KIET Group of Institutions

(Department of Information Technology/CSIT) B. Tech, 4th Semester CT-2 Examination, (2020-21) EVEN Semester (Operating System) (KCS-401)

Duration: 2 hrs Max. Marks: 60

Note: - Attempt All the Questions of All the Sections.

		2X10=20)			
Q. I	No.	Question	Marks	CO	BL
	a	Discuss safe state and unsafe state with example?	2	3	BL-2
	b	Explain race condition.	2	2	BL-2
	c	Explain busy waiting. Discuss how busy waiting can be avoided.	2	2	BL-2
	d	Explain the various conditions for deadlock occurrences.	2	3	BL-2
	e	Discuss the hardware type solution for critical section problem?	2	2	BL-2
1.	f	Illustrate how to convert resource allocation graph to wait for graph with example.	2	3	BL-4
1.	g	Define binary and counting semaphores.	2	2	BL-1
	h	Consider a system with three processes P1, P2, and P3. The peak demand of each	2	3	BL-6
		process for a particular resource type R is 6, 9, and 12 respectively. Formulate the			
		minimum number of resources required to ensure deadlock free execution?			
	i	What are the benefits of multithreaded programming?	2	3	BL-1
	j	List the requirements that a solution to the critical section problem must satisfy?	2	2	BL-1

Section-B (5X											
Q. No.		Marks	СО	BL							
	What is a between us	lifferentiate			D.						
2									5	3	BL-
				OR							3
	Discuss in										
	Draw Gant following g										
	Process id		Arrival time		Burst time (ms)			У			
	P1		0		8 3 4 4						
	P2		1		4						BL-
3	P3 P4		3 2		9				5	3	4
	P5		4		9 2 5				-		
	Note: High										
	8										
	Calculate the average waiting time, average turn-around time and average response time for these processes with the SJF scheduling algorithm. Draw the Gantt chart.										
		Process id	Arrival time (milliseconds)		Burst Time Priority number (milliseconds)						
	A B		1		3	3 2					
			2		1						
	C 2 6 3										

		D	3	2	1				
		E	4	8	5				
4	Explain the algorithms	<i></i>	2	BL-					
	Explain Co effect and s	the convoy	3	3	4				
5	Give the p exclusion i Dekker's so	5	2	BL-					
	Write and e	explain the Pe	terson's algorithm	for implementing cr	ritical section problem	n.			

Section-C										(10X2=	•			
Q. No.	Question									Marks	CO	BL		
	Discuss	solut	ion of	prod	ucer c	onsun	ner pro		using	semaj	phore.	10	2	BL-4
6	Describe lock variable. Explain how test and set operation is used for solving critical section problem.													
	Consider below table and draw the Gantt chart and compute the average waiting time and average turnaround time for the following scheduling algorithm. a. Round Robin (Quantum=3 ms) b. Shortest Remaining Time First											10	3	BL-5
	Process	s id				Arrival time				Burst time (ms)				
	P1	P0			2	0				7				
	P2			3					6					
	P3				4					3				
7	OR Consider the following snapshot of the system and answer the following questions using Banker's algorithm. a. Compute the Need Matrix b. Is the system in Safe state?													
		Allocated Maximum Available												
	Process	R1	R2	R3	R1	R2	R3	R1	R2	R3				
	P1	2	2	3	3	6	8	7	7	10				
	P2	2	0	3	4	3	3							
	Р3	1	2	4	3	4	4							

CO -Course Outcome generally refer to traits, knowledge, skill set that a student attains after completing the course successfully.

Bloom's Level (BL) - Bloom's taxonomy framework is planning and designing of assessment of student's learning.