⑲ 日本国特許庁(JP)

⑪ 特許出願公開

⑩ 公開特許公報(A) 昭62-59105

⑤Int Cl.⁴

識別記号

庁内整理番号

43公開 昭和62年(1987) 3月14日

B 60 C 11/00

6772-3D

審査請求 未請求 発明の数 1 (全9頁)

匈発明の名称。 空気入りタイヤ

> ②特 願 昭60-199255

20出 願 昭60(1985)9月9日

72発 明 者 岡本 慶 三 東久留米市柳窪2-6-4

小 川 ⑫発 明 者 東大和市清水 6-1188-28 宏

②発 明 者 真 々 田 守 小平市小川東町3-5-10

⑪出 願 人 株式会社ブリヂストン 東京都中央区京橋1丁目10番1号

19代 理 人 弁理士 有我 軍一郎

1. 発明の名称

空気入りタイヤ

2. 特許請求の範囲

(1) タイヤの概ね周方向に延びる少なくとも2本 の幅広の主溝によりトレッド部を複数本のリブに 分割したタイヤであって、トレッド部のトレッド ゴムが、ショルダーの端部を含むトレッド外側ゴ ムAと、トレッド外側ゴムAに少なくとも一端で 接合するトレッド中央ゴムBと、から構成され、 トレッド外側ゴムAが貯蔵弾性率E'Aと耐摩耗 率Waとを有し、路面と接地圧Paで接し、トレ ッド中央ゴムBが貯蔵弾性率E′。と耐摩耗率W s とを有し、路面と接地圧Ps で接し、トレッド 外側ゴムAとトレッド中央ゴムBとの間に次式

$$\frac{E'_{A} \times W_{A}}{P_{A}} > \frac{E'_{B} \times W_{B}}{P_{B}}$$

の関係を有することを特徴とする空気入りタイヤ。 (2) 前記トレッド外側ゴムAの貯蔵弾性率E′ 4

が前記トレッド中央ゴムBの貯蔵弾性率E′ gの 105 ~ 140%である特許請求の範囲第(1)項記載の 空気入りタイヤ。

(3) 前記トレッド外側ゴムAの耐摩耗率W。が前 記トレッド中央ゴムBの耐摩耗率W。の100~1 40%である特許請求の範囲第(1)項記載の空気入り タイヤ。

(4) 前記トレッド外側ゴムAの比率 (E'A× Wa) / Pa が前記トレッド中央ゴムBの比率 (E' × × W w) / P w の103 ~ 130%である特 許請求の範囲第(1)項記載の空気入りタイヤ。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は空気入りタイヤ、特に、主に良路を高 速走行するトラック、バス等に装着される重荷重 用空気入りラジアルタイヤのトレッド部に発生す る偏摩耗を改良した空気入りタイヤに関する。

(従来の技術)

主に良路高速走行に供される空気入りタイヤの トレッドパターンとしては一般にいわゆる完全な リブタイプのトレッドパターンのほか、リブ・ラグタイプ、リブ・ブロックタイプ等も用いられている。いずれにしろ、トレッド部をタイヤの概ね周方向に延びる2~5本程度の幅広の主溝によりタイヤの軸方向に分割して、タイヤの周方向に連続または不連続の複数本の陸部(以下、リブという)を形成している。

(発明が解決しようとする問題点)

このようなリプを有するリプタイプの重荷重用 空気入りラジアルタイヤがトラック・バスの前輪 軸等に装着されて、大きな横力を受けて転動する と、トレッド部の各リプ、特にトレッド部の軸方 向最外側に位置するショルダーリブに顕著な偏摩 耗が発生するという問題が生じる。

この偏摩耗はタイヤの使用条件、使用期間等によって種々複雑な様相を呈するが、トレッド部のショルダーリブの外側端部に端を発した摩耗 (いわゆるエッジ落ち) が、タイヤの周上不均一にトレッド部の内側に進展していき、甚だしい場合にはタイヤの側面からみて多角形となる多角形摩耗

タイヤの摩耗寿命を大幅に向上させることを目的 とする。

(問題点を解決するための手段)

まず、本発明に到達するに至った過程につき説明する。

本発明者らは偏摩耗の発生から成長進展までを その発生機構、ゴム材料およびこれらの相互作用 面より研究した。

トレッド部のショルダーリブに発生する種々の 偏摩耗の発端となるのはショルダーリブの外側端 部(エッジ)の局部摩耗(いわゆるエッジ落ち) である。この局部摩耗はコーナリング時に生ずる スリップアングルと横力および直進走行時の径差 引き摺りにより生じるものであり、この局部摩耗 が外側端部から内側へ徐々に成長進展し、遂には 段差が発生する。

このように同じ材質からなるトレッド部がショルダーリブ等に異常に摩耗の早い偏摩耗を起こすのは、ショルダーリブ等に作用する摩耗入力が大きいためである。これは、タイヤに横力が作用し

にまでも発展するのである。これらはタイヤの外 観を著しく見苦しくするばかりでなく、重両の振 動の原因になる等、タイヤの性能も著しく悪化し、 タイヤの摩耗寿命を大幅に低下させるという問題 点がある。これらの問題点を改良するため、構造 面、パターン面、トレッドゴム質の面等より種々 の検討がなされている。例えば、特開昭49-6 7305号公報に示されているように、ショルダ - 部の内側に硬度の大きい非補強ゴムのクッショ ンゴムを埋設してショルダー部を強固に支持する ことが提案されている。また、特開昭58-21 1902号公報に示されているように、ショルダ - 部に耐摩耗率のよいゴムを配置して摩耗し難く することが提案されている。しかしながら、これ らは偏摩耗現象に、単なるショルダー部の強固な 支持のみまたは高耐摩耗率ゴムへの変更のみで、 すなわち一局面のみで対応しているにすぎず、偏 磨耗の防止は十分でない。

本発明は、上記のような偏摩耗の問題点を他性能を犠牲にすることなく有利に解決し、この結果

た場合、ショルダーリブ等トレッド外側部の接地 圧がトレッド中央部の接地圧より大きくなるため、 トレッド外側部のゴムのトレッド表面に平行下で トレッド表部が動き摩耗するためである。すれた カレッド表部が動き摩耗するためである。すれた ショルダーリブ等トレッド外側部の摩耗入力 (剪断力×動き)がトレッド中央部の摩耗入力より大きくなり、トレッド外側部の摩耗速度が速くなるためである。

本発明者らはこの摩耗入力を低減すべく種々検討の結果、まずトレッドゴムの低変形時の弾性率(すなわち貯蔵弾性率)を大きくするとトレッド義部の動きが抑制されて小さくなるが、一方とを移動した。すなわちを慮せねばならないことに想倒した。すなわち、接地圧の大きはに応じて貯蔵弾性率を大きくすれば摩耗入力が低減できることを見出した。

また、トレッドゴムの摩耗量は前記の摩耗入力とゴムの摩耗入力当たりの摩耗量、すなわち耐摩

耗率との積であるので、摩耗量を減少させるため には耐摩耗率の優れたゴムを偏摩耗の発生部に配 置すればよい。

したがって、トレッド部のショルダーリブの偏 摩耗を低減するためには、トレッドゴムの貯蔵弾 性率と耐摩耗率および接地圧をあわせ考慮して、 トレッド外側部とトレッド中央部の摩耗バランス をとればよい。

以上説明したことをもとに、さらに総合的に研究した結果、下記の本発明の結論に到達した。

本発明に係る空気入りタイヤは、タイヤの概ね 周方向に延びる少なくとも2本の幅広の主溝によ りトレッド部を複数本のリブに分割したタイヤで あって、トレッドがのトレッドゴムが、ショルダ ーの端部を含むトレッドがム Aと、トレッド 外側ゴムAに少なら構成され、トレッド 中央が貯蔵弾性率E、な耐摩耗率W。とを有し、 路面と接地圧Paで接し、トレッド中央ゴムBが 貯蔵弾性率E、と耐摩耗率W。とを有し、 路面

を生じ、これが発端となって別の偏摩耗を惹起す るおそれがある。

ここに、前記トレッド外側ゴムA(E´ A ×W A)/PA = H A で表される量(以下、耐偏摩耗係数という)が前記トレッド中央ゴムBの耐偏摩耗係数 H B 、(E´ B × W B)/P B の103~130%であることが好ましい。103%未満ではトレッド外側部の偏摩耗の発生を抑制する効果が小さく、130%を超えると逆にトレッド中央部が摩耗し易くなり、トレッド中央部に偏摩耗を生じるおそれがある。

ここに「接地圧」とは、正規リム装着、正規内 圧充填、正規荷重負荷、キャンパー角度1度およ び横力300 Kgの条件下で、空気入りタイヤが、ト レッド外側ゴムAとトレッド中央ゴムBとのですなわち、トレッド外側ゴムA ぞれの所定の位置、すなわち、トレッド外側の であってはトレッド表面上トレッド最外側のショルダーリブ内でショルダー 9 からショルダー リ ブ幅のほぼ1 / 4 だけ内側の位置、またトレッド 中央ゴムBにあっては同じくトレッド表面上タイ と接地圧P。で接し、トレッド外側ゴムAとトレッド中央ゴムBとの間に次式

$$\frac{E'_{A} \times W_{A}}{P_{A}} > \frac{E'_{B} \times W_{B}}{P_{B}}$$

の関係を有することを特徴としている。

また、前記トレッド外側ゴムAの貯蔵弾性率 E' * が前記トレッド中央ゴムBの貯蔵弾性率 E' * の105 ~ 140%であることが好ましい。10 5 %未満では摩耗入力の低減への寄与が不十分で あり、偏摩耗の抑制効果が小さい、140 %を超え るとトレッド外側部とトレッド中央部の動きが極 端に異なる結果となり、トレッド外側ゴムAとト レッド中央ゴムBとの境界面において界面剝離を 生じるおそれがある。

また、前記トレッド外側ゴムAの耐摩耗率Waが前記トレッド中央ゴムBの耐摩耗率Wsの100~140%であることが好ましい。100%未満ではトレッド外側部の偏摩耗の発生を抑制する効果が小さい。140%を超えると両ゴムの接合部付近で逆にトレッド中央ゴムBの方が早期摩耗して段差

ヤ赤道面Lに最も近いリブ内でそのリブ幅のほぼ 中心位置において路面に接地する圧力のことをい う。

また、「耐摩耗率」とは、通常のゴム摩耗試験 機で測定したときのゴムの摩耗しにくさである。 (作用)

通常の空気入りタイヤのトレッド外側部はコーナリング時の横力や直進走行時の径差引き摺りによる動きにより、トレッド中央部より大きな摩耗入力(すなわち、剪断力×動き)を受け、局所摩耗を発生し、さらに成長進行し、段差が発生し、さらに種々の偏摩耗に成長進行して行く。

しかしながら、本発明の空気入りタイヤは、トレッド部のトレッドゴムがトレッド外側ゴムAとトレッド中央ゴムBとから構成され、トレッド外側ゴムAが貯蔵弾性率E'、と耐摩耗率W。とを有し、路面と接地圧P。で接し、また、トレッド外側ゴムAとトレッド中央ゴムBとの間に次式

$$\frac{E'_{A} \times W_{A}}{P_{A}} > \frac{E'_{B} \times W_{B}}{P_{B}}$$

の関係を有している。

すなわち、トレッドゴムはトレッド部の各部で接地圧に対応した貯蔵弾性率およびゴムの耐摩耗率を有して、トレッド部内で摩耗バランスがとられている。したがって、偏摩耗は大幅に低減し、摩耗寿命は極めて大幅に増加できる。

(実施例)

以下、本発明に係る空気入りタイヤの実施例を 図面に基づいて説明する。

第1図、第2図は本発明に係る空気入りタイヤの第1実施例を示す図であり、第1図はその一部平面図、第2図はその一部断面図である。タイヤサイズは10.00 R20 14 PRである。

第1図において、1はトレッド部であり、このトレッド部1はタイヤのほぼ周方向に延びる4本の主溝2により軸方向に5本のリブ3、4、5に分割され、トレッド最外側のショルダーリブ3、ショルダーリブ3の内側のセカンドリブ4および

また、トレッド中央ゴムBが貯蔵弾性率E'。 (指数100)と耐摩耗率W。(指数100)とを有しているのに対して、トレッド外側ゴムAはそれぞれ貯蔵弾性率E'。(指数123)と耐摩耗率W。(指数116)と高い指数の特性値を有している。したがって、トレッド外側ゴムAの耐偏摩耗係数H。との間には次式

の関係がある。

トレッドゴム7以外は通常の構成、すなわちスチールベルト、スチールカーカス等を有しており、説明を省略する。

トレッド外側ゴムAの接地圧Paとトレッド中央ゴムBの接地圧Paとはそれぞれ下記によって測定した。

空気入りタイヤを正規リム7.50 V × 20にリム組 し、正規内圧 7.25 kg/cd、正規荷重2700 kg、キャンバー角度1度、横力300 kgによりタイヤを踏

また、トレッド中央ゴムBは路面(図には示されていない)と接地圧Ps (指数100)で圧接しているのに対し、トレッド外側ゴムAは路面と接地圧Ps (指数125)と高い接地圧で圧接している。

面観察台上を転動させ、タイヤの踏み込みから蹴り出しに至る間のトレッドゴム?の接地圧を3分力計によって測定しその値を平均して出した。測定点は、ショルダーリブ3のショルダー9からタイヤ軸方向5mmの位置15およびセンターリブ5のタイヤ赤道面L上の位置16である。

トレッドゴム7は、次表に示す配合のゴム組成物①~③を準備し、この中から選んだゴム組成物を用いた。表1の下部には各ゴム組成物の特性(耐摩耗率Wと貯蔵弾性率E′)をゴム組成物③を100として指数表示で示している。指数は大きい方が耐摩耗率は優れ、貯蔵弾性率は大きいこと

(本頁、以下余白)

を示す。

表 1

ゴム組成物	0	2	3
(配合)			
天然ゴム	100	60	100
ポリブタジエンゴム		40	
カーボンSAF	50		
カーボンISAF		53	50
アロマチックオイル	2	5	5
ステアリン酸	2	2	2
亜鉛華	3	3	3
老化防止剤	1	1	1
促進剤	1.0	1.0	1.0
硫 黄	1.4	1.4	1.4
(特 性)			
貯蔵弾性率 E '	123	107	100
耐摩耗率W	116	121	100

ここに、貯蔵弾性率 E ′ は岩本製作所製粘弾性 試験機を用い、振動数50 Hz、 歪率 5 %、 温度40 ℃ の条件下で測定した。

ルダーリプ3の表部3b、ショルダー9の端部9 aおよびショルダーリプ3に隣接する主簿2の外 側溝側面2aを含む断面ほぼ台形状の一対の帯状 体であること以外は、第1実施例とほぼ同じ構成、 作用および効果を有しており、同じ符号をつけて 説明を省略する。

次に、本発明に係る空気入りタイヤの第4実施 例について説明する。

第5図は本発明に係る空気入りタイヤの第4実施例を示す一部断面図である。第4実施例においては、トレッド部41のトレッド外側ゴムAがショルダーリブ3の表部3b、ショルダー9の端部9aおよびショルダーリブ3に隣接する主溝2の外側溝側面2aの一部を含む断面ほぼ台形状の一対の帯状体であること以外は、第1実施例とほぼ同じ構成、作用および効果を有しており、同じ符号をつけて説明を省略する。

次に、本発明に係る空気入りタイヤの第 5 実施 例について説明する。

第6図は本発明に係る空気入りタイヤの第5実

また、耐摩耗率WはFERRY社製ピコ摩耗試験機を用い、通常の測定方法に準じて測定した。

この第1実施例においては、トレッド外側ゴム Aに表1のゴム組成物①を用い、トレッド中央ゴムBにゴム組成物②を用いた。

次に、本発明に係る空気入りタイヤの第2実施 例について説明する。

第3図は本発明に係る空気入りタイヤの第2実施例を示す一部断面図である。第2実施例においては、トレッド部21のトレッド外側ゴムAがショルダーリブ3の表部3bとショルダー9の端部9aを含む断面ほぼ3角形状の一対の帯状体であること以外は第1実施例とほぼ同じ構成、作用および効果を有しており、同じ符号をつけて説明を省略する。

次に、本発明に係る空気入りタイヤの第3実施 例について説明する。

第4図は本発明に係る空気入りタイヤの第3実施例を示す一部断面図である。第3実施例においては、トレッド部31のトレッド外側ゴムAがショ

施例を示す一部断面図である。第5実施例においては、トレッド部51のトレッド外側ゴムAがショルダーリブ3の表部3b、ショルダー9の端部9aおよびショルダーリブ3に隣接する主簿2の外側溝側面2aを含みトレッド中央ゴムBの半径方向内側に接合面8を有するシート状体であること以外は、第1実施例とほぼ同じ構成、作用および効果を有しており、同じ符号をつけて説明を省略する。

次に、本発明に係る空気入りタイヤの第6実施 例について説明する。

第7図は本発明に保る空気入りタイヤの第6実施例を示す一部断面図である。第6実施例においては、トレッド部61のトレッド外側ゴムAがショルダーリプ3およびセカンドリプ4の表部3b、4b、ショルダー9の端部9a、ショルダーリブ3に隣接する主溝2の外側および内側溝側面2a、2bの一部およびセカンドリブ4の内側にある主溝2の外側溝側壁2eの一部を含む断面ほぼ台形状の2対の帯状体であること以外は、第1実施例

とほぼ同じ構成、作用および効果を有しており、 同じ符号をつけて説明を省略する。

次に、本発明に係る空気入りタイヤの第7実施 例について説明する。

第8図は本発明に係る空気入りタイヤの第7実施例を示す一部断面図である。第7実施例においては、トレッド部71のトレッド外側ゴムAがタイヤが車両に装着されたとき車両の外側に位置するショルダーリブ3の表部3bとショルダー9の端部9aを含む断面ほぼ3角形状の一つのみの帯状体であること以外は、第1実施例とほぼ同じ構成、作用および効果を有しており、同じ符号をつけて説明を省略する。

(発明の効果)

次に、3種類(本発明タイヤI、 I および従来 タイヤ)の試験タイヤを準備し、効果を確認した。 試験タイヤのトレッド部に用いたトレッドゴムの ゴム組成物、ゴムの特性(貯蔵弾性率 E ′ および 耐摩耗率 W)、タイヤの接地圧および耐偏摩耗係 数を表 2 に示している。表 2 において、ゴム組成

表 2

	実施例! (本発明タイヤ		実施例 🛚 (本発明タイヤ		比較例 (従来タイヤ)	
	I)		Π)			
	トレッ ド外側 ゴムA	トレッ ド中央 ゴムB	トレッ ド外側 ゴムA	トレッ ド中央 ゴムB	トレッ ド外側 ゴムA	トレッ ド中央 ゴムB
ゴム組成物	0	3	2	3	3	3
貯蔵弾性率E′	123	100	107	100	100	100
耐摩耗率W	116	100	121	100	100	100
接地王P	125	100	125	100	125	100
耐偏摩耗係数H		:				į
(E′×W) ∕P	114	100	104	100	80	100
	5万km走行し、 偏摩耗なし		5万km走行し、 僅かにエッジ落		3万6,000 km走	
試験結果					行し偏摩耗発生	
			ち発生		し、中止	

物の番号は表 1 に示したものに対応し、また、数値はトレッド中央ゴム B の特性を100 として指数表示で示している。

(本頁、以下余白)

試験タイヤはタイヤサイズ10.00 R 20 14 P R のリプタイプである。試験に用いた本発明タイヤ I (実施例 I) は前述の第1実施例と同じであり、試験タイヤのトレッド外側ゴムAおよびトレッド中央ゴムBの内容は表2に示している。また、本発明タイヤ II (実施例 II) は前述の第1実施例のトレッド外側ゴムAに表1のゴム組成物②を用い、他は第1実施例と同じである。また、従来タイヤ (比較例) は前述の第1実施例のトレッド外側ゴムAおよびトレッド中央ゴムBにともに表1のゴム組成物③を用い、他は第1実施例と同じに表1の式験タイヤはすべて同じように製造された。

試験はこれら試験タイヤを試験車両の前輪左側に装着し、高速道路50%、一般道路50%からなる試験ルートを走行し、ショルダーリブの偏摩耗の発生状況を試験した。試験結果は表2の下部に示した。試験結果によれば、従来タイヤは3万6,000 m走行時に大きな偏摩耗(すなわち肩落ち摩耗)が発生して試験を中止したのに対し、本発明

タイヤⅠ、Ⅱはともに5万㎞を走行し、本発明タイヤⅡに僅かのエッジ落ちが発生したのみである。本発明タイヤⅠには全く偏摩耗の発生はなく、摩耗寿命は大幅に増加した。また、本発明タイヤⅠ、Ⅱともに操縦安定性能、振動乗心地性能等一般性能は従来タイヤと同様に十分の性能レベルであった。

以上説明したように、本発明によれば、一般性能は十分の性能レベルを維持したまま、偏摩耗の発生を大幅に低減でき、摩耗寿命を極めて大幅に向上できる。

4. 図面の簡単な説明

第1図、第2図は本発明に係る空気入りタイヤの 第1実施例を示す図であり、第1図はその一部平面 図、第2図はその一部断面図である。第3図~第8 図はそれぞれ本発明に係る空気入りタイヤの第2~ 第7実施例を示す一部断面図である。

1、21、31、41、51、61、71……トレッド部、

2 ……主溝、

3、4、5……リブ、

7 ……トレッドゴム、 9 ……ショルダー、 9 a ……端部、 A ……トレッド外側ゴムA、

B … … トレッド中央ゴム B。

代 理 人 弁理士 有 我 軍 一 郎 (外1名)

PAT-NO: JP362059105A

DOCUMENT-IDENTIFIER: JP 62059105 A

TITLE: PUBN-DATE: March 14, 1987

INVENTOR-INFORMATION:

NAME COUNTRY

OKAMOTO, KEIZO OGAWA, HIROSHI MAMADA, MAMORU

ASSIGNEE-INFORMATION:

NAME COUNTRY

BRIDGESTONE CORP N/A

APPL-NO: JP60199255

APPL-DATE: September 9, 1985

INT-CL (IPC): B60C011/00

ABSTRACT:

PURPOSE: To reduce the eccentric abrasion of a tread part by constituting the tread rubber from an outer side rubber and a center rubber and permitting a specific equation regulated by the storage modulus, abrasion resistance, and grounded pressure of each rubber to be satisfied.

CONSTITUTION: A radial tire suitable for heavy load use has a tread part 1 divided into several ribs 3~5 by at least two main grooves extending nearly in the circumferential direction of the tire, and said tread part 1 has a tread rubber 7 consisting of a tread outer side rubber A forming the edge part 9a of a shoulder 9 and a tread center rubber B joined with the rubber A. In this cases, if each storage modulus of the outer side rubber A and the center rubber B is set as EA', EB', and the abrasion resistance is set as WA, WB, and the grounded pressure is set as PA, PB, following relation shall be established between the rubbers A and B: (EA'×WA)/PA>(EB'×WB)PB. Further, EA' is set in 105~140% of EB',

and WA is set in 100~140% of WB.

COPYRIGHT: (C)1987,JPO&Japio