Clasa a XI-a — Soluţii şi barem orientativ

Problema 1. Dacă n este un număr natural, iterata de ordin n a unei funcții $f \colon \mathbb{R} \to \mathbb{R}$ este funcția

$$f^n = \underbrace{f \circ \cdots \circ f}_{n},$$

unde f^0 este identitatea. Determinați funcțiile continue $f: \mathbb{R} \to \mathbb{R}$, care îndeplinesc simultan următoarele două condiții:

- (a) Funcția $f^0 + f^1$ este crescătoare; și
- (b) Există un număr natural nenul m, astfel încât funcția $f^0 + \cdots + f^m$ este descrescătoare.

Soluție. Funcțiile cerute sunt de forma f(x) = -x + c, unde c este o constantă reală. Aceste funcții verifică în mod evident condițiile din enunț.

Arătăm mai întâi că f este injectivă. Fie x şi y două numere reale, astfel încât f(x) = f(y), şi fie $g_n = f^0 + \cdots + f^n$, $n \in \mathbb{N}$. Întrucât g_1 este crescătoare, g_m este descrescătoare, iar $g_1(x) - g_1(y) = x - y = g_m(x) - g_m(y)$, rezultă că $(x - y)^2 = (g_1(x) - g_1(y))(g_m(x) - g_m(y)) \le 0$, deci x = y.

Întrucât f este injectivă și continuă (proprietatea valorii intermediare (Darboux) este suficientă), f este strict monotonă, deci toate iteratele sale de ordin par, f^{2k} , sunt strict crescătoare.

Funcția g_1 fiind crescătoare, din paragraful precedent si relația

$$g_n = \begin{cases} \sum_{k=0}^{n/2-1} g_1 \circ f^{2k} + f^n, & \text{dacă } n \text{ este par,} \\ \\ \sum_{k=0}^{(n-1)/2} g_1 \circ f^{2k}, & \text{dacă } n \text{ este impar,} \end{cases}$$

rezultă că g_n este strict crescătoare, dacă n este par, și crescătoare, dacă n este impar.

Funcția g_m fiind descrescătoare, rezultă că m este impar şi g_m constantă. În fine, g_1 fiind crescătoare şi toate iteratele de ordin par ale lui f fiind (strict) crescătoare, deducem că g_1 este constantă, de unde rezultă concluzia.

Problema 2. Determinați funcțiile derivabile $f: \mathbb{R} \to \mathbb{R}$, care îndeplinesc condiția $f \circ f = f$.

Soluție. Funcțiile cerute sunt funcțiile constante și identitatea, funcții care verifică în mod evident condițiile din enunț.

Intrucât f este continuă, imaginea sa, $\{f(x) \colon x \in \mathbb{R}\}$, este un interval $I \subseteq \mathbb{R}$. Dacă I este un singleton, atunci f este constantă.

Dacă I este nedegenerat, fie $a=\inf I<\sup I=b$, unde $a,b\in\overline{\mathbb{R}}$. Din condiția din enunț rezultă că restricția lui f la intervalul deschis (a,b) este identitatea:

$$f(x) = x, \quad a < x < b. \tag{1}$$

Vom arăta că $a=-\infty$ şi $b=+\infty$, i.e., $I=\mathbb{R}$ şi f este identitatea. Să presupunem că a este real. Continuitatea lui f în a şi (1) implică f(a)=a, deci

$$f'(a) = f'_d(a) = \lim_{x \to a, \, x > a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a, \, x > a} \frac{x - a}{x - a} = 1.$$
 (2)

Pe de altă parte, f are un minimum în a, deoarece $f(a) = a = \inf I = \inf \{f(x) : x \in \mathbb{R}\}$, deci, conform teoremei lui Fermat, f'(a) = 0, în contradicție cu (2). Prin urmare, $a = -\infty$. În mod analog, $b = +\infty$.

......5 puncte

Problema 3. Fie n un număr natural nenul și A, B două matrice din $\mathcal{M}_n(\mathbb{C})$, astfel încât $A^2 + B^2 = 2AB$. Arătați că:

- (a) Matricea AB BA este singulară; și
- (b) Dacă rangul matricei A B este 1, atunci matricele A și B comută.

Soluție. (a) Relația din enunț este echivalentă cu fiecare dintre următoarele două relații:

$$(A-B)^2 = AB - BA, (1)$$

$$A(A-B) = (A-B)B. (2)$$

Să presupunem că matricea AB-BA este nesingulară. Conform (1), şi A-B este nesingulară, deci $B=(A-B)^{-1}A(A-B)$, conform (2). Aşadar, $A-B=A-(A-B)^{-1}A(A-B)$, de unde, $I_n=A(A-B)^{-1}-(A-B)^{-1}A$. Trecând la urmă, obținem o contradicție: $n=\operatorname{tr} I_n=\operatorname{tr} \left(A(A-B)^{-1}-(A-B)^{-1}A\right)=0$. Prin urmare, matricea AB-BA este singulară; în plus, din relația (1) rezultă că și matricea A-B este singulară.

(b) Reamintim că, dacă X este o matrice de rang 1 din $\mathcal{M}_n(\mathbb{C})$, atunci $X^2 = (\operatorname{tr} X) X$ — aceasta rezultă din faptul că fiecare linie a lui X este proporțională cu o linie nenulă a lui X. Conform relației (1) și rezultatului amintit mai sus,

$$AB - BA = (A - B)^2 = (\operatorname{tr}(A - B))(A - B),$$

deci $0 = \operatorname{tr}(AB - BA) = (\operatorname{tr}(A - B))^2$, i.e., $\operatorname{tr}(A - B) = 0$. Prin urmare, $AB - BA = O_n$, i.e., AB = BA.

...... 3 puncte

Problema 4. Fie A o matrice inversabilă din $\mathcal{M}_4(\mathbb{R})$, astfel încât tr $A = \operatorname{tr} A^* \neq 0$, unde A^* este adjuncta matricei A. Arătați că matricea $A^2 + I_4$ este singulară dacă și numai dacă există o matrice nenulă B în $\mathcal{M}_4(\mathbb{R})$, astfel încât AB = -BA.

Soluție. Arătăm mai întâi că, dacă A este o matrice din $\mathcal{M}_n(\mathbb{R})$, astfel încât $A^2 + I_n$ este singulară, atunci există o matrice nenulă B în $\mathcal{M}_n(\mathbb{R})$, astfel încât AB = -BA.

Întrucât $A^2 + I_n$ este singulară, i este o valoare proprie a lui A, iar -i este o valoare proprie a transpusei A^{τ} . Există deci doi vectori nenuli \mathbf{x} și \mathbf{y} în $\mathcal{M}_{n,1}(\mathbb{C})$, astfel încât $A\mathbf{x} = i\mathbf{x}$ și $A^{\tau}\mathbf{y} = -i\mathbf{y}$. Întrucât \mathbf{x} și \mathbf{y} sunt nenuli, $B = \mathbf{x}\mathbf{y}^{\tau}$ este o matrice nenulă din $\mathcal{M}_n(\mathbb{C})$.

Matricele A și B anticomută:

$$AB = A\mathbf{x}\mathbf{y}^{\tau} = i\mathbf{x}\mathbf{y}^{\tau} = -\mathbf{x}(-i\mathbf{y})^{\tau} = -\mathbf{x}(A^{\tau}\mathbf{y})^{\tau} = -\mathbf{x}\mathbf{y}^{\tau}A = -BA.$$

Trecând la conjugate şi ţinând cont de faptul că A este în $\mathcal{M}_n(\mathbb{R})$, rezultă că şi conjugata \bar{B} a lui B anticomută cu A. Deci orice combinație liniară cu coeficienți complecși a matricelor B şi \bar{B} anticomută cu A. Prin urmare, B sau i $(B-\bar{B})$ este o matrice nenulă din $\mathcal{M}_n(\mathbb{R})$, care anticomută cu A. În particular, am demonstrat una dintre implicațiile problemei.

...... 4 puncte

Arătăm acum că, în condițiile din enunț, este adevărată și reciproca. Fie B o matrice nenulă din $\mathcal{M}_4(\mathbb{R})$, care anticomută cu A. Atunci

$$A^k B = (-1)^k B A^k, \quad k \in \mathbb{N}. \tag{*}$$

Considerăm polinomul caracteristic f al matricei A,

$$f = \lambda^4 - (\operatorname{tr} A)\lambda^3 + a\lambda^2 - (\operatorname{tr} A^*)\lambda + \det A = \lambda^4 - (\operatorname{tr} A)\lambda^3 + a\lambda^2 - (\operatorname{tr} A)\lambda + \det A,$$

unde a este un număr real; cea de a doua expresie a lui f rezultă din ipoteza $\operatorname{tr} A = \operatorname{tr} A^*$. Conform teoremei Hamilton-Cayley, $f(A) = O_4$. Ținând cont de (*), obținem succesiv:

$$O_4 = f(A)B = B(A^4 + (\operatorname{tr} A)A^3 + aA^2 + (\operatorname{tr} A)A + (\det A)I_4)$$

= $B(f(A) + 2(\operatorname{tr} A)(A^2 + I_4)A) = 2(\operatorname{tr} A)B(A^2 + I_4)A.$

Întrucât tr $A \neq 0$, iar A este inversabilă, rezultă că $B(A^2 + I_4) = O_4$. Matricea B fiind nenulă, conchidem că $A^2 + I_4$ este singulară.