Numerical Optimization for Data Science

Dr. Phani Motamarri
Assistant Professor
Department of Computational and Data Sciences
Indian Institute of Science, Bangalore

Outline

- Types of Optimization Problems
- Examples of Optimization Problems
- Characterizing the solution to an Optimization Problem
- Constrained and Unconstrained Optimization Problems
- Unconstrained Optimization
- 6 Convexity
- Unconstrained Minimization
- First Order Methods
- Second Order Methods

Types of Optimization Problems

◆□▶ ◆□▶ ◆ 亘▶ ◆ 亘 り९℃

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 3 / 72

Example 1: Linear Least Squares Problem

The problem is to fit a straight line $g(x) = w_1 + w_2x$ to a training set with observations $(x_1, x_2, \dots x_n)$ and corresponding estimated responses $(y_1, y_2, \dots y_n)$ using least squares.

The objective function (or the loss function) to be minimized is:

$$f(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (g(x_i) - y_i)^2$$

$$f(w_1, w_2) = \frac{1}{2} \sum_{i=1}^{n} (w_1 + w_2 x_i - y_i)^2$$

Figure: Least Squares Problem

Phani (ACP-TS)

May 15, 2021

4 / 72

Example 2: Nonlinear Least Squares Problem

The problem is to fit $g(x) = \frac{1}{1 + e^{-(wx + b)}}$ to a training set with observations $(x_1, x_2, \dots x_n)$ and corresponding estimated responses $(y_1, y_2, \dots y_n)$ using least squares.

The objective function (or the loss function) to be minimized is:

$$f(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (g(x_i) - y_i)^2$$

$$f(\mathbf{w}, b) = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{1}{1 + e^{-(wx_i + b)}} - y_i \right)^2$$

るいかにあれたる人

Figure: Sigmoid Function

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りゅう

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 5 / 72

Example 3: Transportation Problem

Objective function

to be minimized:

$$f(\mathbf{x}) = \sum_{ij} c_{ij} x_{ij}$$

subject to constraints C;7

$$\sum_{j=1}^{12} x_{ij} \leq a_i, \quad i = 1, 2$$

$$\sum_{i,j} x_{ij} \geq b_j, \quad j=1,...,12$$

$$x_{ij} \geq 0, \quad i = 1, 2 \quad j = 1, ..., 12$$

Figure: Transportation Problem

$$F_i o Factories, \quad R_i o Retailers$$
 $a_i o Capacity, \quad b_i o Demand$
 $c_{ij} o Cost$
 $x_{ij} o Product Shipped$

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 6 / 72

Characterizing the solution to an Optimization Problem

- Global Minimizer •
- Local Minimizer
- Strictly Local Minimizer

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 7 / 72

Global Minimizer

Global minimizer of f:

• A point \mathbf{x}^* is a global minimizer if $f(\mathbf{x}^*) < f(\mathbf{x})$ for all \mathbf{x} where \mathbf{x} ranges over all of \mathbb{R}^n or over the domain of interest.

Figure: Global minimum 4 - > 4

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 8 / 72

Local Minimizer

Local minimizer of f:

• A point \mathbf{x}^* is a *local minimizer* (also called a *weak local minimizer*) if there is a region N of \mathbf{x}^* such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in N$

fcz) SEJ(x) ZEH

990

Figure: Local minima

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 9 / 72

Strict Local Minimizer

Strict Local minimizer of f:

• A point \mathbf{x}^* is a *strict local minimizer* (also called a *strong local minimizer*) if there is a region N of \mathbf{x}^* such that $f(\mathbf{x}^*) < f(\mathbf{x})$ for all $\mathbf{x} \in N$.

Figure: Strong Local minima

Figure: Weak Local minima

990

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 10 / 72

Characterizing the solution to an optimization problem

Figure: Global and Local minima

Phani (ACP-TS)

Numerical Optimization for Data Science

May 15, 2021 11/72

Global and Local Minimum

- Every global minimum is also a local minimum
- It may not always be possible to find the global minimum by finding all local minima.

• f does not have a global minimum but has a local minimum

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 12 / 72

Optimization Problems

Optimization Problems:

Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}$

- Constrained Optimization Problem : minimize $f(\mathbf{x})$ with respect to \mathbf{x} such that $\mathbf{x} \in X$
- Unconstrained Optimization Problem : minimize $f(\mathbf{x})$ with respect to \mathbf{x} such that $\mathbf{x} \in \mathbb{R}^h$

Phani (ACP-TS)

Numerical Optimization for Data Science

May 15, 2021 13 / 72

Unconstrained Optimization

Unconstrained Optimization:

- Necessary Conditions Conditions which are satisfied by every local minimum
- Sufficient Conditions Conditions which guarantee a local minimum

Optimality Conditions:

- First-Order Necessary Conditions
- Second-Order Necessary Conditions
- Second-Order Sufficient Conditions
- Sufficient Optimality Conditions

First-Order Necessary Conditions

First-Order Necessary Conditions:

If \mathbf{x}^* is a local minimizer and f is continuously differentiable in a region of \mathbf{x}^* then $\nabla f(\mathbf{x}^*) = 0$

• In one-dimensional case, the condition is $f'(x^*) = 0$

• Here $f'(x^*) = \frac{df}{dx}\Big|_{x=x^*}$

Phani (ACP-TS) May 15, 2021 15 / 72

First-Order Necessary Conditions

Figure: Tangents at different points on a curve

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 16 / 72

990

First-Order Necessary Conditions

Figure: Gradient of $f(x_1, x_2)$ is 0 at the minimum

Phani (ACP-TS)

Numerical Optimization for Data Science

May 15, 2021 17/72

First-Order Necessary Conditions: Example

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 18 / 72

First-Order Necessary Conditions: Example

- Slope of a function or f'(x) is zero at local minimum, local maximum and at saddle point.
- How to determine if the stationary point x for which f'(x) = 0, is a local minimum?

Phani (ACP-TS)

May 15, 2021

19 / 72

Second-Order Necessary Conditions

Second-Order Necessary Conditions:

If \mathbf{x}^* is a local minimizer of f and $\nabla^2 f$ exists and is continuous in a region of \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ is positive semi-definite.

- In one-dimensional case, the conditions are $f'(x^*) = 0$ and $f''(x^*)$
- A matrix M is positive semi-definite if $\mathbf{x}^T M \mathbf{x} \ge 0$ for all \mathbf{x} in \mathbb{R}^T Here $f''(x^*) = \frac{d^2 f}{dx^2}\Big|_{x=x^*}$

• Here
$$f''(x^*) = \frac{d^2f}{dx^2}\Big|_{x=x^*}$$

• Here
$$f''(x^*) = \frac{d^2f}{dx^2}\Big|_{x=x^*}$$

• And $\nabla^2 f(\mathbf{x}^*) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\mathbf{x}^*) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{x}^*) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{x}^*) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{x}^*) & \frac{\partial^2 f}{\partial x_2^2}(\mathbf{x}^*) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{x}^*) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{x}^*) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{x}^*) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\mathbf{x}^*) \end{bmatrix}$

Phani (ACP-TS)

Numerical Optimization for Data Science

May 15, 2021 20/72

Second-Order Necessary Conditions: Example

Figure: $f(x) = (x-4)^2$ 2 (x-4) f'(4) = 0 2 $f''(4) = 2 \ge 0$

For a local minimum, we can verify $f''(x^*) > 0$

Figure: $f(x) = -(x-2)^2$ f'(2) = 0 $f''(2) = -2 \ngeq 0$ Since, $f''(x^*) \ngeq 0$, x^* is not a local minimum

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 21 / 72

$$\Delta t = \frac{3x^2}{3t} = \frac{3y^2}{3t} = \frac{3y^2}{$$

3×5 4×4 n×n

Second-Order Necessary Conditions: Example

Figure:
$$f(x) = (x - 1)^3$$
 $f'(1) = 0$ $f''(1) = 0 \ge 0$

- But $x^* = 1$ is not a local minimum
- The second-order necessary conditions are not sufficient.

f1x2) < fr

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 22 / 72

Second-Order Sufficient Conditions

Second-Order Sufficient Conditions:

 \mathbf{x}^* is a strict local minimizer of f if $\nabla^2 f$ is continuous in a region of \mathbf{x}^* and $\nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ is positive definite.

- In one-dimensional case, the conditions are $f'(x^*) = 0$ and $f''(x^*) > 0$
- A matrix M is positive definite if $\mathbf{x}^T M \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$

Note:

Second-order sufficient conditions:

guarantee that the local minimum is strict and

f12

• are not necessary. For example, $f(x) = (x-5)^6, x^* = 5$ is a strict local minimum but $f'(x^*) = f''(x^*) = 0$

Sufficient Optimality Conditions

Sufficient Optimality Conditions:

 x^* is a local minimum if and only if the first non-zero element of the sequence $\{f^k(x^*)\}$ is positive and occurs at even positive k

- Here $f^k(x^*)$ is the k-th derivative of f at $x = x^*$

f(x), f(x), f(x) f(x), f(x), f(x)

- Consider the function $f(x) = (x^2 1)^3$
- The stationary points are obtained by $f'(x) = 0 \implies 6x(x^2 - 1)^2 = 0 \implies f'(-1) = f'(0) = f'(1) = 0$
- Check second derivative: $f''(x) = 6(x^2 1)(5x^2 1)$
 - $f''(0) = 6 > 0 \implies 0$ is a strict local minimum
 - $f''(-1) = f''(1) = 0 \implies$ Check for higher derivatives
- Check third derivative: $f'''(x) = 24x(5x^2 3)$ f'''(-1) = -48 < 0 and f'''(1) = 48 > 0

 - Both -1 and 1 are saddle points as the first non-zero derivative is at odd positive k (here k = 3)

Figure: $f(x) = (x^2 - 1)^3$

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 26 / 72

- Consider the function $f(x_1, x_2) = x_1 exp(-x_1^2 x_2^2)$ $\nabla f = \begin{pmatrix} exp(-x_1^2 x_2^2)(1 2x_1^2) \\ exp(-x_1^2 x_2^2)(-2x_1x_2) \end{pmatrix}$ $\nabla f = 0 \implies \mathbf{x}_1^* = \begin{pmatrix} \frac{1}{\sqrt{2}}, 0 \end{pmatrix}$ and $\mathbf{x}_2^* = \begin{pmatrix} -\frac{1}{\sqrt{2}}, 0 \end{pmatrix}$ is positive definite = s a strict local minimum

 - $\nabla^2 f(\mathbf{x}_1^*) = \begin{pmatrix} -2\sqrt{2}exp(-\frac{1}{2}) & 0 \\ 0 & -\sqrt{2}exp(-\frac{1}{2}) \end{pmatrix}$ is negative definite \Longrightarrow \mathbf{x}_1^* is a strict local maximum

Phani (ACP-TS) May 15, 2021

Figure: $f(x_1, x_2) = x_1 exp(-x_1^2 - x_2^2)$

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 28 / 72

Convexity

Convex Sets:

A set $S \in \mathbb{R}^n$ is a *convex set* if $\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in S$ for all $\mathbf{x} \in S$ and $\mathbf{y} \in S$ and $\alpha \in [0, 1]$

• Also means that the straight line segment connecting any two points in S lies entirely inside S.

Example:

- Unit sphere: $\{\mathbf{x} \in \mathbb{R}^3 \mid ||\mathbf{x}||_2 \leq 1\}$
- \mathbb{R}^n itself is convex

Convex Functions:

A function f is a *convex function* if its domain \underline{S} is a convex set and if for any two points \mathbf{x} and \mathbf{y} in S, $\underline{f(\alpha\mathbf{x}+(1-\alpha)\mathbf{y})} \leq \underline{\alpha}f(\mathbf{x})+(1-\alpha)f(\mathbf{y})$ for all $\alpha \in [0,1]$

Convex Functions: Example

Figure: $f(x) = \alpha x + \beta$ is convex on \mathbb{R} for all $\alpha, \beta \in \mathbb{R}$

Figure: $f(x) = e^{\alpha x}$ is convex on \mathbb{R} for all $\alpha \in \mathbb{R}$

f (x2+(1-2)y) < x+(1)

Convex Functions: Example

 $f(\alpha \chi + (1 d) \gamma) \leq \propto f(\chi) + ((-d)f(\xi))$

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 31 / 72

Convex Functions

• Any local minimizer \mathbf{x}^* is a global minimizer of f if f is convex.

• Further if f is differentiable, then any stationary point \mathbf{x}^* is a global

minimizer of f

Figure: $f(x) = (x - 4)^2$ is convex on \mathbb{R} and $x^* = 4$ is both global and local minimizer of f(x)

Figure: $f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 1)^2$ is convex on \mathbb{R}^2 and $x^* = (2, 1)$ is both global and local minimizer of $f(x_1, x_2)$

Phani (ACP-TS)

May 15, 2021

32 / 72

Unconstrained Minimization

Unconstrained Minimization Algorithm:

- Initialize \mathbf{x}_0 and i = 0
- 2 If stopping condition is not satisfied, then continue, else stop
 - Calculate \mathbf{x}_{i+1} so that $f(\mathbf{x}_{i+1}) < f(\mathbf{x}_i)$
 - 2 Update i with i + 1
- 3 Final x_i is the local minimum x^* of f(x)

Following questions need to be answered:

- What stopping condition can be used?
- What is the speed of convergence?
- How to calculate \mathbf{x}_{i+1} ?

Unconstrained Minimization

Stopping Conditions:

- $||\nabla f(\mathbf{x}_i)|| \leq \epsilon$
- $\bullet \ \frac{f(\mathbf{X}_i) f(\mathbf{X}_{i+1})}{|f(\mathbf{X}_i)|} \le \epsilon$

Speed of Convergence:

The sequence $\{\mathbf{x}_i\}$ converges to \mathbf{x}^* with order p and convergence rate β if

$$\lim_{i \to \infty} \frac{||\mathbf{x}_{i+1} - \mathbf{x}^*||}{||\mathbf{x}_i - \mathbf{x}^*||^p} = \beta, \qquad \beta \in \mathbb{R}$$

- Convergence is faster for higher p
- Linear Convergence: $p = 1, 0 < \beta < 1$
- Quadratic Convergence: $p = 2, \beta > 0$

Unconstrained Minimization

Calculating \mathbf{x}_{i+1} for the Unconstrained Minimization Algorithm:

- First Order Methods
 - Gradient Descent
 - Stochastic Gradient Descent
 - Mini-Batched Gradient Descent
 - Stochastic Average Gradient
 - Optimizers AdaGrad, RMSProp & Adam
- Second Order Methods
 - Newton's Method
 - Quasi-Newton Method

Nonlinear Least Squares Problem

The problem is to fit $g(x) = \frac{1}{1 + e^{-(wx+b)}}$ to a training set with observations $(x_1, x_2, \dots x_n)$ and corresponding estimated responses $(y_1, y_2, \dots y_n)$ using least squares.

The objective function (or the loss function) to be minimized is:

$$f(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (g(x_i) - y_i)^2$$

$$f(w,b) = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{1}{1 + e^{-(wx_i + b)}} - y_i \right)^2$$
Figure: Surface plot of Loss Function

Phani (ACP-TS) May 15, 2021

Gradient Descent

Descent Direction:

 $\mathbf{d} \in \mathbb{R}^n$ is a descent direction of $f(\mathbf{w})$ at $\mathbf{w}^* \in \mathbb{R}^n$ if $f(\mathbf{w}^* + \eta \mathbf{d}) < f(\mathbf{w}^*)$ for all $\eta \in (0, \delta)$, $\delta > 0$

- In terms of minimization, $f(\mathbf{w}_{i+1}) < f(\mathbf{w}_i)$, where $\mathbf{w}_{i+1} = \mathbf{w}_i + \eta_i \mathbf{d}_i$
- $\eta_i = \text{minimize } f(\mathbf{w}_i + \eta \mathbf{d}_i), \ \eta > 0$
- $\eta_i = \text{minimize } h(\eta), \ \eta > 0$
- ullet $\mathbf{d}_i = abla f(\mathbf{w}_i)$ in gradient descent algorithm

Gradient Descent

Gradient Descent Algorithm:

- Initialize \mathbf{w}^0 and k=0
- ② If stopping condition like $||\nabla f(\mathbf{w}^k)|| \le \epsilon$ is satisfied, then stop, else continue

 - $\mathbf{0} \ \mathbf{d}^k = -\nabla f(\mathbf{w}^k)$ $\mathbf{2} \ \text{Calculate } \eta^k \text{ along } \mathbf{d}^k \text{ so that } f(\mathbf{w}^k + \eta^k \mathbf{d}^k) < f(\mathbf{w}^k)$ $\mathbf{3} \ \mathbf{w}^{k+1} = \mathbf{w}^k + \eta^k \mathbf{d}^k$

 - Update k with k+1
- 3 Final \mathbf{w}^k is the local minimum \mathbf{w}^* of $f(\mathbf{w})$

Phani (ACP-TS)

May 15, 2021

38 / 72

Gradient Descent

Figure: Contour plot of Loss function f(w, b)

Phani (ACP-TS) Numerical Optimization for Data Science May 15, 2021 40 / 72