MINING ASSOCIATION RULES

STQD6414 PERLOMBONGAN DATA

Assoc. Prof. Dr. Nurulkamal Masseran
Department of Mathematical Sciences
Universiti Kebangsaan Malaysia

INTRODUCTION:

- The Mining Association Rule aims to find 'interesting' relationships between sets of items.
- This technique is commonly used to make product recommendations by identifying products that are often purchased together.
- Mining Association Rule is typically performed on transaction data from retail markets or from online e-commerce businesses.
- A priori and eclat algorithms are used to find a patterns and rules in the dataset.
- What is rule?
- Rules refer to a notations that represent items that are often purchased along with other items.
- It has the LHS and RHS parts represented as follows:

$$X \Longrightarrow Y$$

 That means, the item on the right is often purchased along with the item on the left.

DATA TRANSACTIONS:

• Example of Product Purchasing Transaction Data :

transaction ID	items
1	milk, bread
2	bread, butter
3	beer
4	milk, bread, butter
5	bread, butter

- Data mining algorithm reads the transaction data in the form of binary variables
- Where $I=\{i_1, i_2, ..., i_n\}$ is a set of n-binary attributes referred to as items and $D=\{t_1, t_2, ..., t_m\}$ is the set of m-transactions.

		items					
		milk	bread	butter	beer		
ransactions	1	1	1	0	0		
	2	0	1	1	0		
	3	0	0	0	1		
	4	1	1	1	0		
tr	5	0	1	1	0		

BASIC OF ASSOCIATION RULES:

- ullet Association rules represent by $X\Longrightarrow Y$.
- On condition:
- i) $X, Y \subseteq I$
- ii) $X \cap Y = \emptyset$ (X and Y are not the same items).
- iii) X is the antecedent rule (events that occur first).
- iv) Y is a consequential rule (an event that occurs due to something).

Example: $\{Milk, Butter, Bread\} \Rightarrow \{Egg\}$

BASIC OF ASSOCIATION RULES:

- Frequent itemsets are used to obtain the association rules in the form of $X \Rightarrow Y$.
- Example of association rule: $\{Egg,Milk\} \Rightarrow \{Yogurt\}$.
- Based on this association rule, supermarket owners found that, commonly, customers who bought eggs and milk would also buy Yogurt
- Therefore, the supermarket can plan to promote yogurt to customers who often buy eggs and milk.
- Alternatively, the supermarket can arrange a shelf arrangement for yogurt sales near the egg and milk shelves.

BASIC OF ASSOCIATION RULES:

 The association rules describe the relationships or correlations between sets of items.

- Three basic measurements in choosing an association rules are:
 - i) Support
 - ii) Confidence
 - iii) Lift
- Support is the proportion of transactions in data that contain both item sets X and Y:

support
$$(X \Rightarrow Y) = P(X \cap Y) = \frac{n_{XY}}{N}$$

 Confidence is the proportion of transactions that will contain item Y if item X has been purchased:

$$confidence(X \Rightarrow Y) = P(Y \mid X) = \frac{P(X \cap Y)}{P(X)} = \frac{\binom{n_{XY}}{N}}{\binom{n_{X}}{N}}$$

• Lift is the ratio of Confidence to the proportion of transactions containing Y:

$$lift(X \Rightarrow Y) = \frac{confidence(X \Rightarrow Y)}{P(Y)} = \frac{P(X \cap Y)}{P(Y)P(X)} = \frac{\binom{n_{XY}/N}{N}}{\binom{n_{Y}/N}{N}}$$

• The higher the values of Support, Confidence and Lift, the higher the chance for item sets X and Y to occur together.

EXAMPLE:

• Given data for the following transactions data:

Transaction ID	Item Set
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Example of Association Rule: {Milk ,Diaper}⇒Beer
- i) support $(\{Milk, Diaper\} \Rightarrow Beer) = P(\{Milk, Diaper\} \cap Beer) = \frac{2}{5} = 0.4$
- ii) confidence $(\{Milk, Diaper\} \Rightarrow Beer) = P(Beer | \{Milk, Diaper\})$

$$= \frac{P(\{Milk, Diaper\} \cap Beer)}{P(\{Milk, Diaper\})} = \frac{\binom{2}{5}}{\binom{3}{5}} = \frac{2}{3} = 0.67$$

EXAMPLE:

Given data for the following transactions data

Transaction ID	Item Set
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

■ Example of Association Rule: {Milk ,Diaper}⇒Beer

iii)
$$lift(\{Milk, Diaper\} \Rightarrow Beer) = \frac{confidence(\{Milk, Diaper\} \Rightarrow Beer)}{P(Beer)} = \frac{0.67}{\binom{3}{5}} = 1.12$$

COMBINATIONS IN ALL ITEM SETS:

• If the supermarket has d=5 items, then there will be $2^d=2^5=32$ possible sets of items that can be formed i.e.:

COMBINATIONS IN ALL ASSOCIATION RULES:

- Total combinations in all item sets = 2^d
- Then, the total of combinations in association rules:

$$R = \sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

- For example if d = 5, all possible association rules are 180.
- Generally, in actual data, the number of items d is very large.
- Then there are exist too many possible association rules.
- It is impossible to determine an association rules manually.
- A priori algorithms can be used to obtain the appropriate set of association rules.

ASSOCIATION RULES FRANCWORK:

• All association rules $X \rightarrow Y$ must comply with the following framework:

support
$$(X \cup Y) \ge \sigma$$

 $confidence(X \Rightarrow Y) \ge \gamma$

- σ is the minimum support threshold.
- γ is the minimum confidence threshold.

- The prerequisites for threshold values need to be determined by the analyst.
- Since there are too many combinations of association rules, thus a threshold values are very important for determining a meaningful association rules.

MINIMUM SUPPORT:

- Based on the minimum support value, only the most frequent itemset combinations will be retained.
- Example: For the following transaction data, with minimum support, σ =0.4:

Transaction ID	beer	eggs	flour	milk	{beer, eggs, flour, milk} support count = 0		
1	0	1	1	1			
2	1	1	1	0			
3	0	1	0	1			
4	0	1	1	1	{beer, eggs, flour} 1 {beer, eggs, milk} 0 {beer, flour, milk} 0 {eggs, flour, milk} 2		
5	0	0	0	1			
{beer, eggs} 1 {beer, flour} 1 {beer, milk} 0 {eggs, flour} 3 {eggs, milk} 2 {flour, milk} 2							
					{beer} 1		
'Frequent Itemsets'							

MINIMUM CONFIDENCE:

• For the following transaction data, with minimum confidence, $\gamma = 0.5$.

			Confidence
$\{eggs\}$	\rightarrow	$\{flour\}$	3/4 = 0.75
$\{flour\}$	\rightarrow	$\{{\sf eggs}\}$	3/3 = 1
$\{eggs\}$	\rightarrow	$\{milk\}$	2/4 = 0.5
$\{milk\}$	\rightarrow	$\{ {\sf eggs} \}$	2/4 = 0.5
$\{flour\}$	\rightarrow	$\{milk\}$	2/3 = 0.67
$\{milk\}$	\rightarrow	$\{flour\}$	2/4 = 0.5
$\{eggs, flour\}$	\rightarrow	$\{milk\}$	2/3 = 0.67
{eggs, milk}	\rightarrow	$\{flour\}$	2/2 = 1
$\{flour,\ milk\}$	\rightarrow	$\{ eggs \}$	2/2 = 1
{eggs}	\rightarrow	$\{flour, milk\}$	2/4 = 0.5
$\{flour\}$	\rightarrow	{eggs, milk}	2/3 = 0.67
$\{milk\}$	\rightarrow	{eggs, flour}	2/4 = 0.5

Confidence

LIFT WEASURE:

• Based on the minimum support and confidence, σ =0.5 and γ =0.7 set, only rule sets exceeding these prerequisites will be retained.

			Support	Confidence
{eggs}	\rightarrow	$\{flour\}$	3/5 = 0.6	3/4 = 0.75
$\{flour\}$	\rightarrow	$\{eggs\}$	3/5 = 0.6	3/3 = 1
{eggs, milk}	\rightarrow	$\{flour\}$	2/5 = 0.4	2/2 = 1
$\{flour, milk\}$	\rightarrow	$\{eggs\}$	2/5 = 0.4	2/2 = 1

- Next, the value of the lift can be calculated.
- The lift value obtained can be interpreted as :
- i) $lift(X \Rightarrow Y) = 1$, X and Y is independent.
- ii) $lift(X \Rightarrow Y) > 1$, X and Y has a complementary effect.
- iii) $lift(X \Rightarrow Y) < 1$, X and Y has a substitute effect.

DETERMINATION OF ASSOCIATION RULES THROUGH ALGORITHMS APRIORIZECLAT:

• In general, mining association rules can done through the following steps:

i) Determine all frequent item sets: Each set of items that occur more frequently (or equal to) than a predetermined minimum support threshold will be identified.

ii) Determine the association rules from (i): Each set of items that meets the minimum support threshold property also meets the minimum confidence threshold property.

APPLICATION IN R:

- In R, mining association rules can be done through a priori or eclat algorithm.
- Among the important things that need to be determined are:
- i) How to determine the most frequent items?
- ii) How to obtain association rules for product recommendations?
- iii) How to remove redundant rules?
- iv) How to determine the association rules related to some particular item?

REFERENCES:

- Adamo, J-M. (2001). Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms. Springer.
- Aggarwal, C.C. (2015). Data Mining: The Textbook. New York: Springer.
- Hahsler, M., Grün, B., Hornik. K. (2005). arules A Computational Environment for Mining Association Rules and Frequent Item Sets. *Journal of Statistical Software*, 14(15), 1–25.
- Makhabel, B. (2015). Learning Data Mining with R: Develop key skills and techniques with R to create and customize data mining algorithms. Birmingham: Packt Publishing.
- Subramanian, G. (2017). R Data Analysis Projects: Build end to end analytics systems to get deeper insights from your data. Birmingham: Packt Publishing.

NEXT TOPIC:

Mining Time Series Data

