Ambient Al Bootcamp Practice 5

Table of Contents

- Introduction to TensorFlow Lite
- Quantization
 - Post-Training Quantization
 - Quantization-Aware Training
- Pruning

Coral Dev Board

5-1. Introduction to TensorFlow Lite

TensorFlow Lite

Library for deploying models on mobile, microcontrollers, and other edge devices

2. Convert

3. Optimize

4. Deploy

TensorFlow Lite

Optimized for five core constraints

1. Latency

No round-trip to a server

2. Privacy

No personal data leaves the device

3. Connectivity

Internet connection not required

4. Size

Reduced model size, smaller download size

5. Power consumption

Efficient inference

First, download and normalize the fashion MNIST dataset

```
import tensorflow as tf
import numpy as np

# Load MNIST dataset
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) =
fashion_mnist.load_data()

# Normalize the input image
train_images = train_images.astype(np.float32) / 255.0
test_images = test_images.astype(np.float32) / 255.0
```


1. Build a model

Next, define the model architecture

```
model = Sequential([
    InputLayer(input_shape=(28, 28)),
    Reshape(target_shape=(28, 28, 1)),
    Conv2D(filters=16, kernel_size=3, padding='same', activation='relu'),
    MaxPool2D(pool_size=(2,2), strides=(2,2)),
    Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'),
    MaxPool2D(pool_size=(2,2), strides=(2,2)),
    Flatten(),
    Dense(10, activation='softmax')
])
```


1. Build a model

Next, train/optimize the model

We can also add quantization aware training in this step

1. Build a model

Model validation loss: 0.254 | validation accuracy: 90.99%

To convert the model to TFLite, initialize a *converter*

```
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
```

We can now save the tflite model and deploy it on mobile!

2. Convert

Next, we have several options available to optimize the model

Typically, we use <u>Tensorflow Model Optimization Toolkit</u>

Two methods:

- Quantization
 - Post-Training Quantization (PTQ)
 - Quantization-Aware Training (QAT)
- Pruning

3. Optimize

Post-Training Quantization

PTQ는 학습을 완료한 다음에 Quantization 하는 방법

- Edge TPU가 있는 Coral Board를 사용할 때, 8-bit Integer 연산만 가능함
- Quantization을 통해 모든 weight와 activation은 0~255 또는 2's complement -128~127 의 8-bit 정수로 변환됨
- 32bit→8bit로, 모델의 크기는 75% 정도 작아짐

Quantization-Aware Training

Inference

QAT는 **학습 도중**에 이루어지고, inference할 때는 integer연산, backpropagation할 때에는 full-precision으로 모델을 학습함

• QAT 방식으로 학습하면, 최종 quantized 성능이 PTQ보다 좋다고 함

Backpropagation

Pruning

불필요한 (0에 가까운) weight들을 0으로 만들고 없애면서 모델 경량화

TFLite에서는 Gradual Pruning 방법론을 사용함

- initial_sparsity: pruning을 시작할 때의 sparsity를 몇으로 할지
- final_sparsity: pruning을 끝낼 때 sparsity를 몇으로 할지
- begin_step: pruning을 언제부터 진행할 지(batch 단위의 step)
- end_step: pruning을 언제 끝낼 지

To prune, or not to prune: exploring the efficacy of pruning for model compression [arXiv '17]

Thank You!