# A (Short) Reprise of High-Dimensional Expansion

Samyak Jha

May 18, 2025

#### **Contents**

1 Introduction: Definitions and Preliminaries 1

2 Trickle-Down Theorem 3

#### **Preface**

**TODO** 

## §1 Introduction: Definitions and Preliminaries

**Definition 1.1.** A simplicial complex is a hypergraph G = (V, E) that is closed under *downward containment* i.e

$$S \in E, S' \subset S \implies S' \in E \tag{1}$$

Every  $S \in E$  is called a face

We usually partition the faces of our simplicial complex according to their sizes.

**Definition 1.2.** Given a simplicial complex *X* 

$$X = X(0) \cup X(1) \cup X(2) \cdots \cup X(d) \tag{2}$$

where X(i) denotes the faces of size i + 1 - and is said to have a dimension i.

The notion of link is a rather important concept.

**Definition 1.3.** Given X a d- dimensional complex and  $s \in X(i)$ , the link of s is defined as follows:

$$X_s \triangleq \{t \in X \mid s \cup t \in X, s \cap t = \emptyset\}$$
 (3)

It can be thought of as a generalization of the concept of the neighborhood of a graph, but for simplicial complexes.

**Definition 1.4.** Given X, a simplicial complex and k < d, for some non-negative k. The k-skeleton of X is the subspace of X that is the union of faces of dimension  $\leq k$ .

**Definition 1.5.** We say that a complex is a pure d-dimensional is every maximal face is of dimension exactly d.

Using these objects, we are ready to define the notion of expansion over simplicial complexes.

**Definition 1.6.** We say that *X*, a pure *d*-dimensional simplicial complex, is a  $\lambda$ -one-sided HDX (resp.  $\lambda$ -two-sided HDX) if

- 1-skeleton of *X* is a  $\lambda$ -one-sided expander (resp.  $\lambda$ -two-sided expander)
- $\forall i \leq d-2$ ,  $s \in X(i)$ , the 1-skeleton of  $X_s$  is a  $\lambda$ -one-sided expander ( $\lambda$ -two-sided expander)

**Definition 1.7.** A weighted pure simplicial complex is a pair  $(X,\Pi)$  where X is a pure d-dimensional simplicial complex endowed with a distribution  $\Pi = (\pi_0, \pi_1, \dots, \pi_d)$  over each level such that:

- $\pi_i$  is a distribution over X(i) for all i = 0, 1, ..., d
- $\pi_d$  is arbitrary
- For all  $0 \le i \le d$  and  $\tau \in X(i)$ ,  $\pi_i(\tau)$  is the probability that  $\tau$  is selected via the following process:
  - 1. Draw a *d*-face  $\sigma$  from  $\pi_d$
  - 2. Pick an *i*-face  $\tau \subset \sigma$  where  $|\tau| = i$

Equivalently,

$$\pi_i(\tau) = \frac{1}{\binom{d}{i}} \sum_{\substack{\sigma \in X(d) \\ \tau \subset \sigma}} \pi_d(\sigma) \tag{4}$$

For any  $0 \le i < d$ ,  $\pi_i$  can be thought of as distribution induced by  $\pi_d$ . The weighted links of a weighted complex are themselves weighted complexes with distribution inherited from the global distribution.

**Definition 1.8.** Let  $(X,\Pi)$  be a d-dimensional weighted simplicial complex. For all  $0 \le i \le d$  and  $\tau \in X(i)$ , the weighted link  $(X_\tau, \pi_\tau)$  is defined as follows:

- $X_{\tau} = \{ \sigma \mid \sigma \cup \tau \in X, \sigma \cap \tau = \emptyset \}$
- $\pi_{\tau,d-i}(\sigma) = \frac{\pi_d(\sigma \cup \tau)}{\sum_{\psi \in X_{\tau}(d-i)} \pi_d(\psi \cup \tau)}$

There is a notion of expansion over this general object, i.e. a weighted simplicial complex.





(a) 1-skeleton of a complex

(b) 1-skeleton of link corresponding to s

**Definition 1.9 (Weighted Spectral Expander).** A weighted simplicial complex  $(X,\Pi)$  is a (one-sided/two-sided)  $\lambda$ -local spectral expander if the underlying graph of every weighted i-link, for  $0 \le i \le d-2$  is a (one-sided/two-sided)  $\lambda$ -spectral expander.

A central theme of these notes is to understand how we might construct two-sided HDXs with bounded degree.

**Definition 1.10.** We say that X is  $(r_0, r_1 \dots r_{d-1})$ -regular if for  $0 \le i \le d-1$  every  $s \in X(i)$  is contained in  $r_i$  (i+1)-faces.

As it turns out, many important examples of HDXs are, in fact, not regular. However, assuming helps us avoid messy calculations, at least for now. Before we proceed, we discuss a few example

**Example 1.11 (**d**-dimensional complete complex).** The n-simplex, denoted as  $\Delta^n$  is the n-dimensional simplicial complex that contains all subsets of n+1 elements. The d-dimensional complete complex on n vertices is the d-skeleton of  $\Delta^{n-1}$ . Namely, these are all the subsets [n] with size d+1. The 1-skeleton of every link is a complete graph and therefore a spectral expander, albeit with degree growing with n.

## §2 Trickle-Down Theorem

One would think that to prove a certain simplicial complex is a HDX would require for us to show that every 1-skeleton of a link is an expander, which would certainly require a lot of work. In the seminal work of I. Oppenheim, [Opp18], they managed to show that if the (d-2)-faces of our complex is an expander then every link - notably of lower dimensions - is an expander too.

**Proposition 2.1 (Trickle-Down, 2-dim).** *If* X *is a 2-dimensional simplicial complex such that* 

- The graph (X(0), X(1)) is connected
- For all  $v \in X(0)$ ,  $X_v$  the link corresponding to v is a one-sided  $\lambda$ -expander,

then, (X(0), X(1)) is a  $\frac{\lambda}{(1-\lambda)}$  expander.

Applied iteratively, we get,

**Theorem 2.2 (Trickle-Down,** *d***-dim).** *Let X be a d-dimensional simplicial complex such that* 

- 1-skeleton of every link is connected (including the entire simplicial complex); and
- For all  $v \in X(d-2)$ ,  $X_v$  is a one-sided  $\lambda$ -spectral expander

then, X is a  $\mu$ -spectral expander where

$$\mu = \frac{\lambda}{1 - (d - 1)\lambda} \tag{5}$$

*Proof of Proposition* 2.1. Let A denote the adjacency matrix of the 1-skeleton (X(0), X(1)). Suppose  $f: X(0) \to \mathbb{R}$  is an eigenfunction with eigenvalue  $\gamma$  and assume  $f \perp 1$ . WLOG, assume that  $\mathsf{E} f^2 = 1$ . Observe,

$$\gamma = \langle f, Af \rangle = \mathsf{E}_{(u,v) \in X(1)} \left[ f(u)f(v) \right] = \mathsf{E}_{w \in X(0)} \mathsf{E}_{u,v \in X_w(1)} \left[ f(u)f(v) \right] \tag{6}$$

**Remark 2.1.** Note that there is also a trickle-down theorem for the smallest eigenvalue. For any  $v \in X(d-2)$ , if  $A_v$  (the adjacency matrix of  $X_v$ ) has its smallest eigenvalue  $\geq v$  then the 1-skeleton of X has its eigenvalue  $\geq \frac{v}{1-v}$ . Note that if  $v \leq 0$ , we have that  $v \leq \frac{v}{1-v}$ . Therefore, the smallest eigenvalue contracts (in magnitude).

**Remark 2.2.** One would naturally wonder how these definitions even differ? Well, the reason it's called a local-to-global theorem is every link is a complex itself. The theorem allows us to make a global statement, i.e. 1-skeleton of every link is a spectral expander, with a local observation, i.e. every (d-2)-link is a spectral expander.

### References

[1] Izhar Oppenheim. "Local Spectral Expansion Approach to High Dimensional Expanders Part I: Descent of Spectral Gaps". In: *Discrete Comput Geom* 59.2 (Mar. 2018), pp. 293–330. ISSN: 1432-0444. DOI: 10.1007/s00454-017-9948-x. (Visited on 05/02/2025).