MAE 435: Principles of Automatic Control

Lecture 1: Course Overview

Associate Professor: Hao Su, PhD 08/22/2023

MAE research experience for undergraduates (MAE-REU) program

Students will be awarded \$4,000 for the year (\$2,000 per semester).

Link: https://forms.gle/HM6jB2ezQQ3PuqWQ9

Google form QR code

Outline

- Course overview
- Introduction of Control Applications for Wearable Robots
- Introduction of Automatic Control

Outline

- Course overview
 - Syllabus
 - Course Details
 - Grading
 - Textbook
 - Preparation for MATLAB and Simulink
- Introduction of BIRO Lab and Students Projects
- Introduction of Automatic Control

Principles of Automatic Control Course Syllabus

	Week	Monday	Wednesday	Optional Text Read
Modeling	1. Aug. 19, 21	Course Overview	Basics of Laplace Transfer and PID Control	MCE: 1.1 – 1.5
	2. Aug. 26, 28	Project: MATLAB	Project: Simulink Introduction	SD: 2.2 – 2.3
	3. Sep. 2, 4	No Classes (Labor Day)	Laplace Transform & Transfer Function	MCE: 2.1, 2.2 & SD: 2.2 – 2.3
	4. Sep. 9, 11	Mechanical System Modeling	Project: Simulink Introduction Part II	MCE: 3.1-3.2 & SD: 6.1-6.6-
	5. Sep. 16, 18	Electromechanical Systems Modelling	Control Block Diagram Signal Flow Graph	MCE: 2.3 & SD: 8.1 – 8.3
	6. Sep. 23, 25	Time-Domain Analysis (1st order system)	Time-Domain Analysis (2 nd order system)	SD: 8.1 – 8.3 & MCE: 5.1 – 5.8
	7. Sep. 30, Oct. 2	Midterm Review	Project: Robot Modeling	MCE: 5.1 – 5.8
Analysis	8. Oct. 7, 9	Frequency Domain Analysis Part I	Frequency Domain Analysis Part II	MCE: 5.1 – 5.8
Analysis	9. Oct. 14, 16	No Classes (Fall Break)	Midterm	MCE: 7.1 & MCE: 7.2 – 7.6
	10. Oct. 21, 23	Bode Diagram: Concept	Midterm Recap & Stability Analysis	MCE: 6.2 – 6.5 & MCE: 7.2 – 7.6
	11. Oct. 28, 30	Bode Diagram: Gain and Phase Margin	Bode Diagram: Stability Criterion	MCE: 7.7 -7. 8
	12. Nov. 4, 6	Bode Diagram: Design and Control	Lead Compensation Control	MCE: 7.11 – 7.13
	13. Nov. 11, 13	Project: Robot System Simulation Implementation	Lag Compensation Control	MCE: 7.11 – 7.13
Control	14. Nov. 18, 20	Lead-Lag Compensation Control	Final Exam Review	-
	15. Nov. 25, 27	Project: Control of Robot I	No Classes (Thanksgiving Day)	-
	16. Dec. 2	Project: Control of Robot II (Last Day of Class)		-
	17. Dec. 9	Final Exam		-

Teaching Philosophy

- Teaching Philosophy
 - Theory (lecture): modelling, analysis and control
 - Experiential learning (project): simulation of exoskeleton control
 - Understand: What + Why
- Key topics
 - Model development with applications to mechanical engineering systems
 - Laplace transform, transfer functions and block diagrams
 - PID control, tuning and compensation
 - Control analysis and design
 - Simulink for DC motor control

Instructors and Hours

- Instructor: Prof. Hao Su
- Email address: hsu4@ncsu.edu
- Lecture: Tue. & Thur. 3:00pm-4:15pm
- Office hours: 1:00pm-2:00pm

Course Materials

Slides: Will be available online.

Textbook:

K. Ogata, *Modern Control Engineering*, 5th edition, Prentice Hall, 2010.

K. Ogata, *System Dynamics*, 4th ed., Prentice Hall, Upper Saddle River, NJ, 2004.

References:

Feedback Systems: An Introduction for Scientists and Engineers Karl
 J. Åström and Richard M. Murray

Grading

- 50% Midterm (1) and Final Exams (1)
- 30% Homework Assignments (6)
- 20% Project Reports (3)
- Your grade may also be affected by your attendance record and participation in class discussion and laboratory sessions.

Preparation for Matlab and Simulink

- MATLAB version: MATLAB 2018b or later
- MATLAB download: https://software.ncsu.edu/
- Take your laptop for next week (Aug. 29, 31)

Outline

- Course overview
- Introduction of Control Applications for Wearable Robots
- Introduction of Automatic Control

My Robotics Lab

- Looking for research assistants to work on wearable robots
 - Including but not limited to mechanical design, embedded system, controls, design of sensors and actuators
 - Students looking for internship are also welcome with stipend support by our lab
- Lab website: https://haosu-robotics.github.io/
- Contact information
 - Email: <u>hsu4@ncsu.edu</u>
 - Office: Engineering Building III (EB3) 3282

Powered Rigid Lower Limb Exoskeletons

2005 HAL-5

2010 Indego

2012 Ekso Bionics

2017 Keeogo

No metabolic cost reduction to able-bodied individuals

What are the key challenges?

*Significant mass 20-30Kg

*High friction Resistive *Joint misalignment
Discomfort

*Enforced movement
Needs assistive control

Disruptive Innovations for Wearable Robots

Rigid exoskeletons Challenges

Innovations

- 10 Kg
- **High friction**
- Resistive

high speed

Low torque,

- 2.2 Kg (unilateral)
- Compliant
- **Assistive**

Our Robot

Rigid Transmission

Heavy, bulky

Soft transmission

Time-consuming to don/doff

3D printing Individualization

Advantages of Our Soft Exoskeletons

- Lightweight
- Highly-compliant
- High bandwidth
- Robust

Unrestricted kinematics

Harvard exosuit

CUNY Soft exoskeleton

Passive assistance

Active assistance

Rigid exoskeleton

Robotic gait trainer

Imposed kinematics

High-Torque Density Motors

Property	Our motor	EC-90 Flat
Motors		
Mass(g)	244	648
Nominal Power(W)	314	107
Nominal Voltage(V)	42	48
Nominal Current(A)	7.47	2.12
Nominal Torque(Nm)	2	0.5
Nominal Speed(RPM)	1500	2080
Nominal Speed(rad/s)	157	217
Power Density(W/Kg)	1145	165
Torque Density (Nm/Kg)	7.29	0.76

PI, NSF, National Robotics Initiative, Soft Wearable Robots for Injury Prevention and Performance Augmentation, 250K Wang, J., Li, X., Huang, T.H., Yu, S., Li, Y., Chen, T., Carriero, A., Oh-Park, M. and **Su, H.**, 2018. Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton. IEEE Robotics and Automation Letters, 3(4), pp.4265-4272.

Biomimetic Actuators for Co-Robots

Motion of human lower limbs

– High torque: 40-125 Nm

Low speed: 60 RPM

Conventional actuators

Low torque: 0.5 Nm (~100:1 ratio gear)

– High friction: 20 Nm

- High speed: 6000 RPM (unsafe)

Systems	Motion	Torque	Torque density
Human	Low	High	High
Conventional actuators	High	Low	Low
Our actuators	Low	High	High

CUNY PI, NIH R01, CPS: Medium: Collaborative Research: User and Environment Interactive Planning and Control of Artificial Lower Limbs for Resilient Locomotion, \$1.2 M

New Actuation Paradigm for Co-Robots

Reflected inertia is $J_m N^2$

J_m=Motor inertia

N: gear ratio

Geared Motor with Force/Torque Sensor

Compliance	Low 🗴			
Bandwidth	High 🕢			
Efficiency	Low 🗴			
Actuation Paradigm	High ratio gear Conventional Load			

NSF CAREER, Versatile Wearable Robots for Pediatric Gait Rehabilitation

Our Robot: Most Lightweight Exoskeleton

- Our Motor Results in 3 Times Torque Density of Harvard Exosuit
- Estimated Metabolics Reduction: 25%

Harvard Exosuit 2019

NCSU Exoskeleton

Without Exo

NCSU Exo Assistance

Parameters	Harvard [1]	Samsung [2]	Honda [3]	Our Exo
Peak Torque (Nm)	32	12	6	48
Mass (kg)	5.0	2.6	2.8	2.5
Torque Density (Nm/kg)	6.4	4.6	2.1	19.2
Metabolics Reduction	6%	19.8%	4%	25% (estimated)

[2] Lee, Flexible sliding frame for gait enhancing mechatronic system (GEMS), EMBC, 2016

Introduction of Control Metrics in Exoskeleton Robots

- Bandwidth
 - A measure of how fast it responds to the changing input command.

Introduction of Control Metrics in Exoskeleton Robots

Bandwidth

- In a control loop, bandwidth is defined as the frequency at which the closed-loop amplitude response reaches -3 dB
- At this point, the output gain (ratio of output to input) equals approximately 70.7 % of its maximum (the maximum is 100%)

B Closed-loop Frequency Response 20 N·m Gain (dB) 7 8 9 10 16.7 21.1 6 Phase (deg.) 16.7 21.1 8 9 10 Frequency (Hz)

From Compliant Robots to Soft-Material Robots

Compliant Robots

- Structure-based compliance
- Difficult to align human and robot joints

Soft-Material Robots

- Material-based compliance: rubber, fabric
- Most are pneumatic-driven
- Pneumatics is transmission not actuator
- Slow, Weak, Tethered (need a heavy pump)

Polygerinos, IROS 2017

Walsh, Biorob, 2018

Mobility

Whiteside, Science, 2012

Vanderbilt, 2018

Toyota Mobility Challenge Discovery Award

Videos – Bio-inspired Back Exo

Videos – Hydraulic Artificial Muscle

Outline

- Course overview
- Introduction of Control Applications for Wearable Robots
- Introduction of Automatic Control

Why to Study "Automatic Control"?

- The study of automatic control is essential for students pursuing degrees in many engineering disciplines (mechanical, electrical, structural, aerospace, biomedical, or chemical).
- Applications of automatic control include, but not limited to, aircraft, robots, civil engineering structures, process control,, etc.
- Automatic control has played a vital role in the advance of engineering and science.

What is "Control"?

- Make some object (called system, or plant) behave as we desire.
- Imagine "control" around you!
 - Room temperature control
 - Car driving
 - Voice volume control
 - Balance of bank account
 - "Control" (move) the position of the pointer etc.

Control System

Basic control system concepts

 A control system consists of subsystems and processes (or plants) assembled for the purpose of obtaining a desired output with desired performance.

Control

- Measuring the value of the controlled variable (output) of the system and applying accordingly the manipulated variable (input) to make the two as equal as necessary.

What is "Automatic Control"?

- Not manual!
- Why do we need automatic control?
 - Convenient (room temperature, laundry machine)
 - Dangerous (hot/cold places, space, bomb removal)
 - Impossible for human (nanometer scale precision positioning, work inside the small space that human cannot enter, huge antennas control, elevator)
 - It exists in nature. (human body temperature control)
 - High efficiency (engine control)
- Many examples of automatic control around us

Open-loop Control Systems

Advantages

- Simple construction and ease of maintenance.
- There is no stability concern.
- Convenient when output is hard to measure or measuring the output precisely is economically not feasible. (For example, in the washer system, it would be quite expensive to provide a device to measure the quality of the washer's output, cleanliness of the clothes).

Disadvantages

- Disturbances and changes in calibration cause errors, and the output may be different from what is desired
- Recalibration is necessary from time to time

Example: Laundry Machine

A laundry machine washes clothes, by setting a program.

- A laundry machine does not measure how clean the clothes become.
- Control without using measuring devices (sensors) to derive control input is called open-loop control

Closed-loop (Feedback) Control

• In this approach, the quantity to be controlled, say C, is measured, compared with the desired value, R, and the error between the two, E = R - C used to adjust C. This means that the control action is somehow dependent on the output.

Example: Autopilot Mechanism

Its purpose is to maintain a specified airplane heading, despite atmospheric changes. It performs this task by continuously measuring the actual airplane heading, and automatically adjusting the airplane control surfaces (rudder, ailerons, etc.) so as to bring the actual airplane heading into correspondence with the specified heading.

Closed-loop control

Example: Antenna Azimuth

Closed-loop control

Example: Antenna Azimuth

Block Diagram

Basic Elements of Control Loop

The role of the controller is to make the output following the reference in a "satisfactory" manner even under disturbances.

Understanding Control Systems

- Part 1: Open-Loop Control Systems
- Part 2: Feedback Control Systems
- Part 3: Components of a Feedback Control System

Control System Diagram

Example: Playing Sport

Better Control Provides more finesse by combining *sensors* and *actuators* in more intelligent ways

Course Goals

Procedure of Design A Controller for System

Summary

- Introduction
 - Control essentiality
 - Examples of control systems
 - Open-loop vs. closed-loop control systems
- Next Week
 - MATLAB and Simulink introduction

(Please install MATLAB and Simulink prior to the next class)

Take your laptop for next week (Aug. 29, 31)

Videos – Cable-driven Knee Exo

Videos – Cable-driven Hip Exo

Videos – Legged Jumping Robot

Videos – Cabled-driven Ankle Exo 2

Videos – Rigid Knee Exo for Pediatric

Elbow Exo Student Presentation

Elbow Exo Student Presentation

