Decoupled Attention Network for Text Recognition

来源:20-AAAI、华南理工

资料:论文、[代码][https://github.com/Wang-Tianwei/Decoupled-attention-network]

背景和思路

目前端到端的文本识别,主要基于LSTM+CTC和seq2seq+Attention两种框架。CTC的缺点是依赖于独立输出的假设,而Attn方法能更好的利用序列的相关信息,主流研究的较多。

Attn方法主要通过**学习特征权重**来解决字符对齐的问题,但传统的Attn方法需要两个输入:1)encoder的图片特征;2)历史的解码信息。实践中发现这种Attn方法会有**字符特征对齐不够准确**的问题。

Decoding result: {...off-dating his...}

论文认为:传统Attn方法利用历史的预测结果来做对齐操作,这样一旦历史预测结果有错误,误差就很容易在之后的对齐中有**积累效应**,导致越来越对不准。

论文提出的新思路是:将字符对齐和解码预测两个过程解耦,直接拿掉解码阶段的反馈。字符对齐本质上是在做特征匹配,论文从图片特征融合的角度来构建新的注意力方法。

算法关键点

DAN算法主要包括三个模块:**CNN特征提取**模块,**CAM对齐模块**和**RNN解码模块**。CNN计算图片的特征图,CAM也计算一张特征图,两者融合后,送入解码模块。

• 对齐模块CAM

借鉴FPN的思路,先对ResNet提取的各层特征图做下采样,再融合在一起得到特征图M;再借鉴FCN的思路,在特征图M上做编解码得到一张注意力特征图 [T, H/r, W/r]。

• RNN解码模块

接受融合后的特征向量C,将C送入GRU组成的RNN网络作预测,最后接一层线性层做预测输出。

文本向量C的计算(即怎么融合两张特征图,构成一个RNN序列输入):

$$c_t = \sum_{x=1}^{W/r_w} \sum_{y=1}^{H/r_h} \alpha_{t,x,y} F_{x,y}.$$

C = feature.view(nB, 1, nC, nH, nW) * A.view(nB, nT, 1, nH, nW) # 扩展操作
C = C.view(nB,nT,nC,-1).sum(3).transpose(1,0) # 求和操作

$$h_t = GRU((e_{t-1}, c_t), h_{t-1}),$$

$$y_t = wh_t + b,$$

$$Loss = -\sum_{t=1}^{T} log P(g_t|I, \theta),$$

算法效果

Methods	Rect	2D	Regular				Irregular		
			IIIT5k	SVT	IC03	IC13	SVT-P	CUTE80	IC15
(Cheng et al. 2017) 1			87.4	85.9	94.2	93.3	-	-	70.6
(Cheng et al. 2018)			87.0	82.8	91.5	-	73.0	76.8	68.2
(Bai et al. 2018) ¹			88.3	87.5	94.6	94.4	-	-	73.9
(Liu et al. 2018)			89.4	87.1	94.7	94.0	73.9	62.5	-
(Shi et al. 2018)	✓		93.4	89.5	94.5	91.8	78.5	79.5	76.1
(Fang et al. 2018)			86.7	86.7	94.8	93.5	-	-	71.2
(Luo, Jin, and Sun 2019)	✓		91.2	88.3	95.0	92.4_	76.1	77.4	68.8
(Liao et al. 2019) 1		✓	92.0	86.4	-	91.5	-	79.9	-
(Li et al. 2019)		V	91.5	84.5	-	91.0	76.4	83.3	69.2
(Xie et al. 2019)		✓	-	-	-	-	70.1	82.6	68.9
(Zhan and Lu 2019)	✓		93.3	90.2	-	91.3	79.6	83.3	76.9
DAN-1D			93.3	88.4	95.2	94.2	76.8	80.6	71.8
DAN-2D		✓	94.3	89.2	95.0	93.9	80.0	84.4	74.5

¹ character-level annotation required.

H/r=1就是1D识别器,适合长的规则文本的识别;H/r>1就是2D识别器,适合不规则文本的识别。在IC13和IC03等数据集上论文的实验效果还是比较先进的。

值得学习的地方:

- 特征融合的思路,提取更准确更丰富的特征
- 在特征输入和输出层加dropout层。