1. Das Statistische Landesamt Baden-Württemberg veröffentlichte die Zahlen für die Übergänge aus Klassenstufe 4 an den Grundschulen in Baden-Württemberg zum Schuljahr 2008/09 nach Nationalität unterschieden. Die angegebenen Zahlen habe ich auf Hunderter gerundet.

	Hauptschulen	Realschu- len	Gymnasien	Sonstige	Σ
Deutsche	20200	33300	40500	800	94800
Ausländer	7300	3800	2800	200	14100
\sum	27500	37100	43300	1000	108900

Bestimmen Sie die bedingten Verteilungen für die Zeilen.

	Hauptschulen	Realschulen	Gymnasien	Sonstige	Σ
Deutsche	20200/94800 = 0.213	33300/94800 = 0,351	40500/94800 = 0.427	800/94800 = 0,008	1
Ausländer	7300/14100 = 0,518	3800/14100 = 0,270	2800/14100 = 0,199	200/14100 = 0,014	1
Σ	27500/108900 = 0,253	37100/108900 = 0,341	43300/108900 = 0,398	1000/108900 = 0,009	1

Die beiden Werte pro Spalte unterscheiden sich sehr deutlich. Unabhängigkeit ist nicht gegeben.

Bestimmen Sie die bedingten Verteilungen für die Spalten.

	Hauptschulen	Realschulen	Gymnasien	Sonstige	Σ
Deutsche	20200/27500	33300/37100	40500/43300	800/1000	94800/108900
	=0,735	=0,898	= 0.935	=0,800	= 0,871
Augländen	7300/27500	3800/37100	2800/43300	200/1000	14100/108900
Ausländer	=0,265	=0,102	= 0.065	=0,200	= 0,129
\sum	1	1	1	1	1

Die vier Werte pro Zeile unterscheiden sich ebenfalls sehr deutlich. Unabhängigkeit ist nicht gegeben.

Vervollständigen Sie die Tabelle so, dass die beiden Variablen Schulart und Herkunft unabhängig sind.

	Hauptschulen	Realschu- len	Gymnasien	Sonstige	Σ
Deutsche	23939	32296	37694	871	94800
Ausländer	3561	4804	5606	129	14100
\sum	27500	37100	43300	1000	108900

Zur Übung wird jetzt die Unabhängigkeit explizit nachgerechnet:

Bedingte Verteilungen für die Zeilen:

	Hauptschulen	Realschulen	Gymnasien	Sonstige	Σ	
Deutsche	23939/94800	32296/94800	37694/94800	871/94800	1	
Deutsche	= 0,253	= 0,341	=0,398	= 0,009	1	
Ausländer	3561/14100	4804/14100	5606/14100	129/14100	1	
Austander	= 0,253	= 0,341	=0,398	= 0,009	1	
~	27500/108900	37100/108900	43300/108900	1000/108900	1	
	= 0,253	= 0,341	=0,398	= 0,009	1	

Heinz Göbel 25.09.2022 Seite 1 von 7

Und für die bedingten Verteilungen für die Spalten:

	Hauptschulen	Realschulen	Gymnasien	Sonstige	Σ
Daytacha	23939/27500	32296/37100	37694/43300	871/1000	94800/108900
Deutsche	= 0.871	= 0.871	= 0.871	= 0.871	= 0.871
Augländen	3561/27500	4804/37100	5606/43300	129/1000	14100/108900
Ausländer	=0,129	=0,129	=0,129	=0,129	= 0,129
\sum	1	1	1	1	1

Bestimmen Sie entsprechend der Tabelle im Skript Seite 4 den $\chi^2-Koeffizienten \ und \ den \ korrigierten \ Kontingenzkoeffizienten \ C^* \ .$

h _{ij}	h ^e _{ij}
$(h_{ij} - h_{ij}^e)^2$	$\frac{\left(h_{ij} - h_{ij}^e\right)^2}{h_{ij}^e}$

	Hauptschulen		Realschulen		Gymnasien		Sonstige		Σ
Dautacha	20200	23939	33300	32296	40500	37694	800	871	94800
Deutsche	13980121	584	1008016	31	7873636	209	5041	6	94600
Augländen	7300	3561	3800	4804	2800	5606	200	129	14100
Ausländer	13980121	3926	1008016	210	7873636	1405	5041	39	14100
\sum	27500		37100		43300		1000		108900

$$\chi^2 = (584 + 31 + 209 + 6) + (3926 + 210 + 1405 + 39) = 6410$$
.

Der Kontingenzkoeffizient wird
$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}} = \sqrt{\frac{6410}{6410 + 108900}} \approx 0,236$$
 und der korrigierte C-Koeffizient

$$C^* = \sqrt{\frac{M}{M-1} \cdot \frac{\chi^2}{\chi^2 + n}} = \sqrt{\frac{2}{1} \cdot \frac{6410}{6410 + 108900}} \approx 0,333 \text{ ist deutlich größer als Null, was die Abhängigkeit der beiden Variablen beweist.}$$

2. Es wurden n = 100 Teile bezüglich der Eigenschaften x und y untersucht, siehe Tabelle.

	>	⁴ 1	Х	⁵ 2		х ₃	
**	1	2	6	6	13	12	20
y_1	1	1/2	0	0	1	1/12	20
**	5	3	10	9	15	18	20
У2	4	4/3	1	1/9	9	1/2	30
**	4	5	14	15	32	30	50
У3	1	1/5	1	1/15	4	2/15	50
	1	0	30			60	n = 100

Wieviel Prozent aller Teile haben die Eigenschaft y₂? 30%

Wieviel Prozent aller Teile haben die Eigenschaften x₃ und y₂? 15%

Wieviel Prozent der Teile mit der Eigenschaft y_3 haben die Eigenschaft x_2 ? 28%

Wieviel Prozent der Teile mit der Eigenschaft x₁ haben die Eigenschaft y₃? 40%

$$\chi^2 = (1/2 + 0 + 1/12) + (4/3 + 1/9 + 1/2) + (1/5 + 1/15 + 2/15) = 7/12 + 35/18 + 2/5 = 527/180.$$

$$C^* = \sqrt{\frac{M}{M-1} \cdot \frac{\chi^2}{\chi^2 + n}} = \sqrt{\frac{3}{2} \cdot \frac{527/180}{527/180 + 100}} = \sqrt{\frac{1581}{37054}} \approx 0,207 \text{ , d.h. leichte Abhängigkeit der beiden Eigenschaften.}$$

3. Bestimmen Sie die Regressionsgerade $y = a + b \cdot x$ durch die vier gegebenen Punkte. Bestimmen Sie den Korrelationskoeffizienten r.

Es ist
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \frac{1}{4}(-16 + 0 - 1 - 21) = -\frac{19}{2}$$

$$\overline{x} = \frac{1}{4} \cdot 2 = \frac{1}{2}, \quad \overline{y} = \frac{1}{4} \cdot 2 = \frac{1}{2}, \quad \overline{x^2} = \frac{1}{4} \cdot (4 + 0 + 1 + 9) = \frac{7}{2}, \quad \overline{y^2} = \frac{1}{4} \cdot (64 + 4 + 1 + 49) = \frac{59}{2}.$$
 Damit folgt

$$b = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{-\frac{19}{2} - \frac{1}{2} \cdot \frac{1}{2}}{\frac{7}{2} - \frac{1}{4}} = \frac{-\frac{39}{4}}{\frac{13}{4}} = -3 \quad \text{und} \quad a = \overline{y} - b \cdot \overline{x} = \frac{1}{2} - (-3) \cdot \frac{1}{2} = 2.$$

Folglich lautet die Gleichung der Regressionsgerade y = 2-3x.

$$\text{Korrelationskoeffizient} \quad r = \frac{s_{XY}}{s_X \cdot s_Y} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2} \cdot \sqrt{\overline{y^2} - \overline{y}^2}} = \frac{-\frac{19}{2} - \frac{1}{2} \cdot \frac{1}{2}}{\sqrt{\frac{7}{2} - \frac{1}{4}} \cdot \sqrt{\frac{59}{2} - \frac{1}{4}}} = \frac{-\frac{39}{4}}{\sqrt{\frac{13}{4} \cdot \frac{117}{4}}} = \frac{-\frac{39}{4}}{\frac{39}{4}} = -1 \,.$$

Die vier Punkte liegen sogar exakt auf der absteigenden Geraden y = 2-3x.

4. Die drei Punkte (1/4), (2/4), (3/4) liegen auf der horizontalen Geraden y = 4. Bestimmen Sie zur Probe die Gleichung $y = a + b \cdot x$ der Regressionsgeraden und den Korrelationskoeffizienten r.

$$\overline{x \cdot y} = \frac{1}{3} \cdot (4 + 8 + 12) = 8, \quad \overline{x} = \frac{1}{3} \cdot (1 + 2 + 3) = 2, \quad \overline{y} = \frac{1}{3} \cdot (4 + 4 + 4) = 4, \quad sdff \quad \overline{x^2} = \frac{1}{3} \cdot (1 + 4 + 9) = \frac{14}{3}.$$

$$\overline{y^2} = \frac{1}{3} \cdot (16 + 16 + 16) = 16. \text{ Folglich} \quad b = \frac{s_{XY}}{s_X^2} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{8 - 2 \cdot 4}{\frac{14}{3} - 4} = 0, \quad a = \overline{y} - b \cdot \overline{x} = 4 - 0 \cdot 2 = 4.$$

Daraus folgt die Regressionsgerade zu y = 4 und der Korrelationskoeffizient r zu

$$r = \frac{s_{xy}}{s_x \cdot s_y} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2}} \cdot \sqrt{\overline{y^2} - \overline{y}^2} = \frac{8 - 2 \cdot 4}{\sqrt{\frac{2}{3}} \cdot \sqrt{16 - 16}} = \frac{0}{0} \text{ und nicht definiert.}$$

5. Die drei Punkte (1/4), (2/4), (3/4) liegen auf der horizontalen Geraden y=4. Bestimmen Sie zur Probe die Gleichung $y=a+b\cdot x$ der Regressionsgeraden und den Korrelationskoeffizienten r.

i	x _i	y _i	x_i^2	y_i^2	$x_i \cdot y_i$	$x_i - x$	$\left(x_i - \overline{x}\right)^2$	$(x_i - \overline{x}) \cdot (y_i - \overline{y})$
1	-1	0	1	0	0	-1	1	$\frac{1}{3}\sqrt{3}$
2	1	0	1	0	0	1	1	$-\frac{1}{3}\sqrt{3}$
3	0	√3	0	3	0	0	0	0
\sum_{i}	0	$\sqrt{3}$	2	3	0	0	2	0

den drei Punkten

Es gilt
$$\bar{x} = \frac{1}{3}(-1+1+0) = 0$$
, $\bar{y} = \frac{1}{3} \cdot (0+0+\sqrt{3}) = \frac{1}{3}\sqrt{3}$, $\sum_{i=1}^{3} x_i \cdot y_i = (-1) \cdot 0 + 1 \cdot 0 + 0 \cdot \sqrt{3} = 0$, also $s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i - \bar{x} \cdot \bar{y} = 0$. Außerdem $\sum_{i=1}^{3} x_i^2 = (-1)^2 + 0^2 + 1^2 = 2$, so dass $s_X^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \bar{x}^2 - \bar{x}^2 = \frac{2}{3} - 0 = \frac{2}{3}$ wird. Es folgt $b = \frac{s_{XY}}{s_X^2} = 0$ und $a = \bar{y} - b \cdot \bar{x} = \frac{1}{3}\sqrt{3}$, so dass die Regressionsgerade $y = \frac{1}{3}\sqrt{3}$ lautet. Wegen $s_Y^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 = \bar{y}^2 - \bar{y}^2 = \frac{1}{3} \cdot (0^2 + 0^2 + \sqrt{3}^2) - \left(\frac{1}{3}\sqrt{3}\right)^2 = \frac{2}{3}$ folgt der Korrelationskoeffizient zu $r = \frac{s_{XY}}{s_X \cdot s_Y} = \frac{0}{\sqrt{2/3} \cdot \sqrt{2/3}} = 0$ wird. Und damit besteht erwartungsgemäß keine Korrelation zwischen

6. Die Tabelle gibt die Bruttostromerzeugung in Baden-Württemberg in Milliarden kWh für die angegebenen Jahre an.

Jahr x _i	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Strom V:	68,2	69,1	67,8	68,7	69,8	70,2	70,0	71,9	73,2	72,4

Excel liefert die Gleichung $y = 0,5533 \cdot x - 1037,9$ und das Bestimmtheitsmaß $R^2 = 0,8392$.

Bestimmen Sie die Gleichung der Regressionsgeraden. Erstellen Sie dazu eine Tabelle wie im Skript Seite 5.

i	Jahr x _i	Strom y _i	x_i^2	y_i^2	$x_i \cdot y_i$	$x_i - x$	$\left(x_i - \overline{x}\right)^2$	$(x_i - \overline{x}) \cdot (y_i - \overline{y})$
1	1998	68,2	3992004	4651,24	136263,6	-4,5	20,25	8,685
2	1999	69,1	3996001	4774,81	138130,9	-3,5	12,25	3,605
3	2000	67,8	4000000	4596,84	135600,0	-2,5	6,25	5,825
4	2001	68,7	4004001	4719,69	137468,7	-1,5	2,25	2,145
5	2002	69,8	4008004	4872,04	139739,6	-0,5	0,25	0,165
6	2003	70,2	4012009	4928,04	140610,6	0,5	0,25	0,035
7	2004	70,0	4016016	4900,00	140280,0	1,5	2,25	-0,195
8	2005	71,9	4020025	5169,61	144159,5	2,5	6,25	4,425
9	2006	73,2	4024036	5358,24	146839,2	3,5	12,25	10,745
10	2007	72,4	4028049	5241,76	145306,8	4,5	20,25	10,215
\sum	20025	701,3	40100145	49212,27	1404398,9	0	82,5	45,65

Heinz Göbel 25.09.2022 Seite 4 von 7

Es ist $\bar{x} = 20025/10 = 2002,5$ und $\bar{y} = 701,3/10 = 70,13$.

$$s_{XY} = \frac{1}{n} \cdot \sum_{i=1}^{10} x_i \cdot y_i - \overline{x} \cdot \overline{y} = \frac{1}{10} \cdot 1404398, 9 - 2002, 5 \cdot 70, 13 = 4,565 \ .$$

$$s_X^2 = \frac{1}{10} \cdot \sum_{i=1}^{10} x_i^2 - \overline{x}^2 = \frac{1}{10} \cdot 40100145 - 2002, 5^2 = 8,25$$
.

Und damit
$$b = \frac{s_{XY}}{s_X^2} = \frac{4,565}{8,25} = \frac{83}{150} \approx 0,5533$$
 und $a = y - b \cdot x = 70,13 - \frac{83}{150} \cdot 2002,5 = -1037,92$.

Und damit lautet die Geradengleichung $y = \frac{83}{150} \cdot x - 1037,92$.

Bestimmen Sie den Korrelationskoeffizienten r

Wegen
$$s_Y^2 = \frac{1}{10} \cdot \sum_{i=1}^{10} y_i^2 - y^2 = \frac{1}{10} \cdot 49212, 27 - 70, 13^2 = 3,0101$$
 folgt der Korrelationskoeffizient zu $r = \frac{s_{XY}}{s_X \cdot s_Y} = \frac{4,565}{\sqrt{8,25 \cdot 3,0101}} = 0,9161$ bzw. $r^2 = 0,8392$, was Excel angibt.

Da r in der Nähe von 1 liegt, besteht ein guter ansteigender linearer Zusammenhang zwischen der Stromerzeugung und der Jahreszahl.

Mit welcher Stromerzeugung ist im Jahre 2010 zu rechnen?

$$y = \frac{83}{150} \cdot 2010 - 1037, 92 = 74,28$$
 Milliarden kWh.

In welchem Jahr müsste die Stromerzeugung bei 75,0 Milliarden kWh liegen?

Aus
$$\frac{83}{150} \cdot x - 1037,92 = 75$$
 ergibt sich $x = 2011,3$.

7. Bei einer Schulklasse wurde der Zusammenhang zwischen dem täglichen Fernsehkonsum X in Minuten und dem Körpergewicht Y in kg untersucht. Es ergab sich $s_{\rm X}^2=1369$, $s_{\rm Y}^2=36$ und $s_{\rm XY}=180$. Was lässt sich über den Grad der linearen Abhängigkeit von X und Y aussagen?

Der Korrelationskoeffizient beträgt $r = \frac{s_{XY}}{s_X \cdot s_Y} = \frac{180}{\sqrt{1396 \cdot 36}} = \frac{180}{37 \cdot 6} \approx 0,81$, d.h. ein recht deutlicher linearer ansteigender Zusammenhang zwischen X und Y.

8. Es werden n Datenpunkte $P_i(x_i,y_i)$, $x_i>0$, $n\in\mathbb{N}$, erhoben. Sie sollten einer Gleichung der Form $y=a\cdot \ln x$, $a\in\mathbb{R}$, genügen. Bestimmen Sie mit Hilfe der Methode der kleinsten Quadrate diejenige Formel, mit der sich die Konstante a bestimmen lässt.

Durch geeignete Wahl von a muss die Summe $\sum_{i=1}^{n} (y_i - a \cdot \ln x_i)^2$ minimal werden.

Aus
$$\frac{d}{da} \sum_{i=1}^{n} (y_i - a \cdot \ln x_i)^2 = \sum_{i=1}^{n} 2 \cdot (y_i - a \cdot \ln x_i) \cdot (-\ln x_i) = 0$$
 folgt

$$\sum_{i=1}^{n} (y_i - a \cdot \ln x_i) \cdot (-\ln x_i) = -\sum_{i=1}^{n} (y_i \cdot \ln x_i) + a \cdot \sum_{i=1}^{n} (\ln x_i)^2 = 0, \text{ so dass } a = \frac{\sum_{i=1}^{n} (y_i \cdot \ln x_i)}{\sum_{i=1}^{n} (\ln x_i)^2}.$$

 $Wegen \quad \frac{d^2}{d\,a^2} \sum_{i=1}^n \left(y_i - a \cdot \ln x_i\right)^2 = \frac{d}{da} \sum_{i=1}^n 2 \cdot \left(y_i - a \cdot \ln x_i\right) \cdot \left(-\ln x_i\right) = \sum_{i=1}^n 2 \cdot \left(-\ln x_i\right)^2 > 0 \quad liegt \ wirklich \ ein \ Minimum \ vor.$

9. Es sind die vier Datenpunkte gegeben:

X	-4	-1	5	8
у	-1/2	-1	1	1/2

Sie sollen einer Gleichung der Form $y=\frac{a}{b+x}$ mit $a,b\in\mathbb{R}$ genügen. Bestimmen Sie mit Hilfe der Methode der kleinsten Quadrate die Konstanten a und b.

Direkter Weg: Durch geeignete Wahl von a und b muss die Summe $\sum_{i=1}^{n} \left(y_i - \frac{a}{b+x_i} \right)^2$ minimal werden.

$$\frac{\partial}{\partial a} \sum_{i=1}^{n} \! \left(y_i - \frac{a}{b+x_i} \right)^2 = -2 \sum_{i=1}^{n} \! \left(y_i - \frac{a}{b+x_i} \right) \cdot \frac{1}{b+x_i} = 0 \; , \; d.h. \quad \sum_{i=1}^{n} \frac{y_i}{b+x_i} = a \sum_{i=1}^{n} \frac{1}{\left(b+x_i\right)^2} \; .$$

$$\frac{\partial}{\partial b} \sum_{i=1}^{n} \left(y_i - \frac{a}{b + x_i} \right)^2 = 2a \sum_{i=1}^{n} \left(y_i - \frac{a}{b + x_i} \right) \cdot \frac{1}{(b + x_i)^2} = 0, \text{ d.h. } \sum_{i=1}^{n} \frac{y_i}{(b + x_i)^2} = a \sum_{i=1}^{n} \frac{1}{(b + x_i)^3}.$$

Diese Formeln lassen sich nicht nach b auflösen.

X	-4	-1	5	8
У	-1/2	-1	1	1/2
Z	-2	-1	1	2

Dabei gilt
$$z = \frac{1}{y} = \frac{b+x}{a} = \frac{b}{a} + \frac{1}{a} \cdot x$$
.

Nach unseren Formeln der linearen Regression gilt

$$\frac{1}{a} = \frac{s_{XZ}}{s_X^2} = = \frac{\overline{x \cdot z} - \overline{x} \cdot \overline{z}}{\overline{x^2} - \overline{x}^2} = \frac{\frac{15}{2} - 2 \cdot 0}{\frac{53}{2} - 4} = \frac{1}{3}, \text{ so dass } a = 3 \text{ folgt.}$$

$$\frac{b}{a} = \overline{z} - \frac{1}{a} \cdot \overline{x} = 0 - \frac{1}{3} \cdot 2 = -\frac{2}{3}$$
, so dass $b = -2$.

In der Tat, alle Punkte liegen exakt auf $y = \frac{a}{b+x} = \frac{3}{-2+x} = \frac{3}{x-2}$.

10. Der Umsatz y(t) einer Firma wird quartalsweise über drei Jahre bestimmt. Analysieren Sie die gegebene Zeitreihe. Bestimmen Sie damit y(t) für das 1. und 2. Quartal im 4. Jahr.

Loha	Quartal			
Jahr	1	2	3	4
1	1,0	0,7	0,5	1,0
2	1,0	0,9	1,2	1,7
3	1,6	1,4	1,6	1,8

t	1	2	3	4
y(t)	1,0	0,7	0,5	1,0
y*(t)	0,35	-0,05	-0,35	0,05
t	5	6	7	8
y(t)	1,0	0,9	1,2	1,7
y*(t)	-0,05	-0,25	-0,05	0,35
t	9	10	11	12
y(t)	1,6	1,4	1,6	1,8
y*(t)	0,15	-0,15	-0,05	-0,05
s(t)	0,15	-0,15	-0,15	0,15

Bestimmung der Regressionsgeraden $g(t) = a + b \cdot t$: Es ist $b = \frac{s_{ty}}{s_t^2} = \frac{\overline{t \cdot y} - \overline{t} \cdot \overline{y}}{\overline{t^2} - \overline{t}^2} = \frac{\frac{1}{12} \cdot 107, 9 - \frac{13}{2} \cdot \frac{6}{5}}{\frac{325}{6} - \frac{169}{4}} = \frac{1}{10}$ und

$$a = \overline{y} - b \cdot \overline{t} = \frac{6}{5} - \frac{1}{10} \cdot \frac{13}{2} = \frac{11}{20}, \quad d.h. \quad g(t) = \frac{11}{20} + \frac{1}{10}t = 0,55 + 0,1 \cdot t \; .$$

Es ist
$$y*(t) = y(t) - g(t) = s(t) + r(t)$$
.

Bestimmung der saisonalen Komponente:

Wir nehmen an, dass diese Komponente die Periode 1 Jahr besitzt, also dass

$$s(1) = s(5) = s(9) = {1 \over 3} (y*(1) + y*(5) + y*(9)) = 0,15,$$

$$s(2) = s(6) = s(10) = \frac{1}{3} (y^*(2) + y^*(6) + y^*(10)) = -0.15,$$

$$s(3) = s(7) = s(11) = \frac{1}{3}(y*(3) + y*(7) + y*(11)) = -0.15$$
 und

$$s(4) = s(8) = s(12) = \frac{1}{3} (y*(4) + y*(8) + y*(12)) = 0.15$$
.

Im Schaubild sind y(t) in rot mit den Punkten und die Näherung g(t)+s(t) in schwarz ohne Punkte dargestellt.

