Optimization Methods

Fall 2021

Homework 3

Instructor: Lijun Zhang

Name: 麻超, StudentId: 201300066

Notice

- The submission email is: zhangzhenyao@lamda.nju.edu.cn.
- Please use the provided I⁴TEX file as a template. If you are not familiar with I⁴TEX, you can also use Word to generate a **PDF** file.

Problem 1: One inequality constraint

With $c \neq 0$, express the dual problem of

$$\begin{aligned} & \min \quad c^{\top} x \\ & \text{s.t.} \quad f(x) \le 0 \end{aligned}$$

in terms of the conjugate f^* .

Solution:

当
$$\lambda=0$$
 时,有 $g(\lambda)=\inf c^Tx=-\infty$
当 $\lambda>0$ 时,有 $g(\lambda)=\inf (c^Tx+\lambda f(x))=\lambda\inf ((\frac{c}{\lambda})^Tx+\lambda f(x))=-\lambda f_1^*(-\frac{c}{\lambda})$
其 dual problem 为:
$$\min = -\lambda f_1^*(-\frac{c}{\lambda})$$
subject to $\lambda\geq 0$

Problem 2: KKT conditions

Consider the problem

$$\min_{x \in \mathbb{R}^2} \quad x_1^2 + x_2^2$$
s.t.
$$(x_1 - 1)^2 + (x_2 - 1)^2 \le 2$$

$$(x_1 - 1)^2 + (x_2 + 1)^2 \le 2$$

where
$$x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^{\top} \in \mathbb{R}^2$$
.

- (1) Write the Lagrangian for this problem.
- (2) Does strong duality hold in this problem?
- (3) Write the KKT conditions for this optimization problem.

Solution:

a) 可以得到其 Lagrangian 为 $L(x,\lambda)=x_1^2+x_2^2+\lambda_1((x_1-1)^2+(x_2-1)^2-2)+\lambda_2(x_1-1)^2+(x_2+1)^2-2)$, 其中 $\lambda \in \mathbb{R}^2$

b) 首先, 由于 $\nabla^2 x_1^2 + x_2^2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, 该矩阵为正定矩阵, 则表明目标函数为凸函数.

其次, $\nabla^2(x_1-1)^2+(x_2-1)^2-2$) = $\nabla^2(x_1-1)^2+(x_2+1)^2-2$) = $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$,为正定矩阵,表明约束函数为凸函数,则原问题为凸优化问题.

由于存在 $x = \begin{bmatrix} 1 & 0 \end{bmatrix}^T \in relint \ D = R^2$,使得约束不等式 $(x_1 - 1)^2 + (x_2 - 1)^2 - 2) = (x_1 - 1)^2 + (x_2 + 1)^2 - 2) = -1 < 0$,

所以满足 Slater 条件, 表明该不等式约束严格成立, 即强对偶性成立.

c) 其 KKT conditions 是

$$(x_1 - 1)^2 + (x_2 - 1)^2 - 2) \le 0$$

$$(x_1 - 1)^2 + (x_2 + 1)^2 - 2) \le 0$$

$$\lambda_1 \ge 0$$

$$\lambda_2 \ge 0$$

$$\lambda_1((x_1 - 1)^2 + (x_2 - 1)^2 - 2)) = 0$$

$$\lambda_2((x_1 - 1)^2 + (x_2 + 1)^2 - 2)) = 0$$

$$2x_1 + 2\lambda_1(x_1 - 1) + 2\lambda_2(x_1 - 1) = 0$$

$$2x_2 + 2\lambda_1(x_2 - 1) + 2\lambda_2(x_2 + 1) = 0$$

Problem 3: Equality Constrained Least-squares

Consider the equality constrained least-squares problem

minimize
$$\frac{1}{2} ||Ax - b||_2^2$$

subject to $Gx = h$

where $A \in \mathbf{R}^{m \times n}$ with rank A = n, and $G \in \mathbf{R}^{p \times n}$ with rank G = p.

- (1) Derive the Lagrange dual problem with Lagrange multiplier vector v.
- (2) Derive expressions for the primal solution x^* and the dual solution v^* .

Solution:

a) $L(x,v) = \frac{1}{2} ||Ax - b||_2^2 + V^T (Gx - h) = \frac{1}{2} x^T A^T A x + (G^T v - A^T b)^T x - v^T h$ 所以当 $x = -(A^T A)^{-1} (G^T v - A^T b)$ 取得最小值.

也即用拉格朗日乘数向量 v 导出的拉格朗日对偶问题为

$$g(v) = -2(G^{T}v - A^{T}b)^{T}(A^{T}A)^{-1}(G^{T}v - A^{T}b) - v^{T}h$$

b) 其最优条件为
$$\nabla x L(x,v) = A^T (Ax^* - b) + G^T v^* = 0, Gx^* = h, x^* = -(A^T A)^{-1} (G^T v - A^T b)$$
 代入 $Gx^* = h$ 可得, $G(A^T A)^{-1} (A^T b - G^T v^*) = h$
$$\therefore v^* = G((A^T A)^{-1} (G^T)^{-1} (h - G(A^T A)^{-1} (A^T b))$$

Problem 4: Negative-entropy Regularization

Please show how to compute

$$\underset{x \in \Delta^n}{\operatorname{argmin}} \quad b^{\top} x + c \cdot \sum_{i=1}^n x_i \ln x_i$$

where $\Delta^n = \{x | \sum_{i=1}^n x_i = 1, x_i \ge 0, i = 1, \dots, n\}, b \in \mathbb{R}^n \text{ and } c \in \mathbb{R}.$

Solution:

原问题可以转化为求如下优化问题的最优解:

minimize
$$b^T x + c \cdot \sum_{i=1}^n x_i \ln x_i, x_i \ge 0$$

subject to $I^T x - 1 = 0$

由于凸函数进行保凸运算之后仍为凸函数,则不等式约束函数为凸函数,等式约束函数仿射. 所以这是一个凸优化问题,且当 $x=[1/n,1/n,...,1/n]^T$ 时,明显有 Slater 条件成立,即 KKT 条件是保证其最优性的充要条件.

于是引入一个 $\lambda \in \mathbb{R}^n, v \in \mathbb{R}$, 得到:

- $(1)-x \le 0$
- $(2)I^Tx 1 = 0$
- $(3)\lambda \geq 0$
- $(4)\lambda_i(-x_i) = 0, i = 1, 2, ..., n$
- $(5)b_i + c(\ln x_i + 1) \lambda + v = 0, i = 1, 2, ..., n$

可以得到 λ 是一个松弛变量, 可以消去, 于是得到如下条件:

- $(1)x \geq 0$
- $(2)I^Tx 1 = 0$
- $(3)b_ix_i + cx_i(\ln x_i + 1) + vx_i = 0, i = 1, 2, ..., n$
- $(4)b_i + c(\ln x_i + 1) + v \ge 0, i = 1, 2, ..., n$

综上可得目标函数 = $\sum_{i=1}^{n} -cx_i - vx_i$

所以可以得到

$$c + v = \begin{cases} > 0 &, x_i = e^{(-b_i - v)/c - 1} \\ \le 0 &, / \end{cases}$$

 $\therefore x_i = e^{(b_i - v)/c - 1}$, 根据 (2) 可以得到 $\sum_{i=1}^n x_i = e^{(b_i - v)/c - 1} = 1$, 所以 v 有唯一解, 满足条件, 得到 x_i 的值.

Problem 5: Support Vector Machines

Consider the following optimization problem

minimize
$$\sum_{i=1}^{n} \max (0, 1 - y_i(w^T x_i + b)) + \frac{\lambda}{2} ||w||_2^2$$

where $x_i \in \mathbf{R}^d, y_i \in \mathbf{R}, i = 1, \dots, n$ are given, and $w \in \mathbf{R}^d, b \in \mathbf{R}$ are the variables.

(1) Derive an equivalent problem by introducing new variables $u_i, i = 1, \dots, n$ and equality constraints

$$u_i = y_i(w^T x_i + b), i = 1, \dots, n.$$

- (2) Derive the Lagrange dual problem of the above equivalent problem.
- (3) Give the Karush-Kuhn-Tucker conditions.

Hint: Let
$$\ell(x) = \max(0, 1 - x)$$
. Its conjugate function $\ell^*(y) = \sup_{x} (yx - \ell(x)) = \begin{cases} y, & -1 \le y \le 0 \\ \infty, & otherwise \end{cases}$