

Faculty of Science CSCI 2010U: Data Structures

Course Flow Fall 2023

Weeks	Lectures	Topics	Assessments
Week 1 (Sep 05 – 08)	Lecture 1	Introduction to Java I	
	Lecture 2	Introduction to Java II	
Week 2 (Sep 11 – 15)	Lecture 3	Inheritance in Java	Lab 1
	Lecture 4	Polymorphism and Interfaces in Java	
Week 3 (Sep 18 – 22)	Lecture 5	Algorithm Analysis I	Lab 2
	Lecture 6	Algorithm Analysis II	
Week 4 (Sep 25 – 29)	Lecture 7	Arrays in Java	Lab 3
	Lecture 8	Collections and Array Optimization	
Week 5 (Oct 02 – 06)	Lecture 9	Stacks and Queues in Java	Lab 4
	Lecture 10	Mid Term Exam	Mid Term Exam
Week 6 (Oct 9 – 13)	Study Break	- No Classes	
Week 7 (Oct 16 – 20)	Lecture 11	LinkedLists in Java	Lab 5
	Lecture 12	Circular and Doubly LinkedList	
Week 8 (Oct 23 – 27)	Lecture 13	Recursion	Lab 6
	Lecture 14	Divide and Conquer	
Week 9 (Oct 30 – Nov 03)	Lecture 15	Sorting I	Lab 7
	Lecture 16	Sorting II	
Week 10 (Nov 06 – 10)	Lecture 17	Trees / Binary Search Trees	Lab 8
	Lecture 18	Tree Traversals	
Week 11 (Nov 13 – 17)	Lecture 19	AVL trees	Lab 9
	Lecture 20	Splay trees	
Week 12 (Nov 20 – 24)	Lecture 21	Maps and Hashing	Lab 10
	Lecture 22	Graphs	
Week 13 (Nov 27 – Dec 01)	Lecture 23	Revision	
Final Exam Period (Dec 06 - 16)		Lecture 1 - 22 (emphasis on Lecture 11 - 22)	Final Exam

Assessments

Component	Weight
Labs	40%
Mid Term Exam	25%
Final Exam	35%

Student Expectations:

Below are some of the expectations from the students in this course:

- Students are expected to attend weekly lectures.
- This is a practical course and hence students are expected to attend Labs to practice the concepts studied in the class.
- It is expected from students to submit all the assessments on time to avoid losing marks for late submissions.
- Instructor has designed the course in a way that it gives students a lot of hands-on on various concepts throughout the course; it is expected from students to complete those exercises to have a better grasp of the concepts.
- Students are expected to ask questions during the lecture, in Labs and are welcome to visit the Instructor and TAs in their office hours.
- Students are expected to be respectful to their Instructor, TAs and fellow students.
- Students are expected to be familiar with and abide by Ontario Tech University's regulations on Academic Conduct
 which sets out the kinds of actions that constitute academic misconduct, including plagiarism, copying or allowing
 one's own work to copied, use of unauthorized aids in examinations and tests, submitting work prepared in
 collaboration with another student when such collaboration has not been authorized, among other academic
 offences.