

CD4094BC

8-Bit Shift Register/Latch with 3-STATE Outputs

General Description

The CD4094BC consists of an 8-bit shift register and a 3-STATE 8-bit latch. Data is shifted serially through the shift register on the positive transition of the clock. The output of the last stage ($Q_{\rm S}$) can be used to cascade several devices. Data on the $Q_{\rm S}$ output is transferred to a second output, $Q'_{\rm S}$, on the following negative clock edge.

The output of each stage of the shift register feeds a latch, which latches data on the negative edge of the STROBE input. When STROBE is high, data propagates through the latch to 3-STATE output gates. These gates are enabled when OUTPUT ENABLE is taken high.

Features

- Wide supply voltage range: 3.0V to 18V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility:
- Fan out of 2 driving 74L or 1 driving 74LS
- 3-STATE outputs

Connection Diagram

Dual-In-Line Package

Top View Order Number CD4094B

Block or Logic Diagram

Absolute Maximum Ratings (Notes 2, 3)

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds)

Recommended Operating

Conditions (Note 3)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & +3.0 \text{ to } +15 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & 0 \text{ to } \text{ V}_{\text{DD}} \text{ V}_{\text{DC}} \\ \text{Operating Temperature Range (T}_{\text{A}}) & -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C} \end{array}$

260°C

DC Electrical Characteristics

CD4094BC (Note 3)

Symbol	Parameter	Conditions	-40	0°C		+25°C		+85°C		Units
			Min	Max	Min	Тур	Max	Min	Max	1
I _{DD}	Quiescent	V _{DD} = 5.0V		20			20		150	μA
	Device Current	V _{DD} = 10V		40			40		300	μA
		V _{DD} = 15V		80			80		600	μA
V _{OL}	Low Level	V _{DD} = 5.0V		0.05		0	0.05		0.05	V
	Output Voltage	$V_{DD} = 10V I_{O} \le 1.0 \mu A$		0.05		0	0.05		0.05	V
		V _{DD} = 15V		0.05		0	0.05		0.05	V
V _{OH}	High Level	V _{DD} = 5.0V	4.95		4.95	5.0		4.95		V
	Output Voltage	$V_{DD} = 10V I_{O} \le 1 \mu A$	9.95		9.95	10.0		9.95		V
		V _{DD} = 15V	14.95		14.95	15.0		14.95		V
V _{IL}	Low Level	V _{DD} = 5.0V, V _O = 0.5V or 4.5V		1.5			1.5		1.5	V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0			3.0		3.0	V
		V _{DD} = 15V, V _O = 1.5V or 13.5V		4.0			4.0		4.0	V
V _{IH}	High Level	V _{DD} = 5.0V, V _O = 0.5V or 4.5V	3.5		3.5			3.5		V
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0			7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0		V
I _{OL}	Low Level	V _{DD} = 5.0V, V _O = 0.4V	0.52		0.44	0.88		0.36		mA
	Output Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
	(Note 4)	V _{DD} = 15V, V _O = 1.5V	3.6		3.0	8.8		2.4		mA
I _{OH}	High Level	V _{DD} = 5.0V, V _O = 4.6V	-0.52		-0.44	0.88		-0.36		mA
	Output Current	V _{DD} = 10V, V _O = 9.5V	-1.3		-1.1	2.25		-0.9		mA
	(Note 4)	V _{DD} = 15V, V _O = 13.5V	-3.6		-3.0	8.8		-2.4		mA
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V		-0.3			-0.3		-1.0	μA
		V _{DD} = 15V, V _{IN} = 15V		0.3			0.3		1.0	μA
I _{OZ}	3-STATE Output	V _{DD} = 15V, V _{IN} = 0V or 15V		1			1		10	μA
	Leakage Current									

AC Electrical Characteristics (Note 1)

 $T_A = 25^{\circ}C, C_L = 50 \text{ pF}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay	V _{DD} = 5.0V		300	600	ns
	Clock to Q _S	V _{DD} = 10V		125	250	ns
		V _{DD} = 15V		95	190	ns
t _{PHL} , t _{PLH}	Propagation Delay	V _{DD} = 5.0V		230	460	ns
	Clock to Q'S	V _{DD} = 10V		110	220	ns
		V _{DD} = 15V		75	150	ns
t _{PHL} , t _{PLH}	Propagation Delay Clock	V _{DD} = 5.0V		420	840	ns
	to Parallel Out	V _{DD} = 10V		195	390	ns
		V _{DD} = 15V		135	270	ns
t _{PHL} , t _{PLH}	Propagation Delay Strobe	V _{DD} = 5.0V		290	580	ns
	to Parallel Out	V _{DD} = 10V		145	290	ns
		V _{DD} = 15V		100	200	ns
t _{PHZ}	Propagation Delay High	V _{DD} = 5.0V		140	280	ns

AC Electrical Characteristics (Note 1) (Continued)

 $T_A = 25^{\circ}C, C_L = 50 \text{ pF}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Level to High Impedance	V _{DD} = 10V		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PLZ}	Propagation Delay Low	V _{DD} = 5.0V		140	280	ns
	Level to High Impedance	V _{DD} = 10V		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PZH}	Propagation Delay High	V _{DD} = 5.0V		140	280	ns
	Impedance to High Level	V _{DD} = 10V		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{PZL}	Propagation Delay High	V _{DD} = 5.0V		140	280	ns
	Impedance to Low Level	V _{DD} = 10V		75	150	ns
		V _{DD} = 15V		55	110	ns
t _{THL} , t _{TLH}	Transition Time	V _{DD} = 5.0V		100	200	ns
		V _{DD} = 10V		50	100	ns
		V _{DD} = 15V		40	80	ns
t _{SU}	Set-Up Time	V _{DD} = 5.0V	80	40		ns
	Data to Clock	V _{DD} = 10V	40	20		ns
		V _{DD} = 15V	20	10		ns
t _r , t _f	Maximum Clock Rise	V _{DD} = 5.0V	1			ms
	and Fall Time	V _{DD} = 10V	1			ms
		V _{DD} = 15V	1			ms
t _{PC}	Minimum Clock	V _{DD} = 5.0V	200	100		ns
	Pulse Width	V _{DD} = 10V	100	50		ns
		V _{DD} = 15V	83	40		ns
t _{PS}	Minimum Strobe	V _{DD} = 5.0V	200	100		ns
	Pulse Width	V _{DD} = 10V	80	40		ns
		V _{DD} = 15V	70	35		ns
f _{max}	Maximum Clock Frequency	V _{DD} = 5.0V	1.5	3.0		MHz
		V _{DD} = 10V	3.0	6.0		MHz
		V _{DD} = 15V	4.0	8.0		MHz
C _{IN}	Input Capacitance	Any Input		5.0	7.5	pF

Note 1: AC Parameters are guaranteed by DC correlated testing.

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 3: V_{SS} = 0V unless otherwise specified.

Note 4: I_{OH} and I_{OL} are tested one output at a time.

Test Circuits and Timing Diagrams for 3-STATE

Logic Truth Table

Clock	Output	Strobe	Data	a Parallel Outputs Serial			Outputs	
	Enable			Q1	Q _N	Q _s *	Q's	
~	0	Х	Х	Hi-Z	Hi-Z	Q7	No Chg.	
~	0	Х	Х	Hi-Z	Hi-Z	No Chg.	Q7	
~	1	0	Х	No Chg.	No Chg.	Q7	No Chg.	
~	1	1	0	0	Q _N -1	Q7	No Chg.	
~	1	1	1	1	Q _N -1	Q7	No Chg.	
~	1	1	1	No Chg.	No Chg.	No Chg.	Q7	

X = Don't Care
*At the positive clock edge, information in the 7th shift register stage is transferred to Q8 and Qs.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372 Fax: 972-910-8036

Fairchild Semiconductor

Far: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 8 141-35-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 8/F Room 808 Empire Centre

68 Mody Road, Tsimshatsui East Kowloon, Hong Kong Tel: 852-2722-8338

Fairchild Semiconductor

Japan Ltd. 4F, Natsume BI, 2-18-6 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan Tel: 81-3-3818-8840

www.fairchildsemi.com