

Departamento de Matemática y Física

Curso: Matemática III Código: 0826301

Transformaciones Lineales

Arelis Díaz

Celular: 04269129844 Email: jdiaz@unet.edu.ve

Transformación lineal

Sean V y W espacios vectoriales reales. Una transformación lineal T de V en W es una función que asigna a cada vector $\mathbf{v} \in V$ un vector único $T\mathbf{v} \in W$ y que satisface, para cada \mathbf{u} y \mathbf{v} en V y cada escalar α ,

$$T(\mathbf{u} + \mathbf{v}) = T\mathbf{u} + T\mathbf{v}$$

 \mathbf{y}
 $T(\alpha \mathbf{v}) = \alpha T\mathbf{v}$

Se escriben indistintamente Tv y T(v). Denotan lo mismo; las dos se leen "T de v". Esto es análogo a la notación funcional f(x), que se lee "f de x".

Las transformaciones lineales con frecuencia se denominan operadores lineales.

Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-y \\ 3y \end{pmatrix}$. Por ejemplo, $T \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \\ -9 \end{pmatrix}$. Entonces

$$T\begin{bmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \end{bmatrix} = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + y_1 + y_2 \\ x_1 + x_2 - y_1 - y_2 \\ 3y_1 + 3y_2 \end{pmatrix}$$
$$= \begin{pmatrix} x_1 + y_1 \\ x_1 - y_1 \\ 3y_1 \end{pmatrix} + \begin{pmatrix} x_2 + y_2 \\ x_2 - y_2 \\ 3y_2 \end{pmatrix}$$

Pero

$$\begin{pmatrix} x_1 + y_1 \\ x_1 - y_1 \\ 3y_1 \end{pmatrix} = T \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} y \begin{pmatrix} x_2 + y_2 \\ x_2 - y_2 \\ 3y_2 \end{pmatrix} = T \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

Así,

$$T\begin{bmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \end{bmatrix} = T\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + T\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

De manera similar,

$$T\left[\alpha \begin{pmatrix} x \\ y \end{pmatrix}\right] = T\begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix} = \begin{pmatrix} \alpha x + \alpha y \\ \alpha x - \alpha y \\ 3\alpha y \end{pmatrix} = \alpha \begin{pmatrix} x + y \\ x - y \\ 3y \end{pmatrix} = \alpha T\begin{pmatrix} x \\ y \end{pmatrix}$$

Así, T es una transformación lineal.

Por ejemplo la función $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por $T \binom{x}{y} = \binom{x+y}{x-1}$ no es una transformación lineal porque:

•
$$T\left(\binom{x_1}{y_1} + \binom{x_2}{y_2}\right) = T\left(\frac{x_1 + x_2}{y_1 + y_2}\right) = \binom{x_1 + x_2 + y_1 + y_2}{y_1 + y_2}$$

• $T\left(\frac{x_1}{y_1}\right) + T\left(\frac{x_2}{y_2}\right) = \binom{x_1 + y_1}{y_1} + \binom{x_2 + y_2}{y_2} = \binom{x_1 + x_2 + y_1 + y_2}{y_1 + y_2} \neq T\left(\binom{x_1}{y_1}\right) + \binom{x_2}{y_2}$
• $T\left(\alpha\binom{x}{y}\right) = T\left(\frac{\alpha x}{\alpha y}\right) = \binom{\alpha x + \alpha y}{\alpha x - 1} \neq \alpha T\left(\frac{x}{y}\right) = \alpha \binom{x + y}{y} = \alpha \binom{\alpha x + \alpha y}{\alpha x - \alpha}$

EJEMPLO La transformación cero

Sean V y W espacios vectoriales y defina T: V o W por Tv = 0 para todo v en V. Entonces $T(v_1 + v_2) = 0 = 0 + 0 = Tv_1 + Tv_2$ y $T(\alpha v) = 0 = \alpha 0 = \alpha Tv$. En este caso, T se denomina la transformación cero.

EJEMPLO La transformación identidad

Sea V un espacio vectorial y defina $I: V \to V$ por Iv = v para todo v en V. Aquí es obvio que I es una transformación lineal, la cual se denomina transformación identidad u operador identidad.

EJEMPLO Transformación de reflexión

Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$. Es fácil verificar que T es lineal. En términos geomé-

tricos, T toma un vector en \mathbb{R}^2 y lo refleja respecto al eje y

El vector (-x, y) es la reflexión respecto al eje y del vector (x, y).

Ejercicios Propuestos:

Determine si la transformación de V en W dada es lineal.

1.
$$T: \mathbb{R}^2 \to \mathbb{R}^2; T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ y \end{pmatrix}$$

5.
$$T: P_2 \to P_4; T(p(x)) = p(x) + x^2 p(x)$$

6. $T: C[0, 1] \to C[0, 1]; Tf(x) = f^2(x)$
7. $T: C[0, 1] \to C[0, 1]; Tf(x) = f(x) + x^2 p(x)$

3.
$$T: \mathbb{R}^3 \to \mathbb{R}^2; \ T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y+z \end{pmatrix}$$

4.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 \\ y^2 \end{pmatrix}$

5.
$$T: P_2 \to P_4; T(p(x)) = p(x) + x^2 p(x)$$

6.
$$T: C[0, 1] \to C[0, 1]; Tf(x) = f^2(x)$$

7.
$$T: C[0, 1] \to C[0, 1]; Tf(x) = f(x) + 1$$

3.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y+z \end{pmatrix}$ 8. $T: M_{mn} \to M_{qn}$; $T(A) = BA$, donde B es una matriz fija de $q \times m$

9.
$$T: D_n \to D_n$$
; $T(D) = D^2(D_n \text{ es el conjunto de matrices diagonales de } n \times n)$

10.
$$T: C[0, 1] \to \mathbb{R}; Tf = \int_0^1 f(x)g(x) dx$$
, donde g es una función fija en $C[0, 1]$

Propiedades de las transformaciones lineales: imagen y núcleo

Teorema

Sea $T: V \to W$ una transformación lineal. Entonces para todos los vectores $\mathbf{u}, \mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ en V y todos los escalares $\alpha_1, \alpha_2, \dots, \alpha_n$:

- i) T(0) = 0
- ii) $T(\mathbf{u} \mathbf{v}) = T\mathbf{u} T\mathbf{v}$

iii)
$$T(\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 + \cdots + \alpha_n\mathbf{v}_n) = \alpha_1T\mathbf{v}_1 + \alpha_2T\mathbf{v}_2 + \cdots + \alpha_nT\mathbf{v}_n$$

Nota. En el inciso i), el 0 de la izquierda es el vector cero en V, mientras que el 0 de la derecha es el vector cero en W.

Teorema

Sea V un espacio vectorial de dimensión finita con base $B = \{v_1, v_2, \dots, v_n\}$. Sea W un espacio vectorial que contiene los vectores $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$. Entonces existe una transformación lineal única $T: V \to W$ tal que $T\mathbf{v}_i = \mathbf{w}_i$ para $i = 1, 2, \dots, n$.

Sea T una transformación lineal de \mathbb{R}^3 en \mathbb{R}^2 y suponga que $T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$ y Sea T una transformation intended $T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}. \text{ Calcule } T \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}.$ Se tiene $\begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 4 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$

$$T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
. Calcule $T \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}$.

Se tiene
$$\begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 4 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Entonces

$$T \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix} = 3T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 4T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 5T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ 3 \end{pmatrix} - 4 \begin{pmatrix} -1 \\ 4 \end{pmatrix} + 5 \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 6 \\ 9 \end{pmatrix} + \begin{pmatrix} 4 \\ -16 \end{pmatrix} + \begin{pmatrix} 25 \\ -15 \end{pmatrix} = \begin{pmatrix} 35 \\ -22 \end{pmatrix}$$

En general;

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = xT \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + yT \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + zT \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = x \begin{pmatrix} 2 \\ 3 \end{pmatrix} + y \begin{pmatrix} -1 \\ 4 \end{pmatrix} + z \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 2x - y + 5z \\ 3x + 4y - 3z \end{pmatrix}$$

Núcleo e imagen de una transformación líneal

Sean V y W dos espacios vectoriales y sea $T: V \rightarrow W$ una transformación lineal. Entonces

i) El núcleo de T, denotado por nu T, está dado por

nu
$$T = \{\mathbf{v} \in V : T\mathbf{v} = \mathbf{0}\}$$

ii) La imagen de T, denotado por im T, está dado por

im
$$T = \{ w \in W : w = Tv \text{ para alguna } v \in V \}$$

Observación 1. Observe que nu T es no vacio porque, T(0) = 0, de manera que $0 \in \text{nu } T$ para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que "se transformen en 0". De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en V y el de la derecha en W.

Observación 2. La imagen de T es simplemente el conjunto de "imágenes" de los vectores en V bajo la transformación T. De hecho, si $\mathbf{w} = T\mathbf{v}$, se dice que \mathbf{w} es la Imagen de \mathbf{v} bajo T.

EJEMPLO Núcleo e imagen de la transformación cero

Sea $T\mathbf{v} = \mathbf{0}$ para todo $\mathbf{v} \in V(T \text{ es la transformación cero})$. Entonces nu $T = V \text{ e im } T = \{\mathbf{0}\}$.

EJEMPLO Núcleo e imagen de la transformación identidad

Sea Tv = v para todo $v \in V(T \text{ es la transformación identidad})$. Entonces nu $T = \{0\}$ e im T = V.

Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$.

Si
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = 0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, entonces $x = y = 0$. Así, nu $T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = y = 0, z \in \mathbb{R} \right\}$

im
$$T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : z = 0 \right\}$$
. Observe que dim nu $T = 1$ y dim im $T = 2$.

Nulidad y rango de una transformación lineal

Si T es una transformación lineal de V en W, entonces se define

Nulidad de T = v(T) dim nu T

Rango de $T = \rho(T) = \dim \operatorname{im} T$

Teorema

Sean V y W espacios vectoriales de dimensión finita con dim V = n. Sea $T: V \to W$ una transformación Entonces $\nu(A) + \rho(T) = n$

<u>Definición</u>: Decimos que una transformación lineal $T: V \to W$ es

- Monomorfismo $\Leftrightarrow T$ es inyectiva $(Nu(T) = \{\vec{0}\})$
- Epimorfismo $\Leftrightarrow T$ es sobreyectiva (im(T) = W)
- Isomorfismo $\Leftrightarrow T$ es biyectiva, es decir, inyectiva y sobreyectiva
- Endomorfismo $\Leftrightarrow V = W$
- Automorfismo $\Leftrightarrow T$ es biyectiva y V = W

Ejemplo: Encuentre núcleo, imagen, nulidad y rango de la transformación dada. Clasifíquela.

$$T: \mathbb{R}^4 \to \mathbb{R}^2 \; ; \; T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+z \\ y+w \end{pmatrix}$$

Solución:

Tenemos que
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in nu \ T \text{ si y sólo si } T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+z \\ y+w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

De lo anterior tenemos que x + z = 0 y y + w = 0, así z = -x y w = -y.

$$nu \ T = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 : z = -x \ \land w = -y \right\}$$

$$\text{Por lo tanto} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in nu \ T \ \text{si y s\'olo s\'i} \quad \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x \\ y \\ -x \\ -y \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ -x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ 0 \\ -y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$

Vemos que una base para $nu\ T$ es el conjunto $\left\{\begin{pmatrix} 1\\0\\-1\\0\end{pmatrix},\begin{pmatrix} 0\\1\\0\\-1\end{pmatrix}\right\}$ La nulidad de T es v(T)=2.

Para la imagen de
$$T$$
 consideramos $\binom{a}{b} \in im \ T$ si y sólo si existe $\binom{x}{y}_{Z} \in \mathbb{R}^4$ tal que
$$T \binom{x}{y}_{Z} = \binom{x+z}{y+w} = \binom{a}{b}$$

Entonces para que $\binom{a}{b} \in im \ T$ el siguiente sistema debe ser compatible.

$$x + z = a$$

$$y + w = b$$

La matriz aumentada del sistema es $\begin{pmatrix} 1 & 0 & 0 & 1 & a \\ 0 & 1 & 1 & 0 & b \end{pmatrix}$ que ya está en la forma escalonada reducida por renglones y vemos que el sistema es compatible indeterminado porque los rangos de la matriz aumentada y de coeficientes son iguales pero diferentes al número de incógnitas.

Entonces para todo $\binom{a}{b} \in \mathbb{R}^2$ se puede ver que $\binom{a}{b} \in \operatorname{im} T$ Luego $\operatorname{im} T = \mathbb{R}^2$ Asi el rango de T es $\rho(T) = 2$. Verificamos que: $\nu(T) + \rho(T) = 2 + 2 = 4 = \operatorname{Dim} \mathbb{R}^4$

Como $\operatorname{Nu}(T) \neq \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ entonces T no es inyectiva y como $\operatorname{im}(T) = \mathbb{R}^2$ la función es sobreyectiva y por lo tanto es un epimorfismo.

Ejercicios propuestos: Encuentre núcleo, imagen, nulidad y rango de la transformación dada. Clasifíquela.

1.
$$T: \mathbb{R}^2 \to \mathbb{R}; \ T \begin{pmatrix} x \\ y \end{pmatrix} = x + y$$

2.
$$T: \mathbb{R}^2 \to \mathbb{R}^2; T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4y \\ y \end{pmatrix}$$

3.
$$T: \mathbb{R}^4 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+z \\ y+w \end{pmatrix}$

4. T:
$$M_{22} \to M_{22}$$
; $T(A) = BA$, donde $B = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$

5.
$$T: \mathbb{R} \to P_3; T(a) = a + ax + ax^2 + ax^3$$

5.
$$T: \mathbb{R} \to P_3; T(a) = a + ax + ax^2 + ax^3$$

6. $T: \mathbb{R}^2 \to P_3; T\binom{a}{b} = a + bx + (a+b)x^2 + (a-b)x^3$