Magnetic Refinement (Symmetry)

Roger Johnson

Magnetic symmetry

- Axioms of group theory and the crystallographic point groups
- Magnetic point groups
- Magnetic space groups (commensurate structures)
- Irreducible representations

We will not consider incommensurate structures and superspace groups (not enough time!)

Axiom #1: Closure by composition

- A group has a well defined binary operation known as composition, which is denoted by the symbol \circ
- For the matrix representation of symmetry operators, composition is matrix multiplication

- If two symmetry operators, say f and g, are in a group, their composition generates another operator of the group, h, and hence the group is closed by composition
- Composition is not necessarily commutative

Axiom #1: Closure by composition

Example: $\{1, 2_{z}, m_{x}, m_{y}\}$

$$2_{z} \circ m_{x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = m_{y}$$

$$m_{x} \circ m_{y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 2_{z}$$

$$m_{x} \circ 1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = m_{x}$$

Axiom #1: Closure by composition

Example: $\{1, 2_{z}, m_{x'}, m_{y}\}$

Closure by composition summarised by a group multiplication table

	1	2_z	m_{χ}	m_y
1	1	2_z	m_{χ}	m_y
2_z	2_z	1	m_y	m_{χ}
m_{χ}	m_{x}	m_y	1	2_z
m_y	m_{y}	m_{χ}	2_z	1

Axiom #2: Associativity

Composition is associative. If f, g, and h belong to the same group

$$(f \circ g) \circ h = f \circ (g \circ h)$$

Axiom #3: The identity operator

Every group must contain the identity operator, 1 (sometimes labelled 'E')

$$g \circ 1 = 1 \circ g = g$$

Axiom #4: Inverse operators

It follows from axiom 1 and axiom 3 that it must be possible to compose any operator, say f, with another operator, say g, and obtain 1

$$g = f^{-1}$$

Crystallographic point groups

- 'Crystallographic': dealing with symmetry operators for which Bravais lattices are invariant
- 'Point': dealing with symmetry operators that together leave at least one point in space invariant
- 'Groups': Sets of symmetry operators that satisfy the axioms of group theory
- There exists finite number of sets of rotation and rotoinversion operators with n = 1,2,3,4, or 6 that satisfy the axioms of a group. These are the 32 crystallographic point groups
- Example: Point group $mm2 = \{1, 2_z, m_x, m_y\}$

Subgroups

$$H \leq G$$

• A set of symmetry operators of a group that is also a group

• For example: {1}, {1, 2_z}, {1, m_x }, {1, m_y }, {1, 2_z, m_x , m_y } are subgroups of {1, 2_z, m_x , m_y }

N.B. A group is counted as a subgroup of itself!

Angular momentum

$$\mu_{S} = -g_{S} \frac{\mu_{B}}{\hbar} S$$
 $\mu_{L} = -g_{L} \frac{\mu_{B}}{\hbar} L$

Angular momentum transforms as a **time-odd axial vector**

Angular momentum: rotation

Polar vector

Angular momentum: rotation

Polar vector

Angular momentum: mirror

Polar vector

Angular momentum: mirror

Polar vector

Angular momentum: time reversal

The time reversal group $I = \{1,1'\}$

The magnetic point groups, M, are subgroups of the direct product of the crystallographic point groups, G, with the time reversal group, I.

$$M \leq G \times I$$

Lets take
$$G = \frac{2}{m} = \{1, 2, \overline{1}, m\}$$

$$G \times I = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$

$$G \times I = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$

Consider the magnetic point group M = G

$$M = \{1, 2, \overline{1}, m\}$$

$$\frac{2}{m}$$

- Same symmetry as G
- Allows magnetic order
- Called a Type I magnetic point group

$$G \times I = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$

Consider the magnetic point group $M = G \times I$

$$M = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$

$$\frac{2}{m}1'$$

- This is the paramagnetic group or 'grey' group
- Does not allow magnetic order
- Called a Type II magnetic point group

$$G \times I = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$

Consider the magnetic point group M = H + (G - H)1' where H is a subgroup of G of order 2

$$H = \{1, 2\}$$
 $M = \{1, 2, \overline{1}', m'\}$
 $\frac{2}{m'}$

- Allows magnetic order
- Called a Type III magnetic point group

$$G \times I = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$

Consider the magnetic point group M = H + (G - H)1' where H is a subgroup of G of order 2

$$H = \{1, \overline{1}\}$$

$$M = \{1, 2', \overline{1}, m'\}$$

$$\frac{2'}{m'}$$

- Allows magnetic order
- Called a Type III magnetic point group

$$G \times I = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$

Consider the magnetic point group M = H + (G - H)1' where H is a subgroup of G of order 2

$$H = \{1, m\}$$

$$M = \{1, 2', \overline{1}', m\}$$

$$\frac{2'}{m}$$

- Allows magnetic order
- Called a Type III magnetic point group

$$G \times I = \{1, 2, \overline{1}, m, 1', 2', \overline{1}', m'\}$$
 $M \leq G \times I$

Type II

Type III

32 **Type I +** 32 **Type II +** 58 **Type III =** 122 'magnetic' point groups

Cyan: ferromagnetic

Red: ferroelectric

Purple: both

Crystallographic point groups	Grey point groups		Magne	tic point g	groups	
1	1'					
1	Ī1'	<u>1</u> '				
2	21'	2'				
m	m1'	m'				
2/m	2/m1'	2'/m'	2/m'	2'/m		
222	2221'	2'2'2				
mm2	mm21'	m'm'2	2'm'm			
mmm	mmm1'	mm'm'	m'm'm'	mmm'		
4	41'	4'				
4	41'	<u>4</u> '				
4/m	4/m1'	4'/m	4/m'	4'/m'		
422	4221'	4'22'	42'2'			
4mm	4mm1'	4'mm'	4m'm'			
42m	42m1'	4'2m'	4'm2'	42'm'		
4/mmm	4/mmm1'	4'/mmm'	4/mm'm'	4/m'm'm'	4/m'mm	4'/m'm'r
3	31'					
3	31'	3'				
32	321'	32'				
3m	3m1'	3m'				
3m	3m1'	3m'	3'm'	3'm		
6	61'	6'				
<u>6</u>	6 1'	<u>6</u> '				
6/m	6/m1'	6'/m'	6/m'	6'/m		
622	6221'	6'22'	62'2'			
6mm	6mm1'	6'mm'	6m'm'			
6m2	6m21'	6'2m'	6'm2'	6m'2'		
6/mmm	6/mmm1'	6'/m'mm'	6/mm'm'	6/m'm'm'	6/m'mm	6'/mmm
23	231'					
m3	m31'	m'3'				
432	4321'	4'32'				
43m	43m1'	4'3m'				
m3m	m3m1'	m3m'	m'3'm'	m'3'm		

$$M \leq G \times I$$

Lets take
$$G = P \frac{2}{m} = \{1, 2, \overline{1}, m\} \times T_G$$

$$M=G=P\frac{2}{m}.1$$

- This is the 'colourless' group
- Allows magnetic order
- Called a Type I magnetic space group

$$M = G \times I = P \frac{2}{m} \cdot 1'$$

- This is the paramagnetic group or 'grey' group
- Does not allow magnetic order
- Called a Type II magnetic space group

$$M \leq G \times I$$

M = H + (G - H)1', where H is a subgroup of G of order 2

Case 1: H is a *Translationenglieiche* subgroup of G (one in which all translation symmetry is retained i.e. $T_H = T_G$) and hence the order of point group P_H is lower than that of P_G

- This is a black and white group with an ordinary Bravais lattice
- Allows magnetic order
- Called a Type III magnetic space group

$$P\frac{2'}{m}$$

$$P\frac{2}{m'}$$

$$P\frac{2'}{m'}$$

$$M \leq G \times I$$

$$M = H + (G - H)1'$$
, where H is a subgroup of G of order 2

Case 2: H is a *Klassenglieiche* subgroup of G (one in which translation symmetry is lowered *i.e.* $T_H < T_G$) and hence the order of point group P_H is the same as that of P_G

- This is a black and white group with a black and white Bravais lattice
- Allows magnetic order
- Called a Type IV magnetic space group

$$P\frac{2}{m} \cdot 1'_a$$
 $P\frac{2}{m} \cdot 1'_b$ $P\frac{2}{m} \cdot 1'_C$

230 **Type I** + 230 **Type II** + 674 **Type III** + 517 **Type IV** = 1651 'magnetic' space groups

IUCr / Daniel B. Litvin: https://www.iucr.org/publ/978-0-9553602-2-0

Bilbao Crystallographic Server: https://www.cryst.ehu.es/

Landau theory

- The vast majority of paramagnetic to (anti)ferromagnetic phase transitions are second order (continuous)
- The Landau theory of second order phase transitions requires the primary magnetic order parameter to transform by a single irreducible representation...
- ... only condensation of a single normal mode can lead to a continuous change of the system.

Representations

- Take a vector space V_p=(u_x,u_y,u_z), where u_i describe <u>polar</u> distortions
- Assume displacements same in every unit cell (the following can be extended to k≠0)
- We will take space group P4/m as an example

Representations

The set of matrices M(g) is a **representation** of the group P4/m on the vector space V_p

1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ ₀₀₁	1	m ₀₀₁	4 + ₀₀₁	4 -001
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

Irreducible representations

Can we divide up the vector space V into smaller irreducible subspaces?

1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ ₀₀₁	1	m ₀₀₁	4 ⁺ ₀₀₁	4 - ₀₀₁
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

Irreducible representations

Can we divide up the vector space V into smaller irreducible subspaces?

1	2 ₀₀₁	4 ⁺ ₀₀₁	4-001	1	m ₀₀₁	4+ ₀₀₁	4 ⁻ 001
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} $
		B :	$= P^{-1}AP,$	$P = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$	$\begin{pmatrix} i & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$		
1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ ₀₀₁	1	m ₀₀₁	4 ⁺ ₀₀₁	4 -001
$\begin{bmatrix} 1 & 0 & 0 \\ & & & & \\ & & & & \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -i & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} i & 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ \end{bmatrix}$		$\begin{pmatrix} -i & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & i & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -i & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & i & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & i & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & i & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & i & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & i \\ 0 &$

Irreducible representations: Characters

Can we divide up the vector space V into smaller irreducible subspaces?

1	2 ₀₀₁	4 ⁺ ₀₀₁	4-001	1	m ₀₀₁	4 + ₀₀₁	4 - ₀₀₁
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$ \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} $
1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ ₀₀₁	1	m ₀₀₁	4 ⁺ 001	4 - ₀₀₁
Γ_{V_p}							
3	-1	1	1	-3	1	-1	-1
$\Gamma_3^- \oplus \Gamma_4^-$							
2	-2	0	0	-2	2	0	0
Γ_1^-							
1	1	1	1	-1	-1	-1	-1

Irreducible representations: Character table

	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	1	m ₀₀₁	4 + ₀₀₁	4 - ₀₀₁
Γ_1^+	1	1	1	1	1	1	1	1
Γ_1^-	1	1	1	1	-1	-1	-1	-1
Γ_2^+	1	1	-1	-1	1	1	-1	-1
Γ_2^-	1	1	-1	-1	-1	-1	1	1
$\Gamma_3^+ \oplus \Gamma_4^+$	2	-2	0	0	2	-2	0	0
$\Gamma_3^- \oplus \Gamma_4^-$	2	-2	0	0	-2	2	0	0

$$\Gamma_{V_p} = \Gamma_1^- + (\Gamma_3^- \oplus \Gamma_4^-)$$

Irreducible representations: Decomposition theorem

$$\Gamma_{V_p} = \sum_{ij} a_i^j \Gamma_i^j \qquad a_i^j = \frac{1}{h} \sum_g \chi_{\Gamma_{V_p}}(g) \chi_{\Gamma_i^j}(g)$$

	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	1	m ₀₀₁	4 + ₀₀₁	4 -001
$\Gamma_{\!V_p}$	3	-1	1	1	-3	1	-1	-1
Γ_1^+	1	1	1	1	1	1	1	1
Γ_1^-	1	1	1	1	-1	-1	-1	-1
Γ_2^+	1	1	-1	-1	1	1	-1	-1
Γ_2^-	1	1	-1	-1	-1	-1	1	1
$\Gamma_3^+ \oplus \Gamma_4^+$	2	-2	0	0	2	-2	0	0
$\Gamma_3^- \oplus \Gamma_4^-$	2	-2	0	0	-2	2	0	0

Irreducible representations: Decomposition theorem

$$\Gamma_{V_p} = \sum_{i,j} a_i^j \Gamma_i^j \qquad a_i^j = \frac{1}{h} \sum_{g} \chi_{\Gamma_{V_p}}(g) \chi_{\Gamma_i^j}(g) \qquad a_1^+ = \frac{1}{8} (3 - 1 + 1 + 1 - 3 + 1 - 1 - 1) = 0$$

	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	1	m ₀₀₁	4 + ₀₀₁	4 - ₀₀₁
$\Gamma_{\!V_p}$	3	-1	1	1	-3	1	-1	-1
Γ_1^+	1	1	1	1	1	1	1	1
Γ_1^-	1	1	1	1	-1	-1	-1	-1
Γ_2^+	1	1	-1	-1	1	1	-1	-1
Γ_2^-	1	1	-1	-1	-1	-1	1	1
$\Gamma_3^+ \oplus \Gamma_4^+$	2	-2	0	0	2	-2	0	0
$\Gamma_3^- \oplus \Gamma_4^-$	2	-2	0	0	-2	2	0	0

Irreducible representations: Decomposition theorem

$$\Gamma_{V_p} = \sum_{i,j} a_i^j \Gamma_i^j \qquad a_i^j = \frac{1}{h} \sum_{g} \chi_{\Gamma_{V_p}}(g) \chi_{\Gamma_i^j}(g) \qquad a_1^- = \frac{1}{8} (3 - 1 + 1 + 1 + 3 - 1 + 1 + 1) = 1$$

	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	1	m ₀₀₁	4 + ₀₀₁	4 -001
$\Gamma_{\!V_p}$	3	-1	1	1	-3	1	-1	-1
Γ_1^+	1	1	1	1	1	1	1	1
Γ_1^-	1	1	1	1	-1	-1	-1	-1
Γ_2^+	1	1	-1	-1	1	1	-1	-1
Γ_2^-	1	1	-1	-1	-1	-1	1	1
$\Gamma_3^+ \oplus \Gamma_4^+$	2	-2	0	0	2	-2	0	0
$\Gamma_3^- \oplus \Gamma_4^-$	2	-2	0	0	-2	2	0	0

Representations

- Take a vector space V_m=(u_x,u_y,u_z), where u_i describe <u>axial</u> distortions
- Assume displacements same in every unit cell (the following can be extended to k≠0)
- We will take space group P4/m as an example
- This is a model for ferromagnetism

Representations

The set of matrices M(g) is a **representation** of the group P4/m on the vector space V_m

	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	1	m ₀₀₁	4 + ₀₀₁	4 ⁻ 001
	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$ \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} $
	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ ₀₀₁	<u>1</u>	m ₀₀₁	4 + ₀₀₁	4 -001
	$m\Gamma_3^+ \oplus m$							
2	2	-2	0	0	2	-2	0	0
	$\mathrm{m}\Gamma_{1}^{+}$							
	1	1	1	1	1	1	1	1

Irreducible representations (character table)

	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	1	m ₀₀₁	4 + ₀₀₁	4 -001
$m\Gamma_1^+$	1	1	1	1	1	1	1	1
$m\Gamma_1^-$	1	1	1	1	-1	-1	-1	-1
$m\Gamma_2^+$	1	1	-1	-1	1	1	-1	-1
$m\Gamma_2^-$	1	1	-1	-1	-1	-1	1	1
$m\Gamma_3^+ \oplus m\Gamma_4^+$	2	-2	0	0	2	-2	0	0
$m\Gamma_3^- \oplus m\Gamma_4^-$	2	-2	0	0	-2	2	0	0

$$\Gamma_{V_m} = \Gamma_1^+ + (\Gamma_3^+ \oplus \Gamma_4^+)$$

Irreducible representations (character table)

	1	2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	<u>1</u>	m ₀₀₁	4 + ₀₀₁	4 -001	
$m\Gamma_1^+$	1	1	1	1	1	1	1	1	P4/m
$m\Gamma_1^-$	1	1	1	1	-1	-1	-1	-1	P4/m'
$m\Gamma_2^+$	1	1	-1	-1	1	1	-1	-1	P4'/m
$m\Gamma_2^-$	1	1	-1	-1	-1	-1	1	1	P4'/m'
$m\Gamma_3^+ \oplus m\Gamma_4^+$	2	-2	0	0	2	-2	0	0	P2'/m'
$m\Gamma_3^- \oplus m\Gamma_4^-$	2	-2	0	0	-2	2	0	0	P2'/m

The number of **Type I** and **Type III** magnetic space groups derived from space group G are equal to the number of distinct 1-D IR's (Bertaut. Acta Cryst. A24, 217 (1968))

Irreducible representations (character table)

	Crystallographic point groups Grey point g			ps Grey point groups	oups Magnetic point groups							
					1	1'						
		2	1 +	A -	1	<u>1</u> 1'	1'				-	
		2 ₀₀₁	4 ⁺ ₀₀₁	4 ⁻ 001	2	21'	2'				001	
					m	m1'	m'					
$m\Gamma_1^+$	1	1	1	1	2/m	2/m1'	2'/m'	2/m'	2'/m		1	P4/m
					222	2221'	2'2'2					F4/111
_					mm2	mm21'	m'm'2	2'm'm				
$m\Gamma_1^-$	1	1	1	1	mmm	mmm1'	mm'm'	m'm'm'	mmm'		11	P4/m'
1	1	_ '			4	41'	4'					1 4/111
$m\Gamma_2^+$	Cyan: ferromagnetic				4	41'	4'					
	1 - 1 - 1			-1	4/m	4/m1'	4'/m	4/m'	4'/m'		1	P4'/m
	Red	l: ferroel	ectric'		422	4221'	4'22'	42'2'				1 7/111
					4mm —	4mm1'	4'mm' _	4m'm' 	_			
$m\Gamma_2^-$	Pur	ole: both	-1	-1	42m	42m1'	4'2m'	4'm2'	42'm'		_ 1	P4'/m'
Z	,				4/mmm	4/mmm1'	4'/mmm'	4/mm'm'	4/m'm'm'	4/m'mm 4'/m	m'm	, , , , , , ,
				3	31' 31'	3'						
$m\Gamma_3^+ \oplus m\Gamma_4^+$	2	-2			32	321'	32'				- 0	P2'/m'
11113 W 11114					32 3m	3m1'	3m'					/ · · ·
п- Ф п-					3m	3m1'	3m'	3'm'	3'm			Doll
$m\Gamma_3^- \oplus m\Gamma_4^-$	2	-2		0	6	61'	6'	3111	3111		- 0	P2'/m
3 - 4				<u>-</u>	<u>6</u> 1'	<u>6</u> '						
					6/m	6/m1'	6'/m'	6/m'	6'/m			
					622	6221'	6'22'	62'2'				
					6mm	6mm1'	6'mm'	6m'm'				
The number	of Type	I and To	vne III ma	agnetic		6m21'	6'2m'	6'm2'	6m'2'		30.0	group
	6/mmm	6/mmm1'	6'/m'mm'	6/mm'm'	6/m'm'm'	6/m'mm 6'/m	mm'					
G are equal	23	231'					(19	68))				
C allo oqual		3111001 0	. 310111101		m3	m31'	m'3'				()	
					432	4321'	4'32'					
					43m	43m1'	4'3m'					
					m₃m	m3m1'	m3m'	m'3'm'	m'3'm			

Symmetry adapted modes

We began with the decomposition of the *P*4/*m* representation in the basis of ferromagnetic modes and found

$$\Gamma_{V_m} = m\Gamma_1^+ + (m\Gamma_3^+ \oplus m\Gamma_4^+)$$

In general, symmetry adapted modes can be obtained from the representations using the projection operator

Symmetry adapted modes

$$m\Gamma_1^+$$

$$P_{j} = \frac{d_{j}}{h} \sum_{i} \chi_{j}(g_{i})g_{i}(V) \qquad \phi = P_{j}V$$

$$\begin{split} &\frac{1}{8} \left(\chi_{m\Gamma_{1}^{+}}(1) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{1}^{+}}(2_{001}) \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{1}^{+}}(4_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{1}^{+}}(4_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{1}^{+}}(\bar{1}) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{1}^{+}}(m_{001}) \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{1}^{+}}(\bar{4}_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{1}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{1}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{1}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad P_j V_m = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_x \\ \boldsymbol{u}_y \\ \boldsymbol{u}_z \end{pmatrix} \propto \begin{pmatrix} 0 \\ 0 \\ \boldsymbol{u}_z \end{pmatrix}$$

Symmetry adapted modes

$$m\Gamma_3^+ \oplus m\Gamma_4^+$$

$$P_{j} = \frac{d_{j}}{h} \sum_{i} \chi_{j}(g_{i})g_{i}(V) \qquad \phi = P_{j}V$$

$$\begin{split} &\frac{2}{8} \left(\chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(1) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(2_{001}) \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(4_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right. \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(4_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{1}) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(m_{001}) \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{+}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &+ \chi_{m\Gamma_{3}^{+} \oplus m\Gamma_{4}^{+}}(\bar{4}_{001}^{-}) \begin{pmatrix} 0 & 1 & 0$$

$$= 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad P_{j}V_{m} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_{x} \\ \boldsymbol{u}_{y} \\ \boldsymbol{u}_{z} \end{pmatrix} \propto \begin{pmatrix} \boldsymbol{u}_{x} \\ \boldsymbol{u}_{y} \\ 0 \end{pmatrix}$$

Irreducible representations

- The Landau theory of second order phase transitions requires the primary magnetic order parameter to transform by a single irreducible representation
- An irreducible representation of a group is a set of matrices on a vector space, defined in a basis with no reducible vector subspaces
- Irreducible representation ⇔ symmetry adapted modes ⇔ magnetic space group
- The irreducible representations of the space groups, symmetry adapted modes, order parameters, and magnetic space groups have all been calculated for you!

E.g. Bilbao Crystallographic Server or ISODISTORT