Alimentatore switching con LM2674-ADJ

Schema Elettrico:

PCB (60x40 mm):

Lista Componenti:

- 2 Connettori (01x02).
- 1 Diodo (1N4007).
- 1 Diodo Schottky (3,3A).
- 1 Condensatore ceramico (10 [nF]).
- 2 Condensatori elettrolitici (100 [µF]).
- 2 Resistenze (1.5 e 4.7 [k Ω]).
- 1 Induttore (100 [µH]).
- 1 Integrato LM2674-ADJ.

Parametri Circuito:

- $V_{in}(10/15/20v)$.
- V_{out} (5v).
- I_{max} (500mA).
- $V_{in MAX}(40v)$.

4^A EN

Misurazioni a V_{in} 10v:

R [Ω]	15	47	500	Eff. Media
$V_{in}[V]$	10	10	10	
Vout [V]	4,99	4,47	5,00	
$I_{in}[mA]$	210	61,8	11,43	
I _{out} [mA]	340	96,7	10,22	
P _{in} [W]	2,1	0,618	0,1143	
P _{out} [W]	1,7	0,432	0,0511	
Eff. %	81%	70%	45%	65,3%

Misurazioni a V_{in} 15v:

R [Ω]	15	47	500	Eff. Media
$V_{in}[V]$	15	15	15	
Vout [V]	4,4	4,48	5,00	
I _{in} [mA]	130	44,4	10,06	
I _{out} [mA]	320	96,8	10,22	
P _{in} [W]	1,95	0,666	0,15	
P _{out} [W]	1,4	0,433	0,0511	
Eff. %	72%	65%	34%	57%

Misurazioni a $V_{in} 20v$:

R [Ω]	15	47	500	Eff. Media
$V_{in}[V]$	20	20	20	
V _{out} [V]	4,6	4,48	5,00	
I _{in} [mA]	100	35,5	9,17	
I _{out} [mA]	310	96,8	10,22	
$P_{in}[W]$	2	0,71	0,1834	
Pout [W]	1,5	0,433	0,0511	
Eff. %	75%	61%	28%	54,6%

4^A EN 2

Considerazioni sul circuito:

L'efficienza è il rapporto tra la potenza ottenuta in uscita e quella in entrata impiegata e viene misurata in percentuale. Detto ciò, all'aumentare della tensione in ingresso l'efficienza media diminuisce a causa di una maggior dissipazione di calore, dovuta alla corrente che attraversa l'integrato.

Nel circuito sono presenti 2 filtri: il primo composto da un condensatore elettrolitico posto in parallelo a massa dall'ingresso dell'integrato; il secondo composto da un diodo schottky in parallelo a massa dall'uscita dell'integrato, a sua volta in parallelo ad un altro condensatore elettrolitico e ad un induttore (la tensione di uscita viene prelevata dal pin di uscita dell'integrato, tra il condensatore e l'induttore). È stato posto inoltre un diodo in serie all'ingresso positivo dell'alimentazione onde evitare correnti opposte involontarie che porterebbero al danneggiamento o alla distruzione della componentistica, in particolar modo dell'integrato.

È attesa dalla teoria e dal datasheet del componente (LM2674-ADJ) una tensione in uscita pari a circa 5v, mentre la corrente varierà in base ai carichi apportati in uscita al circuito e alla dissipazione in calore del componente al passaggio di corrente.

Nei test effettuati, abbiamo posto la tensione di ingresso a valori di 10v, 15v e 20v; abbiamo utilizzato per ciascun test, 3 resistenze di valore variabile per poterne osservare le differenze: 15Ω , 47Ω e 500Ω .

4^A EN 3