

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Node Overview

· 16, 20C air cooled

Summit Node

(2) IBM Power9 + (6) NVIDIA Volta V100

Available File Systems / Storage Areas on Ascent

NFS Directories – This is where you might want to keep source code and build your application.

NOTE: These directories are read-only from the compute nodes!

/ccsopen/home/userid

Your personal home directory

/ccsopen/proj/gen040

- Can be accessed by all participants of this event
- You should create a directory here with your team name to collaborate (source code, scripts, etc.)

GPFS Directories (parallel file system) – This is where you should write data when running on Ascent's compute nodes.

/gpfs/wolf/gen040/scratch/userid

Your personal GPFS scratch directory

/gpfs/wolf/gen040/proj-shared

- Can be accessed by all participants of the event
- You should create a directory here with your team name to collaborate (data written from compute nodes)

jsrun – Basic Options

jsrun [-n #resource sets] [CPU cores, GPUs, tasks in each resource set] program [program args]

jsrun Flags		Description	Dofouth Volue
Long	Short	Description Default Value	
nrs	-n	Number of RS	All available physical cores
tasks_per_rs	-a	Number of MPI tasks (ranks) per RS	N/A (total set instead [-p])
cpu_per_rs	-с	Number of CPUs (physical cores) per RS	1
gpu_per_rs	-g	Number of GPUs per RS	0
bind	-b	Number of physical cores allocated per task	packed:1
rs_per_host	-r	Number of RS per host (node)	N/A
latency_priority	-1	Controls layout priorities	gpu-cpu,cpu-mem,cpu-cpu
launch_distribution	-d	Order of tasks started on multiple RS	packed

jsrun Job Launcher – Tools & Documentation

hello_jsrun

- https://code.ornl.gov/t4p/Hello_jsrun
- Simple "Hello World"-type program used to test layout of resources on a Summit node using jsrun.
- As stated in the README, be sure to start MPS server (-alloc_flags "gpumps")

job-step-viewer

https://jobstepviewer.olcf.ornl.gov/

- "Job Launcher (jsrun)" section of the Summit User Guide
- https://docs.olcf.ornl.gov/systems/summit_user_guide.html#job-launcher-jsrun

Additional training materials to learn about jsrun

A (fairly) quick tutorial on using the jsrun job launcher on Summit/Ascent:

https://github.com/olcf-tutorials/jsrun_quick_start_guide

Recent Presentation of "jsrun Basics"

- Slides: https://www.olcf.ornl.gov/wp-content/uploads/2019/12/jsrun_basics.pdf
- Recording: https://vimeo.com/393782415

[t4p@login1: ~]\$ hostname

login1


```
[t4p@login1: ~]$ hostname
login1

[t4p@login1: ~]$ bsub -P GEN040 -nnodes 1 -W 60 -Is /bin/bash
Job <15167> is submitted to default queue <batch>.

<<Waiting for dispatch ...>>
<<Starting on login1>>
```



```
[t4p@login1: ~]$ hostname
login1
[t4p@login1: ~]$ bsub -P GEN040 -nnodes 1 -W 60 -Is /bin/bash
Job <15167> is submitted to default queue <batch>.
<<Waiting for dispatch ...>>
<<Starting on login1>>
[t4p@login1: ~]$ hostname
login1
```



```
[t4p@login1: ~]$ hostname
login1
[t4p@login1: ~]$ bsub -P GEN040 -nnodes 1 -W 60 -Is /bin/bash
Job <15167> is submitted to default queue <batch>.
<<Waiting for dispatch ...>>
<<Starting on login1>>
[t4p@login1: ~]$ hostname
                                                                      bsub
                                                                                jsrun
login1
[t4p@login1: ~]$ jsrun -n1 hostname
                                                                                         Compute Nodes
                                                               Login Nodes
                                                                          Batch Nodes
                                                                 (Shared)
                                                                           (Shared)
                                                                                          (Exclusive)
h49n16
```


The login nodes are shared among all participants (compiling, file editing, data analysis, etc.), so please **DO NOT RUN YOUR APPLICATIONS ON THE LOGIN NODES!!**

Some Useful Commands / Flags

jobstat

Shows information about the jobs running on the system

--smpiargs="-gpu"

- jsrun flag that enables CUDA-Aware MPI
- If you are not familiar with CUDA-Aware MPI or GPUDirect, please see this tutorial: https://github.com/olcf-tutorials/MPI_ping_pong

-alloc_flag "gpumps smt1"

- bsub flag that allows you to start a CUDA MPS server or change the SMT mode of the physical CPU cores
- Multiple options are separated by a space-delimited list

Ascent Queue Policy

Number of Nodes	Max Walltime	
1 – 2	2 hours	
3 – 4	1 hour	

There are a total of 16 schedulable compute nodes in Ascent, so please be respectful of others when requesting resources...

- Try to limit yourself to 1 compute node unless needed
- When you're finished with an allocation, please kill it (i.e., exit from within an interactive job or bkill JOBID for batch jobs).

Other Helpful Links OLCF Summit User Guide

- https://docs.olcf.ornl.gov/systems/summit_user_guide.html
- NOTE: Ascent mounts different file systems than Summit, so please refer to info in these slides or the Training System (Ascent) section of the Summit User Guide for this information
 - https://docs.olcf.ornl.gov/systems/summit_user_guide.html#training-system-ascent
- NVIDIA's Nsight Profiling Tools
 - https://docs.olcf.ornl.gov/systems/summit_user_guide.html#profiling-gpu-code-with-nvidia-developer-tools

OLCF Training Archive

- Contains slides and recordings from previous OLCF training events.
- https://docs.olcf.ornl.gov/training/training_archive.html

Accounts

Accounts will be active until Friday, Sept 10 2021

ML/AI/DL On Ascent

- IBM Provides the Open-CE Python Conda environment
 - Contains many common AI tools, e.g. TF, pyTorch, etc
 - More details here: https://docs.olcf.ornl.gov/software/analytics/ibm-wml-ce.html

