Discrete Mathematics

prime, composite, fundamental theorem of arithmetic, the well-ordering property, division algorithm, ideal

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Course Information

- Number theory: integers, ... (4)
 Combinatorics: counting, designs,... (2,6,8)
- **Logic**: propositions, predicates, proofs,... (1)
- **Graph theory**: graphs, trees, set systems ··· (10,11
- **Discrete probability**: discrete distributions ···
- Algebra: matrices, groups, rings and fields ···
- Theoretical computer science: algorithms ···
- Information theory: codes ···
- ...

Textbook: Discrete Mathematics and Its Applications (8th edition) Kenneth H. Rosen, William C Brown Pub, 2018.

Course Information

Course Materials: Lecture slides, homework questions, ...

- Piazza: https://piazza.com/class/kzjye4h1zeq4i3
- Blackboard: https://egate.shanghaitech.edu.cn/new/index.html

HW Submission: submit a soft copy (pdf/jpg) of HW solutions

- Gradescope: https://www.gradescope.com/courses/370554
- **Q&A**: online Q&A, office hours, and tutorial sessions
 - Online Q&As: post your questions to Piazza and get answers
 - Instructor's Office hours: 20:00-21:00, Wednesday, SIST 2-202.i
 - TAs' Tutorial Sessions: 19:50-21:30, Monday & Thursday

Evaluation:

- Attendance: 10% (random codes)
- Homework: 30% (no plagiarisms, firm deadline, ...)
- Midterm: 30% (on the first half of the course)
- Final Exam: 30% (on the second half of the course)

Divisibility

NOTATION: $\mathbb{N} = \{0,1,2,...\}; \mathbb{Z} = \{0,\pm 1,...\}; \mathbb{Q} \text{ (rational)}; \mathbb{R} \text{ (real)}$

DEFINITION: Let $a \in \mathbb{Z} \setminus \{0\}$ and let $b \in \mathbb{Z}$.

- a divides b: there is an integer $c \in \mathbb{Z}$ such that b = ac
 - a is a **divisor** of b; b is a **multiple** of a
 - a|b: a divides b; $a \nmid b$: a does not divide b
- $n \in \{2,3,...\}$ is a **prime** if the only positive divisors of n are 1 and n
 - Example: 2,3,5,7,11,13,17,19,23,29, ... are all primes
- If $n \in \{2,3,...\}$ is not a prime, then n is called a **composite**

• Example: n is composite iff $\exists a, b \in (1, n) \cap \mathbb{Z}$ such that n = ab **THEOREM (Fundamental Theorem of Arithmetic)** Every

integer n > 1 can be uniquely written as $n = p_1^{e_1} \cdots p_r^{e_r}$, where $p_1 < \dots < p_r$ are primes and $e_1, \dots, e_r \ge 1$.

FTA Proof

Proof of existence: by mathematical induction on the integer n

- $n = 2: 2 = 2^1$ is a product of prime powers
- Induction hypothesis: suppose there is an integer k > 2 such that the theorem is true for all integer n such that $2 \le n < k$
- Prove the theorem is true for n = k
 - n = k is a prime
 - n = k is a product of prime powers
 - n = k is composite
 - There are integers n_1 , n_2 such that $1 < n_1$, $n_2 < n$ and $n = n_1 n_2$
 - By induction hypothesis, $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_s^{\beta_s}$
 - $p_1, \dots, p_r, q_1, \dots, q_s$ are primes; $\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s \ge 1$
 - $n = n_1 n_2 = p_1^{\alpha_1} \cdots p_r^{\alpha_r} \cdot q_1^{\beta_1} \cdots q_s^{\beta_s}$ is a product of prime powers

C

Division Algorithm

The Well-Ordering Property: Every non-empty subset of N (the set of nonnegative integers) has a **least** element.

THEOREM (Division Algorithm) Let $a, b \in \mathbb{Z}$ and b > 0. Then there are unique $q, r \in \mathbb{Z}$ such that $0 \le r < b$ and a = bq + r.

- **Existence:** Let $S = \{a bx : x \in \mathbb{Z} \text{ and } a bx \ge 0\}$. Then
 - $S \neq \emptyset$ and $S \subseteq \mathbb{N}$
 - S has a least element, say $r = a bq \ge 0$
 - If $r \ge b$, then $r b = a b(q + 1) \in S$ and r b < r.

by contradict The contradiction shows that $0 \le r < b$

- Uniqueness: Suppose that $q', r' \in \mathbb{Z}, 0 \le r' < b$ and a = bq' + r'
 - Recall that $a = bq + r, 0 \le r < b$. $r, r' \in (0, b)$
 - Then $b(q q') = r' r \in (-b, b)$ (-b, b)
 - It must be the case that q = q' and thus r = r'

Suppose A SEB Ideal **DEFINITION:** Let $I \subseteq \mathbb{Z}$ be nonempty. I is called an **ideal** of \mathbb{Z} if

- $a, b \in I \Rightarrow a + b \in I$; and $a \land A \downarrow b$ • $a \in I$, $r \in \mathbb{Z} \Rightarrow ra \in I$
- Example: $d\mathbb{Z} = \{0, \pm d, \pm 2d, ...\}$ is an ideal of \mathbb{Z} for all $d \in \mathbb{Z}$

THEOREM: Let
$$I$$
 be an ideal of \mathbb{Z} . Then $\exists d \in \mathbb{Z}$ such that $I = d\mathbb{Z}$

- If $I = \{0\}$, then d = 0;
 - Otherwise, let $S = \{a \in I : a > 0\}$. The
 - $S \subseteq \mathbb{N}$ and $S \neq \emptyset$
 - due to well-ordering property, S has a least element, say $d \in S$. · dZ ⊆ I ideal, a=b=d → dZ ÇI
 - $d \in I \Rightarrow dr \in I$ for any $r \in \mathbb{Z}$
 - $= d\mathbb{Z}$ $\forall x \in I, x = dq + r, 0 \leq r < d$ • $I \subseteq d\mathbb{Z}$
- $r = x dq \in V, 0 \le r < d$
- r = 0 // otherwise, there is a contradiction
 - $x = dq \in d\mathbb{Z}$ \checkmark $\chi = dq + r$ XEI, dg GI, r EI.

Ideal Street deact nonzero

is defined as $I_1 + I_2 = \{x + y | x \in I_1, y \in I_2\}$

DEFINITION: Let I_1 , I_2 be ideals of \mathbb{Z} . Then the **sum** of I_1 and I_2

THEOREM: If
$$I_1$$
, I_2 are ideals of \mathbb{Z} , then $I_1 + I_2$ is an ideal of \mathbb{Z} .

•
$$\forall a, b \in I_1 + I_2, a + b \in I_1 + I_2$$

• $\exists x_1, x_2 \in I_1, y_1, y_2 \in I_2 \text{ such that } a = x_1 + y_1; b = x_2 + y_2$

$$\begin{array}{ll} \bullet & a+b=(x_1+x_2)+(y_1+y_2)\in I_1+I_2\\ \bullet & \forall a\in I_1+I_2, r\in \mathbb{Z},\ ra\in I_1+I_2 \end{array}$$

•
$$\exists x \in I_1, y \in I_2 \text{ such that } a = x + y$$

•
$$ra = (rx) + (ry) \in I_1 + I_2$$

EXAMPLE: $3\mathbb{Z} + 5\mathbb{Z} = \mathbb{Z}$; $4\mathbb{Z} + 6\mathbb{Z} = 2\mathbb{Z}$ $3\mathbb{Z} + 5\mathbb{Z} \subseteq \mathbb{Z}$: this is obvious

•
$$\mathbb{Z} \subseteq 3\mathbb{Z} + 5\mathbb{Z}$$
:

• For every
$$n \in \mathbb{Z}$$
 $n = 3 \cdot (2n) + 5 \cdot (-n) \in 3\mathbb{Z} + 5\mathbb{Z}$

• For every
$$n \in \mathbb{Z}$$
, $n = 3 \cdot (2n) + 5 \cdot (-n) \in 3\mathbb{Z} +$

QUESTION: $a\mathbb{Z} + b\mathbb{Z} = ?$

No Lub.

For every
$$n \in \mathbb{Z}$$
, $n = 3 \cdot (2n) + 5 \cdot (-n) \in 3\mathbb{Z} + 5\mathbb{Z}$

bn + (-0h)

$$\alpha = 2n+1$$
 $b=2m$.
 $\alpha = 2n+1$ $b=2m+1$
 $\alpha = 2n$ $b=2m$.