CSE 206 (Digital Logic Design Sessional)

Experiment No.: 02
Name of the Experiment:

Truth tables and simplification using Boolean Algebra

Group No.:	06
Writers' Roll:	1805116 1805120
Section:	B2
Department:	CSE
Other Group Members:	1805117 1805118 1805119 1705107
Date of Performance:	10/03/2021
Date of Submission:	13/03/2021

Problem No.1:

Problem Specification:

Simplify the equation using Boolean algebra and implement it. F(A,B,C,D) = A'B'C'D' + ABCD + ABC'D + A'B'CD' + A'BC'D + AB'C'D' + AB'CD' + A'BCD

Required Instruments:

No	Name	Model	Quantity
01	Logisim Software		
02	IC(Hex-Inverter)	74LS04	01
03	IC (Quad 2 input AND)	74LS08	01
04	IC (Quad 2 input OR)	74LS32	01
05	Wires		
06	Input Pins		04
07	Output Pins		01

Truth Table:

A	В	C	D	F (A, B, C, D)
0	0	0	0	1
0	0	0	1	0

0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Required Equation:

```
F(A, B, C, D) = A'B'C'D' + ABCD + ABC'D + A'B'CD' + A'BC'D + AB'C'D' + AB'CD' + A'BCD
```

- = A'B'C'D'+A'B'CD'+ABCD+ABC'D+A'BC'D+A'BCD+AB'C'D'+AB'CD'
- = A'B'D'(C'+C)+ABD(C+C')+A'BD(C'+C)+AB'D'(C'+C)
- = A'B'D'+ABD+A'BD'+AB'D'
- = A'B'D'+AB'D'+ABD+A'BD
- = B'D'(A'+A)+BD(A+A')
- = B'D'+BD
- $=(B \oplus D)$

Circuit Diagram:

Observations:

- 1) We tried to make the circuit in such a way that it was not too dense with wires
- 2) We used the documentations of the ICs to make sure the connections were given through the right pins
- 3) We checked the output according to the truth table

Problem no.02

Problem specification:

Derive the equations for a 3-bit gray to binary converter from Truth table and implement those with the required gates.

Required Instruments:

No	Name	Model	Quantity
01	Logisim Software		
02	IC (Hex-Inverter)	74LS04	01
03	IC (Quad 2 input AND)	74LS08	03
04	IC (Quad 2 input OR)	74LS32	01

05	Wires	
06	Input Pin	03
07	Output Pin	03

Truth table:

Truth table for the 3-bit gray code to binary representation conversion is presented below. Here ABC is gray code and XYZ is its binary representation.

A	В	C	X	Y	Z
0	0	0	0	0	0
0	0	1	0	0	1
0	1	1	0	1	0
0	1	0	0	1	1
1	1	0	1	0	0
1	1	1	1	0	1
1	0	1	1	1	0
1	0	0	1	1	1

Required Equation:

Equation for X:

Equation for Y:

$$Y = A'BC + A'BC' + AB'C + AB'C'$$

$$= A'B (C + C') + AB' (C + C')$$

$$= A'B + AB'$$

$$= A \oplus B$$

Equation for Z:

$$Z = A'B'C + A'BC' + ABC + AB'C'$$
$$= A' (B \oplus C) + A (B \oplus C)'$$
$$= A \oplus (B \oplus C)$$

Circuit Diagram:

Observation:

- 1) We made a truth table and found out the output equations. We simplified the output equations and implemented the simplified form in our diagram.
- 2) We tried to make the circuit in such a way that it was not too dense with wires.
- 3) We used the documentations of the ICs to make sure the connections were given through the right pins.
- 4) We checked the output according to the truth table.

Problem no.03

Problem specification:

Derive the truth table and corresponding output equations for the given condition and implement those with the required gates.

Condition: There are 3 inputs into a system. The system will glow LED1 and LED0 in such a way that the pattern represents the number of set bits in the input.

Required Instruments:

No	Name	Model	Quantity
01	Logisim Software		
02	IC (Hex-Inverter)	74LS04	01
03	IC (Quad 2 input AND)	74LS08	02
04	IC (Quad 2 input OR)	74LS32	01
05	Wires		
06	Input Pin		03

07	Output Pin	02
	_	

Truth Table:

A	В	С	LED1	LED0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Required Equation:

Equation for LED0:

LED0 = A'B'C + A'BC' + AB'C' + ABC
= A'
$$(B \oplus C) + A (B \oplus C)'$$

= A $\oplus (B \oplus C)$

Equation for LED1:

Circuit Diagram:

Observation:

- 1) We made a truth table and found out the output equations. We simplified the output equations and implemented the simplified form in our diagram.
- 2) We tried to make the circuit such a way that it was not too dense with wires

- 3) We used the documentations of the ICs to make sure the connections were given through the right pins.
- 4) We checked the output according to the truth table.

Problem No.4:

Problem Specification:

For the following logic function, find out the truth table, write down the logic expression. Simplify the logic expression as far as possible using Boolean algebra and then implement it. $F(A, B, C, D) = \Sigma(6, 9, 12, 15)$

Required Instruments:

No	Name	Model	Quantity
01	Logisim Software		
02	IC(Hex-Inverter)	74LS04	01
03	IC (Quad 2 input AND)	74LS08	02
04	IC (Quad 2 input OR)	74LS32	01
05	Wires		
06	Input Pins		04
07	Output Pins		01

Truth Table:

A	В	C	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Required Equation:

$$\begin{split} F (A, B, C, D) &= A'BCD' + AB'C'D + ABC'D' + ABCD \\ &= BC (AD + A'D') + AC' (B'D + BD') \\ &= BC (A \oplus D)' + AC' (B \oplus D) \end{split}$$

Circuit Diagram:

Observations:

- 1) We tried to make the circuit in such a way that it was not too dense with wires
- 2) We used the documentations of the ICs to make sure the connections were given through the right pins
- 3) We checked the output according to the truth table