INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA FLUMINENSE *CAMPUS* ITAPERUNA

BACHARELADO EM SISTEMAS DE INFORMAÇÃO

NOME DO DISCENTE

TEMPLATE PARA TRABALHOS DE CONCLUSÃO DE CURSO DO BACHARELADO EM SISTEMAS DE INFORMAÇÃO DO IFF

Itaperuna/RJ 2024

NOME DO DISCENTE

TEMPLATE PARA TRABALHOS DE CONCLUSÃO DE CURSO DO BACHARELADO EM SISTEMAS DE INFORMAÇÃO DO IFF

Trabalho de Conclusão de Curso apresentado no Instituto Federal Fluminense *campus* Itaperuna como requisito parcial para conclusão do Curso de Bacharelado em Sistemas de Informação.

Orientador: Nome do orientador Coorientador: Nome do coorientador

NOME DO DISCENTE

TEMPLATE PARA TRABALHOS DE CONCLUSÃO DE CURSO DO BACHARELADO EM SISTEMAS DE INFORMAÇÃO DO IFF

Trabalho de Conclusão de Curso apresentado no Instituto Federal Fluminense *campus* Itaperuna como requisito parcial para conclusão do Curso de Bacharelado em Sistemas de Informação.

Aprovado en	m 12 de abril de 2025.	
Banca Avali	adora:	
_	Nome do orientador (orientador) IFF	
_	Membro da banca A IFF	
_	Membro da banca B UFF	

 $\begin{array}{c} Itaperuna/RJ \\ 2024 \end{array}$

AGRADECIMENTOS

Agradeço a Deus pelo Dom da Vida...

E não vos conformeis com este século, mas transformai-vos pela renovação da vossa mente, para que experimenteis qual seja a boa, agradável e perfeita vontade de Deus.

(Bíblia Sagrada, Romanos 12:2)

RESUMO

Resumo em português.

Palavras-chave: Latex. Template. Editoração de Texto.

ABSTRACT

English abstract.

Keywords: Latex. Template. Text Editing.

LISTA DE FIGURAS

${\bf Figura}$	1	_	Logo	do	TeX	•								•	•						15
Figura	2	_	Logo	do	LaTF	X										 					15

LISTA DE QUADROS

Quadro 1	_	Complexidades	de 1	$_{ m tempo}$	em	algumas	estruturas	de	dados			•	17

LISTA DE TABELAS

Tabela 1	_	As 10 Linguagens de Programação mais populares em Maio 2021	16
Tabela 2	_	Tabela Padrão IBGE	17

LISTA DE ABREVIATURAS E SIGLAS

WYSIWYG: What You See Is What You Get

WYSIWYM: What You See Is What You Mean

LISTA DE SÍMBOLOS

Γ	Letra	grega	maiúscula	Gama
-		D + ~ D ~	III about	Calle

- Λ Letra grega maiúscula Lambda
- \in Pertence

SUMÁRIO

LISTA DE FIGURAS	8
LISTA DE QUADROS	9
LISTA DE TABELAS	10
1 SEÇÃO PRIMÁRIA	
1.1 SEÇÃO SECUNDÁRIA	14
1.1.1 Seção terciária	14
1.1.1.1 Seção quaternária	
1.1.1.1.1 Seção quinária	14
2 IMAGENS	
2.1 TEX	
2.2 LATEX	
3 TABELAS E QUADROS	
4 ALGORITMOS	
4.1 BUSCA BINÁRIA	
5 MATERIAL DE APOIO	
REFERÊNCIAS BIBLIOGRÁFICAS	20
	21
APÊNDICE A PRIMEIRO APÊNDICE	22
APÊNDICE B SEGUNDO APÊNDICE	23
Anexos	24
ANEXO A PRIMEIRO ANEXO	
	26

1 SEÇÃO PRIMÁRIA

Conteúdo da seção primária

1.1 SEÇÃO SECUNDÁRIA

Conteúdo da seção secundária

1.1.1 Seção terciária

Conteúdo da seção terciária

1.1.1.1 Seção quaternária

Conteúdo da seção quaternária

1.1.1.1.1 Seção quinária

Conteúdo da seção quinária

2 IMAGENS

2.1 TEX

TeX (= tau epsilon chi, pronunciado como "tech") é um sistema de tipografia criado por Donal Knuth em 1978. É popular no meio acadêmico, principalmente entre os físicos, matemáticos e cientistas da computação, devido sua sua capacidade de produzir fórmulas e símbolos matemáticos de uma maneira elegante.

O principal motivo da criação do TeX foi a insatisfação de Knuth com a qualidade de impressão de seu segundo volume do magnum opus multivolume *The Art of Computer Programming* ¹. A logo do T_FX pode ser vista na Figura 1.

Figura 1 – Logo do T_EX

Fonte: https://en.wikipedia.org/wiki/TeX

2.2 LATEX

LaT_EX(pronuncia-se <<Lah-Tech>> ou <<Lay-Tech>>) é um **conjunto de** macros criadas por Leslie Lamport para o processador de textos T_EX. O LaT_EX fornece ao usuário comandos de alto nível, facilitando assim sua utilização.

Figura 2 – Logo do LaT_EX

Fonte: https://en.wikipedia.org/wiki/LaTeX

https://www.tug.org/whatis.html

3 TABELAS E QUADROS

Existem diferenças entre tabelas e quadros, as principais estão na formatação e natureza do conteúdo. A tabela deve ser utilizada de forma majoritária quando os dados forem numéricos, em contrapartida, o quadro é geralmente utilizado quando temos dados não numéricos.

Um quadro é composto por linhas verticais e horizontais, sendo, portanto "fechado". Já as tabelas possuem apenas linhas horizontais, sendo, desta forma "abertas". Abaixo encontram-se exemplos de uso de tabelas e quadros.

Tabela 1 – As 10 Linguagens de Programação mais populares em Maio 2021

Maio 2021	Maio 2020	Modificação	Linguagem
1	1		С
2	3	\wedge	python
3	2	V	Java
4	4		C++
5	5		C#
6	6		Visual Basic
7	7		JavaScript
8	14	\wedge	Assembly Language
9	8	\vee	PHP
10	9	V	SQL

Fonte: Tiobe Index - Tiobe (2021)

Na Tabela 1 podem ser vistas as 10 linguagens de programação mais populares em maio de 2021.

O abn TeX^{-1} disponibiliza o comando IBGEtab que permite criar tabelas com formatação padronizadas de acordo com o IBGE (ABNT NBR 14724:2011 2). Na Tabela 2 podemos ver a Tabela 1 no formato IBGE.

https://www.abntex.net.br/

https://bit.ly/2T9jqaT

Tabela 2 – As 10 Linguagens de Programação mais populares em Maio 2021

Maio 2021	Maio 2020	Modificação	Linguagem
1	1		C
2	3	\wedge	python
3	2	V	Java
4	4		C++
5	5		C#
6	6		Visual Basic
7	7		${ m JavaScript}$
8	14	\wedge	Assembly Language
9	8	V	PHP
10	9	V	SQL

Fonte: Tiobe Index - Tiobe (2021)

No Quadro 1 é apresentada a análise de pior caso das complexidades de tempo das principais operações em algumas estruturas de dados.

Quadro 1 – Complexidades de tempo em algumas estruturas de dados

Estrutura de dados	Complexidade de tempo (Pior caso)								
	Acesso	Busca	Inserção	Remoção					
Array	O(1)	O(n)	O(n)	O(n)					
Stack	O(n)	O(n)	O(1)	O(1)					
Queue	O(n)	O(n)	O(1)	O(1)					
Singly-Linked List	O(n)	O(n)	O(1)	O(1)					
Doubly-Linked List	O(n)	O(n)	O(1)	O(1)					
Hash Table	N/A	O(n)	O(n)	O(n)					
Binary Search Tree	O(n)	O(n)	O(n)	O(n)					
B-Tree	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$					
Red-Black Tree	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$					
AVL Tree	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$					

Fonte: BigO Cheatsheet - https://www.bigocheatsheet.com/

4 ALGORITMOS

4.1 BUSCA BINÁRIA

O algoritmo de busca binária possui complexidade de tempo $O(\log n)$ e pode ser utilizado, por exemplo, para verificar de modo eficiente se um determinado array ordenado possui um dado elemento fornecido.

Um modo tradicional de implementarmos a busca binária é realizar a checagem do elemento central do *subarray* e verificarmos se ele corresponde ao que estamos procurando, se sim, então o elemento procurado foi encontrado, caso contrário verificaremos se o elemento central é maior ou menor que o elemento procurado, caso seja maior, então a busca continua no *subarray* esquerdo, senão no *subarray* direito. No algoritmo 1 podemos ver uma possível implementação deste raciocínio de forma iterativa.

Algoritmo 1: buscaBinaria(vet, tam, x)

```
Entrada: Vetor (vet), tamanho do vetor (tam) e elemento a ser procurado (x)
   Saída: Posição onde o elemento se encontra ou -1 caso contrário
 1 \ a \leftarrow 0;
 b \leftarrow tam - 1;
 3 meio ← −1;
 4 enquanto (a \leq b) faça
      meio = (a + b) / 2;
      se (vet[meio] == x) então
 6
        retorna meio ; // elemento encontrado
      se (vet[meio] < x) então
 8
          a \leftarrow meio + 1;
      senão
10
        b \leftarrow meio - 1;
12 retorna meio ; // elemento não encontrado
```

Em Laaksonen (2017), o autor traz uma excelente abordagem do algoritmo da busca binária e propõe um outro método de implementação. Também em (PROGRAMIZ, 2021) é realizada uma boa abordagem do algoritmo em suas versões iterativa e recursiva.

5 MATERIAL DE APOIO

Abaixo seguem algumas referências para se trabalhar com a classe abnTEX2 (Da qual este template foi extendido) e da classe memoir, na qual o abnTEX2 foi baseado. Também são mostradas referências para o pacote biblatex-abnt, no qual foi utilizado para gerenciar as referências deste template e que possui suporte para as regras de citação exigidas pela ABNT.

- a) A classe abnTFX2
 - Site oficial: https://www.abntex.net.br/
 - Repositório GitHub: https://github.com/abntex/abntex2
 - Página CTAN: https://www.ctan.org/pkg/abntex2
- b) A classe memoir
 - Página CTAN: https://www.ctan.org/pkg/memoir
- c) O pacote biblatex-abnt
 - Repositório GitHub: https://github.com/abntex/biblatex-abnt
 - Página CTAN: https://www.ctan.org/pkg/biblatex-abnt

REFERÊNCIAS BIBLIOGRÁFICAS

LAAKSONEN, A. Guide to Competitive Programming: Learning and Improving Algorithms. 1. ed. Suíça: Springer, 2017.

PROGRAMIZ, E. Learn to code for free: Binary Search. [S.l.], 2021. Disponível em: https://www.programiz.com/dsa/binary-search.

TIOBE. **Tiobe - The Software Quality Company**. [S.l.], 2021. Disponível em: https://www.tiobe.com/tiobe-index/.

APÊNDICE A – PRIMEIRO APÊNDICE

APÊNDICE B – SEGUNDO APÊNDICE

ANEXO A – PRIMEIRO ANEXO

ANEXO B – SEGUNDO ANEXO