Monero Transactions

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 23, 2019

Transactions in Monero

- Suppose Alice wants to spend coins from an address P she owns
- Alice assembles a list $\{P_0, P_1, \dots, P_{n-1}\}$ where $P_j = P$ for exactly one j
- Alice knows x_j such that $P_j = x_j G$
- Key image of P_j is $I = x_j H_p(P_j)$ where H_p is a point-valued hash function
 - Distinct public keys will have distinct key images
- A linkable ring signature over {P₀, P₁,..., P_{n-1}} will have the key image *I* of P_i
 - Signature proves Alice one of the private keys
 - Double spending is detected via duplicate key images
- One cannot say if a Monero address belongs to the UTXO set or not

Linkable Spontaneous Anonymous Group Signatures

- Consider an elliptic curve group E with cardinality L and base point G
- Let $x_i \in \mathbb{Z}_I^*$, i = 0, 1, ..., n-1 be private keys with public keys $P_i = x_i G$
- Suppose a signer knows only x_j and not any of x_i for $i \neq j$
- The **key image** corresponding to P_j is $I = x_j H_p(P_j)$
- For a given message *m*, the signer generates the LSAG signature as follows:
 - 1. Picks α , s_i , $i \neq j$ randomly from \mathbb{Z}_L
 - 2. Computes $L_j = \alpha G$, $R_j = \alpha H_p(P_j)$, and $c_{j+1} = H_s(m, L_j, R_j)$
 - 3. Increasing *j* modulo *n*, computes

$$R_{j+1} = s_{j+1}H_p(P_{j+1}) + c_{j+1}I$$

$$c_{j+2} = H_s(m, L_{j+1}, R_{j+1})$$

$$\vdots$$

$$L_{j-1} = s_{j-1}G + c_{j-1}P_{j-1}$$

$$R_{j-1} = s_{j-1}H_p(P_{j-1}) + c_{j-1}I$$

$$c_i = H_s(m, L_{i-1}, R_{i-1})$$

 $L_{i+1} = s_{i+1}G + c_{i+1}P_{i+1}$

- 4. Computes $s_j = \alpha c_j x_j \implies L_j = s_j G + c_j P_j, R_j = s_j H_p(P_j) + c_j I$ 5. The ring signature is $\sigma = (I, c_0, s_0, s_1, \dots, s_{n-1})$
- Verifier computes L_i , R_i , remaining c_i 's, and checks that $H_s(m, L_{n-1}, R_{n-1}) = c_0$
- Signatures with duplicate key images I will be rejected

LSAG Structure

- Rationale for choice of key image $I = x_j H_p(P_j)$
 - By collision resistance of H_p , I is unique for a given P_i
 - I does not reveal P_i as x_i is unknown to observers
 - Discrete log of H_p(P_i) is unknown
- Comparison with regular ring signature calculation

$$\begin{array}{lll} L_{j+1} = s_{j+1}G + c_{j+1}P_{j+1} & L_{j+1} = s_{j+1}G + c_{j+1}P_{j+1} \\ R_{j+1} = s_{j+1}H_{\rho}(P_{j+1}) + c_{j+1}I & c_{j+2} = H_{s}(m,L_{j+1},R_{j+1}) & c_{j+2} = H_{s}(m,L_{j+1}) \\ \vdots & \vdots & \vdots \\ L_{j-1} = s_{j-1}G + c_{j-1}P_{j-1} & L_{j-1} = s_{j-1}G + c_{j-1}P_{j-1} \\ R_{j-1} = s_{j-1}H_{\rho}(P_{j-1}) + c_{j-1}I & c_{j} = H_{s}(m,L_{j-1}) \end{array}$$

Multilayered LSAG Signatures

- Consider a transaction which unlocks funds in m one-time addresses
 - Each LSAG signature is of the form $\sigma = (I, c_0, s_0, s_1, \dots, s_{n-1})$ where n is the ring size
 - m LSAG signatures will take space $\mathcal{O}(m(n+2))$
- MLSAG signatures occupy space \(\mathcal{O}(m(n+1)) \)
- MLSAG signatures are ring signatures over a set of n key-vectors
- Consider an $m \times n$ matrix of public keys

$$\begin{bmatrix} P_0^1 & P_1^1 & \cdots & P_{\pi}^1 & \cdots & P_{n-1}^1 \\ P_0^2 & P_1^2 & \cdots & P_{\pi}^2 & \cdots & P_{n-1}^2 \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ P_0^m & P_1^m & \cdots & P_{\pi}^m & \cdots & P_{n-1}^m \end{bmatrix}$$

where the signer knows x_{π}^{j} such that $P_{\pi}^{j} = x_{\pi}^{j} G$ for j = 1, 2, ..., m

• For $I_j = x_{\pi}^j H_p(P_{\pi}^j)$, the MLSAG signature has the form $\sigma = (I_1, \dots, I_m, c_0, s_0^1, \dots, s_0^m, s_1^1, \dots, s_1^m, s_{n-1}^1, \dots, s_{n-1}^m)$

Deanonymization using Commitments

- Consider a confidential transaction which has two inputs and two outputs
- Suppose the sender uses a ring of size 5

$$\text{Public key matrix} = \begin{bmatrix} P_0^1 & P_1^1 & P_2^1 & P_3^1 & P_4^1 \\ P_0^2 & P_1^2 & P_2^2 & P_3^2 & P_4^2 \end{bmatrix}$$

and knows private keys for P_2^1, P_2^2

Let input commitments be

$$\begin{bmatrix} (C_{in})_0^1 & (C_{in})_1^1 & (C_{in})_2^1 & (C_{in})_3^1 & (C_{in})_4^1 \\ (C_{in})_0^2 & (C_{in})_1^2 & (C_{in})_2^2 & (C_{in})_3^2 & (C_{in})_4^2 \end{bmatrix}$$

- Let the output commitment be C_{out} and fees be f
- Observer can identify the sender column by checking for each k = 0, 1, 2, 3, 4 if

$$(C_{in})_k^1 + (C_{in})_k^2 = C_{out} + fH$$

 We need to prove that the commitments in a column add up without revealing the column

Monero RingCT

• Previously, to ensure $(C_{in})_{\pi}^1 + (C_{in})_{\pi}^2 = C_{out} + fH$, blinding factors need to be balanced

$$(x_{in})_{\pi}^{1} + (x_{in})_{\pi}^{2} = x_{out}$$

- Balancing needed only for third party verification of transactions
- For anonymization, we can set $(x_{in})_{\pi}^1 + (x_{in})_{\pi}^2 = x_{out} + z$ and communicate z to receiver using the shared secret
- How to enable third party verification?
- Solution: MLSAG using following public key matrix

$$\begin{bmatrix} P_0^1 & P_1^1 & P_2^1 & P_3^1 & P_4^1 \\ P_0^2 & P_1^2 & P_2^2 & P_3^2 & P_4^2 \\ \sum_{j=1}^2 (C_{in})_0^j - C_{out} - fH & \cdots & \sum_{j=1}^2 (C_{in})_4^j - C_{out} - fH \end{bmatrix}$$

 A signature verifiable using a public key in the last row implies knowledge of corresponding z

References

- Ring Confidential Transactions http://www.ledgerjournal.org/ojs/index.php/ledger/article/view/34
- LSAG, Part 6 of Monero's Building Blocks Articles https://delfr.com/ wp-content/uploads/2018/04/Monero_Building_Blocks_Part6.pdf
- MLSAG, Part 7 of Monero's Building Blocks Articles https://delfr.com/ wp-content/uploads/2018/05/Monero_Building_Blocks_Part7.pdf
- RingCT, Part 9 of Monero's Building Blocks Articles https://delfr.com/ wp-content/uploads/2018/04/Monero_Building_Blocks_Part9.pdf