

图机器学习在安全风 控的应用

大安全—机器智能 朱亮

目录 CONTENT

Document

背景介绍

安全风控图模型

- 有向动态异质资金图
- 主网络介绍
- DDGCL

02 架构简介

04 展望

背景介绍

背景介绍

架构简介

算法架构简介

相较于树模型, 图模型补充了两部分信息: Tree model ✓ k度子图内点边特征的聚合信息; ✓ k度子图内的拓扑结构信息; graph_embs features GNN GNNevt_id,t0

安全风控图模型

- 有向动态异质资金图主网络介绍DDGCL

安全风控图模型——有向动态异质图

▶ 点:账号、卡号、商家等; ▶ 边:有方向,多种类型边关系;

图算法和风控的相遇

"作案"有团伙特性

"作案"有相似性

"作案"需要大量账号和设备资源配合

"作案"具有成本因素

物以类聚,人以群分

安全风控图模型——HGT+DADEdge(Directional Attention Dual Edge Embedding)

将边方向作为一个边上一个属性

安全风控图模型——HGT+DADEdge(Directional Attention Dual Edge Embedding)

安全风控图模型

以某一个**场景为例,各模型效果对比如下:

	AUC 提升	千一打扰下 召回提升
TGAT	0	0
HGT	+0.0327	+5.634%
HGT+DADEdge	+0.0335	+10.856%

安全风控图模型——DDGCL(Debiased Dynamic Graph Contrastive Learning, CIKM2021)

- Many real-world graphs are dynamic in the sense that they evolve over time.
- Node v's representation will depend on its structural and compositional information, as well as the temporal information, and its representation shall be time dependent.
- Some methods derived from static graph scenarios are not directly applicable and may even lead
 to a questionable inference on these dynamic data.

安全风控图模型——DDGCL

假设:大多数节点k度邻域子图在短时间内变化具有一致性

Figure: Building blocks of DDGCL: As a contrastive-based self-supervised framework, there're three ingredients of DDGCL: a Time-Aware GNN encoder, a positive sample reconstruction method, and a novel contrastive loss function.

安全风控图模型——DDGCL

DGI(Deep Graph Infomax) Loss:

$$- \mathbb{E}_{x} \left[\mathbb{E}_{x^{+} \sim p^{+}} \log \frac{1}{1 + e^{-\mathsf{sim}(f(x^{+}), f(x))}} + \mathbb{E}_{x^{-} \sim p^{-}} \log \frac{1}{1 + e^{\mathsf{sim}(f(x^{-}), f(x))}} \right]$$

DDGCL Loss:

$$\begin{split} \mathcal{L}_{\text{DDGCL}} &= -\frac{1}{N} \sum_{x \in \mathbf{X}} \sum_{l=1}^{N_{\text{pos}}} \frac{1}{N_{\text{pos}}} \log \frac{1}{1 + e^{-\mathsf{sim}(f(x_{l}^{+}), f(x))}} \\ &- \frac{1}{N(1 - \tau^{+})} \sum_{x \in \mathbf{X}} \sum_{i=1}^{N_{\text{neg}}} \left(\frac{e^{\beta \text{sim}(f(x_{i}^{-}), f(x))}}{\sum_{j} e^{\beta \text{sim}(f(x_{j}^{-}), f(x))}} \right) \log \frac{1}{1 + e^{\mathsf{sim}(f(x_{i}^{-}), f(x))}} \\ &+ \frac{\tau^{+}}{N(1 - \tau^{+})} \sum_{x \in \mathbf{X}} \sum_{i=1}^{N_{\text{pos}}} \left(\frac{e^{\beta \text{sim}(f(x_{i}^{+}), f(x))}}{\sum_{j} e^{\beta \text{sim}(f(x_{j}^{+}), f(x))}} \right) \log \frac{1}{1 + e^{\mathsf{sim}(f(x_{i}^{+}), f(x))}} \end{split}$$

安全风控图模型——DDGCL

Table: Comparison of DDGCL with other previous approaches on graph contrastive learning on the dynamic node classification task

Multi task learning				
	Wikipedia	Reddit	MOOC	
Link prediction	84.45 ± 0.8	$\textbf{65.41} \pm \textbf{0.7}$	$\textbf{73.38} \pm \textbf{0.4}$	
GraphCL(on)	87.67 ± 0.9	64.72 ± 0.6	$\textbf{73.48} \pm \textbf{0.5}$	
GraphCL(nn)	87.86 ± 0.6	65.69 ± 0.7	$\textbf{73.81} \pm \textbf{0.4}$	
GraphCL(nl)	87.52 ± 0.9	66.13 ± 0.7	$\textbf{73.73} \pm \textbf{0.4}$	
GraphCL(nm)	87.89 ± 0.8	66.16 ± 0.7	$\textbf{73.64} \pm \textbf{0.6}$	
GraphCL(ns)	87.10 ± 0.6	64.40 ± 0.7	73.89 \pm 0.4	
GCC	$\textbf{88.46} \pm 0.6$	$\textbf{69.83} \pm 0.8$	$\textbf{73.94} \pm 0.3$	
DDGCL	$\textbf{89.32} \pm 0.5$	71.13 \pm 0.8	74.54 ± 0.2	

稳定模型训练,验证集过拟合缓解

展望

- ➤ 资金链表征进一步学习:MaskGAE、AdaPath;
- ▶ 图模型鲁棒性的进一步提升:
 - 1. 子图去噪、子图预计算;
 - Ⅱ. 子图对抗攻击防御;
 - III. DRO;
- ▶ 图结构的进一步挖掘;

非常感谢您的观看

