Геометрия и топология.

Лектор — Евгений Анатольевич Фоминых Создатель конспекта — Глеб Минаев *

TODOs

Разделы!	1
Доказать. Пока лень	23
Предупреждение: "немного опережая события"	26
Просто попытка. Не получилось. Нужна трансфинитная индукция или рекурсия Сама	
теорема — анонс	29

Содержание

Разделы!

Литература:

- Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., "Элементарная топология", М.:МЦНМО, 2012.
- Коснёвски Чес, "Начальный курс алгебраической топологии", М.:Мир, 1983.
- Ю.Г. Борисович, Н.М. Близняков, Я.А. Израилевич, Т.Н. Фоменко, "Введение в топологию", М.:Наука. Физматлит, 1995.
- James Munkres, Topology.

Определение 1. Функция $d: X \times X \to \mathbb{R}_+$ называется *метрикой* (или *расстоянием*) в множестве X, если:

- $d(x,y) = 0 \Leftrightarrow x = y$;
- d(x,y) = d(y,x);
- $d(x,z) \leq d(x,y) + d(y,z)$ ("неравенство треугольника").

Пара (X, d), где d — метрика в X, называется метрическим пространством.

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

 $\Pi pumep 1. \ \Pi ycть X — произвольное множество. Тогда метрика$

$$d(x,y) := \begin{cases} 1 & \text{если } x \neq y \\ 0 & \text{если } x = y \end{cases}$$

называется $\partial uc\kappa pemhoй$ метрикой на множестве X.

 Π ример 2.

- ullet $X:=\mathbb{R},$ тогда d(x,y):=|x-y| метрика.
- $X := \mathbb{R}^n$, $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$. Тогда

$$d(x,y) := \sqrt{(x_1 - y_1)^2 + \dots + (x_n + y_n)^2}$$

называется евклидовой метрикой.

- $X := \mathbb{R}^n$, $d(x, y) := \max_{i=1}^n |x_i y_i|$
- $X := \mathbb{R}^n, d(x,y) := \sum_{i=1}^n |x_i y_i|$
- $X := C[0;1], d(x(t),y(t)) = \max_{t \in [0;1]} |x(t) y(t)|.$ (X,d) называют пространством непрерывных функций.

Определение 2. Пусть (X, d) — метрическое пространство. Сужение функции d на $Y \times Y$ является метрикой в Y. Метрическое пространство $(Y, d|_{Y \times Y})$ называется nodnpocmpancmeom пространства (X, d).

Теорема 1. Пусть дана $g: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, что

- $\forall x, y \in \mathbb{R}_+$ $g(x, y) = 0 \leftrightarrow x = y = 0$;
- $\forall x, y, d \in \mathbb{R}_+$ $q(x+d, y) \geqslant q(x, y) \land q(x, y+d) \geqslant q(x, y)$:
- $\forall x_1, y_1, x_2, y_2 \in \mathbb{R}_+$ $g(x_1 + x_2, y_1 + y_2) \leq g(x_1, y_1) + g(x_2, y_2).$

Тогда для любых метрических пространств (X,d_X) и (Y,d_Y) функция

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)) := g(d_X(x_1,x_2),d_Y(y_1,y_2))$$

будет метрикой на $X \times Y$.

Доказательство. Проверим, что $d_{X \times Y}$ — метрика.

 $\bullet \ \forall x_1, x_2 \in X, y_1, y_2 \in Y$

$$d_{X \times Y}((x_1, y_1), (x_2, y_2)) = 0 \longleftrightarrow g(d_X(x_1, x_2), d_Y(y_1, y_2)) = 0 \longleftrightarrow d_X(x_1, x_2) = 0 \land d_Y(y_1, y_2) = 0 \longleftrightarrow x_1 = x_2 \land y_1 = y_2$$

• $\forall x_1, x_2 \in X, y_1, y_2 \in Y$

$$d_{X\times Y}((x_1, y_1), (x_2, y_2))$$

$$= g(d_X(x_1, x_2), d_Y(y_1, y_2)) = g(d_X(x_2, x_1), d_Y(y_2, y_1))$$

$$= d_{X\times Y}((x_2, y_2), (x_1, y_1))$$

• $\forall x_1, x_2, x_3 \in X, y_1, y_2, y_3 \in Y$

$$d_{X\times Y}((x_1, y_1), (x_3, y_3))$$

$$= g(d_X(x_1, x_3), d_Y(y_1, y_3))$$

$$\leqslant g(d_X(x_1, x_2) + d_X(x_2, x_3), d_Y(y_1, y_2) + d_Y(y_2, y_3))$$

$$\leqslant g(d_X(x_1, x_2), d_Y(y_1, y_2)) + g(d_X(x_2, x_3), d_Y(y_2, y_3))$$

$$= d_{X\times Y}((x_1, y_1), (x_2, y_2)) + d_{X\times Y}((x_2, y_2), (x_3, y_3))$$

Следствие 1.1. Для любых метрических пространств (X, d_X) и (Y, d_Y) пара $(X \times Y, d_{X \times Y})$, где

$$d_{X\times Y} := \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}$$

есть метрическое пространство.

Доказательство. Необходимо лишь проверить, что $g(x,y) := \sqrt{x^2 + y^2}$ удовлетворяет условиям теоремы.

- $\forall x, y \in \mathbb{R}_+$ $\sqrt{x^2 + y^2} \leftrightarrow x^2 + y^2 = 0 \leftrightarrow x = 0 = y$.
- $\forall x, y, d \in \mathbb{R}_+$ $x + d \geqslant x \Rightarrow (x + d)^2 \geqslant x^2 \Rightarrow (x + d)^2 + y^2 \geqslant x^2 + y^2 \Rightarrow \sqrt{(x + d)^2 + y^2} \geqslant \sqrt{x^2 + y^2}$; для y аналогично.
- $\forall x_1, y_1, x_2, y_2 \in \mathbb{R}_+$ по неравенству Коши-Буняковского-Шварца

$$(x_1y_2 - x_2y_1)^2 \geqslant 0$$

$$x_1^2y_2^2 + x_2^2y_1^2 \geqslant 2x_1x_2y_1y_2$$

$$(x_1^2 + y_1^2)(x_2^2 + y_2^2) \geqslant (x_1x_2 + y_1y_2)^2$$

$$(x_1^2 + y_1^2) + 2\sqrt{(x_1^2 + y_1^2)(x_2^2 + y_2^2)} + (x_2^2 + y_2^2) \geqslant (x_1^2 + y_1^2) + 2(x_1x_2 + y_1y_2) + (x_2^2 + y_2^2)$$

$$\left(\sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2}\right)^2 \geqslant (x_1 + x_2)^2 + (y_1 + y_2)^2$$

$$\sqrt{x_1^2 + y_1^2} + \sqrt{x_2^2 + y_2^2} \geqslant \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$$

Замечание 1. Если g ассоциативна (например, $g(x,y) := \sqrt{x^2 + y^2}$; она заодно коммутативна), то аналогично можно определить метрику на $X_1 \times X_2 \times \cdots \times X_n = (X_1 \times (X_2 \times (\cdots \times X_n) \dots))$.

Таким образом евклидова метрика есть метрика, так как её можно получить, применяя $g(x,y):=\sqrt{x^2+y^2}$ к пространствам $(X_i,d_i)=(\mathbb{R},d_{\mathbb{R}})$ (где $d_{\mathbb{R}}(x,y)=|x-y|$).

Определение 3. Пусть Для $g(x,y) := \sqrt{x^2 + y^2}$ из последней теоремы пространство $(X \times Y, d_{X \times Y})$ называется (декартовым) произведением метрических пространств (X, d_X) и (Y, d_Y) . Аналогично определяется произведение конечного числа пространств.

Замечание 2. На роль g(x,y) подходят следующие функции:

- $(x^{\alpha} + y^{\alpha})^{1/\alpha}$ для всех $\alpha \geqslant 1$;
- \bullet max(x, y).

А следующие функции уже не подходят:

- $(x^{\alpha} + y^{\alpha})^{1/\alpha}$ для всех $\alpha < 1$ (даже для отрицательных);
- $\min(x, y)$;
- \bullet $x \cdot y$ и x/y.

Определение 4. Пусть (X,d) — метрическое пространство, $a \in X, r \in \mathbb{R}, r > 0$. Тогда:

- $B_r(a) := \{x \in X \mid d(a,x) < r\} (открытый)$ шар пространства (X,d) с центром в точке а и радиусом r;
- $\overline{B}_r(a) = D_r(a) := \{x \in X \mid d(a,x) \leqslant r\}$ замкнутой шар пространства (X,d) с центром в точке а и радиусом r;
- $S_r(a) := \{x \in X \mid d(a,x) = r\} c\phi epa n po c m pah c m b a (X,d) c центром в точке а и pad и у с ом r.$

Определение 5. Пусть (X, d) — метрическое пространство, $A \subseteq X$. Множество A называется открытым в метрическом пространстве, если

$$\forall a \in A \ \exists r > 0 : B_r(a) \subseteq A$$

Теорема 2. В любом метрическом пространстве (X, d)

- 1. \varnothing и X открыты;
- 2. для всяких $a \in X$ и r > 0 открытый шар $B_r(a)$ открыт;
- 3. объединение любого семейства открытых множеств открыто;
- 4. пересечение конечного семейства открытых множеств открыто.

Доказательство.

- 1. Очевидно.
- 2. Для всякого $x \in B_r(a)$ верно, что $B_{r-d(x,a)}(x) \subseteq B_r(a)$, откуда утверждение очевидно следует.
- 3. Пусть дано семейство открытых множеств Σ . Пусть также $I = \bigcup \Sigma$. Для любого $x \in I$ верно, что существует $J \in \Sigma$, что $x \in J$, а значит есть r > 0, что $B_r(x) \subseteq J \subseteq I$, т.е. x внутренняя точка I. Таким образом I открыто.
- 4. Пусть $I = \bigcap_{i=1}^n I_i$. Тогда для любого $x \in I$ верно, что существуют $r_1, \ldots, r_n > 0$, что $B_{r_i}(x) \subseteq I_n$, значит $B_{\min r_i} \subseteq I$, значит x— внутренняя точка I. Таким образом I открыто.

Определение 6. Пусть X — некоторое множество. Рассмотрим набор Ω его подмножеств, для которого:

- 1. $\varnothing, X \in \Omega$;
- 2. объединение любого семейства множеств из Ω лежит в Ω ;

3. пересечение любого конечного семейства множеств, принадлежащих Ω , также принадлежит Ω .

В таком случае:

- Ω топологическая структура или просто топология в множестве X;
- множество X с выделенной топологической структурой Ω (т.е.пара (X,Ω)) называется mononoruчeckum пространством;
- элементы множества Ω называются *открытыми множествами* пространства (X,Ω) .

Π ример 3.

- Если Ω множество открытых множеств в метрическом пространстве (X,d), то (X,Ω) топологическое пространство. Таким образом любое метрическое пространство можно отождествлять с соответствующим топологическим пространством.
- Топология, индуцированная евклидовой метрикой в \mathbb{R}^n , называется cmandapmhoù.
- $\Omega := 2^X \textit{дискретная}$ топология на произвольном множестве X. Именно она порождается дискретной метрикой на X.
- $\Omega := \{\varnothing, X\} aнmuducкpemнas$ топология на произвольном множестве X.
- $X:=\mathbb{R},\,\Omega:=\{(a;+\infty):a\in\mathbb{R}\}\cup\{\mathbb{R}\}\cup\{\varnothing\}$. Такая топология называется $\mathit{стрелкой}.$
- $\Omega = \{\varnothing\} \cup \{A \in X : |X \setminus A| \in \mathbb{N}\}$ топология конечных дополнений на произвольном множестве X.

Определение 7. Множество $F \subseteq X$ замкнуто в топологическом пространстве (X, Σ) , если его дополнение $X \setminus F$ открыто (т.е. если $X \setminus F \in \Sigma$).

Теорема 3. В любом топологическом пространстве X

- \varnothing u X замкнуты;
- объединение конечного набора замкнутых множеств замкнуто;
- пересечение любого набора замкнутых множеств замкнуто.

Теорема 4. Пусть U-открыто, а V-замкнуто в (X,Ω) . Тогда:

- $U \setminus V$ открыто;
- $V \setminus U$ замкнуто.

Определение 8. Пусть (X, Ω) — топологическое пространство и $A \subseteq X$. Тогда *внутренностью* множества A называется объединение всех открытых подмножеств A:

$$\operatorname{Int}(A) := \bigcup_{\substack{U \in \Omega \\ U \subseteq A}} U$$

Теорема 5.

• $Int(A) - om\kappa pытое$ множество.

- $\operatorname{Int}(A) \subseteq A$.
- $B om\kappa p umo \land B \subseteq A \Rightarrow B \subseteq Int(A)$.
- $A = Int(A) \Leftrightarrow A om\kappa pumo.$
- Int(Int(A)) = Int(A).
- $A \subseteq B \Rightarrow \operatorname{Int}(A) \subseteq \operatorname{Int}(B)$.
- $\operatorname{Int}(\bigcap_{k=1}^n A_k) = \bigcap_{k=1}^n \operatorname{Int}(A_k)$.
- $\operatorname{Int}(\bigcup_{A \in \Sigma} A) \supseteq \bigcup_{A \in \Sigma} \operatorname{Int}(A)$.

Определение 9. Окрестность точки a в топологическом пространстве X — открытое множество в X, содержащее a.

Точка a топологического пространства X называется внутренней точкой множества $A \subseteq X$, если A содержит как подмножество некоторую окрестность a.

Теорема 6.

- Множество открыто тогда и только тогда, когда все его точки внутренние.
- Внутренность множества есть множество всех его внутренних точек.

Доказательство.

- (\Rightarrow) Пусть A открыто, а $a \in A$. Тогда A та самая окрестность a, которая является подмножеством A, поэтому a внутренняя точка A.
 - (\Leftarrow) Пусть каждая точка A внутренняя. Тогда для каждого $a \in A$ определим окрестность I_a , лежащую в A как подмножество (такая есть по определению). Тем самым $A = \bigcup_{a \in A} I_a$, т.е. A есть объединение открытых множеств, следовательно открытое множество.
- (\subseteq) Пусть $a \in Int(A)$. Вспомним, что Int(A) открытое подмножество A. Следовательно, a внутренняя точка A.
 - (\supseteq) Пусть a внутренняя точка A. Следовательно есть открытое I, что $a \in I \subseteq A$, следовательно $I \subseteq \operatorname{Int}(A)$, а значит $a \in \operatorname{Int}(A)$.

Определение 10. Пусть (X,Ω) — топологическое пространство, а $A\subseteq X$. Замыканием множества A называется пересечение всех замкнутых пространств, содержащих A как подмножество:

$$\operatorname{Cl}(A) := \bigcap_{\substack{X \setminus V \in \Omega \\ V \supset A}} V$$

Теорема 7.

- Cl(A) замкнутое множество.
- $Cl(A) \supseteq A$.
- $B замкнуто \land B \supseteq A \Rightarrow B \supseteq Cl(A)$.

- $A = Cl(A) \Leftrightarrow A 3amkhymo.$
- Cl(Cl(A)) = Cl(A).
- $A \subseteq B \Rightarrow \operatorname{Cl}(A) \subseteq \operatorname{Cl}(B)$.
- $\operatorname{Cl}(\bigcup_{k=1}^{n} A_k) = \bigcup_{k=1}^{n} \operatorname{Cl}(A_k).$
- $Cl(\bigcap_{A \in \Sigma} A) \supseteq \bigcap_{A \in \Sigma} Cl(A)$.
- $Cl(A) \sqcup Int(X \setminus A) = X$.

Определение 11. Пусть X — топологическое пространство, $A \subseteq X$ и $b \in X$. Точка b называется точкой прикосновения множества A, если всякая её окрестность пересекается с A.

Теорема 8.

- Множество замкнуто тогда и только тогда, когда оно является множеством своих точек прикосновения.
- Замыкание множества есть множество всех его точек прикосновения.

Определение 12. Пусть X — топологическое пространство, $A \subseteq X$ и $a \in X$.

 Γ раница множества A — разность замыкания и внутренности A: $\operatorname{Fr}(A) := \operatorname{Cl}(A) \setminus \operatorname{Int}(A)$. Точка a — \imath раничная точка множества A, если всякая её окрестность пересекается с A и с $X \setminus A$.

Теорема 9. Граница множества совпадает с множеством его граничных точек.

Теорема 10.

- Fr(A) замкнуто.
- $\operatorname{Fr}(A) = \operatorname{Fr}(X \setminus A)$.
- A замкнуто $\Leftrightarrow A \supset \operatorname{Fr}(A)$.
- $A \ om\kappa p umo \Leftrightarrow A \cap Fr(A) = \varnothing$.

Определение 13. Пусть X — топологическое пространство, $A \subseteq X$ и $a \in X$.

- a-npedeльная точка A, если в любой окрестности a есть точка $A\setminus\{a\}$.
- a изолированная точка A, если $a \in A$ и есть окрестность a без точка $A \setminus \{a\}$.

Теорема 11.

- b-npeдельная $\Rightarrow b-m$ очка прикосновения.
- $Cl(A) = \{ внутренние точки A \} \sqcup \{ граничные точки A \}.$
- $Cl(A) = \{ npedenuhue moчки A \} \sqcup \{ uзолированные moчки A \}.$

Определение 14. Пусть Ω_1 и Ω_2 — топологии на X. Тогда если $\Omega_1 \subseteq \Omega_2$, то говорят, что Ω_1 слабее (грубее) Ω_2 , а Ω_2 сильнее (тоньше) Ω_1 .

 $\mathit{Пример}\ 4.\ \mathit{И}$ з всех топологий на X антидискретная — самая грубая, а дискретная — самая тонкая.

Теорема 12. Топология метрики d_1 грубее топологии метрики d_2 тогда и только тогда, когда в любом шаре метрики d_1 содержится шар метрики d_2 с тем же центром.

Доказательство.

- (\Rightarrow) Пусть топология метрики d_1 грубее топологии метрики d_2 . Тогда любой шар $B_r^{d_1}(a)$ открыт в d_2 , следовательно по определению открытости есть шар $B_q^{d_2}(a) \subseteq B_r^{d_1}(a)$.
- (\Leftarrow) Пусть в любом шаре метрики d_1 содержится шар метрики d_2 с тем же центром. Возьмём любое открытое в d_1 множество U. Тогда для всякой точки $a \in U$ есть шар $B_r^{d_1}(a) \subseteq U$. При этом есть шар $B_q^{d_2}(a) \subseteq B_r^{d_1}(a)$, таким образом a внутренняя точка U в d_2 . Следовательно U открыто в d_2 .

Следствие 12.1. Если d_1 и d_2 — метрики на X и $d_1 \leqslant d_2$, то топология d_1 грубее топологии d_2 .

Определение 15. Две метрики на одном множестве называются эквивалентными, если они порождают одну топологию.

Лемма 13. Пусть (X,d) — метрическое пространство. Тогда для всякого C>0 функция $C\cdot d$ — метрика на X, эквивалентная d.

Следствие 13.1. Если для метрик d_1 и d_2 на X есть такое C > 0, что $d_1 \leqslant C d_2$, то d_1 грубее d_2 .

Определение 16. Метрики d_1 и d_2 на одном множестве называются липшицево эквивалентными, если существуют c, C > 0, что $c \cdot d_1 \leqslant d_2 \leqslant C \cdot d_1$.

Теорема 14. Липшицево эквивалентные метрики просто эквивалентны.

Определение 17. Топологическое пространство *метризуемо*, если есть метрика, её порождающая.

Определение 18. Basa топологии Ω — такое семейство Σ открытых множеств, что всякое открытое U представимо в виде объединения множеств из Σ .

$$\Sigma \subseteq \Omega - \text{база} \Longleftrightarrow \forall U \in \Omega \; \exists \Lambda \subseteq \Sigma : \quad U = \bigcup_{W \in \Lambda} W$$

Определение 19. Множество Γ подмножеств множества X называются его *покрытием*, если $X := \bigcup_{A \in \Gamma} A$. Часто покрытие записывают в виде $\Gamma = \{A_i\}_{i \in I}$.

Теорема 15 (второе определение базы). Пусть (X,Ω) — топологическое пространство и $\Sigma \subseteq \Omega$. Тогда Σ — база топологии Ω тогда и только тогда, когда для любой точки а любого открытого множества U есть окрестность из Σ , лежащая в U как подмножество.

Определение 20. Пусть (X, Ω) — топологическое пространство, $a \in X$ и $\Lambda \subseteq \Omega$. Λ называется базой топологии (базой окрестности) в точке a, если:

- 1. $\forall U \in \Lambda \ a \in U$;
- 2. \forall окрестности U точки $a \exists V_a \in \Lambda : V_a \subseteq U$.

Теорема 16.

- Если Σ база топологии, то для всякой точки $a \in X$ множество $\Sigma_a := \{U \in \Sigma \mid a \in U\}$ база топологии в точке a.
- Пусть для кажедой точки $a \in X$ определена база топологии Σ_a в ней. Тогда $\bigcup_{a \in X} \Sigma_a$ база топологии.

Теорема 17. Пусть Σ — семейство подмножеств X. Тогда есть не более одной топологии, для которой Σ является базой.

Доказательство. Предположим противное: пусть Ω_1 и Ω_2 — различные топологии на X, для которых Σ является базой. По определению базы для всякого $U \in \Omega_1$ есть семейство $\Gamma \subseteq \Sigma$, что $U = \bigcup_{A \in \Gamma} A$; но поскольку $\Gamma \subseteq \Sigma \subseteq \Omega_2$, то всякое $A \in \Gamma$ лежит в Ω_2 , а значит U тоже лежит в Ω_2 . Таким образом $\Omega_1 \subseteq \Omega_2$; аналогично наоборот, следовательно $\Omega_1 = \Omega_2$ — противоречие.

Таким образом для всякого Σ будет не более одной топологии, где для которой оно будет базой. \square

Следствие 17.1. Пусть Σ_1 и Σ_2 — базы топологий Ω_1 и Ω_2 на одном и том же множестве. Тогда если $\Sigma_1 = \Sigma_2$, то и $\Omega_1 = \Omega_2$.

Теорема 18 (критерий базы). Пусть X — произвольное множесство, а Σ — его покрытие. Σ — база некоторой топологии на X тогда и только тогда, когда для всяких $A, B \in \Sigma$ есть семейство $\Lambda \subseteq \Sigma$, что $A \cap B = \bigcup_{S \in \Lambda} S$.

Доказательство.

- (\Rightarrow) Если Σ база, то для всяких $A, B \in \Sigma$ множество $A \cap B$ открыто, а поэтому представляется как объединение некоторого подсемейства Σ .
- (\Leftarrow) Рассмотрим топологию Ω , образованную всевозможными объединениями множеств из Σ , т.е.

$$\Omega := \left\{ \bigcup_{S \in \Lambda} S \mid \Lambda \subseteq \Sigma \right\}$$

Проверим, что это действительно топология.

- 1. Σ покрытие, поэтому $X=\bigcup_{S\in\Sigma}S\in\Omega$. Также рассматривая $\Lambda=\varnothing$, получаем, что $\bigcup_{S\in\Lambda}S=\varnothing\in\Omega$.
- 2. Пусть $\Phi \subseteq \Omega$. Тогда для каждого $S \in \Phi$ есть семейство $\Lambda_S \subseteq \Sigma$, его образующее, т.е. $S = \bigcup_{T \in \Lambda_S} T$. В таком случае $\Lambda := \bigcup_{S \in \Phi} \Lambda_S$ является подмножеством Σ , а тогда

$$\bigcup_{S \in \Phi} S = \bigcup_{S \in \Phi} \bigcup_{T \in \Lambda_S} T = \bigcup_{T \in \Lambda} T \in \Omega$$

3. Пусть $U,V\in\Omega$. Тогда существуют $M,N\subseteq\Sigma$, что $U=\bigcup_{S\in M}S$ и $V=\bigcup_{S\in N}S$. Также для каждой $P=(A,B)\in M\times N$ существует $\Lambda_P\subseteq\Sigma$, что $A\cap B=\bigcup_{S\in\Lambda_P}$. Пусть $\Lambda:=\bigcup_{P\in M\times N}\Lambda_S$. Понятно, что $\Lambda\subseteq\Sigma$. Следовательно

$$U\cap V=\left(\bigcup_{A\in M}A\right)\cap\left(\bigcup_{B\in N}B\right)=\bigcup_{(A,B)\in M\times N}A\cap B=\bigcup_{P\in M\times N}\bigcup_{S\in \Lambda_P}S=\bigcup_{S\in \Lambda}S\in \Omega$$

Определение 21. Предбаза — семейство Δ открытых множеств в пространстве (X,Ω) , что Ω — наименьшая топология по включению топология, содержащая Δ .

Теорема 19. Любое семейство Δ подмножеств множества X является предбазой некоторой топологии.

Доказательство. Определим

$$\Sigma := \{X\} \cup \left\{ \bigcap_{A \in W} A \mid W \subseteq \Delta \land |W| \in \mathbb{N} \right\}$$

Заметим, что $\Delta\subseteq\Sigma$. Действительно, для всякого $A\in\Delta$ семейство $W:=\{A\}$ является подмножеством Δ , следовательно $A=\bigcap_{T\in W}T\in\Sigma$.

Покажем, что любая топология, которая содержит как подмножество Δ , содержит и Σ как подмножество. Действительно, пусть $A \in \Sigma$ (будем считать, что A — не X и не \varnothing ; иначе утверждение очевидно). Тогда есть конечное семейство $W \subseteq \Delta$, что $A = \bigcap_{T \in W} T$. Пусть Ω — любая топология, содержащая Δ как подмножество. Тогда $W \subseteq \Omega$, а следовательно $A = \bigcap_{T \in W} T \in \Omega$. Таким образом $\Sigma \subseteq \Omega$. Поэтому для топология, для которой Σ будет предбазой, Δ тоже будет предбазой.

Покажем, что Σ удовлетворяет критерию базы.

- $X \in \Sigma$, значит Σ покрытие X.
- Пусть $A, B \in \Sigma$. Если A = X, то $A \cap B = B = \bigcup_{T \in W} T$, где $W := \{B\} \subseteq \Sigma$. Если $A = \varnothing$, то $A \cap B = \varnothing = \bigcup_{T \in W} T$, где $W := \varnothing \subseteq \Sigma$. Аналогично, если B есть X или \varnothing . Иначе есть непустые $V, U \subseteq \Delta$, что $A = \bigcap_{T \in V} T$, а $B = \bigcap_{T \in U} T$. Следовательно $A \cap B = \bigcap_{T \in V \cup U} T$. Но поскольку $V \cup U \subseteq \Delta$, то $A \cap B \in \Sigma$. Таким образом $A \cap B = \bigcup_{T \in W} T$, где $W := \{A \cap B\} \subseteq \Sigma$.

Рассмотрим

$$\Omega := \left\{ \bigcup_{S \subset \Lambda} S \mid \Lambda \subseteq \Sigma \right\}$$

По теореме о критерии базы Ω — топология, где Σ — база. С другой стороны Ω — множество, которое содержится как подмножество в любой топологии, которая содержит как подмножество Σ . Следовательно Ω — минимальное топология, содержащая как подмножество Σ , а значит и Δ . Поэтому Δ — предбаза в Ω .

Теорема 20. Пусть (X,Ω) — топологическое пространство, а $A \subseteq X$. Тогда множество

$$\Omega_A := \{ U \cap A \mid U \in \Omega \}$$

есть топология на А.

Определение 22. Пусть (X,Ω) топологическое пространство, а $A\subseteq X$. Тогда

$$\Omega_A := \{ U \cap A \mid U \in \Omega \}$$

— топология, *индуцированная* множеством A, а (A, Ω_A) — подпространство (X, Ω) .

Теорема 21.

• Множества, открытые в подпространстве, не обязательно открыты в объемлющем пространстве.

- Открытые множества открытого подпространства открыты и во всём пространстве.
- ullet Если Σ база топологии Ω , то

$$\Sigma_A := \{ U \cap A \mid U \in \Sigma \}$$

- база индуцированной топологии.
- Пусть (X,Ω) топологическое пространство и $B \subseteq A \subseteq X$. Тогда $(\Omega_A)_B = \Omega_B$, т.е. топология, которая индуцируется в B топологией, индуцированной в A, совпадает с топологией, индуцированной непосредственно из X.

Определение 23. Пусть X, Y — топологические пространства. Отображение $f: X \to Y$ называется *непрерывным*, если прообраз всякого открытого множества из Y открыт в X.

Теорема 22.

- Отображение непрерывно тогда и только тогда, когда прообраз замкнутого замкнут.
- Композиция непрерывных отображений непрерывно.
- Пусть Z-noдпространство $X,\ a\ f:X\to Y$ непрерывно. Тогда $f|_Z:Z\to Y$ непрерывно.
- Пусть Z подпространство Y, $f: X \to Y$ и $f(X) \subseteq Z$. Пусть $\widetilde{f}: X \to Z, x \mapsto f(x)$. Тогда f непрерывна тогда и только тогда, когда \widetilde{f} непрерывна.

Определение 24. Отображение $f: X \to Y$ называется непрерывным в точке $a \in X$, если для любой окрестности U точки f(a) существует такая окрестность V точки a, что $f(V) \subseteq U$.

Теорема 23. Отображение $f: X \to Y$ непрерывно тогда и только тогда, когда оно непрерывно в каждой точке пространства X.

Доказательство.

- (\Rightarrow) Очевидно, $V = f^{-1}(U)$.
- (\Leftarrow) Пусть $U \in \Omega_Y$. Тогда для всякого $a \in f^{-1}(U)$ есть окрестность V_a точки a, что $V_a \subseteq f^{-1}(U)$. Следовательно любая точка $f^{-1}(U)$ внутренняя, а значит $f^{-1}(U)$ открыто.

Теорема 24. Пусть X и Y — топологические пространства, $a \in X$, $f: X \to Y$, Σ_a — база окрестностей в точке f(a). Тогда f непрерывна в точке a тогда u только тогда, когда для всякого $U \in \Lambda_{f(a)}$ есть $V \in \Sigma_a$, что $f(V) \subseteq U$.

Доказательство.

- (\Rightarrow) Пусть f непрерывна в a. Рассмотрим любое $U \in \Lambda_{f(a)}$. U окрестность f(a), соответственно есть W окрестность a, что $f(W) \subseteq U$. Но тогда есть $V \in \Sigma_a$, что $V \subseteq W$. Тогда $V \in \Sigma_a$ и $f(V) \subseteq U$.
- (\Leftarrow) Пусть для всякого $U \in \Lambda_{f(a)}$ найдётся $V \in \Sigma_a$, что $f(V) \subseteq U$. Рассмотрим любую окрестность U точки f(a). Тогда есть семейство $W \in \Lambda_{f(a)}$, что $W \subseteq U$. Следовательно найдётся $V \in \Sigma_a$, что $f(V) \subseteq W$, а следовательно V окрестность a, и $f(V) \subseteq U$.

Следствие 24.1. Пусть X, Y — метрические пространства, $a \in X, f : X \to Y$. Тогда

1. f непрерывно в точке а тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \quad f(B_{\delta}(a)) \subseteq B_{\varepsilon}(f(a))$$

2. f непрерывно в точке а тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \quad d_X(x, a) < \delta \to d_Y(f(x), f(a)) < \varepsilon$$

Определение 25. Пусть X, Y — метрические пространства. Отображение $f: X \to Y$ называется липшицевым, если:

$$\exists C > 0: \ \forall a, b \in X \quad d_Y(f(a), f(b)) \leqslant C \cdot d_X(a, b)$$

Значение C называют константой Липшица отображения f .

Теорема 25. Всякое липшицево отображение непрерывно.

Доказательство. Действительно,

$$\forall \varepsilon > 0 \qquad \delta := \frac{\varepsilon}{C} \quad \Longrightarrow \quad \left(d_X(x, a) < \delta \quad \longrightarrow \quad d_Y(f(x), f(a)) \leqslant C \cdot d_X(x, a) < C \cdot \delta = \varepsilon \right)$$

 $\Pi p u м e p 5.$

• Пусть фиксирована точка x_0 в метрическом пространстве (X,d). Тогда отображение

$$f: X \to \mathbb{R}, \ a \mapsto d(a, x0).$$

непрерывно.

• Пусть A — непустое подмножество метрического пространства (X, d). Расстоянием от точки $x \in X$ до множества A называется число

$$d(x, A) := \inf\{d(x, a) : a \in A\}.$$

Отображение

$$f: X \to \mathbb{R}, \ x \mapsto d(x, A),$$

непрерывно.

• Метрика d на множестве X является непрерывным отображением $X \times X \to \mathbb{R}$.

Определение 26. Покрытие Γ топологического пространства X называется $\phi y n damenman b-$ ным, если

$$\forall U \subseteq X : (\forall A \in \Gamma \ U \cap A \text{ открыто в } A) \longrightarrow (U \text{ открыто в } X)$$

Пемма 26. Покрытие Γ топологического пространства X фундаментально тогда и только тогда, когда

$$\forall V \subseteq X \quad \Big(\forall A \in \Gamma \quad V \cap A \; \mathit{замкнуто} \; \mathit{в} \; A \Big) \quad \longrightarrow \quad \Big(U \; \mathit{замкнуто} \; \mathit{в} \; X \Big)$$

Доказательство.

- (⇒) Пусть Γ фундаментально. Рассмотрим $V \subseteq X$, что для всякого $A \in \Gamma$ множество $V \cap A$ замкнуто в A. Следовательно $(X \setminus V) \cap A$ открыто в A, а тогда по фундаментальности Γ множество $X \setminus V$ открыто, а значит всё V замкнуто.
- (⇐) Аналогично, поменяв местами слова "открыто"и "замкнуто".

Теорема 27. Пусть X, Y- топологические пространства, $\Gamma-$ фундаментальное покрытие X и $f: X \to Y$. Если сужение f на всякое $A \in \Gamma$ непрерывно, то и само f непрерывно.

Доказательство. Рассмотрим любое открытое в Y множество U. Если $A \in \Gamma$, то $f^{-1}(U) \cap A = (f|_A)^{-1}(U)$ открыто. А в таком случае из фундаментальности Γ следует, что $f^{-1}(U)$ открыто. Таким образом f непрерывно.

Определение 27. Покрытие топологического пространства называется

- открытым, если оно состоит из открытых множеств;
- замкнутым если из замкнутых;
- *локально конечным* если каждая точка пространства обладает окрестностью, пересекающейся лишь с конечным числом элементов покрытия.

Теорема 28.

- 1. Всякое открытое покрытие фундаментально.
- 2. Всякое конечное замкнутое покрытие фундаментально.
- 3. Всякое локально конечное замкнутое покрытие фундаментально.

Доказательство. Пусть Γ — данное покрытие.

1. Пусть дано $U\subseteq X$, что для всякого $A\in \Gamma$ множество $U\cap A$ открыто в A, а значит открыто в X. Тогда

$$U=U\cap X=\bigcup_{A\in\Gamma}U\cap A$$

есть объединение открытых множеств, а значит само открыто. Таким образом Γ фундаментально.

2. Пусть дано $U\subseteq X$, что для всякого $A\in \Gamma$ множество $U\cap A$ замкнуто в A, а значит замкнуто в X. Тогда

$$U = U \cap X = \bigcup_{A \in \Gamma} U \cap A$$

есть конечное объединение замкнутых множеств, а значит само замкнуто. Таким образом Γ фундаментально.

3. Пусть дано $U \subseteq X$, что для всякого $A \in \Gamma$ множество $U \cap A$ открыто в A. Рассмотрим некоторую точку $u \in U$ и её окрестность V_u , которая пересекается с конечным набором Γ_u элементов из Γ . Тогда для всякого $A \in \Gamma_u$ множество

$$U \cap A \cap V = (U \cap A) \cap (A \cap V)$$

открыто в $V \cap A$. При этом

$$\{V \cap A \mid A \in \Gamma_u\}$$

— конечное замкнутое покрытие, а значит $U \cap V$ открыто в V, а значит и в X. Таким образом $U \cap V$ — окрестность u, а значит u — внутренняя точка U. Значит U открыто.

Теорема 29. Пусть (X, Ω_X) и (Y, Ω_Y) — топологические пространства. Тогда

$$\Sigma := \{ U \times V \mid U \in \Omega_X \land V \in \Omega_Y \}$$

является базой топологии на $X \times Y$.

Доказательство. Проверим критерий базы:

- 1. $X \in \Omega_X$, $Y \in \Omega_Y$, следовательно $X \times Y \in \Sigma$. Таким образом Σ покрытие $X \times Y$.
- 2. Пусть $U_1 \times V_1, U_2 \times V_2 \in \Sigma$. Тогда $U_1 \cap U_2 \in X$, $V_1 \cap V_2 \in Y$, а значит $(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) \in \Sigma$.

Таким образом Σ — база.

Определение 28. Пусть (X, Ω_X) и (Y, Ω_Y) — топологические пространства, а $\Omega_{X \times Y}$ — топология, порождённая базой Σ из предыдущей теоремы. Тогда $(X \times Y, \Omega_{X \times Y})$ называется *произведением* топологических пространств, а сама $\Omega_{X \times Y}$ называется *стандартной* топологией.

3амечание 3. По аналогии если Σ_X и Σ_Y — базы топологий Ω_X и Ω_Y соответственно, то

$$\Lambda := \{ U \times V \mid U \in \Sigma_X \land V \in \Sigma_Y \}$$

также являются базой стандартной топологии на $X \times Y$.

Определение 29. Обозначения:

- $X = \prod_{i \in I} X_i$ произведение топологических пространств.
- Элементами X являются такие функции $x:I \to \bigcup_{i \in I} X_i$, что $x(i) \in X_i$.
- $p_i: X \to X_i$ координатная проекция, где $p_i(x) := x(i)$.

Определение 30. Пусть $\{(X_i, \Omega_i)\}_{i \in I}$ — семейство топологических пространств. *Тихоновская топология* на $X = \prod_{i \in I} X_i$ задаётся предбазой, состоящей из всевозможных множеств вида $p_i^{-1}(U)$, где $i \in I$, а $U \subseteq \Omega_i$.

Замечание 4. В случае конечного произведения тихоновская топология совпадает со стандартной.

Теорема 30. Пусть (X, d_X) и (Y, d_Y) — метрические пространства, Ω_X и Ω_Y — топологии в данных метрических пространствах. Рассмотрим две топологии:

- $\Omega_{X\times Y}$ топология-произведение топологий Ω_X и Ω_Y ;
- Ω_{\max} топология, порождённая произведением метрик по функции $g := \max (c M. meo-pemy 1).$

Тогда эти топологии совпадают.

Доказательство. Определим

$$d_{\text{max}}: (X \times Y) \times (X \times Y) \to \mathbb{R}, ((x_1, y_1), (x_2, y_2)) \mapsto \max(d_X(x_1, x_2), d_Y(y_1, y_2))$$

Таким образом d_{\max} — метрика, порождающая Ω_{\max} .

Лемма 30.1.

$$B_r^{d_{\text{max}}}((x,y)) = B_r^{d_X}(x) \times B_r^{d_Y}(y)$$

Доказательство. Очевидно.

Вспомним, что

$$\Sigma_X := \{ B_r^{d_X}(x) \mid r > 0 \land x \in X \}$$
 $\Sigma_Y := \{ B_r^{d_Y}(y) \mid r > 0 \land y \in Y \}$

являются базами Ω_X и Ω_Y . Следовательно

$$\Sigma_{X \times Y} := \{ U_X \times U_Y \mid U_X \in \Sigma_X \land U_Y \in \Sigma_Y \}$$

является базой $\Omega_{X\times Y}$. Также заметим, что

$$\Sigma_{\max} := \{ B_r^{d_{\max}}((x,y)) \mid r > 0 \land x \in X \land y \in Y \} = \{ B_r^{d_X}(x) \times B_r^{d_Y}(y) \mid r > 0 \land x \in X \land y \in Y \}$$

является базой Ω_{\max} . При этом несложно видеть, что $\Sigma_{\max} \subseteq \Sigma_{X \times Y}$, следовательно Ω_{\max} грубее $\Omega_{X \times Y}$. Осталось показать, что Σ_{\max} порождает $\Sigma_{X \times Y}$, т.е. всякое $U \in \Sigma_{X \times Y}$ представимо в виде объединения некоторых множеств из Σ_{\max} .

Пусть U — некоторый элемент $\Sigma_{X\times Y}$. Тогда есть некоторые $r_X, r_Y>0$ и $(x,y)\in X\times Y$, что $U=B^{d_X}_{r_X}(x)\times B^{d_Y}_{r_Y}(y)$. Пусть $(x',y')\in U$, тогда $x'\in B^{d_X}_{r_X}(x)$. Следовательно $q_X:=r_X-d_X(x,x')>0$, а $B^{d_X}_{q_X}(x')\subseteq B^{d_X}_{r_X}(x)$; аналогично для Y. Пусть $q:=\min(q_X,q_Y)>0$. Тогда

$$V := B_a^{d_X}(x') \times B_a^{d_Y}(y')$$

— окрестность (x',y'). При этом $V\subseteq U$. Значит U представляется в виде объединения всех таких окрестностей для каждой точки (x',y') из него. Но $V\in \Sigma_{\max}$, поэтому Σ_{\max} порождает $\Sigma_{X\times Y}$. Значит топология, которая порождает Σ_{\max} , — Ω_{\max} — содержит как подмножество топологию, которую порождает $\Sigma_{X\times Y}$.

Таким образом $\Omega_{\max} = \Omega_{X \times Y}$.

Теорема 31. Пусть дана $g: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, что

- $\forall x, y \in \mathbb{R}_+$ $g(x, y) = 0 \leftrightarrow x = y = 0$;
- $\forall x, y, d \in \mathbb{R}_+$ $q(x+d, y) \geqslant q(x, y) \land q(x, y+d) \geqslant q(x, y)$:
- $\forall x_1, y_1, x_2, y_2 \in \mathbb{R}_+$ $g(x_1 + x_2, y_1 + y_2) \leq g(x_1, y_1) + g(x_2, y_2);$
- $\forall \alpha > 0 \,\exists x, y > 0$: $0 < q(x, 0) < \alpha \land 0 < q(0, y) < \alpha$.

Тогда для любых метрических пространств (X, d_X) и (Y, d_Y) функция

$$d_q((x_1, y_1), (x_2, y_2)) = q(d_X(x_1, x_2), d_Y(y_1, y_2))$$

является метрикой, эквивалентной метрике

$$d_{\max}((x_1, y_1), (x_2, y_2)) = \max(d_X(x_1, x_2), d_Y(y_1, y_2))$$

Доказательство. Заметим, что по теореме 1 функция d_{\max} является метрикой. С помощью теоремы 12 имеем, что нужно показать, что в каждом шаре по одной метрик d_{\max} и d_g есть шар с тем же центром по другой метрики.

Рассмотрим шар $B_r^{d_g}((x,y))$. Тогда по свойству g есть $q_X>0$, что $0< g(q_X,0)< r/2$; аналогично для Y. Следовательно для всех точек $x'\in B_{q_X}^{d_X}(x)$ и $y'\in B_{q_Y}^{d_Y}(y)$ верно, что

$$d_g((x', y'), (x, y))$$

$$= g(d_X(x', x), d_Y(y', y))$$

$$\leqslant g(d_X(x', x), 0) + g(0, d_Y(y', y))$$

$$\leqslant g(q_X, 0) + g(0, q_Y)$$

$$< \frac{r}{2} + \frac{r}{2} = r$$

Пусть $q := \min(q_X, q_Y)$. Тогда

$$B_q^{d_{\max}}((x,y)) = B_q^{d_X}(x) \times B_q^{d_Y}(y) \subseteq B_{q_X}^{d_X}(x) \times B_{q_Y}^{d_Y}(y) \subseteq B_r^{d_g}((x,y))$$

T.e. для каждого шара по d_g нашёлся подшар по d_{\max} .

Лемма 31.1. Для всякого r > 0 есть такое $q_X > 0$, что

$$\forall x \in \mathbb{R}_+ \qquad g(x,0) < q_X \longrightarrow x < r$$

Аналогично для Y.

Доказательство. Рассмотрим $q_X := g(r,0) > 0$. Тогда если $x \geqslant r$, то $g(x,0) \geqslant g(r,0) = q_X$. Следовательно

$$\forall x \in \mathbb{R}_+ \qquad g(x,0) < q_X \longrightarrow x < r$$

Аналогично для Y.

Рассмотрим шар $B_r^{d_{\max}}((x,y))$. Тогда определим q_X и q_Y по прошлой лемме для r и координат X и Y соответственно. Пусть также $q:=\min(q_X,q_Y)$ Тогда

$$\begin{aligned} \forall (x',y') \in B_q^{d_g}((x,y)) \\ \begin{cases} g(d_X(x',x),0) \leqslant g(d_X(x',x),d_Y(y',y)) = d_g((x',y'),(x,y)) < q \leqslant q_X \\ g(0,d_Y(y',y)) \leqslant g(d_X(x',x),d_Y(y',y)) = d_g((x',y'),(x,y)) < q \leqslant q_Y \end{cases} \\ \Longrightarrow \begin{cases} d_X(x',x) < r \\ d_Y(y',y) < r \end{cases} \\ \Longrightarrow d_{\max}((x',y'),(x,y)) = \max(d_X(x',x),d_Y(y',y)) < r \\ \Longrightarrow (x',y') \in B_r^{d_{\max}}((x,y)) \end{aligned}$$

Следствие 31.1. Произведения метрических пространств по функции $g(x,y) := (x^{\alpha} + y^{\alpha})^{1/\alpha}$ для всякого $\alpha \geqslant 1$ даёт такую же топологию, что и произведение стандартных топологий на метрических пространствах. В случае $\alpha = 2$ мы имеем стандартное произведение пространств.

Теорема 32. Пусть $X = \prod_{i \in I} X_i$ — произведение топологических пространств. Тогда координатные проекции $p_i : X \to X_i$ непрерывны.

Доказательство. Для всякого открытого в X_i множества U множество $p_i^{-1}(U)$ — элемент предбазы тихоновской топологии (по определению), поэтому $p_i^{-1}(U)$ открыто, а значит p_i непрерывно.

Определение 31 (отображение в $X \times Y$). Пусть X, Y, Z- топологические пространства. Любое отображение $f: Z \to X \times Y$ имеет вид

$$f(z) = (f_1(z), f_1(z)),$$
 для всех $z \in Z$,

где $f_1: Z \to X, f_2: Z \to Y$ — некоторые отображения, называемые компонентами отображениями f.

Определение 32 (отображение в $\prod_{i \in I} X_i$). Пусть Z и $\{X_i\}_{i \in I}$ — топологические пространства. Компонентами отображения $f: Z \to \prod_{i \in I} X_i$ называются отображения $f_i: Z \to X_i$, задаваемые формулами

$$f_i := p_i \circ f_i$$

Теорема 33 (о покоординатной непрерывности). Пусть Z и $\{X_i\}_{i\in I}$ — топологические пространства, $X = \prod_{i\in I} X_i$ — тихоновское произведение. Тогда отображение $f: Z \to \prod_{i\in I} X_i$ непрерывно тогда и только тогда, когда каждая его компонента f_i непрерывна.

Доказательство.

- (\Rightarrow) $f_i=p_i\circ f$, при этом p_i и f непрерывны, следовательно и f_i непрерывно.
- (\Leftarrow) Пусть U элемент предбазы тихоновской топологии. Тогда существуют $i\in I$ и $V\in\Omega_i,$ что $U=p_i^{-1}(V),$ следовательно

$$f^{-1}(U) = f^{-1}(p_i^{-1}(V)) = (p_i \circ f)^{-1}(V) = f_i^{-1}(V)$$

— открытое множество.

Теперь заметим, что для всякого открытого в X множества W существует семейство Σ конечных наборов открытых множеств предбазы, что

$$W = \bigcup_{\Lambda \in \Sigma} \bigcap_{T \in \Lambda} T$$

Следовательно

$$f^{-1}(W) = f^{-1}\left(\bigcup_{\Lambda \in \Sigma} \bigcap_{T \in \Lambda} T\right) = \bigcup_{\Lambda \in \Sigma} f^{-1}\left(\bigcap_{T \in \Lambda} T\right) = \bigcup_{\Lambda \in \Sigma} \bigcap_{T \in \Lambda} f^{-1}(T)$$

является открытым, поскольку каждое $f^{-1}(T)$ открыто (т.к. T — элемент предбазы, для него уже показали), а каждое Λ конечно.

Замечание 5. Также для проверки на непрерывность $f: X \to Y$ достаточно проверить открытость $f^{-1}(U)$ для всякого U из какой-либо базы или предбазы Y.

Замечание 6. Развёрнутое утверждение неверно: неверно, что если $f:\prod_{i\in I}X_i\to Y$ непрерывно по каждой координате, от непрерывно и в итоге. Для этого несложно проверить, что подходит

$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto \begin{cases} 0 & \text{если } (x,y) = (0,0) \\ \frac{2xy}{x^2+y^2} & \text{иначе} \end{cases}$$

Определение 33. Пусть X, Y — топологические пространства. Отображение $f: X \to Y$ называется гомеоморфизмом, если

- 1. f биекция,
- 2. f непрерывно,
- 3. f^{-1} непрерывно.

Определение 34. Если существует гомеморфизм между X и Y, то X и Y гомеморфии. Обозначение: $X \simeq Y$.

Теорема 34. Гомеоморфность — "отношение эквивалентности" на топологических пространствах.

Доказательство.

- Тождественное отображение (любого топологического пространства) есть гомеоморфизм. Следовательно $A \simeq A$.
- Отображение, обратное гомеоморфизму, есть гомеоморфизм. Следовательно $A \simeq B \leftrightarrow B \simeq A$.
- Композиция гомеоморфизмов есть гомеоморфизм. Следовательно $A \simeq B \simeq C \to A \simeq C$.

Замечание 7.

- \bullet Гомеоморфизм задаёт биекцию между открытыми множествами в X и Y.
- Гомеоморфные пространства неотличимы с точки зрения топологии.

Определение 35. *Топологическое свойство* — свойство топологического пространства, которое сохраняется при гомеоморфизмах.

Топологический инвариант — характеристика топологического пространства (например, число, группа и т.д.), сохраняющаяся при гомеоморфизмах.

Замечание. Для доказательства негомеоморфности двух топологических пространств, как правило, находят топологическое свойство или инвариант, который их различает.

3амечание. С этого момента cчётным множеством называется всякое множество X, что есть инъекция $X \to \mathbb{N}$.

Определение 36. Топологическое пространство удовлетворяет

- первой аксиоме счётности (1AC или FAC, first axiom of countability), если оно обладает счётными базами во всех своих точках (такое пространство называется "first-countable space");
- второй аксиоме счётности (2AC или SAC, second axiom of countability), если оно имеет счётную базу (такое пространство называется "second-countable space").

Теорема 35. SAC \Rightarrow FAC.

Доказательство. Если Σ — база топологии, то для всякого $a \in X$ множество

$$\Sigma_a := \{ U \in \Sigma \mid a \in U \}$$

— база в точке a. При этом $|\Sigma_a| \leq |\Sigma|$, следовательно выполнена FAC.

Теорема 36. Всякое метрическое пространство удовлетворяет FAC.

Доказательство. Множество

$$\{B_{\frac{1}{n}}(a)\}_{n=1}^{\infty}$$

является счётной базой топологии в точке a.

Определение 37. Топологическое свойство называется *наследственным*, если из того, что пространство X обладает этим свойством, следует, что любое подпространство пространства X тоже им обладает.

Топологическое свойство называется наследственным при произведении, если из того, что пространства X и Y обладают этим свойством, следует, что пространство $X \times Y$ тоже им обладает.

Теорема 37. SAC наследственна и наследственна при произведении.

Доказательство.

• Пусть Y — подпространство пространства X, удовлетворяющего SAC, а Σ — счётная база X (существует по SAC). Тогда

$$\Sigma_Y := \{ U \cap Y \mid U \in \Sigma \}$$

- база Y. При этом $|\Sigma_Y| \leq |\Sigma|$, следовательно Y удовлетворяет SAC.
- Пусть Σ_X и Σ_Y базы топологических пространств X и Y, удовлетворяющих SAC. Тогда

$$\Sigma := \{ U \times V \mid U \in \Sigma_X \land V \in \Sigma_Y \}$$

— база $X \times Y$, при этом

$$|\Sigma| \leq |\Sigma_X| \times |\Sigma_Y| \leq |\mathbb{N}| \times |\mathbb{N}| = |\mathbb{N}|$$

т.е. Σ счётно. Следовательно $X \times Y$ удовлетворяет SAC.

Теорема 38. Если пространство удовлетворяет SAC, то из всякого его открытого покрытия можно выделить счётное подпокрытие.

Доказательство. Пусть Γ — открытое покрытие X. По SAC есть счётная база Σ . Рассмотрим

$$\Lambda := \{ V \in \Sigma \mid \exists U \in \Gamma : \ V \subset U \}$$

Поскольку всякое U из Γ является открытым, то представляется в виде объединения элементов из Σ , следовательно Λ непусто. По этой же причине Λ является покрытием X, так как всякая точка X покрывается некоторым $U \in \Gamma$, которое является объединением элементов из Σ ; но все эти элементы лежат в Γ , значит Γ покрывает U, а значит и выбранную точку.

Теперь для каждого $U \in \Lambda$ рассмотрим $V_U \in \Gamma$, в котором оно содержится. Определим

$$\Gamma' := \{ V_U \mid U \in \Lambda \}$$

Тогда Γ' — покрытие, поскольку Γ является покрытием; $\Gamma' \subseteq \Gamma$; $|\Gamma'| = |\Lambda| \leqslant |\Sigma| \leqslant |\mathbb{N}|$. Таким образом Γ' — счётное подпокрытие покрытия Γ .

Определение 38. $A \subseteq X$ называется *всюду плотным*, если Cl(A) = X.

 Π емма 39. TFAE:

- A всюду плотно.
- $\operatorname{Int}(X \setminus A) = \emptyset$.
- Всякое непустое открытое множество в X пересекается с A.
- ullet Всякая точка X является точкой прикосновения A.

Доказательство. A всюду плотно тогда и только тогда, когда $\mathrm{Cl}(A) = X$, т.е. $\mathrm{Int}(X \setminus A) = \varnothing$. $\mathrm{Int}(X \setminus A) = \varnothing$ тогда и только тогда, когда нет открытых подмножеств у $X \setminus A$ кроме \varnothing , что равносильно тому, что всякое непустое открытое множество содержит точки вне $X \setminus A$, т.е. пересекается с A.

Если всякое непустое открытое множество пересекается с A, то в любой окрестности любой точки будут точки A, поэтому всякая точка X является точкой прикосновения. Если же есть непустое открытое множество, непересекающееся с A, то оно является окрестностью любой своей точки, а значит все его точки не являются точками прикосновения.

Определение 39. Топологическое пространство *сепарабельно*, если оно содержит счётное всюду плотное множество.

Теорема 40.

- 1. Если топологическое пространство удовлетворяет SAC, то оно сепарабельно.
- 2. Метрическое сепарабельное пространство удовлетворяет SAC.

Доказательство.

- 1. По SAC есть счётная база Σ . Рассмотрим A множество представителей семейства Σ , т.е. множество выделенных элементов в каждом из множеств в Σ . Тогда A всюду плотно, но $|A| \leq |\Sigma| \leq |\mathbb{N}|$.
- 2. Пусть A счётное, всюду плотное множество. Рассмотрим

$$\Sigma := \{ B_{\frac{1}{n}}(a) \mid a \in A \land n \in \mathbb{N} \setminus \{0\} \}$$

Пусть U — некоторое открытое множество, а x — некоторая его точка. Тогда в U лежит как подмножество некоторый шар $B_{\varepsilon}(x)$. Рассмотрим некоторое $\delta \in (0; \varepsilon)$, что

$$\frac{1}{\delta} - \frac{1}{\varepsilon - \delta} \geqslant 1$$

(при $\delta \to 0^+$ левая сторона стремится к $+\infty$, следовательно найдётся достаточно маленькое δ , что неравенство будет выполнено). Заметим, что в $B_{\delta}(x)$ есть некоторая точка $a \in A$ (по свойству A). При этом есть $n \in \mathbb{N} \setminus \{0\}$, что

$$\frac{1}{\delta} \geqslant n \geqslant \frac{1}{\varepsilon - \delta}$$

т.е.

$$\delta \leqslant \frac{1}{n} \leqslant \varepsilon - \delta$$

Тогда $d(x,a) < \delta \leqslant \frac{1}{n}$, следовательно $x \in B_{\frac{1}{n}}(a)$; но с другой стороны $\frac{1}{n} \leqslant \varepsilon - \delta < \varepsilon - d(a,x)$, поэтому $B_{\frac{1}{n}}(a) \subseteq B_{\varepsilon}(x)$. Так можно для всякой точки $x \in U$ предоставить шар из Σ , лежащий в U как подмножество и покрывающий x, значит U порождается объединением шаров из Σ . А значит Σ — база.

При этом $|\Sigma| \leq |A| \times |\mathbb{N} \setminus \{0\}| \leq |\mathbb{N}| \times |\mathbb{N}| = |\mathbb{N}|$.

Определение 40. Топологическое пространство удовлетворяет *первой аксиоме отделимости* T_1 , если каждая из любых двух различных точек пространства обладает окрестностью, не содержащей другую из этих точек.

Теорема 41. X удовлетворяет T_1 тогда и только тогда, когда все одноточечные множества замкнуты.

Доказательство.

 (\Rightarrow) Пусть x — случайная точка X. По T_1 для всякой точки $a\in X\setminus\{x\}$ есть окрестность U_a точки a, не содержащая x. Следовательно

$$U := \bigcup_{a \in X \setminus \{x\}} U_a$$

— открытое множество, содержащее каждую точку $X \setminus \{x\}$ и не содержащее x. Следовательно $X \setminus \{x\} = U$ — открыто, значит $\{x\}$ замкнуто.

 (\Leftarrow) Если $\{x\}$ замкнуто, то $X \setminus \{x\}$ открыто. Значит для всяких x и y множество $X \setminus \{x\}$ будет окрестностью y, не содержащей x. Таким образом выполнена T_1 .

Определение 41. Топологическое пространство удовлетворяет второй аксиоме отделимости T_2 , если любые две различные точки пространства обладают непересекающимися окрестностями.

Пространства, удовлетворяющие аксиоме T_2 , называются $xaycdop\phioвыми$.

Замечание. Всякое метрическое пространство хаусдорфово.

Теорема 42. X хаусдорфово тогда и только тогда, когда множество $\{(a,a) \mid a \in X\}$ замкнуто в $X \times X$.

Доказательство. Обозначим

$$\Delta := \{(a,a) \mid a \in X\}$$

- (⇒) Покажем, что $(X \times X) \setminus \Delta$ открыто. Пусть $(b,c) \notin \Delta$. Тогда по T_2 есть окрестности U_b и U_c точек b и c в X, что $U_b \cap U_c = \varnothing$. Следовательно $(U_b \times U_c) \cap \Delta = \varnothing$, тогда $U_b \times U_c$ окрестность (b,c), лежащая в $(X \times X) \setminus \Delta$ как подмножество.
- (\Leftarrow) Пусть b и c различные точки X. Тогда $(b,c) \notin \Delta$. Поскольку Δ замкнуто, то $(X \times X) \setminus \Delta$ открыто. Поскольку $\{U \times V \mid U, V \in \Omega_X\}$ база $X \times X$, то есть некоторые открытые в X множества U и V, что

$$(b,c) \in U \times V \subseteq (X \times X) \setminus \Delta.$$

Следовательно $(U \times V) \cap \Delta = \emptyset$, а значит $U \cap V = \emptyset$. При этом $b \in U$, а $c \in V$. Значит U и V — непересекающиеся окрестности b и c. Поскольку b и c случайны, то выполнена T_2 .

Определение 42. Топологическое пространство удовлетворяет *третьей аксиоме отделимости* T_3 , если в нём любое замкнутое множество и любая не содержащаяся в этом множестве точка обладают непересекающимися окрестностями.

Пространства, одновременно удовлетворяющие аксиомам T_1 и T_3 , называются *регулярными*.

Теорема 43. X удовлетворяет T_3 тогда и только тогда, когда для любой окрестности U_a любой точки a есть такая окрестность V_a точки a, что $Cl(V_a) \subseteq U_a$.

Доказательство.

(⇒) Пусть U_a — некоторая окрестность некоторой точки a в X. Тогда $X \setminus U_a$ замкнуто. По T_3 у $X \setminus U_a$ и a есть непересекающиеся окрестности W_a и V_a соответственно. Тогда $X \setminus W_a$ замкнуто; при этом $W_a \supseteq X \setminus U_a$, следовательно $X \setminus W_a \subseteq U_a$; аналогично имеем, что $V_a \subseteq X \setminus W_a$. Следовательно

$$Cl(V_a) \subseteq X \setminus W_a \subseteq U_a$$
.

Таким образом мы нашли искомую окрестность V_a .

(\Leftarrow) Пусть даны замкнутое F и точка a вне него. Тогда $U_a:=X\setminus F$ — окрестность a. Тогда есть окрестность V_a точки a, что $\mathrm{Cl}(V_a)\subseteq U_a$. Следовательно $\mathrm{Int}(X\setminus V_a)\supseteq X\setminus U_a=F$. Значит $\mathrm{Int}(X\setminus V_a)$ и V_a — непересекающиеся окрестности F и a.

Определение 43. Топологическое пространство удовлетворяет *четвёртой аксиоме отдели-* mocmu T_4 , если в нём любые два непересекающихся замкнутых множества обладают непересекающимися окрестностями.

Пространства, одновременно удовлетворяющие аксиомам T_1 и T_4 , называются *нормальны-ми*.

Теорема 44. X удовлетворяет T_4 тогда и только тогда, когда для любой окрестности U_A любого замкнутого множества A есть такая окрестность V_A множества A, что $Cl(V_A) \subseteq U_A$.

Доказательство.

(⇒) Пусть U_A — некоторая окрестность некоторого замкнутого множества A. Тогда $X \setminus U_a$ замкнуто. По T_4 у $X \setminus U_A$ и A есть непересекающиеся окрестности W_A и V_A соответственно. Тогда $X \setminus W_A$ замкнуто; при этом $W_A \supseteq X \setminus U_a$, следовательно $X \setminus W_A \subseteq U_A$; аналогично имеем, что $V_A \subseteq X \setminus W_A$. Следовательно

$$Cl(V_A) \subseteq X \setminus W_A \subseteq U_A$$
.

Таким образом мы нашли искомую окрестность V_A .

(\Leftarrow) Пусть даны замкнутые непересекающиеся F и G вне него. Тогда $U_G := X \setminus F$ — окрестность G. Тогда есть окрестность V_G множества G, что $\mathrm{Cl}(V_G) \subseteq U_G$. Следовательно $\mathrm{Int}(X \setminus V_G) \supseteq X \setminus U_G = F$. Значит $\mathrm{Int}(X \setminus V_G)$ и V_G — непересекающиеся окрестности F и G.

Теорема 45. "X нормально" \Rightarrow "X регулярно" \Rightarrow "X хаусдорфово" \Rightarrow "X удовлетворяет T_1 ".

Доказательство. По T_1 любое одноточечное множество замкнуто. Следовательно рассматривая как замкнутое множество конкретную точку можно получить следствия $T_4 \Rightarrow T_3 \Rightarrow T_2$. Последнее же следствие теоремы очевидно: нужно всего лишь выкинуть аксиому T_2 .

Теорема 46. Всякое метрическое пространство нормально.

Доказательство. Очевидно, что всякое метрическое пространство удовлетворяет T_1 . Значит осталось проверить T_4 .

Пусть даны замкнутые непересекающиеся множества A и B. Тогда $X \setminus B$ — окрестность A. Значит для сякого $x \in A$ есть $r_x > 0$, что $B_{r_x}(x) \subseteq X \setminus B$, т.е. $B_{r_x}(x) \cap B = \emptyset$. Рассмотрим

$$U_A := \bigcup_{x \in A} B_{r_x/2}(x);$$

аналогично определим U_B . Очевидно, что U_A и U_B — окрестности A и B. Покажем, что $U_A \cap U_B = \varnothing$.

Предположим противное, т.е. есть $a \in A$ и $b \in B$, что $B_{r_a/2}(a) \cap B_{r_b/2}(b)$ содержит некоторую точку x. Тогда

$$d(a,b) \leqslant d(a,x) + d(x,b) < \frac{r_a}{2} + \frac{r_b}{2}$$

WLOG $r_a \geqslant r_b$. Тогда

$$d(a,b) < \frac{r_a}{2} + \frac{r_b}{2} \leqslant r_a,$$

т.е. $b \in B_{r_a}(a)$. Но мы знаем, что $B_{r_a}(a) \cap B = \emptyset$ — противоречие. Значит $U \cap V = \emptyset$.

Таким образом для случайных непересекающихся замкнутых A и B мы построили их непересекающиеся окрестности. Значит выполнена T_4 .

Лемма 47.

- 1. Аксиома T_1 , хаусдорфовость и регулярность наследуются подпространствами и произведениями.
- 2. Существует нормальное пространство X и подпространство Y в нём, не являющееся нормальным.
- 3. Существуют нормальные пространства X и Y такие, что $X \times Y$ не является нормальным.

Доказательство.

Доказать. Пока лень...

Определение 44. Топологическое пространство *связно*, если его нельзя разбить на два непустых открытых множества.

$extbf{T}$ еорема 48. TFAE

- X связно.
- Х нельзя разбить на два непустых замкнутых множества.
- Любое подмножество X, открытое и замкнутое одновременно, либо пусто, либо совпадает со всем пространством X.
- Не существует сюръективного непрерывного отображения из X в $\{0;1\}$ с дискретной топологией.

Доказательство.

- X связно тогда и только тогда, когда его нельзя разбить на два непустых открытых множества. Заменяя множества разбиения на их дополнения, получаем, что X нельзя разбить на два непустых открытых множества тогда и только тогда, когда X нельзя разбить на два несовпадающих с X замкнутых множества, что равносильно разбиению на два непустых замкнутых множества.
- X нельзя разбить на два непустых открытых множества тогда и только тогда, когда всякое непустое открытое множество не имеет непустого открытого дополнения в X. Т.е. всякое открытое множество либо совпадает с \emptyset или X, либо не является замкнутым, что равносильно тому, что всякое открытое замкнутое множество является либо \emptyset , либо X.
- Сюръективное непрерывное отображение из X в $\{0;1\}$ с дискретной топологией равносильно разложению X на два открытых непустых множества. Так как прообразы 0 и 1 являются множествами, дополняющими друг друга до X; при этом сюръективность равносильна непустоте обоих, а непрерывность открытости обоих.

П

Замечание. Когда говорят, что какое-то множество связно, всегда имеют в виду, что множество лежит в некотором топологическом пространстве (в каком именно — должно быть ясно из контекста) и что с индуцированной этим включением топологией оно является связным пространством.

Теорема 49. Пусть $X \subseteq \mathbb{R}$. TFAE

- X связно.
- X выпукло, т.е. для всяких $a,b \in X$, что a < b отрезок $[a;b] \subseteq X$.
- X есть интервал (в широком смысле), точка или \varnothing .

Доказательство.

• Пусть X связно. Пусть есть такие $a, b \in X$, что $[a; b] \nsubseteq X$, значит есть $c \in (a; b)$, что $c \notin X$. Заметим, что $(-\infty; c)$ и $(c; +\infty)$ открыты. При этом

$$X = \big(X \cap (-\infty;c)\big) \sqcup \big(X \cap (c;+\infty)\big)$$

Заметим, что $X \cap (-\infty; c)$ и $X \cap (c; +\infty)$ открыты в X, значит X несвязно — противоречие.

- Пусть X выпукло. Тогда $X \supseteq (\inf X; \sup X)$, где \inf и \sup могут принимать значения $\pm \infty$. Если $\inf X < \sup X$, то X интервал с концами $\inf X$ и $\sup X$ (каким интервалом X является вопрос про то, лежат ли $\inf X$ и $\sup X$ в самом X); иначе X точка или \varnothing .
- Пусть X интервал (в широком смысле), точка или \varnothing . Если X точка или \varnothing , то очевидно, что X связно. Поэтому покажем, что если X интервал в широком смысле, то оно связно.

Пусть X раскладывается в объединение двух непустых открытых A и B. Заметим, что ни одно из A и B не могут состоять только из концов X (так как должны содержать и некоторую окрестность). Значит X'-X без своих концов — раскладывается в объединение двух непустых открытых $A':=A\cap X'$ и $B':=B\cap X'$. Значит A' и B' являются объединением непересекающихся интервалов. Пусть I — некоторый интервал из разложения A', а t — его конец. Понятно, что A' открыто в \mathbb{R} , значит $t \notin A'$. Если $t \in X'$, то $t \in B'$, значит некоторая окрестность t лежит в B', а тогда B' и I пересекаются, следовательно A' и B'

тоже — противоречие. Таким образом никакой конец I не лежит в X', значит концы I совпадают с концами X', т.е. I=X'; следовательно A'=X', $B'=\varnothing$ — противоречие. Значит X' и X связны.

Теорема 50 (Непрерывный образ связного пространства связен). Если $f: X \to Y$ — непрерывное отображение и пространство X связно, то и множество f(X) связно.

Доказательство. Предположим противное: пусть f(X) несвязно. Тогда $f(X) = U \cup V$, $U \cap V = \emptyset$, где U, V непусты и открыты. Следовательно, мы имеем разбиение пространства X на два непустых открытых множества $-f^{-1}(U)$ и $f^{-1}(V)$, что противоречит связности X.

Следствие 50.1. Связность — топологическое свойство.

Теорема 51 (о промежуточном значении). Пусть $f: X \to \mathbb{R}$ — непрерывное отображение, а X связно. Тогда для любых $a, b \in f(X)$ множество f(X) содержит все числа между a u b.

Доказательство. f(X) связно, значит выпукло, значит содержит [a;b].

Определение 45. Компонентой связности пространства X называется всякое его связное подмножество, не содержащееся ни в каком другом (строго большем) связном подмножестве пространства X. (Компонента связности пространства X — максимальное по включению связное множество в X.)

Пемма 52. Объединение любого семейства попарно пересекающихся связных множеств связно.

Доказательство. Пусть Σ — семейство попарно пересекающихся связных множеств в X. Определим

$$Y := \bigcup_{A \in \Sigma} A$$

Предположим противное: Y раскладывается в объединение непересекающихся открытых в Y множеств U и V. Несложно видеть, что для всякого $A \in \Sigma$ множества $U \cap A$ и $V \cap A$ открыты в A, не пересекаются, а в объединении дают A; следовательно одно из них совпадает с A, а другое с \varnothing . Т.е. A является подмножеством одного из U и V, а с другим не пересекается.

Пусть $A, B \in \Sigma$. Пусть $A \subseteq U$. Тогда B пересекается с U, так как пересекается с A. Значит $B \subseteq U$, а $B \cap V = \emptyset$. Таким образом если одно из U и V содержит как подмножество какой-то элемент Σ , то содержит как подмножества все элементы Σ , а значит и Y; следовательно другое пусто — противоречие.

Таким образом Y связно. \square

Теорема 53.

- 1. Каждая точка пространства Х содержится в некоторой компоненте связности.

Доказательство.

1. Пусть x — некоторая точка X. Пусть A_x — объединение всех связных множеств, содержащих x (при этом A определено корректно, так как $\{x\}$ связно). Таким образом A_x является максимальным по включению связным множеством, так как если есть некоторое связное B, что $B \supsetneq A_x$, то B — связное множество, содержащее x, а тогда $B \subseteq A_x$ — противоречие. Значит A_x — компонента связности, содержащая x.

2. Если U и V — различные компоненты связности X — пересекаются, то $U \subsetneq U \cup V$, а $U \cup V$ — компонента связности по доказанной теореме. Таким образом U не максимальное по включению, но связное множество — противоречие с определением компоненты связности.

Следствие 53.1. Компоненты связности составляют разбиение топологического пространства. (Напомним, что разбиение множества — это его покрытие попарно непересекающимися подмножествами.)

Следствие 53.2.

- 1. Любое связное множество содержится в некоторой связной компоненте пространства как подмножество.
- 2. Две точки содержатся в одной компоненте связности тогда и только тогда, когда они содержатся в одном связном множестве.
- 3. Пространство несвязно тогда и только тогда, когда оно имеет как минимум две компоненты связности.

Следствие 53.3. Число компонент связности является топологическим инвариантом.

Теорема 54. Замыкание связного множества связно.

Доказательство. Пусть дано связное множество A в пространстве X. Предположим противное: $\operatorname{Cl}(A)$ разбивается на два замкнутых в $\operatorname{Cl}(A)$ непустых множествах U и V. Поскольку $\operatorname{Cl}(A)$ замкнуто, то U и V замкнуты в X, следовательно $U \cap A$ и $V \cap A$ замкнуты в A. Из связности A следует, что $\operatorname{WLOG} U \cap A = A$, $V \cap A = \varnothing$, т.е. $A \subseteq U$, $A \cap V = \varnothing$. Соответственно из замкнутости U следует, что $\operatorname{Cl}(A) \subseteq U$. Следовательно $U = \operatorname{Cl}(A)$, а $V = \varnothing -$ противоречие.

Следствие 54.1. Компоненты связности замкнуты.

Определение 46. Путём в топологическом пространстве X называется непрерывное отображение $\alpha:[0,1]\to X$. Началом пути α называется точка $\alpha(0)$, концом — точка $\alpha(1)$. При этом говорят, что путь α соединяет точку $\alpha(0)$ сточкой $\alpha(1)$.

Определение 47. Топологическое пространство называется *линейно связным*, если в нём любые две точки можно соединить путём.

Замечание. Линейно связным множеством называют подмножество топологического пространства (какого именно, должно быть ясно из контекста), линейно связное как пространство с топологией, индуцированной из объемлющего пространства.

Теорема 55. Пусть даны линейно связное пространство X и непрерывное отображение $f: X \to Y$. Тогда и пространство f(X) линейно связно.

Доказательство. Если α — путь, соединяющий точки a и b из X, то $f \circ \alpha$ — путь, соединяющий точки f(a) и f(b) из f(X).

Следствие 55.1. Линейная связность — топологическое свойство.

Следствие 55.2. Число компонент линейной связности является топологическим инвариантом.

Предупреждение: "немного опережая события".

Лемма 56. Coeduhumocmb nymём — отношение эквивалентности на множестве точек пространства.

Доказательство.

• (Peфлексивность.) Для всякой точки $a \in X$ путь

$$\alpha: [0;1] \to X, t \mapsto a$$

соединяет a с собой.

• (Cимметричность.) Для всякого пути α из точки a в точку b отображение

$$\beta: [0;1] \to X, t \mapsto \alpha(1-t)$$

является путём из b в a.

• (Tранзитивность.) Для всякого пути α из a в b и всякого пути β из b в c отображение

$$\gamma:[0;1] o X, t \mapsto egin{cases} lpha(2t) & ext{если } t \in [0;rac{1}{2}] \ eta(2t-1) & ext{если } t \in [rac{1}{2};1] \end{cases}$$

— путь из a в c.

Определение 48. *Компонентой линейной связности* пространства X называется класс эквивалентности отношения соединимости путём.

Упражнение 1. 1. Объединение любого семейства попарно пересекающихся линейно связных множеств линейно связно.

- 2. Приведите пример линейно связного множества, замыкание которого не является линейно связным.
- 3. Приведите пример незамкнутой компоненты линейной связности.

Теорема 57. В топологическом пространстве, каждая точка которого имеет линейно связную окрестность,

- 1. компоненты линейной связности открыты;
- 2. компонентны линейной связности совпадают с компонентами связности.

Доказательство.

- 1. Пусть W компонента линейной связности, $a \in W$ и U линейно связная окрестность точки a. Тогда $U \subseteq W$, что влечёт открытость W.
- 2. Пусть Σ компоненты линейной связности пространства. По предыдущему пункту, каждое W из Σ открыто. Пусть A компонента связности. В силу связности, A не может пересекать несколько разных элементов Σ , так ка иначе будет иметь разбиение на открытые множества. Значит A содержится в некотором W из Σ . Отсюда, W = A.

Лемма 58. Пусть X, Y — топологические пространства, $a \ f : X \to Y$ — гомеоморфизм. Тогда для любой точки $a \in X$ пространства $X \setminus \{a\}$ и $Y \setminus \{f(a)\}$ гомеоморфны.

Теорема 59. Следующие пространства попарно негомеоморфны: [0;1], [0;1), \mathbb{R} , S^1 .

Доказательство. У [0;1] можно удалить максимум 2 точки, чтобы оно осталось связным, у [0;1) и S^1 — по одной, а у \mathbb{R} — ноль. Следовательно если какие-то из этих пространств гомеоморфны, то только [0;1) и S^1 . Но у S^1 какую точку ни удали, оно останется связным, а у [0;1) — только [0;1) негомеоморфно S^1 .

Теорема 60. \mathbb{R}^2 негомеоморфно никакому интервалу (в широком смысле) и S^1 .

Доказательство. Если из \mathbb{R}^2 выколоть любое конечное множество точек, то множество останется связным. С другой стороны этим свойством не обладают ни интервалы в широком смысле, ни S^1 .

Определение 49. Топологическое пространство *компактно*, если из любого его открытого покрытия можно выделить конечное подпокрытие.

Замечание. Когда говорят, что какое-то множество компактню, всегда имеют в виду, что это множество лежит в топологическом пространстве и что, будучи наделено индуцированной топологией, оно является компактным пространством.

Замечание. При определении компактности множества можно использовать два эквивалентных подхода. Первый подход — рассматривать открытые множества в подпространстве. Второй — рассматривать открытые множества в исходном пространстве.

Теорема 61. *Отрезок* [0;1] *компактен.*

Доказательство. Пусть дано некоторое открытое покрытие Σ отрезка [0;1]. Обозначим $I_0 := [0;1]$.

Построим индуктивно последовательность $(I_n)_{n=0}^{\infty}$ отрезков, которые не покрываются конечным подпокрытием Σ . I_0 уже определён. Если I_n построен, то разделим его пополам; если оба отрезка-половины покрываются конечными подпокрытиями Σ , значит и I_n покрывается. Таким образом одна из "половин" I_n не покрывается: её и обозначим за I_{n+1} .

Так мы получили последовательность вложенных отрезков, значит по аксиоме полноты есть точка c, лежащая во всех них. Заметим, что c покрывается Σ , значит есть некоторый элемент U покрытия Σ , который покрывает c. Но поскольку Σ — открытое покрытие, то U открыто и, следовательно, покрывает некоторую окрестность c, а c ней и все отрезки последовательности $(I_n)_{n=0}^{\infty}$, начиная c некоторого — противоречие c непокрываемостью конечным подпокрытием Σ .

Теорема 62. Пусть X — компактное пространство и A — замкнутое подмножество. Тогда A компактно.

Доказательство. Пусть Σ — открытое в X покрытие A. Поскольку $X \setminus A$ — открытое, то $\Sigma \cup \{X \setminus A\}$ — открытое покрытие X, следовательно из него можно выделить конченое подпокрытие. Удалив из него, если нужно, $X \setminus A$, получим конечное подпокрытие Σ множества A.

Теорема 63. Пусть $X, Y - \kappa$ омпактные пространства. Тогда и пространство $X \times Y$ компактно.

Доказательство. Пусть Σ — некоторые покрытие $X \times Y$. Заметим, что, заменив всякое открытое в Σ на элементы базы $X \times Y$ в качестве объединения которых оно раскладывается, можно свести задачу поиска конечного подпокрытия к новому покрытию. Восстановление подпокрытия для старого покрытия просто: нужно просто для каждого элемента конечного подпокрытия нового покрытия найти тот элемент старого покрытия, который содержит его как подмножество. Тогда получится конечное подпокрытие старого покрытия.

Для каждой точки x заметим, что Σ является покрытием слоя $\{x\} \times Y$. Несложно понять, что этот слой компактен, и выделить из него конечное подпокрытие Λ_x . Рассмотрим

$$W_x := \bigcap_{\substack{U \times V \in \Lambda_x \\ U \subseteq X \\ V \subset V}} U_x$$

Поскольку W_x открыто, то $\{W_x\}_{x\in X}$ — покрытие. Тогда мы можем из него выделить конечное подпокрытие $\{W_{x_i}\}_{i=1}^n$. Тогда $\bigcup_{i=1}^n \Lambda_{x_i}$ — конечное подпокрытие Σ пространства $X\times Y$.

Теорема 64 (Тихонова). Пусть $\{X_i\}_{i\in i}$ — семейство компактных топологических пространств. Тогда тихоновское произведение $X=\prod_{i\in I}X_i$ компактно.

Доказательство. Пусть Σ — покрытие X. WLOG можно считать, что Σ — подмножество базы тихоновской топологии, причём в качестве базы мы возьмём всевозможные конечные пересечения стандартной предбазы этой же топологии. Несложно видеть, что данная база выглядит как

$$\bigcup_{\substack{J\subseteq I\\|J|<|\mathbb{N}|}}\left\{\left(\bigotimes_{i\in I\backslash J}X_i\right)\times\left(\bigotimes_{j\in J}U_j\right)\mid\forall j\in J\quad U_j\in\Omega_j\right\},$$

т.е. произведение открытых множеств топологических пространств из конечного подсемейства $\{X_i\}_{i\in I}$ и остальных топологических пространств. (Для конечного множества пространств X_i верно, что в них есть точка x_i , не имеющая соответствующего координатного прообраза $(p_i^{-1}(x_i)\cap U=\varnothing)$ в данном открытом множестве U.)

Заметим, что ...

Просто попытка. Не получилось. Нужна трансфинитная индукция или рекурсия... Сама теорема — анонс.

Теорема 65. Пусть $X - x ayc dop \phi o s o n p o c m p a h c m s o, a <math>A \subseteq X - \kappa o m n a \kappa m$. Тогда A замкнуто s X.

Доказательство. Пусть b — некоторая точка $X \setminus A$. Покажем, что b является внутренней для $X \setminus A$.

Для всякой точки $a \in A$ найдутся непересекающиеся окрестности U_a и V_a точек a и b. Тогда $\{U_a\}_{a\in A}$ — открытое покрытие A, значит найдётся конченое подпокрытие $\{U_{a_1}; \ldots; U_{a_n}\}$. Получим, что

$$V := \bigcap_{i=1}^{n} V_{a_i}$$

— окрестность b, непересекающаяся с $\bigcup_{i=1}^n U_{a_i}$ — окрестностью A. Таким образом $V \subseteq X \setminus A$. Следовательно b внутренняя точка $X \setminus A$. Значит A замкнуто в X.

Теорема 66. Если пространство X хаусдорфово и компактно, то оно нормально.

Доказательство. Покажем, что X удовлетворяет T_3 ; T_1 следует из T_2 .

Пусть A замкнуто в X и b — некоторая точка $X \setminus A$. Поскольку A — замкнутое подмножество компакта, то само является компактом.

Для каждой точки a множества A выделим непересекающиеся окрестности U_a и V_a точек a и b (они существуют по хаусдорфовости). Тогда $\{U_a\}_{a\in A}$ — покрытие A, значит по компактности из него можно выделить конечное подпокрытие $\{U_{a_i}\}_{i=1}^n$. Таким образом

$$U:=igcup_{i=1}^n U_{a_i}$$
 и $V:=igcap_{i=1}^n V_{a_i}$

являются непересекающимися окрестностями A и b. Поскольку A и b случайны, то T_3 выполнена.

Теперь так же покажем выполняемость T_4 . Пусть A и B — непересекающиеся замкнутые множества и, как следствие, компактны. Для каждой точки a множества A рассмотрим непересекающиеся окрестности U_a и V_a точки a и множества B (они существуют по T_3). Тогда $\{U_a\}_{a\in A}$ — покрытие A, значит по компактности из него можно выделить конечное подпокрытие $\{U_{a_i}\}_{i=1}^n$. Таким образом

$$U:=igcup_{i=1}^n U_{a_i}$$
 и $V:=igcap_{i=1}^n V_{a_i}$

являются непересекающимися окрестностями A и B. Поскольку A и B случайны, то T_4 выполнена.

Таким образом выполнены T_3 и T_1 , и следовательно X нормально.

Определение 50. Пусть дано метрическое пространство (X, d). Множество $A \subseteq X$ называется ограниченным, если оно содержится в некотором шаре пространства X.

Определение 51. Пусть дано метрическое пространство (X,d). Диаметр множества $A\subseteq X$ — величина

$$diam(A) := \sup\{d(x, y) \mid x, y \in A\}.$$

Лемма 67. Пусть дано метрическое пространство (X, d). Тогда для всякого множества $A \subseteq X$ верно, что оно ограничено тогда и только, когда $\operatorname{diam}(A) < +\infty$.

Теорема 68. Компактное метрическое пространство ограничено.

Доказательство. Возьмём любую точку x нашего пространства X и рассмотрим покрытие его всевозможными шарами $B_r(x)$, r > 0. По компактности будет конечное подпокрытие $\{B_{r_i}(x)\}_{i=1}^n$. Значит всё пространство покрывается шаром $B_r(x)$, где $r = max(r_1, \ldots, r_n)$, т.е. X ограничено.

Следствие 68.1. Компактное множество в метрическом пространстве замкнуто и ограничено.

Доказательство. Метрическое пространство хаусдорфово, а компакт в хаусдорфовом пространстве замкнут.

Теорема 69. Множесство в \mathbb{R}^n компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство.

(⇒) Очевидно по предыдущему следствию.

 (\Leftarrow) Множество A ограничено в \mathbb{R}^n , следовательно содержится в кубе $[-a;a]^n$. Поскольку каждый из отрезков [-a;a] компактен, то их произведение — куб $[-a;a]^n$ — компактно. Следовательно A — замкнутое подмножество компакта, а значит само компактно.

Определение 52. Набор подмножеств множества X *центрирован*, если пересечение любого его конечный поднабора множеств непусто.

Теорема 70. X компактно тогда и только тогда, когда любой центрированный набор замкнутых множеств в X имеет непустое пересечение.

Доказательство. Заметим, что $\{X \setminus A_i\}_{i \in I}$ — покрытие X тогда и только тогда, когда $\bigcap_{i \in I} A_i = \varnothing$.

- (\Rightarrow) Пусть $\{A_i\}_{i\in I}$ центрированный набор замкнутых множеств. Тогда $\{B_i\}_{i\in I}:=\{X\setminus A_i\}_{i\in I}$ набор открытых множеств, что никакое их конечное подмножество не является покрытием X. Следовательно по компактности X и весь набор $\{B_i\}_{i\in I}$ не является покрытием. Значит пересечение $A_i, i\in I$ непусто.
- (\Leftarrow) Пусть $\{A_i\}_{i\in I}$ покрытие X. Следовательно $\{B_i\}_{i\in I}:=\{X\setminus A_i\}_{i\in I}$ набор замкнутых множеств с пустым общим пересечением. Значит оно не центрировано, что значит, что есть конечный набор $\{B_{i_k}\}_{k=1}^n$ у которого пустое пересечение. Следовательно $\{A_{i_k}\}_{k=1}^n$ является конечным подпокрытием изначального покрытия.

Следствие 70.1. Пусть X — топологическое пространство, а $\{A_i\}_{i\in I}$ — центрированный набор замкнутых множеств в X, хотя бы одно из которых компактно. Тогда $\bigcap_{i\in I} A_i$ непусто.

Следствие 70.2. Пусть X — топологическое пространство, $\{A_i\}_{i\in I}$ — линейно упорядоченный по включению набор непустых замкнутых множеств в X, хотя бы одно из которых компактно. Тогда $\bigcap_{i\in I} A_i$ непусто.

Теорема 71. Пусть даны непрерывное отображение $f: X \to Y$ и компактное пространство X. Тогда и пространство f(X) компактно.

Доказательство. Пусть Σ — открытое покрытие f(X). Тогда

$$\Lambda := \{f^{-1}(U) \mid U \in \Sigma\}$$

— покрытие X. По компактности X у него есть конечное подпокрытие Λ' . Значит

$$\Sigma' := \{ f(V) \mid V \in \Lambda' \}$$

будет конечным подпокрытием Σ . Следовательно f(X) компактно.

Следствие 71.1. Компактность — топологическое свойство.

Теорема 72 (Вейерштрассса). Если $f: X \to \mathbb{R}$ — непрерывная функция и пространство X компактно, то f(x) достигает наибольшего и наименьшего значений.

Доказательство. f(X) компактно. Следовательно замкнуто и ограничено. Значит содержит свои инфимум и супремум.

Теорема 73. Если $f: X \to Y$ — непрерывная биекция компактного пространства X на хаусдорфово пространство Y, то f — гомеоморфизм.

Доказательство. Для гомеоморфизма f не хватает только обратной непрерывности. Покажем, что образ всякого замкнутого замкнут, и тогда обратная непрерывность будет обеспечена.

Пусть V — замкнутое подмножество компакта X. Значит V — компакт. Следовательно f(V) — компакт как непрерывный образ компакта. И тогда f(V) замкнуто, так как является компактом в хаусдорфовом пространстве.

Определение 53. Отображение f: XtoY называется вложением, если f — гомеоморфизм между X и f(X). Иначе говоря, f — вложение, если

- f непрерывно;
- f инъекция;
- f^{-1} непрерывно на области определения.

Следствие 73.1. Если $f: X \to Y$ — непрерывная интекция компактного пространства X в хаусдорфово пространство Y, то f — вложение.

Лемма 74 (Лебега). Пусть даны компактное метрическое пространство X и его открытое покрытие Σ . Тогда существует такое r > 0, что любой шар радиуса r содержится в одном элементе покрытия.

Определение 54. Число r называется числом Лебега покрытия Σ .

Доказательство. Для всякого $x \in X$ есть некоторое $r_x > 0$, что шар $B_{r_x}(x)$ содержится как подмножество некоторого элемента Σ .

Понятно, что $\{B_{r_x/2}(x)\}_{x\in X}$ — открытое покрытие X. Следовательно у него есть конечное подпокрытие $\{B_{r_{x_i}/2}(x_i)\}_{i=1}^n$. Тогда определим $r:=\min\{r_{x_i}/2\}_{i=1}^n$.

Если y — некоторая точка X, то y лежит в некотором шаре $B_{r_{x_k}/2}(x_k)$. Следовательно

$$B_r(y) \subseteq B_{r_{x_k}}(x_k),$$

т.е. шар $B_r(y)$ является подмножеством некоторого элемента Σ . Поскольку утверждение не зависит от y, то r является числом Лебега покрытия Σ .

Следствие 74.1. Пусть даны компактное метрическое пространство X, топологическое пространство Y, непрерывное $f: X \to Y$ и открытое покрытие Σ множества Y. Тогда существует r > 0, что для всякой точки а из X множество $f(B_r(a))$ содержится как подмножество в одном из элементов Σ .

Доказательство. Применим лемму Лебега к покрытию $\{f^{-1}(U) \mid U \in \Sigma\}$.

Определение 55. Пусть даны метрические пространства (X, d_X) и (Y, d_Y) . Отображение $f: X \to Y$ называется равномерно непрерывным, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall a, b \in X \qquad d_X(a, b) < \delta \longrightarrow d_Y(f(a), f(b)) < \varepsilon$$

Теорема 75. Пусть даны метрические пространства X и Y. Тогда если X компактно, то любое непрерывное $f: X \to Y$ будет равномерно непрерывным.

Доказательство. Применим лемму Лебега для отображения f и покрытия пространства Y шарами радиуса $\varepsilon/2$.

Определение 56. Пусть $(a_n)_{n=0}^{\infty}$ — последовательность точек топологического пространства X. Точка $b \in X$ называется её npedenom, если для всякой окрестности U точки b есть $N \in \mathbb{N}$ такое, что $a_n \in U$ для всех n > N.

Если b — предел последовательности $(a_n)_{n=0}^{\infty}$, то говорят, что $(a_n)_{n=0}^{\infty}$ exodumcs к b $((a_n)_{n=0}^{\infty} \to b, b = \lim_{n \to \infty} (a_n)_{n=0}^{\infty})$.

Теорема 76. В хаусдорфовом пространстве ни одна последовательность не может иметь более одного предела.

Определение 57. Пусть A — подмножество топологического пространства X. Совокупность пределов всевозможных последовательностей точек множества A называются секвенциальным замыканием этого множества. Обозначение: SCl(A).

Теорема 77. $SCl(A) \subseteq Cl(A)$.

Доказательство. Предел последовательности точек из A — точка прикосновения множества A.

Теорема 78. Если пространство X удовлетворяет первой аксиоме счётности, то для любого $A \subseteq X$ верно SCl(A) = Cl(A).

Доказательство. Пусть $b \in \operatorname{Cl}(A)$. Если $\{V_i\}_{i=0}^{\infty}$ — счетная база в точке b, то $U_n = \bigcap_{i=0}^n V_i$ — убывающая база в точке b ($U_0 \supseteq U_1 \supseteq U_2 \supseteq \dots$). Для всякого $n \in \mathbb{N} \cup \{0\}$ выбираем $a_n \in U_n \cap A$. Тогда $(a_n)_{n=0}^{\infty} \to b$.