

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
 - Doesn't share features learned across different positions of text.

Andrew Ng

Forward propagation and backpropagation

Andrew Ng

Forward propagation and backpropagation

Examples of RNN architectures

Examples of RNN architectures

Summary of RNN types

What is language modelling?

Speech recognition

The apple and pair salad.

The apple and pear salad.

 $P(\text{The apple and pair salad}) = 3.2 \times 10^{-3}$

 $P(\text{The apple and pear salad}) = 5.7 \times 10^{-10}$

Andrew Ng

Language modelling with an RNN

Training set: large <u>corpus</u> of english text.

Cats average 15 hours of sleep a day. <Eos>
y (4) y (4) y (4)
x (4) = y (4-1)

The Egyptian Mau is a bread of cat. <EOS>

10,000 SUNK>

Sampling a sequence from a trained RNN

Sampling a sequence from a trained RNN

Character-level language model

→ Vocabulary = [a, aaron, ..., zulu, <UNK>] ←

Sequence generation

News

President enrique peña nieto, announced sench's sulk former coming football langston paring.

"I was not at all surprised," said hich langston.

"Concussion epidemic", to be examined. \leftarrow

The gray football the told some and this has on the uefa icon, should money as.

Shakespeare

The mortal moon hath her eclipse in love.

And subject of this thou art another this fold.

When besser be my love to me see sabl's.

For whose are ruse of mine eyes heaves.

Andrew Ng

Full GRU

$$\tilde{C}^{< t>} = \tanh(W_c[\Gamma_c^* * c^{< t-1>}, x^{< t>}] + b_c)$$

$$W_c[\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$W_c[\Gamma_c^* * c^{< t-1>} \times c^{< t>}] + b_c$$

$$W_c[\Gamma_c^* * c^{< t-1>} \times c^{< t>}] + b_c$$

$$W_c[\Gamma_c^* * c^{< t-1>} \times c^{< t>}] + b_c$$

$$W_c[\Gamma_c^* * c^{< t-1>} \times c^{< t>}] + b_c$$

The cat, which ate already, was full.

The last line should use an element-wise multiplication "*" instead of a plus sign "+

$$c^{< t>} = \Gamma_u * ilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$$

See the correction in red.

Full GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\tilde{c}^{< t} \in \mathbb{I}^>, x^{< t>}] + b_c)$$

$$U_c \left\{ \Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \right\}$$

$$C_c \left\{ \Gamma_c = \sigma(W_c[c^{< t-1>}, x^{< t>}] + b_c) \right\}$$

$$C_c \left\{ \Gamma_c = \sigma(W_c[c^{< t-1>}, x^{< t>}] + b_c) \right\}$$

$$C_c \left\{ \Gamma_c = \sigma(W_c[c^{< t-1>}, x^{< t>}] + b_c \right\}$$

The cat, which ate already, was full.

GRU and LSTM

More governod

ond more governod

one governod

oversion of GRU LSTM

GRU

$$\frac{\tilde{c}^{< t>}}{c} = \tanh(W_c[\Gamma_r * \underline{c}^{< t-1>}, x^{< t>}] + b_c) \qquad c^{< t>} = \tanh(\omega_c[\alpha^{(t-1)}, x^{(t)}] + b_c)$$

$$\frac{\Gamma_u}{c} = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad c^{(t)} = \sigma(\omega_u[c^{< t-1>}, x^{(t)}] + b_u)$$

$$\frac{\Gamma_r}{c} = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad c^{(t)} = \sigma(\omega_t[\alpha^{(t-1)}, x^{(t)}] + b_t)$$

$$\frac{C^{< t>}}{c} = \Gamma_u \tilde{c}^{< t>} + (1 - \Gamma_u) c^{< t-1>} c^{(t-1)} c^{(t-1)} c^{(t-1)} c^{(t-1)}$$

$$\frac{C^{(t)}}{c} = \Gamma_u \tilde{c}^{< t>} + \Gamma_t \tilde{c}^{< t-1>}$$

$$\frac{C^{(t)}}{c} = \Gamma_u \tilde{c}^{< t>} + \Gamma_t \tilde{c}^{< t-1>}$$

$$\frac{C^{(t)}}{c} = \Gamma_u \tilde{c}^{< t>} + \Gamma_t \tilde{c}^{< t-1>}$$

[Hochreiter & Schmidhuber 1997. Long short-term memory] <

Andrew Ng

LSTM in pictures

See also the correction in the screenshot below (in red ink).

GRU and LSTM

GRU

LSTM

$$\begin{split} & \underbrace{\tilde{c}^{< t>}} = \tanh(W_c[\Gamma_r * \underline{c^{< t-1>}}, x^{< t>}] + b_c) & \underbrace{\tilde{c}^{< t>}} = \tanh(\bigcup_c \lceil \underline{a^{< t-1>}}, x^{< t>} \rceil + b_c) \\ & \underline{\Gamma_u} = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) & \underbrace{\omega_b \delta_b} & \underline{\Gamma_u} = \sigma(\bigcup_b \lceil \underline{a^{< t-1>}}, x^{< t>} \rceil + b_u) \\ & \underline{\Gamma_r} = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) & \underbrace{Cogral} & \underline{\Gamma_c} = \sigma(\bigcup_b \lceil \underline{a^{< t-1>}}, x^{< t>} \rceil + b_c) \\ & \underline{c^{< t>}} = \underline{\Gamma_u} * \tilde{c}^{< t>} + \underbrace{(1 - \Gamma_u)} * c^{< t-1>} \underbrace{Cogral} & \underline{\Gamma_c} = \sigma(\bigcup_b \lceil \underline{a^{< t-1>}}, x^{< t>} \rceil + b_c) \\ & \underline{c^{< t>}} = \underline{\Gamma_u} * \tilde{c}^{< t>} + \underbrace{\Gamma_t} * \underline{c^{< t-1>}} \\ & \underline{c^{< t>}} = \underline{c^{< t>}} & \underline{c^{< t-1>}} & \underline{c^{< t-1>}} \\ & \underline{c^{< t>}} = \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t-1>}} \\ & \underline{c^{< t>}} = \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t-1>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t-1>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t-1>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{< t>}} \\ & \underline{c^{< t>}} & \underline{c^{<$$

[Hochreiter & Schmidhuber 1997. Long short-term memory]

*tanh c(t)
Andrew Ng

Getting information from the future

He said, "Teddy bears are on sale!"
He said, "Teddy Roosevelt was a great President!"

