1.10)

$$f_1 = n^2$$

$$f_2 = n^2 + 1000n$$

$$f_3 = \begin{cases} n \text{ if } n \text{ is odd} \\ n^3 \text{ if } n \text{ is even} \end{cases}$$

$$f_4 = \begin{cases} n \text{ if } n \leq 100 \\ n^3 \text{ if } n > 100 \end{cases}$$

- a) f_1, f_2
 - a. f_2 will dominate f_1 since f_2 will always grow faster than f_1
- b) f_1, f_3
 - a. f_3 will dominate f_1 since the worst case is that n^3 will grow faster than n^2 when $\lim_{n\to\infty} \frac{f_1(n)}{f_3(n)}$
- c) f_1, f_4
 - a. f_4 will dominate f_1 since the worst case is that n^3 will grow faster than n^2 when $\lim_{n\to\infty}\frac{f_1(n)}{f_4(n)}$
- d) f_2, f_3
 - a. f_3 will dominate f_2 since the worst case is that n^3 will grow faster than $n^2+1000n$ when $\lim_{n\to\infty}\frac{f_2(n)}{f_3(n)}$
- e) f_2, f_4
 - a. f_3 will dominate f_4 since the worst case is that n^3 will grow faster than $n^2+1000n$ when $\lim_{n\to\infty}\frac{f_2(n)}{f_4(n)}$
- f) f_3, f_4
 - a. f_3 and f_4 will dominate each other since the worst case for both is $n^3 \lim_{n \to \infty} \frac{f_3(n)}{f_4(n)}$

1.12)