IT496: Introduction to Data Mining

Lecture 13

Optimization - II

[Gradient Descent Algorithm]

Arpit Rana 12th September 2023

Components of Supervised Learning

Representation 🗸

choosing the set of functions (hypotheses space or the model class) that can be learned.

$$h_{\beta}(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m$$
$$= \sum_{i=1}^m \beta_i X_i$$

Evaluation

An evaluation function (also called *objective function* or *scoring function*) is needed to distinguish good hypotheses from bad ones.

$$J(eta) = \sum_{i=1}^m \left(h_eta(X_i) - y_i
ight)^2$$

Optimization

We need a method to search the hypothesis space for the highest-scoring one.

$$arg min \ J(\beta)$$

Overall Objective

Let \mathcal{E} be the set of all possible input-output examples that follow a prior probability distribution P(X, Y).

Then the expected *generalization loss* for a hypothesis *h* (with respect to loss function L) is-

$$GenLoss_L(h) \ = \ \sum_{(x,y) \, \in \, \xi} L(y,h(x))P(x,y).$$

The best hypothesis h^* , is the one with the minimum expected generalization loss:

$$h^{\cdot} = rg \min \ GenLoss_L(h) \ h \in \mathcal{H}$$

Overall Objective

Because P(X, Y) is not known in most cases, the learner can only estimate generalization loss with *empirical loss* on a set of examples D of size N.

$$EmpLoss_{L,D}(h) \ = \ \sum_{(x,y) \ \in \ D} L(y,h(x)) rac{1}{N}.$$

The estimated best hypothesis h^* , is the one with the minimum expected empirical loss:

$$\hat{h^{\cdot}} = rg \min_{\mathsf{h}} \; EmpLoss_{L,D}(h)$$

Training

Training finds the best hypothesis within the hypothesis space.

$$y=f(x)=bx+a$$
Parameters: $a=2,\,b=3$
 $f(x)=3x+2$

One common way to find the final hypothesis is by minimizing a loss function using <u>Gradient</u> <u>Descent</u> algorithm.

Gradient Descent

Gradient Descent is a generic method to tweak parameters iteratively in order to minimize a cost (a.k.a. loss) function.

• It is a search in the model's <u>parameter space</u> for values of the parameters that minimize the loss function.

Gradient Descent

Conceptually:

- It starts with an initial guess for the values of the parameters (called random initialization).
- Then repeatedly:
 - It updates the parameter values hopefully to reduce the loss.

Ideally, it keeps doing this until convergence — changes to the parameter values do not result in lower loss.

The key to this algorithm is <u>how to update the</u> <u>parameter values</u>.

Point of convergence, i.e. where the cost function is at its minimum

Gradient Descent: The Update Rule

To update the parameter values to reduce the loss:

- Compute the *gradient* vector.
 - But this points 'uphill' and we want to go 'downhill'.
 - \circ And we want to make 'baby steps' (see later), so we use a *learning rate*, α which is between 0 and 1.
- So subtract α times the gradient vector from w

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

Gradient Descent: The Learning Rate

The size of the steps is determined by the *learning rate*.

- If the learning rate is too small, it will take many updates until convergence:
- If the learning rate is too big, the algorithm might jump across the valley (overshoot) it may even end up with higher loss than before, making the next step bigger.

Gradient Descent: Sensitive to Scaling of Features

For Gradient Descent, we do need to scale the features.

- If features have different ranges, it affects the shape of the 'bowl'.
 - E.g. features 1 and 2 have similar ranges of values a 'bowl':
- The algorithm goes straight towards the minimum.

Gradient Descent: Sensitive to Scaling of Features

E.g. feature 1 has smaller values than feature 2 - an elongated 'bowl':

- Since feature 1 has smaller values, it takes a larger change in θ_1 to affect the loss function, which is why it is elongated.
- It takes more steps to get to the minimum steeply down but not really towards the goal, followed by a long march down a nearly flat valley.
- It makes it more difficult to choose a value for the learning rate that avoids *divergence*: a value that suits one feature may not suit another.

Gradient Descent Algorithm Pseudocode

 $\mathbf{w} \leftarrow$ any point in the parameter space while not converged do for each w_i in w do $w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

Gradient Descent in Action

$$w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$$

For <u>univariate regression</u>, the <u>squared-error loss</u> is quadratic, so the partial derivative will be linear.

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))^2 = 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(x))$$

$$= 2(y - h_{\mathbf{w}}(x)) \times \frac{\partial}{\partial w_i} (y - (w_1 x + w_0)).$$

Gradient Descent in Action

Applying this to both w_0 and w_1 we get:

$$\frac{\partial}{\partial w_0} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)); \qquad \frac{\partial}{\partial w_1} Loss(\mathbf{w}) = -2(y - h_{\mathbf{w}}(x)) \times x.$$

$$w_0 \leftarrow w_0 + \alpha (y - h_{\mathbf{w}}(x)); \quad w_1 \leftarrow w_1 + \alpha (y - h_{\mathbf{w}}(x)) \times x.$$

Here, loss covers only one training example.

Batch Gradient Descent

For N training examples, we want to minimize the sum of the individual losses for each example.

• The derivative of a sum is the sum of the derivatives, so we have:

$$w_0 \leftarrow w_0 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j)); \quad w_1 \leftarrow w_1 + \alpha \sum_j (y_j - h_{\mathbf{w}}(x_j)) \times x_j.$$

- We have to sum over all N training examples for every step, and there may be many steps.
- A step that covers all the training examples is called an <u>epoch</u>.

These updates constitute the batch gradient descent learning rule for univariate linear regression.

Gradient Descent: Multivariate Linear Regression

We can easily extend to multivariable linear regression problems, in which each example x_j is an n-element vector

$$h_{\mathbf{w}}(\mathbf{x}_j) = w_0 + w_1 x_{j,1} + \dots + w_n x_{j,n} = w_0 + \sum_i w_i x_{j,i}.$$

Vectorized form -

$$h_{\mathbf{w}}(\mathbf{x}_j) = \mathbf{w} \cdot \mathbf{x}_j = \mathbf{w}^{\top} \mathbf{x}_j = \sum_i w_i x_{j,i}$$
.

The best vector of weights, w^* , minimizes squared-error loss over the examples:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{j} L_2(y_j, \mathbf{w} \cdot \mathbf{x}_j).$$

$$w_i \leftarrow w_i + \alpha \sum_j (y_j - h_{\mathbf{w}}(\mathbf{x}_j)) \times x_{j,i}.$$

Stochastic Gradient Descent

As we saw, in each iteration, Batch Gradient Descent does a calculation on the entire training set, which, for large training sets, may be slow.

- Stochastic Gradient Descent (SGD), on each iteration, picks <u>just one training example x_j at random</u> and computes the gradients on just that one example.
- This gives huge speed-up.
 - It enables us to train on huge training sets since only one example needs to be in memory in each iteration.
 - But, because it is stochastic (the randomness), the loss will not necessarily decrease on each iteration:
- On average, the loss decreases, but in any one iteration, loss may go up or down.
- Eventually, it will get close to the minimum, but not necessarily optimal.

Stochastic Gradient Descent

Simulated Annealing

- As we discussed, SGD does not settle at the minimum.
- One solution is to gradually reduce the learning rate:
 - o Updates start out 'large' so you make progress.
 - But, over time, updates get smaller, allowing SGD to settle at or near the global minimum.
- The function that determines how to reduce the learning rate is called the <u>learning schedule</u>.
 - Reduce it too quickly and you may not converge on or near to the global minimum.
 - Reduce it too slowly and you may still bounce around a lot and, if stopped after too few iterations, may end up with a suboptimal solution.

Mini-Batch Gradient Descent

Batch Gradient Descent computes gradients from the full training set and Stochastic Gradient Descent computes gradients from just one example.

- Mini-Batch Gradient Descent lies between the two:
 - It computes gradients from a small randomly-selected subset of the training set, called a mini-batch.
- Since it lies between the two:
 - It may bounce less and get closer to the global minimum than SGD...
 - ...although both of them can reach the global minimum with a good learning schedule.
 - Its time and memory costs lie between the two.

Non-Convex Loss Functions

Gradient Descent is a generic method: you can use it to find the minima of other loss functions.

- Not all loss functions are convex, which can cause problems for Gradient Descent:
- The algorithm might converge to a local minimum, instead of the global minimum.
- It may take a long time to cross a plateau.

What do we do about this?

Non-Convex Loss Functions

What do we do about this?

- One thing is to prefer Stochastic Gradient Descent (or Mini-Batch Gradient Descent): because of the way they 'bounce around', they might even escape a local minimum, and might even get to the global minimum.
- In this context, simulated annealing is also useful: updates start out 'large' allowing these algorithms to make progress and even escape local minima; but, over time, updates get smaller, allowing these algorithms to settle at or near the global minimum.
- But, if using simulated annealing, if you reduce the learning rate too quickly, you may still get stuck in a local minimum.

Next lecture	Linear Regression
	14 th September 2023