Министерство образования и науки Российской Федерации Севастопольский государственный университет

ИЗУЧЕНИЕ ОСНОВ ЯЗЫКА МАНИПУЛИРОВАНИЯ ДАННЫМИ SQL НА БАЗЕ CEPBEPA FIREBIRD

Методические указания

к лабораторной работе №8 по дисциплине

"Управление данными"

для студентов специальности 09.03.02 – "Информационные системы и технологии" всех форм обучения

УДК 004.92

Изучение основ языка манипулирования данными SQL на базе сервера Firebird.

Методические указания к лабораторной работе №1 по дисциплине "Управление данными", для студентов всех форм обучения специальности 09.03.02 - "Информационные системы и технологии /Сост. Ю.В. Доронина, О.Л. Тимофеева, М.Р. Валентюк. - Севастополь: Изд-во СевНТУ, 2014.-11с.

Цель методических указаний: выработка у учащихся практических навыков по работе с реляционными базами данных.

Методические указания утверждены на заседании кафедры Информационных Систем. Протокол № от 2014 г.

Рецензент: доц. кафедры кибернетики и вычислительной техники, канд.техн.наук. Литвинова Л.А.

Допущено учебно-методическим центром в качестве методических указаний.

ЛАБОРАТОРНАЯ РАБОТА № 8. МАНИПУЛИРОВАНИЕ БАЗОЙ ДАННЫХ. РЕЛЯЦИОННАЯ АЛГЕБРА И SQL

1. Цель работы:

- 1.1. Изучить основы реляционной алгебры как базового средства манипулирования.
- 1.2. Научиться представлять запросы как на реляционной алгебре, так и на SQL.

2. Основные положения

2.1. Реляционная алгебра

Каждая операция реляционной алгебры использует одно или два отношения в качестве ее операндов и образует в результате некоторое новое отношение. Кодд определил 8 таких операций, которые можно разделить на две основные группы:

- 1) традиционные теоретико-множественные операции объединения, пересечения, разности и декартового про-изведения применительно к отношениям.
 - 2) специальные реляционные операции селекции, проекции, соединения и деления.

2.2.1 Объединение

 $R=R1 \cup R2$

2.2.2 Пересечение

R=R1∩ R2

Для отношений R1 и R2, описанных выше, $R = R1 \bigcap R2$

2.2.3 Разность

R = R1 - R2

Для отношений R1 и R2, описанных выше, R = R1 - R2

a	б	В
д	e	a

2.2.4 Декартово произведение

 $R = R1 \times R2$

Пример:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ bx \\ by \\ cx \\ cy \end{bmatrix}$$

Для определенных выше отношений R1 и R2 результат будет:

]	$R = R1 \times R2$								
a	б	В	И	K	л				
д	e	a	И	К	Л				
И	K	Л	И	К	Л				
a	б	В	Γ	Д	e				
Д	e	a	Γ	Д	e				
И	к	л	Γ	д	e				

2.2.5 Селекция

$$R = \delta_{F(R1)}$$

где F - условие образования.

Формула условия F образуется:

- 1. Операндами, являющимися именами атрибутов (либо номерами столбцов), для которых заданы ограничения области определения с помощью операций сравнения чисел.
- 2. Логическими операциями ^ «и», V- «или», ¬ «не».
- 3. Операциями сравнения чисел >, <, =, <=, >=, —=.

Порядок вычислений может быть задан скобками.

$$R=\mbox{\bf 6}$$
 (a1 = a) V(a2 = x) (R1) (Отношения R образуют выделенные строки.)

R1

a1	a2	a3
b	у	1
<u>a</u>	<u>x</u>	<u>2</u>
С	У	3
<u>a</u>	<u>x</u>	<u>4</u>
d	у	5

Приведем еще несколько примеров селекции:

Rx					
a	б	В			
д	e	a			
И	K	Л			
Γ	Д	e			

R=
$$\delta$$
 1=a V1=д (Rx)

 а
 б

 д
 е

 а
 а

R	$R = \mathbf{O} 1 \mathbf{N} 0 3 (Rx) = R$						
	a	б	В				
	Д	e	a				
	И	К	л				
				•			

2.2.6 Проекция

$$R = \pi_{i1...ik(R1)}$$

где i1...ik - атрибуты отношения R1 (номера или имена столбцов)

R= π a1,a3 (R1) (Столбцы, которые войдут в отношение R, заштрихованы)

R1

a1	a2	a3	a4

Несколько примеров проекций отношения R1 (описанного в п. 2.1.1.):

$$R = \pi$$
 3,1 (R1)

В	a
a	д
Л	И

Порядок следования столбцов в отношении - результате определяется их местоположением в проектирующем операторе.

2.2.7 Соединение отношений

$$R=R_1>< R_2$$

i θ j

где i, j номера или имена столбцов в R1 и R2 соответственно, θ - операция сравнения.

Данная операция может быть выражена через селекцию декартова произведения следующим образом:

$$R = R1 > < R2 = \delta i \theta(n+j) (R1 \times R2),$$

где n - арность отношения R1. Если θ является операцией равенства, то указанную операцию называют операцией эквисоединения. Ниже приведен пример такой операции.

2.2.8 Естественное соединение

Существует разновидность эквисоединения, называемая естественным соединением. Для её успешного выполнения необходимо:

- обязательное наличие имен у столбцов;
- совпадение к >= 1 имен столбцов у обоих отношений.

Естественное соединение:
$$R = R1 > < R2$$
 $R1 = (a1...ak, b1...bn)$ $R2 = (a1...ak, c1...cm)$

$$R = R1 > < R2 = \pi a_1 ...ak, b_1 ...bn, c_1 ...cm (\delta (a_1R_1 = a_1R_2 \land ... \land a_kR_1 = a_kR_2)(R_1 \times R_2))$$

Пример 1:

R1					R2					R1	>< R	22			
a1	a 2	b1	b 2			•	2	•	1						
10	X	1	4			al	a 2	cl 7		al	+	a2	b1	ь2	cl
20	у	2	5			10	d	8		10	+	X	1	4	7
10	X	3	6			10	u	0		10		X	3	6	/

Пример 2:

R1

A	В	C
К	0	p
И	0	p
p	И	К
О	0	a

n	
	•
	/

В	С	Д
И	K	0
o	p	c
0	p	K

A	В	С	Д
K	0	p	С
K	0	p	K
И	0	p	c
И	0	p	K
p	И	К	0

2.2.9 Деление

$$R = R1 : R2$$
 \uparrow
 \uparrow
 n
 m -арное

$$\mathsf{R} = \pi_{1,2\ldots\,(\,n\text{-}m\,)\,(\,\mathsf{R}1\,)\,} \, \cdot \pi_{1,2\ldots\,(\,n\text{-}m\,)\,((\,\pi_{1,2\ldots\,(\,n\text{-}m\,)\,(\,\mathsf{R}1\,\times\,\mathsf{R}2\,)\,} \, \cdot\,\,\mathsf{R}1\,)}$$

R	1

a	X
a	у
a	Z
b	X
c	у

X
7

Еще один развернутый пример:

R1

И	0	p	К
0	p	c	a
c	К	p	К
И	0	c	a
c	К	c	a
И	0	К	С

c	a
p	К

И	0
c	К

Отметим, что частное отношений представляет собой алгебраическую интерпретацию квантора всеобщности.

2.2. Примеры решения задач на PA и на SQL

Дана реляционная база данных:

РЕЙС (№ <u>рейса</u>, пункт_отправления, пункт_назначения, время_вылета, стоимость); ПОЛЁТ (дата, № рейса, код_экипажа, свободные_места, тип_самолета, объем_груза); САМОЛЁТ (тип_самолета, число_экипажа, количество_мест, вес_груза).

1. Определить число свободных мест по всем рейсам на 20.06.12.

 $R = \mathcal{T}$ №рейса, свободные_места (δ дата = 20.06.12.(Полет)) ; SELECT №рейса, свободные места FROM ПОЛЕТ WHERE дата = '20.06.12';

2. Определить рейсы и время вылета из Симферополя в Москву.

R = π №рейса, время_вылета (δ пункт_отправления = « Симферополь » ^ пункт_назначения = « Москва » (Рейс)) ;

SELECT №рейса, время вылета

FROM PEЙC

WHERE пункт_отправления = 'Симферополь' AND пункт_назначения = 'Москва';

3. Определить типы самолетов, число членов экипажа на которых 13.

 $R = \mathcal{T}_{\text{ТИП_самолета}}$ (δ число_экипажа =13(Самолет)) SELECT тип_самолета FROM CAMOЛЕТ WHERE число экипажа = 13;

4. Определить номера рейсов, которые не производились с даты А по дату Б.

R1 = π №рейса (рейс) ;R2 = π №рейса (δ дата >A ^ дата <Б (Полет)); R = R1 - R2; SELECT №рейса FROM РЕЙС WHERE №рейса NOT IN (SELECT №рейса FROM РЕЙС

WHERE дата between A AND Б);

5. Определить типы самолетов, которые использовались как в январе, так и в феврале 2012 года.

R1 =
$$\pi$$
 тип_самолета (δ дата > 01.01.12 ^ дата < 31.01.12 (Полет));

 $R2 = \mathcal{T}_{\text{ТИП_самолета}}(\mathbf{\delta}_{\text{дата}} > 01.02.12 ^ дата < 29.02.12 (Полет)); R = R1 \cap R2;$

SELECT тип_самолета

FROM ПОЛЕТ

WHERE дата BETWEEN '01.01.12' AND '31.01.12'

AND тип_самолета IN (SELECT тип_самолета

FROM ПОЛЕТ

WHERE дата BETWEEN '01.02.12' AND '31.02.12');

6. Определить типы самолетов, для которых либо число членов экипажа равно 3, либо код экипажа, хотя бы в одном рейсе этого самолета, равен 3.

$$R_1 = \pi_{\text{тип самолета}}(\delta_{\text{код экипажа}} = 3 (\Pi_{\text{олет}}));$$

```
R2 = \pi тип самолета (\deltaчисло экипажа = 3 (Самолет));
      R = R1 \cup R2;
      SELECT тип_самолета
      FROM ПОЛЕТ
      WHERE код экипажа = 3
      UNION
      SELECT тип самолета
      FROM CAMOЛЕТ
      WHERE число экипажа = 3
      7. Определить даты рейсов Москва - Киев.
      R = \mathcal{T} дата, номер рейса (\delta пункт отправления = « Москва » ^{\circ} пункт назначения = « Киев » ( Рейс ><
Полет ));
      SELECT дата, номер рейса
      FROM РЕЙС JOIN ПОЛЕТ ON РЕЙС. № рейса = ПОЛЕТ. № рейса
      WHERE пункт отправления = 'Москва' AND пункт назначения = 'Киев';
      8. Определить дату, когда осуществляют рейсы все возможные типы самолетов.
      R1 = \mathcal{T} дата ,тип самолета ( Полет ); R2 = \mathcal{T} тип самолета ( Самолет ); R = R1 / R2;
      SELECT DISTINCT дата
      FROM ПОЛЕТ A
      WHERE NOT exists (SELECT тип самолета
      FROM CAMOЛЕТ
      WHERE NOT exists (SELECT дата, тип самолета
      FROM ПОЛЕТ В
      WHERE В.тип самолета = CAMOЛЕТ.тип самолета
      AND А.дата = В.дата));
      9. Определить типы самолетов, осуществляющие рейсы из Москвы по всем возможным направлениям.
     R1=\pi тип самолета, пункт назначения (\deltaпункт отправления = « Москва » (Рейс >< Полет));
      R2 = \pi пункт_назначения ( Рейс ); R = R1 / R2;
      SELECT DISTINCT тип самолета
      FROM ПОЛЕТ A JOIN PEЙC ON A. № рейса = РЕЙС. № рейса
      WHERE пункт отправления = 'Москва'
      AND NOT exists (SELECT № peйca
                       FROM РЕЙС С
                       WHERE NOT exists (SELECT тип самолета, №рейса
                                          FROM ПОЛЕТ В
                                          WHERE В. №рейса = С. №рейса
                                          AND А. тип самолета =В. тип самолета));
```

3. Ход работы

- 1. Ознакомиться с операциями реляционной алгебры.
- 2. Применить к разработанной БД (лабораторная работа №3) операции селекции и соединения в одном запросе.
- 3. Создать запрос, использующий операции проекции и деления (в одном запросе).
- 4. Создать запрос, использующий операции проекции, объединения и конъюнкции (в одном запросе).
- 5. Создать запрос, использующий операции соединения и деления (в одном запросе).
- 6. Создать запрос, использующий операции вычитания и дизъюнкции (в одном запросе).
- 7. Сформулировать и записать запрос на SQL, не реализующийся на PA.

4. Содержание отчета

- 1. Отчет состоит из титульного листа, цели работы, описания процесса выполнения работы и вывода.
- 2. Отчет должен содержать описание действий студента по конкретному варианту.
- 3. Каждый запрос должен быть сформулирован (на русском языке), представлен в форме PA и SQL.

- 4. Отчет должен содержать:
 - таблицу исходных данных,
 - тексты запросов,
 - результаты их выполнения.

5. Контрольные вопросы

- 1. Поясните действие операции проекции.
- 2. Приведите пример операции селекции.
- 3. Чем отличаются операции РА соединение и объединение.
- 4. Продемонстрируйте на примере, как выразить операцию соединения через декартово произведение.
- 5. Сформулировать и записать запрос на PA, не реализующийся на SQL.