

ANGELA LUZZATTO, LETICIA D'SANTI MOREIRA, THALLIA CAVEION VICTOR HUGO CHIMILOVSKI RIBEIRO

PROJETO DE UM CONTROLADOR DE TEMPERATURA

PATO BRANCO 2021

ANGELA LUZZATTO, LETICIA D'SANTI MOREIRA, THALLIA CAVEION VICTOR HUGO CHIMILOVSKI RIBEIRO

PROJETO DE UM CONTROLADOR DE TEMPERATURA

Atividade supervisionada de curso de graduação apresentado à disciplina de Sistemas de Controle 2, do Curso de Engenharia de Computação do Departamento Acadêmico de Engenharia Elétrica - DAELE - da Universidade Tecnológica Federal do Paraná - UTFPR, Campus Pato Branco, como requisito para aprovação na disciplina de Sistemas de Controle 2.

Professor: Dr. Rafael Cardoso

PATO BRANCO 2021

LISTA DE FIGURAS

FIGURA 1 - Diagrama de blocos representando o sistema de controle 8
FIGURA 2 - Gráfico da curva de resposta do sistema
FIGURA 3- Gráfico da curva de resposta do sistema retirando o offset 9
FIGURA 4 - Gráfico das curvas sobrepostas
FIGURA 5 - Circuito genérico para um oscilador de relaxação
FIGURA 6 - Circuito genérico de um circuito integrador
FIGURA 7 - Onda triangular, simulação Spice
FIGURA 8 - Circuito Buffer de tensão
FIGURA 9 - Circuito gerador do PWM
FIGURA 10 - Diagrama de blocos do sistema atual considerando a planta e os ganhos calculados até o momento
FIGURA 11 - Relé de estado sólido Novus SSR-4840
FIGURA 12 - Funcionamento do relé de estado sólido
FIGURA 13 - Circuito amplificador não inversor
FIGURA 14 - Diagrama de bloco com a inserção do ganho Kr do sensor
FIGURA 15 - Configuração equivalente para um sistema com realimentação unitária
FIGURA 16 - Saída do sistema sem compensador
FIGURA 17 - Erro em regime permanente do sistema não compensado 24
FIGURA 18 - Circuito do controlador PI
FIGURA 19 - Diagrama de blocos do sistema compensado
FIGURA 20 - Gráfico do sistema compensado com entrada degrau de 100V 28
FIGURA 21 - Gráfico do erro do sistema compensado

software	22 - Gráfico comparativo da resposta da simulação do sistema elétrico no LTspice com a resposta da planta do sistema compensado no software
	23 - Gráfico comparativo do erro da simulação do sistema elétrico no
	LTspice com a resposta da planta do sistema compensado no software31
FIGURA	24 - Circuito equivalente elétrico da planta

SUMÁRIO

1 INTRODUÇÃO	5
2 MODELO MATEMÁTICO DA PLANTA	6
2.1 Modelagem da planta	8
3. ATUADOR	12
4. RELÉ DE ESTADO SÓLIDO	19
5. SENSOR DE TEMPERATURA	21
6. PROJETO DO CONTROLADOR PI	25
6.1 Verificação do Controlador	27
7. EQUIVALENTE ELÉTRICO DA PLANTA	32
8. CONCLUSÃO	34
9. REFERÊNCIAS	35

1. INTRODUÇÃO

O presente trabalho tem como objetivo projetar e implementar um controlador de temperatura para um sistema térmico. Faz-se necessário a análise do comportamento do sistema conforme a variação da referência de entrada com o objetivo de obtenção da mesma na saída.

Para a execução do projeto faz-se necessário uma análise teórica, nesse caso do sistema térmico, assim chegando à planta do sistema desejado, com isto obtém-se uma função de transferência a qual descreve a dinâmica do sistema.

É desejável zerar o erro em regime permanente fazendo-se necessário o uso de um controlador. O controlador proporcional integral será responsável por zerar este erro e em consequência deixar o sistema o sistema rápido.

Após a modelagem teórica do sistema será necessário validá-lo. Para isso faz-se necessário a comparação da modelagem teórica com a modelagem experimental através do uso de *softwares*.

2. MODELO MATEMÁTICO DA PLANTA

O sistema a ser projetado é um sistema de controle de temperatura para um recipiente completo com água. Seu funcionamento é regido pela equação de transferência de calor dado pela equação abaixo.

$$Q = mc\Delta T \tag{1}$$

Onde Q é a quantidade de calor medida em Kcal, m equivale a massa do fluido a ser aquecida em kg, c é o calor específico do líquido que representa a quantidade de calorias necessárias para variar em 1°C na temperatura de 1kg de massa em $\frac{kcal}{kg^{\circ}C}$, ΔT é a variação de temperatura em °C ao qual o sistema será submetido.

Contudo a Equação 1 leva em consideração que todo o calor fornecido é utilizado no aumento da temperatura, entretanto é necessário levar em conta que o sistema não está isolado do meio externo, assim tende a perder calor para o meio. Com isso temos a representação dada pela Equação 2:

$$Qi - Qo = mc\Delta T \tag{2}$$

Em que Qi é o calor transferido ao sistema, Qo é o calor perdido para o meio externo. Derivando em relação ao tempo de ambos os lados da igualdade da Equação 2 é obtido a equação diferencial que demonstra a taxa de transferência de calor para o sistema como mostrado na Equação 3:

$$\frac{Qi - Qo}{dt} = mc(\frac{dT}{dt}) \tag{3}$$

A grandeza $\frac{Qi}{dt}$ representa a taxa de entrada de calor no sistema hi, $\frac{Qo}{dt}$ representa a taxa de calor perdida para o ambiente ho. Ambas as grandezas são em $\frac{Kcal}{s}$. Substituindo essas grandezas pelos seus equivalentes na Equação 3 tem-se:

$$hi - ho = mc\frac{dT}{dt} \tag{4}$$

O produto da massa m com o calor específico c é chamado de capacitância térmica C em $\frac{Kcal}{{}^{\circ}C}$. Relacionando a taxa de perda de calor para o meio externo com a resistência térmica do sistema Rt em $\frac{{}^{\circ}Cs}{Kcal}$, obtém-se a equação de resistência térmica.

$$Rt = \frac{T}{ho} \tag{5}$$

Isolando o termo $\,h_{\,o}\,$ da Equação 5 e realizando a substituição na Equação 4, obtém-se a Equação 6.

$$c\frac{dT}{dt} = h_i - \frac{T}{Rt} \tag{6}$$

Ao ser resolvida para h_i e multiplicada por Rt, pode ser reescrita da seguinte forma:

$$RtC \frac{dT}{dt} + T = Rth \tag{7}$$

A Equação 7 é a equação diferencial do sistema, ela administra o comportamento da temperatura no sistema em função da energia fornecida ao longo do tempo. Realizando a aplicação da Transformada de Laplace na Equação 6 é obtido a representação do sistema no domínio da frequência, que sendo resolvida para T(s) tem-se a Equação 8.

$$\frac{T(s)}{Hi(s)} = \frac{Rt}{RtCs + 1} \tag{8}$$

Esta equação representa a função de transferência do sistema térmico a ser projetado. Com ela podemos obter a resposta em temperatura ($^{\circ}C$) do sistema ao fornecer certa quantidade de energia na forma de calor durante um período de tempo. O fornecimento de calor se dá através da conversão de energia elétrica em energia térmica, esta energia é obtida através da dissipação de potência em um componente resistivo. A potência dissipada em um resistor é dada por:

$$P = \frac{v^2}{R} \tag{9}$$

A Equação 9, é dada em *watts* (W), visto que 1W equivale a $1\frac{j}{s}(\frac{joule}{s})$, será necessário realizar a conversão de *joules* para *Kcal*. Deste modo, a seguinte equivalência deve ser utilizada.

$$1 j = 2,39 \times 10^{-4} Kcal \tag{10}$$

Assim é possível chegar ao diagrama de blocos mostrado na Figura 1. Ele relaciona a entrada, que é uma dada tensão elétrica, com a saída, que é a temperatura do sistema analisado. O diagrama representa o sistema de controle a ser utilizado.

Figura 1: Diagrama de blocos representando o sistema de controle. **Fonte:** (CARDOSO, 2021).

2.1 Modelagem da planta

Para o projeto do controlador, é necessário obter o modelo matemático da planta a ser controlada. A função de transferência da planta se dá na forma:

$$G(S) = \frac{Rt}{RtCs + 1} \tag{11}$$

Definido um volume de líquido com sendo 500ml de água, tem se que a massa do fluido a ser aquecida será de 500g, pois 1000ml de água tem massa de 1000g.

Será necessário o acionamento de um aquecedor com uma tensão CA reduzida para que o sistema não ferva a água, pois a análise será feita sobre a curva de aquecimento e durante a fervura, a temperatura é mantida em $100^{\circ}C$ em condições normais de temperatura e pressão. Assim não será possível determinar as características do sistema e gerar a curva de resposta do sistema.

Aplicando uma tensão de aproximadamente 32V em um aquecedor que possua uma potência de P=1000W, tem-se o gráfico abaixo:

Figura 2: Gráfico da curva de resposta do sistema **Fonte:** (CARDOSO, 2021).

Observando a curva do gráfico (na Figura 2), pode-se notar que a mesma descreve o comportamento de temperatura da água nesse recipiente. A temperatura do líquido inicialmente é de $15^{\circ}C$ a qual se equilibra em $45^{\circ}C$ em um determinado tempo.

Se a curva for deslocada para iniciar em $0^{\circ}C$ (e não em 15 como na Figura 2) o gráfico se comporta conforme a Figura 3.

Figura 3: Gráfico da curva de resposta do sistema retirando o offset **Fonte:** (CARDOSO, 2021).

A partir do gráfico da Figura 3 é possível determinar a constante do tempo. A qual é obtida a partir do ponto em que a saída do sistema atinge 63,3% do valor de regime permanente de $30^{\circ}C$.

$$Ct = 0,632 \cdot 30^{\circ}C = 19^{\circ}C$$
 (12)

Conforme calculado acima o ponto a ser observado no gráfico é $19^{\circ}C$ com a constante de tempo (τ) sendo então igual à $1.01 \cdot 10^{3}s$.

A determinação do ganho CC é a relação entre a variação de saída com a variação da entrada do sistema. Assim será necessário determinar o valor da resistência da entrada do sistema (ou seja a resistência do aquecedor utilizado), se o aquecedor tem potência P=1000W e alimentação de rede é em 127V, assim a resistência teórica do aquecedor se dá por:

$$R = \frac{V^2}{P} = \frac{127^2}{1000} = 16,129 \,\Omega \tag{13}$$

O degrau da taxa de entrada de calor pode ser obtido a partir da Equação 14.

$$h_i(0^+) = \frac{V^2}{R} \tag{14}$$

Se a tensão aplicada no sistema é de 32V e a resistência teórica calculada a partir da Equação 12 é de $16,129~\Omega$ temos que a taxa em W, multiplicando esse resultado pela constante da Equação 10, tem-se que hi vale:

$$h_i(0^+) = \frac{32^2}{16,129} \cdot 2,39 \times 10^{-4} = 0,015 \frac{kcal}{s}$$
 (15)

Assim com uma variação de 32V na entrada do resistor, fornece para a entrada da função de transferência um degrau de $0,015\frac{kcal}{s}$.

Com isto pode-se encontrar o ganho CC onde Kcc é igual a resistência térmica do sistema, e Rt é a variação de temperatura pela variação de entrada. Dessa maneira temos:

$$K_{cc} = Rt = \frac{\Delta T}{\Delta h_i} = \frac{30}{0,015} = 2000$$
 (16)

A partir da Equação 8, substituindo os valores encontrados na Equação 16 e o T(s) pela constante de tempo τ observada no gráfico, a função de transferência do sistema G(s) é dada pela equação seguinte.

$$G(s) = \frac{T(s)}{H_{s}(s)} = \frac{K_{cc}}{\tau_{s}+1} = \frac{2000}{1010s+1}$$
 (17)

Para validar o modelo é simulado o diagrama de blocos da Figura 1 aplicando na entrada um degrau.

Figura 4: Gráfico das curvas sobrepostas **Fonte:** (CARDOSO, 2021).

Conforme a Figura 4 é possível observar no gráfico que a curva dos valores experimentais está muito próxima da curva da simulação de G(s) então o modelo é válido.

3. ATUADOR

O controle de temperatura do sistema analisado, irá funcionar fornecendo uma tensão de alimentação ao componente resistivo, e o mesmo irá dissipar energia em forma de calor, aquecendo assim a água do sistema, ao qual é o objetivo final deste trabalho.

Este atuador terá a responsabilidade de ligar e desligar a alimentação do circuito. De maneiras práticas, o mesmo irá funcionar como uma chave. Esse chaveamento regula a tensão fornecida ao aquecedor, conforme a necessidade de potência que o sistema possui, para assim chegar na temperatura desejada.

Para isso, será utilizada a modulação PWM (*pulse width modulation*), o sinal de PWM possui um pulso retangular, o mesmo é composto por um nível alto e um nível baixo.

O período de tempo em que o sinal fica em nível alto é chamado de t_{on} . O período do PWM é chamado de "Tpwm", com isto é possível obter o tempo ao qual a chave fica desligada, ou seja, " t_{off} ", que é igual ao período do PWM menos o tempo ao qual a chave ficou ligada, como demonstra a equação abaixo:

$$t_{off} = T_{PWM} - t_{on} \tag{18}$$

Também pode ser obtida a frequência do PWM, que é dada por um sobre o período do PWM, conforme mostrado na Equação 20.

$$f_{pwm} = \frac{1}{T_{PWM}} \tag{19}$$

A relação entre o tempo em que a chave fica ligada e o período do PWM é chamado de razão cíclica, como demonstra a equação abaixo:

$$D = \frac{t_{on}}{T_{PWM}} \tag{20}$$

Os osciladores aproveitam as características de disparo do componente (PWM), que ocorre quando a tensão aplicada atinge determinados valores. Para o projeto será utilizado um oscilador de relaxação, é um circuito elaborado com amplificadores operacionais, que mesmo sem um sinal de entrada se torna capaz de gerar uma onda quadrada apenas com sua própria alimentação.

Figura 5: Circuito genérico para um oscilador de relaxação. **Fonte:** Autoria própria.

O componente resistivo "R" do circuito limita a tensão de carga no capacitor em um determinado tempo, originário da saída do circuito. Os componentes resistivos "R1" e "R2" têm como função fornecer a tensão de referência para a entrada não-inversora do amplificador operacional. O capacitor "C" tem o trabalho de levar a entrada inversora a tensão (positiva ou negativa) necessária para alterar a saída do amplificador operacional.

O funcionamento do circuito inicialmente se dá com a definição dos resistores "R1" e "R2". Com valores escolhidos para os resistores como sendo igual a $10k\,\Omega$, o mesmo introduz a tensão de referência na entrada não-inversora do amplificador operacional.

$$B = \frac{R2}{R1 + R2} = \frac{10000}{10000 + 10000} = 0,5$$
 (21)

Através da Equação 22 é obtido o valor da constante "B", com a mesma pode-se calcular a frequência de oscilação e também definir qual será a tensão de referência na entrada não-inversora.

Com o valor da constante "B" definido, e propondo o valor de 13,5V para a saída "Vs" pode-se obter o valor da tensão de referência na entrada não-inversora do amplificador.

$$V_{+} = V_{s} \cdot B = 13, 5 \cdot 0, 5 = 6,75V$$
 (22)

Na entrada inversora, o resistor "R" proporciona um aumento de tensão no capacitor "C", ao qual se carregará até atingir o valor de referência " V_+ ". Como consequência disso, o valor da tensão de saída " V_s " será invertida para um referencial oposto do anterior.

É levado em consideração o carregamento e descarregamento do capacitor "C" para o cálculo da frequência de oscilação, no valor da tensão de referência " V_+ ", produzidos pela divisão de tensão entre "R1" e "R2". A frequência de oscilação é dada por.

$$f_{osc} = \frac{1}{2RCln(\frac{1+B}{1-B})}$$
 (23)

Deseja-se que após a modulação PWM os pulsos sejam capazes de englobar um número significativo de ciclos da redes, assim assumindo uma frequência de aproximadamente 5,7Hz.

Definindo também para o capacitor "C" um valor de $1\mu F$ através da Equação 24, pode-se determinar o valor aproximado da resistência "R", como mostra o cálculo a seguir:

$$R = \frac{1}{2 \cdot 10 \cdot (1 \times 10^{-6}) \cdot ln(\frac{1+0.5}{1-0.5})} = 80K\Omega$$
 (24)

Uma onda triangular é necessária para formação do sinal PWM, ela vai ser comparada com o sinal PI para definir o tempo em que o relé fica aberto ou fechado. Para gerar uma onda triangular a partir das ondas quadradas do oscilador de relaxação é necessário inserir um integrador depois do oscilador, o mesmo terá a função de integrar o sinal, convertendo-o assim em uma onda triangular. O circuito integrador se dá da seguinte maneira, como mostra a Figura 7:

Figura 6: Circuito genérico de um circuito integrador. **Fonte:** Autoria própria.

Com a análise do circuito da Figura 7 da transformada de Laplace, tem se que a equação do circuito integrador é:

$$\frac{V_O}{V_i} = \frac{-1}{sRC} \tag{25}$$

Analisando no domínio do tempo, a mesma equação (26) pode ser reescrita da seguinte maneira:

$$V_{o}(t) = -\frac{1}{RC} \int v_{1}(t) dt$$
 (26)

A saída do integrador se dá pela integral do sinal de entrada invertida multiplicando o mesmo pelo inverso da resistência e multiplicando a capacitância.

Definindo o valor da resistência "R" como $100K\,\Omega$ e o valor da capacitância "C" para $1\mu\,F$, para assim ter a finalidade do comportamento da saída ser a inclinação desejada na rampa de tensão.

Figura 7: Onda triangular, simulação Spice. **Fonte:** Autoria própria.

São adicionados *buffers* entre os circuitos a fim de isolá-los, utilizando um ganho unitário de tensão, para assim agir como um circuito ideal com impedância de entrada muito alta e impedância de saída muito baixa. Como demonstra a figura abaixo:

Figura 8: Circuito Buffer de tensão. **Fonte:** Autoria própria.

O circuito comparador é responsável por gerar a forma final do sinal PWM . O mesmo possui a função de realizar a comparação de uma tensão linear de entrada com uma tensão de referência " V_{ref} ", obtendo como saída um estado digital. Esse sinal digital representa se a tensão de entrada ultrapassou ou não a tensão de saída.

A tensão " V_{ref} " é responsável por determinar a razão cíclica, a partir dela pode-se definir os sinais em nível alto e baixo do PWM. O circuito completo foi projetado através do *software* LTSPICE, utilizado para a geração do sinal PWM.

Figura 9: Circuito gerador do PWM. **Fonte:** Autoria própria.

Com a utilização do atuador há o fornecimento de um ganho de tensão para o sistema, ao qual deve ser levado em consideração para o projeto do controlador, o mesmo denominado de " Kc_{ciclos} " pois se dá origem nos ciclos do sinal PWM, podendo ser calculado de acordo com a Equação 28.

$$Kc_{ciclos} = \frac{V^2_{rms}}{Vp_{triang}}$$
 (27)

Onde $V_{\it rms}$ equivale a tensão da rede ao qual tem o valor de 127V e $Vp_{\it triang}$ é a tensão de pico da onda triangular com valor de 12V. Assim obtendo o valor do ganho de tensão.

$$Kc_{ciclos} = \frac{127^2}{12} = 1344,08V$$
 (28)

Com isto pode-se observar que o diagrama de blocos contém mais um ganho, conforme mostrado na figura 10.

Figura 10: Diagrama de bloco do sistema atual considerando a planta e os ganhos calculados até o momento.

Fonte: Autoria própria.

Observando a Figura 10 a mesma representa o diagrama de blocos do sistema até o momento. Verificando o sistema, é possível observar que se faz necessário a inserção de um componente que converta o sinal de temperatura (C°) para um sinal de tensão elétrica (V).

4. RELÉ DE ESTADO SÓLIDO

O relé de estado sólido ou em inglês solid state relay (SSR), é um componente semicondutor, tem como função acionar uma carga de maior potência a partir de uma baixa potência aplicada em sua entrada. Ou seja, todo relé se configura como um contato que abre e fecha de acordo com um determinado fator em sua entrada.

Diferente do relé eletromecânico, o relé de estado sólido não possui peças móveis ou elementos mecânicos em seus mecanismos, sendo assim seu funcionamento é a partir de componentes semicondutores, deste modo não gera arco elétrico devido a ausência de contatos físicos, seu tempo de comutação é menor em comparação ao relé eletromecânico, desta forma eles respondem à elevadas frequências de acionamento, se tornando assim uma opção onde o controle com alta precisão faz-se necessário.

A Figura 12 contém um relé de estado sólido comercial Novus SSR-4840 que chaveia tensão alternada.

Figura 11: Relé de estado sólido Novus SSR-4840. **Fonte**: (CARDOSO, 2021).

O relé escolhido para realização do acionamento da carga do sistema a ser desenvolvido é o relé Novus SSR-4840, o qual trabalha com tensão de controle de 4 a 32 $\,V_{cc}\,$, e corrente de controle de 5 a 12 $_{\it mA~cc}\,$ com tensão de chaveamento de 75 a 480 $\,V_{\it rms}\,$.

Ao receber um sinal de comando em seus terminais de entrada, o SSR conduz e alimenta a carga, a condução acontece de fato na próxima passagem por zero da tensão de rede. Para o desligamento acontece o mesmo, o sinal de comando é retirado, porém o SSR somente realiza o bloqueio na próxima passagem por zero. Com isto pode-se considerar atrasos nunca superiores a 8,3 milisegundos. Como mostrado na figura abaixo.

Figura 12: Funcionamento do relé de estado sólido. **Fonte:** Datasheet Relé.

É necessário o uso de um dissipador de calor junto ao relé pois quando tem corrente circulando há geração de calor sem o dissipador a corrente de carga cai muito.

5. SENSOR DE TEMPERATURA

Como o sistema a ser projetado trata-se de um sistema térmico, se faz necessário a utilização de um sensor de temperatura.

O sensor escolhido é o LM35, o qual é um sensor de precisão de temperatura, sua principal vantagem é ser calibrado diretamente em graus Celsius. Sua saída varia linearmente de 0 a 1V obtendo assim um fator de escala de 10mV sendo que quando a saída é 0V tem-se 0° e para 1V para 100° . O mesmo opera com uma alimentação de 4V à 30V com um consumo de corrente menor que $60\mu A$.

Será necessário amplificar este valor para diminuir o erro, para isso será utilizado um amplificador não inversor de ganho constante mostrado no circuito abaixo.

Figura 13: Circuito amplificador não inversor. **Fonte:** Autoria própria.

Para da determinação do ganho de tensão no circuito não inversor, será necessário um divisor de tensão entre R1 e R2 ao qual terão os valores de 9K Ω e 1K Ω respectivamente para a determinação do ganho desejado.

$$\frac{V0}{Vi} = 1 + \frac{R1}{R2} = 1 + \frac{9000}{1000} = 10V$$
 (29)

Com isto pode-se observar que a resposta do sensor se dá por $100 m \frac{v}{\circ_c}$. Com isso obtém-se um ganho do sensor Kr=0,1 .

Figura 14: Diagrama de bloco com a inserção do ganho Kr do sensor. **Fonte:** Autoria própria.

Observando a Figura 12, podemos notar que o sistema analisado pode ser rearranjado de maneira a facilitar a compreensão do mesmo (gerando configurações conhecidas), utilizando álgebra de diagrama de blocos para uma realimentação unitária, que são formas equivalentes para o movimento de um bloco (NISE, 2012).

Obtendo assim, a forma equivalente do diagrama de blocos, utilizando a redução do diagrama, temos:

Figura 15: Configuração equivalente para um sistema com realimentação unitária. **Fonte:** Autoria própria.

Utilizando um degrau de $50V\,\mathrm{na}$ entrada do sistema obtemos a seguinte curva na saída:

Figura 16: Saída do sistema sem compensador. **Fonte:** Autoria própria.

A saída desejada para o sistema é de $50\ C^{\circ}$. A partir da Figura 16, pode-se observar que existe um erro de aproximadamente $10\ C^{\circ}$. Para comprovação deste erro em regime permanente, é gerado um gráfico com a curva do mesmo, o qual é apresentado na figura abaixo:

Figura 17: Erro em regime permanente do sistema não compensado. **Fonte:** Autoria própria.

Comparando os dois gráficos (Figura 16 e Figura 17), pode-se notar que o valor faltante na Figura 16 para atingir o valor de referência (de $50~C^{\circ}$), é o mesmo valor do erro em regime permanente do sistema.

Desta forma foi verificado que há um erro no sistema Para encontrar o valor desse erro na simulação do projeto prático no LTspice, é necessário utilizar um circuito subtrator. Comparando a saída da referência com a saída do sensor obtém-se o erro que deve ser compensado.

Para compensar esse erro será inserido no sistema um controlador do tipo PI, com o objetivo de zerar este erro em regime permanente, chegando assim no valor de referência o qual é o objetivo deste trabalho.

6. PROJETO DO CONTROLADOR PI

É desejado que o sistema tenha um erro nulo para seguir uma referência e obter-se o valor desejado. Para isto será projetado um controlador do tipo proporcional integral (PI), onde a parcela integral é responsável por fazer com que o sistema siga a referência com erro nulo. Enquanto a parcela proporcional faz com que o sistema se torne mais rápido.

Figura 18: Circuito do controlador PI **Fonte:** Autoria própria.

A função de transferência ao qual descreve o controlador PI se dá por:

$$G_{PI}(s) = Kp + \frac{Ki}{s} = Kp \cdot \frac{s + \frac{Ki}{Kp}}{s}$$
 (30)

Onde o Kp equivale ao ganho da parcela proporcional do compensador e o Ki é o ganho da parcela integral do compensador. Em termos de implementação tem-se que o ganho Ki pode ser obtido pela equação:

$$Ki = \frac{1}{R18 \cdot C4} \tag{31}$$

O ganho Kp pode ser obtido através da equação:

$$Kp = \frac{R21}{R19} \tag{32}$$

O tempo de acomodação desejado é de 230s, considerando uma temperatura inicial de 0 C°. Deseja-se um sistema sem sobressinal, desta forma ξ = 1. Com isso, pode-se obter o valor da frequência natural w_n pela equação:

$$w_n = \frac{4}{\xi \cdot Ts} = \frac{4}{1 \cdot 230} = 1,739^{-3} rad/s$$
 (33)

O sistema obtido na Equação 17, trata-se de um sistema do Tipo 0, por não haver pólos na origem. Desta forma apresenta um erro para a resposta do tipo degrau. Adicionando-se um pólo na origem o sistema passa a ser do Tipo 1, desta forma não apresentando mais erros para a mesma entrada. Sendo assim a forma o sistema compensado em malha fechado, e considerando os ganhos anteriormente ficará da seguinte maneira:

$$G_{mfC}(s) = \frac{G(s)G_{PI}(s)}{1 + G(s)G_{PI}(s)} = \frac{3,944^{-3}(Kps + Ki)}{s^{2} + (9,901^{-4} + 3,944^{-3}Kp)s + 3,944^{-3}Ki}$$
(34)

Este sistema trata-se de um sistema de segunda ordem, ao qual pode ser aproximado pela equação:

$$G_{MF}(s) = \frac{w_n^2}{s^2 + 2s\xi w_n + w_n}$$
 (35)

Pela Equação 34, pode-se observar que existe uma relação entre os coeficientes que multiplicam "s", desta forma :

$$9,901^{-4} + 3,944^{-3}Kp = 2\xi w_n$$
 (36)

Ao isolar Kp nesta relação pode-se obter seu valor:

$$Kp = \frac{2 \cdot 1,739^{-3} - 9,901^{-4}}{3.944^{-3}} = 8,5$$
 (37)

A Partir do ganho Kp definido, é necessário encontrar dois resistores com valores cuja razão se aproxime do valor de Kp. Portanto, os valores escolhidos são os valores comerciais de $R21 = 85K \Omega$ e $R19 = 10K \Omega$.

Definido os resistor $R18=1000K~\Omega$ e o capacitor C4=472n~F , obtém-se o valor de Ki:

$$Ki = \frac{1}{R18 \cdot C4} = 2,11$$
 (38)

Desta forma a função de transferência do controlador PI será da seguinte maneira:

$$G_{PI}(s) = 8,5 + \frac{2,11}{s}$$
 (39)

6.1 Verificação do Controlador

Para a verificação do controlador PI, o mesmo foi acrescentado no diagrama de blocos e realizado a simulação no *software* MATLAB, através da ferramenta Simulink, como mostrado na figura abaixo.

Figura 19: Diagrama de blocos do sistema compensado **Fonte:** Autoria própria.

Considerando uma entrada do tipo degrau, de 50V, que corresponde tecnicamente a 5V no sistema, a qual projeta uma saída de $50~C^{\rm o}$ na temperatura do líquido, ou seja, na saída do sistema.

Pode-se observar na Figura 20 que a saída está com a temperatura desejada. Desta forma é verificado que o controlador é capaz de zerar o erro em regime permanente assim como esperado, além de tornar a resposta do sistema mais rápida.

Figura 20: Gráfico comparativo da resposta do sistema com e sem compensação em relação ao tempo de subida.

O sistema compensado apresenta um tempo de subida de apenas 11,8s enquanto no sistema não compensado o tempo era de 445s, também houve uma melhora no tempo de assentamento ao qual no sistema sem compensação era de 793s, enquanto no sistema compensado passou a ser de 215s aproximado ao tempo deseja de 230s ao qual o compensador foi projetado, como pode ser visto na figura abaixo.

Figura 21: Gráfico comparativo do sistema com e sem compensação em relação ao tempo de assentamento.

Na Figura 22 há a comparação entre os gráficos plotados nos *softwares* de simulação MATLAB e LTspice para validação do sistema projetado. Desta maneira, pode-se verificar que a planta em malha fechada compensada tem seu tempo de assentamento semelhante ao desejado. Também pode-se observar que o sistema foi para o valor desejado de temperatura de referência de $50\ C^{\circ}$.

Figura 22: Gráfico comparativo da resposta da simulação do sistema elétrico no software LTspice com a resposta da planta do sistema compensado no software Matlab.

Na Figura 23 nota-se que o erro em regime permanente das duas simulações é zero, ao qual é o esperado com o acréscimo de um controlador PI.

Figura 23: Gráfico comparativo do erro da simulação do sistema elétrico no software LTspice com a resposta da planta do sistema compensado no software Matlab.

7. EQUIVALENTE ELÉTRICO DA PLANTA

Fez-se necessário a modelagem de um equivalente elétrico da planta projetada para fins de verificação do projeto, o mesmo foi construído com a utilização do *software* LtSpice.

Figura 24: Circuito equivalente elétrico da planta. **Fonte:** Autoria própria.

A Figura 24 demonstra o equivalente elétrico do circuito, ao qual foi necessário a construção para a verificação de alguns dados do projeto.

Para isso fez-se necessário o uso de algumas equivalências. Como a fonte de corrente controlada, "G1" é equivalente à taxa de entrada de calor, a qual é dada em Kcal/s. A resistência "R17" é equivalente à resistência térmica obtida na Equação 16 e a capacitância elétrica "C3" é equivalente a capacitância térmica, que é o produto da massa m com o calor específico do líquido c dado em $\frac{Kcal}{{}^{\circ}C}$. O líquido utilizado é água que tem calor específico de $\frac{1Kcal}{{}^{\circ}C}$.

$$C3 = m.c$$

$$C3 = 0.5 \frac{Kcal}{{}^{\circ}C}$$
(40)

A taxa de entrada de calor não é manipulada diretamente, a qual tem sua variação através da tensão aplicada no resistor de aquecimento, e para que isso ocorra, são introduzidas as fontes controladas de tensão "B1" e "E1".

Já a fonte "B1", relaciona a tensão aplicada no aquecedor, com a sua potência que é dissipada em Watts, e a fonte "E1" é responsável pela conversão de Watts para Kcal/s.

Referente à fonte de tensão "E4", tem-se ganho do relé de estado sólido, utilizado para o acionamento com o controle de ciclos do sistema, o qual também é responsável pela linearização da tensão.

Para a corrente de saída na fonte "G1", a qual tem a mesma amplitude da tensão aplicada em sua entrada, a fonte de corrente controlada por tensão é

responsável por essa conversão, assim é possível representar a planta por seu equivalente elétrico.

Assim foi possível verificar o comportamento na saída, exportando os pontos da simulação LTspice e sobrepondo com o gráfico da simulação no MATLAB, do sistema em malha fechada com compensação.

8. CONCLUSÃO

Durante o desenvolvimento do mesmo, fez-se necessário o ajuste de temperatura de um sistema térmico para determinado valor de referência. Foi realizada a verificação do erro do sistema em regime permanente, assim observado que o mesmo não condizia com o desejado fez-se necessário o desenvolvimento de um controlador proporcional integral.

Ao analisar os resultados obtidos após a modelagem e simulação verificou-se que o erro em regime permanente é nulo ao ser aplicado uma entrada do tipo degrau. Desta forma, o controlador proporcional integral atende aos objetivos ao qual foi projetado.

9. REFERÊNCIAS

CARDOSO, R. SISTEMAS DE CONTROLE 2 - Projeto de Controlador de Temperatura. Disponível em: https://moodle.utfpr.edu.br/ . Acesso em: 05 de Abril de 2021.

NISE, Norman S. CONTROL SYSTEMS ENGINEERING. California State PolytechnicUniversity, Pomona: John Wiley and Sons, Inc., 2006.

BOYLESTAD, R. L.; NASHELSKY, L. Dispositivos eletrônicos e teoria de circuitos.Prentice-Hall do Brasil, 1984.

LM35 Datasheet - National Semicondutor, 2000. Disponível em: . Acesso em 28 de Abril de 2021.

SSR-4840 Manual - Novus, 2021. Disponível em: . Acesso em 28 de Abril de 2021.