Machine Learning for Graphs and Sequential Data

Graphs – Graphs & Networks

Lecturer: Prof. Dr. Stephan Günnemann

cs.cit.tum.de/daml

Summer Term 2024

Roadmap

- Chapter: Graphs
 - 1. Graphs & Networks
 - Motivation & Definitions
 - Properties of Real Networks
 - 2. Generative Models
 - 3. Ranking
 - 4. Clustering
 - Classification (Semi-Supervised Learning)
 - 6. Node/Graph Embeddings
 - 7. Graph Neural Networks (GNNs)

Why Should We Care?

- Web: hyper-text graph
- Information retrieval: bi-partite graphs (documents-terms)
- E-commerce: User-Product graphs

Why Should We Care?

- 'Viral' marketing, News propagation
- Computer network security: email/IP traffic and anomaly detection
- Ranking of search results
- Fraud detection in e-commerce systems
- Drug discovery, molecule property prediction
- Scene graph analysis
- •

Basic Definition

- Plain/simple graph G = (V, E)
 - Set of nodes V
 - Set of edges $E \subseteq V \times V$ // for undirected graphs: $(i, j) \in E \Leftrightarrow (j, i) \in E$
- Equivalent representation via (binary) adjacency matrix $A \in \{0,1\}^{|V| \times |V|}$
- Multiple extensions possible
 - weighted graphs (node weights, edge weights)
 - attributed graphs (multi-dimensional vectors assigned to nodes/edges)
 - temporal graphs (timestamp associated with node/edge)

Roadmap

- Chapter: Graphs
 - 1. Graphs & Networks
 - Motivation & Definitions
 - Properties of Real Networks
 - 2. Generative Models
 - 3. Ranking
 - 4. Clustering
 - Classification (Semi-Supervised Learning)
 - 6. Node/Graph Embeddings
 - 7. Graph Neural Networks (GNNs)

How are real networks structured?

- What does the Internet look like?
- What does Facebook look like?
- What is 'normal'/'abnormal'?
- Which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns
 - Large datasets reveal patterns/anomalies that may be invisible otherwise...

Are real graphs random?

- Erdös-Renyi Random Graph Model
 - Start with N (isolated) nodes
 - For every pair v1, $v2 \in V$ add an edge with probability p
 - Every edge occurs with equal probability

Example: 100 nodes, avg degree = 2

before layout

No obvious patterns

after layout

Laws and Patterns

- Q: Are real graphs random?
- A: NO!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Power Law Distributions

- Gaussian distributions are common in nature
- In networks, however, a power law distribution often explains the data better
- Example: Power law in the degree distribution

Power Law Distributions

- Definition Power Law:
 - Two variables x and y are related by a power law when $y(x) = Ax^{-\gamma}$ where A and γ (power law exponent) are positive constants
 - A random variable is distributed according to a power law when the probability density function (pdf) is given by $p(x) = Ax^{-\gamma}$ with $\gamma > 1$
- Note: Power law distribution looks like a line on a log-log scale
- Characteristic: Decay of pdf is only polynomial (Gaussian: exponential)
- → More likely to observe values far to the right of the mean
 - E.g. more likely to have nodes with a very high degree

a.k.a. heavy-tailed distributions

Examples: Power Law Distributions

- "Internet AS" graph with exponent 2.1 2.2
- "Internet router" graph with exponent 2.48
- Citation graphs with exponent 3
- Epinions (who-trust-whom)
- **-** ...

(a) Epinions In-degree

- Note: Graphs with degree distributions following a power law are called scalefree
 - $y(a \cdot x) = b \cdot y(x)$ // y(x)=number of nodes with degree x

Important Remark

- Important: We do not claim that the data's underlying distribution is a power law distribution
- Instead: In many cases a power law distribution is a good description/fit (or approximation) of what we observe
 - usually deviations to power law distribution are observed (to different degrees)
 - other models: exponential cutoff, lognormal distributions

(a) Epinions In-degree

"Gaussian Trap"

- Q: So what?
- A1: Be careful when writing algorithms!
 - Example: # of two-step-away pairs (= friends of friends)
 - O(d_max ^2) ~ 10M^2 for storage: ~0.8PB → a data center(!)

Gaussian distribution with same expectation (i.e. avg. degree)

Patterns and Algorithms

Q: So what?

A2: Patterns allow to design new algorithms!

Example: Clustering Coefficient

- Real social networks have a lot of triangles
 - Friends of friends are friends

$$- C = \frac{3 \cdot number \ of \ triangles}{number \ of \ connected \ triplets}$$

- Real-world networks often show large clustering coefficients
 Strong community structure
- Computation of clustering coefficient requires computation of triangles
 - But: triangles are expensive to compute (3-way join)

Efficient Triangle Counting

- How to efficiently estimate the number of triangles?
 - Let's look at some patterns...
- Recap: Adjacency matrix $A \in \{0, 1\}^{N \times N}$
 - $-a_{ij}=1$ if there is an edge between i and j, 0 otherwise
- Recap: Eigenvalue decomposition $A x = \lambda x$
- Observer: Power law in the eigenvalues of the adjacency matrix

Exponent = slope E = -0.48

Efficient Triangle Counting

- How does this help?
- Some nice fact (easy to show):
 - number of triangles = $\frac{1}{6}trace(A^3) = \frac{1}{6}\sum_i \lambda_i^3$
 - $-\lambda_i$ = eigenvalues of adjacency matrix A
- 2. Eigenvalues follow power law (highly skewed)
 - we only need the top few (largest) eigenvalues!
 - how can we compute them efficiently?

Recap: Power Iteration

- Eigenvalues are important for many ML/data mining tasks
 - PCA, Ranking of Websites, Community Detection, ...
 - How to compute them efficiently?
- Power iteration (a.k.a. Von Mises iteration)
 - Iterative approach to compute a single eigenvector
- Let X be a matrix and v be an arbitrary (normalized) vector
 - Iteratively compute $v \leftarrow \frac{X \cdot v}{\|X \cdot v\|}$ until convergence
 - in each step, v is simply multiplied with X and normalized
 - v converges to the eigenvector of X with greatest absolute value
 - Highly efficient for sparse data

Recap: Power Iteration

Convergence:

- Linear convergence with rate $|\lambda_2/\lambda_1|$
- Fast convergence if first and second eigenvalue are dissimilar

How to find multiple (the k largest) eigenvectors?

- Let us focus on symmetric matrices X
- Eigenvalue decomposition leads to: $X = \Gamma \cdot \Lambda \cdot \Gamma^T = \sum_{i=1}^d \lambda_i \cdot \gamma_i \cdot \gamma_i^T$
- Define deflated matrix: $\hat{X} = X \lambda_1 \cdot \gamma_1 \cdot \gamma_1^T$
 - \widehat{X} has the same eigenvectors as X except the first one has become zero
- ightharpoonup Apply power iteration on \hat{X} to find the second largest eigenvector of X

Example: Analysis of Twitter

- Anomalous nodes in Twitter (~ 3 billion edges)
- [U Kang et. al., PAKDD'11]

Real Graphs are Sparse

- N^2 possible edges for a graph with N nodes
- However, real-world graphs are very sparse $E \ll N^2$
- Instead of $E = O(N^2)$, we see $E = O(N^{\alpha})$ with α significantly less than 2

Every "XX" is a real world network

Note the log-log scale

 $\alpha \approx 1.4$

Small World Phenomenon

- Famous experiment by Travers and Milgram [TM1969]
 - Setup: Try to reach a random person by sending a chain letter
 - Result: The average length of chains that reach the person was six
 - → Length very small compared to number of participants
 - → "Small world phenomenon";
 "six degrees of separation"
- Ways to measure this phenomenon
 - Characteristic path length
 - Average diameter
 - Effective diameter/Eccentricity

Characteristic Path Length & Average Diameter

- Characteristic path length
 - For each starting node $v \in V$ consider the shortest path to every other node
 - Take the average length of all these paths
 - Consider average path length for all starting nodes and take the median

- median
$$\left\{\frac{1}{|V|}\sum_{v_j\in V} len(p_{min}(v,v_j))\right\}$$

- Average diameter
 - Similar to above but use (in last step) the mean instead of the median

$$- \frac{1}{|V|} \sum_{v \in V} \frac{1}{|V|} \sum_{v_j \in V} len(p_{min}(v, v_j))$$

Effective Diameter / Eccentricity & Hop-plot

- Let $N_h(u)$ be the number of nodes reachable from u via h hops
 - $N_h(u) = \{ v \in V \mid len(p_{min}(u, v)) \le h \}$
- The total neighborhood size N_h is the sum over all starting nodes

$$- N_h = \sum_{u \in V} |N_h(u)|$$

• Hop-plot: Plot of N_h versus h

- Effective diameter (or Eccentricity)
 - Minimum number of hops in which some fraction (e.g. 90%) of all connected pairs of nodes can reach each other
 - $\min\{k \in \mathbb{N} | N_k \ge 0.9 \cdot |V|^2\}$
 - Advantage: Also works for disconnected graphs

Importance of "Network Laws"

- Laws describing "normal" networks are important for:
- Design of algorithms
- Detection of abnormal/interesting patterns
 - Abnormalities deviate from the "normal" patterns
 - Prerequisite: specify what is normal
- Development of graph generators
 - Often: real world data not public available; or just small excerpts
 - Use synthetic data to test algorithms
 - Requirement: generate synthetic but realistic graphs
- Simulation studies
 - E.g. test next-generation internet protocol on graph "similar" to what Internet will look like a few years into the future

Questions

- How much memory do you need to store the edges of a graph with 1000 nodes and 10,000 edges in a dense adjacency matrix? How much for a sparse matrix?
- What is the average degree in an Erdös-Renyi graph with edge probability p? And in a real world sparse graph with $O(E) = O(N^{\alpha})$?

Reading Material

"Graph Mining: Laws, Tools, and Case Studies" by Deepayan Chakrabarti,
 Christos Faloutsos

Machine Learning for Graphs and Sequential Data

Graphs – Graphs & Networks

Lecturer: Prof. Dr. Stephan Günnemann

cs.cit.tum.de/daml

Summer Term 2024

