

《离散数学》

第三讲

数理逻辑之范式

李昊 信息楼**312**

一、范式

范式就是命题公式形式的规范形式。这里约定在范式中 只含有联结词一、 \/ 和 // 。

- 一.析取范式与合取范式
- 1.合取式与析取式

(简单)**合取式**:是用"八"联结命题变元 或变元的否定构成的式子。

(简单)析取式:是用"\"联结命题变元 或变元的否定构成的式子。

析取范式和合取范式

◆2.析取范式

公式A如果写成如下形式:

 $A_1 \lor A_2 \lor ... \lor A_n \ (n \ge 1)$ 其中每个 A_i (i=1,2,...,n)是合取式,称之为A的析取范式。

◆3.合取范式

公式A如果写成如下形式:

 $A_1 \land A_2 \land ... \land A_n \ (n \ge 1)$ 其中每个 A_i (i=1,2,...,n)是析取式,称之为A的合取范式。

◆(P∧Q)∨(¬P∧¬Q)----析取范式 (¬P∨Q)∧(P∨¬Q)----合取范式

析取范式与合取范式的求法

范式定理: 任一命题公式都存在与之等值的析取范式和合取范式。 析取范式和合取范式的求法:

(1)先用相应的公式去掉→和↔。

$$P \rightarrow Q = \neg P \lor Q$$

$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$

$$P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$$

$$P \leftrightarrow Q = (\neg P \lor Q) \land (P \lor \neg Q)$$

(2)用德-摩根定律将-后移到命题变元之前。

德-摩根定律
$$\neg (P \lor Q) = \neg P \land \neg Q$$

 $\neg (P \land Q) = \neg P \lor \neg Q$

(3)用分配律、结合律、幂等律等公式进行整理,使之成为所要求的形式。

例如求 $(P\leftrightarrow Q)\to R$ 的析取范式与合取范式

$$(P \leftrightarrow Q) \rightarrow R$$

$$= \neg((\neg P \lor Q) \land (P \lor \neg Q)) \lor R$$

$$=(P \land \neg Q) \lor (\neg P \land Q) \lor R$$
 -----析取范式

$$(P \leftrightarrow Q) \rightarrow R$$

$$= \neg((P \land Q) \lor (\neg P \land \neg Q)) \lor R$$

$$=((\neg P \lor \neg Q) \land (P \lor Q)) \lor R$$

$$= (\neg P \lor \neg Q \lor R) \land (P \lor Q \lor R)$$
 ----合取范式

$$(p \land (q \to r)) \to s \Leftrightarrow (p \land (\neg q \lor r)) \to s$$

$$\Leftrightarrow \neg (p \land (\neg q \lor r)) \lor s$$

$$\Leftrightarrow (\neg p \lor \neg (\neg q \lor r)) \lor s$$

$$\Leftrightarrow (\neg p \lor (q \land \neg r)) \lor s \Leftrightarrow \neg p \lor (q \land \neg r) \lor s$$

$$\Leftrightarrow (\neg p \lor s) \lor (q \land \neg r)$$

$$\Leftrightarrow (\neg p \lor s \lor q) \land (\neg p \lor s \lor \neg r)$$

即合取范式

定理2.3:任意一个命题公式都存在与之等价的合取范式和析取范式。

定理2.3的作用与局限:

- 1、标准化但仅仅是初步的
 - #标准化的形式
 - #不唯一性(规范化要求: 主范式)
- 2、能够判定是否为永真或永假公式但不方便

二、主合取范式和主析取范式

(一)主析取范式

1.小项

(1)定义:在一个有n个命题变元的合取式中,每个变元或该变元的否定必出现且仅出现一次,称这个合取式是个小项。

例如,有两个变元的小项:

 $P \land Q$, $P \land \neg Q$, $\neg P \land Q$, $\neg P \land \neg Q$

(2)小项的性质

			m ₁₁	m ₁₀	m ₀₁	m ₀₀
	P	Q	$\mathbf{P} \wedge \mathbf{Q}$	$P \land \neg Q$	$\neg P \land Q$ -	$\neg P \land \neg Q$
00	F	F	F	F	F	T
01	F	T	\mathbf{F}	\mathbf{F}	\mathbf{T}	F
10	$ \mathbf{T} $	F	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
11	$ \mathbf{T} $	T	T	${f F}$	\mathbf{F}	\mathbf{F}

- a).有n个变元,则有2n个小项。
- b).每一组指派有且只有一个小项为T。

2. 主析取范式定义

析取范式 $A_1 \lor A_2 \lor ... \lor A_n$, 其中每个 A_i (i=1,2,...,n)都是小项,称之为主析取范 式。

3. 主析取范式的求法

方法I: 列真值表

定理: 在真值表中,一个公式的真值 为T的指派所对应的小项的析取,即为此 公式的主析取范式。

P	Q	P→Q	P ↔Q
F	F	T	T
\mathbf{F}	\mathbf{T}	T	\mathbf{F}
\mathbf{T}	\mathbf{F}	F	\mathbf{F}
$\mid \mathbf{T} \mid$	\mathbf{T}	T	T

$$P \rightarrow Q = m_{00} \lor m_{01} \lor m_{11}$$
$$= (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$

$$P \leftrightarrow \mathbf{Q} = \mathbf{m}_{00} \lor \mathbf{m}_{11}$$
$$= (\neg \mathbf{P} \land \neg \mathbf{Q}) \lor (\mathbf{P} \land \mathbf{Q})$$

思考题:永真式的主析取范式是什么样?

方法II: 用公式的等价变换

- (1)先写出给定公式的析取范式 $A_1 \lor A_2 \lor ... \lor A_n$ 。
- (2)为使每个 A_i 都变成小项,对缺少变元的 A_i 补全变元,比如缺变元R,就用A联结永真式 $(R \lor \neg R)$ 形式补R。
- (3)用分配律等公式加以整理。

$$P \rightarrow Q = \neg P \lor Q$$

$$= (\neg P \land (Q \lor \neg Q)) \lor ((P \lor \neg P) \land Q)$$

$$= (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q) \lor (\neg P \land Q)$$

$$= (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$$

(1)定义:在有n个命题变元的析取式中,每个变元必出现且仅出现一次,称之为**大项**。

例如,有两个变元的大项及其真值表:

		\mathbf{M}_{00}	$\mathbf{M_{01}}$	$\mathbf{M_{10}}$	\mathbf{M}_{11}
P	Q	$\mathbf{P}\bigvee\mathbf{Q}$	$P \lor \neg Q$	$\neg P \lor Q$	$\neg P \lor \neg Q$
F	F	F	T	T	$oxed{\mathbf{T}}$
F	$ \mathbf{T} $	T	F	\mathbf{T}	$oxed{\mathbf{T}}$
T	\mathbf{F}	T	\mathbf{T}	F	$oxed{\mathbf{T}}$
T	$ \mathbf{T} $	T	\mathbf{T}	\mathbf{T}	\mathbf{F}

- a).有n个变元,则有2n个大项。
- b).每一组指派有且只有一个大项为F。

合取范式 $A_1 \land A_2 \land ... \land A_n$, 其中每个 A_i (i=1,2,...,n)都是大项,称之为主合取范式。

◆3.主合取范式的求法

方法I: 列真值表

定理:在真值表中,一个公式的真值 为F的指派所对应的大项的合取,即为此 公式的主合取范式。

例如求 $P \rightarrow Q$ 和 $P \leftrightarrow Q$ 的主合取范式

P	Q	P→Q	P↔Q
F	${f F}$	\mathbf{T}	\mathbf{T}
F	${f T}$	$oldsymbol{T}$	F
T	${f F}$	${f F}$	\mathbf{F}
T	\mathbf{T}	\mathbf{T}	\mathbf{T}

$$P \rightarrow Q = M_{10} = \neg P \lor Q$$

 $P \leftrightarrow Q = M_{01} \land M_{10} = (P \lor \neg Q) \land (\neg P \lor Q)$

1.已知A(P,Q,R)的真值表如图:

求它的主析取和主合取范式。

P	Q	R	A(P,Q,R)
\mathbf{F}	${f F}$	${f F}$	\mathbf{T}
\mathbf{F}	${f F}$	\mathbf{T}	\mathbf{F}
$ \mathbf{F} $	\mathbf{T}	\mathbf{F}	\mathbf{F}
F	T	T	T
\mathbf{T}	\mathbf{F}	${f F}$	T
$ \mathbf{T} $	\mathbf{F}	\mathbf{T}	\mathbf{F}
$ \mathbf{T} $	\mathbf{T}	${f F}$	\mathbf{T}
$\mid \mathbf{T} \mid$	\mathbf{T}	\mathbf{T}	T

实际上,可以通过主析取范式求主合取范式;

也可以通过主合取范式求主析取范式;

方法II: 用公式的等价变换

(1)先写出给定公式的合取范式

 $A_1 \wedge A_2 \wedge ... \wedge A_n$.

- (2)为使每个 A_i 变成大项,对缺少变元的析取式 A_i 补全变元,比如缺变元R,就用\联结永假式($R \land \neg R$)形式补R。
- (3)用分配律等公式加以整理。

例如,求 $(P \rightarrow Q) \rightarrow R$ 的主合取范式

$$(P \rightarrow Q) \rightarrow R$$

$$= \neg (\neg P \lor Q) \lor R$$

$$= (P \land \neg Q) \lor R$$

$$= (P \lor R) \land (\neg Q \lor R)$$

$$= (P \lor (Q \land \neg Q) \lor R) \land ((P \land \neg P) \lor \neg Q \lor R)$$

$$= (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor R)$$

定理2.4: 令A(a1、a2、.....、an)包含有n个变量的公式,则有:

- 1、如果A存在与之等价的主析取范式,则必唯一;
- 2、如果A存在与之等价的主合取范式,则必唯一;

定理2.3:任意一个命题公式都存在与之等价的合取范式和析取范式。

三、逻辑联结词的完备集 Page 22

- ◆定义3: 可以表示所有可能的真值函数的 联结词集合,称为联结词的完备集。
- ◆定义4: 若一联结词完备集的任意真子 集不再是联结词的完备集,则称其为极 小联结词完备集。
- ◆定理2: {¬,∧} {¬,∨}, {¬,
- → } 是联结词的完备集。
- $P \lor Q = \neg (\neg P \land \neg Q)$
- $P \rightarrow Q = \neg P \lor Q = \neg (P \land \neg Q)$

与非和或非

◆定义1:设P和Q是两个命题公式,复合命题 $P \uparrow Q$ 称为P和Q的与非,当且仅当P和Q的真值 都是T时, $P \uparrow Q$ 的真值为F,否则其真值为T,即 $P \uparrow Q = \neg (P \land Q)$ 。

◆定义2:设P和Q是两个命题公式,复合命题 $P \downarrow Q$ 称为P和Q的或非,当且仅当P和Q的真值 都是F时, $P \downarrow Q$ 的真值为T,否则其真值为F,即 $P \downarrow Q=\neg(P \lor Q)$.

P	q	与非p↑q	或非p↓q
1	1	0	0
1	0	1	0
0	1	1	0
0	0	1	1

{↑}也是联结词完备集。

证明:已知:否定,析取,合取联接词是完备的,

$$\neg p \Leftrightarrow \neg (p \lor p) \Leftrightarrow p \downarrow p$$

$$p \land q \Leftrightarrow \neg \neg (p \land q) \Leftrightarrow \neg (\neg p \lor \neg q)$$

$$\Leftrightarrow \neg p \downarrow \neg q$$

$$\Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q)$$

证明:已知:否定,析取,合取联接词是完备的,

$$p \lor q \Leftrightarrow \neg \neg (p \lor q) \Leftrightarrow \neg (p \downarrow q)$$
$$\Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q)$$

第一部分 小结

