- 3 座標平面の原点を O とし, $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ とする.また α , β は 2 つの実数とする.任意の点 P に対しベクトル \overrightarrow{OP} の \overrightarrow{OA} への正射影を $\overrightarrow{OP_1}$ (すなわち点 P_1 は P から O と A を通る直線へおろした垂線の足), \overrightarrow{OP} の \overrightarrow{OB} への正射影を $\overrightarrow{OP_2}$ とし,一次変換 $f_{\alpha,\beta}$ を $f_{\alpha,\beta}(\overrightarrow{OP}) = \alpha \overrightarrow{OP_1} + \beta \overrightarrow{OP_2}$ によって定める.
- 一次変換 g がどのような α , β に対しても $f_{\alpha,\beta}\circ g=g\circ f_{\alpha,\beta}(\circ$ は変換の合成を表す) となるための必要十分条件は , ある α' , β' に対して $g=f_{\alpha',\beta'}$ となることである . これを証明せよ .