Deep Learning

Implementation

Vectorisation

En programmation, cela consiste à mettre nos données dans des vecteurs, des matrices ou des tableaux à N-dimension afin d'effectuer des opérations mathématiques sur l'ensemble de ces données.

Exemple : multiplier les éléments d'une liste

 $[4, \quad 6, \quad 2, \quad \cdots, \quad 7] \times 2$ $[8, \quad 12, \quad 4, \quad \cdots, \quad 14]$

Vectorisation

En programmation, cela consiste à mettre nos données dans des vecteurs, des matrices ou des tableaux à N-dimension afin d'effectuer des opérations mathématiques sur l'ensemble de ces données.

Exemple:

multiplier les éléments d'une liste

A la place :

Multiplier un vecteur tout entier

 $[4, 6, 2, \cdots, 7] \times 2$ $[8, 12, 4, \cdots, 14]$

$$\begin{bmatrix} 4 \\ 6 \\ 2 \\ \vdots \\ 7 \end{bmatrix} \times 2 = \begin{bmatrix} 1 \\ 4 \\ \vdots \\ 1 \end{bmatrix}$$

Vectorisation

En programmation, cela consiste à mettre nos données dans des vecteurs, des matrices ou des tableaux à N-dimension afin d'effectuer des opérations mathématiques sur l'ensemble de ces données.

Exemple:

multiplier les éléments d'une liste

A la place:

Multiplier un vecteur tout entier

liste A = [4, 6, 2, 7]

liste_B = [i * 2 for i in liste_A]

A = np.array([4, 6, 2, 7])

B = A * 2

Code plus simple Execution plus rapide Ré-écrire sous forme matricielle toutes les équations que l'on a vues dans les dernieres vidéos.

$$z = w_1 x_1 + w_2 x_2 + b$$
$$a = \frac{1}{1 + e^{-z}}$$

Modèle

$$\frac{1+e^{-z}}{}$$

$$\mathcal{L} = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \times log(a^{(i)}) + (1 - y^{(i)}) \times log(1 - a^{(i)})$$
 Fonction Coût

$$w_1 = w_1 - \alpha \frac{\partial \mathcal{L}}{\partial w_1}$$

$$w_2 = w_2 - \alpha \frac{\partial \mathcal{L}}{\partial w_2}$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{1}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_1$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{1}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_2$$

Descente de Gradient

Matrices

Les matrices sont des tableaux à 2 dimensions dont on se sert pour résoudre facilement et rapidement une grande quantité de problèmes mathématiques.

exemple de matrice de dimension (m, n) (m lignes, n colonnes)

Dans le cadre du Deep Learning

Il y a 3 opérations élémentaires à connaître sur le calcul matriciel.

- 1. Les additions et les soustractions
- 2. Les transposées
- 3. Les multiplications

1. Additions et Soustractions

Pour additionner ou soustraire 2 matrices, il faut que leurs dimensions soient égales.

mêmes dimensions

$$\begin{bmatrix}
2 & 3 \\
1 & 4 \\
3 & 1
\end{bmatrix} + \begin{bmatrix}
3 & 1 \\
2 & 3 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
5 & 4 \\
3 & 7 \\
4 & 1
\end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} = \text{impossible}$$

2. Transposition

Consiste à faire pivoter la matrice sur sa diagonale, ce qui a pour effet d'interchanger ses dimensions (le nombre de lignes devient le nombre de colonnes et vice versa).

$$A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{vmatrix} \in \mathbb{R}^{4 \times 3}$$

$$A^T = \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix} \in \mathbb{R}^{3 \times 4}$$

.

3. Multiplication Matricielle

Pour multiplier 2 matrices, il faut que le nombre de colonnes de la première soit égal au nombre de lignes de la deuxième

3. Multiplication Matricielle

Le résultat du produit est une combinaison linéaire entre les lignes de la matrice de gauche et les colonnes de la matrice de droite.

3. Multiplication Matricielle

Le résultat du produit est une combinaison linéaire entre les lignes de la matrice de gauche et les colonnes de la matrice de droite.

Vectorisation de nos équations

$$z = w_1 x_1 + w_2 x_2 + b$$

$$a = \frac{1}{1 + e^{-z}}$$

Modèle

$$\mathcal{L} = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \times log(a^{(i)}) + (1 - y^{(i)}) \times log(1 - a^{(i)})$$

Fonction Coût

$$w_1 = w_1 - \alpha \frac{\partial \mathcal{L}}{\partial w_1}$$

$$\left(\frac{\partial \mathcal{L}}{\partial w_1} = \frac{1}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_1\right)$$

$$w_2 = w_2 - \alpha \frac{\partial \mathcal{L}}{\partial w_2}$$
 $\left(\frac{\partial \mathcal{L}}{\partial w_2} = \frac{1}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_2\right)$

Descente de Gradient

1. Vectorisation du dataset

Par convention

m : nombre de donnéesn : nombre de variables

$$X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \\ \vdots & \vdots \\ x_1^{(m)} & x_2^{(m)} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

$$y = \begin{bmatrix} y \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^{m \times 1}$$

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=100, n_features=2, centers=2, random_state=0)

plt.scatter(X[:,0], X[:,1], c=y, cmap="summer")

Vectorisation de nos équations

$$\boxed{Z = X \cdot W + b}$$

$$X = \begin{bmatrix} x_1^{(1)} & \cdots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(m)} & \cdots & x_n^{(m)} \end{bmatrix}$$

$$T = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} \in$$

$$X = \begin{bmatrix} x_1^{(1)} & \cdots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(m)} & \cdots & x_n^{(m)} \end{bmatrix} \in \mathbb{R}^{m \times n} \qquad W = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} \in \mathbb{R}^{n \times 1} \qquad b = \begin{bmatrix} b \\ b \\ \vdots \\ b \end{bmatrix} \in \mathbb{R}^{m \times 1}$$

$$Z = X.dot(W) + b$$

Vectorisation de nos équations

$$Z = X \cdot W + b$$

$$a = \frac{1}{1 + e^{-z}}$$

$$a = 1 / (1 + np.exp(-Z))$$

Vectorisation de nos équations

$$Z = X \cdot W + b$$

$$A = \frac{1}{1 + e^{-2}}$$

$$\mathcal{L} = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \times log(a^{(i)}) + (1 - y^{(i)}) \times log(1 - a^{(i)})$$

5. Vectorisation de la Descente de Gradient

$$w_1 = w_1 - \alpha \frac{\partial \mathcal{L}}{\partial w_1}$$

$$w_2 = w_2 - \alpha \frac{\partial \mathcal{L}}{\partial w_2}$$

$$b = b - \alpha \frac{\partial \mathcal{L}}{\partial b}$$

$$\frac{\partial \mathcal{L}}{\partial W} = \underbrace{\begin{bmatrix} \frac{\partial \mathcal{L}}{\partial w_1} \\ \frac{\partial \mathcal{L}}{\partial w_2} \end{bmatrix}}_{(2, 1)} = \begin{bmatrix} \frac{1}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_1^{(i)} \\ \frac{1}{m} \sum_{i=1}^m (a^{(i)} - y^{(i)}) x_2^{(i)} \end{bmatrix}$$

$$\frac{\partial \mathcal{L}}{\partial W} = \underbrace{\begin{bmatrix} \frac{\partial \mathcal{L}}{\partial w_1} \\ \frac{\partial \mathcal{L}}{\partial w_2} \end{bmatrix}}_{(2, 1)} = \frac{1}{m} \begin{bmatrix} (a^{(1)} - y^{(1)})x_1^{(1)} + (a^{(2)} - y^{(2)})x_1^{(2)} + \dots + (a^{(m)} - y^{(m)})x_1^{(m)} \\ (a^{(1)} - y^{(1)})x_2^{(1)} + (a^{(2)} - y^{(2)})x_2^{(2)} + \dots + (a^{(m)} - y^{(m)})x_2^{(m)} \end{bmatrix} \\
= \frac{1}{m} \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(m)} \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} a^{(1)} \\ a^{(2)} \\ \vdots \\ a^{(m)} \end{bmatrix} - \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \end{pmatrix} \\
X^T \qquad A \qquad y$$

6. Vectorisation des Gradients

Le paramètre b étant un nombre réel (et non un vecteur) sa dérivée est elle aussi un nombre réel.

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} \left[a^{(1)} - y^{(1)} + a^{(2)} - y^{(2)} + \ldots + a^{(m)} - y^{(m)} \right]$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum (A - y)$$

Initialisation(X)
$$Z = X \cdot W + b$$

$$A = \frac{1}{1 + e^{-Z}}$$

$$Cost(A, y)$$

$$Cost(A, y)$$

$$\frac{\partial \mathcal{L}}{\partial W} = \frac{1}{m} X^{T} \cdot (A - y)$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum (A - y)$$

$$W = W - \alpha \frac{\partial \mathcal{L}}{\partial b}$$

$$b = b - \alpha \frac{\partial \mathcal{L}}{\partial b}$$