Введение в машинное обучение

Линейная регрессия

Задача

Восстановить (сложную) зависимость по конечному числу примеров

Пример задачи

Предсказать цену на квартиру по ее характеристикам

- площадь
- расположение (район, расстояние до метро)
- ремонт, наличие мебели
- ▶ и т.д.

Обозначения

- х объект, sample для чего хотим делать предсказания (квартира)
- X пространство всех возможных объектов (все квартиры на свете)
- у ответ, целевая переменная, target что предсказываем (цена)
- $ightharpoonup \mathbb{Y}$ пространство ответов все возможные значения ответа $(\in \mathbb{R}, >= 0)$

- $X = \{(x_1, y_1), \dots, (x_\ell, y_\ell)\}$ обучающая выборка: все пары (квартира ее цена)
- $ightharpoonup \ell$ размер обучающей выборки

Представление объектов

- ▶ Как сделать объекты машиночитаемыми?
- Представить в виде набора признаков числовых характеристик.
- **У** Каждый объект вектор чисел $x = (x^1, ..., x^d)$
- ▶ d количество признаков
- lacktriangle Обучающая выборка матрица размера $\ell imes d$
- Каждая строка объект, каждый столбец признак.

Линейная регрессия

- ightharpoonup Функция, которая отображает $\mathbb X$ в $\mathbb Y$
- ightharpoonup Хотим засунуть в нее вектор признаков объекта x и получить на выходе соотвествующий ему ответ y
- Сводится к суммированию значений признаков х с некоторыми коэффициентами (весами) w + свободный коэффициент w₀:

$$a(x) = w_0 + \sum_{j=1}^{d} w_j x_j.$$
 (1)

Парная ререссия

Линейная регрессия

Площадь	Расстояние до метро	Цена квартиры
100	200	10600
35	500	3500
50	100	5800

$$Price = 100S - 2Distance + 1000 (2)$$

Обучение

- Обучиться = подобрать значения весов так, чтобы модель давала ответы как можно ближе к реальности.
- Минимизация эмпирического риска добиться минимально возможной ошибки на обучающей выборке.
- Как измерить ошибку?

Функция потерь

- ▶ обозначается Q
- ► Чаще всего используется *Mean Squared Error*:

$$MSE(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2.$$
 (3)

 Среднее арифметическое квадрата разницы предсказанного ответа и реального.

Функция потерь

 Получаем задачу оптимизации (считаем, что среди признаков есть константный, и поэтому свободный коэффициент не нужен):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 \to \min_{w}$$
 (4)

Методы оптимизации

- Метод Наименьших Квадратов (применим для линейной регрессии и квадратичной функции потерь)
- Градиентный спуск (общий подход)

Градиент

 Градиентом функции называется вектор ее частных производных:

$$\nabla f(x_1, \dots, x_d) = \left(\frac{\partial f}{\partial x_j}\right)_{j=1}^d \tag{5}$$

- Частная производная производная многомерной функции по одной из переменных.
- Градиент является направлением наискорейшего роста функции, а антиградиент (т.е. $-\nabla f$) направлением наискорейшего убывания.
- Причем норма (длина) градиента равна величине скорости возрастания/убывания.

Градиент

Градиентный спуск

- $W^{(0)} \leftarrow N(0,1)$ инициализировать начальное приближение для вектора весов случайными небольшими значениями.
- for i in range(max_iter):
 - $lackbox{$lackbox{∇_w}$} Q = [rac{\partial Q}{\partial w_0}, rac{\partial Q}{\partial w_1}, ..., rac{\partial Q}{\partial w_d}]$ посчитать градиент в точке $W = W^{(t)}$
 - ▶ $W^{(t+1)} = W^{(t)} \alpha * \nabla_w Q$ обновить вектор весов, сделав шаг длины α в сторону антиградиента
 - Если $||\nabla_w Q||_2 < \epsilon$ если норма градиента стала меньше некоторой заданной малой величины (значние функции потерь больше (почти) не уменьшается), то мы считаем, достигли минимума и прерываем цикл
- ightharpoonup lpha, ϵ , max_iter гиперпарметры, значение которых задается заранее