Алгебра и геометрия Лекция 7

Поверхность вращения

Определение

Поверхность S называется поверхностью вращения с осью d, если она составлена из окружностей, которые имеют центры на прямой d и лежат в плоскостях, перпендикулярных этой прямой.

По сути это означает, что мы вращаем плоскую линию L вокруг прямой d. Каждая точка L опишет окружность, а вся линия — поверхность вращения.

Поверхность вращения

Поверхность вращения

Выберем начало ПДСК (O, \vec{e}) на прямой $d, \overrightarrow{e_3}$ направим вдоль d.

Пусть в
$$(O, \overrightarrow{e_1}, \overrightarrow{e_3})$$
 $L: f(x,z) = 0.$

М лежит на окружности с

$$r = \sqrt{x^2 + y^2}. \ M \in S \Leftrightarrow$$

$$f\left(\pm\sqrt{x^2 + y^2}, z\right) = 0 \Leftrightarrow$$

$$f\left(\sqrt{x^2 + y^2}, z\right) \cdot f\left(-\sqrt{x^2 + y^2}, z\right) = 0 \Leftrightarrow$$

$$\Phi(x^2 + y^2, z) = 0$$

Это уравнения поверхности вращения в разных формах.

Эллипсоид

Возьмем Э в КСК. Направим $\overrightarrow{e_3}$ сначала вдоль малой оси, а затем вдоль большой оси (которую обозначим не b, как ранее, а c). Тогда

a)
$$\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$$
 $\xrightarrow{\text{вращаем}}$ $\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1$, $a > c$

"Сжатый" эллипсоид вращения

Эллипсоид

Возьмем Э в КСК. Направим $\overrightarrow{e_3}$ сначала вдоль малой оси, а затем вдоль большой оси (которую обозначим не b, как ранее, а c). Тогда

б)
$$\frac{z^2}{a^2} + \frac{x^2}{c^2} = 1$$
 вращаем $\frac{z^2}{a^2} + \frac{x^2 + y^2}{c^2} = 1$, $a > c$

"Вытянутый" эллипсоид вращения

Сжатие

Для "сжатого" эллипсоида вращения выполним сжатие к y=0 с $\lambda=\frac{b}{a}$.

Получим поверхность с уравнением

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} + \frac{z'^2}{c^2} = 1.$$

Эллипсоид

Определение

Поверхность, которая в некоторой ПДСК имеет

уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad (a > b \ge c),$$

называется эллипсоидом.

Конус второго порядка

$$a^2x^2-c^2z^2=0 o$$
 (вращаем вокруг Oz) $a^2(x^2+y^2)-c^2z^2=0 o$ (сжимаем к $y=0$) $a^2x'^2+b^2y'^2-c^2z'^2=0$; $a,b,c>0$.

Определение

Поверхность, которая в некоторой ПДСК имеет уравнение $a^2x^2 + b^2y^2 - c^2z^2 = 0$, называется конусом второго порядка.

Конус второго порядка

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 \to$$

(вращаем вокруг Oz)

$$\frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = 1 \rightarrow$$

(сжимаем к y = 0)

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} - \frac{{z'}^2}{c^2} = 1.$$

 $\overrightarrow{e_3}$

 $\overrightarrow{e_2}$

Определение

Поверхность, которая в некоторой ПДСК имеет

уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

называется однополостным гиперболоидом.

Определение

Прямая, целиком лежащая на поверхности, называется ее прямолинейной образующей.

Теорема 12.1

Однополостный гиперболоид имеет хотя бы два семейства прямолинейных образующих.

Доказательство

Рассмотрим однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \Leftrightarrow$$

$$\Leftrightarrow \left(\frac{x}{a} + \frac{z}{c}\right) \left(\frac{x}{a} - \frac{z}{c}\right) = \left(1 + \frac{y}{b}\right) \left(1 - \frac{y}{b}\right) \quad \mathsf{v}$$

прямую
$$\begin{cases} \mu\left(\frac{x}{a} + \frac{z}{c}\right) = \lambda\left(1 + \frac{y}{b}\right), \\ \lambda\left(\frac{x}{a} - \frac{z}{c}\right) = \mu\left(1 - \frac{y}{b}\right), \end{cases} \quad \lambda^2 + \mu^2 \neq 0.$$

Доказательство (продолжение)

$$\begin{cases} \mu\left(\frac{x}{a} + \frac{z}{c}\right) = \lambda\left(1 + \frac{y}{b}\right) \\ \lambda\left(\frac{x}{a} - \frac{z}{c}\right) = \mu\left(1 - \frac{y}{b}\right), & \lambda^2 + \mu^2 \neq 0. \end{cases}$$

Координаты каждой точки прямой удовлетворяют обоим уравнениям ⇒ и уравнению

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$$

получающимся их перемножением.

Поэтому $\forall \mu, \lambda$: $\lambda^2 + \mu^2 \neq 0$ указанная прямая лежит на однополостном гиперболоиде.

Доказательство (продолжение)

Аналогично доказывается существование второго семейства прямолинейных образующих:

$$\begin{cases} \mu_1 \left(\frac{x}{a} + \frac{z}{c} \right) = \lambda_1 \left(1 - \frac{y}{b} \right) \\ \lambda_1 \left(\frac{x}{a} - \frac{z}{c} \right) = \mu_1 \left(1 + \frac{y}{b} \right) \end{cases}, \qquad \lambda_1^2 + \mu_1^2 \neq 0.$$

Теорема 12.2

Через любую точку однополостного гиперболоида проходит ровно две прямолинейных образующих.

Доказательство

Через точку $M_0(x_0,y_0)$ мы уже провели две прямолинейные образующие. Покажем, что других нет.

Доказательство (продолжение)

Пусть уравнение прямолинейной образующей для

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad (*)$$

$$\begin{cases} x = x_0 + \tau_1 at, \\ y = y_0 + \tau_2 bt, & \tau_1^2 + \tau_2^2 + \tau_3^2 \neq 0. \\ z = z_0 + \tau_3 ct, \end{cases}$$

Доказательство (продолжение)

Подставим в
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
:

$$\frac{(x_0 + \tau_1 at)^2}{a^2} + \frac{(y_0 + \tau_2 bt)^2}{b^2} - \frac{(z_0 + \tau_3 ct)^2}{c^2} \equiv 1 \Leftrightarrow$$

$$(\tau_1^2 + \tau_2^2 - \tau_3^2)t^2 + 2\left(\frac{x_0}{a}\tau_1 + \frac{y_0}{b}\tau_2 - \frac{z_0}{c}\tau_3\right)t \equiv 0 \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \tau_1^{\ 2} + \tau_2^{\ 2} = \tau_3^{\ 2}, \\ \frac{x_0}{a}\tau_1 + \frac{y_0}{b}\tau_2 = \frac{z_0}{c}\tau_3. \end{cases}$$
 Решений с $\tau_3 = 0$ нет.

Доказательство (продолжение)

Пусть
$$\sigma_1 = \frac{\tau_1}{\tau_3}$$
, $\sigma_2 = \frac{\tau_2}{\tau_3}$

Тогда
$$\begin{cases} \sigma_1^2 + \sigma_2^2 = 1, \\ \frac{x_0}{a} \sigma_1 + \frac{y_0}{b} \sigma_2 = \frac{z_0}{c}. \end{cases} (**) \Rightarrow$$

направляющих векторов прямолинейных образующих ≤ 2 : $(\sigma_1 a, \sigma_1 b, c)$, где σ_1, σ_2 — решения (**), которых не больше двух пар.

Двуполостный гиперболоид

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} = 1 \rightarrow$$

(вращаем вокруг Oz)

$$\frac{z^2}{c^2} - \frac{x^2 + y^2}{a^2} = 1 \to$$

(сжимаем к y = 0)

$$\frac{z'^2}{c^2} - \frac{x'^2}{a^2} - \frac{y'^2}{b^2} = 1$$

Двуполостный гиперболоид

Определение

Поверхность, которая в некоторой ПДСК

имеет уравнение

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

называется двуполостным гиперболоидом.

Эллиптический параболоид

$$x^2 = 2pz, p > 0 \rightarrow$$

(вращаем вокруг Oz)

$$x^2 + y^2 = 2pz \rightarrow$$

(сжимаем к y = 0)

Получаем уравнение, приводящееся к виду

$$\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 2z'$$

Эллиптический параболоид

Определение

Поверхность, которая в некоторой ПДСК

имеет уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$

называется эллиптическим параболоидом.

Гиперболический параболоид

Аналогично предыдущему пункту, мы можем

получить уравнение

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z . (1)$$

Определение

Поверхность, которая в некоторой ПДСК имеет уравнение (1), называется гиперболическим параболоидом.

Гиперболический параболоид

Для гиперболического параболоида справедливы аналоги теорем 12.1 и 12.2, которые доказываются аналогично.

Уравнения двух семейств прямолинейных образующих гиперболического параболоида имеют вид:

$$\begin{cases} \lambda \left(\frac{x}{a} - \frac{y}{b} \right) = \mu, \\ \mu \left(\frac{x}{a} + \frac{y}{b} \right) = 2\lambda z \end{cases} \quad \begin{cases} \lambda_1 \left(\frac{x}{a} + \frac{y}{b} \right) = \mu_1, \\ \mu_1 \left(\frac{x}{a} - \frac{y}{b} \right) = 2\lambda_1 z. \end{cases}$$

Поверхности второго порядка

Замечание

Общая классификация поверхностей второго порядка не входит в нашу программу. Отметим без доказательства, что всего таких поверхностей 17 штук.