Università degli Studi Roma Tre Corso di Laurea in Matematica Tutorato di AL310 - Istituzioni di Algebra superiore A.A.2017/2018

Docente: Prof. F. Pappalardi Tutori: Chiara Camerini e Gianclaudio Pietrazzini

Tutorato 2 del 30 Ottobre 2017

Esercizio 1

Su \mathbb{Q} verificare che cos $\frac{\pi}{12}$ e cos $\frac{2\pi}{13}$ sono algebrici e calcolarne il polinomio minimo.

Esercizio 2

Calcolare il polinomio minimo di α su F nei seguenti casi:

a)
$$E = \mathbb{Q}(\sqrt[3]{2}, \sqrt{2}), F = \mathbb{Q}(\sqrt{2}), \alpha = \sqrt[3]{2} + \sqrt{2}$$

b)
$$E = \mathbb{Q}(\sqrt{5}), F = \mathbb{Q}, \alpha = \frac{1+\sqrt{5}}{4-3\sqrt{5}}.$$

Esercizio 3

Discutere il grado del campo di spezzamento su \mathbb{Q} , \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_5 di $f(x) = x^3 + 2$ e $g(x) = x^4 - 2$.

Esercizio 4

Descrivere gli $\mathbb{Q}(\sqrt{-1})$ -omomorfismi di $\mathbb{Q}(\xi_{16})$ in \mathbb{C} . Descrivere gli $\mathbb{Q}(\sqrt{-1})$ -omomorfismi di $\mathbb{Q}(\sqrt{-3},\sqrt{3})$ in \mathbb{C} .

Esercizio 5

Descrivere gli elementi del gruppo di Galois di $f(x) = x^4 - 14x^2 + 9 \in \mathbb{Q}[x]$.

Esercizio 6

Determinare su \mathbb{Q} sia il campo di spezzamento Q_f che il grado di $f(x)=(x^4-x^2-6)\in\mathbb{Q}[x]$. Determinare il gruppo di Galois $\mathrm{Gal}(Q_f:\mathbb{Q})$.

Esercizio 7

Descrivere gli automorfismi del campo di spezzamento di $f(x) = (x^2 + 1)(x^4 - 3)$.

Esercizio 8

Descrivere il reticolo dei sottocampi di: $\mathbb{Q}(\xi_5)$, $\mathbb{Q}(\xi_7)$, $\mathbb{Q}(\xi_9)$.