Φ ерма + Coq: ВТФ из глобальной нормализации $(o^n=2\cdot n)$

Мы представляем прочтение рукописи Г.Л. Деденко в рамках глобальной нормализации. Вместо доказательства промежуточной делимости, в рассуждении вводится единственный множитель o > 1 (независимый от n), такой, что для любого предполагаемого контрпримера в натуральных числах к уравнению Ферма

$$x^n + y^n = z^n \qquad (n > 2),$$

имеет место уравнение нормализации

$$o^n = 2 \cdot n.$$

Это принимается как гипотеза о любом гипотетическом решении (глобальная нормализация). Из одного этого равенства элементарные сравнения роста функций приводят к o=2 и $n \in \{1,2\}$, следовательно, решений для n>2 не существует.

Что формализовано в Соq.

- Мы оставляем o абстрактным и предполагаем лишь: если $x^n + y^n = z^n$ при n > 2, то $o^n = 2 \cdot n$ и o > 1.
- Используя элементарные леммы о сравнении экспоненциального и линейного роста, Сод доказывает:

$$o^n = 2 \cdot n \& o > 1 \implies (o, n) = (2, 1)$$
 или $(2, 2)$.

- Следовательно, в предположении гипотезы о глобальной нормализации, уравнение Ферма не имеет решений в натуральных числах для n>2.
- Ограничения по четности, вытекающие из стандартной параметризации ($z := m^n + p^n, x := m^n p^n$), доказываются отдельно (для полноты изложения), но не требуются на заключительном шаге.

Мотивация и доказательство. Обсуждение функции $f(n) = (2n)^{1/n}$ объясняет, почему множитель взят в форме n-й степени o^n (однородность / «оставаться в n-х степенях»). Это мотивирует $\phi opmy$ нормализации, но ne используется в самом доказательстве условного утверждения.

Репозиторий (код и PDF): github.com/Gendalf71/FLT-Coq

Рис. 1: Формальный процесс: глобальная нормализация \Rightarrow ВТФ (в Coq).

Пакет включает:

- FLT.v: Coq-разработка (без Admitted); доказательства компилируются.
- Блок-схема рассуждений (рисунок выше).
- Пояснительные PDF (EN/RU), обновленные в соответствии с прочтением в рамках глобальной нормализации.

Дополнительные материалы:

- Реконструкция доказательства Ферма (ResearchGate) RU
- Формализация и обсуждение подхода (Ansatz) EN