

planetmath.org

Math for the people, by the people.

proof of compact pavings are closed subsets of a compact space

 ${\bf Canonical\ name} \quad {\bf ProofOfCompactPavingsAreClosedSubsetsOfACompactSpace}$

Date of creation 2013-03-22 18:45:07 Last modified on 2013-03-22 18:45:07

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof

Classification msc 28A05

Let (K, \mathcal{K}) be a http://planetmath.org/paved spacecompact paved space. We use the http://planetmath.org/EveryFilterIsContainedInAnUltrafilterultrafilter lemma to show that there is a compact paving \mathcal{K}' containing \mathcal{K} that is closed under arbitrary intersections and finite unions.

We first show that the paving \mathcal{K}_1 consisting of all finite unions of elements of \mathcal{K} is compact. Let $\mathcal{F} \subseteq \mathcal{K}_1$ satisfy the finite intersection property. It then follows that the collection of finite intersections of \mathcal{F} is a http://planetmath.org/Filterfilter. The ultrafilter lemma says that \mathcal{F} is contained in an ultrafilter \mathcal{U} .

By definition, the ultrafilter satisfies the finite intersection property. So, the compactness of \mathcal{K} implies that $\mathcal{F}' \equiv \mathcal{U} \cap \mathcal{K}$ has nonempty intersection. Also, every element S of \mathcal{F} is a union of finitely many elements of \mathcal{K} , one of which must be in \mathcal{U} (see http://planetmath.org/AlternativeCharacterizationOfUltrafilter characterization of ultrafilter). In particular, S contains the intersection of \mathcal{F}' and,

$$\bigcap \mathcal{F} \supseteq \bigcap \mathcal{F}' \neq \emptyset.$$

Consequently, \mathcal{K}_1 is compact.

Finally, we let \mathcal{K}' be the set of arbitrary intersections of \mathcal{K}_1 . This is closed under all arbitrary intersections and finite unions. Furthermore, if $\mathcal{F} \subseteq \mathcal{K}'$ satisfies the finite intersection property then so does

$$\mathcal{F}' \equiv \{ A \in \mathcal{K}_1 \colon B \subseteq A \text{ for some } B \in \mathcal{F} \}.$$

The compactness of \mathcal{K}_1 gives

$$\bigcap \mathcal{F} = \bigcap \mathcal{F}' \neq \emptyset$$

as required.