# ECE 8803 Term Project: Comparison between Four Classification Methods for DRSS Severity Classification on OCT images

By Tawhid Khan, Syed Anas Hussain

### Introduction

- Used 4 image classification methods on OCT image dataset to perform Diabetic Retinopathy Severity Scale (DRSS) severity classification.
- Classification methods:
  - KNN
  - Logistic Regression
  - CNN
  - Random Forest
- Performance analysis using:
  - Accuracy
  - Balanced Accuracy
  - Precision
  - Recall
  - F1 Score
  - True Positive Rate
  - False Positive Rate

## **KNN Methodology**

- Utilized scikit-learn KNN classifier with varying number of neighbors.
- Trained on greyscale OCT images (224x224 pixels).
- Used Euclidean distance metric.

$$Distance_{E}(X,Y) = \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}}$$

#### **KNN Results**

- Accuracy, Balanced Accuracy, Precision, Recall, and F1 score did not vary greatly.
- TPR decreased as K increased.
- FPR increased as K increased.
- Imbalance dataset: higher bias to majority class led to lower true positive rate for minority classes and decreased overall true positive rate.

|                           | K = 1 | K = 5 | K = 10 | K = 25 |
|---------------------------|-------|-------|--------|--------|
| Accuracy                  | 0.39  | 0.39  | 0.39   | 0.40   |
| Balanced<br>Accuracy      | 0.34  | 0.34  | 0.33   | 0.33   |
| Precision                 | 0.38  | 0.38  | 0.38   | 0.38   |
| Recall                    | 0.39  | 0.39  | 0.39   | 0.40   |
| F1 Score                  | 0.39  | 0.39  | 0.38   | 0.39   |
| True<br>Positive<br>Rate  | 0.81  | 0.77  | 0.73   | 0.74   |
| False<br>Positive<br>Rate | 0.71  | 0.83  | 0.82   | 0.92   |

# **Logistic Regression Methodology**

- Scikit-learn's logistic regression model used.
- Stochastic Average Gradient (SAG) solver for fast convergence on large dataset.
- Softmax activation for multiclass classification.
- 1000 maximum iterations.



### **Logistic Regression Results**

- Lower accuracy and balanced accuracy than all KNN models.
- Lower TPR and higher FPR than all KNN Models.
- logistic regression assumes a linear relationship between features and Labels while the data might not be.

| Accuracy  | 0.38 |
|-----------|------|
| Balanced  | 0.31 |
| Accuracy  |      |
| Precision | 0.37 |
| Recall    | 0.39 |
| F1 Score  | 0.37 |
| True      | 0.70 |
| Positive  |      |
| Rate      |      |
| False     | 1.52 |
| Positive  |      |
| Rate      |      |
|           |      |

### **CNN Methodology**

- Utilized the pre-defined AlexNet architecture from torchvision
- Modified the first and last layers of the CNN to account for the size of the input images and the number of class labels
- Ran the training algorithm on 64x64 resized images for faster performance
- Utilized a batch size of 100 and learning rate of 0.0001. Ran training for 20 epochs.



#### **CNN Results**

- Accuracy similar to KNN & Logistic Regression. Balanced Accuracy is similar to KNN.
- Other metrics except for FPR lower than KNN and Logistic Regression.
- Imbalanced data could have resulted in better performance on the majority class but not so well on the minority class.
- Further improved by transfer learning, data augmentation techniques, and hyperparameter tuning.



| Accuracy            | 0.394 |
|---------------------|-------|
| Balanced Accuracy   | 0.335 |
| Precision           | 0.335 |
| Recall              | 0.335 |
| F1 Score            | 0.335 |
| True Positive Rate  | 0.69  |
| False Positive Rate | 0.61  |

### Random Forest Methodology

- Ensemble learning algorithm that can be used for classification and regression.
- Works by constructing multiple decision trees, each with a random subset of features and a random subset of training instances.
- Each decision tree is trained independently and makes a classification decision. Final decision is based on the majority vote of all the trees in the forest.
- Trained using sklearn's Random Forest model with a batch size of 64 and number of estimators (decision trees) equal to 100.



#### **Random Forest Results**

- Performed the best in all metrics with high accuracy, balanced accuracy, and precision.
- Had a high true positive rate and low false positive rate.
- Radom Forest works well even on imbalanced datasets.
- Random Forest can capture non-linear relationships between features and the target variable. The ensemble learning approach combines these decision trees to make a final prediction.

| Accuracy            | 0.79 |
|---------------------|------|
| Balanced Accuracy   | 0.76 |
| Precision           | 0.81 |
| Recall              | 0.76 |
| F1 Score            | 0.78 |
| True Positive Rate  | 0.87 |
| False Positive Rate | 0.26 |

Thank you!