Random & pseudo-random numbers

There exist several ways to generate so-called "random" numbers according to known distributions

NB: computer programs do not generate truly random numbers

Rather pseudo-random, which seem random but are actually generated by a deterministic process (depending on a "seed" parameter).

Uniform sample generation

Linear congruential algorithm: sample pseudo-random numbers according to the Uniform distribution on [0,1] (Lehmer, 1948)

- **1** Generate a sequence of integers y_n such as: $y_{n+1} = (ay_n + b) \mod m$
- $2 x_n = \frac{y_n}{m-1}$

choose a, b and m so that y_n has a long period & (x_1, \ldots, x_n) can be considered iid

with y_0 the seed

<u>Remark:</u> $0 \le y_n \le m-1 \Rightarrow$ in practice m very large (e.g. 2^{19937} , default in \mathbb{R} which uses the Mersenne-Twister variation)

In the following, sampling pseudo-random numbers uniformly on [0,1] will be considered reliable and used by the different sampling algorithms

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathcal{U}_{[0,1]}$

Binomial Bin(n, p):

$$Y_i = \mathbb{1}_{U_i \le p} \sim \mathsf{Bernoulli}(p)$$

$$X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$$

Other usual distributions

Relying on relationships between the different usual distributions starting from $U_i \sim \mathscr{U}_{[0,1]}$

Binomial Bin(n, p):

$$Y_i = \mathbb{1}_{U_i \le p} \sim \text{Bernoulli}(p)$$

$$X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$$

Normal $\mathcal{N}(0,1)$ (Box-Müller algorithm):

 U_1 and U_2 are 2 independent uniform variables on [0;1]

$$Y_1 = \sqrt{-2\log U_1} \cos(2\pi U_2)$$
$$Y_2 = \sqrt{-2\log U_1} \sin(2\pi U_2)$$

 \Rightarrow Y₁ & Y₂ are independent random variables each following a $\mathcal{N}(0,1)$

Inverse transform sampling

<u>Definition</u>: For a function F defined on \mathbb{R} , its **generalized inverse** is defined as: $F^{-1}(u) = \inf\{x \text{ tq } F(x) > u\}$

Inverse transform sampling

<u>Definition</u>: For a function F defined on \mathbb{R} , its **generalized inverse** is defined as: $F^{-1}(u) = \inf\{x \text{ tq } F(x) > u\}$

Property: Let \bullet F be a cumulative probability distribution function

• U be a uniform random variable on [0,1]

Then $F^{-1}(U)$ defines a random variable whith cumulative probability distribution function F

- If $\ \ \,$ one knows F, the cumulative probability distribution function from which to sample
 - one can invert F
- \Rightarrow then one can sample this distribution from a uniform sample on [0,1]

Sampling according to a distribution defined analytically

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 \exp(-\lambda x)$

Let
$$F(x) = u$$

Then $x = \dots$

Inverse transform sampling: illustration

Example: sample from the Exponential distribution with parameter λ

- density of the Exponential distribution: $f(x) = \lambda \exp(-\lambda x)$
- its cumulative probability distribution function (its integral): $F(x) = 1 \exp(-\lambda x)$

Let
$$F(x) = u$$

Then
$$x = -\frac{1}{\lambda} \log(1 - u)$$

 \Rightarrow and if $U \sim U_{[0;1]}$, then $X = F^{-1}(U) = -\frac{1}{\lambda} \log(1 - U) \sim E(\lambda)$.

Your turn!

Practical: exercise 2