Classical Mechanics I: Binary Scattering

a)
$$L = \frac{1}{2}M_{1}\dot{x}_{1}^{2} + \frac{1}{2}M_{2}\dot{x}_{2}^{2} + \frac{1}{2}M_{3}\dot{x}_{3}^{2} + \frac{GM_{1}M_{2}}{|X_{1} \times X_{1}|} + \frac{GM_{1}M_{3}}{|X_{1} \times X_{3}|}$$

Now change variables: $(\dot{x}_{1}\dot{x}_{2}\dot{x}_{3}) \rightarrow (\dot{B}_{1}, \Gamma, \dot{S}_{1})$ where

 $\dot{B} = M_{1}\dot{x}_{1} + M_{2}\dot{x}_{2}, \Gamma = \dot{X}_{1} - \dot{X}_{2}, \dot{S} = \dot{X}_{3} - \dot{B}$
 $\Rightarrow \dot{X}_{1} = \dot{B} + \frac{M_{2}}{M_{1}}\dot{M}_{2}\dot{\Gamma}_{1}, \quad \dot{X}_{2} = \dot{B} + \dot{M}_{1}, \quad \dot{M}_{2}\dot{\Gamma}_{1}, \quad \dot{X}_{3} = \dot{B} + \dot{S}_{1}.$
 $\Rightarrow \dot{X}_{1} = \dot{B} + \frac{M_{2}}{M_{1}}\dot{M}_{2}\dot{\Sigma}_{2}^{2} = \frac{1}{2}(M_{1}+M_{2})\dot{R}_{1}^{2} + \frac{1}{2}\dot{M}_{1}\dot{\Sigma}_{1}^{2}, \quad \dot{M} = M_{1}M_{2}\dot{M}_{2}.$

Also, $\dot{A}_{1} = \dot{A}_{1}\dot{A}_{1}\dot{A}_{2}\dot{A}_{2}^{2} = \frac{1}{2}(M_{1}+M_{2})\dot{R}_{1}^{2} + \frac{1}{2}\dot{A}_{1}\dot{\Sigma}_{1}^{2}, \quad \dot{M} = M_{1}M_{2}\dot{M}_{2}.$
 $\dot{A}_{1}\dot{A}_{1}\dot{A}_{2}\dot{A}_{3}\dot{A}_{1}^{2} = \frac{1}{2}(M_{1}+M_{2})\dot{R}_{1}^{2} + \frac{1}{2}\dot{A}_{1}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{2}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{1}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{1}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{1}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{2}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{2}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{1}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{1}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{2}\dot{A}_{2}^{2} + \frac{1}{2}\dot{A}_{2}\dot{A}_$

Classical Mechanics I, continued.

b) Note
$$H = H_r(r,fr) + H_{rs}(f,\xi,f_{r},f_{s})$$
 is separable where $H_r = \frac{P^2}{2u} - \frac{\epsilon_{M_1M_2}}{r}$.: can solve for r -motion independent of fl and ξ . H_r is the Hamiltonian for the Kepler problem, i. the trajectories are conic sections $\Gamma(\phi) = \frac{a(1-e^2)}{1+e\cos\phi}$. At $\phi = 0$ and $\phi = \pi$ the motion is entirely tangential, $f_r = \frac{1}{r} \frac{e^2}{2u} \frac{e^2}{r} \frac{e^2}{2u} \frac{e^2}{r} \frac$

$$\Rightarrow r^{2} + 26M_{1}M_{2} - \frac{12}{34E} = 0 \Rightarrow r = -\left(\frac{6M_{1}M_{2}}{2E}\right) + \left[\left(\frac{6M_{1}M_{2}}{2E}\right)^{2} + \frac{1^{2}}{24E}\right]^{1/2}$$

$$\Rightarrow \alpha = -\frac{GM_{1}M_{2}}{2E}, e = \left[1 + \frac{2EL^{2}}{4(GM_{1}M_{2})^{2}}\right]^{1/2}$$

c)
$$\frac{2H}{3B}=0$$
 $\Rightarrow \frac{dP_R}{d+}=0$ where $P_R=(M+M_2)\dot{g}+M_3(\dot{g}+\dot{g})=M_1\dot{\chi}_1+M_2\dot{\chi}_2+M_3\dot{\chi}_3$. R-motion is simple; choose $P_R=0$ without loss of generality.

This has the same form as Hr, therefore the 5-motion is also Keplerian. Explicitly,

$$\frac{dP_s}{dt} = -\frac{G(M_1 + M_2)M_3}{S^3} = \frac{1}{S^3} + \frac{1}{S^3} = \frac{1}{S^3} =$$

We can get the kepler parameters as and ls by comparing Es=HRS (IR=0) with part b).

$$Q_{5} = -6(m_{1}+m_{2})M_{3}, e_{5} = \left[1 + \frac{2E_{5}L_{5}^{2}}{M_{5}(6(m_{1}+m_{2})M_{3})^{2}}\right]^{\frac{1}{2}}$$
[note $(M_{1}+m_{2})M_{3} = (M_{1}+m_{2}+m_{3})M_{5}$]

Classical Mechanics I, continued

Initially, \$= Voolx (exts or bittrong) = \$= USVoolx. $5(\phi) = \frac{a_5(1-e_5^2)}{1+e_5\omega s\phi}$ 5-> 00 00 cos ds= - = Binery After scattering, 5= Vas [=x cos(245-71)-eysin(245-71)] cos (2\$5-71) = -cos2\$= 1-260\$ \$= 1-2=2 sin (2\$5-71)= -sin2\$s = -2sin\$s cos\$s= = = √1-to : 095= 95(+30)-95(+3-0)=M5V00[-22=x-25)-22 Ex This impulse is given to the binary: △(M, x, + M2 ×2) = (M, +M2) A B = - 0 Ps : the binary recoils (in its initial rest frame) with velocity R= - aps = 2 us voo [to ex ex +to (tex ey) .. the final speed TS R = 3/15/20 . 1 = 2/15/20 = 2M3/20 M1+M2 . es = es (M1+M2) = es (M1+M2+M3)

Classical Mechanics II: Rolling Orsk

Will need tangent and normal vectors to the curve;

$$\frac{1}{2} \frac{1}{2} \frac{1$$

Need to express (x,y) on cure to ϕ ; rolling without support \Rightarrow $ds = Rd\phi \Rightarrow R\phi = \int_0^{\infty} dx \cosh(x/a) = a \sinh(\frac{x}{a})$. $\phi = \frac{a}{R} \sinh(\frac{x}{a})$, $\chi_s = a \sinh^{-1}(\frac{R}{a})$, $\chi_s = a \cosh(\frac{x}{a}) = \sqrt{a^2 + a^2 \phi^2}$.

Use subscript 0 to denote coordinates of contact point.

$$\begin{array}{c} x = x_0 + n R \\ + y = \frac{1}{100} \ln \left(\frac{1}{100} \right) = \frac{\alpha}{\alpha} + \frac{\alpha}{100} + \frac{\alpha}{100}$$

b) $L = \frac{1}{2} M(x^{2}+y^{2}) + \frac{1}{2} I \dot{\phi}^{2} - mgy; \dot{x} = dx \dot{\phi}, \dot{y} = dy \dot{\phi}, I = \frac{1}{2} MR^{2}$ $\phi = \frac{a}{R} \sinh \frac{x_{0}}{a} \Rightarrow \frac{d\phi}{dx} = \frac{1}{4} \cosh \frac{x_{0}}{a} = \frac{x_{0}}{aR} = \frac{\sqrt{a^{2}+R^{2}\phi^{2}}}{aR}$ $\Rightarrow \frac{dx}{d\phi} = \frac{aR}{\sqrt{a^{2}+R^{2}\phi^{2}}} - \frac{R^{2}}{\sqrt{a^{2}+R^{2}\phi^{2}}} + \frac{R^{4}\phi^{2}}{(a^{2}+R^{2}\phi^{2})^{3}R} = \frac{aR}{\sqrt{a^{2}+R^{2}\phi^{2}}} \left[1 - \frac{aR}{a^{2}+R^{2}\phi^{2}}\right]$ $\Rightarrow \frac{dx}{d\phi} = \frac{R^{2}\phi}{\sqrt{a^{2}+R^{2}\phi^{2}}} \left[1 - \frac{aR}{a^{2}+R^{2}\phi^{2}}\right] \Rightarrow \frac{dx}{d\phi}^{2} + \frac{dy}{d\phi}^{2} = R^{2}O^{2}$ $\Rightarrow \frac{1}{1} = \frac{1}{2} MR^{2}\dot{\phi}^{2} \left(0^{2} + \frac{1}{2}\right) - mg\left(\sqrt{a^{2}+R^{2}\phi^{2}} + \frac{aR}{\sqrt{a^{2}+R^{2}\phi^{2}}}\right)$ $D = 1 - \frac{aR}{\sqrt{a^{2}+R^{2}\phi^{2}}}$

(Classical Mechanics II - continued

c) For
$$2^{4}$$
 cca² $0 = 0 = \frac{1}{4} + \frac{2}{4}$, and

 $Y = a(1+\frac{1}{2}\frac{R^{4}}{a^{2}}) + R(1-\frac{1}{2}\frac{R^{4}}{a^{2}}) = a + R + \frac{1}{2}\frac{R^{4}}{a^{2}}90$
 $\Rightarrow L = \frac{1}{2}MR^{2}(90^{3}+\frac{1}{2}) + mg(a+R) - \frac{1}{2}mg \frac{R^{2}}{a^{2}} + \frac{1}{2}$

or $L = \frac{1}{2}A9^{3} - \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, simple harmonic oscillator

 $A^{2}i = -B4 \Rightarrow ai + \frac{1}{2}Bp^{2} + constant$, sim

will not shp.

Electromagnetism: Electromagnetic waves

a) of Fin = or (On Av- Q An) = Ju (O Ar) - 1 An = 471 Ju. Applying the Lorentz gauge condition TAV= DA =0 gives the desired wave equation I AM = + 471514 The lorentz gauge condition does not completely fix Au because we can add but where Y(x) is a scalar field satisfying 17 4=0. Adding this term has no effect on the Lorentz gauge condition [Or (Ax+ 2x4) 3 = V Ax+ B 4] or on the electromagnetrefield: Fir= SulAv+RX)-R(An+Su4) = SuAv-SuAn

b) The point charge corresponds to a current density JM (x,t)=(8,848) 83 (x-xglti) where yg=dxg/dt. In the radiative solution, we cannot immediately use the delta function, because to depends on x, hence Ight) depends on x'. We nork around this problem by introducing another integral (time) with its own delta function

A"= 8 Sd3x' (1,2/3) S'S(x-x8thr)), tr=t-1x-x'1

= 8 Sdt' Sd3x1 (1, 28tt') S3 (x'-x8tt)) S(t'-t+1x-x1)

= 8 Sdt' (1, 28tt') S(x'-x8tt)) S(t'-t+1x-x1)

Now we can Sd3x'!

= 8 Sdt' (1, 28tt') S(t'-t+1x-28tt))

Now we use the relation $S(f(t')) = \frac{1}{|df|dt'|} S(t'-...)$

with of [t'-++ 1x-xg(+')] = 1-11. Vg(+'), ME X-Xg(t')

 $R^{M} = \left(\frac{9(1 \times 9)}{1 \times 1 \times 9}(1 - 1 \times 19)}\right) = \left(\frac{9(1 \times 19)}{R - R \cdot 19}\right)^{M+1} \qquad R = \times 1 \times 19$

ret means evaluate ing and ig at retarded time.

Solution

Quantum Mechanics Hydrogen Like Atoms $\frac{5m}{-\mu_s}\left(\frac{3L_s}{3_s}+\frac{5g}{5g}\right)\frac{L}{6b_s}-\frac{L}{6_s}\frac{L}{6_s}=\frac{E}{6_s}=\frac{E}{6_s}$ $-\frac{t^2}{2m}\left(\beta^2 - \frac{2\beta}{r}\right) - \frac{e^2}{r} = \overline{E}$ $E = -\frac{1}{2} B^2 \qquad \frac{1}{m} = e^2$ so $\beta = \frac{me}{t^2}$ $E = -\frac{t^2}{me} = -\frac{1}{2} \frac{me}{t^2}$ 1= HUNS (6-586, 696 $1 = 4\pi N^2 2$ $1 = \pi N$ $N = (2B)^3$ B^3 = Me BH= 2 Me

 $B_{\tau} = B$ $B_{\eta} = 2B$

$$Y_{\tau}(r) = \left(\frac{\beta_{\tau}}{\mu}\right)^{1/2} e^{-\beta_{\tau}r} = \left(\frac{\beta_{3}}{\mu}\right)^{1/2} e^{-\beta_{r}r}$$

$$\frac{1}{4} \frac{3}{10} \frac{1}{10} = \frac{3}{10} \frac{1}{10} \frac{1}{10} = \frac{8}{10} \frac{3}{10} \frac{1}{10} = \frac{2}{10} \frac{1}{10} \frac{3}{10} = \frac{3}{10} \frac{1}{10} \frac{1}{10} = \frac{3}{10} \frac{1}{10} \frac{1}{10} = \frac{3}{10} \frac{$$

Overlap =
$$4\pi \left(\frac{\pi}{L_3} \right) \left(\frac{\pi}{8B_3} \right) = -3BC$$

$$= 4.8^{2} \beta^{3} = 8.8^{2}$$

$$(3\beta)^{3} = 3^{3}$$

Quardin Mechanics II Soldian a) Expand IV) in the energy eigenstates 14) = 2 (Fa/4) | Ea) <4/ HI4> = \(\int \[\left\{\eal\partial}\right\} \] $P_{\alpha} = |\langle E_{\alpha}| \psi \rangle|^2$ $\sum_{\alpha} P_{\alpha} = 1$ $P_{\alpha} \geq 0$ (4/H/V) = Z Pa Ea = qverage E average is always bigger ten smallest E. < <4/14/4> b) 4(x)= N sin (\(\pi \times /\mu\) 0 < X \l $N^{2}\left(\int_{0}^{\infty} \int_{0}^{\infty} \frac{dx}{dx} dx = \int_{0}^{\infty} \int_{0}^{\infty} \frac{dx}{dx} dx = \int_{0}^{$ 4(x)= /2 Sin (TX/L)

$$\langle \Psi | H | \Psi \rangle = \langle \Psi | H_0 | \Psi \rangle + \langle \Psi | \Psi | \Psi \rangle$$

$$\Psi \text{ is on eigenstate of He}$$

$$\langle \Psi | H_0 | \Psi \rangle = \frac{1}{2} \frac{\pi^2}{2m \cdot 1^2}$$

$$\langle \Psi | \Psi | \Psi \rangle = \left(\frac{1}{2} \frac{2}{3} \sin^2 \left(\frac{\pi x}{2} \right) dx \right)$$

$$\frac{\pi x}{2m \cdot 1^2} = \frac{1}{2} \frac{\pi}{m \cdot 1^2} = \frac{1}{2} \frac{\pi}{m \cdot 1^2}$$

$$\frac{\pi x}{2m \cdot 1^2} = \frac{1}{2} \frac{\pi}{m \cdot 1^2} + \frac{1}{2} \frac{1}{m \cdot 1^2} = \frac{1}{2} \frac{\pi}{m \cdot 1^2} = 0$$

$$\frac{\pi x}{2m \cdot 1^2} = \frac{1}{2} \frac{\pi}{m \cdot 1^3} + \frac{1}{2} \frac{1}{m \cdot 1^2} \left(\frac{\pi x}{2} \right) = 0$$

$$\frac{\pi x}{2m \cdot 1^2} = \frac{1}{2} \frac{\pi}{m \cdot 1^3} + \frac{1}{2} \frac{1}{m \cdot 1^2} \left(\frac{\pi x}{2} \right) = 0$$

$$\frac{\pi x}{2m \cdot 1^2} = \frac{1}{2} \frac{\pi}{m \cdot 1^3} + \frac{1}{2} \frac{1}{m \cdot 1^2} \left(\frac{\pi x}{2} \right) = 0$$

$$\frac{h\pi}{mL} = 2V_0 a \sin^2(\pi a)$$

$$L = a + \Delta$$

$$\frac{2\pi}{L} = \sin^2(\pi a)$$

$$\frac{2\pi}{2\pi} \cos^2(\pi a + \Delta)$$

$$\frac{1}{2\pi} \cos^$$

-	<u> </u>	a
	$\frac{1}{2}\pi = \frac{1}{2}\pi$	
	2m(ats)2 2ma2 (1+4/a)2	Principle tress, parce
n, manusing personal materials and the second secon		
	$\frac{1}{2} \frac{t^2 \pi^2}{4\pi^2} \left(1 - \frac{2\Delta}{\Delta} \right)$	
	2ma² a).	
Egyptophysionengus, salet riger - effective edge is		
gragginger, 115 mily skuler hydr får fölkordetti förd		an No. 2 cultivaries for complete or
		an appropriate the same
معادمه بيغميد بالراجيليان		

commenced to the property and places. The temperature		t formanian, commis
n ragarraman yang yi salahar mandak 1986.		-
and the second s		r ranguaring -Pri
programme and the second se		
amanda a a a a a a a a a a a a a a a a a a		

PHYSICAL ADSORPTION

FIRST DO THE BULK GAS. USE NOWE = N FOR BREVITY $E = \frac{p_x^2 + p_y^2 + p_z^2}{2m}$

$$Z(N,T,V) = \frac{1}{N!(\pi)^{3N}} \left[\int_{-\infty}^{\infty} e^{-\frac{p_{\chi}^{2}}{2mbT}} dp_{\chi} \right]^{3N} V = \frac{(277mkT)^{\frac{3N}{2}}V^{N}}{N!(\pi)^{3N}}$$

$$\sqrt{\frac{1}{mkT}} \int_{-\infty}^{\infty} e^{-\frac{5^{2}}{2}} ds$$

USE N! = (N/e)

 $Z(N,T,V) \approx \left\{ \frac{e}{N} \frac{1}{h^3} \left(2\pi m kT \right)^{3/2} V \right\}^{N}$

F = - AT laz = - NAT la { = GTMAT) =>

 $\mu = \frac{2F}{2N}\Big|_{T,V} = -kT \ln \left\{ \frac{e}{\pi^3} \left(2\pi m kT \right)^{3/2} \frac{\sqrt{3}}{N} \right\} - NkT \frac{53(-N)}{53}$ +kT

NOW DO THE SURFACE. AGAIN USE NOW FOR THE SURFACE = N TEMPORARILY

$$\epsilon = -E_0 + \frac{p_x^2 + p_y^2}{2m}$$

 $Z(N,T,A) = \frac{1}{N! \, t_1^{2N}} \left[e^{\frac{F_0}{\hbar}T} \int_{-\infty}^{\infty} e^{-\frac{p_X^2}{2m\hbar}T} dp_X \right]^{N}$ (275 m kT)

Z(N,T,A) = VI far [e ENAT 2TMAT A] = { E (TMAT) & e ENT }

$$F = -kT \ln Z = -NkT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}^{N}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\} + kT$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\} + kT$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\} + kT$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT \ln \left\{ \frac{e}{h^2} \left(2\pi m kT \right) \frac{A}{N} e^{E/kT} \right\}$$

$$\mu = -kT$$

Tom Greytak

BOSE-EINSTEIN CONDENSATION

a)
$$D(k) = (2S+1) \frac{\sqrt{3}}{(2\pi)^3}$$
 AND $E = \frac{k^2 k^2}{2m}$
 $\#(E) = D(k) \frac{4}{3} \pi k^3 = D(k) \frac{4\pi}{3} \left(\frac{2mE}{k^2}\right)^{3/2}$

$$D(\epsilon) = \frac{d^{\#}}{d\epsilon} = 2\pi D(k) \left(\frac{2m}{\pi^2}\right)^{3/2} \epsilon^{1/2} = \frac{2s+1}{4\pi^2} \vee \left(\frac{2m}{\pi^2}\right)^{3/2} \epsilon^{1/2}$$

$$N = \int_{0}^{\infty} \frac{D(E)}{e^{(E-\mu)/kT} - 1} dE \implies \mu \leq 0 \text{ or } \int_{0}^{\infty} DIVERGES$$

$$M \text{ BECCMES PINNED AT } \mu = 0$$

$$AT T = T_{c}$$

$$N = \frac{2S+1}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{\frac{\epsilon^{1/2}}{e^{\epsilon/kT}-1}} d\epsilon = \frac{2S+1}{4\pi^2} \left(\frac{2mkT}{\hbar^2}\right)^{3/2} \sqrt{\frac{x^{1/2}}{e^{x-1}}} d$$

$$\frac{4\pi^2n}{(2S+1) I_c} = \left(\frac{2mkT_c}{\hbar^2}\right)^{3/2} \Rightarrow kT_c = \frac{\hbar^2}{2m} \left(\frac{4\pi^2n}{(2S+1)I_c}\right)^{2/3}$$

NOTE THAT RT. IS EQUAL TO THE ENERGY OF

A SINGLE PARTICLE WITH A WAVENECTUR COMPARABLE

TO OVER THE MEAN SPACING BETWEEN PARTICLES

$$N = N_o(T) + \frac{2S+1}{4\pi^2} \left(\frac{2m kT}{\hbar^2}\right)^{3/2} V I_c$$

$$\frac{m}{\left(\frac{2m kT_c}{\hbar^2}\right)^{3/2}} FROM LAIT LINE IN a)$$

$$N = N_o(T) + \frac{\eta V}{N} \left(\frac{T}{T_c}\right)^{3/2} \Rightarrow \frac{N_o(T)}{N} = 1 - \left(\frac{T}{T_c}\right)^{3/2}$$

Tom Greytak