

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V, I_D =90A $R_{DS(ON)}$ =6.0m Ω , typical @ V_{GS} =10V $R_{DS(ON)}$ =7.7m Ω , typical @ V_{GS} =4.5V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N060-T2	VST10N060	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	100	V	
Gate-Source Voltage	Vgs	V _{GS} ±20		
Drain Current-Continuous	I _D	90	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	65	А	
Pulsed Drain Current	I _{DM}	360	А	
Maximum Power Dissipation	P _D	125	W	
Derating factor		0.83	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	387	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	1.2	°C/W
---	------------------	-----	------

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}\text{=}V_{GS},I_{D}\text{=}250\mu\text{A}$	1.2	1.7	2.2	V
Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =10V, I_D =45A	-	6.0	6.5	mΩ
aiii-Source Off-State Resistance		V_{GS} =4.5V, I_D =45A	-	7.7	9.0	mΩ
Forward Transconductance	g FS	V_{DS} =5 V , I_{D} =45 A		60	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -E0\/\/ -0\/	-	5580	-	PF
Output Capacitance	Coss	V _{DS} =50V,V _{GS} =0V, F=1.0MHz	-	360	-	PF
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	15	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	17	-	nS
Turn-on Rise Time	t _r	V_{DD} =50 V , I_D =45 A	-	10.5	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω	-	40	-	nS
Turn-Off Fall Time	t _f		-	7	-	nS
Total Gate Charge	Qg	\/ _E0\/	-	83	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =50V, I_{D} =45A, V_{GS} =10V	-	13		nC
Gate-Drain Charge	Q_{gd}	VGS-10V	-	15		nC
Drain-Source Diode Characteristics				•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =45A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	90	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 45A	-	68	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	110	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=40V,V_G=10V,L=0.5mH,Rg=25 Ω

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 2)

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)