#### Solving Simple Stochastic Games

Krishnendu Chatterjee



Raimundo Saona



Tobias Meggendorfer



<u>Jakub Svo</u>boda



Based on [CMSS23]



Simple Stochastic Games Parametrized Complexity Guessing and Verifying Final Algorithm

# Can we **check**that we do not **lose**by making **simplifications**?

Simple Stochastic Games Parametrized Complexity Guessing and Verifying Final Algorithm





Simple Stochastic Games Parametrized Complexity Guessing and Verifying Final Algorithm

#### Key concepts

- Simple Stochastic Games
- Parametrized Complexity of Graphs
- Guessing a Value and Verifying the guess

## Simple Stochastic Games

#### Simple Stochastic Games (SSG)

An SSG is a tuple  $\Gamma = (S, E, \delta, (S_{\text{max}}, S_{\text{min}}, S_p, \{s_+, s_-\}))$  with the following components.

- The state space  $S = S_{\text{max}} \cup S_{\text{min}} \cup S_p \cup \{s_+, s_-\}$ , partitioned into player-max's states, player-min states, probabilistic states, and two special absorbing (or sink) states.
- The probabilistic transition function  $\delta \colon S_p \to \Delta(S)$ .
- The edge set  $E \subseteq S \times S$  such that
  - $E(s) := \{s' \mid (s, s') \in E\}$
  - E(s) is non-empty for all states;
  - for all  $s \in S_p$  we have  $E(s) = \{s' \mid \delta(s, s') > 0\};$
  - $E(s_+) = \{s_+\}$  and  $E(s_-) = \{s_-\}$ .

We associate the graph G = (S, E).

#### Value

• Strategies.

$$\sigma: S_{\mathsf{max}} \to S, \quad \sigma(s) \in E(s)$$

$$au$$
:  $S_{\min} \to S$ ,  $au(s) \in E(s)$ 

Reachability.

$$\mathbb{P}_s^{\pi=(\sigma,\tau)}(\exists t\geq 0: S_t=s_+)$$

Value.

$$\operatorname{\mathsf{val}}(s) \coloneqq \max_{\sigma} \min_{\tau} \mathbb{P}_{s}^{\pi}(\operatorname{Reach}(s_{+}))$$

#### Complexity

- Computing the value is in NP and coNP.
- All problems in NP inter coNP have eventually fallen into P.
- All known algorithms run in exponential time worst case.
- There is a randomized sub-exponential algorithm, proposed in 1995.

#### Question

Can we get a sub-exponential time deterministic algorithm for a large class of games?

#### Hard instances

# What makes a Simple Stochastic Game hard?

# Parametrized Complexity

Solving SSGs

#### Parametrized Complexity

Some notions for the complexity of graphs are the following.

#### Definition (Tree-depth

Shortest tree where all edges are between nodes in an ancestor-descendent relationship.

#### Definition (Cycle rank)

Minimum number of vertices that one must remove to make the graph acyclic.

#### Definition (Tree-width)

Minimum size of bags, where every edge is between nodes of the same bag.

#### Complexity considerations

Consider the tree-width.

- It is NP-complete to compute the tree-width of any graph.
- For a fixed tree-width *t*, it is linear time to recognize a graph with tree-width *t* and compute its tree decomposition.

This is the limit of our fixed-parameter complexity.

Definition Approximate to Exact Complexity

## Simplification: Guessing

#### Guessing



- Pick a state and a guess of its value.
- Replace all outgoing edges by just two, going to  $s_-$  and  $s_+$  with corresponding probabilities.

#### Verification



- After a guess is made, take back the graph transformation.
- Apply a local update in the state and compare it with the guess.

#### Verification: Formal statement

#### Lemma

Consider a game G, a state  $s \in S$  and a guess  $\gamma \in [0,1]$ .

$$Update(s, (\gamma, val_{G[s=\gamma]})) > \gamma \quad \Leftrightarrow \quad val_{G}(s) > \gamma.$$

#### Remark

Verification does not only give you true or false but allows binary search the value.

#### Approximating by guessing

- Binary search the value of a state, starting with bounds [0,1] and solving **exactly** the guessed game  $G[s=\gamma]$ .
- After  $\log(1/\varepsilon)$  iterations, you obtained an  $\varepsilon$ -approximation of the value.

#### Question

How to transform an approximate solution into an exact solution?

#### From Approximation to Exact

#### Definition (Value separation)

Given a game G, the value separation is

$$B := \min\{|\mathsf{val}(s) - \mathsf{val}(s')| : \mathsf{val}(s) \neq \mathsf{val}(s')\}.$$

To retrieve an exact solution from an approximate solution,

- Compute (B/2)-approximations in every state.
- Construct a strategy for each player based on the current ranking of the values.
- Since this strategy is optimal, compute the values.

#### Value Separation for SSGs

#### Definition (Transition complexity)

Given a game G, the transition complexity for a probabilitistic state s is

$$D(s) := \min\{M : \forall s' \in E(s) : M\delta(s, s') \in \mathbb{N}\}.$$

Then, the overall transition complexity is

$$D := \max\{D(s) : s \in S\}.$$

#### Lemma

Consider a game G with state space S and rational transition probabilities with transitions complexity D. Then, the value separation is at least  $1/(2D)^{|S|-1}$ .

#### Summary for guessing a state

- Pick a state s to apply guessing.
- Guess it and solve the resulting game  $G[s = \gamma]$ .
- Repeat until the approximation of the val(s) is sufficiently good.
- Compute val(s) exactly from the approximation and the solution of the value of  $G[s = \gamma]$ .

This gives an algorithm that, given an Oracle to solve a game, solves the game for a larger game.

Definition Complexity Summary of requirements

# Final algorithm

#### Pseudo-algorithm

The main idea is as follows.

- Small tree-width allows you to obtain smaller independent instances of Simple Stochastic Games after guessing a few states.
- By solving these smaller SSGs recursively, one obtains an improved complexity, parametrized by the tree-width.

#### Result

#### Theorem

Given a game G with state space S and transitions complexity D whose game graph has tree-width t, there is an algorithm that computes the value vector  $val_G$  in time

$$\mathcal{O}((t|S|^2\log D)^{t\log|S|}).$$

#### What did we need to make this work?

In general, these are the tools you need.

- Guessing simplifies the problem.
- Guessing can be verified, and the verification is informative.
- With enough information I can give an exact solution.

In our case, this was possible in SSGs because

- A parametrized complexity had not had an efficient solution.
- For a fixed parameter, the guarantees can be computed efficiently.

#### References I



Krishnendu Chatterjee, Tobias Meggendorfer, Raimundo Saona, and Jakub Svoboda.

Faster Algorithm for Turn-based Stochastic Games with Bounded Treewidth.

In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4590–4605, January 2023.