$$L = \frac{nh}{2\pi}$$

Representa le momento angular de un electron. Esta es la cuantización del momento angular

Donde

L, es el momento angular

h, es la constante de Planck

n, es el nivel energético del electrón

b)

$$\frac{1}{\lambda} = R \left(\frac{1}{n^2} + \frac{1}{m^2} \right)$$

Representa la ley de Rydberg, la cual se usa para predecir la longitud de onda

del foton producto de un salto electrónico de un electrón.

Donde

 λ , es la longitud de onda del fotón

n,m son números naturales, donde se cumple que m>n (Representan los niveles energéticos del electrón)

R, es la constante de Rydberg

c)

$$h\nu = E_n - E_m$$

Representa la diferencia de energía entre los 2 niveles energéticos producto del salto electrónico de un electrón

Donde

h, es la constante de Planck

v, es la frecuencia

 E_n , es la energía del nivel energético inicial

 E_m , es la energía del nivel energético final