

Information on characteristic diagram calculation FSE motor typ A2370DD

There are 3 different diagrams available. Because the magnet properties and losses of the motor change depending on the motor temperature.

Base: 80° motor temperature

Excel-File: A2370DD_T80C.xlsx Matlab-File: A2370DD_T80C.mat

Base: 100° motor temperature Excel-File: A2370DD_T100C.xlsx Matlab-File: A2370DD_T100C.mat

Base: 120° motor temperature Excel-File: A2370DD_T120C.xlsx Matlab-File: A2370DD_T120C.mat

Base values for calculation:

- The diagram is based on a DC bus voltage of 600 VDC.
- The diagram is calculated from 0 rpm to 20.000 rpm in 100 rpm steps (see worksheet <Speed>).
- For each speed, the motor current is varied from 0 A to 105 A in 20 steps (each 5.25 A).
 The variation of the motor current, suitable for the speeds, can be seen in the worksheet <Stator_Current_Line_RMS>.

In all other worksheets you can see the result of the calculation with the respective motor current and speed.

The following applies to these worksheets:

- Columns A U correspond to the current variation from 0 A 105 A in 5.25 A steps.
- Lines 1 201 correspond to the speed variation from 0 rpm 20.000 rpm in 100 rpm steps.

Example:

What torque is set at 900 rpm and 47.25 A?

The value in J10 (12.045 Nm) in the worksheet <Shaft_Torque> is the torque that occurs at 900 rpm (worksheet <Speed> line 10) and 47.25A (worksheet <Stator_Current_Line_RMS> column J).

Variable DC bus voltage

The diagram is based on a DC bus voltage of 600 VDC.

If a lower DC bus voltage is available, not all calculated operating points can be approached. Which working points can still be reached, can be seen in the worksheets with the voltage that is set depending on the current and the speed.

Example:

With a DC bus voltage of 500 VDC (500 VDC / v2), a maximum of 354 VAC motor voltage is available. Accordingly, the maximum torque generating motor current up to 13,000 rpm is available (example a). At a maximum speed of 20,000 rpm, the torque generating motor current is reduced to 10.5 A (example b).

Example a:

<Voltage_Phase_RMS> (line 137) 13.000 rpm at (column U) 105 A.

	U1	37 ▼	: × ,	f_x			
							105 A
	4	Α	В	C	_ S	Т	U
	133	226,477811	229,683721	234,243	28,689755	336,736046	344,997004
	134	228,193552	231,418502	236,007	31,125208	339,231538	347,554322
	135	229,909293	233,153286	237,777	33,560712	341,727081	350,111692
	136	231,625034	234,888075	239,536	35,996267	344,222676	352,669115
13.000 rpm	137	233,340775	236,622868	241,301	38,431872	346,718322	355,226589
	138	235,056516	238,357665	243,065	40,867527	349,214019	357,784115

Example b:

<Voltage_Phase_RMS> (line 201) 20.000 rpm but only (column C) 10.5 A.

	C201 *		: ×	f_X 35
				10.5 A
	4	Α	В	С
	181	308,833379	312,95776	318,943071
	182	310,54912	314,692735	320,707876
	183	312,264861	316,427714	322,472691
	184	313,980602	318,162697	324,237516
	185	315,696343	319,897684	326,00235
	186	317,412084	321,632675	327,767194
	187	319,127825	323,367671	329,532047
	188	320,843566	325,10267	331,29691
	189	322,559307	326,837673	333,061782
	190	324,275048	328,572681	334,826664
	191	325,990789	330,307692	336,591556
	192	327,70653	332,042708	338,356457
	193	329,422271	333,777727	340,121368
	194	331,138012	335,512751	341,886288
	195	332,853753	337,247779	343,651218
	196	334,569494	338,98281	345,416157
	197	336,285235	340,717846	347,181106
	198	338,000976	342,452886	348,946064
	199	339,716717	344,18793	350,711032
	200	341,432458	345,922978	352,47601
20.000 rpm	201	343,148199	347,65803	354,240997
	202			

Available values

Worksheet	Description	Unit
<speed></speed>	Speed	rpm
<shaft_torque></shaft_torque>	Torque on the shaft	Nm
<stator_current_phase_peak></stator_current_phase_peak>	Amplitude phase current	Ampere
<stator_current_phase_rms></stator_current_phase_rms>	RMS value phase current	Ampere
<stator_current_line_peak></stator_current_line_peak>	Amplitude line current	Ampere
<stator_current_line_rms></stator_current_line_rms>	RMS value line current	Ampere
<voltage_phase_peak></voltage_phase_peak>	= Voltage_Line_Peak	Volt
<voltage_phase_rms></voltage_phase_rms>	= Voltage_Line_RMS	Volt

<voltage_line_peak></voltage_line_peak>	= Voltage_Line_RMS	Volt
<voltage_line_rms></voltage_line_rms>	= Voltage_Line_Peak	Volt
<id_peak></id_peak>	Amplitude field weakening	Ampere
	current	
<id_rms></id_rms>	RMS field weakening current	Ampere
<iq_peak></iq_peak>	Amplitude of torque generating	Ampere
	current	
<lq_rms></lq_rms>	RMS value torque generating	Ampere
	current	
<vd_peak></vd_peak>	Amplitude field weakening	Volt
	voltage	
<vd_rms></vd_rms>	RMS field weakening voltage	Volt
<vq_peak></vq_peak>	Amplitude of torque generating	Volt
	voltage	
<vq_rms></vq_rms>	RMS torque generating voltage	Volt
<frequency></frequency>	Frequency	Hz
<total_loss></total_loss>	Sum of:	Watt
	Stator_Copper_Loss	
	Iron_Loss	
	Magnet_Loss	
	Mechanical_Loss	
<stator_copper_loss></stator_copper_loss>	Copper losses in the stator	Watt
<lron_loss></lron_loss>	Iron losses	Watt
<magnet_loss></magnet_loss>	Magnetic losses	Watt
<mechanical_loss></mechanical_loss>	Mechanical losses	Watt
<power_factor></power_factor>	Power factor	
<electromagnetic_torque></electromagnetic_torque>	Electromagnetic torque is the	Nm
	internal torque of the motor,	
	which results from the	
	simulation. From this the iron	
	losses, magnet losses and	
	mechanical losses are	
	subtracted in order to obtain	
	the mechanical torque on the	
	shaft.	

Term	Description
Line voltage / Phase voltage	In the case of a delta connection, the line
	voltage and the phase voltage are the
	voltages measured between any two
	conductors.
Line current	The line current, is the current flowing
	through any line between the inverter and
	the motor connection.
Phase current	The phase current, is the current that flows
	through the motor winding.
RMS	RMS value
	Root Mean Square
	The effective value for sine waves is:
	RMS value = amplitude / √2
Peak	Peak value or amplitude
	(not peak / peak)