Scratch paper

Anonymous Università di Torino April 2019

Abstract Poche idee, ben confuse.

1 Introduction

2 Preliminaries

The finite (fractional) expansion of a structure M is a many-sorted expansion that has a sort for M, which we call the home-sort, a sort for \mathbb{R} , the set of real numbers, and a sort for the finite fractional multisets of elements of M^n , for any $n < \omega$. A (fractional) multiset is a function $s: M^n \to \mathbb{R}^+ \cup \{0\}$. We say that s is finite if it is almost always 0. We interpret s(a) as the number of occurreces of a in s. For this reason, we use the following suggestive notation:

1.
$$a \in s = s(a)$$
 this is called the multiplicity of a in s ;

2.
$$|s| = \sum_{a \in M} a \in s$$
 this is called the size of s ;

3.
$$\left|\left\{a \in s : \varphi(a;b)\right\}\right| = \sum_{a \models \varphi(x;b)} a \in s$$

We call these multisets samples of M^n .

We will write M^f for the expansion above. The language of M^f is denoted by L^f . It expands L and the language of arithmetic. Moreover, L^f has a symbols for the functions in 1-3 above. In particular, claim 3 requires a symbol for every $\varphi(x;z) \in L$.

Let \mathcal{U} be a monster model of cardinality κ , an inaccessible cardinal larger than the cardinality of L. The hyperfinite expansion of \mathcal{U} is a saturated elementary extension of \mathcal{U}^f of cardinality κ . We will write \mathcal{U}^{f*} for this expansion. As all saturated models of cardinality κ are isomorphic, we can assume that \mathcal{U} is the home-sort of \mathcal{U}^{f*} .

We write $\operatorname{supp}(s)$ for the support of s, that is, the subset of \mathbb{U}^n where $x \in s$ is positive. Note that $\operatorname{supp}(s)$ is a definable subset of \mathbb{U}^{f*} , hence its cardinality is either finite or κ . Moreover, $s \subseteq M^n$ for some small model M, then $\operatorname{supp}(s)$ is finite.

If *s* is a sample in \mathcal{U}^{f*} , we write $s \subseteq \mathcal{U}^n$ as a shorthand of supp $(s) \subseteq \mathcal{U}^n$.

2.1 Fact Every model M is the domain of the home-sort of some $M^f \preceq U^{f*}$.

Proof Difficile da scrivere senza hand-waving.

Let $s\subseteq \mathcal{U}^{|x|}$ be a sample. For every formula $\varphi(x;z)\in L$ and every $b\in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_s \varphi(x;b) = \frac{\left|\left\{a \in s : \varphi(a;b)\right\}\right|}{|s|},$$

Below, ε always ranges over the positive standard reals. If a and b are hyperreals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε . We write $\operatorname{st}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathcal{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

2.2 Theorem Let $\varphi(x;z) \in L$ be a nip formula. Let M be a model. For every sample $s \subseteq \mathcal{U}^{|x|}$, and every ε , there is a sample $s_{M,\varepsilon} \subseteq M^{|x|}$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b)$ for all $b \in M^{|z|}$.

Moreover, the cardinality of $s_{M,\varepsilon}$ soley depends on ε , namely

$$|s_{M,\varepsilon}| \le c \frac{k}{\varepsilon^2} \ln \frac{k}{\varepsilon}$$

where c is an absolute constant and k is the VC-dimension of $\varphi(x;z)$.

Proof Questo è Vapnik-Chervonenkis.

2.3 Lemma For every nip formula $\varphi(x;z) \in L$, every sample $s \subseteq \mathbb{U}^{|x|}$ and every infinite $B \subseteq \mathbb{U}^{|z|}$ such that $\operatorname{Av}_s \varphi(x;b) > \varepsilon$ for every $b \in B$, there is a finite cover of B, say B_1, \ldots, B_n , such that all types $p_i(x) = \{\varphi(x;b) : b \in B_i\}$ are consistent.

Proof Let M be any model containing B. Fix some $\varepsilon' < \varepsilon$. Let $s_{M.\varepsilon'}$ be the sample given by Theorem 2.2. Then $\operatorname{supp}(s)$ is finite, say $\operatorname{supp}(s) = \{a_1, \ldots, a_n\}$. Let $B_i = \{b \in B : \varphi(a_i; b)\}$. As $\operatorname{Av}_{s_{M.\varepsilon'}} \varphi(x; b) > 0$ for all $b \in B$, these B_i are the required cover of B.

2.4 Corollary Let $\psi(x;z) \in L$ be a nip formula and let $s \subseteq \mathcal{U}^{|x|}$ be a sample. There is no infinite set C such that $\operatorname{Av}_s[\psi(x;c) \not\leftrightarrow \psi(x;c')] > \varepsilon$ for all $c,c' \in C$.

Proof Apply Lemma 2.3 to the folmula $\varphi(x;z,z') = [\psi(x;z) \leftrightarrow \psi(x;z')]$ and the set $B = C^2$. Without loss of generality, we may assume that the sets B_i given by the lemma form a partition of the complete graph on C. By the Ramsey theorem there is an infinite $A \subseteq C$ such that $\{\psi(x;a) \leftrightarrow \psi(x;a') : a,a' \in A, a \neq a'\}$ is consistent. Clearly this is a contradiction as soon as |A| > 2.

The following is another immediate consequence of the lemma.

2.5 Corollary For every nip formula $\varphi(x;z) \in L$, every sample $s \subseteq \mathbb{U}^{|x|}$ and every sequence of indiscernibles $\langle b_i : i < \omega \rangle$ such that $\operatorname{Av}_s \varphi(x;b_i) > \varepsilon$ for every $i < \omega$, the type $\{\varphi(x;b_i) : i < \omega\}$ is consistent.

- **2.6 Remark** ??? When the model M in the theorem above is sufficiently (?) saturated, we can claim that there is a (necessarily finite) sample $s_M \subseteq M^{|x|}$ such that $\operatorname{Av}_{s}\varphi(x;b) \approx \operatorname{Av}_{s_{M}}\varphi(x;b).$ **2.7 Definition** Let $\varphi(x;z) \in L$. We say that the sample $s \subseteq \mathcal{U}^{|x|}$ is invariant for $\varphi(x;z)$ over M if, for every $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\operatorname{Av}_s \varphi(x;b) \approx \operatorname{Av}_{s'} \varphi(x;b)$. For invariant samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. **2.8 Corollary** Let $\varphi(x;z) \in L$ be a nip formula. Let M be any model. For every sample $s\subseteq \mathcal{U}^{|x|}$ that is invariant for $\varphi(x;z)$ over M, and every ε , there is a sample $s_{M,\varepsilon}\subseteq M^{|x|}$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon} \operatorname{Av}_{s_{M_{\varepsilon}}} \varphi(x;b)$ for all $b \in \mathcal{U}^{|z|}$. **Proof** By the theorem above, there is a sample $s_{M,\varepsilon} \subseteq M^{|x|}$ such that $\operatorname{Av}_s \varphi(x;b) \approx_{\varepsilon}$ $\operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b)$ for all $b \in M^{|z|}$. Suppose for a contradiction that $\operatorname{Av}_s \varphi(x;b') \not\approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b')$ for some $b' \in \mathcal{U}^{|z|}$. Pick a sample $s' \subseteq \mathcal{U}^{|x|}$ such that $b' \downarrow_M s' \equiv_M s$. By invariance, $\operatorname{Av}_{s'} \varphi(x;b') \not\approx_{\varepsilon}$ $\operatorname{Av}_{S_{M,s}} \varphi(x;b')$. As $b' \downarrow_M s'$, the same formula holds for some $b \in M^{|z|}$. Once again by invariance, $\operatorname{Av}_s \varphi(x;b) \not\approx_{\varepsilon} \operatorname{Av}_{s_{M,\varepsilon}} \varphi(x;b)$. A contradiction. The following is stronger form of invariance. **2.9 Definition** We say that a sample $s \subseteq \mathcal{U}^{|x|}$ is smooth for $\varphi(x;z)$ over M if for any other sample s' such that $Av_s \varphi(x;b) \approx Av_{s'} \varphi(x;b)$ for all $b \in M^{|z|}$, the same equivalence holds for all $b \in \mathcal{U}^{|z|}$. Clearly, smooth impies invariant. **2.10 Definition** ??? A sample $s \subseteq \mathcal{U}^{|x|}$ is finitely satisfiable for $\varphi(x;z)$ in M if, for every $b \in \mathcal{U}^{|z|}$ such that $\operatorname{Av}_{s} \varphi(x;b) \not\approx 0$, there is $a \in M^{|z|}$ such that $\varphi(a;b)$. We say that s is generically stable for $\varphi(x;z)$ over M if it is both invariant and finitely satisfiable for $\varphi(x;z)$ over M. **2.11 Definition ???** A formula $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,\ldots z_n) \in L$ such that for every finite sample s and every $b \in \mathcal{U}^{|x|}$ there are $a_1, \ldots, a_n \in s^{|z|}$ such that $\psi(x; a_1, ..., a_n) \leftrightarrow p(x)$, where $p(x) = \operatorname{tp}_{\omega}(b/...s)$. **2.12 Theorem (false)** The following are equivalent
 - 1. $\varphi(x;z) \in L$ is distal;
 - 2. *if s is generically stable for* $\varphi(x;z)$ *over M then s is smooth for* $\varphi(x;z)$ *over M.*