

ABSTRACT OF THE DISCLOSURE

An optical sheet constituted by a retardation film; and
a transparent layer provided on one of opposite surfaces of
the retardation film. The retardation film exhibits $Nz = (nx$
5 $- nz) / (nx - ny)$ in a range of from 0.6 to 0.9 and $(nx - ny)d$
in a range of from 200 to 350 nm in which d is a thickness of
the retardation film, nz is a refractive index in a direction
of a Z axis expressing a direction of the thickness d of the
retardation film, nx is a refractive index in a direction of
10 an X axis expressing a direction of the retardation film in
a plane perpendicular to the Z axis while the X axis also expresses
a direction of the highest in-plane refractive index, and ny
is a refractive index in a direction of a Y axis expressing
a direction of the retardation film perpendicular both to the
15 Z axis and to the X axis. The transparent layer has a thickness
not larger than 10 μm and exhibits refractive index anisotropy
of $nx \approx ny > nz$.