人工智能程序设计

M2 科学计算与数据分析基础 2.4 Matplotlib与可视化

张莉

Matplotlib 及可视化

- 1. 绘图基本方法
- 2. 图形属性控制
- 3. 基于pandas的绘图
- 4. 常见类型图举例
- 5. 其他绘图模块例

人工智能程序设计 MATPLOTLIB绘图基本方法

Matplotlib绘图

Matplotlib绘图

著名Python绘图库, 主要用于二维绘图

- 画图质量高
- 方便快捷的绘图模块
 - 绘图API——pyplot模块

折线图

- >>> import matplotlib.pyplot as plt
- >>> plt.plot([3, 4, 7, 6, 2, 8, 9])
- >>> plt.show()

plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9])

折线图-绘制多组数据

- NumPy数组也可以作为 Matplotlib的参数
- 多组成对数据绘图

- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> t=np.arange(0.,4.,0.1)
- >>> plt.plot(t, t, t, t+2, t, t**2)

绘图 — 1组数据&2组数据

绘制其他类型的图

- >>> import matplotlib.pyplot as plt
- >>> plt.scatter(range(7), [3, 4, 7, 6, 2, 8, 9])
- >>> plt.bar(range(7), [3, 4, 7, 6, 2, 8, 9])

Talker Piction MATPLOTLIB图形属性控制

Matplotlib属性

Matplotlib可以控制的默认属性

色彩和样式

plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9], 'g--')
plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9], 'rD')

色彩和样式

符号	颜色
b	blue
g	green
r	red
С	cyan
m	magenta
Υ	yellow
k	black
W	white

线型	描述					
1_1	solid					
11	dashed					
11	dash_dot					
1,1	dotted					
'None'	draw nothing					
1 1	draw nothing					
11	draw nothing					

标记	描述
"o"	circle
"v"	triangle_down
"s"	square
"p"	pentagon
II * II	star
"h"	hexagon1
"+"	plus
"D"	diamond
•••	•••

多种属性

文字

加标题: 图、横轴和纵轴

Filename: 3.py

import matplotlib.pyplot as plt
plt.title('Plot Example')
plt.xlabel('X label')
plt.ylabel('Y label')

plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9])

投掷硬币—正面朝上的累计概率趋势图


```
import numpy as np
import matplotlib.pyplot as plt
import random
batch = 500
result, result mean = [], []
for i in range(batch):
   for k in range(10):
        result.append(random.randint(0, 1))
   result mean.append(np.mean(result))
plt.plot(np.arange(batch), result mean)
plt.xlabel('Nums of throwing coins')
plt.ylabel('Positive upward probability')
plt.title('Probability of positive upward of coins')
plt.show()
```

绘制子图

- 在Matplotlib中绘图在当前图形(figure)和当前坐标系(axes)中进行,默认在编号为1的figure中绘图,可以在一个图的多个区域分别绘图
- 使用subplot()函数和axes()函数

plt.subplot(211) plt.subplot(212)

plt.subplot(121) plt.subplot(122)

plt.subplot(221)
plt.subplot(222)
plt.subplot(223)
plt.subplot(224)

Filename: 3.py

import matplotlib.pyplot as plt plt.figure(1) #默认创建,缺省 plt.subplot(211) #第一个子图

plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9], color = 'r', marker = 'o') plt.subplot(212) # 第二个子图

plt.plot(range(7), [5, 1, 8, 2, 6, 9, 4], color = 'green', marker = 'o')

欧边为子图1

ax1为子序

import matplotlib.pyplot as plt

fig, (ax0, ax1) = plt.subplots(2, 1)

ax0.plot(range(7), [3, 4, 7, 6, 2, 8, 9], color = 'r', marker = 'o')

ax0.set title('subplot1')

plt.subplots adjust(hspace = 0.5)

ax1.plot(range(7), [5, 1, 8, 2, 6, 9, 4], color = 'green', marker = 'o')

ax1.set title('subplot2')

将可口可乐公司和IBM公司近一年来股票收盘价的月平均价绘制在一张图中

#The data of Coca-Cola and IBM is ready
plt.subplot(211)
plt.plot(x, y, color = 'r', marker = 'o')
plt.subplot(212)
plt.plot(xi, yi, color = 'green', marker = 'o')

官网example — subplots()的理解

import numpy as np
import matplotlib.pyplot as plt

$$x = [1, 2, 3, 4, 5]$$

 $y1 = [1, 1, 2, 3, 5]$
 $y2 = [0, 4, 2, 6, 8]$
 $y3 = [1, 3, 5, 7, 9]$

labels = ["Fibonacci ", "Evens", "Odds"]

```
fig, ax = plt.subplots()
ax.stackplot(x, y1, y2, y3, labels=labels)
ax.legend(loc='upper left')
plt.show()
```

子图-axes

axes([left,bottom,width,height]) 参数范围为(0,1)

Filename: 5.py

import matplotlib.pyplot as plt plt.axes([.1, .1, 0.8, 0.8])

plt.plot(range(7), [3, 4, 7, 6, 2, 8, 9], color = 'r', marker = 'o') plt.axes([.3, .15, 0.4, 0.3])

plt.plot(range(7), [5, 1, 8, 2, 6, 9, 4], color = 'green', marker = 'o')

基于PANDAS的绘图

pandas绘图

- >>> import pandas as pd
- >>> data = [3, 4, 7, 6, 2, 8, 9]
- >>> pDF = pd.DataFrame(data)
- >>> pDF.plot()

股票数据绘制

绘制"葛洲坝 600068"2020年1月 份的股票数据开盘价 和收盘价的折线图

df.sort_index().plot()
plt.xticks(rotation = 90)

pandas绘图

df.plot(kind = 'bar')

```
# Filename: 6.py
import pandas as pd
import matplotlib.pyplot as plt
#解决图中中文显示方块问题
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
```


pandas绘图


```
# Filename: 6.py
```

• • •

df = pd.DataFrame(data)

df1 = df.iloc[:, :4]

Ax = df1.plot(kind='bar', title='学生成绩')

Ax.set(xlabel='课程', ylabel='成绩')

plt.title('学生成绩') plt.xlabel('课程') plt.ylabel('成绩')

pandas控制图像形式

Intel公司本年度前3个月每 个月股票收盘价的占比

quotesINTC.plot()

quotesINTC.plot(kind = 'pie', subplots = True, autopct = '%.2f')

直方图与直方图中的信息

x = np.random.randint(1,10,50)
plt.hist(data)

array([7, 2, 3, 4, 7, 1, 4, 2, 9, 9, 7, 3, 7, 1, 8, 4, 4, 4, 5, 9, 2, 1,1, 3, 9, 6, 1, 6, 3, 6, 1, 6, 5, 9, 4, 7, 1, 3, 3, 6, 2, 3, 3, 7,4, 9, 4, 4, 5, 7])

散点图与散点图中的信息

from sklearn import datasets import matplotlib.pyplot as plt

iris = datasets.load_iris()
print(iris.data, iris.target)

```
X = [item[0] for item in iris.data] # 获取萼片长度
Y = [item[2] for item in iris.data] # 获取花瓣长度
plt.scatter(X[:50],Y[:50],color='red',marker='o',label='setosa')
plt.scatter(X[50:100],Y[50:100],color='green',marker='*',label='ver sicolor')
plt.scatter(X[100:],Y[100:],color='blue',marker='D',label='virginica')
plt.legend(loc='best')
plt.show()
```

箱形图与箱形图中的信息

	Maths	English	Python	Music	Physics	Chemistry	PE
Wang	88	64	96	85	90	81	95
Ма	92	99	95	94	92	94	90
Liu	91	87	99	95	95	92	70
Qian	78	99	75	81	83	88	92
Meng	88	78	98	84	70	95	98
Song	100	95	100	92	98	95	65

最大值、最小值、中位数、下四分位数、上四分位

plt.boxplot(df)

seaborn

iris = sns.load_dataset('iris')
sns.heatmap(iris.corr(), annot = True, fmt = '.1f', cmap = 'coolwarm')

seaborn

import seaborn as sns

sns.set(style="ticks")

df = sns.load_dataset("iris")
sns.pairplot(df, hue="species")
plt.show()

seaborn

sns.pairplot(df, kind='reg')

pyecharts

http://pyecharts.org/

pyecharts

from pyecharts import Bar

```
attr = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
bar = Bar("Bar chart", "precipitation and evaporation one year")
bar.add("precipitation", attr, v1, mark line=["average"], mark point=["max", "min"])
bar.add("evaporation", attr, v2, mark line=["average"], mark point=["max", "min"])
bar.render('render.html')
```

M2 小结

- 00 SciPy生态系统
- 01 NumPy与科学计算
- 02 pandas与数据分析
- 03 Matplotlib与可视化