- 一、选择题 每小题 3 分, 共 45 分. 下列每题给出的四个选项中, 只有一个选项是符合题目要求的,请将答案涂写在答题卡上.
- $\frac{1}{1}$ 、点x=0是函数 $f(x)=\frac{1}{1}$ 的(
 - (A) 可去间断点.

(<mark>B</mark>) 跳跃间断点.

(C) 无穷间断点.

(D) 振荡间断点.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{1 + e^{\frac{1}{x}}} = 1, \quad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1}{1 + e^{\frac{1}{x}}} = 0$$

- $\frac{2}{x}$ 、设f(x) 为不恒等于零的奇函数,且f'(0)存在,则函数 $g(x) = \frac{f(x)}{x}$
 - (A) 在点x=0处左极限不存在. (B) 有跳跃间断点x=0.
 - (C) 在点x=0处右极限不存在. (D) 有可去间断点x=0.
- <mark>解</mark>:由f(x)为不恒等于零的奇函数⇒f(0)=0

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$$

- 3、设 $f(x) = \lim_{t \to \infty} x \left(1 + \frac{1}{t} \right)^{2tx}$,则f'(x) = (
 - (A) $(1+2x)e^{2x}$. (B) $(1+x)e^{x}$. (C) xe^{2x} .

#:
$$f(x) = \lim_{t \to \infty} x \left(1 + \frac{1}{t} \right)^{2tx} = xe^{2x}$$
, $f'(x) = (1 + 2x)e^{2x}$

- 4、函数 $f(x) = \cos \frac{1}{x}$ 在以下哪个区间不一致连续? (

- (A) (0,1). (B) (1,2). (C) [2,3]. (D) $[3,+\infty)$).

5、设函数
$$y = y(x)$$
 由方程 $2^{xy} = x + y$ 所确定,则 $\frac{dy}{dx}\Big|_{x=0} = ($)

(D) 0.

(A)
$$\ln 2 - 1$$
. (B) $\ln 2 + 1$. (C) -1 .

解:
$$2^{xy} \ln 2(y + xy') = 1 + y'$$

 $x = 0 \Rightarrow y = 1$, $\frac{dy}{dx} = \ln 2 - 1$

6、设
$$\begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases}$$
,其中 $f(t)$ 有二阶连续导数,且 $f''(t) \neq 0$,则 $\frac{d^2y}{dx^2} = ($

(A)
$$f''(t) + tf'''(t)$$
. (B) 1. (C) $\frac{t}{f''(t)}$. (D) $\frac{1}{f''(t)}$.

解:
$$\frac{dy}{dx} = \frac{tf''(t)}{f''(t)} = t$$
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} = \frac{1}{f''(t)}$$

7、设函数
$$f(x) = xe^x$$
,则 $f^{(2020)}(0) = ($

- (A) 2019.
- (<mark>B</mark>) 2020. (C) 2021.
- (D) 0.

$$f(x) = xe^{x} = x \left(1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{2019}}{2019!} + \dots \right)$$

$$= x + x^{2} + \frac{x^{3}}{2!} + \dots + \frac{x^{2020}}{2019!} + \dots$$

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \dots + \frac{f^{(2020)}(0)}{2020!}x^{2020} + \dots$$

$$\frac{1}{2019!} = \frac{f^{(2020)}(0)}{2020!}$$

8、设周期为 4 的函数 f(x) 在($-\infty$, $+\infty$) 内可导,且

 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$, 则曲线 y = f(x) 在点 (5, f(5)) 处的斜率为

- (A) 1. (B) -1. (C) 2. (D) -2.

#: $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = \frac{1}{2}\lim_{x\to 0} \frac{f(1-x)-f(1)}{-x} = \frac{1}{2}f'(1) = -1$

$$f'(1) = -2$$

9、函数 $f(x) = \int_0^x \frac{2t-1}{t^2-t+1} dt$ 在[-1,1]上的最大值为()

- (A) $\ln \frac{3}{4}$. (B) $\ln \frac{3}{2}$. (C) 0. (D) $\ln 3$.

#: $f'(x) = \frac{2x-1}{x^2-x+1} = 0 \Rightarrow x = \frac{1}{2}$

 $f(-1) = \int_0^{-1} \frac{2t-1}{t^2-t+1} dt = \int_0^{-1} \frac{1}{t^2-t+1} d(t^2-t+1) = \ln 3$

 $f(1) = \int_0^1 \frac{2t-1}{t^2-t+1} dt = \int_0^1 \frac{1}{t^2-t+1} d(t^2-t+1) = 0$

$$f\left(\frac{1}{2}\right) = \int_0^{\frac{1}{2}} \frac{2t-1}{t^2-t+1} dt = \int_0^{\frac{1}{2}} \frac{1}{t^2-t+1} d(t^2-t+1) = \ln\frac{3}{4}$$

 $\frac{10}{10}$ 、定积分 $\int_0^{\pi} 2e^x \sin x dx = ($

- (A) $-e^{\pi} + 1$. (B) $-e^{\pi} 1$. (C) $e^{\pi} + 1$. (D) $e^{\pi} 1$.

#: $\int_0^{\pi} 2e^x \sin x dx = 2(e^x \sin x)\Big|_0^{\pi} - \int_0^{\pi} e^x \cos x dx = -2\int_0^{\pi} e^x \cos x dx$

$$= -2(e^{x}\cos x|_{0}^{\pi} + \int_{0}^{\pi} e^{x}\sin x dx)$$

 $\int_{0}^{\pi} 2e^{x} \sin x dx = -e^{x} \cos x \Big|_{0}^{\pi} = e^{\pi} + 1$

 $\frac{11}{1}$ 、定积分 $\int_{\pi}^{2\pi} \sin^4 x dx = ($)

- (A) $\frac{\pi}{2}$. (B) $\frac{3\pi}{8}$. (C) $\frac{\pi}{4}$. (D) $\frac{\pi}{8}$.

 \mathbf{m} : $\diamondsuit x = \pi + t$

$$\int_{\pi}^{2\pi} \sin^4 x dx = \int_{0}^{\pi} \sin^4 t dt = 2 \int_{0}^{\frac{\pi}{2}} \sin^4 t dt = 2 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3\pi}{8}$$

 $\frac{12}{\sqrt{2x+1}}$ dx = ()

- (A) $\frac{5}{3}$. (B) $\frac{10}{3}$. (C) 5. (D) $\frac{20}{3}$.

解: 令 $\sqrt{2x+1} = t$

$$\int_0^4 \frac{x}{\sqrt{2x+1}} dx = \int_1^3 \frac{t^2 - 1}{2} t dt = \frac{1}{2} \int_1^3 (t^2 - 1) dt = \frac{10}{3}$$

 $\frac{13}{10}$ 、心形线 $r=1+\cos\theta$ (极坐标系下的方程)所围平面图形的面积为

- - (A) $\frac{3\pi}{8}$. (B) $\frac{3\pi}{4}$. (C) $\frac{3\pi}{2}$. (D) 3π .

A: $S = 2 \cdot \frac{1}{2} \int_0^{\pi} (1 + \cos \theta)^2 d\theta = \int_0^{\pi} (1 + 2\cos \theta + \cos^2 \theta) d\theta = \frac{3}{2} \pi$

14、函数
$$f(x) = \ln x - \frac{x}{e} + 1$$
 在 $(0, +\infty)$ 内的零点个数为()

- (A) 0. (B) 1. (C) 2. (D) 3.

Example 19 $f'(x) = \frac{1}{x} - \frac{1}{e} = 0 \Rightarrow x = e$

$$0 < x < e$$
, $f'(x) = \frac{1}{x} - \frac{1}{e} > 0$, $x > e$, $f'(x) = \frac{1}{x} - \frac{1}{e} < 0$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (\ln x - \frac{x}{e} + 1) = -\infty,$$

$$f(e) = 1 > 0$$

$$\lim_{x \to +\infty} \frac{\ln x + 1}{\frac{x}{e}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{e}} = 0 < 1$$

当
$$x$$
充分大时, $\frac{\ln x + 1}{\frac{x}{e}} < 1 \Rightarrow \ln x + 1 < \frac{x}{e} \Rightarrow f(x) = \ln x - \frac{x}{e} + 1 < 0$

 $\frac{dy}{dx} = \cos x \cdot \csc y$ 的通解为(

- (A) $\sin x + \cos y = c$.
- (B) $\sin x \cos y = c$.
- (C) $\cos x \sin y = c$.
- (D) $\cos x + \sin y = c$.