Homework 10

Solutions

1.
$$Q1* = Q1' + Q2$$

$$Q2* = X.Q2'$$

$$Z = Q1 + Q2$$

Q1	Q2	Q1*Q2*		7	L
		X =0	X =1	X=0	X=1
0	0	10	11	1	1
0	1	10	10	0	0
1	0	00	01	1	1
1	1	10	10	1	1

Present state	Input X = 0	Input X = 1
	Next sta	te, Output
A	C,1	D,1
В	C,0	C,0
С	A,1	B,1
D	C,1	C,1

2. Overlapping sequence 1001

State A - 3 or more 1s

State B - 1 or more consecutive 1s

State C - 10

State D - 100

Present state	Input $X = 0$	Input X = 1
	Next sta	te, Output
A	A, 0	B,0
В	C,0	B,0
С	D,0	B,0
D	A,0	B,1

3. State A - 0101/0100/2 or more consequetive 1s

State B - 1 or more 0s after state A

State C - 01

State D - 010

4. State A - 1or more 1s

State B - 0

State C - 2 or more 0s

5.

Present state	Input X = 0	Input X = 1
	Next sta	te, Output
A	B, 0	C,1
В	D,0	F,1

С	F,0	E,0
D	B,0	G,1
Е	F,0	C,0
F	E,0	D,0
G	F,0	G,0

$$P0 = (ABCDEFG)$$

To perform state minimization, we first separate the states based on the outputs for a 1 bit input.

For X=0, all outputs are same.

For X=1, outputs are 1 for ABD and 0 for CEFG.

Hence,
$$P1 = (ABD)(CEFG)$$

P2:

$$X=0: ABD \Rightarrow BDB$$

CEFG => FFEF

$$X=1: ABD \Rightarrow CFG$$

Since ECG and D are in separate set of states, we can separate F from CEG

Thus
$$P2 = (ABD)(CEG)(F)$$

P3:

$$X=0:ABD \Rightarrow BDB$$

$$CEG \Rightarrow FFF$$

$$F \Rightarrow E$$

$$X=1:ABD \Rightarrow CFG$$

$$CEG \Rightarrow ECG$$

$$F \Rightarrow D$$

Since CG and F are in separate set of states, we can separate B from AD.

Thus
$$P3 = (AD)(B)(CEG)(F)$$

P4:

$$X=0:AD \Rightarrow BB$$

 $B \Rightarrow D$

 $CEG \Rightarrow FFF$

 $F \Rightarrow E$

$$X=1 : AD => CG$$

 $B \Rightarrow F$

 $CEG \Rightarrow ECG$

 $F \Rightarrow D$

$$P4 = (AD)(B)(CEG)(F)$$

Since P3=P4, no further separation can be done,

From P4, it is evident that A, D are equivalent states. And C,E,G are equivalent states.

We can therefore remove D,E,G from the state table.

Thus after minimization the state table looks like:

Present state	Input X = 0	Input X = 1
	Next sta	te, Output
A	B, 0	C,1
В	A,0	F,1
С	F,0	C,0
F	C,0	A,0

Present state	Input X = 0	Input X = 1
	Next sta	te, Output
A	A, 0	B,0
В	C,0	B,0
С	D,0	B,0
D	A,0	E,0
Е	C,0	B,1

State minimization:

P0 = (ABCDE)

P1:

X=0, all outputs are 0.

X=1, outputs are 0 for ABCD and 1 for E

P1 = (ABCD)(E)

P2:

 $X=0: ABCD \Rightarrow ACDA$

 $E \Rightarrow C$

 $X=1: ABCD \Rightarrow BBBE$

 $E \Rightarrow B$

P2 = (ABC)(D)(E)

P3:

 $X=0: ABC \Rightarrow ACD$

 $D \Rightarrow A$

 $E \Rightarrow C$

 $X=1: ABC \Rightarrow BBB$

 $D \Rightarrow E$

$$E \Rightarrow B$$

$$P3 = (AB)(C)(D)(E)$$

P4:

$$X=0: AB \Rightarrow AC$$

 $C \Rightarrow D$

 $D \Rightarrow A$

 $E \Rightarrow C$

$$X=1: AB => BB$$

 $C \Rightarrow B$

 $D \Rightarrow E$

 $E \Rightarrow B$

$$P4 = (A)(B)(C)(D)(E)$$

No minimization is possible.

State assignment:

Present state	Input X = 0	Input X = 1	
Q0Q1Q2	Next state, Output Q0*Q1*Q2*,Z		
000	000, 0	001,0	
001	010,0	001,0	
010	011,0	001,0	
011	000,0	100,0	
100	010,0	001,1	

Q2X	00	01	11	10
Q0Q1 00				
01			1	
11	X	X	X	X

- 1				
- 1	10		l X	l X
- 1	10		71	71

Q0* = Q1Q2X

Q2X

Q0Q1 00				1
01	1			
11	X	X	X	X
10	1		X	X

Q1* = Q1Q2'X' + Q1'Q2X' + Q0Q2'X'

Q2X

Q0Q1 00		1	1	
01	1	1		
11	X	X	X	X
10		1	X	X

Q2* = Q2'X + Q1Q2' + Q0'Q1'X

Q2X

Q0Q1 00				
01				
11	X	X	X	X
10		1	X	X

Z = Q0X

7. .

Q0Q1Q2	Q0*Q1*Q2* D0D1D2		
	UP=1	UP=0	
000	001	111	
001	010	000	
010	011	001	
011	100	010	
100	101	011	
101	110	100	
110	111	101	
111	000	110	

8. Total no. of unique states required = (70+5+75)/5 = 30

No. of flip flops required = n

$$2^n >= 30$$

Thus,
$$n = 5$$

9.

We know the regular method to find 2's complement. Another technique that is useful to draw a state machine is described below:

Start from the right. Do not change the no.s until you reach a 1. Leave the first 1 as such. Complement every no. to the left of the 1.

10. In Moore model the output depends only on the present state.

In Mealy model the output depends on both the present state and the inputs.

```
module FSM(CLOCK,XZ);
input CLOCK,X;
output reg Z;
reg [2:0] Sreg, Snext;
parameter [2:0] S0=3'b000,
S1=3'b001,
S2=3'b010,
S3=3'b011
/* create state memory
always @(posedge CLOCK)
Sreg <= Snext;</pre>
/* create next-state logic */
always @(X,Sreg)
begin
case(Sreg)
S0: if(X==0) Snext=S0;
else Snext=S1;
S1: if(X==0) Snext=S2;
else Snext=S0;
S2: if(X==0) Snext=S3;
else Snext=S2;
S3: if(X==0) Snext=S1;
Snext=S0;
default: Snext=S0;
endcase
end
/* create output logic */
always @(Sreg)
case(Sreg
S0,S1,S2: Z=0;
S3: Z=1;
default: Z=0;
endcase
endmodule
```