CSE 101 - Oct 18, 2019 (Week 3)

Notes provided by Ben Sihota bsihota@ucsc.edu

Class Notes

- PA2 extended 3 days
- Midterm practice problems posted

Variations on induction step: II

IIa. $\forall n \geq n_0 : P(n) \rightarrow P(n+1)$ [induction hypothesis]

Let $n \ge n_0$ be chosen arbitrarily

Assume P(n) is true.

Show as a consequence that P(n+1) is true

IIb. $\forall n > n_0 : P(n-1) \to P(n)$ [induction hypothesis]

Let $n > n_0$ be arbitrary

Assume P(n-1)

Show P(n)

Note: $n-1 \ge n_0 \iff n \ge n_0 + 1 \iff n > n_0$

Ha & Hb are weak induction or 1st principle of mathematical induction (PMI)

IIc. $\forall n \geq n_0 : P(n_0) \land P(n_9+1) \land ... \land P(n) \rightarrow P(n+1)$ [induction hypothesis]

Let $n \ge n_0$ be arbitrary

Assume $P(n_0) \wedge ... \wedge P(n)$ true

Show P(n+1)

IId. $\forall n > n_0 : P(n_0) \wedge ... \wedge P(n-1) \rightarrow P(n)$

Let $n > n_0$ be arbitrary

Assume $P(n_0) \wedge ... \wedge P(n-1)$

Show P(n)

Example

Show:
$$\forall n \ge 1 : \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof I.
$$P(1)$$
 says $1^2 = \frac{1(1+1)(2*1+1)}{6}$

1 = 1, which is true

IIa. Let $n \geq 1$ be chosen arbitrarily.

Assume
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
, for this n

$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

So

$$\sum_{k=1}^{n+1} k^2 = (\sum_{k=1}^{n} k^2) + (n+1)^2$$

$$=\frac{n(n+1)(2n+1)}{6}+(n+1)^2$$
 [by the induction hypothesis]

Note: Label the I.H, I.C. and where the I.H is used (3 things)

$$=\frac{n(n+1)(2n+1)+6(n+1)^2}{6}$$

$$=\frac{(n+1)(n(2n+1)+6(n+1))}{6}$$

$$=\frac{(n+1)(2n^2+n+6n+6)}{6}$$

$$=\frac{(n+1)(2n^2+7n+6)}{6}$$

$$=\frac{(n+1)(n+2)(2n+3)}{6}$$

So the 1st P.M.I

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

for all $n \geq 1$

Exercise: Do it again using IIb

Example 3 (in handout)

Define T(n) by

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ T(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n \ge 2 \end{cases}$$

Prove: $\forall n \geq 1 : T(n) \leq \lg(n)$

(hence $T(n) = O(\log n)$)

Proof P(1) says: $T(1) \leq \lg(1)$, i.e. $0 \leq 0$, which is true

IId. $\forall n > 1 : P(1) \land ... \land P(n-1) \to P(n)$

Let n > 1 be arbitrary

Assume (for this n) for all k in the range $1 \le k < n$ that

$$T(k) \le \lg(k)$$

We must show $T(n) \leq \lg(n)$

So

$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + 1$$
 [by recurrence for $T(n)$]

 $\leq \lg(\lfloor \frac{n}{2} \rfloor) + 1$ [by induction hypothesis, with $k = \lfloor \frac{n}{2} \rfloor$ we have $T(\lfloor \frac{n}{2} \rfloor) \leq \lg(\lfloor \frac{n}{2} \rfloor)$]

$$\leq \lg(\frac{n}{2}) + 1$$
 [since $\lfloor x \rfloor \leq x$ and $\lg()$ is increasing]

$$= \lg n - \lg 2 + 1$$

$$= \lg n$$

Results follows for all $n \ge 1$ by 2nd P.M.I

Exercise

Define S(n) by

$$S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lfloor \frac{n}{2} \rfloor) + 1 & \text{if } n \ge 2 \end{cases}$$

Prove $\forall n \geq 1 : S(n) \geq \lg(n)$, hence $S(n) = \Omega(\log n)$

$\bf Note:$

$$\lfloor x \rfloor \le x \text{ and } x - 1 < \lceil x \rceil$$

$$\lceil x \rceil \ge x \text{ and } x + 1 > \lfloor x \rfloor$$