Lecture 7: Instrumental Variables and Difference in Differences

Hammad Shaikh

Part 1: Annotations until slide 4

Endogenity Problem

Regressor is exogenous if it is independent with error term

- Regressor is endogenous if it is correlated with the error term
 - Biases regression parameter estimates

• Different types of endogenity:

Omitted variable bias

Measurement error

Remedies for Endogenity in Observational Data

• Multiple Regression (Control for confounding variables)

Regression Discontinuity

Instrumental Variable

Differences in Differences

Ly Panel data

Instrumental Variable Application

 Question: What is the causal effect from going to college on earnings?

- Outcome Y = earnings, policy variable X = I(college grad)
- Regression: $Y = \beta_0 + \beta_1 X + \epsilon$
 - Selection bias: individuals that choose to attend college are different from the ones that don't attend

• Suppose Z = I(college aid) is randomly given to HS students

Instrumental Variable Intuition

- Endogenity problem: $\triangle X$ implies $\triangle Y = \triangle Y_X + \triangle Y_\epsilon$
 - Occurs because $\triangle X \iff \triangle \epsilon \implies \triangle Y_{\epsilon}$

• Solution: Use only exogenous variation in *X* for estimation

• Suppose $Z \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \epsilon$ and Z is related to X

Instrumental Variable Intuition

ullet Z effects Y only through $X\colon \triangle Z \implies \triangle X_z \implies \triangle Y_{X_z}$

- IV Estimate: $\widehat{\beta}_{IV} = \frac{\triangle Y_{X_z}}{\triangle X_z}$
 - \widehat{b}_1 has a causal interpretation if $Z \underline{\parallel} \epsilon$ and $\mathit{Corr}(Z,X) \neq 0$

Instrumental Variables Framework

- Suppose $Corr(X, \epsilon) \neq 0$, endogeneity problem
- A instrumental variable Z satisfies:
 - $Corr(Z, X) \neq 0$, that is Z related to X
 - Z doesn't directly effect outcome Y
 - $Z \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid \epsilon$, Z is randomly assigned
- $\widehat{\beta}_{IV}$ estimates Local Average Treatment Effect (LATE)
 - ATE for those who comply with instrument

Interaction Term in Regression

- Recall: $Y_i = \beta_0 + \beta_1 I$ (i college grad) $+ \epsilon_i$ • $\hat{b}_1 = \overline{Y}_{college} - \overline{Y}_{HS}$
- Question: Do returns to college education differ by gender?
- Answer: Include interaction term $Y_i = \alpha_0 + \alpha_1 College_i + \alpha_2 Male_i + \alpha_3 College_i \times Male_i + \epsilon_i$
- $oldsymbol{\hat{a}}_1 = \overline{Y}_{\textit{college,female}} \overline{Y}_{\textit{HS,female}}$
- $\hat{a}_3 = (\overline{Y}_{college,male} \overline{Y}_{HS,male}) (\overline{Y}_{college,female} \overline{Y}_{HS,female})$

Differences in Differences Application

 Question: What is the causal effect of schools receiving funding on students achievement?

Data: School test scores in 2009 to 2010 in Ontario

 Background: Suppose that Toronto received school funding in 2010 but other cities did not

Differences in Differences Application

Table: Average School Performance

Year/City	Toronto	Other cities	Difference
2009	65	60	5
2010	75	65	10
Difference	10	5	5

Assume: Achievement trends are same in Toronto and other cities

Differences in Differences Intuition

• Control group never receives intervention

• Treatment group receives intervention for $t > t^*$

 Common Trends Assumption: Control and treatment group have same outcome trends over time

 \bullet Use trend of the control group to construct the counterfactual for treatment group for $t>t^*$

Differences in Differences Framework

 Requires time variation (before and after) and treatment variation (control and treatment)

• Treatment indicator: $T_i = I(i \text{ in treatment group})$

Diff - Diff Regression:

$$Y_{it} = \beta_0 + \beta_1 I(t > t^*) + \beta_2 T_i + \beta_3 I(t > t^*) \times T_i + \epsilon_{it}$$

- ullet \widehat{b}_3 has causal interpretation if "common trends" satisfied
 - Estimates Average Treatment Effect on Treated (ATT)

Causal Inference Summary

- Experiments are ideal
 - Estimates ATE
- Multiple regression is starting point
 - Estimates ATE
- Regression discontinuity
 - Estimates ATE at cutoff
- Instrumental Variables
 - Estimates LATE
- Difference in Differences
 - Estimates ATT