ACPL-M49T

Wide Operating Temperature Automotive R²CouplerTM 20kBd Digital Optocoupler Configurable as Low Power, Low Leakage Phototransistor

Data Sheet

Description

The ACPL-M49T is a single channel, high temperature, high CMR, 20kBd digital optocoupler, configurable as a low power, low leakage phototransistor, specifically for use in the automotive applications. The SO-5 JEDEC registered (MO-155) package outline is surface mountable.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photo detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector in a 5-pin configuration increase the speed up to a hundred times over that of a conventional phototransistor by reducing the base-collector capacitance. Common connections with the supply and output pins shorted in a 4-pin configuration delivers low power, low leakage performance as a phototransistor. The ACPL-M49T has an increased common mode transient immunity of $15 \text{kV}/\mu\text{s}$ minimum at $V_{\text{CM}} = 1500 \text{V}$ over extended temperature range.

Avago R²Coupler isolation products provide the reinforced insulation and reliability needed for critical in automotive and high temperature industrial applications.

Functional Diagrams

Note: The connection of a 0.1 μF bypass capacitor between pins 4 and 6 is recommended for 5-pin configuration

Features

- High Temperature and Reliable low speed digital interface for Automotive Application.
- 30 kV/μs High Common-Mode Rejection at V_{CM} = 1500 V (typ)
- Low Power, Low Leakage Phototransistor in a 4-Pin Configuration"
- Compact, Auto-Insertable SO5 Packages
- Wide Temperature Range: -40°C ~ 125°C
- Low LED Drive Current: 4mA (typ)
- Propagation Delay: 20μs (max)
- Worldwide Safety Approval:
 - UL 1577, 4000 V_{RMS} /1 min.
 - CSA File CA88324, Notice #5
 - IEC/EN/DIN EN 60747-5-2
- Qualified to Automotive AEC-Q100 Grade 1 Stress Test Guidelines

Applications

- Automotive Low Speed Digital Signal isolation Interface
- Inverter fault feedback signal isolation
- Switching Power Supplies feedback circuit

Note: Pins 5 and 6 are externally shorted for 4-pin	
configuration.	

ON LOW
OFF HIGH

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

	Option		Surface	Tape &	IEC/EN/DIN EN	
Part Number	(RoHS) Compliant	Package	Mount	Reel	60747-5-2	Quantity
ACPL-M49T	-000E	SO-5	Х			100 per tube
	-060E		X		Х	100 per tube
	-500E		Х	Х		1500 per reel
	-560E		X	Х	Х	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example:

ACPL-M49T-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

ACPL-M49T Small Outline SO-5 Package (JEDEC MO-155)

Land Pattern Recommendation

Land Pattern Recommendation (4-pin Configuration)

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).

Note: Non-halide flux should be used.

Regulatory Information

UL

CSA

The ACPL-M49T is approved by the following safety regulatory organizations:

Approved under UL 1577, component recognition

program up to V_{ISO}=4000 V_{RMS}

Approved under CSA Component Acceptance Notice #5.

IEC/EN/DIN EN 60747-5-2 IEC 60747-5-5

EN 60747-5-2 DIN EN 60747-5-2

IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1			
for rated mains voltage $\leq 150 V_{rms}$		I - IV	
for rated mains voltage $\leq 300 V_{rms}$		I – III	
for rated mains voltage \leq 600 V_{rms}		I – II	
Climatic Classification		55/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	V_{IORM}	567	V_{peak}
Input to Output Test Voltage, Method b*	V_{PR}	1063	V_{peak}
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ sec, Partial discharge < 5 pC			·
Input to Output Test Voltage, Method a*	V _{PR}	907	V_{peak}
V_{IORM} x 1.6 = V_{PR} , Type and Sample Test, t_m = 10 sec, Partial discharge < 5 pC			·
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60 sec)	V _{IOTM}	6000	V _{peak}
Safety-limiting values – maximum values allowed in the event of a failure.			
Case Temperature	T_S	175	°C
Input Current	I _S , INPUT	230	mA
Output Power	Ps, output	600	mW
Insulation Resistance at T_S , $V_{IO} = 500 \text{ V}$	R _S	>10 ⁹	Ω

Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/ DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M49T	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	≥ 5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	≥ 5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		Illa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		T _S	-55	150	°C	
Operating Temperature	T _A	-40	125	°C		
Lead Soldering Cycle	Temperature			260	°C	
	Time			10	S	
Average Forward Input Co	ırrent	$I_{F(avg)}$		20	mA	1
Peak Forward Input Curre (50% duty cycle, 1ms puls	$I_{F(peak)}$		40	mA	2	
Peak Transient Input Curro (<=1us pulse width, 300p	I _{F(trans)}		100	mA	2	
Reversed Input Voltage		V _R		5	V	Pin 3 - 1
Input Power Dissipation		P _{IN}		30	mW	3
Output Power Dissipation	ı	Po		100	mW	4
Average Output Current		Io		8	mA	
Peak Output Current		I _{o(pk)}		16	mA	
Supply Voltage (Pins 6-4)		V _{CC}	-0.5	30	V	
Output Voltage (Pins 5-4)	Vo	-0.5	20	V		
Solder Reflow Temperatur	re Profile		Se	ee Reflow Tempe	rature Profile	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	V_{CC}		20.0	V	
Operating Temperature	T _A	-40	125	°C	

Electrical Specifications (DC) for 5-Pin Configuration

Over recommended operating $T_A = -40^{\circ}\text{C}$ to 125°C , unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions			Fig.	Note
Current Transfer Ratio	CTR	32	45	80	%	T _A =25°C	V _O =0.4V	V _{CC} =4.5V	1, 2	5
		20	45				V _O =0.5V	I _F =10mA		
			58			T _A =25°C	V _O =0.5V	V _{CC} =4.5V I _F =4mA	1, 2	5
Logic Low Output Voltage	V_{OL}		0.1	0.4	V	T _A =25°C	I _O =3mA	V _{CC} =4.5V	3	
				0.5			I _O =2.4mA	I _F =10mA		
Logic High Output Current	I _{OH}		0.003	0.5	μΑ	T _A =25°C	V _O =V _{CC} =5.5V V _O =V _{CC} =15V	I _F =0mA	7	
			0.01	1	_	T _A =25°C				
				5						
Logic Low Supply Current	I _{CCL}		50	200		I _F =10mA, V	_O =open, V _{CC} =15V			
Logic High Supply	I _{CCH}		0.02	1		T _A =25°C				
Current				2.5						
Input Forward Voltage	V _F	1.45	1.5	1.75	V	I _F =10mA, T,	=10mA, T _A =25°C			
		1.25	1.5	1.85		I _F =10mA, T,	_A = Across Tempera	ture		
			1.5			I _F =4mA, T _A =	=25°C			
Input Reversed Breakdown Voltage	BV_R	5				$I_R=10\mu A$				
Temperature Coefficient of Forward Voltage	ΔV/ΔΤ _Α		-1.5		mV/°C	I _F =10mA				
Input Capacitance	C _{IN}		90		pF	F=1MHz, V _F	==0			

Switching Specifications (AC) for 5-Pin Configuration

Over recommended operating ($T_A = -40^{\circ}\text{C}$ to 125°C), $V_{CC} = 5.0 \text{ V}$ unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions		Fig.	Note
Propagation Delay Time to Logic Low at Output	t _{PHL}	-	-	20	μs	Pulse: f=10kHz, Duty cycle = 50%, I _F =4mA, V_{CC} =5.0 V, R_L =8.2k Ω , C_L =15pF V_{THHL} =1.5V		9	
Propagation Delay Time to Logic High at Output	t _{PLH}	-	-	20	μs	Pulse: f=10kHz, Duty cycle = 50%, I_F =4mA, V_{CC} =5.0 V, R_L =8.2k Ω , C_L =15pF V_{THLH} =2.0V		9	
Common Mode Transient Immunity at Logic High Output	CM _H	15	30		kV/μs	I _F =0mA	V_{CM} =1500 V_{p-p} T_{A} =25° C R_{L} =8.2 $k\Omega$	10	9
Common Mode Transient Immunity at Logic Low Output	CM _L	15	30		kV/μs	I _F =10mA	V_{CM} =1500 V_{p-p} T_{A} =25° C R_{L} =8.2 $k\Omega$	_	
Common Mode Transient Immunity at Logic Low Output	CM _L	-	15		kV/μs	I _F =4mA	V_{CM} =1500 V_{p-p} T_{A} =25° C R_{L} =8.2 $k\Omega$	_	

Electrical Specifications (DC) for 4-Pin Configuration

Applicable for $V_{CC} = V_O$. Over recommended operating $T_A = -40^{\circ}C$ to 125°C, unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions			Fig.	Note
Current Transfer Ratio	CTR		120		%	T _A =25°C, I _F	=5mA, V _{CC} =V _O =	5V	4	5, 8
Current Transfer Ratio	CTR	20	45		%	I _F =10mA		V _{CC} =V _O =0.5V	5	5, 8
	(Sat)		58	_		I _F =4mA				
Logic Low Output	V _{OL}		0.1	0.4	V	T _A =25°C	I _O =3mA	I _F =10mA	5	8
Voltage				0.5	_	I _O =2.4mA				
Off-State Current	I _(CEO)		0.0001	5	μΑ	V _O =V _{CC} =15	5V, I _F =0mA		8	8
Input Forward Voltage	oltage V _F 1.45 1.5 1.75 V I _F =10mA, T _A =25°C		6							
		1.25	1.5	1.85	_	I _F =10mA, T	A= Across Tempe	rature	_	
			1.45			I _F =4mA, T _A	=25°C			
Temperature Coefficient of Forward Voltage	$\Delta V/\Delta T_A$		-1.5		mV/°C	I _F =10mA				
Input Reversed Breakdown Voltage	BV_R	5				I _R =10μA				
Input Capacitance	C _{IN}		90		pF	F=1MHz, V	_F =0			
Output Capacitance	C _{CE}		35		pF	F=1MHz, V	F=0, V _O =V _{CC} =0V			8

Switching Specifications (AC) for 4-Pin Configuration

Over recommended operating ($T_A = -40^{\circ}\text{C}$ to 125°C), $V_{CC} = 5.0 \text{ V}$ unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions		Fig.	Note
Propagation Delay Time to Logic Low at Output	t _{PHL}	-	2	100	μs	Pulse: f=1kHz, Duty cycle = 50%, I_F =4mA, V_{CC} =5.0 V, R_L =8.2k Ω , C_L =15pF V_{THHL} =1.5V		10	8
Propagation Delay Time to Logic High at Output	t _{PLH}	-	19	100	μs	Pulse: f=1kHz, Duty cycle = 50%, I_F =4mA, V_{CC} =5.0 V, R_L =8.2k Ω , C_L =15pF V_{THLH} =2.0V		10	8
Common Mode Transient Immunity at Logic High Output	CM _H	15	30		kV/μs	I _F =0mA	V_{CM} =1500 V_{p-p} T_A =25°C R_L =8.2 $k\Omega$	12	8, 9
Common Mode Transient Immunity at Logic Low Output	CM _L	15	30		kV/μs	I _F =4mA	V_{CM} =1500 V_{p-p} T_A =25°C R_L =8.2 $k\Omega$		

Package Characteristics

*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	V_{ISO}	4000			V_{RMS}	RH \leq 50%, t = 1 min; T _A = 25°C		6, 7
Input-Output Resistance	R_{I-O}		10 ¹⁴		Ω	$V_{I\text{-}O} = 500 V_{DC}$		6
Input-Output Capacitance	C _{I-O}		0.6		рF	$f = 1 \text{ MHz; } V_{I-O} = 0 V_{DC}$		6

Notes:

- 1. Derate linearly above 85°C free-air temperature at a rate of 0.25mA/°C.
- 2. Derate linearly above 85°C free-air temperature at a rate of 0.30mA/°C.
- 3. Derate linearly above 85°C free-air temperature at a rate of 0.375mW/°C.
- 4. Derate linearly above 85°C free-air temperature at a rate of 1.875mW/°C.
- 5. Current Transfer Ratio in percent is defined as the ratio of output collector current, I_O, to the forward LED input current, I_F, times 100.
- 6. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4,5, and 6 shorted together.
- 7. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4800V_{RMS} for 1 second.
- 8. This is in a 4-pin configuration where the V_{CC} and V_{O} pin are shorted together.
- 9. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the rising edge of the common mode pulse, V_{CM}, to assure that the ouput will remain in a Logic High state (i.e., Vo > 2.0V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., Vo < 0.8V).

Figure 1. Normalized Current Transfer Ratio (I $_{\!F} = 4 \text{mA}$ as reference) vs Input Current

Figure 2. Normalized Current Transfer Ratio ($T_A = 25^{\circ}\text{C}$ as reference) vs Temperature

Figure 3. Typical Low Level Output Current vs Output Voltage

Figure 4. Output Current vs Output Voltage (4-Pin Configuration)

Figure 5. Typical Low Level Output Current vs Output Voltage (4-Pin Configuration)

Figure 6. Typical Input Current vs Forward Voltage

Figure 7. Typical High Level Output Current vs Temperature

Figure 8. Typical Off-State Current vs Temperature (4-Pin Configuration)

Figure 9. Switching Test Circuit

Figure 10. Switching Test Circuit (4-pin configuration)

Figure 11. Test Circuit for Transient Immunity and Typical Waveforms

Figure 12. Test Circuit for Transient Immunity and Typical Waveforms (4-Pin Configuration)

