Линейность

Определение 1. функция $f: \mathbb{R}^2 \to \mathbb{R}$ называется $a \phi \phi$ инной, если для любой точки C делющую прямую AB в отношении $\frac{\overline{AC}}{\overline{CB}} = \frac{a}{b}$ выполнено равенство $f(C) = \frac{a}{a+b} f(A) + \frac{b}{a+b} f(B)$.

Определение 2. Назовем $a\phi\phi$ инной функцию, которая, будучи ограниченной на любую прямую, становится линейной. То есть при введении координат на этой прямой можно записать как kx + b.

1. Докажите, что данные определения эквивалентны.

Определение 3. функция $f: \mathbb{R}^2 \to \mathbb{R}$ называется *линейной*, если существуют такие a, b и c, что для любой точки (x, y) f((x, y)) = ax + by + c.

- **2.** Докажите, что эти функции аффинны: $f(X) = \overrightarrow{S}_{AXB}$; $f(X) = AX^2 BX^2$.
- **3.** Докажите, что если h,g аффинные функции, то функция $\lambda h + \mu g$ также аффинна.
- **4.** Докажите аффинность функций: $X \mapsto \sum_{i=1}^n \lambda_i \overrightarrow{S}_{A_i X B_i}; \ X \mapsto \sum_{i=1}^n k_i C_i X^2 \ (\sum k_i = 0).$
- **5.** Докажите, что $\{X: f(X) = d\}$ есть либо \emptyset , либо прямая, либо вся плоскость.
- 6. Докажите, что аффинная функция и линейная- одно и тоже.

Метод решения задач.

- Если в задаче требуется доказать, что какие-то три (или более) точки (например, A, B, C) лежат на одной прямой, можно попытаться придумать функцию f, так чтобы, во-первых, уравнение f(X) = 0 задавало прямую на плоскости, а во-вторых, этому уравнению удовлетворяли все три точки: f(A) = f(B) = f(C) = 0.
- Если в задаче требуется доказать, что какие-то три прямые (например, a,b,c) пересекаются в одной точке, можно попытаться придумать функции f_a , f_b , f_c , задающие эти прямые (т.е. уравнение $f_\ell(X) = 0$ равносильно $X \in \ell$ для $\ell \in \{a,b,c\}$), так чтобы одна из этих функций выражалась линейно через две оставшиеся (т.е. $f_c = \alpha f_a + \beta f_b$. Тогда точка пересечения a и b будет принадлежать c.
- 7. Дан четырехугольник. В одной паре его противоположных углов провели внешние биссектрисы получили точку их пересечения. Потом в другой паре получили вторую точку. Потом противоположные стороны продлили до пересечения, получили два угла по ним аналогично построили третью точку. Докажите, что эти три точки лежат на одной прямой.
- 8. Дан правильный треугольник ABC и произвольная точка D. Точки I_A , I_B и I_C центры окружностей, вписанных в треугольники BCD, CAD и ABD соответственно. Докажите, что перпендикуляры, опущенные из вершин A, B и C на прямые соответственно I_BI_C , I_AI_C и I_AI_B , пересекаются в одной точке.

Линейность

9. Докажите, что если в тетраэдре ABCD оказалось, что $AB\bot CD$ и $AC\bot BD$, то и $AD\bot BC$.