Indoor OSM Mapping the World Indoors

Marcus Götz, Andreas Hubel, Frederic Kerber

FOSSGIS 2012 22. März 2012

Gliederung / Agenda

- (1) Einführung / Motivation
- (2) Durchführung einer Umfrage zur Relevanz digitaler Karten
- (3) Wie können Daten vor Ort aufgenommen werden?
- (4) Wie können Daten in OSM gemappt werden?
- (5) Welche Anwendungen gibt es?
- (6) Diskussion

Wozu benötigt man überhaupt Indoor Daten?

- Gebäude werden zunehmend größer und komplexer
 - Burj Khalifa: 830m Höhe, 189 Stockwerke
 - Terminal 3 am Flughafen Dubai: 1.500.000 m² Nutzfläche
 - Großmarkt FlorraHolland: 990.000 m² Ausstellerfläche
 - Las Vegas Venetian Resort: 7.128 Zimmer
 - Einkaufszentrum Berjaya Times Square: 700.000 m² Ausstellerfläche
 - Mall of America: 520+ Geschäfte
 - Universitätsgebäude Warren G. Magnuson Health Sciences Building: 533.000 m² Nutzfläche
- unser Leben findet größtenteils drinnen statt
 - ein Bericht der American Physical Society belegt, dass der Durchschnitts-US-Bürger etwa
 90% seines Lebens im inneren von Gebäuden verbringt
 - andere Länder/Kulturen dürften ähnliche Zahlen aufweisen
- ein großer Teil dieser Zeit ist vermutlich in unbekannten Gebäuden

Indoor Maps/Anwendungen werden zunehmend interessanter...

- im privaten/öffentlichen Leben
 - viele Menschen sagen, dass bekannte Anwendungen (Navigation etc.) auch in Gebäude gebracht werden sollten bzw. dass diese nützlich wären
- in der Forschung
 - Navigation "auf den letzten Metern", Indoor Positionierung etc.
- in der Wirtschaft

Marcus Götz

Wäre es nicht schön...

- ... den k\u00fcrzesten Weg von seiner Haust\u00fcre bis zum n\u00e4chsten Starbucks zu finden (anstatt nur zur T\u00fcre gef\u00fchrt zu werden)?
- ... den k\u00fcrzesten Weg vom Eingang, zum Check-In und weiter zum Abfluggate am Flughafen zu finden?
- ... den k\u00fcrzesten Weg f\u00fcrs Umsteigen am Bahnhof angezeigt zu bekommen?
- ... eine detaillierte Übersicht (in 2D und/oder 3D) von der örtlichen Shopping Mall zu bekommen?
- ... den schnellsten Weg von der Rezeption zum Hotelzimmer und dann zum Pool angezeigt zu bekommen?
- ... usw.

Und das alles im Browser in einer Karte, oder auch auf dem Handy?

OpenStreetMap und dessen Mitglieder (ihr) hat gezeigt, dass...

011010

- es mehr kann, als die kommerziellen Datenanbieter
- es eine riesige Vielfalt von unterschiedlichen Informationen bereitstellen kann
- nicht nur Straßen interessant sind (es gibt mittlerweile mehr Gebäude in OSM als Straßen, ~ 53 vs. 49 Mio.)
- Indoor ein Thema für OSM wäre

Warum sollte man also nicht auch versuchen, die Welt Indoor zu mappen?

Durchführung einer Umfrage zur Relevanz digitaler Karten

Umfrage zur Relevanz digitaler Karten

- Erkenntnisse über die Nutzung digitaler Karten sollen gewonnen werden
- Schwerpunkt auf einem Vorschlag für ein OpenStreetMap ähnliches Indoor-Projekt (OpenIndoorMap, OIM)
- 509 abgeschlossene Umfragen von Internet-Nutzern
- 149 abgeschlossene Umfragen von Mitgliedern der OSM-Community

Nutzung bestehender Dienste

Ergebnisse der Befragung von 509 Internet-Nutzern

Innenraumkarten wünschenswert

Meistgenannte Gebäudetypen der beiden befragten Gruppen

Internet-Nutzer

Mitglieder der OSM-Community

Nutzung digitaler Indoor-Karten

Ergebnisse der Befragung von 509 Internet-Nutzern

- 28,5% der Befragten wünschten sich bereits digitale Indoor-Karten
- 62% würden digitale Indoor-Karten nutzen
- Mehr als 45% f\u00e4nden auch Indoor-Navigation sinnvoll oder sehr sinnvoll
- 29,1% derjenigen, die auch OSM kannten, würden zu OIM beitragen

Nutzung digitaler Indoor-Karten

Ergebnisse der Befragung von 149 Mitgliedern der OSM-Community

- 51,7% der Befragten wünschten sich bereits digitale Indoor Karten
- 90% würden digitale Indoor-Karten nutzen
- 63,9% fänden auch Indoor-Navigation sinnvoll oder sehr sinnvoll
- 74% würden ebenfalls zu OIM beitragen

Nutzung digitaler Indoor-Karten

Ergebnisse der Befragung von 149 Mitgliedern der OSM-Community

 51,7% der Befragten wünschten sich bereits digitale Indoor Karten

Ein oft genanntes Problem bzgl. Innenraumerfassung:

"Zu kompliziert, da es kein GPS o.ä. gibt"

• 74% würden ebenfalls zu OIM beitragen

Wie können Daten vor Ort aufgenommen werden?

Bestehende Mapping-Methoden

- Abgehen zu erfassender Gebiete mit GPS-Loggern
 - In Innenräumen nicht möglich, da GPS-Signale nicht in ausreichender Qualität oder gar nicht zur Verfügung stehen

- Abzeichnen von Luftaufnahmen
 - Luftaufnahmen können keine Informationen über das Gebäudeinnere liefern

Instrumentierte Umgebungen

- Instrumentierte Umgebungen erlauben die Lokalisierung von Nutzern ähnlich wie GPS
- Verschiedene Verfahren existieren
 - Infrarot-Baken
 - W-LAN Infrastruktur
 - **–** ...
- Nachteile:
 - Vorbereitung der zu erfassenden Räumlichkeiten
 - Verwendung potenziell teurer Hardware

- Moderne Smartphones sind mit einer Vielzahl von Sensoren ausgestattet:
 - Beschleunigungssensor
 - Magnetometer
 - Gyroskop
 - **–** ...

Vorteile:

- Steigende Verbreitung von Smartphones erspart oft weitere Investitionen
- Keine Instrumentierung notwendig, daher mehr potenziell erfassbare Innenräume

 Zwei Ansätze zur Erfassung nichtinstrumentierter Innenräume:

Abgehen, der zu erfassenden Räume (Dead-Reckoning)

 Semi-automatische Vermessung durch trigonometrische Berechnungen

Dead-Reckoning Ansatz

 Erkennen einzelner Schritte anhand der Messwerte des Beschleunigungssensors

 Multiplikation mit vorher erfasster Schrittlänge liefert zurückgelegte Wegstrecke

 Richtungsänderungen des Nutzers werden durch Magnetometer und Gyroskop registriert

Sensor Fusion

Kombination zweier Sensortypen zur Verbesserung der Messwerte

- Magnetometer in Gebäuden oftmals unzuverlässig auf Grund von Störungen des Erdmagnetfeldes durch z.B.
 - Metall in Wänden und Decken
 - Elektronische Geräte
- Gyroskop-Werte häufen mit der Zeit Fehler an
 - Drift-Problem zusätzlich verstärkt durch Integration
- Kombination beider Typen (Sensor-Fusion) liefert Langzeitstabile Werte und kann kurzfristige Fehler korrigieren

Dead-Reckoning Ansatz - Schritterkennung

Dead-Reckoning Ansatz - Schritterkennung

Dead-Reckoning Ansatz - Schritterkennung

Semi-automatische Raumvermessung

- Erlaubt das Vermessen von Räumen, deren Außenwände nicht abgegangen werden können
 - z.B. da Tische oder Schränke dies verhindern
- Anpeilen der Tür- bzw. Raumecken mittels Zielkreuz im Kamerabild – wahlweise auf Boden- oder Deckenniveau
- Liefert gute Messergebnisse für Räume bis zu zehn Metern Wandlänge

Semi-automatische Raumvermessung

Vermessen einer Raumecke

$$\mathbf{b} = \mathbf{h} / tan(90^{\circ} - \boldsymbol{\alpha})$$

Wandberechnung nach Vermessen zweier Ecken

$$\mathbf{w} = \sqrt{\mathbf{b_1^2} + \mathbf{b^2} - 2 \cdot \mathbf{b_1} \cdot \mathbf{b} \cdot cos(\boldsymbol{\beta})}$$

Semi-automatische Raumvermessung

Wie können Daten in OSM gemappt werden?

Motivation für den Mapping Proposal IndoorOSM

- Sammlung von detaillierten Plänen der unterschiedlichen Stockwerke eines Gebäudes
- Erfassung von unterschiedlichen Details wie Türen und Fenster
- Anreicherung der Daten mit 3D Informationen (height)
- Korridore sollen auch als Polygone erfasst werden, da es oftmals schwierig / unmöglich ist, eine Centerline zu bestimmen
- Detaillierte Beschreibung des Proposals:

http://wiki.openstreetmap.org/wiki/IndoorOSM

Grundgedanken des Models

- ein Gebäude (building) besteht aus mehreren Stockwerken (level)
- ein Stockwerk besteht aus
 - mehreren Teilen (buildingpart) wie etwa Räume, Korridore
 - einer (oder mehrerer) Außenhüllen (shell)
- mehrere Stockwerke sind durch Fahrstühle, Treppenhäuser etc. vertikal verbunden (verticalpassage)
- Fenster/Öffnungen (window) und Türen (door) sind Teil eines buildingparts
- Detaillierte Beschreibung der Abhängigkeiten bzw. der wissenschaftlichen Motivation (inkl. einer umfangreichen Ontologie):

Goetz M., Zipf A. (2011): Extending OpenStreetMap to Indoor Environments:

Bringing Volunteered Geographic Information to the Next Level,
In: Rumor, M., Zlatanova, S., LeDoux, H. (eds.) Urban and Regional Data
Management: Udms Annual 2011: Delft, The Netherlands. p. 47-58.

7x Relation Member (role: buildingpart), OSM relation/way → Räume/Korridore/Treppen etc.
1x Relation Member (role: shell), OSM relation/way → die Außenhülle (Wand) des Stocks

Räume haben eine Geometrie (way oder relation) und entsprechende Tags:

Türen und Fenster sind Teil der entsprechenden Geometrie (way) und

haben entsprechende Tags:

Andere Tagging-Schemas

- Nur in einzelnen Fällen im Wiki dokumentiert
 - level-Tag scheint sich durchgesetzt zu haben
- LevelMap-Proposal
 - klassisches Mappen in 2D
 - Zusammenhänge jeweils durch Relationen
 - gleiche Geschosse müssen nur ein Mal modelliert werden
- Indoor1-Proposal
 - wird als Indoor2 überarbeitet

Indoor2-Proposal

- mehrere Arten Objekte je nach Detailgrad abzubilden
 - Treppen ausmodelliert oder als Node
 - Räume als Area oder als Node
- Wege mit highway=corridor
- ÖPNV-Haltestellen (Untergrund)
- Aufzüge als einzelne Nodes (levels=1;5)
- Relations "verpflichtend", empfehlend oder optional?

Wie kann IndoorOSM gemappt werden?

- Foto eines Evakuierungsplans kann als Vorlage dienen
 - → muss eventuell bearbeitet (begradigt etc.) werden
- Plan kann mittels PicLayer (JOSM Plugin) in JOSM
 - geöffnet werden
 - an bestehendem OSM Gebäudegrundriss ausgerichtet werden
- die Grundrisse der einzelnen Räume etc. können dann direkt abgezeichnet werden
- mittels Filterregeln kann man ganze Stockwerke ausblenden:

```
(child role:level_-1) OR (child child role:level_-1) (child role:level_0) OR (child child role:level_0)
```

• Arbeiten gemeinsam mit der Universität Stuttgart: automatische Generierung eines IndoorOSM Datensatz aus einem Evakuierungsplan Foto

Welche Anwendungen gibt es?

Ansicht einer 2D Karte des Gebäudes mit Räumen und Türen

Auswahlfeld für das jeweilige Stockwerk

Indoor Routing mit Anzeige der ganzen Route (Überblick)

Indoor Routing mit Anzeige der Route für das gewählte Stockwert

Prototypische Anwendung in 3D (basierend auf XML3D/WebGL)

3D Indoor Routing und Ein-/Ausblenden von Stockwerken

3D Innenraummodelle

Aus IndoorOSM Daten (mit *height*) können 3D Innenraummodelle erzeugt werden

Anwendungen

- IndoorOSM Demo
 - http://indoorosm.uni-hd.de
- RoutingJS
 - http://andreas-hubel.de/ba/
- FootPath
 - http://youtu.be/RQhrvT2hUAc?hd=1
- OpenStreetBrowser
 - http://www.openstreetbrowser.org/#rel_1370729

Zusammenfassung

- Indoor wird immer wichtiger
- das Interesse an Indoor Daten steigt
- es gibt verschiedene Ansätze um Daten zu erheben
- je nach Detailgrad können Daten unterschiedlich gemappt werden
- es gibt bereits einige Anwendungen, die Indoor OSM Daten nutzen

Vielen Dank für die Aufmerksamkeit

Fragen / Diskussion?

m.goetz@uni-heidelberg.de post@andreas-hubel.de frederic.kerber@dfki.de

