ΜΕΜ-205 Περιγραφική Στατιστική

Τμήμα Μαθηματικών και Εφ. Μαθηματικών, Πανεπιστήμιο Κρήτης

Κώστας Σμαραγδάκης (kesmarag@pm.me)

20-02-2023

Κανονική Κατανομή (Normal Distribution)

$$P(x) = \frac{1}{\sqrt{2\pi}} \sigma e^{-x} e^{-x}$$

Εάν x μια παρατήρηση της X η οποία ακολουθεί την κανονικής κατανομής $\mathcal{N}(\mu,\sigma^2)$, η τυποποιημένη τιμή του x ορίζεται ως:

$$Z = \frac{X - \mu}{\sigma}$$

Η τυποποιημένη τιμή συχνά καλείται ως z-score της παρατήρησης.

Το z-score εκφράζει τον αριθμό των τυπικών αποκλίσεων που χωρίζουν την αρχική παρατήρηση x από τη μέση τιμή μ.

2/14

▶ Την κανονική κατανομή $\mathcal{N}(0,1)$ με μέση τιμή μηδέν και τυπική απόκλιση μονάδα την καλούμε τυπική κανονική κατανομή.

Τυποποίηση Κανονικής Κατανομής

$$\mathcal{N}(\mu, \sigma^2) \to \mathcal{N}(0, 1)$$

Θεωρούμε τον γραμμικό μετασχηματισμό:

$$Z = \frac{X - \mu}{\sigma}$$

Προκύπτει η νέα τυποποιημένη συνάρτηση πυκνότητας πιθανότητας

$$p(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

Standard Normal Probabilities

Άσκηση

Μια εταιρία παράγει ένα νέο αναψυκτικό. Το μηχάνημα που γεμίζει τα μπουκάλια έχει ρυθμιστεί να παρέχει $330~\mathrm{ml}$ αναψυκτικού ανά μπουκάλι. Ωστόσο έχει παρατηρήθει ότι η πραγματική ποσότητα δεν είναι σταθερή αλλά περιγράφεται από την κανονική κατανομή με μέση τιμή $330~\mathrm{ml}$ και τυπική απόκλιση $2~\mathrm{ml}$. Τι ποσοστό μπουκαλιών περιέχει από $331~\mathrm{eúg}$ $332~\mathrm{ml}$ αναψυκτικού.

$$P[331 \le X \le 332] = j \bullet$$

$$P[X \le 332] - P[X \le 331]$$

$$= P[X \le 332] - P[X \le 331]$$

$$= P[Z \le 1] - P[Z \le \frac{1}{2}]$$

$$= 2_2 = \frac{x_1 - h}{\sigma} = 1$$

$$= 0.8413 - 0.6915$$

Καμπύλη Lorenz - Διατεταγμένα Δεδομένα

Έστω
$$x_1 \leq x_2 \leq \cdots \leq x_N$$
 παρατηρήσεις μιας μεταβλητής X .

$$X_1 = 1000$$
 $X_2 = 2000$
 $A_1 = \frac{1000}{6000} = \frac{1}{6}$
 $A_2 = \frac{\sum_{j=1}^{n} x_j}{\sum_{j=1}^{N} x_j} \le 1$

X2 = 3000

$$\Phi_{\mathrm{n}} = rac{\sum_{\mathrm{j=1}}^{\mathrm{n}} \mathrm{x}_{\mathrm{j}}}{\sum_{\mathrm{j=1}}^{\mathrm{N}} \mathrm{x}_{\mathrm{j}}}$$
 \$

$$A_{1} = A_{2} = A_{3}$$
 $A_{1} = A_{2} + A_{3}$

$$RF_n = n/N$$

αμπύλη που ορίζεται από τα σημεία
$$\ref{3.4}$$
 $\{(0,0),(\mathrm{RF}_1,\Phi_1),(\mathrm{RF}_2,\Phi_2),\ldots,(\mathrm{RF}_N=1,\Phi_N=1)\}$

Καμπύλη Lorenz - Ομαδοποιημένα Δεδομένα

$$\phi_{\mathbf{j}} = \frac{m_{\mathbf{j}}f_{\mathbf{j}}}{\sum_{\mathbf{k}=1}^{K}m_{\mathbf{k}}f_{\mathbf{k}}}, \quad \Phi_{i} = \sum_{j=1}^{I}\phi_{j}$$

Θεωρούμε την καμπύλη που ορίζεται από τα σημεία

$$\{(0,0),(RF_1,\Phi_1),(RF_2,\Phi_2),\dots,(RF_K=1,\Phi_K=1)\}$$

- Αποτελεί μέτρο ανισοκατανομής, δηλαδή ελέγχει κατά πόσο ανισοκατανέμεται η συνολική τιμή μιας μεταβλητής.
- ► Βρίσκει εφαρμογή σε οικονομικές μελέτες, για παράδειγμα μελέτη για την ανισοκατανομή των μισθών των εργαζομένων μιας επιχείρησης.

Παράδειγμα

Έστω οι ετησιοι μισθοί των 5 εργαζομένων μιας εταιρείας.

$$x_1 = 5000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$$

Σχεδιάστε τη καμπύλη Lorenz και υπολογίστε τον συντελεστή του Gini.

 $x_1 = 5000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$
 $x_1 = 50000, x_2 = 10000, x_3 = 15000, x_4 = 20000, x_5 = 50000$

П				_					
	~	_	\sim	А	-		\mathbf{r}	ш	~
	w	u	u	u	~	L١	/	u	u

	Φ	o RF	ΣΦ	Δ(RF)	ΣΦ x Δ(RF)	0.35- <i>0</i>
[0,5000)	0.06	0.25	0.06	0.25	0.015	_0.43-0
[5000,10000)	0.312	0 <u>.6</u>	0.372	0.35	0.130	0.75-0.6
[10000,15000)	0.492	0.75	0.804	0.15	0.121	
[15000,20000)	0.693	0.87	1.185	0.12	0.142	
[20000,25000)	0.855	0.945	1.548	0.075	0.116	0.945 - 0.87
[25000,30000)	1	1	1.855	0.055	0.102	
Total					0.626	= EfiBagor
						6

Gini =
$$1 - \frac{1}{4}0.626 = 0.626$$

	Gini * 100%																		
	_	2011	2012	2013	2014	2015	2016	2017	2018			2011	2012	2013	2014	2015	2016	2017	2018
	Member state	٠	٠	٠	٠	٠	٠	٠	•		Member state	٠	٠	٠	٠	٠	٠	٠	-
1	Bulgaria	35.0	33.6	35.4	35.4	37.0	37.7	40.2	39.6	16	Hungary	26.9	27.2	28.3	28.6	28.2	28.2	28.1	28.7
2	Lithuania	33.0	32.0	34.6	35.0	37.9	37.0	37.6	36.9	17	* Malta	27.2	27.1	27.9	27.7	28.1	28.5	28.3	28.7
3	Latvia	35.1	35.7	35.2	35.5	35.4	34.5	34.5	35.6	18	■ France	30.8	30.5	30.1	29.2	29.2	29.3	29.3	28.5
4	Serbia[n 1]	_	_	38.0	38.6	38.2	38.6	37.8	35.6	19	■ Denmark	26.6	26.5	26.8	27.7	27.4	27.7	27.6	27.9
5	■ Romania	33.5	34.0	34.6	35.0	37.4	34.7	33.1	35.1	20	Poland	31.1	30.9	30.7	30.8	30.6	29.8	29.2	27.8
6	■ Italy	32.5	32.4	32.8	32.4	32.4	33.1	32.7	33.4	21	Netherlands	25.8	25.4	25.1	26.2	26.7	26.9	27.1	27.0
7	Luxembourg	27.2	28.0	30.4	28.7	28.5	31.0	30.9	33.2	22	Sweden	26.0	26.0	26.0	26.9	26.7	27.6	28.0	27.0
8	Spain	34.0	34.2	33.7	34.7	34.6	34.5	34.1	33.2	23	Austria	27.4	27.6	27.0	27.6	27.2	27.2	27.9	26.8
9	ः Greece	33.5	34.3	34.4	34.5	34.2	34.3	33.4	32.3	24	+ Finland	25.8	25.9	25.4	25.6	25.2	25.4	25.3	25.9
10	Portugal	34.2	34.5	34.2	34.5	34.0	33.9	33.5	32.1	25	Belgium	26.3	26.5	25.9	25.9	26.2	26.3	26.0	25.6
11	Germany	29.0	28.3	29.7	30.7	30.1	29.5	29.1	31.1	26	Czech Republic	25.2	24.9	24.6	25.1	25.0	25.1	24.5	24.0
12	Estonia	31.9	32.5	32.9	35.6	34.8	32.7	31.6	30.6	27	 	23.8	23.7	24.4	25.0	24.5	24.4	23.7	23.4
13	Croatia	31.2	30.9	30.9	30.2	30.4	29.8	29.9	29.7	28	Slovakia	25.7	25.3	24.2	26.1	23.7	24.3	23.2	20.9
14	Cyprus	29.2	31.0	32.4	34.8	33.6	32.1	30.8	29.1	29	Montenegro ^{[n 2][11]}	_	_	38.5	36.5	36.5	36.5	36.7	
15	■ Ireland	29.8	30.5	30.7	31.1	29.8	29.5	30.6	28.9		European Union	30.5	30.4	30.6	30.9	30.8	30.6	30.3	30.4