

TO

DATE: Oct. 4, 2007.

SAMSUNG TFT-LCD

MODEL NO.: LTN154X3-L0D

NOTE:

- Extension code [-G]; LTN154X3-L0D-G
- Surface type [Glare]

Any Modification of Specification is not allowed without SEC's Permission.

APPROVED BY:

K. H. Shin

PREPARED BY : LCD Development Group 1 (Mobile)

SAMSUNG ELECTRONICS CO., LTD.

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	1 / 33
Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	1 / 33

	Approva
CONTENTS	
Revision History	(3)
General Description	(4)
 Absolute Maximum Ratings 1.1 Absolute Ratings of environment 1.2 Electrical Absolute Ratings 	(5)
2. Optical Characteristics	(7)
3. Electrical Characteristics3.1 TFT LCD Module3.2 Backlight Unit3.3 Inverter	(10)
4. Block Diagram 4.1 TFT LCD Module 4.2 Backlight Unit 4.3 Inverter Unit	(14)
5. Input Terminal Pin Assignment 5.1 Input Signal & Power 5.2 LVDS Interface 5.3 Backlight Unit	(16)
5.4 Timing Diagrams of LVDS For Transmitting5.5 Input Signals, Basic Display Colors and Gra5.6 Pixel format5.7 Inverter Signals & Power	
6. Interface Timing6.1 Timing Parameters6.2 Timing Diagrams of interface Signal6.3 Power ON/OFF Sequence	(23)
7. Outline Dimension	(25)
8. Packing	(26)
9. Markings & Others	(27)
10. General Precaution	(29)

Samsung	Secret
---------	--------

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 2
--

REVISION HISTORY

Approval

Date	Revision No.	Page	Summary
Date Oct. 4. 2007	Revision No.	Page	Summary LTN154X3-L0D-G Model spec was issued first.
Samsung Sec			

Rev.No

04-A00-S-071004

Page

3 / 33

LTN154X3-L0D

Doc.No.

GENERAL DESCRIPTION

DESCRIPTION

LTN154X3-L0D is a color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching devices. This model is composed of a TFT LCD panel, a driver circuit and a backlight unit. The resolution of a 15.4" contains 1,280 x 800 pixels and can display up to 262,144 colors. 6 O'clock direction is the Optimum viewing angle.

FEATURES

- High contrast ratio, high aperture structure
- 1280 x 800 pixels resolution
- Low power consumption
- Fast Response
- Single CCFL
- DE(Data enable) only mode
- 3.3V LVDS Interface
- Onboard EEDID chip
- Attached Burst mode Inverter with Ambient Light Sensor

APPLICATIONS

- Notebook PC
- If the usage of this product is not for PC application, but for others, please contact SEC.

GENERAL INFORMATION

Item	Specification		Note
Display area	331.2(H) x 207.0(V) (15.4" diagonal)	mm	
Driver element	a-Si TFT active matrix		
Display colors	262,144		
Number of pixel	1280 x RGB(3) x 800	pixel	16 : 10
Pixel arrangement	RGB vertical stripe		
Pixel pitch	0.2588(H) x 0.2588(V) (TYP.)	mm	99.6ppi
Display Mode	Normally white		
Surface treatment	Haze 0, Hard-Coating 3H		Glare

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	4 / 33
---------	--------------	--------	-----------------	------	--------

Mechanical Information

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	343.5	344.0	344.5	mm	w/o invertor coely
Module size	Vertical (V)	221.5	222.0	222.5	mm	w/o inverter ass'y
3120	Depth (D)	-	-	6.5	mm	
Weight		-	555	570	g	LCD module only
		-	570	585	g	w/ Inverter assembly

1. ABSOLUTE MAXIMUM RATINGS

1.1 ENVIRONMENTAL ABSOLUTE RATINGS

Item	Symbol	Min.	Max.	Unit	Note
Storage temperate	TSTG	-20	60	°C	(1),(5)
Operating temperate (Temperature of glass surface)	TOPR	0	50	°C	(1),(5)
Shock (non-operating)	Snop	-	240	G	(2),(4)
Vibration (non-operating)	Vnop	-	2.41	G	(3),(4)

Note (1) Temperature and relative humidity range are shown in the figure below. 95 % RH Max. (40 $^{\circ}$ C \geq Ta)

Maximum wet - bulb temperature at 39 $^{\circ}$ C or less. (Ta > 40 $^{\circ}$ C) No condensation

- (2) 2ms, half sine wave, one time for $\pm X$, $\pm Y$, $\pm Z$.
- (3) 5 500 Hz, random vibration, 30min for X, Y, Z.
- (4) At testing Vibration and Shock, the fixture in holding the Module to be tested have to be hard and rigid enough so that the Module would not be twisted or bent by the fixture.
- (5) If product is used for extended time excessively or exposed to high temperatures for extended time, there is a possibility of wide viewing angle film damage which could affect visual characteristics.

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	5 / 33	
	LINIOTAG-LOD	1100.110	07-700-0-011007	ı agc	0 / 00	ı

1.2 ELECTRICAL ABSOLUTE RATINGS

(1) TFT LCD MODULE

 $V_{DD} = 3.3V$, $V_{SS} = GND = 0V$

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	V _{DD}	V _{DD} - 0.3	V _{DD} + 0.3	V	(1)
Logic Input Voltage	V_{DD}	V _{DD} - 0.3	V _{DD} + 0.3	V	(1)

Note (1) Within Ta (25 \pm 2 °C)

(2) BACK-LIGHT UNIT

Ta = 25 ± 2 °C

Item	Symbol	Min.	Max.	Unit	Note
Lamp Current	lι	3.0	7.0	mArms	(1)
Lamp frequency	FL	45	75	kHz	(1)

Note 1) Permanent damage to the device may occur if maximum values are exceeded Functional operation should be restricted to the conditions described under normal operating conditions.

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	6 / 33
---------	--------------	--------	-----------------	------	--------

2. OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (5). Measuring equipment: TOPCON BM-5A and PR-650

* Ta = 25 ± 2 °C, Vdd=3.3V, fv= 60Hz, fdclk = 68.54 MHz, IL = 6.5 mArms

Item		Symbol	Condition	Min.	Тур.	Max	Unit	Note	
Contrast I (5 Poir		CR		300	-	-	-	(1), (2), (5)	
Response Tir (Rising + F		Т _{RТ_В/W}		-	25	35	msec	(1), (3)	
Average Lun of White (5		YL,AVE		200	220	-	cd/m ²	I∟=6.5mA (1), (4)	
	Dod	Rx		0.575	0.595	0.615			
	Red	RY	Normal	0.320	0.340	0.360			
	Crass	Gx	Viewing	0.300	0.320	0.340			
Color	Green	G _Y	Angle $\phi = 0$	0.530	0.550	0.570	-	(1), (5) PR-650	
Chromaticity (CIE)	Blue	Вх	$\theta = 0$	0.135	0.155	0.175			
		By		0.110	0.130	0.150			
	\\/hita	Wx		0.293	0.313	0.333			
	White	WY		0.309	0.329	0.349			
	11	θι		40	-	-			
	Hor.	θн	00 . 40	40	-	-	Degrees		
	Ver.	фн	CR ≥ 10	15	-	-			
Viewing		фь		30	-	-	1	(1), (5)	
Angle		θι		30	-	-		BM-5A	
	Hor.	θн	CR ≥ 100	30	-	-	Degrees		
	Ver.	фн	1	10	-	-]		
		фь		20	-	-	1		
13 Poir White Var		δι		-	-	2.2	-	(6)	

Doc.No.	TN154X3-L0D	Rev.No	04-A00-S-071004	Page	7	/ 33	ı
---------	-------------	--------	-----------------	------	---	------	---

Note 2) Definition of Contrast Ratio (CR): Ratio of gray max (Gmax) ,gray min (Gmin) at 5 points(4, 5, 7, 9, 10)

$$CR = \frac{CR(4) + CR(5) + CR(7) + CR(9) + CR(10)}{5}$$

Points : (4), (5), (7), (9), (10) at the figure of Note (6).

Note 3) Definition of Response time:

Note 4) Definition of Average Luminance of White: measure the luminance of white at 5 points.

Note 5) After stabilizing and leaving the panel alone at a given temperature for 30 min , the measurement should be executed. Measurement should be executed in a stable, windless, and dark room.

30 min after lighting the backlight. This should be measured in the center of screen.

Lamp current: 6.5mA

Environment condition : Ta = 25 ± 2 °C

[Optical characteristics measurement setup]

Note 6) Definition of 13 points white variation (δ L), CR variation (CVER) [1 ~ 13] δ L = $\frac{\text{Maximum luminance of 13 points}}{\text{Minimum luminance of 13 points}}$

 Doc.No.
 LTN154X3-L0D
 Rev.No
 04-A00-S-071004
 Page
 9 / 33

3. ELECTRICAL CHARACTERISTICS

Approval

3.1 TFT LCD MODULE

Ta= 25 ± 2 °C

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Voltage of Power	Supply	V _{DD}	3.0	3.3	3.6	V	
Differential Input	High	ViH	-	-	+100	mV	Vcm = +1.2V
Voltage for LVDS Receiver Threshold	Low	VIL	-100	1	ı	mV	
Vsync Frequency		fv	-	60	-	Hz	
Hsync Frequency		fн	-	48.96	-	KHz	
Main Frequer	псу	fock	-	71.26	-	MHz	
Rush Currer	nt	Irush	-	-	1.5	Α	(4)
	White		-	300	-	mA	(2),(3)*a
Current of Power Supply	Mosaic	ldd	-	310	-	mA	(2),(3)*b
3,55	V. stripe		-	380	500	mA	(2),(3)*c

Note (1) Display data pins and timing signal pins should be connected.(GND = 0V)

- (2) $f_V = 60 Hz$, $f_{DCLK} = 71.26 MHZ$, $V_{DD} = 3.3 V$, DC Current.
- (3) Power dissipation pattern

Display Darkest Gray Level

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	10 / 33
---------	--------------	--------	-----------------	------	---------

G

R G B R G

G B R G

R G B R G

*c) 1dot Vertical stripe pattern

4) Rush current measurement condition

VDD rising time is 470us

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	11 / 33
---------	--------------	--------	-----------------	------	---------

3.2 BACK-LIGHT UNIT

The backlight system is an edge-lighting type with a single CCFT (Cold Cathode Fluorescent Tube). The characteristics of a single lamp are shown in the following table.

Ta= 25 ± 2 °C

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Current	lι	3.0	6.5	7.0	mArms	(1)
Lamp Voltage	VL	-	655	-	Vrms	I∟= 6.5mA
Frequency	f∟	45	-	7	KHz	(2)
Power Consumption	P∟	-	4.6	5.0	W	(3) I∟= 6.5mA
Operating Life Time	Hr	15,000	-	-	Hour	(4)
Startup Voltage	Vs			1250	Vrms	25°C, (5)
Startup Voltage	VS	-	-	1500	Vrms	0°C, (5)

Note) The waveform of the inverter output voltage must be area symmetric and the design of the inverter must have specifications for the modularized lamp.

The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the backlight and the inverter(miss lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

Note (1) Lamp current is measured with a high frequency current meter as shown below.

- (2) Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.
- (3) Refer to I_L×V_L to calculate.
- (4) Life time (Hr) of a lamp can be defined as the time in which it continues to operate under the condition Ta= 25 ± 2 °C and IL = 6.0 mArms until one of the following event occurs.
 - 1. When the brightness becomes 50% or lower than the original.
 - 2. When the Effective ignition length becomes 80% or lower than the original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
 - 3. CCFL only
- (5) The inverter open voltage this voltage should be measured after ballast capacitor- have to be larger than the lamp startup voltage, otherwise backlight may has blinking for a moment after turns on or not be turned on.
 - If an inverter has shutdown function it should keep its open voltage for longer than 1 second even if lamp connector open.

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	12 / 33	
				_		1

3.3 Inverter

Inverter Manufacturer: Foxconn

Ta = 25 ± 2 °C

Item		Min.	Тур.	Max	Unit	Note
Input Volt	age (Vin)	7.5	14.4	21.0	V	
Open Circ	uit Voltage	1500	-	2000	Vrms	
Lamp ((Duty (10 @SMB_DAT FFH	-	100 @SMB_DAT 00H IL=6.5mArms	%	Vin=14.4V (3)
Efficiency	Optical	20	-	-	nit / W	After 30min turn on at the center of LCD
Efficiency	Electrical	-	80	-	%	Vin=14.4V @6.5mA
Operating	Frequency	45	55	65	kHz	SMB_DAT=00H
Input Power Consumption		-	-	6.5	W	Vin=14.4V lout = 6.5mArms
PWM Frequency		200	210	220	Hz	
Shutdov	wn time	0.6	1.0	1.4	sec	
Start-u	p time	-	-	0.1	sec	(1)

Note)

- (1) Inverter start-up time
- (2) Efficiency should be calculated as below formulation.

Optical efficiency = output Brightness(nits) / Input power(watt)

Electrical efficiency = output power / input power

(3) Below items are not guaranteed, if this product is used at 10nit setting.

1. Luminance deviation

. Luminance deviation 20% can not be guaranteed under 20% duty ratio.

2. Luminance reduction at low temperature

. Luminance can be reduced at lower temperature.

3. Partial turn-on of lamp / No turn-on / Non-uniformity

- . Visual characteristic problems can be happened due to abnormal turn-on of lamp.
- . Lamp can not be turn-on under 20% duty ratio.
- . Non-uniformity can be occurred due to mercury distribution under 20% duty ratio.

4. Lamp life time reduction

. Lamp life time can be shortened under the usage of low temperature or lower duty ratio for a long time.

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	13 / 33
---------	--------------	--------	-----------------	------	---------

4. BLOCK DIAGRAM

4.1 TFT LCD Module

4.2 BACKLIGHT UNIT

Note) The output of the inverter may change according to the material of the reflector.

4.3 Inverter UNIT

Input Connector : Honda, LVC-D20SFYG

Lamp Connector: JST, BHSR-02VS

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	15 / 33
---------	--------------	--------	-----------------	------	---------

5. INPUT TERMINAL PIN ASSIGNMENT

5.1. Input Signal & Power (LVDS, Connector : JAE FI-XB30SRL-HF11 or compatible)

Mating Connector : JAE FI-XB20Sx-HFxx or compatible)

No.	Symbol	Function	Polarity	Remarks
1	VSS	Ground		
2	VDD	POWER SUPPLY +3.3V		
3	VDD	POWER SUPPLY +3.3V		
4	VEEDID	DDC 3.3V Power		
5	BIST	Panel BIST enable		
6	CLKEDID	DDC Clock		
7	DATAEDID	DDC data		
8	RxIN0-	LVDS Differential Data INPUT (R0-R5,G0)	Negative	
9	RxIN0+	LVDS Differential Data INPUT (R0-R5,G0)	Positive	
10	GND	Ground		
11	RxIN1-	LVDS Differential Data INPUT (G1-G5,B0-B1)	Negative	
12	RxIN1+	LVDS Differential Data INPUT (G1-G5,B0-B1)	Positive	
13	GND	Ground		
14	RxIN2-	LVDS Differential Data INPUT (B2-B5,Sync,DE)	Negative	
15	RxIN2+	LVDS Differential Data INPUT (B2-B5,Sync,DE)	Positive	
16	Vss	Ground		
17	ClkIN-	LVDS Differential Clock INPUT	Negative	
18	ClkIN+	LVDS Differential Clock INPUT	Positive	
19	Vss	Ground		
20	NC	No connect		
21	NC	No connect		
22	NC	No connect		
23	NC	No connect		
24	NC	No connect		
25	NC	No connect		
26	NC	No connect		
27	NC	No connect		
28	NC	No connect		
29	NC	No connect		
30	NC	No connect		

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	16 / 33
---------	--------------	--------	-----------------	------	---------

5.2 LVDS Interface : Transmitter DS90CF363 or Compatible

LVDS

Pin No.	Name	RGB Signal	Pin No.	Name	RGB Signal
44	TxIN0	RO0	12	TxIN11	GO5
45	TxIN1	RO1	13	TxIN12	BO0
47	TxIN2	RO2	15	TxIN13	BO1
48	TxIN3	RO3	16	TxIN14	BO2
1	TxIN4	RO4	18	TxIN15	BO3
3	TxIN5	RO5	19	TxIN16	BO4
4	TxIN6	GO0	20	TxIN17	BO5
6	TxIN7	GO1	22	TxIN18	Hsync
7	TxIN8	GO2	23	TxIN19	Vsync
9	TxIN9	GO3	25	TxIN20	DE
10	TxIN10	GO4	26	TxCLK IN	Clock

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 17 / 33
--

LVDS Interface

Note: The LCD Module uses a 100ohm resistor between positive and negative lines of each receiver input.

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 18 / 33		Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	18 / 33	I
--	--	---------	--------------	--------	-----------------	------	---------	---

5.3 BACK LIGHT UNIT

Connector : JST BHSR - 02VS -1 Mating Connector : SM02B-BHSS-1(JST)

Pin NO.	Symbol	Color	Function
1	НОТ	Pink	High Voltage
2	COLD	White	Low Voltage

5.4 Timing Diagrams of LVDS For Transmission

LVDS Receiver: Integrated T-CON

San	nsu	na	Se	cret	t
				0. 0	•

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	19 / 33
---------	--------------	--------	-----------------	------	---------

5.5 Input Signals, Basic Display Colors and Gray Scale of Each Color

										Data	Sign	al								Gray
Color	Display			R	ed					Gre	een					BI	ue			Scale
		R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	B0	B1	B2	ВЗ	45	B5	Level
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	-
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	-
Basic	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-
Colors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	-
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	-
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	-
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
	Dark	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
Gray	↑	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
Scale	:		• •	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	R3~R60
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	N3~N00
Red	\downarrow	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R61
	Light	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R62
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R63
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
	Dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	G1
Gray	↑	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	G2
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	G3~G60
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	G3~G00
Green	↓	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0	G61
	Light	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	G62
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	G63
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	B0
	Dark	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	B1
Gray	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	B2
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	B3~B60
Of	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	D0~D00
Blue	↓	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	B61
	Light	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	B62
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	B63

Note 1) Definition of gray:

Rn: Red gray, Gn: Green gray, Bn: Blue gray (n=gray level) Note 2)Input signal: 0 =Low level voltage, 1=High level voltage

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 20 / 33

5.7 Inverter signals & power

- M08 inverter with ALS function

Inverter Connector: Honda, LVC-D20SFYG

Pin No.	Sumbal	Voltage	Comments
FIII NO.	Symbol	Voltage	Comments
1	INV_SRC	7.5V to 21V	This power rail should be used as a power rail to drive the back-light DC-AC converter.
2	INV_SRC	7.5V to 21V	This power rail should be used as a power rail to drive the back-light DC-AC converter.
3	INV_SRC	7.5V to 21V	This power rail should be used as a power rail to drive the back-light DC-AC converter.
4	INV_SRC	7.5V to 21V	This power rail should be used as a power rail to drive the back-light DC-AC converter.
5	GND	0V	Ground
6	NC	-	No Connection
7	5VALW	5V	This should be used as power source that stores the brightness/contrast values & the circuit that interfaces with SMB_CLK & SMB_DAT.
8	GND	0V	Ground
9	SMB_DAT	-	SMBUS interface for sending brightness & contrast information to the inverter/panel
10	SMB_CLK	-	SMBUS interface for sending brightness & contrast information to the inverter/panel
11	GND	0V	Ground
12	INV_PWM	-	System side PWM input signal for brightness control
13	GND	0V	Ground
14	NC	-	No Connection
15	DIAG_LOOP	-	Diag pin for Dell testing. Pin 15 & 20 must beconnected together on the inverter board
16	GND	0V	Ground
17	5VALW	5V	This should be used as power source that stores the brightness/contrast values & the circuit that interfaces with SMB_CLK & SMB_DAT.
18	5VALW	5V	This should be used as power source that stores the brightness/contrast values & the circuit that interfaces with SMB_CLK & SMB_DAT.
19	NC	-	No Connection
20	DIAG_LOOP	-	Diag pin for Dell testing. Pin 15 & 20 must be connected together on the inverter board

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page	22 / 33
---	---------

6. INTERFACE TIMING

6.1 Timing Parameters

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Frame Frequency	Cycle	TV	804	823	1000	Lines	
Vertical Active Display Term	Display Period	TVD	ı	800	-	Lines	
One Line Scanning Time	Cycle	TH	1350	1440	1550	Clocks	
Horizontal Active Display Term	Display Period	THD	-	1280	-	Clocks	

6.2 Timing diagrams of interface signal

Samsung S	ecret	
-----------	-------	--

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 23 / 3	Doc.No.
---	---------

6.3 Power ON/OFF Sequence

: To prevent a latch-up or DC operation of the LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

T1: Vdd rising time from 10% to 90%

T2: The time from Vdd to valid data at power ON.

T3: The time from valid data off to Vdd off at power Off.

T4: Vdd off time for Windows restart

T5: The time from valid data to B/L enable at power ON.

T6: The time from valid data off to B/L disable at power Off.

NOTE.

- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 24 /
--

7. Mechan	ical Outline Dimens	ion		Appro	oval
It will be a	ttached with PDF file				
Samsung S	Secret				
Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	25 / 33

8. PACKING

Approval

- 1. CARTON(Internal Package)
 - (1) Packing Form
 Corrugated Cardboard box and Corrupad form as shock absorber

(2) Packing Method

Note 1)Total Weight: Approximately 10 kg

2) Acceptance number of piling : 10 sets

3) Carton size : 376(W)×326(D)×404(H)

PACKING CASE

Samsung Secret

 Doc.No.
 LTN154X3-L0D
 Rev.No
 04-A00-S-071004
 Page
 26 / 33

No	Part name	Quantity
1	Static electric protective sack	10
2	Packing case (Inner box) included shock absorber	1 set
3	Pictorial marking	2 pcs
4	Carton	1 set

9. MARKINGS & OTHERS

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.

(1) Parts number : LTNXXXXX-XXX

Serial no. Interface
Generation
Resolution
Size

(2) Revision : Three letters

(3) Lot number : X Y 4 A XXX XX X

NOTE 1). This code indicating year is omitted in the products of KIHEUNG site.

(5) Nameplate Indication (Following example is only for reference)

Parts name : LTN154X3-L0D Lot number : 5Y4A000000

Inspected work week: 0701

DP/N : Dell Part Number ("**0XX047**" is for 154X3-L0D-G)

Samsung Secret REV.A00 : Product Revision Code

Doc.No. LTN154X3-L0D Re	Rev.No 04-A00-S-071004	Page 27 / 33
-------------------------	-------------------------------	--------------

This HIGH VOLTAGE CAUTION is carved in mold frame

HIGH VOLTAGE CAUTION

RISK OF ELECTRIC SHOCK DISCONNECT THE ELECTRIC POWER BEFORE SERVICE THIS COVER CONTAINS
FLUORESCENT LAMP.
PLEASE FOLLOW LOCAL
ORDINANCES OR
REGULATIONS FOR ITS DISPOSAL

10mm High voltage caution

70mm

(6) Packing box attach

0XXXXX : DELL P/N

(7) Packing box Marking: Samsung TFT-LCD Brand Name

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	28 / 33
---------	--------------	--------	-----------------	------	---------

10. GENERAL PRECAUTIONS

Approval

1. Handling

- (a) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist and bend the modules.
- (b) Refrain from strong mechanical shock and / or any force to the module. In addition to damage, this may cause improper operation or damage to the module and CCFT back-light.
- (c) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than a HB pencil lead.
- (d) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (e) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (f) The desirable cleaners are water, IPA (Isoprophyl Alcohol) or Hexane.

 Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (g) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (h) Protect the module from static, it may cause damage to the C-MOS Gate Array IC.
- (i) Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (j) Do not disassemble the module.
- (k) Do not pull or fold the lamp wire.
- (I) Do not adjust the variable resistor which is located on the back side.
- (m) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (n) Pins of I/F connector shall not be touched directly with bare hands.

Samsun	g Secret
--------	----------

Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	29 / 33
---------	--------------	--------	-----------------	------	---------

2. STORAGE

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 °C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD module in direct sunlight.
- (c) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.

3. OPERATION

- (a) Do not connect, disconnect the module in the "Power On" condition.
- (b) Power supply should always be turned on/off by following item 6.3 "Power on/off sequence ".
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (d) The cable between the back-light connector and its inverter power supply shall be a minimized length and be connected directly. The longer cable between the back-light and the inverter may cause lower luminance of lamp(CCFT) and may require higher startup voltage (Vs).
- (e) The standard limited warranty is only applicable when the module is used for general notebook applications. If used for purposes other than as specified, SEC is not to be held reliable for the defective operations. It is strongly recommended to contact SEC to find out fitness for a particular purpose.

4. OTHERS

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (c) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, variation in part contents and environmental temperature, so on)

 Otherwise the module may be damaged.
- (d) If the module displays the same pattern continuously for a long period of time, it can be the situation when the image "sticks" to the screen.
- (e) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 30	Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	30 / 33	
---	---------	--------------	--------	-----------------	------	---------	--

	Byte	Field Name and Comments	Value	Value
	(hex)	Fleid Name and Comments	(hex)	(binary)
	0	Header	00	00000000
	1	Header	FF	11111111
<u>~</u>	2	Header	FF	11111111
Header	3	Header	FF	11111111
<u>6</u>	4	Header	FF	11111111
	5	Header	FF	11111111
	6	Header	FF	11111111
	7	Header	00	00000000
	8	EISA manufacture code = 3 Character ID	4C	01001100
	9	EISA manufacture code (Compressed ASCII)	A3	10100011
ct	0A	Panel Supplier Reserved – Product Code	58	01011000
du	0B	Panel Supplier Reserved – Product Code	33	00110011
70 TŠ	0C	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
/Produc Version	0D	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
) V	0E	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
endor. EDID	0F	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
μĢ	10	Week of manufacture	00	00000000
>	11	Year of manufacture	11	00010001
	12	EDID structure version # = 1	01	00000001
	13	EDID revision # = 3	03	00000011
rs	14	Video I/P definition = Digital I/P (80h)	80	10000000
Display Parameters	15	Max H image size = (Rounded to cm)	21	00100001
nisp am	16	Max V image size = (Rounded to cm)	15	00010101
□ ×	17	Display gamma = (gamma ×100)-100 = Example: (2.2×100) - 100 = 120	78	01111000
ш.	18	Feature support (no DPMS, Active off, RGB, timing BLK 1)	0A	00001010
	19	Red/Green Low bit (RxRy/GxGy)	87	10000111
	1A	Blue/White Low bit (BxBy/WxWy)	F5	11110101
lor es	1B	Red X Rx = 0.xxx	94	10010100
olc ate	1C	Red Y Ry = 0.xxx	57	01010111
D,	1D	Green X Gx = 0.xxx	4F	01001111
Panel Cold	1E	Green Y Gy = 0.xxx	8C	10001100
ar oc	1F	Blue X Bx = 0.xxx	27	00100111
πО	20	Blue Y By = 0.xxx	27	00100111
	21	White X Wx = 0.xxx	50	01010000
	22	White Y Wy = 0.xxx	54	01010100
stablished Timings	23	Established timings 1 (00h if not used)	00	00000000
stablishe Timings	24	Established timings 2 (00h if not used)	00	00000000
ESI	25	Manufacturer's timings (00h if not used)	00	00000000

Doc.No. LTN154X3-L0D Rev.No 04-A00-S-071004 Page 31 / 33	Doc.No.	LTN154X3-L0D	Rev.No	04-A00-S-071004	Page	31 / 33
--	---------	--------------	--------	-----------------	------	---------

				Approval
	26	Standard timing ID1 (01h if not used)	01	00000001
	27	Standard timing ID1 (01h if not used)	01	00000001
Standard Timing ID	28	Standard timing ID2 (01h if not used)	01	0000001
	29	Standard timing ID2 (01h if not used)	01	00000001
	2A	Standard timing ID3 (01h if not used)	01	00000001
	2B	Standard timing ID3 (01h if not used)	01	00000001
Ē	2C	Standard timing ID4 (01h if not used)	01	00000001
Ë	2D	Standard timing ID4 (01h if not used)		00000001
₽	2E	Standard timing ID5 (01h if not used)	01	00000001
g	2F	Standard timing ID5 (01h if not used)	01	00000001
a⊒	30	Standard timing ID6 (01h if not used)	01	00000001
ίĬ	31	Standard timing ID6 (01h if not used)	01	00000001
	32	Standard timing ID7 (01h if not used)	01	00000001
	33	Standard timing ID7 (01h if not used)	01	00000001
	34	Standard timing ID8 (01h if not used)	01	00000001
	35	Standard timing ID8 (01h if not used)	01	00000001
	36	Pixel Clock/10,000 (LSB)	D6	11010110
	37	Pixel Clock/10,000 (MSB)	1B	00011011
	38	Horizontal Active = xxx pixels (lower 8 bits)	00	00000000
	39	Horizontal Blanking (Thbp) = xxxx pixels (lower 8 bits)	90	10010000
	3A	Horizontal Active/Horizontal blanking (Thbp) (upper4:4 bits)	50	01010000
# [3B	Vertical Active = xxxx lines	20	00100000
<u>.</u>	3C	Vertical Blanking (Tvbp) = xxxx lines (DE Blanking typ. for DE only panels)	22	00100010
<u>ā</u> [3D	Vertical Active : Vertical Blanking (Tvbp) (upper4:4 bits)	30	00110000
Timing Descripter#1	3E	Horizontal Sync, Offset (Thfp) = xxxx pixels	10	00010000
ē [3F	Horizontal Sync, Pulse Width = xxxx pixels	30	00110000
<u> </u>	40	Vertical Sync, Offset (Tvfp) = xx lines Sync Width = xx lines	13	00010011
_ <u>`</u>	41	Horizontal Vertical Sync Offset/Width upper 2 bits	00	00000000
<u> </u>	42	Horizontal Image Size =xxx mm	4B	01001011
F	43	Vertical image Size = xxx mm	CF	11001111
	44	Horizontal Image Size / Vertical image size	10	00010000
	45	Horizontal Border = 0 (Zero for Notebook LCD)	00	00000000
	46	Vertical Border = 0 (Zero for Notebook LCD)	00	00000000
		Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives, DE only		
	47	note: LSB is set to "1" if panel is DE-timing only. H/V can be ignored.	19	00011001
	48	_	00	00000000
	49	H	00	00000000
	4A	Manufacturer Specified (Timing)	00	00000000
	4B	4	OF OF	00001111
1 2	4C	Notice HODINA - 40	00	00000000
₩ ₩	4D	Value=HSPWnin / 2	00	00000000
ote	4E	Value=HSPWmax / 2	00	00000000
Ġ.	4F	Value=Thbpmin /2	00	00000000
6S	50	Value=Thbpmax /2	00	00000000
Timing Descripter #2	51	Value=VSPWmin /2	00	00000000
ng	52	Value=VSPWmax /2	00	00000000
Ē	53	Value=Tvbpmin / 2	00	00000000
Ē	54	Value=Tvbpmax / 2	00	00000000
	55	Thpmin=value*2 + Hapixelclks	23	00100011
	56	Thpmax=value*2 + Hapixelclks	87	10000111
	57	Typmin= value *2 + Valines	02	00000010
	58	Tvpmax=value*2 + Valines	64	01100100

 Doc.No.
 LTN154X3-L0D
 Rev.No
 04-A00-S-071004
 Page
 32 / 33

Page

33 / 33

	5A	Flag	00	00000000
Timing Descripter #3	5B	Flag	00	00000000
	5C	Flag	00	00000000
	5D	Dummy Descriptor	FE	11111110
	5E	Flag	00	00000000
	5F	Dell P/N 1st Character	58	01011000
	60	Dell P/N 2 nd Character	58	01011000
	61	Dell P/N 3 rd Character	30	00110000
	62	Dell P/N 4 th Character	34	00110100
	63	Dell P/N 5 th Character	37	00110111
g D eci	64	LCD Supplier EEDID Revision#	00	00000000
Sp. F	65	Manufacturer P/N	31	00110001
Ti.	66	Manufacturer P/N	35	00110101
	67	Manufacturer P/N	34	00110100
	68	Manufacturer P/N	58	01011000
	69	Manufacturer P/N	33	00110011
	6A	Manufacturer P/N	0A	00001010
	011	Manufacturer P/N (If <13 char, then terminate with ASCII code 0Ah, set	0/1	00001010
	6B	remaining char = 20h)	20	00100000
	6C	Flag	00	00000000
	6D	Flag	00	00000000
	6E	Flag	00	00000000
	6F	Data Type Tag:	FE	11111110
	70	Flag	00	00000000
#	71	SMBUS Value = XX nits	26	00100110
ē	72	SMBUS Value = XX nits	36	00110110
Descripter #4	73	SMBUS Value = XX nits	40	01000000
980	74	SMBUS Value = XX nits	47	01000111
Ğ	75	SMBUS Value = XX nits	6A	01101010
Timing	76	SMBUS Value = XXX nits	8F	10001111
틛	77	SMBUS Value = XXX nits	C6	11000110
	78	SMBUS Value = max nits (Typically = 00h, XXX nits)	FF	11111111
	79	Number of LVDS receiver chips = '01' or '02'	01	00000001
	7A	BIST Enable: Yes = '01' No = '00'	01	0000001
	7B	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	0A	00001010
	7C	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
_	7D	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
Checksum	7E	Extension flag (# of optional 128 EDID extension blocks to follow, Typ = 0)	00	00000000
Chec	7F	Checksum (The 1-byte sum of all 128 bytes in this EDID block shall = 0)	80	10000000

Samsung Secret

LTN154X3-L0D

Rev.No

04-A00-S-071004

Doc.No.