Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

Kyle A. Beauchamp⁺,^{1,*} Julie M. Behr⁺,^{2,†} Ariën S. Rustenburg,^{3,‡} Christopher I. Bayly,^{4,§} Kenneth Kroenlein,^{5,¶} and John D. Chodera^{1,**}

¹Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY

²Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY ³Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY ⁴OpenEye Scientific Software Inc., Santa Fe, NM

⁵Thermodynamics Research Center, NIST, Boulder, CO (Dated: May 30, 2015)

Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the forcefield employed. While experimental measurements of fundamental physical properties offer a straightforward approach for evaluating forcefield quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark datasets of physical properties from non-machine-readable sources require substantial human effort and is prone to accumulation of human errors, hindering the development of reproducible benchmarks of forcefield accuracy. Here, we examine the feasibility of benchmarking atomistic forcefields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating format. As a proof of concept, we present a detailed benchmark of the generalized Amber small molecule forcefield (GAFF) using the AM1-BCC charge model against measurements (specifically bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive, and discuss the extent of available data. The results of this benchmark highlight a general problem with fixed-charge forcefields in the representation low dielectric environments such as those seen in binding cavities or biological membranes.

Keywords: molecular mechanics forcefields; forcefield parameterization; forcefield accuracy; forcefield validation; mass density; static dielectric constant; biomolecular simulation

I. INTRODUCTION

Recent advances in hardware and software for molecular dynamics simulation now permit routine access to atomistic simulations at the 100 ns timescale and beyond [1]. Leveraging these advances in combination with consumer GPU clusters, distributed computing, or custom hardware has brought microsecond and millisecond simulation timescales within reach of many laboratories. These dramatic advances in sampling, however, have revealed deficiencies in forcefields as a critical barrier to enabling truly predictive simulations of physical properties of biomolecular systems.

Protein and water forcefields have been the subject of numerous benchmarks [2–4] and enhancements [5–7], with key outcomes including the ability to fold fast-folding proteins [8–10], improved fidelity of water thermodynamic properties [11], and improved prediction of NMR observables. Although small molecule forcefields have also been the subject of benchmarks [12–14] and improvements [15], such work has typically focused on small perturbations to

specific functional groups. For example, a recent study found that modified hydroxyl nonbonded parameters led to improved prediction of static dielectric constants and hydration free energies [15]. There are also outstanding questions of generalizability of these targeted perturbations; it is uncertain whether changes to the parameters for a specific chemical moiety will be compatible with seemingly unrelated improvements to other groups. Addressing these questions requires establishing community agreement upon shared benchmarks that can be easily replicated among laboratories to test proposed forcefield enhancements and expanded as the body of experimental data grows.

A key barrier to establishing reproducible and extensible forcefield accuracy benchmarks is that many experimental datasets are heterogeneous, paywalled, and unavailable in machine-readable formats (although notable counterexamples exist, e.g. the RCSB [16], FreeSolv [17], and the BMRB [18]). While this inconvenience is relatively minor for benchmarking forcefield accuracy for a single target system (e.g. water), it becomes prohibitive for studies spanning the large relevant chemical spaces, such as forcefields intended to describe a large variety of druglike small organic molecules.

In addition to inconvenience, the number and kind of human-induced errors that can corrupt hand-compiled benchmarks are legion. A United States Geological Survey (USGS) case study examining the reporting and use of literature values of the aqueous solubility (S_w) and octanol-

 $^{{\}rm * Corresponding \ author; kyle.beauchamp@choderalab.org}\\$

[†] julie.behr@choderalab.org

[‡] bas.rustenburg@choderalab.org

[§] bayly@eyesopen.com

[¶] kenneth.kroenlein@nist.gov

^{**} Corresponding author; john.chodera@choderalab.org

 $_{61}$ water partition coefficients (K_{ow}) for DDT and its persis- $_{115}$ Pandas [27] dataframes, and the successive data filters tent metabolite DDE provides incredible insight into a variety of common errors [19]. Secondary sources are often cited as primary sources—a phenomenon that occurred up to five levels deep in the case of DDT/DDE; citations for data are often incorrect, misattributed to unrelated publications, or omitted altogether; numerical data can be mistranscribed, transposed, or incorrectly converted among unit 69 systems [19]. This occurs to such a degree that the authors note "strings of erroneous data compose as much as 41-73 percent of the total data" [19]. Given the incredible importance of these properties for human health and the environment, the quality of physicochemical datasets of far lesser importance is highly suspect.

To ameliorate problems of data archival, the NIST Thermodynamics Research Center (TRC) has developed an IUPAC standard XML-based format—ThermoML [20-22]—for storing physicochemical measurements, uncertainties, and metadata. Manuscripts containing new experimental measurements submitted to several journals (J. Chem. Eng. Data, J. Chem. Therm., Fluid Phase Equil., Therm. Acta, and Int. J. Therm.) are guided through a data archival process that involves sanity checks, conversion to a standard machine-readable format, and archival at the TRC (http://trc.nist.gov/ThermoML.html).

Here, we examine the ThermoML archive as a potential source for a reproducible, extensible accuracy benchmark of biomolecular forcefields. In particular, we concentrate on two important physical property measurements easily computable in many simulation codes—neat liquid density and static dielectric constant measurements—with the goal of developing a standard benchmark for validating these properties in fixed-charge forcefields of drug-like molecules and biopolymer residue analogues. These two properties provide sensitive tests of forcefield accuracy that are nonetheless straightforward to calculate. Using these data, we evaluate the generalized Amber small molecule forcefield (GAFF) [23, 24] with the AM1-BCC charge model [25, 26] and identify systematic biases to aid further forcefield refinement.

METHODS

100

101

102

ThermoML Archive retrieval and processing

A tarball archive snapshot of the ThermoML Archive was obtained from the the NIST TRC on 8 Apr. 104 To explore the content of this archive, we 105 created a Python (version 2.7.9) tool (ThermoPyL: https://github.com/choderalab/ThermoPyL) formats the XML content into a spreadsheet-like format accessible via the Pandas (version 0.15.2) library. First, we obtained the XML schema (http://media.iupac. org/namespaces/ThermoML/ThermoML.xsd) defining the layout of the data. This schema was converted into a Python object via PyXB 1.2.4 (http://pyxb.sourceforge.net/). 162 Finally, this schema was used to extract the data into 163 algorithm [38] and equilibrated for 10^7 steps with an equili-

116 described in Section III A were applied.

B. Simulation

To enable automated accuracy benchmarking of physicochemical properties of neat liquids such as mass density and dielectric constant, we developed a semi-automated pipeline for preparing simulations, running them on a stan-122 dard computer cluster using a portable simulation package, and analyzing the resulting data. All code for this procedure is available at https://github.com/choderalab/ 125 LiquidBenchmark. Below, we describe the operation of the various stages of this pipeline and their application to the 127 benchmark reported here.

1. Preparation

Chemical names were parsed from the ThermoML extract and converted to both CAS and smiles strings using cirpy 131 [28]. Smiles strings were converted into molecular struc-132 tures using the OpenEye Python Toolkit version 2015-2-3 [29], as wrapped in openmoltools.

Simulation boxes containing 1000 molecules were con-135 structed using PackMol version 14-225 [30, 31] wrapped in the Python automation library openmoltools. In order to en-137 sure stable automated equilibration, PackMol box volumes were chosen to accommodate twice volume of the enclosed atoms, with atomic radii estimated as 1.06 Å and 1.53 Å for 140 hydrogens and nonhydrogens, respectively.

For this illustrative benchmark, we utilized the generalized Amber small molecule forcefield (GAFF) [23, 24] with the AM1-BCC charge model [25, 26], which we shall refer to as the 144 GAFF/AM1-BCC forcefield.

Canonical AM1-BCC [25, 26, 32] charges were generated with the OpenEye Python Toolkit version 2015-2-3 147 [29], using the oequacpac.OEAssignPartialCharges 148 module with the OECharges_AM1BCCSym option, which 149 utilizes a conformational expansion procedure (using oeomega. OEOmega [33]) prior to charge fitting to minimize 151 artifacts from intramolecular contacts. The OEOmega selected conformer was then processed using antechamber (with parmchk2) and tleap in AmberTools 14 [34] to pro-154 duce Amber-format prmtop and inport files, which were then read into OpenMM to perform molecular simulations using the simtk.openmm.app module.

The simulations reported here used libraries openmoltools 0.6.4 [35], OpenMM 6.3 [36], and MDTraj 1.3 [37]. Exact commands to install various dependencies can be found in Appendix A 1.

Equilibration and production

Simulation boxes were first minimized using the L-BFGS

bration timestep of 0.4 fs and a collision rate of 5 ps $^{-1}$. Pro- 218 duction simulations were performed with OpenMM 6.3 [36] using a Langevin Leapfrog integrator [39] (with collision rate ps^{-1}) and a 1 fs timestep, as we found that timesteps of 2 fs timestep or greater led to a significant timestep dependence in computed equilibrium densities (Fig. 4).

Equilibration and production simulations utilized a Monte Carlo barostat with a control pressure of 1 atm (101.325 kPa), utilizing molecular scaling and automated step size adjustment during equilibration, with volume moves attempted every 25 steps. The particle mesh Ewald (PME) method with conducting boundary conditions [41] was used with a longrange cutoff of 0.95 nm and a long-range isotropic dispersion correction. PME grid and spline parameters were automatically selected using the default settings in OpenMM 6.3 for the CUDA platform [36].

Automatic termination criteria. Production simulations were continued until automatic analysis showed standard errors in densities were less than 2×10^{-4} $/cm^3$. Automatic analysis of the production simulation data was run every 1 ns of simulation time, and utilized the detectEquilibration method in the timeseries module of pymbar 2.1 [40] to automatically discard the initial portion of the production simulation containing strong far-from-equilibrium behavior by maximizing the number of effectively uncorrelated samples in the remainder of the production simulation as determined 236 by autocorrelation analysis using the fast adaptive statistical inefficiency computation method as implemented the timeseries.computeStatisticalInefficiency method of pymbar 2.1 (where the algorithm is described in [42]). This approach is essentially the same as the fixedwidth procedure described by eq. 7.12 of ref. [43], with n^* equal to 4000 and the sequential testing correction (n^{-1} term) ignored due to the large value of n. Statistical errors were computed by $\delta^2 \rho \approx {\rm var}(\rho)/N_{\rm eff}$, where ${\rm var}(\rho)$ is the sample variance of the density and $N_{\rm eff}$ is the number of effectively uncorrelated samples. With this protocol, we found starting trajectory lengths of 12000 (8000, 16000) frames (250 fs each), discarded regions of 28 (0, 460), and statistical inefficiencies of 20 (15, 28); reported numbers indicate (median, (25%, 75%)).

Instantaneous densities were stored every 250 fs, while 248 trajectory snapshots were stored every 5 ps.

C. Timings

208

The wall time required for a given simulation depends on 252 the number of atoms (3,000 - 29,000), the GPU used (GTX 680 or GTX Titan), and the time required for automated termination. For butyl acrylate (21,000 atoms) on a GTX Titan, 254 ing 80 ns / day with approximately 3 ns of production simu- 256 tial filtering steps to produce an ThermoML extract relelation corresponds to 1 hour for the production segment of 257 vant for benchmarking forcefields describing small organic 216 the simulation and 3 hours for the fixed equilibration portion 258 molecules. As our aim is to explore neat liquid data with of 10^7 steps.

Data analysis and statistical error estimation

Trajectory analysis was performed using OpenMM 6.3 [36] 220 and MDTraj 1.3 [37].

Mass density. Mass density ρ was computed via the rela-222 tion,

$$\rho = \left\langle \frac{M}{V} \right\rangle,\tag{1}$$

 $_{
m 223}$ where M is the total mass of all particles in the system and $_{
m 224}~V$ is the instantaneous volume of the simulation box.

Static dielectric constants. Static dielectric constants were calculated using the dipole fluctuation approach appropriate for PME with conducting ("tin-foil") boundary conditions [11, 44], with the total system box dipole μ computed from trajectory snapshots using MDTraj 1.3 [37].

$$\epsilon = 1 + \beta \frac{4\pi}{3} \frac{\langle \mu \cdot \mu \rangle - \langle \mu \rangle \cdot \langle \mu \rangle}{\langle V \rangle} \tag{2}$$

where $\beta \equiv 1/k_BT$ is the inverse temperature.

Computation of expectations. Expectations were estimated by computing sample means over the production 233 simulation after discarding the initial far-from-equilibrium portion to equilibration (as described in **Automatic termi-**235 **nation criteria** above).

Statistical uncertainties. For density uncertainties, 237 the Markov chain standard error (MCSE) was estimated as $\frac{\sigma}{\sqrt{N_{eff}}}$, where σ is the density standard deviation of the simulation not discarded to equilibration, $N_{eff}=rac{N}{q}$ is the ef- $_{240}$ fective sample size, and g is the statistical inefficiency as es-241 timated from the density time series. For dielectric uncertainties, the portion of the production simulation not discarded to equilibration was used as input to a circular block bootstrapping procedure [45] with block sizes automatically selected to maximize the error [46].

Code availability

Data analysis, all intermediate data (except configurational trajectories, due to their large size), and figure cre-249 ation code for this work is available at https://github. 250 com/choderalab/LiquidBenchmark.

RESULTS

Extracting neat liquid measurements from the NIST TRC ThermoML Archive

As described in Section IIA, we retrieved a copy of the the wall-clock performance is approximately 80 ns / day. Us- 255 ThermoML Archive and performed a number of sequen-₂₅₉ functional groups relevant to biopolymers and drug-like

	Number of measurements remaining	
Filter step	Mass density	Static dielectric
1. Single Component	136212	1651
2. Druglike Elements	125953	1651
3. Heavy Atoms	71595	1569
4. Temperature	38821	964
5. Pressure	14103	461
6. Liquid state	14033	461
7. Aggregate T, P	3592	432
8. Density+Dielectric	246	246

TABLE I: Successive filtration of the ThermoML Archive.

A set of successive filters were applied to all measurements in the ThermoML Archive that contained either mass density or static dielectric constant measurements. Each column reports the number of measurements remaining after successive application of the corresponding filtration step. The 246 final measurements correspond to 45 unique molecules measured at several temperature conditions.

molecules, we applied the following ordered filters, starting with all data containing density or static dielectric constants:

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

- 1. The measured sample contains only a single component (e.g. no binary mixtures)
- 2. The molecule contains only druglike elements (defined here as H, N, C, O, S, P, F, Cl, Br)
 - 3. The molecule has < 10 non-hydrogen atoms
- 4. The measurement was performed in a biophysically relevant temperature range $(270 \le T \text{ [K]} \le 330)$
- 5. The measurement was performed at ambient pressure $(100 \le P \text{ [kPa]} \le 102)$
 - 6. Only measurements in liquid phase were retained
 - 7. The temperature and pressure were rounded to nearby values (as described below), averaging all measurements within each group of like conditions
- 8. Only conditions (molecule, temperature, pressure) for which both density and dielectric constants were available were retained

by common data reporting variations; for example, an experiment performed at the freezing temperature of water or 100 kPa, with a temperature of either 273 K or 273.15 K. 308 mark set [12]. Therefore all pressures within the range [kPa] ($100 \le P \le 309$ tures were rounded to one decimal place in K.

temperature, pressure) tuple—for which both density and 314 these systematic density offsets indicate correctable biases dielectric data are available. The functional groups present 315 in forcefield parameters. 290 in the resulting dataset are summarized in Table II; see Sec- 316

Functional Group	Occurrences
1,2-aminoalcohol	4
1,2-diol	3
alkene	3
aromatic compound	1
carbonic acid diester	2
carboxylic acid ester	4
dialkyl ether	7
heterocyclic compound	3
ketone	3
lactone	1
primary alcohol	19
primary aliphatic amine (alkylamine)	2
primary amine	2
secondary alcohol	4
secondary aliphatic amine (dialkylamine)	2
secondary aliphatic/aromatic amine (alkylarylamine)	1
secondary amine	3
sulfone	1
sulfoxide	1
tertiary aliphatic amine (trialkylamine)	3
tertiary amine	3

TABLE II: Functional groups present in filtered dataset.

The filtered ThermoML dataset contained 246 distinct (molecule, temperature, pressure) conditions, spanning 45 unique compounds. The functional groups represented in these compounds (as identified by the program checkmol v0.5 [47]) is summarized here.

Benchmarking GAFF/AM1-BCC against the ThermoML **Archive**

293

1. Mass density

Mass densities of bulk liquids have been widely used for parameterizing and testing forcefields, particularly the ²⁹⁷ Lennard-Jones parameters representing dispersive and re-²⁹⁸ pulsive interactions [48, 49]. We therefore used the present ThermoML extract as a benchmark of the GAFF/AM1-BCC forcefield (Fig. 1).

Overall accuracy. Overall, the densities show reason-302 able accuracy, with a root-mean square (RMS) relative er-303 ror over all measurements of $(3.0\pm0.1)\%$, especially en-The temperature and pressure rounding step was motivated 304 couraging given that this forcefield was not designed with 305 the intention of modeling bulk liquid properties of organic molecules [23, 24]. This is reasonably consistent with previand ambient pressure might be entered as either 101.325 kPa $\,\,_{307}$ ous studies reporting agreement of 4% on a different benchmark of 4% on 4% on

Temperature dependence. For a given compound, the 102) were rounded to exactly 1 atm (101.325 kPa). Tempera- 310 signs of the errors typically do not change at different temperatures (Fig. 1, Fig. 7). Furthermore, the magnitudes of The application of these filters (Table I) leaves 246 312 the error also remain largely constant (vertical lines in Fig. 1 conditions—where a condition here indicates a (molecule, 313 B), although several exceptions do occur. It is possible that

Outliers. The largest density errors occur for a num-291 tion II A for further description of the software pipeline used. 317 ber of oxygen-containing compounds: 1,4-dioxane; 2,5,8 $_{318}$ trioxanonane; 2-aminoethanol; dimethyl carbonate; for- $_{319}$ mamide; and water (Fig. 7). The absolute error on these $_{320}$ poor predictions is on the order of 0.05 g/ cm^3 , which is $_{321}$ substantially higher than the measurement error (≤ 0.008 $_{322}$ g/ cm^3 ; see Fig. 5).

We note that our benchmark includes a GAFF/AM1-BCC model for water due to our desire to automate benchmarks against a forcefield capable of modeling a large variety of small molecular liquids. Water—an incredibly important solvent in biomolecular systems—is generally treated with a special-purpose model (such as TIP3P [48] or TIP4P-Ew [11]) parameterized to fit a large quantity of thermophysical data. As expected, the GAFF/AM1-BCC model performs poorly in reproducing liquid densities for this very special solvent. We conclude that it remains highly advisable that the field continue to use specialized water models when possible.

2. Static dielectric constant

334

Overall accuracy. As a measure of the dielectric response, the static dielectric constant of neat liquids provides a critical benchmark of the accuracy electrostatic treatment in forcefield models. Discussing the accuracy in terms the ability of GAFF/AM1-BCC to reproduce the static dielectric constant ϵ is not necessarily meaningful because of the way that the solvent dielectric ϵ enters into the Coulomb potential between two point charges separated by a distance r,

$$U(r) = \frac{q_1 q_2}{\epsilon r} \propto \frac{1}{\epsilon}.$$
 (3)

 $_{343}$ It is evident that $1/\epsilon$ is a much more meaningful quantity to compare than ϵ directly, as a 5% error in $1/\epsilon$ will cause $_{345}$ a 5% error in the Coulomb potential between two point $_{346}$ charges (assuming a uniform dielectric), while a 5% error in ϵ will have a much more complex ϵ -dependent effect on the Coulomb potential. We therefore compare simulations against measurements in our ThermoML extract on the $1/\epsilon$ scale in Fig. 2.

GAFF/AM1-BCC systematically underestimates the dielectric constants of nonpolar liquids. Overall, we find the dielectric constants to be qualitatively reasonable, but with clear deviations from experiment particularly for nonpolar liquids. This is not surprising given the complete neglect of electronic polarization which will be the dominant contribution for such liquids. In particular, GAFF/AM1-BCC systematically underestimates the dielectric constants for nonpolar liquids, with the predictions of $\epsilon\approx 1.0$ being substantially smaller than the measured $\epsilon\approx 2$. Because this deviation likely stems from the lack of an explicit treatment of electronic polarization, we used a simple empirical polarization model that computes the molecular electronic polarizability α as a sum of elemental atomic polarizability contributions [51].

From the computed molecular electronic polarizability α , an additive correction to the simulation-derived static dielectric constant accounting for the missing electronic po-

FIG. 1: Comparison of liquid densities between experiment and simulation. (a). Liquid density measurements extracted from ThermoML are compared against densities predicted using the GAFF / AM1-BCC small molecule fixed-charge forcefield. Color groupings represent identical chemical species, although the color map repeats itself due to the large (45) number of unique compounds. Plots of density versus temperature grouped by chemical species are available in Fig. 7. Simulation error bars represent one standard error of the mean, with the number of effective (uncorrelated) samples estimated using pymbar. Experimental error bars indicate the standard deviation between independently reported measurements, when available, or author-reported standard deviations in ThermoML entries; for some measurements, neither uncertainty estimate is available. See Fig. 5 for further discussion of error. (b). The same plot, but with the residual (predicted minus experiment) on the x axis. Note that the error bars are all smaller than the

symbols.

FIG. 2: Measured (ThermoML) versus predicted (GAFF / AM1-BCC) inverse static dielectrics (a). Simulation error bars represent one standard error of the mean.

Experimental error bars indicate the larger of standard deviation between independently reported measurements and the authors reported standard deviations; for some measurements, neither uncertainty estimate is available. See Fig. 5 for further discussion of error. See Section III B 2 for explanation of why inverse dielectric constant (rather than dielectric constant) is plotted. For nonpolar liquids, it is clear that the forcefield predicts electrostatic interactions that are substantially biased by missing polarizability. Plots of dielectric constant versus temperature grouped by chemical species are available in Fig. 8.

369 larizability can be computed [11]

$$\Delta \epsilon = 4\pi N \frac{\alpha}{\langle V \rangle} \tag{4}$$

370 A similar polarization correction was used in the develop- 423 uids such as water, this contributes the majority of the distant for water comes from the configurational response of 426 dielectric. ts strong dipole. However, the missing polarizability is a 427 ection of 0.52, while 0.79 was used for the TIP4P-Ew model. 431 consistent fixed-charge forcefields [53, 54]. Averaging all liquids in the present work leads to polarizabilpared to -0.25 ± 0.02 for the corrected dielectric.

DISCUSSION

Mass densities

Our simulations have indicated the presence of systematic density biases with magnitudes larger than the measurement error. Correcting these errors may be a lowhanging fruit for future forcefield refinements. As an example of the feasibility of improved accuracy in densities, a recent three-point water model was able to recapitulate water density with errors of less than 0.005 g / cm^3 over temperature range [280 K, 320 K] [52]. This improved accuracy in density prediction was obtained alongside accurate predictions of other experimental observables, including static dielectric constant. We suspect that such accuracy might be obtainable for GAFF-like forcefields across some portion of chemical space. A key challenge for the field is to demarcate the fundamental limit of fixed-charge forcefields for predicting orthogonal classes of experimental observables. For example, is it possible to achieve a relative density error of 10^{-4} without sacrificing accuracy of other properties such as enthalpies? In our opinion, the best way to answer such questions is to systematically build forcefields with the goal of predicting various properties to within their known exper-406 imental uncertainties, similar to what has been done for wa-407 ter [11, 52].

Dielectric constants in forcefield parameterization

A key feature of the static dielectric constant for a liquid 410 is that, for forcefield purposes, it consists of two very different components, distinguished by the dependence on the 412 fixed charges of the forcefield and dynamic motion of the 413 molecule. One component, the high-frequency dielectric constant, arises from the almost-instantaneous electronic polarization in response to the external electric field: this contributes a small component, generally around $\epsilon = 2$, which can be dominant for non-polar liquids but is completely neglected by the non-polarizable forcefields in com-419 mon use for biomolecular simulations. The other compo-(4) 420 nent arises from the dynamical response of the molecule, through nuclear motion, to allow its various molecular mul-422 tipoles to respond to the external electric field: for polar ligment of the TIP4P-Ew water model, where it had a minor 424 electric constant. Thus for polar liquids, we expect the paeffect [11] because almost all the high static dielectric con- 425 rameterized atomic charges to play a major role in the static

Recent forcefield development has seen a resurgence dominant contribution to the static dielectric constant of 428 of papers fitting dielectric constants during forcefield panonpolar organic molecules; in the case of water, the em- 429 rameterization [15, 52]. However, a number of authors pirical atomic polarizability model predicts a dielectric cor- 430 have pointed out potential challenges in constructing self-

Interestingly, recent work by Dill and coworkers [53] obity corrections to the static dielectric of 0.74 ± 0.08 . Taking 433 served that, for CCl_4 , reasonable choices of point charges the dataset as a whole, we find that the relative error in un- 434 are incapable of recapitulating the observed dielectric of corrected dielectric is on the order of -0.34 ± 0.02 , as com-436 of $1.0 \le \epsilon \le 1.05$. This behavior is quite general: fixed

FIG. 3: Typical experimental static dielectric constants of some nonpolar compounds. (a). Measured static dielectric constants of various nonpolar or symmetric molecules [55, 56]. Fixed-charge forcefields give $\epsilon \approx 1$ for each species; for example, we calculated $\epsilon = 1.0030 \pm 0.0002$ for octane. (b). A congeneric series of chloro-substituted methanes have static dielectric constants between 2 and 13. Reported dielectric constants are at near-ambient temperatures.

constants are instead $\epsilon \approx 2$ (Fig. 3). While this behavior is well-known and results from missing physics of polarizabilwhich we discuss below.

lated asymmetric molecules (e.g. toluene and CHCl₃).

tant wherever we encounter the transfer of a polar molecule 509 (such as a peptide, native ligand, or a pharmaceutical small 510 surement and direct connection to long-range electrostatic molecule) from a polar environment (such as the cytosol, in- sin interactions, static dielectric constants have high potenterstitial fluid, or blood) into a non-polar environment (such 512 tial utility as primary data for forcefield parameterization 462 as a biological membrane or non-polar binding site of an 513 efforts. Although this will require the use of forcefields

463 enzyme or receptor). Thus we expect this to be implicated in biological processes ranging from ligand binding to absorption and distribution within the body. To understand this conceptually, consider the transfer of a polar smallmolecule transfer from the non-polar interior of a lipid bilayer to the aqueous and hence very polar cytosol. As a possible real-world example, we imagine that the missing atomic polarizability could be important in accurate transfer free energies involving low-dielectric solvents, such as the small-molecule transfer free energy from octanol or cyclohexane to water. The Onsager model for solvation of a dipole μ of radius a gives us a way to estimate the magnitude of error introduced by making an error of $\Delta\epsilon$ in the static dielectric constant of a solvent. The free energy of dipole solvation 477 is given by this model as

$$\Delta G = -\frac{\mu^2}{a^3} \frac{\epsilon - 1}{2\epsilon + 1} \tag{5}$$

478 such that, for an error of $\Delta\epsilon$ departing from the true static 479 dielectric constant ϵ , we find the error in solvation is

$$\Delta \Delta G = -\frac{\mu^2}{a^3} \left[\frac{(\epsilon + \Delta \epsilon) - 1}{2(\epsilon + \Delta \epsilon) + 1} - \frac{\epsilon - 1}{2\epsilon + 1} \right]$$
 (6)

480 For example, the solvation of water ($a=1.93~\text{Å}, \mu=2.2~\text{D}$) 481 in a low dielectric medium such as tetrachloromethane or benzene ($\epsilon \sim 2.2$, but $\Delta \epsilon = -1.2$) gives an error of $\Delta \Delta G \sim$ -8 kJ/mol (-2 kcal/mol).

Implications for transfer free energies. As another ex-485 ample, consider the transfer of small druglike molecules 486 from a nonpolar solvent (such as cyclohexane) to water, a 487 property often measured to indicate the expected degree $_{ text{ iny 437}}$ point charge forcefields will predict $\epsilon~pprox~1$ for many non- $_{ text{ iny 488}}$ of lipophilicity of a compound. To estimate the magnitude polar or symmetric molecules, but the measured dielectric 489 of error expected, for each molecule in the latest (Feb. 20) 490 FreeSolv database [17, 57], we estimated the expected er-491 ror in computed transfer free energies should GAFF/AM1ity, we suspect it may have several profound consequences, 492 BCC be used to model the nonpolar solvent cyclohexane 493 using the Onsager model (Eq. 6). We used took the cav-Suppose, for example, that one attempts to fit force- 494 ity radius a to be the half the maximum interatomic dis-444 field parameters to match the static dielectric constants of 495 tance and calculated $\mu=\sum_i q_i r_i$ using the provided mol2 CCl₄, CHCl₃, CH₂Cl₂, and CH₃Cl. In moving from the 496 coordinates and AM1-BCC charges. This calculation pretetrahedrally-symmetric CCl₄ to the asymmetric CHCl₃, 497 dicts a mean error of (-3.8 ± 0.3) kJ / mol $[(-0.91 \pm 0.07)]$ it suddenly becomes possible to achieve the observed di- 498 kcal / mol] for the 643 molecules (where the standard error electric constant of 4.8 by an appropriate choice of point 499 is computed from bootstrapping over FreeSolv compound charges. However, the model for CHCl3 uses fixed point 500 measurements), suggesting that the missing atomic polarcharges to account for both the permanent dipole moment soil izabilty unrepresentable by fixed point charge forcefields and the electronic polarizability, whereas the CCl_4 model $_{502}$ could contribute substantially to errors in predicted transcontains no treatment of polarizability. We hypothesize that 503 fer and solvation properties of druglike molecules. In other this inconsistency in parameterization may lead to strange 504 words, the use of a fixed-charge physics may lead to errors mismatches, where symmetric molecules (e.g. benzene and 505 of 3.8 kJ / mol in cyclohexane transfer free energies. We CCl_4) have qualitatively different properties than closely re- $_{506}$ conjecture that this missing physics will be important in the ⁵⁰⁷ upcoming (2015) SAMPL challenge [58], which will examine How important is this effect? We expect it to be impor- 508 transfer free energies in several low dielectric media.

Utility in parameterization. Given their ease of mea-

tency of fixed-charge models in low-dielectric media is suf- 567 membranes. ficiently alarming to motivate further study of polarizable forcefields. In particular, continuum methods [59-61], point dipole methods [62, 63], and Drude methods [64, 65] have 568 been maturing rapidly. Finding the optimal balance of accuracy and performance remains an open question; however, 569 the use of experimentally-parameterized direct polarization methods [66] may provide polarizability physics at a cost not 571 much greater than fixed charge forcefields.

C. ThermoML as a data source

524

549

The present work has focused on the neat liquid den-525 sity and dielectric measurements present in the ThermoML 578 Archive [20, 21, 67] as a target for molecular dynamics forcefield validation. While liquid mass densities and static dilectric constants have already been widely used in forcefield work, several aspects of ThermoML make it a unique resource for the forcefield community. First, the aggregation, support, and dissemination of ThermoML datasets through the ThermoML Archive is supported by NIST, whose mission makes these tasks a long-term priority. Second, the 584 ThermoML Archive is actively growing, through partnerships with several journals, and new experimental measurements 585 properties contained in ThermoML—including activity co- 591 well. efficients, diffusion constants, boiling point temperatures, critical pressures and densities, coefficients of expansion, speed of sound measurements, viscosities, excess molar enthalpies, heat capacities, and volumes—for neat phases and mixtures represent a rich dataset of high utility for forcefield validation and parameterization.

V. CONCLUSIONS

High quality, machine-readable datasets of physicochem-550 ical measurements will be required for the construction of next-generation small molecule forcefields. Here we have discussed the NIST/TRC ThermoML archive as a growng source of physicochemical measurements that may be iseful for the forcefield community. From the NIST/TRC ThermoML archive, we selected a dataset of 246 ambient, eat liquid systems for which both densities and static dilectric constants are available. Using this dataset, we benchmarked GAFF/AM1-BCC, one of the most popular small nolecule forcefields. We find systematic biases in densities and particularly static dielectric constants. Element-based empirical polarizabilty models are able to account for much of the systematic differences between GAFF/AM1-BCC and experiment. Non-polarizable forcefields may show unacceptable biases when predicting transfer and binding prop-

with explicit treatment of atomic polarizability, the inconsis- 566 erties of non-polar environments such as binding cavities or

ACKNOWLEDGEMENTS

We thank Patrick B. Grinaway (MSKCC), Vijay S. Pande 570 (Stanford University), Lee-Ping Wang (Stanford University), Peter Eastman (Stanford University), Robert McGibbon (Stanford University), Jason Swails (Rutgers University), David L. Mobley (University of California, Irvine), Michael R. Shirts (University of Virginia), William C. Swope (IBM), Julia E. Rice (IBM), Hans Horn (IBM), Jed W. Pitera (IBM), and members of Chodera lab for helpful discussions. Support for JMB was provided by the Tri-Institutional Training Program in Computational Biology and Medicine (via NIH training grant 1T32GM083937). KAB was supported in part by Starr Foundation grant 18-A8-058. JDC and KAB acknowledge partial support from NIH grant P30 CA008748. KAB, JLB, ASR, and JDC acknowledge the generous support of this research by 583 the Sloan Kettering Institute.

VII. DISCLAIMERS

This contribution of the National Institute of Standards published in these journals are critically examined by the 586 and Technology (NIST) is not subject to copyright in the TRC and included in the archive. Finally, the files in the 587 United States. Products or companies named here are cited ThermoML Archive are portable and machine readable via 588 only in the interest of complete technical description, and formal XML schema, allowing facile access to hundreds of see neither constitute nor imply endorsement by NIST or by the thousands of measurements. Numerous additional physical $_{590}$ U.S. government. Other products may be found to serve as VIII. TOC FIGURE

Appendix A: Appendices

• Figure: Timestep-dependence of density

594

595

- Figure: Error analysis (density) for ThermoML dataset
- Figure: Error analysis (static dielectric constant) for ThermoML dataset
 - Figure: Temperature Dependence: Density
 - Figure: Temperature Dependence: Static Dielectric Constant
 - Commands to install dependencies

FIG. 4: Dependence of computed density on simulation **timestep.** To probe the systematic error from finite time-step integration, we examined the timestep dependence of butyl acrylate density. (a). The density is shown for several choices of timestep. (b). The relative error, as compared to the reference value, is shown for several choices of timestep. Error bars represent standard errors of the mean, with the number of effective samples estimated using pymbar's statistical inefficiency routine [40]. The reference value is estimated by linear extrapolation to 0 fs using the 0.5 fs and 1.0 fs data points; the linear extrapolation is shown as black lines. We find a 2 fs timestep leads to systematic biases in the density on the order of 0.13%, while 1 fs reduces the systematic bias to approximately 0.8%—we therefore selected a 1 fs timestep for the present work, where we aimed to achieve three digits of accuracy in density predictions.

FIG. 5: Assessment of experimental error: Density To assess the experimental error in our ThermoML extract, we compared three different estimates of uncertainty. In the first approach (Weighted), we computed the standard deviation of the optimally weighted average of the measurements, using the uncertainties reported by authors ($\sigma_{Weighted} = [\sum_k \sigma_k^{-2}]^{-0.5}$). This uncertainty estimator places the highest weights on measurements with small uncertainties and is therefore easily dominated by small outliers and uncertainty under-reporting. In the second approach (Median), we estimated the median of the uncertainties reported by authors; this statistic should be robust to small and large outliers of author-reported uncertainties. In the third approach (Std), we calculated at the standard deviation of independent measurements reported in the ThermoML extract, completely avoiding the author-reported uncertainties. Plot (a) compares the three uncertainty estimates. We see that author-reported uncertainties appear to be substantially smaller than the scatter between the observed measurements. A simple psychological explanation might be that because density measurements are more routine, the authors simply report the repeatability stated by the manufacturer (e.g. 0.0001 g/ cm^3 for a Mettler Toledo DM40 [50]). However, this hardware limit is not achieved due to inconsistencies in sample preparation and experimental conditions; see Appendix in Ref. [22]. Panel (b) shows the same information as (a) but as a function of the measurement index, rather than as a scatter plot—because not all measurements have author-supplied uncertainties, panel (c) contains slightly

more data points than (a, b).

FIG. 6: Assessment of experimental error: Static **Dielectric Constant** To assess the experimental error in our ThermoML extract, we compared three different estimates of uncertainty. In the first approach (Weighted), we computed the standard deviation of the optimally weighted average of the measurements, using the uncertainties reported by authors $(\sigma_{Weighted} = [\sum_k \sigma_k^{-2}]^{-0.5})$. This uncertainty estimator places the highest weights on measurements with small uncertainties and is therefore easily dominated by small outliers and uncertainty under-reporting. In the second approach (Median), we estimated the median of the uncertainties reported by authors; this statistic should be robust to small and large outliers of author-reported uncertainties. In the third approach (Std), we calculated at the standard deviation of independent measurements reported in the ThermoML extract, completely avoiding the author-reported uncertainties. Plot (a) compares the three uncertainty estimates. Unlike the case of densities, author-reported uncertainties appear to be somewhat larger than the scatter between the observed measurements. Panel (b) shows the same information as (a) but as a function of the measurement index, rather than as a scatter plot—because not all measurements have author-supplied uncertainties, panel (c) contains slightly

more data points than (a, b).

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g / cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g / cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g / cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g / cm^3 .

FIG. 7: Comparison of simulated and experimental densities for all compounds. Measured (blue) and simulated (green) densities are shown in units of g / cm^3 .

FIG. 8: Comparison of simulated and experimental static dielectric constants for all compounds. Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: Comparison of simulated and experimental static dielectric constants for all compounds. Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: Comparison of simulated and experimental static dielectric constants for all compounds. Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: Comparison of simulated and experimental static dielectric constants for all compounds. Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

FIG. 8: Comparison of simulated and experimental static dielectric constants for all compounds. Measured (blue), simulated (green), and polarizability-corrected simulated (red) static dielectric constants are shown for all compounds.

1. Dependency Installation

```
The following shell commands can be used to install the
necessary prerequisites via the conda package manager for
Python:

conda config —add channels http://conda.binstar.org/omnia
conda install "openmoltools" "pymbar==2.1" "mdtraj==1.3" "openmm==6.3" packmol
conda install "openmoltools" "pymbar==2.1" "mdtraj==1.3" "openmm==6.3" packmol
conda install the exact versions used
conda in the present study, with the exception of openmoltools for
conda which only a more recent package is available. However, for
conda authors interested in extending the present work, we sug-
conda used to the first package is available instead,
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda config —add channels http://conda.binstar.org/omnia
conda package manager for
conda conda config —add channels http://conda.binstar.org/omnia
conda package manager
```

- [1] R. Salomon-Ferrer, A. W. GolĹtz, D. Poole, S. Le Grand, and R. C. 676 [25] A. Jakalian, B. L. Bush, D. B. Jack, and C. I. Bayly, J. Comput. 616 617 Walker, Journal of Chemical Theory and Computation 9, 3878 (2013).618
- K. Lindorff-Larsen, P. Maragakis, S. Piana, M. Eastwood, 619 R. Dror, and D. Shaw, PloS one 7, e32131 (2012). 620
- K. Beauchamp, Y. Lin, R. Das, and V. Pande, J. Chem. Theory 621 622 Comput. 8, 1409 (2012).
- [4] R. Best, N. Buchete, and G. Hummer, Biophys. J. 95, L07 623
- [5] D.-W. Li and R. Bruschweiler, J. Chem. Theory Comput. 7, 1773 625 626
- [6] R. B. Best, X. Zhu, J. Shim, P. E. Lopes, J. Mittal, M. Feig, and 627 A. D. MacKerell, J. Chem. Theory Comput. (2012). 628
- [7] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. Klepeis, 629 R. Dror, and D. Shaw, Proteins: Struct., Funct., Bioinf. 78, 1950 630 631
- 632 517 (2011). 633
- [9] D. Ensign, P. Kasson, and V. Pande, J. Mol. Biol. **374**, 806 (2007). 694 [34] 634
- [10] V. Voelz, G. Bowman, K. Beauchamp, and V. Pande, J. Am. 695 635 Chem. Soc. 132, 1526 (2010). 636
- [11] H. Horn, W. Swope, J. Pitera, J. Madura, T. Dick, G. Hura, and 637 T. Head-Gordon, J. Chem. Phys. 120, 9665 (2004). 638
- [12] C. Caleman, P. J. van Maaren, M. Hong, J. S. Hub, L. T. Costa, 699 639 and D. van der Spoel, Journal of chemical theory and compu-640 tation 8, 61 (2011). 641
- [13] N. M. Fischer, P. J. van Maaren, J. C. Ditz, A. Yildirim, and 702 642 D. van der Spoel, Journal of Chemical Theory and Computa-643 tion (2015). 644
- [14] J. Zhang, B. Tuguldur, and D. van der Spoel, Journal of Chemical Information and Modeling (2015).
- [15] C. J. Fennell, K. L. Wymer, and D. L. Mobley, The Journal of 707 647 Physical Chemistry B (2014).
- [16] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, 649 H. Weissig, I. N. Shindyalov, and P. E. Bourne, Nucleic Acids 650 Res. 28, 235 (2000). 651
- [17] D. L. Mobley, Experimental and calculated 652 molecule hydration free energies, Retrieved from: 713 653 http://www.escholarship.org/uc/item/6sd403pz, 654 uC Irvine: Department of Pharmaceutical Sciences, UCI. 655
- [18] E. Ulrich, H. Akutsu, J. Doreleijers, Y. Harano, Y. Ioannidis, 656 J. Lin, M. Livny, S. Mading, D. Maziuk, and Z. Miller, Nucleic 657 Acids Res. 36, D402 (2008). 658
- [19] J. Pontolillo and R. P. Eganhouse, Tech. Rep. Water-Resources 659 Investigations Report 01-4201, U.S. Geological Survey, Reston, 660 Virginia (2001). 661
- [20] M. Frenkel, R. D. Chirico, V. V. Diky, Q. Dong, S. Frenkel, P. R. 662 Franchois, D. L. Embry, T. L. Teague, K. N. Marsh, and R. C. Wil-663 hoit, Journal of Chemical & Engineering Data 48, 2 (2003). 664
- M. Frenkel, R. D. Chiroco, V. Diky, Q. Dong, K. N. Marsh, J. H. 665 [21] Dymond, W. A. Wakeham, S. E. Stein, E. Königsberger, and A. R. 666 Goodwin, Pure and applied chemistry 78, 541 (2006). 667
- R. D. Chirico, M. Frenkel, J. W. Magee, V. Diky, C. D. Muzny, A. F. 668 Kazakov, K. Kroenlein, I. Abdulagatov, G. R. Hardin, and W. E. 669 Acree Jr, Journal of Chemical & Engineering Data 58, 2699 670 (2013).671
- [23] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. 672 Case, J. Comput. Chem. 25, 1157 (2004). 673
- J. Wang, W. Wang, P. A. Kollman, and D. A. Case, J. Mol. Graph Model. 25, 247260 (2006).

- Chem. 21, 132 (2000).
- [26] A. Jakalian, D. B. Jack, and C. I. Bayly, J. Comput. Chem. 23, 1623 (2002).
- W. McKinney, in Proceedings of the 9th Python in Science Con-680 ference, edited by S. van der Walt and J. Millman (2010), pp. 51 - 56
- 683 [28] M. Swain, Cirpy-a python interface for the chemical identifier resolver (cir), URL https://github.com/mcs07/CIRp.
- [29] Openeye toolkits 2014, URL http://www.eyesopen.com. 685
- L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, Jour-686 nal of computational chemistry 30, 2157 (2009).
- [31] URL http://www.ime.unicamp.br/~martinez/packmol/. 688
- [32] C. Velez-Vega, D. J. McKay, V. Aravamuthan, R. Pearlstein, and 689 J. S. Duca, Journal of chemical information and modeling 54, 690 3344 (2014).
- [8] K. Lindorff-Larsen, S. Piana, R. Dror, and D. Shaw, Science 334, 692 [33] P. C. Hawkins and A. Nicholls, Journal of chemical information and modeling 52, 2919 (2012).
 - D. Case, V. Babin, J. Berryman, R. Betz, O. Cai, D. Cerutti, T. Cheatham III, T. Darden, R. Duke, H. Gohlke, et al., University of California, San Francisco (2014).
 - 697 [35] URL http://github.com/choderalab/openmoltools.
 - [36] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, 698 C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, et al., J. Chem. Theory Comput. 9, 461 (2012).
 - 701 [37] R. T. McGibbon, K. A. Beauchamp, C. R. Schwantes, L.-P. Wang, C. X. Hernández, M. P. Harrigan, T. J. Lane, J. M. Swails, and V. S. Pande, bioRxiv p. 008896 (2014).
 - [38] D. C. Liu and J. Nocedal, Mathematical programming 45, 503 (1989).
 - [39] J. A. Izaguirre, C. R. Sweet, and V. S. Pande, Pacific Symposium on Biocomputing **15**, 240 (2010).
 - [40] M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).
 - [41] T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 710 (1993).
 - small 712 [42] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope, J. Chem. Phys. 126, 155101 (2007).
 - 714 [43] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook of Markov Chain Monte Carlo (CRC press, 2011).
 - [44] M. Neumann, Molecular Physics **50**, 841 (1983). 716
 - [45] K. Sheppard, Arch toolbox for python (2015), GitHub repos-717 itory: https://github.com/bashtage/arch, URL http://dx. doi.org/10.5281/zenodo.15681.
 - [46] H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989). 720
 - [47] N. Haider, Molecules 15, 5079 (2010). 721
 - W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, 722 and M. L. Klein, The Journal of chemical physics 79, 926 (1983). 723
 - 724 W. L. Jorgensen, J. D. Madura, and C. J. Swenson, Journal of the American Chemical Society 106, 6638 (1984). 725
 - Mettler toledo density meters, [Online; accessed 15-Jan-726 2015], URL http://us.mt.com/us/en/home/products/ Laboratory_Analytics_Browse/Density_Family_ Browse_main/DE_Benchtop.tabs.models-and-specs.
 - html.
 - [51] R. Bosque and J. Sales, Journal of chemical information and computer sciences 42, 1154 (2002).
 - L.-P. Wang, T. J. Martínez, and V. S. Pande, The Journal of Physical Chemistry Letters (2014).
 - C. J. Fennell, L. Li, and K. A. Dill, The Journal of Physical Chem-735 istry B 116, 6936 (2012).

- 737 cal physics 141, 014103 (2014). 738
- [55] A. D'Aprano and I. D. Donato, Journal of Solution Chemistry 739 **19**, 883 (1990). 740
- [56] W. M. Haynes, CRC handbook of chemistry and physics (CRC 741 Press, 2011). 742
- D. L. Mobley, Experimental and calculated small molecule hy-[57] 743 dration free energies, Retrieved from: https://github.com/ 744 choderalab/FreeSolv, uC Irvine: Department of Pharma-745 ceutical Sciences, UCI. 746
- [58] J. Newman, V. J. Fazio, T. T. Caradoc-Davies, K. Branson, and 747 T. S. Peat, Journal of biomolecular screening (2009). 748
- [59] J.-F. Truchon, A. Nicholl's, J. A. Grant, R. I. Iftimie, B. Roux, and 749 C. I. Bayly, Journal of computational chemistry **31**, 811 (2010). 750
- [60] J.-F. Truchon, A. Nicholls, B. Roux, R. I. Iftimie, and C. I. Bayly, 751 Journal of chemical theory and computation **5**, 1785 (2009). 752

- [54] I. V. Leontyev and A. A. Stuchebrukhov, The Journal of chemi- 753 [61] J.-F. Truchon, A. Nicholls, R. I. Iftimie, B. Roux, and C. I. Bayly, Journal of chemical theory and computation 4, 1480 (2008). 754
 - 755 [62] J. Ponder, C. Wu, P. Ren, V. Pande, J. Chodera, M. Schnieders, I. Haque, D. Mobley, D. Lambrecht, R. DiStasio Jr, et al., J. Phys. 756 Chem. B 114, 2549 (2010). 757
 - 758 [63] P. Ren and J. W. Ponder, The Journal of Physical Chemistry B 108, 13427 (2004). 759
 - G. Lamoureux and B. Roux, The Journal of Chemical Physics 760 [64] 119, 3025 (2003). 761
 - 762 [65] V. M. Anisimov, G. Lamoureux, I. V. Vorobyov, N. Huang, B. Roux, and A. D. MacKerell, Journal of Chemical Theory and 763 Computation 1, 153 (2005). 764
 - 765 [66] L.-P. Wang, T. L. Head-Gordon, J. W. Ponder, P. Ren, J. D. Chodera, P. K. Eastman, T. J. Martínez, and V. S. Pande, J. Phys. Chem. B 117, 9956 (2013).
 - ₇₆₈ [67] R. D. Chirico, M. Frenkel, V. V. Diky, K. N. Marsh, and R. C. Wilhoit, Journal of Chemical & Engineering Data 48, 1344 (2003).