Inference & Causality Week 2 Session 4

28.10.2025

Lecturer: Narges Chinichian

IU University of Applied Science, Berlin

Course Overview

Reminder: Check the course hub on Notion for up-to-date information:

https://tinyurl.com/mrcjp79s

Outline of Week 2 Session 4

- Unit 1 quiz
- Introduction to Causality
- Correlation vs causation
- Granger causality
- Directed Acyclic Graphs (DAG)
- Elements of causal graphs

Let's check what we remember from unit 1 You have 15min.

- Humans always seek causal stories
- Let's have a few random draws from:
 - https://tylervigen.com/spurious-correlations
 - Share your best with the class!

Why Causality?

Correlation vs Causation

What Correlation Means

In statistics, correlation describes how two variables change together, whether or not one causes the other.

Note: Correlation ≠ Direction ≠ Mechanism.

Pearson Correlation Coefficient

- Quantifies the of a linear relationship between two continuous variables.
- Values range from −1 to +1:
- +1 : perfect positive linear relationship
- 0 : no linear relationship
- −1 : perfect negative linear relationship
- Computed as:

$$r_{xy} = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

Let's play this game:

If you get a **higher than 5 streaks**, you get some bonus points for the course: https://www.guessthecorrelation.com/

How to Approach Causality?

Domain knowledge + experiments + causal models

Causal Models: Framing the Question

Causal models describe how and why variables influence each other.

They go beyond observing co-movement, they encode mechanisms and predict interventions ("what if X changes?").

Example:

Correlation: "Ice cream sales and drowning increase together."

Causal model: "Hot weather causes both ice cream sales and

swimming frequency, which affects drowning risk."

Causality in Time

In time series, we often ask:

"Does knowing the past of X help us predict Y?"

- This idea leads to **Granger** causality, which tests whether one variable's history adds predictive power for another.
- Important: It captures temporal predictiveness, <u>not necessarily true</u> <u>causal mechanism</u>.

Granger Causality

Source: Wikimedia Commons. "Granger Causality Illustration." From the article Granger causality, Wikipedia, https://en.wikipedia.org/wiki/Granger_causality.

$$Y_{t} = a_{0} + \sum_{i=1}^{p} a_{i}Y_{t-i} + \sum_{i=1}^{p} b_{i}X_{t-i} + \varepsilon'_{t}$$

Let's check out our notebook 5.

From Predictive to Structural Causality Directed Acyclic Graphs (DAGs)

- Granger causality helps identify predictive direction in time series.
- But prediction ≠ explanation: It doesn't tell us the full causal mechanism.
- DAGs extend this idea: they represent structural causal relationships between variables.
- With DAGs, we can model systems, test assumptions, and reason about interventions.
- Each arrow in a DAG represents a causal relationship.

Causal DAGs

- DAGS:
 - Directed: Links have directions
 - Acyclic: There in no loop! Why?

Causal DAGs

- Reminder:
- Every Bayesian Network (BN) is a DAG (but not every DAG is a BN), a BN also includes probability distributions.
- Each node in a BN has a conditional probability distribution (CPD) that specifies how it depends on its parents.

Elements of Causal Graphs

Pattern	Structure	Example	Effect
Chain	$A \rightarrow B \rightarrow C$	Smoking → Tar → Cancer	Mediator B transmits effect
Fork	$A \leftarrow B \rightarrow C$	Genetics → Smoking & Cancer	Confounder B creates spurious link
Collider	$A \rightarrow B \leftarrow C$	Smoking & Pollution → Hospitalization	Conditioning on B introduces bias

D-Separation/Connection

- Goal: To check whether two variables X and Y are conditionally independent given some set of variables Z.
- How: Look at the causal graph and check the paths between X and Y.

Result	Meaning	Interpretation
X and Y are d-separated (given Z)	All paths between X and Y are blocked	X and Y are conditionally independent given Z . No information flows
X and Y are d-connected (given Z)	At least one path between X and Y is open	X and Y are conditionally dependent given Z. Some information flows (this may be a true causal link or a spurious correlation, e.g. from a collider)

Reminder of what "elements of DAG" do to path

Туре	Example	Without conditioning	After conditioning	Why
Chain	$A \rightarrow B \rightarrow C$	Open	Blocked if you condition on B	B passes information from A to C
Fork (confounder)	$A \leftarrow B \rightarrow C$	Open	Blocked if you condition on B	B creates a shared cause link
Collider	$A \to B \leftarrow C$	Blocked	Opened if you condition on B	Conditioning creates spurious correlation

Session Summary

- Correlation vs Causation
- Pearson Correlation
- Causality and Causal Models
- Granger Causality
- Directed Acyclic Graphs (DAGs)
- Elements of Causal Graphs
- D-separation and connection

Congratulations! We finished <u>unit 2</u> of this course.

Don't forget to read unit one of your course book for more detailed understanding of this unit.

Let's check what we learnt in unit 2 You have 15min.

Homework

 Exercise: Fill out the exercises on notebooks 1, 2, 4 and 5 for this week, commit your answers and submit.