Ficha 8: Séries numéricas

8.1 Generalidades

Definição 8.1 (soma parcial) Sejam $n \in \mathbb{N}$, $(u_i)_{i \in \mathbb{N}_0}$ uma sucessão de números reais. Designamos por

$$s_n = \sum_{i \le n} u_i = \sum_{i=0}^n u_i$$

a soma parcial da sucessão $(u_i)_{i\in\mathbb{N}_0}$.

NOTA 8.1 A soma parcial define uma nova sucessão $(s_n)_{n\in\mathbb{N}_0}$.

Exercício 8.1 Mostre que temos, para qualquer $a \neq 1$,

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

Definição 8.2 (convergência de uma série numérica) $Seja\ (u_i)_{i\in\mathbb{N}_0}\ uma\ sucessão\ de números\ reais.$

- Se a soma parcial s_n converge para $S \in \mathbb{R}$ quando $n \to +\infty$, i. e. $\lim_{n \to +\infty} s_n = S$, dizemos que a série de termo geral u_i converge e escrevemos $\sum_{i=0}^{\infty} u_i = S$.
- Se a soma parcial s_n diverge para $\pm \infty$ quando $n \to +\infty$, i. e. $\lim_{n \to +\infty} s_n = \pm \infty$, dizemos que a série de termo geral u_i diverge e escrevemos $\sum_{i=0}^{\infty} u_i = \pm \infty$.

Proposição 8.1

Se a série de termo geral u_i é convergente, então $\lim_{i\to\infty} u_i = 0$.

Esta última proposição é muito útil para mostrar que uma série não converge. Por exemplo podemos afirmar que a série de termo geral $u_i = 2i-1$ não converge porque $\lim_{\infty} u_i = +\infty \neq 0$.

Definição 8.3 (convergência absoluta) Seja $(u_i)_{i\in\mathbb{N}}$ uma sucessão de números reais.

• A série de termo geral u_i é absolutamente convergente se a série de termo geral $|u_i|$ é convergente

• A série de termo geral u_i é absolutamente divergente se a série de termo geral $|u_i|$ diverge para $+\infty$.

EXEMPLO 8.1 Apresentamos exemplos correspondentes às várias situações que podemos encontrar.

- 1. A série de termo geral $u_i = \frac{1}{i^2}$ converge e temos $\sum_{i=0}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$.
- 2. A série de termo geral $u_i = \frac{1}{i}$ diverge $\sum_{i=0}^{\infty} \frac{1}{i} = +\infty$.
- 3. A série de termo geral $u_i = (-1)^i$ não converge. Neste caso, não escrevemos a soma infinita.
- 4. A série de termo geral $u_i = \frac{(-1)^i}{i}$ é convergente mas não é absolutamente convergente.

Proposição 8.2

Uma série absolutamente convergente é convergente e temos $\left|\sum_{i=0}^{\infty} u_i\right| \leq \sum_{i=0}^{\infty} |u_i|$.

Proposição 8.3 (comparação)

Sejam duas séries de termos gerais u_i , v_i respetivamente e supomos que existe $i_0 \in \mathbb{N}$ tal que

$$0 \le u_i \le v_i \quad \forall i \ge i_0.$$

- Se a série de termo geral v_i é convergente então a série de termo geral u_i é convergente.
- Se a série de termo geral u_i é divergente, então a série de termo geral v_i é divergente.

Proposição 8.4 (linearidade das séries)

Sejam duas séries de termo geral u_i , v_i e $\lambda, \mu \in \mathbb{R}$. Se as séries são convergentes então a série de termo geral $\lambda u_i + \mu v_i$ é convergente e temos

$$\sum_{i=0}^{\infty} (\lambda u_i + \mu v_i) = \lambda \sum_{i=0}^{\infty} u_i + \mu \sum_{i=0}^{\infty} v_i.$$

NOTA $8.2\,$ Cuidado, a recíproca falsa. Por exemplo, sejam as séries de termos $u_i=i,\,v_i=2i.$ Então a série de termo $w_i=1u_i-rac{1}{2}v_i=0$ é convergente (aqui $\lambda=1$ e $\mu=-1/2$). Contudo u_i e v_i são termos de duas séries divergentes.

8.1.1 Séries numéricas particulares

Definição 8.4 (série geométrica) Dado $r \in \mathbb{R}$, a série numérica de termo geral $u_i = r^i$ chama-se série geométrica de razão r.

Proposição 8.5

Temos as propriedades sequintes

- Se |r| < 1, a série de termo geral r^i é convergente e temos $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$.
- Se $r \ge 1$ a série diverge para $+\infty$.
- Se r < -1 a série não converge.

Definição 8.5 (série de Riemann) Seja r > 0, a série de termo geral $u_i = \frac{1}{i^r}$ chama-se série de Riemann.

Proposição 8.6

Temos as propriedades seguintes:

- Se r > 1 a série é convergente.
- Se $r \leq 1$ a série é divergente.

Definição 8.6 (Série alternada) Uma série numérica de termo geral u_i chama-se série alternada se $u_{i+1}u_i \leq 0$. Os sinais de dois termos sucessivos são opostos.

Por exemplo, a série de termo geral $u_i = (-1)^i$ é alternada. Em geral para estudar a convergência duma série alternada, agrupamos dois termos consecutivos.

EXEMPLO 8.2 Seja a série de termo geral $u_i = \frac{(-1)^i}{i}$. Podemos escrever

$$v_i = u_{2i} + u_{2i+1} = \frac{1}{2i} - \frac{1}{2i+1} = \frac{1}{2i(2i+1)} \le \frac{1}{(2i+1)^2}$$

A série de termo geral $w_i = \frac{1}{(2i+1)^2}$ é de Riemann com r=2 então converge. Com o critério de comparação, deduzimos que a série de termo geral v_i converge, e então, a série alternada converge.

Proposição 8.7

Seja a série alternada numérica de termo geral u_i . Supomos que:

- a sucessão |u_i| é decrescente;
- $\bullet \lim_{i\to\infty} u_i = 0.$

Então a série é convergente.

8.2 Critérios de convergência ou divergência

Existem vários critérios para saber se uma série de termo geral converge ou não. Vamos apresentar aqui os dois princípios: o critério de Cauchy e o critério de d'Alembert.

Proposição 8.8 (Critério de d'Alembert)

Seja uma série de termo geral u_i positivo (i.e. $u_i > 0$) tal que

$$\lim_{i \to \infty} \frac{u_{i+1}}{u_i} = l.$$

- Se l < 1, então a série é convergente.
- Se l > 1, então a série é divergente.
- Se l = 1, nada podemos concluir.

EXEMPLO 8.3 Seja a sucessão definida por indução $u_{i+1}=u_i\times \sqrt{i+1},\ u_0=2$. Temos uma sucessão crescente então $u_i>0$. Por outro lado $\lim_{i\to\infty}\frac{u_{i+1}}{u_i}=+\infty>1$ então o critério de d'Alembert permite afirmar que a série é divergente.

Proposição 8.9 (Critério de Cauchy)

Seja uma série de termo geral u_i positivo tal que

$$\lim_{i \to \infty} \sqrt[i]{u_i} = l.$$

- Se l < 1, então a série é convergente.
- Se l > 1, então a série é divergente.
- Se l = 1, nada podemos concluir.

EXEMPLO 8.4 Seja a sucessão $u_i = e^{-i} > 0$, temos

$$\sqrt[i]{u_i} = (e^{-i})^{\frac{1}{i}} = e^{-1} < 1$$

O critério de Cauchy garante que a série de termo geral e^{-i} é convergente.

8.3 Exercícios

Exercício 1 Usando as séries geométricas ou de Riemann, identificar a natureza das séries seguintes.

•
$$u_i = \frac{1}{2^i}$$
, $u_i = \frac{(1/3)^i}{(1/2)^i}$, $u_i = \frac{\sqrt{3^i}}{2^i}$, $u_i = \frac{3^i}{(2^i)^2}$

•
$$u_i = \frac{\sqrt{i}}{i}$$
, $u_i = \frac{\sqrt{3i}}{i^2}$, $u_i = \frac{i}{(2i)^4}$, $u_i = \frac{i-1}{i^2-1}$.

Exercício 2 Usando o critério de comparação, identificar a natureza das séries seguintes.

•
$$u_i = \frac{1}{1+i}$$
, $u_i = \frac{1}{\sqrt{1+i}}$, $u_i = \frac{1}{1+\sqrt{i}}$, $u_i = \frac{1}{i+\sqrt{i}}$, $u_i = \frac{\sqrt{i}}{i^2-2i+2}$,

•
$$u_i = \frac{1}{i^2 - 2i + 2}$$
, $u_i = \frac{i + \sin(i)}{i^3 - i^2 + 16}$, $u_i = \frac{i^2 + \ln(i+1)}{(i^2 - 1)^3 + 1}$, $u_i = \frac{2^i}{3^i + i}$,

•
$$u_i = \frac{3^i}{2^i + i^3}$$
, $u_i = \frac{3^i}{2^i - 5^i}$, $u_i = \frac{3^i + i^3}{(2^i)^2 - i^2}$, $u_i = \frac{1}{i!}$, $u_i = \frac{i^2}{i!}$, $u_i = \frac{2^i}{i!}$,