DEFINING THE NATURAL NUMBERS

Our text book introduces the natural numbers via the following axiom.

Axiom (†). There exists a subset $\mathbb{N} \subseteq \mathbb{Z}$ with the following properties:

- (1) If $m, n \in \mathbb{N}$, then $m + n \in \mathbb{N}$.
- (2) If $m, n \in \mathbb{N}$, then $mn \in \mathbb{N}$.
- (3) $0 \notin \mathbb{N}$.
- (4) For every $m \in \mathbb{Z}$, we have $m \in \mathbb{N}$, m = 0, or $-m \in \mathbb{N}$.

As I explained in class, it is poor mathematical form to introduce an axiom for something that can be defined from more basic axioms. (The axiom is also a statement in second order logic, which makes it even worse!) This challenge problem shows how to define \mathbb{N} , in a sensible manner.

Remark 0.1. The approach you explore below requires induction. However, induction can be formalized without introducing the notion of the integers.

0.1. Challenge problem.

Definition. The successor function on the integers is defined by s(x) := x + 1. For $m \ge 1$, we define $s^{m+1}(x)$ recursively by $s^{m+1}(x) := s(s^m(x))$.

Assume that the integers satisfy the following two additional axioms.

Axiom (*). For all $m \ge 1$, $s^m(0) \ne 0$.

Axiom (**). For all $x \in \mathbb{Z}$, there is $m \ge 0$ such that $s^m(x) = 0$ or $s^m(0) = x$.

Definition. The **set of successors of** 0 is defined to be

$$N := \{ x \in \mathbb{Z} \mid \exists m \ge 1 \ s^m(0) = x \}.$$

Prove the following proposition.

Proposition. Assume that the integers satisfy (*) and (**). Then, the set N satisfies axiom (\dagger) . That is to say, N satisfies the four conditions of the axiom.