# **Bimorphism Machine Translation**

Daniel Quernheim

April 10, 2017

# The Big Picture



## Section 1

## Intuition

# **Translation: Word by Word**



# **Translation: Compositional**

```
that \hat{=} empty \hat{=} promise \hat{=}
                              Dieses
                                         leere
                                                   Versprechen
                                  that empty promise \hat{=}
                  heard =
                   gehört
                                 Dieses leere Versprechen
                        heard that empty promise \hat{=}
        have ≘
                                                                    before \hat{=}
                                                                  schon einmal
         haben
                     Dieses leere Versprechen ... gehört
                       have heard that empty promise before \hat{=}
We ≘
               Dieses leere Versprechen haben ... schon einmal gehört
 wir
             We have heard that empty promise before \hat{=}
```

Dieses leere Versprechen haben wir schon einmal gehört

#### Instantiated inference rule

```
\frac{\mathsf{that} \; \widehat{=} \; \mathsf{dieses} \quad \mathsf{empty} \; \widehat{=} \; \mathsf{leere} \quad \mathsf{promise} \; \widehat{=} \; \mathsf{Versprechen}}{\mathsf{that} \; \mathsf{empty} \; \mathsf{promise} \; \widehat{=} \; \mathsf{Dieses} \; \mathsf{leere} \; \mathsf{Versprechen}}
```

#### Instantiated inference rule

$$\frac{\mathsf{that} \; \widehat{=} \; \mathsf{dieses} \quad \mathsf{empty} \; \widehat{=} \; \mathsf{leere} \quad \mathsf{promise} \; \widehat{=} \; \mathsf{Versprechen}}{\mathsf{that} \; \mathsf{empty} \; \mathsf{promise} \; \widehat{=} \; \mathsf{Dieses} \; \mathsf{leere} \; \; \mathsf{Versprechen}}$$

#### Abstract inference rule

$$\frac{x_1 \stackrel{\frown}{=} y_1 \quad x_2 \stackrel{\frown}{=} y_2 \quad x_3 \stackrel{\frown}{=} y_3}{x_1 x_2 x_3 \stackrel{\frown}{=} y_1 y_2 y_3}$$

#### Instantiated inference rule

$$\frac{\text{that} \; \widehat{=} \; \text{dieses} \quad \text{empty} \; \widehat{=} \; \text{leere} \quad \text{promise} \; \widehat{=} \; \text{Versprechen}}{\text{that empty promise} \; \widehat{=} \; \text{Dieses} \; \text{leere} \; \text{Versprechen}}$$

#### Abstract inference rule

$$\frac{x_1 \stackrel{\frown}{=} y_1 \quad x_2 \stackrel{\frown}{=} y_2 \quad x_3 \stackrel{\frown}{=} y_3}{x_1 x_2 x_3 \stackrel{\frown}{=} y_1 y_2 y_3}$$

#### Phrase labels

$$\frac{x_1[\mathsf{DT}] \, \widehat{=} \, y_1[\mathsf{PDAT}] \quad x_2[\mathsf{JJ}] \, \widehat{=} \, y_2[\mathsf{ADJA}] \quad x_3[\mathsf{NN}] \, \widehat{=} \, y_3[\mathsf{NN}]}{x_1 x_2 x_3[\mathsf{NP}] \, \widehat{=} \, y_1 y_2 y_3[\mathsf{NP-OA}]}$$

#### Instantiated inference rule

$$\frac{\mathsf{that} \; \widehat{=} \; \mathsf{dieses} \quad \mathsf{empty} \; \widehat{=} \; \mathsf{leere} \quad \mathsf{promise} \; \widehat{=} \; \mathsf{Versprechen}}{\mathsf{that} \; \mathsf{empty} \; \mathsf{promise} \; \widehat{=} \; \mathsf{Dieses} \; \mathsf{leere} \; \mathsf{Versprechen}}$$

#### Abstract inference rule

$$\frac{x_1 \stackrel{\frown}{=} y_1 \quad x_2 \stackrel{\frown}{=} y_2 \quad x_3 \stackrel{\frown}{=} y_3}{x_1 x_2 x_3 \stackrel{\frown}{=} y_1 y_2 y_3}$$

#### Phrase labels

# **Syntax Trees**



# **Equivalence and Correspondence**

$$\begin{array}{cccc} e = \text{`like'} & \widehat{=} & f = \text{`mag'} \\ & \equiv & \equiv \\ e' = \text{`eat'} & \widehat{=} & f = \text{`esse'} \end{array}$$









I like apples.

 $\equiv$ 









Ich esse Äpfel.

### **Derivation Trees**

### **Assumptions**

- inference rules have labels ightharpoonup language-independent ranked alphabet  $\Delta$
- $\sim$  'in' and 'out' process trees over  $\Delta$ language-specific realization mappings

### **Derivation Trees**

### **Assumptions**

inference rules have labels

- $\rightarrow$  language-independent ranked alphabet  $\Delta$
- language-specific realization mappings
- $\sim$  'in' and 'out' process trees over  $\Delta$

$$\frac{NP \widehat{=} NP}{NP \widehat{=} VP} \underbrace{(3) \quad \frac{\overline{V} \widehat{=} \overline{V} \stackrel{(5)}{=} \overline{NP} \stackrel{(4)}{=} (2)}{VP \widehat{=} VP}}_{S \widehat{=} S} \underbrace{(1)}$$
 out 
$$\int \text{out}$$
 I open the box.  $\widehat{=}$  私は箱を開けます。 (watashi wa hako wo akemasu)

# **Inference Rules on Strings**

$$\begin{array}{lll} & \text{in}(1)(x_1,x_2) = x_1x_2 & \text{out}(1)(x_1,x_2) = x_1x_2 \\ & \text{in}(2)(x_1,x_2) = x_1x_2 & \text{out}(2)(x_1,x_2) = x_2x_1 \\ & \text{in}(3)() = \text{i} & \text{out}(3)() = \text{watashi wa} \\ & \text{in}(4)() = \text{the box} & \text{out}(4)() = \text{hako wo} \\ & \text{in}(5)() = \text{open} & \text{out}(5)() = \text{akemasu} \end{array}$$

### **Derivation tree and string correspondence**

$$\frac{\overbrace{\text{i} \; \widehat{=} \; \text{watashi wa}}^{} \; (3)}{\text{i} \; \widehat{\text{open}} \; \widehat{=} \; \text{akemasu}} \; (5) \quad \frac{\text{the box} \; \widehat{=} \; \text{hako wo}}{\text{the box} \; \widehat{=} \; \text{hako wo akemasu}} \; (2)}{\text{open the box} \; \widehat{=} \; \text{watashi wa hako wo akemasu}} \; (1)$$

### Inference Rules on Trees

$$\begin{split} &\text{in}(1)(x_1,x_2) = \mathsf{S}(x_1,x_2) & \text{out}(1)(x_1,x_2) = \mathsf{S}(x_1,x_2) \\ &\text{in}(2)(x_1,x_2) = \mathsf{VP}(x_1,x_2) & \text{out}(2)(x_1,x_2) = \mathsf{VP}(x_2,x_1) \\ &\text{in}(3)() = \mathsf{NP}(\mathsf{i}) & \text{out}(3)() = \mathsf{NP}(\mathsf{watashi, wa}) \\ &\text{in}(4)() = \mathsf{NP}(\mathsf{the, box}) & \text{out}(4)() = \mathsf{NP}(\mathsf{hako, wo}) \\ &\text{in}(5)() = \mathsf{V}(\mathsf{open}) & \text{out}(5)() = \mathsf{V}(\mathsf{akemasu}) \end{split}$$

### Tree correspondence



# Linguistic Phenomena

#### **Local rotations**



# Linguistic Phenomena

#### **Local rotations**



### **Discontiguities**

$$\mathsf{VBD}(\mathsf{went}) \mathbin{\widehat{=}} (\mathsf{VAFIN}(\mathsf{ist}), \mathsf{VVPP}(\mathsf{gegangen}))$$

# Linguistic Phenomena

#### **Local rotations**



### **Discontiguities**

$$VBD(went) = (VAFIN(ist), VVPP(gegangen))$$

# Section 2

**Theory** 

ranked alphabet of language-independent symbols

 $T_{\Delta}$  derivation trees over  $\Delta$ 

- ranked alphabet of language-independent symbols
- $T_{\Delta}$  derivation trees over  $\Delta$ 
  - "foreign" or input (source) language
  - "English" or output (target) language

- ranked alphabet of language-independent symbols
- $T_{\Delta}$  derivation trees over  $\Delta$ 
  - "foreign" or input (source) language
  - "English" or output (target) language
  - surface strings of language F
  - a string in  ${f F}$

- ranked alphabet of language-independent symbols
- $T_{\Delta}$  derivation trees over  $\Delta$ 
  - "foreign" or input (source) language
  - E "English" or output (target) language
  - surface strings of language F
  - a string in  $\mathbf{F}$
- $T_F$  syntactic trees of language F
  - a tree in  $T_F$

- ranked alphabet of language-independent symbols
- $T_{\Lambda}$  derivation trees over  $\Delta$ 
  - "foreign" or input (source) language
  - "English" or output (target) language
  - surface strings of language F
  - a string in  $\mathbf{F}$
- $T_F$  syntactic trees of language F
  - a tree in  $T_F$
- yield(f) string yield (frontier) of tree f

$$\overline{\mathsf{V} \,\widehat{=}\,\mathsf{V}} \,(\alpha) \qquad \qquad \overline{\mathsf{NP} \,\widehat{=}\,\mathsf{NP}} \,(\beta)$$

inference rules have

- *labels* in 
$$\Delta = \{\alpha, \beta, \gamma, \delta, \dots\}$$

$$\frac{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V} \quad \mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ (\gamma)$$

$$\overline{\mathsf{V} \,\widehat{=}\,\mathsf{V}} \, (\alpha) \qquad \qquad \overline{\mathsf{NP} \,\widehat{=}\,\mathsf{NP}} \, (\beta)$$

$$\frac{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V} \quad \mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ (\gamma)$$

$$\frac{\overrightarrow{V} \stackrel{\frown}{=} \overrightarrow{V} \qquad \overrightarrow{NP} \stackrel{\frown}{=} \overrightarrow{NP}}{\overrightarrow{VP} \stackrel{\frown}{=} \overrightarrow{VP}}$$

- inference rules have
  - *labels* in  $\Delta = \{\alpha, \beta, \gamma, \delta, \dots\}$
  - typed premises and conclusions

$$\overline{\mathsf{V} \, \widehat{=} \, \mathsf{V}} \,^{0.6}$$

$$\overline{\mathsf{NP} \, \widehat{=} \, \mathsf{NP}} \, ^{0.4}$$

$$\frac{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V} \quad \mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ 0.5$$

- inference rules have
  - *labels* in  $\Delta = \{\alpha, \beta, \gamma, \delta, \dots\}$
  - typed premises and conclusions
  - weights in  $\mathbb{R}$

$$\overline{\mathrm{V} \, \widehat{=} \, \mathrm{V}} \, 0.6$$
  $\overline{\mathrm{NP} \, \widehat{=} \, \mathrm{NP}} \, 0.4$ 

$$\frac{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V} \quad \mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ 0.5$$

$$\frac{\overline{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V}} \stackrel{0.6}{} \overline{\mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \stackrel{0.4}{0.6 \cdot 0.4 \cdot 0.5} = 0.12$$

- inference rules have
  - *labels* in  $\Delta = \{\alpha, \beta, \gamma, \delta, \dots\}$
  - typed premises and conclusions
  - weights in  $\mathbb{R}$
- weight of proof tree = product of rule weights
- final weight mapping for conclusions

$$\overline{\mathrm{V} \, \widehat{=} \, \mathrm{V}} \, 0.6$$
  $\overline{\mathrm{NP} \, \widehat{=} \, \mathrm{NP}} \, 0.4$ 

$$\frac{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V} \quad \mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ 0.5$$

$$\frac{\overline{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V}} \stackrel{0.6}{} \overline{\mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \stackrel{0.4}{0.6 \cdot 0.4 \cdot 0.5} = 0.12$$

- inference rules have
  - *labels* in  $\Delta = \{\alpha, \beta, \gamma, \delta, \dots\}$
  - typed premises and conclusions
  - *weights* in  $\mathbb{R}$
- weight of proof tree = product of rule weights
- final weight mapping for conclusions
- weight of derivation tree  $t \in T_{\Delta}$ = sum of all proof trees for t

$$\overline{\mathsf{V} \,\widehat{=}\,\mathsf{V}}$$
 0.6

$$\overline{\mathsf{NP} \,\widehat{=}\,\mathsf{NP}}^{\,0.4}$$

$$\frac{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V} \quad \mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ 0.5$$

$$\frac{\overline{\mathsf{V} \mathbin{\widehat{\cong}} \mathsf{V}} \ 0.6}{\mathsf{VP} \mathbin{\widehat{\cong}} \mathsf{VP}} \ \frac{0.4}{0.6 \cdot 0.4 \cdot 0.5} = 0.12$$

- inference rules have
  - *labels* in  $\Delta = \{\alpha, \beta, \gamma, \delta, \dots\}$
  - typed premises and conclusions
  - *weights* in  $\mathbb R$
- weight of proof treeproduct of rule weights
- final weight mapping for conclusions
- weight of derivation tree  $t \in T_{\Delta}$ = sum of all proof trees for t

 $L: T_{\Delta} \to \mathbb{R}$  is a weighted regular tree language (wRTL)

$$\overline{\mathsf{V} \, \widehat{=} \, \mathsf{V}} \,^{0.6}$$

$$\overline{\mathsf{NP} \,\widehat{=}\,\mathsf{NP}}^{\,0.4}$$

$$\frac{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V} \quad \mathsf{NP} \mathbin{\widehat{=}} \mathsf{NP}}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ 0.5$$

$$\frac{\overline{\mathsf{V} \mathbin{\widehat{=}} \mathsf{V}} \ 0.6}{\mathsf{VP} \mathbin{\widehat{=}} \mathsf{VP}} \ \frac{0.4}{0.6 \cdot 0.4 \cdot 0.5} = 0.12$$

- inference rules have
  - *labels* in  $\Delta = \{\alpha, \beta, \gamma, \delta, \dots\}$
  - typed premises and conclusions
    - $\sim$  states
  - *weights* in  $\mathbb R$
- final weight mapping for conclusions
- weight of derivation tree  $t \in T_{\Delta}$ = sum of all proof trees for t

 $L: T_{\Delta} \to \mathbb{R}$  is a weighted regular tree language (wRTL)

# **Homomorphisms**

### Homomorphism

$$egin{aligned} \left(h_k:\Delta^{(k)} o A^{(A^k)}\mid k\in\mathbb{N}
ight) & ext{extends to} & h:T_\Delta o A \ & h(t)=h_k(\delta)(h(t_1),\dots,h(t_k)) \ & ext{for} & t=\delta(t_1,\dots,t_k) \end{aligned}$$

### **Useful homomorphisms**

String concatenation 
$$A = \mathbf{F}$$
  
Tree homomorphisms  $A = T_F$ 

Tree *m*-morphisms 
$$A = (T_F)^m$$

# **Bimorphism Machine Translation**

(tree) homomorphism

wRTL

(tree) homomorphism

 $in: T_{\Lambda} \to T_F$ 

 $L:T_{\Lambda} \to \mathbb{R}$  out:  $T_{\Lambda} \to T_E$ 



(in, L, out) is a weighted bimorphism

# **History**

### **Noisy Channel Model**



### **Probability space**

$$(\Omega, 2^{\Omega}, \Pr)$$
 with  $\Omega = \mathbf{F} \times \mathbf{E}$ 

#### Random variables

$$S_{\mathbf{F}}:\Omega\to\mathbf{F}$$

$$S_{\mathbf{F}}(\mathbf{f}, \mathbf{e}) = \mathbf{f}$$

$$\Pr(\mathbf{f}) \text{ for } \Pr(S_{\mathbf{F}} = \mathbf{f})$$

$$S_{\mathbf{E}}:\Omega\to\mathbf{E}$$

$$S_{\mathbf{E}}(\mathbf{f}, \mathbf{e}) = \mathbf{e}$$

$$S_{\mathbf{F}}: \Omega \to \mathbf{F}$$
  $S_{\mathbf{F}}(\mathbf{f}, \mathbf{e}) = \mathbf{f}$   $\Pr(\mathbf{f})$  for  $\Pr(S_{\mathbf{F}} = \mathbf{f})$   $S_{\mathbf{E}}: \Omega \to \mathbf{E}$   $S_{\mathbf{E}}(\mathbf{f}, \mathbf{e}) = \mathbf{e}$   $\Pr(\mathbf{e})$  for  $\Pr(S_{\mathbf{E}} = \mathbf{e})$ 

# **History**Noisy Channel Model



#### Search for the best translation

$$\begin{split} \hat{\mathbf{e}} &= \mathop{\mathrm{arg\ max}}_{\mathbf{e} \in E} \Pr(\mathbf{e}|\mathbf{f}) \\ &= \mathop{\mathrm{arg\ max}}_{\mathbf{e} \in E} \frac{\Pr(\mathbf{f}|\mathbf{e}) \cdot \Pr(\mathbf{e})}{\Pr(\mathbf{f})} \\ &= \mathop{\mathrm{arg\ max}}_{\mathbf{e} \in E} \left( \underbrace{\Pr(\mathbf{f}|\mathbf{e})}_{\text{translation model language model}} \right) \end{split}$$

# **History**

### Maximum Entropy Model

#### **Feature functions**

$$(\phi_i : \mathbf{F} \times \mathbf{E} \to [0, 1] \mid i \in [m])$$

#### Linear combination

$$\Pr(\mathbf{e}|\mathbf{f}) \propto \prod_{i=1}^{m} \phi_i(\mathbf{f}, \mathbf{e})^{\lambda_i}$$
$$= \exp\left(\sum_{i=1}^{m} \lambda_i \cdot \log \phi_i(\mathbf{f}, \mathbf{e})\right)$$

("log-linear model")

### **Probability space**

$$(\Omega, 2^{\Omega}, \Pr)$$
 with  $\Omega = T_{\Delta}$ 

#### Random variables

$$\begin{split} T_{\mathbf{F}}:\Omega \to T_F & T_{\mathbf{F}}(t) = \mathsf{in}(t) & \Pr(f) \text{ for } \Pr(T_{\mathbf{F}} = f) \\ T_{\mathbf{E}}:\Omega \to T_E & T_{\mathbf{E}}(t) = \mathsf{out}(t) & \Pr(e) \text{ for } \Pr(T_{\mathbf{E}} = e) \\ S_{\mathbf{F}}:\Omega \to \mathbf{F} & S_{\mathbf{F}}(t) = \mathsf{yield}(\mathsf{in}(t)) & \Pr(f) \text{ for } \Pr(S_{\mathbf{F}} = f) \\ S_{\mathbf{E}}:\Omega \to \mathbf{E} & S_{\mathbf{E}}(t) = \mathsf{yield}(\mathsf{out}(t)) & \Pr(e) \text{ for } \Pr(S_{\mathbf{E}} = e) \end{split}$$

$$\hat{\mathbf{e}} = \operatorname*{arg\ max}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{e} | \mathbf{f})$$

$$\begin{split} \hat{\mathbf{e}} &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{e}|\mathbf{f}) \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \frac{\Pr(\mathbf{f}, \mathbf{e})}{\Pr(\mathbf{f})} \end{split}$$

$$\begin{split} \hat{\mathbf{e}} &= \mathop{\mathrm{arg\ max}}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{e}|\mathbf{f}) \\ &= \mathop{\mathrm{arg\ max}}_{\mathbf{e} \in \mathbf{E}} \frac{\Pr(\mathbf{f}, \mathbf{e})}{\Pr(\mathbf{f})} \\ &= \mathop{\mathrm{arg\ max}}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{f}, \mathbf{e}) \end{split}$$

$$\begin{split} \hat{\mathbf{e}} &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{e} | \mathbf{f}) \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \frac{\Pr(\mathbf{f}, \mathbf{e})}{\Pr(\mathbf{f})} \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{f}, \mathbf{e}) \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \sum_{t \in T_{\Delta}} \Pr(\mathbf{f}, t, \mathbf{e}) \end{split}$$

$$\begin{split} \hat{\mathbf{e}} &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{e} | \mathbf{f}) \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \frac{\Pr(\mathbf{f}, \mathbf{e})}{\Pr(\mathbf{f})} \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \Pr(\mathbf{f}, \mathbf{e}) \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \sum_{t \in T_{\Delta}} \Pr(\mathbf{f}, t, \mathbf{e}) \\ &= \operatorname*{max}_{\mathbf{e} \in \mathbf{E}} \sum_{\substack{\text{yield}(\text{in}(t)) = \mathbf{f} \\ \text{yield}(\text{out}(t)) = \mathbf{e}}} \Pr(t) \end{split}$$

 $\begin{aligned} \text{because } \Pr(\mathbf{f},t,\mathbf{e}) &= 0 \\ \text{if } \text{yield}(\text{in}(t)) \neq \mathbf{f} \\ \text{or } \text{yield}(\text{out}(t)) \neq \mathbf{e} \end{aligned}$ 

$$\hat{\mathbf{e}} = \underset{\mathbf{e} \in \mathbf{E}}{\operatorname{arg max}} \sum_{\substack{\text{yield}(\mathsf{in}(t)) = \mathbf{f} \\ \text{yield}(\mathsf{out}(t)) = \mathbf{e}}} \Pr(t)$$

$$\begin{split} \hat{\mathbf{e}} &= \underset{\mathbf{e} \in \mathbf{E}}{\text{max}} \sum_{\substack{\text{yield}(\text{in}(t)) = \mathbf{f}\\ \text{yield}(\text{out}(t)) = \mathbf{e}}} \Pr(t) \\ &= \underset{\mathbf{e} \in \mathbf{E}}{\text{max}} \sum_{\substack{\text{yield}(\text{in}(t)) = \mathbf{f}\\ \text{yield}(\text{out}(t)) = \mathbf{e}}} \Pr(t)^{\lambda_1} \cdot \Pr(t)^{\lambda_2} \cdot \Pr(t)^{\lambda_3} \\ &\qquad \qquad \text{with } \lambda_1, \lambda_2, \lambda_3 \in [0, 1]\\ &\qquad \qquad \text{such that } \lambda_1 + \lambda_2 + \lambda_3 = 1 \end{split}$$

### **Decompositions**

$$Pr(t) = Pr(t, f)$$

$$= Pr(f) \cdot Pr(t|f)$$

$$= Pr(f, \mathbf{f}) \cdot Pr(t|f)$$

### **Decompositions**

$$\begin{aligned} \Pr(t) &= \Pr(t, f) \\ &= \Pr(f) \cdot \Pr(t|f) \\ &= \Pr(f, \mathbf{f}) \cdot \Pr(t|f) \end{aligned}$$

$$\begin{aligned} \Pr(t) &= \Pr(t, e) \\ &= \Pr(t|e) \cdot \Pr(e) \\ &= \Pr(t|e) \cdot \Pr(e, \mathbf{e}) \\ &= \Pr(t|e) \cdot \frac{\Pr(e, \mathbf{e})}{\Pr(\mathbf{e})} \cdot \Pr(\mathbf{e}) \end{aligned}$$

### **Decompositions**

$$\Pr(t) = \Pr(t, e)$$

$$= \Pr(t) \cdot \Pr(t)$$

$$= \Pr(t) \cdot \Pr(t|e) \cdot \Pr(e)$$

$$= \Pr(f, \mathbf{f}) \cdot \Pr(t|f)$$

$$= \Pr(t|e) \cdot \Pr(e, \mathbf{e})$$

$$= \Pr(t|e) \cdot \frac{\Pr(e, \mathbf{e})}{\Pr(e)} \cdot \Pr(e)$$

### **Factored Model**

$$\begin{aligned} \Pr(t) &= \Pr(t)^{\lambda_1} \cdot \Pr(t)^{\lambda_2} \cdot \Pr(t)^{\lambda_3} \\ &= \left( \Pr(f, \mathbf{f}) \cdot \Pr(t|f) \right)^{\lambda_1} \cdot \Pr(t)^{\lambda_2} \cdot \left( \Pr(t|e) \cdot \frac{\Pr(e, \mathbf{e})}{\Pr(\mathbf{e})} \cdot \Pr(\mathbf{e}) \right)^{\lambda_3} \end{aligned}$$

$$\Pr(t) = \left(\underbrace{\Pr(f, \mathbf{f})}_{\mathsf{parser}} \cdot \underbrace{\Pr(t|f)}_{\mathsf{forward}}\right)^{\lambda_1} \cdot \underbrace{\Pr(t)}_{\mathsf{symm.}}^{\lambda_2} \cdot \left(\underbrace{\underbrace{\Pr(t|e)}_{\mathsf{backward}} \cdot \underbrace{\Pr(e, \mathbf{e})}_{\mathsf{Pr}(\mathbf{e})}}_{\mathsf{Dr}(\mathbf{e})} \cdot \underbrace{\underbrace{\Pr(e, \mathbf{e})}_{\mathsf{LM}}}_{\mathsf{LM}}\right)^{\lambda_3}$$

$$\Pr(t) = \left(\underbrace{\Pr(f, \mathbf{f})}_{\mathsf{parser}} \cdot \underbrace{\Pr(t|f)}_{\mathsf{forward}}\right)^{\lambda_1} \cdot \underbrace{\Pr(t)}_{\mathsf{symm.}}^{\lambda_2} \cdot \left(\underbrace{\underbrace{\Pr(t|e)}_{\mathsf{backward}} \cdot \underbrace{\Pr(e, \mathbf{e})}_{\mathsf{Evol} \, \mathsf{M}}}_{\mathsf{Evol} \, \mathsf{M}} \cdot \underbrace{\Pr(e)}_{\mathsf{LM}}\right)^{\lambda_3}$$

Parser  $Pr(f, \mathbf{f})$ 

$$\Pr(t) = \left(\underbrace{\Pr(f, \mathbf{f})}_{\text{parser}} \cdot \underbrace{\Pr(t|f)}_{\text{forward}}\right)^{\lambda_1} \cdot \underbrace{\Pr(t)}_{\text{symm.}}^{\lambda_2} \cdot \left(\underbrace{\underbrace{\Pr(t|e)}_{\text{backward}} \cdot \underbrace{\Pr(e, \mathbf{e})}_{\text{synLM}} \cdot \underbrace{\Pr(\mathbf{e})}_{\text{LM}}}\right)^{\lambda_3}$$

Parser  $Pr(f, \mathbf{f})$ 

Forward translation probability Pr(t|f)

Symmetric translation probability Pr(t)

**Backward translation probability** Pr(t|e)

$$\Pr(t) = \left(\underbrace{\Pr(f, \mathbf{f})}_{\text{parser}} \cdot \underbrace{\Pr(t|f)}_{\text{forward}}\right)^{\lambda_1} \cdot \underbrace{\Pr(t)}_{\text{symm.}}^{\lambda_2} \cdot \left(\underbrace{\underbrace{\Pr(t|e)}_{\text{backward}} \cdot \underbrace{\Pr(e, \mathbf{e})}_{\text{synLM}} \cdot \underbrace{\Pr(\mathbf{e})}_{\text{LM}}}\right)^{\lambda_3}$$

Parser  $Pr(f, \mathbf{f})$ 

Forward translation probability Pr(t|f)

Symmetric translation probability Pr(t)

Backward translation probability Pr(t|e)

**Syntactic language model**  $Pr(e, \mathbf{e}) \cdot Pr(\mathbf{e})^{-1} = Pr(e|\mathbf{e})$ 

Language model Pr(e)

### Section 3

**Intermission: Rule Extraction** 

### NP VΡ **PPER** VBD NΡ she NN went home 11 nach hause **APPR** ADJD sie gegangen **PPER** PΡ **VVPP** ist NP VAFIN VP

### **STSG** Rules











#### S In-XMBOT Rules NP **VBD** NP **PPER** VBD ≘ (VAFIN, VVPP) she NN went $in(\bullet)() = VBD(went)$ home $out(\bullet)() = (VAFIN(ist),$ VVPP(gegangen)) nach hause sie **APPR ADJD** gegangen PP **PPER** ist **VVPP** NP VAFIN VΡ

#### In-XMBOT Rules NP VP $VBD \stackrel{\frown}{=} (VAFIN, VVPP)$ $NP \stackrel{\frown}{=} (PP)$ NP **PPER VBD** $VP \cong (VAFIN, VP)$ she NN went $\operatorname{in}(\bullet)(f_1, f_2) = \operatorname{VP}(f_1, f_2)$ home $\mathsf{out}(\bullet)( \begin{tabular}{c} (e_{11},e_{12}) \end{tabular} , \begin{tabular}{c} (e_{2}) \end{tabular} ) = \begin{tabular}{c} (e_{11} \end{tabular}, \mathsf{VP-OC/pp}( \begin{tabular}{c} e_{2} \end{tabular}, \begin{tabular}{c} e_{12} \end{tabular} )) \end{tabular}$ nach hause sie **APPR ADJD** gegangen PP **PPER** ist **VVPP** NP VP **VAFIN**

#### S In-XMBOT Rules NP VP $NP \cong (NP)$ $VP \cong (VAFIN, VP)$ NP **PPER VBD** S = (S)she NN went $\operatorname{in}(\bullet)(f_1, f_2) = \operatorname{\mathsf{S}}(f_1, f_2)$ home $\operatorname{out}(\bullet)(\begin{tabular}{c} (e_1) \end{tabular}, \end{tabular}, \end{tabular}, \end{tabular}, \end{tabular}) = (\begin{tabular}{c} (\begin{tabular}{c} (e_1) \end{tabular}, \end{tabular}, \end{tabular}, \end{tabular}, \end{tabular})$ nach hause sie **APPR ADJD** gegangen PP **PPER** ist **VVPP** NP VP VAFIN

### Section 4

### **Implementation**

$$\frac{-F^{(0)}}{} \quad \mathsf{string} \in \mathbf{F}$$









### **Approximation**

### **Approximation**

$$\hat{t} = \argmax_{t \in \mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f}))} L(t)$$

### **Approximation**

$$\begin{split} \hat{t} &= \underset{t \in \text{in}^{-1}(\text{yield}^{-1}(\mathbf{f}))}{\text{arg max}} L(t) \\ &= \underset{t \in \text{in}^{-1}(\text{yield}^{-1}(\mathbf{f}))}{\text{arg max}} (\mathcal{F} \cdot \mathcal{T} \cdot \mathcal{E})(t) \end{split}$$

### **Approximation**

$$\begin{split} & \mathcal{E} = \underset{t \in \mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f}))}{\operatorname{arg\ max}} L(t) \\ & = \underset{t \in \mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f}))}{\operatorname{max}} \left(\mathcal{F} \cdot \mathcal{T} \cdot \mathcal{E})(t) \\ & = \operatorname{arg\ max} \left(\underbrace{\left(\underbrace{\mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f})) \cdot \mathcal{F}}_{\mathsf{input}}\right) \cdot \mathcal{T}}_{\mathsf{input} + \mathsf{translation}} \cdot \mathcal{T}\right) \cdot \mathcal{E} \end{split}$$

### **Input Model**

Integrating a linguistic parser

### Probabilistic context-free parser

 $P_F:T_F \to \mathbb{R}$  weighted regular tree language

## Input Model

#### Integrating a linguistic parser

### Probabilistic context-free parser

$$P_F: T_F \to \mathbb{R}$$
 weighted regular tree language

### Parser as input model

$$\begin{split} &\inf^{-1}(\underbrace{\mathsf{yield}^{-1}(\mathbf{f})\cdot P_F}) = \mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f}))\cdot \mathsf{in}^{-1}(P_F) \\ &= \mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f}))\cdot (\mathsf{in}\,;P_F) \\ &= \mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f}))\cdot \mathfrak{F} \end{split}$$

### **Translation Model**

#### **Product construction**

$$(\mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f})\cdot P_F)\cdot \mathfrak{T}):T_\Delta\to\mathbb{R}$$

### **Translation Model**

#### **Product construction**

$$\left(\mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f})\cdot P_F)\cdot \mathfrak{I}\right):\,T_\Delta\to\mathbb{R}$$



### **Product Construction**

$$\mathfrak{T}: T_{\Delta} \to \mathbb{R}$$

$$\frac{p_1 \quad \dots \quad p_p}{p}$$

inference rule with label  $\delta$ and weight a

$$\mathsf{in}:\,T_\Delta\to\,T_F$$

$$\mathsf{in}(\delta) = \underbrace{x_{\pi(1)}, \dots, x_{\pi(k)}}$$

$$\left(\mathsf{yield}^{-1}(\mathbf{f})\cdot P_F\right):\,T_F\to\mathbb{R}$$



proof tree for  $in(\delta)$ with weight w

### **Product Construction**

$$\mathfrak{T}: T_{\Delta} \to \mathbb{R}$$

$$\mathsf{in}:\,T_\Delta\to\,T_F$$

$$(\mathsf{yield}^{-1}(\mathbf{f}) \cdot P_F) : T_F \to \mathbb{R}$$



inference rule with label  $\delta$ and weight a







proof tree for  $in(\delta)$ with weight w

#### New inference rule

$$\frac{(p_1, q_{\pi(1)}) \cdots (p_k, q_{\pi(k)})}{(p, q)}$$

with label  $\delta$  and weight  $w \cdot a$ 

# **Lazy Feature Scoring**

### Local scoring (symbol scoring)

$$w_i:\Delta o\mathbb{R}$$
 extends to  $\phi_i:T_\Delta o\mathbb{R}$   $\phi_i(t)=\prod_{p\in\mathsf{pos}(t)}w_i(t(p))$ 

# **Lazy Feature Scoring**

### Local scoring (symbol scoring)

$$w_i:\Delta o \mathbb{R}$$
 extends to  $\phi_i:T_\Delta o \mathbb{R}$  
$$\phi_i(t) = \prod_{p \in \mathsf{pos}(t)} w_i(t(p))$$
 
$$\mathfrak{T} = \mathfrak{T}' \cdot (\phi_1 \cdots \phi_j)^{\lambda_1} \cdot (\phi_{j+1} \cdots \phi_k)^{\lambda_2} \cdot (\phi_{k+1} \cdots \phi_n)^{\lambda_3}$$
 with  $\mathfrak{T}'$  unweighted

# **Lazy Feature Scoring**

### Local scoring (symbol scoring)

$$w_i:\Delta o\mathbb{R}$$
 extends to  $\phi_i:T_\Delta o\mathbb{R}$   $\phi_i(t)=\prod_{p\in\mathsf{pos}(t)}w_i(t(p))$  
$$\mathfrak{T}=\mathfrak{T}'\cdot(\phi_1\cdots\phi_j)^{\lambda_1}\cdot(\phi_{j+1}\cdots\phi_k)^{\lambda_2}\cdot(\phi_{k+1}\cdots\phi_n)^{\lambda_3}$$

with  $\mathfrak{T}'$  unweighted

### Lazy scoring

$$\left(\mathsf{in}^{-1}(\mathsf{yield}^{-1}(\mathbf{f})\cdot P_F)\cdot \mathfrak{I}')\right)\cdot (\phi_1\cdots\phi_j)^{\lambda_1}\cdot (\phi_{j+1}\cdots\phi_k)^{\lambda_2}\cdot (\phi_{k+1}\cdots\phi_n)^{\lambda_3}$$

## **Exact Rescoring**

Incorporation of an external language model



**step 1** incremental construction of k-best list

## **Exact Rescoring**

Incorporation of an external language model



rescoring of k candidates step 2

## **Exact Rescoring**

Incorporation of an external language model



step 3 monotonic feature functions allow safe pruning for large enough k

## Section 5

# **Experiments**

## Theory vs. Engineering

#### Factored model

$$\Pr(t) = \left(\underbrace{\Pr(f, \mathbf{f})}_{\text{parser}} \cdot \underbrace{\Pr(t|f)}_{\text{forward}}\right)^{\lambda_1} \cdot \underbrace{\Pr(t)}_{\text{symm.}}^{\lambda_2} \cdot \left(\underbrace{\underbrace{\Pr(t|e)}_{\text{backward}} \cdot \underbrace{\Pr(e, \mathbf{e})}_{\text{synLM}} \cdot \underbrace{\Pr(e)}_{\text{LM}}}\right)^{\lambda_3}$$

#### Maximum entropy model

$$\Pr(t) \approx \Pr(f, \mathbf{f})^{\mu_1} \cdot \Pr(t|f)^{\mu_2} \cdot \Pr(t)^{\mu_3} \cdot \Pr(t|e)^{\mu_4} \cdot \left(\frac{\Pr(e, \mathbf{e})}{\Pr(\mathbf{e})}\right)^{\mu_5} \cdot \Pr(\mathbf{e})^{\mu_6}$$

## Theory vs. Engineering

#### Factored model

$$\Pr(t) = \left(\underbrace{\Pr(f, \mathbf{f})}_{\text{parser}} \cdot \underbrace{\Pr(t|f)}_{\text{forward}}\right)^{\lambda_1} \cdot \underbrace{\Pr(t)}_{\text{symm.}}^{\lambda_2} \cdot \left(\underbrace{\underbrace{\Pr(t|e)}_{\text{backward}} \cdot \underbrace{\Pr(e, \mathbf{e})}_{\text{synLM}} \cdot \underbrace{\Pr(e)}_{\text{LM}}}\right)^{\lambda_3}$$

#### Maximum entropy model

$$\Pr(t) \approx \Pr(f, \mathbf{f})^{\mu_1} \cdot \Pr(t|f)^{\mu_2} \cdot \Pr(t)^{\mu_3} \cdot \Pr(t|e)^{\mu_4} \cdot \left(\frac{\Pr(e, \mathbf{e})}{\Pr(\mathbf{e})}\right)^{\mu_5} \cdot \Pr(\mathbf{e})^{\mu_6}$$

#### Conclusion

Maximum Entropy performs significantly better by  $\sim 1~\mathrm{BLEU}$  point

### **Search Errors**

#### in a state-of-the-art MT system

#### Travatar tree-to-string system

$$\frac{\mathsf{PP}}{\mathsf{ADJP}} \; (\delta) \qquad \mathsf{in}(\delta)(f_1) = \begin{array}{c} \mathsf{ADJP} & \mathsf{PP} \\ \mathsf{ADJP} & \mathsf{IN} & f_1 \\ \mathsf{JJR} & \mathsf{IN} & f_1 \\ \mathsf{lower} & \mathsf{than} \end{array}$$

$$\operatorname{out}(\delta)(e_1) = \operatorname{niedriger} \operatorname{als} e_1$$

Pruning branches of search space are cut off

Pruning branches of search space are cut off

Search error model-optimal translation lost in pruning

Pruning branches of search space are cut off Search error model-optimal translation lost in pruning Model error model-optimal translation not a good translation

Pruning branches of search space are cut off Search error model-optimal translation lost in pruning Model error model-optimal translation not a good translation

Does pruning affect translation quality?

## **Pruning vs. Translation Quality**



## **Pruning vs. Translation Quality**



## **Pruning vs. Translation Quality**



### The End

...or back to the beginning?



# Section 6

# **Appendix**

### **Trees**

#### Ranked alphabet

•  $(\Sigma, \mathsf{rk})$  where  $\Sigma$  is an alphabet and  $\mathsf{rk} : \Sigma \to \mathbb{N}$ 

#### **Trees**

- $T_{\Sigma}(V)$  is the smallest set T such that  $V \subseteq T$  and  $\Sigma(T) \subseteq T$
- $T_{\Sigma} = T_{\Sigma}(\emptyset)$

#### Positions of a tree

$$\mathsf{pos}(t) = \begin{cases} \{\varepsilon\} & \text{if } t \in V \\ \{\varepsilon\} \cup \bigcup_{1 \leq i \leq k} \left(\{i\}.\,\mathsf{pos}(t_i)\right) & \text{if } t = \sigma(t_1,\dots,t_k) \end{cases}$$

# Trees (2)

#### Label at position

$$t(w) = \begin{cases} t & \text{if } w = \varepsilon \text{ and } t \in V \\ \sigma & \text{if } w = \varepsilon \text{ and } t = \sigma(t_1, \dots, t_k) \\ t_i(w') & \text{if } w = iw', i \in [k], w' \in \mathbb{N}^* \text{ and } t = \sigma(t_1, \dots, t_k) \end{cases}$$

### Subtree at position

$$t|_{w} = \begin{cases} t & \text{if } w = \varepsilon \\ t_{i}|_{w'} & \text{if } w = iw' \text{ and } t = \sigma(t_{1}, \dots, t_{k}), i \in [k] \end{cases}$$

#### Yield of a tree

$$\mathsf{yield}(t) = \begin{cases} t & \text{if } t \in \Sigma^{(0)} \cup V \\ \mathsf{yield}(t_1) \cdots \mathsf{yield}(t_k) & \text{if } t = \sigma(t_1, \dots, t_k) \end{cases}$$

## Replacement and Substitutions

### Replacement

$$t[u]_w = \begin{cases} u & \text{if } w = \varepsilon \\ \sigma(t_1, \dots, t_i[u]_{w'}, \dots, t_k) & \text{if } w = iw' \text{ and } t = \sigma(t_1, \dots, t_k), i \in [k] \end{cases}$$

#### Substitutions

 $\vartheta: V \to T_{\Sigma}(V)$  extended to trees:

$$\vartheta(t) = \begin{cases} \vartheta(t) & \text{if } t \in V \\ \sigma(\vartheta(t_1), \dots, \vartheta(t_k)) & \text{if } t = \sigma(t_1, \dots, t_k) \end{cases}$$

Ground substitution  $\vartheta: V \to T_{\Sigma}$ 

# **Weighted Tree Automata**

$$\mathfrak{G} = (Q, I, P)$$

 $I: Q \to \mathbb{R}$ 

finite set of states initial state mapping  $P: Q \times \Delta(Q) \to \mathbb{R}$  transition weight mapping

Weight of a run  $r: pos(t) \rightarrow Q$ 

$$\mathsf{wt}(r) = \prod_{p \in \mathsf{pos}(t)} P(r(p), r'(p))$$

Language of a tree automaton 9

$$L_{\mathcal{G}}(t) = \sum_{r \in \mathsf{runs}_{\mathcal{G}}(t)} \mathit{I}(r(\varepsilon)) \cdot \mathsf{wt}(r)$$

# Weighted Tree Automata (2)

$$\begin{array}{c} \text{S} \stackrel{1.0}{\rightarrow} 1(\text{NP},\text{VP}) \\ \text{VP} \stackrel{1.0}{\rightarrow} 2(\text{V},\text{NP}) \\ \text{NP} \stackrel{0.6}{\rightarrow} 3() \\ \text{NP} \stackrel{0.4}{\rightarrow} 4() \\ \text{V} \stackrel{1.0}{\rightarrow} 5() \\ \\ \text{weighted} \end{array}$$





tree t

run on t weight: 0.24

### Regular tree languages

transitions

 $REC(\Delta) = \{L_g \mid \mathcal{G} \text{ is a weighted tree automaton over } \Delta\}$ 

## **Tree Homomorphisms**

Let  $\Sigma$  and  $\Delta$  be ranked alphabets, and let  $X_n = \{x_i \mid i \in [n]\}$  be a set of variables for every  $n \in \mathbb{N}$ . A family f of mappings  $(f_k : \Sigma^{(k)} \to T_\Delta(X_k))$  determines a homomorphism  $h_f : T_{\Sigma} \to T_{\Delta}$ , called *tree homomorphism*, given by

$$h_f(\sigma(t_1,\ldots,t_k))=\xi(f_k(\sigma))$$

for every  $\sigma \in \Sigma^{(k)}$ , where  $\xi: X_k \to T_\Delta$  is the ground substitution defined by  $\xi(x_i) = h_f(t_i).$ 

- if  $|\operatorname{pos}_{\{x\}}(f_k(\sigma))| \leq 1$  for every  $x \in X_k$  and  $\sigma^{(k)} \in \Sigma$ , then h is linear
- if  $|\mathsf{pos}_{\{x\}}(f_k(\sigma))| \ge 1$  for every  $x \in X_k$  and  $\sigma^{(k)} \in \Sigma$ , then h is nondeleting

If L is a weighted regular tree language over  $\Delta$ , then  $h^{-1}(L)$  is a weighted regular tree language over  $\Sigma$ .

## Tree *m*-morphisms

Let  $\Sigma$  and  $\Delta$  be ranked alphabets, and  $m \in \mathbb{N}^+$ . Let  $X_n^m = \{x_{(i,j)} \mid i \in [n], j \in [m]\}$  be a set of variables for every  $n \in \mathbb{N}$ . A family f of mappings  $(f_k : \Sigma^{(k)} \to T_\Delta(X_{\iota}^m)^m)$ determines a homomorphism  $h_f \colon T_{\Sigma} \to T_{\Lambda}^m$ , called tree m-morphism, given by

$$h_f(\sigma(t_1,\ldots,t_k)) = \xi(f_k(\sigma))$$

for every  $\sigma \in \Sigma^{(k)}$ , where  $\xi: X_k^m \to T_\Delta$  is the ground substitution defined by  $\xi(x_{(i,j)}) = (h_f(t_i))_{i}.$ 

# **Bimorphism Decompositions**

| Formalism  | Bimorphism                                  | Source                      |
|------------|---------------------------------------------|-----------------------------|
| In-BOT =   | $\mathfrak{B}(REL,In\text{-}HOM)$           | Fülöp et al. (2011)         |
| BOT =      | $\mathfrak{B}(REL,HOM)$                     | Fülöp et al. (2011)         |
| SDTS =     | $\mathfrak{B}(qA,qA)$                       | Steinby and Tîrnăucă (2009) |
| In-XTOP =  | $\mathfrak{B}(In\text{-}HOM,In\text{-}HOM)$ | Engelfriet et al. (2009)    |
| In-XMBOT = | $\mathfrak{B}(In	ext{-}HOM,MM;\pi_1)$       | Engelfriet et al. (2009)    |
| SFSG =     | $\mathfrak{B}(MM;\pi_1,MM;\pi_1)$           | Raoult (1997)               |
| STAG =     | $\mathfrak{B}(In\text{-}E,In\text{-}E)$     | Shieber (2006)              |
| SCFTG =    | $\mathfrak{B}(MAC,MAC)$                     | Nederhof and Vogler (2012)  |

## **Empirical Adequacy**

|          | ROT | DIS | TCH | REG | $REG^{-1}$ | CMP | SYM |
|----------|-----|-----|-----|-----|------------|-----|-----|
| In-TOP   | no  | no  | ?   | yes | yes        | yes | no  |
| TOP      | yes | no  | yes | no  | yes        | no  | no  |
| In-XTOP  | yes | no  | yes | yes | yes        | no  | yes |
| In-XMBOT | yes | yes | yes | no  | yes        | yes | no  |
| SFSG     | yes | yes | yes | no  | no         | no  | yes |
| STAG     | yes | yes | yes | no  | no         | no  | yes |

ROT = handles rotations

DIS = handles discontiguity

TCH = efficiently trainable

REG = preservation of regularity

 $REG^{-1}$  = preservation of regularity of the inverse

CMP = closure under composition

SYM = symmetry

### **BLEU Score**

#### *n*-grams

$$\operatorname{grams}_n(a) = \{v \in A^n \mid \exists u, w \in A^* \text{ such that } uvw = a\}$$

### Clipped precision

$$\operatorname{prec}_n(C,R) = \sum_{i=1}^m \frac{\sum_{w \in \operatorname{grams}_n(C_i) \cap \operatorname{grams}_n(R_i)} \min\{\#_{C_i}(w), \#_{R_i}(w)\}}{\sum_{w \in \operatorname{grams}_n(C_i)} \#_{C_i}(w)}$$

#### **BLEU-N** score

$$\begin{aligned} \operatorname{bp}(\mathit{C}, R) &= \min \left\{ 1, \, \exp \left( 1 - \frac{|R|}{|\mathit{C}|} \right) \right\} \\ \operatorname{bleu}_{\mathit{N}}(\mathit{C}, R) &= \operatorname{bp}(\mathit{C}, R) \cdot \prod_{n \in [\mathit{N}]} \operatorname{prec}_{\mathit{n}}(\mathit{C}, R)^{1/\mathit{N}} \end{aligned}$$

# Rule Scoring

### Relative frequency

$$\phi_{\sim}(\delta) = \frac{\#(\delta)}{\sum_{\delta' \in [\delta]_{\sim}} \#(\delta')}$$

#### Lexical scoring

$$\begin{split} & \operatorname{lex}(f|e,a) = \prod_{(i,p) \in \operatorname{dom}(a)} \frac{1}{|a(i,p)|} \sum_{(j,p') \in a(i,p)} w(f_i(p)|e_j(p')) \\ & \phi_{\operatorname{lex}}(\delta) = \operatorname{lex}(e'|f',a) \\ & \phi_{\operatorname{lex}^{-1}}(\delta) = \operatorname{lex}(f'|e',a^{-1}) \end{split} \qquad \text{(direct)}$$

# **EM Training**

### Inside weight

$$\beta_{\mathfrak{G}}(q) = \sum_{(q,\delta(q_1,\ldots,q_k)) \in \mathsf{dom}(P)} \left( P(q,\delta(q_1,\ldots,q_k)) \cdot \prod_{i=1}^k \beta_{\mathfrak{G}}(q_i) \right)$$

### Outside weight

$$\alpha_{\mathcal{G}}(q) = \mathit{I}(q) + \sum_{\substack{(p, \delta(p_1, \dots, p_k), w) \in \mathsf{dom}(P)}} w \cdot \alpha_{\mathcal{G}}(p) \cdot \sum_{\substack{i \in [k] \\ q = p_j}} \prod_{\substack{i \in [k] \\ i \neq j}} \beta_{\mathcal{G}}(p_i)$$

### Importance of a production

$$\gamma_{\mathfrak{G}}(\rho) = \alpha_{\mathfrak{G}}(p) \cdot w \cdot \prod_{i=1}^{k} \beta_{\mathfrak{G}}(p_i)$$

# EM Training (2)

## Corpus likelihood

$$\sum_{i=1}^{m} \sum_{t \in T_{\Delta}} L_{D_i}(t)$$

### Weighted count

$$ex(\mathcal{D})(\delta) = \sum_{i=1}^{m} \frac{\sum_{\rho=\delta} \gamma_{D_i}(\rho)}{\sum_{q \in Q} I(q) \cdot \beta_{D_i}(q)}$$

#### Normalization

$$\operatorname{norm}(P)(\delta) = \frac{P(\delta)}{\sum_{\delta' > \delta} P(\delta')}$$

# EM Training (3)

### **Expectation-maximization**

$$\begin{split} \mathcal{D}(P) &= (D_i(P) \mid i \in [m]) \text{ such that } \\ P_i(P)(\rho) &= P(\rho_2) \text{ for all } \rho \in \text{dom } P_i(P) \text{ and all } i \in [m] \\ P^{(0)} &= P_L \\ \mathcal{D}^{(n)} &= \mathcal{D}(P_n) \\ P^{(n+1)} &= (\text{ex}\,; \text{norm}) \left(\mathcal{D}^{(n)}\right) \\ j &\leq j' \implies \sum_{i=1}^m \sum_{t \in T_\Delta} L_{\mathcal{D}_i^{(j)}}(t) \leq \sum_{i=1}^m \sum_{t \in T_\Delta} L_{\mathcal{D}_i^{(j')}}(t) \end{split}$$

#### Incremental enumeration of candidate translations



#### Incremental enumeration of candidate translations



#### Incremental enumeration of candidate translations



#### Incremental enumeration of candidate translations



#### Incremental enumeration of candidate translations



#### Incremental enumeration of candidate translations



#### Incremental enumeration of candidate translations



# **Proof for Exact Rescoring**

Assuming that  $\mathcal{E}_2(t) = \mathsf{LM}(\mathsf{yield}(\mathsf{out}(\mathsf{t})))$  for every  $t \in \mathcal{F}([k])$ , the best candidate in the reordered k-best list is

$$\begin{split} \hat{t} &= \underset{t \in \mathcal{F}([k])}{\text{max}} \ F(t) \cdot \mathsf{LM}(\mathsf{yield}(\mathsf{out}(t)))^{\lambda_3} \\ &= \underset{t \in \mathcal{F}([k])}{\text{max}} \ (\mathcal{F} \cdot \mathcal{T} \cdot \mathcal{E}_1^{\lambda_3})(t) \cdot \mathcal{E}_2^{\lambda_3}(t) \\ &= \underset{t \in \mathcal{F}([k])}{\text{max}} \ L(t) \\ &= \underset{t \in \mathcal{F}([k])}{\text{max}} \ L(t) \end{split}$$

However,  $\mathcal{F}([k]) \subseteq \mathfrak{D}(\mathbf{f})$ , and therefore

$$\hat{t} = \argmax_{t \in \mathcal{F}([k])} L(t) \text{ does not imply } \hat{t} = \argmax_{t \in \mathcal{D}(\mathbf{f})} L(t)$$

i.e., we do not have any guarantee that  $\hat{t}$  is optimal.

# **Proof for Exact Rescoring (2)**

#### Lemma

There is  $n' \in \mathbb{N}$  such that for every n > n'.

$$\underset{t \in \mathcal{F}([n])}{\operatorname{arg max}} L(t) = \underset{t \in \mathcal{D}(\mathbf{f})}{\operatorname{arg max}} L(t).$$

### Proof.

Let  $\hat{t} = \arg \max_{t \in \mathcal{D}(\mathbf{f})} L(t)$ . Since both  $\operatorname{ran}(\mathsf{LM}) \subseteq [0,1]$  and  $\operatorname{ran}(F) \subseteq [0,1]$ , we know that

$$L(t) = F(t) \cdot \mathcal{E}_2^{\lambda_3}(t) \le F(t)$$

for every tree  $t \in T_{\Delta}$  (because  $ab \leq a$  for every  $a, b \in [0,1]$ ). Therefore,  $F(t) < L(\hat{t})$ implies  $L(t) < L(\hat{t})$ , and because F is cycle-free, there exists n such that  $F(t') < L(\hat{t})$ for all  $t' \notin \mathcal{F}([n])$ .

# **Probability Theory**

A discrete probability space is a triple  $(\Omega, \mathcal{F}, \Pr)$  consisting of

- a non-empty countable set  $\Omega$ , the set of elementary events
- the set  $\mathcal{F}=2^{\Omega}$ . called events
- a mapping  $Pr: \mathcal{F} \to [0,1]$  such that:
  - $Pr(\Omega) = 1$ ; and
  - for every mapping  $I: \mathbb{N} \to \mathcal{F}$  such that  $I(i) \cap I(j) = \emptyset$  for every  $i \neq j$ , we have:

$$\Pr\left(\bigcup_{n\in\mathbb{N}}I(n)\right) = \sum_{n\in\mathbb{N}}\Pr(I(n))$$

We call  $Pr(\omega)$  the probability of the event  $\omega \in \mathcal{F}$  occurring.

# **Probability Theory (2)**

Let A be a non-empty countable set. A (discrete) random variable X over A is a mapping  $X:\Omega\to A$ . For  $a\in A$ , we set

$$\Pr(X = a) = \Pr(X^{-1}(a))$$

When the random variable is understood from context, we can write a instead of X=a, and  $\Pr(a)$  instead of  $\Pr(X=a)$ .

# **Probability Theory (2)**

Let X, Y be random variables over A. The joint probability Pr(x, y) is defined by

$$\Pr(x, y) = \Pr(X^{-1}(x) \cap Y^{-1}(y))$$

The conditional probability Pr(y|x) of Y=y given X=x is defined by:

$$\Pr(y|x) = \begin{cases} \frac{\Pr(x,y)}{\Pr(x)} & \text{if } \Pr(x) \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

The joint probability can be expressed using conditional probabilities by the chain rule:

$$Pr(x, y) = Pr(x) \cdot Pr(y|x)$$

Another useful equation is Bayes' rule:

$$Pr(y|x) = \frac{Pr(x|y) \cdot Pr(y)}{Pr(x)}$$

# **Rule Extraction (1)**

**Definitions** 

 $U\subseteq \mathbb{N}^*$  finite prefix-closed set (think pos(t) for any tree t), and  $p\in U,P,B_1,B_2\subseteq U$ 

$$\underbrace{\bigwedge_{U}} p = \{ p' \in \max U \mid p \sqsubseteq p' \} \tag{"span"}$$

$$\underbrace{\bigwedge_{U}} P = \bigcup_{p \in P} \underbrace{\bigwedge_{U}} p$$

$$\underbrace{\bigwedge_{U}} P = \left\{ p \in U \mid \underbrace{\bigwedge_{U}} p \subseteq P \right\} \tag{"closure"}$$

$$\min P = \{ p \in P \mid \forall p' \in P : p' \sqsubseteq p \implies p' = p \}$$

$$B_{1} \sqsubseteq B_{2} \iff \forall b_{2} \in B_{2} : \exists b_{1} \in B_{1} : b_{1} \sqsubseteq b_{2}$$

# **Rule Extraction (2)**

### Alignment

given by (f, e, a) where  $f \in T_F$ ,  $e \in T_E$  and  $a \subseteq pos(f) \times pos(e)$ 

$$U_f = \{ p \in \mathsf{pos}(f) \mid \exists p' \in \mathsf{dom}(a) : p \sqsubseteq p' \}$$
$$U_e = \{ p \in \mathsf{pos}(e) \mid \exists p' \in \mathsf{ran}(a) : p \sqsubseteq p' \}$$

### Consistent alignment

 $B \bowtie B'$  if there exist  $S \subseteq \mathsf{dom}(a)$  and  $S' \subseteq \mathsf{ran}(a)$  such that

$$a(S) = S'$$
 and  $a^{-1}(S') = S$  and  $B = \min \bigwedge_{U_e} S'$ 

Intuitively:  $\{f|_b \mid b \in B\}$  and  $\{e|_{b'} \mid b' \in B'\}$  can be synchronously generated

# Rule Extraction (3)

#### Unit of translation

Let  $B \in \mathsf{dom}(\bowtie)$ , and  $C \subseteq \mathsf{dom}(\bowtie)$  such that  $B \bowtie B'$  and  $C \bowtie C'$ . Then  $(B, C) \smile (B', C')$  if

- $B \sqsubset C_i$  for all  $C_i \in C$
- for all different  $C_i$ ,  $C_i \in C$ , all  $b_i \in C_i$  and  $b_i \in C_i$  are incomparable w.r.t.  $\sqsubseteq$

#### Different models

Let  $M \subseteq \bowtie$ . Then  $(B, C) \smile (B', C')$  is

- an M-unit of translation if  $(B, B') \in M$  and  $(C_i, C_i) \in M$  for every  $C_i \in C$  such that  $C_i \bowtie C'_i$
- M-minimal if there are no M-units  $(B, C_1) \smile (B', C'_1)$  and  $(B_1, C_2) \smile (B'_1, C'_2)$  of translation such that  $B_1 \in C_1$  (and  $B_1' \in C_1'$ ) and  $C = C_1 - \{B_1\} \cup C_2$

# Rule Extraction (4)

#### Inference rule

 $(B, C) \smile (B', C')$  can be represented by an inference rule

$$\frac{f(C_1) \stackrel{\frown}{=} e(C'_1) \cdots f(C_k) \stackrel{\frown}{=} e(C'_k)}{f(B) \stackrel{\frown}{=} e(B')}$$

and partial mappings in :  $(T_E^*)^k \to T_E^*$  and out :  $(T_E^*)^k \to T_E^*$  such that

$$\inf(f|_{C_1},\dots,f|_{C_k})=f|_B\quad \text{ and }$$
 
$$\operatorname{out}(e|_{C_1'},\dots,e|_{C_k'})=e|_{B'}\,.$$

(connection to tree *m*-morphisms!)

## Rule templates

- generalize "in" and "out" to the ≡ relation previously discussed
- use a rule identifier as an alphabet symbol

# **Rule Extraction (5)**

Let  $X = \{x_{(i,j)} \mid i,j \in \mathbb{N}\}$  be a set of variables, and let us define two mappings  $v_f : \bigcup_{i=1}^k C_i \to X$  and  $v_e: \bigcup_{i=1}^k C_i \to X \text{ such that:}$ 

$$\operatorname{index}(C_i)(p) = j \implies v_{\mathit{f}}(p) = x_{(i,j)} \quad \text{ for all } p \in \bigcup_{i=1}^k C_i \text{ and }$$
 
$$\operatorname{index}(C_i')(p') = j \implies v_{e}(p') = x_{(i,j)} \quad \text{ for all } p' \in \bigcup_{i=1}^k C_i'.$$

These mappings are unambiguously defined because  $C_i \cap C_j = \emptyset$  and  $C_i \cap C_j = \emptyset$  for all  $i \neq j$ . Now we can define in and out as follows:

$$\operatorname{in}(f_1,\ldots,f_k)=\xi(f|_B)$$
 and  $\operatorname{out}(e_1,\ldots,e_k)=\xi'(e'|_{B'})\,,$ 

where  $\xi(x_{(i,j)})=(f_i)_j$  and  $\xi'(x_{(i,j)})=(e_i)_j$  are ground substitutions, and f' and e' are obtained by chained replacement of subtrees by variables as follows:

$$\begin{split} f' &= (\dots f[v_f(C_1^{\leq})]_{C_1^{\leq}} \dots)[v_f(C_k^{\leq})]_{C_k^{\leq}} &\quad \text{and} \\ e' &= (\dots e[v_e(C_1^{\leq})]_{C_1^{\leq}} \dots)[v_e(C_k^{\leq})]_{C_k^{\leq}}. \end{split}$$

Note that in and out are determined by  $f|_B$  and  $e'|_{B'}$ , respectively.

## **Experiment Setups**

### Generic experiment setup

- Rule extraction from word-aligned bilingual data (training set)
- Estimation of rule weights by relative frequency
- Tuning of model parameters on reference translations (development set)
- Automatic evaluation on more reference translations (test set)

Training set European parliament proceedings EN/DE

**Development set** from WMT shared task

Test set from WMT shared task

**Automatic evaluation** BLEU metric computes *n*-gram precision

## **Experiment B: Search Errors**

#### Search error

Pruning removes the model-optimal translation from the search space

#### Model error

Model-optimal translation is not a good translation

## **Experiment B: Search Errors**

#### Search error

Pruning removes the model-optimal translation from the search space

#### Model error

Model-optimal translation is not a good translation

### Questions

- How many search errors does a standard MT system make?
- How does the number of search errors affect quality?
- Do some search errors hide underlying model errors?

# **Travatar Tree-to-String System**

$$rac{\mathsf{DT} \ \mathsf{NN}}{\mathsf{NP}} \qquad \mathsf{in}(f_1, f_2) = \bigwedge^{\mathsf{NP}} \qquad \mathsf{out}(e_1, e_2) = e_1 e_2$$



### **Related Work**

### Interpreted Regular Tree Grammar (iRTG)

- similar to bimorphisms
- regular tree grammar + homomorphisms into algebras + evaluation functions
- can be simulated by appropriately chosen homomorphism, and vice versa

## Büchse (2015)

- algebraic specification of a decoder
- presentation limited to SCFG and STSG

# Related Work (2)

### Grammatical Framework<sup>1</sup>

- abstract syntax and a set of concrete syntaxes
- abstract syntax defines a system of syntax trees
- each concrete syntax defines a mapping from those syntax trees to nested tuples of strings and integers
- this mapping is compositional, i.e. homomorphic, and moreover reversible
- forward application of concrete syntax: linearization
- reverse application of concrete syntax: parsing

<sup>&</sup>lt;sup>1</sup>A. Ranta. Grammatical Framework: A Type-Theoretical Grammar Formalism. Journal of Functional Programming, 14(2), pp. 145-189, 2004.