Interro 6 le 21/11.

Exercice 1. Soit (X,Y) un couple de variables aléatoires à valeurs dans $\mathbb N$ dont la loi conjointe est

$$\forall (i,j) \in \mathbb{N}^2, \quad P([X=i,Y=j]) = \frac{e^{-1}}{(i+j+1)!}.$$

- 1. Déterminer et reconnaître la loi de X + Y.
- 2. Calculer P([X = 0]).

Réponses. 1. Il est clair que $(X + Y)(\Omega) \subset \mathbb{N}$; soit $k \in \mathbb{N}$. D'après la formule des probabilités totales, appliquées avec le système complet d'événements $([X = i])_{i \in \mathbb{N}}$, on a :

$$P([X+Y=k]) = \sum_{i=0}^{+\infty} P([X=i, X+Y=k]) = \sum_{i=0}^{+\infty} P([X=i, Y=k-i])$$

Or, comme $Y(\Omega) = \mathbb{N}$, pour tout i > k, P([Y = k - i]) = 0. Ainsi :

$$P([X+Y=k]) = \sum_{i=0}^{k} P([X=i, Y=k-i]) = \sum_{i=0}^{k} \frac{e^{-1}}{(i+k-i+1)!}$$
$$= \sum_{i=0}^{k} \frac{e^{-1}}{(k+1)!}$$
$$= (k+1) \times \frac{e^{-1}}{(k+1)!} = \frac{e^{-1}}{k!}$$

Au final, $(X + Y)(\Omega) = \mathbb{N}$ et pour tout $k \in \mathbb{N}$, $P([X + Y = k]) = \frac{e^{-1}}{k!}$. Ainsi $X + Y \hookrightarrow \mathcal{P}(1)$.

2. D'après la formule des probabilités totales, appliquées avec le système complet d'événements ([Y = i]) $_{i \in \mathbb{N}}$, on a :

$$P([X=0]) = \sum_{i=0}^{+\infty} P([X=0, Y=i]) = \sum_{i=0}^{+\infty} \frac{e^{-1}}{(i+1)!} = \sum_{\ell=1}^{+\infty} \frac{e^{-1}}{\ell!}$$

en faisant le changement de variable $\ell=i+1$. Ainsi,

$$P([X=0]) = \sum_{\ell=1}^{+\infty} \frac{e^{-1}}{\ell!} = \sum_{\ell=0}^{+\infty} \frac{e^{-1}}{\ell!} - e^{-1} = 1 - e^{-1}.$$

Nom : Prénom :

Interro 6 le 21/11.

Exercice 1. Soient X et Y deux variables aléatoires indépendantes définies sur le même espace probabilisé et suivant une loi uniforme discrète sur [1, n] où $n \in \mathbb{N}^*$.

- 1. Déterminer la loi de X + Y (pour calculer P([X + Y = k]), on distinguera le cas où $k \le n + 1$ et le cas où k > n + 1).
- 2. X + Y possède-t-elle une espérance? Si oui, la calculer.

Réponses. 1. Il est clair que $(X + Y)(\Omega) \subset [2, 2n]$; soit $k \in [2, 2n]$. D'après la formule des probabilités totales, appliquées avec le système complet d'événements $([X = i])_{i \in [1,n]}$, on a :

$$P([X+Y=k]) = \sum_{i=1}^{n} P([X=i, X+Y=k]) = \sum_{i=1}^{n} P([X=i, Y=k-i])$$
$$= \sum_{i=1}^{n} P([X=i]) P([Y=k-i]),$$

la dernière égalité venant de l'indépendance de *X* et *Y*.

Or, comme $Y(\Omega) = [1, n]$, pour tout $i \in [1, n]$ tels que $k - i \notin [1, n]$, P([Y = k - i]) = 0. Comme

$$k-i \in [1,n] \iff k-n \leqslant i \leqslant k-1$$

on obtient : $P([X + Y = k]) = \sum_{i \in [[1,n]] \cap [[k-n,k-1]]}^{n} P([X = i]) P([Y = k - i]).$

• Si $k \in [2, n+1]$ alors $[1, n] \cap [k-n, k-1] = [1, k-1]$ et on obtient

$$P([X+Y=k]) = \sum_{i=1}^{k-1} P([X=i]) P([Y=k-i]) = \sum_{i=1}^{k-1} \frac{1}{n} \times \frac{1}{n} = \frac{k-1}{n^2},$$

• si $k \in [n+2,2n]$ alors $[1,n] \cap [k-n,k-1] = [k-n,n]$ et on obtient

$$P([X+Y=k]) = \sum_{i=k-n}^{n} P([X=i]) P([Y=k-i]) = \sum_{i=k-n}^{n} \frac{1}{n} \times \frac{1}{n} = \frac{2n-k+1}{n^2}.$$

2. La variable aléatoire X+Y est à support fini donc possède une espérance. Par linéarité

$$E(X+Y) = E(X) + E(Y) = \frac{n+1}{2} + \frac{n+1}{2} = n+1.$$