NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

Semester I (2009/2010) MA4254 Discrete Optimization Tutorial 3

Q1. Show that a square matrix U is integer and unimodular if and only if its inverse U^{-1} is integer and unimodular. $[UU^{-1} = U^{-1}U = I]$

Q2. Show that

$$A = \left[\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

is totally unimodular.

Q3. Is the following matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & -1 & 1 \\ -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 \end{array} \right]$$

totally unimodular? Why?

Q4. Suppose that $A \in \mathbb{R}^{m \times n}$ is of full row rank $(m \le n)$, $c, d \in \mathbb{Z}^m$ and c < d. Show that any extreme point to the polyhedron

$$S = \{x \in \Re^n \, | \, Ax = b, c \le x \le d \}$$

is an integer if A is totally unimodular and $b \in \mathbb{Z}^m$.

Q5. Suppose that there are n people and m jobs, where $n \ge m$. Each job must be assigned to exactly one person, and each person can do at most one job. The cost of person j doing job i is c_{ij} . Then the Assignment Problem can be formulated as

minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
subject to
$$\sum_{j=1}^{m} x_{ij} = 1, i = 1, \dots, m$$
$$\sum_{i=1}^{m} x_{ij} \leq 1, j = 1, \dots, n$$
$$x \in B^{mn}.$$

Show that the above problem can be reformulated as

minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
subject to
$$\sum_{j=1}^{m} x_{ij} = 1, i = 1, \dots, m$$
$$\sum_{i=1}^{m} x_{ij} \leq 1, j = 1, \dots, n$$
$$x > 0.$$

Q6. Let $V = \{1, ..., m\}$. Suppose that $V_1 = \{1\}$, $V_3 = \{m\}$, $V'(1) = \emptyset$, $V(m) = \emptyset$. Then the maximum flow problem is to maximize the total flow into vertex m under the capacity constraints

maximize
$$v$$
 subject to
$$\sum_{i \in V(1)} x_{1i} = v$$

$$\sum_{j \in V(i)} x_{ij} - \sum_{j \in V'(i)} x_{ji} = 0, i \in V_2 = \{2, \dots, m-1\}$$

$$\sum_{i \in V'(m)} x_{im} = v$$

$$0 \le x_{ij} \le d_{ij}, (i, j) \in E.$$

- (i) Write down the dual of the maximum flow problem.
- (ii) Show that every basic feasible solution to the dual problem is an integer provided that all d_{ij} are integer.