Chapter 1

Enumeration Sort

1.1 Objectives:

At the end of this lecture the learner will be able to:

- Understand the meaning of enumeration sort
- Apply enumeration sort algorithm to sort a list of numbers.

1.2 Definition of Enumeration Sort

First let us start our discussion with the definition of enumeration sort.

Definition 1. Enumeration Sort: According to Knuth (1973), it is a method of finding the exact position of each element in a sorted list by comparing and finding the frequency of elements having smaller value. That is if p elements are smaller than a_q , then a_q occupies the (p+1)th position in the sorted list.

1.3 Enumeration Sort Algorithm

Muller and Preparata (1975) proposed a non standard PRAM model to carry out enumeration sorting in logarithmic time. The algorithm consumes $\theta(logn)$ to spawn n² processors and a constant time to sort.

1.3.1 Pseudo Code

Contract: EnumSort: List->List

Purpose: This algorithm is to sort a list of elements in increasing order.

Example: EnumSort([2,1,5,4,3])-> [1,2,3,4,5]

Procedure EnumSort(numList[0..n-1])

begin

spawn n^2 processors denoted by $P_{i,j}$ where i,j ranges from 0 to n-1

for all processors $P_{i,j}$ where i,j ranges from 0 to n-1 do

begin

Initialize Position[i] to 0

if numList[i]<numList[j] or numList[i]=numList[j] and i<j then

Position[i] is set to 1

endif

NPTEL - Computer Science & Engineering - Parallel Algorithms

end

for all processors $P_{i,0}$ where i ranges from 0 to n-1 do

begin

SortedList[(n-1)-Position[i]] is set to numList[i]

end end

Dry Run: Let us consider numList=[5,2,3]. Here n=3.

Table 1.1: Dry Run of the Enumeration Sort Algorithm-Finding the final Position of an element

P00	P01	P02	P10	P11	P12	P20	P21	P22	
Pos[0]=0	Pos[0]=0	Pos[0]=0	Pos[1]=1	Pos[1]=1	Pos[1]=2	Pos[2]=1	Pos[2]=1	Pos[2]=1	

Table 1.2: Dry Run of the Enumeration Sort Algorithm-Determining the Sorted List

	<u>_</u>	
P00	P10	P20
Sorted[(3-1)-Pos[0]]	Sorted[(3-1)-Pos[1]]	Sorted[(3-1)-Pos[2]]
=Sorted[2]	=Sorted[0]	=Sorted[1]
=a[0]	=a[1]	=a[2]
=5	=2	=3

Table 1.3: Dry Run of the Enumeration Sort Algorithm-Final Sorted List

0	1	2
2	3	5