KNIME - DBSCAN Clustering Documentation

Introduction

This document provides insights into the role of KNIME in the hotel booking dataset analysis project, focusing on its application in performing DBSCAN clustering. KNIME served as a powerful tool for exploratory data analysis (Explore stage) within the SEMMA methodology.

Task Accomplished with KNIME

DBSCAN Clustering

- Objective:
 - Uncover hidden patterns and clusters within the dataset to derive valuable insights.
- Workflow:
 - Utilized KNIME to implement the DBSCAN clustering algorithm.
- Nodes Used:
 - DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 Node:
 - Configured the DBSCAN node to perform clustering based on density, allowing the identification of data points in dense regions.
 - Cluster Assigner Node:
 - Applied the Cluster Assigner node to assign each data point to a specific cluster.
- Configurations:
 - Adjusted parameters within the DBSCAN node to optimize clustering results.
- Results:
 - Identified and visualized clusters formed within the dataset based on cancellation patterns and other relevant factors.

KNIME Workflow

Task: DBSCAN Clustering

Node Configuration:

 Configured the DBSCAN clustering node in KNIME with appropriate settings.

Execution:

• Executed the DBSCAN clustering workflow to identify clusters within the hotel booking dataset.

Result Analysis:

 Analyzed the results, focusing on the formed clusters and their significance in understanding booking patterns.

Conclusion

KNIME played a crucial role in the exploration phase of the SEMMA methodology by enabling DBSCAN clustering. The utilization of KNIME, specifically the DBSCAN node and Cluster Assigner node, allowed for a comprehensive analysis of hidden patterns and clusters in the dataset, providing valuable insights for further exploration and modeling stages.