In [51]:

```
#Georgia Sugisandhea_535230080

#Memanggil library library yang akan dipakai
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
import folium
```

In [52]:

#Membaca file excel yang akan digunakan pada sheet1 dan memasukkannya ke variable ispu
ispu = pd.read_excel("ISPU Jakarta.xlsx", sheet_name="Sheet1")

In [53]:

```
#Menampilkan 5 baris pertama pada tabel ispu ispu.head()
```

Out[53]:

	Tanggal	PM10	PM25	SO2	СО	03	NO2
0	2018-01-01	76.0	NaN	31.0	38.0	35.0	9.0
1	2018-01-02	23.0	NaN	31.0	24.0	39.0	14.0
2	2018-01-03	53.0	NaN	35.0	35.0	101.0	23.0
3	2018-01-04	53.0	NaN	49.0	34.0	57.0	15.0
4	2018-01-05	44.0	NaN	32.0	26.0	28.0	10.0

In [54]:

#Menghitung persentase banyaknya baris yang berisi NaN dari masing masing kolom
ispu.isna().sum()/len(ispu)*100

Out[54]:

Tanggal 0.000000
PM10 0.332226
PM25 59.911406
SO2 0.885936
CO 0.332226
O3 0.110742
NO2 0.276855
dtype: float64

In [55]:

```
#Menghapus kolom PM25 karena baris yang berisi NaN sebanyak 59%
#dan memasukkan hasilnya ke variable ispu2
ispu2 = ispu.drop(['PM25'], axis = 1)
#Menampilkan 5 baris pertama dari ispu2
ispu2.head()
```

Out[55]:

	Tanggal	PM10	SO2	CO	03	NO2
0	2018-01-01	76.0	31.0	38.0	35.0	9.0
1	2018-01-02	23.0	31.0	24.0	39.0	14.0
2	2018-01-03	53.0	35.0	35.0	101.0	23.0
3	2018-01-04	53.0	49.0	34.0	57.0	15.0
4	2018-01-05	44 N	32 N	26 N	28 N	10 0

```
Tanagal PM10 SO2 CO O3 NO2
```

```
In [56]:
```

```
#Mengisi baris baris yang isinya tidak ada menggunakan metode forward fill (ffill) dan ba
ckward fill*bfill
ispu2 = ispu2.ffill()
ispu2 = ispu2.bfill()
```

In [57]:

```
#Menghitung persentase banyaknya baris yang berisi NaN dari masing masing kolom ispu2.isna().sum()/len(ispu2)*100 #dimana sudah 0 sekarang karena telah diisi dengan ffill dan bfill
```

Out[57]:

```
Tanggal 0.0
PM10 0.0
SO2 0.0
CO 0.0
O3 0.0
NO2 0.0
dtype: float64
```

In [58]:

```
#Membuat kolom kolom baru dimana memecah data dari kolom tanggal menjadi lebih terperinci
#yaitu Tahun, Bulan, dan juga Hari
ispu2['Tahun'] = pd.DatetimeIndex(ispu2['Tanggal']).year
ispu2['Bulan'] = pd.DatetimeIndex(ispu2['Tanggal']).month
ispu2['Hari'] = ispu2['Tanggal'].dt.day_name()

#Menampilkan 5 baris pertama dari ispu2
ispu2.head()
```

Out[58]:

	Tanggal	PM10	SO2	CO	О3	NO2	Tahun	Bulan	Hari
0	2018-01-01	76.0	31.0	38.0	35.0	9.0	2018	1	Monday
1	2018-01-02	23.0	31.0	24.0	39.0	14.0	2018	1	Tuesday
2	2018-01-03	53.0	35.0	35.0	101.0	23.0	2018	1	Wednesday
3	2018-01-04	53.0	49.0	34.0	57.0	15.0	2018	1	Thursday
4	2018-01-05	44.0	32.0	26.0	28.0	10.0	2018	1	Friday

In [59]:

```
#Memasukkan tabel original (ispu) ke variable baru, ispu4
ispu4 = ispu
#Menghapus baris baris yang berisi missing values
ispu4 = ispu.dropna()
#Membuat kolom kolom baru dimana memecah data dari kolom tanggal menjadi lebih terperinci
#yaitu Tahun, Bulan, dan juga Hari
ispu4['Tahun'] = pd.DatetimeIndex(ispu4['Tanggal']).year
ispu4['Bulan'] = pd.DatetimeIndex(ispu4['Tanggal']).month
ispu4['Hari'] = ispu4['Tanggal'].dt.day name()
#Menampilkan 5 baris pertama dari ispu4
ispu4.head()
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\744976716.py:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer, col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user g
uide/indexing.html#returning-a-view-versus-a-copy
  ispu4['Tahun'] = pd.DatetimeIndex(ispu4['Tanggal']).year
```

C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\744976716.py:8: SettingWithCopyWarning:

Out[59]:

	Tanggal	PM10	PM25	SO2	СО	О3	NO2	Tahun	Bulan	Hari
1076	2021-01-01	38.0	53.0	29.0	6.0	31.0	13.0	2021	1	Friday
1077	2021-01-02	27.0	46.0	27.0	7.0	47.0	7.0	2021	1	Saturday
1078	2021-01-03	44.0	58.0	25.0	7.0	40.0	13.0	2021	1	Sunday
1079	2021-01-04	30.0	48.0	24.0	4.0	32.0	7.0	2021	1	Monday
1080	2021-01-05	38.0	53.0	24.0	6.0	31.0	9.0	2021	1	Tuesday

In [60]:

```
#Membuat grafik garis untuk kolom PM10 yang menunjukkan rata rata tingkatnya pada masing
masing bulan dan hari
var = 'PM10'
r = ispu2.groupby(['Bulan', 'Hari']).mean()[var]
r.unstack().plot(marker = '^')
plt.ylabel(var)
#Mengganti label x dari angka menjadi nama nama bulan
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12], ['Januari', 'Februari', 'Maret', 'April', 'Mei', 'Juni', 'Juli', 'Agustus', 'September', 'Oktober', 'November', 'Desember'], rotation=4
0)
#Memposisikan legend grafik di atas tengah, dan pengaturan detail dari legendnya
plt.legend(loc='upper center', bbox_to_anchor=(0.52, 1.2), ncol=4)
```

Out[60]:

<matplotlib.legend.Legend at 0x2ada66ac050>

In [61]:

```
#Membuat grafik batang untuk kolom PM10 yang menunjukkan rata rata tingkatnya pada masing
masing tahun dan bulan
var = 'PM10'
r = ispu2.groupby(['Bulan', 'Tahun'])[var].mean()
r.unstack().plot.bar()
plt.ylabel(var)
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12], ['Jan', 'Feb', 'Mar', 'Apr', 'Mei', 'Jun', 'Jul
', 'Aug', 'Sep', 'Okt', 'Nov', 'Des'], rotation=90)
plt.legend(loc='upper center', bbox_to_anchor=(0.52, 1.2), ncol=5)
plt.title('Perbandingan Nilai Rata-rata Polutan ' + var + 'Tahun 2018 - 2023')
```

Out[61]:

Text(0.5, 1.0, 'Perbandingan Nilai Rata-rata Polutan PM10Tahun 2018 - 2023')

In [62]:

```
#Membuat grafik garis untuk kolom PM10 yang menunjukkan rata rata tingkatnya pada masing
masing tahun dan bulan
var = 'PM10'
r = ispu2.groupby(['Bulan', 'Tahun'])[var].mean()
r.unstack().plot(marker='s')
plt.ylabel(var)
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12], ['Jan', 'Feb', 'Mar', 'Apr', 'Mei', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Des'], rotation=90)
plt.legend(loc='upper center', bbox_to_anchor=(0.52, 1.2), ncol=5)
plt.title('Perbandingan Nilai Rata-rata Polutan ' + var + 'Tahun 2018 - 2023')
```

Out[62]:

Text(0.5, 1.0, 'Perbandingan Nilai Rata-rata Polutan PM10Tahun 2018 - 2023')

Perbandingan Nilai Rata-rata Polutan PM10Tahun 2018 - 2023

In [63]:

```
#Membuat fungsi untuk membuat kolom baru dan memasukkan nilai kategori kesehatan udara ta
nggal tersebut berdasarkan nilai nilai yang ada di tabel terebut
def kategori(df):
   row = df.shape[0]
   df['Kategori'] = ''
   for i in range(0, row):
        #Ketika semua kolom (PM10, SO2, O3, NO2) ada dibawah 50, maka kategori diisi Seha
       if((df.loc[i]['PM10']<=50) & (df.loc[i]['SO2']<=50) & (df.loc[i]['O3']<=50) & (</pre>
df.loc[i]['NO2']<=50)):
            df.loc[i, 'Kategori'] = 'Sehat'
        #Ketika salah satu kolom berada diatas 50 tapi dibawah 100, maka kategori diisi
Sedang
       elif((df.loc[i]['PM10']<=100) | (df.loc[i]['S02']<=100) | (df.loc[i]['03']<=100)
& (df.loc[i]['NO2']<=100)):
            df.loc[i, 'Kategori'] = 'Sedang'
        #Ketika salah satu kolom berada diatas 100 tapi dibawah 200, maka kategori diisi
Tidak Sehat
       elif((df.loc[i]['PM10']<=200) | (df.loc[i]['S02']<=200) | (df.loc[i]['03']<=200)
& (df.loc[i]['NO2']<=200)):
            df.loc[i, 'Kategori'] = 'Tidak Sehat'
        #Ketika salah satu kolom berada diatas 200 tapi dibawah 300, maka kategori diisi
Sangat Tidak Sehat
       elif((df.loc[i]['PM10']<=300) | (df.loc[i]['S02']<=300) | (df.loc[i]['03']<=300)
& (df.loc[i]['NO2']<=300)):
            df.loc[i, 'Kategori'] = 'Sangat Tidak Sehat'
        #Ketika tidak memenuhi semua kondisi diatas, berarti semua nilai diatas 300, maka
kategori diisi dengan Berbahaya
       else:
           df.loc[i, 'Kategori'] = 'Berbahaya'
    #Mengembalikan hasil tabel yang dibuat
   return df
```

In [64]:

```
new_data = kategori(ispu2)

#Menampilkan 5 baris terakhir dari new_data
new_data.tail()
```

Out[64]:

	Tanggal	PM10	SO2	СО	03	NO2	Tahun	Bulan	Hari	Kategori
1801	2022-12-27	36.0	58.0	42.0	20.0	18.0	2022	12	Tuesday	Sedang
1802	2022-12-28	46.0	57.0	41.0	15.0	19.0	2022	12	Wednesday	Sedang
1803	2022-12-29	23.0	57.0	12.0	16.0	15.0	2022	12	Thursday	Sedang
1804	2022-12-30	40.0	57.0	21.0	17.0	24.0	2022	12	Friday	Sedang
1805	2022-12-31	54.0	56.0	24.0	23.0	24.0	2022	12	Saturday	Sedang

In [65]:

```
#Membuat grafik batang untuk tingkat banyak masing masing nilai kategori pada masing masi
ng bulan untuk tabel new_data
r = new_data.groupby(['Bulan', 'Kategori']).count()['Tanggal']
r.unstack().plot.bar()
#Menamakan sumbu y sebagai Jumlah Hari
plt.ylabel('Jumlah Hari')
#Mengganti label x dari angka menjadi nama nama bulan
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12], ['Jan', 'Feb', 'Mar', 'Apr', 'Mei', 'Jun', 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Des'], rotation=40)
#Memposisikan legend grafik di atas tengah
plt.legend(loc='upper center', bbox_to_anchor=(0.52, 1.2), ncol=4)
#Menamakan grafik ini dengan judul dibawah ini
plt.title('Jumlah Hari Sesuai Kategori Kualitas Udara')
```

Out[65]:

Text(0.5, 1.0, 'Jumlah Hari Sesuai Kategori Kualitas Udara')

In [66]:

#Membuat grafik batang untuk tingkat banyak masing masing nilai kategori pada masing masi ng tahun untuk tabel new data

```
r = new_data.groupby(['Tahun', 'Kategori']).count()['Tanggal']
r.unstack().plot.bar()
plt.ylabel('Jumlah Hari')
plt.xticks(rotation=40)
plt.legend(loc='upper center', bbox to anchor=(0.52, 1.2), ncol=4)
plt.title('Jumlah Hari Sesuai Kategori Kualitas Udara')
```

Out[66]:

Text(0.5, 1.0, 'Jumlah Hari Sesuai Kategori Kualitas Udara')

In [67]:

```
#Membuat grafik boxplot untuk sebaran tingkat 03 di masing masing tahun, menggunakan pale
tte RdYlGn
var = '03'
sns.boxplot(data=ispu2, x='Tahun', y=var, palette='RdYlGn')
plt.xticks(rotation=45)
plt.legend(loc='upper center', bbox to anchor=(0.52, 1.2), ncol=3)
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\1161766234.py:3: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(data=ispu2, x='Tahun', y=var, palette='RdYlGn')
No artists with labels found to put in legend. Note that artists whose label start with
an underscore are ignored when legend() is called with no argument.
```

Out[67]:

<matplotlib.legend.Legend at 0x2ada9be1490>

250 8 O

In [68]:

```
#Membuat grafik boxplot untuk sebaran tingkat 03 di masing masing bulan, menggunakan pale
tte RdYlGn
sns.boxplot(data=ispu2, x='Bulan', y=var, palette="RdYlGn")
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12], ['Januari', 'Februari', 'Maret', 'April', 'Mei'
, 'Juni', 'Juli', 'Agustus', 'September', 'Oktober', 'November', 'Desember'], rotation=9
0)
plt.legend(loc='upper center', bbox_to_anchor=(0.52, 1.2), ncol=3)
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A ssign the `x` variable to `hue` and set `legend=False` for the same effect.

```
sns.boxplot(data=ispu2, x='Bulan', y=var, palette="RdYlGn") No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
```

Out[68]:

<matplotlib.legend.Legend at 0x2ada9fedb20>


```
Januari -
Februari -
April -
April -
Juli -
Juli -
Oktober -
Oktober -
```

In [69]:

```
#Menghapus kolom tanggal, tahun, bulan, hari, dan kategori dari tabel ispu2 dan memasukka
nnya ke variable ispu3
ispu3 = ispu2.drop(['Tanggal', 'Tahun', 'Bulan', 'Hari', 'Kategori'], axis=1)
ispu3.head()
```

Out[69]:

	PM10	SO2	CO	О3	NO2
0	76.0	31.0	38.0	35.0	9.0
1	23.0	31.0	24.0	39.0	14.0
2	53.0	35.0	35.0	101.0	23.0
3	53.0	49.0	34.0	57.0	15.0
4	44.0	32.0	26.0	28.0	10.0

In [70]:

```
#Menghitung korelasi dari satu kolom ke semua kolom lain dan memasukkannya ke variable c
c = ispu3.corr()
#Menampilkan hasil perhitungan korelasinya
c
```

Out[70]:

	PM10	SO2	CO	03	NO2
PM10	1.000000	0.046229	0.261810	0.479959	0.201763
SO2	0.046229	1.000000	-0.133637	-0.213480	0.341069
CO	0.261810	-0.133637	1.000000	0.346942	-0.060208
03	0.479959	-0.213480	0.346942	1.000000	-0.287379
NO2	0.201763	0.341069	-0.060208	-0.287379	1.000000

In [71]:

```
#Membuat array berisi nama nama warna untuk digunakan nanti dalam scatterplot
colors = ['blue', 'darkblue', 'lightblue', 'deepskyblue', 'red', 'green', 'purple',
'orange', 'darkred', 'chocolate', 'gold', 'darkgreen', 'cadetblue', 'darkviolet', 'pink'
,
'lightgreen', 'teal', 'mediumpurple', 'springgreen', 'lightcoral', 'olivedrab', 'olive',
'turquoise', 'lightseagreen', 'magenta', 'khaki', 'springgreen', 'hotpink', 'black']
```

In [72]:

```
#Membuat subplots berisi scatter plot dari masing masing korelasi antar kolom yang ada di variable c  
#Membuat template subplot 5x5  
fig = plt.subplots(5,5,figsize=(16,16))  
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0.4, hspace=0.4)  
col = c.columns  
k = 1  
x = 0  
#Mengisi masing masing kotak dengan nilai korelasi antar kolom bersama dengan warna yang  
berbeda yang diambil dari array colors yang sudah dibuat  
#Menge-set label x dan y dan juga title dari masing masing subplot
```

```
#Melalui loop
for i in col:
    y=0
    for j in col:
        plt.subplot(5,5,k)
        plt.scatter(ispu[i], ispu[j], color = colors[k])
        rho = c.iloc[x][y]
        plt.title('r = ' + f'{rho:.2f}')
        plt.xlabel(i)
        plt.ylabel(j)
        k = k+1
        y = y+1
    x=x+1
#Menge-set judul dari keseluruhan plot
plt.suptitle("Visualisasi Korelasi Antar Variabel")
#Menampilkan plot yang telah dibuat
plt.show()
```

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_8184\1730313629.py:16: FutureWarning: Series
.__getitem__ treating keys as positions is deprecated. In a future version, integer keys
will always be treated as labels (consistent with DataFrame behavior). To access a value
by position, use `ser.iloc[pos]`
 rho = c.iloc[x][y]

Visualisasi Korelasi Antar Variabel

In [73]:

```
#membuat heatmap menggunakan seaborn dari data korelasi dari masing masing kolom yang tel
ah dibuat dalam variable c
hm = sns.heatmap(data=c,annot=True)
#Menge-set judul dari grafik heatmap
plt.title("Korelasi Antar Variabel")
#Membuat label x dan y dari heatmap sesuai dengan nama nama kolom
plt.xticks(range(len(c.columns)),c.columns, rotation=90)
plt.yticks(range(len(c.columns)), c.columns)
#Menampilkan heatmap yang telah dibuat
plt.show()
```


In [74]:

```
#cara lain dari membuat heatmap menggunakan matplotlib.pyplot
#Memulai pembuatan heatmap
fig, ax = plt.subplots()
im = ax.imshow(c, cmap = 'summer')
#Mengatur label x dan y pada heatmap sesuai dengan nama kolom yang berkorelasi
plt.xticks(range(len(c.columns)),c.columns, rotation=90)
plt.yticks(range(len(c.columns)), c.columns)
#Set property dari label x
#rotation = 45 untuk agar label x miring 45 derajat
#ha = right bahwa untuk align label x ke kanan
#rotation mode="anchor" untuk agar ujung kanan dari label tertempel
plt.setp(ax.get xticklabels(), rotation=45, ha="right", rotation mode="anchor")
#Menggunakan looping, mengisi masing masing value dari kolom heatmap dengan nilai yang ad
a di dalam variable c
for i in range(len(c)):
   for j in range(len(c)):
       text = ax.text(j, i, '%.3f' %c.iloc[i][j], ha="center", va="center", color="b")
#Menge-set judul dari keseluruhan grafik
ax.set title("Korelasi Antar Polutan")
#Menge-set layout sebagai tight layout
fig.tight layout()
```

```
#Menampilkan hasil grafik yang dibuat
plt.show()

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_8184\3772383502.py:19: FutureWarning: Series
.__getitem__ treating keys as positions is deprecated. In a future version, integer keys
will always be treated as labels (consistent with DataFrame behavior). To access a value
by position, use `ser.iloc[pos]`
   text = ax.text(j, i, '%.3f' %c.iloc[i][j], ha="center", va="center", color="b")
```


In [75]:

```
#Membuat subplot 3x2 untuk grafik garis untuk masing masing kolom pada tabel yang telah k
ita buat berdasarkan masing masing tanggal dalam tahun
fig = plt.subplots(2,3,figsize=(15,10))
plt.subplot(2,3,1)
plt.plot(ispu2['Tanggal'], ispu2['PM10'], color='blue')
plt.title('PM10')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot(2,3,2)
plt.plot(ispu2['Tanggal'], ispu2['CO'], color='red')
plt.title('CO')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot(2,3,3)
plt.plot(ispu2['Tanggal'], ispu2['03'], color='green')
plt.title('03')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot(2,3,4)
plt.plot(ispu2['Tanggal'], ispu2['NO2'], color='lime')
plt.title('NO2')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot(2,3,5)
plt.plot(ispu2['Tanggal'], ispu2['SO2'], color='magenta')
plt.title('SO2')
plt.ylabel('Skor')
plt.xlabel('Tahun')
```

```
plt.subplot(2,3,6)
plt.plot(ispu['Tanggal'], ispu['PM25'], color='aqua')
plt.title('PM25')
plt.ylabel('Skor')
plt.xlabel('Tahun')

#Menge-set judul dari keseluruhan grafik
plt.suptitle("ISPU Jakarta Tahun 2018-2022")

#Menampilkan hasil grafik yang telah kita buat
plt.show()
```

ISPU Jakarta Tahun 2018-2022

In [76]:

```
#Membuat subplot 3x2 untuk grafik garis untuk masing masing kolom pada tabel yang telah k
ita buat berdasarkan masing masing tanggal dalam tahun
fig = plt.subplots(2,3,figsize=(15,10))
plt.subplot(2,3,1)
sns.boxplot(data=ispu2, x='Tahun', y='PM10', palette="RdYlGn")
plt.title('PM10')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot (2,3,2)
sns.boxplot(data=ispu2, x='Tahun', y='CO', palette="RdYlGn")
plt.title('CO')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot(2,3,3)
sns.boxplot(data=ispu2, x='Tahun', y='03', palette="RdYlGn")
plt.title('03')
plt.ylabel('Skor')
plt.xlabel('Tahun')
```

```
plt.subplot(2,3,4)
sns.boxplot(data=ispu2, x='Tahun', y='NO2', palette="RdYlGn")
plt.title('NO2')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot(2,3,5)
sns.boxplot(data=ispu2, x='Tahun', y='SO2', palette="RdYlGn")
plt.title('SO2')
plt.ylabel('Skor')
plt.xlabel('Tahun')
plt.subplot(2,3,6)
sns.boxplot(data=ispu4, x='Tahun', y='PM25', palette="RdYlGn")
plt.title('PM25')
plt.ylabel('Skor')
plt.xlabel('Tahun')
#Menge-set judul dari keseluruhan grafik
plt.suptitle("ISPU Jakarta Tahun 2018-2022")
#Menampilkan hasil grafik yang telah kita buat
plt.show()
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\710428439.py:4: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(data=ispu2, x='Tahun', y='PM10', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_8184\710428439.py:10: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(data=ispu2, x='Tahun', y='CO', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\710428439.py:16: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(data=ispu2, x='Tahun', y='03', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\710428439.py:22: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(data=ispu2, x='Tahun', y='NO2', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\710428439.py:28: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.
 sns.boxplot(data=ispu2, x='Tahun', y='SO2', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\710428439.py:34: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A
ssign the `x` variable to `hue` and set `legend=False` for the same effect.
  sns.boxplot(data=ispu4, x='Tahun', y='PM25', palette="RdYlGn")
```

ISPU Jakarta Tahun 2018-2022

In [77]:

```
#Membuat subplot 3x2 untuk grafik garis untuk masing masing kolom pada tabel yang telah k
ita buat berdasarkan masing masing bulan
fig = plt.subplots(2,3,figsize=(15,10))
plt.subplot(2,3,1)
sns.boxplot(data=ispu2, x='Bulan', y='PM10', palette="RdYlGn")
plt.title('PM10')
plt.ylabel('Skor')
plt.xlabel('Bulan')
plt.subplot(2,3,2)
sns.boxplot(data=ispu2, x='Bulan', y='CO', palette="RdYlGn")
plt.title('CO')
plt.ylabel('Skor')
plt.xlabel('Bulan')
plt.subplot(2,3,3)
sns.boxplot(data=ispu2, x='Bulan', y='03', palette="RdYlGn")
plt.title('03')
plt.ylabel('Skor')
plt.xlabel('Bulan')
plt.subplot(2,3,4)
sns.boxplot(data=ispu2, x='Bulan', y='NO2', palette="RdYlGn")
plt.title('NO2')
plt.ylabel('Skor')
plt.xlabel('Bulan')
plt.subplot (2,3,5)
sns.boxplot(data=ispu2, x='Bulan', y='S02', palette="RdYlGn")
plt.title('SO2')
plt.ylabel('Skor')
plt.xlabel('Bulan')
plt.subplot(2,3,6)
sns.boxplot(data=ispu4, x='Bulan', y='PM25', palette="RdYlGn")
plt.title('PM25')
plt.ylabel('Skor')
plt.xlabel('Bulan')
#Menge-set judul dari keseluruhan grafik
plt.suptitle("ISPU Jakarta Tahun 2018-2022")
#Menampilkan hasil grafik yang telah kita buat
plt.show()
```

o. Insers Themono Tubhnaca Thocar Tremb Trbluermer ords Tronton to to. bl.s. racaremarming.

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A ssign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=ispu2, x='Bulan', y='PM10', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\1391067679.py:10: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A ssign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=ispu2, x='Bulan', y='CO', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\1391067679.py:16: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A ssign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=ispu2, x='Bulan', y='03', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\1391067679.py:22: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A ssign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=ispu2, x='Bulan', y='NO2', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 8184\1391067679.py:28: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A ssign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=ispu2, x='Bulan', y='SO2', palette="RdYlGn")
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_8184\1391067679.py:34: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. A ssign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=ispu4, x='Bulan', y='PM25', palette="RdYlGn")

ISPU Jakarta Tahun 2018-2022

