Lecture 3: Propositional Equivalence

Section 1.3

Tautologies, Contradictions, and Contingencies

- A tautology is a proposition which is always true.
 - Example: $p \lor \neg p$
- A *contradiction* is a proposition which is always false.
 - Example: $p \land \neg p$
- A contingency is a proposition which is neither a tautology nor a contradiction, such as p

P	$\neg p$	$p \lor \neg p$	$p \land \neg p$
Т	F	T	F
F	T	T	F

Logical Equivalence: Examples

- Two compound propositions p and q are *logically equivalent* if $p \leftrightarrow q$ is a tautology.
- We write this as $p \Leftrightarrow q$ or as $p \equiv q$ where p and q are compound propositions.
- Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.
- This truth table shows that $\neg p \lor q$ is equivalent to $p \to q$.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Example: De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan

1806-1871

This truth table shows that De Morgan's Second Law holds.

p	q	$\neg p$	$\neg q$	(<i>p</i> ∨ <i>q</i>)	$\neg (p \lor q)$	$\neg p \land \neg q$
T	Т	F	F	Т	F	F
Т	F	F	T	Т	F	F
F	Т	Т	F	Т	F	F
F	F	T	T	F	T	T

Example: Distributive Laws

$$(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$$
$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$$

This truth table shows that distributive law of disjunction over conjunction holds.

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
T	T	T	Т	Т	Т	Т	T
Т	T	F	F	Т	Т	Т	T
T	F	T	F	T	Т	Т	T
Т	F	F	F	Т	Т	Т	T
F	T	T	Т	Т	Т	Т	T
F	T	F	F	F	Т	F	F
F	F	T	F	F	F	Т	F
F	F	F	F	F	F	F	F

Predicates and Quantifiers

Section 1.4

Section Summary

- Predicates
- Variables
- Quantifiers
 - Universal Quantifier
 - Existential Quantifier
- Negating Quantifiers
 - De Morgan's Laws for Quantifiers
- Translating English to Logic

Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: x, y, z
 - \circ Predicates: P(x), M(x)
 - Quantifiers (to be covered in a few slides):
- *Propositional functions* are a generalization of propositions.
 - They contain <u>variables</u> and a <u>predicate</u>, e.g., P(x)
 - Variables can be replaced by elements from their domain.

Propositional Functions

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the *domain* (or *bound* by a quantifier, as we will see later).
- For example, let P(x) denote "x > 0" and the domain be the integers. Then:
 - P(-3) is false.
 - \circ P(0) is false.
 - \circ P(3) is true.
- Often the domain is denoted by *U*. So in this example *U* is the integers.

Examples of Propositional Functions

• Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the integers.

Find these truth values:

R(2,-1,5) Solution: F

R(3,4,7) **Solution: T**

R(x, 3, z) Solution: Not a Proposition

• Now let "x - y = z" be denoted by Q(x, y, z), with U as the integers. Find these truth values:

Q(2,-1,3) Solution: T

Q(3,4,7) Solution: F

Q(x, 3, z) Solution: Not a Proposition

Compound Expressions

• If P(x) denotes "x > 0," find these truth values:

```
P(3) \vee P(-1) Solution : T
P(3) \wedge P(-1) Solution : F
P(3) \rightarrow P(-1) Solution : F
P(3) \rightarrow ¬P(-1) Solution : T
```

 Expressions with variables are not propositions and therefore do not have truth values. For example,

$$P(3) \land P(y)$$

 $P(x) \rightarrow P(y)$

 When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Quantifiers

Charles Peirce (1839-1914)

- We need quantifiers to express the meaning of English words including all and some:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:
 - o Universal Quantifier, "For all," symbol: ▼
 - Existential Quantifier, "There exists," symbol: **3**
- We write as in $\forall x P(x)$ and $\exists x P(x)$.
- $\forall x P(x)$ means P(x) is true for every x in the domain.
- $\exists x P(x)$ means P(x) is true for some x in the domain.
- The quantifiers are said to bind the variable x in these expressions.

Universal Quantifier

○ $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)"

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
- If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is true.
- If P(x) denotes "x is even" and U is the integers, then $\forall x$ P(x) is false.

Existential Quantifier

• $\exists x P(x)$ is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\exists x P(x)$ is true. It is also true if U is the positive integers.
- If P(x) denotes "x < 0" and U is the positive integers, then $\exists x P(x)$ is false.
- If P(x) denotes "x is even" and U is the integers, then $\exists x$ P(x) is true.

Thinking about Quantifiers

- When the domain is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

Properties of Quantifiers

• The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the propositional function P(x) and on the domain U.

• Examples :

- If *U* is the positive integers and P(x) is the statement "x < 2", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false.
- o If *U* is the negative integers and P(x) is the statement "x < 2", then **both** $\exists x P(x)$ and $\forall x P(x)$ are true.
- o If *U* consists of 3, 4, and 5, and P(x) is the statement "x > 2", then **both** $\exists x P(x)$ and $\forall x P(x)$ are true.
- But if P(x) is the statement "x < 2", then **both** $\exists x P(x)$ and $\forall x P(x)$ are false.

Precedence of Quantifiers

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators.
- For example, $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.

Translating from English to Logic

Example 1: Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If *U* is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as $\forall x J(x)$.

Solution 2: But if *U* is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as $\forall x (S(x) \rightarrow J(x))$.

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

Translating from English to Logic

Example 2: Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If *U* is all students in this class, translate as $\exists x J(x)$

Solution 2: But if *U* is all people, then translate as $\exists x (S(x) \land J(x))$ $\exists x (S(x) \rightarrow J(x))$ is not correct. What does it mean?

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example : $\forall x \neg \neg S(x) \equiv \forall x S(x)$

Thinking about Quantifiers as Conjunctions and Disjunctions

- If the domain is finite, a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers.
- If *U* consists of the integers 1,2, and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

 Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long.

Negating Quantified Expressions

- Consider $\forall x J(x)$
 - "Every student in your class has taken a course in Java." Here J(x) is "x has taken a course in Java" and the domain is students in your class.
- Negating the original statement gives "It is not the case that every student in your class has taken Java." This implies that "There is a student in your class who has not taken Java."
 - Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent

Negating Quantified Expressions (continued)

• Now Consider $\exists x J(x)$

"There is a student in this class who has taken a course in Java."

Where J(x) is "x has taken a course in Java."

 Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken Java"

Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent

De Morgan's Laws for Quantifiers

The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.					
Negation	Equivalent Statement	When Is Negation True?	When False?		
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.		
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .		

The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Translation from English to Logic

Examples:

"Some student in this class has visited Mexico."

Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

$$\exists x \ (S(x) \land M(x))$$

2. "Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "x has visited Canada." $\forall x (S(x) \rightarrow (M(x) \lor C(x)))$

Some Translating from English into Logical Expressions

```
    U = {fast, slow, turning}
    F(x): x is fast
    S(x): x is slow
    T(x): x is turning
    Translate "Everything is fast."
```

Solution: $\forall x F(x)$

```
    U = {fast, slow, turning}
    F(x): x is fast
    S(x): x is slow
    T(x): x is turning
    "Nothing is slow."
```

Solution: $\neg \exists x S(x)$ What is this equivalent to?

Solution: $\forall x \neg S(x)$

U = {fast, slow, turning}

F(x): x is fast

S(x): x is slow

T(x): x is turning

"All fast things are slow."

Solution: $\forall x (F(x) \rightarrow S(x))$

Equivalent to: For all things, fast implies slow.

```
U = {fast, slow, turning}
```

F(x): x is fast

S(x): x is slow

T(x): x is turning

"Some fast things are turning."

Solution: $\exists x (F(x) \land T(x))$

Equivalent to: Some things are fast and turning

U = {fast, slow, turning}

F(x): x is fast

S(x): x is slow

T(x): x is turning

"No slow thing is a turning."

Solution: $\neg \exists x (S(x) \land T(x))$ What is this equivalent to?

Solution: $\forall x (\neg S(x) \lor \neg T(x))$

```
U = {fast, slow, turning}
```

F(x): x is fast

S(x): x is slow

T(x): x is turning

"If anything fast is a slow then it is also a turning."

Solution: $\forall x ((F(x) \land S(x)) \rightarrow T(x))$

Lewis Carroll Example

Charles Lutwidge Dodgson (AKA Lewis Caroll) (1832-1898)

- The first two are called *premises* and the third is called the conclusion.
 - "All lions are fierce."
 - "Some lions do not drink coffee."
 - "Some fierce creatures do not drink coffee."
- Here is one way to translate these statements to predicate logic. Let P(x), Q(x), and R(x) be the propositional functions "x is a lion," "x is fierce," and "x drinks coffee," respectively.
 - $\forall x \ (P(x) \to Q(x))$
 - \circ $\exists x (P(x) \land \neg R(x))$
 - $\circ \quad \exists x (Q(x) \land \neg R(x))$
- Later we will see how to prove that the conclusion follows from the premises.