Linear Models and SVMs

Optimization for Machine Learning — Exercise #2

Monday 24th April, 2023

Part I: Theory

I.1. Linear model example

Exercise I.1 (Polynomial Curve Fitting). Given a set of points and their targets $\{x_i, t_i\}_{i=1}^N$ so that for $i \in [N]$, $x_i \in \mathbb{R}$ and $t_i \in \mathbb{R}$, the *curve fitting problem* is loosely defined as finding a function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x_i) \approx t_i$ for all $i \in [N]$.

In order to find such a function, we restrict ourselves to a set of parametrized functions \mathcal{F} : each function can be parametrized with a vector $\mathbf{w} \in \mathbb{R}^{D+1}$.

To quantify the problem further, in this exercise, we limit ourselves to *polynomial functions* of degree D for the set \mathcal{F} , and can therefore write

$$f(x, \mathbf{w}) = w_0 + w_1 x + \dots + w_D x^D = \sum_{k=0}^{D} w_k x^k$$
 (1)

Notice how f is linear in w, the parameter. Such model is called a linear model.

With N samples, we defined the loss (or error, or energy) of our parameter as the point-wise square distance between its estimation and the target:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - t_i)^2$$
 (2)

1. Is the function E convex in w? How to find the optimal parameter w^* at which the loss is minimum?

$$\text{2. Compute the gradient } \nabla_{\pmb{w}} E(\pmb{w}) = \begin{pmatrix} \partial_{w_0} E(\pmb{w}) \\ \vdots \\ \partial_{w_D} E(\pmb{w}) \end{pmatrix} \in \mathbb{R}^{D+1}.$$

3. Show that the optimal parameter w^* satisfies the following system of equation:

$$\forall k \in [D+1], \quad \sum_{j=0}^{D} A_{kj} w_j^{\star} = T_k,$$

where

$$A_{kj} = \sum_{i=1}^{N} (x_i)^{k+j}, \qquad T_k = \sum_{i=1}^{N} (x_i)^k t_i.$$
 (3)

4. Is such a system of equation solvable? When / not?

It is usual to add a *regularizer* to the objective, penalizing "complex" models. This also can help selecting a model when several models are solutions to the optimization problem.

One of the most common regularizer is the parameter squared-norm: with a *penalizer weight* $\lambda \in \mathbb{R}_+$, the Equation (2) is modified to give

$$E_{\lambda}(\boldsymbol{w}) = E(\boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|^2 = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \boldsymbol{w}) - t_i)^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2.$$
 (4)

- 5. What is the role of λ ?
- 6. Is E_{λ} convex?
- 7. Show that each component of the optimal weight w_i^* is now found by solving

$$\sum_{j=0}^{D} (A_{ij} + \lambda) w_j = T_i,$$

with A_{ij} and T_i defined as in Equation (3).

Matrix expression It is sometimes preferable to deal with vector and matrices, rather than scalar expressions. When the model is linear in w, it is possible to express it as a *linear product* between a matrix and a vector. The expression in Equation (1) can be thought as a dot product

between w and the vector of powers of x, that define as $\phi(x) := \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^D \end{pmatrix}$, so that

$$f(x, \boldsymbol{w}) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(x).$$

Stacking all the N examples in a matrix, and denoting $\phi_i := \phi(x_i)$, we define

$$\Phi := \begin{pmatrix} | & | & & | \\ \boldsymbol{\phi}_1 & \boldsymbol{\phi}_2 & \cdots & \boldsymbol{\phi}_N \\ | & | & & | \end{pmatrix} \in \mathbb{R}^{(D+1) \times N}$$

and can therefore compute the model on the whole dataset in one expression: $y(w) = \Phi^{\top} w \in \mathbb{R}^N$. Each entry i of y corresponds to a different sample x_i . Then, stacking the targets into a vector $t \in \mathbb{R}^N$, the error function (2) can equivalently written as

$$E(w) = \frac{1}{2} ||y(w) - t||^2,$$

and the regularized error as

$$E_{\lambda}(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{y}(\boldsymbol{w}) - \boldsymbol{t}\|^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$

8. Show that $\nabla E_{\lambda}(\boldsymbol{w}) = \Phi(\Phi^{\top}\boldsymbol{w} - \boldsymbol{t}) + \lambda \boldsymbol{w}$, so that \boldsymbol{w}^* solves the linear equation $(\Phi\Phi^{\top} + \lambda I_{D+1})\boldsymbol{w}^* = \Phi \boldsymbol{t}.$

I.2. Support Vector Machines (SVM)

In order to implement a first SVM algorithm, we will need the notion of *subgradient* we give next.

I.2.1. Subgradients

When a convex loss function $E \colon \mathbb{R}^d \to \mathbb{R}$ is not differentiable, its *subgradient* can be used. It is defined as the set, for $x \in \mathbb{R}^d$,

$$\partial E(x) = \{ g \in \mathbb{R}^d \mid \forall y \in \mathbb{R}^d, \ E(y) \geqslant E(x) + \langle g, y - x \rangle \}.$$

If E is differentiable at x, then $\partial E(x) = {\nabla E(x)}.$

For instance, for $E : \mathbb{R} \to \mathbb{R}$, $x \mapsto E(x) = |x|$, E is differentiable at any $x \neq 0$, with gradient -1 on $(-\infty, 0)$ and 1 on $(0, +\infty)$.

At x = 0, we compute, for any $y \in \mathbb{R}$ and $g \in \mathbb{R}$:

$$E(y) \geqslant E(0) + \langle g, y - 0 \rangle \iff |y| \geqslant \langle g, y \rangle$$

 $\iff |y| \geqslant qy$

This condition has to be true for any $y \in \mathbb{R}$. This is only true when $g \in [-1, 1]$. Therefore,

$$\partial E(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1, 1] & \text{if } x = 0 \\ \{1\} & \text{if } x > 0 \end{cases}$$

Geometrically, this can be interpreted as having, for the absolute value at the origin, any lines with slope between -1 and 1 lower-bounding the graph of the function.

Exercise I.2. Let
$$E \colon \mathbb{R} \to \mathbb{R}$$
, $x \mapsto E(x) = \max(0, 1 - x)$.

1. Where is E differentiable?

2. Show that
$$\partial E(x)= \begin{cases} \{-1\} & \text{if } x<1\\ [-1,0] & \text{if } x=1\\ \{0\} & \text{if } x>1 \end{cases}$$

I.2.2. SVM problem

Now, the SVM problem can be presented. We will discuss the (pure) linear case.

Support Vector Machines solve a binary classification task. Given N couples samples / targets $\{x_i, t_i\}_{i \in [N]}$, with $x_i \in \mathbb{R}^d$ and $t_i \in \{-1, 1\}$ for each $i \in [N]$, the goal is to classify the samples, i.e. find a **hyperplane that separates them**, with positive samples on one side of the hyperplane and the negative on the other. We assume that such an hyperplane exists (the samples are said to be *linearly separable*).

A hyperplane in \mathbb{R}^d is represented with a vector $w \in \mathbb{R}^d$ and a bias $b \in \mathbb{R}$ with the equation

$$y(x) = \langle w, x \rangle + b.$$

This equation splits \mathbb{R}^d into three regions:

- points such that y(x) > 0,
- points such that y(x) = 0 (the hyperplane itself),
- points such that y(x) < 0.

Therefore, we would like to find an hyperplane such that the samples x_i that have a positive target $t_i = 1$ all lie on the side of the hyperplane where y(x) > 0, and reciprocally all samples x_i such that $t_i = -1$ should be on the side where y(x) < 0.

Therefore, the product $t_i y(x_i)$ should always be positive. Based on that, the loss we defined is

$$E(w) = \sum_{i=1}^{N} \max(0, 1 - t_i y_i) = \sum_{i=1}^{N} \max(0, 1 - t_i (\langle w, x_i \rangle + b))$$
 (1)

Exercise I.3. 1. Is the loss E convex? Differentiable?

- 2. Compute the subgradient of the loss E at w.
- 3. What should be the (sub-) gradient descent algorithm to minimize E?

Part II: Programming

Exercise II.1. Model fitting This exercise implements some results found in Exercise I.1.

1. Generation of the target. In this toy example, we generate the N points ourselves. The true target t_i will be sinusoidal, with some noise, i.e. $t_i = \sin(2\pi x_i) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. The different scales (for σ, x_i) are given as $\sigma = 0.1$, and $x_i \sim \mathcal{U}([0, 1])$, uniform distribution on the segment [0, 1].

The generation of the data is performed by the function gen_sin_data in the file ex02/utils.py.

- 2. Implement the parametrization function (1) as f(x, w), where the dimensions D is implied by the size of w.
- 3. Implement the error function E defined in (2), and its gradient $\nabla E(w)$.
- 4. Find w^* , either by
 - a) gradient descent; or
 - b) solving the linear system of equations (3).

Exercise II.2 (SVM). This exercise implements some material from Exercise I.3. The data is generated with the helper function gen_binary_data in ex02/utils.py. The dimension is set to d=2 in order to visualize the result at the end. The generation simply draws some random points on the plane, draws an hyperplane, and classify the points depending on the sign of $w^{T}x + b$. Therefore, the training data is linearly separable.

- 1. Implement the loss from (1).
- 2. Implement the (sub-) gradient algorithm derived in I.3.3
- 3. Visualize the solution found by the algorithm. What happens if the data is not linearly separable?