Homework 2

Exercise 2.2

Show that $\mathcal{C} = \sigma(\mathcal{C})$ if and only if \mathcal{C} is a sigma algebra.

- (\Leftarrow) $\sigma(\mathcal{C})$ is the smallest σ -algebra that contains \mathcal{C} . So \mathcal{C} is in $\sigma(\mathcal{C})$ by definition, and if \mathcal{C} is already a σ -algebra, we don't need to add anything (and if we do, it isn't the smallest anymore).
 - (\Rightarrow) $\sigma(X)$ is a σ -algebra for any set X, so if $\mathcal{C} = \sigma(X)$, \mathcal{C} is a σ -algebra.

Exercise 2.6

Show that the Lebesgue measure of rational numbers on [0,1] is 0.

Between every two rational numbers, there is an irrational number $\Rightarrow \mathbb{Q}$ consists of singletons (and is countable), and measure of singletons is 0. $\Rightarrow \lambda(\mathbb{Q}) = \sum_{i=1}^{\infty} \lambda(q_i) = \sum_{i=1}^{\infty} 0 = 0$.