Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 2 (16.10.2023 - 20.10.2023)

Aufgabe 1:

Prüfen Sie, ob sich der Vektor \vec{v} als Linearkombination von Vektoren aus der Menge M darstellen lässt. Falls eine Kombination möglich ist: Wie viele Möglichkeiten der Kombination gibt es?

(a)
$$\vec{v} = \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix}$$
, $M = \{ \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix} \}$

(b)
$$\vec{v} = \begin{pmatrix} 4 \\ 5 \\ 5 \end{pmatrix}$$
, $M = \{ \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} \}$

(c)
$$\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $M = \left\{ \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} \right\}$

Aufgabe 2:

Es sei g die Gerade, welche in der (x,y)-Ebene durch die Punkte $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$ verläuft.

- (a) Beschreiben Sie g durch eine Gleichung der Form ax + by = c (parameterfreie Geradengleichung).
- (b) Geben Sie eine Parameterdarstellung von q an.

Aufgabe 3:

- (*) Betrachtet wird die Gerade h in der (x, y)-Ebene mit der Gleichung 4x + 5y = 5.
- (a) Wo schneidet h die x-Achse und wo schneidet h die y-Achse?
- (b) Welchen Abstand hat die Gerade h vom Ursprung?

Aufgabe 4:

Im
$$\mathbb{R}^3$$
 seien die Punkte $A = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $B = \begin{pmatrix} -2 \\ 4 \\ 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}$ und $D = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}$ gegeben.

- (a) Untersuchen Sie die Lagebeziehung der Geraden g_{AB} und h_{CD} .
- (b) Ermitteln Sie sowohl eine Parameterdarstellung als auch eine parameterfreie Darstellung (Koordinatengleichung) für die Ebene E durch die Punkte A, B, C.

(c) Prüfen Sie, ob der Punkt
$$P = \begin{pmatrix} -6 \\ 7 \\ 4 \end{pmatrix}$$
 auf der Strecke \overline{AB} liegt.

Aufgabe 5:

(*) Im
$$\mathbb{R}^3$$
 seien die Punkte $A=\begin{pmatrix}2\\-1\\4\end{pmatrix}$ und $B=\begin{pmatrix}-4\\2\\1\end{pmatrix}$ gegeben.

(a) Ermitteln Sie eine Parameterdarstellung der Geraden g durch A und B.

(b) Zeigen Sie, dass $C = \begin{pmatrix} 9 \\ -1 \\ 2 \end{pmatrix}$ nicht auf g liegt. Berechnen Sie den Fußpunkt L des Lotes von C auf g. Liegt L zwischen A und B?

(c) Zeigen Sie, dass die Gerade g die Ebene E mit

$$\vec{x} = \begin{pmatrix} 7 \\ -6 \\ 7 \end{pmatrix} + s \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} + t \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}, \ s, t \in \mathbb{R},$$

orthogonal durchstößt und geben Sie die Koordinaten des Durchstoßpunktes an.

Aufgabe 6:

Bestimmen Sie jeweils $A \cap B$:

(a)
$$A = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix} + s \begin{pmatrix} 2\\3\\1 \end{pmatrix} + t \begin{pmatrix} 2\\-3\\1 \end{pmatrix} \middle| s, t \in \mathbb{R} \right\},$$

$$B = \left\{ \begin{pmatrix} 2\\-7\\4 \end{pmatrix} + s \begin{pmatrix} 3\\7\\-2 \end{pmatrix} \middle| s \in \mathbb{R} \right\}$$

(b)
$$A = \left\{ \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + s \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \middle| s, t \in \mathbb{R} \right\},$$

$$B = \left\{ \begin{pmatrix} 1 \\ 7 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \middle| s, t \in \mathbb{R} \right\}$$

Aufgabe 7:

Für Vektoren $\vec{a}=\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix}$ und $\vec{b}=\begin{pmatrix}b_1\\b_2\\b_3\end{pmatrix}$ ist das Kreuzprodukt bekanntlich durch

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

2

definiert. Zeigen Sie, dass $\vec{a} \times \vec{b}$ orthogonal zu \vec{a} und \vec{b} ist.