TD 4: Processus Ponctuel de Poisson

Exercice 1:

Soit $(X_n)_{n\geq 1}$ un processus ponctuel de Poisson sur (E,\mathcal{E}) d'intensité μ (mesure positive σ -finie).

- 1. Rappeler l'expression de la fonctionnelle de Laplace de $(X_n)_{n\geqslant 1}$ définie pour toute fonction mesurable positive $f: E \to \mathbf{R}_+$ par $\mathbf{E}\left[e^{-\sum_{n\geqslant 1} f(X_n)}\right]$.
- 2. Montrer que pour toute fonction mesurable positive $f: E \to \mathbf{R}_+$

$$\mathbf{E}\left[\sum_{n\geqslant 1} f(X_n)\right] = \mu(f).$$

Montrer que ce résultat est vrai pour toute fonction $f \in \mathbf{L}^1(E, \mathcal{E}, \mu)$ (formule de Campbell).

Exercice 2:

Un cobaye reçoit une quantité positive ξ_n d'un médicament à l'instant T_n et la quantité décroît au cours du temps de façon exponentielle (déterminisite) en e^{-at} avec a>0. On suppose que les instants $(T_n)_{n\geqslant 1}$ sont les instants de saut d'un processus de Poisson d'intensité $\lambda>0$ et que $(\xi_n)_{n\geqslant 1}$ est une suite i.i.d. de loi ν sur \mathbf{R}_+ indépendante de $(T_n)_{n\geqslant 1}$.

- 1. Que peut-on dire du processus $(T_n, \xi_n)_{n \geq 1}$?
- 2. Soit Z_t la quantité de médicament présente dans le sang du cobaye à l'instant $t \ge 0$. En utilisant la formule de Campbell, calculer $\mathbf{E}[Z_t]$ et la limite lorsque t tend vers l'infini.

Exercice 3:

Soit h une fonction continue par morceaux sur \mathbf{R}_+ à valeurs dans]0,1]. On note $H(t)=\int_0^t h(u)du$.

1. Soit $(T_n, U_n)_{n\geqslant 1}$ un processus ponctuel sur $\mathbf{R}_+ \times [0,1]$ d'intensité $\mu(\mathrm{d}t, \mathrm{d}u) = \mathrm{d}t\mathrm{d}u$ et $(Y_t)_{t\geqslant 0}$ le processus de comptage défini par

$$\forall t \geqslant 0, \quad Y_t = \sum_{n \geqslant 1} \mathbf{1}_{\{T_n \leqslant t, U_n \leqslant h(T_n)\}}$$

On note $(\tilde{T}_n)_{n\geqslant 1}$ les instants de sauts de $(Y_t)_{t\geqslant 0}$.

Montrer que $(\ddot{T}_n)_{n\geqslant 1}$ est un processus ponctuel de poisson sur \mathbf{R}_+ de mesure d'intensité $\tilde{\mu}(\mathrm{d}t)=h(t)\mathrm{d}t$.

- 2. Soit $(N_t)_{t\geqslant 0}$ un processus de Poisson d'intensité 1 d'instants de saut $(S_n)_{n\geqslant 1}$ et $Z_t=N_{H(t)}$. Montrer que $(Z_t)_{t\geqslant 0}$ est un processus de comptage d'instants de sauts $(\tilde{S}_n)_{n\geqslant 1}$ (à déterminer). En déduire que $(\tilde{S}_n)_{n\geqslant 1}$ est un processus ponctuel de poisson sur \mathbf{R}_+ de mesure d'intensité $\tilde{\mu}(\mathrm{d}t)=h(t)\mathrm{d}t$.
- 3. Conclure.
- 4. Adapter l'exercice dans le cas où h est bornée par C > 0.