Обсуждение аналогов теоремы Дезарга

Селиверстов Александр Владиславович Институт проблем передачи информации им. А.А. Харкевича РАН slvstv@iitp.ru

Соавторы: Алексей А. Бойков (РТУ МИРЭА)

Секция: История математики

Целью работы служит иллюстрация изменений в доказательствах теорем с развитием многомерной геометрии. Теорема Дезарга (Girard Desargues, 1591–1661) о перспективных треугольниках переносится на случай перспективных тетраэдров. Эту теорему о тетраэдрах впервые доказал Понселе (Jean-Victor Poncelet, 1788–1867). Теорема может быть доказана как в трёхмерном проективном пространстве, так и вовлекая многомерное проективное пространство. Ранние публикации упоминают только первое доказательство, а второе было найдено позже. По свидетельству Нины Васильевны Наумович, выход в пятимерное пространство использовал в 1913 г. Дмитрий Дмитриевич Мордухай-Болтовской (1876–1952). С другой стороны, в 1899 г. Гильберт (David Hilbert, 1862-1943) показал, что нельзя вывести теорему Дезарга из аксиом проективной плоскости. Астроном Моултон (Forest Ray Moulton, 1872–1952) упростил доказательство в 1902 г. Поэтому доказательство теоремы Дезарга о перспективных треугольниках на плоскости требует выхода в трёхмерное пространство. Начиная с работ Кэли (Arthur Cayley, 1821–1895) и Шлефли (Ludwig Schläfli, 1814–1895) в середине XIX века, многомерная геометрия быстро развивалась. Геометрический смысл алгебраических уравнений от многих переменных был осознан к 1844 г., прежде чем многомерная геометрия стала общепризнанной. Но даже в начале XX века доказательство теоремы о перспективных тетраэдрах, использующее выход в многомерное пространство, не было привлекательным из-за возможности провести доказательство в трёхмерном пространстве. Напротив, в середине XX века доказательство, вовлекающее многомерное пространство, стало восприниматься как естественное обобщение доказательства теоремы Дезарга. Многомерные пространства стали обычными. При этом снизился интерес к основаниям геометрии. Но расширение доступных методов позволяет поддерживать единство математики, чтобы видеть красоту взаимосвязей между разделами.