Rendering Photorealistic Mountain Terrain

Karteek Mekala Graduate Student Department of Computer Science Rochester Institute of Technology

November 2014

Agenda

- Overview
- Background & Motivation
- ► Height-map Generation
- Rendering Techniques
- Technology
- Challenges
- Conclusion
- Future Work
- Demo
- Questions

Overview

- Height map generation
- Tessellation
- Calculating Normals
- Lighting
- Texturing
- Skybox
- Camera Controls
- Performance Statistics

Background

- Diamond Square Recursive Subdivision
- Applications

Height-map Generation

Perlin Noise

Tessellation

Calculating Normals

Lighting

Texturing

Skybox

Camera Controls

Performance Statistics

FPS

Technology

- C++
- Windows 8.1 SDK
- DirectX 11 SDK
- DirecXTK
- Visual Studio 2013
- Github / GitExtentions

Challenges

- Sharp Transitions
- Texture Stretching
- Sea Level Transisiton
- Clipping
- Skybox Edges

Conclusion

Future Enhancements

- Shadow Mapping
- ▶ Tessellation Shader
- Terrain Editor
- Ocean Shader
- User Interface
- Segway to Game Engine

Demo

- 'w' Move camera forward
- 's' Move camera back
- 'a' Yaw camera left
- 'd' Yaw camera right
- 'e' Pitch camera up
- 'c' Pitch camera down
- 'k' -Screen shot
- 'l' Toggle Lighting
- 'm' Toggle wire-mesh
- 't' Toggle texturing
- '1' Toggle terrain
- ► '2' Toggle skybox

THANK YOU!

