

Int'l Appl. No. : PCT/JP2005/004574
Int'l Filing Date : March 15, 2005

AMENDMENTS TO THE SPECIFICATION

Please insert the following paragraph before the first line of page 1.

This application is the U.S. National Phase under 35 U.S.C. §371 of International Application PCT/JP2005/004574, filed March 15, 2005, which claims priority to Japanese Patent Application No. 2004-099184, filed March 30, 2004, Japanese Patent Application No. 2004-100698, filed March 30, 2004, Japanese Patent Application No. 2004-197730, filed July 5, 2004. The International Application was not published under PCT Article 21(2) in English.

Please amend the specification as follows. Insertions are shown underlined while deletions are ~~struck through~~.

Paragraph [0015] on page 5:

[Patent Literature 1] Specification of Japanese Patent No. 2903256

[Patent Literature 2] Specification of Japanese Patent No. 2591685

[Patent Literature 3] Specification of Japanese Patent No. 2591685

[Patent Literature-4_3] Specification of Japanese Patent No. 1755152

[Patent Literature-5_4] Specification of Japanese Patent No. 3306860

[Patent Literature-6_5] Specification of Japanese Patent No. 2889159

[Patent Literature-7_6] Specification of Japanese Patent No. 2960002

[Patent Literature-8_7] Japanese Patent Laid-open No. 2002-201590

[Patent Literature-9_8] Japanese Patent Laid-open No. 2002-201592

[Patent Literature-10_9] Japanese Patent Laid-open No. 2002-38395

Paragraph [0053] on page 19:

The methods of producing precipitated calcium carbonate-silica composites added as fillers in the examples of low-density printing paper and neutral newsprinting paper are explained below.
(Precipitated calcium carbonate-silica composite A)

First, 262 g of commercially available rosette precipitated calcium carbonate (trade name:

Albacar 5970 manufactured by ~~Speeiaty-Specialty~~ Minerals, Inc.) was introduced to a reaction container (12 L) and dispersed in water, and then a sodium silicate solution with a SiO₂

concentration of 18.0 wt/wt% and Na₂O concentration of 6.1 wt/wt% was added by 3,400 g, after which water was added to adjust the total volume to 12 L.

Paragraph [0054] on page 20:

(Precipitated calcium carbonate-silica composite B)

Composite B was produced in the same manner as described in (1) the above, except that 612 g of commercially available rosette precipitated calcium carbonate was used. The average particle size and oil absorbency of this 50/50 precipitated calcium carbonate/silica composite were 4.4 μm and 160 ml per 100 g, respectively.

Paragraph [0055] on page 20:

(Precipitated calcium carbonate-silica composite C)

Composite C was produced in the same manner as described in (1) the above, except that 1,436 g of commercially available rosette precipitated calcium carbonate was used. The average particle size and oil absorbency of this 70/30 precipitated calcium carbonate/silica composite were 3.6 μm and 140 ml per 100 g, respectively.

Paragraph [0059] on page 21:

[Comparative Example 1]

A sheet sample for printing paper was created in the same manner as described in Example 1, except that commercially available rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by Specialty Minerals, Inc.) was used directly as a filler, without being compounded with any other substance. The measured results of brightness, opacity, breaking length and bulk ratio at a filler content in paper of 7% are shown in Table 1.

Paragraph [0061] on page 22:

[Comparative Example 3]

A sheet sample for printing paper was created in the same manner as described in Example 1, except that commercially available white carbon (trade name: TIXOLEX17 manufactured by Rhodia Rhodia Silica Korea Co., Ltd.) was used directly as a filler, without being compounded

with any other substance. The measured results of brightness, opacity, breaking length and bulk ratio at a filler content in paper of 7% are shown in Table 1.

Paragraph [0062] on page 22:

[Comparative Example 4]

A sheet sample for printing paper was created in the same manner as described in Example 1, except that a 50:50 mixture of commercially available white carbon (trade name: TIXOLEX17 manufactured by Rhodia-Rhodia Silica Korea Co., Ltd.) and commercially available rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by Specialty-Specialty Minerals, Inc.) was used directly as a filler, without being compounded with any other substance. The measured results of brightness, opacity, breaking length and bulk ratio at a filler content in paper of 7% are shown in Table 1. The average particle size and oil absorbency of the 50/50 TIXOLEX17/Albacar filler mixture were 3.8 μm and 137 ml per 100 g, respectively.

Paragraph [0069] on page 24:

[Example 7]

A neutral newsprinting paper was created in the same manner as described in Example 4, except that precipitated calcium carbonate-silica composite B was added to a filler content in paper of 1%, and commercially available rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by Specialty-Specialty Minerals, Inc.) was added to a filler content in paper of 7%, respectively, as fillers. The brightness, opacity and strike-through level of the obtained paper are shown in Table 2.

Paragraph [0070] on page 24:

[Comparative Example 6]

A neutral newsprinting paper with a filler content in paper of 7% was created in the same manner as described in Example 4, except that commercially available rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by Specialty-Specialty Minerals, Inc.) was used directly as a filler, without being compounded with any other substance. The brightness, opacity and strike-through level of the obtained paper are shown in Table 2.

Paragraph [0073] on page 25:

[Comparative Example 9]

A neutral newsprinting paper was created in a manner containing commercially available rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by ~~Specialty~~ Specialty Minerals, Inc.) to a filler content in paper of 3.5%, and commercially available white carbon (trade name: TIXOLEX17 manufactured by ~~Rhodia~~ Rhodia Silica Korea Co., Ltd.) to a filler content in paper of 3.5%. The brightness, opacity and strike-through level of the obtained paper are shown in Table 2.

Paragraph [0074] on page 25:

[Comparative Example 10]

A neutral newsprinting paper was created in a manner containing commercially available rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by ~~Specialty~~ Specialty Minerals, Inc.) to a filler content in paper of 4.9%, and commercially available white carbon (trade name: TIXOLEX17 manufactured by ~~Rhodia~~ Rhodia Silica Korea Co., Ltd.) to a filler content in paper of 2.1%. The brightness, opacity and strike-through level of the obtained paper are shown in Table 2.

Paragraph [0075] on page 25:

[Comparative Example 11]

A neutral newsprinting paper was created in a manner containing commercially available rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by ~~Specialty~~ Specialty Minerals, Inc.) to a filler content in paper of 7.0%, and commercially available white carbon (trade name: TIXOLEX17 manufactured by ~~Rhodia~~ Rhodia Silica Korea Co., Ltd.) to a filler content in paper of 1.0%. The brightness, opacity and strike-through level of the obtained paper are shown in Table 2.

Paragraph [0076] on page 26:

[Comparative Example 12]

A neutral newsprinting paper was created in a manner containing commercially available white carbon (trade name: TIXOLEX17 manufactured by ~~Rhodia~~ Rhodia Silica Korea Co., Ltd.) to a

Int'l Appl. No. : PCT/JP2005/004574
Int'l Filing Date : March 15, 2005

filler content in paper of 2.0%. The brightness, opacity and strike-through level of the obtained paper are shown in Table 2.

Paragraph [0085] on page 30:

[Comparative Example 17]

An electrophotographic transfer paper was created in the same manner as described in Example 8, except that commercially available white carbon (trade name: TIXOLEX17 manufactured by KOFRAN Rhodia Silica Korea) was used as a filler.

[Comparative Example 18]

An electrophotographic transfer paper was created in the same manner as described in Example 9, except that a 50:50 mixture of commercially available white carbon (trade name: TIXOLEX17 manufactured by KOFRAN Rhodia Silica Korea) and rosette precipitated calcium carbonate (trade name: Albacar 5970 manufactured by SMI) was used as a filler.