Introduction to Machine Learning

Presenters

Senior Data Scientist, Personalization, **Customer Tech**

Data Scientist
Data Science Foundations,
Platform

Contents

- AI, Machine Learning Overview
- Supervised Machine Learning
 - Regression
 - Classification
- Classification
 - kNN Classifier + code walkthrough
 - Logistic Regression Classifier + code walkthrough
- Data Science Modeling Pipeline
 - Train Test Splits
 - Feature Pre-processing
 - Diagnosing and Fixing Underfitting/Overfitting

Humans are great at

Abstraction and Reasoning

Humans are great at ...

Learning tasks.

Example: Humans learning to drive a car vs training a Self Driving Car.

Humans are good at

Planning:

- A birthday party
- A vacation
- Business strategies
- Navigating Traffic

Natural Language Understanding

- Complex sentences (Legal)
- Short sentences (Twitter)
- Sarcasm
- Humor
- Emotion
- Innate understanding of the world

Visual Perception

- Scene Understanding
- DepthPerception
- Object Recognition

Artificial Intelligence

representations

Supervised Machine Learning

Traditional Approach vs. Machine Learning Approach

Traditional Programming: you code the behavior of the program

Machine Learning: you leave a lot of that to the machine to learn from data

https://medium.com/machine-learning-with-pratik/introduction-to-ai-and-machine-learning-ml001-e-c4a994c6c612

Supervised Learning – Regression Problem

Predicting a Student's Admission

Predicting a Student's Admission

Binary Classification Task:

Predict whether a **new** student will secure admission.

New student will not be present in historical data

k-Nearest Neighbours (kNN)

kNN Classification – Majority Voting

kNN Classification – Probability Output

4 ★ 1 ★

K = 5 ★

Let $\hat{y}=1$ be the event "Student is Admitted"

$$Prob(\hat{y} = 1 \mid x) = \frac{n_1}{K} = \frac{1}{5} = 0.2$$

Where n_1 is the number of nearest neighbors of class 1

kNN - The Math

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

x is a new observation column vector

$$X = \begin{bmatrix} x^{(1)^T} \\ x^{(2)^T} \\ x^{(M)^T} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \\ x_1^{(M)} & x_2^{(M)} \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(M)} \end{bmatrix}$$

Design Matrix

Where,

$$x_1$$
 = Test 1 Score x_2 = Test 2 Score

Test 2 Score $x_1^{(j)} - x_2$ Test 1 Score

$$x_2^{(j)} - x_2$$
 $d_j = \sqrt{(x_1^{(j)} - x_1)^2 + (x_2^{(j)} - x_2)^2}$

From Pythagoras'
Theorem

$$NN(x,X) = \arg\min_{j \in \{1,M\}} d(x,x^{(j)})$$

QnA & Code Walkthrough - kNN

Logistic Regression

A model which learns a linear boundary between the classes

First, a linear probability model

Estimate the coefficients w_1 and b through Least Squares Regression

$$w = (X^T X + \lambda I)^{-1} X^T Y$$

A Major Problem with this Model:

Non-sensical probabilities (P > 1 or P < 0)

Would be nice, if ...

Output bounded between 0 and 1.

Sigmoid/Logistic Function

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

 The sigmoid function squishes numbers to (0,1)

Logistic Regression

Notebook on Github

Scikit-learn implementation of Logistic Regression

Unknowns

$$P(\hat{y} = 1|x) = sigmoid(w_1x_1 + b) = \sigma(w_1x_1 + b)$$

$$= \frac{1}{1 + e^{-(w_1x_1 + b)}}$$

General Form:

$$P(\hat{y} = 1|x)$$

$$= \sigma(w_1x_1 + w_2x_2 + \dots + w_Nx_N + b)$$

$$= \sigma(w^Tx + b)$$

$$w^T$$

$$x^1$$

$$x^2$$

$$x^N$$

Q & A

Loss Minimization

- Most of machine learning involves some form of loss minimization
- Loss indicates how bad our predictions are.
- Let \hat{y} be our predicted probability of admission of a student x, and y be the true label.
- Then, $L = f(\hat{y}, y)$ is the loss we incur, where f(.,.) is called the loss function

Some Examples of Loss Functions

- **0-1 Loss:** $\hat{y} = 0, y = 1 \Rightarrow L = 1$
- Squared Loss: $\hat{y} = 0.2$, $y = 1 \Rightarrow L = (y \hat{y})^2 = 0.8^2 = 0.64$
- Log Loss / Binary Cross Entropy Loss: This is the loss function used in Logistic Regression.
- Important: Loss is a function of the weights and not the data.

$$L = f(\hat{y}, y)$$

$$= f(h(x; \mathbf{w}, \mathbf{b}), y)$$

$$h(x; \mathbf{w}, \mathbf{b}) = \sigma(\mathbf{w}^T x + \mathbf{b})$$

Average Loss Function

$$L = \frac{1}{M} \sum f(\widehat{y}_i, y_i)$$
$$= \frac{1}{M} \sum f(h(x_i; w, b), y_i)$$

- $\widehat{y}_i = h(x_i; w, b)$ is the prediction for the ith sample in dataset
- L is the average loss.

Plotting Loss Functions

- Plot average loss for every possible $w = [w_1, w_2]$
- Plotting this will give us a 3D plot. (top figure)
- Plotting equiloss surface will give us a contour plot (bottom figure)

Appropriate Loss Function for Logistic

Regression Squared Loss

Word of **Caution:**

Squared Loss isn't bumpy when used in Linear Regression.

Many Local Minima!

Log Loss

Fixed w1 = -0.41And b = -21

Minima

A Loss Function for Logistic Regression

Squared

Loss

Observe:

The max loss can be only 1

A Loss Function for Logistic Regression

Squared

Loss

Observe:

The max loss can be only 1

What if?

- When y=1 and $\hat{y}=0$, $f=\infty$
- When y=0 and $\hat{y}=1$, $f=\infty$

$$f(y,\hat{y}) = \begin{cases} -\ln \hat{y}, & \text{if } y = 1\\ -\ln(1-\hat{y}), & \text{if } y = 0 \end{cases}$$

$$f(y, \hat{y}) = -y \ln \hat{y} - (1 - y) \ln(1 - \hat{y})$$
Cross Entropy Loss

Gradient

$$Tangent = \frac{\partial L}{\partial w_1}$$

Black arrow magnitude and direction of tangent (gradient)

Update Mechanism - Gradient Descent (Roll down the hill)

- Compute the gradient (tangent) at the current parameter values
- Step in the opposite direction

$$w_i^{(t+1)}\coloneqq w_i^{(t)}-\eta_t \frac{\partial L}{\partial w_i^{(t)}}$$
 Updated Learning Gradient coeff Rate

$$\begin{aligned} w_i^{(t+1)} &= w_i^{(t)} - \eta \frac{\partial L}{\partial w_i^{(t)}} \\ &= w_i^{(t)} - \eta \frac{1}{M} \sum (\hat{\mathbf{y}}_i - \mathbf{y}_i) \mathbf{x}_i \end{aligned}$$

Putting it all Together

- 1. Given: Dataset $D = \{(x_1, y_1), ..., (x_M, y_M)\}$
- 2. Initialize: coefficients w of model randomly
- 3. $L(w) = \frac{1}{M} \sum_{i} f(y_i, \hat{y}_i)$
- 4. For all coefficients w_i :

1.
$$g_j = \frac{1}{M} \frac{\sum \partial f(y_i, \hat{y}_i)}{\partial w_j} = \frac{1}{M} \sum (y_i - \hat{y}_i) x_j$$

5. For all coefficients:

1 Pass /

Epoch

$$1. \quad w_j = w_j - \eta g_j$$

6. Repeat 3-5 till change in loss is negligible

Computing gradients over the full dataset might be expensive.

Updates have to be simultaneous

c Compute over mini batches of data instead (mini-batch gradient descent)

Scikit-learn has an efficient Logistic Regression implementation:

Choose a learning rate just high enough so that training doesn't diverge (i.e. losses don't increase with steps) Q & A

Data Science Pipeline

TRAINING model training Training Set Machine Learning Validation Raw data & **Feature** Engineering Set target hyperparameters tuning model selection evaluation Model **Test Set PREDICTING Feature New data Predict** Target **Engineering**

Train – Test Splits

For Large Data:

For small data, look at K-Fold splits.

Split Strategies:

- 1) Random (70-10-20) split
- Out of time cross validation and holdout

Scikit-learn has implementations of

- Train-Test Split
- K-Fold

Feature Pre-Processing for Continuous variables

- Scale your features to small values around 0
 - Min-Max Scaler $x \coloneqq \frac{x x_{mn}}{x_{mx} x_{mn}}$ [Scikit Learn MinMaxScaler]

Scaling your features will help the gradient descent converge faster

Feature Pre-Processing for Continuous variables

- Scale your features to small values around 0
 - Z-Score $x := \frac{x \mu}{\sigma}$ [Scikit Learn Standard Scaler]

Scaling your features will help the gradient descent converge faster

Feature Pre-Processing for Discrete/Categorical Variables

A categorical variable can take K discrete values with no notion of ordering or rank between them.

Scikit-learn

• One Hot Encoder

For a variable with large K, look at other techniques:

- Hashing Trick
- Target Statistics

Model Evaluation Measure - Accuracy

S.No	Predicted Label	Ground Truth Label
1	1	1
2	0	O
3	0	1
4	1	0
5	0	O
6	0	O

$$Accuracy = \frac{N_{correct}}{N} = \frac{4}{6} = 66.67\%$$

Imagine a scenario where 99% of the ground truth labels are 0s

A classifier which labels every example as a 0, will also have 99% accuracy!

Using Accuracy for imbalanced classes will be misleading!!

Model Evaluation Measures

	Actual Positive	Actual Negative
Predicted Positive	tp (True Positives)	fp (False Positives)
Predicted Negative	fn (False Negatives)	tn (True Negatives)

Confusion Matrix

In the case of Ad-Click Prediction:

- If optimizing for reach, then tune for recall
- If optimizing for ad dollars spent, then tune for precision

$$Accuracy = \frac{tp + tn}{tp + fp + fn + tn}$$

$$Recall = \frac{tp}{tp + fn}$$

$$Precision = \frac{tp}{tp + fp}$$

$$F1 = 2 \frac{Recall * Precision}{Recall + Precision}$$

Overfitting and Underfitting

$$P(\hat{y} = 1|x) = \sigma(w_1 * x_1 + w_2 * x_2 + b)$$

A more

Complex Model

$$P(\hat{y} = 1|x)$$

= $\sigma(w_1x_1 + w_2x_2 + w_3x_1x_2 + w_4x_1^2 + w_5x_2^2 + b)$

A simpler model

$$P(\hat{y} = 1|x) = \sigma(w_1x_1 + b)$$

A highly simplistic model

$$P(\hat{y} = 1|x) = \sigma(b)$$

Model Complexity

Under- and Over-fitting examples

Underfit Models:

 Model not complex enough to capture the underlying distribution of the data.

Overfit Models:

- Model too complex and tries to capture every bit of information in the dataset.
- Such models do not generalize well to unseen data.

Model Complexity in the case of Logistic Regression could be due to:

Large number of parameters.

Fixing Underfitting

- Add more features to your Logistic Regression Model
- Try using a more complex model, such as:
 - Decision Trees
 - Neural Nets

Fixing Overfitting

- Collect more data
- Then reduce model complexity
 - Try regularization
 - Then try a simpler model

QnA & Code Walkthrough

Scikit Learn Cheat Sheets

- https://scikit-learn.org/stable/tutorial/machine_learning_map/
- https://s3.amazonaws.com/assets.datacamp.com/blog-assets/Scikit Learn Cheat Sheet Python.pdf
- https://bit.ly/2Kwg36X
- https://towardsdatascience.com/resources-to-start-your-journey-in-data-science-bf960a8d928c

Thank you

Supervised Machine Learning

