8. Internal Forced Convection

8.1. General Procedure

- 1. Find fluid properties from Appendix 1 at bulk mean temperature $T_b = (T_i + T_e)/2$
 - ρ , μ , k, c_p , Pr, ν
- 2. Determine mean velocity V_{avg}
- 3. Determine the type of flow (laminar or turbulent)
 - Laminar: Re < 2300
 - Turbulent: Re > 4000
- 4. Determine the Nusselt number, Nu, using the appropriate correlation
 - Check if $l_{h,\text{laminar}}$ and $l_{t,\text{laminar}}$ is less than L. If so, use Table 1
 - Else, use empirical correlations
- 5. Determine the heat transfer coefficient h using Nu, k, and A_s

8.2. Variable Definitions

- Nu: Nusselt number
- Re: Reynolds number
- Pr: Prandtl number
- μ : Dynamic viscosity
- ν : Kinematic viscosity
- k: Thermal conductivity
- h: Convection heat transfer coefficient
- D_h : Hydraulic diameter
- A_s : Surface area
- A_c : Cross-sectional area
- V_{avg} : Average velocity
- T_b : Bulk mean temperature
- T_i : Inlet temperature
- T_e : Exit temperature
- \dot{m} : Mass flow rate
- \dot{q} : Heat flux
- $\Delta T_{\rm lm}$: Log mean temperature difference

8.3. Formulas

8.3.1. General Formulas

$$\begin{split} \dot{m} &= \rho V_{\text{avg}} A_c \\ \text{Re} &= \frac{\rho V_{\text{avg}} D_h}{\mu} = \frac{V_{\text{avg}} D_h}{\nu} \\ D_h &= \frac{4A_c}{\text{Perimeter}} = D|_{\text{circular}} = a|_{\text{square}} \\ &= \frac{2ab}{a+b} \Big|_{\text{rectangular}} = \frac{4ab}{a+b} \Big|_{\text{channel}} \\ \text{Nu} &= \frac{hD_h}{k} \\ A_s &= \pi DL|_{\text{circular}} = 4ab|_{\text{rectangular}} \\ A_c &= \pi \frac{D^2}{4}|_{\text{circular}} = ab|_{\text{rectangular}} \\ l_{h,\text{laminar}} &= 0.05 \text{Re} D_h \\ l_{t,\text{laminar}} &= 0.05 \text{Re} \text{Pr} D_h = \text{Pr} l_{h,\text{laminar}} \\ l_{h,\text{turbulent}} &\approx l_{t,\text{turbulent}} = 10 D_h \end{split}$$

8.3.2. Constant \dot{q}

$$T_e = T_i + \frac{\dot{q}}{\dot{m}c_p}$$
$$\dot{q} = h(T_s - T_b)$$

8.3.3. Constant T_s

$$T_e = T_s - (T_s - T_i) \exp\left(-\frac{hA_s}{\dot{m}c_p}\right)$$

$$T_s = \frac{T_e - T_i \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}{1 - \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}$$

$$\dot{Q} = hA_s \Delta T_{lm}$$

$$T_{lm} = \frac{T_i - T_e}{\ln[(T_s - T_e)/(T_s - T_i)]}$$

8.3.4. Correlations for Nu

For fully developed laminar flow, use Table 1.

For entry region in a circular tube where $T_s = \text{constant}$,

(Edwards et al., 1979) Nu =
$$3.66 + \frac{0.0658(D/L)\text{RePr}}{1 + 0.04[(D/L)\text{RePr}]^{2/3}}$$

For entry region in a circular tube where the difference between T_s and T_b is large, use:

(Sieder and Tate, 1936) Nu =
$$1.86 \left(\frac{\text{RePr}D}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$

 $0.6 < \text{Pr} < 5, \quad 0.0044 < \frac{\mu_b}{\mu_s} < 9.75$

All properties for Sieder and Tate should be evaluated at T_b except μ_s which should be evaluated at T_s .

For entry region between two isothermal parallel plates,

use:

(Edwards et al., 1979) Nu = 7.54 +
$$\frac{0.03(D_h/L) {\rm RePr}}{1+0.016[(D_h/L) {\rm RePr}]^{2/3}}$$
 Re ≤ 2800

For turbulent flow in a circular tube, use:

(Dittus-Boelter, 1930) Nu =
$$0.023 \text{Re}^{0.8} \text{Pr}^n$$

 $n = 0.4$ (Heating), $n = 0.3$ (Cooling)

Tables

Table 1: Nusselt number and friction factor for fully developed laminar flow in tubes of various cross sections ($D_h = 4A_c/P$, $Re = V_{\text{avg}}D_h/\nu$, and $N\underline{\mathbf{u}} = hD_h/k$) (Table 8-1 in textbook)

		N		
Tube Geometry	a/b or θ°	$T_s = \text{constant}$	$\dot{q}_s = {\rm constant}$	f
		4.36	3.66	64/Re
Circle				
D				
	$\frac{a/b}{1}$			
Rectangle		2.98	3.61	$56.92/\mathrm{Re}$
	2	3.39	4.12	$62.20/\mathrm{Re}$
	3	3.96	4.79	$68.36/\mathrm{Re}$
$b\uparrow$	4	4.44	5.33	$72.92/\mathrm{Re}$
	6	5.14	6.05	$78.80/{ m Re}$
 ←-a →	8	5.60	6.49	$82.32/{ m Re}$
	∞	7.54	8.24	$96.00/\mathrm{Re}$
	a/b			
Ellipse	1	3.66	4.36	$64.00/{ m Re}$
	2	3.74	4.56	67.28/Re
	4	3.79	4.88	$72.96/\mathrm{Re}$
	8	3.72	5.09	$76.60/\mathrm{Re}$
$ \leftarrow a \rightarrow $	16	3.65	5.18	$78.16/\mathrm{Re}$
	$\underline{\theta^{\circ}}$			
Isosceles triangle	10	1.61	2.45	$50.80/\mathrm{Re}$
	30	2.26	2.91	$52.28/\mathrm{Re}$
	60	2.47	3.11	$53.32/\mathrm{Re}$
θ	90	2.34	2.98	$52.60/\mathrm{Re}$
	120	2.00	2.68	$50.96/\mathrm{Re}$

9. Natural Convection

9.1. General Procedure

9.1.1. Over Surfaces

- 1. Find Rayleigh number, Ra_L , using fluid properties at film temperature $T_f = (T_s + T_{\infty})/2$
- 2. Use the appropriate correlation in Table 3 to find the Nusselt number, Nu
- 3. Determine the heat transfer coefficient h using Nu, k, and L_c

9.1.2. In Enclosures

- 1. Find Rayleigh number, Ra_L, using fluid properties at average temperature $T_{\text{avg}} = (T_1 + T_2)/2$ where T_1 and T_2 are the temperatures of the hot and cold surfaces respectively.
- 2. Use the appropriate correlation to find the Nusselt number, Nu
- 3. Determine the heat transfer coefficient h using Nu, k, and L_c

9.2. Variable Definitions

- Ra_L : Rayleigh number
- Gr_L : Grashof number
- T_s : Surface temperature
- T_{∞} : Ambient temperature
- T_f : Film temperature
- L_c : Characteristic length
- β : Coefficient of volume expansion
- ν : Kinematic viscosity
- α : Thermal diffusivity
- g: Gravitational acceleration

9.3. Formulas

$$Ra_{L} = Gr_{L}Pr = \frac{g\beta(T_{s} - T_{\infty})L_{c}^{3}}{\nu^{2}}Pr$$

$$\beta = \frac{1}{T}, \text{ for ideal gases}$$

$$h = \frac{kNu}{L_{c}}$$

9.3.1. Over Surfaces

For convection

$$\dot{Q} = hA_s(T_s - T_\infty)$$

Use Table 3 to find Nu.

9.3.2. In Rectangular Enclosures

For convection in rectilinear enclosures,

$$\dot{Q} = hA_s(T_1 - T_2)$$

where T_1 and T_2 are the temperatures of the hot and cold surfaces respectively.

In horizontal rectangular enclosures ($L_c = L$, where L is the gap between plates),

$$Nu = 1 + 1.44 \left[1 - \left(\frac{1708}{Ra_L} \right) \right]^+ + \left[\frac{Ra_L}{18} - 1 \right]^+$$

$$Ra_L < 10^8 \text{ (gases)}, \quad Ra_L < 10^5 \text{ (liquids)}$$

For large aspect ratios $(H/L \ge 12)$, this equation (Hollands et al., 1976) correlates experimental data extremely well for tilt angles up to 70° . []⁺ indicates that if the quantity in the bracket is negative, it should be set equal to zero

$$Nu_{L} = 1 + 1.44 \left[1 - \left(\frac{1708}{Ra_{L}\cos\theta} \right) \right]^{+} + \left[\frac{Ra_{L}\cos\theta}{18} - 1 \right]^{+}$$

$$Ra_{L} < 10^{8} \text{ (gases)}, \quad Ra_{L} < 10^{5} \text{ (liquids)},$$

$$0 < \theta < 70^{\circ}, \quad \frac{H}{L} \ge 12$$

In vertical rectangular enclosures ($L_c = L$, where L is the gap between plates),

$$Nu_L = 0.18 \left(\frac{Pr}{0.2 + Pr} Ra_L \right)^{0.29}$$

 $\frac{Pr}{0.2 + Pr} > 10^3, \ 1 < \frac{H}{L} < 2$

or

$$\mathrm{Nu}_{L} = 0.22 \left(\frac{\mathrm{Pr}}{0.2 + \mathrm{Pr}} \mathrm{Ra}_{L} \right)^{0.28} \left(\frac{H}{L} \right)^{-0.25}$$
$$\mathrm{Ra}_{L} < 10^{10}, \ 2 < \frac{H}{L} < 10$$

or

$$\begin{aligned} \mathrm{Nu}_L &= 0.42 \left(\frac{\mathrm{Pr}}{0.2 + \mathrm{Pr}} \mathrm{Ra}_L \right)^{0.25} \mathrm{Pr}^{0.012} \left(\frac{H}{L} \right)^{-0.3} \\ 1 &< \mathrm{Pr} < 2 \times 10^4, \ 10^4 < \mathrm{Ra}_L < 10^7, \ 10 < \frac{H}{L} < 40 \end{aligned}$$

9.3.3. In Concentric Horizontal Cylinders

In concentric horizontal cylinders $(L_c = (D_o - D_i)/2$, where D_o and D_i are the outer and inner diameters respectively),

$$\dot{Q}_{\text{cylinder}} = \frac{2\pi k \text{Nu}}{\ln(D_o/D_i)} (T_i - T_o)$$

where T_i and T_o are the temperatures of the inner and outer surfaces respectively.

$$Nu = \max \left\{ 1, \ 0.386 \left(\frac{Pr}{0.861 + Pr} \right)^{0.25} (F_{cyl}Ra_L)^{0.25} \right\}$$

9.3.4. Combined Natural and Forced Convection

For combined natural and forced convection,

$$\mathrm{Nu_{Overall}} = \left(\mathrm{Nu}_{\mathrm{Forced}}^{n} \pm \mathrm{Nu}_{\mathrm{Natural}}^{n}\right)^{1/n}$$

where the plus sign is for assisting flows and the minus sign is for opposing flows. n=3.5 for horizontal plates and n=4 for cylinders and spheres. Else use n=3.

Tables

Table 2: Empirical correlations for the average Nusselt number for natural convection over surfaces (Table 9-1 in textbook)

TABLE 9–1Empirical correlations for the average Nusselt number for natural convection over surfaces

Geometry	Characteristic length L _c	Range of Ra	Nu	
Vertical plate L L Ts	L	10 ⁴ –10 ⁹ 10 ¹⁰ –10 ¹³ Entire range	$\begin{aligned} &\text{Nu} = 0.59 \text{Ra}_L^{1/4} \\ &\text{Nu} = 0.1 \text{Ra}_L^{1/3} \\ &\text{Nu} = \left\{ 0.825 + \frac{0.387 \text{Ra}_L^{1/6}}{[1 + (0.492/\text{Pr})^{9/16}]^{8/27}} \right\}^2 \\ &\text{(complex but more accurate)} \end{aligned}$	(9–19) (9–20) (9–21)
Inclined plate	L		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate $ \text{Replace } g \text{ by } g \cos \theta \text{for} 0 < \theta < 60^\circ $	
Horizontal plate (Surface area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface Ts (b) Lower surface of a hot plate (or upper surface of a cold plate) Hot surface	A _s /p	10 ⁴ -10 ⁷ 10 ⁷ -10 ¹¹	$\begin{aligned} & \text{Nu} = 0.59 \text{Ra}_L^{1/4} \\ & \text{Nu} = 0.1 \text{Ra}_L^{1/3} \end{aligned}$ $& \text{Nu} = 0.27 \text{Ra}_L^{1/4}$	(9-22) (9-23)
Vertical cylinder L L	L		A vertical cylinder can be treated as a vertical plate when $D \geq \frac{35L}{\mathrm{Gr_L^{l,4}}}$	
Horizontal cylinder	D	$Ra_D \le 10^{12}$	$Nu = \left\{0.6 + \frac{0.387Ra_D^{1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}}\right\}^2$	(9–25)
Sphere	D	$Ra_D \le 10^{11}$ (Pr ≥ 0.7)	$Nu = 2 + \frac{0.589 Ra_D^{1/4}}{[1 + (0.469/Pr)^{9/16}]^{4/9}}$	(9–26)

12. Thermal Radiation Fundamentals

9.1. General Procedure

Most questions will ask for irradiation given some geometry and temperatures.

- 1. Determine absorptivity α , reflectivity ρ , and transmissivity τ using the geometry and material properties. Note that if two of these are known, the third can be found using $\alpha + \rho + \tau = 1$.
- 2. Use solid angle ω , irradiation G, and intensity I to find whatever is asked for

9.2. Variable Definitions

- ω : Solid angle
- G: Irradiation
- *I*: Intensity
- J: Radiosity
- \dot{Q} : Heat transfer rate
- α : Absorptivity
- ρ : Reflectivity
- τ : Transmissivity
- ϵ : Emissivity
- σ : Stefan-Boltzmann constant

9.3. Formulas

For $A \ll r^2$ (small area, far away from surface),

$$\omega_{2-1} := \frac{A_2 \cos \theta_2}{r^2}$$

$$J_1 := \pi I_{1,e+r} = \pi (E_b + G_{ref}) = \pi (\epsilon \sigma T_1^4 + \rho G_1)$$

$$\dot{Q}_{1-2} := I_1 (A_1 \cos \theta_1) \omega_{2-1}$$

$$G_2 := \frac{\dot{Q}_{1-2}}{A_2}$$

Combining the above equations into G_2 ,

$$G_2 = \frac{(\epsilon \sigma T_1^4 + \rho G_1) A_1 \cos \theta_1 \cos \theta_2}{\pi r^2}$$
 Since $\theta_1 = \theta_2 = \rho = 0$ and $\epsilon = 1$ for a blackbody,

$$G_2 = \frac{\sigma T_1^4 A_1}{\pi r^2}$$

$$\implies T_1 = \left(\frac{G_2 \pi r^2}{\sigma A_1}\right)^{1/4}$$

Tables

Table 3: Empirical correlations for the average Nusselt number for natural convection over surfaces (Table 9-1 in textbook)

TABLE 9–1 Empirical correlations for the average Nusselt number for natural convection over surfaces

Geometry	Characteristic length L_c	Range of Ra	Nu	
Vertical plate T_s	L	10 ⁴ –10 ⁹ 10 ¹⁰ –10 ¹³ Entire range	$\begin{aligned} &\text{Nu} = 0.59 \text{Ra}_L^{1/4} \\ &\text{Nu} = 0.1 \text{Ra}_L^{1/3} \\ &\text{Nu} = \left\{ 0.825 + \frac{0.387 \text{Ra}_L^{1/6}}{[1 + (0.492/\text{Pr})^{9/16}]^{827}} \right\}^2 \\ &\text{(complex but more accurate)} \end{aligned}$	(9–19) (9–20) (9–21)
Inclined plate	L		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate $ \text{Replace } g \text{ by } g \cos \theta \text{for} 0 < \theta < 60^\circ $	
Horizontal plate (Surface area A and perimeter p) (a) Upper surface of a hot plate (or lower surface of a cold plate) Hot surface Ts (b) Lower surface of a hot plate (or upper surface of a cold plate)	A _s /p	10 ⁴ -10 ⁷ 10 ⁷ -10 ¹¹	$\begin{aligned} & \text{Nu} = 0.59 \text{Ra}_L^{1/4} \\ & \text{Nu} = 0.1 \text{Ra}_L^{1/3} \end{aligned}$ $& \text{Nu} = 0.27 \text{Ra}_L^{1/4}$	(9-22) (9-23)
Hot surface Vertical cylinder L L L	L		A vertical cylinder can be treated as a vertical plate when $D \geq \frac{35L}{\mathrm{Gr}_L^{18}}$	
Horizontal cylinder T_s	D	$Ra_D \le 10^{12}$	$Nu = \left\{0.6 + \frac{0.387 Ra_D^{1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}}\right\}^2$	(9–25)
Sphere	D	$Ra_D \le 10^{11}$ (Pr ≥ 0.7)	$Nu = 2 + \frac{0.589 Ra_D^{1/4}}{[1 + (0.469/Pr)^{9/16}]^{4/9}}$	(9–26)