LECTURE 2. REGRETION

AI & ML, Applications in Manufacturing (MANU 465)

Ahmad Mohammadpanah Ph.D., P.Eng.

For example, Let's say we are interested in modeling the relation between wind speed and

Electrical output

	Location	Wind Speed(mph)	Electricity (MW)
	Manitoba	2.45	0.423
	Manitoba	2.7	0.5
	Manitoba	2.9	0.653
	Manitoba	3.05	0.558
	Manitoba	3.4	1.057
-	Newfoundland	3.6	1.137
	Newfoundland	3.95	1.144
	Newfoundland	4.1	1.194
	Newfoundland	4.6	1.562
Π	Alberta	5	1.582
	Newfoundland	5.45	1.501
	Ontario	5.8	1.737
	Alberta	6	1.822
	Newfoundland	6.2	1.866
	Newfoundland	6.35	1.93
	Newfoundland	7	1.8
	Newfoundland	7.4	2.088
Ļ	Saskatchewan	7.85	2.179
H	Ontario	8.15	2.166
H	Ontario	8.8	2.112
	Newfoundland	9.1	2.303
	Saskatchewan	9.55	2.294
	Saskatchewan	9.7	2.386
	Saskatchewan	10	2.236
	Saskatchewan	10.2	2.31

Regression: Modeling the relation between variables.

In this lecture, we learn how to implement the following techniques in Python

- Simple Linear Regression
- Polynomial Linear Regression
- Support Vector Regression

The same approach can be used to fit a polynomial, for example, fitting a second order polynomial to the fowling data

$$L = \sum_{i=1}^{N} (y_i - (A + Bx_i + Cx_i^2))^2$$

$$\frac{\partial L}{\partial A} = 0$$

$$\frac{\partial L}{\partial B} = 0$$

Support Vector Regression (SVR):

As you saw above, in Least-Square-Method our objective was to minimize the sum of squared errors. But what if we don't care how large our errors are, as long as they fall within an acceptable range?

SVR gives us the flexibility to define how much error is acceptable in our model and will find an appropriate function to fit the data.

Implement in Python

Clinear Regression Method:

| hibrary | Module |
| from sklearn.linear_model import LinearRegression |
| Model = LinearRegression() |
| Model.fit(X, y)

Polynomial Regression Method:

from sklearn.preprocessing import PolynomialFeatures

poly_reg = PolynomialFeatures(degree = 2)

X_poly = poly_reg.fit_transform(X)

Model= LinearRegression()

Model.fit(X_poly, y)

from sklearn.svm import SVR

Model= SVR(kernel = 'rbf')

Model.fit(X footbook), y footbook)

SVR Method:

Example) The Windmill data above (in class).

To Practice

- Canvas/Practice Examples 2-5
- Tutorial 2 (California House Price)