PROJET INTELLIGENCE ARTIFICIELLE

SUJET: METHODE CATBOOST

1 EXPLICATION DU MODEL

1.1 définition:

CATBOOST est une bibliothèque open source hautes performances pour le gradient boosting sur les arbres de décision

1.2 Ces fonctionnalités :

Grande qualité sans réglage des paramètres :

Réduisez le temps consacre au réglage des paramètres, car CatBoost fournit d'excellents résultats avec les paramètres par défaut

Prise en charge des fonctionnalités catégorielles :

Améliorez vos résultats d'entrainement avec CatBoost qui vous permet d'utiliser des facteurs nos numériques, au lieu d'avoir à prétraiter vos données ou à passer du temps et des efforts à les transformer en chiffre

Version GPU rapide et évolutive :

Entrainez votre model sur une mise en œuvre rapide de l'algorithme d'amplification de gradient pour GPU. Utiliser une configuration multi-cartes pour les jeux de données volumineux

Précision améliorée :

Réduise le surajustement lors de la construction de vos model grâce a un nouveau schéma d'amplification du gradient

Prédiction rapide :

Appliquez votre modèle forme rapidement et efficacement, même aux taches critiques en termes de latence, à l'aide de l'applicateur de modèles de CatBoost

A propos:

CatBoost est un algorithme de gradient boosting sur les arbres de décision .il est développé par des chercheurs et ingénieurs de Yandex et est utilise pour la recherche, les systèmes de recommandation, l'assistant personnel, les voitures autonomes les prévisions météorologiques et de nombreuses autres taches chez Yandex et dans d'autres entreprises, notamment le CERN, Cloudflare, Careem taxi.il est en open-source et peut être utiliser par n'importe qui.

2 <u>DIFFERENCE ENTRE CATBOOST ET LES AUTRES</u> <u>METHODES DE ML</u>

CatBoost	KNN	Arbre de	Naive Bayes	Régression
		Décision	l raire bayes	logique
CatBoost est un	Il peut être utilisé	L'arbre de	Naïve Bayes est	La régression
algorithme	à la fois pour les	décision est un	un classifieur	logistique est une
d'apprentissage	problèmes de	algorithme qui se	assez intuitif à	méthode
automatique à	classification et	base sur un	comprendre.	statistique pour
source ouverte	de régression.	modèle de	comprehare.	effectuer des
récemment de	de regression.	graphe (les	II se base sur le	classifications
Yandex.	Cependant, il est	arbres) pour	théorème de	binaires.
Tanacx.	plus largement	définir la décision	Bayes des	billaires.
Il peut facilement	utilisé dans les	finale.	probabilités	Elle prend en
s'intégrer à des	problèmes de	illiaic.	conditionnelles.	entrée des
frameworks	classification	Chaque nœud	conditionnelles.	variables
d'apprentissage	dans l'industrie.	comporte une	Naïve Bayes	prédictives
en profondeur	dans i maastric.	condition, et les	assume une	qualitatives et/ou
tels que	K plus proches	branchements	hypothèse forte	ordinales et
TensorFlow de	voisins est un	sont en fonction	(naïve).	mesure la
Google et Core	algorithme	de cette	(naive).	probabilité de la
ML d'Apple.	simple qui stocke	condition (Vrai	En effet, il	valeur de sortie
Wiz a Apple.	tous les cas	ou Faux).	suppose que les	en utilisant la
La meilleure	disponibles et	ou raakj.	variables sont	fonction sigmoïd
partie de	classe les	Plus on descend	indépendantes	(représentée
CatBoost est qu'il	nouveaux cas par	dans l'arbre, plus	entre elles.	dans la photo).
ne nécessite pas	un vote	on cumule les		
de formation	majoritaire de	conditions.	Cela permet de	On peut
approfondie sur	ses k voisins. Le	L'image ci-dessus	simplifier le	effectuer la
les données	cas assigné à la	illustre ce	calcul des	classification
comme les autres	classe est le plus	fonctionnement	probabilités.	multi-classes (par
modèles de ML,	courant parmi		Généralement, le	exemple
et peut	ses K voisins les		Naïve Bayes est	classifier une
fonctionner sur	plus proches		utilisé pour les	photo en trois
une variété de	mesurés par une		classifications de	possibilités
formats de	fonction de		texte (en se	comme moto,
données; pas	distance.		basant sur le	voiture,
nuire à sa			nombre	tramway).
robustesse.	Ces fonctions de		d'occurrences de	,,
	distance peuvent		mots).	En utilisant la
Assurez-vous de	être la distance		,	régression
bien gérer les	euclidienne,			logistique et la
données	Manhattan,			méthode un-
manquantes	Minkowski et			contre-tous
avant de	Hamming.			(One-Versus-All
procéder à				classification). La
l'implémentation.	Les trois			régression
Catboost peut	premières			logistique
traiter	fonctions sont			permettra de
automatiquement	utilisées pour la			répondre à des
les variables	fonction			

catégorielles sans	continue et la		problèmes
afficher l'erreur	quatrième		comme :
de conversion de	(Hamming) pour		
type, ce qui vous	les variables		Est-ce que le
aide à mieux vous	catégorielles. Si K		client est
concentrer sur le	= 1, alors le cas		solvable pour lui
réglage de votre	est simplement		accorder un
modèle plutôt	assigné à la		crédit ? Est-ce
que sur le tri des	classe de son		que la tumeur
erreurs triviales.	voisin le plus		diagnostiquée est
	proche. Parfois,		bénigne ou
	choisir K s'avère		maline ?
	être un défi lors		
	de l'exécution de		
	la modélisation		
	kNN		