NOTE

AN ASYMPTOTIC EQUIVALENT FOR THE NUMBER OF TOTAL PREORDERS ON A FINITE SET

J.P. BARTHELEMY

Ecole Nationale Supérieure de Mécanique et des Microtechniques, 25030 Besançon Cedex, France

Received 25 April 1979

In this note, it is shown that, the number of total preorders on a finite set with n elements is equivalent, for n infinite, to $n!/2(\text{Log }2)^{n+1}$.

1. A proposition

Let X be a set with n elements and let P(n) denote the number of total preorders on X.

Proposition. For n infinite, P(n) is equivalent to $n!/2(\text{Log }2)^{n+1}$

2. The proof

The number of total preorders on X with exactly k classes is—obviously—k! S(n, k), S(n, k) being the Stirling number of second kind (number of X's partitions into exactly k classes). Let us compute the generating function $F(t) = \sum_{n \ge 0} [P(n)/n!]t^n$.

$$F(t) = \sum_{n \ge 0} \frac{1}{n!} \left(\sum_{k=0}^{n} k! S(n, k) \right) t^{n}$$
$$= \sum_{k \ge 0} k! \left(\sum_{n \ge k} \frac{S(n, k)}{n!} t^{n} \right).$$

It is well known that

$$\sum_{n>t} \frac{S(n,k)}{n!} t^n = \frac{(e^t - 1)^k}{k!} \quad (\text{see [2]}).$$

So

$$F(t) = \sum_{k>0} (e^{t} - 1)^{k} = \frac{1}{2 - e^{t}}.$$

(convergence for |t| < Log 2). t = Log 2 is the only singularity of the function $1/(2-e^t)$ and it is a pole of order one. The "Darboux theorem" (see [1, 3]) gives us an asymptotic equivalent for P(n):

$$P(n) = \frac{-n!}{(\text{Log } 2)^{n+1}} c_{-1} + o((n-1)!)$$

where c_{-1} is the residue at t = Log 2 of F(t).

$$c_{-1} = \lim_{t \to \log 2} \frac{t - \log 2}{2 - e^t} = -\frac{1}{2}.$$

Hence the result.

3. Some remarks

From the generating function

$$F(t) = \sum_{n \ge 0} \frac{P(n)}{n!} t^n = \frac{1}{2 - e^t},$$

we can deduce that:

(1) The derivatives of F(t) satisfying the recurrence:

$$2F^{(n)}(t) - \sum_{p=0}^{n} {n \choose p} e^{t} F^{(n-p)}(t) = 0,$$

we get:

$$P(n) = \sum_{p=1}^{n} \binom{n}{p} P(n-p).$$

(2) The radius of convergence of $\sum_{n\geq 0} [P(n)/n!]t^n$ being Log 2,

$$\lim_{n\to\infty}\frac{nP(n-1)}{P(n)}=\text{Log }2.$$

nP(n-1)/P(n) is the probability for a total preorder to have only one greatest element (when all total preorders are equiprobable).

(3)
$$H(t) = \frac{t}{e^t - 1} = \sum_{n \ge 0} \frac{B_n}{n!} t^n$$

being the generating function for Bernoullis numbers, we get

$$F(t) = \frac{1}{2(t - \log 2)} H(t - \log 2)$$

$$= \frac{-1}{2(t - \log 2)} + \sum_{n=0}^{\infty} \frac{B_{n+1}}{(n+1)!} (t - \log 2)^n$$

(because $B_0 = 0$): this is the Laurent's expansion of F(t) at t = Log 2. From

$$\frac{-1}{2(t - \log 2)} = \frac{1}{2 \log 2} \cdot \sum_{p \ge 0} \frac{t^p}{(\log 2)} p$$

and

$$\sum_{n=0}^{\infty} \frac{B_{n+1}}{(n+1)!} (t - \text{Log } 2)^n =$$

$$= \sum_{n=0}^{\infty} \frac{B_{n+1}}{(n+1)!} \sum_{p \le n} {n \choose p} t^p \cdot (-1)^{n-p} (\text{Log } 2)^{(n-p)}$$

$$= \sum_{n=0}^{\infty} t^p \left(\sum_{n \ge n} \frac{B_{n+1}}{(n+1)!} {n \choose p} (\text{Log } 2)^{n-p} (-1)^{n-p} \right)$$

it follows that

$$P(n) = \frac{n!}{2(\text{Log } 2)^{n+1}} + \sum_{p=0}^{\infty} (-1)^p \frac{B_{n+p+1}}{(n+p+1)p!} (\text{Log } 2)^p.$$

 $\sum_{p=0}^{\infty} (-1)^{p} [B_{n+p+1}/(n+p+1)p!] (\text{Log } 2)^{p} \text{ is the value of the o } ((n-1)!) \text{ in the formula}$

$$P(n) = \frac{n!}{2(\text{Log }2)^{n+1}} + o((n-1)!).$$

References

- [1] G. Darboux, Mémoire sur l'approximation des fonctions de très grands nombres, J.M. Pures Appl. 4 (1878) 5-56 and 377-416.
- [2] J. Riordan, An Introduction to Combinatorial Analysis, (Wiley, New York, 1958).
- [3] G. Szego, Orthogonal Polynomials, 3rd ed. (Amer. Math. Soc., Providence, RJ, 1967).