ELEC442 Assgt #5. Due Nov 30, 2018 (11:59pm)

 All policies from Assgt #1 apply but you may submit your work through Canvas in teams of up to 3 individuals.

Two-Link Manipulator Open-Loop Simulation

Consider the two-link planar manipulator described in the dynamics section Ch.6, p.87. Let $l_1 = l_2 = 1$ m, $m_1 = m_2 = 1$ kg. Implement a Simulink "Robot" block having as output the robot state $\mathbf{x} = \begin{bmatrix} \theta_1 & \theta_2 & \dot{\theta}_1 & \dot{\theta}_2 \end{bmatrix}$ and as inputs the motor torques and the initial state. Assume that the base frame is oriented so that the gravity vector is aligned with $-\mathbf{j_0}$ as shown in the figure of page 87.

Simulate (use either a Matlab script or Simulink) and plot the angles for a time period of 30 seconds for the following conditions:

- (i) $\mathbf{x}(0) = [0\ 0\ 0\ 0]^{\mathrm{T}}$, both motor torques set to zero.
- (ii) $\mathbf{x}(0) = [0 \, \pi/2 \, 0 \, 0]^{\mathrm{T}}, \ \tau_1 = 0, \ \tau_2 = 5 \, \mathrm{N} \cdot \mathrm{m}.$
- (iii) Same as item (i) but with added friction, modeled as $\tau_1 = -0.5\dot{\theta}_1$, $\tau_2 = -0.5\dot{\theta}_2$ (assume coefficients have appropriate units of N·m·s/rad).

Controller Implementation

Closed loop joint-space control:

Implement the PD + gravity controller. With the state initialized to $x(0) = [-\pi/2 \ 0 \ 0]^T$, plot the resulting joint angles for $t \in [0,15s]$ using set point $q_d = [0 \ \pi/2]^T$, and gain matrices $K_p = \text{diag}[1,1]$, $K_v = \text{diag}[2,2]$.

Closed loop Cartesian-space control:

Implement the stiffness controller. Demonstrate the response of the controller, for gains K_{p1} =diag[1,1], K_{p2} =diag[0.2,1] and K_{p3} =diag[1,0.2], with K_{ν} =diag[2, 2], simulating the various spring directions in cartesian space. With the state initialized to $\mathbf{x}(0) = [-\pi/2 \ 0 \ 0]^T$, plot the resulting end-effector trajectories for $t \in [0,15s]$ if the set point in the task space is $\mathbf{\varrho}_d = \mathbf{\varrho}_{\mathcal{P}} + \underline{C_0} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.