Exercises 4.1.5 — Problem 4

Problem. Give a definition of $\lim_{x\to\infty} f(x) = y$. Show that this is true if and only if for every sequence $x_1, x_2, ...$ of points in the domain of f such that $\lim_{n\to\infty} x_n = +\infty$, we have $\lim_{n\to\infty} f(x_n) = y$.

Proof. We define $\lim_{x\to\infty} f(x)$ (for functions with unbounded positive domain) to be $y\in\mathbb{R}$ such that for all m there exists n such that for all x>n ($x\in\mathbb{R}$) we have |y-f(x)|<1/m. We now show that this is the case if and only if every sequence of points in the domain with a limit of $+\infty$ has $\lim_{n\to\infty} f(x_n)=y$.

First suppose that y is a real number such that for every m there exists n such that for all x>n we have |y-f(x)|<1/m. Then we would like to show every sequence $x_1,x_2,...$ in the domain of f with $+\infty$ as a limit has $\lim_{n\to\infty} f(x_n)=y$. The sequence $x_1,x_2,...\to +\infty$ so for every $a\in\mathbb{N}$ there exists an index b such that for all $j\geq b$ we have $x_j>a$. But then taking a=n we have $|y-f(x_j)|<1/m$ for all $j\geq n$. In the limit $j\to\infty$, we have $|y-f(x)|\leq 1/m$ which satisfies $\lim_{n\to\infty} f(x_n)=y$.

Now suppose that every sequence of points in the domain of f such that $\lim_{x\to\infty} x_n = +\infty$, we have $\lim_{x\to\infty} f(x_n) = y$. We want to show that $\lim_{x\to\infty} f(x) = y$. By Theorem 4.1.1, what we just said is equivalent to claiming that $\lim_{x\to\infty} f(x)$ exists. Further, the theorem states that every sequence $f(x_1), f(x_2), \ldots$ has a common limit and that common limit the limit of the function. Therefore $\lim_{x\to\infty} f(x) = y$.