Mixture of Gaussians

Sargur Srihari srihari@cedar.buffalo.edu

Mixtures of Gaussians

Also Called as Finite Mixture Models (FMMs)

$$p(x) = \sum_{k=1}^{K} \pi_k N(x \mid \mu_k, \Sigma_k)$$

Goal:

Determine the three sets of parameters π, μ, Σ using maximum likelihood

Gaussian Mixture Model

- A linear superposition of Gaussian components
- Provides a richer class of density models than the single Gaussian
- GMM are formulated in terms of discrete latent variables
 - Provides deeper insight
 - Motivates EM algorithm
 - Which gives a maximum likelihood solution to no. of components and their means/covariances

GMM Formulation

Linear superposition of K Gaussians:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} \mid \mu_k, \Sigma_k)$$

- Introduce a latent variable z that has K values
 - Use 1-of-K representation
 - Let $z = z_1,...,z_K$ whose elements are $z_k \in \{0,1\} \text{ and } \sum z_k = 1$
 - There are K possible states of z corresponding to K components
- Define joint distribution p(x,z) = p(x|z)p(z)conditional marginal
 - x is observed variable
 - z is hidden or missing variable

Specifying p(z), $z = \{z_1,...,z_K\}$

- Associate a probability with each component z_k
 - Denote $p(z_k=1)=\pi_k$ where parameters satisfy $0 \le \pi_k \le 1$ and $\sum \pi_k = 1$
- Because z uses 1-of-K^kit follows that

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$
 With one component $p(z_1) = \pi_1^{z_1}$ With two components $p(z_1, z_2) = \pi_1^{z_1} \pi_2^{z_2}$

 since components are mutually exclusive and hence are independent

Conditional distribution p(x|z)

- For a particular component (value of z) $p(\mathbf{x} \mid z_k = 1) = N(\mathbf{x} \mid \mu_k, \Sigma_k)$
- Thus p(x|z) can be written in the form $p(x|z) = \prod_{k=1}^{K} N(x|\mu_k, \Sigma_k)^{z_k}$ Due to the exponent z_k all product terms except for one equal one
- Thus marginal distribution of x is obtained by summing over all possible states of z

$$p(\mathbf{x}) = \sum_{z} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{z} \prod_{k=1}^{K} \pi_{k}^{z_{k}} N(\mathbf{x} \mid \mu_{k}, \Sigma_{k})^{z_{k}} = \sum_{k=1}^{K} \pi_{k} N(\mathbf{x} \mid \mu_{k}, \Sigma_{k})$$

· This is the standard form of a Gaussian mixture

Latent Variable

- If we have observations $x_1,...,x_N$
- Because marginal distribution is in the form

$$p(\mathbf{x}) = \sum_{z} p(\mathbf{x}, \mathbf{z})$$

- It follows that for every observed data point x_n there is a corresponding latent vector z_n , i.e., its sub-class
- Thus we have found a formulation of Gaussian mixture involving an explicit latent variable
 - We are now able to work with joint distribution p(x,z) instead of marginal p(x)
- Leads to significant simplification through introduction of expectation maximization

Another conditional probability (Responsibility)

- In EM p(z|x) plays a role
- The probability $p(z_k=1|\mathbf{x})$ is denoted $\gamma(z_k)$
- From Bayes theorem

$$\gamma(z_k) \equiv p(z_k = 1 \mid x) = \frac{p(z_k = 1)p(x \mid z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(x \mid z_j = 1)}$$
$$= \frac{\pi_k N(x \mid \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x \mid \mu_k, \Sigma_j)}$$

8

• View $p(z_k = 1) = \pi_k$ as prior probability of component k $\gamma(z_k) = p(z_k = 1 \mid x)$ as the posterior probability it is also the responsibility that component k takes for explaining the observation x

Plan of Discussion

- Next we look at
 - 1. How to get data from a mixture model synthetically and then
 - 2. How to estimate the parameters from the data

Synthesizing data from mixture

500 points from three Gaussians

Use ancestral sampling

X

Start with lowest numbered node and draw a sample,

Generate sample of z, called z[^]

 move to successor node and draw a sample given the parent value, etc.

• Then generate a value for x from conditional $p(\mathbf{x}|\mathbf{z}^{\hat{}})$

Samples from p(x,z) are plotted according to value of x and colored with value of z

• Samples from marginal p(x) obtained by ignoring values of z

Illustration of responsibilities

- Evaluate for every data point
 - Posterior probability of each component

- Responsibility $\gamma(z_{nk})$ is associated with data point \mathbf{x}_n
- Color using proportion of red, blue and green ink
 - If for a data point $\gamma(z_{n1}) = 1$ it is colored red
 - If for another point $\gamma(z_{n2}) = \gamma(z_{n3}) = 0.5$ it has equal blue and green and will appear as cyan

Maximum Likelihood for GMM

- We wish to model data set {x₁,..x_N} using a mixture of Gaussians (N items each of dimension D)
- Represent by $N \times D$ matrix $X = \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix}$ - N^{th} row is given by x_n^T
- Represent N latent variables with $N \times K$ matrix Z with rows $z_n^{T} = \begin{bmatrix} z_1 \\ z_2 \\ z_n \end{bmatrix}$

We are given N i.i.d. samples $\{x_n\}$ with *unknown* latent points $\{z_n\}$ with parameters π_n .

The samples have parameters: mean μ and covariance Σ

Goal is to estimate the three sets of parameters

Likelihood Function for GMM

Mixture density function is

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Summation is for Marginalizing the joint

Therefore Likelihood function is

$$p(X \mid \pi, \mu, \Sigma) = \prod_{n=1}^{N} \left\{ \sum_{k=1}^{K} \pi_{k} N(\mathbf{x}_{n} \mid \mu_{k}, \Sigma_{k}) \right\}$$
Product is over the N i.i.d. samples

Therefore log-likelihood function is

$$\ln p(X \mid \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(\mathbf{x}_n \mid \mu_k, \Sigma_k) \right\}$$

Which we wish to maximize

A more difficult problem than for a single Gaussian

Maximization of Log-Likelihood

$$\ln p(X \mid \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(\mathbf{x}_n \mid \mu_k, \Sigma_k) \right\}$$

- Goal is to estimate the three sets of parameters π, μ, Σ
- Before proceeding with the m.l.e. briefly mention two technical issues:
 - Problem of singularities
 - Identifiability of mixtures

Problem of Singularities with Gaussian mixtures

- Consider Gaussian mixture
 - components with covariance matrices $\Sigma_k = \sigma_k^{2} I^{p(x)}$
- Data point that falls on a mean $\mu_j = x_n$ will contribute to the likelihood function

$$N(\mathbf{x}_n \mid \mathbf{x}_n, \sigma_j^2 I) = \frac{1}{(2\pi)^{1/2}} \frac{1}{\sigma_j}$$
 since $\exp(\mathbf{x}_n - \mu_j)^2 = 1$

- As $\sigma_i \rightarrow 0$ term goes to infinity
- Therefore maximization of log-likelihood

$$\ln p(X \mid \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(\mathbf{x}_n \mid \mu_k, \Sigma_k) \right\}$$
 is not well-posed

- Does not happen with a single Gaussian
 - Multiplicative factors go to zero
- Does not happen in the Bayesian approach
- Problem is avoided using heuristics
 - Resetting mean or covariance

One component assigns finite values and other to large value

Multiplicative values
Take it to zero

Problem of Identifiability

A density $p(x \mid \theta)$ is identifiable if $\theta \neq \theta'$ then there is an x for which $p(x \mid \theta) \neq p(x \mid \theta')$

A *K*-component mixture will have a total of *K*! equivalent solutions

- Corresponding to K! ways of assigning K sets of parameters to K components
 - E.g., for K=3 K!=6: 123, 132, 213, 231, 312, 321
- For any given point in the space of parameter values there will be a further *K!-1* additional points all giving exactly same distribution
- However any of the equivalent solutions is as good as the other

Two ways of labeling three Gaussian subclasses

EM for Gaussian Mixtures

- EM is a method for finding maximum likelihood solutions for models with latent variables
- Begin with log-likelihood function

$$\ln p(X \mid \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(\mathbf{x}_n \mid \mu_k, \Sigma_k) \right\}$$

- We wish to find π,μ,Σ that maximize this quantity
- Take derivatives in turn w.r.t
 - Means μ_k and set to zero
 - covariance matrices \sum_{k} and set to zero
 - mixing coefficients π_k and set to zero

EM for GMM: Derivative wrt μ_k

Begin with log-likelihood function

$$\ln p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \boldsymbol{\pi}_{k} N(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

- Take derivative w.r.t the means μ_k and set to zero
 - Making use of exponential form of Gaussian
 - Use formulas:

$$\frac{d}{dx}\ln u = \frac{u'}{u} \quad \text{and} \quad \frac{d}{dx}e^u = e^u u'$$

$$0 = \sum_{n=1}^{N} \frac{\pi_{k} N(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j} \pi_{j} N(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})} \sum_{k=1}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})$$
Inverse of covariance

matrix

 $\gamma(z_{nk})$ the posterior probabilities

M.L.E. solution for Means

• Multiplying by Σ_k assuming non-singularity)

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

Where we have defined

Mean of k^{th} Gaussian component is the weighted mean of <u>all</u> the points in the data set: where data point x_n is weighted by

where data point x_n is weighted by the posterior probability that component k was responsible for generating x_n

$$N_k = \sum_{n=1}^N \gamma(z_{nk})$$

 Which is the effective number of points assigned to cluster k

M.L.E. solution for Covariance

- Set derivative wrt Σ_k to zero
 - Making use of mle solution for covariance matrix of single Gaussian

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

- Similar to result for a single Gaussian for the data set but each data point weighted by the corresponding posterior probability
- Denominator is effective no of points in component

M.L.E. solution for Mixing Coefficients

- Maximize $\ln p(X \mid \pi, \mu, \Sigma)$ w.r.t. π_k
 - Must take into account that mixing coefficients sum to one
 - Achieved using Lagrange multiplier and maximizing $\ln p(X \mid \pi, \mu, \Sigma) + \lambda \left(\sum_{k=1}^K \pi_k 1\right)$
 - Setting derivative wrt π_k to zero and solving gives

$$\pi_k = \frac{N_k}{N}$$

Summary of m.l.e. expressions

GMM maximum likelihood estimates

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

Parameters (means)

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

Parameters(covariance matrices)

$$\pi_k = \frac{N_k}{N}$$

$$\pi_k = \frac{N_k}{N}$$
 $N_k = \sum_{n=1}^N \gamma(z_{nk})$ Parameters (Mixing Coefficients)

EM Formulation

- The results for μ_k, Σ_k, π_k are not closed form solutions for the parameters
 - Since $\gamma(z_{nk})$ the responsibilities depend on those parameters in a complex way
- Results suggest an iterative solution
- An instance of EM algorithm for the particular case of GMM

Informal EM for GMM

- First choose initial values for means, covariances and mixing coefficients
- Alternate between following two updates
 - Called E step and M step
- In E step use current value of parameters to evaluate posterior probabilities, or responsibilities
- In the M step use these posterior probabilities to to re-estimate means, covariances and mixing coefficients

EM using Old Faithful

Data points and Initial mixture model

Initial E step
Determine
responsibilities

After first M step Re-evaluate Parameters

After 2 cycles

After 5 cycles

After 20 cycles

Comparison with K-Means

K-means result

E-M result

Animation of EM for Old Faithful Data

 http://en.wikipedia.org/wiki/ File:Em old faithful.gif

Code in R

```
#initial parameter estimates (chosen to be deliberately bad) theta <- list( tau=c(0.5,0.5), mu1=c(2.8,75), mu2=c(3.6,58), sigma1=matrix(c(0.8,7,7,70),ncol=2), sigma2=matrix(c(0.8,7,7,70),ncol=2))
```

Practical Issues with EM

- Takes many more iterations than K-means
- Each cycle requires significantly more comparison
- Common to run K-means first in order to find suitable initialization
- Covariance matrices can be initialized to covariances of clusters found by K-means
- EM is not guaranteed to find global maximum of log likelihood function

Summary of EM for GMM

- Given a Gaussian mixture model
- Goal is to maximize the likelihood function w.r.t. the parameters (means, covariances and mixing coefficients)

Step1: Initialize the means μ_k covariances Σ_k and mixing coefficients π_k and evaluate initial value of log-likelihood

EM continued

• Step 2: E step: Evaluate responsibilities using current parameter values $\pi_k N(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

 $\gamma(z_k) = \frac{\pi_k N(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j N(\mathbf{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j))}$

 Step 3: M Step: Re-estimate parameters using current responsibilities

$$\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T$$

$$\pi_k^{\text{new}} = \frac{N_k}{N}$$
 where $N_k = \sum_{n=1}^N \gamma(z_{nk})$

EM Continued

Step 4: Evaluate the log likelihood

$$\ln p(X \mid \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(\mathbf{x}_n \mid \mu_k, \Sigma_k) \right\}$$

- And check for convergence of either parameters or log likelihood
- If convergence not satisfied return to Step 2