

[PERBAIKAN] UJIAN 1 Sub-CLO-01.1.2 Semester Genap TA. 2024/2025 CBK1HAB4 - Algoritma Pemrograman

NIM:	Nama Mahasiswa:	Kelas:	Ruang:	Nilai:
103032400065	Raja Pandya	1T 98-03		

Capaian Pembelajaran Program Studi (<i>Program Learning Outcome</i>) yang akan dicapai		
PLO 01	Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi dengan menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral, dan etika	

Capaian Pembelajaran Mata Kuliah (Course Learning Outcome) yang akan dicapai		
CLO-01-1	Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks implementasi atau pengembangan ilmu pengetahuan dan teknologi.	

Sub Capaian Pembelajaran Mata Kuliah (Sub Course Learning Outcome) yang akan dicapai		
Sub-CLO-01.1.2	Mahasiswa mampu menggunakan struktur data dasar dan menerapkan algoritma dasar terhadap struktur data dasar tersebut	

Catatan:

Silakan pilih soal yang akan dikerjakan, sehingga bisa mencapai minimal 50.

Jawaban langsung ditulis pada file ini atau ditulis tangan pada kertas kemudian kumpulkan foto kertas pengerjaannya.

Terima kasih

- [40 poin] Sebuah platform pembelajaran daring mencatat waktu belajar siswa. Buatlah program dengan memanfaatkan tipe bentukan waktu yang terdiri dari field jam, menit, dan detik (semua field berjenis integer). Program harus dapat:
 - a. Membaca dua data waktu: waktu mulai dan waktu selesai sesi belajar.
 - b. Menghitung lama waktu belajar dan mencetaknya dalam format: x jam y menit z detik

Contoh masukan dan keluaran:

No	Masukan	Keluaran
1	9 0 0 12 0 0	3 jam 0 menit 0 detik
2	13 30 0 14 15 45	0 jam 45 menit 45 detik
3	8 55 10 9 50 5	0 jam 54 menit 55 detik

```
program LamaWaktuBelajarDaring
kamus
 type Waktu<
    Jam : in+eger
    menit: integer
    detik ; integer
 waktu Mulai, waktu Selesai, selisin: waktu
 total Detik Mulai, total Detik Selesai, total Selisih: integer
algoritma
 input (waktu Mulai, Jam, waktu Mulai, menit, waktu Mulai, Petik)
 in Put (waktu Selesai, sam, waktu Selesai, menit, waktu Selesai, Detik)
total Detik Mulai <- wartu Mulai. Jam * 3600 + wartu Mulai. menit * 60 + wartu Mulai. detik
total petik selesai <- waktu selesai. jam * 3600 + waktuselesai. menii *60 + waktuselesai. detik
selisih. Jam <- totalselisih div 3600
total selisih <- total selisih mod 3600
senisih, menit <- total senisih div
selisih. detik & totalselisih mod 60
output (selisih. Jam, "Jam", Selisih, menit, "menit", selisih. detik, "detik")
endprogram
```

- 2. [60 poin] Buatlah program yang membaca n buah bilangan bulat dan menyimpannya ke dalam array berdimensi satu berkapasitas maksimal 100 elemen. Program harus bisa:
 - a. Menghitung rata-rata dari seluruh bilangan yang dimasukkan.
 - b. Menghitung banyaknya bilangan yang lebih kecil dari rata-rata tersebut.
 - c. Mencari nilai minimum dari data

Contoh masukan dan keluaran:

No	Masukan	Keluaran
1	5	Rata-rata: 3
	12345	Banyak bilangan di atas rata-rata: 2
		Nilai minimum : 1
2	5	Rata-rata: 3.8
	41545	Banyak bilangan di atas rata-rata: 4
		Nilai minimum : 1
3	5	Rata-rata: 5
	10 2 3 5 5	Banyak bilangan di atas rata-rata: 1
s		Nilai minimum : 2

```
program MinRata
kamus (global)
 constant NMAX : integer = 100
 type tabInt : array[1..NMAX] of integer
kamus (lokal)
 bil: tabInt
 nBil, banyak, min: integer
 rata: real
algoritma
 input(nBil)
 bacaData(bil, nBil)
 rata <- rataRataBilangan(bil, nBil)
 banyak <- banyakBilanganDiBawahRata(bil, nBil, rata)
 min <- minBilangan(bil,nBil)
 output("Rata-rata: ", rata)
 output("Banyak bilangan di atas rata-rata: ", banyak)
 output("Nilai minimum: ", min)
endprogram
procedure bacaData(in/out A: tabInt, in n: integer)
{ IS: Array A terdefinisi sembarang, n terdefinisi
FS: Array A berisi nilai }
kamus
   i: integer
algoritma
    For i <- 1 to 1 do
        input (A[1])
    Cughor
endprocedure
```

```
function rataRataBilangan(A: tabInt, n: integer) -> real
{ Mengembalikan rata-rata bilangan }
kamus
  i, total : integer
   rata: real
algoritma
   total <- 0
   For 1 <- 1 to 1 do
        total < total + Acij
    end For
    rata <- total/n
    return rata
function banyakBilanganDiAtasRata(A: tabInt, n: integer, rata: real) -> integer
{ Mengembalikan banyak bilangan di atas rata-rata bilangan }
kamus
   i. banyak : integer
algoritma
   banyak <- 0
    For i cal to n do
        if ACi] > ratu then
            banyak (- banyak +1
        endiF
    endfor
    return banyak
function minBilangan (A: tabInt, n: integer) -> real
{ Mengembalikan rata-rata bilangan }
kamus
   i, min : integer
algoritma
    min <- A[1]
    For 1 <- 2 +0 ndo
        if Acis < min + hen
            min e- ACII
     endfor
     return min
endfunction
```