1. Ktorá z uvedených rovností je korektným vyjadrením súčtu kladného a záporného čísla.

Ak
$$|x| > M$$
 potom $[(x+y_i)] = [(x+y)_i]$

Ak $|x| < M$ potom $[(x+y_i)] = [(x+y)_i]$

- 2. Prenos z najvyššieho bitu výsledku aritmetickej operácie je indikovaný stavovým príznakom.
- a) SF
- b) ZF
- c) CF Carry (Cy) prenos z najvyššieho bitu výsledku operácie (1 prenos nastal)
- d) PF

- b) A0H
- c) 5EH
- 4. Inštrukciu aritmetických posunov sal je možné využiť na:
- a) Násobenie čísel bez znamienka
- b) Delenie čísel bez znamienka
- c) Delenie čísel so znamienkom
- d) Násobenie čísel so znamienkom
- · dva typy posunov
 - o logické (čísla bez znamienka) shl, shr
 - o aritmetické (čísla so znamienkom) sal, sar
- 5. Aký stav je signalizovaný stavovým príkazom SF registra EFLAGS procesora Pentium?
- a) Výsledok aritmetickej operácie na bezznamienkových číslach
- b) Výsledkom poslednej aritmetickej operácie bola 0
- c) Výsledkom poslednej aritmetickej operácie bola záporná hodnota
- d) Výsledok aritmetickej operácie na číslach so znamienkom prekročil rozsah
- 6. Prístup k parametrom v zásobníkovom rámci procedúry je realizovaný
- a) Odpočítaním príslušnej vzdialenosti vzhľadom na obsah EBP (napr. EBP-8)
- b) Pripočítaním príslušnej vzdialenosti vzhľadom na obsah EBP (napr. EBP+8)
 - prístup k obsahu zásobníkového rámca EBP (frame pointer)
 - * parametre (a, b EBP+12, EBP+8)
 - → lokálne premenné (temp, N EBP-4, EBP-8)

- 7. Ak výsledkom poslednej operácie (ovplyvňujúcej ZF) bola 0 príznak ZF bude:
- a) Nastavený na 0, ZF = 0 Príznak nuly (zero flag)
- b) Nastavený na 1, ZF = 1 výsledkom posle
 - výsledkom poslednej operácie (ovplyvňujúcej ZF) bola 0 ZF = 1, ináč ZF = 0
- c) Nedefinovaný

logická adresa (SEG.OFF)

- **8.** Organizácia pamäti v reálnom režime procesorov x86 môže viac ako jedna ... referovať na rovnakú fyzickú adresu?
- a) Áno
- b) Nie
 - logická vs. fyzická adresa
 - pre každú logickú adresu existuje jedinečná fyzická
 - opačne to neplatí viac ako jedna logická adresa môže referovať na rovnakú fyzickú adresu
- 9. Medzi podmienené skoky realizované podľa znamienkových porovnaní patria:
- a) jl
- b) jnge
- c) je
- d) jg

Skoky podľa výsledku znamienkových porovnaní

- porovnania =, ≠ pracujú rovnako na číslach so znamienkom i bez znamienka
- · pre čísla so znamienkom relevantné SF, OF, ZF

mnemonika	je/jz	jne/jnz	jg/jnle	jge/jnl	jl/jnge	jle/jng
význam	equal/ zero	not equal/ not zero	greater/ not less or equal	greater or equal/ not less	less/ not greater or equal	less or equal/ not greater
podmienka	ZF = 1	ZF = 0	ZF = 0 AND $SF = OF$	SF = OF	SF ≠ OF	$ZF = 1 OR SF \neq OF$

10. Inštrukcia AND realizujúca operáciu logického súčinu sa využíva na:

- b) Nulovanie bitov
- c) Izolácia bitov

inštrukcia and

- · podpora zložených log. výrazov a bitová operácia log. súčinu HL jazykov (neskôr)
- · nulovanie bitov
- · izolácia bitov

- 11. Medzi pamäťové nepriame režimy adresovania procesorov Pentium patria:
- a) Bázovo-indexové (Bassed-indexed)
- b) Bázové
- c) Indexové
- d) Nepriame registrové ??

- **12.** Aký režim adresovania procesorov Pentium je použitý v rámci ... **add DX,[class_marks+EBX+ESI*2]**
- a) Bázové adresovanie
- b) Bázovo-indexové adresovanie
- c) Indexové
- d) Nepriame registrové
- **13.** Nulový výsledok aritmetickej operácie je indikovaný stavovým ...
- **14.** Sémantika inštrukcie **pop dst32** je vyjadrená:
- a) Dst32 <- [SS:ESP],ESP <- ESP-4
- b) Dst32 <- [SS:ESP],ESP <- ESP+4
- c) Dst32 <- [SS:EBP],ESP <- ESP-4
- d) Dst32 <- [SS:EBP],ESP <- ESP+4
 - o sémantika

- 15. Základné typy operandov v jazyku procesorov pentium zahŕňajú
- a) Implicitný Adresovanie operandov (metóda sprístupnenia operandov)
- b) Registrový
- implicitné (implied) dané funkciou inštrukcie (STC, DAA)
- c) Pamäťový
- registrové (register) operand v registri, druhý implicitný operand akumulátor (CMP, ADD), RP
 bezprostredné (immediate) údaj časťou inštrukcie (za operačným kódom, ADI, CPI, MVI, LXI)
- d) Bezprostredny
- priame (direct) priama adresa (16-bitov) súčasťou inštrukcie (JMP, LDA, STA)
- Hongistar indirect) noměřevý referencie v DD (I DAV STAV)
- nepriame (register indirect) pamäťová referencia v RP (LDAX, STAX)

c) -128/+127 B d) 0/65535 B Vzdialenosť cieľa podmienených skokov podmienené skoky – SHORT/NEAR (najefektívnejšie, ak sú kódované ako 2B inštrukcie – SHORT) rozsah -128/127 B (SHORT) 17. FPU procesorov Pentium podporuje formáty čísel s pohyblivou rádovou čiarkou s veľkosťou: a) 64 bitov FPU procesora Pentium podporuje 3 formáty čísel: b) 80bitov o čísla s jednoduchou presnosťou (32-bit, float v C) c) 32 bitov o čísla s dvojitou presnosťou (64-bit, double v C) d) 16bitov o rozšírený formát (80-bit, interný) e) 128 bitov 18. Prístup k lokálnym premenným v zásobníkovom rámci procedúry je realizovaný: a) Pripočítaním príslušnej vzdialenosti vzhľadom na obsah EBP (napr. EBP+8) b) Odpočítaním príslušnej vzdialenosti vzhľadom na obsah EBP (napr. EBP-8) • prístup k obsahu zásobníkového rámca – EBP (frame pointer) ∘ parametre (a, b – EBP+12, EBP+8) o lokálne premenné (temp, N – EBP-4, EBP-8) 19. Smer spracovania reťazcov pomocou reťazových inštrukcii jazyka procesora Pentium je určený hodnotou príznaku: a) CF b) TF c) OF smer spracovania – vpred/vzad (direction flag, DF) d) DF 20. Aký indexový register pri pamäťových režimoch adresovania procesorov Pentium možno v 16-bit režime použiť: a) EDI indexové (index registers) – ESI, EDI (aj ich 16-bitové subregistre – SI, DI; ret'azcové operácie) b) ESI c) BX d) IP e) BP

16. Vzdialenosť cieľa podmienených skokov (short) môže nadobúdať hodnoty z rozsahu:

a) -32768/+32767 B

b) 0/255 B

```
add
div
```

21. Inštrukcia loop využíva pri svojej činnosti register:

- a) ECX
- b) EBP
- c) EBX
- d) ESI

22. Syntax zápisu inštrukcii používaná prekladačom gcc pre in-line (vložený) asembler je:

- a) AT&T
- b) IBM
- c) Intel

In-line (vložený) asembler

- asm-príkazy vložené v C-kóde, použitie konštrukcie asm
- problém: syntax používaná prekladačom gcc (AT&T) je odlišná od syntaxe v NASM (Intel)

23. Pre násobenie čísel bez znamienka, je v jazyku procesora Pentium určená inštrukcia:

- a) idiv
- násobenie čísel bez znamienka (mul)
- b) imul
- o syntax
- c) div d) mul
- mul (src - 8, 16, 32-bit GPR, pamäť) SIC

24. Inštrukciu logických posunov shl je možné využiť na:

- a) Delenie čísel so znamienkom
- b) Delenie čísel bez znamienka
- c) Násobenie čísel so znamienkom
- d) Násobenie čísel bez znamienka
- · dva typy posunov
 - o logické (čísla bez znamienka) shl, shr
 - o aritmetické (čísla so znamienkom) sal, sar
- 25. Koľko prvkov obsahuje abeceda (V_r) pre generovanie numerálov pozičných sústav so základom r? Reprezentácie čísel
- a) r+1
- **(b)** r
- použitie pozičných sústav s rôznym základom r = 2, 8, 10, 16 (r-numerály)
- abeceda: $V_r = \{0, 1, ..., (r-1)\}$ c) r-1
- 26. Ako bude nastavený príznak SF po realizácii uvedeného fragmentu kódu?

mov EAX,15

- a) SF = 0
- b) SF = 1

27. Uvedený fragment kódu je jadrom procedúry: mov edi, src mov ecx, 0FFFFFFFh xor al,al cld repnz scasb a) _asm_strlen (určenie dĺžky reťazca) b) asm find (hľadanie zadaného bajtu v pamäti) c) _asm_copy (kopírovanie bloku pamäti) 28. Pre systémové volania OS Linux je vyhradený vektor prerušenia: a) 0x21 (21H) b) 0x16 (16H) c) 0x80 (80H) d) 0x20 (20H) parametrizácia (napr. systémové volania Linuxu int 0x80, cca.180 volaní (v závislosti od verzie), číslo volania v EAX) **29.** Sémantika inštrukcie iterácii loop je vyjadrená: a) ECX=ECX-1,IF (ECX ≠ 0 AND ZF = 0) skok na cieľ b) ECX=ECX-1,IF (ECX ≠ 0 AND ZF = 1) skok na cieľ c) ECX=ECX-1,IF (ECX = 0) skok na cieľ ECX = ECX - 1d) ECX=ECX-1,IF (ECX ≠ 0) skok na cieľ if ECX ≠ 0 then EIP ← label **30.** Direktíva EXTERN prekladača NASM: a) Sprístupní návestie iným modulom programu b) Informuje asembler, že návestie nie je definované v aktuálnom module Direktíva EXTERN informuje asembler, že návestie nie je definované v aktuálnom module (definované v inom) 31. Pri programovaní procesora i8080 možno využiť tieto registrové páry: a) BE b) AL c) HL o registrové páry (BC, DE, HL, PSW) d) BC **32.** Sémantika inštrukcie nepodmieneného skoku **jmp label** je vyjadrená prenosom: shock a) ESI <- label nepodmienený skok – JMP rge on center b) EIP <- label odovzdanie riadenia na návestie "label" c) EBX <- label d) EBP <- label jmp label (EIP ← label)

33.	Ako bázový register pri pamäťových nepriamych režimoch adresovania procesorov Pentiun
	možno v 32-bit režime použiť:

a) EBP

(+ b) EAX ??

c) EBX

d) EIP

↑ e) ESI

	16-bit addressing	32-bit addressing
Base register	BX	EAX, EBX, ECX, EDX
	BP	ESI, EDI, EBP, ESP

34. Aký bude obsah FPU zásobníka po vykonaní inštrukcie **fadd** nad zásobníkom s hodnotami 5.0, 2.0, 3.0, 8.0 (vrchol zásobníka predpokladáme vľavo)?

a) 7.0, 2.0, 3.0. 8.0

b) 5.0, 7.0, 3.0, 8.0

(c) 7.0, 3.0, 8.0

d) 3.0, 7.0, 8.0

fadd

(výber STO a ST1, sčítanie a uloženie sumy späť na FPU zásobník)

35. Segmentový deskriptor používaný v chránenom režime (protected mode) procesora Pentium obsahuje tieto informácie:

Segmentový deskriptor

- a) Veľkosť segmentu (segment limit)
- b) Stavové a riadiace informácie
- c) Bázová adresa (base address)
- poskytuje atribúty segmentu:
- bázová adresa (32-bit) začiatok segmentu vo fyzickom adresnom priestore
- · veľkosť segmentu (20-bit), dve interpretácie
 - \circ 1B 1MB (2²⁰B), krok 1B (G = 0)
 - 4KB 4GB, krok 4KB (G = 1)
- stavové a riadiace informácie

36. Pod pojmom pamäť chápeme usporiadanú postupnosť registrov (buniek) veľkosti:

- a) 2 bajty
- b) 8 bajtov

Pamäť

c) 4 bajty

usporiadaná postupnosť registrov (buniek) veľkosti 1 bajt (Byte)

d) 1 bajt

37. Programátorovi sú v jazyku procesora i8080 priamo dostupné (napr. pre účely vetvenia programu) tieto stavové príznaky:

- a) ZF
- b) PF
- C) AF
- 5 príznakov (S, Z, Ac, P, Cy), programovo dostupné 4 z nich
- (d) SF
- e) CF

38. Natívnym režimom procesora Pentium s podporou segmentácie i stránkovania pamäti je:

- a) Reálny režim (real mode)
- b) Chránený režim (protected mode)
 - chránený režim (protected mode) natívny režim, podpora segmentácie i stránkovania

٦,	a) b) C)	Určte súčet dvoch záporných čísel (x+y) v doplnkovej reprezentácii ak x=-542, y=-781, r=10, n=3. 677 8676 8677 676
	a) b) c)	Klasifikácia prerušení procesorov Pentium: Systémové volania Softwérové Hardvérové Výnimky HW a SW prerušenia, výnimky, systémové volania (Linux)
	a) b)	Aký bude obsah FPU zásobníka inštrukcie fmul nad zásobníkom 5.0, 2.0, 3.0, 8.0 10.0, 2.0, 3.0, 8.0 5.0, 10.0, 3.0, 8.0 3.0, 8.0, 10.0
	fm	ul (výber STO a ST1, výpočet STO * ST1, uloženie späť)
	a) b) c)	Pri násobení dvoch n-bitových čísel bez znamienka, rozmer výsledku môže n+2 bitov 2n bitov o rozmer výsledku (2n bitov pri násobení dvoch n-bit. čísel) 2n+1 bitov n+1 bitov
\ 7 ,	43. a) b)	Na akej adrese bude uložený bajt (CD) hodnoty ABCDH (údaj veľkosti)byť údaj uložený od adresy 100? 101 100
	a)	Pri výskyte prerušenia v chránenom režime procesorov Pentium, do zásobníka EFLAGS, DS, ESI IDTR, ES, EDI IDTR, DS, ESI EFlags, CS, PIP
	45. b)	Ktorá z uvedených rovností je korektným vyjadrením súčtu čísel v doplnkovej reprezentácii $(x_c+y_c) \mod r^{n+1} = (x+y)_r$ $(x_c+y_c) \mod r^{n+1} = (x+y)_r$ $(x_c+y_c) \mod r^{n+1} = (x+y)_r$
	46.	Koľko bajtov pamäti bude vyhradených použitím direktívý: buffer resw 100
	a) b)	Neinicializované údaje: 400 • direktívy alokácie (bez inicializácie)
	c)	 direktívy alokácie (bez inicializácie) RESB (reserve byte, 1B)
	d)	100 © RESW (2B)
		o RESD (4B)
		RESQ (8B)REST (10B)
		- KLSI (IOB)

47.	organizacia pamati v realnom rezime procesorov x86 – może viac ako jedna logicka adresa referovať na rovnakú fyzickú adresu?
a)	Áno • logická vs. fyzická adresa
b)	 v pre každú logickú adresu existuje jedinečná fyzická o opačne to neplatí – viac ako jedna logická adresa môže referovať na rovnakú fyzickú adresu
48.	Určte inverznú reprezentáciu čísla X, ak X=-752, r=10, n=3
Odp	poveď: 0100001111
a)	Medzi indexové registre procesora Pentium patria: EBX EDI
c)	EBP • indexové (index registers) – ESI, EDI (aj ich 16-bitové subregistre – SI, DI; reťazcové operácie)
50.	V rámci štandardnej C-konvencie, pre odovzdanie celočíselnej návratovej hodnoty funkcie
-	s pohyblivou rádovou čiarkou je využívaný: Register EBX
•	Zásobník Register EAX
	Register ESI
	Inštrukcia test nedeštruktívne (bez zmeny cieľového operandu) realizuje operáciu:
	Logického súčtu Logickej negácie bitov inštrukcia TEST
	Logického súčinu Logickej nonekvivalencie ak je problémom modifikácia operandu vykonáva bitovú operaciu AND (ako inštrukcia and),
52.	Aký indexový register pri pamäťových nepriamych režimoch adresovania procesorov Pentium možno v 32 bitovom režime použiť:
	EDI EBP
c)	ESI
d) e)	EIP EBX
E2	Exponent vyjadrujúci hodnotu 32 (20H) bude (v rámci jednotky FPU) na 8-mich bitoch v kóde
33.	s posunutou nulou reprezentovaný hodnotou:
a) b)	5FH 7FH
<u>(d)</u>	9FH
a)	3FH

54. Dvojica inštrukcii

shr EDX,1

rcr EAX,1

realizuje:

- a) rotáciu EDX:EAX o 1 bit vpravo
- b) nulovanie dolných 32-bitov EDX:EAX
- c) nulovanie horných 32 bitov EDX:EAX
- ø d) posun EDX:EAX o 1 bit vpravo
 - 55. Ako bude nastavený príznak SF po realizácii uvedeného fragmentu kódu?

mov EAX,15	mov	EAX,15								
add EAX,97	add	EAX,97	(15	+	97	=	112,	SF	=	0)

- a) SF = 0
- b) SF = 1
- **56.** Medzi reťazcové inštrukcie v jazykue procesora Pentium patria:

a)	SCASB	Mnemonic	Meaning	Operand(s) required
b)	ADDSB	LODS	LOaD String	source
c)	CMPSD	STOS	STOre String	destination
d)	MODSW	MOVS	MOVe String	source & destination
e)	LODSB	CMPS	CoMPare Strings	source & destination
f)	STOSW	SCAS	SCAn String	destination

- 57. Obsahy koľkých registrov procesora Pentium uloží na zásobník inštrukcia pushad?
- a) 4
- b) 6
- c) 8 pushad (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI)
- d) 10
- 58. Ktorá časť (časti) symbolického systému je špecifikovaná pomocou generujúceho systému?
- a) Syntax Generujúce systémy (gramatika)
- (b) Abeceda
- konečná množina symbolov (abeceda V)
- c) Sémantika
- konečná množina pravidiel (p: uαν → uβν)
 - u, v, α, β ret'azce nad abecedou V
- **59.** Radič zariadenia (IO controller) v úlohe rozhrania počítač/zariadenie zabezpečuje prispôsobenie:
- a) Rýchlosti
- b) Úrovni el. signálov
- c) Súboru inštrukcii procesora
- radič zariadenia (I/O controller) v úlohe rozhrania počítač/zariadenie (rýchlosť, prispôsobenie úrovní el. signálov)

- **60.** Pri spracovaní prerušení v chránenom režime procesorov Pentium, číslo prerušenia predstavuje index do tabuľky:
- a) GDT číslo (typ) prerušenia (vector, 0-255) index do tabuľky s adresami ISR
- b) LDT ° tabuľka IDT (Interrupt Descriptor Table), číslo prerušenia * 8 → index
- c) IDT do tabuľky (položka descriptor, 8B)
- d) FDT
- **61.** Pri volaní (knižničných) funkcii jazyka C z asembleru, ich parametre je potrebné uložiť do:
- a) Registra ESI
- b) Registra EBX
- c) Registra EAX

- 62. Poradie v akom sú parametre C-funkcii ukladané na zásobník je:
- a) Zľava doprava
- Odovzdávanie parametrov
- b) Sprava doľava
- odovzdávanie parametrov (v akom poradí sú parametre ukladané na zásobník)
- c) Podľa typu param
- zľava doprava (left-pusher languages, väčšina HL jazykov)
 sprava doľava (right-pusher, napr. jazyk C predmet nášho záujmu)
- **63.** Bit D segmentového deskriptora CS určuje adresový režim (16/32-bit), ktorý má CPU použiť. Je možné túto implicitnú voľbu explicitne zmeniť?
- a) Áno o bit D segmentového deskriptora CS (D = 1: 32-bit default)
- b) Nie o možnosť implicitnú voľbu explicitne zmeniť (size override prefix)
- 64. Sémantika inštrukcie LDAX B jazyka i8080 je vyjadrená nasledujúcim prenosom:
- a) A<-[BC]
- b) [HL]<-B
- c) B<-[HL]
- d) [BC]<-A
- 65. Aké budú obsahy registrov EAX, EBX po vykonaní fragment kódu

Push EAX

Push EBX

Pop EAX

Pop EBX

Ak pred jeho vykonaním platilo EAX = 1, EBX = 2?

- a) EAX = 2, EBX = 2
- b) EAX = 1, EBX = 1
- c) EAX = 1, EBX = 2
- d) EAX = 2, EBX = 1

66. Po realizácii dvojice inštrukcii jazyka i8080 bude register A obsahovať hodnotu:

mvi A,10101110b

ani 11 1

ani 11110000b

02 1 1

a) 10H

b) 0AH

c) 00H

d) A0H

- 67. Ktoré z uvedených dvojíc inštrukcii jazyka procesora Pentium majú rovnakú sémantiku?
- a) jl, jng
- b) jg, jnle
- c) jle, jnge
- d) jge, jnl

mnemonika	je/jz	jne/jnz	jg/jnle	jge/jnl	jl/jnge	jle/jng
význam	equal/	not equal/	greater/	greater or equal/	less/	less or equal/
	zero	not zero	not less or equal	not less	not greater or equal	not greater

- 68. Exponent vyjadrujúci hodnotu 48 (30H) bude (v rámci jednotky FPU) na 8-mich bitoch v kóde s posunutou nulou reprezentovaný hodnotou:
- a) 9FH
- b) 7FH
- c) OAFH
- d) 0CFH
- 69. Klasifikácia výnimiek procesorov Pentium:
- a) Trap (pasca)
- b) Fault (porucha)
- Výnimky

klasifikované do 3 skupín (faults, traps, aborts)

- c) Nemaskovateľné (non-maskable)d) Abort (zlyhanie)
- e) Maskovateľné (maskable)
- 70. Medzi podmienené skoky realizované podľa **bezznamienkových** porovnaní v jazyku procesora Pentium patria:
- a) jnae
- b) jle
- c) jae
- d) jge
- e) jnb
- f) jb

mnemonika	je/jz	jne/jnz	ja/jnbe	jae/jnb	jb/jnae	jbe/jna
význam	equal/ zero	not equal/ not zero	2000 (200) 27 (20)	above or equal/ not below	below/ not above or equal	below or equal/ not above
podmienka	ZF = 1	ZF = 0	CF = 0 AND $ZF = 0$	CF = 0	CF = 1	CF = 1 OR ZF = 1

- 71. Aký bude obsaj FPU zásobníka po vykonaná inštrukcie *fstp ST1* nad zásobníkom s hodnotami 5.0, 2.0, 3.0, 8.0?
- a) 7.0, 3.0, 8.0 fstp ST1 ; odstráni ST1, ST0 ponechá na vrchole
- b) 5.0, 5.0, 3.0, 8.0
- c) 2.0, 2.0, 3.0, 8.0
- d) 5.0, 3.0, 8.0
- 72. Reštart (výnimku generujúcej) inštrukcie je v architektúre Pentium realizovaný v prípade výnimky typu:
- a) Abort
- b) Trap
- c) Fault
- o fault (porucha) výnimočný stav, ktorý všeobecne možno napraviť v rámci obsluhy
 - v prípade úspešnej nápravy program reštartovaný bez straty kontinuity
 - obnova stavu do bodu pred vykonaním (výnimku generujúcej) inštrukcie (uchované CS:EIP ukazujúce na danú inštrukciu)
- 73. Pre delenie čísel so znamienkom, je v jazyku procesora Pentium určená inštrukcia:
- a) Idiv
- b) Mul div src (bezznamiekové, src 8, 16, 32-bit GPR, pamäť)
- c) Duv idiv src (znamienkové)
- d) Imul
- 74. Znamienko výsledku aritmetickej operácie je indikované stavovým príznakom procesora i8080:
- a) PF
- b) CF
- c) ZF
- d) SF
- 75. Inštrukcia pre prácu s reťazcami cmps v jazyku procesora Pentium:
- a) Porovná bajty na adresách DS:ESI a ES:EDI, nastaví príznaky, aktualizuje hodnoty registrov
- b) Porovná bajty na adresách CS:ESI a ES:EDI, nastaví príznaky, aktualizuje hodnoty registrov
- c) Porovná bajty na adresách DS:ESI a SS:EDI, nastaví príznaky, aktualizuje hodnoty registrov
- d) Porovná bajty na adresách DS:EBP a ES:EBX, nastaví príznaky, aktualizuje hodnoty registrov

Porovnanie ret'azcov (cmps)

- porovná bajty (slová, dvoj-slová) na DS:ESI a ES:EDI a nastaví príznaky (ako cmp)
- aktualizuje hodnoty ESI, EDI (podľa hodnoty DF a veľkosti operandov)
- 76. Direktíva GLOBAL prekladača NASM:
- a) Informuje asembler, že návestie nie je definované v aktuálnom module
- b) Sprístupní návestie iným modulom programu

Direktíva GLOBAL

sprístupní návestie iným modulom programu (mená procedúr, premenných, ...)

- 77. Aký najvyšší počet segmentov môže byť súčasne aktívnych vo viac segmentovom režime (multisegment model) procesora Pentium?
- a) 8
- b) 6 viac-segmentový (multisegment model) súčasne aktívnych max. 6 segmentov
- c) 4
- d) 10
- 78. Ktoré z uvedených dvojíc inštrukcii jazyka procesora Pentium majú rovnakú sémantiku?
- a) ja, jnbe
- b) ja, jnb
- c) jbe, jna
- d) jb, jna

mnemonika	je/jz	jne/jnz	ja/jnbe	jae/jnb	jb/jnae	jbe/jna
význam	equal/	not equal/	above/	above or equal/	below/	below or equal/
	zero	not zero	not below or equal	not below	not above or equal	not above

- 79. Syntax zápisu inštrukcii používaná prekladačom gcc pre in-line (vložený) asembler využíva pre uvedenie mena registra prefix:
- a) * AT&T syntax
- b) =
- c) % mená registrov prefix % (napr. %eax)
- d) \$
- 80. Sémantika inštrukcie *xchg dst, src* je vyjadrená výrazom:
- a) Dst<-src
- inštrukcia XCHG (exchange)
- b) Ani jeden z uvedených
- o výmena operandov, syntax
- c) Dst<->src
- d) Src<-dst

- xchg dst, src
- (dst ↔ src)
- 81. Inštrukcia xor realizujúca operáciu logickej nonekvivalencie sa využíva na:
- a) Nastavenie bitov (na hodnotu 1)
- inštrukcia xor
- b) Preklopenie hodnoty bitov (na opačnú)
- c) Izoláciu bitov

d) Nulovanie bitov

- podpora zložených log. výrazov HL jazykov (neskôr)
- · preklopenie (toggle) hodnoty bitu/bitov
- inicializácia registrov (0)
- 82. Po realizácii dvojice inštrukcii

Mov AL, 10101110b

Or AL,11110000b

Bude register AL obsahovať hodnotu:

- a) EFH
- b) 00H
- c) FEH
- d) A0H

83. Nasledujúci fragment kódu predstavuje volanie služby systému:

Mov AH,0

Int 16H Základné služby systému BIOS pre prácu s klávesnicou:

- a) Windows dostupné pomocou int 16H
- b) BIOS
- c) Linux
- d) MS DOS
- 84. Sémantika inštrukcie **loopne** v jazyku procesora Pentium je vyjadrená:
- a) ECX=ECX-1,IF (ECX ≠ 0 AND ZF = 0) skok na cieľ
- b) ECX=ECX-1,IF (ECX ≠ 0 AND ZF = 1) skok na cieľ
- c) ECX=ECX-1,IF (ECX = 0) skok na cieľ
- d) ECX=ECX-1,IF (ECX ≠ 0) skok na cieľ

loopne/loopnz	
loop while not equal/ loop while not zero	
ECX = ECX - 1 IF $(ECX \neq 0 \text{ AND } ZF = 0)$ skok na cieľ	

- 85. Medzi stavové príznaky registra EFLAGS procesora Pentium patria:
- a) DF

c) IF

86. Ako budú nastavené príznaky **Cy** a **Z** po vykonaní fragmentu kódu v jazyku i8080?

Mvi A,0FH

Mvi B,0F1H

Add B

- a) Cy = 0, Z = 1
- b) Cy = 1, Z = 1
- c) Cy = 0, Z = 0
- d) Cy = 1, Z = 0
- 87. Inštrukcie rotácii rcl, rcr pracujú:
- a) S využitím CF v procese rotácie
- b) Bez využitia CF v procese rotácie

- 88. Zásobník v systémoch s procesorom Pentium pri vkladaní údajov (push) narastá smerom:
 - a) K nižším adresám

- zásobník narastá smerom k nižším adresám
- b) V závislosti od hodnoty bitu B segmentového deskriptora
- c) K vyšším adresám
- d) V závislosti od hodnoty bitu G segmentového deskriptora

- 89. Aký bude obsah FPU zásobníka po vykonaní inštrukcie fst ST1 nad zásobníkom s hodnotami 5.0, 2.0, 3.0, 8.0 (vrchol zásobníka predpokladáme vľavo)?
 - a) 5.0, 3.0, 8.0
 - b) 5.0, 5.0, 3.0, 8.0
 - c) 2.0, 2.0, 3.0, 8.0
 - d) 7.0, 3.0, 8.0 fstp ST1

- 90. Normálna forma čísla +1101.101E11010 v zobrazení s pohyblivou rádovou čiarkou je:
 - a) +1101.101E11101
 - b) +1.101101E11100
 - c) +1.101101E11101
 - d) +1101.101E11010
- 91) Po realizácii ktorých z uvedených inštrukcií jazyka procesora Pentium bude platiť, že CF=1, ak obsah registra EAX je 15?

Označte jednu alebo viac odpovedí

```
a) bt EAX, 1
b) bt EAX, 5
c) bt EAX, 7
bt
EAX, 1; CF = 1
bt
EAX, 3; CF = 0
```

92) Inštrukcie logických operácií and, or, xor, not pracujú

Označte jednu alebo viac odpovedí

- a) Bez operandov
- **b** S dvoma operandmi
- © S jedným operandom
 - d) S troma operandmi
- 93) Ktoré z uvedených inštrukcií jazyka x86 majú priradené správne výsledky, ak AL-10101110 a BL-11110000b?

Označte jednu alebo viac odpovedí

- a) xor AL,BL (AL-01010111b)
- b) xor AL,BL (AL-10101110b)
- c) or AL,BL (AL-11111110b)
- d) and AL,BL (AL-10100000b) ????

94) Ktoré z uvedených príznakov budú nastavené (na hodnotu 1) po realizácii uvedeného fragmentu kódu v jazyku i8080? Mvi A, 0FH Mvi B, 0F1H add B Označte jednu alebo viac odpovedí c) Z 95) Identifikácia registra na vrchole zásobníka (TOS) jednotky FPU procesorov Pentium sa nachádza v registri Označte jednu alebo viac odpovedí a) FPU Status Register b) FPU Control Register c) Register STO ????? d) Tag Register 96) Voliteľný operand n inštrukcie ret predstavuje: Označte jednu alebo viac odpovedí a) počet parametrov procedúry o parameter ret (počet bajtov pre uvoľnenie zo zásobníka, voliteľné) b) počet slov pre uvoľnenie zo zásobníka ret c) počet bajtov pre uvoľnenie zo zásobníka d) návratovú hodnotu 97) Ktorá z uvedených inštrukcií jazyka i8080 realizuje operáciu vyjadrenú prenosom A<-A+R+Cy?

Označte jednu alebo viac odpovedí

- a) SBB R
- b) ADC R
- c) ADD R
- d) SUB R

88	127	10.			49	500		- 36
ADC R	10001SSS	-:	-	add reg. w.carry	S Z AcP Cy		A←A+R+Cy	

98) Medzi podmienené skoky realizované podľa hodnoty jedného príznaku v jazyku procesora Pentium patria:

Označte jednu alebo viac odpovedí

- a) jge
- b) jnc
- c) je
- d) jns
- e) jo
- f) ja
- 99) Násobenie číslic inštrukciou mul, je v jazyku procesora Pentium možné priamo realizovať na operandoch veľkosti

Označte jednu alebo viac odpovedí

- a) 32 bitov
- b) 16 bitov

mul src

(src - 8, 16, 32-bit GPR, pamäť)

- c) 64 bitov
- d) 8 bitov
- 110) Inštrukcia *or* realizujúca operáciu logického súčtu sa využíva na:

Označte jednu alebo viac odpovedí

- a) Nastavenie bitov (na hodnotu 1)
- b) Preklopenie hodnoty bitov (na opačnú)
- c) Izoláciu bitov
- d) Nulovanie bitov

inštrukcia or

- podpora zložených log. výrazov a bitová operácia log. súčtu HL jazykov (neskôr)
- nastavenie bitov (ak bit masky = 0 → výstup: kópia druhého vstupného bitu, ak bit masky = 1 → výstup: 1)

(114 + 14 = 128, OF = 1)

111) Ako bude nastavený príznak SF po realizácii uvedeného fragmentu kódu?

mov AL,72H add AL, 0EH

b)
$$OF = 0$$
 add AL, OEH

112) Do zásobníkového rámca (stack frame) sú údaje spojené s procedúrou vkladané v tomto poradí:

Označte jednu alebo viac odpovedí

- a) Starý EBP, parameter, návratová adresa, lokálne premenné
- b) návratová adresa, parametre, Starý EBP, lokálne premenné
- c) lokálne premenné, parametre, návratová adresa, Starý EBP
- d) parametre, návratová adresa, Starý EBP, lokálne premenné
- informácia v zásobníku (parametre, návratová adresa, starý EBP, príp. lokálne premenné) zásobníkový rámec (stack frame)
- 113) Po realizácii nasledujúcej skupiny inštrukcii v jazyku procesora Pentium bude obsah registra AL:

Mov AL, 15

Mov CL, 4

Ror AL, CL

Označte jednu alebo viac odpovedí

- a) AL = OFFH
- b) AL = 00H
- c) AL = OFH
- d) AL = 0F0H
- 114) Adresu nasledujúcej inštrukcie procesora i8080 obsahuje register:
 - a) Pc
 - b) SP o SP (adresa poslednej vloženej položky)
 - c) RI ° PC (adresa nasledujúcej inštrukcie)
 - d) HL
- 115) Ktoré z uvedených dvojíc inštrukcií jazyka procesora Pentium majú rovnakú sémantiku?
- a) jnp, jnpe
- b) jno, jns
- c) jnp, jpo
- d) jnz, jne
- 116) Inštrukcia and realizujúca operáciu logického súčinu sa využíva na:
 - a) izoláciu bitov
 - b) nastavenie bitov (na hodnotu 1)
 - c) preklopenie bitov (na opačnú)
 - d) nulovanie bitov

inštrukcia and

- podpora zložených log. výrazov a bitová operácia log. súčinu HL jazykov (neskôr)
- nulovanie bitov
- izolácia bitov

Otázka 1

Ešte

1,00

nezodpovedané

Max. hodnotenie

Označiť otázku

Ako bude nastavený príznak PF po realizácii uvedeného fragmentu kódu?

mov AL, OFH add AL, OFOH

Označte jednu alebo viac odpovedí:

a.PF = 0

b. PF = 1

Otázka 1

Ešte

nezodpovedané

Max. hodnotenie

P Označiť otázku

Aký stav je signalizovaný stavovým príznakom CF registra EFLAGS procesora Pentium?

Označte jednu alebo viac odpovedí:

a. výsledok aritmetickej operácie na bezznamienkových číslach prekročil rozsah cieľa

b. výsledkom poslednej aritmetickej operácie bola 0

c. výsledkom poslednej aritmetickej operácie bola záporná hodnota

d. výsledok aritmetickej operácie na číslach so znamienkom prekročil rozsah cieľa

Otázka 3

Ešte

nezodpovedané

Max. hodnotenie

1,00

P Označiť otázku

Inštrukciu logických posunov shr v jazyku procesora Pentium je možné využiť na:

Označte jednu alebo viac odpovedí:

D

a. delenie čísel bez znamienka

b. delenie čísel so znamienkom c. násobnie čísel bez znamienka

Г

d. násobnie čísel so znamienkom

Otázka 3

nezodpovedané

Max. hodnotenie

1,00

P Označiť otázku

Význam inštrukcie enter XY, 0 je vyjadrený:

Označte jednu alebo viac odpovedí:

a pop EBP; mov ESP, EBP; sub ESP, XY

D. push EBP; mov EBP, ESP; sub ESP, XY

C. mov ESP, EBP; pop EBP; sub ESP, XY

d mov EBP, ESP; push EBP; sub ESP, XY

Otázka 3

Ešte

nezodpovedané

Max. hodnotenie 1,00

Označiť otázku

Inštrukcia pre prácu s reťazcami empsto v jazyku procesora Pentium:

Označte jednu alebo viac odpovedí:

- a. porovná bajty na adresách вз: ввр а вз: ввх, nastaví príznaky, aktualizuje hodnoty registrov
- b. porovná bajty na adresách ps:esi a ss:ebi, nastaví príznaky, aktualizuje hodnoty registrov Г
- c. porovná bajty na adresách cs:esi a es:ebi, nastaví príznaky, aktualizuje hodnoty registrov Г

d. porovná bajty na adresách ps:esi a es:edi, nastaví príznaky, aktualizuje hodnoty registrov

Vymenuj registrové páry jazyka i8080 abecedne podľa prvého písmena

vzor: AA,PA,...,XA , bez medzier oddelené čiarkou.

Answer: BC,DE,HL,PSW

Syntax zápisu zápisu inštrukcií používaná prekladačom NASM pre in-line asembler je

✓ INTEL

☐ IBN

AT&T

Indexové adresovanie

výpočet efektívnej adresy

```
(Index * scale) + disp ; posunutie so znamienkom
```

- prístup k prvkom poľa
 - začiatok poľa (disp), prvok v poli (index register)
 - veľkosť prvkov (scale 2, 4, 8 iba 32-bit režim)

Výskyt prerušenia (prípad bez zmeny privilégií)

- EFLAGS → zásobník
- IF = 0 a TF = 0 (zakázanie ďalších prerušení; možné opätovné povolenie v ISR (sti, cli), pokiaľ nie je dôvod ich zakazovať)
- CS, EIP → zásobník
- CS ← 16b segment selector (interrupt gate)
- EIP ← 32b offset (interrupt gate)

- stavové príznaky
 - AF nedefinovaný
 - O ZF, PF podľa výsledku operácie, CF posledný bit vysunutý z operandu
 - OF nedefinovaný pre viac-bitové posuny
 - posuny o 1 bit OF = 1, pri zmene bitu znamienka, ináč OF = 0

