
 - 32 if valueType is HIPSPARSELT_R_8I

```
8 if valueType is hipsparselt_r_16f or hipsparselt_r_16bf
4 if valueType is hipsparselt_r_32f
```

- The total size of the matrix cannot exceed:
 - 2³² 1elements for https://example.com/ht
 - 2³¹ 1 elements for hipsparselt_r_16F or hipsparselt_r_16BF
 - 2³⁰ 1 elements for HIPSPARSELT_R_32F

•

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtMatDescriptorDestroy

hipsparseLtStatus_t

hipsparseLtMatDescriptorDestroy(const hipsparseLtMatDescriptor_t* matDescr)

The function releases the resources used by an instance of a matrix descriptor. After this call, the matrix descriptor and the matmul descriptor can no longer be used.

Parameter	Memory	In/Out	Description
matDescr	Host	IN	Matrix descriptor

hipsparseLtMatDescSetAttribute

```
hipsparseLtStatus_t
hipsparseLtMatDescSetAttribute(const hipsparseLtHandle_t* handle,
hipsparseLtMatDescriptor_t* matmulDescr,
hipsparseLtMatDescAttribute_t matAttribute,
const void* data,
size t dataSize)
```

The function sets the value of the specified attribute belonging to matrix descriptor such as number of batches and their stride.

Parameter	Memory	In/Out	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
matmulDescr	Host	OUT	Matrix descriptor	
matAttribute	Host	IN	Attribute to set	HIPSPARSELT_MAT_NUM_BATCHES, HIPSPARSELT_MAT_BATCH_STRIDE
data	Host	IN	Pointer to the value to which the specified attribute will be set	
dataSize	Host	IN	Size in bytes of the attribute value used for verification	

hipsparseLtMatDescGetAttribute

```
hipsparseLtStatus_t
hipsparseLtMatDescGetAttribute(const hipsparseLtHandle_t* handle,
const hipsparseLtMatDescriptor_t* matmulDes
hipsparseLtMatDescAttribute_t matAttrib
void* data,
size_t dataSize)
```

The function gets the value of the specified attribute belonging to matrix descriptor such as number of batches and their stride.

Paramete r	Memo ry	In/O ut	Descript ion	Possible Values
handle	Host	IN	hipsparse lt library handle	
matmulDes cr	Host	IN	Matrix descripto r	
matAttrib	Host	IN	Attribute to retrieve	HIPSPARSELT_MAT_NUM_BATCHES, HIPSPARSELT_MAT _BATCH_STRIDE
data	Host	OUT	Memory address containin g the attribute value retrieved by this function	
dataSize	Host	IN	Size in bytes of the attribute value used for verificati on	

Matmul Descriptor Functions

hipsparseLtMatmulDescriptorInit

```
hipsparseLtStatus_t
hipsparseLtMatmulDescriptorInit(const hipsparseLtHandle_t* handle,
hipsparseLtMatmulDescriptor_t* matmulDescr,
hipsparseLtOperation_t opA,
hipsparseLtOperation_t opB,
const hipsparseLtMatDescriptor_t* matA,
const hipsparseLtMatDescriptor_t* matB,
const hipsparseLtMatDescriptor_t* matC,
const hipsparseLtMatDescriptor_t* matC,
hipsparseLtComputetype_t computeType)
```

The function initializes the *matrix multiplication* descriptor.

Parame ter	Mem ory	In/O ut	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
matmulD escr	Host	OU T	Matrix multiplication descriptor	
орА	Host	IN	Operation applied to the matrix A	HIPSPARSELT_OPERATION_NON_TRANSPOSE, HIPSPARSELT_OPERATION_TRANSPOSE
орВ	Host	IN	Operation applied to the matrix	HIPSPARSELT_OPERATION_NON_TRANSPOSE , HIPSPARSELT_OPERATION_TRANSPOSE
matA	Host	IN	Structured matrix descriptor	
matB	Host	IN	Dense matrix descriptor B	
matC	Host	IN	Dense matrix descriptor c	
matD	Host	IN	Dense matrix descriptor D	
compute Type	Host	IN	Compute precision	HIPSPARSELT_COMPUTE_32F8F (ROC only), HIPSPARSELT_COMPUTE_32I, HIPSPARSELT_COMPUTE_16F (CUDA only),

[AMD Official Use Only]

Parame ter	Mem ory	In/O ut	Description	Possible Values
				HIPSPARSELT_COMPUTE_TF32 (CUDA only), HIPSPARSELT_COMPUTE_TF32_FAST (CUDA only)

The structured matrix descriptor can used for matA or matB but not both.

Data types Supported:

ROC Backend:

Input	Output	Compute
HIPSPARSELT_R_16F	HIPSPARSELT_R_16F	HIPSPARSELT_COMPUTE_32F
HIPSPARSELT_R_16BF	HIPSPARSELT_R_16BF	HIPSPARSELT_COMPUTE_32F
HIPSPARSELT_R_8I	HIPSPARSELT_R_8I	HIPSPARSELT_COMPUTE_32I
HIPSPARSELT_R_8F	HIPSPARSELT_R_8F	HIPSPARSELT_COMPUTE_32F
HIPSPARSELT_R_8BF	HIPSPARSELT_R_8BF	HIPSPARSELT_COMPUTE_32F

• CUDA Backend:

Input	Output	Compute
HIPSPARSELT_R_16F	HIPSPARSELT_R_16F	HIPSPARSELT_COMPUTE_16F
HIPSPARSELT_R_16BF	HIPSPARSELT_R_16BF	HIPSPARSELT_COMPUTE_16F
HIPSPARSELT_R_8I	HIPSPARSELT_R_8I	HIPSPARSELT_COMPUTE_32I
HIPSPARSELT_R_32F	HIPSPARSELT_R_32F	HIPSPARSELT_COMPUTE_TF32_FAST
HIPSPARSELT_R_32F	HIPSPARSELT_R_32F	HIPSPARSELT_COMPUTE_TF32

hipsparseLtMatmulDescSetAttribute

hipsparseLtStatus_t
hipsparseLtMatmulDescSetAttribute(const hipsparseLtHandle_t* handle,
hipsparseLtMatmulDescriptor_t* matmulDescr,
hipsparseLtMatmulDescAttribute_t matmulAttribute,
const void* data,
size_t dataSize)

The function sets the value of the specified attribute belonging to matrix descriptor such as activation function and bias.

Parameter	Memory	In/ Out	Description	
handle	Host	IN	hipsparselt library handle	
matmulDescr	Host	OU T	Matrix descriptor	
matmulAttribute	Host	IN	Attribute to set	HIPSPARSELT_MATMUL_ACTIVATIO N_RELU, HIPSPARSELT_MATMUL_A CTIVATION_RELU_UPPERBOUND, HIPSPARSELT_MATMUL_ACTIVATIO N_RELU_THRESHOLD, HIPSPARSEL T_MATMUL_ACTIVATION_GELU, HIPSPARSELT_MATMUL_BIAS_POIN TER, HIPSPARSELT_MATMUL_BIAS _STRIDE ROC Only: HIPSPARSELT_MATMUL_ACTIVATIO N_ABS, HIPSPARSELT_MATMUL_ACTIVATIO N_LEAKYRELU, HIPSPARSELT_MATMUL_ACTIVATIO N_LEAKYRELU_ALPHA, HIPSPARSELT_MATMUL_ACTIVATIO N_SIGMOID, HIPSPARSELT_MATMUL_ACTIVATIO N_TANH, HIPSPARSELT_MATMUL_ACTIVATIO N_TANH, HIPSPARSELT_MATMUL_ACTIVATIO N_TANH, HIPSPARSELT_MATMUL_ACTIVATIO N_TANH_ALPHA, HIPSPARSELT_MATMUL_ACTIVATIO N_TANH_BETA

Parameter	Memory	In/ Out	Description
data	Host	IN	Pointer to the value to which the specified attribute will be set
dataSize	Host	IN	Size in bytes of the attribute value used for verification

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtMatmulDescGetAttribute

The function gets the value of the specified attribute belonging to matrix descriptor such as activation function and bias.

Parameter	Memory	In/Out	Description	
handle	Host	IN	hipsparselt library handle	
matmulDescr	Host	IN	Matrix descriptor	
	Host IN	IN		HIPSPARSELT_MATMUL
				_ACTIVATION_RELU,
				HIPSPARSELT_MATMUL
				_ACTIVATION_RELU_U
matmulAttribute			Attribute to retrieve	PPERBOUND,
matmulattribute			Alindule to retrieve	HIPSPARSELT_MATMUL
				_ACTIVATION_RELU_T
				HRESHOLD, HIPSPARS
				ELT_MATMUL_ACTIVAT
				ION_GELU,

[AMD Official Use Only]

Parameter	Memory	In/Out	Description	
				HIPSPARSELT_MATMUL
				_BIAS_POINTER, HIP
				SPARSELT_MATMUL_BI
				AS_STRIDE
				ROC Only:
				HIPSPARSELT_MATMUL
				_ACTIVATION_ABS,
				HIPSPARSELT_MATMUL
				_ACTIVATION_LEAKYR
				ELU,
				HIPSPARSELT_MATMUL
				_ACTIVATION_LEAKYR
				ELU_ALPHA,
				HIPSPARSELT_MATMUL
				_ACTIVATION_SIGMOI
				D,
				HIPSPARSELT_MATMUL
				_ACTIVATION_TANH,
				HIPSPARSELT_MATMUL
				_ACTIVATION_TANH_A
				LPHA,
				HIPSPARSELT_MATMUL
				_ACTIVATION_TANH_B
				ETA
data	Host	OUT	Memory address containing the attribute value retrieved by this function	
dataSize	Host	IN	Size in bytes of the attribute value used for verification	

 _		

Matmul Algorithm Functions

hipsparseLtMatmulAlgSelectionInit

hipsparseLtStatus_t

hipsparseLtMatmulAlgSelectionInit(const hipsparseLtHandle_t* handle,
hipsparseLtMatmulAlgSelection_t* algSelection,
const hipsparseLtMatmulDescriptor_t* matmulDescr,
hipsparseLtMatmulAlg_t alg)

The function initializes the *algorithm selection* descriptor.

Parameter	Memory	In/Out	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
algSelection	Host	OUT	Algorithm selection descriptor	
matmulDescr	Host	IN	Matrix multiplication descriptor	
alg	Host	IN	Algorithm mode	HIPSPARSELT_MATMUL_ALG_DEFAULT

hipsparseLtMatmulAlgSetAttribute

```
hipsparseLtStatus_t
hipsparseLtMatmulAlgSetAttribute(const hipsparseLtHandle_t* handle,
hipsparseLtMatmulAlgSelection_t* algSelect
hipsparseLtMatmulAlgAttribute_t attribute
const void* data,
size t dataSize)
```

The function sets the value of the specified attribute belonging to algorithm selection descriptor.

Parameter	Memory	In/Out	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
algSelection	Host	OUT	Algorithm selection descriptor	
attribute	Host	IN	The attribute to set	HIPSPARSELT_MATMUL _ALG_CONFIG_ID , HI PSPARSELT_MATMUL_A LG_CONFIG_MAX_ID , HIPSPARSELT_MATMUL _SEARCH_ITERATIONS
data	Host	IN	Pointer to the value to which the specified attribute will be set	
dataSize	Host	IN	Size in bytes of the attribute value used for verification	

hipsparseLtMatmulAlgGetAttribute

```
hipsparseLtStatus_t
hipsparseLtMatmulAlgGetAttribute(const hipsparseLtHandle_t* handle,
const hipsparseLtMatmulAlgSelection_t* algSelection,
hipsparseLtMatmulAlgAttribute_t attribute,
void* data,
size_t dataSize)
```

The function returns the value of the queried attribute belonging to algorithm selection descriptor.

Parameter	Memor y	In/Ou t	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
algSelection	Host	IN	Algorithm selection descriptor	
attribute	Host	IN	The attribute that will be retrieved by this function	HIPSPARSELT_MATMUL_ALG_CONFIG _ID , HIPSPARSELT_MATMUL_ALG_ CONFIG_MAX_ID , HIPSPARSELT_M ATMUL_SEARCH_ITERATIONS
data	Host	OUT	Memory address containing the attribute value retrieved by this function	
dataSize	Host	IN	Size in bytes of the attribute value used for verification	

Matmul Functions

hipsparseLtMatmulGetWorkspace

The function determines the required workspace size associated to the selected algorithm.

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
plan	Host	IN	Matrix multiplication plan
workspaceSize	Host	OUT	Workspace size in bytes

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtMatmulPlanInit

```
hipsparseLtStatus_t
hipsparseLtMatmulPlanInit(const hipsparseLtHandle_t* handle,
hipsparseLtMatmulPlan_t* plan,
const hipsparseLtMatmulDescriptor_t* matmulDescr,
const hipsparseLtMatmulAlgSelection_t* algSelection,
size_t workspaceSize)
```

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
plan	Host	OUT	Matrix multiplication plan
matmulDescr	Host	IN	Matrix multiplication descriptor
algSelection	Host	IN	Algorithm selection descriptor
workspaceSize	Host	IN	Workspace size in bytes

hipsparseLtMatmulPlanDestroy

```
hipsparseLtStatus_t
hipsparseLtMatmulPlanDestroy(const hipsparseLtMatmulPlan_t* plan)
```

The function releases the resources used by an instance of the matrix multiplication plan. This function is the last call with a specific plan instance.

Calling any hipsparselt function which

uses hipsparseLtMatmulPlan_t after hipsparseLtMatmulPlanDestroy() will return an error.

Parameter	Memory	In/Out	Description
plan	Host	IN	Matrix multiplication plan

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtMatmul

```
hipsparseLtStatus_t
hipsparseLtMatmul(const hipsparseLtHandle_t*
                                                   handle,
                  const hipsparseLtMatmulPlan_t* plan,
                  const void*
                                                   alpha,
                  const void*
                                                   d A,
                  const void*
                                                   d_B,
                  const void*
                                                   beta,
                                                   d_C,
                  const void*
                  void*
                                                   d_D,
                  void*
                                                   workspace,
                  hipStream_t*
                                                   streams,
                  int32_t
                                                   numStreams)
```

The function computes the matrix multiplication of matrices A and B to produce the output matrix D, according to the following operation:

```
D = Activation(\alphaop(A) * op(B) + \betaC + bias)
```

where A, B, and C are input matrices, and α and β are input scalars.

Note: The function currently only supports the case where D has the same shape of C

[AMD Official Use Only]

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
plan	Host	IN	Matrix multiplication plan
alpha	Host	IN	α scalar used for multiplication (float data type)
d_A	Device	IN	Pointer to the structured matrix A
d_B	Device	IN	Pointer to the dense matrix B
beta	Host	IN	β scalar used for multiplication (float data type)
d_C	Device	OUT	Pointer to the dense matrix c
d_D	Device	OUT	Pointer to the dense matrix D
workspace	Device	IN	Pointer to workspace
streams	Host	IN	Pointer to HIP stream array for the computation
numStreams	Host	IN	Number of HIP streams in streams

Data types Supported:

ROC Backend:

Input	Output	Compute
HIPSPARSELT_R_16F	HIPSPARSELT_R_16F	HIPSPARSELT_COMPUTE_32F
HIPSPARSELT_R_16BF	HIPSPARSELT_R_16BF	HIPSPARSELT_COMPUTE_32F
HIPSPARSELT_R_8I	HIPSPARSELT_R_8I	HIPSPARSELT_COMPUTE_32I
HIPSPARSELT_R_8F	HIPSPARSELT_R_8F	HIPSPARSELT_COMPUTE_32F
HIPSPARSELT_R_8BF	HIPSPARSELT_R_8BF	HIPSPARSELT_COMPUTE_32F

CUDA Backend:

Input	Output	Compute
HIPSPARSELT_R_16F	HIPSPARSELT_R_16F	HIPSPARSELT_COMPUTE_16F
HIPSPARSELT_R_16BF	HIPSPARSELT_R_16BF	HIPSPARSELT_COMPUTE_16F
HIPSPARSELT_R_8I	HIPSPARSELT_R_8I	HIPSPARSELT_COMPUTE_32I
HIPSPARSELT_R_32F	HIPSPARSELT_R_32F	HIPSPARSELT_COMPUTE_TF32_FAST
HIPSPARSELT_R_32F	HIPSPARSELT_R_32F	HIPSPARSELT_COMPUTE_TF32

The *structured matrix* (before the compression) must respect the following constrains depending on the operation applied on it:

- For op = HIPSPARSELT_OPERATION_NON_TRANSPOSE
 - HIPSPARSELT_R_16F, HIPSPARSELT_R_16BF, HIPSPARSELT_R_8I, HIPSPARSELT_R_8F, HIP

 SPARSELT_R_8BF each row must have at least two zero values every four elements
 - HIPSPARSELT_R_32F each row must have at least one zero values every two elements
- For op = HIPSPARSELT_OPERATION_TRANSPOSE
 - HIPSPARSELT_R_16F, HIPSPARSELT_R_16BF, HIPSPARSELT_R_8I, HIPSPARSELT_R_8F, HIP SPARSELT_R_8BF each column must have at least two zero values every four elements
 - HIPSPARSELT_R_32F each column must have at least one zero values every two elements

The correctness of the pruning result (matrix (a)) can be check with the function hipsparseLtSpMMAPruneCheck().

Properties

- The routine requires no extra storage
- The routine supports asynchronous execution with respect to streams[0]

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtMatmulSearch

```
hipsparseLtStatus t
hipsparseLtMatmulSearch(const hipsparseLtHandle t* handle,
                        hipsparseLtMatmulPlan t*
                        const void*
                                                    alpha,
                                                    d_A,
                        const void*
                        const void*
                                                    d_B,
                        const void*
                                                    beta,
                        const void*
                                                    d C,
                        void*
                                                    d D,
                        void*
                                                    workspace,
                        hipStream t*
                                                    streams,
                        int32 t
                                                    numStreams)
```

The function evaluates all available algorithms for the matrix multiplication and automatically updates the plan by selecting the fastest one. The functionality is intended to be used for autotuning purposes when the same operation is repeated multiple times over different inputs.

The function behavior is the same of hipsparseLtMatmull().

- The function is NOT asynchronous with respect to streams[0] (blocking call)
- The number of iterations for the evaluation can be set by using hipsparseLtMatmulAlgSetAttribute() with https://example.search_itera_tions.
- The selected algorithm id can be retrieved by using hipsparseLtMatmulAlgGetAttribute() with https://example.dela.

Helper Functions

hipsparseLtSpMMAPrune

The function prunes a dense matrix d_in according to the specified algorithm | pruneAlg |.

Parameter	Memory	In/ Out	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
matmulDescr	Host	IN	Matrix multiplication descriptor	
d_in	Device	IN	Pointer to the dense matrix	
d_out	Device	OU T	Pointer to the pruned matrix	
pruneAlg	Device	IN	Pruning algorithm	HIPSPARSELT_PRUNE_SPMMA_TILE , H IPSPARSELT_PRUNE_SPMMA_STRIP
stream	Host	IN	HIP stream for the computation	

Properties

- The routine requires no extra storage
- The routine supports asynchronous execution with respect to stream

hipsparseLtSpMMAPrune2

The function prunes a dense matrix d_in according to the specified algorithm pruneAlg.

Parameter	Memory	In/ Out	Description	Possible Values
handle	Host	IN	hipsparselt library handle	
sparseMatDe scr	Host	IN	structured(sparse) matrix descriptor	
isSparse	Host	IN	specify if the structured (sparse) matrix is in the first position (matA or matB) (only support matA)	
ор	Host	IN	operation that will be applied to the structured (sparse) matrix in the multiplication	
d_in	Device	IN	Pointer to the dense matrix	
d_out	Device	OU T	Pointer to the pruned matrix	
pruneAlg	Device	IN	Pruning algorithm	hipsparselt_prune_smfmac_tile, hipsparselt_prune_smfmac_strip
stream	Host	IN	HIP stream for the computation	

Properties

- The routine requires no extra storage
- The routine supports asynchronous execution with respect to stream

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtSpMMAPruneCheck

The function checks the correctness of the pruning structure for a given matrix.

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
matmulDescr	Host	IN	Matrix multiplication descriptor
d_in	Device	IN	Pointer to the matrix to check
d_valid	Device	OUT	Validation results (o correct, wrong)
stream	Host	IN	HIP stream for the computation

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtSpMMAPruneCheck2

The function checks the correctness of the pruning structure for a given matrix.

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
sparseMatDescr	Host	IN	structured(sparse) matrix descriptor
isSparse	Host	IN	specify if the structured (sparse) matrix is in the first position (matA or matB) (only support matA)
ор	Host	IN	operation that will be applied to the structured (sparse) matrix in the multiplication
d_in	Device	IN	Pointer to the matrix to check
d_valid	Device	OUT	Validation results (correct, wrong)
stream	Host	IN	HIP stream for the computation

See hipsparseLtStatus_t for the description of the return status.

```
hipsparseLtSpMMACompressedSize
```

The function provides the size of the *compressed* matrix to be allocated before calling hipsparseLtSpMMACompress().

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
plan	Host	IN	Matrix plan descriptor
compressedSize	Host	OUT	Size in bytes of the compressed matrix

hipsparseLtSpMMACompressedSize2

The function provides the size of the *compressed* matrix to be allocated before calling hipsparselt_smfmac_compress().

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
sparseMatDescr	Host	IN	structured(sparse) matrix descriptor
compressedSize	Host	OUT	Size in bytes of the compressed matrix

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtSpMMACompress

The function compresses a dense matrix d_dense. The *compressed* matrix is intended to be used as the first operand A in the hipsparseLtMatmull() function.

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
plan	Host	IN	Matrix multiplication plan
d_dense	Device	IN	Pointer to the dense matrix
d_compressed	Device	OUT	Pointer to the <i>compressed</i> matrix

[AMD Official Use Only]

Parameter	Memory	In/Out	Description
stream	Host	IN	HIP stream for the computation

Properties

- The routine requires no extra storage
- The routine supports asynchronous execution with respect to stream

See hipsparseLtStatus_t for the description of the return status.

hipsparseLtSpMMACompress2

The function compresses a dense matrix d_dense. The *compressed* matrix is intended to be used as the first operand A in the hipsparselt_matmul() function.

Parameter	Memory	In/Out	Description
handle	Host	IN	hipsparselt library handle
sparseMatDescr	Host	IN	structured(sparse) matrix descriptor
isSparse	Host	IN	specify if the structured (sparse) matrix is in the first position (matA or matB) (only support matA)
ор	Host	IN	operation that will be applied to the structured (sparse) matrix in the multiplication
d_dense	Device	IN	Pointer to the dense matrix
d_compressed	Device	OUT	Pointer to the <i>compressed</i> matrix
stream	Host	IN	HIP stream for the computation

Properties

[AMD Official Use Only]

			•			
•	The	routine	requires	no	extra	storage

	TI 1.	1		1 1
•	The routine supports	asynchronous ex	xecution with res	pect to stream