Internal Sort Algorithm

- Quicksort is a fast way to sort in memory
- Alternative: "tournament sort" (a.k.a. "heapsort", "replacement selection")
 - Break available memory into an array for the heap, an input buffer, and an output buffer
 - Fill the array from disk
 - Make a min-heap
 - Send the smallest value (root) to the output buffer

Replacement Selection

- If the next key in the file is greater than the last value output, then
 - Replace the root with this key
- else
 - Replace the root with the last key in the array
 - Add the next record in the file to a new heap (actually, stick it at the end of the array)

An Illustration of Replacement Selection

Input	Memory	Output
16	19 (19) (25) (21) (25) (21) (31) (40)	12
29	16 (19) (25) (21) (25) (21) (31) (40)	16
	29 (19) (25) (21) (26) (40)	

More on Heapsort

- Fact: average length of a run in heapsort is 2(B-2)
 - The "snowplow" analogy
- Worst-Case:
 - What is min length of a run?
 - How does this arise?
- Best-Case:
 - What is max length of a run?
 - How does this arise?
- Quicksort is faster, but ... longer runs often means fewer passes!

